

AGRICULTURAL RESEARCH INSTITUTE
PUSA

BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE

VIERTE AUFLAGE

ZWEITES ERGÄNZUNGSWERK

DIE LITERATUR VON 1920-1929 UMFASSEND

HERAUSGEGEBEN VON DER

DEUTSCHEN CHEMISCHEN GESELLSCHAFT

BEARBEITET VON

FRIEDRICH RICHTER

ZWEITER BAND

ALS ERGANZUNG DES ZWEITEN BANDES DES HAUPTWERKES

Published and distributed in the Public Interest by Authority of the Alien Property Custodian under License No. A-169

Photo-Lithoprint Reproduction

EDWARDS BROTHERS, INC.

PUBLISHERS
ANN ARBOR, MICHIGAN

1943

BERLIN

SPRINGER-VERLAG

1942

Mitarbeiter:

GÜNTHER AMMERIAHN MARGABETE BAUMANN ERNST BEHRLE ANNA FIEDLER LISE GARDE EMIL GERISCH CARL GOTTFRIED EBERHARD HACKENTHAL BERTHOLD HILLGER Fritz Höhn HERMANN HOMANN KONRAD ILBERG MARIE ILBERG RUDOLF KNOBLOCH MARIA KOBEL Benno Kühn ELISABETH MATERNE RUDOLF OSTERTAG KARL OTT HEINZ PALLUTZ OTTO SACHTLEBEN GERT TREWENDT EUGEN WEEGMANN

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

Copyright 1942 by Springer-Verlag OHG. in Berlin.

Printed in Germany.

Copyright vested in the Alien Property Custodian, 1943, pursuant to law.

Inhalt.

					Seite
					VI
					XXVI
					XXIX
					XXIX
					$\mathbf{X}\mathbf{X}\mathbf{X}$
					$\mathbf{X}\mathbf{X}\mathbf{X}$
•	 	 	 	 	

Erste Abteilung.

Acyclische Verbindungen.

(Fortsetzung.)

IV. Carbonsäuren.

		Seite	Sei	lte
	A. Monocarbonsäuren.		Essigsäure C ₂ H ₄ O ₂	91
1.	Monocarbonsäuren CnH2nO2	3	Vorkommen, Biochemische Bil-	
	Ameisensäure CH ₂ O ₂	3	1	91
	Vorkommen, Biochemische Bil-		Rein chemische Bildungsweisen	93
	dung	3	Darstellung und Reinigung 9	96
	Chemische Bildungsweisen	4	Physikalische Eigenschaften 9	97
	Darstellung	7	Chemisches Verhalten 10)5
	Physikalische Eigenschaften	8	Biochemisches und physiologisches	
	Chemisches Verhalten	11	Verhalten 11	10
	Biochemisches und physiologisches	40	Verwendung, Analytisches 11	
	Verhalten	16 17	Additionelle Verbindungen der	
	Verwendung, Analytisches	19	Essigsäure 11	13
	Ameisensaure Salze	19	Salze der Essigsäure und salzartige	
	Ester der Ameisensäure (z. B. Me-		Verbindungen der Essigsäure	
	thylformiat, Monoformin, Diformine)	25	mit Metallsalzen 11	13
	Ameisensäurederivate von Wasser-		Funktionelle Derivate der Essigsäure 12	25
	stoffperoxyd und anorganischen		Acetate gesättigter Monooxyver-	
	Sauerstoffsäuren (z. B. Methan-		bindungen (z. B. Essigester, Iso-	
	trisulfonsäure)	34	amylacetat)	25
	Ammoniakderivate der Ameisen-		Acetate ungesättigter Monooxy-	
	säure (z. B. Formamid, Form-		verbindungen (z. B. Vinylacetat,	
	iminomethyläther)	3 6	Allylacetat) 14	Ł7
	Nitril der Ameisensäure (Blausäure)	37	Acetate von Polyoxyverbindungen	
	Salze der Blausäure (Metall-		(z. B. Glykoldiacetat, Monoace-	
	cyanide)	51	tin, Triacetin) 15	54
	Umwandlungsprodukte unbekann-		Essigsäurederivate von Oxover-	
	ter Struktur aus Blausäure bzw.	00	bindungen (z. B. Methylen-	
	Cyaniden	88	diacetat, Polyoxymethylen-	
	Hydroxylamin- und Hydrazinderi-		diacetate))3
	vate der Ameisensäure (z. B. Form-	89	Essigsäurederivate von Oxyoxoverbindungen (z. B. Acetoxy-	
	hydroxamsäure)	99	aceton)	38
	Schwefelanaloga der Ameisensäure	00	Anhydride der Essigsäure 17	
	(z. B. Dithioameisensäure)	90	Aunyanue der mankanue 17	U

	Seite	1	ite
Essigsäurederivate von Wasser-		2. Monocarbonsäuren CnH2n-2O2 3	83
stoffperoxyd und anorganischen	1	Acrylsäure C.H.O	83
Sauerstoffsäuren (z. B. Acet-	.	Vinylessigsaure C ₄ H ₆ O ₂ 3	89
persaure)	174	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90
Halogenwasserstoffderivate der		Isocrotonsäure	94
Essigsäure (z. B. Acetylchlorid)	175	Carbonsäuren C _s H _s O _s (z. B. Allyl-	
Ammoniakderivate der Essigsäure		essigsäure)	99
(z. B. Acetamid, Acetimino-		essigsäure)	
methyläther, Acetonitril, Acet-	1	hvdrosorbinsauren)	02
amidin)	177	Carbonsäuren $C_7H_{12}O_2$ (z. B. Hepten-	
Essigsaurederivate des Hydroxyl-	}	sauren)	10
amins und Hydrazins	184	Carbonsauren $C_8H_{14}O_2$ 4	13
Substitutionsprodukte der Essig-	Ì	Carbonsäuren $C_0H_{14}O_2$ 4	16
săure	185	Carbonsäuren $C_{10}H_{10}O_3$ 4 $C_{arbonsäuren}$ $C_{11}H_{20}O_2$ 4	18
Fluorderivate	185	Carbonsäuren C ₁₁ H ₂₀ O ₂ 4	19
Chlorderivate	187	Carbonsauren $C_{12}H_{22}O_2$ 4	21
Bromderivate	201	Carbonsäuren C.H.O 4	22
Jodderivate	206	Carbonsäuren C ₁₄ H _{es} O _e (z. B. Phy-	
Nitro- und Azidoderivate	207	setersäure)	23
Schwefel- und Selenanaloga der	.	Carbonsäuren $C_{15}H_{28}O_2$ 4	24
Essigsäure	208	Carbonsauren C ₁₆ H ₂₀ O ₂ (z. B. Zoo-	
Propionsaure C.H.O.	212	marinsäure)	24
Funktionelle Derivate (z. B. Methyl-	1	Carbonsauren C ₁₇ H ₃₂ O ₂ 4	26
propionat. Propionylchlorid, Pro-		Carbonsauren C ₁₈ H ₂₄ O ₂ (z. B. Petro-	
pionitril)	218	selinsaure, Olsaure, Elaidinsaure) 4	26
Substitutionsprodukte (z. B. Halo-		Carbonsäuren $C_{19}H_{36}O_2$ usw. (z. B.	
genpropionsäuren)	226	Erucasäure) 4	44
Schwefelanaloga (z. B. Thiopropion-		8. Monocarbonsäuren C _n H _{2n-4} O ₂	
săure)	234	(z. B. Propiolsäure, Sorbinsäure,	
Buttersaure C ₄ H ₂ O ₂	235	Stearolsäure, Linolsäure, Behenol-	
Funktionelle Derivate	243	saure) 4	49
Substitutionsprodukte	253		TU
Schwefelanaloga	257	4. Monocarbonsäuren CnH2n-6O2	
Isobuttersäure	257	(z. B. Linolensäuren, Eläostearin-	
n -Valeriansäure $C_5H_{10}O_2$	263	säuren) 4	62
Methyläthylessigsäure	270	5. Monocarbonsäuren CnH2n-8O2	
Isovaleriansaure	271	(z. B. Stearidonsäure, Arachidon-	
Pivalinsäure			68
n-Capronsäure $C_6H_{12}O_2$	281		
Methylpropylessigsaure	288	6. Monocarbonsäuren CnH2n-10O2	
Isocapronsaure	289	(z. B. Clupanodonsäure) 4	170
sekButylessigsaure, Diathylessig	•	7. Monocarbonsäuren CnH2n-12O2 4	171
säure	291	** MONOGRAPHICA ON THE ST-15 of	
Dimethyläthylessigsäure usw.			
Onanthaure C ₇ H ₁₄ O ₂ usw	294		
Caprylsäure C ₈ H ₁₆ O ₂ usw	300		
Pelargonsäure C ₂ H ₁₈ O ₃ usw	306	1. Dicarbonsäuren $C_nH_{2n-2}O_4$ 4	
Caprinsaure C ₁₀ H ₂₀ O ₂ usw. Undecansaure C ₁₁ H ₂₂ O ₂ usw.	309	Oxalsaure 4	
Undecansaure C ₁₁ H ₂₂ U ₂ usw	314	Vorkommen 4	
Laurinsäure C ₁₃ H ₂₄ O ₂ usw	316	Bildung 4	I/Z
Musicking Ruse C. H. O	. 322	Darstellung 4	614 172
Myristinsäure C ₁₄ H ₂₈ O ₂ usw Pentadecansäure C ₁₈ H ₂₀ O ₂ usw	. 324	Physikalische Eigenschaften 4	
Pentadecansaure C ₁₅ H ₂₀ U ₂ usw	. 329	Chemisches Verhalten	
Palmitinsäure C ₁₆ H ₅₂ O ₂			
Weitere Carbonsäuren C ₁₆ H ₃₂ O ₂ .	. 343	Verwendung, Analytisches	
Heptadecansăure C ₁₇ H ₃₄ O ₂ usw	. 343 940	Salze der Oxalsaure	20 0
Stearinsäure C ₁₈ H ₂₆ O ₂	. 34 6		
Weitere Carbonsäuren C ₁₈ H ₂₆ O ₂ .	. 367 269		
Nonadecansäure C ₁₉ H ₂₈ O ₂ usw	. 368 240		503
Arachinsäure C ₂₀ H ₄₀ O ₃ usw Heneikosansäure C ₂₁ H ₄₉ O ₂ usw.	379	azid, Oxalhydrazid)	~~
Dokosansaure C. H. O. 1190	372	(z. B. Dithiooxalsaure, Dithio-	
Dokosansāure $C_{22}H_{44}O_3$ usw Trikosansāure $C_{23}H_{44}O_3$	372	oxamid)	514
Tetrakosansaure C. H. O. usw	378	Malonsäure C ₂ H ₄ O ₄	510
Tetrakosansāure C ₂₄ H ₄₆ O ₂ usw Carbonsāuren C ₂₄ H ₄₆ O ₂ usw	380	Bernsteinsäure C.H.O.	540

Seite	Seite
Funktionelle Derivate (z. B. Di-	Muconsäure $C_0H_0O_4$ 671 Dicarbonsäuren $C_7H_0O_4$ 678
methylsuccinat, Athylensuccinat,	Dicarbonsäuren $C_7H_8O_4$ 678
Succinylchlorid, Athylencyanid) . 549	Dicarbonsauren C ₈ H ₁₈ O ₄ usw 670
Substitutionsprodukte (z. B. Brom-	4. Dicarbonsäuren C _n H _{2n-8} O ₄ (Citry-
bernsteinsäuren)	lidenmalonsäure) 678
Glutarsaure C ₈ H ₈ O ₄ 564	5. Dicarbonsäuren C _n H _{3n-10} O ₄ 679
Brenzweinsäure	6. Dicarbonsäuren CnH2n-12O4 679
Athylmalonsäure	7. Dicarbonsäuren CnH2n-14O4 679
Dimethylmalonsäure 571	8. Dicarbonsäuren C _n H _{2n-16} O ₄ 679
Dicarbonsäuren C ₆ H ₁₀ O ₄ (z. B. Adi-	9. Dicarbonsäuren $C_nH_{2n-18}O_4$ 679
pinsäure, Methylglutarsäuren, Di-	
methylbernsteinsäuren, Isopropyl-	10. Dicarbonsäuren $C_nH_{2n-20}O_4$ 679
malonsäure)	
Dicarbonsauren C ₇ H ₁₈ O ₄ (z. B. Pi-	C. Tricarbonsäuren.
melinsäure, Methyladipinsäuren, Dimethylglutarsäuren, Diäthyl	1. Tricarbonsäuren CnH2n-4O6 680
malonsaure)	Methantricarbonsaure C4H4O6 680
Dicarbonsäuren C ₂ H ₁₄ O ₄ (z. B. Kork-	Carboxybernsteinsäure C ₅ H ₆ O ₆ 681
saure, Dimethyladipinsauren,	Tricarbonsäuren $C_6H_8O_6$ (z. B. Tri-
Tetramethylbernsteinsäure) 595	carballylsaure) 681
Dicarbonsauren C ₂ H ₁₆ O ₄ (z. B. Aze-	Tricarbonsauren C ₇ H ₁₀ O ₆ 683
lainsäure, Dipropylmalonsäure) . 602	Tricarbonsäuren $C_8H_{18}O_6$ (z. B. Hämotricarbonsäure) 686
Dicarbonsauren $C_{10}H_{18}O_4$ (z. B.	Hämotricarbonsäure) 686 Tricarbonsäuren $C_9H_{14}O_6$ (z. B.
Sebacinsäure) 608	Camphoronsäure) 689
Dicarbonsauren C ₁₁ H ₃₀ O ₄ (z. B.	Tricarbonsäuren $C_{10}H_{16}O_6$ usw 691
n-Octylmalonsäure) 612 Dicarbonsäuren $C_{13}H_{22}O_4$ 615	2. Tricarbonsäuren C _n H _{2n-6} O ₆ (z. B.
Dicarbonsauren $C_{13}H_{24}O_4$ (z. B.	Aconitsaure) 692
Brassylsäure) 617	3. Tricarbonsäuren CnH2n-8O6
Dicarbonsäuren $C_{14}H_{26}O_4$ 620	(Allentricarbonsaure) 699
Dicarbonsauren $C_{18}H_{28}O_4$ 620	(12202000000000000000000000000000000000
Dicarbonsäuren $C_{16}H_{80}O_4$ (z. B.	D. Tetracarbonsäuren.
Thapsiasäure) usw 622	
2. Dicarbonsäuren $C_n H_{2n-4} O_4 \dots 631$	1. Tetracarbonsäuren CnH2n-6O8
Fumarsäure $C_4H_4O_4$ 631	(z. B. Athantetracarbonsaure, Me-
Maleinsäure $C_4H_4O_4$ 641	thylendimalonsaure) 699
Glutaconsăure $C_5H_6O_4$ 648	2. Tetracarbonsäuren C _n H _{2n-8} O ₈
Itaconsaure $C_5H_4O_4$ 650	(z. B. Athylentetracarbonsaure). 709
Mesaconsaure $C_1H_4O_4$ 651	8. Tetracarbonsäuren $C_nH_{2n-10}O_8$ 716
Citraconsäure $C_5H_5O_4$ 652 Äthylidenmalonsäure $C_2H_2O_4$ 654	
Athylidenmalonsäure $C_8H_8O_4$ 654 Dicarbonsäuren $C_8H_8O_4$ (z. B. Di-	E. Pentacarbonsäuren.
hydromuconsäuren, Methylgluta-	1. Pentacarbonsäuren CnH2n-8O10 . 717
consăuren, Allylmalonsäure, Pyro-	2. Pentacarbonsäuren $C_nH_{2n-10}O_{10}$. 717
cinchonsaure) 655	2. I entacationsauten on 112n-10010
Dicarbonsauren C7H10O4 (z. B. Tera-	TO TV \$ 9
consaure, Dimethylglutacon-	F. Hexacarbonsäuren.
sauren)	1. Hexacarbonsäuren C _n H _{2n-10} O ₁₂ . 718
Dicarbonsauren $C_0H_{10}O_4$	2. Hexacarbonsäuren CnH2n-12O12 . 719
Dicarbonsauren C ₂ H ₁₄ O ₄ usw 667	
3. Dicarbonsäuren $C_nH_{2n-6}O_4$ 670	G. Oktacarbonsäuren.
Acetylendicarbonsaure C ₄ H ₂ O ₄ 670	Pentenhexacarbonsäuremalonsäure 719
Glutinsaure C ₅ H ₄ O ₄ 671	T. Office in the first in the state of the s
	MAA
Alphabetisches Register	
Nachträge und Berichtigungen	
TIEDWING OF STATE TO STATE OF THE STATE OF T	

Verzeichnis der Kürzungen für die Literatur-Quellen*).

Abkürzung	Titel
 А.	JUSTUS LIEBIGS Annalen der Chemie
Aarsskr. Veterin.	Den Kongelige Veterinaer-og Landbohøjskole: Aarsskrift
Landboh. Abh. Ges. Wiss. Göt-	Abbandhingan dan Casallashaft dan Wissangshafton zu Göttingan
tingen	Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse
Abh. Kenntnis Kohle	Gesammelte Abhandlungen zur Kenntnis der Kohle
Abh. preuβ. Akad.	Abhandlungen der Preußischen Akademie der Wissenschaften Physikalisch-mathematische Klasse
Abh. sächs. Akad.	Abhandlungen der Mathematisch-physikalischen Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig
A. ch.	Annales de Chimie
Acta Acad. Abo.	Acta Academiae Aboensis, Ser. B: Mathematica et Physica
Acta chem. Szeged	Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae: Acta Chemica, Mineralogica et Phy- sica. Szeged
Acta Comment. Univ. Dorpat.	1914—1917: Učenyja Zapiski Imp. Jufevskago Universiteta <russ.). (olim<="" acta="" commentationes="" et="" imp.="" jurievensis="" td="" universitatis=""></russ.).>
	Dorpatensis); 1921 ff.: Eesti Vabariigi Tartu Ülikooli Toimetused. Acta et
Acta latviens. Chem.	Commentationes Universitatis [Tartuensis] Dorpatensis Latvijas Universitātes Raksti, Kīmijas Fakultātes Serija. Acts Universitatis Latviensis, Chemicorum Ordinis Series
Acta Lit. Sci. Szeged, Sect. Med.	Acta Litterarum ac Scientisrum Regiae Universitatis Hungaricae Francisco-Josephinae, Sectio Medicorum. Szeged
lcta med. scand.	Acta Medica Scandinavica
cta physicoch.	Acta Physicochimica U.R.S.S.
icta phys. polon.	Acta Physica Polonica
lcta phytoch.	Acta Phytochimica. Tokyo
icia Polon. pharm.	Acta Poloniae Pharmaceutica (Beilage zu Farmacja Współczesna)
Acta Sch. med. Univ. Kioto	Acta Scholae Medicinalis Universitatis Imperialis in Kioto
Acta Soc. Sci. fenn.	Acta Societatis Scientiarum Fennicae
lkust. Z. Im.	Akustische Zeitschrift
im. Imbix	American Chemical Journal
	Ambix. The Journal of the Society for the Study of Alchemy and Early Chemistry
m. Dyest. Rep.	American Dyestuff Reporter
1m. J. Bot.	American Journal of Botany
Im. J. Cancer	The American Journal of Cancer
im. J. Diseases Child.	American Journal of Diseases of Children
1m. J. Hyg. 1m. J. med. Sci.	The American Journal of Hygiene
im. J. Metr. Sci.	The American Journal of the Medical Sciences
	American Journal of Pharmacy
Am. J. Physiol.	The American Journal of Physiology
lm. J. publ. Health lm. J. Sci.	American Journal of Public Health [and The Nation's Health]
	[The] American Journal of Science. [Established by BENJAMIS SILLIMAN]
1m. Perjumer	7—32: The American Perfumer and Essential Oil Review; 38 ff.: The American Perfumer. Cosmetics. Toilet Preparation

^{*)} Erläuternde Zusätze der Bedaktion sind durch <> keantlich gemacht. In eckige Klammern [] eingeschlossene Wörter gehörten dem Titel nur seitweise an. Bunde Klammern () gehören sum Titel.

Die in geschweifte Klammern {} eingeschlossenen Wörter treten von einem bestimmten fleitpunkt ab an die Stelle der vorangehenden.

Abkürzung	Titel
Am. Petr. Inst. Quart.	American Petroleum Institute Quarterly
Am. Soc.	The Journal of the American Chemical Society
Analyst	The Analyst. London
An. Asoc. quim. arg.	Anales de la Asociación Química Argentina
An. Farm. Bioquim.	Anales de Farmacia y Bioquímica. Buenos Aires
Ang. Ch.	Angewandte Chemie. Zeitschrift des Vereins Deutscher Chemiker, A
Anilinokr. Promyšl.	Anilinokrasočnaja Promyšlennost' (russ.)
Ann. Acad. Sci. fenn.	Suomalaisen Tiedeakatemian Toimituksia. Annales Academiae Scientiarum Fennicae
Ann. agron.	Annales Agronomiques
Ann. appl. Biol.	Annals of Applied Biology
Ann. Botany Ann. Brass. Dist.	Annals of Botany
Ann. Chim. anal.	Annales de la Brasserie et de la Distillerie
Ann. Chim. anal. appl.	Annales de Chimie Analytique et Revue de Chimie Analytique Annales de Chimie Analytique et de Chimie Appliquée et Revue de Chimie Analytique Réunies
Ann. Chim. applic.	Annali di Chimica Applicata
Ann. Chim. farm.	Annali di Chimica Farmaceutica (Beilage zu Farmacista Italiano)
Ann. Clin. med.	Annali di Clinica Medica [e di Medicina Sperimentale]
Ann. Falsificat.	Annales des Falsifications [et des Fraudes]
Ann. Fermentat.	Annales des Fermentations
Ann. Inst. Pasteur	Annales de l'Institut Pasteur
Ann. Off. Combust. liq.	Annales de l'Office National des Combustibles Liquides
Ann. Phys. Ann. Physiol. Physico- ch. biol.	Annalen der Physik Annales de Physiologie et de Physicochimie Biologique
Ann. Physique	Annales de Dhysique
Ann. Rep. Progr. Chem.	Annales de Physique Annual Reports on the Progress of Chemistry
Ann. Sci. agron. franç. étr.	Annales de la Science Agronomique Française et Etrangere
Ann. scient. Univ. Jassy	Annales Scientifiques de l'Université de Jassy
Ann. Sci. nat. Bot.	Annales des Sciences Naturelles, Botanique let Diologie vegetale
Ann. Soc. scient. Bru-	Annales de la Société Scientifique de Bruxelles, Serie B: Sciences Physiques et Naturelles
Ann. Sperim. agrar.	Annali della Sperimentazione Agraria
Ann. Surv. am. Chem. Ann. Univ. fenn. Abo.	Annual Survey of American Chemistry Turun Suomalaisen Yliopiston Julkaisuja. Annales Universitatis Fennicae Aboensis
Ann. Zymol.	Annales [de la Société] de Zymologie
An. Soc. cient. arg.	Anales de la Sociedad Científica Argentina
An. Soc. españ.	Anales de la Sociedad Española de Física y Química
An. Soc. quim. arg.	l Angles de la Sociedad Química Argentina
Anz. Akad. Krakau	Anzeiger der Akademie der Wissenschaften in Krakau, Mathematisch-naturwissenschaftliche Klasse. Bulletin International de l'Académie des Sciences de Cracovie, Classe des Sciences
Anz. Akad. Wien	Mathématiques et Naturelles Anzeiger der Akademie der Wissenschaften in Wien, Mathematisch- naturwissenschaftliche Klasse
A. P.	Amerikanisches Patent
ApothZtg.	Anathalian Zaitung Rarlin
Ar.	Archiv der Pharmazie [(1924ff;) und Berichte der Deutschen
Arb. biol. Reichsanst.	Arbeiten aus der Biologischen Reichsanstalt für Land- und Forst-
Arb. dtsch. LandwGes.	Arbeiten der Deutschen Landwirtschafts-Gesellschaft
Arb. GesundhAmt Arb. med. Fak. Oka-	Arbeiten aus dem Reichsgesundheits-Amte Arbeiten aus der Medizinischen Fakultät Okayama
yama Arch. biol. Nauk	Archiv Biologičeskich Nauk (russ.). Archives des Sciences Biologiques
Arch. Dermatol. Arch. Eisenhüttenw	Archiv für Dermatologie und Syphilis Archiv für das Eisenhüttenwesen

Titel

Abkürzung

Atti Soc. liguet. Sci.

Austral. J. Biol. med.

Austral. chem. Inst.

J. Pr.

Soi.

Archivio di Farmacologia Sperimentale e Scienze Affini Arch. Farmacol. sperim. Archivio di Fisiologia. Firenze Arch. Fisiol. Archiv für Gewerbepathologie und Gewerbehygiene Archiv für Hygiene Archiv für Hygiene und Bakteriologie Archives de l'Institut Pasteur d'Algérie Arch. Gewerbe-Path. Arch. Hyg. Arch. Hyg. Bakt. Arch. Inst. Pasteur Algérie Arch. internal Med. Archives of Internal Medicine. Chicago Arch. int. Pharmacod. Archives Internationales de Pharmacodynamie [et de Thérapie] Arch. int. Physiol. Archives Internationales de Physiologie Archivio dello Istituto Biochimico Italiano Arch. Ist. biochim. ital. Arch. Kinderheilk. Archiv für Kinderheilkunde Archiv for Mathematik og Naturvidenskab Arch. Math. Naturvid. Archipum Chem. Farm. Archiwum Chemji i Farmacji [Archive de Chimie et de Pharmacie]. Warszawa Arch. Med. legal Arch. Mikrobiol. Archivo de Medicina Legal. Lisboa Archiv für Mikrobiologie Arch. mikrosk. Anat. Archiv für Mikroskopische Anatomie [(98ff.:) und Entwicklungsmechanik] Arch. néerl. Physiol. Archives Néerlandaises des Sciences Exactes et Naturelles, Serie III C: Archives Néerlandaises de Physiologie de l'Homme et des Animaux Arch. néerl. Sci. exactes Archives Néerlandaises des Sciences Exactes et Naturelles, Serie III A: Sciences Exactes Arch. Path. Archives of Pathology and Laboratory Medicine. Chicago Arch. Patol. Clin. Archivio di Patologia e Clinica Medica Arch. Pharm. Chemi Archiv for Pharmaci og Chemi. København Arch. Phys. biol. Archives de Physique Biologique [et de Chimie-Physique des Corps Organisés] Arch. Physiol. Archiv für Anatomie und Physiologie, Physiologische Abteilung = Archiv für Physiologie (Hrsg. v. du Bors-Reymond, Wal-DEYER u. a.> Arch. Rubbercult. Archief voor de Rubbercultuur in Nederlandsch-Indië Nederl.-Indië Archiv für Schiffs- und Tropenhygiene Arch. Schiffshyg. Archivio di Scienze Biologiche Arch. Sci. biol. Archives des Sciences Physiques et Naturelles. Genève Archiv für Wissenschaftliche und Praktische Tierheilkunde Arch. Sci. phys. nat. Arch. Tierheilk. Arch. Verdauungskr. Archiv für Verdauungskrankheiten, Stoffwechselpathologie und Diätetik Arh. Hem. Farm. Arhiv za Hemiju i Farmaciju. Archives de Chimie et de Pharmacie. Zagreb Arh. Hem. Tehn. Arhiv za Hemiju i Tehnologiju. Archives de Chimie et de Technologie. Zagreb Ark. Kemi Arkiv för Kemi, Mineralogi och Geologi Ar. Pth. [Naunyn-Schmiedebergs] Archiv für Experimentelle Pathologie und Pharmakologie Astrophys. J. The Astrophysical Journal Atti della Reale Accademia delle Scienze di Torino, Classe di Atti Accad. Torino Scienze Fisiche, Matematiche e Naturali Atti Congr. naz. Chim. Atti del Congresso Nazionale di Chimica Industriale ind. Atti Congr. naz. Chim. Atti del Congresso Nazionale di Chimica Pura ed Applicata pura appl. Atti Ist. veneto Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, Parte II: Scienze Matematiche e Naturali

Atti della Società Ligustica di Scienze e Lettere

Science

Australian Chemical Institute Journal and Proceedings

The Australian Journal of Experimental Biology and Medical

Abkürzung Titel Austral. Sci. Abstr. Australian Science Abstracts В. Berichte der Deutschen Chemischen Gesellschaft [52 ff.: Teil B] Beitr. Physiol. Beiträge zur Physiologie Ber. dtsch. bot. Ges. Berichte der Deutschen Botanischen Gesellschaft Ber. dtsch. pharm. Ges. Berichte der Deutschen Pharmazeutischen Gesellschaft Ber. Forsch.-Inst. čsl. Bericht des Forschungsinstitutes der Čechoslovakischen Zucker-Zuckerind. industrie [in Prag] Ber. Ges. Kohlentech. Berichte der Gesellschaft für Kohlentechnik (Dortmund-Eving) Berl. klin. Wschr. Berliner Klinische Wochenschrift Ber. Ohara-Inst. Berichte des Ohara-Instituts für Landwirtschaftliche Forschungen in Kuraschiki, Provinz Okayama, Japan Ber. Physiol. Berichte über die gesamte Physiologie [<1921 ff.:> und Experimentelle Pharmakologie] = Berichte über die gesamte Biologie, Abt. B Ber. sächs. Akad. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-physische Klasse Ber. Schimmel Bericht von Schimmel & Co. [in] Miltitz b. Leipzig über Ätherische Öle, Riechstoffe usw.; ⟨1928ff.:⟩ Bericht der Schimmel & Co. Aktiengesellschaft Miltitz bei Leipzig über... Ber. wiss. Biol. Berichte über die Wissenschaftliche Biologie = Berichte über die gesamte Biologie, Abt. A Beton Eisen Beton und Eisen Biochem. J. The Biochemical Journal Biochimija (russ.). Biochimia Biochimica e Terapia Sperimentale Biological Bulletin of the Marine Biological Laboratory; (1930ff.:) The Biological Bulletin Biochimija Biochim. Terap. sperim. Biol. Bl. Biol. Medd. danske Biologiske Meddelelser udgivne af det Kongelige Danske Viden-Vid. Selsk. skabernes Selskab Biologieskij Žurnal (russ.) [Zeitschrift für Biologie. Journal de Biologie. Biologieheskij Zhurnal] Biol. Z. Biochemische Zeitschrift Bio. Z. Bulletin de la Société Chimique de France, [([5] 1ff.:) Mémoires] Bl.Bl. Acad. Belgique Académie Royale de Belgique: Bulletins de la Classe des Sciences; ([5] 18ff. mit Nebentitel: Koninklijke Belgische Academie. Mededeelingen van de Afdeeling Wetenschappen Académie Royale Serbe: Bulletin de l'Académie des Sciences Bl. Acad. Belgrade Mathématiques et Naturelles, A, Sciences Mathématiques et Physiques. Belgrade Bulletin International de l'Académie des Sciences de Cracovie, Bl. Acad. Cracovie Classe des Sciences Mathématiques et Naturelles. 1918 Bulletin International de l'Académie Polonaise des Sciences et Bl. Acad. polon. des Lettres, Classe des Sciences Mathématiques et Naturelles Bulletin International de l'Académie Yougoslave des Sciences et Bl. Acad. yougosl. des Beaux-Arts, Classe des Sciences Mathém. et Naturelles Bulletin of the Agricultural Chemical Society of Japan Bl. agric. chem. Soc. Japan Bulletin of the American Institute of Mining [(1919:) and Bl. am. Inst. Mining Metallurgical] Engineers Ena. Bulletin of the American Physical Society Bl. am. phys. Soc. Bulletin de l' Association Belge des Chimistes Bl. Assoc. belge Chimistes Bulletin de l'Association des Chimistes. Paris Bl. Assoc. Chimistes Bulletin de l'Association des Chimistes de Sucrerie et de Distil-Bl. Assoc. Chimistes lerie de France et des Colonies {<48—51:> de Sucrerie, de Distillerie et des Industries Agricoles de France et des Sucr. Dist. Colonies } Bulletin de l'Association Française des Techniciens du Pétrole Bl. Assoc. Techniciens Par.

Bulletin Biologique de la France et de la Belgique

Bl. biol. France Belg.

Titel Abkürzung Department of the Interior, Bureau of Mines: Bulletin. Washington Bl. Bur. Mines Bl. chem. Soc. Japan Bulletin of the Chemical Society of Japan Bulletin de la Société Chimique de France, Documentations Bl. Doc. Bl. imp. Inst. Bl. Inst. Fermentat. Bulletin of the Imperial Institute. London Bulletin de l'Association des Anciens Elèves de l'Institut Supérieur Gand des Fermentations de Gand Bulletin de l'Institut du Pin Bl. Inst. Pin Bl. Inst. Refrig. Bulletin of the International Institute of Refrigeration Bl. Jardin bot. Buit. Bulletin du Jardin Botanique de Buitenzorg [The] Bulletin of the Johns Hopkins Hospital Bulletin des Matières Grasses de l'Institut Colonial de Marseille Bl.Johns Hopkins Hosp. Bl. Mat. grasses Mar*seille* Bl. nation. Res. Coun. Bulletin of the National Research Council Bulletin of the Institute of Physical and Chemical Research. Abstracts. Tokyo Bl. phys. chem. Res. Tokyo Bl. Sci. pharmacol. Bulletin des Sciences Pharmacologiques Bl. Sect. scient. Acad. Bulletin de la Section Scientifique de l'Académie Roumaine Bl. Soc. chim. Belg. Bulletin de la Société Chimique de Belgique Bulletin de la Société de Chimie Biologique Bl. Soc. Chim. biol. Bl. Soc. Chim. ind. Bulletin de la Société de Chimie Industrielle Bl. Soc. franç. Min. Bulletin de la Société Française de Mineralogie Bl. Soc. franç. Phot. Bulletin de la Société Française de Photographie [(16ff.:) et de Cinématographie] Bulletin de la Société Industrielle de Mulhouse Bulletin de la Société Mycologique de France Bl. Soc. ind. Mulh. Bl. Soc. mycolog. Bulletin de la Société [Impériale] des Naturalistes de Moscou [Bjulleten Moskovskogo Obščestva Ispytatelej Prirody (russ.)] Bl. Soc. Natural. Moscou Bulletin de la Société Roumaine de Physique Bl. Soc. roum. Phys. Bl. Soc. Sci. Poznań Bulletin de la Societé des Amis des Sciences de Poznań Bulletin de la Société Vaudoise des Sciences Naturelles Bl. Soc. vaud. Sci. Bl. Trav. Pharm. Bulletin des Travaux de la Société de Pharmacie de Bordeaux BordeauxBl. Wagner Inst. Sci. Bulletin of the Wagner Free Institute of Science of Philadelphia Philad. Bodenk.Pflanzenernähr. Bodenkunde und Pflanzenernährung Bol. Inst. Med. exp. Boletín del Instituto de Medicina Experimental para el Estudio Cáncer y Tratamiento del Cáncer Boll. Assoc. ital. Ind. Bolletino dell'Associazione Italiana delle Industrie, dello Zucchero e dell'Alcool Bollettino Chimico-farmaceutico Boll. chim.-farm. Boll. Soc. ital. Biol. Bollettino della Società Italiana di Biologia Sperimentale Boll. Soc. Natural. Bollettino della Società dei Naturalisti in Napoli Napoli Bot. Arch. Botanisches Archiv Bot. Gaz. The Botanical Gazette B. Ph. P. Beiträge zur Chemischen Physiologie und Pathologie Brauer-Hopfen-Ztg. Allgemeine Brauer- und Hopfenzeitung. Nürnberg Braunk. Braunkohle. Halle/S. Bräuer-D'Ans Fortschritte in der Anorganisch-chemischen Industrie · · · Herausg. von A. Bräuer u. J. D'Ans. Berlin: Springer. 1921ff. Brennstoffch. Brennstoff-Chemie Brit. J. exp. Biol. British Journal of Experimental Biology The British Journal of Experimental Pathology The British Medical Journal Brit. J. exp. Path. Brit. med. J. Bulet. Bis 25: Buletinul Societății Române de Științe; 26—29: Buletinul de Chimie Pură și Aplicată Societății Română de Stiinte; 30 ff.: Buletinul de Chimie Pură și Aplicată al Societății Ro-mâne de Chimie. Bulletin de Chimie Pure et Appliquée de la Société Roumaine de Chimie

Abkürzung Titel Bulet. Clui Buletinul Societății de Științe din Cluj. Bulletin de la Société des Sciences de Cluj, Roumanie Bulet. Soc. chim. Buletinul Societății de Chimie din România Romania Bur. Stand. J. Res. Bureau of Standards Journal of Research \boldsymbol{c} . Chemisches Zentralblatt Canad. Chem. J. Canadian Chemical Journal Canad. Chem. Met. Canadian Chemistry and Metallurgy Canad. J., Res. Caoutch. Guttap. National Research Council of Canada: Canadian Journal of Research Le Caoutchouc et la Gutta-percha Časopis Československého Lékárnictva Č. čsl. Lékárn. Cellulose Industry. The Journal of the Cellulose Institute, Tokyo. Abstracts from the Transactions Cell. Ind. Tokyo Cellulosech. Cellulosechemie Cereal Chem. Cereal Chemistry Ceylon J. Sci. Ceylon Journal of Science Chaleur et Industrie Chaleur Ind. Chemische Apparatur Ch. Apparatur Chemical Abstracts Chem. Abstr. The Chemical Age. London Chemical Age. New York Chem. Age London Chem. Age N.Y. The Chemist-Analyst Chem.-Analyst Chemistry and Industry [Review] The Chemical Bulletin. Chicago Chem. and Ind. Chem. Bl. Chicago Chem. China Chemistry (China) Chem. Color Oil Rec. The Chemical, Color & Oil Record The Chemical Engineer. New York Chem. Engineer Chemicals. New York Chemicals Chemické Listy pro Vědu a Průmysl Chemical and Metallurgical Engineering Chem. Listy Chem. met. Eng. The Chemical News and Journal of Physical {(122ff:) Industrial} Chem. N. Science Chemical Record-Age Chem. Record-Age Department of Scientific and Industrial Research; Chemical Re-Chem. Res. spec. Rep. search: Special Reports Chemical Reviews. Baltimore Chem. Reviews The Chemical Trade Journal and Chemical Engineer Chem. Trade J. Chemisch Weekblad Chem. Weekb. Die Chemische Fabrik. Zeitschrift des Vereins Deutscher Chemiker, B Ch. Fab. Die chemische Industrie [(57ff.:) Nachrichten-Ausgabe] Ch. I. Chimie et Industrie. Paris Chim. et Ind. Chimiko-farmacevtičeskaja Promyšlennost' (russ.) Chim.-farm. Promyšl. La Chimica e L'Industria. Milano Chimica e Ind. Chimija Tverdogo Topliva (russ.) Chim. tverd. Topl. Chemische Rundschau [(3ff.:) für Mitteleuropa und den Balkan] Ch. Rdoch. Mitteleur. Balkan Chemische Umschau auf dem Gebiet der Fette, Öle, Wachse und Harze Ch. Umschau Fette Chemiker-Zeitung Ch. Z.Chemie der Zelle und Gewebe Oh. Zelle Gewebe Collection des Travaux Chimiques de Tchécoslovaquie. Collection Collect. Trav. chim. of Czechoslovak Chemical Communications Tchécosl. Collegium. Darmstadt Collegium Colloid Symposium Monograph Colloid Symp. Mon. Societas Scientiarum Fennica: Commentationes Biologicae. Hel-Comment. biol. Helsingsingfors jors Societas Scientiarum Fennica: Commentationes Physico-mathe-Comment. phys.-math. maticae. Helsingfors Helsingfors Contrib. Boyce Thomp-Contributions from Boyce Thompson Institute

Universidad Nacional de la Plata: Contribución al Estudio de las

Ciencias físicas y matemáticas; Serie matemático-física

son Inst.

tis. La Plata

Contrib. Estudio Cienc.

Abkürzung	Titel
C. r.	Comptes Rendus Hebdomadaires des Séances de l'Académie des
C. r. Congr. Chim. ind.	Sciences Congrès de Chimie Industrielle. Comptes Rendus
C. r. Doklady	Comptes Rendus (Doklady) de l'Académie des Sciences de l'U.R.S.S.
C. r. Soc. Biol.	Comptes Rendus Hebdomadaires des Séances et Mémoires de la
C. r. Soc. Phys. Genève	Société de Biologie [et de ses Filiales et Associées] Compte rendu des Séances de la Société de Physique et l'Histoire Naturelle de Genève. Supplément aux Archives des Sciences Physiques et Naturelles
C. r. Trav. Carlsberg	Comptes Rendus des Travaux du Laboratoire [de] Carlsberg
Cuir tech.	Cuir Technique. Paris
Curr. Sci.	Current Science. Bangalore
D. Danske Vid. Selsk. Skr.	DINGLERS Polytechnisches Journal Det Kongelige Danske Videnskabernes Selskabs Skrifter, Natur-
LATIBLE FUL DELEK. DKI.	videnskabelig og Mathematisk Afdeling
Dansk Tidskr. Farm.	Dansk Tidsskrift for Farmaci
Desinf.	Desinfektion. Berlin Desimentation Scientifique. Paris
Doc. scient. Doklady Akad. S.S.S.R.	Documentation Scientifique. Paris Doklady Akademii Nauk S.S.S.R. (russ.). Comptes Rendus de
Donate g Anda. S.S.S.24.	l'Académie des Sciences de l'Union des Républiques Soviéti- ques Socialistes
Doklady ross. Akad.	Doklady Rossijskoj Akademii Nauk (russ.). Comptes Rendus de l'Académie des Sciences de Russie
D.R.P.	Deutsches Reichspatent
Dtsch. ApothZig.	Deutsche Apotheker-Zeitung; (vorübergehend:) Standeszeitung
D. 1 4 1 112 W.J	Deutscher Apotheker
Disch, Arch, klin, Med. Disch, Essigind.	Deutsches Archiv für Klinische Medizin Die Deutsche Essigindustrie
Disch, Färber-Zig.	Deutsche Färber-Zeitung
Dtoch. med. Wachr.	Deutsche Medizinische Wochenschrift
Dtech. ParfZtg.	Deutsche Parfümeriezeitung
Dtoch. tierärztl. Wechr. Dtoch. Wollengew.	Deutsche tierärztliche Wochenschrift Das Deutsche Wollen-Gewerbe
Disch. Z. ger. Med.	Deutsche Zeitschrift für die gesamte Gerichtliche Medizin
Dtack. Zuckerind.	Die Deutsche Zuckerindustrie. Berlin
Dyer, Calico Printer	The Dyer, Calico Printer, Bleacher, Finisher and Textile Review The Dyer, Textile Printer, Bleacher and Finisher
Dyer, Text. Printer El. Ch. Z.	Elektrochemische Zeitschrift
Electrotech. J.	Electrotechnical Journal. Tokyo
Endocrin.	Endocrinology. Los Angeles
Eng. Mining J.	Engineering. London Engineering and Mining Journal
Eng. Mining JPress	Engineering and Mining Journal-Press
Eng. Mining Wd.	Engineering and Mining World
E. P.	Englisches Patent Enzymologia. Haag
Enzymol. Erdől Teer	Erdől und Teer
Ergebn, Enzymj.	Ergebnisse der Enzymforschung
Ergebn. exakt. Naturwiss.	Ergebnisse der Exakten Naturwissenschaften
Ergebn. Physiol.	bis 34: Ergebnisse der Physiologie;
	35, 36: Ergebnisse der Physiologie und Experimentellen Pharma- kologie;
	37ff.: Ergebnisse der Physiologie, Biologischen Chemie und Experi- mentellen Pharmakologie
Ergebn. Vitamin- Hormonj.	Ergebnisse der Vitamin- und Hormonforschung
Ergebn. Zahnheilk	Ergebnisse der gesamten Zahnheilkunde
Brnährg. Pfl.	Die Ernährung der Pflanze
Exp. Stat. Rec. Farbe Lack	U. S. Department of Agriculture: Experiment Station Record
Forben-Zig.	Farben-Zeitung

Abkürzung Titel Farmacevtičnii Ž. Farmacevtičnij Žurnal. Charkiv, Kiiv (ukr.) Farmacista ital. Il Farmacista Italiano Farmac. Ż. Chatkov Farmacevtičeskij Žurnal. Charkov (russ.) Farm. i. Farmakol. Farmacija i Farmakologija (russ.) [Deutsche] Faserstoffe und Spinnpflanzen Faserst. Spinnpf. Fermentj, Fermentforschung Fettch. Úmschau Fettchemische Umschau Fette, Seifen Fette und Seifen Finska Kemistsami. Finska Kemistsamfundets Meddelanden [Suomen Kemistiseuran Medd. Fiziol. Ž. Tiedonantoja] Fiziologičeskij Zurnal S.S.S.R. (russ.). Journal of Physiology of U.S.S.R. Flora Flora oder Allgemeine Botanische Zeitung Folia Endocrinologica Japonica Fol. endocrin. japon. Fol. med. Napoli Folia Medica. Napoli Fol. pharmacol. japon. Folia Pharmacologica Japonica Food Manuj. Food Manufacture Fork. norske Vidensk. Det Kongelige Norske Videnskabers Selskabs Forhandlinger Selsk. Forschunged. Der Forschungsdienst Fortsch.Ch.org.Naturet. Fortsch.Ch., Phys. Fortschritte der Chemie Organischer Naturstoffe Fortschritte der Chemie, Physik und Physikalischen Chemie Fortschritte der Landwirtschaft. Wien Fortsch. Landw. Fortsch. Med. Fortschritte der Medizin. Berlin Fortsch. Min. Fortschritte der Mineralogie, Kristallographie und Petrographie. Fortsch. Therap. Fortschritte der Therapie F. P. Französisches Patent Fr. Zeitschrift für Analytische Chemie (begründet von Fresenius) Frdl. Fortschritte der Teerfarbenfabrikation und verwandter Industriezweige. Dargestellt von P. FRIEDLÄNDER (Ab 14 fort-geführt von H. E. FIERZ-DAVID.) Berlin: Springer. 1888ff. Fruit Prod. J. The Fruit Products Journal and American Vinegar Industry. New York Fuel Fuel in Science and Practice G. Gazzetta Chimica Italiana Gas-Wasserjach Das Gas- und Wasserfach Geneesk. Tijdech. Geneeskundig Tijdschrift voor Nederlandsch-Indië Nederl.-Indië Gesundh.-Ing. Gesundheitsingenieur Giorn. Biol. appl. Giornale di Biologia Applicata alla Industria Chimica [ed Ali-Giorn. Biol. ind. Giornale di Biologia Industriale, Agraria ed Alimentare Giornale di Chimica Industriale ed Applicata Giornale di Farmacia, di Chimica e di Scienze Affini Giorn. Chim. ind. appl. Giorn. Farm. Chim. Glasnik chem. Društva Glasnik Chemiskog Društva Kral'evine Jugoslavije. Bulletin de la Jugosl. Société Chimique du Royaume de Yougoslavie Glückauf Glückauf. Berg- und Hüttenmannische Zeitschrift Godišnik na Sofijskija Universitet; Fiziko-matemat. Fakultet (bulg.). Annuaire de l'Université de Sofia; Faculté Physico-Godišnik Univ. Botia mathématique Gummi-Ztq. Gummi-Zeitung HOPPE-SEYLERS Zeitschrift für Physiologische Chemie H. Halle Cuirs Spl. La Halle aux Cuirs. Supplément Technique Mensuel. Heil-Gewürz-Pfl. Heil- und Gewürz-Pflanzen. Mitteilungen der Deutschen Hortus-Gesellschaft Helvetica Chimica Acta Helvetica Physica Acta Helv. Helv. phys. Acta Hospitalstid. Hospitalstidende. København

Det Norske Videnskaps-Akademi i Oslo: Hvalrådets Skrifter. Scientific Results of Marine Biological Research

The Industrial Chemist and Chemical Manufacturer

Hvalrådets Skr.

Ind. Chemist

Reichsonst.

Abkürzung Titel Ind. chimica L'Industria Chimica. Il Notiziario Chimico-industriale L'Industrie Chimique [et le Phosphate Réunis] Ind. chimique Ind. Eng. Chem. Industrial and Engineering Chemistry [Industrial Edition] Ind. Eng. Chem. Anal. Analytical Edition Ind. Eng. Chem. News Indian J. med. Res. News Edition The Indian Journal of Medical Research Indian Journal of Physics and Proceedings of the Indian Association Indian J. Phys. for the Cultivation of Science Indian med. Gaz. The Indian Medical Gazette India Rubber J. The India Rubber Journal Ind. saccarif. ital. L'Industria Saccarifera Italiana Ing. Chimiste L'Ingénieur Chimiste. Bruxelles Ing. Vet.-Akad. Handl. Ingeniörsvetenskapsakademiens Handlingar Iowa Coll. J. Iowa State College Journal of Science Iron Age The Iron Age Izv. Akad. S.S.S.R. Izvestija Akademii Nauk Sojuza Sovetskich Socialističeskich Respublik (russ.). Bulletin de l'Académie des Sciences de l'Union des Républiques Soviétiques Socialistes. [(1928ff.:) Otdelenie Matematičeskich i Estestvennych Nauk. Classe des Sciences Mathématique et Naturelles] Izvestija Biologičeskogo Naučno-izaledovatel'skogo Instituta i Biologičeskoj Stancii pri Permskom Gosudarstvennom Uni-versitete (russ.). Bulletin de l'Institut des Recherches Biolo-giques et de la Station Biologique a l'Université de Perm Izvestija Imperatorskoj Akademii Nauk (russ.). Bulletin de l'Aca-Izv. biol. Inst. Perm. Univ. Izv. imp. Akad. Petrog. démie Imp. des Sciences. Petrograd Izv. Inst. fiz.-chim. Izvestija Instituta Fiziko-chimičeskogo Analiza (russ.). Annales Anal. de l'Institut d'Analyse Physico-chimique Izvestija Instituta po Izučeniju Platiny i drugich Blagorodnych Metallov (russ.). Annales de l'Institut du Platine et des Izv. Inst. Platiny autres Métaux Précieux Izvestija Ivanovo-Voznesenskogo Politechničeskogo Instituta. Bulletin de l'Institut Polytechnique à Ivanovo-Vosniesensk Jugoslavenska Akademija Znanosti i Umjetnosti u Zagrebu: Izvješća o Raspravama Mat.-prirodoslovnoga Razreda. Academi Izv. Ivanovo-Voznesensk. politech. Inst. Izv. jugosl. Akad. démie des Sciences et des Arts des Slaves de Sud de Zagreb: Bulletin des Travaux de la Classe Mathématique et Naturelle Izv. ross. Akad. Izvestija Rossijskoj Akademii Nauk (russ.). Bulletin de l'Académie des Sciences de Russie Izv. Sektora fiz.-chim. Akademija Nauk S.S.S.R., Institut Oběčej i Neorganičeskoj Chimii: Izvestija Sektora Fiziko-chimičeskogo Analiza (russ.). Institut de Chimie Générale: Annales du Secteur d'Analyse Physico-Anal. chimique Izv. teplotech. Inst. Izvestija Teplotechničeskogo Instituta (russ.) Izv. ural. politech. Inst. Izvestija Ural'skogo Politechničeskogo Instituta (russ.). Annales de l'Institut Polytechnique de l'Oural Jahresbericht über die Fortschritte der Chemie J. agric. Res. Journal of Agricultural Research J. agric. Sci. The Journal of Agricultural Science The Journal of the American Leather Chemists' Association J. am. Leather Chem. Assoc. J. am. med. Assoc. The Journal of the American Medical Association J. am. pharm. Assoc. Journal of the American Pharmaceutical Association Japan. J. Chem. Japan. J. med. Sci. Japan. J. Phys. J. acial. Soc. Bengal Japanese Journal of Chemistry Japanese Journal of Medical Sciences Japanese Journal of Physics Journal of the Asiatic Society of Bengal, Science J. Assoc. agric. Chemists Journal of the Association of Official Agricultural Chemists Journal of Bacteriology. Baltimore J. Bacteriol. Jber. chem.-tech.

Jahresbericht der Chemisch-technischen Reichsanstalt

Abkürzung Titel Jber. Pharm. Jahresbericht der Pharmazie J. Biochem. Tokyo The Journal of Biochemistry. Tokyo J. biol. Chem. The Journal of Biological Chemistry J. Bioph. Tokyo Jb. Radioakt. Elektr. The Journal of Biophysics. Tokyo Jahrbuch der Radioaktivität und Elektronik Jb. wiss. Bot. Jahrbücher für Wissenschaftliche Botanik J. Cancer Res. The Journal of Cancer Research J. chem. Educ. Journal of Chemical Education J. chem. Eng. China Journal of Chemical Engineering China J. Chemotherapy Journal of Chemotherapy and Advanced Therapeutics Therap. J. chem. Phys. The Journal of Chemical Physics. Lancaster, Pa. J. chem. Soc. Japan Journal of the Chemical Society of Japan Journal de Chimie Physique [et Revue Générale des Colloides] J. Chim. phys. J. chin. chem. Soc. Journal of the Chinese Chemical Society J. Coll. Agric. Univ. Journal of the College of Agriculture, Imperial University of Tokyo Tokyo {(12ff.:) Tokyo Imperial University} Journal of the College of Engineering, Tokyo Imperial University J.Coll.Eng.TokyoUniv. J. Coll. Sci. Univ. Journal of the College of Science, Imperial University of Tokyo Tokyo J. Dairy Sci. Journal of Dairy Science J. Departm. Agric. Journal of the Department of Agriculture, Kyushu Imperial Kuushu Univ. University The Journal of Experimental Biology The Journal of Experimental Medicine J. exp. Biol. J. exp. Medicine J. Fabr. Sucre Journal des Fabricants de Sucre Journal of the Faculty of Engineering, Tokyo Imperial University Journal of the Faculty of Science, Hokkaido Imperial University. J. Fac. Eng. Tokyo Univ. J. Fac. Sci. Hokkaido J. Fac. Sci. Univ. Journal of the Faculty of Science, Imperial University of Tokyo Tokyo J. Four électr. Journal du Four Électrique [et des Industries Électrochimiques] J. Franklin Inst. Journal of the Franklin Institute Journal für Gasbeleuchtung und Verwandte Beleuchtungsarten J. Gasbel. sowie für Wasserversorgung J. gen. Physiol. The Journal of General Physiology. Baltimore J. Hyg. The Journal of Hygiene. London J. ind. Eng. Chem. The Journal of Industrial and Engineering Chemistry J. ind. Hyg. The Journal of Industrial Hygiene [and Toxicology] J. indian chem. Soc. Journal of the Indian Chemical Society J. indian chem. Soc. Industrial and News Edition of the Journal of the Indian Chemical Nesos Society J. indian Inst. Sci. Journal of the Indian Institute of Science The Journal of Infectious Diseases J. infect. Diseases J. Inst. Brewing J. Inst. Petr. Technol. Journal of the Institute of Brewing Journal of the Institution of Petroleum Technologists The Journal of Laboratory and Clinical Medicine J. Labor. clin. Med. J. Landw. Journal für Landwirtschaft Journal de Médecine de Bordeaux [et du Sud-Ouest] J. Méd. Bordeaux The Journal of Metabolic Research J. metabol. Res. J. Nutrit. The Journal of Nutrition Journal of the Oil and Colour Chemists' Association Journal of Oil and Fat Industries J. Oil Col. Chem. Assoc. J. Oil Fat Ind. J. opt. Soc. Am. Journal of the Optical Society of America [and Review of Scientific Instruments] The Journal of Organic Chemistry Journal of Oriental Medicine J. org. Chem. J. orient. Med. J. Path. Bact. The Journal of Pathology and Bacteriology The Journal of Pharmacology and Experimental Therapeutics J. Pharmacol. exp. Therap.

Journal de Pharmacie d'Alsace et de Lorraine

J. Pharm. Als. Lorr.

Abkürzung	Titel
J. Pharm. Belg.	Journal de Pharmacie de Belgique
J, Pharm. Chim.	Journal de Pharmacie et de Chimie
J. pharm. Soc. Japan	Journal of the Pharmaceutical Society of Japan (Yakugakuzasshi)
J. phys. Chem.	The Journal of Physical Chemistry. Baltimore
J. Physiol.	The Journal of Physiology. London
J. Physiol. Path.	Journal de Physiologie et de Pathologie Générale
J. Phys. Rad.	Le Journal de Physique et le Radium. Paris
J. Phys. théor. appl.	Journal de Physique Théorique et Appliquée. Paris
J. pr. J. Pr. asiat. Soc. Bengal	Journal für Praktische Chemie
J. Pr. Soc. N. S. Wales	Journal and Proceedings of the Asiatic Society of Bengal Journal and Proceedings of the Royal Society of New South Wales
J. Pr. Soc. west.	Journal and Proceedings of the Royal Society of Western Australia
Australia	ovailar and 110000dings of the 100yar bootery of 17 6806111 11 distranta
J. Res. Bur. Stand.	Journal of Research of the National Bureau of Standards
J. Rheol.	Journal of Rheology
J. roy. tech. Coll.	The Journal of the Royal Technical College. Glasgow
J. Sci. Assoc. Viziana-	Journal of the Science Association, Maharajah's College.
garam	Vizianagaram
J. Sci. Hiroshima	Journal of Science of the Hiroshima University, Series A
J. Soc. Automot. Eng. J. Soc. chem. Ind.	Journal of the Society of Automotive Engineers
5. Soc. chem. 1na.	bis 44: Journal of the Society of Chemical Industry;
	45ff: Journal of the Society of Chemical Industry, Transactions [and Communications]
J. Soc. chem. Ind.	The Journal of the Society of Chemical Industry, Japan. Sup-
Japan Spl.	plemental Binding
J. Soc. Dyers Col.	The Journal of the Society of Dyers and Colourists
J. Soc. west. Australia	Journal of the Royal Society of Western Australia
J. Textile Inst.	The Journal of Textile Institute. Manchester
J. Th.	Jahresbericht über die Fortschritte der Tierchemie oder der Physio-
I Maharahan G	logischen und Pathologischen Chemie
J. Tokyo chem. Soc.	Journal of the Tokyo Chemical Society
J. Univ. Bombay J. Urol. Baltim.	Journal of the University of Bombay
J. Urol. méd.	The Journal of Urology. Baltimore Journal d'Urologie Médicale et Chirurgicale. Paris
J. Washington Acad.	Journal of the Washington Academy of Sciences
Kali	Kali [(25ff:) Verwandte Salze und Erdöl]
Kansas Univ. Sci. Bl.	The Kansas University Science Bulletin
Kaučuk Rez.	Kaučuk i Rezina (russ.). Caoutchouc and Rubber
Kautschuk	Kautschuk. Berlin
Kimya Ann.	Kimya Annali (türk.) (Annales de Chimie)
Kis. Közlem.	Kisérletűgyi Közlemények (Mitteilungen der Landwirtschaftlichen
Klepzigs Textil-Z.	Versuchsstationen Ungarns)
Klin. Wschr.	Klepzigs Textil-Zeitschrift Klinische Wochenschrift
Koks i Chim.	Koks i Chimija (russ.). Koks und Chemie. Coke and Chemistry
Kō. Kwa. Za.	Kogyō Kwagaku Zasshi (japan.) (Zeitschrift der Gesellschaft für
i i	Chemische Industrie
Koll. Beih.	Kolloid chemische Beihefte (Ergänzungshefte zur Kolloid-Zeit-
z 11 5	SCOPILE)
KollZ.	Kolloid-Zeitschrift
Koll. Zu.	Kolloidnyj Žurnal (russ.). Colloid Journal
Kunsted. Kunsted. Zellw.	Die Kunstseide
Kunstst.	Kunstseide und Zellwolle
Labor. Praktika	Kunststoffe Le horstorne in Probable (man) To Dutie 1 To 1
La Nature	Laboratornaja Praktika (russ.). La Pratique du Laboratoire La Nature. Paris
Cancet	The Lancet. London
Landolt-Börnst.	LANDOLT-BÖRNSTEIN-ROTH-SCHEEL: Physikalisch-Chemische
	Tabellen. 5. Aufl. Berlin: Springer. 1923ff.
andw. Jb.	Landwirtschaftliche Jahrbücher
andw. Jb. Schweiz andw. Ztg.	Landwirtschaftliches Jahrbuch der Schweiz Fühlungs Landwirtschaftliche Zeitung

Abkürzung

Titel

Le Cancer Leipz. Monatschr. Textilind. Lotos

L. V. St. M.

Mag. chem. Folyóirat Mag. gyógysz. Ťárs. Ert. Manufact, Chemist J.

Maslob. žir. Delo Math.-phys. Medd. danske Vid. Selsk. Mat. természettud. Ertesitő

Med. Ch. I. G.

Medd. Carlsberg Medd. Ing. Vet. Akad. Medd, Vet.-Akad. Nobelinst. Meded. Rijksinst. pharmacoth. Onderzoek Med. Klinik Med. Welt Melliand Textilb.

Mém. Acad. Belg. 80

Mém. Acad. Inst. France Mem. Accad. Ital.

Mem. Accad. Lincei

Mem. Coll. Agric. Kyoto Mem. Coll. Sci. Eng. Kyoto Mem. Coll. Sci. Kyoto

Mém. Poud. Mem. Pr. Manchester Soc.

Mem. Ryojun Coll. **Eng.** Mercks Jber.

Metal Ind. London Metall Erz Metan Mikroch. Mikroch. Acta Milchwirtech. Forech. Milchwirtsch. Zbl.

Mülitärw. tech. Mitt. Wien

Le Cancer. Bruxelles Leipziger Monatschrift für Textil-Industrie

Lotos. Naturwissenschaftliche Zeitschrift. Prag Die Landwirtschaftlichen Versuchsstationen Monatshefte für Chemie und Verwandte Teile anderer Wissenschaften

Magyar Chemiai Folyóirat

Magyar Gyógyszerésztudományi Társaság Értesítője [(3ff.:) Berichte der Ungarischen Pharmazeutischen Gesellschaft]

The Manufacturing Chemist and Pharmaceutical, Cosmetic and Photographic Trade Journal (bzw. Nachfolger mit geringen Titeländerungen)

Maslobojno-žirovoe Delo (russ.)

Mathematisk-fysiske Meddelelser udgivne af det Kongelige Danske Videnskabernes Selskab

Matematikai és Természettudományi Értesitő. A Magyar Tudo-mányos Akadémia III. Osztályának Folyóirata. Mathematischer u. Naturwissenschaftlicher Anzeiger d. Ungarischen Akademie der Wissenschaften

Medizin und Chemie. Abhandlungen aus den Medizinisch-chemischen Forschungsstätten der I. G. Farbenindustrie A.G.

Meddelelser fra Carlsberg Laboratoriet Ingeniörs Vetenskaps Akademien: Meddelanden

Meddelanden från K. Vetenskapsakademiens Nobelinstitut

Mededeelingen van het Rijks-Instituut voor Pharmacotherapeutisch Onderzoek

Medizinische Klinik Die Medizinische Welt. Berlin

1-3: Textilberichte über Wissenschaft, Industrie und Handel (Hrsg. v. Melliand)

4ff: MELLIAND[8] Textilberichte

Académie Royale de Belgique, Classe des Sciences: Mémoires. Collection in -8°.

Mémoires de l'Académie [Royale] des Sciences de l'Institut [Impérial] de France

Reale Accademia d'Italia: Memorie della Classe di Scienze Fisiche. Matematiche e Naturali

Atti della Reale Accademia [Nazionale] dei Lincei: Memorie della Classe di Scienze Fisiche, Matematiche e Naturali

Memoirs of the College of Agriculture, Kyoto Imp. University, Chemical Series

Memoirs of the College of Science and Engineering (Kyoto Imperial University)

Memoirs of the College of Science, Kyoto Imperial University Mémorial des Poudres

Memoirs and Proceedings of the Manchester Literary and Philosophical Society (Manchester Memoirs)

Memoirs of the Ryojun College of Engineering

E. MERCKS Jahresbericht über Neuerungen auf den Gebieten der Pharmakotherapie und Pharmazie

The Metal Industry. London

Metall und Erz. Halle (S.)

Metan. Lwów Mikrochemie. Wien Mikrochimica Acta

Milchwirtschaftliche Forschungen Milchwirtschaftliches Zentralblatt. [Wissenschaftliche Beilage zur Milch-Zeitung]

Militärwissenschaftliche und Technische Mitteilungen. Wien

Titel Abkürzung Mining Met. Mining and Metallurgy The Mineralogical Magazine and Journal of the Mineralogical Min. Mag. Zeitschrift für Kristallographie, Mineralogie und Petrographie, Abt. B: Mineralogische und Petrographische Mitteilungen Department of the Interior, Bureau of Mines: Minerals Yearbook. Min. petrogr. Mitt. Min. Yearb. Bur. MinesWashington Mitt. Braunk.-Forschg. Mitteilungen der Gesellschaft für Braunkohlen- und Mineralöl-Berl. forschung an der Technischen Hochschule Berlin Mitteilungen der Deutschen Materialprüfungsanstalten Mitt. dtsch. Materialpr. Anst. Mitteilungen der Kaliforschungsanstalt G.m.b.H. Mitt. Kaliforsch.-Anst. Mitt. Kohlenforschungs-Mitteilungen aus dem Schlesischen Kohlenforschungsinstitut der inst. Breslau Kaiser-Wilhelm-Gesellschaft in Breslau Mitt. Lebensmittel-Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene. Travaux de Chimie Alimentaire et d'Hygiène Mitteilungen aus dem Materialprüfungsamt [(41 ff.:) und dem Kaiser-Wilhelm-Institut für Metallforschung] zu Berlinunters. Hyg. Mitt. Materialpr. Berl. Dahlem Mitt. med. Ges. Okayama-Igakkai-Zasshi [Mitteilungen der Medizinischen Gesell-Okayama schaft zu Okayama] Mod. Plastics Modern Plastics Monath. Seide Kunstsd. Monatshefte für Seide und Kunstseide Monatschr. Kinderheilk. Monatsschrift für Kinderheilkunde Monatschr. Textilind. Monatsschrift für Textil-Industrie Monit. Prod. chim. Le Moniteur des Produits Chimiques Moniteur Scientifique du Docteur Queeneville International Institute of Agriculture: Monthly Bulletin of Agri-cultural Science and Practice Monit. scient. Monthly Bl. agric. Sci. Münch. med. Wschr. Münchener Medizinische Wochenschrift Nachr. Akad. Göttingen Nachrichten von der Akademie der Wissenschaften zu Göttingen (Sozietät der Reichsakademie), Mathematisch-physikalische Klasse Nachr. Ges. Wiss. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Göttingen Mathematisch-physikalische Klasse Nation. Cent. Univ. Sci. National Central University Science Reports Rep. Nation. Petr. News National Petroleum News Nature Nature. London Naturwiss. Die Naturwissenschaften Natuurw. Tijdsch. Natuurwetenschappelijk Tijdschrift N. Cim. Il Nuovo Cimento Nederl. Tijdsch. Nederlandsch Tijdschrift voor Geneeskunde Geneesk. Nederl. Tijdsch. Nederlandsch Tijdschrift voor Natuurkunde Natuurk. Neft. Choziajstvo Neftjance [i Slancevoe] Chozjajstvo (russ.) Nitrocell. Nitrocellulose Norsk geol. Tidsk. Norsk Geologisk Tidsskrift Nouv. Chim. Nouvelles de la Chimie Öf. Fi. Öfversigt af Finska Vetenskaps-Societetens Förhandlingar, A: Matematik och Naturvetenskap Ole. Fette, Wachse Ole, Fette, Wachse [(1936 Nr. 7ff.:) Seife, Kosmetik] Öl-Fett-Ind. Die Ol- und Fettindustrie. Wien Öl-Fett-Ztg: Allgemeine Öl- und Fettzeitung Ol und Kohle [<1935ff.:> vereinigt mit Erdöl und Teer] Osterreichische Botanische Zeitschrift Öl Kohle Öst. bot. Z. Ost. Chemiker-Ztg. Osterreichische Chemiker-Zeitung Öst.-ung. Z. Zuckerind. Österreichisch-Ungarische Zeitschrift für Zuckerindustrie und Land-Landw. wirtschaft Oil Fat Ind. Oil and Fat Industries Oil Gas J. The Oil and Gas Journal

Abkürzung Titel Oil Soap Oil and Soap Oklahoma agric. Exp. Oklahoma Agricultural Experiment Station: Bulletin Stat. Bl. Onderstepoort J. The Onderstepoort Journal of Veterinary Science and Animal Org. Synth. Organic Syntheses, New York. Deutsche Ausgabe, Braunschweig Paper Trade J. Paper Trade Journal Papierf. Der Papier-Fabrikant. Wochenausgabe. Techn.-wissensch. Teil Les Parfums de France Part. France Part. mod. La Parfumerie Moderne Der Parfümeur. Beiblatt zur Seifensieder-Zeitung. Augsburg Parfumeur Augsb. Part.-Ztg. Wien Parfümerie-Zeitung. Wien Pharmazeutische Zentralhalle für Deutschland P. Ċ. H. Perfum. essent. Oil Rec. Perfumery and Essential Oil Record Period. Min. Periodico di Mineralogia Petroleum. Berlin Petr. Petroleum Age [and Service Station Merchandising]. Chicago, New York Petr. Age Petr. Mag. Petroleum Magazine. Chicago Petroleum Technology. York, Pa. Petr. Technol. Petr. Times The Petroleum Times Pflügers Arch. Physiol. Pelügers Archiv für die gesamte Physiologie des Menschen und der Tiere Pharmacia. Reval Pharmacia Pharmaceutica Acta Helvetiae Pharm. Acta Helv. Pharmazeutische Berichte. Leverkusen, I. G. Farbenind. Pharm. Ber. The Pharmaceutical Journal [and Pharmacist] Pharm. J. Pharm. Monath. Pharmazeutische Monatshefte (Beilage zu: Pharmazeutische Post) Pharmazeutische Post Pharmazeutische Presse Pharm. Post Pharm. Presse Pharm. Tijdschr. Nederl.-Indië Pharmaceutisch Tijdschrift voor Nederlandsch-Indië Pharmaceutisch Weekblad voor Nederland Pharm. Weekb. [Die Deutsche] Pharmazeutische Zeitung Pharm. Ztg. Zeitschrift für Physikalische Chemie, Stöchiometrie und Verwandt-Ph. Ch. schaftslehre The Philippine Journal of Science Philippine J. Sci. The London, Edinburgh and Dublin Philosophical Magazine and Phil. Mag. Journal of Science Philosophical Transactions of the Royal Society of London Phil. Trans. Die Photographische Industrie Phot. Ind. The Photographic Journal Photographische Korrespondenz 1—13: Physica. Nederlandsch Tijdschrift voor Natuurkunde Phot. J. Phot. Korresp. Physica Fortgesetzt als: Physica. Archives Néerlandaises des Sciences Exactes et Naturelles, Série IV A (1 = 1934) The Physical Review Phys. Rev. Physikalische Zeitschrift. Leipzig Phys. Z. Planta. Archiv für Wissenschaftliche Botanik = Zeitschrift für Planta Wissenschaftliche Biologie, Abt. E Plant Physiology Policlinico, Sezione Pratica. Roma Plant Physiol. Polici., Sez. prat. Pr. Acad. Tokyo Proceedings of the Imperial Academy. Tokyo Poznańskie Towarzystowo Przyjaciół Nauk: Prace Komisji Prace Komisji lekar. Lekarskiej Poznań Koninklijke [Nederlandsche] Akademie van Wetenschappen te Pr. Akad. Amsterdam Amsterdam: Proceedings [of the Section of Sciences] Praktika tes Akademias Athenon Praktika Athen Proceedings of the American Academy of Arts and Sciences Pr. am. Acad. Arts Sci.

Proceedings of the Cambridge Philosophical Society

Proceedings of the Chemical Society. London

Pr. Cambringe phil. Soc.

Pr. chem. Soc.

Titel Abkürzung Proceedings of the University of Durham Philosophical Society Pr. Durham phil. Soc. Proceedings of the Indiana Academy of Science Pr. Indiana Acad. Proceedings of the Indian Academy of Sciences Pr. indian Acad. Proceedings of the Indian Association for the Cultivation of Science Pr. indian Assoc. Cult. Sci. Proceedings of the Royal Irish Academy Pr. irish Acad. Pr. Leeds phil. lit. Soc. Proceedings of the Leeds Philosophical and Literary Society, Scientific Section Proceedings of the National Academy of Sciences, India Pr. nation. Acad. India Proceedings of the National Academy of Sciences of the United Pr. nation. Acad. USA. States of America Proceedings of the Nova Scotian Institute of Science Pr. nova scot. Inst. Promyšlennost' Organičeskoj Chimii (russ.) Promušl. org. Chim. Protopl. Pr. phys.-math. Soc. Protoplasma Proceedings of the Physico-mathematical Society of Japan. Nippon Suugaku Buturigakkwai Kizi Japan Proceedings of the Physical Society [of] London Proceedings of the Royal Canadian Institute Pr. phys. Soc. London Pr. roy, canad. Inst. Pr. roy. Inst. Gr. Britain Proceedings of the Royal Institution of Great Britain Pr. roy. Soc. Proceedings of the Royal Society. London Pr. roy. Soc. Edinburgh Proceedings of the Royal Society of Edinburgh Proceedings of the Royal Society of Medicine Pr. roy. Soc. Med. Proceedings of the Royal Society of Queensland Pr. roy. Soc. Queenslanď Pr. roy. Soc. Victoria Proceedings of the Royal Society of Victoria .Pr. Soc. biol. Chemists Proceedings of the Society of Biological Chemists (India) India Pr. Soc. exp. Biol. Med. Proceedings of the Society for Experimental Biology and Medicine Pr. Trans. nova scot. The Proceedings and Transactions of the Nova Scotian Institute Inst. of Science Przeglad Chemiczny Przeg. chem. Przem. chem. Przemysł Chemiczny Publ. Carnegie Inst. Carnegie Institution of Washington: Publications Publ. Health Rep. Treasury Dep. U. S. Public Health Service: Public Health Reports Quart. J. exp. Physiol. Quarterly Journal of Experimental Physiology Quart. J. indian chem. Quarterly Journal of the Indian Chemical Society Soc. Quart. J. Pharm. Quarterly Journal of Pharmacy and Pharmacology, incorporating Pharmacol. the Year Book of Pharmacy Quim. Ind. Química e Industria Ř. Recueil des Travaux Chimiques des Pays-Bas [et de Belgique] R. A. L. Bis [6] 29: Atti della Reale Accademia [Nazionale] dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali: Rendiconti; [7] 1ff.: Atti della Reale Accademia d'Italia: Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali Rasāyanam Rasayanam (Journal for the Progress of Chemical Science) Rassegna di Clinica, Terapia e Scienze Affini Rass. Clin. Terap. Rayon Rec. The Rayon Record Rayon Textile Monthly Rayon Textile Monthly Rec. Trav. bot. néerl. Recueil des Travaux Botaniques Néerlandais Rend. Accad. Sci. jis. Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche (Classe della Società Reale di Napoli) Napoli Rend. Fac. Sci. Cagliari Rendiconti del Seminario della Facoltà di Scienze della R. Università di Cagliari Rend. Ist. lomb. Reale Istituto Lombardo di Scienze e Lettere: Rendiconti Rev. brasil. Chim. Revista Brasileira de Chimica (Sciencia & Industria) (São Paulo) Rev. Chim. ind. La Revue de Chimie Industrielle Rev. Chim. ind. Monit. La Revue de Chimie Industrielle et Le Moniteur Scientifique scient. Quesneville Réunis Rev. Chim. pura appl.

Revista de Chimica Pura e Applicada. [Revista de Química Pura

e Aplicada]. Porto

KÜRZUNGEN FÜR DIE LITERATUR-QUELLEN IXX Abkürzung Titel Rev. Fac. Cienc. quim. Revista de la Facultad de Ciencias Químicas (Univ. Nacional de La Plata) Rev. Fac. Sci. Istanbul Istanbul Universitesi Fen Fakültesi Mecmuasi. Revue de la Faculté des Sciences de l'Université d'Istanbul Rev. gén. Bot. Revue Générale de Botanique Rev. gén. Caoutch. Revue Générale du Caoutchouc Rev. gén. Colloides Revue Générale des Colloides et de leurs Applications Industrielles Revue Générale des Matières Colorantes, de la Teinture, de l'Im-Rev. gén. Mat. col. pression [du Blanchiment] et des Apprêts Rev. gén. Mat. plast. Revue Générale des Matières Plastiques Rev. gén. Sci. pures Revue Générale des Sciences Pures et Appliquées appl.Rev. Marques, Parf. Revue des Marques. Parfums de France France Rev. méd. Suisse rom. Revue Médicale de la Suisse Romande Rev. Parj. Revue de la Parfumerie et des Industries s'y rattachant Rev. phys. Chem. Japan Rev. Prod. chim. Review of Physical Chemistry of Japan La Revue des Produits Chimiques [et l'Actualité Scientifique réunies] Revista de Química e Farmacia. Rio de Janeiro Rev. Quim. Farm. Revue Scientifique [Revue Rose Illustrée] La Ricerca Scientifica ed il Progresso Tecnico nell'Economia Rev. scient. Ric. scient. Progr. tecn. Nazionale Econ. naz. Riechstoffindustrie [und Kosmetik] Riechstoffind. Rinascenza Medica (Rassegna di Medicina Biologica). Napoli Rinascenza med. Riv. ital. Essenze Prof. Rivista Italiana delle Essenze e Profumi {<1932ff.:> delle Essenze, dei Profumi e delle Piante Officinali)

Roczniki Chem. Roczniki Farm. Roczniki Nauk roln.

Rubber Chem. Technol. Russa Russ. fiziol. Ž.

Sammlg. Vergiftungsf. Sber. Akad. Wien

Sber. bayr. Akad.

Sber. Ges. Naturwiss. Marburg Sber. Heidelb. Akad.

Sber. naturf. Ges. Rostock Sber. phys.-med. Ges. Würzburg Sber. preuß. Akad.

Sborník čel. Akað. zeměd. Sbornik Rabot Chim.

Sbornik Rabot chim. Inst. Karpov **Schmerz** Schultz Tab.

Roczniki Chemji [(Annales Societatis Chimicae Polonorum)] Roczniki Farmacji

Roczniki Nauk Rolniczych i Leśnych. Polish Agricultural and Forest Annual

Rubber Chemistry and Technology Revue Universelle des Soies et des Soies Artificielles "Russa" Russkij Fiziologičeskij Žurnal (russ.). Russian Physiological Journal

[FÜHNER-WIELANDS] Sammlung von Vergiftungsfällen Sitzungsberichte der Akademie der Wissenschaften, Mathematischnaturwissenschaftliche Klasse. Wien

Sitzungsberichte der Mathematisch-naturwissenschaftlichen Abteilung der Bayrischen Akademie der Wissenschaften

Sitzungsberichte der Gesellschaft zur Beförderung der gesamten Naturwissenschaften zu Marburg

Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse

Sitzungsberichte und Abhandlungen der Naturforschenden Gesellschaft zu Rostock Sitzungsberichte der Physikalisch-medizinischen Gesellschaft zu

Würzburg

Sitzungsberichte der Preußischen Akademie der Wissenschaften [zu Berlin], Physikalisch-mathematische Klasse Annalen der

Sborník Československé Akademie Zemědělské. Ar Tschechoslowakischen Akademie der Landwirtschaft

Naučno-techničeskoe Upravlenie V.S.N.Ch.: Trudy Naučno-issledovatel'skich Institutov N.T.U.: Sbornik Rabot po Chimii (russ.). Transactions of the Scientific Institute of the S.-T.D.: Papers on Chemistry

Naučno-techničeskog Upravlenie V. S. N. Ch.: Sbornik Rabot Chimičeskogo Instituta N.T.U.V.S.N. Ch. imeni Karpova (russ.) 1: Der Schmerz; 2ff.: Schmerz, Narkose, Anästhesie

GUSTAV SCHULTZ: Farbstofftabellen. 7. Aufl. von Ludwig Leh-MARN. Leipzig. Bd. I, 1931. Bd. II, 1932. Erg.-Bd. I, 1934. Erg. Bd. II, 1939.

Univ.

Abkürzung Titel Schweiz. A poth.-Ztg. Schweizerische Apotheker-Zeitung. Journal Suisse de Pharmacie. Giornale Svizzero di Farmacia Schweiz. Arch. Neurol. Schweizer Archiv für Neurologie und Psychiatrie. Archives Suisses Psychiat. de Neurologie et de Psychiatrie. Archivio Svizzero di Neurologia e Psychiatria Schweiz. med. Wechr. Schweizerische Medizinische Wochenschrift Schweizerische Wochenschrift für Chemie und Pharmacie Schweiz, Wechr. Ch. Pharm. Sci. Science. New York Sci. Culture Science and Culture. Calcutta Scient. J. roy. Coll. Sci. The Scientific Journal of the Royal College of Science. London Department of Commerce and Labor: Scientific Papers of the Bureau of Standards. Washington Scient. Pap. Bur. Stand. Scient. Pap. Inst. phys. Scientific Papers of the Institute of Physical and Chemical Rechem. Res. search. Tokyo Scient. Pr. roy. Dublin The Scientific Proceedings of the Royal Dublin Society Soc. Sci. pharm. Sci. Rep. Inst. infect. Scientia Pharmaceutica (Beilage zu: Pharmazeutische Presse). Wien Scientific Reports from the Government Institute for Infectious Diseases. Tokyo The Science Reports of the Tôhoku Imperial University **Diseases** Sci. Rep. Tôhoku Univ. Sci. Rep. Tokyo Science Reports of the Tokyo Bunrika Daigaku (Tokyo University Bunrika Daigaku of Literature and Science) Seide Seide. Krefeld Seite Die Seife. Wien Seifens.-Ztg. Seifensieder-Zeitung Semana méd. La Semana Médica. Buenos Aires Silk J. Silk J. Rayon Wd. The Silk Journal Silk Journal and Rayon World Skand. Arch. Physiol. Skandinavisches Archiv für Physiologie Soc. Journal of the Chemical Society. London Soil Sci. Soil Science. Baltimore Soobšč. nau.-tech. Rab. Soobščenija o Naučno-techničeskich Rabotach v Respublike (russ.) Spisy lék. Fak. Mas. Spisy Lékařské Fakulty Masarykovy University, Brno. Publications de la Faculté de Médecine Univ. Spisy přírodov. Karl. Spisy vydávané Přírodovědeckou Fakultou Karlovy University. Publications de la Faculté des Sciences de l'Université Charles. Univ. Spisy přírodov. Mas. Spisy vydávané Přírodovědeckou Fakultou Masarykovy University. Publications de la Faculté des Sciences de l'Université Masaryk. Univ. Sprawozd. Chemji Sprawozdania z Prac Działu Chemji Państwowego Zakładu Higjeny. Higjeny Bulletin des Travaux du Département de Chimie de l'Institut d'Hygiène d'État Sprawozdania z Prac Państwowego Instytutu Farmaceutycznego. Sprawozd. Inst. farm. Bulletin des Travaux de l'Institut Pharmaceutique de l'État Sprawozd. Tow. tizycz. Sprawozdania i Prace Polskiego Towarzystwa Fizycznego. Comptes Rendus des Séances de la Société Polonaise de Physique Stahl und Eisen Stahl Eisen Le Stazione Sperimentali Agrarie Italiane Staz. sperim. agrar. ital. Süddeutsche Apotheker-Zeitung Südd. Apoth.-Žtg. Suomen Kemistilehti [Acta Chemica Fennica] Svensk Farmaceutisk Tidskrift Suomen Kem. Svensk farm. Tidskr. Svensk kem. Tidskr. Svensk Kemisk Tidskrift Kongliga Svenska Vetenskaps-Akademiens Handlingar Sv. Vet .- Akad. Handl. Tabač. Promyšl. Tech. Bl. N. Y. State Tabačnaja Promyšlennost' SSSR (russ.) New York State Agricultural Experiment Station: Technical agric. exp. Station Tech. Bl. Oklahoma Bulletin Oklahoma Agricultural and Mechanical College; Agricultural agric. exp. Station Technol. Rep. Tohoku Experiment Station: Technical Bulletin The Technology Reports of the Tôhoku Imperial University. Sendai

Tech. Pap. Bur. Mines

Abkürzung

Teintex Tekn. Tidskr. Textile Colorist Textile Forechg. Textile Wd. Therap. Gegenw. Therap. Halbmonath. Therap. Monath. Tidsk. Kjemi Bergv. Tierernähr. Tôhoku J. exp. Med. Trans.am.electroch.Soc. Trans. electroch. Soc. Trans. Faraday Soc. Trans. Inst. Rubber Ind. Trans. Kansas Acad. Trans. opt. Soc. Trans. Pr. New Zealand

Inst. Trans. roy. Soc. Canada

Trans. roy. Soc. Edinb. Trans. roy. Soc. New

Zealanď Trans. roy. Soc. S. Africa Trudy chim.-farm. Inst.

Trudy Inst. č. chim. Reakt.

Trudy Inst. prikl. Chim,

Trudy jubil. Mendeleev. Trudy Mendeleev. S.

Trudy sibirsk. sel'sko-

choz. Akad. Trudy vitamin. Inst.

Uč. Zap. Mosk. Univ.

Uč. Zap. Saratov. Univ.

Ukr. biochem. Ž.

Ukr. chemič. Ž.

Umschau Univ. Izv. Kiev

Univ. Kansas Sci. Bl. Univ. Philippines Sci. Bl. Uspechi Chim.

Titel

Department of the Interior, Bureau of Mines: Technical Paper. Washington

Teintex. Paris

Teknisk Tidskrift. Stockholm Textile Colorist. New York

Textile Forschung

Textile World. New York Therapie der Gegenwart

Therapeutische Halbmonatshefte Therapeutische Monatshefte

Tidsskrift för Kjemi og Bergvesen

Die Tierernährung. Leipzig

The Tôhoku Journal of Experimental Medicine Transactions of the American Electrochemical Society

Transactions of the Electrochemical Society. Washington

Transactions of the Faraday Society Transactions of the Institution of the Rubber Industry

Transactions of the Kansas Academy of Science

Transactions of the Optical Society. London

Transactions and Proceedings of the New Zealand Institute

Proceedings and Transactions of the Royal Society of Canada: Transactions of the Royal Society of Canada

Transactions of the Royal Society of Edinburgh

Transactions and Proceedings of the Royal Society of New Zealand

Transactions of the Royal Society of South Africa

Naučno-techničeskij Otdel V.S.N.Ch.: Trudy Naučnogo Chimiko-

farmacevtičeskogo Instituta (russ.) [Transactions of the Scientific Chemical-pharmaceutical Institute]
Naučno-techničeskij Otdel V.S.N.Ch.: Trudy Instituta Čistych Chimičeskich Reaktivov (russ.). Transactions of the Institute

for Pure Reagents

Naučno-techničeskoe Upravlenie V.S.N.Ch.: Trudy Gosudarstvennogo Instituta Prikladnoj Chimii (russ.). Transactions of the State Institute of Applied Chemistry

Trudy Jubilejnogo Mendeleevskogo S-ezda (russ.). Travaux du Congrès Mendeleevskogo S-ezda po Teoretičeskoj i Prikladnoj Chimii
Trudy Sibirskoj Sel'skochozjajstvennoj Akademii (russ.). Transactions of the Siberian Akademy of Agriculture and Forestry

Trudy Vsesojuznogo Naučno-issledovateľskogo Vitaminnogo Instituta Narkompiščeproma S.S.S.R. (russ.). Proceedings of the Scientific Institute for Vitamin Research of the People's Commissariat for Food Industry of the U.S.S.R.

Moskovskij Gosudarstvennyj Universitet: Učenyja Zapiski, Otděl

Fiziko-matematičeskij (russ.) Učenye Zapiski Saratovskogo Gosudarstvennogo imeni Černyševskogo Universiteta, Fiziko-techničeskoe i Estestvennoe Otdelenija (russ.)

Ukrainskij Biochemičnij Žurnal (ukr.). The Ukrainian Biochemical Journal

Ukrainskij Chemičnij Žurnal, Naukova Častina (ukr.). Journal Chimique de l'Ukraine, Partie Scientifique Die Umschau [(31 ff.:) in Wissenschaft und Technik]

Kievskija Universitetskija Izvěstija (bzw.) Universitetskija Izvěstija (russ.). Kiev University of Kansas Science Bulletin

University of the Philippines Natural and Applied Science Bulletin

[Chimičeskij Žurnal, Serija G:] Uspechi Chimii (russ.)

Abkürzung Titel Uspechi Fizičeskich Nauk (russ.) Verhandelingen der Koninklijke Akademie van Wetenschappen, Uspechi Fiz. Verh. Akad. Amsterdam Afdeeling Natuurkunde. Amsterdam Verhandlungen der Deutschen Physikalischen Gesellschaft Verh. dtsch. phys. Ges. Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte Verh. Ges. dtsch. Naturt. Verh. phys.-med. Ges. Verhandlungen der Physikalisch-medizinischen Gesellschaft zu Würzburg Würzburg Veröffentlichungen des Wissenschaftlichen Zentral-Laboratoriums Veröff. wiss. Zentralder Photographischen Abteilung — Agfa — der I. G. Farbenlab. Agfa industrie A.G Koninklijke Akademie van Wetenschappen te Amsterdam: (1897—1924:) Verslag[en] van den Gewone Vergaderingen der Wis-en natuurkundige Afdeeling, (1925ff.:) Verslag van de Gewone Vergadering der Afdeeling Versl. Akad. Amsterdam Natuurkunde Verslagen en Mededeelingen der Koninklijke Akademie van Weten-Versi. Meded. Akad. schappen, Afdeeling Letterkunde. Amsterdam Věstník Královské České Společnosti Nauk Amsterdam. Věstník čes. Spol. Nauk [VIRCHOWS] Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin Virch. Arch. path. Anat. Vjschr. naturj. Ges. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich Zürick Vrač. Dělo Vračebnoe Dělo (russ.) Wasser Gas Wasser und Gas **Wiadom**. farm. Wiadomości Farmaceutyczne Wien. klin. Wschr. Wien. med. Wschr. Wiener Klinische Wochenschrift Wiener Medizinische Wochenschrift Wien. pharm. Wechr. Wiener Pharmazeutische Wochenschrift Wiss. Ind. Wissenschaft und Industrie Wissenschaftliche Mitteilungen der Österreichischen Heilmittel-Wiss. Mitt. öst. Heilmittelst. stelle Wiss. Veröff. Siemens Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern {(1935ff.:) aus den Siemens-Werken} Wochbl. Papier/. Wochenblatt für Papierfabrikation Wochenschrift für Brauerei Zeitschrift für Chemie [<1860-1864:> und Pharmacie] Wschr. Brau. \boldsymbol{z} . Zahnärztl. Rdsch. Zahnärztliche Rundschau Z. ang. Ch. Zeitschrift für Angewandte Chemie [(26-34: Aufsatzteil] Z. angew. Entomol. Zeitschrift für Angewandte Entomologie Zeitschrift für Anorganische [(92 ff.:) und Allgemeine] Chemie Z. anorg. Ch. Zavod. Labor. Zavodskaja Laboratorija (russ.) Zeitschrift für Biologie. München Z. Biol. Zbl. Agrikulturch. BIEDERMANNS Zentralblatt für Agrikulturchemie und rationellen Landwirtschaftsbetrieb Zbl. Bakt. Parasitenk. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten. Zbl. Gewerbehyg. Zentralblatt für Gewerbehygiene [<8 ff:> und Unfallverhütung] Zbl. Gynäkol. Zentralblatt für Gynäkologie Zbl. inn. Med. Zbl. Min. Zentralblatt für Innere Medizin. Leipzig Zentralblatt für Mineralogie, Geologie und Paläontologie Zbl. Physiol. Zentralblatt für Physiologie Zbl Zuckerind. Centralblatt für die Zuckerindustrie Z. Boi. Zeitschrift für Botanik Z. Brauw. Zeitschrift für das gesamte Brauwesen Zurnal Chimičeskoj Promyšlennosti (russ.) Ž. chim. Promyšl. Z. dtech. Öl-Fettind. Ž. škep. Biol. Ž. èkep. teor. Fiz. Zeitschrift der Deutschen Öl- und Fettindustrie Zurnal eksperimental'noj Biologii [i Mediciny] (russ.) [Fizičeskij Žurnal, A:] Zurnal Eksperimental'noj i Teoretičeskoj Fiziki (russ.) Zeitschrift für Elektrochemie und Angewandte Physikalische Z. El. Ch. Chemie Zellst. Pan. Zellstoff und Papier Z. exp. Med. Zeitschrift für die gesamte Experimentelle Medizin

Abkürzung	Titel
Z. exp. Path. Therap.	Zeitschrift für Experimentelle Pathologie und Therapie
Ž. fiz. Chim.	[Chimičeskij Žurnal, Serija V:] Žurnal Fizičeskoj Chimii (russ.). [Journal of Physical Chemistry]
Z. Hyg. InfKr.	Zeitschrift für Hygiene und Infektionskrankheiten
Z. Immunitätsf. Therap.	Zeitschrift für Immunitätsforschung und Experimentelle Therapie
Z. Kinderheilk. Z. klin. Med.	Zeitschrift für Kinderheilkunde Zeitschrift für Klinische Medizin
Z. Kr.	1-55: Zeitschrift für Krystallographie und Mineralogie
	56—72: Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie
	78ff.: desgl. mit Zusatz: Abt. A der Zeitschrift für Kristallographie,
Z. Krebst.	Mineralogie und Petrographie Zeitschrift für Krebsforschung
Z. Kr. Rej.	Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik,
~ ~ ~	Kristallchemie; Referatenteil
Z. Kr. Strukturber. Z. med. Ch.	Zeitschrift für Kristallographie; Strukturbericht Zeitschrift für Medizinische Chemie
Z. Mühlenw.	Zeitschrift für das gesamte Mühlenwesen
Z. Naturwiss.	Zeitschrift für die gesamte Naturwissenschaft einschließlich Natur-
Ž. obšč. Chim.	philosophie und Geschichte der Naturwissenschaft und Medizin Chimičeskij Zurnal, Serija A: Zurnal Obščej Chimii (russ.).
Z. öff. Ch.	[Journal of General Chemistry] Zeitschrift für Öffentliche Chemie
Z. öst. ApothVerein	Zeitschrift des Allgemeinen Österreichischen Apotheker-Vereines,
7. Pilansonomäks	"Osterreichische Zeitschrift für Pharmazie"
Z. Pflanzenernähr.	 1—7: Zeitschrift für Pflanzenernährung und Düngung 8—45: Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde
Z. Phys.	Zeitschrift für Physik. Braunschweig-Berlin
Z. physchem.	Zeitschrift für Physikalisch-chemische Materialforschung. Prag
Materialf. Z. Pilzk.	Zeitschrift für Pilzkunde
Ž. prikl. Chim.	[Chimićeskij Žurnal, Serija B:] Žurnal Prikladnoj Chimii (russ.). [Journal of Applied Chemistry]
Ž. prikl. Fiz.	Zurnal Prikladnoj Fiziki (russ.). Journal of Applied Physics
Ž. rezin. Promyšl.	Zurnal Rezinovoj Promyšlennosti (russ.). Journal of the Rubber Industry (U.S.S.R.)
Z. Schieß-Sprengetoffw.	Zeitschrift für das gesamte Schieß- und Sprengstoffwesen
Z. Spiritusind. Z. tech. Biol.	Zeitschrift für Spiritusindustrie
Ž. tech. Fiz.	Zeitschrift für Technische Biologie [Fizičeskij Žurnal, B:] Žurnal Techničeskoj Fiziki (russ.)
Z. tech. Phys.	Zeitschrift für Technische Physik
Z. Textilind.	Zeitschrift für die gesamte Textilindustrie
Z. Tierzüchtg. Z. Unters. Lebensm.	Zeitschrift für Tierzüchtung und Züchtungsbiologie Zeitschrift für Untersuchung der Lebensmittel
Z. Uniers. Nahr	Zeitschrift für Untersuchung der Nahrungs- und Genußmittel sowie
Genußm. Z. Verein disch. Zucker-	der Gebrauchsgegenstände Zeitschrift des Vereins der Deutschen Zuckerindustrie, Technischer
zna. Z. Vitaminf.	Teil Zeitschrift für Vitaminforschung. Bern
Z. Wirtschaftsgr.	Zeitschrift der Wirtschaftsgruppe Zuckerindustrie, Technischer Teil
Zuckerind. Z. wies. Mikr.	Zeitschrift für Wissenschaftliche Mikroskopie und für Mikro-
Z. wies. Phot.	skopische Technik Zeitschrift für Wissenschaftliche Photographie, Photophysik und
Zymol. Chim. Coll.	Photochemie Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15); (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli
Z. Zuckerind. Böh. Z. Zuckerind. Öel.	Zuecheri Zeitschrift für Zuckerindustrie in Böhmen Zeitschrift für [die] Zuckerindustrie der Čechoslovakischen Re-
ж.	publik Žurnal Russkogo Fiziko-chimičeskogo Obščestva (russ.)

ten.
Z
<u>-</u>
=
-
ತ
2
=
9
N
_
7
<u>ت</u>
<u> </u>
Š.C
.의
+
_
ಲ
W.
3
٠
نه
ij
-
2
:=
E
7 3
<u>ම</u>
afe
tafe]
ttafe]
eittafe]
/eittafe
Zeittafe]

	•	3	School ful ale	177		977110	wientigsten zeltsem men.		11 0011.				
	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913
Ą.	314-319		326 329	33	338—343	350	351—357	358—363	364 371	372-377	385	394	395 40H
A. ch.	[7] 22—24		88		4	79	10-12	13 - 15	16-18	19-22	22-24	25-27	8 8
Am. Soc	25. 26 23.	27. 28	29. 30 31.	ä,	33. 3 <u>4</u>	35. 36. 36.	37. 38	39. 4 0	41. 42	43. 44 30.	45. 46	47. 48	49. 50
Ann. Phys.	[4] 4 B		10.5	7	16.18	3 6	76 66	9. S.	96	20	96 97	4 to	66
Ar.	239		241	2	243	244	245	246	247	248 248	249	250	25.12
B.	*		98	_	38	සු .	3 °	#	2 4	43	4	3	46
Bio. Z.			,			-	2 2	7-14	4	93 90	20 27	39 47	7 49 F7
Ä	[3] 25. 26	27. 28	29.30	31. 32	33. 34	35, 36	[4] 1. 2	3.4	5.6	. 8 8	9.	11. 12	13. 14
Chem. N.	83. 24.	85. 86	87. 88	89.80	94. 92	93. 94	92. 96	97. 98	99. 100 3. 100	101. 102	103, 104	105, 106	107, 108
C.F.	132, 133	134, 135	136, 137	138, 139	140, 141	142, 143	144 145	32 146, 147	33 148 149	24 150 151	30 159 159	36 154 155	37 156 157
Ę.	9	41	42	43	43 44	45	46	47	48	49	52. 158 25 158	51 150 51 150	52
<u>ئ</u> د	31	35	ສູ	# (بر بر	8 8	37	န္တ ရ	6 6	4	4	4	43
J. ind. Eng.	31—33	25	37—39	\$ 24 25	43 46	47—49	50 53	54 57	58 63	2 9	20—75	76—82	83_88
Chem.									-	6		4	NC.
J. biol. Chem.						₩,	 	4	5.6	11-	6		13—16
J. Pharm. Chim.	[6] 13, 14	15, 16	17. 18	19. 20	21. 22	23. 24 24	25. 26	27. 28	29, 30	8	9 % 4		11 x
J. phys. Chem.	5	9	2	∞	G	10	11	12	13	14	1.2		17
	[2] 63. 64	65. 66	67. 68	69. 70	71. 72	73. 74	75. 76	77. 78	79.80	81. 82	83. 84	85.86	87. 88
Ind.	80	21	25		75	25	9%	16	æ	8	Ş	3	30
M.	23	23	8		26	22	8	; &	3 8	3 &	3 83	: E	3 2
	36—38	39 41	42 46	-	50 53	54 - 56	57—60	61—64	65 69	70-74	75—77	78_80	81—85
	[1] 12. 13	14. 15	16. 17		20.21	22. 23	25.25	26. 27	28. 29	30. 31	32. 33	34. 35	[2] 1.2
Fr. roy. Soc. [A]	20 08 20 08	07 .60 54 .60	2.2		94-76	2 %	96	86. 28.	20 6 20 6	 	84. 85	86. 87	æ ?
R. A. L.	[5] 10	11	121		14	12.	19	12	3 €	 6-1	38	5 &	7 63 6 63
Soc.	79. 80	81. 82	83. 84		87. 88	89. 90	94. 92	93. 94	95. 96	97. 98	99. 100	101, 102	103, 104
Z. anorg. Ch.	26-28	15 - 80 - 33	33 37		18	19	55 EF	22.23	22	83	42	3	88
Z. Kr.	4 8	35. 36	37.	38. 39	40	41	42. 43	4. 34.	94 3	2 2 2 2 3	48. 49	្តែនះ	51. 52
	3	5	3		5	9	e e	- -	4.1	24	3	‡	1 0

1925 1926	445 446 66 167 7 7 148 8 1 13 13 148 66 167 7 167 7 167 7 1	14 15 16 17 18 50—54 55—57 58—61 62—66 67—71 25. 26 27. 28 29. 30 [8] 1. 2 3. 4 26 27. 28 29. 30 [8] 1. 2 3. 4 26 27. 28 29. 30 30 104—106 106 107. 108 109—111 112—114 41 42 46 47 43 46 47 47 40 21. 22 23. 24 25. 26 27. 28 100. 101 102—104 106. 106 107—109 110—112 46 45 41 42 43 44 45 33 41 42 43 44 45 34 41 42 43 44 45 34 41 42 43 44 45 34 41 42 43 44 45 34 34 34 41 42 43 <td< th=""></td<>
1924	0-434 435 -440 441. 45 20 [10] 1.2 3 46 46 60 72 73—75 76 76 76 76 76 76 76 76 76 76 76 76 76	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1923	430 434 19. 20 46 70 -72 19. 20 261 56 17 134 -143 126. 127 47 176. 177 62. 63 53 124 -131	15 27 28 27 28 27 28 27 28 21 21 21 22 21 22 23 24 42 42 42 43 43 43 43 43 43 43 43 43 43
1922	12. 425 426 429 430 15. 16 17. 18 11 64—66 67—69 70 15. 16 17. 18 11 259 260 3 54 55 113.—125 126.—133 134 29. 30 31. 32 33 122. 123 124. 125 124 45 60 61 65 61 62 48 172. 173 174. 175 176 60 61 65 61 62 48	45—49 60—54 23. 24 25. 28 25 26 (01—103 104—106 40 41 42 43 97—99 100—102 17. 18 19. 20 98. 99 100. 101 30 31 119. 120 121. 122 34 35 119. 120 121. 122 34 35 119. 120 121. 122 34 35 119. 120 121. 122 34 35 119. 120 121. 122 34 35 31 31 31 31 31 31 31 31 31 31
1921	422 - 425 426 - 429 430 - 434 15. 16 17. 18 19. 20 43	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1920	418. 419 420. 421 11. 12 13. 14 41 42 58—60 61—63 11. 12 13. 14 257 258 52 53 13. 14 93—100 101—112 25. 26 77. 28 118. 119 120. 121 43 44 168. 169 170. 171 58 59 58 59 69 50 104—107 108—111	12 41 41 21. 22 24. 24 100 39 41 94. 96 15. 16 96. 97 39 39 117. 118 33 106. 114
1919	418. 419 11. 12 41 58 60 11. 12 257 52 13 93 100 25. 26 118. 119 43 168. 169 58 49 104 107	37_40 19. 20 23. 99 99. 38 40 93. 14. 95 95. 38 13. 14. 95 95. 38 115. 116
1918	14 417 410 410 410 410 410 410 410 410 410 410	33—36 17.18 17.18 22 97.98 39 11.12 92 11.12 92 11.12 94 37 31 31 113.114
1917		29 - 32 15 - 16 15 - 16 21 - 21 86 - 96 38 - 38 89 - 10 89 - 30 111. 112 99 - 10
1916	411 5. 6 3. 8 3. 8 49 – 51 5. 6 10 10 10 10 10 10 10 10 10 10	
1915	407—410 3. 4 3. 4 263 48 9 68—71 17. 18 111. 112 39 160. 161 67 67 68 68 68 71 68 71 68 71 68 71 68 71 68 71 71 71 71 71 71 71 71 71 71	20 – 23 11. 13 11. 13 11. 12 19 92 89 – 90 5. 6 89 – 90 5. 6 89 – 90 5. 6 89 – 90 5. 6
1914	402 406 [9] 1. 2 36 [4] 3.45 [9] 1. 2 252 47 8 58 67 [4] 15. 16 109. 110 38 168. 159 53 44 89 92	6 17—19 17] 9. 10 18 [2] 89. 90 33 36—88 [2] 3. 4 89, 90 33 105. 106
	A. B. A.	Chem. J. biol. Chem. J. Chim. phys. J. Pharm. Chim. J. phys. Chem. J. pr. J. Soc. chem. Ind. M. Ph. Ch. Phys. Rev. Pr. roy. Soc. [A] R. R. A. L. Soc. Z. ang. Ch. Z. ang. Ch. Z. ang. Ch. Z. Kr.

j.	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1838	1939
A. ch. An. ch. An. Soc. Ann. Phys. Ann. Physique B. Biochem. J. Bio. Z. Bi. Chem. N. Chem. N. C. r. Fr. G. r. Helev.	451—459 [10] 7. 8 49 49 [4] 82—84 [10] 7. 8 60 21 180—191 [4] 41. 42 134. 135 51 184. 185 70—72 67 162—172	460—467 50 50 85—87 9.10 61 22 43.44 138.137 62 46.187 73—75 58 173—75 173—179	468—476477—484 51 52 11. 12 13. 14 62 63 63 4—7 11. 12 13. 14 62 63 63 45 64 47. 48 138. 139 140. 141 63 54 64 47. 48 138. 139 140. 141 65 64 188. 189 190. 191 76—78 69 60 60 180—185186—193	13. 14 13. 14 13. 14 13. 14 13. 14 13. 14 14. 228 47. 48 140. 191 190. 191 186—193 186—193	15. 16 15. 16 15. 16 16. 16 16. 16 17. 16 18. 19. 50 142. 143 192. 193 83. 86 61 194. 203	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	500—507 19. 20 16—18 19. 20 66 27 257—267 253. 54 57 196. 197 196. 197 196. 197 196. 197 196. 197 196. 197 196. 197 196. 197 197 198	508—514 [11]1.2 19—21 [11]1.2 67 288—274 [5]1 58 198—199 96—99 64 64	3. 4 5. 4 5. 4 5. 4 3. 4 8. 29 275—282 275—282 200. 201 100—103 65 231—237	521—526 5. 6 5. 6 6. 8 5. 6 6. 9 3 283—288 3 60 202. 203 104—107 66 238—244	-526 527 - 532 8	533—536 9. 10 9. 10 71 31—33 9. 10 71 32 295—299 62 206. 207 111—114 111—114 221—256	637—54 11 61 11 72 33 300—302 6 6 6 105 116—117 69 127—261 227—261
Ind. Eng. Cuem. J. Lind. Edit. J. Chim. phys. J. Chim. phys. J. Pharm. Chim. J. Phys. Chem. J. Soc. chem. Ind. M. M. Ch. [A] Ph. Ch. [A] Ph. Ch. [A] Ph. Ch. [B] Phys. Rev. Pr. roy. Soc. [A] R. A. L. [Z. Jang. Ch. Z. anorg. Ch. Z. anorg. Ch. Z. Kr. X. Kr. X. Chim. Z. obšč. Chim.	19 24 [8] 5. 6 31 46 125—130 [2] 29. 30 113—16 [6] 5. 6 46 [6] 5. 6 159—167 59	20 25 7. 8 32 118. 119 47. 60 131—139 11.7—121 47. 8 41. 66—68 66—68	21 26 33 33 120 120 130 130 140 140 140 122 122 123 130 130 130 130 130 130 130 130 130 13	22 23 85—89 90—93 94 27 28 11. 12 13. 14 15 34 35 35 49 50 49 50 57. 58 59 710 11.—14 15 710 11.—14 15 710 11.—14 15 710 11.—14 15 710 11.—14 15 49 50 11. 12 13. 14 15 49 50 11. 12 13. 14 15 49 60 40 72—75 76—80 81-	23 28 28 28 28 35 113 14 111 14 111 14 130 130 130 130 130 130 130 130	2 3 3 3 3 6 3 8 7 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25 30 17. 18 37 136–138 52 62 62 62 62 62 62 139–145 52 17. 18 46 46 46 46 46 33	26 31 19. 20 38 139–141 53. 64 168–171 24–27 45. 46 143–147 53 19. 20 19. 20 87–89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 23. 24 40 144 40 146 147 146 175 175 175 175 175 175 175 175	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 27. 28 11 42 122 126 26 27. 28 1 42 1 42 1 42 1 42 1 149 150 181. 182 37 38 41 52 53. 54 163 164 168 6 57. 28 6 27. 28 6 27. 28 7 28 9 24 235 238 9 7 98. 99	2 31 2 36 2 2 43 -156 [27—131 2 43 -151 [152—153 1 182 [183—185 41 42—44 54 55—56 54 55—56 56 100—173 -18 29 [7] 1 58 29 [7] 1 58 29 [7] 1 59 100—102

Weitere Abkürzungen.

absol.	= absolut	m- (als Stellungs-	
8C.	= alicyclisch		= meta-
äther.	= atherisch	m- (als Konzen-	_
Agfa	= Aktien-Gesellschaft für	trationsangabe) =	molar
	Anilinfabrikation		Minute
akt.	= aktiv		Mitarbeiter
alkal.	= alkalisch		Molekulargewicht
alkoh.	= alkoholisch	MolRefr. =	 Molekularrefraktion
ang.	= angular		: meso-
Anm.	= Anmerkung	n (in Verbindung	
ar.	= aromatisch		Brechungsindex
asymm.	= asymmetrisch	n- (in Verbindung	
AtGew.	= Atomgewicht		normal
В.	= Bildung	_	ortho-
Bac.	= Bacillus		optisch-aktiv
Bact.	= Bacterium	P- =	para-
BASF	= Badische Anilin- und		prim ā r
	Sodafabrik		Privatmitteilung
ber.	= berechnet		Produkt
bzw.	= beziehungsweise		racemisch
Ca.	= circa		Reduktionsvermögen
D	= Dichte)	: Seite
$\mathbf{D}_{4}^{\mathbf{so}}$	= Dichte bei 20°, bezogen		siehe
	auf Wasser von 40		siehe auch
Darst.	= Darstellung		siehe oben
DielektrKonst.	= Dielektrizitäts-Kon-		siehe unten
	stante		sekundär
E	= Erstarrungspunkt		spezifisch
Einw.	= Einwirkung		Supplement
EMK	= Elektromotorische Kraf		Stunde, Stunden
Ergw.	= Erganzungswerk		stündig .
F	= Schmelzpunkt		symmetrisch
gem	= geminal-		System-Nummer
Hptw.	= Hauptwerk		Temperatur
inakt.	= inaktiv		tertiär
K bzw. k	= elektrolytische Dissozia- tionskonstante	1 '	Teil, Teile, Teilen Vorkommen
1. a.u	= konzentriert		verdünnt
konz.			vergleiche auch
korr,	= korrigiert		vicinal
Kp Ka	= Siedepunkt	1	: Volumen
Kp ₇₅₀	= Siedepunkt unter 750 mm Druck	1	: wäßrig
1:	= linear		Zersetzung
lin.	== tmest.	AICID.	- Torecovering

Übertragung der griechischen Buchstaben in Zahlen.

Zusammenstellung der Zeichen für Maßeinheiten.

```
Meter, Zentimeter, Millimeter
m, em, mm
                     = Quadratmeter, Quadratzentimeter, Quadratmillimeter
m<sup>2</sup>, cm<sup>2</sup>, mm<sup>2</sup>
                          Kubikmeter, Kubikzentimeter, Kubikmillimeter
m<sup>3</sup>, cm<sup>3</sup>, mm<sup>3</sup>
                    ===
                          Tonne, Kilogramm, Gramm, Milligramm
t, kg, g, mg
Mol`
                          Gramm-Molekül (Mol.-Gew. in Gramm)
                     = Liter
                     = Stunde
h
                     = Minute
min
                     Sekunde
800
                     = Grad
                     = Celsiusgrad

    Grad der absoluten Skala
    Grammcalorie (kleine Calorie)

• absol.
cal
                     = Kilogrammcalorie (große Calorie)
= 760 mm Hg
kcal
Atm.
                     = gcm/sec^{3}
= 10^{6} dyn
dvn
megadyn
                   = dyn/cm<sup>3</sup>

= 10<sup>6</sup> bar

= 10<sup>-7</sup> mm

= 10<sup>-8</sup> mm

= 10<sup>-3</sup> mm

= Ampère

= Milliampère

= Ampère-Stunde

= Watt
                     = dyn/cm<sup>2</sup>
bar
megabar
Ā
mμ
Amp.
Milliamp.
Amp.-h
W
                     = Watt
= Kilowatt
                          Watt
kW
                    WattstundeKilowattstunde
Wh
kWh
Coul.
                     = Coulomb
                     = Ohm
rez. Ohm
                     = reziproke Ohm
                          Volt
Joule
                    = Joule
```

Erklärung der Hinweise auf das Hauptwerk und die Ergänzungswerke.

- 1. Es bedeutet H Hauptwerk, E I Ergänzungswerk I, E II Ergänzungswerk II. Die Bandzahlen sind in arabischen Ziffern wiedergegeben und durch Fettdruck kenntlich gemacht.
- 2. In den Seitenüberschriften sind in Fettdruck die Seiten des Hauptwerks angegeben, zu denen die auf der betreffenden Seite des II. Ergänzungswerkes befindlichen Ergänzungen gehören.
- 3. Berichtigungen zum Hauptwerk oder Ergänzungswerk I sind kursiv gedruckt.

ERSTE ABTEILUNG

ACYCLISCHE VERBINDUNGEN

(FORTSETZUNG)

IV. Carbonsäuren.

A. Monocarbonsäuren.

1. Monocarbonsäuren C_nH_{2n}O₂.

1. Ameisensäure $CH_2O_2 = HCO_2H$ (H 8; E I 7).

Vorkommen.

Bei den folgenden Angaben handelt es sich um das Vorkommen von Ameisensäure in freier oder veresterter Form. Zum Vorkommen in Pflanzen und anderen zuckerhaltigen Produkten vgl. auch die E I 2, 7 zitierten Angaben über Bildung bei der Wasserdampfdestillation der Zucker.

Im Ol aus dem indischen Gras Cymbopogon procerus A. Camus (Van Eerde, Pharm. Weekb. 61, 1187; C. 1924 II, 2796). In der Zuckerrohrmelasse (Nelson, Am. Soc. 51, 2809). Findet sich in geringer Menge in Körnerhirsen (Francis, Friedemann, Oklahoma agric. Exp. Stat. Bl. 117, 8; C. 1922 I, 697). In den Blättern der Traubeneiche (Quercus sessiliflen, Francis, H. 112, 303). In den Haaren der Brennessel Urtica dioica (Dobbin, Pr. roy. Soc. Edinburgh 39, 139; C. 1920 I, 896; Flurry, Z. exp. Med. 56, 404; C. 1927 II, 1488). In Spuren im Preßsaft von Glaucium luteum Scop. (Schmalfuss, H. 131, 167). In Apfelschalen (Power, Chesnut, Am. Soc. 42, 1511). In geringer Menge im Fruchtfleisch des Pfirsichs (Po., Ch., Am. Soc. 43, 1728, 1736). In geringer Menge in den äther. Olen aus Zieria macrophylla Bonpland (Penfold, J. Pr. Soc. N. S. Wales 60, 112; C. 1928 I, 2509), aus Eriostemon Coxii Müller und Phebalium dentatum Smith (Pe., J. Pr. Soc. N. S. Wales 60, 340, 344; C. 1928 I, 2509), aus der Baumwollpflanze (Po., Ch., Am. Soc. 47, 1767), aus Eucalyptus Bakeri Maiden (Pe., J. Pr. Soc. N. S. Wales 61, 189; C. 1929 I, 948), aus Mentha aquatica L. (Gordon, Am. J. Pharm. 100, 438, 524; C. 1928 II, 2196). Im Saft des Zuckerahorns (Acer saccharinum Wangh.) (Nelson, Am. Soc. 50, 2007, 2028). Im Harz von Viburnum opulus (Heyl., J. am. pharm. Assoc. 11, 329; C. 1923 I, 1515) und in der Wurzelrinde von Viburnum prunifolium (H., Barkenbus, Am. Soc. 42, 1754). In geringer Menge in der indischen Baldrianwurzel (Bullock, Pharm. J. 117, 154; C. 1926 II, 1545). In den Pollen von Ambrosia artemisifolia (H., J. am. pharm. Assoc. 12, 671; C. 1923 III, 1577). Weitere ausführliche Angaben über das Vorkommen in Pflanzen finden sich bei C. Wehmer, Die Pflanzenstoffe [Jena 1931]; C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzensnoffe [Jena 1931]; C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 496. — Vorkommen in Destillationsprodukten des Holzes und der Kohlen s. S. 7 unter Bi

In den Gonaden der Quallen Rhizostoma Cuvieri (Haurowitz, H. 112, 32; 122, 158) und Velella spirans (Hau., Waelsch, H. 161, 302). Gehalt an Ameisensäure bei verschiedenen Ameisenarten: Stumper, C. r. 174, 413; 176, 330. Im Bienendarm und im Bienengift (Elser, Mitt. Lebensmittelunters. Hyg. 15, 29; C. 1924 I, 1945; vgl. dagegen Merl, Z. Unters. Nahr.-Genuβm. 42, 250; C. 1922 I, 702). Im Fleisch des Neunauges (Petromyzon fluviatilis L.) (Flössner, Kutscher, Z. Biol. 82, 304; C. 1925 I, 1217). — Ameisensäure-Gehalt des menschlichen Blutes unter normalen und pathologischen Verhältnissen: Steff, H. 109, 103; Steff, Zumbusch, Dtsch. Arch. klin. Med. 134, 114; Ber. Physiol. 5, 227; C. 1921 I, 504. Zum Vorkommen im menschlichen Harn vgl. noch Autenrieth, Ar. 258, 15. In geringer Menge in menschlichen Fäces (Hecht, Münch. med. Wschr. 57 [1910], 65; Edelstein, v. Csonka, Bio. Z. 42, 390; Olmsted, Mitarb., J. biol. Chem. 85, 119).

Biochemische Bildung.

Über die Umwandlung von Methanol in Ameisensäure im tierischen Organismus vgl. Pohl, Bio. Z. 127, 66. Ameisensäure bildet sich bei der Einw. von Rhizopusarten auf Gluconsäure (Takahashi, Asai, Pr. Acad. Tokyo 3, 86; C. 1927 II, 583). Zur Bildung neben Essigsäure bei der alkoh. Vergärung von Glucose durch Hefe in Gegenwart stickstoffhaltiger Verbindungen wie Harnstoff oder Acetamid vgl. Thomas, Ann. Inst. Pasteur 34, 163; C. 1920 III,

16. Bei der Vergärung von Xylose, Glucose, Saccharose und Kartoffelstärke durch Bacillus acetosethylicus, neben anderen Produkten (Arzberger, Peterson, Fred, J. biol. Chem. 44, 469; Northrop, Ashe, Morgan, J. ind. Eng. Chem. 11, 724; C. 1920 II, 718). Menge der bei der Vergärung von Mais durch Clostridium acetobutylicum zu verschiedenen Zeiten entstehenden Ameisensäure: Stiles, Peterson, Fred, J. biol. Chem. 84, 440. Bei der Einw. von Bac. pyocyaneus auf Aceton (Supniewski, C. r. Soc. Biol. 89, 1378; C. 1924 I, 1679). auf Asparagin (Aubel, C. r. 173, 180), auf Glucose und Fructose (Aubel, C. r. 173, 1493), neben anderen Produkten. In geringer Menge bei der Vergärung von Inosit (HARDEN, zit. bei Hewitt, Steaben, Biochem. J. 15, 665), von Gluconsäure oder Zuckersäure in Gegenwart von Calciumcarbonat (Kay, Biochem. J. 20, 326) durch Bac. lactis aerogenes. Bei Einw. von Bact. coli auf brenztraubensaures Natrium (Quastel, Wooldridge, Biochem. J. 23, 133), auf Glycerin, Glucose oder Bernsteinsäure in Gegenwart von Formiaten, neben anderen Produkten (GREY, Pr. roy. Soc. [B] 96, 157, 166; C. 1924 I, 2786), auf Gluconsäure. Zuckersäure, Glucose und Glucuronsäure in Gegenwart von Calciumcarbonat (KAY. Biochem. J. 20, 324), auf Natriumhexosediphosphat (Harden-Young-Ester) und Natriumhexosemonophosphat (Robison-Ester) (Manning, Biochem. J. 21, 352). Bei der Vergärung von Glucose durch Dysenterie-Bakterien (Zoller, Clark, J. gen. Physiol. 3, 329; C. 1921 I, 775). Bei der Einw. von Choleravibrionen auf Glucose in Gegenwart von Asparaginsäure (HIRSCH, Z. Hyg. Inf.-Kr. 106, 462, 464; C. 1926 II, 2183). Neben anderen Produkten bei der Vergärung von Glucose durch Azotobacter chroococcum (Stoklasa, Zbl. Bakt. Parasitenk. [II] 21 [1908], 508, 621; RANGANATHAN, NORRIS, J. indian Inst. Sci. [A] 10, 86; C. 1928 I. 2266). Ameisensäure entsteht ferner bei der anaeroben Atmung von Pflanzenorganen (z. B. Zuckerrübenwurzel, Samen von Pisum sativum, Vicia faba, Triticum vulgare und Hordeum distichum) (Sto., Bareš, Sbornik čsl. Akad. zeměd. 1926, 32, 33). Beeinflussung der Bildung von Ameisensäure bei der anaeroben Atmung von Pflanzenorganen durch α -, β - und γ -Strahlen: Sto., Penkava, Ch. Zelle Gewebe 12, 387, 404, 422; C. 1926 II, 236.

Chemische Bildungsweisen.

Ameisensäure bildet sich in geringer Menge aus Kohlenoxyd und Wasser bei hoher Temperatur und hohem Druck in Autoklaven mit Eisen-, Kupfer- oder Silbereinsatz (SCHRADER. 4bh. Kenntnis Kohle 6, 67; C. 1924 I, 2419) oder in Gegenwart von Eisendrehspänen (F. Fischer, v. Philippovich, Abh. Kenntnis Kohle 6, 376; C. 1924 I, 2097). Entsteht auch in nachweisbarer Menge aus Kohlenoxyd und Wasserstoff unter gewöhnlichem Druck beim Leiten über Kieselsäurehydrat bei 320° (JAEGER, WINKELMANN, Abh. Kenntnis Kohle 7, 58; C. 1926 I, 3517). — Beim Erhitzen von Kohlendioxyd mit Wasserstoff und etwas Wasserdampf unter hohem Druck auf 400° im Eisen-Autoklaven; die Ausbeute wird durch Zusatz von Natriumcarbonat erhöht; bei Anwendung eines Kupfer-Autoklaven wird die Ausbeute an Ameisensäure kleiner (Sch., Abh. Kenntnis Kohle 6, 75; C. 1924 I, 2420). Geringe Mengen Ameisensäure entstehen aus Kohlendioxyd und Wasserstoff bei Gegenwart von Palladiummohr in Wasser bei 110 Atm. und 200 (Bredig, Carter, D. R. P. 339946; C. 1921 IV, 1221; Frdl. 13, 118). Über die bei dieser Reaktion auftretenden Gleichgewichte bei Temperaturen von 20—90° und Drucken von 60—117 Atm. vgl. Br., C., Enderli, M. 53/54, 1023. Ameisensäure bildet sich in sehr geringer Menge aus Wassergas und Wasserdampf für sich oder beim Leiten über Kalk bei 350° (Armstrong, Hilditch, Pr. roy. Soc. [A] 97 [1920], 272: Brennstoffch. 2 [1921], 283). Neben anderen Produkten beim Überleiten von Wassergas unter 150 Atm. Druck über mit Kaliumcarbonat überzogene Eisenspäne bei 400—450° (F. FISCHER, TROPSCH, B. 56, 2430; Brennstoffch. 4, 277; C. 1924 I, 1297).—Natriumformiat bildet sich neben anderen Produkten aus Natriumcarbonat-Lösung und Wasserstoff bei hoher Temperatur und hohem Druck im Eisen-Autoklaven (SCHRADER. Abh. Kenntnis Kohle 6, 76; C. 1924 I, 2420) sowie aus Natriumdicarbonat-Lösung beim Erhitzen mit Wasserstoff auf 400° in einem Autoklaven mit Kupfereinsatz unter 20 Atm. Anfangsdruck (Tropsch, v. Philippovich, Abh. Kenntnis Kohle 7, 105; C. 1926 II, 1401). Kaliumformiat entsteht beim Erhitzen einer 2n-Lösung von Kaliumdicarbonat unter 380 Atm. Wasserstoffdruck auf 200° (IPATJEW, STARYNKEWITSCH, B. 56, 1666). Das Natriumsalz der Ameisensäure erhält man bei schwachem Erhitzen von Natriumcarbonat oder von Natriumdicarbonat mit Calciumhydrid (Reich, Serpek, Helv. 3, 140). Zur Bildung nachweisbarer Mengen Ameisensäure bei der Druckelektrolyse wäßr. Natriumdicarbonat-Lösungen bei 200°. 300° und 400° und von wäßr. Natriumcarbonat-Lösungen bei 400° vgl. JAEGER, Abh. Kenntnis Kohle 7, 204; C. 1926 II, 1401.

Neben anderen Produkten bei der Einw. von ozonisiertem Sauerstoff auf Methan, in besserer Ausbeute bei Zusatz von Ammoniak (Wheeler, Blair, J. Soc. chem. Ind. 41, 331 T; C. 1923 I, 1117). Weitere Angaben über Bildung geringer Mengen Ameisensäure aus Methan s. bei Methan, E II 1, 9. Neben anderen Produkten bei der Oxydation von Triakontan mit Luftsauerstoff bei 280—300° (Landa, Chem. Listy 22, 500; C. 1929 I, 1673;

C. r. 187, 948), auch in Gegenwart von 5% Terpentin bei 95° (Francis, Wood, Soc. 1927, 1898). Bei der Oxydation von Paraffin (F: 50—51°) mit Sauerstoff bei 150° in Gegenwart von Mangan(II)-oxyd, Mangan(IV)-oxyd oder Mangansilikat, neben anderen Produkten (Kelber, B. 53, 70). Ameisensäure bildet sich je nach den Arbeitsbedingungen in verschiedenen Mengenverhältnissen neben Formaldehyd und anderen Produkten beim Czonisieren von Äthylen und Sauerstoff oder Äthylen und Luft in Gegenwart oder Abwesenheit von Feuchtigkeit (Blair, Wheeler, J. Soc. chem. Ind. 42, 344 T, 347 T; C. 1924 I, 1353; Briner, Schnorf, Helv. 12, 158, 166, 175). Ameisensäure entsteht in geringer Menge neben Glyoxal bei Einw. von ozonisiertem Sauerstoff auf Acetylen in Gegenwart von Verdünnungsgasen oder Wasserdampf (Wohl, Bräunig, Ch. Z. 44, 157; D. R. P. 324202; C. 1920 IV. 472; Frdl. 13, 111) oder beim Einleiten eines Gemisches von Acetylen und ozonisiertem Sauerstoff in Methylchlorid bei —80° (Bri., Wunenburger, Helv. 12, 788).

Ameisensäure erhält man neben anderen Produkten bei 24-stündigem Erhitzen von absol. Methanol mit Kaliumcarbonat im Eisen-Autoklaven unter Stickstoff auf 255° oder von Natriummethylat-Lösung in einem mit Kupfereinsatz versehenen Eisen-Autoklaven unter Stickstoff auf 240° (Tropsch, v. Philippovich, Abh. Kenntnis Kohle 7, 80; C. 1926 II, 1482). Bildet sich neben Formaldehyd aus Methanol bei der Einw. von Ozon (F. G. FISCHER, A. 476, 247) und bei der Einw. von Wasserstoffperoxyd in wäßr. Lösung bei Gegenwart von Eisen(II)-sulfat (Rosenthaler, Ar. 1929, 600). Bei langsamem Hinzufügen von Natriumchlorat in 2,5% iger Schwefelsäure zu einer wenig Vanadinpentoxyd enthaltenden wäßrigen Methanol-Lösung und nachfolgendem Erwärmen auf 75-80°, neben anderen Produkten (MILAS, Am. Soc. 50, 495). Entsteht neben Wasserstoff und Methanol beim Erwärmen von Methylhydroperoxyd mit Alkalilauge auf ca. 70°, rascher bei Zusatz von Formaldehyd: bildet sich in geringer Menge neben Methanol, Kohlendioxyd und wenig Formaldehyd beim Behandeln von Methylhydroperoxyd in wäßr. Lösung mit Platinmohr bei ca. 50° (RIECHE. Hitz, B. 62, 2462, 2471). Das Kalium- bezw. Natriumsalz entsteht bei längerem Schütteln von Kalium- oder Natriumäthylat-Lösung mit Stickoxyd bei $20-22^{\circ}$ (Wieland, B. 61. 2382). Nachweisbare Mengen Ameisensäure entstehen bei der Einw. von Rhodium auf stark alkalische Lösungen von Methanol, Alkohol oder Propylalkohol (Erich Müller, Z. El. Ch. 27, 566). Bildet sich neben Aceton bei Einw. von Wasserstoffperoxyd auf Isopropylalkohol in Gegenwart von Eisen(II)-sulfat (Rosenthaler, Ar. 1929, 600). Aus Glykol, Glycerin oder Mannit beim Schütteln mit metallischem Kupfer und 10%iger Natronlauge in einer Sauerstoffatmosphäre (Traube, B. 43 [1910], 765) sowie aus Glycerin oder Mannit beim Schütteln in 10%iger Tetraäthylammoniumhydroxyd-Lösung in Gegenwart von Kupferhydroxyd mit Sauerstoff bei 30—35° (Tr., Lange, B. 58, 2789). Beim Erhitzen von 1 Mol Glycerin mit 3 Mol Hydrazin im Rohr auf 190—250°, neben anderen Produkten (Ernst MÜLLER, KRAEMER-WILLENBERG, B. 57, 582).

In geringer Menge neben anderen Produkten bei längerer Einw. von Sonnenlicht auf verd. Formaldehyd-Lösung in Gegenwart von Magnesium oder Zink, deren Oxyden oder Carbonaten (K. Short, W. F. Short, Biochem. J. 18, 1332). Ameisensäure bildet sich in wechselnden Mengen neben anderen Produkten beim Überleiten von trocknem konzentriertem Formaldehyd-Gas, teilweise auch von Formaldehyd und Wasserdampf, über Natriumcarbonat bei 300—500°, über Calciumcarbonat, Bariumcarbonat, Zinkoxyd, Aluminiumoxyd, Thoriumoxyd, Chrom(III)-oxyd, Urandioxyd, Eisen, alkalisiertes Eisen und Antimon bei 400°, über Blei bei 195°, über Quarz bei 600° und über aktive Kohle bei 400° (Tropsch, Roelen, Abh. Kenntnis Kohle 7, 23; C. 1926 I, 3298). Aus wäßr. Formaldehyd-Lösung beim Erhitzen mit Magnesiumoxyd im Rührautoklaven bei 2 Atm. Druck, neben Methanol und den Produkten der Formaldehydkondensation (Schmalfuss, B. 57, 2102; Bio. Z. 185, 71). Bildet sich in eringer Menge neben Wasserstoffperoxyd beim Leiten von ozonisierter Luft durch verd. Formaldehyd - Lösungen (Blair, Wheeler, J. Soc. chem. Ind. 42 [1923], 349 T; vgl. dazu Briner. MEIER, Helv. 12, 551). Zur Bildung aus Formaldehyd durch Oxydation mit Wasserstoffperoxyd vgl. Hatcher, Holden, Trans. roy. Soc. Canada [3] 20 HI, 395; C. 1927 II, 2050. Die Bildung von Ameisensäure neben Methanol aus Formaldehyd bei Einw. von Alkalilaugen (vgl. H 2, 8) wird durch Zusatz von feinverteilten Metallen wie Kupfer, Silber, Palladium oder Platin, besonders aber durch Rhodium stark beschleunigt (E. MÜLLER, Z. El. Ch. 27, 559; vgl. a. Mü., A. **420**, 246). — Bei der elektrolytischen Oxydation von alkal. Formaldehyd-Lösungen an Kupfer- bezw. Silber-Anoden, die vorher mit Kupfer(I)-chlorid bezw. Silber-chlorid überschmolzen und kathodisch in Natronlauge reduziert sind (Mü., A. 420, 241). oxymethyl-peroxyd beim Behandeln mit starker Kalilauge, neben Methanol und Wasserstoff (Riкche, B. 63 [1930], 2645; vgl. Rieche, Hitz. B. 62, 2462). Ameisensäure entsteht neben Wasserstoff aus Bis-oxymethyl-peroxyd in neutraler, alkalischer und saurer Lösung. wobei Alkali beschleunigend, Säure verzögernd wirkt; bildet sich-unter Explosionserscheinungen beim Erhitzen von Bis-oxymethyl-peroxyd für sich über direkter Flamme (WIELAND, WINGLER, A. 431, 308). Zur Bildung aus Bis-oxymethyl-peroxyd beim Aufbewahren im geschlossenen Rohr vgl. King, Soc. 1929, 749.

Entsteht in geringer Menge neben anderen Produkten bei Einw. von Ozon auf Acetaldehyd-Dampf bei gewöhnlicher Temperatur (BRINER, MEIER, Helv. 12, 551). Aus Aceton bei der Einw. von Wasserstoffperoxyd in Gegenwart von Eisen(II)-sulfat, neben Formaldehyd und Essigsäure (Rosenthaler, Ar. 1929, 600). Ameisensäure entsteht aus Glyoxal bei der Bestrahlung der wäßr. Lösung mit Quecksilberlicht, neben anderen Produkten (SPOEHR, Bio. Z. 57 [1913], 107), bei der Oxydation mit Wasserstoffperoxyd, besonders rasch in alkal. Lösung (Hatcher, Holden, Toole, Trans. roy. Soc. Canada [3] 20 III, 403; C. 1927 II. 2050), beim Erwärmen mit ammoniakalischer Silbernitrat-Lösung (Maxted, Soc. 1926, 2182) und bei der Oxydation mit Permanganat in verd. Schwefelsäure (H., H., T.). Aus Glykolaldehyd bei Einw. von wäßr. Kupferacetat-Lösung bei 50° (Evans, Mitarb., Am. Soc. 50. 2280). Abhängigkeit der Bildung von Ameisensäure von der Alkalikonzentration bei der Einw. von Kalilauge auf Glycerinaldehyd oder Dioxyaceton bei 50°: Evans, Hass, Am. Soc. 48, 2708, 2711; E., Cornthwaite, Am. Soc. 50, 490.

Über Bildung von Ammoniumformiat beim Erhitzen von Bariumcyanid mit Wasser unter Einpressen von Kohlendioxyd vgl. Norsk Hydroelektrisk Kvaelstof-A. S., D. R. P. 369370; C. 1923 II, 1246; Frdl. 14, 237. Bei der katalytischen Zersetzung von Triacetin an Thoriumoxyd bei 460° oder 525°, neben anderen Produkten (Simons, Am. Soc. 48, 1992). --Über Bildung aus Oxalsaure bei der Einw. von ultraviolettem Licht vgl. Volmar, C. r. 180, 1173; zur Bildung bei der Einw. von Sonnenlicht oder künstlichem Licht in Gegenwart von Uranylsalzen auf Oxalsäure vgl. BAUR, Ph. Ch. 100, 38; BÜCHI, Ph. Ch. 111, 290. Zur Bildung bei der Destillation von Oxalsäure mit wasserfreiem Glycerin vgl. Coffey, Ward, Soc. 119, 1303. Entsteht aus Oxalsäure bei der Einw. von Kaliumpermanganat, Ammoniumpersulfat, Quecksilber(II)-chlorid und anderen Oxydationsmitteln (Krauss, BRUCHHAUS, B. 62, 488; K., BERGE, B. 63 [1930], 568; vgl. dagegen OBERHAUSER, HENSINGER, B. 61, 521; O., Schormüller, A. 470, 111). Bildung aus Glykolsäure durch Einw. von Wasserstoffperoxyd: Hatcher, Holden, Trans. roy. Soc. Canada [3] 20 III, 408; C. 1927 II, 2051: bei gleichzeitiger Anwesenheit von Eisen(III)-salz: Goldschmidt, Askenasy, Pierros, B. 61, 225, 232. — Neben anderen Produkten bei der Hydrierung einer wäßr. Lösung von β -oxy-buttersaurem Natrium bei 245—250° und 56 Atm. in Gegenwart von Nickeloxyd und Aluminiumoxyd (Rasuwajew, B. 61, 638; Ж. 60, 914); in analoger Reaktion aus α-oxyisovaleriansaurem Natrium bei 285—295° und 80 Atm. (Гратјем, Ra., B. 61, 635; Ж. 60, 911), aus Natriummalat bei ca. 250° und 100 Atm., aus Natriumtartrat bei 245—250° und 85 Atm. oder aus Natriumcitrat bei 250—260° und 60 Atm. (I., Ra., B. 60, 1974; **Ж. 59**, 1084). — Bildet sich neben Oxalsäure und Kohlendioxyd beim Behandeln von Weinsäure mit ammoniakalischer Silbernitrat-Lösung bei 60—62° (Maxted, Soc. 1926, 2181). Zur Bildung von Ameisensäure bei der Elektrolyse von d. Weinsäure an verschiedenen Platin., Plai Bleiderund Silber bei der Dielektrolyse von d. Weinsäure an verschiedenen Platin. Blei-, Bleidioxyd-, Silber-, Kupfer- oder Nickelanoden in schwefelsaurer oder alkalischer Lösung vgl. Sihvonen, Ann. Acad. Sci. fenn. [A] 16, Nr. 9, S. 94, 139; C. 1922 III, 872.

Aus Glyoxylsäure neben Kohlendioxyd bei Einw. von Wasserstoffperoxyd bei 25°

Aus Glyoxylsäure neben Kohlendioxyd bei Einw. von Wasserstoffperoxyd bei 25° (Hatcher, Holden, Trans. roy. Soc. Canada [3] 19 III, 14; C. 1926 I, 2319), bei —2° bis 0°, auch in Gegenwart von Eisen(III)-salzen (Goldschmidt, Askenasy, Pierros, B. 61, 225. 232), neben Oxalsäure bei Einw. von ammoniakalischer Silbernitrat-Lösung bei 60—62° (Maxted, Soc. 1926, 2182). Bei der Elektrolyse von Glyoxylsäure am glatten Platindraht oder Eisen in 3n-Alkaliauge oder an Bleideroxyd in 4n-Schwefelsäure, neben anderen Produkten (Sihvonen, Ann. Acad. Sci. fenn. [A] 16 [1921], Nr. 9, S. 101). Aus Oxybrenztraubensäure bei Einw. von wäßr. Kupferacetat-Lösung bei 50° (Evans, Mitarb., Am. Soc. 50, 2279). Aus Glykokoll bei Einw. von Tetraäthylammoniumhydroxyd-Lösung und Kupferhydroxyd

bei 30° in einer Sauerstoff-Atmosphäre (Traube, Lange, B. 58, 2789).

Zur Bildung von Ameisensäure aus d-Glucose durch Einw. von Alkalien vgl. Waterman, van Tussenbroek, Chem. Weekb. 19, 135; C. 1922 I, 1173; Evans, Edgar, Hoff, Am. Soc. 48, 2666, 2672; Fischler, Täufel, Souci, Bio. Z. 208, 207; Wolf, Bio. Z. 210, 463. Bildung aus Glucose durch Oxydation mit Luftsauerstoff in Kalkmilch: Power. Upson, Am. Soc. 48, 196; mit wäßt. Kupferacetat-Lösung: Evans, Mitarb., Am. Soc. 50, 2268, 2270; mit Kupferchlorid und Natriumcarbonat-Lösung: Jensen, Upson, Am. Soc. 47, 3019. Über die Bildung bei der Einw. von Alkali auf d-Mannose vgl. Evans, O'Donnell, Am. Soc. 50, 2544, 2547. Aus d-Galaktose beim Behandeln mit Kalilauge, neben anderen Produkten (Ev., Edgar, Hoff, Am. Soc. 48, 2666, 2673) oder bei Einw. von wäßt. Kupferacetat-Lösung (Ev., Mitarb., Am. Soc. 50, 2268, 2271). Entsteht in wechselnden Mengen neben anderen Produkten aus Fructose bei der Einw. von Kalilauge bei verschiedenen Temperaturen (Ev., Hutchman, Am. Soc. 50, 1497, 1500), beim Erhitzen mit Calciumhydroxyd oder Calciumcarbonat und Wasser unter Druck (Wolf, Bio. Z. 210, 463) oder bei Einw. von wäßt. Kupferacetat-Lösung (Evans, Mitarb., Am. Soc. 50, 2268, 2270). Bei der trocknen Destillation von Saccharose unter gewöhnlichem Druck, neben anderen Produkten (Hidaka, Mem. Coll. Sci. Kyoto [A] 11, 549; C. 1929 I, 1834). Die Bildung bei der Caramelisation von Saccharose ist abhängig von der Höhe und Dauer der Erhitzung; unterhalb 160° entsteht Ameisensäure

nur in Spuren (SIMPSON, Ind. Eng. Chem. 15, 1055; C. 1924 I, 165). Über Bildung aus Saccharose beim Erhitzen mit Calciumhydroxyd oder Calciumcarbonat und Wasser unter Druck vgl. Wolf, Bio. Z. 210, 462.

Bei der Kalischmelze von Xylan unter Anwendung von 10 Tln. Kaliumhydroxyd und 10 Tln. Wasser bei 200—280° (Heuser, J. pr. [2] 107, 3). In geringer Menge bei der Druckoxydation der Cellulose (F. Fischer, Schrader, Abh. Kenntnis Kohle 5, 208; C. 1922 IV, 1064; F., Sch., Treibs, Abh. Kenntnis Kohle 5, 212, 313; C. 1922 III, 1185, 1186). Über die Bildung beim Abbau von Cellulose aus Fichtenholz mit verd. Mineralsäuren s. Meunier. C. r. 174, 469. Zum Vorkommen in der Natroncellulose-Ablauge vgl. noch Hägglund. Acta Acad. Abo. 2, Nr. 5, S. 8; Cellulosech. 5, 83; C. 1924 II, 2621. — Bei der trocknen Destillation von Tabak (Gabel, Kiprijanow, Ukr. chemič. Z. 4, Techn. Teil, S. 45; C. 1929 II, 2273). — Bildung aus verschiedenen Holzarten durch Schmelzen mit Natriumhydroxyd: Mahood, Cable, J. ind. Eng. Chem. 11, 652; C. 1920 II, 776; durch Erhitzen im Vakuum nicht über 150—160°: Aschan, Brennstoffch. 4, 129, 145, 164; C. 1924 I, 2554: durch Druckoxydation: F. Fischer, Schrader, Abh. Kenntnis Kohle 5, 208; C. 1922 IV, 1064; F., Sch., Treibs, Abh. Kenntnis Kohle 5, 223, 315; C. 1922 III, 1185, 1186. Zur Bildung bei der Holzdestillation vgl. a. H. M. Bunbury, Die trockene Destillation des Holzes, übersetzt von W. Elsner [Berlin 1925]; G. Bugge, Industrie der Holzdestillationsprodukte [Dresden-Leipzig 1927]: Neben anderen Produkten aus Braunkohle bei der Druckerhitzung mit Natronlauge (F., Sch., Abh. Kenntnis Kohle 5, 361; C. 1922 IV, 1066) oder bei der Druckoxydation bei 200° (F., Sch., Abh. Kenntnis Kohle 5, 361; C. 1922 IV, 1064; F., Sch., Tr., Abh. Kenntnis Kohle 5, 235, 319; C. 1922 IV, 1064, 1066). Zur Bildung von Ameisensäure aus Steinkohle bei der Druckoxydation vgl. F., Sch., Abh. Kenntnis Kohle 5, 209; C. 1922 IV, 1064; F., Sch., Tr., Abh. Kenntnis Kohle 5, 267, 271, 281, 323; C. 1922 IV, 1065, 1066.

Darstellung.

Literaturübersicht über die Darstellung von Formiaten aus Kohlenoxyd und Basen: v. Philippovich, Abh. Kenntnis Kohle 6, 360; C. 1924 I, 2097. — Zu den H 2, 9, 10 und E I 2, 8, 9 zitierten Angaben über die Darstellung von Formiaten aus Kohlenoxyd bei Einw. von Basen ist nachzutragen: Je nach Art der Base entstehen Formiate in wechselnden Mengen beim Schütteln von Kohlenoxyd bei einem Anfangsdruck von 20 Atm. mit starken und schwachen anorganischen und organischen Basen, Ammoniak, Carbonaten, Silikaten, Boraten und Sulfiden unter Zusatz von Wasser im Eisen-Autoklaven bei 160°, mit Dinatriumphosphat bezw. Metalloxyden unter analogen Bedingungen bei 200° bezw. 250° (F. Fischer, v. Ph.. Abh. Kenntnis Kohle 6, 366; C. 1924 I, 2097). Ammoniumformiat erhält man beim Erhitzen von Kohlenoxyd mit 25 %igem wäßrigem Ammoniak unter hohem Druck auf 150—160° (K. H. Meyer, D. R. P. 392409; Frdl. 14, 240) oder in Gegenwart von Kohle-Kupfer(I)-chlorid-Katalysator bei 90—110°, von platiniertem Asbest bei 110° oder von anderen Katalysatoren oberhalb 130° (Dubosc, Rev. Prod. chim. 27, 434; C. 1924 II, 1456). Calciumformiat entsteht beim Schütteln von Kohlenoxyd mit Kalkmilch in Gegenwart von Eisenkugeln bei 200° und 60 Atm. Druck (BASF, D. R. P. 383538; C. 1924 I, 2397; Frdl. 14, 240) oder in einem Eisen-Autoklaven bei 160° und 20—50 Atm. (F., Tropsch, Schellenberg, Abh. Kenntnis Kohle 6, 331; C. 1924 I, 2096). Bildung von Natriumformiat durch Einw. von Kohlenoxyd auf wäßr. Lösungen von basischem Natriumcalciumsulfat unter verschiedenen Bedingungen: Enderli, D. R. P. 365012, 367488; Frdl. 14, 235, 236; Koepp & Co. Badenhausen, D. R. P. 457112; C. 1928 I, 2989; Frdl. 16, 199. Über die Verwendung von Kohlenoxyd aus Holzgas für derartige Synthesen vgl. Auerbach, D. R. P. 397310; C. 1924 II. 1400; Frdl. 14, 244.

Darstellung hochprozentiger bzw. wasserfreier Ameisensäure. Bei der Darstellung von Ameisensäure durch Destillation von Natriumformiat mit Schwefelsäure erhält man bei Anwendung von rauchender Schwefelsäure mit 3% SO₃ die höchste Ausbeute: das so erhaltene ca. 95% ige Produkt läßt sich durch wiederholtes Ausfrieren auf 99,6% anreichern; zur Darstellung von absol. Ameisensäure destilliert man 99,6% ige Ameisensäure mit Borsäureanhydrid (Boswell, Corman, C. 1922 III, 32). Die zersetzende Wirkung der konz. Schwefelsäure auf Ameisensäure bei der Darstellung aus Formiaten und konz. Schwefelsäure läßt sich auch dadurch vermeiden, daß man die Schwefelsäure auf Gemische von Ammoniumformiat und Formamid unter Zusatz der für die Umwandlung von Formamid erforderlichen Menge Wasser einwirken läßt; man erhält eine ca. 98% ige Ameisensäure (BASF, D. R. P. 414257; C. 1925 II, 763; Frdl. 15, 111). Die mit Eiswasser gekühlte wasserhaltige Ameisensäure wird unter allmählichem Hinzufügen der zur Bindung des vorhandenen Wassers erforderlichen Menge Phosphorpentoxyds geschüttelt und die konz. Ameisensäure bei 15—18,4 mm Druck abdestilliert (JONES, J. Soc. chem. Ind. 38, 362 T; C. 1920 I, 249; vgl. a. Schmidt, Ph. Ch. 7 [1891], 445). Die Entwässerung einer 10 % igen wäßrigen Ameisensaure-Lösung erfolgt durch 2-stufige Destillation, zuerst mit Butylformiat, dann mit Benzin (Kp: 75—80°) (I. G. Farbenind., D. R. P. 469823; C. 1929 I, 1147; Frdl. 16, 211). Herstellung

hochkonzentrierter Ameisensäure aus wäßriger (85%iger) Ameisensäure oder Alkaliformiat-Lösung durch Überführung in saure Formiate und nachfolgende Destillation dieser Salze für sich oder nach Zusatz von Schwefelsäure oder Disulfaten bei vernindertem oder gewöhnlichem Druck: Koepp & Co., Elöd, D. R. P. 391300; C. 1924 II. 887; Frdl. 14, 233. Bei verdünnteren (z. B. 42%igen) Lösungen erfolgt Destillation nach Zusatz von Natriumformiat, wobei eine sehr verdünnte wäßrige Lösung ablestilliert und eine hochkonzentrierte Ameisensäure zurückbleibt (K. & Co., E., D. R. P. 416072; C. 1925 II. 1563; Frdl. 15, 115). Die Entwässerung von 90—98%iger Ameisensäure kann durch Digerieren mit solchen Mengen von wasserfreiem Kupfersulfat oder Magnesiumsulfat erfolgen, daß sich die stabilen Hydratstufen der Salze bilden, worauf die konz. Säure abdestilliert oder abfiltriert wird (Schering-Kahlbaum A.-G., D. R. P. 501833; C. 1930 II. 2572; Frdl. 16, 200). Über eine Methode zur Gewinnung wasserfreier Ameisensäure durch Extraktion nach dem Gegenstromprinzip vgl. Guinot, Chim. et Ind. 21, 56 T; C. 1929 II. 2433.

Physikalische Eigenschaften.

Mechanische und thermische Eigenschaften. Röntgenogramm von fester Ameisensaure (Reflexionsmethode): Gibbs, Soc. 125, 2623; Z. Kr. Strukturber. 1, 693. F: 8,35° (99,99°) ige Ameisensäure) (Gordon, Reid, J. phys. Chem. 26, 779), 8,40° (Timmermans. Hennaut-Roland, J. Chim. phys. 27 [1930], 420). Einfluß der Sättigung mit trockner Luft bei Atmosphärendruck auf den Erstarrungspunkt: Foote, Leopold, Am. J. Sci. [5] 11, 45: C. 1926 I, 1773. Abhängigkeit des Schmelzpunkts der Ameisensäure von Drucken bis zu 3000 kg/cm²: Tammann, Z. anorg. Ch. 109, 223. — Kp₇₆₀: 100,75° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 19), 100,7° (T., H.-R.); Kp₁₂₀: 49,9° (Creighton, Way, J. Franklin Inst. 186 [1918], 691). — Dampfdruck von fester Ameisensäure bei 0°: 8.22 mm; von flüssiger Ameisensäure bei 0°: 11.46 mm, bei 10°: 19,88 mm, bei 20°: 33,55 mm (Coolidge, Am. Soc. 52 [1930], 1877; vgl. Am. Soc. 50, 2168).

(Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 420). D_{\bullet}^{o} : 1,2456; D_{\bullet}^{∞} : 1,2206 (Coolidge, Am. Soc. 50, 2169); D_{\bullet}^{m} : 1,23245; D_{\bullet}^{∞} : 1,21378 (Schoorl, zit. bei Tromp, R. 41, 296; vgl. a. Creighton, Way, J. Franklin Inst. 186 [1918], 691); D_{\bullet}^{i} : 1,22623 (Tr.. R. 41, 282); D_{\bullet}^{m} : 1,2170 (99,99%ige Ameisensäure) (Gordon, Reid, J. phys. Chem. 26, 779). — Dampfdichte zwischen 10° und 156° : Coo.. Am. Soc. 50, 2169; zwischen 25° und 80° : Ramsperger, Porter, Am. Soc. 48, 1271; 50, 3036; Wrewski, Glagolewa, Ph. Ch. 133, 371; \mathcal{R} . 59, 609. Gleichgewicht zwischen einfachen und doppelten Molekülen: Ra.. Po., Am. Soc. 48, 1268. — Viscosität bei 15° : 0,01966, bei 30° : 0,01443 g/cmsec (Timmermans, Hennaut-Roland, J. Chim. phys. 27, 422). Einfluß sehr dünner Schichten auf die gleitende Reibung zwischen Glas oder Wismut: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 560, 563; C. 1922 IV, 514. — Oberflächenspannung bei 15° : 38,13, bei 20° : 37,58, bei 30° : 36,48 dyn/cm (Ti., H.-R.). Parachor: Hunten, Maass, Am. Soc. 51, 161. — Spezifische Wärme $c_{\rm p}$ der festen Ameisensäure zwischen — 202.2° (0,157 cal/g) und $+1.8^{\circ}$ (0,459 cal/g) und der flüssigen Ameisensäure zwischen $+12.8^{\circ}$ (0,506 cal/g) und $+18.3^{\circ}$ (0,510 cal/g): Gibson, Latimer, Parks, Am. Soc. 42, 1537.

Optische Eigenschaften. n_α: 1,37095; n_{He}: 1,37348; n_B: 1,37847 (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 421); n_C: 1,3719 (Schoorl bei Tromp, R. 41, 296). Brechungsindiees für Helium-Linien: Ti., H.-R. Ultraviolettes Absportionsspektrum von Ameisensäure-Dampf zwischen 20° und 145°: Harris, Nature 118, 482; C. 1926 II, 2962: bei verschiedenen Temperaturen und Drucken: Ramsperger, Porter, Am. Soc. 48, 1267. Zur Absorption von flüssiger Ameisensäure im Ultraviolett vgl. a. Brode, J. phys. Chem. 30, 61. Ultraviolettes Absorptionsspektrum von Ameisensäure in Wasser (quantitative Extinktionsmessungen): Ghosh, Bisvas, Z. El. Ch. 30, 102. Zerstreuung von unpolarisiertem Licht an einer Ameisensäure-Oberfläche: Raman, Ramdas, Pr. roy. Soc. [A] 109, 274; C. 1926 I, 838; Ramdas, Indian J. Phys. 1, 221; C. 1927 II, 2535. Lichtzerstreuung und Depolarisationsgrad des Streulichts für Ameisensäure-Dampf: Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838; für flüssige Ameisensäure: Gans, Z. Phys. 30, 233; Contrib. Estudio Cienc. fts. La Plata 3, 369; C. 1925 I, 1565; II, 1509; Krishnan, Phil. Mag. [6] 50, 704; C. 1926 I, 838. — Rammaneffekt: Dadieu, Kohlrausch, M. 52, 229, 399, 405; Phys. Z. 30, 384 Tafel VIII; Sber. Akad. Wien [IIa] 138, 51; C. 1929 II, 697, 970; B. 63 [1930]. 256; Ko., C. 1929 II, 1508; Ganesan, Venkateswaran, Indian J. Phys. 4, 216; C. 1929 II. 2646. — Beugung von Röntgenstrahlen in flüssiger Ameisensäure: Katz. Z. Phys. 45, 101: Kautschuk 1927, 217; C. 1927 II, 1206; 1928 I, 154; Sogani, Indian J. Phys. 2, 102; C. 1928 I, 470; Stewart, Mannheimer, Z. anorg. Ch. 171, 68; St., Pr. nation. Acad. USA. 13, 787; C. 1928 I, 639; Morrow, Phys. Rev. [2] 31, 11; C. 1928 I, 2693.

Syst. Nr. 155]

Elektrische und magnetische Eigenschaften. Dielektr.-Konst. bei 15°: 62,0 (Thwing, Ph. Ch. 14 [1894], 293), bei 16°: 58,5 (Drude, Ph. Ch. 23 [1897], 309; vgl. hierzu Walden, Z. El. Ch. 26, 73). Spezifische elektrische Leitfähigkeit der Ameisensäure: Wa., Z. El. Ch. 26, 73. — Magnetische Susceptibilität bei 29,5°: Athanasiadis, Ann. Phys. [4] 66, 425. Magnetische Doppelbrechung: Ramanadham, Indian J. Phys. 4, 35; C. 1929 II, 2315.

Physikalische Eigenschaften von Ameisensäure enthaltenden Gemischen.

Mechanische und thermische Eigenschaften. Gegenseitige Löslichkeit von Ameisensäure und Tetrachlorkohlenstoff, Bromoform, Benzol, Toluol, Xylol, Schwefelkohlenstoff, Kerosin oder Baumwollsaatöl bei 25°: Gordon, Reid, J. phys. Chem. 26, 782; von Ameisensäure und Petroläther bei Gegenwart aliphatischer Alkohole: Schilow, Lepin, Ph. Ch. 101, 387. Mischbarkeit mit Benzol und Chlorbenzol bei verschiedenen Drucken: TIMMERMANS, J. Chim. phys. 20, 506. — Löslichkeitsdiagramm des ternären Systems Ameisensäure-Natriumformiat-Wasser: Elöd, Tremmel, Z. anorg. Ch. 165, 161; des Systems Ameisensäure-Uranylformiat-Wasser bei 25°: COLANI, Bl. [4] 45, 624. Kritische Lösungstemperatur des Systems mit Benzol: 74,15 ± 0,1° (TIMMERMANS, HENNAUT-ROLAND, J. Chim. phys. 27 [1930], 420). Verteilung von Ameisensäure zwischen Wasser und Chloroform bei 25°: SMITH, J. phys. Chem. 25, 229; vgl. a. SCHILOW, LEPIN, Ph. Ch. 101, 382; zwischen Wasser und Tetrachlorkohlenstoff oder Bromoform bei 25°: GORDON, REID, J. phys. Chem. 788; zwischen Wasser und Benzol bei 25°: Brown, Burry, Soc. 123, 2431; Go., R.. J. phys. Chem. 26, 787; zwischen Wasser und Toluol, Xylol oder Kerosin bei 25°: Go., R.. J. phys. Chem. 26, 786; zwischen Wasser und Toluol, Xylol oder Kerosin bei 25°: Go., R.. J. phys. Chem. 26, 786; zwischen Wasser und Äther bei 15°: Pinnow, Z. Unters. Nahr.. Genuβm. 44 [1922], 206; bei 18°: Auerbach, Zeglin, Ph. Ch. 103, 205; bei 20°: Fresenius, Grünhut, Fr. 60, 459; bei 25°: Smith, J. phys. Chem. 25, 621; bei 26,3°; Pi.; vgl. a. Sch., Ph. Ch. 103, 280; wischen Wasser und disent Comisch von States and Details to the characteristic states and comisch von States and Details to the characteristic states and comisch von States and Details to the characteristic states and comisch von States and Details to the characteristic states and comisch von States and Details to the characteristic states and characteristics and characteristic states and characteristics and characteristic states and L., Ph. Ch. 101, 380; zwischen Wasser und einem Gemisch von Äther und Petroläther bei 20°: Fr., Gr., Fr. 60, 460; zwischen Wasser und Schwefelkohlenstoff: Go., R., J. phys. Chem. 26, 789; zwischen Wasser und Offvenöl: Bodansky, J. biol. Chem. 79, 252; zwischen Wasser und Baumwollsaatöl: Go., R., J. phys. Chem. 26, 784. Verteilung von Ameisensäure zwischen Ather und 0,5 n-Schwefelsäure, auch in Gegenwart von Natriumchlorid bei 180: Au., Z., Ph. Ch. 103, 207; zwischen wäßr. Alkohol (10 Vol.-%) und Äther oder Äther + Petroläther bei 20°: Fr., Gr., Fr. 60, 459; zwischen Äther und Lösungen von Glucose in 0,5 n-Schwefelsäure bei 18°: Au., Beck, Arb. Gesundh.-Amt 57 [1926], 35; zwischen Glycerin und Aceton bei 25°: Smith, J. phys. Chem. 25, 732. — 1 Vol. reine konzentrierte Ameisensäure nimmt ca. 5 Vol. Kohlendioxyd auf, 1 Vol. eines Gemisches aus 95% Ameisensäure und 5% Natriumformiat ca. 2,5 Vol. Kohlendioxyd (F. Müller, Z. El. Ch. 33, 175). Lösungsvermögen für Quecksilber(II)-bromid: Joachimoglu, Klissiunis, *Bio. Z.* 153, 140. Lösungsvermögen für Monosaccharide, Oligosaccharide, Stärke, Dextrin, Inulin, Glykogen, Agar, Glykoside und Chlorophyll: CARR, Sci. [N. S.] 69, 407; C. 1929 II, 176. — Thermische Analyse der binären Systeme mit Ammonium-, Lithium-, Natrium-, Kalium-, Calcium-, Barium- und Bleiformiat: Kendall, Adler, Am. Soc. 43, 1473. Azeotrope Gemische, die Ameisensäure enthalten, s. in der untenstehenden Tabelle. Über konstant siedende Gemische, die Ameisensäure enthalten, vgl. ferner Lecat, Ann. Soc. scient. Bruxelles 48 [1928], 59; 49 [1929], 25, 112.

Ameisensäure enthaltende binäre azeotrope Gemische.

Komponente	Kp ₇₆₀	Ameisen- säure in Gew%	Komponente	Кр ₇₆₀ 0	Ameisen- säure in Gew%
Chloroform 1)	59,15	15	Isopropylbromid 3)	56,0	14
Dichlorbrommethan 4)	78,15	ca. 24	Isobutylchlorid 4)	62,95	19
Bromoform 4)	100,5	ca. 70	tert. Butylchlorid 3) .	50,0	11,2
Methyljodid ³)	42,1	6	Pentan 1)	34,2	10
Äthylidenchlorid 5)	56,0	5	Isopentan 1)	27,2	4
Äthylenchlorid 1)	77,4	14	Allylchlorid 5)	45,0	7,5
1.1.2.2-Tetrachlor-	ŕ		Trimethyläthylen 3) .	35,0	10,5
āthan ²)	99,25	68	Isopropyläthylen 1)	ca. 22,2	ca. 2
Äthylbromid ²)	38,23	3	Chlorbenzol 8)	95,0	55
Äthylenbromid 2)	94,65	51,5	Brombenzol 3)	99,9	78
Propylchlorid 3)	45,6	8	o-Chlor-toluol 3)	100,2	83
Isopropylchlorid 3).	34,7	1,5	p-Chlor-toluol 8)	100,5	88

¹⁾ LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 54, 56, 59. — 2) L., Ann. Soc. scient. Bruxelles 48 I, 116, 119. — 3) L. Ann. Soc. scient. Bruxelles 49 [1929], 19, 20, 21, 22, 25. — 4) L., Ann. Soc. scient. Bruxelles 49, 33. — 5) L., Ann. Soc. scient. Bruxelles 49, 110, 111, 112.

Dampfdruck wäßr. Ameisensäure bei 0°, 10° und 20°: Coolidge, Am. Soc. 50, 2169: zwischen 20° und 90°: Bredig, Carter, Enderli, M. 53/54, 1025. Zusammensetzung und Druck des Dampfes von Ameisensäure-Wasser-Gemischen bei 60° und 80°: Wrewski. Glagolewa, Ph. Ch. 133, 372; Ж. 59, 700; über Ameisensäure-Benzol-Gemischen bei 25° und 60°: Wr., Held, Schtschukarew, Ph. Ch. 133, 381; Ж. 59, 620. Destillationskurve von Gemischen mit Wasser: Knetemann, R. 47, 957. Über die Destillation eines Gemisches mit Wasser vgl. noch Virtanen, Pulkki, Am. Soc. 50, 3141; C. 1928 I, 167.

mit Wasser vgl. noch Virtanen, Pulkki, Am. Soc. 50, 3141; C. 1928 I, 167.

Kryoskopisches Verhalten von Ameisensäure in Wasser: Jones, Bury, Phil. Mag.

[7] 4, 841; C. 1928 I, 1266; in Benzol und Nitrobenzol: Trautz, Moschel, Z. anorg. Ch.

155, 13. Kryoskopisches Verhalten von Halogenwasserstoffen in absoluter und wäßriger Ameisensäure: Hlasko, Michalski, Roczniki Chem. 6, 534; C. 1927 I, 2803. Entgegen älteren Angaben (vgl. Zanninovich-Tessarin, Ph. Ch. 19, 253; Beckmann, Lockemann, Ph. Ch.

60, 388) ist Chlorwasserstoff in Ameisensäure nicht polymerisiert (Hz., MI.).

Dichte von Ameisensäure-Dampf über den Lösungen in Benzol: Wrewski, Held. Schtschukarew, Ph. Ch. 133, 386; 3. 59, 627. Dichte wäßt. Lösungen bei 20°: Hantzsch. Dürigen, Ph. Ch. 136, 16; bei 30°: Pound, Russell, Soc. 125, 779. Dichte von ternären Gemischen mit Wasser und Anilin bei 30°: P., Ru. Über die Kontraktion beim Mischen mit Wasser bzw. mit Wasser und Anilin bei 30° vgl. P., Ru. — Adiabatische Kompressibilität wäßt. Ameisensäure-Lösungen zwischen 30° und 34°: Venkateswaran, J. phys. Chem. 31, 1523. — Viscosität von binären Gemischen mit Wasser bei 30°: P., Ru., Soc. 125, 779. Von ternären Gemischen mit Anilin und Wasser bei 30°: P., Ru., Soc. 125, 779. Einfluß der Neutralisation mit 1n-Kalilauge oder 1n-Natronlauge auf die Viscosität von 1n-Ameisensäure: Simon, C. r. 181, 862. — Diffusion durch Kollodiummembranen: Collander, Comment. biol. Helsingfors 1926, 15; C. 1926 II, 720; Northrop, J. gen. Physiol. 12, 443; C. 1929 II. 1387; durch lipoidhaltige Membranen: Philippson, Hannevart, C. r. Soc. Biol. 83, 1572; C. 1921 I, 543.

Oberflächenspannung einer 1n-wäßrigen Ameisensäure-Lösung bei 150: TRAUBE. Somogyi, Bio. Z. 120, 94; von Lösungen von Alkalihalogeniden in Ameisensäure: Kosake-WITSCH. Ph. Ch. 133, 10; 136, 196. Adsorption von Ameisensäure-Dampf an Tierkohle: ALEXEJEWSKI, 3K. 55, 416; C. 1925 II, 642; an Chabasit: Weigel, Steinhoff, Z. Kr. 61. 150. Adsorption von Ameisensäure aus wäßr. Lösungen an aktivierte Holzkohle: Schilow, LEPIN, Ph. Ch. 94, 44; SCH., Ph. Ch. 100, 426; DUBININ, Ph. Ch. 123, 95; Ж. 58, 1198; an Cocosnußkohle: Namasivayam, Quart. J. indian chem. Soc. 4, 451; C. 1928 I, 662; an Zuckerkohle: Bartell, Miller, Am. Soc. 45, 1109; Nekrassow, Ph. Ch. 136, 380; an Tierkohle: Watson, Biochem. J. 16, 617; SCH., NE., Ph. Ch. 130, 67; Ж. 60, 105; an Blutkohle, Holzkohle oder Zuckerkohle: Ne., Ph. Ch. 136, 22; an Blutkohle, Knochenkohle. Schwammkohle oder Zuckerkohle: Sabalitschka, *Pharm. Ztg.* 74, 382; C. 1929 I, 2288. Zur Adsorption aus wäßr. Lösung an Kohle vgl. a. Fromageot, Wurmser, C. r. 179, 973. — Adsorption aus verschiedenen organischen Lösungsmitteln an Blutkohle, Holzkohle oder Zuckerkohle: Ne., Ph. Ch. 136, 23. — Adsorption aus wäßr. Lösungen an Aluminiumoxyd: Schilow. Ph. Ch. 100, 429. Adsorption an Silicagel aus wäßr. Lösungen: MEHROTRA, DHAR, Z. anorg. Ch. 155, 299; aus wäßr. Lösungen oder aus Tetrachlorkohlenstoff: BARTELL, Fu, J. phys. Chem. 33, 680; aus Nitrobenzol oder Toluol: PATRICK, JONES, J. phys. Chem. 29, 4. Bei der Destillation des konstant siedenden Gemischs von Ameisensäure mit Wasser über Kieselsäure-Gel wird Wasser stärker adsorbiert als Ameisensäure (GRIMM, RAUDENBUSCH, WOLFF, Z. ang. Ch. 41, 105). Adsorption aus wäßr. Lösungen an Siloxen bei 0°: KAUTSKY, BLINOW. Ph. Ch. [A] 139, 509; an Eisenhydroxyd: Sen, J. phys. Chem. 31, 526. Adsorption von Ameisensäure an Platin: Palmer, Pr. roy. Soc. [A] 115, 229; C. 1927 II, 1678. Adsorption aus wäßr. Lösung oder aus Aceton an Baumwolle und Viscose: Brass, Frei, Koll. Z. 45. 244; C. 1928 II, 1037. Adsorption aus wäßr. Lösung durch Filtrierpapier: Mokruschin, Krylow, Koll.-Z. 43, 389; Izv. ural. politech. Inst. 6, 153; C. 1928 I, 890; II, 1989; vgl. dagegen Brass, Frei, Koll.-Z. 45, 246. Aufnahme aus wäßr. Lösung durch Hautpulver: Kubelka, Taussig, Koll. Beih. 22, 151; C. 1926 II, 2138; durch amidierte Baumwolle: Karrer, Kwong, Helv. 11, 526. Ausbreitung von Ameisensäure auf Wasser: Harkins, Freidmann Am. Soc. 44, 2870. Banking I. Philip 1, 200. C. 1926 II, 4025. Freiden. FELDMAN, Am. Soc. 44, 2670; RAMDAS, Indian J. Phys. 1, 20; C. 1926 II, 1935; vgl. a. Brinkman, v. Szent-Györgyi, Bio. Z. 139, 276. Uber die Ausbreitung wäßr. Ameisensäure-Lösungen auf einer Quecksilberoberfläche vgl. Burdon, Oliphant, Trans. Faraday Soc. 23, 208; C. 1927 II, 677.

Wirkung auf die Quellung von Casein: ISGARYSCHEW, POMERANZEWA, Koll. Z. 38, 236: C. 1926 I, 3129; von Gelatine: Yumikura, Bio. Z. 157, 377; vgl. a. Traube, Y., Bio. Z. 157, 383. Ausflockende Wirkung der Ameisensäure auf kolloidale Eisenhydroxyd-Lösung: Herrmann, Helv. 9, 786; auf Arsentrisulfid-Sol: Mukherjee, Chaudhuri, Soc. 125, 796: Herr., Helv. 9, 787; Ostwald, Koll. Z. 40, 205; C. 1927 I, 573; auf Gold-Sol: Mu., Ch.; Freundlich, Birstein, Koll. Beih. 22, 100; C. 1926 II, 1250. Koagulierende Wirkung auf alkal. Casein- oder Edestin-Lösungen: Is., Bogomolowa, K. 58, 158; Koll.-Z. 38, 239;

C. 1926 I, 3307. Über die koagulierende Wirkung der Ameisensäure auf verschiedene Sole vgl. noch Schilow, Ph. Ch. 100, 436. Schaumbildung wäßr. Ameisensäure-Lösungen bei 18°: Bartsch, Koll. Beih. 20, 7; C. 1925 I, 2362.

Wärmetönung beim Lösen von Ameisensäure in Alkohol, Äther, Aceton und Chloro-

form: KARVE, Quart. J. indian chem. Soc. 1, 256; C. 1925 II, 898.

Optische Eigenschaften. Refraktion wäßr. Lösungen bei 20°: Hantzsch, Dürigen. Ph. Ch. 136, 16. Ultraviolettes Absorptionsspektrum von Uranylnitrat in wäßr. Ameisensäure: Ghosh, Mitra, Quart. J. indian chem. Soc. 4, 355; C. 1928 I, 649; von Eisen(III)-chlorid in wäßr. Ameisensäure: Gh., M., J. indian chem. Soc. 5, 192; C. 1928 II, 326.

Elektrische Eigenschaften. Elektrische Leitfähigkeit von Ameisensäure in wäßr. Lösung bei 18°: Kolthoff, Z. anorg. Ch. 111, 49; Auerbach, Zeglin, Ph. Ch. 103, 191; Remesow, Bio. Z. 207, 77; in wasserhaltigem Alkohol: Goldschmidt, Ph. Ch. 99, 144; in Alkohol bei steigendem Zusatz von Ammoniak, Harnstoff, Äthylamin, Äthylendiamin. Anilin, Methylanilin, Dimethylanilin, Diphenylamin, p-Toluidin, α- und β-Naphthylamin oder o-, m- und p-Phenylendiamin bei 25°: Hölzl, M. 47, 562. Leitfähigkeit wäßr. Lösungen von Ameisensäure + Essigsäure: Kolthoff, Z. anorg. Ch. 111, 50; von Ameisensäure + Benzoesäure und von Ameisensäure + Benzoesäure + Oxalsäure: Kailan, Ph. Ch. 95, 232. Leitfähigkeit von Trimethyl-p-tolyl-ammoniumjodid in Ameisensäure: Creighton, Way, J. Franklin Inst. 186 [1918], 690; C. 1920 III, 43. — Ionenbeweglichkeit von Ameisensäure in Wasser und Alkohol: Ulich, Fortsch. Ch., Phys. 18 [1924/26], 605. Kataphoretische Wanderungsgeschwindigkeit von in verd. Ameisensäure suspendierter aktiver Kohle: Fromaceot, C. r. 179, 1405. — Anodische Stromspannungskurven von Ameisensäure in Gegenwart und Abwesenheit von Schwefelsäure an glattem Platin, platiniertem oder rhodiniertem Platin, ridium, palladiniertem oder glattem Palladium: E. Müller, Z. El. Ch. 29, 265; 33, 561; vgl. a. Wright, Soc. 1927, 2329. — Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Ameisensäure-Lösungen: Frumkin, Ph. Ch. 111, 192.

Dissoziationskonstante k (potentiometrisch bestimmt) bei 18° und 19,1°: MIZUTANI, Ph. Ch. 116, 351; 118, 328; (aus der Leitfähigkeit der wäßr. Lösung berechnet) bei 18° für 0,095—0,0019 n-Lösungen: 2,05×10-4 (Kolthoff, Z.anorg. Ch. 111, 49). Nach Auerbach, Zeglin (Ph. Ch. 103, 191) nehmen die aus der Leitfähigkeit berechneten Werte für die Dissoziationskonstante in dem Verdünnungsbereich von 4—1024 |/Mol von 2,05×10-4 bis 1,91×10-4 ab. Dissoziationskonstante in Wasser bei 73° (berechnet aus der Geschwindigkeit der Rohrzuckerinversion): 1,34×10-4 (Duboux, Tsamados, Helv. 7, 860). Dissoziationskonstante in Gemischen von Wasser und Methanol bei 18° (potentiometrisch bestimmt): Mi., Ph. Ch. 118, 328; von Wasser und Alkohol bei 19° (potentiometrisch bestimmt): Mi., Ph. Ch. 116, 351; von Wasser und Alkohol (bestimmt durch die Geschwindigkeit der Rohrzuckerinversion und der Zersetzung von Diazoessigester): D., Ts. Acidität von Ameisensture und ihrem Puffergemisch mit Natriumformiat zwischen 18° und 60°: Kolthoff, Tereblenburg, R. 48, 34. Mit Hilfe von Indikatoren ermittelte relative Acidität in Benzol: Brönsted, B. 61, 2062; in trocknem und wasserhaltigem Chloroform und Ather: Hantzsch, Voigt, B. 62, 978. Anderung des optischen Drehungsvermögens von Ammoniumdimolybdänsäuremabat-Lösungen als Maß der Acidität: Darmois, Bl. [4] 39, 639. — Konduktometrische Titration von Ameisensäure-Salzsäure-Gemischen verschiedener Konzentrationen mit 1,035 n-Natronlauge in Abwesenheit und Gegenwart von Alkohol: Kolthoff, Z. amorg. Ch. 111, 29, 35.

Katalytische Wirkungen. Ameisensäure beschleunigt die Rekombination von Wasserstoff-Atomen (UREY, LAVIN, Am. Soc. 51, 3289), bewirkt Zersetzung von Dibenzoylperoxyd in Gegenwart von Platinschwarz in Aceton-Lösung (Wieland, Fischer, B. 59, 183) und fördert die unter Leuchten und Rauchentwicklung erfolgende Autoxydation von Dithiokohlensäure-O.S-dimethylester (Delépine, Bl. [4] 31, 782). Beispiele für Bestimmung von Reaktionsgeschwindigkeiten in Ameisensäure oder in Gegenwart von Ameisensäure: Brönsted, Pedersen, Ph. Ch. 108, 198 (Zersetzung von Nitramid); Pray, J. phys. Chem. 30, 1480 (Zersetzung von Benzoldiazoniumchlorid bei 30° und 40°); Habtzsch, Weiss-

BERGER, Ph. Ch. 125, 255 (Inversion des Rohrzuckers).

Chemisches Verhalten.

Einwirkung von Licht, Wärme, Katalysatoren und Elektrizität. AmeisensäureDampf zersetzt sich bei der Einw. ven Quarz-Quecksilber-Licht bei 20° zu ca. 64% unter
Bildung von Kohlenoxyd und Wasser, zu ca. 36% unter Bildung von Kohlendioxyd und
Wasserstoff (Ramsperger, Porter, Am. Soc. 48, 1273; vgl. Herr, Noves, Am. Soc. 50,
2346). Photochemische Zersetzung von flüssiger Ameisensäure: Herr, N., Am. Soc. 50,
2347. Bei der Ultraviolett-Bestrahlung wäßr. Ameisensäure-Lösungen erfolgt überwiegend
Zerfall in Kohlendioxyd und Wasserstoff; Kohlenoxyd und Wasser treten nur in geringen
Mengen auf (E. Müller, Hentschel, B. 59, 1855; Allmand, Reeve, Soc. 1926, 2852;
vgl. Kailan, Ph. Ch. 95, 229; M. 41, 311); über weitere Reaktionsprodukte vgl. Mü., H.;
A., R. Nach Berthelot (C. r. 158 [1914], 1791) erhält man bei Anwendung von langwelligem

Ultraviolett Kohlenoxyd und Wasser, bei Bestrahlung mit kurzwelligem Ultraviolett Kohlendioxyd und Wasserstoff (vgl. A., R., Soc. 1926, 2856). Zersetzung bei der Einw. von durchdringenden Radiumstrahlen auf wäßr. Ameisensäure: K., Ph. Ch. 95, 228; M. 41, 310: 43. 8 Anm. 3.

Gleichgewicht der Reaktion $\text{HCO}_2\text{Na} + \text{H}_2\text{O} \rightleftharpoons \text{NaHCO}_3 + \text{H}_2$ bei 400° : Tropsch, v. Philippovich, Abh. Kenninis Kohle 7, 104; C. 1928 II, 1401. Zur thermischen Zersetzung von Lithiumformiat vgl. BASF, D. R. P. 362536; C. 1923 II, 189; Frill. 14, 127; F. Fischer, Tropsch, Schellenberg, Abh. Kenninis Kohle 6, 358; C. 1924 I, 2097; zur thermischen Zersetzung von Magnesiumformiat vgl. F., Tr., Sch., Abh. Kenninis Kohle 6, 357. Beim Erhitzen von Calciumformiat im Antoklaven auf $280-360^\circ$ erhält man Kohlenoxyd und Wasserstoff neben wenig Kohlendioxyd und Methan (Tr., v. Ph., Abh. Kenninis Kohle 7, 105). Die thermische Zersetzung von Calciumformiat in einem Aluminiumapparat, auch bei Gegenwart von Wasserdampf, bei $420-430^\circ$ liefert Methanol, Aceton, Calciumoxalat. Calciumcarbonat, Kohlendioxyd, Kohlenoxyd, Methan, Wasserstoff und andere Produkte; Zusatz von Aluminiumoxyd setzt die Zerfallstemperatur herab (F., Tr., Sch., Abh. Kenninis Kohle 6, 340; C. 1924 I, 2096). Das Bariumsalz liefert beim Erhitzen für sich auf $350-375^\circ$ Methanol, Kohlendioxyd, Kohlenoxyd und wenig Oxalat neben anderen Produkten; beim Behandeln mit überhitztem Wasserdampf bei $360-390^\circ$ erhält man daneben geringe Mengen Formaldehyd (F., Tr., Sch., Abh. Kenninis Kohle 6, 356; C. 1924 I, 2097). Über die Umwandlung von Formiaten in Oxalate 8, bei Darstellung von Oxalsäure (Syst. Nr. 170).

An einer Oberfläche aus Natronglas verläuft der Zerfall von Ameisensäure-Dampf nach $HCO_2H \rightarrow CO_2 + H_2$ und $HCO_2H \rightarrow CO + H_2O$ bei 280° mit annähernd gleicher Geschwindigkeit; die Temperaturkoeffizienten der beiden Reaktionen sind verschieden, geringer Wasserzusatz beeinflußt die Reaktion nicht merklich (Hinshelwood, Hartley, Topley, Pr. roy. Soc. [A] 100, 575; C. 1922 III, 664). Duraxglas besitzt eine andere katalytische Aktivität. verändert aber den Charakter der Reaktion nicht (HI., HA., Soc. 123, 1334). Bei 350-600° erhielten Nelson, Engelder (J. phys. Chem. 30, 471) im Pyrexglasrohr oder im unglasierten Porzellanrohr vorwiegend Kohlendioxyd und Wasserstoff. Clark, Topley (J. phys. Chem. 32, 125) erhielten bei Verwendung verschiedener Gläser bei 210° fast ausschließlich Kohlenoxyd und Wasser. An Glaswolle sowie an verschiedenen Aluminiumoxyd-Katalysatoren oder an Bimsstein erfolgt der Zerfall von Ameisensäure-Dampf nach beiden Richtungen. wobei je nach den Versuchsbedingungen die Bildung von Kohlenoxyd und Wasser oder von Kohlendioxyd und Wasserstoff vorherrscht (Tropsch, Abh. Kenntnis Kohle 7, 6; C. 1926 I. 3298; ADKINS, NISSEN, Am. Soc. 45, 809; vgl. a. WESCOTT, Eng., J. phys. Chem. 30, 477). Einfluß größerer Mengen Wasserdampf auf den Zerfall von Ameisensäure-Dampf an Duraxglas: Hi., Ha., Soc. 123, 1338; an verschiedenen Aluminiumoxyden: Ad., Ni., Am. Soc. 45, 812; über den Einfluß von Wasser vgl. a. Tr., Abh. Kenntnis Kohle 7 [1922/1923], 4. Auch in Gegenwart von Asbest verläuft die Spaltung nach beiden Richtungen (TR., Abh. Kenntnis Kohle 7, 7). Im Quarzrohr erhält man zwischen 250° und 550° hauptsächlich Kohlendioxyd und Wasserstoff, neben wenig Kohlenoxyd und Wasser (Nelson, Eng., J. phys. Chem. 30, 472). Bei der Zersetzung von Ameisensäure in Gegenwart von Lithiumcarbonat, Calciumcarbonat oder Thoriumoxyd entstehen Kohlendioxyd, Kohlenoxyd, Wasserstoff und flüssige Produkte (Tr., Abh. Kenntnis Kohle 7, 6). — Bei der Spaltung von Ameisensäure in Kohlenoxyd und Wasser durch konz. Schwefelsäure wirkt Schwefelsäurenach Sennergens (C. r. 184, 257) als Ketalwester, die Rochtion wird durch Zusetz von nach Senderens (C. r. 184, 857) als Katalysator; die Reaktion wird durch Zusatz von wasserfreiem Aluminiumsulfat beschleunigt. Kaliumdisulfat und Phosphorsäure katalysieren ebenfalls den Zerfall von Ameisensäure in Kohlenoxyd und Wasser (S., C. r. 184, 858).

In Gegenwart von durch Reduktion gewonnenem Silber zersetzt sich Ameisensäure zwischen 140° und 235° vorwiegend unter Bildung von Kohlendioxyd und Wasserstoff (Tingey, Hinshelmood, Soc. 121, 1674), ebenso bei Anwendung von Gold zwischen 140° und 212° (Hi., Topley, Soc. 123, 1019) oder Nickel zwischen 210° und 350° (Wescott, Engelder, J. phys. Chem. 30, 478; Clark, To., J. phys. Chem. 32, 123). Bei Temperaturen oberhalb 350° entsteht bei Anwendung von Nickel daneben viel Kohlenoxyd (We., Eng., J. phys. Chem. 30, 478). Nach Clark, Topley (J. phys. Chem. 32, 123) erfolgt bei der katalytischen Spaltung der Ameisensäure durch Nickel gleichzeitig eine Reaktion zwischen Ameisensäure und Nickel unter Bildung von Nickelformiat (S. 24). Die Zersetzung von Ameisensäure an Eisen und Kupfer bei 355° ergibt hauptsächlich Kohlendioxyd und Wasserstoff; Eisen beschleunigt die Reaktion bedeutend stärker als Kupfer; am schnellsten erfolgt die Zersetzung an verzinntem Eisen, doch ist hier der Verlauf der Reaktion, besonders auch bei 255°, sehr unübersichtlich (Tropsch, Abh. Kenntnis Kohle 7, 5; C. 1926 I, 3298). Wäßr. Ameisensäure wird bei 300° und 400° im Kupfer-Autoklaven unter 120 Atm. Kohlenoxyd-Druck bis zur Gleichgewichtseinstellung zersetzt (Schrader, Abh. Kenntnis Kohle 6, 74; C. 1924 I, 2420). Ameisensäure-Dampf zerfällt im Kupferder, J. phys. Chem. 30, 472).—In Gegenwart von Titandioxyd wird bei 138—180° fast ausschließlich Kohlenoxyd und

Wasser erhalten (Hinshelwood, Topley, Soc. 123, 1021; Adkins, Nissen, Am. Soc. 45, 812), oberhalb 340° entstehen daneben Kohlendioxyd und Wasserstoff (Wescott, Eng., J. phys. Chem. 30, 477; vgl. a. Bischoff, Ad., Am. Soc. 47, 808). In Gegenwart von Wolfram erhält man bei 210° Kohlenoxyd und Wasser (Clark, Topley, J. phys. Chem. 32, 124). Zur katalytischen Wirkung von Molybdän und Tantal vgl. CL., To., J. phys. Chem. 32, 125.

In Gegenwart von Platin bei 140-235° zerfällt Ameisensäure vorwiegend in Kohlendioxyd und Wasserstoff (Berthelot, A. ch. [4] 18 [1869], 42; TINGEY, HINSHELWOOD, Soc. 121, 1672). Über die Bildung von Kohlendioxyd, Kohlenoxyd, Wasserstoff und Wasser beim Leiten von Ameisensäure-Dampf durch ein Platinrohr bei 1150° vgl. MULLER, PEYTRAL. Bl. [4] 29, 34; 39, 995. Bei Anwendung von Rhodium oder Palladium zwischen 1400 und 2120 (Hinshelwood, Topley, Soc. 123, 1019) oder von Osmium zwischen 1540 und 1850 (Clark, To., J. phys. Chem. 32, 122) erhält man hauptsächlich Kohlendioxyd und Wasserstoff. Die von Deville, Debray (C. r. 78, 1782) beschriebene katalytische Zersetzung von wäßr. Ameisensäure durch Rhodium ist größtenteils auf beigemengtes Osmium zurückzuführen, das bei 100° eine beträchtliche Aktivität zeigt; reines Rhodium zeigt bei 100° nur nach bestimmter Vorbehandlung eine geringe katalytische Wirkung (E. MÜLLER, Z. El. Ch. 28, 307). Die katalytische Wirkung des Osmiums wird durch Verwendung von Osmiumtetroxyd oder Osmiumsalzen gesteigert; hierbei reduziert Ameisensäure die Osmiumverbindungen zunächst zu sehr fein verteiltem Metall und wird dann durch dieses sehr rasch zersetzt; der infolge Koagulation einsetzende Geschwindigkeitsabfall kann durch Zusatz von Gelatine verzögert werden (E. Mü., Z. El. Ch. 29, 395). In analoger Weise verläuft die Zersetzung von wäßr. Ameisensäure bei Anwendung von Salzen der übrigen Platinmetalle bei 100° (E. Mü., F. Müller, Z. El. Ch. 30, 494; E. Mü., Loerpabel, M. 53/54, 825). Bei Zimmertemperatur werden wäßr. Ameisensäure sowie Natriumformiat in neutraler Lösung oder im Gemisch mit Ameisensaure durch auf Bariumsulfat niedergeschlagenes Palladium in einer Stickstoffatmosphäre in Kohlendioxyd und Wasserstoff gespalten; freies Alkali verhindert unter den gegebenen Bedingungen die Katalyse (Раац, Роётнке, В. 59, 1514: E. Mü., Schwabe, Z. El. Ch. 34, 171). Platin auf Bariumsulfat zeigt bei 180 nur geringe katalytische Wirkung, analog dargestellte Osmium-, Rhodium-, Iridium- und Ruthenium-Katalysatoren erwiesen sich bei Zimmertemperatur als wirkungslos (E. Mü., Schwabe. Z. El. Ch. 34, 173). Geschwindigkeit der Zersetzung in Gegenwart von Platinsol bei 20°. gemessen an der Geschwindigkeit der Entfärbung von Methylenblau: v. EULER, ÖLANDER. Ph. Ch. [A] 137, 35. Uber die Aktivierungsenergie der thermischen Zersetzung von Ameisensäure-Dampf an verschiedenen Oberflächen vgl. Hinshelwood, Hartley, Topley, Pr. roy. Soc. [A] 100, 575; C. 1922 III, 664; Hi., To., Soc. 123, 1016; C. N. Hinshelwood, The kinetics of chemical change in gaseous systems, 3. Aufl. [Oxford 1933], S. 315, 357.

Bei der Einw. des elektrischen Funkens auf Ameisensäure-Dampf bilden sich Methan. Acetylen, Kohlenoxyd, Kohlendioxyd und Wasserstoff (Poma, Bassi, G. 51 II, 76). Zur Bildung von Kohlenoxyd, Kohlendioxyd und Wasserstoff bei Einw. dunkler elektrischer Entladungen (LOEB, Z. El. Ch. 12, 302) vgl. P., NESTI, G. 51 II, 86. Bei der Elektrolyse von Ameisensäure mit allmählich gesteigerter polarisierender Spannung entsteht an rhodinierten und platinierten Platinanoden Kohlendioxyd zunächst bei niedrigem Anodenpotential; die Kohlendioxyd-Entwicklung hört plötzlich auf und setzt dann bei höherem Potential wieder roin (E. Müller, Z. El. Ch. 29, 265; 33, 561); die Kohlendioxyd-Entwicklung erfolgt dabei periodisch (E. Mül, Tanaka, Z. El. Ch. 34, 258). Baur (Helv. 11, 373) erhielt bei der Elektrolyse eines Gemischs von wasserfreier Ameisensäure und 5% Natriumformiat an Platin-Elektroden mit Diaphragma bei 0—25° an der Kathode Formaldehyd, an der Anode Kohlendioxyd, neben wenig Kohlenoxyd, Sauerstoff und einem nicht näher beschriebenen Peroxyd. Die Erscheinung, daß bei der elektrolytischen Oxydation von 5% Natriumformiat enthaltender Ameisensäure an der Anode nicht immer die dem kathodisch gebildeten Wasserstoff äquivalente Menge Kohlendioxyd entsteht (vgl. F. FISCHER, KRÖNIG, Abh. Kenntnis Kohle, 7, 244; C. 1926 II, 1621) wird durch die Löslichkeit des Kohlendioxyds in der Ameisensaure erklärt (F. Müller, Z. El. Ch. 33, 173). — Ameisensaure zersetzt sich unter der Einw. angeregter Quecksilberatome zu 76% in Kohlenoxyd und Wasser und zu 24% in Kohlendioxyd und Wasserstoff (BATES, TAYLOR, Am. Soc. 49, 2454).

Oxydation. Über elektrolytische Oxydation s. o. — Entzündungstemperatur von Ameisensäure in Luft: Masson, Hamilton, Ind. Eng. Chem. 19, 1337; 20, 814; C. 1928 I. 943; II, 1986. Wasserfreie Ameisensäure kann sich nach längerem Lagern explosionsartig zersetzen (v. Konek, Ch. Rdsch. Mitteleur. Balkan 2, 91; C. 1925 I, 2239). Natriumformiat in wäßr. Lösung und in Soda-Lösung und Calciumformiat in wäßr. Lösung werden durch Luftsauerstoff unter Druck zwischen 210° und 260° fast vollständig zu Kohlendioxyd oxydiert (SCHRADER, Abh. Kenntnie Kohle 5, 195; C. 1922 III, 195). Über die Oxydation von Natriumformiat zu Natriumdicarbonat mit Luft in Gegenwart von Platinmohr vgl. Auerbach, ZEGLIN, Ph. Ch. 103, 183. Reine wäßr. Ameisensäure wird an Kohle-Oberflächen leicht

oxydiert, die Oxydation wird durch gleichzeitige Adsorption von Capronsäure gehemmt (WRIGHT, Soc. 1927, 2325). Einfluß der Wasserstoffionenkonzentration auf die Geschwindigkeit der Oxydation an Blutkohle bei 40°: GOMPEL, MAYER, WURMSER, C. r. 178, 1026. Oxydation des Natriumsalzes durch Luft bei Gegenwart von aktiver Kohle oder von Mangandioxyd in Wasser bei 39° bzw. 40° und Abhängigkeit der Geschwindigkeit der Oxydation der Ameisensäure oder des Natriumsalzes von der Konzentration: MAYER, Wu., Ann. Physiol. Physicoch. biol. 2, 334; C. 1927 I, 1851. Durch Na₂SO₃ induzierte Oxydation von Natriumformiat durch Luftsauerstoff: Dhar, Versl. Akad. Amsterdam 29, 1024; C. 1922 I, 398. Ameisensäure wird im Sonneilicht bei Gegenwart von Uransalzen momentan oxydiert (Aloy, Valdiguie, Bl. [4] 37, 1139). — Ameisensäure wird bereits bei 10° beim Schütteln mit Sauerstoff und Eisen(II)-Salz, am besten bei p_R 5, zu Kohlendioxyd und Wasser oxydiert; Zusatz von Dioxymaleinsäure oder von Thioglykolsäure beschleunigt die Oxydation (Wie-LAND, FRANKE, A. 464, 113, 198, 203). Ameisensäure gibt bei der Oxydation mit Sauerstoff in Gegenwart von auf Bariumsulfat niedergeschlagenem Palladium bei Zimmertemperatur Kohlendioxyd und Wasser; die Reaktion verläuft schneller mit Natriumformiat in wäßr. Lösung oder in Ameisensäure; Zusatz von Alkali verzögert die Oxydation (PAAL, POETHKE, B. 59, 1519; vgl. E. MULLER, SCHWABE, Z. El. Ch. 34, 170). Die Oxydation von Ameisensäure mit Sauerstoff wird auch von auf Bariumsulfat niedergeschlagenem Platin oder Rhodium bei Zimmertemperatur katalysiert, Iridium, Ruthenium und Osmium verhalten sich unter analogen Bedingungen inaktiv (Mü., Schw., Z. El. Ch. 34, 175). Über den Verlauf der Oxydation von Calciumformiat durch Sauerstoff in Gegenwart von auf Calciumcarbonat niedergeschlagenem Palladium bei Zimmertemperatur vgl. Paal, Pos., B. 59, 1522. — Ameisensäure zersetzt sich in ozonisierter Luft bei 2006 in der Hauptsache zu Kohlendioxyd und Wasserstoff, bei 500° zu Kohlenoxyd und Wasser (Wheeler, Blair, J. Soc. chem. Ind. 41 [1922], 331 T).

Bei der Oxydation von Ameisensäure mit Wasserstoffperoxyd entsteht Perameisensäure (HATCHER, HOLDEN, Trans. roy. Soc. Canada [3] 18 III, 242; C. 1925 I, 1288). Gleichgewicht der Reaktion HCO₂H + H₂O₃ \(\Rightarrow \text{HCO·O·OH} + H₂O \) bei 0°: HA., Ho., Trans. roy. Soc. Canada [3] 21 III, 242; C. 1928 I, 1929. Natriumformiat wird durch Wasserstoffperoxyd in neutraler Lösung nicht angegriffen, wirkt aber zersetzend auf Wasserstoffperoxyd-Lösungen ein (HA., Ho., Trans. roy. Soc. Canada [3] 18 III, 242). — Über das Verhalten von Ameisensäure bei der Oxydation mit Wasserstoffperoxyd in Gegenwart von Calciumcarbonat vgl. BERNHAUER, NISTLER, Bio. Z. 205, 233. Bei der Destillation mit 6 %igem Wasserstoffperoxyd in Gegenwart von acetatfreiem Bleicarbonat in Wasser wird Ameisensäure teilweise zersetzt (WIELAND, A. 436, 246). Die Oxydation von Ameisensäure durch Wasserstoffperoxyd verläuft in Gegenwart von Eisen(III)-chlorid rascher als in Gegenwart von Kupfersalzen; Kohlendioxyd hemmt die katalytische Wirkung von Eisen(III)-chlorid (Walton, Graham, Am. Soc. 50, 1645). Geschwindigkeit der Oxydation von Natriumformiat durch 30 %iges Wasserstoffperoxyd und konz. Schwefelsäure bei 105—149°: KERP, Arb. Gesundh. Amt 57, 558; C. 1927 I, 1902; durch 2 n. Wasserstoffperoxyd in 0,1 n. Schwefelsäure in Gegenwart von Eisen (II)-ammoniumsulfat bzw. Eisen(III)-ammoniumsulfat bei 30°: WIELAND, FRANKE, A. 457, 7. — Ameisensäure wird durch Athylhydroperoxyd bei Gegenwart von Eisen (II)-ammoniumsulfat zu Kohlendioxyd oxydiert (v. Szent-Grögyi, Bio. Z. 146, 257; 149, 189).

Die Geschwindigkeit der Kohlendioxyd-Bildung aus Ameisensäure bei Einw. von Brom in wäßr. Lösung wird in geringem Maße durch den dabei entstehenden Bromwasserstoff, stärker durch Zusatz von Bromwasserstoff herabgesetzt (Hammick, Hutchison, Snell, Soc. 127, 2715; Józefowicz, Roczniki Chem. 9, 311; C. 1929 II, 714). Durch Zusatz von Salzsäure, Salpetersäure oder Natriumbromid wird die Reaktion verlangsamt, durch Natriumchlorid oder Natriumnitrat und in stärkerem Maße durch Natriumsulfat beschleunigt (Jó.). Einfluß der Temperatur auf diese Reaktion: Jó. Die Reaktion wird durch Licht etwas beschleunigt (Jó.; vgl. dagegen Ha., Hu., Sn.). — Geschwindigkeit der Reaktion von Ameisensäure mit Jod in wäßr. Lösung in Gegenwart wechselnder Mengen Kaliumjodid bei 61,5° sowie bei verschiedenen Ameisensäure-Konzentrationen und in salzsaurer Lösung verschiedener Konzentrationen: Ha., Zvegintzov, Soc. 1926, 1106. Über die beschleunigende oder verzögernde Wirkung von Elektrolyten auf die Oxydation von Natriumformiat durch Jod vgl. Dhar, Z. anorg. Ch. 128, 232; 144, 292; Bobtelsky, Kaplan, Z. anorg. Ch. 162, 382. Einfluß der Lichtintensität auf die Geschwindigkeit der photochemischen Oxydation von Natriumformiat durch Jod in Gegenwart von Natriumacetat bei verschiedenen Temperaturen: Dhar, Soc. 123, 1858; Mukerj, Dh., J. phys. Chem. 32, 1317; 33, 856; M., Bhattacharji, Dh., J. phys. Chem. 32, 1838; auf die Geschwindigkeit der Oxydation von Kaliumformiat durch Jod in Gegenwart von Natriumacetat bei 31°: M., Dh., Z. El. Ch. 31, 622. Die durch Belichtung eingeleitete Reaktion zwischen Kaliumformiat und Jod verläuft auch nach Verdunkelung noch einige Zeit beschleunigt weiter (M., Dh., Quart. J. indian chem. Soc. 2, 282; C. 1926 I, 2777).

Natriumformiat wird unter Einw. von Natriumhypochlorit-Lösung bei 37° in Carbonat verwandelt (Engfeldt, H. 121, 55; vgl. dagegen Hatcher, Trans. roy. Soc. Canada [3]

20 [1926], 334). Natriumformiat reduziert in der Wärme allmählich eine Lösung von Natriumchlorit (Levi, R. A. L. [5] 31 I, 373). Über den Verlauf der Reaktion von Ameisensäure verschiedener Konzentrationen mit Kaliumnitrat bei 50°, 70° und 90° vgl. Quartaroli, G. 53, 347. Die Oxydation von Natriumformiat durch Silbernitrat wird durch Zusatz von Kaliumnitrat beschleunigt, durch Zusatz anderer Salze gehemmt (Dhar, Z. anorg. Ch. 128, 233; 144, 293). Geschwindigkeit der Reaktion von Silberacetat mit Ameisensäure oder Formiaten in der Wärme: Coutie, Soc. 1926, 890; Gurrwitsch, Pokrowskaja, Ukr. chemič. Ž. 2 [1926], 414; C. 1928 I, 146; vgl. a. Brönsted, Ph. Ch. 102, 192; vgl. dagegen Noyes, Cottle, Ph. Ch. 27 [1898], 580. — Geschwindigkeit der Zersetzung von Natriumformiat durch Quecksilber(II)-chlorid: Bourion, Rouyer, C. r. 178, 1908. Über die beschleunigende bzw. verzögernde Wirkung verschiedener Salze auf die Oxydation von Natriumformiat durch Quecksilber(II)-chlorid vgl. Dhar, Z. anorg. Ch. 128, 233; 144, 292. Die Reaktion von Natriumformiat mit Quecksilber(II)-chlorid in Gegenwart von Natriumacetat bei 30° und 40° wird durch Bestrahlung mit Sonnenlicht beschleunigt (Dh., Soc. 123, 1858) und verläuft auch nach Entfernung der Lichtquelle noch einige Zeit beschleunigt weiter (Mukerji, Dh., J. indian chem. Soc. 5, 206; C. 1928 II, 427). Über den Einfluß der Lichtintensität auf die Geschwindigkeit der photochemischen Oxydation von Natriumformiat durch Quecksilber(II)-chlorid in Gegenwart von Natriumacetat bei 20° und 30° vgl. noch M., Dh., J. phys. Chem. 32, 1322; 33, 853. — Geschwindigkeit der Oxydation von Natriumformiat durch Quecksilber(II)-bromid und Temperaturkoeffizient dieser Reaktion: Bourion, Picaed, C. r. 180, 1599.

Zur Geschwindigkeit der Reaktion von Ameisensäure oder Natriumformiat mit Chromsäure in Gegenwart von Salzen vgl. Dhar, Z. anorg. Ch. 128, 232; 144, 292; Wagner, Z. anorg. Ch. 168, 289. Spektroskopische Untersuchung der Reaktion zwischen Ameisensäure und Chromsäure in Gegenwart von Mangan(II)-sulfat im Licht: Mukerji, Dh., J. indian chem. Soc. 5, 413; C. 1928 II, 2331. — Geschwindigkeit der Reduktion von Natriummanganat durch Natriumformiat in Abhängigkeit von der Manganationen-Konzentration: Holluta, Ph. Ch. 102, 35; in Abhängigkeit von der Hydroxylionen-Konzentration: Ho., Ph. Ch. 106, 277, 330. — Mechanismus der Reduktion von Permanganat durch Formiat in schwach alkalischer Lösung: Ho., Ph. Ch. 113, 468; in stärker alkalischer Lösung: Ho., Ph. Ch. 102, 32, 276; Hatcher, Trans. roy. Soc. Canada [3] 20 III [1926], 334; in neutraler Lösung: Ho., Weiser, Ph. Ch. 101, 489; Ho., Ph. Ch. 113, 465. Verlauf der Reduktion von Permanganat in ameisensaurer Lösung: Ho., Ph. Ch. 101, 38; vgl. a. Ha., West, Trans. roy. Soc. Canada [3] 21 III, 270; C. 1928 I, 1929; bei Zusatz von Schwefelsäure, Phosphorsäure, Perchlorsäure und Essigsäure: Ha., West; bei Zusatz von Natriumfluorid: Ho., Ph. Ch. 115, 139. — Natriumformiat reduziert in alkal. Lösung Platinchlorwasserstoffsäure beim Kochen quantitativ zu Platin (Ruff, VIDIC, Z. anorg. Ch. 143, 166). Reaktion von Natriumformiat mit Rutheniumchlorid: R., V.

Reduktion. Patentübersicht über die Reduktion von Ameisensäure oder Formiaten s. bei G. Bugge in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. V [Berlin-Wien 1930], S. 422. — Über die Bildung nachweisbarer Mengen Formaldehyd bei der Einw. von atomarem Wasserstoff vgl. Urey, Lavin, Am. Soc. 51, 3289. Beim Leiten von Ameisensäure-Dampf zusammen mit Wasserstoff über Metalle bei niederer Temperatur, über indifferentes Material bei höherer Temperatur oder durch ein leeres Glasrohr bei 700° bis 750° erhält man Formaldehyd in erheblicher Menge (Jaeger, Winkelmann, Abh. Kenntnis Kohle 7, 57; C. 1926 I, 3517). Ameisensäure oder Ammoniumformiat-Lösung gibt bei der Reduktion mit Magnesium Formaldehyd (Fenton, Soc. 91 [1907], 690). Ameisensäure reagiert analog mit Magnesium in 50% iger Salzsäure (Doeuvre, Bl. [4] 45, 1104).

säure reagiert analog mit Magnesium in 50% iger Salzsäure (Doeuver, Bl. [4] 45, 1104).

Einwirkung von Säuren, Alkalien und weiteren anorganischen Verbindungen. Geschwindigkeit der Kohlenoxyd-Bildung aus Ameisensäure und Schwefelsäure bei Verwendung von Schwefelsäure verschiedener Konzentrationen, von Schwefelsäure-Aceton-Gemischen, Schwefelsäure-Eisessig-Gemischen oder Schwefelsäure-Eisessig-Wasser-Gemischen, beim Einleiten von Chlorwasserstoff in das Reaktionsgemisch oder bei Zusatz von Sulfaten: Schiebz, Am. Soc. 45, 449. Zeitlicher Verlauf der Kohlenoxyd-Bildung: Morgan, Soc. 109 [1916], 275; Okaya, Pr. phys.-math. Soc. Japan [3] 1 [1919], 45. Über die Abhängigkeit der Geschwindigkeit der Dehydratation durch Schwefelsäure von der Temperatur vgl. Schi, Ward, Am. Soc. 50, 3240. Ameisensäure wird in Acetanhydrid unter dem katalytischen Einfluß gewisser Säuren, wie konz. Schwefelsäure, Salzsäure, Flußsäure, unter Bildung von Kohlenoxyd dehydratisiert; ähnlich wirken tertiäre Basen, wie Pyridin, Picolin, Dimethylanilin, Strychnin (Sch., Am. Soc. 45, 457; vgl. a. Walton, Withrow, Am. Soc. 45, 2691). Geschwindigkeit dieser Dehydratation bei 50° und Abhängigkeit von Stärke und Konzentration der tert. Base: Sch., Am. Soc. 45, 460. Die katalytische Wirkung einiger Basen wird durch Essigsäure gehemmt (Sch., Am. Soc. 45, 464). Die katalytische Wirkung von Pyridin ist von der Art des Lösungsmittels abhängig (Sch., Am. Soc. 45, 468). — Beim Schmelzen von Natriumformiat mit Natriumhydroxyd erhält man Natriumcarbonat und

Wasserstoff (Boswell, Canad. Chem. Met. 10, 139; C. 1926 II, 859). Natriumformiat liefert beim Erhitzen mit Ammoniumcarbonat auf 80° Ammoniumformiat, das bei der Destillation im Vakuum bei 100° übergeht; bei der Destillation unter Atmosphärendruck oberhalb 190° erhält man Formamid (I. G. Farbenind., D. R. P. 475366; C. 1929 I, 3142; Frdl. 16, 205). Ameisensäure reagiert mit Phosphortrichlorid in Stickstoffatmosphäre bei Zimmertemperatur genau nach der Gleichung 3 HCO₂H + PCl₃ = H₃PO₃ + 3CO + 3HCl (van Druten, R. 48, 313; vgl. a. Jorissen, Tasman, R. 48, 326). Ameisensäure liefert beim Behandeln mit überschüssigem Zinkoxyd und Erhitzen des erhaltenen Zinkoxyformiats auf 270° Formaldehyd und Kohlendioxyd (Melis, Giorn. Chim. ind. appl. 6, 327; C. 1924 II, 1784). Über Salzbildung beim Kochen von Ameisensäure mit Aluminiumhydroxyd und Aluminiumamalgam in wäßr. Lösung vgl. Fodor, Frankel. H. 159, 148. Reaktion mit Titantetrachlorid: Giua. Monath, Z. anorg. Ch. 166, 308; mit Zinntetrachlorid: Fichter, Herszbein, Helv. 11, 566.

– Korrodierende Wirkung auf Aluminiumblech: Aluminiumberatungsstelle, Metallbörse 16, 873; C. 1926 II, 282. Einfluß von Natriumformiat auf die Korrosion von Eisen in Wasser: Friend, Soc. 119, 944.

Einwirkung von organischen Verbindungen. Liefert mit Cyclohexen und Bromtrinitromethan unter Zusatz von Harnstoff bei 0° 2-Brom-cyclohexanol-(1)-formiat (E. SCHMIDT, SCHUMACHER, ASMUS, B. 56, 1240). Reagiert analog mit Propenylbenzol und Camphen (SCHM., SCHU., A.). Durch mehrmonatige Einw. von wasserfreier Ameisensäure auf α-Pinen erhält man als Hauptprodukt d-α-Terpineol-formiat und Terpinenol-(4)-formiat. neben Borneolformiat, a-Terpinen, Terpinolen, d-Limonen, Dipenten und Diterpen (?) (Reis-MAN, Bl. [4] 41, 94; vgl. LAFONT, Bl. [2] 49 [1888], 323; A. ch. [6] 15 [1888], 145). Gleichgewicht der Veresterung von Ameisensäure mit Methanol und Alkohol im Rohr bei 100°: WILLIAMS, GABRIEL, ANDREWS, Am. Soc. 50, 1268. Geschwindigkeit der Veresterung mit Methanol in Abwesenheit von Katalysatoren und in Gegenwart von Chlorwasserstoff, Trichlorbuttersäure, Pikrinsäure oder 2.4.6-Trinitro-m-kresol bei 25°: Goldschmidt, Melbye, Ph. Ch. [A] 143, 140; mit Alkohol ohne Katalysator und in Gegenwart von Chlorwasserstoff, Pikrinsäure oder 2.4.6-Trinitro-m-kresol bei 25°: Go., HAALAND, ME., Ph. Ch. [A] 143, 278. Geschwindigkeit der Veresterung mit tert.-Butylalkohol, Isopropylalkohol, Äthylenglykol und Glycerin in Gegenwart oder Abwesenheit von Salzsäure bei 150 bezw. 250: KAILAN. Brunner, M. 51, 338. Beim Erhitzen von wasserfreier Ameisensäure mit absol. Methanol und Sulfurylchlorid, wasserfreiem Zinkehlorid oder Aluminiumchlorid im Rohr auf 1650 entsteht ein gelbes, zähflüssiges, in Äther leicht lösliches Produkt (Fuchs, Katscher, B. 57, 1258). Beim Leiten der Dämpfe von Ameisensäure und Essigsäure über Titandioxyd bei 300—350° erhält man entgegen der Angabe von Sabatier, Mailhe (C. r. 154, 562) keinen Acetaldehyd. sondern Zersetzungsprodukte der Ameisensäure (Bischoff, Adkins, Am. Soc. 47, 808). Bei der Einw. von 1 Mol N-Brom-acetamid auf 1 Mol wasserfreie Ameisensäure unter Eiskühlung erfolgt Bildung von Kohlendioxyd und Bromwasserstoff (Wohl, Jaschinowski, B. 54, 483). Über die Zersetzung in Acetanhydrid-Lösung in Gegenwart von Katalysatoren s. S. 15. Ameisensäure liefert beim Erhitzen mit Anilin anfangs im Vakuum auf dem Wasserbad, danach unter gewöhnlichem Druck auf 190° Formanilid, beim Erhitzen auf 250° N.N'- Diphenyl-formamidin (Fröschl, Bomberg, M. 48, 573). Beim Kochen von hochprozentiger oder wasserfreier Ameisensäure mit o-Phenylendiamin entsteht Benzimidazol (Wundt, B. 11 [1883]. 826; Heller, Kühn, B. 37 [1904], 3116 Anm.; Pauly, Gundermann, B. 41 [1908], 4012); analoge Reaktionen erfolgen z. B. bei der Einw. auf N-Methyl-o-phenylendiamin (O. FISCHER, VEIEL, B. 38 [1905], 321), 2-Amino-diphenylamin (FL, RIGAUD, B. 34 [1901], 4204) und 6-Chlor-3.4-diamino-toluol (Morgan, Challenor, Soc. 119, 1542). Beim Erhitzen von konz. Ameisensäure mit N.N'-Dimethyl-o-phenylendiamin auf 140° bildet sich das Formiat des 1.3-Dimethyl-benzimidazoliumhydroxyds (H 23, 132) (FI., Fussenegger, B. 34 [1901], 936). Überschüssige Ameisensäure liefert mit 3-Oxy-thionaphthen in Gegenwart von konz. Schwefelsäure eine Verbindung C₁₇H₁₀O₂S₂ (s. nebenstehende Formel; Syst. Nr. 2812) (Schwenk, J. pr. [2] 103, 104). Gibt beim Erwärmen wit Hevenwichklungterwijk Kelberdienend Americk Teinrethelming auf Mehret mit Hexamethylentetramin Kohlendioxyd, Ammoniak, Trimethylamin und wenig Methylamin (Sommelet, Ferrand, Bl. [4] 25, 457). Beim Kochen mit Hexamethylentetramin-chlorbenzylat erhält man Kohlendioxyd und Dimethylbenzylamin; reagiert analog mit weiteren Alkylhalogenid-Verbindungen des Hexamethylentetramins unter Bildung der entsprechenden N.N. Dimethyl-alkylamine (So., Guioth, C. r. 174, 689).

Biochemisches und physiologisches Verhalten.

Calciumformiat wird durch thermophile Bakterien aus Schmutzwasser unter Bildung von Methan, Kohlendioxyd und geringen Mengen Wasserstoff vergoren (Coolhaas, Zbl. Bakt. Parasitenk. [II] 75, 165; Ber. Physiol. 40, 440; C. 1928 II, 1342). Bact. coli vergärt Formiate vollständig (Wagner, Z. Hyg. Inj. -Kr. 90, 61; C. 1920 III, 100; Cook, Stephenson,

Biochem. J. 22, 1374, 1375). Zur Oxydation von Ameisensäure durch Ameisensäure-dehydrogenase aus Bact. coli vgl. Stickland, Biochem. J. 23, 1190. Verlauf der anaeroben Spaltung durch Bact. coli in Wasserstoff und Kohlendioxyd: Sti., Biochem. J. 23, 1192. Formiat wird auch durch Bact. paratyphi A und B, durch Bact. enteritidis (Wagner) und durch Bact. alkaligenes (Cook, Ste.) vergoren. Reduktion von Methylenblau durch Ameisensäure in Gegenwart ruhender Bact. coli unter verschiedenen Bedingungen: Quastel. Whetham, Biochem. J. 19, 521, 647; Qu., Wooldridge, Biochem. J. 21, 150—162, 1234; 22, 697; in Gegenwart einer Ferment-Lösung aus Bact. coli: Young, Biochem. J. 23, 836. Reduktion von Methylenblau durch Gemische von Ameisensäure mit Malonsäure, Oxymalonsäure bezw. Oxalsäure in Gegenwart von intakten Bact. coli bei p_H 7,4: Qu., Woo., Biochem. J. 22, 697. Reduktion von Methylenblau durch Ameisensäure in Gegenwart ruhender Bac. prodigiosus, Bac. proteus oder Bac. faecalis alkaligenes: Qu., Woo., Biochem. J. 19, 653; in Gegenwart von Dehydrogenase aus Typhusbakterien: Sti., Biochem. J. 23, 1192; in Gegenwart eines Ferments aus Gurkensamen: Thunberg, Bio. Z. 206, 111. — Hunde scheiden nach Injektion von Ameisensäure geringe Mengen Milchsäure im Harn aus (Knoop, Jost, H. 130, 340).

Zusammenfassende Angaben über den Einfluß von Ameisensäure und Formiaten auf das Wachstum von Bakterien, Hefen und Pflanzen und Übersicht über physiologische und toxische Wirkung auf Tiere und Menschen s. bei H. Stauß in J. Houßen, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 681, 685. Wachstumshemmende Wirkung von Formiaten auf Bac. tuberculosis: Schößl, Philippine J. Sci. 25, 129; C. 1925 I, 2699. Wachstumshemmende bzw. wachstumsbeschleunigende Wirkung von Formiaten auf Bact. coli: Quastel, Wooldridge, Biochem. J. 23, 130, 132. — Einfluß verdünnter Ameisensäure-Lösungen auf das Pflanzenwachstum: Onodera, Ber. Ohara-Inst. 1, 55, 64, 70, 75; C. 1920 III, 355; L. Müller, Fortsch. Landw. 1, 54; C. 1928 I, 1698; A. Müller, Z. ang. Entom. 12, Beiheft Nr. 8, S. 99; C. 1926 II, 2446; Richet, C. r. 178, 1922. — Insekticide Wirkung: Yamamoto, Scient. Pap. Inst. phys. chem. Res. 3, 219; C. 1926 I, 693; Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884. — Schwellenwert des sauren Geschmacks und p_H der Lösung: Taylor, J. gen. Physiol. 11, 209; C. 1928 I, 2409. Atmungssteigernde Wirkung auf Gewebezellen: Adberhalden, Werthelmer, Pflügers Arch. Physiol. 191, 264; C. 1922 I, 424. Wirkung auf die Keratinsubstanzen der menschlichen Haut: Menschel, Ar. Pth. 110, 5, 34, 41; C. 1926 II, 50. Über Ameisensäure als eine der Ursachen der Wirkung der Brennhaare von Urtica-Arten vgl. Nestler. Ber. dtsch. bot. Ges. 43, 497; C. 1926 I, 2009.

Verwendung.

Therapeutische Verwendung von Ameisensäure gegen Gicht in Kombination mit Arsentrioxyd als Urtiarsyl: Gemmel, Fortsch. Med. 42, 259; C. 1926 I, 1231. Ameisensäure läßt sich zur Hydrolyse von Eiweißstoffen verwenden (Zelinsky, Lawrowsky, Bio. Z. 183, 303; Ж. 59, 423). Verwendung als Koagulationsmittel für Hevea-Latex: DE VRIES, Spoon, RIEBL, Arch. Rubbercult. Nederl.-Indië 9, 763, 790; C. 1926 I, 510.

Analytisches.

Literatur: Berl.-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl.. Bd. I [Berlin 1931], S. 320; Bd. II [Berlin 1932], S. 441; Bd. III [Berlin 1932], S. 763, 770; Bd. V [Berlin 1934], S. 246, 247, 317, 349, 1454; Ergw. von J. D'Ans, Bd. III [Berlin 1940], S. 54, 702. — A. BÖMER, O. WINDHAUSEN in A. BÖMER, A. JUCKENACK, J. TILLMANS, Handbuch der Lebensmittelchemie, Bd. II, 2. Tl. [Berlin 1935], S. 1146. — J. SCHMIDT in G. KLEIN, Handbuch der Pflanzenanalyse, Bd. II, Tl. I [Wien 1932], S. 375. — F. HOPPE-SEYLER, G. THIERFELDER, Handbuch der physiologisch- und pathologisch- chemischen Analyse, 9. Aufl. [Berlin 1924], S. 63, 78, 718, 790. — Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 311. — R. C. Griffin, Technical Methods of Analysis [New York-London 1927], S. 103, 538, 647. — J. König, Die Untersuchung landwirtschaftlich-gewerblich wichtiger Stoffe, 5. Aufl., Bd. II [Berlin 1926], S. 80, 228, 304, 589.

Farbreaktionen, Prüjung, Nachweis.

Farbreaktionen. Ameisensäure gibt mit Phosphorwolframsäure-Reagens eine blaue Färbung (Scheiner, Bio. Z. 205, 250). Beim Unterschichten einer schwach schwefelsauren Lösung von Ameisensäure und Resorcin mit konz. Schwefelsäure erhält man einen orangefarbenen Ring unter gleichzeitiger Entwicklung von Kohlenoxyd; die Reaktion eignet sich zum Nachweis neben Weinsäure und Oxalsäure (Krauss, Tampke, Ch. Z. 45, 521; C. 1921 IV, 319; vgl. a. Schmalfuss, Keitel, H. 138, 159; Kr., Bruchhaus, B. 62, 488). Gibt mit einer verdünnten wäßrig-ammoniakalischen Lösung von Phthalaldehyd in der Kälte eine grünlichblaue Färbung, beim Kochen einen Niederschlag (Seekles, R. 43, 94).

Prüfung von Ameisensäure auf Reinheit: F. STADLMAYR in BERL-LUNGE, Chemischtechnische Untersuchungsmethoden, 8. Aufl., Bd. III [Berlin 1932], S. 763; E. MERCE. Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 13.

Nachweis. Über den Nachweis von Ameisensäure durch Reduktion von Silbernitrat in neutraler Lösung vgl. Wieland, A. 436, 248; über den Nachweis durch Reduktion von Quecksilber(II)-chlorid vgl. Krauss, Bruchhaus, B. 62, 488. Nachweis durch Reduktion mit Magnesium und Schwefelsäure und Einw. von Resorcin und Schwefelsäure auf den entstandenen Formaldehyd: Cohn, Ber. dtsch. pharm. Ges. 31, 424; C. 1922 II, 952. Zum Nachweis durch Überführung in das Eisen(III)-salz der Formhydroxamsäure versetzt man einen Tropfen der Lösung bis zur alkal. Reaktion (Lackmus) mit alkoh. Natronlauge, erwärmt, fügt einen Tropfen alkoh. Hydroxylaminhydrochlorid-Lösung zu und erhitzt gelinde: nach dem Erkalten und Ansäuern mit alkoh. Salzsäure gibt man einen Tropfen wäßr. Eisen(III)-chlorid-Lösung zu; hierbei tritt je nach der Menge Ameisensäure eine mehr oder weniger intensive Violettfärbung auf (Erfassungsgrenze: 15 y Ameisensäure; Grenzkonzentration 1:3000) (Feigl, Frehden in F. Feigl, Qualitative Analyse mit Hilfe von Tüpfelreaktionen, 2. Aufl. [Leipzig 1935], S. 405). Nachweis durch Fällung als Anilinformiat (F: 64°) in wenig Äther + Petroläther oder wenig Chloroform + Petroläther: Masriera, Quim. Ind. 1, 142; C. 1924 II, 1835. — Zum Nachweis der Ameisensäure im Wein nach der Methode der Verteilung der Ameisensäure zwischen Äther und Wasser vgl. Fresenius, Grünhut, Fr. 60, 457.

Quantitative Bestimmung von Ameisensäure. Zur Bestimmung durch konduktometrische Titration s. S. 11. Bestimmung durch bromometrische Titration: Oberhauser. Hensinger, Z. anorg. Ch. 160, 367; durch jodometrische Titration: Kolthoff, Fr. 60, 456; Cuny, J. Pharm. Chim. [8] 3, 114; C. 1926 II, 2331. — Man kocht die zu untersuchende Lösung 2 Stdn. mit einer bekannten Menge Silbernitrat in Gegenwart von Bariumcarbonat, läßt überschüssige Ammoniumrhodanid-Lösung 10 Minuten einwirken und bestimmt das unverbrauchte Rhodanid (Farmer, Soc. 117. 815). Ermittlung des bei der quantitativen Bestimmung durch Reduktion von Quecksilber(II)-chlorid (s. H 2, 13, EI 2, 12) entstandenen Quecksilber(I)-chlorids durch Wägung: Auerbach, Zeglin, Ph. Ch. 103, 161; durch alkalimetrische Titration: Holmberg, Lindberg, B. 56, 2049; durch bromometrische Titration: Oberhauser, Hensinger, Z. anorg. Ch. 160, 371; durch jodometrische Titration: Utkin, Ljubowzoff, Bio. Z. 138, 206; Riesser, Bio. Z. 142, 280. Quantitative Bestimmung durch Kochen mit rotem Quecksilberoxyd und Ermittlung des entwickelten Kohlendioxyds: Doeuwre, Bl. [4] 45, 147. Zur Bestimmung durch Oxydation mit Kaliumpermanganat in sodaalkalischer Lösung vgl. Whittier, Am. Soc. 45, 1087; in Gegenwart von Natriumacetat vgl. Oberhauser, Hensinger, Z. anorg. Ch. 160, 366.

Bestimmung auf Grund der Verteilung von Ameisensäure zwischen Wasser und Äther bei Gegenwart fremder Stoffe: Auerbach, Zeglin, Ph. Ch. 103, 215, 224, 233; vgl. Fresenius, Grünhut, Fr. 60, 457. Quantitative Bestimmung von Ameisensäure neben Kohlendioxyd in alkoh. Lösung: Foreman, Biochem. J. 22, 227. Bestimmung, auch im Gemisch mit anderen Fettsäuren, durch Wasserdampf-Destillation aus schwefelsaurer, mit Magnesiumsulfat gesättigter Lösung auf Grund der verschiedenen Destillationsgeschwindigkeiten: Olmsted, Whitaker, Duden, J. biol. Chem. 85, 109. Bestimmung von Ameisensäure neben Blausäure erfolgt nach vorheriger Abtrennung der Blausäure als Silbercyanid (Harker, J. Soc. chem. Ind. 40, 185 T; C. 1921 IV, 1080). Bestimmung von Ameisensäure neben Essigsäure s. bei dieser, S. 112. Bestimmung von Ameisensäure in einem Gemisch von Essigsäure und Milch-

säure: Onodera, Ber. Ohara-Inst. 1 [1917], 247.

Verwendung der Methode der Ameisensäure-Bestimmung durch Reduktion von Quecksilber(II)-chlorid und nachfolgende Titration mit Jod zur Bestimmung der Ameisensäure im Blut: Stepp, Zumbusch, Disch. Arch. klin. Med. 134, 114; Ber. Physiol. 5, 227; C. 1921 I. 504; Eds. J. Labor. clin. Med. 10, 62; C. 1925 II, 1078; im Harn: Autenrieth, Ar. 258, 21: Benedict, Harrop, J. biol. Chem. 54, 443; Eds. J. Labor. clin. Med. 10, 64; Voit, Z. klin. Med. 109 [1929], 227. — Über die Abtrennung von Ameisensäure aus Gemischen nichtflüchtiger Stoffe, aus Weinen, Nahrungsmitteln u. a. durch Wasserdampfdestillation vgl. Fincke, Bio. Z. 51 [1913], 269; vgl. hierzu Grossfeld, Payfer, Z. Unters. Lebensm. 78 [1939], 2. Morton, Spencer (J. Assoc. agric. Chemists 9, 221; C. 1926 II, 951) trennen die Ameisensäure aus Nahrungsmitteln durch Destillation mit Xylol ab und bestimmen sie mit Quecksilber(II)-chlorid. Bestimmung in zuckerhaltigen Lebensmitteln nach der Methode der Verteilung der Ameisensäure zwischen Äther und Wasser: Auerbach, Beck, Arb. Gesundh.-Amt 57 [1926], 37. Anwendung dieser Methode zur Bestimmung der Ameisensäure im Wein: Pinnow, Z. Unters. Nahr.-Genuβm. 44, 204; C. 1923 II, 440. Bestimmung in Essig durch Überführung in Kohlenoxyd: Schut, Chem. Weekb. 26, 228; C. 1929 I, 2932. Über weitere Verfahren zum Nachweis und zur Bestimmung in Essig vgl. Berl-Lunge, Chemischtechnische Untersuchungsmethoden, 8. Aufl., Bd. V [Berlin 1934], S. 349; J. König, Die Untersuchung landwirtschaftlich-gewerblich wichtiger Stoffe, 5. Aufl., Bd. II [Berlin 1926]. S. 304.

Einfluß von Ameisensäure auf die Fällung von Molybdän durch Schwefelwasserstoff: Stěrba-Böhm, Vostěrbal, Z. anorg. Ch. 110, 85.

Ameisensaure Salze (Formiate).

Über Bildung von Formiaten s. a. im Kapitel Bildung und Darstellung der Ameisensäure, S. 4, 7.

Ammoniumformiate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 23: Ammonium [Berlin 1936], S. 389. — NH4CHO2. B. Man erhitzt Natriumformiat mit Ammoniumcarbonat auf 80° und destilliert das entstandene Ammoniumformiat im Vakuum bei 100° über (I. G. Farbenind., D. R. P. 475366; C. 1929 I, 3142; Frdl. 16, 205). Reindarstellung aus Calciumformiat: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 381957; C. 1924 I, 1711; Frdl. 14, 241. F: 117,3° (Kendall, Adler, Am. Soc. 43, 1473). D. 1,280 (Biltz, Balz, Z. anorg. Ch. 170, 338). Kryoskopisches Verhalten in Ameisensäure: Ke., A., Davidson. Am. Soc. 43, 1848. Dichte, Viscosität und elektrische Leitfähigkeit von Lösungen in Formamid: Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 80. — NH4CHO2+CH2O2. Durch thermische Analyse nachgewiesen (Kendall, Adler, Am. Soc. 43, 1474). Existiert in zwei Modifikationen. Die stabile Form bildet Nadeln, die instabile Prismen. — NH4CHO2+3CH2O2. Durch thermische Analyse nachgewiesen (Ke., A., Am. Soc. 43, 1474). F: ca. —29°.

Lithiumformiate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 20: Lithium [Berlin 1927], S. 229. — LiCHO₂. B. Durch Einleiten von Kohlenoxyd unter einem Druck von 20—30 Atm. in eine wäßr. Lösung von Lithiumhydroxyd bei 160—170° bis zur Sättigung (BASF, E. P. 173097; C. 1922 IV, 942). Reindarstellung aus Calciumformiat: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 381957; C. 1924 I, 1711; Frdl. 14, 241. Röntgenogramm: Becker, Jancke, Ph. Ch. 99, 268. F: 279—280° (korr.; Zers.) (Sidgwick, Gentle, Soc. 121, 1839). Löslichkeit in Wasser bei verschiedenen Temperaturen: Si., G. Lösungsvermögen der wäßr. Lösung für Oxalate: Scholder, B. 60, 1500. Thermische Analyse des Systems mit Ameisensäure: Kendall, Adler, Am. Soc. 43, 1475. Kryoskopisches Verhalten in Ameisensäure: Ke., A., Davidson, Am. Soc. 43, 1848. Dichte und elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 43. Dichte, Viscosität und elektrische Leitfähigkeit von Lösungen in Formamid: Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 81. — LiCHO₂ + H₂O. Rhombischbipyramidal (vgl. P. Groth, Chemische Krystallographie, Tl. 3 [Leizig 1910], S. 12). Röntgenographische Untersuchung (Laue-Aufnahme): Nitta, Scient. Pap. Inst. phys. chem. Res. 9, 159; C. 1929 I, 191.

Natriumformiate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 21: Natrium [Berlin 1928], S. 806. — NaCHO₂. F: 255° (KENDALL, ADLER, Am. Soc. 43, 1475). Löslichkeitsdiagramm des Systems Natriumformiat-Wasser zwischen 13,0° und 45,0° und des ternären Systems Ameisensäure-Natriumformiat-Wasser bei 13,0°, 23,4° und 45,0°: Elöd, Tremmel, Z. anorg. Ch. 165, 163, 168. Lösungsvermögen wäßr. Natriumformiat-Lösungen für komplexe Kobaltsalze: Brönsted, Am. Soc. 42, 773; Br., Petersen, Am. Soc. 43, 2275; für komplexe Kobaltsalze: Brönsted, Am. Soc. 44, 886; für Benzoesäure, Hippursäure, Benzylsäure und Salicylsäure: Larsson, Ph. Ch. 127, 244; für Oxalate: Scholder, B. 60, 1500. Kryoskopisches Verhalten in Ameisensäure: Kendll, Adler, Davidson, Am. Soc. 43, 1848. Dichte wäßr. Lösungen bei 18°: Heydweller, Z. anorg. Ch. 116, 43; Wasastjerna, Acta Soc. Sci. fenn. 50, Nr. 2 [1920], Tafel VIII; bei 22°: Zahn, R. 45, 786; bei 25°: Wa.; von Lösungen in Formamid bei 25°: Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 80. Viscosität von Lösungen in Formamid bei verschiedenen Temperaturen: Davis, J. Oberflächenspannung einer konzentrierten wäßrigen Lösung bei 15°: Lascaray, Koll. Z. 34, 74; C. 1924 I, 2413; bei 22°: Zahn, R. 45, 786. Über die Adsorption von Natriumformiat aus wäßr. Lösung durch Kieselsäure vgl. Bartell, Fu, J. phys. Chem. 33, 682. Wird aus wäßr. Lösung durch Kohle nicht adsorbiert (Fromageot, Wurmser, C. r. 179, 973). Einfluß von Natriumformiat auf das Quellungsvermögen von Gelstine: Buchner, R. 46, 443. Ausflockende Wirkung des Salzes im Gemisch mit Natriumsulfat auf Agar-Sole: Bu., Kleijn, Versl. Akad. Amsterdam 36, 623; C. 1927 II, 2652. Ausflockung von Gelstine-Solen durch Natriumformiat bei verschiedenen Temperaturen und Konzentrationen: Bu., R. 46, 441. Brechungsindices der wäßr. Lösungen bei 18°: Hey., Z. anorg. Ch. 178, 158. Elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Hey., Z. anorg. Ch. 178, 158. Elektrische Leitfähigkeit wäßr. Lösungen in Methanol bei 25°: Gold

geschwindigkeit von Suspensionen aktiver Kohle in wäßr. Natriumformiat-Lösung: Fro-MAGEOT, C. r. 179, 1405. Anodische Stromspannungskurven von Natriumformiat in neutralen und alkalischen Lösungen an glattem Platin, platiniertem oder rhodiniertem Platin, Iridium, palladiniertem oder glattem Palladium bei verschiedenen Temperaturen: E. MÜLLER, Z. El. Ch. 29, 272; 33, 561. Konduktometrische Titration von Natriumformiat in wäßr. Lösung mit Salzsäure, auch unter Zusatz von Alkohol: Kolthoff, Z. anorg. Ch. 111, 100; mit 0,1n-Natronlauge nach vorherigem Ansäuern mit 0,1n-Salzsäure: Gehrke, Willrath, Z. ang. Ch. 42, 989; mit Quecksilber(II)-perchlorat: Ko., Fr. 61, 339. Titration mit Salzsäure in Gegenwart von Tropäolin 00: Ko., Z. anorg. Ch. 115, 176. 139. Titration mit Salzsäure in flüssigem SO₂ unterhalb — 8° bräunlich (Ephram, Aellig, Helv. 6, 44). — Das Dihydrat geht bei 27 0° in das vessestrais Salz, des Tribudes thei 45 2° in das Dihydrat äber (Fr. 20 m. 115). 27,90 in das wasserfreie Salz, das Trihydrat bei 15,30 in das Dihydrat über (Elöd, Tremmel. Z. anorg. Ch. 165, 168). — NaCHO $_2$ + 2CH $_2$ O $_2$. Das von Kendall, Adler (Am. Soc. 45, 1475. 1480) durch thermische Analyse und Löslichkeitsbestimmungen nachgewiesene Salz dieser Zusammensetzung existiert nicht (ELÖD, TREMMEL, Z. anorg. Ch. 165, 162). — NaCHO₂+ CH,O,. B. Durch Krystallisation von Natriumformiat aus Ameisensaure bei einer Endkonzentration von mehr als 60% (ELÖD, TREMMEL, Z. anorg. Ch. 165, 165; Koepp & Co., ELÖD, D. R. P. 424017; C. 1926 II, 292; Frdl. 15, 116). Existenzbereich im Löslichkeitsdiagramm des Systems NaCHO₂—HCO₂H—H₂O bei 13,0°, 23,4° und 45,0°: E., TR., Z. anorg. (h. 165, 163. Geht bei 66° nicht, wie Groschuff (B. 36, 1789) angibt, in NaCHO₂, sondern in 3NaCHO₂ + CH₂O₂ über (E., Tr., Z. anorg. Ch. 165, 165; vgl. a. KENDALL, ADLER, Am. Soc. 43, 1475). — 3NaCHO₂ + CH₂O₂. B. Durch Krystallisation von Natriumformiat aus 20—60% iger Ameisensäure (E., Tr., Z. anorg. Ch. 165, 165; Koepp & Co., E., D. R. P. 424017; C. 1926 II, 292; Frdl. 15, 116). Existenzbereich im Löslichkeitsdiagramm des Systems NaCHO₂—HCO₂H—H₂O bei 13,0°, 23,4° und 45,0°; E., Tr., Z. anorg. Ch. 165, 163. Nadeln. Geht bei Gegenwart von 100 %iger Ameisensäure bei 13,80 in NaCHO2 über (E., TR.). Kaliumformiate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 22: Kalium [Berlin 1937], S. 914. -- KCHO₂. Wird wasserfrei erhalten durch längeres Erhitzen bis nahe zum Schmelzpunkt, nachfolgendes Umkrystallisieren aus absol. Alkohol und Trocknen über 99%iger Schwefelsäure im Vakuum (KENDALL, ADLER, Am. Soc. 43, 1473). Röntgenogramm (Reflexionsmethode): PIPER, Soc. 1929, 236. F: 167,5° (KE., A., Am. Soc. 43, 1473). Lösungsvermögen wäßr. Kaliumformiat-Lösungen für komplexe kobaltsalze bei 0°: Brönsten, Am. Soc. 42, 772; Br., Petersen, Am. Soc. 43, 2270; für komplexe Kobaltsalze bei 0°: und 20°: Br., Am. Soc. 44, 886. Lösungsvermögen der wäßr. Lösung für Oxalate: Scholder, B. 60, 1500. Das Kaliumsalz nimmt in flüssigem Schwefeldioxyd geringe Mengen Schwefeldioxyd auf (Ephraim, Aellig, Helv. 6, 45). Kryoskopisches Verhalten in Ameisensäure: Ke., A., Davidson, Am. Soc. 43, 1848. Einfluß von Kaliumformiat auf die Geschwindigkeit der Elektroosmose von 0,002 n-Natronlauge durch ein Chrom(III)-chlorid-Diaphragma oder durch Glascapillaren: Choucroun, J. Chim. phys. 20, 423, 425. KCHO₂+CH₂O₂. Durch thermische Analyse nachgewiesen (Ke., A., Am. Soc. 43, 1473). F: 108.6° (Ke., A.). Ist entgegen den Angaben von Groschuff (B. 36, 1786) bis zum Schmelzpunkt beständig (KE., A.). — KCHO₂+2CH₂O₂. Wandelt

sich bei —17,5° in KCHO₂+3CH₂O₂(?) um (Ke., A., Am. Soc. 43, 1473).

Rubidiumformiate. Literatur: Gmelins Handbuch der anorganischen Chemie.
8. Aufl., Syst. Nr. 24: Rubidium [Berlin 1937], S. 227. — RbCHO₂. Hygroskopische Blättchen.
F: 170° (korr.) (Sidowick, Gentle, Soc. 121, 1840). Ist in Berührung mit der wäßr. Lösung oberhalb 51° beständig (S., G.). Löslichkeitsdiagramm des Systems RbCHO₂—H₂O zwischen –13.88° und +101,7°: S., G., Soc. 121, 1839, 1841. Lösungsvermögen der wäßr. Lösung für Oxalate: Scholder, B. 60, 1500. Dichte, Viscosität und elcktrische Leitfähigkeit von Lösungen in Formamid: Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 79. Anlagerung von Schwefeldioxyd bei tiefer Temperatur: Ephraim, Aellig, Helv. 6, 47. Zersetzt sich beim Erhitzen mit Ameisensäure auf 105° (S., G.). — RbCHO₂ + 0,5 H₂O (?). Prismen (S. G., Soc. 121, 1840). Ist in Berührung mit der wäßr. Lösung zwischen 16,5° und 51° beständig. — RbCHO₂ + H₂O(?). Prismen (S., G., Soc. 121, 1840). Ist in Berührung mit der wäßr. Lösung unterhalb 16,5° beständig. — Caesiumformiate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 25: Caesium [Berlin 1938], S. 240. — CsCHO₂. Hygroskopische Prismen. F: 265° (korr.) (Sidowick, Gentle, Soc. 121, 1840). Ist in Berührung mit der wäßr. Lösung oberhalb 41° beständig (S., G.). Löslichkeitsdiagramm des Systems CsCHO₂—H₂O zwischen —8,12° und +161,6°: S., G. Lösungsvermögen der wäßr. Lösung für Oxalate: Scholder, B. 60, 1500. Anlagerung von Schwefeldioxyd bei tiefer Temperatur: Ephraim, Aellig, Helv. 6, 49. — CsCHO₂ + H₂O. Prismen. F: 45° (S., G.): Ist in Berührung mit der wäßr. Lösung zwischen 1° und 41° beständig.

Kunfar(1) ammending der wäßr. Lösung zwischen 1° und 41° beständig.

Kupfer(I)-ammoniumformiat. Absorptionsvermögen wäßr. Lösungen für Kohlenoxyd zwischen 0° und 60°: Larson, Teitsworth, Am. Soc. 44, 2881. — Kupfer(II)-formiat Cu(CHO₂)₂. Fast unlöslich in Ameisensäure (Kendall, Adler, Am. Soc. 43, 1477). Über die koagulierende Wirkung auf verschiedene Sole vgl. Schilow, Ph. Ch. 100, 436.

Absorptionsspektrum der wäßr. Lösungen im ultraroten und sichtbaren Gebiet: French, LOWRY, Pr. roy. Soc. [A] 106, 499; C. 1925 I, 601. Zersetzt sich beim Erhitzen in Alkohol-Atmosphäre bei 180—210° (Constable, Pr. Cambridge phil. Soc. 23, 433; C. 1927 I, 1409). Beim Erhitzen von neutralen oder sauren Kupferformiat-Lösungen mit Wasserstoff unter 0—150 Atm. Druck auf 90—180° entstehen je nach den Bedingungen basisches Kupfersalz, Kupfer(I)-oxyd oder metallisches Kupfer (Ipatjew, Ipatjew, B. 60, 1983). — Silberformiat. Sehr unbeständig (Kendall, Adler, Am. Soc. 43, 1477).

Berylliumformiate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 26: Beryllium [Berlin 1930], S. 150. — Magnesiumformiat Mg(CHO₂).

Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 27: Magnesium. Teil B [Berlin 1938], S. 334. B. Aus Mg(CHO₂)₂ + 2 H₂O durch Erhitzen auf 110^o (Kendall, Adler, Am. Soc. 43, 1476). Löst sich bei 25^o in wasserfreier Ameisensäure zu 0,20 Mol-% (Ke., A.). Über Lösungsvermögen der wäßr. Lösung für Erdalkalioxalate vgl. Scholder, B. 60, 1506. Dichte wäßr. Lösungen bei 180: Heydweiller, Z. anorg. Ch. 116, 42. Elektrische Leitfähigkeit in Wasser bei 180: H.; in Ameisensäure bei 250: KE., A.,

DAVIDSON, Am. Soc. 43, 1848.

Calciumformiat Ca(CHO₂)₂. B. Neben Calciumoxalat beim Erhitzen von Calciumcyanamid und Calciumcyanid mit Wasser unter Druck (American Cyanamid Co., D. R. P. 468807; Frdl. 16, 203). Röntgenographische Untersuchung (Laue-Aufnahme): NITTA, Scient. Pap. Inst. phys. chem. Res. 9, 156; C. 1929 I, 191; (Bragg-Aufnahme): YARDLEY. Min. Mag. 20, 296; C. 1925 I, 2529. Die Löslichkeit in Ameisensäure beträgt bei 130° weniger als ein Viertel der Löslichkeit bei 30° (KENDALL, ADLER, Am. Soc. 43, 1476). Lösungsvermögen wäßr. Lösungen für komplexe Kobaltsalze: Brönsted, Petersen, Am. Soc. 43, 2286; für Strontiumoxalat und Bariumoxalat: Scholder, B. 60, 1506. Thermische

Analyse des binären Systems mit Ameisensäure: Ke., A. Dichte und elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Hevdweiller, Z. anorg. Ch. 116, 42.

Strontiumformiate: Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 29: Strontium [Berlin 1931], S. 198. — Sr(CHO₂)₂. Röntgenographische Untersuchung (Laue-Aufnahme): Nitta, Scient. Pap. Inst. phys. chem. Res. 9, 154; C. 1929 I, 191. Krystallisiert unterhalb 50° mit 2 H₂O; gibt oberhalb 50° Mischkrystalle mit vesserfreiem Beriumformiet, und vesserfreiem Bleifermiet (Longella Med N. R. Soc. trage wasserfreiem Bariumformiat und wasserfreiem Bleiformiat (Longchambon, Bl. Soc. franç. Min. 45, 236). Ist piezoelektrisch (ELINGS, TERPSTRA, Z. Kr. 67, 283). Strontiumformiat ist in Wasser erheblich schwerer löslich als Bariumformiat (Scholder, B. 60, 1506). Lösungsvermögen der wäßr. Lösung für Calciumoxalat und Bariumoxalat: Sch., B. 60, 1505. Dichte Vermogen der waßr. Losung für Calciumoxalat und Bariumoxalat: Sch., B. 60, 1905. Dichte wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 42. Elektrische Leitfähigkeit in Wasser bei 18°: H.; in Formamid: Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 82. — Sr(CHO₂)₂ + 2H₂O. B. Krystallisiert aus der wäßr. Lösung von Strontiumformiat unterhalb 50° (Longchambon, Bl. Soc. franç. Min. 45, 236). Röntgenographische Untersuchung (Laue-Aufnahme): Nitta, Scient. Pap. Inst. phys. chem. Res. 9, 158; C. 1929 I, 191. Optisches Verhalten der Krystalle: L., C. r. 173, 91; Bl. Soc. franç. Min. 45, 230, 237; C. 1924 I, 2070. Ist piezoelektrisch (Giebe, Scheibe, Z. Phys. 33, 765; C. 1926 I, 317).

Bariumformiate Literatur. Gmei ins Handbuch der anorganischen Chemie, 8 Aufl.

Bariumformiate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 30: Barium [Berlin 1932], S. 311. — Ba(CHO₂)₂. Röntgenographische Untersuchung (Laue-Aufnahme): Nitta, Scient. Pap. Inst. phys. chem. Res. 9, 152; C. 1929 I, 191. Optisches Verhalten der Krystalle: Longchambon, Bl. Soc. franç. Min. 45, 230; C. 1924 I, 2070. Ist piezoelektrisch (ELINGS, TERPSTRA, Z. Kr. 67, 283). Löst sich in Wasser leichter als Strontiumformiat (Scholder, B. 60, 1506). Über das Lösungsvermögen der wäßr. Lösung für Calciumoxalat und Strontiumoxalat vgl. Sch., B. 60, 1505. Kryoskopisches Verhalten in Ameisenschurg. Kwynalt. And Ed. 42, 150 ber 15 min 1920 säure: Kendall, Adler, Davidson, Am. Soc. 43, 1848. Dichte wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 42. Elektrische Leitfähigkeit in Wasser bei 18°: H.; in Ameisensäure bei 25°: Ke., A., D., Am. Soc. 43, 1848; in Formamid bei verschiedenen Temperaturen: Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 81. Bildet mit wasserfreiem Bleiformiat bei jeder Temperatur, mit wasserfreiem Strontiumformiat oberhalb 50° Mischkrystalle (L., Bl. Soc. franç. Min. 45, 236). Addiert nur geringe Mengen Schwefeldioxyd mischkystalie (L., Bl. Noc. Jranc. Min. 45, 236). Addiert nur geringe Mengen Schwefeldioxyd bei tiefer Temperatur (Ephraim, Aellig, Helv. 6, 50. — Ba(CHO₂)₂ + CH₂O₂. Durch thermische Analyse nachgewiesen (Kendall, Adler, Am. Soc. 43, 1476). — [Ba₃(CHO₂)₂](NO₃)₂ + 2H₂O. B. Aus Bariumformiat und Salpetersäure in Wasser (Weinland, Henrichsen, B. 56, 534). Krystalle. Rhombisch-bipyramidal (Riedenauer, Z. anorg. Ch. 150, 39). D: 2,7 (R.). Leicht löslich in Wasser (W., H.). — [Ba₃(CHO₂)₂](CHO₂)(ClO₄) + H₂O. B. Aus Bariumformiat und Überchlorsäure in Wasser (W., H.). Krystalle. Triklin-pinakoidal (R., Z. anorg. Ch. 150, 40). D: 3,53 (R.). Leicht löslich in Wasser (W., H.). Reindarstellung aus Calciumformiat. Elektrochem Wasser

Zinkformiat Zn(CHO₃). Reindarstellung aus Calciumformiat: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 381957; C. 1924 I, 1711; Frdl. 14, 241. Fast unlöslich in Ameisensäure (Kendall, Adles, Am. Soc. 43, 1477). Über Lösungsvermögen der wäßr. Lösung für Erdalkalioxalate vgl. Scholder, B. 60, 1506. — Na[Zn(CHŌ₂)₂N₃]. B. Aus wasser-

freiem Zinkformiat und Natriumazid in siedendem Methanol (Vournazos, Z. anorg. Ch. 164, 272). Krystallinische Masse. — Quecksilber(I)-formiat HgCHO₂. Zur Darstellung vgl. Kunz-Krause, Manicke. Ber. disch. pharm. Ges. 31, 345; C. 1922 I, 123. Schwärzt sich beim Zerreiben (K.-K., M.). Wird in wäßr. Lösung durch Salzsäure bezw. Natriumchlorid, Bromwasser, Jodwasser oder Kaliumjodid gespalten (K.-K., M.). Liefert bei der Umsetzung mit Chloroform, Tetrachlorkohlenstoff, Bromoform, Jodoform oder Chloralhydrat in Wasser Kohlendioxyd und Kohlenoxyd neben freier Ameisensäure, Quecksilber

und Quecksilber(I)-chlorid (K.-K., M.).
Aluminiumformiate. Literatur: Gmelins Handbuch der anorganischen Chemie,
8. Aufl., Syst. Nr. 35: Aluminium, Teil B [Berlin 1934], S. 294. — Al(CHO₂)₃. Reindarstellung aus Calciumformiat: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 381957; C. 1924 I. 1711; Frdl. 14, 241. Herstellung von Aluminiumformiat-Lösungen: Goldenberg, Geromont & Co., D. R. P. 386520; Frdl. 14, 242; A. Mendel A.-G., D. R. P. 398406; C. 1924 II, 1401; Frdl. 14, 243. Herstellung fester wasserlöslicher Doppelverbindungen mit Magnesiumformiat und mit Natriumacetat: J. A. WÜLFING, D. R. P. 339091; C. 1921 IV, 1221; Frdl. 18, 781. — Al(CHO₂)₂OH + H₂O. B. Beim Eindampfen einer Lösung von frisch gefälltem Aluminiumhydroxyd in heißer 90%iger Ameisensäure bis zur Hautbildung (Weinland. STARK, B. 59, 479). Sehr feines Pulver. Löslich in kaltem Wasser unter schwacher Trübung (W., St.). — Darstellung eines wasserlöslichen basischen Aluminiumformiats durch Zerstäubung einer wäßr. Lösung von neutralem Aluminiumformiat: Chem. Fabr. Grünau, FRANKE. D. R. P. 437637; C. 1927 I, 802; Frdl. 15, 132. — Thallium (I)-formiat TICHO₂. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 38: Thallium [Berlin 1940], S. 397. Krystalle (aus Methanol), Nadeln (aus Alkohol). Existiert in zwei festen Modifikationen (Walter, B. 59, 966). F: 101° (korr.) (Sugden, Soc. 1929, 326). 104° (Wa.). Ist sehr hygroskopisch (Wa.). D₄¹⁰⁴: 4,967; D₄¹⁰⁵: 4,932; D₄¹⁰⁵: 4,908 (Su.). Oberflächenspannung bei 109°: 81,3; bei 118°: 78,8; bei 124°: 75,3 dyn/cm (Su.). Parachor: Su. Sehr leicht löslich in Wasser, leicht in Methanol, schwer in Alkohol, sehr schwer in Chloroform (WA.). Dichte der gesättigten wäßrigen Lösung von Thallium(I)-formiat und von Gemischen gleicher Teile Thalliumformiat und Thalliummalonat bei verschiedenen Temperaturen: CLERICI, R.A.L. [5] 31 I, 116. — Samariumformiat Sm(CHO₂)₃. Reflexionsspektrum zwischen 300 und 600 m μ : EPHRAIM, Rây, B. 62, 1642, 1650. — Gadoliniumformiat Gd(CHO₂)₃. Krystalle (aus verd. Ameisensäure) (SARKAR, Bl. [4] 39, 1390; A.ch. [10]

Thoriumformiat Th(CHO₂)₄ + 3 H₂O. Zur Formulierung vgl. Reihlen, Debus, Z. anorg. Ch. 178, 165. Absorptionsspektrum der wäßr. Lösung im Ultraviolett: R., D., Z. anorg. Ch. 178, 158. Leitfähigkeit der konzentrierten wäßrigen Lösung bei 0°: R., D., Z. anorg. Ch. 178, 176. Verliert beim Erwärmen mit 100% iger Ameisensäure auf dem Wasserbad etwa 2 H₂O (R., D., Z. anorg. Ch. 178, 174). Geht beim Erwärmen der 6%igen wäßrigen Lösung auf dem Wasserbad unter Ameisensäure-Abspaltung in die Verbindung [Th₃(CHO₃)₈

Lösung auf dem Wasserbad unter Ameisensäure-Abspaltung in die verdindung [1113(11112)/6] (OH)₆] + 4 H₂O (s. u.) über (R., D.).

Komplexe Thoriumformiate. (NH₄)₂[Th(CHO₂)₆]. Krystalle (aus Wasser). Leicht löslich in Wasser (Weinland, Stark, B. 59, 474). — K[Th(CHO₂)₆]. Krystallpulver (aus Wasser oder aus wäßr. Kaliumformiat-Lösung) (W., St.). — Sr[Th(CHO₂)₆] + 2 H₂O. Krystalle (aus Wasser). Zeimlich leicht löslich in Wasser (W., St.). — Ba[Th(CHO₂)₆] + 2 H₂O. Krystalle (aus Wasser). Zeimlich eicht löslich in Wasser (W., St.). — [Th₃(CHO₂)₁₀(OH)₂] + 7 H₂O. Ist vermutlich nicht einheitlich (Reihlen, Debus, Z. anorg. Ch. 178, 175). — [Th₃(CHO₂)₆(OH)₆] + 4 H₂O. Krystalle. Verwittert leicht an der Luft (R., D., Z. anorg. Ch. 178, 174). Leitfähigkeit der konzentrierten wäßrigen Lösung bei 0°: R., D. — [Th₃(CHO₂)₆(OH)₆]ClO₃ + 16 H₂O. Krystalle (aus Wasser). Verwittert an der Luft (Weinland, Stark, B. 59, 477). Gibt im Vakuum über Schwefelsäure das gesamte Wasser ab (W., St.). — [Th₃(CHO₂)₆(OH)₅]ClO₄ + 12 H₂O. Krystalle säure das gesamte Wasser ab (W., St.). — [Th₃(CHO₂)₆(OH)₅]ClO₄ + 12 H₂O. Krystalle säure das gesamte Wasser ab (W., St.). — [$Th_3(CHO_3)_6(OH)_5$] $CIO_4 + 12H_3O$. Krystalle (aus Wasser). Verwittert an der Luft (W., St., B. 59, 476). Verliert im Vakuum über Schwefelwasser (W., St.). — [Th₃(CHO₃)₆(OH)₅]NO₃ + 10H₃O. Krystalle (aus Wasser). Leicht löslich in Wasser (W., St.). 59, 476). Verwittert an der Luft (W., St.). Gibt im Vakuum über Schwefelsäure das Krystallwasser leicht ab (W., St.). — [Th₃(CHO₃)₆(OH)₅]CHO₅ + 2H₃O. Krystalle. Verliert über konz. Schwefelsäure im Vakuum das Krystallwasser (W., St., B. 59, 477)

Na[Th₃(CHO₃)₆O(OH)₆ClO₃] + 13H₂O. Krystalle. Wurde nicht ganz rein erhalten. Verwittert sehr leicht an der Luft (Reihlen, Debus, Z. anorg. Ch. 178, 172). Leicht löslich in Wasser und konz. Natriumchlorat-Lösung bei 00 (R., D.). Leitfähigkeit der wäßr. Lösung In wasser and korz. Natriumchiorat-Losung bei 0° (R., D.). Leitramigkeit der waßr. Losung bei 0° : R., D. — K[Th₃(CHO₃)₆O(OH)₄ClO₅] + 2[Th₃(CHO₃)₆O(OH)₅] + 29,5 H₂O. Krystalle (R., D., Z. anorg. Ch. 178, 173). — Na[Th₃(CHO₃)₄O(OH)₄ClO₄] + 9H₂O. Wurde nicht ganz rein erhalten. Verwittert sehr leicht an der Luft (R., D., Z. anorg. Ch. 178, 173). Das trockne Salz ist sehr hygroskopisch (R., D.). Leitfähigkeit der wäßr. Lösung bei 0° : R., D. — Na[Th₃(CHO₃)₆O(OH)₄NO₃] + 10,5 H₂O. Krystalle. Leitfähigkeit der wäßr. Lösung bei 0° : R., D., Z. anorg. Ch. 178, 170, 176. — Na[Th₃(CHO₂)₆O(OH)₄NO₃] + [Th₃(CHO₂)₆(OH)₅NO₃] + 21 H₂O. Krystalle. Gibt bei 18° und 1—2 mm Druck 21 Mol Wasser ab, bei 61° und 1—2 mm Druck zwei weitere Mol (R., D., Z. anorg. Ch. 178, 171). Leitfähigkeit der wäßr. Lösung bei 0°: R., D. — $2K[Th_3(CHO_2)_6O(OH)_4NO_3] + [Th_3(CHO_2)_6(OH)_5NO_3] + 30 H₂O. Krystalle. Verliert im Vakuum bei 18° ca. 30 Mol Wasser, bei 100° zwei weitere Mol (R., D., Z. anorg. Ch. 178).$

Z. anorg. Ch. 178, 171). Leitfähigkeit der währ. Lösung bei 0°: R., D. Komplexe Zinn(II)-formiate. (NH₄)₂[Sn(CHO₂)₄] + 5 H₂O. Tafeln. Löslich in verd. Ameisensäure und in Eisessig (ELöd, Kolbach, Z. anorg. Ch. 164, 302). Zersetzt sich beim Erhitzen auf über 350° unter Bildung von Zuch albeit beim Aufbewahren in 35%iger Ameisensäure an der Luft allmählich, rascher beim Einleiten von Luft oder Sauerstoff, in das entsprechende Zinn(IV)-salz über. Wird durch Wasser hydrolysiert. Oder Sauerston, in the semispreciaence Zimi(IV)-saiz trock. White durch resolved in the Sauerston, in the semispreciaence Zimi(IV)-saiz trock.

- Na₂[Sn(CHO₂)₄] + 5 H₂O. Tafeln (E., K.). Verhält sich analog der Ammoniumverbindung.

- K₂[Sn(CHO₂)₄] + 5 H₂O. Tafeln (E., K.). Verhält sich analog der Ammoniumverbindung.

- Komplexe Zinn(IV)-formiate. (NH₄)₂[Sn(CHO₂)₆] + 5 H₂O. B. Aus dem Zinn(II)salz in 35% iger Ameisensaure beim Einleiten von Luft oder Sauerstoff (E., K., Z. anorg. Ch. 164, 302). Tafeln. Löslich in verd. Essigsäure und in Eisessig. Ameisensäure-Dampfdruck bei 40°: E., K. Liefert bei der thermischen Zersetzung Ammoniak, Formaldehyd und Ameisensaure. — $Na_1[Sn(CHO_2)_6] + 5H_2O$. Tafeln (E., K.). Verhält sich analog der Ammoniumverbindung. — $K_2[Sn(CHO_2)_6] + 5H_2O$. Tafeln (E., K.). Verhält sich analog der Ammoniumverbindung. verbindung.

Bleiformiat Pb(CHO₂)₂. Röntgenographische Untersuchung (Laue-Aufnahme): Nitta, Scient. Pap. Inst. phys. chem. Res. 9, 155; C. 1929 I, 191. Optisches Verhalten der Krystalle: Longchambon, C. r. 173, 91; Bl. Soc. franç. Min. 45, 236; C. 1924 I, 2070. Ist piezoelektrisch (Elings, Terpstra, Z. Kr. 67, 283). Sehr schwer löslich in Ameisensäure (Kendall, Adler, Am. Soc. 43, 1477). Gibt mit Bariumformiat bei jeder Temperatur, mit wasserfreiem Strontiumformiat oberhalb 50° Mischkrystalle (L., Bl. Soc. franç. Min. 45, 236). Thermische Analyse des Systems mit Ameisensäure: K., A. Über die Verteilung der Radioaktivität beim Zusammenbringen äquimolekularer Mengen von radioaktivem Bleiformiat und inaktivem Bleiacetat in Wasser vgl. v. Hevesy, Zechmeister, B. 53, 413. Elektrische Leitfähigkeit einiger Lösungen in Ameisensäure bei 25°: K., A., DAVIDSON,

Am. Soc. 43, 1848.

Wismutformiate: Bi(CHO₂)₃. Nadeln. Schmeckt metallisch bitter (CUNY, Bl. sci. pharmacol. 34, 68; C. 1927 I, 2188). Unlöslich in Alkohol und Wasser. 100 cm³ 80%ige Ameisensäure lösen bei 15° 0,1 g. Geht beim Aufbewahren an der Luft, rascher beim Erwärmen auf 100° oder durch Einw. von Wasser bei Zimmertemperatur in das nachfolgende Salz über. — BiO·CHO, oder Bi(CHO,), + BiO. Amorph. Geruch- und geschmacklos (C.). Unlöslich in Alkohol und Wasser.

Chrom(II)-formiate: Cr(CHO₂)₂ + H₂O. Zur Darstellung vgl. TRAUBE, BURMEISTER, STAHN, Z. anorg. Ch. 147, 63. Violette Krystalle. Ist monatelang haltbar. Gibt beim Er-STAIN, Z. anory. Ch. 141, 03. Violette Krystaile. 1st monateling natear. Gibt beim Erhitzen auf 170° im Stickstoffstrom das Krystallwasser ab. Das entwässerte Salz absorbiert Mol Ammoniak. — Cr(CHO₂)₂+2H₂O. Über die Beständigkeit saurer Lösungen und die Zusammensetzung des durch Alkalien gefällten Niederschlages vgl. Tr., B., St., Z. anorg. Ch. 147, 58. — Cr(CHO₂)₂+NH₄Cl. Hellblaue Prismen. Oxydiert sich langsam an der Luft (Tr., B., St.). Geht bei Einw. von Wasser in Cr(CHO₂)₂+2H₂O über. Chrom (III) · formiate: Cr(CHO₂)₂. Reindarstellung aus Calciumformiat: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 381 957; C. 1924 I, 1711; Frdl. 14, 241. Gerbvermögen des negwalen und einiger begischer Chromformiate: Ageno. Valla. Raposlo. Boll. Industria

Werke, Bosshard, Strauss, D. R. P. 381957; C. 1924 I, 1711; Frdl. 14, 241. Gerbvermögen des normalen und einiger basischer Chromformiate: AGENO-VALLA, RAPOSIO, Boll. Industria Pelli 4, 80; C. 1926 II, 684. — Na₃[Cr(CHO₂)₆]+4H₂O. Zur Darstellung vgl. Stlasny, Walther, Collegium 1928, 420; C. 1928 II, 1517. Sehr leicht löslich in Wasser mit blaugrüner Farbe (Stl., Wa., Collegium 1928, 409). Über die Veränderung beim Aufbewahren oder Erhitzen vgl. Stl., Wa. Gerbwirkung: Stl., Wa. — Ag₃[Cr(CHO₂)₆]. Zur Darstellung vgl. Stl., Wa., Collegium 1928, 420. Violettes Krystallpulver. Zersetzt sich beim Aufbewahren vollständig (Stl., Wa.). — [Cr₃(CHO₂)₆(OH)₂]Cl+5H₂O. Über magnetische Susceptibilität vgl. Welo, Phil. Mag. [7] 6, 487; C. 1928 II, 2626. — [Cr₃(CHO₂)₆(OH)₂]CHO₂+5H₂O. Löst sich in Wasser mit grüner Farbe, die allmählich in Violett übergeht unter gleichzeitiger Anderung der Acidität (Stl., Wa., Collegium 1928, 401; C. 1928 II, 1516). Über magnetische Susceptibilität vgl. Welo. Über Änderung der Farbe, des Diffusionsvermögens, der Ausflockungszahl und des Verhaltens gegenüber Salzsäure und Natronlauge beim Erhitzen vgl. Stl., Wa., Collegium 1928, 405. Gerbwirkung: Stl., Wa. — [Cr(H₂O)₆](CHO₂)₈. B. Bei tropfenweisem Hinzufügen einer gesättigten wäßrigen Natriumformiat-Lösung zu einer eisgekühlten Chromnitrat-Lösung (Stlasny, Walther, Collegium 1928, 391, 419; C. 1928 II, gekühlten Chromnitrat-Lösung (STIASNY, WALTHER, Collegium 1928, 391, 419; C. 1928 II, 1515). Schwer löslich in Wasser, leicht löslich in wäßr. Ameisensäure. Die grüne wäßr. Lösung wird beim Aufbewahren erst violett, dann wieder grün unter gleichzeitiger Aciditätsänderung. Die gealterte wäßrige Lösung ist gegen Ammoniak und Alkali beständig. Die wäßr. Lösung färbt sich bei Zusatz von Natronlauge violett. Über die Veränderung beim

Erhitzen, auch bei gleichzeitigem Zusatz von Salzsäure oder Natronlauge vgl. Sti., Wa. Gerbwirkung: Sti., Wa.

Molybdänsäureformiate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 53: Molybdän [Berlin 1935], S. 323. — (NH₄)₃[CHO(Mo₂O₇)₂] + H₂O. Diese Zusammensetzung besitzt das von Miolati (Ph. Ch. 70, 333) als Mo₄O₁₅H₅(NH₄)₂(CHO₂) (E 2, 15. Z. 21 v. o.) beschriebene Salz (Jakób, Roczniki Chem. 1, 421; C. 1923 III, 365). Tafcln. Wird am Licht erst gelb, dann bräunlich. — Na₃[CHO(Mo₂O₇)₂] + 7 H₂O. B. Beim Fällen einer Lösung von Natriummolybdat in 25 %iger Ameisensäure mit Alkohol (J.). Krystalle. Wird am Licht erst rosa, dann bräunlich bis zinnoberrot. — K₃[CHO(Mo₂O₇)₂] + 3 H₂O. B. Man versetzt eine heiße wäßrige Kaliummolybdat-Lösung mit verd. Kalilauge, kühlt ab und versetzt mit 50 %iger Ameisensäure (J.). Krystalle. Wird am Licht erst rosa, dann dunkelbraun. — NH₄[CH(OH)₂(Mo₂O₇)]. B. Beim Kochen einer wäßr. Lösung von Ammoniummolybdat mit 50 %iger Ameisensäure (J.). Nadeln. Wird am Licht erst gelb, dann rötlich braun. — Na[CH(OH)₂(Mo₂O₇)] + 3 H₂O. B. Beim Erwärmen von Natriummolybdat mit 50 %iger Ameisensäure auf dem Wasserbad (J.). Nadeln. Wird am Licht gelb. — K[CH(OH)₂(Mo₂O₇)]. B. Aus dem Salz K₂Mo₄O₄O₁₃ + 3 H₂O in heißer 25 %iger Ameisensäure (J.). Nadeln. Wird am Licht erst gelb, dann graugrün. — K₄[(CHO)₂(Mo₂O₇)₃] + 4 H₂O(?). B. Beim Fällen einer mit Ameisensäure angesäuerten Lösung von Natriummolybdat mit Kaliumformiat (J.). Rhomben. Krystallographisches: J. Wird am Licht erst rosa, dann violettbraun bis schwarz.

Uranylformiate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 55: Uran [Berlin 1936], S. 161. — UO₂(CHO₂)₂ + H₂O. Existenzbereich im System Uranylformiat-Ameisensäure-Wasser bei 25°: Colant, Bl. [4] 45, 625. 100 g der bei 25° gesättigten wäßrigen Lösung enthalten 7,99 g; Löslichkeitsdiagramm des Systems Uranylformiat-Ameisensäure-Wasser bei 25°: Col. Unlöslich in Alkohol (A. Müller, Z. anorg. Ch. 109, 240). Beständigkeit wäßriger und methylalkoholischer Lösungen im Dunkeln und am Licht in Gegenwart und Abwesenheit von Luft: Courtois, Bl. [4] 33, 1774. Die Zersetzung von Uranylformiat in ameisensaurer Lösung bei der Bestrahlung mit ultraviolettem Licht wird durch Zusatz von Neutralsalzen gehemmt (Berger, R. 44, 48, 57, 61). Über die Quantenausbeute bei der Photolyse von Uranylformiat in wäßr. Lösung vgl. Bücht, Ph. Ch. 111, 295; Baur, Ph. Ch. 111, 317; vgl. a. Baur, Helv. 12, 793. — UO₂(CHO₂)₂ + UO₃ + 3 H₂O. B. Scheidet sich aus wäßr. Lösungen des vorangehenden Salzes im Dunkeln und am diffusen Licht aus (Courtois, Bl. [4] 33, 1774). Existenzbereich im System Uranylformiat-Ameisensäure-Wasser bei 25°: Col., Bl. [4] 45, 625. Prismen. Sehr schwer löslich in Wasser, lelcht in Ameisensäure (Col.).

Mangan(III)-formiat [Mn₃(CHO₂)₆](CHO₂)₃+2H₂O. B. Durch Auflösen von Mangan(IV)-oxyd in 90 % iger Ameisensäure (Weinland, Stark, B. 59, 478). Rotbraune Stäbchen. Löslich in Essigsäure mit tiefdunkelroter Farbe. Wird von Wasser oder Alkohol unter Abscheidung von Mangan(III)-oxyd zersetzt.

Eisenformiate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 518, 886. — Eisen(III)-formiat [Fe(CHO₂)₆] [Fe₃(CHO₂)₆(OH)₂]₃ + 14 H₂O oder [Fe₃(CHO₂)₆(OH)₂]CHO₂ + 4 H₂O (E I 15; GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B, S. 519). Scheidet beim Erhitzen in Wasser auf 270—300° unter 130—175 Atm. Wasserstoffdruck Eisenoxyde aus (IPATJEW. B. 59, 1422; Ж. 58, 696). — [Fe(CHO₂)₂]Cl+H₂O. Gelbgrünes Pulver (Weinland, Engel, Ar. 1926, 38, 44). Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 496; C. 1928 II, 2626. Löslich in heißem Wasser mit tiefroter Farbe; löst sich in Pyridin unter Bildung eines Pyridin-Eisen-Komplexsalzes; unlöslich in anderen organischen Lösungsmitteln und in kaltem Wasser (Weil, E.). Zersetzt sich an feuchter Luft unter Rotfärbung (Weil, E.). — [Fe(CHO₂)₂]Br+H₂O. Dunkelbraunrotes mikrokrystallines Pulver (Weil, E.).

Nickelformiat Ni(CHO₃)₂. B. Bildet sich neben den Spaltungsprodukten der Ameisensäure bei der Einw. von Nickel auf Ameisensäure-Dampf zwischen 210° und 350° (CLARK, TOPLEY, J. phys. Chem. 32, 123). Fast unlöslich in Ameisensäure (KENDALL, ADLER, Am. Soc. 43, 1477). Zersetzt sich bereits unterhalb 200°, bei 270° in heftiger Reaktion, unter Bildung von Nickel, Kohlendioxyd, Wasserstoff und geringen Mengen Kohlenoxyd (Brochet, C. r. 175, 818; Bl. [4] 27, 897). Beim Erhitzen der wäßr. Lösung auf 200° bei ca. 90 Atm. Wasserstoffdruck findet Nickelabscheidung statt, bei 300° und 180 Atm. Abscheidung von Nickel(II)oxyd (IPATJEW, B. 59, 1421; Ж. 58, 694, 696). Beim Erhitzen mit Baumwollsaatöl und Wasserstoff auf 160—270° erfolgt unter gleichzeitiger Zersetzung des Formiats teilweise Hydrierung des Baumwollöls zu einer sehr wirksamen Katalysatormasse (Brochet, Bl. [4] 27, 899).

Kobaltformiate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil A [Berlin 1932], S. 350, 459; Teil B [Berlin 1930], S. 39. — Absorption von Kobaltformiat in Kaliumformiat-Lösung im sichtbaren Gebiet: HILL, HOWELL, Phil. Mag. [6] 48 [1924], 844.

Ester der Ameisensäure.

Ameisensäuremethylester, Methylformiat $C_2H_4O_3=HCO_4\cdot CH_3$ (H 18; E I 16). B. Zur Bildung durch Überleiten von Methanol Dampf über verschiedene Kupfer-Katalysatoren zwischen 200° und 300° vgl. Frolich, Fenske, Quiggle, Am. Soc. 51, 62; Fr., Fe., Perry, Hurd, Am. Soc. 51, 190. Bei vorsichtiger Oxydation von Methanol mit Natriumchlorat in schwefelsaurer Lösung bei Gegenwart von Vanadinpentoxyd (MILAS, Am. Soc. 50, 495). Durch Erhitzen von wasserfreiem Methanol mit Kohlenoxyd in geringer Menge in Gegenwart von Alkaliformiat bei 180—200° unter ca. 60 Atm. Druck (F. FISCHER, TROPSCH, Abh. Kenntnis Kohle 6, 386; C. 1924 I, 2098); fast quantitativ in Gegenwart von Natriummethylat oder Lithiummethylat bei 80° unter ca. 150—200 Atm. Druck (I. G. Farbenind., D. R. P. 495935; Frdl. 16, 206). Gleichgewicht bei der Bildung aus Methanol und Kohlenoxyd in Gegenwart von Natriummethylat bei Temperaturen um 100°: Christiansen, Soc. 1926, 417. Beim Überleiten von Methanol-Dampf und Kohlenoxyd in Gegenwart von Wasserdampf über aktive Kohle bei 200° und 200 Atm. Druck (Höchster Farbw., D. R. P. 422500; C. 1926 I, 2840; Frdl. 15, 378). Beim Überleiten von trocknem Formaldehyd im Gemisch mit einem indifferenten Gas über Kupfer auf Bimsstein unterhalb 250° (Konsort. f. elektrochem. Ind., D. R. P. 466516; C. 1928 II, 2597; Frdl. 16, 712). Durch 3-tägiges Erhitzen von Polyoxymethylen mit wasserfreiem Zinkchlorid im Rohr auf 1250 (Fuchs, KATSCHER, B. 57, 1257). Zur Bildung aus Ameisensäure und Methanol in Gegenwart von wasserfreiem Calciumchlorid vgl. Elektrochem. Werke, Bosshard, Strauss, D. R. P. 334298; C. 1921 II, 804; Frdl. 13, 124. Gleichgewicht bei der Bildung aus Ameisensäure und Methanol im Rohr bei 100°: Williams, Gabriel, Andrews, Am. Soc. 50, 1269. — Zur Darstellung durch Destillation von Methanol mit Ameisensäure bei Gegenwart oder Abwesenheit von durch Destillation von Methanol mit Ameisensäure bei Gegenwart oder Abwesenheit von p-Toluolsulfonsäure vgl. WUYTS, BAILLEUX, Bl. Soc. chim. Belg. 29, 57; C. 1920 I, 817.

E: —99,0° (TIMMERMANS, HENNAUT-ROLAND, J. Chim. phys. 27 [1930], 428). Kp₇₆₀: 31,50° (T., H.-R.). Dampfdruck zwischen —20° (67,7 mm) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 430. Kritische Temperatur: 214,0° (Y., Sugden, Soc. 1927, 1783); kritischer Druck: 45030 mm; kritisches Volumen: 2,866 cm³/g (Y.). D_{16,3}: 0,9781 (Peytral, Bl. [4] 37, 562); D₁": 0,9764 (Tromp, R. 41, 297); D₂°: 1,00317; D₃°: 0,98864; D₃°: 0,98149; D₃°: 0,97421; D₃°: 0,95973 (T., H.-R.). Dichte zwischen 0° (1,0032) und der kritischen Temperatur: Y. Dichte des gesättigten Dampfes zwischen 30° und (20032) und der kritischen Temperatur: Y. Viscosität bei 15°: 0,00360 g/cm sec; bei 25°: 0,00328 g/cm sec (T. H. R.). Zu den Angaben über Oberflächenspannung von Ramsey, Shields, Ph. Ch. (T., H.-R.). Zu den Angaben über Oberflächenspannung von RAMSEY, SHIELDS, Ph. Ch. 12, 455; vgl. Sugden, Soc. 125, 38. Parachor: S., Soc. 125, 1178, 1183; 1927, 1783. Verdampfungswärme bei 31,32°: 112,38 cal/g (Mathews, Am. Soc. 48, 573). Verbrennungswärme bei konstantem Volumen: 236,2 kcal/Mol (für flüssiges Methylformiat) (ROTH, BANSE in Landolt-Börnst. E II, 1644). np. 13,3415 (Munch, Am. Soc. 48, 997); np. 1,34437 (Tr.); $\mathbf{n}_{\mathbf{g}}^{i}$: 1,34465; $\mathbf{n}_{\mathbf{h}e}^{i}$: 1,34648; $\mathbf{n}_{\mathbf{h}e}^{i}$: 1,35073; $\mathbf{n}_{\mathbf{y}}^{i}$: 1,35420 (T., H.-R.). Brechungsindices für weitere Heliumlinien bei 15°: T., H.-R. Intensität und Depolarisationsgrad des Lichts bei der Streuung in flüssigem Methylformiat: KRISHNAN, Phil. Mag. [6] 50, 704; C. 1926 I, 838; in dampfförmigem Methylformiat: GANESAN, Phil. Mag. [6] 49, 1220; C. 1925 II, coc; in dampitormigem methyitormiat: Ganesan, Phul. Mag. [6] 49, 1220; C. 1925 II, 1011; Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838. Absorption von Röntgenstrahlen durch flüssiges Methylformiat: Auren, Medd. Vet.-Akad. Nobelinst. 4, Nr. 3 [1920], 10. Dielektr.-Konst. bei Zimmertemperatur: 8,87, bei ca. —80°: 2,56 (Jackson, Phil. Mag. [6] 43, 486; C. 1922 I, 1274). Dielektr.-Konst. des Dampfes bei 15° und 760 mm: Cordonnier, Guinchant, C. r. 185, 1449. Zum Dipolmoment vgl. Smyth, Am. Soc. 47, 1896. Magnetische Susceptibilität von Methylformiat-Dampf: Vaidyanathan, Phys. Rev. [2] 30, 515; C. 1928 I, 165. Löslichkeit in Wasser bei 20°: 1:4,7 (Lockemann, Ulrich, Desinf. 10 [1925], 104). Zersetzt sich im Quarzrohr bei 400—500° unter Bildung von Methan und Kohlendioxyd; die Zersetzung wird durch Zuestz von Oubstrulver beschlennict (Hinshelmwood Thompson die Zersetzung wird durch Zusatz von Quarznulver beschleunigt (Hinshelwood, Thompson, Pr. roy. Soc. [A] 113, 221; C. 1927 I, 393). Fördernder Einfluß von Natriumformiat auf die thermische Zersetzung: F. Fischer, Tropsch, Abh. Kenntnis Kohle 8, 387; C. 1924 I, 2098. Bei der pyrogenen Zersetzung im Platinrohr bei ca. 1150° erhält man je nach den Reaktionsbedingungen wechselnde Mengen an Formaldehyd, Kohlenoxyd und Wasserstoff (Muller, Peytral, C. r. 179, 831; P., Bl. [4] 37, 562). Zersetzt sich beim Erhitzen mit geschmolzenem Alkali auf 475° unter Bildung von Kohlendioxyd und Wasserstoff (Fry, Otto, Am. Soc. 50, 1128). Bei Einw. des elektrischen Funkens auf Ameisensäuremethylester entstehen Wasserstoff und Kohlenoxyd sowie geringe Mengen von Methan, Acetylen und Kohlendioxyd (Poma, Bassi, G. 51 II, 76). Flammpunkt: —12° (Florentin, Ann. Falsificat. 21, 345; C. 1928 II, 2233). Wird durch Wasserstoff über Kupfer-Asbest bei ca. 200° unter gewöhnlichem oder erhöhtem Druck zu Methanol reduziert (Christiansen, Soc. 1926, 413; D. R. P. 369574; Frdl. 14, 126). Gleichgewicht dieser Reaktion: CH., Soc. 1926, 415. Liefert im Licht einer elektrischen Glühlampe mit 2 Atomen Chlor Chlorameisensäuremethylester und Ameisensäure-chlormethylester, mit überschüssigem Chlor Chlorameisensäure-trichlormethylester (BAYER & Co., D. R. P. 297933; C. 1921 II, 803; Frdl. 13, 127; vgl. Delépine, Bl. [4] 27, 39). Zum Einfluß von Licht, Wärme und Katalysatoren auf den Verlauf der Chlorierung vgl. auch Grignard, Rivat, Urbain, A. ch. [9] 13, 232. Liefert bei 10-stdg. Erhitzen mit Sulfurylchlorid im Rohr auf 165—170° Chloressigsäure (Fuchs, Katscher, B. 57, 1257). Überführung in höhere Alkohole und Säuren durch Überleiten im Gemisch mit Kohlenoxyd, Wasserstoff und wenig Methan über einen Kontakt aus Kaliumpermanganat, Zinkchromat und Kupferchromat bei 400° und 220 Atm. Druck: I. G. Farbenind., D. R. P. 456979; Frdl. 15, 359.

Toxizität: F. Flury, O. Klimmer in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 164. Bactericide Wirkung: Lockemann, Ulrich, Desinf. 10, 105; C. 1926 I, 138. — Verwendung als technisches Lösungsmittel: H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 177; als Insektenvertilgungsmittel: Cotton, Roark, Ind. Eng. Chem. 20, 381; C. 1928 I, 2969. — Refraktometrische Bestimmung in Wasser und in Baumwollsamenöl-Lösungen bei 25°: Munch, Am. Soc. 48, 997.

Orthoameisensäure-trimethylester, Trimethylorthoformiat, Trimethoxymethan $C_4H_{10}O_3=CH(O\cdot CH_2)_3$ (H 19). Verbrennungswärme des Dampfes bei konstantem Druck: 599,2 kcal/Mol (vgl. Landolt-Börnst. E II, 1638).

Ameisensäureäthylester, Äthylformiat $C_3H_6O_2 = HCO_3 \cdot C_3H_5$ (H 19; E I 16). B. In geringer Menge beim Erhitzen von absol. Alkohol mit Kohlenoxyd unter Druck in Gegenwart von Alkaliformiat (F. FISCHER, TROPSCH, Abh. Kenntnis Kohle 6, 383; C. 1924 I, 2098), fast quantitativ in Gegenwart von Natriumäthylat bei 70° unter 120 Atm. Druck (I. G. Farbenind., D. R. P. 495935; Frdl. 16, 206). Beim Überleiten von Alkohol und Ameisensäure in Dampfform über aktive Kohle bei 150° (I. G. Farbenind., D. R. P. 434279; C. 1926 II, 2493; Frdl. 15, 373). Beim Erwärmen von technischer Ameisensäure mit Athylalkohol und Calciumchlorid oder Calciumchlorid-Laugen auf dem Wasserbad (Elektrochem. Werke, Bosshard, Strauss, D. R. P. 334298; C. 1921 II, 804; Frdl. 13, 124). Gleichgewicht bei der Bildung aus Ameisensäure und Alkohol im Rohr bei 100°: Williams, Gabriel, Andrews, Am. Soc. 50, 1268. Zur Bildung aus Alkohol, Natriumformiat und konz. Schwefelsäure vgl. Lucas, Moyse, Am. Soc. 47, 1460. Beim Kochen von Alkohol mit Natriumdiformiat (Koepp & Co., Elöd, D. R. P. 439289; C. 1927 I, 1365; Frdl. 15, 117). Bei Einw. von saurem Formamidsulfat auf Athylalkohol erst unter Kühlung, dann bei ca. 50° (The Roessler & Hasslacher Chemical Co., D. R. P. 463721; Frdl. 16, 201). Zur Bildung aus Oxalsäure, Glycerin und Athylalkohol vgl. Bishop, J. Soc. chem. Ind. 42, 401 T; C. 1924 I, 1173. — Zur Darstellung durch Destillation von Alkohol mit Ameisensäure bei Gegenwart oder Abwesenheit von p-Toluolsulfonsäure vgl. Wuyts, Ballleux, Bl. Soc. chim. Belg. 29, 57; C. 1920 I, 817.

Kp₇₆₀: 54,1° (Lecat, Ann. Soc. scient. Bruxelles 47I [1927], 67). Dampfdruck zwischen —20° (22,4° mm) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 431. Kritische Temperatur: 235,3°; kritischer Druck: 35535 mm; kritisches Volumen: 3,094 cm³/g (Y.). D¹: 0,94802; D¹°: 0,9346; D³°: 0,9226; D⁻°: 0,9094 (Y.). D¹: 0,9249; D³: 0,9117 (Tromp, R. 41, 282, 297); D³: 0,9082; D⁻°: 0,8824 (Kurnakow, Z. anory. Ch. 185, 102). Dichte zwischen 0° und der kritischen Temperatur: Y. Dichte des gesättigten Dampfes zwischen 50° und der kritischen Temperatur: Y. Zur Viscosität bei 30°, 40° und 50° vgl. K. Parachor: Sugden, Soc. 125, 1183. Verdampfungswärme bei 53,33°: 97,21 cal/g (Martews, Am. Soc. 48, 573). n¹: 1,3622 (T., R. 41, 297); n¹: 1,3575 (Munch, Am. Soc. 48, 997). Ultraviolettes Absorptionsspektrum: Brode, J. phys. Chem. 30, 61; in Wasser und Ather: Hantzsch, Bucerius, B. 59, 806. Streuung des Lichts an der Oberfläche von flüssigem Athylformiat: Raman, Ramdas, Pr. roy. Soc. [A] 109, 274; C. 1926 I, 838; Ramdas, Indian J. Phys. 1, 222; C. 1927 II, 2535. Intensität und Depolarisationsgrad des Lichts bei der Streuung in flüssigem Athylformiat: Kribennan, Phil. Mag. [6] 50, 704; C. 1926 I, 838; in dampfförmigem Athylformiat: Ganesan, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838; in flüssigem Athylformiat bei hohen Temperaturen bis sum kritischen Punkt: Rao, Indian J. Phys. 2, 15; C. 1928 I, 1747. Ramanspektrum: Dadieu, Kohlbauson, Naturviss. 17, 367; C. 1929 II, 385; Sber. Akad. Wien 138, 53; C. 1929 II, 697; Phys. Z. 30, 384; C. 1929 II, 970; M. 52, 232, 399; Ko., Phot. Korresp. 65, 162; C. 1929 II, 1508. Absorption von Röntgenstrahlen durch flüssiges Athylformiat: Auram, Medd. Vet.-Akad. Nobelinst. 4, Nr. 3 [1920], 10; Taylor, Phys. Rev. [2] 30, 712; C. 1924 I, 8. Dielektr.-Konst. des Dampfes bei 15° und 760. mm: Cordonnien, Guirchaff, C. 1928 I, 1274). Dielektr.-Konst. des Dampfes bei 15° und 760. mm: Cordonnien, Guirchaff, C. 1928 I, 1940. Magne

C. 1929 II, 2315. — Mischbarkeit mit Wasser: KENDALL, HARRISON, Trans. Faraday Soc. 24, 591; C. 1929 I, 835. Kryoskopisches Verhalten in Wasser: K., H. Athylformiat bildet azeotrope Gemische mit Wasser (Kp: $53-53,5^{\circ}$) (Faillebin, Bl. [4] 29, 273); mit n-Hexan (Kp₇₆₀: 49,0°; ca. 67% Athylformiat), mit Diallyl (Kp₇₆₀: ca. 45,2°; ca. 58% Athylformiat) (Kp₇₆₀: 49,0°; cs. 67% Aunynormist), mit Distiff (Kp₇₆₀: cs. 49,2°; cs. 55% Aunynormist) (Lecat, R. 46, 244); mit Propylchlorid (Kp₇₆₀: cs. 46,4°; cs. 18% Athylformist), mit Isopentan (Kp₇₆₀: 26,5°; 18% Athylformist) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 67), mit Isopropylbromid (Kp₇₆₀: 52,5°; 60% Athylformist) und mit Alkohol (Kp₇₆₀: 54,05°) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 18, 116). Dichte und Viscosität des binären Systems mit Zinn(IV)-chlorid bei 30°, 40° und 50°: Kurnakow, Z. anorg. Ch. 1385, 102. Adsorption von Athylformiat-Dampf an Holzkohle zwischen 0° und 100°: Coolinge, Am. Soc. 48, 623; an Tonerde-Gel bei 25°: Perry, J. phys. Chem. 29, 1465. Wärmetönung der Adsorption von Athylformiat-Dampf an akt. Holzkohle: Lamb, Coolidge, Am. Soc. 42, 1153. Adsorption von flüssigem Athylformiat an Platin: Palmer, Pr. roy. Soc. [A] 115, 229; C. 1927 II, 1678. Quellung von rohem und vulkanisiertem Kautschuk in Athylformiat: Salkind, B. 59, 525.

Wirkung verschiedener Aluminiumoxyd-Katalysatoren auf die Zersetzung von Äthylformiat bei 360° in Gegenwart oder Abwesenheit von Essigester: ADKINS, NISSEN, Am. Soc. 46, 141. Entzündungstemperatur: 577° (Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986). Liefert beim Erhitzen mit Sulfurylchlorid im Rohr auf 170° Chloralhydrat (Fuchs, Katscher, B.57,1258). Geschwindigkeit der Verseifung durch Wasser und in Glucose-, Rohrzucker- und Neutralsalz-Lösungen bei 25°: Manning, Soc. 119, 2079; vgl. Kindler, Ar. 1929, 543; durch Salzsäure und Natriumcarbonat-dicarbonat-Lösungen bei 25°: Serball, RINGER, M. 42, 13, 44; durch verschiedene starke anorganische Säuren in Gegenwart oder Abwesenheit ihrer Natriumsalze bei 25°: Hantzsch, B. 59, 1109; durch Essigsäure-Natriumacetat-Gemische bei 20° und 40°: Bolin, Z. anorg. Ch. 143, 216; durch Chloressigsaure in Neutralsalz-Lösungen bei 25°: Harned, Hawkins, Am. Soc. 50, 86; durch 97,1 % igen und 92,42 % igen Alkohol bei 25°: Taylor, Davis, J. phys. Chem. 32, 1473. Verseifung durch Ricinuslipase: PIUTTI, DE CONNO, Ann. Chim. applic. 18, 472; C. 1929 I, 760. Geschwindigkeit der Umsetzung mit einer gesättigten Lösung von Bromwasserstoff in Eisessig bei 16° bis 18°: Tronow, Mitarb., Ж. 59, 554; C. 1928 I, 1016. Athylformiat liefert bei Einw. von Natriumāthylat in Ather unter Feuchtigkeitsausschluß bei 0°Oxydiāthoxymethan-natrium; bei Zimmertemperatur tritt teilweise Zersetzung zu Kohlenoxyd und Alkohol ein (Adickus, B. 60, 274; 68 [1930], 3016, 3022). Wärmetönung bei Einw. auf Magnesiumjodid-āthylat C₂H₅. O·MgI in Benzol: Tschelinzew, Bl. [4] 35, 748. Gibt mit Natriumjodid und 1.3.5-Trinitrobenzol in Wasser eine blaßrotbraune Färbung (Tronow, Djakonowa-Schulz, Sonowa, Ж. 59, 334; C. 1927 II, 1687). Zur Geschwindigkeit der Reaktion mit m-Kresolkalium in wäßrigalkoholischer Lösung vgl. Smrth, Soc. 1927, 175. Gleichgewicht der Reaktionen mit den Diathylacetalen des Acetons, Diathylketons, Methyl-n-hexyl-ketons und Acetophenons in alkoh. Salzsaure bei 25°: Carswell, Adkins, Am. Soc. 50, 238. Kondensiert sich mit Äthylbutyrat in einer äther. Suspension von molekularem Natrium zu a-Formyl-buttersäuresthylester (Ingold, Perren, Thorre, Soc. 121, 1782), mit Styrylessigsäureäthylester in einer Lösung von Kaliumäthylat in Alkohol + Ather unter Kühung zu Styryl-formylessigsäure-äthylester (v. Auwers, Möller, J. pr. [2] 109, 150), mit Malonitril in Kaliumäthylat-Lösung zu dem Kaliumsalz des Oxymethylen-malonitrils (Schenk, Finken, A. 482, 170). Gibt mit Athylmagnesiumbromid in Ather Pentanol-(3) (Dillon, Lucas, Am. Soc. 50, 1712), mit nicht näher beschriebenem 3.4-Methylendioxy-phenylacetylenylmagnesiumbromid (aus. 3.4-Methylendioxy-phenylacetylenylmagnesiumbromid) in stark bromid (aus 3.4-Methylendioxy-phenylacetylen und Äthylmagnesiumbromid) in stark ge-kühltem Ather + Benzol 3.4-Methylendioxy-phenylpropargylaldehyd (Lohaus, J. pr. [2] 119, 247). Überschüssiges Äthylformist liefert bei Einw. auf eine gekühlte Lösung von Indolmagnesiumjodid in Benzol, Anisol oder Äther N-Formyl-indol (Putochin, B. 59, 1991; 38, 50, 805, 811). Verläuft die Reaktion ohne Kühlung oder unter Erwärmung auf 70—75°, so erhält man β -Indolaldehyd neben N-Formyl-indol (P.). Reagiert analog mit «-Methyl-indolmagnesiumjodid (P.). Beim Erwärmen mit Pyrrolmagnesiumjodid in Benzol

auf dem Wasserbad entsteht α-Pyrrolaidehyd (P.).

Toxisität: F. Flury, O. Klimmer in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 164; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 67. Bactericide Wirkung: Lockemann, Ulrich, Desinf. 10, 105; C. 1928 I, 138. — Verwendung als technisches Lösungsmittel: Th. H. D., Solv., S. 140; H. Gwamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 178; als Insektenvertillungsmittel Chem. 20, 381; C. 1928 I, 2969. — Volumetrische N. UNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 178; als Insektenvertilgungsmittel: Cotton, Roark, Ind. Eng. Chem. 20, 381; C. 1928 I, 2969. — Volumetrische Bestimmung durch Zersetsung in Kohlenoxyd und Alkohol mit Hilfe von Natriumathylat: Carswell, Adrins, Am. Soc. 50, 237. Refraktometrische Bestimmung in Wasser und in Baumwollesmenöl-Lösungen bei 25°: Munox, Am. Soc. 48, 997.

Verbindung 2C₂H₄O₂ + SnCl₄ (E I 17). D^{a.} 1,7054; D^{a.} 1,6885 (Kurmakow, Z. anorg. Ch. 126, 103). Viscosität der unterkühlten Flüssigkeit bei 30° und 40°: K. Thermische Analyse der binkren Systems mit Zinn(IV)-chlorid und mit Athylformiat: K.

Orthoameisensäure-diäthylester, Diäthylorthoformiat, Oxydiäthoxymethan $C_5H_{12}O_3=HO\cdot CH(O\cdot C_2H_5)_2$. B. Die Natriumverbindung bildet sich bei Einw. von Ameisensäureäthylester auf Natriumäthylat in Äther unter Feuchtigkeitssauschluß bei 0° (Adickes, B. 60, 274; 63 [1930], 3022). — Natriumverbindung. Sehr hygroskopisches mikrokrystallines Pulver; wurde nicht rein erhalten. 0,196 g lösen sich bei 0° in 100 cm³ Äther. Zersetzt sich schon bei Zimmertemperatur unter Entwicklung von Kohlenoxyd. Geschwindigkeit der Zersetzung in Luft. Äther und Alkohol: Ad., B. 63 [1930], 3024. Liefert bei Einw. von Kohlendioxyd in Äther Äthylformiat zurück. Beim Behandeln mit Chlorameisensäureäthylester bzw. Benzylbromid in äther. Suspension entsteht Kohlensäurediäthylester bzw. Äthylformiat ein.

Orthoameisensäure - triäthylester, Triäthylorthoformiat, Triäthoxymethan $C_7H_{16}O_3 = CH(O \cdot C_2H_5)_3$ (H 20; E I 17). B. Beim Kochen von Tetrachlorkohlenstoff mit Natriumäthylat-Lösung (Ingold, Powell, Soc. 119, 1228). In geringer Menge bei Einw. von Lithium auf Chloroform und Alkohol (Rojahn, Schulten, B. 59, 500). — Zur Darstellung aus Chloroform und Alkohol bei Einw. von Natrium vgl. Wood, Comley, J. Soc. chem. Ind. 42, 430 T; C. 1924 I, 418. — E: —76,1° (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp: 145—146°; Kp₁₅: 45—46° (Carswell, Adrins, Am. Soc. 50, 239). D¹⁸/₂₅: 0,9385 (C., A.). Beugung von Röntgenstrahlen an flüssigem Triäthylorthoformiat: Katz, Selman, Z. Phys. 46, 396; C. 1928 I, 1743. Adsorption des Dampfes an Tierkohle: Alexedewski, K.55, 416; C. 1925 II, 642. — Liefert bei der Einw. von Phosphorpentoxyd oder beim Überleiten über Nickel-Bimsstein bei 250° Athylformiat und Diäthyläther (Staudinger, Rathsam, Helv. 5, 650). Geschwindigkeit der Verseifung in saurer Lösung bei 25°: Skrabal, Ringer, M. 42, 14; bei 20°: Brönsted, Wynne-Jones, Trans. Faraday Soc. 25, 62; C. 1929 I, 1535. Geschwindigkeit der Verseifung mit der äquivalenten Menge einer 0.5 n-Lösung von Essigsäure in Benzol bei 95°: Petrenko-Kritschenko, B. 61, 849; K. 61, 34. Geschwindigkeit der Umsetzung mit Bromwasserstoff in Eisessig bei 18—20°: Tronow, Ladigina, B. 62, 2846; bei 16—18°: Tr., Mitarb., K. 59, 553; C. 1928 I, 1016. Liefert mit Äthandithiol-(1.2) in gesättigter alkoholischer Salzsäure bei 5°

die Verbindung HC S·CH₂·CH₂·S CH (Syst. Nr. 3031), mit 1.2-Dimercapto-benzol die S·CH₂·CH₂·S CH (Syst. Nr. 3031), Cleich

Verbindung C₆H₄ SCl CH (Syst. Nr. 2695) (Hurtley, Smiles, Soc. 1926, 2267). Gleichgewicht der Reaktionen mit Aceton, Methyläthylketon, Diäthylketon, Methyl-n-hexylketon, Acetophenon, Propiophenon, Benzophenon und Methyl-tert.-butyl-keton in alkoh. Salzsäure bei 25°: Carswell, Adrins, Am. Soc. 50, 238. Gibt bei 14-tägiger Einw. auf Diphenylketen unter Kohlendioxyd im Rohr bei 60° das Diäthylacetal des Diphenylmalonaldehydsäure-äthylesters (C₆H₅)₂C CO₂·C₂H₅ (St., Ra.). Liefert mit Acetol in Gegenwart von wenig Salzsäure 2.5-diäthoxy-2.5-dimethyl-1.4-dioxan (Syst. Nr. 2713), bei Gegenwart von wenig Salzsäure 2.5-digedoch eine flüssige Verbindung [C₅H₁₀O₂]_x (Kp₁₂: 74—76°) ("Äthyllactolid des Acetols") (Ewlampiew, B. 62, 2386; Ж. 61, 2019; vgl. Bergmann, Miekeley, B. 62, 2298). Mit Halogenacetonen in Gegenwart von wenig Schwefelsäure und Alkohol erhält man Halogenaceton-diäthylacetale; analog reagiert Acetolacetat; mit Acetolormiat jedoch entsteht 2.5-Diäthoxy-2.5-dimethyl-1.4-dioxan (E.). Kondensiert sich beim Erhitzen mit den Halogenalkylaten heterocyclischer Basen, die eine reaktionsfähige Methylenzoxazol-jodmethylat, 2-Methyl-benzselenazol-jodmethylat, 2-Methyl-benzthiazol-jodmethylat, 2-Methyl-benzselenazol-jodmethylat, 2-Methyl-benzselenazol-jodmethylat, 3-Methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid, Bis-[3-methyl-benzselenazol-(2)]-trimethincyaninjodid [Syst. Nr. 4631]) (König, B. 55, 3311; 61, 2073; Hamer, Soc. 1927, 2800; Clark, Soc. 1928, 2318). Gibt mit nicht näher beschriebenem 3.4-Methyle

Ameisensäurepropylester, Propylformiat $C_4H_8O_2=HCO_2\cdot CH_2\cdot C_2H_5$ (H 21; E I 17). B. Beim Kochen von technischer Ameisensäure mit Propylalkohol und 70% igem Calciumchlorid (Elektrochem. Werke, Bosshard, Strauss, D. R. P. 334298; C. 1921 II, 804; Frdl. 13, 124). — E: —92,9° (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₆₀: 81,2 \pm 0,1° (T.), 80,9° (Hannotte, Bl. Soc. chim. Belg. 35, 86; C. 1926 II, 742), 80,8° bis 80,85° (Lecat, R. 45, 623; 46, 243). Dampfdruck zwischen —10° (11,40 mm) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 433. Kritische Temperatur: 264,7° (Stachorsky, Z. El. Ch. 34, 112), 264,85° (Y.); kritischer Druck: 30 460 mm; kritisches Volumen: 3,233 cm³/g (Y.). D4: 0,92868; D4: 0,9173; D4: 0,9058;

D_a.: 0,8943 (Y.); D_a.: 0,9286; D_a.: 0,9071 (H.); zur Dichte bei 50° und 70° vgl. Kurnakow, Z. anorg. Ch. 135, 111. Dichte zwischen 0° und der kritischen Temperatur: Y. Dichte des gesättigten Dampfes zwischen 70° und der kritischen Temperatur: Y. Zur Viscosität bei 50° und 70° vgl. K. Oberflächenspannung bei 20°: 23,67 dyn/cm (St.). Parachor: Sugden, Soc. 125, 1183. Verdampfungswärme bei 80,01°: 88,15 cal/g (Mathews, Am. Soc. 48, 573). n_α.: 1,3760; n₀.: 1,3779; n₀.: 1,3825 (H.). Streuung des Lichts an der Oberfläche von flüssigem Propylformiat: Raman, Ramdas, Pr. roy. Soc. [A] 109, 274; C. 1926 I, 838; Ramdas, Indian J. Phys. 1, 222; C. 1927 II, 2535. Intensität und Depolarisationsgrad des Lichts bei der Streuung in flüssigem Propylformiat: Krishnan, Phil. Mag. [6] 50, 704; C. 1926 I. 838; in dampfförmigem Propylformiat: Ganesan, Phil. Mag. [6] 49, 1220; C. 1925 II. 1011; Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838. Dielektr.-Konst. bei Zimmertemperatur: 7,72, bei ca. —80°: 2,39 (Jackson, Phil. Mag. [6] 43, 486; C. 1922 I, 1274). Zum Dipolmoment vgl. Smyth, Am. Soc. 47, 1896. Magnetische Doppelbrechung: Ramanadham, Indian J. Phys. 4, 27; C. 1929 II, 2315. Mischbarkeit mit Wasser: Kendall, Harrison, Trans. Faraday Soc. 24, 590; C. 1929 I, 835. Kryoskopisches Verhalten in Wasser: K., H. Siedepunkt und Zusammensetzung binärer azeotroper Gemische mit Propylformiat s. in der untenstehenden Tabelle. Bildet ein ternäres azeotropes Gemisch mit Wasser und Propyl-

Azentrone	Propelfo	rmiat	anthaltand	e Gemische.
Azeotrope.	Propvite	rmiat	entnaitend	e Gemische.

Komponente	Kp ₇₆₀	Gehalt an Propyl- formiat in Gew%	Komponente	Kp760	Gehalt an Propyl- formiat in Gew%
Tetrachlorkohlenstoff 1) Dichlorbrommethan 2) Äthylenchlorid 1) Äthyljodid 4) tert. Butylbromid 2) . n-Hexan 2) Cyclohexan 2) Benzol 1)	74,6 90,9 84,05 ca. 72 71,8 63 75 78.5	ca. 31 18 ca. 10 28 ca. 20 48 ca. 47	Methanol ¹)	61,9 71,75 80,65 80,6 75,85 78 80,5	49,8 ca. 59 ca. 97 90,2 ca. 64 60

1) LBCAT, R. 45, 623, 624. — 2) L, R. 46, 243, 244. — 3) HANNOTTE, Bl. Soc. chim. Belg. 35, 86; C. 1926 II, 742. — 4) L., Ann. Soc. scient. Bruxelles 48 I [1928], 17, 55, 116.

alkohol (Kp₇₆₀: 70,8°; 82% Propylformiat, 5% Propylalkohol, 13% Wasser) (Hannotte, Bl. Soc. chim. Belg. 35, 87; C. 1926 II, 742). Dichte Dt und Viscosität des binären Systems mit Zinn(IV)-chlorid bei 50° und 70°: Kurnakow, Z. anorg. Ch. 135, 111. Oberflächenspannung der Gemische mit Tetrachlorkohlenstoff bei 20°: Stachorsky, Z. El. Ch. 34; 112. Zunahme der Oberflächenspannung einer wäßr. Lösung von Propylformiat bei 20° mit der Zeit: Bigelow, Washburn, J. phys. Chem. 32, 336. Quellung von rohem und vulkanisiertem Kautschuk in Propylformiat: Salkind, B. 59, 525. Zur Geschwindigkeit der Reaktion mit Kalium-m-kresolat in wäßrig-alkoholischer Lösung vgl. Smith, Soc. 1927, 175.

Verwendung als Insektenvertilgungsmittel: Cotton, Roark, Ind. Eng. Chem. 20, 381; C. 1928 I, 2969.

Ameisensäure- $[\beta,\gamma$ -dibrom-propylester], $[\beta,\gamma$ -Dibrom-propyl]-formiat, Glycerin- $\alpha.\beta$ -dibromhydrin-formiat $C_4H_0O_2Br_2=HCO_2\cdot CH_2\cdot CHBr\cdot CH_2\cdot Br.$ B. Aus Allylformiat und Brom in Schwefelkohlenstoff (Deulofeu, An. Asoc. quim. arg. 15, 419; C. 1928 II. 2114). — Schweres Öl von charakteristischem, schwach stechendem Geruch. Kp: 221—223°.

Ameisensäureisopropylester, Isopropylformiat C₄H₈O₂ = HCO₂·CH(CH₃)₃ (H 21; E I 18). B. In geringer Menge beim Überleiten eines Gemisches aus Isopropylalkohol und Methylformiat-Dampf über gefällte Tonerde bei etwa 200° (I. G. Farbenind., D. R. P. 434400; C. 1926 II, 2847; Frdl. 15, 374). — Verwendung als Insektenvertilgungsmittel: Cotton, Roark, Ind. Eng. Chem. 20, 381; C. 1928 I, 2969.

Ameisensäurebutylester, Butylformiat $C_5H_{10}O_2 = HCO_2 \cdot [CH_2]_3 \cdot CH_3$ (H 21; E I 18). B. Beim Einleiten von Kohlenoxyd in Kaliumbutylat-Lösung bei ca. 35—40° und 250 Atm. Druck (I. G. Farbenind., D. R. P. 495935; Frdl. 16, 207). Neben anderen Produkten aus Dibutyläther bei Einw. von ozonhaltigem Sauerstoff bei 0° und Reduktion des Reaktionsgemischs mit Zinkstaub und Essigsäure (F. G. FISCHER, A. 476, 246). — E: —91,9° (TIMMERMANS, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27; vgl. T., Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₆₀: 106,8 \pm 0,05° (T., Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137), 106,6° (Hannotte, Bl. Soc. chim. Belg. 35, 90; C. 1926 II, 742), 106,8—106,9° (Lecat,

Ann. Soc. scient. Bruxelles 48 I [1928], 117, 121). D₁°: 0,9102; D₁°: 0,8885 (H.). Verdampfungswärme bei 105,12°: 86,76 cal/g (Mathews, Am. Soc. 48, 573). n₁₀°: 1,3878; n₁₀°: 1,3894; n₂°: 1,3950; n₂°*: 1,4026 (H.); n₁₀°: 1,3874 (Munch, Am. Soc. 48, 997). Zum ultraroten Absorptionsspektrum vgl. Lecomte, C. r. 178, 1699. Dielektr.-Konst. bei ca. —80°: 2,43 (Jackson, Phil. Mag. [6] 43, 486; C. 1922 I, 1274). — Butylformiat bildet binäre azeotrope Gemische mit Nitromethan (Kp₇₆₀: 98,5°; ca. 40 % Butylformiat), mit n-Heptan (Kp₇₆₀: 90,7°; 40 % Butylformiat) (Lecat) und mit Butylalkohol (Kp₇₆₀: 105,8°; 76,4 % Butylformiat) (H.) sowie ein ternäres azeotropes Gemisch mit Butylalkohol und Wasser (Kp₇₆₀: 83,6°; 68,7% Butylformiat, 10% Butylalkohol, 21,3 % Wasser) (H.). — Toxizität: F. Flury O. Klimmer in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 165; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 67. — Verwendung als technisches Lösungsmittel: Th. H. D., Solv., S. 140, 229; als Insektenvertilgungsmittel: Cotton, Roark, Ind. Eng. Chem. 20, 381; C. 1928 I, 2969. — Refraktometrische Bestimmung in Wasser und in Baumwollsamenöl-Lösungen bei 25°: Munch, Am. Soc. 48, 997.

Ameisensäure-dl-sek.-butylester, dl-sek.-Butyl-formiat $C_5H_{10}O_2=HCO_2 \cdot CH(CH_3) \cdot C_2H_5$. Kp: 94—97° (Cotton, Roark, *Ind. Eng. Chem.* 20, 381; C. 1928 I, 2969). Verwendung als Insektenvertilgungsmittel: C., R.

Ameisensäure - d - sek. - butylester, [d - sek. - Butyl] - formiat $C_1H_{10}O_2 = HCO_3$ · $CH(CH_2) \cdot C_2H_5$. B. Aus d-sek. - Butylalkohol und überschüssiger wasserfreier Ameisensäure in Gegenwart von Zinkchlorid auf dem Wasserbad (Pickard, Kenyon, Hunter, Soc. 123, 9). — Angenehm riechende bewegliche Flüssigkeit. Kp: 96—97°. D_1^* zwischen 20° (0,8846) und 94° (0,8007): P., K., H. $n_{500,1}^{50.3}$: 1,3786; $n_{500,1}^{50.3}$: 1,3812; $n_{500,1}^{50.3}$: 1,3812; $n_{500,1}^{50.3}$: 1,3828; $n_{500,1}^{50.3}$: 1,3828; $n_{500,1}^{50.3}$: 1,3896. [α_1^*]: +18,74°. Drehungsvermögen und Rotationsdispersion der reinen Substanz (zwischen 17° und 94°) und der Lösungen in Schwefelkohlenstoff und Alkohol (bei 18,5°): P., K., H.

Ameisensäureisobutylester, Isobutylformiat $C_5H_{10}O_3=HCO_3\cdot CH_2\cdot CH(CH_3)_3$ (H 21; E I 18). B. Beim Erhitzen von Ameisensäure mit Isobutylalkohol in Gegenwart von Benzol unter einem auf 69—70° erwärmten Dephlegmator (I. G. Farbenind., D. R. P. 490250; C. 1930 I, 2164; Frdl. 16, 240). Durch Destillation von Isobutylalkohol mit Ameisensäure bei Gegenwart oder Abwesenheit von p-Toluolsulfonsäure (Wuyts, Bailleux, Bl. Soc. chim. Belg. 29, 57; C. 1920 I, 817). Beim Überleiten eines Gemisches aus Isobutylalkoholund Methylformiat-Dampf über gefällte Tonerde bei etwa 150° (I. G. Farbenind., D. R. P. 434400; C. 1926 II, 2847; Frdl. 15, 374). — E: —95,8° (Timmermans, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27; vgl. T., Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₀₀: 97,7 \pm 0,02° (T., Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137), 98,4° (Hannotte, Bl. Soc. chim. Belg. 35, 88; C. 1926 II, 742), 97,9° (Lecat, R. 45, 623). D; 0,9050; D; 0,8755 (H.); D; 0,8854; D; 0,8636 (Unkowskaja, Wolowa, 36,57,113; C. 1926 I, 2646). Parachor: Sugren, Soc. 125, 1183. Verdampfungswärme bei 97,03°: 78,51 cal/g (Mathews, Am. Soc. 48, 997). Zum ultraroten Absorptionsspektrum vgl. Lecomte, C. r. 178, 1690. Zum Dipolmoment vgl. Smyth, Am. Soc. 47, 1896. Elektroendosmose: Strickler, Mathews, Am. Soc. 44, 1652. — Viscosität von Gemischen aus Isobutylformiat und Athylpropionat bei 20° und 40°: U., W. Siedepunkt und Zusammensetzung binärer azeotroper Gemische mit Isobutylformiat s. in der untenstehenden Tabelle. Bildet ein ternäres azeotropes Gemisch mit Wasser und Isobutylslkohol (Kp₇₀₀: 80,2°; 76% Isobutylformiat, 6,7% Isobutylslkohol,

Komponente	Kp760	Gehalt an Isobutyl- formist in Gew%	Komponente	Kp760	Gohalt an Isobutyl- formiat in Gew%
Wasser 3	80,4 98,7 93,8 90,0 94,5 cs. 92 92,4 64.6	92,2 60 ca. 70 ca. 30 50 50 ca. 57 ca. 5	Allohol ⁶)	77 93,2 82,0 97,4 97,8 91,4 100,1	33 60 88 79,4 ca. 55 ca. 40

¹⁾ LECAT, R. 45, 623. — 2) L., R. 46, 244. — 2) HANKOTTE, Bl. Soc. chim. Belg. 35, 88, 89; C. 1926 II, 742. — 4) L., Ann. Soc. scient. Bruxelles 45 I [1926], 175. — 5) L., Ann. Soc. scient. Bruxelles 45 I, [1928], 17, 18, 58, 116.

17,3% Wasser) (Hannotte, Bl. Soc. chim. Belg. 35, 89; C. 1926 II, 742). Quellung von rohem und vulkanisiertem Kautschuk in Isobutylformiat: Salkind, B. 59, 525. — Verwendung als Insektenvertilgungsmittel: Cotton, Roark, Ind. Eng. Chem. 20, 381; C. 1928 I, 2969. — Refraktometrische Bestimmung in Wasser und in Baumwollsamenöl-Lösungen bei 25°: Munch, Am. Soc. 48, 997.

Orthoameisensäure-triisobutylester, Triisobutylorthoformiat $C_{13}H_{26}O_3 = CH[O\cdot CH_2\cdot CH(CH_3)_2]_3$ (H 22). Beugung von Röntgenstrahlen an flüssigem Triisobutylorthoformiat: Katz, Selman, Z. Phys. 46, 395; C. 1928 I, 1743.

Ameisensäure-n-amylester, n-Amylformiat $C_6H_{19}O_9=HCO_2\cdot [CH_2]_4\cdot CH_3$ (H 22). E: $-73,5^\circ$ (Lievens, Bl. Soc. chim. Belg. 33, 127; C. 1924 II, 1329). Kp₇₆₀: 132,10 \pm 0,02° (L.), 132° (Hannotte, Bl. Soc. chim. Belg. 35, 94; C. 1926 II, 742). Abhängigkeit des Siedepunkts vom Druck: L. D_2^0 : 0,9073; D_2^{15} : 0,8926 (L.); D_2^0 : 0,9080; D_2^{10} : 0,8853 (H.). n_{α}^{10} : 1,3988; n_{β}^{15} : 1,4006; n_{β}^{15} : 1,4058; n_{β}^{14} : 1,4099 (L.); n_{α}^{10} : 1,3972; n_{β}^{10} : 1,3992; n_{β}^{10} : 1,4042; n_{β}^{10} : 1,4083 (H.). Bildet binäre azeotrope Gemische mit Wasser (Kp₇₆₀: 91,6°; 71,6% n-Amylformiat) und mit n-Amylalkohol (Kp₇₆₀: 131,4°; 57% n-Amylformiat) sowie ein ternäres azeotropes Gemisch mit Wasser und n-Amylalkohol (Kp₇₆₀: 91,4°; 41% n-Amylformiat, 21,5% n-Amylalkohol, 37,5% Wasser) (H.). — Liefert beim Einleiten von Bromwasserstoff bei Siedetemperatur -Brom-pentan und Ameisensäure (Shon, C. r. 187, 131). Kondensiert sich mit γ -Phenylbuttersäure-äthylester in Gegenwart von alkoholfreiem Natriumäthylat in Äther zu γ -Phenyl- α -oxymethylen-buttersäure-äthylester (v. Auwers, Möller, J. pr. [2] 109, 145).

3-Brom-2-methyl-butyl-(2)-formiat, Trimethyläthylenbromhydrin-formiat $C_6H_{11}O_2Br = HCO_2 \cdot C(CH_3)_2 \cdot CHBr \cdot CH_3$. B. Bei Einw. von Trimethyläthylen auf eine eiskalte Lösung von Bromtrinitromethan und Harnstoff in Ameisensäure (E. Schmidt, v. Knilling, Ascherl, B. 59, 1281). — Kp₃: 57—59°. D₄°: 1,3609. n₅°: 1,4612.

Ameisensäureisoamylester, Isoamylformiat $C_6H_{18}O_8 = HCO_8 \cdot CH_8 \cdot CH_1 \cdot CH_1 \cdot CH_1 \cdot CH_2$; H 22; E I 18). B. Neben anderen Produkten aus Diisoamyläther bei Behandlung mit ozonhaltigem Sauerstoff bei 0° und nachfolgender Reduktion mit Zinkstaub in Wasser (F. G. FISCHER, A. 476, 243). Beim Erhitzen von technischer Ameisensäure mit Isoamylalkohol und 70% igem Calcium chlorid auf dem Wasserbad (Elektrochem. Werke, Bosshard, Strauss, D. R. P. 334298; C. 1921 II, 804; Frdl. 13, 126). — E: —93,5° (Timmermans, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27). Kp₇₆₀: 124,2° (Hannotte, Bl. Soc. chim. Belg. 35, 92; C. 1926 II, 742), 123,8° (Lecat, R. 45, 624). D₀°: 0,9015; D₀°: 0,8820 (H.). Parachor: Sugden, Soc. 125, 1183, 1185. n_{α}^{∞} : 1,3954; n_{β}^{∞} : 1,3976; n_{β}^{∞} : 1,4025; n_{γ}^{∞} : 1,4062 (H.); n_{β}^{∞} : 1,3940 (Munch, Am. Soc. 48, 997). Ultrarotes Absorptionsspektrum zwischen 0,6 und 13,2 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II; zwischen 1,0 und 2,6 μ : Smith, Boord, Am. Soc. 48, 1515. Zum Dipolmoment vgl. Smyth, Am. Soc. 47, 1896. Elektroendosmose: Strickler, Mathews, Am. Soc. 44, 1652. Isoamylformiat bildet azeotrope Gemische mit Athylenbromid (Kp₇₆₀: 123,7°; ca. 88% Isoamylformiat) (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 68), mit Isoamylformiat) (Kp₇₆₀: 117,8°; 35% Isoamylformiat), mit n-Butylalkohol (Kp₇₆₀: 115,9°; 31% Isoamylformiat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 17, 117) und mit Isoamylalkohol (Kp₇₆₀: 123,7°; ca. 90% Isoamylformiat) (Lecat, R. 45, 624; vgl. auch HANNOTTE, Bl. Soc. chim. Belg. 35, 92; C. 1926 II, 742) sowie ein ternäres azeotropes Gemisch mit Isoamylalkohol und Wasser (Kp₇₆₀: 89,8°; 48% Isoamylformiat, 19,6% Isoamylalkohol, 32,4% Wasser) (H.). Katalytische Wirkung auf die Vereinigung von Chlor mit Schwefeldioxyd zu Sulfurylchlorid: Durrans, J. Soc. chem. Ind. 45, 349 T; C. 1927 I, 10. — Toxizität: F. Flury, O. Klimmer in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 165; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 67. — Verwendung als technisches Lösungsmittel: Th. H. D., Solv., S. 141, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 179; als Insektenvertilgungsmittel: Cotton, Roark, Ind. Eng. Chem. 20, 381; C. 1928 I, 2969. — Refraktometrische Bestimmung in Wasser und in Baumwollsamenöl-Lösungen bei 25°: Munch, Am. Soc. 48, 997.

Orthoameisensäure-triisoamylester, Triisoamylorthoformiat $C_{1e}H_{2d}O_3 = CH[O\cdot CH_1\cdot CH_2\cdot CH(CH_3)_2]_8$ (H 22). Beugung von Röntgenstrahlen an flüssigem Triisoamylorthoformiat: Katz, Selman, Z. Phys. 46, 396; C. 1928 I, 1743.

Ameisensäure -[dl-octyl-(2)-ester], inakt. Methyl-n-hexyl-carbinol-formiat $C_9H_{18}O_9=HCO_9\cdot CH(CH_9)\cdot [CH_2]_5\cdot CH_3$ (H 22; E I 18). Zur Bildung aus sek. n-Octylalkohol und Ameisensäure nach Senderens, Aboulenc, $C.\ r.$ 156, 1620; vgl. noch S., A., $A.\ ch.$ [9] 18, 158.

Ameisensäure-[d-octyl-(2)-ester], [d-Methyl-n-hexyl-carbinol]-formiat $C_aH_{18}O_2$ = $HCO_2 \cdot CH(CH_3) \cdot [CH_2]_s \cdot CH_s$. B. Aus rechtsdrehendem Octanol-(2) und überschüssiger wasserfreier Ameisensäure in Gegenwart von Zinkchlorid auf dem Wasserbad (Pickard,

Kenyon, Hunter, Soc. 123, 10). — Wohlriechende trübe Flüssigkeit. Kp₃₀: 81—82°. D⁴ zwischen 12,5° (0,8718) und 140° (0,7540): P., K., H. n^{4,6}: 1,4174. [α]²: —4,16°. Drehungsvermögen und Rotationsdispersion der reinen Substanz (zwischen 16° und 149°) und der Lösungen in Schwefelkohlenstoff, Pyridin, Aceton und Alkohol (bei Zimmertemperatur): P., K., H. — Liefert bei der Verseifung mit Natronlauge im Dampfstrom rechtsdrehendes Octanol-(2).

Orthoameisensäure-tri-[l-octyl-(2)-ester], Tri-[l-octyl-(2)]-orthoformiat $C_{28}H_{52}O_3=CH\{O\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3\}_3$. B. Bei 30-stündigem Erhitzen von Orthoameisensäure-triäthylester mit linksdrehendem Octanol-(2) auf ca. 140° (Hunter, Soc. 125, 1392). — Fast farblose Flüssigkeit. Kp. 202—203°. D. 5: 0,8592; D. 5: 0,8140; D. 5: 0,7485. n. 5: 1,4376. $\alpha_{1}^{\text{ti-5}}$: -8,72° (l = 50 mm). Drehungsvermögen und Rotationsdispersion der unverdünnten Substanz (zwischen 14,5° und 130°); H.

Ameisensäure-[d-nonyl-(3)-ester], [d-Äthyl-n-hexyl-carbinol]-formiat $C_{10}H_{20}O_2=HCO_2\cdot CH(C_2H_5)\cdot [CH_2]_5\cdot CH_3$. B. Aus rechtsdrehendem Nonanol-(3) und überschussiger wasserfreier Ameisensäure in Gegenwart von Zinkchlorid auf dem Wasserbad (Pickard, Kenyon, Huntef. Soc. 123, 10). — Angenehm riechende trübe Flüssigkeit. Kp₂₂: 94,5° bis 95°. D¹ zwischen 20° (0,8688) und 154° (0,7536): P., K., H. $n_{\text{cros},0}^{\text{256}}$: 1,4178; $n_{\text{cros},0}^{\text{256}}$: 1,4196; $n_{\text{cros},0}^{\text{256}}$: 1,4271. [α] $n_{\text{cros},0}^{\text{256}}$: -11,28°. Drehungsvermögen und Rotationsdispersion der reinen Substanz (zwischen 17° und 120°) und der Lösungen in Schwefelkohlenstoff und Alkohol bei 17,5 bzw. 18,5°: P., K., H.

Ameisensäure-n-dodecylester, n-Dodecylformiat $C_{13}H_{26}O_2 = HCO_2 \cdot [CH_2]_{11} \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in ein gekühltes Gemisch von Ameisensaure und n-Dodecylalkohol (Rheinboldt, König, Otten, A. 473, 255). — Kp₁₅: 145—146°.

Ameisensäure-n-tetradecylester, n-Tetradecylformiat $C_{15}H_{30}O_2 = HCO_2 \cdot [CH_2]_{13} \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch von Ameisensäure und n-Tetradecylakholo (Rheinboldt, König, Otten, A. 473, 255). — Kp₁₇: 166°.

Ameisensäure-n-hexadecylester, Cetylformiat $C_{17}H_{34}O_2 = HCO_2 \cdot [CH_2]_{15} \cdot CH_2 \cdot B$. Beim Sättigen eines Gemisches aus Ameisensäure und n-Hexadecylalkohol mit Culorwasserstoff (Rheinboldt, König, Otten, A. 473, 255). — Kp_{17} : 188°. [Trewendt]

Ameisensäureallylester, Allylformiat $C_4H_6O_2 = HCO_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot (H 23; E I 18)$. B. Aus Allylalkohol und Ameisensäure in Gegenwart von entwässertem Kupfersulfat (Palomaa, Juvala, B. 61, 1771). Beim Versetzen von Allylalkohol mit saurem Formamidsulfat unter Kühlen und nachfolgenden Erhitzen auf ca. 60° (The Roessler & Hasslacher Chemical Co., D. R. P. 463721; C. 1928 II, 1486; Frdl. 16, 201). Zur Bildung aus Oxalsäure und Glycerin nach Chattaway, Soc. 107, 408 vgl. Coffey, Ward, Soc. 119, 1301. Zur Bildung durch thermische Zersetzung von Ameisensäureestern des Glycerins vgl. Delaby. Dubois, C. r. 187, 951; 188, 711. — Kp: 83—84° (The Roe. & Ha. Chem. Co. — Geschwindigkeit der Verseifung durch verd. Salzsäure: Pa., Ju. — Giftwirkung des Dampfes auf Insekten: Cotton, Roark, Ind. Eng. Chem. 20, 380; C. 1928 I, 2969.

Ameisensäure-[d-penten-(1)-yl-(8)]-ester, [d-Äthylvinylcarbinol]-formiat $C_6H_{10}O_2=HCO_2\cdot CH(C_2H_5)\cdot CH:CH_2$. B. Durch Erhitzen von d-Äthylvinylcarbinol mit überschüssiger wasserfreier Ameisensäure auf 100° (Kenyon, Spellgrove, Soc. 127, 1177). — Kp₇₆₀: 115,5—116,5°. D¹₄ zwischen 20° (0,8953) und 102° (0,8157): K., Sn. n[∞]_D: 1,4104. [α] $_D^{\infty}:$ —34,69° (unverdünnt). Drehungsvermögen und Rotationsdispersion der unverdünnten Substanz bei 20° für $\lambda=670,8$ m μ bis 435,9 m μ : K., Sn.

Ameisensäure-5-pentenylester, $[\gamma\text{-Vinyl-propyl}]$ -formiat $C_6H_{10}O_2=HCO_2\cdot [CH_2]_3\cdot CH:CH_2$. B. Aus γ -Vinyl-propylalkohol und Ameisensäure in Gegenwart von entwässertem Kupfersulfat (Palomaa, Juvala, B. 61, 1772). — Flüssigkeit. Kp777: 135—136°. D²⁰: 0,9124. — Geschwindigkeit der Verseifung durch verd. Salzsäure: Pa., Ju.

Ameisensäure - [d - hepten - (1) - yl - (3)] - ester, [d - Butylvinylcarbinol] - formiat $C_8H_{14}O_2=HCO_2\cdot CH([CH_2]_3\cdot CH_3)\cdot CH:CH_2$. B. Durch Erhitzen von d-Butylvinylcarbinol mit überschüssiger wasserfreier Ameisensäure auf 100° (Kenyon, Snellgrove, Soc. 127, 1177). — Kp₇₆₀: 155—157°. D₄°: 0,8754. n_D°: 1,4225. [α]_D°: —17,83° (unverdünnt). Drehungsvermögen und Rotationsdispersion der unverdünnten Substanz bei 20° für $\lambda=670,8$ m μ bis 435,9 m μ : K., Sn.

Ameisensäure-[d-citronellylester], d-Citronellyl-formiat $C_{11}H_{20}O_3 = HCO_3 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot C$

Ameisensäuregeranylester, Geranylformiat $C_{11}H_{18}O_2 = HCO_2 \cdot CH_2 \cdot CH : C(CH_3) \cdot CH_2 \cdot CH_3 \cdot CH : C(CH_3) \cdot CH_3 \cdot C$

Ameisensäurenerylester, Nerylformiat $C_{11}H_{18}O_2 = HCO_2 \cdot CH_2 \cdot CH : C(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_4 \cdot CH_3 \cdot$

2.6-Dimethyl-octandiol-(2.8)-formiat-(8), 2-Oxy-8-formyloxy-2.6-dimethyl-octan $C_{11}H_{22}O_3 = HCO \cdot O \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot [CH_2]_3 \cdot C(CH_3)_2 \cdot OH$. — Rechtsdrehende Form. B. Beim Kochen von d-Citronellol mit Ameisensäure, neben anderen Produkten (Pfau, J. pr. [2] 102, 280). — Schwach riechende Flüssigkeit. Kp₅: 129° (korr.). D¹⁵: 0,9651. n⁵/₂: 1,4488. [α]_D: +1,8°. Mit 60 % igem Alkohol in jedem Verhältnis mischbar, löslich in 3,5 Vol. 50 % igem Alkohol. — Spaltet beim Erhitzen unter Atmosphärendruck Wasser und Ameisensäure ab.

2.6 - Dimethyl-octandiol-(2.8) - diformiat, 2.8 - Diformyloxy - 2.6 - dimethyl-octan $C_{12}H_{22}O_4 = HCO \cdot O \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot [CH_2]_3 \cdot C(CH_3)_2 \cdot O \cdot CHO$. — Rechtsdrehende Form. B. Beim Kochen von d-Citronellol mit Ameisensäure, neben anderen Produkten (PfAu, J. pr. [2] 102, 280). — Schwach riechende, leicht bewegliche Flüssigkeit. Kp; 140° bis 141° (korr.). D¹⁵: 0,9976. n_0^{15} : 1,4425. $[\alpha]_D$: +1,5°. Löslich in 12,5 Vol. 60% igem Alkohol. — Spaltet an der Luft langsam, rasch bei der Destillation unter 15 mm Druck Ameisensäure ab.

Buten-(1)-diol-(3.4)-monoformiat, α -Vinyl-äthylenglykol-monoformiat, Erythrol-monoformiat $C_5H_8O_3=HCO\cdot O\cdot CH_2\cdot CH(OH)\cdot CH: CH_2$ oder $HO\cdot CH_2\cdot CH(O\cdot CHO)\cdot CH: CH_2$ (H 23). B. Zur Bildung aus Erythrit und Ameisensäure vgl. Prévost, C. r. 183, 1292; A. ch. [10] 10, 399. — Kp₁₃: 89°. D_*^{∞} : 1,1100. n_*^{∞} : 1,4467.

Glycerinmonoformiat, Monoformin C₄H₈O₄ = HCO·O·CH₂·CH(OH)·CH₂·OH und HO·CH₂·CH(O·CHO)·CH₂·OH (H 24; E I 19). B. Gemische von α-Monoformin und β-Monoformin entstehen: Beim Erwärmen von Glycerin [D:1,25] mit 88% iger Ameisensäure auf dem Wasserbad (Delary, Dubois, C. r. 187, 768, 950). In geringer Menge beim Erhitzen von Glycerin mit Kohlenoxyd im Autoklaven auf 180° (F. Fischer, v. Philippovich, Abh. Kenntnis Kohle 6, 371; C. 1924 I, 2097). Bei der Einw. von 1 Mol saurem Formamidsulfat auf 1 Mol Glycerin (The Roessler & Hasslacher Chemical Co., D. R. P. 463721; C. 1928 II, 1486; Frdl. 16, 201). Ein Präparat, das vermutlich hauptsächlich aus α-Monoformin besteht, bildet sich beim Erhitzen von Natriumformiat mit Glycerin-α-monochlorhydrin (De., Du.; van Romburgh, R. 1 [1882], 186). — Kp₁₀: 154—157°; D₀: 1,3052; n₁^{3,5}: 1,4614 (Präparat aus Glycerin) (De., Du.). — Zerfällt beim Erhitzen im geschlossenen Gefäß und im Vakuum zwischen 250° und 315° in Wasserstoff, Kohlenoxyd, Kohlendioxyd und gesättigte Kohlenwasserstoffe (De., Du.). Das Präparat aus Glycerin gibt beim Erhitzen unter normalem Druck 57% freien und an Ameisensäure gebundenen Allylalkohol (De., Du.), das Präparat aus Glycerin-α-monochlorhydrin dagegen nur Spuren von Allylalkohol und Allylformiat (De., Du.).

Glycerin-α.α'-diformiat, α.α'-Diformin $C_5H_8O_5 = HCO \cdot O \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot O \cdot CHO$. B Beim Erhitzen von Glycerin-α.α'-dichlorhydrin mit Natriumformiat (Delaby, Dubois, C. r. 187, 769; vgl. van Romburgh, R. 1 [1882], 186). — Hygroskopische Flüssigkeit. Kp₁₁: 144—146°; D°: 1,3218; n°: 1,4486; leicht löslich in Alkohol und Aceton, schwer in Äther, unlöslich in Benzol (De., Du., C. r. 187, 769). — Thermische Zersetzung im Vakuum und im geschlossenen Gefäß bei 255—310°: De., Du., C. r. 187, 950. Zerfällt beim Erhitzen unter gewöhnlichem Druck in Wasser, Ameisensäure, Allylalkohol und Allylformiat (De., Du., C. r. 187, 951).

Glycerin - $\alpha.\beta$ - diformiat, $\alpha.\beta$ - Diformin $C_5H_8O_5=HCO\cdot O\cdot CH_2\cdot CH(O\cdot CHO)\cdot CH_2$ OH. B. Beim Erhitzen von Glycerin- $\alpha.\beta$ -dibromhydrin mit Natriumformiat (Delaby, Dubois, C. r. 187, 769; vgl. van Romburgh, R. 1 [1882], 186); enthält wahrscheinlich auch $\alpha.\alpha'$ -Diformin (vgl. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 245). — Kp₁₇: 151—153°; D°: 1,3252; D°: 1,3214 ¹). n°: 1,4503 (De., Du., C. r. 187, 769). — Thermische Zersetzung in Vakuum und im geschlossenen Gefäß bei 255—310°: De., Du., C. r. 187, 950. Zerfällt beim Erhitzen unter Atmosphärendruck in Wasser, Ameisensäure, Allylalkohol und Allylformiat (De., Du., C. r. 187, 951).

¹⁾ Die Dichten bei 0° und 17° scheinen in Anbetracht des kleinen Temperaturkoeffizienten nicht an dem gleichen Präparat bestimmt zu sein (BEILSTEIN-Redaktion).

Glycerindiformiate, Diformine [Gemische von $\alpha.\alpha'$ -Diformin und $\alpha.\beta$ -Diformin] $C_5H_8O_5 = HCO \cdot O \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot O \cdot CHO$ und $HCO \cdot O \cdot CH_2 \cdot CH(O \cdot CHO) \cdot CH_2 \cdot OH$ (H 24). B. Neben anderen Produkten bei zweimaligem aufeinanderfolgenden Erhitzen von wasserfreiem Glycerin mit 96 %iger Ameisensäure im Vakuum, zuletzt bei 110—120° (DELABY, DUBOIS, C. r. 188, 710; vgl. DE., Du., C. r. 187, 768, 951). Aus Glycerin und 80 %iger Ameisensäure in siedendem Toluol (WAHL, Bl. [4] 37, 717). Beim Schmelzen von Natrium-diformiat mit Glycerin bei 140° (Koepp & Co., ELÖD, D. R. P. 439289; C. 1927 I, 1365; Frdl. 15, 117). — Kp₁₅: 148—149° (DE., Du., C. r. 187, 768); Kp₁₈: 158—160° (W.). D₀°: 1,3209: n_2^{22} : 1,4492 (DE., Du., C. r. 187, 768). — Thermische Zersetzung im geschlossenen Gefäß und im Vakuum zwischen 255—310°: DE., Du., C. r. 187, 950. Zerfällt beim Erhitzen unter Atmosphärendruck auf 200—250° in Wasser, Ameisensäure, Allylalkohol und Allylformiat (DE., Du., C. r. 187, 951; 188, 711).

Glycerintriformiat, Triformin $C_6H_8O_6 = HCO \cdot O \cdot CH_2 \cdot CH(O \cdot CHO) \cdot CH_2 \cdot O \cdot CHO$ (E I 19). D_{\bullet}^{∞} : 1,320 (Tromp, R. 41, 297).

α-Äthyl-glycerin-triformiat $C_8H_{12}O_6 = HCO \cdot O \cdot CH_2 \cdot CH(O \cdot CHO) \cdot C_2H_6$. B. Durch Kochen von α-Äthyl-glycerin mit überschüssiger krystallisierter oder 96% iger Ameisensäure, neben den (nicht isolierten) Mono- und Diformiaten des α-Äthyl-glycerins (Delaby, C. r. 176, 1899; A. ch. [9] 20, 204). — Nadeln (aus Petroläther). F: 60° bis 61°. Kp₁₂: 136—140°. Schr leicht löslich in Benzol und Äther, löslich in Alkohol, schwer löslich in Petroläther.

 $\alpha.\alpha'$ -Dimethyl-glycerin-triformiat $C_8H_{12}O_6=HCO\cdot O\cdot CH(CH_3)\cdot CH(O\cdot CHO)\cdot CH(O\cdot CHO)\cdot CH_3$. B. Beim Kochen von $\alpha.\alpha'$ -Dimethyl-glycerin mit 96% iger Ameisensäure, neben den (nicht isolierten) Mono- und Diformiaten des $\alpha.\alpha'$ -Dimethyl-glycerins (Delaby, Morel, Bl. [4] 39, 419). — Nadeln (aus Petroläther). F: 85°. Kp₁₆: 130—134°.

α-Methyl-α'-äthyl-glycerin-triformiat $C_9H_{14}O_6 = HCO \cdot O \cdot CH(CH_3) \cdot CH(O \cdot CHO) \cdot CH(O \cdot CHO) \cdot C_2H_5$. Beim Kochen von α-Methyl-α'-äthyl-glycerin mit krystallisierter Ameisensäure, neben den (nicht isolierten) Mono- und Diformiaten des α-Methyl-α'-äthyl-glycerins (Delaby, Morel, Bl. [4] 39, 420). — Nadeln (aus Petroläther). F: 94,5°.

Pentaerythrit-tetraformiat C₉H₁₂O₈ = C(CH₂·O·CHO)₄. B. Bei mehrmaligem Erhitzen von Pentaerythrit mit einem Überschuß erst von 85% iger, später von 100% iger Ameisensäure (van Romburgh, Ph. Ch. 130, 335). — Krystalle von schwach bitterem Geschmack (aus Benzol). F: 57°. Leicht löslich in Benzol, ziemlich schwer in Äther. — Zersetzt sich beim Erhitzen auf 220—230° quantitativ im Pentaerythrit und Kohlenoxyd.

Äthoxymethyl-formiat, Methylenglykol-äthyläther-formiat, Äthyl-formylformal $C_4H_8O_3=HCO\cdot O\cdot CH_2\cdot O\cdot C_2H_5$. B. Durch allmähliches Zugeben von Chlormethyläthyl-äther zu Natriumformiat unter Kühlung und nachfolgendes Erwärmen auf dem Wasserbad (Farren, Fife, Clark, Garland, Am. Soc. 47, 2422). — Kp: 114—116°. D_4^o : 1,0537; D_4^m : 1,0343. n_1^o : 1,3900.

Isopropyloxymethyl-formiat, Isopropyl-formyl-formal $C_5H_{10}O_3 = HCO \cdot O \cdot CH_2 \cdot O \cdot CH(CH_3)_2$. B. Analog der vorangehenden Verbindung (Farren, Fife, Clark, Garland. Am. Soc. 47, 2422). — Kp: 124—126°. D°: 1,0270. D°: 1,0000. n°: 1,3910.

sek.-Butyloxymethyl-formiat, sek.-Butyl-formyl-formal $C_6H_{12}O_3 = HCO \cdot O \cdot CH_2 \cdot O \cdot CH(CH_3) \cdot CH_2 \cdot CH_3$. B. Analog der vorangehenden Verbindung (Farren, Fife, Clark, Garland, Am. Soc. 47, 2422). — Kp: 147—148°. D_1^o : 0,9683. D_2^o : 0,9477. D_1^o : 1,4020.

Ameisensäure-chlormethylester, Chlormethylformiat C₂H₃O₂Cl = HCO·O·CH₂Cl. B. Neben Chlorameisensäure-methylester bei Einw. von 2 Atomen Chlor auf Methylformiat im Licht einer elektrischen Glühlampe (BAYER & Co., D. R. P. 297933; C. 1921 II, 803; Frdl. 13, 126). — Kp: 93—94°.

Ameisensäureacetonylester, Acetolformiat, Formyloxyaceton $C_4H_6O_3 = HCO \cdot O \cdot CH_7 \cdot CO \cdot CH_3$ (H 24). B. Zur Bildung aus Chloraceton und dem Kaliumsalz der Ameisensäure nach Henry, Dewael, C. 1902 II, 928 vgl. Glattfeld, Sherman, Am. Soc. 47, 1746. — Liefert beim Behandeln mit wäßr. Blausäure-Lösung bei Gegenwart von Kaliumcarbonat und nachfolgenden Kochen des entstandenen Nitrils mit Salzsäure (D: 1,19) inaktive $\alpha.\beta$ -Dioxy-isobuttersäure.

H 24, Z. 9 v. u. vor "H., C. r. 188", füge ein "H., D.; vgl.".

Kuppelungsprodukte der Ameisensäure mit Hydroperoxyd und mit anorganischen Säuren.

Formylhydroperoxyd, Perameisensäure $CH_2O_3 = HCO \cdot O \cdot OH$ (E I 19). B. Über die Bildung bei der Oxydation von Ameisensäure durch Wasserstoffperoxyd vgl. HATCHER. HOLDEN, Trans. roy. Soc. Canada [3] 18 III, 237; C. 1925 I, 1288; HAT., HOL., TOOLE. Trans. roy. Soc. Canada [3] 20 III, 404; C. 1927 II, 2050. — Gleichgewicht der Reaktion $HCO \cdot O \cdot OH + H_2O \rightleftharpoons HCOOH + H_2O_2$ bei 0° : HAT., HOL., Trans. roy. Soc. Canada [3] 21 III, 241; C. 1928 I, 1929.

Oxymethandisulfonsäure $CH_4O_7S_5 = HO \cdot CH(SO_3H)_2$ (H 25). Diese von MÜLLER (B. 6 [1873], 1032) beschriebene Verbindung wird von RASCHIG, PRAHL (B. 59, 2027) als Aceton- $\alpha.\alpha.\alpha'.\alpha'$ -tetrasulfonsäure (E II 1, 858) erkannt.

Methantrisulfonsäure $CH_4O_9S_3=HC(SO_3H)_3$ (H 25; E I 20). Diese Konstitution kommt der in H 3, 8 als Methanoltrisulfonsäure beschriebenen Verbindung zu (Fantl, Fisch, J. pr. [2] 124, 159; Backer, R. 49 [1930], 1048). — Sehr hygroskopische Nadeln (aus Wasser). F: ca. 150° (Fa., Fl.). Sehr leicht löslich in Wasser und Alkohol mit stark saurer Reaktion (Fa., Fl.). — $K_9CHO_9S_3+H_9O$. Ausflockende Wirkung auf Eisenhydroxydsol: Taxlor, Pr. roy. Soc. Edinburgh 45, 323; C. 1926 I, 3387. — $Ag_3CHO_9S_3+H_9O$. Krystalle. Leicht löslich in Wasser (Fa., Fl.).

Dichlormethansulfonsäure CH₂O₃Cl₂S = CHCl₂·SO₃H (H 25). B. Aus sulfoessigsaurem Barium beim Erhitzen mit Salzsäure in Gegenwart von Bariumchlorat im Rohr auf 150° (Backer, R. 45, 831). — Hygroekopische Krystalle mit 1 H₂O. F: ca. 70° (B.). NaCHO₃Cl₂S (Clutterbuck, Cohen, Soc. 123, 2512). — Ba(CHO₃Cl₂S)₂ + H₂O. Krystalle (aus 80 % igem Alkohol). 100 g einer bei 25° gesättigten wäßrigen Lösung enthalten 47,86 g wasserfreies Salz (B.).

Dichlormethansulfonsäure-amid CH₃O₃NCl₂S = CHCl₂·SO₂·NH₂ (H 26). B. Zur Bildung aus Dichlormethansulfonsäurechlorid und Ammoniak vgl. CLUTTERBUCK, COHEN, Soc. 128, 2512. Beständig gegen Erwärmen mit Natriumhypochlorit-Lösung.

Brommethandisulfonsäure, Brommethionsäure CH₃O₆BrS₂ = CHBr(SO₂H)₃ (H 26). B. Beim Erhitzen von Methionsäure mit Brom und Bromwasserstoff im Rohr auf 250° (Backer, R. 48, 618). In geringer Menge neben Bromsulfoessigsäure aus Bromessigsäure-schwefelsäure-anhydrid beim raschen Erwärmen auf 80° (B., R. 44, 1058). Aus diazomethionsaurem Kalium (Syst. Nr. 210) und Bromwasserstoffsäure bei 0° (B., R. 48, 619). Aus Bromsulfoessigsäure (Syst. Nr. 279) und Schwefeltrioxyd (B., R. 44, 1059). — Darst. Man erwärmt formylbrommethionsaures Kalium mit einem kleinen Überschuß verd. Kalilauge auf dem Wasserbad, neutralisiert mit Essigsäure und fällt das Kaliumsalz mit Alkohol, während Kaliumformiat in Lösung bleibt (B., R. 48, 617, 618). Die freie Säure erhält man durch Zersetzen des Bariumsalzes mit Schwefelsäure (B., R. 48, 620). — Prismen mit 2 H₂O. F: 125° bis 126°; 100 g Wasser lösen bei 25° 344,8 g wasserfreie Säure (B., R. 48, 620). — Na₂CHO₆BrS₂ + 2H₂O. Monokline Krystalle (Terpffra, R. 48, 621). Sehr leicht löslich in Wasser (B., R. 48, 621). — K₂CHO₆BrS₂ + Nadeln (aus Wasser durch Alkohol) (B., R. 48, 618). — K₂CHO₆BrS₂ + 4 (oder 4¹/₂) H₂O. Nadeln (aus verd. Alkohol) (B., R. 44, 1059). 100 g Wasser lösen bei 25° 22,8 g wasserfreies Salz (B., R. 48, 620). — Tl₂CHO₆BrS₂. Krystalle (aus Wasser). Monoklin (Terpffra, R. 48, 621). 100 g Wasser lösen bei 25° 16,7 g Salz (B., R. 48, 621). — Strychninsalz CH₃O₆BrS₂ + 2C₂₁H₂₂O₂N₂ + 3H₂O. Nadeln (aus Wasser) (B., R. 48, 621). — Strychninsalz CH₃O₆BrS₂ + 2C₂₁H₂₂O₂N₃ + 3H₂O. Nadeln (aus Wasser) (B., R. 48, 620).

Chlorbrommethansulfonsäure $CH_2O_3ClBrS = CHClBr \cdot SO_3H$.

- a) Rechtsdrehende Form. B. Ein Salz mit d-2-Amino-1-oxy-hydrinden (vgl. Syst. Nr. 1856) entsteht beim Umkrystallisieren des Salzes der dl-Chlorbrommethansulfonsäure mit d-2-Amino-1-oxy-hydrinden aus Aceton und etwas Methanol (Read), McMath, Soc. 127, 1586, 1597). Salz mit d-2-Amino-1-oxy-hydrinden $C_{\phi}H_{11}ON + CH_{2}O_{3}ClBrS$. Platten (aus Aceton + etwas Methanol). [α]₀: $+50^{\circ}$ (Anfangswert in absol. Methanol; c = 1).
- b) Linksdrehende Form. B. Ein Salz mit 1-2-Amino-1-oxy-hydrinden (vgl. Syst. Nr. 1856) entsteht beim Umkrystallisieren des Salzes der dl-Chlorbrommethansulfonsäure mit 1-2-Amino-1-oxy-hydrinden aus Aceton und etwas Methanol (Read, McMath, Soc. 127, 1587). Salz mit 1-2-Amino-1-oxy-hydrinden C₂H₁₁ON+CH₂O₃CIBrs. Monokline (Bentivoglio, Soc. 127, 1587) Tafeln (aus Aceton). Zersetzt sich bei 183° (R., McM.). [\alpha]₅: —71,4° (Aceton nach 3 Min.) (R., McM.).
- c) Inaktive Form (H 26). B. Aus freier Chlorsulfoessigsäure bzw. ihrem Bariumsalz beim Erhitzen mit Brom in wäßr. Lösung im Rohr auf 150° bezw. 160° (Backer, R. 45, 834, 835). Hygroskopische Krystalle mit 1 H₂O(?). F: 63° (B.). NH₄CHO₂CIBrS. Platten (aus heißem Eisessig). F: 205° (Zers.) (Read, McMath, Soc. 127, 1585). Leicht löslich in Wasser und Alkohol, löslich in heißem Eisessig, schwer löslich in warmem Aceton. NaCHO₂CIBrS. Krystalle (B.). KCHO₂CIBrS. Prismen (B.). Ba(CHO₂CIBrS)₂ + H₂O. 100 g Wasser lösen 75,07 g wasserfreies Salz (B.). TICHO₂CIBrS. Nadeln (B.). Salz mit d-2-Amino-1-oxy-hydrinden C₂H₁₁ON + CH₂O₂CIBrS (vgl. Syst. Nr. 1856). Nadeln (aus Methanol) (R., McM., Soc. 127, 1598). Ist rechtsdrehend. Salz mit l-2-Amino-1-oxy-hydrinden C₂H₁₁ON + CH₂O₂CIBrS (vgl. Syst. Nr. 1856). Nadeln (aus Eisessig). Zersetzt bei 187° (R., McM., Soc. 127, 1591). Ist linksdrehend. Über Salze mit dl-2-Amino-1-oxy-hydrinden C₂H₁₁ON + CH₂O₂CIBrS s. Syst. Nr. 1856. Chinidinsalz C₂₀H₂₄O₂N₂ + CH₂O₂CIBrS.

Nadeln (aus wäßr. Aceton) (Pope, Read, Soc. 93, 797). Schwer löslich in kaltem Wasser, Aceton und Alkohol. $[\alpha]_D$: +148,3° (Wasser; c = 0,5). — Strychninsalz $2C_{s1}H_{s2}O_sN_s$ + CH_sO_3ClBrS . Nadeln (aus Wasser). $[\alpha]_D$: -24,8° (Wasser; c = 0,5) (P., R., Soc. 93, 797).

Dibrommethansulfonsäure CH₂O₂Br₂S = CHBr₂·SO₂H (H 26). B. Das Bariumsalz entsteht beim Erhitzen des Bariumsalzes der Sulfoessigsäure (Syst. Nr. 330) mit Brom und Bariumbromid in Wasser im Rohr auf 150° (BACKER, R. 44, 1061). Aus bromsulfoessig-saurem Barium (Syst. Nr. 279) beim Erhitzen auf 150° und nachfolgenden Neutralisieren der wäßr. Lösung mit Bariumcarbonat, neben dem Bariumsalz der Sulfoessigsäure (B., R. der wahr. Losung mit Bariumcarbonat, neben dem Bariumsalz der Sulfoessigsaure (B., R. 44, 1061). — Hygroskopische Krystalle mit 1 H₂O(?). F: ca. 73° (B., R. 45, 833). — Wird beim Erhitzen mit Kaliumsulfit-Lösung unter Bildung von Bromwasserstoff reduziert (B., R. 48, 619). — NaCHO₂Br₂S. Krystalle (B., R. 45, 832). — KCHO₂Br₂S. Krystalle (B., R. 45, 832). — Ba(CHO₃Br₂S)₂ + H₂O. Blättchen (aus verd. Alkohol). Schwer löslich in Alkohol (B., R. 44, 1062). 100 g Wasser lösen bei 25° 49,92 g wasserfreies Salz (B., R. 45, 832). — TICHO₃Br₂S. Krystallpulver (B., R. 45, 833).

Chlorjodmethansulfonsäure CH₂O₃CIIS = CHCII·SO₃H (E I 20).
Optisch inaktive Form. B. Zur Bildung aus chlorsulfoessigsaurem Barium und Jod vgl. Backer, R. 45, 835. — Hygroskopische Krystalle mit 2 H₂O(?). F: ca. 64°. — NaCHO₃CIIS. Krystalle. — Ba(CHO₃CIIS)₂ + H₂O. Blättchen. 100 g Wasser lösen bei 25° 83,15 g krystallwasserfreies Salz,

Bromjodmethansulfonsäure $CH_1O_3BrIS = CHBrI \cdot SO_3H$. B. Aus bromsulfoessigsaurem Barium beim Erhitzen mit Jod in Gegenwart von Bariumjodid und Bariumcarbonat in wäßr. Lösung im Rohr auf 210°, neben geringen Mengen sulfoessigsaurem Barium (Backer, R. 45, 836). — Krystalle mit 1H₂O. F: 87°. — Ba(CHO₃BrIS)₂ + H₂O. Blättchen (aus Wasser oder 50 %igem Alkohol). — Ba(CHO₃BrIS)₂ + 3H₂O. Nadeln. 100 g Wasser lösen bei 25° 54,11 g wasserfreies Salz.

Dijodmethansulfonsäure $CH_2O_3I_4S=CHI_2\cdot SO_3H$. B. Aus sulfoessigsaurem Barium beim Erhitzen mit Jod in Gegenwart von Bariumjodid und Bariumjodat in wäßr. Lösung im Rohr auf 200—210° (BACKER, R. 45, 833). — Krystalle mit 2 H₂O (aus Wasser). F: 61°. Verliert 1 H₂O im Exsiccator über Phosphorpentoxyd. — NaCHO₃I₂S. Krystalle. — KCHO₃I₂S. Nadeln. — Ba(CHO₃I₂S)₂ + 2 H₂O. Nadeln (aus verd. Alkohol). — Ba(CHO₃I₂S)₂ + 3 H₂O. Blättchen (aus Wasser + Alkohol). — Ba(CHO₂I₂S)₃ + 6 H₂O. Nadeln (aus Wasser). 100 g Wasser lösen bei 25° 17,23 g wasserfreies Salz.

Ammoniakderivate der Ameisensäure.

Formamid CH₃ON = HCO·NH₂ (H 26; E I 20). B. Beim Erhitzen von Kohlenoxyd und Ammoniak unter hohem Druck in Gegenwart von Tonscherben, auf Ton niedergeschlagenem Kupfer oder Wasser (K. H. MEYER, ORTHNER, B. 54, 1708; M., D. R. P. 390798; C. 1924 I, 1868; Frdl. 14, 239). Gleichgewicht der Bildung von Formamid aus Kohlenoxyd und Ammoniak: M., O., B. 54, 1706; 55, 857. Beim Leiten von Methylformiat-Dampf und Ammoniak über Bauxit bei 150—1800 (I. G. Farbenind., D. R. P. 463843; C. 1929 I, 2818; Frdl. 16, 704). Das Sulfat entsteht beim Eintragen von Blausäure in Schwefelsäuremonohydrat unter Kühlung und Aufbewahren (The Roessler & Hasslacher Chemical Co., D. R. P. 463721; C. 1928 II, 1486; Frdl. 16, 201).

F: 2,2° (LOWRY, CUTTER, Soc. 125, 1469; TAYLOR, DAVIS, J. phys. Chem. 32, 1469). F: 2,2° (LOWRY, CUTTER, Soc. 125, 1469; TAYLOR, DAVIS, J. phys. Chem. 32, 1409). D₄^{20,1}: 1,1339; D₄^{20,2}: 1,1301 (Tay., Da.; vgl. Low., Cut.; Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 72). Viscosität bei 25°: 0,03358 g/cmsec (Da., Joh.); bei 20°: Vorländer, Walter, Ph. Ch. 118, 16. Kryoskopische Konstante: ca. 5,2 (für 1 Mol in 1 kg Lösungsmittel) (Low., Cut.). Verbrennungswärme bei konstantem Volumen: 136,7 kcal/Mol (Roth, Banse in Landolt-Börnst. E III, 2906). Beugung von Röntgenstrahlen an flüssigem Formamid: Katz, Z. Phys. 45, 109; C. 1928 I, 154; Krishnamurti, Indian J. Phys. 3, 491: C. 1928 II, 2098. Elektrische Leitfähigkeit bei 25°: Kendall, Gross, Am. Soc. 43, 1428; vgl. Da., Joh. Magnetische Doppelbrechung an flüssigem Formamid: RAMANADHAM, Indian J. Phys. 4, 15; C. 1929 II, 2315. — Adsorption der Dämpfe an Tierkohle: Alexejewski, Ж. 55, 416; C. 1925 II, 642. Athyltartrat löst sich in Formamid bis zu 16%iger Lösung monomolekular (Low., Cut.). Verteilung zwischen Wasser und Äther bei 20—22°: Collander, Bärlund. Comment. biol. Helsingfors 2 [1926], Nr. 9, S. 9. Volumänderung beim Mischen mit Wasser bzw. mit Alkohol bei 30°: Ishikawa, C. 1928 I, 2344. Oberflächenspannung wäßr. Lösungen bei 20°: Collander, Bärlund, Comment. biol. Helsingfors 2 [1926], Nr. 9, S. 10. Dichte von Lösungen in Wasser und in 96 %igem und 44 %igem Alkohol: Burrows, J. Pr. Soc. N. S. Wales 58 [1919], 82, 86, 94. Dichte, Viscosität und elektrische Leitfähigkeit von Lösungen verschiedener anorganischer und organischer Salze in Formamid und in Gemischen aus Formamid und Athylalkohol: Da., Joh., Publ. Carnegie Inst. Nr. 260 [1918], S. 76. Diffusion durch Kollodiummembranen: Collander, Comment. biol. Helsingfore 2, Nr. 6; C. 1926 II,

720; Fujita, Bio. Z. 170, 19. Elektrische Leitfähigkeit von Formamidhydrobromid in Formamid bei 25°: Walden, Z. El. Ch. 26, 75; von Gemischen aus Formamid und Essigsaure bei 25°: KEN., GR., Am. Soc. 43, 1435.

Zersetzung von Formamid durch Sonnenlicht oder ultraviolettes Licht bei Gegenwart von Uransalzen: ALOY, VALDIGUIÉ, Bl. [4] 37, 1140. Bei der Elektrolyse von Formamid an Platin-Elektroden entstehen je nach der Temperatur wechselnde Mengen von Cyanursäure und anderen Produkten (Schaum, B. 56, 2461). Bei längerem Elektrolysieren von Formamid im Gemisch mit überschüssigem Methanol unter Kühlung bei 20—100 Volt und 0,1-0,15 Amp. bildet sich Allophansäuremethylester; reagiert analog bei der Elektrolyse im Gemisch mit weiteren Alkoholen; mit Benzylalkohol entstehen wenig Allophan-säurebenzylester und Benzaldehyd (SCHAUM). Gibt beim Leiten der Dämpfe über Permutit bei 400–450° oder über wasserfreies Alkalicarbonat bei 400° (I. G. Farbenind., D. R. P. 475556; C. 1929 II. 95; Frdl. 16, 689) sowie bei sehr schnellem Erhitzen (1—0,1 Sek.) auf Temperaturen oberhalb 400° in Gegenwart von Quarzkörnern, Bimsstein-Thoriumoxyd, Aluminiumphosphat und weiteren Katalysatoren Cyanwasserstoff (I. G. Farbenind.) D. R. P. 476662; C. 1929 II, 2261; Frdl. 16, 690). Liefert bei der Oxydation mit Kaliumpermanganat in konz. Ammoniak allein oder in Gegenwart von Ammoniumsulfat Cyansäure (Fosse, C. r. 172, 160; Fo., Laude, C. r. 173, 320). Geschwindigkeit der Hydrolyse durch 2n-Salzsäure und 2n-Bromwasserstoffsäure bei 25°: Krieble, McNally, Am. Soc. 51, 3372. Formamid reagiert in Gegenwart von Eisessig nicht mit salpetriger Säure; in Gegenwart von 2n-Salzsäure ist die Stickstoff-Entwicklung innerhalb 22 Stdn. quantitativ (PLIMMER. Soc. 127, 2653). Geschwindigkeit der Esterbildung durch absoluten und wasserhaltigen Alkohol bei 25° in Gegenwart von Chlorwasserstoff: Taylor, Davis. J. phys. Chem. 32, 1472. Reduktion von Methylenblau durch Formamid sowie durch Formamid und Bernsteinsäure in Gegenwart von Bact. coli: QUASTEL, Biochem. J. 20, 171, 180. Wirkung auf das Ausbleichen von Farbstoffen im Licht: MUDROVČIĆ, C. 1929 I, 22. Verwendung zur Herstellung plastischer Massen: Deutsche Kunsthorn-Ges., Schlinck, D. R. P. 429525; C. 1926 II, 957; Frdl. 15, 1127.

2CH₃ON + HBr. Elektrische Leitfähigkeit in Formamid bei 25°: WALDEN, Z. El. Ch. 26, 75. — CH₃ON + H₂SO₄. Krystalle (The Roessler & Hasslacher Chemical Co., D. R. P. 463721; C. 1928 II, 1486; Frdl. 16, 201).

N-[β.β.β-Trichlor-α-oxy-äthyl]-formamid, Chloralformamid (..Chloralamid") C₃H₂O₂NCl₃ = HCO·NH·CH(OH)·CCl₃ (H 27; E I 21). Physiologische Wirkung: Rydin, C. 1925 II, 413; 1927 II, 1049; vgl. ferner die Angaben in J. Houben, Fortschritte der Heilstoffchemie, 2. Abteilung, 1. Bd., 1. Hälfte [Berlin und Leipzig 1930], S. 565; 2. Hälfte, S. 695. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 78.

Aminomethandisulfonsäure, Methylamin-C.C-disulfonsäure $CH_5O_6NS_6=H_6N_7$ CH(SO₃H)₂ (H 29; E I 22). — KCH₄O₆NS₂ Magnetische Susceptibilität: PASCAL, C. r. 173, 712. — Cu[KCH₃O₆NS₂]₂. Intensiv blaue Krystalle (Delépine, Demars, Bl. Sci. pharmacol. 29, 17; C. 1922 I, 634). — Ni[KCH₃O₆NS₂]₂. Hellblaue, mikroskopische Krystalle (DEL., DEM.).

Formiminomethyläther C₂H₅ON = CH₃·O·CH:NH (H 28; E I 22). B. Das Hydrochlorid entsteht bei der Einw. von Chlorwasserstoff auf äquimolekulare Mengen von absol. Methanol und wasserfreier Blausäure in Toluol (Houben, Pfankuch, B. 59, 2394). — Das Hydrochlorid gibt beim Behandeln mit Hydroxylamin in Äther und Wasser Formamidoxim (H., J. pr. [2] 105, 24), mit Hydroxylamin in absol. Äther Formhydroximsäuremethylester (S. 89) (H.).

Formiminoathylather $C_3H_7ON = C_2H_5 \cdot O \cdot CH : NH$ (H 28; E I 22). B. Das Hydrochlorid entsteht bei der Einw. von Chlorwasserstoff auf äquimolekulare Mengen wasserfreie Blausäure und absol. Alkohol in Petroläther (Houben, Pfankuch, B. 59, 2394). — Das Hydrochlorid liefert bei allmählichem Behandeln mit Hydroxylamin in Äther und wenig Wasser unter Kühlung Formhydroximsäureäthylester; gelegentlich entsteht außerdem etwas Formamidoxim (H., J. pr. [2] 105, 21, 24). — C₃H₇ON + HCl. Ziemlich schwer löslich in Acetanhydrid.

Formiminopropyläther $C_4H_9ON=C_2H_5\cdot CH_2\cdot O\cdot CH:NH$ (H 29). Das Hydrochlorid liefert beim Schütteln mit Hydroxylamin in absol. Äther Formhydroximsäurepropylester [KÜHN] (HOUBEN, J. pr. [2] 105, 25).

Nitril der Ameisensäure.

Cyanwasserstoff, Blausäure CHN = HC: N (H 29; E I 22). Literatur: F. Schuster in F. ULLMANN, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. III [Berlin-Wien 1929], S. 470-510. - Zur Konstitution vgl. K. H. MEYER, HOPF, B. 54, 1712; HARKER, J. Soc. chem. Ind. 40 [1921], 185 T; ENKLAAR, R. 42, 1005, 1011; 44, 889; 45, 414; 46, 709;

USHERWOOD, Soc. 121, 1606; PARTINGTON, CARROLL, Phil. Mag. [6] 49, 679; C. 1925 I, 2617: INGOLD, Soc. 1926, 26, 2816; Wöhler, Roth, Ch. Z. 50 [1926], 781; COATES, HINKEL. Angel, Soc. 1928, 540; Slotta, Jacobi, J. pr. [2] 120, 268; Dadieu, Naturviss. 18, 895; C. 1931 I, 23; B. 64 [1931], 361; REICHEL, STRASSER, B. 64, 1998; PRÉVOST, Bl. [5] 2 [1935], 1145; WILLIAMS, J. chem. Phys. 4 [1936], 84; GORDY, WI., J. chem. Phys. 4 [1936], 85; C. 1937 I, 1125; 1938 I, 3186; HERZBERG, J. chem. Phys. 8, 847; C. 1941 I, 3478; vgl. a. E. C. Franklin, The nitrogen system of compounds [New York 1935], S. 128, 282.

Vorkommen.

Blausäure findet sich in Pflanzen nicht in freier Form; bei ihrem Auftreten handelt es sich stets um enzymatische Abspaltung aus Glykosiden von Cyanhydrinen (Brunswick, Sber. Akad. Wien 130 I [1921], 388). Zu den in H 2, 30; E I 2, 22 aufgeführten Zusammenstellungen von Pflanzen, in denen Blausäure in Form von Glykosiden vorkommt, ist hinzuzufügen: BR., Sber. Akad. Wien 130 I, 407, 411; ROSENTHALER, Bio. Z. 134, 217; Schweiz. Apoth. - Ztg. 59, 465; C. 1921 III, 1247; 1926 II, 2606. — Glykosidisch gebundene Blausäure findet sich: in den Blättern des Farns Polypodium aureum (Heilbronn, Ber. dtsch. bot. Ges. 47, 230; C. 1929 II. Blättern des Farns Polypodium aureum (Hellbronn, Ber. dtech. bot. Ges. 47, 230; C. 1929 II, 1548), in der Grasart Chloris petraea (Ros., Ar. 1925, 563), in Sorghum vulgare (Andropogon sorghum) (Dowell, J. agric. Res. 16, 178; C. 1921 I, 31; Swanson, J. agric. Res. 22 [1921]. 137; Pinckney, J. agric. Res. 27, 720; C. 1924 II, 1394; Tsukunaga, J. pharm. Soc. Japan 48, 14; C. 1928 I, 1882; Robinson, Biochem. J. 23, 1112), in Sorghum saccharatum (Ts.; vgl. C. Wehmer, Die Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 72 Anm. 8), in Sorghum cernuum und Sorghum caffrorum (Rob., Biochem. J. 23, 1112). Der Blausäuregehalt von Sorghum nigrum erhöht sich nach Einspritzung von Tyrosin (Rosenthaler, Bio. Z. 134, 222). Blausäuregehalt von Sudangras (unbestimmte Gramineen-Spezies) in verschiedenen Wachstumsstadien: Swanson, J. agric. Res. 22, 128; C. 1924 II, 2853; Ts. Blausäuregehalt von bitteren Mandeln: Ros. Rio. Z. 134, 227; von bitteren Mandeln: Ros. Rio. Z. Relevice bitteren Mandeln: Ros., Bio. Z. 184, 227; von bitteren und süßen Mandeln: Ros., Schweiz. Apoth.-Zig. 60, 524; C. 1923 I, 546; von Pfirsichkernen: Ros., Bio. Z. 136, 482; von Aprikosenkernen: Ros., Bio. Z. 134, 228. In gebundener Form findet sich Blausäure ferner in Samenkernen von Prunus virginiana (Ros., Schweiz. Apoth.-Ztg. 60, 522; C. 1923 I, 546). Gehalt der Blätter von Kirschlorbeer (Prunus laurocerasus) an Blausäure in verschiedenen Wachstumsstadien: Ros., Schweiz. Apoth.-Zig. 59, 10, 22; 62, 707; Pharm. Acta Helv. 1. 226; C. 1921 I, 774; 1925 II, 1076; 1928 I, 706; Bio. Z. 134, 230; 190, 169; SIEGFRIED, Schweiz. Apoth.-Zig. 59, 325; C. 1921 IV, 549; ROBINSON, Biochem. J. 23, 1109; HEILBRONN, Ber. disch. bot. Ges. 47 [1929], 232; unter dem Einfluß von Verwundungen: Ros., Schweiz. Apoth.-Ztg. 59, 643; 60, 524; C. 1922 I, 577; 1923 I, 546; bei Infektion mit Pilzen: Ros., Schweiz. Apoth.-Ztg. 59, 641; C. 1922 I, 577. Blausäuregehalt von Kirschlorbeerwasser: PECKER, J. Pharm. Chim. [7] 25, 426; C. 1922 IV, 912. Blausäure findet sich gebunden in Lotus Jolyi Battandier (FOLEY, MUSSO, Arch. Inst. Pasteur Algérie 8, 394; C. 1927 I, 2550). 2659); in verschiedenen Lotus-Arten (Guerin, C. r. 187, 1158; 189, 115, 1011); in Tetragonolobus-, Dorycnium- und Bonjeania-Arten (G., C. r. 189, 115). Blausäuregehalt der Bohnen von Phaseolus lunatus (Rangoon-Bohnen): LÜHRIG, Ch. Z. 44, 166; C. 1920 I, 654; GABEL, VON Phaseolus lunatus (Rangoon-Bohnen): LÜHRIG, Ch. Z. 44, 166; C. 1920 I, 654; GABEL, KRÜGER, Münch. med. Wschr. 67, 214; C. 1920 II, 608; DUNBAR, Gesundh.-Ing. 43, 97: C. 1920 II, 698; ROSENFELD, Berl. klin. Wschr. 57, 269; C. 1920 II, 743; JONSCHER, Z. öff. Ch. 26, C. 1920 II, 743; FINCKE, Ch. Z. 44, 318; C. 1920 IV, 324; KOENIG, Ch. Z. 44, 407, 415, 433; C. 1920 IV, 325; Blausäuregehalt von Leinkuchen: Cranfield, Analyst 50, 18; C. 1925 I, 2096; Dusserre, Landw. Jb. Schweiz 39, 794; C. 1926 I, 1318. Blausäure findet sich gebunden in den Pflanzenorganen von Hevea brasiliensis (Bobilioff, Arch. Rubbercult. Nederl.-Indië 11, 177; C. 1927 II, 751). In Samen von Schleichera trijuga Willd. (Rosenthaler, Bio. Z. 134, 228). In geringer Menge in der Rinde von Rhamnus frangula (Gunton, Beal, J. am. pharm. Assoc. 11, 672; C. 1928 I, 1515; vgl. dagegen Rosenthaler, Pharm. Acta Helv. 1, 231; C. 1928 I, 706). Blausäuregehalt der Blätter von Sambucus nigra (schwarzer Holunder) in verschiedenen Wachstumsstadien: Ros., Schweiz Anoth.-Zig. 62, 707; C. 1928 II, 1076: Bio. Z. 190. 178; Robinson, Biochem. J. 23, 1113: Apoth.-Zig. 62, 707; C. 1925 II, 1076; Bio. Z. 190, 178; Robinson, Biochem. J. 23, 1113; vgl. a. Mazž. C. r. 171, 1393. Der Blausäuregehalt der Blätter und Stengel von Sambucus nigra wird durch Düngung mit Aminosäuren vermehrt (Ros., Bio. Z. 190, 178). Wie im rohen Leuchtgas (H 2, 33, Z.17 v. u.; vgl. E I 3, 24, Z.29 und 30 v. o.) findet sich

sich Blausäure in geringer Menge im Schwelwasser von Steinkohlenurteer (Schütz, В. 56,

163 Anm. 4).

Bildung der Blausäure bzw. ihrer Salze.

Zusammenfassende Übersicht über technische Herstellungsverfahren: B. WARSER, Die Luftstickstoff-Industrie, 2. Aufl. [Leipzig 1932], S. 340; B. NEUMANN, Lehrbuch der chemischen Technologie und Metallurgie, 3. Aufl., 1. Bd. [Berlin 1939], S. 415; GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 21: Natrium [Berlin 1928], S. 779; Syst. Nr. 22: Kalium [Berlin 1938], S. 871. Übersichten über Patentliteratur: Wasser; A. Briver, J. D'Ans, Fortschritte in der anorganisch-chemischen Industrie, Bd. 2 [Berlin 1925], S. 1101; Bd. 3 [1930], S. 662; Bd. 4 [1935], S. 1326; Bd. 5 [1940], S. 1309; vgl. Franchot, Ind. Eng. Chem. 16 [1924], 235.

Bildung bzw. Darstellung aus elementarem Stickstoff. Technische Herstellung von Natriumcyanid durch Einleiten von Natriumdampf und Stickstoff in zerkleinerte Holzkohle unter Zusatz von geringen Mengen Eisen: Broch, D. R. P. 368339; C. 1923 II, 1152; Bräuer-D'Ans 2, 1124; in Kohlenstoff enthaltendes geschmolzenes Eisen: Bucher, J. ind. Eng. Chem. 9, 243; Nitrogen Products Co., D. R. P. 332580, 334145; Bräuer-D'Ans 2, 1120, 1121. Natrium yanid entsteht beim Erhitzen von Kohle und Natrium im Stickstoffstrom; die Reaktion wird durch Gegenwart von Eisen stark beschleunigt (Bu., J. ind. Eng. Chem. 9, 234; C. 1920 IV, 245). Gleichgewichtskonstante des Systems $Na_2CO_3 + 4C + N_2 = 3CO + 2NaCN$ bei Temperaturen oberhalb 850°: Ingold, Wilson, Soc. 121, 2278; Guernsey, Mitarb., Ind. Eng. Chem. 18, 243; C. 1926 I, 3532; vgl. Franchot, Ind. Eng. Chem. 16 [1924], 235. Die Bildung von Natriumeyanid aus Kohle, Natriumearbonat und Stickstoff in der Hitze wird durch Eisen sehr erheblich beschleunigt (BUCHER, J. ind. Eng. Chem. 9 [1917], 236; THORSSELL, Z. ang. Ch. 33, 240, 244, 252; BERL, BRAUNE, Fortschr. Ch., Phys. 18, 225, 229; C. 1925 I, 1364; vgl. Guernsey, Sherman, Am. Soc. 47, 1933; 48, 140, 695); hierauf beruht das Bucher-Verfahren zur technischen Darstellung von Natriumcyanid (Bu., J. ind. Eng. Chem. 9, 240; C. 1920 IV, 245; Parsons, J. ind. Eng. Chem. 9, 840; Philipp, Chem. met. Eng. 22 [1920], 315; Posnyar, Merwin, J. Washington Acad. 9, 28; C. 1920 IV, 362; FERGUSON, MANNING, J. ind. Eng. Chem. 11, 946; C. 1920 IV, 707; BROWN, J. ind. Eng. Chem. 11, 1010; C. 1921 II, 173; HARA, Technol. Rep. Tohoku Univ. 2, 1; C. 1921 IV, 652; BARTELL, J. ind. Eng. Chem. 14, 699; C. 1922 IV, 793; ANONYMUS, Chem. Age London 6 [1922], 99; BICHOWSKY, Chem. met. Eng. 29 [1923], 1098; GUERNSEY, Mitarb.; vgl. METZGER, Ind. Eng. Chem. 18 [1926], 161. CHICKERING (Chem. met. Eng. 31, 967; C. 1925 I, 1010) benutzt ein Gemisch von Eisen(III)-oxyd und Natriumfluorid als Katalysator; Aktiebolaget Kväfveindustrie (D. R. P. 325878; C. 1920 IV, 680; Bräuer-D'Ans 2, 1107) verwendet unterhalb 550° reduziertes Eisen, Nitrogen Products Co. (D. R. P. 329660; C. 1921 II, 447; Bräuer-D'Ans 2, 1108) brikettiertes feinverteiltes Eisen. Ferro Chemicals Inc. (D. R. P. 387286; C. 1924 I, 964; Bräuer-D'Ans 2, 1115) beschleunigen die Bildung von Alkalicyaniden aus Natrium- oder Kaliumcarbonat, Stickstoff und Kohle durch vorherige Zugabe von Cyanid. Angaben über Bildung von Cyaniden im Hochofen s. bei Kaliumcyanid (S. 52) und Bariumcyanid (S. 57). — Natriumcyanid entsteht beim Leiten von Stickstoff über Natriumcarbid in Gegenwart von Eisen bei 500—1000° (Guernsey, Sherman, Am. Soc. 47, 1937). In Gegenwart von Bariumcarbonat oder Bariumcyad entsteht aus Natriumsulfat oder Natriumchlorid, Kohle, Stickstoff und Eisen bei 1000° Natriumcyanid in gutter Anglewte (H. p. Tackel Rew Takkel Urin 4 404). Myrin C 1995 II 4200. Ausbeute (HARA, Technol. Rep. Tohoku Univ. 4, 191; MIURA, C. 1925 II, 1300). — Technische Herstellung von Bariumcyanid durch Erhitzen von Bariumcarbonat und Kohle im Stickstoffstrom: Thorssell, Z. ang. Ch. 33, 240, 251; ältere Literatur s. bei Askenasy, Grude, Z. El. Ch. 28, 130; Patentliteratur s. auch in GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 30: Barium [Berlin 1932], S. 327. Verlauf der Bildung von Bariumeyanid durch Erhitzen von Bariumcarbonat mit Graphit, Holzkohle oder Koks im Stickstoffstrom auf 1100—1600°: As., Gr., Z. El. Ch. 28, 137; Schweitzer, Z. El. Ch. 32, 99. Die Bildung von Bariumcyanid aus Bariumcarbonat, Kohle und Stickstoff bei 1300—1400° wird durch Zusatz von Vanadium oder Bariumfluorid begünstigt (As., Bring, Z. El. Ch. 32, 216). Unter bestimmten Bedingungen bilden sich aus Methan, Äthylen oder Acetylen in Gegen-

Unter bestimmten bedningungen bilden sich aus Methan, Anylen der Actoylen in Gegenwart eines großen Stickstoff-Überschusses im Glimmlichtbogen und im Lichtbogen bei Atmosphärendruck erhebliche Mengen Blausäure (Koenig, Hubbuch, Z. El. Ch. 28, 208). Technische Herstellung von Blausäure aus Methan und Stickstoff oder aus Wasserstoff, Stickstoff und Kohlenoxyd mit Hilfe elektrischer Entladungen: I. G. Farbenind., D. R. P. 457563; C. 1928 I, 2208; Bräuer-D'Ans 4, 1345. Blausäure entsteht in geringer Menge bei der Einw. einer elektr. Glimmentladung auf Methan oder Naphthalin und Stickstoff (F. Fischer, Peters, Ph. Ch. [A] 141, 190, 193). Entgegen den E I 2, 23, Z. 8 v. u. mitgeteilten Angaben bildet sich Blausäure nicht bei der Einw. von aktivem Stickstoff auf Methan (Willey, Rideal, Soc. 1927, 677). Technische Herstellung von Blausäure aus Stickstoff, Wasserstoff, Methan und Kohlenoxyd im Hochspannungs-Lichtbogen unter Überdruck: Gold- u. Silber-Scheideanst., D. R. P. 360 891; C. 1923 II, 744; Bräuer-D'Ans 2, 1106. Blausäure entsteht aus Acetylen und Stickstoff in der Corona-Entladung (Monte-Martini, G. 52 II, 97) oder durch Erhitzen auf 200° (Francesconi, Ciurlo, G. 54, 688) sowie bei der Explosion von Acetylen-Stickstoff-Gemischen (Garner, Matsuno, Soc. 119, 1903; G., Saunders, Soc. 125, 1638) auch in Gegenwart von Helium, Wasserstoff (G., M., Soc. 121, 1732) oder Sauerstoff (G., S., Soc. 125, 1634).

Bildung bzw. Darstellung aus Stickstoffverbindungen. Gleichgewicht der Reaktion: $NH_2 + C \rightleftharpoons HCN + H_2$ bei 800° : BADGER, Am. Soc. 46, 2170. Die Bildung von Ammoniumcyanid aus Ammoniak und Kohlenoxyd beginnt bei $600-650^\circ$ und steigert

sich bei Rotglut; in Gegenwart der Oxyde von Aluminium, Zirkon und Thor setzt die Reaktion schon bei etwa 400° ein (Mailhe, de Godon, Bl. [4] 27, 737; A. ch. [9] 13, 226). Kinetik der Bildung aus Ammoniak und Kohlenoxyd in Gegenwart der Oxyde von Aluminium, Zirkon, Thor, Cer, Vanadium und Uran bei 460—560°: SIMAKOW, Ж. 61, 997; С. 1980 I, 1890. Technische Herstellung von Blausäure durch Überleiten eines Gemisches von Ammoniak und Kohlenoxyd, das einen zur Bindung der entstehenden Kohlensäure ausreichenden Ammoniak-Überschuß enthält, über Kontaktstoffe: I. G. Farbenind., D. R. P. 444502; C. 1927 II, 502; Bräuer-D'Ans 3, 676; durch Überleiten von Ammoniak und Kohlenoxyd über glasige Tonerde: I. G. Farbenind., D. R. P. 449730; C. 1927 II, 2352; Bräuer-D'Ans 8, 677; vgl. K. H. MEYER, ORTHNER, B. 54, 1708; über die Oxyde von Aluminium, Zirkon. Thor oder Uran: I. G. Farbenind., D. R. P. 460134; C. 1928 II, 184; Frdl. 15, 1811; Bräuer-D'Ans 4, 1350. In geringer Menge bildet sich Kaliumcyanid beim Erhitzen von Kaliumnitrat mit Kohle (HOFMANN, Mitarb., B. 59, 210). Blausaure entsteht aus Anlagerungsverbindungen aus Kohlendioxyd und Aminosiloxenen beim Belichten unter Ausschluß von Sauerstoff oder bei tagelanger Einw. geringer Mengen von Sauerstoff (KAUTSKY, Naturwiss. 16, 204; C. 1928 I, 2236). Technische Herstellung von Natriumcyanid durch Erhitzen von Titannitrid mit Natriumcarbonat und Kohle oder besser Titancarbid: v. Bichowsky, Chem. met. Eng. 29, 1098; C. 1924 I, 2009; D. R. P. 412114; C. 1925 II, 430; Bräuer-D'Ans 3, 672. — Zur Bildung nachweisbarer Mengen Blausäure bei der Oxydation verschiedenartigster organischer Verbindungen mit Salpetersäure (H 2, 33, Z. 8 v.o.; EI 2, 23, Z. 3 v.u.) vgl. Routala, Sevón, Cellulosech. 7, 115; C. 1926 II, 1600. Blausäure entsteht bei der Einw. von Stickoxyd auf Methan, Athylen oder besser Acetylen bei hohen Temperaturen (ca. 900°) in Gegenwart eines Gemisches gleicher Teile Aluminiumoxyd und Quarz; die Bildung von Blausäure wird durch Zusatz von Wasserstoff begünstigt (ELÖD, NEDELMANN, Z. El. Ch. 33, 221). Leiten der Dämpfe von Nitromethan und Wasserstoff über Nickel bei 320-340° ergibt beträchtliche Mengen Blausäure (MAILHE, A. ch. [9] 13, 205). Zur Bildung von Blausäure aus aromatischen Nitro- oder Nitrosoverbindungen durch Einw. von Persulfat in siedender wäßriger Lösung nach SEYEWETZ, POIZAT (C. r. 148 [1909], 1111) vgl. RICCA, G. 57, 269, 274. Bei der Oxydation mit Permanganat in ammoniakalischer Lösung bei Gegenwart von Silber- oder Quecksilbersalzen entsteht Blausäure aus aliphatischen Alkoholen und Phenolen (Fosse, Hieulle, C. r. 174, 40; C. r. Soc. Biol. 86, 179; C. 1922 I, 1228) sowie aus Glycerin (F., C. r. Soc. Biol. 86, 176; C. 1922 I, 1227). In geringer Menge bildet sich Blausäure aus Formaldehyd und Kaliumnitrit in wäßr. Lösung bei Einw. des zerstreuten Tageslichtes (Ваиріясн, J. biol. Chem. 48, 499) oder aus Formaldehyd und Kaliumnitrat in mit Kohlendioxyd gesättigtem Wasser am Sonnenlicht (MENAUL, J. biol. Chem. 48, 297). In beträchtlicher Menge entsteht Blausäure bei der Oxydation von Formaldehyd mit Permanganat in ammoniakalischer Lösung bei Zusatz von Silbernitrat, Quecksilberoxyd oder Quecksilbersalzen (Fosse, C. r. 173, 1371; C. r. Soc. Biol. 86, 177; C. 1922 I, 1227; F., HIEULLE, C. r. 174, 1022). Erhebliche Mengen Blausäure werden aus Vanillin beim Erwärmen mit 5%iger Salpetersäure auf 80° gebildet (ROUTALA, SEVÓN, Cellulosech. 7, 116; C. 1926 II, 1601).

In nahezu quantitativer Ausbeute entsteht Blausäure beim Überleiten eines Gemisches aus Methylformiat und überschüssigem Ammoniak über aktive Tonerde bei 260° (I. G. Farbenind., D. R. P. 460613; C. 1928 II, 184; Frdl. 15, 1811; Bräuer-D'Ans 4, 1363). Technische Herstellung von Blausäure aus Formamid durch sehr schnelles Erhitzen (1—0,1 Sek.) auf Temperaturen oberhalb 400° in Gegenwart von Katalysatoren: I. G. Farbenind., D. R. P. 476662; C. 1929 II, 2261; Frdl. 16, 690; Bräuer-D'Ans 4, 1355; durch Überleiten über Natriumcarbonat oder Natriumpermutit bei 400—450°: I. G. Farbenind., D. R. P. 475556; C. 1929 II. 95; Frdl. 16, 689; Bräuer-D'Ans 4, 1355; durch Überleiten über glasige Tonerde bei 300°: I. G. Farbenind., D. R. P. 454353; C. 1928 I, 974; Bräuer-D'Ans 4, 1353. Blausäure bildet sich bei der Einw. von Natriumarsenit in Wasser auf Cyanameisensäureiminoäthyläther C₂H₅·O·C(:NH)·CN (Gutmann, B. 54, 1413) und bei der Explosion von Acetylen-Dicyan-Gemischen (Garner, Matsuno, Soc. 121, 1732). Kaliumcyanat wird bei ca. 600° nur von amorphen Kohlen zu Kaliumcyanid reduziert (s. H 2, 32, Z. 10 v. u.), nicht jedoch von krystallinen Formen des Kohlenstoffs (K. A. Hofmann, U. Hofmann, B. 59, 2441). — Technische Herstellung von Blausäure durch Erhitzen von Kalkstickstoff mit Kohlenoxyd und Wasserstoff: Stickstoffwerke G. m. b. H., D. R. P. 417018; C. 1925 II, 2295; Bräuer-D'Ans 3, 674; von Alkalicyaniden durch Erhitzen von Kalkstickstoff und Alkalicarbonaten auf 450—700° mit Kohlenoxyd und Wasserstoff: Stickstoffwerke, D. R. P. 480905; C. 1929 II, 1849; Bräuer-D'Ans 4, 1416; mit Kohlenoxyd und Wasserstoff: Stickstoffwerke, D. R. P. 478946; C. 1929 II, 1469; Frdl. 16, 282; Bräuer-D'Ans 4, 1415. Technische Herstellung eines Gemischs von Natrium- und Calciumcyanid durch Verschmelzen von Kalkstickstoff mit Natrium-chlorid im elektrischen Ofen: Landis, Trans. am. electroch. Soc. 37, 653; C. 1921 IV, 652: Buchanan, Trans. electroch. Soc. 60, 93; C. 1931 II, 3543; durch Erhitzen von Kalkstickstoff mit Calciumcarbid und Na

aus Kalkstickstoff, Holzkohle und Alkalichlorid in Gegenwart von Cer., Magnesium- oder Aluminiumnitrid bei 950°: JAKOWKIN, FLEISCHER, Trudy Inst. prikl. Chim. 1927, Heft 5. 3; C. 1927 II, 2179; von Kaliumferrocyanid durch Erhitzen von Kalkstickstoff mit Kaliumcarbonat und Eisen: Strontian- u. Potasche-Fabrik Roßlau, D. R. P. 330194; C. 1921 II. 448; Bräuer-D'Ans 2, 1149. — Man erhält Blausäure aus Rhodanwasserstoff bei der Einw. von Licht auf die Lösung in Amylalkohol (WERNER, BAILEY, Soc. 1926, 2970) und bei der Reduktion mit Zink und Salzsäure bzw. Schwefelsäure (SESTINI, FUNARO, G. 12 [1882], 187); Cyanide entstehen beim Erhitzen von Rhodaniden mit Wasserstoff (Playfair, J. Soc. chem. Ind. 11, 14; C. 1892 I, 526; CONROY, HESLOP, SHORES, J. Soc. chem. Ind. 20, 320; C. 1901 I, 1278; MILBAUER, Z. anorg. Ch. 49, 50; Ges. f. Kohlentechnik, D. R. P. 404959; C. 1925 I, 898; Bräuer-D'Ans 3, 685). Blausäure läßt sich herstellen durch Erhitzen von Rhodanwasserstoff (DU BOIS, GLUUD, KELLER, D. R. P. 410418; C. 1925 II, 429; Bräuer-D'Ans 3, 683) bzw. Rhodanammonium mit Luft (DU B., Mitarb., D. R. P. 411104; C. 1925 II, 429; Bräuer-D'Ans 3, 684) in Gegenwart von Aluminium oder Aluminiumverbindungen (Bergwerksverband zur Verwertung von Schutzrechten der Kohlentechnik, D. R. P. 489182; C. 1980 I, 1536; Frdl. 16, 276; Bräuer-D'Ans 4, 1366) oder durch Oxydation von nichtflüchtigen Rhodanverbindungen mit Luft (Bergwerksverb., D. R. P. 488172; C. 1930 I, 1051; Frall. 16, 276; Bräuer-D'Ans 4, 1373). Blausäure entsteht beim Erhitzen von wäßr. Lösungen von Natriumrhodanid mit Natriumchlorit (Levi, R. A. L. [5] 31 I, 373) und bei der Einw. von Jod auf wäßr. Kaliumrhodanid Lösung bei Zimmertemperatur (Kaufmann, Ar. 1925, 703). Natriumcyanid wird gebildet beim Kochen von Athylrhodanid mit Natriumarsenit in Wasser (GUTMANN, B. 54, 1410). Blausäure entsteht bei der Einw. von Dicyansulfid in Schwefelkohlenstoff auf Natriumarsenit in Wasser (G., B. 54, 1413). Neben anderen Produkten beim Erhitzen von Selencyan-essigsäure NC Se CH₂ CO₂H mit schwacher Essigsäure oder Salzsäure oder mit Natronlauge (Behaghel, Rollmann, B. 62, 2698). Bedeutende Mengen Blausäure entstehen bei aufeinanderfolgender Behandlung von Acetessigester mit Natriumnitrit-Lösung und mit überschüssiger Schwefelsäure und nachfolgendem Erwärmen (ROUTALA, SEVÓN, Čellulosech. 7 [1926], 116). — Nachweisbare Mengen Blausäure bilden sich beim Leiten der Dämpfe von Methylamin und Ammoniak über Nickel bei 380° (MAILHE, A. ch. [9] 13, 189). Blausäure entsteht bei der thermischen Zersetzung von Athylamin und Propylamin über Kaolin bei 700° (UPSON, SANDS, Am. Soc. 44, 2306). Kaliumcyanid bzw. Natriumcyanid entsteht durch Einw. von Kalium bzw. Natriumamid auf Äthylcarbylamin bei 80° (Franklin, J. phys. Chem. 27, 177). Blausäure bildet sich aus aliphatischen Aminen und Anilin bei der Oxydation mit Permanganat in ammoniakalischer Lösung bei Gegenwart von Silbernitrat (Fosse, Hieulle, C. r. 174, 40; C. r. Soc. Biol. 86, 180; C. 1922 I, 1228). Bei der unvollständigen Verbrennung der Dämpfe von Anilin, Diphenylamin, Pyridin und Carbazol (K. A. HOFMANN, WILL, B. 55, 3228, 3230). Neben anderen Produkten entsteht Blausäure beim Erhitzen von Nitropilocarpin (Syst. Nr. 4546) mit Bariumhydroxyd-Lösung (Max Polonovski, Mi. Polonovski, Bl. [4] 31, 1036, 1040). Bei der Oxydation von Saccharose, Glucose, Dextrin, Stärke und Cellulose mit Permanganat in ammoniakalischer Lösung unter Zusatz von Silbernitrat (F., C. r. Soc. Biol. 86, 176; C. 1922 I, 1227). Beträchtliche Mengen Blausäure bilden sich beim Kochen von Fichtenholz oder Lignin mit verd.

Salpetersäure (ROUTALA, SEVÓN, Cellulosech. 7, 114, 117; C. 1926 II, 1600).

Biochemische Bildung. Bakterielle Bildung von Blausäure durch verschiedene Stämme von Bac. pyocyaneus je nach den Stämmen in verschiedener Menge: Patty, C. 1922 I, 208. Enzymatische Bildung von Blausäure aus Leinkuchen bei verschiedener Temperatur und Zeit in neutraler, saurer und alkalischer Lösung: Stettbacher, Landw. Jb. Schweiz 39, 798; C. 1926 I, 1318; Weidmann, Landw. Jb. Schweiz 39, 804; C. 1926 I, 1318. Blausäure entsteht bei der Fäulnis tierischer Organe (Sensi, Revello, Ann. Chim.

applic. 16, 208, 268, 280; C. 1926 II, 1545. 1884).

Technische Gewinnung von Cyaniden bei der Verkohlung tierischer Abfälle wie Fischabfälle oder Knochen: Krämer, Reiffen, D. R. P. 398642; C. 1924 II, 1511; Bräuer-D'Ans 3, 674; aus der Melassenschlempe: Muhlert, Ch. Apparatur 12, 156, 189, 211; C. 1926 II, 118; Guillissen, Chim. et Ind. 17, Sonder-Nr. S. 155C; C. 1927 II, 1407; aus den Schlempen der Branntweinbrennerein: De Jussieu, Ind. chim. 9, 530; C. 1923 II, 757; Muhlert, D. R. P. 339302; C. 1921 IV, 789; Bräuer-D'Ans 2, 1133; Gold- u. Silber-Scheideanst., D. R. P. 412924; C. 1925 II, 1094; Bräuer-D'Ans 3, 675.

Technische Gewinnung aus Kohlengas als Natriumcyanid: MUELLER, Chem. met. Eng. 80, 978; C. 1924 II, 1419; durch Auswaschen mit konz. Soda-Lösung, in der Eisen(II)-sulfid suspendiert ist: ESFENHAHN, Chem. met. Eng. 26, 939; C. 1922 IV, 512; D. R. P. 381064; C. 1923 IV, 900; Bräuer-D'Ans 2, 1139. Patentliteratur über weitere Verfahren zur Gewinnung von Blausäure und Cyaniden aus Kohlengasen (vgl. H 2, 33, Z. 4 v. u.) s. Bräuer-D'Ans 2, 1105; 3, 678; 4, 1375.

Wasserfreie Blausaure läßt sich darstellen durch Einw. von Schwefelsaure auf Natriumcyanid (ZIEGLER, B. 54, 110; Org. Synth. Coll. Vol. I [1932], 307; deutsche Ausgabe, S. 310),

[Syst. Nr. 156

auf Kaliumeyanid (Lindemann, A. 481, 290; Haba, Sinozaki, Technol. Rep. Tohoku Univ. 5, 80; C. 1925 II, 2124; Manicke, Ch. Z. 50, 334; C. 1926 II, 19), auf das Doppelsalz von Natriumeyanid und Kaliumeyanid (Houben, J. pr. [2] 105, 21) und durch Einw. von wäßr. Phosphorsaure auf Kaliumferrocyanid (BREDIG, SHIRADO, Z. El. Ch. 33, 209; SH., Bl. chem. Soc. Japan 2 [1927], 85). Darstellung von Blausäure durch Einw. von Kohlendioxyd und Wasser auf Natrium- oder Calciumcyanid in der Wärme: Bichowsky, Ind. Eng. Chem. 17, 57, 959; C. 1925 I, 2069; 1926 I, 2798; METZGER, Ind. Eng. Chem. 18 [1926], 161; durch Einw. von Schwefelwasserstoff auf Quecksilber(II)-cyanid: Partington, Carroll, Phil. Mag. [6] 49 [1925], 668. Einw. von verd. Schwefelsäure auf Kaliumcyanid-Lösung ergibt eine gute Ausbeute an gasförmiger Blausäure nur beim Arbeiten unter vermindertem Druck und bei niederer Temperatur (HARKER, J. Soc. chem. Ind. 40, 183 T; C. 1921 IV, 1080). Entwickeln von Blausäure aus Cyaniden mit Hilfe von Salpetersaure: Gold- u. Silberscheideanst., D. R. P. 386396; C. 1924 I, 709; Bräuer-D'Ans 2, 1142. Darstellung von flüssiger Blausäure bzw. Entwicklung von Blausäure aus Cyaniden zur Schädlingsbekämpfung und zu Desinfektionszwecken s. S. 48.

Haltbarmachen von flüssiger Blausäure durch Zusatz von 0,1 % iger Schwefelsäure: Anonymus, Jber. chem.-tech. Reichsanst. 4 [1924/1925], 35, 43; 5 [1926], 68; vgl. Walker. ELDRED, Ind. Eng. Chem. 17 [1925], 1076; von 83% iger Phosphorsaure: BREDIG, SHIRADO, Z. El. Ch. 33, 209; von Salzsäure oder Essigsäure: Sieverts, Hermsdorf, Z. ang. Ch. 34. 4 Anm. 13; von Oxalsäure: Gold- u. Silber-Scheideanst., D. R. P. 352979; C. 1922 IV, 587; Bräwer-D'Ans 2, 1143; von Chlorcyan: Herzog, Ch. Z. 50 [1926], 493 Anm.; durch Aufbewahrung in Gefäßen aus Kupfer, Nickel oder Kobalt: Gold- u. Silber-Scheideanst., D. R. P. 443741; C. 1927 II, 502; Frdl. 15, 177; Bräuer-D'Ans 3, 694. Aufbewahren von Blausäure durch Absorption an Aktivkohle: Gold- u. Silber-Scheideanst., D. R. P. 403378; C. 1925 I, 292; Bräuer-D'Ans 3, 692; an andere saugfähige Stoffe: Gold- u. Silber-Scheideanst., D. R. P. 447913; Bräuer-D'Ans 3, 693.

Flüssige Blausäure des Handels enthält durchschnittlich 2-4% Wasser (WALKER. ELDRED, Ind. Eng. Chem. 17 [1925], 1075; WÖHLER, ROTH, Ch. Z. 50 [1926], 761).

Physikalische Eigenschaften der Blausäure.

F: -13,4° (Bredig, Teichmann, Z. El. Ch. 31, 451). E: -14 bis -15° (Tromp, R. 41, 286). Schmelzpunkt unter hohen Drucken: G. Tammann, Kristallisieren und Schmelzen [Leipzig 1903], S. 226. Kp₇₈₀: 25,7° (Coates, Hinkel, Angel, Soc. 1928, 542; vgl. Hara, Sinozaki, Technol. Rep. Töhoku Univ. 4, 151; C. 1925 II, 1591). Dampfdruck von fester Blausäure zwischen —86,11° (0,132 mm) und —13,64° (137,45 mm) und von flüssiger Blausäure zwischen —16,46° (120,05 mm) und +46,19° (1564,1 mm): Si., Ha., Mittsukuri, Technol. Rep. Tohoku Univ. 6, 161; C. 1927 II, 225; von fester Blausaure zwischen —39,5° (50,24 mm) und —15,25° (128,78 mm) und von flüssiger Blausäure zwischen —8,12° (183,08 mm) und +27,22° (807,23 mm): Perry, Porter, Am. Soc. 48, 300. Dampfdruck zwischen —15,2° (110 mm) und +180,4° (47,6 Atm.): Bredig, Teichmann, Z. El. Ch. 31, 451; Anonymus, Then, Z. El. Ch. 31, 450).

 D_4^{-40} : 0,925 (Werner, Ph. Ch. [B] 4, 380); D_4^{1} zwischen —13° (0,7326) und +20° (0,6884): Fredenhagen, Dahmlos, Z. anorg. Ch. 179, 81; zwischen 0° (0,7156) und 20° (0,6874): Peters, Ann. Phys. [4] 86, 509; zwischen 0° (0,718) und 25° (0,682): Walker, Marvin, Ind. Eng. Chem. 18, 140; C. 1926 I, 3171; zwischen 0° (0,7164) und 29,4° (0,6731); Sinozaki, Hara, Pr. Acad. Tokyo 3, 593; Technol. Rep. Tohoku Univ. 8, 327; C. 1928 I, 1268; 1929 II, 2161; D;: 0,7208; D;: 0,7090; D;: 0,6092 (Tromp, R. 41, 286, 297); D;. 0,7018 (K. H. MEYER, HOPFF, B. 54, 1712); D_{i}^{tot} : 0,6936 (Enklaar, R. 42, 1006); D_{i}^{tot} : 0,6909 (Bredig, SHIRADO, Z. El. Ch. 33, 209; SH., Bl. chem. Soc. Japan 2 [1927], 123). Dampfdichte (bezogen auf Luft = 1) zwischen 65° (0,968) und 177° (0,934): USHERWOOD, Soc. 121, 1609; Dampfdichte bei 0°, 30°, 60°, 100° und 189° unter Drucken zwischen 100 und 830 mm: SINOZAKI, HARA, Pr. Acad. Tokyo 3, 591; Technol. Rep. Tôhoku Univ. 8, 306; C. 1928 I, 1268; 1929 II, 2161. Blausäure ist in der Nähe des Kochpunktes merklich assoziiert (SI., HA., Pr. Acad. Tokyo 3, 593; Technol. Rep. Tôhoku Univ. 8, 297; C. 1928 I, 1268; 1929 II, 2161; vgl. Partington, Carroll, Phil. Mag. [6] 49, 678; C. 1925 I, 2617; Bredig, Thichmann, Z. El. Ch. 31, 453; Ingold, Soc. 1926, 28; Pa., Soc. 1926, 1560). Viscosität zwischen — 7,5° (0,00259) und +20,2° (0,00201 g/cm sec): Fredenhagen, Dahmlos, Z. anorg. Ch. 179, 82. Oberflächenspannung bei 10°: 19,1 dyn/cm; bei 17°: 18,2 dyn/cm; bei 25°: 17,2 dyn/cm (Br., T., Z. El. Ch. 31, 452). Gasförmige Blausaure zeigt bei 20,8° und 422 mm Cp: 9,69 cal; C_v: 7,56 cal; bei 17,35° und 505 mm C_p: 10,22 cal; C_v: 8,06 cal (Partington, Carroll, *Phil. Mag.* [6] 49, 671; *C.* 1925 I, 2617). Verhältnis C_p: C_v von gasförmiger Blausäure zwischen 65° und 210°: Usherwood, *Soc.* 121, 1612. Zu den Messungen der spezif. Wärme von Partington, Carroll und Usherwood vgl. Bredig, Teichmann, *Z. El. Ch.* 31, 452; Ingold. *Soc.* 1926, 26; Pa., *Soc.* 1926, 1559. Berechnung der Schmelz- und Verdampfungswärmen: Hara, Sinozaki, *Technol. Rep. Töhoku Univ.* 4, 41; *C.* 1925 II, 1591; Si., Ha., *Technol. Rep. Töhoku Univ.* 8, 330; *C.* 1929 II, 2161.

Brechungsindex n_D von flüssiger Blausäure zwischen 0° (1,2729) und 20° (1,2619): Peters, Ann. Phys. [4] 86, 508; n_0° : 1,2661; n_D° : 1,2675; n_D° : 1,2713; n_D° : 1,2752 (K. H. Meyer, Hopff, B. 54, 1713, 2175). Messungen von Refraktion und Dispersion s. a. bei Enklaar, R. 42, 1006. Dielektr.-Konst. von fester Blausäure bei -40° : 3,4 (Werner, Ph. Ch. [B] 4, 380). Dielektr.-Konst. ($\lambda = \infty$) von flüssiger Blausäure zwischen $-13,5^{\circ}$ (227) und $+22,1^{\circ}$ (114): Bredig. Z. ang. Ch. 36, 457; zwischen $-13,4^{\circ}$ (194,4) und $+22,1^{\circ}$ (113,2): Fredenhagen, Dahmlos, Z. anorg. Ch. 179, 80; vgl. Fr., D., Ph. Ch. 128, 18. Dielektr.-Konst. des Dampfes bei 15° und 760 mm: 1,0238 (Cordonnier, Guinchant, C. r. 185, 1449). Dipolmoment μ · 10¹⁸: 2,59 (verd. Lösung; Benzol) (We.). Spezifische elektrische Leitfähigkeit bei 0°: 0,60 × 10⁻⁶ rez. Ohm (Fr., D., Z. anorg. Ch. 179, 79; vgl. Fr., D., Ph. Ch. 128, 21; Z. anorg. Ch. 179. 84); bei 0°: 0,46 × 10⁻⁶ rez. Ohm; bei 22°: 1,1 × 10⁻⁶ rez. Ohm (Bredig, Z. ang. Ch. 36, 456).

Zum Lösungsvermögen und elektrolytischen Dissoziierungsvermögen von Blausäure vgl. FREDENHAGEN, Ph. Ch. 128, 22, 264; Fr., Dahmlos, Z. anorg. Ch. 179, 86. Verhalten von Blausaure als Lösungsmittel bei den Messungen der elektrischen Leitfähigkeit von Elektrolyten, die H'- bezw. CN'-Ionen liefern: Walden, Z. El. Ch. 26, 75. Löslichkeit von Kaliumchlorid, nitrat und -cyanid in flüssiger Blausäure bei 0°: Fr., D., Z. anorg. Ch. 179, 84. Gesamtdampfdruck und Partialdruck der Blausäure über ihren wäßr. Lösungen bei 18°: BREDIG, SHIRADO, Z. El. Ch. 33, 210; Sh., Bl. chem. Soc. Japan 2, 91; C. 1927 II, 392. Dichte von wäßr. Blausaure verschiedener Konzentration (zwischen 5 und 90%) bei 18°: Br., Sh., Z. El. Ch. 33, 209; Sh., Bl. chem. Soc. Japan 2, 123; C. 1927 II, 893; (zwischen 80,4 und 99,9%) von 0° bis 25°: Walker, Marvin, Ind. Eng. Chem. 18, 140; C. 1926 I, 3171. Dichte von Lösungen in Benzol bei 20°: Werner, Ph. Ch. [B] 4, 377. Blausäure wird durch aktive Kohle am meisten in trocknem Zustand adsorbiert, mit steigendem Wassergehalt der Kohle nimmt die Adsorption ab (Herbst, Bio. Z. 118, 111), Blausäure verbrennt an der Kohleoberfläche (Warburg, Bio. Z. 136, 272). Adsorption aus wäßr. Lösungen durch aktivierte Holzkohle: Schlow, Lepin, Ph. Ch. 94, 44; Sch., Ph. Ch. 100, 426; Dubinin, Ph. Ch. 123, 93; Ж. 58. 1196; durch Zuckerkohle: W., Bio. Z. 136, 273; durch Blutkohle: W., Bio. Z. 119, 161; 165, 196. Einfluß der Acidität auf die Adsorption aus wäßr. Lösung an aktivierte Kohle bei 16° bis 18°: Pewsner, Ph. Ch. 133, 126. Adsorption aus Gasen durch Paraffin: Czapski, Fr. 59, 80. Adsorption von Kaliumcyanid s. S. 53. Aufnahme von Blausäure bzw. Kaliumcyanid durch Eiweißstoffe: Lippich, Fr. 76, 255; durch Milch, Milchzucker- und Casein-Milchzucker-Lösungen bei 19°: L., Fr. 76, 322. — Dielektr. Konst. von Lösungen in Benzol bei 20°: WE. Elektrische Leitfähigkeit wäßr. Lösungen bei 18° und 40° unter Drucken von 500—3000 kg/cm²: Tammann, Rohmann, Z. anorg. Ch. 183, 7. Elektrische Leitfähigkeit gesättigter Lösungen von Kaliumehlorid, nitrat und -cyanid in flüssiger Blausäure bei 0°: Fredenhagen, Dahmlos, Ph. Ch. 128, 21; Z. anorg. Ch. 179, 84. Spezifische elektrische Leitfähigkeit des Gemisches mit 2 Mol Benzaldehyd bei 0°: Br., Z. ang. Ch. 36, 456. Wäßr. Lösungen von Cyaniden zeigen gegen Quecksilber ein negatives Potential (BARRON, FLEXNER, MICHAELIS, J. biol. Chem. 81, 744). Abfall und allmähliche Wiederherstellung des Potentials von Wasserstoffund Sauerstoffelektroden bei Gegenwart von Kaliumcyanid in der Lösung: Isgaryschew. Koldajewa, 38. 55, 554; C. 1925 II, 795. Katalytische Wirkungen von Blausäure und Cyaniden s. S. 47.

Chemisches Verhalten der Blausäure.

(Siehe auch bei einzelnen Salzen, S. 51 ff.).

Beständigkeit; Polymerisation und Veränderungen durch Wärme und Licht. Konz. Blausäure (98% ig, vgl. S. 42) ist bei zweckentsprechender Aufbewahrung — unter Luft- und Feuchtigkeitsabschluß und unter Fernhaltung schädlicher Substanzen, z. B. in alkalifreien Gläsern — an sich beständig; Blausäure mit 5 oder 10% Wasser ist dagegen unbeständig, und zwar verändert sich die 90% ige Blausäure beim Aufbewahren schneller als die 95% ige (Anonymus, Jber. chem.-tech. Reichsanst. 4 [1924/1925], 37). Zur Beständigkeit von flüssiger Blausäure in Gegenwart von Kaliumcyanid vgl. Fredenhagen, Dahmlos, Z. anorg. Ch. 179, 85; Ph. Ch. 128, 21. Durch starke Initialzündung läßt sich flüssige Blausäure zur Explosion unter Kohleabscheidung bringen (Wöhler, Roth, Ch. Z. 50, 761, 781; C. 1926 II, 2764; Anonymus, Jber. chem.-tech. Reichsanst. 8 [1929], 78; vgl. Anonymus, Jber. chem.-tech. Reichsanst. 4 [1924/1925], 30; 5 [1926], 73); über die Beeinflussung der Explosionsfähigkeit durch indifferente Aufsaugstoffe bzw. Stabilisatoren wie Chlorpikrin oder Chlorameisensäure-athylester mit Ameisensäure oder Schwefelsäure vgl. Wö., R. Explosionen

von flüssiger Blausäure: Sieverts, Hermsdorf, Z. ang. Ch. 34, 4 Anm. 13; Walker, Eldred, Ind. Eng. Chem. 17, 1074; C. 1926 I, 2050; Wö., R. Neben amorphen Produkten bildet sich bei längerem Stehenlassen von wasserfreier oder wäßr. Blausäure mit Cyaniden, Carbonaten oder Hydroxyden der Alkalien (Wippermann, B. 7 [1874], 768; Lescoeur, Rigaut, C.r. 89, 311; Bl. [2] 34, 473), mit Epichlorhydrin (Lange, B. 6, 99) oder Dimethylanilinoxyd (Bamberger. Rudolf, B. 35, 1083) ein krystallisiertes Polymerisationsprodukt der Blausäure, das H 4. 470 als Amino-malonsäure-dinitril H₂N·CH(CN)₂ beschrieben, von Bedel (C.r. 176, 168; Bl. [4] 35, 340) als Amino-malonsäure-dinitril-hydrocyanid H₂N·CH(CN)₂+HCN, von Griszkiewicz ·Trochimowski (Roczniki Chem. 8, 167; C. 1928 II, 440) als α.α'-Diamino-maleinsäure-dinitril H₂N·C(CN) · C(CN) · NH₂ angesprochen wurde; nach Hinkel, Richards, Thomas, Soc. 1937, 1433; Hinkel, Soc. 1939, 492; Hinkel, Watkins, Soc. 1940, 1206 (vgl. jedoch Gr.-Tr., Soc. 1938, 1466) ist dieses Produkt als Imino-amino-bernsteinsäure-dinitril H₂N·CH(CN)·C(CN): NH (Syst. Nr. 377) zu formulieren. Beim Erhitzen im geschlossenen Gefäß verwandelt sich flüssige Blausäure in eine schwarze Masse, daneben bilden sich Ammoniak und andere Gase sowie gelegentlich Ammonium vanid (WALKER, ELDRED, Ind. Eng. Chem. 17 [1925], 1076; vgl. Anonymus, Jber. chem. tech. Reichsanst. 5 [1926], 71). Eine schwarze Masse entsteht auch bei der Einw. von α-Strahlen aus Radiumemanation (LIND, BARDWELL, PERRY, Am. Soc. 48, 1561). Kinetik dieser Reaktion bei 25°: L., B., P. Über die Bestandteile einer bei der spontanen Umwandlung von technisch hergestellter Blausäure gebildeten schwarzen Masse vgl. Bedel, Bl. [4] 35, 339. Veränderungen von Blausäure bei Bestrahlung mit ultraviolettem Licht: Rousseau, C.r. 184, 683; Andant, R., C.r. 184, 1553; bei Gegenwart von Mangan(II)-chlorid: A., R., C.r. 184, 1554; R., C. r. Soc. Biol. 96, 613; C. 1927 I, 2711; bei Gegenwart von anderen Metallsalzen: A., R., C.r. 185, 202. Beispiele für Umsetzungen mit anorganischen Stoffen. Explosionsgrenzen der Gemische von Blausäure mit Luft: WALKER, ELDRED, Ind. Eng. Chem. 17, 1074; C. 1926 I. 2050; Anonymus, Jber. chem.-tech. Reichsanst. 4 [1924/1925], 52; Hara, Sinozaki, Technol. Rep. Tohoku Univ. 5 [1925], 100; NEUMANN, MANKE, Z. El. Ch. 35, 762. Einfluß der Reaktionsbedingungen auf das Mengenverhältnis zwischen Stickstoff und anderen Reaktionsprodukten beim Erhitzen von Blausäure im Kohlensäurestrom in Gegenwart von Arsen(III)oxyd, Kupfer(II)-oxyd, Wolfram(VI)-oxyd und Molybdän(VI)-oxyd: Biesalski, v. Lepp, B. 60, 1461. Erhitzen von Kaliumcyanid im Luftstrom auf 3700 ergibt Kaliumnitrat neben wenig Kaliumnitrit; in Gegenwart von Silberpulver oder Nickelcarbonat erhöht sich die Ausbeute an Nitrat beträchtlich (B., v.L., B. 60, 1460). Analog dem Kaliumcyanid (s. H 2, 42, Z. 39 v. o.) reduziert Natriumcyanid bei höherer Temperatur (560—750°) im Vakuum die meisten Metalloxyde zu den entsprechenden Metallen; daneben entstehen Natrium, Kohlenoxyd, Kohlendioxyd und Stickstoff (Hackspill, Grandadam, C. r. 180, 931; A. ch. [10] 5, 237). Bei der Oxydation von Blausäure mit Luft oder Sauerstoff bei hohen Temperaturen in Gegenwart von Platin oder Metalloxyden erhält man im allgemeinen nur gasförmige Oxydationsprodukte, nämlich Stickstoffoxyde, Kohlendioxyd, Wasserdampf und Stickstoff (HARA, SINOZAKI, Technol. Rep. Tôhoku Univ. 5, 82; C. 1925 II, 2124; NEUMANN, MANKE, Z. El. Ch. 35, 762); daneben bilden sich sehr geringe Mengen Ammoniak (HARA, SI., Technol. Rep. Tohoku Univ. 5, 100; NEU., MA., Z. El. Ch. 35, 757, 765). Reicht hierbei der Sauerstoff des Gasgemisches nicht zur vollständigen Oxydation der Blausäure aus oder bleibt bei geringerer Blausäurekonzentration die Reaktionstemperatur unterhalb etwa 450°, so treten auch feste Oxydationsprodukte auf (Neu., Ma., Z. El. Ch. 35, 762), die sich aus Cyanursäure und Cyamelid neben Ammoniumcyanat und Harnstoff zusammensetzen (Hara, Si., Technol. Rep. Tohoku Univ. 5, 103; 6, 115; C. 1925 II, 2124; 1926 II, 2527; Neu., Ma., Z. El. Ch. 35, 763). Im einzelnen wurde die Oxydation von Blausäure mit Luft bei hohen Temperaturen untersucht von Zawadzki. Wolmer (Roczniki Chem. 2, 174; C. 1924 I, 1164) und Za.. Lichtensteinowa (Roczniki Chem. 6, 831; C. 1927 II, 893) an einem Platinnetz und an Eisenoxyd, von Hara, Sinozaki (Technol. Rep. Tôhoku Univ. 5, 71; C. 1925 II, 2124) an einem Platinnetz, von Sinozaki, Hara (Technol. Rep. Tohoku Univ. 6, 95; C. 1926 II, 2527) an platiniertem Asbest, Eisenoxyd, Eisenoxyd + Wismutoxyd, Kobaltoxyd, Kobaltoxyd + Wismutoxyd, Kupferoxyd, Chromoxyd, Nickeloxyd, Manganoxyd, Mangandioxyd + Kupferoxyd und den wenig wirksamen Katalysatoren Porzellan und Siliciumoxyd; sowie von Nxu-MANN, MANKE (Z. El. Ch. 35, 751) an einem Platinnetz und an Eisenoxyd, Eisenoxyd + Wismutoxyd, Eisenoxyd + 10% Kaliumoxyd, Kupferoxyd und Nickeloxyd. Beträchtliche Mengen Kaliumnitrat entstehen beim Erhitzen von Kaliumcyanid mit Bariumperoxyd und Natriumcarbonat im Luftstrom auf 370° (BIESALSKI, v. LEPP, B. 60, 1460). Mengenverhältnisse an Cyan und Ammoniak bei der Oxydation von Blausäure mit Natriumpersulfat, Kaliumpermanganat, Kaliumdichromat, Mangan(IV)-oxyd, Blei(IV)-oxyd und Zinn(IV)-oxyd in saurer wäßr. Lösung: RICCA, PIRRONE, Ann. Chim. applic. 18, 552; C. 1929 I, 1924. Beim Erhitzen von Kaliumevanid mit Kaliumdichromat im Kohlendioxyd-Strom erfolgt bei 170° eine heftige Reaktion unter Entwicklung von Stickstoff, Kohlenoxyd und Kohlendioxyd (BIE-SALSKI, V. LEPP, B. 60, 1461). Die Oxydation von Kaliumcyanid mit Kaliumpermanganat

und Kalilauge wird durch Kupfer(II)-Salze erheblich beschleunigt (GALL, LEHMANN, B. 61, 671). Bei der Oxydation von Blausäure in konz. Ammoniak mit Calciumpermanganat tritt Oxamid auf (Fosse, C. r. 171, 399). Zur Reaktion von Mangandioxyd mit wäßr. Lösungen von Alkalicyaniden vgl. RASCHIG, Metall Erz 25 [1928], 527. Die Cyanide reagieren mit Natriumhypochlorit unter Entwicklung von Stickstoff (ENGFELDT, H. 121, 38 Anm.). Über die Oxydation von Cyaniden zu Cyanaten vgl. H 3, 32: E I 3, 15 und Syst. Nr. 202.

die Oxydation von Cyaniden zu Cyanaten vgl. H 3, 32; E I 3, 15 und Syst. Nr. 202.

Die Reduktion von Kaliumcyanid durch Erhitzen mit Chrom(II)-chlorid-Lösung und überschüssiger Natronlauge ergibt Methylamin und etwas Ammoniak (TRAUBE, LANGE, B. 58, 2775). Geschwindigkeit der Hydrolyse von Blausäure zu Formamid und weiterhin zu Ammoniumformiat bzw. Ammoniak mit 1,95—7,84 n Salzsäure bei Temperaturen zwischen 25° und 45°, mit 4 n Bromwasserstoffsäure bei 45° und 5 n Schwefelsäure bei 25°: KRIEBLE, McNally, Am. Soc. 51, 3370; mit verd. Schwefelsäure bei 100°: HARKER, J. Soc. chem. Ind. 40, 184 T; C. 1921 IV, 1080. Beim Erhitzen von Kaliumcyanid mit weißem Phosphor oder Aluminiumpulver und etwas Wasser oder mit Schwefelsäure in Wasserstoff-Atm. entsteht neben anderen Produkten Ammonium vanid (Ellis, Gibbins, Am. Soc. 45, 1727). Geschwindigkeit der Hydrolyse zu Kaliumformiat und Ammoniak beim Kochen von 5% iger wäßriger Kaliumcyanid-Lösung ohne und mit Zusatz von Kaliumhydroxyd: HARKER, J. Soc. chem. Ind. 40, 184 T; C. 1921 IV, 1080. Zur Hydrolyse vgl. a. die Angaben bei Natriumcyanid (S. 51) und Kaliumcyanid (S. 52). Veränderungen von flüssiger Blausäure beim Erwärmen mit 0,5%iger Natronlauge: Wöhler, Roth, Ch. Z. 50, 762; C. 1926 II, 2764; vgl. Walker, Eldred, Ind. Eng. Chem. 17 [1925], 1074; beim Aufbewahren unter Zusatz von verd. Kalilauge oder Ammoniak: Anonymus, Jber. chem. tech. Reichsanst. 4 [1924/1925], 35; 5 [1926], 69. In saurer Lösung läßt sich Blausäure durch Behandeln mit Bromwasser (SCHULEK, Fr. 62, 338) oder mit einem Bromat-Bromid-Gemisch quantitativ in Bromeyan überführen (Lang, Fr. 67, 2). Einw. von wäßr. Kaliumeyanid-Lösung auf Chlorjod ergibt Jodeyan (L., Z. anorg. Ch. 122, 344; 142, 236; Вікскенвасн, Ниттнек, B. 62, 160); beim Behandeln von wäßr. Kaliumcyanid-Lösung mit Bromjod entstehen Jod und Jodeyan (L., Z. anorg. Ch. 142, 231). Die bei Einw. von Blausäure auf Hydrazin in einer Kältemischung sich bildenden Krystalle von Hydrazincyanid liefern beim Aufbewahren im Vakuum oder besser beim Erwärmen auf 55° Hydrazoformaldehyd-dihydrazon H₂N·N: CH·NH·NH·CH:N·NH₂ (S. 90) und andere Produkte (E. MÜLLER, HERRDEGEN, J. pr. [2] 102, 127, 148). Kaliumcyanid soll mit Chloramin ClNH₂ in wäßr. Lösung nach Raschig (Ch. Z. 31, 926; C. 1907 II, 1387) Chlorcyan ergeben; nach Marckwald, Wille (B. 56, 1325) entsteht jedoch Kaliumcyanat. Bei der Einw. von Schwefel oder Selen in flüssigem Ammoniak auf Cyanide entstehen vorwiegend Rhodanide bzw. Selenocyanate (Bergstrom, Ammoniak auf Cyanide entstehen vorwiegend Rhodanide bzw. Selenocyanate (Bergstrom, Ammoniak auf Cyanide entstehen vorwiegend Rhodanide bzw. Selenocyanate (Bergstrom, Ammoniak auf Cyanide entstehen vorwiegend Rhodanide bzw. Selenocyanate (Bergstrom). Am. Soc. 48, 2322); ebenso verläuft die Reaktion von Kaliumtetrasulfid oder Kaliumpentaselenid mit Kaliumcyanid-Lösung bei Zimmertemperatur (Br., Am. Soc. 48, 2326). Einw. einer Lösung von Tellur in flüssigem Ammoniak auf Cyanide: Br., Am. Soc. 48, 2322. Kaliumcyanid reagiert in verdünnter (ca. 0,1 n), neutraler oder alkalischer wäßriger Lösung mit Natriumtetrathionat bei Zimmertemperatur quantitativ nach $S_4O_6''+3$ $CN'+H_2O\rightarrow CNS'+SO_4''+S_2O_3''+2$ HCN (Kurtenacker, Fritsch, Z. anorg. Ch. 117, 205, 262). In kon-The state of the tetrathionat in neutraler wäßriger Lösung und in Gegenwart von Natronlauge und Ammoniak bei 0°: Ishikawa, Ph. Ch. 130, 73. Verlauf der Reaktion von Kaliumeyanid mit Tri- und Pentathionat: Ku., BITTNER, Z. anorg. Ch. 142, 121. Über die Bildung von Rhodaniden aus Cyaniden und Schwefel oder Schwefel abgebenden Substanzen vgl. ferner EI 3, 64 und Syst. Nr. 215. — Über die Bildung von Cyanamidsalzen aus Metalleyaniden vgl. E I 3, 36 und Syst. Nr. 206.

Wäßr. Lösungen von Alkalicyaniden lösen Kupfer unter Entwicklung von Wasserstoff (Goyder, Chem. N. 69 [1894], 269; Kunschert, Z. anorg. Ch. 41 [1904], 359; Glasstone, Soc. 1929, 703; vgl. Bonner, Kaura, Chem. met. Eng. 34 [1927], 84). Alle Kupfermineralien werden von wäßr. Lösungen von Alkalicyaniden mehr oder weniger angegriffen (Raschig, Metall Erz 25 [1928], 527). Verschiedenartiges Verhalten von Eisen(III)-oxyd-hydraten gegen Blausäure: Wederind, Albrecht, B. 59, 1730; W., Fischer, B. 60, 541. Reaktion von Kaliumcyanid mit den Salzen (NO)Ni·S·SO₃K + K₂S₂O₃, (NO)₂CO·S·SO₃K + K₄S₂O₃ und (NO)₄Fe·S·SO₃K: Manchot, B. 59, 2452; mit (NO)Ni·S·C₂H₅: M., Kaess, B. 60, 2177.

Beispiele für die Anlagerung von Blausäure oder Metallcyaniden an Doppelbindungen (auch C:O und C:N) und dreifache Bindungen (vgl. hierzu auch W. HÜCKEL. Theoretische Grundlagen der organischen Chemie, 3. Aufl., 1. Bd. [Leipzig 1940], S. 415, 423, 434. 438, 444, 546 Anm. 2): Einw. der dunkeln elektrischen Entladung auf Gemische von Blausäure mit Athylen oder Acetylen: Francesconi, Ciurlo, G. 53, 328; mit Isopropyläthylen: Fran C.,

R. A. L. [5] 32 II, 34; G. 53, 521; mit Pinen: Fr., C., R. A. L. [5] 32 I, 566; G. 53, 470. Dem bei der Einw. von Formaldehyd auf Kaliumcyanid und Ammoniumchlorid entstehenden Reaktionsprodukt, das H 2, 89; E I 2, 37 als Verbindung C₆H₈N₄ (dimolekulares Methylenaminoacetonitril) beschrieben ist, kommt die Formel $C_9H_{12}N_6$ eines trimolekularen Methylenaminoacetonitrils zu (Näheres s. S. 88); die H 2, 89 als Verbindung $(C_3H_4N_2)_{\times}$ aufgeführte Substanz, die sich stets neben dem trimolekularen Methylenaminoacetonitril bildet, ist als Substanz, die sich sets heten dem trimotekulaten kennytenaminoaceonium bidel, ist als Methylen-bis-iminodiacetonitril $C_9H_{10}N_6 = (NC \cdot CH_9)_2N \cdot CH_9 \cdot N(CH_2 \cdot CN)_2$ (Syst. Nr. 364) erkannt worden (Johnson, Rinehart, Am. Soc. 46, 768; R., J., Am. Soc. 46, 1653; R., Am. Soc. 48, 2794; Delépine, C. r. 183, 60; Bl. [4] 39, 1439). Kryoskopische Bestimmung des Gleichgewichts $CH_3 \cdot CHO + HCN \rightleftharpoons CH_3 \cdot CH(OH) \cdot CN$: Hammarsten, Ark. Kemi 8, Nr. 16, S. 13; C. 1923 I, 294. Geschwindigkeit der Addition von Blausäure (unter Bildung von Cyanhydrinen) an Acetaldehyd in sehr verdünnter wäßriger Lösung; Wieland, Bertho, A. 467, 136; an Acetaldehyd und andere Aldehyde in verd. Alkohol ohne und mit Zusatz von 1/10 n-Natronlauge bei Gegenwart und Abwesenheit von Emulsin: Rosenthaler, Fermentf. 5, 337; C. 1922 I, 1183. Kinetik der Reaktion von Blausäure mit Aldehydammoniak: Sannik, Bl. [4]. 37, 1557; 39, 254, 274; ältere Literatur s. H 2, 37, Z. 16 v. u.; È I 2, 25, Z. 19 v. u. — Kaliumcyanid liefert bei der Einw. auf Chloracetaldehyd in siedendem Wasser Essigsäure, in siedendem Alkohol Äthylacetat (Chattaway, Irving, Soc. 1929, 1043). Umsetzung von Blausäure und Kaliumeyanid mit Butyrchloralhydrat und Butyrchloralammoniak s. im Artikel $\alpha.\alpha.\beta$ -Trichlorbutyraldehyd, E II 1, 725. Beim Erhitzen von Kaliumeyanid mit aromatischen Aldoximen in wäßrig-alkoholischer Lösung bilden sich — wahrscheinlich über ein unbeständiges Additionsprodukt — die entsprechenden Nitrile (PASSERINI, G. 56, 122). Beim Schütteln von Kalium-cyanid mit Cyclohexanon und Hydrazinsulfat in Wasser entsteht N.N'-Bis-[1-cyan-cyclohexyl-(1)]-hydrazin (Hartman, R. 46, 151). Wasserfreie Blausäure gibt mit Menthonimid Cyanmenthylamin (Formel I); analog erfolgt die Addition von Blausäure an Campherimid und

I.
$$CH_3 \cdot HC < \frac{CH_2 - C(NH_2)(CN)}{CH_3 \cdot C(NH_2)(CN)} > CH \cdot CH(CH_3)_2$$

Fenchonimid (Houben, Pfankuch, B. 60, 592). Erhitzen von Campher-nitrimin mit Kaliumcyanid in wäßrig-alkoholischer Lösung führt zum Kaliumsalz des Campher-nitraminonitrils (Formel II); analog reagiert Fenchon-nitrimin (Passerini, G. 55, 563; R.A.L. [5] 33 II, 110; Houben, Pfankuch, B. 60, 596). — Einleiten von Blausäure in die wäßr. Lösung von 2.2.5.5-Tetramethyl-2.5-dihydro-pyrazin bei 100° liefert 2.2.5.5-Tetramethyl-3.6-dicyanpiperazin (Conant, Aston, Am. Soc. 50, 2789). Beim Erhitzen von Quecksilber(II)-cyanid

mit Alkalicyaniden entsteht nicht, wie Bannow (B. 4, 253; 13, 2201) angab, Dicyanimid. sondern das Trinatriumsalz bzw. Trikaliumsalz des Tricyanmelamins (Formel III; Syst. Nr. 3889) (Madelung, Kern, A. 427, 29; E. C. Franklin, Am. Soc. 44, 499; The nitrogen system of compounds [New York 1935], S. 105 Anm., 131; Hoard, Am. Soc. 60 [1938], 1194; vgl. Pauling, Sturdivant, Pr. nation. Acad. USA. 23, 619; C. 1938 II, 560).

Beispiele für weitere Umsetzungen mit organischen Stoffen. Überleiten von überschüssiger Blausäure mit Methanol-Dampf über aktive Kohle bei 320° ergibt Acetonitril (I. G. Farbenind., D. R. P. 463123; C. 1929 I, 2234; Frdl. 16, 700). Beim Einleiten von Chlor in eine Lösung von Kaliumcyanid und Natriumhydroxyd in verd. Alkohol entstehen neben Kohlensäure-diäthylester-chlorimid (C₂H₅·O)₂C:NCl (Sandmeyer, B. 19, 862) Urethan und [β-Chlor-āthyliden]-diurethan CH₂Cl·CH(NH·CO₂·C₂H₅)₃ (Houber, J. pr. [2] 105, 14; vgl. Hou., Schmidt, B. 46, 2452). Bei der Synthese von Oxyaldehyden durch Kondensation bestimmter Phenole mit Chlorwasserstoff und Blausäure in Gegenwart von wasserfreiem Zinkchlorid nach Gattermann (vgl. H 2, 37, Z. 21—24 v.o.) kann Zinkcyanid an die Stelle von Blausäure + Zinkchlorid treten (Adams, Levine, Am. Soc. 45, 2374). Wäßr. Kaliumcyanid-Lösung liefert bei Einw. auf eine äther. Lösung von Brom-tricyan-methan Bromcyan und Tricyan-methyl-kalium (Birckenbach, Huttner, B. 62, 160). Einw. wäßr. Kaliumcyanid-Lösungen auf Dixanthogen, Diacetyldisulfid und Dimethyltrisulfid: Gutmann, B. 56, 2366. Einw. von flüssiger Blausäure auf Phenylmagnesiumbromid in Ather: Gilman, Heckert, Bl. [4] 43, 227. Beim Erwärmen von Kupfer- oder Silbercyanid mit Phenylmagnesiumbromid in Ather, Benzol oder Toluol und Zersetzen des Reaktions-Produkts mit verd. Salzsäure wird Diphenyl erhalten (Gl., Kirby, R. 48, 157); analog reagiert Silbercyanid mit Benzylmagnesiumchlorid unter Bildung von Dibenzyl (Gl., K.). Die Reaktion von Blausäure mit Methylquecksilberhydroxyd führt stets zu demselben, bei 30° schmelzenden Methylquecksilbercyanid (Coates, Hirken, Angel, Soc. 1928, 541; Slotta, Jacobi, J. pr. [2] 120, 268, 294; vgl. jedoch Enklaar, R. 44, 889; Wöhler, Roth, Ch. Z. 50, 782; C. 1926 II, 2764). — Bei

der Einw. von wasserfreier Blausäure und trocknem Chlorwasserstoff auf die äther. Lösung von 2.4-Dimethyl-pyrrol-carbonsäure-(3)-äthylester bildet sich ein Aldimin-hydrochlorid, das beim gelinden Erwärmen mit Wasser in 2.4-Dimethyl-5-formyl-pyrrol-carbonsäure-(3)-äthylester übergeht (H. FISCHER, ZERWECK, B. 55, 1945); Blausäure + Chlorwasserstoff reagieren entsprechend mit anderen Pyrrolderivaten (H. FISCHER, H. ORTH, Die Chemie des Pyrrols, 1. Bd. [Leipzig 1934], S. 146; dort weitere Literatur).

Beispiele für katalytische Wirkungen von Blausäure und Cyaniden. Blausäure hommt die Spaltung von Wasserstoffperoxyd in Gegenwart von Palladium (Танака, Bio. Z. 157, 428) oder von kolloidem Eisen(III)-hydroxyd-Sol (Wieland, A. 445, 198). Beeinflussung der Bildung von Wasserstoffperoxyd beim Schütteln von Palladium mit Knallgas durch Blausaure: Ta., Bio. Z. 157, 427. Die Reduktion von Jod durch Rhodanwasserstoff in saurer Lösung wird durch die Gegenwart von Blausäure bewirkt (Kurtenacker, Fritsch, Z. anorg. Ch. 117, 264), die Überführung von Magnesium in Magnesiumamid mittels flüssigen Ammoniaks durch die Gegenwart von Natrium- oder Kaliumcyanid (BERGSTROM, Am. Soc. 48, 2850). Hemmung der Oxydation von Athylalkohol mit Sauerstoff an Palladium durch Blausäure: TA., Bio. Z. 157, 428. Wirkung von Blausäure und Cyaniden auf die Autoxydation von Propionaldehyd, Önanthol, Acrolein, Styrol, Benzaldehyd und Leinöl: Moureu, Dufraisse, BADOCHE, C. r. 183, 687. Kaliumeyanid hemmt die Öxydation von Dioxyaceton durch Sauerstoff in neutraler Phosphatiosung (WIND, Bio. Z. 159, 67) und von Oxalsäure durch Sauerstoff in Gegenwart von Kupferpulver (WIELAND, A. 434, 195), Blausäure hemmt die Oxydation von Oxalsaure durch Sauerstoff in Gegenwart von Blutkohle (Warburg, Naturwiss. 11, 159; C. 1928 I, 1308; Bio. Z. 136, 273; vgl. RIDEAL, WRIGHT, Soc. 1926, 1816) oder mit Jodssure (WA., Toda, C. 1925 II, 382; B. 58, 1010; WIELAND, FISCHER, B. 59, 1171). Hemmende Wirkung von Blausäure auf die Oxydation von Cysteinlösung durch Sauerstoff: Warburg, Sakuma, Pflügers. Arch. Physiol. 200, 203; C. 1923 III, 1290; Wa., B. 58, 1008; Toda, Bio. Z. 172, 34. Hemmende Wirkung von Blausäure auf die Oxydation von Cystin durch Sauerstoff an Blutkohle: Wa., Bio. Z. 119, 160; an Häminkohle: Wa., B. 58, 1006. Die Oxydation von Leucin durch Sauerstoff an Blutkohle (WA., Naturwiss. 11, 159; C. 1923 I, 1308; Bio. Z. 136, 273) oder an aus Hämin oder Bismarckbraun hergestellten Kohlen (WA., B. 58, 1006) wird durch Blausaure gehemmt, dagegen wird die Oxydation an Zuckerkohle nicht spezifisch beeinflußt (WA., Naturwiss. 11, 159; C. 1923 I, 1308; Bio. Z. 136, 267, 275). Reversibilităt der Blausäurehemmung von Leucin an Carbo medicinalis Merck bei 37°: Blaschko, Bio. Z. 175, 70. Die spontane Oxydation von α-Naphthol und p-Phenylendiamin zu Indophenolblau wird durch Natrium oder Kaliumcyanid gehemmt (WERTHEIMER, Fermentf. 8, 499; C. 1926 II, 696). Hemmende Wirkung von Kaliumcyanid auf die Oxydation von Fructose mit Sauerstoff in Phosphat-Lösung: MEYERHOF, MATSUOKA, Bio. Z. 150, 5; WIND, Bio. Z. 159, 62.

Biochemisches Verhalten.

Über die Wirkung von Blausäure auf Fermente, auf die Atmung und auf Bakterien vgl. z. B. C. Oppenheimer, Die Fermente und ihre Wirkungen, 5. Aufl., Bd. I [Leipzig 1925], S. 75; Bd. II [Leipzig 1926], S. 1104, 1251, 1409; Ergw. Bd. II [Den Haag 1939], S. 902, 1263; H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt., Bd. 1, 2. Hälfte [Berlin-Leipzig 1930], S. 697; W. Franke in F. F. Nord, R. Weidenhagen, Handbuch der Enzymologie ZIG 1950], S. 097; W. FRANKE IN F. F. NORD, R. WEIDENHAGEN, HANGDUCH GET EINZYMOIOGIE [Leipzig 1940], S. 685, 689, 694, 721, 744; FR., Ang. Ch. 53 [1940], 580, 588. Veränderungen von Blausäure in verwesenden Leichenteilen, besonders Übergang in Rhodanwasserstoff: Sensi, Revello, Ann. Chim. applic. 16, 269, 280; C. 1926 II, 1884. Giftwirkung von gasförmiger Blausäure bei Resorption durch die Haut: Schütze, Arch. Hyg. 98, 74; C. 1927 II, 459; im Gemisch mit Kohlenoxyd: Hoffer, Ar. Pth. 111, 194; C. 1926 I, 3088. Krankheitsbild bei gewerblichen Verriffungen durch des förmigen Blausäure. Kom sow. bei gewerblichen Vergiftungen durch gasförmige Blausäure: Koelsch, Zbl. Gewerbehyg. 8, 93, 101; C. 1920 III, 754; Z. ang. Ch. 33, 3; K., ŠEIFFERT, Z. Hyg. Inf. Kr. 101, 190; C. 1924 I, 1079. Nach einer Vergiftung mit Blausäure per os findet sich diese in allen Organen (Danck-WORTT, PFAU, Ar. 1924, 447). Über die physiologische Wirkung und Giftwirkung der Blausaure beim Menschen und im Tierreich vgl, weiterhin H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I, 2. Hälfte, S. 717; E. B. Vedder, The medical aspects of chemical warfare [Baltimore 1925], S. 184; F. Flury, F. Zernik, Schädliche Gase [Berlin 1931], S. 400; H. H. Meyer, R. Gottlieb, Experimentelle Pharmakologie, 8. Aufl. [Berlin-Wien 1933], S. 476, App. 7, 607; C. Harran, M. Jerrey, L'arma chimique et an blessure [Design 1934]. S. 476 Anm. 7, 607; C. Héderer, M. Istin, L'arme chimique et ses blessures [Paris 1935], S. 320; O. Muntsch, Leitfaden der Pathologie und Therapie der Kamptstofferkrankungen, 5. Aufl. [Leipzig 1939], S. 115, 119. Methylenblau verzögert den tödlichen Ausgang von Blausäurevergiftungen (Sahlin, Skand. Arch. Physiol. 47, 287; C. 1926 II, 62). Als Gegenmittel bei einer bereits bis zum Stadium allgemeiner Lähmungen fortgeschrittenen Blausäure-Vergiftung dient intravenöse Injektion von Dioxyaceton und kolloidalem Schwefel (Forst, Ar. Pth. 128, 1, 64; C. 1928 I, 2426); über weitere Gegenmittel vgl. Forst; Staub in Houben. Fortschritte der Heilstoffchemie, 2. Abt., Bd. I, 2. Hälfte, S. 723; Vorgtlin, Johnson, Dyer. J. Pharmacol. exp. Therap. 27, 473; C. 1926 II, 1658; Szolnoki, Dtsch. med. Wschr. 52, 1427: C. 1926 II, 1870; Insekticide Wirkung s. unter Verwendung.

Über frühtreibende Wirkung von Blausäure auf Samen und Keimlinge vgl. z. B. Stok-Lasa, C. r. 170, 1404; Gassner, Ber. dtsch. bot. Ges. 43, 132; C. 1925 II, 425; 1926 I, 1877; v. Velsen, J. Landw. 76, 47; C. 1928 I, 2648. Über die Einw. von Blausäure und Cyaniden auf Pflanzen vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I. 2. Hälfte [Berlin-Leipzig 1930], S. 717; vgl. a. z. B. Perotti, R. A. L. [5] 29 I, 206; Jungmann, Ber. dtsch. bot. Ges. 39, 84; C. 1921 III, 80.

Verwendung von Blausäure und Cyaniden.

Vgl. a. S. 58, Verwendung von Quecksilbercyanid. Über die Verwendung von Blausäure zur Vernichtung von Insekten (Ungeziefer, Pflanzenschädlingen) vgl. z. B. HARKER. J. Soc. chem. Ind. 40 [1921], 183 T; TATTERSFIELD, ROBERTS, C. 1921 I, 232; Schierholz. C. 1922 I, 387; BUTTENBERG, Z. ang. Ch. 38, 375; Bu., DECKERT, C. 1925 I, 2590; Bu.. DE., GAHRTZ, C. 1926 I, 523; DECKERT, C. 1926 I, 2504; 1929 I, 703; SCHWARZ, DE.. DE., GARRYZ, C. 1926 I, 525; DECRERT, C. 1926 I, 204; 1926 I, 705; SCHWARZ, DE., C. 1927 II, 1594; 1929 I, 1378; SPEYER, OWEN, C. 1926 I, 1021; DE PAOLI, C. 1926 I. 1598; MUNDINGER, C. 1926 I, 2830; LEHRECKE, C. 1926 I, 3354; HERZOG, Ch. Z. 50. 493; C. 1926 II, 1091; GORÉ, C. 1927 I, 1358; GOFFART, C. 1927 II, 485; Gold-u. Silber-Scheideanst., D. R. P. 347847, 435989; C. 1922 II, 1214; 1927 I, 346; Frdl. 15, 1771: Bräuer-D'Ans 3, 691; STOLTZENBERG, D. R. P. 420729; C. 1926 I, 1699; Frdl. 15, 1788: Deutsche Ges. f. Schädlingsbekämpfung, D. R. P. 438818; C. 1927 I, 1360; Frdl. 15. 1796; ausführliche Angaben finden sich in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. III [Berlin-Wien 1929], S. 568; Bd. IX [Berlin-Wien 1932], S. 130. Blausäure-Aufnahme durch verschiedene Lebensmittel: Jansen, Schut, Wagenaar, Chem. Weekb. 19, 375; C. 1922 IV, 1019; BUTTENBERG, WEISS, Z. Unters. Nahr.-Genußm. 48, 104: C. 1925 I, 175; Bu., Deckert, Gahrtz, Z. Unters. Nahr.-Genußm. 50, 94; C. 1926 I, 523. Das zur Desinfektion und Schädlingsbekämpfung dienende, aus Kalkstickstoff gewonnene Gemisch von Natrium- und Calciumcyanid wird als "Cyanogas" in den Handel gebracht (Buchanan, Trans. am. electroch. Soc. 80, 107; C. 1931 II, 3543), das aus Calciumcarbid mit Blausäure gewonnene und für dieselben Zwecke benutzte, als "pulverförmige Blausäure" (powdered hydrocyanic acid) bezeichnete technische Calciumcyanid entspricht der Zusammensetzung Ca(CN)₂ + 2 HCN (METZGER, *Ind. Eng. Chem.* 18, 161; C. 1926 I, 3183). Je nach dem Feuchtigkeitsgehalt der Luft werden aus technischem Calciumcyanid verschiedene Mengen Blausäure entwickelt (Young, *Ind. Eng. Chem.* 21, 861; C. 1929 II, 2597). Geschwindigkeit der Entwicklung von Blausäure aus dem Calciumcyanid des Handels an der Luft in Gegenwart von Wasser und Kohlendioxyd sowie bei Behandlung mit verd. Schwefelsäure: Benjamin. J. Pr. Soc. N. S. Wales 60, 38; C. 1928 I, 2531. Herstellung fester Präparate aus Alkalicyanid-Lösungen und Quellungsmitteln wie Agar-Agar: Gold- u. Silberscheideanst., D. R. P. 400069; C. 1924 II, 2367; Bräuer-D'Ans 3, 690. Darst. von flüssiger Blausäure für Desinfektionszwecke durch Behandeln des aus Kalkstickstoff gewonnenen Gemischs von Natrium- und Calciumcyanid mit Schwefelsäure: LANDIS, Trans. am. electroch. Soc. 37, 662; C. 1921 IV, 652: Buchanan, Trans. electroch. Soc. 60, 108; C. 1931 II, 3543. Zur Explosionsfähigkeit flüssiger Blausäure s. S. 43, 44. Zur Transport- und Handhabungssicherheit von flüssiger Blausäure vgl. Anonymus, Jber. chem.-tech. Reichsanst. 4 [1924/1925], 28; 5 [1926], 68; 8 [1929], 71. Entwicklung von Blausäure zur Raumvergasung durch Einwerfen von Natriumvyanid in heiße verdünnte Schwefelsäure: Sieverts, Hermsdorf, Z. ang. Ch. 34, 5; durch Einw. von Wasser auf ein Gemisch von Natriumcyanid mit etwa 2,5 Mol Wasser enthaltendem Aluminiumsulfat oder mit Magnesiumsulfatmonohydrat (Kieserit): Gold- u. Silberscheideanst. D. R. P. 358124, 385556; C. 1924 I, 2630; Bräuer-D'Ans 2, 1140, 1141. Über Apparate zur Desinfektion mit Blausäure vgl. z. B. Liston, J. Soc. chem. Ind. 44, 370 T; C. 1925 II, 231: HARKER, J. Soc. chem. Ind. 44, 847 T; C. 1926 I, 726; STOKES, Am. J. publ. Health 16, 881; C. 1926 II, 2458.

Blausaure ist als Kampfstoff wenig geeignet (FRIES, J. ind. Eng. Chem. 12 [1920], 428: CHASSAIGNE, J. ind. Eng. Chem. 12, 506; VAN NIEUWENBURG, Chem. Weekb. 19, 328; C. 1922 IV, 984; E. B. VEDDER, The medical aspects of chemical warfare [Baltimore 1925]. S. 184; C. HÉDERER, M. ISTIN, L'arme chimique et ses blessures [Paris 1935], S. 678; R. HANSLIAN, Der Chemische Krieg, 3. Aufl., 1. Bd. [Berlin 1937], S. 22, 44, 65, 69, 328; J. MEYER. Der Gaskampf und die chemischen Kampfstoffe, 3. Aufl. [Leipzig 1938], S. 56, 86, 300, 367; M. SARTORI, Die Chemie der Kampfstoffe, 2. Aufl. [Braunschweig 1940], S. 192).

M. Sartori, Die Chemie der Kampfstoffe, 2. Aufl. [Braunschweig 1940], S. 192).

Zur pharmazeutischen Verwendbarkeit von Blausäure vgl. G. Frerichs, G. Arends.

H. Zörnig in Hagers Handbuch der pharmazeutischen Praxis, 1. Bd. [Berlin 1925], S. 160.

Bereitung von Blausäure-Lösung aus Alkalicyaniden mit Phosphorsäure oder mit Oxalsäure in Gegenwart von Glaubersalz für pharmazeutische Zwecke: Ruff, Gersch, Apoth.-Ztg. 40.

936; C. 1926 I, 166. Verwendung von Kaliumcyanid als Fixierungsmittel in der Mikroskopie: Fortner, Z. wiss. Mikr. 42, 129; C. 1926 I, 175.

Über Verwendung von Cyaniden zum Auslaugen von Gold- und Silbererzen vgl. z. B. LANDIS, Trans. am. electroch. Soc. 37, 660; C. 1921 IV, 652; BOND, Eng. Mining J. Press 116, 1112; C. 1924 I, 2190; RASCHIG, Metall Erz 25, 467, 525; C. 1928 II, 2505; 1929 I, 940; BUCHANAN, Trans. electroch. Soc. 60, 96; C. 1931 II, 3543; K. NUGEL in F. ULLMANN, Enzyklopādie der technischen Chemie, 2. Aufl., Bd. VI [Berlin-Wien 1930], S. 15; J. V. N. DORR, Cyanidation and concentration of gold and silver ores, 1. Aufl. [New York-London 1936]. Verwendung von Alkalicyaniden als Auslaugungsmittel für Kupfererze: Schott, Metall Erz 19, 87, 140; C. 1922 IV, 585; KEYES, Eng. Mining J. Press 120, 135; C. 1925 II, 1559. Zur Verwendung von Cyaniden zur elektrolytischen Abscheidung von Metallen bzw. Legierungen vgl. z. B. Bonner, Kaura, Chem. met. Eng. 34, 84; C. 1927 I, 2131; Sanigar. Metal Ind. London 32, 213; Trans. Faraday Soc. 25, 1; C. 1928 I, 1911; C. 1929 I, 1268. Verwendung von Natriumeyanid oder dem aus Kalkstickstoff gewonnenen Gemisch von Natrium- und Calciumeyanid zur Einsatzhärtung von Stählen: Buchanan, Trans. electroch. Soc. 60, 102; C. 1931 II, 3543; vgl. Landis, Trans. am. electroch. Soc. 37 [1920], 661: ESPENHAHN, Chem. met. Eng. 26 [1922], 938.

Anwendung von Kaliumcyanid (oder Natriumcyanid) bei der maßanalytischen Bestimmung von Metallen (vgl. E I 2, 28, Z. 32—35 v. o.): Lang, Z. anorg. Ch. 120, 190; 130, 151; FEIGL, NEUBER, Fr. 62, 377; LEBOUCQ, J. Pharm. Chim. [8] 6, 20; C. 1927 II, 2216; 151; FEIGL, NEUBER, Fr. 62, 377; LEBOUCQ, J. Pharm. Chim. [8] 6, 20; C. 1927 II, 2216; JELLINEK, KREBS, Z. anorg. Ch. 130, 288; JE., KÜHN, Z. anorg. Ch. 138, 128, 132; JE., CZERWINSKI, Z. anorg. Ch. 149, 359; RUPP, WEGNER, MAIHS, Z. anorg. Ch. 144, 313; bei der potentiometrischen Bestimmung von Metallen: E. MÜLLER, Die elektrometrische (potentiometrische) Maßanalyse, 5. Aufl. [Dresden-Leipzig 1932], S. 123ff.; MÜ., LAUTERBACH. Fr. 61, 458; 62, 23; MÜ., SCHLUTTIG, Z. anorg. Ch. 134, 327, 333; HECZKO, Fr. 78, 325; bei der colorimetrischen Bestimmung von Metallen: Pyriki, Fr. 64, 326, 329; bei der potentiometrischen Bestimmung von Chlor, Brom oder Jod: E. MÜLLER, SCHUCH, Z. El. Ch. 31, 332; bei der maßanalytischen Bestimmung von Sulfid. Polygulfid, und Thiogulfat. Ch. 31, 332; bei der maßanalytischen Bestimmung von Sulfid-, Polysulfid- und Thiosulfat-Schwefel in Polysulfid-Lösungen: Schulek, Fr. 65, 353; über Anwendungen in der Analyse vgl. ferner Lang, Z. anorg. Ch. 122, 332; 142, 229; Herz, Neukirch, Z. anorg. Ch. 180, 343; BREISCH, Fr. 64, 21.

Analytisches.

Literatur über Nachweis und Bestimmung von Blausäure und Cyaniden: BERL-LUNGE, Chemisch-technische Untersuchungsmethoden, 8. Aufl., Bd. I [Berlin 1931], S. 138, 159, Chemisch-technische Untersuchungsmethoden, 8. Aufl., Bd. 1 [Berlin 1931], S. 138, 159, 164, 368, 498; Bd. II [1932], S. 717; Bd. III [1932], S. 698, 1002, 1017, 1325; Bd. IV [1933], S. 104, 181, 206—230, 232, 238, 1018; Bd. V [1934], S. 196, 260; Ergw. zur 8. Auflage von J. D'Ans, 1. Tl. [Berlin 1939], S. 27, 150—152; 2. Tl. [1939], S. 102—105; 3. Tl. [1940], S. 56. — L. ROSENTHALER, Der Nachweis organischer Verbindungen, 2. Aufl. [Stüttgart 1923], S. 489. — F. Flury, F. Zernik, Schädliche Gase [Berlin 1931], S. 407. — A. Gronover in A. Bömer, A. Juckenack, J. Tillmans, Handbuch der Lebensmittelchemie, Bd. II [Berlin 1935], S. 1287.

Reinheitsprüfung, Rept. Lynger Untersuchungsmethoden, 8. Aufl., Bd. IV. S. 200

Reinheitsprüfung: BERL-LUNGE, Untersuchungsmethoden, 8. Aufl., Bd. IV, S. 209. —

Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 7.

Allgemeines über den Nachweis von Blausäure: KLING, LASSIEUR, Chim. et Ind. 4, 152; C. 1921 II, 1009; Brunswik, Sber. Akad. Wien 130 I [1921], 389; ROOZENDAAL, Pharm. Tijdsch. Nederl.-Indië 4, 110; C. 1927 II, 143; F. Frigl., Qualitative Analyse mit Hilfe von Tüpfelreaktionen, 2. Aufl. [Leipzig 1935], S. 289.

Nachweis durch den Geruch: Sieverts, Hermsdorf, Z. ang. Ch. 34, 3; durch Übertilber in Parital Landscheiner in State Sta

führung in Berlinerblau: Sundberg, Fr. 61, 110; Karaoglanow, Fr. 62, 220; Danckwortt, Pfau, Ar. 1924, 443; Schulek, P. C. H. 65, 693; C. 1925 I, 731; Lindberger, Ber. Physiol. 37 [1926], 695. Zum Nachweis mit alkoh. Guajacharz-Lösung und Kupfersulfat-Lösung nach Schönbein (Fr. 8, 68) vgl. Su., Fr. 61, 111; Peset, Aguilar, Arch. Med. legal 1, 18; C. 1923 II, 223; ROOZENDAAL, Pharm. Tijdsch. Nederl. Indië 4, 114; C. 1927 II, 143; die Guajacharz-Lösung läßt sich durch Lösungen von Fluorescin, Pyramidon, Benzidin, Aloin, N.N-Dimethyl-p-phenylendiamin, 4.4'-Diamino-diphenylamin oder N.N.N'.N'. Tetramethyl-p-phenylendiamin ersetzen (PE., AG.; KOLTHOFF, Pharm. Weekb. 60 [1923], 1293; 62 [1925]. 408; Roo.). Zum Nachweis mit alkal. Phenolphthalin-Lösung und Kupfersulfat-Lösung nach Weehuizen (P. C. H. 48, 256; C. 1905 I, 1191) vgl. Stamm, zit. bei Kolthoff in Pharm. Weekb. 62 [1925], 407; Roo., Pharm. Tijdschr. Nederl.-Indië 4, 115; C. 1927 II, 143.

Zum mikrochemischen Nachweis von Blausäure in Form von Silbercyanid-Krystallen sauert man das Untersuchungsmaterial in einem Glasgefäß von ca. 1 cm³ Inhalt mit Oxalsäure-Lösung an und bedeckt mit einem Deckglas, an dem sich 1 Tropfen einer 1 %igen, mit Methylenblau gefärbten Silbernitrat-Lösung befindet (Brunswik, Sber. Akad. Wien 130 I [1921], 390, 399; Br., Neuretter, Wien. klin. Wschr. 35, 623; C. 1922 IV, 740; vgl. L. Rosenthaler, Der Nachweis organischer Verbindungen, 2. Aufl. [Stuttgart 1923], S. 494; F. Emich, Lehrbuch der Mikrochemie, 2. Aufl. [München 1926], S. 221); Malitzky,

Koslowsky (Mikroch. 7, 95, 97; C. 1929 I, 2561) verwenden hierbei salpetersaure Silbernitrat-Lösung und setzen außerdem bei Gegenwart von Sulfiden (z. B. beim toxikologischen Nachweis) der zu prüfenden Lösung außer Oxalsäure auch Permanganat zu. Mikrochemischer Nachweis auf Grund der katalytischen Umwandlung von Alloxan in Oxalursäure-diamid: DENIGES, Mikroch. 4, 150; C. 1927 I, 153.

Nachweis neben anderen Säuren mit Hilfe der Eisen(III)-rhodanid-Färbung: FER-NANDES, GATTI, G. 58, 109, 113. — Nachweis in Luft mit Hilfe von Benzidin und Kupferacetat: Sieverts, Hermsdorf, Z. ang. Ch. 34, 3; Sundberg, Fr. 61, 112; Koelsch, Seiffert, Z. Hyg. Inf.-Kr. 101, 193; C. 1924 I, 1079. — Nachweis in Pflanzen: Köntg, Ch. Z. 44, 405; C. 1920 IV, 325; Brunswik, Sber. Akad. Wien 130 I [1921], 405; Rosenthaler, Schweiz. Apoth. Ztg. 60, 477; C. 1922 IV, 1124.

Zum toxikologischen Nachweis von Spuren Blausäure versetzt man die zu prüfende Flüssigkeit mit überschüssiger verdünnter Schwefelsäure, treibt die entwickelte Blausäure mit Hilfe eines Luftstroms in verd. Kalilauge über und weist darin das Kaliumeyanid nach bekannter Methode nach (CHELLE, Ann. Chim. anal. appl. [2] 2 [1920], 21, 48; vgl. s. Roz, Am. Soc. 45, 1878; MAGNIN, J. Pharm. Chim. [8] 1, 336; C. 1925 I, 2716). Toxikologischer Nachweis nach dem mikrochemischen Verfahren von Brunswik s. o.; zum toxikologischen Nachweis vgl. ferner Danckwortt, Pfau, Ar. 1924, 443; Lindberger, Ber. Physiol. 37 [1926], 695; Schirm, Wester, Ar. 1928, 290; Sensi, Revello, Ann. Chim. applic. 16, 606; C. 1927 I, 1348; Nachweis in Blut: SENSI, Ann. Chim. applic. 18, 617; C. 1927 I.

Bestimmung. Gravimetrische Mikrobestimmung von Blausaure als Silberoyanid: Brunswik, Ost. bot. Z. 72, 58; C. 1924 I, 1244. Zur Titration von Blausaure mit Silbernitrat nach Liebig (A. 77 [1851], 102) vgl. Hara, Sinozaki, Technol. Rep. Tohoku Univ. 5 [1925], 85; Lippich, Fr. 76, 253. Man bestimmt leicht dissoziierbare Cyanide durch Ansäuern, Durchleiten eines Luftstromes und Titration der in Natronlauge aufgefangenen Blausaure mit Silbernitrat-Lösung (Roe, Am. Soc. 45, 1879; vgl. Chelle, Ann. Chim. anal. appl. [2] 2, 48; C. 1920 II, 753; BISHOP, Biochem. J. 21, 1164). Bestimmung von Cyaniden mit Silbernitrat durch konduktometrische Titration: Kolthoff, Fr. 61, 234; durch potentiometrische Titration, auch neben Halogeniden: E. Müller, Lauterbach, Z. anorg. Ch. 121, 179. Konduktometrische Titration von Kaliumcyanid mit Quecksilber(II)-perchlorat [Fällung als K, Hg(CN)4]: Ko., Fr. 61, 337.

Modifikation des Verfahrens von Fordos, Gélis (s. H 2, 39, Z.19 v. u.) zur jodometrischen Bestimmung von Cyaniden: Kano, Sci. Rep. Tohoku Univ. 14, 101; C. 1925 II, 1781. Bestimmung von Blausaure in Gasgemischen mit Jod-Lösung in Gegenwart von Natrium-dicarbonat-Lösung: Seil, Ind. Eng. Chem. 18, 142; C. 1926 I, 2940. Man oxydiert Cyanide in Natronlauge mit Natriumhypochlorit, versetzt mit Kaliumjodid, säuert mit Salzsäure an und titriert das ausgeschiedene Jod mit Natriumthiosulfat (BICSKEI, Z. anorg. Ch. 160, 271). Man führt Alkalicyanide in schwach saurer Lösung mit Hilfe von Bromwasser in Bromcyan über, bindet hierauf überschüssiges Brom durch längere Einw. von Phenol und titriert dann das nach 1/2-stdg. Einw. von Kaliumjodid aus dem Bromcyan abgeschiedene Jod mit Thiosulfat (Schuler, Fr. 62, 337; Sch., Stasiar, Ar. 1928, 638; Lang, Fr. 67, 2; vgl. I. M. Kolthoff, Die Maßanalyse, 2. Teil [Berlin 1928], S. 388). Bromometrische Bestimmung von Cyaniden: Lang, Z. anorg. Ch. 142, 230; Oberhauser, Z. anorg. Ch. 144, 259. Mikrochemische Bestimmung der Blausäure mit Jod-Lösung in Gegenwart von Calciumhydrocarbonat-Lösung: Rosenthaler, Seiler, Fr. 62, 388. Walker, Marvin (Ind. Eng. Chem. 18, 139; C. 1926 I, 3171) beschreiben einen Apparat, der Flüchtigkeitsverluste beim Einwägen von wäßr. Blausäure zur gravimetrischen Bestimmung vermeidet.

Zur colorimetrischen Bestimmung als Eisen(III)-rhodanid führt Kolthoff (Fr. 93, 189) Blausäure in alkal. Lösung mit Hilfe von Natriumtetrathionat in Rhodanid über; vgl. a. Hagen, Z. Unters. Lebensm. 55 [1928], 286. Zur colorimetrischen Bestimmung kleiner Mengen von Cyaniden mit Hilfe von Pikrinsäure nach Waller (C. 1910 II, 1166) vgl. R. G. SMITH, Am. Soc. 51, 1171. — Calorimetrische Titration von Gemischen von Cyaniden und

Halogeniden mit Silbernitrat: DEAN, NEWCOMER, Am. Soc. 47, 65.

Bestimmung von Cyaniden neben Carbiden: ASKENASY, GRUDE, Z. El. Ch. 28, 150; neben Rhodaniden und Halogeniden: LANG, Fr. 67, 8; E. MULLER, Die elektrometrische (potentiometrische) Maßanalyse, 5. Aufl. [Dreeden-Leipzig 1932], S. 123, 134; neben Rhodaniden und Ferrocyaniden: L., Z. anerg. Ch. 142, 293. Elektrometrische Titration von Halogeniden mit Kaliumpermanganat in Gegenwart von Cyaniden: WILLARD, FERVICK, Am. Soc. 45, 624. Jodometrische Bestimmung von Halogeniden in Gegenwart von Cyaniden: Burg, Fr. 69, 1. Bestimmung von Chloriden, Bromiden und Rhodaniden neben Kaliguncyanid mit Hilfe von Formaldehyd: Schulek, Fr. 65, 483; 66, 169.

Bestimmung von Blaussure in Pflanzen: Downel., J. agric. Res. 18 [1919], 476; Lünnes, Ch. Z. 44 [1920], 166, 262; Fincke, Ch. Z. 44, 316; C. 1920 IV, 324; Konss, Ch. Z. 44, 406; C. 1920 IV, 325; Kohn-Abrest, Ricardoni, C. r. 177, 771; Pincker, J. agric. Res.

27 [1924], 719; ROSENTHALER, Schweiz. Apoth.-Ztg. 62, 705; C. 1925 II, 1076; Bio. Z. 190, 169; BISHOP, Biochem. J. 21, 1162; ROBINSON, Biochem. J. 23, 1103, 1113; CZAPSKI, Fr. 59, 80; HAGEN, Z. Unters. Lebensm. 55, 284; C. 1928 II, 797; in Futtermitteln: J. König, Die Untersuchung landwirtschaftlich und landwirtschaftlich-gewerblich wichtiger Stoffe, 5. Aufl., Bd. I [Berlin 1923], S. 425; Stettbacher, Landw. Jb. Schweiz 39 [1925], 796; in Kirschwasser: J. König, Die Untersuchung landwirtschaftlich und landwirtschaftlich gewerblich wichtiger Stoffe, 5. Aufl., Bd. II [Berlin 1926], S. 81.

Additionelle Verbindungen von Blausäure mit Halogeniden.

4 HCN + BeCl₂. Prismen (FRICKE, RODE, Z. anorg. Ch. 152, 350). Riecht intensiv nach Blausäure. Sehr schwer löslich in Äther, Benzol und Benzin, löst sich in Wasser und Alkohol leicht unter Zersetzung. Gibt beim Erwärmen oder beim Überleiten von Kohlendioxyd leicht Blausäure ab.

3 HCN + ZnCl₂. Beständig an trockner Luft, gibt beim Behandeln mit Wasser Blausäure ab (Gold- u. Silberscheideanst., D. R. P. 435989; C. 1927 I, 346; Bräuer-D'Ans

2 HCN + TiBr₄. Granatrote, stark hygroskopische Nadeln oder Tafeln (Oberhauser, Schormüller, B. 62, 1438). F: 132-1330 (korr.; Zers.) nach Dunkelfärbung bei 1000. Sublimiert im Hochvakuum bei 110°. Zersetzt sich durch Einw. von Feuchtigkeit in Bromwasserstoff, Blausäure und ein gelbes Produkt. Löst sich in Wasser unter Blausäureentwicklung. wasserston, Blausaute inter in gerbes i Toduk. Dost sien in Wasser inter Blausaute inter wordt.

3 HCN + 2 TiBr₄. Dampfdruck bei 70°: 172 mm (O., Sch.). — HCN + TiBr₄. Dampfdruck bei 70°: 72 mm (O., Sch.). — 2 HCN + TiBr₄ + NH₃. Bildet mit flüssigem Ammoniak bei tiefer Temperatur eine dunkelrote Lösung (O., Sch.). — 5 HCN + Fe₃Br₃. Sehr hygroskopische schwarzbraune Nadeln oder Oktaeder (aus Blausäure) (Oberhauser, Schormüller, Nadeln oder Oktaeder (aus Blausäure) (Oberhauser, Schormüller, B. 62, 1487). F: 163-165° nach Sintern bei 125°. Löst sich in Wasser unter Abspaltung von Blausäure.

Salze der Blausäure (Cyanide).

Vorbemerkung. Die Cyanide sind auf Grund der Elementenliste (H 1, 33) angeordnet; wobei abweichend von dem Verfahren in H 2, 40; E I 2, 27 keine Anderungen der Reihenfolge vorgenommen wurden. Innerhalb ein und desselben Metalls richtet sich die Anordnung in erster Linie nach der Wertigkeit [z. B. Fe(II)-Salze vor Fe(III)-Salzen], dann nach der Koordinationszahl; bei gleicher Koordinationsahl werden homogenen Typen [z. B. H₄Fe(CN)₆] vor den heterogenen [z. B. H₅Fe(CN)₆(NO)] abgehandelt. Salze mit mehreren besieben Bestandteilen findet man bei demionisch Flement des in der Verlagen der Verlage basischen Bestandteilen findet man bei demjenigen Element, das in der Liste die späteste Stelle einnimmt; sofern hiervon aus besonderen Gründen abgewichen ist, findet sich an dieser Stelle ein Hinweis. — Die allgemeinen Bildungsweisen, die chemischen und analytischen Eigenschaften sowie die Verwendung von Cyaniden s. in den entsprechenden Kapiteln des Artikels Blausäure.

Über die beiden Konstitutionsmöglichkeiten Me—C≡N oder Me—N=C (vgl. H 2, 40, C. 9 v. u.) s. a. W. HÜCKEL, Theoretische Grundlagen der organischen Chemie, 2. Aufl., 1. Bd. [Leipzig 1934], S. 224; vgl. a. HÖLZL, M. 51, 399. Zur Struktur der komplexen Metallcyanide vgl. Reihlen, Zimmermann, A. 451, 75; 475, 101; R., v. Kummer, A. 469, 30; R., Kraut, A. 478 [1930], 219; vgl. a. Lowry, J. Soc. chem. Ind. 42, 318 R; C. 1923 III, 278; Spiers, J. Soc. chem. Ind. 42, 535 R; C. 1923 III, 877; RAY, J. indian chem. Soc. 5, 77; C. 1928 I, 2769. Über Beziehungen zwischen dem magnetischen Verhalten und der Konstitution von komplexen Cyaniden s. Welo, Baudisch, Nature 116 [1925], 606; Welo, Phil. Mag. [7] 6, 497; C. 1928 II, 2626; BILTZ, Z. anorg. Ch. 170, 180; Rây, BHAR, J. indian chem. Soc. 5, 497; C. 1929 I, 2020.

Zerstörung von komplexen Cyaniden in Gemischen zwecks qualitativer Analyse der vorhandenen Metalle: Coppola, Ann. Chim. applic. 18, 65; C. 1928 I, 3098.

Ammonium cyanid NH₄CN (H 40). Literatur: GMELINS Handbuch der anorganischen NH₄ Chemie, 8. Aufl., Syst. Nr. 23: Ammonium [Berlin 1936], S. 367. B. Bildet sich gelegentlich in geringer Menge beim Erhitzen von Blausäure im geschlossenen Gefäß (WALKER, ELDRED, Ind. Eng. Chem. 17 [1925], 1076). Beim Erhitzen von Kaliumcyanid in einer Wasserstoff-Atmosphäre mit Phosphor oder Aluminiumpulver und etwas Wasser oder besser mit Schwefelsäure (Ellis, Gibbins, Am. Soc. 45, 1727). Beim Erhitzen von Ammoniumferrocyanid im Hochvakuum (Mittasch, Kuss, Emert, Z. anorg. Ch. 170, 196). Die Darstellung aus Ammoniakgas und Blausäure nach Michael, Hibbert (A. 364 [1909], 76) erfolgt am besten in alkoh. Lösung (Read, Am. Soc. 44, 1751). Elektrische Leitfähigkeit wäßr. Lösungen bei 20° und 40° und Drucken von 500—3000 kg/cm²: Tammann, Rohmann, Z. anorg. Ch. 183, 5. — Sehr leicht entzündlich, brennt mit gelblicher Flamme (E., G., Am. Soc. 45, 1728). Entfärbt sofort neutrale Kaliumpermanganat-Lösung (E., G.). Einfluß des Druckes auf die hydrolytische Spaltung: T., R. Liefert mit Schwefel in Chloroform Ammoniumrhodanid

(E., G.). Reinheitsprüfung: BERL-LUNGE, Chemisch-technische Untersuchungsmethoden. 8. Aufl., 4. Bd. [Berlin 1933], S. 216.

Zur Darstellung des sehr unbeständigen Hydrazincyanids (EI 28) vgl. E. MÜLLER,

Herrdegen, J. pr. [2] 102, 127, 147.

Lithiumcyanid LiCN (H 41). Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 20: Lithium [Berlin 1927], S. 228. — Darst. Durch tropfenweises Zugeben von wasserfreier Blausäure zu einer Suspension von Lithiumhydroxyd in Äther (J. MEYER, Z. anorg. Ch. 115, 204). Durch Einw. einer Lösung von wasserfreier Blausäure in Äther oder Benzol auf metallisches Lithium (M.). Sehr leicht löslich in Wasser und anderen Lösungsmitteln (M.). Riecht an der Luft nach Blausäure (M.). Geschwindigkeit der Verseifung von Äthylacetat durch 0,1 n- bis 1 n-wäßr. Lösung von Lithiumcyanid bei 18° und 25°: M., Z. anorg. Ch. 115, 216. Geschwindigkeit der Verseifung von Lithiumcyanid in wäßr. Lösung bei 100,4°, 110,5° und 120,6°: Zawidzki, Witkowski, Roczniki Chem. 5. 520; C. 1926 II, 1362.

Natrium cyanid, Cyannatrium NaCN (H 41; E I 28). Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 21: Natrium [Berlin 1928], S. 778. Darst. Na Durch Eingießen von überschüssiger flüssiger Blausäure in eine eisgekühlte Lösung von Natriumhydroxyd in Alkohol unter Ausschluß von Kohlendioxyd (Guernsey, Sherman, Am. Soc. 48, 697). Durch Überleiten von Blausäure über geschmolzenes Natriumformiat (Dessauer Zucker-Raffinerie, D. R. P. 479845; C. 1929 II, 1468; Frdl. 16, 275; Bräuer-D'Ans 4, 1412). Durch Behandeln von Calciumeyanid mit Natriumsulfat (Hene, D. R. P. 427156; C. 1926 I, 3362; Bräuer-D'Ans 3, 686). Apparatur zum Verschmelzen von Natriumferrocyanid zu Natriumcyanid: MUHLERT, Ch. Appardtur 13, 221, 269; C. 1927 I, 801. Abscheidung aus dem durch Verschmelzen von Kalkstickstoff mit Natriumchlorid entstehenden Gemisch von Natrium- und Calciumcyanid (vgl. S. 40): Gold- u. Silberscheideanst., D. R. P. 442966; C. 1927 I, 3030; Bräuer-D'Ans 3, 687. Reinigung durch Umkrystallisieren aus flüssigem Ammoniak: Grandadam, C. r. 180, 1598; Hackspill, Gr., A. ch. [10] 5, 244. Zum Natriumcyanid Gehalt des käuflichen Calciumcyanids S. S. 56 bei Calciumcyanid — Krystallisation in Gegenwart von Natriumchlorid- und Bleiglanz-Krystallen: ROYER. Bl. Soc. franç. Min. 51, 51, 152; C. 1928 II, 640. F: 564° (Ha., Gr., A. ch. [10] 5, 248; vgl. Gr., C. r. 180, 1599); E: 563,5° (Ha., Gr.). Dampfdruck zwischen 800° (0,76 mm) und 1360° (314 mm); INGOLD, Soc. 128, 885. Ist in Wasser bedeutend leichter Ioslich als Calcium (STAREGOD). Lind Eng. Chem. 10, [1018] 994) ziemlich leicht löstlich in flüssigen. oyanid (Sharwood, J. ind. Eng. Chem. 10 [1918], 294), ziemlich leicht löslich in flüssigem Ammoniak (Gr., C. r. 180, 1598; Ha., Gr., A. ch. [10] 5, 244; Bergstrom, Am. Soc. 48. 2850 Anm. 9), sehr schwer löslich in flüssigem Schwefeldioxyd (Cady, Taft, J. phys. Chem. 29, 1077), schwer löslich in Alkohol (GUERNSEY, SHERMAN, Am. Soc. 48, 697). Dampfdruck von Gemischen mit Natriumcarbonat bei 1000° und 1100°: Ingold, Soc. 123, 891. Elektrische Leitfähigkeit in flüssigem Ammoniak bei —33,5°: SMITH, Am. Soc. 49, 2164. Zu der von Worley, Browne (Soc. 111 [1917], 1061) ermittelten Hydrolysenkonstante in wäßr. Lösung worley, Browne (Soc. 111 [1917], 1061) ermitteiten Hydrolysenkonstante in walfr. Lösung bei 25° vgl. Harman, Worley, Trans. Faraday Soc. 20, 504; C. 1925 II, 706. Geschwindigkeit der Verseifung von Athylacetat durch 0,1 n- bis 1 n-wäßr. Lösung von Natriumcyanid bei 18° und 25°: J. Meyer, Z. anorg. Ch. 115, 216. — Liefert bei der thermischen Zersetzung, Natriumcarbid, Natrium, Stickstoff und Kohlenstoff (Guernsey, Sherman, Am. Soc. 48. 697). Thermische Zersetzung in einer Helium-Atmosphäre bei 600°, 1000° und 1050° und in Stickstoff-Atmosphäre bei 1050°, 1100°, 1200°, 1220° und 1255°; Gu., Sh. Bei der Elektrolyse entstehen Dicyan und Natrium (Bucher, J. ind. Eng. Chem. 9 [1917], 251; Thorssell. Z. ang. Ch. 88, 253). Beständigkeit wäßr. Lösungen: Sharwood, J. ind. Eng. Chem. 10. 294; C. 1920 IV, 425. Verseifung zu Ammoniak und Natriumformiat durch Erhitzen mit Wasserdampf unter Druck: Heise, Foote, J. ind. Eng. Chem. 12, 332; C. 1920 III, 307; Bartell, *J. ind. Eng. Chem.* 14, 517; *C.* 1922 IV, 622; Berl, Braune, *Fortsch. Ch., Phys.* 18, Heft 4, 35; *C.* 1925 I, 1364. Geschwindigkeit der Verseifung in wäßr. Lösung bei 100,4°, 110,5° und 120,6°: Zawidzki, Witkowski, Roczniki Chem. 5, 518; C. 1926 II, 1362. Beim Erhitzen mit Natriumcarbonat (Franchot, Ind. Eng. Chem. 16 [1924], 235) oder mit Eisenpulver (Bucher, J. ind. Eng. Chem. 9 [1917], 236) entsteht metallisches Natrium. Jenaer Glas,
Kupfer und Platin werden durch geschmolzenes Natriumoyanid angegriffen (Hackspill,
Grandadam, A. ch. [10] 5, 247). Reduktion von Oxyden zu den entsprechenden Metallen
durch Natriumoyanid bei Temperaturen zwischen 560° und 750°: Ha., Gr., A. ch. [10]
5, 238. — Über toxische Wirkung und Verwendung vgl. Sharwood, J. ind. Eng. Chem.
10, 292; C. 1920 IV, 425; im einzelnen s. S. 48. — Reinheitsprüfung: Sharwood, J. ind.
Eng. Chem. 10, 294; C. 1920 IV, 425; Anonymus, J. Assoc. agric. Chemists 10, 27; C. 1927 II.
1378: Collins. Mitarh. Ind. Eng. Chem. 18, 762; C. 1928 II 1305: Bryl. Luxur. Chemisch. 1378; COLLIES, Mitarb., Ind. Eng. Chem. 18, 762; C. 1926 II, 1305; BERL-LUNGE, Chemischtechnische Untersuchungsmethoden, 8. Aufl., 4. Bd. [Berlin 1933], S. 215.

Kaliumcyanid, Cyankalium KCN (H 41; E I 28). Literatur: GMELINS Handbuch

der anorganischen Chemie, 8. Aufl., Syst. Nr. 22: Kalium [Berlin 1938], S. 871, 1161. Zum

Vorkommen als Nebenprodukt im Hochofen (H 2, 41) vgl. Franchot, Ind. Eng. Chem. 16 Volkollinier als Nebelprodukt illi Hoddieri (11 2, 11) vgi. Franchol, Ams. Bry. Onem. 19 [1924], 236; Mining Met. 7, 372; C. 1926 II, 2484; Braune, Stahl Eisen 45, 582; C. 1925 II, 234; Kinney, Guernsey, Ind. Eng. Chem. 17, 670; C. 1925 II, 1890; Haufe, v. Schwarze, Arch. Eisenhüttenw. 1, 453; C. 1928 I, 1574. B. Aus Blausäure und Kaliumamid in flüssigem Ammoniak (Cornell, Am. Soc. 50, 3316). Darstellung aus Calciumcyanid durch Erhitzen mit Kaliumsulfat: Hene, D. R. P. 427156; 1926 I, 3362; Bräuer-D'Ans 3, 686. Apparatur zum Verschmelzen von Kaliumferrocyanid zu Kaliumcyanid: MUHLERT, Ch. Apparatur 13, 221, 269; C. 1927 I, 801. Abscheidung aus dem durch Verschmelzen von Kalkstickstoff mit Kaliumchlorid entstehenden Gemisch von Kalium- und Calciumcyanid: Gold- u. Silber-Scheideanst., D. R. P. 443455; C. 1927 II, 168; Bräuer-D'Ans 3, 688. Über Verunreinigungen auch als sehr rein bezeichneter Präparate des Handels vgl. MOLES, IZAGUIERE, An. Soc. españ. 19 [1921], 39; HARA, SINOZAKI, Technol. Rep. Tôhoku Univ. 4 [1924], 38. Reinigung durch Umkrystallisieren aus flüssigem Ammoniak: Grandadam, C. r. 180, 1598; HACKSPILL, Gr., A. ch. [10] 5, 244. — Oktaeder (aus Wasser), Würfel (aus Wasser nach Überschichten mit Alkohol) (Bozorth, Am. Soc. 44, 317). Krystallisation in Gegenwart von Bleiglanzkrystallen: ROYER, Bl. Soc. franç. Min. 51, 51; C. 1928 II, 640. Röntgendiagramm (Bragg-Verfahren): COOPER, Nature 107, 745; C. 1922 I, 632; Bo.; Debye-Scherrer- und Laue-Aufnahmen: Bo., Am. Soc. 44, 318; vgl. Coo., Nature 110 [1922], 544: vgl. a. Z. Kr. Strukturber. 1 [1931], 281; 2 [1937], 371. F: 636° (HA., GR., A. ch. [10] 5, 248; vgl. GR.), 601,2° (RASSOW, Z. anorg. Ch. 114, 129); E: 633° (HA., GR.). D. 5: 1,560 (Biltz, Z. anorg. Ch. 170, 170). Adsorption von Kaliumeyanid in wäßr. Lösung durch aktivierte Holzkohle: Schilow, Lepin, Ph. Ch. 94, 45. Eine bei 25° gesättigte Lösung von Kaliumeyanid in Wasser enthält 41,7 Gew. % Kaliumeyanid; die Löslichkeit wird durch Zusatz. von Kaliumhydroxyd verringert (BASSETT, CORBET, Soc. 125, 1668). Ziemlich leicht löslich in flüssigem Ammoniak (Grandadam, C. r. 180, 1598; Hackspill, Gr., A. ch. [10] 5, 244; Bergstrom, Am. Soc. 48, 2850 Anm. 9). Löslichkeit in flüssiger Blausäure bei 0°: Freden-HAGEN, DAHMLOS, Ph. Ch. 128, 21; Z. anorg. Ch. 179, 84. Zusammensetzung der festen und flüssigen Phasen in den Systemen Kaliumcyanid-Kupfer(I)-cyanid-Wasser, Kaliumcyanid-Silbercyanid-Wasser, Kaliumcyanid-Gold(I)-cyanid-Wasser und Kaliumcyanid-Thallium(I)-cyanid-Wasser bei 25°: BA., Co., Soc. 125, 1671. Abgabe von Blausäure an Luft durch wäßr. Kaliumcyanid-Lösung: HARMAN, WORLEY, Trans. Faraday Soc. 20, 504; C. 1925 II. 706. Wärmetönung beim Lösen von Silberjodid in einer 1n-Kaliumcyanid-Lösung: TAYLOR, Anderson, Am. Soc. 43, 2016. Spezifische Wärme wäßr. Lösungen: Biltz, Mau, Z. anorg. Ch. 148, 184; Bi., Z. anorg. Ch. 148, 204. Zur Luminescenz von lange aufbewahrten wäßrigen Lösungen nach Bestrahlung mit langwelligem ultravioletten Licht vgl. Wawilow, Tummer-MANN. Z. Phys. 54, 273 Anm. Ramanspektrum der wäßr. Lösung: Petrikaln, Hochberg, Ph. Ch. [B] 4, 309. Elektrische Leitfähigkeit in flüssiger Blausäure bei 0°: FREDENHAGEN. Dahmlos, Ph. Ch. 128, 21; Z. anorg. Ch. 179, 84. Abhängigkeit der elektrischen Leitfähigkeit wäßr. Lösungen vom Druck im Bereich von 500-3000 kg/cm² bei 200 und 400: TAMMANN, ROHMANN, Z. anorg. Ch. 183, 3. Elektromotorische Kraft von Ketten mit Kaliumeyanid-Lösung: ATEN, BRUIN, DE LANGE, R. 46, 428; von Ketten mit Lösungen von Kaliumeyanid. Kaliumferrocyanid und Kaliumferricyanid bei 250: Butler, Davies, Soc. 125, 1101. Zersetzungsspannung von 0,1 n-wäßrigen und alkoholischen Lösungen: BIRCKENBACH, KELLER-MANN, B. 58, 793. Periodische Erscheinungen bei der Elektrolyse wäßr. Lösungen an Kupferund Silber-Anoden: Hedges, Soc. 1926, 1541; an Cadmium-, Zink- und Quecksilber-Anoden: He., Soc. 1926, 2585. Passivierende Wirkung der währ. Lösung auf Eisen-, Kobalt- und Nickel-Anoden: He., Soc. 1926, 2881. Hydrolysegrad in währ. Lösung bei 5°, 18° und 35°: Harman, Worley, Trans. Faraday Soc. 20, 504; C. 1925 II, 706; bei 16°: Aten, Bruin, De Lange, R. 48, 428. Geschwindigkeit der Verseinung von Athylacetat durch 0,1 n. bis 1 n-wäßr. Lösung von Kaliumcyanid bei 18° und 25°: J. MEYER, Z. anorg. Ch. 115, 216. Magnetische Susceptibilität der konzentrierten wäßrigen Lösung: Shaffer, Taylor, Am. Soc. 48, 849. — Beständigkeit in fester Form und in Lösung: Schirm, Wester, Ar. 1926. 298 Anm. 10. Geschwindigkeit der Absorption von Sauerstoff durch eine wäßr. Kaliumzws Anm. 10. Geschwindigkeit der Absorption von Sauerstoff durch eine währ. Kaliumcyanid-Lösung in Gegenwart von Quecksilber: Barron, Flexner, Michaelis, J. biol. Chem.
81, 746. Mengenverhältnisse an Blausäure, Cyan und Ammoniak bei der Oxydation von
Kaliumcyanid mit Wasserstoffperoxyd, Natriumpersulfat, Kaliumpermanganat, Kaliumdichromat, Mangan(IV)-oxyd, Blei(IV)-oxyd und Zinn(IV)-oxyd: Ricca, Pirrone, Ann.
Chim. applic. 18, 552; C. 1929 I, 1924. Geschwindigkeit der Verseifung durch Wasser bei
100,4°: Zawidzki, Witkowski, Roczniki Chem. 5, 517; C. 1926 II, 1362; zur Hydrolyse
vgl. a. die Angaben über alkal. Hydrolyse von Blausäure (S. 45). Jenaer Glas wird von
erhitztem Kaliumcyanid angegriffen (Hackspill, Grandadam, A. ch. [10] 5, 247). Über
Reduktion von Oxyden zu den entsprechenden Metallen durch Kaliumcyanid in der Hitze
(H 2, 42) vgl. Ha. Gr. A. ch. [10] 5, 237 — Zur pharmazautischen Verwandbarkeit a. G. Fre. (H 2, 42) vgl. Ha., Gr., A.ch. [10] 5, 237. — Zur pharmazeutischen Verwendbarkeit s. G. Fre-RICHS, G. ARENDS, H. ZÖRNIG in HAGERS Handbuch der pharmazeutischen Praxis, 1. Bd. [Berlin 1930], S. 163. Über Verwendung s. a. S. 48. — Reinheitsprüfung: Anonymus,

J. Assoc. agric. Chemists 10, 27; C. 1927 II, 1378; Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 250; Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., 4. Bd. [Berlin 1933], S. 212; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 269. Bestimmung von Chlor in technischem Kaliumcyanid: Bock, Ch. Z. 50, 391; C. 1926 II, 273.

cyanid: Bock, Ch. Z. 50, 391; C. 1926 II, 273.

Rubidium cyanid RbCN (H 43). Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 24: Rubidium [Berlin 1937], S. 225. B. Durch Zugabe von wasserfreier Blausäure zu einer mit Alkohol überschichteten Lösung von Rubidiumhydroxyd in möglichst wenig Wasser (J. Meyer, Z. anorg. Ch. 115, 207). Krystalle (aus verd. Alkohol). Leicht löslich in Wasser, unlöslich in Alkohol und Ather (M.). Geschwindigkeit der Verseifung von Athylacetat durch 0,1 n- bis 1 n-wäßr. Lösung von Rubidiumcyanid bei 18° und 25°: M., Z. anorg. Ch. 115, 216. Geschwindigkeit der Verseifung durch Wasser bei 100,4°, 110,5° und 120,6°: Zawidzki, Witkowski, Roczniki Chem. 5, 521; C. 1926 II, 1362.

Caesium cyanid CsCN (H 43). Literatur: GMELINS Handbuch der anorganischen Chemie. 8. Aufl., Syst. Nr. 25: Caesium [Berlin 1938], S. 238. B. Durch Zugabe von wasserfreier Blausäure zu einer mit Alkohol überschichteten Lösung von Caesiumhydroxyd in möglichst wenig Wasser (J. Meyer, Z. anorg. Ch. 115, 210). Leicht löslich in Wasser (M.). Riecht an der Luft nach Blausäure (M.). Geschwindigkeit der Verseifung von Äthylacetat durch 0,1 n-bis 1n-wäßr. Lösung von Caesiumcyanid bei 18° und 25°: M., Z. anorg. Ch. 115, 216. Geschwindigkeit der Verseifung durch Wasser bei 100,4°, 110,5° und 120,6°: Zawidzki, Witkowski, Roczniki Chem. 5, 523; C. 1926 II, 1362.

Kupfer(I)-cyanid, Cuprocyanid CuCN (H 44; E I 28). B. Aus Kaliumcyanid und Kupfer(II)-sulfat in Wasser (Bassett, Corbet, Soc. 125, 1667). Über Bildung bei der Einw. von wäßrig-alkoholischer Kaliumcyanid-Lösung auf Krystalle von CuSO₄ + 5H₂O vgl. Pietsch, Kotowski, Berend, Ph. Ch. [B] 5, 9. Bei der Einw. von verd. Salpetersäure auf K[Cu(CN)₂] (Biltz, Z. anorg. Ch. 170, 162). D[∞]₁: 2,916 (Bil., Z. anorg. Ch. 170, 170). Bildung Liesegangscher Ringe in Gelatine, Agar-Agar und Stärke: Chatterji. Dhar, Koll.-Z. 40, 98; C. 1927 I, 36. Zu den festen und flüssigen Phasen im System Kupfer(I)-cyanid-Kaliumcyanid-Wasser bei 25°: Ba., Co., Soc. 125, 1663, 1671. Strom-Spannungs-Kurven und Stromausbeuten bei der Elektrolyse von CuCl-NaCN-Lösungen an Kupfer-Elektroden: Glasstone, Soc. 1929, 707; Smith, Breckenridge, Trans. am. electroch. Soc. 56, 397; C. 1929 II, 1511. Potentiometrische Titration von Kupfer(I)-cyanid mit Natriumcyanid: Gl., Soc. 1929, 705. Abtötende Wirkung auf tierische Pflanzenschädlinge: Moore, Campbell, J. agric. Res. 28, 397; C. 1925 I, 2253. — Über Verbindungen, die bei der Einw. von Methyljodid entstehen und als Derivate von Methylcarbylamin (Syst. Nr. 335) aufgefaßt werden, vgl. Hartley, Soc. 1928, 780; vgl. a. H., Soc. 109, 1297.

gefaßt werden, vgl. Hartley, Soc. 1928, 780; vgl. a. H., Soc. 109, 1297.

Salze von H(Cu(CN)₂] (H 45). Sind nach Benrath, Schröder (Z. anorg. Ch. 135, 212) und Reihlen, Zimmermann (A. 451, 79) von H₂(Cu₂(CN)₄] abzuleiten.—NH₄[Cu(CN)₂] + NH₃ + 2 H₂O (H 45). Zur Formulierung vgl. R., Z., A. 451, 94.—K[Cu(CN)₂] (H 45). Nachweis in CuCN-KCN-Lösungen durch elektrometrische Titration: Glasstone, Soc. 1929, 706. Tafeln und Nadeln (aus Wasser) (Bassett, Corbet, Sch. 195, 1669). D^{**}: 2,355 (Biltz, Z. anorg. Ch. 170, 171). Magnetische Susceptibilität: Rây, Bhar, J. indian chem. Soc. 5 [1928], 501. Beim Erhitzen mit verd. Schwefelsäure verschiedener Konzentration entwickeln sich Blausäure, Kohlenoxyd und Schwefeldioxyd in je nach den Bedingungen wechselnden Mengen (Corbet, Woodman, Chem. N. 183, 51: C. 1927 I, 46). Gibt bei wochenlanger Einw. von starkem Ammoniak dunkelgrüne Plättchen (Ba., Co., Soc. 125, 1669). Toxische Wirkung auf Meerschweinchen und Hunde: Chistoni, Arch. Sci. biol. 4, 4; C. 1923 III, 1109.— [Cu¹¹(NH₂)₂][Cu¹²(CN)₂]₂ (grünes Cupricuprocyan-Ammoniak) (H 45). Zur Formulierung vgl. Benrath, Schröder, Z. anorg. Ch. 135, 206).— [Cu¹²(NH₃)₃](Cu¹²(CN)₂)₃ (grünes Cupricuprocyan-Ammoniak) (H 45). Zur Formulierung vgl. Benrath, Schröder, Z. anorg. Ch. 135, 207). Löslichkeit in wäßr. Ammoniak zwischen 14° und 40°: B., Sch., Z. anorg. Ch. 135, 207). Löslichkeit in wäßr. Ammoniak zwischen 14° und 40°: B., Sch., Z. anorg. Ch. 135, 207). Löslichkeit in wäßr. Ammoniak zwischen 14° und 40°: B., Sch., Z. anorg. Ch. 135, 207; R., Z., A. 451, 94. — [Cu¹¹(NH₃)₄] [Cu¹²(CN)₂]₃. Zur Formulierung vgl. R., Z., A. 451, 94. Unbeständige blaue Krystalle (Dupau, Zur Formulierung vgl. B., Sch., Z. anorg. Ch. 135, 207, 225). Löslichkeit in wäßr. Ammoniak zwischen 14° und 40°: B., Sch., Z. anorg. Ch. 135, 207, 225). Löslichkeit in wäßr. Ammoniak zwischen 14° und 40°: B., Sch., Z. anorg. Ch. 135, 215. Gibt an der Luft Ammoniak zwischen 14° und 40°: B., Sch., Z. anorg. Ch. 135, 215.

Salze von H₂[Cu(CN)₃]: Na₂[Cu(CN)₃] (H 45). Kann aus der wäßr. Lösung als Additionsverbindung mit Hexamethylentetramin isoliert werden (Barbinel, Parist, B. 60, 2420). — K₂(Cu(CN)₃] (H 46, Z. 3 v. o.). Nachweis in CuCN-KCN-Lösungen durch

elektrometrische Titration: Glasstone, Soc. 1929, 706. — Mg[Cu(CN)₃]. Kann aus der wäßr. Lösung als Additionsverbindung mit Hexamethylentetramin isoliert werden (BARBIERI, WABT. LOSUING HIS Additions verbinding mit Hexametry ienters min isohert werden (DARBIERI, Parisi, B. 60, 2421). — $\text{Cu}^{1}\text{K}_{2}[\text{Cu}^{1}(\text{CN})_{3}]_{2} + 4\text{H}_{2}\text{O}$ (H 46, Z. 15 v. o.). Wird von Reihlen, Zimmermann (A. 451, 97) als $\text{K}_{2}[\text{Cu}^{1}\text{Cu}^{1}\text{C}(\text{N})_{6}] + 4\text{H}_{2}\text{O}$ formuliert. — $\text{Mn}(\text{NH}_{4})_{2}[\text{Cu}(\text{CN})_{3}]_{2} + x\text{H}_{2}\text{O}$ (H 46). Ist als $(\text{NH}_{4})_{2}[\text{Cu}^{1}\text{Mn}^{11}(\text{CN})_{6}] + x\text{H}_{2}\text{O}$ (S. 63) aufzufassen (R., Z., A. 451, 97). — $\text{MnNa}_{2}[\text{Cu}(\text{CN})_{3}]_{2} + 5\text{H}_{2}\text{O}$ (H 46, Z. 18 v. o.). Ist als $\text{Na}_{2}[\text{Cu}^{1}\text{Mn}^{11}(\text{CN})_{6}] + 5\text{H}_{2}\text{O}$ (S. 63) aufzufassen (R., Z., A. 451, 97). — $\text{MnK}_{2}[\text{Cu}(\text{CN})_{3}]_{2} + 5\text{H}_{2}\text{O}$ (H 46, Z. 20 v. o.). Ist als $\text{K}_{2}[\text{Cu}^{1}\text{Mn}^{11}(\text{CN})_{6}] + 5\text{H}_{2}\text{O}$ (S. 63) aufzufassen (R., Z., A. 451, 97). — $\text{K}_{2}[\text{Cu}(\text{CN})_{4}]$ (H 46). Prismatische Krystalle. Etwas löslich in Alkohol (Bassett, Corbett, Soc. 125, 1669). D.*: 2,019 (Biltz, Z. anorg. Ch. 170, 171). Magnetische Susceptibilität. R. Z. anorg. Ch. 170, 180. Einfluß auf die Katanhorese eines Eigen(III)-oxyde

bilität: B1., Z. anorg. Ch. 170, 180. Einfluß auf die Kataphorese eines Eisen(III)-oxyd-Sols: Freundlich, Zeh, Ph. Ch. 114, 80. 1 g löst sich bei 20° in 620 g Alkohol von 87—88 Vol.-% (Bi., Z. anorg. Ch. 170, 163 Anm. 2). Elektrische Leitfähigkeit in wäßr. Lösung bei 0°: Moles, Izaguirre, An. Soc. españ. 19 [1921], 86. — K₃[Cu(CN)₄]+H₂O. B. Beim Eindampfen einer Lösung berechneter Mengen von Kaliumcyanid und Kupfer(I)-cyanid (BASSETT, CORBET, Soc. 125, 1670). Rhomboeder. Etwas löslich in Alkohol (BA., Co., Soc.

125, 1669).

Salze von H[Cu₂(CN)₃] (H 46). Zur Formulierung vgl. Benrath, Schröder, Z. anorg. Ch. 135, 213; Reihlen, Zimmermann, A. 451, 79. — K[Cu₂(CN)₃] + H₂O (H 46). B. Beim Kochen von überschüssigem Kupfer(I)-cyanid mit 10 %iger wäßriger Kalium-cyanid-Lösung (Bassett, Corbet, Soc. 125, 1662, 1670). Schuppen. Gibt bei wochenlanger Einw. von sterkem Ammoniak violette Krystalle und grüne Nadeln. — [Cu¹¹(NH₂)₃] [Cu₂(CN)₂]₂ (braunes Cupricuprocyan Ammoniak) (H 46). Zur Formulierung vgl. Br., Sch., Z. anorg. Ch. 135, 208; R., Z., A. 451, 93. Zur braunen Farbe vgl. Br., Sch., Zanorg. Ch. 135, 225. — $[Cu^n(NH_3)_4][Cu_4(CN)_3]_4$ (violettes Cupricuprocyan-Ammoniak von Treadwell und v. Girsewald) (H 47). Zur Formulierung vgl. Be., Sch., Z. anorg. Ch. 135, 208; R., Z., A. 451, 93. Zur violetten Farbe vgl. Be., Sch., Z. anorg. Ch. 135, 209, 225. — $[Cu^n(NH_3)_6][Cu_4(CN)_3]_2$. Zur Formulierung vgl. Be., Sch., Z. anorg. Ch. 135, 209; R., Z., A. 451, 94. Blaue Krystalle; gibt an der Luft rasch Ammoniak ab (Be., 27) and 280, 285. Sch., Z. anorg. Ch. 135, 209, 225).

licher Form (M., I., An. Soc. españ. 19, 80, 90). Sehr unbeständige gelbe Substanz (M., I., An. Soc. españ. 19, 50, 54). — Über komplexe Kupfer(II)-kupfer(I)-cyan-Ammonia-

Levi, Giorn. Chim. ind. appl. 7 [1925], 410; vgl. a. Z. Kr. Strukturber. 1 [1931], 282. D. 4,078 (Biltz, Z. anorg. Ch. 170, 170). Bildung Liesegangscher Ringe in Gelatine, Agar-Agar und Stärke: Chatterji, Dhar, Koll. Z. 40, 98; C. 1927 I, 36. Zusammensetzung der festen und flüssigen Phasen im System Silbercyanid-Kaliumcyanid-Wasser bei 25°: Bassett, Corbet, Soc. 125, 1663, 1672. Wird in festem Zustand auf einer Bleikathode bei der Elektrolyse von 2%iger Schwefelsäure ohne Wasserstoff-Entwicklung zu Silber reduziert (FISCHBECK, EINECKE, Z. anorg. Ch. 167, 29). Silbercyanid-Krystalle lassen sich während des Umkrystallisierens aus wäßr. Ammoniak mit Farbstoffen wie Methylenblau oder Orange G in mit Wasser, Alkohol, 20 % iger Essigsäure oder 20-40 % iger kalter Šalpetersäure nicht auswaschbarer Form färben (Brunswik, Sber. Akad. Wien 180 I [1921], 398).

Salze von H[Ag(CN)₂]. Li[Ag(CN)₂]. Krystalle (J. MEYER, Z. anorg. Ch. 115, 205). Na[Ag(CN)₂]. Nachweis durch potentiometrische Titration: Glasstone, Soc. 1929, 695. In mit Silbercyanid gesättigten wäßrigen Lösungen von Natriumcyanid ist im gebundenen (nicht mit Silbernitrat titrierbaren) Cyanid das Verhältnis Natriumcyanid zu Silbercyanid gleich 1 zu 1 (Masaki, Bl. chem. Soc. Japan 4, 191; C. 1929 II, 2553). Strom-Spannungs-Kurven und Stromausbeuten bei der Elektrolyse von Natriumsilbercyanid-Lösungen an Silberelektroden: Gl., Soc. 1929, 692. — K[Ag(CN)₂] (H 48; E I 29). B. Beim Kochen von Silbercyanid mit Kaliumcyanid-Lösung (Bassett, Corbet, Soc. 125, 1672; Biltz, Z. anorg. Ch. 170, 163). Bei der Einw. einer wäßr. Lösung von Kaliumferrocyanid auf metallisches Silber bei Luftzutritt oder auf Silbersalze mit Ausnahme des Sulfids (BEUTEL, KUTZLNIGG, M. 51, 369). D.: 2,364 (Br., Z. anorg. Ch. 170, 171). Magnetische Susceptibilität: Br., Z. anorg. Ch. 170, 180. 1 g löst sich bei 20° in 35 g Alkohol von 87—88 Vol. % (BI., Z. anorg. Ch. 170, 163 Anm. 2). Elektrolyse wäßr. Lösungen an Platin-Elektroden bei 30°: HEDGES, Soc. 1926, 2592. Strom-Spannungs-Kurven in waßr. Lösungen in Gegenwart von überschüssigem Kaliumcyanid: Aten, van Putten, R. 44, 864. Polarogramme von wäßr. Lösungen (Quecksilber-Tropfkathode): Sanigae, R. 44, 552. Eine Silber-Anode zeigt in wäßr. Lösungen von K[Ag(CN)₂] Ventilwirkung gegen Gleichstrom (Güntherschulze,

Z. Phys. 40, 876; C. 1927 I, 1928). Über die Bestimmung von Silber durch Spaltung von K[Ag(CN)₂] in wäßr. Lösung durch Jod vgl. Baines, Soc. 1929, 2040. — Rb[Ag(CN)₂]. Krystalle. Löslich in Wasser (J. Meyer, Z. anorg. Ch. 115, 208). — Cs[Ag(CN)₂]. Leicht löslich in Wasser (M., Z. anorg. Ch. 115, 210). — Mg[Ag(CN)₂]₂ + 4H₂O. B. Aus Magnesium-cyanid und Silbernitrat in Wasser, neben Mg[Ag(CN)₃] (Fichter, Suter, Helv. 5, 397). Tafeln (aus Wasser). Leicht löslich in Alkohol; löst sich bei Zimmertemperatur in 3 Tln. Wasser. Wird durch Kohlendioxyd gespalten. Zersetzt sich beim Kochen in wäßr. Lösung unter Abscheidung von Magnesiumhydroxyd. — Zn[Ag(CN)₂]₂. Pulver. D⁶₂: 3,035 (Biltz, Z. anorg. Ch. 170, 165, 174). — La[Ag(CN)₂]₃ + 3H₂O. Farbloses krystallines Pulver (Barbieri, R. A. L. [6] 9, 908). — Ce[Ag(CN)₂]₃ + 3H₂O. Farbloses krystallines Pulver (Ba... R. A. L. [6] 9, 907). — Nd[Ag(CN)₂]₃ + 3H₂O. Schwach rosafarbenes krystallines Pulver (Ba... — [Co(NH₂), 1](Ag(CN)₂)₃, 3H₂O. Schwach rosafarbenes krystallines Pulver (Ba... — [Co(NH₂), 1](Ag(CN)₂)₃. Orangegelbe Krystalle (Ba.).

(Ba.). — [Co(NH₃)₆][Ag(CN)₂]₃. Orangegelbe Krystalle (Ba.). — [Co(NH₃)₆][Ag(CN)₂]₃. Orangegelbe Krystalle (Ba.). Na₂[Ag(CN)₃]. Kann aus der wäßr. Lösung als Additionsverbindung mit Hexamethylenteramin isoliert werden (Barbieri, Parisi, B. 60, 2419). — Mg[Ag(CN)₃]. B. Aus Magnesium-cyanid und Silbernitrat in Wasser, neben Mg[Ag(CN)₂]₂ + 4H₂O (FICHTER, SUTER, Helv. 5, 398). Kann aus der wäßr. Lösung als Additionsverbindung mit Hexamethylentetramin isoliert werden (B., P., B. 60, 2420). Nadeln (F., S.). — Ca[Ag(CN)₃]. Kann aus der wäßr. Lösung als Additionsverbindung mit Hexamethylentetramin isoliert werden (B., P., B. 60,

349U/

K₃[Ag(CN)₄]+H₂O. B. Beim Eindampfen einer Lösung von 3 Mol Kaliumcyanid und 1 Mol Silbercyanid (Bassett, Corbet, Soc. 125, 1672). Licht- und luftbeständige Prismen.

 $K[Ag_2(CN)_3] + H_2O$. Nadeln (Bassett, Corbet, Soc. 125, 1671).

Gold(I)-cyanid, Aurocyanid AuCN (H 48; E I 29). Di: 7,122 (Biltz, Z. anorg. Ch. 170, 170). Zusammensetzung der festen und flüssigen Phasen im System Gold(I)-cyanid-Kaliumcyanid-Wasser bei 25°: Bassett, Corbet, Soc. 125, 1663, 1673.

Salze von H[AuCN)₂]·K[Au(CN)₂] (H 48; E I 29). D₁**: 3,452 (Biltz, Z. anorg. Ch. 170, 171). Die Löslichkeit in Wasser wird stark von der Temperatur beeinflußt (Bassett. Corbet, Soc. 125, 1673). 1 g löst sich bei 20° in 15 g Alkohol von 87—88 Vol.-% (Bi., Z. anorg. Ch. 170, 163 Anm. 2). Einfluß auf die Kataphorese eines Eisen(III)-oxyd. Sols: Freundlich, Zeh, Ph. Ch. 114, 79. — Zn[Au(CN)₂]₂ (H 49). D₂**: 4,283 (Biltz. Z. anorg. Ch. 170, 165, 174). — Ni[Au(CN)₂]₂. Zur Formulierung vgl. Reihlen, v. Kummer. A. 469, 31. Gelb; wird bei Zugabe von Wasser weiß (Biltz, Z. anorg. Ch. 170, 166). D₂**: 4,653 (Bil., Z. anorg. Ch. 170, 174). — La[Au(CN)₂]₃ + 3 H₂O. Farblose Krystalle (Barbieri, R. A. L. [6] 9, 909). — Ce[Au(CN)₂]₃ + 3 H₂O. Farblose Krystalle (Ba., R. A. L. [6] 9, 908). — [Co(NH₃)₃][Au(CN)₂]₃. Orangegelbe Schuppen (Ba., R. A. L. [6] 9, 909). K[Au(CN)₄] (H 49; E I 29). Einfluß auf die Kataphorese eines Eisen(III)-oxyd-Sols: Freundlich, Zeh, Ph. Ch. 114, 79.

Magnesium cyanid Mg(CN)₂ (H 43). Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 27: Magnesium, Teil B [Berlin 1938], S. 331. B. Entsteht in wäßr. Lösung bei der Einw. einer wäßr. Blausäure-Lösung auf Magnesium (Fichter. Suter, Helv. 5, 396). In geringer Menge bei der thermischen Zersetzung von Magnesium-eisen(II)-cyanid (F., Su., Helv. 5, 400). Zur möglichen Bildung beim Überleiten von Kohlenoxyd über Magnesiumtrid bei sehr hohen Temperaturen vgl. F., Schölly, Helv. 3, 303. Die von Schulz (J. pr. [1] 68 [1856], 260) angeblich erhaltenen Krystalle von Magnesiumcyanid waren vermutlich nur Magnesiumhydroxyd (F., Su., Helv. 5, 397; vgl. F., Sch., Helv. 3, 304). Sehr leicht löslich in Wasser, leicht in Alkohol (F., Su.). Ist sehr empfindlich gegen die Feuchtigkeit der Luft; wird in wäßr. Lösung beim Aufbewahren, rascher beim Erwärmen unter Abscheidung von Magnesiumhydroxyd hydrolysiert (F., Su., Helv. 5, 396. 399). — Mg[Cu(CN)₈] s. S. 55. — Mg[Ag(CN)₈]₈ + 4 H₂O s. oben. — Mg[Ag(CN)₈] s. oben.

399). — Mg[Cu(CN)₃] s. S. 55. — Mg[Ag(CN)₃]₃ + 4H₂O s. oben. — Mg[Ag(CN)₃] s. oben. Calcium cyanid Ca(CN)₂ (H 43). Das aus Kalkstickstoff hergestellte Calcium cyanid des Handels ist im wesentlichen als Natrium cyanid mit einer verhältnismäßig geringen Beimengung von Calcium cyanid anzusehen (California Cyanide Co., D. R. P. 465497; C. 1928 II, 2285; Bräuer D'Ans 4, 1431; vgl. Landis, Trans. am. electroch. Soc. 37 [1920]. 659; Buchanan, Trans. electroch. Soc. 60 [1931], 95), während das aus Calcium carbid und Blausäure gewonnene technische Calcium cyanid der Zusammensetzung Ca(CN)₂ + 2 HCN (S. 57) entspricht (Metzger, Ind. Eng. Chem. 18, 161; C. 1926 I, 3183). B. Durch Erhitzen von Ca(CN)₂ + 2NH₃ im Hochvakuum auf 150—180° (Franck, Frettag, Z. ang. Ch. 39, 1431). Zur Bildung aus Kalium calcium ferrocyanid nach Schulz (J. pr. [1] 68 [1856], 260) und zur chemischen Natur der dabei angeblich erhaltenen Krystalle vgl. Pincass, Ch. Z. 46, 347; C. 1922 III, 38; F., F. Amorphes, farbloses, meist jedoch etwas bräunliches Pulver. Sehr empfindlich gegen Wasser und Kohlendioxyd (F., F.). Entwickelt an der Luft Blausäure-Geruch und zersetzt sich rasch (F., F.). Entzündlich (F., F.). Zur Reinheitsprüfung vgl.

Anonymus, J. Assoc. agric. Chemists 10, 29; C. 1927 II, 1378. — $Ca(CN)_2 + 2NH_3$. B.

Durch Auflösen von Calcium in einer Lösung von Blausäure in flüssigem Ammoniak oder durch Umsetzen von Calciumnitrat mit Ammoniumcyanid in flüssigem Ammoniak (F., The Amnohim Charlet Amnohim Carlot and Carlo grad weiß, gelb bis dunkelbraun gefärbt ist (Calif. Cyanide Co.). Leicht löslich in Wasser. Alkohol und Methanol (M.). Beginnt bei etwa 120° sich langsam zu zersetzen (M.). Geschwindigkeit der Abspaltung von Blausäure beim Überleiten eines indifferenten Gasstroms oder beim Erwärmen im Hochvakuum: FRANCK, FREITAG, Z. ang. Ch. 39, 1430. Wird durch die Feuchtigkeit der Luft so rasch zersetzt, daß das entweichende Gas entzündlich ist (M.). $[Ca(Ca(OH)_2)_2](CN)_2 + 12$ (oder 13) H_2O (H 43, Z. 38 v. o.). B. Durch Leiten von Cyanwasserstoff über Calciumhydroxyd bei Zimmertemperatur (Pincass, Ch. Z. 46, 347; C. 1922 III, 38). — Ca[Ag(CN)₂] s. S. 56.

Strontium cyanid Sr(CN)₂ + 4H₂O (H 43). Literatur: Gmelins Handbuch der Sr anorganischen Chemie, 8. Aufl., Syst. Nr. 29: Strontium [Berlin 1931], S. 197. — Über ein Doppelsalz von Strontiumcyanid mit Silbercyanid vgl. C. H. Boehringer Sohn, D. R. P.

468808; C. 1929 I, 2821.

Barium cyanid Ba(CN)₂ + 2H₂O (H 43; E I 28). Literatur: Gmelins Handbuch der Ba anorganischen Chemie, 8. Aufl., Syst. Nr. 30: Barium [Berlin 1932], S. 326. B. s. S. 52, 53. Zur möglichen Bildung im Hochofen vgl. Haufe, v. Schwarze, Arch. Eisenhüttenw. 1, 459; C. 1928 I, 1574. Über das Präparat von Schulz (J. pr. [1] 68 [1856], 258) vgl. PINCASS, Ch. Z. 46 [1922], 346.

Zinkeyanide. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Zn Syst. Nr. 32: Zink [Berlin 1924], S. 257, 261, 300, 308, 316, 324, 327, 328, 329. — Zink-cyanid Zn(CN), (H 44; E I 28). Darst. Durch Fällen einer Lösung von Zinkhydroxyd in Essigsäure mit Blausäure (BILTZ, Z. anorg. Ch. 170, 162). Durch Behandeln einer wäßr. Lösung von Natriumcyanid mit Magnesiumchlorid und Versetzen des von Magnesiumhydroxyd und Magnesiumcarbonat befreiten Filtrats mit einer Lösung von überschüssigem Zinkchlorid in 50% igem Alkohol (Adams, Levine, Am. Soc. 45, 2375). Dis: 1,852 (B. Z. anorg. Ch. 170, 170). Bildung Liesegangscher Ringe in Gelatine, Agar-Agar und Stärke: Chatterji, Dhar, Koll.-Z. 40, 98; C. 1927 I, 36. Zustandsdiagramm des Systems Kalium-cyanid-Zinkcyanid-Wasser bei 25°: Corbett, Soc. 1926, 3191. Elektrolyse in wäßr. Kaliumcyanid-Lösung an Platinelektroden bei 30°: HEDGES, Soc. 1926, 2593. Zersetzt sich in trockner Atmosphäre sehr langsam (Adams, Levine, Am. Soc. 45, 2375); verliert beim Ausbreiten an der Luft und mehrfachem Besprengen mit Wasser sämtliche Blausäure (Moore, Campbell, J. agric. Res. 28, 397; C. 1925 I, 2253). Bei der Behandlung mit Natrium in flüssigem Ammoniak entsteht eine Verbindung NaZn₄ (Kraus, Kurtz, Am. Soc. 47, 50; Burgess, Rose, Am. Soc. 51, 2127), bei der Behandlung mit Calcium in flüssigem Ammoniak wahrscheinlich eine Verbindung Ca₇Zn (K., K., Am. Soc. 47, 55). Zur pharmazeutischen Verwendbarkeit s. G. Frerichs, G. Arends, H. Zörnig in Hagers Hand-

buch der pharmazeutischen Praxis, 2. Bd. [Berlin 1925], S. 982.

Na₂ [Zn(CN)₄] + 3 H₂O (E I 28). Geht bei ca. 52° in ein wasserärmeres oder wasserfreies Salz über (Corbet, Soc. 1926, 3191). — K₂[Zn(CN)₄]. Darst. Durch mehrtägiges Behandeln einer Suspension von Zinkoxyd in wäßr. Kaliumcarbonat-Lösung mit gasförmiger Blausäure (Biltz, Z. anorg. Ch. 170, 163). Durch Verdampfen einer wäßr. Lösung von Kaliumeyanid und Zinkeyanid (Corbet, Soc. 1926, 3191). Aus Kaliumeyanid und Zinksulfat in Wasser (DICKINSON, Am. Soc. 44, 774). Röntgendiagramm (Bragg- und Laue-Aufnahmen): D., Am. Soc. 44, 775; vgl. Z. Kr. Strukturber. 1 [1931], 424. Brechungsindices der Krystalle bei 25°: CAROZZI, G. 56, 181. D.: 1,647 (B., Z. anorg. Ch. 170, 171); D.: 1,647 (B., Z. anorg. Ch. 17 1,673 (C.; vgl. D.). Magnetische Susceptibilität: B., Z. anorg. Ch. 170, 180. 1 g löst sich bei 20° in 210 g Alkohol von 87—88 Vol.-% (B., Z. anorg. Ch. 170, 163 Anm. 2). Krystalli-

bei 20° in 210 g Alkohol von 87—88 Vol.-% (B., Z. anorg. Ch. 170, 163 Anm. 2). Krystallisation in Gegenwart von Glimmer, Kaliumchlorid-, Kaliumbromid- und Rubidiumchlorid-Krystallen: Royer, Bl. Soc. franc. Min. 51, 87; C. 1928 II, 640. Bildet Mischkrystalle mit K₂[Cd(CN)₄] und K₂[Hg(CN)₄] (C.).

Na₆[Zn(CN)₈(N₃)₆]. B. Durch Erhitzen von Zinkcyanid mit Natriumazid in Methanol (Vournazos, Z. anorg. Ch. 164, 271). Krystalle. Leicht löslich in Methanol und Aceton.

— Zn[Ag(CN)₂]₂ s. S. 56. — Zn[Au(CN)₂]₃ s. S. 56.

Cadmiumoyanide. Literatur: Gmelins Handbuch der anorganischen Chemie, Cd. 8. Aufl., Syst. Nr. 33: Cadmium [Berlin 1925], S. 138, 140, 168, 176, 187, 204, 206, 207, 209, 213. — Cadmiumoyanid Cd(CN)₂ (H 44). B. Durch Eindampfen einer Lösung

von Cadmiumhydroxyd in wäßr. Blausäure (Biltz, Z. anorg. Ch. 170, 162). Zur Bildung durch Fällung einer konz. Cadmiumsulfat-Lösung mit konz. Kaliumcyanid-Lösung nach Joannis (C. r. 93 [1881], 272; A. ch. [5] 26 [1882], 506) vgl. Corbet, Soc. 1926, 3193. D. 2. 2,226 (B., Z. anorg. Ch. 170, 170). Bildung Liesegangscher Ringe in Stärke: Chatteri, Dhar, Koll.-Z. 40, 100; C. 1927 I, 36. Löslich in flüssigem Athylamin und Dimethylamin (Elsey, Am. Soc. 42, 2082). Zustandsdiagramm des Systems Kaliumcyanid-Cadmiumcyanid-Wasser bei 25°: C., Soc. 1926, 3195.

K. [Cd(CN)4] (H 44). Darst. Durch Lösen des beim Fällen von Cadmiumnitrat-Lösung mit Ammoniumhydroxyd gebildeten Niederschlages in Kaliumcyanid - Lösung (Dickinson, Am. Soc. 44, 774). Aus Cadmiumcyanid und Kaliumcyanid in Wasser (Biltzz.

K₂[Cd(CN)₄] (H 44). Darst. Durch Lösen des beim Fällen von Cadmiumnitrat-Lösung mit Ammoniumhydroxyd gebildeten Niederschlages in Kaliumcyanid - Lösung (Dickinson, Am. Soc. 44, 774). Aus Cadmiumcyanid und Kaliumcyanid in Wasser (Biltz, Z. anorg. Ch. 170, 163). Röntgendiagramm (Bragg- und Laue-Aufnahmen): D., Am. Soc. 44, 776; vgl. Z. Kr. Strukturber. 1 [1931], 425. Brechungsindices der Krystalle bei 25°: Carozzi, G. 56, 181. D.: 1,846 (B., Z. anorg. Ch. 170, 171); D.: 1,824 (C.). Magnetische Susceptibilität: B., Z. anorg. Ch. 170, 180. 1 g löst sich bei 20° in 50 g Alkohol von 87 bis 88 Vol. % (B., Z. anorg. Ch. 170, 163 Anm. 2). Elektrolyse der wäßr. Lösung: Hedges, Soc. 1927, 1084. Potential von Silber-Cadmium-Legierungen in 0,1n-Kaliumcadmium-cyanid-Lösungen: Aten, van Putten, R. 44, 862. Strom-Spannungs-Kurven wäßriger, Kaliumcyanid enthaltender Lösungen: A., van P. Krystallisation in Gegenwart von Glimmer: Royer, Bl. Soc. franc. Min. 51, 87; C. 1928 II, 640. Bildet Mischkrystalle mit K₂[Zn(CN)₄] und K₂[Hg(CN)₄] (C.). Die Lösung in Wasser liefert mit konz. Silbernitrat-Lösung einen Niederschlag, der beim Behandeln mit Wasser bei 60° Ag[Cd(CN)₃] gibt (Höllich, M. 51, 400). Liefert beim Schütteln mit überschüßisigem Dimethylsulfat unter Lichtabschluß die Verbindung [Cd₃(CN)₆(OH)(CH₃·NC)₂](?) (Syst. Nr. 335 bei Methylcarbylamin) und andere Produkte; in Gegenwart von Wasser verläuft die Reaktion unter Bildung der Verbindung [Cd₄(CN)₆(HO)(CH₃·NC)₂](?) (Syst. Nr. 335) (H., M. 51, 410).

Ag[Cd(CN)₃]. B. Durch Fällen einer wäßr. Lösung von K₃[Cd(CN)₄] mit Silbernitrat und Behandeln des entstandenen Niederschlags anfangs mit kaltem Wasser, danach mit Wasser von 60° (Höller, M. 51, 400). Krystalle (aus Wasser). Schwer löslich in Wasser. Aus der wäßr. Lösung wird durch Schwefelwasserstoff Silbersulfid gefällt. Liefert bei mehrtägigem Schütteln mit Methyljodid im Dunkeln und Umkrystallisieren des Reaktionsprodukts aus wasserhaltigem Methanol die Verbindung [Cd₄(CN)₄(OH)₄(H₂O)₄(CH₂·NC)](?) (Syst. Nr. 335 bei Methylcarbylamin); beim Umkrystallisieren des Reaktionsprodukts aus absol. Methanol entsteht die Verbindung [Cd₄(CN)₄(OH)₄(CH₂·NC)](?) (Syst. Nr. 335). Mit Äthyljodid tritt unter denselben Bedingungen keine Umsetzung ein.

Quecksilber(II)-cyanid, Mercuricyanid Hg(CN)₂ (H 62; E I 31). Röntgendiagramm (Debye-Scherrer- und Drehkrystall-Aufnahmen): Habsell, Z. Kr. 64, 217: Fricke, Havestadt, Z. anorg. Ch. 171, 344; (Bragg-Aufnahmen): Habsell, Z. anorg. Ch. 180, 372; vgl. Fr., Z. anorg. Ch. 180, 374 sowie Z. Kr. Strukturber. 1 [1931], 282; 2 [1937], 372. Piezoelektrizität der Krystalle: Elings, Terpstra, Z. Kr. 67, 282; Hettich. Schleede, Z. Phys. 50, 252; C. 1939 I, 1893. D*: 3,996 (Bhits, Z. anorg. Ch. 170, 170). Leicht löslich in flüssigem Methylamin und Dimethylamin (Elby, Am. Soc. 42, 2083). Gleichgewichte in den Systemen Quecksilber(II)-cyanid-Ammoniak und Quecksilber(II)-cyanid-Ammoniak-Wasser bei 0°: Brinkley, Am. Soc. 44, 1211, 1213. Zustandsdiagramm des Systems Kaliumcyanid-Quecksilber(II)-cyanid-Wasser bei 25°: Corret, Soc. 1996. 3195. Ebullioskopisches Verhalten in Wasser: Bourion, Rouyur, C. r. 183, 1171; A. ch. [10] 10, 323. Ebullioskopisches Verhalten von Gemischen mit Ammoniumchlorid, Kaliumchlorid, -bromid und -jodid sowie Natrium-, Magnesium- und Bariumchlorid in Wasser: B., R., C. r. 178, 1172; 183, 390; A. ch. [10] 10, 326. Viscosität einer Lösung in Pyridin zwischen 20° und 90°: Herz, Martin, Z. anorg. Ch. 133, 48. Oberfächenspannung der wäßt. Lösunge bei 18°: Stocker, Ph. Ch. 94, 165, 176. Verdünnungswärme wäßt. Lösungen bei ca. 18°: Naudé, Ph. Ch. 135, 220. Absorptionsspektren von Gemischen mit verschiedenen Chloriden, Bromiden und Jodiden in wäßt. Lösung: Inour, Japan. J. Chem. 3, 148; C. 1939 I, 220. Dielektr.-Konst. von Lösungen in Aceton bei 20°: Walden, Werner, Ph. Ch. 194, 411. Polarogramme wäßt. Lösungen, auch in Gegenwart von Kaliumchlorid und Kaliumcyanid (Quecksilber-Tropfkathode): Demassieux, Heyrovski, Bl. [4] 45, 32; vgl. Barron, Flexner, Michaelis, J. biol. Chem. 81, 745. — Wird auch bei längerem Kochen mit Wasser nicht hydrolysiert (Bourion, Rouyer, A.ch. [10] 10, 323. Reaktion mit Natrium und Calclum in flüssigem Ammoniak: Kraus, Kuftz, Am. Soc. 47, 49; mit Aluminium. Eisen, Mangan, Magnesium,

Hg

Desensibilisator (H. MEYER, WALTER, Z. wiss. Phot. 26, 165; C. 1928 II, 2772; I. G. Farbenind., D. R. P. 455089; C. 1928 I, 1488). Nachweis durch die Entfärbung von Jod Lösungen infolge Bildung von Jodcyan: F. Feigl, H. I. Kapultzas, Qualitative Analyse mit Hilfe von Tüpfelreaktionen, 2. Aufl. [Leipzig 1935], S. 293. Das Quecksilber in Quecksilber(II)cyanid kann mit Hilfe von Kaliumjodid nachgewiesen werden (Golse, Bl. Trav. Pharm. Bordeaux 66, 206; C. 1929 I, 2087). Quecksilber(II)-cyanid wird beim Übergießen mit verd. Natriumsulfantimonat-Lösung gelb, dann allmählich schwarz; bei Anwendung von überschüssigem Natriumsulfantimonat bleibt der ausfallende Niederschlag auch beim Kochen gelb (LANGHANS, Fr. 60, 93). Reinheitsprüfung: BERL-LUNGE, Chemisch-technische Untersuchungsmethoden, 8. Aufl., 4. Bd. [Berlin 1933], S. 216. Bestimmung durch Erhitzen mit konz. Schwefelsäure und Kaliumnitrat oder durch Behandeln mit Kaliumpermanganat in Wasser und konz. Schwefelsäure und Titration des entstandenen Quecksilber(II)-sulfats nach bekannter Methode: RUPP, Ar. 261, 201; durch Oxydation mit Natriumhypobromit: Golse, Bl. [4] 45, 177; Bl. Trav. Pharm. Bordeaux 66, 212; C. 1929 I, 2088; durch Reduktion mit Zinn(II)-chlorid und Titration der entstandenen Blausäure nach bekannter Methode: Rox, Am. Soc. 45, 1882; durch Umsetzung mit überschüssigem Natriumthiosulfat und Titration des abgespaltenen Natriumcyanids mit 0,1 n-Säure und Methylorange oder Dimethylaminoazobenzol: Rupp, Müller, Apoth. Ztg. 40, 539; C. 1925 II, 488. Bestimmung geringer Mengen in Wasser auf interferometrischem Wege: Вактн, Z. wiss. Phot. 24, 163; C. 1926 II, 1163. — Hg(CN)₂ + 2NH₃ (H 64; E I 32). Dampfdruck bei 0°: Brinkley, Am. Soc. 44, 1211.

Quecksilberoxycyanid, Hydrargyrum oxycyanatum verum Hg(CN): + HgO (H 66; E I 32). Zur Zusammensetzung des im Handel schlechthin als Hydrargyrum oxycyanatum bezeichneten cyanidhaltigen (G. Frerichs, G. Arends, H. Zörnig in HAGERS Handbuch der pharmazeutischen Praxis, 1. Bd. [Berlin 1930], S. 1468) technischen Produkts vgl. Jones, Pharm. J. 105, 87; C. 1921 I, 74. Darst. Man verreibt 40 g Queck-silber(II)-cyanid mit 30 g gelbem Quecksilberoxyd und 15 cm³ Wasser, setzt nach ¹/₄ Stde. 0,5 cm³ 20%ige Natronlauge zu und verreibt mit Wasser, bis eine weiße Paste entsteht; nach ca. 12 Stdn. verdünnt man mit 200 cm³ Wasser, neutralisiert (gegen Phenolphthalein) mit etwas Essigsäure, löst unter Umrühren in einer siedenden Lösung von 20 g Quecksilber(II)-cyanid in 700 cm³ Wasser und läßt das Filtrat krystallisieren (J.). — Verpufft beim Erhitzen auf 170º (Kast, Haid, Z. Schieß-Sprengstoffw. 17, 117; Ch. Z. 46, 794; C. 1922 III, 1335), auf 1900 (J.). Kann durch Erhitzen, Schlagen oder Reiben zur Explosion gebracht werden (K., H.). Reibungsempfindlichkeit: RATHSBURG, Z. ang. Ch. 41, 1285. Zur Explosionsfähigkeit von reinem und mit Quecksilber(II)-cyanid vermischtem Queck-Explosionistalignest von reinem und mit Quecksinder(II)-cysnid vermisenem Quecksilberoxycyanid vgl. a. Powers-Weightman-Rosengarten Co., J. ind. Eng. Chem. 8, 1174; C. 1918 I, 685; J.; Merck, Ch. Z. 46, 299; Apoth.-Zig. 37, 142; C. 1922 II, 1238; Anonymus, Jber. chem.-tech. Reicheanst. 3 [1922/1923], 36; van Os, Pharm. Weekb. 60, 102; C. 1923 I, 1077; Baechler, Schweiz. Apoth.-Zig. 63, 136; C. 1925 I, 2252; Uhthoff, Quim. Ind. 3, 142; C. 1926 II, 873. Zur pharmazeutischen Verwendung vgl. Frenichs, Arends, Schweiz. Apoth.-Zig. 63, 136; C. 1925 I, 2952; Uhthoff, Arends, Askeria, Apoth. 21, 243. C. 1926 I, 9252, Frenich 1930], S. 1334. — Reinheitenritiung, Res. Schweiz. Apoth. 21, 422. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 223. C. 1926 I, 9252, Frenich physical Apoth. 21, 223. C. 1926 I, 9252, Frenich physical Apoth. 223. C. 1926 II, 9252, Frenich physical Physical Apoth. 223. C. 1926 II, 9252, Frenich physical Ph Reinheitsprüfung: Baz., Schweiz. Apoth. Ztg. 68, 133; C. 1925 I, 2252; Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 239; vgl. HAIRS, J. Pharm. Belg. 10, 267; C. 1928 I, 2633. Reinheitsprüfung, Nachweis und Bestimmung: BERL-LUNGE, Chemischtechnische Untersuchungsmethoden, 8. Aufl., Bd. 3 [Berlin 1932], S. 1002. Nachweis mit Hilfe der Neßlerschen Reaktion besonders in Quecksilber(II)-cyanid: Golse, Bl. Trav. Pharm. Bordeaux 66, 211; C. 1929 I, 2088. Bestimmung durch Oxydation mit Natriumhypobromit: Go., Bl. [4] 45, 183; Bl. Trav. Pharm. Bordeaux 60, 212; C. 1929 I, 2088. Acidimetrische Bestimmung beider Komponenten mit Hilfe von Natriumthiosulfat: RUPP, P. C. H. 67, 145; C. **1926** II, 1448.

Doppelsalze und Komplexsalze des Quecksilber(II)-cyanids. Zur Konstitution der drei Typen Me₄[Hg(CN)₄], Me[Hg(CN)₅] (= Me₂[Hg₂(CN)₆]) und Me₄[Hg₃(CN)₁₀] (s. H. 64, Z. 21 v. o.) vgl. Reihlen, Zimmermann, A. 451, 78, 108. — Hg(CN)₂ + NaN₃ + 2H₂O. B. Aus Quecksilber(II)-cyanid und Natriumazid in Wasser (Rioca, Pierone, G. 59, 564). Krystalle (aus Alkohol). Gibt beim Erwärmen Krystallwasser ab und verpufft allmählich bei weiterem Erhitzen. Ziemlich leicht löslich in Wasser, schwer in Alkohol. — Alimaniich bei weiterem Erhitzen. Ziemlich leicht löslich in Wasser, sohwer in Alkohol. — Kaliumquecksilbercyanid K₂[Hg(CN)₄] (H 64; E I 32). Röntgendiagramm (Braggund Laue-Aufnahmen): Dickinson, Am. Soc. 44, 776; vgl. Z. Kr. Strukturber. 1 [1931], 425. Brechungsindices der Krystalle bei 25°: Carozzi, G. 56, 181. D⁴¹: 2,420 (Biltz, Z. anorg. Ch. 170, 171); D³²: 2,438 (C.). Magnetische Susceptibilität: B., Z. anorg. Ch. 170, 180. 1 g löst sich bei 20° in 35 g Alkohol von 87—88 Vol.-% (B., Z. anorg. Ch. 170, 163 Anm. 2). Elektrolyse wäßr. Lösungen an Platinelektroden bei 30°: Hedges, Soc. 1926, 2593; 1927, 1083. Krystallisation in Gegenwart von Glimmer: Royer, B. Soc. franc. Min. 51, 87; C. 1938 II, 640. Bidet Mischkrystalle mit K₂[Zn(CN)₄] und K₂(Cd(CN)₄] (C.). 2Hg(CN)₂+CuCN+4H₂O. B. Aus Kupfer(II)-chlorid und Quecksilber(II)-cyanid in wäßr. Lösung auf dem Wasserbad (Guffa. Soc. 117. 68). Hellviolette Würfel. Unläslich

in wäßr. Lösung auf dem Wasserbad (Guffa, Soc. 117, 68). Hellviolette Würfel. Unlöslich

in Wasser. — $Hg(CN)_2 + Cu(N_3)_2$. B. Aus dem Salz $Hg(CN)_2 + NaN_3 + 2H_2O$ und Kupfersulfat in Wasser (RICCA, PIRRONE, G. 59, 566). Ziegelroter Niederschlag. Explodiert beim Erhitzen. Löslich in viel Wasser mit gelbgrüner Farbe. — $Hg(CN)_2 + AgN_3$. B. Aus dem Salz $Hg(CN)_2 + NaN_3 + 2H_2O$ und Silbernitrat in Wasser (R., P., G. 59, 565). Pulver. Unlöslich in Wasser und Alkohol, löslich in verd. Salpeter- und Schwefelsäure und in Ammoniak. Explodiert nicht beim Erhitzen. — $Hg(CN)_2 + AgNO_3 + 2H_2O$ (H 67). Nadeln oder Prismen (HAIRS, J. Pharm. Belg. 10, 268; C. 1928 I, 2633). $Hg(CN)_3 + AgCN + 4H_2O$. B. Aus Silbernitrat und Quecksilber(II)-cyanid in wäßr. Lösung auf dem Wasserbade (GUPTA, Soc. 117, 70). Nadeln. Wird bei 180° wasserfrei. Wird durch Wasser zersetzt. — Gupta, Soc. 117, 70). Nadeln. Wird bei 180° wasserfrei. Wird durch Wasser zersetzt. — Hg(CN)₂ + Zn(N₃)₂. B. Aus Natriumazid, Zinksulfat und Quecksilber(II)-cyanid in Wasser (Ricca, Pirrone, G. 59, 566). Pulver. Verpufft beim Erhitzen. — Hg(CN)₂ + SbI₃ s. unten als Hg[Sb(CN)₂I₃]. — 3 Hg(CN)₂ + 2 BiBr₃ s. Hg₃[Bi(CN)₃Br₃]₂ (S. 61). — Hg(CN)₃ + MnCl₂ + 2 H₄O (H 64). Enthalt im Gegensatz zu den Angaben von Poggiale (C. r. 23, 764) nicht 3, sondern 2 H₂O. B. Aus Mangan(II)-chlorid und Quecksilber(II)-cyanid in wäßr. Lösung auf dem Wasserbade (Gupta, Soc. 117, 71). Schuppen. Wird bei 170° wasserfrei. Sehr leicht löslich in Wasser. Elektrische Leitfähigkeit in Wasser bei 23°: G. — Mn(CN)₂ + Hg(CN)₂ + 2—3 NH₃(?). Einheitlichkeit fraglich. B. Bei der Einw. von Mangan auf Quecksilber(II)-cyanid in flüssigem Ammoniak (Bergstrom, Am. Soc. 46, 1566). Krystalle. — Hg(CN)₂ + Co(N₃)₂. B. Aus Quecksilber(II)-cyanid, Natriumazid und Kobalt(II)-sulfat in Wasser (Ricca, Pirrone, G. 59, 567). Rötlicher Niederschlag. Verpufft beim Erhitzen. — Hg(CN)₂ + CoSO₄ + 10 H₂O. B. Durch Erhitzen äquimolekularer Mengen Kobalt(II)-sulfat und Quecksilber(II)-cyanid in Wasser (Scaliarini, Bonini, G. 50 II, 116). Orangerote Krystalle. Elektrolyse der wäßr. Lösung: Sc., Bo. — 5 Hg(CN)₂ + 2 [Co(NH₃)₂|Cl₃ + H₂O. B. Aus überschüssigem Quecksilber(II)-cyanid und [Co(NH₃)₄)Cl₃ in Wasser (Ephraim, Mosimann, Helv. 6, 1122). Hellrotbraune Blättchen. — Hg(CN)₂ + NiSO₄ + 10 H₂O. B. Aus äquimolekularen Mengen Nickel(II)-sulfat und Quecksilber(II)-cyanid in Wasser (Sc., Bo., G. 50 II, 116). Blaugrüne Krystalle. 116). Blaugrüne Krystalle.

Aluminium cyanid Al(CN)₃. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 35: Aluminium, Teil B [Berlin 1934], S. 305. Ist in fester Form nicht bekannt; eine Lösung in flüssigem Ammoniak entsteht durch Einw. von Aluminium auf Quecksalme, eine Losung in flüssigem Ammoniak entsteht durch Einw. von Aluminium auf Quecksilber(II)-cyanid in flüssigem Ammoniak (Bergstrom, Am. Soc. 46, 1559). — Al(CN)₃ + (13 oder 14)NH₃. Krystallisiert aus der Lösung in flüssigem Ammoniak bei —40° (B.). Durch sukzessive Abspaltung von Ammoniak bei —33° werden Verbindungen mit 9 und 6 NH₃ erhalten. — Al(CN)₃ + 5NH₃ (im Vakuum bei gewöhnlicher Temperatur getrocknet). Krystalle. 1 Liter flüssiges Ammoniak löst bei 25° 7—8 g (B.). Die Löslichkeit steigt mit abnehmender Temperatur. — Al(CN)₃ + 1¹/₂NH₃. B. Dirch Erhitzen des vorangehenden Salzes im Vakuum auf 30° (B.). Sohr gebrage löslich in horne Salzes im Vakuum auf 30° (B.). Sohr gebrage löslich in horne Salzes im Vakuum auf 30° (B.). Salzes im Vakuum auf 80° (B.). Sehr schwer löslich in konz. Säuren und in Alkalien.

Thallium(I)-cyanid-Kaliumcyanid-Wasser bei 25°: B., C., Soc. 125, 1663, 1666, 1674.

K[Tl(CN)₂]. Prismen (B., C., Soc. 125, 1666).

La[Ag(CN)₂]₃ + 3 H₂O s. S. 56. — La[Au(CN)₂]₃ + 3 H₂O s. S. 56. — Ce[Ag(CN)₂]₃ + 3 H₂O s. S. 56. — Nd[Ag(CN)₂]₃ + 3 H₂O s. S. 56. La; Ce; Nd

Sn; Pb Über Zinneyanide vgl. DRUCE, Chem. N. 128, 115; C. 1924 I, 1915. Bleicyanid Pb(CN), (H 50). B. Durch Fällen von Bleinitrat in Wasser mit überschüssiger Natriumcyanid-Lösung (Herz, Neukirch, Z. anorg. Ch. 180, 343) oder Kalium. oyanid-Lösung (Druce, Chem. N. 128, 116; C. 1924 I, 1915), Nadeln (aus wäßr. Blausäure). Unlöslich in Wasser (H., N.), etwas löslich in siedender 5% iger wäßriger Blausäure (D.). Bildung Liesegangscher Ringe in Gelatine, Agar-Agar und Stärke: Chatterji, Dhar, Koll.-Z. 40, 98; C. 1927 I, 36.

Natriumvanadyleyanid Na₂[VO(CN)₅]. Kann aus der wäßr. Lösung als Additionsverbindung mit Hexamethylentetramin isoliert werden (Barbieri, Parisi, B. 60, 2421). Antimon(III)-cyanide. Cu_e[Sb(CN)₂I₂]. B. Aus Kupfer(I)-cyanid und Antimon(III)-jodid in wasserfreiem Xylol auf dem Wasserbad (Vournazos, C. r. 170, 1259). Braunes. in Wasser unlösliches Pulver. — Hg[Sb(CN)₂I₃]. B. Beim Erwärmen von Quecksilbercyanid mit Antimon(III)-jodid in wasserfreiem Xylol auf dem Wasserbad (V., C. r. 170, 86

1258). Blaßgelbes Pulver. Gibt beim Erwärmen mit Amylalkohol und etwas Wasser die

Verbindung Hg[SbOI₈]. Geht bei 3—4-stdg. Erwärmen mit Xylol in eine nicht näher beschriebene Verbindung Hg₈[Sb(CN)₈I₈], über.

Wismut(III)-cyanide. K₂[Bi(CN)₂Br₃]. B. Aus Kaliumcyanid und Wismut(III)-bromid in wasserfreiem Xylol auf dem Wasserbad (VOURNAZOS, C. r. 172, 537). Löslich in verd. Salzsäure, die Lösung zersetzt sich schnell. Wird durch kaltes Wasser zersetzt. Gibt beim Erhitzen unter Luftabschluß Kaliumbromid und metallisches Wismut. — Cu₂[Bi(CN)₂Br₂]. B. Aus Kupfer(I)-cyanid und Wismut(III)-bromid in Xylol auf dem Wasserbad (V., C.r. 172, 537). Graugrünliches Pulver. Unlöslich in Xylol, kaltem Wasser und Weinsäure-Lösung, löslich in heißer verdünnter Salzsäure unter allmählicher Zersetzung. Gibt beim Erhitzen Wismut(III)-bromid, Kohle und Kupfer. Liefert beim Kochen mit Wasser Kupfer(I)-Erhitzen Wismut(III)-bromid, Kohle und Kupfer. Liefert beim Kochen mit Wasser Kupfer(I)-bromid, basisches Wismutoxyd BiO(OH) und Blausäure, beim Behandeln mit Kalium-cyanid Wismuthydroxyd und $K_3[Cu(CN)_4]$. — $Ag_3[Bi(CN)_3Br_3]$. B. Aus Silbercyanid und Wismut(III)-bromid in Xylol auf dem Wasserbad (V., C. r. 172, 537). Orangegelb, amorph. Unlöslich in siedendem Wasser und Alkohol. Färbt sich am Sonnenlicht gæuschwarz. Gibt beim Erhitzen unter Luftabschluß Silberbromid und metallisches Wismut. Wird von Ammoniak und Kaliumcyanid zersetzt. — $Hg_3[Bi(CN)_3Br_3]_3$. B. Aus Quecksilbercyanid und Wismut(III)-bromid in Xylol auf dem Wasserbad (V., C. r. 172, 537). Nadeln.

Chromcyanide.

Kalium-chrom (II)-cyanid, Kaliumchromocyanid K₄[Cr(CN)₆] (H 50). Zur magnetischen Susceptibilität vgl. Rây, Bhar, J. indian chem. Soc. 5 [1928], 501, 507.

Kaliumchrom (III)-cyanid, Kaliumchromicyanid K₃[Cr(CN)₆] (H 51). Zur Darstellung nach Cruser, Miller (Am. Soc. 28 [1906], 1133) vgl. Hölzl, Viditz, M. 49, 242. Hellgelbe Krystalle (Biltz, Z. anorg. Ch. 170, 164). D_a^{**}: 1,782 (Bi., Z. anorg. Ch. 170, 171). Magnetische Susceptibilität: Bi., Z. anorg. Ch. 170, 180; Wello, Phil. Mag. [7] 6, 497; C. 1928 II, 2626; Rây, Bhar, J. indian chem. Soc. 5 [1928], 501. 1 g löst sich bei 200 g Alkohol vg Rây, 28, Vol. (M Z. anorg. Ch. 170, 163, Apr. 2). Kryceko 200 in 5200 g Alkohol von 87-88 Vol. % (BI., Z. anorg. Ch. 170, 163 Anm. 2). Kryoskopisches Verhalten, elektrische Leitfähigkeit und Dissoziation in wäßr. Lösung: Burrows, Soc. 123, 2029. Absorptionsspektrum in Lösung im sichtbaren und ultravioletten Gebiet: LIFSCHITZ, ROSENBOHM, Z. wiss. Phot. 19, 201; C. 1920 I, 792. Bei Belichtung der wäßr. Lösung wird Blausäure frei (SCHWARZ, TEDE, B. 60, 72). Beim Einleiten von Chlorwasser-Losung wird Biausaure frei (SCHWARZ, TEDE, B. 60, 72). Beim Einleiten von Chlorwasserstoff in eine Suspension des Salzes in absol. Alkohol entsteht die Verbindung $3C_2H_6O + CrCl_3$ (E II 1, 311) (HÖLZL, VIDITZ, M. 49, 245). — $[Cr(NH_3)_6][Cr(CN)_6]$ (H 51). Trigonal (STEINMETZ, Z. Kr. 57, 244). — Fe₃[Cr(CN)₆]₃ + 20(?) H₃O (H 51). Gibt mit Alkalien bei 100° sofort Alkaliferroeyanid und Chromhydroxyd, in der Kälte entsteht zunächst ein braunes Zwischenprodukt (Cambi, Clerici, R. A. L. [6] 5, 81; G. 58, 60). — $[Co(NH_3)_6][Cr(CN)_6]$ (H 51. Z. 34 v. 0.; E I 29, Z. 37 v. 0.). Röntgendiagramm (Bragg- und Drehkrystall-Aufnahmen): HASSEL, SALVESEN, Ph. Ch. 128, 358; vgl. 2. Kr. Strukturber. 1 [1931], 462. Magnetische Suscentibilität: Weio. Phil. Mag. [7] 6, 498: C. 1928 II -6268. Löslichkeit in Wasser bei 0°: Susceptibilität: Welo, Phil. Mag. [7] 6, 498; C. 1928 II, 2626. Löslichkeit in Wasser bei 0°: Brönsted, Petersen, Am. Soc. 43, 2269. — [Co(NH₃)₅(H₂O)][Cr(CN)₆] (H 51). Trigonal (Steinmetz, Z. Kr. 57, 246).

[Cr₂(OH)₃(CN)₃(H₂O)₃] + 2H₂O. B. Durch Einw. von Dimethylsulfat auf K₃[Cr(CN)₆] und nachfolgende Behandlung mit Wasser (Hölzl., Viditz, M. 49, 257). Braun. — Ag₃[Cr₂(OH)₅(CN)₅(H₂O)]. Grün (H., V., M. 49, 258).

Molybdäncyanide. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 53: Molybdän [Berlin 1935], S. 199, 227, 244, 278, 301, 302, 305. Zurchemischen Natur der von von der Heide, K. A. Hofmann (Z. anorg. Ch. 12 [1896], 188) beschriebenen schwefelhaltigen Kaliummolybdän(III)-cyanide (H 51) vgl. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 53: Molybdän, S. 249; vgl. a. CREPAZ, G. 58, 391.

 $K_{2}[MoS(CN)_{4}] + 2H_{2}O$. B. Man leitet Schwefelwasserstoff in die wäßr. Lösung von normalem Kaliummolybdat und Kaliumovanid, bis die sich zunächst grün färbende Lösung gelbgrün wird und sich Krystalle abscheiden (CREPAZ, G. 58, 396). Dunkelblaues Krystallpulver. Die dunkelblaue wäßrige Lösung wird nach 1—2 Tagen violett. Leitfähigkeit in Wasser bei 18°: Ca.

Molybdan(IV)-cyanide. K₄[Mo(CN)₆]+2H₂O (H 52; EI 29). Darst. Durch Einleiten von Schwefelwasserstoff in die wäßr. Lösung von normalem Kaliummolybdat und Kaliumcyanid bis zur Grünfärbung und mehrstündiges Aufbewahren (CREPAZ, G. 58, 393). Zur Darstellung nach CHILESOTTI (G. 34 II [1904], 497) vgl. Bucknall, Wardlaw, Soc. 1927, 2983; zur Darstellung nach Rosenheim (Z. anorg. Ch. 54 [1908], 97) vgl. Biltz. Z. anorg. Ch. 170, 164. Die Krystalle werden bei 105° wasserfrie Bil. Z. anorg. Ch. 170, 164. D. (wasserfreies Salz): 2,337 (Bi., Z. anorg. Ch. 170, 171). Röntgenabsorptionsspektrum

von Kalium in K4[Mo(CN)₈]: Stelling, Z. Phys. 50, 628; C. 1928 II, 1972. Magnetische Susceptibilität: B1, Z. anorg. Ch. 170, 180; Wello, Phil. Mag. [7] 6, 506; C. 1928 II, 2626; RAY, BHAR, J. indian chem. Soc. 5 [1928], 501. 1 g löst sich bei 20° in 34 kg Alkohol von 87—88 Vol. % (Bl., Z. anorg. Ch. 170, 163 Anm. 2). Elektromotorische Kraft der Oxydations. Reduktions. Kette Hg | HgCl, 1n. KCl | gesätt. KCl | K4 | Mo(CN)₈ | + K5 | Mo(CN)₈ | Telektromotorische Kraft der Oxydations. Reduktions. Kette Hg | HgCl, 1n. KCl | gesätt. KCl | K4 | Mo(CN)₈ | + K5 | Mo(CN)₈ | Telektromotorische Kraft der Oxydations. Reduktions. Andersen. Z. El. Ch. 31, 559, 563. Ist weniger lichtempfindlich als K4 | Mo(CN)₈ | (Buckrall, Wardlaw, Z. El. Ch. 31, 559, 563. Ist weniger lichtempfindlich als K4 | Mo(CN)₈ | (Buckrall, Wardlaw, Z. El. Ch. 31, 559, 563. Von den unter mehrfachem Farbwechsel verlaufenden Zerestungen am Sonnenlicht in schwefelsaurer und alkalischer Lösung kann die letztgenannte durch Titration mit Kaliumpermangant quantitativ verfolgt werden; belichtet man die Lösung in 1n. Kaliusum in 1n. Kaliumpermangant quantitativ verfolgt werden; belichtet man die Lösung in 1n. Kaliusum der Lösung das Komplexsalz K4 | Mo(OH)₈ (CN)₈ | 3 H,0 erhalten (Co., Z. anorg. Ch. 136, 245). Reaktion mit ammoniskalischen Silbersalz-Lösungen: Co., Z. anorg. Ch. 131, 290, 298. eGibt beim Erhitzen mit Salpetersäure H[MO₂ (CN)₃ | H,0 | ARDLAW, Soc. 1927, 2982). — Cu₄ [Mo(CN)₈ | Vgl. H 52). Grüne Krystalle. Unlöslich in Wasser (Bu., Wa., Soc. 1927, 2985). — Ag4 [Mo(CN)₈ | Vgl. H 52). Grüne Krystalle. Unlöslich in Wasser (Bu., Wa., Soc. 1927, 2984; H., M. 48, 693, 705). Verbindungen, die bei der Einw. von Methyljodid entstehen, s. bei Methylisocyanid, Syst. Nr. 335. — Ag4 (Mo(CN)₈ | + H₂0. Gelbe Nadeln (Rosenheim, Z. anorg. Ch. 54 [1907], 100; Bultz, Z. anorg. Ch. 170, 165). — Ta₁ [Mo(CN)₈ | + H₂0. Gelbe Nadeln (Rosenheim, Z. anorg. Ch. 170, 167, 174). — Ti₈ [Mo(CN)₈ | H 52). Piet sich bei der Eintwässerung

Wasser: Bu., Wa. Elektrische Leitfähigkeit wäßr. Lösungen bei 1°: Bu., Wa. Molybdän (V)-cyanide. H₃[Mo(CN)₈] + 3H₂O. B. Aus Ag₃[Mo(CN)₈] durch Einw. von verd. Salzsäure im Dunkeln bei 0° (Bucknall, Wardlaw, Soc. 1927, 2987). Orangefarben, sehr zerfließlich. Mit gelber Farbe löslich im Wasser. — K₂[Mo(CN)₈]. B. Aus Ag₃[Mo(CN)₈] und Kaliumchlorid in Wasser (Collenberg, Ph. Ch. 109, 356; Bu., Wa., Soc. 1927, 2986). Gelbe Nadeln, die sich am Licht rotbraun färben (Bu., Wa.). Elektromotorische Kraft der Oxydations-Reduktions-Kette Hg/HgCl, 1n-KCl/gesätt. KCl/K₄[Mo(CN)₈] + K₅[Mo(CN)₈]/Pt: Coll., Ph. Ch. 109, 356, 373. Die gelbe Lösung in Wasser gibt mit Kupfersulfat einen grasgrünen Niederschlag, der am Licht purpurrot wird (Bu., Wa., Soc. 1927, 2987). Wirkt oxydierend auf organische Verbindungen (Conant, Pratt, Am. Soc. 1927, 2987). Wirkt oxydierend auf organische Verbindungen (Conant, Pratt, Am. Soc. 48, 3180, 3222; Con., Aston, Am. Soc. 50, 2783). — Ag₃[Mo(CN)₈]. B. Durch Oxydation von K₄[Mo(CN)₈] mit Permanganat in saurer Lösung und Umsetzung mit Sibernitrat (Collenberg, Ph. Ch. 109, 356; Bu., Wa., Soc. 1927, 2986). Rötlichbrauner Niederschlag.

(Collenberg, Ph. Ch. 109, 356; Bu., Wa., Soc. 1927, 2986). Rötlichbrauner Niederschleg. H[MoO₂(CN)₂(H₂O)₂]? Zur Konstitution vgl. Bucknall, Wardlaw, Soc. 1927, 2992; vgl. dagegen Barbieri, R. A. L. [6] 13 [1931], 375. B. Durch Erhitzen von K. [Mo(CN)₂] mit Salpetersäure (Bu., Wa.; vgl. Chilesotti, G. 34 II [1904], 501). Ziegelrot (Bu., Wa.). Schwer löslich in kaltem Wasser, löslich in heißem Wasser mit gelber Farbe, leicht Kälich in Ammoniak und Alkalien (Bu., Wa.).

Wolframcyanide. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 54: Wolfram [Berlin 1933], S. 200, 240, 258, 273, 284, 285, 288, 294, 297, 393, 307, 310, 315, 320. — Wolfram (IV)-oyanide: K₄[W(CN)₈]+2H₂O (E I 29). Zur Darstellung nach Olsson (Z. anorg. Ch. 88 [1914], 57) vgl. Bilitz, Z. anorg. Ch. 170, 164. Gelbe Blättchen (Bi.). D₄²: 1,989 (wasserfreies Salz) (Bi., Z. anorg. Ch. 170, 171). Röntgenabsorptionsspektrum von Kalium in K₄[W(CN)₈]: STELLING, Z. Phys. 50, 628; C. 1926 II, 1972. Magnetische Susceptibilität: Bi., Z. anorg. Ch. 170, 180; Wello, Phil. Mag. [7] 6, 505; C. 1928 II, 2626; Râx, Bhar, J. indian chem. Soc. 5 [1928], 501. 1 g löst sich bei 20° in 30 kg Alkohol von 87—88 Vol.-% (Bi., Z. anorg. Ch. 170, 163 Anm. 2). Elektromotorische

Kraft der Oxydations-Reduktions-Kette Hg/HgCl, 1n-KCl/gesätt. KCl/K₄[W(CN)₈] + K_s[W(CN)_s]/Pt: Collenberg, Ph. Ch. 109, 356; der Konzentrationskette Pt/K_s[W(CN)_s]+ $K_a[W(CN)_b]/gesätt. KCl/K_a[W(CN)_b + K_a[W(CN)_b]/Pt: Coll., Ph. Ch. 109, 366. Scheidet bei der Elektrolyse der wäßr. Lösung kein Wolfram ab (Neumann, Richter, Z. El. Ch. 30, 475).$ Von den unter mehrfachem Farbwechsel verlaufenden Zersetzungen am Sonnenlicht in schwefelsaurer und alkalischer Lösung kann die letztgenannte durch Titration mit Kaliumpermanganat quantitativ verfolgt werden; belichtet man die Lösung in 1 n-Kalilauge so lange, bis der Permanganatverbrauch das Doppelte des Anfangswerts beträgt, so läßt sich aus der Lösung das Komplexsalz $K_4[W(OH)_3(CN)_5] + 6H_4O$ erhalten (Co., Z. anorg. Ch. 136, 245). Reaktion mit ammoniakalischen Silbersalz-Lösungen: Co., Z. anorg. Ch. 121, 290. The same of the s

Braungelbe Nadeln. Leicht löslich in Wasser mit rotvioletter Farbe (Co., Z. anorg. Ch. 186, 249).

Wolfram (V) - cyanide. K₃[W(CN)₈] + 2¹/₂ H₂O (E I 30). Elektrische Leitfähigkeit wäßr. Lösungen bei +1°: Collenberg, Sandved, Z. anorg. Ch. 180, 5. Elektromotorische Kraft der Oxydations-Reduktions-Kette Hg/HgCl, 1n-KCl/gesätt. KCl/K₄[W(CN)₈] + K₄[W(CN)₈]/Pt: Coll., Ph. Ch. 109, 356; der Konzentrationskette Pt/K₃[W(CN)₈] + K₄[W(CN)₈]/gesätt. KCl/K₄[W(CN)₈] + K₄[W(CN)₈]/Pt: Coll., Ph. Ch. 109, 366. Oxydation alkal. Lösungen an der Luft in Gegenwart von Platin sowie durch Wasserstoffperoxyd: Coll., Ph. Ch. 109, 354. Wirkt oxydierend auf organische Verbindungen (Conant, Pratt, Am. Soc. 48, 3222; Con., Aston, Am. Soc. 50, 2783).

Uranylcyanide (vgl. E I 30). Literatur: Gmellins Handbuch der anorganischen Chemie, U. 8. Aufl., Syst. Nr. 55: Uran [Berlin 1936], S. 178, 210.

8. Aufl., Syst. Nr. 55: Uran [Berlin 1936], S. 178, 210.

Mangan (I) - cyanide. $K_3[Mn(CN)_3] + K_4[Mn(CN)_6]$ s. unten. — $K_3[Mn(CN)_4]$. Das Month of Grube, Brause (B. 60, 2275; vgl. dagegen Manchot, Gall, B. 61, 1139) durch kathodische Reduktion von $K_4[Mn(CN)_6]$ erhaltene Produkt dieser Zusammensetzung ist nach Treadwell, Gübeli, Huber (Helv. 24 [1941], 156) als Doppelsalz $K_4[Mn(CN)_6] + K_3[Mn(CN)_3]$ (s. u.) aufzufassen. — $Na_5[Mn(CN)_6]$. B. Durch Behandlung von $Na_4[Mn(CN)_6]$ in Natronlauge mit Aluminiumgries (Manchot, Gall, B. 61, 1136). Mikrokrystalline farblose Substanz, die in feuchtem Zustand gelblich erscheint. Färbt sich bei Behandlung mit absol. Alkohol oder Aceton bläulich. Sehr leicht löslich in Wasser. Oxydiert sich leicht an der Luft. Zeigt starke Reduktionswirkung. Wird durch Jod-Lösung quantitativ zu Mangan(II)salz oxydiert. Entwickelt mit heißem Wasser Wasserstoff. — K₅[Mn(CN)₆]. Krystallines Pulver (M., G., B. 61, 1137). Sehr schwer löslich in Wasser. Gibt die gleichen Reduktionswirkungen wie das Natriumsalz, reagiert aber viel langsamer (M., G., B. 61, 1138; vgl. M., G., B. 60, 193).

Mangan (II) - cyanide: K[Mn(CN)₃] (H 52). Liefert in Wasser mit Wasserstoff bei 250° unter 120 Atm. Druck Mangan (II)-carbonat (IPATJEW, B. 59, 1422; 38. 58, 696). — Mn(CN).

HIGCN)₂ + 2-3NH₂ s. S. 60. — Hg(CN)₂ + MnCl₂ + 2H₂O s. S. 60. H₄[Mn(CN)₆] (vgl. H 52). Zur Formulierung der Salze vgl. Reihlen, Zimmermann, A. 451, 102. — Na₄[Mn(CN)₆] + 8H₂O (H 52). Braunrötlich. Viel leichter löslich in Wasser als K₄[Mn(CN)₆] (Manchot, Gall, B. 61, 1135). — K₄[Mn(CN)₆] + 3H₂O (H 52). Darst. Aus Mangan (II) - carbonat und Kaliumcyanid in Wasser bei 70—80° (Grube, Brause, B. 60, 2273). Blaue Krystalle, die beim Trocknen einen Teil des Krystallwassers verlieren und dabei grauviolett werden (Gr., Br.); stahlblaue Blättehen (Manchot, Gall, B. 60, 191). Magnetische Susceptibilität: RAY, BHAR, J. indian chem. Soc. 5 [1928], 500. Elektromotorische Kraft der Oxydations-Reduktions-Kette $Pt/K_4[Mn(CN)_6] + K_3[Mn(CN)_6]$ in KCN-Lösung/gesätt. KCl/1n-KCl, HgCl/Hg: Gr., Br., B. 60, 2274. Reduziert ammoniakalische Silber-Lösung, bleicht angesäuerte Indigo-Lösung und Methylenblau (Ma., Ga., B. 60, 193). Läßt sich mit Kaliumferricyanid in Gegenwart von Kaliumcyanid potentiometrisch titrieren

Läßt sich mit Kaliumferricyanid in Gegenwart von Kaliumcyanid potentiometrisch titrieren (Gr., Br., B. 60, 2274). — K₄[Mn(CN)₆]+K₅[Mn(CN)₃]. Zur Konstitution vgl. Treadwell, Gübell, Huber, Helv. 24 [1941], 152, 157. B. Durch elektrolytische Reduktion von K₄[Mn(CN)₆] (Grube, Brause, B. 60, 2275; T., Gü., H., Helv. 24, 153). Farblos, unbeständig. Schwer löslich in Wasser (Gr., B.). (NH₆)₄[CulMn¹¹(CN)₆]+xH₃O. Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 97. B. Aus dem entsprechenden Natriumsalz Na₅[CulMn¹¹(CN)₆]+5H₂O durch Umsetzen mit. Ammoniumnitrat (Straus, Z. anorg. Ch. 9 [1895], 14). Farblose Prismen. — Na₅[CulMn¹¹(CN)₆]+5H₂O. Zur Formulierung vgl. R., Z., A. 451, 97. B. Aus Na₃[Cu(CN)₄]+3H₂O und Mangan(II)-acetat (St., Z. anorg. Ch. 9, 13). Farblose Prismen. Läßt sich ohne Zersetzung entwässern (St.). — K₂[CulMn¹¹(CN)₆]+5H₂O. Zur Formulierung vgl. R.. Z. A. 451, 97. B. Aus K₂[Cu(CN)₄] und Mangan(II)-acetat (St., Z. anorg. Ch. 9, 12).

Farblose würfelförmige Krystalle. Unlöslich in Wasser (Sr.). Wird beim Trocknen über Schwefelsäure braun (Sr.).

Mangan(III) - oyanide: K₂[Mn(CN)₆] (H 53; E I 30). Zur Darstellung durch Oxydation von K₆[Mn(CN)₆] + 3H₂O an der Luft (H 2, 53) vgl. Grube, Brause, B. 60, 2273. Magnetische Susceptibilität: Biltz, Z. anorg. Ch. 170, 180; Rây, Bhar, J. indian chem. Soc. 5 [1928], 500. Elektromotorische Kraft der Oxydations-Reduktions-Kette Pt/K₆[Mn(CN)₆] + K₂[Mn(CN)₆] in KCN - Lösung/gesätt. KCl/1 n-KCl, HgCl/Hg: Gr., Br., B. 60, 2274. Hydrolyse in wäßr. Lösung im Dunkeln und bei Belichtung: J. Meyer, Gulleins, Z. anorg. Ch. 155, 69; Schwarz, Tede, B. 60, 72. — Rb₂[Mn(CN)₆]. Rote Nadeln (J. Meyer, Z. anorg. Ch. 155, 69; Schwarz, Tede, B. 60, 72. — Rb₂[Mn(CN)₆]. Rote Nadeln (J. Meyer, Z. anorg. Ch. 115, 209). Wird durch heißes Wasser zu Blausäure, Rubidiumcyanid und Mangan(III)-hydroxyd hydrolysiert. — [Cr(NH₂)₆][Mn(CN)₆]. Trigonale Krystalle (aus heißer 10 %iger Kaliumcyanid-Lösung). Unbeständig; wird durch Wasser ziemlich rasch hydrolysiert (Steinmetz, Z. Kr. 57, 243). — Fell[Mn(CN)₆]₃ + x H₂O. Zur Formulierung als mehrkerniges Komplexsalz vgl. Reinlen, Zimmermann, A. 451, 98; Cambi, Clebici, R. A. L. [6] 5, 81; G. 58, 61. B. Aus K₂[Mn(CN)₆] und Eisen(II)-sulfat in Wasser in einer Wasserstoff-Atmosphäre (Straus, Z. anorg. Ch. 9, 8). Dunkelblauer Niederschlag, der beim Aufbewahren an der Luft unter Zersetzung mißfarben wird (St.). Unlöslich in Wasser (St.). Beim Behandeln mit Soda-Lösung geht Natrium-ferrocyanid in Lösung und das gesamte Mangan und ein Teil des Eisens befindet sich im Rückstand (St.).

K₃[Mn(CN)₅(NO)]. B. Durch Einw. von Kaliumcyanid auf Mangan(II)-acetat und Kaliumacetat in verd. Alkohol in einer Stickoxyd-Atmosphäre (Manchot, Schmid, B. 59. 2362). Blauviolette Nadeln. Ist im verschlossenen Gefäß im Dunkeln ziemlich beständig. Löst sich in Wasser mit rotvioletter Farbe; die wäßr. Lösung trübt sich bald. Wird durch Natronlauge oder wäßr. Ammoniak unter Bildung von Braunstein zersetzt. Liefert mit vielen Metallsalzen charakteristische Fällungen.

 Fe^{11}

Eisen(II)-cyanid, Ferrocyanid Fe(CN)₂ (H 68). Das beim Erhitzen von wasserfreiem Ammoniumferrocyanid im Vakuum auf 320° erhaltene Produkt der Bruttozusammensetzung Fe(CN)₂ (Mittasch, Kuss, Emert, Z. anorg. Ch. 170, 196, 198; M., K., Z. El. Ch. 34, 169) ist nach röntgenographischen Untersuchungen trimer (Brill, Mark, Ph. Ch. 133, 445) und stellt wahrscheinlich das Eisen(II)-salz des Eisen(II)-cyanwasserstoffs (S. 74) vor (B., M.). Weitere Angaben über hypothetisches Eisen(II)-cyanid s. S. 74 und Gmellins Handbuch der anorganischen Chemie, S. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 560.

Eisen(II)-cyanwasserstoff, Ferrocyanwasserstoff, Ferrocyanwasserstoffsäure H₄[Fe(CN)₆] (H 69; E I 32). Literatur: Gmellins Handbuch der anorganischen Chemie. S. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 562. — B. Aus der additionellen Ver-

bindung mit 1 Mol Ather (s. u.) beim Erwärmen im Vakuum, zuletzt bei 40° (Cumming. Brown, J. Soc. chem. Ind. 47 [1928], 84 T). — Zum Niesen reizendes amorphes Pulver (Cu., Br.). D.:: 1,536 (Biltz, Z. anorg. Ch. 170, 171). Magnetische Susceptibilität: Davidson. Welo, J. phys. Chem. 32, 1193; Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2626. Adsorption des Ferrocyanid-Ions an Bariumsulfat: Ghosh, Dhar, Koll.-Z. 35 [1924], 150; Dh., Gh., J. phys. Chem. 30, 640; an kolloidem Aluminiumhydroxyd: WEISER, MIDDLETON, J. phys. Chem. 24, 652; MEHROTRA, DH., J. phys. Chem. 30, 1189; CHAKRAVARTI, DH., J. indian chem. Soc. 5 [1928], 541; Koll.-Z. 43, 384; C. 1928 I, 891; an Chrom(III)-hydroxyd und Eisen(III)-hydroxyd: CH., DH., Koll.-Z. 43, 384; an Aluminiumhydroxyd-Bariumsulfat-Gemisch: Me., Dh., J. phys. Chem. 30, 1185; an koaguliertem Ovalbumin in Abhängigkeit vom ph.: Hendrix, J. biol. Chem. 78, 659. Über das Ausflockungsvermögen des Ferrocyan-Ions gegenüber verschiedenen Solen vgl. die einzelnen Ferrocyanide. Dampfdruckmessungen an Gemischen mit Alkohol bei 25°: HÖLZL, M. 51, 163. Elektrolytische Dissoziationskonstante k der 4. Stufe: ca. 5·10-4 (Kolthoff, Z. anorg. Ch. 110, 149; Chem. Weekb. 16, 1412, 1415; C. 1920 I, 69). Änderung der Wasserstoffionenkonzentration beim Neutralisieren mit Kalilauge: Malaprade, A. ch. [10] 11, 138. Einfluß der Wasserstoffionenkonzentration auf das Oxydationspotential der Ferro-Ferricyanid-Elektrode: K., Chem. Weekb. 18, 1409. -Ferrocyanwasserstoffsäure ist in trocknem Zustand anscheinend unbegrenzt haltbar (Cumming, Brown, J. Soc. chem. Ind. 47, 84 T). Die Salze der Ferrocyanwasserstoffsäure werden durch Einw. von Licht, Wärme oder bei Gegenwart von Säuren in wäßr. Lösung allmählich in Aquopentacyansalze (s. S. 74) verwandelt (Briogs, Soc. 117, 1026; Imori, Z. anory. Ch. 147, 157, 148). Ither der Friefing des Alleslie und die Titation. Metalle mit Ferrocker. 167, 157, 168). Über den Einfluß des Alkalis auf die Titration von Metallen mit Ferrocyaniden vgl. TREADWELL, CHERVET, Helv. 5, 633; 6, 550. Abtrennung des Ferrocyanid-Ions aus Gemischen mit Ferricyaniden durch Fällung mit Thallium (I) nitrat und Calciumacetat in verd. Alkohol: Gaspar, An. Soc. españ. 24, 153; C. 1926 II, 618. Nachweis des Ferrocyanid-Ions neben anderen Anionen: Fernandes, Gatti, G. 58, 109, 110; neben Ferri-cyanid und Rhodanid: Banerjee, J. indian chem. Soc. 6, 259; C. 1929 II, 1185. Freier Ferrocyanwasserstoff kann mit carbonatfreier Natronlauge in Gegenwart von Phenolphthalein

titrimetrisch bestimmt werden (Cumming, Brown). Potentiometrische Titration des Ferrocyanid-Ions mit Halogenen: Del Fresno, Z. El. Ch. 31, 617. Über die gravimetrische und titrimetrische Bestimmung des Ferrocyan-Ions durch Überführung in das Benzidinsalz H₄[Fe(CN)₆] + 3C₁₈H₁₂N₂ + H₂O (Syst. Nr. 1786) vgl. Cumming, Soc. 125, 240, 242; Cu., Good, Soc. 1926, 1924; Budnikow, Fr. 73, 434. Bestimmung des Ferrocyan-Ions neben Cyaniden und Rhodaniden: Lang, Z. anorg. Ch. 142, 297.— H₄Fe(CN)₆ + 6(?) H₂SO₄ (vgl. H 69). B. Bei längerem Aufbewahren einer 2,5 %igen Lösung von Kaliumferrocyanid in 100 %iger Schwefelsäure (Davidson, Am. Soc. 47, 975). Tafeln. Wird an der Luft undurchsichtig.— H₄[Fe(CN)₆] + nC₂H₅·OH (n = 1, 2, 3 und 4?) (vgl. H 70). Durch Dampfdruckmessungen an Ferrocyanwasserstoff-Alkohol-Gemischen ist die Existenz der 4 Additionsverbindungen wahrscheinlich gemacht (Hölzl, M. 51, 163). Die Verbindung mit 2 Mol Alkohol entsteht auch als Zwischenprodukt beim Zerfall der Verbindung H₄[Fe(CN)₆] + 4C₂H₅·OH + 2(C₂H₅·OH + 2(C₃H₅·OH + 2(C₄H₅·OH + Cl) (s. u.) an der Luft erhält man erst die Verbindung H₄[Fe(CN)₆] + 4C₂H₅·OH + 2C₄H₅·OH + 2C₄H₅·OH + 2C₄H₅·OH + 30 (vgl. H 70; E I 33). B. Durch Einw. der äquivalenten Menge rauchender Salzsäure auf eine gesättigte Lösung von Kaliumferrocyanid, Extraktion des erhaltenen, getrockneten Niederschlags mit sehr wenig Alkohol und Versetzen des Extrakts mit etwas Ather (Cumming, Brown, J. Soc. chem. Ind. 47, 84 T; C. 1928 I, 2406). Plättchen. Gibt beim Aufbewahren im Vakuum, zuletzt bei 40°, den Ather ab. — H₄[Fe(CN)₆] + 2(C₄H₅)₈O (H 70; E I 33). Über die Zusammensetzung dieser Verbindung vgl. auch Cumming, Brown, J. Soc. chem. Ind. 47, 84 T; C. 1928 II, 2406. Plättchen. Gibt beim Aufbewahren im Vakuum, zuletzt bei 40°, den Ather ab. — H₄[Fe(CN)₆] + 2(C₄H₅)₈O (H 70; E I 33). Über die Zusammensetzung dieser Verbindung vgl. auch Cumming, Brown, J. Soc. chem. Ind. 47, 110 T; 47, 84 T; C. 1925 II,

Ammoniumeisen (II) - cyanid, Ammonium ferrocyanid $(NH_4)_4$ [Fe(CN)₅] + sq (H 70; EI 33). Enthält nach Cumming, Good (Soc. 1926, 1926) 3,5 Mol Krystallwasser. B. Wasserhaltiges Ammoniumferrocyanid entsteht in unreiner Form bei der Einw. von Ammoniak auf Berlinerblau bei 80° oder bei der Umsetzung von Kaliumferrocyanid mit Ammoniumsulfat in konz. Lösung (HAWLICZEK, Przem. Chem. 10, 4; C. 1926 II, 1748). Zur Bildung von reinem, wasserfreien Ammoniumferrocyanid aus Ferrocyanwasserstoffsäure und Ammoniak (H 2, 70) vgl. MITTASCH, KUSS, Z. El. Ch. 34, 159. Röntgenogramm von wasserfreiem Ammoniumferrocyanid (Pulver-Aufnahme): BRILL, MARK, Ph. Ch. 133, 445, Tafel II. Beim Erhitzen von wasserfreiem Ammoniumferrocyanid im Vakuum auf 320° tritt Zersetzung ein unter Bildung von Ammoniumcyanid und trimerem Eisen(II)-cyanid (S. 64), beim Erhitzen im Vakuum auf Temperaturen oberhalb 430° erhält man α -Eisen, Kohlenstoff, Zementit, Eisennitrid und Stickstoff (MI., K., EMERT, Z. anorg. Ch. 170, 196; MI., K., Z. El. Ch. 34, 169). Bei allmählichem Erhitzen im Stickstoff-Wasserstoff-Gemisch zuletzt auf 320° erhält man unter heftiger Reaktion α-Eisen, Ammoniak, Blausäure, Methan und weitere Kohlenwasserstoffe (MI., K., E.; MI., K.). Wasserhaltiges Ammoniumferrocyanid spaltet am Licht langsam Ammoniak ab (Ha.). Auch beim Aufbewahren an der Luft, besonders in der Wärme, entwickelt sich Ammoniak unter Bildung von Ammoniumferricyanid; vollständige Umwandlung in Ammoniumferricyanid wird beim Erhitzen im Luftstrom auf 103—104° erzielt (Ha.). Beim Erhitzen an der Luft auf 150° spaltet Ammoniumferrocyanid außer Ammoniak noch Cyanwasserstoff ab (Ha.). Die gesättigte Lösung in 83 % igem Alkohol gibt mit Natriumsalzen einen sehr schwer Idslichen Niederschlag; reagiert analog mit weiteren Alkali- und Erdalkalisalzen (DE RADA, An. Soc. españ. 24 [1926], 443, 448). Ammoniumferrocyanid gibt noch mit Spuren von Calcium- oder Magnesiumsalzen in neutraler, schwach saurer oder ammoniakalischer Lösung in Gegenwart von Alkohol bei 40—50° quantitative Fällungen; diese Reaktion kann zur nephelometrischen Härtebestimmung des Wassers benutzt werden (Ferger, Payerra Milwoch 2, 86. C. 1924 II. 2538). Gibt mit Zinkaslzen einen Nieder. (Feigl, Pavelka, Mikroch. 2, 86; C. 1924 II, 2538). Gibt mit Zinksalzen einen Niederschlag der Zusammensetzung $(NH_4)_8Zn_3[Fe(CN)_6]_8$ (Kolthoff, Verzijl, R. 43, 392). Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 32. — Unlösliches Ammoniumferrocyanid (H 70). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 103. — (NH₄)₄[Fe(CN)₆] + 2NH₄Cl + aq (H 70; E I 33). Verhalten bei der Fällung mit Silbernitrat: Hölzl, M. 51, 166. — (NH₄)₄[Fe(CN)₆] + 2MoO₃ + 3H₃O. Zur Formulierung vgl. Barbieri, R. A. L. [6] 9, 1017. B. Aus Ammoniummolybdat und überschüssigem Ammonium- oder Kaliumferrocyanid in verd. Essigature bei Gegenwart von viel Ammoniumsalz (B., B. 60, 2415). Citronengelbe Krystalle. Fast unlöslich in konz. Ammoniumsalz-Lösungen (B., B. 60, 2415). Gibt bei Einw. von Mineralsäuren eine rotbraune Substanz, die beim Behandeln mit dem Ammoniumsalz der verwendeten Säure wieder die Ausgangsverbindung zurückliefert (B., B. 60, 2416; R. A. L. [6] 9, 1017). — Hydrazineisen (II) - cyanid, Hydrazinferrocyanid $4 \, N_1 H_4 + H_4 [Fe(CN)_6]$. Hellgelbe körnige Masse. Die hellgelbe Lösung in Wasser zersetzt sich beim Aufbewahren und wird beim Kochen orangegelb (RAY, GUPTA, Z. anorg. Ch. 140, 84).

(Svat. Nr. 156

Lithiumeisen(II)-cyanid, Lithiumferrocyanid Li₄[Fe(CN)₆] + aq (H 70). Wurde von Wyroubow (A. ch. [4] 16 [1869], 291) mit 9 H₂O von J. Meyer (Z. anorg. Ch. 115, 205) mit 6 H₂O erhalten. Weingelbe Krystalle. Sehr leicht löslich in Wasser, löslich in Alkohol (M.). Über den Spannungseffekt der elektrischen Leitähigkeit wäßr. Lösungen in elektrischen Feldern verschiedener Stärke vgl. Wien, Ann. Phys. [4] 83, 349; 85, 806. Über lichtelektrische Wirkung wäßr. Lösungen von Lithiumferrocyanid vgl. Zimmermann, Ann. Phys. [4] 80, 337. Setzt sich in neutraler oder essigsaurer, alkoholhaltiger Lösung mit Natriumsalzen quantitativ zu Natriumferrocyanid um; reagiert analog mit Erdalkalisalzen (De Rada, An. Soc. españ. 27, 393; 396; C. 1929 II, 1435). Mit Ammonium-, Kalium-, Rubidium- und Cäsiumsalzen entstehen unter ähnlichen Bedingungen schwer lösliche Niederschläge der Alkalilithiumeisen(II)-cyanide wie (NH₄)₂Li₄[Fe(CN)₆] (De Rada, An. Soc. españ. 27, 390, 396). Die Lösung in 72,8 %igem Alkohol gibt in Gegenwart von Magnesium-chlorid mit Natriumsalzen einen sehr schwer löslichen Niederschläge entstehen auch, wenn Magnesiumferrocyanid); derartige schwer lösliche Niederschläge entstehen auch, wenn Magnesiumferrocyanid durch Calcium-, Strontium- oder Bariumchlorid ersetzt wird (De R., An. Soc. españ. 24, 443, 449; C. 1926 II, 3066). Kaliumionen werden durch ein Gemisch aus Lithiumferrocyanid gefällt (De R., An. Soc. españ. 27, 390, 397). Lithiumferrocyanid in verd. Alkohol gibt mit Natrium- bzw. Kaliumsalzen und wenig verd. Kupfersulfat-Lösung charakteristische Niederschläge, die zur Unterscheidung von Natrium und Kalium dienen können (De R., An. Soc. españ. 24, 443, 450; C. 1926 II, 3066). Volumetrische Bestimmung von Natrium und Kalium mit Lithiumferrocyanid: De R., An. Soc. españ. 27, 390. Potentiometrische Titration von Silbernitrat mit Lithiumferrocyanid: Steyer, Fr. 74, 112.

H 70, Z. 11 v. u. streiche "Triboluminescent (GERNEZ, A. ch. [8] 15, 540)."

(NH₄)₂Li₂[Fe(CN)₆] + aq (H 70). Vgl. darüber de Rada, An. Soc. españ. 27 [1929], 390, 397.

Natriumeisen(II)-cyanid, Natriumferrocyanid $Na_4[Fe(CN)_6] + aq$ (H 70; E I 33). Literatur: Gmeline Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 889. — Natriumferrocyanid krystallisiert im allgemeinen mit 10 H_2O (vgl. H 2, 70), doch werden von Weith (A. 147 [1868], 330 Anm.) und Cambi (R. A. L. [6] 8, 10) Hydrate mit 9 H₂O und von Cumming (Soc. 123, 2463) ein Hydrat mit 7 H₂O beschrieben. Bei ca. 81,5° geht das Salz mit 10 H₂O in ein wasserärmeres über (FARROW, Soc. 1926, 53; 1927, 1156). Technische Darstellung aus dem aus Kalkstickstoff gewonnenen Gemisch von Natrium- und Calciumoyanid: Buchanan, Trans. electroch. Soc. 60, 111; C. 1931 II, 3543; vgl. Landis, Trans. am. electroch. Soc. 37 [1920], 661; durch Erhitzen von Natriumcyanid mit Eisen und Wasser: Bucher, J. ind. Eng. Chem. 9, 249; C. 1920 IV, 245. Über die Gewinnung von Natriumferrocyanid durch Einw. von Eisen(II)-sulfat auf technische Natriumcyanid-Lösungen und die Trennung von Natriumsulfat durch fraktionierte Krystallisation aus Wasser vgl. Dominik, Przem. chem. 6, 318; C. 1923 IV, 494. Beschleunigen des Auskrystallisierens aus Lösungen: Stickstoffwerke G. m. b. H., D. R. P. 417017; C. 1925 II. 1708; Bräuer-D'Ans 3, 689. Magnetische Susceptibilität von wasserfreiem und krystall-Natriumferrocyanid: Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2626; Davidence, Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2626; Davidence, Welo, J. phys. Chem. 32, 1193. Löslichkeit von Natriumferrocyanid (g wasserfreies Salz in 100 g Lösung) in Wasser zwischen 0,65° (10,23 g) und 104,2° (39,27 g): Friend, Townley, Vallance, Soc. 1929, 2329; zwischen 24,9° (17,11 g) und 99,7° (37,53 g): Farrow, Soc. 1926, 52. Zur Löslichkeit von Natriumferrocyanid in Wasser vgl. auch Dominik, Przem. chem. 6, 319; 8, 100; C. 1923 IV, 494; 24 II, 1740. Die Löslichkeit in Wasser nimmt beim Aufbewahren in geringem Maße ab (Fr., T., V.). Löslichkeit in verd. Alkohol verschiedence Konzentration bei 20°: de Rada, An. Soc. españ. 27, 395; C. 1929 II, 1435; de R., Bermejo, An. Soc. españ. 27, 705; C. 1930 I, 631; Dominik, Przem. chem. 8, 100; in Natriumchlorid-Lösungen verschiedener Konzentration: D. Przem. chem. 8, 403: in in Natriumchlorid-Lösungen verschiedener Konzentration: D., Przem. chem. 8, 103; in gesättigter Natriumsulfat-Lösung: D., Przem. chem. 6, 318. Zusammensetzung der flüssigen und festen Phasen im binären System mit Wasser bei verschiedenen Temperaturen (Temperatur der Umwandlung in ein wasserärmeres Hydrat: 81,5°; Eutektikum bei ca. 6,81% wasserfreiem Natriumferrocyanid und ca. —1,4°): FA., Soc. 1927, 1156; im ternären System mit Wasser und Calciumferrocyanid bei 25°, 50° und 90°: FA., Soc. 1927, 1155. Einfluß von Natriumferrocyanid auf die kritische Lösungstemperatur des Systems Phenol-Wasser: PATTERSON, DUCKETT, Soc. 127, 627. Einfluß auf die Quellung der Gelatine in Wasser: v. Moraczewski, Hamerski, Bio. Z. 208, 306. Ausflockende Wirkung des Salzes im Gemisch with Natzingsulfat auf Ann Sola. Bijchungen Kriting Verst. mit Natriumsulfat auf Agar-Sole: Büchner, Kleijn, Versl. Akad. Amsterdam 36, 623; C. 1927 II, 2652. Kryoskopisches Verhalten in wäßr. Lösung: Burrows, Soc. 123, 2028. Dichten der gesättigten wäßrigen Lösungen zwischen 0,65° und 97,8°: Friend, Townley, VALLANCE, Soc. 1929, 2329; zwischen 24,9° und 99,7°: FARBOW, Soc. 1926, 52. Osmose wäßr. Natriumferrocyanid-Lösung bei Anwendung einer Kollodium- oder Gelatinemembran-

und hierbei auftretende capillarelektrische Erscheinungen: LOEB, J. gen. Physiol. 4, 478; 5, 94; C. 1922 I, 1390; 1923 I, 273. Elektrische Leitfähigkeit wäßr. Lösungen: Bu., Soc. 123, 2028. Diffusionspotentiale wäßr. Lösungen gegen Wasser bei p_H 4,7: Loes, J. gen. Physiol. 5, 105; C. 1923 I, 273. Über lichtelektrische Wirkung an festem, Krystallwasser enthaltendem Natriumferrocyanid und wäßr. Lösungen vgl. ZIMMERMANN, Ann. Phys. [4] 80, 337. Nach BAUR (Helv. 8, 404) ist Natriumferrocyanid in alkalischer oder saurer Lösung bei Abwesenheit von Luft nicht lichtempfindlich; vgl. hierzu aber auch das Verhalten von Kaliumferrocyanid am Licht (S. 69). Die Hydrolyse zu Ammoniak und Formiat durch Behandlung mit Wasserdampf unter Druck verläuft wesentlich langsamer als bei den Cyaniden (Heise, FOOTE, J. ind. Eng. Chem. 12, 333; C. 1920 III, 307). Uber die optimalen Bedingungen der Umsetzung von Natriumferrocyanid mit Kaliumchlorid zu Kaliumferrocyanid in wäßrigalkoholischer Lösung oder in wäßr. Natriumchlorid Lösung vgl. Dominik, Przem. chem. 8, 106; C.1924II, 1740. Ein Gemisch aus Natriumferrocyanid und Calciumchlorid gibt mit Ammonium- und Kaliumsalzen in 50 %igem Alkohol (Gaspar, An. Soc. españ. 24 [1926], 100) oder mit Rubidium- und Cäsiumsalzen in Wasser (DE RADA, GA., An. Soc. españ. 24, 150) schwer lösliche Niederschläge, die wahrscheinlich aus Dialkalicaleiumferrocyanid bestehen. Bei der potentiometrischen Titration von Zinksalzen mit Natriumferrocyanid scheidet sich erst Zinkferrocyanid, dann Na₂Zn₃[Fe(CN)₆]₂ aus (Kolthoff, Verzijl, R. 43, 391). Gibt mit Quecksilber(II)-chlorid einen weißen Niederschlag, der am Licht eine blaue Farbe annimmt (GASPAR, CASTRO-GIRONA, An. Soc. españ. 24, 331; C. 1926 II, 917). Physiologisches Verhalten und Ausscheidungsverhältnisse bei Katzen: Golowanoff, C. r. Soc. Biol. 88, 161; C. 1923 III, 269. Titrimetrische Bestimmung von Natriumferroeyanid mit Zinksulfat-Lösung (Tüpfelreaktion): Anonymus, Przem. chem. 13, 65; C. 1929 I, 1719. Reinheitsprüfung: Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., 2. Bd. [Berlin 1932], S. 716; 4. Bd. [Berlin 1933], S. 228.

Kaliumeisen (II) - cyanid, Kaliumferrocyanid, gelbes Blutlaugensalz K₄[Fe(CN)₆] (H 71; E I 33). Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 943. — Kaliumferrocyanid krystallisiert gewöhnlich mit 3 Mol Krystallwasser; beim Versetzen einer konzentrierten wäßrigen Lösung von Kaliumferrocyanid mit einer gesättigten wäßrigen Lösung von Hexamethylentetramin erhält man ein Salz mit 1,5 Mol Krystallwasser (Råy, Sarkar, Soc. 119, 392). Das Krystallwasser läßt sich bei 105—110° nicht ohne Zersetzung entfernen (Vallance, Soc. 1927, 1329). B. Optimale Bedingungen der Bildung durch Umsetzung von Natriumferrocyanid mit Kaliumchlorid in alkoholisch-wäßriger Lösung oder in Gegenwart von Natriumchlorid in wäßr. Lösung: Dominik, Przem. chem. 8, 106; C. 1924 II, 1740. Beim Belichten einer wäßr. Kaliumferricyanid-Lösung (Schwarz, Tede, B. 60, 70). Bei der Einw. von überschüssigem Kaliumcyanid auf eine Lösung des Salzes [Fe(NH₃)₆](C₂H₃O₂)₂ (S. 124) (Wettz, Müller, B. 58, 372). — Darst. Zur technischen Herstellung aus dem aus Kalkstickstoff gewonnenen Gemisch von Natrium- und Calciumcyanid vgl. Buchanan, Trans. electroch. Soc. 60, 111; C. 1931 II, 3543; vgl. a. Lands, Trans. am. electroch. Soc. 37 [1920], 661. Über die technische Darstellung aus Kalkstickstoff s. auch S. 41 bei Blausäure. Zur technischen Darstellung aus erschöpfter Gasreinigungsmasse vgl. Grube, Dulk, Z. ang. Ch. 33, 141; Anonymus, Farben-Zig. 31, 219; C. 1926 I, 1042; Chemnttus, Ch. Z. 52, 90; C. 1928 I, 1601. Befreiung des technischen Kaliumferrocyanids von beigemengtem Kaliumsulfat: Iljinski, Lapin, Trudy Inst. prikl. chim. Nr. 178, Heft 5, S. 8, 16; C. 1927 II, 2144.

Ist bei gewöhnlicher Temperatur bräunlichrot, bei —190° gelb (Bamberger, Grengg, Zbl. Min. 1921, 70; C. 1921 III, 604). Krystallographisches: Hrynakowski, Rocznici chem. 4, 317; C. 1926 II, 2871; 1927 I, 2626. Über das "Klettern" bei der Krystallisation aus wäßr. Lösung vgl. Erlenmeyer, Helv. 10, 900; 12, 269. Härteanisotropie: Reis, L. Zimmermann, Z. Kr. 57, 475, 481; Ph. Ch. 102, 328. Erosion der Krystalle durch einen Quecksilberstrahl: R., Z. D. 1935 (entwässertes Präparat) (Biltz, Z. anorg. Ch. 170, 171). Lichtelektrischer Effekt an festem Kaliumferrocyanid bei ultravioletter Bestrahlung: W. Zimmermann, Ann. Phys. [4] 80, 346. Röntgenspektroskopische Untersuchungen an Kaliumferrocyanid: Ortner, Sber. Akad. Wien [IIa] 135, 73; C. 1927 I, 1791; Stelling, Z. Phys. 50, 628; C. 1928 II, 1972. Magnetische Susceptibilität von krystallwasserhaltigem und wasserfreiem Kaliumferrocyanid: Davidson, Welo, J. phys. Chem. 32, 1193; Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2626; Biltz, Z. anorg. Ch. 170, 180; von krystallwasserhaltigem Kaliumferrocyanid zwischen +18,6° und —170,0°: Ishiwaka, Sci. Rep. Töhoku Univ. [I] 3, 308; C. 1921 I, 270. Ist nicht piezoelektrisch (Hettich, Schleede, Z. Phys. 50, 253; C. 1929 I, 1893). Löslichkeit (gwasserfreies Salz in 100 g Lösung) von Kaliumferrocyanid in Wasser zwischen 0° (12,48) und 100° (46,07): Fabris, G. 51 II, 374; zwischen 7,4° (16,043) und 25,0° (23,971): Vallance, Soc. 1927, 1331; zwischen 24,9° (23,95) und 99,7° (43,78): Fabrow, Soc. 1926, 52. Die Löslichkeitskure von Kaliumferrocyanid in Wasser zeigt bei 17,7° einen Knickpunkt, der auch durch dilatometrische Messungen erhalten wird (V.). Über die Löslichkeit in Wasser vgl. anch Dominik, Przm. chem. 8, 106; C. 1924 II, 1740. 1 gwasserfreies

Salz löst sich bei 20° in 8100 g Alkohol von 87-88 Vol.-% (Biltz, Z. anorg. Ch. 170. 163 Anm. 2). Löslichkeit in wäßr. Alkohol verschiedener Konzentration: Do.; DE RADA. BERMEJO, An. Soc. españ. 27, 707; C. 1930 I, 631; in Kaliumchlorid-Lösungen: Do. Löslichkeit von Gemischen mit Kaliumsulfat in Wasser bei verschiedenen Temperaturen: ILJINSKI, LAPIN, Trudy Inst. prikl. chim. Nr. 178, Heft 5, S. 12; C. 1927 II, 2144. Leicht löslich in 100% iger Schwefelsäure (DAVIDSON, Am. Soc. 47, 977). Einfluß von Kaliumferrocyanid auf die Löslichkeit der Borsäure in Wasser bei 180: Kolthoff, R. 45, 609. Herstellung kolloider Lösungen von Kaliumferrocyanid durch Auflösen in Wasser bei Gegenwart von Alkoholen oder Aceton: Kutzelnigg, Koll.-Z. 47, 222; C. 1929 II, 146. Ultramikroskopische Beobachtung der Auflösung in Wasser: TRAUBE, v. BEHREN, Ph. Ch. [A] 138, 90. Kryoskopisches Verhalten in Wasser: Kolthoff, Z. anorg. Ch. 110, 148; Chem. Weekb. 16 [1919]. 1411; Fabris, G. 51 II, 380; Burrows, Soc. 123, 2028; in 100 % iger Schwefelsäure: DAVIDSON. Am. Soc. 47, 974. Thermische Analyse des Systems mit Wasser (Eutektikum bei —1,6° und 13,1 Gew.-% Kaliumferrocyanid): Fabris, G. 51 II, 379. Dichte der gesättigten wäßrigen Lösungen zwischen 12,8° und 25,1°: Vallance, Soc. 1927, 1332. Dichte einiger wäßriger Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 42; bei 20°: Rakshit, Z. El. Ch. 31. 99; zwischen 24,9° und 99,7°: Farrow, Soc. 1926, 52. Dichten einiger Lösungen in Wasser und Kaliumsulfat-Lösung bei 25°, 40°, 55° und den Siedetemperaturen der Lösungen: Iljinski, Lapin, Trudy, Inst. prikl.chim. Nr. 178, Heft 5, S. 14; C. 1927 II, 2144. Kontraktion beim Lösen in Wasser: Rakshit, Z. El. Ch. 31, 99. Verdampfungsgeschwindigkeit wäßr. Kaliumferrocyanid-Lösungen: Weiser, Porter, J. phys. Chem. 24, 336. Diffusion von Kaliumferrocyanid durch Kollodiummembranen: Bartell, Carpenter, J. phys. Chem. 27, 109; in Gelatinegel: Choucroun, C. r. 187, 296; durch eine Kupfer(II)-ferrocyanid Membran: Hückel, Koll.-Z. 36 Ergänzungsband, 204; C. 1925 II, 1338; durch verschiedene Diaphragmen: Mestregat, Gareau, C. r. 180, 1069. Änderung der Wasserstoffionenkonzentration der Lösung bei der Adsorption von Kaliumferrocyanid an Zuckerkohle: Am. Soc. 47, 974. Thermische Analyse des Systems mit Wasser (Eutektikum bei —1,6° und konzentration der Lösung bei der Adsorption von Kaliumferrocyanid an Zuckerkohle: RONZENTIALION GEF LOSUNG DEI GEF AGSOPPION VON KRIMMEFROCYSHIG EN ZUCKERKONIE: BARTELL, MILLER, Am. Soc. 45, 1111. Einfluß von Kaliumferrocysnid auf das Quellungsvermögen von Gelatine: BUCHNER, R. 48, 443. Ausflockungsvermögen von Kaliumferrocysnid gegen Aluminiumhydroxyd-Sol: Weiser, Middleton, J. phys. Chem. 24, 641; vgl. auch Dhar, Ghosh, J. phys. Chem. 30, 636; gegen Arsensulfid-Sol: Mukherjee, Chaudhuri. Soc. 125, 796; gegen Arsentrisulfid-Sol in Gegenwart von Kaliumchlorid: Sen, Z. anorg. Ch. 149, 140; gegen Gelatine-Sol: GH., BANERJEE, DH., J. indian chem. Soc. 6 [1929], 322; BUCHNER, R. 46, 441. Dispersion einer wäßr. Lösung bei 20°: ROBERTS, Phil. Mag. [6] 49 (1925), 418. Quantitative Extinktionsmessung von wäßr. Lösungen im Ultraviolett: Cambi, Szegö, G. 58, 67; R. A. L. [6] 5, 638; im sichtbaren und ultravioletten Gebiet: Getman, J. phys. Chem. 25, 153; 82, 189; vgl. auch Briggs, J. phys. Chem. 32, 1422; Ilmori, Z. anorg. Ch. 167, 159. Absorptionsspektrum einer wäßr. Lösung, die dem Sonnen-IMORI, Z. anorg. Ch. 167, 159. Absorptionsspektrum einer wäßr. Lösung, die dem Sonnenlicht ausgesetzt war, und einer mit Essigsäure versetzten wäßr. Lösung: II. Lichtelektrischer Effekt einer wäßr. Lösung: ZIMMERMANN, Ann. Phys. [4] 80, 337; IMORI, Scient. Pap. Inst. phys. chem. Res. Spl. 8, 11; C. 1928 II, 1305. Abhängigkeit des lichtelektrischen Effekts einer bestrahlten Kaliumferrocyanid-Lösung von der Konzentration: Poole, Phil. Mag. [6] 45, 895, 900; C. 1923 III, 886. Dielektr.-Konst. wäßr. Lösungen: Skancke, Schreiner. Phys. Z. 28, 604; C. 1927 II, 2046; Walden, Werner, Ph. Ch. 129, 397; vgl. Rieckhoff, Ann. Phys. [5] 2, 604. Elektrische Leitfähigkeit wäßr. Lösungen: Heydweiller, Z. anorg. Ch. 116, 42; Burrows, Soc. 128, 2028; einer 0,1 molaren Lösung in Abwesenheit und in Gegenwart von Salzsäure: Kolthoff, Z. anorg. Ch. 110, 146, 150; Chem. Weekb. 16, 1409, 1413; C. 1920 I. 69. Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen 1413; C. 1920 I, 69. Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen in elektrischen Feldern verschiedener Stärke vgl. Wien, Ann. Phys. [4] 83, 349; 85, 806; [5] 1, 408. Leitfähigkeitsänderung einer wäßr. Lösung im Hochfrequenzfeld (Dispersionseffekt): RIECKHOFF, Ann. Phys. [5] 2, 593. Einfluß auf die kataphoretische Wanderungsgeschwindigkeit verschiedener Sole: Freundlich, Zeh, Ph. Ch. 114, 81; Kruyt, van der Willigen, Ph. Ch. 180, 172; Mukherjee, Chaudhury, Choudhury, Quart. J. indian chem. Soc. 4, 505; C. 1928 I, 662. Einfluß auf den elektrokinetischen Potentialsprung zwischen Wasser und Glas: Kr., van der Wi., Koll.-Z. 45, 315; C. 1928 II, 1535. Magnetische Rotationsdisperion einer wäßr. Lösung: Roberts, Phil. Mag. [6] 49, 418; C. 1925 I, 1847. Über Zerstäubungselektrizität wäßr. Kaliumferrocyanid-Lösung vgl. Busse, Ann. Phys. [4] 76, 525. Potentialdifferenz zwischen einer 2n-Kaliumferrocyanid-Lösung und Wasser und Einfluß eines Gelatine-Diaphragmas auf die Potentialdifferenz: Choucroun, C. r. 186, 1550; 187, 296. Potentialdifferenz zwischen durch Kollodiummembranen getrennten wäßrigen Lösungen verschiedener Konzentration: Preuner, Roder, Z. El. Ch. 29, 55; Michaelis, Colloid Symp. Mon. 5, 141; C. 1928 II, 228. Die elektromotorische Kraft der Kette: Pt(grau)/0,1n-K₄[Fe(CN)₆]/n-KCl/n-KCl, HgCl/Hg ändert sich mit der Temperatur und bei längerem Aufbewahren der Kaliumferrocyanid-Lösung (Imori, Z. anorg. Ch. 167, 161); Einfluß von Zusätzen auf die elektromotorische Kraft der Kette: I. Einfluß des Druckes auf die elektromotorische Kraft der Kette Pt(blank)/Ka[Fe(CN)a]/0,1n-HCl, HgCl/Hg

bei 18°: Tammann, Jenckel, Z. anorg. Ch. 173, 344. Änderung des Potentials einer alkal. Kaliumferrocyanid-Lösung gegen Platin bei Bestrahlung der Lösung mit ultraviolettem Licht: Swensson, Ark. Kemi 7, Nr. 19, S. 96; C. 1920 I, 790. Über das Oxydations-Reduktions-Potential des Systems Kaliumferrocyanid-Kaliumferricyanid s. bei Kaliumferricyanid, S. 77. Wasserstoffionenkonzentration einer 0,1 m-Kaliumferrocyanid-Lösung in Abwesenheit und in Gegenwart von 0,1 n-Salzsäure: Kolthoff, Z. anorg. Ch. 110, 146, 149; Chem. Weekb. 16, 1409, 1412; C. 1920 I, 69. Über die hemmende Wirkung von Kaliumferrocyanid beim Hydrieren von Zimtsäure mit Nickelkatalysator vgl. Wolff, J. pr. [2] 107, 162.

H 71, Z. 22 v. u. streiche "Ist triboluminescent (GERNEZ, A. ch. [8] 15, 540)."

Eine 0,025 m-Lösung von Kaliumferrocyanid bleibt in brauner Flasche bei Gegenwart von 1% Ferrieyanid mehrere Monate unverändert (VERZIJL, KOLTHOFF, R. 43, 383). Photochemische Veränderungen von Kaliumferrocyanid-Lösung unter verschiedenen Bedingungen: BAUDISCH, J. biol. Chem. 48, 497; B. 54, 414; 62, 2704, 2711; BAUDISCH, BASS, B. 55, 2699; ROSSI, BOCCHI, G. 55, 876; IIMORI, Z. anorg. Ch. 167, 157; vgl. auch BRIGGS, Soc. 117, 1029; BAUR, Helv. 8, 404; NAKASEKO, Mem. Coll. Sci. Kyoto 11, 104; C. 1928 II, 275. Potentiometrische Verfolgung der Einw. von ultraviolettem Licht auf wäßr. Lösungen von Kaliumferrocyanid und Gemische mit Kaliumferricyanid in Abwesenheit und in Gegenwart von Kalilauge: Swensson, Ark. Kemi 7, Nr. 19, 94; C. 1920 I, 790. Geschwindigkeit der Zersetzung von Wasserstoffperoxyd durch mit ultraviolettem Licht vorbehandelte Kaliumferrocyanid-Lösungen: Winther, Danske Vid. Selsk. Skr. 2, 5; C. 1922 III, 981. Beim
Kochen einer wäßr. Kaliumferrocyanid-Lösung findet geringe Zersetzung statt (BAUD.,
B. 62, 2706). Kaliumferrocyanid ist in wäßr. Lösung mit geringen Mengen Kaliumfersen(II)aquopentacyanid und Kaliumcyanid im Gleichgewicht (BRIGGS, Soc. 117, 1029). Die Zersetzung in salzsaurer Lösung unter Bildung von Berlinerblau wird durch Licht beschleunigt (NAKASEKO, Mem. Coll. Sci. Kyoto 11, 103; C. 1928 II, 275). Liefert bei der Elektrolyse in wäßr. Lösung an einer Eisenanode Berlinerblau (Ormont, Z. El. Ch. 34, 106). Einfluß von Natriumchlorid-, Natriumnitrat- und Natriumsulfat-Lösungen als Zwischenelektrolyte bei dieser Reaktion: On. Elektrolytische Oxydation zu Kaliumferricyanid ohne Anwendung von Diaphragmen: PAWECK, HIRSCH, Z. El. Ch. 34, 684. Potentiometrische Verfolgung der Oxydation von Kaliumferrocyanid zu Kaliumferricyanid mit Hilfe von Chlor, Brom oder Jod: DEL FRESNO, An. Soc. españ. 23, 427; C. 1926 I, 812. Verlauf und Geschwindigkeit der Reaktion mit Jodat in sehr verdünnter, schwach salzsaurer Lösung in Gegenwart von Stärke-Lösung: Eggert, Scharnow, Z. El. Ch. 27, 457. Wird durch Natriumchlorit zu Kaliumferrievanid oxydiert (Levi, R. A. L. [5] 31 I, 371). Mengenverhältnisse an Cyanwasserstoff, Cyan und Ammoniak bei der Oxydation von Kaliumferrocyanid mit Wasserstoffperoxyd, Alkalipersulfat, Kaliumpermanganat, Kaliumdichromat, Mangan(IV)-, Blei(IV)und Zinn (IV)-oxyd: Bellucci, Ricca, Atti 1. Congr. naz. Chim. pura appl. 1928, 400; C. 1924 I, 1915; Ricca, Pirrone, Ann. Chim. applic. 18, 552; C. 1929 I, 1924. Kaliumferrocyanid liefert bei der Behandlung mit Wasserstoff in Wasser bei 350° und 200 Atm. Druck krystallisiertes Fe₃O₄, Ammoniumcarbonat, Ameisensäure und wenig Kaliumcyanid (Іратјеw, B. 59, 1420; ж. 58, 692). Wäßr. Kaliumferrocyanid-Lösung löst bei Luftzutritt metallisches Silber unter Bildung von Kaliumsilbercyanid; ebenso werden die meisten schwerlöslichen Silbersalze mit Ausnahme von Silbersulfid gelöst, wobei Kaliumsilbercyanid, Silbereisen(II)-evanid und KAg₈[Fe(CN)₆] entstehen können (Beutel, Kutzlnigg, M. 51, 369; vgl. auch Bonino, G. 51 II, 261). Gibt mit Calciumsalzen in Gegenwart von Essigsäure einen sehr schwer löslichen Niederschlag von K₄Ca[Fe(CN)₆]: N. Tananajew, Ukr. chemič. Z. 1, 101; C. 1925 II. 1703; I. Tananajew, Z. anorg. Ch. 172, 403; Ж. 60, 905. Diese Reaktion kann zum Nachweis von Calcium dienen (N. T.). Beim Erhitzen im Gemisch mit Calciumoxyd auf 850-1000° entsteht ein graues Reaktionsgemisch, das Cyanid-Reaktionen zeigt (Pincass, Ch. Z. 46 [1922], 661). Empfindlichkeit der Reaktion mit Bariumchlorid in salmiakhaltiger Lösung: Lutz, Fr. 60, 211. Gibt mit Quecksilber(II)-chlorid in wäßr. Lösung einen weißen, lichtempfindlichen Niederschlag (GASPAR, CASTRO-GIBONA, An. Soc. españ. 24, 331; C. 1926 II, 917). Das Hydrat färbt sich beim Kochen mit Vanadinoxychlorid unter Aufblähen schwarz (Brown, Snyder, Am. Soc. 47, 2673). Potentiometrische Verfolgung der Reaktion mit Eisen(III)-salz: E. Müller, J. pr. [2] 104, 246. Bei der Einw. von Kaliumferrocyanid auf ein Gemisch von Zinksulfat und Kobalt(II)-Salz in siedendem Wasser entsteht ein grünblauer Niederschlag der Zusammensetzung Zn₅Coⁿ[Fe(CN)₆]₈; die Reaktion kann zum colorimetrischen Nachweis von Zink dienen (Schachkeldlar, 3K. 61, 2217; C. 1930 II, 772). Verbindungen, die bei der Umsetzung mit Dimethylsulfat in absol. Methanol entstehen, siehe bei Methylisocyanid, Syst. Nr. 335. — Wirkung auf das Pflanzenwachstum: Deuber, Soil Sci. 21, 23; C. 1926 I, 2710. Mit ultraviolettem Light bestrahltes Kaliumferroccuret zur Pheraphytiden des Wachstum von Bakterien (Kort von Kriege Wachstum). fördert in Gegenwart von Phosphatiden das Wachstum von Bakterien (Kollath, Klin. Wechr. 6, 14; C. 1927 I, 1327). Verwendung zur Bekämpfung der Schildlaus: RAYBAUD, C. r. Soc. Biol. 85, 935; C. 1922 I, 719; zur Enteisenung von Weinen: Chelle, Bl. Trav. Pharm.

Bordeaux 65, 121; C. 1928 I, 1466. Einfluß von Ammoniumfluorid auf den Nachweis von Eisen(III)-ionen durch Kaliumferrocyanid: SZEBELLÉDY, Fr. 75, 165; VAN URK., Fr. 77. 39: von Alkalioxalaten auf diesen Nachweis: Kohn, M. 43, 375.

Reinheitsprüfung von Kaliumferrocyanid: Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., 4. Bd. [Berlin 1933], S. 224; Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 251; E. MERCK, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 277; vgl. auch Collins, Mitarb., Ind. Eng. Chem. 20, 981; C. 1928 II, 2490. — Vergleich verschiedener Bestimmungsmethoden: Budnikow, Fr. 73, 433; Ж. 60, 1159. Gravimetrische Bestimmung von Kaliumferroeyanid in Form von Eisen(III)oxyd durch Umsetzung mit salzsaurem Benzidin und Veraschen des entstandenen sauren Benzidinferrocyanids: Cumming, Soc. 125, 240. Bromometrische Bestimmung von Kaliumferrocyanid: OBERHAUSER, Z. anorg. Ch. 144, 257. Jodometrische Bestimmung durch Oxydation mit Jod: vgl. Kolthoff, Fr. 60 455; Pharm. Weekb. 56, 1620; C. 1920 II, 160; LANG, Z. anorg. Ch. 138, 277; mit unterjodiger Säure: LANG, Z. anorg. Ch. 142, 295; mit Kaliumdijodat: Schwicker, Fr. 77, 164. Maßanalytische Bestimmung durch Oxydation mit Kaliumpermanganat: Frigl, Schummer, Fr. 64, 253; Knop, Fr. 77, 111; Mayr, Fisch, Fr. 76, 437; mit Cer(IV)-sulfat: Berry. Analyst 54, 462; C. 1929 II, 2080. Bestimmung durch Titration mit Zinksulfat: Moll, Chem. Weekb. 25, 657; C. 1929 I, 418; Anonymus, Przem. chem. 13, 65; C. 1929 I, 1719; Metallbörse 19, 65; C. 1929 I, 1484; Kolthoff, Chem. Weekb. 26, 298, 298; C. 1929 II, 613; mit Bleinitrat in Gegenwart von alizarin-3-sulfonsaurem Natrium als Indikator: Burstein, Z. anorg. Ch. 164, 221; Ж. 59, 532. Potentiometrische Bestimmung durch Titration mit Kaliumbromat in Gegenwart von Salzsäure: Kolthoff, VLEESCHHOUWER, R. 45, 925; mit Permanganat in schwefelsaurer Lösung: E. MÜLLER, LAUTERBACH, Fr. 61, 398; KOLTHOFF, Fr. 64, 259; mit Cer(IV)-sulfat: FURMAN, EVANS, Am. Soc. 51, 1130; ATANASIU, STEFANESCU, B. 61, 1345; SOMEYA, Z. anorg. Ch. 181, 183. Konduktometrische Bestimmung von Kaliumferrocvanid mit Silbernitrat: Kolthoff. Fr. 61, 232; mit Quecksilber(II)-perchlorat: Ko., Fr. 61, 338; mit Bleinitrat: Ko., Fr. 61, 370. Über die Eisenbestimmung in Kaliumferrocyanid durch Zerstörung des Cyankomplexes mit konz. Schwefelsäure und Salpeterschwefelsäure und Fällung des Eisens als Hydroxyd vgl. Vallance, Soc. 1927, 1330.

 $K_4[Fe(CN)_6]+3Hg(CN)_2+4H_2O$ (H 72; E I 34). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 100. — $K_2Li_2[Fe(CN)_6]+3H_2O$ (H 73). Ist triboluminescent (Gernez,

A. ch. [8] 15 [1908], 540).

Rubidiumeisen(II)-cyanid, Rubidiumferrocyanid Rb₄[Fe(CN)]₆ + 3H₂O (vgl. H 73). Hellgelb. Leicht löslich in Wasser, schwerer in verd. Alkohol (J. Meyer, Z. anorg. Ch. 115, 208). — Li₂Rb₂[Fe(CN)₆]. Vgl. darüber de Rada, An. Soc. españ. 27 [1929], 390, 397. — Cäsiumeisen(II)-cyanid. Cäsiumferrocyanid Cs₆[Fe(CN)₆] + 3 H₂O. Löslich in Wasser, schwer löslich in Alkohol und Ather (J. MEYER, Z. anorg. Ch. 115, 210). -Li₂Cs₂[Fe(CN)₆]. Vgl. darüber DE RADA, An. Soc. españ. 27 [1929], 390, 397.

Kupfereisen (II)-cyanide:

Na₂Cu₂[Fe(CN)₆] + 8 H₂O (H 74). Zur Formulierung vgl. Reihlen, Zimmermann. A. 451, 96. — K_2 Cu₂[Fe(CN)₆] + 7 H₂O (H 74). Zur Formulierung vgl. R., Z., A. 451, 96. — MgCu₂[Fe(CN)₆] + 5 H₂O (H 74). Zur Formulierung vgl. R., Z., A. 451, 96. — Kupfer(II) eisen(II) cyanid, Cupriferrocyanid, "Kupferferrocyanid" Cu₂[Fe(CN)₆] + aq (H 74; E I 34). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 85. Violettschwarzes Pulver, das bei zunehmender Quellung in Wasser eine lichtbraune Farbe annimmt (Katz, Versl. Akad. Amsterdam 31, 542; C. 1924 I, 1163). Stabilität kolloider Lösungen: Sen, Mehrotta, Z. anorg. Ch. 142, 349; S., J. phys. Chem. 29, 531. Einfluß von Elektrolyten und Nichtelektrolyten auf die Koagulation von Kupferferrocyanid-Sol: S., J. phys. Chem. 29, 518, 528; OSTWALD, Koll. Z. 40, 206; C. 1927 I. 573; CHAUDHURY, CHATTERJEE, J. phys. Chem. 33, 244. Einfluß der Verdünnung und des Alterns auf die Koagulation von Kupferferrocyanid-Sol durch Elektrolyte: S., J. phys. Chem. 29, 525, 530. Über den Einfluß des Lichts auf die Stabilität des Sols gegenüber Elektrolytzusätzen vgl. Roy, J. indian chem. Soc. 6, 438; C. 1929 II, 1904. Koagulation von Kupferferroeyanid in Form von Membranen durch anorganische und organische Verbindungen: GURCHAT, J. phys. Chem. 30, 83. Durchlässigkeit von Kupferferrocyanid-Membranen für eine größere Anzahl anorganischer und organischer Verbindungen: Collander, Koll. Beik. 19, 84; 20, 277; C. 1924 I, 1750; 1925 I, 1958. Einfluß von Salzsäure, Kaliumchlorid oder Kaliumferrocyanid auf die Viscosităt des Sols: Charravarti, Dhar. Koll.-Z. 42, 130; C. 1927 II, 2654; Dh., Ghosh, Koll.-Z. 48 [1929], 45. Anderung der Viscosităt und der Leitfähigkeit beim Altern des Sols: DH., CH., Koll.-Z. 42, 121; C. 1927 II, 2654. Einfluß des Lichts auf die elektrische Leitfähigheit und die Lichtabsorption von Solen: Roy, J. indian chem. Soc. 6 [1929], 438. Über die selektive Adsorption salzhaltiger Kupferferrocyanid-Sole und das hierdurch bedingte Auftreten von saurer oder alkalischer Reaktion vgl. Frankert, Wilkinson, J. phys. Chem.

28, 652. Elektroosmose durch Kupferferrocyanid-Membranen: Choucroun, J. Chim. phys. 20, 414. Bei Jangsamem Zusatz von verd. Ammoniak zu Kupferferrocyanid und Schütteln der Mischung nach jeder Zugabe entsteht ein dunkelbrauner, in konz. Ammoniak unlöslicher Niederschlag (Crittenden, Am. Soc. 46, 1211). Ammoniak stört den Nachweis von Kupfer als Ferrocyanid (Cr.). — [Cu(NH₃)₃]₂[Fe(CN)₆] + H₂O (H 74). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 86. — Kupfer-Hydrazin-Ferrocyanide. Vgl. Râx, Gupta, Z. anorg. Ch. 140, 86. — Na₂Cu[Fe(CN)₆] + 4 H₂O (H 75). Über die Formulierung und den Krystallwassergehalt vgl. R., Z., A. 451, 85, 86. — K₂Cu[Fe(CN)₆] + 2 H₂O (H 75). Über die Formulierung und den Krystallwassergehalt vgl. R., Z., A. 451, 85, 86. Silbereisen(II)-cyanid, Silberferrocyanid Ag₄[Fe(CN)₆] + aq (H 75; E I 34). Die Löslichkeit von Silberferrocyanid liegt zwischen der des Silberchlorids und des Silberbromids (Beutel, Kutzlnige, M. 51, 374). Leicht löslich in heißer konzentrierter Salzsäure (R. K.) Löst sich in konz. Kaliumferrocyanid. Lösung mit tiefbrauer Farbe (R. K.) Liefert.

Silbereisen(II)-cyanid, Silberferrocyanid Ag₄[Fe(CN)₆]+aq (H 75; E I 34). Die Löslichkeit von Silberferrocyanid liegt zwischen der des Silberchlorids und des Silberbromids (Beutel, Kutzling, M. 51, 374). Leicht löslich in heißer konzentrierter Salzsäure (B., K.). Löst sich in konz. Kaliumferrocyanid-Lösung mit tiefbrauner Farbe (B., K.). Liefert bei der Einw. von Methyljodid in absol. Methanol α-Tetramethylferrocyanid C₁₀H₁₂N₆Fe (s. bei Methylisocyanid, Syst. Nr. 335) und andere Produkte (Hölzl, M. 48, 73). Beim Erhitzen mit Propyljodid auf dem Wasserbad erhält man die homologe Verbindung C₁₈H₂₈N₆Fe und eine Verbindung C₂₀H₂₄O₄N₈Fe₃ (s. bei Propylisocyanid, Syst. No. 337) (H.). Bildung Liesegangscher Ringe in Gelatine, Agar-Aga: und Stärke: Chatterji, Dhar, Koll.-Z. 40, 98; C. 1927 I, 36. Elektromotorische Kraft der Kette Ag/Suspension von Ag₄[Fe(CN)₆] und KAg₃[Fe(CN)₆] in wäßr. Kaliumsalz-Lösungen/HgCl, Hg: Kameyama, Gorai, J. Soc. chem. Ind. Japan Spl. 30, 6 B; C. 1929 II, 2023. — KAg₃[Fe(CN)₆] (H 75). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 97. B. Bei der Einw. von Kaliumferrocyanid-Lösung auf Silbersalze (Bonino, G. 51 II, 261; Beutel, Kutzlingg, M. 51, 378) oder auf metallisches Silber unter Luftzutritt (Be., K.). Krystalle. Zersetzt sich leicht an der Luft oder in der Wärme (Bo.; Be., K.). Unlöslich in Ammoniak, leicht löslich in Kaliumcyanid-Lösung (Be., K.). Färbt sich mit konz. Salpetersäure orange (Be., K.). — Ag₄[Fe(CN)₆] + 2MoO₃ + H₂O. Hellgelbes, krystallines Pulver. Wird am Licht grauprün (Barbier, R. A. L. 61 9, 1015).

Hellgelbes, krystallines Pulver. Wird am Licht graugrün (Barberi, R. A. L. [6] 9, 1015).

Berylliumeisen (II) - cyanid, Berylliumferrocyanid Be₃[Fe(CN)₆]. Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen in elektrischen Feldern verschiedener Stärke vgl. Wien, Ann. Phys. [4] 85, 800. — Magnesiumeisen (II) - cyanid, Magnesiumferrocyanid Mg₂[Fe(CN)₆] + aq (vgl. H 73). Der Krystallwassergehalt der Verbindung wird in der Literatur mit 4, 6, 7, 10 und 12 H₂O angegeben (vgl. z. B. M. K. Hoffmann, Lexikon der anorganischen Verbindungen [Leipzig 1912—1914], Bd. II, S. 176; Fichter, Suter, Helv. 5, 399 Ann. 1; Cumming, Good, Soc. 1926, 1927). Je nach der Darstellungsmethode bilden sich vermutlich verschiedene Hydrate, deren Temperaturgrenzen nahe beieinander und nicht weit von der Zimmertemperatur entfernt liegen (F., S.). Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen in elektrischen Feldern verschiedener Stärke vgl. Wien, Ann. Phys. [4] 85, 809. Versuche zur potentiometrischen Titration von Kupfersulfat mit Magnesiumferrocyanid in Abwesenheit oder Gegenwart von Alkohol bei 20° und 60°: Takegami, Fr. 74, 40. Wasserfreies Magnesiumferrocyanid zerfällt beim Erhitzen im Wasserstoffstrom unterhalb 400° in der Hauptsache in Stickstoff, FeC₂ und Magnesiumcyanid; oberhalb dieser Temperatur entstehen außerdem noch Kohle und Magnesiumnitrid, das bei 800° in fast quantitativer Ausbeute erhalten wird (F., S.). — Na₂Mg[Fe(CN)₆]. B. Entsteht bei der Fällung von Natriumsalzen durch wäßrig-alkoholische Lithiumferrocyanid-Lösung in Gegenwart von Magnesiumchlorid (der Rada, An. Soc. españ. 24, 443, 449). — Cu₂Mg[Fe(CN)₆] + 5H₂O (H 74). Über die Formulierung und den Krystallwassergehalt vgl. R. Zu, A. 451, 85, 86.

Calciumeisen(II)-cyanid, Calciumferrocyanid Ca₃[Fe(CN)₆]+11 H₂O (vgl. H 73; E I 34). Zum Krystallwassergehalt vgl. Cummng, Soc. 125, 241; Farrow, Soc. 1926, 50; 1927, 1155. Magnetische Susceptibilität der krystallwasserhaltigen Verbindungen: Davidson, Welo, J. phys. chem. 32, 1193; Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2626. Löslichkeit in Wasser (g wasserfreies Salz in 100 g Lösung) zwischen —10,1° (30,45) und 90° (44,37): F., Soc. 1926, 52; 1927, 1155. Dichten der gesättigten währigen Lösungen zwischen 24,9° und 64,7°: F., Soc. 1926, 52. Zusammensetzung der flüssigen und festen Phasen im binären System Calciumferrocyanid-Wasser zwischen —11.6° und 90° (Umwandlung in ein wasserärmeres Hydrat bei 59,7°; Eutektikum bei 30,45% wasserfreiem Calciumferrocyanid-Wasser bei 25°, 50° und 90° (Eutektikum bei 67,51% Wasser, 3,59% wasserfreiem Natriumferrocyanid und —11,6°): F., Soc. 1927, 1156; im ternären System Natriumferrocyanid-Calciumferrocyanid-Wasser bei 25°, 50° und 90° (Eutektikum bei 67,51% Wasser, 3,59% wasserfreiem Natriumferrocyanid und —11,6°): F., Soc. 1927, 1158. Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen im Hochfrequenzfeld (Dispersionseffekt): Rieckhoff, Ann. Phys. [5] 2, 595. Liefert beim Erhitzen im Stickstoffstrom Wasser, Blausäure und einen Rückstand von der Zusammensetzung Ca₄[Fe_r(CN)₁₁(OH)] (löslich in warmem Wasser; gibt mit verd. Salpetersäure einen

blauen Niederschlag) (Cumming, Soc. 125, 241). Beim Erhitzen auf 690° entsteht Calcium-cyanamid (Pingass, Ch. Z. 46, 661; C. 1923 III, 1039). Potentiometrische Verfolgung der Reaktion mit Rubidium- bzw. Cāsiumsalz-Lōsungen: Del Freeno, Vazquez, Z. El. Ch. 35, 149. Potentiometrische Titration mit Zinksulfat: Rauch, Z. anorg. Ch. 160, 79. Die gesättigte Lōsung in 62,5 % igem Alkohol gibt mit Strontium- oder Bariumsalzen schwerfseliche Niederschläge (De Rada, An. Soc. españ. 24, 443, 449). Calciumferrooyanid gibt mit überschüssigem Calciumhydroxyd und Eisen(III) chlorid-Lōsung eine schwerlösliche Verbindung, die wahrscheinlich ein Doppelsalz von Calciumferrooyanid mit 2 Mol Calciumferrit (Caffeo, 1s) darstellt (Grube, Dutk, Z. ang. Ch. 33, 143; Gr., Z. anorg. Ch. 113, 245). Über die Verwendung von Calciumferrooyanid zur Herstellung von Kontaktmassen für die Ammoniak-Synthese vgl. Mittasch, Kuss, Z. El. Ch. 34, 159. — (NH4), Caffe(CN), 1 (H 73). B. Aus Natriumferrooyanid, Calciumchlorid und Ammoniumchlorid in verd. Alkohol (Gaspar, An. Soc. españ. 24, 99; C. 1936 II, 275). Aus Calciumferrooyanid und Ammoniumchlorid in Wasser (DE Rada, Bermedo, An. Soc. españ. 27 [1929], 703). 100 g gesättigte wäßrige Lōsung enthalten bei 22° 0,297 g (DE R., B.). Löslichkeit in währ. Alkohol bei 22°: De R., B. — Na, Caffe(CN), 1 (vgl. H 73). Die von Wyroubow (A. ch. [4] 21 [1870], 283) als Na, Caffe(CN), 1 beschriebene Verbindung ist vermutlich unreines Na, Caffe(CN), 1 (Farrow, Soc. 1927, 1154). B. Entsteht bei der Fällung von Natrium durch währig-alkoholischer Lithiumferrooyanid-Lōsung in Gegenwart von sehr verd. Calciumchlorid-Lōsung (De Rada, An. Soc. españ. 24, 1926], 442, 450). Über das Existenzgebiet innerhalb des ternāren Systems Natriumferrooyanid-Calciumferrooyanid-Wasser bei 25°, 50° und 90° vgl. F. Krystallographisches: Barker, Soc. 1927, 1154. — K_Caffe(CN), 1 (vgl. H 73). El 134). B. Analog (NH4), Caffe(CN), 1 (vgl. H 73). Caffe(CN), 1 (vgl. H 73). Die Rada, Bermedo, An. Soc. españ. 27 [1929], 303). 398). 100 g gesätti

Strontiumeisen(II)-cyanid, Strontiumferrocyanid Sr₂[Fe(CN)₆]+aq. (H 73). Die gesättigte Lösung in 48% igem Alkohol gibt mit Bariumsalzen einen schwerlöslichen Niederschlag (DE RADA, An. Soc. españ. 24 [1926], 443, 449). Über Fällungen mit Kupfer(II)-sulfat, Wismutnitrat, Zinn(II)-chlorid, Antimon(III)-chlorid, Eisen(III)-chlorid und Kobalt(II)-nitrat vgl. Gaspar, Castro-Girona, An. Soc. españ. 24 [1926], 326, 327. — CuSr[Fe(CN)₆] (H 75). Zur Formulierung vgl. Reihlen, Zinnmermann, A. 451, 85. — Bariumeisen(II)-cyanid, Bariumferrocyanid Ba₂[Fe(CN)₆] + 6H₂O (H 73; E I 34). Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen in elektrischen Feldern von verschiedener Stärke vgl. WIEN, Ann. Phys. [4] 83, 337; [4] 85, 806; [5] 1, 405. Elektrische Leitfähigkeit wäßr. Lösungen im Hochfrequenzfeld (Dispersionseffekt): Rieckhoff, Ann. Phys. [5] 2, 595). Über Fällungen mit Kupfer(II)-sulfat, Wismutnitrat, Zinn(II)-chlorid, Antimon(III)-chlorid, Eisen(III)-chlorid und Kobalt(II)-nitrat vgl. Gaspar, Castro-Girona. An. Soc. españ. 24 [1926], 326. — CuBa[Fe(CN)₆] (H 75). Zur Formulierung vgl. Reihlen,

ZIMMERMANN, A. 451, 85.

Zinkeisen(II)-cyanid, Zinkferrocyanid Zn₂[Fe(CN)_e]+aq (H 74; E I 34). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 90. B. Ein Salz mit 5 Mol Krystallwasser entsteht bei der Einw. von kalter überschüssiger Kaliumferrocyanid-Lösung auf sehr verd. Zinksulfat-Lösung (Cumming, Good, Soc. 1926, 1927). Auftreten von Zinkferrocyanid bei der Bestimmung von Zink durch Leitfähigkeitstitration mit Kaliumferrocyanid: Kolthoff, Fr. 62, 211; durch potentiometrische Titration mit Natriumferrocyanid: Treadwell, Chervet, Helv. 5, 636; 6, 550; mit Magnesium-, Calcium- oder Bariumferrocyanid: K., Verzijl, R. 43, 392. D³: 1,850 (wasserfreies Prāparat) (Biltz, Z. anorg. Ch. 170, 174). Bildung Liesegangscher Ringe in Gelatine, Agar-Agar und Stärke: Chatterji, Dhar. Koll. Z. 40, 98; C. 1927 I, 36. Verhalten in Kautschukmischungen: Scott, Trans. Inst. Rubber Ind. 4, 375; C. 1929 I, 3042. — Zn₂[Fe(CN)_e]+3NH₃+H₂O (H 74). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 90. — (NH_e)₂Zn₂[Fe(CN)_e]₂. Zum Auftreten dieser Verbindung bei der Titration von Zink mit Ammoniumferrocyanid vgl. Kolthoff,

Verziji, R. 43, 392. — Zink-Hydrazin-Ferrocyanide. Vgl. darüber Rây, Gufta. Z. anorg. Ch. 140, 91. — Na₂Zn₃[Fe(CN)₆]₂. Vgl. darüber Kolthoff, Verziji, R. 43, 391. — K₂Zn₃[Fe(CN)₆]₂ + aq (vgl. H 74; E I 34). Zur Formulierung vgl. Reihlen, Zimmermann, A. 451, 90. Enthält 16 Mol Krystallwasser, wovon 12 leicht abgegeben werden (R., Z.). Über das Auftreten dieser Verbindung bei der potentiometrischen Bestimmung von Zink mit Kaliumferrocyanid bzw. Natriumferrocyanid + Kaliumchlorid vgl. Treadwell, Chervet, Helv. 5, 633; 6, 550; Kolthoff, Verziji, R. 43, 389, 393. — Über weitere Kaliumzinkferrocyanide und ihre Formulierung vgl. R., Z., A. 451, 91. — Cs₂Zn[Fe(CN)₆]. Zur Formulierung vgl. R., Z., A. 451, 90. Über das Auftreten dieser Verbindung bei der potentiometrischen Titration von Zinksulfat mit Kaliumferrocyanid in Gegenwart eines Caesiumsalzes vgl. Treadwell, Chervet, Helv. 5, 636; Kolthoff, Verziji, R. 43, 390. Cadmiumeisen(II)-cyanid, Cadmiumferrocyanid Cd₂[Fe(CN)₆]+11H₂O (vgl.

Cadmiumeisen(II)-cyanid, Cadmiumferrocyanid Cd₂[Fe(CN)₆]+11H₂O (vgl. H 74; E I 34). Über die Formulierung und den Krystallwassergehalt vgl. Reihlen, Zimmermann, A. 475, 110, 119. — Cd₂[Fe(CN)₆]+4NH₃+aq. Über die Formulierung und den Krystallwassergehalt vgl. R., Z., A. 475, 109, 119. B. Aus Cadmiumsalz-Lösung und Natrium- oder Kaliumferrocyanid in Gegenwart von mäßig konzentriertem Ammoniak (R., Z.). Krystalliner Niederschlag. — Cd₂[Fe(CN)₆]+6NH₃+H₂O. Zur Formulierung vgl. R., Z., A. 475, 109, 119. B. Aus Cadmiumsalz-Lösung und Natrium- oder Kaliumferrocyanid in Gegenwart von konzentriertem wäßrigem Ammoniak (R., Z.). Krystalle. — (NH₄)₂Cd[Fe(CN)₆]+6H₂O (vgl. H 74). Über die Formulierung und den Krystallwassergehalt vgl. R., Z., A. 475, 109, 118. — Na₂Cd[Fe(CN)₆]+3H₂O. Zur Formulierung vgl. R., Z., A. 475, 109, 118. Gibt 1 H₂O leicht ab (R., Z.). — K₂Cd₃[Fe(CN)₆]₂. Vgl. darüber Kollthoff, Fr. 62, 212. — K₂Cd[Fe(CN)₆]+4H₂O (vgl. H 74). Über die Formulierung und den Krystallwassergehalt vgl. R., Z., A. 475, 109, 118.

Kaliumaluminium - [eisen(II) - cyanid], Kaliumaluminium ferrocyanid

Kaliumaluminium - [eisen (II) - cyanid], Kaliumaluminium ferrocyanid KAl[Fe(CN)_a] (H 75). Zur Formulierung vgl. MITTASCH, KUSS, EMERT, Z. anorg. Ch. 170, 193 Anm. 2. Röntgendiagramm (Pulver-Methode): Eisenhut, Kaupp, Ph. Ch. 133, 459. Liefert beim Erhitzen in einem Stickstoff-Wasserstoff-Gemisch von 1 Atm. Druck auf 450° bis 500° unter intermediärer Bildung von trimerem Ferrocyanid (S. 64) α-Eisen. Kohlenstoff, Ammoniak, Methan und Zementit (M., Ku., E., Z. anorg. Ch. 170, 209; M., Ku., Z. El. Ch. 34, 169). Steigert man beim Erhitzen von Kaliumaluminumferrocyanid in einem Stickstoff-Wasserstoff-Gemisch von ca. 95 Atm. Druck die Temperatur von 330° ab äußerst langsam, so erhält man das gesamte Eisen in Form von α-Eisen (M., Ku., E.). Über Verwendung zur Herstellung von Katalvsatoren für die Ammoniak-Synthese vgl. M., Ku. — Gallium-eisen(II) - oyanid, Galliumferrocyanid als gelatinöser, sehr schwer filtrierbarer Niederschlag ausgeschieden (Porter, Browning, Am. Soc. 43, 111; vgl. Lecoq de Boisbaudban, C. r. 94 [1882], 1227, 1442, 1625; 95 [1882], 410, 1192; 96 [1883], 152, 1696, 1838; 97 [1883], 1463; Br., Po., Am. J. Sci. [4] 44 [1917], 222). — Thallium(I)-eisen(II)-cyanid, Thallo-ferrocyanid Tl₄[Fe(CN)₆] (vgl. H 75). Gelbes Krystallpulver. Löslich in heißem, schwer in kaltem Wasser (Cuttica, Canneri, G. 51 I, 171). Wird beim Erhitzen über 100° hellgrün (Cu., Ca.; vgl. auch Cu., G. 52 I. 20). Die wäßr. Lösung wird bei Zusatz von verd. Säuren blaugrün (Cu., Ca.). — K-TI[Fe(CN)₆](*). B. Bei der Einw. von Thallium(I)-nitrat auf Natrium-ferrocyanid und Calciumacetat in 50%igem Alkohol (Gaspar, An. Soc. españ. 24, 153; C. 1926 II, 618). Löslich in Mineralsäuren unter Zersetzung. — KLa[Fe(CN)₆] (H 75). Vgl. darüber Atanasiu, Bulet. 30, 51; C. 1928 II, 1239. — KSm[Fe(CN)₆] (H 75). Reflexionsspektrum: Epheram, Rây, B. 62, 1650. — KGd[Fe(CN)₆]+5H₂O (Sarkar, Bl. [4] 39, 1395; A. ch. [10] 8, 251). — Amorpher Niederschlag.

Basische Zirkonyleisen (II)-cyanid, Thoriumferrocyanid Th[Fe(CN)₆] (H 75). Vgl. da

Basische Zirkonyleisen (II)-cyanide (ZrO)₂[Fe(CN)₆] + ZrO(OH)₂ und 2(ZrO)₂[Fe(CN)₆] + 9ZrO(OH)₂. Vgl. darüber Venable, Moehlmann, Am. Soc. 44, 1705, 1707. — Thoriumeisen(II)-cyanid, Thoriumferrocyanid Th[Fe(CN)₆] (H 75). Vgl. darüber auch Atanasiu, Bulet. 30, 54; C. 1928 II, 1239. — Zinn(IV)-eisen(II)-cyanid Sn[Fe(CN)₆] (H 75). Bildung Liesegangscher Ringe in Gelatine: Chatteryi, Dhar. Koll. Z. 40, 98; C. 1927 I, 36. — Bleieisen(II)-cyanid, Bleiferrocyanid Pb₂[Fe(CN)₆] + aq (vgl. H 76; E I 34). Über ein Präparat mit 5,5 H₂O vgl. Cumming, Good, Soc. 1926, 1927. Zur Zusammensetzung vgl. auch Treadwell, Cherver, Helv. 5, 637; Kolthoff, Fr. 62, 211. Verhalten in Kautschukmischungen: Scott, Trans. Inst. Rubber Ind. 4, 375; C. 1939 I 3042. — Ca.Ph. [Fe(CN)₁]. Vgl. darüber Treadwell, Cherver, Helv. 5, 637.

1929 I, 3042. — Cs.Pb. [Fe(CN)]. Vgl. darüber Treadwell, Chervet, Helv. 5, 637.

Fe. [Cr(CN)]. S. S. 61. — Uranyleisen(II) cyanid, Uranylferrocyanid (UO). [Fe(CN)]. B. Beim Fällen von Uranylacetat mit Kaliumferrocyanid in alkoh. Lösung (Atanasiu, Bulet. 30 [1927], 77). Herstellung kolloider Lösungen und ihre Eigenschaften: Sahlbom, Koll. Beih. 2 [1910/11], 89; Ghosh, Dhar, J. phys. Chem. 31, 198; Roy, J. indian chem. Soc. 6 [1929], 436; Gore, Dhar, J. indian chem. Soc. 6 [1929], 648. — Einfluß des Lichts auf ein Uranylferrocyanid-Sol: R.

Manganeisen(II)-cyanid, Manganferrocyanid Mn₂[Fe(CN)₆]+aq (H 76; E I 34). Zur Zusammensetzung vgl. a. Treadwell, Chervet, Helv. 6, 554; Kolthoff, Fr. 62, 213. — Kaliummanganeisen(II)-cyanide (vgl. H 76). Vgl. darüber auch Tr., Ch., Helv. 6, 553; Ko., Fr. 62, 213. — Fe^q[Mn^{III}(CN)₆]₂ + x H₂O s. S. 64.

Eisen(II)-salze des Eisen(II)-cyanwasserstoffs (H 77). Literatur: Gmelins Handbuch der anorganischen Chemie, S. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932],

Helv. 6, 553; Ko., Fr. 62, 213. — Fe^{II}[Mn^{III}(CN)₆]₈ + x H₈O s. S. 64.

Eisen(II)-salze des Eisen(II)-cyanwasserstoffs (H 77). Literatur: Gmellins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 657. Als Sammelname für diese Verbindungen, insbesondere für Alkalieisen(II)-[eisen(II]-cyanide], benützt man in der Literatur häufig die Bezeichnung Berlinerweiß. — Fe₈[Fe(CN)₆] (H 77; vgl. auch H 68). Hierher gehören wahrscheinlich alle in der Literatur als Ferrocyanid Fe(CN)₂ beschriebene Produkte. B. Beim Erhitzen von Ammoniumferrocyanid im Vakuum auf 320° (Mittasch, Kuss, Emert, Z. anorg. Ch. 170, 196, 198; M., K., Z. El. Ch. 34, 169). Ebenso beim Erhitzen von KAl[Fe(CN)₆] im Vakuum oder in einem Stickstoff-Wasserstoff:Gemisch (M., K., E.; M., K.). D⁴⁸₂: 1,601 (Bilitz, Z. anorg. Ch. 170, 170). Röntgendiagramm (Pulvermethode): Beill., Mark, Ph. Ch. 138, 445. Zersetzt sich beim Erhitzen im Vakuum oberhalb 430° unter Bildung von a. Eisen, Stickstoff, Kohlenstoff, Zementit und Eisennitrid (M., K., E.; M., K.). Liefert bei der Behandlung mit Wasserstoff in Gegenwart von Wasser bei ca. 270° und ca. 130 Atm. Druck krystallisiertes Fe₂O₄ (IPatjew, B. 59, 1422; Ж. 58, 694). Wird beim Überleiten eines Stickstoff-Wasserstoff-Gemischs bei 230° zu a. Eisen, bei 400° zu Zementit reduziert; daneben entstehen Ammoniak, Methan und andere Kohlenwasserstoffe (M., K., E.). Geschwindigkeit dieser Zersetzung: M., K., E. — Eisen-Hydrazin-Ferrocyanide. Vgl. darüber Rây, Gupta, Z. anorg. Ch. 140, 90. — Na₂Fe[Fe(CN)₆] (H 77). B. Als Zwischenprodukt bei der Darstellung von Kaliumferrocyanid aus verbrauchter Gasreinigungsmasse durch Behandlung mit Soda und Kalk und mit Eisen(II)-salzen (Chemnitius, Ch. Z. 52, 90). Entsteht ferner bei der Einw. von 3 Mol Schwefelsäure auf 2 Mol Natriumferrocyanid (Espenhahn, Chem. met. Eng. 26 [1922], 939). Liefert bei der Einw. von Natriumcarbonat und Schwefelwasserstoff Natriumferrocyanid übergeführt (Ch.). — K₂Fe[Fe(CN)₆] (Everittsa

Kohn, Benczer, M. 44, 101; Luff, Ch. Z. 49, 513; Wettz, Müller, B. 58, 372; Böhi, Helv. 12, 125; vgl. auch Scharwin, Parschwer, Z. ang. Ch. 40, 1008; Ж. 59, 459.

Kobalt (II) - eisen (II) - cyanid, Kobaltoferrocyanid Colfe (CN)6] + aq (H 76; E I 34). Zur Zusammensetzung vgl. auch Kolthoff, Fr. 62, 213; Treadwell, Cheevet, Helv. 6, 552. Bildung Liesegangscher Ringe in Gelatine und Stärke: Chatterji, Dhar, Koll.-Z. 40, 98; C. 1927 I, 36. — Hydrazin-Kobalt-Ferrocyanide. Vgl. darüber Rây, Gupta, Z. anorg. Ch. 140, 89. — Na2Colfe (CN)6]2. Vgl. darüber Treadwell, Chervet, Helv. 6, 553. — K2Colfe (CN)6]. Vgl. darüber Tr., Ch., Helv. 6, 553. — Ca2Colfe (CN)6]2. Vgl. darüber Tr., Ch., Helv. 6, 553. — Ca2Colfe (CN)6]3. Ein grünblauer, amorpher Niederschlag dieser Zusammensetzung entsteht bei der Einw. von Kaliumferrocyanid auf ein Gemisch von Zinksulfat und Kobalt (II)-Salz in siedendem Wasser (Schachkeldlan, K. 61, 2217; C. 1930 II, 772). — [Coll(NH2)6]4 [Fe(CN)6]3. Gelbbrauner, moiréartig glänzender Niederschlag (Efhamm, Mosimann, B. 54, 401). Zersetzt sich bei längerem Aufbewahren unter der Mutterlauge. — FeillColl(CN)6]3. S. S. 84. — Nickel (II)-eisen (II)-cyanid, Nickel oferrocyanid Nielecond (II)-eisen (II)-cyanid, Nickel oferrocyanid Nielecond (II)-eisen (II)-cyanid, Nickel oferrocyanid Nielecond (II)-eisen (II)-cyanid, Nickeloferrocyanid (II)-eisen (II)-cyanid (II)-eisen (II

Ferropentacyanverbindungen, Prussoverbindungen. Natriume is en (II)-aquopentacyanid Na $_{5}$ [Fe(CN) $_{5}$ (H $_{2}$ O)] + 7 H $_{2}$ O (H 81). B. Bei der Einw. von Nitroprussidnatrium auf Kreatinin, neben anderen Produkten (SCAGLIARINI, PRATESI, R. A. L. [6] 10, 266. Absorptionsspektrum der Lösungen in Wasser, Salzsäure und Natronlauge zwischen 275 und 475 m μ (quantitative Messungen): Cambi, Szegö, G. 58, 65; R. A. L. [6] 5, 637; Imorr, Z. anorg. Ch. 167, 159. Magnetische Susceptibilität eines Präparats mit 2,3 Mol Krystallwasser: Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2626. Oxydations-Reduktions-Potential von Natriumeisen (III)-aquopentacyanid + Natriumeisen (III)-aquopentacyanid: Davidson, Am. Soc. 50, 2626. Eine wäßr. Lösung wird in Abwesenheit von Sauerstoff beim Belichten erst hellgrün,

dann blaugrün und scheidet nach einigen Tagen einen dunklen Niederschlag aus (Baudisch, Bass, B. 55, 2703). Nimmt in wäßr. Lösung beim Stehen an der Luft leicht Sauerstoff auf und zeigt dann oxydierende Wirkung (BAU., B. 54, 416; 62, 2699; BAU., BA., B. 55, 2704). Wirkt bei der Oxydation von Pseudocumidin (BAU., B. 62, 2701), Uracil (Pfaltz, BAU., Am. Soc. 45, 2979), Thymin (BAU., BA., Am. Soc. 46, 189), 5-Amino-uracil (BAU., B. 62, 2701) und Harnsäure (Pr., Am. Soc. 45, 2981) mit Luft oder Sauerstoff als Sauerstoffüberträger. Bei der Oxydation von p-Toluolsulfonsäure-[3-amino-phenylester] mit Sauerstoff in Gegenwart von Natriumeisen(II) aquopentacyanid als Sauerstoffüberträger entsteht ein scharlachrotes Zwischenprodukt [wahrscheinlich Na₂[Fe¹¹(CN)₅(HO·HN·C₆H₄·O·SO₂·C₆H₄·CH₃)] (Bau., B. 62, 2701). Zur Einw. von Alkalinitrit (Hofmann, A. 312 [1900], 15) vgl. auch Bau., B. 62, 2705. Zersetzt sich in wäßr. Lösung in Gegenwart von Natriumhyponitrit unter Bildung von Natriumferrocyanid und Eisen(II)-hydroxyd; Gegenwart von Luft und Licht begünstigt diese Reaktion (CAMBI, R. A. L. [6] 3, 9, 11; vgl. dagegen Ungarelli, G. 55, 124). Beim Versetzen einer wäßr. Lösung von Natriumeisen (II)-aquopentacyanid mit Nitrosobenzol in verd. Alkohol wird das komplex gebundene Wasser durch 1 Mol Nitrosobenzol ersetzt (BAU., B. 54, 414; CAMBI, R. A. L. [6] 3, 12); reagiert analog mit p-Toluolsulfonsäure-[2-nitroso-phenylester] (BAU., B. 62, 2703, 2707). Einfluß von Natriumeisen(II)aquopentacyanid auf das Wachstum von Bakterien: BAU., WELO, Naturwiss. 18 [1925], 752; J. biol. Chem. 64, 776; vgl. auch Petow, Kosterlitz, Klin. Wechr. 8, 601; C. 1929 I, 2793. Eine wäßr. Lösung von Natriumeisen(II)-aquopentacyanid, die kurze Zeit an der Luft gestanden hat, gibt mit salzsaurem Benzidin eine tiefblaue Färbung (BAU., B. 62, 2702; vgl. auch P., K.).

Natriumeisen(II)-amminpentacyanid Na₃[Fe(CN)₅(NH₃)]+aq (H 81; E I 34). Magnetische Susceptibilität eines Präparats mit 4,2 H₂O: Wello, *Phil. Mag.* [7] 6, 505; C. 1928 II, 2626. Absorptionsspektrum in Wasser zwischen 250 und 490 mm (quantitative Messung): Cambi, Szegő, G. 58, 66; R. A. L. [6] 5, 637. Oxydations-Reduktions-Potential von Natriumeisen(II)-amminpentacyanid + Natriumeisen(III)-amminpentacyanid: Davidson, Am. Soc. 50, 2623. Uber die Aufnahme von Sauerstoff durch wäßr. Natriumeisen(II)amminpentacyanid-Lösung (Manchot, B. 45, [1912], 2874) vgl. auch Baudisch, J. biol. Chem. 71, 504. Wirkt bei der Oxydation von Hydantoin (BAU., DAVIDSON, J. biol. Chem. 71, 506). Alkyl- und Arylhydantoinen (BAU., D., J. biol. Chem. 75, 248), Isobarbitursäure, 5-Aminouracil (Bau., D., J. biol. Chem. 71, 506) und Harnsäure (Pfaltz, Am. Soc. 45, 2981) mit Luft oder Sauerstoff als Sauerstoffüberträger. Das innerhalb des Komplexes befindliche Ammoniak wird bei Einw. von Nitrosobenzol in verd. Alkohol durch 1 Mol Nitrosobenzol ersetzt (Bau., B. 54, 414). Einfluß von Pyridin und α-Picolin auf diese Reaktion: Bau., B. 54, 416. Eine wäßr. Lösung von Natriumeisen(II)-amminpentacyanid und Natriumazid färbt sich bei Anwesenheit von Luft an der Oberfläche tiefviolett (Bau., B. 62, 2704).

Natriumeisen(II)-sulfitopentacyanid Na₅[Fe(CN)₅(SO₃)]+aq (H 81). Magnetische Susceptibilität eines Präparats mit 8,8 H₂O: Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2626. Absorptionsspektrum in Wasser zwischen 250 und 500 mµ (quantitative Messung): Cambi. Szegő, G. 58, 667; R. A. L. [6] 5, 637. — Natriumeisen(II) nitritopentacyanid Na₄[Fe(CN)₅(NO₂)] + aq (H 81). Magnetische Susceptibilität (Präparat mit 7,5 H₂0): Welo, Phil. Mag. [7] 6, 505; C. 1928 II, 2636. Absorptionsspektrum in Wasser zwischen 250 und 450 mµ (quantitative Messung): CAMBI, SZEGÖ, G. 58, 67; R. A. L. [6] 5, 637. Oxydations-Reduktions-Potential von Natriumeisen(II)-nitritopentacyanid + Natriumeisen(III)-nitritopentacyanid: Davidson, Am. Soc. 50, 2629. Gleichgewicht der Reaktion $Na_4[Fe(CN)_5(NO_2)] + H_2O \rightleftharpoons Na_2[Fe(CN)_5(NO)] + 2NaOH$ in verd. Natronlauge: Ca., Sz., G. 58, 71. Gibt mit Eisen(III)-salzen einen blauen Niederschlag von wechselnder Zusammensetzung, der mit Alkalihydroxyd bei 0° das Alkalisalz der komplexen Säure zurückliefert (Ca., Clerici, G. 58, 59). — Natriumeisen(II)-sulfonitrosopentacyanid Na [Fe(CN) (NOS)]. B. Aus Natriumeisen(III)-nitrosopentacyanid und Natriumsulfid in kaltem Methanol (Scagliarini, Pratesi, R. A. L. [6] 8, 81; vgl. a. die H 2, 87, Z. 10-12 v. u. zitierte Literatur sowie Playfair, A. 74 [1850], 318, 337). Blauvioletter Niederschlag. Löslich in Wasser und absol. Methanol. — Kaliumeisen(II)-sulfonitrosopentacyanid K₄[Fe(CN)₅(NOS)]. B. Aus bei 105° getrocknetem Natriumeisen(III)-nitrosopentacyanid und Schwefelwasserstoff in methylalkoholischer Kalilauge in der Kälte (Scagliarini, Pratesi, R. A. L. [6] 8, 80). Violetter, mikrokrystalliner Niederschlag. Löslich in Wasser mit blauvioletter Farbe, unlöslich in Methanol. Die wäßr. Lösung gibt mit Eisen(II)-salz einen violetten Niederschlag. — Natriumeisen (II) - arsenitopentacyanid Na₄[Fe(CN)₅(AsO₂)] + aq (H 81). Absorptionsspektrum in Wasser zwischen 257 und 495 m_µ quantitative Messung): Cambi, Szrgö, G. 58, 67; R. A. L. [6] 5, 637.

Adsorption des Ferricyan-Ions durch kolloides Aluminiumoxyd: Weiser, Middleton, J. phys. Chem. 24, 653. Colorimetrische Bestimmung des Gleichgewichts Fe(CNS)₃ + CNS' + [Fe(CN)₆]''' \(\) \

Kaliumeisen(III)-cyanid, Kaliumferricyanid, rotes Blutlaugensalz K_a[Fe(CN)_a] (H 83; E I 35). Literatur: GMELINS Handbuch der anorganischen Chemie.
 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 972. — B. und Daret. Ausführungsform der Darstellung aus Kaliumferrocyanid durch Behandeln mit Chlorkalk: MICHAEL & Co.. D. R. P. 400189; C. 1924 II, 2367; Bräuer-D'Ans 3, 689. Darstellung durch Oxydation von Kaliumcalciumferrocyanid mit Chlor in Gegenwart von Kaliumchlorid: Giesen, D. R. P. 327289; C. 1921 II, 124; Bräuer-D'Ans 2, 1150. Entsteht ferner bei der Umsetzung von Kaliumcalciumferrocyanid mit Ammoniumcarbonat-Lösung und Oxydieren des entstandenen Ammoniumtrikaliumferrocyanids mit Blei(IV)-oxyd (Hawliczek, Przem. chem. 10, 12; C. 1926 II, 1748). Durch Erhitzen von Kalkstickstoff mit Kaliumcarbonat und Eisenspänen auf Rotglut unter Luftabschluß (Strontian- u. Potasche-Fabr. Roßlau, D. R. P. 330194; C. 1921 II, 448). Zur elektrolytischen Darstellung aus Kaliumferrocyanid vgl. Brown. Henke, Miller, J. phys. Chem. 24, 230; Paweck, Hirsch, Z. El. Ch. 34, 684; Schtscherbakow, Z. prikl. Chim. 2, 155; C. 1929 II, 723. — Die Farbe hellt sich beim Abkühlen auf 1909 etters und Paramour. Change Zhl. Min. 1921, 70. (J. 1921 II). (201) —190° etwas auf (Bamberger, Grenge, Zbl. Min. 1921, 70; C. 1921 III, 604). Härteanisotropie: Reis, Zimmermann, Z. Kr. 57, 476; Ph. Ch. 102, 328. D. 1,858 (Biltz, Z. anorg. Ch. 170, 171). Röntgenspektroskopische Untersuchungen an Kaliumferricyanid: ORTNER, Sber. Akad. Wien [IIa] 135, 73; C. 1927 I, 1791; Stelling, Z. Phys. 50, 628; C. 1928 II. 1972. Ist nicht piezoelektrisch (HETTICH, SCHLEEDE, Z. Phys. 50 [1928], 253). Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 499; C. 1928 II, 2626; Biltz, Z. anorg. Ch. 170. 180; zwischen + 21,1° und —147,9°: ISHIWARA, Sci. Rep. Tohoku Univ. [1] 3, 310; C. 1921I. 270. Löslichkeit von Kaliumferricyanid (g in 100 g Lösung) in Wasser zwischen 0,1° (23,22) und 99,0° (47,6): Friend, Smirles, Soc. 1928, 2244. 1 g löst sich bei 20° in 8100 g Alkohol von 87—88 Vol.-% (Biltz, Z. anorg. Ch. 170, 163 Anm. 2). Leicht löslich in 100% iger Schwefelsäure mit dunkelrotbrauner Farbe (Davidson, Am. Soc. 47, 977), unlöslich in flüssigem Schwefelwasserstoff (Quam. Am. Soc. 47, 105). Einfluß von Kaliumferricvanid auf die Löslichkeit der Borsäure in Wasser bei 18°: Kolthoff, R. 45, 609. Ausflockungsvermögen von Kaliumferricvanid gegen Aluminiumhydroxyd-Sol: Weiser, Middleron, J. phys. Chem. 24, 643; gegen Fisch (211), bydroxyd-Sol. (Weiser, Middleron, de Piberrya bei 24, 643; gegen Eisen (III) hydroxyd-Sol: Ghosh, Soc. 1929, 2699. Einfluß des Rührens bei der Koagulation eines Kupfer (II)-oxyd-Sols mit Kaliumferricyanid: Freundlich, Basu, Ph. Ch. 115, 207. Kryoskopisches Verhalten in Wasser: Burrows, Soc. 123, 2028. Diel te wäßr. Lösungen verschiedener Konzentration bei 180: HEYDWEILLER, Z. anorg. Ch. 116, 42; Dichte gesättigter wäßriger Lösungen zwischen 7,8° (1,1567) und 58,0° (1,2269): FRIEND, SMIRLES. Soc. 1928, 2244. Diffusion von wäßr. Kaliumferricyanid-Lösungen durch Membranen verschiedener Durchlässigkeit: Bartell, Carpenter, J. phys. Chem. 27, 109, 257, 351. Wärmetönung beim Koagulieren von Eisenoxyd-Sol durch Kaliumferricyanid: Browne, Mathews, Am. Soc. 43, 2347. Dispersion wäßr. Lösungen bei 18°: Limann, Z. Phys. 8, 14; C. 1922 III, 1031; Hey., Phys. Z. 26 [1925], 531; bei 20°: Roberts, Phil. Mag. [6] 49 [1925], 417. Absorptionsspektrum der wäßr. Lösung im sichtbaren und ultravioletten Gebiet: Lifschitz, Rosenbohm, Z. wiss. Phot. 19, 201; C. 1920 I, 792; Getman, J. phys. Chem. 25, 154; 32, 187; vgl. auch Briggs, J. phys. Chem. 32, 1422; IImori, Z. anorg. Ch. 167, 159; Cambi. Szegő, G. 58, 69; R. A. L. [6] 5, 640. Absorptionsspektrum von Kaliumferricyanid und von Gemischen mit Eisen(III)-citraten in wäßr. Lösung: PLOTNIKOW, KARSCHULIN, Z. El. Ch. 33, 213. Zur Dielektr.-Konst. wäßr. Lösungen vgl. RIECHOFF, Ann. Phys. [5] 2, 604. Elektrische Leitfähigkeit wäßr. Lösungen bei +1°: Collenberg, Sandved, Z. anorg. Ch.

130, 5; bei 18°: HEYDWEILLER, Z. anorg. Ch. 116, 42; Burrows, Soc. 123, 2028; bei 25°: RAY, SARKAR, Soc. 119, 395. Elektrische Leitfähigkeit in Wasser und wäßr. Elektrolyt-Lösungen: Davidson, Welo, J. phys. Chem. 32, 1192; Usher, Trans. Faraday Soc. 21, 411; C. 1926 I, 3308. Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen in elektrischen Feldern verschiedener Stärke vgl. Wien, Ann. Phys. [4] 83, 347; 85, 806; [5] 1, 408. Elektrische Leitfähigkeit im Hochfrequenzfeld (Dispersionseffekt): RIECKHOFF, Ann. Phys. [5] 2, 593. Einfluß auf die Kataphorese von Eisenoxyd-Sol: FREUNDLICH, ZEH, Ph. Ch. 114, 80. Oxydations-Reduktions-Potential von Kaliumferrocyanid + Kaliumferricyanid unter verschiedenen Bedingungen: Kolthoff, Z. anorg. Ch. 110, 145; Chem. Weekb. 16, 1408; C. 1920 I, 69; Butler, Davies, Soc. 125, 1101; Davidson, Am. Soc. 50, 2623. Einfluß des Druckes auf die elektromotorische Kraft der Kette Pt/K₃[Fe(CN)₆]/0,1 n-HCl, HgCl/Hg vgl. TAMMANN, JENCKEL, Z. anorg. Ch. 178, 344. Potentialänderung einer alkal. Kaliumferricyanid-Lösung gegen Platin bei Bestrahlung mit ultraviolettem Licht: Svensson, Ark. Kemi 7, Nr. 19, 105; C. 1920 I, 790. Einfluß von Kaliumferricyanid auf den elektrokinetischen Potentialsprung zwischen Wasser und Glas: KRUYT, VAN DER WILLIGEN, Koll.-Z. 45, 315; C. 1928 II, 1535. Polarisationskapazität platinierter Platinelektroden in wäßr. Lösung von Kaliumferrocyanid + Kaliumferricyanid: Becker, Z. El. Ch. 32, 305. Magnetische Susceptibilität wäßr. Lösungen: Collet, C. r. 178, 937. Magnetische Rotationsdispersion einer wäßr. Lösung bei 20°: Roberts, Phil. Mag. [6] 49, 417; C. 1925 I, 1847. Beim Belichten der wäßr. Lösung entstehen Kaliumferrocyanid, Dicyan und geringe Mengen Blausäure (Schwarz, Tede, B. 60, 70). Quantitative Verfolgung dieser Reaktion: Sch., T. Über die photochemische Empfindlichkeit in wäßr. Lösung vgl. auch Plotnikow, Karschulin, Z. El. Ch. 33, 213. Potentiometrische Verfolgung der Einw. von ultraviolettem Licht auf wäßr. Kaliumferricyanid-Lösung in Abwesenheit und Gegenwart von Kalilauge: Svensson, Ark. Kemi 7, Nr. 19, S. 94, 105; C. 1920 I, 790. Die beim Belichten oder Erwärmen der wäßr. Lösung auftretende dunkelbraune Farbe ist auf die Bildung von Kaliumeisen(III)-aquopentacyanid zurückzuführen (IIMORI, Z. anorg. Ch. 167, 155; vgl. auch MURA-KAMI, SOMEYA, Z. anorg. Ch. 158, 132). Eine vor Licht geschützte Kaliumferricyanid-Lösung zeigte nach einjährigem Stehen eine Abnahme des Titers um 0,1% (LAUB, Acta Comment. Univ. Dorpat. [A] 12 [1925], Nr. 5, 9). Über die Haltbarkeit alkal. Lösungen vgl. Mu., S., Z. anorg. Ch. 158, 121, 132. Kaliumferricyanid gibt beim Erhitzen auf 230° eine grüne Masse, die sich aus konzentrierter wäßriger Lösung durch Alkohol krystallinisch fällen läßt und vielleicht Kaliumeisen(II)-aquopentacyanid enthält (Cuttica, G. 52 I, 20). Wird durch Einw. von Kaliumpersulfat in verd. Schwefelsäure in der Wärme teilweise unter Bildung von Blausäure, Dicyan und anderen Produkten zersetzt (Bellucci, Ricca, Atti 1. Congr. naz. Chim. pura appl. 1923, 400; C. 1924 I, 1915). Mengenverhältnisse an Cyanwasserstoff, Cyan und Ammoniak bei der Oxydation von Kaliumferricyanid mit Wasserstoffperoxyd, Natriumpersulfat, Kaliumpermanganat, Kaliumdichromat, Mangan(IV)-oxyd, Blei(IV)-oxyd und Zinn(IV)-oxyd: Ricca, Persone, Ann. Chim. applic. 18, 552; C. 1929 I, 1924. Bei der Einw. von Wasserstoff in Gegenwart von Platinmohr entsteht saures Kaliumferrocyanid (Gall, Manchot, B. 58, 482). Beim Behandeln der wäßr. Lösung mit Wasserstoff bei 350° und 200 Atm. Druck entstehen Ameisensäure, Kaliumcyanid, Ammoniumcarbonat bei 350° und 200 Atm. Druck entstehen Ameisensaure, Kaliumcyanid, Ammoniumcarbonat und krystallines Fe₃O₄ (IPATJEW, B. 59, 1421; Ж. 58, 692). Bei der Einw. von Brom in wäßr. Lösung entstehen je nach den Reaktionsbedingungen Produkte der Zusammensetzung $3K_1[Fe(CN)_6] + K_2[Fe(CN)_6] + 2H_2O$ (grünlichblau, krystallin) oder Fe(CN)₅ + K[Fe(CN)₄] + 2K₂[Fe(CN)₆(H₂O)] (braunschwarze Masse, die von Wasser kolloidal gelöst wird) (Briggs, Soc. 117, 1031). Über den Reaktionsmechanismus der Oxydation von Jodiden durch Kaliumferricyanid vgl. Kolthoff, Pharm. Weekb. 56 [1919], 1624; Wagner, Ph. Ch. 113, 263, 266; ROSENBERG, BJELAJA, Uhr. chemič. Ž. 1, 33; C. 1925 II, 1650; LA MER, ANDUED, Am. Soc. 50, 2650. Coschwindigkeit und Gleichgewicht dieser Reaktion. W. Sandved, Am. Soc. 50, 2659. Geschwindigkeit und Gleichgewicht dieser Reaktion: W.; LA M., S. Zur Oxydation von Hydrazin durch Kaliumferricyanid in alkal. Lösung (Rây, Sen, Z. anorg. Ch. 76 [1912], 380) vgl. auch Cuy, Bray, Am. Soc. 46, 1788; Kinetik dieser Reaktion bei 20°: Gilbert, Ph. Ch. [A] 142, 139. Beim Behandeln mit Salzsäure entstehen je nach den Reaktionsbedingungen Produkte der Zusammensetzung K₂[Fe(CN)₆(H₂O)] + K[Fe(CN)₄(2H₂O)] (blauviolett), 2K[Fe(CN)₄] + Fe(CN)₃ + H₂O (grünschwarz) oder 3K[Fe(CN)₄] + 2Fe(CN)₅ + 8H₂O (dunkelblau) und sonstige Produkte (Briggs, Soc. 117, 1032). Das durch Einw. verd. Salzsäure auf Kaliumferricyanid erhaltene grüne Produkt ("β-Kaliumferricyanid" von LOCKE, EDWARDS, Am. Soc. 21, 193, 413) ist ein Gemisch aus Kaliumferricyanid mit wenig Kaliumeisen(III)-aquopentacyanid (Briggs, Soc. 117, 1026; Iimobi, Z. anorg. Ch. 167, 171). Beim Aufbewahren der wäßr. Lösung in Gegenwart starker Säuren unter Lichtabschluß entstehen geringe Mengen Eisen(III)-aquopentacyanid (Iimobi, Z. anorg. Ch. 167, 151). Beim Kochen mit starker Sehwefelsäure entstehen Ammoniumsulfat, Kaliumsulfat, Eisen(II)-sulfat, Kohlenoxyd und Kohlendioxyd; mit stärker verdünnter Schwefelsäure erhält man hauptsächlich Kaliumsulfat, Eisen(III)-sulfat La M., S. Zur Oxydation von Hydrazin durch Kaliumferrioyanid in alkal. Lösung (Râx, stärker verdünnter Schwefelsäure erhält man hauptsächlich Kaliumsulfat, Eisen(III) sulfat und Blausaure (Basset, Corbet, Soc. 125, 1358). Quantitative Verfolgung dieser Reaktion:

B., C. Reagiert mit flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105). Oxydiert Antimontrichlorid in warmer salzsaurer Lösung quantitativ zu Antimonpentachlorid unter Bildung von Kaliumferrocyanid (Feigl., Schummer, Fr. 64, 252). Potentiometrische Verfolgung der Reaktion mit Eisen(II)-salz: E. Müller, J. pr. [2] 104, 251. Einfluß von Ammoniumfluorid auf den Nachweis von Eisen(II)-Ionen durch Kaliumferricyanid: Szebllédy, Fr. 75, 165; van Urk, Fr. 77, 39. Wärmetönung beim Mischen von Eisen(III)-chlorid-Lösungen mit Kaliumferricyanid: Browne, Mathews, Am. Soc. 43, 2343. Oxydierende Wirkung von alkal. Kaliumferricyanid-Lösung auf Kobalt(II)-salze und Nickel(II)-salze: Bhadur, Rây, Quart. J. indian chem. Soc. 3, 219, 225; C. 1927 I, 577. Bei der Oxydation von Isobutyraldehyd mit Kaliumferricyanid in sehr verd. Natronlauge bei 80° erhält man hauptsächlich 2.2.5.5-Tetramethyl-2.5-dihydro-pyrazin (Syst. Nr. 3468), mit mehr Kaliumferricyanid in stärkerer Natronlauge entsteht außerdem noch 2.2.5.5-Tetramethyl-3.6-dicyanpiperazin (Syst. Nr. 3665) (Conant, Aston, Am. Soc. 50, 2788). Bei der Einw. auf Methylisopropylketon in sehr verd. Natronlauge bei 80° entsteht in analoger Reaktion 2.2.3.5.5.6-Hexamethyl-2.5-dihydro-pyrazin (Syst. Nr. 3468) (C., A.). Leucinsäure wird durch Kaliumferricyanid in Gegenwart von Eisen(III)-chlorid unter Bildung von Berlinerblau zu Isovaleriansäure oxydiert (Yoshiki, J. pharm. Soc. Japan 1927, 130; C. 1928 I, 899). — Einw. auf einige Atmungspigmente: Cook, J. gen. Physiol. 11, 340; C. 1928 I, 2729. Kataphoretischer Eintritt von Kaliumferricyanid in den Körper: Inchley, J. Pharmacol. exp. Therap. 18, 254; C. 1922 I, 771.

Kaliumferricyanid kann nach einem Vorschlag von F. Fischeb, Dilthey (Brennstoffch. 9, 122; C. 1928 I, 2681) zum Auswaschen von Schwefelwasserstoff aus technischen Gasen verwendet werden. — Prüfung von Kaliumferricyanid auf Reinheit: Collins, Mitarb., Ind. Eng. Chem. 20, 981; C. 1928 II, 2490; Bebl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., 4. Bd. [Berlin 1933], S. 226; Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 251; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 276. Jodometrische Bestimmung von Kaliumferricyanid: Kolthoff, Fr. 60, 454; Pharm. Weekb. 56, 1618; C. 1920 II, 160; Lang, Z. anorg. Ch. 138, 271. Titration mit Titan(III)-sulfat: Someya, Z. anorg. Ch. 152, 389; mit Antimontrichlorid: Feigl, Schummer, Fr. 64, 252. Bestimmung des Cyans durch Kochen mit Quecksilberoxyd und Wasser, Umsetzung mit Kaliumjodid und argentometrische Titration der entstandenen Blausäure: Bellucci, Ricca, Atti I. Congr. naz. Chim. pura appl. 1923, 481; C. 1924 I, 2532. Potentiometrische Titration von Kaliumferricyanid mit Kaliumjodid: E. Müller, Z. anorg. Ch. 135, 265; mit Titan(III)-sulfat: Hendrixson, Am. Soc. 45, 2016; mit Vanadylsulfat: del Fresno, Valdés, Z. anorg. Ch. 183, 255; An. Soc. espä. 27, 381. Konduktometrische Bestimmung von Kaliumferricyanid durch Fällung mit Silbernitrati. Kolthoff, Fr. 61, 233; mit Quecksilber(II)-chlorid: Ko., Fr. 61, 338.

Rubidiumeisen(III)-cyanid, Rubidiumferricyanid Rb₃[Fe(CN)_e]. Orangegelbe Krystalle (J. MEYER, Z. anorg. Ch. 115, 208). — Cäsiumeisen(III)-cyanid, Cäsiumferricyanid Cb₃[Fe(CN)_e]. Gleicht dem Kaliumferricyanid (M. Z. anorg. Ch. 115, 210). — Kupfer(II)-eisen(III)-cyanid, Cupriferricyanid Cu₂[Fe(CN)_e]. (H 85; E I 36). Ausflockung des Sols durch Elektrolyte: USHER, Trans. Faraday Soc. 21, 410; C. 1926 I, 3308. Bildung Liesegangscher Ringe in Gelatine und Stärke: Chatterly, Dhar, Koll. Z. 40, 98;

C. 1927 I, 36.

Magnesiumeisen(III)-cyanid, Magnesiumferricyanid Mg₈[Fe(CN)₈]₂ + aq (H 84). Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen in elektrischen Feldern verschiedener Stärke vgl. Wien, Ann. Phys. [4] 85, 806, 809. — Calciumeisen(III)-cyanid, Calciumferricyanid Ca₂[Fe(CN)₈]₂ + aq (H 85; E I 36). Elektrische Leitfähigkeit wäßr. Lösungen im Hochfrequenzfeld (Dispersionseffekt): Rieckhoff, Ann. Phys. [5] 2, 594. Dielektr. Konst. wäßr. Lösungen bei 15°: R. — Bariumeisen(III)-cyanid, Bariumferricyanid Ba₂[Fe(CN)₈]₂ + 20 H₂O (H 85). Über den Spannungseffekt der elektrischen Leitfähigkeit wäßr. Lösungen in elektrischen Feldern verschiedener Stärke vgl. Wien, Ann. Phys. [4] 83, 347, 353; [4] 85, 799, 804; [5] 1, 405. Elektrische Leitfähigkeit wäßr. Lösungen im Hochfrequenzfeld (Dispersionseffekt): Rieckhoff, Ann. Phys. [5] 2, 594. — [Dibarium-diformiato]-[eisen(III)-cyanide]: [Ba₂(HCO₂)₂]₂[Fe(CN)₈]₂ + 10 H₂O. Zur Formulierung vgl. R. Weinland, Einführung in die Chemie der Komplex-Verbindungen [Stuttgart 1924], S. 410. B. Aus äquimolekularen Mengen Natriumferricyanid und Bariumformiat in wenig heißem Wasser (W., Henrichson, B. 56, 535). Dunkelrote Tafeln. Leicht löslich in Wasser. — [Ba₂(HCO₂)₂]₂[Fe(CN)₈]₂ + 2HCO₂K + 8H₂O. B. Aus äquimolekularen Mengen Kaliumferricyanid und Bariumformiat in heißem Wasser (W., H., B. 56, 535). Dunkelrote Krystalle. Leicht löslich in Wasser.

Zinkeisen(III)-cyanid, Zinkferricyanid Zn₂[Fe(CN)₂]₂ (H 85; E I 83). D².: 1,418 (Biltz, Z. anorg. Ch. 170, 174). Bildung Liesegangscher Ringe in Gelatine: Chatterji, Dhar, Koll.-Z. 40, 98; C. 1927 I, 36. — Alkalizinkeisen(III)-cyanide. Vgl. darüber Reihler, Zhemermann, A. 475, 107, 116; Kolthoff, Verzijl, R. 43, 394. — Cadmiumeisen(III)-

cyanid, Cadmiumferricyanid $Cd_{5}[Fe(CN)_{6}]_{2}$ (H 85; E I 36). Zur Formulierung vgl. R., Z., A. 475, 104, 107. — $Cd_{5}[Fe(CN)_{6}]_{1}+6NH_{5}+2H_{5}O$ (vgl. H 85). Über die Formulierung und den Krystallwassergehalt vgl. R., Z., A. 475, 107, 117. — $KCd[Fe(CN)_{6}]_{1}$. Rote Krystalle (R., Z., A. 475, 108, 117). — $KCd_{6}[Fe(CN)_{6}]_{2}+19H_{2}O$. Zur Formulierung vgl. R., Z., A. 475, 104. Braunrotes Krystallpulver (R., Z., A. 475, 112). — $NH_{6}Cd_{6}[Fe(CN)_{6}]_{2}+3[Cd(NH_{2})_{6}](OH)_{2}+3H_{2}O$. Zur Formulierung vgl. R., Z., A. 475, 105. Gibt im Vakuum über Schwefelsäure 3 Mol Wasser ab (R. Z. 4 475, 1475, 1405.)

über Schwefelsäure 3 Mol Wasser ab (R., Z., A. 475, 114).

Thallium(I)-eisen(III)-cyanid Tl₂[Fe(CN)₆]. B. Bei der Oxydation einer konz.

Thallium(I)-eisen(II)-cyanid-Lösung mit Wasserstoffperoxyd (CUTTICA, CANNERI, G. 51 I. 173). Durch Umsetzung von Silberferricyanid mit Thallium(I)-chlorid oder von Pbs[Fe(CN)6]2 +Pb(NO₂), mit Thallium(I)-sulfat in wäßr. Lösung (Cu., Ca.). Rotbraune Prismen. Ist bei 150° noch beständig. Sehr leicht löslich in Wasser. Die wäßr. Lösung gibt mit Säuren eine hellgrüne Färbung und zersetzt sich beim Erwärmen mit Mineralsäuren unter Entwicklung von Blausäure. Beim Behandeln der wäßr. Lösung mit Alkali- und Erdalkalihydroyden entstehen Thallium(III)-oxyd und Kaliumferrocyanid. — Kaliumthallium(I)-eisen(III)-cyanide (H 85). Vgl. dazu Cuttica, Canneri, G. 51 I, 169, 170. — Yttriumeisen (III)cyanid. Vgl. darüber Grant, James, Am. Soc. 39 [1917], 936; Fogg, James, Am. Soc. 44, 309. — Gd[Fe(CN)₆]+4,5 H₂O. Roter Niederschlag (SARKAR, Bl. [4] 39, 1395; A. ch. [10] 8, 251). — Basisches Zirkonyleisen(III)-cyanid. Vgl. darüber Venable, Moehl-

MANN, Am. Soc. 44, 1706.

Pb₃[Fe(CN)₆]₂ + Pb(NO₃)₂ + 11 H₂O (vgl. H 85; E I 36). Über den Krystallwassergehalt und die Formulierung vgl. Reihlen, v. Kummer, A. 469, 37, 42. Ist je nach Korngröße schwarz bis tief braunrot. 100 g Wasser lösen bei 0° 5,23 g (R., v. K., A. 469, 42). Dichte dieser Lösung: 1,037. Elektrisches Leitvermögen wäßr. Lösungen bei 18°: R., v. K. — KPb[Fe(CN)₆] + 3H₂O (H 86). Zur Formulierung vgl. R., v. K., A. 469, 33, 38. Gibt das Krystallwasser leicht ab (R., v. K., A. 469, 43). In 100 g Wasser lösen sich bei 0° 12,16 g. Dichte dieser Lösung: 1,071. Elektrisches Leitvermögen wäßr. Lösungen bei 18°: R., v. K. — CaPb[Fe(CN)₆] +2H₁O. Zur Formulierung vgl. REIHLEN, v. KUMMER, A. 469, 33. Braune Krystalle. Elektrisches Leitvermögen wäßr. Lösungen bei 18°: R., v. K., A. 469, 44. — Tl¹Pb[Fe(CN)₆] +2H₂O. Zur Formulierung vgl. Reihlen, v. Kummer, A. 469, 33. Braune Krystalle. Elektrische Leitfähigkeit wäßr. Lösungen bei 18º: R., v. K., A. 469, 44. — Basische Bleieisen(III) cyanide. Die nachfolgenden Salze entstehen bei der Umsetzung basischer eisen(111)-cyanice. Die nachfolgenden Salze entstehen bei der Umsetzung basischer Bleisalze mit Alkaliferricyaniden unter verschiedenen Bedingungen. — Pb₄(OH)₅[Fe(CN)₆]. Zur Formulierung vgl. Weinland, Paul, Z. anorg. Ch. 129, 248. Existiert in einer olivgrünen Form (zersetzt sich beim Kochen mit verd. Essigsäure) (W., P., Z. anorg. Ch. 129, 259) und einer roten Form (rote Prismen; löslich in verd. Essigsäure) (W., P., Z. anorg. Ch. 129, 260; W., Stroh, B. 55, 2716). — Pb₄(OH)₄(ClO₃) [Fe(CN)₆]. Existiert in zwei Formen, die als braune bzw. eisenschwarze mikroskopische Blättchen isoliert wurden; beide Formen verpuffen beim Erhitzen und sind in Essigsäure löslich (W., P., Z. anorg. Ch. 129, 247, 257). — Pb₄(OH)₄(ClO₄). [Fe(CN)₆]. Braunes Pulver Explodiert beim Erhitzen heftig (W. St. R. puffen beim Erhitzen und sind in Essigsäure löslich (W., P., Z. anorg. Ch. 129, 247, 257). — Pb₄(OH)₆(ClO₄)₈[Fe(CN)₆]. Braunes Pulver. Explodiert beim Erhitzen heftig (W., St., B. 55, 2713). — Pb₄(OH)₄(BrO₃)[Fe(CN)₆] + H₂O. Hellbraune Täfelchen. Verpufft beim Erhitzen (W., P., Z. anorg. Ch. 129, 258). — Pb₆(OH)₄(H₂PO₂)[Fe(CN)₆]. Zeisiggrünes Pulver. Entwickelt beim Erhitzen Phosphorwasserstoff (W., P., Z. anorg. Ch. 129, 259). — Pb₅(OH)₇[Fe(CN)₆] + 3,5 H₂O. Schmutziggelbes Pulver (W., St., B. 55, 2715). — Pb₅(OH)₆(NO₃)[Fe(CN)₆]. Schokoladebraune, mikroskopische Würfel (W., P., Z. anorg. Ch. 129, 258). — Pb₅(OH)₆(ClO₄)₂[Fe(CN)₆]. Hellbraunes Pulver. Explodiert beim Erhitzen heftig (W., St., B. 55, 2714). — Pb₆(OH)₆[Fe(CN)₆] + 8 H₂O. Zur Formulierung vgl. W., P., Z. anorg. Ch. 129, 249. Rotbraune mikroskopische Würfel. Zersetzt sich ziemlich schnell zu einem schmutzigvioletten Pulver (W., P., Z. anorg. Ch. 129, 260). — Pb₇(OH)₆(BrO₂)₆[Fe(CN)₆]. Orangefarbene Schüppehen. Verpufft heftig (W., P., Z. anorg. Ch. 139, 258). Ch. 129, 258).

 $[Cr(NH_s)_e][Fe(CN)_e]$ (H 86). Hellorangegelbe Krystalle (aus Ammoniumchlorid-Lösung). Trigonal (STEINMETZ, Z. Kr. 57, 244).

Eisen(III) salze des Eisen(III) cyanwasserstoffs (vgl. auch H 86; E I 36). — Fe[Fe(CN)₆] + 2 H₂O. Zur Formulierung vgl. Reihlen, v. Kummer, A. 469, 40. Braune Mikrokrystalle. Sehr schwer löslich. Wird sehr leicht unter Blaufärbung reduziert (R., v. K., A. 469, 44). Weitere Angaben über Eisen(III)-salze des Eisen(III)-cyanwasserstoffs s. in GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 723, 726. — CsCo^{II}[Fe(CN)₆]. Elektrische Leitfähigkeit wäßr. Lösungen bei 18°: REIHLEN, v. KUMMER, A. 469, 44. — [Co^{III}(NH₃)₄Cl₃]₃[Fe(CN)₆] (Praseosalz) (H 86). Die Löslichkeit in Wasser beträgt bei 0° 0,000121 Mol/l (Brönsted, Petersen, Am. Soc. 43, 2268). Löslichkeit in wäßr. Salz-Lösungen bei 0°: Br., P., Am. Soc. 48, 2287. — [Co^{III}(NH)₁ (H 90)] [Co^m(NH₄)₄(H₄O)][Fe(CN)₆] + aq (H 86). Bräunlichrote Krystalle. Trigonal (STRINMETZ, Z. Kr. 57, 245). Röntgenogramm (Drehkrystallaufnahme): Hassel, Salvesen, Ph. Ch. 128, 352, 358. Die Löslichkeit in Wasser beträgt bei 0° 0,000172 Mol/l (Brönsted, Petersen,

Am. Soc. 43, 2269). — [Co¹¹(NH₃)₆] [Fe(CN)₆] (H 86). Krystalle (aus Ammoniumchlorid-Lösung oder sehr verd. Salzsäure). Trigonal (Steinmetz, Z. Kr. 57, 242). Löslichkeit in Wasser bei 0° und 20°: Brönsted, Petersen, Am. Soc. 43, 2269; bei 25°: La Mer, King, Mason, Am. Soc. 49, 365. Löslichkeit in wäßr. Salz-Lösungen bei 0°: Br., P., Am. Soc. 43, 2289; bei 25°: La M., K., M.; La M., Cook, Am. Soc. 51, 2628. Ziemlich leicht löslich in warmer 20 %iger Ammoniumchlorid-Lösung (St.). Zersetzt sich beim Lösen in warmem Wasser (St.). —

Eisen(III)-salze des Eisen(II)-cyanwasserstoffs und Eisen(II)-salze des Eisen(III)-cyanwasserstoffs (Ferriferrocyanide bzw. Ferroferricyanide, Berlinerblau-Arten) (H 77; E I 35). Literatur: Gmeline Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 670. — "Unlösliches Berlinerblau". Über die Auffassung des unlöslichen Berlinerblaus als mehrkernige Komplexverbindung vgl. Reihlen, Zimmermann, A. 451, 105; Davidson, J. chem. Educ. 14 [1937], 278. Zur Konstitution vgl. ferner E. Justin-Mueller, Les bleus derivés du cyanogène [Paris 1932], S. 26; Bl. [4] 49 [1931], 1285. Das käufliche unlösliche Berlinerblau ist ein Ferriferrocyanid, in dem ein Teil des Ferri-Eisens durch Kalium vertreten wird, und das 2 Moleküle Wasser intramolekular gebunden enthält (P. F. Schmidt, Rassow, Z. ang. Ch. 37, 334). Über die Zusammensetzung vgl. auch Bhattacharya, Dhar, Z. anorg. Ch. 213 [1933], 241; Bh., J. indian chem. Soc. 11 [1934], 325; 12 [1935], 143. Potentiometrische Verfolgung der Bildung von Berlinerblau aus Eisen(III)-chlorid und Kaliumferrocyanid: E. Müller, J. pr. [2] 104, 246. — Technische Darstellung durch Oxydation eines mit 10 bis 15 %iger Schwefelsäure angefeuchteten Gemischs aus Eisen(III)-sulfat und der berechneten Menge Calciumferrocyanid an der Luft: Alexandrow, Z. chim. Promyši. 4, 734; C. 1928 I, 1333. Zur Darstellung durch Elektrolyse von Kaliumferrocyanid-Lösungen an einer Eisenanode vgl. Ormont, Z. El. Ch. 34, 106. Über die technische Darstellung aus ausgebrauchter Gasreinigungsmasse vgl. auch Anonymus, Farben-Ztg. 31, 218; C. 1926 I, 1042. — Röntgendiagramm (Pulvermethode): Levi, Giorn. Chim. ind. appl. 7, 410; vgl. a. Z. Kr. Strukturber. 1 [1913—1928], 452; Keggin, Miles, Nature 137 [1936], 577. Magnetische Susceptibilität eines Präparats der Zusammensetzung Fe₄[Fe(CN)₆]₈ + 14,5 H₂O bei 27°, 2° und — 70°: Davidson, Wello, J. Phys. Chem. 32, 1195. Osmose durch eine Berlinerblaumembran: Chouroun, J. Chim. phys. 20, 414. Bildung Liesegangscher Ringe in Gelatine:

DHAR, Koll. Z. 40, 98; C. 1927 I, 36.

Berlinerblau-Sole. Während das bei der Einw. äquimolekularer oder überschüssiger Mengen Alkalieisen(II)-oyanid auf Eisen(III)-salz erhaltene alkalihaltige Berlinerblau sich ohne weiteres kolloid in Wasser löst, kann das mit überschüssigem Eisen(III)-salz erhaltene Berlinerblau erst durch Peptisation kolloid in Lösung gebracht werden. Zur Darstellung von Berlinerblau-Solen vgl. z. B. R. ZSIGMONDY, Kolloidchemie, Bd. 2 [Leipzig 1927], S. 160; Weir, Soc. 127, 2246; Ghosh, Dhar, J. phys. Chem. 29, 662; Koll.-Z. 44 [1928], 219; Charrant, Dhar, Koll.-Z. 42 [1927], 129; Gerassimov, Urshumski, Ж. 61, 408. Beständigkeit des Sols in Gegenwart von Kaliumferrocyanid als Stabilisator: Rossi, Marzari, Zymol. Chim. Coll. 2, 25; C. 1927 II, 28. Ausflockung der Sole durch Elektrolyte: Weiser, Nicholas, J. phys. Chem. 25, 748; Weir, Soc. 127, 2246; Yajnik, Bhatia, J. Chim. phys. 22, 593; Ghosh, Dhar, J. phys. Chem. 29, 448, 662; 31, 198; Koll.-Z. 39 [1926], 1352; Lachs, Lachmann, Ph. Ch. 123, 305; Rabinerson, Koll.-Z. 42 [1927], 54; Ge., U., Ж. 61, 409; C. 1929 II, 1906. Einfluß von Gelatine und Tannin auf die Koagulation von Berlinerblau-Sol durch Elektrolyte: Gh., Dh., Koll.-Z. 44 [1928], 219. Ultramikroskopische Untersuchung eines Sols: Szegvari, Ph. Ch. 112, 314. Beeinflussung der Brownschen Bewegung der Kolloidteilchen durch ein Magnetfeld: Turpain, de Lavergene, C. r. 187, 1280. Löslichkeit von Kohlendioxyd und Acetylen in Berlinerblau-Sol: Gatterer, Soc. 1926, 302, 304. Kryoskopisches Verhalten von Solen: Ga. Dichte von Solen erschiedener Konzentration zwischen 50 und 30°: Ga. Relative Viscosität von Berlinerblau-Solen bei 25°: Ga. Einfluß von Salzsäure, Kaliumchlorid und Kaliumferrocyanid auf die Viscosität von Hydrosolen: Charea. Vart, Koll.-Z. 42 [1927], 129; Dh., Gh., Koll.-Z. 48 [1929], 45. Zeitliche Anderung der Viscosität des Sols: Dh., Ch., Koll.-Z. 42 [1927], 121. Adsorption der Kolloidteilchen von Berlinerblau-Solen durch verschiedene Metalloxyd-Hydrate: Wederkind, Fischer,

Berlinerblau wird bei Belichtung in einer Wasserstoff-Atmosphäre fast völlig entfärbt; an der Luft kehrt die blaue Farbe wieder (Scharwin, Parschwer, Z. anorg. Ch. 40, 1008; Ж. 59, 459). Über die Bildung von Berlinerweiß beim Belichten von Berlinerblau in Gegenwart von Zinkoxyd vgl. Eibner, Ch. Z. 35 [1911], 775; Böhl, Helv. 12, 125. Berlinerblau liefert bei der Behandlung mit Wasserstoff in Gegenwart von Wasser bei 290° und 150 Atm.

Druck krystallisiertes Fe₂O₄ (IPATJEW, Ж. 58, 694). Wird durch Alkalilauge zersetzt (vgl. H 2, 78), wobei die blaue Farbe verschwindet; Berlinerblau kann deshalb in der Acidimetrie als Indikator verwendet werden (Jellinek, Kühn, Z. anorg. Ch. 138, 81). Zersetzung durch 100%ige Schwefelsäure: Davidson, Am. Soc. 47, 973. Beim Behandeln mit Natriumthiosulfat in Gegenwart von Säure entsteht eine hellblaue Adsorptionsverbindung mit Schwefel (STEIGMANN, Ch. Z. 50, 58; C. 1926 I, 2055). Löst sich in neutralen Alkalioxalaten vermutlich unter Bildung von Alkaliferrocyanid und Alkalieisen(III)-oxalat; die entstandenen grünen Lösungen liefern nach Versetzen mit Salzsäure allmählich wieder Berlinerblau zurück (Kohn, Sher. Akad. Wien [II b] 131, 325; M. 43, 373; K., Benczer, M. 44, 97). Verhalten in Kautschukmischungen: Scott, Trans. Inst. Rubber Ind. 4, 375; C. 1929 I, 3042. — Wirkung auf das Pflanzenwachstum: Deuber, Soil Sci. 21, 25; C. 1926 I, 2710. — Über die Verwendung und die Eigenschaften verschiedener Handelsmarken in der Mal- und Anstrichtechnik vgl. Anonymus, Farben-Ztg. 31, 218, 276; C. 1926 I, 1042. Reinheitsprüfung: Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., 4. Bd. [Berlin 1933], S. 229. Über die Reinheit von Handelsprodukten vgl. P. F. Schmidt, Rassow, Z. ang. Ch. 37, 334; MITTASCH, KUSS, Z. El. Ch. 34, 161 Anm. 4.

"Lösliches Berlinerblau" KFe[Fe(CN)₆] + 1,9 H₂O (vgl. H 80; E I 35). Magnetische Susceptibilität bei +2,1° und —70°: Davidson, Welo, J. phys. Chem. 32, 1195. Turnbullsblau. Zur Konstitution von Turnbullsblau vgl. Reihlen, Zimmermann,

A. 451, 107; E. JUSTIN-MUELLER, Les bleus dérivés du cyanogène [Paris 1932], S. 26; Bl. [4] 49 [1931], 1285; DAVIDSON, J. chem. Educ. 14 [1937], 279. Über die Zusammensetzung vgl. a. Bhattacharya, Dhar, Z. anorg. Ch. 213 [1933], 241; Bh., J. indian chem. Soc. 11 [1934], 325; 12 [1935], 143. — Potentiometrische Verfolgung der Bildung von Turnbullsblau aus Eisen(II)-chlorid und Kaliumferrievanid: E. MÜLLER, J. pr. [2] 104, 251. Röntgendiagramm (Pulvermethode): Levi, Giorn. Chim. ind. appl. 7, 410; vgl. a. Z. Kr. Strukturber. 1 [1913—1928], 452; Keggin, MILES, Nature 137 [1936], 577. Ausflockung der kolloidalen Lösungen durch Elektrolyte: YAJNIK, BHATIA, J. Chim. phys. 22, 592. Löst sich in neutralen Albelierschafen vermeilich unter Bildung von Albelierschafen. Alkalioxalaten vermutlich unter Bildung von Alkaliferrocyanid und Alkalieisen(III)-oxalat (Kohn, Benczer, M. 44, 98). Verhalten in Kautschukmischungen: Scott, Trans. Inst. Rubber Ind. 4, 375; C. 1929 I, 3042.

Ferripentacyanverbindungen, Prussisalze. Natriumeisen (III) - aquopentacyanid Na₂[Fe(CN)₅(H₂O)] + aq (H 86; E I 36). Magnetische Susceptibilität eines Präparats mit 2,6 H₂O: Welo, Phil. Mag. [7] 6, 499; C. 1928 II, 2626. Absorptionsspektrum in wäßr. Lösung zwischen 262 und 614 mµ (quantitative Messungen): CAMBI, SZEGÖ, G. 58, 69; R. A. L. [6] 5, 640. Oxydations-Reduktions-Potential von Natriumeisen (II)-aquopentacyanid + Natriumeisen(III)-aquopentacyanid: Davidson, Am. Soc. 50, 2626. Wird durch Hyponitrit in Gegenwart von Alkali besonders am Licht zu Eisen(II)-aquopentacyanid reduziert (Cambi, Clerici, R. A. L. [6] 3, 12). Uber die Benzidinblau-Reaktion von Natriumeisen(III)-aquopentacyanid vgl. Petow, Kosterlitz, Klin. Wschr. 8, 600; C. 1929 I, 2793.

— Kaliumeisen(III)-aquopentacyanid K₂[Fe(CN)₆(H₂O)] (E I 36). B. Aus Kaliumeisen(III)-amminpentacyanid bei der Einw. von Natriumazid in alkal. Lösung (Baudisch, 2009). B. 62, 2704). Über die Bildung bei Belichtung wäßr. Kaliumferrocyanid-Lösung vgl. B.

Natriumeisen(III)-amminpentacyanid Na₂[Fe(CN)₅(NH₃)] + aq (H 86). Magnetische Susceptibilität eines Präparats mit 2 H₂O: Welo, Phil. Mag. [7] 6, 499; C. 1928 II, 2626. Absorptionsspektrum wäßr. Lösungen zwischen 250 und 422 mµ (quantitative Messungen): Cambi, Szegö, G. 58, 69; R. A. L. [6] 5, 640. Oxydations-Reduktions-Potential von Natriumeisen(II)-amminpentacyanid + Natriumeisen(III)-amminpentacyanid: Davidentic Davidential von Natriumeisen(III)-amminpentacyanid + Natriumeisen(III)-amminpentacyanid: Davidentic Natriumeisen(III)-amminpentacyanid + Nat son, Am. Soc. 50, 2623. Wirkt als Sauerstoffüberträger bei der Oxydation von Hydantoin

und 5-Amino-uracil mit Sauerstoff (BAUDISCH, DAVIDSON, J. biol. Chem. 71, 507).

Eisen(III) - nitrosopentacyanwasserstoff, Nitroprussidsäure H₂[Fe(CN)₅(NO)] + H₂O (vgl. H 87). Bildet nach Burrows, Turner (Soc. 119, 1451) wasserfreie, bräunlichrote, in Wasser sehr leicht lösliche Blättechen. Dissoziationsgrad: B., T. — Natriumeisen (III) nitrosopentacyanid, Nitroprussidnatrium Na₂[Fe(CN)₅(NO)] + 2 H₂O (H 87; E I 36). Härteanisotropie: Ress, Zimmermann, Ph. Ch. 102, 328. Magnetische Susceptibilität: Wello, Phil. Mag. [7] 6, 505; C. 1928 II, 2626; Rây, Bhar, J. indian chem. Soc. 5 [1928], 500. Absorptionsspektrum wäßr. Lösungen zwischen 250 und 342 mµ (quantitative Messungen): Carrelle Communication of the Communi CAMBI, SZEGÖ, G. 58, 69; R. A. L. [6] 5, 640; von Lösungen in verd. Natronlauge: C., Sz., G. 58, 74; R. A. L. [6] 5, 739. Leitfähigkeit von Nitroprussidnatrium in Wasser bei 25°: Râx, Sarkar, Soc. 119, 395. Beim Behandeln mit Wasserstoff in Gegenwart von Platin entsteht vermutlich ein Ferropentacyansalz (GALL, MANCHOT, B. 58, 482). Über die Bildung von Natriumeisen(II)-nitritopentacyanid bei der Einw. von Alkalilauge auf Nitroprussidnatrium (Hofmann, Ž. anorg. Ch. 11 [1896], 279) vgl. auch Cambi, Szegő, G. 58, 71, 73, 74; R. A. L. [6] 5, 737, 738, 739. Bei der Einw. von Alkalisulfid in Methanol erhält man Alkalicisen(II)-sulfonitrosopentacyanid (SCAGLIARINI, PRATESI, R. A. L. [6] 8, 80). Reagiert

[Svst. Nr. 156

mit flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105). Über die bei Einw. von Nitroprussidnatrium auf Rhodanide in alkal. Lösung erhaltenen farbigen Verbindungen vgl. Tarugi, Ann. Chim. applic. 16, 407; 17, 519; C. 1927 I, 1430; 1928 I, 675. Bei der Einw. auf Kreatinin in starker Natronlauge in der Kälte erhält man 5-Isonitroso-kreatinin (Weyl, B. 11 [1878], 2175; Kramm, C. 1898 I, 37) und Natriumeisen(II)-aquopentacyanid (Scagliarini, Pratesi, R. A. L. [6] 10, 266). Zur Farbreaktion mit Alkalisulfiden (H 2, 87) vgl. auch Sc., Pr., R. A. L. [6] 8, 75. Farbreaktionen mit Phenolen bei Gegenwart von Schwefelsäure: Ekkert, P. C. H. 67, 566; C. 1926 II, 2207; C. 1928 I, 1557. Zur Farbreaktion mit Aceton in alkal. Lösung (H 643; E I 342) vgl. Blomberg, Pharm. Tijdschr. Nederl. Indië 1, 84; C. 1924 I, 2531; van Urk. Pharm. Weekb. 62, 4, 8; C. 1925 I, 993, 994; Cambi, Ann. Chim. applic. 17, 55; C. 1927 II, 681; Tarugi, Ann. Chim. applic. 16, 410; 17, 520; C. 1927 I, 1430; 1928 I, 675. Farbreaktionen mit Guanidin und seinen Derivaten: Tiegs, Austral. J. biol. med. Sci. 1, 93; C. 1926 II, 3103; Marston, Austral. J. biol. med. Sci. 1, 93; C. 1926 II, 3103; Marston, Austral. J. biol. med. Sci. 1, 93; C. 1926 II, 3103; Marston, Austral. J. biol. med. Sci. 1, 99; C. 1926 II, 3103; Komarow, Bio. Z. 211, 338. Zur Farbreaktion mit Kreatinin (Weyl, B. 11 [1878], 2175) vgl. noch Tiegs; Sc., Pr., R. A. L. [6] 10, 261. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 307; E. Merck. Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 442. — Nitroprussid silber. Gibt mit Athyljodid in siedendem Alkohol "Diäthylnitroprussid" (S. 88) (Burrows. Turner, Soc. 119, 1452). — [Ba₂(HCO₂)₂][Fe(CN)₆(NO)] + 6 H₂O. Zur Formulierung vgl. R. Weinland, Einführung in die Chemie der Komplex Verbindungen [Stuttgart 1924]. S. 410. Rotbraune Blättchen. Leicht löslich in Wasser (Weinland, Henrichsen, B. 56, 536). — Basische Bleieisen(III)-nitrosopentacyanide: Pb₄(OH)₂[Fe(CN)₆(NO)] +

(W., Paul, Z. anorg. Ch. 129, 204). Eiektrische Leittanigkeit einer währ. Lösung bei 14°: W., St. — $Pb_4(OH)_5(ClO_4)[Fe(CN)_5(NO)] + H_2O$. Hellbräunlichrote Krystallaggregate. Explodiert beim Erhitzen (W., St., B. 55, 2715). — $Pd[Fe(CN)_5(NO)]$. Grünlichgraues Pulver. Wird beim Aufbewahren grünlichblau (Iwanow, \mathcal{R} . 54, 702; C. 1924 I, 887). Natriumeisen(III)-nitritopentacyanid $Na_3[Fe(CN)_5(O\cdot NO)] + 2H_4O$. Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 499; C. 1928 II, 2626. Oxydations-Reduktions-Potential von Natriumeisen(II)-nitritopentacyanid + Natriumeisen(III)-nitritopentacyanid: Davidson, Am. Soc. 50, 2629. — $NaK_2[Fe(CN)_5(O\cdot NO)]$ (H 88). Absorptionsspektrum wäßr. Lösungen zwischen 250 m μ und 638 m μ (quantitative Messungen): Cambi, Szegö, G. 58, 69; R. A. L. [6] 5, 640. Liefert mit Eisen(II)-salz-Lösungen einen blauen, schnell grün werdenden Niederschlag, dann eine langsame Abscheidung von Eisen(II)-eisen(III)-nitrosopentacyanid und Eisen(III)-hydroxyd (Cambi, Clerici, G. 58, 59; R. A. L. [6] 5, 80). Auch bei der Reduktion mit Eisen(II)-hydroxyd oder Jodwasserstoff erfolgt Reduktion

zu Eisen(III)-nitrosopentacyanid (CA., CL.).

E is en (III oder II)-sa l ze verschiedener E i sen (II oder III)-pen tacyanid de. Fe^{III}[Fe^{III}(CN)₅(H₂O)]+aq. B. Aus Natriumeisen(II)-aquopentacyanid und überschüssigem Eisen(III)-chlorid in Wasser bei 0° (CAMBI, CLERICI, G. 58, 57; R. A. L. [6] 5, 79). Blauer Niederschlag. Gibt mit Kalilauge bei 0° Eisen(III)-hydroxyd und Kaliumeisen(II)-aquopentacyanid. Verliert durch längeres Trocknen die Reaktionen der Pentacyanverbindungen. Gibt nach kurzem Erhitzen mit Wasser auf 100° beim Behandeln mit Alkali Alkaliferrocyanid und Alkalieisen(II)-aquopentacyanid, nach 6 Min. langem Erhitzen nur noch Alkaliferrocyanid.—Fe^{III}[Fe^{III}(CN)₅(H₂O)]+aq. B. Aus Natriumeisen(III)-aquopentacyanid und Eisen(III)-sulfat in wäßr. Lösung bei 0° (CAMBI, CLERICI, G. 58, 58; R. A. L. [6] 5, 80). Blauer Niederschlag. Gibt mit Kaliumhydroxyd bei 0° Eisen(III)-hydroxyd und Kaliumeisen(II)-aquopentacyanid.—Fe^{III}[Fe^{III}(CN)₅(NH₃)]+aq. B. Aus Natriumeisen(II)-amminpentacyanid und Eisen(III)-amminpentacyanid.—Fe^{III}[Fe^{III}(CN)₅(NH₃)]+aq. B. Aus Natriumeisen(III)-hydroxyd und Alkalieisen(II)-amminpentacyanid und Eisen-(II)-sulfat in Wasser bei 0° (CAMBI, CLERICI, G. 58, 58; R. A. L. [6] 5, 80). Blauer Niederschlag. Gibt mit Alkali bei 0° Eisen(III)-hydroxyd und Alkalieisen(II)-amminpentacyanid.—Fe^{III}[Fe^{III}(CN)₅(SO₃)]₃+aq. B. Aus Natriumeisen(III)-amminpentacyanid.—Fe^{III}[Fe^{III}(CN)₅(SO₃)]₃+aq. B. Aus Natriumeisen(III)-sulfitopentacyanid und Eisen(III)-salz in wäßr. Lösung (CAMBI, CLERICI, G. 58, 58; R. A. L. [6] 5, 80). Dunkelblau. Gibt mit Alkalihydroxyd bei 0° Eisen(III)-hydroxyd und Alkalieisen(II)-sulfitopentacyanid.—Fe^{II}[Fe^{III}(CN)₅(NO)]+aq (H 88). Gibt mit Natronlauge Nitroprussidnatrium (CAMBI, CLERICI, G. 58, 60; R. A. L. [6] 5, 81.

Kobaltcyanide. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl..
Syst. Nr. 58: Kobalt, Teil A [Berlin 1932], S. 364, 397, 399, 406, 441, 443, 446, 452, 454, 456, 458, 460, 463, 464, 466, 472, 476, 481, 482, 489; Teil B [Berlin 1930], S. 36, 67, 68, 70, 109, 110, 118, 138, 181, 191. — Kobalt(II) cyanid, Kobaltocyanid Co(CN)₂ (vgl. H 53).

Blauviolettes hygroskopisches Pulver. D. 1,872 (Biltz, Z. anorg. Ch. 170, 163, 170). Bildung Liesegangscher Ringe in Gelatine und Stärke: Chatterji, Dhar, Koll. Z. 40, 98; C. 1927 I, 36. Geschwindigkeit der Absorption von Kohlenoxyd durch wäßr. Lösungen von Kobalt (II)cyanid (aus Kobalt(II)-chlorid und Kaliumcyanid) bei verschiedenen Temperaturen: Манснот, GALL, B. 59, 1056.

Kaliumkobalt(II)-cyanid, Kaliumkobaltocyanid K₄[Co(CN)₅] (H 53; E I 30). D*: 2,039 (Biltz, Z. anorg. Ch. 170, 164, 171). Magnetische Susceptibilität: RAY, Bhar, J. indian chem. Soc. 5 [1928], 500; vgl. Bi., Z. anorg. Ch. 170, 164. Oxydations-Reduktions-Potential des Systems K₄[Co(CN)₆] + K₅[Co(CN)₆]: Grube, Schächterle, Z. El. Ch. 32, 565. Zum Verlauf der Autoxydation vgl. Wieland, Franke, A. 464, 224; 473, 291; vgl. a. MANCHOT, GALL, B. 58, 491; zur reduzierenden Wirkung vgl. Lowry, J. Soc. chem. Ind. 42 [1923], 318 R; Spiers, J. Soc. chem. Ind. 42, 534 R. Wird durch Kaliumferricyanid quantitativ zu K₃[Co(CN)₆] oxydiert (Gr., Sch., Z. El. Ch. 32, 563). Reduktion von Chinon oder Methylenblau durch K₄[Co(CN)₆] in Stickstoff Atmosphäre: W., F., A. 473, 295. Reduktion zu einem komplexen Kobalt(I)-cyanid s. u. bei K₃[Co(CN)₆]. — K₂Co[Co(CN)₆] (H. 52). Zur Bildung aus Kobalt(I), ovenid und Kaliumovanid in wäßer Lösung vol. Reventorere (H 53). Zur Bildung aus Kobalt(II)-cyanid und Kaliumcyanid in wäßr. Lösung vgl. Benedetti-

PICHLER, Fr. 70, 258.

Hg(CN)₂ + CoSO₄ + 10H₂O s. S. 60. — Hg(CN)₂ + Co(N₃)₂ s. S. 60. — Co¹₁[Fe¹(CN)₆] + x H₂O s. S. 74. — Na₂Co₃[Fe¹(CN)₆]₂ s. S. 74. — K₂Co[Fe¹(CN)₆]₈ s. S. 74. — Cs₂Co[Fe¹(CN)₆]₈ s. S. 74. — CsCo[Fe¹¹(CN)₆]₈ s. S. 74. — CsCo[Fe¹¹(CN)₆]₈ s. S. 79.

Kaliumkobalt(II)-carbonylpentacyanid K₃[Co(CN)₅(CO)]. B. Durch Einw. von Kohlenoxyd auf eine wäßr. Lösung von Kaliumcyanid, Kaliumacetat und Kobalt(II)-acetat bei —10° unter Luftabschluß (Manchot, Gall, B. 59, 1057). Krystalle (aus verd. Alkohol). Leicht löslich in Wasser mit gelber bis braungelber Farbe. Die wäßr. Lösung gibt mit Schwermetallsalzen charakteristische Niederschläge und scheidet aus ammoniakalischer Silber-

Lösung Silber ab.

Kobalt(III)-cyanwasserstoff, Kobalticyanwasserstoff $H_s[Co(CN)_6] + \frac{1}{2}H_2O$ (H 54). Ist mit Phenolphthalein als dreibasische Säure titrierbar (Hölzl, Meier-Mohar, VIDITZ, M. 53/54, 239). Über die Alkylierung des Kobalticyanwasserstoffs bzw. seiner Verbindungen mit Alkoholen vgl. H., M.-M., V., M. 53/54, 241. — Verbindung mit Methanol $H_3[Co(CN)_6] + 2CH_3 \cdot OH$. Hygroskopische Krystalle. Sehr leicht löslich in Wasser, die Löslichkeit in Alkoholen nimmt mit steigendem Molekulargewicht des Lösungsmittels ab (H., M.-M., Keit in Alkoholen nimmt mit steigendem Molekulargewicht des Losungsmittels ab (H., M.-M., V., M. 52, 76). — Verbindung mit Äthylalkohol H₃[Co(CN)₆]+3C₂H₅·OH. Krystalle (H., M.-M., V., M. 52, 74). — Verbindung mit Propylalkohol H₃[Co(CN)₆]+3C₃H₇·OH. Krystalle (H., M.-M., V., M. 52, 77). — Kaliumkobalt(III)-cyanid. Kaliumkobalticyanid K₃[Co(CN)₆] (H 54; E I 30). B. Durch Oxydation von K₄[Co(CN)₆] mit Kaliumferricyanid (Grube, Schächterle, Z. El. Ch. 32, 563). Beim Leiten von Luft durch eine Lösung von Kobalt(II)-carbonat und Kaliumcyanid in wäßr. Essigsäure (Christensen, J. pr. [2] 31 [1885], 172; vgl. E. Birk, Dissert. [Hannover] 1921], S. 4: Biltz, Z. anorg. Ch. 170, 165). Zur Darstellung aus Kobalt(II) cyanid und Keliumcyanid nach Zurnoche (A. 62) 170, 165). Zur Darstellung aus Kobalt(II)-cyanid und Kaliumcyanid nach Zwenger (A. 62 170, 165). Zur Darstellung aus Kodalt(11)-cyanid und Kallumcyanid nach zwenger (π. σz [1847], 163) vgl. Benedetti-Pichler, Fr. 70, 258. Diffusionszonen in einem Mischkrystall aus K₃[Co(CN)₆] und K₃[Fe(CN)₆]: Dittler, Z. anorg. Ch. 168, 311. D₂²⁵: 1,878 (Biltz, Z. anorg. Ch. 170, 171). Magnetische Susceptibilität: Rây, Bhar, J. indian chem. Soc. 5 [1928], 500; Bl., Z. anorg. Ch. 170, 180. Die Lösung in Wasser ist fast farblos (B.-P., Fr. 70, 259) bzw. schwach gelblich (Gr., Sch., Z. El. Ch. 32, 364). 1 g löst sich bei 20° in 7500 g Alkohol von 87—88 Vol.-% (Biltz, Z. anorg. Ch. 170, 163 Anm. 2). Löslichkeit komplexer Kobalt(III)-oxalate in wäßr. Lösungen von K₃[Co(CN)₆]: Brönsted, La Mer, Am. Soc. 48 580 Krugskonisches Verhalten in wäßr. Lösunger Burrrows, Soc. 123, 2029. Absorptions-46, 569. Kryoskopisches Verhalten in wäßr. Lösung: Burrows, Soc. 123, 2029. Absorptionsspektrum der wäßr. Lösung im sichtbaren und ultravioletten Gebiet: Lifschitz, Rosen-BOHM, Z. wiss. Phot. 19, 201; C. 1920 I, 792. Elektrische Leitfähigkeit und Dissoziation in Wasser: Bu. Oxydations Reduktions Potential des Systems $K_3[\mathrm{Co}(\mathrm{CN})_6] + K_4[\mathrm{Co}(\mathrm{CN})_6]$: Ge., Sch., Z. El. Ch. 32, 565. Die wäßr. Lösung entwickelt beim Belichten geringe Mengen Blausäure und nimmt alkal. Reaktion an (Schwarz, Tede, B. 60, 72). Die elektrolytische Reduktion an Platin in alkal. Lösung führt über die olivgrüne Lösung des Kaliumkobaltocyanids zu einer braungrünen Lösung, in der vielleicht ein komplexes Kobalt(I)-cvanid vorliegt; denselben Verlauf nimmt die Reduktion mit Kaliumamalgam (Gr., Sch., Z. El. Ch. 32, 364). Beim Erwärmen mit etwa 80% iger Schwefelsäure entstehen an gasförmigen Produkten Kohlenoxyd und Kohlendioxyd; bei langem Kochen mit ca. 30 % iger Schwefelsäure unter Rückfluß erhält man Blausäure in nahezu theoretischer Menge (BASSETT, CORBET, Soc. 125, 1363). — $[Ba_8(CHO_9)_2]_3[Co(CN)_6]_2 + 2KCHO_2 + 8H_2O$. B. Aus Bariumformiat and $K_8[Co(CN)_6]$ in heißem Wasser (Weinland, Henrichsen, B. 56, 536). Hellgelbe Krystalle. — Zinkkobalt(III)-cyanid, Zinkkobalticyanid $Zn_3[Co(CN)_6]_2 + 12H_2O$ (H 54). Dichte D^6 des wasserfreien Salzes: 1,486 (Biltz, Z. anorg. Ch. 170, 166, 174). — KCd[Co(CN)₆] (H 54). Wird von Reihlen, Zimmermann (A. 475, 112; 108) als K[Co(CN)₆Cd] aufgefaßt. — NH₄Cd₄[Co(CN)_e]₂ + 3[Cd(NH₃)₄](OH)₂ + 3H₂O. Zur Formulierung vgl. R.,

Z., A. 475, 105. Krystallines gelbes Pulver (R., Z., A. 475, 113). — Pb₂[Co(CN)₆](NO₃) + 6H₂O (ist H 55 als Pb₃[Co(CN)₆]₂ + Pb(NO₃)₄ + 12H₂O formuliert). Zur Formulierung vgl. a. Reihlen, v. Kummer, A. 469, 35. Krystallisiert auch mit 5 H₂O (R., v. K., A. 469, 34, 42). Elektrische Leitfähigkeit in Wasser bei 18°: R., v. K., A. 469, 44. — Pb₄(OH)₅[Co(CN)₆]. Farblose Prismen (Weinland, Stroh, B. 55, 2717). — Pb₄(OH)₅[Co(CN)₆] (ClO₄)₅. Pulver (W., St., B. 55, 2713). — Pb₅(OH)₅[Co(CN)₆] (ClO₄)₅ + 1,5H₂O. Pulver. Explodiert heftig beim Erhitzen (W., St., B. 55, 2715). — CsPb[Co(CN)₆] + 2H₂O. Zur Formulierung vgl. Reihlen, v. Kummer, A. 469, 33. Krystalle. Elektrisches Leitvermögen in Wasser bei 18°: R., v. K., A. 469, 44. — TlPb[Co(CN)₆] + 2 H₂O. Zur Formulierung vgl. R., v. K., A. 469, 33. Krystalle (R., v. K., A. 469, 43). — [Cr(NH₃)₆][Co(CN)₆] (H 55, El 30). Trigonal (Steinmetz. Z. Kr. 57, 243). Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 498; C. 1928 II, 2626. — Eisen(II)-kobalt(III)-cyanid, Ferrokobalticyanid Fe₃[Co(CN)₆]. Farblos, nach dem Trocknen grünlich (Cambi, Clerici, R. A. L. [6] 5, 81; G. 58, 60). Wird durch Alkalien unter Bildung von Eisen(II)-hydroxyd und Alkalikobalticyanid zersetzt. unter Bildung von Eisen(II)-hydroxyd und Alkalikobalticyanid zersetzt.

unter Bildung von Eisen(II)-hydroxyd und Alkalikobalitoyanid zersetzt. $[Co(NH_3)_4(H_4O)_2][Co(CN)_6]$ (H 55). Röntgendiagramm (Drehkrystallverfahren): HASSEL, Salvesen, Ph. Ch. 128, 359; H., C. 1928 I, 1360; vgl. Z. Kr. Strukturber. 1 [1931], 462; vgl. a. Biltz, Z. anorg. Ch. 170, 178. — $[Co(NH_3)_6(H_4O)][Co(CN)_6]$ (H 55). Zur Darstellung vgl. H., S., Ph. Ch. 128, 350. Zum Krystallwassergehalt vgl. Steinmetz, Z. Kr. 47, 245. Trigonal (St.). Röntgenogramm (Drehkrystallverfahren): H., S., Ph. Ch. 128, 352; H., C. 1928 I, 1360; vgl. Z. Kr. Strukturber. 1 [1931], 462; vgl. a. Bi., Z. anorg. Ch. 170, 178. D¹⁵: 1,730 (St.). — $[Co(NH_3)_6][Co(CN)_6]$ (H 55). Trigonal (St., Z. Kr. 57, 241). Röntgenogramm (Drehkrystallverfahren): H., S., Ph. Ch. 128, 352; H., C. 1928 I, 1360; vgl. Z. Kr. Strukturber. 1 [1931], 462; vgl. a. Bi., Z. anorg. Ch. 170, 178. D¹⁵: 1,700 (St.). Löslichkeit in Wasser bei 0° und 20°: Brönsted. Peterseen, Am. Soc. 43, 2269; bei 18°: Brö. Brumin Wasser bei 00 und 200: Brönsted, Petersen, Am. Soc. 48, 2269; bei 180: Brö., Brum-BAUGH, Am. Soc. 48, 2017; bei 25°: LA MER, COOK, Am. Soc. 51, 2624. Löslichkeit in Natriumchlorid-Lösung bei verschiedenen Temperaturen: Brö., Soc. 119, 575; Brö., Pr., Am. Soc. chlorid-Lösung bei verschiedenen Temperaturen: BRO., Soc. 119, 575; BRO., PE., Am. Soc. 43, 2289; BRÖ., BRU., Am. Soc. 48, 2018; La M., C., Am. Soc. 51, 2628; in wäßr. Lösungen verschiedener Salze bei 0°: BRÖ., PE., Am. Soc. 43, 2289; bei 25°: La M., C., Am. Soc. 51. 2628. — Nickel(II)-kobalt(III)-cyanid, Nickelokobalticyanid Ni₃[Co(CN)₆]₂ (vgl. H 55). D.*: 1,493 (Biltz, Z. anorg. Ch. 170, 167, 174).

Co(CN)₃ + Hg(CN)₂ + 5 H₂O. B. Aus Quecksilber(II)-cyanid und Kobalt(III)-chlorid auf dem Wasserbad (Gupta, Soc. 117, 68). Schwer löslich in Wasser.

[Co(NH₃)₆][Ag(CN)₂]₃ s. S. 56. — 5 Hg(CN)₂ + 2 [Co(NH₃)₆|Cl₃ + H₂O s. S. 60. — [Co(NH₃)₆](H₂O)][Cr(CN)₆] s. S. 61. — [Co(NH₃)₆][Cr(CN)₆] s. S. 61. — [Co(NH₃)₆][Cr(CN)₆] s. S. 61. — [Co(NH₃)₆][Cr(CN)₆] s. S. 79. — [Co(NH₃)₆][Cr(CN)₆] s. S. 79.

S. 74. — [$Co(NH_3)_6Cl_2$]₃[$Fe^{ii}(CN)_6$] s. S. 79. — [$Co(NH_3)_6(H_2O)$][$Fe^{ii}(CN)_6$] + x H_2O s. S. 79. — [$Co(NH_3)_6(H_2O)$][$Fe^{ii}(CN)_6$] s. S. 80.

— [Co(NH₃)₆] Ire^m(CN)₆] s. S. 80.

Kobalt(III)-thiosulfatopentacyanide. Zur Konstitution vgl. Rây, Quart. J. indian chem. Soc. 4, 325; C. 1928 I, 667. — (NH₄)₄[Co(CN)₅(S₂O₃)] + ½ H₂O. Hellgelbe Tafeln (Rây, Maulik, Z. anorg. Ch. 199 [1931], 363). Magnetische Susceptibilität: R., Bhar, J. indian chem. Soc. 5 [1928], 500. Leicht löslich in Wasser (R., M.). — Na₄[Co(CN)₅(S₂O₃)] + 2H₂O. Zum Wassergehalt vgl. R., M., Z. anorg. Ch. 199 [1931], 362. Hellgelbe, sehr hygroskopische Krystalle (R., M.). Magnetische Susceptibilität: R., Bh., J. indian chem. Soc. 5 [1928], 500. Leicht löslich in Wasser (R., M.). — K₄[Co(CN)₅(S₂O₃)]. B. Bei Einw. einer wäßr. Kaliumcyanid-Lösung auf [Co(NH₃)₅(S₂O₃)]Cl (R., Quart. J. indian chem. Soc. 4, 326: C. 1928 I, 667). Hellgelbe Krystalle Magnetische Susceptibilität: R.: chem. Soc. 4, 326; C. 1928 I, 667). Hellgelbe Krystalle. Magnetische Susceptibilität: R.; R., Br., J. indian chem. Soc. 5 [1928], 500. Leicht löslich in Wasser (R.). Koagulierende Wirkung auf Eisen(III)-hydroxyd-Sol: R. Elektrische Leitfähigkeit in Wasser bei 20°: R. Wird beim Erwärmen mit Wasser langsam hydrolysiert (R.). Gibt beim Kochen mit verd. Schwefel-Erwarmen mit Wasser langsam hydrolysiert (R.). Gibt beim hochen mit verd. Schweielsäure oder starker Salzsäure Schwefel und Schwefeldioxyd (R.). Die wäßr. Lösung gibt mit Schwermetallsalzen charakteristische Niederschläge (R.). — Rb₄[Co(CN)₆(S₂O₃)]. Hellgelbe Krystalle (R., M., Z. anorg. Ch. 199 [1931], 363). Magnetische Susceptibilität: R., Bh., J. indian chem. Soc. 5 [1928], 500. — Cs₄[Co(CN)₆(S₂O₃)]. Gelbe Krystalle (R., M.). Magnetische Susceptibilität: R., Bh. — Tl₄[Co(CN)₆(S₂O₃)]. Seidenglänzende Tafeln (R., M., Z. anorg. Ch. 199 [1931], 364). Magnetische Susceptibilität: R., Bh. — K₆[(Co(CN)₅)₅(SO₃)]. Magnetische Susceptibilität: Râx, Bh., J. indian chem. Soc. 5 [1928], 500, 506

[1928], 500, 506.

Ni Kaliumnickel(I) cyanid K₂[Ni(CN)₃] (E I 30). B. Durch elektrolytische Reduktion von K₂[Ni(CN)₄] in alkal. Lösungen mit einer Nickelkathode (GRUBE, Z. El. Ch. 32, 561). Oxydations-Reduktions-Potential des Systems K₂[Ni(CN)₂] + K₂[Ni(CN)₄]: G., Z. El. Ch. 32, 562. Die rote wäßrige Lösung nimmt rasch Kohlenoxyd auf und färbt sich dabei hell orangegelb (Job, Samuel, C. r. 177, 189; Manchot, Gall, B. 59, 1060); ebenso wird Stickoxyd glatt aufgenommen, wobei die Lösung eine violette Farbe annimmt (J., S., C. r. 177. 190; Ma., B. 59, 2448, 2452). Veränderungen bei der Oxydation an der Luft in Gegenwart

von Hydroxylamin: J., S., C. r. 177, 190; 182, 579. Die wäßr. Lösung entwickelt beim Versetzen mit Kaliumcyanid Wasserstoff unter Bildung von $K_2[Ni(CN)_4]$ (J., S., C. r. 177, 189). $Ni[Au(CN)_2]_2$ s. S. 56. — $Ni_3[Co(CN)_4]_2$ s. S. 84.

Nickel(II)-cyanid Ni(CN)₂ (H 55; E I 30). Braungelb (BILTZ, Z. anorg. Ch. 170, 163). D₅: 2,393 (B., Z. anorg. Ch. 170, 170, 170). D: 2,45 (Hertel, Z. anorg. Ch. 178, 211). Bildung Liesegangscher Ringe in Gelatine, Agar-Agar und Stärke: Chatterji, Dhar, Koll. Z. 40, 98; C. 1927 I, 36. Zusammensetzung der festen und flüssigen Phasen im System KCN—Ni(CN)₂—H₂O bei 25°: Corbet, Soc. 1926, 3198. Beim Erhitzen der wäßr. Lösung auf 150—160° unter 80 Atm. Wasserstoff-Druck scheidet sich Nickel(II)-oxyd ab (Ipatjew, B. 59, 1422; Ж. 58, 692, 694). Reaktion von wasserfreiem und wasserhaltigem Nickel(II)-cyanid mit Ammoniak und Aminen: H., Z. anorg. Ch. 178, 210. Die wäßr. Lösung ist gelb und wird bei Zusatz von überschüssigem Kaliumcyanid dunkelrot (Job, Samuel, C. r. 177, 190). — Ni(CN)₂ + 3H₂O. B. Aus Nickel(II)-chlorid und Quecksilbercyanid in wäßr. Lösung auf dem Wasserbad (Gupta, Soc. 117, 69). Feinkörniger Niederschlag. Wird bei 170° wasserfrei. — Ni(CN)₂ + NH₃ + 1/₈ H₂O (H 55). Dampfdruck zwischen 20° und 100°: Hertel, Z. anorg. Ch. 178, 205.

Kaliumnickel(II)-cyanid K₂[Ni(CN)₄] + H₂O (H 56; E I 30). Die orangegelben Krystalle verlieren bei 105° das Wasser und werden hellgelb (Biltz, Z. anorg. Ch. 170, 165). D^{**}₄: 1,851 (Bi., Z. anorg. Ch. 170, 171). Magnetische Susceptibilität: Bi., Z. anorg. Ch. 170, 182; Rây, Bhar, J. indian chem. Soc. 5 [1928], 499. 1 g löst sich bei 20° in 130 g Alkohol von 87—88 Vol-% (Bi., Z. anorg. Ch. 170, 163 Anm. 2). Oxydations-Reduktions-Potential des Systems K₂[Ni(CN)₂] + K₂[Ni(CN)₄]: Grube, Z. El. Ch. 32, 562. Lichtelektrischer Effekt der wäßr. Lösung: Imori, Scient. Pap. Inst. phys. chem. Res. Spl. 8, 14; C. 1928 II, 1305.—

Zinknickel(II)-cyanid Zn[Ni(CN)₄]. Schwach grünlichgelb. D^{*}: 2,048 (Biltz, Z. anorg. Ch. 170, 166, 174). — Pb₂(OH)₂[Ni(CN)₄]. Mikrokrystallines, gelbliches Pulver (Weinland, Paul, Z. anorg. Ch. 129, 254). — Pb₃(OH)₄[Ni(CN)₄]. Orangegelbe Blättchen (W., P., Z. anorg. Ch. 129, 255).

Über ein komplexes Eisen(III)-nickel(II)-cyanid vgl. Reihlen, Zimmermann, A. 475, 107, 116.

 $\begin{array}{l} Hg(CN)_2 + NiSO_4 + 10H_2O \ s. \ S. \ 60. \ - \ Hg(CN)_2 + Ni(N_3)_2 \ s. \ S. \ 60. \ - \ Ni_1^{\mu}[Mo(CN)_8] \\ s. \ S. \ 62. \ - \ Ni_1^{\mu}[W(CN)_8] \ s. \ S. \ 63. \ - \ Ni_1^{\mu}[Fe(CN)_6] + 11 \ und \ 14 \ H_2O \ s. \ S. \ 74. \ - \ Ni_1^{\mu}[Fe(CN)_6] + 2NH_3 + 9H_2O \ s. \ S. \ 74. \ - \ Ni_1^{\mu}[Fe(CN)_6] + 8NH_3 + 4H_2O \ s. \ S. \ 74. \ - \ Ni_1^{\mu}[Fe(CN)_6] + 12NH_3 + 9H_2O \ s. \ S. \ 74. \ - \ Na_2Ni_1^{\mu}[Fe(CN)_6]_2 \ s. \ S. \ 74. \end{array}$

Ruthenium cyanide. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 63: Ruthenium [Berlin 1938], S. 83, 101, 109, 115, 120, 122, 124. — Ruthenium (II)-cyanid Ru(CN)₂. Vgl. darüber Remy, Z. anorg. Ch. 113, 234, 250, 252. — Ruthenium (II)-cyanwasserstoff H₄[Ru(CN)₆] (H 56). Zur Konstitution vgl. Krauss, Schrader, Z. anorg. Ch. 165, 61. Zur Bildung aus K₄[Ru(CN)₆] und konz. Salzsäure nach Claus (J. 1855, 446) vgl. K., Sch., Z. anorg. Ch. 165, 70. — K₄[Ru(CN)₆]. Hygroskopisch. Leicht löslich in Wasser, schwer in Alkohol (K., Sch., Z. anorg. Ch. 165, 65). — K₄[Ru(CN)₆]+3H₂O (H 56). Zur Darstellung aus K₂RuO₄ und Kaliumcyanid in siedender wäßriger Lösung nach Howe (Am. Soc. 18 [1896], 891) vgl. K., Sch., Z. anorg. Ch. 165, 65. — Cu₂[Ru(CN)₆]+aq. Gelbbraun (K., Sch., Z. anorg. Ch. 165, 67). — Cu₂[Ru(CN)₆]+4NH₃. Hellgrünes mikrokrystallines Pulver. Sehr schwer löslich in Wasser, etwas leichter in verd. Ammoniak (K., Sch.). — Ag₄[Ru(CN)₆]+aq. Farblos. Unlöslich in Säuren, löslich in wäßr. Ammoniak mit gelber Farbe (K., Sch., Z. anorg. Ch. 165, 69). Zersetzt sich beim Erhitzen. Das frisch gefälte Salz wird durch Alkalien zersetzt. — Ag₄[Ru(CN)₆]+3NH₃. Gelbliches, mikrokrystallines Pulver. Schwer löslich in Wasser (K., Sch.). — (NH₄)₄[Ru(CN)₆]+2 MoO₃+3H₂O. Farblos. Wird beim Behandeln mit Wasser gelblich; geht bei der Einw. von Mineralsäuren in ein orangegelbes Pulver über, das bei Zusatz von Ammoniumacetat wieder farblos wird (Barbieri, R. A. L. [6] 9, 1018).

NH₄ [Ru₂(CN)₅(NH₃)₄] (†). Braunschwarze Flitter (K., Sch., Z. anorg. Ch. 173, 66). — Cu[Ru₂(CN)₅(NH₃)₄] + 4NH₃. Hellbraun, krystallin (K., Sch., Z. anorg. Ch. 173, 69). — Cu[Ru₂(CN)₅(NH₃)₄]₂ + 5 H₂O. Schokoladenbraunes Krystallpulver (K., Sch.). — Ni[Ru₂(CN)₅(NH₃)₄]₂ + 7H₂O. Hellgrünes mikrokrystallines Pulver. Unlöslich in Wasser, löslich in wäßr. Ammoniak (K., Sch., Z. anorg. Ch. 173, 68).

Ruthenium(III)-cyanid Ru(CN)₃+5H₂O. B. Durch Fällen der beim Einleiten von Chlor in $K_4[Ru(CN)_6]$ -Lösung erhaltenen rotbraunen Lösung mit verd. Schwefelsäure (Krauss, Schrader, Z. anorg. Ch. 173, 70). Schwarzgrün, krystallinisch. Gibt bei 200° im Vakuum 4H₂O ab; zersetzt sich beim Erhitzen auf 250° im Vakuum. Unlöslich in den gewöhnlichen Lösungsmitteln. — Ru(CN)₃+2NH₃+1H₂O. Schwarze Flitter. Unlöslich in Wasser (K., Sch., Z. anorg. Ch. 173, 71).

Rh

Ru₂(CN)₅ + H₂O. Zur Konstitution vgl. Krauss, Schrader, Z. anorg. Ch. 178, 65. B. Beim Erhitzen von K₄[Ru(CN)₄] in Wasser mit verd. Schwefelsäure (K., SCH.). Blau, hygroskopisch. Unlöslich in den gewöhnlichen Lösungsmitteln, löslich in heißem konzentriertem Ammoniak. Zersetzt sich oberhalb 150°. Beständig gegen Säuren und Alkalien.

Rhodium cyanide. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 64: Rhodium [Berlin 1938], S. 70, 77, 82, 98, 100, 111. — Rhodium(III)-cyanid $Rh(CN)_3 + aq$ (H 56). Das rote Präparat von Martius (A. 117 [1861], 373) konnte von Krauss, UMBACH (Z. anorg. Ch. 179, 359) nicht wiedererhalten werden. B. Durch Erhitzen von

K₂[Rh(CN)₆] mit konz. Schwefelsäure (K., U., Z. anorg. Ch. 179, 363). Gelbbraun. Das Krystallwasser ist zeolithisch gebunden (K., U.). Läßt sich nicht unzersetzt entwässern (K., U.). — 4Rh(CN)₆ + 7NH₃ + 7H₂O. Hellgelb (K., U., Z. anorg. Ch. 179, 365).

K₂[Rh(CN)₆] (H 56). Darst. Durch Zusammenschmelzen von Kaliumcyanid mit [Rh(NH₃)₆Cl]Cl₂ (Krauss, Umbach, Z. anorg. Ch. 179, 358, 362). Gibt entgegen älteren Angaben (H 2, 56) mit Essigsäure keine Farbreaktion (K., U.). Lögs sich in heißer konzentrierter Schwefelsäure mit gelber Farbre, heim Kochen mit konz Schwefelsäure autsteht Rh/CNN. Schwefelsäure mit gelber Farbe; beim Kochen mit konz. Schwefelsäure entsteht Rh(CN)2 + aq Blättchen (K., U.).

Pd"[Fe"(CN)₅(NO)] s. S. 82.

Osmium cyanide. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 66: Osmium [Berlin 1939], S. 62, 77, 89, 93, 95, 97. — K₄[Os(CN)₆] + 3H₄O (H 57, Z. 9 v. o.). Zur Darstellung durch Eindampfen einer wäßr. Lösung von K. OsO. und Kaliumcyanid nach Martius (A. 117 [1861], 363) vgl. Krauss, Schrader, J. pr. [2] 119, 282.
Farblose Tafeln (aus Wasser), die an der Luft verwittern. — Cu. [Os(CN)] + aq. Gelbbraune,
amorphe Flocken. Läßt sich nicht unzersetzt entwässern (K., Sch.). Zersetzt sich beim Entwässern. Unlöslich in Mineralsäuren, löslich in konz. Ammoniak. — $Cu_2[Os(CN)]_4 + 4NH_2$. Dunkelgrünes mikrokrystallines Pulver. Ziemlich beständig (K., Sch.). — $(NH_4)_4[Os(CN)_4] + 2MoO_3 + 3H_2O$. Farbloses krystallines Pulver (Barbieri, R. A. L. [6] 9, 1019). Wird beim Behandeln mit Mineralsäuren rotbraun, auf Zusatz von Ammoniumacetat wieder farblos. · Ni₂[Os(CN)₅] + 2H₂O. Graublaue Flocken. Wird beim Trocknen hellblau (K., Sch., J. pr. [2] 119, 284). Beständig gegen Mineralsäuren; im frisch bereiteten Zustand unbeständig gegen Alkalien. — Ni₃[Os(CN)₆] + 6NH₃. Violettblaue Krystalle. Wird an der Luft unter Ammoniakverlust hellblau (K., Sch.).

Ammoniakverlust heilölau (K., SCH.).

K₂[OSO₂(CN)₄]. B. Aus Osmium(VIII)-oxyd und Kaliumcyanid in Wasser (KRAUSS, SCHRADER, J. pr. [2] 120, 37). Nur in Lösung erhalten. Die orangerote wäßrige Lösung verträgt längeres Kochen mit Säuren. — Cu[OSO₂(CN)₄]. Weißgraue Krystalle (K., SCH.).

— [Cu(NH₃)₄][OSO₂(CN)₄]. Schwarze Nadeln. Sehr schwer löslich in Wasser (K., SCH.). Gibt an der Luft Ammoniak ab. — Ag₂[OSO₂(CN)₄]. Ledergelbe Krystalle. Unlöslich in Säuren (K., SCH., J. pr. [2] 120, 39). — [Ag₃(NH₃)₄][OSO₂(CN)₄]. Dunkelrotbraune Nadeln. Gibt an der Luft langsam Ammoniak ab (K., SCH.).

Iridiumcyanide(vgl. H. 57). Literstur. (Jwr. Uss. Handbuch der angrespischen Chemie

Iridium cyanide (vgl. H 57). Literatur; GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 67: Iridium [Berlin 1939], S. 80, 108, 133, 136, 140. — Zur Konstitution des Iridium(III)-cyanwasserstoffs und seiner Salze vgl. Reinlen, Zimmermann, A. **451**, 82.

Pt Platincyanide. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 68: Platin, Teil C [Berlin 1940], S. 123, 142, 162, 201, 222, 225, 245, 255, 260, **261**, 264, 275, 279, 287, 293, 296, 300, 303, 305, 308, 309, **310**, **314**, **316**, **321**, **324**, **327**, **332**, 337, 340, 348, 350, 351.

337, 340, 348, 350, 351.

Platin(II)-cyanid, Platocyanid Pt(CN)₂ (H 57; E I 30). B. Bei der Umsetzung von K₁[Pt(CN)₄] mit K₂[PtCl₄] in Wasser (Gründer, Izv. Inst. Platiny 6, 155; C. 1928 II, 2229).

Platin(II)-cyanwasserstoff, Platocyanwasserstoff H₂[Pt(CN)₄] (H 57; E I 30).

Zum Krystallwassergehalt vgl. G. Kämmerer, Dissert. [Leipzig 1925], S. 110. Elektrische Leitfähigkeit in Wasser und in Alkohol bei 25°: K., Dissert., S. 131. — H₂[Pt(CN)₄] + 5H₄O (H 57). Das von Weselsky (J. pr. [1] 69 [1856], 284) erhaltene Präparat ist als das Alkoholat H₂[Pt(CN)₄] + 2C₂H₅·OH (H 57) anzusehen (K., Dissert., S. 110).

Lithium platin(II)-canid, Lithium platocyanid Li₂[Pt(CN)₄] vgl. H 58; E I 31).

Die Krystalle enthalten bei gewöhnlicher Temperatur nach Reynolds (Pr. roy. Soc. [A] 82, 381; C. 1909 II, 592; vgl. Terrey, Jolly, Soc. 123, 2220) 5H₄O, nach Germann, Muenon (J. phys. Chem. 33, 419) 4H₂O; zur Bildung anderer Hydrate vgl. T., J. Das Hydrat (J. phys. Chem. 33, 419) 4H₂O; zur Bildung anderer Hydrate vgl. T., J. Das Hydrat Li₂[Pt(CN)₄]+4H₂O existiert nach Germann, Muench (J. phys. Chem. 33, 419) in einer grünen, einer gelbbraunen und einer schwarzen Modifikation. Löslichkeit (g wasserfreies

Salz in 100 g Wasser) zwischen 0° (105,0) und 89,8° (238,7): T., J., Soc. 123, 2220. Wasser-Salz in 100 g Wasser) zwischen 0° (105,0) und 89,8° (238,7): 1., J., Soc. 123, 2220. Wasserdampf-Druck über Li₂[Pt(CN)₄] in gesättigter wäßriger Lösung bei 25°: G., M., J. phys. Chem. 33, 421. Zusammensetzung der festen und flüssigen Phasen im System Li₂[Pt(CN)₄]—K₂[Pt(CN)₄]—Wasser bei 24,1°: T., J. — Kaliumplatin(II)-cyanid, Kaliumplato-cyanid K₂[Pt(CN)₄]+3H₂O (H 58; E I 31). Über den Krystallwassergehalt vgl. Terrey, Jolly, Soc. 123, 2219. D²⁶; 2,45 (Biltz, Z. anorg. Ch. 170, 171). Einfluß auf die Kataphorese eines Eisen(III)-oxyd-Sols: Freundlich, Zeh, Ph. Ch. 114, 80. Löslichkeit in Wasser (g wasserfreies Salz in 100 g Wasser) zwischen 0,1° (11,60) und 95° (210,9): T., J., Soc. 123, 2219. Bei 20° löst sich 1 g in 200 kg Alkohol von 87—88 Vol.-% (Bi., Z. anorg. Ch. 170, 143, 200. Zusammensetzung der festen und flüssigen Phasen im System Li [Pt(CN)]— 163 Anm. 2). Zusammensetzung der festen und flüssigen Phasen im System Li₂[Pt(CN)₄]—K₂[Pt(CN)₄]—Wasser bei 24,1°: T., J., Soc. 128, 2221. Polarographische Untersuchung (Quecksilber-Tropfelektrode) über die Beständigkeit des Komplexes: Demassieux, Hey-ROVSKÝ, Bl. [4] 45, 30. Lichtelektrischer Effekt der wäßr. Lösung: IIMORI, Scient. Pap. Inst. phys. chem. Res. Spl. 8, 14; C. 1928 II, 1305.

H 58, Z. 25 v. o. u. Z. 38 v. o. streiche "Ist triboluminescent (GERNEZ, C. r. 140, 1338)".

LiK[Pt(CN)₄] + aq (H 58, E I 31). Krystallisiert nach Terrey, Jolly (Soc. 123, 2221) mit 2 H₂O. Rubinrot mit blauem Schimmer; wird beim Entwässern gelb; nimmt leicht wieder Wasser auf (T., J.). Farbwechsel der Krystalle beim Erwärmen in Paraffin oder sonstigen indifferenten Lösungsmitteln bei ca. 70°: GAUBERT, C. r. 184, 384. — KNa[Pt(CN)₄]

+3H₄O (H 58; E I 31). Ist triboluminescent (Gennez, C. r. 140 [1905], 1338).

Magnesiumplatin(II)-cyanid, Magnesiumplatocyanid Mg[Pt(CN)₄] und seine Magnesiumplatin(II)-cyanid, Magnesiumplatocyanid Mg[Pt(UN)] und seine Hydrate (H 59; E I 31). Ausscheidung und gegenseitige Umwandlungen der einzelnen Hydrate beim Verdunsten der wäßr. Lösung an der Luft: GAUBERT, C. r. 184, 527. Gegenseitige Umwandlungen der Hydrate beim Erwärmen mit inerten Lösungsmitteln: G., C. r. 184, 384. Röntgenogramm (Drehkrystall- und Laue-Aufnahmen) des Heptahydrats: Водокти, Намокти, Phys. Rev. [2] 29, 223; C. 1927 I, 3053. — Bariumplatin(II)-cyanid, Bariumplatocyanid, "Bariumplatincyanür" Ba[Pt(CN)] + 4H₂O (H 59; E I 31). Zu der beim Erwärmen zwischen 37,3° und 52,3° im Dunkeln wie bei Bestrahlung mit Röntgenden Trahlen eintretenden Anderung der grünen Feshe von Ba[Pt(CN)] + 4H O in Colb und strahlen eintretenden Änderung der grünen Farbe von Ba[Pt(CN)4]+4H4O in Gelb und Orange sowie der bei Einw. von sichtbarem Licht eintretenden Umkehr der durch die Röntgenstrahlen bewirkten Farbänderung vgl. TRAPESNIKOW, Z. Phys. 37, 844; C. 1926 II, 1375; P. Pringsheim, Fluorescenz und Phosphorescenz im Lichte der neueren Atomtheorie, 3. Aufl. [Berlin 1928], S. 191, 258. Die Farbänderung bei Bestrahlung mit Röntgenstrahlen verläuft nicht unter Dehydratation (Ta., Z. Phys. 47, 740; C. 1928 I, 2484) und läßt sich am Licht des elektrischen Bogens nur in abgegrenzten Bezirken, die in Form von Banden wahrnehmbar sind, rückgängig machen (ZIMMERN, SALLES, C. r. 174, 80). Zeitintervall zwischen der Absorption und der Emission des Lichtes bei der Fluorescenz sowie Zeitdauer der Phosphorescenz nach Belichtung mit elektrischen Funken: Wood, Pr. roy. Soc. [A] 99, 369; C. 1921 III, 1183; Gottling, Phys. Rev. [2] 22, 566; C. 1924 I, 2568. Das ultraviolette Licht der Quecksilberdampflampe erregt während der Bestrahlung gelbgrüne Luminescenz; als Nachwirkung tritt eine unsichtbare Strahlung auf, deren Wirkung auf die photographische Platte nach 24 Stdn. erst auf etwa 10% des Anfangswerts abgeklungen ist (Kirchhof, Phys. Z. 30, 241; C. 1929 I, 3071). Durch aktiven Stickstoff wird Ba[Pi(CN)4] +4 H₂O zu starker Luminescenz angeregt (Tiede, Schleede, Naturwiss. 11, 765; C. 1923 III, 976). Absorptionsspektrum in wäßr. Lösung: Lifschitz, Rosenbohm, Ph. Ch. 97, 9. Wasserabspaltung der Krystalle im Vakuum und darauffolgende Hydratation unter gewöhnlichem Druck: Tr., Z. Phys. 47, 735; C. 1928 I, 2484. Wasserabspaltung der Krystalle über Schwefelsäure bzw. Calciumchlorid: G. KÄMMERER, Dissert. [Leipzig 1925], S. 106, 109; beim Erhitzen an der Luft auf ca. 70° oder beim Erhitzen in Paraffin oder sonstigen indifferenten Lösungsmitteln auf 105°: GAUBERT, C. r. 184, 383. Wasserabspaltung beim Erhitzen auf 130° und darauffolgende Hydratation an der Luft: Kk., Dissert., S. 109. — Yttriumplatin(II)-cyanid Y₂[Pt(CN)₄]₂ + 21 H₂O (H 60; E I 31). Die roten Krystalle werden an der Luft gegen 48°, in einer indifferenten Flüssigkeit bei 72° farblos; beim Abkühlen tritt wieder Rotfarbung ein (GAUBERT, C. r. 184, 384). — Lanthanplatin(II)-cyanid La₂[Pt(CN)₄]₃ + 18 H₂O (H 60; E I 31). Absorptionsspektrum der wäßr. Lösung: Lifschitz, Rosenbohm, Ph. Ch. 97, 9. — Neodymplatin(II)-cyanid Nd₂[Pt(CN)₄]₂ + 24(?) H₂O (vgl. E I 31). Absorptionsspektrum der wäßr. Lösung: L., R. — Europiumplatin(II)-cyanid Eu₂[Pt(CN)₄]₂+21 H₂O. Gelbe Krystalle mit bläulicher Fluorescenz. Beim Trocknen im Vakuum bis zum Verlust von etwa 3 Mol Wasser entsteht ein rotes, grün fluorescierendes, unbeständiges Salz, das an der Luft wieder in das ursprüngliche Hydrat übergeht; Trocknen im Vakuum über Schwefelsäure ergibt das Monohydrat (Sarkar, Bl. [4] 41, 188; A.ch. [10] 8, 256). — Eu₂[Pt(CN)₄]₃ + H₂O. Blaßgelbe Krystalle (S.). — Uran(IV) - platin(II) - cyanid UO[Pt(CN)₄] + 4H₂O. Dunkelgrüne, hellblau fluorescierende Krystalle. Wird bei 140° wasserfrei (Lobanow, Roczniki Ohem. 5, 443; C. 1926 II, 1390). Unlöslich in Wasser, Alkohol und Äther, leicht löslich in starken Säuren.

[Syst. Nr. 156

Platin (II, IV) cyan wassers to ff $H_2[Pt^{IV}(CN)_4Pt^{II}(CN)_4]+xH_2O$. Diese Konstitution kommt nach Terrey (Soc. 1928, 205) der EI 2, 31 als Platin (III) cyan wasserstoff tution kommt nach Terrey (Soc. 1925, 205) der E1 2, 31 als Platin(III)-cyan wasserstoff $H[Pt(CN)_4] + x H_2O$ aufgefaßten Verbindung zu; analog sind die dort aufgeführten Salze zu formulieren. — $6K_2[Pt(CN)_4] + K_2[Pt^{1/2}(CN)_4] + 12 H_2O$ (Wilmsches Salz). Diese Konstitution kommt nach Terrey (Soc. 1928, 205) dem in H 2, 61 als $K_1Pt_4(CN)_{16} + 6H_2O$ und E I 2, 31 als $K[Pt(CN)_4] + 3K_2[Pt(CN)_4] + 6H_2O$ formulierten Salz zu. Oxydations-Reduktions-Potential des Systems Wilmsches Salz— $K_2[Pt(CN)_4]$: T., Soc. 1928, 203. — $K_2[Pt^{1/2}(CN)_4]$ (E I 31 als $K[Pt(CN)_4]$ formuliert). Konnte aus $K_2[Pt(CN)_4]$ und Wasserstoffperoxyd nach Levy (Soc. 101 [1912], 1096) nicht wieder erhalten werden (Terrey, Soc. 1928, 203)

 $5 \; K_2 [Pt(CN)_4] + K_2 [Pt(CN)_4 Cl_2] + 21 \; oder \; 22 \; H_2 O \; \; (H \; \; 61). \; \; \; Zur \; \; Konstitution \; \; in \; \; fester$

Form und in Lösung vgl. Reihlen, v. Kummer, A. 469, 35. H₂[Pt(CN)₄Br₂] + x H₂O (H 61). Elektrische Leitfähigkeit in Wasser bei 25°: G. Käm-MERER, Dissert. [Leipzig 1925], S. 134.

Umwandlungsprodukte unbekannter Struktur aus Blausäure bzw. Cyaniden.

Verbindung $C_2N_2S_3$ (H 89). Ist als Schwefeldirhodanid $S(S \cdot CN)_2$ (Syst. Nr. 215) erkannt worden (Kaufmann, Ar. 1925, 676, 686).

Verbindung C₂N₂Se₂ (?) (H 89). Ist nicht identisch mit Selenocyan (CNSe)₂ (Syst. Nr. 219a) (Birckenbach, Kellermann, B. 58, 788 Anm.).
Verbindung C₂H₁₂N₆ (trimolekulares Methylenaminoacetonitril). Als solches ist die früher als dimolekulares Methylenaminoacetonitril C.H., 4 (H 2, 89; E I 2, 37) aufgefaßte Verbindung zu formulieren; vgl. die Zeile 12 v. u. zitierte Literatur. Das autgerabte verönding zu formieren; vgl. die Zehe 12 v. d. Zuerte Euteratur. Das Mol.-Gew. ist kryoskopisch in Naphthalin und ebullioskopisch in Aceton bestimmt (Johnson, Rinehart, Am. Soc. 46, 772). Zur Auffassung als 1.3.5-Tris-cyanmethyl-hexahydro-1.3.5-triazin H₂C<\frac{N(CH₂·CN)·CH₂}{N(CH₂·CN)·CH₂}\frac{N·CH₂·CN vgl. Delépine, C. r. 183, 61; Bl. [4] 39, 1441; Banerjee, Ahmed, Sci. Culture 3, 570; C. 1938 II, 516. — Darstellung aus Formaldehyd, Ammoniumchlorid und Kaliumcyanid: Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanid: Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanid: Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanid: Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanid Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanid Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanid Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanid Fargher, Soc. 117. 1355; Ling, Nanji, Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanium Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanium Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Ammoniumchlorid und Kaliumcyanium Birling L 42, 700; L B. Am. Soc. 46, 772; aux Formaldehyd, Am. Soc. 47, 7 Biochem. J. 16, 702; J., R., Am. Soc. 46, 772; aus Formaldehyd, Ammoniumchlorid und Natriumcyanid: Adams, Langley, Org. Synth. Coll. Vol. I [1932], 347; deutsche Ausgabe, S. 352. Bei der Darstellung aus Formaldehyd, Kaliumeyanid und Ammoniumchlorid (vgl. H 2, 89) bildet sich als Nebenprodukt stets Methylen-bis-iminodiacetonitril (NC·CH₃)₄N·CH₃·N(CH₃·N(CH₃·CN)₅ (Syst. Nr. 364) (I., R., Am. Soc. 46, 771). Krystalle (aus Alkohol oder Aceton). Rhombisch (Ford. Am. Soc. 46, 774). F: 129° (J., R., Am. Soc. 46, 772). — Hydrolyse mit Schwefelsäure verschiedener Konzentration, mit Salzsäure in Alkohol und Geschwindigkeit der Ammoniak-Abspaltung bei der Hydrolyse mit siedendem Wasser: R., J., Am. Soc. 46. 1657. Die Überführung in Glycin erfolgt am besten durch Behandeln mit alkoh. Schwefelsäure (vgl. H 2, 89) und Erhitzen des gebildeten sauren Aminoacetonitrilsulfats mit Barytwasser (Anslow, King, Soc. 1929, 2465), weniger gut durch Kochen mit Barytwasser ohne Vorbehandlung (A., K.) oder durch Kochen mit 40% igem Barytwasser und nachfolgendes Erhitzen mit 3% iger Schwefelsäure (L., N., Biochem. J. 16, 703; A., K.). Liefert bei der Reduktion mit Natrium und siedendem absolutem Alkohol und nachfolgende Verseifung durch Kochen mit Wasser N-Methyl-glycin (Scheibler, Neef, B. 59, 1503). Beim Einleiten von Schwefelwasserstoff in die Suspension in einem Gemisch von Alkohol und konz. Ammoniak entsteht eine Verbindung C. H. N. S. (Krystalle; F: 152—153° im vorgewärmten Bad) neben 2.5-Dithion-piperazin(?) HN<\(\frac{CH_2 \cdot CS}{CS \cdot CH_2}\)>NH(?) (Syst. Nr. 3587); letztgenannte Verbindung bildet sich bei mehrstündiger Einw. von Schwefelwasserstoff als Hauptprodukt (R., J., Am. Soc. 46, 1660).

(R., J., Am. Soc. 45, 1000).
Verbindung (C₃H₄N₃)_x (H 89; E I 38). Ist als Methylen-bis-iminodiacetonitril C₉H₁₀N₆ = (NC·CH₃)₂N·CH₂·N(CH₂·CN)₂ (Syst. Nr. 364) erkannt worden (Delépine, C. r. 183, 60; Bl. [4] 39, 1439; Rinehart, Am. Soc. 48, 2794).
"Pentacyansäure" C₅H₅O₅N₅ (E I 38). Konnte von Bedel, Bl. [4] 35, 342 unter den Produkten der spontanen Umwandlung von Blausäure nicht aufgefunden werden.
"Diäthylnitroprussid" C₉H₁₀ON₆Fe. B. Beim Kochen von nicht näher beschriebenem Nitroprussidsilber mit Athyljodid in Alkohol (Burrows, Soc. 119, 1452).
Rote Prismen Ist. dem kryoskopischen Varhalten in Wasser zufolge weitgebend hydroliv Rote Prismen. Ist dem kryoskopischen Verhalten in Wasser zufolge weitgehend hydrolysiert. — Zeigt die Reaktionen der Nitroprussidsalze.

Dichlormethyl-formamidin C₂H₄N₂Cl₂ = HN:CH·NH·CHCl₂ (H 90; E I 38). Das Hydrochlorid (Sesquihydrochlorid der Blausäure) liefert bei der Einw. auf Hydroylamin in Ather, in dem konz. Kalilauge emulgiert ist, N-Formyl-formamidoxim in geringer Ausbeute (Houben, J. pr. [2] 105, 26).

Hydroxylamin- und Hydrazin-Derivate der Ameisensäure.

Formhydroxamsäure CH₃O₂N = HCO·NH·OH bzw. desmotrope Form (H 90; E I 38). B. Bildet sich nach Baudisch (Ch. Z. 49, 737; C. 1925 II, 2204) beim Bestrahlen einer Kaliumnitrat-Lösung mit ultraviolettem Licht unter Durchleiten von Kohlendioxyd. Bildet sich bei der Belichtung wäßr. Lösungen von Kaliumnitrat in Gegenwart von Methanol oder Formaldehyd (Bau.; vgl. Baly, Heilbron, Hudson, Soc. 121, 1079). Zur Bildung bei Ultraviolett-Bestrahlung von wäßr. Lösungen von Kaliumnitrit und Methanol nach Baudisch (B. 44 [1911], 1011) vgl. Houben, Fischer, Arb. biol. Reichsanst. 15, 607; C. 1928 I, 2486; zur Bildung bei der Ultraviolett-Bestrahlung von wäßr. Formaldehyd-Lösungen unter Zusatz von Kaliumnitrit nach Baudisch, Mayer (H. 89 [1914], 198) vgl. Baly, Heil, Hu. Aus Stickoxyd und wäßr. Formaldehyd-Lösung im ultravioletten Licht (Bau.). — Über die Einw. auf wäßr. Formaldehyd-Lösungen unter dem Einfluß von ultraviolettem Licht vgl. Baly, Heil, Hu.; Hou., Fi.

Formamidoxim $CH_4ON_2 = H_2N \cdot CH : N \cdot OH$ bzw. desmotrope Form (H 91; E I 38). B. Bei der Einw. von Hydroxylamin auf Formiminomethyläther-hydrochlorid in Ather + Wasser (Houben, J. pr. [2] 105, 24).

Formamidoximmethyläther (Methylisuretin) $C_2H_4ON_2 = H_2N \cdot CH : N \cdot O \cdot CH_3$ bzw. desmotrope Form (H 92). $D_{\alpha}^{m,z}$: 1,0488 (v. Auwers, Ernst, *Ph. Ch.* 122, 248). $n_{\alpha}^{m,z}$: 1,4596; $n_{He}^{m,z}$: 1,4633; $n_{He}^{m,z}$: 1,4720; $n_{\gamma}^{m,z}$: 1,4795.

N-Formyl-formamidoxim C₂H₄O₄N₂ = OHC·NH·CH:N·OH bzw. desmotrope Form. B. In geringer Menge bei der Einw. von Dichlormethylformamidin-hydrochlorid auf Hydroxylamin in Äther, in dem konz. Kalilauge emulgiert ist (HOUBEN, J. pr. [2] 105, 26). — Krystalle (aus Wasser oder Alkohol). F: 140° (unter geringer Zersetzung). Leicht löslich in Aceton, heißem Wasser und Alkohol, ziemlich leicht in Äther, Benzol und Chloroform, schwer in Ligroin und Xylol. Leicht löslich in Natronlauge mit gelber Farbe. Die wäßr. Lösung gibt mit Eisen(III)-chlorid eine braunrote Färbung.

Formhydroximsäure-methylester, Formoximinomethyläther $C_2H_5O_2N = CH_3 \cdot O \cdot CH \cdot N \cdot OH$. B. Durch Schütteln von Formiminomethyläther-hydrochlorid mit Hydroxylamin in Äther (Housen, J. pr. [2] 105, 24). — Nadeln (aus Alkohol). F: 99—100°. Sehr leicht löslich in Wasser, löslich in kaltem Alkohol, Äther und Benzol, schwer in Petroläther und Tetrachlorkohlenstoff. — Bei der Einw. von verd. Schwefelsäure tritt der Geruch des Methylformiats auf. — Die Lösung in Tetrachlorkohlenstoff gibt mit Chlor eine bläulichgrüne, die wäßr. Lösung mit Eisen(III)-chlorid eine bräunlichrote Färbung.

Formhydroximsäure-äthylester, Formoximinoäthyläther $C_3H_7O_3N = C_2H_5 \cdot O \cdot CH:N \cdot OH$. B. Durch Einw. von Formiminoäthyläther-hydrochlorid auf Hydroxylamin in Äther bei Gegenwart von wenig Wasser (HOUBEN, J. pr. [2] 105, 21). — Nadeln (aus Tetrachlorkohlenstoff). F: 80°; Kp₁₅: 76—77° (unter geringer Zersetzung) (H.). Leicht löslich in Wasser, Aceton, Chloroform und Alkohol, ziemlich leicht in Benzol, schwer in Tetrachlorkohlenstoff und Benzin (H.). Zersetzt sich beim Erhitzen über den Schmelzpunkt unter Gasentwicklung und Abspaltung von Alkohol (H., Pfankuch, B. 59, 2396). Ist gegen siedendes Wasser und siedende Kaliumcarbonat-Lösung längere Zeit beständig (H.). Zerfällt bei Einw. von verd. Säuren in Äthylformiat und Hydroxylamin (H., J. pr. [2] 105, 22). Liefert beim Behandeln mit Acetanhydrid O-Acetyl-formhydroximsäure-äthylester $CH_3 \cdot CO \cdot O \cdot N : CH \cdot O \cdot C_2H_5$ (H.). — Gibt dieselben Farbreaktionen wie der Methylester (H.).

Formhydroximsäure-propylester, Formoximinopropyläther $C_4H_9O_2N=CH_3\cdot CH_2\cdot CH_2\cdot O\cdot CH:N\cdot OH.$ B. Durch Schütteln von Formiminopropyläther-hydrochlorid mit Hydroxylamin in Äther (Houben, J. pr. [2] 105, 25). — Nadeln (aus Petroläther). F: 61° bis 62° (H.). Leicht löslich in Wasser, Alkohol, Äther und Chloroform, ziemlich leicht in Benzol, schwer in Ligroin und Petroläther (H.). — Zersetzt sich beim Erhitzen über den Schmelzpunkt unter Gasentwicklung und Abspaltung von Propylalkohol (H., Pfankuch, B. 59, 2396). Die Lösung in Tetrachlorkohlenstoff gibt mit Chlor eine blaugrüne, die wäßr. Lösung mit Eisen(III)-chlorid eine sehr schwache rötlichgelbe Färbung (H.).

Chlor-oximino-methan CH₂ONCl = CHCl:N·OH. Vgl. Chlornitrosomethan, E II 1, 39.

Crotonaldehyd-formylhydrason $C_5H_8ON_2 = HCO \cdot NH \cdot N : CH \cdot CH : CH \cdot CH_3$. B. Aus Crotonaldehyd und Formylhydrazin in Ather (v. Auwers, Heimke, A. 458, 203). — Nadeln (aus Benzol). F: 91—92°. Leicht löslich in Wasser und Alkohol, schwer in Benzol, sehr schwer in Benzin.

Bis-sulfomethyl-diimid, Asomethan- $\alpha.\alpha'$ -disulfonsäure $C_2H_6O_6N_2S_2=HO_3S\cdot CH:N\cdot NH\cdot CH_2\cdot SO_2H$ bzw. $HO_3S\cdot CH_2\cdot N:N\cdot CH_2\cdot SO_3H$ s. E II 1, 651.

Methylasaurolsäure $C_*H_4O_*N_4 = ON \cdot CH : N \cdot NH \cdot CH : N \cdot OH$ bzw. desmotrope Form (H 94). — Bleisalz. Reibungsempfindlichkeit: Rathsburg, Z. ang. Ch. 41, 1285.

[Syst. Nr. 156

Hydrazoformaldehyd-dihydrazon, "Dimethinhydrazo-dihydrazon" $C_2H_2N_6 = H_2N \cdot N : CH \cdot NH \cdot NH \cdot CH : N \cdot NH_2$ bzw. desmotrope Form. B. Aus den bei Einw. von Blausäure auf Hydrazin in einer Kältemischung sich bildenden Krystallen von Hydrazincyanid beim Aufbewahren im Vakuum oder besser beim Erwärmen auf 55°, neben anderen Produkten (E. Müller, Herrobegen, J. pr. [2] 102, 127, 148). — Hellgelb. Läßt sich nicht unzersetzt umkrystallisieren. F: 122—124°. Leicht löslich in Wasser mit stark alkalischer Reaktion, unlöslich in den gewöhnlichen organischen Lösungsmitteln. — Zersetzt sich am Licht und an der Luft unter Abgabe von Hydrazin und Ammoniak. Gibt beim Erhitzen bis zum Aufhören der Ammoniak-Entwicklung 4-Amino-1.2.4-trizzol. Beim Auflösen in verd. Essigsäure entstehen 1.2-Dihydro-1.2.4-5-tetrazin und Hydrazin. Erhitzen der wäße. Lösung mit Benzaldehyd liefert Benzaldazin und geringe Menge des Dibenzalderivats C_0H_3 · CH: N·N: CH·C4-C4-5.

Schwefelanaloga der Ameisensäure und ihre Derivate.

Bis-dibrommethyl-sulfoxyd, $\alpha.\alpha.\alpha'.\alpha'$ -Tetrabrom-dimethylsulfoxyd, "Tetrabromdimethylsulfin" $C_2H_2OBr_4S=CHBr_2\cdot SO\cdot CHBr_2$. B. Bei Einw. von Brom auf Thionyldiessigsäure, neben $\alpha.\alpha.\alpha'.\alpha'$ -Tetrabrom-dimethylsulfon (Jönsson, Svensk kem. Tidskr. 34, 194; C. 1923 III, 1065). — F: 52—53°

Bis-dibrommethyl-sulfon, $\alpha.\alpha.\alpha'.\alpha'$ -Tetrabrom-dimethylsulfon $C_2H_2O_3Br_4S = CHBr_4 \cdot SO_2 \cdot CHBr_3$ (E I 38). B. Bei Einw. von Brom auf Thionyldienigehure, neben $\alpha.\alpha.\alpha'.\alpha'$ -Tetrabrom-dimethylsulfoxyd (Jönsson, Svensk kem. Tidskr. 34, 194; C. 1923 III, 1065). — F: 161°.

[Jod - äthoxy - methyl] - butyl - sulfid, Jod - äthoxy - butylmercapto - methan $C_7H_{16}OIS = C_9H_5 \cdot O \cdot CHI \cdot S \cdot [CH_9]_3 \cdot CH_3 \cdot C_7H_{16}OIS + 2HgI$. B. Aus Athoxymethylbutyl-sulfid und Quecksilber(II)-jodid in Aceton (Whitner, Reid, Am. Sec. 48, 641). Gelbe Plättchen. F: 156°.

Trimere Dithioameisensäure C₃H₆S₆ = (HCS₂H)₂. Zur Molekülgröße und zur Konstitution vgl. Levi, R. A. L. [6] 9, 173, 175. — B. Das Kaliumsalz entsteht beim Erwärmen von Chloroform mit alkoh. Kaliumsulfid-Lösung (L., R. A. L. [5] 32 I, 569; [6] 9, 170; G. 54, 396). — Farblos. Schmilzt unter Zersetzung bei 55—60°; unlöslich in den gewähnlichen Lösungsmitteln (L., R. A. L. [6] 9, 171). — Zersetzt sich beim Erhitzen unter Bildung von Schwefelwasserstoff, Schwefelkohlenstoff, Kohlenstoff und Schwefel (L., R. A. L. [6] 9, 171). Das Ammoniumsalz zerfällt beim Aufbewahren in wäßr. Lösung in Ammoniak, Schwefelwasserstoff und Bis-thioformyl-sulfid (L., R. A. L. [6] 9, 171); Bis-thioformyl-sulfid bildet sich auch bei der Einw. von Bromeyan auf das Kaliumsalz in wäßr. Lösung (L., R. A. L. [6] 9, 174). Das Kaliumsalz liefert bei vorsichtiger Oxydation in alkoh. Lösung mit Jod Bis-thioformyl-disulfid (L., R. A. L. [5] 32 I, 571; G. 54, 397). — Kaliumsalz (KHCS₂)₂. Goldgelbe Krystalle. F: 193° (Zers.) (L., R. A. L. [6] 9, 170). Löslich in Alkohol, sehr leicht löslich in Wasser. — Silbersalz (AgHCS₂)₂. Orangegelber Niederschlag. Zersetzt sich unter Schwärzung zwischen 95° und 100° (L., R. A. L. [5] 32 I, 570; G. 54, 397). Unlöslich in organischen Lösungsmitteln. — Zinksalz. Gelblich (L., R. A. L. [5] 32 I, 571; G. 54, 397).

— Bleisalz [Pb(HCS₂)₂]₃. Orangegelber Niederschlag. Zersetzt sich unter Schwärzung bei 130—135° (L., R. A. L. [5] 32 I, 571; G. 54, 397). Unlöslich in organischen Lösungsmitteln. — Kobaltsalz. Dunkelrotbraun (L., R. A. L. [5] 32 I, 571; G. 54, 397).

Trimerer Dithioameisensäure-methylester $C_6H_{18}S_6=[HCS_2\cdot CH_3]_3$. Das MolGew. ist kryoskopisch in Benzol bestimmt (Levi, R. A. L. [6] 9, 172). — B. Aus dem Kaliumsalz der trimeren Dithioameisensäure und Methyljodid in verd. Alkohol (L.). — Krystalle (aus Benzol + Alkohol). F: 105,5°. Löslich in Alkohol, sehr leicht löslich in Benzol.

Trimerer Dithioameisensäure-äthylester $C_9H_{18}S_6=[HCS_2\cdot C_2H_6]_3$. Bei gewöhnlicher Temperatur flüssig (Levi, R. A. L. [6] 9, 173).

Trimerer Dithioameisensäure-propylester $C_{12}H_{24}S_6=[HCS_2\cdot CH_2\cdot C_2H_2]_2$. Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (Levi, R. A. L. [6] 9, 173). — Krystalle. F: 38—39°.

Polymeres Bis-thioformyl-sulfid $[C_2H_2S_2]_X = [HCS \cdot S \cdot CHS]_X$. B. Aus dem Ammoniumsalz der trimeren Dithioameisensäure beim Aufbewahren in wäßr. Lösung, neben anderen Produkten (Levi, R. A. L. [6] 9, 171). Bei der Einw. von Bromcyan auf das Kaliumsalz der trimeren Dithioameisensäure in wäßr. Lösung (L., R. A. L. [6] 9, 174). — Braunes Pulver. F: 195° (Zers.). Unlöslich in allen Lösungsmitteln.

Polymeres Bis-thioformyl-disulfid $[C_3H_3S_4]_x = [HCS \cdot S \cdot S \cdot CHS]_x$. B. Bei vorsichtiger Oxydation des Kaliumsalzes der trimeren Dithioameisensäure mit Jed in alkoh. Lösungen (Levi, R. A. L. [5] 32 I, 571; [6] 9, 175; G. 54, 397). — Rötlichgelber Niederschlag. Unlöslich in organischen Lösungsmitteln. — Zersetzt sich oberhalb 200° in Schwefelwasserstoff, Schwefelkohlenstoff, Kohle und Schwefel. [Behrele]

2: Essigsäure C₃H₄O₂ = CH₃·CO₂H (H 96; E I 39). Geschichtliches über die Essiggärung: Luckow, Zbl. Bakt. Parasitenk. [II] 72 [1927], 39.

Vorkommen.

Im alkoh. Auszug von Polyporus pinicola Fr. (HARTMANN, ZELLNER, M. 50, 196). In verschiedenen intensiv gefärbten Blüten (KARRER, SCHWARZ, Helv. 11, 916). In der Zuckerrohrmelasse (Nelson, Am. Soc. 51, 2809; vgl. N., Greenleaf, Ind. Eng. Chem. 21, 857; C. 1929 II, 2945). In den Blättern der Traubeneiche (Quercus sessiliflora) (Franzen, H. 112, 303). In Feigen (Nelson, Am. Soc. 50, 2013). In den Brennhaaren von Urtica dioica (Flury, Z. exp. Med. 56, 406; C. 1927 II, 1488). In geringer Menge im Preßsaft aus Glaucium luteum Scop. (Schmalfuss, H. 131, 167; Sch., Keitel, H. 138, 156). In den Fruchthülsen von Gleditschia triacanthos L. (Aszkenazy, M. 44, 7). Im Saft des Zuckerahorns (Acer saccharinum Wangh.) und in dem daraus beim Eindampfen ausfallenden Gemisch von Calciumsalzen ("Ahornzucker-Sand") (Nelson, Am. Soc. 50, 2007, 2028). Essigsäure findet sich in Form von Estern in der Rinde von Viburnum prunifolium (HEYL, BARKENBUS, Am. Soc. 42, 1748) und von Viburnum opulus (H., J. am. pharm. Assoc. 11, 334; C. 1923 I, 1515), in Apfelschalen (POWER, CHESNUT, Am. Soc. 42, 1514), in Pfirsichen (P., Ch., Am. Soc. 43, 1731, 1736, 1738) und in den äther. Olen aus Podocarpus ferrugineus (im Destillationswasser) (Hosking, Short, R. 47, 837), aus den Nadeln von Pseudotsuga Douglasii Carr. (ALINARI, Ann. Chim. applic. 16, 190; C. 1926 II, 1698) und von Pinus excelsa (Simonsen, C. 1924 I, 1282), aus Andropogon intermedius (VAN EERDE, Ber. Schimmel 1925, 3; C. 1925 II, 1714), aus Cymbopogon caesius Stapf (Moudgill, Quart. J. indian chem. Soc. 2, 34; C. 1926 I, 515), aus Lindera praecox Bl. (Shinosaki, J. Soc. chem. Ind. 40 [1921], 674 A), im Citronen-Petitgrainol (GLICHITCH, NAVES, Parf. France 7, 65; C. 1929 I, 3045), in den äther. Olen centigration (Generica, Naves, Farj. France 1, 65; C. 1929 1, 3045), in den ather. Olen aus der Baumwollpflanze (Power, Chesnut, Am. Soc. 47, 1767), aus Leptospermum scoparium (Short, J. Soc. chem. Ind. 45, 97 T; C. 1926 II, 2123) und Leptospermum lanigerum Smith (Penfold, J. Pr. roy. Soc. N. S. Wales 60, 83; C. 1928 I, 2508), aus den Blütenköpfen von Perovskia atriplicifolia Benth. (Rao, Quart. J. indian chem. Soc. 3, 147; C. 1926 II, 1698), aus Mentha aquatica L. (Romeo, Gluffren, Ann. Chim. applic. 17, 85; C. 1927 II, 879, vol. Coppon. Am. I. Pharma 100, 428. C. 1928 II, 2020) and in I. 1927 II. 1927 II, 879; vgl. GORDON, Am. J. Pharm. 100, 438; C. 1928 II, 2078) und im Lavendelöl (Langlais, Goby, Perfum. essent. Oil Rec. 17, 520; C. 1927 I, 1533; L., G., RECLAIRE, Perfum. essent. Oil Rec. 18, 48; C. 1927 I, 2485). In freier und veresterter Form in der mit Hilfe von flüchtigen Lösungsmitteln erhaltenen "absoluten Essenz" von Salvia sclarea L. (JERMSTAD, C. 1927 II, 2722; VOLMAR, J., C. r. 186, 518; C. 1928 II, 821).

Im Fleisch des Neunauges (Petromyzon-fluviatilis L.) (Flössner, Kutscher, Z. Biol. 82, 304; C. 1925 I, 1217). In Hundefaeces (Sperry, J. biol. Chem. 68, 370). Essigsäure-Gehalt menschlicher Faeces unter verschiedenen Ernährungsbedingungen: Grove, Olmsted, Koenig, J. biol. Chem. 85, 131, 134; bei pathologischen Verhältnissen: Cecchini, Arch.

Patol. Clin. 2 [1923], 368; G., O., K.

Biochemische Bildungsweisen.

Über die Essiggärung vgl. K. Bernhauer, Die oxydativen Gärungen [Berlin 1932], S. 1, 53; M. Kobel, C. Neuberg in G. Klein, Handbuch der Pflanzenanalyse, Bd. IV [Wien 1933], S. 1330; C. Oppenheimer, Die Fermente und ihre Wirkungen, Suppl. Bd. II [den Haag 1939], S. 1466; K. Bernhauer in F. F. Nord, R. Weidenhagen, Handbuch der Enzymologie, 2. Teil [Leipzig 1940], S. 1042. — Wie aus Versuchen über die Geschwindigkeit der Oxydation von Athylalkohol und Acetaldehyd durch Sauerstoff, Chinon oder Methylenblau in Gegenwart von Essigbakterien und die Hemmung dieser Reaktionen durch Blausäure bzw. Kaliumcyanid hervorgeht, spielt bei der Essiggärung die Dismutation des intermediär gebildeten Acetaldehyds in Athylalkohol und Essigsäure entgegen den Annahmen von Neuberg. Nord (Bio. Z. 96, 158) und Neuberg, Windisch (Bio. Z. 166, 456) nur eine untergeordnete Rolle; die Bildung von Essigsäure aus Athylalkohol erfolgt in der Hauptsache durch stufenweise Dehydrierung nach

$$CH_3 \cdot CH_2 \cdot OH + \frac{1}{3}O_3 \rightarrow CH_3 \cdot CHO + H_3O + \frac{1}{3}O_3 \rightarrow CH_3 \cdot CO_2H + H_3O$$

(Wieland, Bertho, A. 467, 98, 132, 144, 152; Be., A. 474, 1—64; Wie., Helv. 15 [1932], 528); die Dehydrierung von Athylalkohol und Acetaldehyd wird durch dasselbe Enzym verursacht (Wie., Be., A. 467, 143). Zur Theorie der Essiggärung vgl. a. Kluyver, Donker, Ch. Zelle Gewebe 13 [1926], 186. Einfluß von Nickelsulfat, Kobaltsulfat und Eisen(II)-sulfat auf die Vergärung von Athylalkohol zu Essigsäure durch Bact. pasteurianum und Einfluß von Mangan (II)-sulfat auf die Essigsäure-Bildung durch Bact. pasteurianum und Bact. vini aceti: Rosenblatt, Mordkowitsch, Bio. Z. 209, 85. Essigsäure entsteht neben Athylalkohol bei der Einw. von Bact. ascendens, Bact. xylinum und Bact. pasteurianum auf Acetaldehyd unter Luftabschluß, mit und ohne Zusatz von Calciumcarbonat sowie auch

in Gegenwart von Kaliumcyanid (Neuberg, Windisch, Bio. Z. 166, 459, 469, 471, 472, 473, 474; Naturwiss. 13, 994; C. 1926 I, 1667), in etwas größerer Menge bei Luftzutritt (N., W., Bio. Z. 166, 475; Molinari, Bio. Z. 216, 203). Neben Athylalkohol bei der Einw. von Bact. ascendens und Bact. xylinum auf Brenztraubensäure und von Bact. ascendens auf Oxalessigsäure unter Luftabschluß und Zusatz von Calciumcarbonat (N., W., Bio. Z. 166, 475). Über die Bildung bei der Herstellung des "balsamischen Essigs von Modena" vgl. Parisi, Ann. Chim. applic. 18, 403; C. 1928 II, 2603.

Essignaure entsteht aus Athylalkohol durch Einw. der "Kombucha" (HERMANN, Bio. Z. 192, 187) sowie des daraus isolierten Bact. gluconicum (H., Bio. Z. 192, 195; 205, 304). Wird durch die Kombucha auch aus Fructose, Glucose und Saccharose gebildet (H., Bio. Z. Wird durch die Kombucha auch aus Fructose, Giucose und Sacenarose gebildet (H., Bio. Z. 193, 184, 194). Essigsäure entsteht ferner neben überwiegenden Mengen Propionsäure bei der Einw. von Propionsäure bildenden Bakterien, die z. B. aus Emmentaler Käse isoliert wurden, auf Milchsäure (Fitz, B. 11 [1878], 1896; 12 [1879], 479; v. Fraudenkeich, Orlagensen, Zbl. Bakt. Parasitenk. [II] 17 [1906], 537; Vertanen, Comment. phys.-math. Helsingfors 1 [1923], Nr. 36, S. 2; C. 1924 II, 64), Glucose (VI.; Weittier, Sheeman, Allen, Ind. Eng. Chem. 16, 122; C. 1924 I, 1679; Maurer, Bio. Z. 191, 86), Galaktose (Weil, Shei, A.), Lactose (v. F., O.-J.; Shei, Shew, J. biol. Chem. 56, 697; Weil, Shei, Ind. Eng. Chem. 18, 729; C. 1928 IV, 675; Wh., Shei, A.) sowie auf Saceharose und Maltose (Weil, Shei, A.). Bei der Einw von Propionsäurebakterien auf Rrenstraubenakure antstaht Essignature als Bei der Einw. von Propionsäurebakterien auf Brenstraubensäure entsteht Essigsäure als Hauptprodukt (VI.). Bildet sich neben Äthylalkohol bei der Einw. von Bac. propionicus und Bac. lactis aerogenes auf Acetaldehyd unter Luftabschluß und Zusatz von Calcium-carbonat (Neuberg, Windisch, Bio. Z. 166, 473). Bei der Vergärung von Inosit mit Bac. lactis aerogenes (Harden bei Hewitt, Steabben, Biochem. J. 15, 665). Bei der anaeroben Vergärung von Gluconsäure und Zuckersäure durch Bac. lactis aerogenes in Gegenwart von Vergarung von Gluconsaure und Zuckersaure durch Bac. lactis aerogenes in Gegenwart von Calciumcarbonat (KAY, Biochem. J. 20, 326, 327). Bei der Dismutation von Acetaldehyd durch Bac. Delbrücki (Neuberg, Kobel, Ph. Ch. [A] 139, 633, 640). Lactobacillus pentoaceticus bildet Essigsaure nicht nur aus Xylose (Fred, Petersen, Davenport, J. biol. Chem. 39, 359; 42, 181; F., P., Anderson, J. biol. Chem. 48, 401, 410), sondern auch aus Arabinose (F., P., D., J. biol. Chem. 42, 181; F., P., A.) sowie (zumeist in geringerem Umfang) aus Mannit (P., F., J. biol. Chem. 41, 443; F., P., A.), Glucose, Galaktose und Mannose (F., P., D., J. biol. Chem. 42, 185), und Milchelum (P., F., A.), Maltose, Lactose, Saccharose (F. P. D. J. biol. Chem. 49, 185), und Milchelum (P. F. J. biol. Chem. 48, 185), und Milchelum Saccharose (F., P., D., J. biol. Chem. 42, 185) und Milchsäure (P., F., J. biol. Chem. 42, 283). Essignaure entsteht ferner bei der Einw. von Lactobacillus pentosus und L. arabinosus auf Arabinose und Xylose, in geringerem Umfang auch bei der Einw. auf andere Zucker und Zuckeralkohole (F., P., A., J. biol. Chem. 48, 401, 402, 410). Bildung bei der Einw. pentosevergärender Bakterien auf Mannit: F., P., A., J. biol. Chem. 53, 120. Bei der Einw. von "mannitbildenden" Bakterien auf Arabinose, Xylose, Fructose, Saccharose, Raffinose, Glucose, Galaktose oder Lactose sowie auf Mannit oder Calciumlactat (STILES, PETERSON, FRED, J. biol. Chem. 64, 646, 648, 650, 651). Essigsäure entsteht als Hauptprodukt bei der Einw. von Bac. butylicus Fitz auf Brenztraubensäure (Neubeng, Arinstein, Bio. Z. 117, 297). Bei der Einw. von Bac. butylicus Fitz auf Glucose (Stärkesirup) bei Abwesenheit von Sulfiten entsteht Essigsäure neben überwiegenden Mengen Buttersäure, während sie bei Gegenwart von Na₂SO₂ als einziges saures Reaktionsprodukt erhalten wird (N., A., Bio. Z. 117, 305, 308). Über Bildung bei der Vergärung von Calciumlactat durch Buttersäurebakterien vgl. Schaposchnikow, Sacharow, C. 1927 II, 1713. Bei der Vergärung von Xylose, Glucces, Saccharose oder Kartoffelstärke durch Bac. acetoaethylicus (ARZBERGER, PETERSON, FRED, J. biol. Chem. 44, 469, 470). Aus Kartoffel- oder Maismehlstärke bei Einw. von Granulebacterium butylicum Beijerinck, neben anderen Produkten (Folipmens, Ber. Physiol. 6, 449; C. 1921 III, 47). Neben Buttersäure und anderen Produkten bei der Aceton-Butylalkohol-Garung von Maisstärke (REILLY, Mitarb., Biochem. J. 14, 233, 237), bei der Vergärung von Maisstärke durch Bac. granulobacter pectinovorum (Speakman, J. biol. Chem. 41, 328; 58, 398) sowie bei der Einw. dieser Mikrobe auf Glucose, Arabinose, Xylose, Galaktose oder Mannit (Sr., J. biol. Chem. 58, 400) und bei der Vergärung von Maisstärke durch Clostridium acetobutylicum (STILES, PETERSON, FRED, J. biol. Chem. 84, 440). Bei der Vergärung von Mannit, Xylose, Rhamnose, Galaktose, Fructose, Lactose, Raffinose und Stärke durch Clostridium thermocellum, neben anderen Verbindungen (PETERSON, FRED, MARTEN, J. biol. Chem. 70, 311, 316).

Neben Äthylalkohol bei der Einw. von Bact. coli auf Acetaldehyd unter Luitabechluß und Zusatz von Calciumcarbonat (Neuberg, Windisch, Bio. Z. 166, 474). Neben anderen Produkten bei der Vergärung von Glykol, Glycerin. Glycerinaldehyd, Dioxysceton, Glycerinasture und Brenztraübensäure durch Bact. coli und Bact. paratyphi B (DE Graaff, Le Fryng, Bio. Z. 156, 320, 322, 323) und bei der Vergärung von Glykol, Glycerin, Malonsaure, Bernsteinsäure, Apreisaure, Weinsäure und Citronensäure durch Bact. coli in Gegenwart von Formisten (Gray, Pr. roy. Soc. [B] 96, 158, 161, 166; C. 1924 I. 2786) und von Glucous in Gegenwart von Formiaten unter aeroben und anaeroben Bedingungen (Gray, Pr. roy. Soc. [B]

91, 297; 96, 166; C. 1920 III, 640; 1924 I, 2786; GREY, YOUNG, Pr. roy. Soc. [B] 92, 140, 143; C. 1921 III, 353). Bei der Einw. von Bact. coli und Bact. proteus vulgare auf brenztraubensaures Natrium (CAMBIER, AUBEL, C. r. 175, 72; vgl. a. Au., Bl. Soc. Chim. biol. 6, 288; C. 1924 II, 2762). Durch Zusatz von Natriumdicarbonat wird die Ausbeute an Essigsäure bei der Vergärung von Glucose durch Bact. coli erhöht, bei der Vergärung von Glykokoll, Leucin, Alanin und Asparagin durch Bact. coli verringert (Fernández, Garmendia, An. Soc. españ. 21, 485; C. 1924 I, 1813). Essigsäure entsteht bei der anaeroben Vergärung von Glucose, Gluconsäure, Glucuronsäure und Zuckersäure durch Bact. coli commune in Gegenwart von Calciumcarbonat (KAY, Biochem. J. 20, 324, 325, 328). Bei der aeroben und anaeroben Vergärung von Natriumhexosediphosphat (Harden-Young-Ester) sowie Natriumhexosediphosphat (Ha monophosphat (Robisonester) durch Bact. coli (Manning, Biochem. J. 21, 352). Über Bildung durch Vergärung von Zuckern mit Coli-Bakterien vgl. ferner MEZZADROLI, Giorn. Chim. ind. appl. 7 [1925], 563.

Aus Mannit oder Glucose bei der Einw. von Azotobacter chroococcum unter Luftzutritt bzw. Durchlüftung (Stoklasa, Zbl. Bakt. Parasitenk. 21 [1908], 508, 620; RANGANATHAN, NORRIS, J. indian Inst. Sci. [A] 10, 79, 86; C. 1928 I, 2266). Bei der Einw. von Bact. tartarophthorum auf Glycerin und auf Weinsäure unter Luftabschluß (MÜLLER-THURGAU, OSTERWALDER, C. 1920 II, 90). Bei der Einw. von Bac. pyocyaneus auf Acetaldehyd (Supniewski, Bio. Z. 154, 92; C. r. Soc. Biol. 89, 1377; C. 1924 I, 1679), auf Milcheäure oder Brenztraubensäure in Gegenwart von Nitraten oder Ammoniumchlorid (ACKLIN, Bio. Z. 164, 326, 338, 339, 340), auf Ammoniummalonat und Ammoniumcitrat (Butterworth, Walker, Biochem. J. 23, 933, 934) sowie auf Glucose und Fructose (Aubel, C. r. 173, 1493). Beim Wachstum von Tuberkelbacillen auf alaninhaltigen Nährböden (CAMPBELL, Ber. Physiol. 33, 778; C. 1926 I, 3244). Bei der aeroben und anaeroben Vergärung von Glucose durch Dysenterie-Bakterien (ZOLLER, CLARK, J. gen. Physiol. 3, 329; C. 1921 I, 775). Bei der Einw. von Choleravibrionen auf Glucose in Gegenwart von Asparaginsäure (HIRSCH, Z. Hyg. Inf.-Kr. 106, 463; C. 1926 II, 2188). Bei der Vergärung von Natriumcitrat durch Bac. suipestifer (Brown, Duncan, Henry, J. Hyg. 23, 6; C. 1925 I, 240). Bei der Einw. verschiedener Streptokokken auf Glucose (Foster, Ber. Physiol. 12, 138; C. 1922 III, 65; Hucker, Zbl. Bakt. Parasitenk. [I] 111, 45; C. 1929 I, 2545) oder auf Milch (Langwill, J. Bacteriol. 9, 87; C. 1924 II, 1810; Hammer, Sherwood, C. 1924 II, 1984). Bei der Vergärung von Cellulose durch ein thermophiles Bacterium bei 65° (VILJOEN, FRED, PETERSON, J. agric. Sci. 16, 13; C. 1926 I, 2211). Essigsäure entsteht infolge der Tätigkeit von Bakterien bei der Sauerkrautgärung (Brunkow, Peterson, Fred, Am. Soc. 43, 2252) und bei der Einsäuerung von Futtermitteln (Brahm, Bio. Z. 156, 18; 186, 238; K. Schmidt, C. 1926 II, 837; vgl. Dox, Neidig, Am. Soc. 35 [1913], 93).

Bei der Dismutation von Acetaldehyd durch Preßhefe unter anaeroben Bedingungen (Schweizer, Geilinger, Mitt. Lebensmittelunters. Hyg. 15, 49; C. 1924 II, 483). Bei der Einw. verschiedener Hefen auf Calciumlactat-Lösungen, neben anderen Verbindungen (Kayser, C. r. 176, 1663). Bei der Vergärung von Saccharose durch Preßhefe in Gegenwart von Calciumcarbonat (Kostytschew, Frey, H. 146, 277, 280). Beträchtliche Mengen Essigsäure entstehen bei der Vergärung von Saccharose in Gegenwart verhältnismäßig kleiner Mengen Sulfit (Tomada, J. Soc. chem. Ind. Japan Spl. 32, 231 B; C. 1929 II, 2948). Bei der Vergärung von in Wasser suspendiertem Mehl mit Bäckerhefe und bei der Gärung von Brotteig und Zwiebackteig (Johnson, Cereal Chem. 2, 355, 357, 360; C. 1926 I, 2261). Neben Acetaldehyd bei der Einw. von Sake-Hefe auf Athylalkohol (Yamada, Bl. agric. chem. Soc. Japan 3, 83; C. 1928 II, 2479). Bei der Vergärung von Saccharose durch Saké-Hefe (Kumagawa, Bio. Z. 181, 155). Bei der Vergärung von Brenztraubensäure durch Rhizopus nigricans (Gottschalk, H. 152, 140). Bei der Einw. von Rhizopus-Arten auf Gluconsäure (TAKAHASHI, ASAI, Pr. Acad. Tokyo 3, 86; C. 1927 II, 583). Durch Einw. von Aspergillus niger auf Citronensäure in saurer Lösung (Walker, Subramaniam, Challenger, Soc. 1927, 3051). Bei der Vergärung von Glucose durch den Schimmelpilz Cytosporella damnosa (Sumiki, C. 1929 II, 902).

Essigsäure entsteht bei der anaeroben Atmung von Pflanzenorganen (z. B. Zuckerrübenwurzel, Kartoffelknollen und Samen von Pisum sativum, Vicia faba, Triticum vulgare, Hordeum distichum) sowie bei der anaeroben Atmung tierischer Zellen (STOKLASA, BARES, Sborník čel. Akad. zeměd. 1926, 30, 31, 32, 33; C. 1926 I, 3067). Einfluß von Radium- α -, β - und γ -Strahlen und von Kaliumsalzen auf die Bildung von Essigsäure bei der anaeroben Atmung pflanzlicher Organe: St., PĚNKAVA, Ch. Zelle Gewebe 12 [1925], 384, 387, 388, 390, 392, 394, 404.

Rein chemische Bildungsweisen.

Essigsaure entsteht neben anderen Produkten beim Überleiten von Wassergas über mit Kaliumearbonat überzogene Eisenspäne bei 400—450° und 150 Atm. Druck (F. Fischer, Tropsch, B. 56, 2432; Brennstoffch. 4, 278; C. 1924 I, 1297). Neben anderen Produkten bei der Oxydation von Hexan mit Luft in Gegenwart von Silber auf Bimsstein bei 350-400°

(BERL, HEISE, WINNACKER, Ph. Ch. [A] 139, 466). Neben Acetaldehyd beim Leiten von Acetylen, Wasserstoff und Sauerstoff enthaltenden Gasgemischen über Silberphosphat bei 270°, über Quecksilberphosphat bei 230°, über basisches Quecksilbersulfat bei 110°, über Zinnphosphat bei 250° oder über Quecksilbervanadat bei erhöhter Temperatur (I. G. Farbenind., D. R. P. 509020; C. 1930 II, 3638; Frdl. 16, 644). Das Natriumsalz entsteht bei der Einw. von Acetylen oder Acetylen-Wasserstoff-Gemischen auf etwa 20 % ige Natronlauge unter Druck bei 220—230° (I. G. Farbenind., D. R. P. 488174; C. 1980 I, 1219; Frdl. 16, 208). Bei abwechselndem Einleiten von Acetylen und Sauerstoff in 96%ige Essigsäure, die Quecksilber(II)-sulfat gelöst enthält, namentlich bei Gegenwart von Holzkohle oder von Sauerstoffüberträgern, am besten in Gegenwart von Vanadinpentoxyd (Neumann, Schneider, Z. ang. Ch. 33, 191). Neben Acetaldehyd beim Einleiten von Acetylen und Sauerstoff in Quecksilbersulfat enthaltende verdünnte Schwefelsäure unter Rühren oder Schütteln oder unter Zusatz von Infusorienerde oder Asbestmehl (BAYER & Co., D. R. P. 305182; C. 1921 IV, 40; Frdl. 13, 96). Bei der Einw. von Wasser und Sauerstoff auf Acetylen in Gegenwart von Quecksilbersalzen oder von Quecksilbersalzen und Eisen(III)-salzen in 90-99 %iger Essigsaure bei 70-85° (Chem. Fabr. Griesheim-Elektron, Grünstein, D. R. P. 305997; Frdl. 13, 128). Aus Acetylen, Wasserdampf und Sauerstoff in Gegenwart von Essigsäure oder Acetanhydrid bei 250-300° und 5-51/2 Atm. Druck (Plausons Forschungsinst., D. R. P. 350493; Frdl. 14, 193). Beim Einleiten von Acetylen in 25%ige Schwefelsäure unter gleichzeitiger Elektrolyse an einer Quecksilber-Anode, einer zweiten Anode aus Blei oder Platin und einer gemeinsamen Bleikathode (Chem. Fabr. Griesheim-Elektron, Grünstein, D. R. P. 365588; Frdl. 14, 248).

Neben anderen Produkten beim Erhitzen vor Athylakohol in einer Bombe aus Chromvanadinstahl auf 425-460° (Herndon, Reid, Am. Soc. 50, 3071). Über Bildung von Essigsaure beim Überleiten von Äthylalkohol über Kupfer bei 330° vgl. HARA, Mem. Coll. Sci. Kyoto [A] 9, 407; C. 1926 II, 2658. Neben Acetaldehyd und anderen Produkten beim Verbrennen von Athylalkohol-Luft-Gemischen und Ather-Luft-Gemischen (Berl, Fischer, Z. El. Ch. 30, 34). Neben Acetaldehyd bei der Oxydation von Athylalkohol mit Luft in Gegenwart von fein verteiltem Kupfer bei 220-270° (Mailhe, de Godon, C. r. 170, 517; Bl. [4] 27, 333) oder in Gegenwart von Vanadinpentoxyd, Silbervanadat, Kupfervanadat oder Zinkoxyd bei ca. 360° (Fester, Berraz, An. Asoc. quim. arg. 15, 210; C. 1928 I, 1458). Neben geringeren Mengen Acetaldehyd bei der Einw. von ozonhaltigem Sauerstoff auf Äthylalkohol in der Kälte (F. G. Fischer, A. 476, 249). Neben Acetaldehyd bei der Einw. von Wasserstoffperoxyd auf verd. Äthylalkohol in Gegenwart von Eisen(II)-sulfat (Rosenthaler, Ar. 1929, 600). In geringer Menge bei der Oxydation von Athylalkohol mit Natriumchlorat bei Gegenwart von Vanadinpentoxyd in schwach schwefelsaurer Lösung (MILAS, Am. Soc. 50, 496). Neben anderen Produkten beim Kochen eines Gemischs aus 1 Vol. Äthylalkohol und 2 Vol. 8n-Natronlauge in Gegenwart von Rhodium (ERICH MÜLLER, Z. El. Ch. 27, 566). Neben anderen Produkten beim Einleiten von Athylalkohol-Dampf in ein geschmolzenes Gemisch aus je 1 Mol Natriumhydroxyd und Kaliumhydroxyd bei 250—280° (FRY, SCHULZE, Am. Soc. 48, 963; vgl. Weizmann, Garrard, Soc. 117, 333). Beim Erhitzen einer Lösung von Natrium in Äthylalkohol + Butylalkohol im Autoklaven auf 275°, neben anderen Produkten (W., G., Soc. 117, 334). In geringer Menge bei der Zersetzung von Äthylhydroperoxyd in Gegenwart von Formaldehyd in alkal. Lösung (Rieche, Hitz, B. 62, 2464, 2473). — Neben anderen Verbindungen bei der Einw. von Wasserstoffperoxyd und Eisen(II)sulfat auf Isopropylalkohol (Rosenthaler, Ar. 1929, 600). Über Bildung bei der Oxydation
von Isopropylalkohol mit alkal. Permanganat-Lösung vgl. Evans, Sefton, Am. Soc. 44, 2272. Neben anderen Verbindungen beim Erhitzen von 1 Mol Glycerin mit 3 Mol Hydrazin im Rohr auf 190-250° (Ernst Müller, Kraemer-Willenberg, B. 57, 582).

Essigsäure entsteht bei der Autoxydation von Acetaldehyd in Gegenwart oder Abwesenheit von Katalysatoren (Tierkohle, Palladiumschwarz) neben überwiegenden Mengen Peressigsäure, bei der Autoxydation von wäßr. Acetaldehyd-Lösungen als einziges Reaktionsprodukt (Wieland, B. 54, 2358, 2359). In geringer Menge neben anderen Produkten beim Überleiten von Acetaldehyd und Wasserdampf über Kupfer bei 300° (Armstrong, Hildfroß, Pr. roy. Soc. [A] 97, 263; C. 1920 III, 335). Essigsäure entsteht ferner aus Acetaldehyd: Beim Behandeln mit Sauerstoff in Gegenwart von Kieselgur (Bayer & Co., D. R. P. 299782; C. 1921 IV, 513; Frdl. 13, 131), beim Leiten von Luft durch eine Lösung in Tetrachlorathan bei 70—90° und 1—2 Atm. Druck (Verein f. chem. Ind. Mainz, D. R. P. 301274; C. 1920 II, 536; Frdl. 13, 132), beim Behandeln mit Luft oder Sauerstoff bei 70—75° und sofort anschließenden Erhitzen auf 100° (Comp. d'Alais, D. R. P. 362749; Frdl. 14, 245), bei der Behandlung mit Luft in Gegenwart von Manganacetat bei 60° und ca. ½ Atm. Druck (ROONEY, Chem. met. Eng. 22, 848; C. 1921 II, 123), bei der Oxydation mit Silberoxyd in alkal. Lösung (E. MÜLLER, A. 420, 253; WIELAND, WINGLER, A. 431, 321), bei der Oxydation mit Permanganat in verd. Schwefelsäure bei 85—95° (Conant, Aston, Am. Soc. 50, 2797), beim Einleiten in ein geschmolzenes Gemisch aus je 1 Mol Natriumhydroxyd und Kalium-

hydroxyd bei 250° (Fry, Schulze, Am. Soc. 48, 965). Bei der Einw. von Natriumchlorat auf Acetal oder auf ein Gemisch aus Paraldehyd und Äthylalkohol bei Gegenwart von Vanadinpentoxyd in schwach schwefelsaurer Lösung (Milas, Am. Soc. 50, 496). Aus Bis-[α-oxy-āthyl]-peroxyd bei der Einw. von kalter verdünnter Natronlauge in Gegenwart von Silber (Wieland, A. 436, 260). In geringer Menge beim Kochen von Chloracetaldehyd mit wäßr. Kaliumcyanid-Lösung (Chattaway, Irving, Soc. 1929, 1043). Bei der Oxydation von Aceton mit Wasserstoffperoxyd in Gegenwart von Eisen(II)-sulfat (Rosenthaler, Ar. 1929, 600). Bei der elektrolytischen Oxydation von Aceton an einer Bleidioxyd-Anode in 2n-Schwefelsäure (Fichter, Rinderspacher, Helv. 9, 1100). Neben anderen Produkten beim Einleiten von Acetondampf in ein geschmolzenes Gemisch aus je 1 Mol Natriumhydroxyd und Kaliumhydroxyd bei 250° (Fry, Schulze, Am. Soc. 48, 966). Neben Acetaldehyd beim Belichten einer wäßr. Lösung von Diacetyl mit Quarz-Quecksilber-Licht (Porter, Ramsperger, Steel, Am. Soc. 45, 1830). Abhängigkeit der Bildung von Essigsäure von der Alkalikonzentration und der Temperatur bei der Einw. von Kalilauge auf Glycerinaldehyd: Evans, Hass, Am. Soc. 48, 2711; auf Dioxyaceton: E., Cornthwaite, Am. Soc. 50, 490.

Beim Leiten von Äthylacetat-Dampf über Titandioxyd-Katalysatoren bei 450° (BISCHOFF, ADKINS, Am. Soc. 47, 809, 810). Beim Eintragen von Äthylacetat in hochprozentige Natronlauge oder in ein Gemisch von Natriumacetat, Natriumhydroxyd und Wasser entsteht festes Natriumacetat (Konsort. f. elektrochem. Ind., D. R. P. 339035; C. 1921 IV, 1221; Frdl. 13, 51). Bei der Elektrolyse von Acetamid in wäßr. Lösung (Schaum, B. 56, 2462). Beim Erhitzen von Acetonitril mit krystallisierter Phosphorsäure auf 130—140° (BERGER, OLIVIER, R. 46, 603). Bei der Reduktion von Chloressigsäure mit siedender neutraler Chrom(II)-sulfat-Lösung (Traube, Lange, B. 58, 2776). Neben anderen Produkten bei der thermischen Zersetzung von Triacetin oder Tripropionin in Gegenwart von Thoriumoxyd bei 420—525° (Simons, Am. Soc. 48, 1992). Neben anderen Produkten bei der Oxydation von Capronsäure, Onanthaäure und Caprylsäure mit Wasserstoffperoxyd in ammoniakalischer Lösung (Clutterbuck, Raper, Biochem. J. 19, 390). Zur Bildung durch Zersetzung von Malonsäure im ultravioletten Licht (Berthelot, Gaudechon, C. r. 152, 262) vgl. Volmar, C. r. 180, 1173; Pierce, Leviton, Noyes, Am. Soc. 51, 82. Neben anderen Verbindungen beim Erhitzen wäßr. Lösungen von glykolsaurem Natrium (IPATJEW, RASUWAJEW, B. 60, 1972; **Ж. 59**, 1078), β -oxy-buttersaurem Natrium (R., B. 61, 638; **Ж. 60**, 914), Natriummalat, Natriumtartrat und Natriumcitrat (I., R., B. 60, 1974; Ж. 59, 1084) mit Wasserstoff in Gegenwart von Nickeloxyd und Aluminiumoxyd auf 220—250° unter Druck. Bei der Einw. von Sauerstoff auf wäßr. Lösungen von Apfelsäure und von brenztraubensaurem Natrium in Gegenwart von Palladiumschwarz (Wieland, A. 486, 235). Neben anderen Verbindungen bei der thermischen Zersetzung von Weinsäure (Chattaway, Ray, Soc. 119, 37). Über Bildung bei der elektrolytischen Oxydation von Weinsäure vgl. Sihvonen, Ann. Acad. Sci. fenn. [A] 16, Nr. 9, S. 61, 97, 100; C. 1922 III, 872. Entsteht aus Alanin in geringer Menge bei der Einw, von Sauerstoff in Gegenwart von Blutkohle bei 37° (WIELAND, BERGEL, A. 489, 198; HENNICHS, Bio. Z. 171, 360), bei der Oxydation mit Wasserstoffperoxyd und Eisen(II)-sulfat in schwefelsaurer Lösung (Fichter, Helv. 7, 171) und bei der elektrolytischen Oxydation an einer Platin-Anode in schwefelsaurer Lösung (FI.). Neben anderen Produkten beim Behandeln von Hühnerei-Albumin mit alkal. Hypobromit-Lösung bei 0° (Goldschmidt, Mitarb., A. 456, 30, 34).

Abhängigkeit der Essigsäure-Bildung von der Alkalikonzentration und der Temperatur bei der Einw. von wäßr. Kalilauge auf Glucose und Galaktose: Evans, Edgar, Hoff, Am. Soc. 48, 2666, 2672; vgl. a. Fischler, Täufel, Souci, Bio. Z. 208, 208, 210; bei der Einw. auf Mannose: Ev., O'Donnell, Am. Soc. 50, 2549; bei der Einw. auf Fructose: Ev., Hutchman, Am. Soc. 50, 1499, 1501. Neben anderen Produkten beim Erhitzen von Saccharose auf 150—380° unter 10—15 mm Druck (Reilly, J. Soc. chem. Ind. 40, 250 T; C. 1922 I, 629). Beim Erhitzen von Xylan mit 50% iger Kalilauge auf 200—280° (Heuser, J. pr. [2] 107, 5). Bei der Einw. von heißem Wasser oder heißer verdünnter Schwefelsäure oder von Barytwasser auf die Pektinsäuren aus der Zuckerrübe (Ehrlich, v. Sommerfeld, Bio. Z. 168, 276, 304, 311, 320), aus Flachs (Ehrlich, Schubert, Bio. Z. 169, 53) und aus Orangenschalen, Johannisbeeren und Erdbeeren (Ehrlich, Kosmahly, Bio. Z. 212, 200, 228, 238). Aus dem Saponin der Roßkastanie bei der Hydrolyse mit verd. Schwefelsäure (van der Haar, R. 42, 1083).

Bei der Destillation des Humins Dopplerit (TIDESWELL, WHEELER, Soc. 121, 2349, 2361). Neben anderen Verbindungen bei der Einw. von Sauerstoff auf Paraffin bei 150° in Gegenwart von Verbindungen des Mangans (Kelber, B. 53, 70; Franck, Ch. Z. 44, 309; C. 1920 II, 781) oder von Verbindungen des Quecksilbers, Bleis, Chroms oder Vanadins (Fr.). Neben anderen Fettsäuren beim Cracken von nordamerikanischen und mexikanischen Gasölen unter Druck (Hall, Taveau, Oil Gas J. 27, Nr. 29, S. 110, 182; C. 1929 I, 1405). Bildung von Essigsäure beim Schmelzen verschiedener Holzarten mit Natriumhydroxyd: Mahood, Cable, J. ind. Eng. Chem. 11, 652; C. 1920 II, 776; bei der sauren Hydrolyse

verschiedener Holzarten: RITTER, FLECK, J. ind. Eng. Chem. 14 [1922], 1051. Bildung bei der trocknen Destillation von Holz s. unten. Über Bildung bei der Einw. von verd. Natronlauge auf Espartogras vgl. Padovani, Burrai, Ann. Chim. applic. 19 [1929], 15. Neben anderen Produkten beim Erhitzen von Cellulose, Braunkohle und Steinkohle mit Luft in Gegenwart von Soda-Lösung auf 200° unter 45—50 Atm. Druck (F. Fischer, Schrader, Abh. Kenntnis Kohle 5, 208; C. 1922 IV, 1064; F., Sch., Treibs, Abh. Kenntnis Kohle 5, 217, 238; C. 1922 III, 1185; IV, 1064) und beim Erhitzen von Braunkohle mit 10 n-Kalilauge auf 300° unter Druck (F., Sch., Abh. Kenntnis Kohle 5, 361; C. 1922 IV, 1066).

Darstellung und Reinigung.

Literatur über die Herstellung von Gärungsessig: H. Wüstenfeld, Lehrbuch der Essigfabrikation [Berlin 1930]; H. WÜSTENFELD in F. ULLMANN, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. IV [Berlin-Wien 1929], S. 616—641; vgl. ferner Wilke, C. 1920 II, 500; WÜSTENFELD, C. 1920 II, 732; FOWLER, SUBRAMANIAM, C. 1924 I, 59; BETTINGER, C. 1924 I, 2022. — Gewinnung von Essigsäure aus Maiskolben durch Hydrolyse mit verd. Schwefelsäure und anschließende Vergärung durch Lactobacillus pentoaceticus: FRED, PETERSON, J. ind. Eng. Chem. 13, 211; C. 1921 IV, 511; aus Maiskolben, Reisstroh und anderen cellulosehaltigen Abfällen durch Hydrolyse und Vergärung durch Bakterien aus Abwasser: Power-Gas Corp., Langwell, E. P. 161294; C. 1921 IV, 277; L., A. P. 1443881, 1602306; C. 1924 I, 2313; 1928 I, 1592. Uber die Herstellung aus kohlenhydrat- und cellulosehaltigen Stoffen durch Hydrolyse und nachfolgende Vergärung vgl. a. G. Bucce in Ullmann, Enzyklopädie, 2. Aufl., Bd. IV, S. 661.

Gewinnung von Holzessig und Graukalk bei der trocknen Destillation des Holzes: H. M. Bunbury, The destructive distillation of wood [London 1923]; deutsche Ausgabe: Die trockene Destillation des Holzes, übersetzt von W. Elsner [Berlin 1925]; L. F. Hawley, Wood distillation [New York 1923]; deutsche Ausgabe: Holzdestillation, übersetzt von A. SCHREIBER [Berlin 1926]; G. Bugge, Industrie der Holzdestillationsprodukte [Dresden-Leipzig 1927]; P. Klason in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. VI [Berlin-Wien 1930], S. 185; vgl. a. HAWLEY, PIER, Chem. met. Eng. 26, 1031; C. 1922 IV, 1207; MERRIAM, J. ind. Eng. Chem. 14, 860; C. 1922 IV, 968; ASCHAN, Brennstoffch. 4 [1923], 129, 145, 164; Wells, Philippine J. Sci. [A] 12, 115; C. 1923 II, 150; Anonymus, Bl. imp. Inst. 20, 163; C. 1923 II, 150, 151. Gewinnung von Essigsäure aus Graukalk: G. Bugge in Ullmann, Enzyklopädie, 2. Aufl., Bd. IV, S. 654; J. Schwyzer, Die Fabrikation pharmazeutischer und chemisch-technischer Produkte [Berlin 1931], S. 442. Gewinnung von Essigsäure bezw. Acetaten aus Sulfitablauge: Deppe, Zeitschel, D. R. P. 399467; C. 1924 II, 1401; Frdl. 14, 300; aus Ablaugen der Espartozellstoff-Fabrikation: Padovani, Salmoraghi, Ann. Chim. applic. 19 [1929], 23; zur Gewinnung aus Ablaugen der Natronzellstoff-Fabrikation (Rinman, D. R. P. 244816) vgl. Hägglund, Acta Acad. Abo. 2, Nr. 5, S. 8; Cellulosech. 5, 83; C. 1924 II, 2621. Gewinnung von Essigsäure als Nebenprodukt bei der Verzuckerung von Holz mit Salzsäure: Goldschmidt A.-G., D. R. P. 421829; C. 1926 I, 1312. Gewinnung von Natriumacetat als Nebenprodukt bei der Fabrikation von Gerbextrakten aus Kastanienrinde: Vik, Ind. chimique 9, 246.

Patentliteratur über die von Acetylen ausgehende synthetische Darstellung von Essigsäure: G. Bugge in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. IV [Berlin-Wien 1929], S. 651; vgl. a. Bildung aus Acetylen (S. 94) und aus Acetaldehyd (S. 94) und die Abhandlung von Rooney, Chem. met. Eng. 22 [1920], 848.

Darstellung von wasserfreier Essigsäure im Laboratorium durch Destillation hochprozentiger Präparate mit der berechneten Menge Acetanhydrid: KENDALL, GROSS, Am. Soc. 43, 1431; durch Behandeln von käuflichem Eisessig mit Bortriscetat, Destillieren und Ausfrieren: Schall, Markgraf, *Trans. am. electroch. Soc.* 45, 161; *C.* 1924 II, 928; Sch., Thieme-Wiedtmarchter, *Z. El. Ch.* 35, 337 Anm. 3. Konzentrieren von wäßr. Essigsäure im technischen Maßstab durch Destillation: Societé des Produits Chimiques du Bois, D. R. P. 413832; C. 1925 II, 590; durch Extraktion mit hochsiedenden Lösungsmitteln und Abdestillieren der Essigsäure aus dem Extrakt: Suida, D. R. P. 422073, 424666, 434501, 451179, 469942; C. 1926 I, 2243; Frdl. 15, 119, 121, 122; 16, 212; Destilacija Drwa, D. R. P. 494416; C. 1980 II, 134; Fidl. 16, 215; durch Adsorption des Dampfes an aktive Kohle und Austreibung mit Athylacetat: Holzverkohlungsind. A.-G., D. R. P. 472399; C. 1929 I, 2819; Frdl. 16, 227; durch Destillation mit Stoffen, die mit Wasser azeotrope Gemische bilden: Fabr. de soie artificielle de Tubize, D. R. P. 435220; C. 1936 II, 2847; Frdl. 15, 124; MERCE, D. R. P. 445240; C. 1927 II, 471; GUINOT, Chim. et Ind. 21, 55 T; C. 1929 II, 2433; Distilleries des Deux-Sèvres, D. R. P. 469823; C. 1929 I, 1147; Frdl. 16, 209; durch Veresterung, Verseifung und Destillation: Holzverkohlungsind. A.-G., D. R. P. 459604, 483454, 489937; C. 1929 II, 3251; 1930 I, 2163; Frdl. 16, 221, 223, 226. Weitere Patentliteratur über das Konzentrieren von wäßr. Essigsäure s. bei Bugge in Ullmann, Enzyklopädie, 2. Aufl., Bd. IV, S. 658. Wärmebilanz verschiedener Konzentrationsverfahren: Mariller,

Chim. et Ind. 19 [1928], Sonder-Nr., S. 134. Essigsäure kann aus Essigsäure enthaltenden Gasen durch Auswaschen mit wenig Wasser in wasserfreier oder nahezu wasserfreier Form erhalten werden (Konsort. f. elektrochem. Ind., D. R. P. 305125; C. 1920 II, 338; Frdl. 13, 134). Gewinnung von reiner Essigsäure aus rohem Holzessig durch Extraktion: NASAKIN, Ž. chim. Promyšl. 5, 1149, 1369; C. 1929 II, 1213. Rückgewinnung aus Abfallsäuren der Acetylcellulose-Herstellung: Ver. Glanzstoff-Fabr. A.-G., D. R. P. 424069; Frdl. 15, 125; Usines du Rhône, D. R. P. 462994; Frdl. 16, 231; Verein f. chem. Ind., D. R. P. 463871; C. 1929 I, 1045; Frdl. 16, 229; A. WACKER, D. R. P. 473833; C. 1929 I, 2845; Frdl. 16, 219.

Reinigung von quecksilberhaltiger Essigsäure durch Kochen mit oxydierenden oder reduzierenden Substanzen: Chem. Fabr. Griesheim-Elektron, Grünstein, D. R. P. 347190; C. 1922 II, 1110; Frdl. 13, 1084; von manganhaltiger Essigsäure durch Behandlung mit wäßr. Oxalsäure-Lösung: Konsort. f. elektrochem. Ind., D. R. P. 455582; C. 1928 I, 2537; Frdl. 16, 233. Käufliche Essigsäure, die mit Chlor und Brom reagierende Verunreinigungen enthält, kann durch Destillation mit Chromtrioxyd (Orton, Bradfield, Soc. 125, 960) oder mit Chromtrioxyd und Acetanhydrid (O., B., Soc. 1927, 984) gereinigt werden. Ameisensäure, die sich häufig in käuflichem Eisessig findet, läßt sich durch Destillation mit überschüssigem Permanganat entfernen (Daniel, J. Pharm. Chim. [8] 5, 582; C. 1927 II, 1627).

Physikalische Eigenschaften der Essigsäure.

Mechanische und thermische Eigenschaften. Eisessig krystallisiert wahrscheinlich rhombisch (Steinmetz, Z. Kr. 56, 160). Röntgenogramm (Pulvermethode): Gibbs, Soc. 125, 2623; Sogani, Indian J. Phys. 2, 102; C. 1928 I, 470; Herzog, Jancke, Z. Phys. 45, 198; C. 1928 I, 639. Beugung von Röntgenstrahlen in flüssiger Essigsäure s. S. 98.

— F: 16,604° (Schall, Thieme-Wiedtmarckter, Z. El. Ch. 35, 337 Anm. 3), 16,57 ± 0,05° (Kendall, Gross, Am. Soc. 43, 1431; Ke., Brakeley, Am. Soc. 43, 1827), 16,55° (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 423); Schmelzpunkt von 99,95° iger Essigsäure: 16,55° (Sch., Th.-W.), von 99,9° iger Essigsäure: 16,7° (Gordon, Reid, J. phys. Chem. 26, 780). Schmelzpunkte unter Drucken bis 3210 kg/cm²: G. Tammann, Kristallisieren und Schmelzen [Leipzig 1903], S. 275. — Kp₇₈₀: 118,5° (Young, Scient. Pr. roy, Dublin Soc. 12 [1909/10], 389; Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 116; 49 [1929], 110, 118,2° (Ti., H.-R.); Kp₆₈₁: 115,5—116° (Sudborough, Karvé, J. indian Inst. Sci. 5 [1922], 6). Dampfdruck zwischen 0° (3,50 mm) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 443; zwischen 30,05° (20,8 mm) und 90,0° (299,0 mm): Wrewski, Mischtschenko, Muromzew, Ph. Ch. 133, 366; Ж. 59, 603. Dampfdruck in Gegenwart von Holzkohle, Platinschwarz und Thoriumoxyd: Baker, Soc. 1927, 953. Kondensation des Dampfes bei der adiabatischen Ausdehnung im Gemisch mit Luft: Tanzow, Ж. 61, 1844; C. 1930 II. 207. Flüchtigkeit mit Wasserdampf s. S. 100.

C. 1930 II, 207. Flüchtigkeit mit Wasserdampf s. S. 100.

D₁°: 1,0697; D₁°: 1,0593; D₂°: 1,0491; D₂°: 1,0392; Dichte D₁° bei Temperaturen bis 320° (0,4615): Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 443; D₂°: 1,0548; D₂°: 1,0433; D₂°: 1,0215 (Tromp, R. 41, 282, 296); D₁°: 1,0501 (Miller, Pr. roy. Soc. [A] 108 [1924], 741); D₂°: 1,0496 (Schall, Thieme-Wiedtmarckter, Z. El. Ch. 35, 337 Anm. 3); D₂°: 1,04926; D₂°: 1,04351; D₂°: 1,03802; D₂°: 1,02679 (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 423); D₂°: 1,0450 (Woodman, Chem. N. 134 [1927], 36), 1,0499 (Kendall, Brakeley, Am. Soc. 43, 1827); D₂°: 1,0445 (Gordon, Reid, J. phys. Chem. 26, 780); D₂°: 1,0378 (Pound, J. phys. Chem. 31, 550). Dichte des gesättigten Dampfes zwischen 20° und der kritischen Temperatur: Young; zwischen 30° und 90°: Wrewski, Mischtschenko, Muromzew, Ph. Ch. 133, 366; Ж. 59, 603; zur Dampfdichte vgl. a. Drucker, Z. El. Ch. 16 [1910], 697; Dr., Ullmann, Ph. Ch. 74 [1910], 600; Trautz, Moschel, Z. anorg. Ch. 155, 17. Adiabatische Kompressibilität bei 26,2°: 79,86×10⁻⁶ Atm⁻¹ (Venkateswaran, J. phys. Chem. 31, 1523).

Viscosität bei 15°: 0,01314, bei 30°: 0,01040 g/cmsec (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 424); bei 19,91°: 0,01253 g/cmsec (Miller, Pr. roy. Soc. [A] 106 [1924], 740); bei 20°: 0,01202, bei 40°: 0,00900, bei 80°: 0,00465 g/cmsec (Yajnik, Mitard., Ph. Ch. 118, 313); bei 25°: 0,01121 g/cmsec (Kendall, Brakeley, Am. Soc. 43, 1827); bei 30°: 0,01031 g/cmsec (Pound, J. phys. Chem. 31, 551). Einfluß sehr dünner Schichten auf die gleitende Reidung auf Glas und auf Wismut: Hardy, Doubledday, Pr. roy. Soc. [A] 100, 560, 563; C. 1922 IV, 514. — Oberflächenspannung bei 15°: 28,26, bei 20°: 27,79, bei 30°: 26,87 dyn/cm (Ti., H.-R.; vgl. a. Faust, Z. anorg. Ch. 154, 63; Hammick, Andrew, Soc. 1929, 756). Oberflächenspannung bei 20°, 40° und 80°: Yajnik, Sharma, Bharadway, Quart. J. indian chem. Soc. 3 [1926], 68. Zu den Oberflächenspannungsangaben von Ramsay, Shields (Ph. Ch. 12, 458) vgl. Sugden, Soc. 125, 38, 39. Oberflächenspannung in Gegenwart von Holzkohle, Platinschwarz und Thoriumoxyd: Baker, Soc. 1927, 956. Parachot: Sugden, Soc. 1927, 1783; S. Sugden, The parachor and valency [London 1929], S. 167; Mumford, Phillips, Soc. 1929, 2128; Hunten, Maass, Am. Soc. 51, 161.

[Syst. Nr. 158

Spezifische Wärme cp von flüssiger Essigsäure bei 19,4° (0,488 cal/g) und bei 21,5° (0,491 cal/g) und von krystallisierter Essigsäure zwischen —175,8° (0,187 cal/g) und +1,5° (0,351 cal/g): Parks, Kelley, Am. Soc. 47, 2091. Verbrennungswärme bei konstantem Volumen: 207,1 kcal/Mol (Roth in Landolt-Börnst. E I, 872). Schmelzwärme: 46,7 cal/g (Parks, Kelley, Am. Soc. 47, 2092).

Optische Eigenschaften. nα: 1,37165; nHe: 1,37392; nβ: 1,37851; nγ: 1,38297 (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 424); nμ: 1,3744; nρ: 1,3721 (Tromp, R. 41, 296); nα: 1,3510; nρ: 1,3531; nβ: 1,3574; nγ: 1,3611 (Waterman, Bertram, R. 46, 701); Brechungsindices für Helium-Linien: Ti., H.-R. — Quantitative Extinktionsmessungen an reiner Essigsäure und wäßr. Lösungen: Ley, Arends, Ph. Ch. [B] 4, 235; an wäßr. Lösungen: Grossmann, Ph. Ch. 109, 331; Ley, Zschacke, B. 57, 1704; Ghosh, Bisvas, Z. El. Ch. 30, 102; Dahm, J. opt. Soc. Am. 15, 271; C. 1928 I, 1682; an Lösungen in Wasser und Alkohol: V. Henri, Études de photochimie [Paris 1919], S. 90; an Lösungen in Wasser, Hexan und Alkohol: Ley, Hünecke, B. 59, 515. Ultraviolett-Absorption von reiner Essigsäure: Hantzsch, B. 58, 958 (Hartley-Baly-Verfahren); Abderhalden, Haas, H. 155, 195 Tafel I; von Essigsäure in Wasser: A., H., H. 164, 4; in Alkohol: Manecke, Volbert, Farben-Zty. 32, 2889; C. 1927 II, 2786. In konz. Schwefelsäure gelöste Essigsäure absorbiert ultraviolettes Licht oberhalb 220 mμ nur sehr schwach (Hantzsch, B. 58, 945). Lichtabsorption im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 209; V. Henri, Études de photochimie [Paris 1919], S. 87; zwischen 2 und 8 μ: Bennett, Daniels, Am. Soc. 49, 55, 56. Absorption von Röntgenstrahlen durch flüssige Essigsäure: Thibaut, Trillat, C. r. 189, 907; Z. Phys. 61 [1930], 829, 830. — Luminescenz bei Bestrahlung mit langwelligem Ultraviolett: Wawillow, Tummermann, Z. Phys. 54, 270; C. 1929 I, 3070.

Reflexion von Licht an Essigsäure-Oberflächen: Bhatnagar, Shrivastava, Mitra, J. indian chem. Soc. 5, 336; C. 1928 II, 1745. Intensität und Polarisationezustand des Streulichts bei der Streuung von weißem oder farbigem Licht in flüssiger Essigsäure: Gans, Z. Phys. 30, 233, 234; C. 1925 I, 1565; II, 1509; Krishnan, Phil. Mag. [6] 50, 706; C. 1926 I, 838; Venkateswaran, Indian J. Phys. 1, [1926/27], 396; in flüssiger Essigsäure bei verschiedenen Temperaturen: S. R. Rao, Indian J. Phys. 3, 10; C. 1929 I, 20; an Essigsäure-Oberflächen: Raman, Ramdas, Pr. roy. Soc. [A] 109, 274; C. 1926 I, 838; Ramdas, Indian J. Phys. 1, 221; C. 1927 II, 2535; in Essigsäure-Dampf: I. R. Rao, Indian J. Phys. 2, 83; C. 1928 I, 838. Ramanspektrum: Cabannes, Salvaire, C. r. 188, 907; Dadieu, Kohlrausch, M. 52, 230, 399, 402, 405; Sber. Akad. Wien [IIa] 138, 51; Phys. Z. 30, 384 Tafel VIII, 389; C. 1929 II, 697, 970; Kohlrausch, Phot. Korresp. 65, 162; C. 1929 II, 1508; Daure, Ann. Physique [10] 12, 436, 438 Tafel IV; Venkateswaran, Phil. Mag. [7] 7, 599; C. 1929 I, 2389; Ganesan, V., Indian J. Phys. 4, 216; C. 1929 II, 2646. Beugung von Röntgenstrahlen in flüssiger Essigsäure: Katz, Kautschuk 1927, 217; Z. Phys. 45, 101; C. 1927 II, 1206; 1928 I, 154; Sogani, Indian J. Phys. 2, 102; C. 1928 I, 470; Raman, Sogani, Nature 120, 514; C. 1928 I, 471; Herzog, Jancke, Z. Phys. 45, 198; C. 1928 I, 639; Krishnamueti, Indian J. Phys. 2, 494; C. 1928 II, 2098; Stewart, Pr. nation. Acad. USA. 13, 787; C. 1928 I, 639. St., Mannheimer, Z. anorg. Ch. 171, 68; Morreow, Phys. Rev. [2] 31, 11; C. 1928 I, 2693; Beugung von Röntgenstrahlen in Essigsäure bei 28° und 130°: Valdyanathan, Indian J. Phys. 8, 394; C. 1928 I, 2950.

Elektrische und magnetische Eigenschaften. Dielektr. Konst. der flüssiger. Essigsünger. Essigsünger. Dielektr. Konst. der flüssiger.

Elektrische und magnetische Eigenschaften. Dielektr.-Konst. der flüssigen Essigsäure bei 20°: 9,55; Dielektr.-Konst. der festen Substanz bei +15° und —12° für Wellenlängen von 18,5 bis 960 km: Errera, J. Phys. Rad. [6] 5, 308; C. 1925 I, 1390. Elektrische Leitfähigkeit von flüssiger Essigsäure bei 25°: Kendall, Gross, Am. Soc. 43, 1428; K., Brakeley, Am. Soc. 43, 1827; R. Müller, Raschka, Wittmann, M. 48, 661; bei 0° (unterkühlt) und 25°: Rabinowitsch, Ph. Ch. 119, 64; K. 58, 230; bei 18° und 25°: Schall, Thieme-Wiedtmarchter, Z. El. Ch. 35, 337 Anm. 3; von fester Essigsäure bei 0°: Rabinowitsch. Elektrische Doppelbrechung: Pauthenier, J. Phys. Rad. [6] 2, 388; C. 1923 III, 9.

Magnetische Susceptibilität bei 29°: ATHANASIADIS, Ann. Phys. [4] 66, 425. Magnetische Doppelbrechung: RAMANADHAM, Indian J. Phys. 4, 27; C. 1929 II, 2315.

H 100, Z. 3 v. o. statt "0,5" lies "1,497". Z. 4 v. o. statt "1,00" lies "0,99".

Eigenschaften von Essigsäure enthaltenden Gemischen.

Mechanische und thermische Eigenschaften.

Gegenseitige Löslichkeit von Eisessig und Baumwollsamenöl und von Eisessig und Petroleum bei 25°: Gordon, Reid, J. phys. Chem. 26, 782. Mischbarkeit mit 1-Bromnaphthalin(?) bei verschiedenen Drucken: Timmermans, J. Chim. phys. 20, 506. — Kritische Lösungstemperatur der Gemische von Eisessig mit Cyclohexan: 4,2° (Johns, Soc.

123, 1383); mit Schwefelkohlenstoff: 3,9° (J.), 4,25° (TI., Hennaut-Roland, J. Chim. phys. 27 [1930], 423); von Gemischen mit Petroleum: J. Einfluß von Wasser auf die kritische Lösungstemperatur der Gemische von Eisessig mit Cyclohexan, Schwefelkohlenstoff und Petroleum sowie kritische Lösungstemperaturen von Gemischen aus wasserhaltiger Essigsäure und verschiedenen Substanzen: J., Soc. 123, 1383, 1385, 1387, 1389. Einfluß verschiedener Substanzen auf die kritischen Lösungstemperaturen von Gemischen aus wäßr. Essigsäure und Benzol: J., Soc. 123, 1390; von Gemischen aus wäßr. Essigsäure und Schwefelkohlenstoff: J., Soc. 123, 1393. Einfluß von Eisessig auf die kritische Lösungstemperatur der Systeme Acetanhydrid-Cyclohexan, Acetanhydrid-Schwefelkohlenstoff und Acetanhydrid-Petroleum: J., Betts, Soc. 1928, 1191. Einfluß von verd. Essigsäure und von verd. Essigsäure + verd. Natronlauge auf die kritische Lösungstemperatur des Systems Wasser-Phenol: Dubrisay, A. ch. [9] 17, 239. Untere und obere kritische Lösungstemperaturen im System Essigsäure-Anilin-Wasser: Angelescu, Motzoc, Bulet. Soc. chim. România 7, 18; C. 1925 II, 1126; im System Essigsäure-O-Toluidin-Wasser: (Ang., Bulet. Soc. chim. România 7, 87; C. 1926 I, 2286.

Verteilung von Essigsäure zwischen Wasser und Chloroform: Smith, J. phys. Chem. 25, 618; Schilow, Lepin, Ph. Ch. 101, 383; zwischen Wasser und Benzol: Sch., L., Ph. Ch. 101, 381; Brown, Bury, Soc. 128, 2431, 2432; Schulz, Koll. Beih. 21, 42; C. 1925 II, 1840; HARKINS, McLAUGHLIN, Am. Soc. 47, 1612; ANGELESCU, COMANESCU, Bulet. Soc. chim. România 10 [1926], 177; zwischen Benzol und wäßr. Lösungen von Kaliumchlorid und Komania 10 [1920], 177; zwischen Benzol und wabr. Lösungen von Kahlunchioria und Kaliumacetat: Ang., Co.; zwischen Benzol und wäßr. Lösungen verschiedener Salze: Mittra, J. indian chem. Soc. 5, 211; C. 1928 II, 428. Verteilung zwischen Wasser und Tetralin und zwischen Wasser und Dekalin bei 25°: Herz, Schuftan, Ph. Ch. 101, 282; zwischen Wasser und Äther: Schi., Le., Ph. Ch. 101, 380; Smith, J. phys. Chem. 25, 619; Pinnow, Z. Unters. Nahr.-Genuβm. 44, 206; C. 1923 II, 440; Johnson, Cereal Chem. 2 [1925], 351; Behrens, Fr. 69, 99, 102; Perschke, Tschufarow, Z. anorg. Ch. 151, 126; zwischen Wasser and Schulp a und Äther bei gleichzeitiger Anwesenheit von Wasserstoffperoxyd: Pr., Tsch.; zwischen Äther und wäßr. Lösungen verschiedener Salze: Larsson, Svensk kem. Tidskr. 41, 137; C. 1929 II, 1136. Verteilung zwischen Isoamylalkohol und Wasser: Pr., Tsch., Z. anorg. Ch. 151, 123; Wosnessenski, Astachow, Ж. 59, 756; C. 1928 I, 2910; zwischen Isoamylalkohol und wäßr. Saccharose-Lösung sowie wäßr. Salz-Lösungen: Sugden, Soc. 1926, 176; zwischen Isoamylalkohol und Wasser bei Gegenwart von Wasserstoffperoxyd: PE., TSCH., Z. anorg. Ch. 151, 124; C. 1926 II, 2264. Verteilung zwischen Wasser und Cyclohexanol und zwischen Wasser und technischem Kresol: Weissenberger, Schuster, Piatti, Z. anorg. Ch. 151, 79; zwischen Wasser und Anilin: Angelescu, Motzoc, Bulet. Soc. chim. România 7 [1925], 7 [1925], 15; zwischen Wasser und Anlin: Angelescu, Motzoc, Bulet. Soc. chim. România 7, 1925], 15; zwischen Wasser und o-Toluidin: Angelescu, Bulet. Soc. chim. România 7, 83; zwischen Wasser und Olivenöl: Bodansky, J. biol. Chem. 79, 252; zwischen Wasser und Baumwollsamenöl und zwischen Wasser und Petroleum: Gordon, Reid, J. phys. Chem. 26, 785, 786; zwischen Glycerin und Aceton: Smith, J. phys. Chem. 25, 729. Löslichkeitsdiagram m des Systems Essigsäure-Wasser-Toluol bei 25°: Woodman, J. phys. Chem. 30, 1283; des Systems. Essigsäure-Wasser-Anilin zwischen 0° und 65,4°: Ang., M., Bulet. Soc. chim. România 7, 11; des Systems Essigsäure-Wasser-o-Toluidin zwischen 0° und 89,7°: Ang., Bulet. Soc. chim. România 7, 81; des Systems Essigsäure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsäure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsäure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsäure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsäure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsäure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsüure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsüure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsüure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsüure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsüure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems Essigsüure-Wasser-Epichlorhydrin wischen 0° und 60°: Leone, România 7, 81; des Systems 6, 80°; des Systems 6, 80° Benelli, G. 52 II, 78; des Systems Essigsäure-Kupferacetat-Wasser bei 25°: Sandved, Soc. 1927, 2968; des Systems Essigsäure-Bleiacetat-Wasser bei 25°: S., Soc. 1927, 2970; der Systeme Essigsäure-Bleichlorid-Wasser und Essigsäure-Bleiacetat-Bleichlorid-Wasser bei 25°: S., Soc. 1929, 340, 343; des Systems Essigsäure-Uranylacetat-Wasser bei 25°: Colani, Bl. [4] 41, 1292. — Lösungsvermögen von Eisessig für Wasserstoff bei 20°: Willstätter, Waldschmidt-Leitz, B. 54, 138; für Ozon bei verschiedenen Temperaturen: v. Wartenberg, v. Podjaski, Z. anorg. Ch. 148, 395; für Stickoxydul und Kohlendioxyd zwischen 18° und 36°: Kunerth, Phys. Rev. [2] 19, 517; C. 1923 III, 1126; für Jod bei 15°: André, Bl. [4] 38, 1643; für Jodtrichlorid: Bruns, Ph. Ch. 118, 90; für verschiedene Salze: DAVIDSON, Am. Soc. 50, 1892; für 2.4.6-Trinitro-m-xylol bei 15°, 90° und 115°: DESVERGNES, Ann. Chim. anal. appl. 25 [1920], 280; für Naphthalin bei verschiedenen Temperaturen: WABD, J. phys. Chem. 30, 1325; für Fluoren und Resorcin bei verschiedenen Temperaturen: MORTIMER, Am. Soc. 45, 634; für Phenenthren bei 20°, 25° und 30°: HENSTOCK, Soc. 121, 2125. Lösungsvermögen von Essigsäure verschiedener Konzentration für Chlorwasserstoff bei 0° und 25° und für Schwefeldioxyd bei 27°: Čupr. R. 47, 60, 63; C. 1926 II, 174; für Bleichlorid bei 25°: Herz, Martin, Z. anorg. Ch. 140, 339; Sandved, Soc. 1929, 342; von verd. Essigsäure für das Salz [Co(NH₃)₄Cl₂]Br bei 0°: Brönsted, Petersen, Am. Soc. 43, 2272. Einfluß von Eisessig auf die Löslichkeit von Jod in Tetrachlorkohlenstoff: Gröh, Z. anorg. Ch. 162, 297.

Erstarrungspunkte von Gemischen mit Propionsäure: RICHARDS, ENGLAND, Analyst 51 [1926], 284; von Lösungen von Lithiumchlorid, Kaliumchlorid und Calciumchlorid in verd. Essigsäure: Gontscharow, Ж. 61, 1526; С. 1930 II, 208. — Thermische Analyse

des Systems mit Natriumacetat s. S. 114, 115; des Systems mit Quecksilber(II)-acetat s. S. 118. Thermische Analyse der binären Systeme mit Phenol: Mameli, Cocooni, G. 52 II, 117; mit Acetamid und Benzamid: Kremann, Mauermann, Oswald, M. 43, 340, 343; mit Harnstoff: Kr., Weber, Zechner, M. 46, 201, 221; mit Anilin: O'Connor, Soc. 119, 400; Kr., W., Z., M. 48, 200, 220; mit Dimethylanilin: O'C., Soc. 125, 1426; mit N-Allyl-N'-phenylthioharnstoff: Schischokin, Z. anorg. Ch. 181, 142; C. 1929 I, 2957; mit o-, m- und p-Toluidin und Mesidin: O'C., Soc. 125, 1422, 1425, 1426; mit p-Toluidin, α- und β-Naphthylamin und o-, m- und p-Phenylendiamin: Kr., W., Zr., M. 46, 200, 215, 218; mit Phenylhydrazin: Trifonow, Tscherbow, Izv. biol. Inst. Perm. Univ. 6, 316; C. 1929 II, 1284; mit Azobenzol: Kr., Ze., M. 46, 171, 174. Thermische Analyse des quaternären Systems Essigsäure-Acetamid-Acetanhydrid-Acetonitril: Kr., Zoff, Oswald, M. 43, 140; des quaternären Systems Essigsäure-Benzoesäurenhydrid-Acetanhydrid-Benzoesäure: Kr., Rosler, M. 43, 360; der quaternären Systeme Essigsäure-Benzonitril-Acetanhydrid-Benzamid und des quinären Systems Essigsäure-N-Acetyl-benzamid-Acetanhydrid-Benzamid und des quinären Systems Essigsäure-N-Acetyl-benzamid-Benzonitril-Acetanhydrid-Benzamid: Kr., R., Penkner, M. 43, 147, 148, 155.

Kryoskopisches Verhalten von Lithiumbromid, Lithiumjodid, Lithiumnitrat, Natriumbromid und Natriumacetat in Eisessig: Webb, Am. Soc. 48, 2265, 2269; von Tetraalkylammoniumsalzen und von Isoamyltriphenylphosphoniumjodid in Eisessig: Walden, Ph. Ch. 94, 310; von Essigsäure in Wasser: Kendall, King, Soc. 127, 1780; Jones, Bury, Phil. Mag. [7] 4, 842; C. 1928 I, 1266; in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1914], 1163; C. 1925 I, 1557; Scheibe, B. 60, 1413 Ann.; Petterson, Rodebush, J. phys. Chem. 32, 715; in Benzol und Nitrobenzol: Trautz, Moschel, Z. anorg. Ch. 155, 13; in einem Gemisch aus gleichen Teilen Alkohol und Benzol: Wright, Soc. 127, 2337. Kryoskopisches Verhalten von Gemischen aus Aceton und Essigsäure in Benzol: Scheibe, B. 60, 1413; von Gemischen aus Äthylacetat und Essigsäure in Wasser: Kendall, King, Soc. 127, 1780; in Benzol: Ke., Booge, Soc. 127, 1776.

Siedepunkte und Zusammensetzung des Destillats von binären Gemischen mit Wasser: Pascal, Mitarb., Bl. [4] 29, 14; Powarnin, Markow, Ж. 55, 382; C. 1925 II, 706. Über die Flüchtigkeit mit Wasserdampf vgl. ferner Knetemann, R. 47, 954, 955, 957; Virtanen, Pulkki, Am. Soc. 50, 3141; C. 1928 I, 167; Othmer, Ind. Eng. Chem. 20, 745; C. 1928 II, 1128; Lesley, Fruit Prod. J. 8, Nr. 11, S. 14; C. 1929 II, 1848; vgl. a. die Angaben über Bestimmung durch Wasserdampfdestillation, S. 112. Flüchtigkeit mit Benzol-Dampf: Othmer. Siedepunkte und Zusammensetzung des Destillats von binären Gemischen mit Acetaldehyd: Pascal, Mitarb.: mit Acetanhydrid: Powarnin, Markow, Ж. 55, 377, 380; C. 1925 II, 706; von ternären Gemischen mit Wasser und Acetaldehyd und mit Wasser und Schwefelsäure: Pascal, Mitarb. Binäre Azeotrope, die Essigsäure enthalten, s. in der untenstehenden Tabelle. Essigsäure bildet ternäre Azeotrope mit Benzol und Wasser (Kp: 68°) und mit Butylacetat und Wasser (Kp: 89°) (Distillerie des Deux Sèvres, D. R. P. 469 823; Frdl. 16, 209).

Essigsäure enthaltende binäre Azeotrope.

Komponente	Kp ₇₆₀	Essigsäure in Gew%	Komponente	Kp ₇₆₀	Essigsäure in Gew%
Tetrachlorkohlen-			Octan 2)	109.0	5
stoff 2) 3)	76,55	3	Trichlorathylen 3)	86,5	3.8
Bromoform 3)	118.3	82	Tetrachlorathylen 4) .	107.35	38.5
Nitromethan 2)	101,12	4	Allyljodid 4)	100	ca. 6
Athylenbromid 4)	114,65	55	Methylcyclohexan 2) .	96,3	31
Propyljodid *)	99.2	20	Cyclohexen 2)	81.8	6.5
Isopropyljodid 3)	88,3	9	Camphen a)	118.2	97
Butylbromid 2)	97.6	18	α-Pinen *)	117.2	82
Isobutylbromid 2)	90,2	12	Chlorbenzol 4)	114.65	58.5
Isobutyljodid 2)	109,5	37	Brombenzol *)	118.35	95
Isoamylchlorid 2)	97,2	18,5	Toluol 1)	104,95	34
Isoamylbromid ()	107,5	35	o-Xylol ^{'2})	116.0	76
Isoamyljodid 2)	117,65	80	p-Xylol *)	115.25	72
Heptan i)	91.9	33	Propvlnitrat *)	107.5	ca. 65

¹⁾ LECAT, Ann. Soc. scient. Bruxelles 48 [[1928], 116. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 19, 20, 21. — 2) L., Ann. Soc. scient. Bruxelles 49, 110, 111, 112. — 4) M. LECAT, La tension de vapeur de mélanges de liquides — L'azéotropisme [Gent-Brüssel 1918], S. 68; vgl. L., Ann. Soc. scient. Bruxelles 49, 34.

Dampfdruck von Gemischen mit Benzol zwischen 10° und 70°: G. C. Schmidt, Ph. Ch. 121, 243. Druck und Zusammensetzung des Dampfes über wäßr. Essigsäure bei 42° und 80,09°: Wrewski, Mischtschenko, Muromzew, Ph. Ch. 138, 367; Ж. 59, 604. Partialdruck der Essigsäure über ternären Gemischen mit Kaliumacetat und Wasser: Paul, Z. El. Ch. 28, 438.

Dichte bzw. spezifisches Volumen von binären Gemischen mit Wasser bei 20°: Pascal, Mitarb., Bl. [4] 29, 10; bei 25°: Kohner, Gressmann, Ph. Ch. [A] 144, 144; bei 35°: Fales, Morrell, Am. Soc. 44, 2083; mit Wasser, Benzol und Toluol bei 25°: Woodman, Chem. N. 134 [1927], 36; mit Benzol bei 20°: Rakshit, Z. El. Ch. 31, 322; mit Benzol, Alkohol, Aceton und Athylacetat bei 25°: Hammick, Andrew, Soc. 1929, 756; mit Toluol, m-Xylol, Phenol, o- und p-Kresol und Isoamylacetat bei 40°: Richardson, Robertson, Soc. 1928, 1779; von Gemischen mit Methanol bei 25°: Lifschitz, Beck, Koll.-Z. 26 [1920], 60; von Gemischen mit Propionsäure bei 15,5°: Richards, England, Analyst 51 [1926], 284; von binären Gemischen mit Acetaldehyd und von ternären Gemischen mit Wasser und Acetaldehyd bei 20°: Pascal, Mitarb., Bl. [4] 29, 10, 11; von ternären Gemischen mit Wasser und Saccharose bei 35°: Fales, Morrell, Am. Soc. 44, 2083. Dichte von Gemischen s. a. unten bei Dichte und Viscosität. Kompressibilität von Gemischen mit Wasser: Kar, Phys. Z. 26, 738; C. 1926 I, 1354; Venkateswaran, J. phys. Chem. 31, 1523. Volumenänderung beim Mischen mit Benzol: Rakshit, Z. El. Ch. 31, 322; G. C. Schmidt, Ph. Ch. 121, 252; bei der Neutralisation von Natronlauge und Kalilauge mit Essigsäure: Saslawsky, Standel. Towarow, Z. anorg. Ch. 180, 243.

Viscosität wäßr. Lösungen zwischen 10° und 31°: DE Kolossowsky, G. 55, 854; J. Chim. phys. 22, 323; vgl. a. TRAUBE, WHANG, Bio. Z. 203, 364. Einfluß der Neutralisation mit 1n-Natronlauge oder 1n-Kalilauge bei 15° auf die Viscosität von 1n-Essigsäure: SIMON, C. r. 181, 862. Viscosität von Gemischen mit Anilin bei 200: MARDLES, Soc. 125, 2248; von Gemischen mit Pyridin bei 20°, 40° und 80°: YAJNIK, Mitarb., Ph. Ch. 118, 313. Dichte (bzw. spezif. Volumen) und Viscosität von binären Gemischen mit Wasser bei 30,4°: Pound, Russell, Soc. 125, 777; mit Zinn (IV)-chlorid bei 25,2°: Stranathan, STRONG, J. phys. Chem. 31, 1423; mit Methanol bei 250: MA., Soc. 125, 2251; mit Aceton, Acetophenon, Athylacetat und Athylbenzoat bei 25°: KENDALL, BRAKELEY, Am. Soc. 43, 1827, 1828; mit Anilin bei 30°: POUND, Soc. 125, 1564; J. phys. Chem. 31, 550; von ternären Gemischen mit Anilin und Wasser bei 30,4°: P., RUSSELL, Soc. 125, 777. Dichte und Viscosität der einzelnen Schichten im System Essigsäure-Wasser-Toluol: Woodman, J. phys. Chem. 30, 1285. Diffusion von 1n-Essigsäure in 1n-Natriumchlorid-Lösung: GAPON, K. 60, 243; C. 1928 II, 730; in Alkohol, Benzol und Acetonitril und in Gemische dieser Lösungsmittel: Muchin, Faermann, Ph. Ch. 121, 183. Diffusion von Jod in Eisessig: Miller, Pr. roy. Soc. [A] 106 [1924], 737. Diffusion von Essigsäure durch Kollodium-Membranen: Collander, Comment. biol. Helsingfors 2, Nr. 6, S. 15, 18; C. 1926 II, 720; Fujita, Bio. Z. 170, 26; NORTHROP, J. gen. Physiol. 12, 443, 451, 453; C. 1929 II, 1387; durch lipoidhaltige Kollodium-Membranen: Philippson, Hannevart, C. r. Soc. Biol. 83, 1572; C. 1921 I, 543; durch Pergament: TERADA, Ph. Ch. 109, 211; in lipoidhaltige Eiweißgele: Tomita, Bio. Z. 153, 338; Traube, Bio. Z. 153, 359; Yumikura, Bio. Z. 157, 373; Tr., Y., Bio. Z. 157, 383; durch tierische Membranen: CROZIER, J. gen. Physiol. 5, 66; C. 1923 I, 255; HANNEVART. C. r. Soc. Biol. 96 [1927], 423.

Oberflächenspannung wäßr. Lösungen: Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; Tr., Somogyi, Bio. Z. 120, 95; Tr., Whang, Bio. Z. 203, 364; Tominaga, Bio. Z. 140, 238; Faust, Z. anorg. Ch. 154, 63. Oberflächenspannung von Gemischen mit Wasser und verschiedenen Salz-Lösungen: Wiegner, Magasanik, Virtanen, Koll. Z. 28 [1921], 63; von Gemischen mit wäßrig-alkoholischer Schwefelsäure: Glasstone, Trans. Faraday Soc. 21 [1925/26], 39; von binären Gemischen mit Benzol, Alkohol, Aceton und Athvlacetat bei 25°: Hammick, Andrew, Soc. 1929, 756; mit Pyridin bei 20°, 40° und 80°: Yajnik, Sharma, Bharadwaj, Quart. J. indian chem. Soc. 3, 68; C. 1926 II, 2147; vgl. a. Faust. Grenzflächenspannung zwischen Lösungen von Essigsäure in Wasser und Benzol: Harkins, McLaughlin, Am. Soc. 47, 1612. Oberflächenspannung der beiden Schichten und Grenzflächenspannung zwischen den Schichten im System Essigsäure-Wasser-Toluol: Woodman, J. phys. Chem. 31, 1743. Schaumbildung der wäßr. Lösung: Bartsch, Koll. Beih. 20, 5; C. 1926 I. 2362.

Adsorption des Dampfes an Tierkohle: Gustaver, Koll. Beih. 15, 288; C. 1923 I. 221; Alexejewski, Ж. 55, 411, 416, 424; C. 1925 II, 642; an Zuckerkohle: Bakr, McBain, Am. Soc. 46, 2720. Adsorption an Tierkohle aus wäßr. Lösung: Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 95; Watson, Biochem. J. 16, 617; Ostwald, De Izaguiere, Koll.-Z. 30 [1922], 297, 300; O., Schulze, Koll.-Z. 36 [1925], 291; Klein, Lotos 71 [1923], 285, 292; Richardson, Robertson, Soc. 127, 555; Schilow, Nekrassow, Ph. Ch. 130, 67; Ж. 60, 105; aus Wasser und aus wäßr. Lösungen verschiedener Salee: Wiegner, Magasanik, Virtanen, Koll.-Z. 28, 55, 62, 69; C. 1921 I, 701; Angelescu,

COMANESCU, Bulet. Soc. chim. România 10, 173; C. 1929 I, 2289. Einfluß des Glühens mit anorganischen Stoffen und der Belichtung mit Bogenlicht oder Quarz-Quecksilber-Licht auf die Adsorption an Tierkohle aus wäßr. Lösung: Alexejewski, Awgustinik, Ж. 61. 134, 137, 141; С. 1929 II, 706. Adsorption aus wäßr. Lösung an Holzkohle: Yajnik, Rana, 13. 7hys. Chem. 28, 277; Krestinskaja, Ж. 58, 1004, 1013; 61, 2114—2125; C. 1927 1, 2047; 1930 II, 529; an aktivierte Holzkohle bzw., aktive Kohle": Schilow, Lepin, Ph. Ch. 94, 35, 36; Sch., Ph. Ch. 100, 426; Dubinin, Ph. Ch. 123, 95; 128, 270; 135, 33; Ж. 58, 1198; 59, 1047; Surun, C. r. 182, 1545; Fromageot, Wurmser, C. r. 179, 973; an aktivierte Holzkohle aus verd. Salzsäure: Sch., L., Ph. Ch. 94, 51; Du., Ph. Ch. 123, 97; Ж. 58, 1201. Einfluß von Belichtung auf die Adsorption an aktive Kohle aus wäßr. Lösung: ALEXEJEWSKI, AWGUSTINIK, Ж. 61, 141; С. 1929 II, 706. Adsorption aus wäßr. Lösung an Zuckerkohle: Nekrassow, Ph. Ch. 186, 380; an aktivierte Zuckerkohle: Bartell. MILLER, Am. Soc. 45, 1109; KOLTHOFF, R. 46, 558; an aktivierte Zuckerkohle in Gegenwart von Rhodanwasserstoffsäure: Ko., R. 46, 561; an Cocosnußkohle und Acetylenruß: NAMASI-VAYAM, Quart. J. indian chem. Soc. 4, 451, 457; C. 1928 I, 662; an verschiedene Kohlen: UMETSU, Bio. Z. 135, 477; SABALITSCHKA, ERDMANN, Z. ang. Ch. 38, 571; SA., Pharm. Ztg. 74, 382; C. 1929 I, 2288; Honig, Koll. Beih. 22, 388; C. 1926 II, 2675; Nekrassow, Ph. Ch. 136, 22, 26. Adsorption an Tierkohle aus flüssigen Gemischen mit Benzol: KLEIN, Lotos 71 [1923], 294; an Tierkohle und Zuckerkohle aus flüssigen und dampfförmigen Gemischen mit Toluol: BAKR, McBAIN, Am. Soc. 46, 2721, 2722; an Tierkohle aus Gemischen mit Alkohol-Dampf: Alexejewski, Ж. 55, 424; C. 1925 II, 642; aus Lösungen in Alkohol: Griffin. RICHARDSON, ROBERTSON, Soc. 1928, 2708; aus Lösungen in Wasser-Alkohol-Äthylacetat-Gemischen: Przylecki, Giedroyc, Sym, Biochem. J. 22, 824; aus Lösungen in verschiedener organischen Lösungsmitteln: OSTWALD, SCHULZE, Koll.-Z. 36, 292, 298; C. 1925 II, 712; au aktivierte Holzkohle aus Lösungen in reinem und wäßrigem Methanol: Schilow, Lepin, Ph. Ch. 94, 61; Dubinin, Ph. Ch. 128, 270; Ж. 59, 1047; aus Lösungen in Alkohol: Sch., L., Ph. Ch. 94, 35; aus Lösungen in Äther-Wasser-Gemischen: Du., Ph. Ch. 128, 275; Ж. 59, 1050; aus Lösungen in Aceton-Wasser-Gemischen: Du., Ph. Ch. 128, 276; 135, 33; Ж. 59, 1052; 60, 961; aus wäßr. Saccharose-Lösung: Du., Ph. Ch. 128, 279; Ph. Ch. 59, 1055; an verschiedene Kohlen aus Lösungen in verschiedenen Lösungsmitteln: NEKRASSOW, Ph. Ch. 136, 22, 26. An Zuckerkohle adsorbierte Essigsäure läßt sich der Kohle durch Schütteln mit Benzol und Wasser fast quantitativ entziehen (MILLER, Am. Soc. 46, 1154).

Adsorption des Dampfes an Aluminiumoxyd und Thoriumoxyd bei 99,4°: Pearce, Alvarado, J. phys. Chem. 29, 266; an Titan(IV)-oxyd und Cer(IV)-oxyd bei 20°: Nikitin, Jurjew, 38. 61, 1033; C. 1930 I, 347; an Zirkonoxyd und Wolfram(VI)-oxyd bei 99,4°: Pearce, Rice, J. phys. Chem. 33, 703. — Über die Wärmetönung der Adsorption von flüssiger Essigsäure an Platin vgl. Palmer, Pr. roy. Soc. [A] 115, 229; C. 1927 II, 1678. — Adsorption aus wäßr. Lösungen durch Kieselsäure: Mehrotra, Dhar, Z. anorg. Ch. 155, 299; Bartell, Fu, J. phys. Chem. 33, 680; an Siloxen Si₄O₃H₆: Kautsky, Blinoff, Ph. Ch. [A] 139, 509; an Aluminiumoxyd, Eisen (III)-oxyd und Mangan (IV)-oxyd: Schilow, Ph. Ch. 100, 429; an Mangan (IV)-oxyd-hydrat: Sen, Bio. Z. 169, 193; an Eisen (III)-hydroxyd: Sen, J. phys. Chem. 31, 526; Krause, Z. anory. Ch. 169, 276; an Kieselgur und Bariumsulfat: Sabalitischka, Erdmann, Z. ang. Ch. 38, 571; an Baumwolle und Viscose: Brass, Frei Koll.-Z. 45, 246; C. 1928 II, 1037; an Filtrierpapier: Mokruschin, Krylow, Koll.-Z. 43, 389; C. 1928 I, 890; vgl. dagegen Brass, Frei; an Kollodium: Northrop, J. gen. Physiol. 12 [1929]. 449; an Torf: Schilow, Ph. Ch. 100, 432. Adsorption aus Tetrachlorkohlenstoff - Lösung durch Kieselsäure: Bartell, Fu, J. phys. Chem. 33, 680; aus Lösungen in Tetrachlorkohlenstoff, Nitrobenzol, Toluol, Gasolin, Petroleum und Schwefelkohlenstoff durch Silicagel: Patrick, Jones, J. phys. Chem. 29, 4; aus Lösungen in Gasolin durch Silicagele, gefällte Kieselsäure und Quarzpulver: Jones, J. phys. Chem. 29, 334; aus Nitrobenzol - Lösung durch Calciumchlorid: Brown, Bury, J. phys. Chem. 29, 1314; aus Aceton-Lösung durch Viscose: Brass, Frei, Koll.-Z. 45, 247. Einfluß auf die Adsorption des Poloniums an Sand: Brennen, K. ch. [10] 3, 413. — Aufnahme aus wäßr. Lösung durch Hautpulver: Kubelka, Taussig. Koll. Beih. 22, 153, 158; C. 1926 II, 2138; Pawlow, Timochin, Koll.-Z. 40, 130, 134; C. 1927 I. 42: durch amidierte Baumwolle: Kabere, Kwong. Helv. 11, 526.

134; C. 1927 I, 42; durch amidierte Baumwolle: KARRER, KWONG, Helv. 11, 526.
Adsorption von Essigsäure an der Oberfläche wäßr. Essigsäure-Lösungen: McBain, Du Bois, Am. Soc. 51, 3542. Ausbreitung auf Wasser-Oberflächen: Harkins, Feldman, Am. Soc. 44, 2670; RAMDAS, Indian J. Phys. 1, 14, 20; C. 1926 II, 1935; vgl. ZAHN, R. 45, 790. Ausbreitung wäßr. Lösungen auf einer Quecksilber-Oberfläche und Einfluß des elektrischen Stroms auf die Ausbreitung: Burdon, Olyphant. Trans. Faraday Soc. 23, 208. C. 1927 I 677

Stroms auf die Ausbreitung: Burdon, Oliphant, Trans. Faraday Soc. 23, 208; C. 1927 I, 677.
Peptisierende Wirkung von Essigsäure in Nitrobenzol auf Calciumchlorid: Brown, Bury, J. phys. Chem. 29, 1315. Auflösung von Metallhydroxyd-Gelen in wäßr. Essigsäure s. S. 104. Wirkung von Essigsäure auf die Quellung von Casein: Isgaryschew, Pomeranzewa, Ж. 58, 166; Koll.-Z. 38, 236; von Gelatine: Loeb, J. gen. Physiol. 3, 254; C. 1921 I, 371; von Hautpulver: Kubelka, Taussig, Koll. Beih. 22 [1926], 169, 171; Pawlow, Timochtm.

Koll.-Z. 40 [1926], 132. Ausflockende Wirkung von Essigsäure auf Arsensulfid-Sol: Ostwald, Koll.-Z. 40, 205; C. 1927 I, 573; auf Arsensulfid-Sol und Goldsol: MUKHERJEE, CHAUDHURI, Soc. 125, 796, 799; auf Lösungen von Casein und Edestin in verd. Natronlauge: ISGARYSCHEW, BOGOMOLOWA, Ж. 58, 158; Koll.-Z. 38, 238; C. 1926 I, 3306; auf Serumeiweiß: LORBER, Bio. Z. 183, 18; auf verschiedene Sole: Schilow, Ph. Ch. 100, 436. Ausflockende Wirkung des Acetat-Ions auf Arsensulfid-Sol und Eisenhydroxyd-Sol: HERRMANN, Helv. 9, 786.

Spezifische Wärme wäßriger Lösungen: Sandonnini, R. A. L. [6] 4, 64; Richards, Gucker, Am. Soc. 47, 1889; 51, 723. Wärmetönung beim Mischen mit Wasser und beim Verdünnen wäßr. Lösungen: Karve, Quart. J. indian chem. Soc. 1, 257; C. 1925 II, 898; Sandonnini; Richards, Gucker, Am. Soc. 51, 719, 724; beim Mischen mit Benzol: G. C. Schmidt, Ph. Ch. 121, 252; mit Benzol, Pentan, Äther, Aceton und Athylacetat: Karve; mit Acetonitril: Popow, Ukr. chemič. Ž. 2, 388; C. 1928 I, 167. Wärmetönung bei der Adsorption des Dampfes an Tierkohle: Alexejewski, Ž. prikl. Chim. 1, 183; C. 1929 II, 708. Neutralisationswärme s. S. 104.

Optische Eigenschaften. Brechungsindices von Gemischen mit Wasser bei 25°: Kohner, Gressmann, Ph. Ch. [A] 144, 144; bei 25° und 30°: Elsey, Lynn, J. phys. Chem. 27, 342; von Gemischen mit Methanol bei 25°: Lifschitz, Beck, Koll.-Z. 26, 60; C. 1920 III, 82. Einfluß der Neutralisation von wäßt. Essigsäure mit Natronlauge oder Kalilauge auf die Lichtbrechung: Hammett, J. Franklin Inst. 199, 94; C. 1925 I, 1479. — Einfluß von Eisessig auf die Rotationsdispersion von Bornylacetat: Moesveld, Versl. Akad. Amsterdam 37, 832; Pr. Akad. Amsterdam 32, 353; C. 1929 I, 1193; II, 386. Einfluß von Essigsäure auf das Drehungsvermögen wäßt. Lösungen von Ammoniumdimolybdomalat: Darmois, Bl. [4] 39, 639. — Absorptionsspektrum von Jod in Eisessig: Gröh, Z. anorg. Ch. 162, 288. Ultraviolettes Absorptionsspektrum von Uranylnitrat in wäßt. Essigsäure: Ghosh, Mitra, Quart. J. indian chem. Soc. 4 [1927], 356; von Eisen(III)-chlorid in wäßt. Essigsäure: Gh. M., J. indian chem. Soc. 5 [1928], 193. Absorptionsspektrum von Essigsäure in verschiedenen Lösungsmitteln s. S. 98. — Lichtstreuung in wäßt. Lösungen von Essigsäure: Sweitzer, J. phys. Chem. 31, 1181; Venkateswaran, Indian J. Phys. 1, 396; C. 1927 II, 2534; an Oberflächen von wäßt. Lösungen: Bouhet, C. r. 188, 60; 189, 43; in Gemischen mit Toluol: Rav, Pr. indian Assoc. Cult. Sci. 9, 23, 24; C. 1926 II, 2270. Ramaneffekt in wäßt. Essigsäure: Dadieu, Kohlerausch, Phys. Z. 30 [1929], 389. Opalescenz von Silberchlorid-Suspensionen in 50% iger Essigsäure: Lame, Carleton, Meldrum, Am. Soc. 42, 259.

Elektrische Eigenschaften. Elektrische Leitfähigkeit in Wasser bei 00: KENDALL, King, Soc. 127, 1784; bei 18°: Kolthoff, R. 48, 224; Remesow, Bio. Z. 207, 76; bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192; bei 0°, 20° und 40° und Drucken bis 3000 kg/cm²: TAMMANN, TOFAUTE, Z. anorg. Ch. 182, 358. Leitfähigkeit von Gemischen mit wäßr. Salzsäure: Ko., R. 39, 295. Leitfähigkeit in Wasser bei Gegenwart von Borsäure: Ko., R. 45, 397; bei Gegenwart von Ameisensäure: Ko., Z. anorg. Ch. 111, 50; bei Gegenwart von Athylacetat: Ke., King, Soc. 127, 1784; bei Gegenwart von Glykolsäureäthylester: Hol-WERDA, Bio. Z. 128, 469; bei Gegenwart von Saccharose: Ko., R. 48, 225; in Gegenwart von Kolloiden: Brintzinger, Koll.-Z. 43, 97—100; C. 1927 II, 2653. Elektrische Leitfähigkeit von Eisessig in flüssigem Bromwasserstoff und Chlorwasserstoff: BECKMANN, WAENTIG, Z. anorg. Ch. 67 [1910], 49, 50, 53; in flüssigem Schwefelwasserstoff: Be., Wae., Z. anorg. Ch. 67, 57; QUAM, WILKINSON, Am. Soc. 47, 990; von Jodmonochlorid und Jodtrichlorid in Eisessig: Bruns, Ph. Ch. 118, 91, 97; vgl. Finkelstein, Ph. Ch. 115, 306; von Gemischen mit Zinn(IV)-chlorid: Stranathan, Strong, J. phys. Chem. 31, 1423. Elektrische Leitfähigkeit in absol. Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 38, 192; in absolutem und wäßrigem Alkohol bei 25°: Hölzl, M. 47, 120; in wäßr. Alkohol bei 18°: Kolthoff, R. 39, 128; in Alkohol bei Gegenwart von Ammoniak, Aminen, Harnstoff und Acetamid: Hölzl, M. 47, 125-148. Elektrische Leitfähigkeit von Gemischen mit Nitrobenzol: Schwartz, Beitr. Physiol. 2, 132; C. 1923 III, 1055; mit Aceton: Kendall, GROSS, Am. Soc. 48, 1432; SATA, Bl. chem. Soc. Japan 1, 246; C. 1927 I, 1269; HUNT, BRISCOE, J. phys. Chem. 38, 1498; mit Aceton und Wasser: Passerini, G. 54, 674; mit Acrolein: Moureu, Boutaric, Dufraise, J. Chim. phys. 18, 347; von binären Gemischen mit Acetorhenon, Formamid, Athylacetat, Chloressigsäure, Trichloressigsäure, Propionsäure, Athylbenzoat und Benzylbenzact: Ke., Gr., Am. Soc. 43, 1431, 1433, 1434; von Gemischen mit Anilin: Tscherbow, Izv. Inst. fiz.-chim. Anal. 3, 459; C. 1927 I, 2634; Trifonow, Tsch., Izv. biol. Inst. Perm. Univ. 6, 251; C. 1929 I, 2147; von Gemischen mit Anilin und Wasser: Pound, Soc. 125, 1560; von Trimethyl-p-tolyl-ammoniumjodid in Eisessig: CREIGHTON, WAY, J. Franklin Inst. 186, 691; C. 1920 III, 43; von Gemischen mit Pyridin:

TRI., TSCH., Izv. biol. Inst. Perm. Univ. 6, 257.

Überführungszählen und Ionenbeweglichkeit in Wasser: McBain, Harvey, Trans. am. electroch. Soc. 55, 220; C. 1929 II, 1136. Ionenbeweglichkeit in Wasser und Alkohol: Ulion, Fortsch. Ch., Phys. 18 [1924/26], 605; zur Ionenbeweglichkeit in Wasser vgl. a.

PRIDEAUX, Trans. Faraday Soc. 24, 12; C. 1928 I, 1150. Kataphoretische Wanderungsgeschwindigkeit von in verd. Essigsäure suspendierter aktiver Kohle: Fromaceot, C. r.

179, 1405.

Zersetzungsspannung von Jodmonobromid und Jodtrichlorid in Essigsäure: FINKEL-STEIN, Ph. Ch. 116, 306, 307. Wasserstoff-Uberspannung in wäßr. Essigsäure an Bleikathoden: GLASSTONE, Trans. Faraday Soc. 21, 39; C. 1926 I, 2436; an Gold-, Kupfer-, Platin- und Nickel-Kathoden: Onoda, J. Fac. Sci. Univ. Tokyo 1, 223; C. 1927 I, 1129. Potential der Sauerstoff-Elektrode in Alkohol-Acetaldehyd-Essigsäure-Gemischen von $p_H=4.15$: v. Euler, ÖLANDER, Z. anorg. Ch. 149, 13. Potentialdifferenzen an der Grenze zwischen Luft und wäßr. Essigsäure-Lösungen: FRUMKIN, Ph. Ch. 111, 192; 116, 490; an der Grenze zwischen wäßrigen und isoamylalkoholischen Lösungen von Essigsäure: Wosnessenski, Astachow, ж. **59**, 757; С. **1928** I, 2910.

Elektromotorische Kraft verschiedener Ketten mit wäßr. Essigsäure-Lösungen: MOBAN, TAYLOR, Am. Soc. 44, 2887; LEWIS, MERRIMAN, MOBAN, Am. Soc. 45, 702; DAWSON, CARTER, Soc. 1926, 2284; HARNED, ROBINSON, Am. Soc. 50, 3161. Elektromotorische Kraft und Stromrichtung von Ketten mit Essigsäure in Wasser und Isoamylalkohol: Wosnessensky, Ph. Ch. 115, 419; mit Essigsäure in Wasser und Nitrobenzol: Rosenberg, Westphal, Beitr. Physiol. 3, 230; C. 1926 II, 1932; vgl. Schwartz, Beitr. Physiol. 2, 131; C. 1923 III, 1055. Wasserstoffionen-Konzentration von Essigsäure in 0,1 n-wäßr. Lösung zwischen

18º und 60º: Kolthoff, Tekelenburg, R. 46, 34; in wäßr. Lösungen verschiedener Konzentration bei 50°: OLANDER, Ph. Ch. [A] 144, 67; in wäßr. Lösung verschiedener Konzentration und in wäßr. Saccharose Lösung bei 35°: Fales, Morrell, Am. Soc. 44, 2080; in Gemischen aus 1 n - Essigsäure und 0,1 n - Salzsäure: Kolthoff, R. 39, 295. p_H von äquimolekularen Essigsäure-Natriumacetat-Gemischen in Wasser zwischen 25° und 60°: Ko., TE.; in Wasser bei verschiedenen Konzentrationen: HAYNES, Biochem. J. 15, 447, 448; Ko., BOSCH, R. 47, 873; Ko., Bio. Z. 195, 244; in wäßr. Lösungen verschiedener Salze: HAY., Biochem. J. 15, 450; Ko., B., R. 47, 875; MORTON, Soc. 1928, 1401, 1407; in wäßr. Methanol: HAY., Biochem. J. 15, 452; Mizutani, Ph. Ch. 118, 328; in wäßr. Alkohol: Hay.; Michaelis, Mizutani, Ph. Ch. 116, 144; in 90% igem wäßrigem Aceton: Cray, Westrip, Trans. Faraday Soc. 21, 327; C. 1926 I, 3258; in wäßr. Saccharose-Lösung: Kolthoff, R. 48, 221.

Elektrolytische Dissoziationskonstante k (auf Ionenaktivitäten bezogen) von Essigsäure in Wasser bei 18°: 1,70·10⁻⁵ (aus p_H-Messungen) (Kolthoff, Bosch, R. 47, 874, 882), 1,86·10⁻⁵ (aus EMK-Messungen) (Cohn, Heyroth, Menkin, Am. Soc. 50, 709); bei 25°: 1,82·10⁻⁵ (aus p_H-Messungen) (SIMMS, J. phys. Chem. 32, 1128); Dissoziationskonstante k (ohne Berücksichtigung der Ionenaktivität) in Wasser bei 20°: 1,86·10⁻⁵ (aus der potentiometrischen Titrationskurve) (AUERBACH, SMOLCZYK, Ph. Ch. 110, 106); bei 25°: 1,85·10⁻⁵ (aus der elektrischen Leitfähigkeit) (KLEIN, Lotos 71 [1923], 280), 1,85·10⁻⁵ (aus der katalytischen Wirkung auf die Reaktion zwischen Aceton und Jod) (Dawson, Hall, KEY, Soc. 1928, 2847), 1,80·10-5 (aus der elektrischen Leitfähigkeit) (Holwerda, Bio. Z. 128, 468); bei 30°: 1,84·10⁻⁵ (aus der eiektrischen Leitranigkeit) (Holwerd, Bib. 2. 128, 468); bei 30°: 1,84·10⁻⁵ (aus p_H-Messungen) (Morton, Soc. 1928, 1407). Zur Dissoziationskonstante vgl. ferner Schreiner, Z. anorg. Ch. 115, 181; MacInnes, Am. Soc. 48, 2070; Duboux, Tsamados, Helv. 7, 860; Dawson, Hoskins, Soc. 1926, 3172; Da., Lowson, Soc. 1929, 1222; Mizutani, Ph. Ch. 118, 328. Dissoziationskonstante in wäßr. Alkohol: Du., Ts.; in Methanol: Bjerrum, Unmack, Zechmeister, Medd. danske Vid. Selsk. 5, Nr. 11, S. 7; C. 1925 I, 2680. Mit Hilfe von Indikatoren bestimmte relative Acidität in Renzol: Brökerum, P. 21. 2082. In teacher and wateren bestimmte Chloroform and Mathan. Benzel: Bronsted, B. 61, 2062; in trocknem und wasserhaltigem Chloroform und Ather: HANTZSCH, VOIGT, B. 62, 978. Geschwindigkeit der Auflösung von Marmor in Essigsäure in Gegenwart verschiedener Neutralsalze: Isgaryschew, Schapiro, Ph. Ch. 128, 232; Ж. 60, 129; in Gegenwart von Acetaten: I., Sch., Ph. Ch. 181, 443; Ж. 62 [1930], 234. Lösende Wirkung von verd. Essigsäure auf Aluminiumhydroxyd-Gele: WILLSTÄTTER, KRAUT, Erbacher, B. 58, 2454; auf Eisen(III)-hydroxyd-Gel: Krause, Z. anorg. Ch. 169, 280. Warmetönung der Neutralisation von wäßr. Essigsäure mit Natronlauge: RICHARDS, MAIR, Am. Soc. 51, 738; mit Natronlauge und mit Thallium(I)-hydroxyd-Lösung: DE FORCHARD, C. r. 176, 876; Wärmetönung bei der Neutralisation von Essigsäure in Methanol mit Natriummethylat-Lösung: Wolfenden, Jackson, Hartley, J. phys. Chem. 31, 858. Volumen-änderung bei der Neutralisation s. S. 101. Einfluß der Neutralisation auf die Viscosität s. S. 101; auf die Lichtbrechung s. S. 103.

Leitfähigkeitstitration von verd. Essigsäure mit 0,64 n-Ammoniak: Kolthoff, Z. anorg. Ch. 111, 24; von Essigsäure mit Natronlauge; K., R. 39, 287; mit Natronlauge bei Gegenwart lauge: K., Z. anorg. Ch. 111, 38; von Essigsäure + Phenol mit Natronlauge: K., Z. anorg. Ch. 111, 39; von Essigsäure + Milchsäure mit Natronlauge: K., R. 89, 285.

Potentiometrische Titration mit Ammoniak in wäßrig-alkoholischer Lösung: CAUDRI, R. 48, 789; mit Natronlauge in wäßr. Lösung: Eckweiler, Noyes, Falk, J. gen. Physiol.

3 [1920], 294, 296; HARRIS, Soc. 123, 3301; AUERBACH, SMOLCZYK, Ph. Ch. 110, 106; Cox, Am. Soc. 47, 2139; KLIT, Ph. Ch. 131, 67; SIMMS, J. phys. Chem. 32, 1128, 1133; mit Kalilauge: Rabinowitsch, Kargin, Z. El. Ch. 33, 13; mit Natronlauge in Gegenwart von Natriumchlorid und Magnesiumchlorid in Wasser: SIMMS; in Gegenwart von Borsäure: van Liempt, Z. anorg. Ch. 111, 162; R. 39, 368; mit Natriumäthylat in alkoh. Lösung: Bishop, Kittredger, Hildebrand, Am. Soc. 44, 137.

VAN LIEMPT, Z. anorg. Ch. 111, 162; R. 39, 368; mit Natriumäthylat in alkoh. Lösung: Bishop, Kittredge, Hildebrand, Am. Soc. 44, 137.

Katalytische Wirkungen. Autokatalytische Wirkung bei der Bildung aus Acetaldehyd und Sauerstoff: Kiss, Demény, R. 43, 231. Essigsäure hemmt die Fortpflanzung der Flamme in Schwefelkohlenstoff-Luft-Gemischen (White, Soc. 1927, 802) und fördert Oxydation und Rauchentwicklung an der Luft bei Thioisovaleriansäure-O-methylester, Thiobenzoesäure-O-methylester und verschiedenen Derivaten der Thiokohlensäure und der Dithiokohlensäure (Delépine, Bl. [4] 31, 764 Anm., 766, 780). Einfluß auf die Entzündungstemperatur von Motortreibstoffen: GREBEL, C. r. 189, 91. Katalytische Wirkung von Essigsaure + Natriumacetat auf die Zersetzung von Nitramid: Brönsten, Pedersen, Ph. Ch. 108, 196. Einfluß von Essigsäure und von Essigsäure + Natriumacetat auf die Geschwindigkeit der Reaktion von Aceton mit Jod unter verschiedenen Bedingungen: DAWSON, CARTER, Soc. 1926, 2290; Da., Dean, Soc. 1926, 2878; Da., Hoskins, Soc. 1926, 3170; Da., Soc. 1927, 221; Da., Key, Soc. 1928, 1241, 1252; Da., Hall, Key, Soc. 1928, 2847. Essigsäure hemmt die Zersetzung von Ameisensäure durch Acetanhydrid in Gegenwart von Strychnin; dieser Effekt kann zur Bestimmung geringer Mengen Essigsäure in Acetanhydrid dienen (Walton, Withrow, Am. Soc. 45, 2691). Hydrolvse von Äthylacetat in Gegenwart von Essigsäure s. S. 134 im Artikel Äthylacetat. Einfluß von Essigsäure auf die Zersetzung von Diazoessigester in Wasser und in wäßr. Alkohol bei 25°: Duboux, Tsamados, Helv. 7, 869. Einfluß von Eisessig auf die Geschwindigkeit der Reaktion $CH_3 \cdot CO_2 \cdot NH_4 \rightleftharpoons CH_3 \cdot CO \cdot NH_2 + H_2O$ bei 1370: NOYES, GOEBEL, Am. Soc. 44, 2288, 2289. Geschwindigkeit der Zersetzung von Benzoldiazoniumchlorid in Eisessig bei 30°, 40° und 50°: PRAY, J. phus. Chem. 30, 1480. Geschwindigkeit der Inversion von Saccharose bei Gegenwart von Essigsäure in Wasser bei 25°: Hantzsch, Weissberger, Ph. Ch. 125, 255; bei 35°: Fales, Morrell, Am. Soc. 44, 2084; in Wasser und in wäßr. Alkohol bei 73°: Duboux, Tsamados, Helv. 7, 860. Natriumacetat hemmt die photochemische Zersetzung von Saccharose in wäßr. Lösung im ultravioletten Licht bei 100° (Beyersdorfer, Hess, B. 57, 1709). Essigsäure hemmt die Autoxydation von fetten Ölen (De'Conno, Goffredi, Dragoni, Ann. Chim. applic. 15, 482; C. 1926 I, 2059). Einfluß von 0,1 n-Essigsäure auf die Vulkanisation von Kautschuk durch Dischwefeldichlorid in Benzol: LE BLANC, KRÖGER, Z. El. Ch. 27, 352.

[OSTERTAG]

Chemisches Verhalten.

Einwirkung von Licht, Wärme, Elektrizität. Eine Lösung von Cer(III)-sulfat in Methanol wird im Licht von Essigsäure entfärbt (Benrath, Ruland, Z. anorg. Ch. 114, 277). Veränderungen einer unterchlorige Säure enthaltenden Lösung von Natriumacetat bei Bestrahlung mit der Quarz-Quecksilberlampe: Allmand, Cunliffe, Maddison, Soc. 127, 834). Über die photochemische Umsetzung von Uranylacetat in Gegenwart von Essigsäure s. bei Uranylacetat, S. 122.

Eine Zusammenfassung über die thermische Spaltung von Essigsäure findet sich bei CH. D. HURD, The pyrolysis of carbon compounds [New York 1929], S. 332. Uber die Produkte der Zersetzung beim Erhitzen in der Bombe auf 350° und 412° vgl. HERNDON, REID, Am. Soc. 50, 3069, 3072. Leiten von Essigsäuredampf durch ein auf 800° erhitztes, mit Porzellanscherben gefülltes Quarzrohr ergibt Acetanhydrid und etwas Keten (Hurd, Martin, Am. Soc. 51, 3615). Beim Leiten durch ein Platinrohr bei 1150° bilden sich vorwiegend gasförmige Produkte (Methan, Äthylen, Acetylen, Kohlendioxyd, Kohlenoxyd und Wasserstoff) neben geringen Mengen Acetanhydrid und Wasser (Peytral, Bl. [4] 31, 113). Beim Leiten von Essigsäuredampf über Chamotte oder Bimsstein erfolgt reichliche Bildung von Acetanhydrid bei etwa 650°, während beim Leiten über Natriumchlorid schon bei 550° Acetanhydrid entsteht (Konsort. f. elektrochem. Ind., D. R. P. 408715; C. 1925 I, 1528; Frdl. 14, 259). Beträchtliche Mengen Acetanhydrid bilden sich beim Erhitzen von Essigsäure mit geringen Mengen Phosphor, Phosphorsäure oder deren Salzen bzw. Estern auf Temperaturen zwischen 650° und 700° (Konsort., D. R. P. 475885; C. 1929 II, 1071; Frdl. 16, 631) sowie beim Leiten von Essigsäuredampf über Alkaliphosphate, besonders Natriummetaphosphat bei etwa 600° (Konsort., D. R. P. 417731; C. 1925 II, 2092; Frdl. 15, 376), über Calcium-, Zink- oder Aluminiumphosphate bei 600° (Konsort., D. R. P. 410363; C. 1925 I, 2186; Frdl. 15, 375) oder über Titandioxyd bei 300° (CAMPARDOU, Shon, C. r. 186, 593; vgl. BISCHOFF, ADKINS, Am. Soc. 47, 808). Wasserfreie oder verdünnte Essigsäure liefert beim Leiten ihrer Dämpfe über Holzkohle bei ca. 300—430° Aceton, Methan und Kohlendioxyd als Hauptprodukte; außerdem entstehen etwas Kohlenoxyd und Wasserstoff (Kultaschew, KUDRJASCHEWA, 2K. 55, 383; C. 1925 II, 714). Uber die Mengen von Kohlendioxyd,

Kohlenoxyd, Wasserstoff und Kohlenwasserstoffen, die beim Leiten von Essigsäuredampf über Tierkohle oder Blutkohle bei 360-380° entstehen, vgl. Senderens, Aboulenc, C. r. 170. 1065. Beim Leiten von Essigsäuredampf über Natriumchlorid oder Calciumchlorid im Eisenrohr bei etwa 580° entstehen Kohlendioxyd, Kohlenoxyd, Wasserstoff und Aceton (MAILHE, Bl. [4] 37, 306). Beträchtliche Mengen Aceton entstehen beim Leiten von Essigsäuredampf über Bariumacetat bei 320° sowie über andere Erdalkaliverbindungen (BAYER & Co., D. R. P. 298851; C. 1920 IV, 437; Frdl. 13, 113) oder über Kalk., Baryt. und Magnesia-Katalysatoren bei Temperaturen bis zu 485° (MATHESON, Canad. Chem. J. 3 [1919], 260; ROONEY, Chem. met. Eng. 22 [1920], 849; HUTIN, Rev. Chim. ind. 30 [1921], 247; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 120). Leiten von Essigsäuredampf über wasserfreies Zinksulfat bei 380—400° ergibt Aceton, Wasser, Kohlendioxyd, Kohlenoxyd, Zinkacetat und andere Produkte (Brus, Bl. [4] 33, 1439). Beim Überleiten über ein auf etwa 6000 erhitztes Gemisch von Kupfer und Aluminiumoxyd erhält man Aceton, Wasser, Kohlendioxyd, Kohlenoxyd, Methan und Wasserstoff (MAILHE, Bl. [4] 31, 681; A. ch. [9] 17, 321; Caoutch. Guttap. 19, 11473; C. 1923 III, 38). Uber die Wirkung verschiedener Aluminiumoxyd-Katalysatoren auf die Bildung von Aceton durch Zersetzung von Essigsäure bei 465° vgl. ADKINS, NISSEN, Am. Soc. 46, 143. Beim Überleiten über Gußeisendrehspäne bei 350° bis 450° entsteht Aceton (Chem. Fabr. v. Heyden, Feibelmann, D. R. P. 435347; C. 1926 II. 2847; Frdl. 15. 374). Liefert beim Leiten über Nickel bei 380° Methan, Wasserstoff. Kohlendioxyd und Kohlenoxyd (MAILHE, Bl. [4] 35, 364), über Nickeloxyd bei 420° Athylen. Methan, Wasserstoff, Kohlendioxyd und Kohlenoxyd (ADKINS, LAZIER, Am. Soc. 46, 2294).

— Bei der thermischen Zersetzung der Acetate von Lithium, Natrium, Kalium, Magnesium,

Calcium, Barium, Blei und Mangan entstehen Aceton, Essigsäure, Methan, Kohlendioxyd, Kohlenoxyd und andere Produkte je nach dem Metall in wechselnden Mengen; die Pyrolyse von Kupferacetat liefert kein Aceton, sondern Essigsäure, Kohlendioxyd, Kupfer und Kohlenstoff (Krönig, Z. ang. Ch. 37, 671; Abh. Kenntnis Kohle 7 [1925], 116). Die Ausbeuten an Aceton bei der thermischen Zersetzung von Acetaten (vgl. H 2, 104) sind noch untersucht Aceton bei der thermischen Zersetzung von Acetaten (vgl. H 2, 104) sind noch untersucht für Lithiumacetat (ROJAHN, SCHULTEN, B. 59, 501), Natriumacetat (Ro., Sch.; Hägglund, J. pr. [2] 107, 51). Magnesiumacetat bei 330—360° und Magnesiumbromidacetat bei 330—350° (IWANOW, Bl. [4] 43, 445). Magnesium-, Calcium- und Bariumacetat (Kekre, Sudborough, Watson, J. Pr. asiat. Soc. Bengal 18 [1922], Nr. 6, S. 72; Chem. Abstr. 18 [1924], 1468), Calciumacetat (Goodwin, Sterne, J. ind. Eng. Chem. 12, 240; C. 1920 IV, 623; Ardagh, Mitarb., Ind. Eng. Chem. 16, 1137; C. 1925 I, 1288; Dosios, Leucaditis. C. r. 184, 1459) und Manganacetat bei Temperaturen bis 380° (Th. H. Durrans, Solvents, April II onder 1028). Schieß und Verließ und Watson 10281.

4. Aufl. [London 1938], S. 118). Essigsäure gibt im Gemisch mit Ameisensäure beim Leiten über Titandioxyd bei 300-350° entgegen der Angabe von Sabatier, Mailhe (C. r. 154 [1912], 563; 158 [1916], 985) keinen Acetaldehyd, stattdessen entsteht bei 340° etwas Aceton

(BISCHOFF, ADKINS, Am. Soc. 47, 808).

Bei der Einw. des elektrischen Funkens auf Essigsäure-Dampf bilden sich Methan, Acetvlen, Kohlenoxyd, Kohlendioxyd und Wasserstoff (Poma, Bassi, G. 51 II, 76). Zur Zersetzung des Dampfes in der Hochfrequenz-Glimmentladung vgl. HIEDEMANN, Ann. Phys. [5] 2, 227. Über den Mechanismus der Bildung von Athan bei der Elektrolyse wäßr. Alkaliacetat-Lösungen an Platinanoden vgl. Fairweather, Walker, Soc. 1926, 3114; Wa.. Soc. 1928, 2040; Schall. Thieme-Wiedmarckter, Z. El. Ch. 35, 343; vgl. a. Gibson, Soc. 127, 475. Zusatz von Kaliumfluorid drängt die Bildung von Athan bei der Elektrolyse wäßr. Lösungen von Alkaliacetaten an Platinanoden zurück (Fichter, Humpert, Helv. 9, 693). Die Elektrolyse von Alkaliacetaten in methylalkoholischer Lösung unter Verwendung einer polierten Platinanode ergibt Äthan neben sehr geringen Mengen Äthylen (SALAUZE, C. r. 180, 662; Bl. [4] 37, 526). Bei der Elektrolyse von Kaliumacetat in essigsaurer Lösung mit kommutiertem Gleichstrom zwischen Platinelektroden entstehen Wasserstoff, Kohlendioxyd und etwa gleiche Mengen Methan und Athan (BAUR, Z. El. Ch. 29, 108). Bei der Elektrolyse wäßr. Kaliumacetat-Lösungen an Graphitanoden (FI., ZUMBRUNN, Helv. 10, 878) wie bei der Elektrolyse wäßr. Lösungen von Zinkacetat an Platinanoden (Bermejo, Blas. An. Soc. españ. 27, 231; C. 1929 II, 712) werden beträchtliche Mengen Athan gebildet. Die Elektrolyse von Nickel(II)- und Kobalt(II)-acetat in Eisessig bzw. 50% iger Essigsäure an Platinanoden ergibt je nach den Bedingungen kein oder wenig Athan neben anderen Produkten (Sch., Th. W., Z. El. Ch. 35, 342). Einfluß des Anodenmaterials auf die Ausbeuten an Äthan bei der Elektrolyse von Alkaliacetaten in wäßr. Lösung: FAIRWEATHER, WALKER, Soc. 1926, 3117; in methylalkoholischer Lösung: SALAUZE, C. r. 180, 664; Bl. [4] 37, 534. Zur Elektrolyse von wäßr. Kaliumacetat-Lösungen an Platinanoden in Gegenwart von Jod nach Kaufler, Herzog (B. 42 [1909], 3860), wobei geringe Mengen Methyljodid entstehen, vgl. Erlenmeyer, Helv. 8, 793; in Gegenwart von Natriumbromid bildet sich Methylbromid (ER., Helv. 8, 794). Über periodische Phänomene bei der Elektrolyse von Essigsäure und wäßr. Lösungen von Acetaten an Kupfer- und Silberanoden vgl. HEDGES, Soc. 1926, 1543, 1545; an Zink-, Blei- und Platinanoden vgl. HE., Soc. 1926, 2585, 2590, 2593.

Oxydation und Reduktion. Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 19, 1337; 20, 814; C. 1928 I, 943; II, 1986. Oxydation in sehr verdünnter, wäßriger Lösung durch Sauerstoff in Gegenwart von Kupferpulver bei 200: Wieland, A. 484, 190, 194; durch Luft in Gegenwart von Blutkohle bei 400 und verschiedenem ph: GOMPEL, MAYER, WURMSER, C. r. 178, 1026. Essigsäure wird durch Luft bei 350° in Gegenwart von fein verteiltem Silber zu Wasser und Kohlendioxyd oxydiert (Senderens, A. ch. [9] 13, 283). Oxydation von Natriumacetat in wäßr. Lösung durch Luft unter Druck bei 210° und 260°: Schrader, Abh. Kenntnis Kohle 5, 197; C. 1922 III, 195; durch Luft bei Gegenwart von aktiver Kohle oder von Mangandioxyd in Wasser bei 39° bzw. 40° und Abhängigkeit der Geschwindigkeit der Oxydation der Essigsäure und ihres Natriumsalzes von der Konzentration: MAY., Wu., Ann. Physiol. Physicoch. biol. 2, 334; C. 1927 I, 1851. Beim Einleiten von Ozon in wäßr. Kaliumacetat-Lösung erhält man Formaldehyd und etwas Kohlendioxyd (Fichter. LAPIN, Helv. 12, 996). — Geschwindigkeit der Oxydation mit Wasserstoffperoxyd bei 0°: HATCHER, HOLDEN, Trans. roy. Soc. Canada [3] 21 III, 242: C. 1928 I, 1929; bei 37°; KNOOP, GEHRKE, H. 146, 65; bei 100°: HA., Ho., Trans. roy. Soc. Canada [3] 20 III, 411; C. 1927 II, 2051; in Gegenwart von konz. Schwefelsäure bei 110-1550: KERP, Arb. Gesundh. Amt 57, 559; C. 1927 I, 1902; in Gegenwart von geringen Mengen Kupfersalzen bei 60°: BATTIE, SMEDLEY-MACLEAN, Biochem. J. 23, 598. Oxydation mit Wasserstoffperoxyd in Gegenwart von Calciumcarbonat: Bernhauer, Nistler, Bio. Z. 205, 233. Beim Erhitzen von sehr verdünnter wäßriger Essigsäure mit Wasserstoffperoxyd in Gegenwart von Bleicarbonat entsteht Formaldehyd (Wieland, A. 436, 255). — Essigsäure zeigt kein merkliches Reduktionsvermögen gegen 0,001 m Lösungen von Eisen (III)-, Thallium (III)- und Cer(IV)-sulfat sowie von Chlorsäure und Permangansäure (Fromageor, J. Chim. phys. 24, 536, 540). Einfluß von Temperatur und Alkalikonzentration auf den Verlauf der Oxydation von Kaliumacetat zu Kaliumoxalat mit Kaliumpermanganat: Evans, Hines, Am. Soc. 44, 1543. Essigsäure gibt bei der Oxydation mit Kaliumpermanganat in ammoniakalischer Lösung Spuren von Cyansäure (nachgewiesen als Harnstoff) (Fosse, Laude, C. r. 172, 1242). Wird von Chromschwefelsäure-Gemisch bei 100° nicht angegriffen (Guyot, Simon, C. r. 170, 516; POLONOVSKI, C. r. 178, 576; LIEBEN, MOLNAR, M. 53/54, 7). Essigsäure und Metallacetate werden durch ½-stündiges Kochen mit Chromschwefelsäure bei Gegenwart von Silbernitrat vollständig oxydiert (Cordebard, Michl., Bl. [4] 48, 101). Geschwindigkeit der Oxydation von Essigsäure durch verschiedene Metallchromate in konz. Schwefelsäure bei 100° : Simon, C.r. 178, 1816. Beim Erhitzen von gesättigter wäßriger Kaliumacetat-Lösung mit Kaliumpersulfat läßt sich Formaldehyd nachweisen; bei Zusatz von Kaliumcarbonat bis zur alkal. Reaktion bilden sich geringe Mengen Methanol (FICHTER, LAPIN, Helv. 12, 998), das auch bei Behandlung von gesättigter Kaliumacetat-Lösung mit Kaliumpercarbonat in der Kälte entsteht (F., L., Helv. 12, 997). Kocht man Bleitetraacetat 18/4 Stdn. mit Eisessig, so werden 2,6% des Bleitetraacetats reduziert (Dimroth, Schweizer, B. 56, 1378). Essigsäure entwickelt bei der Einw. von Äthylhydroperoxyd in Gegenwart von Mohrschem Salz Kohlendioxyd (v. Szent-Györgyi, Bio. Z. 146, 257; 149, 189).

Erhitzen von Natriumacetat in Wasser auf 300° unter 80 Atm. Wasserstoffdruck in Gegenwart von Nickeloxyd ergibt unter den gasförmigen Zersetzungsprodukten erhebliche Mengen Methan (IPATJEW, RASUWAJEW, B. 59, 2030; Ж. 58, 1344).

Einwirkung von Halogenen und Halogenverbindungen. Beim Einleiten von Fluorin wäßr. Kaliumacetat-Lösung entstehen Athan, Kohlendioxyd und Essigsäuremethylester (FICHTER, HUMPERT, Helv. 9, 697); in Gegenwart von Kaliumcarbonat bilden sich Methanol, Formaldehyd, Ameisensäure, Kohlendioxyd, Kohlenoxyd, Athan, Athylen und Tetrafluormethan (Fi., Brunner, Helv. 12, 573). Geschwindigkeit der unter Bildung von Chloressigsäure verlaufenden Photochlorierung von Essigsäure mit Chlor in Tetrachlorkohlenstoff: Benrath, Hertel. Z. wiss. Phot. 23, 33; C. 1924 II, 822; der Chlorierung im Rohr bei 100° mit und ohne Katalysatoren: Watson, Roberts, Soc. 1928, 2781, 2785. Zusätze von Schwefel, Jod oder Phosphor und deren Gemischen mit Phosphorpentachlorid beschleunigen die durch Einleiten von Chlor erfolgende Chlorierung zu Chloressigsäure bei 1000 (BRÜCKNER, Z. ang. Ch. 41, 226; vgl. Magidson, Silberg, Preobrashenski, Z. chim. Promysl. 5, 528; C. 1928 II, 2234; Schilow, Z. chim. Promysl. 6, 538; C. 1929 II, 2658); bei Verwendung eines Gemischs von Jod, rotem Phosphor und Phosphorpentachlorid verläuft die Chlorierung quantitativ (Br., Z. ang. Ch. 40, 974; 41, 228; Sch.). Bei der Elektrolyse von Salzsäure in Gegenwart von Essigsäure mit einer Kohleanode entsteht Chloressigsäure (Youtz, Am. Soc. 46, 549). Beständigkeit von Eisessig gegen Brom bei mehrtägigem Aufbewahren: Kaufmann, Hansen-Schmidt, Ar. 1925, 35. Beim Erhitzen von Essigsäure mit Brom in Gegenwart von Tierkohle auf 280—300° entsteht Bromoform (Damoiseau, C. r. 92 [1881], 43) neben Methylbromid, Methylenbromid, Tetrabromkohlenstoff, Kohlendioxyd, Kohlenoxyd und anderen Produkten (Senderens, Aboulenc, C. r. 172, 1586). Beim Erwärmen äquimolekularer Mengen Essigsäure und Brom in Gegenwart von 2% rotem Phosphor auf 100-105° bilden sich Bromessigsaure als Hauptprodukt und nur wenig Bromacetylbromid:

in Gegenwart von mehr Phosphor und überschüssigem Brom entsteht Bromacetylbromid In Gegenwart von mehr Phosphor und überschussigem Brom entsteht Bromacetylbromid als Hauptprodukt neben wenig Bromessigsäure und Acetylbromid (Ward, Soc. 121, 1163). Geschwindigkeit der Reaktion mit Brom bei 100°: WATON, Soc. 127, 2077; in Gegenwart von Chlorwasserstoff: Shaw, Soc. 128, 2235; Wat., Soc. 127, 2071; von Bromwasserstoff: Wat.; von Phosphor: Ward, Soc. 121, 1163; Wat., Soc. 127, 2074; von Phosphortribromid: Sh., Soc. 123, 2234; von Acetanhydrid und Acetylchlorid: Sh., Soc. 123, 2238; Wat., Soc. 127, 2077, 2082; von Acetylbromid: Ward, Soc. 121, 1164; Wat., Soc. 127, 2072 Anm., 2080; von Bromacetylbromid, Propionylbromid, Benzoylchlorid und Benzoylbromid: Wat., Soc. 127, 2072 Population, von Silbergestet mit Lod meh Strauper, M. 12 (1400) 2044. Soc. 127, 2081. Zur Reaktion von Silberacetat mit Jod nach Simonini (M. 18 [1892], 321;

14 [1893], 81, 86) vgl. Wieland, Fischer, A. 446, 62.

Einwirkung von weiteren anorganischen Agenzien. Bei der Behandlung von Essigsäure oder Metallacetaten mit Chlor und Schwefel, mit Thionylchlorid oder ähnlichen Verbindungen bildet sich Acetanhydrid (vgl. E I 2, 45); weiteres s. daselbst (S. 170). Das: wasserfreie Natriumsalz nimmt in flüssigem Schwefeldioxyd etwas mehr als 1 Mol Schwefeldioxyd auf, das bei Zimmertemperatur wieder langsam abgegeben wird (EPHRAIM, AELLIG, Helv. 6, 44); analog reagieren das Kalium-, Rubidium-, Caesium- und Bariumsalz. Essigsäure zersetzt sich beim Erhitzen mit konz. Schwefelsäure auf ca. 2000 unter Bildung von Kohlenoxyd, Kohlendioxyd und Schwefeldioxyd (Senderens, Aboulenc, C. r. 185, 1088). Zur Überführung in Acetylschwefelsäure (E I 2, 78) vgl. van Pesei, R. 40, 107. Bei Ultraviolettbestrahlung einer Lösung von Ammoniumacetat in wäßr. Ammoniak entstehen geringe Mengen Acetamid (Stoermer, Robert, B. 55, 1040). Die Elektrolyse von Ammoniumacetat führt in essigsaurer Lösung an Platinanoden zu Äthan und Kohlendioxyd neben wenig Acetamid und Methylamin, in ammoniakalischer Lösung an Graphitanoden zu Methanol und Kohlendioxyd neben sehr wenig Methylamin, an Platinanoden zu Methanol, Formaldehyd und anderen Produkten (FICHTER, LINDENMAIER, Helv. 12, 561). Geschwindigkeit der Abspaltung von Stickstoff bei der Einw. von salpetriger Säure auf Ammoniumacetat: PLIMMER, Soc. 127, 2656. Behandlung von Natriumacetat mit Stickoxyden in flüssigem oder gasförmigem Zustand ergibt Acetanhydrid (BIELECKI, CIECHANOWSKI, Roczniki Chem. 2, 455; C. 1924 II, 309). Beim Erhitzen von Essigsäure mit Siliciumtetrachlorid entsteht Acetylchlorid, das unter geeigneten Bedingungen mit der Essigsäure unter Bildung von Aostanhydrid reagiert (Konsort, für elektrochem. Ind., D. R. P. 394730; C. 1924 II, 1133; Frdl. 14, 255); entsprechend verläuft die Einw. von Siliciumtetrachlorid auf Natriumacetat bei 50° (Montonna, Am. Soc. 49, 2114). Über die Zusammensetzung der durch Destillation von Kaliumacetat mit Arsentrioxyd entstehenden Cadetschen Flüssigkeit (H 104) vgl. Valeur, Gailliot, C.r. 185, 779, 956. Bei der Einw. von Natrium auf Essigsäure in flüssigem Ammoniak entsteht unter Wasserstoffentwicklung Natriumacetat (KRAUS, WHITE, Am. Soc. 45, 771). Verhalten von Eisessig gegen Quecksilber(II)-chlorid in der Siedehitze: MENKE, R. 45, 910. Kochen von Eisessig mit Quecksilber(II)-nitrat ergibt eine krystallisierte Verbindung C4H2O16N4Hg5 (MARSH, STRUTHERS, Soc. 1927, 1660).

Lösungsgeschwindigkeit von Kupferblech in verd. Essigsäure, auch in Gegenwart von Wasserstoffperoxyd: GLAUNER, Ph. Ch. [A] 142, 75. Korrosion von Aluminiumbleeh durch verd. Essigsäure bei verschiedenen Konzentrationen und Temperaturen: Anonymus, Metall-

börse 16, 874; C. 1926 II, 282; von Aluminium und Aluminiumlegierungen und Gußeisen durch 5%ige Essigsäure: Dornauf, Z. ang. Ch. 41, 995.

Esterbildung. Die Veresterung von Essigsäure mit 95%igem Alkohol wird durch Aluminiumsulfat und namentlich durch KHSO, oder Schwefelsäure stark beschleunigt (SENDERENS, ABOULENC, Cr. 152, 1671; A. ch. [9] 18, 147). Beim Leiten äquimolekularer Mengen Alkohol und Essigsäure über verschiedene Aluminiumoxyd-Katalysatoren bei 350° wird Essigsäureäthylester gebildet; bei 400-465° entstehen daneben wenig Äthylen und Kohlendioxyd (Adrins, Nissen, Am. Soc. 46, 142). Über die Veresterung von Essigsäure mit Glycerin in Gegenwart verschiedener Katalysatoren s. E II 1, 585. — Veresterungsgeschwindigkeit von Essigsäure in absolutem und in wasserhaltigem Methanol in Gegenwart von Trichloressigsäure und 2.4.6-Trinitro-m-kresol: Goldschmidt, Marum, Thomas, Ph. Ch. 129, 231; mit Alkohol bei Temperaturen zwischen 31,9° und 47,7°: BAILEY, Soc. 1928, 1206; mit Alkohol, Propylalkohol und Isobutylalkohol in Gegenwart von Zirkon(IV)-oxyd bei 280—290°: Mailhe, de Godon, Bl. [4] 29, 102; mit Alkohol, Isopropylalkohol, Trimethylcarbinol, Benzylalkohol, Benzhydrol und Triphenylcarbinol in Benzol-Lösung bei 100°: PETRENKO KRITSCHENKO, BOGATSKI, LUBMAN, Ph. Ch. 115, 293; H. 58, 217. Geschwindigkeit der Veresterung von Essigsäure mit Alkohol in Gegenwart von Silicagel zwischen 1500 und 320°: MILLIGAN, CHAPPELL, REID, J. phys. Chem. 28, 874; in Gegenwart von Salzsaure bei 25°: BHIDE, SUDBOROUGH, J. indian Inst. Sci. 8, 90; C. 1926 I, 80; vgl. Przylecki, GIADEOYČ, SYM, Biochem. J. 22, 824; in Gegenwart von Salzsäure, Pikrinsäure, Trichloressigsäure, α.α.β-Trichlor-buttersäure und 5-Sulfo-salicyleäure bei 25°: Goldschmidt, Ph. Ch. 94, 236; in Gegenwart von Salzsäure, Natronlauge, Ammoniak, Piperidin, Pyridin, Chinolin, Chloroform, Benzol, Benzylchlorid und m-Kresol in Glasgefäßen bei 43°: BAILEY, Soc. 1928.

Syst. Nr. 158]

1204, 3257. Geschwindigkeit der Veresterung von Essigsäure verschiedener Konzentration mit Alkohol in Gegenwart von Schwefelsäure: Whitaker, Chem. met. Eng. 28 [1923], 108; Geschwindigkeit der Veresterung von Essigsäure mit absolutem und verdünntem Alkohol in Gegenwart von 2.4.6-Trinitro-m-kresol bei 25°: Go., Marum, Thomas, Ph. Ch. 132, 264; mit wasserfreiem und wasserhaltigem Propylalkohol in Gegenwart von 0,1 n-Salzsäure bei 25°: Go., Th., Ph. Ch. 126, 28; mit Isobutylalkohol in Gegenwart von Salzsäure bei 25°: Go., Ph. Ch. 124, 30; mit Cyclohexanol, Methylcyclohexanolen, 1.3-Dimethyl-cyclohexanol-(4) und 1-Äthyl-cyclohexanol-(2) bei 95°: Cauquil, J. Chim. phys. 23, 586; C. r. 178, 324; 181, 114; mit Milchsäureäthylester und Weinsäurediäthylester in Benzol bei 120°: Petrenko-Kritschenko, B. 61, 851. — Gleichgewicht der Veresterung von Essigsäure mit Methanol bei 100°: Williams, Gabriel, Andrews, Am. Soc. 50, 1269; mit Alkohol in der Dampfphase zwischen 52,2° und 77,6°: Edgar, Schuyler, Am. Soc. 46, 70; vgl. dazu Swietoslawski, Poznanski, C. r. 184, 92; Roczniki Chem. 8, 538; C. 1929 I, 1301; mit Alkohol bei 100°: W., G., A., Am. Soc. 50, 1268; mit verd. Alkohol bei 78°: Cantelo, Billinger, Am. Soc. 50, 3212; mit Alkohol in Gegenwart von Salzsäure, Bromwasserstoffsäure und Schwefelsäure bei 100°: Schlesinger, B. 60, 1480. Beeinflussung des Gleichgewichts der Veresterung von Essigsäure mit Alkohol in Gegenwart von Chlorwasserstoff durch Tierkohle: Przylecki, Giedroyč, Sym, Biochem. J. 22, 824; mit verd. Alkohol bei 78° durch Natriumchlorid, Natriumjodid und Natriumrhodanid: Ca., Bi., Am. Soc. 50, 3214; mit verd. Alkohol bei 100° in Gegenwart von Chlorwasserstoff durch Alkalichloride und Calciumchlorid: Sch., B. 59, 1965. Über das Umesterungsgleichgewicht zwischen Essigsäure, Trichloressigsäure und ihren Methylestern und Äthylestern bei 30° vgl. Sudborough, Karvé, J. inaian Inst. Sci. 5, 7; C. 1923 I, 295.

Weitere Beispiele für die Einwirkung organischer Verbindungen. Geschwindigkeit der Reaktionen verschieden konzentrierter Lösungen von Kaliumacetat in 95% igem Alkohol mit Chlor- und Bromderivaten des Methans und Äthans bei 80° bzw. 90°: Petrenko-KRITSCHENKO, OPOTZKI, B. 59, 2134; Ж. 59, 305. Bei Belichtung einer Lösung von Chlorpikrin in Eisessig entstehen Oxalsäure und Chloressigsäure (Piutti, Badolato, R. A. L. [5] 33 I, 476). Über die Reaktion von Essigsäure mit Acetylen unter Bildung von Vinylacetat bzw. Athylidendiacetat s. bei diesen (S. 147, 167). Beim Einleiten von Chlor in ein Gemisch von Acetaldehyd und wasserfreiem Natriumacetat bei 10-12° entstehen neben Essigsäure Acetanhydrid und Äthylidendiacetat (A. WACKER, D. R. P. 372528; C. 1923 IV. 660; Frdl. 14, 252). Beim Einleiten von Keten in Essigsäure erhält man Acetanhydrid (Konsort. f. elektrochem. Ind., D. R. P. 403863; C. 1925 I, 295; Frdl. 14, 259). Essigsäure liefert beim Erwärmen mit Äthyl- $[\alpha.\beta$ -dichlor-vinyl]-äther (E II 1, 780) Äthylchloracetat neben Acetylchlorid (Crompton, Vanderstichele, Soc. 117, 692). Geschwindigkeit der Reaktion von Natriumformiat mit Silberacetat bei 75°: COUTIE, Soc. 1926, 892. Beim Erhitzen von Kaliumacetat mit Acetanhydrid auf 170—175° entstehen beträchtliche Mengen Aceton und Kohlendioxyd (Luce, C.r. 177, 1306; Bl. [4] 35, 182). Über die Bildung von Acetanhydrid bei der Behandlung von Essigsäure oder Acetaten mit Acetylchlorid s. S. 170. Kinetik der Reaktion $CH_3 \cdot CO \cdot NH_2 + (CH_3 \cdot CO)_2O \rightleftharpoons CH_3 \cdot CN + 2CH_3 \cdot CO_2H$ bei 78° und 98°: Kremann, Zoff, Oswald, M. 43, 140. Beim Erhitzen von Natriumacetat mit chloragienen Natriumacet essigsaurem Natrium in Gegenwart von Chrompulver bilden sich geringe Mengen Bernsteinsäure (Charrabarty, Dutt, J. indian chem. Soc. 5, 514; C. 1929 I, 501). Erhitzt man 1 Mol Essigsäure mit 1 Mol Chloracetylchlorid auf 100°, so erhält man bei der Fraktionierung des Reaktionsprodukts unter gewöhnlichem Druck Acetylchlorid, Acetanhydrid, Chloressigsäure und Chloressigsäureanhydrid; destilliert man das Reaktionsgemisch nach Entfernung des Acetylchlorids unter vermindertem Druck, so entsteht Essigsäure-chloressigsäure-anhydrid (Watson, Gregory, Soc. 1929, 1375). Die Destillation von Essigsäure mit Bromacetylbromid in äquimolekularen Mengén ergibt beträchtliche Mengen Acetylbromid (Wa., Soc. 1928. 1138). Beim Erhitzen von Calciumacetat mit Calciumbutyrat auf 400° entstehen je nach den angewandten Mengen der Salze wechselnde Mengen Aceton, Methyläthylketon, Methyläthylk von Eisessig und Anilin entsteht Acetanilid (POUND, RUSSELL, Soc. 125, 769; vgl. O'CONNOR. Soc. 119, 401). Bestrahlung von Essigsäure und Anilin während 24 Stdn. mit der Quarzlampe ergibt Acetanilid in fast quantitativer Ausbeute (Stoermer, Robert, B. 55, 1040). Bei CO CO bei 100° entsteht der Einw. von Essigsäure auf Phthalonsäureanhydrid C_6H_4

3-Acetoxy-phthalid-carbonsaure-(3) C₈H₄<00 C(O·CO·CH₂)·CO₂H (CORNILLOT, C. r. 178, 491; A. ch. [10] 8, 126).

Acetylierungen durch Eisessig bei Gegenwart von Sulfurylchlorid und Pyridin: BAUM-GARTEN, B. 60, 1178.

Biochemisches und physiologisches Verhalten.

Calciumacetat wird durch thermophile Bakterien aus Schmutzwasser unter Bildung von Methan und Kohlendioxyd (Coolhaas, Ber. Physiol. 40 [1927], 440; C. 1928 II, 1342); durch B. macerans oder B. acetoāthylicus zu Aceton vergoren (Bakonyi, Bio. Z. 169, 128; Z. Spiritusind. 49, 148; C. 1926 II, 667). Abbau von Natriumacetat durch Bac. pycoyaneus: SUPNIEWSKI, Bio. Z. 154, 92; C. r. Soc. Biol. 89, 1377; C. 1924 I, 1679; BUTTERWORTH, WALKER, Biochem. J. 23, 929. Oxydation von Essigsäure durch Bact. coli und Bact. alkaligenes: Cook, Stephenson, Biochem. J. 22, 1371, 1375, 1384. Reduktion von Methylenblau durch Essigsäure in Gegenwart von Bact. coli unter verschiedenen Bedingungen: QUASTEL, WHETHAM, Biochem. J. 19, 521, 522, 530; 20, 180; QU., WOOLDRIDGE, Biochem. J. 21, 151, 155, 158, 162, 1234, 1237, 1243, 1246; 22, 695; in Gegenwart von Bac. prodigious, Bac. proteus oder Bac. faecalis alkaligenes: QU., Woo., Biochem. J. 19, 663. Verwertung von Essigsäure und Acetaten durch verschiedene Bakterien: Braun, Stamatelakis, Kondo, Bio. Z. 145, 389, 394, 397; Be., Sta., Kon., Goldbechmidt, Bio. Z. 146, 577; Kon., Bio. Z. 153, 308; Rosee, Ber. Physiol. 24, 144; C. 1924 II, 482; Qu., Stephenson, Biochem. J. 19, 661; durch Bact. coli: Ste., Whetham, Biochem. J. 18, 504; Qu., Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 641; durch Bact. coli: Ste., Whetham, Biochem. J. 18, 504; Qu., Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 641; durch Bact. coli: Ste., Whetham, Biochem. J. 18, 504; Qu., Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 641; durch Bact. coli: Ste., Whetham, Biochem. J. 18, 504; Qu., Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 641; durch Biochem. J. 19, 642; Qu., Stephenson, Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 643; Qu., Stephenson, Biochem. J. 19, 641; Qu., Biochem. J. 19, 6

Eine Übersicht über die Einw. von Essigsäure auf Fermente findet sich bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I, 2. Hälfte [Berlin und Leipzig 1930], S. 762. Über die aktivierende Wirkung von 0,1% iger Essigsäure auf das Trypsin und die hemmende Wirkung auf die Lipase von Pankreas-Pulver vgl. ferner Thorpe, Biochem. J. 20, 377. Einfluß von Essigsäure und Acetaten auf die alkoh. Gärung: Somogyi, Bio. Z. 180, 101; Meyerhof, Bio. Z. 163, 68, 71; Katagibi, Biochem. J. 20, 427; Zeller, Bio. Z. 176, 141; 176, 147; Mameli, Giorn. Chim. ind. appl. 8, 562; C. 1927 I, 1023. Essigsäure wirkt hemmend auf die Gärfähigkeit von Weinhefen (Kroemer, Krumbholz, Landw. Jb. 66 Erg. Bd. I, 357; C. 1927 II, 2427) und auf die Geschwindigkeit der Erzeugung von Hefe in Bierwürze (Taylor, Trans. roy. Soc. Canada [3] 17 III, 158; C. 1924 I, 2376; Clark, J. phys. Chem. 28, 229). Essigsäure bzw. Acetate wirken hemmend auf das Wachstum von Sclerotinia cinerea (Dunn, Ber. Physiol. 36, 614; C. 1926 II, 3097); von Mucor stolonifer (But. Kewitsch, Fedoroff, Bio. Z. 207, 311) und von Tuberkelbacillen (Schöbl, Philippine J. Sci. 25, 129, 130; C. 1925 I, 2699; Pulcher, C. 1929 I, 1577). Bactericide Wirkung von Essigsäure auf Bac. pycoyaneus: Aubel, C. 7. 170, 972. Eine Übersicht über die entwicklungshemmende Wirkung auf Hefe sowie über die bactericiden und fungiciden Eigenschaften der Essigsäure s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I, 2. Hälfte [Berlin und Leipzig 1930], S. 764. — Einfluß sehr verdünnter Lösungen auf das Wachstum von Pflanzen: Onobera, Ber. Ohara-Inst. 1, 53; C. 1920 III, 355; des neutralen Kaliumsalzes auf die Pflanzenatmung: Klein, Pirschler, Bio. Z. 176, 25. Das Natriumsalz steigert die Atmung von Algen (Genevois, Bio. Z. 186, 465). Konzentrationen an Essigsäure und Acetaten, die für Pflanzen gerade noch unschädlich sind: A. Müller, Z. ang. Entomol. 12 Beih. Nr. 8, 118, 135; C. 1926 II, 2446.

Z. ang. Entomol. 12 Beih. Nr. 8, 118, 135; U. 1926 II, 2446.

Stärke des sauren Geschmacks von Essigsäure in besug auf Salzsäure: Paul., Z. El. Ch.
28, 437; Umschau 26, 611; C. 1922 IV, 1160. Schwellenwert des sauren Geschmacks und
ph der Lösung: Taylor, J. gen. Physiol. 11, 209; C. 1928 I, 2409; in Puffergemischen: P.;
BACHARACH, Z. Biol. 84, 336; C. 1926 II, 258. — Insekticide Wirkung: Yamamoro, Seient.
Pap. Inst. phys. shom. Res. 3, 219; C. 1926 I, 693; Taylurund, Gimmoran; Z. Soc.
chem. Ind. 46, 371 T; C. 1927 II, 1884. Chemotaktische Wirkung von Essignäure und Nationaacetat gegenüber den Larven des Schiffsbohrwurmes (Teredo Norvegica); Harmagnon,
Biochem. J. 15, 738. Essignäure setzt den Sauerstoffverbrauch von Planarium herste (Hyman.

Ber. Physiol. 34, 640; C. 1926 II, 606). Wirkung von Essigsäure auf das Blutbild bei Tauben: DE Eds, Mitchell, J. Pharm. exp. Therap. 28, 438; C. 1927 I, 476. Essigsäure zeigt stimulierenden Einfluß auf die Parotis-Sekretion beim Menschen (Grisogani, R. A. L. [6] 1, 604). Zur erregenden Wirkung von Essigsäure oder Natriumaectat auf den Darm vgl. z. B. Lie Heux, Pflügers Arch. Physiol. 190, 282; C. 1922 I, 103; Jendrassik, Tangl, Bio. Z. 159, 345; Deuel, Milhorat, J. biol. Chem. 78, 302. Acetate wirken gefäßerweiternd (Bauer, Richards, J. Physiol. 66, 371; C. 1929 I, 923). Wirkung von Essigsäure auf die Keratinsubstanzen der menschlichen Haut: Menschell, Ar. Pih. 110, 4, 14, 20, 27, 41; C. 1926 II, 50. Atzende Wirkung auf die Haut: W. Müller, Z. exp. Med. 59, 460; C. 1928 I, 2962. Giftwirkung auf Gewebszellen warmblütiger Organismen: Radsimowska, Bio. Z. 142, 40. Nekrose und andere Gewebsveränderungen beim Einbringen unter die Haut von Ratten: Delore, Jeannin, C. r. Soc. Biol. 98, 701; C. 1928 I, 2963. Eine Übersicht über die physiologische und toxische Wirkung von Essigsäure und Acetaten auf Pflanzen, Tiere und Menschen s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I, 2. Hälfte [Berlin und Leipzig 1930], S. 766. Einen kurzen Überblick über das Verhalten von Essigsäure im Organismus gibt H. Jost in A. Bethe, G. v. Bergmann, G. Embden, A. Ellinger, Handbuch der normalen und pathologischen Physiologie, Bd. V [Berlin 1928], S. 649.

Verwendung.

Essigsäure dient in der Therapie als Hautreizungsmittel (H. H. Meyer, R. Gottlieb, Die experimentelle Pharmakologie, 8. Aufl. [Berlin 1933], S. 547, 637) und wie auch ihre Salze zu verschiedenen anderen Zwecken (G. Frerichs, G. Arends, H. Zörnig in Hagers Handbuch der pharmazeutischen Praxis, 1. Bd. [Berlin 1930], S. 95). Über die Anwendung von Essigsäure als Lösungsmittel bei Hydrierungen vgl. Willstätter, Waldschmidtleitz, B. 54, 137. Verwendung von Essigsäure und Acetaten für Fixierungsbilder von Pflanzengewebe (Wurzelspitzen von Mais): Zirkle, Protopl. 5, 519; C. 1929 I, 2453. Essig wird bei Konzentrationen von 1,5% Essigsäure als Konservierungsmittel für Nahrungsmittel wirksam (Harvey, J. am. Pharm. 100, 527; C. 1928 II, 2199). Essigsäure dient zur Bekämpfung des Hirsebrands (Ustilago panici miliacei) (Wiśniewski, C. 1929 II, 1964). Zur Verwendung von Essigsäure zur Entzuckerung von Melassen vgl. Mezzadboli, Mutti, Piombo, Zymol. Chim. Coll. 2, 121; C. 1928 I, 1107. Über die technische Verwendung vgl. a. G. Bugge in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. IV [Berlin-Wien 1929], S. 663.

Analytisches.

Literatur über Nachweis, Prüfung und Bestimmung: Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., Bd. III [Berlin 1932], S. 768; Ergänzungswerk zur 8. Aufl. von J. D'Ans, 3. Bd. [Berlin 1940], S. 702. — A. Bömer, O. Windhausen in A. Bömer, A. Juckenack, J. Tillmans, Handbuch der Lebensmittelchemie, 2. Bd., 2. Tl. [Berlin 1935], S. 1081.

Nachweis. Zusammenstellung von Reaktionen für den Nachweis von Essigsäure im Untersuchungsgang pharmazeutisch wichtiger Säuren: Rojahn, Struffmann, Ar. 1927, 298. Nachweis durch den Geruch beim Behandeln von Acetat-Lösungen mit verd. Schwefelsäure (1:1): Curtman, Broggi, Fourman, Chem. N. 120, 230; C. 1920 IV, 217. Die praktische Grenze der Empfindlichkeit des Nachweises in reinen Acetat-Lösungen durch die Farbreaktion mit Eisen(III)-chlorid ist 2 mg (C., B., F.). Essigsäure läßt sich nachweisen durch die Blaufärbung, die beim Behandeln mit 5%iger Lanthannitrat-Lösung, 0,02 n-Jod-Lösung und 1n-Ammoniak eintritt (Krüger, Tschirch, B. 62, 2776, 2782). Nachweis von Essigsäure durch Überführung in Aceton: Walker, Subramaniam, Challenger, Soc. 1927, 3051. Zum Nachweis von Essigsäure durch Bildung von Indigo wird die Probe mit Calciumcarbonat im Glühröhrchen trocken destilliert, wobei das sich verflüchtigende Aceton ein das Glühröhrchen bedeckendes, mit einer Lösung von 2-Nitro-benzaldehyd in Natronlauge befeuchtetes Papierscheibchen blau bis blaugrün färbt (F. Feigl, S. I. Vázquez, R. Zappert in F. Feigl, Qualitative Analyse mit Hilfe von Tüpfelreaktionen, 2. Aufl. [Leipzig 1935], S. 408). Essigsäure kann mikrochemisch nachgewiesen werden als Natriumuranylacetat (Beherens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 314; Barlot, Pharm. Ztg. 74, 1096; C. 1929 II, 2802) sowie als Silber-, Quecksilber(I)-, Kupfer(II)- oder Bleiacetat (Beh.-Kl.).

Prüfung. Über die Prüfung von Essigsäure und Essig vgl. außer der zu Beginn des Abschnitts zitierten Literatur noch J. König, Die Untersuchung landwirtschaftlich und landwirtschaftlich-gewerblich wichtiger Stoffe, 5. Aufl., 2. Bd. [Berlin 1926], S. 381; G. Bugge in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. IV [Berlin 1929], S. 662; G. Frerichs, G. Arends, H. Zörnig in Hagers Handbuch der pharmazeutischen

Praxis, 1. Bd. [Berlin 1930], S. 98; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 193; Reif, Z. Unters. Nahr.-Genuβm. 48, 277, 424; C. 1925 I, 730, 1920; Collins, Mitarb., Ind. Eng. Chem. 18, 637; C. 1926 II, 803. Das Verfahren der Identifizierung synthetischer Essigsäure durch Nachweis und Bestimmung etwa darin vorhandenen Quecksilbers (Reif, Arb. Gesundh.-Amt 57, 173; C. 1927 I, 1870) ist durch den inzwischen von der Industrie erzielten hohen Reinheitsgrad praktisch bedeutungslos geworden (G. Bugge in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. IV [Berlin-Wien 1929], S. 663). Nach Harvey (Analyst 51, 238; C. 1926 II, 298) wird die Gehaltsbestimmung von Eisessig am besten durch Ermittlung des Erstarrungspunktes durchgeführt (vgl. Richmond, England, Analyst 51 [1926], 283). Reinheitsprüfung mit Benzidin: Serke, Apoth.-Ztg. 44, 1018; C. 1929 II, 1951. Zur Ermittlung des Ameisensäuregehalts von Essigsäure bestimmt man das bei der Reduktion von Quecksilber (II)-chlorid gebildete Quecksilber (II)-chlorid durch jodometrische Titration (Daniel, J. Pharm. Chim. [8] 5, 582; C. 1927 II, 1627) oder durch Wägung (Germuth, Chem.-Analyst 17, Nr. 1, 7; C. 1928 I, 1984).

Bestimmung. Bestimmung von Essigsäure durch Titration in Gegenwart von Phenolphthalein auch als Mikroverfahren: Poznanski, Am. Soc. 50, 984. Essigsäure läßt sich bei Gegenwart von Ammoniumsalzen mit Methylrot als Indicator titrieren (Akerlöf, Ph. Ch. 98, 268). Leitfähigkeitstitration von Acetaten mit Quecksilber(II)-perchlorat: Kolthoff, Fr. 61, 338. Titrimetrische Bestimmung kleiner Mengen von Essigsäure in Luft bei Gegenwart von Kohlendioxyd: Kuni, Nikolski, Ber. Physiol. 41, 130; C. 1927 II, 2329. Geringe Mengen Essigsäure lassen sich in Acetanhydrid dadurch bestimmen, daß durch Essigsäure eine Verlangsamung der Spaltung von Ameisensäure durch Acetanhydrid in Gegenwart von Strychnin als Katalysator bewirkt wird (Walton, Withrow, Am. Soc. 45, 2689). Bestimmung von Essigsäure in menschlichen Fäces: Olmsted, Mitarb., J. biol. Chem. 85, 115; in vergorenen Flüssigkeiten: Neuberg, Windisch, Bio. Z. 166, 467; Virtanen, C. 1926 I. 744; W. KLAPPROTH in BERL-LUNGE, Chemisch-technische Untersuchungsmethoden, 8. Aufl., Bd. V [Berlin 1934], S. 401; vgl. Foreman, Biochem. J. 22, 227; in Bier: Windisch, Kolbach, Schild, Wschr. Brau. 46, 246, 255; C. 1929 II, 1357; in Wein: F. Muth in Berl-Lunge, Bd. V, S. 228; in Branntweinen: J. König, Die Untersuchung landwirtschaftlich und landwirtschaftlich-gewerblich wichtiger Stoffe, 5. Aufl., 2. Bd. [Berlin 1926], S. 80; in Essig, J. König, 2. Bd., S. 302; F. Muth in Berl-Lunge, Bd. V, S. 348; in Bleiweiß: McMaster, Goldstein, J. ind. Eng. Chem. 12, 170; C. 1920 IV, 44; in der Acetyliersäure für Acetatseide: E. Berl, R. Bemmann in Berl-Lunge, Bd. V, S. 750; vgl. Somiya, J. Soc. chem. Ind. Japan Spl. 32, 153 B; C. 1929 II, 2081. — Titrimetrische Bestimmung von Essigsäure neben Borsäure: Dimboth, Faust, B. 54, 3027; I. M. Kolthoff, Die Maßanalyse, 2. Tl. [Berlin 1928], S. 148. Titration von Essigsäure bei gleichzeitiger Anwesenheit von Phenol: Tizard, Boeree, Soc. 119, 140. Alkalimetrische Bestimmung von Ameisensäure und Essigsäure nebeneinander: Holmberg, Lindberg, B. 56, 2051; Fuchs, Fr. 78, 125. Refraktometrische Bestimmung von wenig Ameisensäure neben viel Essigsäure: Bullk, Chem. Listy 23, 25; C. 1929 II, 772. Bestimmung neben Ameisensäure und Milchsäure: Onodera, Ber. Ohara-Inst. 1 [1917], 247; C. 1920 IV, 271; neben Milchsäure: Lesley, Fruit Prod. J. 8, Nr. 11, S. 14; C. 1929 II, 1848. Titration von Essigeäure bei gleichzeitiger Anwesenheit von Chloressigsäure oder Trichloressigsäure: T., B., Soc. 119, 140. Bestimmung der Essigsäure und Buttersäure nebeneinander durch Destillation aus wäßr. Lösung: Wiegner, Mitt. Lebensmittelunters. Hyg. 10 [1919], 171; CRASEMANN, Ch. Z. 47 [1923], 134; BEHRENS, Z. ang. Ch. 39, 1350; KNETEMANN, R. 47, 957; GNEIST, Tierernähr. 1, 65; C. 1930 I, 1873; A. BÖMER, O. WINDHAUSEN in A. BÖMER, A. JUCKENACK, J. TILLMANS, Handbuch der Lebensmittelchemie, 2. Bd., 2. Tl. [Berlin 1935], S. 1157. Die Bestimmung durch Wasserdampfdestillation neben anderen flüchtigen Fettsäuren erfolgt besser als aus wäßr. Lösung aus schwefelsaurer, mit Magnesiumsulfat gesättigter Lösung (OLMSTED, WHITAKER, DUDEN, J. biol. Chem. 85, 109; vgl. a. S. 100). Analyse von Gemischen mit Alkohol, Äthylaoetat und Wasser: Poznanski, Am. Soc. 50, 988.

Bestimmung von Essigsäure in ihren Salzen. Zur Gehaltsbestimmung von Acetaten säuert man mit Schwefelsäure an, schüttelt mit Äther aus und titriert die mit Alkohol und Wasser versetzte Äther-Lösung mit Barytwasser und Phenolphthalein (Vesterberg, Palmaer, Ark. Kemi 9, Nr. 43, 1; C. 1927 II, 1740). Man titriert die 1n-Lösung der Acetate mit 1n-Salzsäure gegen Tropäolin OO (I. M. Kolthoff, Z. anorg. Ch. 115, 152) oder Thymolblau (K., Die Maßanalyse, 2. Tl. [Berlin 1928], S. 152). Man spaltet die Acetate mit Phosphorsäure und destilliert die Essigsäure mit Xyloldampf (Pickett, J. ind. Eng. Chem. 12, 570; C. 1920 IV, 336).

Bestimmung von Acetylgruppen. Bei der Bestimmung von Acetylgruppen nach Perkin (Soc. 87 [1905], 108) verwenden Freudenberg, Harder (A. 483, 231) statt Schweielsäure p-Toluolsulfonsäure; Ausarbeitung als Mikroverfahren s. bei F., Weber, Z. ang. Ch. 38, 280.

Additionelle Verbindungen der Essigsäure.

Essigsäure-hydrobromid-perbromid. Über die Beziehungen zu der in H 2, 106 Essigsbure-hydrobromid-performid. Cher die Bezienungen zu der in H. 2. 106 unter der Zusammensetzung (C₂H₄O₂ + Br₂)₄ + HBr beschriebenen Verbindung von Hell. MÜHLHÄUSER (B. 11 [1878], 244; 12 [1879], 731) und der Verbindung C₂H₄O₂ + Br₂ + HBr von Steiner (B. 7 [1874], 184) vgl. Kehrmann, Falke, Helv. 7, 992. Zur Konstitution vgl. Baeyer, Villiger, B. 34 [1901], 2692. Entspricht nach Kehrmann, Falke (Helv. 7, 994) der Zusammensetzung C₂H₄O₂ + Br₂ + HBr. — B. Beim Einleiten von Bromwasserstoff in ein Gemisch von Brom und Essigsbure (K., F.). Zur Bildung bei der Bromierung von Essigsbure (K., F.). Zur Bildung bei der Bromierung von Essigsbure (K., F.). säure vgl. WARD, Soc. 121, 1162; SHAW, Soc. 123, 2240. - Rote, sehr unbeständige Krystalle (K., F.).

Als Verbindung 2C₂H₄O₂ + HNO₃ faßt HANTZSCH (B. 58, 957) die Diacetyl-orthosalpetersäure von Pictet (H 2, 171) auf. [Behrle]

Salze der Essigsäure (Acetate) und salzartige Verbindungen der Essigsäure mit Metallsalzen.

Literatur: G. Cohn in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl..

Bd. IV [Berlin-Wien 1929], S. 665. Ammoniumacetat NH₄C₂H₃O₂ (H 107; E I 47). Literatur: Gmelins Handbuch der NH₄ anorganischen Chemie, 8. Aufl., Syst. Nr. 23: Ammonium [Berlin 1936], S. 393. Krystallographisches: Reis, Zimmermann, Z. Kr. 57, 482. D.: 1,171 (Biltz, Balz, Z. anorg. Ch. 170, 338). Diffusion durch Pergament: Terada, Ph. Ch. 109, 211. Lösungsvermögen der wäßr. Lösung für Silberchlorid, Kupfer(II)-sulfat, Kobaltsulfat, Nickelsulfat, Kupferacetat und Zinkacetat: Davidson, Am. Soc. 50, 1894. Löslichkeitsdiagramm des ternären Systems mit Essigsäure und Wasser bei 0°, 16° und 25°: Sudden, Soc. 1926, 961. Kryoskopisches Verhalten in Wasser: Klarmann, Z. anorg. Ch. 132, 297. Viscosität einiger wäßriger Lösungen bei 15°: SIMON, C. r. 181, 863. Dichten und Brechungsindices wäßr. Lösungen bei 19,5°: Lecce de García, An. Soc. quim. arg. 8 [1920], 382. np verschiedener wäßriger Lösungen: LINEKEN, BURROWS, Am. Soc. 51, 1109. Elektrische Leitfähigkeit in Wasser bei 0°: KL. Einfluß des Druckes auf die elektrische Leitfähigkeit wäßr. Lösungen: TAMMANN, ROHMANN. Z. anorg. Ch. 183, 6. Elektrische Leitfähigkeit von Gemischen mit Acetamid in Wasser: L., Bur. Potentialdifferenzen an der Phasengrenze zwischen isoamylalkoholischer und wäßriger Lösung: Baur, Allemann, Z. El. Ch. 32, 548; Wosnessenski, Astachow, 38. 59, 757; C. 1928 I, 2910; zwischen wäßr. Lösungen und Lösungen in Butylalkohol und Isoamylalkohol: All., Z. El. Ch. 34, 377. Wärmetönung der Reaktion mit Natronlauge: CALVET, C. r. 189, 532. Ammoniumacetat liefert beim Erhitzen mit Aluminiumsulfid im Rohr auf 240° Thioacetamid (KINDLER. FINNDORF, B. 54, 1080). Doppelte Umsetzung mit Hydrazinhydrochlorid und verschiedenen organischen Salzen in der Dampfphase: Tian, C. r. 186, 1842. Gleichgewicht zwischen Ammoniumacetat, Acetamid und Wasser bei 172—193°: L., Bur. Einfluß von Essigsäure auf dieses Gleichgewicht bei 137°: NOYES, GOEBEL, Am. Soc. 44, 2286. Giftwirkung auf Ratten: Underhill, Kapsinow, J. biol. Chem. 54, 455, 456. Reinheitsprüfung: E. Merck. Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 20; Collins, Mitarb.. Ind. Eng. Chem. 18, 638; C. 1926 II, 803.

Lithiumacetat LiC₂H₃O₂ (H 107; E I 47). Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 20: Lithium [Berlin 1927], S. 230. Röntgendiagramm (Pulveraufnahme): Becker, Jancke, Ph. Ch. 99, 269. Sehr hygroskopisch (Sidwick, Gentle, Soc. 121, 1842). F: 286° (korr.; geringe Zersetzung) (Sid., G.). Löslichkeit in Wasserbei —1,54° bis 286°: Sid., G. Viscosität einiger wäßriger Lösungen bei 15°: Simon, C. r. 181, 863. Phasengrenzpotential zwischen wäßr. Lösungen und Lösungen in Butylalkohol und Isoamylalkohol: ALLEMANN, Z. El. Ch. 34, 377. Über die Anwendung in Ketten zur Elimination von Diffusionspotentialen vgl. Drucker, Ph. Ch. 125, 395. Geht bei 56,5° in das Dihydrat über (SID., G.). — LiC₂H₃O₂ + 2H₂O. F: 57.8° (SID., G.). Das Monohydrat von RAMMELSBERG (Gilberts Ann. Phys. 66 [1820], 82; vgl. H 2, 107) konnte nicht erhalten werden.

Natriumacetate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Na Syst. Nr. 21: Natrium [Berlin 1928], S. 819. -- NaC₂H₃O₂ (H 107; E I 47). Herstellung in fester Form durch Verseifen von Methylacetat mit Soda-Lösung: Holzverkohlungsind. A.G.. D. R. P. 472123; C. 1929 I, 2818; Frdl. 16, 234. Sehr hygroskopisch (Sidgwick, Gentle. Soc. 121, 1842). F: 330° (korr.) (S., G.). D¹⁵: 1,3970 (Rakshit, Z. El. Ch. 33, 578). Ultraviolette Absorptionsspektren in Wasser: Abderhalden, Haas, H. 164, 4; Ley, Zschacke. B. 57, 1704; LEY, HÜNECKE, B. 59, 515; GHOSH, BISVAS, Z. El. Ch. 30, 102; LEY, ARENDS. Ph. Ch. [B] 4, 235; V. Henri, Études de photochimie [Paris 1919], S. 90. — Löslichkeit in Wasser zwischen ca. —1° und +120°: Sid., G., Soc. 121, 1840. Lösungsvermögen einer 1n-Natriumacetat-Lösung für Borsäure bei 18°: Kolthoff, R. 45, 609; von wäßr. Natrium acetat-Lösungen für Borsäure und arsenige Säure bei 220: DHAR, Z. anorg. Ch. 153, 329: einer 2 n-Lösung für Chloroform bei ca. 180: TRAUBE, SCHÖNING, WEBER, B. 60, 1810; von

MONOCARBONSÄUREN Cn H2nO2

wäßr. Lösungen für Benzoesäure, Zimtsäure, Hippursäure und Salicylsäure bei 25°: Larsson, Ph. Ch. 127, 244; einer wäßr. Lösung für Ather und Anilin: v. EULER, Z. El. Ch. 23, 195. Kryoskopisches Verhalten von Natriumacetat in geschmolzenem, wasserhaltigem Natriumthiosulfat: Boutaric, Chauvenet, Nabot, C. r. 178, 572; in Essigsäure: Webb, Am. Soc. 48, 2265. Dampfdruck wäßr. Lösungen verschiedener Konzentration bei 0° und 15°: FRICKE, 20. 2200. Dempiaruck webt. Losungen verschiedener Konzentration der o und 10°: FRICKE, Z. El. Ch. 33, 446; bei 90°: McBain, Salmon, Am. Soc. 42, 436. Dichte wäßr. Lösungen bei 18°: Lorenz, Osswald, Z. anorg. Ch. 114, 215; Lascaray, Koll.-Z. 34 [1924], 74; bei 18° und 24,25°: Wasastjerna, Acta Soc. Sci. fenn. 50, Nr. 2, S. 54, XIV; bei 20°: Lecce De García, An. Soc. quím. arg. 8 [1920], 383; bei 22°: Zahn, R. 45, 786; bei 25°: Rivett, Soc. 1926, 1065; Dichte wäßriger und methylalkoholischer Lösungen bei 25°: Lifschitz, Beck, Koll.-Z. 26, 61; C. 1920 III, 82. Kontraktion beim Auflösen in Wasser: Rakshit, Z. El. Ch. 31, 00, Volumparadoming weßer Läsungen beim Finishmen von 45° auf 70°. Z. El. Ch. 31, 99. Volumenänderung wäßr. Lösungen beim Erwärmen von 15° auf 72°: Z. Lt. Ch. 31, 89. Volumenanderung wabt. Losungen beim Erwarmen von 10° auf 12°: Rakshit, Z. El. Ch. 33, 581. Viscosität einiger wäßt. Lösungen: Müller von Blumen-cron, Z. dtsch. Öl-Fettind. 42, 102; C. 1923 I, 36; bei 15°: Simon, C. r. 181, 863; bei 25°: Ri. Oberflächenspannung wäßt. Lösungen bei 18°: Lascaray, Koll.-Z. 34, 74; C. 1924 I, 2413; bei 22°: Z.; 1n-wäßtiger und mit Äther und mit Anilin gesättigter Lösungen bei 18°: v. Euler, Z. El. Ch. 28 [1917], 195. Adsorption aus Wasser an akt. Kohle: Fro-more Wurmers C. s. 179, 273; aus sodalbalischer Lösung an Mostleche Blutleche. MAGEOT, WURMSER, C. r. 179, 973; aus sodaalkalischer Lösung an Mercksche Blutkohle: KRUYT, VAN DUIN, R. 40, 264. Adsorption des Anions aus Wasser an Zuckerkohle: MILLER, Am. Soc. 46, 1155. Anderung der Wasserstoffionenkonzentration der Lösung bei der Adsorption an Zuckerkohle: Bartell, M., Am. Soc. 45, 1111. Adsorption des Anions an Kieselsäure: BAR., Fu, J. phys. Chem. 33, 682; an Silberchlorid, -bromid und -jodid: Muk-HERJEE, BASU, MUKHERJEE, Quart. J. indian chem. Soc. 4, 462; C. 1928 I, 662. Ausflockende Wirkung auf Eisen(III)-hydroxyd-Sol: Weitz, Stamm, B. 61, 1151; auf Natriumpalmitat-Lösungen bei 75—158°: McBain, Pitter, Soc. 1926, 894; auf Gelatine-Sole verschiedener Konzentration bei verschiedenen Temperaturen: Buchner, R. 46, 441; im Gemisch mit Natriumsulfat auf Agar-Sole: Büchner, Kleijn, Versl. Akad. Amsterdam 36, 623; C. 1927 II, 2652. Einfluß von Natriumacetat auf das Quellungsvermögen von Gelatine: BUCH., R. 46, 443; v. MORACZEWSKI, HAMERSKI, Bio. Z. 208, 302. Permeabilität von Kollodiummembranen für Natriumacetat: Northrop, J. gen. Physiol. 12, 458; C. 1929 II, 1387. Spezif. Wärme wäßr. Lösungen bei 160, 180 und 200: RICHARDS, GUCKER, Am. Soc. 47, 1889; 51, 723. Verdünnungswärme wäßr. Lösungen: FRICKE, Z. El. Ch. 35, 637; bei 16° und 20°: RICH., Gu., Am. Soc. 51, 723. — Brechungsindices wäßr. Lösungen bei 20°: L. DE G. Refraktion wäßr. Lösungen verschiedener Konzentration: Wa.; der Lösungen in Wasser und Methanol bei 25°: Lifschitz, Beck, Koll.-Z. 26, 60; C. 1920 III, 82. Elektrische Leitfähigkeit wäßr. Lösungen verschiedener Konzentration bei 10°, 18° und 25°: Lorenz, Osswald, Z. anorg. Ch. 114, 215. Einfluß des Druckes auf die elektrische Leitfähigkeit wäßr. Lösungen: Tammann, Rohmann, Z. anorg. Ch. 183, 2. Leitfähigkeitstitration von Natriumacetat Lösungen verschiedener Konzentration mit verd. Salzsäure: Kolthoff, Z. anorg. Ch. 111, 99; Ekwall, Koll.-Z. 45, 291; C. 1928 II, 1594; vgl. a. Bureau, C. r. 181, 43, 44; von Calciumchlorid mit Natriumacetat bei 38°: Shear, Kramer, Resnikoff, J. biol. Chem. 83, 724. Einfluß auf die Geschwindigkeit der Elektroosmose: Choucroun, J. Chim. phys. 20, 423, 425. Kataphoretische Wanderungsgeschwindigkeit von in wäßr. Natriumacetat-Lösung suspendierter aktiver Kohle: Fromageot, C. r. 179, 1405. Potentialdifferenzen an der Phasengrenze zwischen isoamylalkoholischen und wäßrigen Lösungen von Natriumacetat: Baur, Allemann, Z. El. Ch. 32, 548; Wosnessenski, Astachow, Ж. 50, 757; C. 1928 I, 2910; zwischen wäßr. Lösungen und Lösungen in Butylalkohol und Isoamylalkohol: ALL., Z. El. Ch. 34, 376; an der Trennungsfläche von Luft und wäßr. Natriumscetat-Lösungen: FRUMKIN, Ph. Ch. 111, 193. Elektromotorische Kraft in Ketten mit Natriumscetat-Lösungen: MICHAELIS, KAWAI, Bio. Z. 163, 4; KIRK, SCHMIDT, J. biol. Chem. 76, 125; DAWSON, CARTER, Soc. 1926, 2285; COHN, HEYROTH, MENKIN, Am. Soc. 50, 698, 705. Dissoziationsgrad: M. MEYER, Chem. N. 135, 280; C. 1928 I, 885. Einfluß von Natriumacetat auf den p_H-Wert von Essigsäure: Hall, Werner, Am. Soc. 50, 2383; von Natriumphosphat-Puffer-Lösungen: HAYNES, Biochem. J. 15, 449. Hydrolysengrad: STOCKS, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786. Beständigkeit gegen Kaliumpermanganat: REINITZER, CONRATH, Fr. 68, 93. Natrium-

Beständigkeit gegen Kaliumpermanganat: Reinitzer, Conrath, Fr. 68, 93. Natriumacetat reagiert in trockner krystallwasserhaltiger Form wie auch in wäßriger gesättigter Lösung im Fluorgasstrom explosionsartig; bei Verwendung von wasserfreiem, gepulvertem Natriumacetat verläuft die Reaktion ruhiger (Fichter, Humpert, Helv. 9, 694). Gleichgewicht der Fällungsreaktion mit Silbernitrat bei 25°: Griessbach, Ph. Ch. 97, 48. Einfluß auf die Korrosion von Eisen in Wasser: Friend, Soc. 119, 944. Potentiometrische Verfolgung der Reaktionen mit Zirkonchlorid, Thoriumsulfat, Thoriumchlorid und Chromalaun: Britton, Soc. 1926, 270. ph. Schwellenwert des sauren Geschmacks: Bacharach, Z. Biol. 84, 345; C. 1926 II, 258. Reinigung: Rei., Con. Reinheitsprüfung: Rei., Con.; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstedt 1939], S. 391. Titration mit Salzsäure in Gegenwart von Tropäolin OO: Kolthoff, Z. anorg. Ch. 115, 176. — NaC₂H₂O₃ + 3 H₄O

(H 108; E I 47). Krystallographisches: Reis, Zimmermann, Z. Kr. 57, 488; Ph. Ch. 102, 331. D¹⁵: 1,4442: Rakshit, Z. El. Ch. 33, 578. Dampfdruck bei 0°, 15°, 25° und 40°: Baxter, Cooper, Am. Soc. 46, 926. D²g für wäßr. Lösungen verschiedener Konzentration: Rak., Z. El. Ch. 31, 99. Lösungswärme in Wasser: Calvet, C. r. 189, 532. — NaC₂H₃O₂ + C₂H₄O₂ (H 107; E I 47). Durch thermische Analyse nachgewiesen (Kendall, Adler, Am. Soc. 43, 1478). Röntgenographisches (Laue-Diagramme und Reflexionsaufnahmen): Wyckoff, Am. J. Sci. [5] 4, 193; C. 1923 III, 1351. F: 164° (K., A.). — NaC₂H₃O₂ + 2C₂H₄O₂ (H 107; E I 47). Durch thermische Analyse nachgewiesen (Kendall, Adler, Am. Soc. 43, 1478). F: 96,3°. — Über ein Doppelsalz mit Queck silber(II)-chlorid (ebullioskopisch nachgewiesen) vgl. Bourion, Rouyer, C. r. 178, 1940-185, 129.

gewiesen) vgl. Bourion, Rouyer, C. r. 178, 1910; 185, 129.

Kaliumacetate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., K Syst. Nr. 22: Kalium [Berlin 1937], S. 921, 1162. — KC₂H₃O₂ (H 108; E I 47). Röntgendiagramm (Reflexionsaufnahmen): PIPER, Soc. 1929, 236. Sehr hygroskopisch (Singwick, Colored GENTLE, Soc. 121, 1842). Dis: 1,519 (FRICKE, SCHÜTZDELLER, Z. anorg. Ch. 136, 303). Löslichkeit in Wasser bei ca. -180 bis ca. +100°: S., G. Kaliumacetat it in Anilin bei 25° fast unlöslich (Glasstone, Bridgman, Hodgson, Soc. 1927, 635). Zusammensetzung der festen und flüssigen Phasen des Systems Kupfer(II)-acetat-Kaliumacetat-Wasser bei 25° and 40°. Puraganya og 20° 145 444. Kungskapinghas Vorbalten in Wasser, F. und 40°: BUTTGENBACH, Z. anorg. Ch. 145, 144. Kryoskopisches Verhalten in Wasser: F., Sch. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436. Dichten wäßr. Lösungen bei 40°. Incom p. Chroft. Am. Soc. 9, [4020] 326. bei wäßr. Lösungen bei 18°: Lecce de García, An. Soc. quim. arg. 8 [1920], 386; bei 18° und 25°: Wasastjerna, Acta Soc. Sci. fenn. 50, Nr. 2, S. 54, XI. Dichte und Viscosität wäßr. Lösungen bei 25°: F., Sch. Viscosität einiger wäßriger Lösungen bei 15°: SIMON, C. r. 181, 863. Einfluß auf die Koagulationsgeschwindigkeit eines Eisen (III) schloridhaltigen Eisen (III) - hydroxyd - Sols: JABLCZYNSKI, G. KAWENOKI, J. KAWENOKI, Bl. [4] 39, 1323. Permeabilität von Kollodiummembranen für Kaliumacetat: Northrop, J. gen. Physiol. 12, 459; C. 1929 II, 1387. Osmose wäßr. Lösungen: BARTELL, CARPENTER, J. phys. Chem. 27, 109. Brechungsindices wäßr. Lösungen bei 18°: L. DE G. Refraktion wäßr. Lösungen verschiedener Konzentration: WA. Elektrische Leitfähigkeit in Wasser bei 0°: KENDALL, King, Soc. 127, 1787; bei 18°: Mund, Bl. Soc. chim. Belg. 32, 170; C. 1924 I, 2767. Zur elektrischen Leitfähigkeit in Wasser bei 100° vgl. Dahlblom, Tekn. Tidskr. 58 K, 77; C. 1928 II, 2706. Potentialdifferenzen an der Phasengrenze zwischen wäßr. Lösungen und Lösungen in Butylalkohol und Isoamylalkohol: Allemann, Z. El. Ch. 34, 377; Wos-NESSENSKI, ASTACHOW, 3K. 59, 757; C. 1928 I, 2910. Potentiometrische Titration mit 0,1 n-Salzsäure: Job, C. r. 179, 50. Einfluß von Kaliumacetat auf den p_H-Wert von Kaliumphosphat-Puffer-Lösungen: HAYNES, Biochem. J. 15, 448. p_H-Schwellenwert des sauren Geschmacks: Bacharach, Z. Biol. 84, 345; C. 1926 II, 258. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe, [Berlin 1930], S. 247. — KC₂H₃O₂ + ½ H₂O. Geht bei ca. 96° in das wasserfreie Salz über (Abe, zitiert bei Sidgwick, Gentle, Soc. 121, 4844). — KC H. O. 141, H. O. Chapter and M. H. C. Chapter and M. H. O. 141, H. O. Chapter and M. H. C. Chapter and M. C. Chapte 1841). — $KC_2H_3O_2 + 1^{1/2}H_2O$. Geht bei 41° in $KC_2H_3O_2 + 1/2H_2O$ über (Abe, zitiert bei Ś., G.).

Rubidiumacetat RbC₂H₃O₂ (H 109; E I 48). Literatur: Gmelins Handbuch der Rb anorganischen Chemie, 8. Aufl., Syst. Nr. 24: Rubidium [Berlin 1937], S. 228. Sehr hygroskopische Blättchen. F: 246° (korr.) (Sidgwick, Gentle, Soc. 121, 1841). Löslichkeit in Wasser bei verschiedenen Temperaturen: S., G. Geht beim Behandeln mit Essigsäure in ein saures Salz über, das in Nadeln krystallisiert.

Caesiumacetat CsC₂H₃O₃. Literatur: Gmelins Handbuch der anorganischen Chemie, Cs 8. Aufl., Syst. Nr. 25: Caesium [Berlin 1938], S. 240. Sehr hygroskopisch (Sidgwick, Gentle, Soc. 121, 1842). F: 194° (korr.) (S., G.). Löslichkeit bei —1,36° bis +194°: S., G. Kupferacetate. — Cu(C₂H₂O₃)₂ + H₂O (H 109; E I 48). B. Bei der Elektrolyse von Cu

Rupieracetate. — Cu(C₂H₃O₂)₂ + H₂O (H 109; EI 48). B. Bei der Elektrolyse von 20 %iger Natriumacetat-Lösung in Gegenwart von 0,13 % Natriumchlorid und einigen Tropfen Eisessig an einer Kupferanode (Pawlow, Bruns, Ukr. chemič. Z. 2, 318; C. 1927 I, 2720). Ist bei gewöhnlicher Temperatur blaugrün, bei —190° blau (Bamberger, Grengg, Zbl. Min. 1921, 70; C. 1921 III, 604). Absorptionsspektrum der Lösungen in Wasser und Alkohol im ultraroten und sichtbaren Gebiet: French, Lowry, Pr. roy. Soc. [A] 106, 499; C. 1925 I, 601. Schwer löslich in Essigsäure mit grünlicher Farbe, löslich in Ammoniumacetat-Lösung mit dunkelblauer Farbe, die beim Kochen purpurblau wird und beim Abkühlen wieder verschwindet (Davidson, Am. Soc. 50, 1894). Zusammensetzung der festen und flüssigen Phasen des Systems Kupferacetat-Kaliumacetat-Wasser bei 25° und 40°: Büttgenbach, Z. anorg. Ch. 145, 143. Dichte wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 42. Adsorption von Kupferacetat aus wäßr. Lösung bei Zimmertemperatur an aktive Kohle: Schilow, Lepin, Ph. Ch. 94, 45. Änderung der Wasserstoffionenkonzentration der Lösung bei der Adsorption an Zuckerkohle: Bartell, Miller, Am. Soc. 45, 1111. Adsorption aus wäßr. Lösungen an Aluminiumoxyd, Antimon-, Wolfram- und Nickelpulver: Sch., Ph. Ch. 100, 429, 433. Adsorption von Kupfer(II)-hydroxyd aus wäßr. Kupfer(II)-acetat-Lösung durch 3-Nitro-alizarin und Mangandioxyd-Gel bei 18°, 50° und 54°: Liepatow, Koll.-Z. 87, 228;

C. 1926 I. 324; Z. anorg. Ch. 152, 76, 80; 157, 25; 3K. 57, 454; 58, 991; C. 1927 I. 2047. Kupferadsorption der Weizensteinbrandsporen (Tillesia Tritici [Bjerk.]) aus Kupferacetat-Lösungen: Bodnár, Villányi, Terényi, H. 163, 85. Elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 42. Beim Erhitzen von neutralen oder sauren Kupferacetat-Lösungen mit Wasserstoff unter 40 Atm.-Druck auf 100—190° entstehen je nach den Bedingungen Kupfer(I)-oxyd, Kupfer(II)-oxyd oder metallisches Kupfer (W. und W. Ipatjew, B. 60, 1984). Zersetzt sich beim Erhitzen in Alkohol-Atmosphäre bei 245—270° (Constable, Pr. Cambridge phil. Soc. 23, 433; C. 1927 I. 1409). Wirkung auf Pflanzen: MÜLLER, C. 1926 II, 2446. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch. 5. Ausgabe [Berlin 1930], S. 105; E. MERCK, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 338. - Schweinfurter Grün (H 110; E I 48). Ist bei gewöhnlicher Temperatur hellgrün, bei -- 1900 hellblaugrün (BAMBERGER, GRENGG. Zbl. Min. 1921, 70; C. 1921 III, 604). Bestimmung: Köszegi, Gerő, Ch. Z. 51, 303: C. 1927 II. 141. $-\mathrm{Cu}(\mathrm{C_2H_3O_2})_2 + \mathrm{KC_2H_3O_2} + \mathrm{H_2O}$. Grüne Krystalle. Leicht löslich in Wasser unter Zersetzung, schwer in Alkohol, unlöslich in Äther und Benzol (BÜTTGENBACH. Z. anorg. Ch. 145, 148). Gibt beim Trocknen über Phosphorpentoxyd das Krystallwasser ab. Verwittert beim Trocknen im Vakuum und wird bläulich. Zersetzt sieh beim Erwärmen. Verbrennt an freier Flamme, ohne vorher zu schmelzen. — Cu(C₂H₃O₂)₂ + 3 KC₂H₃O₂. Ultramarinblaue Prismen. Beständiger als das grüne Salz (BÜTT.). Löslich in wenig Wasser, in viel Wasser tritt Zersetzung ein, sehwer löslich in 96%igen Alkohol, unlöslich in Äther und Vakhard und Vakhard und Vakhard von Vakhard und Va Benzol. Verhält sich beim Erhitzen und Verbrennen wie das grüne Salz. - Die Verbindung $\frac{\mathrm{Cu}(\mathrm{C_2H_3O_2})_2 + 4\mathrm{KC_H_3O_2} + 12\mathrm{H_2O}}{\mathrm{Nerbindung}} \quad \text{von Rammelsberg } (J.\,\mathbf{1855},\,503;\,\,\mathbf{H}\,110) \text{ existiert nach BCTT. nicht.} \qquad \text{Verbindung} \quad \text{von Kupfer(II)-acetat mit Acetoxim C}_3\mathbf{H_7ON} = \mathbf{1000}$ ('u(C₂H₃O₂)₂. Smaragdgrüne Krystalle (Hieber, Leutert, B. 60, 2316).

Silberacetat AgC₂H₃O₂ (H 110; E I 48). Löslichkeit bei 25° in Wasser: 0,067 Mol/l: in absol, Alkohol: 0.00113 Mold (Larsson, Svensk kem. Tidskr. 39, 127; C. 1927 II, 1231). Sehr sehwer löslich in Essigsäure (Kendall, Adler, Am. Soc. 48, 1478), sehr leicht löslich in Pyridin (Wanscheidt, 3K. 58, 261; C. 1927 I, 92). Adsorption von Silberacetat an aktive Kohle aus wäßr. Lösung bei Zimmertemperatur: Schilow, Lepin, Ph. Ch. 94, 45. Änderung der Wasserstoffionenkonzentration der Lösung bei der Adsorption an Zuckerkohle: Bartell. MILLER, Am. Soc. 45, 1111. Adsorption aus wäßr. Lösungen durch Silberjodid bei 25°: Beekley, Taylor, J. phys. Chem. 29, 948. Zur Bildung von Silber-Solen aus Silberacetat und Essigsäure in Gegenwart von Wasserstoff beim Erhitzen auf 80° vgl. Giles, Salmon. Soc. 123, 1605. Geschwindigkeit der Reaktion mit Formiaten bei 450 und 800: Gurewitsch. Pokrowskaja, Ukr. chemič. Z. 2, 419; C. 1928 I, 146. Gleichgewicht der Fällungsreaktionen mit Natrium-, Barium- und Lanthannitrat bei 24,450 und 25,00: Griessbach, Ph. Ch.

Be

Berylliumacctate. Literatur: GMELINS Handbuch der anorganischen Chemie. 8. Aufl., Syst. Nr. 26: Beryllium [Berlin 1930], S. 150. — Be(C₂H₃O₂)₂ (H 111; E I 48). Viscosität und Leitfähigkeit wäßr. Lösungen bei 25°: Sidgwick, Lewis, Soc. 1926, 2540. -Be₄O(C₂H₃O₂)₆ (H 111; E I 48). Zur Konstitution vgl. Meyer, Mantel, Z. anorg. Ch. 123.

Ma

 19. 54. Röntgendiagramm (Ionisationsmessungen, Laue- und Pulver-Aufnahme): Brage. Morgan, Pr. roy. Soc. [A]
 112. 442; C. 1926 II. 2266. F: 285—286° (B., Morg.).
 Magnesiumacetate. Literatur: Gmelins. Handbuch der anorganischen Chemie, S. Aufl., Syst. Nr. 27: Magnesium, Teil B [Berlin 1938], S. 336. — Mg(C₂H₃O₂)₂ + 4 H₂O (H 111; E I 48). F: ca. 68° (Rivett, Soc. 1926, 1064). Schmilzt wasserfrei bei 357° (Maquennescher Blech). scher Block) (IWANOW, Bl. [4] 43, 447). Kryoskopisches Verhalten in Wasser: R. Thermische Analyse des binären Systems mit Wasser: R. Dampfdrucke wäßr. Lösungen bei 25°: GOODE, BAYLISS, R., Soc. 1928, 1952. Dichte und Viscosität wäßr. Lösungen bei 25-55°: R. Dichten und Brechungsindices wäßr. Lösungen bei 23°: LECCE DE GARCÍA, An. Soc. quim. arg. 8 [1920], 388. Elektrische Leitfähigkeit wäßr. Lösungen bei 12,7—55,1°: R. p_H-Schwellenwert des sauren Geschmacks: Bacharach, Z. Biol. 84, 345; C. 1926 II, 258. Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 352.

Calciumacetate.—Ca(C₂H₃O₂)₂ (H111; E148). Schwer löslich in Essigsäure (Kendali.. Adler. Am. Soc. 43, 1478). Viscosität wäßr. Lösungen bei 15°: Simon, C. r. 181, 863. Dichten und Brechungsindices wäßr. Lösungen bei 20°: LECCE DE GARCÍA, An. Soc. quim. arg. 8 [1920], 387. Uber Calciumacetat-Gele in Alkohol vgl. Thorne, Smith, Koll.-Z. 48, 114: C. 1929 II, 974. Änderung der Wasserstoffionenkonzentration der Lösung bei der Adsorption an Zuckerkohle: Bartell, Miller, Am. Soc. 45, 1111. Vergärung zu Kohlensäure und Methan durch thermophile Bakterien: Coolhaas, Zbl. Bakt. Parasitenk. [II] 75, 162; C. 1928 II. 1342. $-\text{Ca}(\text{C}_2\text{H}_3\text{O}_2)_2 + \text{Ca}(\text{ClO}_4)_2 + 2\,\text{H}_2\text{O}$. Nadeln. Verliert das Krystallwasser beim Trocknen über Schwefelsäure oder bei 100° (Weinland, Baier, B. 57, 1512).

Strontiumacetate. Literatur: GMELINS Handbuch der anorganischen Chemie. 8. Aufl., Syst. Nr. 29: Strontium [Berlin 1931], S. 201. — Sr(C₂H₃O₂)₂ (H 112; E I 49).

Viscosität einiger wäßr. Lösungen bei 15°: Simon, C. r. 181, 863. Dichten und Brechungsindices wäßr. Lösungen bei 26°: Lecce de Garcív, An. Soc. quím. arg. 8 [1920], 388. Piezoelektrisches Verhalten: Hettich, Schleede, Z. Phys. 50, 253; C. 1929 I, 1893. Das Hydrat färbt sich beim Kochen mit Vanadinoxychlorid unter Aufblähen schwarz (Brown, Snyder, Am. Soc. 47, 2673). Reinheitsprüfung: E. MERCK, Prüfung der chemischen Reagenzien. 5. Aufl. [Darmstadt 1939], S. 558. — $Sr(C_2H_3O_2)_2 + Sr(C_2H_3O_2)(ClO_4) + 4H_2O$. Schwach hygroskopische Nadeln (Weinland, Baier, B. 57, 1512). Verwittert beim Aufbewahren über Calciumchlorid. Gibt das Krystallwasser bei 100° ab. Zerfällt beim Umkrystallisieren aus Wasser oder Behandeln mit Alkohol unter Abscheidung von Strontiumacetat.

Bariumacetate. Literatur: Gmelins Handbuch der anorganischen Chemie, S. Aufl., Ba Syst. Nr. 30: Barium [Berlin 1932], S. 315, 367, 383. - Neutrales Bariumacetat (H 112; E I 49). Formulierung als $[\mathrm{Ba}_2(\mathrm{^C_2H_3O_2})_2](\mathrm{^C_2H_3O_2})_2$: Weinland, Henrichsen. B. 56, 530. Viscosität wäßr. Lösungen bei 15°: Simon, C. r. 181, 863. Adsorption aus wäßr. Lösung an Blutkohle: Odén, Langelius, J. phys. Chem. 25, 395; C. 1922 I. 390: an Bariumsulfat: O., Ark. Kemi 7, Nr. 26, S. 84, 86; C. 1921 I, 824. Änderung der Wasserstoffionenkonzentration der Lösung bei der Adsorption an Zuckerkohle: BARTELL, MILLER, Am. Soc. 45, 1111. Elektrischer Widerstand der Lösung des Monohydrats in 96% igem und in absol. Alkohol zwischen 25° und 49°: Lucasse, Harris, J. phys. Chem. 30, 933. Gleichgewicht der Fällungsreaktion mit Silbernitrat bei 25°: Griessbach, Ph. Ch. 97, 69. Das Hydrat färbt sich beim Kochen mit Vanadinoxytrichlorid unter Aufblähen schwarz (Brown, SNYDER, Am. Soc. 47, 2673). Reinheitsprüfung: E. MERCK, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 60. — $\text{Ba}(\text{C}_2\text{H}_3\text{O}_2)_2 + \text{Ba}(\text{C}_2\text{H}_3\text{O}_2)(\text{ClO}_3)$. Krystalle. Leicht löslich in Wasser, unlöslich in Alkohol (Weinland, Henrichsen, B. 56, 533). $\label{eq:Ba} \begin{array}{l} \operatorname{Ba}(\operatorname{C_2H_3O_2})_2 + \operatorname{Ba}(\operatorname{ClO_4})_2 + 2\operatorname{C_2H_4O_2}. \ B. \ Aus \ Bariumacetat, Perchlorsäure und Eisessig (W.. H.). \\ \operatorname{Prismen}. \ \operatorname{Leicht} \ \operatorname{l\"oslich} \ \operatorname{in} \ \operatorname{Wasser} \ (\operatorname{unter} \ \operatorname{Zersetzung}), \ \operatorname{unl\"oslich} \ \operatorname{in} \ \operatorname{Alkohol}, \ \operatorname{l\"oslich} \ \operatorname{in} \ \operatorname{Eisessig}. \end{array}$ Zerfließt an der Luft unter Essigsäure-Abspaltung. Explodiert beim Erhitzen. — Ba(C₂H₃O₂)₂ + Ba(C₂H₃O₂)(ClO₄), B. Aus Bariumacetat und Perchlorsäure oder Natriumperchlorat in Wasser (W., H.). Platten. Leicht löslich in Wasser, unlöslich in Alkohol. Beständig beim Eindampfen auf dem Wasserbad. – $Ba(C_2H_3O_2)_2 + 2NaNO_3 + 2H_2O$. Prismen. Verliert das Krystallwasser bei 100° vollständig (W., Baier, B. 57, 1511). Verpufft beim Erhitzen ziemlich heftig. — $\text{Ba}(\text{C}_2\text{H}_3\text{O}_2)_2 + \text{Mg}(\text{ClO}_4)_2$. Krystalle (aus Wasser). Leitfähigkeit in wäßr.

Lösung bei 25°: W., B.

Zinkacetate, Literatur: Gmelins Handbuch der anorganischen Chemie, S. Aufl., Zn.

Syst. Nr. 32: Zink [Berlin 1924], S. 253, 260. — Zinkacetat (H 112: E I 49). Ist schon unterhalb 100° etwas flüchtig (RAVENSWAAY, Chem. Weekb. 23, 375; C. 1926 II, 1890). Das wasserfreie Salz ist fast unlöslich in Essigsäure (Kendall, Adler, Am. Soc. 43, 1478; Davinson, Am. Soc. 50, 1894), leicht löslich in ca. 5% iger Ammoniumacetat-Lösung, ziemlich leicht in ca. 5% iger Natriumacetat-Lösung (D.). Dichten und Brechungsindices wäßr. Lösungen bei 22°: Lecce de García, An. Soc. qu'im. arg. 8 [1920], 388. Beim Destillieren im hohenVakuum bei ea. 250° entstehen Zinkearbonat, Aceton, basisches Zinke et at Zn₄O(C₂H₃O₂)₆ und braune kohlige Produkte (Auger, Robin, C, r, 178, 1547). Gibt bei der Elektrolyse in wäßr. Lösung unterhalb 20° quantitativ Äthan (Векмело, Виль, An. Soc. espeñ. 27, 228; С. 1929 II, 712). Wirkung auf Pflanzen: MÜLLER, C. 1926 H, 2446. Reinheitsprüfung: Erzän aungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 468: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 604. Zn₄O(C₂H₃O₂)₆. Kubisch. Röntgenographische Reagenzien, 5. Auft. [Darmstadt 1939], 8.604.— Zn₄O(C₂H₃O₂)₆. Kubisch. Rontgenographisch. Untersuchung (Drehkystallaufnahme): Wyart, Bl. Soc. franç. Min. 49, 150; C. 1927 II. 371. F: 249—250° (Av., Ro.). D: 1,903 (W.). Unlöslich in Wasser, löslich in Chloroform und Benzol (Av., Ro.). Liefert beim Behandeln mit Wasser ein weißes Pulver, mit absol. Alkohol weiße unlösliche Flocken (Av., Ro.). ZnCl₂+C₂H₄O₂ H[ZnCl₂(C₂H₃O₂)]. Zäher Sirup (Meerwein, A. 455, 244). Zersetzt Diazoessigester in verdünnter ätherischer Lösung momentan unter Aufschäumen. Löst Triarylearbinole unter intensiven Halochromie-Erscheinungen ähnlich wie konz. Schwiefelsäure. Addiert sich leicht an Olefine und Terscheinungen and Schrift (C. H. O.) (C. H. N. Kristelle (M.). Halocht (C. H. O.) (C. H. N. Kristelle (M.). Halocht (C. H. O.) (C. H. O.) (M. Ristelle (M.). Halocht (C. H. O.) (M. Ristelle (M.). Halocht (M. R. Ristelle (M.). Halocht (M.). Halocht (M.). $2H[ZnCl_2(C_2H_3O_2)] + (C_2H_5)_2O, Krystalle(M.) H[(ZnCl_2)_2(C_2H_3O_2)] - (C_2H_5)_2O$ Kry talle (M.).

Cadmiumacetate. Literatur: GMELINS Handbuch der anorganischen Chemie, S. Aufl., Syst. Nr. 33; Cadmium [Berlin 1925], S. 137, 140, 152. $-\text{Cd}(C_2H_3O_2)_2$ (H 113; E I 49). Gibt mit Natriumsulfantimoniat-Lösung (Schlippes Salz) einen reingelben Niederschlag, der beim Kochen schokoladenbraun wird (Langhans, Fr, **60**, 92). Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 111. $\operatorname{Cd}(C_2H_3O_2)_2$. $\operatorname{Cd}(\operatorname{ClO}_4)(C_2H_3O_2)_+ 3H_2O$. Nadeln, Verpufft heftig beim Erhitzen (Weinland, Som Aich, Z. anorg, Ch. 150, 41). — $\operatorname{Cd}(\operatorname{C}_2H_3O_2)_2$ — $\operatorname{Cd}(\operatorname{NO}_3)_2 + 3H_2O$. Krystallpulver (W., Sch.), $\operatorname{2Cd}(\operatorname{C}_2H_3O_2)_2 + \operatorname{Cd}(\operatorname{ClO}_4)_2 + 2H_2O$. Krystallpulver, Verpufft beim Erhitzen (W., Sch.), $\operatorname{2Cd}(\operatorname{C}_2H_3O_2)_2 + \operatorname{NaN}_3$. Krystalle, Zersetzt sich bei schnellem Erhitzen unter Luftabschluß langsam unter Abscheidung von Kohlenstoff und Stickstoff (Vournazos, Z. anorg, Ch. 184). 164, 272).

ΛM

Hg Quecksilbersalze. — Quecksilber(I)-acetat HgC2H3O2 (H113; EI 49). Adsorption der Kationen und Anionen an Quecksilbertröpfehen: PATRICK, BACHMAN, J. phys. Chem. 30, 135. — Quecksilber(II)-acetat Hg(C₂H₃O₂)₂ (H 113; EI 49). Wird durch Umkrystallisieren aus absol. Alkohol von Quecksilber(I)-salz befreit (Sachs, Z. anorg. Ch. 135, 276). In Eisessig lösen sich bei 15° 5,5%, in Anilin etwa 12,5% (Mamelli, Cocconi, G. 52 II, 118). Löslichkeit in Phenol-Essigsäure-Gemischen bei 15°: M., C. Thermische Analyse der binaren Contact and Systeme mit Phenol, mit Essigsäure und mit Anilin und des ternären Systems mit Phenol und Essigsäure: M., C. Quecksilber(II)-acetat gibt beim Erhitzen auf ca. 170—180° (Stromeyer, zitiert bei Marsh, Struthers, Soc. 1927, 2658) eine Verbindung C₁₀H₁₀O₁₀H₂₆ (Mercuretin); beim Kochen mit Eisessig oder Behandeln mit Acetanhydrid in Eisessig entsteht dieselbe Verbindung (M., STR.). Über eine Kondensation mit Bleiacetat vgl. M., Str. Beim Kochen der 5 %igen wäßrigen Lösung entsteht neben dem orangefarbenen Salz Hg(C₂H₃O₃)₂ + HgO (H 2, 113) noch eine rote Verbindung (Quecksilber(II)-oxyd?) (Kunz-Krause, Manicke, Ber. dtsch. pharm. Ges. 31, 234, 237; C. 1921 III, 463). Zersetzt sich in Wasser bei der Einw. von Kupfersalzen unter Ausscheidung von Quecksilber(II)-oxyd (Bren-Wasser Det der Einw. Von Kupiersalzen under Ausscheitung von Geteksnier (11)-0kyd (BECH-TEREW, Ж. 57 [1925], 179 Anm.). Gibt mit Eisenpentacarbonyl in Methanol eine Additions-verbindung Hg(0·CH₃), +2 Fe(CO)₅ (Hock, Stuhlmann, B. 62, 2690). Beim Erwärmen von Chloralhydrat mit währ. Quecksilber(II)-acetat-Lösung auf 95—100° entstehen Chloroform, Quecksilber(I)-acetat, Kohlenoxyd und Salzsäure (Ku.-Kr., Manicke). Quecksilber(II)-acetat liefert beim Kochen mit Benzylmagnesiumchlorid in Ather Benzylquecksilberchlorid (GILMAN, KIRBY, R. 48, 158). Über die Mercurierung von aromatischen Verbindungen mit Hilfe von Quecksilber(II)-acetat vgl. DIMROTH, B. 31 [1898], 2154; 32 [1899], 758; О. DIMROTH, Habilitationsschrift [Tübingen 1900]; Di., B. 35 [1902], 2032, 2853; 54, 1504: A. 446, 148; Manchot, A. 421, 340; Maschmann, A. 450, 85, 98; Kharasch, Jacobsohn. Am. Soc. 43, 1894; KH., LOMMEN, J., Am. Soc. 44, 793. Beim Behandeln von Anilin und anderen Aminen mit Quecksilber(II)-acetat, am besten in Methanol, erhielten Albert, SCHNEIDER (A. 465, 268) Additionsprodukte, z. B. beim Anilin die Verbindung C₆H₅·NH₂+Hg(O·CO·CH₃)₂, die beim Behandeln mit Wasser oder Alkohol in die kernsubstituierte Verbindung, das Acetat des 4-Hydroxymercuri-anilins, übergeht. Quecksilber(II)-acetat ververbinding, tas Access des 4-Hydroxynercuri-ainins, ubeigens. Queckanier (11)-access verbinding von Steinbrandsporen des Weizens (Bodnar, Terenvir, Ch. Z. 50. 109; C. 1926 I. 2504). Über die Trennung von Benzol und Thiophen mit Hilfe von Quecksilber (II)-accesa vgl. Dimroth, B. 35 [1902], 2035. — Hg(C₂H₃O₃)₂ + HgCl₂ (H 113). Diesem von Donk (R. 26, 217; vgl. H 2, 113) beschriebenen Salz kommt nach Whitmore, Leuck (Am. Soc. 51, 2590) die Konstitution HgCl(O·CO·CH₃) zu. — Hg(C₂H₃O₃)₂ + HgS (H 113). Zersetzt sich bei 232—2349 unter Schwärzung (Bernard), Rossi, G. 53, 226, 227). Zur elstetzte den Leitfähigkeit im mäßer Leiter bei Renard nach elektrischen Leitfähigkeit in wäßr. Lösung bei 180 vgl. B., R. Verhalten beim Erwärmen mit Wasser auf 100°: B., R. — Äthylmercapto-quecksilberacetat [C₂H₅·S·Hg·O· CO·CH₃]₂. Zur Molekulargröße und kryoskopischen Molekulargewichtsbestimmung in Wasser vgl. Smith, Semon, Am. Soc. 46, 1334; Sachs, Blessl, B. 58, 1496. B. Bei der Einw. von Quecksilber(II)-acetat auf Mercaptan oder Thioessigsäure-S-äthylester in Acetanhydrid (Sachs, B. 54, 1852) oder auf Quecksilbermercaptid in Wasser (Sa., Z. anorg. Ch. 185, 277; Sm., Se.). Krystalle (aus Wasser). F: 140—146° (Sa., B. 54, 1852). Leicht löslich in Wasser, in kaltem leichter als in heißem Wasser, leicht in Alkohol und Tetrachlorkohlenstoff, schwer in Äther und Benzol (Sm., Sr.). Die wäßr. Lösung schäumt beim Sieden stark auf (Sa., In Atler into Benzoi (Sm., SE.). Die wahr. Lösung schaumt beim Sieden stark auf (SA., Z. anorg. Ch. 135, 277). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Sm., SE. Einw. von verd. Natronlauge: SA., Z. anorg. Ch. 135, 284; SA., BALASSA, Z. anorg. Ch. 152, 180. Einw. von flüssigem Ammoniak: Sm., SE., Die wäßr. Lösung liefert beim Behandeln mit Natrium-chlorid die Verbindung [ClHg·S·C₂H₅]₂ (EII 1, 342) (SA., B.54, 1852; Z. anorg. Ch. 135, 277).

— 2C₂H₅·S·Hg·O·CO·CH₃+Hg(O·CO·CH₃)₂. Krystalle. Schmilzt unvollständig bei 140—142° und zersetzt sich bei 144—146° (SA.). B. 54, 1853). Löslich in Wasser, in heißem Chloroform und Benzol unter Zersetzung. Färbt sich beim Betupfen mit Kalilauge gelb (SA.).— S(Hg·O·CO·CH.). B. Bei der Finny von Schwefellschleneteff auf kalt gegettigte (Sa.). — S(Hg·O·CO·CH₃)₂. B. Bei der Einw. von Schwefelkohlenstoff auf kalt gesättigte wäßr. Quecksilber(II)-acetat-Lösung in verschlossenem Gefäß (Bernard, Rossi, G. 52 I, 140). Nadeln. Beginnt sich langsam beim Erhitzen auf 210—215° zu zersetzen, ohne zu schmelzen (B., R., G. 52 I, 140; 53, 226, 227). Unlöslich in allen üblichen Lösungsmitteln (B., R., G. 52 I, 140). Elektrische Leitfähigkeit in ca. 1 %iger Quecksilber(II)-acetat-Lösung bei 18°: B., R., G. 53, 227. Verhalten beim Erhitzen mit Wasser: B., R., G. 53, 227. Gibt beim Behandeln mit Na₂S₂O₄ Quecksilbersulfid ab; wird durch heiße Mineralsäuren zersetzt (B., R., G. 52 I, 140)

gleichen Halochromieerscheinungen wie konz. Schwefelsäure.

Aluminiumacetate. Literatur: GMELINS Handbuch der anorganischen Chemie, Al 8. Aufl., Syst. Nr. 35: Aluminium, Teil B [Berlin 1934], S. 295, 385, 576. — Al(C₂H₃O₂)₈ (H 114; E I 50). B. Praktisch chlorfreies Aluminiumacetat entsteht beim Kochen von Aluminiumchlorid mit wasserfreier Essigsäure (A. WACKER, D. R. P. 347606; C. 1922 II, 808; Frdl. 14, 261). Die Lösung in Essigsäure liefert beim Erhitzen mit Wasserstoff unter hohem Druck auf 320-360° krystallinisches Aluminiumhydroxyd (IPATJEW, B. 60, 1981). Über die Fällung von basischem Aluminiumacetat aus verd. Aluminiumacetat-Lösung (Trennung des Aluminiums von Zink und Magnesium) vgl. KLING, LASSIEUR, C. r. 178, 1551. — Basisches Aluminiumacetat (H 114; E I 50). Darstellung von Liquor aluminii acetici: Wøhlk, Dansk Tidsskr. Farm. 1, 86; C. 1926 II, 2982. Herstellung haltbarer, leicht löslicher Verbindungen von essigsaurer Tonerde durch Eindampfen von Lösungen essigsaurer Tonerde mit löslichen Kohlenhydraten: Kalle & Co., D. R. P. 469235; C. 1929 I, 2798; Frdl. 16, 233. Adsorption durch Kieselgur, Bariumsulfat und verschiedene Kohlen: Sabalitschka, Erdmann, Z. ang. Ch. 38, 571. Flockung und Gelatinierung von Rinder-Blutserum durch Liquor aluminii acetici: STRAUB, J. Pharmacol. exp. Ther. 29, 83; C. 1927 I, 1858. Bestimmung von Aluminiumacetat in Liquor aluminii acetici: ROSENFELD, Farmac. Ž. Chaŕkov 1928, 309; C. 1928 II, 1132. Basizitätsbestimmung von essigsaurer Tonerde: FEIGL, KRAUSS, B. 58, 400.

4 $Ga(C_2H_3O_3)_2 + 2 Ga_2O_3 + 5 H_2O$. Mikrokrystalliner Niederschlag. Sehr hygroskopisch Ga (Tschakrrian, C. r. 189, 251). Beginnt sich gegen 160° zu zersetzen. Löslich in Wasser, fast unlöslich in kaltem, sehr schwer löslich in siedendem Eisessig. 1 Tl. löst sich in ca. 200 Tln. Eisessig. In Wasser leicht hydrolysierbar. Kann zur Abscheidung von Gallium in Gegenwart von Zink, Aluminium, Indium und Eisen dienen. — Thalliumacetate. Literatur: Tl GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 38: Thallium [Berlin 1940], S. 399, 464. — Thallium(I)-acetat TlC₂H₃O₂ (H 115). B. Aus Thalliumathylat in ather. Lösung bei der Einw. von 1 Mol Essigsäure (DE FORCRAND, C. r. 176, 22). Blättchen (aus wäßr. Aceton oder aus Alkohol). Krystallographisches: Walter, B. 59, 967. F: 130° (korr.) (W.), 131° (korr.) (Sugden, Soc. 1929, 326). D; zwischen 137° (3,765) und 181° (3,691): S. Oberflächenspannung zwischen 139° (45,4) und 204° (44,5 dyn/cm): S. Parachor: S. Leicht löslich in Wasser, Alkohol, Methanol, Chloroform und Essigester, kaum löslich in Aceton

Lanthanacetat (H 115; E I 50). Gleichgewicht der Fällungsreaktion mit Silbernitrat La; Ce bei 25°: GRIESSBACH, Ph. Ch. 97, 69. — Basisches Lanthanacetat (H 115). Über die Aufnahme von Jod aus Jod-Kaliumjodid-Lösung vgl. Lottermoser, Herrmann, Ph. Ch. 122, 1.—Ceracetate (H 115; E150).— $2 [Ce_3(C_2H_3O_2)_3](C_2H_3O_2)_4 Cl_2 + Ce(C_2H_3O_3)_3 + 28 H_2O.$ B. Aus Cer(III)-acetat und verd. Salzsäure (Weinland, Henrichsen, B. 56, 532, 538). B. Aus Cer(III)-acetat und verd. Salzsäure (Weinland, Henrichsen, B. 05, 032, 038). Krystalle. Verwittert an der Luft. Krystallisiert aus Wasser nicht ohne Zersetzung. — [Ce₃(C₂H₃O₂)₃|(C₂O₄)₄(ClO₄)₂ + 12 H₂O. B. Aus Cer(III)-acetat und Perchlorsäure in Wasser (W., H.). Krystalle (aus Wasser und Alkohol). Sehr leicht löslich in Wasser und Alkohol. Verpufft beim Erhitzen. — [Ce₃(C₂H₃O₂)₃](NO₃)₆ + 13 H₂O. B. Aus Cer(III)-acetat und Salpetersäure in Wasser (W., H.). Ross (?) Plättchen (aus Wasser und Alkohol). Sehr leicht löslich in Wasser und Alkohol. — [Ce₃(C₂H₃O₂)₃](CrO₄)₃ + 6 H₂O. B. Aus Cer(III)-acetat und Kaliumdichromat in siedender verdünnter Essigsäure (W., H.). Gelbrote mikroskopische Krystalle. Sehr schwer löslich in Wasser, leicht in verd. Mineralsäuren. Verglimmt über offener Flamme unter Funkensprühen. — Samariumacetat Sm(C₂H₃O₃)₄ + 4 H₄O (H 115). Krystalle. Sehr schwer löslich in Wasser, leicht in verd. Mineralsäuren. Verglimmt über offener Flamme unter Funkensprühen. — Samariumacetat Sm(C₂H₃O₂)₃ + 4 H₂O (H 115). Sm; Es Reflexionsspektrum (304—563 mμ): Ephram, Rây, B. 62, 1650. — Europiumacetat Eu(C₂H₃O₂)₃ + 4 H₂O. Krystalle. Geht beim Trocknen über Schwefelsäure in das Trihydrat über (Sarkar, Bl. [4] 41, 187; A. ch. [10] 8, 255). In Wasser leichter löslich als das entsprechende Gadoliniumsalz. — Eu(C₂H₃O₂)₃ + 3 H₂O (S.).

Titanacetate (H 115). [Ti₂O₂(OH)₂(C₂H₃O₂)₂] oder TiO(OH)·O·CO·CH₃(?). B. Beim Ti Erwärmen der Verbindungen [Ti₂Cl₂(C₂H₃O₂)₄]Cl₂ + H₂O (s. u.) oder [Ti₂Cl(C₂H₃O₂)₃(OH)₂Cl₂ (S.120) im Trockenschrank auf 60° bis zur Gewichtskonstanz (nicht ganz rein erhalten) (Grua, Moward Zance Ch. 148, 384, 390). Krystallpulver East unlöslich in Wasser —

(S.120) im Trockenschrank auf 60° bis zur Gewichtskonstanz (nicht ganz rein erhalten) (Giua, Monath, Z. anorg. Ch. 143, 384, 390). Krystallpulver. Fast unlöslich in Wasser. — TiCl₂(C₂H₃O₃). B. Bei langsamem Zugeben von Titan(IV)-chlorid zu einem Gemisch von Eisessig und Acetanhydrid (Fichter, Reichart, Helv. 7, 1082). Gelbliche Krystalle. Unlöslich in indifferenten Lösungsmitteln. Verkohlt beim Erhitzen. Zersetzt sich beim Behandeln mit Alkohol und Wasser. — [Ti₂Cl₂(C₂H₃O₃)₄]Cl₃ + H₂O. Zur Konstitution vgl. Giua, Monath, Z. anorg. Ch. 143, 384; 166, 306. B. Beim Behandeln von 4 Mol Eisessig mit 1 Mol Titan(IV)-chlorid (G., M., Z. anorg. Ch. 143, 385). Hygroskopisches Krystallpulver. Leicht löslich in Alkohol und in Wasser unter Zersetzung, löslich in Essigsäure, sehr schwer löslich in Ather und Petroläther. Geht bei längerem Aufbewahren im Exsiccator in die Verbindung [Ti₂Cl(C₂H₂O₃)₃(OH)₃(Ol₃) über. Beim Erwärmen im Trockenschrank auf 60° (bis zu annähernder Gewichtskonstanz) entsteht die Verbindung [Ti₂O₄(OH)₄C₅H₄O₄)₄] oder TiO(OH). nähernder Gewichtskonstanz) entsteht die Verbindung $[Ti_aO_a(OH)_a(C_aH_aO_a)_a]$ oder $TiO(OH) \cdot O \cdot CO \cdot CH_a(?)$. Beim Kochen der wäßr. Lösung oder Behandeln der alkoh. Lösung mit Alkaloiden fällt Titansäure aus. Gibt bei der Einw. von Wasserstoffperoxyd in Essignäure

MONOCARBONSÄUREN Cn H2n O2

einen gelben Niederschlag (unlöslich in Wasser, löslich in Salpetersäure). Reaktionen mit Phenolen bei An- oder Abwesenheit von Schwefelsäure: G., M., Z. anorg. Ch. 143, 392; mit Alizarin: G., M., Z. anorg. Ch. 166, 309. — [Ti₂Cl(C₂H₃O₂)₃(OH)₂]Cl₂. B. Bei längerem Aufbewahren der Verbindung [Ti₂Cl₂(C₂H₃O₂)₄|Cl₂ + H₂O im Exsiceator (G., M., Z. anorg. Ch. 143, 386). Pulver. Ist haltbarer und zeigt ähnliche Eigenschaften wie die Ausgangsverbindung. — [Ti₂(C₂H₃O₂)₄(OH)₂]Cl₂ (Ci., M., Z. anorg. Ch. 143, 386). — [Ti₂(C₂H₃O₂)₄(OH)₂]Cl₂ + 3H₂O(?) (G., M., Z. anorg. Ch. 143, 389). — Ti₂Br₄(C₂H₃O₂)₄. B. Beim Erwärmen von Titan(IV)-bromid mit einem Gemisch aus Essigsäure und Acetanhydrid (1 : 1) (G., M., Z. anorg. Ch. 166, 309). Gelblichroter Niederschlag. Unbeständig.

Zinnacetate. — Sn₂O(C₂H₃O₂)₂ (H 115). B. Bei der Einw. von Eisessig auf Zinn(II)-hydroxyd (ELÖD, KOLBACH, Z. anorg. Ch. 164, 304). — SnO(C₂H₃O₂)₂. B. Bei der Einw. von Kaliumacetat auf Zinn(IV)-chlorid in Eisessig oder auf Zinn(IV)-sulfat in 50 %iger Essigsure (E., K.). — SnCl₂(C₃H₃O₂)₂. Kryoskopische Mol.-Gew.-Bestimmung in Eisessig: Fichtere.

Zinna cetate. — Sn₂O(C₂H₃O₂)₂ (H 115). B. Bei der Einw. von Eisessig auf Zinn(II)-hydroxyd (ELöd, Kolbach, Z. anorg. Ch. 164, 304). — SnO(C₂H₃O₂)₂. B. Bei der Einw. von Kaliumacetat auf Zinn(IV)-chlorid in Eisessig oder auf Zinn(IV)-sulfat in 50% iger Essigsäure (E., K.). — SnCl₂(C₂H₃O₂)₂. Kryoskopische Mol.-Gew.-Bestimmung in Eisessig: Fichter Herzbein, Helv. 11, 563. B. Bei allmählichem Eintragen von Zinn(IV)-chlorid in ein Gemisch von Eisessig und Acetanhydrid (F., Reichart, Helv. 7, 1082; F., H.). Hygroskopisches krystallines Pulver. Unlöslich in indifferenten Lösungsmitteln (F., R.). Bildet an der Zimmerluft Nebel und geht beim Aufbewahren an der Luft in einen Sirup (vielleicht SnCl₂(C₂H₃O₂)(OH) + 4H₂O) über (F., H.). Zersetzt sich beim Schmelzen, Destillieren oder Behandeln mit Wasser (F., R.). Zerfließt beim Überleiten von Chlorwasserstoff und zersetzt sich bei nachfolgender Destillation bei 65% unter 50 mm Druck in Zinn(IV)-chlorid und Eisessig (F., H.). Reagiert mit Pyridin unter Selbsterwärmung und Bildung von 2C₅H₅N + SnCl₄ (H 20, 195; E I 20, 61) (F., H.). — Na₂[Sn(C₂H₃O₂)₆]. B. Bei allmählichem Zugeben einer bei 90% gesättigten Lösung von wasserfreiem Natriumacetat in Eisessig zu einer Lösung von Zinn(IV)-chlorid in Eisessig oder aus Zinn(II)-acetat und der berechneten Menge entwässertem Natriumacetat in Eisessig und Oxydation durch Einleiten von trockner Luft (E., K.). Nadeln. [Homann]

Blei(II)-acetate. Pb(C₂H₃O₂)₂ (EI 50). Kontraktion beim Lösen in Wasser: Rakshit, Z. El. Ch. 31, 400. Löslichkeit in Wasser und Eigenschaften von wäßr. Lösungen s. beim fölgenden Salz. Die bei 20° gesättigte Lösung in 99,4% iger Essigsäure enthält 1.89 Mol'l (SCHALL, MELZER, Z. El. Ch. 28, 474). Elektrische Leitfähigkeit in 99,4% iger Essigsäure bei 18° und 25°: Sch., Me.: Sch., Markgraf, Trans. ann. electroch. Soc. 45 [1924]. 163: in wasserfreier Essigsäure (F: 16,60°) bei 18° und 20°: Sch., Thieme-Wiedtmarkter, Z. El. Ch. 35, 339: bei 18° und 25°: Sch., Ma. — Pb(C₂H₃O₂)₂ + 3H₂O (H 115; E I 50). Röntgenogramm von auf Blei erzeugten dünnen Schichten von Bleiacetat: Trillat. Ann. Physique [10] 6. 76. Härteanisotropie: Reis, Zimmermann, Z. Kr. 57, 469; Ph. Ch. 102, 331. Ist piezoelektrisch (Hettich, Schleede, Z. Phys. 50, 253; C. 1929 I. 1893). Photoelektrischer Effekt in Krystallen von $Pb(C_2H_3O_2)_2 + 3H_2O$: Predwoditelew, Blinow, Z. Phys. 42, 70; C. 1927 II. 1672. Löslichkeit in Wasser zwischen 0.1° (19,82–19.84 g wasserfreis Salz in Hermann auf den Salz in He 100 g Wasser) und 50,140 (220,3-222,4 g): Dundon, Henderson, Am. Soc. 44, 1199, 100 g gesättigte Lösung enthalten bei 25° 35,53 g. bei 35° 47,40 g wasserfreies Salz (Sandved. Soc. 1929, 339). Die bei 200 gesättigte Lösung in 99,4% iger Essigsäure enthält 3,64 Mol l (Schall, Melzer, Z. El. Ch. 28, 474). Löslichkeit in Natriumacetat-Lösung bei 250; Sa., Soc. 1927, 2973; in Kaliumacetat-Lösung bei 25°: Fox, Soc. 95 [1909], 886. Zusammensetzung der festen und flüssigen Phasen im ternären System Bleiacetat-Essigsäure-Wasser bei 25°: Sa., Soc. 1927, 2971; in den ternären Systemen Bleiacetat-Bleichlorid-Wasser und Bleiacetat-Bleichlorid-Essigsäure und im quaternären System Bleiacetat-Bleichlorid-Essigsäure-Wasser bei 25° und 35° ; Sa., Soc. 1929, 339, 342, 343. D% für wäßr. Lösungen verschiedener Konzentration: Rakshit, Z. El. Ch. 31, 100; Dichte gesättigter wäßriger Lösungen zwischen 0° und 50° ; Dun., Hen., Am. Soc. 44, 1199. Viscosität wäßr. Lösungen zwischen 15° und 30°: DE KOLOSSOWSKY, G. 55, 854. Elektrische Leitfähigkeit in 99,4%iger Essigsäure bei 18° und 25°: Schall, Melzer, Z. El. Ch. 28, 474. Elektromotorische Kraft von Ketten mit Bleiacetat-Lösungen: Thiel, B. 53, 1070; Gerke, Am. Soc. 44, 1695; Kremann, Hrasovec, M. 48, 424, 447. Bei der Elektrolyse von Blei(II)acetat in 99,4% iger Essigsaure in Gegenwart von Natriumacetat entsteht an der Platinanode reines Blei(IV)-acetat (Schall, Me., Z. El. Ch. 28, 475). Beim Auflösen äqui-molekularer Mengen von radioaktivem Blei(II)-acetat und inakt. Blei(IV)-acetat oder von inakt. Blei(II)-acetat und radioaktivem Blei(IV)-acetat verteilt sich die Radioaktivität gleichmäßig auf Blei(II)-acetat und Blei(IV)-acetat (v. Hevesy, Zechmeister, B. 53, 413; Z. El. Ch. 26, 153). Blei(II)-acetat setzt sich mit Calciumcarbid in wäßr. Lösung zu Bleiacetylenid um (Durand, C. r. 177, 694). Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch. 5. Ausgabe [Berlin 1930], S. 350; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 84. — Basisches Bleiacetat. Zusammensetzung der offizinellen Lösung in Wasser: Gibson, Matthews, Soc. 1928, 597. Umsetzung von basischem Bleiacetat mit Phenolen: Gi., Ma. Reinheitsprüfung von "Bleiessig": E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 86. Gehaltsbestimmung von basischer Bleiacetat-Lösung: Kettle, Chem.-Analyst 17, Nr. 2, S. 7; C. 1928 II, 87.

[Pb₂(C₂H₃O₂)₂](ClO₄)₂ + H₂O. Platten. Läßt sich aus Wasser nicht umlösen (Weinland, Stron, B. 55, 2222). Elektrische Leitfähigkeit in Wasser bei 14°: W., St. Explodiert heftig beim Erhitzen und auf Schlag. — [Pb₂(C₂H₃O_{2)₂](BrO₃)₂. B. Aus Blei(II)-acetat und Kaliumbromat in Wasser (Weinland, Paul. Z. anorg. Ch. 129, 252). Blättehen. Verpufft bei} ca. 1650 (Wei., P.). Explodiert beim Schlagen und kann Explosionen von aus Kaliumbromat und Bleiacetat hergestelltem Bleibromat verursachen (Günzel, Marcus, Z. ang. Ch. 38, 929; vgl. a. Victor, Z. ang. Ch. 40, 841; Witt, C. 1927 II, 2384). Reibungsempfindlichkeit: Rathsburg, Z. ang. Ch. 41, 1285. — [Pb₂(C₂H₃O₂)₂]S₂O₆. Blättehen (Weinland, Paul, Z. anorg. Ch. 129, 250, 251). — [Pb₂(C₂H₃O₂)₃]ClO₄ + 2 H₂O. Nadeln (Weinland, Stroh, B. 55, 2223). Elektrische Leitfähigkeit in Wasser bei 14°: Weil, St. — [Pb₂(C₂H₃O₂)₃]NO₃ + H₂O. Nadeln. Läßt sich aus Wasser nicht umlösen (Weil, Stroh, B. 55, 2225). — [Ph/Olific Mol. Ch. Olific Mol. Schupper Eveledigt heim Schiften mit gereßen [Pb₂(OH)(C₂H₃O₂)](ClO₃)₂ + 2.5 H₂O. Schuppen. Explodiert beim Erhitzen mit großer Heftigkeit (Weinland, Paul, Z. anorg. Ch. 129, 261). — [Pb₃(C₂H₃O₂)₂](NO₃)₄. Krystallinisch (Wei., P., Z. anorg. Ch. 129, 251). — [Pb₃(C₂H₃O₂)₄](NO₃)₂ + H₂O. Mikroskopische Nadeln (Weinland, Stroh, B. 55, 2225). Läßt sich aus Wasser nicht umlösen. — [Pb₃(C₂H₃O₂)₄] (ClO₄)(C₂H₃O₂). Krystalle (Weinland, Stroh, B. 55, 2224). Elektrische Leitfähigkeit in Wasser bei 14°: Wei., St. Aus der Lösung in Wasser scheidet sich Bleiacetat aus. -Wasser bei 14°: Weil, St. Aus der Losing in Wasser scheidet sich Bielacetat aus. — [Pb₃(C₂H₃O₂)₂(OH)₂](ClO₃)₂ + 3H₂O. Platten. Explodiert beim Erhitzen äußerst heftig (Weinland, Paul., Z. anorg. Ch. 129, 261). — [Pb₄(C₂H₃O₂)₅](ClO₄)₃ + 2H₂O. Nadeln oder Säulen (Weinland, Stroh, B. 55, 2224). Läßt sich aus Wasser umkrystallisieren. Elektrische Leitfähigkeit in Wasser bei 14°: Weil. St. — Pb(C₂H₃O₂)₂ + NaClO₄. Prismen (aus Wasser). Explodiert beim Erhitzen (Weinland, Stroh, B. 55, 2717). — 2Pb(C₂H₃O₂)₂ + NaClO₄ + 3H₂O. Wurde nur einmal erhalten (W. St.). Nadeln. Explodiert beim Erhitzen. Pb(C H O) + NaNO + H O. Plättehen, Läßt sich aus Wesser nicht unsersetzt zum. Pl $(C_2H_3O_2)_2 + NaNO_3 + H_2O$. Blättchen. Läßt sich aus Wasser nicht unzersetzt umkrystallisieren (Weinland, Baier, B. 57, 1510). — Pb $(C_2H_3O_2)_2 + Sr(C_2H_3O_2)(ClO_4) + 4H_2O$. Platten. Läßt sich aus Wasser unzersetzt umkrystallisieren (W. B., B. 57, 1510). Verwittert beim Aufbewahren über Schwefelsäure. Leitfähigkeit in Wasser bei 25°: W., B.

Blei(IV)-acetat, Bleitetraacetat Pb(C₂H₃O₂)₄ (H 117; E I 51). B. Entsteht in sehr reinem Zustand bei der Elektrolyse von Blei(II)-acetat an einer Platinanode in 99,4% iger Essigsäure in Gegenwart von wasserfreiem Natriumacetat (Schall, Melzer, Z. El. Ch. 28, 475; vgl. Bermejo, Blas, An. Soc. españ. 27, 234; C. 1929 II, 712). Darstellung durch Eintragen von Mennige in Eisessig in der Wärme: Dimroth, Friedemann, Kämmerer, B. 53, 484; D., Schweizer, B. 56, 1377. Zersetzt sich beim Erhitzen auf 140° bis 180° unter Bildung von Blei(II)-acetat, Kohlendioxyd, geringeren Mengen Methan und Äthan und Spuren von ungesättigten Kohlenwasserstoffen, Kohlenoxyd und Wasserstoff (SCHALL, Z. El. Ch. 28, 506). Wird durch Wasser sofort unter Bildung von Blei(IV)-oxyd hydrolysiert; bei der Hydrolyse mit 0,2 n-Ammoniak in Gegenwart von Gummi arabicum erhält man kolloide Lösungen von Blei(IV)-oxyd (Gutbier, Meyer, Z. anorg. Ch. 141, 96). Beim Auflösen äquimolekularer Mengen von radioaktivem Blei(II)-acetat und inakt. Blei(IV)acetat oder von inakt. Blei(II)-acetat und radioaktivem Blei(IV)-acetat verteilt sich die Radioaktivität gleichmäßig auf Blei(II)-acetat und Blei(IV)-acetat (v. Hevesy, Zechmeister, B. 53, 413; Z. El. Ch. 26, 153). Wirkt auf organische Verbindungen oxydierend oder gleichzeitig oxydierend und acetylierend (vgl. z.B. D., F., K., B. 53, 484; D., Schw.). Gibt bei der Einw. auf überschüssige Rhodanwasserstoffsäure in Eisessig oder Chloroform Rhodan (Syst.

Nr. 215) (KAUFMANN, KÖGLER, B. 58, 1554).

Nb₂O₃Cl(C₂H₃O₂)₃. Weißes Pulver. Verkohlt beim Erhitzen und hinterläßt beim Glühen Nb: Ta Niobpentoxyd (Funk, Niederländer, B. 62, 1690). — TaCl(C₂H₃O₂)₄ + 4 C₂H₄O₂. B. Entsteht bisweilen beim vorsichtigen Einengen einer Lösung von Tantalpentachlorid in Eisessig (F., N.). Durchsichtiger, spröder Lack. Geht beim Aufbewahren über Atzkali und Phosphorpentoxyd in TaCl(C₂H₃O₂)₄ über. — TaCl(C₂H₃O₂)₄. Weißes Pulver (F., N.). Liefert beim Erwärmen im Vakuum auf 80—90° Ta₂O₃Cl(C₂H₃O₂)₃. — Ta₂O₃Cl(C₂H₃O₂)₃. Weißes Pulver (F., N.). — Alle vorstehend beschriebenen Tantalacetate werden durch kaltes Wasser hydrospharen in the control of th lysiert unter Bildung von TaO₂(C₂H₃O₂) (F., N.). Beim Erhitzen der Tantalacetate tritt Verkohlung ein; beim Glühen hinterlassen sie Tantalpentoxyd.

Wismutacetate (H 117; E I 51). Literatur: Gmelins Handbuch der anorganischen Bi Chemie, 8. Aufl., Syst. Nr. 19: Wismut [Berlin 1927], S. 180. — Bi(C₂H₃O₂)₃. Nach Essignation (L 1927), S. 180. — Bi(C₂H₃O₂)₃. Nach Essignation (L 1927), S. 180. — Bi(C₂H₃O₂)₄. säure riechende Tafeln (Cuny, Bl. Sci. pharmacol. 34, 72; C. 1927 I. 2188). Verwittert an der Luft. In 100 cm³ Eisessig lösen sich bei 15⁰ 4 g. Geht beim Erhitzen auf 100⁰ sowie beim Behandeln mit Wasser oder alkoh. Essigsäure in dus nachfolgende Salz über. — BiO(C₂H₃O₂) oder Bi(C₂H₃O₂)₃ + Bi₂O₃. Über die Bildung aus Wismutnitrat und Natriumacetat vgl. Charmandarjan, Ж. 60 [1928], 1477. Geruch- und geschmacklose Krystalle (Cu.). Unlöslich in Wasser und Alkohol. — NH₄[BiBr₃(C₂H₃O₂)]. Gelbe Tafeln (Vournazos, C. r. 176, 1557; Bl. [4] 33, 700). Schwer löslich in Isoamylalkohol, Essigsäure und anderen organischen Lösungsmitteln. Zersetzt sich oberhalb 400° sowie beim Behandeln mit Wasser oder Alkohol. — C₂H₄O₂ + N₂H₄ + BiCl₃. Prismen (Vov.). Löslich in siedender

Essigsäure, schwer löslich in den meisten organischen Lösungsmitteln. Zersetzt sich oberhalb 400° sowie beim Behandeln mit Wasser oder Alkohol. — Li[BiBr₃(C₂H₃O₃)]. Gelblicher pulveriger Niederschlag (Vou.). Zersetzt sich beim Behandeln mit Wasser. —Na[BiBr₃(C₂H₃O₃)]. Hellgelbe Krystalle (Vou.). Isomorph mit dem Kaliumsalz. Zersetzt sich beim Behandeln mit Wasser. — K[BiBr₃(C₂H₃O₃)]. Hellgelbe Tafeln (Vou.). Zersetzt sich beim Behandeln mit Wasser und Alkohol.

Chrom(III)-acetate (H 117; E I 51). — Cr(C₂H₃O₂)₃. Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 487; C. 1928 II, 2626. — Zur Konfiguration komplexer Cr(III)-acetate vgl. Reihlen, Z. anorg. Ch. 183, 82; R. Weinland, Einführung in die Chemie der Komplexverbindungen [Stuttgart 1924], S. 391 ff. Magnetische Susceptibilität komplexer Cr(III)-acetate: Berkman, Zocher, Ph. Ch. 124, 324; Welo. — Salze vom Typus [Cr₃(C₂H₃O_{2)₆(OH)₂]X, [Cr₃(C₂H₃O_{2)₆(OH)(H₂O)]X nehmen beim Behandeln mit absolutem alkoholischem Ammoniak oder Pyridin 3 Mol Ammoniak bzw. Pyridin in den Kern auf (Rei., Z. anorg. Ch. 114, 76; vgl. Weinl.). — [Cr₃(C₂H₃O_{2)₆(OH)₂]Cl+8H₂O. Pharmakologische Wirkung auf Frösche: Küll, Ar. Pih. 110, 347; C. 1926 II, 1977. Anwendung als Beize im Zeugdruck: Bayer & Co., D. R. P. 378045; C. 1923 IV, 366; Frdl. 14, 1121.}}}

Uranylacetate (H 120; E I 51). Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 55: Uran [Berlin 1936], S. 163, 186, 193, 207, 218, 223, 227, 228, 229, 230, 232, 234, 236, 237, 238, 240, 243, 261. — UO₂(C₂H₃O₂)₂ (E I 51). Absorptionsspektren und Fluorescenzspektren bei —185°: Nichols, Howes, Wick, *Phys. Rev.* [2] 14, 202; C. 1921 I. 171. Löslich in Äthylamin, schwer löslich in Methylamin: Elsey, Am. Soc. 42, 2084.

— UO₃(C₂H₃O₃)₂ + 2 H₂O (H 120; E I 51). Existenzbereich in essigsaurer Lösung: Collant, Bl. [4] 41, 1292. Die Krystalle sind gelbgrün (A. Müller, Z. anorg. Ch. 109, 240, 244) und werden bei —190° gelblichweiß und trüb (Bamberger, Grengg, Zbl. Min. 1921, 70; C. 1921 III, 604). Absorptionsspektren und Fluorescenzspektren bei —185°: Ni., Ho., W., Phys. Rev. [2] 14, 204, 216; C. 1921 I, 171. Dauer der Fluorescenz von krystallisiertem Uranylacetat bei plötzlicher Erregung mit blauem Licht bei 20°: Delorme, Perrin, J. Phys. Rad. [6] 10, 182; C. 1929 II, 2308. Luminescenz von krystallisiertem Uranylacetat: Coustal, C.r. 187, 1140. Röntgenluminescenzspektrum: DE BEAUJEU, J. Phys. Rad. [6] 4, 259; C. 1924 I, 134. 100 g der in Anwesenheit von 0,59 g Essigsäure gesättigten wäßrigen Lösung enthalten bei 25° 7,24 g Salz (Col., Bl. [4] 41, 1293). Die wäßr. Lösung ist im Dunkeln ziemlich haltbar, die Umwandlung in basische Salze (s. u.) vollzieht sich erst nach einjährigem Aufbewahren (Col., Bl. [4] 41, 1291); rascher erfolgt die Bildung von basischen College im die Eingesper Schriftsper Salzen im diffusen Licht (Courtois, Bl. [4] 33, 1777). Bei längerem Schütteln der wäßr. Lösung mit Hydrochinon bildet sich unter Sauerstoffaufnahme aus der Luft ein Niederschlag von Chinhydron (Aloy, Valdiguië, Bl. [4] 35, 792). Wäßr. Lösungen von Uranylacetat liefern allmählich am Sonnenlicht (Cour., Bl. [4] 33, 1778), schneller in Gegenwart von oxydierbaren organischen Stoffen wie Aldehyden, aliphatischen Alkoholen und Äthern oder Glucose violette Niederschläge, die bei wiederholtem Auswaschen mit siedendem Wasser in Uran-(IV, VI)-oxyd übergehen (A., Rodier, Bl. [4] 27, 102; A., V., C.r. 176, 1230; Bl. [4] 37, 1137; vgl. A., V., Bl. [4] 37, 575). Langdauernde Bestrahlung von Lösungen von Uranylacetat in Essigsäure mit Sonnenlicht ergibt Methan und Kohlendioxyd, neben anderen Produkten (BAUR, REBMANN, Helv. 5, 233; COUR., Bl. [4] 38, 1778); in Gegenwart von Natriumacetat oder Ammoniumacetat entsteht außerdem Athan; Natriumchlorid, Quecksilber(II)-chlorid, Eisen(II)-sulfat und Ameisensäure wirken reaktionshemmend (B., Re.). Über Verwendung zur Fällung von Eiweißstoffen vgl. Minich, Bio. Z. 142, 269. Dient zum mikrochemischen Nachweis von Natrium und anderen Metallen (CHAMOT, Bedient, Mikroch. 6, 13; C. 1928 I, 1893) sowie zur maßanalytischen Bestimmung von Phosphorsäure (Jander, Reeh, Z. anorg. Ch. 129, 302; Someya, Z. anorg. Ch. 152, 382). Phosphorsaure (Jander, Keeh, Z. anory. Ch. 128, 302; Sumbya, Z. anory. Ch. 102, 602). Der Endpunkt der volumetrischen Bestimmung von Phosphorsaure besonders im Harn ist gut durch die intensive Orangefärbung des Uranylacetats mit Natriumsalicylat zu erkennen (Dupare, Rogovine, Helv. 11, 598). Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 585. — UO₂(C₂H₃O₂)₂ + 3 H₂O. D⁶ für wäßr. Lösungen verschiedener Konzentration: Rakshitt, Z. El. Ch. 31, 100. UO₂(C₂H₃O₂)₂ + 2C₂H₄O₂ + 2H₂O. B. Beim Kochen von Uran(VI)-oxyd mit Essigsäure oder durch Einw. von Eisessig-Dämpfen auf Uranylacetat (Colani, Bl. [4] 85, 1305). Existenzgebiet in wäßr. Essigsäure bei 250: Col., Bl. [4] 41, 1292. Gelbe Krystalle. Dissoziiert an der Luft ziemlich schnell in Essigsäure und Uranylacetat; wird von Wasser und von verd. Essigsäure zersetzt (Col., Bl. [4] 35, 1306).

— UO₂(C₂H₂O₃)₂ + UO₃(OH)₃ + aq (H 120; E I 51). Das von Zehenter (M. 21 [1900], 238) mit 3¹/₂ H₂O beschriebene Salz enthält nach Col. (Bl. [4] 41, 1291) 3 H₂O und nach Courtois (C.r. 158, 1513; Bl. [4] 33, 1776) 2 H₂O. B. Aus konzentrierten wäßrigen Lösungen von UO₂(C₂H₂O₂)₂ + 2 H₂O im diffusen Licht im Verlauf von Wochen und Monsten (Cour., Bl. [4] 38, 1777), bei Lichtausschluß innerhalb eines Jahres (Col.). Existenzgebiet in wäßr. Essigsäure bei 25°: Col., Bl. [4] 41, 1292. — UO₂(C₂H₂O₂)₂ + 2 UO₂(OH)₂ (H 120). B. Aus

einer Lösung von Uranylacetat in Wasser durch mehrmaliges Verdampfen auf dem Wasserbad oder sehr langsam beim Stehenlassen bei 50° unter Lichtausschluß (Col., Bl. [4] 41, 1291). Existenzgebiet in wäßr. Essigsäure bei 25°: Cot. Hydrolyse in viel überschüssigem 1291). Existenzgebiet in wäßr. Essigsäure bei 25°: Col. Hydrolyse in viel überschüssigem Wasser bei 25°: Col. — UO₂(C₂H₃O₂)₂ + NH₄C₂H₃O₂ (H 120). Zur Darstellung vgl. Someya, Z. anorg. Ch. 152, 383. Absorptionsspektren und Fluorescenzspektren bei —185°: Nichols, Howes, Wick, Phys. Rev. [2] 14, 209, 216; C. 1921 I, 171. Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 588. — UO₂(C₂H₃O₂)₂ + LiC₂H₃O₂ + 3 H₂O (H 120). Absorptionsspektren und Fluorescenzspektren bei —185°: N., H., W., Phys. Rev. [2] 14, 208, 216; C. 1921 I, 171. — UO₂(C₂H₃O₂)₂ + NaC₂H₃O₂ (H 120; E I 51). n₈₄₅: 1,5082; n_D: 1,5044; n₈₇₁: 1,5003 (RAITERI, R. A. L. [5] 31 I, 113). Absorptionsspektren und Fluorescenzspektren bei —185°: N., H., W., Phys. Rev. [2] 14, 208, 217; C. 1921 I, 171. Fluoresciert im ultravioletten Licht grünlichgelb (Lenz, Fr. 54, 37). Über den mikrochemischen Nachweis von Essigsäure durch Überführung in Natuumuranylagetat mikrochemischen Nachweis von Essigsäure durch Überführung in Natriumuranylacetat s. S. 111. — UO₃(C₂H₃O₃)₂ + KC₂H₃O₂ (H 120; E I 51). Absorptionsspektren und Fluorescenzspektren bei —185°: N., H., W., Phys. Rev. [2] 14, 209, 217; C. 1921 I, 171. — UO₃(C₂H₃O₃)₂ + RbC₂H₃O₃. Absorptionsspektren und Fluorescenzspektren bei —185°: N., H., W., Phys. Rev. [2] 14, 212, 219, C. 1921 I, 171. — 3UO₃(C₂H₃O₃)₃ + NaC₂H₃O₃ + Cu(C₂H₃O₃)₂ + 9H₂O (H 120). Umwandlungstemperatur der Krystalle: 93,8° (SCHWARZ, Z. Kr. 25 [1896], 614; (H 120). Umwandlungstemperatur der Krystalle: 93,85 (SCHWARZ, Z. Kr. 25 [1896], 614; vgl. P. Groth, Chemische Krystallographie, Tl. III [Leipzig 1910], S. 62, 88). 100 Tle. Wasser lösen bei Zimmertemperatur 7,43 g, 100 Tle. Alkohol (D: 0,795) 0,158 g (Erb, Z. Kr. 19 [1891], 284). — UO₂(C₂H₃O₂)₂ + AgC₂H₃O₃ (H 120). Absorptionsspektren und Fluorescenspektren bei —185°: N., H., W., Phys. Rev. [2] 14, 212, 219; C. 1921 I, 171. — 3UO₄(C₂H₃O₂)₂ + NaC₂H₃O₃ + Be(C₂H₃O₃)₂ + 9H₃O. B. Aus Uranylacetat beim Behandeln mit Berylliumsalzen in Gegenwart von sehr geringen Mengen Natriumacetat (Caglioti, Rend. Accad. Sci. fis. Napoli [3a] 33, 179; C. 1927 II, 1739). Hellgelbe Krystalle. Die Bildung dieses Salzes kann zum Nachweis von Beryllium dienen. — 2UO₃(C₂H₃O₃)₃ + Mg(C₂H₃O₃)₃ + 7 H₃O (H 120). Absorptionsspektren und Fluorescenzspektren bei —185°: N., H., W., Phys. Rev. [2] 14, 209, 217; C. 1921 I, 171. Röntgenluminescenzspektrum: De Beaujeu, J. Phys. Rad. [6] 4, 259; C. 1924 I, 134. — 3 UO₄(C₄H₃O₃)₄ + NaC₄H₅O₅ + Mg(C₅H₄O₄)₅ + 9H₅O (H 120). Krystalli 259; C. 1924 I, 134. — $3 UO_3(C_2H_2O_3)_2 + NaC_2H_3O_3 + Mg(C_2H_3O_3)_2 + 9 H_2O$ (H 120). Krystallisiert nach Caley, Foulk (Am. Soc. 51, 1664) mit $6^{1}/_{2}$ H₂O (vgl. Barber, Kolthoff, Am. Soc. 50. 50, 1626). Fast unlöslich in 95%igem Alkohol) (Blanchetikre, Bl. [4] 33, 809; C., F., BARTHE, DUFILHO, C. r. 189, 1471; WEILAND, Mitt. Kalijorsch. Anst. 1927, 21; C. 1927 II, 1871; BAR., K.; C., F.). — $2 \text{UO}_2(C_2H_2O_2)_2 + \text{Ca}(C_2H_2O_2)_2$ (H 120). Absorptionsspektren und Fluorescenzspektren bei -185° : Nichols, Howes, Wick, Phys. Rev. [2] 14, 210, 218; C. 1921 I, 171. — $2 \text{UO}_2(C_2H_2O_2)_2 + \text{Sr}(C_2H_2O_2)_2 + \text{Ch}(O_2H_2O_2)_2$ (H 120). Absorptionsspektren und Fluorescenzspektren bei -185° : Nichols, Howes, Wick, Phys. Rev. [2] 14, 210, 218; C. 1921 I, 171. — $2 \text{UO}_2(C_2H_2O_2)_2 + \text{Sr}(C_2H_2O_2)_2 + \text{Ch}(O_2H_2O_2)_2 + \text{Ch}($ Fluorescenzspektren bei -185° : N., H., W., Phys. Rev. [2] 14, 212, 219; C. 1821 I., 171. — $2\text{UO}_4(\text{C}_2\text{H}_3\text{O}_3)_2 + \text{Ba}(\text{C}_2\text{H}_3\text{O}_3)_2 + \text{6H}_4\text{O}$ (H 121). Absorptionsspektren und Fluorescenzspektren bei -185° : N., H., W., Phys. Rev. [2] 14, 213, 220; C. 1921 I., 171. — $1\text{UO}_2(\text{C}_2\text{H}_3\text{O}_3)_2 + \text{Zn}(\text{C}_4\text{H}_3\text{O}_3)_2 + \text{7H}_4\text{O}$ (H 121). Absorptionsspektren und Fluorescenzspektren bei -185° : N., H., W., Phys. Rev. [2] 14, 211, 218; C. 1921 I., 171. Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 592. — $3\text{UO}_2(\text{C}_2\text{H}_3\text{O}_3)_2 + \text{NaC}_2\text{H}_3\text{O}_3 + \text{Zn}(\text{C}_3\text{H}_3\text{O}_3)_2 + \text{6H}_4\text{O}$ (H 121). Leicht löslich in Wasser, schwer in absol. Alkohol, fast unlöslich in 95% igem Alkohol (Barber, Kolthoff, Am. Soc. 50, 1627). Die Bildung dieses Salzedient zum Nachweis und zur Bestimmung von Natrium: Ko., Fr. 70, 398; Chem. Weekb. 28, 293: C. 1929 II 600: Rarrwschwern. Messiner. Bio. Z., 189. 309; Chamot. Bedlent. 26, 296; C. 1929 II, 609; BARRENSCHEEN, MESSINER, Bio. Z. 189, 309; CHAMOT, BEDIENT, Mikroch. 6, 17; C. 1928 I, 1893; BA., Ko., Am. Soc. 50, 1626; 51, 3233. — UO₂(C₂H₂O₂)₂+ Pb(C,H,O₁), (H 121). Absorptionsspektren und Fluorescenzspektren bei —185°: N., H., W., *Phys. Rev.* [2] 14, 213, 220; C. 1921 I, 171.

Mangan(II)-acetat Mn(C₂H₂O₂)₂ + 4H₂O (H 121; E I 51). B. Durch Einw. von Essigsäure auf Braunstein und Acetaldehyd bei 80°, vorzugsweise in Gegenwart von geringen Mengen von Alkali- oder Erdalkaliacetaten (Konsort. f. elektrochem. Ind. D. R. P. 327086; C. 1921 II, 21; Frdl. 13, 145). D. D. Lösungen verschiedener Konzentration: Rakshit, Z. El. Ch. 31, 100. Bei der Einw. von 5 Mol Kaliumcyanid auf ein Gemisch aus 1 Mol Mangan(II)-acetat und 2 Mol Kaliumacetat in verd. Alkohol im Stickorydstrom entstehen K[Mn(CN)₈] und K₃[Mn(CN)₆(NO)] (Manchot, Schmidt, B. 59, 2362). — Mn(C₂H₂O₃)₃ + UO₃(C₂H₃O₃)₃ + 6H₂O (H 121). Absorptionsspektren und Fluorescenzspektren bei —185°: Nichola, Howes, Wick, Phys. Rev. [2] 14, 217; C. 1921 I, 171. — Mangan(III)-acetat Mn(C₂H₂O₃)₃ + 2H₂O (H 121; E I 51). Zur Formulierung vgl. auch Weinland, Fischer, Z. anorg. Ch. 120, 162, 166. — Mn₂(C₂H₂O₃)₃(OH)+9H₂O. Zur Konstitution vgl. Weinland, Fischer, Z. anorg. Ch. 120, 178). — Mn₁₈(C₂H₂O₃)₃(OH)₁₈(ClO₄)₂ + 6H₂O. Zur Formulierung vgl. Weinland, Fischer, Z. anorg. Ch. 120, 177). — Mn₁₈(C₂H₂O₃)₃(OH)₁₈(ClO₄)₂ + 6H₄O. Zur Konstitution vgl. Weinland, Fischer, Z. anorg. Ch. 130, 165. Braune Tafeln. Schwer löslich in Alkohol (W., F., Z. anorg. Ch. 120, 177).

FeII Eisen(II) acetat Fe(C₂H₃O₂)₂ + 4H₂O (H 121). Die Ammoniumacetat enthaltende wäßrige Lösung liefert beim Sättigen mit Ammoniak Hexammineisen(II) acetat [Fe(NH₃)₆] (C₂H₃O₂)₂ (Weitz, Müller, B. 58, 371). Titration mit Kaliumdichromat in Gegenwart von Diphenylamin als Indikator: Someya, Z. anorg. Ch. 152, 369. — Hexammineisen(II) acetat [Fe(NH₃)₆](C₂H₃O₂)₂. Wurde nur in Lösung erhalten (Weitz, Müller, B. 58, 371). Eine konzentrierte wäßrige Lösung scheidet auf Zusatz von Ammoniumnitrat, perchlorat. bromid oder -jodid das entsprechende Hexammineisen(II) salz ab. Mit Alkalichlorat oder bromat erhält man Niederschläge von Eisen(III)-hydroxyd, mit Kaliumchromat oder -permanganat mißfarbene Niederschläge. Bei der Einw. von Natriumnitrit auf die wäßr. Lösung entsteht eine gelbe Lösung, die sich bei 80° unter Gasentwicklung und Abscheidung von Eisen(III)-hydroxyd zersetzt. Bei Einw. von wenig Kaliumcyanid entsteht ein gelber Niederschlag, der sich an der Luft schnell grün bis blau färbt; mit einem großen Überschuß an Kaliumcyanid entsteht eine intensiv gelbe Lösung, aus der sich allmählich Kaliumferrocyanid abscheidet. — Natriumuranyleisen(II) acetat Fe(C₂H₃O₂)₂ + NaC₂H₃O₂ + 3UO₂(C₂H₃O₂)₂ + 9H₂O. Hellgelbe Krystalle (Erb, Z. Kr. 19 [1891], 286).

Felll

Eisen (III) - a cetate (H 121; EI 52). Kolorimetrische Untersuchungen über die Festigkeit des Komplexes in Lösungen verschiedener Acidität: Franke, A. 475, 40. Über die Adsorption von Uran X und Thorium durch basisches Ferriacetat vgl. Brown, Soc. 121, 1736. Die wäßr. Lösung liefert mit Wassergas bei 350—360° und 330 Atm. Druck Essigsäure und Fe₃O₄ (IPATJEW, B. 59, 1421; %. 58, 692). Reinheitsprüfung von Liquor Ferri subacctici: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 276. — Über Salze der Hexaacctatotricisen(III)-basen [Fe₃(C₂H₃O₂)₆(OH)₃, [Fe₃(C₂H₃O₂)₆(OH)](OH)₂ und [Fe₃(C₂H₃O₂)₆(OH)₂](OH) vgl. Weinland, Kessler, Bayerl, Z. anorg. Ch. 132, 217; W., Höhn, Z. anorg. Ch. 152, 1; Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 522, 526, 527, 528. Magnetische Susceptibilität von Hexaacctateisen(III)-chrom(III)-salzen, die sich von diesen Basen unter Ersatz von Eisen durch Chrom ableiten: Welo, Phil. Mag. [7] 6, 487, 488; C. 1928 II, 2626. — Über basisches Magnesiumeisen(III)-acctat, basisches Mangan(II)-eisen(III)-acctat vgl. Weinland, Holtmeier, Z. anorg. Ch. 178, 56, 57, 59; Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 1064, 1103, 1108, 1152. — Pb₃(C₂H₃O₂)₃[Fc(CN)₆] + 2H₂O. Braunrote Nadeln (Weinland, Stroh, B. 55, 2717). — Pb₆(OH)₇(C₂H₃O₂)₂[Fc(CN)₆] + 1H₂O. Braunrote Krystalle (Weinland, Stroh, B. 55, 2717). — CsPb₁(C₂H₃O₂)₂[Fc(CN)₆] + 1H₂O. Braunrote Krystalle (Weinland, Stroh, B. 55, 2716). — CsPb₁(C₂H₃O₂)₂[Fc(CN)₆] + 1H₂O. Braunrote Krystalle (Weinland, Stroh, B. 55, 2716). — CsPb₁(C₂H₃O₂)₂[Fc(CN)₆] + 1H₂O. Braunrote Krystalle (Weinland, Stroh, B. 55, 2716). — CsPb₁(C₂H₃O₂)₂[Fc(CN)₆] + 1H₂O. Braunrote Krystalle (Weinland, Stroh, B. 55, 2717).

Coll

Kobaltacetate (H 123; E I 52). Literatur: GMELINS Handbuch der anorganischen Chemic, 8. Aufl., Syst. Nr. 58: Kobalt, Teil A [Berlin 1932], S. 350, 485; Teil B [Berlin 1930], S. 40, 64, 117, 362, 366, 368. -- Kobalt(II)-acetat, Kobalt-diacetat Co(C₂H₃O₂)₂. Darst. Aus Kobalt(III)-oxydhydrat beim Erhitzen mit Essigsäure und der zur Reduktion notwendigen Menge Kobalt-Metall im Eisenautoklaven auf 1200 bei 2-3 Atm. Druck (I. G. Farbenind., D. R. P. 466517; Frdl. 16, 244). Absorptionsspektrum im Gebiet der Röntgen-K-Strahlung: DE BOER, Arch. néerl. Sci. exactes [III A] 10, 120; C. 1927 I, 2881. Löslichkeit in wasserfreiem Eisessig bei 25°: SCHALL, THIEME-WIEDTMARCKTER, Z. El. Ch. 35, 337 Anm. 2. Elektrische Leitfähigkeit in 99.6% igem und 100% igem Eisessig bei 18° und 25°: Sch., Markgraf, Trans. am. electroch. Soc. 45 [1924], 162; Sch., Th.-W. Durch elektrolytische Oxydation in gereinigtem Eisessig, am besten unter Zusatz von 2% Wasser und Kühlung der Platinanode erhält man Kobalt(III)-acetat (Sch., Th.-W.; vgl. Sch., M.). Co(C₂H₃O₂)₂+4H₂O. D₂₀ für wäßr. Lösungen verschiedener Konzentration: RAKSHIT. Z. El. Ch. 31, 100. Co(C₂H₃O₂)₂ + 2N₂H₄. Magnetische Susceptibilität: Rây, Bhar, J. indian chem. Soc. 5 [1928], 499; vgl. Bose, Phil. Mag. [7] 5, 1057. — Uranylkobalt(II) acetat (vgl. H 123). Gibt mit Natriumsalzen einen Niederschlag und eignet sich daher zum Nachweis von Natrium (Caley, Am. Soc. 51, 1966). — Natriumuranylkobalt (II)-acetat $\text{Co}(\text{C}_2\text{H}_3\text{O}_2)_2 + \text{NaC}_2\text{H}_3\text{O}_2 + 3 \text{UO}_2(\text{C}_2\text{H}_3\text{O}_2)_2 + \text{aq}$. Braungelbe Krystalle. Umwandlungstemperatur der Krystalle: 73.0—73.1° (Schwarz. Z. Kr. 25 [1896], 614). 100 Tle. Wasser lösen bei Zimmertemperatur 4,025 g, 100 Tle. Alkohol (D: 0,795) 0,042 g (Erb, Z. Kr. 19 [1891], 285). — Über basische Kobalt(II)-eisen(III)-acctate vgl. Weinland, Holtmeier, Z. anorg. Ch. 173, 55, 58, 60. — Brenzeatechinhaltige Kobalt-Salze der Essigsäure s. Syst. Nr. 553.

Colli

Kobalt(III)-acetat. Kobalttriacetat Co(C₂H₃O₂)₃. Wird von Schall, Thieme-Wiedtmarckter (Z. El. Ch. 35, 340) als trimer angesehen. B. Aus Kobalt(II)-acetat bei der elektrolytischen Oxydation in gereinigtem Eisessig zwischen Platin-Elektroden bei 20°, am besten bei Zusatz von 2% Wasser und Kühlung der Anode (Sch., Th.-W.; vgl. Schall., Markgraf, Trans. am. electroch. Soc. 45, 164; C. 1924 II, 928). Dunkelgrüne Krystalle. Zersetzt sich bei 100° (Sch., M.). Zur Hydrolyse durch Wasser oder Natronlauge vgl. Sch., M.; Sch., Th.-W. Gibt mit Natriumehloroplatinat in 50%iger Essigsäure eine olivgrüne Fällung (Sch., Th.-W.). — [Co(NH₃)₄(H₂O)₂](C₂H₃O₂)₃ + H₂O. Dunkelrotviolette Blättchen

(FRANK, Wiss. Ind. 2, 46; C. 1923 I, 894). Leicht löslich in Wasser mit neutraler Reaktion (F.). Gibt mit Natriumjodid und Eiswasser einen rosaroten Niederschlag (F.).

Nickelacetate (H 123; E I 52). — Nickel(II)-acetat, Nickeldiacetat $Ni(C_2H_3O_2)_2$. Ni Nickelacetate (H 123; E 1 52).—Nickel (H) - Acceptate, Nickel (H 123; E 1 52).—Nickel (H 1 - Acceptate to the Constitution of 35, 339. Gibt bei der elektrolytischen Oxydation in gereinigtem Eisessig unter Zusatz von etwas Wasser an einer gekühlten Platin-Anode Nickel(III)-acetat (Sch., Th.-W.; vgl. Sch.. M.). — Natriumuranylnickel(II)-acetat Ni($C_2H_3O_2$)₂ + Na $C_2H_3O_2$ + $3UO_2(C_2H_3O_2)$ ₂ + $9H_2O$ (H123). Grüne Krystalle. Krystallographisches: P. Groth, Chemische Krystallographie. 3. Tl. [Leipzig 1910], S. 87; SCHWARZ, Z. Kr. 25 [1896], 614. 100 Tle. Wasser lösen bei gewöhnlicher Temperatur 3,85 g, 100 Tle. Alkohol (D: 0,795) 0,0345 g (Erb, Z. Kr. 19 [1891], 285). — Über basische Nickel(II)-eisen(III)-acetate vgl. Weinland, Holtmeier, Z. anorg. Ch. 173, 54, 58, 59. — Nickel(III)-acetat, Nickeltriacetat Ni(C₂H₃O₂)₃. Wird von Schall, Thieme-Wiedtmarckter (Z. El. Ch. 35, 340) als trimer angesehen. B. Bei der elektrolyti-THIEME-WIEDTMARCKTER (Z. El. Ch. 35, 340) als trimer angesehen. B. Bei der elektrolytischen Oxydation von Nickel(II)-acetat in gereinigtem Eisessig bei Zusatz von etwas Wasser an einer gekühlten Platin-Anode (Sch., Th.-W.; vgl. Schall, Markgraf, Trans. am. electroch. Soc. 45, 164; C. 1924 II, 928). Beim Einleiten von über Phosphorpentoxyd getrocknetem Ozon in eine gesättigte Lösung von Nickel(II)-acetat in Eisessig unter Zusatz von 0,25% Wasser (Sch., Th.-W.). Dunkelbraungrüne Krystalle. Zersetzt sich bei 100% (Sch., M.). Zur Hydrolyse durch Wasser oder Natronlauge vgl. Sch., M.; Sch., Th.-W. Gibt mit Natrium-chloroplatinat in 50% iger Essigsäure gelbe Nadeln (Sch., Th.-W.). [Homann]

Funktionelle Derivate der Essigsäure.

Acetate gesättigter Monooxy-Verbindungen.

Essigsäuremethylester, Methylacetat $C_3H_6O_2 = CH_3 \cdot CO_2 \cdot CH_3$ (H 124; E II 52).

Bildung.

Beim Leiten von Methylchlorid über Natriumacetat bei 290—2970 (Whiston, Soc. 117, 188) oder durch ein geschmolzenes Gemisch von Natriumacetat und Kaliumacetat bei 2500 (Deutsche Petroleum A.-G., D. R. P. 367 204; C. 1923 II, 907; Frdl. 14, 123). Bei der Destillation von Methanol mit Eisessig, zweckmäßig in Gegenwart von p-Toluolsulfonsäure (Wuyts, Bailleux, Bl. Soc. chim. Belg. 29, 56, 57, 63; C. 1920 I. 817). Beim Leiten von Methanolund Essigsäure-Dampf über aktive Kohle bei 140° (I. G. Farbenind., D. R. P. 434279; C. 1926 II. 2493; Frdl. 15, 373). Durch Destillation von 10% iger Essigsäure mit Methanol und Schwefelsäure (D: 1,84) (Helbronner, Criqueboeuf, D. R. P. 354863; C. 1922 IV. 375; Frdl. 14, 267) oder mit Methanol unter Druck (Holzverkohlungsind, A.-G., D. R. P. 507205; C. 1930 II, 2958; Frdl. 16, 243). Gleichgewicht bei der Bildung von Methylacetat hus Essigsäure und Methanol im Rohr bei 100°: WILLIAMS, GABRIEL, ANDREWS, Am. Soc. 50, 1269. Bei allmählichem Erhitzen von Eisessig mit Dimethylsulfat oder Kaliummethylsulfat sowie von saurem Kaliumacetat $KC_2H_3O_2 + C_2H_4O_2$ mit Dimethylsulfat auf 120° bis 200° (Simon, C. r. 176, 584). Neben anderen Produkten beim Behandeln einer gesättigten Kaliumacetat-Lösung mit Fluor unter Kühlung mit Eis-Kochsalz (FICHTER, HUMPERT. Helv. 9, 697). Beim Leiten von Amylacetat- und Methanol-Dampf über gefällte Kieselsäure bei 250° (I. G. Farbenind., D. R. P. 434400; C. 1926 II. 2847; Frdl. 15, 374). Bei der Einw. von Acetanhydrid auf Natriummethylat-Lösung bei 25° (CAUDRI, R. 48, 784, 785).

Physikalische Eigenschaften.

Mechanische und thermische Eigenschaften. Kp₂₈₀: $56,95^{\circ}$ (Lecat, Ann. Soc. scient. Bruxelles 48 I, 17. 58, 116), $56,96\pm0,04^{\circ}$ (Bredig, Bayer, Ph. Ch. 130, 16), $57,2^{\circ}$ (Chadwell, Am. Soc. 48, 1914), $57,0-57,2^{\circ}$ (Mathews, Am. Soc. 48, 571; Krchma, Williams. (Chadwell, Am. Soc. 48, 1914), 57,0—57,2° (Mathews, Am. Soc. 48, 571; Krchma, Williams, Am. Soc. 49, 2411); Kp₆₈₀: 53,5° (Sudborough, Karvé, J. indian Inst. Sci. 5, 16; C. 1923 I. 295). Dampfdruck zwischen —20° (19,05 mm) und der kritischen Temperatur (35212 mm): Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 432; bei 20°: 169,80 mm (Y.. Scient. Pr. roy. Dublin Soc. 12, 432); bei 20°: 171 mm, bei 40°: 407 mm, bei 60°: 854 mm (Ge. C. Schmidt. Ph. Ch. 99, 79). Kritische Temperatur: 233,7° (Y., Thomas, Soc. 63 [1893], 1211; Y., Ph. Ch. 70 [1910]. 626; Scient. Pr. roy. Dublin Soc. 12, 432; vgl. G. C. Schmidt, A. 266 [1891]. 284). Kritisches Volumen: 3.075 cm³/g (Y., Ph. Ch. 70, 626; Scient. Pr. roy. Dublin Soc. 12, 432) 12, 432).

Dichte D; von flüssigem Methylacetat zwischen 00 (0,9593) und der kritischen Temperatur: YOUNG, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 432. Di: 0,9588 (HANNOTTE, Bl. Soc.

chim. Belg. 35, 96; C. 1926 II, 742); D. 9: 0,9338 (Y., Scient. Pr. roy. Dublin Soc. 12, 432), 0,9337 (MATHEWS, Am. Soc. 48, 571), 0,9335 (RICHARDS, CHADWELL, Am. Soc. 47, 2287); D. 0,9272 (KRCHMA, WILLIAMS, Am. Soc. 49, 2412), 0,9274 (im Vakuum gewogen) (CHAD-WELL, Am. Soc. 48, 1914). Dichte des gesättigten Dampfes zwischen 50° und der kritischen Temperatur: Y., Ph. Ch. 70, 626; Scient. Pr. roy. Dublin Soc. 12, 432. Isotherme Kompressibilität bei 19,81° zwischen 100 und 300 megabar: 88,48 cm³/megadyn: Ri., CH., Am. Soc. 47, 2296. — Viscosität bei 25°: 0,003594 g/cm sec (CH.); zwischen 19,5° (0,00386 g/cm sec) und 139,0° (0,00132 g/cmsec): TITANI, Bl. chem. Soc. Japan 2, 101; C. 1927 II, 401. Parachor:

Sugden, Soc. 125, 1183.

Spezifische Wärme bei 18—42°: 0,502 cal/g (Weissenberger, Schuster, Pamer, M. 46, 287). Verdampfungswärme bei 56,34°: 98,11 ± 0,09 cal/g (MATHEWS, Am. Soc. 48, 573); zwischen 50° (100,34 cal/g) und der kritischen Temperatur (aus der Dampfdruckkurve berechnet): Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 432. Verbrennungswärme von flüssigem Methylacetat bei konstantem Volumen: 380,9 kcal/Mol (ROTH, MÜLLER in

Landolt-Börnst. E I, 876; vgl. KARRER, B. 55, 2858 Anm. 1).

Optische Eigenschaften. Brechungsindices zwischen 483,4 mµ (1,3725) und 247,7 mµ (1,3985): C. C. Evans, E. J. Evans, Phil. Mag. [7] 8 [1929], 144; n_{α}^{m} : 1,3601; n_{D}^{m} : 1,3617; ng: 1,3661 (Hannotte, Bl. Soc. chim. Belg. 35, 96; C. 1926 II, 742); ng: 1,3614 (Mathews, Am. Soc. 48, 571); n. 1,3594 (Kechma, Williams, Am. Soc. 49, 2411), 1,3588 (Munch, Am. Soc. 48, 997). Ultraviolettes Absorptionsspektrum der reinen Substanz und der Lösungen in Wasser, Alkohol und Hexan: Ley, Hünecke, B. 59, 511; vgl. Scheibe, Z. El. Ch. 34, 498; der Lösungen in Wasser und Ather: Hantzsch, Bucerius, B. 59, 806. Lichtabsorption im Ultrarot zwischen 1 und 15 μ : W. W. Coblentz, Investigations of Infra-red Spectra [Washington 1905], S. 140, 199; bis 13 \(\mu\): WENIGER, Phys. Rev. [1] 31 [1910], 420 Tafel I; zwischen 2 und 8 \mu: Bennett, Daniels, Am. Soc. 49, 55; bis 2,5 \mu: Smith, Boord, Am. Soc. 48, 1515, 1517; Ellis, Am. Soc. 51, 1386; SAPPENFIELD, Phys. Rev. [2] 33, 40; C. 1929 I, 1419. Reflexion von Lieht an der Oberfläche von Methylacetat: Bhatnagar, Shrivastava, MITRA, J. indian chem. Soc. 5, 337; C. 1928 II, 1745. Abhängigkeit der Opalescenz im kritischen Gebiet von der Temperatur und der Wellenlänge des Lichts: Andant, C. r. 174, 1333, 1543; Ann. Physique [10] 1, 390, 400. Lichtzerstreuung und Depolarisationsgrad des Streulichts für Methylacetat Dampf: I. R. RAO, Indian J. Phys. 2, 83; C. 1928 I, 1838; GANESAN, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; für flüssiges Methylacetat bis zur kritischen Temperatur: S. R. RAO, Indian J. Phys. 2, 15; C. 1928 I, 1747; vgl. KRISHNAN, zitiert bei I. R. RAO. Ramanspektrum: DADIEU, KOHLRAUSCH, M. 52, 232, 399, 402; Sber. Akad. Wien [II.a.] 138, 53, 54; Phys. Z. 30, 384; B. 63 [1930], 257; C. 1928 II, 385, 697, 970; Ko., Phot. Rayley C. 1929 II, 4508, DANIEUR Ann. Physique [40], 19, 428 Korresp. 65, 162; C. 1929 II, 1508; DAURE, Ann. Physique [10] 12, 436.

Elektrische und magnetische Eigenschaften. Dielektr.-Konst. von flüssigem Methylacetat bei 20° : 7,03 ($\lambda=73$ cm) (DRUDE, Ph. Ch. 23 [1897], 308), bei 25°: 6,680 (Krohma, Williams, Am. Soc. 49, 2412); von festem Methylacetat bei -195,9°: 2.58 (JACKSON, Phil. Mag. [6] 43, 486; C. 1922 I, 1274); von dampfförmigem Methylacetat bei 15° und 760 mm Druck: 1,0118 (Cordonnier, Guinchant, C. r. 185, 1449). Elektrischer Widerstand auf. Papier hergestellter dünner Schichten: BHATNAGAR, Mitarb., Ph. Ch. 117,

Widstand sult Papier hergestehler dumer Schichter: Bhairagab, Midsic., 1.6.7. 21, 94, 96. Dipolmoment μ·10¹⁸: 1,67 (Tetrachlorkohlenstoff-Lösung) (KRCHMA, WILLIAMS, Am. Soc. 49, 2414; WI., Phys. Z. 29 [1928], 178).
Magnetische Susceptibilität von dampfförmigem und von flüssigem Methylacetat: VAIDYANATHAN, Phys. Rev. [2] 30, 515; Indian J. Phys. 2, 147; C. 1928 I, 165, 1940. Elektromagnetische Drehung der Polarisationsebene des Lichts im ultravioletten Gebiet: C. C. Evans, E. J. Evans, Phil. Mag. [7] 8, 153; C. 1929 II, 2017.

Eigenschaften von Methylacetat enthaltenden Gemischen.

Lösungsvermögen von Methylacetat für Stickstoffoxydul: Horiuchi, Bl. phys. chem. Res. Tobyo [Abstr.] 1, 17; C. 1928 I, 2770; für Kohlendioxyd: Just, Ph. Ch. 27 [1901], 354. Bei 20° lösen sich 24,35 g Methylacetat in 100 cm³ Wasser (Fühner, B. 57, 514). Mischbarkeit mit Wasser zwischen 5,0° und 83,5°: Kendall, Harrison, Trans. Faraday Soc. 24, 593; C. 1929 I, 835. Einfluß von Methylacetat auf die Löslichkeit von Kaliumsalfat in Wasser: Where, Z. anorg. Ch. 181, 390. — Kryczkopisches Verhalten in Wasser: KENDALL, HARRISON; in Benzol, Benzol + Ather, Benzol + Athylacetat und Benzol + Anilin: MADGIN, PREL, BRISCOE, Soc. 1928, 710.

Methylacetat bildet binare azeotrope Gemische mit Wasser (Kp: ca. 53-54°) (FAILLERIN, Bl. [4] 273; vgl. Fuons, Ch. Z. 51; C. 1929 I, 1666), Isopropylbromid (Kp, 55,8°; 50 Gew.- % Mothylacotat) (LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 116), Diallyl (Kpra: 51°; 90 Gew. % Methylacetat) (LE., Ann. Soc. scient. Bruxelles 48 I, 58), Methanol [Kp: 54°; 81,5 Gew.-% Methylacetat (Hannotte, Bl. Soc. chim. Belg. 35, 96, 107; C. 1926 II, 743); Kp: \$3,5°; 82 Gew.-% Methylacetat (Bergström, Svensk kem. Tidekr. 34 [1922], 81, 82)],

Athylalkohol (Kp760: 56,90; ca. 97 Gew.-% Methylacetat) (Le., Ann. Soc. scient. Bruxelles 48 I, 17) und Aceton (Kp760: 55,70; 52 Gew.-% Methylacetat) (Le., Ann. Soc. scient. Bruxelles 47 I [1927], 66; vgl. Berg.). Über die Existenz eines ternären azeotropen Gemischs mit Methanol und Aceton vgl. Fuchs, Ch. Z. 51, 402; C. 1929 I, 1666. Dampfdruck binärer Gemische mit Pentachloräthan bei 200º Weissenberger, Schuster, Pamer, M. 46, 288, 294; mit Benzol bei 200º, 400, 600°, 800° und 900°. Schmidt, Ph. Ch. 99, 79; 121, 243; mit Dekahydronaphthalin bei 200°. W., Henke, Sperling, M. 46, 487; mit 1.2.3.4-Tetrahydronaphthalin bei 200°. W., Schuster, Zack, Z. ang. Ch. 39, 271; mit 5-Chlor-1.2.34-tetrahydronaphthalin bei 200°. W., Henke, Katschinka, Z. anorg. Ch. 153, 34; mit Phenol bei 200°. W., Schu., Zack, Z. ang. Ch. 39, 271; mit 4-Chlor-phenol bei 200°. W., Schu., Lielacher, M. 48, 295; mit Äthylacetat bei verschiedenen Temperaturen: Schmidt, Ph. Ch. 99, 79; 121, 240; mit Mono-, Di- und Trichloressigsäure bei 200°. W., Schuster, Pamer, M. 46, 282, 293, 294; mit Buttersäure bei 200°. W., He., Kat., Z. anorg. Ch. 153, 41; mit Anilin und Dimethylanilin bei 200°. W., Schuster, Liel., M. 46, 302, 305. Dampfdruck ternärer Gemische aus Methylacetat, Phenol und Tetralin: W., Schuster, Zack, Z. ang. Ch. 38, 1010; aus Methylacetat, Phenol und Cyclohexanol: W., Schu., Zack, Z. ang. Ch. 38, 1010. Druck und Zusammensetzung des Dampfes über binären Gemischen mit Wasser bei 250° und 350°. McKeown, Stowell, Soc. 1927, 99, 101; mit Bromoform bei 200°. W., Schu., Lie., M. 46, 298; W., Henke, Schu., Z. anorg. Ch. 152, 331; mit Methanol bei 39,760° und 49,760°, mit Athylacetat bei 39,760°. Bredig, Bayer, Ph. Ch. 130, 25; mit Wasser und Saccharose: McK., St.

Dichte einiger Lösungen in Wasser bei 20°: RICHARDS, CHADWELL, Am. Soc. 47, 2287, 2288; von Gemischen mit Tetrachlorkohlenstoff bei 25°: Krchma, Williams, Am. Soc. 49, 2412. Volumenänderung beim Mischen mit Chloroform: Peel, Madgin, Briscoe, J. phys. Chem. 32, 288; mit Benzol: SCHMIDT, Ph. Ch. 121, 252; mit Athylacetat: SCH.; PEEL, M., Br. Isotherme Kompressibilität einiger Lösungen in Wasser bei 19,8° zwischen 100 und 300 megabar: Ri., Ch. Viscosität binärer Gemische mit Wasser und Äthylacetat bei 25°: Ch., Am. Soc. 48, 1914. Zur Oberflächenspannung wäßr. Lösungen von Methylacetat vgl. Weber, Z. anorg. Ch. 181, 390; Bigelow, Washburn, J. phys. Chem. 32, 336; Ťraube, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 98; Fühner, Bio. Z. 120, 147. — Adsorption von Methylacetat-Dampf an Holzkohle zwischen 0° und 100°: Coolidge, Am. Soc. 46, 623; an Carboraffin und Silicagel: TRAUBE, BIRUTOWITSCH, Koll.-Z. 44, 235; C. 1928 I, 2366; an Tonerde-Gel bei 25°: PERRY, J. phys. Chem. 29, 1466; an Quecksilber: IREDALE, Phil. Mag. [6] 49, 622, 624; C. 1925 I, 1960. Geschwindigkeit der Adsorption aus mit Methylacetat-Dampf gesättigter Luft an Kokosnußkohle bei 20°: ТRYHORN, WYATT, Trans. Faraday Soc. 22, 135; C. 1926 II, 1518. Adsorption aus wäßr. Lösung an Kohle: RICHARDSON, ROBERTSON, Soc. 127, 555; TRAUBE, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 98; an Cellulose: Brass, Frei, Koll.-Z. 45, 248; C. 1928 II, 1037. Einfluß von Methylacetat auf die Quellung von rohem und vulkanisiertem Kautschuk: SALKIND, B. 59, 525. — Wärmetönung beim Mischen von Methylacetat mit Chloroform: PEEL, MADGIN, BRISCOE; mit Bromoform: Weissenberger, Schuster, Lielacher, M. 46, 298; mit Pentachloräthan: W., Schuster, Pamer, M. 46, 288; mit Dekahydronaphthalin: W., Henke, Sperling, M. 46, 487; mit Benzol: Schmidt, Ph. Ch. 121, 252; mit Alkohol: Madgin, Peel, Briscoe, Soc. 1927, 2875; mit Athylacetat: Schmidt; Peel, M., Br.; mit Dichloressigsäure: W., Schuster, Pamer; mit Anilin und Dimethylanilin: W., Schuster, LIEL., M. 46, 302, 305.

Brechungsindices n_D und Dielektr.-Konst. von Gemischen mit Tetrachlorkohlenstoff bei 25°: Krchma, Williams, Am. Soc. 49, 2412. Lichtbrechung von Gemischen mit Wasser und mit Baumwollsaatöl: Munch, Am. Soc. 48, 997.

Chemisches Verhalten.

Beim Leiten von Methylacetat-Dampf über Nickel bei 365—662° erhält man als Zerfallsprodukte Kohlendioxyd, Kohlenoxyd, Wasserstoff, Methan und wenig Athan; bei 365° bis 560° treten außerdem Spuren von ungesättigten Verbindungen auf; mit steigender Temperatur nimmt die Bildung von Kohlendioxyd und Methan zu, die Bildung von Kohlenoxyd, Wasserstoff und Äthan ab (Pearce, Ott, J. phys. Chem. 31, 108). Methylacetat liefert bei der pyrogenen Zersetzung im Platinrohr bei 1150° hauptsächlich Kohlenoxyd, Wasserstoff und Methan; daneben entstehen Äthylen, Acetylen, Essigsäure, Acetanhydrid, Acetaldehyd und Formaldehyd (Peytral, Bl. [4] 31, 118). Flammpunkt: —11° (Florentin, Ann. Falsificat. 21, 345; C. 1928 II, 2233). Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Leitet man Methylacetat-Dampf und Wasserstoff über eine Funkenentladungsstrecke durch ein mit Platinschwamm beschicktes, auf 300—450° erhitztes Platinrohr, so erhält man freie Essigsäure neben wenig

Acctaldehyd (?); beim Leiten von Methylacetat-Dampf und Wasserstoff über Platinschwamm im Platinrohr bei 250—550° entstehen Aceton und Essigsäure (Powarnin, Kalje, Ж. 55, 370; C. 1925 II, 646). Über Addition von Chlor, Brom und Bromwasserstoff bei niedrigen Temperaturen vgl. McIntosh, Trans. roy. Soc. Canada [3] 19 III, 71; C. 1926 II, 16.

Geschwindigkeit der Verseifung von Methylacetat in wäßr. Lösung bei 30° und Einfluß von Alkohol, Glycerin, Glucose und Saccharose auf die Geschwindigkeit der Verseifung in Wasser: Donelly, Koll.-Z. 38, 167; C. 1926 I, 2784. Geschwindigkeit der Hydrolyse in verd. Salzsäure bei Belichtung mit ultraviolettem Licht: RIDEAL, HAWKINS, Soc. 117, 1290. Einfluß von Neutralsalzen und Einfluß der Acidität auf die Geschwindigkeit der Verseifung: Karlsson, Z. anorg. Ch. 119, 76; 145, 3. Einfluß der Verdünnung mit Wasser, Methanol und Aceton auf das Gleichgewicht der Hydrolyse in Salzsäure bei 25°: Burrows, Soc. 127. 2725. Geschwindigkeit der Verseifung in wäßr. Alkohol oder in wäßrig-alkoholischer Salzsäure bei 40,5° und 80,2°: Berger, R. 43, 171, 172, 173, 175; in wäßrig-methylalkoholischer Salzsäure bei 40,5°: Berger; in Salzsäure in Gegenwart von Saccharose bei 25°: Burrows. Soc. 119, 1798; in Gegenwart von Gummi arabicum bei 250: Pearce, O'Leary, J. phys. Chem. 28, 53; bei 30°: SAUER, DIEM, Z. ang. Ch. 39, 960. Geschwindigkeit der Umsetzung mit Bromwasserstoff in Eisessig bei 16-180: Tronow, Mitarb., 3K. 59, 554; C. 1928 I, 1016: vgl. Tr., SSIBGATULLIN, B. 62, 2853. Verlauf der Hydrolyse in Lösungen von Oxalsäure Dikaliumoxalat oder Pikrinsäure + Natriumpikrat bei 45°: Dhar, Datta, Bhattacharya. Versl. Akad. Amsterdum 29, 485; C. 1921 III, 761. Hydrolysierende Wirkung von Glykokoll. Alanin, Leucin, Asparaginsäure und Glutaminsäure: Bosman, Ber. Physiol. 37, 511; C. 1927 I. 1819. Geschwindigkeit der Verseifung von Methylacetat in Alkalicarbonat-Lösungen bei 25°: Musil, M. 53/54, 367; in verd. Natronlauge bei 25°: Gooch, Terry, Am. Soc. 51, 1959; vgl. Schaum, Barth, Z. wiss. Phot. 24, 170; C. 1926 II, 1163; in wäßrig-methylalkoholischer Natronlauge bei 25°: CAUDRI, R. 48, 444; in wäßrig äthylalkoholischer Natronlauge bei 30° : Kindler, Ar. 1929, 546; in wäßrig-alkoholischen Lösungen von Kaliumphenolat bei 70°: GYNGELL, Soc. 1928, 1785; von Kalium-m-kresolat bei 70°: SMITH, Soc. 1927. 173. Gleichgewicht der Reaktion $CH_3 \cdot CO_2 \cdot CH_3 + CCl_3 \cdot CO_2 H \rightleftharpoons CH_3 \cdot CO_2 H + CCl_3 \cdot CO_2 \cdot CH_3$ bei 30°: Sudborough, Karvé, J. indian. Inst. Sci. 5, 16; C. 1923 I, 295. Bei der Einw. von Natrium auf Methylacetat in kaltem Äther entsteht die Natriumverbindung des Methyl-acetyl-carbinols (Bouveault, Locquin, Bl. [3] 35 [1906], 633); in siedendem Äther reagiert Methylacetat mit Natrium oder Kalium unter Bildung von unbeständigen Metallverbindungen; die Kaliumverbindung wurde als ockergelbe, in Äther schwer lösliche Substanz erhalten 1 (Scheibler, Voss. B. 53, 400; Sch., D. R. P. 346698; C. 1922 II. 1135; Frdl. 13, 1086). Methylacetat zersetzt sich beim Erhitzen mit geschmolzenem Alkali auf 475° unter Bildung von Kohlendioxyd, Wasserstoff und Methan (FRY, OTTO, Am. Soc. **50**, 1129).

Biochemisches und physiologisches Verh. ten; Verwendung; Analytisches.

Hydrolyse durch Ferment-Lösungen aus normalen menschlichen und tierischen Geweben und aus Tumor- und Carcinomgeweben: Noyes, Sugiura, Falk, Am. Soc. 46, 1886; J. biol. Chem. 55, 660; N., F., J. biol. Chem. 62, 688; F., N., S., J. biol. Chem. 59, 189, 214, 227: 62, 698. Hydrolytische Spaltung durch Ricinuslipase bei verschiedenen Wasserstoffionen-konzentrationen: Lorberblatt, Falk, Am. Soc. 48, 1656, 1661. Über die physiologische Wirkung vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 784; F. Flury, O. Klimmer in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 166; Th. H. Durrans. Solvents, 4. Aufl. [London 1938], S. 67. Bactericide Wirkung: Lockemann, Ulrich. Desinf. 10, 105; C. 1926 I, 138.

Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, S. 129, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 180.

Methylacetat gibt mit 1.3.5-Trinitro-benzol in Gegenwart von Natriumjodid eine rote, mit Pikrinsäure in Gegenwart von Natriumjodid eine dunkelrote Färbung; bei Zusatz von Wasser, Alkohol oder Benzol tritt in beiden Fällen Entfärbung ein (Ткомож, Djakonowa-Schulz, Sonowa, Ж. 59, 336, 338; С. 1927 II, 1687).

Über die Existenz von Molekülverbindungen mit Bromoform und Pentachloräthan s. Weissenberger, Z. anorg. Ch. 152, 336.

Orthoessigsäure-trimethylester, Trimethylorthoacetat $C_5H_{12}O_3=CH_3\cdot C(O\cdot CH_3)_3$. Bei längerer Einw. von Acetiminomethyläther-hydrochlorid auf Methanol (Sah, Am. Soc. 50, 517). — Kp: 107—109°. D_5^{sc} : 0,9438. n_5^{sc} : 1,3859.

¹⁾ Über die Eigenschaften der Metallverbindungen von Essigsäureestern s. auch die Angaben bei Äthylacetat (S. 134).

Essigsäureäthylester, Äthylacetat, "Essigester" $C_4H_8O_2 = CH_3 \cdot CO_2 \cdot C_2H_5$ (H 125; E I 54).

Bildung und Darstellung.

Zur Bildung von Äthylacetat bei der Veresterung von Essigsäure s. a. S. 108. Äthylacetat entsteht bei der Destillation von Athylalkohol mit Eisessig, zweckmäßig in Gegenwart von p-Toluolsulfonsäure (Wuyts, Bailleux, Bl. Soc. chim. Belg. 29, 56, 57, 63; C. 1920 I, 817), sowie bei der Destillation von Essigsäure und 95 %igem Äthylalkohol in Gegenwart von Aluminiumsulfat oder Kaliumdisulfat (SENDERENS, ABOULENC, A. ch. [9] 18, 147). Beim Leiten von Äthylalkohol- und Essigsäure-Dampf über verschiedene Aluminiumoxyd-Katalysatoren bei 350-465° (ADKINS, NISSEN, Am. Šoc. 46, 142), über Zirkoniumoxyd bei 240—290° (MAILHE, DE GODON, Bl. [4] 29, 102; Caoutch. Guttap. 18, 10680; C. 1921 I, 488) oder über Ceroxyd bei 250° (MILLIGAN, REID, Am. Soc. 44, 203). Beim Behandeln eines Gemisches aus 4 Mol Natriumacetat und 3 Mol Äthylalkohol mit 1 Mol Phosphorpentachlorid. anfänglich bei 0°, dann bei 60—100° (NEWMAN, TRIKOJUS, HARKER, J. Pr. Soc. N. S. Wales 59, 297; C. 1927 II, 802). Bei der Einw. von Wasserstoff auf eine Lösung von Bleiacetat in verd. Essigsäure bei 200-300° und 80 Atm. Druck (IPATJEW, IPATJEW, B. 61, 630). Beim Erwärmen von Essigsäure mit einer Lösung von Athylen in konz. Schwefelsäure (Chem. Fabr. Kalk, Oehme, D. R. P. 372717; C. 1923 IV, 660; Frdl. 14, 266). Beim Einleiten von Athylen in ein Gemisch aus konz. Schwefelsäure und wasserfreiem Natriumacetat oder Calciumacetat bei 70—80° (Chem. Fabr. Kalk, Oehme). Bei der Einw. von Natriumäthylat-Lösung auf Acetanhydrid bei 25° (CAUDRI, R. 48, 784). Neben anderen Produkten beim Kochen von Acetylbromid mit Magnesium in Äther, zweckmäßig in Gegenwart von wenig Quecksilber, und Zersetzen des Reaktionsproduktes mit Wasser (Tischtschenko, Bl. [4] 37, 627). Beim Erwärmen von Alkohol, Acetal oder von Gemischen aus Paraldehyd und Alkohol mit Natriumchlorat in schwach schwefelsaurer Lösung in Gegenwart von Vanadinpentoxyd (MILAS, Am. Soc. 50, 496). Beim Überleiten von Alkohol-Dampf und Luft über Vanadinpentoxyd-, Silbervanadat-, Kupfervanadat- oder Zinkoxyd-Katalysatoren bei ca. 360° (FESTER, BERRAZ, An. Asoc. quim. arg. 15, 214; C. 1928 I, 1458). Neben anderen Produkten beim Überleiten von Alkohol im Gemisch mit Luft oder Kohlendioxyd über japanische saure Erde bei 150° (INOUE, Bl. chem. Soc. Japan 1, 198; C. 1927 I, 9). Neben anderen Produkten bei der spontanen Zersetzung von Athylhypochlorit (Goldschmidt, Endres, Dirsch, B. 58, 577; TAYLOR, McMullin, Gammal, Am. Soc. 47, 396; Durand, Naves, Bl. [4] 37, 1154). Neben anderen Produkten beim Behandeln von Acetaldehyd mit Magnesium-jodid-butylat in Ather und Zersetzen des Reaktionsprodukts mit Eiswasser (GRIGNARD, FLUCHAIRE, A. ch. [10] 9, 17). In geringer Menge beim Überleiten der Dämpfe von Acetaldehyd und Wasser über Kupfer bei 300° (Armstrong, Hilditch, Pr. roy. Soc. [A] 97, 263; C. 1920 III, 335). Beim Eintragen von gepulvertem Kaliumcyanid in eine alkoh. Lösung von Chloracetaldehyd (CHATTAWAY, IRVING, Soc. 1929, 1043).

Geringe Mengen Äthylacetat bilden sich bei der Vergärung von Äthylalkohol oder

Saccharose durch Willia-anomala-Arten (YAMADA, C. 1928 II, 2518).

Zur Darstellung aus Athylalkohol und Essigsäure in Gegenwart von konz. Schwefelsaure nach Wade (Soc. 87, 1657, 1668) vgl. Roberts, J. Soc. chem. Ind. 43, 295 T; C. 1924 II, 2579. Technische Darstellung aus wäßr. Essigsäure und Alkohol in Gegenwart von Schwefelsäure: J. Schwyzer, Die Fabrikation pharmazeutischer und chemisch-technischer Produkte [Berlin 1931], S. 113; vgl. WHITAKER, Chem. met. Eng. 28 [1923], 108. Ubersicht über die gebräuchlichen Methoden zur Darstellung von Athylacetat: S. P. Schotz, Synthetic organic compounds [London 1925], S. 77.

Physikalische Eigenschaften.

Mechanische und thermische Eigenschaften. E: $-83,578 \pm 0,0005^{\circ}$ (Timmer-

Mechanische und thermische Eigenschaften. E: —83,578 ± 0,0005° (TIMMER-MANS, VAN DER HORST, KAMERLINGH ONNES, Arch. néerl. Sci. exactes [IIIa] 6, 186; C. 1923 IV, 377). Kp₇₀₀: 77,06 ± 0,03° (Bredig, Bayer, Ph. Ch. 130, 17); Kp₆₈₁: 73,5—74° (Sudborough, Karvé, J. indian Inst. Sci. 5, 6; C. 1923 I, 295). Dampfdruck zwischen —20° (6,55 mm) und der kritischen Temperatur (28877 mm): Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 434; vgl. Schmidt, Ph. Ch. 99, 79. — Kritische Temperatur: 250,1° (Y.). Kritisches Volumen: 3,250 cm³/g (Y.). Dichte D¹ zwischen 0° (0,9244) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 434; D²: 0,9244; D¹°: 0,9127; D²°: 0,9005; D²°: 0,8885 (Young). D²** (0,9138; D³** (0,8996 (MILLER, Pr. roy. Soc. [A] 106 [1924], 740); D¹**: 0,90657 (TIMMER-MANS, HENNAUT-ROLAND, J. chim. phys. 27 [1930], 429); D¹**: 0,9025 (OLSSON, Ph. Ch. 133, 233); D²**: 0,8945 (Chadwell, Am. Soc. 48, 1914); D³**: 0,88851 (Ti., H.-R.); D³**: 0,8690 (TROMP, R. 41, 297). Dichte des gesättigten Dampfes zwischen 70° und der kritischen Temperatur: Young. — Viscosität bei 0°: 0,005922, bei 5°: 0,00547 g/cmsec (Faust, Z. anorg. Ch. 154, 64); bei 8,96°: 0,00516 g/cmsec (Mi.); bei 15°: 0,00473 g/cmsec (Tr., H.-R.); bei 19,91°: 154, 64); bei 8,96°: 0,00516 g/cmsec (Mi.); bei 15°: 0,00473 g/cmsec (Ti., H.-R.); bei 19,91°:

0,00457 g/cmsec (Mi.); bei 20°: 0,0048 g/cmsec (Weissenberger, Schuster, M. 45, 421), 0,00473 g/cmsec (Faust, Z. anorg. Ch. 154, 64); bei 25°: 0,004239 g/cmsec (Kendall, Wright, Am. Soc. 42, 1778), 0,004236 g/cmsec (Ke., Brakeley, Am. Soc. 43, 1827), 0,004244 g/cmsec (Chadwell, Am. Soc. 48, 1918, 1920); bei 30°: 0,00407 g/cmsec (Bridgman, Pr. am. Acad. Arts Sci. 61 [1925/26], 70), 0,00400 g/cmsec (Ti., H.-R.); bei 50°: 0,00357 g/cmsec (Faust). Einfluß von Drucken bis 12000 kg/cm³ auf die Viscosität bei 30° und 75°: Bridg., Pr. am. Acad. Arts Sci. 61, 78; Pr. nation. Acad. USA. 11, 604; C. 1926 I, 1919; II, 1923.—Oberflächenspannung bei 15°: 24,36 dyn/cm; bei 20°: 23,75 dyn/cm (Ti., H.-R.), 22,9 dyn/cm (Stachorsky, Z. El. Ch. 34, 112), 23,3 dyn/cm (Weissenberger, Schuster, M. 45, 424); bei 22°: 22,89 dyn/cm (Faust, Z. anorg. Ch. 154, 63); bei 30°: 22,55 dyn/cm (Ti., H.-R.). Zu den Oberflächenspannungs-Angaben von Ramsay, Shields (Ph. Ch. 12, 455) vgl. Sugden, Soc. 125, 38. Parachor: Su., Soc. 125, 1178, 1183; 1927, 1783; Mumford, Phillips, Soc. 1929, 2119.

Verdampfungswärme zwischen 70° (87,42 cal/g) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 434; bei 76,0°: 87,63 cal/g (Матнеws, Am. Soc. 48, 573). Leidenfrostsches Phänomen an einem elektrisch geheizten Platindraht: Моссіскі, Вкорек, Roczniki Chem. 6, 350; С. 1927 I, 2810. Verbrennungswärme von flüssigem Äthylacetat bei konstantem Volumen: 538,5 kcal/Mol (Roth, Müller in Landolt-Börnst. E I,

876; vgl. KARRER, B. 55, 2858 Anm. 1).

Optische Eigenschaften. n₃⁶: 1,37306 (Timmermans, Hennaut-Roland, J. chim. phys. 27 [1930], 430); n₃⁶: 1,3747 (Tromp, R. 41, 297); n₃⁶: 1,37962; n₃⁶: 1,38342 (Tl., H.-R.). Brechungsindices für verschiedene Helium-Linien bei 15°: Tl., H.-R. n₃⁶: 1,3721 (Olsson, Ph. Ch. 133, 233); n₃⁶: 1,3695 (Krchma, Williams, Am. Soc. 49, 2411). — Absorption von Röntgenstrahlen: Aurén, Medd. Vet.-Akad. Nobelinst. 4 [1920], Nr. 3, S. 10; Taylor, Phys. Rev. [2] 20, 712; C. 1924 I, 8. Ultraviolettes Absorptionsspektrum der reinen Substanz: Ley, Arends, Ph. Ch. [B] 4, 235; der Lösungen in Wasser: Ley, A.; in Wasser, Alkohol und Hexan: Ley, Hünecke, B. 59, 512; vgl. Scheibe, Z. El. Ch. 34, 498; in Wasser und Ather: Hantzsch, Bucerius, B. 59, 806. Ultrarotes Absorptionsspektrum zwischen 0,6 μ und 14 μ: Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II; bis 2,5 μ: Ellis, Am. Soc. 51, 1386; Phys. Rev. [2] 32, 906; C. 1929 I, 1419; Sappenfield, Phys. Rev. [2] 33, 40; C. 1929 I, 1419. Lichtreflexion an der Oberfläche von Athylacetat: Bhatnadar, Shrivastava, Mitra, J. indian chem. Soc. 5, 337; C. 1928 II, 1745. Elliptische Polarisation von linear polarisiertem Licht durch Reflexion ander Oberfläche von Athylacetat: Bouhet, C. r. 185, 201. Intensität und Depolarisationsgrad des Streulichts bei der Lichtzerstreuung in Athylacetat-Dampf: I. R. Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838; Ganesan, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; in flüssigem Athylacetat: S. R. Rao, Indian J. Phys. 2, 184; C. 1928 I, 2235; Krishnan, Phil. Mag. [6] 50, 704; C. 1926 I, 838; Martin, J. Phys. Chem. 24, 489; Cabannes, Landolf-Börnst. E II, 95. Ramanspektrum: Dadieu, Kohlrausch, M. 52, 233, 399, 402; Naturwiss. 17, 367; Sber. Akad. Wien 138 [IIa], 54; Phys. Z. 30, 384; C. 1929 II, 385, 697, 970; B. 68 [1930], 257; Ko., Phot. Korresp. 65, 162; C. 1929 II, 1508; Daure, Ann. Physique [10] 12, 436. Abhängigkeit der Opalescenz im kritischen Gebiet von der Temperatur und der Wellenlänge des Lichts: Andant, C. r. 174, 1333, 1543; Ann. Phys

Elektrische und magnetische Eigenschaften. Dielektr.-Konst. von flüssigem Athylacetat bei 20°: 5,85 (λ = 73 cm) (DRUDE, Ph. Ch. 23 [1897], 308); bei 25°: 6,03 (KRCHMA, WILLIAMS, Am. Soc. 49, 2411); bei 77,15°: 5,30 (GRIMM, PATRICK, Am. Soc. 45, 2799); von festem Äthylacetat bei —194,05°: 2,48 (JACKSON, Phil. Mag. [6] 43, 486; C. 1922 I, 1274). — Dipolmoment μ·10¹⁸: 1,74 (Tetrachlorkohlenstoff-Lösung) (KRCHMA, WILLIAMS, Am. Soc. 49, 2414; WI., Phys. Z. 29, 178). Elektrische Leitfähigkeit bei 25°: KENDALL, Am. Soc. 42, 1778; KE., BRAKELEY, Am. Soc. 43, 1827; KE., GROSS, Am. Soc. 43, 1428.

Am. Soc. 42, 1778; KE., Brakeley, Am. Soc. 43, 1827; KE., Gross, Am. Soc. 43, 1428.

Magnetische Susceptibilität zwischen —6,4° und —176,3°: Ishiwara, Sci. Rep. Tohoku
Univ. [I] 3, 307; C. 1921 I, 270; vgl. Trifonow, Izv. Inst. fiz.-chim. Anal. 3, 434; C. 1927 I,
2635. Magnetische Doppelbrechung in flüssigem Äthylacetat: Ramanadham, Indian J. Phys.
4, 27; C. 1929 II, 2315. Elektromagnetische Drehung der Polarisationsebene des Lichts
im ultravioletten Gebiet: C. C. Evans, E. J. Evans, Phil. Mag. [7] 8, 155; C. 1929 II, 2017.

Physikalische Eigenschaften von Äthylacetat enthaltenden Gemischen.

Mechanische und thermische Eigenschaften. 1 Tl. Äthylacetat löst sich in 12,7 Tln. Wasser bei 18° (Lockemann, Ulrich, Desinf. 10, 104; C. 1926 I, 138; vgl. Fühner, B. 57, 514); Löslichkeit (g in 100 g Lösungsmittel) in Wasser bei 0°: 10,40, bei 10°: 8,96 (Glasstone, Pound, Soc. 127, 2666), bei 18°: 7,87 (Lockemann, Ulrich, Desinf. 10, 104; C. 1926 I, 138), bei 25°: 7,39, bei 37°: 6,65 (G., P.), bei 50°: 6,04 (G., P.), 6,79 (Schlesinger, Kubasowa, Ph. Ch. [A] 142, 27). Löslichkeit in wäßr. Lösungen von Natriumchlorid, Kaliumbromid und Kaliumjodid zwischen 15° und 50°: Sch., Ku.; in wäßr. Lösungen von Halogeniden des Ammoniums und der Alkalimetalle bei 25° und 50°: Gl., P.; Gl., Dimond, Harris, Soc.

1926, 2941, 2942; in wäßr. Lösungen verschiedener Salze des Ammoniums, der Alkali- und Erdalkalimetalle und des Kupfers und Zinks bei 25°: GL., DI., Jones, Soc. 1926, 2936; in wäßr. Kaliumnitrat-Lösungen bei 30,1° und Lithiumnitrat-Lösungen bei 29,7°: v. Euler, Rudberg, H. 140, 117; in wäßr. Lösungen von Glucose, Fructose, Saccharose und Lactose bei 25° und 50°: GL., P.; GL., DI., Ha.; in wäßr. Lösungen von Natriumbutyrat, -benzoat und -salicylat: Traube, Schöning, Weber, B. 60, 1810; in wäßr. Lösungen von Natriumonanthat: Tamba, Bio. Z. 145, 418. Absorption des Dampfes durch Dekalin und Tetralin: Weissenberger, Henke, Sperling, Z. ang. Ch. 38, 1161. Löslichkeit in Glycerin bei 20°: Roborgh, Pharm. Weekb. 64, 1208; C. 1928 I, 547. — Einfluß auf die Löslichkeit von Kaliumsulfat in Wasser: Weber, Z. anorg. Ch. 181, 390. Lösungsvermögen von Athylacetat für Sauerstoff: F. Fischer, Pfleiderer, Z. anorg. Ch. 124, 68; Abh. Kenntnis Kohle 5, 575; für Radiumemanation zwischen —18° und +60°: Schulze, Ph. Ch. 95, 269; für Methan: F. Fischer, Zerbe, Brennstoffchemie 4 [1923], 18; für Alkaliperchlorate bei 25°: Willard, Smith, Am. Soc. 45, 293; Smith, Am. Soc. 47, 765; für 2-, 3- und 4-Nitro-benzylchlorid bei 30°: McCombie, Scarborough, Smith, Soc. 1927, 809; für 2.4.6-Trinitro-m-xylol: Desvergnes, Ann. Chim. anal. appl. 25 [1920], 280; für Thymol bei 1° und 25°: Carroll, Rol-

LEFSON, MATHEWS, Am. Soc. 47, 1789; für Nitro- und Acetylcellulose und für Harze und Gummen: Davidson, Ind. Eng. Chem. 18, 671; C. 1926 II, 1465.

Syst. Nr. 159]

Kryoskopisches Verhalten in Wasser und Salzsäure: Kendall, King, Soc. 127, 1780; in Benzol: KE., BOOGE, Soc. 127, 1773; MADGIN, PEEL, BRISCOE, Soc. 1928, 710; in Gemischen aus Essigsäure und Wasser, Chloressigsäure und Wasser, und Trichloressigsäure und Wasser: KENDALL, KING, Soc. 127, 1780; in Gemischen aus Essigsäure und Benzol und aus Trichloressigsäure und Benzol: KE., Booge, Soc. 127, 1773, 1776; in Gemischen aus Ather und Benzol und aus Methylacetat und Benzol: MADGIN, PEEL, BRISCOE; in Gemischen aus Aceton und Benzol: Scheiber, B. 60, 1412. Thermische Analyse des Systems mit Tetrachlorkohlenstoff: Wyatt, Trans. Faraday Soc. 25, 45, 47; C. 1929 I. 1542; mit Nitrobenzol: Timmermans, Bl. Soc. chim. Belg. 37, 417; C. 1929 II, 522. Ebullioskopisches Verhalten von Thymol und Campher in Gemischen von Tetrachlorkohlenstoff und Athylacetat: CARROLL, ROLLEFSON, MATHEWS, Am. Soc. 47, 1795. Ebullioskopische Konstante von Äthylacetat: 2,86 (für 1 kg Lösungsmittel) (C., R., M.). Siedepunkte einiger Gemische mit Tetrachlorkohlenstoff: CARROLL, MATHEWS, Am. Soc. 46, 35. Siedepunkte und Zusammensetzung binärer azeo-CARROLL, MATHEWS, Am. Noc. 46, 35. Siedepunkte und Zusammensetzung binärer azeotroper Gemische mit Athylacetat s. in der untenstehenden Tabelle. Dampfdruck binärer Gemische mit Pentachloräthan bei 20°: Weissenberger, Schuster, Pamer, M. 46, 286; mit Benzol zwischen 0° und 60°: Schmidt, Ph. Ch. 121, 241; mit Nitrobenzol bei 20°: Wei., Henke, Kawenoki, J. pr. [2] 113, 173; mit Tetralin bei 20°: Wei., Schu., Zack, Z. ang. Ch. 39, 271; mit Dekalin bei 20°: Wei., He., Sperling, M. 46, 487; mit Äther zwischen 0° und 50°: Schm., Ph. Ch. 121, 242; mit Phenol bei 20°: Wei., Schu., Zack; mit 2-, 3- und 4-Nitro-phenol bei 20°: Wei., He., Ka.; mit Cyclohexanol bei 20°: Wei. Schu., M. 45, 417, 442; mit 1-Methyl-cyclohexanol-(2), 1-Methyl-cyclohexanol-(3) und 1-Methyl-cyclohexanol-(4) und o-, m- und p-Kresol bei 15°: Wei., Schu., Wojnoff, M. 46, 3; mit Pyrogallol und Cyclohexanon bei 20°: Wei., Schu., Henke, M. 46, 49, 54: mit Methylacetat und Isoamylacetat bei verschiedenen Temperaturen: Schmidt, Ph. Ch. 99, 77, 79; 121, 240, 241; mit Chloressigsäure, Dichloressigsäure und Trichloressigsäure bei 20°: Wei., Schu., Pamer, M. 46, 282, 291, 293, 294. Dampfdrucke ternärer Gemische aus Äthylacetat, Phenol und Tetralin oder Cyclohexanol: Wei., Schu., Zack, Z. ang. Ch. 38, 1011. Zusammensetzung des Dampfes über Gemischen mit Tetrachlorkohlenstoff: CARROLL, ROLLEFSON, MATHEWS, Am. Soc. 47, 1787; Einfluß von Thymol darauf: C., R., M. Druck und Zusammensetzung des Dampfes über binären Gemischen mit Methanol und Methylacetat und über dem ternären Gemisch Methanol-Methylacetat-Äthylacetat bei 39,76°: Bredig, BAYER, Ph. Ch. 130, 21.

Äthylacetat enthaltende azeotrope Gemische.

Komponente	Кр ₇₆₀ 0	Äthylacetat in Gew%	Komponente	Kp760 0	Äthylacetat in Gew%
Dichlorbrommethan¹) Äthyljodid²) Butylchlorid³) Hexan¹) Methanol⁴)	90,55 70,9 75,5 65,0 62,25	12 24 45 ca. 42 56 ⁵)	Isopropylalkohol ¹) . tert. Butylalkohol ⁶) . Methyläthylketon ¹) . Schwefelkohlenstoff ³)	75,3 76,0 76,7 46,02	79 75 ca. 78 7,3

1) LECAT, R. 45, 623, 624. — 2) L., R. 46, 243. — 3) L., Ann. Soc. scient. Bruxelles 48 1 [1928], 116, 117. — 4) L., R. 45, 623; vgl. FAILLEBIN, Bl. [4] 29, 273; HERZ, LEVI, Z. anorg. Ch. 183, 340. — 5) Vgl. dazu Fuchs, Ch. Z. 51, 402; C. 1929 I, 1666. — 6) L., Ann. Soc. scient. Bruxelles 48 I, 55.

Dichte bzw. spezifisches Volumen von binären Gemischen mit Zinntetrachlorid bei 25° und 70°: Kurnakow, Z. anorg. Ch. 135, 106; mit Tetrachlorkohlenstoff bei 25°: Krchma. Williams, Am. Soc. 49, 2412; Hammick, Andrew, Soc. 1929, 756; zwischen 0° und 50°: Faust, Z. anorg. Ch. 154, 64; mit Methanol zwischen 20° und 50°: Herz, Levi, Z. anorg. Ch. 183, 340; mit Resorcin bei 30°: Cohen, de Meester, Moesveld, Ph. Ch. 108, 112; mit Campher bei 25°: Peacock, Soc. 107, 1554; mit Essigsäure bei 25°: Kendall, Brakeley, Am. Soc. 43, 1827; Hammick, Andrew; mit Trichloressigsäure bei 25°: Ke., Br.; mit Äthylbenzoat und Benzylbenzoat bei 25°: Ke., Wright, Am. Soc. 42, 1780. Volumänderung beim Mischen mit Wasser: Washburn, J. chem. Educ. 6, 1145; C. 1926 II, 1125; beim Mischen mit Chloroform: Hirobe, J. Fac. Sci. Univ. Tokyo 1, 195; C. 1926 II, 1383; Peel, Madgin. Briscoe, J. phys. Chem. 32, 288; mit Benzol: Hi.; Schmidt, Ph. Ch. 121, 252; Rakshit. Z. El. Ch. 31, 321; mit Äther: Hi.; Schm.; mit Äthylalkohol, Propylalkohol, Isobutylalkohol. Isoamylackohol, Aceton, Isoamylacetat und Schwefelkohlenstoff: Hi.; mit Methylacetat: Hi.; Schm.; P., M., Br.

Viscosität binärer Gemische mit Wasser bei 25°: Chadwell, Am. Soc. 48, 1918; vgl. Traube, Whang, Bio. Z. 203, 364; mit Zinntetrachlorid bei 25°, 50° und 70°: Kurnakow. Z. anorg. Ch. 135, 106; mit Tetrachlorkohlenstoff bei verschiedenen Temperaturen: Yajnik. Mitarb., Ph. Ch. 118, 315; Faust, Z. anorg. Ch. 154, 64; mit Äthyljodid bei 18°, 35° und 50°: Y., Mitarb.; mit Methanol zwischen 20° und 50°: Herz, Levi, Z. anorg. Ch. 163. 341; mit Cyclohexanol bei 20°: Weissenberger, Schuster, M. 45, 420; mit Pyrogallol und Cyclohexanon bei 20°: Weiss., Schu., M. 46, 54; mit Essigsäure und Trichloressigsäure bei 25°: Kendall, Brakeley, Am. Soc. 43, 1827; mit Methylacetat bei 25°: Chadwell: mit Athylbenzoat und Benzylbenzoat bei 25°: Kendall, Wright, Am. Soc. 42, 1780; vgl. Macleod, Trans. Faraday Soc. 20, 352; C. 1925 I, 2526. — Diffusion von Jod in Athylacetat bei 8,96° und 19,91°: Miller, Pr. roy. Soc. [A] 106 [1924], 738. — Zur Oberflächenspannung wäßr. Lösungen von Athylacetat vgl. Traube, Verh. disch. phys. Ges. 10 [1908], 901; T. Somogyi, Bio. Z. 120, 98; Fühner, Bio. Z. 120, 147; Weber, Z. anorg. Ch. 181, 390. Anderung der Oberflächenspannung wäßr. Lösungen bei 20° mit der Zeit: Bigelow, Washburn. J. phys. Chem. 32, 338. Oberflächenspannung binärer Systeme mit Tetrachlorkohlenstoff bei verschiedenen Temperaturen: Stachorsky, Z. El. Ch. 34, 112; Faust, Z. anorg. Ch. 164, 65; Hammick, Andrew, Soc. 1929, 756; bei 15°, 35° und 50°: Yajnik, Sharma, Bharadwaj, Quart. J. indian chem. Soc. 3, 70; C. 1926 II, 2147; mit Athyljodid bei 18°, 35° und 50°: Yaj., Sh., Bh.; mit Benzol und Nitrobenzol bei 20°: Sta.; Sta.; mit Methanol zwischen 20° und 50°: Herz, Levi, Z. anorg. Ch. 183, 341; mit Cyclohexanol bei 20°: Weissenberger. Schuster, M. 45, 422; mit 1-Methyl-cyclohexanol (2), 1-Methyl-cyclohexanol (3) und 1-Methyl-cyclohexanol (4) und mit o-, m- und p-Kresol: Wei., Schu., Wojnoff, M. 46, 7, 8; mit Pyrogallol bezw. Cyclohexanon bei 20°: Wei., Schu., Henke, M. 46, 49; mit Essigsäure bei 25°: Hammick, Andrew. Oberflächenspannun

nitat und Quecksilber(II)-chlorid in Athylacetat: Kosakewitsch, Ph. Ch. 133, 10. Grenz-flächenspannung von Äthylacetat gegen Wasser, verd. Salzsäure, verd. Natronlauge und Natriumchlorid-Lösung bei 30°: Pound, Soc. 123, 583, 590; J. phys. Chem. 30, 794.

Benetzungsvermögen für Glas- und Messingplatten: Vollmann, Farben-Ztg. 31, 2933; C. 1926 II, 2635. Adsorption von Äthylacetat aus wäßr. Lösung an Holzkohle: Richardson, Robertson, Soc. 127, 555; an Tierkohle: Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 98; an Tierkohle in Gegenwart von Essigsäure: Przylecki, Giedrové, Sym, Biochem. J. 22, 824; an fein verteilte Blutkohle, allein und in Gegenwart von Natriumacetat: Kruyt, van Duin, R. 40, 267. Adsorption von Äthylacetat-Dampf an Tierkohle: Alexejewski, K. 55, 416; an Carboraffin: Traube, Birutowitsch, Koll.-Z. 44, 235; C. 1928 I, 2366; an Kokosnußkohle: Tryhorn, Wyatt, Trans. Faraday Soc. 22. 137; C. 1928 II, 1518; an Aluminiumoxyd und Thoriumoxyd bei 99,4°: Pearce, Alvarado, J. phys. Chem. 29, 266; an Wolfram(VI)-oxyd und Zirkoniumoxyd bei 99,4°: Pearce, Alvarado, J. phys. Chem. 33, 699. Zur Wärmetönung der Adsorption von Essigsäureäthylester an Platin vgl. Palmee, Pr. roy. Soc. [A] 115, 229; C. 1927 II, 1678; s. a. H. Freddich, Kapillarchemie [Leipzig 1930], Bd. I, S. 178 Anm. 9. — Adsorption von Jod aus Lösungen in Athylacetat durch Holzkohle: Syrkin, Bernstein, Z. anorg. Ch. 152, 109. Adsorption von Kupfer(II)-chlorid aus Gemischen von Methanol und Athylacetat durch aktivierte

von Kupfer(II)-chlorid aus Gemischen von Methanol und Äthylacetat durch aktivierte Holzkohle: Schilow, Lepin, Ph. Ch. 94, 62.

Einfluß auf die Quellung von rohem und vulkanisiertem Kautschuk: Salkind, B. 59, 525; auf die Koagulation von Casein-Sol durch Calciumchlorid: Jirgensons, Bio. Z. 195, 137. Diffusion von Äthylacetat in Gelatine-Gel: Tomita, Bio. Z. 153, 349; vgl. Traube, Bio. Z. 153, 358. Herstellung von Athylacetat-Wasser-Emulsionen mit Jod als Emulgierungsmittel: Holmes, Williams, Am. Soc. 47, 324.

Wärmetönung beim Vermischen von Athylacetat mit Chloroform: Hibobe, J. Fac. Sci. Univ. Tokyo 1, 195; C. 1926 II, 1383; Perl, Madgin, Briscoe, J. phys. Chem. 33, 288; mit Tetrachlorkohlenstoff: Carroll, Mathews, Am. Soc. 48, 34; mit Pentachlorathan:

Weissenberger, Schuster, Pamer, M. 46, 288; mit Benzol: Hi.; Schmidt, Ph. Ch. 121, 252; mit Dekahydronaphthalin: Wei., Henke, Sperling, M. 46, 487; mit Nitrobenzol: Wei., He., Kawenoki, J. pr. [2] 113, 173; mit Ather: Hi.; Schm.; mit Athylalkohol, Propylalkohol, Isobutylalkohol, Isobutylalkohol, Isobutylalkohol, Isobutylalkohol, Isobutylalkohol, Peel, M., Br.; mit Schwefelkohlenstoff: Hi.; Peel, M., Br.; mit Isoamylacetat: Hi.; Schm.; Peel, M., Br.; mit Isoamylacetat: Hi.; Schm.; Schu.; Pamer. Spezifische Wärme und Verdampfungswärme des azeotropen Gemisches mit Methanol: Herz, Levi, Z. anorg. Ch. 183, 340. Verdampfungswärme der Gemische mit Tetrachlorkohlenstoff: Wyatt, Trans. Faraday Soc. 25, 45; C. 1929 I, 1542.

Optische, elektrische und magnetische Eigenschaften. Brechungsindices von

Optische, elektrische und magnetische Eigenschaften. Brechungsindices von binären Gemischen mit Zinn(IV)-chlorid: Anossow, Soobbe. nau.-tech. Rab. 13, 11; Izv. Inst. fiz.-chim. Anal. 3, 384; C. 1927 I, 2632; mit Tetrachlorkohlenstoff: Krchma, Williams, Am. Soc. 49, 2412. Lichtbrechung von 1 %igen Lösungen in Wasser und in Baumwollsaatöl: Munch, Am. Soc. 48, 997. Über Schlierenbildung in Gemischen mit Benzol und Toluol vgl. Emich, M. 53/54, 358. — Dielektr.-Konst. von Gemischen mit Tetrachlorkohlenstoff bei 25°: Krchma, Williams. Elektrische Leitfähigkeit von binären Gemischen mit Essigsäure bei 25° und 60°: Kendall, Gross. Am. Soc. 43, 1429, 1431; von Äthylacetat + Kaliumacetat Lösungen in Wasser bei 0°: Ke., King. Soc. 127, 1787; von Gemischen mit wäßr. Salzsäure und mit wäßr. Lösungen von Essigsäure Chloressigsäure und Trichloressigsäure bei 0°: Ke., King. Einfluß auf die Leitfähigkeit von Kaliumchlorid und von Kaliumacetat in Wasser bei 0°: Ke., King. Potentialdifferenzen an der Trennungssläche zwischen Luft und wäßr. Lösung von Äthylacetat: Frumkin, Donde, Ph. Ch. 123, 342; zwischen Luft und wäßriger, schwach schwefelsaurer Äthylacetat-Lösung: Fr., Ph. Ch. 111, 196. Elektrokapillarkurven des Quecksilbers in gesättigten Lösungen von Kaliumchlorid und Quecksilber(I)-chlorid in Äthylacetat + Alkohol + Wasser: Wild, Ph. Ch. 103, 17, 28, 29. — Zur magnetischen Susceptilität des binären Systems mit Zinn(IV)-chlorid bei 25° vgl. Trifonow, Soobšč. nau.-tech. Rab. 13, 11; C. 1925 II, 386; Izv. Inst. fiz.-chim. Anal. 3, 435; C. 1927 I, 2635.

Katalytische Wirkungen. Einfluß von Athylacetat-Dampf auf die luminescierende

Katalytische Wirkungen. Einfluß von Athylacetat-Dampf auf die luminescierende Flamme des Schwefels in Sauerstoff-Stickstoff-Atmosphäre: Emeléus, Soc. 1928, 1948; auf die luminescierende Flamme des Arsens in Sauerstoff-Atmosphäre: Em., Soc. 1929, 1847. Katalytische Wirkung auf die Vereinigung von Chlor mit Schwefeldioxyd zu Sulfurylchlorid: Durrans, J. Soc. chem. Ind. 45, 349 T; C. 1927 I, 10. Einfluß auf die Zersetzung von Ameisensäureäthylester in Gegenwart von Aluminiumoxyd bei 360°: Adkins, Nissen, Am. Soc. 46, 143.

Chemisches Verhalten.

Einwirkung von Elektrizität, Wärme und Katalysatoren; Oxydation. der Zersetzung von Athylacetat-Dampf durch den elektrischen Funken an Nickelelektroden bei gewöhnlichem Druck entstehen Wasserstoff, Acetylen, Kohlenoxyd, Methan und in geringerer Menge Kohlendioxyd (Poma, Bassi, G. 51 II, 77). Athylacetat zersetzt sich beim Erhitzen in einer Stahlbombe auf 425° unter Bildung von Aceton, Essigsäure, Acetaldehyd und Wasser sowie von Kohlenwasserstoffen (HERNDON, REID, Am. Soc. 50, 3070, 3073). Uber die thermische Zersetzung von Athylacetat in Gegenwart verschiedener Aluminium-oxyd-Katalysatoren s. Adkins, Krause, Am. Soc. 44, 386; Adk., Am. Soc. 44, 2180; Adk., Nissen, Am. Soc. 48, 141; Einfluß von Wasser und einigen organischen Verbindungen auf diese Zersetzung: Adk., Ni. Bei der Zersetzung von Athylacetat in Gegenwart von Titanoxyd-Katalysatoren bei ca. 450° entstehen Athylen, Athan, Aceton, Essigsäure, Kohlendioxyd, wenig Kohlenoxyd und andere Produkte (ADK., KR.; BISCHOFF, ADK., Am. Soc. 47, 809). Über die Wirksamkeit von Thoriumoxyd-Katalysatoren s. ADK., KR. Athylacetat zersetzt sich in Gegenwart von Nickel nicht unterhalb 280°; bei der Zersetzung in Gegenwart von Nickel zwischen 300° und 450° entstehen Wasserstoff, Methan, Kohlenoxyd und Kohlendioxyd; ungesättigte Verbindungen bilden sich in geringer Menge nur bei 300-350°; mit steigender Temperatur nimmt die Bildung von Wasserstoff und Kohlenoxyd ab, die Bildung von Kohlendioxyd und Methan zu; Athan tritt nur bei 300° und 450° in sehr geringer Menge auf; dieselben Zerfallsprodukte, jedoch in abweichenden Mengen und mit Ausnahme der ungesättigten Verbindungen, erhält man bei der Zersetzung von Athylacetat-Dampf im Gemisch mit Wasserstoff in Gegenwart von Nickel bei 300—450° (Pearce, Ott, J. phys. Chem. 28, 1205). Verhalten von Athylacetat bei der Zersetzung über verschiedenen Nickel.,

Eisen- und Zinkonyd-Katalysatoren bei ca. 400°: Adkins, Lazier, Am. Soc. 46, 2294, 2297.

Flammpunkt: —3° (Florentin, Ann. Falsificat. 21, 345; C. 1928 II, 2233). Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986.

Fortpflanzung der Flammenwelle in Gemischen aus Athylacetat-Dampf und Luft: White, Soc. 121, 1257. Geschwindigkeit der Oxydation durch Chromsäure in Wasser bei 20,9°:

TRONOW, LUKANIN, Ж. 59, 1167; С. 1928 I, 2924.

Hydrolyse (Verseifung). Vgl. auch den Abschnitt Veresterung im Artikel Essigsäure, S. 108. Über die Verseifung von Äthylacetat durch Wasser vgl. Skrabal, Zahorka, M. 58/54, 562; Dawson, Lowson, Soc. 1928, 3225; v. Euler, Rudberg, Z. Phys. 16 [1923], 55. Einfluß von Natriumacetat auf die Verseifung durch Wasser: D., Lo., Soc. 1928, 3225. Einfluß der Acidität auf die Verseifung in wäßr. Lösung: v. EULER, LAURIN, Ark. Kemi 7, Nr. 30, S. 4; KARLSSON, Z. anorg. Ch. 119, 84; 145, 12. Geschwindigkeit der Verseifung in wäßr. Alkohol und in wäßrig-alkoholischer Salzsäure bei 40,5°: BERGER, R. 48. 169, 173; in salzsaurer Lösung bei 00: Kendall, King, Soc. 127, 1789; Harned, Pfanstiel, Am. Soc. 44, 2199; AKERLÖF, Ph. Ch. 98, 272; Dawson, Lowson, Soc. 1928, 2150. Über den Temperaturkoeffizienten der Hydrolyse in verd. Salzsäure vgl. v. Euler, Rudberg, Z. Phys. 16, 61; C. 1924 I, 1138. Einfluß von Neutralsalzen auf die Hydrolysegeschwindigkeit in verd. Salzsäure: Bowe, J. phys. Chem. 31, 299; in 0,05 n-Lösungen von Salzsäure, Salpeterverd. Salzsaure: Bowe, J. phys. Chem. 31, 299; in 0,00 h-Losungen von Salzsaure; Salpetersäure und Schwefelsäure: Akerlöf. Geschwindigkeit der Hydrolyse durch Salzsäure in Gegenwart von Glykokoll in 0,1 h-Salzsäure bei 38°: Isgaryschew, Bogomolowa, Ж. 56, 65; Hydrolyse durch Salzsäure in Gegenwart von Tierkohle: Przylecki, Giedroyó, Sym. Biochem. J. 22, 824; Hydrolyse von in Benzol gelöstem Athylacetat durch Salzsäure in Gegenwart von Tierkohle und anderen pulverförmigen Substanzen und von Kolloiden: Smith, Soc. 127, 2603. Verlangssmung der Verseifungsgeschwindigkeit in 0,1 h-Schwefelsäure oder 0.1 n-Salzsäure durch Eiweißstoffe: Isc., Bog. Einfluß von Gelatine auf die Verseifung in saurer Lösung: Isc., Bog. — Geschwindigkeit der Umsetzung mit Bromwasserstoff in Eisessig bei 16—18°: Tronow, Mitarb., 36. 553; C. 1928 I, 1016; der Verseifung durch verd. Bromwasserstoffsäure in Eisessig bei 18—21°: Tr., SSIBGATULLIN, B. 62. 2853. Geschwindigkeit der Verseifung in Gegenwart von Essigsäure, Chloressigsäure oder Trichloressigsäure in Wasser bei 0°: Kendall, King, Soc. 127, 1789; in Gegenwart von Essigsäure bei 25°: Dawson, Lowson, Soc. 1246; in Gegenwart von Essigsäure bei 25°: D., L., Soc. 1927, 2446; in Gegenwart von Chloressigsäure, Chloressigs essigsäure + Natriumchlorid oder Chloressigsäure + Natriumchloracetat bei 25°: D., L.. Soc. 1929, 393; in Gegenwart von Dichloressigsäure in Neutralsalz-Lösungen bei 25°: HARNED, HAWKINS, Am. Soc. 50, 85; durch Essigsäure, Chloressigsäure, Dichloressigsäure, Propionsäure, β-Chlor-propionsäure und Glykolsäure in Gegenwart von Natriumchlorid: D., L., Soc. 1929, 1219; durch sulfurierte Phenylessigsäure bei 25°: BRINER, TRAMPLER. Helv. 5, 19.

Geschwindigkeit der Verseifung durch Ammoniak in Wasser und Beschleunigung dieser Reaktion durch einige Neutralsalze: Ssaposhnikowa, C. 1925 II, 127. Geschwindigkeit der Verseifung durch Natronlauge bei 20°: Olsson, Ph. Ch. 133, 235; bei 25°: Terry, Stieglitz, Am. Soc. 49, 2216; Gooch, Am. Soc. 49, 2257. Potentiometrische Verfolgung der Verseifung durch Natronlauge: v. Euler, Svanberg, H. 115, 143. Geschwindigkeit der Verseifung in Natronlauge-Natriumsulfat-Gemischen und in einem Gemisch aus Natronlauge. Galliumhydroxyd und Natriumsulfat: Fricke, Blencke, Z. anorg. Ch. 143, 189. Einfluß von Neutralsalzen auf die Geschwindigkeit der Verseifung durch Natronlauge: Wilson, Terry, Am. Soc. 50, 1251. Einfluß von Gelatine und Gummi arabicum auf die Verseifung durch Natronlauge bei 30°: Sauer, Diem, Z. ang. Ch. 39, 956, 958. Blutkohle verzögert die Hydrolyse von Äthylacetat durch Natronlauge (Kruyt, van Duin, R. 40, 251). Geschwindigkeit der Verseifung durch wäßrig-alkoholische Natronlauge: Olsson; Kindler, A. 452, 104; Ar. 1929, 543; Caudri, R. 48, 442; durch wäßr. Natronlauge in Gegenwart von Alkohol, Aceton. Äther oder Äther + Alkohol bei 25°: Caudri. Verseifung von Äthylacetat durch festes Kaliumhydroxyd: Tassilly, Belot, Descombes, C. r. 186, 1847; durch Kaliumäthylat-Lösung und wäßrig-alkoholische Kalilauge bei 25°: Selman, Fletcher, Trans. Faraday Soc. 25, 423; C. 1929 II, 1886; Geschwindigkeit der Verseifung durch Lithium-, Natrium-, Kalium-, Rubidium- und Cäsium-hydroxyd und -cyanid in wäßr. Lösung bei 18° und 25°: Meyer, Z. anorg. Ch. 115, 212; durch Natriumcarbonat zwischen 0,2° und 30°: Musil, M. 52, 194; durch Kaliumphenolat in Alkohol -Wasser-Gemischen bei 70°: Gyngell, Soc. 1926, 2490; durch Kaliumphenolat in Wasser und in Alkohol + Wasser bei 25—70°: Smith, Soc. 1927, 171. — Gleichgewicht der Reaktion CCl₃· CO₃H + CH₃· CO₂· C₄H₅ \equiv CCl₃· CO₂· C₄H₅ + CH₃· CO₄H₅ bei 30°: Sudborough, Karvé, J. indian Inst. Sci. 5, 7; C. 1928 II, 295. Hydrolyse durch Enzyme s. S. 135.

Weitere Reaktionen mit anorganischen Stoffen. Athylacetat liefert mit Ammoniak beim Überleiten über Aluminiumoxyd bei 490—500° Acetonitril, Athylalkohol, Wasser und Athylen (Mailhe, A. ch. [9] 13, 215; Caoutch. Guttap. 15, 9546). — Bei der Einw. von Natrium auf Athylacetat in Ather in der Kälte entsteht die Natriumverbindung des Methylacetylcarbinols (Bacon, Am. 38 [1905], 77; Higley, Am. 37 [1907], 316). In siedendem Ather reagieren Natrium und Kalium mit 1 Mol Athylacetat unter Bildung von unbeständigen, hellgelben, in Ather löslichen Metallverbindungen CH₂:C(OMe)·O·C₂H₃; über Umsetzungen dieser Metallverbindungen vgl. Scheibler, Voss, B. 53, 388; Sch., Ziegner, B. 55, 789; Sch., Z., Peffer, B. 55, 3921; Sch., Schmidt, B. 58, 1195; Sch., Marheneel, Bassanoff.

B. 58, 1198; SCH., FRIESE, A. 445, 150; SCH., M., A. 458, 1. Über die angebliche Bildung von Ketendiäthylacetal bei der Einw. von Natrium, Natriumäthylat oder Natriumamid auf Athylacetat vgl. die E II 1, 780 zitierte Literatur. Zum Mechanismus der Kondensation von Villender Von State 1988, 200 Et 200 E

Athylacetat zu Acetessigsäure-äthylester vgl. Mc Elvain, Am. Soc. 51, 3124.

Reaktionen mit organischen Verbindungen. Äthylacetat gibt beim Behandeln mit Benzol in Gegenwart von Aluminiumchlorid Acetophenon (CRYER, Trans. roy. Soc. Canada [3] 19 III, S. 29; C. 1926 II, 26). Wärmetönung bei der Einw. von Äthylacetat auf ätherfreies Magnesiumjodid-äthylat in Benzol: Tschelinzew, Bl. [4] 35, 748. Äthylatin Magnesiumjodid-äthylat in Benzol: Tschelinzew, Bl. [4] 36, 748. Äthylatin Magnesiumjodid-äthylatin Benzol: Tschelinzew, Bl. [4] 36, 748. acetat kondensiert sich mit Methyläthylketon in Gegenwart von Natrium bei 0° zu Propionylaceton (Morgan, Reeves, Soc. 123, 447). Bei der Kondensation von Athylacetat mit Diäthylketon in Gegenwart von Natrium bei 0° entsteht α-Methyl-α-propionyl-aceton (E II 1, 843); bei nachfolgendem Erwärmen des Reaktionsgemisches auf dem Wasserbad erhält man Propionylaceton (Morgan, Drew, Porter, B. 58, 333, 336; vgl. Claisen, Ehrhardt, B. 22 [1889], 1017). Athylacetat liefert bei der Kondensation mit Athylpropylketon in Gegenwart von Natrium, zuletzt auf dem Wasserbad, Propionylaceton, Butyrylaceton, Athylpropionat und Athylbutyrat (M., D., P.). Bei der Kondensation mit Dipropylketon in Gegenwart von Natrium in der Kälte entsteht hauptsächlich α -Athyl- α -butyryl-aceton; bei folgendem Erwärmen des Reaktionsgemisches auf dem Wasserbad bilden sich Butyrylaceton und Athylbutyrat (M., D., P.). Athylacetat kondensiert sich mit Methylisopropylketon in Gegenwart von Natrium in Äther zu Isobutyrylaceton, mit Methylisobutylketon in Gegenwart von Natrium ohne Lösungsmittel zu 2-Methyl-heptandion-(4.6) (M., D., Soc. 125, 743); bei der analogen Umsetzung mit Methylnonylketon entsteht Tridecandion-(2.4) (M., Holmes, Soc. 125, 764; Pharm. J. 112, 640; C. 1924 II, 1595). Bei der Kondensation mit Athylphenylketon in Gegenwart von Natrium bei 0° entsteht hauptsächlich a-Methyl-a-benzoylaceton neben Propionylaceton und Äthylbenzoat; bei anschließendem Erwärmen des Reaktionsgemisches auf dem Wasserbad erhält man hauptsächlich Propionylaceton neben Athylbenzont, Propionyl-benzoyl-methan und anderen Produkten (M., D., P., B. 58, 336). Bei der Umsetzung mit Methylbenzylketon in Gegenwart von Natrium erhält man in der Kälte hauptsächlich ms-Phenyl-acetylaceton, bei nachfolgendem Erwärmen hauptsächlich ω-Phenyl-acetylaceton (M., D., P.). Mit Äthylbenzylketon liefert Äthylacetat in Gegenwart von Natrium bei 0° α -Phenyl- α -propionyl-aceton und ein hochsiedendes Nebenprodukt; bei anschließendem Erhitzen des Reaktionsgemischs auf dem Wasserbad erhält man außerdem ω -Phenyl-acetylaceton und geringe Mengen $\omega.\omega'$ -Diphenyl-acetylaceton (?) (M., D., P.). Gibt beim Erhitzen mit Chloressigsäureäthylester in Gegenwart von Chrompulver auf 1200 bis 130° Bernsteinsäurediäthylester (Charrabarty, Dutt, J. indian chem. Soc. 5, 517; C. 1929 I, 501). Gleichgewicht der Reaktion $CH_3 \cdot CO_2 \cdot C_2H_5 + CCl_3 \cdot CO_2H \rightleftharpoons CH_3 \cdot CO_2H$ + $CCl_3 \cdot CO_2 \cdot C_2H_5$: Sudborough, Karvé, J. indian Inst. Sci. 5, 7; C. 1923 I, 295. Athylacetat liefert mit Kohlensäurediäthylester in siedendem Äther oder Benzol in Gegenwart von Natrium Malonsäurediäthylester neben Acetessigester (Lux, B. 62, 1827). Bei der Umsetzung von Athylacetat mit Isoamylmagnesiumbromid entstehen neben Methyldiisoamylcarbinol (vgl. Grignard, C. r. 132, 338) Athylalkohol und Isoamylacetat (Escourrou, Bl. [4] 39, 1137).

Biochemisches und physiologisches Verhalten.

Spaltung durch Enzyme der Sporen von Aspergillus oryzae: Sumi, Bio. Z. 195, 172. Hydrolyse von Athylacetat durch verschiedene Fermentpräparate aus Ricinusbohnen: Lorberblatt, Falk, Am. Soc. 48, 1656, 1661; Piutti, de Conno, Ann. Chim. applic. 18, 472; C. 1929 I, 760. Einfluß des ph. auf die Hydrolyse durch Ricinus-Lipase: L., F. Hydrolyse durch Extrakte aus Tumor- und Carcinomgeweben sowie aus zahlreichen normalen menschlichen und tierischen Geweben unter verschiedenen Bedingungen: Noyes, Sugiura, Falk, J. biol. Chem. 55, 660; Am. Soc. 46, 1886; N., F., J. biol. Chem. 62, 688; F., N., S., J. biol. Chem. 59, 189, 214, 227; 62, 698. Über das physiologische Verhalten vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 784; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 67; F. Ibury, O. Klimmer in K. B. Leemann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 167. Bactericide Wirkung: Lockemann, Ulrich, Desinf. 10, 105; C. 1926 I, 138.

Verwendung; Analytisches.

Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 131, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 182; vgl. Hutin, Rev. Chim. ind. 81 [1922], 141. Anwendung bei der Bekämpfung der Maul- und Klauenseuche: Lockemann, Ulrich, Desinf. 9, 103; C. 1924 II, 2063.

Athylacetat gibt mit einer Lösung von Vanillin in konz. Schwefelsäure eine gelbe Färbung (Higasi, C. 1928 II, 1678). Gibt mit Natriumjodid und 1.3.5-Trinitro-benzol eine rötliche Färbung (Tronow, Djakonowa-Schulz, Sonowa, Ж. 59, 334; C. 1927 II, 1687).

Syst. Nr. 159

Bestimmung durch Hydrolyse mit Bariumhydroxyd: Poznanski, Am. Soc. 50, 984. Bestimmung im Gemisch mit Athylbutyrat auf Grund der Verseifungsgeschwindigkeit in Barytwasser: Smith, Ph. Ch. 95, 88. Analyse von Gemischen aus Alkohol, Athylacetat, Essigsäure und Wasser: Po.

Athylacetat, das 0,1% Wasser enthält, gibt mit einer Lösung von auf 340° erhitztem Aluminiumäthylat in Xylol eine voluminöse Fällung (Henle, B. 53, 722). Verwendung im Gemisch mit Butylalkohol zur Trennung von Lithium-, Natrium- und Kalium-perchlorat: Smrth, Ross, Am. Soc. 47, 1022.

Salze und additionelle Verbindungen.

Natriumverbindung und Kaliumverbindung des Äthylacetats s. S. 134. Zur Existenz einer Verbindung mit Zinn(IV)-chlorid 2C₄H₈O₂ + SnCl₄ vgl. Kur-Nakow, Perelmutter, Kanow, Ж. 48 [1916], 1680; C. 1923, 1538; Ku., Z. anorg. Ch. 135, 105; Anossow, Soobšč. nau.-tech. Rab. 13, 11; Izv. Inst. fiz.-chim. Anal. 3, 384; C. 1927 I, 2632; Trifonow, Soobšč. nau.-tech. Rab. 13, 11; Izv. Inst. fiz.-chim. Anal. 3, 435; C. 1925 II, 386; 1927 I, 2635.

Uber die Existenz einer Verbindung mit Tetrachlorkohlenstoff vgl. WYATT,

Trans. Faraday Soc. 25, 47; C. 1929 I, 1542.

Über die Existenz einer Verbindung mit Pentachloräthan CaHaOa+CaHCla vgl. Weissenberger, Z. anorg. Ch. 152, 336.

Essigsäure-[\$\beta\$-fluor-\text{athylester}], [\$\beta\$-Fluor-\text{athyl}]-acetat \$C_4H_7O_2F = CH_3 \cdot CO_2 \cdot CH_2 \cdot CH_2F\$ (E I 57). $n_{\alpha}^{m,s}$: 1,3754; $n_{\alpha}^{m,s}$: 1,3779; $n_{\alpha}^{m,s}$: 1,3821; $n_{\gamma}^{m,s}$: 1,3853 (Swarts, J.Chim.phys. 20, 42). Verbrennungswärme bei konstantem Volumen: 498,6 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und verd. Fluorwasserstoffsäure) (Swarts, J. Chim. phys. 17, 22, 69; vgl. SWIETOSLAWSKI, BOBIŃSKA, J. Chim. phys. 24, 546).

Essigsäure- $[\beta.\beta$ -difluor-äthylester], $[\beta.\beta$ -Difluor-äthyl]-acetat $C_4H_5O_2F_3=CH_3$. CO₂·CH₂·CHF₂ (H 128). D¹³: 1,1958 (SWARTS, J. Chim. phys. 20, 42). n_{\alpha}: 1,3529; n_{\beta}: 1,3585; n_{γ}^{13} : 1,3615 (Swarts, J. Chim. phys. 20, 42). Verbrennungswärme bei konstantem Volumen: 454,8 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und verd. Fluorwasserstoffsäure) (Swarts, C. 1906 II, 1567; R. 25, 425; vgl. Swietoslawski, Bobińska, J. Chim. phys. 24, 546).

Essigsäure - [β -chlor - äthylester], [β -Chlor - äthyl] - acetat $C_4H_7O_3Cl = CH_3 \cdot CO_3 \cdot CH_2 \cdot CH_3Cl$ (H 128; E I 57). B. Beim Einleiten von Athylen und Chlor in eine Gemisch aus Essigsaure und Dichlorathylen (Chem. Fabr. Kalk, Oehme, D. R. P. 362747; C. 1923 II, 405; Frdl. 14, 268). Aus β -Chlor-äthylalkohol und überschüssigem Acetylchlorid in der Kälte (Bogert, Slocum, Am. Soc. 46, 766; vgl. Henry, B. 7, 70). — Verdampfungswärme bei 141,50°: 80,84 cal/g (Mathews, Am. Soc. 48, 573). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 50° und 60°: Conant, Kirner, Hussey, Am. Soc. 47, 498. — Verwendung als technisches Lösungsmittel: H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 193.

Essigsäure- $[\beta,\beta,\beta$ -trichlor-äthylester], $[\beta,\beta,\beta$ -Trichlor-äthyl]-acetat $C_4H_5O_3Cl_3=CH_3\cdot CO_3\cdot CH_3\cdot CCl_3$ (H 128). B. Neben anderen Produkten beim Behandeln von Chloral mit Acetaldehyd in Gegenwart von Magnesiummethylat, Aluminiumäthylat oder Aluminiumisoamylat ohne Lösungsmittel sowie in Gegenwart von Aluminiumäthylat in absol. Äther (Nakai, Bio. Z. 152, 267, 268, 269). Beim Erwärmen von $\beta.\beta.\beta$ -Trichlor-äthylalkohol mit Acetylchlorid auf dem Wasserbad (N., Bio. Z. 152, 273). — Kp₁₀: 61—62°.

Essigsäure- $[\beta.\beta.\beta$ -tribrom-äthylester], $[\beta.\beta.\beta$ -Tribrom-äthyl]-acetat $C_4H_5O_9Br_8=$ CH3 · CO3 · CH3 · CBr3 · B. Neben anderen Produkten beim Behandeln von Bromal mit Acetaldehyd in Gegenwart von Aluminiumäthylat oder Aluminiumisoamylat ohne Lösungsmittel sowie in Gegenwart von Aluminiumathylat in absol. Ather (NARAI, Bio. Z. 152, 270, 271, 272). Beim Erwärmen von $\beta.\beta.\beta$ -Tribrom-äthylalkohol mit Acetylchlorid auf dem Wasserbad (N.). — Farblose Flüssigkeit mit an ather. Öle erinnerndem Geruch. Kp_{765,5}: 225—2276 (Zers.); Kp₁₇: 109—109,3°. D¹⁰: 2,2577.

Essignäure - [β -jod - äthylester], [β -Jod - äthyl]-acetat $C_4H_7O_2I = CH_2 \cdot CO_2 \cdot CH_2 \cdot CH_2I$ (H 129). B. Aus [β -Chlor-äthyl]-acetat und Kaliumjodid in Methanol (Bogert, SLOCUM, Am. Soc. 46, 767).

Hesigesure - $[\beta$ - chlor - β -nitro - β - β -nitro - β -nitro - β alkohol mit Acetylchlorid in siedendem trockenem Chloroform (WILKENDORF, TRENEL, B.

56, 617; SCHMIDT, RUTZ, TR., B. 61, 474). — Dickes Ol von stechendem, an Senf erinnerndem Geruch. Kp₁₆: 101—102° (W., TR.); Kp₉: 89—90° (korr.) (SCH., R., TR.). D_{ν}^{m} : 1,3580; n_{ν}^{m} : 1,4429 (SCH., R., TR.). Fast unlöslich in Wasser (SCH., R., TR.). — Gibt beim Behandeln mit wäßr. Formaldehyd-Lösung bei Gegenwart von Natriumacetat in Ather β -Chlor- β -nitro-trimethylenglykol-monoacetat (SCH., R., TR.).

Essigsäure- $[\beta.\beta$ -dichlor- β -nitro-äthylester], $[\beta.\beta$ -Dichlor- β -nitro-äthyl]-acetat $C_4H_5O_4NCl_2=CH_3\cdot CO_3\cdot CH_3\cdot CCl_2\cdot NO_2$. B. Aus $\beta.\beta$ -Dichlor- β -nitro-äthylalkohol und Acetylchlorid in siedendem Chloroform (Wilkendorf, Trénel, B. 56, 617). — Flüssigkeit von senfartigem Geruch. Kp_{28} : 105°. Unlöslich in Wasser.

Essigsäure - [β - brom - β - nitro - äthylester], [β - Brom - β - nitro - äthyl] - acetat $C_4H_8O_4NBr=CH_3\cdot CO_3\cdot CH_2\cdot CHBr\cdot NO_2$ (H 129). B. Aus β -Brom- β -nitro-äthylalkohol und Acetylchlorid in siedendem Chloroform (Wilkendorf, Trénel, B. 56, 618). — Kp₃₀: 110° bis 111°.

Essigsäure-[β.β-dibrom-β-nitro-äthylester], [β.β-Dibrom-β-nitro-äthyl]-acetat $C_4H_5O_4NBr_2=CH_3\cdot CO_2\cdot CH_3\cdot CBr_2\cdot NO_2$. B. Aus β.β-Dibrom-β-nitro-äthylalkohol und Acetylchlorid in siedendem Chloroform (Wilkendorf, Trenel, B. 56, 619). — Kp₈: 105—106° W., Tr.); Kp₁₇: 114—115° (Tr., W., B. 57, 2128).

Orthoessigsäure-dimethyl-äthyl-ester, Dimethyl-äthyl-orthoacetat $C_6H_{14}O_3 = CH_3 \cdot C(O \cdot CH_3)_2 \cdot O \cdot C_2H_5$. B. Bei längerer Einw. von Acetiminoäthyläther-hydrochlorid auf Methanol (Sah, Am. Soc. 50, 517). — Kp: 123—126°. D_4^{m} : 0,9192. n_5^{m} : 1,3889.

Orthoessigsäure-methyl-diäthyl-ester, Methyl-diäthyl-orthoacetat $C_7H_{16}O_3 = CH_3 \cdot C(O \cdot CH_3)(O \cdot C_2H_5)_2$. B. Bei längerer Einw. von Acetiminomethyläther-hydrochlorid auf Alkohol (Sah, Am. Soc. 50, 517). — Kp: 135—136°. D_4^* : 0,9009. n_2^* : 1,3919.

Orthoessigsäure - triäthylester, Triäthylorthoacetat $C_8H_{18}O_3 = CH_3 \cdot C(O \cdot C_2H_5)_3$ (H 129). B. Bei längerer Einw. von trockenem, chlorwasserstofffreiem Acetiminoäthyläther-hydrochlorid auf absol. Alkohol (Sah, Am. Soc. 50, 517). — Kp:144—146°; mit Alkohol-Dampf leicht flüchtig (Sah). D. 0.8847; n. 1.3949 (Sah). Unlöslich in kaltem Wasser, mischbar mit Alkohol, Ather, Essigester, Chloroform und Tetrachlorkohlenstoff (Sah). — Liefert beim Leiten über Nickel auf Bimsstein in einer Quarzröhre bei 250—260° Athylacetat und Diāthyläther (Staudinger, Rathsam, Helv. 5, 650). Bei der Einw. von Phosphorpentoxyd entsteht Athylacetat (St., R.). Geschwindigkeit der Hydrolyse in Natronlauge, verd. Salzsäure und in einer wäßr. Lösung von Monokaliumphosphat und Dinatriumphosphat bei 25°: Skrabal, Baltadschiewa, M. 45, 20. Geschwindigkeit der Hydrolyse in 0,5 n- und 0,1 n-Natronlauge bei 20°: Brönsted, Wynne-Jones, Trans. Faraday Soc. 25, 64; C. 1929 I, 1535. Einfluß von 3- und 4-Nitro-phenol, Kakodylsäure und Essigsäure auf die Geschwindigkeit der Hydrolyse von Triäthylorthoacetat in Wasser bei 20°: Br., W.-J. Gibt beim Kochen mit 2.3-Dimethyl-benzthiazoliumjodid in trockenem Pyridin Bis-[3-methyl-benzthiazol-(2)]-\(\theta\)-methyl-trimethincyaninjodid (s. obenstehende Formel, Syst. Nr. 4631) (Hamer, Soc. 1928, 3162).

Essigsäurepropylester, Propylacetat C₅H₁₀O₂ = CH₃·CO₂·CH₂·C₂H₅ (H 129; E I 58). B. Beim Überleiten von Essigsäure und Propylalkohol über Zirkonoxyd bei ca. 240—280° (Mailhe, De Godon, Bl. [4] 29, 103). — E: —95,0° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 215; C. 1921 III, 1266). Kp₇₆₉: 101,6° (Lecat, R. 45, 622); Kp₇₄₉₋₃: 99,7—100° (Unkowskaja, Wolowa, Ж. 57, 110, 120; C. 1926 I, 2646). Dampfdruck zwischen —10° (3,6° mm) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 436. Kritische Temperatur: 276,2°; kritischer Druck: 25227 mm; kritisches Volumen: 3,382 cm³/g (Y.). D°: 0,9102; D°: 0,8993; D°: 0,8884; D°: 0,8773 (Y.). D°: 0,9093; D°: 0,8834 (Hannotte, Bl. Soc. chim. Belg. 35, 97; C. 1926 II, 742); D°: 0,8877 (Smith, Olsson, Ph. Ch. 102, 28). Dichte D¹ der Flüssigkeit zwischen 0° und der kritischen Temperatur und des gesättigten Dampfes zwischen 90° und der kritischen Temperatur: Y. Viscosität bei 20°: 0,00576, bei 40°: 0,00444 g/cmsec (U., W.). Parachor: Sugden, Soc. 125, 1183. Verdampfungswärme bei 100,42°: 80,29 cal/g (Mathews, Am. Soc. 48, 573). O°: 1,3824; n°: 1,3847; n°: 1,3893; n°: 1,3934 (Ha.); n°: 1,3828 (Munch, Am. Soc. 48, 997). Ultrarotes Absorptionsspektrum von flüssigem Propylacetat zwischen 0,8 und 2,4 µ: Sappenfield, Phys. Rev. [2] 38, 40; C. 1929 I, 1419; zwischen 1,06 und 2,35 µ: Smith, Boord, Am. Soc. 48, 1515. Reflexion von Licht an der Oberfläche von Propylacetat:

BHATNAGAR, SHRIVASTAVA, MITRA, J. indian chem. Soc. 5, 337; C. 1928 II, 1745. Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht an der Ober-Sivat und Polarisationszustand des Streulichts bei der Streuung von Licht an der Oberfläche von Propylacetat: Raman, Ramdas, Pr. roy. Soc. [A] 109, 274; C. 1926 I, 838; KRISHNAN, Phil. Mag. [6] 50, 704; C. 1926 I, 838; Ramdas, Indian J. Phys. 1, 222; C. 1927 II, 2535; an Propylacetat-Dampf: Ganesan, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838. Ramanspektrum: Daure, Ann. Physique [10] 12, 436. Dielektr. Konst. von flüssigem Propylacetat bei 19°: 5,65 (Drude, Ph. Ch. 23 [1897], 308); von festem Propylacetat bei —192,3°: 2,42 (Jackson, Phil. Mag. [6] 43, 486; C. 1922 I, 1274). Dipolmoment: Smyth, Am. Soc. 47, 1896. Magnetische Doppelbrechung: Ramanadham, Indian J. Phys. 4, 27; C. 1929 II, 2315.

Bei 22° löst sich 1 Tl. Propylacetat in 49 Tln. Wasser (Lockemann, Ulrich, Desinf, 10 [1925], 104); bei 20° lösen sich 1.89 g in 100 cm² Wasser (Fühner. B. 57. 514). Propylacetat

[1925], 104); bei 20° lösen sich 1,89 g in 100 cm³ Wasser (Fühner, B. 57, 514). Propylacetat enthaltende binäre azeotrope Gemische s. in der untenstehenden Tabelle. Propylacetat bildet ein ternäres azeotropes Gemisch mit Propylalkohol und Wasser (Kp, 20: 82,2°; ca. 59,5% Propylacetat, ca. 19,5% Propylalkohol) (HANNOTTE, Bl. Soc. chim. Belg. 35, 98; C. 1926 II, 742). Viscosität von Gemischen mit Äthylpropionat bei 20° und 40°: Unkowskaja, Wolowa, Ж. 57, 111, 120. Die Oberflächenspannung einer wäßr. Lösung nimmt bei 20°, 30° und 40° mit der Zeit zu (Bigelow, Washburn, J. phys. Chem. 32, 337). Zur Oberflächenspannung der wäßr. Lösung vgl. a. Fühner, Bio. Z. 120, 147. Einfluß auf die Quellung von rohem und vulkanisiertem Kautschuk: Salkind, B. 59, 525. — Lichtbrechung von 1 %igen Lösungen in Wasser und in Baumwollsaatöl: Munch, Am. Soc. 48, 997.

Propylacetat enthaltende binäre azeotrope Gemische.

Komponente	Kp760	Gehalt an Propylacetat in Gew%	Komponente	Kp760	Gehalt an Propylacetat in Gew%
Wasser 8) 6)	82.2	87.5	Isobutylalkohol¹)	101.0	83
Dichlorbrommethan1).	102,3	70,5	Dimethyläthylcarbi-	•	
Nitromethan 1)	97,6	55	nol4)	99,5	48
Butylbromid 4)	99,0	40	Allylalkohol ⁴)	94,2	47
$Heptan^1$)	93,6	ca. 38	$Acetal^1$)	101,25	68
Allyljodid 4)	99,5	44	Chloral ²)	102,55	49,5
Methylcyclohexan ¹) .	95,45	48	Diäthylketon ²)	100,75	60
Äthylalkohol ⁴)	78,18	ca. 15	Methylbutyrat ³)	101,58	97.5
Propylalkohol 1) 5)	94,7	50	, ,	,	1

1) LECAT, R. 45, 622—624, 625 Anm. 21. — 2) L., Ann. Soc. scient. Bruxelles 45 I [1926], 175, 291. — 3) L., Ann. Soc. scient. Bruxelles 47 I [1927], 69, 110. — 4) L., Ann. Soc. scient. Bruxelles 48 I [1928], 16, 19, 116. — 5) Das bei Kp₇₆₉: 94,8° siedende azeotrope Gemisch enthält 49,8 Gew. % Propylacetat (FAILLEBIN, Bl. [4] 29, 273). — 6) Das bei Kp₇₈₁: 83° siedende azeotrope Gemisch enthält 84,6 Gew. % Propylacetat (FAI.).

Wirkung verschiedener Aluminiumoxyd-Katalysatoren auf die Zersetzung von Propylacetat bei 465°: ADKINS, NISSEN, Am. Soc. 48, 141. Beim Leiten von Propylacetat über Nickel bei 374—725° entstehen Kohlendioxyd, Kohlenoxyd, Wasserstoff, Methan und Athan; mit zunehmender Temperatur nehmen Kohlendioxyd und Methan zu, Kohlenoxyd, Wasserstoff und Athan ab (Pearce, Ott, J. phys. Chem. 31, 108). Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Zeitlicher Verlauf der Oxydation durch Chromsäure in Wasser bei 20,9°: Tronow, Lukanin, Ж. 59, 1167; C. 1928 I, 2924. Über Addition von Chlor, Brom und Bromwasserstoff bei niedriger Temperatur vgl. McIntosh, Trans. roy. Soc. Canada [3] 19 III, 71; C. 1926 II, 16. Geschwindigkeit der Hydrolyse durch Salzsäure bei 25°: Smith, Paterson, Soc. 1926, 941; durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tr., Ssibgatullin, B. 62, 2852; durch verd. Natronlauge bei 20°: Sm., Olsson, Ph. Ch. 102, 28; zwischen 0,2° und 40°: O., Ph. Ch. 118, 408; durch Natronlauge bei 20°: Sm., Olsson, Ph. Ch. 102, 28; zwischen 0,2° und 40°: O., Ph. Ch. 118, 108; durch Natriumcarbonat sowie Natriumcarbonat + Kaliumferrioyanid zwischen 0,2° und 30°: Musil, M. 52, 199; durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: GYNGELL, Soc. 1928, 1785; durch Kalium-m-kresolat in wäßr. Lösung bei 70°: Sm., Soc. 1927, 172. Einfluß von Gummen, Gelatine, Leim, Kohle, pulverförmigem Kaolin, Gips und Schwefel auf die Geschwindigkeit der Hydrolyse durch Salzsäure in Gegenwart von Benzol: Smith, Soc. 127, 2604.

Über Hydrolyse von Propylacetat durch Enzyme der Ricinusbehne vol. Lorburghart. FALE, Am. Soc. 48, 1661. — Physiologische Wirkung: Wachtel, Z. cop. Path. Therap. 21, 13; C. 1920 III, 212; F. Flury, O. Klimmer in K. B. Lehmann, F. Klery, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 169; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 67. — Zur Verwendung als technisches Lösungsmittel für Nitrocellulose, Gummen und Harze vgl. Durrans, Solvents, S. 132, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 186.

Essigsäure-[β -chlor-propylester], [β -Chlor-propyl]-acetat $C_5H_9O_2Cl = CH_3 \cdot CO_2 \cdot CH_2 \cdot CHCl \cdot CH_3$ (H 129; E I 58). B. Durch Eintragen von Propylenglykol- α -acetat in die doppelte Menge Thionylchlorid unter Kühlung (Raschig, Prahl, B. 61, 185). — Liefert bei längerem Schütteln mit überschüssiger gesättigter Kaliumsulfit-Lösung bei 120° das Kaliumsalz der Propanol-(1)-sulfonsäure-(2).

Essigsäure-[γ -chlor-propylester], [γ -Chlor-propyl]-acetat $C_6H_9O_2Cl = CH_3 \cdot CO_2 \cdot CH_2 \cdot CH_2Cl$ (E I 58). B. Durch aufeinanderfolgendes Erhitzen von Trimethylenglykol mit Acetanhydrid und Dischwefeldichlorid (Bennett, Heathcoat, Soc. 1929, 271). Entsteht in guter Ausbeute beim Erhitzen von Trimethylenglykol mit Acetylchlorid in Gegenwart oder Awesenheit von wasserfreiem Zinkchlorid im Rohr auf 100° (Bogert, Slocum, Am. Soc. 46, 766). — Kp: 168—169° (Conant, Kirner, Hussey, Am. Soc. 47, 498), 165—166° (Bo., Sl.); Kp₁₄: 66° (Be., Hea.). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 25° und 30°: C., K., Hu.

Essigsäure-[γ -brom-propylester], [γ -Brom-propyl]-acetat $C_5H_9O_9Br=CH_3\cdot CO_2\cdot CH_3\cdot CH_2\cdot CH_2Br$. B. Aus Trimethylenglykol und Acetylbromid erst bei 0° , dann bei 100° (Boger, Slocum, Am. Soc. 46, 766). Beim Erhitzen von Trimethylenbromhydrin mit Acetylchlorid (B., S.). — Kp₂₂: 88—90°.

Essigsäure - [$\beta.\gamma$ -dibrom - propylester], [$\beta.\gamma$ -Dibrom - propyl]-acetat, Glycerin- $\alpha.\beta$ -dibromhydrin-acetat, γ -Aceto- β -dibromhydrin $C_5H_8O_2Br_2=CH_3\cdot CO_2\cdot CH_2\cdot CHBr\cdot CH_2Br$ (H 130; E I 58). B. Aus Allylacetat und Brom in Schwefelkohlenstoff (Deulofeu, An. Asoc. quim. arg. 15, 420; C. 1928 II, 2114). Durch Kochen von $\beta.\gamma$ -Dibrom - propylalkohol mit Acetylchlorid (Fairbourne, Cowdrey, Soc. 1929, 133). — Kp: 226,5—2290 (D.). — Liefert beim Erhitzen mit Phthalimid-kalium erst auf 1400, dann auf 160—1700 3(oder 2)-Acetoxy-1.2(oder 1.3)-diphthalimido-propan (Syst. Nr. 3218) (F., C.).

Essigsäure-[γ -jod-propylester], [γ -Jod-propyl]-acetat $C_5H_9O_2I=CH_3\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_2I$ (H 130). B. Beim Erwärmen von Trimethylenjodhydrin mit Acetylchlorid (Bogert, Slocum, Am. Soc. 46, 767). — Kp_{15} : 98—100°.

Orthoessigsäure-äthyl-dipropyl-ester, Äthyl-dipropyl-orthoacetat $C_{10}H_{32}O_3 = CH_3 \cdot C(O \cdot C_2H_5)(O \cdot CH_2 \cdot C_2H_5)_2$. B. Bei wochenlanger Einw. von Acetiminoāthylātherhydrochlorid auf Propylalkohol (Sah, Am. Soc. 50, 517). — Wahrscheinlich verunreinigt durch Tripropyl-orthoacetat. Kp: 190—194°. D_4^{s} : 0,8713. n_5^{b} : 1,4064.

Essigsäure-isopropylester, Isopropylacetat C₃H₁₀O₂ = CH₃·CO₂·CH(CH₃)₂ (H 130; E I 58). E: -73,4° (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp: 88,5° bis 89° (Smith, Olsson, Ph. Ch. 102, 28); Kp₇₈₀: 88,85 ± 0,15° (Tl.), 90,8° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 115), 88,2° (aus der Dampfdruckkurve berechnet) (Haggerty, Weiler, Am. Soc. 51, 1625); Kp₇₄₃: 91,3° (Kailan, Raff, M. 61 [1933], 118), 87,9—88,2° (French, Wrightsman, Am. Soc. 60 [1938], 50); Kp₇₄₇: 87—89° (Dorris, Sowa, Nieuwland, Am. Soc. 56 [1934], 2690). Dampfdruck zwischen 0° (15,7 mm) und 90,2° (810,8 mm); H., W., Am. Soc. 51, 1625; bei 20°: 62,4 mm (Weissenberger, Henke, Sperling, M. 46, 483). D°: 0,8913; D°: 0,8732 (Sm., O.). n°: 1,3740 (Munch, Am. Soc. 48, 997). — Bei 20° lösen sich 3,09 g in 100 cm² Wasser (Fühner, B. 57, 514). Dampfdruck von Gemischen mit Dekahydronaphthalin bei 20°: Weiss., He., Sp., M. 46, 487. Isopropylacetat bildet binäre azeotrope Gemische mit Wasser (Kp₇₆₀: 77,4°; 93,8 Gew. % Isopropylacetat) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 69), mit Isobutylbromid (Kp₇₆₀: 89,0°; 45 Gew. % Isopropylacetat), mit Heptan (Kp₇₆₀: 87,5°; 67 Gew. % Isopropylacetat), mit Cyclohexan (Kp₇₆₀: 78,9°; 25 Gew. % Isopropylacetat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 115, 117), mit Methanol (Kp₇₆₀: 64,5°; 20% Isopropylacetat) und mit Alkohol (Kp₇₆₀: 76,8°; 47 Gew. % Isopropylacetat) (Lecat, Ann. Soc. scient. Bruxelles 48 I, 16); das binäre Azeotrope mit Isopropylacetat) (Lecat, Ann. Soc. scient. Bruxelles 48 I, 16); das binäre Azeotrope mit Isopropylacetat) (Lecat, Ann. Soc. scient. Bruxelles 48 I, 16); Das binäre Azeotrope mit Isopropylacetat. Zur Oberflächenspannung der wäßr. Lösung vgl. Fühner, Bio. Z. 120, 147. Lichtbrechung von 1% igen Lösungen in Wasser und in Baumwollsaatöl: Munch, Am. Soc. 48, 997.

Isopropylacetat liefert beim Erhitzen in Gegenwart von Aluminiumoxyd oder Titandioxyd auf 360° bezw. 370° Wasserstoff, Propylen, Aceton, Essigsäure, Kohlendioxyd und Wasser (Mailhe, Cacutch, Guttap. 22, 12937; C. 1926 I, 1961; vgl. Adrins, Krause, Am.

Soc. 44, 386; A., NISSEN, Am. Soc. 46, 141). Geschwindigkeit der Hydrolyse durch verd. Natronlauge zwischen 0,2° und 40°: OLSSON, Ph. Ch. 118, 108; bei 20°: SMITH, OLSSON, Ph. Ch. 102, 30; SKRABAL, HUGETZ, M. 47, 17; durch Salesaure bei 25°: SK., Hu.; durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, Saiegatullin, B. 62, 2853. — Verwendung als technisches Lösungsmittel für Nitrocellulose, Harze und Gummen: Davidson, Ind. Eng. Chem. 18, 671; C. 1926 II, 1465; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 132, 229.

Essigsäure - $[\beta.\beta.\beta$ - trifluor - isopropylester], $[\beta.\beta.\beta$ - Trifluor - isopropyl] - acetat $C_bH_1O_aF_a=CH_3\cdot CO_a\cdot CH(CH_3)\cdot CF_3$. B. Aus $\beta.\beta.\beta$ -Trifluor-isopropylalkohol und Acetylchlorid (Swarts, Bl. Soc. chim. Belg. 38, 107; C. 1929 II, 712). — Kp_{790} : 85,6°. D¹⁸: 1,1823. Viscosität zwischen 20° (0,00726 g/cmsec) und 50° (0,00480 g/cmsec): Sw. n_{α}^{11} : 1,3302; n_{β}^{11} : 1,3314; n_{β}^{12} : 1,3352; n_{γ}^{12} : 1,3381. Löslich in Wasser.

Essigsäure - [β,β' - dichlor - isopropylester], [β,β' - Dichlor - isopropyl] - acetat, Glycerin-α.α'-dichlorhydrin-acetat $C_5H_5O_2Cl_2=CH_3\cdot CO_2\cdot CH(CH_3Cl)_2$ (H 130; E I 59). B. Aus Glycerin-α.α'-dichlorhydrin und überschüssigem Acetylchlorid unter Wasserkühlung (Humnicki, Bl. [4] 45, 280). Durch 2-stündiges Erhitzen von Epichlorhydrin mit 1 Mol Acetylchlorid im Rohr auf 100° (Adberhalden, Weil, Fermentf. 4, 84; C. 1920 III, 643). — Kp: 202—208° (Fairbourne, Cowdrey, Soc. 1929, 133), 193—195° (H.); Kp₅: 84,5° (A., W.). D²⁰: 1,281; n²⁰_p: 1,4542 (H.). — Geschwindigkeit der Verseifung durch 0,1 n-Natrium-dicarbonat-Lösung bei 38° und Beschleunigung dieser Reaktion durch Pankreaslipase: A., W. Liefert beim Erhitzen mit Phthalimid-Kalium auf 150—170° 3 (oder 2)-Acetoxy-1.2 (oder 1.3)-diphthalimido-propan (Syst. Nr. 3218) (F., C.).

Essigsäure - [β - nitro - isopropylester], [β - Nitro - isopropyl] - acetat $C_5H_0O_4N=CH_3\cdot CO_2\cdot CH(CH_3)\cdot CH_2\cdot NO_2$ (H 130). B. Aus 1-Nitro-propanol-(2) und Acetylchlorid in Chloroform, anfangs unter Kühlung, später unter Erwärmen (E. Schmidt, Rutz, B. 61, 2145). — Kpg: 94—95° (korr.). D $^\infty$: 1,1568. n^∞ : 1,4242. — Liefert beim Erhitzen mit Kalium-dicarbonat in Äther auf dem Wasserbad oder beim Schütteln der äther. Lösung mit Natrium-acetat-Lösung 1-Nitro-propen-(1).

Essigsäure- $[\beta$ -chlor- β -nitro-isopropylester], $[\beta$ -Chlor- β -nitro-isopropyl]-acetat $C_5H_8O_4NCl = CH_3 \cdot CO_2 \cdot CH(CH_3) \cdot CHCl \cdot NO_2$. B. Aus 1-Chlor-1-nitro-propanol-(2) und Acetylchlorid in Chloroform, anfangs unter Kühlung, später unter Erwärmen (E. Schmidt, Rutz, B. 61, 2145). — Kp₂: 90—91° (korr.). D_4^{∞} : 1,2773. n_5^{∞} : 1,4391. — Beim Erhitzen mit Kaliumdicarbonat in Äther auf dem Wasserbad oder beim Schütteln der äther. Lösung mit Natriumacetat-Lösung erhält man 1-Chlor-1-nitro-propen-(1).

Essigsäurebutylester, Butylacetat $C_6H_{13}O_3 = CH_3 \cdot CO_2 \cdot [CH_2]_3 \cdot CH_3$ (H 130; E I 59). B. Aus Acetaldehyd in Äther bei Einw. von Magnesiumjodid-butylat und Zersetzung des Reaktionsprodukts mit Eiswasser, neben anderen Produkten (GRIGMARD, FLUCHAIRE, A. ch. [10] 9, 17). Beim Überleiten der Dämpfe von Essigsäure und Butylalkohol über aktive Kohle bei 170° (I. G. Farbenind., D. R. P. 434279; C. 1926 II, 2493; Frdl. 15, 373).

E: —77,9° (Jackson, Phil. Mag. [6] 43, 488; C. 1923 I, 1274), —76,8° (Timer Mans, Bl. Soc. chim. Belg. 30, 68; C. 1921 III, 288). Kp₇₆: 126,5° (Ti.), 126,2° (Hannotte, Bl. Soc. chim. Belg. 35, 100; C. 1926 II, 742), 124,8° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 117). D^a: 0,9015 (Ha.); D^a: 0,8824 (Smith, Olsson, Ph. Ch. 118, 99). n^a: 1,39464; n^b: 1,39614; n^b: 1,40146; n^a: 1,40539 (Ha.); n^b: 1,3970 (Sm., Ol.); n^b: 1,3914 (Munch, Am. Soc. 48, 997). Lichtabsorption im Ultraviolett: Brode, J. phys. Chem. 30, 61; im Ultravot zwischen 0,7 und 2,5 μ: Ellis, Am. Soc. 51, 1386; zwischen 0,9 und 2,4 μ: Sappenfield, Phys. Rev. [2] 33, 40; C. 1929 I, 1419. Opalescenz im kritischen Gebiet bei verschiedenen Wellenlängen: Andant, C. r. 174, 1333, 1543. Dielektr.-Konst. zwischen +18,8° (5,05) und —195,6° (2,41): Jackson, Phil. Mag. [6] 43, 488. Dipolmoment: Smyth, Am. Soc. 47, 1896. — Adhāsionsspannung zwischen Butylacetat und Kohle und zwischen Butylacetat und Kieselsäure: Baetell, Osterhof, Ph. Ch. 130, 723. Lösungsvermögen für Wasser zwischen 9,5° und 29,5°: Bridgman, Ind. Eng. Chem. 20, 186; C. 1928 I, 2015. Löst sich in Wasser bei 22° im Verhältnis 1:100 (Lockemann, Ulrich, Desinf. 10 [1925], 104). Butylacetat bildet binäre azectrope Gemische mit Wasser [Kp₇₆₅: 90,5°; 73% Butylacetat (Faillebin, Bl. [4] 29, 273) bezw. Kp₇₆₀: 90,2°; 71,3% Butylacetat (Hannotte, Bl. Soc. chim. Belg. 35, 100)], mit Octan (Kp₇₆₀: 119,0°; 52 Gew.-% Butylacetat (Hannotte, Bl. Soc. chim. Belg. 36, 3% Butylacetat und ein ternäres azectropes Gemisch mit Butylalkohol und Wasser (Kp₇₆₆: 89,4°; 36,3% Butylacetat und 27,4% Butylalkohol (Ha.) und mit Essigsäure und Wasser (Kp: 89°) (Distillerie des Deux-Sèvres, D. R. P. 469 823; Frdl. 16, 209). Viscosität von Lösungen

von Dammarharz in Butylacetat: Bridgman. Die Oberflächenspannung einer wäßr. Lösung nimmt bei 20° mit der Zeit zu, geht jedoch beim Schütteln auf den Anfangswert zurück (Bigelow, Washburn, J. phys. Chem. 32, 336).

Wirkung verschiedener Aluminiumoxyd-Katalysatoren auf die Zersetzung von Butylacetat bei 465°: Adkins, Nissen, Am. Soc. 46, 141. Geschwindigkeit der Verseifung durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, Ssibgatullin, B. 62, 2852; durch verd. Natronlauge bei 20°: Smith, Olsson, Ph. Ch. 118, 102; zwischen 0,2° und 30°: O., Ph. Ch. 118, 108; durch wäßrig-alkoholische Natronlauge: Bridgman, Ind. Eng. Chem. 20, 185; C. 1928 I, 2015; durch Natriumcarbonat-Lösung bei 0,2°, 10°, 20° und 30°: Musil, M. 52, 198; durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: Gyngell, Soc. 1928, 1785; durch Kalium-kresolat in wäßr. Lösung bei 70°: Smith, Soc. 1927, 172.

Hydrolytische Spaltung durch Ricinuslipase: Lorberblatt, Falk, Am. Soc. 48, 1661. — Physiologische Wirkung und Gewerbehygienisches: F. Flury, O. Klimmer in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 170; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 68. — Verwendung als technisches Lösungsmittel: Davidson, Ind. Eng. Chem. 18, 671; C. 1926 II, 1465; Durrans, Solvents, S. 133, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 186.

Essigsäure - [δ -chlor-butylester], [δ -Chlor-butyl]-acetat $C_6H_{11}O_2Cl=CH_3\cdot CO_2\cdot [CH_2]_3\cdot CH_4Cl$. B. Aus Tetramethylenglykol beim Erhitzen mit Acetylchlorid im Rohr auf dem Wasserbad sowie beim Erhitzen mit Dischwefeldichlorid und anschließenden Acetylieren (Bennett, Heathcoat, Soc. 1929, 272). — Angenehm riechned Flüssigkeit. Kp₁₇: 87°; Kp₃₂: 98°. D4: 1,1024; D4: 1,0803. n_{α}^{∞} : 1,4381; n_{β}^{∞} : 1,4437; n_{γ}^{∞} : 1,4513. — Liefert beim Erhitzen mit Äthylmercaptan in wäßrig-methylalkoholischer Kalilauge Äthyl-[δ -oxybutyl]-sulfid.

Orthoessigsäure-äthyl-dibutyl-ester, Äthyl-dibutyl-orthoacetat $C_{19}H_{36}O_3 = CH_3 \cdot C(O \cdot C_2H_5)(O \cdot [CH_2]_3 \cdot CH_3)_2$. B. Bei wochenlanger Einw. von Acetiminoäthylätherhydrochlorid auf Butylalkohol (Sah, Am. Soc. 50, 517). — Wahrscheinlich verunreinigt durch Tributyl-orthoacetat. Kp: 220—225°. D*: 0,8646. n*: 1,4149.

Essigsäure-sek.-butylester, sek.-Butyl-acetat $C_6H_{12}O_2 = CH_3 \cdot CO_2 \cdot CH(CH_3) \cdot C_2H_5$. Inaktive Form (H 131). K_{P760} : 112,2° (CLOUGH, JONES, Ind. Eng. Chem. 15, 1032; C. 1924 I, 2773). $D_2^{L_1}$: 0,8760 (SMITH, OLSSON, Ph. Ch. 118, 100); $D_2^{R_2}$: 0,8701 (CL., J.). $n_2^{L_3}$: 1,3882 (SM., O.); $n_2^{R_4}$: 1,3840 (MUNCH, Am. Soc. 48, 997). Bildet mit sek.-Butylalkohol ein azeotropes Gemisch (Kp_{768} : 99,60°; 13,7 Gew.-% sek.-Butylacetat) (CL., J.). Brechungsindices von 1% igen Lösungen in Wasser und in Baumwollsaatöl: MUNCH. — Beim Erhitzen von sek.-Butylacetat in Gegenwart von Thoriumoxyd auf 380° wurden Wasserstoff, Butylen, sek.-Butylalkohol, Aceton, Kohlendioxyd und Wasser erhalten; Erhitzen in Gegenwart von Titan(IV)-oxyd lieferte Butylen, Aceton, Essigsäure und Kohlendioxyd (MAILHE, Caoutch. Guttap. 22, 12938; C. 1926 I, 1961). Geschwindigkeit der Verseifung durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, Ssigsatullin, B. 62, 2853; durch verd. Natronlauge bei 20°: Sm., O.; zwischen 0,2° und 30°: O., Ph. Ch. 118, 109; durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: GYNGELL, Soc. 1928, 1785. — Verwendung als technisches Lösungsmittel für Nitrocellulose, Gummen und Harze: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], 8. 134, 229; Davidson, Ind. Eng. Chem. 18, 670; C. 1926 II, 1465.

Essigsäure-[1.1.1-trichlor-butyl-(2)-ester], Trichlormethyl-äthyl-carbinol-acetat $C_6H_9O_2Cl_3=CH_9\cdot CO_2\cdot CH(CCl_9)\cdot C_2H_5$. B. Aus 1.1.1-Trichlor-butanol-(2) und überschüssigem Acetanhydrid bei 130—135° (Howard, Am. Soc. 48, 775). — Kpeso: 164—165°.

Essigsäure - [1 - brom - butyl - (2) - ester], Brommethyl - äthyl - carbinol - acetat $C_0H_{11}O_3Br = CH_3 \cdot CO_3 \cdot CH(CH_3Br) \cdot C_3H_5$. B. Beim Sättigen von 1.2-Diacetoxy-butan mit Bromwasserstoff (DE Montmollin, Matile, Helv. 7, 110). — Gelbliche Flüssigkeit von angenehmem Geruch. Kp_{18} : 76°.

Essigsäure - [1-nitro-butyl-(2)-ester], 1-Nitro-2-acetoxy-butan $C_6H_{11}O_4N=CH_3\cdot CO_2\cdot CH(CH_2\cdot NO_2)\cdot C_2H_3$. B. Aus 1-Nitro-butanol-(2) und Acetylchlorid in Chloroform, zuletzt in der Wärme (E. Schmidt, Rutz, B. 61, 2145). — Kp₁₁: 105—106° (kort.). D_0^{∞} : 1,1224. n_D^{∞} : 1,4285. — Liefert beim Kochen mit Kaliumdicarbonat in Äther 1-Nitro-buten-(1).

Essignaure-[1-chlor-1-nitro-butyl-(2)-ester], 1-Chlor-1-nitro-2-acetoxy-butan $C_4H_{10}O_4NCl=CH_3\cdot CO_2\cdot CH(CHCl\cdot NO_2)\cdot C_2H_5$. B. Aus 1-Chlor-1-nitro-butanol-(2) und Acetylchlorid in Chloroform, zuletzt in der Wärme (E. Schmidt, Rutz, B. 61, 2145). —

Kp12: 98-990 (korr.). D. 1,2376. n. 1,4429. — Gibt beim Kochen mit Kaliumdicarbonat in Ather 1-Chlor-1-nitro-buten-(1).

Essigsäureisobutylester, Isobutylacetat $C_0H_{12}O_2=CH_3\cdot CO_2\cdot CH_2\cdot CH(CH_3)_3$ (H 131; E I 59). B. Beim Überleiten von Essigsäure und Isobutylalkohol über Zirkonoxyd bei ca. 240—280° (Mailhe, de Godon, Bl. [4] 29, 104). Bei der Einw. von Aluminiumäthylat auf ein Gemisch aus Isobutyraldehyd und Acetaldehyd unter Kühlung, neben anderen

Produkten (Orloff, Bl. [4] 35, 362).

Kp_{768,3}: 116—116,3° (Unkowskaja, Wolowa, M. 57, 111; C. 1926 I, 2646); Kp₇₆₀: 117,2° (Lecat, R. 45, 625). D₀°: 0,8956; D₄°°: 0,8747 (Hannotte, Bl. Soc. chim. Belg. 35, 98; C. 1926 II, 742); D₄°°: 0,8719 (Smith, Olsson, Ph. Ch. 118, 100); D₄°°: 0,8501 (U., Wo.). Viscosität bei 20°: 0,0069, bei 40°: 0,00536 g/cmsec (U., Wo.). Parachor: Sugden, Soc. 125, 1183, 1185. Verdampfungswärme bei 115,47°: 73,76 cal/g (Mathews, Am. Soc. 48, 2000 (M.). 573). n_0^∞ : 1,3879; n_0^∞ : 1,3901; n_0^∞ : 1,3948; n_y^∞ : 1,3989 (Ha.); n_0^∞ : 1,3898 (Sm., O.); n_0^∞ : 1,3880 (Munch, Am. Soc. 48, 997). Ultrarotes Absorptionsspektrum bei 0,7—13 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II; oberhalb 7 μ : Lecomte, C. r. 178, 1699. Opalescenz im kritischen Gebiet bei verschiedenen Wellenlängen: Andant, C. r. 174, 1333, 1543; Ann. Physique [10] 1, 394. Lichtreflexion an der Oberfläche von Isobutylacetat: Bhatnagar, Shrivastava, Mitra, J. indian chem. Soc. 5, 337; C. 1928 II, 1745. Dielektr. Konst. bei 25°: 5,32 (SAYCE, BRISCOE, Soc. 1926, 2626). Dipolmoment: SMYTH, Am. Soc. 47, 1896.

Elektroendosmose: STRICKLER, MATHEWS, Am. Soc. 44, 1652.
Bei 20° lösen sich 0,67 g in 100 cm³ Wasser (FÜHNER, B. 57, 514). Dampfdruck von Gemischen mit Dekahydronaphthalin bei 20°: Weissenberger, Henke, Sperling, M. 46, 487. Binäre azeotrope Gemische s. in der folgenden Tabelle. Mit Isobutylalkohol und Wasser bildet Isobutylacetat ein ternäres azeotropes Gemisch (Kp₇₆₀: 86,8°; 46,5 Gew. % Isobutylacetat; 30,4 Gew. % Wasser) (Hannotte, Bl. Soc. chim. Belg. 35, 99). Viscosität von Gemischen mit Äthylisovalerianat: Unkowskaja, Wolowa, Ж. 57, 112, 121. Zur Oberflächenspannung wäßr. Lösungen vgl. Fühner, Bio. Z. 120, 147. Lichtbrechung von

1% igen Lösungen in Wasser und in Baumwollsaatöl: MUNCH, Am. Soc. 48, 997.

Azeotrope,	Isobutylacetat	enthaltende	Gemische.
------------	----------------	-------------	-----------

Komponente	Кр ₇₆₀	Gehalt an Isobutyl- acetat in Gew%	Komponente	Kp760	Gehalt an Isobutyl- acetat in Gew%
Wasser ¹)	87,45 116,0 117,0 115,5	80,5 50 ca. 70 53	Triāthylborat ²) Butylalkohol ³) ⁷) Isobutylalkohol ⁵) Chloraceton ²)	116,85 114,5 107,6 116,7	65 50 5 70

1) LECAT, Ann. Soc. scient. Bruxelles 47 I [1927], 69; vgl. HANNOTTE, Rl. Soc. chim. Belg. 35, 99. — 2) L., Ann. Soc. scient. Bruxelles 47 I, 24. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928] 17. - *) L., R. 45. 624. - 5) L., R. 45, 624; HA. - 6) L., R. 46, 243. - 7) Kp768: 113° (FAILLEBIN, Bl. [4] 29, 273).

Flammpunkt: 22° (Florentin, Ann. Falsificat. 21, 345; C. 1928 II, 2233). Geschwindigkeit der Verseifung durch Bromwasserstoffsäure in Eisessig bei 16-18°: Tronow, Mitarb., Ж. 59, 553; С. 1928 I, 1016; bei 18—21°: Tr., SSIBGATULLIN, B. 62, 2852; durch verd. Natronlauge bei 20°: SMITH, OLSSON, Ph. Ch. 118, 102; zwischen 0° und 40°: O., Ph. Ch. 18, 108. — Hydrolyse von Isobutylacetat durch Extrakte aus normalen und pathologischen tierischen und menschlichen Geweben: Noyes, Sugiura, Falk, J. biol. Chem. 55, 660; Am. Soc. 46, 1886; N., F., J. biol. Chem. 62, 688; F., N., S., J. biol. Chem. 59, 189, 214, 227; 62, 698; durch Ricinuslipase: Lorberblatt, F., Am. Soc. 48, 1656, 1661. — Über Verwendung als technisches Lösungsmittel vgl. Th. H. Durrans, Solvents, 4. Aufl. [London 4026] S. 425, 200. H. Grand Die Lieberblatt, F., Am. Wichheltungsmittel [Stattment] 1938], S. 135, 229; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 187.

Essigsäure-tert.-butylester, tert.-Butyl-acetat $C_eH_{12}O_2=CH_3\cdot CO_2\cdot C(CH_3)_3$ (H 131). Das H 2, 131 beschriebene Präparat von Henry war nach Smith, Olsson, *Ph. Ch.* 118, 100 unrein. — Kp: 96°; Di°: 0,8664; ni°: 1,3887 (Sm., O.). — Geschwindigkeit der Hydrolyse durch verd. Natronlauge bei 20°: Sm., O.; bei 25°: Serabal, Hugerz, M. 47, 19; zwischen 0,1° und 30°: O., Ph. Ch. 118, 109; durch Salzsäure bei 25°: Se., H.; durch Bromwasserstoffsaure in Eisessig bei 18-210: Tronow, Ssibgatullin, B. 62, 2853.

Essigsäure-[β . β . β -trichlor-tert-butylester], Acetonchloroform-acetat, Dimethyltrichlormethyl-carbinol-acetat $C_0H_0O_2Cl_3=CH_3\cdot CO_2\cdot C(CH_3)_2\cdot CCl_3$ (H 131; E I 59). Zur Darstellung aus 1.1.1-Trichlor-2-methyl-propanol-(2) und Acetylchlorid vgl. TAFFE, Roczniki Farm. 2, 104; C. 1924 II, 304. — Kp: 190—191°.

Essigsäure-n-amylester, n-Amylacetat $C_7H_{14}O_2=CH_3\cdot CO_3\cdot [CH_2]_4\cdot CH_3$ (H 131; E I 60). F: —70,8° (Lievens, Bl. Soc. chim. Belg. 33, 127, 129; C. 1924 II, 1328). Kp₇₆₀: 149,25 \pm 0,02° (L.), 148,8° (Hannotte, Bl. Soc. chim. Belg. 35, 104; C. 1926 II, 742). Abhängigkeit des Siedepunktes vom Druck: L. D°: 0,8962; D°: 0,8810 (L.); D°: 0,8971; D°: 0,8756 (H.). n°: 1,4025; n°: 1,4044; n°: 1,4096; n°: 1,4139 (L.); n°: 1,4003; n°: 1,4031; n°: 1,4073; n°: 1,4124 (H.). Bildet mit Wasser ein binäres azeotropes Gemisch (Kp₇₆₀: 95,2°; ca. 59 Gew.-% Amylacetat), mit n-Amylalkohol und Wasser ein ternäres azeotropes Gemisch (Kp₇₆₀: 94,8°) (H.).

Essigsäure-[ε-chlor-n-amylester], [ε-Chlor-n-amyl]-acetat C₇H₁₈O₂Cl = CH₃·CO₂· [CH₃]₄·CH₂Cl. B. Durch Erhitzen von Pentamethylenglykol mit Acetylchlorid im Rohr (Bennett, Heathcoat, Soc. 1929, 274). — Angenehm riechende Flüssigkeit. Kp₁₈: 103°. D₄[∞]: 1,0648. n₂[∞]: 1,4379. — Liefert beim Kochen mit Methylmercaptan in methylalkoholischer Kalilauge Methyl-[ε-oxy-n-amyl]-sulfid.

Essigsäure-pentyl-(2)-ester, Methylpropylcarbinol-acetat, sek.-n-Amylacetat $C_7H_1O_2 = CH_3 \cdot CO_2 \cdot CH(CH_3) \cdot CH_2 \cdot CH_3 \cdot$

Essigsäure - [1-chlor-pentyl-(2)-ester], Chlormethyl-propyl-carbinol-acetat $C_7H_{12}O_3Cl = CH_8 \cdot CO_2 \cdot CH(CH_2Cl) \cdot CH_2 \cdot CH_3 \cdot CH_3$. B. Aus 1-Chlor-pentanol-(2) und Acetyl-chlorid auf dem Wasserbad (Koelsch, McElvain, Am. Soc. 51, 3393). — Kp_{740} : 186—188°. D_{22}^{22} : 1,0825. n_{22}^{23} : 1,4328.

Essigsäure - [1.1.1-trichlor - pentyl-(2)-ester], Trichlormethyl - propyl - carbinolacetat $C_7H_{11}O_2Cl_3 = CH_3 \cdot CO_2 \cdot CH(CCl_3) \cdot CH_2 \cdot CH_2 \cdot CH_3$. B. Aus Trichlormethyl-propylcarbinol und Acetanhydrid bei 130—135° (Howard, Am. Soc. 48, 775). — Kpess: 168—169°.

Essigsäure - [1 - nitro - pentyl - (2) - ester], Nitromethyl - propyl - carbinol - acetat $C_7H_{13}O_4N = CH_3 \cdot CO_3 \cdot CH(CH_2 \cdot NO_2) \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot B$. Aus 1-Nitro-pentanol (2) und Acetylchlorid in Chloroform, zuletzt in der Wärme (E. SCHMIDT, RUTZ, B. 61, 2145). — Kp_{10} : 111—113° (korr.). D_4^{∞} : 1,0898. n_2^{∞} : 1,4339. — Beim Kochen mit Kaliumdicarbonat in Ather erhält man 1-Nitro-penten-(1).

Essigsäure - pentyl - (3) - ester, Diäthylcarbinol - acetat $C_7H_{14}O_2=CH_3\cdot CO_3\cdot CH(C_2H_5)_a$ (H 131; E I 60). B. Durch Einw. von Acetanhydrid auf das Reaktionsprodukt aus Propionaldehyd und Athylmagnesiumbromid und Zersetzen mit Wasser (Olsson, Ph. Ch. 125, 245). — Kp: 133°. D_4^{is} : 0,8763. n_{ii}^{is} : 1,4005. — Geschwindigkeit der Hydrolyse durch verd. Natronlauge bei 20°: O.

Essigsäure - [1-chlor - pentyl - (3) - ester], 1-Chlor - 3-acetoxy-pentan $C_7H_{18}O_2Cl = CH_3 \cdot CO_2 \cdot CH(C_2H_5) \cdot CH_2 \cdot CH_2Cl$ (E I 60). B. Durch Einw. von Thionylchlorid auf 1-Oxy-3-acetoxy-pentan in Gegenwart von Pyridin zunächst bei 0°, dann auf dem Wasserbad (Fourneau, Ramart-Lucas, Bl. [4] 27, 556). — Kp₁₄: 84—86°. — Liefert beim Behandeln mit Dimethylamin ein Basengemisch, das durch Natriumäthylat-Lösung in Athyl- $[\beta$ -dimethylamino-āthyl]-carbinol übergeführt wird.

Essigsäure-tert.-amylester, Dimethyläthylcarbinol-acetat C₇H₁₄O₂ = CH₃·CO₂·C(CH₃)₃·C₂H₅ (H 132; E I 60). B. Durch Einw. von Acetanhydrid auf das Reaktionsprodukt aus Aceton und Athylmagnesiumbromid und nachfolgende Zersetzung mit Wasser (Olsson, Ph. Ch. 125, 245). — Kp: 124—124,5°; D₁ⁿ: 0,8740 (O.). n₁ⁿ: 1,4010 (O.); n₂ⁿ: 1,3995 (Munch, Am. Soc. 48, 997). Lichtbrechung der 1 %igen wäßr. Lösung: M. — Geschwindigkeit der Hydrolyse durch verd. Natronlauge bei 20°: O.; durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, SSIBGATULLIN, B. 62, 2853.

Essigsäure-[4.4.4-trichlor-2-methyl-butyl-(3)-ester], Trichlormethyl-isopropyl-carbinol-acetat $C_7H_{11}O_2Cl_3 = CH_3 \cdot CO_2 \cdot CH(CCl_3) \cdot CH(CH_3)_3$. B. Aus Trichlormethyl-isopropyl-carbinol und überschüssigem Acetanhydrid bei 130—135° (Howard, Am. Soc. 49, 1069). — Kp_{ess}: 156—157°.

Essigsäureisoamylester, Isoamylacetat $C_7H_{14}O_2 = CH_2 \cdot CO_2 \cdot CH_3 \cdot CH_3 \cdot CH(CH_3)_2$ (H 132; E I 60)¹). B. Aus Acetaldehyd und Isovaleraldehyd in Gegenwart von Aluminiumäthylat, neben anderen Produkten (Nord. Bio. Z. 106, 279). Aus Essigsäure- und Isoamylalkohol-Dampf beim Überleiten über Zirkonoxyd bei 240—280° (Mailhe, de Godon, Bl. [4] 29, 104). Beim Erwärmen von Essigsäure mit einem geringen Überschuß von Isoamylalkohol, der äquivalenten Menge Schwefelsäure und wasserfreiem Aluminiumsulfat auf 100° (Kotake, Fullya, Bl., phys. chem. Res. Tokyo 1, 65; C. 1928 II. 1545).

(ΚΟΤΑΚΕ, FUJITA, Bl. phys. chem. Res. Tokyo 1, 65; C. 1928 II, 1545).

Erstarrt bei tieferer Temperatur glasig (Timmermans, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27). Kp₇₈₀: 142,1° (Lecat, R. 46, 244), 142° (Ti.; Hannotte, Bl. Soc. chim. Belg. 35, 102; C. 1926 II, 742); Kp: 138,5° (Olsson, Ph. Ch. 125, 245). D⁰₄: 0,8860; D⁰₄: 0,8670 (Ha.); D⁰₄: 0,8741 (Ol.); D⁰_{8,0}: 0,8828; D^{0,0}_{8,0}: 0,8712 (Miller, Pr. roy. Soc. [A] 106 [1924], 740). Viscosität bei 8,97°: 0,01030, bei 19,91°: 0,00872 g/cmsec (Mil.). Parachor: Sugden, Soc. 125, 1184. n⁰₁: 1,4000 (Ol.); n⁰₈: 1,3987; n⁰₈: 1,4003; n⁰₈: 1,4060; n⁰₇: 1,4102 (Ha.); n⁰₈: 1,3978 (Munch, Am. Soc. 48, 997). Lichtabsorption von Amylacetat im Ultraviolett: Brode, J. phys. Chem. 30, 61; von Isoamylacetat im Ultraviolett: Brode, J. phys. Chem. 30, 61; von Isoamylacetat im Ultravischen 0,6 und 13 μ: Smith, Boord, Am. Soc. 48, 1515. Ramanspektrum von Isoamylacetat: Dadieu, Kohlrausch, B. 63 [1930], 257; vgl. D., K., M. 52, 233, 399, 402; Sber. Akad. Wien 138 [IIa]. 55, 57; Phys. Z. 30, 384 Tafel VIII; C. 1929 II, 697, 970. Dielektr. Konst. von Amylacetat:

SAYCE, BRISCOE, Soc. 1926, 2626; KALLMANN, DORSCH, Ph. Ch. 126, 322.

Adsorption der Dämpfe durch Tierkohle: Alexendwsen, 38. 55, 416; C. 1925 II, 642.

Herstellung von Emulsionen aus Amylacetat und Wasser mit Jod als Emulgierungsmittel: HOLMES, WILLIAMS, Am. Soc. 47, 324. Lösungsvermögen von Amylacetat für Stickoxydul und Kohlendioxyd: Kuneeth, Phys. Rev. [2] 19, 517; C. 1923 III, 1126. Löslichkeit von Amylacetat in 2n-Natriumbenzoat-Lösung: Traube, Schöning, Weber, B. 60, 1810. Verteilung von Estern der 4-Amino-benzoesäure zwischen Amylacetat und Wasser: Adams. Mitarb., Am. Soc. 48, 1766. Isoamylacetat bildet binäre azeotrope Gemische mit Wasser [Kp₇₀₀: 94,05°; 64,1 Gew. Sisoamylacetat (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927]. 69) bzw. Kp₇₀₀: 93,8°; 63,7 Gew. Sisoamylacetat (Hannotte, Bl. Soc. chim. Belg. 35, 102)], mit Bromoform (Kp₇₀₀: 150,2°; 18 Gew. Sisoamylacetat) (Le., Ann. Soc. scient. Bruxelles 47 I, 26), mit Isoamyljodid (Kp₇₀₀: 141,7°; ca. 82 Gew. Sisoamylacetat) (Le., Ann. Soc. scient. Bruxelles 47 I, 26), mit Isoamyljodid (Kp₇₀₀: 141,7°; ca. 82 Gew. Sisoamylacetat) (Le., Ann. Soc. scient. Bruxelles 48 I [1928], 55), mit Glykol (Kp₇₀₀: 141,95°; ca. 97 Gew. Sisoamylacetat) (Le., Ann. Soc. scient. Bruxelles 48, 18), mit Chloressigature-äthylester (Kp₇₀₀: 141,7°; 60 Gew. Sisoamylacetat) (Le., Ann. Soc. scient. Bruxelles 48, 18), mit Chloressigature-äthylester (Kp₇₀₀: 141,7°; 60 Gew. Sisoamylacetat) (Le., Ann. Soc. scient. Bruxelles 48, 18), mit Chloressigature-äthylester (Kp₇₀₀: 94,8°) (Hannotte, Bl. Soc. chim. Belg. 35, 105). Dampfdruck von Gemischen aus Isoamylacetat und Athylacetat: G. C. Schmidt, Ph. Ch. 99, 77; 121, 241. Dichte von Gemischen aus Isoamylacetat und Verschiedenen organischen Verbindungen: Richardson, Robertson, Soc. 1928, 1779. Volumenänderung und Wärmetönung beim Mischen von Isoamylacetat und Chloroform: Peel, Madgin, Briscoe, J. phys. Chem. 33, 288; mit Athylacetat: G. C. Schmidt, Ph. Ch. 121, 236. Zur Viscosität und Oberflächenspannung wäßr. Lösungen von

¹⁾ Nach Th. H. Dubbans, Solvents, 4. Aufl. [London 1938], S. 137 u. H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 188 wird das technische "Amylacetat" teils durch Veresterung von Gärungsamylalkohol, teils durch Chlorierung von Petroleumpentah-Gemischen und nachfolgende Umsetzung mit Natriumacetat (vgl. a. Koch, Bubball, Ind. Eng. Chem 19, 442; C. 1928 I, 136) dargestellt. Das Acetat aus Gärungsamylalkohol enthält in der Hauptsache Isoamylseetat und aktive Amylacetate, neben geringen Mengen von Acetaten einiger Alkohole mit 6 und 7 Kohlenstoffatomen und unbekannten hochsiedenden Verbindungen; das Acetat aus Petroleumpentanen besteht aus Estern von fünf der acht möglichen Alkohole C₅H₁₉O mit geringen Beimengungen von freien Alkoholen; es kommt unter dem Namen "Pentacetat" in den Handel (Dubbans; Gnamm). — Bei den auf "Amylacetat" besüglichen Angaben der Originalliteratur ist häufig keine Eutscheidung über die Natur des angewandten Präparate möglich. Da in den meisten Fällen vermutlich Präparate aus Gärungsamylalkohol vorgelegen haben, sind solche Angaben im obenstehenden Artikel abgehandelt.

Wirkung von Isoamylacetat auf die Vereinigung von Chlor mit Schwefeldioxyd zu Sulfurylchlorid: Durrans, J. Soc. chem. Ind. 45, 349 T; C 1927 I, 10. Einfluß von Amylacetat-Dampf auf die phosphorescierende Flamme des Schwefels in Sauerstoff-Stickstoff-Atmosphäre: Emeléus, Soc. 1928, 1948; auf die phosphorescierende Flamme von Arsen im Sauerstoffstrom: E., Soc. 1929, 1847.

Entzündungstemperatur von technischem Amylacetat in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Flammpunkt von technischem Isoamylacetat: Anonymus, Jber. chem.-tech. Reichsanst. 8 [1929], 202; von technischem Amylacetat: Florentin, Ann. Falsificat. 21, 345; C. 1928 II, 2233. Über Addition von Chlor, Brom und Bromwasserstoff an Isoamylacetat bei niedriger Temperatur vgl. McIntosh, Trans. roy. Soc. Canada [3] 19 III, 71; C. 1926 II, 16. Liefert beim Überleiten im Gemisch mit Ammoniak über Aluminiumoxyd bei 490—500° Acetonitril, Isoamylakohol und ein Äthylenkohlenwasserstoffe und Wasserstoff enthaltendes Gas (Mailhe, A. ch. [9] 13, 215). Bei längerem Erhitzen von Isoamylacetat mit alkoh. Salzsäure werden Isoamylakohol und Athylacetat erhalten (Madinavettia, An. Soc. españ. 12 [1914], 428). Verseifung von Isoamylacetat an der Grenzfläche zwischen der Flüssigkeit und verd. Salzsäure und beim Überleiten des Dampfes über die Oberfläche von verd. Salzsäure: Harker, Newman, J. Pr. Soc. N. S. Wales 60 [1926], 47; C. 1928 I, 2898. Geschwindigkeit der Verseifung durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, Ssibgatullin, B. 62, 2852; durch Promwasserstoffsäure in Eisessig bei 18—21°: Tronow, Ssibgatullin, B. 62, 2852; durch Verd. Natronlauge zwischen 0,2° und 30°: Olsson, Ph. Ch. 118, 109; bei 20°: O., Ph. Ch. 125, 248; durch Natriumcarbonat-Lösung zwischen 10° und 40°: Musil, M. 52, 196; durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: Gyngell, Soc. 1928, 1785.

Hydrolyse von Isoamylacetat durch Ricinuslipase: Lorbereblatt, Falk, Am. Soc.

Hydrolyse von Isoamylacetat durch Ricinuslipase: Lorberblatt, Falk, Am. Soc. 48, 1661. — Physiologische Wirkung: H. Staub in J. Houden, Fortschritte der Heilstoffchemie, 2. Abt. Bd. I [Berlin 1930], S. 780; über physiologische Wirkungen von Isoamylacetat und Amylacetat und gewerbliche Vergiftungen durch Amylacetat vgl. F. Flury, O. Klimmer in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 171; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 68. — Verwendung von technischem Amylacetat, vor allem in Gemischen, als Lösungsmittel für Nitrocellulose, Gummen, Harze, Öle und Fette: Lehmann, Flury, Toxikologie, S. 171; Durrans, Solvents, S. 136, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 188; vgl. a. Davidson, Ind. Eng. Chem. 18, 671; C. 1926 II, 1465.

Über eine Natriumverbindung aus Amylacetat vgl. Scheibler, Voss, B. 53, 400; Sch., D. R. P. 346698; C. 1922 II, 1135; Frdl. 13, 1086.

Essigsäure-n-hexylester, n-Hexylacetat $C_8H_{16}O_2 = CH_2 \cdot CO_2 \cdot [CH_2]_5 \cdot CH_2$ (H 132). B. Durch Kochen von Hexanol-(1) mit überschüssigem Acetanhydrid (ZEISEL, NEUWIRTH, A. 433, 134). — Geschwindigkeit der Verseifung durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, SSIBGATULLIN, B. 62, 2852.

Essigsäure - hexyl - (2) - ester, Methylbutylcarbinol - acetat $C_8H_{16}O_2 = CH_3 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_2 \cdot CH_3$. Zur Verwendbarkeit als Lösungsmittel, auch in Gemischen, für Nitrocellulose, Gummen und Harze vgl. Davidson, *Ind. Eng. Chem.* 18, 670; *C.* 1926 II, 1465; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 140.

Essigsäure - [1.1.1 - trichlor - hexyl - (2) - ester], Trichlormethyl - butyl - carbinolacetat $C_8H_{18}O_2Cl_3 = CH_3 \cdot CO_3 \cdot CH(CCl_3) \cdot [CH_3]_3 \cdot CH_3$. B. Aus Trichlormethyl-butyl-carbinol und überschüssigem Acetanhydrid bei 130—135° (Howard, Am. Soc. 49, 1069). — Kp₆₉₄: 157—158°.

Essigsäure-[$\alpha.\alpha$ -dimethyl-butylester], Dimethylpropylcarbinol-acetat $C_8H_{16}O_2$ = $CH_3 \cdot CO_2 \cdot C(CH_3)_2 \cdot CH_4 \cdot CH_2 \cdot CH_3 \cdot$

Essigsäureischexylester, Ischexylacetat $C_8H_{16}O_3=CH_3\cdot CO_3\cdot [CH_2]_8\cdot CH(CH_8)_3$ (H 133). Verwendung von technischem Ischexylacetat als Lösungsmittel für Nitrocellulose, Harze und Gummen: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 139, 229.

Essigsäure-[3-methyl-pentyl-(3)-ester], Methyldiäthylcarbinol-acetat $C_8H_{16}O_2=CH_3\cdot CO_3\cdot C(CH_3)(C_2H_5)_3$ (H 133). B. Durch Einw. von Acetanhydrid auf das Reaktionsprodukt aus Methyläthylketon und Athylmagnesiumbromid und Zersetzung mit Wasser (Olsson, Ph. Ch. 125, 245). — Kp₁₁: 35°. D₄°: 0,8793. n_D°: 1,4109. — Geschwindigkeit der Hydrolyse durch verd. Natronlauge bei 20°: O.

Essigsäure - [γ -methyl-n-hexylester], [γ -Methyl-n-hexyl] - acetat $C_0H_{10}O_2=CH_2\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3\cdot$

Essignäure-[3-methyl-hexyl-(2)-ester], [$\alpha.\beta$ -Dimethyl-n-amyl]-acetat $C_9H_{19}O_8 = CH_2 \cdot CO_3 \cdot CH(CH_3) \cdot CH(CH_3) \cdot CH_2 \cdot CH_3 \cdot CH_3$ [10] 13, 91).

Essigsäure - [δ -methyl-n-hexylester], [δ -Methyl-n-hexyl] - acetat $C_9H_{18}O_8=CH_2\cdot CO_3\cdot (CH_2)_8\cdot CH(CH_3)\cdot C_2H_5$. B. Aus 3-Methyl-hexanol-(6) bei Einw. von Acetylchlorid (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 504, C. 1925 I, 358). — Flüssigkeit. Kp₇₅₇: 190°. D₄°: 0,8740. n₁°: 1,4186. Unlöslich in Wasser.

Essignäure-n-ootylester, n-Ootyl-acetat $C_{10}H_{20}O_3=CH_3\cdot CO_3\cdot [CH_2]_7\cdot CH_3$ (H 134). V. Im ather. Ol von Heracleum villosum Fisch. (Rutowski, Winogradowa, Trudy chim. farm. Inst. Heft 17, S. 119; C. 1927 II, 1311). — E: —38,5°; Kp_{777} : 211,8° (Timmermans, MATTAAR, Bl. Soc. chim. Belg. 30, 215; C. 1921 III, 1266).

Essigsäure-octyl-(2)-ester, Methyl-n-hexyl-carbinol-acetat $C_{10}H_{20}O_2=CH_3\cdot CO_3$. $CH(CH_2) \cdot [CH_2]_5 \cdot CH_3$.

a) Inaktive Form (H 134; E I 61). B. Zur Bildung aus dl-Methyl-n-hexyl-carbinol und Essigsäure vgl. noch Senderens, Aboulenc, A.ch. [9] 18, 158. — Ultrarotes Absorptionsspektrum zwischen 0,6 und 14 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. b) Rechtsdrehende Form. B. Aus p-Toluolsulfonsäure-[1-octyl-(2)-ester] bei

17-stündigem Kochen mit Kaliumacetat in Alkohol (Phillips, Soc. 127, 2586). — Di: 0,8619.

 n_{D}^{17} : 1,4168. $(\alpha_{D}^{17}: +5,64^{\circ})$ (unverdunnt; l=10 cm).

c) Linksdrehende Form. B. Entsteht in teilweise racemisiertem Zustand beim Erhitzen von rechtsdrehendem 2-Chlor-octan mit trockenem Silberacetat in Eisessig auf 130° bis 140° (McKenzie, Tudhope, J. biol. Chem. 62, 556). In nicht völlig reinem Zustand beim Erwärmen von Chlorameisensäure-[1-octyl-(2)-ester] mit Kaliumacetat (Houssa, PHILLIPS, Soc. 1929, 2513). Bei längerem Aufbewahren von dl-p-Toluolsulfinsäure-[l-octyl-(2)ester] (Syst. Nr. 1510) in Eisessig bei 25° (Phillips, Soc. 127, 2571). — Kp₁₇: 89—90°; $\hat{\mathbf{p}}_{1}^{4}$: 0,8570; $\hat{\mathbf{a}}_{1}^{4,4}$: —6,0° (unverdünnt; $\mathbf{l}=20$ cm); $\hat{\mathbf{a}}_{1}^{4,4}$: —7,14° (unverdünnt; $\mathbf{l}=20$ cm) (Ph.).

Essigsäure-[3-methyl-heptyl-(2)-ester], $[\alpha.\beta$ -Dimethyl-n-hexyl]-acetat $C_{10}H_{80}O_{2}$ = $CH_{2} \cdot CO_{2} \cdot CH(CH_{2}) \cdot CH(CH_{3}) \cdot [CH_{2}]_{3} \cdot CH_{2}$. B. Aus 3-Methyl-heptanol-(2) und Acetanhydrid in Gegenwart von sehr wenig konz. Schwefelsäure auf dem Wasserbad (Powell, Am. Soc. 46, 2517). — Wohlriechendes Öl. Kp: 185°. D_{4}^{*} : 0,8545. n_{1}^{*} : 1,418.

Essigsäure - [2.6 - dimethyl-octyl-(6)-ester], Tetrahydrolinalylacetat $C_{12}H_{24}O_3=CH_3\cdot CO_3\cdot C(CH_3)(C_2H_5)\cdot [CH_2]_3\cdot CH(CH_2)_2$ (E I 62). Flüssigkeit von angenehmem, blumenartigem Geruch. Kp₁₅: 98—100°; D¹¹¹: 0,861; n¹¹¹: 1,4297 (Escourrou, Bl. [4] 48, 1108).

Essigsäure-[2.6-dimethyl-octyl-(8)-ester] $C_{12}H_{24}O_2 = CH_3 \cdot CO_3 \cdot CH_1 \cdot CH_2 \cdot CH(CH_2) \cdot CH_3 \cdot$ $[CH_2]_8 \cdot CH(CH_8)_2$

a) Rechtsdrehende Form, Dihydrocitronellylacetat. Schwach riechendes Ol. Kp_{14} : 107—109°; D_{\bullet}^{17} : 0,877; $[\alpha]_{D}$: $+0^{\circ}$ 28′ (v. Braun, Kaiser, B. 56, 2271).

b) Linksdrehende Form, Dihydrorhodinylacetat. 115,5—116°; n. 14283 (Sabetay, Bleger, Bl. [4] 43, 843). Riecht schwach.

c) Inaktive Form, Tetrahydrogeranylacetat. Schwach riechendes Ol. Kp₁₄: 108—109°; D₄": 0,875 (v. Braun, Kaiser, B. 58, 2271).

 $\begin{aligned} &\textbf{Essigs\"{a}ure - [2.6 - dimethyl - nonyl - (9) - ester],} & \textbf{[2.6 - Dimethyl - nonyl - (9)] - acetat} \\ &\textbf{C}_{13}\textbf{H}_{26}\textbf{O}_{\underline{2}} &= \textbf{C}\textbf{H}_{\underline{3}} \cdot \textbf{C}\textbf{O}_{\underline{3}} \cdot [\textbf{C}\textbf{H}_{\underline{3}}]_{\underline{5}} \cdot \textbf{C}\textbf{H}(\textbf{C}\textbf{H}_{\underline{3}})_{\underline{5}} \cdot \textbf{C}\textbf{H}(\textbf{C}\textbf{H}_{\underline{3}})_{\underline{5}}. \end{aligned}$

a) Rechtsdrehende Form. Flüssigkeit von schwachem Geruch. Kp₁₈: 124—126°;

 D_4^{17} : 0,866; $[\alpha]_D$: +00 48' (v. Braun, Kaiser, B. 56, 2274).

b) Inaktive Form. Flüssigkeit von schwachem Geruch. Kp12: 124-1260 (v. Braun, Kaiser, B. 56, 2274).

Essigsäure-[ω -brom-n-dodecylester], [ω -Brom-n-dodecyl]-acetat $C_{14}H_{27}O_2Br=CH_2\cdot CO_3\cdot (CH_2)_{11}\cdot CH_2Br$. B. Aus Dodecandiol-(1.12)-monoacetat beim Behandeln mit Bromwasserstoff bei 130° (Churr, Mitarb., Helv. 10, 182). — Wurde nicht ganz rein erhalten. Kp_{3,5}: 160—161°. D¹⁵: 1,083. — Liefert beim Aufbewahren mit der theoretischen Menge alkoh. Kalilauge 12-Brom-dodecanol-(1) und wenig Dodecandiol-(1.12).

Essigsäure-[tetradecyl-(7)-ester], n-Hexyl-n-heptyl-carbinol-acetat $C_{16}H_{22}O_2=CH_3\cdot CO_3\cdot CH([CH_2]_5\cdot CH_3)\cdot [CH_2]_6\cdot CH_3$. Kp₁₄: 152—155° (v. Braun, Kochendörfer, B.

Essignäure-n-hexadecylester, Cetylacetat $C_{10}H_{20}O_{3}=CH_{3}\cdot CO_{3}\cdot [CH_{2}]_{15}\cdot CH_{2}(H\,136)$. F: 22,7°; Kp₅: 184° (korr.) (Youtz, Am. Soc. 47, 2254). Ausbreitung monomolekularer Schichten auf Wasser und 0,01 n-Salzsäure: ADAM, DYEE, Pr. roy. Soc. [A] 106, 697; C. 1925 I, 931; A., JESSOF, Pr. roy. Soc. [A] 120, 477; C. 1928 I, 189; CARY, RIDBAL, Pr. roy. Soc. [A] 109, 312, 323, 329, 337; C. 1926 I, 1126. Einfluß von Cholesterin auf die Ausbreitung auf Wasser: A., J. — Resorption im Organismus verschiedener Tiere: MANOKE, H. 162, 238.

Essigsäure-[ω -brom-n-hexadecylester], [ω -Brom-cetyl]-acetat $C_{18}H_{35}O_{2}Br=CH_{3}\cdot CO_{2}\cdot [CH_{2}]_{15}\cdot CH_{2}Br$. B. Beim Erhitzen von 1.16-Dibrom-hexadecan mit 1 Mol Natrium-acetat, neben Hexadecandiol-(1.16)-diacetat (Chuir, Hausser, Helv. 12, 853). Beim Behandeln von Hexadecandiol-(1.16)-monoacetat mit Bromwasserstoff bei 110—120°, neben 1.16-Dibrom-hexadecan (CH., H.). — F: 31°. Kp₁: 192—194°. Löslich in Benzol und Petroläther.

Essigsäure-n-octadecylester, n-Octadecylacetat $C_{20}H_{40}O_2 = CH_3 \cdot CO_2 \cdot [CH_2]_{17} \cdot CH_3$ (H 136). B. Durch Hydrierung von Oleylacetat bei Gegenwart von Platinmohr in Eisessig (Sigmund, Haas, M. 50, 363). — F: 34,5°; Kp_9 : 205—208° (S., H.). — Ausbreitung monomolekularer Schichten auf Wasser und 0,01 n-Salzsäure: Adam, Dyer, Pr. roy. Soc. [A] 106, 698; C. 1925 I, 931; A., Jessop, Pr. roy. Soc. [A] 120, 477; C. 1929 I, 189; Cary, Rideal, Pr. roy. Soc. [A] 109, 312, 323, 329, 337; C. 1926 I, 1126. Einfluß von Cholesterin auf die Ausbreitung auf Wasser: A., J.

Essigsäure-n-eikosylester, n-Eikosylacetat $C_{22}H_{44}O_2 = CH_3 \cdot CO_3 \cdot [CH_2]_{19} \cdot CH_3$. Krystalle (aus wäßr. Aceton). F: 39,5—40,5° (ADAM, DYER, Soc. 127, 71). Ausbreitung monomolekularer Schichten auf Wasser: A., D., Pr. roy. Soc. [A] 106, 698; C. 1925 I, 931.

Essigsäure-n-tetrakosylester, n-Tetrakosylacetat $C_{36}H_{52}O_2 = CH_3 \cdot CO_2 \cdot [CH_2]_{53} \cdot CH_3$. Nadeln (aus Alkohol). F: 57° (Bright, Fuchs, H. 119, 308).

Acetat des Alkohols $C_{24}H_{50}O(1)$ aus Hyaenanche globosa $C_{26}H_{52}O_2 = CH_3 \cdot CO_2 \cdot C_{24}H_{49}(1)$. Nadeln (aus Acetanhydrid). F: 75° (korr.) (Henry, Soc. 117, 1624). Wird durch die meisten Lösungsmittel hydrolysiert.

Acetat des Alkohols $C_{24}H_{50}O(?)$ aus Montanwachs $C_{20}H_{52}O_3=CH_3\cdot CO_3\cdot C_{24}H_{40}(?)$. Krystalle (aus Alkohol). F: 59° (Pschorr, Pfaff, B. 53, 2159).

Essigsäure-cerylester, Cerylacetat $C_{28}H_{56}O_2 = CH_3 \cdot CO_2 \cdot C_{26}H_{53}$ (?). Für Acetate aus Cerylakohol (E II 1, 470) werden folgende Schmelzpunkte angegeben: 65° (Zellner, M. 48, 487), 64,5° (Gottfried, Ulzer, Ch. Umschau Fette 33, 143; C. 1926 II, 555), 63—64° (Stern, Ch. Ch.

Essigsäure-nonakosyl-(10)-ester, n-Nonyl-n-nonadecyl-carbinol-acetat, Ginnolacetat $C_{31}H_{43}O_{3}=CH_{3}\cdot CO_{3}\cdot CH([CH_{2}]_{8}\cdot CH_{3})\cdot [CH_{2}]_{18}\cdot CH_{3}$. Blättchen (aus Aceton), Tafeln (aus Alkohol). F: 43—43,5° (KAWAMURA, Japan. J. Chem. 8, 101; C. 1928 II, 2256), 43,5° bis 44° (FURUKAWA, Bl. phys. chem. Res. Tokyo 2, 7; C. 1929 I, 1472), 44—46° (Sando, J. biol. Chem. 56, 461).

Essigsäure-myricylester, Myricylacetat, Melissylacetat $C_{32}H_{64}O_2=CH_2\cdot CO_2\cdot C_{30}H_{61}(?)$ oder $C_{33}H_{64}O_2=CH_3\cdot CO_2\cdot C_{31}H_{63}(?)$ (H 136; E I 63). Krystalle (aus Ather oder Alkohol), Blättchen (aus Trichloräthylen + Alkohol). F: 72,5—74° (Pummerer, Kranz, B. 62, 2624), 73° (Shriner, Nabenhauer, Anderson, Am. Soc. 49, 1293), 74° (Gottfried, Ulzer, Ch. Umschau Fette 33, 143; C. 1926 II, 555). Kp₈: 311—313° (G., U.).

Essigsäure - [pentatriakontyl - (18) - ester], Di - n - heptadecyl - carbinol - acetat $C_{37}H_{74}O_2 = CH_3 \cdot CO_2 \cdot CH ([CH_2]_{16} \cdot CH_3)_2$. F: 58—59° (GRÜN, ULBRICH, KRCZIL, Z. ang. Ch. 39, 424). [OTT]

Acetate ungesättigter Monooxy-Verbindungen.

Essigsäurevinylester, Vinylacetat C₄H₆O₂ = CH₃·CO₂·CH:CH₂ (E I 63). B. Beim Leiten von Acetylen und Essigsäure-Dampf über mit Metallen, Metalloxyden oder Salzen imprägnierte Adsorptionskohle oder Silicagel bei 200—250° (Konsort. f. elektrochem. Ind., D. R. P. 403784, 485271; Frdl. 14, 158; 16, 680). Neben wenig Äthylidendiacetat bei mehrstündiger Einw. von 26—28 Tln. Acetylen auf ein Gemisch aus 60 Tln. Eisessig und 1 Tl. Acetanhydrid bei 40—60° und 5 Atm. Druck (Plausons Forschungsinst., D. R. P. 373369; Frdl. 14, 268). Beim Durchleiten von Acetylen durch eine Suspension von Quecksilbersulfat in Eisessig bei An- oder Abwesenheit von Athylidendiacetat oder Paraffinöl (Konsort. f. elektrochem. Ind., D. R. P. 483780; Frdl. 16, 683). — Leicht bewegliche, charakteristisch riechende Flüssigkeit. Kp₇₈₈: 71—72° (SKRABAL, ZAHORKA, M. 48, 459). Verbrennungswärme bei konstantem Volumen: 497,8 kcal/Mol (Roth in Landolt-Börnst. E I, 877). — Geschwindigkeit der Verseifung in saurer, alkalischer und wäßriger Lösung bei 25°: SKR., Z.; SKB., GITSCHTHALER, Ph. Ch. 128, 466. Bei tropfenweiser Zugabe von 1 Mol Brom zu einer Lösung von Vinylacetat in Eisessig und Kochen des Reaktionsgemisches mit Kaliumacetat entsteht 1.1.2-Triacetoxy-āthan (H. O. L. FISCHER, FELDMANN, B. 62, 862). Polymerisiert sich beim Belichten in der Kälte oder beim Erhitzen im Autoklaven sowie unter dem Einfluß von Katalysatoren zu Polyvinylacetat (S. 148) (Konsort. f. elektrochem. Ind., D. R. P. 431146, 446562, 490040, 490041; C. 1926 II, 1191; 1927 II, 1100; 1930 I, 2321; Frdl. 15, 1137, 1258; 16, 1933, 1934).

148

Polyvinylacetat $(C_4H_6O_2)_x = \cdots CH - CH_2 - CH - CH_3 - CH - CH_3 \cdots CH - C$

Polyvinylacetat $(C_4H_6O_2)_x = O \cdot CO \cdot CH_3 O \cdot CO \cdot CH_4$ Literatur: H. STAUDINGER, Die hochmolekularen organischen Verbindungen [Berlin 1932], S. 104, 134, 146; C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1016; E. TROMMSDORF in R. HOUWINK, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 338.

Die Polyvinylacetate sind keine einheitlichen chemischen Individuen, sondern Gemische Die Polyvinylacetate sind keine einheitlichen chemischen individuen, sondern Gemische von Polymeren verschiedenen Polymerisationsgrades (Staudinger, Frey, Starck B. 60, 1782, 1789; Stau., Schwalbach, A. 488 [1931], 8). Das Durchnittsmolekulargewicht hängt von der Art der Herstellung ab (Stau., Schw.; vgl. a. untenstehende Tabelle); es wurde kryoskopisch in Benzol (Stau., Fr., St., B. 60, 1787), in Benzol und Bromoform (Whitby, McNally, Gallay, Trans. roy. Soc. Canada [3] 22 III, 29; C. 1929 I, 377) und viskosimetrisch in Benzol und Athylenglykol-athyläther-acetat (Stau., Schw., A. 488 [1931], 15ff.) bestimmt.

Herstellung	Beschaffenheit und Aussehen	Löslichkeit	Durchschnitts- MolGew.	Polymeri- sationsgrad
Durch Belichten unter Na	Weiße, sehr zähe Flocken	Starke Quellung sehr schwer löslich	80000	900
Durch Belichten unter CO ₂	Weiß, zāh	Unter Quellung schwer löslich	38000	440
Mowilith H (technisch)	Weiße, zāhe Flocken	Geringe Quellung, gut löslich	20000	23 0
Bei 100° unter O ₃	Weiß, zäh	desgl.	20000	230
Bei 140° unter O ₈	Schwach gelb ge- färbt; etwas spröde	Gut löslich	14000	160
Mowilith N (technisch)	Sprödes Harz pulverisierbar	Leicht löslich	9000	100
Mit Peroxyden als Katalysator	Spröd, glasig	Sehr leicht löslich	6000	70
Durch Belichten in Chloroform- Lösung	Weißes, sehr sprödes Pulver	Sehr leicht löslich	3000	35

¹⁾ STAUDINGER, SCHWALBACH, A. 488 [1931], 38.

B. Bei mehrstündiger Einw. von 26—28 Tln. Acetylen auf ein Gemisch aus 60 Tln. Eisessig und 1 Tl. Acetanhydrid bei 120—200° und 10 Atm. Druck (Plausons Forschungsinst., D. R. P. 373369; Frdl. 14, 268). Aus Polyvinylalkohol (s. u.) beim Schütteln mit Acetylchlorid in einer Druckflasche sowie beim Erhitzen mit Acetanhydrid und Zinkchlorid auf 60° (STAUDINGER, FREY, STARCK) oder beim Kochen mit Acetanhydrid und Natriumacetat (Konsort. f. elektrochem. Ind., D. R. P. 480866; C. 1929 II, 3251; Frdl. 16, 684). Aus Vinylacetat: durch Erwärmen oder Belichten mit Sonnenlicht oder dem Licht der Quecksilber-Lampe (Chem. Fabr. Griesheim, D. R. P. 281 687, 281 688; C. 1915 I, 283; Frdl. 12, 606, 607); durch Erhitzen mit etwas Wasser und H₂O₄, Benzoylperoxyd oder Bariumperoxyd (Konsort. f. elektrochem. Ind., D. R. P. 431146; C. 1926 II, 1191; Frdl. 15, 1137) unter Zusatz organischer Lösungsmittel wie Alkohol oder Benzol (Konsort. f. elektrochem. Ind., D. R. P. 446562; C. 1927 II, 1100; Frdl. 15, 1258) oder Eisessig mit oder ohne Zusatz von Acetaldehyd oder Paraldehyd mit oder ohne Einleiten von Stickstoff oder Sauerstoff (Konsort. f. elektrochem. Ind., D. R. P. 490041; Frdl. 16, 1933); in Gegenwart von Perboraten, Percarbonaten oder Perphosphaten (Konsort. f. elektrochem. Ind., D. R. P. 490040; C. 1930 I, 2321; Frdl. 16, 1934).

Die physikalischen Eigenschaften hängen weitgehend von der Herstellungsart ab (vgl. a.

obenstehende Tabelle).

Die in der Wärme hergestellten Präparate bilden spröde, schwach bräunliche, durchsichtige Harze, die sich pulverisieren lassen; sie werden bei 100° knetbar, färben sich bei 200° braun und zersetzen sich bei höherer Temperatur unter Verkohlung und Abspaltung von Essigsäure; sie sind unlöslich in Wasser, sehr schwer löslich in Äther, Petroläther und Cyclo-hexan, löslich in Benzol; Chloroform, Tetrachlorkohlenstoff und anderen organischen Lösungsmitteln unter Bildung von dünnviscosen Lösungen. Die in der Kälte gewonnenen Harze sind glasklar und um so zäher, bei je tieferer Temperatur die Polymerisation vorgenommen wird; bei 80—100° werden sie elastisch, färben sich bei 200° braun und verkohlen bei höherer Temperatur ebenfalls unter Abspaltung von Essigsäure; sie lösen sich in organischen Lösungsmitteln langsamer als die spröden Harze unter Bildung von hochviscosen Lösungen (Staudinger, Frey, Starck, B. 60, 1787). Technisches Polyvinylacetat-Harz läßt sich durch Lösen in Benzol und Fällen mit Petroläther (Staul, Fr., Starck) oder durch Lösen in Aceton und Fällen mit Wasser (Whitey, McNally, Gallay, Trans. 199. Soc. Canada [3] 22 III, 29; C. 1929 I, 377) in mehrere Fraktionen von verschiedenem Polymerisationsgrad zerlegen. Dehnbarkeit bei verschiedenen Temperaturen: Wh., McN., G. Löslichkeit und Quellungsvermögen in organischen Lösungsmitteln: Wh., McN., G. Ausbreitung dünner Schichten auf Wasser: Katz, Samwell, Naturviss. 16, 592; C. 1928 II, 963. Viscosität der Lösungen in Benzol bei 20°: Stau., Fr., Starck; zwischen 15° und 55°: Wh., McN., G.

Liefert bei der Oxydation mit konz. Salpetersäure Oxalsäure (Staudinger, Frey, Starck, B. 60, 1784). Spaltet bei längerem Erhitzen mit Wasser im Rohr auf 180° nur wenig Essigsäure ab (Stau, Fr., Starck). Wird durch alkoh, Alkaliauge (Herrmann, Haehnel, B. 60, 1659), durch kalte Natriummethylat-Lösung (Stau, Fr., Starck) sowie beim Kochen mit alkoh. Salzsäure oder Schwefelsäure (He., Hae.) zu Polyvinylalkohol verseift. Findet Verwendung zur Herstellung von Klebemitteln, plastischen Massen und Lacken (Konsort f. elektrochem. Ind. D. R. P. 446562, 514435; C. 1927 II, 1100; 1931 I, 1024; Frdl. 15, 1258; 16, 2080; I. G. Farbenind., D. R. P. 449115; C. 1927 II, 2237; Frdl. 15, 1181; vgl. P. Nowak in W. Röhrs, H. Staudinger, R. Vieweg, Fortschritte der Chemie, Physik und Technik der makromolekularen Stoffe [München-Berlin 1939], S. 238; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 216, 232).

Polyvinylalkohol
$$(C_2H_4O)_x =$$

$$\begin{array}{c} \dots \text{CH-CH}_2 \text{-CH-CH}_3 \text{--CH-CH}_2, \dots \\ \text{OH} \text{OH} \text{OH} \end{array}$$

Literatur: H. STAUDINGER, Die hochmolekularen organischen Verbindungen [Berlin 1932], S. 40, 41; C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1054; E. TROMMSDORF in R. HOUWINK, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 325, 347; MAEVEL, DENOON, Am. Soc. 60 [1938], 1045.

Da die Polyvinylalkohole aus den Polyvinylacetaten durch Verseifung gewonnen werden, sind sie ebenfalls Gemische von Polymeren verschiedenen Polymerisationsgrades; ihr Durchschnitts-Molekulargewicht hängt vom Ausgangsmaterial ab (Staudinger, Frey, STARCK, B. 60, 1783; STAU., SCHWALBACH, A. 488 [1931], 42; STAU., WARTH, J. pr. [2] 155 [1940], 267). Die Durchschnitts-Polymerisationsgrade (viscosimetrisch bestimmt) reichen von 35-1750 (Stau., Schw.; Stau., Warth; vgl. Stau., Fr., Starck). — B. Bei der Verseifung von Polyvinylacetat (S. 148) mit alkoh. Alkalilauge (HERRMANN, HAEHNEL, B. 60, 1659), mit Natriummethylat-Lösung (STAU., FR., STABCK; vgl. STAU., B. 59, 3039) sowie mit siedender alkoholischer Salzsäure oder Schwefelsäure (HE., HAE.). Läßt sich durch Dialyse reinigen (He., Hae.). — Geruch- und geschmacklose, flockige, faserige, pulvorförmige oder gallertartige Massen von weißer bis brauner Farbe (aus wäßer. Aceton oder verd. Alkohol). Gedehnte Fäden und Filme zeigen bei der Röntgenaufnahme Faser-Struktur (Halle, Hofmann, Naturwiss. 23, 770; C. 1936 I, 2321; Koll.-Z. 69 [1934], 329; Gross, Am. Soc. 60 [1938], 1047, 1050). Sintert oberhalb 200° und zersetzt sich bei höherer Temperatur unter Abspaltung von Acetaldehyd und Verkohlung (Stau., Fr., STABOK). Schmilzt unter 1000 Atm. Druck bei 2500 (HE., HAE.). Dichte von geschmolzenem Polyvinylalkohol: 1,5810 (HE., HAE.). Verbrennungswärme: 5902 cal/g (HE., HAE.). Kolloidchemisches Verhalten: HE., HAE. Löslich in Wasser, Glykol, Glycerin und Formamid unter Bildung kolloidaler Lösungen, die beim Erkalten gelatinös erstarren, schwer löslich in heißer Essigsäure und heißem wasserhaltigem Phenol, unlöslich in Alkohol, Aceton, Essigester und anderen organischen Lösungsmitteln; beim Verdunsten der Lösungen auf glatten Unterlagen entstehen außerst zähe Filme (HE., HAE.; STAU., FR., STARCK). Dichte und Viscosität wäßr. Lösungen bei 20°: HE., HAE. Wird aus seinen wäßr. Lösungen durch Zusatz von gesättigten Salz-Lösungen sowie durch konz. Alkalilauge ausgeflockt (STAU., Fr., STARCK; vgl. Hr., Har.). Verwandelt sich beim Pressen bei 30 Atm. Druck und 200—220° in eine äußerst harte, braune Masse, die in Wasser, Glykol und Glycerin schwerer, in heißem Leinöl und Ricinusöl leichter löslich ist als der ungepreßte Polyvinylalkohol (Hr., Har.).

Liefert bei der Oxydation mit Permanganat in Wasser geringe Mengen Oxalsäure (Staudinger, Frey, Starck, B. 60, 1791; vgl. Herrmann, Haehnel, B. 60, 1662), mit konz. Salpetersäure Oxalsäure und sehr geringe Mengen Bernsteinsäure (Stau., Fr., Starck). Bei der Oxydation mit Dichromat in saurer Lösung erhält man Aceton und Essigsäure (Marvel, Denoon, Am. Soc. 60 [1938], 1046; vgl. He., Hae.). Verhalten beim Behandeln mit Wasserstoffperoxyd: He., Hae. Bei der Reduktion von Polyvinylalkohol mit Jodwasserstoff, bei An- oder Abwesenheit von rotem Phosphor in Eissesig sowie in Wasser bei 260° entsteht eine teerartige Masse,

die in Wasser und Alkohol unlöslich, in Benzol und Chloroform aber leicht löslich ist (STAU., FB., STARCK). Beim Behandeln von Polyvinylalkohol mit Dischwefeldichlorid in Schwefelkohlenstoff erhält man weichgummiartige, sehr elastische Produkte; bei der Heißvulkanisation mit Schwefel entstehen harte, schwarze Massen (HE., HAE.). Einw. von Chlor und Brom: HE., HAE.; M., D. Bildet mit Jod in wäßr. Kaliumcarbonat-Lösung Jodoform (HE., HAE.). Gibt mit Formaldehyd Verbindungen, die dem Amyloform aus Stärke verwandt sind (HE., HAE.). Läßt sich mit Benzaldehyd acetalisieren (HE., HAE.). Liefert beim Schütteln mit Acetylchlorid, beim Erwärmen mit Acetanhydrid und Zinkchlorid auf 60° (STAU., FR., STARCK) oder beim Erhitzen mit Acetanhydrid und Natriumacetat (HE., HAE.) Polyvinylacetat. Analog verläuft die Veresterung mit Benzoylchlorid und anderen Säurechloriden (STAU., FR., STARCK; HE., HAE.). Liefert mit Natronlauge und Schwefelkohlenstoff ein Xanthogenat (HE., HAE.). — Zeigt beim Verfüttern an Mäuse keine schädigende Wirkungen (HE., HAE.). Verwendung in der Kunststoff-Industrie: C. Ellis, The Chemistry of Synthetic Resins [New York 1935], S. 1057; R. HOUWINK, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 347. — Konz. Lösungen des Polyvinylalkohols geben mit Jod-Kaliumjodid-Lösung blauviolette Färbungen; die Farbe verschwindet beim Erwärmen und tritt beim Abkühlen wieder auf (STAU., FR., STARCK). Gibt die Reaktionen nach Carletti (Thymol und Menthol) und nach Fleig und Ihl (Indol und Pfefferminzöl) (HE., HAE.).

Essigsäureallylester, Allylacetat $C_5H_8O_2 = CH_3 \cdot CO_2 \cdot CH_2 \cdot CH : CH_2$ (H 136; E I 64). B. Aus Allylalkohol bei der Einw. von Acetylchlorid in Gegenwart von Pyridin und Chloroform (Palomaa, Juvala, B. 61, 1772) oder beim Kochen mit Acetanhydrid und wenig konz. Schwefelsäure (Deulofeu, C. 1928 II, 2114). — Kp: 103,5°; Di. 0,9279; n. 1,4048 (Olsson, Ph. Ch. 125, 246). — Geschwindigkeit der Verseifung durch verd. Natronlauge bei 20°: O., Ph. Ch. 125, 246; 10° und 30°: O., Ph. Ch. 133, 236; durch verd. Salzsäure bei 25°: P., J.; durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, Ssibgatullin, B. 62, 2853. Gibt bei mehrstündigem Einleiten von Bromwasserstoff in der Kälte 1.2-Dibrompropan, 1.3-Dibrom-propan und Essigsäure (Skon, C. r. 187, 132).

Essigsäure-[β-brom-allylester], [β-Brom-allyl]-acetat $C_5H_7O_2Br = CH_3 \cdot CO_2 \cdot CH_2 \cdot CBr: CH_2$ (H 137). B. Aus 2.3-Dibrom-propen-(1) oder, neben Triacetin, aus 1.2.3-Tribrom-propan beim Erhitzen mit Kaliumacetat in Eisessig (Μεκενηκοννκι, A. 431, 238). — $Kp_{785}: 163^{\circ}; Kp_{100}: 103,5^{\circ}. D_{\bullet}^{\circ}: 1,4891; D_{\bullet}^{\infty}: 1,4568. n_{\alpha}^{\infty}: 1,4650; n_{B}^{\infty}: 1,4667; n_{B}^{\infty}: 1,4744; n_{D}^{\infty}: 1,4812.$

Essigsäure-[buten-(1)-yl-(3)-ester], [α -Methyl-allyl]-acetat, Methylvinylcarbinolacetat $C_0H_{10}O_2=CH_3\cdot CO_2\cdot CH(CH_3)\cdot CH:CH_2$. B. Aus dl-Methylvinylcarbinol beim Erhitzen mit Essigsäure (Prévost, A. ch. [10] 10, 159), mit Acetanhydrid oder, neben Crotylacetat, mit Acetanhydrid und wenig Schwefelsäure (Baudrenghien, Bl. Soc. chim. Belg. 31, 163; C. 1923 I, 191). — Kp₇₅₂: 111—112°; D_1^{∞} : 0,9024; n_2^{∞} : 1,4039 (B.).

Essigsäure- γ -butenylester, Allylcarbinolacetat $C_0H_{10}O_2=CH_3\cdot CO_2\cdot CH_3\cdot CH_1\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH$

Essigsäure-β-butenylester, Crotylacetat $C_6H_{10}O_2 = CH_2 \cdot CO_2 \cdot CH_2 \cdot CH \cdot CH \cdot CH_3$ (H 137; E I 64). B. Beim Kochen von Crotylchlorid oder Crotylbromid mit Kaliumacetat in wenig Eisessig bei Gegenwart einer Spur Kaliumjodid (ΒΑυdrenghien, Bl. Soc. chim. Belg. 31, 164; C. 1923 I, 191). Neben Methylvinylcarbinol-acetat beim Kochen von dl-Methylvinylcarbinol mit Acetanhydrid in Gegenwart von wenig Schwefelsäure (B.). Beim Kochen von Crotylalkohol mit Acetanhydrid (B.; I. G. Farbenind., D. R. P. 483781; C. 1930 I, 1366; Frdl. 16, 139). — Kp: 126—128° (I. G. Farbenind.); Kp₇₅₂: 132,5—133,5°; D[∞]₄: 0,9192; n[∞]₅: 1,4181 (B.).

Essigsäure-[β -methyl-allylester], [β -Methyl-allyl]-acetat $C_{\delta}H_{10}O_{\delta}=CH_{\delta}\cdot CO_{\delta}\cdot CH_{\delta}\cdot C(CH_{\delta}): CH_{\delta}\cdot CH$

Essigsäure - $[\gamma.\gamma$ - dibrom - β - methyl - allylester], $[\gamma.\gamma$ - Dibrom - β - methyl - allyl-acetat $C_0H_0O_3Br_2=CH_3\cdot CO_3\cdot CH_2\cdot C(CH_3):CBr_2$. B. Aus 1.1.2.3 - Tetrabrom - 2 - methyl-propan beim Erhitzen mit Kaliumacetat und Eisessig (Mereshkowski, A. 431, 128). — Kp₁₆: 114°. D_4^o : 1,7785; D_4^o : 1,7500. n_α^o : 1,5139; n_0^o : 1,5176; n_0^o : 1,5270; n_α^o : 1,5351.

Linksdrehender Essigsäure-[penten-(1)-yl-(3)-ester], [d-Äthylvinylcarbinol]-acetat $C_7H_{12}O_3=CH_3\cdot CO_2\cdot CH(C_2H_3)\cdot CH:CH_2$. $Kp_{760}:126,5-127,5^{\circ}$ (Kenyon, Snell-grove, Soc. 127, 1177). D; zwischen 22,1° (0,8805) und 100,5° (0,7975): K., Sn. $n_2^m:1,4115$. Brechungsindices für verschiedene Wellenlängen bei 20° : K., Sn. $[\alpha]_0^m:-11,14^{\circ}$ (unverdünnt). Rotationsdispersion der unverdünnten Substanz bei verschiedenen Temperaturen: K., Sn.

Essigsäure- δ -pentenylester, [γ -Vinyl-propyl]-acetat $C_7H_{12}O_2=CH_3\cdot CO_3\cdot [CH_2]_3\cdot CH:CH_2$. Flüssigkeit. Kp₇₆₂: 144—146° (Palomaa, Juvala, B. 61, 1773). D³⁰: 0,9114. — Geschwindigkeit der Verseifung durch verd. Natronlauge und verd. Salzsäure bei 25°: P., J.

Essigsäure-β-pentenylester, [γ-Äthyl-allyl]-acetat $C_7H_{12}O_2 = CH_3 \cdot CO_2 \cdot CH_3 \cdot CH$: $CH \cdot CH_2 \cdot CH_3 \cdot B$. Beim Kochen von 3-Chlor-penten-(1) mit Natriumacetat (Prevost, C.r. 187, 1053) oder mit Kaliumacetat in Eisessig bei Gegenwart von wenig Kalium-jodid (Baudrenghien, Bl. Soc. chim. Belg. 32, 339; C. 1924 I, 414). Beim Kochen von 1-Brom-penten-(2) (Bouis, C.r. 182, 789; Bl. [4] 41, 1164; A.ch. [10] 9, 423; P.) oder von 1-Chlor-penten-(2) (P.) mit Natriumacetat in Essigsäure. — Angenehm fruchtartig riechende Flüssigkeit. Kp: 149—151°; $D^{22}: 0.9019$; $n_D^{22}: 1.4219$ (Bouis).

Essigsäure-[penten-(2)-yl-(4)-ester], [$\alpha.\gamma$ -Dimethyl-allyl]-acetat $C_7H_{12}O_2 = CH_3$ · CO_3 · $CH(CH_3)$ · CH: CH· CH_3 (H 137). Kp₇₈₈: 138,5—139° (BAUDRENGHIEN, Bl. Acad. Belgique [5] 15, 56; C. 1929 I, 2966). D²⁰: 0,8962; n²⁰: 1,4163. — Einw. von Bromwasserstoff bei 100°: B.

Essigsäure - [γ -brom - β . γ -dimethyl-allyl] - ester, [γ -Brom - β . γ -dimethyl-allyl]-acetat $C_7H_{11}O_9Br=CH_3\cdot CO_2\cdot CH_2\cdot C(CH_3)$: $CBr\cdot CH_3\cdot B$. Beim Kochen von 1.2.3-Tribrom-2-methyl-butan mit Kaliumacetat in Eisessig (Mereshkowski, Bl. [4] 37, 867). — Angenehm riechende Flüssigkeit. Kp₃₀: 107—109°. D_4^o : 1,3805; D_4^o : 1,3552. n_D^o : 1,4809; n_D^o : 1,4896; n_D^o : 1,4953.

Essigsäure - trimethylvinylester, Trimethylvinylacetat $C_7H_{12}O_2 = CH_3 \cdot CO_2 \cdot C(CH_3)$: $C(CH_3)$: C(C

Essigsäure-β-hexenylester, [γ-Propyl-allyl]-acetat $C_8H_{14}O_2=CH_3\cdot CO_2\cdot CH_2\cdot CH$: $CH\cdot CH_2\cdot CH_3\cdot CH_3\cdot CH_3\cdot CH_3\cdot B$. Beim Kochen von 1-Brom-hexen-(2) mit Natriumacetat in Eisessig (Bouis, Bl. [4] 41, 1164; A. ch. [10] 9, 424). — Angenehm fruchtartig riechende Flüssigkeit. Kp: 171—173°. D¹⁸: 0,8976. n_0^{16} : 1,4282.

Essigsäure-[α, γ, γ -trimethyl-allylester], Methylisocrotylcarbinol-acetat $C_8H_{14}O_2=CH_3\cdot CO_2\cdot CH(CH_3)\cdot CH:C(CH_3)_2$. B. Bei 20-stündigem Erhitzen von 2-Methyl-penten-(2)-ol-(4) mit Acetanhydrid im Rohr auf 100° (Krestinski, B. 55, 2760; \mathcal{H} . 52, 72). Neben wenig 2-Methyl-pentandiol-(2.4)-diacetat beim Kochen von 2-Methyl-pentandiol-(2.4) mit Acetanhydrid (I. G. Farbenind., D. R. P. 483781; C. 1930 I, 1366; Frdl. 16, 141). — Pfefferminzartig riechende Flüssigkeit. Kp: 140—146° (K.), 150—155° (geringe Zers.); D¹⁵: 0,895 (I. G. Farbenind.). — Addiert Brom (I. G. Farbenind.).

Essigsäure-[2-methyl-penten-(2)-yl-(5)-ester], [2-Methyl-penten-(2)-yl-(5)]-acetat $C_8H_{14}O_2=CH_3\cdot CO_2\cdot CH_2\cdot CH_3\cdot CH:C(CH_3)_2$ (H 138). B. Beim Kochen von 5-Chlor2-methyl-penten-(2) mit Kaliumacetat in wenig Essigsäure (Bruylants, Dewael, Bl. Acad. Belgique [5] 14, 142; C. 1928 I, 2708). — Angenehm riechende Flüssigkeit. Kp: 170—171°. D_1^{o} : 0,9108. n_2^{o} : 1,4311.

Essigsäure-[γ -isopropyl-allylester], [γ -Isopropyl-allyl]-acetat $C_8H_{14}O_2=CH_3\cdot CO_2\cdot CH_2\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH_3)_2$. B. Beim Kochen von 5-Brom-2-methyl-penten-(3) mit Natriumacetat in Eisessig (Bours, A. ch. [10] 9, 424). — Angenehm fruchtartig riechende Flüssigkeit. Kp: 163°. D²⁸: 0,8990. n_2^{n} : 1,4260.

Essigsäure - [2 - methyl - penten - (4) - yl - (2) - ester], Dimethylallylcarbinol-acetat $C_8H_{14}O_8=CH_3\cdot CO_2\cdot C(CH_3)_2\cdot CH_2\cdot CH:CH_2$ (H 136). F: —94,5° (Coffey, R. 41, 654). Kp: 136—138° (Zers.); Kp₁₁: 46—48° (C.); Kp₁₀: 29,5—30,0° (Olsson, Ph. Ch. 125, 246). D₁₅: 0,8879; D₁₅: 0,8872 (C.); D₁₆: 0,8821 (O.). n₁₅: 1,4230 (C.); n₁₅: 1,4155 (O.). — Geschwindigkeit der Verseifung durch verd. Natronlauge bei 20°: O.

Rechtsdrehender Essigsäure-[hepten-(1)-yl-(3)-ester], rechtsdrehendes Butylvinylcarbinol-acetat $C_9H_{16}O_9=CH_3\cdot CO_9\cdot CH(CH:CH_2)\cdot [CH_2]_3\cdot CH_3$. $Kp_{760}:\ 165-167^{\circ}$ (Kenyon, Snellgrove, Soc. 127, 1177). $D_4^{\infty}:\ 0.8682.$ $n_D^{\infty}:\ 1.4200.$ Brechungsindices für verschiedene Wellenlängen bei 20°: K., Sn. $[\alpha]_D^{\infty}:\ +4.36^{\circ}$ (unverdünnt). Rotationsdispersion der unverdünnten Substanz bei 20°: K., Sn.

Essigsäure- β -heptenylester, [γ -Butyl-allyl]-acetat $C_0H_{16}O_2 = CH_2 \cdot CO_2 \cdot CH_3 \cdot CH$: $CH \cdot [CH_2]_2 \cdot CH_3 \cdot B$. Beim Kochen von 1-Brom-hepten-(2) mit Natriumacetat in Eisessig

(Bours, Bl. [4] 41, 1164; A. ch. [10] 9, 424). — Angenehm fruchtartig riechende Flüssigkeit. Kp: $192-194^{\circ}$ (korr.). D¹⁸: 0.8915. n_1° : 1.4314.

Essigsäure-[2-methyl-hexen-(4)-yl-(6)-ester], [γ -Isobutyl-allyl]-acetat $C_9H_{19}O_2=CH_3\cdot CO_2\cdot CH_2\cdot CH\cdot CH_2\cdot CH(CH_3)_2$. B. Beim Kochen von 6-Brom-2-methyl-hexen-(4) mit Natriumacetat in Eisessig (Bours, A. ch. [10] 9, 425). — Angenehm fruchtartig riechende Flüssigkeit. Kp: 182—1840 (korr.). D^{20} : 0,8836. n_1^{20} : 1,4280.

[8-Methyl-hepten-(2 oder 3)-yl-(7)]-acetat $C_{10}H_{18}O_3=CH_3\cdot CO_3\cdot [CH_2]_4\cdot C(CH_3)\cdot CH_5$ oder $CH_3\cdot CO_2\cdot [CH_2]_3\cdot CH:C(CH_3)\cdot CH_2\cdot CH_3$. Bei der Destillation von 3-Methyl-heptandiol-3.7-diacetat unter 500 mm Druck (Bogert, Slocum, Am. Perfumer 18, 625; C. 1925 I, 218).

C. 1925 1, 218). Essigsäure-[2.5-dimethyl-hexen-(2)-yl-(4)-ester], Isopropylisocrotylcarbinolacetat $C_{10}H_{18}O_2 = CH_3 \cdot CO_2 \cdot CH[CH(CH_3)_2] \cdot CH:C(CH_3)_2$. Vgl. dazu die Angaben von Krestinski (Ж. 52, 83; B. 55, 2768) über zwei isomere Verbindungen $C_{10}H_{18}O_2$, die beim Erhitzen von 2.5-Dimethyl-hexen-(2)-ol-(4) mit Acetanhydrid im Rohr auf 100° entstehen.

Essigsäure-[3-äthyl-hepten-(3)-yl-(2)-ester], [α -Methyl- β -äthyl- γ -propyl-allyl-acetat $C_{11}H_{20}O_2=CH_3\cdot CO_2\cdot CH(CH_3)\cdot C(C_2H_5)\cdot CH\cdot CH_2\cdot CH_2\cdot CH_3$. Flüssigkeit von angenehmem Geruch. Kp₁₁: 83—85° (GRIGNARD, VESTERMAN, Bl. [4] 37, 428).

Essigsäure - [2.6 - dimethyl - hepten - (2) - yl - (6) - ester], [2.6 - Dimethyl - hepten - (2) - yl - (6)] - scetat $C_{11}H_{20}O_2 = CH_3 \cdot CO_2 \cdot C(CH_3)_2 \cdot CH_2 \cdot CH_3 \cdot$

Essigsäure-[decen-(2)-yl-(10)-ester], [Decen-(2)-yl-(10)]-acetat $C_{12}H_{22}O_2=CH_3\cdot CO_3\cdot [CH_2]_7\cdot CH:CH\cdot CH_3$. Flüssigkeit. Kp₁₈: 126—127° (Churr, Mitarb., Helv. 10, 187). D¹⁵: 0,887.

Essigsäure - [2.6 - dimethyl - octen - (1 und 2) - yl - (6) - ester], Dihydrolinalylacetat $C_{12}H_{22}O_3 = CH_3 \cdot CO_2 \cdot C(CH_3)(C_2H_5) \cdot [CH_3]_5 \cdot C(CH_3): CH_2$ und $CH_3 \cdot CO_2 \cdot C(CH_3)(C_2H_5) \cdot CH_2 \cdot CH_3 \cdot CH: C(CH_3)_2$ (vgl. E I 65). Ziemlich bewegliche Flüssigkeit von angenehmem blumenartigem Geruch. Kp_{18} : 105—107°; Kp_{788} : 214° (Escourrou, Bl. [4] 39, 1127). D^{18} : 0,8841; n_0^n : 1,4461.

Essigsäurecitronellylester, Citronellylacetat $C_{13}H_{22}O_2 = CH_2 \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot$

Essignäure- ω -undecenylester, ω -Undecenylectat $C_{13}H_{24}O_2 = CH_3 \cdot CO_3 \cdot [CH_2]_0 \cdot CH: CH_2$. Flüssigkeit. Kp₇: 125—127° (Churt, Mitarb., Helv. 9, 1074). D^{15} : 0,8858 (Ch.). Gibt bei der Oxydation mit Chromsäure in siedendem Eisessig oder besser mit Permanganat in Eisessig unterhalb der Siedetemperatur ω -Acetoxy-caprinsäure (Grün, Wirth, B. 55, 2210).

Essigsäure-[undecen-(2)-yl-(11)-ester], [Undecen-(2)-yl-(11)]-acetat $C_{13}H_{24}O_2=CH_3\cdot CO_3\cdot [CH_2]_8\cdot CH\cdot CH_2$. Angenehm riechende Flüssigkeit. Kp₇: 127—128° (CHUIT, Mitarb., Helv. 9, 1086). D^{15} : 0,8841.

Essigsäure-[2.6-dimethyl-nonen-(2)-yl-(6)-ester], [2.6-Dimethyl-nonen-(2)-yl-(6)]-acetat $C_{13}H_{24}O_2=CH_3\cdot CH_2\cdot CH_3\cdot C(CH_3)\cdot (O\cdot CO\cdot CH_3)\cdot CH_2\cdot CH_2\cdot CH:C(CH_3)_2$. Flüssigkeit von angenehmem citronenartigem Geruch. Kp₁₃: 112—113° (Escourrou, Bl. [4] 39, 1129). D¹⁶: 0,8863. n_0^{10} : 1,4525.

Essigsäure - [2.6 - dimethyl - decen - (2) - yl - (6) - ester], [2.6 - Dimethyl - decen - (2) - yl - (6)] - acetat $C_{14}H_{26}O_3 = CH_3 \cdot CH_2 \cdot CH_3 \cdot C(CH_3) \cdot (O \cdot CO \cdot CH_3) \cdot CH_2 \cdot CH_3 \cdot$

Essigsäure- ω -tridecenylester, ω -Tridecenylectat $C_{15}H_{29}O_2=CH_3\cdot CO_2\cdot [CH_2]_{11}\cdot CH:CH_2$. Flüssigkeit. Kp₀: 154—155° (CHurr, Mitarb., *Helv.* 10, 119). D¹⁵: 0,8795.

Essigsäure-[2.6.10-trimethyl-dodecen-(10)-yl-(12)-ester], Tetrahydrofarnesylacetat $C_{17}H_{39}O_9 = CH_3 \cdot CO_2 \cdot CH_3 \cdot CH : C(CH_3) \cdot [CH_2]_3 \cdot CH(CH_3) \cdot [CH_2]_3 \cdot CH(CH_3)_2$. B. Bei längerem Erhitzen von Tetrahydronerolidylacetat mit Acetanhydrid auf ca. 100° (F. G. FISCHER, LÖWENBERG, A. 475, 192). — Kp_{11} : 164—167°.

¹⁾ Zur Konstitution vgl. die Ausführungen bei Citronellol (E II 1, 8. 495).

Essigsäure-tetrahydronerolidylester, Tetrahydronerolidylacetat $C_{17}H_{38}O_3 = CH_2:CH\cdot C(CH_3)(O\cdot CO\cdot CH_3)\cdot [CH_2]_3\cdot CH(CH_3)\cdot [CH_2]_3\cdot CH(CH_3)_2$. Kp₁₁: 146—153° (F. G. FISCHER, LÖWENBERG, A. 475, 192). — Wird bei längerem Erhitzen auf 150° nicht verändert. Liefert bei längerem Erhitzen mit Acetanhydrid auf ca. 100° Tetrahydrofarnesylacetat (S. 152) und Tetrahydrofarnesen.

Essigsäureoleylester, Oleylacetat $C_{20}H_{38}O_2 = CH_3 \cdot CO_2 \cdot [CH_2]_8 \cdot CH \cdot CH \cdot [CH_2]_7 \cdot CH_3$. Schwach esterartig riechendes Ol (Helferich, Schäfer, B. 57, 1914). Erstarrt nicht bei -15° (Toyama, Ch. Umschau Fette 31, 14). Kp: ca. 340° (unkorr.); Kp₃₀: 238,5—239°; Kp₁₅: 219°; Kp₁₀: 208,4° (T.); Kp₁₄: 216—220° (H., Sch.); Kp₁₂: 215—218° (Sigmund, Haas, M. 50, 362); Kp₃: 200—203° (André, François, C. r. 165, 280). D¹⁵: 0,8738—0,8749; D²⁶: 0,8704—0,8715; D²⁶: 0,8575 (T.); D¹⁵: 0,8757 (H., Sch.). n¹⁵: 1,4533—1,4541; n²⁶: 1,4515 bis 1,4520; n²⁶: 1,4437 (T.); n¹⁵⁵: 1,4511 (H., Sch.). Leicht löslich in organischen Lösungsmitteln (T.). — Liefert bei der Oxydation mit Permanganat in siedendem Eisessig Pelargonsäure und θ -Acetoxy-pelargonsäure (T.). Beim Einleiten von Ozon in eine Lösung von Oleylacetat in Eisessig und nachfolgender Reduktion des entstandenen Ozonids mit Zinkstaub in Äther + Essigsäure wird ω -Acetoxy-nonylaldehyd gebildet (H., Sch.).

Essigsäureelaidylester, Elaidylacetat $C_{20}H_{36}O_2=CH_3\cdot CO_3\cdot [CH_2]_8\cdot CH\cdot CH\cdot [CH_2]_7\cdot CH_3$. Flüssigkeit. Erstarrt bei Eiskühlung zu einer krystallinischen Masse. Kp: ca. 340° (unkorr.); Kp₃₀: 238—239°; Kp₁₅: 219,5°; Kp₁₀: 207,5° (Toyama, Ch. Umschau Fette 31, 16; C. 1924 I, 1216). — D_4^{15} : 0,8726; D_2^{m} : 0,8689; D_4^{m} : 0,8550. n_5^{16} : 1,4535; n_5^{16} : 1,4514; n_5^{6} : 1,4430.

Essigsäure- β -butinylester, [γ -Methyl-propargyl]-acetat $C_6H_8O_2=CH_3\cdot CO_3\cdot CH_2\cdot C:C\cdot CH_8$. Kp: 156—158° (Yvox, C.r. 180, 749). D³°: 0,995. n⁵°: 1,434. — Zerfällt bei Einw. von Barytwasser quantitativ in Butin-(2)-ol-(4) und Essigsäure.

Essigsäure-[2-methyl-butin-(3)-yl-(2)-ester], Dimethylacetylenylcarbinolacetat $C_7H_{10}O_2=CH_3\cdot CO_2\cdot C(CH_3)_2\cdot C:CH$. Wurde nicht rein erhalten. — Öl. Kp: 133° bis 135° (Scheibler, A. Fischer, B. 55, 2912). — Reduziert sodaalkalische Permanganat-Lösung. Gibt mit ammoniakalischer Silber-Lösung einen Niederschlag.

Essigsäure - [2.5 - dimethyl - hexadien - (2.4) - yl - (1) - ester], [2.5 - Dimethyl - hexadien - (2.4) - yl - (1)] - acetat $C_{10}H_{16}O_2 = CH_3 \cdot CO_2 \cdot CH_2 \cdot C(CH_3) \cdot CH \cdot CH \cdot C(CH_3)_2$. B. Neben anderen Produkten bei der Umsetzung von 1-Brom-2.5 - dimethyl - hexadien - (2.4) mit Natrium-acetat oder Silberacetat (Prévost, C. r. 184, 1562; A. ch. [10] 10, 430). — Riecht nach Geranylacetat. Kp₁₄: 103—105°; Kp₃: 77—79°. D₄": 0,9597. n₁": 1,4890. — Verharzt beim Aufbewahren.

Essigsäure-[2.2.3-trimethyl-pentin-(4)-yl-(3)-ester], Methyl-tert.-butyl-acetylenyl-carbinol-acetat $C_{10}H_{16}O_2 = CH: C\cdot C(CH_3)(O\cdot CO\cdot CH_3)\cdot C(CH_3)_3$. Kp: 156° bis 159° (Sung, A. ch. [10] 1, 364).

 $\textbf{Essigs\"{a}ure-[4-\"{a}thinyl-heptyl-(4)-ester], Dipropylacetylenylcarbinol-acetat $C_{11}H_{18}O_2=(CH_3\cdot CH_2\cdot CH_2)_2C(O\cdot CO\cdot CH_3)\cdot C:CH.$$ Kp_{10}:82-83^o\ (Sung,\ A.\ ch.\ [10]\ 1,\ 367).$$

Essigsäure-geranylester, Geranylacetat C₁₂H₂₀O₂ = (CH₃)₂C:CH·CH₂·CH₂·C(CH₃): CH·CH₂·C·CO·CH₃·1) (H 140; E I 65). B. Beim Erhitzen von Geraniol mit Acetanhydrid und Natriumacetat auf 140—150° (O'Donoghue, Drum, Ryan, Scient. Pr. roy. Dublin Soc. [N. S.] 19, 120; C. 1929 II. 1981). Bei der Umsetzung von Geranylbromid mit Natriumacetat (Prévost, A. ch. [10] 10, 168). — Flüssigkeit von angenehmem Geruch. Kp₁₅: 127° bis 129° (O'Do., Dr., R.); Kp₁₄: 127,8° (A. MÜLLER, B. 54, 1471); Kp₁₂: 115° (Pr.); Kp₁₁: 98° (Tromp, R. 41, 285). D¹⁵: 0,9123 (M.); D¹⁵: 0,9163; D²⁵: 0,9080 (T.); D^{16,5}: 0,907 (O'Do., Dr., R.); D²⁷: 0,9004 (Pr.). n^{15,3}: 1,4637 (O'Do., Dr., R.); n²⁶: 1,4624 (T.), 1,4605—1,4625 (Kaufmann, Barich, Ar. 1929, 13); n²⁶: 1,4500 (Pr.). Ultraviolettes Absorptionspektrum in Alkohol (Hartley-Baly-Verfahren): A. MÜLLER, B. 54, 1467; Purvis, Pr. Cambridge phil. Soc. 23, 589; C. 1927 II, 379. — Liefert bei der Oxydation mit Permanganat in wasser-altigem Aceton unterhalb + 5° x.x.-Dioxy-x.x-oxido-geranylacetat (Kötz, Steche, J. pr. [2] 107, 207). — Verhalten bei der Bestimmung der Bromzahl und der Rhodanzahl: Kau., B., Ar. 1929, 13, 250.

Essigsäure - nerylester, Nerylacetat $C_{12}H_{20}O_2 = (CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot C(CH_3):CH\cdot CH_2\cdot O\cdot CO\cdot CH_3\cdot 1)$ (H 140; E I 65). $D_{15}^{15}:0.903-0.907;$ $n_{11}^{\infty}:1.4510-1.4540$ (Reclare. Disch. Parf.-Zig. 15, 72; C. 1929 I, 2249). Löslich in ca. 5—6 Volumen 70% igem Alkohol (R.). — Besitzt einen blumigen und rosenartigen Geruch (R., Laboratorium Dauphin, C. 1927 I, 3038).

Essigsäure-linalylester, Linalylacetat $C_{12}H_{20}O_2 = (CH_3)_2C:CH\cdot CH_2\cdot C(H_2)\cdot CH_3\cdot CH_2\cdot CH_3\cdot CH_$

¹⁾ Zur Konstitution vgl. die Ausführungen bei Geraniol (E II 1, S. 508).

(Volmar, Jermstad, C. r. 186, 518); im Bergamottöl (La Face, Riechstoffind. 1, 87; C. 1926 II, 3120); im äther. Öl von Jasminum odoratissimum L. (Ber. Schimmel 1919, 29; C. 1920 II, 452); im äther. Öl von Mentha aquatica L. (Kermers, J. biol. Chem. 52, 439); im griechischen Lavendelöl (Gasopoulos, Ar. 1927, 43). — Zur technischen Darstellung aus Linalool und Acetanhydrid bzw. Acetylchlorid vgl. S. P. Schotz, Synthetic Organic Compounds [London 1925], S. 81. — Für ein nicht ganz reines Produkt fanden Kaufmann, Kjelsberg (Riechstoffind. 2, 170; C. 1927 II, 2359) folgende Werte: D¹⁸: 0,906—0,907; nⁿ₅: 1,450—1,451; [a]ⁿ₅: —7,7° bis —8,3°. — Keimtötende Wirkung: Penfold, Grant, J. Pr. Soc. N. S. Wales 58, 120; C. 1926 I, 3634. — Farbreaktionen mit Aldehyden und Saccharose in alkoh. Schwefelsäure: Erkert, P. C. H. 68, 582; C. 1927 II, 2522. Verhalten bei der Bestimmung der Bromzahl: Braun, Dtsch. Parf.-Ztg. 15, 108; C. 1929 I, 2831; der Bromzahl und der Rhodanzahl: Kau., Barich, Ar. 1929, 19.

Essigsäure-[2.6-dimethyl-octadien-(2.7)-yl-(8)-ester], enol-Citronellal-acetat C₁₂H₂₀O₂ = (CH₃)₂C:CH·CH₂·CH₂·CH₂·CH:CH·C·CO·CH₃·1) (H 140). B. Zur Bildung aus Citronellal und Acetanhydrid in Gegenwart von Natriumacetat vgl. DE JONG, Versl. Akad. Amsterdam 27, 288; C. 1922 II, 949). — Liefert bei der Anlagerung von Wasser und nachfolgenden Verseifung mit schwachen Alkalien Oxydihydrocitronellal (E II 1, 884) (VERLEY, Bl. [4] 43, 850).

Essigsäure - [2.6.10 - trimethyl - dodecin - (11) - yl - (10) - ester], [2.6.10 - Trimethyl-dodecin - (11) - yl - (10)] - acetat $C_{17}H_{30}O_2 = CH : C \cdot C(CH_3)(O \cdot CO \cdot CH_3) \cdot [CH_2]_2 \cdot CH(CH_2) \cdot [CH_2]_3 \cdot CH(CH_3)_2$. $Kp_{11}: 152-152,5^{\circ}$ (F. G. Fischer, Löwenberg, A. 475, 191).

Essigsäure - [2.6 - dimethyl - octatrien - (2.6.7) - yl - (8) - ester] (?), enol-Citral-acetat $C_{12}H_{18}O_2 = (CH_3)_2C:CH \cdot CH_2 \cdot C(CH_3):C:CH \cdot O \cdot CO \cdot CH_2$ (?) (E I 66). B. Beim Erhitzen von Citral mit Acetanhydrid auf 150° (Horiuchi, Mem. Coll. Sci. Kyoto [A] 11, 191; C. 1928 II, 1326).

Essigsäurefarnesylester, Farnesylacetat $C_{17}H_{29}O_{3}=CH_{3}\cdot CO_{3}\cdot CH_{4}\cdot CH:C(CH_{3})\cdot CH_{2}\cdot CH_{2}\cdot CH:C(CH_{3})\cdot CH_{2}\cdot CH:C(CH_{3})\cdot CH:C(CH_{3})\cdot CH:C(CH_{3})$ (E I 66). Kp₁₀: 167—169° (F. G. Fischer, A. 464, 88). — Liefert bei der Hydrierung mit Wasserstoff und Palladium-Calciumcarbonat und darauffolgender Verseifung durch Erwärmen mit methylalkoholischer Alkalilauge Hexahydrofarnesol (E II 1, 466) (als Hauptprodukt) und Farnesan (E II 1, 137).

Essigsäure-[tris-(tert.-butyl-acetylenyl)-methyl-ester], Tris-[tert.-butyl-acetylenyl]-carbinol-acetat $C_{21}H_{30}O_2=[(CH_3)_3C\cdot C:C]_2C\cdot O\cdot CO\cdot CH_3$. B. Bei der Einw. von Acetanhydrid auf die Kaliumverbindung des Tris-[tert.-butyl-acetylenyl]-carbinols in Petroläther oder beim Kochen des niedrigerschmelzenden Tris-[tert.-butyl-acetylenyl]-brommethans mit Silberacetat in Benzol (Salzberg, Marvel, Am. Soc. 50, 1742). — Krystalle (aus Aceton). F: 144,5—145,5° (korr.).

Acetate von Polyoxy-Verbindungen.

Äthylenglykol·monoacetat, $[\beta$ -Oxy-äthyl]-acetat $C_4H_8O_3=CH_3\cdot CO\cdot O\cdot CH_4\cdot CH_1\cdot OH$ (H 141; E I 66). B. Beim Kochen eines Gemischs aus 166 Tln. Athylenchlorid, 330 Tln. Kaliumacetat, 500 Tln. Glycerin und 30 Tln. Wasser (Bayer & Co., D. R. P. 404999; C. 1925 I, 1529; Frdl. 14, 156). Durch Erhitzen von Athylenglykol und Acetamid in Gegenwart von Zinkchlorid unter 200 mm Druck (Imperial Chemical Industries Ltd., GHBON, PAYMAN, C. 1929 II, 351). — Oberflächenspannung einer Lösung von Athylenglykol-monoacetat in Wasser bei 18°: Rengvist, Skand. Arch. Physiol. 40 [1920], 123. Lösungsvermögen für Nitro- und Acetylcellulose, Harze und Gummen: Davidson, Ind. Eng. Chem. 18, 671; C. 1926 II, 1465. — Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: E. Gross in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 215. — Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 154, 230; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 174. Anwendung als Lösungsmittel im Zeugdruck: Höchster Farbw., D. R. P. 391007; C. 1924 I, 2012; Frdl. 14, 1123.

Athylenglykol-methyläther-acetat, [β-Methoxy-äthyl]-acetat, 1-Methoxy-2-acetoxy-äthan C₅H₁₀O₃ = CH₂·CO·O·CH₂·CH₃·O·CH₃ (H 141; E I 66). B. Bei der Einw. von überschüssigem Diazomethan auf eine Lösung von Äthylenglykol-monoacetat in Alkohol (Nierenstein, B. 60, 1821). — Liefert mit alkoh. Ammoniak auf dem Wasserbad Äthylenglykol-monomethyläther (N.). — Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: E. Gross in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 217. — Zur Verwendung als technisches Lösungsmittel unter dem Namen Methylcellosolveacetat vgl. Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 155; H. Gramm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 174.

¹⁾ Zur Konstitution vgl. die Ausführungen bei Citronellal (E H 1, 8. 803).

Syst. Nr. 159]

Äthylenglykol-äthyläther-acetat, $[\beta$ -Äthoxy-äthyl]-acetat, 1-Äthoxy-2-acetoxy-äthan $C_6H_{12}O_3=CH_3\cdot CO\cdot O\cdot CH_2\cdot CH_2\cdot O\cdot C_2H_5$ (H 141; E I 66). Elektrische Leitfähigkeit: Keyes, Swann, Hoerr, Trans. am. electroch. Soc. 54, 133; C. 1928 II, 2106. Lösungsvermögen für Nitro- und Acetylcellulose, Harze und Gummen: Davidson, Ind. Eng. Chem. 18, 670; C. 1926 II, 1465. — Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: E. Gross in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 218. Zur Verwendung als technisches Lösungsmittel unter dem Namen Cellosolveacetat vgl. Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 158, 230; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 175.

β-Oxy-β'-acetoxy-diäthyläther, Diäthylenglykol-monoacetat $C_6H_{12}O_4=CH_2$ ·CO·O·CH₂·CH₂·O·CH₂·CH₂·OH. Lösungsvermögen für Nitro- und Acetylcellulose, Harze und Gummen: Davidson, *Ind. Eng. Chem.* 18, 671; *C.* 1926 II, 1465. Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 161, 230.

β-Äthoxy-β'-acetoxy-diäthyläther, Diäthylenglykol-äthyläther-acetat $C_8H_{18}O_4$ = $CH_3 \cdot CO \cdot O \cdot CH_2 \cdot CH_2 \cdot O \cdot CH_2 \cdot CH_2 \cdot O \cdot C_2H_5$. Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 162.

 $\beta.\beta'$ -Diacetoxy-diäthyläther, Diäthylenglykol-diacetat $C_8H_{14}O_5=(CH_3\cdot CO\cdot O\cdot CH_3\cdot CH_2)_2O$ (H 141). B. Beim Erhitzen von $\beta.\beta'$ -Dichlor-diäthyläther mit Natriumacetat in Gegenwart von wenig Diäthylamin auf 190° (Cretcher, Pittenger, Am. Soc. 47, 165). Neben wenig Glykoldiacetat beim Behandeln von Diäthylendioxyd mit Acetanhydrid bei Gegenwart von wasserfreiem Eisen(III)-chlorid (Macleod, Soc. 1928, 3092). — Viscoses Öl von süßlichem Geruch. Kp_{26} : 148° (kort.) (Cr., P.). D_{15}^{15} : 1,1078 (Cr., P.).

Äthylenglykol-diacetat, Glykoldiacetat, Äthylendiacetat C₆H₁₀O₄ = CH₃·CO·O·CH₃·CH₂·O·CO·CH₃ (H 142; E I 66). B. Durch Erhitzen von Äthylenchlorid mit 1,7 Tln. wasserfreiem Natriumacetat auf 230° unter Anwendung von fertigem Glykoldiacetat åls Lösungsmittel (K. H. MEYER, D. R. P. 332677; C. 1921 II, 646; Frdl. 13, 64). Beim Kochen von Glykolmonoacetat mit Äthylenchlorid und wasserfreiem Kaliumacetat (BAYER & Co., D. R. P. 404999; C. 1925 I, 1529; Frdl. 14, 156). Neben anderen Produkten beim Erhitzen von polymerem Äthylenmalonat (C₅H₅O₄)_X (Syst. Nr. 171) im Vakuum auf 205° bis 240° (Tilitschelen), X. 58, 460; C. 1927 I, 440). In geringer Menge neben β.β΄-Diacetoxy-diāthylāther beim Behandeln von Diāthylendioxyd mit Acetanhydrid bei Gegenwart von wasserfreiem Eisen(III)-chlorid (Macleod, Soc. 1928, 3092). — Bewegliche Flüssigkeit von schwachem, charakteristischem Geruch. F: —31 ± 1°; zeigt leicht Unterkühlungen erscheinungen; es wurden Unterkühlungen bis auf —125° beobachtet (Taylor, Rinkenbach, Am. Soc. 48, 1306). Kp₇₆₀: 190,2° (Tax., R.). Dampfdruck: Davidson, Ind. Eng. Chem. 18, 672; C. 1926 II, 1465. Dampfdruck zwischen 100,0° (26 mm) und 190,0° (755 mm): Tax., R. Verdampfungsgeschwindigkeit: D. D'₁₅ zwischen 2,6° (1,1239) und 20.0° (1,1040): Tax., R. D²⁵: 1,100 (R., Ind. Eng. Chem. 18, 1196; C. 1927 II, 409); D²⁵: 1,1028 (Tl.). Viscosität bei 23,6°: 0,0253 g/cmsec (R.; vgl. a. Vorländer, Walter, Ph. Ch. 118, 16). n⁵: 1,4150 (Tax., R.). n⁵: 1,4188 (Tl.). Mischbar mit Aceton, Schwefelkohlenstoff, Tetrachlorstoff, Chloroform, Methanol, Eisessig, Benzol und Dichlorāthylāther; nicht mischbar mit Glycerin (Tax., R.). n⁵: 1,2488 (Tl.). Mischbar mit Aceton, Schwefelkohlenstoff, Tetrachlorstoff, Chloroform, Methanol, Eisessig, Benzol und Dichlorāthylāther; nicht mischbar mit Glycerin (Tax., R.). n⁵: 1,4188 (Tl.). Mischbar mit Aceton, Schwefelkohlenstoff, Tetrachlorschoff, Tetrachloreschiedener Sprengstoffe in Äthylenglykol-diacetat: Tax., R. Lösungsvermögen für Nitround Acetyleel

Monothioäthylenglykol-S-butyläther-O-acetat, [β -Butylmercapto-äthyl]-acetat, [β -Acetoxy-äthyl]-butyl-sulfid $C_8H_{16}O_2S=CH_3\cdot CO\cdot O\cdot CH_2\cdot CH_2\cdot S\cdot [CH_2]_3\cdot CH_3\cdot B$. Aus β -Butylmercapto-āthylalkohol und Acetylchlorid (Whitner, Reid, Am. Soc. 43, 637). — Kp₄: 84°. D_0^* : 1,0043; D_0^* : 0,9875. D_0^* : 1,4648.

Monothioäthylenglykol-S-allyläther-O-acetat, $[\beta$ -Allylmercapto-äthyl]-acetat, $[\beta$ -Acetoxy-äthyl]-allyl-sulfid $C_7H_{12}O_3S=CH_3\cdot CO\cdot O\cdot CH_3\cdot CH_2\cdot S\cdot CH_3\cdot CH\cdot CH_2\cdot B$. Beim Erwärmen von $[\beta$ -Oxy-äthyl]-allyl-sulfid mit Acetanhydrid und wenig konz. Schwefelsäure oder aus $[\beta$ -Chlor-äthyl]-allyl-sulfid beim Behandeln mit Silberacetat in 86%igem Alkohol auf dem Wasserbad (Scherlin, Wassilewski, J. pr. [2] 121, 176; \mathcal{K} . 60, 1632). — Angenehm fruchtartig riechende Flüssigkeit. $Kp_{12}:95^{\circ}$. $D_{13}^{\circ}:1,0469$. $n_{D}:1,4824$. Unlödich in Wasser, leicht löslich in Äther und Alkohol. — Entfärbt Brom in Schwefelkohlenstoff sofort.

β-Oxy-β'-acetoxy-diäthylsulfid, Thiodiglykol-monoacetat $C_eH_{19}O_9S=CH_2\cdot CO\cdot CH_2\cdot CH_3\cdot S\cdot CH_3\cdot CH_3\cdot OH$. Anwendung als Lösungsmittel im Zeugdruck: Höchster Farbw., D. R. P. 391007; C. 1924 I, 2012; Frdl. 14, 1123.

β.β'- Diacetoxy - diäthylsulfid, Thiodiglykol - diacetat $C_8H_{14}O_4S = (CH_3 \cdot CO \cdot O \cdot CH_3 \cdot CH_3)_2S$. B. Aus β.β'-Dichlor-diāthylsulfid und wasserfreiem Natriumacetat in Eiseasig auf dem Wasserbad (Helf-erich, Reid), Am. Soc. 42, 1229). — Erstart nicht bei — 20°. Kp₃₀: 155—156°; D³⁰: 1,132; n³⁰. 1,4720 (H., Reid). — Verseifbarkeit durch Wasser: H., Reid; Rona, Petow, Bio.Z. 111, 141. — Bewirkt Rötung und Schwellung der Haut (Lawson, Reid), Am. Soc. 47, 2827). — Anwendung als Lösungsmittel im Zeugdruck: Höchster Farbw., D. R. P. 391007; C. 1924 I, 2012; Fröl. 14, 1123.

 $\beta.\beta'$ -Bis-[β -acetoxy-äthylmercapto]-diäthylsulfid $C_{12}H_{22}O_4S_2=(CH_3\cdot CO\cdot O\cdot CH_2\cdot CH_2\cdot S\cdot CH_2\cdot CH_3)_2S$. Krystalle (aus Petroläther). F: 51° (Bennett, Whincop, Soc. 119, 1863).

Propylenglykol-diacetat, Propylendiacetat $C_7H_{12}O_4 = CH_3 \cdot CO \cdot C \cdot CH(CH_3) \cdot CH_2 \cdot CO \cdot CO \cdot CH_3$ (H 142). Geschwindigkeit der Verseifung durch Bromwasserstoffsäure in Eisessig bei 18—216: Teonow, SSIEGATULLIN, B. 62, 2853.

 $\gamma.\gamma.\gamma$ -Trichlor - propylenglykol - diacetat, 8.8.8 - Trichlor - 1.2 - diacetoxy - propan $C_7H_9O_4Cl_3=CH_3\cdot CO\cdot O\cdot CH(CCl_3)\cdot CH_2\cdot O\cdot CO\cdot CH_8$. B. Aus $\gamma.\gamma.\gamma$ -Trichlor - propylenoxyd und Acetanhydrid in Gegenwart von wenig Eisen(III)-chlorid anfangs unter Kühlung, später auf dem Wasserbad (Arndt, Eistert, B. 61, 1122). — Fast geruchloses Öl. Kp₁₆: 126—128°.

γ-Jod-propylenglykol-β-methyläther-α-acetat, 3-Jod-2-methoxy-1-acetoxy-propan $C_0H_{11}O_2I=CH_2\cdot CO\cdot O\cdot CH_2\cdot CH(CH_2I)\cdot O\cdot CH_3$. B. Beim Kochen von β-Methoxy-acetoxy-propylquecksilberbromid mit Jod in Essigester (SCHOELLER, D. R. P. 420447; C. 1926 I, 2246; Frdl. 15, 1450). — Farbloses Öl. Kp_{1,5}: 82—83°. Unlöslich in Wasser, löslich in organischen Lösungsmitteln. — Liefert beim Erhitzen mit Diäthylamin auf 100° Diāthyl- $[\beta-methoxy-\gamma-acetoxy-propyl]$ -amin.

Trimethylenglykol-monoacetat, 1-Oxy-3-acetoxy-propan $C_6H_{10}O_3=CH_3\cdot CO\cdot O\cdot CH_3\cdot CH_$

Trimethylenglykol-äthyläther-acetat, 1-Äthoxy-8-acetoxy-propan $C_7H_{14}O_3 = CH_3 \cdot CO \cdot O \cdot CH_3 \cdot CH_3 \cdot CO \cdot C_2H_5$ (E I 67). Oberflächenspannung einer Lösung von Trimethylenglykol-äthyläther-acetat in Wasser bei 18°: Rengvist, Skand. Arch. Physiol. 40 [1920], 123.

Bis-[γ -acetoxy-propyl]-äther, γ - γ' -Diacetoxy-dipropyläther, Diacetat des "Ditrimethylenglykoläthers" $C_{10}H_{18}O_5=(CH_2\cdot CO\cdot O\cdot CH_2\cdot CH_2\cdot CH_3)_2O$. Fast geruchlose, sirupöse Flüssigkeit. Kp: 265—267° (geringe Zersetzung); Kp₃₈—54: 181—183° (ROJAHN, B. 54, 3119). Dig. 1,0864.

β-Chlor-β-nitro-trimethylenglykol-monoacetat, 2-Chlor-2-nitro-1-oxy-3-acetoxy-propan $C_5H_8O_5NCl=CH_3\cdot CO\cdot O\cdot CH_3\cdot CCl(NO_3)\cdot CH_3\cdot OH$. B. Beim Schütteln einer Lösung von Essigsäure-[β-chlor-β-nitro-äthylester] in Äther mit überschüssiger Natriumacetat enthaltender Formalin-Lösung (E. SCHMIDT, RUTZ, TRÄNEL, B. 61, 475). — Stechend riechendes Öl. Kp₁₀: 146—147° (korr.); Kp_{0,4}: 122—123° (korr.); Kp_{0,03}: 107—108° (korr.). Erstart beim Aufbewahren zu einer Krystallmasse. D_4^m : 1,4066. n_5^m : 1,4650. Fast unlöslich in Wasser.

β-Chlor-β-nitro-trimethylenglykol-diacetat, 2-Chlor-2-nitro-1.3-diacetoxy-propan $C_7H_{10}O_6NCl = (CH_9 \cdot CO \cdot C \cdot CH_9)_8CCl \cdot NO_9$. B. Bei der Einw. von 1 Mol Acetyl-chlorid auf β-Chlor-β-nitro-trimethylenglykol-monoacetat oder von 2 Mol Acetylchlorid auf β-Chlor-β-nitro-trimethylenglykol in Chloroform (E. SCHMIDT, RUTZ, TRÉNEL, B. 61, 476). — Stechend riechende Flüssigkeit. Krystallisiert beim Aufbewahren. Kp₁₀: 139—140° (korr.). D_4^{m} : 1,3400. n_2^{m} : 1,4512. Fast unlöslich in Wasser.

a-Äthyl-äthylenglykol-diacetat, 1.2-Diacetoxy-butan, 1.2-Butylenglykol-diacetat $C_2H_{14}O_4=CH_3\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot CH_2)\cdot CH_3\cdot CH_3\cdot CH_3\cdot B$. Neben 2-Brom-buten-(1) beim Erhitzen von 1.2-Dibrom-butan mit wasserfreiem Kaliumacetat und wenig Eisessig zum Sieden (DE MONTMOLLIM, MATILE, Helv. 7, 110). — Flüssigkeit von angenehmem Geruch. Kp: 196—199°. — Gibt beim Sättigen mit Bromwasserstoff Brommethyl-äthylcarbinolacetat.

157

α-Methyl-trimethylenglykol-α-methyläther-α'-acetat, 3-Methoxy-1-acetoxybutan $C_7H_{14}O_3=CH_3\cdot CO\cdot O\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot O\cdot CH_3$. Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: E. Gross in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 219. — Zur Verwendung als technisches Lösungsmittel unter dem Namen Butoxyl vgl. Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 162; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 175.

α-Methyl-trimethylenglykol-diacetat, 1.3-Diacetoxy-butan, 1.3-Butylenglykol-diacetat $C_8H_{14}O_4 = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot O \cdot CO \cdot CH_3$ (H 143). Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 160, 230.

Tetramethylenglykol-äthyläther-acetat, 1-Äthoxy-4-acetoxy-butan $C_8H_{16}O_8=CH_3\cdot CO\cdot O\cdot [CH_2]_4\cdot O\cdot C_2H_5$. B. Aus Tetramethylenglykol-monoäthyläther und Acetylchlorid (Dewael, Bl. Soc. chim. Belg. 35, 302; C. 1927 I, 55). — Angenehm riechende Flüssigkeit. Kp₇₆₆: 192—193°. D₄°: 0,9405. n₀°: 1,4161. Unlöslich in Wasser.

Tetramethylenglykol-diacetat, 1.4-Diacetoxy-butan $C_8H_{14}O_4 = CH_3 \cdot CO \cdot O \cdot [CH_2]_4 \cdot O \cdot CO \cdot CH_3$ (H 143; E I 67). B. Aus Tetramethylendibromid und Kaliumacetat in 90% igem Alkohol auf dem Wasserbad (Hill, Hibbert, Am. Soc. 45, 3130).

 $\alpha.\alpha'$ -Dimethyl-äthylenglykol-diacetat, 2.3-Diacetoxy-butan, 2.3-Butylenglykol-diacetat $C_8H_{14}O_4=[CH_3\cdot CO\cdot C\cdot CH(CH_3)-]_2$ (H 143; E I 68). Kp: 190—191° (ВÖESEKEN, Сонем, R. 47, 840).

α-Propyl-äthylenglykol-diacetat, 1.2-Diacetoxy-pentan, 1.2-n-Amylenglykoldiacetat $C_9H_{16}O_4=CH_3\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot CH_3)\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3$. Kp_{748} : 219—220°; Kp_2 : 103—104° (Καυγμανν, Αραμκ, Απ. Soc. 45, 3041). D_{20}^{20} : 1,0148. n_{20}^{20} : 1,4202.

α-Äthyl-trimethylenglykol-α-acetat, 1-Oxy-3-acetoxy-pentan C₇H₁₄O₃ = CH₃·CO·O·CH(C₂H₅)·CH₂·CH·OH. B. Beim Erhitzen von 1-Chlor-pentanol-(3) mit Kaliumacetat auf 160—170° (FOURNEAU, RAMART-LUCAS, Bl. [4] 27, 555). — Kp₁₂: 113—114°. — Liefert mit Thionylchlorid in Gegenwart von Pyridin 1-Chlor-3-acetoxy-pentan.

Pentamethylenglykol-diacetat, 1.5-Diacetoxy-pentan, 1.5-n-Amylenglykoldiacetat $C_9H_{16}O_4=CH_3\cdot CO\cdot O\cdot CH_3\cdot [CH_2]_3\cdot CH_2\cdot O\cdot CO\cdot CH_3$ (H 143; E I 68). B. Beim Kochen von Pentandiol-(1.5) mit Acetanhydrid (Kaufmann, Adams, Am. Soc. 45, 3041). Beim Erhitzen von Pentamethylendibromid mit Silberacetat und Eisessig auf dem Wasserbad (Franke, Lieben, M. 43, 229). — Flüssigkeit. Kp₇₄₈: 241,5—243,5° (K., A.); Kp₂₈: 136—138° (Fr., L.); Kp₃: 122—123° (K., A.). D₂₀: 1,0296 (K., A.). n₁°: 1,4261 (K., A.).

β-Methyl-tetramethylenglykol-diacetat, 1.4-Diacetoxy-2-methyl-butan $C_9H_{16}O_4$ = $CH_3 \cdot CO \cdot O \cdot CH_3 \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot CH_3$ (H 144; E I 68). Rechtsdrehende Form. B. Bei längerem schwachen Kochen von rechtsdrehendem 1.4-Dibrom-2-methyl-butan mit 4 Mol wasserfreiem Kaliumacetat in Eisessig (v. Braun, Jostes, B. 59, 1446). — Kp₁₂: 110°. D_4^m : 1,027. [α D_2^m : +0,96° (unverdünnt).

Hexandiol-(2.5)-diacetat, 2.5-Diacetoxy-hexan $C_{10}H_{18}O_4 = [CH_3 \cdot CO \cdot CH(CH_5) \cdot CH_5]_2$ (H 144). B. Aus dem Gemisch der beiden diastereoisomeren Hexin-(3)-diole-(2.5) (E I 1, 262) beim Erhitzen mit Acetanhydrid und Natriumscetat auf 150° und nachfolgender Reduktion mit Wasserstoff in Gegenwart von kolloidalem Palladium in Alkohol bei 14° (Salkind, Bessonowa, 3K. 53, 287; C. 1928 III, 1393). — Angenehm riechende Flüssigkeit. D_4^o : 1,0146; D_4^o : 0,9992. D_5^o : 1,4240.

 $\begin{array}{l} \textbf{Chlorhexylenglykol-monoacetat} \quad \textbf{C}_8\textbf{H}_{15}\textbf{O}_3\textbf{Cl} = \textbf{CH}_3 \quad \textbf{CO} \cdot \textbf{O} \cdot \textbf{CH}(\textbf{CH}_3) \cdot \textbf{CH}_2 \cdot \textbf{CH} \textbf{Cl} \cdot \textbf{CH}_3 \cdot \textbf{CH}_4 \cdot \textbf{CH}_3 \cdot \textbf{CH}_4 \cdot \textbf{CH}_4 \cdot \textbf{CH}_6 \textbf{CH}_3 \cdot \textbf{CH}_4 \cdot \textbf{CH}_6 \textbf{CH}_5 \cdot \textbf{CH}_6 \textbf{CH$

H 144, Z. 12 v. u. nach "Aus" schalte ein "dem Acetat des".

2-Methyl-pentandiol-(2.4)-diacetat, 2.4-Diacetoxy-2-methyl-pentan $C_{10}H_{18}O_4=CH_3\cdot CO\cdot O\cdot CH_3\cdot CH_3\cdot C(CH_2)_2\cdot O\cdot CO\cdot CH_3$ (H 144). Kp: 207—210° (I. G. Farbenind., D. R. P. 483781; C. 1930 I, 1366; Frdl. 16, 141).

2.2.2'. Tetramethyl-äthylenglykol-diacetat, Pinakondiacetat, 2.3-Diacetoxy-2.3-dimethyl-butan $C_{10}H_{10}O_4=[CH_3\cdot CO\cdot O\cdot C(CH_3)_3-]_3$ (H 145). B. Aus Pinakon und Acetanhydrid in Gegenwart von geringen Mengen Anthrachinon-disulfonsäure-(1.5) bei 35° in 4—6 Tagen (Bayer & Co., D. R. P. 327128; C. 1921 II, 34; Frdl. 13, 73). — Kp₁₀: 88—89°.

Heptandiol - (1.4)-diacetat, 1.4-Diacetoxy-heptan $C_{11}H_{20}O_4 = CH_3 \cdot CO \cdot O \cdot [CH_2]_3 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot CH_$

3-Methyl-heptandiol-(3.7)-diacetat, 3.7-Diacetoxy-3-methyl-heptan $C_{12}H_{22}O_4=CH_2\cdot CO\cdot O\cdot [CH_2]_4\cdot C(CH_2)(O\cdot CO\cdot CH_2)\cdot CH_2\cdot CH_2\cdot Kp_{12}$; ca. 140—150° (Boger, Slocum, Am. Perfumer 18, 625; C. 1925 I, 218). — Bei der Destillation unter 500 mm Druck entsteht [3-Methyl-hepten-(2 oder 3)-yl-(7)]-acetat.

8-Äthyl-hexandiol-(8.6)-acetat-(6), 8-Oxy-6-acetoxy-3-äthyl-hexan $C_{10}H_{30}O_3=CH_3\cdot CO\cdot O\cdot [CH_2]_3\cdot C(OH)(C_2H_6)_2$. B. Aus 3-Äthyl-hexandiol-(3.6) und Acetanhydrid auf dem Wasserbad (Carrière, A. ch. [9] 17, 117).

Nonandiol - (1.9) - monoacetat, 1-Oxy-9-acetoxy-nonan $C_{11}H_{23}O_3=CH_3\cdot CO\cdot O\cdot [CH_2]_{\bullet}\cdot OH$. Kp_{10} : 159—161° (Churr, Hauseer, *Helv*. 12, 470). D^{20} : 0,955. — Liefert bei der Oxydation mit Chromsäure und Essigsäure 8-Acetoxy-octan-carbonsäure-(1) und 8-Acetoxy-octan-carbonsäure-(1)-[ω -acetoxy-n-nonyl]-ester.

8-Äthyl-octandiol-(3.6)-acetat-(6), 8-Oxy-6-acetoxy-8-äthyl-octan $C_{12}H_{24}O_3=CH_2\cdot CO\cdot O\cdot CH(C_2H_3)\cdot CH_2\cdot C(OH)(C_2H_5)_2$. B. Beim Erwärmen von 1 Mol 3-Äthyloctandiol-(3.6) mit 2,5 Mol Acetanhydrid auf dem Wasserbad (Carrière, A. ch. [9] 17, 104). — Kp₁₈: 146—147°.

Undecandiol - (1.11) - diacetat, 1.11 - Diacetoxy - undecan $C_{15}H_{26}O_4 = CH_3 \cdot CO \cdot O \cdot [CH_2]_{11} \cdot O \cdot CO \cdot CH_3$. Beim Kochen von 1.11 - Dibrom - undecan mit Kaliumacetat und Essigssure (CHUIT, Helv. 9, 267). — Öl. Kp₁₃: 181—183°. D¹⁵: 0,964.

Dodecandiol-(1.12)-monoacetat, 1-Oxy-12-acetoxy-dodecan $C_{14}H_{28}O_3 = CH_3 \cdot CO \cdot C\cdot [CH_2]_{13} \cdot OH$. B. Beim Erhitzen von $\alpha.\omega$ -Dioxy-dodecan mit überschüssigem Acetanhydrid und wenig Natriumacetat auf dem Wasserbad, neben dem Diacetat (Chuit, Mitarb., Helv. 10, 182). — Kp₈: ca. 185°.

Dodecandiol - (1.12) - diacetat, 1.12 - Diacetoxy - dodecan $C_{16}H_{30}O_4 = CH_3 \cdot CO \cdot O \cdot [CH_2]_{12} \cdot O \cdot CO \cdot CH_2$. B. Beim Erhitzen von 1.12-Dibrom-dodecan mit Kaliumacetat oder Silberacetat in Essigsäure (Chuit, Helv. 9, 269; Lespieau, C. τ . 187, 607; Bl. [4] 43, 1191). — Krystalle (aus Alkohol). F: 36,5—37,5° (L.), 36° (Ch.). Kp₁₀: 189—190° (Ch.).

2-Methyl-dodecandiol-(1.12)-diacetat, 1.12-Diacetoxy-2-methyl-dodecan $C_{17}H_{22}O_4$ = $CH_3 \cdot CO \cdot O \cdot [CH_2]_{10} \cdot CH(CH_3) \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen von 1.12-Dibrom-2-methyl-dodecan mit Kaliumacetat auf 190—200° (Churr, Mitarb., Helv. 10, 172). — $Kp_{3.5}$: 175—177°. D^{18} : 0,947.

Pentadecandiol-(1.15)-diacetat, 1.15-Diacetoxy-pentadecan $C_{19}H_{34}O_4=CH_3.CO\cdot O\cdot [CH_3]_{15}\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von 15-Brom-pentadecanol-(1) mit Kaliumacetat und Essigsäure (Churr, Helv. 9, 273). — F: 36°.

Hexadecandiol-(1.16)-monoacetat, 1-Oxy-16-acetoxy-hexadecan $C_{18}H_{36}O_3=CH_3\cdot CO\cdot O\cdot [CH_2]_{16}\cdot OH$. B. Neben dem Diacetat beim Erhitzen von Hexadecandiol-(1.16) mit Acetanhydrid und Natriumacetat auf dem Wasserbad (Chuir, Hausser, Helv. 12, 485). — Blättchen (aus Petroläther). F: $54-54,5^\circ$; Kp_3 : $217-218^\circ$, Kp_1 : $193-195^\circ$. — Gibt eine Verbindung mit Calciumchlorid. Liefert beim Behandeln mit Bromwasserstoff bei $110-120^\circ$ [ω -Brom-cetyl]-acetat und 1.16-Dibrom-hexadecan.

Hexadecandiol-(1.16)-diacetat, 1.16-Diacetoxy-hexadecan $C_{26}H_{26}O_4 = CH_2 \cdot CO \cdot O \cdot [CH_2]_{16} \cdot O \cdot CO \cdot CH_2$. B. Beim Kochen von 1.16-Dibrom-hexadecan mit Kaliumacetat und Eisessig (Chuit, Helv. 9, 275). Neben dem Monoacetat beim Erhitzen von Hexadecandiol-(1.16) mit Acetanhydrid und Natriumacetat auf dem Wasserbad (Ch., Hausser, Helv. 12, 485). — Krystalle (aus Alkohol und Aceton). F: 47,2° (Ch.). Kp_{1,5}: 193—194° (Ch., H.).

Heneikosandiol-(1.21)-diacetat, 1.21-Diacetoxy-heneikosan $C_{20}H_{48}O_4 = CH_3 \cdot CO \cdot C \cdot CH_3$. Krystalle (aus Petroläther). F: ca. 60°. Kp₃: ca. 240° (Chuff, Hausser, Helv. 12, 857).

Heneikosandiol-(3.6)-diacetat, 3.6-Diacetoxy-heneikosan $C_{24}H_{44}O_4=CH_3\cdot CO\cdot O\cdot CH(C_2H_5)\cdot CH_3\cdot CH_$

Buten-(2)-diol-(1.4)-diacetat, 1.4-Diacetoxy-buten-(2) $C_8H_{12}O_4=CH_2\cdot CO\cdot O\cdot CH_2\cdot CH: CH: CH_2\cdot O\cdot CO\cdot CH_3$ (H 146). B. Beim Erhitzen von 1.4-Dibrom-buten-(2) mit Natriumacetat in Essigsäure auf 100° (Prévost, C. r. 183, 1293; 186, 1210; A. ch. [10] 10, 418). — F.: 16°. Kp₁₃: 118°; Kp₁₈: 115°. D₄°: 1,0802. n_D^{**} : 1,4439.

β-Brommethylen-trimethylenglykol-discetat, 1.3-Discetoxy-2-brommethylen-propan $C_9H_{11}O_4Br=(CH_3\cdot CO\cdot O\cdot CH_2)_9C:CHBr.$ B. Beim Kochen von 1.2.3-Tribrom-2-brommethyl-propan mit Kaliumacetat und Eisessig (ΜΕΚΕΝΗΚΟWSKI, A. 431, 130). — Kp₁₄: 136°. D_6^a : 1,4760; D_6^a : 1,4534. n_0^a : 1,4820; n_0^a : 1,4853; n_0^a : 1,4392; n_2^a : 1,5001.

Penten-(2)-diol-(1.4)-diacetat, 1.4-Diacetoxy-penten-(2), ,,1-Methyl-erythren- γ -glykol-diacetat "C₂H₁₄O₄ = CH₂·CO·O·CH₂·CH·CH·CH·CH(CH₂)·O·CO·CH₂. B. Neben geringen Mengen 4.5-Diacetoxy-penten-(2) bei der Einw. von Natriumacetat auf 1.4-Dibrompenten-(2) in Eisessig (Právost, A. ch. [10] 10, 384; vgl. P., C. r. 182, 1476). — Flüssigkeit von wenig angenehmem Geruch. Kp₁₁: 112,5°. D₄^m: 1,0446. n_D^m: 1,4398. — Schwer löslich in Wasser.

- Penten-(2)-diol-(4.5)-diacetat, 4.5-Diacetoxy-penten-(2), ,,1-Methyl-erythren- α -glykol-diacetat" $C_9H_{14}O_4 = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot CH_3) \cdot CH \cdot CH_3 \cdot B$. Neben viel 1.4-Diacetoxy-penten-(2) bei der Einw. von Natriumacetat auf 1.4-Dibrom-penten-(2) in Eisessig (Prayost, A. ch. [10] 10, 384; vgl. P., C. r. 182, 1476). Nicht rein erhalten. Kp18: 104-1050. Di: 1,0386. ni: 1,4365.
- β- [α-Brom āthyliden] trimethylenglykol diacetat $C_9H_{13}O_4Br = (CH_3 \cdot CO \cdot O \cdot CH_4)_3C:CBr \cdot CH_8$. B. Beim Kochen von 1.2.3-Tribrom-2-brommethyl-butan mit Kaliumacetat und Eisessig (ΜΕΚΕSHKOWSKI, Bl. [4] 37, 869). Nicht rein erhalten. Kp₁₅: 144° bis 146°.
- Hexen-(2)-diol-(4.5)-diacetat, 4.5-Diacetoxy-hexen-(2), ,,1.4-Dimethylerythren- α -glykol-diacetat" $C_{10}H_{16}O_4=CH_3\cdot CO\cdot O\cdot CH(CH_3)\cdot CH(O\cdot CO\cdot CH_3)\cdot CH\cdot CH$: CH₈. Neben viel 2.5-Diacetoxy-hexen-(3) bei der Einw. von Natriumacetat auf 2.5-Dibromhexen-(3) in Eisessig (Prevost, A. ch. [10] 10, 387). — Nicht rein erhalten. Kp₁₄: 106—109°. D_4^n : 1,0210. n_D^n : 1,4390.
- $\label{eq:hexen-(3)-diol-(2.5)-diacetat} \textbf{ 2.5-Diacetoxy-hexen-(3)}, ,, 1.4-Dimethylerythren-γ-glykol-diacetat" $C_{10}H_{16}O_4 = CH_3 \cdot CO \cdot O \cdot CH(CH_3) \cdot CH \cdot CH \cdot CH(O \cdot CO \cdot CH_3)$.$ CH. B. Neben wenig 4.5-Diacetoxy-hexen-(2) bei der Einw. von Natriumacetat auf 2.5-Dibrom-hexen-(3) in Eisessig (Prévost, A. ch. [10] 10, 387). — Kp₁₄: 117—118°. D⁴: 1,0247. n^a: 1,4410.
- Hexadien (2.4) diol (1.6) diacetat, 1.6-Diacetoxy-hexadien (2.4) $C_{10}H_{14}O_4=CH_2\cdot CO\cdot O\cdot CH_2\cdot CH\cdot CH\cdot CH\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Neben anderen Produkten bei der Einw. von Natriumacetat bzw. Kaliumacetat und Eisessig auf 1.6-Dibrom-hexadien (2.4) (Prévost, C. r. 184, 459; A. ch. [10] 10, 404; Farmer, Mitarb., Soc. 1927, 2950). F: 25°; Kp₁₂: 155° (P.). D_4^n (unterkühlt): 1,0762; n_5^n (unterkühlt): 1,4850 (P.).
- Octadien (2.6) diol (4.5) diacetat, 4.5 Diacetoxy octadien (2.6) $C_{12}H_{18}O_4 =$ [CH₃·CH·CH·CH(O·CO·CH₃)—]₂ (H 146). Angenehm riechende Flüssigkeit. Kp₆: 120° (Kuhn, Rebell, B. 60, 1570). — Liefert bei der Behandlung mit Ozon in Eisessig, Kochen der Lösung des Diozonids mit Bromwasser und danach mit überschüssiger Lauge Traubensäure.
 - 2.7-Dimethyl-octin-(4)-diol-(3.6)-diacetat, Bis-[α -acetoxy-isobutyl]-acetylen

- $C_{14}H_{22}O_4 = [(CH_3)_2CH \cdot CH(O \cdot CO \cdot CH_3) \cdot C]_2$.

 a) Höhersiedende Form. B. Beim Erhitzen des höherschmelzenden 2.7-Dimethyloctin-(4)-diols-(3.6) mit Acetanhydrid im Rohr auf 100° (Krestinski, Marjin, B. 60, 1868; ж. **59**, 1138). — Kp: 257—258°.
- b) Niedrigersiedende Form. B. Beim Erhitzen des niedrigerschmelzenden 2.7-Dimethyl-octin-(4)-diols-(3.6) mit Acetanhydrid im Rohr auf 1000 (Krestinski, Marjin, B. 60, 1868; Ж. 59, 1138). — Kp: 253—256°.

Glycerin- α -acetat, α -Monoacetin, auch schlechthin Monoacetin, Monoacetin genannt $C_5H_{10}O_4=CH_3\cdot CO\cdot O\cdot CH_2\cdot CH(OH)\cdot CH_2\cdot OH$.

a) Rechtsdrehendes Glycerin-α-acetat, d-α-Monoacetin. $[\alpha]_{D}^{\infty}$: +2,03° (Alkohol; p = 17) (ABDERHALDEN, WEIL, Fermenti, 4, 85; C. 1920 III, 643). — Geschwindigkeit der Verseifung durch 0,08n-Natriumdicarbonat-Lösung und Beschleunigung dieser Reaktion durch Pankreaslipase: A., W.

b) Linksdrehendes Glycerin - α - acetat, l - α - Monoacetin (E I 69). B. Zur Bildung aus rechtsdrehendem Glycid und Eisessig (ABDERHALDEN, EICHWALD, B: 48, 1857) vgl. Smrth, Ph. Ch. 102, 65. — [α]¹⁰₀: —0,54° (Alkohol; p = 17) (ABDERHALDEN, Weil, Fermentj. 4, 85; C. 1920 III, 643). — Geschwindigkeit der Verseifung durch 0,08 n-Natrium-dicarbonat-Lösung und Beschleunigung dieser Reaktion durch Pankrealipase: A., W.

- c) Inaktives Glycerin-α-acetat, dl-Glycerin-α-acetat, dl-α-Monoacetin (vgl. H 146; E I 69). B. Neben Discetin und wenig Triscetin beim Erhitzen von Glycerinα-chlorhydrin mit Kaliumacetat oder Natriumacetat im Rohr auf 150—160° (Smth, Ph. Ch. 102, 64). Zur Bildung aus wasserfreiem Glycerin und Essigsäure vgl. Sm., Ph. Ch. 102, 59. Beim Erhitzen äquimolekularer Mengen von Glycerin und Eisessig bei Gegenwart von Phosphorsäure oder Phosphorpentoxyd auf 170° (SCHUETTE, SAH, Am. Soc. 48, 3162). Beim Erhitzen von Diacetin oder Triacetin mit Glycerin bei Gegenwart von Phosphorsäure (Sch., Sah). Neben Diacetin durch Verseifung von Triacetin mit Natronlauge (Sm.). Beim Schütteln
- O·CH·CH₂·O·CO·CH₂

von Acetylacetonglycerin $(CH_2)_2C$ $O \cdot CH_2 \cdot CH_3 \cdot CO \cdot CH_3 \cdot CH_$

n₀.: 1,4481 (Sch., Sah). Durch mechanische Rotation erzwungene Doppelbrechung: V., W. Diffusion durch Kollodiummembranen: Fujita, Bio. Z. 170, 19. Sehr leicht löslich in Wasser, leicht in Chloroform, ziemlich schwer in Äther, sehr schwer in Petroläther (F., Pf.). Verteilung zwischen Wasser und Äther bei $20-22^{\circ}$: Collander, Bärlund, Comment. biol. Helsingfors 2 [1926], Nr. 9, S. 9. Oberflächenspannung wäßr. Lösungen bei 20° : C., B. Verseifungsgeschwindigkeit in wäßr. Lösungen verschiedener Wasserstoffionenkonzentration bei 25° : K., Z. anorg. Ch. 145, 17. Geschwindigkeit der Verseifung durch Natronlauge: Sm., Ph. Ch. 102, 67. Die Verseifung von Monoacetin mit Natronlauge bei 18° wird durch Gegenwart von Blutkohle verzögert (van Duin, R. 47, 723). Bei längerem Schütteln von Monoacetin mit Kaliumcarbonat in Chloroform entsteht α.α΄-Diacetin (F., B. 53, 1639). Die Lösung in trocknem Pyridin liefert bei tropfenweiser Zugabe einer Lösung von p-Nitrobenzoylehlorid in trocknem Chloroform erst bei -10° , dann bei Zimmertemperatur α-Aeetyl- β .α΄-bis-[p-nitro-benzoyl]-glycerin (F., Pf., B. 53, 1615); in analoger Reaktion erhält man aus α-Monoacetin und Stearoylchlorid in Chinolin + Chloroform α-Aeetyl- β .α'-distearoylglycerin (F., B. 53, 1629). Beim Erhitzen von α-Monoacetin mit Anilin auf 195—200° entsteht Acetanilid (Sakellarios, B. 60, 219).

Glycerin-α.α'-diacetat, α.α'- Diacetin C₇H₁₂O₅ = CH₃·CO·O·CH₃·CH(OH)·CH₃·O·CO·CH₃ (E I 69; vgl. H 147). Technisches Diacetin ist ein Isomerengemisch, in dem α.α'-Diacetin überwiegt (Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 189). — B. Neben Monoacetin und wenig Triacetin beim Erhitzen von Glycerin-α-chlorhydrin mit Kaliumacetat oder Natriumacetat im Rohr auf 150—160° (Smith, Ph. Ch. 102, 64). Als Hauptprodukt beim Erhitzen von Glycerin mit Eisessig bei Gegenwart von konz. Schwefelsäure auf 110° (Schuette, Sah, Am. Soc. 48, 3161). Bei längerem Kochen von Glycerin mit Essigsäure in siedendem Toluol (Wahl, Bl. [4] 37, 716). Aus wasserfreiem Glycerin und Essigsäure anhydrid (Sm., Ph. Ch. 102, 59). Neben anderen Produkten bei der Zersetzung von Triacetin in Gegenwart von Thoriumoxyd bei 460° (Simons, Am. Soc. 48, 1992). Neben Monoacetin durch Verseifung von Triacetin mit Natronlauge (Sm.). In geringer Menge neben anderen Produkten beim Erhitzen von Epichlorhydrin mit wasserfreiem Kaliumacetat auf 120° bis 135°, zum Schluß auf 150° (Levene, Walti, J. biol. Chem. 77, 687). — Kp40: 175—177° (kort.) (Sch.). Kp15: 155—156° (Wahl). Kp20-2-2-2-5: 87—93° (L., Walti). Di²: 1,178 (Vorländer, Walter, Ph. Ch. 118, 10). Viscosität bei 20°: V., Walter. Durch mechanische Rotation erzwungene Doppelbrechung: V., Walter. — Geschwindigkeit der Verseifung durch Natronlauge: Sm.; durch 0,067 bis 0,1 n-Natriumdicarbonat-Lösung bei 38° und Beschleunigung dieser Reaktion durch Pankreaslipase: Abderhalden, Weil, Fermentf. 4, 79, 80; C. 1920 III, 643. Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 189, 231; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 240.

"Diglycerintetraacetat" $C_{14}H_{22}O_9 = [(CH_3 \cdot CO \cdot O)_2C_3H_5]_9O$ (E I 69). Das Mol.-Gew. wurde ebullioskopisch in Benzol bestimmt (Levene, Walti, J. biol. Chem. 77, 692). — B. Beim Kochen von "Diglycerin" mit Acetanhydrid (L., W.). — Kp₈: 164—165° (Rangier, C. r. 187, 345).

"Triglycerinpentaacetat" $C_{19}H_{30}O_{12} = (CH_3 \cdot CO \cdot O)_{4}C_{3}H_{5} \cdot O \cdot C_{3}H_{5}(O \cdot CO \cdot CH_{2}) \cdot O \cdot C_{3}H_{5}(O \cdot CO \cdot CH_{2})_{2}$. Kp₂: 194—195° (Rangier, *C. r.* 187, 345).

Über weitere "Polyglycerinacetate" vgl. RANGIER, C. r. 187, 345.

Glycerin- α -n-hexadecyläther- β . α' -diacetat, Chimylalkohol-diacetat $C_{22}H_{44}O_5=CH_3\cdot CO\cdot O\cdot CH_3\cdot CH(O\cdot CO\cdot CH_3)\cdot CH_3\cdot O\cdot [CH_2]_{15}\cdot CH_3$. F: 22,0—22,5° (TOYAMA, Ch. Umechau Fette 31 [1924], 63, 64).

Linksdrehendes Glycerin - α -n -octadecyläther - β . α' - diacetat, Batylalkoholdiacetat $C_{25}H_{45}O_5 = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot O \cdot [CH_2]_{17} \cdot CH_3$. B. Bei der Acetylierung von Batylalkohol (E II 1, 590) (Toyama, Ch. Umschau Fette 81 [1924], 63). — F: 33,9—34,4° (T.). $[\alpha]_{166}^{196}$: —8,5° (Chloroform; c=3) (Davies, Heilbron, Jones, Soc. 1933, 166).

Linksdrehendes Glycerin- α -oleyläther- β . α' -diacetat, Selachylalkohol-diacetat $C_{ab}H_{ab}O_{b} = CH_{a} \cdot CO \cdot O \cdot CH_{a} \cdot CH(O \cdot CO \cdot CH_{a}) \cdot CH_{a} \cdot O \cdot [CH_{a}]_{a} \cdot CH : CH \cdot [CH_{a}]_{7} \cdot CH_{3}$. B. Bei der Acetylierung von Selachylalkohol (E II 1, 591) (Toyama, Ch. Umschau Fette 31 [1924], 63, 64). — Kp₅: 242—244⁵. D₄¹⁵: 0,9455; D₂²⁶: 0,9417. n₃¹⁵: 1,4569; n₃²⁶: 1,4550. [α]₁²⁶: -8,6⁶. — Liefert bei der trocknen Destillation und nachfolgenden Verseifung Oleinalkohol. Beim Erhitzen mit Kaliumpermanganat in Eisessig auf dem Wasserbad bildet sich Nonylaäure und die nicht näher beschriebene Säure $C_{16}H_{26}O_{7} = CH_{2} \cdot CO \cdot O \cdot CH_{3} \cdot CH(O \cdot CO \cdot CH_{3}) \cdot CH_{4} \cdot O \cdot [CH_{4}]_{6} \cdot CO_{2}H$.

Glycerintriacetat, Triacetin $C_0H_{14}O_0=CH_3\cdot CO\cdot O\cdot CH_3\cdot CH(O\cdot CO\cdot CH_3)\cdot CH_4\cdot O\cdot CO\cdot CH_3$ (H 147; E I 76). B. Über Ausbeuten von Triacetin bei der Einw. von Essignäure auf Glycerin in Gegenwart von Kaliumdisulfat, Aluminiumsulfat und Schwefelsäure

vgl. Senderens, Aboulenc, C. r. 158, 581; A. ch. [9] 18, 171. Beim Einleiten von trocknem Chlorwasserstoff in ein Gemisch aus Glycerin, Natriumacetat und Eisessig bei 100—110° (Sonn, D. R. P. 425611; C. 1926 II, 940; Frdl. 15, 134). Aus Glycerin und Eisessig in Gegenwart von aus Naphthalin, Olsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens bei 100° (Ozaki, Bio. Z. 177, 159). Beim Aufbewahren eines homogenen Gemisches aus Glycerin und überschüssigem Acetanhydrid und nachfolgendem Erhitzen zum Sieden (Kawai, Scient. Pap. Inst. phys. chem. Res. 3, 277; C. 1926 I, 3143). Man fügt 92 Tle. Glycerin von 98,5—99,5% unter Rühren zu 300—330 Tln. auf 100° erhitztem Acctanhydrid (Bayer & Co., D. R. P. 347897; C. 1922 II, 699; Frdl. 14, 159). Durch 1-stündiges Erhitzen von α.α'-Diacetin mit 1 Mol Acetylchlorid im Rohr auf 100° (Abderhalden, Weil., Fermentf. 4, 85; C. 1920 III, 643). — Erstart bei —60° glasig (Loskit, Ph. Ch. 134, 137; Timmermans, Bl. Soc. chim. Belg. 31, 392; C. 1923 III, 1137). Kp₁₃₀: 200° (Tl.); Kp₁₀: 140° bis 150° (B. & Co.); Kp₄: 129° (A., Weil.); Kp_{1,0}: 96—98° (Levene, Walti, J. biol. Chem. 77, 688). D⁵: 1,119 (McBain, Harvey, Smith, J. phys. Chem. 30, 314). Viscosität zwischen —15° (4.68 g/cmsec) und —45° (14400 g/cmsec): Tammann, Hesse, Z. anorg. Ch. 156, 251: bei 20°: Vorländer, Walter, Ph. Ch. 118, 10; bei 55°: 0,04790 g/cmsec (McB., H., Sm.). Kapillaritätskonstante bei 18°: 3,56 mg/mm (Tammann, Tampke, Z. anorg. Ch. 162, 9). n; 1,4304 (Tromp, R. 41, 297). Durch mechanische Rotation erzwungene Doppelbrechung: Vo., Walter, Ph. Ch. 118, 10; Phys. Z. 25, 572; C. 1925 I, 617. Diffusion durch eine Gelatinemembran: Collander, Protopl. 3, 215; C. 1928 I, 1157. Löslichkeit in Benzol: Lo. Katalytische Wirkung auf die Vereinigung von Chlor mit Schwefeldioxyd zu Sulfurylchlorid: Durrans, J. Soc. chem. Ind. 45, 349 T; C. 1927 I, 10.

Reim Thereiten der Dürnefe iiber einen Kunfer-Aluminiumoxyd, Katalysator bei 550°

Beim Überleiten der Dämpfe über einen Kupfer-Aluminiumoxyd-Katalysator bei 550° entstehen Kohlendioxyd, Acrolein, Essigsäure, Wasser und geringe Mengen Aceton (MAILHE, A. ch. [9] 17, 319). Triacetin zersetzt sich in Gegenwart von Thoriumoxyd bei 460° oder 525° unter Bildung wechselnder Mengen von Acrolein, Crotonaldehyd, Ameisensäure, Essigsäure, Diacetin, Kohlenwasserstoffen, Kohlenoxyd, Kohlendioxyd, Wasserstoff und teerigen Produkten (SIMONS, Am. Soc. 48, 1992). Geschwindigkeit der Verseifung durch Bromwasserstoffsäure in Eisessig bei 18—21°: Tronow, Ssibgatullin, B. 62, 2853; durch 1n-Salzsäure bei 35°: Yamasaki, Am. Soc. 42, 1463; durch 0,1 n-Natriumdicarbonat-Lösung bei 38°: Abberhalden, Weil, Fermentf. 4, 80; C. 1920 III, 643. Triacetin liefert beim Schütteln mit Natronlauge Monoacetin und geringere Mengen Diacetin (SMITH, Ph. Ch. 102, 60). Geschwindigkeit dieser Reaktion: Sm. Spaltung von Triacetin durch verschiedene Hyphomyceten: v. Mallinckrodt-Haupt, Zbl. Bakt. Parasitenk. [I] 103, 73; C. 1927 II, 1041; durch Lipase von Aspergillus niger: Schenker, Bio. Z. 120, 186, 187, 189; durch verschiedene Formentpräparate aus Ricinusbohnen: Lorberblatt, Falk, Am. Soc. 48, 1661. Einfluß der Wasserstoffionenkonzentration auf die Hydrolyse durch Ricinuslipase: L., F. Geschwindigkeit der Hydrolyse durch verschiedene Pankreaslipasemengen bei $p_H = 8.9$: Willstätter, Memmen, H. 133, 242; durch Pankreaslipase in mit Kohlendioxyd gesättigter Natrium-dicarbonat-Lösung bei 30°: Murray, Biochem. J. 23, 294; durch Knochen. und Pankreasextrakte bei p_H = 8,4 und 37°: Robison, Soames, Biochem. J. 18, 744. Abhängigkeit der Geschwindigkeit der Spaltung durch Pankreaslipase von der Wasserstoffionenkonzentration bei An- und Abwesenheit von Chininhydrochlorid: Smorodinzew, Danilow, Bio. Z. 181, 151. Beeinflussung der Spaltung mit Pankreaslipase durch Natriumoleat: CORRAN, LEWIS, Biochem. J. 22, 457; durch Calciumchlorid, Natriumoleat, Calciumoleat, Natriumglykocholat bzw. Albumin: WILLSTÄTTER, MEMMEN, H. 133, 240; durch Harnstoff, Harnstoff-Salze, Chininhydrochlorid, Chininsulfat und die Doppelverbindung aus Chinin und Harnstoff: Sm., Da., Bio. Z. 161, 183; 164, 394; 181, 149. Beschleunigung der Verseifung durch 0,1 n-Natronlauge durch Pankreas-Lipase bei An- oder Abwesenheit von Glykocholsäure bei 38º: A., Weil. Hydrolyse durch Extrakte aus Tumor- und Carcinom-Geweben sowie aus zahlreichen normalen menschlichen und tierischen Geweben unter verschiedenen Bedingungen: NOYES, SUGIURA, FALK, J. biol. Chem. 55, 659; 59, 189, 214, 227; 62, 698; Am. Soc. 46, 1886; N., F., J. biol. Chem. 62, 688. Geschwindigkeit der Spaltung durch Extrakte aus Rattencarcinom und Rattenmuskulatur: S., N., F., J. biol. Chem. 56, 903. — Nährwert für Ratten: Ozaki, Bio. Z. 177, 160; 189, 233; *Pr. Acad. Tokyo* 2, 12; 3, 439; *C.* 1926 II, 2192; 1928 I, 541. — Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 190, 231, 232; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 240.

Phosphoraäure - mono - [β . γ -diacetoxy-propylester], Diacetylglycerin - α -phosphoraäure $C_7H_{12}O_8P = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot O \cdot PO(OH)_8$. Rechtsdrehende Form. B. Das Bariumsalz entsteht beim Kochen des Bariumsalzes der rechtsdrehenden (?) Glycerin - α -phosphoraäure mit Acetanhydrid (KARRER, Benz, Helv. 10, 90). — BaC, $H_{11}O_8P$. Wurde nicht ganz rein erhalten. Krystalle (aus Alkohol). Sehr leicht löslich in Wasser, leicht in heißem, schwer in kaltem Alkohol, unlöslich in Ather. [α] β : +2,0° (Wasser; c = 12). Liefert beim Schütteln mit Bariumhydroxyd-Lösung das Bariumsalz der rechtsdrehenden (?) Glycerin- α -phosphorsäure zurück.

α-Äthyl-glycerin-triacetat, 1.2.3-Triacetoxy-pentan $C_{11}H_{18}O_6 = CH_2 \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot CH_3) \cdot CH(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot$

α-Propyl-glycerin-triacetat, 1.2.3-Triacetoxy-hexan $C_{12}H_{20}O_6 = CH_3 \cdot CO \cdot CCH_3 \cdot CH \cdot (O \cdot CO \cdot CH_3) \cdot CH \cdot (O \cdot CO \cdot CH_3) \cdot [CH_2]_2 \cdot CH_3$. B. Aus Propylvinylcarbinol analog wie α-Methyl-glycerin-triacetat (Delaby, C. r. 175, 1153; Bl. [4] 33, 715; A. ch. 19, 314). — Kp_{15} : 157—159°.

α-Butyl-glycerin-triacetat, 1.2.3-Triacetoxy-heptan $C_{13}H_{22}O_6 = CH_3 \cdot CO \cdot O \cdot CH_3 \cdot CH(O \cdot CO \cdot CH_3) \cdot [CH_2]_3 \cdot CH_3$. B. Aus Butylvinylcarbinol analog wie α-Methyl-glycerin-triacetat (Delaby, $C \cdot r$. 175, 1153; Bl. [4] 38, 716; A. ch. [9] 19, 314). — Kp_{21} : 174°.

α-Methyl-y-propyl-glycerin-triacetat, 2.3.4-Triacetoxy-heptan $C_{13}H_{22}O_6 = CH_3 \cdot CO \cdot O \cdot CH(CH_3) \cdot CH(O \cdot CO \cdot CH_3) \cdot CH(O \cdot CO \cdot CH_3) \cdot [CH_2]_2 \cdot CH_3$. B. Aus Propylpropenyl-carbinol analog wie α-Methyl-glycerin-triacetat (Delaby, Morel, Bl. [4] 39, 229). — Kp₂₀: 156—158°.

 $\alpha.\alpha.\alpha'.\alpha'$ -Tetramethyl-glycerin - β -acetat, 2.4-Dioxy-3-acetoxy-2.4-dimethylpentan $C_9H_{18}O_4 = CH_3 \cdot CO \cdot O \cdot CH[C(CH_2)_2 \cdot OH]_2$. B. Durch Einw. von Silberacetat auf 3-Jod-2.4-dimethyl-pentandiol-(2.4) in Ather (Pastureau, Bernard, C. r. 177, 329; Bl. [4] 33, 1451). — F: 87°. — Gibt beim Verseifen mit Kalkwasser 2.4-Dimethyl-pentantriol-(2.3.4).

d-Hexantetrol-(1.2.3.6)-diacetat-(1.2), d-Tetrahydropseudoglucal-5.6-diacetat $C_{10}H_{18}O_6=CH_3\cdot CO\cdot O\cdot CH_3\cdot CH(O\cdot CO\cdot CH_3)\cdot CH(OH)\cdot CH_2\cdot CH_2\cdot CH_2\cdot OH$. B. Aus d-Dihydropseudoglucal-5.6-diacetat $CHO\cdot CH_3\cdot CH_3\cdot CH(OH)\cdot CH(O\cdot COCH_3)\cdot CH_2\cdot O\cdot CO\cdot CH_3$ beim Behandeln mit Wasserstoff in Eisessig bei Gegenwart von Palladiummohr (Bergmann, A. 443, 241). — Dickes Öl. $Kp_{0.3}$: 160°. n_0^{m} : 1,4587. [α] $_0^{m}$: +2,2° (Alkohol; p=10). Löslich in Wasser, Alkohol, Ather und Benzol, schwer löslich in Petroläther und Ligroin.

2.5-Diäthoxy-1.6-diacetoxy-hexin-(3), Bis-[α -äthoxy- β -acetoxy-äthyl]-acetylen $C_{14}H_{22}O_6=[CH_3\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot C_2H_5)\cdot C:]_2$. B. Aus niedrigerschmelzendem $\alpha.\zeta$ -Dichlor- $\beta.\epsilon$ -diäthoxy- γ -hexin beim Erhitzen mit Acetanhydrid und Eisessig auf 150° (Lespieau, Bl. [4] 43, 209). — Kp₁₁: 160—162°. Dan: 1,144. n_0^n : 1,4669.

Pentaacetat des Heptan pentols - (1.2.4.6.7), 1.2.4.6.7 - Pentaacetoxy - heptan $C_{17}H_{26}O_{10} = CH_3 \cdot CO \cdot O \cdot CH \cdot [CH_3 \cdot CH(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot CH_3]_2$ (H 150).

H 150, Z. 10-12 v. u. streiche den Satz "Aus dem Acetat (SAIZEW, A. 185, 138)."

4.4.5-Trimethyl-nonanpentol-(1.5.6.7.8)-triacetat-(6.7.8), 1.5-Dioxy-6.7.8-triacetoxy-4.4.5-trimethyl-nonan, Hexahydrohyptolid $C_{18}H_{23}O_8=CH_3\cdot[CH(O\cdot CO\cdot CH_3)]_3\cdot C(CH_3)(OH)\cdot C(CH_2)_3\cdot[CH_2]_3\cdot OH$. B. Bei der Hydrierung von Hyptolid (Syst. No. 2549) in Alkohol bei Gegenwart von Palladium (Gorter, Bl. Jardin bot. Buit. [3] 1, 332; C. 1920 III,

846). — Öl. — Einw. von siedendem Acetanhydrid: G. Liefert bei der Oxydation mit alkal. Kaliumpermanganat-Lösung auf dem Wasserbad $\alpha.\beta.\beta$ -Trimethyl-adipinsäure und $\alpha.\alpha$ -Dimethyl-glutarsäure; mit Salpetersäure (D: 1,2) auf dem Wasserbad Oxalsäure, Bernsteinsäure und $\alpha.\beta.\beta$ -Trimethyl-adipinsäure.

d-Sorbit-hexaacetat, Hexaacetyl-d-sorbit $C_{18}H_{26}O_{12}=CH_3\cdot CO\cdot O\cdot CH_2\cdot [CH(O\cdot CO\cdot CH_3)]_4\cdot CH_3\cdot O\cdot CO\cdot CH_3$ (H 150). B. Beim Kochen von d-Sorbit mit überschüssigem Essigsäureanhydrid und wenig Pyridin (Tutin, Biochem. J. 19, 416). — Prismen (aus Wasser oder Essigester). F: 99° (T.); 98—99° (Zäch, Mitt. Lebensmittelunters. Hyg. 20, 15; C. 1929 I. 2599). Leicht löslich in Alkohol, löslich in Essigester, schwer löslich in Ather und siedendem Wasser (T.). — Wird beim Kochen mit 2% iger Schwefelsäure verseift (T.).

d-Mannit-hexaacetat, Hexaacetyl-d-mannit $C_{18}H_{26}O_{12}$ — CH_3 : $CO \cdot O \cdot CH_2$: $[CH(O \cdot CO \cdot CH_3)]_4 \cdot CH_2 \cdot O \cdot CO \cdot CH_3$ (H 150). B. Beim Kochen von d-Mannit mit überschüssigem Essigsäureanhydrid und wenig Pyridin (Tutin, Biochem. J. 19, 418). Durch Einw. von Acetylchlorid auf d-Mannit in Gegenwart von Pyridin (Patterson, Todd, Soc. 1929, 2887). — Krystalle (aus Alkohol). F: 120° (Forster, Rao, Soc. 127, 2176), 123° (Tu.), 126° (P., To.). [α]_p: +18,8° (Eisessig; p = 10) (Iwata, Bl. phys. chem. Res. Tokyo 2, 28; C. 1929 II, 177). Rotations-dispersion von Lösungen in Benzol und in Athylendibromid bei 22°: P., To. — Läßt sich durch Natriummethylat-Lösung leicht verseifen (Zemplén, Pacsu, B. 62, 1613).

Volemit-heptaacetat, Heptaacetylvolemit $C_{21}H_{30}O_{14} = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot [CH(O \cdot CO \cdot CH_3)]_5 \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. B. Durch Kochen von Volemit mit Natriumacetat und Acetanhydrid (ETTEL, C. 1929 II, 714). — Plättchen (aus Toluol). F: 120—121°. [α] $_D^{\infty}$: +20,7° (Chloroform, Pyridin oder Eisessig; p = 1). [HILLGER]

Essigsäurederivate von Oxo-Verbindungen.

Methylenglykol-methyläther-acetat, Methoxymethyl-acetat C₄H₈O₃ = CH₃·CO·O·CH₂·O·CH₃ (H 151; E I 70). Geschwindigkeit der Hydrolyse in salzsaurer, sodaalkalischer und metaboratalkalischer Lösung: SKRABAL, BELAVIČ, Ph. Ch. 103, 452.

Methylenglykol-äthyläther-acetat, Äthoxymethyl-acetat $C_5H_{10}O_3=CH_3\cdot CO\cdot O\cdot CH_2\cdot O\cdot CH_2\cdot CH_3$ (H 151; E I 71). B. Zur Bildung aus Chlormethyl-äthyl-äther und Natriumacetat vgl. Farren, Mitarb., Am. Soc. 47, 2422. — Kp: 128—129°; D°: 1,0081; D°: 0,9932; n°: 1,3903 (F., Mitarb.). — Geschwindigkeit der Hydrolyse durch verd. Salzsäure, Soda-Lösung und Borax-Lösung bei 25°: Skrabal, Brunner, Airoldi, Ph. Ch. 111, 110.

Methylenglykol-isopropyläther-acetat, Isopropyloxymethyl-acetat $C_8H_{12}O_3=CH_3\cdot CO\cdot O\cdot CH_2\cdot O\cdot CH(CH_3)_2$. B. Aus Chlormethyl-isopropyl-äther und Natriumacetat (Farren, Mitarb., Am. Soc. 47, 2422). — Kp: 133—135°. D_4^{a} : 0,9761; D_4^{a} : 0,9502. n_1^{b} : 1,3890.

Methylenglykol-sek.-butyläther-acetat, sek.-Butyloxymethyl-acetat $C_7H_{14}O_3 = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot O \cdot CH(CH_3) \cdot C_2H_5$. B. Aus Chlormethyl-sek.-butyl-äther und Natriumacetat (Farren, Mitarb., Am. Soc. 47, 2422). — Kp: 156—158°. D_4^o : 0,9574; D_2^o : 0,9319. n_1^o : 1,4035.

Methylenglykoldiacetat, Methylendiacetat, Oxymethylendiacetat C₅H₈O₄ = CH₃·CO·O·CH₂·O·CO·CH₃ (H 152; E I 71). F: —23° (STAUDINGER, SIGNER, Helv. 11, 1050; Z. Kr. 70, 197; St., Mitarb., A. 474, 195). Kp₇₆₀: 164—165° (St., B. 59, 3023; St., Lüthy, Helv. 8, 46; St., Johner, Si., Ph. Ch. 126, 428); Kp₁₂: 62—65° (SKRABAL, SCHIFFRER, Ph. Ch. 99, 297); Kp_{0;1}: 39—40° (St., Mitarb., St., St.). D²⁴: 1,128 (St., Mitarb.). Viscosität: St., Mitarb. n³/₂: 1,4025 (St., Mitarb.). Sehr leicht löslich in organischen Lösungsmitteln (St., SI.; St., Mitarb.). Kryoskopisches Verhalten in Benzol: St., Mitarb., A. 474, 197. — Geschwindigkeit der Hydrolyse durch Salzsäure, Natriumcarbonat-Lösung und Natriumdicarbonat-Lösung bei 25°: SKRABAL, SCHIFFRER, Ph. Ch. 99, 297. 1 Mol Methylendiacetat liefert beim Erhitzen mit der 1 Mol Formaldehyd entsprechenden Menge Paraformaldehyd im Rohr auf 125—130° ein Gemisch von Methylendiacetat, Dioxymethylenund Trioxymethylen-diacetaten (St., L.).

Polyoxymethylen-diacetate.

Über Polyoxymethylen-diacetate CH₃·CO·O·[CH₂·O]_x·CO·CH₃ vgl. STAUDINGER, Mitarb., A. 474, 172—205; H. STAUDINGER, Die hochpolymeren organischen Verbindungen [Berlin 1932], S. 48, 226, 233, 272.

Di-oxymethylen-diacetat, Bis-acetoxymethyl-äther, $\alpha.\alpha'$ -Diacetoxy-dimethyläther $C_6H_{10}O_5=CH_3\cdot CO\cdot C\cdot CH_2\cdot O\cdot CO\cdot CH_3\cdot O\cdot CO\cdot CH_3\cdot (H~151;~E~I~71)$. B. Beim Erhitzen der 1 Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Methylendiacetat im Rohr auf 125—130°, neben Tri-oxymethylen-diacetat (Staudinger, Lüthy, Helv. 8, 50).

F: —13° (St., Signer, Z. Kr. 70, 197; St., Mitarb., A. 474, 195). Kp₇₆: 200—202°; Kp₁₈: 100—105° (St., B. 59, 3023; St., Johner, S., Ph. Ch. 126, 428); Kp_{0,1}: 60—62° (St., Mitarb.; St., S.). D³⁴: 1,158 (St., Mitarb.). Viscosität: St., Mitarb. ng: 1,4124 (St., Mitarb.). Sehr leicht löslich in Äther (St.; St., Mitarb.). Kryoskopisches Verhalten in Benzol: St., Mitarb., A. 474, 197. — Liefert beim Erhitzen mit der 1 Mol Formaldehyd entsprechenden Menge Paraformaldehyd auf 140—150° ein Gemisch von etwas Methylendiacetat mit Di-, Tri- und Tetra-oxymethylen-diacetat (St., L., Helv. 8, 50).

Tri-oxymethylen-diacetat C₇H₁₂O₆ = CH₂·CO·O[CH₂·O]₃·CO·CH₃. Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt (STAUDINGER, Mitarb., A. 474, 197). — B. Beim Erhitzen einer 2 oder mehr Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid auf 130—150°, neben anderen Produkten (STAUDINGER, LÜTHY, Helv. 8, 47). Neben Di-oxymethylen-diacetat beim Erhitzen einer 1 Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Methylendiacetat in Rohr auf 125—130° (St., L.). Beim Erhitzen der 1 Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Di-oxymethylen-diacetat auf 140—150°, neben Methylendiacetat und Di- und Tetra-oxymethylen-diacetat (St., L.). — F: —3° (St., Signer, Z. Kr. 70, 197; St., Mitarb., A. 474, 195). Kp₂: 113—115° (St., B. 59, 3023; St., Johner, S., Ph. Ch. 126, 428; St., Lüthy, Helv. 8, 47); Kp_{0,1}: 84° (St., Mitarb.; St., S.). D³⁴: 1,179 (St., Mitarb.). Viscosität: St., Mitarb. n³: 1,4185 (St., Mitarb.). Sehr leicht löslich in Ather (St., B. 59, 3023; St., Mitarb.).

Tetra-oxymethylen-diacetat $C_8H_{14}O_7 = CH_3 \cdot CO \cdot O \cdot [CH_3 \cdot O]_4 \cdot CO \cdot CH_3$. Das Mol. Gew. wurde kryoskopisch in Benzol bestimmt (Staudinger, Mitarb., A. 474, 197). — B. Neben anderen Produkten beim Erhitzen einer 2 oder mehr Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid auf 130—150° (St., Lüthy, Helv. 8, 47) oder beim Erhitzen einer 1 Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Di-oxymethylen-diacetat auf 140—150° (St., L.). — Flüssigkeit. F: 7° (St., Mitarb., A. 474, 195). Kp₂: 132—134° (St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428); Kp_{0:1}: 102—104° (St., Mitarb.). D²⁴: 1,195 (St., Mitarb.). Viscosität: St., Mitarb. n⁵/_D: 1,4233 (St., Mitarb.). Leicht löslich in Ather (St., B. 59, 3023), mischbar mit Aceton (St., Mitarb.).

Penta-oxymethylen-diacetat $C_9H_{14}O_8 = CH_3 \cdot CO \cdot O[CH_2 \cdot O]_5 \cdot CO$ $CH_3 \cdot Das$ Mol. Gew. wurde kryoskopisch in Benzol bestimmt (Staudinger, Mitarb., A. 474, 197). — B. Neben anderen Produkten beim Erhitzen einer 5 oder mehr Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid im Rohr auf 160—170° (St., Lüthy, Helv. 8, 48). — Erstarrt beim Abkühlen in Kältemischung (St., L.). F: 17° (St., Mitarb.; St., Signer, Z. Kr. 70, 197). $Kp_{0,4}$: 160—165° (St., Johner, S., Ph. Ch. 126, 428; St., B. 59, 3023; St., L.); $Kp_{0,1}$: 124—126° (St., S; St., Mitarb.). D²⁴: 1,204 (St., Mitarb.). Viscosität: St., Mitarb. n_2^{m} : 1,4258 (St., Mitarb.). Löslich in Ather und Aceton (St.; St., Mitarb.).

Hepta-oxymethylen-diacetat $C_{11}H_{20}O_{10}=CH_3$ $CO\cdot O\cdot [CH_2\cdot O]_7\cdot CO\cdot CH_3$. B. Wurde einmal neben anderen Produkten beim Erhitzen einer 5 Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid im Rohr auf 160° erhalten (STAUDINGER, Lüthy, Helv. 8, 48). — Flüssigkeit. Schmilzt gegen 15° (St., L.; St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428). $Kp_{0,3}$: 180—190° (St.; St., J., S.). — Leicht löslich in Äther, löslich in Aceton (St.; St., L.).

Okta - oxymethylen - diacetat, "Octo - oxymethylen - diacetat" $C_{12}H_{22}O_{11} = CH_{2} \cdot CO \cdot O[CH_{2} \cdot O]_{8} \cdot CO \cdot CH_{3}$. Das Mol. - Gew. wurde ebullioskopisch in Methylenchorid bestimmt (Staudinger, Mitarb., A. 474, 197). — B. Neben anderen Produkten beim Erhitzen einer 5 Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid im Rohr auf 160—170° (St., Lüthy, Helv. 8, 48). — Paraffinartige Blättchen. Röntgenogramm (Pulveraufnahme): Ott, Helv. 11, 318. F: 27,5—28,5° (St., L.), 32—34° (St., B. 59, 3023; St., Signer, Helv. 11, 1050; Z. Kr. 70, 197; St., Johner, S., Ph. Ch. 126, 428). D³⁶: 1,216 (St., Mitarb., A. 474, 195). n_{5}^{5} : 1,4297 (St., Mitarb.). Unlöslich in Petroläther, sehr leicht löslich in Äther und anderen organischen Lösungsmitteln (St., L.).

Ennea-oxymethylen-diacetat, "Nono-oxymethylen-diacetat" $C_{18}H_{24}O_{12} = CH_3 \cdot CO \cdot O \cdot [CH_2 \cdot O]_9 \cdot CO \cdot CH_3$. B. Neben anderen Produkten beim Erhitzen einer 5 oder mehr Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid im Rohr auf 160—170° (STAUDINGER, LÜTHY, Helv. 8, 48). — Mikrokrystallines Pulver. Röntgenogramm (Pulveraufnahmen): MIE, HENGSTENBERG, Ph. Ch. 126, 441. An verschiedenen Präparaten wurden folgende Schmelzpunkte ermittelt: 40—43° (ST., Mitarb., A. 474, 195), 45—47° (ST., Johner, Signer, Ph. Ch. 126, 428), 46—48° (ST., B. 59, 3023; ST., L.), 50—51° (ST., L.). D¹⁵: 1,353 (ST., Mitarb.). Leicht löslich in Äther, Essigester, Chloroform, Benzol und Alkohol, unlöslich in Petroläther (ST., L.). — Zersetzt sich bei höherer Temperatur (ST., L.).

Deka-oxymethylen-diacetat C₁₄H₂₆O₁₃ = CH₃·CO·O·[CH₂·O]₁₀·CO·CH₃. Das Mol.-Gew. wurde ebullioskopisch in Methylenchlorid bestimmt (STAUDINGER, Mitarb., A. 474, 195). — Mikrokrystallines Pulver. Röntgenogramm (Pulveraufnahmen): Ott, Helv. 11, 318; MIE, HENGSTENBERG, Ph. Ch. 126, 443. F: 52—53,5° (St., Mitarb.; St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428; St., S., Z. Kr. 70, 197). Löslich in Aceton und Chloroform (St., Mitarb.).

Hendeka-oxymethylen-diacetat, "Undeka-oxymethylen-diacetat" $C_{15}H_{28}O_{14} = CH_3 \cdot CO \cdot O \cdot [CH_2 \cdot O]_{11} \cdot CO \cdot CH_3$. B. Neben anderen Produkten beim Erhitzen einer 5 oder mehr Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid im Rohr auf 160—170° (STAUDINGER, LÜTHY, Helv. 8, 48). — Mikrokrystallines Pulver (St., Mitarb., A. 474, 195). F: 64—65° (St., B. 59, 3023; St., L.; St., Johner, Signer, Ph. Ch. 126, 428), 65,5—67° (St., Mitarb., A. 474, 195). Leicht löslich in Essigester, Chloroform, Benzol und Alkohol, schwerer in Ather, unlöslich in Petroläther (St., L.); in 100 ccm lösen sich bei Zimmertemperatur 0,5 g (St., Mitarb.). — Zersetzt sich bei höherer Temperatur (St., L.).

Dodeka-oxymethylen-diacetat C₁₆H₃₀O₁₅ = CH₃·CO·O·[CH₂·O]₁₂·CO·CH₃. Das Mol.-Gew. wurde ebullioskopisch in Methylenchlorid bestimmt (Staudinger, Mitarb., A. 474, 197). — B. Neben anderen Produkten beim Erhitzen einer 5 oder mehr Mol Formaldehyd entsprechenden Menge α-Polyoxymethylen mit 1 Mol Acetanhydrid im Rohr auf 160—170° (St., LÜTHY, Helv. 8, 48). — Mikrokrystallines Pulver. Röntgenographische Untersuchung (Pulveraufnahmen): Ott, Helv. 11, 318; Mie, Hengstenberg, Ph. Ch. 126, 443. F: 66—67° (St., L.), 73—75° (St., Johner, Signer, Ph. Ch. 126, 428; St., B. 59, 3023; St., Mitarb., A. 474, 195). Leicht löslich in Essigester, Chloroform, Benzol und Alkohol, schwerer in Äther, unlöslich in Petroläther (St., L.). 100 cm³ Aceton lösen bei Zimmertemperatur 2 g (St., Mitarb.). — Verändert sich nicht bei 14-tägigem Erhitzen auf 100° (St., Mitarb., A. 474, 189).

Tetradeka-oxymethylen-diacetat $C_{18}H_{34}O_{17}=CH_3\cdot CO\cdot O\cdot [CH_2\cdot O]_{14}\cdot CO\cdot CH_3$. Das Mol.-Gew. wurde ebullioskopisch in Methylenchlorid bestimmt (Staudinger, Mitarb., A. 474, 197). — Mikrokrystallines Pulver. Röntgenographische Untersuchung (Pulveraufnahmen): Ott, Helv. 11, 319. F: 83,5—85° (St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428), 84—86° (St., Mitarb.). Ziemlich schwer löslich in Äther (St.). Bei Zimmertemperatur lösen 100 cm³ Aceton 1,5 g (St., Mitarb.). — Reduziert ammoniakalische Silber-Lösung beim Kochen, alkalisch-ammoniakalische Silber-Lösung in der Kälte (St., Mitarb.). Gibt beim Kochen mit 4-Nitro-phenylhydrazin-hydrochlorid in Wasser Formaldehyd-[4-nitro-phenylhydrazon] (St., Mitarb.).

Pentadeka-oxymethylen-diacetat C₁₉H₃₆O₁₈ = CH₃·CO·O·[CH₂·O]₁₅·CO·CH₃. Das Mol.-Gew. wurde ebullioskopisch in Methylenchlorid bestimmt (Staudinger, Mitarb., A. 474, 197). — Mikrokrystallines Pulver. Röntgenogramm (Pulveraufnahmen): Mie, Hengstenberg, Ph. Ch. 126, 441; Ott., Helv. 11, 319. F: 90,5—92° (St., B. 59, 3023; St., Mitarb., A. 474, 195; St., Signer, Z. Kr. 70, 197; St., Johner, S., Ph. Ch. 126, 428), 91—92° (St., S., Helv. 11, 1050). D¹⁵: 1,364 (St., Mitarb.). Löslich in organischen Lösungsmitteln (St., S.); ziemlich schwer löslich in Äther (St.); bei Zimmertemperatur lösen 100 cm³ Aceton 1 g (St., Mitarb.).

Hexadeka-oxymethylen-diacetat $C_{20}H_{38}O_{19}=CH_3\cdot CO\cdot O\cdot [CH_2\cdot O]_{16}\cdot CO\cdot CH_3$. Das Mol.-Gew. wurde ebullioskopisch in Methylenchlorid bestimmt (Staudinger, Mitarb., A. 474, 197). — Mikrokrystallines Pulver. Röntgenogramm (Pulveraufnahmen): Ott., Helv. 11, 319. F: 93—95° (St., Mitarb.), 94,5—96° (St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428). — Schwer löslich in Äther (St.). 100 cm³ Aceton lösen bei Zimmertemperatur 0,8 g (St., Mitarb.). — Zersetzt sich bei mehrtägigem Erhitzen auf 100° unter Abspaltung von Formaldehyd (St., Mitarb.).

Heptadeka-oxymethylen-diacetat $C_{21}H_{40}O_{20}=CH_3\cdot CO\cdot O\cdot [CH_2\cdot O]_{17}\cdot CO\cdot CH_3$. Das Mol.-Gew. wurde ebullioskopisch in Methylenchlorid bestimmt (STAUDINGER, Mitarb., A. 474, 197). — B. Neben anderen Produkten beim Erhitzen einer 5 oder mehr Mol Formaldehyd entsprechenden Menge Paraformaldehyd mit 1 Mol Acetanhydrid im Rohr auf 160—170° (STAUDINGER, LÜTHY, Helv. 8, 48). — Mikrokrystallines Pulver. Röntgenogramm (Pulveraufnahmen): Ott, Helv. 11, 320; Mie, Hengstenberg, Ph. Ch. 126, 443. F: 98,5° bis 99,5° (St., Mitarb.), 103—107° und 105—107° (St., L.), 105—109° (St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428). D¹⁵: 1,370 (St., Mitarb.). Löslich in heißem Essigester und Chloroform, unlöslich in Ather und Petroläther (St., L.); 100 cm² Aceton lösen bei Zimmertemperatur 0,6 g (St., Mitarb.).

Enneadeka - oxymethylen - diacetat, "Nonadeka - oxymethylen - diacetat" $C_{38}H_{44}O_{33} = CH_3 \cdot CO \cdot O \cdot [CH_2 \cdot O]_{19} \cdot CO \cdot CH_3$. Das Mol.-Gew. wurde ebullioskopisch in Methylenchlorid bestimmt (Staudinger, Mitarb., A. 474, 197). — Mikrokrystallines Pulver.

166

Röntgenogramm (Pulveraufnahmen): MIE, HENGSTENBERG, Ph. Ch. 126, 443; OTT, Helv. 11, 320. F: 107—109° (St., Mitarb.; St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428). D¹5: 1,390 (St., Mitarb.). Schwer löslich in Äther (St.); 100 cm³ Aceton lösen bei Zimmertemperatur 0,4 g (St., Mitarb.). — Zersetzt sich bei mehrtägigem Erhitzen auf 100° unter Abspaltung von Formaldehyd (St., Mitarb.).

Eikosi-oxymethylen-diacetat $C_{24}H_{46}O_{23} = CH_3 \cdot CO \cdot O \cdot [CH_2 \cdot O]_{20} \cdot CO \cdot CH_3$. Mikrokrystallines Pulver. F: 111—112° (Staudinger, Mitarb., A. 474, 195; St., B. 59, 3023; St., Johner, Signer, Ph. Ch. 126, 428; St., S., Z. Kr. 70, 197). — Sehr schwer löslich in Äther (St.); 100 cm³ Methylacetat lösen bei Zimmertemperatur 0,2 g (St., Mitarb.).

Eikosidyo-oxymethylen-diacetat, "Dieikosi-oxymethylen-diacetat" C₂₆H₅₀O₂₅ = CH₃·CO·O·[CH₂·O]₂₂·CO·CH₃. Mikrokrystallines Pulver. F: 116—118° (STAUDINGER. Mitarb., A. 474, 195; St., B. 59, 3023; St., Johner, Sioner, Ph. Ch. 126, 428; St., S., Helv. 11, 1050). — Schwer löslich in organischen Lösungsmitteln (St., S.), sehr schwer löslich in Ather (St.; St., J., S.); 100 cm³ Methylacetat lösen bei Zimmertemperatur 0,1 g (St., Mitarb.).

Tettarakontapenta-oxymethylen-diacetat $C_{49}H_{96}O_{48}=CH_3\cdot CO\cdot O\cdot [CH_2\cdot O]_{45}\cdot CO\cdot CH_3$. F: 150—170° (Staudinger, Signer, Helv. 11, 1050). — Unlöslich in organischen Lösungsmitteln.

Weitere Essigsäurederivate von Oxo-Verbindungen.

Sulfomethyl-acetat, Acetoxymethansulfonsäure $C_3H_6O_5S = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot SO_3H$.

B. Das Kaliumsalz entsteht beim Kochen von oxymethansulfonsaurem Kalium mit Acetanhydrid (RASCHIG, PRAHL, A. 448, 305). — KC₃H₅O₅S. Nadeln (aus Alkohol). F: 225° bis 230° (Zers.). Sehr leicht löslich in Wasser.

Essigsäure-chlormethylester, Chlormethyl-acetat, Methylenacetochlorhydrin $C_3H_5O_2Cl = CH_3 \cdot CO \cdot O \cdot CH_2Cl$ (H 152). B. Zur Bildung aus Essigsäuremethylester nach Henry (B. 6, 740) vgl. Conant. Kirner, Hussey, Am. Soc. 47, 499 Anm. a. — Kp: 113° bis 115° (C., K., H.). — Beim Einleiten von Ammoniak in eine äther. Lösung von Chlormethylacetat entstehen Acetamid, Formaldehyd und Ammoniumchlorid (ULICH, ADAMS, Am. Soc. 43, 665). Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 20° und 25°: C., K., H. Gibt mit Natriumphenolat in kalter wäßriger Lösung Phenylacetat (Kirner, Am. Soc. 48, 2748). Liefert mit Trimethylamin in Alkohol Trimethylacetoxymethylammoniumchlorid (Renshaw, Ware, Am. Soc. 47, 2991). Setzt sich mit Anilin in Äther unter Bildung von Acetanilid und 1.3.5-Triphenyl-trimethylentriamin (Anhydroformaldehydanilin, Syst. Nr. 3796) um (U., A.). Liefert mit Pyridin eine unbeständige Additionsverbindung, mit Chinolin die Verbindung C₉H₇N + C₃H₅O₂Cl (s. bei Chinolin) (U., A.). — Toxische Wirkung auf Ratten und Eignung als Kampfgas: Busacca, Arch. Farmacol. sperim. 28, 108; C. 1920 III, 456.

Essigsäure-brommethylester, Brommethyl-acetat $C_3H_5O_2Br=CH_3\cdot CO\cdot O\cdot CH_2Br$ (H 152). B. Aus Acetylbromid und Paraformaldehyd in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₇₅₀: 130—133° (U., A.). — Liefert mit Dimethylsulfid Dimethyl-acetoxymethyl-sulfoniumbromid (Renshaw, Bacon, Roblyer, Am. Soc. 48, 519).

Essigsäure-jodmethylester, Jodmethyl-acetat $C_3H_5O_2I=CH_3\cdot CO\cdot O\cdot CH_2I$. B. Aus Paraformaldehyd und Acetyljodid anfangs bei Zimmertemperatur, zuletzt bei 100° (Renshaw, Ware, Am. Soc. 47, 2990). — Zu Tränen reizende Flüssigkeit. Zersetzt sich beim Destillieren unter Atmosphärendruck. Kp₁₄: 65°. D²²: 1,902.

Methylmercaptomethyl-acetat, Methyl-acetoxymethyl-sulfid $C_4H_8O_2S=CH_3\cdot CO\cdot O\cdot CH_2\cdot S\cdot CH_3$. B. Beim Kochen von Chlormethyl-acetat mit überschüssigem Natriummethylmercaptid in Äther (KIRNER, Am. Soc. 50, 2450). — Kp_{20} : 60—62°; Kp_{11} : 53—55°. — Wird durch methylalkoholische Salzsäure zersetzt.

Dimethyl-acetoxymethyl-sulfoniumhydroxyd $C_5H_{12}O_3S=CH_3\cdot CO\cdot O\cdot CH_2\cdot S(CH_3)_2\cdot OH.$ — Bromid $C_5H_{11}O_2S\cdot Br.$ B. Aus Dimethylsulfid und Essigsäure-brommethylester (Renshaw, Bacon, Roblyer, Am. Soc. 48, 519). — Nadeln (aus Alkohol + Ather). F: 104° (korr.) (Re., Ba., Ro.). Leicht löslich in Wasser und Methanol, löslich in Alkohol (Re., Ba., Ro.). Zersetzt sich bei Gegenwart von Verunreinigungen oder von Feuchtigkeit (Re., Ba., Ro.). Geschwindigkeit der Hydrolyse bei 37° und $P_H = 7.8$: Re., Ba., Am. Soc. 48, 1728. Wird durch heißen Alkohol unter Bildung von Dimethylsulfid und Formaldehyd gespalten (Re., Ba., Ro.). — Physiologische Wirkung: Re., Ba., Ro.; Re., Ba.; Hunt, Re., J. Pharmacol. exp. Therap. 25, 337; C. 1925 II, 1466.

Äthylidenglykol-äthyläther-acetat, [α -Athoxy-äthyl]-acetat $C_6H_{12}O_3 = CH_3 \cdot CO \cdot CH(CH_3) \cdot O \cdot C_2H_5$ (H 152; E I 71). Die Hydrolyse verläuft sowohl in schwach saurer

wie in schwach alkal. Lösung außerordentlich rasch (Skrabal, Brunner, Airoldi, Ph. Ch. 111, 115).

Äthylidenglykol-diacetat, Äthylidendiacetat C₅H₁₀O₄ = (CH₃·CO·O)₂·CH(CH₃) (H 152; F. I 71). B. Neben Essigsäure und Acetanhydrid beim Einleiten von Chlor in ein Gemisch von Acetaldehyd und wasserfreiem Natriumacetat bei 10—12° (A. Wacker, D. R. P. 372528; C. 1923 IV, 660; Frdl. 14, 252). Aus Acetylen und Essigsäure in Gegenwart von Quecksilberoxyd und Methylensulfat oder Dimethylsulfat oder von β-naphthalinsulfonsaurem Quecksilber (Usines du Rhône, D. R. P. 322746, 334554, 350364; C. 1920 IV, 437; 1921 II, 1019; 1922 IV, 155; Frdl. 13, 102, 103, 1081). Beim Einleiten von Acetylen in ein Gemisch aus Essigsäure, Acetanhydrid und Sulfoessigsäure in Gegenwart von metallischem Quecksilber und Eisen(III)-sulfat bei 80° (U. d. Rh., D. R. P. 455583; C. 1928 I. 1710; Frdl. 16, 713) oder von Quecksilber(II)-sulfat bei 90° (U. d. Rh., D. R. P. 453021; C. 1928 I, 583; Frdl. 15, 133). Beim Leiten von Acetylen und Essigsäure-Dampf über mit Cadmiumacetat-Lösung imprägnierte Adsorptionskohle bei 200° (Konsort, f. elektrochem, Ind., D. R. P. 403784; C. 1925 I, 293; Frdl. 14, 158). — F: 18,9°; D²⁵: 1,070; n²⁵: 1,3985 (Usines du Rhône, D. R. P. 453021).

Geschwindigkeit der Hydrolyse durch Salzsäure und Natriumcarbonat-Lösung bei 25°: SKRABAL, SCHIFFRER, Ph. Ch. 99, 302; SK., SAWIUK, Ph. Ch. 122, 359. Athylidendiacetat zerfällt bei der Destillation mit granuliertem Zink (BAYER & Co., D. R. P. 360325; C. 1923 II, 404; Frdl. 14, 250), mit konz. Schwefelsäure auf Kieselgur (Konsort. f. clektrochem. Ind., D. R. P. 391674; C. 1924 II, 887; Frdl. 14, 222) oder mit Phosphorsäure (Shawinigan Water and Power Co., D. R. P. 408416; C. 1925 I, 1527; Frdl. 14, 203), beim Erhitzen in Gegenwart von Zinkchlorid oder Zinkbromid, Zinkspänen und wenig Essigsäure auf höhere Temperatur (Usines du Rhône, D. R. P. 451533; C. 1928 I, 407; Frdl. 15, 128) unter Bildung von Acetaldehyd und Acetanhydrid. Bei der Destillation eines Gemisches von 400 Tln. Äthylidendiacetat und 8 Tln. Schwefelsäure (D: 1,84) bei 70—80° und 100 mm Druck entstehen Paraldehyd und Acetanhydrid (Usines du Rhône, D. R. P. 346236; C. 1922 II, 808; Frdl. 13, 1085).

Essigsäure - [α-chlor-äthylester], [α-Chlor-äthyl]-acetat C₄H₇O₂Cl = CH₃·CO·O·CHCl·CH₃ (H 152; E I 71). B. Zur Bildung aus Acetylchlorid und Acetaldehyd vgl. Ulich. Adams, Am. Soc. 43, 663. — Kp₇₄₀: 113—116° (U., A.). — Wird durch kaltes Wasser unter Bildung von Essigsäure, Acetaldehyd und Salzsäure hydrolysiert (U., A.). — Reizwirkung auf die Haut von Menschen und Hunden: Hanzlik, Tarr, J. Pharmacol. exp. Therap. 14. 226; C. 1920 I, 510.

Essigsäure-[α-brom-äthylester], [α-Brom-äthyl]-acetat C₄H₇O₂Br = CH₃·CO·O·CHBr·CH₃ (H 153). B. Zur Bildung aus Acetylbromid und Acetaldehyd vgl. ULICH, ADAMS, Am. Soc. 48, 662. — Kp₇₃₈: 122—125° (U., A.). — Reizwirkung auf die Haut von Menschen und Hunden: Hanzlik, Tarr, J. Pharmacol. exp. Therap. 14, 226; C. 1920 I. 510.

[β . β . β -Trichlor-äthyliden]-diacetat, Chloralhydrat-diacetat $C_6H_7O_4Cl_3 = (CH_3 \cdot CO \cdot O)_2CH \cdot CCl_3$ (H 153; E I 71). Beim Eintragen von Kaliumeyanid in eine alkoh. Lösung entstehen Äthylacetat und Dichloressigsäure-äthylester; unverdünntes Chloralhydrat-diacetat reagiert mit Kaliumeyanid sehr heftig unter Bildung eines kohligen Produkts (Chattaway, Irving, Soc. 1929, 1047).

Bis-[$\beta.\beta.\beta$ -trichlor- α -acetoxy-äthyl]-sulfid $C_8H_8O_4Cl_6S=[CH_3\cdot CO\cdot O\cdot CH(CCl_3)]_2S$ (H 154). B. Aus Bis-[$\beta.\beta.\beta$ -trichlor- α -oxy-äthyl]-sulfid und Acetanhydrid (Chattaway, Kellett, Soc. 1929, 2913). — F: 84°.

[α-Sulfo-isopropyl]-acetat, 2-Acetoxy-propan-sulfonsäure-(2), ,, Acetoxy isopropylsulfonsäure" $C_5H_{10}O_5S=CH_3\cdot CO\cdot O\cdot C(CH_3)_2\cdot SO_3H$. — $Cu(C_5H_9O_5S)_2$. B. Bei längerem Kochen des Kupfersalzes der β-Oxy-propan-β-sulfonsäure (E II 1, 715) mit Eisessig (Schroeter, B. 61, 1621; vgl. dagegen Raschig, Prahl, B. 61, 181). Prismen (aus Aceton). Ziemlich leicht löslich in heißem Aceton (Sch.). Gibt beim Behandeln der wäßr. Lösung mit Schwefelwasserstoff β-Oxy-propan-β-sulfonsäure (Sch.).

Essigsäure-[α -chlor-isobutylester], [α -Chlor-isobutyl]-acetat $C_6H_{11}O_2Cl=CH_3$ · $CO\cdot O\cdot CHCl\cdot CH_3(CH_3)_2$. B. Aus Acetylchlorid und Isobutyraldehyd in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). Kp₅₀: 78—81°.

Essigsäure-[α -brom-isobutylester], [α -Brom-isobutyl-acetat $C_6H_{11}O_2Br=CH_3$ · $CO\cdot O\cdot CHBr\cdot CH(CH_3)_8$. B. Aus Acetylbromid und Isobutyraldehyd in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₃₀: 73—75°.

Essigsäure - [α -chlor-isoamylester], [α -Chlor-isoamyl] - acetat $C_7H_{13}O_1Cl = CH_3$ · $CO \cdot O \cdot CHCl \cdot CH_2 \cdot CH(CH_3)_2$ (H 154). B. Aus Acetylchlorid und Isovaleraldehyd in Gegenwart von Zinkehlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 48, 662). — Kp₆₀: 89—92°.

Essigsäure - [α -brom-isoamylester], [α -Brom-isoamyl] - acetat $C_7H_{13}O_2Br=CH_3$ · $CO\cdot O\cdot CHBr\cdot CH_4\cdot CH(CH_3)_2$. B. Aus Acetylbromid und Isovaleraldehyd in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₂₅: 85—88°.

Essigsäure-[α -chlor-n-heptylester], [α -Chlor-n-heptyl]-acetat $C_9H_{17}O_9Cl = CH_3$ · $CO \cdot O \cdot CHCl \cdot [CH_9]_5 \cdot CH_3$. B. Aus Acetylchlorid und Önanthol in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₁₅: 104—105°.

Essigsäure-[α -brom-n-heptylester], [α -Brom-n-heptyl]-acetat $C_0H_{17}O_2Br=CH_3$ · $CO\cdot O\cdot CHBr\cdot [CH_3]_6\cdot CH_3$. B. Aus Acetylbromid und Önanthol in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₁₈: 113—116°.

Głyoxaldihydrat-tetraacetat, 1.1.2.2-Tetraacetoxy-äthan, "Głyoxaltetraacetat" $C_{10}H_{14}O_8 = (CH_3 \cdot CO \cdot O)_2CH \cdot CH(O \cdot CO \cdot CH_3)_2$ (E I 72). B. Aus Głyoxal-sulfat (E II 1, 818) durch vorsichtiges Erwärmen mit Acetanhydrid und Eisessig (H. O. L. Fischer, Taube, B. 59, 853; vgl. Skrabal, Gitschthaler, Ph. Ch. 128, 460). — F: 104—105° (F., T.). 1 l Wasser von 25° löst ca. 0,008 Mol (Sk., G.). — Wird durch Natronlauge sehr rasch verseift; Kinetik der Verseifung durch Wasser, verd. Salzsäure, Natriumacetat-Lösung und Natriumborst-Borsäure-Lösung: Sk., G.

Diacetat des α -Methyl-glyoxal- α' -hydrats, $\alpha.\alpha$ -Diacetoxy-aceton, "Diacetyl-methylglyoxal" $C_7H_{10}O_5 = (CH_3 \cdot CO \cdot O)_2CH \cdot CO \cdot CH_3$. Das Mol.-Gew. ist ebullioskopisch in Alkohol bestimmt (SJOLLEMA, SEEKLES, R. 45, 656). — B. Durch längeres Kochen von Methylglyoxal mit Acetanhydrid (H. O. L. FISCHER, FELDMANN, B. 62, 863) oder mit Acetanhydrid in Gegenwart von Eisen(III)-chlorid (SJ., SEE., R. 45, 655). — Krystalle. F: 27° (SJ., SEE.). Kp₁₀: 111—113° (SJ., SEE.); Kp₁₃: 115—116° (FI., FE.). — Zersetzt sich beim Aufbewahren (FI., FE.). Löst sich allmählich in Wasser unter Spaltung in Methylglyoxal und Essigsäure (SJ., SEE.). Liefert bei Einw. von 30% igem Wasserstoffperoxyd und längerem Aufbewahren des Reaktionsprodukts im Vakuum über Schwefelsäure Diacetylmethylglyoxalsuperoxyd (s. u.) (FI., FE.). Liefert beim Umsetzen mit Methylmagnesiumjodid wahrscheinlich α -Oxy-isobutyraldehyd (SJ., SEE.).

, Diacetylmethylglyoxalsuperoxyd" $C_7H_{10}O_6$. Das Mol.-Gew. ist kryoskopisch in Eisessig bestimmt. — B. Durch Einw. von 30%igem Wasserstoffperoxyd auf Diacetylmethylglyoxal und Aufbewahren des Reaktionsprodukts im Vakuum über Schwefelsäure (H. O. L. Fischer, Feldmann, B. 62, 863). — Schuppen (aus Chloroform + Ligroin). F: 78° bis 79° (nach vorherigem Sintern). Löslich in Eisessig, Wasser und Chloroform, schwer löslich in Ather. — Die wäßr. Lösung liefert beim Erwärmen mit überschüssigem Phenylhydrazinacetat Methylglyoxal-bis-phenylhydrazon.

Essigsäurederivate von Oxy-oxo-Verbindungen.

Glykolaldehydhydrat-triacetat, 1.1.2-Triacetoxy-äthan, "Glykolaldehyd-triacetat" $C_8H_{12}O_6 = (CH_3 \cdot CO \cdot O)_2CH \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. B. Durch längeres Kochen von Glykolaldehyd mit Acetanhydrid (H. O. L. FISCHER, FELDMANN, B. 62, 862). Durch allmähliche Einw. von 2 Atomen Brom auf Vinylacetat in Eisessig und Kochen des Reaktionsgemisches mit geschmolzenem Kaliumacetat (FI., FE.). In geringer Menge beim Erhitzen von δ -Polyoxymethylen (E II 1, 637) mit Acetanhydrid (Staudinger, Mitarb., A. 474, 233, 237). — Krystalle (aus Äther + Petroläther). F: 52° (FI., FE.). — Liefert beim Behandeln mit 1,0n-Salzsäure Glykolaldehyd (FI., FE.).

Essigsäureacetonylester, Acetoxyaceton, Acetolacetat $C_5H_8O_3=CH_3\cdot CO\cdot O\cdot CH_2\cdot CO\cdot CH_3\cdot (H\ 155;\ E\ I\ 72).$ B. Beim Kochen von 3 Mol Aceton mit 2 Mol Blei(IV)-acetat in Eisessig (Dimroth, Schweizer, B. 56, 1379). Durch Kochen von Bromaceton mit Kaliumacetat und absol. Alkohol (Levene, Walti, J. biol. Chem. 79, 376). — Kp755: 170—171° (L., W.); Kp18: 82° (Zelinski, Dengin, B. 55, 3355).

Acetoxyaceton-diäthylacetal, Acetolacetat-diäthylacetal, 2.2-Diäthoxy-1-acetoxy-propan $C_0H_{18}O_4=CH_3\cdot CO\cdot O\cdot CH_2\cdot C(O\cdot C_2H_5)_2\cdot CH_3$. B. Aus Acetolacetat und Orthoameisensäure-äthylester in Gegenwart von wenig Alkohol und konz. Schwefelsäure (EWLAMPIEW, B. 62, 2388; \mathbb{H} . 61, 2024). Aus Acetol-diäthylacetal und Acetanhydrid in siedendem Ather (E.). — Flüssigkeit von würzigem Geruch. Kp₈: 78,5—79,5° (korr.). D_0° : 0,9990; D_0^{∞} : 0,9785; D_0^{∞} : 0,9747; D_0^{∞} : 0,9774. Unlöslich in Wasser, löslich in organischen Lösungsmitteln.

Aldol-acetat-dimethylacetal, β -Acetoxy-butyraldehyd-dimethylacetal, 1.1-Dimethoxy-3-acetoxy-butan $C_8H_{16}O_4=CH_5\cdot CO\cdot O\cdot CH\cdot (CH_3)\cdot CH_2\cdot CH(O\cdot CH_3)_3$. B. Aus Aldol-dimethylacetal durch Einw. von Acetanhydrid in Pyridin (Bergmann, Kann, A. 438, 287). Beim Behandeln von Aldolacetat (H 2, 155; E I 2, 72) mit Orthoameisensäuremethylester bei Gegenwart von Ammoniumchlorid in Methanol (B., K., A. 438, 288). — Bewegliches Öl von säuerlichem Geruch. Kp₁₃: 84—86°. n_2^m : 1,4130. Sehr schwer löslich in Wasser. — Gibt beim Schütteln mit verd. Schwefelsäure nicht ganz reines Aldolacetat.

Aldol-acetat-oxim, β -Acetoxy-butyraldoxim $C_6H_{11}O_9N=CH_2\cdot CO\cdot O\cdot CH(CH_2)\cdot CH_2\cdot CH: N\cdot OH.$ B. Aus Aldolacetat, Hydroxylaminhydrochlorid und Natriumcarbonat

in verd. Alkohol (BERGMANN, KANN, A. 438, 288). Bei der Einw. von Hydroxylamin auf

Öl. $\mathbf{K}_{p_{12}}^{n}$: 120—122°; $\mathbf{K}_{p_{0,4}}$: 90°; \mathbf{n}_{0}^{20} : 1,4500 (B., K.).

Methyl-acetyl-carbinol-acetat, Acetoinacetat $C_6H_{10}O_3 = CH_3 \cdot CO \cdot O \cdot CH(CH_3)$ CO·CH₃ (H 155). B. Aus Acetoin, Acetanhydrid und Pyridin bei 200 (BERGMANN, LUDEWIG. A. 436, 179). — Kp: $169-173^{\circ}$. $D_{4}^{16,5}$: 1,033. $n_{D}^{16,5}$: 1,4153.

Methyl-acetonyl-carbinol-acetat, Hydracetylaceton-acetat, Methyl- $[\beta$ -acetoxy-propyl]-keton $C_7H_{12}O_3=CH_3\cdot CO\cdot O\cdot CH(CH_3)\cdot CH_2\cdot CO\cdot CH_3$. B. Aus Hydracetylaceton durch Einw. von Acetanhydrid in Pyridin (Bergmann, Kann, A. 438, 290). — Wurde nicht ganz rein erhalten. Kp₁₂: 84°. — Das Phenylhydrazon schmilzt bei 115° (korr.).

[γ -Acetyl-propyl]-acetat, Methyl-[γ -acetoxy-propyl]-keton $C_7H_{12}O_3 = CH_3 \cdot CO \cdot CH_2]_3 \cdot CO \cdot CH_3$ (H 156; E I 73). B. Aus γ -Acetyl-propylalkohol durch Einen von Acetanhydrid in Pyridin (BERGMANN, KANN, A. 438, 290). Leicht bewegliches Öl. Kp₁₂: 91°. Du: 1,0186. ni: 1,4295. — Reagiert mit Phenylhydrazin, aber nicht mit Orthoameisensäuremethylester.

Dimethyl-acetyl-carbinol-acetat, Methyl- $[\alpha$ -acetoxy-isopropyl]-keton $C_7H_{12}O_3$ $CH_3 \cdot CO \cdot O \cdot C(CH_3)_2 \cdot CO \cdot CH_3$ (E I 73). B. Aus 2-Methyl-butanol-(2)-on-(3) bein Kochen mit Acetanhydrid und Natriumacetat (Scheibler, Fischer, B. 55, 2916). — Pfefferminzartig riechendes Öl. Kp: 171—172°. $D_4^{17,4}$: 1,0064. $n_{\alpha}^{17,4}$: 1,4149; $n_{\beta}^{17,4}$: 1,4230. Fast unlöslich in Wasser, leicht löslich in den gebräuchlichen organischen Lösungsmitteln.

[δ -Acetyl-butyl]-acetat, Methyl-[δ -acetoxy-butyl]-keton $C_8H_{14}O_3=CH_3\cdot CO\cdot O\cdot [CH_2]_4\cdot CO\cdot CH_3$ (H 156). B. Aus δ -Acetyl-butylalkohol, Acetanhydrid und Pyridin (Bergmann, Kann, A. 438, 291). — Kp₁₂: 114—116°. D₁^{1,5}: 1,002. n₁^{1,5}: 1,4336. — Reagiert mit Phenylhydrazin, aber nicht mit Orthoameisensäure-methylester.

Diäthyl-acetyl-carbinol-acetat, α -Acetoxy- α . α -diäthyl-aceton $C_9H_{16}O_3=CH_3\cdot CO\cdot O\cdot C(C_2H_5)_2\cdot CO\cdot CH_3$. Kp₁₂: 87—90° (Locquin, Sung, C.r. 176, 517).

 ω -Acetoxy-nonylaldehyd, ω -Acetoxy-pelargonaldehyd $C_{11}H_{20}O_3 = CH_3 \cdot CO \cdot O$ [CH_{2]s}·CHO. B. Durch Einleiten von Ozon in eine Lösung von Essigsäureoleylester in Eisessig und Reduktion des entstandenen Ozonids durch Zinkstaub und feuchten Äther (Helferich, Schäfer, B. 57, 1914). — Fast geruchlose Flüssigkeit. Kp₁₄: 163°. D₄°: 0,9268. n_{18.5}°: 1,4391. — Reduziert Fehlingsche Lösung und ammoniakalische Silber-Lösung, färbt fuchsinschweflige Säure.

Dipropyl-acetyl-carbinol-acetat, α -Acetoxy- α - α -dipropyl-aceton $C_{11}H_{20}O_3=CH_3\cdot CO\cdot O\cdot C(CO\cdot CH_3)(CH_2\cdot CH_2\cdot CH_3)_2$. $Kp_{13}\colon 107-109^{\circ}$ (Locquin, Sung. C.~r.~176,~517). [ω -Acetyl-n-nonyl]-acetat, Methyl-[ω -acetoxy-n-nonyl]-keton $m C_{13}H_{24}O_3=CH_3$ \cdot CO·O·[CH₂]₉·CO·CH₃. B. Beim Behandeln von ω-Acetyl-n-nonylalkohol mit Acetanhydrid in Gegenwart von Natriumacetat (Chuit, Mitarb., Helv. 9, 1085). — Flüssigkeit. Kp11: 167—168°; Kp₁: 135°. — Das Semicarbazon schmilzt bei 100—100,5°.

ω-Acetoxy-laurinaldehyd, O-Acetyl-sabinaldehyd $C_{14}H_{26}O_3 = CH_3 \cdot CO \cdot O \cdot [CH_2]_{11} \cdot CHO$. B. Neben ω-Acetoxy-laurinsäure beim Behandeln von ω-Tridecenylacetat mit Ozon in Tetrachlorkohlenstoff und nachfolgenden Zersetzen des Ozonids (CHUIT, HAUSSER, Helv. 12, 478). — Stark riechende Flüssigkeit. Krystallisiert gegen $+8^{\circ}$ bis $+9^{\circ}$. Kp_{0,5}: 143° bis 145°. D¹⁵: 0,9436. — Das Semicarbazon schmilzt bei 85—86°.

α-Acetoxy-ε-oxo-α.γ-pentadien, δ-Acetoxy-α.γ-butadien-α-aldehyd $C_7H_8O_3=CH_3\cdot CO\cdot O\cdot CH: CH\cdot CH\cdot CH\cdot CHO$. B. Durch Schütteln einer wäßr. Lösung des Natriumsalzes des δ-Oxy-α.γ-butadien-α-aldehyds (E II 1, 854) mit Acetanhydrid (Baumgarten, B. 57, 1625). — Bräunliche, zersetzliche Nadeln (aus Petroläther). F: 75°.

α.α'-Diacetoxy-aceton C₇H₁₀O₅ = CH₃·CO·O·CH₂·CO·CH₂·CO·CO·CH₃. B. Beim Kochen von 1 Mol Aceton mit etwas mehr als 2 Mol Blei(IV)-acetat in Eisessig (DIMROTH, SCHWEIZER, B. 56, 1379). Aus Dioxyaceton bei tagelangem Kochen mit Acetanhydrid (H. O. L. FISCHER, FELDMANN, B. 62, 863) oder beim Schütteln mit Acetanhydrid und trocknem Pyridin (Fi., MILDERAND, B. 57, 709). — Nacdeln (aus Ather oder Petroläther). F: 46—47° (DI., SCH.; LEVENE, WALTI, J. biol. Chem. 78, 30), 46—47.5° (FI., FE.), 48—48.5° (FI., BAER, FE., B. 63 [1930], 1738). Kp_{0,8}: 110—120° (FI., FE.); Kp_{0,1-0,3}: 85° (L., W.). Leicht löslich in Alkohol, Essigester und Benzol, etwas schwerer in Ather, schwer in Petrolather und in kaltem Wasser (F1., M.). — Das Semicarbazon schmilzt bei 93° (D1., SCH.).

¹⁾ Zur Konstitution des Paraldoldiacetats vgl. a. die nach dem Literatur-Schlußtermin des Ergw. II [1. I. 1930] veröffentlichte Arbeit von Späth, Schmid, B. 74 [1941], 859.

[Syst. Nr. 159

Essigsäurederivate von Monosacchariden s. Syst. Nr. 4746—4758 D.
Essigsäurederivate der Schwefelanaloga von Monosacchariden s. Syst. Nr. 4767 A.

Anhydride der Essigsäure.

Ameisensäure-essigsäure-anhydrid $C_9H_4O_9=CH_3\cdot CO\cdot O\cdot CHO$ (H 165). B. Beim Erwärmen von Acetanhydrid mit Natriumdiformiat auf 50° (Koepp & Co., Elöp, D. R. P. 439289; C. 1927 I, 1365; Frdl. 15, 117).

Essigsäureanhydrid, Acetanhydrid $C_4H_4O_2 = (CH_3 \cdot CO)_2O$ (H 166; E I 75).

Bildung und Darstellung.

Acetanhydrid entsteht beim Leiten von Essigsäure-Dampf durch ein Platinrohr bei 1150°, neben überwiegenden Mengen gasförmiger Produkte (Peytral, Bl. [4] 31, 113), über Chamotte oder Bimsstein bei 650° oder über Natriumchlorid bei 550° (Konsort. f. elektrochem. Ind., D. R. P. 408715; C. 1925 I, 1528; Frdl. 14, 259), durch ein auf 800° erhitztes, mit Porzellanscherben gefülltes Quarzrohr, neben wenig Keten (Hurd, Martin, Am. Soc. 51, 3615), über Titanoxyd bei 300° (Campardou, Sáon, C. r. 186, 593), über mit einer Lösung von Calciumhydroxyd oder Aluminiumoxydhydrat und Orthophosphorsäure getränkten und getrockneten Bimsstein bei 600° (Konsort., D. R. P. 410363; C. 1925 I, 2186; Frdl. 15, 375), über Alkaliphosphate, besonders Metaphosphate oder eine Mischung von Alkaliphosphaten, deren Schmelzpunkt unterhalb der Reaktionstemperatur liegt, bei etwa 600° (Konsort., D. R. P. 417731; C. 1925 II, 2092; Frdl. 15, 376). Durch Erhitzen von Essigsäure-Dampf mit geringen Mengen Phosphor, Phosphorsäure, deren Salzen oder Estern auf ca. 680° (Konsort., D. R. P. 475885; Frdl. 16, 631). Durch Einw. von Siliciumtetrachlorid auf siedenden Eisessig (Konsort., D. R. P. 394730; C. 1924 II, 1133; Frdl. 14, 255) oder auf wasserfreies Natriumacetat in Acetanhydrid oder — weniger gut — in Benzol bei 50° (Montonna, Am. Soc. 49, 2115). Durch Kochen eines Gemischs von Eisessig und Acetylchlorid oder Zufügen von Acetylchlorid oder Thionylchlorid zu siedendem Eisessig unter einem auf —15° bis —20° gehaltenen Rückflußkühler (Höchster Farbw., D. R. P. 396696, 411519; C. 1924 II, 1401; 1925 II, 92; Frdl. 14, 254, 1484). Beim Einleiten von Keten (dargestellt durch Leiten von Acetondampf über auf 580° erhitzte Tonscherben) in Essigsäure (Konsort., D. R. P. 403863; C. 1925 I, 295; Frdl. 14, 259). Acetanhydrid entsteht neben Acetaldehyd bezw. Paraldehyd aus Athylidendiacetat bei der Destillation mit wenig Schwefelsäure (D: 1,84) bei 70—80° und 100 mm Druck (Usines du Rhône, D. R. P. 346236; C. 1928 II, 808; Frdl. 13, 1085), mit konz. Schwefelsäure a

Neben Essigsäure und Athylidendiacetat beim Einleiten von Chlor in ein Gemisch von Acetaldehyd und wasserfreiem Natriumacetat bei 10—12° (A. Wacker, D. R. P. 372528; C. 1923 IV, 660; Frdl. 14, 252). Durch Einw. von Acetylchlorid oder Sulfurylchlorid auf Natriumacetat, das durch Destillation mit Petroleum-Kohlenwasserstoffen entwässert wurde (Verfahren von Beatty-Mc Lang) (Haunschild, Chem. Trade J. 78, 662; C. 1926 II, 826; Terlinor, Chem. Trade J. 81 [1927], 106, 166). Durch Erhitzen von Natriumacetat oder Calciumacetat mit Benzotrichlorid ohne Lösungsmittel auf 170—180° unter Rückfluß, auf 230—240° im Rohr oder in Eisessig, Acetanhydrid oder Toluol unter Rückfluß (A. Wacker, D. R. P. 368340; C. 1923 II, 997; Frdl. 14, 251). Durch Erhitzen von Natriumacetat mit Benzalchlorid auf 160—170° (A. W., D. R. P. 368340). Zur Darstellung aus Natriumacetat, Chlor und Schwefel nach Th. Goldschmidt (D. R. P. 222236, 241898) vgl. Fritzmann, Z. prikl. Chim. 1, 29; C. 1928 II, 2548. Man behandelt mit Acetanhydrid angerührtes Calciumacetat oder Calciumacetat + Natriumacetat in der Kälte mit einer Lösung von Schwefeltrioxyd in Sulfurylchlorid (Chem. Fabr. v. Heyden, D. R. P. 358774; C. 1923 II, 335; Frdl. 13, 1116). Durch Einw. von Chlorsulfonsäure oder Gemischen von Chlorsulfonsäure mit Schwefeltrioxyd, Sulfurylchlorid, Pyrosulfurylchlorid oder Dischwefeldichlorid auf Natriumacetat oder Calciumacetat in Acetanhydrid (Ch. F. v. H., D. R. P. 372716; C. 1923 IV, 659; Frdl. 14, 253). Bildung durch Einw. von Siliciumtetrachlorid auf Natriumacetat s. oben. Zur Bildung aus dem Natriumsalz der Acetylschwefelsäure bei der Destillation für sich oder mit Natriumacetat in Gegenwart von Essigsäure vgl. van Peski, R. 40, 114, 115.

Neuere Ausführungsformen der für die technische Darstellung von Acetanhydrid vorwiegend benutzten Umsetzung von wasserfreiem Natriumacetat mit Sulfurylchlorid (H 166) s. bei G. Cohn in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl. Bd. IV [Berlin-Wien 1929], S. 690; vgl. a. Gassner G. m. b. H., Häusler, Mc Lang, Chem. Trade J. 76 [1925], 787. — Zur Darstellung von reinem Acetanhydrid läßt man das Handelsprodukt mehrere Tage mit Natrium stehen und destilliert es danach unter vermindertem Druck (Walton, Withhow, Am. Soc. 45, 2690). Aus dem bei der pyrogenen Dehydratation von Essigsäure entstehenden Gemisch aus Acetanhydrid-Dampf und Wasserdampf läßt sich durch Zusatz von Verbindungen, die mit Wasser azeotrope Gemische bilden, und nachfolgende Kondensation wasserfreies Acetanhydrid abtrennen (I. G. Farbenind., D. R. P. 486953; Frdl. 16, 235).

Physikalische Eigenschaften.

E: —86° (Walton, Withrow, Am. Soc. 45, 2690), —73,0° (Timmermans, Bl. Soc. chim. Belg. 30, 68; C. 1921 III, 288), —73,1° (Ti., Hennaut-Roland, J. Chim. phys. 27 [1930], 418). Kp₇₈₀: 139,40° (Tl.), 139,47° (Jones, Betts, Soc. 1928, 1181), 140,0° (Tl., H.-R.); Kp₇₄₀: 139,3° (Wa., Wi.), 139,4° (Whitford, Am. Soc. 47, 2934). D₀°: 1,10526; D₁°: 1,08712; D₁°°: 1,06911 (Ti., H.-R., J. Chim. phys. 27 [1930], 418; vgl. Connolly, Publ. Carnegie Inst. No. 260 [1918], 138; Wa., Wi.; Pound, J. phys. Chem. 30, 793). Viscosität bci 15° (0,00971 g/cmsec) und 30° (0,00783 g/cmsec): Ti., H.-R. Oberflächenspannung bei 15°: 33,37 dyn/cm, bei 20°: 32,65 dyn/cm und bci 30°: 31,22 dyn/cm (Ti., H.-R.). Verbrennungswärme bei konstantem Volumen: 431,0 kcal/Mol (Roth, in Landolt-Börnst. E I 875). n₁°·s: 1,3948 (Anossow, Izv. Inst. fiz.-chim. Anal. 3, 456; C. 1927 I, 2632); n₁°·s: 1,3896 (Tromp, R. 41, 299); n₂°·s: 1,3885; n₂°·s: 1,3863 (Wa., Wi.). n₃°·s: 1,39001; n₁°·s: 1,39229; n₃°·s: 1,39717; n₂°·s: 1,40118 (Ti., H.-R.); weitere Brechungsindices: Ti., H.-R. Ultrarotes Absorptionsspektrum bci 2—8 μ: Bennett, Daniels, Am. Soc. 49, 55. Depolarisation des an Acetanhydrid Dampf gestreuten Lichtes: Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838; Intensität und Depolarisation des an flüssigem Acetanhydrid zerstreuten Lichts bei einfallendem weißem oder farbigem Licht: Krishnan, Phi. Mag. [6] 50, 703, 706; C. 1926 I, 838. Elektrische Leitfähigkeit bei 25°: R. Müller, Raschka, Wittmann, M. 48, 661; Remesow, Bio. Z. 207, 77.

Lösungsvermögen für Ozon bei 0°: v. Wartenberg, v. Podjaski, Z. anorg. Ch. 148, 395; für Silbernitrat: R. Müller, Raschka, Wittmann, M. 48, 661. Kritische Lösungstemperatur der binären Systeme mit Cyclohexan: 52,45°; mit Schwefelkohlenstoff: 29,83°; mit Petroleum (Kp: 170—180°): 85,5° (Jones, Betts, Soc. 1928, 1181, 1182); mit Schwefelkohlenstoff: 29,8° (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 418). Einfluß von Essigsäure auf die kritischen Lösungstemperaturen dieser Systeme: J., B. Thermische Analyse des binären Systems mit Benzaldehyd und 2-, 3- und 4-Nitro-benzaldehyd: van der Beek, R. 47, 306, 312. 314, 315; mit Benzoesäureanhydrid: KREMANN, RÖSLER, M. 43, 363; mit N-Allyl-N'-phenylthioharnstoff: Schischokin, Z. anorg. Ch. 181, 143; C. 1929 I, 2957; der quaternären Systeme mit Acetamid, Acetonitril und Essigsäure: Kr., Zoff, Oswald, M. 43, 140; mit Benzoesäureanhydrid. Essigsäure und Benzoesäure: Kr., R., M. 43, 360; des quinären Systems mit Benzamid. Benzonitril, Essigsaure und N-Acetyl-benzamid: Kr., R., Penkner, M. 43, 153. Siedepunkte von Gemischen aus Eisessig und Acetanhydrid und Zusammensetzung des Dampfes und des Destillats: Powarnin, Markow, 36, 375; C. 1925 II, 706. Dichten von Gemischen mit Anilin bei 30°: Pound, J. phys. Chem. 31, 553. Kontraktion beim Lösen in Benzol: Rakshit, Z. El. Ch. 31, 322. Grenzflächenspannung bei 30° gegen Wasser und wäßr. NaCl-Lösung: Pound, J. phys. Chem. 30, 793, 795, 809. Adsorption aus mit Acetanhydrid gesättigter Luft durch Titan(IV)-oxyd- und Cer(IV)-oxyd- Gel bei 25°: NIKITIN, JURJEW, 34. 61, 1033; C. 1930 I. 347. Brechungsindices von Gemischen mit Wasser bei 12,5°: Anossow, Izv. Inst. fiz.-chim. Anal. 3, 456; C. 1927 I, 2632. Elektrische Leitfähigkeit von Gemischen mit Wasser bei 17°: Tscherbow, Izv. Inst. fiz.-chim. Anal. 3, 459; C. 1927 I, 2634; bei 25°: Trifonow, Tsch., Izv. biol. Inst. Perm. Univ. 6, 255; C. 1929 I, 2147; von Lösungen in flüssigem Schwefelwasserstoff: QUAM, WILKINSON, Am. Soc. 47, 990; von Gemischen mit Anilin bei 30°: POUND, J. phys. Chem. 31, 551. Magnetische Drehung der Polarisationsebene von Gemischen mit Wasser: TR., Izv. Inst. fiz.-chim. Anal. 3, 439; C. 1927 I, 2635. Einfluß auf die Geschwindigkeit der Bromierung von Essigsäure: Shaw, Soc. 123, 2234, 2238. Zur Verwendung als Katalysator bei der Bromierung von Buttersäure, Isobuttersäure, Valeriansäure und Stearinsäure vgl. Shaw.

Chemisches Verhalten.

Acetanhydrid liefert bei der pyrogenen Zersetzung im Platinrohr bei 1150° Wasserstoff. Kohlenoxyd, Kohlendioxyd, Methan, Äthylen und wenig Acetylen (Peytral, Bl. [4] 35, 969). Acetanhydrid-Dampf zerfällt unter der Wirkung des elektrischen Funkens in Wasserstoff, Kohlenoxyd, Kohlendioxyd, Methan und Acetylen (Poma, Bassi, G. 51 II, 77). Beim

172

Leiten der Dämpfe von Acetanhydrid über Thoriumoxyd bei 300° erfolgt Zerfall in Aceton und Kohlendioxyd; bei höherer Temperatur bildet sich außerdem noch etwas Mesityloxyd (COMPARDOU, SEON, C. r. 186, 591). Bei der Elektrolyse eines Gemisches aus Acetanhydrid und starker Schwefelsäure entwickelt sich an der Anode ein Gas, das neben viel Kohlendioxyd und weniger Sauerstoff geringe Mengen Kohlenoxyd und Methan enthält (Gibson, Soc. 127, 483). Beständigkeit von Lösungen von Ozon in Acetanhydrid: v. Wartenberg, v. Podjaski, Z. anorg. Ch. 148, 395. Beim Kochen von Acetanhydrid mit Blei(IV)-acetat bildet sich Acetylglykolsäure-anhydrid (Dimroth, Schweizer, B. 56, 1378). Über die Einw. von Chlor auf Acetanhydrid in Tetrachlorkohlenstoff im ultraviolettem Licht vgl. Benrath, Hertel, Z. wiss. Phot. 23, 39; C. 1924 II. 822. Geschwindigkeit der Chlorierung in Tetrachlorkohlenstoff bei 25° bei Gegenwart und Abwesenheit von Katalysatoren: Watson, Roberts, Soc. 1928, 2779, 2783. Reaktion mit Brom in Gegenwart von Chlorwasserstoff: SHAW, Soc. 1928, 2779, 2783. Reaktion mit Brom in Gegenwart von Chlorwasserstoff: SHAW, Soc. 123, 2235; in Gegenwart von überschüssigem Acetylbromid: Orton, Watson, Hughes, Soc. 1927, 2464, 2465. Geschwindigkeit der Reaktion mit Brom bei Gegenwart von Katalysatoren: O., W., Bayliss, Soc. 123, 3081; in Gegenwart von Katalysatoren und Verzögerern bei 25°: O., W., H., Soc. 1927, 2464; in Gegenwart von Chinolin + Schwefelsäure und von Salpetersäure + Acetylbromid: W., Soc. 1927, 3067. Acetanhydrid gibt mit Jod und rauchender Salpetersäure Jod (III)-acetat (S. 174) (Fichter, Stern, Helv. 11, 1256, 1262). Geschwindigkeit der Hydrolyse in Wasser bei 0°: KILPATRICK, Am. Soc. 50, 2894; in Wasser in Gegenwart und Abwesenheit von Schwefelsäure bei 0º: OLIVIER, BERGER, R. 46, 616; in Gegenwart verschiedener Elektrolyte und Nichtelektrolyte: Szabó, Ph. Ch. 122, 409; in Gegenwart von Chloriden, Sulfaten und Nitraten der Alkalien und Erdalkalien bei 150 und 25°: CONNOLLY, Publ. Carnegie Inst. Nr. 260 [1918], 141; in Gegenwart von Neutralsalzen und Säuren, von Natriumformiat, Natriumacetat + Essigsäure, Natriumpropionat + Propionsaure und Natriumbutyrat + Buttersaure: KI.; in mit 2,5 bezw. 10 Vol.-% Aceton versetzten Jodid Jodat Lösungen bei 15° und 25°: SKRABAL, M. 43, 499. Acetanhydrid bildet bei niedriger Temperatur mit Bronwasserstoff eine Verbindung, die in Lösung den elektrischen Strom leitet (McIntosh, *Trans. roy. Soc. Canada* [3] 19 III, 71; C. 1926 II, 16). Beim Einleiten von Schwefelwasserstoff in reines Acetanhydrid findet keine Reaktion statt; bei Zusatz von 2% Acetylbromid oder auch von Acetylchlorid, Chlorwasserstoff oder Schwefelsäure bildet sich Thioessigsäure (Clarke, Hartman, Am. Soc. 46, 1732). Acetanhydrid gibt mit Nitrosylschwefelsäure in Tetrachlorkohlenstoff je nach den Mengenverhältnissen Acetylschwefelsäure oder Nitrosyl-acetyl-schwefelsäure (Elliott, Mitarb., Soc. 1926, 1229). Reagiert mit Phosphortrichlorid bei etwa 40° unter Bildung von Acetylchlorid (van Druten, R. 48, 317). Einw. von Acetanhydrid und von Brom- und Jod-Lösungen in Acetanhydrid auf Siloxen: Kautsky, Hirsch, Z. anorg. Ch. 170, 8. Acetanhydrid gibt in siedendem Chloroform mit 1/6 Mol Tellurtetrachlorid Dichlortelluridiessigsäure TeCl₂(CH₂·CO₂H)₂, geringe Mengen Methyleribistellurtrichlorid und geringe Mengen einer bei 152—153° (Zers.) schmelzenden Verbindung; beim Kochen mit ¹/₃ Mol Tellurtetrachlorid erhält man eine Verbindung, die bei der Reduktion mit Kaliummetabisulfit in Ditellurdiessigsäure Tea(CHa COaH) übergeht, geringe Mengen Methylenbistellurtrichlorid und geringe Mengen einer Verbindung vom Schmelzpunkt: 175° (Zers.) (Morgan, Drew, Soc. 127, 534). Gibt beim Erwärmen mit Natrium auf dem Wasserbad eine Natriumverbindung, die beim Ansäuern mit Essigsäure und nachfolgenden Kochen mit Wasser neben anderen Produkten Aceton liefert (Kalnin, Helv. 11, 1000). Entwässerung anorganischer Salze durch Acetanhydrid: MENKE, R. 45, 908; Chem. Weekb. 23, 552; C. 1927 I, 1806; PALFRAY, SABETAY, Bl. [4] 43, 903 Anm. 3. Reduzierende Wirkung auf Kupfer- und Quecksilbersalze: ME. Reagiert mit Vanadinoxychlorid (Brown, SNYDER, Am. Soc. 47, 2674).

Liefert mit Benzol in Gegenwart von Aluminiumchlorid in guter Ausbeute Acetophenon; reagiert analog mit Chlor- und Brombenzol, Toluol, Mesitylen, Anisol, o., m. und p.Kresolmethyläther, \(\beta\)-Naphthol-methyläther und Resorcindimethyläther (Noller, Adams, \(Am.\) Soc. 46, 1892). Beim Erhitzen mit Benzotrichlorid in Gegenwart von Zinkchlorid auf ca. 80° bildet sich Acetylchlorid (Rabcewicz-Zubkowski, Roczniki Chem. 9, 529; C. 1929 II, 2767). Acetanhydrid gibt mit Natriumäthylat-Lösung Natriumacetat und Athylacetat; reagiert analog mit Natriummethylat-Lösung (Caudri, R. 48, 784, 785). Acetanhydrid liefert mit Anisol in Gegenwart von Sulfoessigsäure je nach den Bedingungen 4-Methoxy-acetophenon (Schneider, Meyer, B. 54, 1499), 1.3.5-Tris-[4-methoxy-phenyl]-benzol (Sch., Seebach, B. 54, 2299) oder 2-Methyl-4.6-bis-[4-methoxy-phenyl]-pyryliumsalz (Sch., Meyer, B. 54, 1499; vgl. Sch., Ross, B. 55, 2778 Anm. 3) als Hauptprodukt. Reaktion mit Anisol in Gegenwart von Aluminiumchlorid s. o. Gibt mit Aceton und konz. Schwefelsäure wenig 2.6-Dimethyl-pyron, mit Methyläthylketon und konz. Schwefelsäure geringe Mengen 2.3.6-Trimethyl-pyron (Philippi, Seka, B. 54, 1090). Liefert mit Mesityloxyd in Gegenwart von Sulfoessigsäure 2.4.6-Trimethyl-pyryliumsalze (Sch., Sack, B. 56, 1786; vgl. Dilter, J. pr. [2] 94, 72). Bei der Einw. auf Acetophenon oder Dypnon in Gegenwart von Sulfoessigsäure (Sch., M., B. 54, 1492; Sch., R., B. 55, 2778) oder auf Dypnon in

Gegenwart von Eisen(III)-chlorid (Gastaldi, G. 52 I, 172) erhält man 2-Methyl-4.6-diphenylpyryliumsalze. Über die dehydratisierende Wirkung auf Ameisensäure unter dem katalytischen Einfluß von Säuren und tert. Basen vgl. Schierz, Am. Soc. 45, 457. Beim Erhitzen mit Kaliumacetat auf 170—175° entstehen Aceton und Kohlendioyd (Luce, C. C. 177, 1306; Bl. [4] 35, 182). Beim Leiten der Dämpfe von Acetanhydrid und Benzoesäureanhydrid über Thoriumoxyd bei 300° erhält man Acetophenon (Compardou, Sźon, C. C. 186, 592). Kinetik der Reaktion $CH_3 \cdot CO \cdot NH_2 + (CH_3 \cdot CO)_2O \rightarrow CH_3 \cdot CN + 2CH_3 \cdot CO_2H$ bei 78° und 98°: Kremann, Zoff, Oswald, M. 43, 140. Geschwindigkeit der Reaktionen mit Benzamid bei 78° und 98°: Kr., Rösler, Penkner, M. 43, 145. Geschwindigkeit der Zersetzung von Oxalsäure durch Acetanhydrid bei 25°, 35° und 45°: Whitford, Am. Soc. 47, 2934. Beim Erhitzen mit $\alpha.\beta.\delta$ -Tris-benzamino- α -butylen erst auf 145°, dann auf 160° und Erhitzen des Reaktionsprodukts mit konz. Salzsäure im Rohr auf 160° bildet sich 2-Methyl-4-[β -amino-āthyl]-imidazol (Syst. Nr. 3712) (van der Merwe, M. 177, 305). Liefert beim Kochen mit 2-Amino-resorcin-hydrochlorid und nachfolgenden Erhitzen des Reaktionsprodukts unter Rückfluß 4-Acetoxy-2-methyl-benzoxazol (Henrich, B. 54, 2496). Gibt beim Kochen mit 2.3-Diamino-pyridin 2-Methyl-[pyridino-2'.3':4.5-imidazol] (s. nebenstehende Formel; Syst. Nr. 3804) (Tschitschibabin, Kirsanow, B. 60, 773).

Analytisches.

Acetanhydrid scheidet aus einer Lösung von seleniger Säure oder ihrer Salze in konz. Schwefelsäure freies Selen als ziegelroten Niederschlag oder als kolloide Lösung ab (Unterscheidung von Eisessig) (Levine, J. Labor. clin. Med. 11, 815; C. 1928 II, 926). Gibt mit Natriumjodid und 1.3.5-Trinitro-benzol eine rote Lösung (Tronow, Djakonowa-Schulz, Sonowa, Ж. 59, 334; C. 1927 II, 1687). — Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 199; Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 2; Collins, Mitarb., Ind. Eng. Chem. 18, 636; C. 1926 II, 803.

Gehaltsbestimmung durch Erwärmen mit Wasser und Titration mit 0,5 n-Kalilauge: Reclaire, Perfum. essent. Oil Rec. 13, 148; C. 1922 IV, 408; durch Erwärmen mit einem Überschuß von 0,5 n-Kalilauge und Rücktiration mit 0,5 n-Salzsäure: Sage, Perfum. essent. Oil Rec. 13, 172; C. 1922 IV, 408. Bestimmung durch potentiometrische Titration mit Ammoniak in wäßrig-alkoholischer Lösung: CAUDRI, R. 48, 791; durch Messung des bei der Zersetzung von Oxalsäure durch Acetanhydrid in Pyridin gebildeten Kohlenoxyds und Kohlendioxyds: Whitford, Am. Soc. 47, 2939; durch Messung der beim Mischen mit einer Lösung von Anilin in Toluol eintretenden Temperaturerhöhung: Richmond, Eggleston, Analyst 51, 281; C. 1926 II, 1891; vgl. Somiya, Pr. Acad. Tokyo 3, 79; 5, 34; J. Soc. chem. Ind. Japan Spl. 32, 152 B; C. 1927 II, 610, 1595; C. 1929 I, 2211; II, 2080. Porter (Chem. Trade J. 75, 93; C. 1924 II, 1614) bestimmt die Gesant-Essigsäure durch Titration mit 0,5n-Natronlauge und 0,5n-Salzsäure und berechnet den Acetanhydrid-Gehalt aus der Differenz zwischen dieser Titration und einer zweiten, nach Umsetzung mit überschüssigem Anilin ausgeführten Titration. Zur Bestimmung mit Hilfe von 2.4-Dichlor-anilin nach Edwards, Orton (Soc. 99, 1181) vgl. Calcott, English, Wilbur, Ind. Eng. Chem. 17, 943; C. 1926 II, 802; Orton, Bradfield, Soc. 1927, 985. Die Bestimmung geringer Mengen Essigsäure in Acetanhydrid kann durch Messung des hindernden Einflusses der Essigsäure auf die Zersetzung von Ameisensäure durch Acetanhydrid bei Gegenwart von Strychnin erfolgen (Walton, Withrow, Am. Soc. 45, 2691).

Verbindungen von Metallsalzen mit Acetanhydrid.

Die im folgenden aufgeführten Verbindungen bilden sich aus den Hydraten der entsprechenden Metallsulfate bei der Einw. eines großen Überschusses von Acetanhydrid. — C4H6O3 + CuSO4 + H2O. Bläuliches Pulver, das nur in acetanhydridhaltiger Luft beständig ist (Recoura, C. r. 178, 2218). Beim Aufbewahren im Exsiccator über gebranntem Kalk wird das Acetanhydrid vollständig abgegeben. — 2 C4H6O3 + MgSO4 + 1,3 H2O. Gibt beim Aufbewahren über gebranntem Kalk 1 Mol Acetanhydrid ab (R., C. r. 178, 2220). — C4H6O3 + MgSO4 + 1,3 H2O. Liefert an der Luft Magnesiumsulfat-heptahydrat und Acetanhydrid (R., C. r. 178, 2221). — 3 C4H6O3 + 2 Al2(SO4)3 + 6 H2O. Verliert an der Luft das Acetanhydrid (R., C. r. 185, 995). — 3 C4H6O3 + Al2(SO4)3 + (NH4)2SO4 + 2 H2O. Verliert an der Luft das Acetanhydrid (R., C. r. 185, 994). — 4 C4H6O3 + Cr2(SO4)3 + 4 H2O. Grün. Leicht löslich in Alkohol (R., C. r. 183, 719). Läßt sich in acetanhydridhaltiger Atmosphäre unverändert längere Zeit aufbewahren. Verliert bei Zimmertemperatur an trockner Luft innerhalb von 3 Tagen 2 Mol Acetanhydrid; das dritte Mol wird nur unvollständig im Verlauf mehrerer Monate abgegeben. Nach 15-tägigem Aufbewahren bei 170° erhält man das Salz C4H6O3 + Cr2(SO4)3 + 4 H2O. Beim Aufbewahren in feuchter Atmosphäre wird allmählich das gesamte Acetanhydrid abgegeben. — C4H6O3 + Cr2(SO4)3 + 4 H2O.

Nimmt in acetanhydridhaltiger Atmosphäre 3 Mol Acetanhydrid auf (R.). Beim Aufbewahren in feuchter Luft wird Acetanhydrid abgespalten. — Verbindung mit Eisen(III)-sulfat. Gelb. Sehr leicht löslich in Wasser (R., C. r. 185, 993). Verliert an der Luft das Acetanhydrid. — $3 C_4 H_6 O_3 + Fe_2(SO_4)_3 + (NH_4)_2 SO_4 + H_2 O$. Strohgelb. Verliert an der Luft das Acetanhydrid (R., C. r. 185, 993). — $2 C_4 H_6 O_3 + NiSO_4 + H_2 O$. Citronengelbes Pulver, das beim Aufbewahren über gebranntem Kalk 1 Mol Acetanhydrid verliert (R., C. r. 178, 2219). — $C_4 H_6 O_3 + NiSO_4 + H_2 O$. Liefert an der Luft Nickel(II)-sulfat-hexahydrat und Acetanhydrid (R., C. r. 178, 2220). — Über eine Verbindung mit Essigsäure und Nickel(II)-chlorid vgl. Reihlen, Gruhl, v. Hessling, A. 472, 287. [Gottfried]

Essigsäurederivate von Hydroperoxyd und Sauerstoffsäuren.

Acetylhydroperoxyd, Acetpersäure, Peressigsäure C₂H₄O₃ = CH₃·CO·O·OH (H 169; E I 78). B. Bei der Autoxydation von trocknem Acetaldehyd in Gegenwart oder Abwesenheit von Katalysatoren (Tierkohle, Palladiumschwarz) (Wieland, B. 54, 2358). Zur Bildung aus Acetanhydrid, Wasserstoffperoxyd und Schwefelsäure nach d'Ans, Frey (B. 45, 1848) vgl. Erlenmeyer, Helv. 8, 795. — Liefert bei der Explosion in einer Bombe bei 130—140° wenig Methan, Äthan, Äthylen und Methanol und viel Kohlendioxyd sowie Sauerstoff (Fichter, Lindenmaier, Helv. 12, 568). Die wäßr. Lösung gibt bei allmählichem Erhitzen auf ca. 80° hauptsächlich Sauerstoff und ca. 10% Kohlendioxyd (Walker, Soc. 1928, 2043). Oxydiert Diallyl zum Diacetat des 2.5-Bis-oxymethyl-tetrahydrofurans (Böeseken, R. 45, 843), Cyclohexen, Allylbenzol, Inden, α.γ-Diphenyl-propylen, Anethol, Eugenol und Isosafrol zu den entsprechenden Glykolen, die in Form ihrer Mono- bzw. Diacetate isoliert wurden (B., Elsen, R. 48, 364). Beim Eintropfen in ein mit Ammoniak-Gas gefülltes, auf 150° erhitztes Reaktionsgefäß entstehen wenig Methylamin, Methanol, Stickstoff und Sauerstoff (F., L.). Liefert beim Erwärmen mit Natriumbromid in Eisessig auf 60° Methylbromid (Er.). — Bestimmung in Gegenwart von Wasserstoffperoxyd und Essigsäure: Hatcher, Holden, Trans. roy. Soc. Canada [3] 21 III, 238; C. 1928 I, 1929.

Diacetylperoxyd, Acetylperoxyd C₄H₆O₄ = CH₃·CO·O·CO·CH₃ (H 170; E I 78). B. Beim Behandeln von Acetaldehyd mit Sauerstoff bei Gegenwart von Kobaltacetat oder von Nickelacetat und Pyridin in Acetanhydrid in der Kälte (Konsort. f. elektrochem. Ind., D. R. P. 403052; C. 1925 I, 1241; Frdl. 14, 257). Entsteht neben anderen Produkten bei der Einw. von Sauerstoff auf [Triphenyl-methyl]-acetyl-diimid in absol. Äther bei Zimmertemperatur (Wieland, Hintermaier, Dennstedt, A. 452, 12). — F: 26,5° (Walker, Soc. 1928, 2041). — Zerfällt bei An- oder Abwesenheit von Essigsäure beim Bestrahlen mit dem Licht der Quecksilberdampf-Lampe in Kohlendioxyd (66—75% des Gasgemischs), Äthan (17—25%) und geringere Mengen Methan, Äthylen, Kohlenoxyd und Sauerstoff (Wal.). Bei vorsichtigem Erwärmen von Acetylperoxyd allein oder in Alkohol oder verd. Essigsäure auf 60—80° entstehen Kohlendioxyd (50—70% des Gasgemischs), Methan (16—45%) und wenig Äthan, Äthylen, Kohlenoxyd und Sauerstoff (Wal.). Explosion im Gemisch mit Dibenzoylperoxyd in einer Stahlbombe bei 200°: Fichter, Erlenmeyer, Helv. 9, 149; im Gemisch mit Jod: F., E.

Jodtriacetat, Jod(III) - acetat $C_6H_9O_6I = (CH_3 \cdot CO \cdot O)_3I$. B. Bei der Oxydation einer Lösung von Jod in Acetanhydrid mit rauchender Salpetersäure und nachfolgendem Abdestillieren des überschüssigen Lösungsmittels im Vakuum bei $40-50^{\circ}$ (Fichter, Stern, Helv. 11, 1256, 1262). — Farblos. Absorptionsspektrum in Acetanhydrid-Lösung: F., St. — Elektrolyse in Acetanhydrid-Lösung: F., St. Liefert mit der berechneten Menge Methansulfonsäure Jod(III)-methansulfonat.

Schwefelsäure-essigsäure-anhydrid, Acetylschwefelsäure $C_2H_4O_5S=CH_3\cdot CO\cdot SO_2\cdot OH$ (H 170; E I 78). B. Eine ca. 60—70% ige Lösung von Acetylschwefelsäure in Essigsäure entsteht aus Schwefelsäureanhydrid und Eisessig unterhalb 0° oder aus rauchender Schwefelsäure (66,3% SO_3) und einem Gemisch aus 26% Acetanhydrid und 74% Eisessig bei —2° bis —7° (VAN PESKI, R. 40, 107). Acetylschwefelsäure erhält man auch aus Nitrosylschwefelsäure beim Behandeln mit Acetylchlorid in Tetrachlorkohlenstoff bei 30—35° oder beim Kochen mit Acetanhydrid in Tetrachlorkohlenstoff (Elliott, Mitarb., Soc. 1926, 1229). Das Natriumsalz entsteht bei allmählichem Zugeben von 100% iger Schwefelsäure zu einer Lösung von wasserfreiem Natriumacetat in 33,9% igem Acetanhydrid bei 8—10° und Abkühlen der Lösung (v. P.). — Gelbes, viscoses Öl. — Wandelt sich rasch, am besten beim Kochen in Tetrachlorkohlenstoff-Lösung, in Sulfoessigsäure um (E., Mitarb.). Liefert bei $^3/_4$ -stündigem Erwärmen in Essigsäure auf 70° Sulfoessigsäure und eine Verbindung $(^2/_4)_5$ (vielleicht Disulfodehydracetsäure; s. u.) (v. P.). Wird beim Behandeln mit Wasser vollkommen in Essigsäure und Schwefelsäure gespalten (E., Mitarb.). — Natriumsalz. Pulver. Leicht löslich in Wasser unter Zerfall in Essigsäure und Natriumdisulfat (v. P.).

Verbindung C₈H₈O₁₀S₂, vielleicht Disulfodehydracetsäure (HO₃S)(CH₃·CO)C·CO·C·SO₃H

B. Bei $^{3}/_{4}$ -stündigem Erwärmen von Acetylschwefelsäure auf 70°, neben Sulfoessigsäure (van Peski, R. 40, 110). — BaC₈H₆O₁₀S₂. Krystalle (aus

Alkohol).

Nitrosyl-acetyl-schwefelsäure $C_2H_3O_6NS=CH_3\cdot CO\cdot O\cdot SO_2\cdot O\cdot NO$. B. Eine Verbindung mit Silberacetat entsteht bei der Einw. von Nitrosylschwefelsäure auf überschüssiges Acetanhydrid unterhalb 15° und Schütteln der Lösung mit Silberoxyd (Elliott, Mitarb., Soc. 1926, 1221, 1229). — $C_2H_3O_6NS+CH_3\cdot CO_2Ag$. Amorphe, hygroskopische Masse.

Salpetersäure-essigsäure-anhydrid, Acetylnitrat C₂H₃O₄N = CH₃·CO·O·NO₂ (H 171; E I 79). Zur Bildung aus Acetanhydrid und Stickstoffpentoxyd nach Pictet, Khotinsky (B. 46, 1164) vgl. Schiemann, Pillarsky, B. 62, 3040. — Liefert bei tropfenweiser Zugabe zu Fluorbenzol unter Eis-Kochsalz-Kühlung und nachfolgendem Aufbewahren 4-Fluor-1-nitro-benzol und wenig 2-Fluor-1-nitro-benzol.

Diacetyl-orthosalpetersäure $C_4H_9O_7N = (CH_3 \cdot CO \cdot O)_2N(OH)_3$ (n 171). Zur Konstitution vgl. Hantzsch, B. 58, 957. — Ultraviolettes Absorptionsspektrum: H.

Acetylphosphorigsäure $C_2H_5O_4P=CH_3\cdot CO\cdot PO(OH)_2$ (vgl. Ĥ 171; E I 79). Besitzt nach röntgenspektroskopischen Untersuchungen von Stelling (*Ph. Ch.* 117, 205) die obige Konstitution. — F: ca. 110° (Zers.). — Wird von Wasser nur langsam verseift.

Borsäure-essigsäure-anhydrid, Bortriacetat $C_6H_9O_6B=(CH_3\cdot CO\cdot O)_3B$ (H 172; E I 79). Eine Verbindung von der Zusammensetzung eines Bortriacetats konnte von DIM-ROTH (A. 446, 109) nicht erhalten werden.

Acetylmetaborat, Borylacetat, "Metaboracetat" $C_2H_3O_3B=CH_3\cdot CO\cdot O\cdot BO.~B.$ Entsteht aus Pyroboracetat (s. u.) beim Erwärmen im Vakuum auf 150—156° unter Abspaltung von Acetanhydrid (Dimroth, A. 446, 109). — Spröde harte Masse. Schwer löslich in Chloroform und Äther, leichter in Essigester. — Wird durch Wasser in Borsäure und Essigsäure gespalten.

Pyroboracetat $C_8H_{12}O_9B_2 = [(CH_3 \cdot CO_2)_2B]_2O$. B. Entsteht bei allmählichem Eintragen von Borsäure in warmes Acetanhydrid (Dimroth, Faust, B. 54, 3029; D., A. 446, 98, 108). — Blättchen oder Prismen (aus Acetanhydrid, Chloroform oder Benzol). Zersetzt sich bei raschem Erhitzen im zugeschmolzenen Rohr bei 146° und schmilzt bei 150—152° zu einer farblosen Flüssigkeit, die sich bei längerem Verweilen auf dieser Temperatur gelb färbt und fluoresciert. Leicht löslich in warmem Benzol, Essigester, Äthylenbromid und Nitrobenzol, fast unlöslich in Petroläther, Tetrachlorkohlenstoff, Schwefelkohlenstoff und Äther. — Beim Erhitzen im Vakuum auf 150—156° entsteht unter Abspaltung von Acetanhydrid Metaboracetat (s. o.). Wird durch Luftfeuchtigkeit hydrolysiert.

Halogenwasserstoff-Derivate der Essigsäure.

Essigsäurefluorid, Acetylfluorid $C_2H_3OF = CH_3 \cdot COF$ (H 172; E I 79). Zur Darstellung aus Acetylchlorid und Zinkfluorid nach Meslans (C. r. 144, 1022; A. ch. [7] 1, 411) vgl. BLICKE, Am. Soc. 46, 1516. — Kp: 20—25°.

Essigsäurechlorid, Acetylchlorid C₂H₃OCl = CH₃·COCl (H 173; E I 79). B. Bei der Einw. von Siliciumtetrachlorid auf Eisessig in Toluol bei 50° (Montonna, Am. Soc. 49, 2114). Beim Erwärmen von Eisessig mit chlorsulfonsaurem Natrium und Natriumchlorid oder Natriumpyrosulfat oder mit Benzolsulfochlorid (oder p-Toluolsulfochlorid) und Natriumchlorid (Höchster Farbw., D. R. P. 397311; C. 1924 II, 1401; Frdl. 14, 263). Beim Erwärmen von Eisessig, Acetanhydrid oder Natriumacetat mit Benzoylchlorid (Chem. Fabr. Weiler-ter Meer, D. R. P. 350050; C. 1922 IV, 155; Frdl. 14, 261). Aus Acetanhydrid beim Behandeln mit Benzotrichlorid in Gegenwart von Zinkchlorid bei 70—80° (Rabcewicz-Zubkowski, Roczniki Chem. 9, 524, 529; C. 1929 II, 2767) oder beim Kochen mit 1,5—2,5 Mol Oxalylchlorid (Adams, Ulich, Am. Soc. 42, 606). — Darstellung aus Eisessig und Phosphortrichlorid: L. Orthner, L. Reichel, Organisch-chemisches Praktikum [Berlin 1929], S. 73.

E: —112,0° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 216; C. 1921 III, 1266). Kp₇₆₀: 51,0 ± 0,5° (Ti., M.). Verbrennungswärme bei konstantem Volumen: 242,0 kcal/Mol (für Acetylchlorid-Dampf) (I. G. Farbenind. in Landolt-Börnst. E II 1651). Dipolmoment μ·10¹⁸: 2,7° (Dampf) (Höjendahl, Phys. Z. 30 [1929], 392). Elektrische Leitfähigkeit bei 25°: Kailan, M. 53/54, 154; in flüssigem Schwefelwasserstoff: Quam, Wilkinson, Am. Soc. 47, 990. Einw. von Radiumstrahlen auf die elektrische Leitfähigkeit von reinem Acetylchlorid sowie von Lösungen des Acetylchlorids in Benzol oder in Toluol: K. Einfluß auf die Geschwindigkeit der Chlorierung von Essigsäure und Acetanhydrid: Watson, Roberts, Soc. 1928, 2783, 2785; auf die Geschwindigkeit der Bromierung von Essigsäure: Shaw, Soc. 123, 2234.

. Beim Leiten von Acetylchlorid-Dampf über schwach aktives Nickel bei 400° entstehen Kohlenoxyd und Wasserstoff (Mailhe, C. r. 180, 1112). Beim Kochen von Acetylchlorid

mit Nickeloarbonyl in Petroläther entsteht eine Additionsverbindung von Diacetvl mit Nickelchlorid (Reihlen, Gruhl, v. Hessling, A. 472, 285). Beim Behandeln mit Sauerstoff und Nickelcarbonyl bei 10° erhält man eine Acetanhydrid enthaltende Verbindung von Essigsäure mit Nickel(II)-chlorid (Rei., G., v. H.). Liefert bei der Photochlorierung mit Chlor in Tetrachlorkohlenstoff hauptsächlich Chloracetylchlorid (Benrath, Hertel, Z. wiss. Phot. 23, 35; C. 1924 II, 822). Geschwindigkeit der Chlorierung bei Anwesenheit oder Abwesenheit von Jod in Tetrachlorkohlenstoff bei 25°: Watson, Roberts, Soc. 1928, 2781, 2785. Geschwindigkeit der Bromierung bei 25°: Wa., Soc. 1928, 1141; Wa., Ro.; bei 57°: Shaw, Soc. 123, 2239. Acetylchlorid liefert mit flüssigem Schwefelwasserstoff Thioessigsäure-dithioessigsäure-anhydrid (Borgeson, Wilkinson, Am. Soc. 51, 1455). Bei der Einw. von Hydrotrisulfid H₂S₂ und wasserfreiem Zinkehlorid entsteht Diacetyltrisulfid (Bloch, Bergmann, B. 53, 967). Gibt mit Nitrosylschwefelsäure in Tetrachlorkohlenstoff bei 30-35° Acetylschwefelsäure (Elliott, Mitarb., Soc. 1926, 1229). Beim Erwärmen mit Magnesiumbromidhydrosulfid in trocknem Äther auf dem Wasserbad und nachfolgenden Zersetzen mit Eis erhält man Essigsäurethioessigsäure-anhydrid und etwas Thioessigsäure (MINGOIA, G. 55, 718). Acetylchlorid gibt mit Magnesiumbromidhydroselenid in trocknem Äther wahrscheinlich leicht oxydable Selenoessigsäure (MI., G. 58, 669). Umsetzung von Acetylchlorid mit Zink und Äther: Kaufmann, Fuchs, Ar. 1924, 123. Acetylchlorid liefert mit Benzol in Gegenwart von Quecksilber(II)-chlorid und Aluminium ($^{1}/_{20}$ der angewandten Menge Quecksilber(II)-chlorid) bei 40° (Rây, Soc. 117, 1337) oder in Gegenwart von Chrompulver bei Siedetemperatur (Chakra-Barty, Dutt, J. indian chem. Soc. 5, 514; C. 1929 I, 501) Acetophenon. Gibt mit ¹/₈ Mol Resorcin-dimethyläther in Schwefelkohlenstoff in Gegenwart von Aluminiumchlorid den Monomethyläther und Dimethyläther des 4.6-Diacetyl-resorcins, mit der äquimolekularen Menge erhålt man 4-Acetyl-resorcin-dimethyläther und wenig 4.6-Diacetyl-resorcin-dimethyläther (Mauthner, J. pr. [2] 119, 313). Bei der analogen Reaktion mit ½ Mol Resorcindiäthyläther entsteht nur 4.6-Diacetyl-resorcin-monoäthyläther. Liefert mit Pyrogallol-1.3-dimethyläther bei wochenlanger Einw. von Zinkchlorid bei Zimmertemperatur 2.3-Dioxy-4-methoxy-acetophenon (Mau.). Gibt mit 2,5 Mol Diazomethan in Ather Diazoaceton (ARNDT, AMENDE, B. 61, 1124). Liefert mit der Kaliumverbindung des Essigsäureäthylesters in Äther unter Kühlung Alkohol, Essigsäureanhydrid, Acetessigester und andere Produkte (Scheibler, Voss, B. 53, 397, 406). Beim Behandeln von Acetylchlorid mit Chlorsulfonsäure unter Ausschluß von Luftfeuchtigkeit und Zersetzen des Reaktionsprodukts mit Eis entstehen je nach der Dauer und der Temperatur der Einw. Sulfoessigsäure, Methionsaure, 2-Methyl-pyron-(4)-essigsäure-(6) und andere Produkte; bei 4-stündiger Einw. bei 60° entsteht nur Sulfoessigsäure, bei 14-stündiger Einw. bei 100° nur Methionsäure; bei Temperaturen oberhalb 60° erhält man außerdem 2-Methyl-pyron-(4)-essigsäure-(6) (Krajčinović, B. 59, 2118). Umsetzung mit Phenylmagnesiumbromid in Ather führt zu Methyl-diphenyl-carbinol (GILMAN, FOTHERGILL, PARKER, R. 48, 750). Gibt mit Quecksilberdiphenyl unter verschiedenen Bedingungen Phenylquecksilberchlorid, Acetophenon und wahrscheinlich Diphenyl (Calvery, Am. Soc. 48, 1011). Liefert bei der Einw. auf Cyclohexenoxyd bei 10—20° das Acetat des 2-Chlor-cyclohexanols-(1) (Bedos, C. r. 183, 564).

Verwendung von Acetylchlorid zur Herstellung schwefelhaltiger Phenolharze: Ges. f. chem. Ind. Basel, D. R. P. 425798; C. 1926 I, 2853; Frdl. 15, 1188. — Reinheitsprüfung:

E. MERCK, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 2.

Essigsäurebromid, Acetylbromid C₂H₂OBr = CH₃·COBr (H 174; E I 79). E: —96,5° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 216; C. 1921 III, 1266). Kp₇₆₀: 76,7 ± 0,1° (Tl., M.). Einfluß auf die Geschwindigkeit der Bromierung von Acetanhydrid: Orton, Watson, Hughes, Soc. 1927, 2464; W., Roberts, Soc. 1928, 2784. — Geschwindigkeit der Bromierung von Acetylbromid bei An- oder Abwesenheit von Katalysatoren bei 25°. W., Soc. 1928, 1140. Acetylbromid liefert mit flüssigem Schwefelwasserstoff "Dithioessigsäureanhydrid" (CH₂·CS)₂S (Borgeson, Wilkinson, Am. Soc. 51, 1455). Gibt beim Erwärmen mit Kupfer(I)-cyanid im offenen Gefäß Acetylcyanid (Tschelinzew, Schmidt, B. 62, 2211; Ж. 61, 1996). Bei 48-stündigem Kochen mit Magnesium im 6-fachen Volumen Ather und Zersetzung des Reaktionsprodukts mit Wasser entstehen Essigsäureäthylester, Diacetyl und harzige Produkte; bei 8-stündigem Kochen im gleichen Volumen Ather unter Zusatz einiger Tropfen Quecksilber erhält man ca. 80% Essigsäureäthylester, wenig Acetaldehyd, Crotonaldehyd und Spuren Diacetyl (Tischtschenko, Bl. [4] 37, 627). Verhalten von Acetylbromid gegen Gemische von aliphatischen und aromatisch-aliphatischen Athern wie z. B. Athyläther-Isoamylphenyläther oder Dibutyläther-Butylphenyläther im Rohr bei 175°: Lydén, Finska Kemistaamf, Medd. 37, 56; C. 1928 II, 2133. Bei Einw. von Acetylbromid auf α-Naphthol in Ather bei 25° erhält man Athylbromid, Athylacetat, α-Naphthylacetat und Essigsäure (Bassett, Taylor, Soc. 1929, 1575). Geschwindigkeit der Reaktion mit α-Naphthol in Ather und Benzol und mit β-Naphthol in Ather bei 25°: Ba., Tay.

177

Essigsäurejodid, Acetyljodid $C_2H_3OI=CH_3\cdot COI$ (H 174; E I 80). Liefert mit Quecksilber-di-p-tolyl in Chloroform bei Zimmertemperatur wenig p-Tolylquecksilberjodid und teerige Produkte (WHITMORE, THURMAN, Am. Soc. 51, 1498).

Ammoniak Derivate der Essigsäure.

Essigsäureamid, Acetamid $C_2H_5ON = CH_3 \cdot CO \cdot NH_2$ (H 175; E I 80). B. Zur Bildung aus Natriumacetat und Ammoniumchlorid vgl. McLang, Chem. Trade J. 77, 181; C. 1926 I, 515. In geringer Ausbeute bei Ultraviolettbestrahlung von Ammoniumacetat in wäßr. Ammoniak und anschließender Destillation (Stoermer, Robert, B. 55, 1040). Acetamid entsteht ebenfalls in geringer Menge bei der Elektrolyse von Ammoniumacetat in Essigsäure an einer Platinanode unter starker Kühlung (FICHTER, LINDENMAIER, Helv. 12, 563). Beim Einleiten von Ammoniak in eine äther. Lösung von Essigsäurechlormethylester (ULICH, ADAMS, Am. Soc. 43, 665). Zur Darstellung aus Ammoniumacetat und Eisessig nach Rosa-NOFF, GULICK, LARKIN (Am. Soc. 33, 976) vgl. NOYES, GOEBEL, Am. Soc. 44, 2295; L. ORTHNER, L. REICHEL, Organisch-chemisches Praktikum [Berlin 1929], S. 76.

Kp₇₆₀: 221,2⁶ (Lecat, R. 46, 243). Drehkrystall-Aufnahmen der trigonalen Modifikation: HASSEI, LUZANSKI, Ph. Ch. [B] 3, 282. Beugung von Röntgenstrahlen an festem und geschmolzenem Acetamid und in wäßr. Lösung: Krishnamurti, Indian J. Phys. 2, 496, 499, 506; 3, 239; C. 1928 II, 2098; 1929 I, 840. Parachor: Sugden, Soc. 125, 1185; Mumford, Phillips, Soc. 1929, 2128. Elektrische Leitfähigkeit bei 90°; Belladen, G. 57, 409. Basendissoziationskonstante (in salzsaurer Lösung potentiometrisch ermittelt) bei 20°: 2,5—3,8 × 10⁻¹⁵ (v. Euler, Ölander, *Ph. Ch.* 131, 116; v. Eu., *Trans. Faraday Soc.* 24, 655; *C.* 1929 I, 837); bei 25°: 3×10⁻¹⁵ (v. Eu., Rudberg, *Z. anorg. Ch.* 127, 249; bei 50°: 2,0—3,1 × 10⁻¹⁴ (v. Eu., Ö.; v. Eu.). Säuredissoziationskonstante bei 25°: 8,3 × 10⁻¹⁶ (konduktometrisch bei Gegenwart von Bariumhydroxyd ermittelt) (Branch, Clayton, Am. Soc. 50, 1685). Piezoelektrischer Effekt: Schneider, Z. Phys. 51, 266; C. 1928 II, 2534.

LÖSUNGSVERMÖGEN VON geschmolzenem Acetamid für Inulin, Glykogen und Stärke: Pringsheim, Reilly, Donovan, B. 62, 2380. Löslich in flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105). Löslichkeit in Wasser bei 0,3° und 24,5° und in Alkohol bei 0°, 18,6°, 42,5° und 62,0°: Carroll, Rollefson, Mathews, Am. Soc. 47, 1790; in Alkohol bei 20—25°: Pucher, Dehn, Am. Soc. 43, 1755; in Acetanhydrid bei —0,5° bis +80°: Kremann Mathemann Orwald Mar. KREMANN, MAUERMANN, OSWALD, M. 43, 338; in Urethan und p-Toluidin bei 0-70°: Mortimer, Am. Soc. 45, 635. Verteilung zwischen Wasser und Ather bei 20-22°: Collander, BERLUND, Comment. biol. Helsingfors 2 [1926], Heft 9, S. 9. — Kryoskopisches Verhalten in flüssigem Ammoniak: Elliot, J. phys. Chem. 28, 623; in Brom: Finkelstein, Ph. Ch. 105, 19; Ж. 55, 92; in Phenol-Lösung: RICHARDSON, ROBERTSON, Soc. 1928, 1776; in Harnstoff und Ammoniumnitrat: Howells, Soc. 1929, 913. Binäre azeotrope Gemische, die Acetamid enthalten, s. in der Tabelle auf S. 178. Thermische Analyse des binären Systems mit Campher (Eutektikum bei 70,2° und 87,5% Acetamid): Jefremow, Izv. imp. Akad. Petrog. [6] 9 II [1915], 1331; C. 1925 I, 1932; Izv. ross. Akad. [6] 13, 768; C. 1925 II, 524; mit Essigsäure s. S. 180 bei der Verbindung $C_2H_5ON+C_2H_4O_2$; mit Benzoesäure: KREMANN, MAUERMANN, OSWALD, M. 43, 342; mit Benzoesäureanhydrid: KR., M., O.; mit Salicylsäure: RHEINBOLDT, J. pr. [2] 111, 264; des quaternären Systems mit Acetanhydrid, Acetonitril und Essigsäure: Kr., Zoff, O., M. 43, 140; mit Benzoesäureanhydrid, Acetonitril und Benzoesäure: Kr., Mitarb., M. 43, 346; mit Benzoesäureanhydrid, N-Acetyl-benzamid und Benzoesäure: Kr., Mitarb.; des quinären Systems mit Acetonitril, Benzoesäure, Benzoesäureanhydrid und N-Acetyl-benzamid: Kr., Mitarbb. — Zusammensetzung des Dampfes über Lösungen von Acetamid in verd. Alkohol: CARROLL, ROLLEFSON, MATHEWS, Am. Soc. 47, 1789. Dichte von Lösungen in Wasser, Alkohol und verd. Alkohol bei 30°: Burrows, J. Pr. roy. Soc. N. S. Wales 58 [1919], 77, 86, 95; in Wasser, Aceton und wäßr. Aceton bei 25°: Bur., J. Pr. roy. Soc. N. S. Wales 60, 199; C. 1928 II, 1646. Volumenkontraktion bei der Hydrolyse von Acetamid durch Salzsäure, Bromwasserstoffsäure, Salpetersäure, Schwefelsäure und Phosphorsäure bei 50°: Beneath, Z. anorg. Ch. 151, 55. Viscosität konz. Lösungen von Acetamid in Wasser und in Alkohol bei verschiedenen Temperaturen: Taimni, J. phys. Chem. 33, 55, 56, 61, 66. Oberflächenspannung wäßr. Lösungen bei 20°: Collander, Bärlund, Comment. biol. Helsingfors 2 [1926], Heft 9, S. 10. Änderung der Oberflächenspannung bei der Hydrolyse von Acetamid durch Salzsäure, Salpetersäure und Schwefelsäure bei 50°: Ben., Z. anorg. Ch. 151, 64. Adsorption von Acetamid aus wäßr. Lösung an Blutkohle: WARBURG, Bio.Z. 119, 158; an wasserhaltiger Kieselsäure, Tonerde, Eisenoxyd und Fullererde: Grettie, Williams, Am. Soc. 50, 671. Diffusion von Acetamid durch Kollodiummembrane: FUJITA, Bio. Z. 170, 19. Einfluß von Acetamid auf die Adsorption von Adrenalin aus wäßr. Lösungen durch Tierkohle: Zondek, Bansi, Bio. Z. 195, 381. Einfluß auf die Steifheit von Gallerten: MICHAUD, C. r. 175, 1198. Randwinkel gegen Wasser und Luft: NIETZ, J. phys. Chem. 32, 261. Lösungswärme von Acetamid in Wasser bei 17°: CALVET, C. r. 189, 532. — Brechungsindices

Acetamid enthaltende binäre azeotrope Gemische.

Acetamid enthaltende binare azeotrope Gemische.								
Komponente	Kp760	Acetamid	Komponente	Kp760	Acetamid			
Zomponono	0	in Gew%		0	in Gew%			
D			D'-1 1841 9)	24.55				
Bromoform ⁷)		2	Diphenyläther ²)	214,55	52			
Pentachloräthan ²)		3,0	4-Chlor-phenol ²)	231,7	33			
Trichlorhydrin?)		7,5	2-Nitro-phenol ¹²)	207,75	24,2			
Tribromhydrin ⁷).		ca. 17	Methyl-p-tolyl-ather 11)	174,2	11			
Isoamylbromid 7)	120,0	ca. 1	β -Phenyl-äthylalko-					
Isoamyljodid ⁷)	146	5	hol ⁴)	214,05	35			
$Octan^7$)	125,6	ca. 1	Thymol ⁶)	219,5	78			
Tetrachloräthylen ²) .	120,45	2,6	Isoanethol ²)	ca. 199,8	ca. 24			
d-Limonen ⁵)	169,2	16	Guajacol ²)	204,55	7,5			
α -Pinen ⁸)	152,5	13	Veratrol ⁷)	193,5	23			
Camphen ⁶)		15	Resorcinmonomethyl-					
Chlorbenzol ²)	ca. 131,85		$ather^7$)	220,8	ca. 80			
1.2-Dichlor-benzol ⁷)		11	Resorcindimethyl-					
1.4-Dichlor-benzol ²)		10	äther?)	199.0	25			
Brombenzol ¹¹)	154,85	4,2	Resorcindiäthyläther?)	208,5	34			
p-Dibrom-benzol ²)		18	Isoeugenolmethyl-	, ,				
Jodbenzol ⁷)	180,3	12,8	äther ²)	219,55	69			
Nitrobenzol ⁵)	201,65	77	Eugenol ²)	220,75	ca. 88			
4-Chlor-1-nitro-ben-			Eugenolmethyläther ²)	216,9	50			
zol^{11})	213,6	55	Pulegon 5) 8)	205,9	36			
2-Chlor-toluol ⁷)	157,8	8	Carvon ⁶)	210,65				
4-Chlor-toluol ⁷)	159,5	8,5	Benzaldéhyd ¹⁰)	178,6	6,5			
2-Brom-toluol ⁷)	175	11,5	Acetophenon ⁵)	197,45	16,3			
4-Brom-toluol ⁷)	178,0	12	Äthylphenylketon?) .	204,0	31			
4-Jod-toluol ⁷)	195	17	4-Methyl-acetophenon2)	210,35	38,3			
2-Nitro-toluol ⁸)	206,45	32,5	Benzylformiat $\hat{7}$)	196				
$\frac{4}{\text{-Nitro-toluol}^{10}}$ Äthylbenzol ⁷)	213,3	48	Bornylacetat2)	205.0	32			
Äthylbenzol ⁷)	135,6	ca. 8	Phenylacetat ²)	ca. 194,5	ca. 7			
m-Xylol ⁵)	138,2	14	Benzylacetat2)	204,8	27.5			
p-Xylol ⁷)	137,5	9	Propionamid 5) 10)	220.8	72			
$Mesitylen^1$)	ca. 160,0	ca. 15	Isoamylbutyrat ⁸)	174,75	11,8			
Cymol ⁷)	170,5	19	Isobutylvalerianat ¹¹).	184,85	16			
symm. Triäthylbenzol2)	198,0	27	Isobutylisovalerianat ¹¹)	169,3	10,5			
Phenyläthylen ²)	144	12	Diäthyloxalat ²)	185,3	4,2			
Inden ¹¹)	177,6	17,5	Methylbenzoat ²)	193,8	15			
Naphthalin ⁵) 8)	199,55	27,2	Äthylbenzoat ²)	200,85	24			
α-Chlor-naphthalin ¹¹).	213,9	52,2	Propylbenzoat ⁷)	209,0	38			
α-Brom-naphthalin ¹²).	217,35	56,5	Butylbenzoat?)	ca. 214,0	49			
α-Methyl-naphthalin ²)	209,8	43,8	Isobutylbenzoat ²)	211,2	42.5			
Diphenyl ¹¹)	212,95	50.5	Isoamylbenzoat ²)	215,4	55			
Acenaphthen ¹¹)	217,0	64,2	Phenylessigsäureäthyl-	-10,1	00			
Diphenylmethan ²)	215,15	56,5	ester ⁸)	209,6	35,5			
Dibenzyl ⁹)	218.2	68	Zimtsäuremethylester ²)	219,1	62,			
n-Decylalkohol ⁵)	211,1	49	Salicylsäureäthylester ⁸)	209,2	40.2			
Citronellol ⁷)	209	ca. 38	Dimethylanilin ²)	186,95	17,3			
Geraniol ²)	ca. 213,6	ca. 43	Diäthylanilin ⁵) ⁹)	198,05	24			
Menthol ⁷)	205,5	ca. 27	o-Toluidin ²)	198.3	11			
α-Terpineol ⁵)	205,2	28	Dimethyl-o-toluidin ¹¹)	177,95	16,5			
Borneol ²)	205,55	27	Cineol ²)	170,9	17			
Phenol ⁵)	221,3		Isosafrol ²)	214,0	47			
Phenetol ²)	168,3	10,8	Safrol ²)	209,0	32			
Propyl-phenyl-ather?)	183,5	20	, , , , , , ,	200,0	02			
/ /			'	1				

¹⁾ LECAT, R. 48, 243. — 2) L., R. 47, 16, 17, 18. — 3) L., C. r. 183, 882. — 4) L., Ann. Soc. scient. Bruxelles 45 I [1926], 174. — 5) L., Ann. Soc. scient. Bruxelles 45 I, 287, 289, 292. — 6) L., Ann. Soc. scient. Bruxelles 47 I [1927], 24. — 7) L., Ann. Soc. scient. Bruxelles 47 I, 151, 153, 154. — 8) L., Ann. Soc. scient. Bruxelles 48 I [1928], 15, 19. — 9) L., Ann. Soc. scient. Bruxelles 48 I, 118, 119. — 11) L., Ann. Soc. scient. Bruxelles 48 I, 118, 119. — 11) L., Ann. Soc. scient. Bruxelles 49, 110.

wäßr. Lösungen: Lineken, Burrows, Am. Soc. 51, 1110. — Zersetzungsspannung von Acetamid in flüssigem Brom: Finkelstein, Ph. Ch. 115, 307. Elektrische Leitfähigkeit in flüssigem Schwefelwasserstoff: Quam, Wilkinson, Am. Soc. 47, 990; von Acetamid und seinem Monokaliumsalz in flüssigem Ammoniak bei —33,5°: Smith, Am. Soc. 49, 2164; von Gemischen mit Essigsäure in Alkohol bei 25°: Hölzl, M. 47, 147; von Gemischen mit Ammoniumacetat in Wasser bei 25°: Lin., Bur.; von Alkali-, Erdalkali- und Cadmium-Halogeniden in geschmolzenem Acetamid bei 90°: Belladen, G. 57, 410, 412. Elektrometrische Titration von Acetamid in Wasser mit Salzsäure und Natronlauge: Eckweiler, Noyes, Falk, J. gen. Physiol. 3, 294, 296; C. 1921 I, 614; in Eisessig mit Schwefelsäure: Hall, Conant, Am. Soc. 49, 3053; in Eisessig mit Perchlorsäure: H., Werner, Am. Soc. 50, 2377.

Über die Wirksamkeit verschiedener Aluminiumoxyd-Katalysatoren und von Glasperlen auf die Bildung von Acetonitril durch thermische Zersetzung von Acetamid vgl. ADKINS, NISSEN, Am. Soc. 46, 143. Beim Überleiten von Acetamid-Dampf über fein verteiltes Nickel NISSEN, Am. 300. 40, 145. Belli Coefficien von Acetania-Bailin und Felin Verteines Alande bei 380—400° entsteht hauptächlich Acetonitril, in geringerer Menge Ammoniak, Kohlendioxyd, Kohlenoxyd, Methan und Wasserstoff (Mailhe, Bl. [4] 35, 364); bei 400—440° erhält man Kohlenstoff, Kohlendioxyd, Kohlenoxyd, Wasserstoff, Ammoniak und Blausäure (M., Bl. [4] 37, 1396). Bei der Oxydation von Acetamid mit Permanganat in ammoniakalischer Lösung allein oder in Gegenwart von Kupfer wurde Cyansäure durch Überführung in Harnstoff nachgewiesen (Fosse, Laude, C. r. 173, 320). Bei der Elektrolyse in wäßr. Lösung an Platinelektroden entstehen Essigsäure und Ammoniumnitrat; die Elektrolyse von geschmolzenem Acetamid führte zu keinen faßbaren Produkten (SCHAUM, B. 56, 2462). Gleichgewicht zwischen Ammoniumacetat, Acetamid und Wasser bei 170-1956: Lineken, Burrows, Am. Soc. 51, 1108. Geschwindigkeit der Hydrolyse von Acetamid mit Wasser bei 137° in Anwesenheit oder Abwesenheit von Eisessig: Noyes, Goebell, Am. Soc. 44, 2289; mit verd. Salzsäure bei 49,3° und 64,3°: v. Euler, Rudberg, Z. anorg. Ch. 127, 248; bei 50°: v. Eu., Ölander, Ph. Ch. 131, 116; v. Eu., Trans. Faraday Soc. 24, 655; C. 1929 I, 837; mit Salzsäure, Bromwasserstoffsäure, Salpetersäure, Schwefelsäure und Phosphorsäure bei 50°: BENRATH, Z. anorg. Ch. 151, 54, 64; mit Natronlauge bei 170: CALVET, C. r. 189, 531. Wärmetönung der Hydrolyse mit Wasser und Natronlauge: C. Acetamid liefert mit Natrium in trocknem, thiophenfreiem Benzol unter starker Kühlung und nachfolgendem 7-stündigen Kochen im Stickstoffstrom ein Gemisch von Natriumacetamid und Natriumdiacetamid (Parts, B. 60, 2521; vgl. dagegen RAKSHIT, Soc. 103, 1559; EI2, 81). Reagiert mit Natrium-hypochlorit unter Entwicklung von Stickstoff (Engfeldt, H. 121, 38 Anm.). Gibt beim Kochen mit Dischwefeldichlorid in Benzol N.N. Thio-bis-acetamid (NAIK, Soc. 119, 1167). Beim Behandeln mit Chlorsulfonsäure entsteht Sulfoessigsäure (Andreasch, M. 46, 640). Reagiert in Gegenwart von Eisessig nicht mit salpetriger Säure, in Gegenwart von ca. 2n-Salzsaure erfolgt innerhalb von ca. 24 Stdn. quantitative Umsetzung (PLIMMER, Soc. 127, 2654). Gibt bei mehrstündigem Erhitzen mit Athylbromid bezw. Benzylbromid auf 200-2200 N-Äthyl-acetamid bezw. N-Benzyl-acetamid und Diacetamid, analog verläuft die Reaktion mit anderen Halogenalkylen (Nicholas, Erickson, Am. Soc. 48, 2175; vgl. a. White, Morrison, Anderson, Am. Soc. 46, 967). Liefert beim Kochen mit Brombenzol in Gegenwart von Kaliumcarbonat und Kupfer geringe Mengen Diphenylamin (Weston, Adkins, Am. Soc. 50, 864). Geschwindigkeit der Umwandlung in Essigester durch absoluten und verdünnten Alkohol in Gegenwart von Salzsäure bei 25°: Taylor, Davis, J. phys. Chem. 32, 1475. Beim Schmelzen von Acetamid mit Triphenylearbinol in Gegenwart von 1—2 Tropfen konz. Schwefelsäure und Erhitzen auf 210—240° entsteht Acetyl-triphenylmethylmin (Fossor Rl. (4) 49, 472). Acetamid begünstigt die Polymprisetion von Acetalia (Mourry) amin (Fosse, Bl. [4] 49, 172). Acetamid begünstigt die Polymerisation von Acrolein (Moureu, DUFRAISSE, BADOCHE, C. r. 183, 411 Anm. 2). Kinetik der Reaktion mit Acetanhydrid bei 78° und 98°: KREMANN, ZOFF, OSWALD, M. 48, 142; mit Benzoesäureanhydrid bei 98°: Kr., Mitarb., M. 43, 353. Liefert beim Erhitzen mit p-Toluolsulfochlorid oder Benzolsulfochlorid in Gegenwart von Alkalichloriden oder eines tertiären Amins Acetonitril und die entsprechende Arylsulfonsäure bzw. deren Alkalisalz (Höchster Farbw., D. R. P. 380323; C. 1924 I, 1272; Frdl. 14, 366). Gibt beim Erwärmen mit ¹/₃ Mol 5-Oxymethyl-furfurol unter Zusatz von wenig Salzsäure auf dem Wasserbad 5-Oxymethyl-2-[bis-acetaminomethyl]-furan (Karashima, H. 184, 269). Reagiert mit Fructose und Glucose bei neutraler Reaktion und Zimmertemperatur (nachgewiesen durch Anderung der Drehung) (NEUBERG, KOBEL, Bio. Z. 174, 470).

E I 2, 81, Z. 9 v. o. nach "2800" füge ein "2-Methyl-5-äthyl-pyridin und".

Zersetzung von Acetamid durch Hefe in Wasser bei Gegenwart von Sauerstoff: Lieben, Bio. Z. 132, 186; durch gärende Hefe: Thomas, Ann. Inst. Pasteur 33 [1919], 792; C. 1920 I, 269; durch Enzyme von Aspergillus flavus: Thakur, Norris, J. indian Inst. Sci. [A] 11, 152; C. 1929 I, 1014. Wachstumshemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 130; C. 1925 I, 2699. Wird im Verdauungstractus des Menschen Seuffert, Hinz, Beitr. Physiol. 2, 289; C. 1925 I, 861) und hungernder Katzen (Fiske,

J. biol. Chem. 55, 192) zum Teil verseift. — Verwendung von Acetamid als Weichmacher: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 215. — Acetamid gibt mit 1.3.5-Trinitro-benzol und Natriumjodid eine rotbraune Färbung (Tronow, Djakonowa-Schulz, Sonowa, Ж. 59, 334; C. 1927 II, 1687), mit Benzochinon-Lösung eine rote Färbung (Cooper, Nicholas, J. Soc. chem. Ind. 46, 60 T; C. 1927 I, 2203). Bestimmung von Acetamid im Harn: Fiske, J. biol. Chem. 55, 215.

2C₂H₅ON + HCl + AuCl₃. Gelbe Nädelchen. Löslich in Wasser und Alkohol, schwer löslich in trocknem Äther. Zersetzt sich beim Erhitzen unter Ausscheidung von Gold (FRICKE, RUSCHHAUFT, Z. anorg. Ch. 146, 144). — Komplexe Chrom(III)-acetat-acetamid-salze. Leicht löslich in Wasser mit tiefgrüner Farbe und neutraler Reaktion, löslich in Alkohol (Weinland, Hachenburg, Z. anorg. Ch. 126, 289, 303). Beim Erwärmen der wäßr. Lösung tritt Violettfärbung und allmähliche Abscheidung von Chrom(III)-hydroxyd ein. — [Cr₃(OH)₂(CH₂·CO·O)₆(CH₃·CO·NH₂)]Cl. Dunkelgrüne Krystalle (aus Wasser) (W., H.). — [Cr₃(OH)₂(CH₃·CO·O)₆(CH₃·CO·NH₂)]ClO₄ + H₂O. Dunkelgrüne mikroskopische Prismen (aus Wasser). Gibt das Krystallwasser im Vakuum über Schwefelsäure nicht ab (W., H.). Verglüht beim Erhitzen ohne Verpuffung. — [Cr₃(OH)₂(CH₃·CO·O)₆(CH₃·CO·NH₂)]NO₃ + 2 H₂O. Dunkelgrüne Tafeln (aus Wasser). Gibt das Krystallwasser im Vakuum über Schwefelsäure nicht ab (W., H.). — 2C₂H₅ON + 2 HCl + PtCl₄ (H 178). Die von Topin (A. ch. [7] 5, 111) beschriebene Verbindung ist nach F., R. Ammoniumchloroplatinat. — 2C₂H₅ON + 2 HCl + PtCl₄ + 2 H₂O. Goldbraune Prismen. Hygroskopisch. Beginnt bei ca. 65° zu erweichen (F., R.). F: 83—84°. Leicht löslich in Wasser und Alkohol, löslich in Äther. Zersetzt sich erst bei stärkerem Erwärmen.

Verbindung von Acetamid mit Essigsäure $C_2H_5ON + C_2H_4O_2$. Durch thermische Analyse nachgewiesen (Kremann, Mauermann, Oswald, M. 43, 340). F: -5.5° . Bildet mit Essigsäure bei -16.5° und 69.5 Gew. & Essigsäure ein Eutektikum.

N-Acetoxymethyl-acetamid $C_sH_9O_3N=CH_3\cdot CO\cdot O\cdot CH_2\cdot NH\cdot CO\cdot CH_3$ s. im Artikel Aminomethansulfonsäure (E II 1, 648).

Methylen-bis-acetamid, N.N'-Diacetyl-methylendiamin $C_5H_{10}O_2N_2=(CH_3\cdot CO\cdot NH)_3CH_2$ (H 179). B. Neben anderen Produkten durch Kochen von Aminomethansulfonsäure mit Acetanhydrid und folgende Vakuumdestillation des entstandenen Sirups (N-Acetoxymethyl-acetamid?) (RASCHIG, PRAHL, A. 448, 299). — Sublimiert unter 8 mm Druck bei 180°.

Diacetamid C₄H₇O₂N = (CH₂·CO)₂NH (H 181; E I 82). B. Bei der Einw. von Alkylbromiden auf Acetamid bei 200—220°, neben dem entsprechend substituierten Acetamid (NICHOLAS, ERICKSON, Am. Soc. 48, 2174). — Verbrennungswärme bei konstantem Volumen: 518,9 kcal/Mol (Parts, Ph. Ch. 181, 407). — Liefert beim Erhitzen mit Anilinhydrochlorid auf 150—160° Acetanilid, wenig N.N'-Diphenyl-acetamidin und sehr geringe Mengen N-Phenylacetamidin; analog verläuft die Reaktion mit p-Toluidinhydrochlorid bei 140—150° (Brunner, Matzler, Möszmer, M. 48, 126). Beim Erhitzen äquimolekularer Mengen Diacetamid, N-Methyl-N-phenyl-hydrazin und 10 % iger Essigsäure auf dem Wasserbad entstehen N'-Acetyl-N-methyl-N-phenyl-hydrazin, geringe Mengen NP-Methyl-NP-phenyl-acetamidrazon und andere Produkte (Br., Seeger, Dittrich, M. 45, 72). — NaC₄H₆O₂N. B. Im Gemisch mit Natriumacetamid bei der Einw. von Acetamid auf Natrium in trocknem, thiophenfreiem Benzol unter starker Kühlung und nachfolgendem Kochen im Stickstoffstrom (Parts, B. 60, 2521; vgl. Rakshit, Soc. 103, 1559; E I 2, 82).

N - Chlor - acetamid, Acetchloramid C₂H₄ONCl = CH₃·CO·NHCl (H 181; E I 82). B. Durch Einleiten von Chlor in eine Lösung von Acetamid in Wasser unter Zusatz von Natriumdicarbonat unter Kühlung (ORTON, BRADFIELD, Soc. 1927, 993).

N-Brom-acetamid, Acetbromamid C₂H₄ONBr = CH₃·CO·NHBr (H 181; E I 82). Spaltet beim Kochen mit Titan(II)-chlorid in verd. Salzsäure unter Durchleiten von Kohlendioxyd quantitativ das Brom ab (Black, Hirst, Macbeth, Soc. 121, 2531). Oxydiert Natriumarsenit in alkal. Lösung unter Abspaltung von Ammoniak zu Natriumarsenat (Gutmann, Fr. 65, 250). Reagiert mit Hydrazinhydrat unter Bildung von Acetamid, Bromwasserstoff und Stickstoff (Hirst, Macbeth, Soc. 121, 906, 910). Über N-Brom-acetamid als Bromierungsmittel vgl. Wohl, Jaschinowski, B. 54, 476. Liefert beim Schütteln mit Cyclohexen in Wasser bzw. Methanol 2-Brom-cyclohexanol-(1) bzw. Methyl-[2-brom-cyclohexyl]-äther; reagiert analog mit anderen ungesättigten Verbindungen (Schmidt, Knilling, Ascherl, B. 59, 1280). Gibt mit Quecksilberdiphenyl in Benzol im Sonnenlicht oder beim Kochen Phenylquecksilberbromid und Methylisocyanat (Kharasch, Am. Soc. 43, 1892).

Acetamidbromid, a.a. Dibrom - äthylamin C₂H₂NBr₂ = CH₃· CBr₃· NH₂ (H 182). Ist nach Hantzsch (B. 64 [1931], 670) als das Dihydrobromid des Acetonitrils aufzufassen.

181

Acetamidjodid, $\alpha.\alpha$ -Dijod-äthylamin $C_2H_5NI_3 = CH_3 \cdot CI_2 \cdot NH_2$ (H 182). Ist nach Hantzsch (B. 64 [1931], 670) als das Dihydrojodid des Acetonitrils aufzufassen.

Acetiminomethyläther $C_3H_7ON = CH_3 \cdot C(:NH) \cdot O \cdot CH_3$. B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine gekühlte ätherische Lösung von Acetonitril und Methanol (Sah, Am. Soc. 50, 516). — Das Hydrochlorid gibt bei lärgerer Einw. auf Methanol Orthoessigsäuretrimethylester. — Hydrochlorid. Plättehen.

Acetiminoäthyläther C₄H₉ON = CH₃·C(:NH)·O·C₂H₅ (H 182; E I 83). Das Hydrochlorid gibt bei der elektrolytischen Reduktion an einer Bleikathode in verd. Schwefelsäure unter Kühlung Äthylamin (Chem. Werke Grenzach, D. R. P. 360529; C. 1923 II, 478; Frdl. 14, 345). Acetiminoäthyläther liefert bei 18-tägiger Einw. auf p-Phenetidin in Äther N-[4-Athoxy-phenyl]-acetamidin; läßt man 2 Mol p-Phenetidin auf Acetiminoäthyläther-hydrochlorid in Äther bei Zimmertemperatur 3 Wochen lang einwirken, so erhält man N.N'-Bis-[4-āthoxy-phenyl]-acetamidin (Hill. Rabinowitz, Am. Soc. 48, 734, 735). Zur Bildung von Nβ-Phenyl-acetamidrazon (H 15, 243) aus Acetiminoäthyläther und Phenylhydrazin nach Pinner (B. 17, 2003) vgl. Voswinckel, B. 35 [1902], 3272. Bei 2—3-tägiger Einw. von 2 Mol Phenylhydrazin auf 1 Mol salzsauren Acetiminoäthyläther in Alkohol entstehen salzsaures Nβ.Nβ'-Diphenyl-acethydrazidin (H 15, 245) und N.N'-Diphenyl-formazylmethan (H 16, 16) (Voswinckel, B. 36 [1903], 2484).

H 182, Z. 4 v. u. statt ,,-hydrazin" lies ,,-hydrazidin".

Acetonitril, Methylcyanid $C_2H_3N = CH_3 \cdot CN$ (H 183; E I 84). V. In geringer Menge im Steinkohlen-Urteer (Schütz, B. 56, 163 Anm. 4; Sch., Buschmann, Wissebach, B. 56, 874; 57, 622). — B. Neben anderen Produkten beim Leiten von Acetylen und Ammoniak bei ca. 360° über mit Wasserstoff behandeltes Raseneisenerz, über Bauxit, Aluminium-hydroxyd, Eisen(III)-hydroxyd, Brauneisenstein oder andere hydratische Katalysatoren (Rhenania, Stuer, Grob, D. R. P. 365432, 367538, 369371, 379596, 382091, 387962, 415684; C. 1924 I, 2398; 1925 II, 1563; Frdl. 14, 197, 359, 360, 547; 15, 384). Über analoge Bildungen in Gegenwart von Thoriumoxyd-Zirkonoxyd oder von Zinkoxyd-Thoriumoxyd auf Kieselsäuregel bei 350 bezw. 450° vgl. I. G. Farbenind., D. R. P. 477049; C. 1929 II, 797; Frdl. 16, 701. Bei der Einw. von Stickstoffwasserstoffsäure in Ather auf Acetaldehyd in Gegenwart von konz. Schwefelsäure unter Eiskühlung, neben N-Methyl-formamid (KNOLL & Co., SCHMIDT, D. R. P. 427858; C. 1926 I, 3627; Frdl. 15, 221, 1634). Beim Leiten eines Gemisches von Methanol-Dampf mit überschüssiger Blausäure über aktive Kohle bei 320° (I.G. Farbenind., D. R. P. 463123; C. 1929 I, 2234; Frdl. 16, 700). Uber die Bildung von Acetonitril durch thermische Zersetzung von Acetamid bei Gegenwart von Glasperlen oder verschiedenen Aluminiumoxyd-Katalysatoren vgl. Adkins, Nissen, Am. Soc. 46, 143. Beim Leiten von Acetamid-Dampf über Nickel bei 380—400°, neben anderen Produkten (Mailhe, Bl. [4] 35, 364). Durch Erhitzen von Acetamid mit p-Toluolsulfochlorid und Kaliumchlorid oder Natriumchlorid auf 120° (Höchster Farbw., D. R. P. 380323; C. 1924 I, 1272; Frdl. 14, 366). Beim Eintragen eines Gemisches aus Acetamid und einem tertiären Amin wie z. B. 2-Methyl-5-äthyl-pyridin in ein siedendes Gemisch von Benzolsulfochlorid und Xylol (Höchster Farbw.). Neben anderen Produkten beim Überleiten von Propionsäureamid-Dampf über fein verteiltes Nickel bei 430° (MAILHE, Bl. [4] 37, 1396). Beim Erhitzen von p-Toluolsulfonsäure-methylester mit Kaliumcyanid, neben wenig Methylisocyanid (Rodionow, Bl. [4] 39, 324). Beim Leiten von Athylamin-Dampf über Kupfer bei 320—330° oder über Nickel bei 420° (MAILHE, A. ch. [9] 13, 188). Entsteht wahrscheinlich bei der thermischen Zersetzung von Athylamin über Kaolin bei 700°, neben anderen Produkten (UPSON, SANDS, Am. Soc. 44, 2307). Bildet sich neben anderen Produkten beim Behandeln von Alanyl-valylglycerin und anderen Polypeptiden mit Hypobromit-Lösung bei 0° (Goldschmidt, Štrauss,

glycerin und anderen Polypeptiden mit Hypobromit Lösung bei 0° (Goldschmidt, Strauss, A. 471, 5, 8, 12). — Reinigung des aus Acetylen und Ammoniak dargestellten Acetonitrils: Rhenania, Stuer, D. R. P. 367538; C. 1923 II, 908; Frdl. 14, 365.

E: —44,9° (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 437). Kp₇₆₀: 81,60° (Grim, Patrick, Am. Soc. 45, 2799; Ti., H.-R.). D': 0,80345; D': 0,78746; D': 0,77141 (Ti., H.-R.); D': 0,7781 (v. Auwers, B. 60, 2138); D': 0,8032; D': 0,7768; D': 0,7497 (Walden, Birr, Ph. Ch. [A] 144, 273). Viscosität bei 15°: 0,00375, bei 30°: 0,00325 g/cmsec (Ti., H.-R.); bei 16,1°: 0,003908 g/cmsec (Muchin, Faermann, Ph. Ch. 121, 187); bei 0°: 0,004426, bei 25°: 0,003438, bei 50° 0,002753 g/cmsec (Wa., B.). Oberflächenspannung bei 15°: 29,76, bei 20°: 29,10, bei 30°: 27,80 dyn/cm (Ti., H.-R.). Parachor: Sugden, Soc. 125, 1186. Verbrennungswärme von flüssigem Acetonitril bei konstantem Volumen: 302,5 kcal/Mol (Swietoslaweki, Popow, J. Chim. Phys. 22, 397). — nother 1,34424; nother 1,34638; nother 1,35055; nother 1,35396 (Ti., H.-R.); nother 1,3401; nother 1,3419; nother 1,34404; nother 1,34494 (v. Auwers, B. 60, 2138). Brechungsindices für verschiedene Helium-Linien

bei 15° : Ti., H.-R. Dispersion: Enklaar, R. 42, 1007. Durchlässigkeit im kurzwelligen Ultraviolett: Scheibe, Ph. Ch. [B] 5, 364. Ultravotes Absorptionsspektrum zwischen 1 und $15\,\mu$: W. W. Coblentz, Investigations of Infra-red Spectra [Washington 1905], S. 140, 161, 188. Beugung von Röntgenstrahlen an Acetonitril: Katz, Z. Phys. 45, 109; C. 1928 I, 154; Krishnamurti, Indian J. Phys. 2, 496; C. 1928 II, 2098. Ramanspektrum: Petrikaln, Hochberg, Ph. Ch. [B] 3, 225, 405; Pe., Ph. Ch. [B] 3, 362. Dielektr. Konst. beim Siedepunkt: 26,2 (Grimm, Patrick, Am. Soc. 45, 2799). Dipolmoment μ ·10¹⁸: 3,94 (Dampf) (Höjendahl, Phys. Z. 30 [1929], 392), 3,4 (verd. Lösung; Benzol) (Williams, Ph. Ch. [A] 138, 79), 3,11 (verd. Lösung; Benzol) (Werner, Ph. Ch. [B] 4, 382). Elektrische Leitfähigkeit bei 25°: Müller, Raschka, Wittmann, M. 48, 660; Wa., B.; Koch, Soc. 1928, 272. Magnetische Doppelbrechung: Ramanadham, Indian J. Phys. 4, 27; C. 1929 II, 2315.

Magnetische Doppelbrechung: Ramanadham, Indian J. Phys. 4, 27; C. 1929 II, 2315.
Lösungsvermögen für Lithiumnitrat und Magnesiumbromid: Müller, Pinter, Prett, M. 45, 525; für Silbernitrat bei 25°: Mü., RASCHKA, WITTMANN, M. 48, 660; WALDEN, zitiert bei Koch, Soc. 1928, 279; für Lithiumnitrat, Magnesiumbromid und Silbernitrat: Mü., Z. anorg. Ch. 142, 130. Einfluß von Acetonitril auf die Löslichkeit von Kalium-MÜ., Z. anorg. Ch. 142, 130. Einfuß von Acetontril auf die Loslichkeit von Kalrumsulfat in Wasser: Weber, Z. anorg. Ch. 181, 390. Kritische Lösungstemperatur in Schwefelkohlenstoff: 51,3° (Ti., H.-R.). Thermische Analyse des ternären Systems mit Benzoesäure und N-Acetyl-benzamid: Kremann, Mitarb., M. 43, 348; des quaternären Systems mit Acetamid, Acetanhydrid und Essigsäure: Kremann, Zoff, Oswald, M. 43, 140; mit Acetamid, Benzoesäure und Benzoesäureanhydrid: Kr., Mitarb.; des Systems mit Acetamid, Benzoesäure, Benzoesäureanhydrid und N-Acetyl-benzamid: Kr., Mitarb. Dichte einiger Lösungen in Benzol bei 20°: Werner, Ph. Ch. [B] 4, 381. Zur Viscosität wäßr. Lösungen und Trauper Whang, Ric Z. 208, 364. Viscosität, von Gemischen mit gleichen Mengen. vgl. Traube, Whang, Bio. Z. 203, 364. Viscosität von Gemischen mit gleichen Mengen Alkohol bezw. Benzol bei 16,90 bezw. 17,50: Muchin, Faermann, Ph. Ch. 121, 187. Geschwindigkeit der Diffusion von Essigsäure in Acetonitril und in Gemischen mit Alkohol und mit Benzol: Mu., Faer., Ph. Ch. 121, 185. Oberflächenspannung einer wäßrigen, 0,25 n-Lösung: Weber. Zur Oberflächenspannung in Wasser vgl. Tr., Wh. Adsorption von Acetonitril aus wäßr. Lösung an Blutkohle: WARBURG, Bio. Z. 119, 158. Einfluß von Acetonitril auf die Adsorption von Adrenalin aus wäßr. Lösung durch Tierkohle: Zondek, Bansı, Bio. Z. 195, 381. Ausbreitung auf Wasser bei 20°: HARKINS, FELDMAN, Am. Soc. 44, 2670. Wärmetönung beim Vermischen mit Methanol, Alkohol, Aceton, Eisessig, Athylscetat und Benzol: Popow, *Ukr. chemič. Ž.* 2, 388; *C.* 1928 I, 167. — Dielektr. Konst. einiger Lösungen in Benzol bei 20°: Werner; bei 25°: Williams, *Ph. Ch.* [A] 138, 79. Elektrische Leitfähigkeit von anorganischen Salzen, Salzen von primären, sekundären und tertiären Aminen und von quaternären Ammoniumbasen in Acetonitril bei 25°: WALDEN, BIRR, Ph. Ch. [A] 144, 269; von Silbernitrat in Acetonitril bei 25°: Müller, Raschka, Wittmann, M. 48, 664; Косн, Soc. 1928, 279; von Cadmiumjodid in Acetonitril bei 0° und 25°: Косн, Soc. 1927, 648. Elektrolyse von Kupfer(I)-nitrat und Cadmiumnitrat in Acetonitril: MORGAN, Soc. 123, 2905; von Lithiumnitrat, Magnesiumbromid und Silbernitrat in Acetonitril bei 25°: MÜ., PINTER, PRETT, M. 45, 525. Beweglichkeit verschiedener Ionen in Acetonitril bei 25°: ULICH, Fortsch. Ch. Phys. 18 [1924/26], 600; U., BIRB, Z. ang. Ch. 41, 445; U., Trans. Faraday Soc. 23, 390; C. 1927 II, 2044; LATTEY, Phil. Mag. [7] 6, 262; C. 1928 II, 2430. EMK der Kette Silber | Silbernitrat in Wasser | Silbernitrat in Acetonitril | Silber bei 0° und 25°: KOCH, Soc. 1928, 274, 526. Becquerel-Effekt in Lösungen von Rhodamin B, Brillantgrün und Eosinnatrium in Acetonitril: Lifschitz, Hooghoudt, Ph. Ch. [A] 141, 63.

Acetonitril gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung Cyansäure (nachgewiesen als Harnstoff) (Fosse, Laude, C.r. 173, 320). Liefert bei der Hydrierung in Gegenwart von Kupfer je nach den Versuchsbedingungen in wechselnden Mengen Athylamin und Diäthylamin und wenig Ammoniak (Komatsu, Ishida, Mem. Coll. Sci. Kyoto [A] 10, 336; C. 1928 I, 2370). Bei der Hydrierung in Wasser bei Zimmertemperatur unter 3 Atm. Überdruck in Gegenwart von kolloidalem Platin entsteht Triäthylamin, in Gegenwart von Cyclohexanon neben Triäthylamin auch N-Äthyl-cyclohexylamin (Skita, Keil, M. 53/54, 757). Beim Behandeln mit Natriumamid in flüssigem Ammoniak entsteht das Natriumsalz des Acetamidins (Cornell, Am. Soc. 50, 3315; vgl. Dains, Brewster, Am. Soc. 42, 1578). Liefert bei Einw. von Selenwasserstoff in Alkohol bei —10° in Gegenwart von Natriumäthylat und Erwärmen des Reaktionsgemischs Selenoacetamid (Kindler, A. 431, 206). Gibt beim Behandeln mit krystallisierter Phosphorsäure unter Selbsterwärmung eine Verbindung C₂H₃N + H₃PO₄ (S. 183), beim Erhitzen auf 130—140° entsteht Essigsäure (Berger, Olivier, R. 46, 603). Liefert mit Borneol in Äther beim Sättigen mit trocknem Chlorwasserstoff Acetiminobornyläther-hydrochlorid (Houben, Pfankuch, B. 59, 2395). Reagiert mit Phloroglucindimethyälther bei Gegenwart von Zinkchlorid in Äther beim Einleiten von Chlorwasserstoff und Erwärmen des Reaktionsprodukts mit Wasser unter Bildung von Phloracetophenon-2.4-dimethyläther und 2-Oxy-4.6-dimethoxy-1.3-discetyl-benzol (Sminoda, J. pharm. Soc. Japan 1927, 111; C. 1928 I, 333); bei der Kondensation mit Phloro-

glucin-trimethyläther entsteht unter denselben Bedingungen das Imid des 2.4.6-Trimethoxy-acetophenons, das beim Kochen mit Wasser in das Keton übergeht (Houben, Fischer, J. pr. [2] 123, 97; Shi.). Liefert mit Thioessigsäure-Säthylester und Natrium Cyanaceton (Baker, Reid, Am. Soc. 51, 1570). Reagiert mit Thiobenzanilid in Ather beim Einleiten von Chlorwasserstoff unter Bildung eines gelben, unbeständigen Kondensationsprodukts, das sich bei Einw. von Säuren rot färbt und bald in Benzanilid und Thioacetamid zerfällt; bei der analogen Reaktion mit Thioacetanilid und Thioformanilid entsteht ebenfalls Thioacetamid (Ishikawa, Mem. Coll. Sci. Kyoto [A] 10, 192; C. 1927 II, 1268). Liefert mit N-Methyl-N-phenyl-hydrazin geringe Mengen NP-Methyl-NP-phenyl-acetamidrazon (Brunner, Seeger, Dittrich, M. 45, 75). Gibt beim Behandeln mit Athylmagnesiumbromid in Ather und nachfolgenden Zersetzen mit Wasser eine Verbindung C₆H₇N₃ (s. u.) und nach dem Destilieren des nicht krystallisierten Rückstandes im Vakuum Diacetonitril; als Rückstand der Destillation bleibt 2.4-Dimethyl-6-oxy-3-cyan-pyridin und eine Verbindung C₇H₆N₂ oder C₇H₈N₃(?) (s. u.) (Bruylants, Bl. Acad. Belgique [5] 8, 8; C. 1923 I, 85). Liefert beim Behandeln mit Phenylmagnesiumbromid in Ather Acetophenon, 6-Amino-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril und eine in Nadeln krystallisierende stickstoffhaltige Verbindung vom Schmelzpunkt 144° (Bary, Bl. Soc. chim. Belg. 31, 406; C. 1923 III, 124). — Farbreaktionen mit Natriumjodid und aromatischen Polynitroverbindungen und Polynitrophenon: Tronow, Djakonowa-Schulz, Sonowa, Ж. 59, 336, 338; C. 1927 II, 1687.

E I 84, Z. 19 v. u. statt "230754" lies "230724".

C₂H₃N + H₂PO₄. B. Beim Behandeln von Acetonitril mit krystallisierter Phosphorsäure unter Selbsterwärmung (Berger, Olivier, R. 46, 603). Nadeln. Schmilzt im geschlossenen Rohr bei 51—53°. Zerfließt und zersetzt sich rasch an der Luft. Zersetzt sich auch im Vakuum über Phosphorpentoxyd. Leicht löslich in Alkohol, Chloroform und Aceton, löslich in heißem überschüssigem Acetonitril, unlöslich in Petroläther, Schwefelkohlenstoff und Benzol. — Verbindung mit Yttrium-acetylacetonat Y(C₅H₇O₂)₃ + C₂H₃N. Schuppen von charakteristischem Fettglanz. F: 138° (Jantsch, Meyer, B. 53, 1587). Gibt beim Aufbewahren an der Luft, rascher im Vakuum, Acetonitril ab. — C₂H₃N+CuCl. Krystalle (aus Acetonitril unter Ausschluß von Luft) (Morgan, Soc. 123, 2904; vgl. Rabaut, Bl. [3] 19, 786; Nauman, B. 47, 252). — C₂H₂N+CuBr. Krystalle (aus Acetonitril unter Ausschluß von Luft (M.). — 4C₂H₂N+CuNO₃. Krystalle (aus Acetonitril). Ist bei Luftabschluß unbeschränkt haltbar (M.). Färbt sich an der Luft grün. Die verd. Lösungen in Acetonitril sind an der Luft beständiger als die konzentrierten (M.). Wird beim Überleiten von inerten Gasen bei Zimmertemperatur zunächst blaßgelb, dann allmählich dunkelgrün unter Zerfall in Acetonitril, Kupfernitrat und metallisches Kupfer. — C₂H₃N+CuCN. B. Beim Behandeln von Acetonitril mit Kupfer(I)-cyanid (Hartley, Soc. 1928, 781). Gibt an der Luft allmählich Acetonitril ab. — C₂H₃N+CuCl₂ + LiCl. Grün (Scagliarini, R. A. L. [6] 4, 575). — Über Komplexverbindungen mit Silber vgl. Pawelka, Z. El. Ch. 30, 183. — 2C₂H₃N+BeCl₂. Krystalle. Zersetzt sich an feuchter Luft (Fricke, Ruschhaupt, Z. anorg. Ch. 146, 109). Löslich in Wasser, kaum löslich in Benzol. — [Cr₂(OH)₃(CN)₃(H₂O)₂(CH₃·CN)]+5 H₂O. B. Aus Kaliumchromicyanid und Chlorwasserstoff in wasserfreiem Acetonitril bei nachfolgender Einw. von Wasser (Hölzl., Viditz, M. 49, 246, 256). Brauner Körper. — 3C₂H₃N+CoCl₂. Die von Naumann (B. 47, 250) dargestellte Verbindung konnte von Hantzsch (Beim Zer

Verbindung C₆H₇N₃. B. Entsteht in geringer Menge neben anderen Produkten beim Behandeln von Acetonitril mit Athylmagnesiumbromid in Ather und nachfolgenden Zersetzen mit Wasser (Bruylants, Bl. Acad. Belgique [5] 8, 9; C. 1923 I, 85). — Nadeln (aus Alkohol oder Methanol). Wurde nicht ganz rein erhalten. F: 198—200°. Unlöslich in kaltem Wasser, sehr sohwer löslich in siedendem Benzol. — Gibt beim Erwärmen in Wasser unter Ammoniakentwicklung eine Verbindung vom Schmelzpunkt 135°.

Verbindung C₇H₈N₂ oder C₇H₈N₂(?). B. Beim Behandeln von Acetonitril mit Äthylmagnesiumbromid in Äther, Zersetzen des Reaktionsprodukts mit Wasser, Destillieren im Vakuum (15 mm) bei 150—170° und nachfolgenden Destillieren mit Wasserdampf (Bruylants, Bl. Acad. Belgique [5] 8, 9, 15; C. 1923 I, 85). — Blättchen. Schmeckt bitter. F: 123°. Sublimiert bei 50°. Ist mit Wasserdampf flüchtig. Löslich in heißem Wasser, leicht löslich in Äther und Benzol. — Gibt mit den meisten Alkaloid-Reagenzien Fällungen. — Hydrochlorid. Leicht löslich in Wasser. — Chloroaurat. F: 103°. Schwer löslich in Wasser.

Acetamidin $C_2H_2N_2 = CH_2 \cdot C(NH_2) : NH (H 185; E I 85)$. B. Das Natriumsalz entsteht bei der Einw. von Natriumsmid auf Acetonitril in flüssigem Ammoniak (CORNELL, Am. Soc.

(korr.) (F.).

50, 3315). Das Hydrochlorid bildet sich beim Einleiten von trocknem Chlorwasserstoff in eine Lösung von Acetonitril in absol. Alkohol unter Eis-Kochsalz-Kühlung (Dox, Org. Synth. Coll. Vol. I [1932], S. 5; deutsche Ausgabe, S. 5). Bei der Reduktion von 4-Nitro-2-methyl-imidazolon-(5) mit Zinn(II)-chlorid und konz. Salzsäure unterhalb 5°, neben anderen Produkten (FARCHER, Soc. 117, 674). Das p-toluolsulfonsaure Salz (s. bei p-Toluolsulfonsaure) entsteht aus dem p-Toluolsulfonsäureester des Benzylacetonoxims bei längerer Einw. von bei 0° aus dem p-Holuoisuifonsaureester des Benzylacetonoxims bei langerer Einw. Von bei 0° gesättigtem alkoholischem Ammoniak (Neber, Uber, A. 467, 70). — Das Kaliumsalz liefert beim Erhitzen mit Kaliumamid Methan und Kaliumcyanamid (C.). — NaC₂H₅N₂. Krystalle. Sehr leicht löslich bei Zimmertemperatur in flüssigem Ammoniak (C.). — $KC_2H_5N_2$. Krystalle. Sehr leicht löslich bei Zimmertemperatur in flüssigem Ammoniak (C.). — $C_2H_5N_2+HCl$. Nadeln (aus Alkohol). F: 177° (korr.) (F.). — $C_2H_6N_2+HCl+AuCl_3$. Goldgelbe Nadeln (aus Wasser). F: 266° (F.). — $2C_2H_6N_2+2HCl+PtCl_4$. Rote Prismen (aus Wasser). F: 242° (korr.) (F.). — Pikrat $C_2H_6N_2+C_2H_3O_7N_3$. Orangefarbene Prismen (aus Wasser). F: 252° (korr.) (F.)

Essigsäurederivate des Hydroxylamins und Hydrazins.

Propylidenaceton-oximacetat $C_8H_{13}O_2N = CH_3 \cdot CO \cdot O \cdot N : C(CH_3) \cdot CH : CH \cdot CH_2 \cdot CH_3$. Flüssigkeit. Kp.: 1140 (BARBIER, BOUVEAULT, C. r. 120 [1895], 1269). Do: 1,0005.

Mesityloxyd-oximacetat $C_8H_{13}O_2N = CH_3 \cdot CO \cdot O \cdot N \cdot C(CH_3) \cdot CH \cdot C(CH_3)_2$ (H 186).

- a) α -Form. Zur Konfiguration vgl. v. Auwers, Ottens, B. 57, 446. Kp₁₁: 101°. D₄¹⁴°: 0,9925; D₄¹⁶°: 0,986. n_{α}^{14} °: 1,4738; n_{He}^{16} °: 1,4771; n_{He}^{16} °: 1,4867; n_{Y}^{16} °: 1,4952; n_{He}^{16} : 1,474. b) β -Form. Zur Konfiguration vgl. v. Auwers, Ottens, B. 57, 458. Kp₁₄: 107°. D₄^{17,1}: 0,9922; D₄¹⁶°: 0,990. $n_{\alpha}^{17,1}$: 1,4755; $n_{He}^{17,1}$: 1,4797; $n_{P}^{17,1}$: 1,4810; $n_{Y}^{17,1}$: 1,4985; n_{He}^{16} : 1,478.
- $\alpha.\alpha'$ Dimethyl α isobutyliden aceton oximacetat $C_{11}H_{19}O_2N=CH_3\cdot CO\cdot O\cdot N:C(C_2H_5)\cdot C(CH_3):CH\cdot CH(CH_3)_5.$ Flüssigkeit. Kp₁₆:125—127° (Franke, Köhler, A. 483, 326).
- $N: CH \cdot C(CH_3): N \cdot O \cdot CH_3(?)$. B. Beim Behandeln von α -Methyl-glyoxaldioxim- α -methyläther(?) mit Acetanhydrid in Gegenwart von Natriumacetat (Avogadro, Tavola, G. 55, 326). — Nadeln (aus Petroläther). F: 43°. Unlöslich in Wasser, löslich in den üblichen organischen Lösungsmitteln.
- $\text{$\alpha$-Methyl-$\alpha'$- acetyl-glyoxim-diacetat } C_9H_{12}O_5N_2 = CH_3 \cdot CO \cdot O \cdot N : C(CH_3) \cdot C(:N \cdot O \cdot C(CH_3)) \cdot C(:N \cdot O \cdot C(C$ CO·CH₃)·CO·CH₃. B. Beim Behandeln von a-Methyl a'-acetyl-glyoxim mit Acetanhydrid in der Kälte (Ponzio, Ruggeri, G. 52 I, 294). — Prismen (aus Äther + Petroläther). F. 77º bis 78°. Unlöslich in Wasser, löslich in der Kälte in den meisten organischen Lösungsmitteln außer Petroläther. — Liefert beim Erwärmen mit Wasser 3-Methyl-4-acetyl-furazan.
- O-Acetyl-formhydroximsäure-äthylester, O-Acetyl-formoximinoäthyläther $C_5H_9O_3N=CH_9\cdot CO\cdot O\cdot N:CH\cdot O\cdot C_9H_5$. B. Beim Behandeln von Formhydroximsäure-äthylester mit 1,25 Mol Acetanhydrid unter Wasserkühlung (Houben, J. pr. [2] 105, 23). Ol. Kp₁₇: 82° (H.). Zersetzt sich beim Erhitzen (H., Pfankuch, B. 59, 2396).

Acethydroxamsäure $C_2H_5O_2N = CH_3 \cdot CO \cdot NH \cdot OH$ bezw. desmotrope Form (H 187; E I 85). B. Beim Schütteln von Hydroxylamin mit Keten in Ather (HURD, COCHRAN, Am. Soc. 45, 520). Beim Behandeln von Acetylurethan mit Hydroxylamin in Methanol bei 40-50° (Ponzio, G. 59, 553). Bei der Einw. von Brenztraubensäure auf p-Toluolsulfhydroxamsäure in alkoh. Kallauge (Scheuing, Hensle, A. 440, 88). Krystalle (aus Essigsäureäthylester). Schmilzt wasserhaltig bei 57°, wasserfrei bei 89° (P.). — Bei der Einw. von Bromwasser in der Kälte entstehen Essigsäure und Stickoxydul (DE PAOLINI, G. 56, 758).

N.N'-Thio-bis-acetamid, "Sulfidobisacetamid" $C_4H_8O_3N_3S = (CH_3 \cdot CO \cdot NH)_3S$. Beim Kochen von Acetamid mit Dischwefeldichlorid in Benzol (NAIK, Soc. 119, 1167).— Nadeln (aus Alkohol). F: 192°. Leicht löslich in heißem Wasser. — Gibt mit Silbernitrat in wäßr. Lösung Silbersulfid. Beim Kochen mit Soda-Lösung und nachfolgenden Ansäuern wird Schwefelwasserstoff entwickelt.

Acethydroximsäure-äthylester, Acetoximinoäthyläther $C_4H_9O_2N=CH_8\cdot C(:N\cdot X)$ OH) O·C₂ H_5 (E I 85). Zur Bildung nach Housen, Schmidt (B. 46, 3619) vgl. Housen, Pfankuch, B. 59, 2395. — Wird bei Einw. von 1,25 Mol Phosphorpentachlorid in Ather bei 0° nicht umgelagert.

Acethydroximsäurechlorid, α -Chlor- α -oximino-äthan $C_2H_4ONCl=CH_2\cdot CCl:N\cdot OH$ (H 188). Die desmotrope Form 1-Chlor-1-nitroso-athan s. E II 1, 69. — B. Bei der Einw. von Natriumnitrit auf eine mit Kältemischung gekühlte Lösung von Athylamin in verd. Salzsäure (SKINNER, Am. Soc. 46, 739). — Hygroskopische Krystalle. F: 84—85° (geschlossenes Röhrchen).

Acetnitrolsäure, Äthylnitrolsäure C₂H₄O₃N₂ = CH₃·C(:N·OH)·NO₂ (H 189; E I 86). B. Beim Behandeln des Natriumsalzes des 2-Nitro-propanols-(1) mit Natriumnitrit in verd. Kalilauge und allmählichen Ansäuern mit 5n-Schwefelsäure bei —10° bis 0°, neben Formaldehyd (EARL, Mitarb., Soc. 1928, 2703). — F: 84—85° (korr.; Zers.).

Essigsäurehydrazid, Acetylhydrazin $C_3H_6ON_3=CH_3\cdot CO\cdot NH\cdot NH_2$ (H 191; E I 86). Liefert mit Acetonylaceton in essigsaurer Lösung 1-Acetamino-2.5-dimethyl-pyrrol (BLAISE, C. r. 172, 222). Bei stufenweiser Erhitzung mit Formanilid auf 150—230° entsteht in geringer Ausbeute 4-Phenyl-1.2.4-triazol (Heller, J. pr. [2] 120, 62).

N-Formyl-N'-acetyl-hydrazin $C_3H_6O_2N_2=CH_3\cdot CO\cdot NH\cdot NH\cdot CHO$. B. Aus Formyl-hydrazid und Acetanhydrid unter guter Eiskühlung (Heller, J. pr. [2] 120, 60). — Krystalle (aus Alkohol). F: 96°. — Gibt beim Erhitzen mit Anilin und Phosphorpentoxyd auf 190—230° in geringer Ausbeute 3.5-Dimethyl-4-phenyl-1.2.4-triazol.

N.N'-Diacetylhydrazin C₄H₈O₂N₂ = CH₃·CO·NH·NH·CO·CH₃ (H 192; E I 86). B. Beim Erhitzen von Hydrazo-dicarbonamid mit Acetanhydrid im Rohr auf 200° (Guha, Chakraborty, J. indian chem. Soc. 6, 102, 110; C. 1929 I, 2781). — F: 139°. [Homann]

Substitutionsprodukte der Essigsäure.

a) Fluor-Derivate.

Fluoressigsäure C₂H₃O₂F = CH₂F·CO₂H (H 193). F: 35,2° (SWARTS, *J. Chim. phys.* 17,23). Verbrennungswärme bei konstantem Volumen: 170,8 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und wäßr. Fluorwasserstoffsäure) (SWIETOSLAWSKI, BOBINSKA, *J. Chim. phys.* 24, 546; vgl. SWARTS, *C.* 1906 II, 1567; *R.* 25, 423; *J. Chim. phys.* 17, 23).

Fluoressigsäure - äthylester $C_4H_7O_2F = CH_2F \cdot CO_2 \cdot C_2H_5$ (H 193). Kp₇₅₈: 121,6° (Swarts, *J. Chim. phys.* 17, 23). D^{20,5}: 1,0926. Verbrennungswärme bei konstantem Volumen: 501,9 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und wäßr. Fluorwasserstoffsäure) (Swietoslawski, Bobinska, *J. Chim. phys.* 24, 546; vgl. Swarts, *C.* 1906 II, 1567; *R.* 25, 424; *J. Chim. phys.* 17, 23). $n_{\alpha}^{20,5}$: 1,3749; $n_{D}^{20,5}$: 1,3767; $n_{B}^{20,5}$: 1,3808; $n_{\gamma}^{20,5}$: 1,3841 (Swarts, *J. Chim. phys.* 20, 44).

Fluoressigsäure-anhydrid $C_4H_4O_3F_2 = (CH_2F \cdot CO)_2O$. B. Bei der Destillation von Fluoressigsäure mit Phosphorpentoxyd unter 2—3 mm Druck (Brauns, Am. Soc. 47, 1296). — Krystallinisch.

Fluoressigsäure - amid, Fluoracetamid C₂H₄ONF = CH₂F·CO·NH₂ (H 193). F: 108,0° (Swarrs, *J. Chim. phys.* 17, 23). Verbrennungswärme bei konstantem Volumen: 249,3 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und wäßr. Fluorwasserstoffsäure) Swietoslawski, Bobinska, *J. Chim. phys.* 24, 546; vgl. Swarts, *C.* 1909 I, 1977; *R.* 28, 149; *J. Chim. phys.* 17, 24).

Fluoracetonitril $C_2H_2NF = CH_2F \cdot CN$. B. Bei der Destillation von Fluoracetamid mit Phosphorpentoxyd unter vermindertem Druck (SWARTS, Bl. Soc. chim. Belg. 31, 364; C. 1923 III, 117). — Flüssigkeit von stechendem Geruch. Kp: 81,8—82°. D¹⁶: 1,0730. Schwer löslich in Wasser.

Difluoressigsäure $C_2H_2O_2F_2 = CHF_2 \cdot CO_2H$ (H 193). $D^{\infty,1}$: 1,5255 (SWARTS, *J. Chim. phys.* 17, 23; 20, 44). Verbrennungswärme bei konstantem Volumen: 134,9 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und wäßr. Fluorwasserstoffsäure) (SWIETOSLAWSKI, BOBINSKA, *J. Chim. phys.* 24, 546; vgl. SWARTS, *C.* 1906 II, 1567; *R.* 25, 425; *J. Chim. phys.* 17, 23). $n_{\alpha}^{\infty,1}$: 1,3404; $n_{\alpha}^{\infty,1}$: 1,3420; $n_{\alpha}^{\infty,1}$: 1,3455; $n_{\alpha}^{\infty,1}$: 1,3481 (SWARTS, *J. Chim. phys.* 20, 44).

Difluoressigsäure-äthylester $C_4H_6O_2F_2=CHF_2\cdot CO_2\cdot C_2H_5$ (H 194). Kp_{756} : 99,2° (Swarts, J. Chim. phys. 17, 23). $D^{a,s}$: 1,1893 (Swarts, J. Chim. phys. 20, 44). Verbrennungswärme bei konstantem Volumen: 461,6 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und wäßr. Fluorwasserstoffsäure) (Swietoslawski, Bobinska, J. Chim. phys. 24, 546; vgl. Swarts, C. 1906 II, 1567; R. 25, 426; J. Chim. phys. 17, 23). $n_{\alpha}^{a,s}$: 1,3489; $n_{\beta}^{a,s}$: 1,3532 (Swarts, J. Chim. phys. 20, 44).

Difluoressigsäure-amid, Difluoracetamid $C_2H_3ONF_2=CHF_2\cdot CO\cdot NH_2$ (H 194; E I 87). Verbrennungswärme bei konstantem Volumen: 208,1 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und wäßr. Fluorwasserstoffsäure) (Swietoslawski, Bobinska, J. Chim. phys. 24, 546; vgl. Swarts, C. 1909 I, 1977; R. 28, 149; J. Chim. phys. 17, 24).

Difluoracetonitril C₂HNF₂ = CHF₃·CN. B. Bei der Destillation von Difluoracetamid mit Phosphorpentoxyd unter vermindertem Druck (Swarts, Bl. Soc. chim. Belg. 31, 365; C. 1923 III, 117). — Erstarrt nicht bei —80°. Kp: 22,8—23,4°. D^{14,5}: 1,1130. Sehr schwer löslich in Wasser.

Trifluoressigsäure C₂HO₂F₃ = CF₃·CO₃H. B. Neben anderen Produkten beim Erhitzen von Trifluormethyl-cyclohexan oder x-Nitro-1-trifluormethyl-cyclohexan mit Salpetersäure (D: 1,15) im Rohr auf 130—135° (Swarts, Bl. Acad. Belgique [5] 8, 338, 341, 342; C. 1923 I, 66). Bei mehrtägigem Kochen von ω.ω.ω. Trifluor-3-amino-toluol mit Natrium-dichromat und starker Schwefelsäure (Sw., Bl. Acad. Belgique [5] 8, 346, 351; C. 1923 I, 66). — An der Luft stark rauchende Flüssigkeit von stechendem Geruch. Erstarrt bei —15,25° bis —15,28° zu Tafeln. Kp: 72,4—72,5°. D°: 1,5351. Löst sich in Wasser unter starker Wärme-entwicklung. Bildet ein azeotropes Gemisch mit Wasser (Kp: 105,46°; 79,4% Trifluoressigsäure). Elektrische Leitfähigkeit in Wasser: S. — Ziemlich beständig gegen siedende Alkalilauge. Beim Erhitzen des Natriumsalzes auf 340° bilden sich Kohlenoxyd, Kohlendioxyd, Trifluoracetylfluorid und wenig Trifluoressigsäure-anhydrid. — Bewirkt auf der Haut starkes Brennen. — Salze: Swarts, Bl. Acad. Belgique [5] 8, 354. — Ammoniumsalz. Tafeln. Schwerer löslich in Wasser und Alkohol als die entsprechenden Alkalisalze. — Natriumsalze: NaC₃O₂F₃. Prismen (aus Wasser beim Verdunsten). — NaC₂O₂F₃+ H₄O. Hygroskopische Krystalle (aus verd. Alkohol). Löslich in Wasser. — Kaliumsalz. Sehr hygroskopische Prismen (aus Alkohol). Löslich in Wasser. — Silbersalz. Nadeln (aus Wasser beim Verdunsten), benzolhaltige Krystalle (aus Benzol). Leicht löslich in Wasser. Löst sich in Benzol bei 0° zu 31%. Kryoskopisches Verhalten in Benzol: S. — Bariumsalz. Leicht löslich.

Trifluoressigsäure-äthylester $C_4H_5O_4F_3=CF_3\cdot CO_2\cdot C_2H_5$. B. Bei der Destillation von trifluoressigsaurem Natrium mit Alkohol und Schwefelsäure (SWARTS, Bl. Acad. Belgique [5] 8, 357; C. 1923 I, 66). — Kp_{761} : 61,7°; $D^{16.7}$: 1,1953; $n_{10}^{16.7}$: 1,3078; $n_{10}^{16.7}$: 1,3124; $n_{1}^{16.7}$: 1,3153 (S., Bl. Acad. Belgique [5] 8, 357; J. Chim. phys. 20, 44). — Liefert mit Natriumäthylat in Äther die Natriumverbindung des Trifluororthoessigsäure-diäthylesters (S., Bl. Soc. chim. Belg. 35, 414; C. 1927 I, 997). Beim Behandeln mit Äthylacetat in Äther in Gegenwart von Natriumäthylat bildet sich $\gamma.\gamma.\gamma$ -Trifluor-acetessigsäure-äthylester (S., Bl. Soc. chim. Belg. 35, 414; Bl. Acad. Belgique [5] 12, 680, 692; C. 1927 I, 996, 1286). Bei der Einw. von Methylmagnesiumjodid in Äther erhält man neben anderen Produkten $\alpha.\alpha.\alpha$ -Trifluor-aceton und Dimethyl-trifluormethyl-carbinol (S., Bl. Soc. chim. Belg. 36, 191; C. 1927 I, 2978).

Trifluororthoessigsäure-diäthylester $C_6H_{11}O_3F_3=CF_3\cdot C(0\cdot C_2H_5)_2\cdot OH$. B. Die Natriumverbindung entsteht beim Behandeln von Trifluoressigsäure-äthylester mit Natriumäthylat in Äther (Swarts, Bl. Soc. chim. Belg. 35, 414; C. 1927 I, 997). — Die Natriumverbindung geht beim Aufbewahren, besonders in Gegenwart von Feuchtigkeit in trifluoressigsaures Natrium über. Beim Kochen mit Äthylacetat bildet sich $\gamma.\gamma.\gamma$ -Trifluor-acetessigsäure-äthylester. — Na $C_6H_{10}O_3F_3$. Blaßgelbes, hygroskopisches Pulver. Löst sich kolloidal in Äther.

Trifluoressigsäure-isoamylester $C_7H_{11}O_2F_3=CF_3\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3$

Trifluoressigsäure-anhydrid $C_4O_3F_6=(CF_3\cdot CO)_2O$. B. Beim Erhitzen von Trifluoressigsäure mit Phosphorpentoxyd auf 100° (Swarts, Bl. Acad. Belgique [5] 8, 357; C. 19231, 66). — F: —65° (korr.). — Kp: 39,5—40,1°. Dampfdichte bei 15,5°: S. — Reagiert mit Alkehol unter Bildung von Trifluoressigsäure-äthylester.

Trifluoracetylfluorid $C_2OF_4 = CF_8 \cdot COF$. B. Beim Erhitzen von trifluoressigsaurem Natrium auf 340° (Swarts, Bl. Acad. Belgique [5] 8, 363, 365; C. 1923 I, 67). — Gas von äußerst heftigem, stechendem Geruch. Kp: —59°. — Reagiert heftig mit Wasser und Alkohol.

Trifiuoressigsäure-amid, Trifiuoracetamid $C_3H_3ONF_3=CF_3\cdot CO\cdot NH_3$. B. Beim Behandeln von Trifiuoressigsäure-äthylester mit bei 0^0 gesättigtem wäßrigem Ammoniak bei -10^0 (Swaets, Bl. Acad. Belgique [5] S, 358; C. 1923 I, 66). — Blättchen (aus Chloroform). F: 74,8°. Kp: 162,5°. Sublimierbar. Bei gewöhnlicher Temperatur sehr flüchtig. Leicht löslich in Alkohol und Äther, schwer in Chloroform, fast unlöslich in Petroläther.

Trifluoracetonitril C₂NF₂ = CF₃·CN. B. Beim Erhitzen von Trifluoracetamid mit Phosphorpentoxyd auf 140—150° (Swarts, Bl. Acad. Belgique [5] 8, 359; C. 1923 I, 67). In geringer Menge beim Erhitzen von trifluoressigsaurem Ammonium mit Phosphorpentoxyd (S.). — Gas. Kp: —61,5°. Wasser absorbiert die Hälfte seines Volumens, Alkohol das deppatte Volumen. — Wird durch Kalilauge sofort zur Säure verseift.

b) Chlor-Derivate.

Chloressigsäure $C_2H_3O_2Cl = CH_2Cl \cdot CO_2H$ (H 194; E I 87).

Bildung.

Beim Belichten einer Lösung von Trichlornitromethan in Eisessig (Piutti, Badolato, R. A. L. [5] 83 I, 476). Aus Trichlorathylen bei der Einw. von 90—93 %iger Schwefelsäure bei 160—180° (Simon, Chavanne, C. r. 176, 310; Comp. d'Alais, D. R. P. 359910, 377524, 383029; C. 1923 II, 404; IV, 536; 1924 I, 1712; Frdl. 14, 272, 275, 276) oder von 85 % iger wäßriger Benzolsulfonsäure bei ca. 190° (Comp. d'Alais, D. R. P. 377411; C. 1923 IV, 591; Frdl. 14, 274). Aus Chloracetylen bei längerem Aufbewahren mit Natriumhypochlorit-Lösung unter Zusatz von wäßr. Borsäure-Lösung oder mit einer 5%igen Lösung von unterbromiger Säure (INGOLD, Soc. 125, 1536, 1537). Beim Erhitzen von Methylformiat mit Sulfurylchlorid im Rohr auf 165—170° (Fuchs, Katscher, B. 57, 1257). Bei der Einw. von Chlor auf Essigsäure in Tetrachlorkohlenstoff im Licht der Quarzlampe (Benrath, Hertel, Z. wiss. Phot. 23, 33; C. 1924 II, 822). Beim Einleiten von Chlor in auf 100° erhitzten Eisessig bei Gegenwart eines Gemischs von Jod, rotem Phosphor und Phosphorpentachlorid (BRUCKNER, Z. ang. Ch. 40, 974; 41, 228; Schilow, Z. chim. Promysl. 6, 538; C. 1929 II, 2658; vgl. Magidson. Silberg, Preobrashenski, Z. chim. Promysl 5, 528; C. 1928 II, 2234). Über den Einfluß verschiedener Katalysatoren und Katalysatorgemische auf die Bildung durch Chlorieren von Eisessig vgl. Brü., Z. ang. Ch. 41, 227; Ma., Si., Preo.; Schi. Bei der Elektrolyse von Salzsäure in Gegenwart von Essigsäure an einer Kohle-Anode (Youtz, Am. Soc. 48, 549). Beim Erwärmen von Glykokoll mit einem Gemisch von konz. Salzsäure und konz. Salpetersäure (D: 1,4) (Chem. Fabr. Flora, D. R. P. 348671; Frdl. 14, 1435). Beim Erhitzen von α-Trioxymethylen (Syst. Nr. 2952) mit Sulfurylchlorid in Gegenwart von wasserfreiem Zinkchlorid oder Aluminiumchlorid im Rohr auf 150° (Fuchs, K.). — Darstellung durch Chlorierung von Eisessig in Gegenwart von rotem Phosphor: L. ORTHNER, L. REICHEL, Organisch-chemisches Praktikum [Berlin 1929], S. 13.

Physikatische Eigenschaften.

α-Modifikation (gewöhnliche Chloressigsäure). Die α-Form konnte durch Abkühlen der geschmolzenen Säure nicht erhalten werden (STEINEE, JOHNSTON, J. phys. Chem. 32, 935). F: 62° (PIUTTI, BADOLATO, R. A. L. [5] 33 I, 476),62,53° (BRIDGMAN, Phys. Rev. [2] 3 [1914], 189), 63° (FUCHS, KATSCHEE, B. 57, 1257; BENRATH, HERTEL, Z. wiss. Phot. 28 [1925], 34; RABINOWITSCH, Ph. Ch. 119, 65; Ж. 58, 231; RANDALL, FAILEY, Chem. Reviews 4 [1927], 302). Druckabhängigkeit des Schmelzpunkts und Volumenänderung beim Schmelzen unter hohen Drucken: Br. Schmelzwärme: 4,630 kcal/Mol (St., J.). Kryoskopische Konstante: 5,2 (für 1 kg Lösungsmittel) (WALDEN, Z. ang. Ch. 38, 812). Kryoskopisches Verhalten verschiedener Elektrolyte in der α-Form: W. Thermische Analyse der binären Systeme mit Phemol, φ., m. und p-Kresol, α. und β-Naphthol, Thymol und Guajacol: MAMELI, COCCONI, G. 58, 152. — β-Modifikation. Zur Bildung beim Abkühlen der geschmolzenen Säure vgl. a. St., J. F: 56° (FUCHS, K.), 56,6° (M., C.). Schmelzwärme: 4,450 kcal/Mol (St., J.). Thermische Analyse der binären Systeme, mit Phenol o-, m. und p-Kresol, α- und β-Naphthol, Thymol und Guajacol: M., C. — γ-Modifikation. Zur Bildung beim Abkühlen der geschmolzenen Säure vgl. a. St., J. Schmelzwärme: 3,790 kcal/Mol (St., J.).

4.400 Kcal/Mol (ST., J.). Thermische Analyse der binaren Systeme, mit Phenol O., m. und p-Kresol, α- und β-Naphthol, Thymol und Guajacol: M., C. — γ-Modifikation. Zur Bildung beim Abkühlen der geschmolzenen Säure vgl. a. St., J. Schmelzwärme: 3,790 kcal/Mol (St., J.). Kp₇₆₀: 189,35° (Lecat, Ann. Soc. svient. Bruxelles 45 I, [1926], 290); Kp₁₁: 85—86° (Fuchs, Katschee, B. 57, 1257). D^{**}_a: 1,3703 (Vanderstichele, Soc. 193, 1228); D^{***}_a: 1,3978 (V. Frank. zit. bei Hantzsch, Dürigen, Ph. Ch. 136, 15). Van der Waalssche Konstanten zwischen 20° und 30°: Weissenbergee, Henke, J. pr. [2] 115, 77. Parachor: Mumford, Phillips, Soc. 1939, 2128. n^{**}₀: 1,4297 (V.); n^{***}₀: 1,4301 (v. F.). Ultraviolettes Absorptionsspektrum in Wasser: Ghosh, Bisvas, Z. El. Ch. 30, 102; in Wasser und Alkohol: Ley, Hünecke, B. 59, 515. Ultravotes Absorptionsspektrum in Tetrachlorkohlenstoff: Bennett. Danhels, Am. Soc. 49, 55. Elektrische Leitfähigkeit von Chloressigsäure zwischen 0° und 78°: Rabinowitzech, Ph. Ch. 119, 65; Ж. 58, 231; bei 60°: Kendall, Gross, Am. Soc. 43, 1428, 1434; bei 62,6°: Walden, Z. ang. Ch. 38, 813. Zerstäubung von Chloressigsäure-Tropfen unter der Einw. elektrischer Felder: Ruff, Niese, Thomas, Ann. Phys. [4] 82, 632. Chloressigsäure. Jöst sich in Wasser bei 4° zu 72,6% (Comp. d'Alais, D. R. P. 377524; Frdl. 14, 275). Verteilung zwischen Wasser und Chloroform bei 25°: Smith, J. phys. Chem. Ch. 200, 200; bei 200; bei

Chloressigsäure löst sich in Wasser bei 4° zu 72,6% (Comp. d'Alais, D. R. P. 377 524; Frdl. 14, 275). Verteilung zwischen Wasser und Chloroform bei 25°: Smith, J. phys. Chem. 25, 618; zwischen Wasser und Ather bei 18°: Schreiner, Z. anorg. Ch. 122, 203; bei 25°: Smith, J. phys. Chem. 25, 620; zwischen Glycerin und Aceton bei 25°: Smith, J. phys. Chem. 25, 730; zwischen Dibutyläther und Wasser bei 25°: Randall, Falley, Chem. Reviews 4, 304; C. 1928 I, 1139; zwischen Dibutyläther und Wäßr. Salzisungen bei 25°: R., F., Am. Soc. 49, 2678; Chem. Reviews 4, 309. Lösungsvermögen von wäßr. Lösungen für das Salz [Co(NH₂), Cl₂]Br: Brönsted, Petersen, Am. Soc. 43, 2272; von wäßrigen und wäßrigalkoholischen Lösungen für Casein: v. Euler, Bucht, Z. anorg. Ch. 126, 271. Verteilung von

MONOCARBONSÄUREN CnH2nO2

Chloressigsäure + chloressigsaurem Natrium zwischen Wasser und Äther bei 18 $^{\circ}$: Schr., Z. anorg. Ch. 122, 203.

Kryoskopisches Verhalten in Wasser: Kendall, King, Soc. 127, 1780; in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1914], 1162; C. 1925 I, 1557; in wäßt. Lösungen von Essigsäureäthylester: Ke., King, Soc. 127, 1780. — Azeotrope Gemische, die Chloressigsäure enthalten, s. in untenstehender Tabelle. Dampfdrucke von binären Gemischen mit Äther, Aceton, Methylacetat und Äthylacetat bei 20°: Weissenberger, Schuster, Pamer, M. 46, 281, 282, 291, 293, 294. Flüchtigkeit mit Wasserdampf: Vietanen, Pulkki, Am. Soc. 50, 3144; C. 1928 I, 167. — Dichte wäßt. Lösungen bei 20°: Hantzsch, Dübligen, Ph. Ch. 136, 15. Einfluß der Neutralisation mit 1n-Alkalilauge auf die Viscosität von 1n-Chloressigsäure: Simon, C. r. 181, 862. Einfluß auf die Viscosität einer 1% igen Kautschuk-Lösung in Benzol in Gegenwart von Dischwefeldichlorid: LeBlanc, Kröger, Z. El. Ch. 27, 353. Diffusion durch Kollodium-Membranen: Collander, C. 1926 II, 720; Northrop, J. gen. Physiol. 12, 443; C. 1929 II, 1387; durch tierische Membranen: Crozier, J. gen. Physiol. 5, 66; C. 1923 I, 255; Wertheimer, Pflügers Arch. Physiol. 203 [1924], 543.

Azeotrope, (Chloressigsäure	enthaltende	Gemische.
--------------	-----------------	-------------	-----------

Komponente	Kp760	Chloressig- säure in Gew%	Komponente	Kp760	Chloressig- säure in Gew%
1.1.2.2-Tetrachlor- āthan²) Pentachlorāthan²) Hexachlorāthan¹) 1.2.3-Trichlor-propan³) 1.4-Dichlor-benzol¹) Brombenzol³)	146,25 158,65 171,2 154,5 167,55 154,3	ca. 1,8 9,9 25 10 24,5	1.4-Dibrom-benzol ⁴) . Benzylidenchlorid ⁴) . 4-Brom-toluol ⁵) Mesitylen ³) Naphthalin ²) o-Kresol ²)	186,3 189,1 174,1 162 187,1 187,5	ca. 75 97 34 17 78 54

¹⁾ LECAT, Ann. Soc. scient. Bruxelles 45 I [1926], 290. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 25, 151. — 3) L., R. 46, 243. — 4) L., Ann. Soc. scient. Bruxelles 48 I [1928], 15, 120. — 5) L., R. 47, 17.

Oberflächenspannung von Gemischen mit Wasser: Frumkin, Reichstein, Kulvarskaja, Koll.-Z. 40, 10; C. 1926 II, 2542; vgl. a. Traube, Somogyi, Bio. Z. 120, 95. Bewegung auf Wasseroberflächen: Zahn, R. 45, 790. Adsorption aus wäßt. Lösung an Cocosnußkohle: Namasivayam, Quart. J. indian chem. Soc. 4, 452; C. 1928 I, 662; an Tierkohle: Traube, Somogyi, Bio. Z. 120, 95; Schilow, Nekrassow, Ph. Ch. 130, 68; Ж. 60, 107; an verschiedene Kohlen: Sabalitschka, Pharm. Zig. 74, 382; C. 1929 I, 2288; an Anilinschwarz (Bichromatschwarz): Stadnikow, Koll.-Z. 35, 233; C. 1925 I, 2154; an Filtrierpapier: Mokruschin, Krylow, Koll.-Z. 43, 389; C. 1928 I, 890; II, 1989; an Viscose: Brass, Frei, Koll.-Z. 45, 248; C. 1928 II, 1037; an frisch gefälltes Eisen(III)-hydroxyd: Sen, J. phys. Chem. 31, 526. Adsorption aus alkoh. Lösung an Tierkohle: Griffin, Richardson, Robertson, Soc. 1928, 2708. Aufnahme aus wäßt. Lösung durch Hautpulver: Kubelka, Taussig, Koll. Beih. 22, 150; C. 1926 II, 2138; aus wäßtig-alkoholischen Lösungen durch Casein: v. Euler, Bucht, Z. anorg. Ch. 126, 273. Flockende Wirkung auf Eisen(III)-hydroxyd-Sol: Herrmann, Helv. 9, 786; auf Arsentrisulfid-Sol: Mukherjee, Chaudhuri, Soc. 125, 796; Ostwald, Koll.-Z. 40, 205; C. 1927 I, 573; auf Steathsäure-Sol: Ostwald; auf verschiedene Eiweiß-Sole: Cikánek, Havlík, Kubánek, Bio. Z. 145, 100; Reiner, Pluhík, Hányš, Bio. Z. 171, 157; Isgaryschew, Bogomolowa, Koll.-Z. 38, 239; C. 1926 I, 3307. Einfluß auf die Quellung von Casein: Is., Pomeranzewa, Koll.-Z. 38, 236; C. 1926 I, 3129.

Brechungsindices wäßr. Lösungen bei 20°: HANTZSCH, DÜRIGEN, Ph. Ch. 136, 15. — Elektrische Leitfähigkeit in Wasser bei 0°: KENDALL, KING, Soc. 127, 1784; in Alkohol bei 30°: HUNT, BRISCOE, J. phys. Chem. 33, 192, 1496; in Methanol, Propylalkohol, Butylalkohol und Aceton bei 30°: HU., B., J. phys. Chem. 33, 1496. Elektrische Leitfähigkeit der binären Systeme mit Essigsäure bei 25° bzw. 60°: KENDALL, GROSS, Am. Soc. 43, 1434; mit chloressigsaurem Kalium und Kaliumchlorid bei 62,6°: WALDEN, Z. ang. Ch. 38, 813: der ternären Systeme mit Methanol und Propylalkohol, Methanol und Butylalkohol, Alkohol und Propylalkohol, Alkohol und Butylalkohol, Holonium Butylalkohol, Alkohol und Propylalkohol, Alkohol und Butylalkohol bei 30°: Hu., B., J. phys. Chem. 33, 1498; mit Wasser und Athylacetat bei 0°: KE., KING, Soc. 127, 1784. Ionenbeweglichkeit in Alkohol: Ulium, Fortsch. Ch., Phys. 18 [1924/26], 605. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Chloressigsäure-Lösungen: Frumkin, Ph. Ch. 111, 193. Elektrolytische Dissoziationskonstante k bei 25°: 1,51×10-3 (aus kinetischen Messungen berechnet) (DAWSON, HALL, KEY, Soc. 1928, 2849; D., Lowson, Soc. 1929, 1219), 1,55×10-3 (aus Leitfähigkeitsmessungen berechnet) (D., HALL, KEY, Soc. 1928, 2849; vgl. Randall, Falley,

Chem. Reviews 4, 305), 1,38×10⁻³ (aus p_H-Messungen berechnet) (MIZUTANI, Ph. Ch. 118, 325). Einfluß von Natriumchlorid-Lösungen verschiedener Konzentration auf die elektrolytische Dissoziation der Chloressigsäure: Dawson, Key, Soc. 1928, 1247. Wasserstoffionen-Konzentration in wäßr. Chloressigsäure-Lösung: Schreiner, Z. anorg. Ch. 122, 204; in Puffergemischen aus Chloressigsäure und chloressigsaurem Natrium: CRAY, WESTRIP, Trans. Faraday Soc. 21, 331; C. 1926 I, 3258; D., CARTER, Soc. 1926, 2285; in Lösungen äquimolekularer Mengen Chloressigsäure und chloressigsaurem Natrium in Methanol und Alkohol verschiedenen Wassergehalts: MIZUTANI, Ph. Ch. 118, 325, 330. Relative Acidität in Benzol: BRÖNSTED, B. 61, 2062; in Chloroform und Äther (ermittelt mit Hilfe von 4-Dimethylaminoazobenzol als Indikator): Hantzsch, Voigt, B. 62, 978, 980. Anderung des optischen Drehungsvermögens von wäßr. Ammoniumdimolybdänsäuremalat-Lösung als Maß der Acidität: DARMOIS, Bl. [4] 39, 639.

Einfluß von Chloressigsäure auf die Geschwindigkeit der Hydrolyse von Äthylformiat in Neutralsalz-Lösungen bei 25° : Harned, Hawkins, Am.Soc. 50, 86; auf die Geschwindigkeit der Hydrolyse von Äthylacetat bei 0°: KENDALL, KING, Soc. 127, 1789; von Äthylacetat in Gegenwart von chloressigsaurem Natrium oder Natriumchlorid bei 25°: Dawson, Lowson, Soc. 1929, 398, 1223. Einfluß auf die Geschwindigkeit der Inversion von Saccharose: Ost-WALD, J. pr. [2] 29 [1884], 396; HANTZSCH, WEISSBERGER, Ph. Ch. 125, 255. Katalytische Wirkung auf die Geschwindigkeit der Reaktion von Aceton mit Jod: DAW., CARTER, Soc. 1926, 2293; DAW., DEAN, Soc. 1926, 2878; DAW., Soc. 1927, 221; DAW. KEY, Soc. 1928, 1241; DAW., HALL, KEY, Soc. 1928, 2849.

Chemisches Verhalten.

Chloressigsäure zerfällt beim Erhitzen in Gegenwart von Thoriumoxyd auf 250° bis 340° hauptsächlich unter Bildung von Chlorwasserstoff, Kohlenoxyd und Kohlendioxyd; dieselben Verbindungen entstehen bei Verwendung von Kaolin oder von Tierkohle als Katalysator (Senderens, C. r. 172, 156, 157). Geschwindigkeit der Bildung von Chlorwasserstoff bei der Einw. von Wasserstoff und Nickel auf Chloressigsäure in verd. Kalilauge: KELBER, B. 54, 2256. Wird beim Kochen mit Chrom(II)-sulfat-Lösung zu Essigsäure reduziert (Traube, Lange, B. 58, 2776). Verhalten beim Erhitzen mit Zinkwolle in wäßr. Lösung: Doughty, Lacoss, Am. Soc. 51, 855. Geschwindigkeit der Umsetzung mit Wasser zu Glykolsäure und Salzsäure bei verschiedenen Konzentrationen und Temperaturen: v. Euler, Fahlander, Ph. Ch. 100, 174; Petrenko-Kritschenko, Opotzki, B. 59, 2137; Ж. 59, 316; bei Gegenwart von kolloidalem Silber: v. Eu., F.; P.-K., B. 61, 847; Ж. 61, 32. Kinetik der Umsetzung mit Wasser im ultravioletten Licht: Rudberg, Z. Phys. 24, 253; C. 1924 II, 585. Die Umsetzung mit Wasser zu Glykolsäure und Salzsäure wird durch Silberoxyd und Kupfer(II)-oxyd bei 75° beschleunigt: v. Eu., F. Chloressigsäure liefert beim Erhitzen mit der zur Neutralisation nötigen Menge Natriumcarbonat in Gegenwart geringer Mengen Wasser auf ca. 150° Glykolsäure und geringe Mengen Natriumglykolat (A. WACKER, D. R. P. 463139; C. 1929 I, 1046; Frdl. 16, 259), während bei trocknem Erhitzen mit Natriumcarbonat unter Zusatz von Natriumchlorid oder mit Bariumcarbonat unter Durchleiten von Kohlendioxyd auf ca. 150° Glykolid (Syst. Nr. 2759) entsteht (Gold- und Silberscheideanst., D. R. P. 379752; C. 1924 I, 1101; Frdl. 14, 293). Geschwindigkeit der Umsetzung mit wäßrigen und wäßrig-alkoholischen Lösungen von Natriumhydroxyd bei verschiedenen Konzentrationen und Temperaturen: Hedelius, Ph. Ch. 96, 346, 359; mit wäßr. Lösungen von Kaliumhydroxyd, Bariumhydroxyd, Thallium(I)-hydroxyd, Silbernitrat, Tetraäthylammoniumhydroxyd und Piperidin bei verschiedenen Konzentrationen und Temperaturen: Petrenko-Kritschenko, Opotzki, B. 59, 2137; Ж. 59, 316; mit Kaliumhydroxyd, Silbernitrat und Piperidin in 95 %igem Alkohol: P.-K., Op.; P.-K., B. 62, 584; Ж. 61, 1781. Geschwindigkeit der Reaktionen des Kaliumsalzes und Silbersalzes mit Wasser und wäßr. Silberhydroxyd-Lösung bei verschiedenen Temperaturen: P.-K., Or. Geschwindigkeit der Umsetzung mit konz. Ammoniak bei 40°: Robertson, Am. Soc. 49, 2890; mit wäßr. Ammoniak verschiedener Konzentration sowie mit wäßrig-alkoholischem Ammoniak in Gegenwart oder Abwesenheit von Neutralsalzen bei 25°: Ssaposhnikowa, Ж. 59, 125; С. 1927 II, 1115. Chloressigsaure gibt bei der Einw. von flüssigem Ammoniak und Natrium die berechnete Menge Natriumchlorid ohne Beimengung von Cyanid (Dains, Brewster, Am. Soc. 42, 1575, 1578). Kinetik der Reaktion des Natriumsalzes mit Natriumthiosulfat zwischen 50° und 70° und Einfluß von Neutralsalzen auf diese Reaktion: KAPPANNA, J. indian chem. Soc. 5, 294; C. 1928 II, 1738.

Beim Erhitzen von Chloressigsäure mit Benzotrichlorid auf 100—120° oder mit Benzotrichlorid und Zinkchlorid auf 80—90° entstehen Chloracetylchlorid und Benzoylchlorid (Rabcewicz-Zubkowski, Roczniki Chem. 9, 526, 527; C. 1929 II, 2766). Geschwindigkeit der Veresterung mit Isobutylalkohol in Gegenwart von Chlorwasserstoffsäure: Goldschudt, Ph. Ch. 124, 30. Beim Erwärmen mit der Mononstriumverbindung des Athylenglykols in Glykol-Lösung bildet sich das Natriumsalz der [β -Oxy-āthoxy]-essigsäure (Syst. Nr. 220)

(Hollo, B. 61, 901). Chloressigsaures Natrium liefert bei der Einw. von Kaliumsyanid und Benzaldehyd β.δ-Diphenyl-α.γ.δ-trioyan-n-valeriansäure, eine Verbindung C₁₈H₁₅N₂ vom Schmelzpunkt 198° (s. bei α-Cyan-zimtsäure, Syst. Nr. 987) und andere Produkte (Henze, J. pr. [2] 113, 212, 221, 223; 119, 157, 161). Beim Erhitzen von chloressigsaurem Natrium mit Natriumacetat in Gegenwart von Chrompton al 110—120° bildet sich in geginger Menge Bengetsingen (Chrompton Produkter). geringer Menge Bernsteinsäure (Chakrabarty, Dutt, J. indian chem. Soc. 5, 518; C. 1929 I, 501). Chloressigsäure liefert beim Erwärmen mit 2,5 Mol Oxalylchlorid Chloracetylchlorid (Adams, Ulich, Am. Soc. 42, 604). Beim Kochen von 2 Mol chloressigsaurem Natrium mit 1 Mol Oxalylchlorid in Benzol entsteht Chloressigsäureanhydrid (A., U.). Bei der Einw. von Dinatriumcyanamid auf Chloressigsäure in wäßr. Lösung bilden sich ω-Cyan-guanidinoessigsäure, wenig Cyanamino-essigsäure (Syst. Nr. 364) und Melidoessigsäure (Syst. Nr. 3889) und geringe Mengen Hydantoin (?); Cyanaminoessigsäure erhält man in besserer Ausbeute beim Behandeln von chloressigsaurem Natrium mit Mononatriumcyanamid auf dem Wasserbad (Fromm, A. 442, 144, 147; 447, 259). Liefert beim Behandeln mit dithiocarbazinsaurem Kalium in Alkohol bei Zimmertemperatur S-[5-Thion-1.3.4-thiodiazolinyl-(2)]-thioglykolsäure (Formel I; Syst. Nr. 4577) (Bose, Quart. J. indian chem. Soc. 3, 149, 153; C. 1926 II, 1651).

 $OC-N\cdot C_6H_4\cdot CH_3$ $\mathbf{OC--N} \cdot \mathbf{C6H4} \cdot \mathbf{CH8}$ II. $\widetilde{\mathbf{H}_{2}}\overset{\downarrow}{\mathbf{C}}\cdot\mathbf{s}\cdot\overset{\downarrow}{\mathbf{Co}}$ III. H2C·S·C:N·C6H4·CH3 $\mathbf{HO_{2}C \cdot CH_{2} \cdot S \cdot C \cdot S \cdot CS}$

Geschwindigkeit der Veresterung mit Milchsäureäthylester und Weinsäure-diäthylester in Benzol bei 1200: Petrenko Kritschenko, B. 61, 851; 3K. 61, 36. Beim Kochen von Chloressigsäure mit N.N'-Di-m-tolyl-thioharnstoff in Alkohol entstehen 3-m-Tolyl-2.4-dioxothiazolidin (Formel II; Syst. Nr. 4298), m-Toluidinhydrochlorid und geringe Mengen 3.N²-Dim-tolyl-pseudothiohydantoin (Formel III; Syst. Nr. 4298); letztgenannte Verbindung bildet sich als Hauptprodukt, wenn die Reaktion in Gegenwart von Pyridin ausgeführt wird (Dains, Irvin, HARREL, Am. Soc. 43, 613). Umsetzung von Chloressigsäure mit Methylstannonsäure: LAMBOURNE, Soc. 121, 2538. Chloressigsaures Natrium verbindet sich mit Triphenylzinnnatrium in flüssigem Ammoniak zu Triphenylstannyl-essigsäure (Chambers, Scherer, Am. Soc. 48, 1059). Beim Behandeln von Chloressigsäure mit überschüssigem Phenylmagnesiumbromid in siedendem Äther entstehen α.α-Diphenyl-äthylenglykol und wahrscheinlich ω -Chlor-acetophenon (Peters, Mitarb., Am. Soc. 47, 450, 453).

H 195, Z. 10-9 v. u. streiche den Satz "Geschwindigkeit G. 81 II. 321."

Biochemisches Verhalten.

Über die physiologischen Wirkungen vgl. H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 803. Wirkung auf die menschliche Haut: Menschel, Ar. Pth. 110, 15, 21; C. 1926 II, 50; Roberts, Ber. Physiol. 40, 847; C. 1927 II, 2207. Bei Hunden tritt nach Injektion von chloressigsaurem Natrium Milchsäure im Harn auf (Knoop, Jost, H. 130, 340). — Giftigkeit von Chloressigsäure für Hefe: Taylor, Trans. roy. Soc. Canada [3] 17 III, 158; C. 1924 I, 2376. Wachstumhemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 125, 130; C. 1925 I, 2699.

Verwendung; Analytisches.

Verwendung von Chloressigsäure zur Herstellung von Kunstharzen: I. G. Farbenind., D. R. P. 439962, 449276; C. 1927 I, 1531; II, 2237; Frdl. 15, 1219, 1220; Höchster Farbw., D. R. P. 422910; C. 1926 I, 2254; Frdl. 15, 1250. Anwendung als Lösungsmittel im Zeugdruck: Genov A.G., D. R. P. 371597, 386032; C. 1923 IV, 948; 1924 I, 1714; Frdl. 14,

1117, 1120.
Viscosimetrische Titration mit Alkalilauge: Simon, C. r. 181, 862. Leitfähigkeitstitration Viscosimetrische Titration mit Alkalilauge: Pr. 61. 340. — Prüfung auf Reinheit: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 7.

Salze und additionelle Verbindungen der Chloressigsäure.

NH₄C₂H₂O₃Cl. Rauchbildung bei der Umsetzung mit Piperidinscetat in der Dampfphase: Tian, C. r. 186, 1842.
NaC₂H₂O₃Cl. Lösungsvermögen wäßr. Lösungen für Benzoesäure, Hippursäure, 2-Nitrobenzoesäure und Salicylsäure: Larsson, Ph. Ch. 127, 244. Viscosität wäßr. Lösungen bei benzossaure und Sancylsaure: Larsson, Ph. Ch. 127, 242. Viscositat wabr. Losungen bei 15°. Simon, C. r. 181, 863. Ultraviolettes Absorptionsspektrum in wäßr. Lösung: Ghosh, Bisvas, Z. El. Ch. 30, 102. Elektrische Leitfähigkeit in absol. Alkohol bei 15°, 25° und 35°: Lloyd, Parder, Publ. Carnegie Inst. Nr. 260 [1918], 110. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Lösungen von chloressigsaurem Natrium: Frumkin, Ph. Ch. 111, 193. — KC₂H₂O₂Cl+1,5 H₂O. Lösungsvermögen wäßr. Lösungen für das Salz [Co(NH₃)₄Cl₂]Br: Brönsted, Prersen, Am. Soc. 48, 2272. — UO(C₂H₂O₂Cl)₂ + 2,5 H₂O. Unbeständige Krystalle. Löslich in wäßr. Chloressigsäure-Lösung, unlöslich in Alkohol und Äther (Lobanow, Roczniki Chem. 5, 443; C. 1926 II, 1390). — $[Fe_3(OH)_2(C_2H_2O_2Cl)_6]ClO_4 + 9H_2O$. Dunkelrote Prismen (aus Wasser). (Weinland, Loebich, Z. anorg. Ch. 151, 273, 279). Verwittert bei gelinder Wärme und über Schwefelsäure im Vakuum. Schwer löslich in kaltem Wasser, leicht in Alkohol. — $[Fe_3(OH)_2(C_2H_2O_2Cl)_6]NO_3 + 4$ oder $5H_2O$. Rote Platten. Leicht löslich in Wasser, sehr leicht in Alkohol (Weil, L.). Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 487; C. 1928 II, 2626.

Durch Dampfdruckmessungen bei 20° wurde die Existenz von additionellen Verbindungen aus Chloressigsäure und je 1 Mol Ather, Aceton, Methylacetat und Athylacetat nachgewiesen (Weissenberger, Z. anorg. Ch. 152, 336). — Verbindung mit Hexamethylentetramin

Syst. Nr. 4013.

Chloressigsäure-methylester C₃H₈O₂Cl = CH₂Cl·CO₂·CH₃ (H 197; E I 88). B. Bei allmählichem Erhitzen von Chloressigsäure mit Dimethylsulfat auf 200° (SIMON, C. r. 176, 585). Zur Bildung aus Äthyl-[α,β-dichlor-vinyl]-äther und Methanol vgl. CROMPTON, VANDERSTICHELE, Soc. 117, 692. — E: —32,65° (TIMMERMANS, Bl. Soc. chim. Belg. 31, 392; C. 1923 III, 1137). Kp₇₆₀: 130,0° (LeCat, Ann. Soc. scient. Bruxelles 47 I [1927], 112), 131,5 ± 0,3° (T.). Bildet azeotrope Gemische mit Äthylenbromid (Kp₇₆₀: 127,7°; 44 Gew. % Chloressigsäuremethylester) (L., R. 45, 622), Chlorbenzol (Kp₇₆₀: 126°; cs. 60 Gew. % Chloressigsäuremethylester) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 112), Äthylbenzol (Kp₇₆₀: 127,2°; 62,5 Gew. % Chloressigsäuremethylester) (L., R. 45, 622), Butylalkohol (Kp₇₆₀: 127,2°; 12 Gew. % Chloressigsäuremethylester) (L., R. 46, 243), Isobutylalkohol (Kp₇₆₀: 107,55°; 12 Gew. % Chloressigsäuremethylester), Isoamylalkohol (Kp₇₆₀: 124,9°; 60,5 Gew. % Chloressigsäuremethylester), Isoamylalkohol (Kp₇₆₀: 124,9°; 128,75°; ca. 42 Gew. % Chloressigsäuremethylester) (L., R. 45, 622), und Mesityloxyd (Kp₇₆₀: 128,75°; ca. 42 Gew. % Chloressigsäuremethylester) (L., R. 45, 622). — Geschwindigkeit der Verseifung in wäßriger, saurer und alkalischer Lösung bei 25°: Skrabal, Rückert, M. 50, 370. — Insekticide Wirkung: Roark, Cotton, Ind. Eng. Chem. 20, 513; C. 1928 II, 102. Giftwirkung auf Protozoen: Walker, Biochem. J. 22, 299.

Chloressigsäure-äthylester C₄H₇O₂Cl = CH₂Cl·CO₂·C₂H₅ (H 197; E I 88). B. Zur Bildung aus Äthyl-[α.β-dichlor-vinyl]-äther bei der Einw. von Alkoholen, einbasischen organischen Säuren, Oxalsäure oder Bernsteinsäure vgl. Crompton, Vanderstichele, Soc. 117, 692; Stephens, J. Soc. chem. Ind. 43, 313 T; C. 1925 I, 357. Beim Eintragen von Dichloracetaldehyd-monoäthylacetal in eine Suspension von Kaliumcyanid in Alkohol bei 20° (Chattaway, Irving, Soc. 1929, 1042). Beim Behandeln von Glycinäthylester-hydrochlorid mit Natriumnitrit und überschüssiger verdünnter Salzsäure (Skinner, Am. Soc. 46, 738). Aus Diazoessigsäure-äthylester bei der Einw. von verd. Salzsäure oder von Nitrosylchlorid unter Kühlung mit Eis-Kochsalz-Gemisch (Sk.). Neben anderen Verbindungen beim Behandeln von α-Chlor-acetessigsäure-äthylester mit Natriummalonester in Alkohol (Gault,

KLEES, Bl. [4] 89, 891).

F: —26° (TIMMERMANS, Bl Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp₇₀₀: 143,6° (Lecat, Ann. Soc. scient. Bruxelles 45 I [1926], 175); Kp₇₀₀: 143° (Favrel, Bl. [4] 41, 1602); Kp₇₀₀: 142—142,3° (Oddo, Casalino, G. 57, 61). Parachor: Mumford, Phillips, Soc. 1929, 2118. Ultraviolettes Absorptionsspektrum in Alkohol und Hexan: Lev, Hünboke, 59, 511. Elektrische Leitfähigkeit bei 0° und 25°: Rabinowitsch, Ph. Ch. 119, 65. Kryoskopisches Verhalten in Phosphol (SO₃ + 2 POCl₃): O., C. Chloressigsäureäthylester bildet azeotrope Gemische mit 1.1.2.2 Tetrachlor äthan (Kp₇₀₀: 147,45°; 27 Gew.-% Chloressigsäureäthylester) (Lecat, Ann. Soc. scient. Bruxelles 45 I, 175), Isoamyljodid (Kp₇₀₀: 140,2°; 49 Gew.-% Chloressigsäureäthylester) (L., R. 45, 622), Isoamylakohol (Kp₇₀₀: 140,2°; 49 Gew.-% Chloressigsäureäthylester), n-Hexylakohol (Kp₇₀₀: 142°; ca. 75 Gew.-% Chloressigsäureäthylester) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 152), Isoamylaoetat (Kp₇₀₀: 141,7°; 40 Gew.-% Chloressigsäureäthylester) (L., R. 45, 622) und Propylbutyrat (Kp₇₀₀: 141,7°; 47 Gew.-% Chloressigsäureäthylester) (L., Ann. Soc. scient. Bruxelles 45 I, 291). Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßrigen, schwach schwefelsauren Lösungen von Chloressigsäureäthylester: Frumkin, Ph. Ch. 111, 196.

Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 25°: Conant, Kirner, Am. Soc. 46, 249; Co., K., Hussey, Am. Soc. 47, 489, 588; bei 30°: Co., H., Am. Soc. 47, 482; mit Natriumjodid und Lithiumjodid in Aceton bei 25° und 30°: Co., H., Am. Soc. 47, 486. Liefert beim Erwärmen mit Kaliumulfit in sehr verd. Alkohol Sulfoessigsäureäthylester (Andreasch, M. 46, 639). Geschwindigkeit der Verseifung durch Wasser (gemessen durch die Geschwindigkeit der Drehungsänderung von Ammoniumdimolybdänsäuremalat): Darmois, Bl. [4] 39, 641; der Verseifung durch wäßrig-alkoholisches Ammoniak bei 25° und Einfluß von Neutralsalzen auf diese Reaktion: Ssaposhukowa, C. 1925 II, 127. Geschwindigkeit der Verseifung in wäßrig-alkoholischer Lösung bei Gegenwart oder Abwesenheit von Salssäure bei 40,5°: Berger, R. 43, 169, 173. Geschwindigkeit der Spaltung durch eine gesättigte Lösung von Bromwasserstoff in Eisessig bei 16—18°: Tronow, Mitarb.,

Ж. 59, 553; С. 1928 I, 1016. Geschwindigkeit der Hydrolyse in Essigsäure-Natriumacetat-Gemischen bei 20° und 40°: Bolin, Z. anorg. Ch. 143, 219. Chloressigsäureäthylester liefert beim Behandeln mit Kalium-m-kresolat in Alkohol hauptäschlich m-Kresoxy-essigsäurebeim benandem mit Kanum-m-kresolat in Alkohol nathrasellich in Archeolage in Alkohol nathrasellich in Archeolage in Diphenylbrenztraubensäure äthylester umwandelt (TROELL, B. 61, 2501; KOHLER, RICHT-MYER, HESTER, Am. Soc. 53 [1930], 211, 218; vgl. Pointet, C. r. 148 [1909], 418). Gibt beim Kochen mit der Natriumverbindung des Di-α-phenäthyliden-thiocarbohydrazids in Alkohol 3-[α-Phenäthylidenamino]-4-exo-2-[α-phenäthylidenhydrazono]-thiazolidin OC—N·N·C(CH₃)·C₆H₅ (Syst. Nr. 4298) (Stephen, Wilson, Soc. 1926, 2537). Liefert H₁C·S·C:N·N·C(CH₃)·C₆H₅ (Syst. Nr. 4298) (Stephen, Wilson, Soc. 1926, 2537). Liefert hitzen mit Essigsäureäthylester in Gegenwart von Chrompulver auf 120—130° Bernsteinsäurediäthylester (Chakrabarty, Dutt, J. indian chem. Soc. 5, 517; C. 1929 I, 501). Beim Kochen mit der äquivalenten Menge Kaliumcyanat in absol. Alkohol bilden sich ω-Carbāthoxy-hydantoinsäure-äthylester und Allophansäureäthylester (Fromm, A. 447, 261, 265). Bei kurzem Kochen mit Biguanid in verd. Alkohol entstehen Biguanid-ω-essigsäure und wenig 2.6-Diimino-1.4-methylen-terahydro-1.3.5-triazin (Formel I; Syst. Nr. 3888) (Stotta Tachesche, R. 62, 1396). Behandelt man Chloressigsäureäthylester mit dithio- $OC \longrightarrow N \cdot N : C(CH_3) \cdot C_6H_5$

3888) (Slotta, Tschesche, B. 62, 1396). Behandelt man Chloressigsäureäthylester mit dithiocarbazinsaurem Kalium in Alkohol bei Zimmertemperatur und läßt das Reaktionsgemisch an der Luft stehen, so erhält man Bis-[5-oxo-12-dihydro-1.3.4-thiodiazinyl-(2)]-disulfid (Formel II; Syst. Nr. 4577) (Bose, Quart. J. indian chem. Soc. 3, 152; C. 1926 II, 1651).

I.
$$\begin{vmatrix} HN:C - N - C:NH \\ CH_2 \\ N = C - NH \end{vmatrix}$$
 II.
$$[oc < NH \cdot N > C \cdot S -]_2$$
 III.
$$oc < NH \cdot N > C \cdot S \cdot CH_2 \cdot C_6H_5$$

Bei der Einw. von Dithiocarbazinsäure-benzylester in Alkohol bei Gegenwart von Ammoniak Bei der Einw. von Dithiocarbazinsaure-benzylester in Alkohol bei Gegenwart von Ammoniak oder siedendem Pyridin entsteht 2-Benzylmercapto-5-oxo-Δ⁸-dihydro-1.3.4-thiodiazin (Formel III; Syst. Nr. 4577) (Bose). Chloressigsäureäthylester gibt mit α.α-Dimethyl-acetessigester und Natriumäthylat, zuletzt auf dem Wasserbad, β.α'-Oxido-α.α.β-trimethyl-glutarsäure-diäthylester (Bardhan, Soc. 1928, 2619). Liefert beim Erhitzen mit 4-Phenyl-1-isopropyliden-thiosemicarbazid in Gegenwart von Natriumäthylat-Lösung 3-Phenyl-4-oxo-2-isopropylidenhydrazono-thiazolidin (Formel IV; Syst. Nr. 4298) (Stephen, Wilson, Soc. 1926, 2534). Beim Kochen mit 1-Phenyl-thiocarbohydrazid in Natriumäthylat-Lösung entsteht 4-Phenyl-5-oxo-2-hydrazono-tetrahydro-1.3.4-thiodiazin (Formel V; Syst. Nr. 4560)

$$IV. \begin{array}{c} OC - N \cdot C_0H_5 \\ H_2C \cdot S \cdot C : N \cdot N : C(CH_3)_2 \end{array} \qquad V. \quad OC < \begin{array}{c} N(C_0H_5) \cdot NH \\ CH_2 - S \cdot C : N \cdot NH_2 \end{array} \qquad VI. \quad \begin{array}{c} H_2C - N \cdot CO \\ H_2C \cdot N : C - S \end{array} > CH_2$$

(Guha, Roy-Choudhury, J. indian chem. Soc. 5, 160; C. 1928 II, 990). Liefert bei der Einw. von Benzoldiazoniumchlorid in wäßr. Natriumacetat-Lösung bei 0° γ-Chlor-β-οxoα-phenylhydrazono-buttersäure-äthylester (FAVREL, Bl. [4] 41, 1601). Beim Behandeln mit Magnesium in Essigester und Erwärmen des Reaktionsprodukts mit Benzoylchlorid entstehen Benzoylessigsäureäthylester, a-Benzoyl-acetessigester und Benzoesäureäthylester (Sommelet, Hamel, Bl. [4] 29, 550). Geschwindigkeit der Reaktion mit Pyridin bei 16—18°: (SOMMELET, HAMEL, Bt. [4] 29, 550). Geschwindigkeit der Keaktion mit Pyridin bei 16—18°: Tronow, Ж. 58, 1286; C. 1927 II, 1145; mit Pyridin und Chinolin bei 18—20°: Tro., Akiwiss, Orlowa, Ж. 61, 345; C. 1929 II, 2550. Gibt beim Kochen mit Thioimidazolidon-(2) in Gegenwart von Natriumäthylat-Lösung S-[Δ²-Imidazolinyl-(2)]-thioglykolsäure (Syst. Nr. 3505), in Gegenwart von Pyridin das Lactam der S-[Δ²-Imidazolinyl-(2)]-thioglykolsäure (Formel VI; Syst. Nr. 4545) (Stephen, Wilson, Soc. 1926, 2535).

Insekticide Wirkung: Roark, Cotton, Ind. Eng. Chem. 20, 513; C. 1928 II, 102. — Verwendung als Kampfstoff: M. Sartobi, Die Chemie der Kampfstoffe, 2. Aufl. [Braunschweig 1940] S 124

schweig 1940], S. 124.

Chloressigsäure-isopropylester $C_5H_5O_2Cl = CH_2Cl \cdot CO_2 \cdot CH(CH_3)_2$ (H 198). Insekticide Wirkung: Roark, Cotton, *Ind. Eng. Chem.* 20, 513; C. 1928 II, 102.

Chloressigsäure-butylester $C_6H_{11}O_2Cl=CH_2Cl\cdot CO_3\cdot [CH_3]_3\cdot CH_3$ (H 198). B. Beim Behandeln von Aminoessigsäure-butylester mit Natriumnitrit und überschüssiger verdünnter Salzsäure (Skinner, Am. Soc. 46, 738).

Chloressigsäure - [l-octyl-(2)-ester], [l-Methyl-n-hexyl-carbinol] - chloracetat $C_{10}H_{19}O_2Cl=CH_2Cl\cdot CO_2\cdot CH(CH_3)\cdot [CH_3]_5\cdot CH_3$. B. Aus Chloracetylchlorid und linksdrehendem Octanol-(2) (E II 1, 451) in Gegenwart von Pyridin (Rule, Mitchell, Soc. 1926, 3206). — Flüssigkeit. Kp_{15} : 119—1200. $D_3^{a,b}$: 0,9900; $D_4^{a,c}$: 0,9747; $D_4^{a,c}$: 0,9603; $D_4^{a,c}$: 0,9413.

 $\alpha_{\rm p}^{\rm is.}$: $-8,64^{\circ}$ (l = 1 dm); Drehungsvermögen der reinen Substanz zwischen 18,6° und 90,3° und der Lösungen in verschiedenen Lösungsmitteln bei 20° für $\lambda=589,3$, 578,0, 546,1 und 435,8 m μ : R., M.

Chloracetat des Alkohols $C_{20}H_{82}O$ aus Carnaubawachs $C_{32}H_{62}O_2Cl = CH_2Cl \cdot CO_2 \cdot C_{30}H_{61}$ (E I 89). Ist als Chloracetat des Myricylalkohols (s. u.) zu bezeichnen; vgl. hierzu E II 1, 472.

Chloracetat des Myricylalkohols (Melissylalkohols) $C_{33}H_{65}O_3Cl$ (?) oder $C_{33}H_{65}O_3Cl$ (?) (E I 89). Zur Zusammensetzung und zur Auffassung als Gemisch vgl. die bei Myricylalkohol (E II 1, 472) zitierte Literatur.

Chloressigsäure-chlormethylester $C_3H_4O_2Cl_2=CH_2Cl\cdot CO\cdot O\cdot CH_2Cl$ (H 198). Kp_{745} : 130—132° (ULICH, ADAMS, Am. Soc. 43, 663). — Giftwirkung auf Protozoen: Walker, Biochem. J. 22, 299.

Essigsäure-chloressigsäure-anhydrid $C_4H_5O_3Cl=CH_2Cl\cdot CO\cdot O\cdot CO\cdot CH_3$ (H 199). Zerfällt beim Erhitzen in Acetanhydrid und Chloressigsäure-anhydrid (Watson, Gregory, Soc. 1929, 1374). Liefert bei der Einw. von Chlorwasserstoff bei Zimmertemperatur Acetylchlorid und Chloressigsäure. Gibt beim Erhitzen mit 1 Mol Chloressigsäure Essigsäure und Chloressigsäure-anhydrid.

Chloressigsäure-anhydrid $C_4H_4O_3Cl_2=CH_2Cl\cdot CO\cdot O\cdot CO\cdot CH_4Cl$ (H 199; E I 89). B. Beim Kochen von 2 Mol chloressigsaurem Natrium mit 1 Mol Oxalylchlorid in Benzol (Adams, Ulich, Am. Soc. 42, 607). — F: 45,2° (Watson, Gregory, Soc. 1929, 1375).

Jod-tris-monochloracetat C_eH_eO_eCl₂I = (CH₂Cl·CO·O)₃I. B. Beim Schütteln von Chloressigsäure und Jod mit einer Mischung von Acetanhydrid und rauchender Salpetersäure (Fichter, Stern, Helv. 11, 1261). — Hellgelber, sehr zersetzlicher Niederschlag.

Chloracetylchlorid C₂H₂OCl₂ = CH₂Cl·COCl (H 199; E I 89). B. Beim Durchleiten von Sauerstoff durch siedendes α.β-Dichlor-äthylen in Gegenwart von Brom oder konz. Schwefelsäure (Konsort. f. elektrochem. Ind., D. R. P. 340872; C. 1921 IV, 1101; Frdl. 13, 146). Bei der Einw. von Chlor auf Acetylchlorid in Tetrachlorkohlenstoff im Licht der Quarzlampe (Benrath, Hertel, Z. wiss. Phot. 23, 35; C. 1924 II, 822). Beim Einleiten von Chlor in ein Gemisch von Chloressigsäure und Dischwefeldichlorid (Read. Am. Soc. 44, 1751 Anm. 23). Zur Bildung aus Chloressigsäure und Thionylchlorid vgl. a. Barnett, Chem. N. 122, 220; C. 1921 III, 463; McMaster, Ahmann, Am. Soc. 50, 146. Entsteht ferner aus Chloressigsäure beim Erwärmen mit 2,5 Mol Oxalylchlorid (Adams, Ulich, Am. Soc. 42, 604) oder beim Erhitzen mit Benzotrichlorid auf 100—120° oder mit Benzotrichlorid in Gegenwart von Zinkchlorid auf 80—90° (Rabcewicz-Zubrowski, Roczniki Chem. 9, 526, 527; C. 1929 II, 2767). Beim Kochen von Chloressigsäure-anhydrid mit 1,5—2,5 Mol Oxalylchlorid (Ad., U., Am. Soc. 42, 606). — Kp₇₆₄: 108—110° (Ba.); Kp₇₅₆: 103—106° (Ad., U.). D[∞]₁: 1,4177; n[∞]₁: 1,4535 (Vanderstichele, Soc. 123, 1228).

Liefert beim Erwärmen mit Naphthalin in Schwefelkohlenstoff bei Gegenwart von

Liefert beim Erwärmen mit Naphthalin in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid Chlormethyl-β-naphthyl-keton (Morgan, Stanley, J. Soc. chem. Ind. 44, 494 T; C. 1926 I, 927; vgl. Widman, B. 51 [1918], 911). Verhalten beim Erhitzen mit Essigsäure auf 100° s. S. 109 im Artikel Essigsäure. Diphenylarsin wird bei der Einw. von Chloracetylchlorid unter Eiskühlung in Diphenylchlorarsin übergeführt (Steinkoff, Schubart, Schmidt, B. 61, 679).

Chloressigsäure-amid, Chloracetamid C₂H₄ONCl = CH₂Cl·CO·NH₃ (H 199; E I 90). F: 116° (Conant, Kirner, Hussey, Am. Soc. 47, 497), 117° (Chattaway, Irving, Soc. 1929, 1043). Kryoskopisches Verhalten in Phenol: Richardson, Robertson, Soc. 1928, 1776. — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 25° und 30°: Co., Ki., Hu. Liefert beim Kochen mit Dischwefeldichlorid in Benzol N.N'-Thio-bis-chloracetamid (S. 194) (Naik, Patel, Quart. J. indian chem. Soc. 1, 32; C. 1925 I, 488). Beim Erwärmen mit wäßr. Kaliumsulfit-Lösung bildet sich Sulfoessigsäureamid (Andreasch, M. 45, 6). Gibt beim Kochen mit 4-Oxy-benzoesäure in verd. Natronlauge 4-Carboxy-phenoxyessigsäure-amid und wenig 4-Oxy-benzoylglykolsäure-amid (Christiansen, Am. Soc. 48, 464).

N-Oxymethyl-chloracetamid, N-Methylol-chloracetamid $C_3H_6O_2NCl = CH_2Cl \cdot CO \cdot NH \cdot CH_4 \cdot OH$ (H 200; E I 90). Liefert beim Kochen mit 2.3.5-Trimethyl-pyrrol in Alkohol 2.4.5.2'.4'.5'-Hexamethyl-pyrromethan-(3.3') (H. FISCHER, NENITZESCU, A. 443, 116, 123). Beim Kochen mit 2.5-Dimethyl-pyrrol-carbonsäure-(3)-äthylester in Alkohol bei Gegenwart von Salzsäure bildet sich 2.5-Dimethyl-4-chloracetaminomethyl-pyrrol-carbonsäure-(3)-äthylester; analog verläuft die Reaktion mit 2.4-Dimethyl-pyrrol-carbonsäure-(3)-äthylester.

N-[4-Oxo-pentyliden-(2)]-chloracetamid, Acetylaceton-mono-chloracetimid bzw. N-[4-Oxo-penten-(2)-yl-(2)]-chloracetamid, N-Chloracetyl-acetylacetonamin $C_7H_{10}O_2NCl=CH_2Cl\cdot CO\cdot N:C(CH_3)\cdot CH_2\cdot CO\cdot CH_3$ bzw. $CH_2Cl\cdot CO\cdot NH\cdot C(CH_3):CH\cdot CO\cdot CH_3$. Diese Konstitution kommt der H 1, 811 als Chloracetyl-acetylaceton-monoimid

aufgeführten Verbindung zu (Benary, B. 60, 1827). — Liefert bei der Einw. alkoh. Kaliumhydrosulfid-Lösung unter Kühlung die Verbindung $[CH_3 \cdot CO \cdot CH_2 \cdot C(CH_3) : N \cdot CO \cdot CH_2]_2$ S bzw. $[CH_3 \cdot CO \cdot CH : C(CH_3) \cdot NH \cdot CO \cdot CH_2]_2$ S (Syst. Nr. 220) (B.).

α.α' - Dichlor - diacetamid C₄H₅O₂NCl₂ = (CH₂Cl·CO)₂NH (H 200). B. Beim Erwärmen von Chloracetimidchlorid mit Eisessig (Houben, B. 59, 2888). — Blättchen. F: 194° (H., FISCHER, B. 60, 1771). — Reizt die Nasenschleimhaut (H.).

Chloracetimidchlorid $C_2H_3NCl_2=CH_2Cl\cdot CCl:NH$ (H 201). Liefert beim Erwärmen mit Eisessig $\alpha.\alpha'$ -Dichlor-diacetamid (Houben, B. 59, 2888). Bei der Einw. auf Resorcin bei $50-60^{\circ}$ und nachfolgenden Hydrolyse erhält man ω -Chlor-resacetophenon (Stephen, Soc. 117, 1529).

Chloracetonitril $C_2H_2NCl = CH_2Cl \cdot CN$ (H 201; E I 90). B. Zur Bildung aus Chloracetamid und Phosphorpentoxyd vgl. a. Houben, Fischer, B. 60, 1765. — Kp: 123,5—124,5° (Conant, Kirner, Hussey, Am. Soc. 47, 497). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 10° und 20° : C., K., Hu. Liefert beim Behandeln mit Phenetol in Äther bei Gegenwart von Zinkchlorid und Chlorwasserstoff und Zersetzen des Reaktionsprodukts mit Wasser ω -Chlor-4-āthoxy-acetophenon und $\alpha.\alpha'$ -Dichlor-diacetamid (Hou., Fischer, B. 60, 1771). Beim Einleiten von Chlorwasserstoff in eine Lösung von Chloracetonitril und Phloroglucin-trimethyläther in Äther und Kochen des Reaktionsprodukts mit Wasser bildet sich ω -Chlor-2.4.6-trimethoxy-acetophenon (Freudenberg, Fikentscher, Harder, A. 441, 168). Liefert bei der Einw. von Phenylmagnesiumbromid in Äther ω -Chloracetophenon, Benzoylcarbinol, Diphenyl und andere Produkte (Mathus, Bl. Soc. chim. Belg. 34, 287; C. 1926 I, 1961).

N.N'-Thio-bis-chloracetamid, "Sulfidochloracetamid" $C_4H_6O_2N_2Cl_2S = (CH_2Cl\cdot CO\cdot NH)_2S$. B. Beim Kochen von Chloracetamid mit Dischwefeldichlorid in Benzol (NAIK, PATEL, Quart. J. indian chem. Soc. 1, 32; C. 1925 I, 488). — Krystalle (aus Alkohol). F: 165° (Zers.).

Dichloressigsäure $C_2H_2O_2Cl_2 = CHCl_2 \cdot CO_2H$ (H 202; E I 90). B. Bei kurzem Kochen von 1 Mol Chloral mit 2 Mol Natriumcyanid in Wasser (Delépine, Bl. [4] 45, 831; vgl. Pucher, Am. Soc. 42, 2256). Aus Trichloressigsäure bei der Einw. von Kupferpulver in Benzol oder Wasser (Doughty, Freeman, Am. Soc. 44, 640; Dou., Black, Am. Soc. 47, 1091) oder von Zinkwolle in Wasser (Dou., Lacoss, Am. Soc. 51, 853). Beim Kochen von β.β-Dichlorα-acetoxy-acrylsäure-nitril mit Wasser oder von $\alpha.\beta.\beta$ -Trichlor- α -acetoxy-propionsäure-nitril mit 33% iger Schwefelsäure (Kötz, J. pr. [2] 103, 231, 237). — Darst. Man erhitzt 165,5 g Chloral mit 6,5 g Natriumcyanid und 100 g Calciumcarbonat in 300 g Wasser und 10 g Äther am Rückflußkühler innerhalb 2 Stdn. auf 80—85° und schließlich auf 98—100°, fügt konz. Salzsäure hinzu und äthert aus; Ausbeute über 90% (Del., Bl. [4] 45, 833).

Salzsäure hinzu und äthert aus; Ausbeute über 90% (Del., Bl. [4] 45, 833).

Physikalische Eigenschaften. Wird bei schneller Abkühlung in Krystallen vom Schmelzpunkt 12,15°, bei langsamer Abkühlung in Säulen vom Schmelzpunkt 13,25° erhalten (Schreiner, Z. anorg. Ch. 122, 206). Randall, Falley (Chem. Reviews 4, 302) geben als Schmelzpunkt 13,00° an. Kp₇₆₀: 192—193° (kort.; Zers.) (Doughty, Black, Am. Soc. 47, 1094); Kp₂₅: 105° (Doul, Lacoss, Am. Soc. 51, 854); Kp₂₀: 102° (kort.) (Dou., Black); Kp₁₂: 91—92° (Delépine, Bl. [4] 45, 833). D¹⁶₁₅: 1,5727 (Schreil.); D¹⁶₁₅: 1,5691 (Vanderstichele, Soc. 123, 1228); D²⁶₂₅: 1,5666; D²⁶₁₅: 1,5634 (Dou., Black), 1,5642 (v. Frank, zit. bei Hantzsch, Dürigen, Ph. Ch. 136, 15). Van der Waalsche Konstanten zwischen 20° und 30°: Weissenberger, Henke, J. pr. [2] 115, 77. Parachor: Mumford, Phillips, Soc. 1929, 2128. n¹⁶₁₅: 1,4657 (Vanderstichele, Soc. 123, 1228); n²⁶₁₅: 1,4658 (v. Frank); n²⁶₁₅: 1,4659 (Dou., Black). Ultrarotes Absorptionsspektrum in Tetrachlorkohlenstoff: Bennett, Daniels, Am. Soc. 49, 55. Elektrische Leitfähigkeit von fester und flüssiger Dichloressigsäure bei 0° bzw. 25°: Rabinowitsch, Ph. Ch. 119, 64; Ж. 58, 230.

Lösungsvermögen für Ozon bei 0° und Beständigkeit dieser Lösungen: v. Wartenberg, v. Podjaski, Z. anorg. Ch. 148, 395. Lösungsvermögen wäßr. Lösungen für komplexe Kobaltsalze bei 0°: Brönsted, Petersen, Am. Soc. 43, 2272. Verteilung zwischen Wasser und Äther bei 25°: Smith, J. phys. Chem. 25, 621; zwischen Glycerin und Aceton bei 25°: Smith, J. phys. Chem. 25, 730; zwischen Dibutyläther und Wasser bei 25° und zwischen Dibutyläther und wäßr. Salz-Lösungen bei 25°: Randall, Failey, Am. Soc. 49, 2679; Chem. Reviews 4, 304, 310; C. 1928 I, 1139. Kryoskopisches Verhalten in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1914], 1163; C. 1925 I, 1557. Thermische Analyse des Systems mit Azobenzol: Kremann, Zechner, M. 46, 171, 175. Dampfdrucke von binären Gemischen mit Benzol, Ather, Aceton, Methylacetat und Athylacetat bei 20°: Weissenberger, Schuster, Pamer, M. 46, 281, 282, 285, 292, 293. Dichte von Gemischen mit Wasser bei 20°: Hantzsch, Dürigen, Ph. Ch. 136, 15. Dichte und Viscosität von Gemischen mit Methanol und Alkohol bei 25°: Goldschmidt, Aarflot, Ph. Ch. 122, 373, 375. Adsorption des Dampfes an Tierkohle: Alexelewski, Ж. 55, 416; C. 1925 II, 642. Adsorption aus wäßr. Lösung an Coosnußkohle: Namasivayam, Quart. J. indian chem. Soc. 4, 452; C. 1928 I, 662; an verschiedene

Kohlen: Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288; an Viscose: Brass, Frei, Koll.-Z. 45, 249; C. 1928 II, 1037; Aufnahme durch Hautpulver: Kubelka, Taussig, Koll. Beih. 22, 150; C. 1926 II, 2138. Flockende Wirkung auf Eisen (III) - hydroxyd - Sol; Herrmann, Helv. 9, 786; auf Arsentrisulfid-Sol: Ostwald, Koll. Z. 40, 205; C. 1927 I, 573; auf Serumeiweiß-Sole: Cikánek, Havlík, Kubánek, Bio. Z. 145, 100. Diffusion durch Kollodium-Membranen: Northrop, J. gen. Physiol. 12, 443; C. 1929 II, 1387; durch Zellgewebe von Schnecken: Crozier, J. gen. Physiol. 4, 724; 5, 66; C. 1923 I, 255.

Wärmetönung beim Michael 287.

bei 20°: Wei., Schu., Pa., M. 46, 287.

Brechungsindices von Gemischen mit Wasser bei 20°: HA., Dü. Elektrische Leitfähigkeit von Gemischen mit Wasser bei 180: Schreiner, Z. anorg. Ch. 122, 227; mit absolutem und Wasserhaltigem Methanol bei 25°: Goldschmidt, Aas, Ph. Ch. 112, 429; mit Methanol, Alkohol, Propylalkohol, Butylalkohol und Aceton bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192, 1497; mit Anilin in Methanol bei 25°: Go., Aas, Ph. Ch. 112, 442. Elektrische Leitfähigkeit und Zersetzungsspannung einer Lösung von Jodtrichlorid in Dichloressigsäure bei 25°: Finkelstein, Ph. Ch. 115, 306. Ionenbeweglichkeit in Methanol und Alkohol: Ulich, Fortsch. Ch., Phys. 18 [1924/26], 605. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Dichloressigsäure-Lösungen: FRUMKIN, Ph. Ch. 111, 193. Elektrolytische Dissoziationskonstante k bei 18° : 5×10^{-2} (aus Leitfähigkeitsmessungen und potentiometrischen Messungen berechnet) (SCHREINER, Z. anorg. Ch. 122, 212, 229). Weitere Angaben über die elektrolytische Dissoziationskonstante der Dichloressigsäure: Brönsted, Petersen, Ph. Ch. 108, 198; RANDALL, FAILEY, Chem. Reviews 4 [1927], 305, 306; HARNED, HAWKINS, Am. Soc. 50, 88; DAWSON, LOWSON, Soc. 1929, 1219, 1223. Wasserstoffionenkonzentration in wäßr. Dichloressigsäure-Lösungen und Einfluß von Salzen auf die Ionenaktivität in wäßr. Lösungen: Schr., Z. anorg. Ch. 122, 204, 207, 215. Relative Acidität in Benzol: Brönsted, \bar{B} . **61**, 2062.

Einfluß auf die Geschwindigkeit der Hydrolyse von Äthylacetat in Gegenwart von Neutralsalzen: Dawson, Lowson, Soc. 1929, 1222; Harned, Hawkins, Am. Soc. 50, 85; auf die Geschwindigkeit der Inversion von Saccharose: OSTWALD, J. pr. [2] 29 [1884], 396; auf die Geschwindigkeit der Reaktion von Aceton mit Jod: Dawson, KEY, Soc. 1928, 1241; auf die Zersetzung von Benzoldiazoniumchlorid: PRAY, J. phys. Chem. 30, 1480;

auf die Zersetzung von Nitramid: Brönsted, Pedersen, Ph. Ch. 108, 198.

Chemisches Verhalten. Korrosionswirkung auf Eisen, Kupfer, Aluminium und Blei: Pucher, Am. Soc. 42, 2258. Beim Erhitzen mit Zinkwolle in wäßr. Lösung erfolgt langsame Reduktion zu Chloressigsäure (Doughty, Lacoss, Am. Soc. 51, 855). Geschwindigkeit der Reaktionen mit kolloidalem Silber in wäßr. Lösung bei 20°: Petrenko-Kritschenko, B. 61, 847; Ж. 61, 32; mit Wasser und wäßr. Lösungen von Kaliumhydroxyd, Bariumhydroxyd, Thallium(I)-hydroxyd, Silbernitrat, Tetraäthylammoniumhydroxyd und Piperidin bei verschiedenen Konzentrationen und Temperaturen: Р. Кв., Оротzкі, В. 59, 2137; Ж. 59, 316. Geschwindigkeit der Reaktion des Kalium- und Silbersalzes mit wäßr. Silberhydroxyd-Lösung bei 60° bzw. 55° : Pe.-Kr., O. Gleichgewicht und Geschwindigkeit der Reaktion CHCl₂·CO₂H + (CH₃)₂C:CH·CH₃ \rightleftharpoons CHCl₂·CO₂·C₅H₁₁ in verschiedenen Lösungsmitteln bei 18° : Andreassow, Ükr. chemič. Ž. 4, 93; C. 1929 II, 2175. Dichloressigsäure liefert beim Kochen mit Natriumäthylat-Lösung Diäthoxyessigsäure (H 3, 598) (Schreiber, Zeitschr. f. Chemie 1870, 167; J. 1870, 641). Beim Behandeln mit Phenol und Natronlauge in der Wärme entsteht Diphenoxyessigsäure (Syst. Nr. 516) (VAN ALPHEN, R. 46, 148). Gibt mit 2 Mol Di-

(Syst. Nr. 3008), in siedendem Xylol 1.3-Dithia-cyclopentan $\frac{\text{H}_2\text{C}\cdot\text{S}}{\text{H}_2\text{C}\cdot\text{S}}$ CH₂ in drei polymeren(?)

Formen (Chakravarti, Saha, J. indian chem. Soc. 5, 455; J. indian Inst. Sci. 11 A, 227, 228; C. 1928 II, 2254; 1929 I, 1697). Beim Kochen von dichloressigsaurem Kalium mit dem Monokaliumsalz des Dithioathylenglykols in absol. Alkohol entsteht 1.3-Dithia-cyclopentan-

 $H_2C \cdot S$ $CH \cdot CO_2H$ (Syst. Nr. 2846) (Сна., Sa.). Geschwindigkeit der Vercarbonsăure-(2)

esterung mit Milchsäureäthylester und Weinsäurediäthylester in Benzol bei 120°: Petrenko-KRITSCHENKO, B. 61, 851; 3K. 61, 36. Einw. von Methylstannonsäure auf siedende Dichloressigsäure: Lambourne, Soc. 125, 2014.

Wirkung auf die menschliche Haut: Menschel, Ar. Pth. 110, 15, 22; C. 1926 II, 50; Roberts, Ber. Physiol. 40, 847; C. 1927 II, 2207. Wachstumhemmende Wirkung auf Bactuberculosis: Schöbl, Philippine J. Sci. 25, 125, 130; C. 1925 I, 2699. — Verwendung zur Hertenschen stellung von Kunstharzen: I. G. Farbenind., D. R. P. 449276; C. 1927 II, 2237; Frdl. 15, 1220.

NaC₂HO₂Cl₂. Elektrische Leitfähigkeit in Wasser bei 18°: Schreiner, Z. anorg. Ch. 122, 228; in absolutem und wasserhaltigem Methanol bei 25°: GOLDSCHMIDT, AAS, Ph. Ch. 112, 426; in absol. Alkohol bei 15°, 25° und 35°: LLOYD, PARDEE, Publ. Carnegie Inst. Nr. 260 [1918], 110; in Alkohol verschiedenen Wassergehalts: G., Ph. Ch. 99, 138. — KC₂HO₂Cl₂. Lösungsvermögen wäßr. Lösungen für komplexe Kobaltsalze bei 0°: Brönsted, Petersen, Am. Soc. 43, 2272. — UO(C₂HO₂Cl₂)₂ + 2H₂O. Krystalle. Zersetzt sich unterhalb 100°. Leicht löslich in Alkohol, Äther und Aceton, unlöslich in Wasser (Łobanow, Roczniki Chem. 5, 444; C. 1926 II, 1390). — Durch Dampfdruckmessungen bei 20° wurde die Existenz von additionellen Verbindungen aus Dichloressigsäure und je 1 Mol Äther, Aceton, Methylacetat und Äthylacetat nachgewiesen (Weissenberger, Z. anorg. Ch. 152, 336).

Dichloressigsäure-methylester C₃H₄O₂Cl₂ = CHCl₂·CO₂·CH₃ (H 203). B. Bei der Einw. von Kaliumcyanid auf methylalkoholische Lösungen von Chloral oder Chloralhydratdiacetat (Chattawax, Irving, Soc. 1929, 1042, 1047). Bei allmählichem Erhitzen von Dichloressigsäure mit Dimethylsulfat auf 200° (Simon, C. r. 176, 585). — Kp: 143° (Ch., I.). — Geschwindigkeit der Verseifung in wäßriger, saurer und alkalischer Lösung bei 25°: SKRABAL, RÜCKERT, M. 50, 375.

Dichloressigsäure-äthylester $C_4H_6O_2Cl_2 = CHCl_2 \cdot CO_2 \cdot C_2H_5$ (H 203; E I 91). B. Bei der Einw. von Kaliumcyanid auf alkoh. Lösungen von Chloral oder Chloralhydrat-diacetat (Chattaway, Irving, Soc. 1929, 1042, 1047). Beim Einleiten von Chlor in Äthyl-[α.β-dichlor-vinyl]-äther bei gewöhnlicher Temperatur und nachfolgenden Behandeln mit Wasser (Crompton, Triffitt, Soc. 119, 1874). Beim Erhitzen von β.β-Dichlor-α-acetoxy-acrylsäure-nitril mit Alkohol im Rohr auf 150° (Kötz, J. pr. [2] 103, 232). — Kp: 157° (Ch., I.). Parachor: Мимford, Риіліря, Soc. 1929, 2118. Ultraviolettes Absorptionsspektrum in Alkohol und Hexan: Ley, Hünecke, B. 59, 511. Dipolmoment: Smyth, Am. Soc. 47, 1896. Elektrische Leitfähigkeit bei 0° und 25°: Rabinowitsch, Ph. Ch. 119, 65.

HERRI: LEY, HUNECRE, B. 59, 511. Dipointoment: SMYTH, Am. Soc. 47, 1896. Elektrische Leitfähigkeit bei 0° und 25°: Rabinowitsch, Ph. Ch. 119, 65.

Geschwindigkeit der Verseifung in verd. Alkohol bei Gegenwart oder Abwesenheit von Salzsäure bei 40,5°: Berger, R. 43, 169, 173. Liefert beim Behandeln mit etwas mehr als 4 Mol Hydroxylamin in Methanol Oximinoacethydroxamsäure (Syst. Nr. 279) (Ponzio, De Paolini, G. 56, 707). Beim Kochen mit dem Kaliumsalz des Dithioäthylenglykols in absol. Alkohol bilden sich 1.3-Dithia-cyclopentan-carbonsäure-(2)-äthylester $H_2^{C.S}$ CH·CO₂·C₂H₅ (Syst. Nr. 2846) und wenig 1.2.5.7-Tetrathia-cyclopenan-carbon- $H_2^{C.S}$ ScH₂·CH₂·S CH·CO₂·C₂H₅ (Syst. Nr. 3015) (CHAKRAVARTI, SAHA. J. indian chem. Soc. 5, 456; J. indian Inst. Sci. [A] 11, 228; C. 1928 II, 2253; 1929 I, 1697).

Dichloressigsäure-propylester $C_5H_8O_2Cl_2 = CHCl_2 \cdot CO_2 \cdot CH_2 \cdot C_2H_5$ (H 204). B. Bei der Einw. von Kaliumeyanid auf Chloralhydrat in Propylalkohol (Chattaway, Irving, Soc. 1929, 1042). — Kp: 176°.

Dichloressigsäure-allylester $C_5H_6O_2Cl_2 = CHCl_2 \cdot CO_2 \cdot CH_2 \cdot CH \cdot CH_2$. B. Bei der Einw. von Kaliumeyanid auf Chloralhydrat in Allylalkohol (Chattaway, Irving, Soc. 1929, 1042). — Kp: 175,5°.

Jod-tris-dichloracetat C₆H₃O₆Cl₆I = (CHCl₂·CO·O)₃I. B. Beim Schütteln von Dichloressigsäure und Jod mit einer Mischung von Acetanhydrid und rauchender Salpetersäure (Fichter, Stern, Helv. 11, 1261). — Hellgelber Niederschlag.

Dichloracetylchlorid $C_2HOCl_3 = CHCl_2 \cdot COCl$ (H 204; E I 92). B. Beim Durchleiten von Sauerstoff durch siedendes Trichloräthylen in Gegenwart von Brom, Jod, konz. Salpetersäure oder konz. Schwefelsäure (Konsort. f. elektrochem. Ind., D. R. P. 340872, 391674; C. 1921 IV, 1101; 1924 II, 887; Frdl. 13, 146; 14, 222). Beim Behandeln von Pentachloräthan mit rauchender Schwefelsäure (ca. 60% SO₃) bei 50—60° (Chem. Fabr. Weiler-ter Meer, D. R. P. 362748; C. 1923 II, 405; Frdl. 14, 262). Beim Einleiten von Chlor in Athylach-dichlor-vinyl]-äther (Crompton, Triffitt, Soc. 119, 1874; McKie, Soc. 123, 2214). — Dischlor-vinyl]-ither (Crompton, Triffitt, Soc. 123, 1228).

Dichloressigsäure-amid, Dichloracetamid C₂H₂ONCl₂ = CHCl₂·CO·NH₂ (H 205: E I 92). B. Zur Bildung aus Chloralammoniak und Kaliumcyanid vgl. a. Chattaway, Irving, Soc. 1929, 1046. — F: 98,5° (McKie, Soc. 123, 2214), 98,5—99° (Ch., I.). Bildet mit Chlorbromacetamid und mit Chlorjodacetamid ununterbrochene Mischkrystallreihen (McK., Soc. 123, 2216; 125, 1076).

Trichloressigsaure C₂HO₂Cl₃ = CCl₃·CO₂H (H 206; E I 92).

Physikalische Eigenschaften.

F: 56,3° (koft.) (Winkler, Ar. 1928, 49), 56,7—56,8° (Sudborough, Karvé, J. indian Inst. Sci. 5 [1922], 6), 57,6° (Schreiner, Ph. Ch. 133, 423), 59,4° (Kendall, Gross, Am. Soc. 48, 1429). E: 59,2° (Ke., Brakeley, Am. Soc. 43, 1827). Kp760: 197,55° (Lecat, Ann. Soc. 50ient. Bruxelles 47 I [1927], 24, 154; R. 47, 17). D. 101: 1,62 (Ke., Bra.); D. 101: 1,0630 (v. Frank, 1988).

zit. bei Hantzsch, Dürigen, Ph. Ch. 136, 14). Van der Waalssche Konstanten zwischen 20° und 30°: Weissenberger, Henke, J. pr. [2] 115, 77. Viscosität bei 25°: 0,0683 g/cm sec. (Ke., Br.). Parachor: Mumford, Phillips, Soc. 1929, 2128. np. 1,4603 (v. Fr.). Ultraviolettes Absorptionsspektrum in Wasser: Ghosh, Bisvas, Z. El. Ch. 30, 100; in Wasser, Hexan, Chloroform, Alkohol und Ather: Ley, Hünecke, B. 59, 515. Ultravetes Absorptionsspektrum in Tetrachlorkohlenstoff: Bennett, Daniels, Am. Soc. 49, 55. Dipolmoment: Smyth, Am. Soc. 47, 1896. Elektrische Leitfähigkeit von fester und flüssiger Trichloressigsäure zwischen 15° und 75°: Rabinowitsch, Ph. Ch. 119, 65; Ж. 58, 231; von flüssiger Trichloressigsäure bei 60°: Kendall, Gross, Am. Soc. 43, 1428.

Adsorption aus wäßr. Lösung an aktivierte Zuckerkohle: Kolthoff, R. 46, 557; an

Adsorption aus wäßr. Lösung an aktivierte Zuckerkohle: Kolthoff, R. 46, 557; an Cocosnußkohle: Namasivayam, Quart. J. indian chem. Soc. 4, 452; C. 1928 I, 662; an Blutkohle: Umetsu, Bio. Z. 135, 472; an verschiedene Kohlen: Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288; an Filtrierpapier: Mokruschin, Krylow, Koll.-Z. 43, 388; Izv. ural. politechn. Inst. 6, 152; C. 1928 I, 890; II, 1989; an Viscose: Brass, Frei, Koll.-Z. 45, 248; C. 1928 II, 1037; an frisch gefälltes Eisen(III)-hydroxyd: Sen, J. phys. Chem. 31, 526; an Metazinnsäure: Ghosh, Soc. 1928, 3035. Adsorption aus alkoh. Lösung an Tierkohle: Griffin, Richardson, Robertson, Soc. 1928, 2708. Aufnahme aus wäßr. Lösung durch Hautpulver: Kubelka, Taussig, Koll. Beih. 22, 150; C. 1926 II, 2138. Flockende Wirkung auf Eisen(III)-hydroxyd-Sol: Herrmann, Helv. 9, 786; auf Arsentrisulfid-Sol: Mukherjee, Chaudhuri, Soc. 125, 796; auf Gold-Sol, Silbersulfid-Sol und andere Sole: Ostwald, Koll.-Z. 40, 205, 207, 208; C. 1927 I, 573; auf verschiedene Eiweiß-Sole: Hahn, Bio. Z. 121, 268; Pribram, Klein, Bio. Z. 141, 492; Minich, Bio. Z. 142, 270; Fonseca, Bio. Z. 144, 176; Cikánek, Havlík, Kubánek, Bio. Z. 145, 100; Reiner, Pluhář, Hányš, Bio. Z. 171, 157; Isgaryschew, Bogomolowa, Koll.-Z. 38, 239; C. 1926 I, 3307; Mascré, Herbain, C.r. 189, 877; Martinson, Markowa, Bio. Z. 216, 125. Einfluß auf die Quellung von Gelatine: Loeb, J. gen. Physiol. 3, 253; C. 1921 I, 371; Ghosh, Soc. 1928, 715; von Casein: Isgaryschew, Pomeranzewa, Koll.-Z. 38, 237. Diffusion durch Zellgewebe von Schnecken (Nudibranchia): Crozter, J. gen. Physiol. 5, 66; C. 1923 I, 255.

Lösungsvermögen wäßr. Lösungen für komplexe Kobaltsalze bei 0°: Brönsted, Petersen. Am. Soc. 43, 2272. Trichloressigsäure ist in flüssigem Schwefelwasserstoff löslich (Quam. Am. Soc. 47, 105). Zur Beständigkeit der Lösungen in Chloroform, Tetrachlorkohlenstoff, Äther, Aceton, Schwefelkohlenstoff, Benzol, Nitrobenzol und Äthylbenzoat vgl. Timofejew. Ukr. chemič. Ž. 1, 102; C. 1925 II, 1651. Verteilung zwischen Wasser und Äther bei 25°: Smith, J. phys. Chem. 25, 624; zwischen Wasser und Chloroform, Tetrachlorkohlenstoff, Benzol, Nitrobenzol und Schwefelkohlenstoff bei 25°: Andreassow, Ukr. chemič. Ž. 3, 464; C. 1929 II, 550; zwischen Glycerin und Aceton bei 25°: Smith, J. phys. Chem. 25, 734.

Kryoskopisches Verhalten in Wasser: Kendall, King. Soc. 127, 1780; in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1914], 1163; C. 1925 I. 1557; Kendall, Booge, Soc. 127, 1773; Hantzsch, B. 58, 685; in Athylenbromid: H., B. 58, 685; in Athylecetat, Benzylbenzoat und Monomethylsuccinat und in Lösungen dieser Ester in Wasser oder Benzol: Ke., B., Soc. 127, 1771, 1772, 1773; Ke., King, Soc. 127, 1780. Kryoskopisches Verhalten verschiedener organischer Verbindungen in Trichloressigsäure: Walden, R. 48, 881. Thermische Analyse der binären Systeme mit Harnstoff: Puschin, König, M. 49, 76; mit N-Allyl-N'-phenyl-thioharnstoff: Schischokin, Z. anorg. Ch. 181, 143; C. 1929 I. 2957; mit Azobenzol: Kremann, Zechner, M. 46, 171, 175. Ebullioskopisches Verhalten in Benzol und Chloroform: Hantzsch, B. 58, 685; in Hexan: Ley, Hünecke, B. 59, 515. Trichloressigsäure bildet azeotrope Gemische mit Pentachloräthan (Kp₇₆₀: 161.8°; 3.5 Gew.-% Trichloressigsäure) (Lecat, R. 47, 17), 1.4-Dichlor-benzol (Kp₇₆₀: 174.0°; ca. 12 Gew.-% Trichloressigsäure) und 2-Brom-toluol (Kp₇₆₀: 180,0°; ca. 18 Gew.-% Trichloressigsäure) (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 24, 154). Dampfdrucke von binären Gemischen mit Äther, Aceton, Methylacetat und Äthylacetat bei 20°; Weissenberger, Schuster, Pamer, M. 46, 281, 282, 294. Einfluß auf die Geschwindigkeit der Verdampfung von Chlor aus Lösungen in Tetrachlorkohlenstoff: Bell, J. phys. Chem. 33, 109.

Dichte von binären Gemischen mit Wasser bei 20°: Hantzsch, Dürigen, Ph. Ch. 136, 14; mit Aceton, Acetophenon, Essigsäure, Äthylacetat und Äthylbenzoat bei 25°: Kendall, Brakeley, Am. Soc. 43, 1827. Viscosität von binären Gemischen mit Wasser: de Kolossowsky, G. 55, 854; mit Aceton, Acetophenon, Essigsäure, Äthylacetat und Äthylbenzoat bei 25°: Ke., Br., Am. Soc. 43, 1827. Einfluß der Neutralisation mit 1n-Alkalilauge auf die Viscosität von 1n-Trichloressigsäure: Simon, C. r. 181, 862. Oberflächenspannung von Gemischen mit Wasser: Traube, Somogyi, Bio. Z. 120, 94; mit Tetrachlorkohlenstoff: Bell, J. phys. Chem. 33, 115. Bewegung auf Wasseroberflächen: Zahn. R. 45, 790. Wärmetönung beim Lösen in Wasser, Pentan, Benzol, Nitrobenzol, Alkohol, Äther und Aceton: Karvé, Quart. J. indian chem. Soc. 1, 258; C. 1925 II, 898.

Brechungsindices von Gemischen mit Wasser bei 180: SCHREINER, Ph. Ch. 133, 423; bei 200: Hantzsch, Dürigen, Ph. Ch. 136, 14. Elektrische Leitfähigkeit in Wasser bei 00:

Kendall, King, Soc. 127, 1784; bei 18°: Schr., Ph. Ch. 133, 427; in absolutem und in wasserhaltigem Methanol: Goldschmidt, Aarflot, Ph. Ch. 117, 317; in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192; in Cyanwasserstoff bei 25°: Kahlenerg, Schlundt. zit. bei Walden, Z. El. Ch. 26, 75; in Gemischen mit Aceton, Acetophenon, Essigsäure, Athylacetat, Athylbenzoat und Benzylbenzoat bei 25° und 60°: Ke., Gross, Am. Soc. 43, 1429. Elektrische Leitfähigkeit in wäßr. Lösungen von Athylacetat bei 0°: Ke., King, Soc. 127, 1784; in wäßr. Quecksilber(II)-perchlorat-Lösung: Kolthoff, Fr. 61, 340. Ionenbeweglichkeit in Methanol und Alkohol: Ulich, Fortsch. Ch., Phys. 18 [1924/26], 605; Walden, Ulich, Ph. Ch. 114, 314. Strom-Spannung-Kurven bei der Elektrolyse von 1n-Trichloressigsäure-Lösung an verschiedenen Anoden: Gibson, Soc. 127, 478. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Trichloressigsäure-Lösungen: Frumkin, Ph. Ch. 111, 193; 116, 490; F., Donde, Ph. Ch. 123, 342. Relative Acidität in Benzol: Brönsted, B. 61, 2062; in verschiedenen Lösungsmitteln: Hantzsch, Z. El. Ch. 29, 226; Ha., Voigt, B. 62, 978.

Einfluß auf die Geschwindigkeit der Hydrolyse von Äthylacetat: Kendall, King. Soc. 127, 1789; auf die Geschwindigkeit der Inversion von Saccharose: Ostwald, J. pr. [2] 29 [1884], 396; Hantzsch, Z. El. Ch. 29, 223; Hantzsch, Weissberger, Ph. Ch. 125, 255; auf die Geschwindigkeit der Veresterung verschiedener organischer Säuren in absolutem und in wasserhaltigem Methanol: Goldschmidt, Marum, Thomas, Ph. Ch. 129, 233; in absol. Alkohol: Go., Ph. Ch. 94, 237. Trichloressigsäure verhindert bzw. vermindert die Reduktion Fehlingscher oder Shafferscher Kupfer-Lösung durch d-Glucose (Stiven, Biochem. J. 18, 19; Denigès, Bl. Soc. Chim. biol. 6, 397; C. 1924 II, 1908).

Chemisches Verhalten.

Trichloressigsäure zersetzt sich beim Erhitzen in Gegenwart von Thoriumoxyd auf Temperaturen über 210° oder in Gegenwart von Kaolin auf Temperaturen über 230° unter Bildung von Chloroform, Tetrachloräthylen, Hexachloräthan, Chlorwasserstoff, Kohlenoxyd und Kohlendioxyd (Senderens, C. r. 172, 156, 157). Beim Erhitzen mit Tierkohle auf 230° bis 3000 entstehen als Hauptprodukte Chloroform und Kohlendioxyd neben wenig Tetrachloräthylen, Hexachloräthan, Chlorwasserstoff und Kohlenoxyd (SE.). Bei der Elektrolyse einer wäßr. Lösung von 1 Tl. trichloressigsaurem Kalium und 2 Tln. Kaliumacetat an einer Platin-Anode bei 200 erhält man hauptsächlich Trichloressigsäure-trichlormethylester (Syst. Nr. 199), geringere Mengen Essigsäure-trichlormethylester, Hexachloräthan, Formaldehyd und Phosgen; das an der Anode entwickelte Gas enthält 87% Kohlendioxyd, 8% Athylen, je 1% Sauerstoff, Kohlenoxyd, Äthan und Methylchlorid und Spuren von Phosgen und Chlor (Gibson, Pr. roy. Soc. Edinburgh 44, 141; C. 1924 II, 1174; vgl. a. G., Soc. 127, 483, 484). Beim Behandeln von Trichloressigsäure mit gelbem Quecksilberoxyd in wäßr. Lösung entstehen Quecksilber(I)-chlorid und Kohlendioxyd; bei Ausführung der Reaktion in feuchtem Chloroform erhält man Quecksilber(I)-chlorid und Quecksilber(II)-chlorid (Kharasch, STAVELEY, Am. Soc. 45, 2963, 2970). Bei der Einw. von Kupferpulver ohne Lösungsmittel entstehen wenig Tetrachlorbernsteinsäure (isoliert als Anilinsalz) und Dichloressigsäure; Dichloressigsäure entsteht auch beim Behandeln mit Kupferpulver in Benzol oder Wasser (Doughty, Freeman, Am. Soc. 44, 639; Dou., Black, Am. Soc. 47, 1091). Trichloressigsäure liefert beim Behandeln mit Zinkwolle in Wasser das Zinksalz der Dichloressigsäure und Zinkchlorid (Dou., Lacoss, Am. Soc. 51, 853). Lösungen von Trichloressigsäure in konz. Ammoniak lösen Kupfer, Cadmium und Zink unter starker Wärmeentwicklung, greifen aber Silber nicht an (Doughty, Freeman, Am. Soc. 43, 702). Geschwindigkeit der Zersetzung durch Wasser bei verschiedenen Konzentrationen und Temperaturen: Petrenko-Kritschenko, Оротzki, B. 59, 2137; Ж. 59, 316; im Dunkeln zwischen 80° und 90° und im Sonnenlicht bei 75° und 85°: Banerji, Dhar, Z. anorg. Ch. 134, 172. Geschwindigkeit der Reaktion mit kolloidalem Silber bei 20°: Pe.-Kr., B. 61, 847; Ж. 61, 32; mit wäßr. Lösungen von Kaliumhydroxyd, Bariumhydroxyd, Thallium(I)-hydroxyd, Silbernitrat. Tetraäthylammoniumhydroxyd und Piperidin bei verschiedenen Konzentrationen und Temperaturen: Pr. Kr., Or. Kinetik der Zersetzung der Alkalisalze durch Wasser im ultravioletten Licht: JAEGER, Soc. 119, 2072; JAE., BERGER, R. 41, 73, 78. Geschwindigkeit der Reaktionen des Kaliumund Silbersalzes mit wäßr. Silberhydroxyd-Lösung bei 60° bzw. 55°: PE.-KR., Op. Bei der Einw. von Jod auf trichloressigsaures Silber in der Kälte bildet sich ein Produkt, das beim Behandeln mit Wasser in Silberjodid, Silberjodat und Trichloressigsäure zerfällt und beim Erhitzen auf 110° neben anderen Produkten Silberchlorid liefert (Wieland, Fischer, A. 446, 63). Trichloressigsäure wird bei 48-stdg. Kochen mit Thionylchlorid nicht verändert (McMaster, Ahmann, Am. Soc. 50, 146). Kinetik der Esterbildung mit Trimethyläthylen in verschiedenen Lösungsmitteln bei

Kinetik der Esterbildung mit Trimethyläthylen in verschiedenen Lösungsmitteln bei 25°: Timofejew, Andreassow, *Ukr. chemič. Ž.* 1, 109; *C.* 1925 II, 1652; Ti., Israilewitsch, Chaskess, *Ukr. chemič. Ž.* 1, 477; *C.* 1926 I, 565; A., *Ukr. chemič. Ž.* 3, 209; 4, 89; *C.* 1929 I, 3084; II, 2433. Geschwindigkeit der Veresterung mit Alkohol, Isopropylalkohol, tert.-Butyl-

alkohol, Benzylalkohol, Benzhydrol und Triphenylcarbinol in Benzol-Lösung im Rohr bei 100°: Petrenko-Kritschenko, Bogatski, Lubman, Ph. Ch. 115, 293, 298; \times .58, 217. Beim Erwärmen von Trichloressigsäure mit Phenol und Natronlauge entstehen Salicylaldehyd, 4-Oxybenzaldehyd und Aurin; erhitzt man Trichloressigsäure in Natriumphenolat in wenig Äther auf 190°, so erhält man nur Aurin (van Alphen, R. 46, 144, 145). Einw. von Trichloressigsäure auf Dithioäthylenglykol: Chakravarti, Saha, J. indian chem. Soc. 5, 457; J. indian Inst. Sci. 11 A, 230; C. 1928 II, 2253; 1929 I, 1697. Gleichgewicht der Reaktion $CCl_3 \cdot CO_2H + CH_3 \cdot CO_2 \cdot R \rightleftharpoons CCl_3 \cdot CO_2 \cdot R + CH_3 \cdot CO_2H$ (R = CH_3 oder C_2H_5) bei 30°: Sudborough, Karvé, J. indian Inst. Sci. 5, 7; C. 1923 I, 295. Geschwindigkeit der Veresterung mit Milchsäuresthylester und Weinsäure-diäthylester in Benzol bei 120°: Pe.-Kr., B. 61, 851; \times 61, 36. Liefert beim Erwärmen mit 4-Oxy-benzoesäure und Natronlauge auf 100° 4-Oxy-3-formylbenzoesäure (Van Alphen, R: 46, 147).

Physiologisches Verhalten.

Über das physiologische Verhalten der Trichloressigsäure vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 805. — Wirkung auf die menschliche Haut: Menschel, Ar. Pth. 110, 4, 15, 23, 32, 41; C. 1926 II, 50; Roberts, Ber. Physiol. 40, 847; C. 1927 II, 2207. Giftwirkung auf Bact. coli und Staphylokokken: Traube, Somogyi, Bio. Z. 120, 94; auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 125, 130; C. 1925 I, 2699.

Analytisches.

Zusammenstellung von Reaktionen für den Nachweis von Trichloressigsäure: ROJAHN, STRUFFMANN, Ar. 1927, 304. Viscosimetrische Titration mit Alkalilauge: SIMON, C. r. 181, 862. — Über Anwendung von Trichloressigsäure beim toxikologischen Nachweis von Alkaloiden vgl. Florence, Bl. [4] 41, 1097, 1242. Trichloressigsäure beschleunigt die Zerstörung der organischen Substanz bei der Stickstoffbestimmung nach KJELDAHL (GRIGAUT, THIERY, C. 1921 IV, 1166).

Salze und additionelle Verbindungen.

Ammoniumsalz. Elektrische Leitfähigkeit in verd. Alkohol: Goldschmidt, Ph. Ch. 99, 128. — Lithiumsalz. Brechungsindices von wäßr. Lösungen bei 18°: Schreiner, Ph. Ch. 133, 424. — Natriumsalz. Lösungsvermögen der wäßr. Lösung für verschiedene organische Verbindungen: Tamba, Bio. Z. 145, 420. Brechungsindices von wäßr. Lösungen bei 18°: Sch., Ph. Ch. 133, 424. Ultraviolettes Absorptionsspektrum in wäßr. Lösung: Ghosh, Bisvas, Z. El. Ch. 30, 100. Elektrische Leitfähigkeit in absol. Methanol: Goldschmidt, Aarflot, Ph. Ch. 117, 317; in absol. Alkohol bei 15°, 25° und 35°: Lloyd, Pardee, Publ. Carnegie Inst. Nr. 260 [1918], 110. — Kaliumsalz. Lösungsvermögen wäßr. Lösungen für komplexe Kobaltsalze bei 0°: Brönsted, Petersen, Am. Soc. 43, 2272. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Lösungen von Kalium-trichloracetat: Frumkin, Ph. Ch. 111, 193; 116, 490. — Silbersalz. Zersetzt sich bei 80° unter Bildung von Silberchlorid (Wieland, Fischer, A. 446, 63). — Quecksilber(II)-salz Hg(C₂O₂Cl₃)₂. Konnte von Kharasch, Staveley, Am. Soc. 45, 2963 nicht in fester Form erhalten werden. — Komplexe Eisen (III)-salze: [Fe₃(OH)(C₂O₂Cl₃)₆] (C₂O₂Cl₃)₂. Rote Prismen und Blättchen (Weinland, Loebich, Z. anorg. Ch. 151, 274, 280). Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 487; C. 1928 II, 2626. 1 Tl. löst sich in ca. 10 Tln. kaltem Wasser (Wei., L.). — [Fe₃(OH)(C₂O₂Cl₃)₆](C₂O₂Cl₃)₆+4H₂O. Rote Blättchen (Wei., L.). Leicht löslich in Alkohol, Aceton und Ather, löslich in Wasser mit rotgelber Farbe. Die Lösung in ca. 84 %iger Trichloressigsäure-Lösung ist tiefrot und wird auf Zusatz von Wasser rotgelb, gelb und schließlich farblos. Geht bei Einw. von Wasser bei 50° in das nachfolgende Salz über. — Fe₃(OH)₃(C₂O₂Cl₃)₆+7H₂O. Rote Krystalle (Wei., L.). Löst sich in Wasser mit roter Farbe.

Verbindung mit Äthylacetat $C_2HO_2Cl_3+C_4H_8O_2$. F: —26,8° (KENDALL, BOOGE, Soc. 127, 1771). Schmelzwärme: 5170 \pm 50 cal/Mol. Kryoskopisches Verhalten in Wasser. Benzol und Äthylacetat: Ke., B.; Ke., King, Soc. 127, 1780. Elektrische Leitfähigkeit in Wasser bei 0°: Ke., Ki., Soc. 127, 1784. — Verbindung mit Hexamethylentetramin $C_2HO_2Cl_3+C_6H_{18}N_4$ s. Syst. Nr. 4013.

Trichloressigsäure-methylester C₃H₃O₂Cl₃ = CCl₃·CO₂·CH₃ (H 208). B. Bei allmählichem Erhitzen von Trichloressigsäure mit Dimethylsulfat auf 200° (SIMON, C. r. 176, 585). Neben anderen Verbindungen beim Behandeln von Chloral mit Acetaldehyd und Magnesiummethylat (NAKAI, Bio. Z. 152, 267, 268). — E: —17,5° (TIMMERMANS, Bl. Soc.

chim. Belg. 31, 392; C. 1923 III, 1137). Kp₇₈₉: 153,8 \pm 0,05° (Ti.); Kp₈₇₈: 150—150,5° (Sudborough, Karvé, J. indian Inst. Sci. 5, 16). Ultraviolettes Absorptionsspektrum in Hexan, Alkohol und Ather: Ley, Hünecke, B. 59, 512. — Geschwindigkeit der Verseifung in wäßr. Aceton bei Gegenwart oder Abwesenheit von verd. Salzsäure bei 30°: Olivier, Berger, R. 41, 642; 44, 643, 647. Gleichgewicht der Reaktion $CCl_3 \cdot CO_3 \cdot CH_3 + CH_3 \cdot CO_3 H \rightleftharpoons CCl_3 \cdot CO_3 + CH_3 + CH_3 \cdot CO_3 H \rightleftharpoons CCl_3 \cdot CO_3 + CH_3 + CH_3 + CH_3 \cdot CO_3 + CH_3 + CH$

Trichloressigsäure-äthylester $C_4H_5O_3Cl_3 = CCl_3 \cdot CO_2 \cdot C_2H_5$ (H 209; E I 94). B. Neben anderen Verbindungen bei der Einw. von Aluminiumäthylat auf Chloral in Benzol (Dworzak, M. 47, 11; vgl. Nakai, Bio. Z. 152, 273). Aus Chloral und Acetaldehyd bei der Einw. von Magnesiummethylat oder Aluminiumäthylat in absol. Äther oder von Aluminiumisoamylat (N., Bio. Z. 152, 268, 269). — Kp_{682} : 163—163,5° (Sudborough, Karvé, J. indian Inst. Sci. 5, 7); Kp_{12} : 62° (Dw.). Parachor: Mumford, Phillips, Soc. 1929, 2118. Ultraviolettes Absorptionsspektrum in Alkohol, Äther und Hexan: Ley, Hünecke, B. 59, 511. Dipolmoment: Smyth, Am. Soc. 47, 1896. Elektrische Leitfähigkeit bei 0° und 25°: Rabinowitsch, Ph. Ch. 119, 65. — Liefert beim Erhitzen mit Kupferpulver auf dem Wasserbad Tetrachlorbernsteinsäure-diäthylester (Doughty, Freeman, Am. Soc. 44, 638). Geschwindigkeit der Verseifung in verd. Alkohol bei Gegenwart oder Abwesenheit von Salzsäure bei 40,5°: Berger, R. 43, 168, 173. Einw. auf Dithioäthylenglykol: Charravarti, Saha, J. indian chem. Soc. 5, 457; J. indian Inst. Sci. 11 A, 230; C. 1928 II, 2253; 1929 I, 1697. Gleichgewicht der Reaktion $CCl_3 \cdot CO_2 \cdot C_2H_5 + CH_3 \cdot CO_2H \rightleftharpoons CCl_3 \cdot CO_2H + CH_3 \cdot CO_2 \cdot C_2H_5$ bei 30°: S., K., J. indian Inst. Sci. 5, 7; C. 1923 I, 295.

Trichloressigsäure - [β , β , β -trichlor - äthylester] $C_4H_2O_3Cl_6 = CCl_3 \cdot CO_2 \cdot CH_2 \cdot CCl_3$ (H 209). B. Aus Chloral bei der Einw. von Magnesiummethylat oder Aluminiumāthylat sowie Aluminiumāthylat in Ather (Nakai, Bio. Z. 152, 272, 273) oder Benzol (Dworzak, M. 47, 11). — F: 25—27° (N.). Kp_{11-12} : 109,5—110° (N.); Kp_{10} : 109° (D.).

Trichloracetat des Dimethyläthylcarbinols oder des Methylisopropylcarbinols $C_7H_{11}O_9Cl_3 = CCl_3 \cdot CO_2 \cdot C(CH_3)_2 \cdot C_2H_5$ oder $CCl_3 \cdot CO_2 \cdot CH(CH_3) \cdot CH(CH_3)_2$ oder Gemisch beider (H 209; E I 94). Über den Einfluß verschiedener Lösungsmittel auf das Gleichgewicht und die Geschwindigkeit der Reaktion $CCl_3 \cdot CO_2 \cdot C_5H_{11} \rightleftharpoons CCl_3 \cdot CO_2H + (CH_3)_2C \cdot CH \cdot CH_3$ bei 25° und 50° vgl. Andreassow, Ukr. chemic. Z. 3, 209, 468; 4, 89; C. 1929 I, 3084; II, 2433.

Trichloressigsäure - isoamylester $C_7H_{11}O_2Cl_3 = CCl_3 \cdot CO_2 \cdot CH_2 \cdot CH_1 \cdot CH_1(CH_3)_2$ (H 209; E I 94). B. Neben anderen Verbindungen beim Behandeln von Chloral mit Acetaldehyd in Gegenwart von Aluminiumisoamylat (Nakai, Bio. Z. 152, 269). — Kp_{10-11,6}: 92—95°(N.). Parachor: Sugden, Soc. 125, 1184.

Trichloressigsäure-[buten-(1)-yl-(8)-ester], Methylvinylcarbinol-trichloracetat $C_6H_7O_2Cl_3=CCl_3\cdot CO_5\cdot CH(CH_3)\cdot CH: CH_2$. B. Neben Trichloressigsäure- β -butenylester und anderen Produkten beim Erhitzen von Trichloressigsäure mit Methylvinylcarbinol oder Crotylalkohol auf 100° (Právost, A. ch. [10] 10, 160, 161). — Kp_{18,5}: 74—74,5°. D₄°: 1,2990. n₂°: 1,4588.

Trichloressigsäure- β -butenylester, Crotyl-trichloracetat $C_0H_7O_2Cl_8 = CCl_3 \cdot CO_2 \cdot CH_2 \cdot CH \cdot CH \cdot CH_3$. B. s. im vorhergehenden Artikel. — $Kp_{12,5}$: 89—89,5°; D_4^m : 1,3130; n_2^m : 1,4710 (Prévost, A. ch. [10] 10, 161).

Trichloressigsäure-chlormethylester $C_3H_2O_3Cl_4=CCl_3\cdot CO\cdot O\cdot CH_2Cl$ (H 209). Giftwirkung auf Protozoen: Walker, *Biochem. J.* 22, 299.

Trichloressigsäure - anhydrid $C_4O_3Cl_6 = (CCl_3 \cdot CO)_2O$ (H 210). Kp₁₁: 98—100° (Fighter, Fritsch, Müller, *Helv.* 6, 503).

Trichloracetpersäure, Trichlorperessigsäure $C_2HO_2Cl_2 = GCl_3 \cdot CO \cdot O \cdot OH$. B. Bei der Einw. von Wasserstoffperoxyd auf Trichloressigsäure-anhydrid unter Kühlung (Fichter, Fritsch, Müller, Helv. 6, 503). — Unbeständige, hellgelbe Flüssigkeit. — Zerfällt bei gelindem Erwärmen in Kohlendioxyd, Phosgen und Chlorwasserstoff.

Jod-tris-trichloracetat C₆O₆Cl₉I = (CCl₃·CO·O)₃I. B. Beim Schütteln von Trichloressigsäure mit Jod, Acetanhydrid und wenig Salpetersäure (D: 1,51) (FICHTER, STERN, Helv. 11, 1258). Hellgelbes Pulver. — Verbindung mit Jod-trijodat C₆O₆Cl₉I + I(IO₂)₃. B. Beim Behandeln einer Lösung von Trichloressigsäure und Jod in Chloroform oder Tetrachlorkohlenstoff mit Ozon (F., St.). Beim Schütteln von Trichloressigsäure mit Jod, wenig Acetanhydrid und viel Salpetersäure (D: 1,51) (F., St.). Hellgelbes, schwer lösliches Pulver.

Trichloracetylchlorid C₂OCl₄ = CCl₃·COCl (H 210; E I 94). B. Beim Erhitzen von Trichloressigsäure mit Benzotrichlorid in Gegenwart von Zinkchlorid auf 100° (RABCEWICZ-ZUBKOWSKI, Roczniki Chem. 9, 528; C. 1929 II, 2767). Beim Durchleiten von Sauerstoff

durch siedendes Tetrachloräthylen in Gegenwart von Brom oder konz. Salpetersäure (Konsort. f. elektrochem. Ind., D. R. P. 340872; C. 1921 IV, 1101; Frdl. 13, 146).

Trichloressigsäure-amid, Trichloracetamid C₂H₂ONCl₃ = CCl₃·CO·NH₂ (H 211; E I 94). Bei der Einw. von Dischwefeldichlorid in siedendem Benzol entsteht N.N'-Bis-trichloracetyl-hydrazin (?) (NAIK, PATEL, Quart. J. indian chem. Soc. 1, 33; C. 1925 I, 488). — Wachstumhemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 125, 130; C. 1925 I, 2699.

N-Oxymethyl-trichloracetamid, N-Methylol-trichloracetamid $C_3H_4O_2NCl_3 = CCl_3 \cdot CO \cdot NH \cdot CH_2 \cdot OH$ (H 211). Liefert bei der Einw. von 1-Oxy-anthrachinon in Gegenwart von konz. Schwefelsäure unter Kühlung 4-Oxy-1-[trichloracetamino-methyl]-anthrachinon; reagiert analog mit 2-Oxy-anthrachinon unter Bildung von 2-Oxy-1-[trichloracetamino-methyl]-anthrachinon (DE DIESBACH, GULZER, Helv. 11, 1110).

Trichloracetiminomethyläther C₃H₄ONCl₃ = CCl₃·C(:NH)·O·CH₃ (H 212; E I 95). B. Zur Bildung aus Trichloracetonitril und Methanol vgl. a. Steinkoff, Semmig, B. 53, 1150.

Trichloracetiminoäthyläther $C_4H_6ONCl_3 = CCl_3 \cdot C(:NH) \cdot O \cdot C_2H_5$. B. Beim Erhitzen von Trichloracetonitril mit absol. Alkohol in Gegenwart von etwas Aceton auf dem Wasserbad (Steinkoff, Semmig, B. 53, 1152). — Flüssigkeit von terpenartigem Geruch. Kp₃₉: 74—75°. — Zersetzt sich schon bei kurzem Aufbewahren.

Trichloracetonitril C₂NCl₃ = CCl₃·CN (H 212; E I 95). B. Zur Bildung aus Trichloracetamid und Phosphorpentoxyd vgl. a. HOUBEN, FISCHER, B. 60, 1765. — Liefert beim Behandeln mit Benzol in Gegenwart von Aluminiumchlorid und Chlorwasserstoff das Hydrochlorid des ω.ω.ω-Trichlor-acetophenon-imids, das bei der Zersetzung mit Eis in ω.ω.ω-Trichlor-acetophenon übergeht; reagiert unter analogen Bedingungen mit anderen aromatischen Kohlenwasserstoffen sowie mit Thiophen unter Bildung der entsprechenden Ketimide bezw. Ketone (H., F., J. pr. [2] 123, 318; B. 66 [1933], 341). Liefert beim Erhitzen mit absol. Alkohol in Gegenwart von etwas Aceton auf dem Wasserbad Trichloracetiminoäthyläther (STEINKOPF, SEMMIG, B. 53, 1152). Beim Aufbewahren mit Methylmercaptan in Gegenwart von Chlorwasserstoff im Rohr bildet sich das Hydrochlorid des Trichlorthioacetiminomethyläthers (St., Müller, B. 56, 1931). Liefert bei der Einw. von Phenol in Ather bei Gegenwart von Chlorwasserstoff das Hydrochlorid des Trichloracetiminophenyläthers (H., F., J. pr. [2] 123, 317). Beim Behandeln mit Phenol in Chlorbenzol bei Gegenwart von Aluminiumchlorid und Chlorwasserstoff und Zersetzen des Reaktionsprodukts mit Eis entsteht ω.ω.ω-Trichlor-4-oxy-acetophenon (H., F., J. pr. [2] 123, 266; B. 66 [1933], 341). Analog führt die Kondensation mit Anisol in Äther bei Gegenwart von Zinkchlorid und Chlorwasserstoff nach Zersetzung des Reaktionsprodukts mit Wasser zu w.w.w-Trichlor-4-methoxyacetophenon (H., F., B. 60, 1767). Beim Behandeln mit 2-Methoxy-benzoesäure in Äther bei Gegenwart von Zinkchlorid und Chlorwasserstoff und Zersetzen des Reaktionsprodukts mit Wasser erhält man N-Trichloracetyl-2-methoxy-benzamid (H., F., B. 60, 1763, 1770).

N.N'- Bis - trichloracetyl - hydrazin $C_4H_2O_2N_2Cl_6 = CCl_3 \cdot CO \cdot NH \cdot NH \cdot CO \cdot CCl_3$ (H 212). Eine als N.N'-Bis-trichloracetyl-hydrazin angesprochene Verbindung $C_4H_2O_2N_2Cl_6$ vom Schmelzpunkt 148—149° erhielten Naik, Patel (Quart. J. indian chem. Soc. 1, 33; C. 1925 I, 488) bei der Umsetzung von Trichloracetamid mit Dischwefeldichlorid in siedendem Benzol. [MATERNE]

c) Brom-Derivate.

Bromessigsäure C₂H₃O₂Br = CH₂Br·CO₂H (H 213; E I 95). B. Zur Bildung nach Lapworth (Soc. 85, 41) vgl. Shaw, Soc. 123, 2237. Aus Eisessig und Brom bei 100° in Gegenwart von wenig Chlorwasserstoff oder Bromwasserstoff (Watson, Soc. 127, 2076), in Gegenwart von sehr wenig rotem Phosphor (Ward, Soc. 121, 1163), in Gegenwart von Acetanhydrid, Acetylchlorid, Acetylchlorid, Trichloressigsäure, Benzoylchlorid oder Bromiden anderer aliphatischer und aromatischer Carbonsäuren (Ward; Shaw; Watson). Beim Kochen von Brommalonsäurediäthylester mit 50% iger Salzsäure (Gault, Klees, Bl. [4] 39, 1004). Beim Erhitzen der Verbindung von Bromketen mit Triäthylamin (Syst. Nr. 336) mit Salzsäure im Rohr auf 135° (Wedekind, Weinand, B. 55, 67). — Kp: 203° (Ward), 203—207° (Shaw). D¹⁰/₂: 1,9335 (Hantzsch, Dürigen, Ph. Ch. 136, 15). n¹⁰/₂: 1,4804 (Ha., Dü.). — Adsorption an Kohle aus wäßt. Lösungen: Schilow, Nekrassow, Ph. Ch. 130, 68; Ж. 60, 107; Namasivayam, C. 1928 I, 662; aus alkoh. Lösung: Griffin, Richardson, Robertson, Soc. 1928, 2708. Ausflockung verschiedener Sole durch Bromessigsäure: Ostwald, Koll. Z. 40, 205, 208; C. 1927 I, 573. Flockende Wirkung von Salzen der Bromessigsäure auf kolloidale Eisen(III)-hydroxyd-Lösung: Herrmann, Helv. 9, 786. Zur Fällung von Proteinen durch Bromessigsäure vgl. Cikánek, Havlík, Kubánek, Bio. Z. 145, 100. Koagulierende Wirkung auf Lösungen von Caseinnatrium und Edestinnatrium: Isgaryschew, Bogomolowa,

Koll.-Z. 38, 238; C. 1926 I, 3306. Verteilung zwischen Wasser und Äther bei 25°: Smith, J. phys. Chem. 25, 619; zwischen Wasser und Chloroform bei 25°: Sm., J. phys. Chem. 25, 227; zwischen Wasser und Benzol bezw. Toluol bei 25°: Sm., White, J. phys. Chem. 25, 1956, 1962; zwischen Wasser und Xylol bei 25°: Sm., J. phys. Chem. 25, 220; zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 730. Ebullioskopisches Verhalten in Dichlormethan: Walden, Izv. imp. Akad. Petrog. [6] 9 [1915], 1489; C. 1925 I, 1676; in Chloroform: W., Izv. imp. Akad. Petrog. [6] 9 [1915], 513; C. 1925 I, 1674; in Tetrachlor-kohlenstoff: W., Izv. imp. Akad. Petrog. [6] 9 [1915], 236; C. 1925 I, 1557. Dichte wäßr. Lösungen bei 20°: Ha., Dü. Oberflächenspannung von 0,1—1,0 n-Lösungen in Wasser bei 25°: Frumkin, Reichstein, Kulvarskaja, Koll. Z. 40, 10. Refraktion wäßr. Lösungen bei 20°: Ha., Dü. Elektrische Leitfähigkeit von Lösungen in Alkohol und in Aceton bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192, 1498. Zur Acidität der Bromessigsäure in Äther und Chloroform: Ha., Voigt, B. 62, 978, 980.

Liefert beim Erhitzen des Dampfes auf ca. 280° in Gegenwart von Tierkohle Bromwasserstoff, Kohlenstoff, Kohlenoxyd, Kohlendioxyd und Methylbromid (Senderens, Aboulenc, C. r. 172, 1585). Das Kaliumsalz liefert beim Schütteln mit Wasserstoff in Kalilauge in Gegenwart von Nickel Essigsäure (Kelber, B. 54, 2256); Geschwindigkeit dieser Reaktion: K. Geschwindigkeit der Reaktion mit Wasser bei 40°: PETRENKO-KRITSCHENKO, B. 61, 846; Ж. 61, 31. Geschwindigkeit und Quantenausbeute der Hydrolyse bei Bestrahlung von Bromessigsäure in Wasser oder von wäßrigen sowie alkalischen Lösungen des Natriumsalzes mit Licht der Wellenlänge 253,6 m μ : Rudberg, Z. Phys. 24, 257; C. 1924 II, 585. Beschleunigung der Umsetzungsgeschwindigkeit des Natriumsalzes mit Wasser bei gewöhnlicher Temperatur durch Kupfersulfat: Holmberg, B. 60, 2192; durch Silberoxyd bei 60° und 75°: v. Euler, Fahlander, Ph. Ch. 100, 174. Geschwindigkeit der Reaktion des Natriumsalzes mit verd. Natronlauge bei 60°, 65° und 75°: Hedelius, Ph. Ch. 96, 350, 361; v. Eu., F.; mit wäßrig-alkoholischer Natronlauge bei 65° und 75°: He. Geschwindigkeit der Hydrolyse durch Natronlauge bei 40° auch in Gegenwart von Natriumbromid, Alkohol oder Natriumacetat: Велкатн, Z. anorg. Ch. 151, 58. Geschwindigkeit der Umsetzung des Kaliumsalzes mit verd. Kalilauge bei 40°: Р.-К., B. 61, 846; Ж. 61, 31; mit alkoh. Kalilauge bei 18° und 60°: Р.-К., Ородкі, В. 59, 2137; Ж. 59, 315; Р.-К., Ж. 61, 1781; С. 1931 I, 440. Geschwindigkeit der Umsetzung des Natriumsalzes mit Calciumhydroxyd in Wasser bei 60° und 75°: v. Eu., F. Geschwindigkeit der Reaktion mit Bariumhydroxyd, Thallium(I)-hydroxyd, Silbernitrit und Silbernitrat in Wasser bei verschiedenen Konzentrationen und Temperaturen: P.-K., B. 61, 846; W. 61, 31; mit Silbernitrat in 95% igem Alkohol bei 180: P.-K., W. 61, 1781; mit kolloidalem Silber in 20%igem Alkohol bei 220: P. K., B. 62, 582; 36. 61, 1778. Geschwindigkeit der Reaktion des Natriumsalzes mit Natriumthiosulfat in sehr verdünnten wäßrigen Lösungen bei 25°: LA MER, Am. Soc. 51, 3343; bei 30°, 40° und 50°: KAPPANNA, J. indian chem. Soc. 6 [1929], 47; Einfluß von Alkohol und von Rohrzucker auf die Geschwindigkeit dieser Reaktion: Ka., J. indian chem. Soc. 6, 421; C. 1929 II, 2145. Geschwindigkeit der Reaktion mit Tetramethylammoniumhydroxyd oder Piperidin in Wasser bei 40%: P.-K., B. 61, 846; M. 61, 31; mit Piperidin in Alkohol bei 180: P.-K., M. 61, 1781.

Verbindung mit Hexamethylentetramin s. dort, Syst. Nr. 4013.

Bromessigsäure-methylester $C_3H_5O_3Br=CH_2Br\cdot CO_3\cdot CH_3$ (H 213; E I 96). Die Erträglichkeitsgrenze der Reizwirkung auf den Menschen liegt bei 45 mm³/m³ Luft (Flury, Z. exp. Med. 13, 567; C. 1921 III, 565). Reizwirkung auf die Augen: Lehrecke, C. 1927 I, 2598. — Zur Verwendung als Kampfstoff vgl. van Nieuwenburg, C. 1922 IV, 984; Herbst, Koll. Beih. 23, 332; C. 1926 II, 2544.

Bromessigsäure-äthylester C₄H₇O₃Br = CH₂Br·CO₃·C₄H₅ (H 214; E I 96). B. Beim Erhitzen von 99,5 %iger Essigsäure mit Brom in Gegenwart von Acetanhydrid auf 100° und Behandlung des Reaktionsprodukts mit Alkohol auf dem Wasserbad (Shaw, Soc. 123, 2240). — Kp₇₆₀: 158,2° (Lecat, Ann. Soc. scient. Bruxelles 48 I, 117). Bromessigsäureäthylester bildet binäre azeotrope Gemische mit Brombenzol (Kp₇₆₀: ca. 152,5°; ca. 60 Gew. % Bromessigsäureäthylester) (L., Ann. Soc. scient. Bruxelles 48 I, 117) und mit o Chlor-toluol (Kp₇₆₀: 154°; 55 Gew. % Bromessigsäureäthylester) (L., Ann. Soc. scient. Bruxelles 47 I, 112). — Geschwindigkeit der Reaktion mit Natriummethylat in Methanol bei 18—20°: Tronow, Akiwis, Orlowa, Ж. 61, 349; C. 1929 II, 2550. Liefert bei der Kondensation mit Aceton in siedendem Benzol in Gegenwart von Magnesium und Zersetzung des Reaktionsprodukts mit Eis + verd. Schwefelsäure β-Oxy-isovaleriansäureäthylester (Kon, Linstead, Soc. 127, 624); analog verläuft die Reaktion mit Cyclopentanon (Kon, L., Soc. 127, 620) und mit Propiophenon (Johnson, Kon, Soc. 1926, 2753); bei der Kondensation mit Butyrophenon und Magnesium in siedendem Benzol und Behandlung des Reaktionsprodukts mit Phosphoroxychlorid in siedendem Benzol erhält man β-Propyl-zimtsäure-äthylester und 2-Phenyl-penten-(2)-carbonsäure-(1)-āthylester (J., Kon, Soc. 1926, 2755); analog bilden sich unter Verwendung von Isobutyrophenon β-Isopropyl-zimtsäure-äthylester und

3-Methyl-2-phenyl-buten-(2)-carbonsäure-(1)-āthylester (J., Kon, Soc. 1926, 2756). Bei Einw. von Butyrophenon und Zink in Benzol entsteht der Åthylester der β-Oxy-β-propyl-hydrozimtsäure (Clutterbuck, Raper, Biochem. J. 19, 912). Liefert beim Behandeln mit Phenoxyessigsäureäthylester und Zinkspänen in Benzol wenig γ-Phenoxy-acetessigsäureäthylester und andere Produkte (Pfeiffer, Willems, B. 62, 1244); analog reagiert [3-Methoxy-phenoxy]-essigsäure-āthylester (Pf., W.). Bei Einw. auf den Äthylester der 12-Oxotridecan-carbonsäure-(1) in Benzol bei Gegenwart von Zink, Behandlung des Reaktionsprodukts mit Phosphortribromid in Benzol und Verseifung des entstandenen Esters mit siedender alkoholischer Kalilauge entsteht 2-Methyl-tridecen-(1)-dicarbonsäure-(1.13) (Ruzicka, Stoll., Helv. 10, 693). Geschwindigkeit der Reaktion von Bromessigsäureäthylester mit Pyridin bei 16—18°: Tronow, Ж. 58, 1286; C. 1927 II, 1145; bei 18—20°: T., A., O., Ж. 61, 345; in Alkohol verschiedenen Wassergehaltes bei 45°: Dexter, McCombie, Scarborough, Soc. 123, 1236. — Die Etträglichkeitsgrenze der Reizwirkung auf den Menschen liegt bei 80 mm³/m³ Luft (Flury, Z. exp. Med. 13, 567; C. 1921 III, 565). Toxizität bei Kaninchen und Katzen: Wachtel, Z. exp. Med. 13, 567; C. 1920 III, 212. — Zur Verwendung als Kampfstoff s. die Literatur im Artikel β-β'-Dichlor-diäthylsulfid (E II 1, 348); vgl. ferner Au. M. Prentiss, Chemicals in War [New York-London 1937], S. 132.

Bromessigsäure-1-[octyl-(2)-ester], l-[Methyl-n-hexyl-carbinol]-bromacetat $C_{10}H_{19}O_2Br=CH_2Br\cdot CO_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3$ (E I 96). B. Aus Bromacetylchlorid und linksdrehendem Octanol-(2) in Gegenwart von Pyridin (Rule, Mitchell, Soc. 1926, 3203, 3206). — Geruchlose Flüssigkeit. Kp₁₅: 121°. D²⁰: 1,1731; D²⁰: 1,1549; D²⁰: 1,1360; D²⁰: 1,1127. α_{17}^{20} : —13,3° (l = 1 dm); Drehungsvermögen der reinen Substanz zwischen 22,0° und 83,8° und der Lösungen in verschiedenen Lösungsmitteln bei 20° für λ = 589,3, 578,0, 546,1 und 435,8 m μ : R., M.

Bromessigsäure-[α-brom-äthylester] C₄H₆O₂Br₂ = CH₂Br·CO₂·CHBr·CH₃ (H 215). B. Aus Bromacetylbromid und Paraldehyd in Gegenwart von wenig Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Flüssigkeit. Kp₈: 95—97°.

Bromessigsäure-anhydrid C₄H₄O₃Br₂ = CH₂Br·CO·O·CO·CH₂Br (H 215; E I 97). Zur Bildung bei der Destillation von Bromessigsäure mit Phosphorpentoxyd im Vakuum vgl. Brauns, Am. Soc. 47, 1297.

Jod-tris-monobromacetat $C_6H_6O_6Br_3I = (CH_2Br \cdot CO \cdot O)_3I$. — $C_6H_6O_6Br_3I + I(IO_3)_3$. B. In geringer Menge bei der Behandlung von Bromessigsäure mit Jod und rauchender Salpetersäure in Acetanhydrid (FICHTER, STERN, Helv. 11, 1262). — Festes Produkt.

Bromacetyl-schwefelsäure, Schwefelsäure-bromessigsäure-anhydrid C₂H₃O₅BrS = CH₂Br·CO·O·SO₃H. B. Aus Bromessigsäure und Schwefeltrioxyd unter Kühlung (BACKER, R. 44, 1058). — Gelblicher Sirup. — Liefert bei raschem Erwärmen auf 80° Bromessigsäure-sulfonsäure (Syst. No. 279) und wenig Brommethandisulfonsäure (S. 35).

Bromacetylbromid $C_2H_2OBr_2=CH_2Br\cdot COBr$ (H 215; E I 97). B. Zur Bildung aus Essigsäure und Brom in Gegenwart von rotem Phosphor vgl. WARD, Soc. 121, 1163.

α.α'-Dibrom-diacetamid C₄H₆O₂NBr₂ = CH₂Br·CO·NH·CO·CH₂Br. Die im folgenden aufgeführte Verbindung ist offenbar nicht identisch mit der früher (H 216) beschriebenen Verbindung. — B. Neben ω-Brom-4-äthoxy-acetophenon beim Sättigen einer Mischung von Phenetol, Bromacetonitril, Zinkchlorid und wenig absol. Äther mit Chlorwasserstoff (Houben, W. Fischer, B. 60, 1771). — Blättchen (aus Aceton). F: 195° (Zers.).

Chlorbromessigsäure $C_2H_2O_2ClBr = CHClBr \cdot CO_2H$.

a) Rechtsdrehende Form.

Präparat von Backer, Mook. B. Aus der inakt. Säure durch Spaltung mittels des Chininsalzes (Backer, Mook, Versl. Akad. Amsterdam 35, 738; C. 1926 II, 2051). — Ist nur in Lösung erhalten worden. Zeigt in wäßr. Lösung Rechtsdrehung. 8 Monate lange Aufbewahrung der wäßr. Lösung des Ammoniumsalzes bewirkt 50%ige Racemisierung; racemisiert sich in alkal. Lösung bei kurzem Erwärmen auf dem Wasserbad (B., M.; vgl. dazu McMath, Read, Soc. 1927, 538). — Ammoniumsalz. Ist in wäßr. Lösung linksdrehend (B., M.).

Präparat von Read, McMath. B. Das Salz des l-2-Amino-1-oxy-hydrindens entsteht bei rascher Krystallisation des l-2-Amino-1-oxy-hydrinden-Salzes der inakt. Chlorbromessigsäure aus übersättigter Lösung in Chloroform (Read, McMath, Soc. 1926, 2189). — Die freie Säure wurde nicht isoliert. Racemisierung erfolgt beim Lösen des l-2-Amino-1-oxy-hydrinden-Salzes in Methanol oder Aceton, langsamer beim Erwärmen in Methanol + Chloroform oder in Eisessig. — Salz des l-2-Amino-1-oxy-hydrindens C₉H₁₁ON+C₉H₂O₂ClBr. Nadeln (aus Chloroform). F: ca. 157° (Zers.). Fast unlöslich in Chloroform. Ist linksdrehend in Aceton und Eisessig und zeigt keine Drehung in wenig Methanol enthaltendem Chloroform.

b) Linksdrehende Form.

Prāparat von Backer, Mook. B. Das Brucinsalz krystallisiert aus einer Lösung der inakt. Chlorbromessigsäure in Wasser (Backer, Mook, Versl. Akad. Amsterdam 35, 738; Soc. 1928, 2127; vgl. McMath, Read, Soc. 1927, 538). — Ist nur in Lösung untersucht worden. $\alpha_{\rm S}^{\rm v}$ in Wasser im 2 dm-Rohr zwischen c = 3 ($-0.335^{\rm o}$) und c = 6 ($-1.14^{\rm o}$): B., M. Rotationsdispersion in Wasser: B., M. Elektrolytische Dissoziationskonstante k in Wasser bei 17°: 0,081 (B., M.). — Racemisiert sich nicht merklich in wäßr. Lösung bei gewöhnlicher Temperatur; Racemisierung erfolgt in verd. Schwefelsäure bei 100° oder in Natronlauge bei Zimmertemperatur; in alkalischem Medium wirken Kaliumnitrat oder Calciumnitrat beschleunigend auf die Umwandlung; Geschwindigkeit dieser Reaktionen: B., M. — Ammoniumsalz. Ist linksdrehend in wäßr. Lösung (B., M.). — Natriumsalz. $\alpha_{\rm D}$: $+0.2^{\rm o}$ (Wasser; 1=2 dm; c = 3). Rotationsdispersion in Wasser: B., M. — Brucinsalz $C_{23}H_{20}O_4N_2+C_3H_2O_2{\rm ClBr}+2$ (oder 3) $H_2{\rm O}$. Krystalle (aus Wasser). Die Lösung in Chloroform + Methanol zeigt bei 25° mit der Zeit zunehmende Linksdrehung (B., M.).

Präparat von Read, McMath. B. Das Salz des d-2-Amino-1-oxy-hydrindens entsteht bei der Krystallisation des d-2-Amino-1-oxy-hydrinden-Salzes der inaktiven Chlorbromessigsäure aus Chloroform (Read, McMath, Soc. 1926, 2191). — Die freie Säure ist nicht isoliert worden. Verhält sich gegen racemisierende Einflüsse analog der rechtsdrehenden Form. —

Salz des d-2-Amino-1-oxy-hydrindens. Nadeln.

o) Inaktive Form. al-Chlorbromessigsäure (H 217). B. Aus dem Äthylester durch Verseifung mit der äquivalenten Menge 1n-alkoh. Kalilauge (BACKER, MOOK, Soc. 1928, 2126; van Mels, Diss. [Groningen 1926], S. 49). Durch Zugabe von Wasser zu Chlorbromacetylchlorid oder Chlorbromacetylbromid (Vanderstichele, Soc. 123, 1227; B., M., Soc. 1928, 2126). Beim Erhitzen von Chlorbrommalonsäure auf 130° (Read, McMath, Soc. 1926, 2188). Aus Chlorbromessigsäureanilid durch Erhitzen mit einem äquimolekularen Gemisch von konz. Salzsäure und rauchender Bromwasserstoffsäure (v. Braun, Jostes, Münch, A. 453, 145). — Außerst zerfließliche Nadeln. F: 25° (V.), 31,5° (B., M.). 38° (R., McM.). Kp-qer: 210—212° (unkorr.; geringe Zersetzung) (V.); Kp₁₁: 103—104° (B., M.). D^{n.s.}: 1,9848 (V.). n^{n.s.}: 1,5014 (V.). Leicht löslich in Wasser, Alkohol, Ather und Aceton (R., McM.). — Elektrolytische Dissoziationskonstante k in Wasser bei 25° (durch Leitfähigkeitsmessungen bestimmt): 0,057 (B., M.). — Kochende 0,1 n-Natronlauge spaltet schnell Halogenwasserstoff ab (R., McM.). Läßt sich mit Chinin und Brucin (B., M., Verel. Akad. Ansterdam 35, 737; B., M.) oder mit d- und 1-2-Amino-1-oxy-hydrinden (R., McM.) in die opt.-akt. Komponenten zerlegen. — KC₂HO₂ClBr + C₂H₂O₂ClBr. Krystalle (B., M.). — KC₂HO₂ClBr. Krystalle (aus Wasser). Leichter löslich als das vorangehende Salz (B., M.). — Salz des d-2-Amino-1-oxy-hydrindens. Tafeln (R., McM.). — Salz des l-2-Amino-1-oxy-hydrindens C₉H₁₁ON + C₂H₂O₂ClBr. Tafeln (aus Methanol + Chloroform oder Athylacetat). F: 165° (Zers.). Leicht löslich in Methanol und Aceton; fast unlöslich in Chloroform. [α]₀: —20,0° (Methanol; c = 1,3). [α]₀: —56° (Aceton; c = 1,3). Die Lösung in Aceton zeigt Mutarotation (R., McM.). — Brucinsalz. Nadeln (aus Aceton). Löslich in Chloroform, c = 1,3) (R., McM.).

Chlorbromessigsäure-äthylester $C_4H_9O_2ClBr = CHClBr \cdot CO_2 \cdot C_2H_5$ (H 217). B. Aus Äthyl- $[\alpha.\beta$ -dichlor-vinyl]-äther beim Behandeln mit Brom und Erwärmen oder Aufbewahren des Reaktionsprodukts unter Zutritt von Feuchtigkeit (Crompton, Triffitt, Soc. 119, 1874). Aus Äthyl- $[\alpha.\beta$ -dichlor- β -brom-vinyl]-äther durch Erhitzen mit Alkohol oder durch Einw. von konz. Schwefelsäure, Essigsäure oder Benzoesäure (Smith, Soc. 1927, 1101). — Kp: 174° (Cr., Tr.). D_1^m : 1,5890 (Cr., Tr.); D_1^m : 1,5857 (Vanderstichele, Soc. 123, 1228). D_1^m : 1,4659 (V.).

Chlorbromacetylchlorid $C_2HOCl_2Br = CHClBr \cdot COCl.$ B. Neben anderen Produkter aus Athyl- $[\alpha.\beta$ -dichlor-vinyl]-äther beim Behandeln mit Brom und Erwärmen oder Aufbewahren unter Ausschluß von Feuchtigkeit (Crompton, Triffitt, Soc. 119, 1874; vgl. a. Vanderstichele, Soc. 123, 1226; Backer, Mook, Soc. 1928, 2126). — Kp: 138—139° (Cr., Tr.). Die folgenden Angaben bezieben sich auf nicht ganz einheitliche Präparate. D_4^{**} : 1,9665; D_4^{**} : 1,9402 (V.). n_1^{**} : 1,5060; n_2^{**} : 1,5030 (V.).

Chlorbromacetylbromid $C_2HOClBr_2 = CHClBr \cdot COBr$. B. Entsteht in geringer Menge neben anderen Produkten aus Äthyl- $[\alpha.\beta]$ -dichlor-vinyl]-äther beim Behandeln mit Brom und Aufbewahren oder Erwärmen des Reaktionsprodukts unter Ausschluß von Feuchtigkeit (BACKER, MOOK, Soc. 1928, 2126). Beim Erwärmen von Chlorbromessigsäure mit Phosphortribromid in Chloroform (B., M.). — Kp: 158—160°; Kp₁₈: 47—49°.

Chlorbromessigsäure-amid, Chlorbromacetamid C₂H₂ONClBr = CHClBr·CO·NH₂ (H 217). B. Aus Chlorbromacetylchlorid und Ammoniak (McKie, Soc. 123, 2214).

Krystalle (aus verd. Alkohol oder Benzol). F: 124,8° (McKie, Soc. 123, 2214). Thermische Analyse der binären Systeme mit Dichloracetamid und Chlorjodacetamid: McKie, Soc. 123, 2216; 125, 1076.

Dichlorbromacetylchlorid $C_2OCl_3Br = CCl_2Br \cdot COCl$. B. Durch Einw. von Chlor auf Äthyl- $[\alpha.\beta$ -dichlor- β -brom-vinyl]-äther bei 0^0 und Erwärmen des Reaktionsprodukts auf 60^0 unter Ausschluß von Luftfeuchtigkeit (Smith, Soc. 1927, 1101). Ist durch Überführung in Dichlorbromacetamid identifiziert worden.

Dibromessigsäure $C_2H_2O_2Br_2 = CHBr_2 \cdot CO_2H$ (H 218). B. Beim Erhitzen von Dibrommalonsäure auf ca. 125° (Mohrschulz, Z. El. Ch. 32, 435). — Adsorption aus wäßr. Lösung durch Cocosnußkohle: Namasivayam, C. 1928 I, 662. — Liefert beim Erhitzen des Dampfes auf ca. 280° in Gegenwart von Tierkohle Bromwasserstoff, Kohlenoxyd, Kohlendioxyd, Methylenbromid und Bromoform (Senderens, Aboulenc, C. r. 172, 1585). Geschwindigkeit der Reaktionen mit Wasser und mit wäßr. Lösungen von Kaliumhydroxyd, Bariumhydroxyd, Thallium(I)-hydroxyd, kolloidalem Silber, Silbernitrit, Silbernitrat, Tetramethylammoniumhydroxyd und Piperidin bei verschiedenen Konzentrationen und Temperaturen: Petrenko-Kritschenko, B. 61, 846, 847; Ж. 61, 31, 32; mit Piperidin und Silbernitrat in 95% igem Alkohol bei 18°: P.-K., Ж. 61, 1781; C. 1931 I, 440.

Dibromacetylbromid $C_2HOBr_3 = CHBr_2 \cdot COBr$ (H 219).

H 219, Z. 24 v. o. statt "Acetylbromid" lies "Bromacetylbromid".

Dibromacetonitril C₂HNBr₂ = CHBr₂·CN (H 219; E I 98). B. Beim Erhitzen von Dibromcyanacetamid mit bei 0° gesättigter wäßriger Bromwasserstoffsäure im Rohr auf 100° (Ott, Löpmann, B. 55, 1260; O., Finken, B. 58, 1703).

Chlordibromacetylchlorid $C_2OCl_2Br_2 = CClBr_2 \cdot COCl$. B. Aus Äthyl-[$\alpha.\beta$ -dichlor- $\alpha.\beta.\beta$ -tribrom-äthyl]-äther bei längerem Aufbewahren oder Erwärmen auf ca. 60° unter Ausschluß von Luftfeuchtigkeit (Smith, Soc. 1927, 1101). — Ist durch Überführung in Chlordibromacetamid und Chlordibromacetanilid identifiziert worden.

Äthyl- $[\alpha.\beta$ -dichlor- $\alpha.\beta.\beta$ -tribrom-äthyl]-äther, $\alpha.\beta$ -Dichlor- $\alpha.\beta.\beta$ -tribrom-diäthyläther $C_4H_5OCl_2Br_3=CClBr_2\cdot CClBr\cdot O\cdot C_2H_5$. B. Bei Einw. von Brom auf Äthyl- $[\alpha.\beta$ -dichlor- β -brom-vinyl]-äther bei 0° (SMITH, Soc. 1927, 1101). — Krystalle (aus Petroläther). F: 28—29°. D_1^{α} : 2,2297; D_2^{α} : 2,2138. n_D^{α} : 1,5683. Leicht löslich in Alkohol, Aceton, Tetrachlor-kohlenstoff und Benzol, unlöslich in Wasser. — Gibt beim Aufbewahren oder beim Erwärmen auf ca. 60° Äthylbromid und Chlordibromacetylchlorid. Geht an feuchter Luft in Oxalsäure über.

Tribromessigsäure C₂HO₂Br₃ = CBr₃·CO₂H (H 220; E I 98). Kryoskopisches Verhalten in Wasser: de Groote, Bl. Soc. chim. Belg. 37, 234; in Brom: Finkelstein, Ph. Ch. 105, 15; 36. 58; in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1915], 1163; C. 1925 I, 1557. Elektrische Leitfähigkeit in Wasser bei 25°: de G., Bl. Soc. chim. Belg. 37, 232. Potentialdifferenzen an der Trennungsfläche zwischen Luft und Lösungen von Tribromessigsäure in Wasser: Frumkin, Ph. Ch. 111, 193. Über die Acidität der Tribromessigsäure in Äther und Chloroform: Hantzsch, Voigt, B. 62, 978, 980. — Zerfällt beim Erhitzen des Dampfes auf ca. 280° in Gegenwart von Tierkohle hauptsächlich in Kohlendioxyd und Bromoform; außerdem entstehen geringe Mengen Bromwasserstoff, Kohlenoxyd und Kohlenstofftetrabromid (Senderens, Aboulenc, C. r. 172, 1585). Geschwindigkeit der Zersetzung in Kohlendioxyd und Bromoform in Wasser bei 25°, auch in Gegenwart von wenig Chlorwasserstoff oder Natriumacetat: de G., Bl. Soc. chim. Belg. 37, 225; C. 1928 II, 1548. Liefert bei Bestrahlung der Lösung in Wasser mit ultraviolettem Licht Kohlendioxyd und Bromoform; das Kaliumsalz gibt bei der Bestrahlung in verdünnter wäßriger Lösung Bromwasserstoff, Kaliumbromid, Kohlenoxyd und Kohlendioxyd, in konzentrierterer Lösung außerdem Bromoform; aus dem Eisen(III)-Salz werden in wäßriger, freie Tribromessigsäure enthaltender Lösung Kohlendioxyd und Hexabromäthan erhalten (Jaeger, Soc. 119, 2071; J., Berger, R. 41, 78). Geschwindigkeit der Abspaltung von Brom beim Behandeln mit Wasser, mit Kaliumhydroxyd, Bariumhydroxyd, kolloidalem Silber, Silbernitrit, Silbernitrat, Tetramethylammoniumhydroxyd und Piperidin in Wasser bei verschiedenen Konzentrationen und Temperaturen: Petrenko-Kritschenko, B. 61, 846, 847; Ж. 61, 31, 32; beim Behandeln mit Kaliumhydroxyd und Silbernitrat in 95% igem Alkohol bei 18°: P.-K., Ж. 61, 1781; C. 1931 I, 440.

Tribromessigsäure-äthylester C₄H₅O₂Br₃ = CBr₃·CO₃·C₂H₅ (H 221; E I 98). B. Neben anderen Produkten beim Behandeln von Bromal mit Aluminiumäthylat oder mit Acetaldehyd allein oder in Äther in Gegenwart von Aluminiumäthylat oder Aluminiumisoamylat (Nakai, Bio. Z. 152, 270, 272, 274). — Geschwindigkeit der Reaktion mit Pyridin bei 18—20°: Tronow, Akiwis, Orlowa, Ж. 61, 346; C. 1929 II, 2550.

Tribromessigsäure - [β.β.β-tribrom - äthyl]-ester C₄H₂O₂Br₆ = CBr₃·CO₂·CH₂·CBr₃ (H 221). B. Zur Bildung aus Bromal durch Einw. von Aluminiumäthylat vgl. Nakai, Bio. Z. 152, 274. — Krystalle (aus Methanol oder Petroläther). F: 69°. Kp_{15,5}: 206—207°.

Tribromessigsäure-isoamylester C₇H₁₁O₂Br₃ = CBr₃·CO₂·C₅H₁₁. B. Neben anderen Produkten bei Behandlung von Bromal mit Acetaldehyd in Gegenwart von Aluminiumisoamylat (Nakai, Bio. Z. 152, 272). — Kp₈: 103—121°.

Tribromacetylbromid C₂OBr₄ = CBr₃·COBr (H 221). B. Beim Erhitzen von Tribromessigsäure mit Phosphortribromid (Steinkopf, Mieg, Herold, B. 53, 1147). — Kp: 2100-

bis 215°. Kp₁₂: 88—90°.

Tribromacetamid C₂H₂ONBr₃ = CBr₃·CO·NH₂ (H 221; E I 98). B. Beim Lösen von Dibromeyanacetamid in verd. Natronlauge in Gegenwart von Harnstoff (GUPTA, THORPE, Soc. 121, 1900).

d) Jod-Derivate.

Jodessigsäure C₂H₃O₂I = CH₂I·CO₂H (H 222; E I 98). B. Zur Bildung aus Chloressigsaure und Alkalijodid in Aceton vgl. McMath, Read, Soc. 1927, 539. — Adsorption aus wäßr. Lösung durch Kohle: Schilow, Nekrassow, Ph. Ch. 130, 68; 34. 60, 107. Ausflockung von Schwefel-Sol durch Jodessigsäure: Ostwald, Koll.-Z. 40, 205; C. 1927 I, 573. Verteilung zwischen Wasser und Chloroform, Wasser und Benzol und Wasser und Toluol bei 25°: Sмітн, Wніть, J. phys. Chem. 33, 1959, 1965, 1971. Oberflächenspannung von 0,1—0,8 n-Lösungen von Jodessigsäure in Wasser bei 25°: FRUMKIN, REICHSTEIN, KULVARSKAJA, Koll. Z. 40, 10. Ultraviolettes Absorptionsspektrum der freien Säure und der Alkalisalze in Wasser zwischen ca. 270 m μ und 220 m μ : Ley, Zschacke, B. 57, 1705. Elektrische Leitfähigkeit in Wasser und Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 193; in Aceton bei 30°: H., B., J. phys. Chem. 33, 1498. Potentialdifferenzen an der Trennungsfläche zwischen Luft und Lösungen von Jodessigsäure in Wasser: Fru., Ph. Ch. 111, 193. — Das Kaliumsalz liefert beim Schütteln mit Wasserstoff in Kalilauge in Gegenwart von Nickel Essigsäure (Kelber, B. 54, 2256); Geschwindigkeit dieser Reaktion: KE. Bei der Einw. von Sulfurylchlorid oder Brom in Ather wird Jod ausgeschieden (McMath, Read, Soc. 1927, 539). Geschwindigkeit der Reaktion mit Kaliumrhodanid in Wasser oder verd. Salzsäure und mit Bariumrhodanid in Wasser bei 25°: HOLMBERG, Ph. Ch. 97, 142. Geschwindigkeit der Reaktion des Ammonium-, Natrium-, Kalium- und Bariumsalzes mit den entsprechenden Salzen der Rhodanwasserstoffsaure, auch in Gegenwart der Chloride, in Wasser bei 25°: H. Geschwindigkeit $(C_2H_2O_2Cl)_6]X$ (X == beliebiger Säurerest) beim Behandeln mit Kaliumjodid in neutraler oder schwach saurer Lösung bei 50° (Reihlen, Illig, Wittig, B. 58, 17). Sehr schwer löslich. — $[Fe_3(C_2H_2O_2I)_6(OH)_2][C_2H_2O_2I]$. Hellorangefarbenes Pulver. Unlöslich in Wasser. Die rotgelbe Lösung in Alkohol liefert bei längerem Aufbewahren Jodessigsäure-äthylester (Weinland, Loebich, Z. anorg. Ch. 151, 283).

Jodessigsäure-methylester $C_3H_5O_2I=CH_2I\cdot CO_2\cdot CH_3$ (H 222). Zur Verwendung als Kampfstoff vgl. Van Nieuwenburg, C. 1922 IV, 984.

Jodessigsäure-äthylester $C_4H_7O_2I = CH_2I \cdot CO_2 \cdot C_2H_5$ (H 222; E I 99). Kp₃₅: 78° (Herbst, Koll. Beih. 23, 332; C. 1926 II, 2544). — Verhalten gegen Wasser bei Zimmertemperatur: Rona, Z. exp. Med. 13, 26. — Die Erträglichkeitsgrenze der Reizwirkung auf den Menschen liegt bei 60 mm³/m³ Luft (Flury, Z. exp. Med. 13, 567; C. 1921 III, 565). — Zur Verwendung als Kampfstoff s. die Literaturzusammenstellung im Artikel β . β -Dichlordiäthylsulfid (E II 1, 348); vgl. ferner A. M. Prentiss, Chemicals in war [New York-London 1937], S. 138.

Jodessigsäure-[d-octyl-(2)-ester], [d-Methyl-n-hexyl-carbinol]-jodacetat $C_{10}H_{19}O_2I=CH_2I\cdot CO_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3$. B. Aus nicht näher beschriebenem Chloressigsäure-[d-octyl-(2)-ester] und Magnesiumjodid in Äther (Rule, Mitchell, Soc. 1926, 3203, 3206). — Geruchlose Flüssigkeit. Kp₁₇: 146—147°. D_4^{Hig} : 1,3013; D_4^{Hig} : 1,2812; D_4^{Hig} : 1,2587. α_2^{mo} : +19,08° (l = 1 dm); Drehungsvermögen der unverdünnten Substanz zwischen 19,7° und 64,3° und der Lösungen in verschiedenen Lösungsmitteln bei 20° für λ = 589,3, 578,0, 546,1 und 435,8 m μ : R., M.

Jodacetonitril $C_2H_2NI = CH_2I \cdot CN$ (H 223; E I 223). Bei längerem Behandeln mit Quecksilber-di-p-tolyl in siedendem Toluol entsteht p-Tolyl-quecksilberjodid (Whitmore, Thurman, Am. Soc. 51, 1498).

Chlorjodessigsäure $C_2H_2O_2CII = CHCII \cdot CO_2H$.

a) Rechtsdrehende Form. B. Aus der inaktiven Form durch Spaltung mit 1-1-Oxyhydrindamin-(2) oder mit Brucin (McMath, Read, Soc. 1927, 539, 540). — Die freie Säure ist

nicht isoliert worden. Eine Lösung des Ammoniumsalzes (c = 0,9) in der äquivalenten Menge verd. Salzsäure zeigt $[\alpha]_p$: $+0,9^0$. — Das Ammoniumsalz racemisiert sich beim Erhitzen der Lösung in Wasser, schneller in Gegenwart von Ammoniak oder in Gegenwart der aquivalenten Menge Natriumhyaroxyd. — $NH_4C_2HO_2CII$. Nadeln, die beim Aufbewahren braun werden. Zersetzt sich bei $149-150^0$. $[\alpha]_p$: $+23,5^0$ (Wasser; c = 4). — Salz des l-1-0xy-hydrindamins-(2). Nadeln. $[\alpha]_p$: $-2,0^0$ (Wasser; c = 1). — Brucinsalz. Prismen (aus Wasser). $[\alpha]_p$: $+21,0^0$ (Methanol; c = 0,6). Leichter löslich als das Brucinsalz der linksdrehenden Form.

b) Linksdrehende Form. B. Aus der inaktiven Form durch Spaltung mit 1-1-0xy-hydrindamin-(2) oder mit Brucin (McMath, Read, Soc. 1927, 539, 540). — Die freie Säure ist nicht isoliert worden. — Racemisation erfolgt unter den gleichen Bedingungen wie bei der rechtsdrehenden Form. — $NH_4C_2HO_2CII$. Nadeln, die beim Aufbewahren braun werden. Zersetzt sich bei $149-150^{\circ}$. [α]₁: — $25,1^{\circ}$ (Wasser; c=2). — Salz des 1-1-0xy-hydrindamins-(2) $C_9H_{11}ON+C_2H_2O_2CII$. Prismen (aus Methanol + Äthylacetat). F: 149° (Zers.). [α]₁: — $34,0^{\circ}$ (Wasser; c=1). Leicht löslich in Wasser und warmem Methanol, schwer in Aceton, unlöslich in Chloroform und Äthylacetat. — Brucinsalz. Prismen. F: $158-160^{\circ}$ (Zers.). [α]₁: — $22,0^{\circ}$ (Methanol; c=0,6). Leicht löslich in warmem Methanol, sehr schwer in heißem Wasser.

c) Inaktive Form, dl-Chlorjodessigsäure. B. Aus Chlorjodacetylchlorid beim Behandeln mit der berechneten Menge Wasser (Crompton, Carter, Soc. 123, 576; McMath, Read, Soc. 1927, 538). — Blättchen (aus Petroläther). F: 90° (Cr., Ca.). Leicht löslich in Wasser und organischen Lösungsmitteln; die Lösungen in Petroläther oder Benzol werden am Sonnenlicht sehr schnell violett (Cr., Ca.). — Läßt sich mit l-1-Oxy-hydrindamin-(2) oder Brucin in die optisch aktiven Komponenten zerlegen (McM., R.). — Ba(C₂HO₂CII)₂. Krystalle (aus Wasser) (Cr., Ca.).

Chlorjodacetylchlorid C₂HOCl₂I = CHClI·COCl. B. Durch Einw. von Jod(I)-chlorid auf Äthyl-[α.β-dichlor-vinyl]-äther und nachfolgendes Erwärmen auf 50° (Скомртон, Сактек, Soc. 123, 576; МсМатн, Read, Soc. 1927, 538). — Beim Behandeln mit Wasser entsteht Chlorjodessigsäure.

Chlorjodacetamid C₂H₃ONCII = CHCII·CO·NH₂ (H 224). B. Aus Chlorjodacetylchlorid und Ammoniak (Crompton, Carter, Soc. 123, 576). — Nadeln (aus Wasser oder Benzol). Thermische Analyse der binären Systeme mit Dichloracetamid und Chlorbromacetamid: McKie, Soc. 125, 1076.

e) Nitro- und Azido-Derivate.

Nitroessigsäure $C_2H_3O_4N=O_2N\cdot CH_2\cdot CO_2H$ (H 225; E I 99). Geschwindigkeit der Zersetzung in Kohlendioxyd und Nitromethan in wäßr. Lösung bei 18° und 20°: Pedersen, Am. Soc. 49, 2688; in saurer Lösung bei verschiedenem p_H und Einfluß von verschiedenen anorganischen und organischen Salzen, Glucose und Rohrzucker auf die Geschwindigkeit bei 15°, 20° und 25°: Heuberger, Svensk kem. Tidskr. 38, 340, 381; C. 1927 I, 834, 1259; P., Trans. Faraday Soc. 23, 316; C. 1927 II, 1230. Beim Behandeln mit konz. Salzsäure bilden sich Hydroxylamin und Oxalsäure (H., Svensk kem. Tidskr. 38, 340). — $(NH_4)_2C_2HO_4N$. Zersetzlich (Steinkoff, A. 434, 33). — $Ag_2C_2HO_4N$ (St.).

Zersetzlich (Steinkoff, A. 434, 33). — Ag₂C₂HO₄N (St.).

Nitroessigsäure-methylester C₃H₅O₄N = O₂N·CH₂·CO₂·CH₃ (H 225). B. Beim Behandeln einer Lösung von Nitroessigsäure in Methanol mit Chlorwasserstoff unter Kühlung (Steinkoff, A. 434, 28). — Kp₃₁: 106—110°.

Nitroessigsäure-äthylester C₄H₇O₄N = O₂N·CH₂·CO₂·C₂H₅ (H 225; E I 100). B. Beim Behandeln von Nitroessigsäure oder ihrem Dikaliumsalz in Alkohol mit Chlorwasserstoff unter Kühlung (Steinkopf, A. 434, 26). Durch Zutropfen von konz. Schwefelsäure zu einer alkoh. Lösung von Nitroessigsäure bei —15° bis + 3° (St.). Beim Behandeln von Acetessigester mit Kupfernitrat und Acetanhydrid bei höchstens 50° (Menke, R. 44, 145). — Kp₈₀: 104—106°; Kp₁₃: 97° (St.). Kp₁₁: 94° (v. Auwers, Harres, B. 62, 2297). D₄⁽³¹: 1,2115; D₇⁽³¹: 1,204 (v. Auw., H.). n₃⁽³¹: 1,4243; n_{He}⁽³¹: 1,4269; n₃⁽³¹: 1,4330; n₇⁽³¹: 1,4382; n_{He}⁽³¹: 1,4238 (v. Auw., H.). — Das Silbersalz liefert beim Behandeln mit Methyljodi in der Kälte α-Nitropropionsäure-äthylester und Methyl-acinitro-essigsäure-äthylester (Syst. Nr. 279); analog verläuft die Reaktion mit Athyljodid (St.). — NH₄C₄H₆O₄N. F: 124° (St.). — AgC₄H₆O₄N. Krystalle (aus Alkohol). Wird bei 40° dunkel und zersetzt sich bei 117—119° (St.). Färbt sich bei längerem Aufbewahren rosa.

Nitroessigsäure-propylester $C_5H_9O_4N=O_2N\cdot CH_2\cdot CO_2\cdot CH_2\cdot C_2H_5$. B. Aus dem Dikaliumsalz der Nitroessigsäure und Propylalkohol bei Einw. von Chlorwasserstoff unter Kühlung (Steinkopf, A. 434, 28). — Kp_{18} : 105°.

Nitroessigsäure-isopropylester $C_5H_9O_4N=O_2N\cdot CH_2\cdot CO_2\cdot CH(CH_3)_2$. B. Aus Nitroessigsäure und Isopropylaikohol bei Einw. von konz. Schwefelsäure unter Kühlung (Steinkoff, A. 434, 28). — Kp₁₃: 92,2—93,2°. — NH₄C₅H₈O₄N. F: 107—109°.

Nitroessigsäure-isobutylester $C_eH_{11}O_4N=O_2N\cdot CH_2\cdot CO_2\cdot CH_2\cdot CH(CH_2)_2$ (H 226). B. Aus Nitroessigsäure und Isobutylalkohol in Gegenwart von konz. Schwefelsäure (Steinkoff, A. 434, 28). — Kp_{15} : 111,5—112,5°. — $NH_4C_6H_{10}O_4N$. F: 110—112°.

Nitroessigsäure-isoamylester $C_7H_{13}O_4N = O_2N \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_3)_2$. B. Aus Nitroessigsäure und Isobutylcarbinol in Gegenwart von konz. Schwefelsäure (Strinkoff, A. 434, 29). — Flüssigkeit. Kp₁₆: 122—123°. — Ammoniumsalz. F: 112—115°.

Chlornitroessigsäure - äthylester C₄H₆O₄NCl = O₂N·CHCl·CO₃·C₄H₅. B. Beim Einleiten von Chlor in eine wäßr. Lösung des Ammoniumsalzes des Nitroessigsäure-äthylesters (Macbeth, Traill, Soc. 127, 895). Entsteht in Form des Ammonium- bezw. Hydrazinsalzes beim Behandeln von Chlornitromalonsäurediäthylester mit Ammoniak oder Hydrazinhydrat in Alkohol (M., T., Soc. 127, 1122). — Kp₈: 77°. n_D: 1,4412. — NH₄C₄H₅O₄NCl. Nadeln (aus Alkohol). F: 114—115°. Rötet sich beim Aufbewahren an der Luft. — Hydrazinsalz N₂H₄ + C₄H₆O₄NCl. Krystalle (aus Alkohol). F: 120°.

Dichlornitroessigsäure-äthylester $C_4H_5O_4NCl_2=O_2N\cdot CCl_3\cdot CO_2\cdot C_2H_5$. B. Beim Einleiten von Chlor in eine wäßr. Lösung des Ammoniumsalzes des Chlornitroessigsäure-äthylesters (Macbeth, Traill, Soc. 127, 895). — Kp_8 : 72°. n_p : 1,4430.

Bromnitroessigsäure-äthylester $C_4H_6O_4NBr = O_2N \cdot CHBr \cdot CO_2 \cdot C_2H_5$. B. Bei Einw. von Brom auf das Ammoniumsalz des Nitroessigsäure-äthylesters in Schwefelkohlenstoff (Macbeth, Traill, Soc. 127, 895). — Kp_{10} : 105°. n_1^{19} : 1,4798. — Beim Behandeln mit Hydrazinhydrat in Alkohol wird ein bromfreies Produkt erhalten. — $NH_4C_4H_5O_4NBr$. Nadeln (aus Alkohol). F: 134° (Zers.).

Chlorbromnitroessigsäure - äthylester $C_4H_5O_4NClB_r = O_2N \cdot CClB_r \cdot CO_2 \cdot C_2H_5$. B. Bei Einw. von Brom auf das Ammoniumsalz des Chlornitroessigsäure-äthylesters in Schwefelkohlenstoff (Macbeth, Traill, Soc. 127, 896). — Öl. Kp₁₁: 89°. n_D: 1,4663. — Beim Behandeln mit Hydrazinhydrat in Alkohol entsteht ein bromfreies Produkt.

Dibromnitroessigsäure - äthylester C₄H₅O₄NBr₂ = O₂N·CBr₂·CO₂·C₂H₅ (H 228). B. Bei Einw. von Brom auf das Ammoniumsalz von Bromnitroessigsäure-äthylester in Schwefelkohlenstoff (Macbeth, Traill, Soc. 127, 896). — Kp₆: 97,4°. n_p: 1,4985. — Beim Behandeln mit Hydrazinhydrat in Alkohol wird ein bromfreies Produkt erhalten.

Azidoessigsäure-äthylester $C_4H_7O_2N_3=N_3\cdot CH_2\cdot CO_2\cdot C_2H_5$ (H 229; E I 101). Zur Konstitution vgl. Lindemann, Thiele, B. 61, 1529. — Kp₁₈: 74°; D₁°: 1,1263 (L., Th.). Oberflächenspannung bei 19°: 34,11 dyn/cm (L., Th.). Parachor: L., Th. Verbrennungswärme bei konstantem Volumen: 582,4 kcal/Mol (Roth, Müller, B. 62, 1191). — Liefert beim Behandeln mit Triphenylphosphin in Äther die Verbindung (C_6H_5)₃P:N·CH₂·CO₂·C₂H₅ (Syst. Nr. 2272) (Staudinger, Hauser, Helv. 4, 873).

Schwefel- und Selen-Analoga der Essigsäure.

Thioessigsäure, Thiacetsäure C₂H₄OS = CH₃·CO·SH (H 230; E I 101). B. Beim Einleiten von Schwefelwasserstoff in Acetanhydrid in Gegenwart von wenig Chlorwasserstoff, Schwefelsäure, Acetylchlorid oder (am besten) Acetylbromid (Clarke, Hartman, Am. Soc. 46, 1732). Aus dem Äthylester durch Verseifung mit kalter alkoholischer Kalilauge (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 75; C. 1927 I, 1301). Aus Essigsäure-thioessigsäure-anhydrid durch Einw. von Wasser (Mingoia, G. 55, 718). Beim Behandeln von Kohlensuboxyd mit Schwefelwasserstoff bei —80° (Diels, Beckmann, Tönnies, A. 439, 81, 92). — Hellgelbe Flüssigkeit. Erstarrt in einer Kältemischung (Sa.). Kp. 88—91,5° (Cl., Ha.). Leicht löslich in organischen Lösungsmitteln; die Lösungen sind grünlich-gelb (Sa.). Verteilung zwischen Wasser und Äther bei 25°: Smith, J. phys. Chem. 25, 624; zwischen Glycerin und Aceton bei 25°: Smith, J. phys. Chem. 25, 734. Elektrische Leitfähigkeit in Wasser und absol. Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 193; in flüssigem Schwefelwasserstoff bei gewöhnlicher Temperatur: Quam, Wilkinson, Am. Soc. 47, 993. Zum Dipolmoment vgl. Smyth, Am. Soc. 47, 1896. — In Berührung mit Wasser erfolgt Bildung von Schwefelwasserstoff und Essigsäure (Sa.). Einw. von flüssigem Schwefelwasserstoff bei gewöhnlicher Temperatur: Quam, Am. Soc. 47, 107, 108. Liefert bei der Einw. auf das Natriumsalz der Oxymethansulfinsäure (Rongalit) in verd. Methanol Schwefel, Formaldehyd und Natriumaeetat (Binz, Holzapfell, B. 53, 2021). Beim Erwärmen mit Benzophenonchlorid im Kohlendioxyd-Strom auf 80—100° entsteht Thiobenzophenon (Schönberg, Schütz, Niokell, B. 61, 1378). Beim Sättigen einer Lösung äquimolekularer Mengen Thioesigsäure und Benzonitril in Äther mit Chlorwasserstoff erhält man Thiobenzamid und N-Thiobenzoyl-benzamidin (Syst. No. 939) (Ishikawa, Scient. Pap. Inst. phys. chem. Res. 7, 296; C. 1928 I, 1764); bei gleicher Behandlung entstehen mit m. und p-Nitro-benzonitril m. und p-Nitro-thiobenzamid (I.). — Entgiftende Wirkung des Natriumsalz

entgiftenden Wirkung des Strontiumsalzes bei Hunden: HASKELL, FORBES, C. 1929 I, 2442. — Empfindlichkeit des colorimetrischen Nachweises von Quecksilber mit Ammoniumthioacetat: BOOTH, SCHREIBER, Am. Soc. 47, 2627. — Antiklopfwirkung des Bleisalzes im Verbrennungsmotor: Charch, Mack jr., BOORD, Ind. Eng. Chem. 18, 335; C. 1926 I, 3194.

Thioessigsäure-O-methylester, Thionessigsäure-methylester C₂H₆OS = CH₃·CS·O·CH₃ (E I 101). B. Zur Bildung aus Acetiminomethyläther und Schwefelwasserstoff vgl. Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 67; C. 1927 I, 1300. — Kp: 88—91°; D³⁶: 0,9002; n³⁶: 1,4212 (Sa.). — Entwickelt bei der spontanen Oxydation an der Luft Nebel (Delépine, Bl. [4] 31, 762); weiteres zu dieser Reaktion, ihre Katalysatoren und Antikatalysatoren: D.

Thioessigsäure-S-methylester, Thiolessigsäure-methylester $C_3H_6OS = CH_3 \cdot CO \cdot S \cdot CH_3$ (H 231). Auf Grund der elektrischen Leitfähigkeit errechneter Grad der Umsetzung in Methylmercaptan und Thioessigsäure bei Behandlung mit Schwefelwasserstoff bei -77° : Ralston, Wilkinson, Am. Soc. 50, 2161.

Thioessigsäure-O-äthylester, Thionessigsäure-äthylester C₄H₈OS = CH₃·CS·O·C₂H₅ (H 232; E I 101). Kp: 105—107° (Sakurada, Mem. Coll. Sci. Kyoto [A] 9, 239; C. 1926 II, 1273). D¹₄: 0,8980 (Sa.). Viscosität bei 17°: Sa. Spezifische Refraktion für die D-Linie: Sa. — Oxydiert sich an der Luft unter Nebelbildung und Luminescenz (Delépine, Bl. [4] 31, 764). Liefert beim Behandeln mit Anilin in Äther Thioessigsäure-anilid, in Alkohol N-Phenyl-acetiminoäthyläther (Sa., Mem. Coll. Sci. Kyoto [A] 10, 75; C. 1927 I, 1301). Gibt bei Einw. von Phenylhydrazin in Äther Thioessigsäure-phenylhydrazid, in Alkohol [a. Āthoxy-āthyliden]-phenylhydrazin (Sa.).

Thioessigsäure-S-äthylester, Thiolessigsäure-äthylester $C_4H_8OS = CH_3 \cdot CO \cdot S \cdot C_2H_5$ (H 232). B. Zur Bildung aus Acetylchlorid und Äthylmercaptan vgl. Baker, Reid, Am. Soc. 51, 1568. Bei allmählichem Eintragen einer äther. Lösung von Äthylmercaptan in eine eiskalte Lösung von Äthylmagnesiumbromid in Äther. Behandeln der entstandenen Verbindung IMg·S·C₂H₅ (E II 1, 342) mit Acetylchlorid und Zersetzen des Reaktionsprodukts mit Eiswasser (Hefworth, Clapham, Soc. 119, 1195). — D;: 1,0008; D²⁵: 0,9755; n¹⁰: 1,4503 (B., R.). — Liefert beim Behandeln mit Natrium wenig Acetylthioessigsäure-S-äthylester (B., R.). Auf Grund der elektrischen Leitfähigkeit errechneter Grad der Umsetzung in Äthylmercaptan und Thioessigsäure bei Behandlung mit Schwefelwasserstoff bei —77°: Ralston, Wilkinson, Am. Soc. 50, 2161. Gibt bei Einw. von Quecksilber(II)-chlorid in Äther oder beim Behandeln mit Quecksilber(II)-acetat in essigsäurehaltigem Alkohol und folgendem Zusatz von Kochsalz-Lösung die Verbindung [ClHg·S·C₂H₅]₂ (E II 1, 342) (Sachs, B. 54, 1851); auf Zusatz zu einer heißen Lösung von Quecksilber(II)-acetat in Acetanhydrid entsteht Äthylmercapto-quecksilberacetat (S. 118) (S.). Reagiert nicht mit Aceton in Gegenwart von Natrium (B., R.). Liefert beim Behandeln mit Acetonitril und Natrium etwas Cyanaceton (B., R.). Beim Behandeln mit Phenylmagnesiumbromid in Äther entsteht Methyl-diphenyl-carbinol (H., Cl.).

Thioessigsäure-O-propylester $C_5H_{10}OS = CH_2 \cdot CS \cdot O \cdot CH_2 \cdot CH_2 \cdot CH_3$. Hellgelbe, an feuchter Luft rauchende Flüssigkeit. Kp: 125—130° (Sakurada, Mem. Coll. Sci. Kyato [A] 10, 68; C. 1927 I, 1300). D_4^{m} : 0,8952. Viscosität bei 28°: Sa. n_5^{m} : 1,4283.

Thioessigsäure-S-propylester C₅H₁₀OS = CH₃·CO·S·CH₃·CH₂·CH₃ (H 232). Auf Grund der elektrischen Leitfähigkeit errechneter Grad der Umsetzung in Propylmercaptan und Thioessigsäure bei Behandlung mit Schwefelwasserstoff bei —77°: RALSTON, WILKINSON, Am. Soc. 50, 2161.

Thioessigsäure-O-isopropylester $C_5H_{10}OS = CH_3 \cdot CS \cdot O \cdot CH(CH_3)_3$. Gelbliche Flüssigkeit. Kp: 119—122° (Sakurada, *Mem. Coll. Sci. Kyoto* [A] 10, 68; *C.* 1927 I, 1300). D_c^{m} : 0,8901. Viscosität bei 22°: Sa. n_a^{m} : 1,4501.

Thioessigsäure-S-isopropylester C₅H₁₀OS = CH₃·CO·S·CH(CH₅)₂ (H 232). Kp: 122° bis 123° (Ralston, Wilkinson, Am. Soc. 50, 2161). — Auf Grund der elektrischen Leitfähigkeit errechneter Grad der Umsetzung in Isopropylmercaptan und Thioessigsäure bei Behandlung mit Schwefelwasserstoff bei —77°: R., W.

Thioessigsäure - O - butylester $C_6H_{18}OS = CH_3 \cdot CS \cdot O \cdot CH_4 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_5 \cdot CH_3 \cdot C$

Thioessigsäure-S-butylester C₆H₁₃OS = CH₂·CO·S·CH₂·CH₂·CH₂·CH₃·CH₃. Kp: 134° bis 135° (RALSTON, WILKINSON, Am. Soc. 50, 2161). — Auf Grund der elektrischen Leitfähigkeit errechneter Grad der Umsetzung in Butylmercaptan und Thioessigsäure bei Behandlung mit Schwefelwasserstoff bei —77°: R., W.

Thioessigsäure-O-isobutylester $C_6H_{18}OS = CH_2 \cdot CS \cdot O \cdot CH_2 \cdot CH(CH_3)_3$. Kp: 135° bis 140° (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 68; C. 1927 I, 1300). D_4° : 0,8875. Viscosität bei 26° : Sa. n_{ν}° : 1,4316.

Thioessigsäure-O-isoamylester $C_7H_{14}OS = CH_3 \cdot CS \cdot O \cdot C_5H_{11}$. Gelbliche Flüssigkeit. Kp₅₅: 72—74° (Sakurada, *Mem. Coll. Sci. Kyoto* [A] 9, 239; *C.* 1926 II, 1273). D₄. 0,8639. Visoosität bei 23°: Sa. Spezifische Refraktion für die D-Linie: Sa.

Monothioäthylenglykol-diacetat, β-Oxy-äthylmercaptan-diacetat $C_6H_{10}O_3S = CH_3 \cdot CO \cdot S \cdot CH_2 \cdot CH_2 \cdot CO \cdot CO \cdot CH_3$. Beim Kochen von Monothioäthylenglykol mit Acetanhydrid in Gegenwart von Natriumacetat (ROJAHN, LEMME, Ar. 1925, 622). — Flüssigkeit. Kp₂₅: 118—120°. — Beim Aufbewahren entsteht Diäthylendisulfid.

Essigsäure-thioessigsäure-anhydrid, Diacetylsulfid, "Thioessigsäureanhydrid" $C_4H_6O_2S=CH_3\cdot CO\cdot S\cdot CO\cdot CH_3$ (H 232; E I 101). B. Beim Erwärmen von Acetylchlorid mit Magnesiumbromidhydrosulfid in Äther (MINGOIA, G. 55, 718).

Diacetyldisulfid $C_4H_6O_2S_3=(CH_3\cdot CO)_2S_3$ (H 232). Beim Kochen einer Lösung in Alkohol mit alkal. Natriumarsenit-Lösung erhält man Na_3AsO_2S , essigsaures und thioessigsaures Natrium (Gutmann, B. 56, 2366; Fr. 66, 239). Bei Einw. von siedender Kaliumcyanid-Lösung entstehen die Kaliumsalze der Essigsäure, Thioessigsäure und Rhodanwasserstoffsäure (G.).

Diacetyltrisulfid $C_4H_6O_2S_3=(CH_3\cdot CO)_2S_3$. B. Aus Acetylchlorid beim Behandeln mit Hydrotrisulfid in Gegenwart von wenig Zinkchlorid bei -10° bis Zimmertemperatur (Bloch, Bergmann, B. 53, 966). — Nicht rein erhalten. Hell grünlichgelbes, dickes Öl von schwachem, lauchartigem Geruch; wird unterhalb -20° farblos und erstarrt bei -30° bis -40° zu Blättern oder Nadeln, die sich bei -19° bis -17° verflüssigen. $D_1^{a_1}$: ca. 1,34. Mischbar mit Äther, Aceton, Chloroform, Essigester und Benzol, löslich in Alkohol und Petroläther, schwer löslich in Wasser. — Zersetzt sich beim Aufbewahren. Liefert beim Erhitzen hauptsächlich Essigsäure, Thioessigsäure und Diacetylsulfid. In Berührung mit Wasser findet langsame Zersetzung statt. Zerfällt in Alkohol ziemlich schnell in Schwefel und Acetyldisulfid. Liefert bei Behandlung mit Anilin Schwefel, Schwefelwasserstoff und Acetanilid. Auch bei Behandlung mit Dimethylanilin wird Schwefel abgeschieden.

Thioacetamid C₂H₅NS = CH₃·CS·NH₂ (H 232; E I 101). B. Aus Ammoniumacetat und Aluminiumsulfid im Rohr bei 240° (KINDLER, FINNDORF, B. 54, 1080). Zur Bildung aus Acetamid und Phosphorpentasulfid vgl. K., A. 431, 209. Beim Erwärmen von Acetamid mit Phosphorpentasulfid und Kaliumsulfid in Xylol auf 90° (K., D. R. P. 385376; C. 1924 I. 2633; Frdl. 14, 371). Beim Erhitzen von Acetamid mit Aluminiumsulfid und wasserhaltigem Natriumsulfat im Autoklaven auf 240° (K., D. R. P. 370973; C. 1923 IV, 538; Frdl. 14, 370). Zur Bildung aus Acetonitril und Schwefelwasserstoff vgl. K., A. 431, 203. — F: 115° (K., A. 431, 203.), 116° (K., F.). Schwer löslich in Äther, Benzol und Petroläther (K.). — Liefert beim Behandeln mit Thionylchlorid oder Sulfurylchlorid in Äther Chlorwasserstoff, Schwefel, Schwefeldioxyd und Acetamid (ISHIKAWA, C. 1928 I, 1763). Wird durch Aluminiumamalgam in wäßr. Alkohol bei 60—70° zu Äthylamin reduziert (K., Dehn, B. 54, 1081; K., D. R. P. 360456; C. 1923 II, 403; Frdl. 14, 344). Gibt bei Behandlung mit Dischwefeldichlorid in Alkohol + Petroläther in Gegenwart von Alkalihydroxyd eine Verbindung C₇H₁₄N₄S₂ [Nadeln; F: 104°] (CHAKRAVARTI, Soc. 123, 968); eine Verbindung derselben Zusammensetzung [Nadeln; F: 104°] (chakravarti, Soc. 123, 968); eine Verbindung derselben Zusammensetzung [Nadeln; F: 103°] entsteht bei Einw. von Chlorpikrin in Alkohol (Rây, Das, Soc. 121, 328). Liefert bei Behandlung mit N-Phenyl-acetimidchlorid in Äther Thioessigsäure-anilid (I., C. 1925 II, 1153); reagiert analog mit N-Phenyl-benzimidchlorid (I.). — Titrimetrische Bestimmung durch Fällung von Silbersulfid mittels alkoh. 0,1 n-Silbernitrat-Lösung: K., A. 450, 10. — 2C₂H₅NS + HgCl₂. Amorph. F: 183° (Zers.). (I., C. 1928 I, 1765).

Thioacetiminoäthyläther $C_4H_5NS = CH_3 \cdot C(:NH) \cdot S \cdot C_2H_5$ (E I 102). Liefert bei der Einw. von Schwefelwasserstoff in Äther Dithioessigsäure-äthylester (Sakurada, Mem. Coll. Sci. Eng. Kyoto [A] 10, 80; C. 1927 I, 1301).

[β-Chlor-āthyl]-[α.α.β-trichlor-āthyl]-sulfid, α.α.β.β'-Tetrachlor-diāthylsulfid $C_4H_5Cl_4S=CH_2Cl\cdot CCl_2\cdot S\cdot CH_2\cdot CH_2Cl$. B. Beim Einleiten von 2 Mol Chlor in β.β'-Dichlor-diāthylsulfid (E II 1, 348) bei Zimmertemperatur (Dawson, Lawson, Am. Soc. 49, 3125, 3127; Phillips, Davies, Mumford, Soc. 1929, 536, 542). Aus [β-Chlor-āthyl]-[α-chlor-vinyl]-sulfid (E II 1, 781) und 1 Mol Chlor in Tetrachlorkohlenstoff (D., L.). — Nicht rein erhalten. D_2^{∞} : 1,53 (Ph., D., M.). — Liefert beim Erhitzen auf 90—100° unter 2 mm Druck oder bei der Destillation [β-Chlor-āthyl]-[α.β-dichlor-vinyl]-sulfid (E II 1, 781) (D., L.; Ph., D., M.).

[α.β-Dichlor-äthyl]-[α.α.β-trichlor-äthyl]-sulfid, α.α.β.α'.β'-Pentachlor-diäthyl-sulfid $C_tH_sCl_sS=CH_sCl\cdot CCl_s\cdot S\cdot CHCl\cdot CH_sCl$. B. Beim Einleiten von 3—4 Mol Chlor in $\beta.\beta'$ -Dichlor-diāthylsulfid (E II 1, 348) bei Zimmertemperatur (Phillips, Davies, Mumford, Soc. 1929, 537, 543). — D_t^{∞} : 1,57. — Geht beim Erhitzen unter 80—120 mm Druck in [α.α.β-Trichlor-āthyl]-[β-chlor-vinyl]-sulfid (S. 211) über; bei der Destillation unter 30—40 mm Druck erhält man [α.β-Dichlor-āthyl]-[α.β-dichlor-vinyl]-sulfid (E II 1, 781).

[α.α.β-Trichlor-äthyl]-[β-chlor-vinyl]-sulfid $C_4H_4Cl_4S=CH_2Cl\cdot CCl_2\cdot S\cdot CH: CHCl.$ B. Aus α.α.β.α'.β'-Pentachlor-diäthylsulfid (S. 210) durch Erhitzen unter 80—120 mm Druck (Phillips, Davies, Mumford, Soc. 1929, 544). — Flüssigkeit. Kp₁₅: 122—123°. D₄*: 1,5404; D₄*: 1,5342. Viscosität bei 20°: 0,057 g/cmsec. n₅*: 1,5661. — Liefert bei Behandlung mit 1 Mol Chlor [α.α.β-Trichlor-äthyl]-[α.β.β-trichlor-äthyl]-sulfid (s. u.). Zerfällt beim Kochen mit Wasser schnell unter Bildung von Chlorwasserstoff.

[α.α.β-Trichlor-āthyl] - [α.β.β-trichlor-āthyl] - sulfid, α.α.β.α'.β'.β'-Hexachlor-diāthylsulfid $C_4H_4Cl_6S=CH_2Cl\cdot CCl_2\cdot S\cdot CHCl\cdot CHCl_2$. B. Entsteht wahrscheinlich bei Behandlung von β.β-Dichlor-diāthylsulfid (E II 1, 348) mit 3,5 Mol Chlor bei Zimmertemperatur (Phillips, Davies, Mumford, Soc. 1929, 547). Beim Behandeln von [α.α.β-Trichlor-āthyl]-[β-chlor-vinyl]-sulfid (s. o.) mit 1 Mol Chlor bei Zimmertemperatur (Ph., D., M., Soc. 1929, 545). — Öl. Kp₁₅: 159—160°. D_4^{∞} : 1,6841; D_4^{∞} : 1,6783. Viscositāt bei 20°: 0,294 g/cm sec. n_D^{∞} : 1,5681. — Liefert beim Erhitzen auf 200° unter 100—120 mm Druck [α.β.β-Trichlor-āthyl]-[α.β-dichlor-vinyl]-sulfid. Zerfällt beim Kochen mit Wasser rasch unter Bildung von Chlorwasserstoff.

[β-Chlor-äthyl]-[α.α.β-β-tetrachlor-äthyl]-sulfid, α.α.β.β.β'-Pentachlor-diäthyl-sulfid $C_4H_5Cl_5S=CHCl_2\cdot CCl_2\cdot S\cdot CH_2\cdot CH_2Cl$. B. Bei der Behandlung von β.β'-Dichlor-diäthylsulfid (E II 1, 348) mit 3 Mol Chlor (Phillips, Davies, Mumford, Soc. 1929, 543). Aus [β-Chlor-äthyl]-[α.β-dichlor-vinyl]-sulfid (E II 1, 781) und 1 Mol Chlor in Tetrachlor-kohlenstoff bei 60—70° (Dawson, Lawson, Am. Soc. 49, 3128) oder ohne Lösungsmittel bei Zimmertemperatur (Ph., D., M.). — Gelbes Öl. — Liefert bei der Destillation [β-Chlor-äthyl]-trichlorvinyl-sulfid (E II 1, 781) (D., L.; Ph., D., M.). Wird beim Kochen mit Wasser langsam unter Bildung von Chlorwasserstoff zersetzt (Ph., D., M.).

[α.β-Dichlor-äthyl]-[α.α.β.β-tetrachlor-äthyl]-sulfid, α.α.β.β.α΄.β΄-Hexachlor-diäthylsulfid $C_4H_4Cl_6S=CHCl_2\cdot CCl_2\cdot S\cdot CHCl\cdot CH_2Cl$. B. Man behandelt β.β΄-Dichlor-diäthylsulfid (E II 1, 348) mit 3—4 Mol Chlor, spaltet aus dem Reaktionsprodukt durch Erhitzen im Vakuum Chlorwasserstoff ab, kocht die die ungesättigten Tetrachlor-Verbindungen enthaltende Fraktion mit Wasser und läßt auf den nicht hydrolysierten Anteil 1 Mol Chlor einwirken (Phillips, Davies, Mumford, Soc. 1929, 546). — Kp₁₈: 157—159°. D₄°: 1,6825; D₄°: 1,6763. Viscosität bei 20°: 0,273 g/cmsec. n_D°: 1,5681. — Liefert beim Erhitzen auf 200° bei 100—110 mm Druck [α.β-Dichlor-äthyl]-trichlorvinyl-sulfid (E II 1, 782). Zerfällt beim Kochen mit Wasser ziemlich schnell unter Bildung von Chlorwasserstoff.

[α.β.β-Trichlor-äthyl]-[α.α.β.β-tetrachlor-äthyl]-sulfid, α.α.β.β.α'.β'.β'-Heptachlor-diäthylsulfid $C_4H_3Cl_7S=CHCl_2\cdot CCl_2\cdot S\cdot CHCl\cdot CHCl_2$. B. Bei der Behandlung von [α.β.β-Trichlor-äthyl]-[α.β-dichlor-vinyl]-sulfid (Ε II 1, 782) mit 1 Mol Chlor (Phillips, Davies, Mumford, Soc. 1929, 546). — Flüssigkeit. Kp₁₅: 170—172°. D_*^{x} : 1,7473; D_*^{x} : 1,7415. Viscosität bei 20°: 0,427 g/cmsec. n_0^{x} : 1,5741. — Zersetzt sich beim Kochen mit Wasser ziemlich schnell unter Bildung von Chlorwasserstoff.

Trichlorthioessigsäure - S - methylester C₃H₃OCl₃S = CCl₃·CO·S·CH₃. B. Durch Schütteln von salzsaurem Trichlorthioacetiminomethyläther mit Wasser + Äther (Steinkopf, S. Müller, B. 56, 1932). — Nicht rein erhalten. — Liefert beim Behandeln mit Ammoniak in Äther Trichloracetamid. Bei der Verseifung mit Kalilauge entsteht Methylmercaptan.

[β-Chlor-äthyl]-pentachloräthyl-sulfid, α.α.β.β.β.β'-Hexachlor-diāthylsulfid C₄H₄Cl₆S = CCl₃·CCl₂·S·CH₂·CH₂Cl. B. Beim Einleiten von Chlor in β.β'-Dichlor-diāthylsulfid (Mann, Pope, Soc. 121, 596; Dawson, Lawson, Am. Soc. 49, 3128). Bei der Behandlung von [β-Chloräthyl]-trichlorvinyl-sulfid (E II 1, 781) mit 1 Mol Chlor bei Zimmertemperatur (PHILLIPS, Davies, Mumford, Soc. 1929, 543). — Flüssigkeit. Kp₁₅: 158—159° (PH., D., Mu.), 159,5—160° (D., L.), 160° (Mu., PH., Soc. 1928, 160), 160—161° (Ma., P.); Kp_{4.5}: 131° bis 132° (D., L.). D₁₀°: 1,6944 (Ma., P.). D₂°: 1,6849; D₂°: 1,6794 (PH., D., Mu.). Viscositāt bei 20°: 0,254 g/cmsec (PH., D., Mu.). n₂°: 1,5683 (PH., D., Mu.). — Zersetzt sich beim Erhitzen auf 200° unter 100—120 mm Druck (PH., D., Mu.). Gibt beim Kochen mit Salpetersäure β-Chloräthan-α-sulfonsäure (Ma., P.). Liefert bei weiterer Chlorierung Hexachloräthan (PH., D., Mu.). Geschwindigkeit der Säurebildung bei der Hydrolyse durch kochendes Wasser: Mu., Ph.; bei der Hydrolyse in 50 %igem Alkohol bei 52°: Peters, Walker, Biochem. J. 17, 270.

[$\alpha.\beta$ -Dichlor-äthyl]-pentachloräthyl-sulfid, $\alpha.\alpha.\beta.\beta.\beta.\alpha'.\beta'$ -Heptachlor-diäthyl-sulfid $C_4H_3Cl_7S=CCl_3\cdot CCl_4\cdot S\cdot CHCl\cdot CH_2Cl$. B. Bei der Behandlung von [$\alpha.\beta$ -Dichloräthyl]-trichlorvinyl-sulfid (E II 1, 782) mit 1 Mol Chlor (Phillips, Davies, Mumford, Soc. 1929, 547). — $Kp_{ca.3}:132-134^\circ$. $D_2^{soc}:1,743$; $D_2^{soc}:1,737$. Viscosität bei $20^\circ:0,382$ g/cmsec. $n_2^{soc}:1,5741$. — Liefert bei weiterer Chlorierung Hexachloräthan. Geschwindigkeit der Hydrolyse durch kochendes Wasser: Ph., D., M.

Trichlorthioacetiminomethyläther, 2.2.2-Trichlor-1-methylmercapto-1-iminoäthan $C_3H_4NCl_3S=CCl_3\cdot C(:NH)\cdot S\cdot CH_3$. B. Das Hydrochlorid entsteht durch Sättigung einer Lösung von Trichloracetonitril in Methylmercaptan mit Chlorwasserstoff und Aufbewahrung des Gemisches (Steinkopf, S. Müller, B. 56, 1931). — Gelbliche Flüssigkeit von terpenartigem Geruch. Kp₃₀: 93,5°. —Zersetzt sich beim Aufbewahren. Bei der Einw. von Wasser auf das salzsaure Salz entsteht Trichlorthioessigsäure-S-methylester. Liefert mit Anilin auf dem Wasserbad N-Phenyl-trichloracetamidin. — $C_3H_4NCl_3S+HCl$. Krystalle. Schmilzt je nach der Art des Erhitzens zwischen 126° und 129° unter Zersetzung. Zersetzt sich an der Luft. Wird leicht hydrolytisch gespalten.

Dithioessigsäure $C_2H_4S_3=CH_3\cdot CS\cdot SH$ (H 233). B. Aus dem Äthylester durch Verseifung mit alkoh. Kalilauge bei Zimmertemperatur (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 82; C. 1927 I, 1301). — In Wasser weniger löslich als Essigsäure. Ultraviolettes Absorptionsspektrum in Wasser, Methanol, Alkohol, Äther und in wäßr. Salzsäure verschiedener Konzentrationen: Hantzsch, Bucerus, B. 59, 798. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: H., B., B. 59, 795. — Ammoniumsalz. Blaßgelbes Pulver. Leicht löslich in Wasser (H., B., B. 59, 794). Ultraviolettes Absorptionsspektrum in Wasser, Methanol und wäßr. Salzsäure: H., B., B. 59, 798. — Nickelsalz. Löslich in Alkohol und Äther mit braunroter Farbe. Ultraviolettes Absorptionsspektrum in Alkohol und Äther: H., B., B. 59, 813.

Dithioessigsäure-äthylester $C_4H_8S_2=C\dot{H}_3\cdot CS\cdot S\cdot C_2H_5$ (E I 102). B. Durch Einw. von Schwefelwasserstoff auf Thioacetiminoäthyläther in Äther (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 80; C. 1927 I, 1301). — Orangefarbige Flüssigkeit. Kp: 128—132°. D_1^{∞} : 0,9807. n_0^{∞} : 1,5303. Ultraviolettes Absorptionsspektrum in Methanol, Alkohol und Äther: Hantzsch, Bucerius, B. 59, 798.

Thioessigsäure-dithioessigsäure-anhydrid, Bis-thioacetyl-sulfid, "Dithioessigsäureanhydrid" $C_4H_6S_3 = CH_3 \cdot CS \cdot S \cdot CS \cdot CH_3$. B. Aus Acetylchlorid oder Acetylbromid durch Einw. von flüssigem Schwefelwasserstoff bei Zimmertemperatur (Borgeson, Wilkinson, Am. Soc. 51, 1455). — Krystalle (aus Äther). F: 225°. Leicht löslich in Chloroform, Tetrachlorkohlenstoff, Aceton, Äthylacetat, Schwefelkohlenstoff und Benzol, löslich in Äther, Petroläther und heißem Alkohol, unlöslich in Wasser.

[α -Jod-äthyliden]-bis-butylsulfid, 1-Jod-1.1-bis-butylmercapto-äthan $C_{10}H_{11}IS_2=CH_3\cdot CI(S\cdot [CH_2]_3\cdot CH_3)_2\cdot -C_{10}H_{21}IS_2+4HgI.$ B. Aus Acetaldehyd-dibutylmercaptal und Quecksilber(II)-jodid in Aceton unter Kühlung (Whitner, Reid, Am. Soc. 43, 641). Gelbe Tafeln. F: 138°.

Selenoacetamid $C_2H_5NSe=CH_3\cdot CSe\cdot NH_2$. B. In geringer Menge beim Erwärmen von Acetonitril mit einer mit Selenwasserstoff bei -10° gesättigten Natriumäthylat-Lösung auf ca. 80° unter Ausschluß von Luft (Kindler, A. 431, 207). — Krystalle (aus Benzol). F: 126—126,5°. Ziemlich schwer löslich in Äther, Benzol und Petroläther. [Knobloch]

3. Propionsäure $C_2H_6O_2 = CH_2 \cdot CH_2 \cdot CO_2H$ (H 234; E I 102).

Vorkommen und Bildung.

V. Propionsäure findet sich frei und als Ester im Cajeputöl (aus den Blättern von Melaleuca leucadendron L.) (DUYSTER, Pharm. Tijdschr. Nederl. Indië 2, 336, 338; C. 1926 I, 167) und im äther. Öl des Krautes von Cymbopogon procerus A. Cam. (van Ebede, Pharm. Weekb. 61, 1190; C. 1924 II, 2796). Über weitere Vorkommen im Pflanzenreich s. bei C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 499; Literaturhinweise hierzu s. C. Wehmer, Die Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931]. — Propionsäure findet sich im Fleisch des Neunauges (Petromyzon fluvistilis L.) (Flössner, Kutscher, Z. Biol. 82, 304; C. 1925 I, 1217).

B. Neben anderen Produkten beim Überleiten von Wassergas über mit Kaliumcarbonat überzogene Eisenspäne bei 400—450° urd 150 Atm. Druck (F. Fischer, Tropsch, B. 56, 2430, 2432; Brennstoffch. 4, 277, 278; C. 1924 I, 1297). Beim Durchleiten von Sauerstoff durch Hart- oder Weichparaffin bei ca. 150° unter Druck in Gegenwart von Metallverbindungen (Franck, Ch. Z. 44, 309; C. 1920 II, 781; vgl. Kelber, B. 53, 68, 70). Bei der Oxydation von Propylalkohol mit Luft in Gegenwart von fein verteiltem Kupfer bei 260° bis 300° (Maller, De Godon; C. r. 170, 518), mit Wasserstoffperoxyd in Gegenwart von Eisen(II)-sulfat in wäßr. Lösung (Rosenthaler, Ar. 1929, 600) oder mit Natriumchlorat

bei Gegenwart von Vanadiumpentoxyd in schwach schwefelsaurer Lösung (MILAS, Am. Soc. 50, 497). Beim Erhitzen von Propionitril mit krystallisierter Phosphorsäure auf 130—140° (BERGER, OLIVIER, R. 46, 603). Bei der Einw. von Wasserstoff auf eine wäßr. Lösung von α-oxy-isovaleriansaurem Natrium bei Gegenwart von Nickeloxyd und Aluminiumoxyd bei 285—295° und 80 Atm. (IPATJEW, RASUWAJEW, B. 61, 636; Ж. 60, 911, 912). Beim Erwärmen von Cyclopropanol-(1)-carbonsäure-(1) mit konz. Schwefelsäure (INGOLD, SAKO, THORPE, Soc. 121, 1197). Durch Einw. von Kohlendioxyd auf Caesiumäthyl (v. Grosse, B. 59, 2654). Bei raschem Einleiten von Kohlendioxyd in eine auf —20° abgekühlte ätherische Lösung von Athylmagnesiumbromid (IWANOW, Bl. [4] 37, 289, 293). Bei der trocknen Destillation von Tabak (Gabel, Kiprianow, C. 1929 II, 2273).

Propionsäure entsteht aus Propylalkohol durch Einw. von Bact. xylinum (Yamada,

Bl. agric. chem. Soc. Japan 3, 81, 83; C. 1928 II, 2479). Neben Propylalkohol bei der Einw. von Bact. xylinum auf Propionaldehyd in Gegenwart von Calciumcarbonat unter anaeroben Bedingungen (Molinari, Bio. Z. 216, 210). Neben anderen Produkten bei der Einw. von Bact. acidi propionici, Bact. acidi propionici a oder Bact. acidi propionici b auf Milchsäure und Lactose (v. Freudenreich, Jensen, Zbl. Bakt. Parasitenk. [II] 17 [1907], 537, 539), von Bact. propionicum auf Milchsäure, Brenztraubensäure und Glucose (Virtanen, Comment. phys.-math. Helsingfors 1, Nr. 36; S. 11; C. 1924 II, 64; vgl. MAURER, Bio. Z. 191, 83), von Bact. acidi propionici d oder Lactobacillus casei auf Glucose, Galaktose, Maltose, Lactose und Saccharose (Whittier, Sherman, Albus, Ind. Eng. Chem. 16, 122; C. 1924 I, 1679; vgl. She., Shaw, J. gen. Physiol. 3, 657; C. 1921 III, 490; J. biol. Chem. 56, 696; Wh., She., Ind. Eng. Chem. 15, 729; C. 1923 IV, 675). Entsteht ferner neben anderen Produkten bei der Einw. von Bac. pyocyaneus auf Ammoniumsuccinat oder Asparagin (Aubel, C. r. 178, 180), bei der Einw. von Granulobacterium butvlicum Beijerinck auf Kartoffel- oder Maisstärke (Folpmers. Ber. Physiol. 6. 449; C. 1921 III, 47), bei der Einw. von Bact. tartarophthorum auf Glycerin (MÜLLER-THURGAU, OSTERWALDER, C. 1920 II, 90) und bei der Vergärung von Glucose durch verschiedene Dysenterie-Bakterien (ZOLLER, CLARK, J. gen. Physiol. 3, 329; C. 1921 I, 775). Bei der Einsäuerung von Futtermitteln (Brahm, Bio. Z. **156**, 18; **186**, 234, 238).

Physikalische Eigenschaften.

E: -22.4° (Hunten, Maass, Am. Soc. 51, 154), -21.5° (Timmermans, Bl. Soc. chim.

Belg. 86, 506; C. 1928 I, 27), —20,8° (TI., HENNAUT-ROLAND, J. Chim. phys. 27 [1930], 426). Röntgenogramm von fester Propionsäure (Pulver-Diagramm): GIBBS, Soc. 125, 2623. KD₇₆₀: 144,35° (TI., H.-R.), 140,9° (LECAT, Ann. Soc. scient. Bruxelles 49 [1929], 19, 110); Kp₈₆₃: 136,4—136,8° (ADVANI, SUDBOROUGH, J. indian Inst. Sci. 6, 54; C. 1923 III, 997). Abhängigkeit des Siedepunkts vom Druck: TI., H.-R. Dichte D' (auf Vakuum bezogen) zwischen —36,0° (1,0562) und +118.5° (0,8895): Hu., Maass, Am. Soc. 51, 159; D': 1,01503; D': 0,99874; D'': 0,98260 (TI., H.-R.); D'': 0,9973; D''s: 0,9858 (TROMP, R. 41, 282, 297). Dampfdichte: TRAUTZ, MOSCHEL, Z. anorg. Ch. 155, 15. Adiabatische Kompossibilität bei 23 60; Vennerstein and Chem 21, 452; Vincesität bei 450,0 04475 pressibilität bei 23,6°: Venkateswaran, J. phys. Chem. 31, 1523. Viscosität bei 15°: 0.01175, bei 30°: 0,00958 g/cm sec (T1., H.-R., J. Chim. phys. 27, 427). Einfluß sehr dünner Schichten und des gesättigten Dampfes auf die gleitende Reibung zwischen Glas und Wismut: HARDY, DOUBLEDAY, Pr. roy. Soc. [A] 100, 563; C. 1922 IV, 514. Oberflächenspannung zwischen —35,1° (32,8 dyn/cm) und +140,3° (14,9 dyn/cm): Hu., Maass. Am. Soc. 51, 159; bei 15°: 27,21, bei 20°: 26,70, bei 30°: 25,71 dyn/cm (Ti., H.-R.); bei 17,5°: 26,90 dyn/cm (Tominaga, Bio. Z. 140, 245). Parachor: Hu., Maass. Am. Soc. 51, 161; Mumford, Phillips, Soc. 1929, 2128. Verdampfungswärme bei 139,30°: 98,83 cal/g (Mathews, Am. Soc. 48, 572). ng: 1,38658; ng: 1,38879; ng: 1,39355; ng: 1,39752 (Timmermans, Hennaud, Claim and Control 1988). J. Chim. phys. 27 [1930], 426); n_{α}^{∞} : 1,3643; n_{β}^{∞} : 1,3662; n_{β}^{∞} : 1,3708; n_{γ}^{∞} : 1,3744 (Waterman, BERTRAM, R. 48, 701); np: 1,3885; np: 1,3862 (Tromp. R. 41, 297); np: 1,3874 (Whitby, Soc. 1926, 1463); Brechungsindices für Helium-Linien: Tr., H.-R. Absorption von Röntgenstrahlen durch flüssige Propionsäure: Auren, Medd. Vet.-Akad. Nobelinst. 4 [1920], Nr. 3, S. 10. Reflexion von Licht an der Oberfläche von Propionsäure: Bhatnagar, Shrivastava, MITRA, J. indian chem. Soc. 5, 336; C. 1928 II, 1745. Luminescenz bei Bestrahlung mit langwelligem ultraviolettem Licht: Wawilow, Tummermann, Z. Phys. 54, 271; C. 1929 I, 3070. Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht in flüssiger Propionsaure: Krishnan, Phil. Mag. [6] 50, 703; C. 1926 I, 838; S. R. Rao, Indian J. Phys. 3. 11; C. 1929 I, 20; an der Oberfläche von Propionsäure: RAMAN, RAMDAS, Pr. roy. Soc. [A] 109, 274; C. 1926 I, 838; RAMDAS. Indian J. Phys. 1, 221; C. 1927 II, 2535; in Propionsäure-Dampf: I. R. Rao, *Indian J. Phys.* 2, 83; C. 1928 I, 1838. Elliptische Polarisation von linear polarisiertem Licht bei der Streuung an Propionsäure-Oberflächen: BOUHET. C. r. 185, 201. Ramanspektrum: Dadieu, Kohlrausch, M. 52, 231, 399, 405; Sber. Akad. Wien 138, 52, 57; Phys. Z. 30, 384 (Tafel VIII); Naturwiss. 17, 367; C. 1929 II, 385, 697, 970; K., Phot. Korresp. 65, 162; C. 1929 II, 1508; VENKATESWARAN, Phil. Mag. [7] 7, 599;

C. 1929 I, 2389; GANESAN, V., Indian J. Phys. 4, 216; C. 1929 II, 2646. Beugung und Zerstreuung von Röntgenstrahlen durch flüssige Propionsäure: Katz, Z. Phys. 45, 101; Kautschuk 1927, 217; Z. ang. Ch. 41, 334, 337; C. 1927 II, 1206; 1928 I, 154; Stewart, Pr. nation. Acad. USA. 13, 787; C. 1928 I, 639; Morrow, Phys. Rev. [2] 31, 11; C. 1928 I, 2693; St., Mannheimer, Z. anorg. Ch. 171, 68.

Elektrische Leitfähigkeit bei 250: KENDALL, GROSS, Am. Soc. 48, 1428. Elektroendosmose: STRICKLER, MATHEWS, Am. Soc. 44, 1652. Magnetische Doppelbrechung: RAMANA-

DHAM, Indian J. Phys. 4, 27; C. 1929 II, 2315.

Lösungsvermögen für Ozon bei 17,3°: v. Wartenberg, v. Podjaski, Z. anorg. Ch. 148, Losungsvermogen für O2011 bei 17,3°7°7. WARTENBERG, V. 10551881, 2. tanoy. Oh. 126, 395. Löslichkeitsdiagramm der ternären Systeme Propionsäure-Anilin-Wasser und Propionsäure-o-Toluidin-Wasser bei 0° und 20°1: Angelescu, Bulet. Soc. chim. România 10, 161, 184; C. 1929 II, 1373; kritische Lösungstemperatur in diesen Systemen: Ang., Bulet. Soc. chim. România 10, 165, 187. Verteilung von Propionsäure zwischen Wasser und Chloroform bei gewöhnlicher Temperatur: Schillow, Lepin, Ph. Ch. 101, 383; bei 18°: Schulz, Koll. Beih. 21, 51; C. 1925 II, 1840; bei 25°: SMITH, J. phys. Chem. 25, 230; SM., White, J. phys. Chem. 33, 1973; zwischen Wasser und Tetrachlorkohlenstoff und zwischen Wasser und Benzin (Kp: 100-1100) bei 180: Schulz, Koll. Beih. 21, 51; zwischen Wasser und Benzol bei gewöhnlicher Temperatur: Schi., L., Ph. Ch. 101, 381; bei 180: Schulz, Koll. Beih. 21, 43, 46, 51; nener remperatur: Schi., L., Fh. Ch. 101, 361; bei 15°: Schulz, Roll. Dein. 21, 43, 40, 51; bei 25°: Brown, Bury, Soc. 123, 2432; Sm., Wh., J. phys. Chem. 33, 1966; zwischen Wasser und Toluol bei 25°: Sm., Wh., J. phys. Chem. 33, 1961; zwischen Wasser und Xylol bei 25°: Sm., J. phys. Chem. 25, 223; zwischen Wasser und Ather bei gewöhnlicher Temperatur: Schi., L., Ph. Ch. 101, 381; bei 18°: de Kolossowsky, Bl. [4] 37, 380; bei 21—22°: Behrens, Fr. 69, 100, 102; bei 25°: Sm., J. phys. Chem. 25, 624; zwischen Wasser und Schwefelkohlenstoff bei 18°: Schulz, Koll. Beih. 21, 51; zwischen Wasser und Anilin und zwischen Wasser und C. Toluidin bei 200. Anger Beiter Soc chim Bomania 10, 469, 488. C. 1900 II. und o Toluidin bei 20°: Angelescu, Bulet. Soc. chim. România 10, 162, 185; C. 1929 II, 1373; zwischen Wasser und fetten Ölen: Bodansky, J. biol. Chem. 79, 252; Gordon, Reid, J. phys. Chem. 26, 785. Verteilung zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 733.

Kryoskopisches Verhalten von Propionsäure in Wasser: Jones, Bury, Phil. Mag. [7] 4, 842; C. 1928 I, 1266; in Benzol: TRAUTZ, MOSCHEL, Z. anorg. Ch. 155, 13; in Nitrobenzol: T., M.; Brown, Bury, J. phys. Chem. 30, 699. Einfluß von Propionsäure auf den Erstarrungspunkt eines Gemisches aus gleichen Gewichtsteilen Alkohol und Benzol: WRIGHT, Soc. 127, 2337. Thermische Analyse des binären Systems Propionsäure-β-Naphthylamin: KREMANN, WEBER, ZECHNER, M. 46, 200, 217. Flüchtigkeit mit Wasserdampf: VIRTANEN, PULKKI, Am. Soc. 50, 3141; C. 1928 I, 167; KNETEMANN, R. 47, 957. Propionsäure enthaltende binäre azeotrope Gemische s. in der untenstehenden Tabelle.

Dichte einer Lösung in Methanol bei 25°: Lifschitz, Beck, Koll.-Z. 26 [1920], 60. Adiabatische Kompressibilität wäßr. Lösungen bei 22—24°: Venkateswaran, J. phys. Chem. 31, 1523. Viscosität von Gemischen mit Pyridin bei 20°, 40° und 80°: Yajnik, Mitarb., Ph. Ch. 118, 312. Anderung der Viscosität von 1n-Propionsäure bei der Neutralisation mit 1n-Natronlauge oder 1n-Kalilauge bei 15°: Simon, C. r. 181, 862. Diffusion durch Kollodium-Membranen: Collander, C. 1926 II, 720.

Oberflächenspannung währ. Propionsäure-Lösungen zwischen 0° und 100°: Rehbinder, Ph. Ch. 111, 452; vgl. Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 95. Schaumbildung währ. Lösungen bei 18°: Bartsch, Koll. Beih. 20, 5, 7; C. 1925 I. 2362. — Adsorption von Propionsäure Dampf an Tierkohle: ALEXEJEWSKI, 3K. 55, 416;

Komponente	Kp760 0	Propion- săure in Gew%	Komponente	Kp760	Propion- saure in Gew%
Bromoform 2) 4)	137,6 140,4 127,75 119,5 119,2 137,0 138,3 119,15 136,4 137,7	37 ca. 60 17,5 9 10 44 70 8,5 58,5 64	Chlorbenzol 4)	128,9 139,85 139,4 139,8 131,1 135,0 132,65 132,4 138,4 140,75	18 60 67 ca. 75 28 42 35,5 34 59

¹⁾ LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 116, 119. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 19, 20, 21. - *) L., Ann. Soc. scient. Bruxelle: 49, 34, 40. - 4) L., Ann. Soc. scient. Bruxelles 49, 110, 111.

C. 1925 II, 642. Adsorption von Propionsäure aus wäßr. Lösung an Tierkohle: TRAUBE, Verh. dtech. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 95; Watson, Biochem. J. 16, 617; KLEIN, Lotos 71 [1923], 285, 292; FREUNDLICH, BIRSTEIN, Koll. Beih. 22, 96; C. 1926 II. 1250; Schilow, Nekrassow, Ph. Ch. 130, 67, 69; Ж. 60, 105, 108; an Zuckerkohle: Bartell, MILLER, Am. Soc. 45, 1109; NEKRASSOW, Ph. Ch. 186, 380; an Kokosnußkohle: NAMA-SIVAYAM, Quart. J. indian chem. Soc. 4, 451; C. 1928 I, 662; an aktive Kohle: Fromageot, WURMSER, C. r. 179, 973; an verschiedene Kohlesorten: NE., Ph. Ch. 136, 22; DUBININ, Ph. Ch. [A] 140, 83; K. 61, 587; SABALITSCHKA, Pharm. Ztg. 74, 382; C. 1929 I, 2288; an Blutkohle in Gegenwart von Natriumpropionat: Angelescu, Comanescu, Bulet. Soc. chim. România 10, 172, 174, 175; C. 1929 I, 2289. Einfluß des p_H auf die Adsorption an Norit aus wäßr. Lösung: Phelps, Peters, Pr. roy. Soc. [A] 124, 557, 559; C. 1929 II, 2546. Adsorption aus alkoh. Lösung an Tierkohle: Griffin, Richardson, Robertson, Soc. 1928, 2708; an Blutkohle, Holzkohle und Zuckerkohle aus alkoholischer und ätherischer Lösung: NEKRASSOW, Ph. Ch. 136, 23, 25; an Blutkohle aus Lösungen in Methanol, Aceton, Petroläther, Benzol, Chloroform, Tetrachlorkohlenstoff und Schwefelkohlenstoff: NE., Ph. Ch. 136, 26. Adsorption an Calciumchlorid aus der Lösung in Nitrobenzol: Brown, Bury, J. phys. Chem. 29, 1313; an Eisen(III)-hydroxyd aus wäßr. Lösung: Sen, J. phys. Chem. 31, 526; aus wäßr. Lösung an Siloxen: Kautsky, Blinoff, Ph. Ch. [A] 139, 509; an Kieselsäure-Gel aus wäßr. Lösungen: Mehrotra, Dhar, Z. anorg. Ch. 155, 299; aus Lösungen in Wasser und in Tetra-Lösungen: MEHROTRA, DHAR, Z. anorg. Ch. 185, 299; aus Lösungen in Wasser und in Tetrachlorkohlenstoff: Bartell, Fu, J. phys. Chem. 33, 680; an Viscose aus wäßr. Lösunger
BRASS, FREI, Koll.-Z. 45, 249, 250; C. 1928 II, 1037. Aufnahme aus wäßr. Lösungen durch
Hautpulver: Kubelka, Taussig, Koll. Beih. 22, 153, 155, 158; C. 1926 II, 2138. Adsorption
von flüssiger Propionsäure an Platin: Palmer, Pr. roy. Soc. [A] 115, 229; C. 1927 II, 1678.

— Ausbreitung von Propionsäure auf Wasser: Harkins, Feldman, Am. Soc. 44, 2670;
Ramdas, Indian J. Phys. 1, 20; C. 1926 II, 1935. Ausbreitung sehr verdünnter wäßriger
Propionsäure-Lösungen auf Quecksilber und Einfluß von Aufladungen darauf: Burdon,
Oliphant, Trans. Faraday Soc. 23, 208; C. 1927 II, 677. Einfluß von Propionsäure auf die Quellung von Casein: Isgarayschew, Pomeranzewa, Koll.-Z. 38, 236; C. 1926 I, 3129. Koagulierende Wirkung von Propionsäure auf wäßr. Caseinnatrium-Lösungen: I., Bogomolowa, Koll.-Z. 38, 239; C. 1926 I, 3306; auf Mastixsol: Schillow, Ph. Ch. 100, 436; von Propionat-Ionen auf Eisen(III)-hydroxyd-Sol und Arsen(III)-sulfid-Sol: HERRMANN, Helv. 9, 786.

Brechungsindex einer 5% igen Lösung von Propionsäure in Methanol bei 25°: Lifschitz, BECK, Koll.-Z. 26, 60; C. 1920 III, 82. Ultraviolettes Absorptionsspektrum von Eisen(III)chlorid in wäßr. Propionsäure: Gноян, Мітва. J. indian chem. Soc. 5, 194; С. 1928 II, 326; von Uranylnitrat in wäßr. Propionsäure: Gн., М., Quart. J. indian chem. Soc. 4, 357; C. 1928 I, 649. Lichtstreuung in wäßr. Lösungen: VENKATESWARAN, Indian J. Phys. 1, 396; C. 1927 II, 2534; an der Öberfläche wäßr. Lösungen: Bouhet, C. r. 188, 60; 189, 43. — Elektrische Leitfähigkeit wäßriger und alkoholischer Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192. Einfluß von Glykolsäureäthylester auf die elektrische Leitfähigkeit einer wäßrigen Lösung: Holwerda, Bio. Z. 128, 469. Elektrische Leitfähigkeit von Ge-mischen mit Eisessig bei 25°: Kendall, Gross, Am. Soc. 43, 1434, 1435. Ionenbeweglichkeit in Alkohol: ULICH, Fortsch. Ch. Phys. 18 [1924/26], 605. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßrigen, schwach schwefelsauren Propionsäure-Lösunger: Frumkin, Ph. Ch. 111, 193. Zur Zerstäubungselektrizität wäßr. Lösungen vgl. Zeehuisen, Versl. Akad. Amsterdam 28, 1116; C. 1921 I, 929. Elektrolytische Dissoziationskonstante k bei 25° : 1.39×10^{-5} (aus der Leitfähigkeit berechnet) (KLEIN, Lotos 71 [1923], 280), 1.42×10^{-5} (aus der Leitfähigkeit berechnet) (Holwerda, Bio. Z. 128, 468), 1,38×10-5 (ermittelt aus der katalytischen Wirkung von Propionsäure auf die Jodierung von Aceton) (Dawson, Hall, Key, Soc. 1928, 2849); bei 19° : 1.4×10^{-5} (potentiometrisch unter Berücksichtigung der Aktivitätskoeffizienten bestimmt) (MICHAELIS, MIZUTANI, Ph. Ch. 116, 145; MIZ., Ph. Ch. 118, 328, 341; vgl. Landolt-Börnst. EI, 653). Potentiometrische Bestimmung der Dissoziationskonstante von Propionsäure bei 190 in wäßrig-methylalkoholischen Lösungen: Miz.; in wäßrigäthylalkoholischen Lösungen: MICH., MIZ.

Katalytische Wirkung des Propionsäure-Anions auf die Zersetzung von Nitramid: Brönsten, Pedersen, Ph. Ch. 108, 198. Katalytische Wirkung von Propionsäure auf die Geschwindigkeit der Reaktion von Aceton mit Jod in wäßr. Lösung bei 250: DAWSON, HALL, KEY, Soc. 1928, 2847. Propionsäure fördert die unter Leuchten verlaufende Autoxydation von Dithiokohlensäure-O.S-dimethylester (Delépine, Bl. [4] 31, 782). Geschwindigkeit der Zersetzung von Benzoldiazoniumchlorid in Propionsäure bei 30°, 40° und 50°: Pray, J. phys. Chem. 80, 1480.

Chemisches Verhalten.

Propionsäure liefert bei elektrolytischer Oxydation an glatten Platinanoden in 2n-schwefelsaurer Lösung hauptsächlich Kohlendioxyd und Propionsäureäthylester; daneben entstehen wenig Athylen, Kohlenoxyd und Brenztraubensäure (F. MÜLLER, Z. El. Ch. 83, 569). Zur Bildung von Butan bei der Elektrolyse von Kaliumpropionat-Lösungen unter verschiedenen Bedingungen vgl. Fairweather, Walker, Soc. 1926, 3118; Einfluß von Katalysatorgiften auf die Elektrolyse: Fichter, Zumbrunk, Helv. 10; 877. Beim Überleiten von Propionsäure-Dampf über Natriumchlorid bei 580° entstehen Diäthylketon und ein Gasgemisch aus Kohlendioxyd, Kohlenoxyd, Wasserstoff, ungesättigten Kohlenwasserstoffen und geringen Mengen Methan (Mailhe, Bl. [4] 37, 306). Leitet man den Dampf bei 330—380° über Tierkohle, so erhält man neben geringen Mengen Diäthylketon und Acetaldehyd Äthan, Äthvlen, Kohlenoxyd, Kohlendioxyd, Wasserstoff und Wasser (Senderens, Aboulenc, C. r. 170, 1065).

Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Oxydation des Natriumsalzes durch Luft bei Gegenwart von aktiver Kohle oder von Manganoxyden in Wasser bei 39°: Mayer, Wurmser, Ann. Physiol. Physioch. biol. 2, 334, 344; Ber. Physiol. 87, 501; C. 1927 I, 1851; vgl. Gompel, M., W., C. r. 178, 1026. Oxydation von Propionsäure im Sonnenlicht oder ultravioletten Licht bei Gegenwart von Uransalzen: Aloy, Valdigurk, Bl. [4] 37, 1139. Bei der Einw. von Ozon auf Kalium-propionat in Wasser oder Kaliumcarbonat-Lösung entsteht Formaldehyd (FICHTER, LAPIN, Helv. 12, 997). Geschwindigkeit der Oxydation durch Wasserstoffperoxyd und konz. Schwefelsäure: Kerp, Arb. Gesundh. Amt 57, 559; C. 1927 I, 1902. Liefert bei der Oxydation mit Athylhydroperoxyd in Gegenwart von Mohrschem Salz Kohlendioxyd (v. Szent-Györgyi, Bio. Z. 146, 257). Gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung bei Abwesenheit oder Gegenwart von Kupfer geringe Mengen Cyansaure (nachgewiesen als Harnstoff) (Fosse, Laude, C. r. 172, 1242). Wird von Kaliumdichromat und verd. Schwefelsäure bei 100° zu Brenztraubensäure und weiter zu Essigsäure oxydiert (Polonovski, C. r. 178, 576). Geschwindigkeit dieser Reaktion: P.; vgl. Lieben, Molnar, M. 58/54, 1, 7. Das Kaliumsalz liefert beim Kochen mit Kaliumpersulfat und Kaliumcarbonat in wäßr. Lösung neben Kohlenoxyd, Kohlendioxyd und gesättigten Kohlenwasserstoffen Athylen und Athylalkohol (Fichter, Z. El. Ch. 35, 712; F., Lapin, Helv. 12, 999). Propionsäure besitzt kein merkliches Reduktionsvermögen gegenüber Chlorsäure, Thallium(III)-salzen, Cer(IV)salzen, Eisen(III)-salzen und Permanganat in 0,001 n-Lösung (Fromagnot, J. Chim. phys. 24, 538). Beim Einleiten von Fluor in eine wäßr. Lösung von Kaliumpropionat und Kaliumcarbonat entstehen Alkohol, Athylen und Acetaldehyd (Fichter, Brunner, Helv. 12, 576). Bei der Einw. von Chlor auf Propionsäure in Tetrachlorkohlenstoff im ultravioletten Licht werden 2 Wasserstoffatome durch Chlor ersetzt (BENRATH, HERTEL, Z. wiss. Phot. 23, 36; C. 1924 II, 822); Geschwindigkeit dieser Reaktion: B., H. Geschwindigkeit der Reaktion mit Brom in Abwesenheit oder Gegenwart von Bromwasserstoff, Acetylbromid, Propionylbromid und Benzoylbromid: Watson, Soc. 127, 2078, 2082. Zersetzt sich beim Erhitzen mit konz. Schwefelsäure auf 165—195° unter Verkohlung und Entwicklung von Kohlenoxyd und geringeren Mengen Kohlendioxyd (Senderens, Aboulenc, C. r. 185, 1088). Reaktion mit Titantetrachlorid: GIUA, MONATH, Z. anorg. Ch. 166, 308.

Geschwindigkeit der Veresterung von Propionsäure in absol. Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Goldschmidt, Ph. Ch. 94, 241; Advani, Sudbordugh, J. indian Inst. Sci. 6, 57; C. 1923 III, 997; Bhide, S., J. indian Inst. Sci. 8 A, 90; C. 1926 I. 80; in Gegenwart von Pikrinsäure, Trichloressigsäure und α.α.β-Trichlor-buttersäure bei 25°: G., Ph. Ch. 94, 240, 241; in absolutem und wasserhaltigem Alkohol in Gegenwart von Chlorwasserstoff bei 25°: G., Dahll, Ph. Ch. 114, 20; in absol. Isobutylalkohol in Gegenwart von Chlorwasserstoff bei 25°: G., Ph. Ch. 124, 30. Gleichgewicht der Veresterung in absol. Methanol und Alkohol im Rohr bei 100°: Williams, Gabriel, Andrews, Am. Soc. 50, 1268, 1269. Veresterung mit Athylalkohol in Gegenwart von Zirkondioxyd bei 270—280°: Mailhe, de Godon, Bl. [4] 29, 104. — Propionsäure liefert beim Kochen mit Aminoguanidinnitrat 5-Imino-3-athyl-1.2.4-triazolin (Syst. Nr. 3872) (Reilly, Madden, Soc. 1929, 816). Gibt mit Anilin bei Bestrahlung mit ultraviolettem Licht Propionanilid (Stoermer, Robert, B. 55, 1040). Liefert mit überschüssigem Phenylmagnesiumbromid in siedendem Ather Athyldiphenylcarbinol und wenig Diphenyl (Peters, Mitarb., Am. Soc. 47, 452).

Biochemisches und physiologisches Verhalten.

Bei der Vergärung von Calciumpropionat durch Aspergillus niger bei 32° entsteht zunächst Milchsäure, dann Brenztraubensäure (Walker, Coppook, Soc. 1928, 806). Calciumpropionat wird durch thermophile Bakterien aus Schmutzwasser unter Bildung von Methan und Kohlendioxyd vergoren (Coolhaas, Zbl. Bakt. Parasitenk. [II] 75, 165; C. 1928 II, 1342). Reduktion von Methylenblau durch Propionsäure in Gegenwart ruhender Bact. coli unter verschiedenen Bedingungen: Quastel, Whetham, Biochem. J. 19, 521, 522, 530; in Gegenwart ruhender Bact. prodigiosus, Bact. proteus oder Bact. faecalis alkaligenes: Qu., Wooldrige, Biochem. J. 19, 653. Hemmende Wirkung auf das Pilzwachstum: Bach, C. r. 179, 1087. Frühtreibende Wirkung auf Pflanzenkeimlinge: Boresch, Bio. Z. 170, 467. Einfluß von Kaliumpropionat auf die Pflanzenatmung: Klein, Pirschle, Bio. Z. 176, 22, 26.

Insekticide Wirkung von Propionsäure: Yamamoto, Scient. Pap. Inst. phys. chem. Res. 3, 219; C. 1926 I, 693; Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884. Ausführliche Angaben über die physiologische Wirkung von Propionsäure auf Menschen und Tiere s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin u. Leipzig 1930], S. 809.

Analytisches.

Propionsäure gibt mit Lanthannitrat, Jod und Ammoniak in wäßr. Lösung ebenso wie Essigsäure eine blaue Färbung (Krüger, Tschirch, B. 62, 2776, 2782). Propionsäure gibt mit einer verdünnten wäßrig-ammoniakalischen Lösung von Phthalaldehyd in der Kälte eine grünlichblaue Färbung (Seekles, R. 43, 94). Mikrochemischer Nachweis: Behrens Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 317. Konduktometrische Titration von Propionsäure in Natriumpropionat-Lösungen mit Salzsäure: Bureau, C. r. 181, 43. Bestimmung neben anderen Fettsäuren durch Destillation aus wäßr. Lösungen: Virtanen, Pulkki, Am. Soc. 50, 3142; Ann. Acad. Sci. fenn. [A] 29 [1927] [Komppa-Festschr.], Nr. 25, S. 11; durch Wasserdampf-Destillation aus mit Magnesiumsulfat gesättigter schwefelsaurer Lösung: Olmsted, Whitaker. Duden, J. biol. Chem. 85, 109. Bestimmung von Propionsäure neben Essigsäure: Baum, Ch. Z. 51, 518, 538; C. 1927 II, 1740. Bestimmung in menschlichen Fäces: Olmsted, Mitarb., J. biol. Chem. 85, 118. Über Nachweis und Bestimmung von Propionsäure vgl. a. J. Schmidt in G. Klein, Handbuch der Pflanzenanalyse, Bd. II, 1. Teil [Wien 1932], S. 383, 401.

Salze der Propionsäure (Propionate).

Ammoniumpropionat NH₄C₃H₅O₂. D₄⁸: 1,108 (Biltz, Balz, Z. anorg. Ch. 170, 338). — Hydroxylaminpropionat NH₂ OH + C₃H₅O₂. Krystalle (aus Alkohol + Ather). F: 56—57° (OESPER, Ballard, Am. Soc. 47, 2426). Löslich in Wasser und Alkohol, unlöslich

in Ather, Chloroform und Ligroin. Zersetzt sich langsam beim Aufbewahren.

LiC₃H₅O₃ + H₂O. Röntgenogramm (Debye-Scherrer-Aufnahme): Becker, Jancke, Ph. Ch. 99, 268. — Natrium propionat NaC₃H₅O₃. Dichte wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 43; bei 20°: de García, An. Soc. quím. arg. 8 [1920], 383. Oberslächenspannung von wäßr. Lösungen bei 18°: Lascaray, Koll.-Z. 34, 74; C. 1924 I, 2413. Hydrolytische Adsorption aus wäßr. Lösung an Kieselsäuregel: Bartell, Fu, J. phys. Chem. 33, 682. Durch aktive Kohle wird Natrium propionat aus wäßr. Lösungen bei 20°: de G. Dichte und Brechungsindices einer Lösung des wasserfreien Salzes in Methanol: Lifschitz, Beck, Koll.-Z. 26, 60; C. 1920 III, 82. Doppelbrechung einer rotierenden wäßrigen Lösung: Vorländer, Walter, Ph. Ch. 118, 15. Elektrische Leitsähigkeit wäßr. Lösungen bei 18°: Heydweiller; von Lösungen in absol. Alkohol bei 15°, 25° und 35°: Lloyd, Pardee, Publ. Carnegie Inst. Nr. 260 [1918], S. 110. Einsluß von Natrium propionat auf die Geschwindigkeit der Elektroosmose von 0,002n-Natronlauge durch ein Chrom (III)-chlorid-Diaphragma oder durch Glascapillaren: Choucroun, J. Chim. phys. 20, 423, 425. Anlagerung von Schwefeldioxyd an das wasserfreie Salz: Ephraim, Aellig, Helv. 6, 44. — Kalium-propionat KC₃H₅O₃ + H₅O. Röntgenogramm (Reslexionsmethode): Piper, Soc. 1929, 236. Dichten und Brechungsindices wäßr. Lösung bei 20°: de García, An. Soc. quím. arg. 8 [1920], 386. Dichte und elektrische Leitsähigkeit wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 43. Anlagerung von Schwefeldioxyd an das wasserfreie Salz: Ephraim, Aellig, Helv. 6, 46. — Anlagerung von Schwefeldioxyd an wasserfreie Rubidium propionat und Caesium propionat: Ephraim, Aellig, Helv. 6, 48, 50.

pionat und Caesium propionat: EPHRAIM, AELLIG, Helv. 6, 48, 50.

Kupfer(II)-propionat Cu(C₃H₅O₂)₃ + H₂O. Absorptionsspektrum der Lösungen in Wasser, Alkohol und Chloroform im ultraroten, sichtbaren und ultravioletten Gebiet: French, Lowry, Pr. roy. Soc. [A] 106, 494; C. 1925 I, 601. Ist beim Erhitzen in Alkohol-Atmosphäre bei 275° vollständig zersetzt (Constable, Pr. Cambridge phil. Soc. 23, 433; C. 1927 I, 1409). — Silberpropionat AgC₃H₅O₂. Bei 25° lösen sich in Wasser 0.050, in absol. Alkohol 0,00085 Mol/l (Larsson, Svensk kem. Tidskr. 39, 127, 129; C. 1927 II, 1231).

absol. Alkohol 0,00085 Mol/l (LARSSON, Svensk kem. Tudskr. 39, 127, 129; C. 1927 II, 1231). Basisches Beryllium propionat Be $_4$ O($C_3H_5O_3$) $_6$. Krystalle (aus Ligroin). Monoklin prismatisch (?) (Bragg, Morgan, Pr. roy. Soc. [A] 104, 449; C. 1924 I, 416). F: 133—135° (B., M.), 137° (korr.) (Sugden, Soc. 1929, 328). Dichte der Krystalle: 1,25 (B., M.). Dichte D; zwischen 142° (1,056) und 174° (1,021): S. Oberflächenspannung zwischen 144° (20,30 dyn/cm) und 186° (16,62 dyn/cm): S. Parachor: S. — Basisches Beryllium acetat-propionat Be $_4$ O($C_2H_2O_3$) $_3$ ($C_3H_5O_3$) $_3$. Nadeln (aus Petroläther). Röntgenographische Untersuchung: Bragg, Morgan, Pr. roy. Soc. [A] 104, 451; C. 1924 I, 415. F: 140—142° (nach vorangehendem Sintern). — Magnesium propionat Mg($C_3H_5O_2$) $_3$. F: 286° (Maquennescher Block) (Iwanow, Bl. [4] 43, 447). Zerfällt beim Erhitzen für sich auf 350—370° in Diäthylketon, Magnesiumoxyd und Kohlendioxyd. — Magnesium-bromid-propionat BrMgC $_2H_4O_3$. B. Bei raschem Einleiten von Kohlendioxyd in eine auf —20° abgekühlte

ätherische Lösung von Äthylmagnesiumbromid (Iwanow, Bl. [4] 37, 289, 293; 43, 443). Zerfält beim Erhitzen für sich auf 330—360° in Diäthylketon, Magnesiumbromid, Magnesiumoryd und Kohlendioxyd (I., Bl. [4] 48, 445, 446). Geschwindigkeit dieser Reaktion: I., Bl. [4] 48, 446. — Magnesium-jodid-propionat IMgC₂H₅O₂. B. Analog der vorangehenden Verbindung (I., Bl. [4] 37, 289; 43, 443). Geschwindigkeit der Zersetzung bei 300—310°: I., Bl. [4] 48, 446. — Calciumpropionat Ca(C₂H₅O₂)₂ + 3 H₂O. Dichte und elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 42. — Bariumpropionat Ba(C₂H₅O₃)₂ + H₂O. Löslichkeit in Wasser zwischen 0,3° und 100,7° (Wing, Thompson, Am. Soc. 48, 105, 106). s. in der untenstehenden Tabelle. Dichten und Brechungsindices wäßr. Lösung bei 23°: DE García, An. Soc. quim. arg. 8 [1920], 387. Dichte und elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Heydweiller, Z. anorg. Ch. 116, 42.

Temperatur	g Ba(CaH5	O ₂) ₂ + H ₂ O	Temperatur	g Ba(C ₃ H ₅ O ₂) ₂ + H ₂ O		
0	in 100 g Lösung	in 100 g Wasser	0	in 100 g Lösung	in 100 g Wasser	
0,3	36,5	37,5	44,8	37,1	59,0	
5,1 15,0	36,2 36,0	56,7 56,3	65,3 85,6	38,9 41,2	63,7 70,1	
24,8	36,2	56,7	100,7	44,7	82,7	

(WING, THOMPSON, Am. Soc. 48, 106).

Thallium(I)-propionat TlC₃H₅O₃. Blättchen (aus Alkohol). Sintert bei 90° und schmilzt bei 188° (korr.) (Walter, B. 59, 967). Verhalten des geschmolzenen Salzes beim Abkühlen: W. Leicht löslich in Wasser, Alkohol, Chloroform und Essigester, sehr schwer in Aceton und Toluol.

in Aceton und Toluol.

SnCl₂(C₂H₅O₂)₂. B. Beim Erwärmen von Propionsäure mit Zinn(IV)-chlorid (Fighter. Herszbein, Helv. 11, 566). Hygroskopische Krystalle. Liefert beim Behandeln mit Chlorwasserstoff Propionsäure und Zinn(IV)-chlorid. — Blei(II)-propionate. — 2Pb(C₃H₅O₂)₂ + H₂O (über Calciumchlorid getrocknet). Blättchen oder Prismen (Weinland, Baier, B. 57, 1513). — 2Pb(C₃H₅O₂)₂ + 3PbO (über Schwefelsäure getrocknet). Diese Zussmmensetzung hat wahrscheinlich das von Linnemann (A. 160, 222) als 3 Pb(C₃H₅O₂)₂ + 4PbO formulierte Salz (F. Fischer, Tropsch, Brennstoffch. 4 [1923], 278). — Pb(C₃H₅O₂)₂ + 4PbO formulierte Salz (F. Fischer, Tropsch, Brennstoffch. 4 [1923], 278). — Pb(C₃H₅O₂)₂ + 4Pb(C₂H₅O₂)₂ + Pb(C₂H₅O₂)₂ + Pb(C₃H₅O₂)₂ + 4H₂O. Blättchen. Läßt sich aus Wasser nicht unzersetzt umkrystallisieren (W., B.). — Pb(C₃H₅O₂)₂ + Pb(BrO₃)₂ + 4H₂O. Blättchen. Verliert das Krystallwasser bei 100°; zersetzt sich oberhalb 100° unter Abgabe von Bromdämpfen; explodiert bei stärkerem Erhitzen heftig (W., B.). — 2Pb(C₃H₅O₃)₃ + NaClO₄. Krystalle. Läßt sich aus Wasser nicht unzersetzt umkrystallisieren (W., B., B. 57, 1510). — Pb(C₃H₅O₂)₂ + Pb(OH)₂ + NaC₃H₅O₂ + NaClO₄ (über Schwefelsäure getrocknet). Prismen. Läßt sich aus Wasser nicht unzersetzt umkrystallisieren (W., B., B. 57, 1511). — 3Pb(C₂H₅O₃)₄. + 4NaNO₃ + 6H₂O (über Calciumchlorid getrocknet). Nadeln. Läßt sich aus Wasser nicht unverändert umkrystallisieren (W., B., B. 57, 1511). — Blei(IV)-propionat Pb(C₃H₅O₃)₄. B. In sehr geringer Menge bei der elektrolytischen Oxydation von Blei(II)-propionat in wasserfreier Propionsäure in Gegenwart von Natriumpropionat an einer Platinanode (Schall, Melzer, Z. El. Ch. 28, 475). Nadeln.

Wismutpropionate. — Bi(C₃H₅O₂)₃. Sehr unbeständige Nadeln oder Würfel (Cuny, Bl. Sci. pharmacol. 34, 73; C. 1927 I, 2188). — OBiC₂H₅O₂. Zersetzt sich beim Aufbewahren

unter Alkohol (Cuny).

[Hexapropionato-dihydroxo-trichrom]-chlorid [Cr₃(C₃H₅O₃)₆(OH)₃]Cl+5H₂O. Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 487; C. 1928 II, 2626. Physiologische Wirkung: Külz, Ar. Pth. 110, 347; C. 1926 II, 1977. — Uranylpropionate: UO₄(C₃H₅O₃)₂. Gelbgrünes Krystallpulver. Leicht löslich in Wasser und Alkohol, unlöslich in Ather (A. Müller, Z. anorg. Ch. 109, 241, 245). Verändert sich bis 300° nur wenig. — UO₄(C₃H₅O₃)₂ + 2H₂O. Beständigkeit wäßriger und methylalkoholischer Lösungen am Licht und im Dunkeln bei Gegenwart und Abwesenheit von Luft und Ather: Courgous. Ph. [4] 24, 4779.

Dunkeln bei Gegenwart und Abwesenheit von Luft und Äther: Courtois, Bl. [4] 83, 1779. [Hexapropionato-dihydroxo-triferri]-chlorid [Fe₃(C₃H₅O₃)₄(OH)₂|Cl+2H₅O. B. Beim Aufbewahren einer wäßr. Lösung von 1 Mol Eisen(III)-chlorid und 2 Mol Natriumpropionat an der Luft (Weinland, Höhn, Z. anorg. Ch. 152, 15). Rote Blättchen. Löslich in Alkohol.

Funktionelle Derivate der Propionsäure.

Propionsäuremethylester, Methylpropionat C₄H₅O₅ = C₅H₅·CO₅·CH₅ (H 239; E I 104). B. Beim allmählichen Erhitzen von Propionsäure mit Dimethylsulfat auf 200° (Sinon, C. r. 176, 585). — E: —87,5° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 215; C.

1921 III, 1266). Kp₇₈₀: 80,55° (T., M.), 79,85° (Lecat, R. 46, 243, 244). Dampfdruck zwischen —20° (5,65 mm) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 435. Kritischer Druck: 30032 mm (Y.). Dichte D; zwischen 0° (0,9387) und der kritischen Temperatur: Y. Dichte des gesättigten Dampfes zwischen 70° und der kritischen Temperatur: Y. Parachor: Sugden, Soc. 125, 1183. Verdampfungswärme bei 79,0°: 87,59 cal/g (Mathews, Am. Soc. 48, 573). n; 1,3738 (Munch, Am. Soc. 48, 997). Absorption von Röntgenstrahlen: Taylor, Phys. Rev. [2] 20, 712; C. 1924 I, 8. Ultrarotes Absorptionsspektrum zwischen 0,6 und 12,5 µ: Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. — Mischbarkeit mit Wasser: Kendall, Harrison, Trans. Faraday Soc. 24, 592; C. 1929 I, 835. Kryoskopisches Verhalten in Wasser: K., H. Methylpropionat enthaltende binäre azeotrope Gemische s. in der untenstehenden Tabelle. Quellung von rohem und vulkanisiertem Kautschuk in Methylpropionat: Salkind, B. 59, 525. Brechungsindices von 1% igen Lösungen in Wasser und in Baumwollsaatöl: Munch, Am. Soc. 48, 997.

'Methylpropionat enthaltende binäre azeotrope Gemische.

Komponente	Kp ₇₆₀	Methyl- propionat in Gew%	Komponente	Kp760	Methyl- propionat in Gew%
Tetrachlorkohlenstoff ²) Dichlorbrommethan ⁴) Butylchlorid ⁴) Hexan ²) Cyclohexan ²)	76,0 91,2 76,8 67 75	ca. 25 ca. 15 ca. 38 ca. 12	Benzol 1)	79,45 62,45 72,0 76,35 77,6	ca. 52 52,5 67 62 ca. 63

1) LECAT, R. 45, 623, 624. — 2) L., R. 46, 243, 244. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928], 17, 19. — 4) L., Ann. Soc. scient. Bruxelles 48 I, 116, 122.

Beim Überleiten von Methylpropionat-Dampf über Nickel bei 420—670° entstehen Kohlenoxyd, Kohlendioxyd, Wasserstoff, Methan, Athan und (zwischen 420° und 468°) Spuren Propan; mit steigender Temperatur nimmt die Bildung von Kohlendioxyd und Methan zu, die Bildung von Kohlenoxyd, Wasserstoff und Athan ab (Pearce, Ott, J. phys. Chem. 31, 109). Über Anlagerung von Bromwasserstoff bei niedriger Temperatur vgl. MacIntosh, Trans. roy. Soc. Canada [3] 19 III, 72; C. 1926 II, 16. Geschwindigkeit der Verseifung von Methylpropionat durch wäßrig-methylalkoholische Salzsäure bei 25°: Palomaa, Leimu, Ann. Acad. Sci. fenn. [A] 29, Nr. 10, S. 9; C. 1927 II, 1814; in wäßrig-alkoholischer Lösung in Abwesenheit oder Gegenwart von Salzsäure bei 40,5° und 80,2°: Berger, R. 43, 171, 172, 173, 175; durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: Gyngell, Soc. 1928, 1785. — Hydrolyse von Methylpropionat durch Ricinuslipase: Lorberblatt, Falk, Am. Soc. 48, 1661.

Propionsäureäthylester, Äthylpropionat $C_5H_{10}O_2 = C_2H_5 \cdot CO_2 \cdot C_2H_5$ (H 240; E I 105). B. Neben anderen Produkten bei der Elektrolyse von Propionsäure in 2n-Schwefelsäure an glatten Platinanoden (F. MÜLLER, Z. El. Ch. 33, 569). Beim Überleiten von Propionsäure und Alkohol über auf ca. 270—280° erhitztes Zirkonoxyd (Mailhe, de Godon, Bl. [4] 29, 104).

E: —73,9° (TIMMERMANS, HENNAUT-ROLAND, J. Chim. phys. 27 [1930], 432). Kp₇₆₀: 99,10° (Ti., H.-R.), 99,15° (Lecat, R. 46, 243, 244); Kp_{748,1}: 97,8—98° (Unkowskaja, Wolowa, K. 57, 111, 113; C. 1926 I, 2646). Dampfdruck zwischen —10° (4,05 mm) und der kritischen Temperatur: Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 437. Kritischer Druck: 25217 mm (Y.). D⁶: 0,91251; D¹⁶: 0,89574; D⁶: 0,87903 (Ti., H.-R.); D¹⁶: 0,8942; D¹⁶: 0,8827 (Tromp, R. 41, 282, 298); D¹⁶: 0,8857 (Driver, Firth, Soc. 121, 2410); D¹⁶: 0,8896; D⁴⁶: 0,8667 (U., W.); Dichte D¹; von flüssigem Äthylpropionat zwischen 0° (0,9124) und der kritischen Temperatur und Dichte des gesättigten Dampfes zwischen 90° und der kritischen Temperatur und Dichte des gesättigten Dampfes zwischen 90° und der kritischen Temperatur: Y. Viscosität bei 15°: 0,00564, bei 30°: 0,00473 g/cmsec (Ti., H.-R.); bei 20°: 0,00533, bei 40°: 0,00427 g/cmsec (U., W.). Oberflächenspannung bei 15°: 24,83, bei 20°: 24,27, bei 30°: 23,16 dyn/cm (Ti., H.-R.). Parachor: Sudden, Soc. 125, 1183. Verdampfungswärme bei 20,4°: 87,5 cal/g (Roth, Müller, B. 62, 1191); bei 97,64°: 80,07 cal/g (Mathews, Am. Soc. 48, 573). Verbrennungswärme bei konstantem Volumen: 696,9 kcal/Mol (Roth, Müller).

 n_{α}^{is} : 1,38442; n_{ie}^{is} : 1,38643; n_{b}^{is} : 1,39109; n_{γ}^{is} : 1,39504 (Timmermans, Hennaut-Roland, J. Chim. phys. 27, 433); n_{b}^{is} : 1,3862 (Tromp, R. 41, 298); Brechungsindices für Helium-Linien: Ti., H.-R. Lichtabsorption im Ultraviolett: Brode, J. phys. Chem. 30, 61. Ultraviolet Absorptionsspektrum zwischen 0,7 und 2,5 μ : Ellis, Am. Soc. 51, 1386; zwischen 1,0 und 2,5 μ : Smith, Boord, Am. Soc. 48, 1515; zwischen 0,6 und 14 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. Raman-Effekt: Dadieu, Kohlrausch, M. 52, 234, 399; Sber.

MONOCARBONSAUREN Ca H2nO2 220

Akad. Wien 188 [IIa], 55, 57; Phys. Z. 30, 384; C. 1939 II, 607, 970; K., Phot. Korreep. 65, 162; С. 1929 II, 1508. Dipolmoment: Sмутн, Am. Soc. 47, 1896. Elektroendomome: STRICKLER, MATHEWS, Am. Soc. 44, 1652.

STRICKLER, MATHEWS, Am. Soc. 44, 1652.

Löst sich bei 25° in 45 Tln. Wasser (Lockemann, Ulrich, Desinf. 10 [1925], 104). Athylpropionat bildet azeotrope Gemische mit Dichlorbrommethan (Kp₇₀₀: 100,6°; 65 Gew.-% Athylpropionat) (Leat, Ann. Soc. scient. Bruxelles 48 I [1928], 122), Nitromethan (Kp₇₀₀: 95,5°; ca. 65 Gew.-% Athylpropionat) (L., R. 46, 243), Isoamylchlorid (Kp₇₀₀: 98,4°; 45 Gew.-% Athylpropionat) (L., Ann. Soc. scient. Bruxelles 48 I, 116), Heptan (Kp₇₀₀: 92,5°; 47 Gew.-% Athylpropionat) und Methylcyclohexan (Kp₇₀₀: 94,5°; ca. 53 Gew.-% Athylpropionat) (L., R. 46, 244), mit Athylalkohol (Kp₇₀₀: 78,0°; 25 Gew.-% Athylpropionat) (L., Ann. Soc. scient. Bruxelles 48 I, 58), sek.-Butylalkohol (Kp₇₀₀: 95,7°; 53 Gew.-% Athylpropionat), Dimethyläthylcarbinol (Kp₇₀₀: 98°; 62 Gew.-% Athylpropionat) und Allylalkohol (Kp₇₀₀: 98,8°; 50 Gew.-% Athylpropionat) (L., Ann. Soc. scient. Bruxelles 48 I, 15). Uber Dichte und Viscosität des binären Systems mit Zinn(IV)-chlorid bei 25° und 70° vgl. noch und Viscosität des binären Systems mit Zinn(IV)-chlorid bei 25° und 70° vgl. noch Kurnakow, Z. anorg. Ch. 135, 108. Viscosität der Gemische mit Isobutylformiat und Propylacetat bei 20° und 40°: Unkowskaja, Wolowa, Ж. 57, 110, 113, 114. Adsorption an Tierkohle: Driver, First, Soc. 121, 2411. Quellung von rohem und vulkanisiertem Kautschuk in Athylpropionat: Salkind, B. 59, 525. Socaus von um 38°. Lösungen bei 18°: Bartsch, Koll. Beih. 20, 5; C. 1925 I, 2362. Brechungsindices von 1% igen Lösungen in Wasser und in Baumwollsaatol: Munch, Am. Soc. 48, 997.

Einfluß verschiedener Aluminiumoxyd-Katalysatoren auf die Zersetzung von Athylpropionat bei 465°: ADKINS, NISSEN, Am. Soc. 48, 141. Entzündungstemperatur in Luft: MASSON, HAMILTON, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Über die Einw. von Ammoniak auf Athylpropionat in Gegenwart von Aluminiumoxyd bei 490-500° vgl. auch MAILHE, Caouich, Guttap. 15, 9546; C. 1920 I, 114; A. ch. [9] 13, 216. Geschwindigkeit der Verseifung von Athylpropionat durch 1n-Salzsäure bei 25°: SMITH, PATERSON, Soc. 1926, 941. Einfluß emulgierender Substanzen (z. B. Gummi arabicum, Gelatine, Tierkohle, Gips oder Schwefel) auf die Geschwindigkeit der Verseifung von Äthylpropionat in Benzol durch 1n-Salzsäure bei 25°: Sm., Soc. 127, 2604. Geschwindigkeit der Verseifung durch wäßrig-alkoholische Salzature bei 25°: PALOMAA, LEIMU, Ann. Acad. Sci. fenn. [A] 39, Nr. 10, S. 10; C. 1927 II, 1814. Geschwindigkeit der Verseifung von Athylpropionat in wäßrig-alkoholischer Lösung bei Abwesenheit oder Gegenwart von Salzsäure bei 40,5° und 80,2°: BERGER, R. 43, 170, 173. Geschwindigkeit der Verseifung durch Bromwasserstoff in Eisessig bei 16—18°: Tro-NOW, Mitarb., 2K. 59, 553; C. 1928 I, 1016; durch waßrig-alkoholische Natronlauge bei 30°: Kindler, A. 452, 105; Ar. 1929, 543; durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: GYNGELL, Soc. 1928, 1785. Athylpropionat reagiert mit Kalium in siedendem Äther unter Bildung einer schwach gelbroten, in Äther schwer löslichen Kaliumverbindung (SCHEIBLER, Voss, B. 53, 400). Wärmetönung der Einw. auf ätherfreies Magnesium jodid-äthylat in Benzol: Tschelinzew, Bl. [4] 35, 748. Liefert bei der Kondensation mit Diathylketon in Gegenwart von Natrium bei 0° 4-Methyl-heptandion-(3.5) (Mobgan, Drew, Porter, B. 58, 337). Zur Überführung in 3.6-Dioxy-2.5-dimethyl-benzochinon-(1.4) und Methyloxalessigsaure-diathylester durch Kondensation mit Diathyloxalat nach Wislicenus, Arnold (A. 246 [1888], 329) und Fichter, Willmann (B. 37 [1904], 2388) vgl. Blaikie, PERKIN, Soc. 125, 313; Kögl, Lang, B. 59, 913.

Äthylpropionat wird durch Leberlipase auch bei Gegenwart des Kaliumsalzes des Malon. Athylpropionat wird durch Leberlipase auch bei Gegenwart des Kaliumsaizes des Maionsäuremonoäthylesters, nicht jedoch bei Gegenwart des freien Malonsäuremonoäthylesters verseift (Christman, Lewis, J. biol. Chem. 47, 503). Kinetik der Verseifung durch Leberlipase: Hyde, Lewis, J. biol. Chem. 56, 9; Nogaki, H. 152, 107, 114. Über das physiologische Verhalten von Äthylpropionat vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 812. — Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 142, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 194.

2C₈H₁₀O₃ + SnCl₄ (E I 106). Über dieses Salz vgl. noch Kurnakow, Z. anorg. Ch. 135, 107.

Propionsaure-[β -chlor- β -nitro-athylester], [β -Chlor- β -nitro-athyl]-propionat $C_5H_5O_4NCl=C_2H_5\cdot CO_2\cdot CH_2\cdot CHCl\cdot NO_3$. B. Aus Propionylchlorid und β -Chlor- β -nitro-athylalkohol in Chloroform (E. Schmidt, Rutz, Trángl, B. 61, 475). — Farblose Flüssigkeit. Kp₈: 95—96° (korr.). D₁°: 1,2941. n_D°: 1,4428. Fast unlöslich in Wasser.

Orthopropions $C_0H_{20}O_1=C_1H_1\cdot C(O_1)$ C₂H₅)₅ (H 240). Liefert beim Behandeln mit Phosphorpentoxyd Propionstureathylester (Staudinger, Rathsam, *Helv.* 5, 647, 650). Geschwindigkeit der Verseifung in saurer Lösung bei 20°: Brönsted, Wynne-Jones, *Trans. Faraday Soc.* 25, 62; C. 1929 I, 1535.

Propionsäurepropylester, Propylpropionat $C_0H_{12}O_2=C_2H_5\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH$ schwefelsaurer Lösung bei Gegenwart von Vanadiumpentoxyd (MILAS, Am. Soc. 50, 497). -

E: —75,9° (TIMMERMANS, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₆₀: 123,4° (T.), 122,5° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 117). Parachor: Sugden, Soc. 125, 1184, 1185; Mumford, Phillips, Soc. 1929, 2119. Verdampfungswärme bei 120,62°: 73,18 cal/g (Mathews, Am. Soc. 48, 573). n₅[±]: 1,3930 (Munch, Am. Soc. 48, 997.) Ultrarotes Absorptionsspektrum zwischen 0,8 und 2,5 μ: Sappenfield, Phys. Rev. [2] 33, 40, 42; C. 1929 I, 1419. Elektroendosmose: Strickler, Mathews, Am. Soc. 44, 1652. Propylpropionat bildet ein azeotropes Gemisch mit Octan (Kp₇₆₀: 118,2°; 60 Gew.-% Propylpropionat) (Lecat, Ann. Soc. scient. Bruxelles 48 I, 117). Brechungsindices von 1%igen Lösungen in Wasser und in Baumwollsaatöl: Munch. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßrigen, Kaliumchlorid enthaltenden Propylpropionat-Lösungen: Frumkin, Ph. Ch. 111, 196.

Geschwindigkeit der Verseifung von Propylpropionat durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: Gyngell, Soc. 1928, 1785. — Hydrolyse durch Ricinuslipase: Lorberblatt, Falk, Am. Soc. 48, 1661. Kinetik der Verseifung durch Leberlipase bei 20° und p_R 8,65: Knaffl-Lenz, Ar. Pth. 97 [1923], 259; Arrhenius, Z. ang. Ch. 36, 455; Medd. Vet.-Akad. Nobelinst. 6, Nr. 4, S. 10; C. 1924 I, 348; bei 30° und 40° und p_R 7,4: Nogaki, H. 152, 107, 112. — Verwendung als technisches Lösungsmittel: H. Gnamm,

Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 195.

Propionsäure-[β . β' -dichlor-isopropylester], [β . β' -Dichlor-isopropyl]-propionat, Glycerin- α . α' -dichlorhydrin-propionat, β -Propio- α -dichlorhydrin $C_6H_{10}O_4Cl_2=C_2H_5\cdot CO_2\cdot CH(CH_2Cl)_2\cdot B$. Durch Erwärmen von Glycerin- α . α' -dichlorhydrin mit Propionylchlorid unter Ausschluß von Feuchtigkeit (Whitby, Soc. 1926, 1460). Durch Erhitzen von Propionylchlorid mit Epichlorhydrin im Rohr auf 1350 (Wh.). — Kp: 2080. Durch 2222.

Propionsäurebutylester, Butylpropionat $C_7H_{14}O_2=C_2H_5\cdot CO_2\cdot [CH_2]_3\cdot CH_3$ (H 241). E: $-89,55^\circ$; Kp_{760} : 146,80° (Lievens, Bl. Soc. chim. Belg. 33, 126; C. 1924 II, 1328). Abhängigkeit des Siedepunkts vom Druck: L. D. 0,8972; D. 0,8972; D. 0,8818 (L.). Verdampfungswärme bei 144,87°: 71,75 cal/g (Mathews, Am. Soc. 48, 573). Verdampfungsgeschwindigkeit: Trickey, Ind. Eng. Chem. 19 [1927], 643. n_{α}^{ts} : 1,4017; n_{α}^{ts} : 1,4088; n_{β}^{ts} : 1,4087; n_{γ}^{ts} : 1,4123 (L.). Lösungsvermögen für Wasser zwischen 7° und 30°: Briddman, Ind. Eng. Chem. 20, 185, 186; C. 1928 I, 2015. — Geschwindigkeit der Verseifung von Butylpropionat durch wäßrig-alkoholische Alkalilauge bei 20—28°: B. — Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 142, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 195.

Propionsäure-sek.-butylester, sek.-Butyl-propionat $C_7H_{14}O_2=C_2H_5\cdot CO_2\cdot CH(CH_3)\cdot C_2H_5$. Inaktive Form (H 241). Liefert beim Erhitzen auf 380° in Gegenwart von Titandioxyd Propionsäure, Diäthylketon, Butylen und Kohlendioxyd (MAILHE, Caoutch. Guttap. 22, 12938; C. 1926 I, 1961).

Propionsäureisobutylester, Isobutylpropionat $C_7H_{14}O_2 = C_2H_5 \cdot CO_2 \cdot CH_2 \cdot CH(CH_3)_2$ (H 241; E I 106). E: —71,4° (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1928 III, 1137). Kp₇₆₀: 138,0° (T.), 136,9° (Lecar, R. 46, 244; Ann. Soc. scient. Bruxelles 47 I [1927], 111). Parachor: Sugden, Soc. 125, 1184. n^m: 1,3942 (Munch, Am. Soc. 48, 997). Isobutylpropionat bildet azeotrope Gemische mit 1.1.2.2-Tetrachlor-äthan (Kp₇₆₀: 148,5°; 10 Gew.-% Isobutylpropionat), Athylbenzol (Kp₇₆₀: 135,8°; ca. 30 Gew.-% Isobutylpropionat) (Lecat, R. 46, 244) und Isobutylcarbinol (Kp₇₆₀: 130,8°; ca. 40 Gew.-% Isobutylpropionat) (Lecat, R. a. 244) und Isobutylcarbinol (Kp₇₆₀: 130,8°; ca. 40 Gew.-% Isobutylpropionat) (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 111). Brechungsindices von 1% igen Lösungen in Wasser und in Baumwollsaatöl: Munch. — Über die Einw. von Ammoniak auf Isobutylpropionat in Gegenwart von Thoriumdioxyd bei 480—490° vgl. auch Mallhe, Caoutch. Guttap. 15, 9547; C. 1920 I, 114; A. ch. [9] 13, 216. — Lösende Wirkung auf Bakterien. Stoye, Z. Hyg. Inf.-Kr. 103, 100; C. 1924 II, 1214. — Verwendung als technisches Lösungsmittel: H. Gramm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 195.

Propionsäure -n - amylester, n - Amylpropionat $C_0H_{16}O_2=C_2H_5\cdot CO_3\cdot [CH_2]_4\cdot CH_3$. E: —73,4° (Lievens, Bl. Soc. chim. Belg. 33, 127; C. 1924 II, 1328). Kp₇₆₀: 168,65°. Abhängigkeit des Siedepunkts vom Druck: L. D₄°: 0,8913; D₄°: 0,8761. n_{α}^{ts} : 1,4076; n_{β}^{ts} : 1,4096; n_{β}^{ts} : 1,4146; n_{γ}^{ts} : 1,4191.

Propionsäure-[4.4.4-trichlor-2-methyl-butyl-(3)-ester], Trichlormethyl-isopropyl-carbinol-propionat $C_8H_{18}O_2Cl_3=C_2H_5\cdot CO_2\cdot CH(CCl_3)\cdot CH(CCl_3)\cdot B$. Aus Trichlormethyl-isopropyl-carbinol und Propionsäureanhydrid bei 130—135° (Howard, Am. Soc. 49, 1069). — Kp₈₈₅: 163—164°.

Propionsäureisoamylester, Isoamylpropionat $C_8H_{16}O_8=C_2H_5\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3\cdot$

azeotrope Gemische mit o-Chlor-toluol (Kp₇₆₀: 158,0°; 40 Gew.-% Isoamylpropionat), p-Chlor-toluol (Kp₇₆₀: 159,0°) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 117) und Glykol (Kp₇₆₀: 155,5°; 88 Gew.-% Isoamylpropionat) (L., Ann. Soc. scient. Bruxelles 48 I, 18). Brechungsindices von 1% igen Lösungen in Wasser und in Baumwollsaatöl bei 25°: Munch, Am. Soc. 48, 997. — Über die Einw. von Ammoniak auf Isoamylpropionat in Gegenwart von Thoriumdioxyd bei 480—490° vgl. a. Mailhe, Caoutch. Guttap. 15, 9547; C. 1920 I, 114; A. ch. [9] 13, 216. — Verwendung von Amylpropionat ¹) als technisches Lösungsmittel Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 143, 229; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 196.

Propionsaure-[1.1.1-trichlor-hexyl-(2)-ester], Trichlormethyl-butyl-carbinol-propionat $C_9H_{15}O_2Cl_3 = C_2H_5 \cdot CO_2 \cdot CH(CCl_3) \cdot [CH_2]_3 \cdot CH_3$. B. Aus Trichlormethyl-butyl-carbinol und Propionsaureanhydrid bei 130—135° (Howard, Am. Soc. 49, 1069). — Kp₆₈₄: 166—167°.

Propionsäure-octyl-(2)-ester, Methyl-n-hexyl-carbinol-propionat $C_{11}H_{22}O_2 = C_2H_5 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$ (E I 107). Vgl. dazu noch Senderens, Aboulenc, A. ch. [9] 18, 158.

Propionsäure-n-dodecylester, n-Dodecylpropionat $C_{15}H_{30}O_2 = C_2H_5 \cdot CO_2 \cdot [CH_2]_{11} \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch aus Propionsäure und n-Dodecylalkohol (Rheinboldt, König, Otten, A. 473, 255). — Kp₃₀: 166—168°.

Propionsäure-n-hexadecylester, Cetylpropionat $C_{19}H_{38}O_2 = C_2H_5 \cdot CO_2 \cdot [CH_2]_{15} \cdot CH_3$. B. Analog der vorangehenden Verbindung (Rheinboldt, König, Otten, A. 473, 255). — Kp_{18} : 211—212°.

Propionsäure-citronellylester, Citronellylpropionat $C_{13}H_{34}O_3 = C_2H_5 \cdot CO_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3$

Propionsäure-nerylester, Nerylpropionat $C_{12}H_{22}O_2 = C_2H_5 \cdot CO_2 \cdot CH_2 \cdot CH : C(CH_2) \cdot CH_2 \cdot CH_3 \cdot CH$

 β -Chlor- β -nitro-trimethylenglykol-monopropionat, 2-Chlor-2-nitro-1-oxy-3-propionyloxy-propan $C_8H_{10}O_8NCl=C_2H_5\cdot CO\cdot O\cdot CH_2\cdot CCl(NO_2)\cdot CH_2\cdot OH$. B. Beim Behandeln von [β -Chlor- β -nitro-āthyl]-propionat in Äther mit 35% iger Formalin-Löung in Gegenwart von Natriumpropionat als Kondensationsmittel (E. Schmidt, Rutz, Temnel, B. 61, 476). — Flüssigkeit. $Kp_{0,2}$: 118—119° (korr.). D_4^{∞} : 1,3436. n_D^{∞} : 1,4613. Fast unlöslich in Wasser.

 β -Chlor- β -nitro-trimethylenglykol-acetat-propionat, 2-Chlor-2-nitro-1-acetoxy-3-propionyloxy-propan $C_8H_{12}O_6NCl=C_2H_5\cdot CO\cdot O\cdot CH_2\cdot CCl(NO_2)\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Beim Behandeln von Propionylchlorid mit β -Chlor- β -nitro-trimethylenglykol-monoacetat in Chloroform (E. Schmidt, Rutz, Trénel, B. 61, 477). — Flüssigkeit. Kp_{6,12}: 98—99° (korr.). D_4^∞ : 1,2898. n_2^∞ : 1,4492. Fast unlöslich in Wasser.

Glycerintripropionat, Tripropionin $C_{19}H_{30}O_6 = (C_2H_5 \cdot CO \cdot O \cdot CH_2)_2CH \cdot O \cdot CO \cdot C_2H_5$ (E I 107). B. Beim Kochen von Glycerin mit Propionsäure in Gegenwart von Kaliumdisulfat (Vorländer, Walter, Ph. Ch. 118, 16; Simons, Am. Soc. 48, 1993). Aus Glycerin und Propionsäure in Gegenwart von aus Naphthalin, Olsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens bei 100° (Ozaki, Bio. Z. 177, 159; Pr. Acad. Tokyo 2, 13; C. 1926 II, 2192). — Geruchloses Ol von bitterem Geschmack. Kp₁₃: 157° bis 160° (V., W.); Kp₃: 130—132°; zersetzt sich bei der Destillation oberhalb 20 mm Druck (S.). D^m₁₀: 1,100 (S.); D¹⁵: 1,108 (V., W.). Viscosität bei 20°: V., W. n⁶₁₀: 1,434 (S.). Doppelbrechung der rotierenden Flüssigkeit: V., W. Schwer löslich in Wasser (S.). — Liefert bei der katalytischen Zersetzung über Thoriumdioxyd bei 420° und 510° Acrolein, Allylalkohol, Crotonaldehyd, Essigsäure, Propionsäure, Wasser, Wasserstoff, Kohlenoxyd, Kohlendioxyd, gesättigte und ungesättigte Kohlenwasserstoffe und teerige Produkte (S.). Wird durch wäßr. Alkalilauge nur schwer verseift (S.). — Ist für Ratten giftig (O.).

Methylenglykol-äthyläther-propionat, Äthoxymethyl-propionat $C_6H_{12}O_3 = C_2H_5 \cdot CO \cdot O \cdot CH_2 \cdot O \cdot C_2H_5$ (E I 107). B. Aus Chlormethyl-äthyl-äther und Natriumpropionat anfangs in der Kälte, zuletzt auf dem Wasserbad (Farren, Mitarb., Am. Soc. 47, 2422). — Kp: 145—146°. D_4^a : 0,9931; D_4^{aa} : 0,9711. n_2^{aa} : 1,4000.

Methylenglykol - isopropyläther - propionat, Isopropyloxymethyl - propionat $C_7H_{14}O_3=C_2H_5\cdot CO\cdot O\cdot CH_2\cdot O\cdot CH(CH_2)_2$. B. Analog der vorangehenden Verbindung (FARREN, Mitarb., Am. Soc. 47, 2422). — Kp: 147—149°. D_1^0 : 0,9626; D_2^0 : 0,9644. D_2^0 : 1,3980.

¹⁾ Vgl. dazu S. 144 Anm.

Methylenglykol-sek.-butyläther-propionat, sek.-Butyloxymethyl-propionat $C_8H_{16}O_3=C_2H_5\cdot CO\cdot O\cdot CH_2\cdot O\cdot CH(CH_3)\cdot C_2H_5$. B. Analog der vorangehenden Verbindung (FARREN, Mitarb., Am. Soc. 47, 2422). — Kp: 164—166°. D_4^o : 0,9519; D_4^o : 0,9291. n_1^o : 1,4075.

Propionsäure - chlormethylester, Chlormethyl - propionat $C_4H_7O_2Cl = C_2H_5 \cdot CO \cdot O \cdot CH_2Cl$ (H 242). $Kp_{740} \cdot 128 - 130^\circ$ (ULICH, ADAMS, Am. Soc. 43, 663).

Äthylidenglykol - acetat - propionat $C_7H_{12}O_4=C_2H_5\cdot CO\cdot O\cdot CH(CH_3)\cdot O\cdot CO\cdot CH_3$ (H 242). B. Durch Erhitzen von [α -Chlor-āthyl]-acetat mit Natriumpropionat in Gegenwart von Kupfer(I)-chlorid im Rohr auf $105-115^0$ (Skrabal, Sawiuk, Ph. Ch. 122, 357). — Kp: 174^0 . — Geschwindigkeit der Verseifung durch verd. Salzsäure und Soda-Lösung bei 25^0 : Skr., S.

Äthylidenglykol - dipropionat, Äthylidendipropionat $C_8H_{14}O_4=C_2H_5\cdot CO\cdot O\cdot CH(CH_3)\cdot O\cdot CO\cdot C_2H_5$ (H 242; E I 107). Geschwindigkeit der Verseifung durch verd. Salzsäure und Soda-Lösung bei 25°: Skrabal, Sawiuk, Ph.~Ch.~122, 359.

Propionsäure-[α -chlor-äthylester], [α -Chlor-äthyl]-propionat $C_5H_5O_3Cl=C_2H_5$ · $CO \cdot O \cdot CHCl \cdot CH_3$ (H 242; E I 108). B. Aus Acetaldehyd und Propionylchlorid in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₇₄₀: 133—135°.

Propionsäure-[α -chlor-isobutylester], [α -Chlor-isobutyl]-propionat $C_7H_{13}O_9Cl=C_2H_5\cdot CO\cdot O\cdot CHCl\cdot CH(CH_3)_2$. B. Aus Isobutyraldehyd und Propionylchlorid in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 48, 662). — Kp₁₈: 67—70°.

Propionsäureanhydrid $C_6H_{10}O_3=C_2H_5\cdot CO\cdot O\cdot CO\cdot C_2H_5$ (H 242; E I 108). B. Durch Einw. von Siliciumtetrachlorid auf siedende Propionsäure (Konsortium f. elektrochem. Ind., D. R. P. 394730; C. 1924 II, 1133; Frdl. 14, 255). Beim Erhitzen von Natriumpropionat mit Benzotrichlorid auf 170—180° (A. Wacker, D. R. P. 368340; Frdl. 14, 251). — E: —45,0° (TIMMERMANS, MATTAAR, Bl. Soc. chim. Belg. 30, 215; C. 1921 III, 1266). D_{10}^{10}: 1,4041 (Whitby, Soc. 1926, 1463); $n_{10}^{10}\cdot n_{10}^{10}: 1,4047$ (Tr.). Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht in flüssigem Propionsäureanhydrid: Krishnan, Phil. Mag. [6] 50, 703; C. 1926 I, 838; in dampfförmigem Propionsäureanhydrid: Rao, Indian J. Phys. 2, 83; C. 1928 I, 1838. Lösungsvermögen für Ozon bei 18,2°: v. Wartenberg, v. Podjaski, Z. anorg. Ch. 148, 395.

Geschwindigkeit der Reaktion mit Brom in Abwesenheit oder in Gegenwart von Salpetersäure und in Gegenwart von Essigsäureanhydrid + Salpetersäure: Orton, Watson, Hughes. Soc. 1927, 2463. Liefert beim Kochen mit Tellurtetrachlorid in Chloroform Trichlortelluripropionsäure (Syst. Nr. 331a) (Morgan, Kellett, Soc. 1926, 1087). Bei der Einw. auf Acetophenon oder Dypnon in Gegenwart von Eisenchlorid entsteht das Eisenchlorid-Doppelsalz des 2-Äthyl-4.6-diphenyl-pyryliumchlorids (Syst. Nr. 2390) (Gastaldi, Peyretti, G. 53, 12; vgl. Schneider, A. 432, 312, 314).

Propionsäurechlorid, Propionylchlorid C₃H₅OCl = C₂H₅·COCl (H 243; E I 108). B. Beim Einleiten von Chlor in ein Gemisch aus Propionsäure und Dischwefeldichlorid (Read, Am. Soc. 44, 1751). Bei Einw. von Siliciumtetrachlorid auf Propionsäure in Xylol bei 50° (Montonna, Am. Soc. 49, 2115). — E: —94,0° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 216; C. 1921 III, 1266). — Beim Leiten von Propionylchlorid-Dampf über einen erhitzten Nickelkatslysator erfolgt Zerfall in Kohlenoxyd, Chlorwasserstoff, Athylen und geringere Mengen Methan, Wasserstoff und Kohlendioxyd (Mailhe, C. r. 180, 1112). Gibt mit Brom bei 80° α-Brom-propionylbromid (Fourneau, Nicolitch, Bl. [4] 43, 1236). Bei längerer Einw. der gleichen Gewichtsmenge Chlorsulfonsäure auf Propionylchlorid bei gewöhnlicher Temperatur und Zersetzung des Reaktionsgemisches mit kaltem Wasser entstehen Propionsäure-α-sulfonsäure, 4.6-Dioxo-3.5-dimethyl-2-āthyl-dihydro-1.4-pyran und andere Produkte (Krajčinović, B. 62, 580). Über die Einw. von Ammoniak auf Propionylchlorid in Gegenwart von Aluminiumoxyd bei 490—500° vgl. a. Mailhe, Caoutch. Guttap. 15, 9549; C. 1920 I, 114; A. ch. [9] 13, 212.

Propionsäureamid, Propionamid C₃H₇ON = C₂H₅·CO·NH₂ (H 243; E I 108). F: 79,5° (Taylor, Davis, J. phys. Chem. 32, 1470). Kp: 213° (Mailhe, Bl. [4] 37, 1396). Parachor: Sugden, Soc. 125, 1185. Verteilung zwischen Wasser und Äther bei 20—22°: Collander, Bärlund, Comment. biol. Helsingfors 2 [1926], Nr. 9, S. 9. Binäre azcotrope Gemische, die Propionamid enthalten, s. in der Tabelle auf S. 224. Dichte von Lösungen in Wasser, Alkohol und Alkohol-Wasser-Gemischen bei 30°: Burrows, J. Pr. Soc. N. S. Wales 53 [1919], 78, 86, 96. Oberflächenspannung wäßr. Lösungen bei 20°: C., B. Bewegung auf der Wasseroberfläche: Zahn, R. 45, 790.

Bei der Einw. von Natrium auf Propionamid in Benzol oder Petroläther entsteht entgegen den Angaben von Rakshit (Soc. 103 [1913], 1560) hauptsächlich Natriumpropionamid (Parts, B. 60, 2521). Beim Überleiten von Propionamid-Dampf über feinverteiltes Nickel bei 430° entsteht unter Entwicklung von Kohlenoxyd, Kohlendioxyd, ungesättigten

Propionamid enthaltende binare azeotrope Gemische.

Komponente	Kp780	Propion- amid in Gew%	Komponente	Kp760	Propion- amid in Gew%
Camphen 3)	156,35 172,9 205,0 205,4 217,5 210,2 219,5 138,5 204,65 218,6 215,0 220,9 2115,9 ca. 211,5 ca. 218,2 209,3 209,0 219,0 211,15	10 3 8,5 24 49,8 30 — 31,5 39 52 75 ca. 60 70 ca. 40 — 25 ca. 25 ca. 62 24,8	Eugenolmethyläther 6) Pulegon 3) Carvon 3) 4) Acetophenon 2) 4-Methyl-acetophenon 5) Bornylacetat 6) . Benzylacetat 6) Acetamid 1) 8) Isoamylvalerianat 9) Methylbenzoat 5) Athylbenzoat 5 Isobutylbenzoat 5 . Isobutylbenzoat 5 . Isoamylbenzoat 5 . Methylsalicylat 2) Dimethylanilin 5) . Diäthylanilin 1) Cincol 5) Isosafrol 5) Safrol 5)	220,0 ca. 211,3 ca. 216 200,4 214,5 210,5 208,8 220,9 188,45 197,0 205,0 ca. 215 219,5 219,5 210,55 190,5 203,15 174,0 ca. 218,5 ca. 213,2	60 ca. 48 15 ca. 43 29 28 12,2 13 25 ca. 67 34 15,5 15 35
alkohol 1)	217,8	31			

¹⁾ Lecat, Ann. Soc. scient. Bruxelles 45 I [1926], 287, 289, 290. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 23, 25. — 3) L., Ann. Soc. scient Bruxelles 47 I, 67. — 4) L., Ann. Soc. scient. Bruxelles 47 I, 149 Ann. 1. — 5) L., Ann. Soc. scient Bruxelles 47 I, 151, 154. — 6) L., R. 47, 16, 17. — 7) L., Ann. Soc. scient. Bruxelles 48 I [1928], 18. — 8) L., Ann. Soc. scient. Bruxelles 48 I, 118. — 9) L., Ann. Soc. scient. Bruxelles 49 [1929], 22, 24. — 10) L., Ann. Soc. scient. Bruxelles 49, 111, 112.

Kohlenwasserstoffen (darunter Athylen), Wasserstoff und Ammoniak Acetonitril (Mailhe, Bl. [4] 37, 1396). Die NH₂-Gruppe wird bei der Einw. von Natriumnitrit in essigsaurer Lösung nur zu einem geringen Teil, in salzsaurer Lösung quantitativ unter Stickstoff-Entwicklung abgespalten (Plimmer, Soc. 127, 2654). Geschwindigkeit der Überführung in Propionsäure-äthylester durch absoluten und wasserhaltigen Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Taylor, Davis, J. phys. Chem. 32, 1476. Bei der Einw. von Propionylchlorid auf Natriumpropionamid in Benzol entsteht Dipropionamid (Pa.). — Hydrolyse durch Enzyme aus Aspergillus flavus: Thakur, Norris, J. indian Inst. Sci. 11 A, 153; C. 1929 I, 1014. Wird durch Magen- und Sojabohnenurease nicht gespalten (Luck, Seth, Biochem. J. 18, 1230). — Über das physiologische Verhalten vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, Z. Abt., Bd. I [Berlin-Leipzig 1930], S. 814. Abbau im Organismus der Katze: Fiske, J. biol. Chem. 55, 195. — Über die Bildung gefärbter Lösungen beim Zusammengeben von Propionamid mit aromatischen Polynitro-Derivaten und Alkali- oder Erdalkalihalogeniden vgl. Tronow, Djakonowa-Schulz, Sonowa, Ж. 59, 334; C. 1927 II, 1687. — Bestimmung im Harn: Fiske, J. biol. Chem. 55, 215.

N-Propyliden-propionamid $C_0H_{11}ON = C_2H_3 \cdot CO \cdot N : CH \cdot CH_2 \cdot CH_3$. B. Neben N-Propyl-propionamid bei der Destillation von N.N'-Dipropyl-N.N'-dipropionyl-hydrazin unter 0,4 mm Druck (Goldschmidt, Voeth, A. 435, 275). — Grünlichgelbes dickes Öl. $Kp_{0,4}$: 87°.

Dipropionamid C₈H₁₁O₂N = C₂H₅·CO·NH·CO·C₂H₅ (H 244; E I 109). B. Durch Erhitzen von Propionsäureanhydrid mit Kaliumcyanat auf dem Wasserbad (Brunner, Gröner, Benes, M. 48, 123). Aus Natrium-propionamid und Propionylchlorid in Benzol (Parts, B. 60, 2522; Ph. Ch. 131, 405). — Nadeln (aus Äther). F: 154° (Br., G., Br.). Verbrennungswärme bei konstantem Volumen: 809,2 kcal/Mol (P., Ph. Ch. 131, 407). Leicht löslich in Alkohol, schwerer in Wasser und Äther (Br., G., Br.). Die wäßr. Lösung reagiert gegen Lackmus anfangs neutral, beim Aufbewahren oder Erhitzen infolge Hydrolyse sauer (Br., G., Br.). — NaC₈H₁₀O₄N. B. Beim Kochen von Dipropionamid mit Natrium in Benzol (P., B. 60, 2522). Zur Bildung aus Propionamid und Natrium in siedendem Petroläther nach Raeshit (Soc. 103, 1560) vgl. P., B. 60, 2520.

Propionitril, Äthylcyanid C₃H₅N = C₂H₅·CN (H 245; E I 109). B. Bei der Destillation von Zuckerrübenschlempe mit Calciumoxyd (Guillissen, Chim. et Ind. 17 [1927], Sondernummer, S. 155 C). Zu den E I 2, 109, 110 mitgeteilten Bildungen aus Propionaldehyd, Propionsäureestern, Propionylchlorid, Di- und Tripropylamin sowie Propylnitrit vgl. noch Mailhe, Caoutch. Guttap. 15, 9546, 9549, 9550; C. 1920 I, 114; A. ch. [9] 13, 193, 203 210, 212, 215, 216. Propionitril entsteht beim Erhitzen von p-Toluolsulfonsäure-äthylester mit Kaliumcyanid (Rodionow, Bl. [4] 39, 324).

E: —91,85° (ΤΙΜΜΕΚΜΑΝS, Bl. Soc. chim. Belg. 30, 70; 32, 300; C. 1921 III, 289; 1923 III, 1497), —102° (FRICKE, RODE, Z. anorg. Ch. 163, 35). Kp₇₆₀: 97,10° (T., Bl. Soc. chim. Belg. 32, 300). D⁰; 0,80210 (T.); D²⁰: 0,7802 (F., R.); D^{0,10}; 0,7758 (v. Auwers, B. 60, 2138). Formeln zur Berechnung der Dichte zwischen 0° und dem Erstarrungspunkt: T., Bl. Soc. chim. Belg. 32, 302. Verbrennungswärme von flüssigem Propionitril bei konstantem Volumen: 456,2 kcal/Mol (Swietoslawski, Popow, J. Chim. phys. 22, 397; vgl. Lemoult. C. r. 148 [1909], 1604). $n_α^{n,6}$: 1,3618; $n_{16}^{n,6}$: 1,3637; $n_{16}^{n,6}$: 1,3682; $n_{17}^{n,6}$: 1,3719 (v. Au.). Absorptionsspektrum im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red Spectra [Washington 1905], S. 189. Beugung von Röntgenstrahlen in flüssigem Propionitril: Krishnamurti, Indian J. Phys. 2, 496; C. 1928 II, 2098. Dipolmoment μ· 10¹⁸: 4,05 (Dampf) (HÖJENDAHL, Phys. Z. 30 [1929], 392), 3,4 (verd. Lösung; Benzol) (Williams. Ph. Ch. [A] 138, 79), 3,34 (verd. Lösung; Benzol) (Werner, Ph. Ch. [B] 4, 382, 384, 385). Elektrische Leitfähigkeit bei 25°: Koch, Soc. 1928, 272.

Lösungsvermögen für Silbernitrat bei 18°: Koch, Soc. 1928, 279. Mischbarkeit mit Wasser und mit Diisoamyl bei verschiedenen Drucken: Timmermans, J. Chim. phys. 20. 506. Kritische Lösungstemperatur von Propionitril in Wasser: 113,1° (Rothmund, Ph. Ch. 26 [1898], 453, 480). Thermische Analyse des Systems mit Berylliumchlorid: Fricke, Rode, Z. anorg. Ch. 163, 35. Dichte von Lösungen in Benzol s. u. Capillare Steighöhe einer wäßt. Lösung: Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; Tr., Somogyi, Bio. Z. 120, 98. Adsorption aus wäßt. Lösung an Tierkohle: Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; Tr., Somogyi, Bio. Z. 120, 98; Toda, Bio. Z. 172, 25. Dichte und Dielektr. Konst. von Lösungen in Benzol bei 20°: Werner, Ph. Ch. [B] 4, 381; bei 25°: Williams, Ph. Ch. [A] 138, 78. Elektrische Leitfähigkeit von Silbernitrat in Propionitril bei 25°: Koch, Soc. 1928, 279; von Tripropylaminhydrochlorid in Propionitril bei 25°: Walden, Ph. Ch. 100, 524: von Trimethyl-p-tolyl-ammoniumjodid in Propionitril bei 25°: Creighton, Way, J. Franklin Inst. 186 [1918], 693; C. 1920 III, 43. Beweglichkeit verschiedener Ionen in Propionitril bei 25°: Ulich, Fortsch. Ch. Phys. 18 [1924/26], 600; Lattey, Phil. Mag. [7] 6, 263; C. 1928 II, 2430. Elektromotorische Kraft der Kette Silber|Silbernitrat in Wasser Silbernitrat in Propionitril Silber bei 25°: Koch, Soc. 1928, 274.

Gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung allein oder in Gegenwart von Kupfer Cyansaure (nachgewiesen durch Überführung in Harnstoff) (Fosse, LAUDE, C. r. 178, 320). Liefert bei der Hydrierung in Gegenwart kolloidaler Platin-Lösung in Wasser unter 3 Atm. Uberdruck bei Zimmertemperatur Tripropylamin; ist bei dieser Reaktion Cyclohexanon zugegen, so entstehen Dipropylamin und Propylcyclohexylamin (SKITA, KEIL, M. 53/54, 758). Gibt mit Schwefelwasserstoff in Gegenwart von Natriumdisulfid in Alkohol bei 38° unter Druck Thiopropionamid (KINDLER, A. 431, 204); Geschwindigkeit dieser Reaktion in Gegenwart von Natriumäthylat bei 60,6° und 1,75 Atm.: KI., A. 452, 118. Beim Erhitzen einer Lösung von Propionitril in flüssigem Ammoniak mit Kaliumhydroxyd im Rohr auf 2000 erhält man geringe Mengen Kaliumpropionamid; beim Erhitzen mit flüssigem Ammoniak und Ammoniumchlorid auf 200° im Rohr bilden sich geringe Mengen Propionamidin (CORNELL, Am. Soc. 50, 3316). Propionitril gibt beim Kochen mit Hydrazin in absol. Alkohol 4-Amino-3.5-diathyl-1.2.4-triazol und wenig 3.6-Diathyl-1.2-dihydro-1.2.4.5-tetrazin (E. MÜLLER, HERRDEGEN, J. pr. [2] 102, 132). Geht beim Erhitzen mit krystallisierter Phosphorsäure auf 130—140° in Propionsäure über (Berger, Olivier, R. 46, 603). Zur Überführung in α-Oxo-β-cyan-buttersäureäthylester durch Einw. von Diäthyloxalat auf Propionitril vgl. Angeli, R. A. L. [5] 32 I, 448. Liefert beim Erhitzen mit 2-Amino-phenol im Rohr auf 205—210° 2-Äthyl-benzoxazol (Skraup, Moser, B. 55, 1097). Gibt mit Äthylmagnesiumbromid Diäthylketon, Dipropionitril, Kyanäthin, Äthan und geringe Mengen Triathylcarbinol, neben einer nicht näher beschriebenen Verbindung vom Siedepunkt 180-200° [Semicarbazon, F: 119°] und einer Verbindung vom Schmelzpunkt 85° (Barris, Bl. Soc. chim. Belg. 31, 185; C. 1923 I, 86). Bei der Umsetzung mit Phenylmagnesiumbromid entstehen Äthylphenylketon, Dipropionitril und Kyanäthin (Bary, Bl. Soc. chim. Belg. 31, 408; C. 1923 III, 124). — Über das physiologische Verhalten vgl. H. Stauß in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1**93**0], S. 815.

Über Komplexsalze mit Silber vgl. Pawelka, Z. El. Ch. 30, 184. — $2C_3H_5N + BeCl_3$. Sehr hygroskopische Krystalle. Schwer löslich in Benzol und Benzin, löslich in Äther und

Propionitril; löst sich in Wasser unter Wärmeentwicklung (FRICKE, RODE, Z. anorg. Ch. 152, 352). — Durch thermische Analyse des Systems mit Berylliumchlorid wurden außerdem noch Verbindungen von Berylliumchlorid mit 3, 4, 5(?) und 7(?) Mol Propionitril nachgewiesen (F., R., Z. anorg. Ch. 163, 35).

Propionamidin $C_3H_8N_2=C_2H_5\cdot C(NH_2):NH$ (H 247; E I 110). B. Das Natrium-, Kalium- oder Calciumsalz entsteht aus Propionitril und den entsprechenden Metallamiden in flüssigem Ammoniak (Cornell, Am. Soc. 50, 3314). — $NaC_3H_7N_2$. Krystalle. Bei Zimmertemperatur in flüssigem Ammoniak löslich. — $KC_3H_7N_2$. Krystalle. Bei Zimmertemperatur in flüssigem Ammoniak löslich. Liefert beim Erhitzen mit Kaliumamid Äthan und Kaliumcyanamid. — $Ca(C_3H_7N_2)_2$. Krystalle. Bei Zimmertemperatur in flüssigem Ammoniak unlöslich.

Propionhydroxamsäure $C_3H_7O_2N=C_2H_5\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Form (H 247; E I 110). B. Beim Behandeln von Propionylurethan mit Hydroxylamin in Alkohol (Ponzio, G. 59, 554). — Prismen (aus Essigsäureäthylester). F: 98—99°. [Sachtleben]

Substitutionsprodukte der Propionsäure.

- α -Chlor-propionsäure $C_3H_5O_2Cl = CH_3 \cdot CHCl \cdot CO_2H$.
- a) d(+)- α -Chlor-propionsäure (H 248). Zur Konfiguration der opt.-akt. α -Chlor-propionsäuren und ihrer Derivate vgl. Freudenberg, Lux, B. 61, 1084; F., Naturwiss. 16, 587; Kuhn, F., Wolf, B. 63 [1930], 2371; F., K., Bumann, B. 63, 2382. B. Aus links-drehendem 4-Chlor-penten-(2) durch Ozonisierung in Chloroform und nachfolgende Oxydation mit Bromwasser (Levene, Haller, J. biol. Chem. 81, 707). Kp_{0,25-0,5}: 60—64°; $\alpha_{\rm b}^{\rm m}$: + 2,2° (l = 10 cm); $[\alpha]_{\rm b}^{\rm m}$: + 3,3° (Ather; c = 17), + 2,0° (Wasser; c = 12) (L., H.). Natriumsalz. $[\alpha]_{\rm b}^{\rm m}$: —0,5° (Wasser; c = 10) (L., H.).
- d(+)-α-Chlor-propionsäure-äthylester $C_6H_9O_2Cl=CH_3\cdot CHCl\cdot CO_2\cdot C_2H_6$ (H 248). B. Aus l(-)-Milchsäure-äthylester und p-Toluolsulfochlorid in warmem Pyridin (ΚΕΝΥΟΝ, PHILLIPS, TURLEY, Soc. 127, 412). Beim Kochen von l(-)-p-Toluolsulfonyl-milchsäure-äthylester mit Lithiumchlorid in siedendem Alkohol (K., Ph., T.). Teilweise racemisiert. Kp₁₈: 48—49°. D_2^{as} : 1,0720. n_D^{as} : 1,4166. α_D^{rr} : +10,10° (l = 10 cm) [Präparat aus l(-)-Milchsäure-äthylester].
 - b) $l(-)-\alpha$ -Chlor-propions dure $C_3H_5O_2Cl = CH_3 \cdot CHCl \cdot CO_2H$.
- 1(—)-α-Chlor-propionsäure-äthylester $C_5H_5O_2Cl = CH_3 \cdot CHCl \cdot CO_2 \cdot C_2H_5$ (E I 110). B. Aus d(+)-Milchsäureäthylester und p-Toluolsulfochlorid in warmem Pyridin (Kenyon, Phillips, Turley, Soc. 127, 411). Beim Aufbewahren von d(+)-p-Toluol-sulfonyl-milchsäure-äthylester mit Pyridinhydrochlorid (K., Ph., T.). Kp₁₄: 41°. D₄°: 1,072. n₅°: 1,4166. α₁°: —15,04° (l = 10 cm).
- c) $dl-\alpha-Chlor-propionsäure$ $C_3H_5O_2Cl=CH_3\cdot CHCl\cdot CO_2H$ (H 248; E I 110). Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Lösungen von α -Chlor-propionsäure: FRUMKIN, *Ph. Ch.* 111, 194. Beim Erhitzen eines Gemisches aus α -Chlor-propionsäure und Schwefeltrioxyd auf 170° erhält·man α -Chlor- α -sulfo-propionsäure (BACKER, MOOK, Bl. [4] 43, 544).
- dl- α -Chlor-propionsäure-methylester $C_4H_7O_2Cl=CH_3$ ·CHCl· CO_2 ·CH $_3$ (H 249; E I 111). B. Neben anderen Produkten bei der Einw. von Natriumnitrit auf dl-Alanin-methylester-hydrochlorid in schwach salzsaurer Lösung bei Zimmertemperatur (Barker, Skinner, Am. Soc. 46, 410).
- dl α Chlor-propionsäure äthylester C₅H₉O₂Cl = CH₈ · CHCl · CO₂ · C₂H₅ (H 249; E I 111). B. Analog der vorangehenden Verbindung (Barker, Skinner, Am. Soc. 46, 412). Kp₇₈₀: 147° (Bolin, Z. anorg. Ch. 177, 246). Geschwindigkeit der Verseifung durch verd. Salzsäure, Essigsäure oder Essigsäure + Natriumacetat-Lösung bei 25° und 35°: Bo. Das Stabilitätsmaximum von α · Chlor-propionsäure-äthylester in saurer Lösung liegt bei 25° bei p_R 4.0 (Bo.). Liefert mit Phenylmagnesiumbromid in Ather $\alpha.\alpha.\beta$ -Triphenyl- α -propylen (LÉVY, C. r. 172, 385; Bl. [4] 29, 894).
- dl- α -Chlor-propionamid $C_2H_6\mathrm{ONCl}=CH_3\cdot\mathrm{CHCl}\cdot\mathrm{CO}\cdot\mathrm{NH}_2$ (H 249). Liefert beim Erhitzen mit äquimolekularen Mengen Anilin und Natriumacetat auf 133° α -Anilino-propionsäure-anilid und α -Anilino-propionsäure-amid (Dubsky, B. 54, 2676).
- β-Chlor-propionsäure $C_2H_5O_3Cl = CH_4Cl \cdot CH_2 \cdot CO_2H$ (H. 249; E I 111). B. Aus γ-Chlor-propylalkohol durch Oxydation mit Salpetersäure (ROJAHN, B. 54, 3116; POWELL, Am. Soc. 46, 2879). Beim Behandeln von β-Chlor-propionylchlorid mit 12% iger Salzsäure auf dem Wasserbad (PAOR, G. 59, 581). Durch Sättigen von Acrylsäure mit Chlorwasserstoff

bei cs. 12° (Moureu, Murat, Tampier, C. r. 172, 1268; A. ch. [9] 15, 233). Durch Sättigen einer Lösung von β -Oxy-propionitril in Wasser oder konz. Salzsäure mit Chlorwasserstoff unter Kühlung und Kochen des Reaktionsgemisches unter weiterem Durchleiten von Chlorwasserstoff (Krollpfeiffer, D. R. P. 410185; C. 1925 I, 1909; Frdl. 15, 137). — Darstellung durch Oxydation von β -Chlor-propionaldehyd mit Salpetersäure (D: 1,49): Moureu, Murat, Tampier, C. r. 172, 1267; A. ch. [9] 15, 223; Mou., Chaux, Bl. [4] 35, 1363; Org. Synth. Coll. Vol. I [1932], S. 160; deutsche Ausgabe, S. 160; durch Oxydation von γ -Chlor-propylalkohol mit Salpetersäure (D: 1,42): Powell, Am. Soc. 46, 2879; Org. Synth. Coll. Vol. I [1932], S. 162; deutsche Ausgabe, S. 162; vgl. Huntress, Hershberg, Org. Synth. 17 [1937], 95.

F: 42° (Moureu, Murat, Tampier, A. ch. [9] 15, 224), 41° (Pace, G. 59, 581). Kp₇₈₅: 200° (Pa.); Kp₃₅: 127° (Powell, Am. Soc. 46, 2879); Kp₃₅: 124°; Kp₁₂: 108° (Mou., Mu., T.); Kp₁₃: 105—107° (Fredga, J. pr. [2] 121, 61). Sehr leicht löslich in Chloroform, schwerer in Äther (Pa.). Verteilung zwischen Wasser und Benzol, zwischen Wasser und Toluol und zwischen Wasser und Chloroform bei 25°: Smith, White, J. phys. Chem. 33, 1959, 1964, 1970. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Lösungen von β-Chlor-propionsäure: Frumkin, Ph. Ch. 111, 194. Elektrolytische Dissoziationskonstante k (ermittelt aus der katalytischen Wirkung auf die Jodierung von Aceton) bei 25°: 1,01×10⁻⁴ (Dawson, Hall, Key, Soc. 1928, 2849). — Liefert beim Kochen mit 2 Mol 10 %iger Natronlauge Acrylsäure (Mou., Mu., T., C. r. 172, 1268; A. ch. [9] 15, 225). Geschwindigkeit der Reaktion mit 2—10 %iger Natronlauge bei verschiedenen Temperaturen: Mou., Mu., T., A. ch. [9] 15, 226. Beim Kochen mit p-Toluolsulfonsäure-anilid in verd. Natronlauge erhält man β-[N-p-Toluolsulfonyl-anilino]-propionsäure und eine Verbindung C₃₂H₃₆O₉N₂S₂ (s. bei p-Toluolsulfonsäure-anilid, Syst. Nr. 1665) (Clemo, Perkin, Soc. 125, 1614).

Methylester $C_4H_7O_2Cl=CH_2Cl\cdot CH_2\cdot CO_2\cdot CH_3$ (H 250). B. Zur Bildung aus β-Chlorpropionsäure, Methanol und Chlorwasserstoff vgl. Späth, Spitzy, B. 58, 2276. Durch Sättigen von Acrylsäuremethylester mit Chlorwasserstoff unter Kühlung (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 244). — Kp₇₆₀: 148—150° (Mou., Mu., T.); Kp₁₀: 40—42° (Späth, Spitzy). D⁰₄: 1,2036; D¹²₄: 1,1874; D¹³₄: 1,1861; n¹⁵₅: 1,4319 (Mou., Mu., T.). — Gibt beim Erhitzen mit Diäthylanilin auf ca. 200° Acrylsäuremethylester (Mou., Mu., T.).

Äthylester $C_5H_9O_2Cl = CH_2Cl \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 250; E I 111). B. Durch Sättigen von Acrylsäureäthylester mit Chlorwasserstoff unter Kühlung (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 239). — Kp_{761} : 162,5° (korr.); Kp_{29} : 80° (Mou., Mu., T.). D_1^0 : 1,1315; D_1^{15} : 1,4141; n_2^{15} : 1,4284 (Mou., Mu., T.). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 50°: Conant, Kirner, Am. Soc. 46, 249. Gibt beim Kochen mit Acetessigester in Natriumäthylat-Lösung α -Acetyl-glutarsäure-diäthylester und 3-Acetyl-pentan-tricarbonsäure-(1.3.5)-triäthylester (Clemo, Welch, Soc. 1928, 2626). Liefert beim Erhitzen mit Diäthylanilin auf 180—190° Acrylsäureäthylester (Mou., Mu., T.). Bei der Einw. von Äthylmagnesiumbromid auf β -Chlor-propionsäure-äthylester in Äther entstehen Diäthyl- $[\beta$ -chlor-āthyl]-carbinol, eine Verbindung $C_{14}H_{29}O_3Cl(?)$ [Kp_{12} : 147°; D_4^{20} : 1,0381; n_2^{15} : 1,4651] und andere Produkte (Moureu, Barrett, Bl. [4] 29, 995).

Butylester $C_7H_{13}O_2Cl = CH_2Cl \cdot CH_2 \cdot CO_2 \cdot [CH_2]_3 \cdot CH_3$. B. Aus β -Chlor-propionsäure und Butylalkohol in Gegenwart von Chlorwasserstoff bei 0^0 (Moureu, Murat, Tampier, A.ch. [9] 15, 246). — Öl von angenehmem Geruch. Kp₂₂: 104°; Kp₁₅: 97°. D₁°: 1,0814; D₁°: 1,0728; D₁³: 1,0708. n_D°: 1,4385. — Liefert beim Erhitzen mit Diäthylanilin auf 200° Acrylsäurebutylester.

Isoamylester $C_8H_{15}O_4Cl = CH_2Cl \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH(CH_3)_2$ (E I 111). *B.* Analog der vorangehenden Verbindung (Moureu, Murat, Tampier, *A. ch.* [9] 15, 247). — Kp₃₀: 121°. D₄°: 1,0544; D₄°: 1,0474; D₄°: 1,0443; D₄°: 1,0419. n_1^{11} : 1,4380. — Liefert beim Erhitzen mit Diäthylanilin auf 220° Acrylsäureisoamylester.

Chlorid, β-Chlor-propionylchlorid C₃H₄OCl₂ = CH₂Cl·CH₂·COCl (H 250). B. Beim Einleiten von Athylen in eine Lösung von Phosgen in Toluol in Gegenwart von Aluminium-chlorid bei einer 35° nicht übersteigenden Temperatur (PACE, G. 59, 580). — Gelbliche Flüssigkeit von stechendem Geruch. Kp: 144,5°. Sehr leicht löslich in Alkohol, Äther, Chloroform und Aceton, schwer in kaltem Wasser.

 β -Chlor-propioniminoäthyläther $C_5H_{10}ONCl=CH_2Cl\cdot CH_2\cdot C(:NH)\cdot O\cdot C_2H_5$. B. Das salzsaure Salz entsteht beim Aufbewahren einer Lösung von Acrylsäurenitril in alkoh. Salzsäure (Clemo, Walton, Soc. 1928, 729). — $C_5H_{10}ONCl+HCl$. Tafeln (aus Alkohol + Äther). F: 109°. Wird in wäßr. Lösung zu β -Chlor-propionsäure-äthylester hydrolysiert.

β-Chlor-propionitril C₃H₄NCl = CH₂Cl·CH₄·CN (H 250). B. Bei der Einw. von Phosphorpentachlorid auf Hydracrylsäurenitril in Toluol (Langley, Adams, Am. Soc. 44, 2325) oder von Thionylchlorid auf Hydracrylsäurenitril in Chloroform unter guter Kühlung (Снарман, Stephen, Soc. 127, 888). — Kp: 173—174,5°; Kp₂₀: 85—87° (Ch., St.). —

Liefert beim Behandeln mit wasserfreiem Natriumsulfid in Ather + Methanol Bis- $[\beta$ -cyanāthyl]-sulfid (Nekrassow, J. pr. [2] 117, 212; \Re . 59, 923). Beim Einleiten von Chlorwasserstoff in eine äther. Lösung äquimolekularer Mengen β -Chlor-propionitril und Resorein in Gegenwart von Zinkchlorid und Erhitzen des Reaktionsprodukts mit Wasser entsteht vorwiegend β -[2.4-Dioxy-phenyl]-propionsäure neben β -[2.6-Dioxy-phenyl]-propionsäure (Ch., St.; vgl. L., A.). Beim Sättigen einer gut gekühlten, ätherischen Lösung von 1 Mol β -Chlor-propionitril und 4 Mol Resorein mit Chlorwasserstoff und Erhitzen des Reaktionsprodukts mit Wasser erhält man außerdem 1-Oxo-1.3-bis-[2.4-dioxy-phenyl]-propan und 1-Oxo-1-[2.4-dioxy-phenyl]-3-[2.6-dioxy-phenyl]-propan (Ch., St.). Einw. von Resoreinmonomethyläther, von Orein und von Phloroglucin auf β -Chlor-propionitril in Gegenwart von Chlorwasserstoff und Zinkchlorid: L., A.

α.α-Dichlor-propionsäure $C_9H_4O_9Cl_3=CH_3\cdot CCl_2\cdot CO_9H$ (H 250). B. Aus α.α-Dichlor-propionsäure-anilid beim Erhitzen mit konz. Salzsäure auf 140° (v. Braun, Jostes, Münch, A. 453, 134). — Kp_{14} : 90—92°. $D_4^{m,0}$: 1,389. — Spaltet beim Aufbewahren Chlorwasserstoff ab.

Äthylester $C_5H_5O_9Cl_2 = CH_2 \cdot CCl_2 \cdot CO_2 \cdot C_2H_5$ (H 251). Kp₅₃: 83—85° (v. Braun, Jostes, Münch, A. 453, 135).

Chlorid, $\alpha.\alpha$ - Dichlor - propionylchlorid $C_8H_8OCl_8=CH_8\cdot CCl_8\cdot COCl$ (H 251). Kp_{88-90} : 68—73° (v. Braun, Jostes, Münch, A. 453, 135).

Amid, α.α-Dichlor-propionamid C₃H₅ONCl₂ = CH₃·CCl₂·CO·NH₂ (H 251). B. Durch Einw. von Phosphorpentachlorid auf α-Chlor-α-brom-propionsäure und nachfolgende Behandlung mit eiskaltem wäßrigem Ammoniak (v. Braun, Jostes, Münch, A. 453, 130, 135). — F: 117—118°.

 $\alpha.\beta$ - Dichlor - propionsäure $C_3H_4O_2Cl_2 = CH_2Cl \cdot CHCl \cdot CO_2H$. Rechtsdrehende Form. B. Beim Einleiten von Stickoxyd und Chlor in eine Lösung des Hydrochlorids der rechtsdrehenden $\alpha.\beta$ -Diamino-propionsäure in Salzsäure unter Kühlung (Kareer, Klarer, Helv. 7, 930). — Hygroskopische Nadeln (aus Petroläther): F: 36°. Kp₁₂: 113°. [α]⁵⁰: +18,8° (Wasser; p=1,8).

 $\alpha.\alpha.\beta$ -Trichlor-propionsäure $C_3H_3O_3Cl_3=CH_2Cl\cdot CCl_2\cdot CO_2H$. B. Bei langsamem Eintragen von $\alpha.\alpha.\beta$ -Trichlor-propionaldehyd in rauchende Salpetersäure unter Kühlung (Berlande, Bl. [4] 37, 1392). — Zerfließliche Prismen (aus Schwefelkohlenstoff). F: 50—52°. Leicht löslich in Wasser, Alkohol und Benzol.

Äthylester C₅H₇O₂Cl₃ = CH₂Cl·CCl₂·CO₂·C₂H₅. B. Aus α.α.β-Trichlor-propionsäure und Alkohol in Gegenwart von konz. Schwefelsäure auf dem Wasserbad (Berlande, Bl. [4] 37, 1392). — Flüssigkeit von angenehmem Geruch. Kp₅₅: 121°. D²⁵: 1,36. n⁵₅: 1,458.

Pentachlorpropionsäure C₃HO₂Cl₅ = CCl₃·CCl₂·CO₂H (E I 112). B. Beim Einleiten von Chlor in eine gesättigte Lösung von Trichloracrylsäure in Tetrachlorkohlenstoff am Sonnenlicht (Börseken, R. 46, 841). — Krystalle. Schmilzt bei raschem Erhitzen bei 210° bis 215°. Leicht löslich in kaltem Wasser. Starke Säure; elektrische Leitfähigkeit in wäßr. Lösung bei 25°: B. Die freie Säure bzw. ihre Salze zersetzen sich beim Erhitzen in wäßr. Lösung unter Bildung von Kohlendioxyd, Tetrachloräthylen und Salzsäure bzw. salzsauren Salzen. Gibt mit Silbernitrat keinen Niederschlag. — Natriumsalz. Nadeln. — Kaliumsalz. Nadeln. — Calciumsalz. Schuppen. — Bariumsalz. Krystalle.

α -Brom-propionsäure $C_2H_4O_2Br = CH_2 \cdot CHBr \cdot CO_2H$.

- a) $d(+)-\alpha$ -Brom-propionsdure (H 253). Zur Konfiguration vgl. Freudenberg, Markert, B. 60, 2447; F., Lux, B. 61, 1083; F., Naturviss. 16, 587; Kuhn, F., Wolf, B. 63 [1930], 2371; F., K., Bumann, B. 63, 2382. B. Zur Bildung durch Spaltung von dl- α -Brom-propionsäure mit Cinchonin vgl. Lex, Temme, B. 59, 2717. Extinktionskurve und Rotationsdispersion von $d(+)-\alpha$ -Brom-propionsäure in Alkohol zwischen 400 und 200 m μ : Kuhn, B. 62, 1730. $\alpha_{\rm D}$: $+39^{\circ}$ (unverdünnt; l=10 cm) (Lex, T.). Das Kaliumsalz gibt mit Kaliumrhodanid in wenig Wasser das Kaliumsalz der rechtsdrehenden α -Rhodan-propionsäure (Fredga, J. pr. [2] 123, 116), mit Kaliumselenocyanat das Kaliumsalz der rechtsdrehenden α -Cyanselen-propionsäure (Fredga, J. pr. [2] 121, 60). Beim Behandeln mit 38%iger Methylamin-Lösung entsteht rechtsdrehende α -Methylamino-propionsäure (Lex, T.).
- $d(+)-\alpha$ -Brom-propionsäure-äthylester $C_1H_0O_2$ Br = $CH_2 \cdot CHBr \cdot CO_2 \cdot C_2H_3$ (H 253). B. Bei der Einw. von Bromessigsäure auf rechtsdrehenden Dimethylaminothioformyl-milchsäure-äthylester in Benzol bei 80° (Holmeng, B. 50, 1569). Beim Kochen von 1(-)-p-Toluol-sulfonyl-milchsäure-äthylester mit Athylmagnesiumbronsid oder Phenylmagnesiumbronsid

- in Ather (Kenyon, Phillips, Turley, Soc. 127, 414). Kp_{20} : 63° (K., Ph., T.); Kp_{11} : 52° bis 53° (H.). D_{1}^{∞} : 1,390 (H.). n_{1}^{∞} : 1,4407 (K., Ph., T.), 1,446 (H.). Liefert beim Kochen mit Kaliumacetat in absol. Alkohol l(-)-Acetylmilchsäure-äthylester (K., Ph., T.).
- b) l(-)-α-Brom-propionsäure $C_3H_5O_2Br = CH_3 \cdot CHBr \cdot CO_2H$ (H 253; E I 112). Zur Konfiguration vgl. die bei d(+)-α-Brom-propionsäure (S. 228) zitierte Literatur. B. Zur Bildung durch Spaltung von dl-α-Brom-propionsäure mit Cinchonin vgl. Ley, Temme, B. 59, 2717. Kp₂: 80—81°; D²⁰: 1,706; [α]¹⁰: 30,4° (unverd.) (Freudenberg, Markert, B. 60, 2450, 2454). Rotationsdispersion: F., M. Das Kaliumsalz liefert mit Kaliumselenocyanat in wenig Wasser das Kaliumsalz der linksdrehenden α-Cyanselen-propionsäure (Fredga, J. pr. [2] 123, 130). Beim Behandeln des Natriumsalzes mit äthylkanthogensaurem Kalium in wäßr. Lösung entsteht rechtsdrehende α-Äthylkanthogen-propionsäure (Levene, Mikeska, J. biol. Chem. 60, 2). Cinchoninsalz $C_{19}H_{22}ON_2 + 2C_3H_5O_2Br$. Prismen oder Tafeln (Ramberg, B. 33 [1900], 3354).
- l(—)- α -Brom-propionsäure-methylester C₄H₇O₂Br = CH₃·CHBr·CO₂·CH₃. B. Aus l(—)- α -Brom-propionylchlorid und absol. Methanol anfangs bei —15°, dann bei +15° (Freudenberg, Markert, B. 60, 2451, 2454). Kp₃₂: 61—63°. D⁵: 1,522; D³⁰: 1,484; D⁴⁴: 1,442. [α]⁸³: --55,5° (unverd.). Rotationsdispersion: F., M.
- 1(—)-α-Brom-propionsäure-äthylester $C_5H_9O_2Br=CH_3\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 253). B. Aus l(–)-α-Brom-propionylchlorid und absol. Alkohol anfangs bei —15°, dann bei +15° (Freudenberg, Markert, B. 60, 2451, 2454). Beim Kochen von d(+)-p-Toluolsulfonylmilchsäure-äthylester mit Natriumbromid in Alkohol (Kenyon, Phillips, Turley, Soc. 127, 413). Kp₃₈: 75—77° (F., M.); Kp₁₀: 55—56° (K., Ph., T.). D!°: 1,3841 (K., Ph., T.); D²⁴: 1,370 (F., M.). n_p^{18} : 1,4450 (K., Ph., T.). [α]¹⁶₁₆₈: —40,5° (unverd.) (F., M.). Rotations-dispersion: F., M.
- 1(—)- α -Brom-propionsäure-propylester $C_6H_{11}O_2Br=CH_3\cdot CHBr\cdot CO_2\cdot CH_2\cdot C_2H_5$ (H 254). B. Aus l(–)- α -Brom-propionylchlorid und Propylalkohol anfangs bei —15°, dann bei +15° (Freudenberg, Markert, B. 60, 2451, 2454). Kp₃₈: 92—93°. D°: 1,321; D¹⁵: 1,309; D⁴⁶: 1,265; D⁹⁰: 1,227. [α]₅₅: —29,5° (unverd.). Rotationsdispersion: F., M.
- $1(-)-\alpha$ -Brom-propionylchlorid $C_3H_4OClBr = CH_3\cdot CHBr\cdot COCl$ (H 254). Kp₃₅₋₃₇: 47—49°: D°: 1,756; D¹5: 1,696; D⁴7: 1,633; [α]¹⁵⁸₅₇₈: —27,1° (unverd.) (Freudenberg, Markert, B. 60, 2451, 2454). Rotationsdispersion: F., M.
- 1(-)- α -Brom-propionamid $C_3H_6ONBr=CH_3\cdot CHBr\cdot CO\cdot NH_2$. B. Beim Einleiten von Ammoniak in eine Lösung von 1(-)- α -Brom-propionylchlorid in Benzol bei 0^0 (Freudenberg, Markert, B. 60, 2451). Krystalle (aus Alkohol). F: 125—126°. [α] $_{576}^{876}$: ca. —31° (Alkohol; c=10). Alkohol, Glykol, Glykolchlorhydrin, Formamid und Acetonitril lösen bei 20° ca. 15—18% 1(-)- α -Brom-propionamid.
- c) $dl-\alpha-Brom-propionsäure$ $C_3H_5O_2Br=CH_3\cdot CHBr\cdot CO_2H$ (H 254; E I 112). D_{∞}^{m} : 1,671 (Hantzsch, Dürigen, Ph. Ch. 136, 15). Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 16. n_{1}^{m} : 1,4700 (Ha., Dü.). Dichten und Brechungsindices wäßr. Lösungen bei 20°: Ha., Dü. Löslichkeit von Casein in Lösungen von α-Brom-propionsäure in 42,6 % igem Alkohol: v. Euler, Bucht, Z. anorg. Ch. 126, 275. Verteilung von α-Brom-propionsäure (bei 25°) zwischen Wasser und Chloroform: Smith, J. phys. Chem. 25, 227; Sm., White, J. phys. Chem. 33, 1957; zwischen Wasser und Benzol und zwischen Wasser und Toluol: Sm., J. phys. Chem. 33, 1957, 1963; zwischen Wasser und Xylol: Sm., J. phys. Chem. 25, 220; zwischen Wasser und Ather: Sm., J. phys. Chem. 25, 620; zwischen Glycerin und Aceton: Sm., J. phys. Chem. 25, 730. Adsorption an Tierkohle aus alkoh. Lösung bei Zimmertemperatur: Griffin, Richardson, Robertson, Soc. 1928, 2708. Aufnahme aus alkoholisch-wäßrigen Lösungen durch Casein: v. Euler, Bucht, Z. anorg. Ch. 126, 276. Elektrische Leitfähigkeit in alkoh. Lösung bei 30°: Hunt, Briscop, J. phys. Chem. 33, 193. Mit Hilfe von Dimethylgelb als Indikator ermittelte relative Acidität in wasserfreiem und wasserhaltigem Chloroform und Ather: Hantzsch, Voigt, B. 62, 978, 980.
- Gibt beim Schütteln einer alkal. Lösung mit Wasserstoff in Gegenwart von Nickel alles Brom als Bromwasserstoff ab; Geschwindigkeit dieser Reaktion: Kelber, B. 54, 2257. Beim Eintragen von 1 Mol Schwefeltrioxyd unter Eiskühlung und nachfolgenden Erwärmen auf 100° erhält man α-Brom-α-sulfo-propionsäure (Syst. Nr. 279) (Backer, Mook, Bl. [4] 43, 545). Kinetik der Reaktion CH₃·CHBr·CO₃H + H₂O \(\Rightarrow CH₃·CH(OH)·CO₃H + HBr in wäßr. Lösung bei 80° und 90°: J. Zawidzki, J. G. Zawidzki, Ph. Ch. [A] 137, 72, 81, 88. Einfluß von Bromwasserstoff, Salpetersäure, Kaliumbromid, Kaliumchlorid, Kaliumnitrat und Kaliumsulfat auf die Geschwindigkeit der Hydrolyse in wäßr. Lösung: Z., Z., Ph. Ch. [A] 137, 89, 95, 98, 101, 103. Geschwindigkeit der Hydrolyse durch wäßrige und wäßrig-alkoholische Natronlauge zwischen 55° und 75°: Heddelius, Ph. Ch. 96, 352, 362. Volumenvermehrung bei der Hydrolyse durch wäßr. Natronlauge bei 54,8°, auch in Gegenwart von Natriumbromid und Natriumacetat: Beneath, Z. anorg. Ch. 151, 58. Gleichgewicht der

Reaktion CH₃·CHBr·CO₂H + KI \rightleftharpoons CH₃·CHI·CO₂H + KBr (vgl. Abderhalden, Guggenheim, B. 41 [1908], 2855) in wäßr. Lösung bei 50° : Hannerz, Svensk kem. Tidskr. 37, 126; C. 1925 II, 392. Das Kaliumsalz liefert mit Kaliumsulfid in wäßr. Lösung inaktive spaltbare Diāthylsulfid-α.α′-dicarbonsäure (Backer, Meijer, R. 46, 213). Bei der analogen Umsetzung mit Kaliumdiselenid K₂Se₂ erhält man Diāthyldiselenid-α.α′-dicarbonsäure (Backer, van Dam, R. 48, 1290). Bei Versuchen über die Einw. von α-Brom-propionsäure auf Thiophenol in Gegenwart von Zinn(IV)-chlorid in siedendem Benzol erhielten Bistrzycki. Risi (Helv. 8, 590) neben Diphenyldisulfid geringe Mengen eines Produkts, das beim Behandeln mit heißem Wasser niedrigerschmelzende α.α′-Dimethyl-bernsteinsäure gab. Liefert mit arsanilsaurem Natrium in siedendem Wasser N-[4-Arsono-phenyl]-alanin (Gibson, Johnson, Levin, Soc. 1929, 483). α-Brom-propionsäure gibt mit überschüssigem Phenylmagnesiumbromid in siedendem Äther α.α-Diphenyl-propylenglykol (Peters, Mitarb., Am. Soc. 47, 454).

dl- α -Brom-propionsäure-äthylester $C_5H_9O_2Br=CH_3\cdot CHB_r\cdot CO_2\cdot C_2H_5$ (H 255; E I 112). B. Bei der Umsetzung von p-Toluolsulfonyl-dl-milchsäure-äthylester mit Phenylmagnesiumbromid in Ather (Gilman, Heck, Am. Soc. 50, 2229). — Kp: 160—160,5° (A. E. Arbusow, B. A. Arbusow, Ж. 61, 1605; C. 1930 I, 3179). Über das Dipolmoment vgl. Smyth, Am. Soc. 47, 1896.

dl-α-Brom-propionsäure-äthylester nimmt bei Bestrahlung mit links zirkular polarisiertem Licht (λ = 280 mμ) schwache Linksdrehung, bei Bestrahlung mit rechts zirkular polarisiertem Licht schwache Rechtsdrehung an (Kuhn, Z. ang. Ch. 42, 296; K., Braun, Naturwiss. 17, 227; C. 1929 I, 2512). Liefert mit in der Kälte gesättigtem wäßrigem Ammoniak bei gewöhnlicher Temperatur α-Brom-propionamid (Moureu, Brown, Bl. [4] 27, 907). Gibt mit Kaliumsulfit in siedendem verdünntem Alkohol das Kaliumsalz des α-Sulfo-propionsäure-äthylesters CH₃·CH(SO₃H)·CO₂·C₂H₅ (Andreasch, M. 46, 640). Geschwindigkeit der Reaktion mit Natriummethylat-Lösung bei 18—20°: Tronow, Akiwiss, Orlowa, Ж. 61, 349; C. 1929 II, 2550. Liefert mit Acetophenon bei Gegenwart von Zink in Benzol β-Oxy-α.β-dimethyl-hydrozimtsäure-äthylester (E I 10, 119) (Rupe, Steiger, Fiedler, B. 47 [1914], 67; vgl. v. Braun, A. 451, 47). Gibt mit dem Natriumsalz des Aceton-thiosemicarbazons in siedendem Alkohol 4-Oxo-2-isopropylidenhydrazono-5-methyl-thiazolidin (Syst. Nr. 4298) (Wilson, Burns, Soc. 123, 801). Bei der Umsetzung mit Thiocarbohydrazid in siedender Natriumäthylat-Lösung erhält man 3-Amino-4-oxo-2-hydrazono-5-methyl-thiazolidin (Formel I; Syst. Nr. 4298) (Stephen, Wilson, Soc. 1928, 1418). Gibt mit Dithiocarbazinsäure-benzylester bei Gegenwart von Ammoniak oder Pyridin in Alkohol 2-Benzylmercapto-5-oxo-6-methyl-dihydro-1.3.4-thiodiazin (Formel II; Syst. Nr. 4577) (Bose, Quart. J. indian

$$I. \begin{array}{cccc} OC - N \cdot NH_2 & I. & OC \cdot NH \cdot N \\ CH_3 \cdot HC \cdot S \cdot C : N \cdot NH_2 & II. & CH_3 \cdot HC - S - C \cdot S \cdot CH_2 \cdot C_6H_5 \end{array}$$

chem. Soc. 3, 152; C. 1926 II, 1651). Geschwindigkeit der Reaktion mit Pyridin bei 16—18°: Tronow, Ж. 58, 1286; C. 1927 II, 1145; bei 18—20°: Tr., Акімізя, Оклома, Ж. 61, 345; C. 1929 II, 2550.

dl- α -Brom-propionsäure-isopropylester $C_8H_{11}O_2Br=CH_3\cdot CHBr\cdot CO_2\cdot CH(CH_3)_2$. B. Aus α -Brom-propionylbromid und überschüssigem Isopropylalkohol, zuletzt auf dem Wasserbad (Deulofeu, An. Soc. españ. 26, 316; C. 1929 I, 635). — Fruchtartig riechende Flüssigkeit. Kp: 163—165°.

dl- α -Brom-propionsäure-butylester $C_7H_{13}O_2Br=CH_3\cdot CHBr\cdot CO_2\cdot [CH_2]_3\cdot CH_3$. B. Analog dem Isopropylester. — Fruchtartig riechende Flüssigkeit. Kp: 192—196° (Deulofeu, An. Soc. españ. 26, 317; C. 1929 I, 635).

dl- α -Brom-propionsäure-allylester $C_6H_9O_2Br=CH_3\cdot CHBr\cdot CO_2\cdot CH_2\cdot CH:CH_2$. B. Analog dem Isopropylester. — Flüssigkeit von etwas stechendem Geruch. Kp: 173—1770 (Deulofeu, An. Soc. españ. 26, 318; C. 1929 I, 635).

dl- α -Brom-propionylbromid $C_3H_4OBr_2=CH_3\cdot CHBr\cdot COBr$ (H 256). B. Zur Bildung durch Bromierung von Propionylchlorid vgl. Fourneau, Nicolitch, Bl. [4] 43, 1236. — Reagiert mit flüssigem Schwefelwasserstoff unter Bildung einer gelben bis roten Flüssigkeit (α -Brom-dithiopropionsäure?) (Borgeson, Wilkinson, Am. Soc. 51, 1455). Liefert bei der Einw. auf m-Kresol-methyläther bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff hauptsächlich 5-Methyl-2-[α -chlor-propionyl]-phenol (v. Auwers, A. 489, 168).

dl-α-Brom-propionamid C₃H₆ONBr = CH₃·CHBr·CO·NH₂ (H 256). B. Durch Behandlung von dl-α-Brom-propionsäure-äthylester mit in der Kälte gesättigtem wäßrigem Ammoniak bei gewöhnlicher Temperatur (Moureu, Brown, Bl. [4] 27, 907). Durch Eintragen von α-Brom-propionylbromid in überschüssiges konzentriertes Ammoniak (Fourneau, Nicolitch, Bl. [4] 43, 1240). — F: 128° (M., B.). — Liefert beim Kochen mit Ammonium-sulfit-Lösung α-Sulfo-propionamid (Andreasch, M. 46, 27).

Inakt. $\alpha.\alpha'$ -Dibrom - dipropionamid, " α -Brompropionaäureimid" $C_8H_9O_2NBr_2=(CH_3\cdot CHBr\cdot CO)_2NH$ (H 256). F: 148—149° (Moureu, Brown, Bl. [4] 27, 909).

 $dl - \alpha - Brom - propionsäure - imidbromid <math>C_3H_5NBr_2 = CH_3 \cdot CHBr \cdot CBr : NH (H 256)$. F: 64—65° (Moureu, Brown, Bl. [4] 27, 909).

dl-α-Brom-propionitril C₃H₄NBr = CH₃·CHBr·CN. B. Durch Erhitzen von α-Brom-propionamid mit Phosphorpentoxyd auf 250° unter 30 mm Druck (MOUREU, BROWN, Bl. [4] 27, 907). — Flüssigkeit von etwas stechendem Geruch. Kp₂₄: 59°. D°: 1,5808; D°: 1,5505. n°: 1,4585; Dispersion: M., B.

β-Brom-propionsäure C₃H₅O₂Br = CH₂Br·CH₂·CO₂H (H 256; E I 112). B. Durch Oxydation von γ-Brom-propylalkohol mit 45% iger Salpetersäure unter Kühlung (ROJAHN, B. 54, 3117). Beim Kochen von β-Brom-propionitril mit Bromwasserstoff (D: 1,5) (MOUREU, BROWN, Bl. [4] 27, 906). Durch Einw. von Bromwasserstoff auf Acrylsäure bei ca. 12° (Mou., Murat, Tampier, C. r. 172, 1268; A. ch. [9] 15, 233). Zur Bildung aus Athylencyanhydrin und Bromwasserstoffsäure (Jacobs, Heidelberger, Am. Soc. 39, 1465) vgl. Krollpfeiffer, D. R. P. 410185; C. 1925 I, 1909; Frdl. 15, 136. Bei der Einw. von Nitrosylbromid auf β-Amino-propionsäure in bromwasserstoffsaurer Lösung bei Zimmertemperatur (Zemplén, Csürös, B. 62, 2119). — F: 62—63°; Kp₄₅: 140—142° (Rojahn). Verteilung zwischen Wasser einerseits und Chloroform, Benzol und Toluol andererseits bei 25°: Smith, White, J. phys. Chem. 33, 1957, 1963, 1968. Elektrische Leitfähigkeit in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 193. — Zerfällt beim Erhitzen unter gewöhnlichem Druck in Acrylsäure und Bromwasserstoff (Rojahn, B. 54, 3118). — Ammoniumsalz NH₄C₃H₄O₂Br. Zerfließlich; zersetzt sich beim Aufbewahren auch an trockner Luft (McMaster, Pratte, Am. Soc. 45, 3000).

Methylester $C_4H_7O_2Br = CH_2Br \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Aus Acrylsäuremethylester und Bromwasserstoff in der Kälte (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 244). — Kp_{90} : 105,5°; Kp_{27} : 80°. D_1^o : 1,5122; D_4^{15} : 1,4897; D_4^{17} : 1,4880. n_5^{17} : 1,4603. — Gibt beim Erhitzen mit Diäthylanilin auf 200° Acrylsäuremethylester.

Äthylester $C_5H_9O_2Br=CH_9Br\cdot CH_2\cdot CO_2\cdot C_2H_5$ (H 256; E I 112). B. Aus Acrylsäureäthylester und Bromwasserstoff in der Kälte (Moureu, Murat, Tampier, A. ch. [9] 15, 240). — Kp_{44} : 112°. D_1^0 : 1,4409; D_1^{10} : 1,4123; n_1^{10} : 1,4569. — Liefert beim Erhitzen mit Diäthylanilin auf 190—200° Acrylsäureäthylester.

Butylester C₇H₁₈O₂Br = CH₂Br·CH₂·CO₂·[CH₂]₂·CH₃. B. Aus Acrylsäurebutylester und Bromwasserstoff in Butylalkohol in der Kälte (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 246). — Kp₂₆: 130°; Kp₁₈: 122,5°. D⁴₄: 1,3011; D³₇: 1,2773; D⁴₄: 1,2609. n⁵_p: 1,4577. — Liefert beim Erhitzen mit Diäthylanilin auf 200° Acrylsäurebutylester und wenig Butylbromid.

Isoamylester $C_8H_{16}O_3Br=CH_2Br\cdot CH_2\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3$

Chlorid, β -Brom-propionylchlorid $C_3H_4OClBr = CH_2Br \cdot CH_2 \cdot COCl.$ B. Aus β -Brom-propionsäure und Phosphortrichlorid auf dem Wasserbad (Hamilton, Simpson, Am. Soc. 51, 3158). — Gelbliche Flüssigkeit. Kp_{25-30} : 65—70°.

Amid, β -Brom-propionamid $C_3H_6ONBr=CH_2Br\cdot CH_2\cdot CO\cdot NH_2$. B. Durch Eintragen von β -Brom-propionylchlorid in konz. Ammoniak bei —10° (Hamilton, Simpson, Am.Soc. 51, 3159). — Krystalle (aus Wasser). F: 110—111°.

Nitril, β -Brom-propionitril $C_3H_4NBr=CH_2Br\cdot CH_2\cdot CN$. B. Aus Acrylsäurenitril und Bromwasserstoff bei gewöhnlicher Temperatur (Moureu, Brown, Bl. [4] 27, 905). — Ziemlich bewegliche Flüssigkeit. Kp₂₅: 92°. D³.: 1,6452; D³°: 1,6152. n°°; 1,1470. — Liefert beim Kochen mit Bromwasserstoffsäure (D: 1,5) β -Brom-propionsäure.

α-Chlor-α-brom-propionsäure $C_3H_4O_2ClBr=CH_3\cdot CClBr\cdot CO_2H$. B. Durch Erwärmen von α-Chlor-α-brom-propionsäure-äthylamid mit einem äquimolekularen Gemisch von konz. Salzsäure und Bromwasserstoffsäure (v. Braun, Jostes, Münch, A. 453, 130). — Flüssigkeit von scharfem, saurem Geruch. Kp_{14} : 101°. $D_4^{m.5}$: 1,694. — Liefert bei aufeinanderfolgender Behandlung mit Phosphorpentachlorid und eiskaltem wäßrigem Ammoniak α.α-Dichlor-propionamid (S. 228).

α.β-Dichlor-α-brom-propionsäure C₃H₃O₂Cl₃Br=CH₂Cl·CClBr·CO₂H. Nicht identisch mit der H 2, 257 als α.β-Dichlor-α(oder β)-brom-propionsäure aufgeführten Verbindung. — B. Durch Eintragen von α.β-Dichlor-α-brom-propionaldehyd in rauchende Salpetersäure unter Kühlung (Berlande, Bl. [4] 37, 1391). — Blättchen oder Prismen (aus Schwefelkohlenstoff). F: 61—62°. Sehr leicht löslich in Wasser.

Äthylester $C_5H_7O_2Cl_3Br=CH_2Cl\cdot CClBr\cdot CO_2\cdot C_2H_5$. Flüssigkeit von aromatischem, etwas stechendem Geruch. Kp_{45} : $132-133^\circ$; D^{25} : 1.161; n_D^{∞} : 1.482 (Berlande, Bl. [4] 37, 1392).

α.α-Dibrom-propionsäure $C_3H_4O_2Br_2=CH_3\cdot CBr_2\cdot CO_2H$ (H 257; E I 113). B. Durch Erhitzen von α.α-Dibrom-propionsäure-äthylamid mit rauchender Bromwasserstoffsäure auf 115° (v. Braun, Jostes, Münch, A. 453, 129). — Kp_{15} : 107°.

$\alpha.\beta$ -Dibrom-propionsäure $C_3H_4O_2Br_2 = CH_2Br \cdot CHBr \cdot CO_2H$.

- a) Rechtsdrehende $\alpha.\beta$ -Dibrom-propionsäure (EI113). B. Durch Einw. von Nitrosylbromid auf d- $\alpha.\beta$ -Diamino-propionsäure in bromwasserstoffsaurer Lösung in der Kälte (Karrer, Klarer, Helv. 7, 930). Prismen (aus Äther + Ligroin). F: 64—66°. Kp₉: 129°. [α] $_{0}^{m}$: +7,1° (Wasser; p = 2,5). Liefert beim Erwärmen mit Silberoxyd und Wasser rechtsdrehende Glycerinsäure.
- b) Inaktive $\alpha.\beta$ -Dibrom-propionsäure $C_3H_4O_2Br_2 = CH_2Br \cdot CHBr \cdot CO_2H$ (H 258; E I 113). Verteilung zwischen Wasser und Xylol und zwischen Wasser und Chloroform bei 25°: SMITH, J. phys. Chem. 25, 221, 228; zwischen Wasser und Äther bei 25°: SM., J. phys. Chem. 25, 621. Bleibt beim Schütteln der Aceton-Lösung mit Glycerin in der Acetonschicht (SM., J. phys. Chem. 25, 729). Geschwindigkeit der Abspaltung von Brom bei der Einw. von Kaliumjodid auf $\alpha.\beta$ -Dibrom-propionsäure in Wasser und in verd. Salzsäure bei 25° und bei der Einw. von Kaliumjodid und Natriumjodid auf $\alpha.\beta$ -dibrom-propionsaures Natrium, auch in Gegenwart von Chloriden und Bromiden: KRUYT, VAN DUIN, R. 40, 262; VAN DUIN, R. 43, 347, 352, 353; 45, 354; 47, 719; die Reaktion wird durch Belichtung (VAN D., R. 43, 351) und durch Zusatz von Blutkohle (KR., VAN D., Versl. Akad. Amsterdam 31, 400; R. 40, 262; VAN D., R. 47, 719) beschleunigt.

Methylester $C_4H_6O_2Br_2=CH_2Br\cdot CHBr\cdot CO_2\cdot CH_3$ (H 259). B. Aus $\alpha.\beta$ -Dibrompropionsäure und methylalkoholischer Schwefelsäure auf dem Wasserbad (Deulofeu, An. Asoc. quim. arg. 16, 50; C. 1928 II, 2548). Aus Acrylsäuremethylester und Brom in Tetrachlorkohlenstoff im Tageslicht (Moureu, Murat, Tampier, A. ch. [9] 15, 244). — Kp_{766} : 2040 (Verkade, R. 41, 213 Anm. 2); Kp_{25} : 1150 (M., M., T.). D_4^0 : 1,9605; D_4^{17} : 1,9499; n_1^{17} : 1,5147 (M., M., T.).

Äthylester $C_5H_8O_2Br_2=CH_2Br\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 259; E I 113). B. Beim Kochen von $\alpha.\beta$ -Dibrom-propionsäure mit alkoh. Schwefelsäure (Fichter, Spiegelberg, Helv. 12, 1153; van Duin, R. 45, 355). Aus Acrylsäureäthylester und Brom in Tetrachlorkohlenstoff im Tageslicht (Moureu, Murat, Tampier, A. ch. [9] 15, 238). — Kp₃₃: 119,2° (korr.) (van D.); Kp₂₃: 112° (M., M., T.); Kp₁₃: 95—97° (Lennon, Perkin, Soc. 1928, 1525). D^o: 1,8188; D^o: 1,7882; n^o: 1,5015 (M., M., T.). — Geschwindigkeit der Reaktion mit Kaliumjodid in verd. Alkohol bei 25°: van D.

 β -Chlor-äthylester $C_5H_7O_2ClBr_2=CH_2Br\cdot CHBr\cdot CO_2\cdot CH_2\cdot CH_2Cl$. B. Beim Leiten von Chlorwasserstoff durch ein Gemisch aus α.β-Dibrom-propionsäure und β-Chlorathylalkohol (Gilman, Heckert, McCracken, Am. Soc. 50, 438). — Kp₂₀: 153°. D₄²⁰: 1,5241. n_D²⁰: 1,9080.

Propylester $C_6H_{10}O_2Br_2=CH_2Br\cdot CHBr\cdot CO_2\cdot CH_2\cdot C_2H_5$ (H 259). B. Beim Erwärmen von $\alpha.\beta$ -Dibrom-propionsäure mit Propylalkohol und konz. Schwefelsäure auf dem Wasserbad (Deulofeu, An. Asoc. quim. arg. 16, 51; C. 1928 II, 2548).

Isopropylester $C_6H_{10}O_2Br_3=CH_2Br\cdot CHBr\cdot CO_3\cdot CH(CH_3)_2$. B. Beim Erwärmen von $\alpha.\beta$ -Dibrom-propionsäure mit Isopropylalkohol und konz. Schwefelsäure auf dem Wasserbad (Deulofeu, An. Asoc. quim. arg. 16, 51; C. 1928 II, 2548). — Öl. Kp: 212—215°.

Nitril, $\alpha.\beta$ -Dibrom-propionitril $C_3H_3NBr_2 = CH_2Br \cdot CHBr \cdot CN$ (H 259). $Kp_{22}: 106-107^0$ (unter geringer Zersetzung); $D_i^{\alpha}: 2,174$; $D_i^{\alpha}: 2,140$; $n_D^{\alpha\alpha}: 1,5452$ (Moureu, Brown, Bl. [4] 27, 904).

α-Chlor-α.β-dibrom-propionsäure $C_3H_3O_3\text{ClBr}_2 = \text{CH}_2\text{Br}\cdot\text{CClBr}\cdot\text{CO}_2\text{H}$. B. Bei langsamem Eintragen von α-Chlor-α.β-dibrom-propionaldehyd in rauchende Salpetersäure unter Kühlung (Berlande, Bl. [4] 37, 1393). — Zerfließliche Prismen (aus Schwefelkohlenstoff). F: 73°. Sehr leicht löslich in Wasser und Benzol. — $\text{Ca}(C_3H_3O_3\text{ClBr}_2)_2 + 2H_3O$. Nadeln (aus Wasser).

Äthylester $C_5H_7O_5ClBr_5=CH_2Br\cdot CClBr\cdot CO_2\cdot C_2H_5$. Gelbliche Flüssigkeit von etwas stechendem Geruch. Enthält wahrscheinlich geringe Mengen Dihalogenacrylsäure-äthylester. Kp₄₅: 142—143°; D²⁵: 1,84; n⁵₅: 1,504 (Berlande, Bl. [4] 87, 1393).

 $\alpha.\alpha.\beta$ -Tribrom-propionsäure $C_3H_3O_2Br_3=CH_3Br\cdot CBr_3\cdot CO_2H$ (H 260). B. Bei langsamem Eintragen von $\alpha.\alpha.\beta$ -Tribrom-propionaldehyd in rauchende Salpetersäure unter Kühlung (Berlande, Bl. [4] 37, 1390). — F: 94°. Leicht löslich in Wasser.

Äthylester $C_5H_7O_2Br_3=CH_2Br\cdot CBr_2\cdot C_2\cdot C_2H_5$. Schwach gelbliche, aromatisch riechende Flüssigkeit. Kp₈₀: 140—142°; D⁸³: 2,084; n⁸₂: 1,532 (Berlande, Bl. [4] 37, 1390).

 α -Jod-propionsäure $C_3H_5O_2I = CH_3 \cdot CHI \cdot CO_2H$.

- a) d(+)- α -Jod-propionsäure. Zur Konfiguration vgl. Freudenberg, Kuhn, Bumann, B. 63 [1930], 2382. B. Durch Spaltung von dl- α -Jod-propionsäure mit d- oder l- α -Phenäthylamin in wäßr. Lösung (Hannerz, B. 59, 1370, 1373). Läßt sich unter 0,12 bis 0,22 mm Druck bei 75—100° Badtemperatur destillieren (H.). Di 2.073 (H.). $\alpha_i^{i,5}$: +21,75° (l=2,5 cm); $[\alpha]_i^{i,5}$: +41,4° (0,4 n-Lösung in 2,5 n-Schwefelsäure), +50,7° (in Äther) (H.). Ammoniumsalz. Blättchen (aus Alkohol + Aceton). $[\alpha]_i^{i,5}$: —13,7° (Wasser; c=22) (H., B. 59, 1374). d- α -Phenäthylaminsalz. Nadeln (aus Wasser). Rhombisch (Morton, B. 59, 1372). 100 g Wasser lösen bei 0° 14,14 g, bei 20° 16,17 g (H., B. 59, 1372). l- α -Phenäthylaminsalz. Krystalle (aus Wasser). Rhombisch sphenoidisch (hemiedrisch) (Morton). 100 g Wasser lösen bei 0° 11,06 g, bei 20° 13,60 g (H.). Cinchoninsalz $C_{19}H_{22}ON_2$ + $2C_3H_5O_2I$. Prismen (H., B. 59, 1369).
- d(+)- α -Jod-propionsäure-äthylester $C_5H_9O_2I=CH_3\cdot CHI\cdot CO_2\cdot C_2H_5$. Zur Konfiguration vgl. Freudenberg, Kuhn, Bumann, B. 63 [1930], 2382. B. Bei der Einw. von Magnesiumjodid-äthylat auf (teilweise racemisierten) linksdrehenden p-Toluolsulfonyl-milch-säure-äthylester in siedendem Äther (Kenyon, Phillips, Turley, Soc. 127, 414). Optisch nicht einheitlich. Kp₁₈: 77°; D₄*: 1,6463; α_p^p : +1,88° (Ke., Ph., T.).
- d (+) α Jod propionamid C₃H₆ONI = CH₃·CHI·CO·NH₂. B. Analog dl- α -Jod-propionamid. Optisch nicht rein erhalten. Krystalle (aus Aceton + Benzol). F: 155,5° bis 157° (Zers.; Bad 150°) (Hannerz, B. 59, 1374). In Benzol etwas leichter löslich als dl- α -Jod-propionamid. [α]₀: +21,0° (0,3—0,5 n-Lösung in absol. Alkohol).
- b) l(-)- α -Jod-propionsäure $C_3H_5O_2I=CH_3\cdot CHI\cdot CO_2H$. Zur Konfiguration vgl. Freudenberg, Kuhn, Bumann, B. 63 [1930], 2382. B. Durch Spaltung von dl- α -Jod-propionsäure mit d- oder l- α -Phenäthylamin in wäßr. Lösung (Hannerz, B. 59, 1372). $\alpha_n^{r_1.5}:$ —21,42°; $\alpha_n^{r_2}:$ —20,5° (l = 2,5 cm); $[\alpha]_n^{r_1.5}:$ —49,9° (ca. 0,3 n-Lösung in Ather) (H.). Racemisiert sich in wäßr. Lösung langsam, rascher bei Gegenwart von Natriumchlorid und Natriumjodid; Geschwindigkeit der Racemisierung in 0,5 n-Natriumjodid-Lösung bei 17,5°: H., B. 59, 1375. Gibt bei der Hydrolyse mit 3,5 n-Natronlauge bei gewöhnlicher Temperatur teilweise racemisierte d(-)-Milchsäure (H., B. 59, 1376). Ammoniumsalz. Krystalle. [α]_n: +13,8° (Wasser, c = 22,4) (H., B. 59, 1375). Natriumsalz. Krystalle. Sehr leicht löslich in Essigester (H., B. 59, 1374). [α]_n: +13,7° (Wasser, c = 19,8). Chininsalz $C_{20}H_{24}O_2N_2+C_2H_5O_2I$ (optisch nicht einheitlich). Nadeln (H., B. 59, 1370).
- 1(-)- α -Jod-propionsäure-äthylester $C_5H_5O_2I=CH_4\cdot CHI\cdot CO_2\cdot C_2H_5$. Zur Konfiguration vgl. Freudenberg, Kuhn, Bumann, B. 68 [1930], 2382. B. Durch Kochen von rechtsdrehendem p-Toluolsulfonyl-milchsäureäthylester mit Kaliumjodid in Alkohol (Kenyon, Phillips, Turley, Soc. 127, 414). $Kp_{16}\colon 74-75^\circ;\ D_4^m\colon 1,6637;\ n_D^m\colon 1,4985;\ [\alpha]_5^m\colon -0,12^\circ$ (unverd.) (Ke., Ph., T.).
- c) $dl-\alpha-Jod-propions dure$ $C_3H_5O_3I = CH_3 \cdot CHI \cdot CO_3H$ (H 261). Gleichgewicht der Reaktion $CH_3 \cdot CHBr \cdot CO_3H + KI \rightleftharpoons CH_3 \cdot CHI \cdot CO_3H + KBr$ in Wasser bei 50°: Hannerz, Svensk kem. Tidskr. 37, 126; C. 1925 II, 392. Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: H., B. 59, 1368. Dissoziationskonstante k in Wasser bei 25°: 6,19×10 $^{-4}$ (H.). Läßt sich mit d- oder l- α -Phenäthylamin in wäßr. Lösung in die opt.-akt. Komponenten spalten (H., B. 59, 1370). Färbt sich in Substanz und in Lösung beim Belichten infolge Jodabspaltung gelb (H., B. 59, 1367). Ammoniumsalz. Tafeln (aus Wasser beim Verdunsten), Schuppen (aus Alkohol + Aceton). Ziemlich leicht löslich in Alkohol, schwer in Aceton (H., B. 59, 1368). Natriumsalz. Nadeln (aus Essigester). Sehr leicht löslich in Wasser, Methanol und Aceton (H.). Kupfersalz. Löslich in Alkohol, Aceton, Chloroform und Benzol (H.): Bleisalz Pb($C_3H_4O_3I)_3$. Nadeln (H.).
- dl- α -Jod-propionsäure-äthylester $C_3H_9O_3I=CH_3\cdot CHI\cdot CO_2\cdot C_3H_5$ (H 261). Kondensiert sich mit Isovalerylessigsäure-äthylester in siedender Natriumäthylat-Lösung zu α -Methyl- α -isovaleryl-bernsteinsäure-diäthylester, der beim Verseifen mit alkoh. Kalilauge β -Isovaleryl-isobuttersäure liefert (Jones, Soc. 1926, 2769).
- dl- α -Jod-propionylchlorid C₃H₄OClI = CH₃·CHI·COCl (H 261). B. Durch Erwärmen von dl- α -Jod-propionsäure mit 2,5 Tln. Thionylchlorid bis auf 100° (Hanners, B. 59, 1368).
- dl-α-Jod-propionamid C₂H₂ONI = CH₂·CHI·CO·NH₂ (E I 113). Prismen (aus Aceton + Benzol). F: 156—157° (Zers.) (Hannerz, B. 59, 1369).

β-Jod-propionsäure C₂H₅O₄I = CH₂I·CH₂·CO₂H (H 261; E I 113). B. Aus Acrylsäure und Jodwasserstoff bei ca. 12° (Moureu, Murat, Tampier, C. r. 172, 1268; A. ch. [9] 15, 233). Beim Kochen von β-Oxy-propionsäurenitril mit konz. Jodwasserstoffsäure unter Durchleiten von Jodwasserstoff (Krollffeiffer, D. R. P. 410185; C. 1925 I, 1909; Frdl. 15, 136). — Verteilung von β-Jod-propionsäure (bei 25°) zwischen Wasser und Chloroform: Smith, J. phys. Chem. 25, 229; Sm., White, J. phys. Chem. 33, 1971; zwischen Wasser und Benzol und zwischen Wasser und Toluol: Sm., Wh., J. phys. Chem. 33, 1959, 1965; zwischen Wasser und Xylol: Sm., J. phys. Chem. 25, 222; zwischen Wasser und Ather: Sm., J. phys. Chem. 25, 622. Mit Hilfe von Dimethylgelb als Indikator ermittelte relative Acidität in trocknem und wasserhaltigem Chloroform und Ather: Hantzsch, Voigt, B. 62, 978, 980. — Liefert beim Erhitzen mit zuvor im Wasserstoffstrom erhitztem Aluminium auf 110° bis 120°, später auf 180—200° Adipinsäure (Ray, Dutt, J. indian chem. Soc. 5, 107; C. 1928 I, 2371). — Ausscheidungsverhältnisse und Giftwirkung bei Kaninchen: Ibuki, Ar. Pth. 124, 383; C. 1927 II, 2080. — Natriumsalz. Elektrische Leitfähigkeit in absol. Alkohol bei 15°, 25° und 35°: Lloyd, Pardee, Publ. Carnegie Inst. Nr. 260 [1918], S. 110.

Äthylester $C_5H_9O_2I=CH_2I\cdot CH_2\cdot CO_2\cdot C_2H_5$ (H 262; E I 113). B. Aus Acrylsäure- äthylester und Jodwasserstoff unter Kühlung (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 240). — Kp: 195—200° (unter geringer Zersetzung); Kp45: 116—117°; D45: 1,7040 (M., M., T.). — Liefert beim Erhitzen mit Diäthylanilin auf 220—230° Acrylsäure- äthylester (M., M., T.). Gibt bei der Umsetzung mit Methylmagnesiumjodid in Äther Dimethyl- [β -jod-āthyl]-carbinol (Späth, Spitzy, B. 58, 2275).

Chlorid, β -Jod-propionylchlorid $C_3H_4OCII = CH_2I \cdot CH_2 \cdot COCI$ (E I 114). B. Aus β -Jod-propionsaure und Phosphortrichlorid auf dem Wasserbad (Hamilton, Simpson, Am.Soc. 51, 3159). — Kp_{30} : $85-90^{\circ}$.

- α-Nitro-propionsäure-äthylester $C_5H_9O_4N=CH_3\cdot CH(NO_3)\cdot CO_2\cdot C_2H_5$ (H 262: E I 114). B. Neben anderen Produkten bei der Einw. von Methyljodid auf das Silbersalz des Nitroessigsäureäthylesters in der Kälte (Steinkopf, A. 434, 29). Das Ammoniumsalz liefert beim Einleiten von Chlor in die wäßr. Lösung α-Chlor-α-nitro-propionsäure-äthylester, beim Behandeln mit Brom in Schwefelkohlenstoff α-Brom-α-nitro-propionsäure-äthylester (Macbeth, Traill, Soc. 127, 896). Ammoniumsalz. Nadeln. F: 119—120° (St., A. 434, 30). Hydrazinsalz $C_5H_9O_4N+N_2H_4$. Nadeln (aus Alkohol). F: 120° (M., T., Soc. 127, 897).
- α-Nitro-propionamid $C_3H_6O_3N_2=CH_3\cdot CH(NO_2)\cdot CO\cdot NH_2$ (E I 114). Das Ammoniumsalz konnte nach dem von Steinkopf, Sufan (B. 43, 3246) angegebenen Verfahren nicht wieder erhalten werden (Steinkopf, A. 434, 30).
- α-Chlor-α-nitro-propionsäure-äthylester $C_5H_8O_4NCl=CH_3\cdot CCl(NO_2)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Chlor auf das Ammoniumsalz des α-Nitro-propionsäure-äthylesters in wäßr. Lösung (Macbeth, Traill, Soc. 127, 896). Öl. Kp₉: 80°. n_D: 1,4301. Wird durch Hydrazinhydrat in Alkohol kaum verändert.
- α-Brom-α-nitro-propionsäure-äthylester $C_5H_8O_4NBr=CH_3\cdot CBr(NO_2)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Brom auf das Ammoniumsalz des α-Nitro-propionsäure-äthylesters in Schwefelkohlenstoff (ΜαCBETH, TRAILL, Soc. 127, 897). Flüssigkeit. Kp₂₀: 88°. n_p: 1,4535. Liefert bei der Einw. von Hydrazinhydrat in Alkohol das Hydrazinsalz des α-Nitro-propionsäure-äthylesters.
- 1(—)-α-Asido-propionsäure $C_3H_5O_3N_3=CH_3\cdot CH(N_3)\cdot CO_3H$ (H 263). Zur Konfiguration vgl. Kuhn, Freudenberg, Wolf, B. 63 [1930], 2375; F., K., Bumann, B. 63, 2382. Brucinsalz $C_{23}H_{26}O_4N_2+C_3H_5O_3N_3$. Tafeln (aus Wasser). Zersetzt sich bei ca. 150° (Forster, Fierz, Soc. 93 [1908], 1862). Zeigt Mutarotation; $\{\alpha\}_D: -22.9^o$ (Anfangsdrehung) $\rightarrow -26.4^o$ (Enddrehung; Wasser, c=4). Löslich in 1 Tl. siedendem Wasser und in ca. 5 Tln. siedendem absoluten Alkohol.

Schwefelanaloga der Propionsäure und ihre Derivate.

Thiopropionsäure C₂H₆OS = C₂H₅·COSH (H 264). B. Aus dem Äthylester durch Einw. von kalter alkoholischer Kalilauge und Zerlegung des Kaliumsalzes mit eiskalter verdünnter Salzsäure (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 76; C. 1927 I, 1301). — Unbeständige gelbe Flüssigkeit von durchdringendem Geruch.

Thiopropionsäure-O-äthylester, Thionpropionsäure-äthylester $C_5H_{10}OS = C_5H_5$: $CS \cdot O \cdot C_2H_5$ (H 264; E I 115). Kp: 125—129° (Sakurada, Mem. Coll. Sci. Kyoto [A] 9, 240; C. 1926 II, 1273). D_4^{*o} : 0,8912. Viscosität bei 20°: S. n_D^{*o} : 1,4307.

Thiopropionsäure-O-propylester, Thionpropionsäure-propylester $C_8H_{12}OS = C_2H_5 \cdot CS \cdot O \cdot CH_3 \cdot C_2H_5$. Gelbliche Flüssigkeit. Kp: 139—144°; D_i^m : 0,8835 (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 69; C. 1927 I, 1300). Viscosität bei 28°: S. n_D^m : 1,4396. — Raucht an feuchter Luft.

Thiopropionsäure - O - isopropylester, Thionpropionsäure - isopropylester $C_6H_{12}OS = C_2H_5 \cdot CS \cdot O \cdot CH(CH_3)_2$. Gelbliche Flüssigkeit. Kp: 137—140°; D_4^m : 0,8714 (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 69; C. 1927 I, 1300). Viscosität bei 22°: S. n_{11}^m : 1,4372.

Thiopropionsäure-O-butylester, Thionpropionsäure-butylester $C_7H_{14}OS = C_2H_5$: $CS \cdot O \cdot [CH_3]_3 \cdot CH_3$. Gelbe Flüssigkeit. Kp: 164—1670; D_4^m : 0,8618 (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 69; C. 1927 I, 1300). Viscosität bei 28°: S. n_2^m : 1,4303.

Thiopropionsäure-O-isobutylester, Thionpropionsäure-isobutylester $C_7H_{14}OS = C_2H_5 \cdot CS \cdot O \cdot CH_2 \cdot CH(CH_3)_2$. Gelbe Flüssigkeit. Kp: 153—157°; D_4^{M} : 0,8678 (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 70; C. 1927 I, 1300). Viscosität bei 25°: S. n_5^{m} : 1,4286.

Thiopropionsäure-O-isoamylester, Thionpropionsäure-isoamylester $C_8H_{16}OS=C_2H_5\cdot CS\cdot O\cdot CH_2\cdot CH_2\cdot CH(CH_3)_2$. Gelbliche Flüssigkeit. $Kp_{30}\colon 84-86^\circ; D_*^{\#}\colon 0,8595$ (Sakurada, Mem. Coll. Sci. Kyoto [A] 9, 240; C. 1926 II, 1273). Viscosität bei 22°: S. $n_7^{\#}\colon 1,4340$.

Thiopropionamid $C_3H_7NS = C_2H_5 \cdot CS \cdot NH_2$ (H 264). B. Durch Einw. von Schwefelwasserstoff auf Propionitril in Gegenwart von Natriumdisulfid in Alkohol bei 38° und 1 Atm. Druck (Kindler, A. 431, 204; vgl. K., A. 452, 118). — F: 42—43°. Leicht löslich in Äther und Benzol, ziemlich schwer in Wasser und Alkohol, schwer in Petroläther.

Dithiopropionsäure $C_2H_6S_2=C_2H_5\cdot CS_2H$ (H 264). B. Aus dem Äthylester durch Verseifen mit alkoh. Kalilauge (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 82; C. 1927 I, 1301). — Orangefarbiges Öl.

Äthylester $C_5H_{10}S_2=C_2H_5\cdot CS_2\cdot C_2H_5$ (E I 115). B. Durch Einw. von Schwefelwasserstoff auf nicht näher beschriebenen Thiopropioniminoäthyläther in Äther (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 80; C. 1927 I, 1301). — Orangefarbige Flüssigkeit, Kp: 1500 bis 1550. $D_4^{\mu}:0.9711$. Viscosität bei 270: S. $n_D^{\mu}:1.5259$. [OSTERTAG und SACHTLEBEN]

4. Carbonsäuren $C_4H_8O_2$.

1. Propan - carbonsaure - (1), Buttersaure $C_4H_8O_2 = CH_2 \cdot CH_2 \cdot CH_2 \cdot CO_2H$ (H 264, E I 115).

Vorkommen.

In geringer Menge in den Haaren der Brennessel Urtica dioica (Flury, Z. exp. Med. 56, 402; C. 1927 II, 1488) sowie im Chenopodiumöl (Henry, Paget, Soc. 119, 1716). Als freie Säure und als Ester in den Ölen von Amphilophis odorata A. Camus (Andropogon odoratus Lisb.), von Cymbopogon procerus A. Camus und von "Cymbopogon Nr. 2" (Van Eerde, Pharm. Weekb. 61, 1188; C. 1924 II, 2796). Als Ester in der Baumwollpflanze (Power, Chesnut, Am. Soc. 48, 2733) und in dem bei der Darstellung von Gärungsbutylalkohol anfallenden "Gelböl" (Marvel, Broderick, Am. Soc. 47, 3046). Zum Vorkommen in Pflanzen vgl. auch C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, Bd. II, 1. Teil [Wien 1932], S. 500. Buttersäure wurde ferner gefunden in menschlichen Faeces (Cecchini, Ber. Physiol. 22, 414; C. 1924 I, 2166; Olmsted, Mitarb., J. biol. Chem. 85, 118), im Harn (Ce., Ber. Physiol. 22, 415; C. 1924 I, 2167) sowie in der Pferdeleber (Sammartino, Bio. Z. 132, 349). Buttersäure-Gehalt von Butterfett: Frog, Schmidtnielsen, Bio. Z. 127, 173.

Bildung.

Biochemische Bildungen. In guter Ausbeute erhält man Buttersäure bei der Vergärung von Kohlenhydraten durch eine Mischkultur von Bac. butyricus und Bac. putrificus (Lefranc & Cie., D. R. P. 478116; Frdl. 16, 247) sowie bei der Vergärung von Calciumlactat durch eine Mischkultur von zwei nicht näher bezeichneten Bakterien (Schaposchnikow, Sacharow, Trudy chim. farm. Inst. 1927, Nr. 18, S. 13, 25; C. 1927 II, 1713). Über Buttersäure-Bildung bei der Vergärung von Glucose durch ein typisches Buttersäure-Bacterium, das vermutlich zur Amylobacter-Gruppe gehört, vgl. Heiduschka, Reymann, P. C. H. 70, 87; C. 1929 I, 2196. Technische Gewinnung durch Vergärung von hydrolysierter Cellulose durch Buttersäure-Bakterien: Depasse, Bl. Assoc. Chimistes Sucr. Dist. 43, 410; C. 1926 II, 1709. Bei der Vergärung von Glucose durch Bac. bitvilicus Fitz in anorganischem Medium entstehen neben Alkohol, Butylalkohol, Ameisensäure, Essigsäure und hauptsächlich Buttersäure auch höhere Fettsäuren (Neuberg, Arinstein, Bio. Z. 117, 309). Schon geringe Mengen Na₂SO₃ hemmen die Vergärung von Glucose durch Bac. butylicus Fitz und unterbinden

die Buttersäure-Bildung vollständig; neben geringen Mengen Acetaldehyd und viel Schwefelwasserstoff erhält man in Gegenwart von wenig Na, SO, nur Alkohol und Essigsäure (NEU., A., Bio. Z. 117, 290, 300). Buttersäure entsteht auch bei der Vergärung von α-Oxo-γ-valerolacton-y-carbonsaure durch Bacillus butylicus Fitz in Gegenwart von Calciumcarbonat (Neu., A., Bio. Z. 117, 298). Bei der Aceton-Butylalkohol-Gärung von Maisstärke durch ein als B. Y. bezeichnetes Bacterium (Neppi, Giorn. Chim. ind. appl. 2 [1920], 173); durch Bac. granulobacter pectinovorum (Speakman, J. biol. Chem. 41, 328; 58, 398). Bei der Aceton-Butylalkohol-Gärung von Glucose, Galaktose, Arabinose, Xylose oder Mannit durch Bac. granulobacter pectinovorum (Sp. J. biol. Chem. 58, 400, 402). Menge der in der Maische zu verschiederen Zeiten vorhandenen Buttersäuse bei Versäuse von Mais durch Glatelia. zu verschiedenen Zeiten vorhandenen Buttersäure bei Vergärung von Mais durch Clostridium acetobutylicum: STILES, PETERSON, FRED, J. biol. Chem. 84, 444; durch einen nicht näher bezeichneten Erreger der Aceton-Butylalkohol-Gärung: REILLY, Mitarb., Biochem. J. 14. 233, 237; bei der Vergärung von Stärke, Glucose, Galaktose, Arabinose, Xylose oder Mannit durch Bac. granulobacter pectinovorum: Sr., J. biol. Chem. 58, 398, 400, 404. Neben anderen Produkten wird Buttersäure ferner gebildet bei Vergärung von Kartoffel- oder Maisstärke durch Granulobacterium butylicum (Beijerinck) (Folymers, Ber. Physiol. 6, 449; C. 1921 III, 47), von Glucose durch Bakterien des Klärschlammes (Bach, Sierp, Zbl. Bakt. Parasitenk. [II] 62, 51; C. 1924 II, 1357); beim anaeroben Wachstum von Dysenterie-Bakterien in peptonhaltigem zuckerfreiem Nährboden (ZOLLER, CLARK, J. gen. Physiol. 3, 329; C. 1921 I, 775). Geringe Mengen Buttersäure entstehen bei der Silage von Mais (Brahm, Bio. Z. 156, 18), von Rübenblättern und köpfen, auch bei Beimischung von etwas Seradella (Br., Bio. Z. 186, 234, 238), bei der Silage von Luzerne (SCHMIDT, Landw. Jb. 63, 776; C. 1926 II, 837) sowie von Luzerne zusammen mit Gräsern (CRASEMANN, L. V. St. 102 [1924], 131). Neben Butylalkohol erhält man Buttersäure aus Butyraldehyd bei Einw. von Bact. ascendens unter Luftabschluß oder Bact. xylinum unter Luftzutritt in Gegenwart von Calciumcarbonat (Neuberg, Windisch, Bio. Z. 166, 477). Buttersäure entsteht bei der Einw. von Speichel auf Milch sowie im Hundemagen nach Genuß von Kuh- oder Ziegenmilch (ARTHUS, Ber. Physiol. 11, 382; C. 1922 I, 1204).

Rein chemische Bildungen. Buttersäure erhält man neben anderen Produkten bei der Oxydation von Triakontan mit Luftsauerstoff bei etwa 300° (LANDA, C. r. 187, 948), von Paraffin mit Sauerstoff bei 150° in Gegenwart von Manganverbindungen (KELBER, B. 53, 70), von Paraffin mit Sauerstoff unter Druck bei etwa 150° in Gegenwart von Quecksilber-, Blei-, Vanadium-, Chrom- oder Mangan-Verbindungen (Franck, Ch. Z. 44, 309; C. 1920 II, 781). Neben Butyraldehyd beim Leiten von Butylalkohol mit Luft über fein verteiltes Kupfer bei 270° (Mailhe, de Godon, C. r. 170, 518). Neben β -Äthyl-n-hexylalkohol und α -Äthyl-n-capronsäure bei 10-stündigem Erhitzen von Butylalkohol unter Druck mit 10--15% Natrium auf 250° oder 3-stündigem Erhitzen mit 30--50% Natriumhydroxyd auf 275°, in geringer Menge beim Erhitzen von Butylalkohol mit Calcium auf 235° oder mit Calciumoxyd auf 250° (Weizmann, Garrard, Soc. 117, 331). Neben α-Äthyl-n-capronsäure beim Erhitzen von Butylalkohol mit der aquimolekularen Menge Kaliumhydroxyd in Gegenwart von getrocknetem Tonerdegel oder Magnesiumoxyd unter Druck auf 280° (I. G. Farbetind., D. R. P. 503009; C. 1930 II, 2573; Frdl. 16, 251). In geringer Menge bei längerer Belichtung von Dibutyläther mit diffusem Licht bei 70-75° oder bei sehr langer Belichtung mit Sonnenlicht bei gewöhnlicher Temperatur (CLOVER, Am. Soc. 46, 423). Aus dem Oxim des Propyl-n-amyl-ketons beim Erhitzen mit 88% iger Schwefelsäure und Kochen des entstandenen Säureamids mit konz. Salzsäure, neben n-Amylamin (Karrer, Mitarb., Helv. 11, 1081). Neben anderen Produkten bei Einw. von Ozon auf Butyrylaceton bei —15° (WEYGAND, BAUMGÄRTEL, B. 62, 578). Aus dem Calciumsalz der a-Chlor-buttersäure durch Hydrierung bei Gegenwart von Palladium in verd. Alkohol (PAAL, Schiedewitz, B. 62, 1938). Neben anderen Produkten bei der Reduktion von $\gamma.\gamma.\gamma$ -Trichlor-crotonsäure und $\gamma.\gamma$ -Dichlor-crotonsäure mit Natriumamalgam in neutraler Lösung (v. Auwers, Wissebach, B. 56, 730). erotonsäure mit Natriumamaigam in neutraler Losung (V. Auwers, Wissebach, B. Do., 730). Beim Erhitzen von Acetyl-[\$\beta\$-carboxy-propionyl]-peroxyd im Rohr auf 180° (Brunner, Helv. 8, 653). Beim Erhitzen von Glutarsäure auf 301—304° (Vogel, Soc. 1929, 726). Aus 2.2-Dimethyl-pentan-dicarbonsäure-(1.3) beim Kochen mit etwa 80% iger Schwefelsäure oder beim kurzen Erhitzen mit geschmolsenem Kaliumhydroxyd (Kon, Smith, Thoape, Soc. 127, 570). Neben anderen Produkten entsteht Buttersäure beim Erhitzen der Na-Salze einiger Oxysäuren mit Wasserstoff in wäßr. Lösung unter Druck bei Gegenwart von Nickel(II)-oxyd und Aluminiumoxyd; sie wurde erhalten aus Natriumlactat bei 70 Atm. Anfangsdruck und 270° (Iratjew, Rasuwajew, B. 59, 2032; Ж. 58, 1349); aus α-oxy-buttersaurem Natrium bei 70 Atm. Anfangsdruck und 280—290° (Ir., R., B. 61, 635; Ж. 60, 911); aus \$-oxy-butter-saurem Natrium bei 56 Atm. Anfangsdruck und 245—250° (R., B. 61, 638; Ж. 60, 914); aus a-oxy-a-methyl-a'-athyl-bernsteinsaurem Natrium bei 60 Atm. Anfangadruck und 2450 bis 250° (R., B. 60, 1979; Ж. 59, 1075). Buttersture wird in guter Ausbeute gebüldet bei 1-stündigem Einleiten von Kohlendioxyd in eine auf —20° abgekühlte ätherische Lösung von Propylmagnesiumbromid (Iwanow, Bl. [4] 37, 293). Entsteht neben 3.4-Dimethylpyrazolon-(5) bei längerem Erhitzen von 3-Methyl-pyrazolon-(5) mit Natriummethylat-Lösung auf 250° (Wolff, Thielepape, A. 420, 278).

Physikalische Eigenschaften.

Eigenschaften der reinen Substanz. Röntgenogramm von fester Buttersäure (Spektrometer-Aufnahmen): Gibbs, Soc. 125, 2623; Z. Kr. Strukturber. 1, 693. F: —5,55° (Timmermans, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27), —5,7° (Parks, Anderson, Am. Soc. 48, 1507), —6,55° (Grindley, Bury, Soc. 1929, 681). Kp₇₄₀: 163,55 ± 0,01° (Ti. Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27), 162,45° (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 153; R. 47, 15); Kp₇₄₂: 162° (Kailan, Schachner, M. 52, 23); Kp₈₅₅: 156—157° (Bhide, Watson, Soc. 1927, 2101). D⁶; 0,9784 (Gr., Soc. 1928, 3297; Gr., Bury, Soc. 1929, 682); D¹⁰; 0,9664 (Gr., Bu.); D¹⁰; 0,9634 (Bu.); D¹⁰; 0,9605 (Gr., Bu.); D¹⁰; 0,9533 (Rasuwajew, B. 60, 1979; Ж. 59, 1076); D¹⁰; 0,9573 (Ipatjew, R., B. 61, 636; Ж. 60, 911); D¹⁰; 0,9535; D^{10,10}; 0,9437 (Gr., Bu.). D¹¹; zwischen 0,1° (0,9792) und 91,7° (0,8838); Hunten, Maass, Am. Soc. 51, 159. Dampfdichte: Trautz, Moschel, Z. anorg. Ch. 155, 18. Adiabatische Kompressibilität bei 25°: Venkateswaran, J. phys. Chem. 31, 1523. Einfluß von Buttersäure-Filmen gewöhnlicher oder sehr geringer Dicke sowie des gesättigten Dampfes auf die gleitende Reibung an Glas: Hardy, Doubleday, Pr. roy, Soc. [A] 100, 555; C. 1922 IV, 514. Oberflächenspannung bei 15°: 26,88 dyn/cm (Tominaga, Bio. Z. 140, 245). Oberflächenspannung zwischen 0,1° (29,2 dyn/cm) und 131,3° (16,4 dyn/cm): Hu., Maass, Am. Soc. 51, 159. Parachor: Hu., Maass, Am. Soc. 51, 161. — Spezifische Wärme cp von krystallisierter Buttersäure zwischen 89,2° absol. (0,172 cal/g) und 231,5° absol. (0,368 cal/g) und von flüssiger Buttersäure zwischen 274,8° absol. (0,464 cal/g) und 290,7° absol. (0,478 cal/g): Parks, Anderson, Am. Soc. 48, 1508. Schmelzwärme: 30,04 cal/g (P., A.). Verbrennungswärme bei konstantem Volumen: 521,6 kcal/Mol: Verkade, Coops, R. 47, 608; Landolt-Börnst. E II, 1641.

пі: 1,4004 (Ткомр, R. 41, 297); пі: 1,3990 (Whitby, Soc. 1926, 1463); пі: 1,3983 (Т.); $n_{B}^{\mathbf{s}}: 1,3947$ (IPATJEW, RASUWAJEW, B. **61**, 636; Ж. **60**, 911); $n_{\alpha}^{\mathbf{s}}: 1,3756$; $n_{D}^{\mathbf{p}}: 1,3775$; $n_{B}^{\mathbf{g}}: 1,3822$; $\mathbf{n}_{\mathbf{v}}^{\mathbf{v}}$: 1,3859 (Waterman, Bertram, R. 46, 701). Buttersäure zeigt in alkoh. Lösung im ultravioletten Gebiet oberhalb von ca. 210 mu keine Lichtabsorption (Purvis, Pr. Cambridge phil. Soc. 23, 589; C. 1927 II, 379). Ultrarotes Absorptionsspektrum zwischen 0,5 μ und 14 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel I; zwischen 0,8 μ und 2 μ: Sappenfield, Phys. Rev. [2] 33, 41; C. 1929 I, 1419. Lichtreflexion durch Oberflächen von Buttersäure: BHATNAGAR, SHRIVASTAVA, MITRA, J. indian chem. Soc. 5, 336; C. 1928 II, 1745. Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht in flüssiger Buttersäure: KRISHNAN, Phil. Mag. [6] 50, 703; C. 1926 I, 838; VENKATESWARAN, Indian J. Phys. 1, 395; S. R. RAO, Indian J. Phys. 8, 12; C. 1929 I, 20; an Buttersäure-Oberflächen: RAMAN, RAMDAS, Pr. roy. Soc. [A] 109, 274; C. 1926 I, 838; RAMDAS, Indian J. Phys. 1, 221; C. 1927 II, 2535; in Buttersäure-Dampf: I. R. RAO, Indian J. Phys. 2, 83; C. 1928 I, 1838; in wäßr. Buttersäure-Lösung: VEN., Indian J. Phys. 1, 395; C. 1927 II, 2534. Elliptische Polarisation von linear polarisiertem Licht bei der Streuung an Oberflächen von wäßr. Buttersäure-Lösungen: Bouhet, C. r. 188, 60; 189, 43. Ramanspektrum von flüssiger Buttersäure: Dadieu, Kohlrausch, M. 52, 231, 399, 405; Naturwiss. 17, 367; C. 1929 II, 385; Sber. Akad. Wien 186, 52; C. 1929 II, 697; Phys. Z. 30, 384 Tafel VIII; C. 1929 II, 970; Ko., Phot. Korresp. 65, 162; C. 1929 II, 1508; VENKATESWARAN, Phil. Mag. [7] 7, 599; C. 1929 I, 2389; GANESAN, VEN., Indian J. Phys. 4, 216; C. 1929 II, 2646. Beugung von Röntgenstrahlen durch flüssige Buttersäure bei gewöhnlicher Temperatur: Morrow, Phys. Rev. [2] 31, 11; C. 1928 I, 2693; STEWART, MANNHEIMER, Z. anorg. Ch. 171, 68; SOGANI, Indian J. Phys. 2, 102; C. 1928 I, 470; KATZ, Z. ang. Ch. 41, 337; Z. Phys. 45, 101; C. 1928 I, 154; bei 30° und 120°: VAIDYANATHAN, Indian J. Phys. 3, 394; C. 1929 I, 2950. Beugung von Röntgenstrahlen durch wäßr. Buttersäure-Lösungen: KRISHNAMURTI, Indian J. Phys. 3, 353; C. 1929 I, 2054. 1929 I, 2951. Magnetische Doppelbrechung: RAMANADHAM, Indian J. Phys. 4, 27; C. 1929 II, 2315.

Eigenschaften von Buttersäure enthaltenden Gemischen. Kritische Lösungstemperatur des Systems Buttersäure-Wasser: —0,8° (Klein, Lotos 71 [1923], 280), —1,2° bis —1,05° (Howard, Patterson, Soc. 1926, 2792). Einfluß von Chromsalzen auf die kritische Lösungstemperatur des Systems Buttersäure-Wasser: How., P. Einfluß von Buttersäure auf die Löslichkeit von Kaliumsulfat in Wasser: Weber, Z. anorg. Ch. 181, 390. Verteilung von Buttersäure zwischen Wasser und Chloroform bei 25°: Smith, J. phys. Chem. 25, 228; Sm., White, J. phys. Chem. 33, 1969; zwischen Wasser und Hexan bei 20°: Harkins, McLaugellin, Am. Soc. 47, 1612; Rehbinder, Bio. Z. 187, 28; zwischen Wasser und Benzol bei 18°: Schulz, Koll. Beih. 21, 43, 46; C. 1925 II, 1840; bei 20°: Ha., King, Am. Soc. 41, 984; bei 25°: Brown, Bury, Soc. 123, 2432; Sm., Wh., J. phys. Chem. 33, 1964; zwischen Wasser und Toluol bei 25°: Sm., Wh., J. phys. Chem. 33, 1958; zwischen Wasser und Kylol bei 25°:

SM., J. phys. Chem. 25, 220; zwischen Wasser und Äther bei 12° und 21°: Behrens, Fr. 69, 100; bei 25°: Sm., J. phys. Chem. 25, 620; Johnson, Cereal Chem. 2 [1925], 351; zwischen Wasser und Schwefelkohlenstoff bei 18°: Sch., Koll. Beih. 21, 51; zwischen Wasser und Olivenöl bei 23°: Bodansky, J. biol. Chem. 79, 252; zwischen Wasser und Baumwollsamenöl bei 25°: Gordon, Reid, J. phys. Chem. 26, 786; zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 730. — Einfluß von Buttersäure auf den Erstarrungspunkteines Gemisches aus gleichen Gewichtsteilen Alkohol und Benzol: Weight, Soc. 127, 2337. Thermische Analyse des binären Systems Buttersäure-o-Phenylendiamin: Kremann, Weber, Zechner, M. 46, 200, 217. Azeotrope Gemische, die Buttersäure enthalten, s. in der untenstehenden Tabelle. Destillationskurve von Gemischen mit Wasser: Knetemann, R. 47, 955. Zur Flüchtigkeit von Buttersäure mit Wasserdampf vgl. auch Arnold, Z. Unters. Nahr.-Genußm. 42, 354; C. 1922 II, 918; Virtanen, Pulkki, Am. Soc. 50, 3141; Ann.

Azeotrope, Buttersäure enthaltende Gemische.

Komponente	Kp ₇₆₀	Butter- säure in Gew%	Komponente	Kp ₇₆₀	Butter- säure in Gew%
Bromoform 1)		12,5 10 3,8 26 - 3,5 25	4-Chlor-toluol 4)	155,7 161,2 161,5 160,8 ca. 135,9 142,0 138,3 137,8	32 71 75 65 <5 10 6
Isoamyljodid 4) Diisoamyl 5) d-Limonen 6) α-Pinen 7) Camphen 2) 1.4-Dichlor-benzol 4) Brombenzol 6) Jodbenzol 4) 2-Chlor-toluol 4)	145,6 154,0 160,75 150,3 152,3 131,75 160,0 152,2 161,6 154,0	ca. 10 35 55*) 30 27 2,8 ca. 55 18 ca. 85 ca. 27	Propylbenzol 5) Pseudocumol 6) Mesitylen 7) p-Cymol 7) Inden 7) Isoamyläther 5) Anisol 2) Phenetol 3) Furfurol 8)	154,5 159,0 157,6 160,0 161,0 ca. 160 152,85 160,8 159,4	ca. 30 43 65

1) HOLLEY, WEAVER, Am. Soc. 27 [1905], 1056. — 2) LECAT, Ann. Soc. scient. Bruxelles 47 I [1927], 153. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928], 19. — 4) L., Ann. Soc. scient. Bruxelles 48 I, 118, 119. — 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 18—22. — 6) L., Ann. Soc. scient. Bruxelles 49, 35, 40. — 7) L., Ann. Soc. scient. Bruxelles 49, 110—112. — 6) L., R. 47, 15. — 6) Die Konzentration ändert sich stark mit dem Druck.

Acad. Sci. fenn. [A] 29 [1927] [Komppa-Festschr.], Nr. 25, S. 10. Dampfdruck binärer Gemische mit Chloroform, Aceton, Essigsäuremethylester, Schwefelkohlenstoff und Benzol bei 20°: Weissenberger, Henke, Katschinka, Z. anorg. Ch. 153, 41. Kryoskopisches Verhalten von Buttersäure in Wasser: Jones, Bury, Phil. Mag. [7] 4, 843; C. 1928 I, 1266; in Benzol und Nitrobenzol: Trautz, Moschel, Z. anorg. Ch. 155, 13.

Adiabatische Kompressibilität wäßr. Buttersäure-Lösungen zwischen 24,5° und 29°: Venkateswaran, J. phys. Chem. 31, 1523. Dichte von Buttersäure-Wasser-Gemischen zwischen 0° und 34,94°: Grindley, Bury, Soc. 1929, 682; einer 5% igen Lösung von Buttersäure in Methanol bei 25°: Lipschtz, Beck, Koll. Z. 26, 60; C. 1920 III, 82. Zur Volumenanderung beim Mischen von Buttersäure mit Wasser und zur Viscosität von Gemischen mit Wasser vgl. Pound, Russell, Soc. 125, 774. Dichte und Viscosität von Gemischen mit Anilin sowie von Gemischen mit Anilin und Wasser bei 30°: P., Ru., Soc. 125, 780. Viscosität von Gemischen mit Pyridin bei 18,2°, 30° und 40°: Yajnik, Mitarb., Ph. Ch. 118, 313. — Diffusion von Buttersäure aus verdünnten wäßrigen Lösungen in Gelatine- und Eiweiß-Gele: Tomita, Bio. Z. 153, 340; Yumikura, Bio. Z. 157, 373; vgl. Traube, Bio. Z. 153, 359; Tr., Y., Bio. Z. 157, 384; durch lipoidhaltige Kollodium-Membrane: Philippson, Hanne-vart, C. r. Soc. Biol. 83, 1571; C. 1921 I, 543.; durch Mantelgewebe von Nudibranchis (Chromodoris zebra): Croziee, J. gen. Physiol. 5, 66; C. 1928 I, 255; Taylor, J. gen. Physiol. 11, 211; C. 1928 I, 2409. Oberflächenspannung wäßr. Lösungen bei 18°: Bartsch, Koll. Beih. 20, 7; C. 1925 I, 2362; bei 18,5—19°: Tominaga, Bio. Z. 140, 239; bei 20°: Rehbinder, Bio. Z. 187, 26; zwischen 0° und 100°: Reh., Ph. Ch. 111, 453. Oberflächenspannung einer

0,25 n-wäßr. Lösung: Weber, Z. anorg. Ch. 181, 390; vgl. auch Traube, Verh. dtsch. phys. Ges. 10 [1908], 901. Grenzflächenspannung einer 1% igen Buttersäure-Lösung in Benzol gegen Wasser, 0,02 n-Natronlauge und 1% Natriumchlorid enthaltende 0,02 n-Natronlauge: Dubrisax, C. r. 178, 1976; Bl. [4] 37, 999; Rev. gén. Colloides 5, 487. Grenzflächenspannung bei 20° zwischen Lösungen von Buttersäure in Wasser und in Hexan: Harkins, McLaughlin, Am. Soc. 47, 1612; Rehbinder, Bio. Z. 187, 26, 28; in Wasser und in Benzol: H., King, Am. Soc. 41, 984; Reh., Bio. Z. 187, 26; in Wasser und in Olivenöl: Reh., Bio. Z. 187, 26.

Adsorption von Buttersäure-Dämpfen an Tierkohle bei 20°: ALEXEJEWSKI, Ж. 55, 416; C. 1925 II, 642. Adsorption von Buttersäure aus wäßr. Lösungen an Tierkohle: TRAUBE, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 95; Watson, Biochem. J. 16, 617; Klein, Lotos 71 [1923], 286, 292; Freundlich, Birstein, Koll. Beih. 22 [1926], 96; Schilow, Nekrassow, Ph. Ch. 130, 67; Ж. 60, 105; A., Ж. 59, 1036; C. 1928 I, 2916; an Zuckerkohle: Bartell, Miller, Am. Soc. 45, 1109; Ne., Ph. Ch. 136, 380; an Kokosnußkohle: Namasivayam, Quart. J. indian chem. Soc. 4, 452; C. 1928 I, 662; an verschiedene Adsorptionskohlen: Ne., Ph. Ch. 136, 22; Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288. Adsorption von Buttersäure aus alkoh. Lösungen an Tierkohle: GRIFFIN, RICHARDSON, ROBERTSON, Soc. 1928, 2708; an verschiedene Adsorptionskohlen: NE., Ph. Ch. 136, 23, 29. Adsorption aus Lösungen in Chloroform, Tetrachlorkohlenstoff, Schwefelkohlenstoff, Petroläther, Methanol, Äther, Aceton, Benzol und Toluol an verschiedene Adsorptionskohlen: Ne., Ph. Ch. 136, 25, 29. Adsorption von Buttersäure im Gemisch mit Crotonsäure aus wäßr. Lösung an Tierkohle: Alexejewski, 38. 59, 1036; C. 1928 I, 2916; von Buttersäure und Glycerinbutyrat aus chlorwasserstoffhaltigen wäßrigen Lösungen von Buttersäure und Glycerin an Tierkohle bei 370: Przylecki, Giedroyc, Sym, Biochem. J. 22, 823. Adsorption von Buttersäure an Kieselsäure Gel aus Lösungen in Wasser: Mehrotra, Dhar, Z. anorg. Ch. 155, 299; Bartell, Fu, J. phys. Chem. 33, 680; aus Lösungen in Tetrachlorkohlenstoff: Ba., Fu., J. phys. Chem. 33, 680; aus Lösungen in Toluol, Kerosin, und Gasolin: Patrick, Jones, J. phys. Chem. 29, 4. Adsorption von Buttersäure aus wäßr. Lösungen an Siloxen bei 0°: KAUTSKY, BLINOFF, Ph. Ch. [A] 139, 509; an frisch gefälltem Eisen(III)-hydroxyd: Sen, J. phys. Chem. 31, 526; an Viscose: Brass, Frei, Koll.-Z. 45, 249; С. 1928 II, 1037; an Stärke und Gelatine: LASNITZKI, LOEB, Bio. Z. 146, 97; an Hautpulver: Kubelka, Taussig, Koll. Beih. 22, 153, 159; C. 1926 II, 2138. Adsorption von flüssiger Buttersäure an Platin: Palmer, Pr. roy. Soc. [A] 115, 229; C. 1927 II, 1678. Adsorption von Buttersäure an der Oberfläche wäßr. Buttersäure-Lösungen: McBain, Du Bois, Am. Soc. 51, 3543; an Wasseroberflächen: Bury, Phil. Mag. [7] 4, 981; C. 1928 I, 1266. — Ausbreitung von Buttersäure auf Wasser: HARKINS, FELDMAN, Am. Soc. 44, 2670; RAMDAS, Indian J. Phys. 1, 20; C. 1926 II, 1935. Ausbreitung sehr verdünnter wäßriger Buttersäure-Lösungen auf Quecksilber und Einfluß elektrischer Aufladungen darauf: BURDON, OLIPHANT, Trans. Faraday Soc. 23, 208; C. 1927 II, 677.

Einfluß von Buttersäure auf die Quellung von Casein in wäßr. Lösung: Isgaryschew, Pomeranzewa, Koll.-Z. 38, 236; C. 1926 I, 3129. Koagulierende Wirkung auf Casein-Lösungen: I., Bogomolowa, C. 1926 I, 3307. Flockung von kolloidaler Eisen(III)-hydroxyd-Lösung und kolloidaler Arsen(III)-sulfid-Lösung durch Butyrat-Ionen: Herrmann, Helv. 9, 786. Schaumbildung wäßr. Lösungen bei 18°: Bartsch, Koll. Beih. 20, 5; C. 1925 I, 2362.

Wärmetönung bei der Adsorption von Buttersäure aus Lösungen in Wasser und in Hexan an Kieselsäure-Pulver und an Kohle: Rehbinder, Krajuschkina, Ph. Ch. [A] 142, 285. Brechungsindices einer 5% igen Buttersäure-Lösung in Methanol bei 25°: Lifschtztz, Beck, Koll.-Z. 26, 60; C. 1920 III, 82. Lichtzerstreuung an Oberflächen von wäßr. Buttersäure-Lösungen und Beugung von Röntgenstrahlen durch wäßr. Buttersäure-Lösungen s. S. 237. — Elektrische Leitfähigkeit wäßriger und alkoholischer Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192; alkoh. Lösungen bei 25°: Hölle, M. 47, 576. Einfluß von Glykolsäureäthylester auf die elektrische Leitfähigkeit einer ca. 0,1 n. wäßr. Buttersäure-Lösung: Holwerda, Bio. Z. 128, 469. Einfluß verschiedener Mengen Ammoniak, Äthylamin, Diäthylamin, Benzylamin, Äthylendiamin, Anilin, p. Toluidin, Methylanilin, Dimethylanilin, α. und β-Naphthylamin, o., m. und p-Phenylendiamin und Harnstoff auf die elektrische Leitfähigkeit von wäßrig-alkoholischen Buttersäure-Lösungen bei 25°: Hölzl, M. 47, 575. Konduktometrische Titration von Buttersäure in Natriumbutyrat-Lösungen mit Salzsäure: Bureau, C. r. 181, 43. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Buttersäure-Lösungen: F., Ph. Ch. 111, 193; zwischen wäßrigen und isoamylalkoholischen Buttersäure-Lösungen: F., Ph. Ch. 111, 193; zwischen wäßrigen und isoamylalkoholischen Buttersäure-Lösungen: Wosnessensky, Ph. Ch. 117, 460. Potentiometrische Titration von wäßr. Buttersäure-Lösungen mit Natronlauge: Cox, Am. Soc. 47, 2141. — Dissoziationskonstante k (aus der Leitfähigkeit berechnet) bei 25°: 1,48·10-5 (Holwerda, Bio. Z. 128, 468); 1,55·10-5 (Klein, Lotos 71 [1923], 280); (potentiometrisch bestimmt) bei 19° und 19,3°: 1,6·10-6 (Mizutani, Ph. Ch. 116, 351; 118, 328, 341; vgl. Landolt-

Börnst. E I, 651). Potentiometrische Bestimmung der Dissoziationskonstante von Buttersäure in Wasser-Methanol-Gemischen bei 19—19,5°: M., Ph. Ch. 118, 328; in Wasser-Alkohol-Gemischen bei 19,3°: M., Ph. Ch. 116, 351. Über die Dissoziationskonstante vgl. a. Dhar, Z. anorg. Ch. 153, 329. Zur Zerstäubungselektrizität wäßr. Lösungen vgl. Zeehuisen, Versl. Akad. Amsterdam 28, 1116; C. 1921 I, 929. — Buttersäure beschleunigt die Autoxydation von Dithiokohlensäure-O.S-dimethylester (Delépine, Bl. [4] 31, 782). Geschwindigkeit der Zersetzung von Benzoldiazoniumchlorid in Buttersäure bei 30° und 40°: Pray, J. phys. Chem. 30, 1480.

Chemisches Verhalten.

Beim Leiten von Buttersäure-Dampf über Tierkohle bei 360—380° entstehen Kohlenwasserstoffe, Kohlendioxyd, Kohlenoxyd, Wasserstoff, Wasser und andere Produkte (Senderns, Aboulenc, C. r. 170, 1065). Buttersäure zersetzt sich in Gegenwart eines Kupfer-Aluminiumoxyd-Katalysators bei etwa 600° unter Bildung von größeren Mengen gesättigter und geringeren Mengen ungesättigter Kohlenwasserstoffe, die Methan und Propylen enthalten, von Butyron, Kohlendioxyd, Kohlenoxyd und Wasserstoff (Mailhe, Bl. [4] 31, 683; Caoutch. Guttap. 19, 11474), in Gegenwart von Calciumchlorid in einem Eisenrohr bei 570° unter Bildung von geringen Mengen gesättigter Kohlenwasserstoffe, größeren Mengen ungesättigter kohl

Bildung von geringen Mengen gesattigter Kohlenwasserstoffe, großeren Mengen ungesattigter Kohlenwasserstoffe, vorwiegend Propylen, sowie Kohlendoxyd, Kohlenoxyd, Wasserstoff und einer in Wasser unlöslichen Flüssigkeit (M., Bl. [4] 37, 308).

Entzündungstemperatur in Luft in Gegenwart von Platin: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Oxydation von Buttersäure im Sonnenlicht oder ultravioletten Licht bei Gegenwart von Uransalzen: Aloy, Valdiguie, Bl. [4] 37, 1139. Die Oxydation von Buttersäure-Lösungen durch Wasserstoffperoxyd wird durch Ammoniak stark beschleunigt, durch Natriumhydroxyd und Kaliumhydroxyd dagegen nicht beeinflußt (Witzemann, J. biol. Chem. 49, 128). Zur Oxydation von Ammoniumbutyrat durch Wasserstoffperoxyd nach Dakin (J. biol. Chem. 4, 83, 229; C. 1908 I, 1160, 1259) vgl. Wieland. A. 436, 256. Die Oxydation von Kaliumbutyrat durch Wasserstoffperoxyd in wäßr. Lösung wird beschleunigt durch Glycin, Ammoniumglykolat, Kaliumglykolat, Ammoniumlactat, Kaliumlactat, Natriumcitrat, Natriummalat, Calciummalat sowie in neutraler und saurer Lösung durch Gelatine (Witz., Am. Soc. 49, 989). Einfluß von primären und sekundären Phosphaten sowie von Phosphat-Gemischen auf die Oxydation von Kaliumbutyrat durch Wasserstoffperoxyd: Witz., Am. Soc. 48, 202. Beim Kochen von Kaliumcarbonat enthaltender Kaliumbutyrat-Lösung mit Kaliumpersulfat entsteht neben gesättigten Kohlenwasserstoffen Propylen (Fichter, Lapin, Helv. 12, 1001). Bei der Oxydation von Buttersäure mit Chromschwefelsäure in verdünnter wäßriger Lösung bei 100° werden 6 Atome Sauerstoff verbraucht (Polonovski, C. r. 178, 577). Geschwindigkeit dieser Reaktion: P.; vgl. Lieben, Molnar, M. 53/54, 7.

Belichtet man eine Lösung von Chlor und Buttersäure in Tetrachlorkohlenstoff mit ultraviolettem Licht, so wird x.x-Dichlor-buttersäure gebildet (Benrath, Hertel, Z. wiss. Phot. 23, 37; C. 1924 II, 822). Geschwindigkeit dieser Reaktion: B., H. Beim Erhitzen von Buttersäure mit Brom und wenig rotem Phosphor auf 120° oder beim Erhitzen von mit Bromwasserstoff gesättigter Buttersäure mit Brom auf 120° entsteht α-Brom-buttersäure (Ward, Soc. 121, 1164). Geschwindigkeit der Reaktion mit Brom in Abwesenheit und bei Gegenwart von Bromwasserstoff: Watson, Soc. 127, 2079. Buttersäure zersetzt sich beim Erhitzen mit 5 Volumenteilen konz. Schwefelsäure auf 200° unter Verkohlung und Entwicklung von Kohlenoxyd und Kohlendioxyd (Senderens, Aboulenc, C. r. 185, 1088). Reaktion mit Titantetrachlorid: Giua, Monath, Z. anorg. Ch. 166, 308.

Beim Leiten von Acetylen durch eine Suspension von Quecksilbersulfat in Buttersäure bei 80—90° entsteht Vinylbutyrat neben sehr geringen Mengen Äthylidendibutyrat (Konsort. f. elektrochem. Ind., D. R. P. 483780; Frdl. 16, 684). Geschwindigkeit der Veresterung von Buttersäure in absol. Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Goldschmidt, Ph. Ch. 94, 242; Bhide, Sudborough, J. indian Inst. Sci. 8 A, 90; C. 1926 I, 80; in Gegenwart von Trichloressigsäure, a.a.g-Trichlor-buttersäure, Pikrinsäure und Sulfosalicylsäure bei 25°: Gold., Ph. Ch. 94, 241; in Gegenwart von Zirkoniumdioxyd bei 240—250°: Mailhe, de Godon, Bl. [4] 39, 104; in absolutem und wasserhaltigem Alkohol bei Gegenwart von 2.4.6-Trinitromakresol bei 25°: Gold., Marum, Thomas, Ph. Ch. 183, 266; in wasserfreiem und in wasserhaltigem Propylalkohol in Gegenwart von Chlorwasserstoff bei 25°: Gold., Th., Ph. Ch. 126, 29; mit Propylalkohol in Gegenwart von Zirkoniumdioxyd bei 230—240°: Mai., de God.; in wasserfreiem und wasserhaltigem Isobutylalkohol in Gegenwart von Chlorwasserstoff bei 25°: Gold., Ph. Ch. 124, 30; mit Isobutylalkohol in Gegenwart von Zirkoniumdioxyd bei 270° bis 280°: Mai., de God.; in wasserfreiem Isoamylalkohol sowie in wasserfreien Gemischen von Isoamylalkohol mit Benzol bew. Ligroin in Gegenwart von Chlorwasserstoff bei 25°: Beiden, Watson, Sec. 1927, 2102; mit Isoamylalkohol in Gegenwart von Zirkoniumdioxyd bei 270—280°: Mai., de God.

wasserstoff bei 25° in wasserfreiem und wasserhaltigem Äthylenglykol: Kailan, Melkus, M. 48, 26; K., Schachner, M. 52, 42; in wasserfreiem und wasserhaltigem Glycerin: K., Obogi, R. 43, 514; K., Raupenstrauch, M. 45, 488. Geschwindigkeit der Esterbildung aus Buttersäure und Glycerin beim Kochen: Weatherby, McIlvaine, Matlin, Am. Soc. 47, 2250; beim Erhitzen auf 183° in Gegenwart und Abwesenheit von wenig Wasser: K., O., R. 43, 520. Einfluß von Tierkohle auf die Geschwindigkeit und das Gleichgewicht der Veresterung von Buttersäure mit Glycerin in wäßr. Lösung in Gegenwart von Chlorwasserstoff bei 37°: Przylecki, Giedroyć, Sym, Biochem. J. 22, 822. Ausmaß der Veresterung bei 1-stündigem Kochen von Buttersäure mit Glycerin ohne Zusatz sowie in Gegenwart von 1% Schwefelsäure oder 2% Aluminiumsulfat: Senderens, Aboulenc, A. ch. [9] 18, 175. Beim Leiten der Dämpfe von Essigsäure und Buttersäure über Ceroxyd-Katalysatoren entsteht Methylpropylketon (Welf, Ph. Ch. [B] 2, 68). Beim Erhitzen von Calciumbutyrat mit Calciumacetat auf 400° erhält man je nach dem Mengenverhältnis der angewendeten Salze wechselnde Mengen Aceton, Methyläthylketon, Methylpropylketon, Äthylpropylketon, Mesityloxyd, Dipropylketon und andere Produkte (Suida, Pöll, M. 48, 191; Z. ang. Ch. 40, 507). Kaliumbutyrat reagiert mit Acetanhydrid bei etwa 260° unter Bildung von Aceton, Methylpropylketon und Kohlendioxyd (Luce, C. r. 177, 1308; Bl. [4] 35, 182).

Biochemisches und physiologisches Verhalten.

Bei Einw. eines Glycerinextrakts von Milchdrüsen auf ein Gemisch von Buttersäure und Alkohol bei p_H 3,77—3,87 und 37° entstehen geringe Mengen Äthylbutyrat (VIRTANEN, H. 187, 9). Bei der Vergärung von Calciumbutyrat durch Aspergillus niger bei 28° bzw. 32° entstehen neben Aceton geringe Mengen Bernsteinsäure, β-Oxy-buttersäure und Acetessigsäure (Coppock, Subramaniam, Walker, Soc. 1928, 1424; Stent, Su., Wa., Soc. 1929, 1989). Calciumbutyrat wird durch thermophile Bakterien aus Schmutzwasser unter Bildung von Methan und Kohlendioxyd vergoren (Coolhaas, Zbl. Bakt. Parasitenk. [II] 75, 165; C. 1928 II, 1342; vgl. Coo., Ber. Physiol. 40 [1927], 440). Oxydation durch Pflanzenenzyme (Spinatbrei): Ciamician, Ravenna, G. 51 I, 212. Reduktion von Methylenblau durch Buttersäure in Gegenwart von ruhenden Bact. coli unter verschiedenen Bedingungen: Quastel, Whetham, Biochem. J. 19, 521, 522, 530; Qu., Wooldbidge, Biochem. J. 21, 152, 162, 1234; in Gegenwart von ruhenden Bac. prodigiosus, Bac. proteus oder Bac. faecalis alkaligenes: Qu., Woo., Biochem. J. 19, 653. Fermentative Veresterung mit Isoamylalkohol in Gegenwart eines Pankreas-Präparats: Groen, Arch. néerl. Physiol. 11, 178; C. 1926 II, 1955. Nach Injektion von Buttersäure wird wenig Milchsäure im Hundeharn ausgeschieden (Knoop, Jost, H. 130, 340). Natriumbutyrat vermehrt bei gleichzeitiger Verfütterung mit inakt. α-Amino-γ-phenyl-buttersäure die Bildung von rechtsdrehender α-Acetamino-γ-phenyl-buttersäure beim Hund (K., Bio. Z. 127, 208).

Schwellenwert des sauren Geschmacks und p_H der Lösung: Taylor, J. gen. Physiol. 11, 209; C. 1928 I, 2409. Riechschwelle: Tammann, Oelsen, Z. anorg. Ch. 172, 412. Bactericide Wirkung und hemmende Wirkung auf das Bakterienwachstum: Cheeseworth, Cooper, J. phys. Chem. 33, 720; Schöbl., Philippine J. Sci. 25, 129; C. 1925 I, 2699. Hemmende Wirkung auf das Pilzwachstum: Stokoe, Biochem. J. 22, 88; Debr., Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345; Bach, C. r. 179, 1087; Dunn, Ber. Physiol. 36, 614; C. 1926 II, 3097. Frühtreibende Wirkung auf Aesculus Hippocastanum und Tilia parvifolia: Boresch, Bio. Z. 170, 467. Einfluß sehr verdünnter Buttersäure-Lösungen auf das Pflanzenwachstum: Onodera, Ber. Ohara-Inst. 1 [1916], 85—109; C. 1920 III, 355. Insekticide Wirkung von Buttersäure: Yamamoto, Scient. Pap. Inst. phys. chem. Res. 3, 219; C. 1926 I, 693; Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884. Erregende Wirkung von Natriumbutyrat auf den überlebenden Kaninchendarm: Jendrassik, Tangl., Bio. Z. 159, 347. Wirkung auf Ratten beim Einbringen unter die Haut: Delore, Jeannin, C. r. Soc. Biol. 98, 702; C. 1928 I, 2963. Wirkung auf die Keratinsubstanzen der menschlichen Haut: Menschell, Ar. Pth. 110, 34; C. 1926 II, 50. Weitere ausführliche Angaben über das physiologische Verhalten von Buttersäure s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, Bd. I [Berlin und Leipzig 1930], S. 816.

Analytisches.

Buttersäure gibt mit einer verdünnten wäßrig-ammoniakalischen Phthalaldehyd-Lösung eine grünlichblaue Färbung, beim Kochen einen Niederschlag (Seekles, R. 43, 94). Mikrochemischer Nachweis als Kupfer(II)-butyrat, Silberbutyrat und Quecksilber(I)-butyrat: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 319. Die Abtrennung der Buttersäure von höheren gesättigten Fettsäuren (sicher von Palmitinsäure aufwärts) gelingt auf Grund der verschiedenen Löslichkeit der hydroxamsauren Natriumsalze in Alkohol (Lewis, Biochem. J. 20, 1358). Man oxydiert Buttersäure-Lösungen mit Chromschwefelsäure bei Zimmertemperatur (Baer, Bio. Z. 127, 281) oder bei Siedehitze (Fyleman,

J. Soc. chem. Ind. 43, 142 T; C. 1924 II, 2067) und titriert die nicht verbrauchte Chromsäure zurück. Konduktometrische Titration von Buttersäure in Natriumbutyrat mit Salzsäure: Bureau, C. r. 181, 43; von Butyraten mit Quecksilber(II)-perchlorat: Kolthoff, Fr. 61, 339, 343. Potentiometrische Titration von Buttersäure mit Natronlauge: Cox, Am. Soc. 47, 2141. Bestimmung auch neben niedrigen Fettsäuren durch Destillation aus wäßr. Lösung: Virtanen, Pulkki, Am. Soc. 50, 3143; Ann. Acad. Sci. fenn. [A] 29 [1927] [Komppa-Festschr.], Nr. 25, S. 11; vgl. Knetemann, R. 47, 958; durch Wasserdampfdestillation aus mit Magnesiumsulfat gesättigter schwefelsaurer Lösung: Olmsted, Whitaker, Duden, J. biol. Chem. 85, 109. Bestimmung neben Kohlendioxyd in alkoh. Lösung: Foreman, Biochem. J. 22, 227; neben Essigsäure durch Destillation aus wäßr. Lösung s. bei Essigsäure S. 112. Bestimmung in Gärlösungen (auch neben Essigsäure): Fyleman, J. Soc. chem. Ind. 43, 142 T; in biologischen Flüssigkeiten: Baer, Bio. Z. 127, 281; im Butterfett: Vi., Fr. 74, 321; vgl. Knetemann, R. 47, 959; in menschlichen Faeces: O., Mitarb., J. biol. Chem. 85, 115. Über Nachweis und Bestimmung von Buttersäure vgl. auch A. Bömer, O. Windhausen in A. Bömer, A. Juckenack, J. Tillmans. Handbuch der Lebensmittelchemie, Bd. 2, Tl. 2 [Berlin 1935], S. 1086; J. Schmidt in G. Klein, Handbuch der Pflanzenanalyse, Bd. 2 [Wien 1932], S. 384, 401.

Salze der Buttersäure (Butyrate).

NH₄C₄H₇O₂. D₄*: 0,974 (Biltz, Balz, Z. anorg. Ch. 170, 338). — LiC₄H₇O₂. Röntgenogramm (Debye-Scherrer-Aufnahmen): BECKER, JANCKE, Ph. Ch. 99, 270; HERZOG, JA., Z. ang. Ch. 34, 387, 420. — NaC₄H₇O₂. Adsorption aus wäßr. Lösung an Kieselsäure-Gel: Bartell, Fu, J. phys. Chem. 33, 682. Lösungsvermögen von wäßr. Natriumbutyrat-Lösungen für Borsäure und arsenige Säure bei 22°: Dhar, Z. anorg. Ch. 153, 329; für Nitrobenzol bei 18º: v. Euler, Z. El. Ch. 23, 195; für Isoamylalkohol und Athylacetat bei 18º: Traube, Schöning, Weber, B. 60, 1811; für Anilin bei 18°: Tr., Sch., W.; v. Eu. Dichte wäßr. Lösungen bei 20,5°: de García, An. Soc. quim. arg. 8 [1920], 383. Dichte 5% iger Lösungen von Natriumbutyrat in Wasser und in Methanol bei 250: Lifschitz, Beck, Koll.-Z. 26, 60, 61; C. 1920 III, 82. Oberflächenspannung wäßr. Natriumbutyrat-Lösungen bei 18°: Las-CARAY, Koll.-Z. 34, 75; C. 1924 I, 2413; v. Eu.; mit Nitrobenzol bzw. mit Anilin gesättigter wäßriger Lösungen bei 18° : v. Eu. Zur Bewegung auf Wasseroberflächen vgl. Zahn, R. 45, 790. Brechungsindices wäßr. Lösungen bei 20.5° : DE G. Brechungsindices 5%iger Lösungen in Wasser und in Methanol bei 25°: Li., Beck. Doppelbrechung einer rotierenden wäßrigen Lösung: Vorländer, Walter, Ph. Ch. 118, 15. Elektrische Leitfähigkeit von Natriumbutyrat-Lösungen in absol. Alkohol bei 15°, 25° und 35°: Lloyd, Pardee, Publ. Carnegie Inst. Nr. 260 [1918], S. 110. Potentialdifferenzen an der Trennung fläche zwischen Luft und wäßrigalkalischen Natriumbutyrat-Lösungen: FRUMKIN, Ph. Ch. 111, 194. Hydrolyse in wäßr. Lösung: Stocks, Oil Fat Ind. 4, 316; C. 1927 II, 2786. Anlagerung von Schwefeldioxyd: EPHRAIM, AELLIG, Helv. 6, 45. — KC₄H₇O₂. Röntgenreflexionsaufnahmen: PIPER, Soc. 1929, 236. Dichten und Brechungsindices wäßr. Lösungen bei 20°: DE G. Einfluß von Kaliumbutyrat auf die Geschwindigkeit der Elektroosmose von 0,002 n - Natronlauge durch ein Chrom(III)-chlorid-Diaphragma oder durch Glascapillaren: Choucroun, J. Chim. phys. 20. 423, 425. Anlagerung von Schwefeldioxyd an Kaliumbutyrat: Eph., Ae., Helv. 6, 46. — Rubidium butyrat. Addition von Schwefeldioxyd: Eph., Ae., Helv. 6, 49. — Caesiumbutyrat. Addition von Schwefeldioxyd: Eph., Ae., Helv. 6, 50. — Kupferbutyrat. Ultraviolettes Absorptionsspektrum der Lösungen in Chloroform und in Alkohol: French, Lowry, Pr. roy. Soc. [A] 106, 496; C. 1925 I, 601. — Basisches Berylliumbutyrat Be₄O(C₄H₇O₂)₆. B. Beim Kochen von Berylliumhydroxyd mit Buttersäure (Morgan, Astbury, Pr. roy. Soc. [A] 112, 443; C. 1926 II, 2266). Blättchen (aus Petroläther). F: 25° bis 27°. — Mg(C₄H₇O₂)₂. F: 275° (Maquennescher Block) (Iwanow, Bl. [4] 43, 447). — MgBr (C₄H₇O₂). B. Durch Einw. von Kohlendioxyd auf Propylmagnesiumbromid in Äther bei —20° (Iw., Bl. [4] 43, 443). Krystallpulver. Gibt bei der trocknen Destillation bei 330—340° Dipropylketon. — Ca(C₄H₇O₂)₂ + H₂O. Monoklin (Mügge, Z. Kr. 71, 74). Bei der trocknen Destillation von Calciumbutyrat zwischen 180° und 400° entsteht ein Gemisch 423, 425. Anlagerung von Schwefeldioxyd an Kaliumbutyrat: Eph., AE., Helv. 6, 46. der trocknen Destillation von Calciumbutyrat zwischen 1800 und 4000 entsteht ein Gemisch von flüchtigen Produkten, dessen zwischen 60° und 120° destillierender Anteil als Treibvon fluchtigen Produkten, dessen zwischen 60° und 120° destillerender Anteil als Treibstoff (Ketol) und dessen zwischen 100° und 150° übergehende Fraktion zur Herstellung von Firnis verwendet wird (Depasse, Bl. Assoc. Chimistes Sucr. Dist. 43, 411; C. 1926 II, 1710). — Strontium butyrat. Rhombisch (Mü., Z. Kr. 71, 76). — Ba(C₄H₇O₂)₂. Krystallisiert in Übereinstimmung mit den Befunden von Holzman (Ar. 236 [1898], 414) und im Gegensatz zu anderen Angaben (H 269) wasserfrei (Wing, Am. Soc. 49, 2859). Monoklin (Mü., Z. Kr. 71, 76). Löslichkeit in Wasser zwischen 0° (37 g in 100 cm³ Wasser) und 95° (48 g in 100 cm³ Wasser): Wing, Am. Soc. 49, 2860. Die Löslichkeitskurve hat ein Minimum bei des 200 (knapp 25 g in 100 cm³ Wasser) (Wing). bei ca. 30° (knapp 35 g in 100 cm³ Wasser) (Wing). — TlC₄H₇O₂. Sehwach doppelbrechende Blättchen (aus Alkohol + Aceton, Chloroform + Aceton oder Toluol). F: 182° (korr.) (WALTER, B. 59, 967). Verhalten des geschmolzenen Salzes beim Abkühlen: Wa. Sehr leicht löslich in

METHYLBUTYRAT

Wasser, Methanol, Alkohol, Chloroform und Essigester; schwer löslich in Aceton, Toluol und Xylol. Kryoskopisches Verhalten der binären Gemische mit n-valeriansaurem, capronsaurem und önanthsaurem Thallium: WA., B. 59, 970. — $\mathrm{SnCl_2(C_4H_7O_2)_2}$. B. Aus Zinn(IV)-chlorid und Buttersäure (Fichter, Herszbein, Helv. 11, 567). Krystalle. — Bleibutyrat. Röntgenreflexionsaufnahmen: Trillat, Ann. Physique [10], 6, 76. — Uranylbutyrate $\mathrm{UO_2(C_4H_7O_2)_2}$. Hellgelb, mikrokrystallinisch. Bräunt sich beim Erhitzen auf etwa 200°, gibt beim Glühen ein ziegelgelbes Oxyd. Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Ather und Aceton (A. Müller, Z. anorg. Ch. 109, 240, 245). — $\mathrm{UO_2(C_4H_7O_2)_2} + 2\mathrm{H_2O}$. Beständigkeit wäßr. Lösungen am Licht und in der Dunkelheit in Gegenwart und Abwesenheit von Luft: Courtois, Bl. [4] 33, 1779. — $\mathrm{UO_2(C_4H_7O_2)_2} + \mathrm{NaC_4H_7O_2}$. Nadeln (Barlot, Brenet, C. r. 174, 115).

H 269, Z. 22—23 v. o. streiche "Beryllium-Acetat-Butyrat $OBe_4(C_2H_3O_2)_2(C_4H_7O_2)_4$ (Tanatar, Kurowsky, \mathcal{H} . 39, 939; C. 1908 I, 102)".

Verbindung $C_{13}H_{22}O_8$ bzw. $(C_{13}H_{22}O_8)_x$ (H 270) wird von Seib (B. 60, 1393) als polymere Methacrylsäure erkannt.

Funktionelle Derivate der Buttersäure.

Buttersäuremethylester, Methylbutyrat C₅H₁₀O₂ = C₂H₅·CH₂·CO₂·CH₃ (H 270; E I 118). B. Beim allmählichen Erhitzen von Buttersäure mit Dimethylsulfat auf 200° (SIMON, C. r. 176, 585). — Kp₇₆₀: 102,65° (Lecat, Ann. Soc. scient. Bruxelles 45 I [1926], 291; R. 45, 624), 102,75° (Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 387; L., R. 46, 244). Dampfdruck zwischen —10° (3,55 mm) und der kritischen Temperatur: Y., Scient. Pr. roy. Dublin Soc. 12, 438. Kritische Temperatur: 281,3°; kritischer Druck: 26055 mm; kritisches Volumen: 3,331 cm³/g (Y., Scient. Pr. roy. Dublin Soc. 12, 438). D°; 0,9201; D°; 0,9093; D°; 0,8984; D°; 0,8773; D°; zwischen 0° und 280° (0,3812): Y., Scient. Pr. roy. Dublin Soc. 12, 438. Dichte des gesättigten Dampfes zwischen 100° und der kritischen Temperatur: Y., Scient. Pr. roy. Dublin Soc. 12, 438. Viscosität bei 25°: 0,00546 g/cmsec; bei 50°: 0,00374 g/cmsec; bei 70°: 0,00312 g/cmsec (Kurnakow, Z. anorg. Ch. 135, 111). Parachor: Sugden, Soc. 125, 1183. n°; 1,3870 (Munch, Am. Soc. 48, 997). Ultrarotes Absorptionsspektrum zwischen 0,6—14 µ: Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. Quellung von rohem und vulkanisiertem Kautschuk in Methylbutyrat: Salkind, B. 59, 525. Bei 21° lösen sich 1,559 g Methylbutyrat in 100 cm³ Wasser (Fühner, B. 57, 514). Siedepunkte und Zusammensetzung binärer azeotroper Gemische, die Methylbutyrat enthalten, s. in der untenstehenden Tabelle. D°; und Viscosität eines Gemisches mit Zinn(IV)-chlorid bei 25°, 50° und 70°: Kurnakow, Z. anorg. Ch. 135, 111. Refraktion einer 1% igen wäßrigen Lösung bei 25°: Munch, Am. Soc. 48, 997.

Azeotrope, Methylbutyrat enthaltende Gemische.

Komponente	Кр 760 0	Methyl- butyrat in Gew%	Komponente	Kp760	Methyl- butyrat in Gew%
Dichlorbrommethan 5) Nitromethan 2) Propyljodid 5) Butylbromid 5) n-Heptan 1) Allyljodid 7)	103,5 97,9 101,0 99,5 94,9 101,0	ca. 75 50 40 35 34 35	Äthylalkohol 4) Propylalkohol 6)	78,0 94,4 101,3 102 101,58	ca. 17 53 75 ca. 55 2,5

1) LECAT, Ann. Soc. scient. Bruzelles 45 I [1926], 291. — 2) L., Ann. Soc. scient. Bruzelles 47 I [1927], 110. — 3) L., Ann. Soc. scient. Bruzelles 47 I, 152. — 4) L., Ann. Soc. scient. Bruzelles 48 I [1928], 17. — 5) L., Ann. Soc. scient. Bruzelles 48 I, 116, 122. — 6) L., R. 45, 624. — 7) L., R. 46, 243, 244.

Geschwindigkeit der Verseifung von Methylbutyrat in Methanol-Wasser-Gemischen bei 30° durch Kaliumhydroxyd: Jones, McCombie, Scarborough, Soc. 123, 2695; durch Lithiumhydroxyd, Bariumhydroxyd und Tetramethylammoniumhydroxyd: J., McC., Sc., Soc. 125, 2593; in Alkohol-Wasser-Gemischen bei 40,5° in Abwesenheit oder bei Gegenwart von 0,1 n-Salzsäure: Berger, R. 43, 172; bei 70° durch Kaliumphenolat: Gyngell, Soc. 1928, 1785. Geschwindigkeit der Umsetzung mit Alkohol in Gegenwart von Chlorwasserstoff bei 30°: Dasannacharya, Sudborough, J. indian Inst. Sci. 4 [1921], 190, 200; mit l-Menthol in Gegenwart von Benzol und Chlorwasserstoff bei 30°: D., Am. Soc. 46, 1635.

Setzt man Methylbutyrat in äther. Lösung mit 2 Atomen Natrium um und fügt unter gleichzeitigem Durchleiten von Sauerstoff langsam Oxalester zu, so entsteht 3.6-Dioxy-2.5-diäthylbenzochinon-(1.4) (Kögl, Lang, B. 59, 913).

Hydrolyse von Methylbutyrat durch verschiedene Fermentpräparate aus Ricinusbohnen bei einem Anfangs-p_H von 7,0: Lorberblatt, Falk, Am. Soc. 48, 1661. Einfluß des p_H auf die Hydrolyse durch Ricinusbohnen-Lipase und Geschwindigkeit dieser Spaltung bei p_H 5,0: L., F., Am. Soc. 48, 1656. Aktivierung der Hydrolyse von Methylbutyrat mit Pankreaslipase in Gegenwart von Ammoniak-Ammoniumchlorid-Puffer von p_H 8,9 durch Calciumchlorid, Glycerin, Natriumoleat, Natriumglykocholat bzw. Albumin: WILLSTÄTTER, MEMMEN, H. 133, 235. Die Spaltung durch Pankreaslipase in Gegenwart von Ammoniak-Ammoniumchlorid-Puffer von p_H 8,9 sowie der Aktivatoren Calciumchlorid, Glycerin, Natriumoleat und Albumin ist der Substratkonzentration in der Lösung proportional (W., M., H. 133, 232). Geschwindigkeit der Hydrolyse durch verschiedene Pankreaslipasemengen: W., M., H. 133, 238. Spaltung von Methylbutyrat durch Leberlipasepräparate verschiedenen Reinheitsgrades und verschiedenen Ursprungs: W., M., H. 138, 226; Kraut, Rubenbauer, H. 173, 107; Bamann, Schmeller, H. 183, 151; durch die Lipase des Schweinemagens: W., B., H. 173, 20. Hydrolyse durch Extrakte aus Tumor- und Carcinom-Geweben sowie aus zahlreichen normalen menschlichen und tierischen Geweben unter verschiedenen Bedingungen: Noyes, Sugiura, Falk, J. biol. Chem. 55, 660; Am. Soc. 46, 1886; F., N., Su., J. biol. Chem. 59, 189, 214, 227; 62, 698; N., F., J. biol. Chem. 62, 688.

Buttersäureäthylester, Äthylbutyrat C₆H₁₂O₂ = C₂H₅·CH₂·CO₂·C₂H₅ (H 270; E I 119). B. Entsteht neben anderen Produkten, wenn man das Reaktionsprodukt aus Athylacetat und Kalium in Ather mit Athylbromid behandelt (Scheiber, Marhenkel, Bassanoff, B. 58, 1200). Neben Butyrylaceton bei der Kondensation von Athylacetat mit Dipropylketon in Gegenwart von Natrium, anfangs in der Kälte, zum Schluß unter Erwärmen auf dem Wasserbad (Morgan, Drew, Porter, B. 58, 338). Beim Leiten von Buttersäure und Alkohol über Zirkoniumdioxyd bei 240—250° (Mailhe, de Godon, Bl. [4] 29, 104). Entsteht aus Acetessigester bei der Hydrierung in Gegenwart von Platinschwarz ohne Lösungsmittel sowie in Äther oder Hexan (Faillebin, A.ch. [10] 4, 172, 176, 178), neben β-Oxy-buttersäure-äthylester bei der Hydrierung in Gegenwart von Platinschwarz in Alkohol sowie ohne Lösungsmittel in Gegenwart von kieselsäurehaltigem Platinschwarz (F., A.ch. [10] 4, 175, 179), neben anderen Produkten bei der Reduktion mit amalgamiertem Zink in mit Chlorwasserstoff gesättigtem Alkohol bei 15—25° (Steinkopf, Wolfram, A. 430, 117, 139). Entsteht auch bei der Hydrierung von 92 % Enolform enthaltendem Acetessigester in Gegenwart von Platinschwarz (F., A.ch. [10] 4, 478). — Geringe Mengen Äthylbutyrat erhält man bei Einw. eines Glycerinextraktes von Milchdrüsen auf Buttersäure und Alkohol bei pg 3,77—3,87 und 37° (Virtanen, H. 137, 9).

erhalt man dei Einw. eines Glycefinexterkies von Milcharusen auf Buttersaure und Aikonor bei p_H 3,77—3,87 und 37° (Virtanen, H. 137, 9).

Physikalische Eigenschaften. E: —97,9° (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₆₀: 120,0° (Lecat, R. 45, 624; Ann. Soc. scient. Bruxelles 47 I [1927], 24), 121,2° (Grimm, Ph. Ch. [A] 140, 326), 121,7±0,02° (Ti.); Kp_{715,0}: 118,9—119,5° (G.). D[±]₁: 0,88260; D[±]₂: 0,87185 (Tromp, R. 41, 282, 298). Viscosität bei 20°: 0,00663 g/cm sec; bei 40°: 0,00517 g/cm sec (Unkowskaja, Wolowa, Ж. 57, 114; C. 1926 I, 2646). Zu den Angaben über Dichte und Viscosität von Kurnakow, Perelmuter, Kanow (E I 2, 119) vgl. auch Kurnakow, Z. anorg. Ch. 135, 110. Parachor: Sugden, Soc. 125, 1184. Verdampfungswärme bei 118,90°: 74,72 cal/g (Mathews, Am. Soc. 48, 573). n[±]₁₅: 1,3948 (G.), 1,3957 (Tr., R. 41, 298); n[±]₁₅: 1,3939; n[±]₁₅: 1,3926 (G.); n[±]₁₅: 1,3895 (Munch, Am. Soc. 48, 997). Brechungsindices für Wellenlängen zwischen 645 mμ (1,3943) und 488 mμ (1,4006) bei 20°: Becker, Ann. Phys. [4] 76, 850. Ultrarotes Absorptionsspektrum zwischen 0,6 und 14 μ: Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II; zwischen 0,8 und 2,4 μ: Sappenfield, Phys. Rev. [2] 33, 40, 42; C. 1929 I, 1419; zwischen 1,03 und 2,34 μ: Smith, Boord, Am. Soc. 48, 1515. Ramanspektrum von flüssigem Äthylbutyrat: Dadieu, Kohlbausch, M. 52, 235, 399; Sber. Akad. Wien 138 [IIa], 56; Phys. Z. 30, 348 Tafel VIII; C. 1929 II, 697, 970; Ko., Phot. Korresp. 65, 162; C. 1929 II, 1508. Dipolmoment: Smyth, Am. Soc. 47, 1896. Elektrische Doppelbrechung für Wellenlängen zwischen 645 mμ und 488 mμ bei 20°: Becker, Ann. Phys. [4] 76, 852.

Phys. [4] 76, 852.

Bei 22° lösen sich in 100 cm³ Wasser 0,616 g (Fühner, B. 57, 514), 0,753 g (Lockemann, Ulrich, Desinf. 10, 104). Kryoskopisches Verhalten von Athylbutyrat in Zinn(IV)-bromid: Hieber, A. 439, 131. Athylbutyrat bildet azeotrope Gemische mit Isobutyljodid (Kp₇₆₀: 119°; 36% Athylbutyrat) (Legat, R. 46, 243), Isoamylbromid (Kp₇₆₀: 119,2°; ca. 48% Athylbutyrat) (Le, R. 45, 624), Athylborat (Kp₇₆₀: 117,55°; 39% Athylbutyrat) (Le, Ann. Soc. scient. Bruxelles 47 I [1927], 24), Butylalkohol (Kp₇₆₀: 115,7°; ca. 36% Athylbutyrat) (Le., Ann. Soc. scient. Bruxelles 48 I [1928], 17) und Chloraceton (Kp₇₆₀: 117,2°; 47% Athylbutyrat) (Le., Ann. Soc. scient. Bruxelles 47 I, 24). Fraktionierte Destillation von Gemischen mit Isoamylbromid: Grimm, Ph. Ch. [A] 140, 326. Viscosität von Gemischen mit Athylisobutyrat bei 20° und 40°: Unkowskaja, Wolowa, Ж. 57, 114; C. 1926 I, 2646. — Adsorption

ÄTHYLBUTYRAT

von flüssigem Athylbutyrat an Platin; Palmer, Pr.roy. Soc. [A] 115, 229; C. 1927 II, 1678. — Brechungsindices von Gemischen mit Wasser bei 25°: Munch, Am. Soc. 48, 997; mit Isoamylbromid bei 20°: G.

Chemisches Verhalten. Über den Einfluß verschiedener Aluminiumoxyd-Katalysatoren auf die Zersetzung von Äthylbutyrat bei 465° vgl. Adkins, Nissen, Am. Soc. 46, 141. Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Geschwindigkeit der Verseifung von Äthylbutyrat in wäßr. Lösung zwischen ph 2,9 und 6,4 bei Gegenwart von Salzsäure, Essigsäure bzw. Natriumacetat + Essigsäure bei 25°: Bolin, Z. anorg. Ch. 177, 227; in wäßrig-alkoholischer Lösung in Abwesenheit oder Gegenwart von 0,1n-Salzsäure bei 40,5°: Berger, R. 43, 169, 173. Das Stabilitätsmaximum in wäßr. Lösung bei 25° liegt bei ph ca. 5,65 (Bo., Z. anorg. Ch. 177, 228). Geschwindigkeit der Verseifung in Alkohol-Wasser-Gemischen durch Kalilauge bei 15° und 30°: McCombie, Scarborough, Settle, Soc. 121, 2310, 2312; durch sehr verd. Natronlauge bei 30°: Kindler, A. 452, 105; durch Kaliumphenolat bei 70°: Gyngell, Soc. 1928, 1785. Zur Hydrolyse von Äthylbutyrat durch Aminosäuren vgl. Bosman, Trans. roy. Soc. S. Africa 13, 245; Ber. Physiol. 37, 511. Hydrolyse durch Enzyme s. u. Über Addition von Bromwasserstoff bei niederer Temperatur vgl. McIntosh, Trans. roy. Soc. Canada [3] 19 III, 72; C. 1926 II, 16. Beim Leiten von Äthylbutyrat mit Ammoniak über Thoriumoxyd oder Aluminiumoxyd bei ca. 500° entstehen Butyronitril, Athylen und Wasserstoff (Mailhe, A. ch. [9] 13, 216). Bei Einw. von Alkalimetall auf Äthylbutyrat in Ather, Einleiten von Sauerstoff in das Reaktions-Gemisch und Zersetzen mit Wasser entsteht neben anderen Produkten Dibutyryl (Scheibler, Emden, A. 434, 283). Einw. von Kohlenoxyd auf das Reaktionsprodukt aus Athylbutyrat und Kalium in Ather: Scheil, Schmidt, B. 58, 1196.

Geschwindigkeit der Umsetzung mit Methanol in Gegenwart von Chlorwasserstoff

Geschwindigkeit der Umsetzung mit Methanol in Gegenwart von Chlorwasserstoff bei 30°: Dasannacharya, Sudborough, J. indian Inst. Sci. 4 [1921], 195, 200; mit l-Menthol in Gegenwart von Chlorwasserstoff bei 30°: D., Am. Soc. 46, 1635. Bei der Kondensation von Äthylbutyrat mit Methylpropylketon durch Natrium entsteht Dibutyrylmethan (Morgan, Thomason, Soc. 125, 756). Bei allmählichem Eintragen einer Mischung von Äthylbutyrat und Äthylformiat in eine äther. Suspension von Natrium erhält man α-Formyl-buttersäure-

äthylester (Ingold, Perren, Thorpe, Soc. 121, 1782).

Biochemisches Verhalten. Hydrolyse von Äthylbutyrat durch verschiedene Fermentpräparate aus Ricinusbohnen: Lorberblatt, Falk, Am. Soc. 48, 1661. Einfluß des pH auf die Hydrolyse durch Ricinusbohnen-Lipase: L., F., Am. Soc. 48, 1656; vgl. auch BARTON, Am. Soc. 42, 624. Spaltung durch Sojabohnen-Lipase: B., Am. Soc. 42, 627. Geschwindigkeit der Esterspaltung durch Knochenextrakte und Pankreasextrakte bei p_H 8.4 und 37°: Robison, Soames, *Biochem. J.* 18, 744; durch Pankreaslipase in mit Kohlendioxyd gesättigter Natriumdicarbonat-Lösung bei 30°: Murray, *Biochem. J.* 23, 294. Die Hydrolyse durch Pankreaslipase in alkalischer oder neutraler Lösung wird durch Aminosäuren beschleunigt (Dawson, *Biochem. J.* 21, 400). Beeinflussung der Spaltung durch Pankreaslipase durch p_H-Anderungen, Zusätze von Phosphaten, Gallensalzen, Proteinen oder Trypsin: PLATT, D., Biochem. J. 19, 862; vgl. Lyon, J. gen. Physiol. 10 [1927], 607; durch zugesetzte anorganische oder organische Verbindungen: M., Biochem. J. 23, 297. Die Hydrolyse durch Pankreaslipase in Gegenwart von Ammoniak-Ammoniumchlorid-Puffer von ph 8,9 sowie der Aktivatoren Calciumchlorid, Glycerin, Natriumoleat und Albumin ist der Substrat-konzentration in der Lösung proportional (WILLSTÄTTER, MEMMEN, H. 183, 232). Kinetik Robertston in der Losung proposional (Williams, Mediker, M. 1964, 202). Krietik der Spaltung von Äthylbutyrat bei konstant gehaltener Wasserstoffionen-Konzentration durch Leberlipase zwischen p_H 5,45 und p_H 10,25 bei 30°: Knaffl-Lenz, Medd. Vet.-Akad. Nobelinst. 6, Nr. 3, S. 6; Ar. Pth. 97, 248; C. 1923 III, 261, 399; vgl. Arrhenius, Medd. Vet.-Akad. Nobelinst. 6, Nr. 4, S. 1; C. 1924 I, 347; Z. ang. Ch. 36, 455; bei p_H 6,45 und 40° sowie bei p_H 8,60 bei 20°, 25°, 30° und 40°: Nogari, H. 152, 105, 110; vgl. Bamann, Schmeller, H. 183, 158 Anm. 1; durch Lipase aus Mildreliusen des Rindes bei p_H 6,45 und 8,70 bei 40°: Verseyere H. 197, 2 Kingtil, der Hudreliusen des Rindes bei p_H 6,45 und 8,70 bei 40°: Virtanen, H. 137, 2. Kinetik der Hydrolyse bei nicht konstant gehaltenem pu durch Leberlipase bei 30°: Knaffl-Lenz, Medd. Vet.-Akad. Nobelinst. 6, Nr. 3, S. 7; Ar. Pth. 97, 254; durch Milchdrüsenlipase bei 40°: V., H. 137, 6. Natriumbutyrat hemmt die Hydrolyse von Athylbutyrat durch Leberlipase bei saurer Reaktion (K.-L., Medd. Vet.-Akad. Nobelinst. 6, Nr. 3, S. 10; Ar. Pth. 97, 256). Hydrolyse durch Extrakte aus Tumor- und Carcinom-Geweben sowie aus zahlreichen normalen menschlichen und tierischen Geweben unter verschiedenen Bedingungen: NOYES, SUGIURA, FALK, J. biol. Chem. 55, 660; Am. Soc. 46, 1886; F., N., Su., J. biol. Chem. 59, 189, 214, 227; 62, 698; N., F., J. biol. Chem. 62, 688.

Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London

Verwendung als technisches Lösungsmittel: TH. H. DURRANS, Solvents, 4. Aufl. [London 1938], S. 143, 229; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 197. — Bestimmung im Gemisch mit Athylacetat auf Grund der Verseifungsgeschwindig-

keit in Barytwasser bei 25°: SMITH, Ph. Ch. 95, 88.

Uber eine Kalium verbindung aus Athylbutyrat vgl. Scheibler, Voss, B. 53, 401; Sch., D. R. P. 346698; C. 1922 II, 1435; Frdl. 13, 1086.

Buttersäure - $[\beta$ - chlor - β - nitro - äthylester], $[\beta$ - Chlor - β - nitro - äthyl] - butyrat $C_6H_{16}O_4NCl = C_2H_5 \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CHCl \cdot NO_2$. B. Aus β -Chlor - β -nitro - äthylalkohol und Butyrylchlorid in Chloroform (E. Schmidt, Rutz, Trénel, B. 61, 475). — Flüssigkeit. Kp₉: 107° (korr.). D⁵⁰₄: 1,2379. n_p^{50} : 1,4418. Fast unlöslich in Wasser.

Buttersäurepropylester, Propylbutyrat C₇H₁₄O₂ = C₂H₅· CH₂· CO₃· CH₂· C₂H₅ (H 271; E I 120). B. Beim Leiten von Buttersäure und Propylalkohol über Zirkoniumoxyd bei 230—240° (Mailhe, de Godon, Bl. [4] 29, 105). Beim langsamen Erwärmen von Butterpersäure in Gegenwart von Buttersäure und konz. Schwefelsäure (Fichter, Reeb, Helv. 6, 456). — E: —95,2° (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₆₀: 142,8° (Lecat, R. 45, 622; Ann. Soc. scient. Bruxelles 45 I [1926], 291), 143,8 ± 0,05° (T.). Parachor: Sugden, Soc. 125, 1184. n₁²⁵: 1,3980 (Munch, Am. Soc. 48, 997). Bei 17° (T.). Parachor: Sugden, Soc. 125, 1184. n₁²⁵: 1,3980 (Munch, Am. Soc. 48, 997). Bei 17° (Gemische mit 1.1.2.2-Tetrachlor äthan (Kp₇₆₀: 150,2°; 34% Propylbutyrat) (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 122), Isoamyljodid (Kp₇₆₀: ca. 142,3°) (Le., Ann. Soc. scient. Bruxelles 48 I, 115), Glykol (Kp₇₆₀: 142,7°; ca. 97% Propylbutyrat) (Le., Ann. Soc. scient. Bruxelles 48 I, 18), Chloressigsäureäthylester (Kp₇₆₀: 141,7°; 53% Propylbutyrat) (Le., Ann. Soc. scient. Bruxelles 45 I [1926], 291) und Methyllactat (Kp₇₆₀: 137,5°; 54% Propylbutyrat) (Le., R. 45, 622). Die Oberflächenspannung einer wäßr. Lösung nimmt mit der Zeit langsam zu (Bigelow, Washburn, J. phys. Chem. 32, 336). Refraktion einer 1% igen wäßrigen Lösung bei 25°: Munch, Am. Soc. 48, 997.

Geschwindigkeit der Verseifung von Propylbutyrat durch verd. Salzsäure bei 25°: Smith, Paterson, Soc. 1926, 941; durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: Gyngell, Soc. 1928, 1785. Beim Leiten von Propylbutyrat mit Ammoniak über Thoriumoxyd oder Aluminiumoxyd bei ca. 500° erhält man Butyronitril und wenig Buttersäureamid (Mailhe, A. ch. [9] 13, 217). Hydrolyse durch Enzympräparate aus der Ricinusbohne: Lorberblatt, Falk, Am. Soc. 48, 1662. Verwendung als technisches Lösungsmittel: H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 197.

Verwendung in der Riechstoffindustrie: Burger, Riechstoffind. 1926, 131.

Buttersäure - $[\beta.\beta'$ - dichlor -isopropylester], $[\beta.\beta'$ - Dichlor -isopropyl] - butyrat, Glycerin- $\alpha.\alpha'$ -dichlorhydrin-butyrat, β -Butyro- α -dichlorhydrin $C_7H_{12}O_2Cl_2=C_2H_6$: $CH_2\cdot CO_2\cdot CH(CH_2Cl)_2$ (H 271). B. Bei Einw. von α -Dichlorhydrin auf Butyrylchlorid unter Ausschluß von Feuchtigkeit (Whitey, Soc. 1926, 1460). Durch längeres Erhitzen von Epichlorhydrin mit überschüssigem Butyrylchlorid auf 75° unter Ausschluß von Feuchtigkeit (Wh.). — Riecht fruchtartig. Kp: 223,5°. D_2^{∞} : 1,1792. n_1^{∞} : 1,4540.

Buttersäurebutylester, Butylbutyrst $C_8H_{16}O_2 = C_2H_{\underline{5}} \cdot CH_{\underline{2}} \cdot CO_2 \cdot [CH_{\underline{2}}]_3 \cdot CH_{\underline{3}}$ (H 271; E I 120). B. Neben anderen Produkten beim Erhitzen von Butylalkohol mit Natriumchlorat in schwefelsaurer Lösung bei Gegenwart von Vanadiumpentoxyd (MILAS, Am. Soc. 50, 497). Neben Butyraldehyd bei der Oxydation von Butylalkohol mit verd. Chromschwefelsäure bei Siedetemperatur (Weizmann, Garrard, Soc. 117, 328). In geringer Menge bei mehrtägiger Belichtung von Dibutyläther mit diffusem Licht bei 70—75° (CLOVER, Am. Soc. 46, 423). Neben anderen Produkten beim Behandeln von Dibutyläther mit Ozon bei 0° und Reduzieren des mit Eiswasser ausgeschüttelten Reaktionsgemisches mit Zinkstaub in essigsaurer Lösung (F. G. FISCHER, A. 476, 246), bei Einw. von Magnesium-chlorid-butylat, Magnesium-bromid-butylat oder Magnesium-jodid-butylat auf Butyraldehyd in Ather und Zersetzen des Reaktionsprodukts mit Eiswasser (GRIGNARD, FLUCHAIRE, A. ch. [10], 9, 18, 43), beim Kochen von Butyraldehyd mit der Aluminiumverbindung des Geraniols (VERLEY, Bl. [4] 37, 539) sowie bei der Oxydation von [x.x-Dichlor-butyraldehyd]-dibutylacetal mit Chromsaure in essignaurer Lösung (Gault, Guillemet, C.r. 175, 368). — E: —91,5° (Lievens, Bl. Soc. chim. Belg. 33, 126; C. 1924 II, 1328; Timmermans, Bl. Soc. chim. Belg. **36**, 506; C. 1928 I, 27). Kp_{760} : 166,60 \pm 0,01° (L.), 166,4 \pm 0,1° (T., Bl, Soc. chim. Belg. 31, 391; C. 1923 III, 1136), 166.25° (T., Bl, Soc. chim. Belg. 36, 506); Kp_{20} : 69—70° (Penfold, Grant, Perfum. essent. Oil Rec. 17, 253; J. Pr. Soc. N. S. Wales 59, 350). D_4° : 0,8861; D_i^{15} : 0,8712 (L.). n_{α}^{15} : 1,4064; n_{β}^{15} : 1,4087; n_{β}^{15} : 1,4136; n_{γ}^{15} : 1,4179 (L.); n_{β}^{15} : 1,4045 (Munch, Am. Soc. 48, 997). Ultrarotes Absorptionsspektrum zwischen 0,6 und 13,5 μ: Weniger.
 Phys. Rev. [1] 31 [1910], 420 Tafel II. Lösungsvermögen für Wasser bei verschiedenen Temperaturen: Bridgman, Ind. Eng. Chem. 20 [1928], 185. Refraktion einer 1 % igen wäßrigen Lösung bei 25°: Munch, Am. Soc. 48, 997.
 Geschwindigkeit der Verseifung von Butvlbutyrat durch wäßrig-alkoholische Natronlauge: Bridgman, Ind. Eng. Chem. 20, 185. Bei der Kondensation von Butvlbutyrat mit Mathylisthylleton, durch Natrium in Athor entsteht. Propingalbutyraturgethen. (Morgan)

Geschwindigkeit der Verseifung von Butvlbutyrat durch wäßrig-alkoholische Natronlauge: Bridgman, Ind. Eng. Chem. 20, 185. Bei der Kondensation von Butvlbutyrat mit Methyläthylketon durch Natrium in Ather entsteht Propionylbutyrylmethan (Morgan, Drew, Soc. 125, 741); analog erhält man bei der Kondensation mit Methylpropylketon Dibutyrylmethan (Mo., Thomason, Soc. 125, 756). — Keimtötende Wirkung: Penfold, Grant, Perfum. essent. Oil Rec. 17, 253; J. Pr. Soc. N. S. Wales 59, 350; C. 1926 II, 2458; 1927 II, 754. — Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 144, 229; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 198; vgl. a. DAVIDSON, *Ind. Eng. Chem.* 18 [1926], 671. Verwendung in der Riechstoffindustrie: BURGER, *Riechstoffind.* 1926, 131.

Buttersäure - sek. - butylester, sek. - Butyl - butyrat $C_8H_{16}O_2=C_2H_5\cdot CH_2\cdot CO_2\cdot CH(CH_3)\cdot C_2H_5$. Geschwindigkeit der Verseifung durch Kaliumphenolat in Alkohol-Wasser-Gemischen bei 70°: GYNGELL, Soc. 1928, 1785.

Buttersäureisobutylester, Isobutylbutyrat $C_8H_{16}O_3 = C_2H_5 \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CH(CH_9)_2$ (H 271; E I 120). B. Beim Leiten von Buttersäure und Isobutylalkohol über Zirkoniumoxyd bei 270—280° (Mailhe, de Godon, Bl. [4] 29, 105). — Kp₇₈₀: 156,8° (Lecat, R. 46, 244; Ann. Soc. scient. Bruxelles 48 I [1928], 17). Parachor: Sugden, Soc. 125, 1184. n. 5: 1,4005 (Munch, Am. Soc. 48, 997). Über die Ultrarot-Absorption vgl. Lecomte, C.r. 178, 1699. Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht in flüssigem Isobutylbutyrat: Martin, J. phys. Chem. 24, 487, 489. Isobutylbutyrat bildet azeotrope Gemische mit Bromoform (Kp₇₈₀: 157,7°; 65% Isobutylbutyrat) (L., R. 46, 244), 1.1.2.2-Tetrachlor-āthan (Kp₇₈₀: 158,0°; ca. 12% Isobutylbutyrat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 122), n-Hexylalkohol (Kp₇₈₀: ca. 155°; 60% Isobutylbutyrat) (L., Ann. Soc. scient. Bruxelles 48 I, 54) und Glykol (Kp₇₈₀: 152,5°; ca. 88% Isobutylbutyrat) (L., Ann. Soc. scient. Bruxelles 48 I, 18). Refraktion einer 1% igen wäßrigen Lösung bei 25°: Munch, Am. Soc. 48, 997. — Beim Leiten von Isobutylbutyrat und Ammoniak über Thoriumdioxyd oder Aluminiumoxyd bei 480—500° entsteht Butyronitril (Mailhe, A. ch. [9] 13, 217). — Verwendung als technisches Lösungsmittel: H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 198. Verwendung in der Riechstoffindustrie: Burger, Riechstoffind. 1926, 131.

Buttersäure-n-amylester, n-Amyl-butyrat $C_9H_{18}O_2=C_2H_5\cdot CH_3\cdot CO_3\cdot [CH_3]_4\cdot CH_3$ (H 271). E: -73.2° ; Kp: 186,35 \pm 0,1° (Lievens, Bl. Soc. chim. Belg. 33, 126; C. 1924 II. 1328). Abhängigkeit des Siedepunkts vom Druck: L. D_4° : 0,8864; D_4° : 0,8713. n_α° : 1,4118; n_2° : 1,4139; n_3° : 1,4191; n_3° : 1,4232.

Buttersäure-akt-amylester, akt-Amyl-butyrat $C_9H_{18}O_2=C_2H_5\cdot CH_2\cdot CO_2\cdot CH_2\cdot CH_3\cdot C_2H_5$ (H 271). Verwendung in der Riechstoffindustrie: Burger, Riechstoffind. 1926, 131.

Buttersäure-[4.4.4-trichlor-2-methyl-butyl-(3)-ester], Trichlormethyl-isopropyl-carbinol-butyrat $C_9H_{16}O_2Cl_3=C_2H_5\cdot CH_2\cdot CO_2\cdot CH(CCl_3)\cdot CH(CH_3)_2$. B. Aus Trichlormethyl-isopropyl-carbinol und Buttersäureanhydrid bei 130—135° (Howard, Am. Soc. 49, 1069). — Kp_{685} : 176—177°.

Buttersäureisoamylester, Isoamylbutyrat C₉H₁₈O₂ = C₂H₅·CH₂·CO₃·CH₄·CH₅·CH₅·CH₅·CH₆·CH₅·CH₆·CH₅·CH₇·CH₈·C

Azeotrope, Isoamylbutyrat enthaltende Gemische.

Komponente	Kp760	Isoamyl- butyrat in Gew%	Komponente	Kp760	Isoamyl- butyrat in Gew%
d-Limonen 1)	ca. 176,5 174,9? 185,0 191,6 167,9	ca. 45 ca. 10 ca. 42 ca. 17 75,5	Benzaldehyd ²) Acetamid ³)	ca. 176,3 174,75 176,1 173,2 ca. 175,9	62 88,2 30 ca. 35 ca. 25

¹⁾ I.RCAT, Ann. Soc. scient. Bruxelles 45 I [1926], 175. — 2) L., Ann. Soc. scient. Bruxelles 48 I [1928], 15, 19. — 3) L., Ann. Soc. scient. Bruxelles 48 I, 116. — 4) L., R. 45, 622. — 5) L., R. 46, 244. — 6) Die Azeotropie ist nicht sicher nachgewiesen.

Buttersäure - [1.1.1 - trichlor - hexyl - (2) - ester], Trichlormethyl - butyl - carbinol-butyrat $C_{10}H_{17}O_2Cl_3 = C_2H_5 \cdot CH_2 \cdot CO_3 \cdot CH(CCl_3) \cdot [CH_2]_3 \cdot CH_3$. B. Aus Trichlormethyl-butyl-carbinol und Buttersäureanhydrid bei 130—135° (Howard, Am. Soc. 49, 1069). — Kp₆₈₄: 177—178°.

Buttersäure-n-octylester, n-Octylbutyrat $C_{12}H_{24}O_2 = C_2H_5 \cdot CH_2 \cdot CO_2 \cdot [CH_2]_7 \cdot CH_3$ (H 272). V. Im äther. Öl von Heracleum villosum Fisch. (RUTOWSKI, WINOGRADOWA, Trudy chim.-farm. Inst. 17, 124; C. 1927 II, 1311).

Buttersäure-octyl-(2)-ester, Methyl-n-hexyl-carbinol-butyrat, sek.-n-Octyl-butyrat $C_{19}H_{24}O_2 = C_2H_5 \cdot CH_2 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3 \cdot [E I 121)$. Vgl. noch Senderens, Aboulenc, A. ch. [9] 18, 158.

Buttersäure-n-dodecylester, n-Dodecylbutyrat $C_{16}H_{28}O_3=C_2H_5 \cdot CH_2 \cdot CO_2 \cdot [CH_3]_{11} \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine Mischung von Buttersäure und n-Dodecylalkohol (Rheinboldt, König, Otten, A. 473, 258). — Kp₁₈: 177—178°.

Buttersäurevinylester, Vinylbutyrat $C_8H_{10}O_9 = C_2H_5 \cdot CH_2 \cdot CO_2 \cdot CH \cdot CH_3$. B. Beim Leiten von Acetylen durch eine Suspension von Quecksilbersulfat in Buttersäure bei 80—90° (Konsort. f. elektrochem. Ind., D. R. P. 483780; Frdl. 16, 684).

Buttersäure - [d - hepten - (1) - yl - (3) - ester], [d - Butylvinylcarbinol] - butyrat $C_{11}H_{30}O_2=C_2H_5\cdot CH_2\cdot CO_2\cdot CH(CH:CH_2)\cdot [CH_2]_3\cdot CH_3$. B. Bei Einw. von d-Butylvinylcarbinol auf Buttersäureanhydrid (Kenyon, Snellgrove, Soc. 127, 1177). — Kp₇₄₀: 198° bis 200°. D_*^{m} : 1,8696. n_*^{m} : 1,4241; Brechungsindices bei 20° zwischen 670,8 m μ (1,4221) und 435,9 m μ (1,4263): K., S., Soc. 127, 1180. α_*^{m} : -2,50° (unverdünnt; l = 10 cm); Rotations-dispersion der unverdünnten Substanz bei 20°: K., S., Soc. 127, 1178.

Buttersäurecitronellylester, Citronellylbutyrat $C_{14}H_{16}O_3 = C_8H_5 \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH$

Buttersäurerhodinylester, Rhodinylbutyrat $C_{14}H_{36}O_{3}$, Gemisch aus $C_{2}H_{5}\cdot CH_{2}\cdot CO_{3}\cdot CH_{3}\cdot CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CH_{3}\cdot CH_{2}\cdot CH_{3}\cdot CH_{2}\cdot CH_{2$

Buttersäuregeranylester, Geranylbutyrat $C_{14}H_{24}O_2 = C_2H_5 \cdot CH_2 \cdot CO_3 \cdot CH_4 \cdot CH$: $C(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH$

Buttersäurenerylester, Nerylbutyrat $C_{14}H_{24}O_2 = C_2H_5 \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CH \cdot C(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot$

Buttersäurelinalylester, Linalylbutyrat $C_{14}H_{24}O_2 = C_2H_5 \cdot CH_2 \cdot CO_2 \cdot C(CH_3)(CH_2) \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot C$

 $\begin{array}{lll} \gamma\text{-}Chlor\text{-}propylenglykol\text{-}dibutyrat, Glycerin\text{-}\alpha\text{-}chlorhydrin\text{-}dibutyrat, Dibutyro-}\\ \alpha\text{-}chlorhydrin\ C_{11}H_{19}O_4Cl &= C_2H_5\cdot CH_2\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot CH_2\cdot C_2H_5)\cdot CH_2Cl. \ \textit{B. Durch 1-stündiges} \ Erhitzen \ von\ \alpha\cdot Monochlorhydrin\ mit\ 2\ Mol\ Buttersäureanhydrid\ auf\ dem \end{array}$

Wasserbade (ABDERHALDEN, WEIL, Fermentf. 4 [1921], 85). — Kp₄: 127°. — Geschwindigkeit der Verseifung durch 0,1 n - Natriumdicarbonat - Lösung bei 38° und Beschleunigung dieser Reaktion durch Pankreaslipase: A., W., Fermentf. 4, 80.

- β-Chlor-β-nitro-trimethylenglykol-monobutyrat, 2-Chlor-2-nitro-1-oxy-3-butyryloxy-propan $C_7H_{12}O_5NCl=C_2H_5\cdot CH_2\cdot CO\cdot O\cdot CH_2\cdot CCl(NO_2)\cdot CH_2\cdot OH$. B. Durch Schütteln einer äther. Lösung von [β-Chlor-β-nitro-äthyl]-butyrat mit Formaldehyd-Lösung in Gegenwart von Natriumbutyrat (SCHMIDT, RUTZ, TRÉNEL, B. 61, 476). Flüssigkeit. Kp_{0.2}: 117—118° (korr.). D_4^{∞} : 1,2921. n_D^{∞} : 1,4611. Fast unlöslich in Wasser.
- β-Chlor-β-nitro-trimethylenglykol-acetat-butyrat, 2-Chlor-2-nitro-1-acetoxy-3-butyryloxy-propan $C_9H_{14}O_4NCl=C_2H_5\cdot CH_2\cdot CO\cdot O\cdot CH_2\cdot CCl(NO_2)\cdot CH_2\cdot O\cdot CO\cdot CH_3\cdot B$. Durch Einw. von Butyrylchlorid auf β-Chlor-β-nitro-trimethylenglykol-monoacetat in siedendem Chloroform (SCHMIDT, RUTZ, TRENEL, B. 61, 477). Flüssigkeit. Kp_{0.05}: 106° bis 107° (korr.). D_4^{m} : 1,2499. n_5^{m} : 1,4490. Fast unlöslich in Wasser.
- 2-Åthyl-hexandiol-(1.3)-monobutyrat, β-Åthyl-α-propyl-trimethylenglykol-monobutyrat C₁₉H₂₄O₃ = C₄H₅·CH₂·CO·O·CH₂·CH(C₂H₅)·CH(OH)·CH₃·C₂H₅ oder C₂H₅·CH₂·CO·O·CH(CH₂·C₂H₅)·CH(C₂H₅)·CH₂·OH. B. Neben anderen Produkten bei Einw. von Magnesium-jodid-butylat auf Butyraldehyd in Ather (Grignard, Fluchaire, A. ch. [10] 9, 18, 43). Kp₇₆₀: 255°; Kp₁₅: 148—149°. D₄¹⁵: 0,9473. n₂¹⁵: 1,4452.
- Glycerin-α-butyrat, α-Monobutyrin C,H₁₄O₄ = C₂H₅·CH₂·CO·O·CH₂·CH(OH)·CH₃·OH (H 273; E I 121). D¹⁸: 1,129 (Vorländer, Walter, Ph. Ch. 118, 10). Viscosität bei 20°: V., W. Doppelbrechung der rotierenden Flüssigkeit: V., W. Spaltung von Monobutyrin durch Enzympräparate aus Aspergillus niger unter verschiedenen Bedingungen und Geschwindigkeit der Hydrolyse durch ein Aspergillus niger-Trockenpräparat bei 39°: Schenker, Bio. Z. 120, 186. Geschwindigkeit der Hydrolyse in Dicarbonat enthaltender Ringer-Lösung bei Einw. von Bac. subtilis: Nicolai. Bio. Z. 179, 85; bei Einw. von keimenden Kiefernsamen: N., Bio. Z. 174, 375; in Phosphatpuffer-Lösung von p_H 7,85 bei Einw. von Tabakextrakt: Andreadis, Bio. Z. 211, 394. Spaltung von α-Monobutyrin durch Extrakte aus menschlicher Placenta: Maeda, Bio. Z. 143, 357; durch Extrakt aus Bienenmagen: Sarin, Bio. Z. 135, 67; durch getrocknete graue Hirnsubstanz: Slowtzoff, Ber. Physiol. 16, 374; C. 1923 III, 260; durch Hühnereigelb und Hühnereiweiß: Koga, Bio. Z. 141, 433, 439; durch verschiedene Gewebeschnitte: Rona, Lasnitzki, Bio. Z. 173, 208. Kinetik der Spaltung durch Leberlipase bei konstant gehaltener Wasserstoffionen-Konzentration zwischen p_H 5,65 und p_H 10,26 bei 30°: Knafft-Lenz, Medd. Vet.-Akad. Nobelinst. 6, Nr. 3, S. 8, 13; Ar. Pth. 97, 255, 257; C. 1923 III, 261, 399; vgl. Arrhenius, Medd. Vet.-Akad. Nobelinst. 6, Nr. 4, S. 17; C. 1924 I, 348. Anwendung als Lösungsmittel im Zeugdruck: Höchster Farbw., D. R. P. 391007; C. 1924 I, 2012; Frdl. 14, 1124.

Glycerintributyrat, Tributyrin, Butyrin C₁₅H₂₆O₆ = C₂H₅·CH₂·CO·O·CH₂·CH(O·CO·CH₂·C₂H₅)·CH₂·O·CO·CH₂·C₂H₅ (H 273; E I 121). B. Bei 8—10-stündigem Kochen von Glycerin mit 6 Tln. Buttersäure unter ständigem Abdestillieren des während der Reaktion gebildeten Wassers (Newman, Trikojus, Harker, J. Pr. Soc. N. S. Wales 59, 299; C. 1927 II, 802). Beim Kochen von Buttersäure mit Glycerin in Gegenwart von Schwefelsäure oder Aluminiumsulfat (Semderens, Aboulenc, A. ch. [9] 18, 175). Bei längerem Erhitzen von Buttersäure mit Glycerin in Gegenwart von aus Naphthalin, Ölsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchells Reagens auf 100° (Ozaki, Bio. Z. 177, 159). Bei 9-stündigem Erhitzen von 1 Mol Glycerin mit 5.5 Mol Natriumbutyrat und 1 Mol Phosphorpentachlorid auf 200° (N., T., H., J. Pr. Soc. N. S. Wales 59, 296). Beim Kochen von Glycerin-α.α'-dibutyrat (H 2, 273) mit überschüssiger Buttersäure unter ständiger Entfernung des entstehenden Wassers (N., T., H., J. Pr. Soc. N. S. Wales 59, 298). — Reinigung von Tributyrin durch häufiges Ausschütteln mit Wasser: Willstätter, Memmen, H. 129, 5.

Flüssigkeit von charakteristischem, nicht unangenehmem Geruch und bitterem Geschmack; verdickt sich bei —35° und wird bei —75° sehr zäh, ohne zu erstarren (Weatherby, McIlvaine, Matlin, Am. Soc. 47, 2252; vgl. dagegen Loskit, Ph. Ch. 134, 137). Erstartt beim Abkühlen mit flüssiger Luft glasig (Timmermans, Bl. Soc. chim. Belg. 31, 392; C. 1923 III, 1137). Über Krystallisationsvermögen bei tiefen Temperaturen vgl. L. Kp₁₅: ca. 190° (Wea, McI., Ma.); Kp₂₆: 196—200° (Newman, Trikojus, Harker, J. Pr. Soc. N. S. Wales 59, 296); Kp₂₉: 235° (Ti.); Kp₂₆: 305—309° (Wea., McI., Ma.); Kp₂₆: 315° (N., Tr., H.). Der H 2, 273 angegebene Siedepunkt 287—288° (Guth, Z. Biol. 44, 95) ist vermutlich an nicht ganz reiner Substanz bestimmt (Wea., McI., Ma.). D²⁰: 1,0350 (N., Tr., H.); D³⁰: 1,032 (Vorländer, Walter, Ph. Ch. 118, 10); D³¹: 1,027 (Wea., McI., Ma.). Viscosität von Tributyrin zwischen —40° (5,38 g/cmsec) und —78° (5670 g/cmsec): Tammann, Hesse, Z. anorg. Ch. 156, 250. Viscosität eines Handelspräparates bei 20°: V., Wa., Ph. Ch. 118, 10. Verbrennungswärme bei konstantem Volumen: 1941,3 kcal/Mol (Karrer, B. 55, 2858 Anm. 1). n²⁰: 1,4359 (N., Tr., H.). Doppelbrechung der rotierenden Flüssigkeit: V., Wa., Ph. Ch. 118, 10; Phys. Z. 25, 572; C. 1925 I, 617. — Löslichkeit in Benzol zwischen

+3,8° und —35°: Loskit, Ph. Ch. 134, 145. Diffusion von Tributyrin durch Kollodium-Membrane: Fujita, Bio. Z. 170, 19. Oberflächenspannung gesättigter wäßriger Lösungen zwischen 0° und 80°: Wwedensky, Dobrowitzky, Bio. Z. 138, 448. Adsorption aus wäßr. Lösung an Talkum, Kaolin, Osmosil und Blutkohle: Michaelis, Rona, Bio. Z. 102, 279; an verschiedene Adsorptionskohlen: Umetsu, Bio. Z. 135, 477. Ausbreitung monomolekularer Schichten auf Wasser und auf 0,001n- und 0,1n-Salzsäure: Gobter, Grendel, Bio. Z. 192, 442, 446. Tributyrin beschleunigt die Sedimentation von Kaolin in Wasser (Rona, György, Bio. Z. 105, 135).

Tributyrin zersetzt sich beim Leiten der Dämpfe über einen Kupfer-Aluminiumoxyd-Katalysator bei 550° unter Bildung von Buttersäure, Acrolein und Wasser (MAILHE, A. ch. [9] 17, 319). Geschwindigkeit der Verseifung von Tributyrin durch 0,1n-Natriumdicarbonat-Lösung bei 38°: ABDERHALDEN, WEIL, Fermentf. 4 [1921], 80. Bei Einw. einer siedenden methylalkoholischen Lösung von Hydroxylamin-hydrochlorid auf Tributyrin in Gegenwart von Natriumäthylat-Lösung entsteht vermutlich Butyrhydroxamsäure (Lewis, Biochem. J. 20, 1358).

Spaltung von Tributyrin durch Takaesterase: Willstätter, Kumagawa, H. 146, 152, 154; durch verschiedene Hyphomyceten: v. Mallinckrodt-Hauft, Zbl. Bakt. Parasienk. [I] 103, 77; C. 1927 II, 1041; durch Spermatolipase und Blastolipase aus Ricinusamen Wi., Waldschmidt-Leitz, H. 134, 223; durch Hühnereigelb und Hühnereiweiß: Koga, Bio. Z. 141, 434, 440; durch Lipasepräparate aus dem Magen verschiedener Tiere: Wi., Memmen, H. 183, 251; Wi., Haurowitz, M., H. 140, 207, 218; H., Petrou, H. 144, 70; Wi., Bamann, H. 173, 19; durch Leberlipase: Rona, Pavlovió, Bio. Z. 130, 226; Wi., M., H. 128, 224; R., Ammon, Bio. Z. 181, 72. Kinetik der Spaltung durch Leberlipase bei konstant gehaltener Wasserstoffionen-Konzentration zwischen pg. 5,65 und 10,26 bei 30°: Knaffl-Lenz, Medd. Vet.-Akad. Nobelinst. 6, Nr. 3, S. 14; Ar. Pth. 97, 258; C. 1923 III, 261, 399; vgl. Arrhenius, Medd. Vet.-Akad. Nobelinst. 6, Nr. 4, S. 17; C. 1924 II, 348. Hydrolyse durch Pankreassaft und Pankreassaft und Pankreassaft en Abderhalden, Weil., Fermentf, 4 [1921], 80; Rona, Pavlovió, Bio. Z. 134, 109; Willstätter, Memmen, H. 129, 12; 138, 232, 254; Wwedensky, Dobrowitzky, Bio. Z. 188, 451; vgl. Lyon, J. gen. Physiol. 10 [1927], 610; durch getrocknete graue Hirnsubstanz: Slowtzoff, Ber. Physiol. 16, 374; C. 1923 III, 260; durch Nierenextrakt: R., Haas, Bio. Z. 141, 222; durch Hautextrakte: Yamasaki, Bio. Z. 147, 207; Klopstock, Bio. Z. 153, 492; Wohldemuth, Nakamura, Bio. Z. 176, 218; durch Fruchtwasser: Maeda, Bio. Z. 153, 492; Wohldemuth, Nakamura, Bio. Z. 176, 218; durch Placentaextrakt: Mae., Bio. Z. 143, 358; durch Placentablut und mütterliches Blut: Mae., Bio. Z. 143, 360; 144, 5; durch Serum: Brinkman, v. d. Velde, Bio. Z. 155, 189; Wwedensky, Dobrowitzky, Bio. Z. 188, 454; di Macco, Ber. Physiol. 41, 123; C. 1927 II, 2552; durch verschiedene Gewebeschnitte: Rona, Lasnitzki, Bio. Z. 1773, 208. Ausführliche Angaben über lipatische Spaltungen, Einfluß des ph. der Temperatur sowie Aktivierungs- und Hemmungserscheinungen s. bei C. Oppenheimer, R. Kuhn

Methylenglykol-äthyläther-butyrat, Äthoxymethyl-butyrat $C_7H_{14}O_2 = C_9H_8$. $CH_2 \cdot CO \cdot C \cdot CH_2 \cdot O \cdot C_2H_5$. B. Durch Einw. von Chlormethyl-äthyl-äther auf Natriumbutyrat anfangs unter Kühlung, dann auf dem Wasserbad (FARREN, Mitarb., Am. Soc. 47, 2422). — Kp: 160—162°. D_1^o : 0,9816; D_2^o : 0,9656. n_1^o : 1,4050.

Methylenglykol-isopropyläther-butyrat, Isopropyloxymethyl-butyrat $C_8H_{16}O_8=C_2H_5\cdot CH_2\cdot CO\cdot O\cdot CH_2\cdot O\cdot CH(CH_3)_2$. B. Analog der vorangehenden Verbindung. — Kp: 164° bis 166°; D_1^o : 0,9617; D_2^o : 0,9432; n_1^o : 1,4001 (Farren, Mitarb., Am. Soc. 47, 2422).

Methylenglykol - sek. - butyläther - butyrat, sek. - Butyloxymethyl - butyrat $C_0H_{16}O_3=C_2H_5\cdot CH_2\cdot CO\cdot O\cdot CH_3\cdot O\cdot CH(CH_3)\cdot C_2H_5$. B. Analog den vorangehenden Verbindungen. — Kp: 177—178°; D_4^0 : 0,9492; D_4^{00} : 0,9283; n_D^{00} : 1,4085 (Farren, Mitarb., Am. Soc. 47, 2422).

Buttersäure-chlormethylester, Chlormethyl-butyrat $C_5H_9O_3Cl=C_2H_5\cdot CH_2\cdot CO\cdot O\cdot CH_2Cl$ (H 273). $Kp_{738}\colon 148-149^o$ (Ulich, Adams, Am. Soc. 48, 663).

Buttersäure-[α -chlor-äthylester], [α -Chlor-äthyl]-butyrat $C_6H_{11}O_2Cl = C_2H_5 \cdot CH_6 \cdot CO \cdot O \cdot CHCl \cdot CH_3$ (H 274). B. Aus Acetaldehyd und Butyrylchlorid in Gegenwart von Zink-chlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 48, 662). — Kp₇₄₀: 150—153°.

Buttersäure-[α -chlor-isobutyl-ester], [α -Chlor-isobutyl]-butyrat $C_8H_{18}O_2Cl = C_2H_5\cdot CH_2\cdot CO\cdot O\cdot CHCl\cdot CH(CH_3)_2$. B. Analog der vorangehenden Verbindung. — Kp₁₆: 74—76° (ULICH, ADAMS, Am. Soc. 43, 663).

Buttersëure-[α -chlor-n-heptyl-ester], [α -Chlor-n-heptyl]-butyrat $C_{11}H_{a1}O_{a}Cl = C_{a}H_{a}\cdot CH_{a}\cdot CO\cdot O\cdot CHCl\cdot [CH_{a}]_{a}\cdot CH_{a}$. B. Analog den vorangehenden Verbindungen. — Kp₁₅: 120—122° (ULICH, ADAMS, Am. Soc. 48, 663).

Essigsäure - buttersäure - anhydrid $C_5H_{10}O_3 = C_2H_5 \cdot CH_2 \cdot CO \cdot CO \cdot CO \cdot CH_3$ (H 274). B. Durch Einw. von Acetylchlorid auf trocknes Natriumbutyrat (AUTENRIETH, THOMAE, B. 57, 429).

Buttersäureanhydrid $C_8H_{14}O_3=\dot{C}_2H_5\cdot CH_2\cdot CO\cdot CO\cdot CH_2\cdot C_2H_5$ (H 274; E I 122). B. Zur Bildung aus Buttersäure und Acetanhydrid nach Autenrieth (B. 34, 177) vgl. van der Haar, R. 47, 323. Entsteht bei der Einw. von Siliciumtetrachlorid auf siedende Buttersäure (Konsortium f. elektrochem. Ind., D. R. P. 394730; C. 1924 II, 1133; Frdl. 14, 257). Beim Kochen von 2 Mol Buttersäure oder besser von 2 Mol Natriumbutyrat mit 1 Mol Oxalylchorid in Benzol (Adams, Ulich, Am. Soc. 42, 607). Beim Erhitzen von butyrylschwefelsaurem Natrium im Vakuum, zuletzt auf 220° (van Peski, R. 40, 743). Bei Einw. von Natriumbutyrat auf Butyrylschwefelsäure (van P.). Beim Mischen von Butyrylchlorid und Silberbutyrat sowie beim Erhitzen von Butyrylchlorid mit Bleinitrat auf dem Wasserbad (Whitey, Soc. 1926, 1462).

F: —75,0°; Kp₇₈₆: 198,2° (TIMMERMANS, MATTAAR, Bl. Soc. chim. Belg. 30, 215; C. 1921 III, 1266). D₄st: 0,9687 (TROMP, R. 41, 299). n₅^{st,s}: 1,4124 (TR.); n₅^{st,s}: 1,4143 (Whitby, Soc. 1926, 1463). — Liefert beim Kochen mit Tellurtetrachlorid in Chloroform eine saure Verbindung, die ein gelbes Silbersalz und ein grünes Kupfersalz bildet und mit Brom ein Additionsprodukt gibt (MORGAN, KELLETT, Soc. 1926, 1088).

Butyrylhydroperoxyd, Perbuttersäure, Butterpersäure $C_4H_6O_3=C_2H_6\cdot CH_2\cdot CO\cdot O\cdot OH$ (E I 122). Liefert bei der Explosion in einer Stahlbombe bei 150° wenig Propylen, viel Methan, Kohlendioxyd, Kohlenoxyd und Kohle (Fichter, Reeb, Helv. 6, 456). Bei langsamem Erwärmen mit Buttersäure und konz. Schwefelsäure entstehen Propylbutyrat und Kohlendioxyd.

Schwefelsäure - buttersäure - anhydrid, Butyrylschwefelsäure $C_4H_8O_5S=C_2H_5$: $CH_2 \cdot CO \cdot O \cdot SO_2 \cdot OH$ (E I 122). B. Aus Buttersäure und Schwefeltrioxyd unterhalb 0° (van Peski, R. 40, 738). Das Natriumsalz entsteht beim Eintragen von rauchender Schwefelsäure (66,3% SO_3) in ein Gemisch aus Buttersäure, Buttersäureanhydrid und Natriumbutyrat bei $8-10^{\circ}$ (v. P., R. 40, 742). — Nicht rein erhalten. — Bei tiefer Temperatur beständig. Beim Erwärmen des aus Buttersäure und Schwefeltrioxyd erhaltenen Rohprodukts auf 70—110° wird α -Sulfo-buttersäure (Syst. Nr. 330) gebildet, daneben entstehen unter starker Kohlendioxyd-Entwicklung $\alpha.\alpha'$ -Disulfo-butyron (Syst. Nr. 329), wenig α -Sulfo-butyron (nicht rein erhalten) und andere Produkte. Gibt mit Isoamylalkohol unterhalb 0° Schwefelsäuremonoisoamylester und wenig Buttersäureisoamylester. Bei der Einw. auf Buttersäure und Phenol in der Kälte entsteht Phenylbutyrat. Liefert mit 2.4.6-Tribrom-phenol unterhalb 0° [2.4.6-Tribrom-phenyl]-butyrat, mit 2.4.6-Tribrom-anilin unter gleichen Bedingungen Buttersäure-[2.4.6-tribrom-anilid]. Reagiert mit wasserfreiem Natriumbutyrat unter Bildung von Buttersäureanhydrid. — Natriumsalz. Krystalle. Nicht rein erhalten. Geht beim Erhitzen im Vakuum, zuletzt auf 220°, in Buttersäureanhydrid über. Zersetzung durch Wasser: v. P., R. 40, 745. Gibt mit Anilin in wäßr. Lösung Buttersäureanilid.

Buttersäurechlorid, Butyrylchlorid C₄H₇OCl = C₂H₅·CH₂·COCl (H 274; E I 122). B. Bei der Einw. von Siliciumtetrachlorid auf Buttersäure in Xylol bei 50° (Montonna, Am. Soc. 49, 2115). Durch Erhitzen von Buttersäure und Benzotrichlorid in Gegenwart von wenig Zinkchlorid auf 70—80° (Rabcewicz-Zubkowski, Roczniki Chem. 9, 528; C. 1929 II, 2767). — Darst. Man läßt 35,2 g Buttersäure langsam unter Kühlung zu 56 g Thionylchlorid zutropfen, erwärmt das Reaktionsgemisch ½ Stde. auf dem Wasserbad und destilliert (Read, Org. Synth. 14 [1934], 90; vgl. Helferich, Schaefer, Org. Synth., Coll. Vol. I [1932], 142; Deutsche Ausgabe, S.141). — F: —89,0° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 216; C. 1921 III, 1266), —89,3° (T., Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp₇₆₀: 101,8° (T., Bl. Soc. chim. Belg. 36, 507). — Butyrylchlorid liefert beim Erhitzen mit 2 Mol Phosphorpentachlorid im Rohr auf 160° ein untrennbares, überwiegend aus Dichlorbutyrylchlorid bestehendes Gemisch von Chlorierungsprodukten (v. Braun, Jostes, Münch, A. 453, 147). Bei Einw. von α-Dichlorhydrin oder beim Erhitzen mit Epichlorhydrin auf 75° unter Ausschluß von Feuchtigkeit entsteht [β.β΄-Dichlor-isopropyl]-butyrak (Whitery, Soc. 1926, 1460). Butyrylchlorid liefert mit Propylzinkjodid Dipropylketon, mit Isopropylzinkjodid Propylisopropylketon (Recsei, B. 60, 1420). Umsetzung mit Phenylmagnesiumbromid führt zu 1.1-Diphenyl-buten-(1) (Gilman, Fothergill, Parker, R. 48, 750).

Buttersäurebromid, Butyrylbromid C₄H₇OBr = C₂H₅·CH₂·COBr (H 275; E I 122).

B. Beim Kochen von Buttersäure mit 2 Mol Oxalylbromid (Adams, Ulich, Am. Soc. 42, 609).

Buttersäureamid, Butyramid C₄H₉ON = C₂H₅·CH₂·CO·NH₂ (H 275; E I 122).

B. Zur Bildung aus Ammoniumbutyrat nach Hofmann (B. 15, 982) vgl. Yathiraja.

Sudborough, J. indian Inst. Sci. 8 A, 56; C. 1926 I, 70. Entsteht neben viel Butyronitril

beim Leiten von Propylbutyrat mit Ammoniak über Thoriumoxyd oder Aluminiumoxyd bei

ca. 500° (Mailhe, A. ch. [9] 13, 217). — Nadeln (aus Chloroform + Petroläther). F: 115,5°

bis 116,0° (Y., S.). Verteilung zwischen Wasser und Äther bei 20—22°: Collander,

BÄRLUND, Comment. biol. Helsingjors 2, Nr. 9, S. 9. Dichte von Lösungen in Alkohol bei 30°: BURROWS, J. Pr. Soc. N. S. Wales 53 [1919], 86. Oberflächenspannung wäßr. Lösungen bei 20°: C., Bä. — Gibt beim Leiten über fein verteiltes Nickel bei 400—410° Butyronitril, Methan, Ammoniak, Kohlenoxyd, Kohlendioxyd und Wasserstoff (Mailer, Bl. [4] 35, 364). Geschwindigkeit der Verseifung durch verd. Salzsäure und verd. Natronlauge bei 100°: Fiske, J. biol. Chem. 55, 219; durch verd. Natronlauge und verd. Schwefelsäure bei 100° sowie durch verd. Kalilauge bei 25°: Y., S., J. indian Inst. Sci. 8 A, 56, 62, 66, 69. Bei der Einw. von Dischwefeldichlorid auf Butyramid in siedendem Benzol entsteht N.N'-Thiobis-butyramid (s. unten) (Naik, Soc. 119, 1167, 1168). — Hydrolyse im Organismus von hungernden Katzen: Fi., J. biol. Chem. 55, 197, 201. — Bestimmung im Harn: Fi., J. biol.

Chem. 55, 215.

NaC₄H₈ON. B. Aus Butyramid und Natrium in siedendem, trockenem und thiophenfreiem Benzol in Stickstoffatmosphäre (Parts, B. 60, 2521).

N-Chlor-butyramid $C_4H_8ONCl = C_9H_5 \cdot CH_2 \cdot CO \cdot NHCl$. B. Beim Einleiten von Chlor in eine gesättigte wäßrige Lösung von Butyramid (ROBERTS, Soc. 123, 2781). — Gelbes Öl.

Butyronitril, Propyleyanid C₄H₇N = C₂H₅·CH₂·CN (H 275; E I 123), B. Durch Kochen von Propylbromid mit Kaliumcyanid in 85%igem Alkohol, zweckmäßig in Gegenwart von Kupfer(I)-cyanid oder im ultravioletten Licht (Rosenmund, Luxat, Tedemann, B. 56, 1956). Beim Erhitzen von p-Toluolsulfonsäure-propylester mit Kaliumcyanid (Rodionow, Bl. [4] 39, 324). Neben anderen Produkten beim Leiten von Butylalkoholdampf und Ammoniak über Thoriumdioxyd oder mit Nickeloxyd imprägniertes Silicagel bei 350° bis 420° (Brown, Reid, J. phys. Chem. 28, 1072, 1074), von Buttersäureestern und Ammoniak über Aluminiumoxyd oder Thoriumoxyd bei etwa 500° (Mailhe, A. ch. [9] 13, 216; Baerts, Bl. Soc. chim. Belg. 31, 421; C. 1923 III, 124), von Butyramid über fein verteiltes Nickel bei 400—410° (M., Bl. [4] 35, 364) oder von Dibutylamin oder Tributylamin über Nickel bei 360—380° (M., A. ch. [9] 13, 193).

F: —111,9°: Kp₇₆₀: 117,60° (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). D₄^(A,2): 0,7951 (v. Auwers, B. 60, 2138); D₂^(C): 0,7904 (Harkins, Clark, Roberts, Am. Soc. 42, 704). Oberflächenspannung bei 20°: 28,06 dyn/cm (H., Cl., Rob.). Parachor: Sugden, Soc. 125, 1186. Verbrennungswärme bei konstantem Volumen: 613,1 kcal/Mol (Lemoult, C. r. 148 [1909], 1604; vgl. Swietoslawski, Popow, J. Chim. phys. 22, 397). $n_{\alpha}^{(C)}$: 1,3839; $n_{\dot{\alpha}}^{(C)}$: 1,3859; $n_{\dot{\beta}}^{(C)}$: 1,3906; $n_{\dot{\gamma}}^{(C)}$: 1,3946 (v. Au.). Dipolmoment μ ·10¹⁸: 3,46 (Lösung in Benzol) (Werner, Ph. Ch. [B] 4, 382). Ausbreitung von Butyronitril auf Wasser-oberflächen bei 20°: H., Feldman, Am. Soc. 44, 2670. Grenzflächenspannung zwischen Butyronitril und Wasser bei 20°: H., Cl., Rob. Dichte und Dielektr.-Konst. einiger Lösungen in Benzol bei 20°: W.

Bei der Hydrierung in Gegenwart von kolloidaler Platin-Lösung unter 3 Atm. Überdruck bei Zimmertemperatur entstehen Dibutylamin und Tributylamin (Skita, Keil, M. 53/54, 759). Geschwindigkeit der Addition von Schwefelwasserstoff in absol. Alkohol bei Gegenwart von Natriumäthylat bei 60,6° und 1,75 Atm. Druck: Kindler, A. 452, 118. Butyronitril liefert beim Kochen mit Hydrazin in wenig Alkohol eine feste, in Wasser sehr leicht lösliche Masse, die Spuren eines Dihydrotetrazins enthält (E. Müller, Herrdegen, J. pr. [2] 102, 124, 135). Beim Behandeln mit Äthylmagnesiumbromid in Äther entstehen Diäthylpropylearbinol, Äthylpropylketon, das Imid des α-Butyryl-butyronitrils (Syst. Nr. 281) Kyanpropin (Syst. Nr. 3565) sowie eine Verbindung vom Schmelzpunkt 152—153° (Baerts, Bl. Soc. chim. Belg. 31, 422). Bei der Einw. von Phenylmagnesiumbromid in Äther erhält man Butyrophenon und ein höher siedendes Produkt, dessen Semicarbazon bei ca. 180° schmilzt (Barr, Bl. Soc. chim. Belg. 31, 409; C. 1923 III, 124).

Butyramidin $C_1H_{10}N_2=C_2H_3\cdot CH_2\cdot C(NH_2):NH$ (H 276; E I 123). — NaC4H2N2. B. Aus Butyronitril und Natriumamid in flüssigem Ammoniak (CORNELL, Am. Soc. 50, 3315). Krystalle. Löslich in flüssigem Ammoniak bei Zimmertemperatur. — KC4H2N2. B. Analog dem Natriumsalz (C.). Krystalle. Löslich in flüssigem Ammoniak bei Zimmertemperatur. Liefert beim Erhitzen mit Kaliumamid Propan und Kaliumeyanamid.

Butyrhydroxamsäure $C_4H_5O_5N=C_5H_5\cdot CH_2\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Form (H 276; E I 123). B. Das Natriumsalz entsteht wahrscheinlich bei Einw. von siedender methylalkoholischer Hydroxylaminhydrochlorid-Lösung auf Tributyrin in Gegenwart von Natriumäthylat (Lewis, Biochem. J. 20, 1358). — Nicht isoliert. Leicht zersetzlich. — Natriumsalz. Leicht löslich in einem Gemisch von Alkohol und Methanol.

N.N'-Thio-bis-butyramid, "N-Sulfido-bis-butyramid" $C_8H_{16}O_9N_8S = (C_8H_8 \cdot CO \cdot NH)_8S$. B. Bei der Einw. von Dischwefeldichlorid auf Butyramid in siedendem trocknem Benzol (Naik, Soc. 119, 1168). — Krystalle (aus Benzol). F: 175°. Sehr schwerlöslich in Benzol.

Substitutionsprodukte der Buttersäure.

α-Chlor-buttersäure $C_4H_7O_2Cl = C_2H_5$ ·CHCl·CO₂H (H 276; E I 123). Wird durch Wasserstoff bei Gegenwart von Palladium-Bariumsulfat in freiem Zustand in alkoh. Lösung nur teilweise, in Form des Calciumsalzes in wäßrig-alkoholischer Lösung vollständig in Buttersäure übergeführt (Paal, Schiedewitz, B. 62, 1937, 1938). — AgC₄H₆O₂Cl. Krystalle (aus Wasser). Löslich in warmem Wasser, schwer löslich in kaltem Wasser. — Ca(C₄H₆O₂Cl)₂ +aq. Nadeln (aus verd. Alkohol). Löslich in Wasser und Alkohol.

Amid, α -Chlor-butyramid $C_4H_8ONCl = C_9H_5\cdot CHCl\cdot CO\cdot NH_2$. B. Aus α -Chlor-buttersäure-chlorid und verd. Ammoniak unterhalb 0° (de Booseré, Bl. Soc. chim. Belg. 82, 44; C. 1923 III, 1163). Beim Behandeln von α -Chlor-buttersäure-methylester mit konz. Ammoniak (B.). — Nadeln. F: 81°. Leicht löslich in Wasser, Alkohol und Äther, unlöslich in Petroläther. — Bei der Einw. von Thionylchlorid entsteht α -Chlor-butyronitril.

Nitril, α -Chlor-butyronitril $C_4H_5NCl=C_2H_5\cdot CHCl\cdot CN$. B. Aus α -Chlor-butyramid durch Einw. von Thionylchlorid (de Booseré, Bl. Soc. chim. Belg. 32, 45; C. 1923 III, 1164). — Kp: 142—143°. — Bei Einw. von 1 Mol Äthylmagnesiumbromid entstehen die beiden isomeren Crotonsäurenitrile, ein ungesättigter Kohlenwasserstoff und andere Produkte; beim Behandeln mit 2 Mol Äthylmagnesiumbromid werden neben anderen Produkten $\alpha.\alpha.\beta$ -Triäthyl-äthylenimin (Syst. Nr. 3044) und wenig Crotonsäurenitril gebildet.

β -Chlor-buttersäure $C_4H_7O_3Cl = CH_3 \cdot CHCl \cdot CH_2 \cdot CO_2H$.

- a) Rechtsdrehende β -Chlor-buttersäure (H 277; E I 123). Zur Konfiguration vgl. Levene, Haller, Sci. 69, 47; C. 1929 I, 1211. B. Aus rechtsdrehendem 4-Chlorpenten-(1) durch Ozonisierung in Chloroform und nachfolgende Oxydation mit Bromwasser (L., H., J. biol. Chem. 81, 431). Kp_{0,85}: 67—70°; [α]₅: +11,5° (Äther; c = 10), +21,5° (Wasser; c = 11) (L., H., J. biol. Chem. 81, 431). Natriumsalz. [α]₅: +15,7° (Wasser; c = 7) (L., H., J. biol. Chem. 81, 432).
- b) Inakt. β-Chlor-buttersäure C₄H₇O₂Cl = CH₃·CHCl·CH₂·CO₂H (H 277; E I 123). B. Neben β-Oxy-buttersäure beim Kochen von Crotonsäure mit 20 % iger Salzsäure (KAUFLER, M. 53/54, 124). Kp₂₀: 110—113°; D₁^{10,10}: 1,1861; n₂^{10,10}: 1,4399; n₂^{10,10}: 1,4421; n₃^{10,10}: 1,4483; n₁^{10,10}: 1,4533 (v. Auwers, A. 421, 37). Wird durch Wasserstoff bei Gegenwart von Palladium-Bariumsulfat sowohl in freiem Zustand als auch in Form des Calciumsalzes in alkoholischer bzw. wäßrig-alkoholischer Lösung nur zu einem geringen Teil in Buttersäure übergeführt (Paal, Schiedenstrig, B. 62, 1937, 1939). Silbersalz AgC₄H₆O₂Cl. Krystalliner, allmählich vergilbender Niederschlag. Sehr schwer löslich in Wasser (P., Sch.). Zerfällt langsam in Crotonsäure und Silberchlorid. Calciumsalz. Wurde nicht in festem Zustand erhalten; zerfällt beim Einengen seiner wäßrig-alkoholischen Lösung in Crotonsäure und Calciumchlorid (P., Sch.).

Äthylester $C_0H_{11}O_2Cl = CH_3 \cdot CHCl \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 277; E I 124). B. Neben anderen Produkten beim Einleiten von Chlorwasserstoff in eine absolut-alkoholische Lösung von Acetessigester bei Gegenwart von amalgamiertem Zink bei 15—25° (STEINKOPF, WOLFRAM, A. 430, 141).

Chlorid, inakt. β -Chlor-butyrylchlorid $C_4H_6OCl_2=CH_3\cdot CHCl\cdot CH_2\cdot COCl$ (H 278). B. Durch Einw. von Thionylchlorid auf β -Chlor-buttersäure (v. Auwers, A. 421, 37; Abder-Halden, Fleischmann, Fermentf. 10, 203; C. 1929 I, 2318). — Leichtflüssiges Ol. Kp₁₂: 40—41° (A., F.); Kp₂₁: 51—53° (v. Au.); Kp₄₀: 65—67° (A., F.). $D_4^{\infty,\infty}$: 1,2163; D_4^{n} : 1,2192 (v. Au.). $n_{\alpha}^{\infty,\infty}$: 1,4483; $n_{\alpha}^{\infty,\infty}$: 1,4509; $n_{\beta}^{\infty,\infty}$: 1,4634; $n_{\alpha}^{\infty,0}$: 1,4481; $n_{\alpha}^{\infty,0}$: 1,4573; $n_{\gamma}^{\infty,0}$: 1,4629 (v. Au.).

Nitril, inakt. β-Chlor-butyronitril C₄H₆NCl = CH₃·CHCl·CH₂·CN (H 278). B. Aus Vinylessigsäurenitril beim Einleiten von Chlorwasserstoff (BRUYLANTS, Bl. Soc. chim. Belg. 31, 179; C. 1923 I, 37). — Kp₇₆₃: 174—175°; D₂₀: 1,078 (Dewael, Bl. Soc. chim. Belg. 33, 505; C. 1925 I, 359). — Liefert beim Kochen mit konz. Kalilauge Crotonsäure (D.). Gibt beim allmählichen Hinzufügen von gepulvertem Kaliumhydroxyd oder beim Behandeln mit Pyridin die beiden isomeren Crotonsäurenitrile (Br.). Bei Einw. von Athylmagnesiumbromid entstehen neben anderen Produkten die beiden isomeren Crotonsäurenitrile, trimeres Crotonsäurenitril vom Schmelzpunkt 173—174° und ein viscoses polymeres Crotonsäurenitril (DE BOOSERÉ, Bl. Soc. chim. Belg. 32, 39; C. 1923 III, 1163; Br., Mathus, Bl. Acad. Belgique [5] 11, 637; C. 1926 I, 3145).

γ-Chlor-buttersäure C₄H₇O₂Cl = CH₂Cl·CH₂·CH₂·CO₂H (H 278; E I 124). F: 15° bis 16°; Kp₂: 93,5—94° (Lipp, Caspers, B. 58, 1012).

Äthylester C₈H₁₁O₈Cl = CH₂Cl·CH₂·CH₂·CO₃·C₂H₅ (H 278; E I 124). Kp₁₀: 64—66⁶ (Conant, Kirner, Am. Soc. 46, 244). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 50⁶: C., K., Am. Soc. 46, 249.

Chlorid, γ -Chlor-butyrylchlorid $C_4H_6OCl_2=CH_2Cl\cdot CH_2\cdot CH_3\cdot COCl$ (H 278; E I 124). B. Aus γ -Chlor-buttersäure und Thionylchlorid in Petroläther (Lipp, Caspers, B. 58, 1013). — Kp₁₁: 59—60°.

Nitril, y-Chlor-butyronitril C₄H₆NCl = CH₂Cl·CH₂·CH₂·CN (H 278, E I 124). Zur Darstellung aus Trimethylenchlorobromid nach GABRIEL (B. 23, 1771; 42, 1252, Anm. 2) vgl. Conant, Segur, Kirner, Am. Soc. 46, 1884; Cloke, Am. Soc. 51, 1180; Allen, Org. Synth. Coll. Vol. I [1932], 150; deutsche Ausgabe, S. 149. — Kp₇: 85° (Co., Sz., K.); Kp₁₈: 78—80° (Cl.); Kp₂₈: 93—96° (A.). — Gibt bei wiederholter langsamer Destillation die beiden isomeren Crotonsaurenitrile (BRUYLANTS, Bl. Soc. chim. Belg. 31, 177; C. 1928 I, 37). Gehtbei der Behandlung mit gepulvertem Kaliumhydroxyd bei ca. 85° in Cyclopropran-carbon-säurenitril über (Nicolet, Sattler, Am. Soc. 49, 2068; vgl auch Bruy., Stassens, Bl. Acad. Belgique [5] 7, 704; C. 1922 I, 1229). Bei der Einw. von Natriumäthylat-Lösung auf dem Wasserbad entstehen γ-Äthoxy-butyronitril, Cyclopropran-carbonsäureamid und Cyclopropran-carbonsäurenitril (Breckfott, Bl. Soc. chim. Belg. 33, 490; C. 1925 I, 388). Liefert beim Kondensieren mit Resorcin unter der Einw. von Chlorwasserstoff und Zinkchlorid in Ather und Erhitzen des Reaktionsgemisches mit Wasser γ-[2.4-Dioxy-phenyl]buttersäure (LANGLEY, ADAMS, Am. Soc. 44, 2328). Bei der Einw. von Athylmagnesiumbromid in Äther erhält man Äthyleyelopropylketon, Äthyl-[γ-chlor-propyl]-keton, 2-Äthylpyrrolin, und geringe Mengen Äthylamylketon(?) sowie geringe Mengen einer Verbindung vom Schmelzpunkt 215° [vielleicht polymeres Cyclopropancarbonsäurenitril] (DE BOOSERÉ, Bl. Soc. chim. Belg. 32, 27; C. 1923 III, 1161; CLOKE, Am. Soc. 51, 1174). Bei der Umsetzung mit Phenylmagnesiumbromid in Äther ohne Erwärmen erhält man die Brom-magnesium-Verbindung des [γ-Chlor-propyl]-phenyl-ketimids; bei 2-stündigem Erwärmen des Reaktionsgemisches und Zersetzung mit Eis und Ammoniumchlorid wird $[\gamma$ -Chlor-propyl]-phenyl-ketimid gebildet; bei längerem Erwärmen von γ -Chlor-butyronitril und Phenylmagnesiumbromid mit Ather sowie mit Ather + Eisessig und Behandeln des in Ather suspendierten Reaktionsproduktes mit trocknem Ammoniak entsteht 2-Phenyl- Δ^2 -pyrrolin (Cloke, Am. Soc. 51, 1181; vgl. Lipp, Seeles, B. 62, 2457); gießt man das aus Phenylmagnesiumbromid und γ -Chlor-butyronitril in Ather in der Kälte erhaltene Reaktionsprodukt in Eis und Salzsäure und läßt längere Zeit bei Zimmertemperatur stehen, so erhält man [γ-Chlor-propyl]-phenyl-keton (Conant, Segur, Kirner, Am. Soc. 46, 1884). γ-Chlor-butyronitril gibt beim Erhitzen mit Chinolin oder besser mit Pyridin auf dem Dampfbad Vinylessigsäurenitril (BRUYLANTS, Bl. Acad. Belgique [5] 6, 481; C. 1921 III, 30).

α.α-Dichlor-buttersaure $C_4H_6O_2Cl_2=C_2H_5\cdot CCl_2\cdot CO_2H$. B. Aus dem Anilid durch Verseifen mit Salzsäure bei 140° (v. Braun, Jostes, Münch, A. 453, 136). — Aromatisch riechende Flüssigkeit. Kp_{14} : 107—110°. — Unbeständig. Spaltet beim Aufbewahren Chlorwasserstoff ab.

Äthylester $C_0H_{10}O_2Cl_2=C_2H_5\cdot CCl_2\cdot CO_2\cdot C_2H_5$. Kp₁₆: 71° (v. Braun, Jostes, Münch, A. 453, 136).

Chlorid, $\alpha.\alpha$ -Dichlor-butyrylchlorid $C_4H_5OCl_3=C_2H_5\cdot CCl_2\cdot COCl$. Kp_{16} : 48—50° (v. Braun, Jostes, Münch, A. 458, 136).

Amid, $\alpha.\alpha$ -Dichlor-butyramid $C_4H_7ONCl_2 = C_2H_5 \cdot CCl_2 \cdot CONH_2$. Blättchen (aus Äther + Petroläther). F: 51° (v. Braun, Jostes, Münch, A. 453, 136).

α.β-Dichlor-buttersäure-äthylester $C_6H_{10}O_2Cl_2=CH_3\cdot CHCl\cdot CHCl\cdot CO_2\cdot C_2H_6$ (H 279).

B. Neben anderen Produkten bei der Einw. von 1 Mol Kaliumcyanid auf Butyrchloralhydrat in Alkohol unterhalb 15° (Chattaway, Irving, Soc. 1929, 1043). — Kp₃₅: 97°; destilliert unter gewöhnlichem Druck unter starker Zersetzung bei 180—200°. — Spaltet beim Aufbewahren, besonders rasch in alkoh. Lösung bei Gegenwart von Kaliumcyanid, Chlorwasserstoff ab und geht in α-Chlor-crotonsäure-äthylester über.

α.γ-Dichlor-buttersäure-methylester (?) C₅H₈O₂Cl₂ = CH₂Cl·CH₂·CHCl·CO₄·CH₃.

B. Neben anderen Produkten bei der Chlorierung von Cyclopropylcarbonsäurechlorid, Verseifung des Säurechloridgemisches und Veresterung mit Methanol (BRUYLANTS, STASSENS, Bl. Acad. Belgique [5] 7, 713; C. 1922 I, 1229). — Kp: 212—214°.

y.y-Dichlor-buttersäure C₄H₆O₂Cl₂ = CHCl₂·CH₂·CH₂·CO₂H. B. Aus dem Methylester durch Verseifen mit Natronlauge (Meldrum, Alimohandani, Quart. J. indian chem. Soc. 2, 6; C. 1926 I, 68). — Blättchen (aus Wasser). F: 103—104°.

Methylester $C_5H_9O_2Cl_3=CHCl_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CO_3\cdot CH_3$. B. Durch Reduktion von $\gamma.\gamma.\gamma$ -Trichlor- β -oxy-buttersäure-methylester mit Zinkstaub in Eisessig (Meldrum, Alim-Chandani, Quart. J. indian chem. Soc. 2, 5; C. 1926 l, 67). — Nicht rein erhalten. Öl. Kp₃₆: 95—100°. Unbeständig.

x.x-Dichlor-buttersäure-butylester $C_8H_{14}O_2Cl_2 = C_3H_5Cl_2 \cdot CO_3 \cdot [CH_3]_s \cdot CH_3$. Neben anderen Produkten bei der Oxydation von x.x-Dichlor-butyraldehyd-dibutylacetal mit Chromsäure in essigsaurer Lösung (Gault, Guillemet, C. r. 175, 368). — Kp₁₅: 110°.

a.a.β-Triehlor-buttersäure C₄H₅O₂Cl₃ = CH₃·CHCl·CCl₂·CO₂H (H 280; E I 124). Dichte und Viscosität von 0,1 n-Lösungen in absol. Methanol und absol. Alkohol bei 25°: Goldschmidt, Aarflot, Ph. Ch. 122, 373, 375. Elektrische Leitfähigkeit in absolutem und wasserhaltigem Methanol: G., Aa., Ph. Ch. 117, 315. Ionenbeweglichkeit in Methanol und Alkohol: Ulich, Fortsch. Ch., Phys. 18 [1924/26], 605. Katalytischer Einfluß von Trichlorbuttersäure auf die Geschwindigkeit der Veresterung von Ameisensäure in absol. Methanol bei 25°: G., Melbye, Ph. Ch. [A] 143, 145; auf die Geschwindigkeit der Veresterung verschiedener Säuren in absol. Alkohol bei 25°: G., Ph. Ch. 94, 236—251. Oberflächenspannung wäßr. Lösungen des Lithium-, Natrium-, Kalium- und Caesiumsalzes: Frumkin, Reichstein, Kulvarskaja, Koll-Z. 40, 11; C. 1926 II, 2542. — Natriumsalz NaC₄H₄O₂Cl₃. Leitfähigkeit in absol. Methanol: G. Δa., Ph. Ch. 117, 314; in wasserhaltigem Alkohol: G., Ph. Ch. 99, 139.

α -Brom-buttersäure $C_4H_7O_2Br = C_2H_5 \cdot CHBr \cdot CO_2H$.

- a) Rechtsdrehende α -Brom-buttersäure (E I 125). B. Durch Spaltung der inakt. Säure mit Brucin (Levene, Mori, Mikeska, J. biol. Chem. 75, 342). Kp₁₅: 105° bis 107°. [α]¹⁰: +35,2° (Äther; c = 20), +12,9° (Wasser; c = 5). Liefert bei der Einw. von konzentrierter wäßriger Kaliumhydrosulfid-Lösung linksdrehende α -Mercapto-buttersäure. Natriumsalz. [α]¹⁰: +1,7° (Wasser; c = 9).
- b) Inakt. α-Brom-buttersäure C₄H₇O₂Br = C₂H₅·CHBr·CO₂H (H 281; E I 124). B. Beim Erhitzen von mit Bromwasserstoff gesättigter Buttersäure mit Brom auf 120° (Ward, Soc. 121, 1165). Zur Darstellung nach E. Fischer, Mouneyrat (B. 33, 2387) durch Erhitzen von Buttersäure mit Brom und weiner Phosphor vgl. Ward, Soc. 121, 1164. Verteilung zwischen Wasser und Chloroform, zwischen Wasser und Benzol und zwischen Wasser und Toluol: Smith, White, J. phys. Chem. 33, 1956, 1962, 1968. Elektrische Leitfähigkeit alkoh. Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 193.

 Das Natriumsalz liefert bei Einw. auf konzentrierte wäßrige Natriumsulfid-Lösung

Das Natriumsalz liefert bei Einw. auf konzentrierte wäßrige Natriumsulfid-Lösung racem. α.α'-Thio-dibuttersäure (F: 82°) und Meso-α.α'-thio-dibuttersäure (F: 109°) (Syst. Nr. 223) (AHLBERG, J. pr. [2] 107, 252). Das Kaliumsalz liefert mit Kaliumselenocyanat in wenig Wasser das Kaliumsalz der α-Cyanselen-buttersäure (Syst. Nr. 223) (FREDGA, J. pr. [2] 123, 135). — Ammoniumsalz NH₄C₄H₆O₂Br. Hygroskopisch. Ist in trockner und feuchter Luft unbeständig (McMaster, Pratte, Am. Soc. 45, 3000).

Äthylester $C_6H_{11}O_2Br = C_2H_5 \cdot CHBr \cdot CO_2 \cdot C_2H_5$ (H 282; E I 125). Liefert beim Kochen mit dem Natriumsalz des Aceton-thiosemicarbazons in Alkohol 4-Oxo-2-isopropylidenhydrazono-5-āthyl-thiazolidin (Syst. Nr. 4298) (Wilson, Burns, Soc. 123, 802). Geschwindigkeit der Reaktion mit Pyridin bei 16—18°: Tronow, \mathcal{H} . 58, 1286; C. 1927 II, 1145; mit Pyridin und 1n-Natriummethylat-Lösung bei 18—20°: T., Akiwis, Orlowa, \mathcal{H} . 61, 346, 349; C. 1929 II, 2550.

Propylester $C_7H_{13}O_2Br = C_2H_5 \cdot CHBr \cdot CO_2 \cdot CH_2 \cdot C_2H_5$. B. Aus α -Brom-buttersäure und Propylalkohol in Gegenwart von Schwefelsäure (Deulofeu, Bl. [4] 43, 550). — Kp: 190,5—194°.

Isopropylester $C_7H_{13}O_2Br = C_2H_5 \cdot CHBr \cdot CO_2 \cdot CH(CH_3)_2$. B. Analog der voranstehenden Verbindung. — Kp: 179—1820 (Deulofeu, Bl. [4] 43, 550).

Allylester $C_7H_{11}O_2Br = C_9H_5 \cdot CHBr \cdot CO_2 \cdot CH_2 \cdot CH \cdot CH_2$. B. Analog den voranstehenden Verbindungen. — Kp: 189—193° (Deulofeu, Bl. [4] 48, 551).

Bromid, inakt. α -Brom-butyrylbromid $C_4H_6OBr_2=C_2H_5\cdot CHBr\cdot COBr$ (H 283). Beim Behandeln mit alkoh. Kalilauge entsteht ein Gemisch der beiden isomeren Crotonsäuren (Phillips, Soc. 1926, 2981).

Amid, inakt. α -Brom - butyramid $C_4H_8ONBr=C_2H_5\cdot CHBr\cdot CO\cdot NH_2$ (H 283; E I 125). B. Bei möglichst schnellem Eintragen von α -Brom-buttersäurebromid in kaltes wäßriges Ammoniak (Klarmann, Am. Soc. 48, 2366). — Beim Erhitzen mit wäßr. Kaliumsulfit-Lösung entsteht das Kaliumsalz der Butyramid- α -sulfonsäure (Syst. Nr. 330) (Andreasch, M. 46, 28).

Nitril, inakt α -Brom-butyronitril $C_4H_6NBr=C_2H_5\cdot CHBr\cdot CN$. B. Bei der Destillation von α -Brom-butyramid mit Phosphorpentoxyd (Klarmann, Am. Soc. 48, 2366). — Kondensiert man α -Brom-butyronitril in äther. Lösung bei Gegenwart von Chlorwasserstoff mit Resorein und hydrolysiert das Reaktionsprodukt mit siedendem Wasser, so erhält man α -Brom-2.4-dioxy-butyrophenon; bei der entsprechenden Reaktion mit Phlorogluein entsteht 4.6-Dioxy-2-āthyl-cumaranon-(3) (KL., Am. Soc. 48, 2366, 3233).

β-Brom-buttersäure $C_4H_7O_2Br=CH_3\cdot CHBr\cdot CH_2\cdot CO_2H$ (H 283; E I 125). B. Zur Bildung nach Brulé (Bl. [4] 5, 1019) durch Einleiten von Bromwasserstoff in Crotonsäure vgl. Levene, Mikeska, J. biol. Chem. 70, 373. Aus Crotonsäure und flüssigem Bromwasserstoff im Rohr bei Zimmertemperatur (Salkowski, J. pr. [2] 106, 258, 263). — Erstarrt beim Abkühlen auf 0° (L., M.). Kp_{9-10} : 110—111° (S.); Kp_{13-14} : 114—116° (Faltis, Wagner, A. 483, 107); $Kp_{ca. 16}$: 115—116° (L., M.).

Äthylester $C_6H_{11}O_3Br=CH_3\cdot CHBr\cdot CH_2\cdot CO_2\cdot C_2H_5$ (H 283). B. Durch Einw. von Bromwasserstoff auf Crotonsäureäthylester in Eisessig unterhalb 10° (Burton, Ingold, Soc. 1929, 2030). — Kp₁₃: 74—76° (Bu., I.). — Liefert beim Kochen mit Ammonium-sulfit-Lösung β -Sulfo-buttersäure (Backer, Bloemen, R. 45, 103).

- Nitril, β -Brom-butyronitril $C_4H_6NBr=CH_2\cdot CHBr\cdot CH_2\cdot CN$. B. Aus γ -Brombutyronitril bei wiederholter langsamer Destillation (BRUYLANTS, Bl. Soc. chim. Belg. 31, 178; C. 1923 I, 37). Aus Vinylessigsäurenitril beim Sättigen mit Bromwasserstoff bei Zimmertemperatur (B., Bl. Soc. chim. Belg. 31, 179). Kp₁₅: 73—74°. Gibt beim allmählichen Hinzufügen von gepulvertem Kaliumhydroxyd oder beim Behandeln mit Pyridin die beiden isomeren Crotonsäurenitrile.
- γ -Brom-buttersäure $C_4H_7O_2Br=CH_2Br\cdot CH_2\cdot CH_2\cdot CO_2H$ (H 283). B. Durch Erhitzen von γ -Phenoxy-buttersäure mit 48% iger Bromwasserstoffsäure auf ca. 120° (MARVEL, BIRKHIMER, Am. Soc. 51, 261). Kp₇: 124—127°.
- γ-Brom-butyronitril C_4H_6 NBr = CH_2 Br· CH_2 · CH_3 ·CN (H 283; E I 125). B. Zur Bildung aus Trimethylenbromid nach Derick, Hess (Am. Soc. 40, 546) vgl. Advani, Sudborough, J. indian Inst. Sci. 6, 47. Kp₁₁: 80—85° (A., S.); Kp₁₆: 97—100° (Bruylants, Bl. Soc. chim. Belg. 31, 178). Destilliert unter Atmosphärendruck bei raschem Erhitzen bei 205—207° unter geringer Bromwasserstoffabspaltung (B.). Gibt bei wiederholter langsamer Destillation β-Brom-butyronitril und geringe Mengen eines ungesättigten Nitrils (B.). Liefert beim Erhitzen mit gepulvertem Kaliumhydroxyd und Kochen des Reaktionsgemisches mit wenig Wasser Cyclopropancarbonsäure (A., S.).
 - $\alpha.\beta$ -Dibrom-buttersäure $C_4H_6O_2Br_2 = CH_3 \cdot CHBr \cdot CHBr \cdot CO_2H$.
- a) $\alpha.\beta$ Dibrom buttersäure vom Schmelzpunkt 87°, "Crotonsäuredibromid".

Äthylester $C_6H_{10}O_2Br_2=CH_3\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 284; E I 125). B. Durch längere Einw. von Brom auf Crotonsäureäthylester in Chloroform oder Tetrachlorkohlenstoff im Sonnenlicht (Goss, Ingold, Thorpe, Soc. 123, 3352; I., Oliver, Th., Soc. 125, 2135). — Kp₂₀: 100—110° (G., I., Th.). — Liefert beim Kochen mit verd. Alkalilauge α -Brom-crotonsäure (I., O., Th.).

Chlorid $C_4H_5OClBr_2 = CH_3 \cdot CHBr \cdot CHBr \cdot COCl$ (H 285). Kp_{12} : 82,5° (v. Auwers, B. 54, 1000).

Amid, α.β-Dibrom-butyramid vom Schmelzpunkt 152° C₄H₇ONBr₂ = CH₃·CHBr·CHBr·CO·NH₂. B. Entsteht neben dem isomeren Amid (s. u.) beim Verseifen von α.β-Dibrom-butyronitril vom Kp₁₈: 106—110° mit rauchender Bromwasserstoffsäure (Bruylants, Bl. Soc. chim. Belg. 31, 178; C. 1923 I, 37; vgl. B., Bl. Acad. Belgique [5] 6, 483; C. 1921 III, 30). — Krystalle (aus Chloroform). F: 152°.

Nitril $C_4H_5NBr_2=CH_3\cdot CHBr\cdot CHBr\cdot CN$ (vermutlich Gemisch zweier stereoisomerer Formen) (vgl. H 285). B. Aus den beiden isomeren Crotonsäurenitrilen beim Behandeln mit Brom in Chloroform (Bruylants, Bl. Soc. chim. Belg. 31, 178, 181; C. 1923 I, 37). — Kp₁₈: $106-110^{\circ}$. — Gibt beim Verseifen mit rauchender Bromwasserstoffsäure die beiden isomeren $\alpha.\beta$ -Dibrom-butyramide.

- b) a. β Dibrom buttersäure vom Schmelzpunkt 59°, "Isocrotonsäure-dibromid".
- Amid, $\alpha.\beta$ -Dibrom-butyramid vom Schmelzpunkt 108—110° C₄H₇ONBr₂ = CH₃· CHBr·CO·NH₂. B. Siehe bei dem Amid der bei 87° schmelzenden $\alpha.\beta$ -Dibrom-buttersäure. Krystalle (aus Chloroform). F: 108—110° (BRUYLANTS, Bl. Soc. chim. Belg. 31, 178; C. 1923 I, 37).
- a.y-Dibrom-buttersäure $C_4H_6O_2Br_2 = CH_2Br\cdot CH_2\cdot CHBr\cdot CO_2H$. B. Entsteht wahrscheinlich beim Kochen von 2-Brom-cyclopropan-dicarbonsäure-(1.1)-diäthylester oder von a.y-Dibrom-äthylmalonsäure-diäthylester mit konstant siedender Bromwasserstoffsäure (Nicolet, Sattler, Am. Soc. 49, 2069, 2070). Kp₁₈: 130—131°.
- $\beta.\gamma$ Dibrom buttersäure äthylester $C_0H_{10}O_3Br_3 = CH_2Br \cdot CHBr \cdot CH_2 \cdot CO_3 \cdot C_2H_5$ (H 285). Gibt bei Hydrolyse mit Barytwasser das Bariumsalz der $\beta.\gamma$ -Dioxy-buttersäure (Ingold, Oliver, Thorre, Soc. 125, 2135).

 γ , γ -Dichlor-α. β -dibrom-buttersäure $C_4H_4O_2Cl_2Br_2=CHCl_2\cdot CHBr\cdot CHBr\cdot CO_2H$. B. Aus γ , γ -Dichlor-crotonsäure und der äquimolekularen Menge Brom in Chloroform im Sonnenlicht (v. Auwers, Wissebach, B. 56, 737). — Blättchen (aus Benzol + Benzin). F: 120° bis 121°. Leicht löslich in Alkohol, Eisessig und Chloroform, schwer in Benzol, fast unlöslich in Wasser und Benzin.

Methylester $C_5H_6O_9Cl_2Br_2 = CHCl_3 \cdot CHBr \cdot CO_2 \cdot CH_3$. B. Aus $\gamma \cdot \gamma \cdot Dichlor-crotonsäure-methylester und der äquimolekularen Menge Brom in Schwefelkohlenstoff (v. Auwers, Wissebach, B. 56, 739). — Tafeln (aus Benzin). F: 37°. Kp₁₉: 145°. Leicht löslich in den meisten organischen Lösungsmitteln.$

Äthylester $C_6H_8O_2Cl_9Br_2 = CHCl_2 \cdot CHBr \cdot CO_2 \cdot C_2H_5$. B. Analog der voranstehenden Verbindung. — Öl mit etwas stechendem Estergeruch. Kp₁₄: 142—144°; Kp₂₁: 158—159°; $D_{\alpha}^{p,s}$: 1,8257; $n_{\alpha}^{p,s}$: 1,5194; $n_{\beta}^{p,s}$: 1,5223; $n_{\beta}^{p,s}$: 1,5310; $n_{\gamma}^{p,s}$: 1,5379 (v. Auwers, Wissebach, B. 56, 738).

Amid, $\gamma.\gamma$ -Diehlor- $\alpha.\beta$ -dibrom-butyramid $C_4H_5ONCl_2Br_2 = CHCl_2 \cdot CHBr \cdot CHBr \cdot CO \cdot NH_2$. B. Aus $\gamma.\gamma$ -Dichlor-crotonsäureamid und der äquimolekularen Menge Brom in Chloroform im Sonnenlicht (v. Auwers, Wissebach, B. 56, 740). — Krystalle (aus Benzol). Sintert bei 156—157°, zersetzt sich bei 162°. Leicht löslich in Alkohol, Chloroform und Eisessig, löslich in Benzol, schwer löslich in Wasser und Benzin.

β-Jod-buttersäure $C_4H_7O_2I=CH_3\cdot CHI\cdot CH_2\cdot CO_2H$ (H 286). B. Durch Kochen von β-Brom-buttersäure mit Natriumjodid in wasserfreiem Aceton (Faltis, Wagner, A. 433, 107). — Krystalle (aus Petroläther). Krystallegraphische Untersuchung: Machatschri, A. 433, 109. F: 32° (korr.) (F., W.). — Färbt sich am Licht bräunlich (F., W.). Zersetzt sich beim Erhitzen auf 110° und läßt sich auch im Vakuum nicht unzersetzt destillieren (F., W.). Liefert beim Erhitzen mit Kupferpulver im Rohr in Gegenwart von Crotonsäure und Bimssteinpulver anfangs auf 110°, dann auf 135—140° die beiden β-β-Dimethyl-adipinsäuren [F: 133° (korr.) und F: 103—105° (korr.)] (F., W., A. 433, 109; vgl. Higginbotham, Lapworth, Soc. 123, 1619, 1624).

α-Nitro-buttersäure-äthylester $C_eH_{11}O_4N=C_2H_5\cdot CH(NO_2)\cdot CO_2\cdot C_2H_6$ (H 287). B. Neben anderen Produkten bei der Einw. von Åthyljodid auf das Silbersalz des Nitroessigsäureäthylesters in der Kälte (Steinkopf, A. 434, 31). — Durch Einleiten von Chlor in eine wäßr. Lösung des Ammoniumsalzes entsteht α-Chlor-α-nitro-buttersäure-äthylester (Machett, Traill, Soc. 127, 897). — Ammoniumsalz $NH_4C_6H_{10}O_4N$. Nadeln (aus ammoniakhaltigem Alkohol). F: 127° (St.).

α-Chlor-α-nitro-buttersäure-äthylester $C_eH_{10}O_4NCl = C_2H_5 \cdot CCl(NO_2) \cdot CO_2 \cdot C_2H_6$. B. Durch Einleiten von Chlor in eine wäßr. Lösung des Ammoniumsalzes des α-Nitro-buttersäureäthylesters (Μαςβετη, Τraill, Soc. 127, 897). — Öl. Kp₆: 77—79°. n_D: 1,4338. — Wird in alkoh. Lösung durch Hydrazinhydrat kaum angegriffen.

α-Brom-α-nitro-buttersäure-äthylester $C_6H_{10}O_4NBr=C_2H_5\cdot CBr(NO_2)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Brom auf das Ammoniumsalz des α-Nitro-buttersäureäthylesters in Schwefelkohlenstoff (Macbeth, Traill, Soc. 127, 897). — Kp₉: 83—84°. n_p: 1,4990. — Bei der Einw. von Hydrazinhydrat in alkoh. Lösung wird das Brom vollständig entfernt.

Linksdrehende α -Azido-buttersäure $C_4H_7O_2N_3=C_2H_5\cdot CH(N_3)\cdot CO_2H$ (H 287). — Brucinsalz $C_4H_7O_2N_3+C_{23}H_{26}O_4N_2+4H_2O$. Nadeln (aus Wasser). F: 131°; $[\alpha]_p:-42,26^\circ$ (Wasser, c=4) (Forster, Müller, Soc. 95 [1909], 195). Zersetzt sich etwas oberhalb des Schmelzpunktes.

Schwefelanalogon der Buttersäure.

Thiobutyramid $C_4H_9NS = C_2H_5 \cdot CH_2 \cdot CS \cdot NH_2$. B. Aus Butyronitril durch Behandeln mit Schwefelwasserstoff in Gegenwart von Natriumäthylat in absol. Alkohol bei $60,6^{\circ}$ und 1,75 Atm. Druck (Kindler, A. 452, 118). — Rotbraunes Öl. Läßt sich nicht unzersetzt destillieren. [Kobel]

2. Propan-carbonsäure-(2), Isobuttersäure C₄H₈O₃=(CH₃)₂CH·CO₃H (H 288; E I 126). V. Eine Zusammenstellung über das Vorkommen in Pflanzen s. bei Wehmer, Thies, Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S.503; Literaturhinweise hierzu s. C. Wehmer, Die Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1932]; 2. Bd. [Jena 1931]. In veresterter Form findet sich Isobuttersäure im äther. Ol von Blättern und Zweig-Enden von Baeckea liniifolia var. brevifolia F. v. M. (Penfold, J. Pr. Soc. N. S. Wales 61, 295; C. 1929 I, 947) und von Eucalyptus Bakeri Maid. (P., Perfum. essent. Oil Rec. 18, 507; J. Pr. Soc. N. S. Wales 61, 189; C. 1928 I, 1106; 1929 I, 948). — Isobuttersäure findet sich im rohen Holzessig aus Buchenholz (Seib, B. 60, 1394). — B. Neben anderen Produkten beim Überleiten von Wassergas über mit Kaliumcarbonat überzogene Eisenspäne

bei 400—450° und unter 150 Atm. Druck (F. FISCHER, TROPSCH, B. 56, 2430, 2432; Brennstoffch. 4, 277, 278; C. 1924 I, 1297). Bei der Oxydation von Isobutylalkohol durch Luft in Gegenwart von fein verteiltem Kupfer bei 270°, neben Isobutyraldehyd (MAILHE, DE GODON, C. r. 170, 518). Neben anderen Produkten bei der elektrolytischen Oxydation von Leucin in schwefelsaurer Lösung an einer gekühlten Platin-Anode (Fichter, Kuhn, Helv. 7, 172). Neben anderen Produkten beim Erhitzen einer wäßr. Lösung von α-oxy-isobuttersaurem Natrium mit Wasserstoff in Gegenwart von Nickeloxyd und Tonerde auf 280° unter 80 Atm. Anfangsdruck (Rasuwajew, B. 61, 640; Ж. 60, 916). Entsteht analog aus dem Natriumsalz der α-Oxy-α-α'-dimethyl-bernsteinsäure bei 245° und 60 Atm. Anfangsdruck (R., B. 60, 1978; Ж. 59, 1074). Bei der Dismutation von Isobutyraldehyd durch Hefe in 1%iger Natriumdicarbonat-Lösung bei 35° (Kumagawa, Bio. Z. 123, 229).

1978; Ж. 59, 1074). Bet der Dismutation von Isobutyraidenyd durch Heis in 1%iger Natriumdicarbonat-Lösung bei 35° (Kumagawa, Bio. Z. 123, 229).

Physikalische Eigenschaften. Kp₇₆₀: 154,35° (Lecat, Ann. Soc. scient. Bruxelles
49 [1929], 18); Kp₈₈₂: 150,0—150,4° (Advani, Sudborough, J. indian Inst. Sci. 6, 54;
C. 1923 III, 997). Zur Dampfdichte vgl. Trautz, Moschel, Z. anorg. Ch. 155, 18. Parachor: Mumford, Phillips, Soc. 1929, 2128. Ultrarotes Absorptionsspektrum zwischen 0,6 und 14 μ: Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. Reflexion von Licht an der Oberfläche von Isobuttersäure: Bhatnagar, Shrivastava, Mitra, J. indian chem. Soc. 5, 336; C. 1928 II, 1745. Beugung von Röntgenstrahlen an flüssiger Isobuttersäure: Katz, Z. ang. Ch. 41, 337.

Mischbarkeit von Isobuttersäure mit Wasser bei Drucken zwischen 1 und 525 kg/cm²: Timmermans, Arch. néerl. Sci. exactes 6 [1923], 149; J. Chim. phys. 20, 494. Verteilung von Isobuttersäure zwischen Wasser und Chloroform bei 25°: Smith. J. phys. Chem. 25, 228; Sm., White, J. phys. Chem. 33, 1969; vgl. Schilow, Lepin, Ph. Ch. 101, 383; zwischen Wasser und Tetrachlorkohlenstoff bei 25°: Sm., J. phys. Chem. 26, 270; zwischen Wasser und Benzol bei 25°: Sm., J. phys. Chem. 26, 270; zwischen Wasser und Benzol bei 25°: Sm., J. phys. Chem. 26, 268; Sm., Wh., J. phys. Chem. 33, 1963; vgl. Sch., L., Ph. Ch. 101, 381; zwischen Wasser und Toluol bei 25°: Sm., J. phys. Chem. 26, 271; Sm., Wh., J. phys. Chem. 33, 1957; zwischen Wasser und Xylol bei 25°: Sm., J. phys. Chem. 25, 220; zwischen Wasser und Ather bei 25°: Sm., J. phys. Chem. 25, 620; zwischen Wasser und Olivenöl bei 23°: Bodansky, J. biol. Chem. 79, 252. Verteilung zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 730. Kritische Lösungstemperatur des Systems mit Wasser: 26,20° (Timmermans, Delcourt, J. Chim. phys. 31 [1934], 110), 25,5° (Klein, Lotos 71 [1923], 280); vgl. a. Howard, Patterson, Soc. 1926, 2792; Carter, Megson, Soc. 1927, 2024; Jones, Soc. 1929, 807. Einfluß von anorganischen Säuren und Salzen auf die kritische Lösungstemperatur: H., P.; C., M. Koagulierende Wirkung auf wäßr. Caseinnatrium-Lösungen: Isgaryschew, Bogomolowa, Koll.-Z. 38, 239; C. 1926 I, 3306. Kryoskopisches Verhalten in Benzol und Nitrobenzol: Trautz, Moschel, Z. anorg. Ch. 155, 14. Azeotrope Gemische, die Isobuttersäure enthalten, s. in der untenstehenden Tabelle.

Komponente	Кр _{760 0}	Isobutter- säure in Gew%	Komponente	Kp ₇₆₀	Isobutter- säure in Gew%
Bromoform 2)	145,5	19	Brombenzol 3)	148,6	35
1.1.2.2-Tetrachlor-	110,0	10	Jodbenzol 4)	154,2	_
äthan ³)	144.8	7	2-Chlor-toluol 1)	ca. 150.0	42
Pentachloräthan 3)	152,9	43	4-Chlor-toluol 1)	151.5	47
Athylenbromid ³ .	130,5	6,5	Benzylchlorid 2)	153,5	80
Trichlorhydrin 4)	149.2	38	2-Brom-toluol 2)	153.9	85
Isoamyljodid 2)	143.8	22	Athylbenzol ²)	134,3	12
Diisoamyl 4)	148,55	48	m-Xylol ²)	136,75	14
Tetrachloräthylen 2) .	120,5	ca. 3	p-Xylol 2)	136,4	13
d-Limonen 4)	152,5	78	Propylbenzol ²)	149,3	49
α-Pinen 3)	146,7	35	Pseudocumol ²)	152,3	63
Camphen 2)	148.1	45	Mesitylen 2)	151,8	ca. 57
Chlorbenzol ²)	131,2	8	Anisol ²)	148,5	42
1.4-Dichlor-benzol 4) . 1	153.0	72	,	i	

¹⁾ LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 116, 119. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 18, 19, 20, 21, 22. — 2) L., Ann. Soc. scient. Bruxelles 49, 35, 40. — 4) L., Ann. Soc. scient. Bruxelles 49, 110, 111.

Oberflächenspannung von Gemischen mit 1n-Schwefelsäure: Glasstone, Trans. Faraday Soc. 21, 39; C. 1926 I, 2436. Grenzflächenspannung von Lösungen in Benzol gegen Wasser, sehr verd. Natronlauge und gegen Natriumchlorid enthaltende sehr verd. Natronlauge: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 999, 1004; Rev. gén. Colloides 5 [1927], 487. Adsorption

von Isobuttersäure-Dampf an Tierkohle: Alexejewski, Ж. 55, 416; C. 1925 II, 642. Adsorption von Isobuttersäure aus wäßr. Lösungen an Tierkohle: Klein, Lotos 71 [1923], 287; Freundlich, Birstein, Koll. Beih. 22 [1926], 96; Al., Ж. 59, 1037; C. 1928 I, 2916; an Kokosnußkohle: Namasivayam, Quart. J. indian chem. Soc. 4, 453; C. 1928 I, 662; an aktive Kohle: Schilow, Neerassow, Ph. Ch. 130, 70; Ж. 60, 110. Adsorption an Tierkohle aus alkoh. Lösung: Geiffin, Richardson, Robertson, Soc. 1928, 2708. Einfluß auf die Quellung des Caseins in wäßr. Lösung: Isgaryschew, Pomeranzewa, Koll.-Z. 38, 236; C. 1926 I, 3129. Wärmetönung der Adsorption an Tierkohle: Al., Ž. prikl. Chim. 1, 183; C. 1929 II, 708.

Elektrische Leitfähigkeit wäßriger und alkoholischer Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192. Elektrolytische Dissoziationskonstante k bei 25°: 1,45·10⁻⁵ (E. Klein, Lotos 71, 280). Einfluß von Isobuttersäure auf die Wasserstoff-Überspannung an Blei-Kathoden: Glasstone, Trans. Faraday Soc. 21, 39; C. 1926 I, 2436. Ultramikroskopische und kataphoretische Untersuchung des kolloiden Zustandes der Lösung in Wasser: Traube, P. Klein, Koll.-Z. 29, 238; C. 1922 I, 233. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßrigen, schwach schwefelsauren Isobuttersäure-Lösungen: Frumkin, Ph. Ch. 111, 194.

Chemisches und biochemisches Verhalten. Beim Leiten von Isobuttersäure-Dampf über ein Gemisch aus Kupfer und Aluminiumoxyd bei 600—630° erhält man Kohlendioxyd, Kohlenoxyd, Wasserstoff, gesättigte und ungesättigte Kohlenwasserstoffe (hauptsächlich Propylen) und wenig Isobutyron (Mailhe, Bl. [4] 31, 682; A. ch. [9] 17, 322; Caoutch. Gutap. 19, 11474). Ähnlich verläuft die Zersetzung über Calciumchlorid im Eisenrohr sowie über Bariumchlorid und über Natriumchlorid im Kupferrohr bei ca. 600°; bei Anwendung von Natriumchlorid entstehen aber keine gesättigten Kohlenwasserstoffe, sondern größere Mengen Wasserstoff (M., Bl. [4] 37, 307). Zersetzt, sich beim Leiten des Dampfes über Tierkohle bei ca. 360—380° unter Bildung von Kohlendioxyd, Kohlenoxyd, Wasserstoff, Wasser, Kohlenwasserstoffen und anderen Produkten (Senderens, Aboulenc, C. r. 170, 1065). Geschwindigkeit der Oxydation des Natriumsalzes durch Permanganat in verdünnter wäßriger Lösung auf dem Wasserbad: Smith, Pr. Leeds phil. lit. Soc. 1, 197; C. 1928 I, 1757. Zersetzt sich beim Erhitzen mit konz. Schwefelsäure auf 140—200° unter Verkohlung und Entwicklung von Kohlenoxyd und Kohlendioxyd (Se., A., C. r. 185, 1089). Bei der Einw. von Chlor in Tetrachlorkohlenstoff im Licht der Quarzlampe wird ein Wasserstoffatom durch Chlor ersetzt; Geschwindigkeit dieser Reaktion: Benrath, Hertel, Z. wiss. Phot. 23, 36; C. 1924 II, 822.

Geschwindigkeit der Veresterung von Isobuttersäure in absol. Äthylalkohol in Gegenwart von Chlorwasserstoff bei 25°: Goldschmidt, Ph. Ch. 94, 243; Advani, Sudborough, J. indian Inst. Sci. 6, 57; C. 1923 III, 997; Bhide, Su., J. indian Inst. Sci. 8 A, 91, 92; C. 1926 I, 80; in Gegenwart von Pikrinsäure, Trichloressigsäure und α.α.β-Trichlor-buttersäure: G., Ph. Ch. 94, 243; in wasserhaltigem Athylalkohol in Gegenwart von Chlorwasserstoff bei 25°: A., Su. Veresterung mit Äthylalkohol und Propylalkohol in Gegenwart von Zirkoniumoxyd bei 260—270°: Mailhe, de Godon, Bl. [4] 29, 105; M., Caoutch. Guttap. 18, 10681. Geschwindigkeit der Veresterung in absolutem und wasserhaltigem Isobutylalkohol in Gegenwart von Chlorwasserstoff bei 25°: G., Ph. Ch. 124, 30, 32; in absolutem und wasserhaltigem Athylenglykol in Gegenwart von Chlorwasserstoff bei 25°: Kailan, Schachner, M. 52, 35. Isobuttersäure liefert mit überschüssigem Phenylmagnesiumbromid in siedendem Ather Isopropyldiphenylcarbinol (Peters, Mitarb., Am. Soc. 47, 453).

Oxydation durch Pflanzengewebe: Ciamician, Ravenna, G. 51 I, 213. — Calcium-isobutyrat wird durch thermophile Bakterien unter Bildung von Kohlendioxyd und Methan vergoren (Coolhaas, Zbl. Bakt. Parasitenk. II 75, 165; C. 1928 II, 1342). — Reduktion von Methylenblau durch Isobuttersäure in Gegenwart von ruhenden Bac. prodigiosus, Bac. proteus oder Bac. faecalis alkaligenes: Quastel, Wooldbilde, Biochem. J. 19, 653; in Gegenwart von ruhenden Bact. coli: Qu., Whetham, Biochem. J. 19, 521, 524.

Salze der Isobuttersäure (Isobutyrate). Hydroxylaminsalz NH₂·OH + C₄H₄O₂. F: 98—99° (Oesper, Ballard, Am. Soc. 47, 2426). Löslich in Wasser und Alkohol,

Salze der Isobuttersäure (Isobutyrate). Hydroxylaminsalz NH₂·OH + C₄H₈O₂. F: 98—99° (Oesper, Ballard, Am. Soc. 47, 2426). Löslich in Wasser und Alkohol, unlöslich in Ather und Ligroin. — Lithiumsalz. Röntgenogramm (Debye-Scherrer-Aufnahme): Becker, Jancke, Ph. Ch. 99, 271. — NaC₄H₇O₂. Dichte und Brechungsindices wäßr. Lösungen bei 22,5°: de García, An. Soc. quím. arg. 8 [1920], 384. — KC₄H₇O₂. Lösungsvermögen der wäßr. Lösung für verschiedene organische Verbindungen: Tamba. Bio. Z. 145, 417. Dichte und Brechungsindices wäßr. Lösungen bei 25°: de G. — Basisches Berylliumsalz OBe₄(C₄H₇O₂)₈. Triklin pinakoidal (Morgan, Astbury, Pr. roy. Soc. [A] 112 [1926], 447). F: 88—89° (M., A., Pr. roy. Soc. [A] 112, 443). D: 1,14. — Basisches Berylliumacetat-isobutyrat OBe₄(C₂H₇O₂)₂(C₄H₇O₂)₄. Kp: 351° (Tanatar, Kurowski, Ж. 39, 932; C. 19081, 102; vgl. T., Ж. 36, 83). Leicht löslich in Äther und Benzol. — Calciumsalz. Dichte und Brechungsindices wäßr. Lösungen bei 22,5°: de G. — Thallium (I)-salz. Krystalle (aus Methanol + Aceton). Existiert in zwei festen Modifikationen (Walter, B. 59, 969). F: 124° (korr.). Die Schmelze ist monotrop krystallinisch-flüssig.

Funktionelle Derivate der Isobuttersäure.

Isobuttersäure - methylester, Methylisobutyrat $C_5H_{10}O_3 = (CH_3)_5CH \cdot CO_3 \cdot CH_3$ (H 290; E I 127). E: $-84,65^\circ$ (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₆₀: 92,3° (Young, Scient. Pr. roy. Dublin Soc. 12 [1909/10], 387; Lecat, R. 46, 243), 92,55° (T.). Dampidruck zwischen -10° (6,22 mm) und der kritischen Temperatur: Y., Scient. Pr. roy. Dublin Soc. 12, 439. Kritischer Druck: 25740 mm (Y.). D'; zwischen 0° (0,9113) und der kritischen Temperatur: Y. Dichte des gesättigten Dampfes zwischen 90° und der kritischen Temperatur: Y. Parachor: Sugden, Soc. 125, 1183. Verdampfungswärme bei 91,05°: 78,15 cal/g (Mathews, Am. Soc. 48, 573). Verbrennungswärme bei konstantem Volumen: 691,2 kcal/Mol (Richards, Jesse, Am. Soc. 32 [1910], 285; vgl. Swietoslawski, Bobinska, Am. Soc. 49, 2478). Ultrarotes Absorptionsspektrum zwischen 0,6 und 13 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. Methylisobutyrat bildet azeotrope Gemische mit Dichlorbrommethan (Kp₇₆₀: 93,8°; 42 Gew.-% Methylisobutyrat), Isobutylbromid (Kp₇₆₀: 90°; 39 Gew.-% Methylisobutyrat), Heptan (Kp₇₆₀: ca. 88,5°; 60 Gew.-% Methylisobutyrat), Cyclohexan (Kp₇₆₀: ca. 78,6°; ca. 12 Gew.-% Methylisobutyrat) (Lecat, R. 46, 243, 244), Methanol (Kp₇₆₀: 64,0°; 25 Gew.-% Methylisobutyrat), Athylalkohol (Kp₇₆₀: 77°), tert. Butylalkohol (Kp₇₆₀: 89,5°; ca. 74 Gew.-% Methylisobutyrat) (L. Ann. Soc. scient. Bruxelles 48 I [1928], 16, 19) und Propylalkohol (Kp₇₆₀: 89,5°; ca. 74 Gew.-% Methylisobutyrat) (L. Ann. Soc. scient. Bruxelles 47 I [1927], 111). — Geschwindigkeit der Verseifung durch Kaliumhydroxyd in verschiedenen Methanol-Wasser-Gemischen bei 30°: Jones, McCombie, Scarborough, Soc. 123, 2696. Beim Überleiten von Methylisobutyrat und Isoamylamin über Aluminiumoxyd bei 500° entsteht Isobutyronitril (Mailhe, C. r. 170, 815).

Isobuttersäure-äthylester, Äthylisobutyrat C₈H₁₂O₂ = (CH₃)₂CH·CO₂·C₈H₈ (H 291; E I 128). B. Entsteht neben anderen Verbindungen bei der Einw. von Aluminiumäthylat auf ein äquimolekulares Gemisch aus Isobutyraldehyd und Acetaldehyd (Orloff, Bl. [4] 35, 362). Beim Überleiten von Isobuttersäure und Athylalkohol über Zirkoniumoxyd bei 260° bis 270° (Mailhe, De Godon, Bl. [4] 29, 105; M., Caoutch. Guttap. 18, 10681). Bei mehrtägigem Aufbewahren von α.α-Dimethyl-acetessigsäure-methylester mit Natriumäthylat-Lösung (Dieckmann, Wittmann, B. 55, 3347). — E: —88,2° (Timmermanns, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₆₀: 111,0° (T.), 110,1° (Lecat, R. 46, 244). Viscosität bei 20°: 0,0059, bei 40°: 0,0047 g/cmsec (Unkowskaja, Wolowa, Ж. 57, 114; C. 1926 I, 2646). Parachor: Sugden, Soc. 125, 1184. Verdampfungswärme bei 109,22°: 72,08 cal/g (Mathews, Am. Soc. 48, 573). Elektroendosmose: Strickler, Math., Am. Soc. 44, 1652. Athylisobutyrat bildet azeotrope Gemische mit Toluol (Kp₇₆₀: 109,8°) (L., R. 46, 244), Propylalkohol (Kp₇₆₀: 96,8°), Allylalkohol (Kp₇₆₀: ca. 96,2°) (L., Ann. Soc. scient. Bruxelles 48 I 1928], 17, 19) und Butylalkohol (Kp₇₆₀: 109,2°; 83 Gew. % Athylisobutyrat) (L., Ann. Soc. scient. Bruxelles 48 I, 59). Viscosität von Gemischen mit Äthylbutyrat bei 20° und 40°: U., W

Liefert beim Behandeln mit Kalium in Äther, Einleiten von Sauerstoff in das Reaktionsgemisch und nachfolgenden Zersetzen mit Eiswasser Diisobutyryl und α-Oxy-diisopropylessigsäure (Scheibler, Emden, A. 434, 284). Geschwindigkeit der Verseifung in wäßrigalkoholischer Lösung in Abwesenheit oder Gegenwart von 0,1 n-Salzsäure bei 40,5°: Berger, R. 43, 169, 170, 173. Geschwindigkeit der Verseifung durch wäßrig-alkoholische Kalilauge bei 30°: Cashmore, McCombie, Scarborough, Soc. 119, 978; bei 45°: McC., Sc., Settle, Soc. 121, 2315; durch Lithiumhydroxyd und Tetrsäthylammoniumhydroxyd in Alkohol-Wasser-Gemischen bei 30°: C., McC., Sc., Soc. 123, 199, 204, 205. Wärmetönung bei der Einw. auf ätherfreies Magnesiumjodidäthylat in Benzol: Tschelinzew, Bl. [4] 35, 748. Liefert bei längerer Einw. von Methylisopropylketon in Gegenwart von Natrium anfangs bei 0°, dann bei Zimmertemperatur Diisobutyrylmethan (Morgan, Taylor, Soc. 127, 803). Bei der Umsetzung mit Benzaldehyd in Gegenwart von Natriumäthylat in Äther erhält man β-Oxy-α.α-dimethyl-β-phenyl-propionsäure und deren Äthylester (Scheibler, Friese, A. 445, 158). Kondensiert sich mit Benzyleyanid bei Gegenwart von Kaliumäthylat in Alkohol + Ather in der Kälte zu Phenyl-isobutyryl-acetonitril (Wislicenus, Eichert, Marquardt, A. 436, 96).

Isobuttersäure-propylester, Propylisobutyrat $C_7H_{14}O_2=(CH_3)_2CH\cdot CO_3\cdot CH_2\cdot C_2H_5$ (H 291; E I 128). Kp_{780} : 134,0° (Lecat, R. 46, 246). Parachor: Sugden, Soc. 125, 1184.

Isobuttersäure-isobutylester, Isobutylisobutyrat $C_8H_{16}O_8 = (CH_8)_8CH \cdot CO_9 \cdot CH_8 \cdot CH(CH_8)_8$ (H 291; E I 128). B. Neben anderen Produkten beim Leiten von Isobutylakohol-Dampf über Magnesiumisobutylat bei 380—410° (Terentjew, Bl. [4] 37, 1555). Bei der Oxydation von Isobutylakohol mit Natriumchlorat bei Gegenwart von Vanadiumpentoxyd in 5%iger Schwefelsäure bei 75—80° (Milas, Am. Soc. 50, 498).

Oxydation von 1800utylaikonoi mit Natriumeniorat dei Gegonwart von Vanadiumpenioxyd in 5% iger Schwefelsäure bei 75 -80° (Milas, Am. Soc. 50, 498). E: $-80,65^\circ$ (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1928 III, 1137). Kp₇₆₀: 148,65° (Tr.), 147,3° (Lecat, R. 46, 246). Parachor: Sugden, Soc. 125, 1184; Mumford, Phillips, Soc. 1929, 2119. Isobutylisobutyrat bildet azeotrope Gemische mit Bromoform (Kp₇₆₀: 151°; 25 Gew. % Isobutylisobutyrat), 1.1.2.2-Tetrachlor-athan (Kp₇₆₀: 151,5°;

35 Gew.-% Isobutylisobutyrat) (L., R. 46, 244), Isoamyljodid (Kp₇₆₀: 146,5°; 42 Gew.-% Isobutylisobutyrat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 115), Glykol (Kp₇₆₀: 145,8°) (L., Ann. Soc. scient. Bruxelles 48 I, 19) und Methyllactat (Kp₇₆₀: 142,5°; ca. 15 Gew.-% Isobutylisobutyrat) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 112). — Verwendung in der Riechstoffindustrie: Burger, Riechstoffind. 3, 18; C. 1928 I, 2466.

Isobuttersäure - isoamylester, Isoamylisobutyrat $C_9H_{18}O_2 = (CH_3)_2CH \cdot CO_2 \cdot CH_2 \cdot CH_3 \cdot CH(CH_3)_2$ (H 291; E I 128). Kp₇₆₀: 168,9° (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 69). D²⁰: 0,8627 (Harkins, Clark, Roberts, Am. Soc. 42, 703). Oberflächenspannung bei 20°: 25,19 dyn/cm (H., Cl., R.). Ultrarotes Absorptionsspektrum zwischen 0,6 und 14,4 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. Isoamylisobutyrat bildet azcotrope Gemische mit Glykol (Kp₇₆₀: 161,5°; 80 Gew.-% Isoamylisobutyrat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 18) und Isobutylisovalerianat [Kp₇₆₀: 168,4°(?)] (L., R. 46, 244). Grenzflächenspannung zwischen Isoamylisobutyrat und Wasser: H., Cl., R. Ausbreitung auf Wasser bei 20°: H., Feldman, Am. Soc. 44, 2671.— Verwendung in der Riechstoffind. 3, 18; C. 1928 I, 2466.

Isobuttersäure-octyl-(2)-ester, Methyl-n-hexyl-carbinol-isobutyrat $C_{12}H_{24}O_2 = (CH_3)_2CH \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$ (E I 128). Vgl a. Senderens, Aboulenc, A. ch. [9] 18, 158.

Isobuttersäure- $[\beta.\beta.\delta$ -trimethyl-n-amylester], "Diisobutylisobutyrat" $C_{12}H_{24}O_2 = (CH_3)_2CH \cdot CO_2 \cdot CH_2 \cdot C(CH_3)_2 \cdot CH_2 \cdot CH(CH_3)_2$. B. Neben anderen Produkten beim Leiten von Isobutylakohol-Dampf über Magnesiumisobutylat bei 380—410° (Terentjew, Bl. [4] 37, 1555). — Kp₇₄₇: 199—202°. D_4^∞ : 0,8545. n_2^∞ : 1,4208.

Isobuttersäure-citronellylester, Citronellylisobutyrat $C_{14}H_{26}O_2 = (CH_3)_2CH \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3$

Isobuttersäure - rhodinylester, Rhodinylisobutyrat $C_{14}H_{26}O_2$, Gemisch aus $(CH_3)_2CH \cdot CO_2 \cdot CH_2 \cdot CH_$

Isobuttersäure-geranylester, Geranylisobutyrat $C_{14}H_{24}O_2 = (CH_3)_2CH \cdot CO_2 \cdot CH_2 \cdot CH : C(CH_3) \cdot CH_2 \cdot CH : C(CH_3)_2 \cdot D^{15} : 0,8997; n_0^m : 1,4576$ (KJELSBERG, MÜLLER, Dtsch. Parf.-Ztg. 14, 236; C. 1928 II, 338, 1317). — Geschwindigkeit der Verseifung durch 0,5 n-alkoh. Kalilauge: K., M. — Geruchseigenschaften und Verwendung in der Riechstoffindustrie: M., Parfümeur Augsb. 2, 43; C. 1928 I, 3005; K., M.

Isobuttersäure-linalylester, Linalylisobutyrat $C_{14}H_{24}O_{2} = (CH_{3})_{2}CH \cdot CO_{2} \cdot C(CH_{3}) \cdot (CH : CH_{2}) \cdot CH_{2} \cdot CH_{2} \cdot CH_{3} \cdot CH \cdot C(CH_{3})_{2} \cdot V$. Im Ceylon-Zimtöl und im Lavendelöl (Burger, Ricchstoffind. 1926, 132; C. 1926 II, 2124; vgl. Kaufmann, Kjelsberg, Ricchstoffind. 2, 171; C. 1927 II, 2359; 1928 I, 267). — D^{15} : 0,8926 (B., Ricchstoffind. 3, 17; C. 1928 I, 2466); D^{15} : 0,8935; n_{1}^{m} : 1,4490; n_{1}^{m} : n_{1}^{m} :

Glycerintriisobutyrat, Triisobutyrin $C_{15}H_{26}O_6 = (CH_3)_2CH \cdot CO \cdot C \cdot CH_2 \cdot CH[O \cdot CO \cdot CH(CH_3)_2] \cdot CH_2 \cdot O \cdot CO \cdot CH(CH_3)_2$ (H 292). Hydrolyse durch Pankreaslipase in Gegenwart von Ammoniak-Ammoniumchlorid-Puffer von ρ_H 8,9 sowie der Aktivatoren Calciumchlorid und Natriumoleat; Willstätter, Memmen, H. 133, 232.

Isopropyl-isobutyryl-carbinol-isobutyrat, Isobutyroin-isobutyrat $C_{12}H_{22}O_3 = (CH_3)_2CH \cdot CO \cdot O \cdot CH[CH(CH_3)_2] \cdot CO \cdot CH(CH_3)_3$. Neben anderen Produkten bei der Umsetzung von Isobutyrylbromid mit Magnesium in Äther und Zersetzen des Reaktionsprodukts mit angesäuertem Wasser (TISCHTSCHENKO, Bl. [4] 37, 631). — Kp₁₂: 91—94°. D_{18}^{vs} : 0,911.

Isobuttersäure-anhydrid $C_8H_{14}O_3=(CH_3)_2CH\cdot CO\cdot O\cdot CO\cdot CH(CH_3)_2$ (H 292; E I 128). E: —53,5° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 215; C. 1921 III, 1266). — Gibt beim Erhitzen mit 0,5 Mol Kaliumcyanat auf 138—140° Diisobutyramid (Brunner, Grüner, Beneš. M. 48, 124).

Isobuttersäure-chlorid, Isobutyrylchlorid C₄H₇OCl = (CH₃)₂CH·COCl (H 293; E I 128). B. Aus Isobuttersäure und Phosphortrichlorid auf dem Wasserbad (Récer, Ch. Z. 52, 22; C. 1928 I, 1018). Bei der Einw. von Siliciumtetrachlorid auf Isobuttersäure in Xylol bei 50° (Montonna, Am. Soc. 49, 2115). — E: —90,0° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 216; C. 1921 III, 1266). Kp: 92° (R.). — Zerfällt beim Leiten über Nickel bei ca. 420° in Chlorwasserstoff, Kohlenoxyd, Propylen, Methan und wenig Wasserstoff und Kohlendioxyd (Mailhe, C. r. 180, 1112). Zur Überführung von Isobutyrylchlorid in Isobutyronitril nach Mailhe (Bl. [4] 23, 380) vgl. noch Mail, Caoutch. Guttap. 15, 9549; A. ch. [9] 13, 212.

Isobuttersäure-bromid, Isobutyrylbromid C₄H₇OBr = (CH₈)₂CH·COBr (H 293; E I 129). Gibt beim Behandeln mit Magnesium in Äther und Zersetzen des Reaktionsprodukts mit angesäuertem Wasser Isobutyraldehyd, Isobutyroin, Isobutyroin-isobutyrat und geringe Mengen Diisopropylacetylenglykol-diisoburyat (Tischtschenko, *Bl.* [4] 37, 630).

Isobuttersäure-amid, Isobutyramid C₄H₉ON = (CH₃)₂CH·CO·NH₂ (H 293; E I 129). Elektrische Leitfähigkeit von Isobuttersäureamid und seinem Monokaliumsalz in flüssigem Ammoniak bei —33,5°: SMITH, Am. Soc. 49, 2164. Bei der Einw. von Dischwefeldichlorid in siedendem Petroläther entsteht eine als N.N'-Dibutyryl-hydrazin angesehene Verbindung (NAIK, PATEL, Quart. J. indian chem. Soc. 1, 32; C. 1925 I, 488).

Diisobutyramid $C_8H_{15}O_9N=(CH_3)_2CH\cdot CO\cdot NH\cdot CO\cdot CH(CH_3)_2$ (H 293). B. Beim Erhitzen von Isobuttersäureanhydrid mit 0,5 Mol Kaliumcyanat auf 138—140° (Brunner, Grüner, Beneš, M. 48, 124). — F: 174°.

N-Chlor-isobutyramid $C_4H_8ONCl = (CH_3)_2CH\cdot CO\cdot NHCl.$ B. Beim Einleiten von Chlor in eine gesättigte wäßrige Lösung von Isobutyramid (ROBERTS, Soc. 123, 2781). — Gelbes Öl.

Isobutyronitril, Isopropyleyanid C₄H₇N = (CH₃)₂CH·CN (H 294; E I 129). B. Zu den E I 2, 129 aufgeführten Bildungsweisen nach Mallhe und Mitarb. vgl. noch M., A. ch. [9] 13, 188, 203, 207, 210, 212; Caoutch. Guttap. 15, 9549, 9550. Isobutyronitril entsteht ferner beim Leiten von Isovaleramid über Nickel bei 430° (M., Bl. [4] 37, 1395), von Isobuttersäuremethylester und Isoamylamin über Aluminiumoxyd bei 500° (M., C. r. 170, 815), von Isobutylamin über Katalysatoren aus 5 Tln. Zinksulfid und 1 Tl. Marquartscher Masse bei 475° (I. G. Farbenind., D. R. P. 459606; Frdl. 16, 651) oder aus gleichen Teilen Cadmiumarsenid und Zinkarsenid bei 500° (I. G. Farbenind., D. R. P. 461705; Frdl. 16, 652) und beim Leiten von Isobutyliden-anilin über Nickel bei 430° (M., Bl. [4] 27, 233; A. ch. [9] 13, 198). Aus Valyl-glycin oder Valyl-alanyl-glycin beim Behandeln mit Brom in überschüssiger Kalilauge bei 0° (Goldschmidt, Mitarb., A. 456, 16; Go., Strauss, A. 471, 15). Neben anderen Produkten bei der Einw. von Wasserstoff auf Isobutyraldehyd-phenylhydrazon in Gegenwart von Nickel bei 180—190° (M., C. r. 172, 1109; Bl. [4] 29, 419). In geringer Menge aus Isopropylmagnesiumbromid und Chlorcyan in Äther (Grignard, Ono, Bl. [4] 39, 1591). — Kp₇₄₃: 107—108° (Gr., O.).

Isobutyrhydroxamsäure $C_4H_9O_2N=(CH_9)_2CH\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Form. B. Aus Methylisobutyrat und Hydroxylamin in Natriummethylat-Lösung bei Zimmertemperatur (Jones, Scott, Am. Soc. 44, 420). Aus Isobutyrylchlorid und Hydroxylamin in Benzol unter Eiskühlung (J., S.). — Krystalle (aus Essigester + Ligroin oder aus Benzol). F: 116°. Löslich in Wasser, Alkohol, Äther, Aceton, heißem Essigester und heißem Benzol, unlöslich in Ligroin. — Gibt mit Kupferacetat in schwach essigsaurer Lösung ein grünes Kupfersalz.

Isobutyrhydroxamsäure - acetat, O - Acetyl - N - isobutyryl - hydroxylamin $C_6H_{11}O_3N = (CH_3)_5CH \cdot CO \cdot NH \cdot O \cdot CO \cdot CH_3$ bzw. desmotrope Form. B. Aus Isobutyrhydroxamsäure und Acetanhydrid auf dem Wasserbad (Jones, Scott, Am. Soc. 44, 422). — Krystalle (aus Benzol + Ligroin). F: 87°. Löslich in Wasser, Alkohol, heißem Äther und heißem Benzol, unlöslich in Ligroin. — Kaliumsalz. Zerfließlich. Zersetzt sich leicht unter Verpuffen. Reduziert Silbernitrat-Lösung.

N.N´- Diisobutyryl - hydraxin $C_0H_{10}O_2N_2 = (CH_2)_2CH \cdot CO \cdot NH \cdot NH \cdot CO \cdot CH(CH_2)_2$ (H 294). Eine als N.N´- Diisobutyryl - hydraxin angesprochene Verbindung $C_0H_{10}O_2N_2$ vom

Schmelzpunkt 120—121° erhielten NAIK, PATEL (Quart. J. indian chem. Soc. 1, 32; C. 1925 I, 488) bei der Umsetzung von Isobuttersäureamid mit Dischwefeldichlorid in siedendem Petroläther.

Substitutionsprodukte der Isobuttersäure.

- α-Chlor-isobutyrylchlorid $C_4H_6OCl_2 = (CH_3)_2CCl \cdot COCl$ (H 295). B. Neben anderen Verbindungen bei der Einw. von Thionylchlorid auf α-Oxy-isobuttersäure (Blaise, Montagne, C. r. 174, 1555). Kp: 113—114°.
- α-Chlor-isobutyronitril $C_4H_6NCl = (CH_5)_2CCl \cdot CN$. B. Durch Einw. von Phosphorpentachlorid auf Acetoncyanhydrin in Benzol bei 25—30° (Chrzaszczewska, Sobieranski, Roczniki Chem. 7, 473; C. 1928 I, 2801). Angenehm riechende Flüssigkeit. Kp₆: 51,5° bis 52,5°. D₄^{18,8}: 1,0641. $n_{\beta}^{13,8}$: 1,4324; $n_{\beta}^{13,8}$: 1,44402; $n_{\gamma}^{13,8}$: 1,4450. Leicht löslich in organischen Lösungsmitteln, schwer in Wasser.
- α-Brom-isobuttersäure C₄H₇O₂Br = (CH₃)₂CBr·CO₂H (H 295; E I 129). B. Zur Bildung nach Volhard (A. 242, 161) vgl. Fredga, J. pr. [2] 123, 137. Krystalle (aus Petroläther). F: 46—48°; Kp₁₂: 100—101°; sehr leicht löslich in den meisten organischen Lösungsmitteln (F.). Adsorption an Tierkohle aus alkoh. Lösung: Griffin, Richardson. Robertson, Soc. 1928, 2708. Elektrische Leitfähigkeit wäßriger und alkoholischer Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 193, 194.

Methylester $C_5H_9O_2Br=(CH_3)_2CBr\cdot CO_2\cdot CH_3$ (H 296). Kp₃₇: 67° (Whitmore, Thurman, Am. Soc. 51, 1497). — Liefert mit Quecksilber-di-p-tolyl in siedendem Toluol p-Tolyl-quecksilberbromid.

Äthylester $C_6H_{11}O_2Br = (CH_3)_2CBr \cdot CO_2 \cdot C_2H_5$ (H 296; E I 129). Kp_{757} : 162—163°; Kp_{15} : 65° (Verkade, R. 40, 207 Anm.). — Geschwindigkeit der Reaktion mit Natriummethylat in Methanol bei 18—20°: Tronow, Akiwis, Orlowa, \mathcal{K} . 61, 349; C. 1929 II, 2550; mit Pyridin bei 16—18°: T., \mathcal{K} . 58, 1286; C. 1927 II, 1145; bei 18—20°: T., A., O.

Propylester $C_7H_{13}O_2Br = (CH_3)_2CBr \cdot CO_2 \cdot CH_2 \cdot C_2H_5$. B. Aus α -Brom-isobutyrylbromid und Propylalkohol (Deuloffeu, An. Soc. españ. 26, 318; C. 1929 I, 635). — Obstähnlich riechendes Ol. Kp_{42} : 92—96°.

Isopropylester $C_7H_{13}O_2Br = (CH_3)_2CBr \cdot CO_2 \cdot CH(CH_3)_2$. B. Aus α -Brom-isobutter-säure-bromid und Isopropylalkohol (Deulofeu, An. Soc. españ. 26, 318; C. 1929 I, 635). — Obstähnlich riechendes Öl. Kp₅₅: 91—94°.

Allylester $C_7H_{11}O_9Br = (CH_3)_2CBr \cdot CO_2 \cdot CH_2 \cdot CH : CH_2$. B. Aus α -Brom-isobutter-säure-bromid und Allylalkohol (Deulofeu, An. Soc. españ. 26, 319; C. 1929 I, 635). — Etwas stechend riechendes Ol. Kp_{42} : 90—93°.

Bromid, α -Brom-isobutyrylbromid $C_4H_8OBr_3=(CH_3)_2CBr\cdot COBr$ (H 297; E I 129). Liefert bei der Kondensation mit p-Chlor-anisol in Schwefelkohlenstoff in Gegenwart von Aluminiumchlorid auf dem Wasserbad 5-Chlor-2. α -dioxy-isobutyrophenon und andere Produkte (v. Auwers, Baum, Lorenz, *J. pr.* [2] 115, 90). Reaktion mit m-Kresol-methyläther in siedendem Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid: v. Au., A. 439, 161.

Amid, α -Brom-isobutyramid $C_4H_8ONBr=(CH_3)_2CBr\cdot CO\cdot NH_2$ (H 297). Liefert beim Kochen mit mäßig konzentrierter wäßriger Ammoniumsulfit-Lösung das Ammoniumsalz der Isobutyramid- α -sulfonsäure (Andreasch, M. 48, 28).

Nitril, α -Brom-isobutyronitril $C_4H_6NBr=(CH_3)_2CBr\cdot CN$. B. Bei der Einw. von Phosphortribromid auf Acetoncyanhydrin in Benzol bei $45-50^\circ$ (Chrzaszczewska, Popiel, Roczniki Chem. 7, 76; C. 1927 II, 415). — Angenehm riechende Flüssigkeit. Kp₅: 61,2—61,6°. $D_4^{14.5}$: 1,4796. $n_\alpha^{14.5}$: 1,4704; $n_b^{14.5}$: 1,4739; $n_\beta^{14.5}$: 1,4802. Löslich in Benzol, Alkohol und Äther.

β-Brom-isobutyrylchlorid C₄H₆OClBr = CH₂Br·CH(CH₃)·COCl. B. Beim Kochen von β-Brom-isobuttersäure mit überschüssigem Thionylchlorid (v. Aqwers, A. 421, 25). — Nicht rein erhalten. Farbloses Öl. — Liefert mit p-Kresol-methyläther bei Gegenwart von Aluminiumchlorid in siedendem Schwefelkohlenstoff ω-Chlor-6-oxy-3-methyl-isobutyrophenon. [PALLUTZ]

5. Carbonsäuren $C_5H_{10}O_2$.

1. Butan-carbonsäure-(1), n-Valeriansäure¹) $C_5H_{10}O_3=CH_3\cdot[CH_2]_3\cdot CO_3H$ (H 299; E I 130). V. In der Flüssigkeit von Echinococcuscysten aus Rinder- und Schweinelbern (Flössner, Z. Biol. 82, 299; C. 1925 I, 1218). In der Leber des Stachelrochens (Fl., Kutsoher, Z. Biol. 88, 393; C. 1929 I, 1955). — B. Neben anderen Produkten bei langsamer Verbrennung von Triakontan (Landa, C. r. 187, 948). Beim Einleiten von Sauerstoff in

¹⁾ Angaben über "Valeriansäure" ohne nähere Bezeichnung s. im Artikel Isovaleriansäure (S. 271).

264

Paraffin bei 150° in Gegenwart von verschiedenen Verbindungen des Mangans (Franck, Ch. Z. 44, 309; C. 1920 II, 781; Kelber, B. 53, 70) und des Bleis, Quecksilbers und Chroms (FR.). Aus n-Amylalkohol beim Erhitzen mit Kalikalk in Gegenwart von Kupferspänen und Aluminiumhydroxyd unter Druck auf 250—270°, neben Propyl-n-amyl-essigsäure (I. G. Farbenind., D. R. P. 503009; C. 1930 II, 2573; Frdl. 16, 251). Neben anderen Produkten bei der Einw. von Wasserstoff auf γ-oxo-n-valeriansaures Natrium in Gegenwart von Nickel(II)oxyd und Aluminiumoxyd in Wasser bei 225—230° und 63 Atm. Anfangsdruck (RASUWAJEW. B. 61, 639; W. 60, 915). Beim Leiten von n-Valeronitril-Dampf und Wasserdampf über Thoriumoxyd bei 420—430° (Mailhe, Bl. [4] 27, 756). In geringer Menge beim Schmelzen von Undecen-(2)-säure-(11) mit Kaliumhydroxyd bei 350—370°, neben anderen Produkten (CHUIT, Mitarb., Helv. 10, 118). Entsteht neben überwiegenden Mengen Cyclopentanon beim Erhitzen von Adipinsäure auf 313-320° (Vogel, Soc. 1929, 727). Neben anderen Produkten bei der Oxydation von Sativinsäure mit Kaliumpermanganat in verd. Kalilauge (HAWORTH, Soc. 1929, 1461). Durch Einw. von Kohlendioxyd auf Butylmagnesiumbromid in Ather bei 0° (GILMAN, PARKER, Am. Soc. 46, 2820) oder bei —20° (IWANOW, Bl. [4] 37, 290; FOURNEAU, FLORENCE, Bl. [4] 43, 211). — Darst. Man kocht eine Lösung von 245 g Natriumcyanid in 245 cm³ Wasser mit 548 g 95% igem Alkohol und 548 g Butylbromid 30 Stdn. auf dem Wasserbad, filtriert das Natriumbromid ab und kocht das Filtrat mit 216 g Natriumhydroxyd in wenig Wasser, entfernt den Alkohol und säuert mit 300 ccm 50% iger Schwefelsäure an; Ausbeute 81% der Theorie (Adams, Marvel, Am. Soc. **42**, 312).

F: —34,55° (LIEVENS, Bl. Soc. chim. Belg. 33, 126; C. 1924 II, 1328). Kp₇₆₀: 186,00° (Lie.); Kp₇₄₃: 184,5° (Kailan, Raupenstrauch, M. 45, 486); Kp₇₄₀: 184° (K., Schachner, M. 52, 23); Kp₇₃₄: 183,6° (Votoček, Prelog, Collect. Trav. chim. Tchécosl. 1, 62; C. 1929 II, 579); Kp₆₈₅: 180—181° (korr.) (Bhide, Sudborough, J. indian Inst. Sci. 8, 104; C. 1926 I, 80). Der E I 2, 130 angegebene Siedepunkt (Kp₇₆₀: 187,0°) bezieht sich auf ein durch Fraktionieren von 1 kg käuflicher n-Valeriansäure (von Kahlbaum) erhaltenes Präparat; ein aus Butylbromid über Valeronitril dargestelltes Präparat zeigte Kp₇₆₀: 186,3° (Timmermans, Priv.-Mitt.). Abhängigkeit des Siedepunktes vom Druck: Lievens.

D₁°: 0,9573; D₁°: 0,9435 (Lievens, Bl. Soc. chim. Belg. 33, 127; C. 1924 II, 1328). Einfluß dünner Schichten von n-Valeriansäure auf die gleitende Reibung auf Glas und auf Wismut: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 555, 560, 563; C. 1922 IV, 514. $n_0^{t_1}$: 1,4078; $n_1^{t_2}$: 1,4099; $n_2^{t_3}$: 1,4152; $n_1^{t_2}$: 1,4194 (Lie.); $n_0^{t_2}$: 1,3857; $n_0^{t_3}$: 1,3877; $n_2^{t_3}$: 1,3925; $n_2^{t_3}$: 1,3963 (Waterman, Bertram, R. 48, 701). Lichtabsorption im Ultrarot zwischen 1,7 und 14,26 μ: W. W. Coblentz, Investigations of Infra-red Spectra [Washington 1905], S. 155, 164, 210; zwischen 1 und 15 μ: V. Henri, Études de photochimie [Paris 1919], S. 88. Beugung von Röntgenstrahlen an flüssiger n-Valeriansäure: Stewart, Mannheimer, Z. anorg. Ch. 171, 68; St., Pr. nation. Acad. USA. 13, 787; C. 1928 I, 639; Morrow, Phys. Rev. [2] 31, 11; C. 1928 I, 2693; Katz, Z. ang. Ch. 41, 337; an fester (?) n-Valeriansäure: Gibbs. Soc. 125, 2624.

Verteilung zwischen Wasser und Benzol bei 25°: Brown, Bury, Soc. 123, 2433; zwischen Wasser und Benzol, Wasser und Toluol und zwischen Wasser und Chloroform bei 25°: Smith, White, J. phys. Chem. 33, 1962, 1966, 1974; zwischen Wasser und Xylol und zwischen Wasser und Chloroform bei 25°: Sm., J. phys. Chem. 25, 223, 230; zwischen Äther und Wasser bei 22°: Behrens, Fr. 69, 100, 101, 102; bei 25°: Sm., J. phys. Chem. 25, 625; zwischen Aceton und Glycerin bei 25°: Sm., J. phys. Chem. 25, 729; zwischen Wasser und Olivenöl: Bodansky, J. biol. Chem. 79, 252. Kryoskopisches Verhalten in Benzol und Nitrobenzol: Trautz, Moschel, Z. anorg. Ch. 155, 14. Oberflächenspannung wäßr. Lösungen bei 17,5°: Roy, Quart. J. indian chem. Soc. 4, 310; C. 1928 I, 659; zwischen 0° und 100°: Rehbinder. Ph. Ch. 111, 453; Bio. Z. 187, 33. Grenzflächenspannung von Lösungen in Benzol gegen verd. Natronlauge und Lösungen von Natriumchlorid in Natronlauge: Dubrisay, Rev. gén. Collotles 5, 487; C. 1927 II, 396. Einfluß auf die Grenzflächenspannung zwischen Benzol und Wasser: Du., C. r. 178, 1976; Bl. [4] 37, 999. Ausbreitung wäßr. Lösungen auf einer Quecksilberoberfläche: Burdon, Oliphant, Trans. Faraday Soc. 23, 208; C. 1927 II, 677.

Adsorption des Dampfes an Tierkohle: ALEXEJEWSKI, Ж. 55, 416; C. 1925 II, 642. Adsorption aus wäßr. Lösung an Tierkohle: Freundlich, Birstein, Koll. Beih. 22, 96; C. 1926 II, 1250; Klein, Lotos 71 [1923], 287; Schilow, Nekrassow, Ph. Ch. 130, 67; Ж. 60, 105; an Kokosnußkohle: Namasivayam, Quart. J. indian chem. Soc. 4, 451; C. 1928 I, 662; an Zuckerkohle bei 16°: Nekrassow, Ph. Ch. 136, 380; an bei verschiedenen Temperaturen aktiverte Zuckerkohle und Holzkohle: Dubinin, Ph. Ch. [A] 140, 83; an Kohle verschiedener Herstellung: D., Ж. 61, 587; C. 1929 II, 1635; an verschiedene aktive Kohlen aus Lösungen in Wasser und verschiedenen organischen Lösungsmitteln: Ne., Ph. Ch. 136, 22, 26. Adsorption aus wäßr. Lösungen an Siloxen: Kauteky, Blinoff, Ph. Ch. [A] 139, 509; an Eisen(III)-hydroxyd: Sen, J. phys. Chem. 31, 526. Wirkung auf die Quellung

des Caseins: ISGARYSCHEW, POMERANZEWA, Koll. Z. 38, 236; C. 1926 I, 3129. Beugung von linearpolarisiertem Licht an der Oberfläche wäßr. Lösungen: BOUHET, C. r. 188, 60; 189, 43. Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: REMESOW, Bio. Z. 207, 77; in wäßriger und alkoholischer Lösung bei 30°: HUNT, BRISCOE, J. phys. Chem. 38, 192. Elektrolytische Dissoziationskonstante k bei 25°: 1,52×10⁻⁵ (aus der elektrischen Leitfähigkeit) (KLEIN, Lotos 71 [1923], 287).

Zersetzt sich beim Erhitzen mit konz. Schwefelsäure unter Bildung von Kohlenoxyd, Kohlendioxyd und Schwefeldioxyd (SENDERENS, ABOULENC, C. r. 185, 1088). Die aus Butylmagnesiumchlorid bzw. -bromid und Kohlendioxyd erhältlichen Magnesiumchloridund Magnesiumbromid-Salze der n-Valeriansäure liefern bei der trocknen Destillation Dibutylketon (Iwanow, Bl. [4] 43, 446). Oxydation mit Chromschwefelsäure: Lieben, Molnar, M. 53/54, 7; bei 1000: POLONOVSKI, C. r. 178, 577. Bei der Oxydation von n-Valeriansaure mit Permanganat in alkal. Lösung entsteht bei Zimmertemperatur ebenso wie in der Hitze Oxalsaure (SKRAUP, SCHWAMBERGER, A. 462, 151). Gibt beim Leiten mit Ameisensäure über Mangan(II)-oxyd bei 340—360° n-Valeraldehyd (Nomura, el Choi, Sci. Rep. Tohoku Univ. 17, 709; C. 1928 II, 1325). Liefert beim Behandeln mit Schwefeltrioxyd und nachfolgendem Erwärmen auf dem Wasserbad α-Sulfo-n-valeriansäure (BACKER, TOXOPÉUS, R. 45, 896). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: Внгре, Sudborough, J. indian Inst. Sci. 8 A, 105; С. 1926 I, 80; in Gegenwart von Trichloressigsäure, Pikrinsäure und Salzsäure: Goldschmidt, Ph. Ch. 94, 245; mit absolutem und verdünntem Äthylenglykol in Gegenwart von Salzsäure bei 25°: Kailan, Schachner, M. 52, 25; mit absolutem und wasserhaltigem Glycerin und Salzsäure oder Schwefelsäure bei 25° oder ohne Katalysatoren bei 183,5°: K., RAUPENSTRAUCH, M. 45, 492, 505, 511. 1 Mol Valeriansäure gibt mit 2,5 Mol Oxalylchlorid n-Valeriansäurechlorid (Adams, Ulion, Am. Soc. 42, 604). 2 Mol Natriumvalerianat in Benzol geben mit 1 Mol Oxalylchlorid Valeriansäureanhydrid (A., U.).

Das Calciumsalz gibt bei der Einw. von Aspergillus niger in Wasser Methyläthylketon und β-Oxy-valeriansäure (Coppock, Subramaniam, Walker, Soc. 1928, 1423, 1424). Reduktion von Methylenblau in Gegenwart von ruhenden Bact. coli: Quastel, Whetham, Biochem. J. 19, 522, 530. Wachstumshemmende Wirkung auf Schimmelpilze: Derx, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345. Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884. — Zusammenstellung von Reaktionen für den Nachweis von Valeriansäure (allein und in Gegenwart anderer Säuren): ROJAHN, STRUFF-MANN, Ar. 1927, 305.

NH₄C₅H₉O₂. D₅. 0,9871 (Biltz, Balz, Z. anorg. Ch. 170, 338). Dichte wäßr. Lösungen bei 20°: DE GARCÍA, An. Soc. quím. arg. 8 [1920], 382. Brechungsindices wäßr. Lösungen bei 20°: DE G. — Lithiumsalz. Röntgenogramm (Pulveraufnahmen): BECKER, JANCKE, Ph. Ch. 99, 268. — NaC₅H₂O₂. Bewegung auf Wasseroberflächen: Zahn, R. 45, 790. Oberflächenspannung wäßr. Lösungen bei 18°: Lascaray, Koll.-Z. 34, 75; C. 1924 I, 2413. Einfluß auf die Grenzflächenspannung zwischen Benzol und Wasser: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 999. — KC₅H₂O₂. Röntgenreflexionsaufnahmen: PIPER, Soc. 1929, 236. Lösungsvermögen der wäßr. Lösung für verschiedene organische Verbindungen: Tamba, Bio. Z. 145, 417; für Nitrobenzol und Anilin: v. Euler, Z. El. Ch. 23 [1917], 195. Oberflächenspannung der 2n-wäßrigen und der mit Nitrobenzol und Anilin gesättigten wäßr. Lösungen: v. Eu. Saures Kaliumsalz. Röntgenreflexionsaufnahmen: Piper, Soc. 1929, 236. — Cu(C₅H₉O₂)₂. Absorptionsspektrum der Lösungen in Chloroform und Alkohol im ultraroten, sichtbaren und ultravioletten Gebiet: French, Lowry, Pr. roy. Soc. [A] 106, 494; C. 1925 I, 601. Magnesiumsalz. F: 258° (Maquennescher Block) (Iwanow, Bl. [4] 43, 446). — Zn(C₅H₉O₉), +2H₄O. Sechsseitige, fettige Blättchen (Flössner, Z. Biol. 82, 299). Hat typischen Baldriangeruch. Ist in heißem Wasser schwerer löslich als in kaltem. —TlC₅H₉O₂. Krystalle (aus Benzol) (Menzies, Wilkins, Soc. 125, 1149); doppelbrechende Blättchen (aus Alkohol + Aceton) (Walter, B. 59, 967). F: 145—147° (M., Wi.). Existiert in zwei festen Modifikationen; die doppelbrechenden Blättchen gehen bei 78° (korr.) in eine schwach doppelbrechende Phase über (WA.). Die Schmelze ist zwischen 175° und 212° (korr.) krystallin-flüssig (WA.). Verhalten des krystallin-flüssigen Systems: WA. Sehr leicht löslich in Methanol, Alkohol, Wasser, Chloroform, Essigester (WA.) und heißem Benzol, leicht in Amylalkohol, schwer in siedendem Ather, heißem Benzin (M., WI.), Aceton, Toluol und Xylol (WA.). Schmelzpunkte von Gemischen mit Thallium(I)-butyrat: WA. — Eisen(III)-Salz. Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 496; C. 1928 II, 2626.

Methyl-n-valerianat $C_0H_{12}O_2 = CH_3 \cdot [CH_2]_3 \cdot CO_2 \cdot CH_3$ (H 301; E I 130). V. Im Holzgeistöl (Pringsheim, Schreiber, Cellulosech. 8, 46; C. 1927 II, 1224). — B. Beim allmählichen Erhitzen von n-Valeriansäure mit Dimethylsulfat auf 200° (Simon, C. r. 176, 585). — F: —91,0° (Lievens, Bl. Soc. chim. Belg. 33, 126; C. 1924 II, 1328). Kp₇₆₀: 127,70° (L.); Kp₁₆: 87—88° (P., Sch.). Abhängigkeit des Siedepunkts vom Druck: L. D?: 0,9096; D₁°: 0,8947 (L.). Parachor: Sugden, Soc. 125, 1184. n_3^{ts} : 1,3974; n_3^{ts} : 1,3993; n_6^{ts} : 1,4044;

nu: 1,4084 (L.). Ultrarot-Absorptionsspektrum: Lecomte, C. r. 178, 1699. — Hydrolyse durch Ricinuslipase: LOBBERBLATT, FALK, Am. Soc. 48, 1661.

Äthyl-n-valerianat $C_7H_{14}O_2 = CH_3 \cdot [CH_3]_3 \cdot CO_3 \cdot C_2H_5$ (H 301; E I 130). B. Neben anderen Produkten beim Einleiten von Chlorwasserstoff in eine alkoh. Lösung von Lävulinsäureäthylester in Gegenwart von amalgamiertem Zink b i 200 (Steinkoff, Wolfram, A. 430, 142). — Darst. Durch 10-stündiges Kochen von 415 g n-Valeronitril mit 1 kg 95 % igen Alkohol und 1 kg konz. Schwefelsäure; Ausbeute 85—90 % der Theorie (Adams, Marvell, Am. Soc. 42, 313). — E: —91,2° (Lievens, Bl. Soc. chim. Belg. 33, 136; C. 1924 II, 1328). Kp₇₈₀: 145,45° (L.): Abhängigkeit des Siedepunkts vom Druck: L. D^a: 0,8930; D^a: 0,8779 (L.). Parachor: Sugden, Soc. 125, 1184. n^a: 1,4020; n^a: 1,4044; n^a: 1,4093; n^a: 1,4130 (L.). — Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986.

Propyl-n-valerianat $C_8H_{16}O_2=CH_3\cdot [CH_2]_3\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot (H 301)$. F: $-70,7^{\circ}$ (Lievens, *Bl. Soc. chim. Belg.* 33, 126; *C.* 1924 II, 1328). Kp: 166,15° (L.). Abhängigkeit des Siedepunkts vom Druck: L. D_4° : 0,8893; D_4^{is} : 0,8741 (L.). Parachor: Sugden, Soc. 125, 1184. n_{α}^{15} : 1,4066; n_{β}^{15} : 1,4087; n_{β}^{15} : 1,4139; n_{γ}^{15} : 1,4172 (L.).

Isopropyl - n - valerianat $C_8H_{16}O_2 = CH_3 \cdot [CH_2]_3 \cdot CO_2 \cdot CH \cdot (CH_3)_2$. Bakteriolytische Wirkung: Stoye, Z. Hyg. Inf.-Kr. 103, 100, 102; C. 1924 II, 1214.

Butyl-n-valerianat $C_9H_{18}O_3=CH_3\cdot [CH_2]_3\cdot CO_2\cdot [CH_3]_3\cdot CH_3$ (H 301). F: $-92,8^\circ$ (Lievens, Bl. Soc. chim. Belg. 33, 126; C. 1924 II, 1328). Kp: 186,90°. Abhängigkeit des Siedepunkts vom Druck: L. D_0^4 : 0,8852; D_4^4 : 0,8700 (L.). n_0^{12} : 1,4105; n_0^{15} : 1,4126; n_0^{15} : 1,4178; n¹⁵; 1,4219 (L.). — Verwendung als technisches Lösungsmittel: O. Merz, Neuere Lösungsmittel und Weichmachungsmittel [Berlin 1939], S. 23.

Isobutyl-n-valerianat $C_9H_{18}O_2=CH_3\cdot[CH_3]_3\cdot CO_3\cdot CH_2\cdot CH\cdot (CH_3)_2$. Kp_{760} : 192,7° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 23). Parachor: Sugden, Soc. 125, 1184. Ultrarotabsorptionsspektrum: Lecomte, C. r. 178, 1699. Bildet mit Acetamid ein azeotropes Gemisch (Kp_{760} : 184,85°; 84 Gew.-% Isobutyl-n-valerianat) (Lecat).

n-Amyl-n-valerianat $C_{10}H_{30}O_3=CH_3\cdot [CH_3]_3\cdot CO_2\cdot [CH_2]_4\cdot CH_3$ (H 301). F: $-78,8^{\circ}$ (Lievens, Bl. Soc. chim. Belg. 33, 126; C. 1924 II, 1328). Kp₇₈₀: 207,40°. Abhāngigkeit des Siedepunkts vom Druck: L. D_i^{o} : 0,8825. n_{ij}^{ij} : 1,4161; n_{ij}^{ij} : 1,4181; n_{ij}^{ij} : 1,4233; n_{ij}^{ij} : 1,4274.

Isoamyl-n-valerianat $C_{10}H_{20}O_3 = CH_3 \cdot [CH_2]_3 \cdot CO_3 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot (CH_3)_3$. Kp₇₈₀: 192,7° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 24). Bewegung auf Wasseroberflächen: EDWARDS, Soc. 127, 747. Bildet mit Propionamid ein azeotropes Gemisch (Kp760: 188,45°; 87,8 Gew.-% Isoamyl-n-valerianat) (L.).

Chlormethyl-n-valerianat $C_0H_{11}O_2Cl = CH_3 \cdot [CH_2]_3 \cdot CO_3 \cdot CH_2Cl$. B. Aus n-Valerylchlorid und Paraformaldehyd in Gegenwart von Zinkehlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp750: 163—1660.

 $[\alpha - Chlor - athyl] - n - valerianat C_7H_{13}O_2Cl = CH_3 \cdot [CH_2]_3 \cdot CO_2 \cdot CHCl \cdot CH_3$. B. Aus Acetaldehyd und n-Valerylchlorid im Rohr bei ca. 100° (RÜBENCAMP, A. 225 [1884], 279) oder in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₇₅₀: 163—165° (U., A.). D¹⁸: 0,997 (R.).

[α -Chlor-isobutyl]-n-valerianat $C_0H_{17}O_2Cl=CH_3\cdot [CH_3]_3\cdot CO_3\cdot CHCl\cdot CH(CH_3)_3$. B. Aus Isobutyraldehyd und n-Valerylchlorid in Gegenwart von Zinkchlorid bei ca. 90° (ULICH, ADAMS, Am. Soc. 43, 662). — Kp₈: 80—83°.

n-Valeriansäureanhydrid $\tilde{C}_{10}H_{18}O_3=(CH_3\cdot[CH_2]_3\cdot CO)_2O$ (H 301; E I 131). B. Beim Kochen von 2 Mol Natrium-n-valerianat mit 1 Mol Oxalylchlorid in Benzol (Adams, Ulich, Am. Soc. 42, 607). — E: —56,1° (TIMMERMANS, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp_{760} : 227,5° $\pm 0,1°$ (TI., Priv. Mitt.).

n-Valeriansäurechlorid, n-Valerylchlorid $C_5H_9OCl = CH_2 \cdot [CH_2]_3 \cdot COCl$ (H 301). F: -110,0°; Kp,20: 127,2° (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27).

n-Valeriansäureamid, n-Valeramid $C_5H_{11}ON = CH_3 \cdot [CH_2]_3 \cdot CO \cdot NH_2$ (H 301; E I 131). B. Beim Erwärmen von n-Valerylchlorid mit Magnesiumamidjodid $Mg(NH_2)I$ in Ather auf dem Wasserbad und Zersetzen des Reaktionsprodukts mit Wasser (ODDO, CALDERABO, G. 53, 71). Aus n-Valeronitril bei 48-stdg. Einw. von Salzsäure (D: 1,18) (FISEE, J. biol. Chem. 55, 218). — Blättchen (aus Wasser). F: 106° (korr.) (Fl.), 114° (O., C.). Elektrische Leitfähigkeit von n-Valeramid und n-Valeramid-Kalium in flüssigem Ammoniak bei —33,5°: Smith, Am. Soc. 49, 2164. — Geschwindigkeit der Verseifung durch Salzsäure oder Natronlauge bei 100°: Fi. Eine als N.N'-n-Valeryl-hydrazin angesprochene Verbindung entsteht beim Kochen von n-Valeramid und Dischwefeldichlorid in Petroläther (Nair, PATEL, Quart. J. indian chem. Soc. 1, 28, 31; C. 1925 I, 487). — Verseifung im Organismus hungernder Katzen: F1.

- n -Valeriminoäthyläther $C_7H_{18}ON = CH_3 \cdot [CH_1]_3 \cdot C(:NH) \cdot O \cdot C_2H_5$. B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in eine Mischung von n-Valeronitril und Alkohol in Äther unter Kühlung mit Kältemischung (HILL, RABINOWITZ, Am. Soc. 48, 734). Das Hydrochlorid liefert bei längerer Einw. auf p-Phenetidin in Äther je nach den Mengenverhältnissen N-[4-Äthoxy-phenyl]-n-valeramidin oder N.N'-Bis-[4-äthoxy-phenyl]-n-valeramidin.
- n-Valeronitril, Butylcyanid $C_5H_9N=CH_3\cdot [CH_9]_8\cdot CN$ (H 301; E I 131). B. Beim Leiten von Di-n-amylamin oder Tri-n-amylamin über Nickel bei 360—380°, neben anderen Produkten (Mailhe, A. ch. [9] 13, 193). Darst. Man kocht ein Gemisch aus 690 g pulverisiertem Natriumcyanid, 690 cm³ Wasser, 1575 g 95% igen Alkohol und 1575 g Butylbromid 25—30 Stdn. und destilliert; Ausbeute 75—80% (Adams, Marvel, Am. Soc. 42, 311). E: —96° (Lievens, Bl. Soc. chim. Belg. 33, 126; C. 1924 II, 1328; Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp₇₈₀: 140,75° (Ti., Priv. Mitt.); 140,75° \pm 0,03° (L.); 140,70° \pm 0,03° (Van Bogaret, Bl. Soc. chim. Belg. 36, 386; C. 1927 II, 1134). Abhängigkeit des Siedepunktes vom Druck: L. D°: 0,8165; D°: 0,8036 (L.; van B.); D°: 0,8018 (v. Auwers, B. 60, 2126). Parachor: Sugden, Soc. 125, 1186. n°: 1,3970; n°: 1,3990; n°: 1,4040; n°: 1,4079 (L.); n°: 1,3949; n°: 1,3972; n°: 1,4020; n°: 1,4061 (v. Au.). Einfluß auf die Adsorption von Adrenalin aus wäßr. Lösungen an Tierkohle: Zondek, Bansi, Bio. Z. 195, 381.

E I 131, Z. 9 v. u. statt ,, D_4^{15} : 0,9566" lies ,, D_4^{15} : 0,8036 1).

- n-Valeronitril liefert bei der Hydrierung in Gegenwart von Nickel in Alkohol + Wasser + Athylacetat bei gewöhnlicher Temperatur Di-n-amylamin (Rupe, Metzger, Vogler, Helv. 8, 852); bei der Hydrierung in Gegenwart von kolloidalem Platin erhält man Di-n-amylamin und wenig Tri-n-amylamin (Skita, Keil, M. 53/54, 760). Beim Leiten mit Wasserdampf über Thoriumoxyd bei 420—430° entsteht n-Valeriansäure (Mailhe, Bl. [4] 27, 756). Die Natriumverbindung (aus n-Valeronitril und Natriumamid in äther. Suspension) liefert bei der Einw. von Benzylchlorid in der Siedehitze Butylbenzylacetonitril (Ramart, C. r. 182, 1227). Bei der Umsetzung mit 1 Mol Butylmagnesiumbromid in Methylal entstehen Dibutylketon und Tributylcarbinol (Bourgom, Bl. Soc. chim. Belg. 33, 113; C. 1924 II, 1333).
- n-Valeramidin $C_5H_{12}N_2 = CH_3 \cdot [CH_2]_3 \cdot C(:NH) \cdot NH_2 KC_5H_{11}N_2$. B. Aus Kaliumamid und Valeronitril in flüssigem Ammoniak (Cornell, Am. Soc. 50, 3315). Krystalle. Löslich in flüssigem Ammoniak bei Zimmertemperatur. Liefert beim Erhitzen mit Kaliumamid Butan und Kaliumcyanamid.
- N.N'-Di-n-valeryl-hydrazin $C_{10}H_{20}O_2N_2=CH_3\cdot[CH_2]_3\cdot CO\cdot NH\cdot NH\cdot CO\cdot[CH_2]_3\cdot CH_3$. B. Eine als N.N'-Di-n-valeryl-hydrazin angesprochene Verbindung $C_{10}H_{20}O_2N_2$ entsteht aus Valeriansäureamid und Dischwefeldichlorid in siedendem Petroläther (NAIK, PATEL, Quart. J. indian chem. Soc. 1, 31; C. 1925 I, 487). Tafeln (aus Benzol). F: 123°.
 - $\alpha\text{-Chlor-n-valerians}\\ \text{\"aure } C_5H_9O_2Cl = CH_3\cdot CH_2\cdot CH_2\cdot CHCl\cdot CO_2H.$
- a) Inhksdrehende α -Chlor-n-valeriansäure. B. Aus rechtsdrehendem 3-Chlor-hexen-(1) durch Ozonisierung in Chloroform, Zersetzung mit Wasser und Oxydation des entstandenen Aldehyds mit Bromwasser (Levene, Haller, J. biol. Chem. 83, 596). Kp₁: 80—84°. $[\alpha]_{5}^{5}$: —11,6° (Äther; c = 7); —8,4° (50% iger Alkohol; c = 9). Natrium-salz. $[\alpha]_{5}^{5}$: —3,0° (verd. Alkohol; c = 6).
- b) Inaktive α-Chlor-n-valeriansäure C₅H₉O₃Cl = CH₃·CH₂·CH₂·CHCl·CO₃H. Nitril, inakt. α-Chlor-n-valeronitril C₅H₉NCl = CH₃·CH₂·CH₂·CH₂·CHCl·CN (H 302). Kp: 161° (Theunis, Bl. Acad. Belgique [5] 12, 786; C. 1927 I, 889). Gibt bei der Umsetzung mit Äthylmagnesiumbromid in Äther α.α-Diāthyl-α'-propyl-āthylenimin und geringere Mengen 2.2.5.5-Tetraāthyl-3.6-dipropyl-piperazin.
- β-Chlor-n-valeriansäure-äthylester $C_7H_{13}O_9Cl = CH_3 \cdot CH_2 \cdot CH_2 \cdot CO_3 \cdot C_3H_5$. Rechtsdrehende Form. B. Beim Kochen von linksdrehendem β-Chlor-n-valeronitril mit alkoh. Salzsäure (Levene, Mori, J. biol. Chem. 78, 9). Beim Behandeln von linksdrehendem β-Oxy-n-valeriansäure-äthylester mit Thionylchlorid oder mit Phosphorpentachlorid in Chloroform (L., M.). Kp_{10} : 66.5— 67° . [α] $^{\circ}$: $+5.4^{\circ}$ (Ather; c=10); α $^{\circ}$: $+6.7^{\circ}$ (unverdünnt; l=10 cm). Wird beim Behandeln mit Kaliumhydrosulfid weitgehend racemisiert.
- β -Chlor-n-valeramid (?) $C_6H_{10}ONCl=CH_2\cdot CH_2\cdot CH_2\cdot CO\cdot NH_2$. Rechtsdrehende Form. B. Neben rechtsdrehendem β -Chlor-n-valeriansäure-äthylester beim

 $^{^{1}}$) Im Original sind die Werte für D_{4}^{15} von n-Valeronitril und Methoxyacetonitril anscheinend miteinander vertauscht (BELLSTEIN-Red.).

Kochen von linksdrehendem β -Chlor-n-valeronitril mit alkoh. Salzsäure (Levene, Mori, J. biol. Chem. 78, 9). Krystalle (aus Äther + Petroläther). F: 100—102° (unkorr.). $[\alpha]_{\nu}^{m}$: +3,0° (Chloroform, c = 6).

 β -Chlor-n-valeronitril $C_8H_8NCl=CH_3\cdot CH_2\cdot CHCl\cdot CH_2\cdot CN$. Linksdrehende Form. B. Beim Behandeln von rechtsdrehendem β -Oxy-n-valeronitril mit Thionylchlorid oder mit Phosphorpentachlorid (Levene, Mori, J. biol. Chem. 78, 7). — Kp₁₀: 69—70°. [α] $_{\Sigma}^{\infty}$: —10,5° (Ather; c=10). Löslich in Alkohol, Chloroform und Ather, schwer löslich in Petroläther. unlöslich in Wasser. — Gibt beim Kochen mit alkoh. Salzsäure rechtsdrehenden β -Chlor-n-valeriansäure-äthylester und rechtsdrehendes β -Chlor-n-valeramid (?).

$\gamma\text{-Chlor-n-valerians}\\ \text{aure } C_5H_9O_2Cl = CH_3\cdot CHCl\cdot CH_2\cdot CH_2\cdot CO_2H.$

a) Linksdrehende γ -Chlor-n-valeriansäure $C_5H_9O_2Cl = CH_3 \cdot CHCl \cdot CH_2 \cdot CH_2 \cdot CO_2H$. B. Aus linksdrehendem 5-Chlorhexen-(1) durch Ozonisierung in Chloroform und Oxydation des aus dem Ozonid durch Zersetzung mit Wasser entstandenen Aldehyds mit Bromwasser (Levene, Haller, J. biol. Chem. 83, 599). Aus linksdrehendem γ -Chlorn-valeriansäure-äthylester beim Behandeln mit rauchender Salzsäure erst bei 10°, dann bei 40° (L., Mori, J. biol. Chem. 78, 17). — Kp₁₀: 108—110° (L., M.): Kp₁: 95—100° (L. H.). [α] $_{\rm D}^{\rm m}$: -5,2° (25% iger Alkohol; c = 6) (L., M.). [α] $_{\rm D}^{\rm m}$: -40,9° (Äther; c = 11); -38,9° (50% iger Alkohol; c = 8) (L., H.). — Gibt bei Einw. von wäßr. Kaliumhydrosulfid-Lösung linksdrehendes γ -Valerolacton (L., M.). — Natriumsalz. [α] $_{\rm D}^{\rm m}$: -3,4° (25% iger Alkohol; c = 6) (L., M.); [α] $_{\rm D}^{\rm m}$: -27,4° (verd. Alkohol; c = 5) (L., H.).

Äthylester $C_7H_{13}O_2Cl=CH_3\cdot CHCl\cdot CH_2\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von linksdrehendem γ -Valerolacton mit alkoh. Salzsäure erst bei 0^0 , dann bei Zimmertemperatur (Levene, Mori, J. biol. Chem. 78, 17). — Kp₀: 71—73°. $\alpha_D^{m_0}: -5,4^0$ (unverdünnt, l=10 cm); $[\alpha]_D^{m_0}: -19,7^0$ (Äther; c=4). — Gibt beim Behandeln mit alkoh. Kaliumhydrosulfid-Lösung rechtsdrehenden γ -Mercapto-n-valeriansäure-äthylester und linksdrehendes Thio- γ -valerolacton.

b) Rechtsdrehende y-Chlor-n-valeriansäure $C_5H_9O_2Cl=CH_3\cdot CHCl\cdot CH_2\cdot CH_2\cdot CO_2H$.

Äthylester $C_7H_{13}O_2Cl = CH_3 \cdot CHCl \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Behandeln von rechtsdrehendem γ -Valerolacton mit alkoh. Salzsäure (Levene, Mori, J. biol. Chem. 78, 17). — $\alpha_D^{n_1}$: $+4,3^{o}$ (unverdünnt; l=10 cm).

 $\delta\text{-Chlor-n-valerians}$ ure $C_5H_9O_3Cl=CH_2Cl\cdot[CH_2]_3\cdot CO_2H$ (H 302). B. Zur Bildung nach Funk (B. 26, 2574) vgl. Conant, Kirner, Am. Soc. 46, 244.

Äthylester $C_7H_{13}O_2Cl = CH_2Cl \cdot [CH_2]_3 \cdot CO_2 \cdot C_2H_5$ (H 302). Kp₈: 83° (Conant, Kirner, Am. Soc. 46, 245). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 50°: C., K.

$\alpha\text{-Brom-n-valerians}\\ \ddot{a}ure \ C_5H_9O_2Br = CH_3\cdot CH_2\cdot CH_2\cdot CHBr\cdot CO_2H.$

- a) Rechtsdrehende α -Brom-n-valeriansäure $C_5H_9O_2Br=CH_3\cdot CH_2\cdot CH_2\cdot CHBr\cdot CO_2H$. B. Durch Spaltung der inakt. Säure, am besten über das Chininsalz (Levene, Mort, Mireska, J. biol. Chem. 75, 344). Kp₁₅: 123—124°. [α]: + 31,0° (Äther; c=7): +20,3° (Wasser; c=1). Gibt beim Erhitzen mit Soda-Lösung linksdrehende α -Oxyn-valeriansäure. Das Kaliumsalz gibt beim Umsetzen mit äthylxanthogensaurem Kalium in wäßr. Lösung linksdrehende α -[Äthylxanthogen]-n-valeriansäure. Natriumsalz. [α]: +7,3° (Wasser; c=9).
- b) Inaktive α-Brom-n-valeriansäure C₅H₃O₂Br = CH₃·CH₂·CH₂·CHBr·CO₂H (H 302). Verteilung zwischen Wasser und Benzol bzw. Toluol: Smith, White, J. phys. Chem. 33, 1957; zwischen Olivenöl und Wasser: Fourneau, Florence, Bl. [4] 43, 1036. Elektrische Leitfähigkeit wäßriger und alkoholischer Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 193.

Chlorid, inakt. α-Brom-n-valerylchlorid C₅H₈OClBr = CH₃·CH₂·CH₂·CHBr·COCl. B. Durch Bromieren von n-Valerylchlorid (FOURNEAU, FLORENCE, Bl. [4] 43, 211). — Kp₁₈: 85—87°.

Bromid, inakt. α-Brom-n-valerylbromid C₅H₈OBr₂ = CH₃·CH₂·CH₂·CHBr·COBr. B. Aus n-Valeriansäure und Brom beim Erwärmen in Gegenwart von rotem Phosphor (v. Auwers, Wegener, J. pr. [2] 106, 245). — Stark rauchende Flüssigkeit. Kp: 190⁶. — Liefert mit p-Kresol-methyläther in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad [α-Brom-butyl]-[6-oxy-3-methyl-phenyl]-keton.

269

a) Rechtsdrehende β -Brom-n-valeriansänre $C_5H_9O_2Br=CH_3\cdot CH_2\cdot CHBr$. $CH_2\cdot CO_2H$. B. Beim Aufbewahren von rechtsdrehendem β -Brom-n-valeriansäureäthylester mit rauchender Bromwasserstoffsäure in der Kälte (Levene, Mori, J. biol. Chem. 78, 11). — Tafeln. F: ca. 30°. Kp₁₀: 117—119°. [α] $_1^{m}$: +11,0° (35% iger Alkohol; c = 1,5). Löslich in Alkohol, Ather. Chloroform und Petroläther, unlöslich in Wasser. — Gibt bei Einw. von Kaliumhydrosulfid-Lösung linksdrehende β -Mercapto-n-valeriansäure. — Natriumsalz. [α] $_1^{m}$: +8,5° (35% iger Alkohol; c = 1,5).

Äthylester $C_7H_{13}O_2Br=CH_3\cdot CH_2\cdot CHBr\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von linksdrehendem β -Oxy-n-valeriansäureäthylester mit Phosphorpentabromid in Chloroform unter Kühlung (Levene, Mori, J. biol. Chem. 78, 11). — $Kp_{10}\colon 74-76^0$. $\alpha_n^{20}\colon +16,1^0$ (unverdünnt; l=10 cm); $[\alpha]_0^{20}\colon +10,8^0$ (Äther; c=10). — Sehr leicht löslich in Alkohol, Äther, Chloroform und Petroläther, unlöslich in Wasser. — Liefert bei Einw. von alkoh. Kaliumhydrosulfid-Lösung linksdrehenden β -Mercapto-valeriansäure-äthylester.

b) Inaktive β-Brom-valeriansäure C₅H₉O₂Br = CH₂·CH₂·CHBr·CH₂·CO₂H (H 302). Verteilung zwischen Olivenöl und Wasser: FOURNEAU, FLORENCE, Bl. [4] 43, 1036.

 γ -Brom-n-valeriansäure $C_5H_9O_2$ Br == $CH_3\cdot CHBr\cdot CH_2\cdot CH_2\cdot CO_2H$ (H 302; E I 132). Verteilung zwischen Olivenöl und Wasser: Fourneau, Florence, Bl. [4] 43, 1036.

Äthylester $C_7H_{13}O_2Br = CH_3 \cdot CHBr \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 303; E I 132). Liefert mit Natrium-malonester in siedendem Alkohol neben γ -Valerolacton 2-Methyl-butantricarbonsäure-(1.1.4)-triäthylester und geringe Mengen eines Produkts, das beim Erhitzen mit konz. Salzsäure 1-Methyl-cyclopentanon-(3) ergibt; bei der analogen Umsetzung mit der Natriumverbindung des Methylmalonsäurediäthylesters erhält man hauptsächlich γ -Valerolacton und wenig 1.2-Dimethyl-cyclopentanon-(3) (STAUDINGER, RUZIOKA, Helv. 7, 249).

 δ -Brom-n-valeriansäure $C_5H_9O_2Br=CH_2Br\cdot[CH_2]_3\cdot CO_2H$ (H 303). B. Beim Kochen von δ -Phenoxy-n-valeriansäure oder von [γ -Phenoxy-propyl]-malonsäure-diäthylester mit 48% iger Bromwasserstoffsäure (Merchant, Wickert, Marvel, Am. Soc. 49, 1829). — F: 38—39°. Kp₁₃: 142—145°; Kp₆: 123—131°. — Liefert beim Erhitzen mit Phosphortribromid und Brom $\alpha.\delta$ -Dibrom-n-valeriansäure.

Äthylester $C_7H_{13}O_2Br=CH_2Br\cdot[CH_2]_3\cdot CO_2\cdot C_2H_5$. B. Beim Kochen der freien Säure mit Alkohol und konz. Schwefelsäure (Merchant, Wickert, Marvel, Am. Soc. 49, 1830). Beim Behandeln von δ -Brom-n-valerylchlorid mit Alkohol (Me., W., Ma.). — Kp₂₀: 106° bis 110°; Kp₇: 94—97°. D_{24}^{24} : 1,3191. n_{10}^{25} : 1,4580.

Chlorid, δ -Brom-n-valerylchlorid C_5H_6 OClBr = CH_2 Br·[CH_2] $_3$ ·COCl. B. Beim Kochen von δ -Brom-n-valeriansäure mit Thionylchlorid (Merchant, Wickert, Marvei., Am. Soc. 49, 1830). — Kp_{18} : 102—104 0 . D_4^m : 1,5010. n_2^m : 1,4879.

α.β-Dibrom-n-valeriansäure $C_5H_8O_2Br_2=CH_3\cdot CH_2\cdot CHBr\cdot CHBr\cdot CO_2H$ (H 303; E I 132). B. Aus Buten-(1)-carbonsäure-(1) und Brom (Goldberg, Linstead, Soc. 1928, 2351). — F: 56°.

Äthylester $C_7H_{12}O_2Br_2 = CH_3 \cdot CH_2 \cdot CHBr \cdot CHBr \cdot CO_2 \cdot C_2H_5$. B. Aus Buten - (1)-carbonsäure-(1)-äthylester und Brom in Schwefelkohlenstoff (v. Auwers, A. 432, 65). — Gelbes Öl. Kp_{14} : 117—117.5°. $D_4^{15.4}$: 1,6199; D_4^{10} : 1,613. $n_{\alpha}^{15.4}$: 1,4953; $n_{He}^{15.4}$: 1,4986; $n_{\beta}^{15.4}$: 1,5066; $n_{\gamma}^{15.4}$: 1,5133.

Amid, $\alpha.\beta$ -Dibrom-n-valeramid $C_5H_9ONBr_2=CH_3\cdot CH_2\cdot CHBr\cdot CO\cdot NH_2$. B. Aus Buten-(1)-carbonsäure-(1)-amid und 2 Atomen Brom in Eisessig unter Kühlung (v. Auwers, A. 432, 66). — Nadeln (aus verd. Alkohol). F: 168° (Zers.). — Leicht löslich in Äther, Aceton und Benzol, schwer löslich in Benzin.

Nitril, $\alpha.\beta$ -Dibrom-n-valeronitril $C_5H_7NBr_q=CH_3\cdot CH_2\cdot CHBr\cdot CHBr\cdot CN$. B. Beim Erwärmen von $\alpha.\beta$ -Dibrom-n-valeramid mit Phosphorpentoxyd unter vermindertem Druck (v. Auwers, A. 432, 67). — Gelbliches Öl. Kp₁₀: 110--1119. D₄^{17,6}: 1,7598; D₄²⁰: 1,756. $n_{\alpha}^{17,6}$: 1.5177; $n_{H}^{17,6}$: 1,5213; $n_{B}^{17,6}$: 1,5302; $n_{\alpha}^{17,6}$: 1,5388.

α.δ - Dibrom - n - valeriansäure $C_5H_8O_2Br_2=CH_2Br\cdot CH_2\cdot CH_3\cdot CHBr\cdot CO_2H$ (H 303) B. Beim Erhitzen von δ-Brom-n-valeriansäure mit Phosphortribromid und Brom (MERCHANT, WICKERT, MARVEL, Am. Soc. 49, 1830). — Kp₅: 150—152°. D₄⁸: 1,8629. n₅⁸: 1,5347. Äthylester $C_7H_{19}O_2Br_5 = CH_2Br \cdot CH_2 \cdot CH_2 \cdot CHBr \cdot CO_2 \cdot C_2H_5$. B. Aus $\alpha.\delta$ -Dibromn-valerylchlorid und Alkohol (Merchant, Wickert, Marvel, Am. Soc. 49, 1831). — Kp₁₄: 133—135°. D_2^{a} : 1,6289. n_2^{a} : 1,4947.

Chlorid, $\alpha.\delta$ -Dibrom-n-valerylchlorid $C_5H_7OClBr_2=CH_2Br\cdot CH_2\cdot CHBr\cdot COCl$ (H 303). B. Aus δ -Brom-n-valerylchlorid und Brom auf dem Wasserbad (MERCHANT, WICKERT, MARVEL, Am. Soc. 49, 1830). — Kp₁₅: 138—145°.

 $\beta.\gamma$ -Dibrom-n-valeriansäure $C_5H_8O_2Br_2=CH_3\cdot CHBr\cdot CHBr\cdot CH_2\cdot CO_2H$ (H 303). F: 646 (GOLDBERG, LINSTEAD, Soc. 1928, 2351).

 δ -Jod-n-valeriansäure $C_5H_9O_3I=CH_2I\cdot[CH_2]_3\cdot CO_3H$ (H 304). Nadeln (aus Petroläther). F: 54—56° (Carter, Am. Soc. 50, 1968). — Das Natriumsalz geht bei der trocknen Destillation im Vakuum in δ -Valerolacton über (Hollo, B. 61, 903).

Äthylester $C_7H_{13}O_2I=CH_2I\cdot [CH_2]_2\cdot CO_3\cdot C_2H_5$. B. Beim Kochen von δ -Jod-n-valeriansäure mit alkoh. Salzsäure (Carter, Am. Soc. 50, 1969). — Kp₂₀: 108—118°.

- 2. Butan-carbonsäure-(2), a-Methyl-buttersäure, Methyläthylessigsäure $C_5H_{10}O_2=CH_3\cdot CH_2\cdot CH_2\cdot CH_3\cdot CO_2H$.
- a) Rechtsdrehende Methyläthylessigsäure, "d-Valeriansäure" $C_5H_{10}O_2=CH_3\cdot CH_4\cdot CH_4\cdot CH_3\cdot CO_2H$ (H 304; E I 133). B. Aus Pharbitin (Harzglykosid aus den Samen von Pharbitis Nil Chois) bei der Alkalispaltung, neben anderen Produkten (Asahina, Shimidzu, J. pharm. Soc. Japan 1922, Nr. 479, 1; C. 1922 I, 976). Bei der Einsäuerung von Mais (Brahm, Bio. Z. 156, 18). Kp: 176°; $D_4^{ss,5}$: 0,9303; $[\alpha]_0$: +19,33° (A., Sh.).

Chlorid, "d-Valerylchlorid" $C_5H_9OCl = CH_3 \cdot CH_9 \cdot CH(CH_9) \cdot COCl$. B. Aus (optisch nicht reiner) d-Methyläthylessigsäure und Thionylchlorid (Karrer, Mitarb., Helv. 8, 210). — Kp: 112°.

b) Inaktive Methyläthylessigsäure, "dl-Valeriansäure" C₅H₁₀O₂=CH₃·CH₂·CH(CH_e)·CO₂H (H 305; E I 133). V. Im rohen Holzessig (Seib, B. 60, 1395; vgl. Krämer, Grodzki, B. 11 [1878], 1359). — B. Aus dl-Methyläthylacetaldehyd bei der Einw. von Bact. xylinum, Bact. ascendens, Acetontrockenpräparat aus Bact. ascendens oder Pferdeleberbrei, neben dl-sek.-Butylcarbinol (Neuberg, Simon, Bio. Z. 174, 454). Schwach aktive Methyläthylessigsäure entsteht neben l-Amylalkohol bei der Einw. von Bact. pasteurianum oder daraus hergestellten Acetontrockenpräparaten auf dl-Methyläthylacetaldehyd (N., Si., Bio. Z. 179, 444, 448). Als Nebenprodukt beim portionsweisen Eintragen von α.α'-Azo-[methyläthylessigsäure]-dinitril in auf 100° erwärmte 75%ige Schwefelsäure und Erhitzen des Reaktionsgemisches auf 125° (Dox, Am. Soc. 47, 1474). — Zur Darstellung aus sek.-Butyl-magnesiumbromid und Kohlendioxyd (E I 2, 133) vgl. Marvel, Blomquist, Vaughn, Am. Soc. 50, 2812. — Kp: 170—174° (D.), 173—174,5° (Seib); Kp₆₈₃: 171—173° (Advani, Sudbordugh, J. indian Inst. Sci. 6, 54; C. 1923 III, 997). — Beim Leiten des Dampfes über erhitztes Thorium(IV)-oxyd erhält man 3.5-Dimethyl-heptanon-(4) (Vavon, Iwanow, C. r. 177, 454). Geschwindigkeit der Veresterung durch Alkohol in Gegenwart von Chlorwasserstoff bei 25°: A., S.; Bhide, S., J. indian Inst. Sci. 8, 92; C. 1926 I, 80; in Gegenwart von Chlorwasserstoff und Pikrinsäure bei 25°: Goldschmidt, Ph. Ch. 94, 245.

Äthylester, "Äthyl-dl-valerianat" $C_7H_{14}O_2 = CH_3 \cdot CH_2 \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$ (H 306; E I 133). Geschwindigkeit der Hydrolyse durch Pankreaslipase in Gegenwart von Phosphatpuffer (p_H 7,0) bei 37°: DAWSON, PLATT, COHEN, Biochem. J. 20, 534.

Chlorid, "dl-Valerylchlorid" $C_5H_5OCl = CH_3 \cdot CH_2 \cdot CH(CH_3) \cdot COCl$ (H 306). Gibt beim Erhitzen mit Phosphorpentachlorid im Rohr auf 190° nicht rein erhaltenes Methyläthylchloracetylchlorid und höher chlorierte Produkte (v. Braun, Jostes, Münch, A. 453, 147).

Amid, ,,dl-Valeramid" $C_5H_{11}ON = CH_3 \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot NH_2$ (H 306). F: 111,7° (Seib, B. 60, 1396).

Inakt. α - Brom - α - methyl - buttersäure, inakt. Methyläthylbromessigsäure $C_5H_9O_2Br=CH_2\cdot CH_2\cdot CBr(CH_3)\cdot CO_2H$ (H 307). B. Aus Methyläthylessigsäure und Brom in Gegenwart von Phosphorpentachlorid (RAY, Am. Soc. 50, 561).

Athylester $C_7H_{13}O_2Br = CH_3 \cdot CH_2 \cdot CBr(CH_3) \cdot CO_2 \cdot C_2H_5$ (H 307; E I 134). Kp₂₅: 75—80° (RAY, Am. Soc. 50, 561).

Chlorid, inakt. Methyläthylbromacetylchlorid $C_5H_8OClBr = CH_3 \cdot CH_2 \cdot CBr(CH_2) \cdot COCl$. Kp_{15} : 69,5° (Fourneau, Florence, Bl. [4] 43, 212).

Nitril, inakt. Methyläthylbromacetonitril C₅H₈NBr=CH₃·CH₂·CBr(CH₃)·CN. B. Durch Umsetzung von Methyläthylbromacetylchlorid mit Ammoniak und Destillation des entstandenen Amids mit Phosphorpentoxyd unter vermindertem Druck (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1479). — Kp₃₀: 65—75°. — Liefert beim Kochen mit Allylbromid und Kupferpulver in Toluol-Lösung Methyläthylallylacetonitril.

Inakt. β -Brom- α -methyl-buttersäure, Tiglinsäurehydrobromid $C_5H_9O_3Br=CH_3\cdot CHBr\cdot CH(CH_2)\cdot CO_2H$ (H 307). Zur Bildung aus Tiglinsäure nach Fittig, Pagensteher (A. 195, 109, 111) vgl. Johansson, Hagman, B. 55, 652. — F: 63—64°. 32 g Substanz lösen sich in 30 cm³ Petroläther (Kp: 60°). — Zersetzt sich in neutraler wäßriger Lösung unter Bildung von ca. 2 Tln. β -Butylen und ca. 1 Tl. α -Methyl- β -butyrolacton; in alkoh. Lösung entstehen die beiden Verbindungen ungefähr im Verhältnis 5: 1. Geschwindigkeit der Zersetzung in neutralisierter wäßriger Lösung bei 25°: J., H.

Inakt. y-Brom- α -methyl-butyrylchlorid $C_5H_8OClBr = CH_2Br \cdot CH_2 \cdot CH(CH_3) \cdot COCl$. Kp_{18} : 128° (FOURNEAU, FLORENCE, Bl. [4] 43, 1035).

Inakt. β -Jod- α -methyl-buttersäure $C_5H_2O_2I = CH_3 \cdot CHI \cdot CH(CH_3) \cdot CO_2H$.

a) Hochschmelzende Form, Tiglinsäurehydrojodid C₅H₉O₂I = CH₃·CHI·CH₂(CH₃)·CO₂H (H 308). B. Zur Bildung nach Wislicenus, Talbot, Henze (A. 313, 233) vgl. Young, Dillon, Lucas, Am. Soc. 51, 2533. — F: 86,2—86,3° (Y., D., L.).

b) Niedrigschmelzende Form, Angelicasäurehydrojodid $C_5H_6O_2I = CH_3 \cdot CHI \cdot CH(CH_3) \cdot CO_2H$ (H 308). B. Zur Bildung nach Wislicenus, Talbor, Henze (A. 313, 233) vgl. Young, Dillon, Lucas, Am. Soc. 51, 2533. — Krystalle (aus Petroläther). F: 57,9° bis 58,5° (Y., D., L.).

3. 2-Methyl-propan-carbonsäure-(1), β -Methyl-buttersäure, Isopropylessigsäure, Isovaleriansäure $C_5H_{10}O_2=(CH_5)_2CH\cdot CH_2\cdot CO_2H$ (H 309; E I 134).

Angaben über nicht näher bezeichnete "Valeriansäure" sind in diesem Artikel aufgenommen. Käufliche Isovaleriansäure kann Methyläthylessigsäure enthalten.

Vorkommen und Bildung.

V. In dem Pilz Calocera viscosa (Fröschl, Zellner, M. 50, 207). In den hochsiedenden Fraktionen des Hopfenöls (Chapman, Soc. 1928, 1305). In Form von Estern im äther. Öl aus der Wurzel von Leptotaemia dissecta (Wakeman, J. am. pharm. Assoc. 14, 30, 32; C. 1925 I, 2241). Frei und als Ester im äther. Öl der Blätter und Zweige von Leptospermum scoparium (Short, J. Soc. chem. Ind. 45, 97 T; C. 1926 II, 2123). Im Cajeputöl (Duyster, Pharm. Tijdschr. Nederl. Indië 2, 336; C. 1926 I, 167). In der Rinde von Viburnum opulus (Heyl, J. am. pharm. Assoc. 11, 334; C. 1923 I, 1515). In Viburnum prunifolium in freier und veresterter Form (HEYL, BARKENBUS, Am. Soc. 42, 1748). Im Moschusöl (WALBAUM, J. pr. [2] 113, 170). Die von Chevreul durch Verseifung des Trans von Delphinus globiceps und von Delphinus phocoena erhaltene "Phocensäure" (H 2, 309) ist als Isovaleriansäure erkannt (André, C. r. 178, 1190; Bl. [4] 35, 863). Isovaleriansäure findet sich im rohen Holzessig (Seib, B. 60, 1395; vgl. Krämer, Grodzki, B. 11 [1878], 1359). — B. Aus Isoamylalkohol beim Erhitzen mit Natriumisoamylat im Rohr auf 220° (Lachmann, Am. Soc. 45, 2359 Anm. 11; vgl. a. Darrasse Frères & Co., Dupont, D. R. P. 351329; C. 1922IV, 155; Frdl 14, 1437) bei der Ovydgeion durch Luttenverstoff in Coronwart von fair variation. Frdl. 14, 1437), bei der Oyxdation durch Luftsauerstoff in Gegenwart von fein verteiltem Kupfer bei 260—270° neben Isovaleraldehyd (MAILHE, DE GODON, C. r. 170, 518; vgl. Piotrowski, Przem. chem. 13, 417; C. 1929 II, 1982) und bei der Oxydation mit Natriumchlorat in schwefelsaurer Lösung bei Gegenwart von Vanadiumpentoxyd (Milas, Am. Soc. 50, 498). Das Magnesiumsalz bildet sich beim Leiten von Isoamylalkohol-Dampf über Magnesiumisoamylat bei $380-410^\circ$, neben β -Isopropyl- β -isoamyl-äthylalkohol (Terentjew, Bl. [4] 37, 1557). Zur Bildung durch Oxydation von Isoamylalkohol mit Chromschwefelsäure vgl. auch FOURNEAU, FLORENCE, Bl. [4] 41, 1520. Bei der elektrolytischen Oxydation von Isoamylphenyläther in 2n-Schwefelsäure an einer Bleidioxyd-Anode, neben anderen Produkten (FICHTER, DIETRICH, Helv. 7, 135). Aus "Luparol" (Syst. Nr. 561) beim Kochen mit 50 %iger Kalilauge oder bei der Oxydation mit wäßr. Kaliumpermanganat-Lösung (Chapman, Soc. 1928, 1305). Durch Oxydation von Isovaleraldehyd mit Kaliumpermanganat in der Kälte (Pringsheim, Leibowitz, B. 56, 2039). Neben Acrolein beim Überleiten von Triisovalerin-Dampf über ein auf 550—580° erhitztes Gemisch von Kupfer und Magnesiumoxyd (Мап.н. A. ch. [9] 17, 320). Durch Hydrieren von β , β -Dimethyl-acrylsäure in Gegenwart von Platinschwarz (Vavon, Anziani, Bl. [4] 41, 1642) oder von kolloidalem Platin in salzsaurer Lösung (Conant, Cutter, Am. Soc. 44, 2653). Durch Oxydation von Leucinsäure mit Kaliumferricyanid und Eisen(III)-chlorid (Yоsнікі, J. pharm. Šoc. Japan 1927, 130; С. 1928 I, 899). Bei der elektrolytischen Oxydation von l-Leucin in verd. Schwefelsäure an einer Platin-Anode,

neben anderen Produkten (FICHTER, KUHN, Helv. 7, 172). Bei der Oxydation von Leucylglycin mit Zinkpermanganat, neben Oxalsäure (ABDERHALDEN, QUAST, H. 151, 148). Neben anderen Verbindungen bei der Einw. von alkal. Hypobromit-Lösung auf 3.6-Dioxo-2-isobutyl-piperazin und auf 3.6-Dioxo-2.5-diisobutyl-piperazin bei 0° (Goldschmidt, Mitarb., A. 456, 27, 28).

Entsteht neben Isoamylalkohol bei der Einw. von Bact. ascendens auf Isovaleraldehyd in Gegenwart von Calciumcarbonat unter aeroben Bedingungen (Neuberg, Windisch, Bio. Z. 166, 460, 478; Molinari, Bio. Z. 216, 195, 201) oder bei der Einw. von Bact. xylinum (Mo.). Bei der Einsäuerung von Mais (Brahm, Bio. Z. 156, 18), von Rübenblättern und köpfen und von Seradella, neben etwas d-Methyläthylessigsäure (Brahm, Bio. Z. 186, 234, 238). Entsteht aus Isovaleraldehyd durch dismutierende Einw. von Hefe in 1 %iger Natriumdicarbonat-Lösung (Kumagawa, Bio. Z. 123, 229). Bei der Einw. verschiedener Hefen auf Calciumlactat-Lösungen, neben anderen Verbindungen (Kayser, C. r. 176, 1663). Über Bildung bei der Vergärung von Weinmost bzw. künstlichen Gemischen ähnlicher Zusammensetzung mit Hefen aus dem "Bretonweinstock" vgl. Kayser, Delaval, C. r. 179, 296. — Technische Darstellung: J. Schwyzer, Die Fabrikation pharmazeutischer und chemisch-technischer Produkte [Berlin 1931], S. 88.

Physikalische Eigenschaften.

Kp₇₈₀: 176,5° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 54, 116, 118); Kp: 175° (synthetisches Präparat) (Fourneau, Florence, Bl. [4] 41, 1523); Kp₆₈₃: 151—152° (korr.) (Вніде, Sudborough, J. indian Inst. Sci. 8, 104; C. 1926 I, 80). — Füchtigkeit von "Valeriansäure" mit Wasserdampf: Knetemann, R. 47, 957. D¹5: 0,9373; D²8: 0,9281 (Tromp, R. 41, 282, 297); D²⁰0: 0,9174 (Harkins, Clark, Roberts, Am. Soc. 42, 703). n¹5: 1,4064; n²8: 1,4043 (Tr.). Beugung von Röntgenstrahlen in flüssiger Isovaleriansäure: Katz, Z. ang. Ch. 41, 337. Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Purvis, Pr. Cambridge phil. Soc. 23, 589; C. 1927 II, 379.

Mischbarkeit mit Wasser bei Drucken zwischen 5 und 60 kg/cm²: TIMMERMANS, J. Chim. phys. 20, 506. Kritische Lösungstemperatur des Systems mit Wasser: 95,0° (T.). Einfluß von "Valeriansäure" auf die Löslichkeit von Kaliumsulfat in Wasser: Weber, Z. anorg. Ch. 181, 390. Verteilung von Isovaleriansäure zwischen Wasser und Chloroform bei 25°: SMITH, J. phys. Chem. 25, 230; SM., WHITE, J. phys. Chem. 33, 1974; zwischen Wasser und Benzol und zwischen Wasser und Toluol bei 25°: SM., J. phys. Chem. 33, 1962, 1966; zwischen Wasser und Xylol bei 25°: SM., J. phys. Chem. 25, 223; zwischen Äther und Wasser bei 16—17°: Behrens, Fr. 69, 101, 102; bei 25°: SM., J. phys. Chem. 25, 625; zwischen Glycerin und Aceton bei 25°: SM., J. phys. Chem. 25, 734; zwischen Wasser und Olivenöl: Bodansky, J. biol. Chem. 79, 252. Siedepunkte von Gemischen mit Tetrachlorkohlenstoff: Walden, Izv. imp. Akad. Petrog. [6] 9 [1915], 236; C. 1925 I, 157; mit Chloroform: W., Izv. imp. Akad. Petrog. [6] 9 [1915], 512; C. 1925 I, 1674. Siedepunkt und Zusammensetzung binärer azeotroper Gemische mit Isovaleriansäure s. in der untenstehenden Tabelle. Zur Viscosität wäßr. Lösungen vgl. Traube, Whang, Bio. Z. 203, 364. Diffusion einer wäßr. Lösung von "Valeriansäure" in Gelatine und Einfluß von Pepton und Lecithin auf die

Azeotrope, Isovaleriansäure enthaltende Gemische.

Komponente	Kp ₇₈₀	Gehalt an Iso- valerian- säure in Gew%	Komponente	Kp ₇₆₀	Gehalt an Iso- valerian- säure in Gew%
Pentachlorāthan 1)	160,25 172,6 158,0 156,5 168,95 154,8 174,0 157,7 160,5 171,2 172,1	9 37 18 17 28 8 ca. 20 12 15 ca. 36 39,5	4-Brom-toluol 1) Pseudocumol 2) Mesitylen 1) Cymol 2) Inden 3) Diisoamyläther 4) Phenetol 5) Thymol 2) Benzaldehyd 2) Isoamylbutyrat 1)	173,2 165,7 ca. 162,8 170,8 173,5 ca. 169,0 ca. 168,5 170,5 174,5 176,1	47 23 20 37 ca. 55 ca. 30 20 44 ca. 68

¹⁾ LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 116, 118, 119. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 18—22. — 3) L., Ann. Soc. scient. Bruxelles 49, 36. — 4) L., Ann. Soc. scient. Bruxelles 49, 112. — 5) L., Ann. Soc. scient. Bruxelles 48 I, 54.

Diffusion: T., Dannenberg, Bio. Z. 198, 215, 216. Diffusion von "Valeriansäure" durch Kollodiummembrane: Collander, Comment. biol. Helsingfors 2, 6, 15; C. 1926 II, 720. Oberflächenspannung wäßr. Lösungen: T., Somogyi, Bio. Z. 120, 94; T., Wh.; Weber, Z. anorg. Ch. 181, 390. Einfluß von Isovaleriansäure auf die Grenzflächenspannung zwischen Benzol und Wasser: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 999. Grenzflächenspannung von Lösungen in Benzol gegen verd. Natronlauge und verd. Natronlauge + Natriumchlorid: D., Rev. gén. Colloides 5, 487; C. 1927 II, 396. — Schaumbildung wäßr. Lösungen von "Valeriansäure": Bartsch, Koll. Beih. 20, 4; C. 1925 I, 2362. — Adsorption aus wäßr. Lösung an Tierkohle: KLEIN, Lotos 71 [1923], 288, 293; Schilow, Nekrassow, Ph. Ch. 130, 70; Ж. 60, 110; an Kokosnußkohle und Acetylenruß: Namasivayam, Quart. J. indian chem. Soc. 4, 452; C. 1928 I, 662; an verschiedene Kohlesorten: SKUMBURDIS, Koll. Z. 44, 129; C. 1928 I, 1634. Adsorption aus alkoh. Lösung an Tierkohle bei Zimmertemperatur: GRIFFIN, RICHARDSON, ROBERTSON, Soc. 1928, 2708; aus wäßr. Lösung an Stärke und Gelatine: LASNITZKI, LOEB, Bio. Z. 146, 101, 102. Ausbreitung auf Wasser bei 20°: HARKINS, FELDMAN, Am. Soc. 44, 2670. Koagulierende Wirkung von "Valeriansäure" auf alkal. Casein-Lösungen: ISGARY-SCHEW, BOGOMOLOWA, Koll.-Z. 38, 239; C. 1926 I, 3307. Flockende Wirkung des Isovalerianat-Anions auf Sole von Eisen (III) hydroxyd und Arsensulfid: HERRMANN, Helv. 9, 786. — Dichten und Brechungsindices einer methylalkoholischen Lösung von "Valeriansäure": Lifschitz, BECK, Koll.-Z. 26, 60; C. 1920 III, 82. Elektrische Leitfähigkeit von Isovaleriansäure in wäßr. Lösung bei 25°: REMESOW, Bio. Z. 207, 77; in wäßriger und alkoholischer Lösung bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 192. Elektrolytische Dissoziationskonstante k bei 19°: 1,95·10⁻⁵ (Mizutani, Ph. Ch. 118, 329; vgl. a. Mi., Ph. Ch. 118, 352); bei 25°: 1,73·10⁻⁶ (aus der elektrischen Leitfähigkeit) (KLEIN, Lotos 71 [1923], 281). Acidität von Isovaleriansäure + Natriumisovalerianat in Methanol-Wasser-Gemischen: MI., Ph. Ch. 118, 329; in Alkohol Wasser Gemischen: MI., Ph. Ch. 116, 352. Potentialdifferenzen an der Grenze zwischen Luft und wäßriger, schwach schwefelsaurer "Valeriansäure"-Lösung: FRUMKIN, Ph. Ch. 111, 194. Zerstäubungselektrizität wäßr. Lösungen von "Valeriansäure": ZEEHUISEN, Versl. Akad. Amsterdam 28, 1116; C. 1921 I, 929.

Chemisches und physiologisches Verhalten.

Liefert beim Leiten des Dampfes über gereinigte technische Tierkohle oder Blutkohle bei 330-380° Kohlendioxyd, Kohlenoxyd, Wasserstoff und andere Produkte (Senderens, ABOULENC, C. r. 170, 1065). Beim Leiten über Calciumchlorid bei 5700 entstehen Diisobutylen, Kohlendioxyd, Kohlenoxyd, Wasserstoff und weitere ungesättigte Kohlenwasserstoffe (hauptsächlich Isobutylen) (MAILHE, Bl. [4] 37, 308). Ähnlich verläuft die Zersetzung über Bariumchlorid und Natriumchlorid bei 6000, doch entstehen hierbei Diisobutylketon und größere Mengen ungesättigter Kohlenwasserstoffe (M.). Leitet man den Dampf bei 6000 bis 630° über Kupfer und Aluminiumoxyd, so entstehen geringe Mengen Diisobutylketon, Isobutylen und andere ungesättigte Kohlenwasserstoffe, gesättigte Kohlenwasserstoffe. Kohlendioxyd, Kohlenoxyd und Wasserstoff (M., A. ch. [9] 17, 323; Bl. [4] 31, 684). Zersetzt sich beim Erhitzen mit konz. Schwefelsäure auf 140° unter Bildung von Kohlenoxyd. Kohlendioxyd und Schwefeldioxyd (S., A., C. r. 185, 1089). Die durch Einw. von Kohlendioxyd auf Isobutylmagnesium-chlorid bzw. -bromid erhältlichen Magnesium-chlorid-bzw. Magnesiumbromid-Salze der Isovaleriansäure liefern bei der trocknen Destillation bei 360° Diisobutylketon (Iwanow, Bl. [4] 43, 446). Entzündungstemperatur von "Valeriansäure" in Luft: Egerton, Gates, J. Inst. Petr. Technol. 13, 259; C. 1928 II., 211. Oxydation von Isovaleriansäure mit Chromschwefelsäure-Gemisch: Lieben, Molnar, M. 53/54, 7. Geschwindigkeit der Oxydation des Natriumsalzes durch Kaliumpermanganat: Smith, Pr. Leeds phil. lit. Soc. 1, 198; C. 1928 I, 1757. Bei der Oxydation von "Valeriansäure" mit Permanganat in ammoniakalischer Lösung entstehen geringe Mengen Cyansäure (nachgewiesen als Harnstoff) (FOSSE, LAUDE, C. r. 172, 1242). Das Kaliumsalz liefert beim Kochen mit Kaliumpersulfat und Kaliumcarbonat in wäßr. Lösung Isobutylen, wenig Isobutylisovalerianat, gesättigte Kohlenwasserstoffe und Kohlenoxyd (Fichter, Lapin, Helv. 12, 1001; vgl. auch F., Z. El. Ch. 35, 712). Reaktion mit Titan(IV)-chlorid: GIUA, MONATH, Z. anorg. Ch. 168, 309. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Bhide, Sudborough, J. indian Inst. Sci. 8, 111; C. 1926 I, 80; in Gegenwart von Chlorwasserstoff, Trichlorbuttersäure, Trichloressigsäure und Pikrinsäure bei 25°: Goldschmidt, Ph. Ch. 94, 244; in Gegenwart von 2.4.6-Trinitro-m-kresol: G., Marum, Thomas, Ph. Ch. 132, 267; mit wasserfreiem und wasserhaltigem Propylalkohol in Gegenwart von 0,1 n-Salzsaure bei 25°: G., Thomas, Ph. Ch. 126, 30; mit Isobutylalkohol in Gegenwart von Chlorwasserstoff: G., Ph. Ch. 124, 30; mit absolutem und verdünntem Äthylenglykol in Gegenwart von Chlorwasserstoff bei 25°: Kailan, Schachner, M. 52, 38. Veresterung mit Glycerin in Gegenwart von Kaliumdisulfat, Aluminiumsulfat und Schwefelsäure: Senderens, Abou-LENC, A. ch. [9] 18, 175. Geschwindigkeit der Veresterung in absolutem und wasserhaltigem Glycerin in Gegenwart von Chlorwasserstoff bei 25° und ohne Katalysator bei 183,5°: K.,

RAUPENSTRAUCH, M. 45, 489, 510. "Valeriansäure" erniedrigt die Klopffestigkeit von Motortreibstoffen (EGERTON, GATES, J. Inst. Petr. Technol. 13, 279; C. 1928 II, 211).

Biochemisches Verhalten; Analytisches.

Das Calciumsalz gibt bei der Einw. von Aspergillus niger in Wasser Aceton (COPPOCK, SUBRAMANIAM, WALKER, Soc. 1928, 1426). Reduktion von Methylenblau durch Isovaleriansäure in Gegenwart von ruhenden Bact. coli: Quastel, Whetham, Biochem. J. 19, 521, 522, 524, 530. Einfluß von "Valeriansäure" auf die Atmung von Bact. coli: NICOLAI, Bio. Z. 179, 101; auf die Atmung von Algen: Genevols, Bio. Z. 186, 405; auf die Atmung von Gewebezellen: Abderhalden, Wertheimer, Pflügers Arch. Physiol. 191, 264, 271; C. 1922 I, 424.
Giftwirkung von "Ammoniumvalerianat" auf Ratten: Underhill, Kapsinow, J. biol. Chem. 54, 455, 456. Bactericide Wirkung: Traube, Somogyi, Bio. Z. 120, 92; vgl. Penfold, Grant, J. Pr. Soc. N. S. Wales 58, 122; C. 1926 I, 3634. Reaktionswarme beim Eindringen von Valeriansäure in den lebenden Muskel: MEYERHOF, Pflügers Arch. Physiol. 204, 314; C. 1924 II, 1220. Schwellenwert des sauren Geschmacks und pn der Lösung: TAYLOR, J. gen. Physiol. 11, 209; C. 1928 I, 2409.

E I 135, Z. 19 v. u. statt "MASUDA, Bio. Z. 55" lies "MASUDA, Bio. Z. 45".

Mikrochemischer Nachweis in Form von Salzen: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 320. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 14.

Salze der Isovaleriansäure, Isovalerianate.

Verhalten von "Valerianaten" als Emulgierungsmittel: Krantz, Gordon, Colloid Symp. Mon. 6, 177; C. 1929 II, 2166.

Hydroxylaminsalz $HO \cdot NH_2 + C_5H_1, O_2$. F: 67° (OESPER, BALLARD, Am. Soc. 47, 2426). Löslich in Wasser und Alkohol, unlöslich in Ather und Ligroin. Zersetzt sich langsam beim Aufbewahren. — Lithiumsalz. Röntgenogramm (Pulveraufnahmen): BECKER, JANCKE, Ph. Ch. 99, 272. — NaC₅H₆O₂. Lösungsvermögen einer wäßr. Lösung für Nitrobenzol und Anilin: v. Euler, Z. El. Ch. 23 [1917], 195. Oberflächenspannung von wäßr. Lösungen: v. Eu.; Lascaray, Koll.-Z. 34, 76; C. 1924 I, 2413; von mit Nitrobenzol und Anilin gesättigten wäßrigen Lösungen: v. Eu. Einfluß auf die Grenzflächenspannung zwischen Benzol und Wasser: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 999. Bewegung auf Wasser-oberflächen: Zahn, R. 45, 790. Adsorption aus wäßr. Lösung an verschiedene Kohlesorten: Skumburdis, Koll.-Z. 44, 130; C. 1928 I, 1634. Dichte wäßr. Lösungen bei 22,5°: de García, An. Soc. quím. arg. 8 [1920], 384. Dichte und Brechungsindex einer Lösung in Methanol bei 25°: Lifschitz, Beck, Koll.-Z. 26, 60; C. 1920 III, 82. Brechungsindices wäßr. Lösungen bei 22,5°: de G. "Natriumvalerianat" nimmt in flüssigem Schwefeldioxyd ca. 1 Mol SO₂ auf (Ephraim, Aellig, Helv. 6, 45). — Kaliumsalz. Doppelbrechung einer beim Aufbewahren. — Lithiumsalz. Röntgenogramm (Pulveraufnahmen): BECKER, JANCKE, ca. 1 Mol SO₂ auf (EPHRAIM, AELLIG, Helv. 6, 45). — Kaliumsalz. Doppelbrechung einer rotierenden wäßrigen Lösung: Vorländer, Walter, Ph. Ch. 118, 15. "Kaliumvalerianat" rotierenden wäßrigen Lösung: VORLANDER, WALTER, Ph. Ch. 118, 15. "Kalumvalerianat" nimmt in flüssigem Schwefeldioxyd ca. 1 Mol Schwefeldioxyd auf (EPHRAIM, AELLIG, Helv. 6, 47). — Rubidiumsalz. Anlagerung von SO₂ an "Rubidiumvalerianat" in flüssigem Schwefeldioxyd: E., AE., Helv. 6, 49. — Caesiumsalz. Anlagerung von SO₂ an "Caesiumvalerianat" in flüssigem Schwefeldioxyd: E., AE., Helv. 6, 50. — Magnesiumsalz. F: 224° (Maquennescher Block) (Iwanow, Bl. [4] 43, 447). — $\text{Zn}(C_5H_9O_2)_2 + 2H_2O$. Löslichkeit in Glycerin bei 20°: Roborgh, Pharm. Weekb. 64, 1208; C. 1928 I, 547. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 472. — $\text{TlC}_5H_9O_2$. Blättaben (aus Acaton) F. 458 50 (borr.) (Walter R. 59, 969). Die Schwelze ist zwischen Blättchen (aus Aceton). F: 156,5° (korr.) (WALTER, B. 59, 969). Die Schmelze ist zwischen 156,5° und 174° (korr.) krystallin-flüssig. Schmelzpunkte von Gemischen mit den Thallium(I)-salzen der Onanthsäure und der Isoamylessigsäure: W. — Basisches Wismutsalz. saizen der Onandasaure und der Isoamylessigsaure: W. — Basisches Wismutsalz. Bi₂(C₅H₉O₂)₆ + Bi₂O₃. Krystallinisch (Picon, *J. Pharm. Chim.* [8] **4**, 532; *C.* **1927** I, 2103). In 100 cm⁵ Methanol lösen sich bei Zimmertemperatur 6 g. Löslich in Alkohol, Äther und Aceton, unlöslich in Olivenöl. Reinheitsprüfung von Wismutvalerianat: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 56. — Natriumuranylsalz UO₂(C₅H₉O₂)₂ + NaC₅H₉O₂. Grüngelbe Krystalle (Barlot, Brenet, *C. r.* **174**, 116). — Eisen(III)-salz. Magnetische Susceptibilität von "Eisen(III)-valerianat": Welo, *Phil. Mag.* [7] **6**, 496; *C.* **1928** II, 2626.

Funktionelle Derivate der Isovaleriansäure.

Methylisovalerianat $C_6H_{13}O_2=(CH_3)_3CH\cdot CH_3\cdot CO_3\cdot CH_3$ (H 311; E I 136). Kp₇₆₄: 116,4—116,8° (korr.) (van Duin, R. 47, 722); Kp₇₆₀: 116,3° (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 69; 48 I [1928], 59). n_5^m : 1,3900 (Munch. Am. Soc. 48, 997). Ultrarotes Absorptionsspektrum zwischen 0,6 und 13,8 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel II. Bildet azeotrope Gemische mit Wasser (Kp₇₆₀: 87,2°; 80,8 Gew.-% Methylisovalerianat) (L.,

275

Ann. Soc. scient. Bruxelles 47 I [1927], 69) und mit Butylalkohol (Kp₇₆₀: 113,5°; 60 Gew. % Methylisovalerianat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 59). Brechungsindices von 1%igen Lösungen in Wasser und in Baumwollsamenöl: Munch. — Die Verseifung durch Natronlauge bei 18° wird durch Blutkohle stark verzögert (van D.).

Äthylisovalerianat C₇H₁₄O₂ = (CH₃)₂CH·CH₂·CO₂·C₂H₅ (H 312; E I 136). B. Entsteht neben anderen Produkten bei der Einw. von ozonhaltigem Sauerstoff bei 0° auf Athylisoamyläther und Reduktion des Reaktionsgemisches mit Eisen(II)-sulfat (F. G. Fischer, A. 476, 246). Aus Acetaldehyd und Isovaleraldehyd in Gegenwart von wenig Aluminumäthylat, neben anderen Produkten (Nord, Bio. Z. 106, 278). Bei der Einw. von Magnesiumäthylat auf Methylisovalerianat in absol. Alkohol (Terentjew, Z. anorg. Ch. 162, 350; K. 60, 86). Neben anderen Produkten bei der Einw. von Isovalerylbromid auf eine äther. Lösung von Magnesiumbromid-isovalerianat (aus Isobutylmagnesiumbromid und Kohlendioxyd) und nachfolgende Zersetzung des Reaktionsprodukts (Tischtschenko, Bl. [4] 37, 633). — Kp₇₈₀: 134,7° (Lecat, R. 46, 246). D⁴: 0,8713; D⁵: 0,8613 (Tromp, R. 41, 282, 298); D⁵: 0,8669 (Te.); D⁵⁰: 0,8648 (Harkins, Clark, Roberts, Am. Soc. 42, 703); D⁵⁰: 0,8657; D⁵⁰: 0,8457 (Unkowskaja, Wolowa, Ж. 57, 112; C. 1926 I, 2646). Oberflächenspannung bei 20°: 23,68 dyn/cm (H., C., R.). Parachor: Sugden, Soc. 125, 1184. n⁵: 1,3991 (Te.); n⁵: 1,3975 (Munch, Am. Soc. 48, 997). Bildet azeotrope Gemische mit Wasser (Kp₇₆₀: 22,2°; 69,8 Gew. % Athylisovalerianat) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 69), mit Tetrachloräthan (Kp₇₆₀: 147,0°) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 122), mit Dipropylsulfid (Kp₇₆₀: ca. 134°; ca. 90 Gew. % Athylisovalerianat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 122), mit Dipropylsulfid (Kp₇₆₀: ca. 134°; ca. 90 Gew. % Athylisovalerianat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 18). Viscosität von Gemischen mit Isobutylacetat bei 20° und 40°: Unkowskaja, Wolowa, Ж. 57, 112; C. 1926 I, 2646. Grenzflächenspannung gegen Wasser: Harkins, Clark, Roberts, Am. Soc. 42, 703. Ausbreitung auf Wasser bei 20°: H., Fellman, Am. Soc. 44, 2671. Brechungsindices von 1 % igen Lösungen in Wasser und in Baumwollsamenöl: Munch, Am. Soc. 48, 997.

Liefert mit Ammoniak beim Überleiten über Aluminiumoxyd bei ca. 500° Isovaleronitril, neben Isovaleramid und einem 50% Äthylen enthaltenden Gas (MAILHE, A. ch. [9] 13, 217). Geschwindigkeit der Verseifung durch wäßrig-alkoholische Natronlauge bei 30°: KINDLER, A. 452, 106; Ar. 1929, 543. Verseifung mit alkoh. Kalilauge: Reclaire, Dtsch. Parf.-Ztg. 10, 190; C. 1924 II, 2616. Bei aufeinanderfolgender Einw. von Natrium und Acetylen auf Äthylisovalerianat in wasserfreiem Benzol entstehen Isovaleroin (E II 1, 884), 2.7-Dimethyl-4-āthinyl-octandiol-(4.5) (?) vom F: 96° und F: 101—102° und andere Produkte (Locquin, Sung, Bl. [4] 35, 602). Wärmetönung bei der Einw. auf ätherfreies Magnesiumjodid-āthylat in Benzol: Tschelinzew, Bl. [4] 35, 748.

[β -Chlor- β -nitro-äthyl]-isovalerianat $C_7H_{12}O_4NCl = (CH_3)_2CH \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CHCl \cdot NO_2$. B. Aus 2-Chlor-2-nitro-āthanol-(1) und Isovalerylchlorid in Chloroform (Schmidt, Rutz, Trenel, B. 61, 475). — Farblose Flüssigkeit. Kp₁₁: 111—113° (korr.). D_4^{∞} : 1,1891. n_1^{∞} : 1,4414. Fast unlöslich in Wasser.

Propylisovalerianat $C_8H_{16}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot C_2H_5$ (H 312; E I 136). Kp₇₆₀: 155,7° (Lecat, R. 46, 243). n_0^{28} : 1,4035 (Munch, Am. Soc. 48, 997). Bildet azeotrope Gemische mit Wasser (Kp₇₆₀: 96,2°; 54,8 Gew. % Propylisovalerianat) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 69), mit Diisoamyl (Kp₇₆₀: 152°; 57 Gew. % Propylisovalerianat) (L., R. 46, 244), mit Brombenzol (Kp₇₆₀: 154,5°; 43 Gew. % Propylisovalerianat) (L., R. 46, 243), mit n-Hexylalkohol (Kp₇₆₀: ca. 154,2°; 67 Gew. % Propylisovalerianat) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 17), mit Anisol (Kp₇₆₀: 153,0°) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 17), mit Anisol (Kp₇₆₀: 153,0°) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 18) und mit Athyllactat (Kp₇₆₀: 150°; ca. 40 Gew. % Propylisovalerianat) (L., Ann. Soc. scient. Bruxelles 47 I (1927], 112). Brechungsindices von 1% igen Lösungen in Wasser und in Baumwollsamenöl: Munch.

Isopropylisovalerianat $C_8H_{16}O_2=(CH_9)_2CH\cdot CH_2\cdot CO_2\cdot CH(CH_3)_2$ (H 312). n_5^w : 1,3938 (Munch, Am. Soc. 48, 997). — Brechungsindex einer 1 % igen Lösung in Baumwollsamenöl: M.

[β.β'-Dichlor-isopropyl]-isovalerianat, Glycerin-α.α'-dichlorhydrin-isovalerianat, β-Isovalero-α-dichlorhydrin $C_8H_{14}O_9Cl_2=(CH_3)_2CH\cdot CH_2\cdot CO_3\cdot CH(CH_2Cl)_2$ (H 312). Kp₃₆: 127—140° (Humnicki, Bl. [4] 45, 281). Zersetzt sich bei der Destillation unter gewöhnlichem Druck. — D³⁰: 1,444. n_0^{50} : 1,450. Unlöslich in Wasser.

Butylisovalerianat C₅H₁₈O₅ = (CH₅)₅CH·CH₂·CO₅·[CH₂]₅·CH₅. n_D⁸: 1,4058 (Munch, Am. Soc. 48, 997). — Brechungsindices von 1% igen Lösungen in Wasser und in Baumwollsamenöl: M. — Verwendung als technisches Lösungsmittel: O. Merz, Neuere Lösungsmittel und Weichmachungsmittel [Berlin 1939], S. 23; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 199.

Isobutylisovalerianat C₉H₁₈O₂ =(CH₃)₂CH·CH₂·CO₂·CH₂·CH(CH₃)₂ (H 312; E I 136). B. In geringer Menge beim Kochen von Kaliumisovalerianat mit Kaliumpersulfat und Kaliumcarbonat in wäßr. Lösung, neben anderen Produkten (Fichter, Lapin, Helv. 12, 1001). — Kp₇₆₀: 171,4° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 18). n. 1. 1,4056 (Munch, Am. Soc. 48, 997). Bildet azeotrope Gemische mit Wasser (Kp₇₆₀: 97,4°; 44,2 Gew.-% Isobutylisovalerianat) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 69), mit Diisoamyläther (Kp₇₆₀: 171,2°; ca. 90 Gew.-% Isobutylisovalerianat) (L., Ann. Soc. scient. Bruxelles 49 [1929], 18), mit Phenol (Kp₇₆₀: 182,8°; 8 Gew.-% Isobutylisovalerianat (L., R. 46, 244), mit Phenetol (Kp₇₆₀: 170,1°; 35 Gew.-% Isobutylisovalerianat) (L., Ann. Soc. scient. Bruxelles 49 [1929], 20), mit Glykol (Kp₇₆₀: 163,7°; 78,3 Gew.-% Isobutylisovalerianat) (L., Ann. Soc. scient. Bruxelles 49 [1929], 25; vgl. L., Ann. Soc. scient. Bruxelles 48 I [1928], 18), mit Acetamid (Kp₇₆₀: 169,3°; 89,5 Gew.-% Isobutylisovalerianat) (L., Ann. Soc. scient. Bruxelles 49 [1929], 23) und mit Isoamylisobutyrat [Kp₇₆₀: 168,4°(?)] (L., R. 46, 244). Brechungsindex der 1% igen Lösung in Baumwollsamenöl: Munch.

Isoamylisovalerianat C₁₀H₃₀O₂ = (CH₃)₂CH·CH₂·CO₂·[CH₂]₄·CH₃ (H 312; E I 136). B. Bei der Oxydation von Isoamylalkohol mit Natriumchlorat in schwefelsaurer Lösung bei Gegenwart von Vanadium(V)-oxyd (Milas, Am. Soc. 50, 498). Neben anderen Produkten beim Behandeln von Diisoamyläther mit ozonhaltigem Sauerstoff bei 0° und Reduzieren des vom entstandenen Wasserstoffperoxyd befreiten Reaktionsgemisches mit Zinkstaub in wenig Wasser (F. G. Fischer, A. 476, 243). — Kp₇₆₀: 192,7° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 25). n₂²⁵: 1,4100 (Munch, Am. Soc. 48, 997). Ultrarotes Absorptionsspektrum zwischen 0,6 und 7,5 µ: Weniger, Phys. Rev. 31 [1910], 420 Tafel III. — Bildet azeotrope Gemische mit Wasser (Kp₇₆₀: 98,8°; 25,9 Gew. % Isoamylisovalerianat) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 69), mit Phenol (Kp₇₆₀: ca. 194,5°; ca. 82 Gew. % Isoamylisovalerianat) (L., Ann. Soc. scient. Bruxelles 49 [1929], 114; vgl. L., R. 46, 244), mit p-Kresol (Kp₇₆₀: ca. 203,5°; ca. 26 Gew. % Isoamylisovalerianat) (L., Ann. Soc. scient. Bruxelles 49 [1929], 114; vgl. L., R. 46, 244) und mit Glykol (Kp₇₆₀: 174,85°; 72,8 Gew. % Isoamylisovalerianat) (L., Ann. Soc. scient. Bruxelles 49,25). Brechungsindex der 1 %igen Lösung in Baumwollsamenöl bei 25°: Munch. — Beim Leiten von Isoamylisovalerianat und Athylamin über Aluminiumoxyd bei 490—500° bilden sich neben Athylen und Amylen Spuren von Isovaleraldehyd und Isovaleronitril (Mailhe, C. r. 170, 814; A. ch. [9] 13, 225).

Octyl-(2)-isovalerianat, Methyl-n-hexyl-carbinol-isovalerianat $C_{13}H_{26}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$ (E I 137). B. Zur Bildung aus Octanol-(2) und Isovaleriansäure nach Senderens, Aboulenc (C. r. 156, 1620) vgl. S., A., A. ch. [9] 18, 158. — Riecht nach Wein oder Cognac mit einem Nebengeruch nach Mandarine (Reclaire, Disch. Parf.-Zig. 10, 189; C. 1924 II, 2616). — Verseifung mit alkoh. Kalilauge: R.

n - Dodecyl - isovalerianat $C_{17}H_{34}O_2=(CH_3)_2CH\cdot CH_2\cdot CO_2\cdot [CH_2]_{11}\cdot CH_3$. Besitzt einen schwachen Geißblattgeruch (Reclare, Disch. Parf.-Ztg. 10, 189; C. 1924 II, 2616). $D^{15}\colon 0,8605$. $n_D^m\colon 1,4336$. — Verseifung mit alkoh. Kalilauge: R.

Citronellylisovalerianat $C_{15}H_{28}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot$

Geranylisovalerianat $C_{15}H_{28}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CO_2 \cdot CH_3 \cdot CH : C(CH_3) \cdot CH_3 \cdot CH_$

Nerylisovalerianat $C_{15}H_{26}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CH : C(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH : C(CH_3)_2$. Besitzt einen schwülen und kräftigen Geruch (Reclaire, *Disch. Parf.-Zig.* 15, 72; C. 1929 I, 2249). $D^{15}: 0.8898$. $n_D^{20}: 1.4531$. Löslich in ca. 7,5 Vol. 80% igem Alkohol.

β-Chlor-β-nitro-trimethylenglykol-monoisovalerianat, 2-Chlor-2-nitro-1-oxy-3-isovaleryloxy-propan $C_8H_{14}O_5NCl=(CH_3)_2CH\cdot CH_2\cdot CO\cdot O\cdot CH_2\cdot CCl(NO_3)\cdot CH_4\cdot OH$. B. Durch Schütteln einer Lösung von [β-Chlor-β-nitro-āthyl]-isovalerianat in Åther mit einer 35%igen Formaldehyd-Lösung in Gegenwart von Natriumisovalerianat (SCHMIDT, RUTZ, TRÂNEL, B. 61, 477). — Flüssigkeit. $Kp_{0,18}$: 117—118° (korr.). D_4^{m} : 1,2448. n_D^{m} : 1,4600. Fast unlöslich in Wasser.

β-Chlor-β-nitro-trimethylenglykol-acetat-isovalerianat, 2-Chlor-2-nitro-1-acetoxy-3-isovaleryloxy-propan $C_{10}H_{16}O_6NCl = (CH_3)_9CH \cdot CH_2 \cdot CO \cdot CH_3 \cdot CCl(NO_3) \cdot CH_3 \cdot O \cdot CO \cdot CH_3$. B. Aus β-Chlor-β-nitro-trimethylenglykol-monoacetat und Isovalerylchlorid in siedendem Chloroform (Schmidt, Rutz, Tránel, B. 61, 477). — Flüssigkeit, Kp_{0,67}: 117° bis 118° (kort.). D₄⁸: 1,2129. n_D⁸: 1,4476. Fast unlöslich in Wasser.

2.7-Dimethyl-octen-(4)-diol-(4.5)-diisovalerianat, 4.5-Diisovaleryloxy-octen-(4), ... Diisobutylacetylenglykoʻl-diisovalerianat " $C_{20}H_{36}O_4=(CH_3)_2CH\cdot CH_2\cdot CO\cdot O\cdot C[CH_2\cdot CH(CH_3)_2]\cdot C[CH_2\cdot CH(CH_3)_2]\cdot O\cdot CO\cdot CH_2\cdot CH(CH_3)_2$ (H 313). B. Neben anderen Produkten bei der Einw. von Isovalerylbromid auf Magnesium in Äther und Zerlegung des Reaktionsprodukts mit Salzsäure oder bei der Einw. von Isovalerylbromid auf Isovalerylbromid (s. u.) und Zerlegung des Reaktionsprodukts mit Wasser (TISCHTSCHENKO, Bl. [4] 37, 630, 634). — Kp₁₈: 170—173°. — Gibt bei der Verseifung Isovaleriansäure und Isovaleroin.

Glycerintriisovalerianat, Triisovalerin $C_{18}H_{32}O_8 = (CH_3)_2CH \cdot CH_2 \cdot CO \cdot C \cdot CH[CH_2 \cdot CO \cdot C \cdot CH_2 \cdot CH(CH_3)_2]_2$ (H 314). B. Aus Isovaleriansäure und Glycerin in Gegenwart von Schwefelsäure oder Aluminiumsulfat bei Siedetemperatur (Senderens, Aboulenc, A. ch. [9] 18, 175) oder in Gegenwart von aus Naphthalin, Olsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchells Reagens bei 100° (Ozaki, Bio. Z. 177, 159; Pr. Acad. Tokyo 2, 13; C. 1926 II, 2192). Beim Erhitzen von 1 Mol Glycerin mit 5,5 Mol Natriumisovalerianat und 1 Mol Phosphorpentachlorid auf 200° (Newman, Trikojus, Harker, J. Pr. Soc. N. S. Wales 59, 297; C. 1927 II, 802). Beim Erhitzen von Glycerin mit Isovaleriansäureanhydrid (Malle, A. ch. [9] 17, 319). — Viscose Flüssigkeit. Kd₇₆₃: 330,5° (kort.); Kd₂₇: 209.5—210,5° (N., T., H.); Kd₂₅: 200°; Kd₁₅: 194° (Vorländer, Walter, Ph. Ch. 118, 10). Dis: 1,027 (V., W.); D²⁰: 0,9984 (N., T., H.). Viscosität bei 20°: V., W. d²⁰: 1,4354 (N., T., H.). Doppelbrechung der rotierenden Flüssigkeit: V., W., Ph. Ch. 118, 10; Phys. Z. 25, 572; C. 1925 I. 617. — Beim Überleiten des Dampfes über ein auf 550° erhitztes Gemisch von Kupfer und Magnesiumoxyd bilden sich Isovaleriansäure und Acrolein (M.). — Ist für Ratten giftig (O.).

Isobutyl-isovaleryl-carbinol-isovalerianat, Isovaleroin-isovalerianat $C_{15}H_{28}O_3 = (CH_3)_2CH \cdot CH_2 \cdot CO \cdot CH[CH_2 \cdot CH(CH_3)_2] \cdot CO \cdot CH_2 \cdot CH(CH_3)_2$. B. Neben anderen Produkten durch Einw. von Isovalerylbromid auf Magnesium in Äther und Zerlegung des Reaktionsprodukts mit verd. Salzsäure oder durch Einw. von Isovalerylbromid auf Isovalerylmagnesiumbromid (s. u.) in Äther und Zerlegung des Reaktionsprodukts mit Wasser (TISCHISCHENKO, Bl. [4] 37, 630, 634). Kp_{10} : 133—135°. $D_i^{m_1}$: 0.913. — Gibt bei der Verseifung Isovaleriansäure und Isovaleroin.

Essigsäure-isovaleriansäure-anhydrid $C_7H_{12}O_3=(CH_3)_2CH\cdot CH_2\cdot CO\cdot O\cdot CO\cdot CH_3$ (H 314; E I 137). B. Durch tropfenweise Zugabe von Acetylchlorid zu bei 120° getrocknetem Natriumisovalerianat unter Kühlung und Ausschluß von Feuchtigkeit (Autenrieth, Thomae, B. 57, 428). — Kp: 165—180°; Kp₁₃: 75—90°. — Liefert beim Kochen oder beim Erhitzen im Rohr auf 170—180° geringe Mengen Acetanhydrid und Isovaleriansäureanhydrid. Gibt mit Ammoniak Isovaleramid, mit Anilin Isovaleranilid, mit Phenylhydrazin Isovaleriansäurephenylhydrazid.

Isovaleriansäureanhydrid $C_{10}H_{18}O_3 = [(CH_3)_2CH\cdot CH_2\cdot CO]_2O$ (H 314; E I 137). B. Zur Bildung aus Isovaleriansäure und Acetanhydrid vgl. van der Haar, R. 47, 323. In geringer Menge aus Essigsäure-isovaleriansäure-anhydrid beim Kochen oder beim Erhitzen im Rohr auf 170—180° (Autenrieth, Thomae, B. 57, 429). — D_4^∞ : 0,9327; n_5^∞ : 1,4043 (Tromp, R. 41, 299).

Isovaleriansäurechlorid, Isovalerylchlorid $C_5H_9OCl = (CH_3)_2CH \cdot CH_2 \cdot COCl$ (H 315; E I 137). Beim Leiten des Dampfes über einen Nickelkatalysator bei 420° erfolgt Zerfall in Kohlenoxyd, Chlorwasserstoff und Isobutylen; außerdem entstehen geringere Mengen Wasserstoff, Kohlendioxyd, Methan und Propylen (Mailhe, C.r. 180, 1111). Gibt bei der Einw. von Wasserstoff in Gegenwart von Platinoxyd bei höherer Temperatur und Atmosphärendruck geringe Mengen Isovaleraldehyd (Grignard, Mingasson, C.r. 185, 1176). Gibt mit Brom bei 80° α -Brom-isovalerylchlorid (Fourneau, Nicolitch, Bl. [4] 48, 1239). Beim Leiten von Isovalerylchlorid und Ammoniak über Tonerde bei $490-500^\circ$ entsteht Isovaleronitril (M., A.ch. [9] 13, 212; C. 1920 I, 114). Liefert beim Erhitzen mit Natriumazid in Benzol Isobutylisocyanat (Naegeli, Grüntuch, Lendorff, Helv. 12, 247).

Isovaleriansäurebromid, Isovalerylbromid $C_5H_9OBr = (CH_3)_2CH \cdot CH_2 \cdot COBr$ (H 315). Gibt mit Magnesium in Äther eine äther. Lösung von Isovalerylmagnesiumbromid, aus der man bei der Zersetzung mit verd. Salzsäure Isovaleraldehyd, α -Isopropyl β -isobutyl-aerolein, Isovaleroin-isovalerianat und Diisobutylaeetylenglykol-diisovalerianat erhält; setzt man die Lösung von Isovalerylmagnesiumbromid mit weiterem Isovalerylbromid um und zerlegt anschließend mit Wasser, so erhält man Äthylisovalerianat, Diisovaleryl, Isovaleroin-isovalerianat, Diisobutylaeetylenglykol-diisovalerianat und Äthylbromid (Tischtschenko, Bl. [4] 37, 629, 633).

Isovaleriansäureamid, Isovaleramid $C_5H_{11}ON = (CH_3)_2CH \cdot CH_2 \cdot CO \cdot NH_2$ (H 315; E I 137). B. Neben überwiegenden Mengen Isovaleronitril beim Überleiten von Äthylisovalerianat mit Ammoniak über Aluminiumoxyd bei ca. 500° (Mailhe, A. ch. [9] 13, 217). Durch Einw.

278

von Ammoniak auf Essigsäure-isovaleriansäure-anhydrid (AUTENRIETH, THOMAE, B. 57, 429). — F: 132° (WIELAND, B. 58, 2017), 128° (AU., TH.). Kp: 230° (M., Bl. [4] 37, 1395). Verteilung zwischen Wasser und Äther bei 20—22°: COLLANDER, BÄRLUND, Comment. biol. Helsingfors 2 [1926], Nr. 9, S. 9. Diffusion durch Kollodiummembrane: C., Comment. biol. Helsingfors 2, Nr. 6, S. 15; C. 1926 II, 720. Oberflächenspannung wäßr. Lösungen bei 20°: C., B. Adsorption aus wäßr. Lösung an Blutkohle: Warburg, Bio. Z. 119, 158. — Gibt beim Leiten über Nickel bei 370° oder 430° Isovaleronitril, ungesättigte Kohlenwasserstoffe, Methan, Wasserstoff, Kohlenoxyd und Kohlendioxyd (M., Bl. [4] 35, 364; 37, 1395).

N.N'- Diisovaleryl - $\alpha.\alpha'$ - dibrom - äthylendiamin, 1.2 - Dibrom - 1.2 - bis - isovaleramino - äthan $C_{12}H_{22}O_2N_2Br_2=[(CH_3)_2CH\cdot CH_2\cdot CO\cdot NH\cdot CHBr-]_2$. B. Durch Einw. von Brom auf eine äther. Lösung von $\alpha.\beta$ -Bis-isovaleramino-äthylen (Syst. Nr. 345) unter Kühlung (Windaus, Dörries, Jensen, B. 54, 2748). — Nadeln (aus Alkohol). F: 164—165° (Zers.). Sehr schwer löslich in Wasser und Äther.

Isovaleronitril, Isobutylcyanid $C_5H_9N = (CH_3)_2CH \cdot CH_2 \cdot CN$ (H 315; E I 138). B. Beim Kochen von Isobutylbromid und Kaliumcyanid in 60%igem Alkohol (RUPE, Hodel, Helv. 7, 1023) oder in 85%igem Alkohol, zweckmäßig in Gegenwart von Kupfer(I)-cyanid oder im ultravioletten Licht (Rosenmund, Luxat, Tiedemann, B. 56, 1956). Beim Überleiten von Isoamylisovalerianat und Äthylamin über Aluminiumoxyd bei 490—500% (Mailhe, C. r. 170, 814; A. ch. [9] 13, 225), von Isovaleramid über Nickel bei 370° (M., Bl. [4] 35, 365) oder von N-Isoamyl-formamid über Nickel bei 360° (M., C. r. 176, 1160). In geringer Menge beim Erhitzen von Leucin auf 230—250°, neben anderen Produkten (Waser, Helv. 8, 771). Bei der Einw. von Alkalihypobromit-Lösungen auf Leucin (Goldschmidt, Mitarb., A. 456, 16), Leucylglycin (G., Mitarb., A. 456, 14; Abderhalden, Kröner, H. 168, 212), Leucylleucin (A., K., H. 168, 214) und Leucylalanylvalylglycin (G., Strauss, A. 471, 20). Beim Überleiten von Isoamyliden-anilin oder Isoamyliden-o-toluidin über Nickel bei 430°, neben anderen Produkten (Mailhe, Bl. [4] 27, 233; A. ch. [9] 13, 199). Neben anderen Produkten bei der Einw. von Wasserstoff auf Isovaleraldehyd-phenylhydrazon in Gegenwart von Nickel bei 180° (M., C. r. 172, 1108; Bl. [4] 29, 417). Zu den E I 2, 138 angegebenen Bildungsweisen von Mailhe und Mitarb. vgl. noch M., A. ch. [9] 13, 186—217. Reinigung: Toda, Bio. Z. 172, 26.

Ol von bittermandelartigem Geruch. Kp: 126° (ABDERHALDEN, KRÖNER, H. 168, 212), 129° (Mailhe, A. ch. [9] 13, 199; Goldschmidt, Mitarb., A. 456, 16); Kp₇₈₀: 127,2° bis 127,4° (kort.) (Waser, Helr. 8, 771). D₁^{10,4}: 0,7925 (v. Auwers, B. 60, 2138). D²⁰: 0,7911 (Harkins, Clark, Roberts, Am. Soc. 42, 704). Oberflächenspannung bei 20°: 26,03 dyn/cm (H., C., R.). Parachor: Sugden, Soc. 125, 1186. Verbrennungswärme bei konstantem Volumen: 771,4 kcal/Mol (Lemoult, C. r. 148 [1909], 1604; vgl. Swietoslawski, Popow, J. Chim. phys. 22, 397). n_{\text{G}}^{10,4}: 1,3897; n_{\text{He}}^{10,4}: 1,3918; n_{\text{F}}^{10,4}: 1,3066; n_{\text{Y}}^{10,4}: 1,4006 (v. Au.). Grenzflächenspannung zwischen Isovaleronitril und Wasser: H., C., R. Ausbreitung auf Wasser bei 20°: H., Feldman, Am. Soc. 44, 2670. Adsorption aus wäßr. Lösung an Blutkohle: Warburg, Bio. Z. 119, 158; Toda, Bio. Z. 172, 26, 27. Hemmung der Oxydation von Leucin an Häminkohle durch Isovaleronitril: T.

Liefert beim Leiten des Dampfes über Kupfer ein Gemisch von Isoamylamin und Diisoamylamin (Mailhe, A.ch. [9] 13, 186). Liefert bei der Reduktion mit Wasserstoff in Gegenwart von Nickelkatalysator in Alkohol + Essigester + Wasser Diisoamylamin (Rupe, Hodel, Helv. 7, 1023). Beim Überleiten von Isovaleronitril mit Wasserstoff über Kupfer bei 150° erhält man Diisoamylamin und geringere Mengen Isoamylamin (Komatsu, Ishida, Mem. Coll. Sci. Kyoto [A] 10, 337; C. 1928 I, 2370).

Substitutionsprodukte der Isovaleriansäure.

 β -Brom-isovaleriansäure $C_5H_9O_2Br=(CH_3)_2CBr\cdot CH_2\cdot CO_2H$ (H 316). B. Zur Bildung nach v. Auwers (B. 28, 1133) vgl. v. Auwers, B. 54, 995. — Liefert beim Kochen mit Phenol und Kalilauge $\beta.\beta$ -Dimethyl-acrylsäure (v. Au., Mauss, B. 61, 2549).

Äthylester $C_7H_{13}O_2Br=(CH_3)_2CBr\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Durch Behandeln von β -Brom-isovaleriansäure mit absol. Alkohol und Bromwasserstoff oder durch Umsetzung des Chlorids mit absol. Alkohol unter Kühlung (v. Auwers, Mauss, B. 61, 2549). — Öl. Kp₁₆: 78—80°. — Liefert bei der Einw. von Natriumphenolat in siedendem Alkohol oder in trocknem Benzol β . β -Dimethyl-acrylsäure-äthylester.

Chlorid, β -Brom-isovalerylchlorid $C_sH_8OClBr = (CH_s)_2CBr\cdot CH_s\cdot COCl.$ B. Aus β -Brom-isovaleriansäure und Thionylchlorid (FOURNEAU, FLORENCE, Bl. [4] 41, 1525) oder Phosphortrichlorid in der Kälte (v. Auwers, B. 54, 996). — Kp₁₅: 78° (Fou., Fl.); bei 18 mm nicht unzersetzt destillierbar (v. Au.). — Liefert mit Benzol und Aluminiumchlorid in wenig Schwefelkohlenstoff eine gringe Menge 1.1-Dimethyl-hydrindon-(3) (v. Au.).

$\alpha\text{-Brom-isovalerians}\\ \ddot{a}\text{-Brom-isovalerians}\\ \ddot{a}\text{-re} \quad C_5H_9O_2Br = (CH_3)_2CH\cdot CHBr\cdot CO_2H.$

- a) Rechtsdrehende α-Brom-isovaleriansäure (H 317). B. Aus der inakt. Säure durch fraktionierte Krystallisation des Cinchonidinsalzes aus Aceton (Levene, Mori, Mikeska J. biol. Chem. 75, 348) oder des Brucinsalzes aus Wasser (Berlingozzi, Furia, G. 56, 84).—Krystalle (aus Petroläther). F: 43—44° (B., F.). [α]³⁰: +22° 6′ (Benzol; p = 4) (B., F.), +7,6° (Äther; c = 7), +4,5° (Wasser; c = 1,6) (L., Mo., Mi.). Natriumsalz. [α]³⁰: +1,4° (Wasser; c = 28) (L., Mo., Mi.). Brucinsalz. Nadeln. Ist in Wasser schwerer löslich als das Brucinsalz der linksdrehenden Säure (B., F.).
- b) Linksdrehende α -Brom-isovaleriansäure $C_5H_9O_2Br=(CH_3)_2CH\cdot CHBr\cdot CO_2H$. B. Aus der inakt. Säure durch fraktionierte Krystallisation des Cinchonidinsalzes aus Aceton (Levene, Mori, Mikeska, J. biol. Chem. 75, 348) oder des Brucinsalzes aus Wasser (Berlingozzi, Furia, G. 56, 85). F: ca. 40° (B., F.). Kp₁₄: 119—120° (L., Mo., Mi.). $[\alpha]_1^m:-21°6'$ (Benzol; p=4) (B., F.), -7.7° (Ather; c=6) (L., Mo., Mi.). Liefert bei Einw. von Kaliumhydrosulfid-Lösung rechtsdrehende α -Mercapto-isovaleriansäure (L., Mo., Mi.). Brucinsalz. Nadeln. In Wasser leichter löslich als das entsprechende Salz der rechtsdrehenden Säure (B., F.).
- c) Inakt. α-Brom-isovaleriansäure C₅H₉O₂Br = (CH₃)₂CH·CHBr·CO₂H (H 317; E I 138). B. Durch Oxydation von α-Brom-isovaleraldehyd (aus käuflichem Isoamylalkohol) mit Chromschwefelsäure (Madinaveitia, Puyal, An. Soc. españ. 16 [1918], 336). Zur Bildung nach Schleicher (A. 267, 115) vgl. Ahlberg, J. pr. [2] 107, 259; zur Bildung nach Königs, Mylo (B. 41, 4437) vgl. Marvel, du Vigneaud, Org. Synth. 11 [1931], 20. Elektrische Leitfähigkeit wäßriger und alkoholischer Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 193. Läßt sich mit Hilfe von Brucin (Berlingozzi, Furia, G. 56, 84) oder besser mit Hilfe von Cinchonidin (Levene, Mori, Mikeska, J. biol. Chem. 75, 348) in die opt.-akt. Komponenten spalten. Die mit Soda-Lösung neutralisierte Säure liefert beim Erhitzen mit der berechneten Menge Natriumsulfid in übersättigter Lösung auf dem Wasserbad α.α'-Thiodiisovaleriansäure und andere Produkte (A.).
- InaRt. α-Brom-isovaleriansäure-äthylester $C_7H_{13}O_2Br = (CH_3)_2CH \cdot CHBr \cdot CO_2 \cdot C_2H_5$ (H 317; E I 138). B. Durch Einw. von absol. Alkohol auf α-Brom-isovalerylbromid bei 80° (Ahlberg, J. pr. [2] 107, 260). Zersetzt sich bei der Destillation unter Atmosphärendruck; Kp30: 106—108° (Philippi, M. 51, 277); Kp14: 76—78° (A.). Liefert mit Natriumsulfid in absol. Alkohol unterhalb 40° ein Gemisch von α.α΄-Thio-diisovaleriansäure-diäthylestern, das beim Verseifen mit alkoh. Kali die racem. und die meso-Form der α.α΄-Thio-diisovaleriansäure liefert (A.; vgl. a. Lovén, J. pr. [2] 33, 113). Gibt bei der Einw. auf Natrium-Benzyleyanid in Ather α-Isopropyl-α΄-phenyl-bernsteinsäure-mononitril und andere Produkte (Urson, Thompson, Am. Soc. 44, 182). Geschwindigkeit der Reaktion mit Pyridin bei 16—18°: Tronow, Ж. 58, 1286; С. 1927 II, 1145; mit Pyridin und Natriummethylat-Lösung bei 18—20°: T., Akiwiss, Orlowa, Ж. 61, 345; С. 1929 II, 2550.

Inakt. α -Brom-isovaleriansäure-propylester $C_8H_{15}O_2Br=(CH_3)_2CH\cdot CHBr\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH_3$. B. Aus α -Brom-isovalerylbromid und Propylalkohol (Deulofeu, Bl. [4] 43, 1230). — $Kp_{36-38}\colon 115^{\circ}$.

Inakt. α -Brom-isovaleriansäure-isopropylester $C_8H_{15}O_2Br=(CH_3)_2CH\cdot CHBr\cdot CO_2\cdot CH(CH_3)_2$. B. Aus α -Brom-isovalerylbromid und Isopropylalkohol (Deulofeu, Bl. [4] 43, 1230). — Kp₃₃: 104°.

Inakt. α -Brom-isovaleriansäure-allylester $C_8H_{13}O_2Br=(CH_3)_2CH\cdot CHBr\cdot CO_2\cdot CH_2\cdot CH: CH_2\cdot B.$ Aus α -Brom-isovalerylbromid und Allylalkohol (Deulofeu, Bl. [4] 43, 1230). — Kp_{40} : 117—118°.

Chlorid, inakt. α -Brom-isovalerylchlorid $C_5H_8OClBr = (CH_3)_2CH\cdot CHBr\cdot COCl$ (H 317). B. Aus Isovalerylchlorid und Brom bei 80° (FOURNEAU, NICOLITCH, Bl. [4] 43, 1239). — Kp₁₈: 75°.

Bromid, inakt. α -Brom-isovalerylbromid $C_5H_8OBr_2=(CH_3)_2CH\cdot CHBr\cdot COBr$ (EI 138). B. Zur Bildung aus Isovaleriansäure, Brom und Phosphor vgl. Skraup, Beng, B. 60, 946; Fourneau, Florence, Bl. [4] 41, 1521; F., Nicolitch, Bl. [4] 43, 1239. — Kp₁₃: 70—72° (Sk., B. 61, 1666). Kp₁₀: 90° (F., N.).

 $\alpha.\beta.\gamma.\gamma.\gamma'.\gamma'$ - Hexabrom - $\alpha.\gamma.\gamma'$ - trinitro - isovaleriansäure $C_5HO_8N_3Br_6=(O_2N\cdot CBr_9)_2CBr\cdot CBr(NO_2)\cdot CO_2H$. Diese Konstitution kommt der früher von Merz, Zetter (B. 12, 2046) als $\beta.\beta$ -Dibrom-α-nitro-acetylen (H 1, 195) aufgefaßten Verbindung zu (Wieland, Jung, 4. 445, 86). — B. Aus 2.4.6-Trinitro-resorcin beim Behandeln mit Brom in Wasser (W., J.). — Prismen (aus Eisessig oder Chloroform). F: 116—117° (Zers.). Leicht löslich in Äther, Benzol and Petroläther, schwerer in Alkohol, Eisessig und Chloroform. — Zersetzt sich beim Erhitzen über den Schmelzpunkt explosionsartig unter Bildung von Brom und Stickstoffdioxyd.

280

Liefert beim Kochen mit Wasser Brompikrin, $\alpha.\beta$ -Dibrom-acrylsäure, Kohlendioxyd, Brom und salpetrige Säure. Wird durch basische Reagenzien sofort zersetzt unter Auftreten einer intensiv roten Färbung. Beim Aufbewahren mit Alkohol oder Äther entstehen Kohlendioxyd. Brompikrin und $\alpha.\beta.\gamma$ -Tribrom- $\alpha.\gamma$ -dinitro-propylen(?) (nicht unzersetzt destillierbares Öl). Liefert beim Behandeln mit Anilin in Alkohol oder Äther 4-Brom-anilin, Bromnitro-acetaldehyd-anil. Dibromnitromethan und Kohlendioxyd. Reagiert mit Methylanilin, Dimethylanilin und Pyridin unter Rotfärbung. Mit Phenylhydrazin in Alkohol oder Äther unter guter Kühlung entsteht wahrscheinlich Bromnitroacetaldehyd-phenylhydrazon.

Schwefelanalogon der Isovaleriansäure.

Thioisovaleriansäure-O-methylester $C_6H_{12}OS = (CH_3)_2CH \cdot CH_2 \cdot CS \cdot O \cdot CH_3$ (E I 139). Oxydiert sich an der Luft unter Rauchentwicklung, besonders in Gegenwart von Essigsäure (Delépine, Bl. [4] 31, 766).

4. 2-Methyl-propan-carbonsäure-(2), α.α-Dimethyl-propionsäure, Trimethylessigsäure, Pivalinsäure C₅H₁₀O₂ = (CH₃)₃C·CO₂H (H 319; EI 139). B. Bei der Einw. von wäßrig-alkoholischer Kalilauge auf Trimethylacetaldehyd, neben tert.-Butylcarbinol (Conant, Webb, Mendum, Am. Soc. 51, 1254). Durch Oxydation von Trimethylacetaldehyd mit Chromsäure (Pringsheim, Leibowitz, B. 56, 2039) oder mit Silberoxyd (Franke, Hinterberger, M. 43, 658). Durch Einw. von Ozon auf 2.2-Dimethyl-hexandion-(3.5) bei —15° und Behandeln des Reaktionsprodukts mit Wasser (Weygand, Baumgärtel, B. 62, 579). Aus 2.2.5.5-Tetramethyl-hexandion-(3.4) beim Behandeln mit Natrium in warmem, etwas feuchtem Äther unter Luftzutritt und Zersetzen des Reaktionsproduktes mit Wasser (Jegorowa, Ж. 60, 1207; C. 1929 I, 1323). — Darstellung durch Behandlung von tert. Butylmagnesiumchlorid mit Kohlendioxyd: Gilman, Zoellner, R. 47, 1061; Puntambeker, Zoellner, Org. Synth. Coll. Vol. I [1932], S. 510; deutsche Ausgabe, S. 525; durch Oxydation von Pinakolin mit Natriumhypobromid-Lösung: Sandborn, Bousquet, Org. Synth. Coll. Vol. I, S. 512; deutsche Ausgabe, S. 528. — Kp₁₂₄: 110—112° (G., Z.). Kryoskopisches Verhalten in Benzol: Hantzsch, B. 58, 685. Dichte und Oberflächenspannung der gesättigten wäßrigen Lösung bei 22°: Zahn, R. 45, 786. — Geschwindigkeit der Veresterung in Alkohol in Gegenwart von Pikrinsäure und Salzsäure bei 25°: Goldschmidt, Ph. Ch. 94, 245.

Lithiumsalz. Röntgenogramm (Pulveraufnahmen): Becker, Jancke, Ph. Ch. 99. 272. — Basisches Berylliumsalz Be $_4$ O($_5H_9$ O $_2$) $_6$. Zur Konstitution vgl. Morgan. Astbury, Pr. roy. Soc. [A] 112, 442; C. 1926 II. 2266. B. Beim Kochen von Berylliumhydroxyd mit Pivalinsäure in Ligroin (M., A.). Nadeln (aus Petroläther). Röntgenographische Untersuchung nach der Ionisations. und Drehkrystallmethode: M., A. F: 163°. D: 1,05. — $Hg(C_5H_9O_2)_2$. Nadeln (aus Chloroform). F: 235° (Kharasch, Staveley, Am. Soc. 45, 2970). Löslich in heißem Chloroform und Pyridin, sehr schwer löslich in Tetrachlorkohlenstoff. Spaltet im Vakuum bei 240° kein Kohlendioxyd ab. Färbt sich beim Kochen in Nitrobenzol dunkler und scheidet Quecksilber ab.

Äthylester, Äthylpivalinat C,H₁₄O₂ = (CH₃)₃C·CO₂·C₂H₅ (H 320; E I 139). Kp: 118,0—118,2° (Olsson, Ph. Ch. 133, 234). D₄°: 0,8580; n₅°: 1,3922 (O.). — Geschwindigkeit der Verseifung durch verd. Natronlauge bei 20°: O. Liefert mit Äthylmagnesiumjodid Äthyl-tert.-butyl-carbinol (Leroide, A. ch. [9] 18, 366). Mit Propylmagnesiumchlorid und bromid entsteht ein Gemisch von Propyl-tert.-butyl-carbinol und Dipropyl-tert.-butyl-carbinol; mit Propylmagnesiumjodid bildet sich ausschließlich Propyl-tert.-butyl-carbinol; analog verläuft die Reaktion mit Butylmagnesiumjodid (L.). Setzt sich mit tert. Butylmagnesiumchlorid in siedendem Äther nicht um (Conant, Blatt, Am. Soc. 51, 1236).

2.2.5.5 - Tetramethyl - hexanol - (4) - on - (3) - trimethylacetat, Pivaloinpivalinat $C_{15}H_{28}O_3 = (CH_3)_3C \cdot CO \cdot CH[C(CH_3)_3] \cdot CO \cdot C(C(CH_3)_3$. Das Mol.-Gew. ist in Athylenbromid kryoskopisch bestimmt. — B. Neben anderen Produkten aus Trimethylessigsäure-chlorid bei 10—20-stdg. Behandlung mit Natrium in siedendem, etwas feuchtem Ather unter Luftzutritt (Jegorowa, %. 60, 1204; C. 1929 I, 1323). — Campherartig riechende Krystalle (aus Äther). F: 37°.

Trimethylessigsäure-chlorid, Trimethylacetylchlorid, Pivaloylchlorid $C_sH_sOCl=(CH_3)_3C\cdot COCl$ (H 320; E I 139). Kp: 102—104° (Jegorowa, Ж. 60, 1204; C. 1929 I, 1323). — Liefert bei 10—20-stdg. Behandung mit Natrium in siedendem, etwas feuchtem Ather 2.2.5.5-Tetramethyl-hexandion-(3.4), Pivaloinpivalinat und eine Verbindung ($C_{10}H_{16}O_{9}$)x (Krystalle; F: 180—181°; leicht löslich in Ather, Benzol, Chloroform und Essigsäure beim Erwärmen); bei Durchführung der Reaktion im Wasserstoffstrom erhält man nur 2.2.5.5-Tetramethyl-hexandion-(3.4) und die Verbindung ($C_{10}H_{18}O_{9}$)x.

281

Trimethylessigsäure-amid, Pivalinsäureamid $C_5H_{11}ON = (CH_3)_3C \cdot CO \cdot NH_2$ (H 320; E I 139). Gibt bei der Einw. von 3 Mol Phenylmagnesiumbromid in Äther + Toluol, zuletzt in Abwesenheit von Äther auf dem Sandbad $\omega.\omega.\omega$ -Trimethyl-acetophenon und geringe Mengen Trimethylacetonitril (RAMART, LACLÔTRE, ANAGNOSTOPOULOS, C.r. 185, 283).

Trimethylessigsäure-nitril, Trimethylacetonitril, tert. Butylcyanid $C_5H_9N=(CH_3)_3C\cdot CN$ (H 320). B. Neben viel $\omega.\omega.\omega$ -Trimethyl-acetophenon bei der Einw. von 3 Mol Phenylmagnesiumbromid auf Pivalinsäureamid in Äther + Toluol, zuletzt in Abwesenheit von Äther auf dem Sandbad (Ramart, Laclôtre, Anagnostopoulos, C.r. 185, 283). — Gibt bei Einw. von Phenylmagnesiumbromid in siedendem Benzol und nachfolgender Behandlung der Magnesiumverbindung mit Ammoniumehlorid und Eiswasser $\omega.\omega.\omega$ -Trimethylacetophenon-imid (Ramart-Lucas, Salmon-Legagneur, C.r. 184, 103; Bl. [4] 43, 323).

Trimethylessigsäure-hydrazid, Pivaloylhydrazin $C_5H_{12}ON_2 = (CH_3)_3C\cdot CO\cdot NH\cdot NH_2$. B. Durch Erhitzen von Pivalinsäureäthylester mit mehr als 1 Mol Hydrazinhydrat im Rohr auf 140° (Wieland, Hintermaier, Dennstedt, A. 452, 16). — Zerfließliche Blättchen. F: 65°. Kp₁₂: 113°. — Leicht löslich in Wasser und den meisten anderen Lösungsmitteln außer Äther und Petroläther.

N.N'-Bis-trimethylacetyl-hydrazin, N.N'-Dipivaloyl-hydrazin $C_{10}H_{20}O_2N_2 = (CH_3)_3C\cdot CO\cdot NH\cdot NH\cdot CO\cdot C(CH_3)_3$. B. Aus Pivalinsäure-chlorid und Hydrazinhydrat unter Kühlung (Wieland, Hintermaier, Dennstedt, A. 452, 16). — Tafeln (aus Alkohol). Schwer löslich in Wasser.

Brom-trimethylessigsäure, Brompivalinsäure $C_5H_9O_2Br = CH_2Br \cdot C(CH_9)_2 \cdot CO_9H$ (H 320). B. Zur Bildung aus Oxypivalinsäure und Bromwasserstoffsäure nach Kohn, Schmidt (M. 28, 1056) vgl. Fourneau, Florence, Bl. [4] 43, 212. — F: 41°.

Chlorid, Brompivaloylchlorid C₅H₈OClBr = CH₂Br·C(CH₃)₂·COCl. B. Aus Brompivalinsäure und Thionylchlorid (Fourneau, Florence, Bl. [4] 43, 213). — Kp₂₀: 55,2°.

Methyl-bis-brommethyl-essigsäure, $\beta.\beta'$ -Dibrom-pivalinsäure $C_5H_8O_2Br_2 = (CH_2Br)_2C(CH_3)\cdot CO_2H$. B. Beim Erhitzen von $\alpha.\alpha'$ -Diacetoxy-pivalinsäure-nitril mit überschüssiger rauchender Bromwasserstoffsäure auf 125—130° (Kohn, Mendelewitsch, M. 42, 230). — Krystalle (aus Petroläther). Rhombisch (hemimorph?) (Hlawatsch, zit. bei K., M.). F: 56—58°. D: 2.078. Leicht löslich in heißem Ligroin, Äther und Benzol. — Beim Erhitzen mit überschüssiger 0.2 n-Kalilauge im Rohr erfolgt quantitative Abspaltung von Brom. Liefert beim Kochen mit Blei(II)-oxyd in Wasser $\alpha.\alpha'$ -Dioxy-pivalinsäure.

Methylester $C_6H_{10}O_2Br_2 = (CH_2Br)_2C(CH_3) \cdot CO_2 \cdot CH_3$. B. Beim Kochen von $\beta.\beta'$ -Dibrom-pivalinsäure mit Methanol und konz. Schwefelsäure (Kohn, Mendelewitsch, M. 42, 240). — Esterartig riechende Flüssigkeit. Kp_{751} : 229—231° (fast unzersetzt): Kp_{14-15} : 109—113°. — Liefert beim Kochen mit Zinkstaub und Methanol 1-Methyl-cyclopropancarbonsäure-(1)-methylester. [Gottfried]

6. Carbonsäuren $C_6H_{12}O_2$.

1. Pentan-carbonsäure-(1), n-Capronsäure, n-Hexylsäure $C_6H_{12}O_2 = CH_3 \cdot [CH_0]_A \cdot CO_0H$ (H 321; E I 139).

Vorkommen.

n-Capronsäure findet sich in vielen Pflanzen, selten in freiem Zustand, meist als Ester oder Glycerid in ätherischen und fetten Ölen, besonders in Blättern und Früchten. Zu diesem Vorkommen vgl. die Angaben bei C. Wehmer, Die Pflanzenstoffe, 2. Aufl., Bd. 1 und 2 [Jena 1929 und 1931]; C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, Bd. 2, Tl.1 [Wien 1932], 506, 591. Ist im Fett der Nüsse von Attalea Cohune Morris (aus Britisch Honduras) enthalten (Hilditch. Vidyarthi, J. Soc. chem. Ind. 47, 36 T; C. 1928 II, 503). Über das Vorkommen von n-Capronsäure im Cocosöl liegen widersprechende Angaben vor, die besonders auf die Fraktionierungstechnik der Ester des Cocosnußöls zurückzuführen sind. Armstrong, Allan (J. Soc. chem. Ind. 43 [1924], 216 T, Ar., All., Moore (J. Soc. chem. Ind. 44 [1925], 63, 67 T), Stokoe (Biochem. J. 22, 87; Analyst 49, 578; C. 1925 I, 1466) und Taylor, Clarke (Am. Soc. 49, 2831) wiesen sehr geringe Mengen n-Capronsäure nach, wogegen Börner, Baumann (Z. Unters. Nahr.-Genußm. 40, 151; C. 1921 I, 219) der Nachweis nicht gelang. Zum Vorkommen im Öl der Samen von Delphinium Staphisagria L. vgl. Keller, Ar. 1925, 276. n-Capronsäure findet sich im Campheröl (Rochussen, J. pr. [2] 105, 135); in freiem Zustand(?) und als Isoamylester in Apfelschalen (Power, Chesnut. Am. Soc. 42, 1514); im Hevea-Kautschuk (Dekker, India Rubber J. 70, 815: C. 1926 I, 1059). In den äther. Ölen aus Eucalyptus micrantha (Penfold, Morrison, J. Pr. Soc. N. S. Wales 61, 274: C. 1929 I, 948) und aus Monarda fistulosa

(SCHIMMEL & Co., Ber. Schimmel 1919, 37; C. 1920 II, 453). Im atherischen Öl der Blätter von Mentha aquatica L. (Gordon, Am. J. Pharm. 100, 513; C. 1928 II, 2196). Im Ol der Samen von Datura alba Nees (DIETERLE, Ar. 1926, 143). In der Rinde von Viburnum opulus (Heyl, J. am. pharm. Assoc. 11, 334; C. 1923 I, 1515) und in Viburnum prunifolium (HEYL, BARKENBUS, Am. Soc. 42, 1754). Zum Vorkommen im Butterfett vgl. Frog, Schmidt-Nielsen, Bio. Z. 127, 173. n-Capronsäure entsteht bei der Verkohlung von Buchenholz und ist daher im rohen Buchenholzessig enthalten (SEIB, B. 60, 1397).

Bildung und Darstellung.

Entsteht in sehr geringer Menge beim Erhitzen einer Lösung von Natrium in einem Gemisch aus Butylalkohol und Alkohol auf 275°, neben anderen Produkten (WEIZMANN, GARRARD, Soc. 117, 334). Zur Bildung aus n-Hexylalkohol durch Oxydation mit Kalium-dichromat vgl. Zeisel. Neuwirth, A. 433, 138. Bei der Oxydation von n-Capronaldehyd mit frisch gefälltem Silberoxyd in verd. Ammoniak (BAUMGARTEN, GLATZEL, B. 59, 2663). Aus n-Capronitril beim Kochen mit alkoh. Natronlauge (SIMON, Bl. Soc. chim. Belg. 38, 50; C. 1929 I, 2520) sowie beim Leiten des Dampfes im Gemisch mit Wasserdampf über Thoriumoxyd bei 380° (Мацие, С. т. 171, 247; Bl. [4] 27, 756). Aus dem Calciumsalz oder dem Ammoniumsalz der Gluconsäure beim Kochen mit Jodwasserstoffsäure (D: 2) und rotem Phosphor (O. Th. Schmidt, A. 476, 269). Durch elektrolytische Reduktion von Homolävulinsäure in Schwefelsäure (Lukes, Collect. Trav. chim. Tchécosl. 1, 132; C. 1929 II, 745). Aus α-Diathylamine-önanthol bei der Einw. von ammoniakalischer Silber-Lösung in Gegenwart von überschüssiger Kalilauge bzw. von Soda-Lösung (Kirrmann, C. r. 186, 702; A. ch. [10] 11, 237, 275). Entsteht neben Cyclohexanon beim Erhitzen von Pimelinsäure auf ca. 3360 (Vogel, Soc. 1929, 728). n-Capronsaure wird ferner erhalten aus Paraffin durch Oxydation mit Luft (Franck, Ch. Z. 44, 310; C. 1920 II, 781) oder mit Sauerstoff (Kelber, B. 53, 70) in der Hitze in Gegenwart von Katalysatoren. Beim Ozonisieren der Fettsäuren aus gehärtetem Erdnußöl und nachfolgenden Spalten mit verd. Wasserstoffperoxyd-Lösung (BAUER, MITSO-TAKIS, Ch. Umschau Fette 35, 138; C. 1928 II, 1870). — Zur Bildung bei der Buttersäuregärung von Kohlenhydraten vgl. Neuberg, Arinstein, Bio. Z. 117, 314. Über Bildung bei der Einsäuerung von Futtermitteln vgl. Brahm, Bio. Z. 156, 18; 186, 232.

Darstellung durch Umsetzung von Natrium-malonsäurediäthylester mit Butylbromid. Verseifen und Erhitzen auf 180°: ADAMS, MARVEL, Am. Soc. 42, 316; REID, RUHOFF.

Org. Synth. 16 [1936], 62.

Physikalische Eigenschaften.

Röntgenogramm (Pulveraufnahme): GIBBS, Soc. 125, 2623. F: 3º (WEIZMANN, GARRARD, Soc. 117, 334). E: -3,6° (GARNER, MADDEN, RUSHBROOKE, Soc. 1926, 2499), -3,9° Soc. 117, 334). E: —3,6° (GARNER, MADDEN, RUSHBROOKE, Soc. 1926, 2499), —3,9° (SIMON, Bl. Soc. chim. Belg. 38 [1929], 56), —8° (KIRRMANN, A. ch. [10] 11, 275). Kp₇₆₀: 208° (kort.) (Ki., A. ch. [10] 11, 278), 205,35° ± 0,02° (Sī.), 205,2° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 18); Kp₇₆₀: 201,5° (Kailan, Raupenstrauch, M. 45, 486); Kp₇₆₀: 201° (Kai., Schachner, M. 52, 23); Kp₆₈₅: 198—199° (kort.) (Bhide, Sudbroough, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 80); Kp₁₆: 102° (Ki., C. r. 186, 702; A. ch. [10] 11, 275). D; zwischen —20,1° (0,9651) und +100,8° (0,8591): Hunten, Maass, Am. Soc. 51, 159; D; 0,94423; D; 0,93136; D; 0,901832 (Sī.); D; 0,932; D; 0,923 (Tromp, R. 41, 282). Viscosität bei 15°: 0,03525, bei 30°: 0,02511 g/cmsec (Sī., Bl. Soc. chim. Belg. 38, 62). Zur Viscosität bei 20° vgl. Vorländer, Walter, Ph. Ch. 118, 10. Einfluß sehr düner Filme und des gesättigten Dampfes auf die gleitende Reibung zwischen Glas, Stahl und Wismut: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 555: C. 1922 IV. 514. Oberflächensdannung zwischen — 20.0° Pr. roy. Soc. [A] 100, 555; C. 1922 IV, 514. Oberflächenspannung zwischen -20.0° (31,2 dyn/cm) und +100,8° (20,7 dyn/cm): Hunten, Maass. Parachor: Hu., Maass. Spezifische Wärme der flüssigen Substanz zwischen 0° und +23°: 0,5105 cal/g; der festen Substanz zwischen —33° und —10°: 0.4495 cal/g (GARNER, MADDEN, RUSHBROOKE, Soc. 1926, 2499). Schmelzwärme: 31,15 cal/g (GA., MAD., Ru.). Verbrennungswärme bei konstantem Volumen: 8443,2 cal/g (Verkade, Coops, R. 47, 608).

ng: 1,4165; nj: 1,4188; nj: 1,4188; nj: 1,4289; nj: 1,4284; ng: 1,4127; nj: 1,4149;

n_{He}: 1,41494; n_p: 1,4201; n_y: 1,4245 (Simon, Bl. Soc. chim. Belg. 38, 59). n_b: 1,4168 (Tromp, nHe: 1,41494; ng: 1,42U1; nγ: 1,4245 (SIMON, Bl. Noc. chim. Beig. 38, 59). np: 1,4108 (Ikomp, R. 41, 297); np: 1,3967 (Bertram, Bio. Z. 197, 438). Lichtabsorption im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 140, 155, 211. Beugung von Röntgenstrahlen in flüssiger n-Capronsäure: Katz, Z. ang. Ch. 41, 337; Stewart, Mannheimer, Z. anorg. Ch. 171, 68; St., Pr. nation. Acad. USA. 13, 787; C. 1928 I, 639; Morrow, Phys. Rev. [2] 31, 11; C. 1928 I, 2693. Magnetische Doppelbrechung: Ramanadham, Indian J. Phys. 4, 27; C. 1929 II, 2315.

Bei 15° lösen 100 cm³ Wasser 0,8909 g (Virtanen, Fr. 74, 326), 1000 cm³ Wasser 0,068 Mol n-Capronsäure (Müller von Blumencron, Z. dtsch. Öl.-Fettind. 42, 142; C. 1923 I, 36). Vartailung zwischen Wasser und Chloroform bei 25°: Smith. J. phys. Chem. 25. 228; Sm.

Verteilung zwischen Wasser und Chloroform bei 25°: Smrth, J. phys. Chem. 25, 228; Sm.,

White, J. phys. Chem. 33, 1969; zwischen Wasser und Äther bei 23°: Behrens, Fr. 69, 101, 102; zwischen Wasser und Benzol bei 25°: Brown, Bury, Soc. 123, 2433; Sm., Wh., J. phys. Chem. 33, 1964; zwischen Wasser und Toluol bei 25°: Sm., Wh., J. phys. Chem. 33, 1958; zwischen Wasser und Xylol bei 25°: Sm., J. phys. Chem. 25, 221; zwischen Wasser und Olivenöl: Bodansky, J. biol. Chem. 79, 252. Binäre, n-Capronsäure enthaltende azeotrope Gemische s. in der untenstehenden Tabelle. Flüchtigkeit mit Wasserdampf: Arnold, Z. Unters. Nahr.-Genuβm. 42, 354; C. 1922 II, 918; Knetemann, R. 47, 957. Oberflächenspannung wäßr. Lösungen bei 18—19°: Roy, Quart. J. indian chem. Soc. 4, 311; C. 1928 I, 659; zwischen 0° und 100°: Rehbinder, Ph. Ch. 111, 453. Grenzflächenspannung von Lösungen in Benzol gegen verd. Natronlauge und verd. Natronlauge + Natriumchlorid: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 99; Rev. gén. Colloides 5, 487; C. 1927 II, 396. Adhäsionsenergie von Wasser an der Oberfläche von n-Capronsäure: Nietz, J. phys. Chem. 32, 262. Schaumbildung wäßr. Lösungen: Bartsch, Koll. Beih. 20, 5; C. 1925 I, 2362. Adsorption aus wäßr. Lösung an Tierkohle bei 25°: Klein, Lotos 71 [1923], 288, 293; bei 16—18°: Schilow, Nekrassow, Ph. Ch. 130, 67; Ж. 60, 105; an Zuckerkohle bei 16°: Nek., Ph. Ch. 136, 380. Adsorption an Kohle aus Lösungen verschiedener Alkalität: Pheles, Peters, Pr. roy. Soc. [A] 124, 559; C. 1929 II, 2546. Adsorption aus alkoh. Lösung an Tierkohle bei Zimmertemperatur: Griffin, Richardson, Robertson, Soc. 1928, 2708; aus verschiedenen Lösungsmitteln an Kohle verschiedener Herkunft: Nek., Ph. Ch. 136, 22.

n-Capronsaure enthaltende binare azeotrope Gemische.

Komponente	Kp760	n-Capron- säure in Gew%	Komponente	Кр ₇₆₀ 0	n-Capron- säure in Gew%
d-Limonen 2) Nitrobenzol 2) Benzylchlorid 2) Benzylidenchlorid 2) 2-Brom-toluol 2)	177,0 ca. 202 179,0 199,0 180,8	ca. 5 70 ca. 3 36 6	4-Brom-toluol ²) 2-Nitro-toluol ²) Naphthalin ²) Veratrol ¹) Citronellal ²)	184,0 ca. 205 202,0 ca. 202,5 ca. 203,5	8 ca. 96 ca. 70 ca. 42

¹⁾ LECAT, Ann. Soc. scient Bruxelles 48 [[1928], 54. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 18, 19, 21, 22, 31, 112.

Adsorption aus verdünnter wäßriger Lösung an Eisen(III)-hydroxyd: Sen, J. phys. Chem. 31, 526. Adsorption von n-Capronsäure an der Oberfläche wäßr. n-Capronsäure-Lösungen: McBain, du Bois, Am. Soc. 51, 3544. Über die Ausbreitungsgeschwindigkeit auf der Wasseroberfläche vgl. Brinkman, v. Szent-Györgyi, Bio. Z. 139, 276. Einfluß auf die Quellung des Caseins in wäßr. Lösung: Isgaryschew, Pomeranzewa, Koll.-Z. 38, 236; C. 1926 I, 3129. Koagulierende Wirkung auf alkal. Casein-Lösungen: Is., Bogomolowa, Koll.-Z. 38, 239; C. 1926 I, 3307.

Lichtstreuung von linear polarisiertem Licht an der Oberfläche wäßr. n-Capronsäure-Lösungen: Bouhet, C.r. 189, 43. Elektrische Leitfähigkeit alkoh. Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 38, 192. Elektrolytische Dissoziationskonstante k bei 18°: 1,44·10⁻⁵ (aus p_R-Messungen) (Kolthoff, Bosch, R. 47, 875); bei 25°: 1,42·10⁻⁵ (aus der elektrischen Leitfähigkeit) (Klein, Lotos 71 [1923], 282). Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßrigen, schwach schwefelsauren Capronsäure-Lösungen: Frunkin, Ph. Ch. 111, 194; vgl. Fr., Ph. Ch. 116, 490. Zur Zerstäubungselektrizität wäßr. Lösungen vgl. Zeehuisen, Versl. Akad. Amsterdam 28, 1116; C. 1921 I, 929. Einfluß von Neutralsalzen auf die Wasserstoffionen-Konzentration äquimolekularer Gemische aus n-Capronsäure und Natrium-n-capronat in Wasser: Kolthoff, Bosch.

Chemisches Verhalten.

Bei der Elektrolyse eines Gemisches von Kalium-n-capronat und n-Capronsäure an einer Platinanode in mit Petroläther überschichteter wäßriger Lösung bei ca. —3° entstehen außer Decan, Amylen und n-Capronsäure-n-amylester n-Capronsäure und Di-n-caproylperoxyd; die gleichen Produkte werden bei der Elektrolyse an Graphitanoden erhalten (FICHTER, ZUMBRUNN, Helv. 10, 879; F., Ph. Ch. 130, 52). Eine Lösung von Ammonium-n-capronat in wäßr. n-Capronsäure-Lösung liefert bei der Elektrolyse bei 0° bis 2° n-Decan, n-Capronsäure-amid und andere Produkte (F., LINDENMAIER, Helv. 12, 571). Das Ammonium-salz wird in ammoniakalischer Lösung mit Wasserstoffperoxyd bei 90° in Essigsäure, Methylpropylketon, γ-Oxo-n-capronsäure und δ-Oxo-n-capronsäure übergeführt (Clutterbuck, Raper, Biochem. J. 19, 390). Geschwindigkeit der Oxydation durch Wasserstoffperoxyd und konz. Schwefelsäure: Kerp, Arb. Gesundh.-Amt 57, 557; C. 1927 I, 1902. Über

Oxydation von Kaliumcapronat Lösung mit Fluor in Gegenwart von Kaliumcarbonat vgl. Fichter, Brunner, Helv. 12, 576. Durch oxydativen Abbau mit Permanganat erhielten Staudinger, Ruzicka (Helv. 7, 244) Oxalsäure, Bernsteinsäure und andere Produkte, Skraup, Schwamberger (A. 462, 151) erhielten bei Zimmertemperatur ebenso wie in der Hitze überwiegend Oxalsäure. Verhalten bei der Oxydation mit Chromschwefelsäure: Lieben, Molnar, M. 53/54, 7. Erwärmen mit Brom und rotem Phosphor liefert α-Brom-n-caproylbromid (v. Auwers, Wegener, J. pr. [?] 106, 245). Das bei Einw. von Jod auf capronsaures Silber entstehende Zwischenprodukt (C₆H₁₁O)₂O + AgOI (vgl. H 2, 322) krystallisiert aus Petroläther in hellgelben Nadeln. die beim Erhitzen in Gegenwart von Quarzpulver in n-Amyl-n-capronat und freie Säure übergehen (Wieland, Fischer, A. 446, 63). n-Capronsäure verkohlt beim Erhitzen mit konz. Schwefelsäure auf ca. 200° unter Entwicklung von Kohlenoxyd, Kohlendioxyd und Schwefeldioxyd (Senderens, Aboulenc, C. r. 105, 1088). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Bhide, Sudborough, J. indian Inst. Sci. 8 A 89, 106; mit absolutem und wasserhaltigem Athylenglykol in Gegenwart von Chlorwasserstoff bei 25° mit absolutem und wasserhaltigem Glycerin in Gegenwart von Chlorwasserstoff bei 25° oder ohne Katalysator bei 183,5°: Kai., Raupenstrauch, M. 45, 493, 513.

Biochemisches Verhalten; Analytisches.

Das Ammoniumsalz der n-Capronsäure wird durch Penicillium glaucum in Methylpropylketon übergeführt (Stärkle, Bio. Z. 151, 400, 415; Acklin, Bio. Z. 204, 254, 264); die gleiche Umwandlung bewirkt Penicillium cyclopium (Derx, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345). Reduktion von Methylenblau durch n-Capronsäure in Gegenwart von ruhenden Bact. coli: Quastel, Whetham, Biochem. J. 19, 524, 530. Wirkung auf Ratten beim Einbringen unter die Haut: Delore, Jeannin, C. r. Soc. Biol. 98, 702; C. 1928 I. 2963. Hemmung enzymatischer Vorgänge durch n-Capronsäure: Velluz, Bl. Soc. Chim. biol. 9, 485; C. 1927 II, 837. Insecticide Wirkung der freien Säure und des Ammoniumsalzes: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; G. 1927 II, 1884; vgl. Siegler, Polenoe, J. agric. Res. 29, 259; C. 1925 I, 2111.

Mikrochemischer Nachweis als Kupfer(II)-, Calcium- und Zink-capronat: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 327; J. Schmidt in G. Klein. Handbuch der Pflanzenanalyse [Wien 1932], S. 387, 412. Die Angaben von Freund (J. pr. [2] 3, 232; vgl. H 2, 322), wonach die krystallinische Fällung mit Zinkacetat-Lösung zur Unterscheidung der Capronsäure von Isovaleriansäure dienen kann, ist nach Franzen (H. 112, 311) nicht zutreffend. Bestimmung im Butterfett: Virtanen, Fr. 74, 322.

Salze der n-Capronsäure (Capronate).

NH₄C₆H₁₁O₂. D_i²⁸: 0,954 (Biltz, Balz, Z. anorg. Ch. 170, 338). — NaC₆H₁₁O₂. Über Gelbildung des Natriumsalzes in Alkohol vgl. Müller von Blumencron, Z. disch. Öl-Fettind. 42, 173; C. 1923 I, 36. 625 g lösen sich in 1 l Wasser (M. v. B., Z. disch. Öl-Fettind. 42, 173). Innere Reibung der wäßr. Lösung: M. v. B., Z. disch. Öl-Fettind. 42, 102; C. 1923 I, 36. Oberflächenspannung in wäßr. Lösung: M. v. B., Z. disch. Öl-Fettind. 42, 102; C. 1923 I, 36; Lascaray, Koll.-Z. 34, 75; C. 1924 I, 2413. Grad der Verseifung durch Wasser: Stocks, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786. — KC₆H₁₁O₂. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436; C. 1920 III, 533. Viscosität einer wäßr. Lösung bei 20°: Vorländer, Walter, Ph. Ch. 118, 15. Doppelbrechung der rotierenden wäßr. Lösung: V., W. Lösungsvermögen der wäßr. Lösung für verschiedene organische Verbindungen: Tamba. Bio. Z. 145, 417. — Cu(C₆H₁₁O₂)₂. Absorptionsspektrum der Lösungen in Chloroform und Alkohol im sichtbaren und ultravioletten Gebiet: French, Lowry. Pr. roy. Soc. [A] 106, 496; C. 1925 I, 601. — Zn(C₆H₁₁O₂)₂. Platten (aus Alkohol). F: 142° (Haworh, Soc. 1929, 1466). — Thallium(I)-salz. Doppelbrechende Blättchen (aus Alkohol) + Aceton). Die Schmelze ist zwischen 152° und 223—224° (korr.) krystallin-flüssig (Walter, B. 59, 967). Verhalten des krystallin-flüssigen Systems: W. Sehr leicht löslich in Methanol, Alkohol, Wasser, Chloroform und Essigester, schwer in Aceton und Toluol. Erstarrungspunkte von Gemischen mit den Thallium(I)-salzen der Buttersäure, Pelargonsäure und Isoamylessigsäure: W. — Pb(C₆H₁₁O₂)₂. B. Durch Einw. von n-Capronsäure auf Blei (Trillat, C. r. 180, 1839; Ann. Physique [10] 6, 76). Röntgenogramm (Reflexionsaufnahme): Tr. — Natriumuranylsalz UO₂(C₆H₁₁O₂)₂ + NaC₆H₁₁O₂. Krystalle (Barlot. Brenet, C. r. 174, 116).

Derivate der n-Capronsäure,

Methyl-n-capronat $C_7H_{14}O_2=CH_3\cdot [CH_2]_4\cdot CO_2\cdot CH_3$ (H 323). Kp₇₆₀: 149,7° (Lecat. R. 46, 244). Bildet ein azeotropes Gemisch mit 1.1.2.2-Tetrachloräthan (Kp₇₆₀: 153°: 50 Gew.-% Methylcapronat) (L.). — Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884.

Äthyl-n-capronat C₈H₁₆O₂ = CH₃·[CH₂]₄·CO₂·C₂H₅ (H 323; E I 140). B. Aus n-Capronsäure und absolut-alkoholischer Salzsäure (Simon, Bl. Soc. chim. Belg. 38, 51; C. 1929 I, 2520). Aus Natriummalonester und Butylbromid über Butylmalonester und Butylmalonsäure (Ziegler, Mitarb., A. 473, 32; vgl. a. Adams, Marvel, Am. Soc. 42, 316; Reid, Reid, Co. 18, 16 [1936], 62). Neben α-Butyl-acetessigester und α.α-Dibutyl-acetessigester beim Kochen von Acetessigester mit Butylbromid in Natriumäthylat-Lösung (Hess. Bappert, A. 441, 153).

acetessigester beim Kochen von Acetessigester mit Butyldformid in Nautumathylat-Losung (Hess, Bappert, A. 441, 153). E: $-67,5^{\circ}$ (Simon, Bl. Soc. chim. Belg. 38 [1929], 56). Kp₇₆₀: $167,85^{\circ}\pm0,02^{\circ}$ (Sl.), $166,8^{\circ}$ (Lecat, Ann. Soc. scient. Bruxelles 48 I, [1928], 121); Kp₁₆: $61-63^{\circ}$ (Hess, Bappert, A. 441, 153). D₁°: 0,88956; D₁°: 0,87583; D₂°: 0,86196 (Sl.). D₁°: 0,8733 (He., B.). Viscosität bei 15° : 0,01098, bei 30° : 0,00871 g/cmsec (Sl., Bl. Soc. chim. Belg. 38, 62). Oberflächenspannung zwischen 0° (27,89 dyn/cm) und 60° (21,89 dyn/cm): Harkins, Cheng, Am. Soc. 43, 48. n_{α}^{15} : 1,40763; n_{15}^{15} : 1,40971; n_{16}^{16} : 1,40985; n_{15}^{15} : 1,41480; n_{15}^{15} : 1,41907; n_{α}^{25} : 1,40342; n_{15}^{25} : 1,40544; n_{16}^{25} : 1,40559; n_{15}^{25} : 1,41455; n_{15}^{25} : 1,4148 (Tromp, R. 41, 298); n_{15}^{16} : 1,4078 (He., B.). Dipolmoment: SMYTH, Am. Soc. 47, 1896. — Grenzflächenspannung zwischen Äthylcapronat und Wasser zwischen 0° und 40° : Hark, Ch. [A] 139, 677; bei 20° : Hark, Feldman, Am. Soc. 44, 2671.

HAR., FELDMAN, Am. Soc. 44, 2671.

Entzündungstemperatur: MASSON, HAMILTON. Ind. Eng. Chem. 20, 814; C. 1928 II. 1986. Geschwindigkeit der Verseifung in wäßrig-alkoholischer, 0,02325 n-Natronlauge bei 30°: KINDLER, A. 452, 106. Liefert beim Überleiten im Gemisch mit Ammoniak über Aluminiumoxyd bei ca. 500° n-Capronitril, Äthylen und Wasserstoff (MAILHE, A. ch. [9] 13, 217). Gibt beim Erhitzen mit Resorcin in Gegenwart von Zinkchlorid 4-Caproyl-resorcin (Twiss, Am. Soc. 48, 2209).

[β.β'-Dichlor-isopropyl]-n-capronat, Glycerin-α.α'-dichlorhydrin-n-capronat, α-Dichlorhydrin-n-capronat $C_9H_{16}O_2Cl_2=CH_3\cdot[CH_2]_4\cdot CO_2\cdot CH(CH_2Cl)_2$. B. Beim Behandeln einer Mischung von n-Capronsäure und Glycerin mit Chlorwasserstoff (Ηυμνιζκι, Bl. [4] 45, 281). — Kp_{15} : 140—145°. D^{20} : 1,074. n_2^{20} : 1,4403. Unlöslich in Wasser.

n-Amyl-n-capronat $C_{11}H_{22}O_2 = CH_3 \cdot [CH_2]_4 \cdot CO_2 \cdot [CH_2]_4 \cdot CH_3$ (H 323). B. Neben freier Säure beim Erhitzen der aus Silber-n-capronat und Jod entstehenden Verbindung $(C_6H_{11}O)_2O + AgOI$ (vgl. H 2, 322) mit Quarzpulver (Wieland, Fischer, A. 446, 63).

Allyl-n-capronat C₉H₁₆O₂ = CH₃·[CH₂]₄·CO₂·CH₂·CH:CH₂. B. Aus dem Silbersalz der n-Capronsäure bei gelindem Kochen mit Allyljodid (Deulofeu, Soc. 1928, 528).

— Stechend riechendes Öl. Kp: 186—188°.

Glycerin- α -n-capronat, α -Mono-n-caproin $C_9H_{18}O_4=CH_3\cdot [CH_2]_4\cdot CO_2\cdot CH_2\cdot CH(OH)\cdot CH_2\cdot OH$.

a) Rechtsdrehende Form. [α]¹⁵: $+2,19^{\circ}$ (Alkohol; p=10) (ABDERHALDEN, Well., Fermentf. 4 [1921], 86; C. 1920 III, 643). — Geschwindigkeit der Verseifung durch 0,08 n-Natriumdicarbonat-Lösung und Beschleunigung dieser Reaktion durch Pankreaslipase: A., W.

b) Linksdrehende Form (E I 141). [a]:: -0,36° (Alkohol; p = 17) (ABDERHALDEN, Well, Fermentf. 4, 86). — Geschwindigkeit der Verseifung durch 0,08 n-Natriumdicarbonat-Lösung und Beschleunigung dieser Reaktion durch Pankreaslipase: A., W.

Glycerin-tri-n-capronat, Tri-n-capronat C₂₁H₃₆O₆ = CH₃·[CH₂]₄·CO·O·CH₂·CH(O·CO·[CH₂]₄·CH₃·CO·CO·[CH₂]₄·CH₃ (H 324; E I 141). Über Krystallisationsvermögen bei —60° und —72° vgl. Loskit, Ph. Ch. 134, 137. D²°: 0,987 (Vorländer, Walter, Ph. Ch. 118, 10). Viscosität bei 20°: V., W., Ph. Ch. 118, 10. Doppelbrechung der rotierenden Flüssigkeit: V., W., Phys. Z. 25, 572; Ph. Ch. 118, 10; C. 1925 I, 617. Löslichkeit in Benzol: L. Ausbreitung monomolekularer Schichten auf Wasser, 0,001 n-Salzsäure und 0,1 n-Salzsäure: Gorter, Grendel, Bio. Z. 192, 446. — Wird durch Penicillium glaucum in Methylpropylketon umgewandelt (Acklin, Bio. Z 204, 268). — Einfluß auf die Zusammensetzung des Körperfettes beim Verfüttern an weiße Ratten: Eckstein, J. biol. Chem. 84, 355.

n-Capronsäureanhydrid $C_{19}H_{21}O_3 = (CH_3 \cdot [CH_2]_4 \cdot CO)_2O$ (H 324). B. Zur Bildung aus n-Capronsäure und Acetanhydrid vgl. van der Haar, R 47, 323. Aus n-Capronsäurechlorid und Natrium-n-capronat bei 170° (Simon, Bl. Soc. chim. Belg. 38, 51; C. 1929 I, 2520). — E: —40,6° (S., Bl. Soc. chim. Belg. 38, 57). Kp_{14.5}: 142,9° (S.); Kp₁₃: 139,5—142° (Fichter, Zumbrunn, Helv. 10, 870 Anm.). D_i^c : 0,93630; D_i^{ts} : 0,92397; D_i^{ts} : 0,91155; Viscosität bei 15°: 0,03238, bei 30°: 0,02313 g/cm sec; n_{π}^{ts} : 1,42912; n_{D}^{ts} : 1,43146; n_{He}^{ts} : 1,43156; n_{D}^{ts} : 1,43694, n_{Y}^{ts} : 1,44163; n_{π}^{cs} : 1,42556; n_{D}^{ts} : 1,42796; n_{He}^{ts} : 1,42806; n_{D}^{ts} : 1,43332; n_{Y}^{ts} : 1,43791 (S., Bl. Soc. chim. Belg. 38, 57, 59, 62). — n-Capronsäureanhydrid wird in äher. Lösung durch Bariumperoxyd in Gegenwart von wenig Wasser in Di-n-caproylperoxyd übergeführt (F., Z.). Beim Behandeln mit 93% igem Wasserstoffperoxyd in 100% iger Schwefelsäure entsteht n-Capronpersäure (F., Z.).

n-Caproylhydroperoxyd, n-Capronpersäure C₆H₁₂O₃ = CH₂·[CH₂]₄·CO·O·OH.

B. In geringer Menge bei der Elektrolyse eines Gemisches von Kalium-n-capronat und n-Capronsäure in mit Petroläther überschichteter wäßriger Lösung unter Kühlung (Froeter, Ph. Ch. 180, 52). Bei Einw. von 93 %igem Wasserstoffperoxyd auf n-Capronsäureanhydrid, gelöst in 100 %iger Schwefelsäure, erst unter Kühlung, dann bei Zimmertemperatur (F., Zumbrunn, Helv. 10, 871). — Krystalle. Riecht im flüssigen Zustand äußerst stechend (F., Z.). F: 15°; Kp₁₂: 62—63°; Kp_{0,5}: 41—42°; leicht löslich in Alkohol, Ather und Petroläther, schwer in Wasser (F., Z.). — Zersetzt sich langsam beim Aufbewahren bei Zimmertemperatur; bei raschem Erhitzen tritt Verpuffung unter Feuererscheinung ein; Zersetzung im Rohr bei 240° sowie vorsichtiges Erhitzen erst auf 75°, dann auf 100—160° führt zur Bildung von Penten-(1), n-Capronsäure, n-Amyl-n-capronat und Kohlendioxyd; bei der langsamen Zersetzung wurde außerdem noch Sauerstoff beobachtet (F., Z.). Gibt bei gelindem Erwärmen mit Mangan-(II)-sulfat in schwefelsaurer Lösung Mangandioxyd; verzögert die Entfärbung einer schwefelsauren Kaliumpermanganat-Lösung durch Wasserstoffperoxyd (F., Z.). Macht aus einer schwach essigsauren Lösung von Kaliumjodid in wäßr. Aceton sofort Jod frei (F., Z.). Zersetzt sich bei Einw. von konz. Kalilauge sofort, bei Einw. von verd. Kalilauge langsam unter Sauerstoffentwicklung (F., Z.). Gibt mit schwefelsaurer Titandioxyd-Lösung rasch eine gelbe Färbung. Äther. Lösungen von Anilin und p-Toluidin werden allmählich smaragdgrün unter Bildung der Nitrosoverbindungen (F., Z.).

Di-n-caproylperoxyd C₁₂H₂₂O₄ = (CH₃·[CH₃]₄·CO)₂O₃. B. In geringer Menge neben anderen Produkten bei der Elektrolyse eines Gemisches von Kalium-n-capronat und n-Capronature in mit Petroläther überschichteter wäßriger Lösung unter Kühlung (FIGHTEB, Ph. Ch. 130, 52). Bei der Einw. von Bariumperoxyd auf n-Capronsäureanhydrid in äther. Lösung bei Gegenwart von wenig Wasser (F., ZUMBRUNN, Helv. 10, 870). — Ol von schwachem unangenehmem Geruch. Enthält ca. 95 % Di-n-caproylperoxyd. Erstarrt nicht im Kältegemisch (F., Z.). Beginnt bei 64—65°, sich zu zersetzen und verpufft bei 84—85° (F., Z.). Leicht löslich in Alkohol, Ather und Petroläther, unlöslich in Wasser (F., Z.). — Liefert bei der Zersetzung im Rohr n-Decan, n-Amylalkohol, n-Capronsäure und Kohlendioxyd; bei vorsichtigem Erhitzen auf 65—70° und anschließend auf 100—130° erhält man Penten-(1), n-Amylalkohol und Kohlendioxyd (F., Z.). Wird durch Wasser bei niedriger Temperatur nur langsam hydrolysiert, rascher durch Borax- oder Natriumdicarbonat-Lösung. Beim Behandeln mit Barytwasser bei Zimmertemperatur entstehen Barium-n-capronat und Bariumperoxydhydrat (F., Z.). Gibt beim Schütteln mit überschüssigem 25 %igem Ammoniak n-Capronamid (F., Lindenmaier, Helv. 12, 571). Liefert mit Phenylhydrazin in äther: Lösung n-Capronsäure-phenylhydrazid (F., Z.). — Gibt bei mehrtägigem Aufbewahren mit schwefelsaurer Titandioxyd-Lösung eine schwache Gelbfärbung; p-Toluidin in verdünzter ätherischer Lösung wird langsam rot gefärbt (F., Z.).

n-Capronsäurechlorid, n-Caproylchlorid $C_6H_{11}OCl = CH_3 \cdot [CH_2]_4 \cdot COCl \ (H 324)$. B. Aus n-Capronsäure beim Behandeln mit Phosphortrichlorid bei 110—120° (Simon, Bl. Soc. chim. Belg. 38, 51; C. 1929 I, 2520) sowie beim Erhitzen mit Oxalylchlorid (Averill, Roche, King, Am. Soc. 51, 868). — E: —87,3°; Kp_{760} : 152,60° \pm 0,02°; D_2^0 : 0,99541; D_2^{n} : 0,98047; D_2^{n} : 0,96540; Viscosität bei 15°: 0,00970, bei 30°: 0,00783 g/cmsec; n_{α}^{n} : 1,42615; n_{b}^{n} : 1,42859; n_{He}^{n} : 1,42877; n_{b}^{n} : 1,43467; n_{α}^{n} : 1,43981; n_{α}^{n} : 1,42181; n_{b}^{n} : 1,42424; n_{He}^{n} : 1,43024; n_{b}^{n} : 1,43505 (S., Bl. Soc. chim. Belg. 38, 56, 59, 62).

n-Capronsäureamid, n-Capronamid C_eH₁₉ON = CH₃· [CH₃]₄· CO·NH₃ (H 324; E I 141). B. Bei der Elektrolyse von Ammonium-n-capronat in mit etwas Capronsäure angesäuerter wäßriger Lösung an einer Platin-Anode bei 0 bis 2°, neben anderen Produkten (Fichter, Lindenmaler, Helv. 12, 571). Aus n-Capronsäurechlorid bei der Einw. von konz. Ammoniak (Simon, Bl. Soc. chim. Belg. 38, 51; C. 1929 I, 2520) oder beim Einleiten von feuchtem Ammoniak in die äther. Lösung (Baumgarten, Glatzel, B. 59, 2663) unter Kühlung. Bei der Einw. von Natriumsulfid-Lösung auf eine als N.N'-Di-n-caproyl-hydrazin aufgefaßte Verbindung (s. S. 287) in Alkohol unter allmählichem Zusatz von Natriumhydroxyd (Naik, Patel, Quart. J. indian chem. Soc. 1, 31; C. 1925 I, 487). Beim Schütteln von Di-n-caproylperoxyd mit überschüssiger 25 %iger Ammoniak-Lösung (F., L.). — Blättchen (aus Wasser oder Ligroin). F: 98° (F., L.; Bau., G.,), 100° (Walbaum, Rosenthal, J. pr. [2] 124, 65), 101,0° (S., Bl. Soc. chim. Belg. 38, 56). Dichte von Lösungen in Alkohol bei 30°: Burrows, J. Pr. Soc. N. S. Wales 58 [1919], 86. — Gibt beim Kochen mit Dischwefeldichlorid in Petroläther eine als N.N'-Di-n-caproyl-hydrazin aufgefaßte Verbindung (N., P.).

n-Capronitril, n-Amyloyanid $C_0H_{11}N=CH_2\cdot [CH_2]_4\cdot CN$ (H 324; E I 141). B. Aus n-Amylbromid und Natriumoyanid in verd. Alkohol unter längerem Erwärmen auf dem Wasserbad (Simon, Bl. Soc. chim. Belg. 38, 50; C. 1929 I, 2520). Neben anderen Produkten beim Letten von Athyl-n-capronat und Ammoniak über Aluminiumoxyd bei ca. 500° (Matlee, A. ch. [9] 18, 217) oder von Di-n-hexylamin oder Tri-n-hexylamin über Nickel bei 350—360°

- (M., A. ch. [9] 13, 192). E: —79,4° (SI.). Kp₇₆₀: 163,95° \pm 0,02° (SI.). D°: 0,82157; D°: 0,80939; D°: 0,79710; Viscosität bei 15°: 0,01041, bei 30°: 0,00830 g/cmsec; n°: 1,40736; n°: 1,40937; n°: 1,40954; n°: 1,41442; n°: 1,41885; n°: 1,40327; n°: 1,40529; n°: 1,40540; n°: 1,41034; n°: 1,41465 (SIMON, Bl. Soc. chim. Belg. 38, 56, 58, 62). Liefert bei der Hydrierung in Gegenwart von Nickel bei 200—210° (M., A. ch. [9] 13, 192) sowie in Gegenwart von Zinkoxyd oder Manganoxyd bei ca. 500° (Sabattler, Fernandez, C. r. 185, 244) ein Gemisch von Mono-, Di- und Tri-n-hexylamin. Wird durch Wasserdampf in Gegenwart von Thoriumoxyd bei 380° zu n-Capronsäure hydrolysiert (M., C. r. 171, 247; Bl. [4] 27, 756).
- N.N'-Di-n-caproyl-hydrazin $C_{12}H_{24}O_3N_3=(CH_3\cdot[CH_2]_4\cdot CO\cdot NH-]_2$ (H 324). Eine als N.N'-Di-n-caproyl-hydrazin angesprochene Verbindung erhielten NAIK, PATEL (Quart. J. indian chem. Soc. 1, 30; C. 1925 I, 487) bei der Einw. von Dischwefeldichlorid auf n-Capronamid in siedendem Petroläther. Tafeln (aus Benzol). F: 111—112°. Leicht löslich in Benzol, Alkohol, Aceton und warmem Wasser, schwer in Chloroform, unlöslich in Petroläther und Schwefelkohlenstoff. Bei der Einw. von Natriumsulfid in verd. Alkohol unter allmählichem Zusatz von Natriumhydroxyd wird n-Capronsäureamid zurückerhalten.
- α -Chlor-n-capronsäure $C_6H_{11}O_2Cl=CH_3\cdot [CH_2]_3\cdot CHCl\cdot CO_2H$. Linksdrehende Form. B. Aus rechtsdrehendem 3-Chlor-hepten-(1) durch Ozonisierung in Chloroform und Oxydation des entstandenen Aldehyds mit Bromwasser (Levene, Haller, J. biol. Chem. 83, 597). Kp₁: 80—95°. [α]₀: —2,1° (Äther; c=10); [α]₀: —1,8° (50% iger Alkohol; c=14).
 - α -Brom-n-capronsaure $C_6H_{11}O_2Br = CH_3 \cdot [CH_2]_3 \cdot CHBr \cdot CO_2H$.
- a) Linksdrehende α -Brom-capronsäure. B. Bei der Spaltung der inakt. Säure mit Strychnin (Levene, Mori, Mireska, J. biol. Chem. 75, 352, 363). Kp₁₄: 129—130°. [α];: —27,0° (Ather; c = 5), —22,6° (30% iger Alkohol; c = 1). Liefert bei Einw. von Kaliumhydrosulfid-Lösung rechtsdrehende α -Mercapto-n-capronsäure. Gibt beim Erhitzen mit Soda-Lösung rechtsdrehende α -Oxy-n-capronsäure. Natriumsalz. [α]; —7,2° (Wasser; c = 7).
- b) Inakt. α-Brom-n-capronsäure C₆H₁₁O₂Br = CH₃·[CH₂]₃·CHBr·CO₂H (H 325; E I 141). Darst. Zur heißen Lösung von 216 g Kaliumhydroxyd in 216 cm³ Wasser gibt man portionsweise 216 g Malonsäuredibutylester, erhitzt 1¹/₂ Stde. auf dem Wasserbad, kühlt auf 0⁰ ab, säuert mit konz. Salzsäure an, extrahiert die Butylmalonsäure mit Ather und gibt allmählich 50 cm³ Brom zu; nach Entfernung des Athers erhitzt man auf 125—130⁰; Ausbeute 71 % (Adams, Marvel, Am. Soc. 42, 319). Kp₃₀: 148—153⁰ (A., Ma.). Läßt sich über das Strychninsalz in die optischen Antipoden spalten (Levene, Mori, Mikeska, J. biol. Chem. 75, 352). Liefert mit Thioharnstoff in heißem Alkohol 5-Butyl-pseudothiohydantoin (Nicolet, Bate, Am. Soc. 49, 2064).
- Chlorid, inakt. α -Brom-n-caproylchlorid C_6H_{10} OClBr = $CH_3 \cdot [CH_2]_3 \cdot CHBr \cdot COCl$. B. Aus α -Brom-n-capronsaure und Thionylchlorid beim Erhitzen (MARVEL, NOYES, Am. Soc. 42, 2273). Kp_{30} : 102—105°.
- Bromid, inakt. α -Brom-n-caproylbromid $C_6H_{10}OBr_2=CH_3\cdot [CH_2]_3\cdot CHBr\cdot COBr.$ B. Beim Erwärmen von n-Capronsäure mit Brom und rotem Phosphor (v. Auwers, Wegener, J. pr. [2] 106, 245). An der Luft stark rauchende Flüssigkeit. Kp: 201—210° (Zers.); Kp₁₃₋₁₃: 85—90°.
- ε-Brom-n-capronsäure C₆H₁₁O₂Br = CH₂Br·[CH₂]₄·CO₂H. B. In geringer Menge aus Pentamethylenbromid durch Umsetzung mit Natriumcyanid in Alkohol und nachfolgende Hydrolyse mit siedender 48% iger Bromwasserstoffsäure (Marvel, Mitarb., Am. Soc. 46, 2841). Beim Kochen von ε-Phenoxy-capronsäure (Ma., Mitarb.) oder [δ-Phenoxy-butyl]-malonsäure-diäthylester (Merchant, Wickert, Ma., Am. Soc. 49, 1831) mit 48% iger Bromwasserstoffsäure. Man kocht ε-Benzamino-n-capronsäure-nitril mit Phosphortribromid und Brom, entfernt das entstandene Phosphoroxybromid und hydrolysiert die bei 80—130° (6 mm) siedende Fraktion des Rückstandes mit siedender 48% iger Bromwasserstoffsäure (Ma., Mitarb.). Krystalle (aus Petroläther). F: 35° (Ma., Mitarb.). Kp₂₀: 165—170° (Ma., Mitarb.); Kp₁₈: 160—168° (Me., W., Ma.). Liefert beim Erhitzen mit Phosphortribromid und Brom α.ε-Dibrom-n-capronsäure (Me., W., Ma.). Gibt beim Erhitzen mit Silberoxyd in Wasser ε-Oxy-n-capronsäure (Ma., Mitarb.).
- α.β-Dibrom-n-capronsäure $C_6H_{10}O_2Br_2 = CH_3 \cdot CH_2 \cdot CH_3 \cdot CHBr \cdot CHBr \cdot CO_2H$ (H 325). F: 70° (Goldberg, Linstead, Soc. 1928, 2351), 72—73° (Walbaum, Rosenthal, J. pr. [2] 124, 64).
- a.s. Dibrom -n capronsäure $C_6H_{10}O_2Br_2 = CH_2Br \cdot [CH_2]_3 \cdot CHBr \cdot CO_2H$. B. Beim Erhitzen von s-Brom-n-capronsäure mit Phosphortribromid und Brom (Merchant, Wickert, Marvel, Am. Soc. 49, 1831). Kp₄: 158—160°. D_4^n : 1,7897. n_1^n : 1,5245.

Eine von Marvel, Mitarb. (Am. Soc. 46, 2842) beim Kochen von α(?)-Brom-ε-phenoxy-n-capronsäure mit Bromwasserstoffsäure erhaltene, als α(?).ε-Dibrom-n-capronsäure angesprochene Verbindung (F: 144—146°) ist nach Merchant, Wickert, Marvel (Am. Soc. 49, 1829) kein einfaches Capronsäurederivat.

- α.α-Dijod-n-capronsäure-amid C₆H₁₁ONI₂ = CH₃·[CH₂]₃·CI₂·CO·NH₂ (H 326).

 Der Artikel ist zu streichen.
- 2. Pentan-carbonsäure-(2), α -Methyl-n-valeriansäure, Methylpropylessigsäure $C_6H_{18}O_2=CH_3\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CO_2H$.
- a) Rechtsdrehende Methylpropylessigsäure $C_6H_{18}O_2=CH_3\cdot CH_2\cdot CH_1\cdot CH_3\cdot CO_2H$. B. s. bei der linksdrehenden Form. $[\alpha]_0^m:+5,6^0$ (Ather; c=19) (Levene, Mikeska, J. biol. Chem. 84, 576).

Äthylester $C_8H_{16}O_2=CH_3\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. [α] $_D^m:+5,7^o$ (Äther; c=18) (Levene, Mikeska, $J.\ biol.\ Chem.$ 84, 579). — Gibt bei der Reduktion mit Natrium und Alkohol in Toluol linksdrehendes 2-Methyl-pentanol-(1).

Chlorid $C_9H_{11}OCl = CH_3 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot COCl$. B. Beim Kochen der rechtsdrehenden Säure mit Thionylchlorid (Levene, Mikeska, J. biol. Chem. 84, 576). — Kp₁₅: 45—48°. D²⁵: 0,963. [α]²⁵: +4,1° (unverdünnt und in Äther; c=8). — Liefert bei der Verseifung die rechtsdrehende Säure zurück.

Amid $C_0H_{13}ON = CH_3 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot NH_2$. B. Aus dem Chlorid (s. c.) beim Behandeln mit konz. Ammoniak unter Kühlung (LEVENE, MIKESKA, J. biol. Chem. 84, 576). — Krystalle (aus Wasser). F: 78°. $[\alpha]_b^{\text{in}}$: +5,8° (75% iger Alkohol; c = 8).

Rechtsdrehende Methylpropylthioessigsäure $C_0H_{12}OS = CH_2 \cdot CH_2 \cdot CH_3 \cdot$

b) Linksdrehende Methylpropylessigsäure $C_8H_{12}O_2 = CH_3 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CO_2H$. B. Aus der inakt. Form durch Überführen in das Chininsalz, das in 50 %igem Aceton schwerer löslich ist als das Salz der rechtsdrehenden Form, und nachfolgendes Zerlegon mit Salzsäure (Levene, Bass, J. biol. Chem. 70, 216; L., Mikeska, J. biol. Chem. 84, 575). — Kp₄: 83—84° (L., M.). [α] $_{\rm D}^{\rm ist}$: —8,1° (Ather; c = 20), —7,8° (50 %iger Alkohol; c = 16), —7,7° (unverdünnt) (L., M.); [α] $_{\rm D}^{\rm ist}$ —13,1° (Ather; c = 5) (L., B.). — Natriumsalz. [α] $_{\rm D}^{\rm ist}$: —3,7° (Wasser; c = 17) (L., M.).

Äthylester $C_8H_{16}O_2 = CH_3 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Aus der linksdrehenden Säure beim Behandeln mit alkoh. Salzsäure in der Kälte (Levene, Mikeska, J. biol. Chem. 84, 578). — Kp_4 : 78—80°. [α]: —7,9° (unverdünnt), —7,9° (Äther; c = 14), —8,1° (75% iger Alkohol; c = 16).

Amid $C_0H_{13}ON = CH_3 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot NH_2$. $[\alpha]_D^{sc} : -5,8^0$ (75% iger Alkohol; c = 7) (Levene, Mikeska, $J.\ biol.\ Chem.\ 84,577$).

Nitril, linksdrehendes Methylpropylacetonitril $C_6H_{11}N=CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3\cdot$

c) Inakt. Methylpropylessigsäure C₆H₁₈O₂ = CH₃·CH₂·CH₂·CH₂·CH₃·CO₂H (H 326; E I 142). B. Zur Bildung durch Destillation von Methylpropylmalonsäure vgl. Levene, Bass, J. biol. Chem. 70, 214. Aus dem Calciumsalz der Saccharinsäure oder der Isosaccharinsäure sowie aus Hamamelonsäure beim Kochen mit Jodwasserstoffsäure (D; 2) und rotem Phosphor (O. Th. Schmidt, A. 476, 269). — Kp₆₈₃: 190—191° (korr.) (Bhide, Sudden Inst. Sci. 8 A, 104; C. 1926 I, 81). — Läßt sich über die Chininsalze in die opt.-akt. Formen spalten (L., Bass; L., Mikeska, J. biol. Chem. 84, 575). Bei der Elektrolyse des Natriumsalzes entstehen keine gesättigten Kohlenwasserstoffe (Swann, Trans. am. electroch. Soc. 56, 459; C. 1929 II, 1394). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Bh., Su.

Inakt. β-Chlor-α-methyl-n-valeronitril $C_0H_{10}NCl = C_2H_5 \cdot CHCl \cdot CH(CH_9) \cdot CN$. B. Durch Einw. von Chlorwasserstoff auf höhersiedendes oder niedrigersiedendes α-Methyl-β-āthylacrylsāure-nitril (Vermeulen, Adriaens, Bl. Soc. chim. Belg. 38, 303; C. 1930 I, 3545). — Zwei Prāparate zeigten: Kp_{10} : 74,5—75,5°; D_s^m : 1,01048; n_a^m : 1,4399; n_b^m : 1,4425; n_b^m : 1,4478; n_s^m : 1,45535 bzw. Kp_{10} : 75—76,5°; D_s^m : 1,01012; n_a^m : 1,4402; n_b^m : 1,4420; n_b^m : 1,4473. — Gibt beim Erwärmen mit Chinolin auf dem Wasserbad wieder höhersiedendes und niedrigersiedendes α-Methyl-β-āthyl-acrylsāure-nitril.

Inakt. α-Chlormethyl-n-valeronitril, inakt. β-Chlor-α-propyl-propionitril $C_6H_{10}NCl=C_2H_5\cdot CH_2\cdot CH(CH_2Cl)\cdot CN$. B. Bei der Einw. von Chlorwasserstoff auf α-Propylacrylsäure-nitril (Vermeulen, Adriaens, Bl. Soc. chim. Belg. 38, 303, 305, 309; C. 1930 l. 3545). — Zwei Prāparate zeigten $Kp_9\colon 85-86^\circ; D_1^\infty\colon 1,01076; n_2^\infty\colon 1,4398; n_2^\infty\colon 1,4420; n_2^\infty\colon 1,4477; n_2^\infty\colon 1,4551$ bzw. $Kp_{10}\colon 87-88^\circ; D_1^\infty\colon 1,01034; n_2^\infty\colon 1,4394; n_2^\infty\colon 1,4427; n_2^\infty\colon 1,4471$. — Gibt beim Erwärmen mit Chinolin auf dem Wasserbad wieder α-Propyl-acrylsäure-nitril.

Inakt. $\alpha.\beta$ - Dibrom - α - methyl - n - valeriansäure $C_6H_{10}O_2Br_2 = CH_3 \cdot CH_2 \cdot CHBr \cdot CBr(CH_3) \cdot CO_2H$ (H 327). Prismen (aus Schwefelkohlenstoff). F: $96-97^0$ (GOLDBERG, LINSTEAD, Soc. 1928, 2356).

3. 3-Methyl-butan-carbonsäure-(1), γ-Methyl-n-valeriansäure, Isobutylessigsäure, Isocapronsäure, Isohexylsäure C₆H₁₂O₂ = (CH₃)₂CH·CH₂·CH₂·CO₂H (H 327; E I 142). B. Entsteht bei der Verkohlung von Buchenholz und ist daher im rohen Holzessig enthalten (Seib, B. 60, 1397). Bei der katalytischen Hydrierung von β-Isopropyl-acrylsäure in Äther in Gegenwart von Palladiumschwarz (Wieland, B. 58, 109). Bei der Oxydation von nicht rein erhaltenem 2-Methyl-tetradecadien-(5.12) (E II 1, 242) mit Permanganat in Wasser oder Aceton, neben anderen Produkten (Bischoff, J. am. pharm. Assoc. 13, 900; C. 1925 I, 390; Woods, Am. J. Pharm. 102, 619, 626; C. 1931 II, 255). Neben anderen Produkten aus Squalen durch Hydrieren in Gegenwart von Nickel mit 5 Mol Wasserstoff, Ozonisieren des Reaktionsprodukts in Chloroform und Zersetzen des Ozonids mit siedendem Wasser (Heilbron, Thompson, Soc. 1929, 890). — Krystallisiert nicht bei —18° (Wie.; Bl.). Kp₆₆₃: 199—201° (korr.) (Bhide, Suddorden, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 801); Kp: 200—201° (korr.) (Bhide, Suddorden, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 801); Kp: 200—201° (Smith, Pr. Leeds phil. lit. Soc. 1, 197; C. 1928 I, 1757); Kp₁₂: 94—95° (Wie.). n_α[∞]: 1,3946; n_β[∞]: 1,3967; n_β[∞]: 1,4016; n_γ[∞]: 1,4055 (Waterman, Bertram, R. 46, 701). Lichtabsorption im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 155, 212. Verteilung bei 25° zwischen Wasser und Chloroform: Sm., White, J. phys. Chem. 33, 1970; Sm., J. phys. Chem. 25, 228; zwischen Wasser und Benzol und zwischen Wasser und Xylol: Sm., J. phys. Chem. 25, 221, 228. Verteilung zwischen Wasser und Olivenöl bei 23°: Bodansky, J. biol. Chem. 79, 252. Adsorption aus wäßr. Lösung durch Kohle bei 16—18°: Schillow, Nekrassow, Ph. Ch. 130, 70; Ж. 60, 110; bei 25°: Klein, Lotos 71 [1923], 288, 293. Elektrische Dissoziationskonstante k bei 25°: 1,48·10-6 (aus der elektrischen Leitfähigkeit (K.).

Bei der Elektrolyse eines Gemisches von Isocapronsäure und Kaliumisocapronat in wäßr. Lösung entstehen Diisoamyl und wahrscheinlich in geringer Menge Isoamylalkohol und Isoamylisocapronat (Swann, Trans. am. electroch. Soc. 56, 461; C. 1929 II, 1394). Geschwindigkeit der Oxydation des Natriumsalzes durch Kaliumpermanganat: SMITH, Pr. Leeds phil. lit. Soc. 1, 197. Zersetzt sich beim Erhitzen mit konz. Schwefelsäure von ca. 150° an unter Verkohlung und Entwicklung von Kohlenoxyd, Kohlendioxyd und Schwefeldioxyd (SENDERENS, ABOULENC, C. r. 185, 1089). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: BHIDE, SUDBOROUGH, J. indian Inst. Sci. 8 A [1925], 112. Das durch Behandlung von äther. Isoamylmagnesiumchlorid-Lösung mit Kohlendioxyd erhältliche Magnesiumchlorid-isocapronat gibt beim Erhitzen auf 390—400° Diisoamylketon (Iwanow, Bl. [4] 43, 445). — Ca(C₆H₁₁O₂)₂ + 5H₂O. Nadeln (Seib, B. 60, 1397).

Methylisocapronat $C_7H_{14}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Bei der Reduktion von α -Acetoxy-isocapronsäure-methylester mit Natriumamalgam (Kodama, C. 1922 I, 1377). — Kp₇₅₀: 139—141° (Heilbron, Thompson, Soc. 1929, 890).

Äthylisocapronat $C_8H_{16}O_2=(CH_3)_2CH\cdot CH_2\cdot CO_2\cdot C_2H_5$ (H 328; E I 142). B. Bei der Reduktion von α -Chlor-, α -Acetoxy- oder α -Benzoyloxy-isocapronsäure-äthylester mit Natriumamalgam (Kodama, C. 1922 I, 1377). — Spaltung durch Pankreaslipase: Rona, Speidel, Bio. Z. 149, 386.

Propylisocapronat $C_9H_{18}O_9 = (CH_3)_9CH \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot C_2H_5$. Ol. Kp₇₅₀: 176° bis 178°; Kp₃₃: 95—96° (Rona, Speidel, *Bio. Z.* 149, 386). — Spaltung durch Pankreas lipase: R., Sp.

Isoamylisocapronat $C_{11}H_{22}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot$

Isocapronsäurechlorid, Isocaproylchlorid $C_6H_{11}OCl = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot COCl$ (H 329). B. Aus Isocapronsäure und Thionylchlorid (RUPE, GIESLER, Helv. 11, 664). — Kp: 129—130° (R., GIE.). — Gibt bei der Hydrierung über Platinoxyd bei Temperaturen unterhalb 250° und gewöhnlichem Druck geringe Mengen Isocapronaldehyd (GRIGNARD. MINGASSON, C. r. 185, 1176). Liefert bei tropfenweisem Zusatz von Magnesiumjodid-āthylat zu der äther. Lösung unter Eiskühlung 2-Methyl-heptanon-(5) (Thoms, Kahre, Ar. 1925, 246).

[Syst. Nr. 162

Isocapronsäureamid, Isocapronamid $C_0H_{13}ON = (CH_3)_2CH \cdot CH_3 \cdot CH_3 \cdot CO \cdot NH_3$ (H 329: E I 142). Nadeln. F: 120° (Seib, B. 60, 1397).

Isocapronitril, Isoamylcyanid C₆H₁₁N = (CH₃)₂CH·CH₃·CH₄·CN (H 329; EI 142). B. Beim Kochen von Isoamyljodid (aus Gärungsamylalkohol) mit Kaliumcyanid in 60% igem Alkohol (RUPE, GLENZ, Helv. 5, 939 Anm. 3). Beim Leiten der Dämpfe von N-Isoamylformamid über Aluminiumoxyd bei 400—410°, neben anderen Produkten (Mailhe, C. r. 176, 1160). — F: —43° (FRICKE, RODE, Z. anorg. Ch. 163, 34). E: —51,1° (TIMMERMANS, Bl. Soc. chim. Belg. 30, 70; C. 1921 III, 289). Kp₇₆₀: 155° (Ti.; Ru., G.). D³⁰: 0,802 (F., Ro., Z. anorg. Ch. 163, 34). Thermische Analyse des binären Systems mit Berylliumchlorid (Existenz der Verbindungen 2C₆H₁₁N + BeCl₂, 3C₆H₁₁N + BeCl₂, 4C₆H₁₁N + BeCl₂): Fr., Ro., Z. anorg. Ch. 163, 34. — Gibt bei der Hydrierung in Gegenwart von Nickel in Alkohol + Essigester + Wasser Diisohexylamin (Ru., G.). — 2C₆H₁₁N + BeCl₂. Sehr hygroskopische Krystalle. Löslich in Alkohol, schwerer in Äther, schwer in Benzol und Benzin (F., Ro., Z. anorg. Ch. 152, 353). Zersetzt sich beim Auflösen in Wasser unter Wärmeentwicklung.

Isocapronamidin $C_6H_{14}N_2 = (CH_3)_2CH \cdot CH_2 \cdot C(NH_2) : NH$ (H 329). — $KC_6H_{13}N_2$. B. Aus Kaliumamid und Isocapronitril in flüssigem Ammoniak (CORNELL, Am. Soc. 50, 3315). Krystalle. Löslich in flüssigem Ammoniak bei Zimmertemperatur. Liefert beim Erhitzen mit Kaliumamid Isopentan und Kaliumcyanamid.

H 329, Z. 21 v. u. statt "Capronitril und Capronamid" lies: "Isocapronitril und Isocapronamid".

 γ -Chlor-isobutylessigsäure-äthylester, γ -Chlor-isocapronsäure-äthylester $C_8H_{15}O_2Cl=(CH_3)_2CCl\cdot CH_2\cdot CO_2\cdot C_2H_5$ (H 329). B. Aus γ -Chlor-isocaproylchlorid und Alkohol (Linstead, Soc. 1929, 2510). — Kp₁₂: 89—92°. — Liefert bei der Destillation unter gewöhnlichem Druck hauptsächlich Brenzterebinsäure-äthylester.

 γ -Chlor-isobutylacetylchlorid, γ -Chlor-isocaproylchlorid $C_4H_{10}OCl_2=(CH_3)_2CCl\cdot CH_3\cdot CH_2\cdot COCl.$ B. Entsteht im Gemisch mit Brenzterebinsäurechlorid durch Einw. von Thionylchlorid auf Brenzterebinsäure, zuletzt auf dem Wasserbad (LINSTEAD, Soc. 1929, 2509). — Wurde nicht ganz rein erhalten. Kp₁₈: 89—90°.

 β -Chlor-isobutylessigsäure, β -Chlor-isocapronsäure $C_6H_{11}O_2Cl = (CH_3)_2CH \cdot CHCl \cdot CH_2 \cdot CO_2H$. B. Bei 1-stdg. Erwärmen von β -Chlor-isocaproylchlorid mit Wasser auf 50° (Pace, G. 59, 583). — Zerfließliche Prismen. F: 72—73°. Löslich in Wasser, Alkohol und Chloroform. — Gibt beim Kochen mit Alkalien β -Isopropyl-acrylsäure. Beim Behandeln mit feuchtem Silberoxyd in Alkohol entsteht β -Oxy-isocapronsäure.

 β -Chlor-isobutylacetylchlorid, β -Chlor-isocaproylchlorid $C_6H_{10}OCl_2=(CH_3)_2CH\cdot CHCl\cdot CH_2\cdot COCl.$ B. Bei mehrstündiger Einw. von Phosgen auf Isopropyläthylen in Toluol in Gegenwart von Aluminiumchlorid bei 35—40° (Pace, G. 59, 582). — Gelbliche, stechend riechende, an der Luft rauchende Flüssigkeit. Kp: 168°. Löslich in Alkohol, Äther, Chloroform und Benzol, ziemlich schwer löslich in Wasser, unter teilweiser Hydrolyse.

Isobutylchloressigsäure, α - Chlor-isocapronsäure $\mathrm{C_6H_{11}O_3Cl} = (\mathrm{CH_3})_2\mathrm{CH}\cdot\mathrm{CH_2}\cdot\mathrm{CHCl}\cdot\mathrm{CO_2H}.$

a) Aktive α -Chlor-isocapronsäure, $l-\alpha$ -Chlor-isocapronsäure (H 330). B. Beim Erwärmen von 50 g l-Leucin mit 40 cm³ Salzsäure (D: 1,12) und 40 cm³ Salpetersäure (D: 1,4) auf dem Wasserbad (Chem. Fabr. Flora, D. R. P. 348671; C. 1921 IV, 1140; 1922 II, 873; Frdl. 14, 1435).

Äthylester, l- α -Chlor-isocapronsäure-äthylester $C_8H_{15}O_3Cl = (CH_3)_2CH \cdot CH_2 \cdot CHCl \cdot CO_3 \cdot C_2H_5$ (H 330). Kp: 188—189° (Karrer, Kaase, Helv. 3, 249). [α] tt : —24,75° (Alkohol) (Ka., Ka.). — Liefert bei der Reduktion mit Natriumamalgam Isocapronsäure-äthylester (Kodama, C. 1922 I, 1377). Bei Einw. von Methylmagnesiumjodid in Ather unter Kühlung entsteht linksdrehendes 3-Chlor-2.5-dimethyl-hexanol-(2) (Ka., Ka.).

1-α-Chlor-isocapronsäure-isoamylester $C_{11}H_{21}O_2Cl = (CH_3)_2CH \cdot CH_2 \cdot CHCl \cdot CO_2 \cdot CH_2 \cdot CH(CH_3)_2$. Riecht nach überreifen Orangen. Kp_{10} : 113—114° (Kopama, J. Biochem. Tokyo 1, 216; C. 1924 I, 1174). — Liefert bei der Reduktion mit Natriumamalgam Isocapronsäure-isoamylester (K., C. 1922 I, 1377).

b) $\textit{lnakt.} \ \alpha - \textit{Chlor-isocapronsäure} \ C_0 H_{11} O_1 Cl = (CH_3)_2 CH \cdot CH_2 \cdot CHCl \cdot CO_2 H.$

Nitril, inakt. α-Chlor-isocapronitril C₈H₁₀NCl = (CH₃)₂CH·CH₂·CHCl·CN (H 330). Gibt mit Äthylmagnesiumbromid in Äther α.α-Diäthyl-α'-isobutyl-äthylenimin (Theunis, Bl. Acad. Belgique [5] 12, 795; C. 1927 I, 889).

Isobutylbromessigsäure, α - Brom - isocapronsäure $C_6H_{11}O_5Br=(CH_5)_2CH\cdot CH_5\cdot CO_2H.$

a) Rechtsdrehende α-Brom-isocapronsäure, d-α-Brom-isocapronsäure
 (H 330). B. Aus der inakt. Säure durch fraktionierte Krystallisation des Chininsalzes aus

Aceton (Levene, Mori, Mikeska, J. biol. Chem. 75, 355). — Kp₁₆: 131—131,5°; [α]²⁰₀: +29,8° (Ather; c = 6); +26,8° (20%iger Alkohol; c = 0,8) (L., M., M.). — Liefert bei Einw. von Kaliumhydrosulfid-Lösung linksdrehende α -Mercapto-isocapronsäure (L., M., M.). Liefert bei tropfenweisem Zugeben zu überschüssigem, eisgekühltem Ammoniak l-Leucin (Abderhalden, Handovsky, Fermentf. 4, 317; C. 1921 III, 297). — Natriumsalz. [α]²⁰₀: +10,4° (Wasser; c = 11) (L., M., M.).

Chlorid, rechtsdrehendes α -Brom-isocaproylchlorid, d- α -Brom-isocaproylchlorid $C_0H_{10}OClBr = (CH_3)_2CH \cdot CH_2 \cdot CHBr \cdot COCl (H 330)$. B. Aus rechtsdrehender α -Brom-isocapronsäure und Thionylchlorid bei $50-60^\circ$ (ABDERHALDEN, WYBERT, B. 49, 2455; A., BROCKMANN, Fermentf. 9, 455; C. 1928 II, 574). — Kp₂: $53-56^\circ$ (A., B.). α_1^n : +49,25° (l = 10 cm) (A., B.), +53,5° (l = 10 cm) (A., SICKEL, Fermentf. 9, 467; C. 1928 II, 576).

Amid, linksdrehendes α -Brom-isocapronamid, d- α -Brom-isocapronamid $C_6H_{12}ONBr=(CH_3)_2CH\cdot CH_2\cdot CHBr\cdot CO\cdot NH_2$. B. In geringer Menge als Nebenprodukt beim Behandeln von Gyleyl-d-alanin mit rechtsdrehendem α -Brom-isocaproylchlorid in Natronlauge unter Kühlung (ABDERHALDEN, BROCKMANN, Fermentf. 9, 457; C. 1928 II, 574). — Krystalle (aus Wasser). F: 118° (korr.). Löslich in Alkohol, Äther, Chloroform und Essigester, schwer in Petroläther. $[\alpha]_D^{m}: -48,3°$ (Alkohol; c=5,9). — Beim Kochen mit Kalilauge entsteht Isovaleraldehyd.

- b) Linksdrehende α -Brom-isocapronsäure, $l-\alpha$ -Brom-isocapronsäure $C_6H_{11}O_2Br=(CH_3)_2CH\cdot CH_2\cdot CHBr\cdot CO_2H$ (H 330). B. Beim allmählichen Versetzen einer warmen Lösung von l-Leucin in Bromwasserstoffsäure (D: 1,4) mit Salpetersäure (D: 1,49) (Chem. Fabr. Flora, D. R. P. 348671; C. 1921 IV, 1140; 1922 II, 873; Frdl. 14, 1435).—Ol. Im Vakuum destillierbar (Chem. Fabr. Fl.). $[\alpha]_0^{\text{DC}}:-12,1^0$ (unverdünnt) (Levene, Mori, Mikeska, J. biol. Chem. 75, 364). Gibt beim Erhitzen mit Natriumcarbonat-Lösung schwach linksdrehende α -Oxy-isocapronsäure (L., Mq., Mi.).
- $\alpha\beta$ Dibrom-isobutylessigsäure, $\alpha\beta$ Dibrom-isocapronsäure, $\alpha\beta$ Isohexensäuredibromid $C_6H_{10}O_2Br_2=(CH_3)_2CH\cdot CHBr\cdot CHBr\cdot CO_2H$ (H 331). Krystalle. F: 124° (GOLDBERG, LINSTEAD, Soc. 1928, 2353).

Isobutyldijodessigsäure-amid, $\alpha.\alpha$ -Dijod-isocapronsäure-amid $C_6H_{11}ONI_2 = (CH_3)_2CH \cdot CH_2 \cdot CI_2 \cdot CO \cdot NH_2$. B. Aus α -Diazo-isocapronsäureäthylester durch aufeinanderfolgende Einw. von Jod und Ammoniak (Curtius, Müller, B. 37 [1904], 1275). — Hellgelbe Nadeln. Bräunt sich bei ca. 180°; zersetzt sich bei höherer Temperatur unter Jodabscheidung. Sehr schwer löslich in Wasser.

Thioisocapronsäure - O - methylester $C_7H_{14}OS = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CS \cdot O \cdot CH_3$ (EI 142).

- E I 142, Z. 4 v. u. statt "Isovalerylmagnesiumjodid" lies "Isoamylmagnesiumjodid".
- 4. 2 Methyl butan carbonsäure (1). β Methyl n valeriansäure, sek. Butylessigsäure $C_6H_{12}O_2=CH_3\cdot CH_2\cdot CH(CH_3)\cdot CH_2\cdot CO_2H$.
- a) Rechtsdrehende β -Methyl-n-valeriansäure, "d-Capronsäure" $C_6H_{12}O_2=C_2H_5\cdot CH(CH_3)\cdot CH_2\cdot CO_2H$ (H 331; E I 142). Verbrennungswärme bei konstantem Volumen: 7155,5 cal/g, 830,8 kcal/Mol (Swietoslawski, Am.~Soc.~42, 1099; vgl. Subow, #.~45, 246; C.~1913 I, 2026).
- Nitril, "akt. Amylcyanid" $C_6H_{11}N = C_2H_5 \cdot CH(CH_3) \cdot CH_2 \cdot CN$ (H 332). B. Bei 12-stdg. Erwärmen von akt. Amylcyanid mit Kaliumcyanid in 50 % igem Alkohol auf dem Wasserbad (Rupe, A. 436, 189, 201). Nicht ganz rein erhalten. Kp₇₃₅: 155—157°. D₄°: 0,8059. [α]₀: +0,76°.
- b) Inakt. β Methyl n valeriansäure $C_6H_{12}O_2 = C_2H_5 \cdot CH(CH_3) \cdot CH_2 \cdot CO_2H$ (H 332). B. Durch Einw. von 10% iger alkoholischer Kalilauge auf β -Methyl-n-valeriansäure-diphenylamid bei 90° (Maxim, Bulet. Soc. chim. România 10, 102, 112; C. 1929 I, 2162). Darst. Durch Verseifen von sek. Butylmalonsäure-diäthylester mit Kalilauge und nachfolgendes Erhitzen mit konz. Schwefelsäure (VLIET, MARVEL, HSUEH, Org. Synth. 11 [1931], 76). Kp: 196° (Maxim).
- 5. Pentan-carbonsäure-(3), Diäthylessigsäure, α-Äthyl-buttersäure C₆H₁₂O₂ = (C₂H₅)₂CH·CO₂H (H 333; E I 143). B. Neben anderen Produkten bei der Oxydation von Diäthylacetaldehyd mit verd. Chromschwefelsäure unter Kühlung (ZEISEL, NEUWIRTH, A. 433, 131). Als Nebenprodukt bei portionsweisem Eintragen von symm. Tetraäthyl-dicyan-azomethan in auf 100° erwärmte 75 %ige Schwefelsäure und Erhitzen des Reaktionsgemisches auf 140° (Dox, Am. Soc. 47, 1475). Durch Hydrieren von 2-Methylfuran-carbonsäure-(3) in Gegenwart von kolloidalem Platin in 50 %iger Essigsäure (KARIYONE, J. pharm. Soc. Japan 1925, Nr. 515; S. 1; C. 1925 I, 2377). Kp₇₃₄₋₉: 190,2—192,2° (Z., N.); Kp₆₈₃: 187—189° (ADVANI, SUDBOROUGH, J. indian Inst. Sci. 6, 54; C. 1923 III, 997).

Flüchtigkeit mit Wasserdampf: VIRTANEN, PULKKI, Am. Soc. 50, 3144; C. 1928 I, 167. Elektrolytische Dissoziationskonstante bei 25°: 1,95×10⁻⁵ (aus der elektrischen Leitfähigkeit) (SPIERS, THORPE, Soc. 127, 544).

Bei der Elektrolyse des Natriumsalzes entstehen keine gesättigten Kohlenwasserstoffe (Swann, Trans. am. electroch. Soc. 56, 460; C. 1929 II, 1394). Zersetzt sich beim Erhitzen mit 5 Vol. konz. Schwefelsäure auf 140° unter Bildung von Kohlenoxyd und Kohlendioxyd (Senderens, Aboulenc, C. r. 185, 1089). Liefert beim Erhitzen mit Phosphorsäure ungesättigte Kohlenwasserstoffe, Kohlenoxyd und geringe Mengen Kohlendioxyd (Melamid, Rosenthal, Z. ang. Ch. 36, 334). Geschwindigkeit der Veresterung durch Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Advani, Sudborough, J. indian Inst. Sci. 6, 59; C. 1923 III, 997; Bhide, Sud., J. indian Inst. Sci. 8 A, 92; C. 1926 I, 80. — Thallium(I)-salz. Nadeln (aus Aceton). F: 112° (korr.) (Walter, B. 59, 969).

Diäthylessigsäure-äthylester $C_8H_{16}O_2=(C_2H_5)_2CH\cdot CO_2\cdot C_2H_5$ (H 333; E I 143). Erstarrt bei tieferer Temperatur glasig (Timmermans, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27). Kp: 149—152° (korr.) (Zeisel, Neuwirth, A. 433, 133).

Diäthylessigsäure - chlorid, Diäthylacetylchlorid $C_6H_{11}OCl = (C_2H_5)_3CH \cdot COCl$ (H 334). Liefert mit Brom auf dem Wasserbad Diäthylbromacetylbromid (FOURNEAU, NICOLITCH, Bl. [4] 43, 1239).

Diäthylessigsäure-bromid, Diäthylacetylbromid $C_9H_{11}OBr = (C_9H_5)_9CH\cdot COBr$. B. Durch Erhitzen von Diäthylessigsäure mit Brom in Gegenwart von rotem Phosphor (FOURNEAU, NICOLITCH, Bl. [4] 43, 1238). — Kp: 153—158°.

Diäthylessigsäure-amid $C_6H_{13}ON = (C_2H_5)_2CH \cdot CO \cdot NH_2$ (H 334). B. Durch längeres Erhitzen von Diäthylessigsäure-äthylester mit konz. Ammoniak im Rohr auf 100°, später auf 150° (Zeisel, Neuwirh, A. 433, 133). Aus Diäthylessigsäure-chlorid und konz. Ammoniak unter Eiskühlung (Newberk, Soc. 127, 304). Durch alkal. Hydrolyse von Diäthylacetylharnstoff (New.). Bei der Reduktion der höherschmelzenden der der niedrigerschmelzenden Form des α -Athyl-crotonsäure-amids mit 4% igem Natriumamalgam in Wasser (New.). Nadeln (aus Äther). F: 112° (korr.) (New.), 104—105° (Z., Neu.). — Liefert mit Alkalihypobromit 3-Amino-pentan (Karrer, Mitarb., Helv. 11, 1082 Anm. 2).

Diäthylessigsäure - nitril, Diäthylacetonitril $C_8H_{11}N=(C_2H_5)_2CH\cdot CN$ (H 334). B. Beim Leiten von Diäthylcarbinol - Dampf mit Blausäure über Silicagel - Tonerde bei 380° (I. G. Farbenind., D. R. P. 463123; C. 1929 I, 2234; Frdl. 16, 700). Neben überwiegenden Mengen 3-Chlor-pentan durch Umsetzung von Pentyl-(3)-magnesiumbromid mit Chlorcyan in Äther und nachfolgende Hydrolyse mit Eiswasser und etwas Salzsäure (GRIGNARD, ONO, Bl. [4] 39, 1592). — Kp₇₅₃: 144—146° (G., O.). — Die Alkaliverbindungen liefern in Äther der Benzol mit Allylbromid Diäthyl-allyl-acetonitril; analog reagieren Äthylbromid und Benzylbromid (I. G. Farbenind., D. R. P. 473329; C. 1929 II, 217; Frdl. 16, 285; RAMART, C. r. 182, 1227).

 β -Brom-α-äthyl-buttersäure, β -Brom-diäthylessigsäure $C_eH_{11}O_2Br=CH_3\cdot CHBr-CH(C_2H_5)\cdot CO_2H$ (H 334). B. Aus einem Gemisch der beiden stereoisomeren α-Äthyl-crotonsäuren beim Behandeln mit gesättigter Bromwasserstoffsäure (Johansson, Hagman, B. 55, 656), in besserer Ausbeute beim Aufbewahren mit flüssiger Bromwasserstoffsäure im Rohr (Salkowski, J. pr. [2] 106, 258, 263). — Gelbliche Krystalle (aus Petroläther). F: 25° (J., H.). Kp_{15-16} : 140—143° (nicht ganz rein) (S.). Sehr leicht löslich in Alkohol, Äther, Chloroform, Benzol und Tetrachlorkohlenstoff, leicht in Petroläther (J., H.). — Bei der Zersetzung von β -Brom-diäthylessigsäure in durch Soda neutral gehaltener wäßriger Lösung entstehen zu ca. 1 /₃ α -Äthyl-buttersäure-lacton (J., H.; S.). Geschwindigkeit der unter Bildung von Penten-(2), Kohlendioxyd und α -Äthyl-buttersäure-lacton verlaufenden Zersetzung durch die äquivalente Menge Natronlauge bei 25°: J., H.

- α -Brom- α -äthyl-buttersäure-äthylester, Diäthylbromessigsäure-äthylester $C_8H_{15}O_9Br=(C_2H_5)_2CBr\cdot CO_2\cdot C_2H_5$ (H 334). Kp: 1970 (v. Auwers, A. 432, 76). Liefert beim Kochen mit Diäthylanilin ein Gemisch der Äthylester der festen und der flüssigen α -Äthyl-crotonsäure.
- α Brom α äthyl butyrylchlorid, Diäthylbromacetylchlorid $C_0H_{10}OClBr = (C_0H_0)_0CBr \cdot COCl$ (H 334). Das H 2, 334 beschriebene Präparat ist nach FOURNEAU, NICOLITCH (Bl. [4] 48, 1239) Diäthylbromacetylbromid.
- α-Brom-α-äthyl-butyrylbromid, Diäthylbromacetylbromid $C_8H_{19}OBr_8=(C_1H_8)_2CBr\cdot COBr.$ B. Aus Diäthylessigsäure und Brom in Gegenwart von rotem Phosphor (Rassow, Bauer, J. pr. [2] 80 [1909], 265; v. Auwers, A. 439, 141). Aus Diäthylessigsäurebromid oder -chlorid und Brom auf dem Wasserbad (Fournau, Nicolitor, Bl. [4] 48, 1239). Flüssigkeit von stechendem Geruch. Kp_{30} : 128° (Newbery, Soc. 127, 303); Kp_{31} : 98—100° (F., Ni.); Kp_{30} : 94°; Kp_{14} : 90—91° (v. Au., A. 439, 141); Kp_{13} : 83° (v. Au., A.

- 432, 76). Liefert bei der Einw. von siedender wäßrig-alkoholischer Kalilauge ein Gemisch der flüssigen und festen Form der a-Äthyl-crotonsäure (New.).
- α-Brom-α-äthyl-buttersäure-amid, Diäthylbromessigsäure-amid, Neuronal C₄H₁₂ONBr = (C₂H₋₎₂CBr·CO·NH₂ (E I 143). Über die physiologische Wirkung vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. I, 2. Hälfte [Berlin-Leipzig 1930], S. 796.
- $\gamma.\gamma'$ -Dibrom-diäthylessigsäure-äthylester $C_8H_{14}O_2Br_2=(CH_2Br\cdot CH_2)_2CH\cdot CO_2\cdot C_2H_5$. B. Aus $\gamma.\gamma'$ -Diphenoxy-diäthyl-essigsäure beim 10—12-stdg. Kochen mit einem Gemisch aus 48%iger Bromwasserstoffsäure und rauchender Salzsäure und anschließenden Verestern mit Alkohol und Bromwasserstoff (MILLS, BAINS, Soc. 127, 2505). Schweres Öl von knoblauchähnlichem Geruch. Kp₁₉: 166—167° (M., B.). Liefertz beim 48-stdg. Kochen mit Piperidin in Alkohol N.N-Pentamethylen-4-carbäthoxy-piperidiniumbromid (M., B.); reagiert analog mit 4-Phenyl-piperidin (M., WARREN, Soc. 127, 2511).
- $\alpha.\beta$ -Dibrom- α -äthyl-butyramid, $\alpha.\beta$ -Dibrom-diäthylessigsäure-amid $C_6H_{11}ONBr_2$ $CH_3 \cdot CHBr \cdot CBr(C_2H_3) \cdot CO \cdot NH_2$.
- a) Niedrigschmelzende Form. B. Durch Einw. der berechneten Menge Brom auf höherschmelzendes α -Äthyl-crotonsäure-amid in Schwefelkohlenstoff bei 0° (Newberg, Soc. 127, 304). Tafeln (aus Äther + Petroläther). F: 79—80°. Leichter löslich in Alkohol, Äther und Schwefelkohlenstoff als die hochschmelzende Form, ziemlich leicht in heißem Petroleum.
- b) Hochschmelzende Form. B. Durch Einw. der berechneten Menge Brom auf niedrigerschmelzendes α -Äthyl-crotonsäure-amid in Schwefelkohlenstoff bei 0^0 (Newbery, Soc. 127, 304). Nadeln (aus Alkohol). F: 127—128°. Schwer löslich in kaltem Äther, Schwefelkohlenstoff und Petroläther.
- 6. 2-Methyl-butan-carbonsäure-(2). α.α-Dimethyl-buttersäure, Dimethyl-äthyl-essigsäure C₆H₁₂O₂ = CH₃·CH₂·C(CH₃)₂·CO₂H (H 335; E I 143). B. Zur Bildung aus tert.-Amylmagnesiumchlorid und Kohlendioxyd in Äther vgl. Gilman, Zoellner, R. 47, 1061. Beim Aufbewahren von Dimethyläthylacetaldehyd in Sauerstoff-Atmosphäre (Conant, Webb, Mendum, Am. Soc. 51, 1251). Kp: 186° (C., W., M.), 184—186° (G., Z.).

Methylester $C_7H_{14}O_2 = C_2H_5 \cdot C(CH_3)_2 \cdot CO_2 \cdot CH_3$. Flüssigkeit von pfefferminzartigem Geruch. Kp₇₄₆: 125—125,5° (korr.); D_4^{ss} : 0,8943; n_5^{ss} : 1,3991 (Corson, Thomas, Waugh. Am. Soc. 51, 1951).

Äthylester $C_8H_{16}O_2=C_2H_5\cdot C(CH_3)_2\cdot CO_2\cdot C_2H_5$ (H 336). Flüssigkeit von pfefferminzartigem Geruch. Kp₇₄₆: 141,8—142,2° (korr.); D_4^{25} : 0,8601; n_D^{25} : 1,3989 (Corson, Thomas, Waugh, Am. Soc. 51, 1951).

Propylester $C_9H_{18}O_2 = C_2H_5 \cdot C(CH_3)_2 \cdot CO_2 \cdot CH_2 \cdot C_2H_5$. Flüssigkeit von pfefferminzartigem Geruch. Kp₇₄₆: $164 - 164, 4^{\circ}$; D_4^{m} : 0.8575; n_5^{m} : 1.4040 (Corson, Thomas, Waugh, Am. Soc. 51, 1951).

Butylester $C_{10}H_{20}O_2=C_2H_5\cdot C(CH_3)_2\cdot CO_2\cdot [CH_2]_3\cdot CH_3$. Flüssigkeit von schwachem Geruch. $Kp_{746}\colon 184-184,7^0$ (korr.); $D_4^{25}\colon 0.8566$; $n_D^{25}\colon 1,4098$ (Corson, Thomas, Waugh, Am. Soc. 51, 1951).

n-Amylester $C_{11}H_{22}O_2 = C_2H_5 \cdot C(CH_3)_2 \cdot CO_2 \cdot [CH_2]_4 \cdot CH_3$. Flüssigkeit von schwachem Geruch. Kp₇₄₆: 202,5—203,5° (korr.); D_4^m : 0,8544; n_{11}^m : 1,4140 (Corson, Thomas, Waugh, Am. Soc. 51, 1951).

Isoamylester $C_{11}H_{22}O_2=C_2H_5\cdot C(CH_3)_2\cdot CO_2\cdot CH_2\cdot CH_2\cdot CH(CH_3)_2$. Flüssigkeit von schwachem Geruch. Kp₇₄₆: 192,5—196,5° (korr.); D_4^{25} : 0,8533; n_5^{25} : 1,4128 (Corson, Thomas, Waugh, Am. Soc. 51, 1951).

Amid $C_4H_{13}ON = C_2H_5 \cdot C(CH_3)_2 \cdot CO \cdot NH_2$ (H 336; E I 143). Gibt bei der Einw. von 3 Mol Phenylmagnesiumbromid in Ather + Toluol auf dem Sandbad $\omega.\omega$ -Dimethyl- ω -äthylacetophenon und wenig Dimethyläthylacetonitril (Ramart, Laclôtre, Anagnostopoulos, C. r. 185, 283).

Nitril, Dimethyläthylacetonitril $C_6H_{11}N=C_2H_5\cdot C(CH_3)_2\cdot CN$ (H 336). B. Neben viel $\omega.\omega$ -Dimethyl- ω -äthyl-acetophenon bei der Einw. von 3 Mol Phenylmagnesiumbromid auf Dimethyläthylessigsäure-amid in Ather + Toluol auf dem Sandbad (Ramart, Laclôtre, Anagnostopoulos, C.r. 185, 283).

- β -Brom-α.α-dimethyl-buttersäure $C_6H_{11}O_2Br=CH_3\cdot CHBr\cdot C(CH_3)_2\cdot CO_2H$. B. Aus β -Oxy-α.α-dimethyl-buttersäure und flüssigem Bromwasserstoff im Rohr bei Zimmertemperatur (Salkowski, J. pr. [2] 106, 258, 263). Bräunliche Nadeln. F: 42°. $Kp_{0,2}$: 115°. Das Natriumsalz zerfällt in wäßr. Lösung unter Bildung von α.α-Dimethyl- β -butyrolacton.
- 7. 2.2-Dimethyl-propan-carbonsäure-(1). $\beta.\beta$ -Dimethyl-buttersäure, tert.-Butyl-essigsäure $C_0H_{12}O_1=(CH_2)_3C\cdot CH_2\cdot CO_2H$.

- α-Brom- β . β -dimethyl-buttersäure $C_8H_{11}O_2Br = (CH_3)_3C \cdot CHBr \cdot CO_2H$. B. Beim Schmelzen von tert.-Butylbromfnalonsäure (Abderhalden, Rossner, H. 163, 179). Krystalle. F: 57°.
- 8. 3-Methyl-butan-carbonsäure-(2), a-Methyl-isovaleriansäure, a-Isopropyl-propionsäure, Methyl-isopropyl-essigsäure $C_6H_{12}O_2=(CH_3)_2CH\cdot CH(CH_3)\cdot CO_2H$.
- a) Linksdrehende Form. B. Aus der inakt. Säure durch fraktionierte Krystallisation des Chininsalzes aus Aceton (Levene, Bass, J. biol. Chem. 70, 216). $[\alpha]_0^m$: —13,9° (Äther: c = 4).
- b) Inaktive Form (H 338). B. Zur Bildung durch Schmelzen von Methylisopropylmalonsäure vgl. Levene, Bass, J. biol. Chem. 70, 214. Kp₆₈₃: 184—186° (korr.) (Bhide, Sudden Antipoden Inst. Sci. 8 A, 104; C. 1926 I, 80). Läßt sich über das Chininsalz in die optischen Antipoden spalten (L., Bass). Liefert beim Erhitzen mit Brom und rotem Phosphor auf 90—100° Methyl-isopropyl-bromacetylbromid (Weil, Langiertówna, Kassur, Roczniki Chem. 9, 466; C. 1929 II, 1912). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff: Bh., S., J. indian Inst. Sci. 8 A, 92, 115.
- α-Brom-α.β-dimethyl-butyrylbromid, Methyl-isopropyl-bromacetylbromid $C_6H_{10}OBr_2=(CH_3)_2CH\cdot CBr(CH_3)\cdot COBr$. B. Aus α-Methyl-isovaleriansäure durch Erhitzen mit Brom und rotem Phosphor auf 90—100° (Weil, Langiertówna, Kassur, Roczniki Chem. 9, 466; C. 1929 II, 1912). Leicht zersetzliche Flüssigkeit. Kp₁₅: 130°. Löslich in Äther und Chloroform.

7. Carbonsäuren $C_7H_{14}O_2$.

1. Hexan-carbonsäure-(1), Önanthsäure, Heptylsäure C₇H₁₄O₂ = CH₃·[CH₂]₅·CO₂H (H 338; E I 144). B. Entsteht bei der trocknen Destillation von Buchenholz und ist daher im rohen Holzessig enthalten (Seib, B. 60, 1398). Beim Kochen einer wäßr. Suspension von α-Brom-önanthol mit Bleihydroxyd oder Silberoxyd (Kirrmann, C. r. 184, 1464; 185, 1483; A. ch. [10] 11. 251, 279). Neben Methylglyoxal bei der Ozonspaltung von n-Heptoyl-aceton (Weygand, Baumgärtel, B. 62, 578). Neben wenig Suberon beim Erhitzen von Korksäure auf 340—350° (Vogel, Soc. 1929, 729). Durch elektrolytische Reduktion von β-Butyryl-propionsäure in Schwefelsäure (Lukeš, Collect. Trav. chim. Tchécosl. 1, 133; C. 1929 II, 745). In geringer Menge beim Schmelzen von Δ¹¹¹- Undecensäure (S. 419) mit Kaliumhydroxyd bei 350—370°, neben anderen Produkten (Chuit, Mitarb., Helv. 10, 118).

Röntgenogramm der festen Önanthsäure: GIBBS, Soc. 125, 2623. E: —7.5° (GARNER, MADDEN, RUSHBROOKE, Soc. 1926, 2499). F: —11° (KIRRMANN, C. r. 184, 1465; A. ch. [10] 11. 279). Kp₁₈: 120° (Vogel, Soc. 1929, 729); Kp₁₁: 115—116° (KI.). D¹⁵: 0.924 (TROMP, R. 41, 282, 297); D¹⁷: 0.920 (KI.); D¹⁷: 0.9231; D¹⁸: 0.9212 (Vogel); D¹⁸: 0.916 (T.). Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 10. Einfluß von Önanthsäure-Filmen geringer Dicke sowie des gesättigten Dampfes auf die gleitende Reibung an Glas und an Stahl: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 555; C. 1922 IV, 514. Oberflächenspannung zwischen 0° (29,84 dyn/cm) und 60° (24,82 dyn/cm): Harkins, Cheng, Am. Soc. 43, 48. Spezifische Wärme der flüssigen Substanz zwischen 0° und 30°: 0,4928 cal/g; der festen Substanz bei Temperaturen oberhalb —35°: 0,4752 cal/g (GA., Ma., Ru.). Schmelzwärme: 27,50 cal/g (GA., Ma., Ru.). n¹⁶/₁: 1,4220 (T.); n¹⁶/₁: 1,4262 (Ki.); n¹⁶/₁: 1,4265; n¹⁶/₂: 1,4255 (Vogel); n²⁰/₀: 1,4008; n²⁰/₀: 1,4029; n²⁰/₀: 1,4079; n²⁰/₀: 1,4120 (Waterman, Bertram, R. 46, 701). Doppelbrechung der rotierenden Flüssigkeit: Vor., Wa., Ph. Ch. 118, 10; Phys. Z. 25, 572. Reflexion linear polarisierten Lichtes an der Oberfläche wäßr. Lösungen verschiedener Konzentration: Bouhet, C. r. 189, 43. Beugung von Röntgenstrahlen an flüssiger Önanthsäure: Katz, Z. ang. Ch. 41, 337; Z. Phys. 45, 97; C. 1928 I, 154; Morrow, Phys. Rev. [2] 31 [1928], 11; Stewart, Mannheimer, Z. anorg. Ch. 171, 68; St., Pr. nation. Acad. USA. 13 [1927], 787. Absorptionskoeffizient für Röntgenstrahlen der Wellenlänge λ: 0.707 Å: Thibaud. Trillat, C. r. 189, 907. Magnetische Doppelbrechung: Ramanadham, Indian J. Phys. 4, 27; C. 1929 II, 2315. Löslichkeit in Wasser bei 15°: 0,0136 Mol/l (Müller von Blumencron, Z. dtsch. Öl-Fettind. 42, 142; C. 1923 I, 36); bei 20°: 0,0224 Mol/l (Har., Cheng. Am. Soc. 43. 47). Zur Löslichkeitserniedrigung in Gegenwart des Natriumsalzes vgl. M. v. B., Z. dtsch. Öl-Fettind. 42, 142. Verteilung zwischen Wasser

aus wäßr. Lösung an frisch gefälltes Silberjodid: Frumkin, Obrutschewa, Bio. Z. 182, 223, 229. Adsorption von Önanthsäure aus wäßr. Lösung an Tierkohle: Schilow, Nekrassow, Ph. Ch. 130, 67; Ж. 60, 105: an Zuckerkohle: Nek., Ph. Ch. 136, 381; an Zuckerkohle und Holzkohle: Dubinin, Ph. Ch. [A] 140, 83; Ж. 61, 587; an verschiedene Kohlepräparate: Nek., Ph. Ch. 136, 22. Adsorption aus alkoh. Lösung: Griffin, Richardson, Robertson, Soc. 1928, 2708; Nek., Ph. Ch. 136, 22; aus verschiedene anderen Lösungsmitteln: Nek., Ph. Ch. 136, 22. Ausbreitung von Önanthsäure auf Wasser und von Wasser auf Önanthsäure zwischen 0° und 40°: Harkins, Ph. Ch. [A] 139, 677. Schaumbildungsvermögen: Bartsch. Potentialdifferenz an der Trennungsfläche Luft/wäßrige, schwach mineralsaure Önanthsäure-Lösung: Frumkin, Ph. Ch. 111, 194; 116, 491.

Das Natriumsalz wird bei der Hydrierung unter 60 Atm. Druck bei 315° in Gegenwart von Wasser und Nickeloxyd teilweise unter Bildung von Methan und Hexan zersetzt (IPATJEW, RASUWAJEW, Ж. 58, 1344; B. 59, 2031). Entzündungstemperatur von Onanthsäuredampf-Luft-Gemischen an Platin: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Bei der Oxydation mit alkal. Permanganat-Lösung entsteht Oxalsäure (SKRAUP, SCHWAMBERGER, A. 462, 151). Oxydation mit einer 7,4 %igen Lösung von Kaliumdichromat in 75% iger Schwefelsäure auf dem Wasserbad: LIEBEN, MOLNAR, M. 53/54, 7. Bei der Oxydation von Önanthsäure mit Wasserstoffperoxyd in ammoniakalischer Lösung entstehen γ- und δ-Oxo-önanthsäure und geringe Mengen ε-Oxo-önanthsäure sowie Methylbutylketon und Essigsäure (CLUTTERBUCK, RAPER, Biochem. J. 19, 390). Geschwindigkeit der Veresterung mit absol. Alkohol in Gegenwart von Trichloressigsäure, α.α.β-Trichlor-buttersäure, Pikrinsäure oder Chlorwasserstoff bei 25°: Goldschmidt, Ph. Ch. 94, 246. — Wird durch eine Reinkultur von Penicillium glaucum in Methylbutylketon übergeführt (Stärkle, Bio. Z. 151, 402; vgl. Acklin, Bio. Z. 204, 254). Insecticide Wirkung der freien Säure und ihres Ammoniumsalzes auf Blattläuse: Tattersfield, Gimingham, J. Soc. chem. Ind. 48 [1927], 371 T. Mikrochemischer Nachweis durch Überführung in das charakteristische Zinkoder Calcium - Salz: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 328.

Lithiumsalz. Röntgenogramm: Becker, Jancke, Ph. Ch. 99, 268. D: 1,023(?). — Natriumsalz. Über Gelbildung in Wasser und Alkohol vgl. Müller von Blumenrcon, Z. dtsch. Öl-Fettind. 42, 172; C. 1923 I, 36. Lösungsvermögen der wäßt. Lösung für verschiedene organische Verbindungen: Tamba, Bio. Z. 145, 418. Abhängigkeit der Viscosität wäßt. Lösungen bei 15° von der Konzentration: M. v. B., Z. dtsch. Öl-Fettind. 42, 102. Oberflächenspannung wäßt. Lösungen bei verschiedenen Verdünnungen: M. v. B., Z. dtsch. Öl-Fettind. 42, 155; Schaumbildungsfähigkeit: M. v. B., Z. dtsch. Öl-Fettind. 42, 156. Leitfähigkeit wäßt. Lösungen bei 25°: M. v. B., Z. dtsch. Öl-Fettind. 42, 140. Hydrolyse: M. v. B., Z. dtsch. Öl-Fettind. 42, 141. — Kaliumsalz. Zum Röntgenogramm vgl. PIPER, Soc. 1929, 236. Doppelbrechung einer rotierenden wäßtigen Lösung: Vorländer. Walter, Ph. Ch. 118, 15. — Bleisalz. B. Durch Einw. einer alkoh. Lösung von Önanthsäure auf Blei (Trillat, Ann. Physique [10] 6, 76). Röntgenreflexionsaufnahme: Tr. — Thallium(1)-salz. Doppelbrechende Blättchen (aus Aceton). F: 143° (kort.) (Walter, B. 59, 968). Die Schmelze ist zwischen 143° und 227° (kort.) krystallin-flüssig. Sehr leicht löslich in Wasser, Methanol, Alkohol, Chloroform und Essigester; löslich in Aceton, schwer löslich in Toluol und Xylol. Kryoskopisches Verhalten der binären Gemische mit buttersaurem, isovaleriansaurem und hexahydrobenzoesaurem Thallium: W.

Önanthsäuremethylester $C_8H_{16}O_2=CH_3\cdot [CH_2]_5\cdot CO_2\cdot CH_3$ (H 339; E I 144). Insecticide Wirkung auf Blattläuse: Tattersfield, Gimingham, J. Soc. chem. Ind. 46 [1927], 371 T.

Önanthsäureäthylester $C_9H_{18}O_2=CH_3\cdot[CH_2]_5\cdot CO_2\cdot C_2H_5$ (H 340; E I 144). Kp₃₅: 95° (McCombie, Scarborough, Settle, Soc. 121, 2311). D_4^{tb} : 0.8723; D_5^{tb} : 0.8630 (Tromp, R. 41, 282). n_1^{tb} : 1,4150 (T., R. 41, 298). Adsorption von Önanthsäureäthylester an Platin: Palmer, Pr. roy. Soc. [A] 115, 229; C. 1927 II, 1678. — Geschwindigkeit der Verseifung bei 30° in ca. 88% igem Alkohol mit ca. 0.024 n-Natronlauge: Kindler, A. 452, 106; mit Kalilauge wechselnder Stärke in verschiedenen Alkohol-Wasser-Gemischen: McC., Sc., Se. Liefert beim Behandeln mit Äthylmagnesiumbromid 3-Athyl-nonanol-(3) (Staudinger, Widmer, Helv. 9, 545).

Önanthsäure-n-hexylester $C_{13}H_{26}O_2 = CH_3 \cdot [CH_2]_5 \cdot CO_2 \cdot [CH_2]_5 \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine Mischung von Önanthsäure und n-Hexylalkohol (Rheinboldt, König, Otten, A. 473, 258). Kp₁₉: 137°.

Glycerintriönanthat, Triönanthin, Önanthin, Heptylin C₂₄H₄₄O₆ = CH₃·[CH₂]₆·CO·O·CH(CH₂·O·CO·[CH₂]₅·CH₃)₂. B. Bei 5-stdg. Erhitzen von Glycerin und Önanthsäure mit Twitchells Reagens auf 100° (Ozaki, Bio. Z. 177, 161; C. 1926 II, 2192). Nährwert für Ratten: Oz.

296

Önanthsäurebromid, Önanthoylbromid $C_7H_{19}OBr=CH_3\cdot [CH_9]_5\cdot COBr$. B. Beim Erhitzen von Önanthsäure mit Phosphortribromid zunächst auf dem Wasserbad, dann auf 140° (KIRRMANN, A. ch. [10] 11, 280). — An der Luft rauchende, hygroskopische Flüssigkeit; $Kp_{12}:80^\circ; D^{18}:1,211; D^{10}:1,210; n_0^{16}:1,4605; n_0^{16}:1,460 (K., C. r. 185, 1483; A. ch. [10] 11, 280).$

Önanthsäureamid, Önanthamid $C_7H_{15}ON = CH_3 \cdot [CH_2]_5 \cdot CO \cdot NH_2$ (H 340; E I 146). Röntgenographische Untersuchung: Henderson, C. 1928 I, 2903. F: 94—95° (Asano, C. 1922 I, 1227).

Önanthsäurenitril, n-Hexylcyanid C₇H₁₃N = CH₃·[CH₂]₅·CN (H 341; E I 146). B. Bei der Reduktion von n-Heptylnitrit mit Wasserstoff in Gegenwart von Nickel bei 340° neben anderen Produkten (Mailhe, A. ch. [9] 13, 203). Beim Leiten der Dämpfe von Önanthaldoxim über Aluminiumoxyd oder Thoriumoxyd bei 340—360° (Mai.). Beim Erwärmen von N-Chlor-heptin-(1)-carbonsäure-(1)-amid, mit der berechneten Menge Barytwasser und nachfolgendem Einleiten von Wasserdampf (Rinkes, R. 46, 275). — E: —64,0° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 218; C. 1921 III, 1266). Kp: 183° (R.), 181—182° (Ti., Mat.), 175—177° (Mai.).

Önanthhydroximsäure-chlorid $C_7H_{14}ONCl=CH_3\cdot[CH_2]_5\cdot CCl:N\cdot OH$ s. 1-Chlor-1-nitroso-heptan $CH_3\cdot[CH_2]_5\cdot CHCl\cdot NO$ (E II 1, 118).

α-Brom-önanthsäure C₇H₁₃O₂Br = CH₃·[CH₂]₄·CHBr·CO₂H (H 341). B. Zur Bildung aus Önanthsäure und Brom (H 341) vgl. Abderhalden, Glaubach, Fermentf. 6, 349; C. 1923 I, 773. Aus α-Brom-önanthol bei der Einw. von Chromschwefelsäure (Kirrmann, C. r. 185, 1482; A. ch. [10] 11, 270). — Kp₁₂: 147°; D¹⁸: 1,319; n₁¹⁸: 1,471 (K.). — Gibt bei längerem Behandeln mit der 5-fachen Menge 25% igem Ammoniak bei Zimmertemperatur α-Amino-önanthsäure (A., G.). — Bariumsalz. Blättchen (aus Alkohol) (K.).

Äthylester $C_9H_{17}O_2Br=CH_3\cdot[CH_2]_4\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 341). Beim Erwärmen mit ciner 33% igen Lösung von Dimethylamin im Rohr erhält man α -Dimethylamino-önanthsäure-äthylester, beim Erwärmen mit dl-Kopellidin bzw. dl-Isokopellidin (Syst. Nr. 3044) auf dem Wasserbad entsteht neben Hexan-(1)-carbonsäure-(1)-äthylester α -[dl-Kopellidino]-bzw. [dl-Isokopellidino]-önanthsäure-äthylester (v. Braun, Schirmacher, B. 56, 1846). Liefert beim Behandeln mit Lävulinsäureäthylester und Zink in Benzol das γ -Lacton des 3-Oxy-3-methyl-nonan-dicarbonsäure-(1.4)-äthylesters; erhitzt man das Reaktionsgemisch längere Zeit auf 150°, so erhält man das γ -Lacton der entsprechenden freien Säure, 3-Methyl-nonen-(3)-dicarbonsäure-(1.4) und 3-Methyl-nonen-(3)-carbonsäure-(1) (STAUDINGER, RUZICKA, Helv. 7, 253, 256).

Bromid, α -Brom-önanthoylbromid $C_7H_{12}OBr_2=CH_3\cdot[CH_2]_4\cdot CHBr\cdot COBr.$ B. Beim Erwärmen von Önanthsäure mit Brom und rotem Phosphor (v. Auwers, Wegener, J. pr. [2] 106, 245; Fourneau, Nicolitch, Bl. [4] 43, 1239). — Gelbliche, stark rauchende Flüssigkeit. Kp₀: 101—102° (v. Au., W.); Kp₄₅: 135° (F., N.). — Durch Einw. von p-Kresolmethyläther in Schwefelkohlenstoff in Gegenwart von Aluminiumchlorid erhält man 4-Oxy1-methyl-3-[α -brom-önanthoyl]-benzol (v. Au., W.).

- 2. Hexan-carbonsäure-(2), α -Butyl-propionsäure, Methylbutylessig-säure $C_7H_{14}O_2=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot CO_2H$.
- a) Rechtsdrehende α -Butyl-propionsäure, rechtsdrehende Methylbutylessigsäure $C_7H_{14}O_2=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot CO_2H$. B. Aus der inakt. Säure durch fraktionierte Krystallisation des Chininsalzes aus Aceton (Levene, Bass, J. biol. Chem. 70, 217). D^{28} : 0,909 (L., Mikeska, J. biol. Chem. 84, 599). [α]:: +19,7° (Ather; c=6) (L., B.). Gibt beim Behandeln mit alkoh. Salzsäure den rechtsdrehenden Äthylester, beim Kochen mit Thionylchlorid das rechtsdrehende Chlorid (L., M., J. biol. Chem. 84, 581, 584).

Äthylester $C_9H_{18}O_2=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln der rechtsdrehenden Säure mit alkoh. Salzsäure bei 0° (Levene, Mikeska, J. biöl. Chem. 84, 584). — Optisch nicht einheitlich. Kpg. 58—62°. D²⁵: 0,860. [α]²⁵: +6,8° (unverdünnt), +7,9° (Xther; c = 4), +7,6° (75%iger Alkohol; c = 7).

Chlorid, rechtsdrehendes Methylbutylacetylchlorid $C_7H_{13}OCl = CH_3 \cdot [CH_2]_3$ $CH(CH_3) \cdot COCl.$ B. Beim Kochen der rechtsdrehenden Säure mit Thionylchlorid (LEVENE, MIKESKA, J. biol. Chem. 84, 582). — Optisch nicht einheitlich. Kp₉: 45—48°. D²⁵: 0,952. [α | $_{10}^{15}$: +5,1° (unverdünnt). +4,5° (Äther; c = 17). — Liefert bei Einw. von konz. Ammoniak das rechtsdrehende Amid.

Amid $C_7H_{15}ON = CH_3 \cdot [CH_2]_3 \cdot CH(CH_3) \cdot CO \cdot NH_2$. B. Beim Auflösen des rechtsdrehenden Chlorids in konz. Ammoniak unter Kühlen (Levene, Mikeska, J. biol. Chem. 84, 582). — Optisch nicht einheitlich. Krystalle (aus Wasser). F: 66°. $[\alpha]_b^{15}$: +3,9° (75% iger Alkohol; c = 15). — Gibt bei der Destillation mit Phosphorpentoxyd das rechtsdrehende Nitril.

Nitril, rechtsdrehendes Methylbutylacetonitril $C_7H_{13}N=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot CN$. B. Bei der Destillation des rechtsdrehenden Amids mit Phosphorpentoxyd unter 9 mm Druck (Levene, Mikeska, J. biol. Chem. 84, 582). — Optisch nicht einheitlich. Kpg: 43—50°. D²⁵: 0.797. [α]²⁵: +9.4° (unverdünnt), +9.2° (Ather; c = 10), +10.1° (75% iger Alkohol; c = 11). — Gibt bei der Reduktion mit Natrium und siedendem Alkohol linksdrehendes 1-Amino-2-methyl-hexan.

b) Linksdrehende α -Butyl-propionsäure, linksdrehende Methylbutylessigsäure $C_7H_{14}O_2=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot CO_2H$. B. Aus der inakt. Säure durch Überführen in das Cinchonidinsalz, welches in 66% igem Aceton schwerer löslich ist als das Salz der rechtsdrehenden Form (Levene, Mikeska, J. biol. Chem. 84, 581). — Kp₂₀: 121—122°. D²⁵: 0,909. [α] $_{5}^{5}$: —14.6° (unverdünnt), —15,3° (Äther; c = 14), —12,0° (Alkohol: c = 18). — Natriumsalz. [α] $_{5}^{5}$: —4,3° (Wasser; c = 26) (L., M.).

Äthylester $C_9H_{18}O_2=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. B. Analog dem rechtsdrehenden Äthylester (S. 296). — $[\alpha]_7^m$: —13,8° (Äther; c = 18) (Levene, Mireska, J. biol. Chem. 84, 584). — Gibt bei der Reduktion mit Natrium und Alkohol in Toluol rechtsdrehendes 2-Methyl-hexanol-(1).

Amid $C_7H_{15}ON = CH_3 \cdot [CH_2]_3 \cdot CH(CH_3) \cdot CO \cdot NH_2$. B. Analog dem rechtsdrehenden Amid (S. 296). — $[\alpha]_0^{n_5}$: —11.4° (75% iger Alkohol; c=22) (Levene, Mikeska, J. biol. Chem. 84, 583). — Gibt bei der Destillation mit Phosphorpentoxyd das linksdrehende Nitril.

- Nitril, linksdrehendes Methylbutylacetonitril $C_7H_{13}N = CH_3 \cdot [CH_2]_3 \cdot CH(CH_3) \cdot CN$. B. Aus dem linksdrehenden Amid bei der Destillation mit Phosphorpentoxyd unter vermindertem Druck (Levene, Mikeska, J. biol. Chem. 84, 583). $[\alpha]_0^{15} : -27,1^0$ (Ather; c=11), $-29,7^0$ (75 %iger Alkohol; c=11).
- c) Inakt. a-Butyl-propionsäure, inakt. Methylbutylessigsäure C₇H₁₄O₂ = CH₃·[CH₂]₃·CH(CH₃)·CO₂H (H 342). Kp₆₈₃: 203—205⁶ (korr.) (BHIDE, SUDBOROUGH, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 80). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: B., S. Läßt sich über die Cinchonidinsalze (Levene, Mikeska, J. biol. Chem. 84, 581) oder die Chininsalze (L., Bass, J. biol. Chem. 70, 216) in die optischen Antipoden spalten.

Äthylester $C_9H_{18}O_2=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$ (H 342). Geschwindigkeit der Hydrolyse durch Pankreaslipase bei 37° und p_H 7.0: Dawson, Platt, Cohen, *Biochem. J.* 20, 534.

- 3.4 Dibrom hexan carbonsäure (2), $\beta.\gamma$ Dibrom α methyl n capronsäure $C_7H_{12}O_2Br_2=CH_3\cdot CH_2\cdot CHBr\cdot CH(CH_3)\cdot CO_2H$. B. Aus Hexen-(3)-carbonsäure-(2) und Brom (v. Auwers, Heyna, A. 434, 158). Krystalle (aus Petroläther). F: 107—108°.
- 3. 4-Methyl-pentan-carbonsäure-(1), δ-Methyl-n-capronsäure. Isoamylessigsäure. Isoheptylsäure C₇H₁₄O₂ = (CH₃)₂CH·[CH₂]₃·CO₂H (H 342; E I 146). B. Neben anderen Produkten beim Schmelzen von 3-Isoamyl-1-isovaleryl-cyclopentantrion-(2.4.5) (Isohumulinsäure, Syst. Nr. 715) mit Ätzkali (Wieland, B. 58, 2015). Herb, ranzig riechendes Öl. Kp: 212—214° (W.), 208—210° (Smith, C. 1928 I, 1757); Kp₆₈₃: 205—207° (korr.) (Bhide, Sudborough, C. 1926 I, 80). Schwer löslich in Wasser (W.). Verteilung zwischen Wasser und Xylol bei 25°: Smith, J. phys. Chem. 25, 220. Geschwindigkeit der Oxydation des Natriumsalzes in verdünnter wäßriger Lösung durch Kaliumpermanganat: Smith, C. 1928 I, 1757. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff: B., Sud. Thallium(I)-salz. Blättchen (aus Aceton). F: 118,5° (korr.). Die Schmelze ist zwischen 118,5° und 218° krystallin-flüssig (Walter, B. 59, 969). Kryoskopisches Verhalten in capronsaurem und in isopropylessig-saurem Thallium: W.

Äthylester $C_9H_{18}O_2=(CH_3)_2CH\cdot[CH_2]_3\cdot CO_2\cdot C_2H_5$ (H 342; E I 146). B. Aus Isoamylessigsäure und Alkohol in Gegenwart von Chlorwasserstoff (Curtius, J. pr. [2] 125, 157). — Kp_{18,5}: 75—76°; Kp_{13,5}: 71°. — Liefert beim Kochen mit Hydrazinhydrat und geringen Mengen absol. Alkohol Isoamylessigsäurehydrazid.

Isoamylessigsäure-amid $C_7H_{15}ON = (CH_3)_2 \cdot CH \cdot [CH_2]_3 \cdot CO \cdot NH_2$ (H 343; E I 146). B. Durch Einw. von Isoamylessigsäurechlorid auf 25% ige Ammoniak-Lösung unter Kühlung (WIELAND, B. 58, 2017). Aus Isoamylessigsäure-azid in äther. Lösung beim Kochen mit Wasser oder (neben Isohexyl-carbamidsäure-äthylester) beim Kochen mit absol. Alkohol (Curtus, J. pr. [2] 125, 161). — Nadeln (aus Wasser) oder Blättchen (aus Ligroin). F: 102° bis 103° (W.), 103° (C.). Sublimiert im Vakuum unzersetzt (C.).

Isoamylessigsäure-hydrazid $C_2H_{16}ON_2 = (CH_3)_3CH \cdot [CH_2]_3 \cdot CO \cdot NH \cdot NH_3$. B. Aus Isoamylessigsäure-äthylester beim Kochen mit Hydrazinhydrat und geringen Mengen absol. Alkohol (Curtius, J. pr. [2] 125, 158). — Pulver. F: 37—40° (nicht rein). Sehr leicht löslich in Wasser, Alkohol, Ather, Benzol, Ligroin und Chloroform, leicht in Petroläther. — Das

N.N'-Bis-isoamylacetyl-hydrazin $C_{14}H_{36}O_3N_2 = [(CH_3)_3CH \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CO \cdot NH-]_2$. B. Aus Isoamylassigsäure-hydrazid (s. o.) in Alkohol beim Erwärmen mit Jod (Curtius, J. pr. [2] 125, 159). In geringer Menge bei Einw. von Natriumnitrit-Lösung auf eine mit Ather überschichtete wäßrige Lösung des Hydrochlorids von Isoamylessigsäure-hydrazid unter Eiskühlung (C.). — Blättchen (aus verd. Alkohol). F: 123°. Sehr schwer löslich in Wasser.

Isoamylessigsäure-axid $C_7H_{13}ON_3 = (CH_3)_2CH \cdot [CH_2]_3 \cdot CO \cdot N_3$. B. Bei der Einw. von Natriumnitrit auf eine mit Äther überschichtete wäßrige Lösung von Isoamylessigsäurehydrazid-hydrochlorid unter Kühlung (Curtius, J. pr. [2] 125, 159). — Stechend riechendes Öl. Leicht löslich in Alkohol und indifferenten Lösungsmitteln. Verpufft beim Erwärmen auf dem Spatel. — Liefert in äther. Lösung beim Kochen mit absol. Alkohol Isohexyl-carbamidsäure-äthylester neben Isoamylessigsäure-amid, beim Kochen mit Wasser Isoamylessigsäure-amid, mit trocknem Chloroform Isohexyl-isocyanat, beim Versetzen mit Anilin bei Zimmertemperatur eine Verbindung vom Schmelzpunkt 195° (siehe im Text bei Anilin, Syst. Nr. 1598).

 α . β -Dibrom - isoamylessigsäure - amid $C_7H_{13}ONBr_2 = (CH_3)_2CH \cdot CH_2 \cdot CHBr \cdot CCO \cdot NH_2$. B. Bei der Einw. von 1 Mol Brom auf Isoamylidenessigsäure-amid in Eisessig am Sonnenlicht (v. Auwers, A. 432, 81). — Nadeln (aus Alkohol). F: 169—170°.

Isoamyldijodessigsäure-äthylester $C_9H_{16}O_2I_2=(CH_3)_2CH\cdot CH_2\cdot CI_2\cdot CI_2\cdot CI_2\cdot CI_2\cdot CI_3\cdot CI$

Isoamyldijodessigsäure-amid $C_7H_{13}ONI_2 = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CI_2 \cdot CO \cdot NH_2$. B. Aus dem Äthylester (s. o.) durch Einw. von konz. Ammoniak (Currius, J. pr. [2] 125, 279). — Gelbe Blättchen.

4. 2-Methyl-pentan-carbonsäure-(1), β -Methyl-n-capronsäure $C_7H_{14}O_2=CH_3\cdot CH_3\cdot CH_4\cdot CH_3\cdot CH_3\cdot CH_3\cdot CO_3H$ (E I 146). B. Bei der Kalischmelze von inakt. Citronellsäure (S. 419) bei 250—300° (Rochussen, J. pr. [2] 105, 132). Beim Erhitzen von Pentyl-(2)-malonsäure auf 120° (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 496; C. 1925 I, 358). — Zähe Flüssigkeit. Kp₇₈₅: 212—213° (D., W.); Kp₃: 85—87° (R.). D₄°: 0,9187; n₅°: 1,4222 (D., W.). Löslich in Alkohol und Äther, schwer löslich in Wasser (D., W.). Riecht ähnlich wie Capronsäure (D., W.).

Äthylester $C_0H_{10}O_2=CH_3\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3\cdot CO_2\cdot C_2H_5$. B. Aus β -Methyln-capronsäure und alkoh. Schwefelsäure (Dewael, Weckering, Bl. Soc. chim. Belg. 38, 496; C. 1925 I, 358). — Flüssigkeit. Riecht fruchtartig. Kp_{756} : 176—177°. D_4^{so} : 0,8679. n_5^{so} : 1,4119. Löslich in Alkohol und Ather, unlöslich in Wasser.

Chlorid, β -Methyl-n-caproylchlorid $C_7H_{18}OCl = CH_8 \cdot CH_2 \cdot CH_3 \cdot CH(CH_3) \cdot CH_3 \cdot COCl.$ B. Aus β -Methyl-n-capronsaure und Phosphortrichlorid (Dewael, Weckering, Bl. Soc. chim. Belg. 38, 496; C. 1925 I, 358). — Kp₇₅₁: 163—164°. D₄°: 0,967. Zersetzt sich an feuchter Luft.

Amid, β -Methyl-n-capronamid $C_7H_{16}ON = CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3$

Nitril, β -Methyl-n-capronitril $C_7H_{12}N=CH_3\cdot CH_3\cdot CH$

5. Inakt. 3-Methyl-pentan-carbonsäure-(1), inakt. y-Methyl-n-capronsdure C₇H₁₄O₂ = CH₂·CH₂·CH(CH₃)·CH₂·CH₂·CO₂H. (H 344). B. Durch trockene Destillation von [β-Methyl-butyl]-malonsäure (DEWAEL, WECKERING, Bl. Soc. chim. Belg. 33, 502; C. 1925 I, 358). — Nach Buttersäure riechende Flüssigkeit. Erstarrt bei —80° amorph. Kp₇₅₄: 217—218°. D₄°: 0,9194. n₁°: 1,4211. Schwer löslich in Wasser.

Äthylester $C_0H_{16}O_2 = CH_2 \cdot CH_2 \cdot CH_1 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Kochen von γ -Methyl-n-capronsäure mit alkoh. Schwefelsäure (DEWAEL, WECKERING, Bl. chim. Belg. 38, 502; C. 1925 I, 358). — Angenehm riechende Flüssigkeit. Kp₇₅₀: 183°. D_4^n : 0,8708. n_2^n : 1,4051.

Chlorid, γ-Methyl-n-caproylchlorid C₇H₁₃OCl = CH₃·CH₂·CH(CH₃)·CH₂·CH₂·COCl.

B. Aus γ-Methyl-n-capronsäure und Phosphortrichlorid (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 502; C. 1925 I, 358). — Stechend riechende, an der Luft rauchende Flüssigkeit. Kp₇₆₇: 167—168°. D₄°: 0,9677.

Amid, γ -Methyl-n-capronamid $C_7H_{15}ON = CH_3 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot CO \cdot NH_2 \cdot B$. Durch Einw. von Ammoniak auf γ -Methyl-n-caproylchlorid (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 502; C. 1925 I, 358). — Nadeln. F: 98°. Schwer löslich in Wasser.

Nitril, γ -Methyl-n-capronitril $C_7H_{13}N=CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3$ Bei der Einw. von Phosphorpentoxyd auf γ -Methyl-n-capronamid (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 503; C. 1925 I, 358). — Unangenehm riechende Flüssigkeit. Kp₇₄₀: 180°. D₁[∞]: 0,8141. n_D[∞]: 1,4144. Unlöslich in Wasser. — Durch Hydrierung mit Natrium in Alkohol entsteht das entsprechende Amin.

- 6. Hexan-carbonsäure-(3). α -Äthyl-n-valeriansäure. Äthylpropylessigsäure $C_7H_{14}O_2=CH_3\cdot CH_2\cdot CH(C_2H_5)\cdot CO_2H$ (H 344; E I 146). Kp₆₈₃: 204—206° (Advani, Sudborough, J. indian Inst. Sci. 6, 54). Elektrolytische Dissoziationskonstante k bei 25°: 1,97 \times 10⁻⁵ (Spiers, Thorpe, Soc. 127, 544). Geschwindigkeit der Veresterung durch Alkohol in Gegenwart von Chlorwasserstoff bei 25°: A., Su.; Bhide, Su., J. indian Inst. Sci. 8, 92; C. 1926 I, 80.
- 7. 2-Methyl-pentan-carbonsäure-(2). $\alpha.\alpha$ -Dimethyl-n-valeriansäure, Dimethyl-propyl-essigsäure $C_7H_{14}O_2 = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(CH_3)_2 \cdot CO_2H$ (H 345; E I 147). B. Neben α -Oxy- β - β -dimethyl- β -propyl-propionsäure bei der Behandlung von 3.3-Dimethyl-hexanon-(2) mit Natriumhypobromit-Lösung (Locquin, Leers, C. r. 178, 2097; Bl. [4] 39, 433). Kp₃: 98—99°.

Methylester $C_8H_{16}O_2 = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(CH_3)_2 \cdot CO_2 \cdot CH_3$ (H 345). B. Bei der Einw. von Methanol auf die freie Säure in Gegenwart von etwas konz. Schwefelsäure (Locquin, Leers, C. r. 178, 2097; Bl. [4] 39, 434). — Bewegliche Flüssigkeit. Kp: 144—145°.

Chlorid, Dimethylpropylacetylchlorid $C_7H_{13}OCl = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(CH_3)_2 \cdot COCl$. B. Durch Einw. von Thionylchlorid auf die freie Säure (Locquin, Leers, C. r. 178, 2097; Bl. [4] 39, 434). — Kp₁₀: 45°.

Amid, Dimethylpropylacetamid $C_7H_{15}ON = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(CH_3)_2 \cdot CO \cdot NH_2$ (H 345). B. Beim Eintragen von Dimethylpropylacetylchlorid in mit Ammoniak gesättigten Äther (Locquin, Leers, Bl. [4] 39, 434). — F: 95—96°.

8. 2-Methyl-pentan-carbonsäure-(3), α -Äthyl-isovaleriansäure, α -Isopropyl-buttersäure, Äthylisopropylessigsäure $C_7H_{14}O_2=(CH_3)_2CH\cdot CH(C_2H_5)\cdot CO_2H$ (H 345). Liefert beim Erhitzen mit Brom und rotem Phosphor auf 90—100° Äthylisopropyl-brom-acetylbromid (Weil, Langiertówna, Kassur, C. 1929 II, 1912).

Äthyl-isopropyl-brom-acetylbromid $C_7H_{12}OBr_2 = (CH_3)_2CH \cdot CBr(C_2H_5) \cdot COBr$. B. Aus Äthylisopropylessigsäure durch Erhitzen mit Brom und rotem Phosphor auf 90—100° (Weil, Langiertówna, Kassur, C. 1929 II, 1912). Flüssigkeit. Kp₃₀: 145°.

- Äthyl-isopropyl-brom-essigsäure-amid $C_7H_{14}ONBr = (CH_3)_2CH \cdot CBr(C_2H_5) \cdot CO \cdot NH_2$. B. Beim Einleiten von Ammoniak in eine Lösung von Äthyl-isopropyl-brom-acetylbromid in Äther, Benzol oder Ligroin (Knoll A. G., Hildebrandt, Leube, D. R. P. 533313; C. 1931 II, 2635; Frdl. 16, 3074). Beim Vermischen von (nicht näher beschriebenem) Äthylisopropyl-brom-acetylchlorid mit trocknem Ammoniumcarbonat (Knoll A. G., H., L.). F: 45°. Hypnotische Wirkung: Knoll A. G., H., L
- 9. 4-Methyl-pentan-carbonsäure-(2), α -Isobutyl-propionsäure, Methylisobutylessigsäure $C_7H_{14}O_2=(CH_3)_2CH\cdot CH_2\cdot CH(CH_3)\cdot CO_2H$.

 a) Rechtsdrehende Form. B. Aus der inakt. Säure durch fraktionierte Krystalli-
- a) Rechtsdrehende Form. B. Aus der inakt. Säure durch fraktionierte Krystallisation des Brucinsalzes aus Aceton (Levene, Bass, J. biol. Chem. 70, 217). $[\alpha]_0^{22}$: +19,4° (Äther; c = 5).
- b) Inaktive Form (H 345). Kp₆₆₃: 203—204^o (korr.) (Bhide, Sudborough, *J. indian Inst. Sci.* 8, 104; *C.* 1926 I, 80). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff: B., S.
- 10. 3-Methyl-pentan-carbonsäure-(3), $\alpha.\alpha$ -Diäthyl-propionsäure, Methyldiäthylessigsäure $C_7H_{14}O_2=(CH_3\cdot CH_2)_2C(CH_3)\cdot CO_2H$ (H 346). B. Bei der Oxydation von β -Methyl- β -äthyl-butvlalkohol mit Chromsäure-Gemisch, neben anderen Produkten (Faworski, Salesskaja-Kibardina. Bl. [4] 37. 1232; \Re . 57. 293). Bei der Oxydation von α -Methyl- $\alpha.\alpha$ -diäthyl-aceton mit Natriumhypobromit-Lösung (Nyberg, B. 55, 1964). Kp: 205—206° (N.). AgC₇H₁₃O₂ (F., S.-K.).

300

11. 2.3 - Dimethyl-butan-carbonsäure-(2), $\alpha.\alpha$ - Dimethyl-isovalerian-säure, Dimethylisopropylessigsäure $C_7H_1AO_2 = (CH_2)_2CH \cdot C(CH_2)_3 \cdot CO_2H$ (H 346; E I 147). B. Bei der Oxydation von $\alpha.\alpha$ -Dimethyl- α -isopropyl-aceton mit Salpetersäure (Locquin, Leers, C.r. 179, 55; Bl. [4] 39, 436). — F: 41—42°. Kp₁₃: 104—105°.

Chlorid $C_7H_{13}OCl = (CH_3)_2CH \cdot C(CH_3)_2 \cdot COCl$. Kp: 148—150° (Locquin, Leers, $C. \ r. \ 179, 55; \ Bl. \ [4] \ 39, 437$).

Amid $C_7H_{16}ON = (CH_3)_2CH \cdot C(CH_3)_2 \cdot CO \cdot NH_2$. Krystalle (aus Benzol). F: 129° (Locquin, Leers, C. r. 179, 55; Bl. [4] 39, 437). [Hackenthal]

8. Carbonsäuren $C_8H_{16}O_2$.

1. Heptan-carbonsäure-(1), Caprylsäure, "Octylsäure" $C_8H_{16}O_3=CH_3\cdot [CH_3]_6\cdot CO_2H$ (H 347; E I 147).

Vorkommen und Bildung.

- V. Caprylsäure findet sich frei oder als Ester oder Glycerid in äther. Ölen bzw. fetten Ölen von Blättern, Früchten und Samen zahlreicher Pflanzen; vgl. Weimer, Thies, Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 507; C. Weimer, Die Pflanzenstoffe, 2. Aufl. [Jeña 1929 und 1931], 1. und 2. Bd.; A. Grün, W. Halden, Analyse der Fette und Wachse [Berlin 1929], 2. Bd.; G. Hefter, H. Schönfeld, Chemie und Gewinnung der Fette [Wien 1936], 1. Bd. Caprylsäure ist zu 7,5% im Fett der Nüsse von Attalea Cohune Morris (aus Britisch Honduras) enthalten (Hilditen, Vidyarfii, J. Soc. chem. Ind. 47, 35 T; C. 1928 II, 503). Im Fett der Früchte von Astrocaryum Murumuru (André, Guichard, C. r. 181, 230). Caprylsäure-Gehalt von Coconußöl: Walker, Soc. 123, 2838; Taylor, Clarke, Am. Soc. 49, 2831; Stokoe, Biochem. J. 22, 87; vgl. St., Analyst 49, 577; C. 1925 I, 1466. Beim Ranzigwerden unter dem Einfluß von Penicillium palitans geht der Gehalt an freier Caprylsäure im Cocosnußöl infolge Bildung von Caprylsäureestern von 7,2% auf 0,2% zurück (St.). Bömer, Baumann (Z. Unters. Nahr.-Genußm. 40, 97; C. 1921 I, 219) konnten im Cocosnußöl kein Caprylsäureglycerid nachweisen. Im Palmkernöl aus Elaeis guineensis Jacq. (3% der Gesamtfettsäuren) (Armsteong, Allan, Moore, J. Soc. chem. Ind. 44, 143 T; C. 1925 II, 435). In freiem Zustand im Irisöl (Langlais, Goby, C. r. 179, 174; Bl. [4] 35, 1308). Caprylsäure findet sich in Form von Estern: Im äther. Öl aus den Wurzeln von Curcuma aromatica Salisb. (Rao, Shinter, Simonsen, J. indian Inst. Sci. 9 A, 140; C. 1927 I, 654). In geringer Menge in Apfelschalen (Power, Chesnut, Am. Soc. 42, 1513). Im äther. Öl aus Pfirsichen (P., Ch., Am. Soc. 43, 1730, 1737). Im Orangenpreßsaft (Hall., Wilson, Am. Soc. 47, 2580). In der Rinde von Viburnum prunifolium (Heyl., Barkenhus, Am. Soc. 11, 335; C. 1928 II, 2296). Im äther. Öl von Blumea Malcomii (Simonsen, Rau, Soc. 121, 882). Als Ester in dem bei der Darstellung von Gärungsbutylalkohol anfallenden "Gelböl" (Marvel,
- B. Neben anderen Produkten bei der Oxydation von α-Octylen mit Chromtrioxyd in Acetanhydrid und Tetrachlorkohlenstoff unter Eiskühlung (Teeibs, Schmidt, B. 61, 462, 464). In geringer Menge beim Schmelzen von Decen-(9)-carbonsäure-(1) oder Dodecen(11)-carbonsäure-(1) mit Kaliumhydroxyd bei 350—370°, neben anderen Produkten (Chuit, Mitarb., Helv. 10, 118, 123). Neben anderen Produkten bei der Oxydation von Isoerucasäuremethylester mit Kaliumpermanganat in Aceton auf dem Wasserbad und nachfolgendem Kochen des Reaktionsprodukts mit Natronlauge (Mirchandani, Simonsen, Soc. 1927, 375). Beim Erhitzen von Azelainsäure über 300° (Vogel, Soc. 1929, 731). Zur Bildung bei der Oxydation der hochschmelzenden θ.ι-Dioxy-stearinsäure mit Permanganat in verdünnter alkalischer Lösung nach Spiridonow (J. pr. [2] 40, 249) vgl. Lapworth, Mottram, Soc. 127, 1987. Durch elektrolytische Reduktion von β-n-Valeryl-propionsäure in Schwefelsäure (Lures, Collect. Trav. chim. Tchécosl. 1 [1929], 134). Neben anderen Produkten bei der katalytischen Zersetzung von Erdnußöl in Gegenwart eines Aluminiumoxyd-Kupfer-Katalysators bei 600° und nachfolgenden Hydrierung der entstendenen sauren Produkte über Nickel bei 200—220° (Маилев, Bl. [4] 31, 569; A. ch. [9] 17, 315).

Isolierung aus Pflanzenmaterial: J. SCHMIDT in G. KLEIN, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 388. — Über eine Trennung der Caprylsaure von höheren gesättigten Fettsäuren s. unter Analytisches.

Physikalische Eigenschaften.

Röntgenogramm von fester Caprylsäure: Gibbs, Soc. 125, 2623; Z. Kr. Strukturber. 1, 693; Trillat, C. r. 180, 1330; Ann. Physique [10], 6, 61. E: 16,38° (Garner, Randall, Soc. 125, 887). F: 16,3° (Holde, Gentner, B. 58, 1422). Kp₇₆₀: 237,5° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 19); Kp₆₈₅: 232—235° (Mirchandani, Simonsen, Soc. 1927, 375); Kp₁₆: 129—130° (Vogel, Soc. 1929, 731); Kp₄: 110—111° (Langlais, Goby, C. r. 179, 174; Bl. [4] 35, 1308). Dichte zwischen 10° (1,0326) und 50,27° (0,8862): Garner, Ryder, Soc. 127, 728; D; zwischen 16,1° (0,9157) und 123,9° (0,8281): Hunten, Maass, Am. Soc. 51, 159; D²⁰: 0,914 (Vorländer, Walter, Ph. Ch. 118, 10); D³. 0,8708 (Ho., Ge.). Viscosität bei 20°: V., W., Ph. Ch. 118, 10. Einfluß dünner Filme von Caprylsäure auf die gleitende Reibung zwischen Stahl, Wismut, Glas und Quarz: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 555; 101, 489; C. 1922 IV, 514; 1923 I, 876. Adhäsion an Stahl-, Kupfer- oder Glasplatten: Hardy, Nottage, Pr. roy. Soc. [A] 118, 224; C. 1928 II, 864. Oberflächenspannung zwischen 16,1° (28,5 dyn/cm) und 142,8° (18,3 dyn/cm): Hu., Maass. Parachor: Hu., Maass. — Spezifische Wärme der flüssigen Substanz zwischen 18° und 46°: 0,5050 cal/g; der festen Substanz zwischen 0° und 12°: 0,4650 cal/g (Garner, Randall, Soc. 125, 895). Schmelzwärme: 35,44 cal/g (Ga., Ra.).

n_D^{∞,3}: 1,4118 (Holde, Gentner, B. 58, 1422); n_R[∞]: 1,4063; n_D[∞]: 1,4085; n_D[∞]: 1,4134; n_P[∞]: 1,4176 (Waterman, Bertram, R. 46, 701). Durch mechanische Rotation erzwungene Doppelbrechung: Vorländer, Walter, Ph. Ch. 118, 10; Phys. Z. 25, 571; C. 1925 I, 617. Beugung von Röntgenstrahlen an flüssiger Caprylsäure: Stewart, Pr. nation. Acad. USA. 13, 787; C. 1928 I, 639; St., Mannheimer, Z. anorg. Ch. 171, 68; Morrow, Phys. Rev. [2] 31, 10; C. 1928 I, 2693.

Wasser lösen bei 15° 0,072 g Caprylsäure (Virtanen, Fr. 74, 326). 1000 cm³ Wasser lösen bei 15° 0,0043 Mol (Müller von Blumencron, Z. disch. Öl-Fettind. 42, 142; 12° C. 1923 I, 36). Zur Löslichkeitserniedrigung in Lösungen des Natriumsalzes vgl. M. v. Bl. Löslichkeit in 2,0 n-Natriumbenzoat-Lösung: Traube, Schöning, Weber, B. 60, 1810. Kolloider Zustand der Lösung in Wasser, festgestellt durch Tyndall-Kegel, ultramikroskopische und kataphoretische Untersuchung: Tra. Klein, Koll. Z. 29, 236; C. 1922 I, 233. Verteilung von Caprylsäure zwischen Wasser und Benzol: Schulz, Koll. Beih. 21, 48; C. 1925 II, 1840; zwischen Wasser und Olivenöl: Bodansky, J. biol. Chem. 79, 252. Bildet azzetrope Gemische mit 1.4-Dibrom-benzol (Kpp6): 218,8°; ca. 10 Gew. % Caprylsäure), 2-Nitrotoluol (Kpp6): 221,5°; ca. 5 Gew. % Caprylsäure), 4-Nitro-toluol (Kpp6): ca. 233°; ca. 57 Gew. % Caprylsäure), 1.3.5-Triäthyl-benzol (Kpp6): 23,2°; d. Gew. % Caprylsäure), Naphthalin (Kpp6): 216,2°; 6 Gew. % Caprylsäure), 1-Methyl-naphthalin (Kpp6): 233,5°; 52 Gew. % Caprylsäure) und Safrol (Kpp6): 232,5°; ca. 45 Gew. % Caprylsäure) (Lecat, Ann. Soc. scient. Bruzelles 49 [1929]. 19, 21, 31, 112). Flüchtigkeit mit Wasserdampf: Arnold, Z. Unters. Nahr.-Genußm. 42, 355; C. 1922 II, 918; Knettmann, R. 47, 957. — Viscosität wäßr. Lösungen von Caprylsäure: Trauber, Whang, Bio. Z. 203, 364. Diffusion in Gele: Tomta, Bio. Z. 153, 342, 344; Tr., Bio. Z. 153, 359; Yumikura, Bio. Z. 157, 371; Tr., Yu., Bio. Z. 157, 335. Oberflächenspannung wäßr. Lösungen von Caprylsäure Tra., Somogyi, Bio. Z. 150, 94; Frumkin, Ph. Ch. 116, 476; Roy, Quart. J. indian chem. Soc. 4, 312; C. 1928 I, 659; vgl. Trau., Wh., Bio. Z. 203, 364. Grenzflächenspannung gegen saure und alkalische Phosphat-Puffer-Lösungen (Ph = 5,6 und 7,4): Ahartridge, Petters, Pr. roy. Soc. [A] 101, 363; C. 1923 I, 874. Kontaktwinkel von Caprylsäure mit Wasser und Lutt: Nietz, J. phys. Chem. 32, 262. Schaumbildungsvermögen wäßr. Lösungen von Caprylsäure bei 16° Nre., Ph. Ch. 136, 381; aus Alkohol an Tierkoh

Chemisches und physiologisches Verhalten; Analytisches.

Beim Leiten der Dämpfe von Caprylsäure über Calciumchlorid bei 580° erhält man α -Heptylen, weitere gesättigte und ungesättigte Kohlenwasserstoffe, Kohlendioxyd, Kohlenoxyd und Wasserstoff (Mailhe, Bl. [4] 37, 309). Bei der Oxydation des Ammoniumsalzes

mit Wasserstoffperoxyd in ammoniakalischer Lösung bei 90° entstehen außer Methyl-n-amylketon (vgl. EI 2, 147) wenig Essigsäure, 3-Oxo-heptan-carbonsäure-(1) und 4-Oxo-heptan-carbonsäure-(1) (Clutterbuck, Raper, Biochem. J. 19, 390, 391); in Gegenwart von wenig Ammoniak entstehen Methyl-n-amyl-keton und ein nicht näher beschriebener Alkohol (Stokoe, Biochem. J. 22, 91). Geschwindigkeit der Oxydation durch 30 %iges Wasserstoffperoxyd und konz. Schwefelsäure: Kerp, Arb. Gesundh.-Amt 57, 557; C. 1927 I, 1902. Caprylsäure gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung auf dem Wasserbad Oxalsäure (Skraup, Schwamberger, A. 462, 151). Oxydation mit Chromschwefelsäure: Lieben, Molnar, M. 53/54, 7. Beim Erhitzen eines Gemisches von Caprylsäure und geringen Mengen ihres Silbersalzes in Gegenwart von Wasserstoff auf 100° entsteht ein Silbersol (Giles, Salmon, Soc. 123, 1605). Geschwindigkeit der Veresterung mit absolutem und wasserhaltigem Athylenglykol in Gegenwart von Chlorwasserstoff bei 25°: Kallan, Schachner, M. 52, 33; mit absol. Glycerin bei Gegenwart von Chlorwasserstoff bei 25° oder ohne Katalysator bei 183,5°: Kall, Raupenstrauch, M. 45, 496, 514. Liefert bei gelindem Kochen mit überschüssigem Acetanhydrid unter Ausschluß der Luftfeuchtigkeit Caprylsäureanhydrid (Holde, Gentner, B. 58, 1422).

Caprylsäure wird durch eine Reinkultur von Penicillium glaucum in Methyl-n-amylketon übergeführt (Stärkle, Bio. Z. 151, 401; Acklin, Bio. Z. 204, 254). Auch beim Wachstum von Penicillium palitans auf caprylsäurehaltigem Medium werden Ketone gebildet (Stokob, Biochem. J. 22, 88). Hemmende Wirkung auf enzymatische Vorgänge: Velluz, C. 1927 II, 837. Wachstumshemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 129; C. 1925 I, 2699; auf Penicillium palitans und Oidium lactis: Stokob, Biochem. J. 22, 88. Bactericide Wirkung gegen Bact. coli und Staphylokokken: Traube, Somogyi, Bio. Z. 120, 94. Insecticide Wirkung: Siegler, Popenoe, J. agric. Res. 29, 259; C. 1925 I, 2111; Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884.

Trennung der Caprylsäure von höheren gesättigten Fettsäuren (sicher von Palmitinsäure aufwärts) auf Grund der verschiedenen Löslichkeit der hydroxamsauren Natriumsalze in Alkohol: Lewis, *Biochem. J.* 20, 1359, 1363. Mikrochemischer Nachweis: Behrens-Kley Organische mikrochemische Analyse [Leipzig 1922], S. 328.

Salze der Caprylsäure (Caprylate).

Ammoniumsalz NH₄C₈H₁₅O₂. Die Löslichkeit in Wasser wird durch Ammoniak erhöht (Weitz, Z. El. Ch. 31, 546). — Lithiumsalz. Röntgendiagramm (Debye-Scherrer-Aufnahme): Becker, Jancke, Ph. Ch. 99, 270. — Natriumsalz NaC₈H₁₅O₂. Mikroskopische Struktur: Maclennan, J. Soc. chem. Ind. 42, 393 T; C. 1924 I, 1291. Schaumbildungsvermögen wäßr. Lösungen: Müller v. Blumencron, Z. disch. Öl-Fettind. 42, 155; C. 1923 I, 36. Über die Ultrafiltration und Gelbildung in Wasser und Alkohol vgl. M. v. Bl., Z. disch. Öl-Fettind. 42, 171. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436; Pr. roy. Soc. [A] 97, 50; C. 1920 III, 533. Viscosität wäßr. Lösungen: Vorländer, Walter, Ph. Ch. 118, 15; M. v. Bl., Z. disch. Öl-Fettind. 42, 102. Oberflächenspannung wäßr. Lösungen: M. v. Bl., Z. disch. Öl-Fettind. 42, 155; Lascaray, Koll.-Z. 34, 76; C. 1924 I, 2413; Walker, Soc. 119, 1524. Oberflächenspannung von Gemischen mit caprinsaurem Natrium in wäßr. Lösung: Walker, Soc. 119, 1528. Durch mechanische Rotation erzwungene Doppelbrechung der wäßr. Lösunge; V., Walter. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: M. v. Bl., Z. disch. Öl-Fettind. 42, 140. — Kaliumsalz KC₈H₁₆O₃. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436; Pr. roy. Soc. [A] 97, 49; C. 1920 III, 533. Viscosität wäßr. Lösungen bei 20°: Vorländer, Walter, Ph. Ch. 118, 15. Durch mechanische Rotation erzwungene Doppelbrechung verschiedener wäßriger Lösungen: V., W. — Thallium(I)-salz TiC₈H₁₆O₂. Doppelbrechende Blätchen (aus Alkohol). Die Schmelze ist zwischen 135—136° (korr.) und 220° (korr.) krystallin-flüssig (Walter, B. 59, 968). Optisches Verhalten der krystallin-flüssigen Phase: W. Sehr leicht jöslich in Methanol, Alkohol, Wasser, Chloroform, Essigester, schwer in Aceton und Tolulo. Erstarrungspunkte von Gemischen mit Thallium(I)-caprinat: W. — Bleisalz Pb(C₈H₁₆O₂)₂. Röntgenogramm: Trillat, C. r. 180, 1839; Ann. Physique [10] 6, 76. — Wismutsalze: Bi(C₈H₁₆O₂)₃. Viscose Flüssigkeit. Schwer lös

Methylcaprylat $C_9H_{18}O_2=CH_3\cdot[CH_2]_6\cdot CO_2\cdot CH_3$ (H 348; E I 148). Insectioide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884.

Äthylcaprylat $C_{10}H_{20}O_2=CH_3\cdot[CH_1]_6\cdot CO_2\cdot C_2H_5$ (H 348; E I 148). E: $-44,75^\circ$; Kp_{ss}: 199,5° \pm 0,5° (Timmermans, Bl. Soc. chim. Belg. 81, 391; C. 1923 III, 1137). — Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Bildung von Caprylaldehyd und n-Octylalkohol bei der Reduktion mit Natrium und

Essigsäure in Äther in Gegenwart von Natriumacetat-Lösung bei —5° unter verschiedenen Bedingungen: Prins, R. 42, 1051. Bei der Einw. von siedender methylalkoholischer Hydroxylaminhydrochlorid-Lösung in Gegenwart von äthylalkoholischer Natriumäthylat-Lösung entsteht das Natriumsalz der Caprylhydroxamsäure (Lewis, Biochem. J. 20, 1358). Geschwindigkeit der Verseifung durch alkoholisch-wäßrige ca. 0,024 n-Natronlauge bei 30°: Kindler, A. 452, 106.

Allylcaprylat $C_{11}H_{20}O_3 = CH_3 \cdot [CH_2]_6 \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot B$. Bei gelindem Kochen von Allyljodid mit Silbercaprylat (Deulofeu, Soc. 1928, 528). — Stechend riechendes Öl. Kp: 225—230°.

Äthylenglykoldicaprylat $C_{18}H_{34}O_4 = CH_3 \cdot [CH_2]_6 \cdot CO \cdot O \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_6 \cdot CH_3$. Kontaktwinkel mit Wasser und Luft: Nietz, J. phys. Chem. **32**, 262.

Glycerin- α -caprylat, α -Monocaprylin $C_{11}H_{99}O_4 = CH_3 \cdot [CH_3]_6 \cdot CO \cdot O \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot OH$. B. Aus Glycerin- α -monochlorhydrin und Natriumcaprylat (Heiduschka, Schuster, J. pr. [2] 120, 156). — Flüssigkeit von aromatischem Geruch.

Glycerintricaprylat, Tricaprylin, Caprylin C₂₇H₅₀O₆ = CH₃·[CH₂]₆·CO·O·CH(CH₂·O·CO·[CH₃]₆·CH₃)₂ (H 348; E I 148). B. Beim Erhitzen von Glycerin mit Caprylsäure in Gegenwart von aus Naphthalin, Ölsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchells Reagens auf 100° (Ozaki, Bio. Z. 177, 159). — Existiert in einer stabilen und instabilen Form (Loskit, Ph. Ch. 134, 137). Krystallisationsgeschwindigkeit der stabilen Form: L., Ph. Ch. 134, 135. Spontanes Krystallisationsvermögen: L. Die stabile Form schmilzt bei 8,3°, die instabile bei —21° (L.). D¹8: 0,950 (Vorländer, Walter, Ph. Ch. 118, 10). Viscosität bei 20°: V., W. Durch mechanische Rotation erzwungene Doppelbrechung: V., W., Ph. Ch. 118, 10; Phys. Z. 25, 572; C. 1925 I, 617. Löslichkeit in Benzol: L. Ausbreitung monomolekularer Schichten auf Wasser, 0,001 n-Salzsäure und 0,1 n-Salzsäure: Gorter, Grendel, Bio. Z. 192, 446. — Nährwert für Ratten: Ozaki, Bio. Z. 177, 161; 189, 234; Pr. Acad. Tokyo 2, 12; 3, 439; C. 1926 II, 2192; 1928 I, 541.

Caprylsäureanhydrid $C_{16}H_{30}O_3 = CH_3 \cdot [CH_2]_6 \cdot CO \cdot O \cdot CO \cdot [CH_2]_6 \cdot CH_3$ (H 348). B. Bei gelindem Kochen von Caprylsäure mit überschüssigem Acetanhydrid unter Ausschluß der Luftfeuchtigkeit (Holde, Gentner, B. 58, 1422). — Krystalle (aus Alkohol bei —18°). F: —1°. $D_4^{r,s}$: 0,9065. D_4^{ro} : 0,8649. $n_0^{r,s}$: 1,4358.

Caprylsäurechlorid, Capryloylchlorid $C_8H_{15}OCl = CH_3 \cdot [CH_2]_6 \cdot COCl$ (H 348). B. Beim Erhitzen von n-Caprylsäure mit Oxalylchlorid (AVERILL, ROCHE, KING, Am. Soc. 51, 868; vgl. Adams, Ulich, Am. Soc. 42, 603). — Kp₉: 104—105° (Av., R., K.).

Caprylsäureamid $C_8H_{17}ON=CH_3\cdot [CH_2]_6\cdot CO\cdot NH_2$ (H 349; E I 148). F: 104° (Asano, J. pharm. Soc. Japan 1922, Nr. 480, S. 4; C. 1922 I, 1227). — Beim Erhitzen mit Thionylchlorid auf dem Wasserbad entsteht Caprylsäurenitril (STEPHEN, Soc. 127, 1875).

Caprylsäurenitril, n-Heptylcyanid C₈H₁₅N = CH₃·[CH₂]₆·CN (H 349; E I 148). B. Aus n-Heptylbromid und Kaliumeyanid (v. Braun, Blessing, Zobel, B. 56, 1993). Beim Erhitzen von Caprylsäureamid mit Thionylchlorid auf dem Wasserbad (Stephen, Soc. 127, 1875). — Kp₁₅: 87—88° (v. Br., Bl., Z.). Kp₁₀: 87° (St.). — Liefert bei der Hydrierung in Gegenwart von Nickel in Tetralin oder Dekalin bei 110—130° und 20 Atm. Druck geringe Mengen n-Octylamin und Di-n-octylamin (v. Br., Bl., Z.). Bei der Einw. von Zinn(II)-chlorid in mit Chlorwasserstoff gesättigtem Äther und Behandlung des Reaktionsprodukts mit warmem Wasser entsteht Octylaldehyd (St.). Die bei der Einw. von Natriumamid auf in Äther suspendiertes Caprylsäurenitril entstehende Natriumverbindung gibt bei der Einw. von Benzylchlorid α-Benzyl-caprylsäurenitril (Ramart, C. r. 162, 1227).

Caprylhydroxamsäure $C_8H_{17}O_2N=CH_3\cdot[CH_2]_6\cdot CO\cdot NHOH$. B. Das Natriumsalz entsteht bei der Einw. von siedender methylalkoholischer Hydroxylaminhydrochlorid-Lösung auf Athylcaprylat in Gegenwart von äthylalkoholischer Natriumäthylat-Lösung (Lewis, Biochem. J. 20, 1358). — Das Natriumsalz ist in einem Gemisch von Methanol und Alkohol leicht löslich; hierauf beruht ein Verfahren zur Trennung der Caprylsäure von höheren gesättigten Fettsäuren, deren Hydroxamsäuren in Alkohol unlösliche Natriumsalze bilden.

Caprylhydroximsäure-chlorid $C_8H_{16}ONCl = CH_3 \cdot [CH_2]_6 \cdot CCl : N \cdot OH$ s. 1-Chlor-1-nitroso-octan $CH_3 \cdot [CH_2]_6 \cdot CHCl \cdot NO$ (E II 1, 126).

α-Brom-caprylsäure $C_8H_{15}O_2Br=CH_3\cdot[CH_2]_5\cdot CHBr\cdot CO_2H$. B. Aus Caprylsäure bei Einw. von rotem Phosphor und Brom auf dem Wasserbad und nachfolgendem Behandeln mit Wasser (Abderhalden, Goto, Fermentf. 7, 95; C. 1924 I, 550). — Öl. Kp₁₀: ca. 138—158°.

 ω -Brom-caprylsäure $C_8H_{15}O_2Br=CH_2Br\cdot[CH_2]_6\cdot CO_2H$. B. Aus ω -Oxy-caprylsäure und einer 50% igen Lösung von Bromwasserstoff in Essigsäure erst in der Kälte, dann auf dem Wasserbad (Chuit, Hausser, Helv. 12, 466). — Krystalle (aus Petroläther). F: 38,5—39°. Kp₂: 147—150°. Löslich in Alkohol, Benzol, Äther, schwer löslich in Petroläther.

304

2. 5-Methyl-hexan-carbonsäure-(1), ε -Methyl-önanthsäure $C_0H_{10}Q_1=(CH_2)_2CH\cdot[CH_2]_4\cdot CO_2H$.

Äthylester $C_{10}H_{20}O_2 = (CH_3)_2CH \cdot [CH_2]_4 \cdot CO_2 \cdot C_2H_5$ (E I 149). B. Beim Kochen von α -Isohexyl-acetessigester mit Natriumäthylat-Lösung (Nelson, Dawson, Am. Soc. 45, 2180). — Kp: $201-203^\circ$.

3. Heptan - carbonsäure - (3), α-Äthyl-n-capronsäure, Äthylbutylessigsdure C₈H₁₆O₂ = CH₃·[CH₂]₂·CH(C₂H₅)·CO₂H (H 349). Diese Konstitution kommt der von Guerbet (C. r. 134, 467; A. ch. [7] 27, 87) beschriebenen Säure C₈H₁₆O₂ (s. im Artikel Dibutylalkohol H 1, 423) zu (Weizmann, Garrard, Soc. 117, 331). — B. Beim Erhitzen von Butylalkohol mit Natrium oder — in sehr geringer Ausbeute — mit Natriumhydroxyd auf 275° unter Druck, neben anderen Produkten (W., G.). Neben Buttersäure beim Erhitzen von Butylalkohol mit der äquimolekularen Menge Kaliumhydroxyd in Gegenwart von getrocknetem Aluminiumoxydgel oder Magnesiumoxyd unter Druck auf 280° (I. G. Farbenind., D. R. P. 503009; C. 1930 II, 2573; Frdl. 16, 251). Bei der Oxydation von α-Äthyl-β-propyl-acrolein mit Silberoxyd und Barytwasser und nachfolgenden Behandlung des Reaktionsprodukts mit Zink und Schwefelsäure auf dem Wasserbad (W., G., Soc. 117, 330). Beim Erhitzen von Äthylbutylmalonsäure auf 180° (Levene, Taylor, J. biol. Chem. 54, 354). — Kp₇₅₅: 228° bis 229° (L., T.); Kp₆₈₃: 221—222° (korr.) (Bhide, Sudborough, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 80). — Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: Bh., S., J. indian Inst. Sci. 8 A, 116.

Äthylester $C_{10}H_{20}O_2 = CH_3 \cdot [CH_2]_3 \cdot CH(C_2H_5) \cdot CO_2 \cdot C_2H_5$. B. Aus Äthylbutylessigsäure, Alkohol und Schwefelsäure (Levene, Taylor, J. biol. Chem. 54, 354). — Kp₇₈₆: 189—191°; D_1^m : 0,8628; n_1^m : 1,4128 (L., T.). — Geschwindigkeit der Hydrolyse durch Pankreaslipase in Gegenwart von Phosphatpuffer von p_H 7,0 bei 37°: Dawson, Platt, Cohen, Biochem. J. 20, 534.

Chlorid, Äthylbutylacetylchlorid $C_8H_{15}OCl = CH_3 \cdot [CH_2]_3 \cdot CH(C_2H_5) \cdot COCl$. Kp₂₀: 85—90° (Tiffeneau, Bl. [4] 33, 186).

- 4.5-Dibrom-heptan-earbonsäure-(3), $\beta.\gamma$ -Dibrom- α -äthyl-eapronsäure- $C_8H_{14}O_2Br_2$ = $CH_3 \cdot CH_2 \cdot CHBr \cdot CHBr \cdot CH(C_2H_5) \cdot CO_2H$. B. Durch Einw. von Brom auf Hepten-(4)-carbonsäure-(3) (v. Auwers, Heyna, A. 434, 158). Krystalle (aus Petroläther). F: 107° bis 108°.
- 4. Heptan-carbonsäure-(4), α -Propyl-n-valeriansäure, Dipropylessigsäure $C_8H_{16}O_2=(CH_3\cdot CH_2\cdot CH_2)_2CH\cdot CO_2H$ (H 350; E I 149). B. Aus dem Oxim des $\alpha.\alpha$ -Dipropyl-acetessigsäure-äthylesters durch Einw. von Natrium in Alkohol, neben anderen Produkten (Billon, A. ch. [10] 7, 367). Dicke Flüssigkeit von buttersäureartigem Geruch. Kp₇₆₀: 220° (Bi.); Kp₈₈₃: 219—220° (korr.) (BHIDE, SUDBOROUGH, J. indian Inst. Sci. 8 A, 104; C. 1926 II, 80); Kp₈₆: 140° (Bi.). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: BH., S., J. indian Inst. Sci. [A] 8, 115. Thallium (I)-salz. Nadeln (aus Aceton). F: 122—123° (korr.) (Walter, B. 59, 969).

Chlorid, Dipropylacetylchlorid $C_8H_{15}OCl = (CH_3 \cdot CH_2 \cdot CH_2)_2CH \cdot COCl$. B. Aus Dipropyl-essigsäure und Thionylchlorid (Leroide, A. ch. [9] 16, 373). — Kp₂₀: 77—79°. — Liefert beim Behandeln mit Benzol und Aluminiumchlorid $\omega.\omega$ -Dipropyl-acetophenon.

Dipropylessigsäure-amid $C_8H_{17}ON=(CH_3\cdot CH_2\cdot CH_2)_2CH\cdot CO\cdot NH_2$ (H 350; E I 149). Löslich in Alkohol und Äther, schwer löslich in Wasser (Billon, A. ch. [10] 7, 367).

5. 2-Methyl-hexan-carbonsäure-(2), $\alpha.\alpha$ -Dimethyl-n-capronsäure, Dimethylbutylessigsäure $C_8H_{16}O_2 = CH_3 \cdot [CH_2]_3 \cdot C(CH_3)_2 \cdot CO_2H$ (E I 149). B. Beim Behandeln von 3.3-Dimethyl-heptanon-(2) mit Natriumhypobromit-Lösung, neben anderen Produkten (Locquin, Leers, C. r. 178, 2097; Leers, Bl. [4] 39, 652). — Kp₁₂: 117—119°.

Chlorid $C_0H_{15}OCl = CH_3 \cdot [CH_3]_3 \cdot C(CH_3)_2 \cdot COCl$. Kp_{10} : ca. 55° (Locquin, Leers, $C. \tau$. 178, 2097; Leers, Bl. [4] 39, 652).

Amid C₈H₁₇ON = CH₃·[CH₂]₃·C(CH₃)₂·CO·NH₂. B. Beim Kochen von ω.ω-Dimethyl-ω-butyl-acetophenon (Syst. Nr. 640) mit 2 Mol Natriumamid in Toluol (Blondeau, Bl. [4] 43, 344). Aus dem Chlorid und äther. Ammoniak-Lösung (Locquin, Leers, C. r. 178, 2097; Lee., Bl. [4] 39, 652). — Blättchen (aus Ligroin oder Toluol). F: 92° (Lo., Lee.; Lee.; Bl.). — Gibt bei der Reduktion mit Natrium und Alkohol 2.2-Dimethyl-hexanol-(1) und 1-Amino-2.2-dimethyl-hexan (Bl.).

6. 5-Methyl-hexan-carbonsäure-(3), a-Isobutyl-buttersäure, Athylisobutylessigsäure $C_8H_{16}O_2=(CH_3)_2CH\cdot CH_2\cdot CH(C_2H_5)\cdot CO_2H$ (H 351). B. Beim Erhitzen von Athylisobutylmalonsäure auf 180—200° (Tiffeneau, Bl. [4] 33, 187). — Kp₇₆₀: 213—216°. Kp₈₀: 115°.

Chlorid $C_8H_{18}OCl = (CH_2)_2CH \cdot CH_3 \cdot CH(C_2H_5) \cdot COCl (H 351)$. B. Aus Athylisobutylessigsäure und Thionylchlorid auf dem Wasserbad (TIFFENEAU, Bl. [4] 33, 187). — Kp_{760} : 168—171°.

DIPROPYLESSIGSÄURE

Amid $C_8H_{17}ON = (CH_3)_2CH \cdot CH_2 \cdot CH(C_2H_5) \cdot CO \cdot NH_2$. B. Aus dem Chlorid und wäßr. Ammoniak (Tiffeneau, Bl. [4] 33, 187). — Krystalle (aus Wasser). F: 89°.

7. 5-Methyl-hexan-carbonsäure-(2). $\alpha.\delta$ -Dimethyl-n-capronsäure, Methylisoamylessigsäure $C_8H_{16}O_2 = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CO_2H$ (H 351; E I 149). B. Beim Erhitzen von Methylisoamylmalonsäure (Sommaire, Bl. [4] 33, 193).

Chlorid $C_8H_{15}OCl = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot COCl (E I 149)$. B. Aus Methyliso-amylessigsäure und Thionylchlorid (Sommaire, Bl. [4] 33, 193). — Kp_{15} : 69—71°. D^0 : 0,9574.

Amid $C_8H_{17}ON = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot NH_2$ (E I 149). Blättchen (aus Wasser). F: 103° (SOMMAIRE, Bl. [4] 33, 194).

8. 3-Methyl-hexan-carbonsäure-(3), α -Methyl- α -äthyl-n-valeriansäure, Methyläthylpropylessigsäure $C_8H_{16}O_2=CH_3\cdot CH_2\cdot CH_2\cdot C(CH_3)\cdot CO_2H$.

Amid $C_8H_{17}ON = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(CH_3) \cdot (C_2H_5) \cdot CO \cdot NH_2$ (H 351; E I 149). B. Zur Bildung aus Methyläthylpropylacetophenon und Natriumamid nach Haller, Bauer (C. τ . 148, 130) vgl. Montagne, A. ch. [10] 13, 113. — Gibt bei aufeinanderfolgender Einw. von 1 Mol Brom und 2 Mol 10% iger Kalilauge und Eintragen des Reaktionsgemisches in siedende 30% ige Kalilauge viel 3-Methyl-hexyl-(3)-isocyanat (Syst. Nr. 337) und wenig N.N'-Bis-[3-methyl-hexyl-(3)]-harnstoff; bei Einw. von Kaliumhypobromit-Lösung erhält man nur 3-Methyl-hexyl-(3)-isocyanat (M.).

9. 3-Äthyl-pentan-carbonsäure-(3), Triäthylessigsäure $C_8H_{16}O_2=(C_2H_5)_3C\cdot CO_2H$.

Nitril, Triäthyl-acetonitril $C_8H_{15}N=(C_2H_5)_3C\cdot CN.$ B. Beim Behandeln der Natriumverbindung des Diäthyl-acetonitrils mit Äthylbromid in Äther (I. G. Farbind., D. R. P. 473 329; C. 1929 II, 218; Frdl. 16, 285). — Kp_{10} : 60—64°.

10. 2.4-Dimethyl-pentan-carbonsäure-(2), a.a. γ -Trimethyl-n-valerian-säure, Dimethylisobutylessigsäure $C_8H_{16}O_3=(CH_3)_2CH\cdot CH_2\cdot C(CH_3)_2\cdot CO_2H$. B. Beim Kochen von 2.4.4-Trimethyl-hexanon-(5) mit 52 %iger Salpetersäure (Locquin, Leers, C.r. 179, 56; Leers, Bl. [4] 39, 653). — Kp_{14} : ca. 114°.

Chlorid $C_8H_{15}OCl = (CH_3)_2CH \cdot CH_2 \cdot C(CH_3)_2 \cdot COCl.$ Kp_{14} : ca. 67° (Locquin, Leers, C.~r.~179,~56; Leers, Bl.~[4]~39,~653).

Amid $C_8H_{17}ON = (CH_3)_2CH \cdot CH_2 \cdot C(CH_3)_2 \cdot CO \cdot NH_2$. Blättchen '(aus Ligroin). F: 71° (Locquin, Leers, C. r. 179, 56; Leers, Bl. [4] 39, 653).

11. 2.3.3-Trimethyl-butan-carbonsäure-(2), Dimethyl-tert.-butyl-essigsäure, $\alpha,\alpha,\beta,\beta$ -Tetramethyl-buttersäure, Pentamethylpropionsäure $C_8H_{16}O_2=(CH_3)_3C\cdot C(CH_3)_2\cdot CO_2H$.

Präparat von Locquin, Sung (verschieden von der EI 150 unter der gleichen Formel beschriebenen Verbindung). Das Mol.-Gew. ist in Eisessig kryoskopisch bestimmt (Locquin, Sung, C. r. 178, 1181; Bl. [4] 35, 758). — B. Bei der Oxydation von 2.2.3.3-Tetramethylpentanon-(4) mit Salpetersäure (D: 1,33) (L., S.). — Nadeln (aus Alkohol + Petroläther). Sublimiert von 80° an, schmilzt auf einem Quecksilberbad gegen 200°. Leicht löslich in Äther, ziemlich leicht in Alkohol, fast unlöslich in Wasser.

Äthylester $C_{10}H_{30}O_2 = (CH_3)_3C \cdot C(CH_3)_2 \cdot CO_2 \cdot C_2H_5$. B. Aus dem Chlorid und absol. Alkohol (Locquin, Sung, C. r. 178, 1181; Bl. [4] 35, 759). — Flüssigkeit. Kp₇₄₆: 168—169°.

Chlorid $C_8H_{15}OCl = (CH_8)_8C \cdot C(CH_8)_2 \cdot COCl$. Sublimierbar. F: ca. 80°; Kp: 168—170° (Locquin, Sung, Bl. [4] 35, 759).

Amid $C_6H_{17}ON = (CH_3)_3C \cdot C(CH_3)_2 \cdot CO \cdot NH_2$. Nadeln (aus Petroläther und wenig Alkohol). F: ca. 200° (unter Sublimation) (Locquin, Sung, Bl. [4] 35, 759).

- 12. Carbonsäure C₈H₁₆O₂ aus Diamylen. B. Bei der Oxydation von Diamylen (E II 1, 204) mit Permanganat-Lösung, neben anderen Produkten (Schindelmeiser, Ch. Z. 45, 566; C. 1921 III, 401). Kp₂₀: 102—105°. Cu(C₈H₁₅O₂)₂ + 5H₂O. Krystalle. Verliert beim Aufbewahren im Exsiccator das Krystallwasser. Zersetzt sich bei 100°. AgC₈H₁₅O₂. Krystalle. Calciumsalz. Krystalle.
- 13. Carbonsäure $C_8H_{16}O_2$. B. Beim Schmelzen von 7-Methyl-octen-(5)-carbonsäure-(1) (S. 418) mit Kaliumhydroxyd, neben Essigsäure (Nelson, Am. Soc. 42, 598; vgl. N., Dawson, Am. Soc. 45, 2181). Riecht ähnlich wie Caprylsäure. Kp: ca. 240—245°. $AgC_8H_{15}O_2$. Schwer löslich in Wasser.
- 14. Carbonsäure $C_8H_{16}O_2$. B. Beim Kochen der Oxycarbonsäure $C_8H_{16}O_4$ aus Holzgeistöl (Syst. Nr. 230) mit Jodwasserstoffsäure (D: 1,7) und Phosphor (Pringsheim, Leibowitz, B. 56, 2038). Unangenehm riechendes Ol. Kp: 200—210° (Zers.). $AgC_8H_{16}O_2$.

[Syst. Nr. 162

9. Carbonsäuren $C_9H_{18}O_2$.

Octan-carbonsäure-(1), Pelargonsäure, "Nonylsäure" C,H180, = CH2.

[CH₂], CO₂H (H 352; E I 150).

B. Beim Einleiten von Stickstoffdioxyd in Undecan bei 140°, neben anderen Produkten (GRÄNACHER, Helv. 3, 736). Bei der Oxydation von Oleylacetat (S. 153) mit Kaliumpermanganat in Eisessig, neben ω-Acetoxy-pelargonsäure (ΤογΑΜΑ, Ch. Umschau Fette 31, 14; C. 1924 I, 1216). Bei der Oxydation von Methyloleat mit Permanganat in siedendem Aceton und Behandeln des Reaktionsprodukts mit siedender Natronlauge (Armstrong, Hilditch, J. Soc. chem. Ind. 44, 45 T; C. 1925 I, 1586). In geringer Menge bei der Kalischmelze von Dodecen (10)-carbonsaure (1) bei 360°, neben anderen Produkten (Chuit, Mitarb., Helv. 10, 123). Bei der Ozonspaltung von Nervonsäure (= Selacholeinsäure) (S. 449) (Klenk, H. 166, 286; ΤSUJIMOTO, J. Soc. chem. Ind. Japan Spl. 30, 229 B; C. 1928 I, 1385), von α-Oxynervonsäure C₂₄H₄₆O₃ (Syst. Nr. 224) (KL., H. 174, 226) und von Erucasäure oder Brassidinsäure (Holde, Zadek, B. 56, 2056) in Chloroform. Neben Brassylsäure beim Leiten von Ozon in die kalte essigsaure Lösung von Erucasaure und nachfolgenden Behandeln des Reaktionsprodukts mit Chromtrioxyd in ameisensaurer Lösung auf dem Wasserbad (MIRCHAN-DANI, SIMONSEN, Soc. 1927, 376). Bei der Oxydation der bei 161° schmelzenden α-Oxycaprinsaure mit alkal. Kaliumpermanganat-Lösung (FRÄNKEL, Bio. Z. 157, 422). Bei der elektrolytischen Reduktion von γ -Oxo-pelargonsäure in 50% iger Schwefelsäure (Lukes, Collect. Trav. chim. Tchécosl. 1, 135; C. 1929 II, 745). Beim Schmelzen von ϑ . Dioxostearinsaure mit Kaliumhydroxyd bei 160° (NICOLET, JURIST, Am. Soc. 44, 1140). Aus Campnospermonyl-methyläther (Syst. Nr. 750) bei der Oxydation mit Permanganat in Aceton bei 0° oder bei der Ozonspaltung in Chloroform (Jones, Smith, Soc. 1928, 68). Isolierung aus Gemischen höherer Fettsäuren als Lithium- und Strontiumsalz: Gränacher, Helv. 3, 737. — Darst. Beim Erwärmen von n-Heptylbromid mit Malonsäurediäthylester und Natriumbutylat-Lösung, Verseifen des entstandenen Heptylmalonsäurediäthylesters mit Kalilauge und Erhitzen auf ca. 180° (Reid, Ruhoff, Org. Synth. 16 [1936], S. 60). Durch Oxydation von θ.ι-Dioxy-stearinsäure mit Chromschwefelsäure und Destillation mit Wasserdampf (Asahina, Ishida, J. pharm. Soc. Japan 1922, Nr. 481, S. 1; C. 1922 III, 126).

Physikalische Eigenschaften.

Kommt in zwei enantiotropen Formen (α - und β -Form) vor (Garner, Randall, Soc. 125, 882, 887). Röntgenogramm von fester Pelargonsäure: Gibbs, Soc. 125, 2623; Trillat, 125, 882, 887). Röntgenogramm von fester Pelargonsäure: Gibbs, Soc. 125, 2623; Trillat, Ann. Physique [10] 6, 64. E: 12,35° (Gar., Ran., Soc. 125, 887, 895; Gar., Madden, Rushbrooke, Soc. 1926, 2499). Kp: 253—255° (Langlais, Goby, C. r. 179, 174; Bl. [4] 35, 1308); Kp₈₈₅: 249—252° (Mirchandani, Simonsen, Soc. 1927, 377), 245—246° (korr.) (Bhide, Suddorugh, J. indian Inst. Sci. [A] 8, 104; C. 1926 I, 80); Kp₈₀: 150° (Ozaki, Bio. Z. 177, 157); Kp₁₆: 142—143° (Vogel, Soc. 1929, 732); Kp₄: 124—125° (Lan., Go.). Dichte zwischen 5,0° (0,9952) und 50,17° (0,8813): Gar., Ryder, Soc. 127, 728; D^{17,5}: 0,907 (Vorländer, Walter, Ph. Ch. 118, 10); D¹⁶₄: 0,9096 (Vogel). Viscosität bei 20°: Vor., Wal. Einfluß dünner Filme von Pelargonsäure auf die gleitende Reibung auf Stahl und Quarz: Hardy, Doubleday, Pr. roy. Soc. [A] 101, 489; C. 1923 I, 876. Mittlere spezifische Wärme der flüssigen Substanz zwischen 18° und 44°: 0,5044 cal/g; der festen Substanz zwischen +1° und —9°: 0,4220 cal/g (Gar., Ran., Soc. 125, 895). Schmelzwärme der α-Form: 39,03 cal/g (Gar., Ran., Soc. 125, 895), der β-Form: 39,29 cal/g (Gar., Mad., Ruhh., Soc. 126, 126, 2499: (Gar., Ran., Soc. 125, 895), der β -Form: 39,29 cal/g (Gar., Mad., Rush., Soc. 1926, 2499; vgl. Landolt-Börnstein E I, 802). Umwandlungswärme der beiden Formen: 8,39 cal/g (GAR., RAN., Soc. 125, 895). $n_D^{10.0}$: 1,4343 (Vogel); n_{α}^{∞} : 1,4109; n_D^{∞} : 1,4130; n_{β}^{∞} : 1,4182; n_{γ}^{∞} : 1,4224 (WATERMAN, BERTRAM, R. 46, 701). Durch mechanische Rotation erzwungene Doppelbrechung: Vor., Wal., Ph. Ch. 118, 10; Phys. Z. 25, 571; C. 1925 I, 617. Elliptische Polarisation von linear polarisiertem Licht bei der Streuung an Oberflächen von Pelargonsäure und ihrer wäßr. Lösung: Bouhet, C. r. 185, 201. Beugung von Röntgenstrahlen in flüssiger Pelargonsäure: Morrow, Phys. Rev. [2] 31, 10; C. 1928 I, 2693; Stewart, Pr. nation. Acad. USA. 13, 787. C. 1928 I, 639; St., Mannheimer, Z. anorg. Ch. 171, 68; Katz, Kautschuk 1927, 217; C. 1927 II, 1206; 1928 I, 154; Prins, Z. Phys. 56, 643; C. 1929 II, 1890; Thibaud, Trillat, C.r. 189, 751, 908. — Zur Löslichkeitserniedrigung in Lösungen des Natriumsalzes vgl. MÜLLER von Blumencron, Z. dtsch. Öl-Fettind. 42, 142; C. 1923 I, 36. Oberflächenspannung wäßr. Lösungen bei 19°: Roy, Quart. J. indian chem. Soc. 4, 312; C. 1928 I, 659; einer Lösung von Pelargonsäure in einem schweren Kohlenwasserstofföl (Liquid Petrolatum Squibb) bei 22°: Gilbert, J. phys. Chem. 31, 543. Über das Auftreten von oberflächenaktiver und -inaktiver Pelargonsäure in wäßr. Lösung oder Suspension sowie über die Veränderungen der Oberflächenspannung wäßr. Lösungen des Natriumsalzes bei der Titration mit verschiedenen Sauren vgl. WINDISCH, DIETRICH, Koll.-Z. 26, 195, 200; C. 1920 III, 231. Einfluß von Wasser, Natriumchlorid, Natriumacetat, Natriumnonylat, Ameisensäure und Essigsäure auf die Oberflächensktivität: WINDISCH, OSSWALD, Ph. Ch. 99, 175. Kontaktwinkel der α - und

β-Form der Pelargonsäure mit Wasser und Luft: NIETZ, J. phys. Chem. 32, 262. Adsorption der Dämpfe an Tierkohle: ALEXEJEWSKI, Ж. 55, 416; C. 1925 II, 642. Adsorption aus verschiedenen Lösungsmitteln an verschiedene Kohlen: NERRASSOW, Ph. Ch. 136, 23; aus wäßr. Lösung an Zuckerkohle bei 16°: NE., Ph. Ch. 136, 381; aus Alkohol an Tierkohle bei Zimmertemperatur: Griffin, Richardson, Robertson, Soc. 1928, 2708. Adsorption von Pelargonsäure an der Oberfläche wäßr. Pelargonsäure-Lösungen: McBain, Du Bois, Am. Soc. 51, 3545; Harkins, Colloid Symp. Mon. 5, 40; C. 1928 II, 229. Schaumbildung wäßr. Lösungen bei 18°: Bartsch, Koll. Beih. 20, 3; C. 1925 I, 2362. Tyndall-Effekt in wäßr. Lösung: Traube, Klein, Koll.-Z. 29, 236; C. 1922 I, 233. Absorption der alkoh. Lösung im Ultraviolett: Purvis, Pr. Cambridge phil. Soc. 23, 588; C. 1927 II, 379. Kataphorese: Tr., Kl.

Chemisches und physiologisches Verhalten; Salze und additionelle Verbindungen.

Beim Erhitzen von Pelargonsäure in Gegenwart von Kupfer-Aluminiumoxyd-Katalysator auf 600—620° erhält man Di-n-octyl-keton, Benzol, Toluol, ein Gemisch von gesättigten und ungesättigten Kohlenwasserstoffen, Kohlenoxyd, Kohlendioxyd und Wasserstoff (Mailhe, A. ch. [9] 17, 325; Bl. [4] 31, 685; Caoutch. Guttap. 19, 11474; C. 1923 III, 38). Oxydation mit einem Gemisch von 7,4% Kaliumdichromat und 75% Schwefelsäure: Lieben. Molnar, M. 53/54, 7. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 106. Pelargonsäure wird durch eine Reinkultur von Penicillium glaucum in Methyl-n-hexyl-keton übergeführt (Stärkle, Bio. Z. 151, 403; Acklin, Bio. Z. 204, 254). Insecticide Wirkung der freien Säure und ihres Ammoniumsalzes: Tattersheild. Gimingham. J. Soc. chem. Ind. 46, 371 T: C. 1927 II. 1884.

niumsalzes: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884. LiC₂H₁₇O₂. Blättchen (aus Wasser) (Gränacher, Helv. 3, 737). Röntgenogramm (Debye-Scherrer-Aufnahme): Becker, Jancke, Ph. Ch. 99, 269. — NaC₉H₁₇O₂. Dichte wäßr. Lösungen bei 90°: Flecker, Taylor, Soc. 121, 1104. Viscosität verschiedener wäßriger Lösungen: Müller von Blumencron, Z. disch. Öl-Fettind. 42, 101. Oberflächenspannung wäßr. Lösungen: M. v. Bl., Z. disch. Öl-Fettind. 42, 155; K. H. Meyer, Bio. Z. 214, 270; Harkins, Clark, Am. Soc. 47, 1855. Einfluß von Natriumhydroxyd auf die Oberflächenspannung: H., Cl. Schaumbildung wäßr. Lösungen: M. v. Bl., Z. disch. Öl-Fettind. 42, 155; C. 1923 I, 36. Über die Ultrafiltration und Gelbildung in Wasser und Alkohol vgl. M. v. Bl., Z. disch. Öl-Fettind. 42, 140. Schutzwirkung bei Goldhydrosolen: Iredale, Soc. 119, 626; M. v. Bl., Z. disch. Öl-Fettind. 42, 140. Schutzwirkung bei Goldhydrosolen: Iredale, Soc. 119, 626; M. v. Bl., Z. disch. Öl-Fettind. 42, 140. 42, 140. — Kaliumsalz. Viscosität wäßr. Lösungen bei 20°: Vorländer, Walter, Ph. Ch. 118, 15. Durch mechanische Rotation erzwungene Doppelbrechung wäßr. Lösungen: V., W. — Sr(C₉H₁₇O₉)₂. Blättchen (aus Wasser) (Gränacher, Helv. 3, 737). — Thalliumsalz. Krystalle (aus Alkohol oder Aceton). Bildet zwei feste krystalline Modifikationen (Walter, B. 59, 968). Die Schmelze ist zwischen 130° und 215° (korr.) krystallin-flüssig. Sehr leicht löslich in Methanol, Alkohol, Wasser, Chloroform und Essigester, schwer in Aceton und Toluol. Kryoskopisches Verhalten von Gemischen mit undecylsaurem und capronsaurem Thallium: W. — Pb(C₉H₁₇O₉)₂. Schuppen (Fränkel, Bio. Z. 157, 423). Röntgenogramm: Trillat, Ann. Physique [10] 6, 76.

Methylester $C_{10}H_{20}O_2=CH_3\cdot[CH_2]_7\cdot CO_2\cdot CH_3$ (H 353). B. Bei der Hydrierung von Octadien-(1.5)-carbonsäure-(1)-methylester (Syst. Nr. 164) in Gegenwart von Palladium(II)-chlorid in methylalkoholischer Lösung (Walbaum, Rosenthal, J. pr. [2] 124, 60; Ber. Schimmel Jubiläums-Ausgabe 1929, 214). — Kp₅: 80°; D¹⁵: 0,8799; n^m₂₀: 1,4214 (W., R.). — Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884.

Äthylester $C_{11}H_{22}O_2=CH_3\cdot[CH_2]_7\cdot CO_2\cdot C_2H_5$ (H 353; E I 150). B. In 83% iger Ausbeute bei der Destillation von Pelargonsäure mit Alkohol in Toluol in Gegenwart geringer Mengen Salzsäure (Sugasawa, J. pharm. Soc. Japan 1927, 150; C. 1928 I, 1643). — E: —44,45° (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Kp₇₈₀: 222° (Jones, Smith. Soc. 1928, 68); Kp₈₈: 126,4° (Tt.); Kp₁₀: 96—98° (J., Sm.). D^{15.5}: 0,8700 (J., Sm.). Oberflächenspannung bei 20°: 28,04 dyn/cm (Harkins, Clark, Roberts, Am. Soc. 42, 703). n⁵⁰: 1,420 (J., Sm.). — Ausbreitung auf Wasser bei 20°: H., Feldman, Am. Soc. 44, 2671. Grenzflächenspannung zwischen Pelargonsäureäthylester und Wasser bei 20°: H., Cl., R. — Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986.

n-Heptylester $C_{16}H_{32}O_2=CH_3\cdot[CH_2]_7\cdot CO_2\cdot[CH_2]_6\cdot CH_3$. B. Aus Pelargonsäure und n-Heptylalkohol durch Einw. von Chlorwasserstoff (Rheinboldt, König, Otten, A. 473, 258). — $Kp_{76}\colon 210^\circ$.

n-Octylester $C_{17}H_{34}O_2 = CH_3 \cdot [CH_2]_7 \cdot CO_2 \cdot [CH_2]_7 \cdot CH_3$. B. Beim Sättigen eines Gemisches von Pelargonsäure und n-Octylalkohol mit Chlorwasserstoff (Rheinboldt, König, Otten, A. 478, 258). — $Kp_{21} \cdot 183^\circ$.

Geranylester $C_{19}H_{34}O_2 = CH_3 \cdot [CH_2]_7 \cdot CO_2 \cdot CH_2 \cdot CH : C(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH : C(CH_3)_2 \cdot CH_3 \cdot CH_$

Glycerintripelargonat, Tripelargonin, Pelargonin, Nonylin $C_{30}H_{50}O_6 = CH_3 \cdot [CH_2]_7 \cdot CO \cdot O \cdot CH(CH_2 \cdot O \cdot CO \cdot [CH_2]_7 \cdot CH_3]_2$. B. Beim Erhitzen von Glycerin mit Pelargonsäure in Gegenwart von aus Naphthalin. Ölsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens auf 100° (Ozaki, Bio. Z. 177, 159; Pr. Acad. Tokyo 2, 12; C. 1926 II, 2192). — Nährwert für Ratten: O.

Pelargonsäurechlorid, Pelargonoylchlorid $C_9H_{17}OCl = CH_3 \cdot [CH_2]_7 \cdot COCl$ (H 353). Bei der Einw. von Natriumacetessigester und Behandlung des Reaktionsprodukts mit Ammoniak entsteht 2-Oxo-decan-carbonsäure-(1)-äthylester (ASAHINA, NAKAYAMA, C. 1926 I, 2670).

Pelargonsäureamid C₉H₁₉ON = CH₃·[CH₂]₇·CO·NH₂ (H 353; E I 151). B. Beim Erhitzen von Pelargonsäuremethylester mit konz. Ammoniak im Rohr auf 165—175° (Walbaum, Rosenthal, J. pr. [2] 124, 61). — F: 99,5° (Jones, Smith, Soc. 1928, 68), 99° (Asano, C. 1922 I, 1227). 98° (W., R.). Röntgenogramm: Henderson, Pr. roy. Soc. Edinburgh 48, 25; C. 1928 I, 2903.

Pelargonitril, n-Octylcyanid C₀H₁₇N = CH₃·[CH₂]₇·CN (H 354; E I 151). B. Neben anderen Produkten beim Überleiten von Pelargonsäureäthylester und Ammoniak über Aluminiumoxyd bei 490—500° (Mailhe, A. ch. [9] 13, 218; Bl. [4] 23, 235). — Kp: 214—216°.

 $\label{eq:charge_point} Pelargonhydroxims \"{a}urechlorid \quad C_0H_{18}ONCl = CH_3 \cdot [CH_2]_7 \cdot CCl : N \cdot OH \quad s. \ 1-Chloritoso-nonan \ CH_3 \cdot [CH_2]_7 \cdot C'HCl \cdot NO \ (E\ II\ 1,\ 128).$

ω-Brom-pelargonsäure $C_9H_{17}O_2Br = CH_2Br \cdot [CH_2]_7 \cdot CO_2H$. B. Bei der Oxydation von 9-Brom-nonanol-(1) in Benzol mit Chromschwefelsäure, neben ω-Brom-pelargonsäure-[ω-brom-n-nonylester] (Chutt, Hausser, Helv. 12, 469). Aus ω-Oxy-pelargonsäure und Bromwasserstoff (Ch., Mitarb., Helv. 10, 167). — Lamellen (aus Petroläther). F: 36–36,5°; Kp_2 : 160—161° (Ch., H.). Löslich in Äther, Benzol, Alkohol und Aceton, schwer löslich in kaltern Petroläther (Ch., H.). — Liefert beim Kochen mit Kaliumacetat und Essigsäure und anchfolgenden Erhitzen mit Kaliumacetat ohne Lösungsmittel auf ca. 200° ω-Acetoxy-pelargonsäure und ω-Acetoxy-pelargonsäure-[8-carboxy-n-octylester] (Ch., H.).

ω-Brom-pelargonsäure-[ω-brom-n-nonylester] $C_{18}H_{34}O_2Br_2 = CH_2Br \cdot [CH_2]_7 \cdot CO_2 \cdot [CH_2]_8 \cdot CH_2Br$. B. Neben ω-Brom-pelargonsäure bei der Oxydation von 9-Brom-nonanol-(1) in Benzol mit Chromschwefelsäure (Chuit, Hausser, Helv. 12, 469). Durch Veresterung von ω-Brom-pelargonsäure mit 9-Brom-nonanol-(1) (Ch., H.). — F: ca. +5°. Kp₂: 228--232°. D¹⁵: 4,237.

2. Octan-carbonsäure-(4), α -Propyl-n-capronsäure, Propylbutylessigsäure $C_9H_{18}O_2=CH_3\cdot[CH_2]_3\cdot CH(CH_2\cdot C_2H_5)\cdot CO_2H$. B. Beim Erhitzen von Propylbutylmalonsäure auf 180° (SOMMAIRE, Bl. [4] 33, 190). — \mathbf{D}^0 : 0.914.

Chlorid, Propylbutylacetylchlorid $C_9H_{17}OCl = CH_3 \cdot [CH_2]_3 \cdot CH(CH_2 \cdot C_2H_5) \cdot COCl.$ B. Aus Propylbutylessigsäure und Thionylchlorid auf dem Wasserbad (Sommaire, Bl. [4] 33, 191). — Kp_{767} : 192—195°. D°: 0,947.

Propylbutylessigsäure-amid $C_9H_{19}ON = CH_3 \cdot [CH_2]_3 \cdot CH(CH_2 \cdot C_2H_5) \cdot CO \cdot NH_2$. F: 122—123° (Sommaire, Bl. [4] 33, 191). 100 g Wasser von 15° lösen 0,085 g.

- 3. 2-Propyl-pentan-carbonsäure-(1), β -Propyl-n-capronsäure, β . β -Dipropyl-propionsäure $C_0H_{18}O_2=(CH_3\cdot CH_2\cdot CH_2)_2CH\cdot CH_2\cdot CO_2H$. B. Bei der Destillation von 2-Propyl-pentan-dicarbonsäure-(1.1) (Kon, May, Soc. 1927, 1554). Nicht unangenehm riechende Flüssigkeit. Kp₃₀: 144°.
- 4. 2-Methyl-heptan-carbonsäure-(2), a.a-Dimethyl-önanthsäure, Dimethyl-n-amyt-essigsäure $C_9H_{16}O_2=CH_3\cdot[CH_2]_4\cdot C(CH_3)_2\cdot CO_2H$. B. Bei der Oxydation von 3.3-Dimethyl-octanon-(2) mit Salpetersäure (D: 1,36) (Locquin, Leers, C. r. 178, 2097; Leers, Bl. [4] 39, 655). Kp₁₂: 130°. Bildet ein Chlorid vom Kp₁₀: ca. 74—76°.

Amid $C_9H_{19}ON = CH_3 \cdot [CH_2]_4 \cdot C(CH_3)_2 \cdot CO \cdot NH_2$. Blättchen (aus Benzin). F: 101° bis 102° (Locquin, Leers, C. r. 178, 2097; Leers, Bl. [4] 39, 655).

5. 2-Methyl-heptan-carbonsäure-(3), α -Isopropyl-n-capronsäure, Isopropylbutylessigsäure $C_9H_{18}O_2=CH_3\cdot [CH_2]_3\cdot CH[CH(CH_3)_2]\cdot CO_2H$. B. Bei der Destillation von Isopropylbutylmalonsäure (Jones, Pyman, Soc. 127, 2597). — Ol. Kp: 220° bis 225°.

Chlorid, α -Isopropyl-n-caproylehlorid $C_9H_{17}OCl = CH_3 \cdot [CH_2]_3 \cdot CH[CH(CH_3)_2] \cdot COCl.$ B. Aus α -Isopropyl-n-capronsäure und Phosphorpentachlorid in Chloroform (Jones, Pyman, Soc. 127, 2597). — Kp: 155—158°.

Amid $C_9H_{19}ON = CH_3 \cdot [CH_2]_3 \cdot CH[CH(CH_3)_2] \cdot CO \cdot NH_2$. B. Bei der Einw. von Ammoniak auf das Chlorid (Jones, Pyman, Soc. 127, 2597). — Platten (aus Chloroform). F: 93° (korr.).

6. 2-Methyl-heptan-carbonsäure-(4). α -Isobutyl-n-valeriansäure. Propylisobutylessigsäure $C_9H_{18}O_2=(CH_3)_2CH\cdot CH_2\cdot CH(CH_2\cdot C_2H_5)\cdot CO_2H$.

Propylisobutylessigsäureamid $C_9H_{19}ON = (CH_3)_2CH \cdot CH_2 \cdot CH(CH_2 \cdot C_2H_5) \cdot CO \cdot NH_2$. B. Aus dem nicht näher beschriebenen Chlorid und konz. Ammoniak (Sommaire, Bl. [4] 33, 192). — Nadeln. F: 121°. 100 g Wasser lösen bei 15—20° 0,055 g.

7. 6-Methyl-heptan-carbonsäure-(3), δ -Methyl- α -äthyl-n-capronsäure, α -Isoamyl-buttersäure, Äthylisoamylessigsäure $C_9H_{18}O_2=(CH_3)_2CH\cdot CH_2\cdot CH_2\cdot CH(C_2H_5)\cdot CO_2H$. B. Beim Erhitzen von Äthylisoamylmalonsäure auf 180—200° (Tiffeneau, Bl. [4] 33, 187). — Kp: 228—232°.

Chlorid, Äthylisoamylacetylchlorid $C_9H_{17}OCl = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH(C_2H_5) \cdot COCl.$ B. Durch Einw. von Thionylchlorid auf Äthylisoamylessigsäure (TIFFENEAU, Bl. [4] 33, 188). — Kp: 188—192°.

Amid $C_9H_{19}ON = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH(C_2H_5) \cdot CO \cdot NH_2$. Krystalle (erst aus Schwefelkohlenstoff, dann aus Wasser). F: $106-108^{\circ}$ (Tiffeneau, Bl. [4] 33, 188). 100 g Wasser von 15° lösen 0,07 g.

- 8. 6-Methyl-heptan-carbonsäure-(2), $\alpha.\varepsilon$ -Dimethyl-önanthsäure, Methylisohexylessigsäure $C_9H_{18}O_2 = (CH_3)_2CH \cdot [CH_2]_3 \cdot CH(CH_3) \cdot CO_2H$. Linksdrehende Form. B. Durch Aufbewahren von linksdrehendem 2.6-Dimethyl-heptanal-(1) an der Luft (v. Braun, Teuffert, B. 62, 237). Kp_{13} : 127—130°. D_4^{∞} : 0,8975; n_5^{19} : 1,4287; $[\alpha_5^{\infty}]$: —14,1°.
- 9. 4-Methyl-heptan-carbonsäure-(4), α -Methyl- α -propyl-n-valerian-säure, α .a Dipropyl-propionsäure, Methyldipropylessigsäure $C_9H_{18}O_2 = (CH_3 \cdot CH_2 \cdot CH_2)_2C(CH_3) \cdot CO_2H$ (E I 151). B. Aus dem Amid durch Einw. von konz. Schwefelsäure und Natriumnitrit oder besser durch Erhitzen mit alkoh. Kalilauge im Rohr auf 190° (Leroide, A. ch. [9] 16, 378). Aus Methyldipropylacetonitril durch Kochen mit verd. Salzsäure oder durch Behandeln mit konz. Schwefelsäure (L.). F: 43—44°. Kp₁₈: 124—128°.

Äthylester $C_{11}H_{22}O_2 = (CH_3 \cdot CH_2 \cdot CH_2)_2C(CH_3) \cdot CO_2 \cdot C_2H_3$. B. Aus Methyldipropylacetylchlorid und absol. Alkohol unter Kühlung (Leroide, A. ch. [9] 16, 379). — Flüssigkeit. Riecht ähnlich wie Pelargonsäureäthylester. Kp₁₈: 90—92°.

Amid $C_9H_{19}ON = (CH_3 \cdot CH_2 \cdot CH_2)_2C(CH_3) \cdot CO \cdot NH_2$. B. Durch wiederholte Einw. von Natriumamid und Methyljodid auf $\omega.\omega$ -Dipropyl-acetophenon, neben anderen Produkten (Leroide, A. ch. [9] 16, 375). In geringer Menge aus ω -Methyl- $\omega.\omega$ -dipropyl-acetophenon beim Behandeln mit Natriumamid in Benzol oder Toluol, neben Methyl-dipropylacetonitril (L., A. ch. [9] 16, 377). — Krystalle (aus Benzol). F: 108°.

Nitril, Methyldipropylacetonitril $C_9H_{17}N = (CH_3 \cdot CH_2 \cdot CH_2)_2C(CH_3) \cdot CN$. B. Aus ω -Methyl- ω . ω -dipropyl-acetophenon und Natriumamid in Benzol oder Toluol, neben wenig Methyldipropylacetamid (Leroide, A. ch. [9] 16, 377).

10. Carbonsäure C₉H₁₈O₂ aus Walöl. V. Als Ester im Öl des Wals Mesoplodon bidens (André, Canal, C. r. 183, 1064). — Riecht unangenehm. F: 4°.

10. Carbonsäuren $C_{10}H_{20}O_2$.

1. Decansäure, Nonan - carbonsäure - (1), Caprinsäure, "Decylsäure" $C_{10}H_{20}O_2 = CH_3 \cdot [CH_2]_s \cdot CO_2H$ (H 355; E I 152). V. Caprinsäure findet sich im Pflanzenreich in einer Reihe von Familien teils in freiem Zustand oder als Ester in den äther. Ölen der Blätter, teils als Glycerid in den Samenfetten (Wehmer, Thies, Hadders in G. Klein, Handbuch der Pflanzenanslyse, 2. Bd., 1. Tl. [Wien 1932], S. 509; C. Wehmer, Die Pflanzenstoffe, 2. Aufl. [Jena 1929 und 1931], 1. und 2. Bd.; A. Grün, W. Halden, Analyse der Fette und Wachse [Berlin 1929], 2. Bd.; G. Hefter, H. Schönfeld, Chemie und Gewinnung der Fette [Wien 1936], 1. Bd.). — Findet sich im äther. Öl der Blütenköpfe von Cymbopogon coloratus Stapf (Pilley, Rao, Simonsen, J. Soc. chem. Ind. 47, 52 T; C. 1928 II, 192). Im Irisöl (Langlais, Goby, C. r. 179, 174; Bl. [4] 35, 1308). Im äther. Öl von Boronia citriodora (Penfold, J. pr. Soc. N. S. Wales 59, 35; C. 1927 II, 752). Im Kamillenöl (Kachler, B. 4 [1871], 36; Ruhemann, Lewy, B. 60, 2466). — Zu 6,5% im Fett der Nüsse von Attalea

[Syst. Nr. 162

Cohune Morris (aus Britisch Honduras) (HILDITCH, VIDYARTHI, J. Soc. chem. Ind. 47, 35 T; C. 1928 II, 503). Im Fett der Früchte von Astrocaryum Murumuru (André, Guichard, C. r. 181, 230). Zum Caprinsäuregehalt von Cocosnußöl vgl. Walker, Soc. 123, 2838; Taylor, Clarke, Am. Soc. 49, 2831; Stokor, Biochem. J. 22, 87; Analyst 49, 577; C. 1925 I, 1466. Findet sich zu 3% in dem aus Palmkernöl der afrikanischen Ölpalme (Elaeis guineensis Jacq.) abgeschiedenen Fettsäuregemisch (Armstrong, Allan, Moore, J. Soc. chem. Ind. 44, 143 T; C. 1925 II, 435). In geringer Menge im Ucuhubafett, dem Fett der Samen von Virola Bicuhyba Wardg. (Verkade, Coors, R. 46, 530). Über den Caprinsäure-Gehalt von Butterfett vgl. Frog. Schmidt-Nielsen, Bio. Z. 127, 168. Als Ester in dem bei der Darstellung von Gärungsbutylsikohol anfallenden "Gelböl" (Marvel, Broderick, Am. Soc. 47, 3048). Zum Vorkommen in Fuselölen vgl. Luce, J. Pharm. Chim. [7] 22, 136; C. 1920 IV, 589; Marvel, Hager, Am. Soc. 46, 729. Zum Vorkommen im Weinbeeröl (Kognaköl) vgl. Grossfeld, Miermeister, Z. Unters. Lebensm. 56, 186; C. 1929 I, 1159.

B. Bei der Kalischmelze von Undecen-(10)-carbonsäure-(1) oder (in geringer Menge) von Dodecen-(11)-carbonsäure-(1) bei 350—370°, neben anderen Produkten (Chuit, Mitarb., Helv. 10, 117, 123). Bei der elektrolytischen Reduktion von γ-Oxo-caprinsäure in 50 %iger Schwefelsäure (Lukeß, Collect. Trav. chim. Tchécosl. 1, 136; C. 1929 II, 745). Neben wenig Methylglyoxal bei der Ozonspaltung von Caprinoyl-aceton bei —15° (Weygand, Baumgärett, B. 62, 578). Neben anderen Produkten beim Einleiten von Sauerstoff in Paraffin vom Schmelzpunkt 50—51° bei 150° in Gegenwart von Manganverbindungen (Kelber,

B. 53, 71, 1573.

Rhythmische Krystallisation in dünnen Schichten: Garner, Randall, Soc. 125, 369. Röntgenogramm von fester Caprinsäure: Müller, Soc. 123, 2044; Gibbs, Soc. 125, 2623; Z. Kr. Strukturber. 1, 692; Jones, J. Soc. chem. Ind. 42, 1099; C. 1924 I, 1355; Trillat, C. r. 180, 1330; Ann. Physique [10] 6, 61; vgl. de Boer, Nature 119, 635; C. 1927 II, 371. E: 31,20° (Ga., Ra., Soc. 125, 887, 895). F: 31° (Holde, Gentner, B. 58, 1422). Kp: 268° bis 270° (Langlais, Goby, C. r. 179, 174; Bl. [4] 35, 1308); Kp₃: 148—150° (kort.) (Bhide, Suddright, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 80); Kp₄: 138—139° (La., Go.). Dichte zwischen 15° (1,0266) und 50,17° (0,8773): Ga., Ryder, Soc. 127, 728; D; zwischen 31,9° (0,8931) und 140,1° (0,8096): Hunten, Maass, Am. Soc. 51, 160. Einfluß dünner Filme von Caprinsäure auf die gleitende Reibung von Stahl, Wismut, Glas und Quarz: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 560; 101, 491; C. 1922 IV, 514; 1923 I, 876. Oberflächenspannung zwischen 31,9° (27,7 dyn/cm) und 151,2° (19,2 dyn/cm): Hu., Maass. Parachor: Hu., Maass; Mumford, Phillips, Soc. 1929, 2128. Spezifische Wärme der flüssigen Substanz zwischen 35° und 65°: 0,4989 cal/g; der festen Substanz zwischen 0° und 24°: 0,5009 cal/g (Garner, Randall, Soc. 125, 895). Schmelzwärme: 38,86 cal/g (Ga., Ra.). n^{50,5}: 1,4201 (Holde, Gentner, B. 58, 1422); n⁷⁰.: 1,4149; n⁷⁰.: 1,4170; n⁷⁰.: 1,4222; n⁷⁰.: 1,4263 (Waterman, Bertram, R. 46, 701). Beugung von Röntgenstrahlen an flüssiger Caprinsäure: Stewart, Pr. nation. Acad. USA. 13, 787; Č. 1928 I, 639; St., Mannheimer, Z. anorg. Ch. 171, 68; Morrow, Phys. Rev. [2] 31, 10; C. 1928 I, 639; St., Mannheimer, Z. anorg. Ch. 171, 68; Morrow, Phys. Rev. [2] 31, 10; C. 1928 II, 2693. Elektrische Leitfähigkeit von Caprinsäure zwischen 100° und 170°: Lederer, Z. ang. Ch. 42, 1034; zwischen 100° und 200°: Le., Hartleb, Seitens. Zta. 56, 345; C. 1929 II. 3080.

200°: Le., Hartleb, Seifens. Zig. 56, 345; C. 1929 II, 3080.

100 cm³ Wasser lösen bei 15° 0,0026 g Caprinsäure (Virtanen, Fr. 74, 326). Zur Löslichkeitserniedrigung in Lösungen des Natriumsalzes vgl. Müller von Blumencbon, Z. dtech. Öl-Fettind. 42, 142; C. 1923 I, 36. Flüchtigkeit mit Wasserdampf: Arnold, Z. Unters. Nahr. Genuβm. 42, 356; C. 1922 II, 918. Oberflächenspannung wäßr. Lösungen bei 5,5° und 25°: Frumkin, Ph. Ch. 116, 476, 482. Grenzflächenspannung benzolischer Lösungen gegen Wasser, verd. Natronlauge und Natriumchlorid enthaltende verdünnte Natronlauge verschiedener Konzentration: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 999; Rev. gén. Colloides 5, 485; C. 1927 II, 396. Über die Existenz von oberflächensktiver und oberflächeninaktiver Caprinsäure in wäßr. Lösung sowie über das Verhalten der Oberflächenspannung wäßr. Lösungen des Natriumsalzes bei der Titration mit Säuren vgl. Windisch, Dietreich, Koll.-Z. 26, 196; C. 1920 III, 231. Kontaktwinkel mit Wasser und Luft: Nietz, J. phys. Chem. 32, 262. Ausbreitung monomolekularer Schichten auf Quecksilber: Sheppard, Keenan, Nature 121, 982; C. 1928 II, 1524; auf Wasser, 0,001 n. Salzsäure und 0,1 n. Salzsäure: Gorter, Grendel, Bio. Z. 192, 446; auf 0,01 n. Salzsäure: Schoffeld, Rideal, Pr. roy. Soc. [A] 110, 169; C. 1926 I, 1950. Ausbreitungsgeschwindigkeit auf Wasser bei 30°: Brinkman, v. Szent-Györgyi, Bio. Z. 139, 276. Streuung von linear polarisiertem Licht an der Oberfläche wäßr. Caprinsäure-Lösungen: Bouhet, C. r. 189, 43. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer Schicht von Caprinsäure auf 0,01 n. Kaliumchlorid.

Lösung: Frumkin, Ph. Ch. 116, 492.

Bei der Oxydation des Ammoniumsalzes mit Wasserstoffperoxyd in Gegenwart von wenig Ammoniak entstehen Methyl-n-heptyl-keton (Stärkle, Bio. Z. 151, 379; Stokor, Biochem. J. 22, 91) und in sehr geringer Menge wahrscheinlich Methyl-n-heptyl-carbinol (Sto.). Geschwindigkeit der Oxydation durch 30%iges Wasserstoffperoxyd und kons.

Schwefelsäure: Kerp, Arb. Gesundh. Amt 57, 558; C. 1927 I, 1902. Oxydation mit Chromschwefelsäure: Lieben, Molnar, M. 53/54, 7. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: Bhide, Sudborough, J. indian Inst. Sci. 8 A, 107; C. 1926 I, 80. Bei gelindem Kochen von Caprinsäure mit überschüssigem Acetanhydrid unter Ausschluß von Luftfeuchtigkeit erhält man Caprinsäureanhydrid (Holde, Gentner, B. 58, 1422).

Caprinsaure wird durch Penicillium glaucum (STÄRKLE, Bio. Z. 151, 401; ACLIN, Bio. Z. 204, 254) oder durch Penicillium cyclopium (Derx, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345) in Methyl-n-heptyl-keton übergeführt. Auch bei der Einw. von Penicillium palitans erfolgt Ketonbildung (STOKOE, Biochem. J. 22, 88). Wachstumshemmende Wirkung auf Penicillium palitans und Oidium lactis: STO. Insecticide Wirkung: Stegler, Popenoe, J. agric. Res. 29, 259; C. 1925 I, 2111; Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884.

Mikrochemischer Nachweis: Behrens-Kley, Organische mikrochemische Analyse

[Leipzig 1922], S. 329.

NaC₁₀H₁₉O₂. Schaumbildung wäßr. Lösungen: Müller von Blumencron, Z. dtsch. Öl-Fettind. 42, 155; C. 1923 I, 36. Über die Ultrafiltration von wäßrigen und alkoholischen Lösungen und Gelbildung in Wasser und Alkohol vgl. M. v. Bl., Z. dtsch. Öl-Fettind. 42, 101, 171. Viscosität wäßr. Lösungen verschiedener Konzentration: M. v. Bl., Z. dtsch. Öl-Fettind. 42, 101. Oberflächenspannung wäßr. Lösungen: M. v. Bl., Z. dtsch. Öl-Fettind. 42, 155; Walker, Soc. 119, 1524. Oberflächenspannung von Gemischen mit caprylsaurem Natrium in wäßr. Lösunge: Walker, Soc. 119, 1528. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: M. v. Bl., Z. dtsch. Öl-Fettind. 42, 140. Konduktometrische Titration von mit 0,1 n-Salzsäure versetzten Lösungen in verd. Alkohol mit 0,1 n-Natronlauge: Gehrke, Will-Rath, Z. ang. Ch. 42, 990. — KC₁₀H₁₉O₂. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436; Pr. roy. Soc. [A] 97, 49; C. 1920 III, 533. — TlC₁₀H₁₉O₂. Doppelbrechende Blättchen (aus Acton + Methanol). Bildet zwei feste krystalline Modifikationen (Walter, B. 59, 968). F: 127° (korr.); die Schmelze ist bis 207° (korr.) krystallinisch-flüssig. Optisches Verhalten der krystallinisch-flüssigen Phase: W. Schmelzpunkte von Gemischen mit den Thallium(I)-salzen der Caprylsäure und Undecylsäure: W. — Pb(C₁₀H₁₉O₂)₈. Röntgenogramm: Trillat, C. r. 180, 1839; Ann. Physique [10] 6, 76.

Methylcaprinat $C_{11}H_{22}O_2 = CH_3 \cdot [CH_2]_8 \cdot CO_2 \cdot CH_3$ (H 356). Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884.

Äthylcaprinat $C_{12}H_{24}O_2=CH_3\cdot [CH_2]_8\cdot CO_2\cdot C_2H_5$ (H 356). $Kp_4\colon 104^0$; $D^{28}\colon 0,859$ (Langlais, Goby, C.r. 179, 174; Bl. [4] 35, 1309). — Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. — Lösende Wirkung auf Bakterien: Stoye, Z. Hyg. Inf.-Kr. 103, 100; C. 1924 II, 1214.

n-Nonyl-caprinat $C_{19}H_{38}O_2=CH_3\cdot[CH_2]_8\cdot CO_3\cdot[CH_2]_8\cdot CH_3$. B. Beim Behandeln von Caprinsäure und n-Nonylalkohol mit Chlorwasserstoff (Rheinboldt, König, Otten, A. 473, 258). — Ist bei gewöhnlicher Temperatur fest. Kp₂₀: 210,5—211,5°.

Glycerin- α -caprinat, α -Monocaprin $C_{13}H_{26}O_4 = CH_3 \cdot [CH_2]_8 \cdot CO \cdot O \cdot CH_3 \cdot CH(OH) \cdot CH_4 \cdot OH$. Beim Behandeln von Glycerin- α . β -isopropylidenäther und Caprinsäurechlorid in Chinolin unter Kühlung und Spaltung des entstandenen Glycerin- α . β -isopropylidenäther- α -caprinats mit konz. Salzsäure und Äther in der Kälte oder mit 0,25 n-Schwefelsäure bei 40—45° (AVERILL, ROCHE, KING, Am. Soc. 51, 869). — F: 51,4°.

Glycerintricaprinat, Tricaprin, Caprin $C_{33}H_{62}O_6 = CH_3 \cdot [CH_2]_8 \cdot CO \cdot O \cdot CH(CH_2 \cdot O \cdot CO \cdot [CH_2]_8 \cdot CH_3]_2$ (H 356; E I 152). B. Beim Erhitzen von Glycerin mit Caprinsäure in Gegenwart von Twitchells Reagens auf 100° analog dem Tricaprylin (Ozaki, Bio. Z. 177, 159; 189, 233; Pr. Acad. Tokyo 2, 12; C. 1926 II. 2192). — Existiert in einer stabilen und instabilen Form (Loskit, Ph. Ch. 134, 137). Krystallisationsgeschwindigkeit und spontanes Krystallisationsvermögen der stabilen Form: L., Ph. Ch. 134, 135. Schmelzpunkt der stabilen Form: 31,0° (L.), 31,6° (Joglekar, Watson, J. Soc. chem. Ind. 47, 367 T; C. 1929 I, 988); der instabilen Form: 25,0° (L.). Erstarrungspunkt der stabilen Form: 30,3° (J., W.). D\(^{\infty}\): 0,9204; \(D_1^{\infty}\): 0,9059; \(D_1^{\infty}\): 0,8986; \(D_1^{\infty}\): 0,8913 (J., W.). Viscosität bei 45°: 0,1006; bei 60°: 0,0777; bei 75°: 0,0625, bei 85°: 0,0551 g/cm sec (J., W.). Oberflächenspannung bei 40°: 28,7, bei 60°: 27,3, bei 70°: 26,6, bei 80°: 25,9 dyn/cm (J., W.). Löslichkeit in Benzol. Ather, Schwefelkohlenstoff und Alkohol: Loskit, Ph. Ch. 134, 143. Ausbreitung monomolekularer Schichten auf Wasser, 0,001 n-Salzsäure und 0,1 n-Salzsäure: Gorter, Grendel. Bio. Z. 192, 446. — Nährwert für Ratten: Ozaki, Bio. Z. 189, 234; Pr. Acad. Tokyo 3, 439; C. 1928 I, 541.

Caprinsäureanhydrid $C_{20}H_{26}O_3 = (CH_3[CH_2]_8 \cdot CO)_2O$. B. Bei gelindem Kochen von Caprinsäure mit überschüssigem Acetanhydrid unter Ausschluß der Luftfeuchtigkeit (Holde, Gentner, B. 58, 1423). — Blättchen (aus absol. Alkohol). F: 23,9°. D_4^{∞} : 0,8596; n_D^{∞} : 1,4234.

Caprinsäureamid $C_{10}H_{21}ON = CH_3 \cdot [CH_3]_8 \cdot CO \cdot NH_2$ (H 356; E I 152). F: 98° (Asano, J. pharm. Soc. Japan 1922, Nr. 480, S. 4; C. 1922 I, 1227).

Caprinhydroximsäurechlorid $C_{10}H_{20}ONCl = CH_3 \cdot [CH_2]_s \cdot CCl : N \cdot OH$ s. 1-Chlort-nitroso-decan, E II 1, 130.

- 10 Chlor decansäure (1) methylester, ω Chlor caprinsäure methylester $C_{11}H_{21}O_2Cl = CH_2Cl \cdot [CH_2]_8 \cdot CO_2 \cdot CH_3$. B. Aus ω -Oxy-caprinsäure-methylester in Chloroform-Lösung und Phosphorpentachlorid unter Eiskühlung (Grün, Wirth, B. 55, 2213). Kp₁₅: 153°. Beim Kochen mit konz. Kalilauge entsteht hauptsächlich ω -Oxy-caprinsäure.
- 10 Brom decansäure (1), ω Brom caprinsäure $C_{10}H_{19}O_2Br = CH_2Br \cdot [CH_2]_8$. CO_2H . B. Neben ω -Brom-caprinaldehyd bei der Ozonspaltung von 11-Brom-undecen-(1) in mit Wasser überschichtetem Tetrachlorkohlenstoff (Churr, Mitarb., Helv. 9, 1076). Aus ω -Brom-caprinaldehyd durch Oxydation im Luftstrom oder mit Permanganat-Lösung unter Kühlung (Ch., Mitarb.). Beim Behandeln von ω -Oxy-caprinsäure mit einer 50% igen Lösung von Bromwasserstoff in Essigsäure (Ch., Hausser, Helv. 12, 474). Blättchen (aus Petroläther). F: 42—42.5°; Kp₂: 163—165° (Ch., H.). Liefert beim Kochen mit Kaliumacetat und Eisessig ω -Acetoxy-caprinsäure und ω -Acetoxy-caprinsäure-[ω -carboxy-n-nonyl-ester] (Ch., Mitarb.).
- Methylester $C_{11}H_{21}O_2Br = CH_2Br \cdot [CH_2]_8 \cdot CO_2 \cdot CH_3$. Kp_{12} : $161-163^\circ$; $Kp_{1,5}$: 135° bis 136° ; D^{15} : 1,177 (Ch., Mitarb., Helv. 9, 1077).
- 9.10-Dibrom-decansäure-(1)-methylester, $\vartheta.\iota$ -Dibrom-caprinsäure-methylester $C_{11}H_{20}O_2Br_2=CH_2Br\cdot CHBr\cdot [CH_2]_7\cdot CO_2\cdot CH_3$. B. Aus Nonen-(8)-carbonsäure-(1)-methylester und Brom in kaltem Chloroform (Grün, Wirth, B. 55, 2202). Öl. Kr₂: 185—186°. Beim Erwärmen mit Zink und methylalkoholischer Salzsäure auf dem Wasserbad entsteht Nonen-(8)-carbonsäure-(1)-methylester.
- 2. 2-Methyl-nonansäure-(1). Nonan-carbonsäure-(2), Methyl-n-heptylessigsäure $C_{10}H_{20}O_2=CH_3\cdot[CH_2]_6\cdot CH(CH_3)\cdot CO_2H$.
- a) Rechtsdrehende Methyl-n-heptyl-essigsäure $C_{10}H_{20}O_2 = CH_3 \cdot [CH_2]_s$; $CH(CH_3) \cdot CO_2H$. B. Beim Behandeln von inaktiver Methyl-n-heptyl-essigsäure mit Cinchonidin in 66 %igem Aceton, in welchem das Salz der linksdrehenden Säure schwerer löslich ist als das Salz der rechtsdrehenden; man zerlegt das Cinchonidinsalz mit Salzsäure (Levene, Mikeska, J. biol. Chem. 84, 585). Kp₄: 145—147°. D²⁵: 0.893. [α];: +8.3° (unverdünnt). +9.2° (Äther; c = 18), +7.5° (75%iger Alkohol; c = 16). Gibt beim Kochen mit Thionyl-chlorid rechtsdrehendes Methyl-n-heptyl-acetylchlorid. Natriumsalz. [α];: +0.8° (Wasser; c = 17).
- Chlorid, rechtsdrehendes Methyl-n-heptyl-acetylehlorid $C_{10}H_{19}OCl = CH_3 \cdot [CH_2]_c \cdot CH(CH_3) \cdot COCl$. B. Beim Kochen von rechtsdrehender Methyl-n-heptyl-essigsäure mit Thionylchlorid (Levene, Mikeska, J. biol. Chem. 84, 586). Kp₁: 73—74°. D²⁵: 0,894. $[\alpha]_b^{2c}$: +4,9° (unverdünnt), +5,0° (Äther: c=18).
- Amid $C_{10}H_{21}ON = CH_3 \cdot [CH_2]_6 \cdot CH(CH_3) \cdot CO \cdot NH_2$. B. Aus rechtsdrehendem Methyln-heptyl-acetylchlorid und konz. Ammoniak unter Kühlung (Levene, Mikeska, J. biol. Chem. 84, 586). Krystalle (aus 50% igem Alkohol). F: 78°. [α]^{3*}: +7,1° (Alkohol; c=7). Gibt bei der Destillation mit Phosphorpentoxyd unter 7 mm Druck rechtsdrehendes Methyl-n-heptyl-acetonitril.
- Nitril, rechtsdrehendes Methyl-n-heptyl-acetonitril $C_{10}H_{19}N=CH_3\cdot [CH_2]_6\cdot CH(CH_3)\cdot CN$. B. Aus dem rechtsdrehenden Amid bei der Destillation mit Phosphorpentoxyd unter 7 mm Druck (Levene, Mikeska, J. biol. Chem. 84, 586). Kp₇: 85—94°. D²⁵: 0,809. [α];: +13.6° (unverdünnt). +14.7° (Äther; c = 14). +15.1° (75% iger Alkohol; c = 10). Gibt bei der Reduktion mit Natrium und Alkohol linksdrehendes 1-Amino-2-methyl-nonan.
- b) Linksdrehende Methyl-n-heptyl-essigsäure $C_{10}H_{20}O_2=CH_3\cdot [CH_2]_s\cdot CH(CH_3)\cdot CO_2H$. B. s. bei der rechtsdrehenden Methyl-n-heptyl-essigsäure. Zwei Präparate zeigten $[\alpha]_s^{\text{ps}}$: —9,4° (Äther; c = 25) bzw. —13,2° (Äther; c = 30) (Levene, Mikeska, J. biol. Chem. 84, 585).
- Äthylester $C_{12}H_{24}O_3=CH_3\cdot [CH_2]_6\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von linksdrehender Methyl-n-heptyl-essigsäure mit alkoh. Salzsäure unter Kühlung (Levene. Mirkska, J. biol. Chem. 84, 589). Kp₁₇: 122—124°. D²⁵: 0,856. $[\alpha]_n^m$: —8,6° (inverdünnt), —9° (Äther: c=11), —9,7° (75% iger Alkohol: c=13). Gibt bei der Reduktion mit Natrium und Alkohol in siedendem Toluol rechtsdrehendes 2-Methyl-nonanol-(1).
- Nitril, linksdrehendes Methyl-n-heptyl-acetonitril $C_{10}H_{10}N=CH_3\cdot [CH_2]_6\cdot CH(CH_3)\cdot CN$. [α] $_0^{\pm}$: —15.1° (Äther: c = 12) (Levene, Mikeska, J. biol. Chem. 84, 588). —Gibt bei der Reduktion mit Natrium und Alkohol rechtsdrehendes 1-Amino-2-methyl-nonan.
- c) Inakt. Methyl-n-heptyl-essigsäure C₁₀H₂₀O₂ = CH₃·[CH₂]₆·CH(CH₃)·CO₂H (H 356). Läßt sich über die Cinchonidinsalze in die optisch-aktiven Antipoden spalten (Levene, Mikeska, J. biol. Chem. 84, 585).

- 3. 2-Methyl-nonansäure-(9), 7-Methyl-octan-carbonsäure-(1) C₁₀H₂₀O₂= (CH₂)₂CH·[CH₂]₆·CO₂H (E I 152). B. Durch Einw. von 7-Jod-2-methyl-heptan (E I 1, 61)
- $(CH_3)_2CH \cdot [CH_2]_6 \cdot CO_2H$ (E.1. 152). B. Durch Elnw. von 7-Jod-2-metnyl-neptan (E.1.1, 61) auf Natrium-acetessigester, Kochen des Reaktionsprodukts mit Natriumäthylat-Lösung und Verseifen des so erhaltenen Äthylesters (Nelson, Dawson, Am. Soc. 45, 2180). Kp_{16-16} : 150°.
- 4. 3-Methyl-nonansäure-(1), 2-Methyl-octan-carbonsäure-(1), β -Methyl-peiargonsäure $C_{10}H_{20}O_2=CH_3\cdot [CH_2]_5\cdot CH(CH_3)\cdot CH_2\cdot CO_2H$. B. Beim Erhitzen von 2-Methyl-octan-dicarbonsäure-(1.1) auf 180° (Levene, Taylor, J. biol. Chem. 54, 356). Kp_{12} : 147—148°. D_1^∞ : 0,9012. n_2^∞ : 1,4342.

Äthylester $C_{12}H_{24}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH(CH_3) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. $Kp_{13}: 115^0$; $D_1^{\infty}: 0,8653: n_D^{\infty}: 1,4240$ (Levene, Taylor, J. biol. Chem. 54, 356). — Wird durch Natrium und Alkohol in Toluol zu γ -Methyl-n-nonylalkohol reduziert.

5. Nonan-carbonsäure-(3), α -Äthyl-caprylsäure. Äthyl-n-hexyl-essiy-säure $C_{10}H_{20}O_2=CH_3$: $[CH_2]_5 \cdot CH(C_2H_5) \cdot CO_2H$. B. Bei der Destillation von Äthyl-n-hexyl-malonsäure (Dox, Am. Soc. 47, 3009). — Öl von schwach ranzigem Geruch. Kp: 252—255°. D²⁵: 0,8905. Unlöslich in Wasser.

Methylester $C_{11}H_{22}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH(C_2H_5) \cdot CO_2 \cdot CH_3$. B. Beim Kochen von Äthyl-n-hexyl-essigsäure mit Methanol und wenig konz. Schwefelsäure (Dox, Am. Soc. 47, 3009). — Riecht schwach fruchtartig. Kp: 213—215° (korr.).

Äthylester $C_{12}H_{24}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH(C_2H_5) \cdot CO_2 \cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Dox, Am. Soc. 47, 3009). — Riecht schwach fruchtartig. Kp: 221—223°. D²⁵: 0,8580.

Propylester $C_{13}H_{26}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH_(C_2H_5) \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot B$. Analog der vorangehenden Verbindung (Dox, Am. Soc. 47, 3009). — Kp: 238—240° (korr.). D^{25} : 0,8578.

Butylester $C_{14}H_{28}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH_(C_2H_5) \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3$. B. Analog der vorangehenden Verbindung (Dox, Am. Soc. 47, 3009). — Kp: 255—2570 (korr.). D²⁵: 0.8571.

- 6. Nonan-carbonsäure-(4), α -Propyl-önanthsäure. α -n-Amyl-n-valeriansäure, Propyl-n-amyl-essigsäure $C_{10}H_{20}O_2=CH_3\cdot [CH_2]_4\cdot CH(CH_2\cdot C_2H_5)\cdot CO_2H$. B. Aus n-Amylalkohol beim Erhitzen mit Kalikalk in Gegenwart von Kupferspänen und Aluminiumhydroxyd unter Druck auf 250—270°, neben n-Valeriansäure (I. G. Farbenind., D. R. P. 503009; C. 1930 II, 2573; Frdl. 16, 251).
- 7. Nonan-carbonsäure-(5), α -Butyl-n-capronsäure, Dibutylessigsäure $(^{\circ}_{10}H_{20}O_2 = (CH_3\cdot[CH_2]_3)_2CH\cdot CO_2H$ (E I 152). B. Aus dem Äthylester beim Verseifen mit alkoh. Kalilauge (Billon, A. ch. [10] 7, 374). Neben anderen Produkten beim Kochen von $\alpha.\alpha$ -Dibutyl-acetessigester mit wäßrig-alkoholischer Kalilauge (Hess, Bappert, A. 441, 155). Kp₁₄: 144° (Bi.); Kp₁₅: 155—157° (Tiffeneau, Bl. [4] 33, 188); Kp₁₆: 139—140° (H., Ba.). $D_4^{16.4}$: 0,8978; $n_7^{17.4}$: 1,4345 (H., Ba.).

Äthylester $C_{12}H_{24}O_3=(CH_3\cdot[CH_2]_3)_2CH\cdot CO_2\cdot C_2H_5$ (E I 152). B. Neben wenig $\alpha.\alpha$ -Dibutyl-acetessigester bei der Einw. von Butylbromid (Hess, Bappert, A. 441, 154) oder Butyljodid in Gegenwart von Natriumäthylat (Billon, A. ch. [10] 7, 373) auf die Natriumverbindung des α -Butyl-acetessigesters in siedendem Alkohol. — Kp_{16} : 104° (H., Ba.), 110° (Bi.). D_4^{m} : 0,8636; n_3^{m} : 1,4222 (H., Ba.).

Chlorid, Dibutylacetylchlorid $C_{10}H_{19}OCl = (CH_3 \cdot [CH_2]_3)_2CH \cdot COCl.$ $Kp_{18}: 100-102^0$ (Tiffeneau, Bl. [4] 33, 188). $D^0: 0.972$.

Nitril, Dibutylacetonitril $C_{10}H_{19}N=(CH_3\cdot[CH_2]_3)_2CH\cdot CN$. B. Neben überwiegenden Mengen 5-Chlor-nonan beim Behandeln der Magnesiumverbindung aus 5-Bromnonan mit Chlorcyan in Äther (Grignard, Ono, Bl. [4] 39, 1592). — Kp_{11} : 99—101°. $D_1^{16.5}$: 0,8110. $n_1^{16.5}$: 1,4034.

Dibutylbromessigsäure-amid $C_{10}H_{20}ONBr = (CH_3 \cdot [CH_2]_3)_2CBr \cdot CO \cdot NH_2$. F: 58° (Tiffeneau, *Bl.* [4] 33, 188).

8. 7-Methyl-octan-carbonsäure-(4), a-Isoamyl-n-valeriansäure, Propylisoamylessigsäure $C_{10}H_{20}O_2=(CH_3)_2\cdot CH\cdot CH_2\cdot CH_2CH(CH_2\cdot C_2H_5)\cdot CO_2H$. B. Beim Erhitzen von Propylisoamylmalonsäure (Sommarre, Bl. [4] 33, 194). — Kp: $238-245^\circ$. D°: 0,908.

Chlorid, Propylisoamylacetylchlorid $C_{10}H_{19}OCl = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH(CH_2 \cdot C_2H_5) \cdot COCl.$ B. Aus Propylisoamylessigsäure und Thionylchlorid (Sommaire, Bl. [4] 33, 194). — Kp_{760} : 200—205°. D°: 0,944.

Amid $C_{10}H_{21}ON = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot CH(CH_2 \cdot C_2H_5) \cdot CO \cdot NH_2$. F: 117—118° (Sommarre, Bl. [4] 38, 194). 100 g Wasser lösen 0,01 g.

- 9. 2.6-Dimethyl-octansäure-(8), 2.6-Dimethyl-heptan-carbonsäure-(1). Dihydrocitronellsäure, Tetrahydrogeraniumsäure $C_{10}H_{20}O_2=(CH_3)_2CH\cdot [CH_3]_3\cdot CH(CH_3)\cdot CH_4\cdot CO_3H$.
- a) Optisch aktives(!) Präparat aus rechtsdrehendem Dihydrocitronellal (vgl. EI 153). B. Aus rechtsdrehendem Dihydrocitronellal durch Oxydation mit Kalium-permanganat in Aceton-Lösung (Sabetay, Bleger, Bl. [4] 43, 844) oder beim Aufbewahren an der Luft (v. Braun, Kaiser, B. 56, 2272). Kp₁₄: 138—139°; n¹⁵: 1,4338 (S., Bl.).
- b) Inaktive Form (EI 152). B. Beim Aufbewahren von inaktivem Dihydrocitronellal an der Luft (v. Braun, Kaiser, B. 56, 2272). Kp₁₃: 134—137°. D₄: 0,897. [KÜHN]

11. Carbonsäuren $C_{11}H_{22}O_2$.

1. Undecansaure, Decan-carbonsaure-(1), Undecylsaure $C_{11}H_{22}O_2 = CH_2 \cdot [CH_2]_2 \cdot CO_2H$ (H 358; E I 154). V. Im ather. Ol der Blätter von Chamaecyparis pisifera Endl. (UCHIDA, C. 1928 II, 1577). Im festen Irisöl (Langlais, Goby, C. r. 179, 174; Bl. [4] 35, 1309).—B. Neben Undecin-(1) beim Kochen von 1-Brom-undecin-(1) (E II 1, 241) mit alkoh. Kalilauge (GRIGNARD, PERRICHON, A. ch. [10] 5, 18). Beim Schmelzen von Dodecen-(11)-carbonsäure-(1) mit Kaliumhydroxyd bei 310—360° (CHUIT, Mitarb., Helv. 10, 123). — Rhythmische Krystallisation in dünnen Schichten: GARNER, RANDALL, Soc. 125. 370. Röntgenreflexionsaufnahme: Müller, Shearer, Soc. 123, 3157. Besitzt nach Garner, RANDALL (Soc. 125, 888) einen Umwandlungspunkt zwischen 12,50 und 170, was von DE BOER (Nature 119, 50; C. 1927 I, 1410) durch Röntgenreflexionsmessung bei 12,50 und 200 bestätigt wurde. Zur Existenz zweier Modifikationen in wäßr. Lösung vgl. Windisch, Dietrich. Koll.-Z. 26, 199. F: 29,5—30,5° (Снит, Mitarb.). Kp: 280° (LAN., Go.); Kp₁₅: 173—174° (GRI., PE.); Kp₄: 145—146° (LAN., Go.). Dichte der festen Undecansäure zwischen 0,12° (1,0431) und 25° (0,9905) sowie der Flüssigkeit zwischen 30° (0,8907) und 50,15° (0,8741): GAR., RYDER, Soc. 127, 728, 729. Mittlere spezifische Wärme der festen Substanz zwischen 1º und 15º: 0,4069 cal/g; zwischen 14,6º und 21º: 0,5323 cal/g; der Flüssigkeit zwischen 36° und 67°: 0,5190 cal/g (Gar., Ra.). Schmelzwärme: 32,20 cal/g; Umwandlungswärme 9,893 cal/g (Gar., Ra.). Verbrennungswärme bei konstantem Volumen: 8653,6 cal/g (Verkade, Coops, R. 47, 608). Einfluß von Undecansäure-Schichten gewöhnlicher und sehr geringer Dicke auf die gleitende Reibung an Quarz und an Stahl: HARDY, DOUBLEDAY, Pr. roy. Soc. [A] 101, 491; C. 1928 I, 876. n_{α}^{∞} : 1,4180; n_{β}^{∞} : 1,4203; n_{β}^{∞} : 1,4251; n_{γ}^{∞} : 1,4295 (Waterman, Bertram, R. 46, 701). Beugung von Röntgenstrahlen in flüssiger Undecylsäure: Stewart, Pr. nation. Acad. USA. 13, 787; C. 1928 I, 639; Stewart, Mannheimer, Z. anorg. Ch. 171, 68; Prins, Z. Phys. 56 [1929], 643. — Kolloider Zustand frischer und gealterter Ch. 11., 06; FRINS, Z. Phys. 56 [1929], 643. — Rolloider Zusänd irischer und gestierter Lösungen in Wasser, gemessen durch Tyndall-Kegel und ultramikroskopische Untersuchung: Trauber, Klein, Koll.-Z. 29 [1921], 238. Untersuchung monomolekularer Schichten auf 0,01 n-Salzsäure: Cary, Rideal, Pr. roy. Soc. [A] 109, 312, 320, 329; C. 1926 I, 1126. Einfluß der Verdünnung und des pr. auf die Oberflächenspannung wäßriger Undecansäure-Lösungen: Windisch, Dietrich, Koll.-Z. 26, 195; W., Osswald, Ph. Ch. 99, 174; zur Oberflächensphinister in ellerigiet. aktivität in alkalischer Lösung vgl. auch Kolthoff, R. 46, 570. Adhäsionsenergie von Wasser an der Oberfläche fester Undecansäure: Nierz, J. phys. Chem. 32, 262. — Umwandlung in Methyl-n-ocytl-keton durch Penicillium glaucum: Acklin, Bio. Z. 204, 254.

Lithiumundecylat. Röntgenogramm (Pulveraufnahme): BECKER, JANCKE, Ph. Ch. 99, 269. — NaC₁₁H₁₁O₂. Stabilisierende Wirkung auf kolloide Gold-Lösungen: Prosch, Z. dtsch. Öl-Fettind. 42, 426; C. 1922 III, 1287. Insecticide Wirkung auf Blattläuse: TATTERSFIELD, GIMINGHAM, J. Soc. chem. Ind. 46, 371 T. — Kaliumundecylat. Röntgenreflexionsaufnahme: Piper, Soc. 1929, 236. — TlC₁₁H₂₁O₂. Krystalle (aus Methanol + Aceton). F: 126° (korr.) (Walter, B. 59, 968). Die Schmelze ist zwischen 126° und 200—201° (korr.) krystallin-flüssig. Kryoskopisches Verhalten der binären Gemische mit caprinsaurem und nonylsaurem Thallium: W.

Methylundecylat $C_{12}H_{24}O_{2} = CH_{3} \cdot [CH_{2}]_{9} \cdot CO_{2} \cdot CH_{3}$ (E I 154). B. Durch Hydrierung von Decen-(9)-carbonsäure-(1)-methylester in Gegenwart von Nickel (Robinson, Soc. 125, 229). Bei der Behandlung mit Natrium und Alkohol bei 140—170° entsteht Undecanol-(1).

Glycerintriundecylat, Triundecylin, Undecylin $C_{36}H_{68}O_6=CH_3\cdot[CH_2]_6\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot [CH_2]_6\cdot CH_3)_3\cdot B$. Aus Glycerin und Undecylsäure in Gegenwart von Twitchells Reagens bei 100° (Ozaki, C. 1926 II, 2192; Bio. Z. 177, 161). Nährwert für Ratten: Oz.

Undecylsäureamid $C_{11}H_{26}ON = CH_3 \cdot [CH_2]_6 \cdot CO \cdot NH_2$ (H 358; E I 155). F: 96—97° (Asano, C. 1922 I, 1227).

- 10-Brom undecansäure (1), ι -Brom undecylsäure $C_{11}H_{11}O_2Br = CH_3 \cdot CHBr \cdot [CH_2]_8 \cdot CO_2H$ (H 358). Zur Bildung vgl. Flaschenträger, Halle, H. 159, 287; Churr, Mitarb., Helv. 9, 1091. Krystalle (aus Petroläther) (F., H.). Bei längerem Erhitzen mit flüssigem Ammoniak im Autoklaven entsteht 10-Amino-undecansäure-(1) (F., H.).
- Methylester $C_{12}H_{22}O_3Br=CH_3\cdot CHBr\cdot [CH_2]_5\cdot CO_3\cdot CH_3$ (H 358). Kp₈: 158—159° (CHUIT, Mitarb., Helv. 9, 1091). D¹⁵: 1,147. Liefert bei 20stdg, Kochen mit Kaliumacetat und Essigsäure 9-Acetoxy-decan-carbonsäure-(1)-methylester und ein Gemisch von Decen-(9)-carbonsäure-(1)-methylester und Decen-(8)-carbonsäure-(1)-methylester.

Äthylester $C_{13}H_{25}O_{2}Br = CH_{2} \cdot CHBr \cdot [CH_{2}]_{8} \cdot CO_{2} \cdot C_{2}H_{5}$ (H 358; E I 154). Kp₈: 165,5° bis 167° (Chuir, Mitarb., Helv. 9, 1091). D^{15} : 1,120.

11-Brom-undecansäure-(1), ω-Brom-undecylsäure C₁₁H₁₁C₂Br = CH₂Br·[CH₂]₀·CO₂H (H 358). B. Zur Bildung nach Walker, Lumsden (H 2, 385) vgl. Perkins, Cruz, Am. Soc. 49, 1073; Verkade, Hartman, Coops, R. 45, 386. Flaschenträger, Halle (H. 159, 287) konnten nach den Angaben von Walker, Lumsden keine 11-Brom-undecansäure-(1) erhalten. Entsteht beim Erhitzen von 10-Oxy-decan-carbonsäure-(1) mit Brom-wasserstoff-Eisessig auf dem Wasserbad (Chuit, Hausser, Helv. 12, 476).—F: 57° (V., Hart., Co.). Kp₁₈: 188—190° (Sugasawa, J. pharm. Soc. Japan 1927, 150); Kp₂: 173—174° (Ch., Hau.).—Veresterung mit Alkohol durch Destillation der Komponenten mit Toluol in Gegenwart geringer Mengen Bromwasserstoff: Sug., C. 1928 I, 1643.

Methylester C₁₂H₂₅O₂Br = CH₂Br·[CH₂]₂·CO₂·CH₃. B. Aus 11-Brom-undecansaure-(1) bei der Einw. von Methanol und Schwefelsaure (Bhattacharya, Saletore, Simonsen, Soc. 1928, 2679). — F: 15,8°; Kp₂: 164,5° (Chuit, Mitarb., Helv. 10, 175); Kp₁₀: 165° (Bh., Sa., Si.). — Gibt beim Behandeln mit Kaliumcyanid in Alkohol 11-Cyan-undecansaure-(1)-methylester (Bh., Sa., Si.).

Äthylester $C_{13}H_{25}O_{2}Br = CH_{2}Br \cdot [CH_{2}]_{0} \cdot CO_{2} \cdot C_{2}H_{5}$ (H 358). Flüssigkeit. Erstarrt bei ca. $+10^{0}$; Kp_{8} : 172—174 0 (Chuir, Mitarb., Helv. 10, 175). D^{15} : 1,1295.

- 10.11-Dibrom -undecansäure-(1), $\iota.\varkappa$ -Dibrom -undecylsäure, Undecylensäure-dibromid $C_{11}H_{20}O_2Br_2=CH_2Br\cdot CHBr\cdot [CH_2]_8\cdot CO_2H$ (H 358). B. Zur Bildung aus Decen-(9)-carbonsäure-(1) und Brom vgl. Myddleton, Barrett, Am.~Soc. 49, 2260; My., Berchem, Soc. 1927, 1928. Krystalle. F: 38,5 $^{\circ}$ (M., Ba.; M., Be.).
- 2. 4-Methyl-decansäure-(1), 3-Methyl-nonan-curbonsäure-(1), γ -n-Hexyl-n-valeriansäure $C_{11}H_{22}O_2=CH_3\cdot [CH_2]_5\cdot CH(CH_3)\cdot CH_2\cdot CH_2\cdot CO_2H$. B. Durch Hydrierung von 3-Methyl-nonen-(3)-carbonsäure-(1) in Gegenwart von Palladium (STAUDINGER, RUZICKA, Helv. 7, 255). Öl. Kp₁₂: 150—152°. Läßt sich über das Chlorid (s. u.) in das p-Toluidid vom F: 34—36° und das α -Naphthylamid vom F: 61—62° überführen.

Chlorid $C_{11}H_{31}OCl = CH_3 \cdot [CH_3]_5 \cdot CH_(CH_3) \cdot CH_2 \cdot CH_3 \cdot COCl.$ B. Aus 3-Methyl-nonancarbonsäure-(1) und Thionylchlorid in Petroläther (STAUDINGER, RUZICKA, Helv. 7, 256).

- 3. 2.6-Dimethyl-nonansäure-(9), 3.7-Dimethyl-octan-carbonsäure-(1) $C_{11}H_{12}O_2 = (CH_2)_2CH \cdot [CH_2]_3 \cdot CH(CH_2) \cdot CH_2 \cdot CH_2 \cdot CO_2H$.
- a) Linksdrehende 3.7-Dimethyl-octan-carbonsdure-(1) $C_{11}H_{23}O_3 = (CH_3)_2CH \cdot [CH_3]_3 \cdot CH(CH_3) \cdot CH_2 \cdot CH_3 \cdot CO_2H$. B. Durch Verseifung des rechtsdrehenden Nitrils (s. u.) mit konz. Salzsäure (v. Braun, Kaiser, B. 56, 2273). Kp_{14} : 151—153°. D_4^{i7} : 0,901. $[\alpha]_p$: —0°35′ (unverdünnt).

Äthylester $C_{13}H_{36}O_2=(CH_3)_2CH\cdot [CH_2]_3\cdot CH(CH_3)\cdot CH_2\cdot CH_3\cdot CO_3\cdot C_2H_6$. Kp_{14} : 124° bis 126° (v. Braun, Kaiser, B. 56, 2273). — D_4^n : 0,866. $[\alpha]_p$: $+0^012'$ (unverdunnt).

Nitril $C_{11}H_{21}N=(CH_3)_2CH\cdot [CH_3]_3\cdot CH(CH_3)\cdot CH_2\cdot CH_3\cdot CN$. B. Durch Einwirkung von wäßrig-alkoholischer Kaliumcyanid-Lösung auf linksdrehendes 8-Brom-2.6-dimethyl-octan (E II 1, 130) (v. Braun, Kaiser, B. 56, 2273). — Kp_{14} : 111—114°. D_4^{is} : 0,836. $[\alpha]_D$: +0°30′ (unverdünnt).

b) Inaktive 3.7-Dimethyl-octan-carbonsdure-(1) C₁₁H₂₂O₂ = (CH₂)₂CH·[CH₂]₃·CH(CH₃)·CH₂·CO₂H. B. Beim Behandeln von Hexahydropseudojonon (E II 1, 770) mit Chromsäure in Eisessig bei 80° (Hemen, Thompson, Soc. 1929, 891). Bei der Ozonspaltung von 2.6.10-Trimethyl-dodecen-(9)-on-(11) sowie bei der Oxydation des dabei als Nebenprodukt entstehenden 2.6-Dimethyl-nonanals-(9) (F. G. Fischer, Löwenberg, A. 475, 201). Durch Verseifung des Nitrils mit konz. Salzsäure (v. Braun, Kaiser, B. 56, 2273). — Dünnflüssiges Öl von anhaftendem Geruch. Kp₁₁: 149—151° (Fi., Lö.); Kp₁₄: 149—152° (v. Br., K.). Di': 0,897 (v. Br., K.). — Calciumsalz. Schwer löslich (H., Th.).

Methylester $C_{12}H_{24}O_3 = (CH_2)_2CH \cdot [CH_2]_2 \cdot CH(CE_3) \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot CH_2$. B. Beim Behandein der Säure mit Methanol und Schwefelsäure (Heilbron, Thompson, Soc. 1929, 891). — Flüssigkeit. Kp₃: 105—108°.

[Syst. Nr. 162

Äthylester $C_{13}H_{26}O_2 = (CH_3)_2CH \cdot [CH_3]_3 \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_6$. Kp₁₈: 120° bis 122° (v. Braun, Kaiser, *B.* 56, 2273).

Amid C₁₁H₂₃ON == (CH₃)₂CH· [CH₂]₃· CH(CH₃)· CH₂· CH₂· CO· NH₂. B. Beim Erwärmen der Säure mit Thionylchlorid in Benzol + Petroläther und Behandeln des erhaltenen Säure-chlorids mit alkoh. Ammoniak (Heilbron, Thompson, Soc. 1929, 891). — Platten (aus Äther + Petroläther). F: 80—81°.

Nitril $C_{11}H_{21}N=(CH_3)_2CH\cdot[CH_2]_3\cdot CH(CH_3)\cdot CH_2\cdot CH_2\cdot CN$. B. Aus dl-8-Brom-2.6-dimethyl-octan und wäßrig-alkoholischer Kaliumeyanid-Lösung (v. Braun, Kaiser, B. 56, 2273). — Öl. Kp₁₄: 112—114°. D_1^{ir} : 0,836.

4. Carbonsäure C₁₁H₂₂O₂ aus japanischem Pfefferminzöl. V. Als Ester in den hochsiedenden Anteilen des japanischen Pfefferminzöls (Walbaum, Rosenthal, J. pr. [2] 124, 65). — Wurde als Methylester (s. u.) isoliert.

Methylester $C_{12}H_{24}O_2$. Kp_4 : 112-113°; D^{15} : 0,7919; n_D^m : 1,4413 (Walbaum, Rosenthal, $J.\ pr.\ [2]$ 124, 65).

12. Carbonsäuren $C_{12}H_{24}O_2$.

1. Dodecansäure, Undecan-carbonsäure-(1), Laurinsäure C₁₂H₂₄O₂ = CH₃·(CH₂)₁₀·CO₂H (H359; E I 155). V. Im Fett von Bäckerhefe (MacLean, Thomas, Biochem. J. 14, 486). Zum Vorkommen in pflanzlichen und tierischen Fetten und Wachsen vgl. ferner C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, Bd. II [Wien 1932]. S. 510: D. Holde, Kohlenwasserstofföle und Fette [Berlin 1933]; A. Grün, W. Halden, Analyse der Fette und Wachse [Berlin 1925]. Als Äthylester in den hochsiedenden Rückständen des Melassefuselöls (Marvell, Hager, Am. Soc. 46, 729). Laurinsäure-Gehalt verschiedener alkoholischer Getränke und Fuselöle: Grossfeld, Miermeister, Z. Unters. Lebensm. 56, 167; C. 1929 I, 1159.

H 2, 359, Z. 1 v. u. statt "Fangkallak-Fett" lies "Tangkallak-Fett".

B. Neben anderen Produkten bei der Hydrierung des sauren Anteils der durch thermische Zersetzung von Haifischöl an einem Kupfer-Aluminiumoxyd-Katalysator bei $600-650^{\circ}$ erhaltenen Produkte (Mailhe, Bl. [4] 31, 252; A. ch. [9] 17, 318). Neben Methyl-n-undecylketon bei längerem Erwärmen von β -Oxo-myristinsäure-äthylester mit verd. Alkalilauge (Asahina, Nakayama, C. 1926 I, 2670).

Röntgenographische Untersuchungen: Laue-Diagramm, Drehkrystallaufnahme: BRILL. K. H. MEYER, Z. Kr. 67, 572; Pulveraufnahmen: Br., MEYER, SOGANI, Indian J. Phys. 2 [1927], 102; Herzog, Jancke, Z. Phys. 45, 197; C. 1928 I, 639; Pulveraufnahme orientierter Krystallbüschel: Be., Ja., Ph. Ch. 99, 270; Herzog, Ja., Z. ang. Ch. 34, 387; Reflexionsaufnahmen: TRILLAT, C. r. 180, 1330; Ann. Physique [10] 6, 61; A. MÜLLER, Soc. 123, 2044: aufhähmen: 1RILLAT, C. 7. 180, 1330; Ann. Physique [10] 5, 61; A. MULLER, Soc. 120, 2044; Piper, Malkin, Austin, Soc. 1926, 2311; Prins, Coster, Nature 118, 83; C. 1926 II, 1366; DE Boer, Nature 119 [1927], 634. Krystalle (aus absol. oder verd. Alkohol). F: 43—43,50 (kott.) (Bhide, Sudborough, J. indian Inst. Sci. 8 [1925], 104), 43,40 (Joglekar, Watson, C. 1929 I, 988). 43,60 (van Loon, R. 46, 496), 43,750 (Garner, Randall, Soc. 125, 887). 44,30 (Holde, Gentner, B. 58, 1423). Kp₂: 1460 (A. Grün, W. Halden, Analyse der Fette und Wachse, Bd. I [Berlin 1925], S. 233). D; der festen Substanz bei 350: 1,0099; bei 400: 1,0055 (Garner, Ryder, Soc. 127, 728); der Flüssigkeit bei 700: 0,8573 (Ho., Ge.), zwischen 450 (0,8767) und 50,250 (0,8707): Ga., Ry.; zwischen 41,80 (0,8740) und 135,50 (0,8051): Hunten Maass. Am. Soc. 51, 160. Flüchtiskeit mit Wasserdamof: Arnold, Z. Unters, Nahr. HUNTEN, MAASS, Am. Soc. 51, 160. Flüchtigkeit mit Wasserdampf: ARNOLD, Z. Unters. Nahr. Genuβm. 42, 357; C. 1922 II, 918. Oberflächenspannung zwischen 45,0° (28,5 dvn/cm) und 141,00 (20,8 dyn/cm): Hu., Maass. Einfluß sehr dünner Laurinsäure-Schichten auf die gleitende Reibung an Glas und an Stahl: HARDY, DOUBLEDAY, Pr. roy. Soc. [A] 100 [1922], 560; an Glas, Stahl und Kupfer: HA., Pr. roy. Soc. [A] 118, 209; C. 1928 II, 864. Parachor: Hu., MAASS. Mittlere spezifische Wärme der festen Substanz zwischen 190 und 390: 0,5116 cal/g; der Flüssigkeit zwischen 48° und 78°: 0,5146 cal/g (Ga., Ran.). Schmelzwärme: 43,73 cal/g (Ga., Ran.). Verbrennungswärme bei konstantem Volumen: 8811,8 cal/g (VERKADE, Coops. **R. 47**, 608). n_D^{∞} : 1,4264 (Jog., Wa.); $n_D^{\infty,1}$: 1,4261 (Ho., Ge.); n_{α}^{∞} : 1,4203; n_D^{∞} : 1,4225; n_{β}^{∞} : 1,4277; n_Y^{∞} : 1,4321 (Waterman, Bertram, R. 46, 701). Beugung von Röntgenstrahlen in flüssiger Laurinsäure: HE., JA., Z. Phys. 45, 197; C. 1928 I, 639; SOGANI, Indian J. Phys. 2, 102; C. 1928 I. 470; in der Oberfläche flüssiger Laurinsäure: Prins, Z. Phys. 56, 643; C. 1929 II, 1890; in einer Lösung von Laurinsäure in Pentan: HE., JA., Z. Phys. 45 [1927].

Zur Löslichkeit von Laurinsäure in Wasser vgl. McBain, Eaton, Soc. 1928, 2167. 100 g Benzol lösen bei 25° 186 g; ist bei 40° in allen Verhältnissen mit Benzol mischbar (McB., E.). Laurinsäure ist bei Zimmertemperatur nicht merklich löslich in 0,01 n-Salzsäure (ADAM,

Pr. roy. Soc. [A] 101, 467; C. 1923 I, 271). Bildung beständiger Silber-Sole in Laurinsäure: GILES, SALMON, Soc. 123, 1605. Ebullioskopisches Verhalten in Trichlorathylen: WALDEN, Ann. Acad. Sci. fenn. [A] 29 [1927], Nr. 23. Diffusion aus alkoh. Lösung durch Kollodium-Membranen in An- und Abwesenheit von Stearinsäure: Heiduschka, Ripper, Z. El. Ch. 29. 555. Kleine Krystalle rotieren auf einer Wasseroberfläche (ZAHN, R. 45, 790; LABROUSTE. Ann. Physique [9] 14, 234). Grenzflächenspannung einer Lösung in Benzol gegen saure und alkalische Phosphat-Pufferlösungen (p_H = 5,6 und 7,6): Hartridge, Peters, Pr. roy. Soc. [A] 101, 356; C. 1923 I, 874. Grenzflächenspannung benzolischer Lösungen verschiedener Konzentration gegen Wasser, verd. Natronlauge und 1% Natriumchlorid enthaltende verd. Natronlauge: Dubrisay, Picard, C. r. 178, 206; D., C. r. 178, 1976; Bl. [4] 37, 999, 1000, 1002, 1004. Einfluß anorganischer Salze auf die Grenzflächenspannung einer wäßrigen Natriumlaurat-Lösung gegen Benzol: D., Bl. [4] 37, 1005. Adhäsionsenergie von Wasser an der Oberfläche von fester Laurinsäure: NIETZ, J. phys. Chem. 32, 262. Adsorption an Tierkohle aus Alkohol: GRIFFIN, RICHARDSON, ROBERTSON, Soc. 1928, 2708; an verschiedene Kohlen aus Alkohol und Äther sowie an Blutkohle aus verschiedenen organischen Lösungsmitteln: NEKRASSOW, Ph. Ch. 136, 23, 25, 26. Ausbreitung auf Wasser oder sehr verd. Salzsäure: NEKRASSOW, Fr. Ch. 136, 25, 25, 26. Ausbreitung auf wasser oder sehr verd. Salzsaure: FRUMKIN, Ph. Ch. 116, 492, 498, 499; ADAM, Pr. roy, Soc. [A] 101, 458, 518; C. 1923 I, 271. 272; CARY, RIDEAL, Pr. roy. Soc. [A] 109, 312, 320, 329; C. 1926 I, 1126; Ausbreitung auf natriumchloridhaltiger verdünnter Salzsäure: HARKINS, MORGAN, Pr. nation. Acad. USA. 11 [1925], 638. Eigenschaften von auf Wasser oder verd. Salzsäure erzeugten Filmen: Fr.; Gorter, Grendel, Bio. Z. 192, 438, 439, 446; ADAM, JESSOP, Pr. roy. Soc. [A] 110, 426; 120, 475; C. 1926 I, 2548; 1929 I, 189. Einfluß von Cholesterin auf die Ausbreitung auf 0,02n-Salzsaure: A., JE., Pr. roy. Soc. [A] 120, 475. Potentialdifferenz an der Trennungsfläche Luft/Laurinsäureschicht auf verd. Salzsäure: FRUMKIN, Ph. Ch. 116, 492. Spezifische Leitfähigkeit von Lösungen in Wasser und mit Benzol oder Tetrachlorkohlenstoff gesättigtem Wasser bei 25°: McB., EA.

Laurinsäure gibt beim Erhitzen mit etwas Eisenpulver auf ca. 270° Trikosanon-(12) (GRÜN, ULBRICH, KRCZIL, Z. ang. Ch. 39, 423). Bei 12-stdg. Kochen einer schwach ammoniakalischen Lösung des Ammoniumsalzes mit Wasserstoffperoxyd entstehen geringe Mengen Methylnonylketon und Methylnonylcarbinol (STOKOE, Biochem. J. 22, 91). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: BHIDE, Sudborough, J. indian Inst. Sci. 8, 107; C. 1926 I, 80; mit Isobutylalkohol in Gegenwart von Chlorwasserstoff bei 25°: Goldschmidt, Ph. Ch. 124, 30. Bei 2-stdg. Erwärmen von Laurinsäure mit 2,5 Mol Oxalylchlorid entsteht Laurinsäurechlorid; bei analoger Behandlung mit 0,5 Mol Oxalylchlorid in Benzol erhält man Laurinsäureanhydrid (ADAMS. ULICH, Am. Soc. 42, 604, 607). Laurinsäureanhydrid entsteht auch bei längerem Kochen mit Acetanhydrid (HOLDE, GENTNER, B. 58, 1426). Liefert beim Erhitzen mit Zinkchlorid und Resorcin auf 250° 2.4-Dioxy-laurophenon (Klarmann, Am. Soc. 48, 2366). Beim Erhitzen mit 3-Oxy-2-acetoxymercuri-benzaldehyd auf 100° entsteht 3-Oxy-2-lauroyloxymercuri-benzaldehyd (Syst. Nr. 2353) (Henry, Sharp, Brown, Biochem. J. 19, 518).

Wird durch Schimmelpilze in Methylnonylketon übergeführt (Stärkle, Bio. Z. 151, 390, 397, 401; Acklin, Bio. Z. 204, 254; Derx. Versl. Akad. Amsterdam 33 [1924], 550).

— Bactericide Wirkung der Kalium- und Natriumsalze: Walker, Ber. Physiol. 31, 938; C. 1926 I, 1589. Wachstumshemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 129; C. 1925 I, 2699; auf Penicillium palitans und auf Oidium lactis: STOCKOE, Biochem. J. 22, 88. Insecticide Wirkung der freien Säure und ihres Ammoniumsalzes gegenüber Blattläusen: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371T; C. 1927 II, 1884. Nährwert für Ratten: Ozaki, Pr. Acad. Tokyo 3 [1927], 442; Bio. Z. 189, 238. — Nachweis durch die bei der Mikrodestillation bei 300 mm Druck erhältlichen charakteristischen Krystallformen: Niethammer, Bio. Z. 209, 456. Nephelometrische Bestimmung im Blut: BLOOB, PELKAN, ALLEN, J. biol. Chem. 52, 191.

Salze der Laurinsäure (Laurate).

Über die Zusammensetzung und die Struktur wäßr. Seifensole und Seifengele in An- und Abwesenheit von Zusätzen vgl. R. ZSIGMONDY, Kolloidchemie, 5. Aufl., Bd. 2 [Leipzig 1927], S. 176ff.; E. L. LEDERER, Kolloidchemie der Seifen [Dresden-Leipzig 1932]; H. FREUNDLICH, S. 17011.; E. L. LEDERER, Kollondchemie der Seifen [Dresden-Leipzig 1932]; H. FREUNDLICH, Kapillarchemie, 4. Aufl., Bd. 2 [Leipzig 1932]. — Lithiumlaurat LiC₁₂H₂₃O₂. Röntgenogramm (Pulveraufnahme): Becker, Jancke, Ph. Ch. 99, 270. Löslichkeit in einer verd. Lösung von Kaliumsulfat und Lithiumsulfat in Wasser bei 15°: Bertram, Z. Unters. Lebensm. 55 [1928], 180. — Saures Natriumlaurat NaC₁₂H₂₃O₂ + C₁₂H₂₄O₂. Röntgenogramm (Reflexionsaufnahme): Piper, Soc. 1929, 238. Krystalle (aus Alkohol). Krystallhabitus: Erwall, Mylius, B. 62, 2687. F: 118—119° (E., M.). Verhalten beim Schmelzen mit Campher: E., M. — Über die Existenz weiterer saurer Natriumsalze vgl. Erwall, Acta Acca. Abo. 4, Nr. 6, 204; C. 1928 I, 1156; Ek., Mylius, B. 62, 2689; vgl. dagegen Malkin, R. 83 [1930] 1800 B. 63 [1930], 1809.

[Syst. Nr. 162

Natriumlaurat NaC₁₂H₂₂O₃. Wäßrige Lösungen, die stärker als 0,026—0,028 n sind, bleiben klar, während verdünntere Lösungen nach einiger Zeit Trübungen zeigen, die langsam in einen krystallinen Niederschlag übergehen (EKWALL, Acta Acad. Abo. 4, Nr. 6, S. 43, 138; C. 1928 I, 1156). Über die Zusammensetzung und Struktur wäßr. Natriumlaurat-Lösungen vgl. außer den oben zitierten Handbüchern die Arbeiten von Ekwall (Acta Acad. Abo. 4. Nr. 6) und Salmon (Soc. 117, 535; 121, 713). Zur Klärung dieser Frage sind ferner folgende Untersuchungen einzelner Eigenschaften des Systems Natriumlaurat-Wasser angestellt worden: Röntgenographische Untersuchung: PIPER, GRINDLEY, Pr. phys. Soc. London 35, 269; C. 1924 I, 2077. Ultramikroskopische Untersuchungen: Darke, McBain, Salmon, Pr. roy. Soc. [A] 98, 401; C. 1922 II, 159. Mikroskopische Beobachtungen: Maclennan, J. Soc. chem. Ind. 42, 397 T, C. 1924 I, 1291. Nephelometrische Messungen: Ek., Acta Acad. Abo. 4, Nr. 6, 177. Ultrafiltration: PROSCH, Z. dtsch. Ol-Fettind. 42, 450; C. 1922 III, 1287; Ek., Acta Acad. Abo. 4, Nr. 6, 169, 176. Viscosität von wäßr. Natriumlaurat-Lösungen verschiedener Konzentration: Ek., Acta Acad. Abo. 4, Nr. 6, S. 178; in Gegenwart von überschüssiger Laurinsäure: Ek., Acta Acad. Abo. 4, Nr. 6, S. 191; in Gegenwart von überschüssiger Natronlauge: P., Z. dtsch. Öl-Fettind. 42, 433. Dampfdruck wäßr. Lösungen bei 90°: McB., Sal., Am. Soc. 42, 436. Viscosität eines Gemisches von Natriumlaurat und Natriumoleat in wäßr. Lösung bei 13°: FREUNDLICH, JORES, Koll. Beih. 22, 29. Oberflächenspannung währ. Lösungen verschiedener Konzentration bei 17°: Ek., Acta Acad. Abo. 4, Nr. 6, 140; bei 18°: LASCARAY, Koll.-Z. 34, 76; C. 1924 I, 2413; bei 60°: WALKER, Soc. 119, 1523, 1524; bei 40°, 60° und 80°: Hirose, J. Soc. chem. Ind. Japan Spl. 31, 43; C. 1928 II, 504; einer 0,1 und einer 0,5 %igen währigen Lösung zwischen 15° und 90°: WA. Veränderung der Oberflächenspannung einer wäßr. Lösung mit dem Alter: WA.; Ek., Acta Acad. Abo. 4, Nr. 6, 141, 142. Einfluß der Wasserstoffionen-Konzentration auf die Oberflächenspannung einer Natriumlaurat-Lösung: Jarisch, Bio. Z. 134, 167; Ek., Acta Acad. Abo. 4, Nr. 6, 202. Oberflächenspannung überschüssige Laurinsäure enthaltender Lösungen: Ek., Acta Acad. Abo. 4, Nr. 6, 193. Grenzflächenspannung von wäßr. Natriumlaurat-Lösung gegen Benzol in Gegenwart oder Abwesenheit von Natriumchlorid: DUBRISAY, C. r. 182, 1218. Schutzwirkung auf kolloide Gold-Lösungen in Wasser: PROSCH, Z. dtsch. Ol-Fettind. 42, 411, 425, 433; C. 1922 III, 1287; IREDALE, Soc. 119, 626. Abkühlungskurve einer 0,5 nwäßrigen und einer 0,125 n-alkoholischen gelatinierenden Lösung: M. H. Fischer, Koll.-Z.
46, 360, 362; C. 1929 II, 399. Leitfähigkeit verschieden konzentrierter wäßriger Natrium-laurat-Lösungen bei 17°: Ek., Acta Acad. Abo. 4, Nr. 6, 153, 154; Beeinflussung der Leitfähigkeit durch Zusatz von Laurinsäure: Ek., Acta Acad. Abo. 4, Nr. 6, 184; durch Zusatz von Natronlauge: Pr., Z. dtsch. Öl-Fettind. 42, 434; durch das Alter der Lösung: Ek., Acta Acad. Abo. 4, Nr. 6, 155. Konduktometrische Titration wäßr. Lösungen mit Salzsäure bei 170: Ek., Koll.-Z. 45, 293, 298, 299; C. 1928 II, 1594. Hydrolyse in waßr. Lösung bei 17º: Ek., Acta Acad. Abo. 4, Nr. 6, 160, 161, 189; bei 20° und 90°: McB., HAY, Soc. 1929, 596; bei 25°: McB., EATON, Soc. 1928, 2171; vgl. auch STOCKS, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786. — Zusammensetzung des Schaumes wäßr. Lösungen: Pr., Z. disch. Öl-Fettind. 42, 451. Zur Oberflächenspannung verdünnter wäßriger Lösungen vgl. a. KAWAKAMI, C. 1929 I, 1549. Oberflächenspannung wäßr. Lösungen von binären Gemischen von Natriumlaurat mit myristinsaurem, stearinsaurem, arachinsaurem und ölsaurem Natrium bei 60°: Wa.; von binären und terraren Gemischen mit Natriumoleat und Natriummyristat: Hirose, J. Soc. chem. Ind. Japan Spl. 31, 16, 43; sowie von binären und ternären Gemischen mit Natriumstearat und Natriumoleat bei 40°, 60° und 80°: H., J. Soc. chem. Ind. Japan Spl. 31, 46. Schaumbildung wäßr. Lösungen ternärer Gemische von Natriumlaurat, Natriumpalmitat und Natriumoleat: Kawakami, J. Soc. chem. Ind. Japan Spl. 30, 60 B; C. 1929 II, 2125. Waschwirkung: Chapin, C. 1928 II, 1159. Zusammensetzung der aus Natriumlaurat-Lösungen durch Aussalzen mit konz. Natriumchlorid-Lösung bei 900 ausgeschiedenen Seife: Losungen durch Aussalzen mit konz. Natriumchlorid-Losung bei 90° ausgeschiedenen Seife: McB., Salmon, Soc. 119, 1378. Zusammensetzung der festen und flüssigen Phasen im ternären System Natriumlaurat-Natriumchlorid-Wasser: McB., Burnett, Soc. 121, 1320. Saures Kaliumlaurat KC₁₂H₂₂O₂ + C₁₂H₂₄O₃. B. Beim Erhitzen von Laurinsäure mit Kaliumlaurat in Benzol (McBain, Eaton, Soc. 1928, 2175). Beim Überleiten von Kohlendioxyd über eine wäßr. Lösung von Kaliumlaurat (McB., E.). Nadeln. F: 160° (Stezenko, Maslob. žir. Delo 1926, Nr. 7/8, 35; C. 1927 I, 1426). Unlöslich in Wasser und Benzol (McB., E.). Bei 18° löst sich 1 g in 36 cm² 95% igem Alkohol (St.). Emulgiert besser als die Neutralseife (McB., E.). Wird durch Wasser bei 100° noch nicht merklich hydrolysiert (St.). Zerfällt, bei längerer Extraktion mit Ather oder Chloroform in Laurinefure. (Sr.). Zerfällt bei längerer Extraktion mit Äther oder Chloroform in Laurinsäure und neutrales Kaliumlaurat (St.). — Kaliumlaurat KC₁₁H₁₈O₂. Röntgenographische Untersuchung (Reflexionsaufnahme): PIPER, Soc. 1929, 236. Bei 25° lösen 100 g Wasser 70 g, 100 g Benzol 0,005 g Kaliumlaurat (MoBain, Eaton, Soc. 1928, 2167). Zusammensetzung der festen und flüssigen Phasen im binären System Kaliumlaurat-Wasser zwischen 0° und 380°: McBair, Field, J. phys. Chem. 30, 1549; im ternären System Kaliumlaurat-Kalium-chlorid-Wasser zwischen 18° und 225°: McB., F. Zur Zusammensetzung und Struktur wäßr.

Kaliumlaurat-Lösungen vgl. außer den oben zitierten Handbüchern die Arbeiten von McBain, Jenkins (Soc. 121, 2325), McB., Bowden (Soc. 123, 2417) und Salmon (Soc. 117, 534; 121, 713), ferner folgende Untersuchungen über Eigenschaften von Kaliumlaurat-Lösungen: Ultrafiltration: McB., Jen., Soc. 121, 2333. Dampfdruck wäßer. Lösungen bei 90°: McB., Sa., Am. Soc. 42, 436; bei 18° in Gegenwart von Kaliumchlorid: Quick, Soc. 127, 1405. Hydrolyse bei 12—18°: McB., Jen., Soc. 121, 2335; bei 20° und 90°: McB., Hay, Soc. 1929, 596; bei 25° in An- und Abwesenheit von Kaliumchlorid und freier Laurinsäure: McB., Eaton, Soc. 1928, 2170, 2175. Elektrische Leitfähigkeit wäßer. Lösungen von Kaliumlaurat in Gegenwart von Kaliumchlorid bei 18°: Q. Überführungszahlen für Kaliumlaurat in Wasser oder Wasser + Glycerin bei 18°: McBain, Bowden, Soc. 123, 2422; in Wasser zwischen 13° und 18° in An- und Abwesenheit von Kaliumchlorid: Q. Elektromotorische Kräfte von Kaliumlaurat-Lösungen enthaltenden Ketten: Salmon, Soc. 117, 534; 121, 713. Adsorption aus alkoh. Lösung an Tierkohle bei 20° in An- und Abwesenheit von Kaliummyristat oder Kaliumoleat: Mikumo, J. Soc. chem. Ind. Japan Spl. 32, 179 B; C. 1929 II, 1513. Zur Adsorption aus wäßer. oder alkoh. Lösung vgl. a. Mi., J. Soc. chem. Ind. Japan Spl. 30, 215 B; C. 1928 I, 1373.

Magnesiumlaurat. Löslichkeit in einer verd. Lösung von Kaliumsulfat oder Magnesiumsulfat in Wasser bei 15°: Bertram, Z. Unters. Lebensm. 55 [1928], 180. — Calciumlaurat. Fettige Substanz (Klimont, J. pr. [2] 109, 272). Löslichkeit in Mineralöl: Kl. — Zinklaurat Zn(C₁₂H₂₃O₂)₂. F: 129° (Klarmann, Am. Soc. 48, 2366). — Bleilaurat. B. Durch Einw. von Laurinsäure auf Blei (Trillat, C. r. 180, 1839; Ann. Physique [10] 6, 76). Röntgenreflexionsaufnahme: Tr. — Thallium(I)-laurat TlC₁₂H₂₃O₂. Krystalle (aus Alkohol + Aceton), Nadeln (aus Alkohol). F: 123° (korr.) (Walter, B. 59, 968), 125—126° (Holde, Takehara, B. 58, 1790). Bildet zwei feste krystalline Phasen (W.). Die Schmelze ist zwischen 123° und 197° (korr.) krystallin-flüssig (W.). Löslichkeit in 50%igem Alkohol bei 15° in An- und Abwesenheit von Thalliumsulfat: H., T. Schmelzpunkte von Gemischen mit palmitinsaurem Thallium: W.

Methyllaurat $C_{12}H_{24}O_2 = CH_3 \cdot [CH_2]_{10} \cdot CO_2 \cdot CH_3$ (H 361; E I 156). Kp₁₀: 134—136° (Halden-Grün, Analyse der Fette und Wachse, Bd. 1 [Berlin 1925], S. 233). — Nährwert für Ratten: Ozaki, C. 1928 I, 541. Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884.

Äthyllaurat $C_{14}H_{38}O_3=CH_3\cdot[CH_3]_{10}\cdot CO_2\cdot C_2H_5$ (H 361; E I 156). E: —10,65° (korr.); Kp: 190 \pm 1° (korr.) (Timmermans, Bl. Soc. chim. Belg. 31, 391; C. 1923 III, 1137). Dichte zwischen 20° (0,862) und 143° (0,774): Laursch, Ph. Ch. [B] 1, 127. n_α : 1,43178; n_β : 1,43925; n_γ : 1,44357 (L.). Depolarisationsgrad des an flüssigem Laurinsäureäthylester bei 20° zerstreuten Lichtes: L. Dielektr.-Konst. zwischen 20° (3,44) und 143° (2,73): L. Dipolmoment $\mu=1,3\cdot10^{-18}$ (L.). Eigenschaften dünner Filme von Athyllaurat auf Wasser bei 11,5—13,5°: Adam, Jessop, Pr. roy. Soc. [A] 110, 427; C. 1926 I, 2548. Nährwert für Ratten: Ozaki, C. 1928 I, 541; Bio. Z. 189, 236.

Propyllaurat $C_{15}H_{20}O_2 = CH_2 \cdot [CH_2]_{10} \cdot CO_2 \cdot CH_2 \cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Laurinsäure in Propylalkohol (Rheinboldt, König, Otten, A. 473, 258). — Kp_{18} : 155—156°.

[β.β'-Dichlor-isopropyl]-laurat, Glycerin-α.α'-dichlorhydrin-laurat, β-Lauro-α-dichlorhydrin $C_{15}H_{28}O_2Cl_2=CH_3\cdot [CH_2]_{10}\cdot CO_2\cdot CH\cdot (CH_2Cl)_2\cdot (EI 156)$. B. Durch Behandeln einer Lösung von Laurinsäure in Glycerin mit Chlorwasserstoff (Humnicki, Bl. [4] 45, 281). Aus α-Dichlorhydrin und Laurinsäurechlorid in trocknem Chloroform bei Gegenwart von Chinolin (Fairbourne, Foster, Soc. 1926, 3151). — F: 3°. Kp₁: 155—160° (F., F.); Kp₁₂: 200°; Kp₁₅: 204—206° (Hu.). D²⁰: 1,032 (Hu.). n²⁰: 1,459 (Hu.).

Butyllaurat $C_{16}H_{33}O_2 = CH_3 \cdot [CH_3]_{10} \cdot CO_3 \cdot [CH_2]_3 \cdot CH_3$. B. Aus Laurinsäure und Butylalkohol in Gegenwart von Schwefelsäure (Rheinboldt, König, Otten, A. 473, 258). — Kp₁₈: 180°.

n-Hexyl-laurat $C_{18}H_{36}O_8=CH_3\cdot [CH_2]_{10}\cdot CO_3\cdot [CH_2]_5\cdot CH_8$. Bei Einw. von Chlorwasserstoff auf eine Lösung von Laurinsäure in n-Hexylalkohol (Rheinboldt, König, Otten, A. 478, 258). — Kp_{10} : 199°.

n-Octyl-laurat $C_{20}H_{40}O_3=CH_3\cdot [CH_3]_{10}\cdot CO_3\cdot [CH_3]_7\cdot CH_3$. B. Aus Laurinsäure und n-Octylalkohol beim Behandeln mit Chlorwasserstoff (Rheinboldt, König, Otten, A. 478, 258). — Kp₁₇: 204—205°.

Trikosyl-(12)-laurat, Di-n-undecyl-carbinol-laurat $C_{35}H_{70}O_2 = CH_3 \cdot [CH_3]_{10} \cdot CO_2 \cdot CH([CH_3]_{10} \cdot CH_3)_3$. B. Aus Trikosanol-(12) und Laurinsäurechlorid auf dem Wasserbad unter Einleiten von Kohlendioxyd (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallin (aus Essigester). F: 21,5—22,5°. Sehr leicht löslich in Äther, Petroläther, Benzol, Chloroform und Tetrachlorkohlenstoff, unlöslich in kaltem Alkohol.

Heptakosyl-(14)-laurat, Di-n-tridecyl-carbinol-laurat $C_{39}H_{78}O_2 = CH_3 \cdot [CH_2]_{10} \cdot CO_2 \cdot CH([CH_2]_{12} \cdot CH_3)_2$. B. Aus Heptakosanol-(14) und Laurinsäurechlorid auf dem Wasserbad unter Einleiten von Kohlendioxyd (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallin (aus Essigester). F: 34—35°. Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetracnlorkohlenstoff, unlöslich in kaltem Alkohol.

Hentriakontyl-(16)-laurat, Di-n-pentadecyl-carbinol-laurat $C_{43}H_{86}O_2=CH_3\cdot [CH_2]_{10}\cdot CO_2\cdot CH([CH_2]_{14}\cdot CH_3)_2$. B. Aus Hentriakontanol-(16) und Laurinsäurechlorid auf dem Wasserbad unter Einleiten von Kohlendioxyd (GRÜN, ULBRICH, KRCZIL, Z. ang. Ch. 39, 427). — Mikrokrystallin (aus Essigester). F: 39,5—40,5° (korr.). Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in Alkohol.

Pentatriakontyl-(18) -laurat, Di-n-heptadecyl-carbinol-laurat C_4 7 $H_{94}O_2 = CH_3$ · $[CH_2]_{10} \cdot CO_2 \cdot CH([CH_2]_{16} \cdot CH_3)_2$. B. Aus Pentatriakontanol-(18) und Laurinsäurechlorid auf dem Wasserbad unter Einleiten von Kohlendioxyd (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427, 428). — Mikrokrystallin (aus Essigester). F: 42.5—43,5° (korr.). Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in Alkohol.

Äthylenglykoldilaurat $C_{28}H_{50}O_4 = CH_3 \cdot [CH_2]_{10} \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO \cdot [CH_2]_{10} \cdot CH_3$ (H 361). Adhäsionsenergie von Wasser an der Oberfläche von festem Äthylenglykoldilaurat: Nietz, $J.\ phys.\ Chem.\ 32,\ 262.$

 γ -Jod-propylenglykol-dilaurat $C_{27}H_{51}O_4I = CH_3 \cdot [CH_2]_{10} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{10} \cdot CH_3) \cdot CH_2I$. B. Bei der Einw. von Lauroylehlorid auf Glycerin-α-jodhydrin in Chinolin + Chloroform bei Zimmertemperatur (AVERILL, ROCHE, KING, Am. Soc. 51, 869). — Krystalle (aus Methanol + Äther). F: 23,5°. — Liefert beim Kochen mit Silbernitrit in verd. Alkohol α.α'-Dilaurin.

Glycerin-α-laurat, α-Monolaurin C₁₆H₃₀O₄ = CH₃· [CH₂]₁₀· CO·O·CH₂·CH(OH)·CH₂·OH (H 362; E1 157). Diese Konstitution kommt der E I 2, 158 als β-Monolaurin beschriebenen Verbindung zu (Fairbourne, Foster, Soc. 1926, 3150). — B. Beim Erhitzen von α-Monochlorhydrin mit Natriumlaurat im Ölbad auf 130° (Heiduschka, Schuster, J. pr. [2] 120, 156). Aus Glycerin-α-β-isopropylidenäther-laurat (Syst. Nr. 2691) durch 24-stdg. Einw. von 0,25 n-Schwefelsäure bei 40° (Averill, Roche, King, Am. Soc. 51, 869) oder durch Einw. von konz. Salzsäure auf die Lösung in Äther (E. Fischer, Bergmann, Bärwind, B. 53, 1600) oder in Chloroform (Av., Ro., King) unter starker Kühlung. Aus β-Oxy-γ-lauroyloxy-propylamin-hydrochlorid und Natriumnitrit in 50% iger Essigsäure bei 0° (Ber., Sabetay, H. 137, 55). —Fettig glänzende Blättchen (aus Petroläther oder Tetrachlorkohlenstoff). F: 62—63° (Ber., Sa.; Fi., Ber., Bär.), 63° (Av., Ro., King). Leicht löslich in Äther, Chloroform und Aceton, ziemlich leicht in Benzol (Fi., Ber., Bär.). Ausbreitung auf Wasser bei 14,5°: Adam, Jessop, Pr. roy. Soc. [A] 112, 368; C. 1926 II, 2399. — Gibt bei zweitägigem Schütteln mit Aceton in Gegenwart von Chlorwasserstoff und Natriumsulfat Glycerin-α-β-isopropylidenäther-laurat (Syst. Nr. 2691) (Fi., Ber., Bär.). Gleichgewicht der Reaktion mit Aceton in Gegenwart von Chlorwasserstoff bei 20—23°: Grün, Limpächer, B. 59, 703.

Uber die Bildung von optisch-aktivem α -Monolaurin aus optisch-aktivem β -Oxy- γ -lauroyloxy-propylaminhydrochlorid vgl. Bergmann, Sabetay, H. 137, 57, 581)

Glycerin - β - laurat, β - Monolaurin $C_{15}H_{30}O_4=CH_2\cdot[CH_2]_{10}\cdot CO\cdot O\cdot CH(CH_2\cdot OH)_2$ (H 362; E I 158). Die E I 158 als β -Monolaurin beschriebene Verbindung ist nach Fairbourne, Foster (Soc. 1926, 3150) α -Monolaurin.

Glycerin- $\alpha.\alpha'$ -dilaurat, $\alpha.\alpha'$ -Dilaurin, α -Dilaurin $C_{27}H_{52}O_5 = HO \cdot CH(CH_2 \cdot O \cdot CO \cdot [CH_2]_{10} \cdot CH_3)_2$ (H 362; E I 158). B. Durch Kochen von γ -Jod-propylenglykol-dilaurat mit Silbernitrit in verd. Alkohol (AVERILL, ROCHE, KING, Am. Soc. 51, 869). — Tafeln (aus Alkohol). F: 56.6°.

Glycerintrilaurat, Trilaurin, Laurin C₃₉H₇₄O₆ = CH₃·[CH₂]₁₀·CO·O·CH(CH₂·O·CO·[CH₂]₁₀·CO·O·CH(CH₂·O·CO·[CH₂]₁₀·CO·O·CH(CH₂·O·CO·[CH₂]₁₀·CO·O·CH(CH₂·O·CO·[CH₂]₁₀·CO·O·CH(S)₂ (H 362; E I 158). V. Über das Vorkommen von Trilaurin vgl. D. Holde, Kohlenwasserstofföle und Fette, 6. Aufl. [Berlin 1924]; W. Halden, A. Grün, Analyse der Fette und Wachse, Bd. 2 [Berlin 1929]; C. Wehmer, Die Pflanzenstoffe, 2. Aufl. [Jena 1931]. B. Bei längerer Einwirkung von Lauroylchlorid auf α.α'-Dilaurin in Chinolin + Chloroform bei Zimmertemperatur (Averill, Roche, King, Am. Soc. 51, 870). — Tritt nach Clarkson, Malkin (Soc. 1934, 667) in 3 Modifikationen auf, die durch geeignete Art des Erhitzens bzw. Abkühlens erhalten werden. Stabile Form. E: 45,3°; F: 46.2° (Joglekar, Watson, J. Soc. chem. Ind. 47, 367 T; C. 1929 I, 988), 46,4° (Cl.., Ma.; Loskit, Ph. Ch. 134, 137). — Instabile krystalline Form. F: 36,4° (Lo.), 35.0° (Cl., Ma.). — Instabile glasige Form. F: 18° (Jo., Wa.), 15° (Cl., Ma.). — Die folgenden Angaben beziehen sich auf die stabile

¹⁾ Nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] ist ein optischaktives α-Monolaurin von BAER, H. O. L. FISCHER (Naturwiss. 25 [1937], 588; J. biol. Chem. 128 [1939], 484) beschrieben worden.

Form. — D₀.: 0,8943; Oberflächenspannung: 27,9 dyn/cm; Viscosität bei 70°: 0,1030 g/cm sec (Jo., Wa.). Verbrennungswärme bei konstantem Volumen: 5703 Kcal/Mol (Karrer, B. 55, 2858, Anm. 1). n₀.: 1,4402 (Jo., Wa.). Löslichkeit in Alkohol und Chinolin und in äquimole-kularen Gemischen beider bei 20—25°: Pucher, Dehn, Am. Soc. 43, 1755; in Benzol, Ather, Chloroform und Schwefelkohlenstoff bei verschiedenen Temperaturen: Lo. Ausbreitung auf Wasser: Labrouste, Ann. Physique [9] 14, 198; auf Wasser, 0,001 n-Salzsäure und 0,1 n-Salzsäure: Gorter, Grendel, Bio. Z. 192, 446. Ausbreitung von Gemischen mit Tribenzoin oder Trimyristin auf Wasser: Collet, C. r. 174, 544. — Geschwindigkeit der Verseifung durch 0,1 n-Natronlauge bei ca. 90°: McBain, Howes, Thorburn, J. phys. Chem. 31, 139; McB., Humphreys, Kawakami, Soc. 1929, 2191. Nährwert für Ratten: Ozaki, Bio. Z. 189, 234; C. 1928 I, 541.

H 362, Z. 19 v. u. statt "Fangkallak-Fett" lies "Tangkallak-Fett".

Laurinsäureanhydrid $C_{24}H_{46}O_3 = CH_3 \cdot [CH_3]_{10} \cdot CO \cdot O \cdot CO \cdot [CH_3]_{10} \cdot CH_3$ (H 362). B. Beim Kochen von 2 Mol Natriumlaurat in Benzol mit 1 Mol Oxalylchlorid (Adams, Ulloh. Am. Soc. 42, 607). Durch längeres Erhitzen von Laurinsäure mit überschüssigem Acetanhydrid zu schwachem Sieden unter Ausschluß der Lufteuchtigkeit (Holde, Gentner, B. 58, 1423). — Blättchen (aus Alkohol). F: 41,8°; D_1^∞ : 0,8552; n_0^∞ : 1,4292 (H., G.). — Hydrolyse beim Schütteln der Lösung in Petroläther mit 5 %iger Sodalösung: H., G.

Laurinsäurechlorid, Lauroylchlorid C₁₂H₂₅OCl = CH₃·[CH₃]₁₀·COCl (H 363; E I 159).

B. Beim Erwärmen von Laurinsäure mit 2,5 Mol Oxalylchlorid (Adams, Ulich, Am. Soc. 42, 604). — Kp₁₅: 143—148° (Gault, Ehrmann, Bl. [4] 39, 876); Kp₂₀: 145—147° (Ad., U.); Kp₂₈: 150° (Averill, Roche, King, Am. Soc. 51, 868); Kp₄₇: 175—176° (Hann, Jamieson, Am. Soc. 50, 1443). — Läßt man Natriumacetessigester auf Laurinsäurechlorid einwirken und behandelt die Lösung des Reaktionsprodukts in Ather mit Ammoniak, so entsteht β-Oxo-myristinsäure-äthylester (Asahina, Narayama, J. pharm. Soc. Japan 1925, Nr. 526, 5). — Verwendung zur Bestimmung flüchtiger Alkohole: Grün, Wirth, C. 1921 II, 978.

Laurinsäureamid $C_{12}H_{25}ON = CH_3 \cdot [CH_2]_{10} \cdot CO \cdot NH_2$ (H 363). F: 98—99° (Asano, C. 1922 I, 1227).

Laurinhydroxamsäure $C_{12}H_{25}O_2N=CH_3\cdot[CH_2]_{10}\cdot CO\cdot NH\cdot OH$. B. Durch Einw. einer siedenden methylalkoholischen Lösung von Hydroxylaminhydrochlorid auf Laurinsäureäthylester in Gegenwart von Natriumäthylat-Lösung (Lewis, Biochem. J. 20, 1359). — Krystalle. F: 82,5°. Löslich in warmem Alkohol und in Äther, sehr schwer in verd. Alkohol. Gibt mit alkoholischer Eisenchlorid-Lösung eine violette Färbung. — Natriumsalz. Ziemlich leicht löslich in Alkohol (L.).

- α-Brom-lauroylbromid $C_{19}H_{23}OBr_2 = CH_3 \cdot [CH_2]_0 \cdot CHBr \cdot COBr$. B. Aus Laurinsäurebromid durch Einw. von Brom und Phosphor (Fourneau, Nicolitch, Bl. [4] 43, 1239).— Kp₄₅: 188°.
- \varkappa -Brom-lauronitril, 10-Brom-1-cyan-undecan $C_{12}H_{22}NBr=CH_3\cdot CHBr\cdot [CH_2]_9\cdot CN$. B. Man sättigt Undecen-(10)-carbonsäure-(1)-nitril mit Bromwasserstoff unter Kühlung (Сниг, Mitarb., Helv. 10, 177). Öl. Zersetzt sich bei der Destillation unter Bromwasserstoff-Abspaltung. D^{15} : 1,100.
- 12-Brom-dodecansäure-(1), ω -Brom-laurinsäure $C_{12}H_{22}O_2Br=CH_2Br\cdot [CH_2]_{10}$ · CO_2H . B. Beim Aufbewahren von Sabinsäure (Syst. Nr. 223) mit einer 50% igen Lösung von Bromwasserstoff in Eisessig bei gewöhnlicher Temperatur und nachfolgenden Erwärmen auf 100° (Chuit, Hausser, Helv. 12, 479). Krystalle (aus Petroläther). F: 52—52,2°. Leicht löslich in organischen Lösungsmitteln.

Methylester $C_{13}H_{25}O_2Br = CH_2Br \cdot [CH_2]_{10} \cdot CO_2 \cdot CH_3$. B. Beim Behandeln von Sabininsäure (Syst. Nr. 223) mit methylalkoholischer Bromwasserstoffsäure auf dem Wasserbad (Bhattacharya, Saletore, Simonsen, Soc. 1928, 2680). — Nicht rein erhalten. Nadeln (aus Methanol). F: ca. 50°. — Gibt beim Erhitzen mit Decin-(1)-natrium in Xylol auf 160° und Verseifen des Reaktionsprodukts mit methylalkoholischer Kalilauge Behenolsäure.

2. Undecan-carbonsäure-(3), α -Äthyl-caprinsäure, Äthyl-n-octyl-essigsäure $C_{12}H_{24}O_3=CH_3\cdot [CH_2]_7\cdot CH(C_2H_5)\cdot CO_2H$. B. Durch Erhitzen von Äthyl-n-octyl-malonsäure (v. Braun, Teuffert, B. 62, 238). — Flüssigkeit. Kp_{12} : 186°.

Äthylester $C_{14}H_{28}O_2=CH_3\cdot[CH_2]_7\cdot CH(C_2H_5)\cdot CO_2\cdot C_2H_5$. Kp_{12} : 135—137° (v. Braun, Teuffert, B. 62, 238). — Liefert bei der Reduktion mit Natrium und Alkohol β -Äthylndeeyl-alkohol (E II 1, 463).

3. Undecan - carbonsäure - (4), Propyl-n-heptyl-essigsäure $C_{12}H_{24}O_2=CH_2\cdot [CH_2]_4\cdot CH(CH_2\cdot C_2H_5)\cdot CO_2H$. B. Beim Erhitzen von Propyl-n-heptyl-malonsäure im Vakuum (v. Braun, Kröper, B. 62, 2882). — Flüssigkeit. Kp₁₀: 160—162°.

Äthylester $C_{14}H_{26}O_2 = CH_3 \cdot [CH_2]_6 \cdot CH(CH_2 \cdot C_2H_5) \cdot CO_2 \cdot C_2H_5$. Kp₁₅: 135° (v. Braun, Kröper, B. 62, 2882). — Gibt bei der Reduktion mit Natrium und Alkohol β -Propyl-n-nonylakohol (E II 1, 463).

4. Undecan-carbonsdure-(5), α -n-Hexyl-capronsdure, Butyl-n-hexyl-essigsdure $C_{12}H_{24}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH([CH_2]_3 \cdot CH_3) \cdot CO_2H$. B. Beim Erhitzen von Butyl-n-hexyl-malonsäure im Vakuum (v. Braun, Kröper, B. 62, 2883). — Flüssigkeit. Kp₁₃: 168—170°.

Äthylester $C_{14}H_{28}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH([CH_2]_3 \cdot CH_3) \cdot CO_2 \cdot C_2H_5$. Kp₁₂: 134—136° (v. Braun, Kröper, B. 62, 2883). — Gibt bei der Reduktion mit Natrium und Alkohol β -Butyl-n-octylalkohol (E II 1, 463).

5. 2.2-Dimethyl-decansäure-(1), 2-Methyl-decan-carbonsäure-(2). Dimethyl-n-octyl-essigsäure $C_{12}H_{24}O_2=CH_3\cdot[CH_2]_7\cdot C(CH_3)_2\cdot CO_2H$.

Amid $C_{12}H_{25}ON = CH_2 \cdot [CH_2]_7 \cdot C(CH_3)_2 \cdot CO \cdot NH_2$. B. Durch längeres Kochen von $\omega.\omega$ -Dimethyl- ω -n-octyl-acetophenon mit 2 Mol Natriumamid in Toluol und Zersetzen des Reaktionsprodukts mit Wasser (BLONDEAU, Bl. [4] 48, 345). — Blättchen. F: 92°; Kp₁₆: 205°. — Gibt bei der Reduktion mit Natrium und Alkohol 2.2-Dimethyl-decanol-(1) und geringe Mengen 1-Amino-2.2-dimethyl-decan.

6. 2.6-Dimethyl-decansäure-(10). 4.8-Dimethyl-nonan-carbonsäure-(1) $C_{12}H_{24}O_2 = (CH_3)_2CH \cdot [CH_2]_3 \cdot CH(CH_3) \cdot [CH_2]_3 \cdot CO_3H$. Diese Konstitution kommt vielleicht einer von Willstätter, Mayer, Hüni (4. 378 [1940], 145) beim oxydativen Abbau von Phytol erhaltenen und unter der Formel $C_{10}H_{20}O_3$ beschriebenen Säure zu (F. G. Fischer, Löwenberg. A. 475, 204). — B. Durch Säurespaltung von α -Tetrahydrogeranyl-acetessigsäure äthylester (F., L.). — Schwach riechendes Öl; Kp_{10} : 159,5—160,5°; D_1^{in} : 0,8862 (F., L.). [Hackenthal]

13. Carbonsäuren $C_{13}H_{26}O_2$.

1. Tridecansäure, Dodecan-carbonsäure -(1), Tridecylsäure C₁₂H₂₆O₂ = CH₃·[CH_{2]11}·CO₂H (H 364; E I 159). V. Im Irisöl (Langlais, Goby, C. r. 179, 175; Bl. [4] 35, 1309). — B. Neben anderen Produkten beim Erhitzen von Paraffin mit verd. Sodalösung auf ca. 170° bei gleichzeitigem Durchpressen von Luft unter Druck in Gegenwart von Eisen, Mangan oder Kupfer (F. Fischer, Schneider, B. 53, 922; vgl. a. F., Schn., Abh. Kenntnis Kohle 4, 26, 129). Man behandelt 8-Oxy-dodecan-carbonsäure-(1)-methylester mit Phosphortribromid, kocht den entstandenen 8-Brom-dodecan-carbonsäure-(1)-methylester mit alkoh. Kalilauge und hydriert das Reaktionsprodukt in Gegenwart von Platinoxyd unter 2—3 Atm. Druck in Alkohol (Noller, Adams, Am. Soc. 48, 1079). Bei der Oxydation von Sphingosin (Syst. Nr. 356) mit Chromsäure in Eisessig entsteht nicht Tridecylsäure (Levene, West, J. biol. Chem. 16, 551; 18, 482; Lapworth, Soc. 103, 1032), sondern Myristinsäure (Klenk, H. 185, 169, 175). — Darst. Durch Kochen von 1-Brom-dodecan mit Kaliumcyanid in verd. Alkohol und Verseifen des Reaktionsprodukts mit siedender Kalilauge (Ruzicka, Stoll, Schinz, Helv. 11, 685; Ruhoff, Org. Synth. 16 [1936], 36).

Existiert nach Garner, Madden, Rushbrooke (Soc. 1926, 2500) in einer α-Form und einer β-Form, nach de Boer (Nature 119, 634; C. 1927 II, 371) in einer α-, einer β_1 - und einer β_1 - Form. Umwandlungspunkt der beiden β-Modifikationen in die α-Modifikation und umgekehrt: 32° (de B.). Bei niedrigerer Temperatur entsteht immer (manchmal vermischt mit der β_1 - Form) die stabilere β_1 - Form (de B.). Röntgendiagramm der drei Formen (Reflexions-aufnahmen): de B. Krystalle (aus Petroläther). F: 40,0° (Ozaki, Bio. Z. 177, 159), 41,2° (de B.), 42—42,5 (korr.) (N., A.), 43° (Robinson, Soc. 125, 230). E: 41,1° (G., M., Rush.). Mittlere spezifische Wärme der α-Form: 0,4307 cal/g; der β-Form: 0,4322 cal/g; der flüssigen Substanz: 0,5456 cal/g (G., M., Rush.). Schmelzwärme der α-Form: 37,43 cal/g, der β-Form: 41,81 cal/g (G., M., Rush.). n_{α}^{∞} : 1,4228; n_{α}^{∞} : 1,4249; n_{β}^{∞} : 1,4301; n_{γ}^{∞} : 1,4344 (Waterman, Bertram, R. 46, 701). Verringert die Oberflächenspannung von Wasser (Nietz, J. phys. Chem. 32, 262). Kontaktwinkel der α- und β-Form mit Wasser: N. — Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur monomolekularer Schichten bei verschiedenen Temperaturen und Drucken vgl. Adam, Pr. roy. Soc. [A] 101, 457, 518; C. 1923 I, 271, 272; A., Jessop, Pr. roy. Soc. [A] 110, 426; C. 1926 I, 2548.

Liefert bei der Einw. von Penicillium glaucum Methyl-n-decyl-keton (Acklin, Bio. Z. 204, 254). — Insecticide Wirkung der freien Säure und ihres Ammoniumsalzes: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884. — KC₁₃H₂₅O₂. Röntgenogramm (Reflexionsaufnahme): Piper, Soc. 1929, 236. — Zinksalz. Nadeln (aus Isoamylalkohol). F: 128^o (Robinson, Soc. 125, 230). Schwer löslich in kochendem Alkohol.

Äthylester $C_{15}H_{30}O_3 = CH_3 \cdot [CH_2]_{11} \cdot CO_2 \cdot C_2H_5$. $Kp_{60}: 197-198^{\circ}; Kp_{30}: 178-180^{\circ}; Kp_5: 163-165^{\circ} (Ruhoff, Org. Synth. 16 [1936], 35); Kp₁₂: 155° (Ruzicka, Stoll, Schinz, Helv. 11, 686).$

Glycerin-tri-tridecylat, Tritridecylin, Tridecylin $C_{42}H_{80}O_6 = CH_3 \cdot [CH_2]_{11} \cdot CO \cdot CH(CH_4 \cdot O \cdot CO[CH_2]_{11} \cdot CH_3)_2$. B. Aus Glycerin und Tridecylsäure in Gegenwart von aus Naphthalin, Ölsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens bei 100° (OZAKI, Bio. Z. 177, 159; Pr. Acad. Tokyo 2, 12; C. 1926 II, 2192). — Nährwert für Ratten: O.

13-Brom-tridecansäure-(1), ω -Brom-tridecylsäure $C_{13}H_{16}O_3Br=CH_3Br\cdot[CH_3]_{11}\cdot CO_3H$. B. Beim Aufbewahren von 12-Oxy-dodecan-carbonsäure-(1) mit einer 50 %igen Lösung von Bromwasserstoff in Eisessig bei gewöhnlicher Temperatur und nachfolgenden Erwärmen auf dem Wasserbad (Chuit, Hausser, Helv. 12, 480). Neben ω -Brom-tridecylsäure-[ω -brom-tridecylester] bei der Oxydation von 13-Brom-tridecanol-(1) mit Chromsäure in essigsaurer Lösung (Ch., H.). — Krystalle (aus Petroläther). F: 59—59,2°. Kp_{1,5}: 190—192°. Löslich in Äther, Benzol, Alkohol und heißem Petroläther.

ω-Brom-tridecylsäure-methylester $C_{14}H_{17}O_2Br=CH_2Br\cdot[CH_2]_{11}\cdot CO_2\cdot CH_3$. B. Beim Erhitzen von ω-Brom-tridecylsäure, ω-Brom-tridecylsäure-nitril oder ω-Brom-tridecylsäure-amid mit Methanol und konz. Schwefelsäure auf dem Wasserbad (Chuit, Mitarb., Helv. 10, 183). — Kp₄: 175°. D^{18} : 1,090.

ω-Brom-tridecylsäure-[ω-brom-tridecylester] $C_{16}H_{50}O_2Br_2 = CH_2Br \cdot [CH_2]_{11} \cdot CO_2 \cdot [CH_3]_{12} \cdot CH_2Br$. B. Bei der Oxydation von 13-Brom-tridecanol-(1) mit Chromsäure in essigsaurer Lösung, neben ω-Brom-tridecylsäure (Chult, Hausser, Helv. 12, 481). — F: 38—39°.

ω-Brom-tridecylsäure-amid $C_{13}H_{36}ONBr=CH_2Br\cdot[CH_3]_{11}\cdot CO\cdot NH_3$. B. Neben ω-Brom-tridecylsäure-nitril und ω-Oxy-tridecylsäure-amid bei der Einw. von Bromwasserstoff auf ω-Oxy-tridecylsäure-nitril bei 130° (CHUIT, Mitarb., Helv. 10, 182). — Krystalle (aus Alkohol). F: 42—43°.

ω-Brom-tridecylsäure-nitril $C_{13}H_{24}NBr = CH_2Br \cdot [CH_2]_{11} \cdot CN$. B. Neben ω-Brom-tridecylsäure-amid und ω-Oxy-tridecylsäure-amid bei der Einw. von Bromwasserstoff auf ω-Oxy-tridecylsäure-nitril bei 130° (Chuit, Mitarb., Helv. 10, 183).

- 2. 2-Methyl-dodecansäure-(1), Dodecan-carbonsäure-(2), Methyl-n-decyl-essigsäure $C_{13}H_{26}O_2=CH_3\cdot[CH_2]_9\cdot CH(CH_3)\cdot CO_2H$.
- a) Rechtsdrehende Methyl-n-decyl-essigsäure. B. Man führt die inaktive Säure (s. u.) in das Cinchonidinsalz über, krystallisiert aus 95% igem Aceton um, wobei das Salz der rechtsdrehenden Säure zuerst krystallisiert, und zerlegt mit Salzsäure (Levene. Mikeska, J. biol. Chem. 84, 590). Kp₁: 153°. D²⁵: 0,884. $[\alpha]_{\rm b}^{\rm si}: +8,5°$ (unverdünnt), +7,4° (75% iger Alkohol; c = 22), +9,1° (Äther; c = 8). Das Natriumsalz ist optisch-inaktiv.
- b) Linksdrehende Methyl n decyl essigsäure $C_{13}H_{36}O_3 = CH_3 \cdot [CH_2]_6 \cdot CH(CH_2) \cdot CO_2H$. B. s. bei der rechtsdrehenden Form. $Kp_{0,7}:172-175^0$ (Levene, Mikeska, J. biol. Chem. 84, 591). [α] $_0^{\text{in}}:$ —6,4 $^{\text{o}}$ (Äther). Liefert beim Behandeln mit Thionylchlorid linksdrehendes Methyl-n-decyl-acetylchlorid.

Äthylester $C_{18}H_{20}O_2 = CH_3 \cdot [CH_2]_9 \cdot CH(CH_3) \cdot CO_3 \cdot C_2H_5$. B. Beim Behandeln von linksdrehender Methyl-n-decyl-essigsäure mit alkoh. Salzsäure, anfangs bei -10° , später bei Zimmertemperatur (Levene, Mikeska, J. biol. Chem. 84, 592). — Kp₁: 141°. D²⁵: 0,854. [α]₅: -6,5° (unverdünnt), -5,9° (Äther; c = 19), -6,1° (87,5% iger Alkohol; c = 9).

Chlorid, linksdrehendes Methyl-n-decyl-acetylchlorid $C_{19}H_{25}OCl = CH_9 \cdot [CH_2]_9 \cdot CH(CH_2) \cdot CO \cdot Cl.$ B. Beim Behandeln von linksdrehender Methyl-n-decyl-essigsäure mit Thionylchlorid (Levene, Mikeska, J. biol. Chem. 84, 590). — Kp_{0,5}: 118—125°. D²⁵: 0,908. [α]5: —3,5° (unverdünnt), —3,4° (Ather; c = 17).

Amid, linksdrehendes Methyl-n-decyl-acetamid $C_{13}H_{27}ON = CH_3 \cdot [CH_3]_{\circ} \cdot CH \cdot (CH_3) \cdot CO \cdot NH_2$. B. Beim Eintragen von linksdrehendem Methyl-n-decyl-acetylchlorid in kaltes konz. Ammoniak (Levene, Mikeska, J. biol. Chem. 84, 591). — Krystalle (aus 50 %igem Alkohol). F: 77°. [α] $_{\circ}$: —3,0° (Alkohol; c = 9).

Bitril, linksdrehendes Methyl - n - decyl - acetonitril $C_{13}H_{25}N = CH_3 \cdot [CH_2]_e \cdot CH(CH_2) \cdot CN$. B. Bei der Destillation von linksdrehendem Methyl-n-decyl-acetamid mit Phosphorpentoxyd unter 0,5 mm Druck (Levene, Mikeska, J. biol. Chem. 84, 591). — Kp_{9.8}: 108—110°. [α] $_{\overline{0}}$: —10,9° (Ather; c=20), —11,0° (Alkohol; c=18). — Gibt bei der Reduktion mit Natrium in absol. Alkohol rechtsdrehendes 1-Amino-2-methyl-dodecan.

c) Inakt. Methyl-n-decyl-essigsäure C₁₂H₂₆O₂ = CH₃·[CH₂]₂·CH(CH₃)·CO₂H.

B. Beim Erhitzen von nicht näher beschriebener Methyl-n-decyl-malonsäure (LEVENE, MIKESKA, J. biol. Chem. 84, 590). Läßt sich über die Cinchonidinsalze in die optischen Antipoden spalten.

324

3. Dodecan-carbonsäure-(5), a-n-Heptyl-n-capronsäure, Butyl-n-heptyl-essigsäure $C_{13}H_{26}O_2 = CH_3 \cdot [CH_2]_6 \cdot CH([CH_2]_3 \cdot CH_3) \cdot CO_2H$. B. Beim Erhitzen von Butyl-n-heptyl-malonsaure auf 180° (Levene, Taylor, J. biol. Chem. 54, 358). — Kp₁₃: 179°. D₁°: 0,8860. n_2 °: 1,4403.

Äthylester $C_{18}H_{30}O_2 = CH_3 \cdot [CH_2]_6 \cdot CH([CH_2]_2 \cdot CH_3) \cdot CO_2 \cdot C_2H_5$. B. Aus der Säure beim Behandeln mit Alkohol und Schwefelsäure (Levene, Taylor, J. biol. Chem. 54, 358). — Kp₁: 115°. D_1^{∞} : 0,8560. n_2^{∞} : 1,4290.

14. Tetradecansäure, Tridecan-carbonsäure-(1), Myristinsäure $C_{14}H_{28}O_2=CH_3\cdot[CH_2]_{12}\cdot CO_2H$ (H 365; E I 159).

Vorkommen, Bildung.

V. Im Petroleum von Ishikari (Hokkaido); wird aus den Abfallaugen von der Raffination eines Gasöldestillats isoliert (Tanaka, Kuwata, J. Fac. Eng. Tokyo Univ. 17, 298; C. 1929 I, 960). Myristinsäure kommt glyceridartig gebunden in wechselnder Menge in zahlreichen pflanzlichen und tierischen Fetten vor (Armstrong, Allen, J. Soc. chem. Ind. 43, 216 T; C. 1924 II, 1527; A. Grün, W. Halden, Analyse der Fette und Wachse, Bd. 2 [Berlin 1929]; C. Wehmer, Die Pflanzenstoffe [Jena 1929/1931]; C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, Bd. 2 [Wien 1932]; E. Böhm, Die Fabrikation der Fettsäuren [Stuttgart 1932]; G. Hefter, H. Schönfeld, Chemie und Technologie der Fette und Fettprodukte [Wien 1936]). In freiem Zustand wurde Myristinsäure nachgewiesen in der Pferdeleber (Sammartno, Bio. Z. 132, 349) und im Corpus luteum (Fränkel, Fonda, Bio. Z. 141, 384). — B. Bei der Oxydation von Paraffin mit Sauerstoff in Gegenwart von Manganverbindungen bei 150° (Kelber, B. 53, 1574) oder im Hochdruckautoklaven oberhalb 150° in Gegenwart von Mangan-, Blei-, Quecksilber-, Vanadium- oder Chromverbindungen (Franck, Ch. Z. 44, 309; C. 1920 II, 781). Bei der Oxydation von Sphingosin (Syst. Nr. 356) mit Chromsäure in Eisessig, neben anderen Produkten (Klenk, H. 185, 177). Beim Ozonisieren von Triacetyl-sphingosin in Eisessig und nachfolgenden Spalten des Ozonids durch Wasserstoff bei Gegenwart von Palladium-Bariumsulfat, neben anderen Produkten (Kl., H. 185, 172). Bei der Oxydation von 2-n-Tridecyl-tetrahydropyran mit 0,2%iger Permanganat-Lösung bei Zimmertemperatur (Franke, Liebermann, M. 43, 598). Bei der Einw. von Penicillium palitans auf Cocosnußöl (Stokoe, Biochem. J. 22, 87) und von Bacterium pruni auf abgerahmte Milch (Joddi, Am. Soc. 49, 1557).

Physikalische Eigenschaften.

Krystalle (aus Äther, 80%iger Essigsäure oder 80%igem Aceton). Röntgenogramm (Debye-Scherrer-Aufnahmen): Becker, Jancke, Ph. Ch. 99, 270; Herzog, Jancke, Z. Phys. 45, 197; C. 1928 I, 639; (Drehkrystall-Methode): Thibaud, Nature 119, 852; C. 1927 II, 2146; (Reflexions-Aufnahmen): Trillat, C. r. 180, 1330; Ann. Physique [10] 6, 61; A. Müller, Soc. 123, 2044. Rhythmische Krystallisation dünner Schichten: Garner, Randall, Soc. 125, 372. F: 53,5° (korr.) (Bhide, Sudbrough, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 80), 53,7° (Holde, Gentner, B. 58, 1423), 54° (Fränkel, Fonda, Bio. Z. 141, 384), 54–55° (Shonle, Row, Am. Soc. 43, 363). Einfluß der Dicke einer Krystall-Lamelle auf den Schmelzpunkt: Meissner: Z. anorg. Ch. 110, 181. E: 53,6° (Verkade, Coops, R. 46, 529), 53,7° (Garner, Madden, Rushbrooke, Soc. 1926, 2500), 53,8° (Joglekar, Watson, J. Soc. chem. Ind. 47, 366 T; C. 1929 I, 988). Dⁿ: 0,8533 (Ho., Ge.). D¹; zwischen 76,2° (0,850) und 119,2° (0,822): Hunten, Maass, Am. Soc. 51, 160. Einfluß dünner Schichten auf die gleitende Reibung von Glas und Quarz: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 560; 101, 491; C. 1922 IV, 514; 1923 I, 876. Oberflächenspannung zwischen 76,2° (27,0 dyn/cm) und 119,2° (23,6 dyn/cm): Hu., Maass. Parachor: Hu., Maass. Adhäsion an Stahl und Kupfer: Ha., Nottage, Pr. roy. Soc. [A] 118, 211, 220; C. 1928 II, 864. Mittlere spezifische Wärme der festen Substanz zwischen 24° und 43°: 0,5209 cal/g; der flüssigen Substanz zwischen 24° und 57°: 0,5157 cal/g (Ga., Mad., Ru.). Schmelzwärme: 47,07 cal/g (Ga., Mad., Ru.). Verbrennungswärme bei konstantem Volumen: 9091,9 cal/g (V., C., R. 47, 608).

 n_D^{∞} : 1,4305 (Joglekar, Watson, J. Soc. chem. Ind. 47, 366 T; C. 1929 I, 988); n_D^{∞} : 1,4273 (Holde, Gentner, B. 58, 1423); n_{α}^{∞} : 1,4246; n_D^{∞} : 1,4268; n_D^{∞} : 1,4321 (Waterman, Bertram, R. 46, 701). Beugung von Röntgenstrahlen an flüssiger Myristinsäure: Herzog, Jancke, Z. Phys. 45, 198; C. 1928 I, 639. Elektrische Leitfähigkeit von geschmolzener Myristinsäure zwischen 100° und 190°: Lederer, Z. arg. Ch. 42, 1034; L., Hartleb, Seijens.-Zig. 56, 346; C. 1929 II, 3080.

Ebullioskopisches Verhalten in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 1914, 1164; C. 1925 I, 1557. Flüchtigkeit mit Wasserdampf: Arnold, Z. Unters. Nahr. Genuβm. 42, 358; C. 1922 II, 918. Myristinsäure verringert die Oberflächenspannung von Wasser

(SCHLEIFFER, Koll.-Z. 30, 273; C. 1923 I, 488; NIETZ, J. phys. Chem. 32, 262). Kontaktwinkel mit Wasser: N. Einfluß auf die Grenzflächenspannung zwischen Benzol und Wasser: Dubrisay, Picard, C. r. 178, 206; D., C. r. 178, 1976; Bl. [4] 37, 999. Grenzflächenspannung benzolischer Lösungen gegen verd. Natronlauge und verd. Natronlauge + Natriumchlorid: D., Rev. gén. Colloides 5, 486; C. 1927 II, 396; Grenzflächenspannung benzolischer Lösungen von Stearinsäure und Myristinsäure gegen sehr verd. Natronlauge: D., C. r. 181, 1061. Adsorption aus verschiedenen Lösungsmitteln durch Kohle: Nekrassow, Ph. Ch. 136, 23. Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur monomolekularer Schichten bei verschiedenen Temperaturen und Drucken vgl. Labrouste, Ann. Physique [9] 14, 207, 234; Fahir, C. r. 188, 1667; Marcelin, C. r. 189, 236; Adam, Pr. roy. Soc. [A] 101, 457, 517; C. 1923 I, 271, 272; A., Jessop, Pr. roy. Soc. [A] 110, 426, 441; 112, 364; C. 1926 I, 2548; II, 2399; Cary, Rideal, Pr. roy. Soc. [A] 109, 308, 320, 329; C. 1926 I, 1126; Schofteld, R., Pr. roy. Soc. [A] 110, 174; C. 1926 I, 1950; Gorter, Grendel, Bio. Z. 192, 446. Einfluß von Tripalmitin, Tristearin, Pentaerythrit-tetrapalmitat, Cholesterin und Cholesterinacetat auf die Struktur monomolekularer Schichten von Myristinsäure auf verd. Salzsäure: A., J., Pr. roy. Soc. [A] 120, 475; C. 1929 I, 189. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer Schicht von Myristinsäure

Chemisches und physiologisches Verhalten; Analytisches.

auf verd. Salzsäure: FRUMKIN, Ph. Ch. 116, 493.

Beim Erhitzen von Myristinsäure bei Gegenwart von Wasser und Aluminiumoxyd unter 150 Atm. Druck auf 400° entstehen hauptsächlich leichte (unterhalb 150° siedende) Kohlenwasserstoffe, Naphthen-Kohlenwasserstoffe und geringe Mengen von Ketonen (Petrow, B. 63 [1930], 81; Ж. 61, 1856). Gibt beim Erhitzen in Gegenwart von Eisenpulver in einem eisernen Gefäß auf 285° (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 423) oder in Gegenwart von Thoriumoxyd auf 400—430° (Saville, Shearer, Soc. 127, 592, 593) Myriston. Das Ammoniumsalz liefert bei der Oxydation mit überschüssigem Wasserstoffperoxyd in ammoniakalischer Lösung bei 90° γ-Oxo-myristinsäure und andere Produkte (Clutterbuck, Raper, Biochem. J. 19, 389). Geschwindigkeit der Veresterung mit absol. Alkohlo in Gegenwart von Chlorwasserstoff bei 25°: Bhide, Sudborough, J. indian Inst. Sci. 8 A, 104; C. 1926 I, 80. Liefert bei längerem Erhitzen mit überschüssigem Acetanhydrid unter Ausschluß von Luftfeuchtigkeit zu schwachem Sieden Myristinsäureanhydrid (Holde, Gentner, B. 58, 1423).

Das Ammoniumsalz liefert unter der Einw. von Penicillium glaucum Methyl-n-undecylketon (Acklin, Bio. Z. 204, 254; vgl. a. Stärkle, Bio. Z. 151, 397); geringe Mengen Methyl-n-undecyl-keton entstehen auch bei der Einw. von Penicillium cyclopium auf das Kaliumsalz (Derx, Versl. Akad. Amsterdam 33, 549, 551; C. 1924 II, 2345). Wirkt wachstumshemmend auf Penicillium palitans und auf Oidium lactis (Stokoe, Biochem. J. 22, 88) sowie auf Bac. tuberculosis (Schöbl, Philippine J. Sci. 25, 129; C. 1925 I, 2699). Bactericide Wirkung der Kalium- und Natriumsalze: Walker, Ber. Physiol. 31, 938; C. 1926 I, 1589. Nährwert der freien Säure und des Natriumsalzes für Ratten: Ozaki, Bio. Z. 189, 238; Pr. Acad. Tokyo 3, 442; C. 1928 I, 541.

Nachweis durch Sublimation im Vakuum: NIETHAMMER, Bio. Z. 209, 456. Bestimmung durch Destillation mit Wasserdampf: Arnold, Z. Unters. Nahr.-Genuβm. 42, 358: C. 1922 II, 918.

Salze der Myristinsäure (Myristate).

Hydroxylaminmyristat C₁₄H₂₈O₂ + NH₂·OH. Krystalle (aus Ligroin). F: 69—70° (Oesper, Ballard, Am. Soc. 47, 2426). Färbt sich beim Aufbewahren gelblich. Löslich in Alkohol, Benzol, Chloroform und Äther, schwer löslich in Ligroin, unlöslich in Wasser. — Natriummyristat NaC₁₄H₂₇O₂. Röntgenogramm (Pulver-Methode): Piper, Grindley, Pr. phys. Soc. London 35, 269; C. 1924 I, 2077. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon. Am. Soc. 42, 436. Oberflächenspannung wäßr. Lösungen bei 18°: Lascaray, Koll.-Z. 34. 76; C. 1924 I. 2413; bei 17° und 21°: Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 145; C. 1928 I, 1156; bei 40°: Kawakami, J. Soc. chem. Ind. Japan Spl. 31, 281; C. 1929 I, 1549; bei 40°, 60° und 80°: Hirose, J. Soc. chem. Ind. Japan Spl. 31, 16; C. 1928 II, 504. Einfluß von Konzentration und Temperatur auf die Oberflächenspannung wäßr. Lösungen: Walker. Soc. 119, 1522. Oberflächenspannung wäßr. Lösungen von binären Gemischen mit Natriumhaurat: W., Soc. 119, 1529; von binären und ternären Gemischen mit Natriumlaurat und Natriumleat: Hi. Einfluß von Natronlauge auf die Oberflächenspannung von Natriummyristat-Lösungen: E., Acta Acad. Abo. 5, Nr. 5, S. 4; C. 1929 I, 2862. Einfluß der Wasserstoffionen-Konzentration auf die Oberflächenspannung. Schaumkraft und Trübung einer Natriummyristat-Lösung: Jarisch, Bio. Z. 134, 166. Einfluß auf die Grenzflächenspannung zwischen Benzol und Wasser: Dubrisay, Picard, C. r. 178, 206; D., C. r. 178, 1976; Bl. [4] 37, 999. Kolloide Eigenschaften währ. Lösungen: Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 135, 167; C. 1928 I, 1156. Ultramiskroskopische Untersuchungen

an wäßr. Lösungen und den daraus entstehenden Gallerten: Darke, McBain, Salmon, Pr. roy. Soc. [A] 98, 399, 401; C. 1922 II, 159. Anwendung als Schutzkolloid für kolloide Gold-Lösungen: Prosch, Z. disch. Öl-Fettind. 42, 426; C. 1922 III, 1287. Wirkung als Waschmittel: CHAPIN, J. Oil Fat Ind. 5, Nr. 7, S. 210; C. 1928 II, 1159. Verlauf des Temperaturabfalls bei der Abkühlung einer 0,5 molaren wäßr. Lösung zwischen 55° und 15° und einer 0,125 molaren alkoholischen Lösung zwischen 70° und 40°: M. H. FISCHER, Koll.-Z. 46, 359; C. 1929 II, 399. Elektrische Leitfähigkeit wäßr. Lösungen: Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 156; C. 1928 I, 1156. Grad der Hydrolyse durch Wasser: STOCKS, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786. Potentiometrische und colorimetrische Bestimmung der Hydroxylionen-Konzentration in wäßr. Lösungen: E.; McBain, Hay, Soc. 1929, 597. Leitfähigkeitstitration von Natriummyristat-Lösungen verschiedener Konzentration mit Salzsäure: E., Koll.-Z. 45, 299; C. 1926 II, 1594. — Kaliummyristate: KC₁₄H₂₇O₂ + C₁₄H₂₆O₃ (bei 105°). Krystalle. F: 153° (STEZENKO, Maslob. žir. Delo. 1926, Nr. 7/8, S. 35; C. 1927 I, 1426). Bei 18° löst sich 1 g in 76 cm³ 95 % igem Alkohol. Wird durch Wasser bei 45—50° merklich hydrolysiert. Zerfällt bei längerer Extraktion mit Äther oder Chloroform in Myristinsäure und neutrales Kaliummyristat. — KC₁₄H₂₇O₂. Röntgenogramm (Reflexions-Aufnahme): Piper, Soc. 1929, 236. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436. Wirkung als Waschmittel: McB., HARBORNE, KING, J. Soc. chem. Ind. 42, 375 T; C. 1924 I, 523; McB., HAR., K., J. phys. Chem. 28, 6; Fall, J. phys. Chem. 31, 805. Hydrolyse in wäßr. Lösung bei 90°: McB., HAY, Soc. 1929, 597. — Thallium(I)-myristat TlC₁₄H₂₇O₂. Krystalle (aus Alkohol). Bildet zwei feste krystalline Phasen; F: 119,50 (korr.); die Schmelze ist bis 181,50 (korr.) krystallinisch-flüssig (Walter, B. 59, 968). 100 g einer bei 15° gesättigten Lösung in 50% igem Alkohol enthalten 0,5 g (Holde, Takehara, B. 58, 1789). — Bleimyristat. B. Durch Einw. von Myristinsäure auf Blei (Trillat, C. r. 180, 1839; Ann. Physique [10] 6, 76). — Röntgenogramm (Reflexions-Aufnahme): Tr.

Myristinsäuremethylester, Methylmyristat $C_{15}H_{30}O_{2}=CH_{2}\cdot[CH_{2}]_{12}\cdot CO_{2}\cdot CH_{3}$ (H 365; E I 161). E: 18,35° (Garner, Rushbrooke, Soc. 1927, 1358), 18,6° (Verkade, Coops, R. 46, 530). Schmelzwärme: 43,90 cal/g (G., R.). — Nährwert für Ratten: Ozaki, Bio. Z. 189, 236; Pr. Acad. Tokyo 3, 441; C. 1928 I, 541.

Myristinsäureäthylester, Äthylmyristat $C_{18}H_{32}O_3 = CH_3 \cdot [CH_2]_{12} \cdot CO_2 \cdot C_2H_5$ (H 365; E I 161). V. In den hochsiedenden Rückständen des Melassefuselöls (Marvel, Hager, Am. Soc. 46, 729). — E: 11,0° (Garner, Rushbrooke, Soc. 1927, 1358). Schmelzwärme: 43.6 cal/g (G., R.). Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, Jessop, Pr. roy. Soc. [A] 110, 427; 112, 370; C. 1926 I, 2548; II, 2399. — Verseifung durch Ricinuslipase: Piutti, de'Conno, Ann. Chim. applic. 18, 473; C. 1929 I, 760. — Nährwert für Ratten: Ozaki, Bio. Z. 189, 236; Pr. Acad. Tokyo 3, 441; C. 1928 I, 541.

[β,β'-Dichlor-isopropyl]-myristat, Glycerin-α.α'-dichlorhydrin-β-myristat $C_{17}H_{32}O_3Cl_3=CH_3\cdot[CH_3]_{12}\cdot CO_2\cdot CH(CH_2Cl)_2$ (E I 161). B. Bei der Einw. von Chlorwasserstoff auf ein Gemisch von Myristinsäure und Glycerin (Humnicki, Bl. [4] 45, 282).—Nadeln (aus Methanol). F: 27—29°.

Myristinsäure butylester, Butylmyristat $C_{18}H_{36}O_3 = CH_3 \cdot [CH_2]_{12} \cdot CO_2 \cdot C_4H_9$. B. Aus Myristinsäure und Butylalkohol in Gegenwart von Schwefelsäure (Rheinboldt, König, Otten, A. 478, 259). — Kp_{18} : 195°.

Myristinsäureisoamylester, Isoamylmyristat $C_{19}H_{38}O_3 = CH_3 \cdot [CH_3]_{12} \cdot CO_2 \cdot CH_3 \cdot CH$

Myristinsäurehexylester, n-Hexyl-myristat $C_{20}H_{40}O_2 = CH_3 \cdot [CH_2]_{12} \cdot CO_3 \cdot [CH_2]_6 \cdot CH_3$. B. Aus Myristinsäure und n-Hexylalkohol bei Einw. von Chlorwasserstoff (RHEINBOLDT, KÖNIG, OTTEN, A. 473, 259). — Kp₁₇: 215°.

Myristinsäure-n-tetradecylester, n-Tetradecyl-myristat $C_{39}H_{34}O_3 = CH_3 \cdot [CH_3]_{13} \cdot CO_3 \cdot [CH_3]_{13} \cdot CH_3 \cdot B$. Beim Erhitzen von Myristinsäurechlorid mit n-Tetradecylalkohol auf dem Wasserbad (RHEINBOLDT, KÖNIG, OTTEN, A. 473, 259). — Krystalle (aus Alkohol). F: 43°.

Myristinsäure - n - hexadecylester, Cetylmysistat $C_{30}H_{60}O_2 = CH_2 \cdot [CH_2]_{12} \cdot CO_3 \cdot [CH_2]_{13} \cdot CH_2$. B. Beim Erhitzen von Myristinsäurechlorid mit n-Hexadecylalkohol auf dem Wasserbad (Rheinboldt, König, Otten, A. 473, 259). — Krystalle (aus Alkohol). F: 47°.

Trikosyl-(12)-myristat, Di-n-undecyl-carbinol-myristat $C_{27}H_{74}O_2 = CH_2 \cdot [CH_2]_{12} \cdot CO_2 \cdot CH([CH_2]_{10} \cdot CH_2)_2$. B. Aus Trikosanol-(12) und Myristinsäurechlorid auf dem Wasserbad (GRÜN, ULBRICH, KRCZIL, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 25—25,5° (korr.). Sehr leicht löslich in Äther, Petroläther, Chlorofrom und Tetrachlorkohlenstoff, sehr schwer in heißem, unlöslich in kaltem Alkohol.

327

Heptakosyl-(14)-myristat, Di-n-tridecyl-carbinol-myristat $C_{41}H_{82}O_2 = CH_3 \cdot [CH_2]_{12} \cdot CO_2 \cdot CH([CH_2]_{12} \cdot CH_3)_2$. B. Aus Heptakosanol-(14) und Myristoylchlorid auf dem Wasserbad (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 37,5—38° (korr.). Sehr leicht löslich in Äther. Petroläther, Chloroform und Tetrachlorkohlenstoff, sehr schwer in heißem, unlöslich in kaltem Alkohol.

Hentriakontyl-(16)-myristat, Di-n-pentadecyl-carbinol-myristat $C_{45}H_{90}O_2 = CH_3 \cdot [CH_2]_{12} \cdot CO_2 \cdot CH([CH_2]_{14} \cdot CH_3)_2$. B. Aus Hentriakontanol-(16) und Myristovlchlorid auf dem Wasserbad (Grün, Ülbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 45,5—46,5°. Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in Alkohol.

Pentatriakontyl-(18) - myristat, Di-n-heptadecyl-carbinol-myristat $C_{49}H_{98}O_2 = CH_3 \cdot [CH_2]_{12} \cdot CO_2 \cdot CH([CH_2]_{16} \cdot CH_3)_2$. B. Aus Pentatriakontanol-(18) und Myristoylchlorid auf dem Wasserbad (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427, 428). — Mikrokrystallinische Aggregate (aus Essigester). F: 49—50° (korr.). Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in Alkohol.

Äthylenglykoldimyristat $C_{30}H_{58}O_4 = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot O \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{12} \cdot CH_3$ (H 366). Adhäsionsenergie von Wasser an der Oberfläche von Äthylenglykoldimyristat: Nietz, *J. phys. Chem.* 32, 262.

 γ -Chlor-propylenglykol-α-myristat, Glycerin-α-chlorhydrin-α'-myristat, α'- Myristo - α - chlorhydrin $C_{17}H_{33}O_3Cl = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot O \cdot CH_2 \cdot CH(OH) \cdot CH_2Cl$ (Ε I 161). Zur Bildung aus Glycerin-α-monochlorhydrin und Myristoylchlorid (GRÜN, SCHREYER. B. 45, 3422; IZAR, Bio. Z. 60, 324) vgl. Heiduschka, Schuster, J. pr. [2] 120, 155.

Glycerin-α-myristat, α-Monomyristin C₁₇H₃₄O₄ = CH₃·[CH₂]₁₂·CO·O·CH₂·CH(OH)·CH₂·OH (H 366; E I 162). Diese Konstitution kommt der von Grün, Schreyer (B. 45, 3424) als β-Monomyristin beschriebenen Verbindung zu (Fairbourne, Soc. 1930, 372, 380; vgl. a. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte [Wien 1936], S. 240). — B. Bei der Umsetzung von Glycerin-α-β-isopropylidenäther mit Myristoylchlorid in Chinolin unter Eiskühlung und Zerssetzung des in Äther gelösten Glycerin-α-β-isopropylidenäther-myristats (Syst. Nr. 2691) mit kalter konzentrierter Salzsäure oder mit 0.25 n-Schwefelsäure bei 40° (Äverill, Roche, King, Am. Soc. 51, 868). — Krystalle (aus Äther + Petroläther). F: 67,3° (Av., R., K.), 67,9° (Bömer, Ebach, Z. Unters. Lebensm. 55, 527; C. 1928 II, 2304), 70—71° (Adam, Berry, Turner, Pr. roy. Soc. [A] 117, 540; C. 1928 I, 1272)¹). Über die Ausbreitung auf verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Ad., Jessof, Pr. roy. Soc. [A] 120, 481; C. 1929 I, 189; Ad., B., T., Pr. roy. Soc. [A] 117, 535; C. 1928 I, 1272. Einfluß von Cholesterin, Tripalmitin und Pentaerythrit-tetrapalmitat auf die Struktur molekularer Schichten von α-Monomyristin auf verd. Salzsäure; A., J.

Glycerin- β -myristat, β -Monomyristin $C_{17}H_{34}O_4 = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot O \cdot CH(CH_2 \cdot OH)_2$ (E I 162). Die von Grün, Schreyer (B. 45, 3424) und Izar (Bio. Z. 60, 323) als β -Monomyristin beschriebene Verbindung wird von Fairbourne (Soc. 1930, 372, 380; vgl. Fair.. Foster, Soc. 1926, 3148) als α -Monomyristin erkannt; vgl. A. Grün in Hefter-Schönfeld. Chemie und Technologie der Fette und Fettprodukte [Wien 1936], S. 240. Das wahre β -Monomyristin (F: 61°; n_1^{∞} : 1,4442) wurde von Stimmel, King (Am. Soc. 56 [1934], 1725) durch Reduktion von Glycerin- α - γ -benzaläther- β -myristat mit Wasserstoff in absol. Alkohol bei Gegenwart von Palladiumschwarz dargestellt.

Glycerin - β - caprylat - α - laurat - α' -myristat, β - Caprylo - α - lauro - α' -myristin $C_{37}H_{70}O_6 = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot C \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_6 \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{10} \cdot CH_3$. Bei der Einw. von Capryloylchlorid auf Glycerin- α -chlorhydrin- α' -myristat in Chloroform bei Gegenwart von Pyridin und Erhitzen des (nicht näher beschriebenen) Glycerin- α -chlorhydrin- β -caprylat- α' -myristats mit Natriumlaurat auf 150° (Heiduschka, Schuster, J. pr. [2] 120, 155). — Krystalle (aus Alkohol). F: 18,8°. Färbt sich beim Aufbewahren dunkel.

Glycerin - α - caprylat - β - laurat - α' - myristat, α - Caprylo - β - lauro - α' - myristin $C_{37}H_{70}O_6 = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{10} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{6} \cdot CH_3$. Über ein Caprylo-lauro-myristin, dem obige Konstitution zukommen soll, vgl. Heiduschka, Schuster, J. pr. [2] 120, 154.

Glycerin- α -caprylat- α' -laurat- β -myristat, α -Caprylo- α' -lauro- β -myristin $C_{37}H_{70}O_6 = CH_3 \cdot [CH_2]_{10} \cdot CO \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{12} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{8} \cdot CH_3$. B. Aus α -Monolaurin durch aufeinanderfolgende Veresterung mit Capryloylchlorid und Myristoylchlorid in Chloroform + Pyridin (Heiduschka, Schuster, J. pr. [2] 120, 156). — Krystalle. F: 14,1°.

¹⁾ Nach REWADIKAR, WATSON (J. indian Inst. Sci. [A] 13, 128; C. 1980 II, 3737) existieren zwei Formen vom F: 70° und vom F: 57°.

Ein Caprylo-lauro-myristin, das vielleicht mit α -Caprylo- α' -lauro- β -myristin identisch ist, isolierten Bömer, Baumann (Z. Unters. Nahr.-Genu β m. 40, 130, 136, 139; C. 1921 I, 219) aus Cocosfett. — F: 15,0°.

Glycerin - α . β - dilaurat - α' -myristat, α . β - Dilauro - α' -myristin $C_{41}H_{76}O_6=CH_2$ [CH₂]₁₂·CO·O·C₃H₅(O·CO·[CH₂]₁₀·CH₃)₂ (H 366). B. Beim Schütteln von α -Monomyristin mit überschüssigem Lauroylchlorid in Chloroform + Chinolin (Bömer, Ebach, Z. Unters. Lebensm. 55, 528; C. 1928 II, 2304). — Krystalle (aus Ather). F: 38,00° 1).

Dilauromyristine ("Myristodilaurine") unbekannter Konstitution wurden von Bömer, Baumann (Z. Unters. Nahr.-Genuβm. 40, 135, 140, 143; C. 1921 I, 219) aus Cocosfett, von Bö., Schneider (Z. Unters. Nahr.-Genuβm. 47, 82; C. 1924 I, 2882) aus Palmkernfett isoliert. — Krystalle (aus Aceton). F: 33,0° (Bö., Bau.), 33,4° (Bö., Schn.).

Glycerin- $\alpha.\beta$ -dimyristat, $\alpha.\beta$ -Dimyristin, β -Dimyristin $C_{31}H_{60}O_5 = CH_3 \cdot [CH_3]_{12} \cdot CO \cdot O \cdot CH_2 \cdot CH(CH_2 \cdot OH) \cdot O \cdot CO \cdot [CH_2]_{12} \cdot CH_3$ (H 366; E I 162). Zur Frage der Einheitlichkeit des von Grün, Theimer (B. 40, 1797) dargestellten $\alpha.\beta$ -Dimyristins vgl. Fairbourne, Soc. 1930, 372, 381; A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte [Wien 1936], S. 233.

Glycerin - $\alpha.\alpha'$ - dimyristat, $\alpha.\alpha'$ - Dimyristin, α - Dimyristin $C_{31}H_{60}O_5 = (CH_3)$ - $[CH_3]_{12} \cdot CO \cdot O \cdot CH_2$ - $CH \cdot OH (H 366; E I 162)$. Zur Frage der Einheitlichkeit des von Grün, Theimer (B. 40, 1797) dargestellten $\alpha.\alpha'$ -Dimyristins vgl. Fairbourne, Soc. 1930, 372, 381; A. Grün in Heffer-Schönfeld, Chemie und Technologie der Fette und Fettprodukte [Wien 1936], S. 246. B. Bei der Umsetzung von Glycerin- α -jodhydrin mit 2 Mol Myristoyl-chlorid in Chloroform + Chinolin unter Kühlung und Kochen des Reaktionsgemisches mit Silbernitrit in verd. Alkohol (Averill, Roche, King, Am. Soc. 51, 870). — F: 63,8—64,4° (A., R., K.), 64—65° (F.).

Glycerin - α -laurat - β . α' -dimyristat, α -Lauro - β . α' -dimyristin $C_{45}H_{82}O_6 = CH_5$ · $[CH_2]_{12} \cdot CO \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CO \cdot [CH_2]_{10} \cdot CH_3$ (H 367). B. Beim Schütteln von α -Monolaurin mit überschüssigem Myristoylchlorid in Chloroform + Chinolin (Bömer, Ebach, Z. Unters. Lebensm. 55, 526; C. 1928 II, 2304; Averill, Roche, King, Am. Soc. 51, 870). — Krystalle (aus Äther). F: 43,2° (B., E.), 48,5° ¹) (A., R., K.).

Glycerin- β -laurat- $\alpha.\alpha'$ -dimyristat, β -Lauro- $\alpha.\alpha'$ -dimyristin $C_{43}H_{82}O_6 = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot O \cdot CH_3 \cdot CH (O \cdot CO \cdot [CH_2]_{10} \cdot CH_3 \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{12} \cdot CH_3 \cdot (H 367)$. B. Zur Bildung aus $\alpha.\alpha'$ -Dimyristin und Lauroylchlorid vgl. AVERILL, ROCHE, KING, Am. Soc. 51, 870. — F: 49,2—49,5° ¹).

Laurodimyristine unbekannter Konstitution wurden von Bömer, Baumann (Z. Unters. Nahr.-Genuβm. 40, 135, 140, 143; C. 1921 I, 219) aus Cocosfett, von Bö., Schneider (Z. Unters. Nahr.-Genuβm. 47, 85; C. 1924 I, 2882) aus Palmkernfett isoliert. — Krystalle (aus Aceton). F: 38,1° (Bö., Bau.), 40,0° (Bö., Schn.).

Glycerintrimyristat, Trimyristin C₄₅H₈₆O₄ = CH₃·[CH₂]₁₂·CO·O·CH(CH₂·O·CO·[CH₃]₁₂·CH₃)₂ (H 367; E I 162). Zum Vorkommen in pflanzlichen und tierischen Fetten vgl. die bei Myristinsäure zitierte Literatur. — Gewinnung aus Milch: Piettre, Roéland, C. r. 178, 2283. — Krystalle (aus Alkohol + Äther). F:55° (Verkade, Coops, R. 46, 528; Mailhe, A. ch. [9] 17, 320), 56,2° (Bömer, Ebach, Z. Unters. Lebensm. 55, 522; C. 1928 II, 2304). Krystallisiert nach Joglekar, Watson (J. Soc. chem. Ind. 47, 367 T; C. 1929 I, 988) in zwei Modifikationen, nach Loskit (Ph. Ch. 134, 137) in drei monotrop polymorphen Formen. Clarkson, Malkin (Soc. 1934, 669) schließen auf Grund thermischer und röntgenographischer Untersuchungen gleichfalls auf das Vorliegen von drei Modifikationen²). Spontanes Krystallisationsvermögen: Lo. Kp: 311° (Zers.) (Mailhe, A. ch. [9] 17, 320). D[∞]₁: 0,8860; D[∞]₁: 0,8790; D[∞]₁: 0,8722 (J., W.). Viscosität zwischen 60° (0,1771 g/cm sec) und 85° (0,0920 g/cm sec): J., W. Oberflächenspannung bei 60°: 28,7 dyn/cm, bei 70°: 27,7 dyn/cm, bei 80°: 27,2 dyn/cm (J., W.). Unlöslich in kaltem Alkohol (P., R.). Löslichkeitsdiagramm von Trimyristin in Benzol, Ather, Chloroform und Schwefelkohlenstoff: Lo. Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten bei Temperaturen zwischen 12,5 und 50° vgl. Labrouste, Ann. Physique [9] 14, 200, 229. Einfluß von Trilaurin, Tripalmitin und Tribenzoin auf die Struktur monomolekularer Schichten von Trimyristin auf Wasser: Collet, C. r. 174, 544. — Verhalten beim Erhitzen auf 550—600° in Gegenwart eines Kupfer-Aluminiumoxyd-Katalvsators: M. — Nährwert für Ratten: Ozaki, Bio. Z. 189, 234; Pr. Acad. Tokyo 3. 439; C. 1928 I, 541.

¹⁾ Über die Zuverlässigkeit früherer Angaben vgl. A. Grön in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte [Wien 1936], S. 258 Anm.

²⁾ Die von WETGAND (Z. ang. Ch. 44 [1931], 481) und W., GRÜNTZIG (Z. anorg. Ch. 208 [1932], 304) vermutete Existens von sieben polymorphen Formen (einer stabilen und sechs metastabilen) ist nach CLARKSON und MALKIN auf die Bildung von Mischmodifikationen zurückzuführen.

Schmelzpunkte von Trimyristin:

	JOGLEKAR, WATSON	Loskit	CLARESON, MALKIN
Stabile Form	56,5°	56,5°	57,0°
		48,5°	46,5°
	33,0°	47,0°	33,0°

Myristinsäureanhydrid $C_{28}H_{54}O_3 = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot O \cdot CO \cdot [CH_2]_{12} \cdot CH_3$ (H 367). B. Durch längeres Erhitzen von Myristinsäure mit überschüssigem Acetanhydrid unter Ausschluß der Luftfeuchtigkeit zu schwachem Sieden (Holde, Genner, B. 58, 1423). — Perlmutterglänzende Blättchen (aus Petroläther). F: 53,5°. D_4^m : 0,8502; n_D^m : 1,4335. — Wird durch Luftfeuchtigkeit selbst bei $^{1}/_{2}$ jährigem Aufbewahren kaum zersetzt. Die Lösung in Petroläther liefert beim Schütteln mit 5% iger Soda-Lösung nur sehr geringe Mengen Myristinsäure.

Myristinsäurechlorid, Myristoylchlorid $C_{14}H_{27}OCl = CH_3 \cdot [CH_2]_{12} \cdot COCl$ (H 368; E I 162). B. Beim Erhitzen von Myristinsäure mit Oxalylchlorid (Averill, Roche, King. Am. Soc. 51, 868). — Kp₂₂: 179—180° (Hann, Jamieson, Am. Soc. 50, 1443); Kp_{2,5}: 134° (A., R., K.).

Myristinsäureamid $C_{14}H_{29}ON = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot NH_2$ (H 368). Röntgenogramm: **Henderson**, *Pr. roy. Soc. Edinburgh* 48, 25; *C.* 1928 I, 2903. E: 103,5° (Garner, Rushbrooke, *Soc.* 1927, 1357). Schmelzwärme: 56,84 cal/g (G., R.).

Myristonitril, n-Tridecyleyanid $C_{14}H_{27}N = CH_3 \cdot [CH_2]_{12} \cdot CN$. B. Aus Myristinsäureamid beim Erhitzen mit Thionylchlorid auf dem Wasserbad (Stephen, Soc. 127, 1875). — Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, Jessop, Pr. roy. Soc. [A] 110, 428; C. 1926 I, 2548. — Liefert beim Behandeln mit wasserfreiem Zinn(II)-chlorid in mit Chlorwasserstoff gesättigtem Äther und Verseifen des Reaktionsprodukts mit warmem Wasser Myristinaldehyd (Sr.).

2-Brom-tetradecansäure-(1), α -Brom-myristinsäure $C_{14}H_{27}O_2Br = CH_3 \cdot [CH_9]_{11} \cdot CHBr \cdot CO_2H$ (H 368). F: 42—43° (ABDERHALDEN, DAMODARAN, Fermentf. 11, 351; C. 1931, 2774; vgl. ABD., Tanaka, Fermentf. 7, 153; C. 1924 I, 551). Über die Ausbreitung auf verd. Salzsäure und die Struktur monomolekularer Schichten vgl. ADAM, Pr. roy. Soc. [A] 103, 690: C. 1923 III, 1294; AD., Jessop, Pr. roy. Soc. [A] 112, 365; C. 1926 II, 2399.

14-Brom-tetradecansäure-(1), ω -Brom-myristinsäure $C_{14}H_{27}O_2Br=CH_2Br\cdot[CH_2]_{12}\cdot CO_2H$. B. Aus 13-Oxy-tridecan-carbonsäure-(1) und einer 50 %igen Lösung von Bromwasserstoff in Essigsäure (Chuit, Hausser, Helv. 12, 483). Bei der Umsetzung von 12-Bromdodecanol-(1) mit Natriummalonester und Behandlung des Reaktionsprodukts mit Bromwasserstoff (Ch., Mitarb., Helv. 10, 190). — Krystalle (aus Petroläther). F: 61,8—62° (Ch., H.).

15. Carbonsäuren $\mathrm{C_{15}H_{30}O_2}.$

1. Pentadecansäure. Tetradecan - carbonsäure - (1), Pentadecylsäure C₁₈H₃₀O₂ = CH₃·[CH₂]₁₃·CO₂H (H 369; E I 163). B. Neben anderen Produkten beim Erhitzen von Paraffin in verd. Soda-Lösung auf ca. 170° bei gleichzeitigem Durchpressen von Luft unter Druck in Gegenwart von Eisen, Mangan oder Kupfer (F. Fischer, Schneider, B. 53, 922; vgl. a. F., Schn., Abh. Kenntnis Kohle 4, 26, 129). Bei der Oxydation von α-Hexadecylen mit 1 %iger Permanganat-Lösung (Landa, Bl. [4] 43, 1087). Aus α.α-Diphenylα-hexadecylen bei der Oxydation mit Chromsäure in Essigsäure bei 60—70° (Skraup, Schwamberger, A. 462, 154). Aus Convolvulinolsäure (Syst. Nr. 223) durch Erhitzen mit Jodwasserstoff (D: 1,7) und rotem Phosphor im Rohr auf 90° und Reduktion der entstandenen Säure mit Zink und Salzsäure (Asahina, Akasu, J. pharm. Soc. Japan 1925, Nr. 523, S. 3; C. 1926 I, 915). Bei der Oxydation von Dihydrosphingosin mit Chromsäure in Eisessig entsteht nicht Pentadecylsäure (Levene, West, J. biol. chem. 16, 552; 18, 482), sondern Palmitinsäure (Klenk, H. 185, 170, 177). — Darst. Durch Kochen von 1-Brom-tetradecan mit Kaliumcyanid in verd. Alkohol und Verseifen des Reaktionsprodukts mit siedender Kalilauge (Ruhoff, Org. Synth. 16 [1936], 37). — Reinigung über den Athylester (L.).

Ruhoff, Org. Synth. 18 [1936], 37). — Reinigung über den Äthylester (L.). Krystalle (aus Petroläther). F: 50° (Skraup, Schwamberger, A. 462, 155), 51,5° (Ozaki, Bio. Z. 177, 159), 52,1° (De Boer, Nature 119, 634; C. 1927 II, 371); F: 52,1° (Garner, Madden, Rushbrooke, Soc. 1926, 2500), 52—52,5° (Landa, Bl. [4] 43, 1088). Kp₁₃: 193—195° (La.). Existiert nach G., M., R. in einer α -rorm und einer β -rorm, nach de B. in einer α -einer β ₁- und einer β ₁-Form. Umwandlungspunkt der beiden β -Modifikationen in die α -Modifikation und umgekehrt: 44° (de B.). Bei niederer Temperatur entsteht immer (manchmal vermischt mit der β ₁-Form) die stabilere β ₁₁-Form (de B.). Röntgenogramm(Pulver-Aufnahme):

PIGGOT, J. Washington Acad. 18, 332; C. 1928 II, 619; Reflexions-Aufnahmen: A. MÜLLER, SHEARER, Soc. 123, 3157; TRILLAT, Ann. Physique [10] 6, 61. Röntgenogramm der drei Formen (Reflexions-Aufnahmen): DE B. Mittlere spezifische Wärme der α-Form: 0,4668 cal/g, der β-Form: 0,4603 cal/g, der flüssigen Substanz: 0,5316 cal/g (G., M., R.). Schmelzwärme der α-Form: 42,47 cal/g, der β-Form: 47,40 cal/g (G., M., R.). n_{α}^{∞} : 1,4265; n_{β}^{∞} : 1,4287; n_{β}^{∞} : 1,4382 (Waterman, Bertram, R. 46, 701). Zum Brechungsvermögen vgl. a. Verkade, Coops, R. 47, 48; W., B., R. 47, 52. Fast unlöslich in 0,01 n-Salzsäure bei Zimmertemperatur, schwer löslich in nahezu neutraler Lösung (Adam, Pr. roy. Soc. [A] 101, 467; C. 1923 I, 271). Kontaktwinkel der α- und β-Form mit Wasser: Nietz, J. phys. Chem. 32, 262. Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Ad., Pr. roy. Soc. [A] 101, 457, 521; C. 1923 I, 271, 272; Cary, Rideal, Pr. roy. Soc. [A] 109, 312, 320, 329; C. 1926 I, 1126; Ad., Jessop, Pr. roy. Soc. [A] 110, 426; C. 1926 I, 2548. — Liefert beim Erhitzen mit Phosphorpentoxyd auf 2059 bis 210° Di-n-tetradecylketon (Channon, Chibnall, Biochem. J. 23, 173). — KC₁₅H₂₆O₂. Röntgenogramm (Reflexions-Aufnahme): Piper, Soc. 1929, 236.

Methylester C₁₆H₃₂O₂ = CH₃·[CH₂]₁₃·CO₂·CH₃ (H 369; E I 163). Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, *Pr. roy. Soc.* [A] 103, 693; *C.* 1923 III, 1295.

Äthylester $C_{17}H_{34}O_3 = CH_3 \cdot [CH_9]_{13} \cdot CO_3 \cdot C_3H_5$ (H 369). Darst. Durch Kochen von Pentadecylsäure mit wäßrig-alkoholischer Salzsäure (Landa, Bl. [4] 43, 1088; Ruhoff, Org. Synth. 16 [1936], 37). — Kp_{15} : 172—174° (L.). Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, Pr. roy. Soc. [A] 103, 693; C. 1923 III, 1295; A., Jessop, Pr. roy. Soc. [A] 110, 427; 112, 370; C. 1926 I, 2548; II, 2399.

Glycerin - tri - pentadecylat, Tripentadecylin, Pentadecylin $C_{48}H_{92}O_6 = CH_3 \cdot [CH_2]_{12} \cdot CO \cdot O \cdot CH(CH_2 \cdot O \cdot CO \cdot [CH_2]_{13} \cdot CH_3)_2$. B. Aus Glycerin und Pentadecylsäure in Gegenwart von aus Naphthalin, Ölsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens bei 100° (Ozaki, Bio. Z. 177, 159; Pr. Acad. Tokyo 2, 13; C. 1926 II, 2192). Nährwert für Ratten: Oz.

Pentadecylsäureamid $C_{15}H_{31}ON = CH_{3} \cdot [CH_{3}]_{13} \cdot CO \cdot NH_{2}$ (H 369). Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, *Pr. roy. Soc.* [A] 103, 693; *C.* 1923 III, 1295.

Pentadecylsäurenitril, n-Tetradecylcyanid C₁₅H₂₆N = CH₃·[CH₂]₁₃·CN (E I 163). Uber die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, Jessop, Pr. roy. Soc. [A] 110, 428; C. 1926 I, 2548.

- **2-Brom-pentadecansäure-(1)**, α -Brom-pentadecylsäure $C_{15}H_{19}O_3Br=CH_3\cdot [CH_1]_{18}\cdot CHBr\cdot CO_2H$ (H 369). Über die Ausbreitung auf verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Adam, *Pr. roy. Soc.* [A] 103, 690; *C.* 1923 III, 1294; A., Jessop. *Pr. roy. Soc.* [A] 112, 365; *C.* 1926 II, 2399.
- 15-Brom-pentadecansäure-(1), ω -Brom-pentadecylsäure $C_{15}H_{29}O_2Br=CH_2Br-[CH_2]_{13}\cdot CO_2H$. Diese Konstitution kommt der "Brompentadecylsäure" $C_{15}H_{29}O_2Br$ von Ciamician, Silber (B. 29, 1815) (H 370) zu (Kerschbaum, B. 60, 909). B. Aus 14-Oxytetradecan-carbonsäure-(1) und einer 50%igen Lösung von Bromwasserstoff in Essigsäure (Chuit, Hausser, Helv. 12, 484). Krystalle (aus Petroläther + wenig Benzol). F: 65,2—65,5° (Ch., Hau.). Beim Kochen von ω -Brom-pentadecylsäure mit frisch gefälltem, trocknem Silberoxyd in Benzol oder beim Erhitzen des Silber- bzw. Kupfersalzes in Xylol auf 160° entsteht das Lacton der ω -Oxy-pentadecylsäure (Haarmann & Remmer Chem. Fabr., D. R. P. 449217; C. 1927 II, 2351; Frdl. 15, 166; vgl. Kerschbaum, B. 60, 909).

"Brompentadecylsäure" $C_{15}H_{29}O_2$ Br von Ciamician, Silber (B. 29, 1815) (H 370) wird von Kebschbaum (B. 60, 909) als ω -Brom-pentadecylsäure erkannt.

2. Carbonsäure $C_{16}H_{30}O_3$ aus Paraffin. B. Durch Einleiten von Chlor in Paraffin bei 155—160°, Erhitzen des 10,6% Chlor enthaltenden Chlorparaffingemisches mit wäßrigalkoholischer Kalilauge im Autoklaven auf 190—200° und Oxydation des entstandenen Olefingemisches mit alkal. Permanganat-Lösung bei 100° (SCHAARSCHMIDT, THIELE, B. 53, 2131). — $AgC_{16}H_{30}O_3$. [Hillger]

16. Carbonsäuren $C_{16}H_{82}O_{2}$.

1. Hexadecansdure. Pentadecan-carbonsdure-(1), Palmitinsdure $C_{10}H_{10}O_{2}$ = $CH_{2} \cdot [CH_{2}]_{14} \cdot CO_{2}H$ (H 370; E I 163).

Literatur: A. Ghün, Analyse der Fette und Wachse, Bd. 1 [Berlin 1925]; A. Ghün, W. Halden, Analyse der Fette und Wachse, Bd. 2 [Berlin 1929]; Ubbelloedes Handbuch

der Chemie und Technologie der Öle und Fette, 2. Aufl., Bd. 1—3 [Leipzig 1929—1932]; E. Böhm, Fabrikation der Fettsäuren [Stuttgart 1932]; D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933]; Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 und 2 [Wien 1936 und 1937].

Vorkommen, Bildung, Reinigung.

V. Über das Vorkommen von freier oder gebundener Palmitinsäure in tierischen und pflanzlichen Fetten und Ölen vgl. die oben angeführte Literatur, ferner Armstrong, Allan, J. Soc. chem. Ind. 43, 216 T; C. 1924 II, 1527; C. Wehmer, Die Pflanzenstoffe, 2. Aufl. [Jena 1929 und 1931]; G. Klein, Handbuch der Pflanzenanalyse, Bd. 2, Tl. I [Wien 1932], S. 513, 580, 591. Findet sich ferner in japanischem Petroleum (Tanaka, Kuwata, J. Fac. Eng. Tokyo Univ. 17, 298; C. 1929 I, 960); im finnischen "flüssigen Harz" (Nebenprodukt bei der Herstellung der Sulfatcellulose) (Pyhälä, Ch. Umschau Fette 34, 190; C. 1927 II, 2363) sowie im Wachs der sog. Papierkohle (Sapropelkohle) (Legg, Wheeler, Soc. 1929, 2456).—B. Beim Oxydieren von Paraffin mit Sauerstoff bei Gegenwart metallischer Katalysatoren unter Druck oberhalb 150° (Franck, Ch. Z. 44, 310; C. 1920 II, 781; Kelber, B. 53, 1574). Beim Erhitzen von Cetylchlorid mit Kaliumhydroxyd auf 200—300° (Schrauth, D. R. P. 327048; C. 1921 II, 42; Frdl. 13, 168). Aus Jalapinolsäure beim Erhitzen mit Jodwasserstoff (D: 1,9) und rotem Phosphor im Rohr auf 100° und nachfolgenden Behandeln mit Zink und Salzsäure (Asahina, Yaoi, C. 1926 I, 916; vgl. a. Kromer, J. pr. [2] 57 [1898], 454). Durch Oxydation von Dihydrosphingosin (Syst. Nr. 356) mit Chromessigsäure, neben anderen Produkten (Klenk, H. 185, 177). — Reinigung durch Fraktionierung des Athylesters unter vermindertem Druck: Wilkie, J. Soc. chem. Ind. 46, 471 T; C. 1928 I. 674.

Physikalische Eigenschaften.

PIPER, MALKIN, AUSTIN (Soc. 1926, 2310) und DE BOER (Nature 119, 634; C. 1927 II, 371) schließen auf Grund röntgenographischer Untersuchungen auf die Existenz von 3 verschiedenen Modifikationen. Über weitere röntgenographische Untersuchungen vgl. Becker, Jancke, Ph. Ch. 99, 271; A. Müller, Soc. 123, 2044; Trillat, C. r. 180, 280, 1330, 1838; Ann. Physique [10] 6, 57, 61; Wyckoff, Hunt, Merwin, Z. Kr. 62, 553; Sci. 61, 613; C. 1925 II, 1332; Thoraeus, Phil. Mag. [7] 1, 316; C. 1926 I, 2534; Prins, Coster, Nature 118, 83; C. 1926 II, 1366; Thibaud, Nature 119, 852; C. 1927 II, 2146; Herzog, Jancke, Z. Phys. 45, 197; C. 1928 I, 639; Piggot, J. Washington Acad. 18, 332; C. 1928 II, 619; Sogani, Indian J. Phys. 2, 102; C. 1928 I, 470; Prins, Z. Phys. 56 [1929], 643. Härte: Reis, Zimmermann, Ph. Ch. 102, 330. — F: 62,65° (Stratton, Partington, Phil. Mag. [6] 48, 1085; C. 1925 I, 1166). E: 62,25° (Str., P.), 62,3° (Garner, Madden, Rushbrooke, Soc. 1926, 2501), 62,2° (Joglekar, Watson, J. Soc. chem. Ind. 47, 366 T; C. 1929 I, 988). Schmelzpunkte unter hohen Drucken: G. Tammann, Kristallisieren und Schmelzen [Leipzig 1903], S. 232. Kp₁₀₀: 267—270° (Str., P.). D; zwischen 64,3° (0,854) und 149,3° (0,800): Hunten, Maass, Am. Soc. 51, 160. Viscosität zwischen 74,0° (0,0717 g/cm sec) und 144,0° (0,0194 g/cm sec): Hu., M. Oberflächenspannung zwischen 65,2° (28,6 dyn/cm) und 149,3° (22,1 dyn/cm): Hu., M. Parachor: Hu., M. Spezif. Wärme c_p von Palmitinsäure-Krystallen zwischen —184,8° (0,160 cal/g) und +19,3° (0,431 cal/g): Parks, Kelley, Am. Soc. 47, 2091. Mittlere spezifische Wärme der festen Substanz zwischen 22° und 53°: 0,4920 cal/g; der flüssigen Substanz unterhalb 68°: 0,5416 cal/g (G., M., R.). Schmelzwärme: 51,03 cal/g (Str., P., Phil. Mag. [6] 48, 1088), 50,59 cal/g (G., M., R.). Kryoskopische Konstante: 4,313 (Verkade, Coops, R. 47, 608).

ng: 1,4281; ng: 1,4303; ng: 1,4358; ng: 1,4403 (Waterman, Bertram, R. 46, 701). ng: 1,4309 (Whitby, Soc. 1926, 1463); ng: 1,4266 (Joglekar, Watson, J. Soc. chem. Ind. 47, 366 T). Zur Dispersion vgl. a. W., B., R. 47, 52; Verkade, Coops. R. 47, 48. Schwächungskoeffizient von Palmitinsäure für kurzwellige Röntgenstrahlen: Stumpen, Z. Phys. 50, 226; C. 1928 II, 1859. Elliptische Polarisation von linear polarisiertem Licht bei der Streuung an Oberflächen von Palmitinsäure: Raman, Ramdas, Phil. Mag. [7] 3, 222; C. 1927 I, 2799. Depolarisationsgrad des an flüssiger Palmitinsäure gestreuten Lichts: Lautsch, Ph. Ch. [B] 1, 118. Beugung von Röntgenstrahlen an flüssiger Palmitinsäure: Sogani, Indian J. Phys. 2, 102; C. 1928 I, 470; Herzog, Jancke, Z. Phys. 45, 198; C. 1928 I, 639; Prins, Z. Phys. 56, 617; C. 1929 II, 1890. Elektrische Leitfähigkeit von geschmolzener Palmitinsäure i 100—190°: Lederer, Z. ang. Ch. 42, 1034; Led., Hartleb, Seifens.-Zig. 56, 346; C. 1929 II, 3080.

Unlöslich in flüssigem Schwefeldioxyd und flüssigem Ammoniak (DE CARLI, G. 57, 352), löslich in Paraldehyd (Cooper, Biochem. J. 18, 948). Löst sich in Puffer-Lösungen bei Zusatz der Natriumsalze der Glykochol- oder Taurocholsäure auch bei saurer Reaktion (Verzár, Kúthy, Bio. Z. 205, 371; 210, 270, 281). Ist in 0,01 n-Salzsäure bei Zimmertemperatur nicht

merklich löslich (ADAM, Pr. roy. Soc. [A] 101, 467; C. 1923 I, 271). 100 cm³ Alkohol lösen bei 15° 6,5 g (AUTENRIETH, THOMAE, B. 57, 430), 100 g p-Xylol bei 50° 33,8 g, bei 90° 73,5 g (McBair, Buckingham, Soc. 1927, 2681). Über die Abhängigkeit der kolloiden Löslichkeit von Palmitinsäure in verd. Natronlauge von der Menge des Bodenkörpers vgl. v. Buzign, Koll.-Z. 43, 216; C. 1928 I, 655. Kryoskopisches Verhalten von Mesitylen in Palmitinsäure: Stratton, Partington, Phil. Mag. [6] 48, 1087. Erstarrungs- bzw. Schmelzpunkte von Gemischen mit Ölsäure: Lapworth, Pearson, Mottram, Biochem. J. 19, 14; mit Stearinsäure, Arachinsäure oder Behensäure: McGregor, Beat., Am. Soc. 48, 3153. Thermische Analyse des Systems mit Stearinsäure: Morgan, Bowen, J. Soc. chem. Ind. 43, 347 T; C. 1925 I, 482; Jefremow, Izv. ural. politech. Inst. 6, 181; C. 1928 II, 1967; der Systeme mit Desoxycholsäure und Apocholsäure: Rheinboldt, H. 180, 181, 184; der Systeme mit Hyodesoxycholsäure und Cholsäure: Rh., H. 182, 252, 257. Ebullioskopisches Verhalten in Trichloräthylen und Tetrachlorathylen: Walden, Ann. Acad. Sci. fenn. 29, Nr. 23, 15, 17; C. 1928 I, 166. Dampfdruckbestimmungen an Gemischen mit palmitinsaurem Natrium in wäßr. Lösung bei 90°: McBain, Taylor, Laing, Soc. 121, 624. Flüchtigkeit mit Wasserdampf: Arnold, Z. Unters. Nahr.-Genuβm. 42, 358, 360. Dichte einer 5% igen alkoholischen Lösung bei 50°: Lifschitz, BECK, Koll.-Z. 26 [1920], 61. Einfluß sehr dünner Schichten auf die gleitende Reibung zwischen Glas, Quarz und Stahl: HARDY, DOUBLEDAY, Pr. roy. Soc. [A] 100, 560; 101, 490; C. 1922 IV, 514; 1923 I, 876. Einfluß von Palmitinsäure sowie von binären Gemischen mit n-Triakontan und Cetylalkohol auf die Adhäsion an Kupfer und Stahl: HARDY, NOTTAGE, Pr. roy. Soc. [A] 118, 212; C. 1928 II, 864; N., Pr. roy. Soc. [A] 118, 608; C. 1929 I, 730. Diffusion aus alkoh. Lösung durch Kollodiumhülsen, auch in Gegenwart von Stearinsäure: HEIDUSCHKA, RIPPER, Z. El. Ch. 29, 554. Über den Einfluß von Palmitinsäure auf die Grenzflächenspannung zwischen Benzol und Wasser oder Benzol und verd. Natronlauge in Anund Abwesenheit von Natriumchlorid vgl. Dubrisay, Picard, C. r. 178, 206; D., C. r. 181, 1142; Bl. [4] 37, 999; Rev. gén. Colloides 5, 486; C. 1927 II, 396. Grenzflächenspannung von Lösungen in Benzol gegen saure und alkal. Phosphat-Puffer-Lösungen (p_R 5,6 und 7,6): HARTRIDGE, PETERS, Pr. roy. Soc. [A] 101, 356, 358; C. 1923 I, 874. Über die Grenzflächenspannung der benzelischen Lösung von Gemischen aus Palmitinsäure + Stearinsäure gegenüber sehr verd. Natronlauge vgl. D., C. r. 181, 1062. Kontaktwinkel zwischen Palmitinsäure, Wasser und Luft: Adam, Jessop, Soc. 127, 1866; Nietz, J. phys. Chem. 82, 262. — Adsorption aus verschiedenen Lösungsmitteln durch Kohle verschiedener Herkunft: Nekrassow, Ph. Ch. 136, 23. Ausbreitung von Palmitinsäure auf Wasser oder verd. Salzsäure und Struktur monomolekularer Schichten: Labrouste, Ann. Physique [9] 14, 207, 234; ADAM, Pr. roy. Soc. [A] 99, 337; 101, 457, 518; Trans. Faraday Soc. 24, 151; C. 1921 III. 689; 1923 I, 271, 272; 1928 II, 741; Ad., Jessop, Pr. roy. Soc. [A] 110, 426; C. 1926 I, 2548; Woog, C. r. 173, 388; Harkins, Morgan, Pr. nation. Acad. USA. 11 [1925], 638; CARY, RIDEAL, Pr. roy. Soc. [A] 109, 312, 320, 329; C. 1926 I, 1126; MOUQUIN, RIDEAL, Pr. roy. Soc. [A] 114, 694; C. 1927 II, 396; GORTER, GRENDEL, Bio. Z. 192, 436, 446; MAR-CELIN, C. r. 189, 238; FAHIR, C. r. 189, 239; HILL, Phil. Mag. [7] 7, 940, 945; C. 1929 II, 858. Bestimmung der Größenverteilung der Teilchen in Emulsionen von Benzol in wäßr. Lösungen von Palmitinsäure: STAMM, SVEDBERG, Am. Soc. 47, 1595.

Brechungsindex einer 5%igen alkoholischen Lösung bei 50°: Lifschitz, Beck, Koll.-Z. 26 [1920], 61. Röntgenographische Untersuchungen an Gemischen von Palmitinsäure mit Stearinsäure: Pifer, Malkin, Austin, Soc. 1926, 2316. Elektrische Leitfähigkeit von Lösungen in Äther bei 25°: Rabinowitsch, Ph. Ch. 119, 75; Ж. 58, 235, 236; von Gemischen aus Palmitinsäure mit ihrem Natriumsalz in wäßr. Lösung bei 90°: McBain, Taylor, Laing, Soc. 121, 622. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer Palmitinsäureschicht auf verd. Salzsäure: Frumkin, Ph. Ch. 116, 493. Colorimetrische Bestimmung der Alkalinität von Gemischen mit Natriumpalmitat in wäßr. Lösung bei 20° und 90°: McBain.

HAY, Soc. 1929, 600.

Chemisches Verhalten.

Das Natriumsalz liefert bei der Destillation aus einem Aluminiumgefäß bei 380—540° Kohlenoxyd, Kohlenoxyd, gesättigte und ungesättigte Kohlenwasserstoffe und Palmiton (Shoyama, Mem. Coll. Sci. Kyoto [A] 11, 534; C. 1929 I, 1833). Palmitinsäure gibt beim Erhitzen in Gegenwart von Eisenpulver in einem eisernen Gefäß auf 295° (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 423) oder in Gegenwart von Thoriumoxyd bei 400—430° (Saville, Shearer, Soc. 127, 592) Palmiton. Beim Erhitzen mit Aluminiumchlorid entstehen Kohlendioxyd und gasförmige, flüssige und viel feste Paraffine (Zelinsky, Lawrowsky, B. 61, 1056). Bei der Elektrolyse eines Gemischs mit Stearinsäure entsteht n-Dotriakontan (Piper, Brown. Dyment, Soc. 127, 2195). Die wäßr. Lösung des Kaliumsalzes wird durch Luftsauerstoff im Sonnenlicht, besonders in Anwesenheit von Zinkoxyd oxydiert (Palit, Dhar, J. phys. Chem. 32, 1265). Bei Oxydation einer wäßrigen, sohwach ammoniakalischen Ammoniumpalmitat-Lösung mit etwa 5 Mol Wasserstoffperoxyd, zuletzt bei 90°, entstehen y-Keto-palmitinsäure

und andere Produkte (CLUTTERBUCK, RAPER, Biochem. J. 19, 389). Geschwindigkeit der Oxydation durch 30 %iges Wasserstoffperoxyd und konz. Schwefelsäure: KERP, Arb. Gesundh.-Amt 57, 558; C. 1927 I, 1902. Palmitinsäure wird durch ein Gemisch aus Kaliumdichromat und Schwefelsäure nur sehr schwer oxydiert (LIEBEN, MOLNAR, M. 53/54, 7). Oxydation in Petroläther durch Kaliumdichromat und Schwefelsäure: Blix, Skand. Arch. Physiol. 48 [1926], 289. Zerfällt bei der Destillation mit Zinkstaub im Wasserstoffstrom unter Entwicklung von Kohlendioxyd (van der Haar, R. 48, 1171). Gibt beim Erhitzen auf 460° bei 70 Atm. Wasserstoffdruck in Gegenwart von Aluminiumoxyd eine gelbliche, nach Benzin riechende Flüssigkeit (IPATJEW, PETROW, B. 62, 404). Über die Bildung von Silber-Sol aus Palmitinsäure und ihrem Silbersalz beim Erhitzen in Gegenwart von Wasserstoff auf 100° vgl. GILES, Salmon, Soc. 123, 1605. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: BHIDE, SUDBOROUGH, J. indian Inst. Sci. 8, 104, 108; C. 1926 I. 80. Liefert beim Erhitzen mit Phenylhydrazin auf 150° Palmitinsäure-phenylhydrazid (van Alphen, R. 44, 1065).

Biochemisches und physiologisches Verhalten.

Wird von Aspergillus flavus (Tausson, Bio. Z. 193, 88) und Penicillium cyclopium (Derx, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345) oxydiert. Wachstumshemmende Wirkung auf Penicillium palitans und Oidium lactis: Stokoe, Biochem. J. 22, 88. Das Natriumsalz paralysiert die Giftwirkung der Toxine verschiedener pathogener Bakterien (Vincent, C. r. 182, 1307). Bactericide Wirkung der Kalium- und Natriumsalze: Walker, Ber. Physiol. 31, 938; C. 1926 I, 1589. Hemmende Wirkung auf enzymatische Vorgänge: Velluz, Bl. Soc. Chim. biol. 9, 485; C. 1927 II, 837. Nährwert der freien Säure und des Natriumsalzes für Ratten: Ozaki, Bio. Z. 189, 238; Pr. Acad. Tokyo 3, 442; C. 1928 I, 541. Einfluß einer Beifütterung von Palmitinsäure oder Natriumpalmitat auf das Wachstum und die Metamorphose von Kaulquappen: Kniebe, Z. Biol. 71, 171; C. 1920 III, 494.

Verwendung; Analytisches.

Verwendung der Alkalisalze zur Härtebestimmung des Wassers: Tarugi, Gasperini. Boll. chim.-farm. 63, 33, 65; C. 1924 I, 1837. — Nachweis in Fetten durch die bei der Mikrodestillation unter 30 cm Druck erhaltenen charakteristischen Krystalle: Niethammer. Bio. Z. 209, 456. Nachweis in Gegenwart von Stearinsäure. Ölsäure oder Buttersäure mit Hilfe des Phenacylesters: Rather, Reid, Am. Soc. 43, 632. Abtrennung von Palmitinsäure aus Säuregemischen und Nachweis: Rojahn, Struffmann, Ar. 1927, 292, 302; aus Gemischen mit Ölsäure oder Stearinsäure + Ölsäure: Steger, Scheffers, R. 46, 406; aus Gemischen mit Ölsäure und Linolsäure auf Grund der Schwerföslichkeit des Thallosalzes in verd. Alkohol: Holde, Selim, B. 58, 527; vgl. H., S., Bleyberg, Z. ang. Ch. 37, 886; aus Gemischen mit niederen gesättigten Fettsäuren, Oxysäuren und ungesättigten Säuren auf Grund der verschiedenen Löslichkeit der hydroxamsauren Natriumsalze in Alkohol: Lewis, Biochem. J. 20, 1361, 1362. Titration mit methylalkoholischer Bariumhydroxyd-Lösung: Escher, Helv. 12, 103. Potentiometrische Titration mit Natriumäthylat in alkoh. Lösung: Bishor, Kittredge, Hildebrand, Am. Soc. 44, 137. Bestimmung in einem Fettsäuregemisch oder in Fetten: Bertram, Z. dtsch. Öl-Fettind. 45, 735; C. 1926 II, 129. Nephelometrische Bestimmung im Blut: Bloor, Pelkan, Allen, J. biol. Chem. 52, 191. Über die Bestimmung im Sojabohnenöl vgl. Wallis, Burrows, Am. Soc. 46, 1951.

Salze der Palmitinsäure (Palmitate).

Über die Zusammensetzung und die Struktur wäßr. Seifensole und Seifengele in Anund Abwesenheit von Zusätzen vgl. E. L. Lederer, Kolloidchemie der Seifen [Dresden und Leipzig 1932]; H. Freundlich, Kapillarchemie, 4. Aufl., Bd. 2 [Leipzig 1932], S. 337—342, 355, 485—490, 639, 690.

Natrium palmitate: NaC₁₆H₃₁O₂+C₁₆H₃₂O₂. Das Molekulargewicht ist kryoskopisch in Campher beştimmt (Ekwall, Mylius, B. 62, 1084). Krystalle. F: 97—98°. — Über die Existenz weiterer saurer Natriumsalze vgl. Ekwall, Mylius, B. 62, 1083; vgl. dagegen Malkin, B. 63 [1930] 1808. — NaC₁₆H₃₁O₂. Röntgendiagramm von Natriumpalmitat-Gallerten: Piper, Grindley, Pr. phys. Soc. London 35, 269; C. 1924 I, 2077. Elektrische Leitfähigkeit der Schmelze: Bhatnagar, Prasad, Koll.-Z. 34, 194; C. 1924 II, 1167. Untersuchungen über molekular- und kolloiddisperse Anteile im System Natriumpalmitat-Wasser auf mikroskopischem Weg: Maclennan, J. Soc. chem. Ind. 42, 397 T; C. 1924 I, 1291; auf ultramikroskopischem Weg: Darke, McBain, Salmon, Pr. roy. Soc. [A] 98, 399, 401; C. 1922 II, 159; durch Ultrafiltration: Leeten, Z. dtsch. Öl-Fettind. 43, 51; C. 1923 I, 1390; Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 171; C. 1928 I, 1156; aus dem Verlauf der Abkühlungskurve gelatinierender Natriumpalmitat-Lösungen: M. H. Fischer, Koll.-Z. 46, 359; C. 1929 II, 399. Über Trübung und Ausflockung wäßr. Lösungen bei verschiedenen Wasserstoffionen-Konzentrationen vgl. Jarisch.

Bio. Z. 133, 166. Zur Filtration einer teilweise erstarrten wäßrigen Natriumpulmitat-Lösung in Gegenwart von Glycerin und zur Zusammensetzung des erhaltenen Filtrats vgl. BENNETT, Soc. 125, 1971. Messung der Löslichkeit von Natriumpalmitat in Wasser, in Anund Abwesenheit von Natriumoleat: MIKUMO, J. Soc. chem. Ind. Japan Spl. 32, 7B; C. 1929 I, 2001. Löslichkeitsdiagramm des Systems Natriumpalmitat-Natriumchlorid-Wasser: McBain, LANGDON, Soc. 127, 863. Aussalzung durch Natriumachlorid in Gegenwart von wenig Natriumachlorid und Zusammensetzung der entstehenden Phasen: McBain, Martin, Soc. 119, 1370; durch Natriumchlorid in Gegenwart von Natriumhydroxyd, Natriumthiosulfat, Kaliumjodid, Kaliumbromat, Kaliumchromat, Phenol, Glycerin, Aceton, Natriumformiat, Natriumacetat oder Natriumoxalat und Zusammensetzung der entstehenden Phasen: Laing, Soc. 119, 1673; durch Natriumbrowayd und verschiedene Natriumselze bei Temperaturen checkell 750 McD hydroxyd und verschiedene Natriumsalze bei Temperaturen oberhalb 75°: McB., PITTER, Soc. 1926, 894. Zur Struktur der Kolloidteilchen in Natriumpalmitat-Lösungen in An- und Abwesenheit von Elektrolyten an Hand von EMK-Messungen vgl. a. Salmon, Soc. 117, 535; 121, 713. Lösungsvermögen der wäßr. Lösung für verschiedene organische Verbindungen: Tamba, Bio. Z. 145, 418. Dampfdruck wäßr. Lösungen bei 90°: McB., Salmon, Am. Soc. 42. 436; Pr. roy. Soc. [A] 97, 50; C. 1920 III, 533. Dampfdruckmessungen an Seifengerinnseln (soap-curd) bei allmählicher Entwässerung in Gegenwart von Natronlauge, Natriumchlorid-, Natriumsulfat- und Natriumjodat-Lösungen: McBain, Salmon, Soc. 119, 1375. Dampfdruckbestimmungen an Gemischen mit freier Palmitinsäure oder Natronlauge in wäßr. Lösung bei 90°: McB., Taylor, Laing, Soc. 121, 624. Dichte von Gemischen mit Natriumchlorid, Natriumacetat oder Natriumcarbonat in wäßr. Lösung bei 81°: McB., Willavoys, Heighington, Soc. 1927, 2692. Viscosität wäßr. Lösungen bei 25—30°: Nonaka, J. Soc. chem. Ind. Japan Spl. 30, 219 B; C. 1928 I, 1374; bei 60°, 70° und 80°: Yajnik, Malik, Koll.-Z. 36, 325; C. 1925 II, 2134; vgl. Mal., Koll.-Z. 39, 322; C. 1926 II, 2401. Einfluß von Natriumchlorid, Natriumacetat und Natriumcarbonat auf die Viscosität wäßr. Lösungen bei 81º: McB., W., H. Zur Viscosität wäßr. Lösungen in Gegenwart von Elektrolyten vgl. a. Nonaka, J. Soc. chem. Ind. Japan Spl. 30, 63 B; C. 1929 II, 2125. Viscosität eines Gemisches von Natriumpalmitat und Natriumoleat in wäßr. Lösung: Freundlich, Jores, Koll. Beih. 22, 28; C. 1926 I, 3310. Viscosität der Lösungen in Alkohol und Butylalkohol bei 30°: Prasad, J. phys. Chem. 28, 639. Oberflächenspannung wäßr. Lösungen bei 150: LASCARAY, Koll.-Z. 34, 76; C. 1924 I, 2413; bei 17°: EKWALL, Acta Acad. Abo. 4, Nr. 6, S. 150; C. 1928 I, 1156; bei 20°: Ponder, Biochem. J. 18, 850; bei 25°: White, Marden, J. phys. Chem. 24, 624; bei 60°: Walker, Soc. 119, 1523; einer 0,1 %igen Lösung zwischen 45° und 90°: Walker, Soc. 119, 1526; von Gemischen mit myristinsaurem, stearinsaurem und ölsaurem Natrium in wäßr. Lösung: Walker, Soc. 119, 1528. Zur Oberflächenspannung einer wäßr. Lösung bei verschiedenen Temperaturen vgl. Kawakami, J. Soc. chem. Ind. Japan Spl. 31, 281 B; C. 1929 I, 1549. Einfluß der Wasserstoffionen-Konzentration auf die Oberflächenspannung einer Natriumpalmitat-Lösung: Jarisch, Bio. Z. 184, 166; Ekwall, Acta Acad. Abo. 5, Nr. 5, S. 12; C. 1929 I, 2862. Zur Grenzflächenspannung von neutralen, alkalischen und sauren Natriumpalmitat-Lösungen gegen Benzol, Toluol und Olivenöl vgl. Nonaka, J. Soc. chem. Ind. Japan Spl. 31, 207 B. Schaumbildungsvermögen von Gemischen mit Natriumlaurat und Natriumoleat: Kawakami, J. Soc. chem. Ind. Japan Spl. 30, 58 B; C. 1929 II, 2125; Waschwirkung: Chapin, J. Oil Fat Ind. 5, 208; C. 1928 II, 1159. Adsorption an der Grenzfläche einer währ. Lösung gegen Benzol, Toluol oder Luft: Nonaka, J. Soc. chem. Ind. Japan Spl. 31, 73 B; C. 1928 II, 134; einer neutralen, sauren oder alkalischen Lösung gegen Benzol: N., J. Soc. chem. Ind. Japan Spl. 31, 208 B; C. 1929 I, 730. Emulgierungsvermögen währ. Lösungen für pflanzliche Öle: Yajnik, Ilahi, Koll.-Z. 37, 141; C. 1926 I, 34; für Kerosin und Leinsamenöl: White, Marden, J. phys. Chem. 24, 626. Bestimmung der Größenverteilung der Teilchen in Emulsionen von Benzol in währ. Lösungen von Natriumpalmitat: Stamm. Svenberg 4m, Soc. 47, 1593. Röntgenspektrographische Untergebungen über die STAMM, SVEDBERG, Am. Soc. 47, 1593. Röntgenspektrographische Untersuchungen über die Quellung in Trichloräthylen: Katz, Mark, Phys. Z. 25, 434; Versl. Akad. Amsterdam 33, 299; C. 1924 II, 442, 2321. Stabilisierende Wirkung auf Goldhydrosole: IREDALE, Soc. 119, 626. Elektrische Leitfähigkeit in Wasser bei 170: Erwall, Acta Acad. Abo. 4, Nr. 6, S. 158, 204; C. 1928 I, 1156; in Alkohol, Propylalkohol und Butylalkohol bei 30°: Bhatnagar, 204; C. 1928 I, 1156; in Alkohol, Propylalkohol und Butylalkohol bei 30°: Bhatnagar, Prasad, Koll.-Z. 34, 195; C. 1924 II, 1167; von Gemischen mit der freien Säure oder Natrium-hydroxyd in wäßr. Lösung bei 90°: McBain, Taylor, Laing, Soc. 121, 622, 623. Colorimetrische Bestimmung der Hydrolyse wäßr. Lösungen bei 17°: Ek., Acta Acad. Abo. 4, Nr. 6, S. 164; bei 20° und 90°: McB., Hay, Soc. 1929, 598, 599. Über das Gleichgewicht der Hydrolyse in wäßr. Lösung bei 90° und den Einfluß von Salzen auf dasselbe vgl. McB., Buckingham, Soc. 1927, 2683, 2687. Zur Hydrolyse vgl. ferner Stocks, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786. Kataphorese von Lösungen: Nonaka, J. Soc. chem. Ind. Japan Spl. 32, 36 B; C. 1929 II. 272. C. 1929 II, 272.

Kaliumpalmitate: KC₁₆H₂₁O₂ + C₁₆H₂₉O₃ (bei 105°). Krystalle: F: 138° (STEZENKO, *Maslob. žir. Delo* 1926, Nr. 7/8, S. 35; C. 1927 I, 1426). Bei 18° löst sich 1 g in 198 cm³

95% igem Alkohol. Zur Hydrolyse durch Wasser vgl. St. Zerfällt bei längerer Extraktion mit Äther oder Chloroform in Palmitinsäure und neutrales Kaliumpalmitat. — KC₁₆H₃₁O₂. Röntgenogramm: PIPER, Soc. 1929, 236. Elektrische Leitfähigkeit der Schmelze: Bhatnagar, Prasad, Koll.-Z. 34, 194; C. 1924 II, 1167. — Löslichkeit von Kaliumpalmitat in Wasser (Ultrafiltrationsversuche): Kratz, Z. dtsch. Öl-Fettind. 44 [1924], 50. Untersuchungen über den Dispersitätsgrad von Kaliumpalmitat-Lösungen bei Gegenwart von Kalilauge oder Kaliumchlorid an Hand ultramikroskopischer Beobachtungen: Kr., Z. dtsch. Öl-Fettind. 44. 26. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436; Pr. roy. Soc. [A] 97, 51; C. 1920 III, 533. Viscosität der Lösungen in Alkohol und Butylalkohol bei 30°: Prasad, J. phys. Chem. 28, 638. Über Emulsionen von Kerosin mit Kaliumpalmitat und Wasser vgl. Griffin, Am. Soc. 45, 1655. Bestimmung der Größenverteilung der Teilchen von Emulsionen von Benzol in wäßr. Lösungen von Kaliumpalmitat: Kraemer, Stamm, Am. Soc. 46, 2713; Stamm, Svedberg, Am. Soc. 47, 1591. Doppelbrechung von Trockenrückständen aus wäßr. Kaliumpalmitat-Lösungen: Kr., Z. dtsch. Öl-Fettind. 44, 38. Elektrische Leitfähigkeit in Alkohol, Propylalkohol und Butylalkohol: Bh., Pr. Colorimetrische Bestimmung des Hydrolysengrades bei 20° und 90°: McBain, Hay, Soc. 1929, 598, 599.

Caesium palmitat. Bestimmung der Größenverteilung der Teilchen von Emulsionen von Benzol in wäßr. Lösungen von Caesiumpalmitat: STAMM, SVEDBERG, Am. Soc. 47, 1593. -Kupferpalmitat Cu(C₁₆H₃₁O₂)₂. Sintert bei 103° und schmilzt bei 138° (KLIMONT, J. pr. [2] 109, 272). Löslich in heißem Mineralöl (D: 0,885). Beim Lösen in geschmolzenem Paraffin erfolgt Abscheidung von Kupfer. — Silberpalmitat AgC₁₆H₃₁O₂. Amorphe, lichtbeständige Verbindung (GASCARD, A. ch. [9] 15, 362). 1 l Wasser löst bei 20° 0,00123 g (Whitby, Soc. 1926, 1459). Kolloidchemisches Verhalten in verschiedenen Lösungsmitteln: Wh. — Calciumpalmitat Ca(C₁₆H₃₁O₂)₂. Sintert bei 110° und zersetzt sich bei 150—155° (Harrison, Biochem. J. 18, 1223). Löslich in heißem Benzin (Klimont, J. pr. [2] 109, 272) und in Campher (Ssadikow. MICHAILOW, Ж. 56, 111; C. 1926 I, 815), schwer löslich in siedendem Chloroform, siedendem Benzol, sehr schwer in siedendem Xylol, unlöslich in Alkohol, Äther, Aceton, Petroläther und Wasser (H.). Löst sich in alkoh. Salzsäure (H.). Die Lösung in heißem Mineralöl gelatiniert nach einiger Zeit (K.). — Quecksilber(II) palmitat Hg(C₁₆H₃₁O₂)₂. Fein-krystallinisches Pulver (aus Alkohol + Chloroform + Pyridin oder aus flüssigem Paraffin + Äther). Bei 20° löst 1 l Alkohol 5,4×10⁻⁴ Mol, 1 l Äther 5,5×10⁻⁴ Mol, 1 l Chloroform 7.6×10^{-4} Mol, 1 l eines Gemisches von 6 Tln Alkohol + 1 Tl. Chloroform + 3 Tln. Pyridin 1,26×10⁻² Mol (Dietzel, Sedlmeyer, Ar. 1928, 516). Schwer benetzbar (Friedländer. Apoth.-Ztg. 44, 168; C. 1929 I, 1965). — Aluminiumpalmitat. Adsorption von Maltose aus wäßr. Lösung an Aluminiumpalmitat: Shrivastava, Mitarb., J. phys. Chem. 29, 176. — Thallium (I)-palmitat $TlC_{16}H_{31}O_2$. Röntgenogramm: PIPER, Malkin, Austin, Soc. 1926, 2315. Nadeln (aus Alkohol). F: 114—116° (korr.) (Walter, B. 59, 968), 115—117° (unkorrigiert) (Holde, Selim, B. 58, 527), 116—118° (Menzies, Wilkins, Soc. 125, 1149). Die Schnelze ist bis 172° (korr.) krystallin-flüssig (Wa.; vgl. a. H., S., B. 58, 524; M., Wi.; Christie, Menzies, Soc. 127, 2371). Leicht löslich in heißem Alkohol, löslich in Wasser, unlöslich in Äther (M., Wi.). Die wäßr. Lösung opalesciert nach dem Verdünnen (M., Wi.). Löslichkeit in Wasser zwischen 15° und 60° und in 96 %igem Alkohol zwischen 15° und 45°: H., S. Schmelzpunkte von Gemischen mit laurinsaurem Thallium: Wa. — Bleipalmitat $Pb(C_{16}H_{31}O_2)_2$. Röntgenogramm: TRILLAT, C. r. 180, 1839; Ann. Physique [10] 6, 76. F: 112° (Brass, J. Soc. chem. Ind. 46, 481 T; C. 1928 I, 1166). — Wis mutpal mitate: $Bi(C_{16}H_{31}O_{3})_3$. Schwach gelblich. F: 82° (Picon, Bl. [4] 45, 1059). Unlöslich in Methanol und Alkohol, sehr schwer löslich in Äther, Aceton, Essigester und Olivenöl, ziemlich schwer in Benzin. Petroläther, leicht in Chloroform, Tetrachlorkohlenstoff und Schwefelkohlenstoff. BiO(C₁₆H₃₁O₂). Unlöslich in den gewöhnlichen Lösungsmitteln (Picon, Bl. [4] 45, 1060).

Eisenpalmitat. Sintert bei 153° und schmilzt bei 182° (KLIMONT, J. pr. [2] 109, 272). Löslich in geschmolzenem Paraffin.

Funktionelle Derivate der Palmitinsäure.

Palmitinsäuremethylester, Methylpalmitat C₁₇H₃₄O₂ = CH₃·[CH₂]₁₄·CO₂·CH₃ (H 372; E I 165). B. Beim Kochen von Palmitinsäure mit methylalkoholischer Salzsäure (Skraup, Schwamberger, A. 462, 154). Aus dem Thallium(I)-salz der Palmitinsäure und siedendem Methyljodid (Fear, Menzies, Soc. 1926, 938). Aus Palmitoylchlorid und Methanol in der Wärme (Adam, Pr. roy. Soc. [A] 101 [1922], 471). — Röntgenogramm einer dünnen. orientierten Schicht (Reflexionsmethode): Shearer, Soc. 123, 3153. Optisches Verhalten dünner auf Glasplatten erstarrter Schichten: Vorländer, Selke, Ph. Ch. 129, 450. — F: 29,5—30° (Ad., Pr. roy. Soc. [A] 101, 471), 29,5° (F., Me). Siedet unter 0,001—0,01 mm Druck bei 115 bis 116° (Badtemp. 140—150°) (Anderson, Chargaff, J. biol. Chem. 84, 711). Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur monomolekularer Schichten

vgl. Ad., Pr. roy. Soc. [A] 101, 461, 523; 103, 693; Trans. Faraday Soc. 24, 151; C. 1923 I, 271, 272; III, 1295; 1928 II, 741; Cary, Rideal, Pr. roy. Soc. [A] 109, 312, 331; C. 1926 I, 1126. Thermische Analyse des Systems mit Stearinsäure-methylester: Verkade, Coops, Bio. Z. 206, 476. — Gibt mit Propylmagnesiumbromid in Äther Propyl-n-pentadecyl-carbinol (Leroide, A. ch. [9] 16, 384). Liefert bei gelindem Kochen mit Phenylmagnesiumbromid in Ather und Erhitzen des nach der Zersetzung mit kalter verdünnter Schwefelsäure erhaltenen Reaktionsprodukts auf 280—300° 1.1-Diphenyl-hexadecen-(1) (Sk., Sch.).

Palmitinsäureäthylester, Äthylpalmitat $C_{18}H_{36}O_3 = CH_3 \cdot [CH_3]_{14} \cdot CO_3 \cdot C_3H_5$ (H 372; E I 166). B. Durch Erhitzen von Silberpalmitat mit Äthyljodid in Xylol auf 100° (Whitey, Soc. 1926, 1464). Aus Palmitoylchlorid und Alkohol in der Wärme (Adam, Pr. roy. Soc. [A] 101 [1922], 471). — Krystalle (aus Alkohol). Röntgenogramm einer dünnen, orientierten Schicht (Reflexionsmethode): Shearer, Soc. 123, 3153; Piper, Malkin, Austin, Soc. 1926, 2315. Optisches Verhalten dünner auf Glasplatten erstarter Schichten: Vorländer, Selke, Ph. Ch. 129, 451. F: 25,5° (Ad., Pr. roy. Soc. [A] 101, 471), 23,5° (Wh.). Kp₃: 157°; Kp_{1,5}: 154° (P., M., Au., Soc. 1926, 2311). Dichte zwischen 30° (0,854) und 182° (0,742): Lautsch, Ph. Ch. [B] 1, 127. n_{α}^{π} : 1,4381; $n_{\beta}^{\pi_3}$: 1,4461; $n_{\gamma}^{\pi_1}$: 1,4505 (Lau.); $n_{\alpha}^{\pi_2}$: 1,4278; $n_{\alpha}^{\pi_3}$: 1,4200 (Wh.). Depolarisationsgrad bei der molekularen Lichtzerstreuung an flüssigem Palmitinsäureäthylester bei 30°: Lautsch, Ph. Ch. [B] 1, 118. Dielektr.-Konst. zwischen 30° (3,07) und 182° (2,45): Lau. Dipolmoment μ · 10¹⁶: 1,2 (homogene Flüssigkeit) (Lau.). — Ausbreitung auf Wasser oder verd. Salzsäure und Struktur monomolekularer Filme: Adam, Pr. roy. Soc. [A] 101, 461, 522; Trans. Faraday Soc. 24, 151; C. 1923 I, 271, 272; 1928 II, 741; Adam, Jessop, Pr. roy. Soc. [A] 110, 427; 112, 369, 370; 120, 477; C. 1926 I, 2548; II, 2399; 1929 I, 189; Carr, Rideal, Pr. roy. Soc. [A] 109, 312, 329, 331; C. 1926 I, 1126. Einfluß von Tripalmitin, Pentaerythrit-tetrapalmitat und Cholesterin darauf: A., J., Pr. roy. Soc. [A] 120 [1928], 477, 481.

Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. — Verseifung durch Ricinuslipase: Piutti, de'Conno, Ann. Chim. applic. 18, 473; C. 1929 I, 760. Nährwert für Ratten: Ozaki, Bio. Z. 189, 236; Pr. Acad. Tokyo 3, 441; C. 1928 I, 541.

[β -Brom-äthyl]-palmitat $C_{18}H_{35}O_2Br = CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot CH_2 \cdot CH_2Br$ (H 372). Schuppen. F: 61° (Abderhalden, Paffrath, Sickel, Pflügers Arch. Physiol. 207, 248; C. 1925 II. 934).

Palmitinsäurepropylester, Propylpalmitat C₁₀H₃₅O₂ = CH₃·[CH₂]₁₄·CO₂·CH₂·C₂H₅ (E I 166). B. Durch Erhitzen von Silberpalmitat mit Propyljodid auf 100° (Whitey, Soc. 1926, 1464). Beim Kochen von Thallium(I)-palmitat mit Propyljodid (Fear, Menzies, Soc. 1926, 938). Aus Palmitoylchlorid und Propylalkohol in der Wärme (Adam, Pr. roy. Soc. [A] 101 [1922], 471). — Krystalle (aus verd. Alkohol). Optisches Verhalten dünner auf Glasplatten erstarter Schichten: Vorländer, Selke, Ph. Ch. 129, 452. F: 15—16° (Ad., Pr. roy. Soc. [A] 101, 471, 529), 15,3—15,4° (F., M.), 20,4° (Wh.), 20—22° (V., S.). Kp₂₂: 209° (F., M.), 1,20; 1,4290; n¹⁰/₁: 1,4211 (Wh.). Über die Ausbreitung auf Wasser oder verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Adam, Pr. roy. Soc. [A] 101, 523; C. 1923 I, 272; Cary, Rideal, Pr. roy. Soc. [A] 109, 312, 331; C. 1926 I, 1126.

[β.γ-Dibrom-propyl]-palmitat, Glycerin-α.β-dibromhydrin-palmitat, γ-Palmito-β-dibromhydrin C₁₉H₃₆O₂Br₂ = CH₃·[CH₃]₁₄·CO₃·CH₂·CHBr·CH₂Br. B. Beim Erwärmen von Palmitinsäure mit Thionylchlorid auf 60° und folgendes Erhitzen mit 2.3-Dibrom-propanol-(1) (Fairbourne, Cowdrey, Soc. 1929, 134). Durch Einw. von Brom auf Allylpalmitat (F., C.). — Nadeln (aus Alkohol). F: 34°. — Liefert beim Erhitzen mit dem Silbersalz der 4-Nitro-benzoesäure in Äther auf 150° Glycerin-palmitat-bis-[4-nitro-benzoat] (F: 102°).

Palmitinsäureisopropylester, Isopropylpalmitat $C_{19}H_{38}O_3 = CH_3 \cdot [CH_3]_{14} \cdot CO_2 \cdot CH(CH_3)_2$. F: 13—14° (VORLÄNDER, Selke, *Ph. Ch.* 129, 452). Optisches Verhalten dünner auf Glasplatten erstarrter Schichten: V., S.

[β.β'-Dichlor-isopropyl]-palmitat, Glycerin-α.α'-dichlorhydrin-palmitat, β-Palmito-α-dichlorhydrin $C_{19}H_{36}O_3Cl_2=CH_3\cdot[CH_2]_{14}\cdot CO_3\cdot CH(CH_3Cl)_3$ (E I 166). B. Durch Erhitzen von Palmitoylchlorid mit α-Dichlorhydrin (Whitby, Soc. 1926, 1460; Thomson, Trans. roy. Soc. Canada [3] 20 III, 452; C. 1927 II, 2242). — Krystalle (aus Alkohol). F: 34,8° (Th.), 34,4° (Wh.), 34° (FAIRBOURNE, FOSTER, Soc. 1926, 3151). n_2^m : 1,4527 (Wh.).

 $[\beta.\beta]$ -Dibrom-isopropyl]-palmitat, Glycerin-α.α'-dibromhydrin-palmitat, β -Palmito-α-dibromhydrin $C_{19}H_{36}O_3Br_2 = CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot CH(CH_2Br)_2$. B. Durch Erhitzen von $\beta.\beta'$ -Dibrom-isopropylalkohol mit Palmitoylchlorid (Fairbourne, Cowdrey, Soc. 1929, 135). — F: 35,5°. — Liefert beim Erhitzen mit dem Silbersalz der 4-Nitro-benzoesäure in Äther auf 150° Glycerin-palmitat-bis-[4-nitro-benzoat] (F: 102°).

Palmitinsäurebutylester, Butylpalmitat $C_{20}H_{40}O_3=CH_2\cdot[CH_2]_{14}\cdot CO_2\cdot[CH_2]_2\cdot CH_3$. B. Durch Erhitzen von Silberpalmitat mit Butyljodid auf 100° (Whitby, Soc. 1926, 1464).

Aus Palmitoylehlorid beim Erwärmen mit Butylalkohol (Adam. Pr. roy. Soc. [A] 101 [1922], 471, 529). — Krystalle (aus verd. Alkohol, Äther oder Butylalkohol). Optisches Verhalten dünner auf Glasplatten erstarter Schichten: Vorländer, Selke, Ph. Ch. 129, 453. F: 15,5-47° (V., S.), 16,9° (Wh.). n;: 1,4312; n;: 1,4232 (Wh.). Über die Ausbreitung auf Wasser oder verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Ad.. Pr. roy. Soc. [A] 101, 523; C. 1923 I. 272.

Palmitinsäureisobutylester, Isobutylpalmitat C₂₀H₄₀O₂ CH₃·[CH₂]₁₄·(CO₂·CH₂·CH(CH₃)₂. B. Aus Palmitoylchlorid beim Erwärmen mit Isobutylalkohol (Adam, Pr. roy. Soc. [A] 101 [1922], 471). — Krystalle (aus verd. Alkohol). Krystallographisches Verhalten elünner auf Glasplatten erstarrter Schichten: Vorländer, Selke, Ph. Ch. 129, 455. F: 19—20° (Ad., Pr. roy. Soc. [A] 101, 529). Nach Vorländer, Selke (Ph. Ch. 129, 454) hängt der Schmelzpunkt von der thermischen Vorbehandlung ab. Kp₁₅: 207° (V., S.).

Palmitinsäure-n-amylester, n-Amylpalmitat $C_{21}H_{12}O_2=CH_3\cdot [CH_2]_{1^4}\cdot CO_2\cdot [CH_2]_1\cdot CH_3$. B. Durch Erhitzen von Silberpalmitat mit n-Amyljodid auf 100° (Whithy, Soc. 1926, 1464), ... F: 19,4°, n_1^{so} : 1,4320; n_1^{so} : 1,4241.

Palmitinsäureisoamylester, Isoamylpalmitat $C_{21}H_{42}O_2$ $CH_3 \cdot [CH_2]_{14} \cdot (CO_2 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2)$ (H 372). B. Aus Palmitinsäure und Isoamylalkohol in Gegenwart von Chlorwasserstoff (Piutti, del'Conno, Ann. Chim. applie, 18 [1928], 473). Durch Erhitzen von Silberpalmitat mit Isoamyljodid auf 1000 (Whithy, Soc. 1928, 1464). Beim Erwärmen von Palmitoylchlorid mit Isoamylalkohol (Adam, Pr. roy. Soc. [A] 101 [1922], 471). — F: 120 (Add., Trans. Faraday Soc. 24, 154; C. 1928 II, 741), 12.50 (Wh.). n_0^{sc} : 1,4315; n_0^{sc} : 1,4236 (Wh.). — Verseifung durch Ricinuslipase: P., del'C.

Palmitinsäure-n-octylester, n-Octylpalmitat $C_{21}H_{48}O_2 = CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot [CH_2]_7 \cdot CH_3$. B. Durch Erhitzen von n-Octylbromid mit Silberpalmitat auf 130 –140° (Whitby, Soc. 1926, 1464). Aus Palmitoylchlorid beim Erwärmen mit n-Octylalkohol (Adam, Pr. roy. Soc. [A] 101 [1922], 471, 529). — Krystalle (aus verd. Alkohol). Röntgenogramm einer dünnen, orientierten Schicht (Reflexionsmethode): Sheaner, Soc. 123, 3153. F: 25° (Ad., Trans. Faraday Soc. 24, 154; C. 1928 II, 741), 22,5° (Wh.). n_0^{50} : 1,4358; n_0^{50} : 1,4277 (Wh.). Über die Ausbreitung auf Wasser oder verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Ad., Pr. roy. Soc. [A] 101, 523; C. 1923 I, 272.

Palmitinsäure-n-hexadecylester, Cetylpalmitat $C_{32}H_{64}O_2 = CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot [CH_2]_{15} \cdot CH_3$ (H 373; E I 166). B. Beim Erhitzen von Cetyljodid mit Silberpalmitat (Whitby, Soc. 1926, 1463). Durch 24stdg. Einw. von 1,4 Mol Palmitinsäurechlorid auf 1 Mol Cetylalkohol bei Gegenwart von 1,4 Mol Chinolin in Chloroform anfangs unter Kühlung, dann bei Zimmertemperatur (Brigl, Fuchs, H. 119, 309). — Platten (aus Äther oder Eisessig). Röntgenogramm einer dünnen, orientierten Schicht (Reflexionsmethode): Shearer, Soc. 123, 3153. Optisches Verhalten dünner auf Glasplatten erstarrter Schichten: Vorländer, Selike. Ph. Ch. 129, 455. F: 440 (Tromp, R. 41, 283), 51—520 (Adam, Pr. roy. Soc. [A] 103, 684: C. 1923 III, 1294), 51,60 (Wh.), 52,50 (V., S.), 530 (B., F.; Ad., Trans. Faraday Soc. 24, 154: C. 1928 II, 744). D²⁶₂: 0,8324; D²⁶₂: 0,8280; D²⁶₂: 0,8211 (T., R. 41, 283, 298). n²⁶⁵₂: 1,4425 (T.); n²⁶⁵₂: 1,4425; n²⁶⁵₂: 1,4398 (Wh.). Bei 00 ösen 100 g Äther 2,30 g; bei 220 ösen 100 g Äther 21,01 g, 100 g absol. Alkohol 0,0495 g, 100 g Eisessig 0,0633 g; leicht löslich in Chloroform, Aceton und Schwefelkohlenstoff, sehr leicht in Benzol (Wh.). — Über die Ausbreitung auf Wasser und die Struktur dünner Filme vgl. Ad.. Pr. roy. Soc. [A] 103, 682.

Trikosyl-(12)-palmitat, Di-n-undecyl-carbinol-palmitat $C_{39}H_{78}O_2 = CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot CH([CH_2]_{10} \cdot CH_3)_2$. B. Aus Trikosanol-(12) und Palmitoylchlorid auf dem Wasserbad (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 27,5—28° (korr.). Sehr leicht löslich in Äther, Petroläther, Chloroform, Tetrachlorkohlenstoff und Benzol, unlöslich in kaltem Alkohol.

Cerylpalmitat $\mathrm{C_{42}H_{84}O_2} = \mathrm{CH_3} \cdot [\mathrm{CH_2}]_{14} \cdot \mathrm{CO_2} \cdot \mathrm{C_{28}H_{53}}(?)$ (H 373). Zur Zusammensetzung des Cerylalkohols vgl. È II 1, 470. — V. Kommt wahrscheinlich in der Rinde von Ligustrum vulgare L. (Rainweide) vor (Zellner, M. 47, 151). — B. Beim Leiten von Chlorwasserstoff durch eine Mischung von Cerylalkohol und Palmitinsäure bei 120° (Z.). — F: 68°.

Heptakosyl-(14)-palmitat, Di-n-tridecyl-carbinol-palmitat $C_{43}H_{86}O_2=CH_3\cdot [CH_2]_{14}\cdot CO_3\cdot CH([CH_2]_{12}\cdot CH_3)_2$. B. Aus Heptakosanol-(14) und Palmitoylchlorid auf dem Wasserbad (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 41,5—42° (korr.). Sehr leicht löslich in Äther, Petroläther, Chloroform, Tetrachlorkohlenstoff und Benzol, unlöslich in kaltem Alkohol.

Myricylpalmitat, Melissylpalmitat $C_{46}H_{92}O_2(?)$ oder $C_{47}H_{94}O_2(?) = CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot C_{30}H_{61}(?)$ oder $CH_3 \cdot [CH_2]_{14} \cdot CO_2 \cdot C_{31}H_{62}(?)$ (H 373). Zur Zusammensetzung des Melissylalkohols vgl. E II 1, 472. — B. Aus Myricylalkohol und überschüssigem Palmitoylchlorid bei ca. 130—180° (Pummerer, Kranz, B. 62, 2624). — Wachsartige Krystalle (aus Äther).

F: 75°. — Zersetzt sich bei der Destillation unter 13 mm Druck in Kohlendioxyd-Atm. in Palmitinsäure und einen als Hentriakonten-(1) C₃₁H₆₂ angesprochenen Kohlenwasserstoff, der infolge der Zusammensetzung des Ausgangsmaterials als Gemisch anzusehen ist.

Hentriakontyl-(16) - palmitat, Di - n - pentadecyl - carbinol - palmitat $C_{47}H_{94}O_2=CH_3\cdot [CH_3]_{14}\cdot CO_3\cdot CH([CH_2]_{14}\cdot CH_3)_2$. B. Aus Hentriakontanol-(16) und Palmitoylchlorid auf dem Wasserbad (Grün, Ülbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 48,5—49,5° (korr.). Sehr leicht löslich in Äther, Petroläther, Chloroform, Tetrachlorkohlenstoff und Benzol, unlöslich in kaltem Alkohol.

Pentatriakontyl-(18)-palmitat, Di-n-heptadecyl-carbinol-palmitat $C_{51}H_{102}O_2=CH_3\cdot [CH_2]_{14}\cdot CO_2\cdot CH([CH_2]_{16}\cdot CH_3)_2$. B. Aus Pentatriakontanol-(18) und Palmitoylchlorid auf dem Wasserbad (GRÜN, ÜLBRICH, KRCZIL, Z. ang. Ch. 39, 427, 428). — Mikrokrystallinische Aggregate (aus Essigester). F: 54—55° (korr.). Sehr leicht löslich in Äther, Petroläther, Chloroform, Tetrachlorkohlenstoff und Benzol, unlöslich in kaltem Alkohol.

Palmitinsäureallylester, Allylpalmitat C₁₀H₃₆O₃ = CH₃·[CH₂]₁₄·CO₅·CH₅·CH:CH₂.

B. Beim Erhitzen von Palmitoylchlorid mit Allylalkohol (FAIRBOURNE, COWDREY, Soc. 1929, 134). — Wurde nicht rein erhalten. F: 20—25° (F., C.). Über die Ausbreitung auf Wasser und die Struktur monomolekularer Filme vgl. ADAM, Pr. roy. Soc. [A] 103, 693; C. 1923 III, 1295.

Äthylenglykoldipalmitat $C_{34}H_{66}O_4 = CH_3 \cdot [CH_2]_{14} \cdot CO \cdot C \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3 \cdot (H 373; E I 166)$. Optisches Verhalten dünner auf Glasplatten erstarrter Schichten: Vorländer, Selke, *Ph. Ch.* 129, 455. F: 69—70,5° (V., S.), 70° (Adam, *Pr. roy. Soc.* [A] 101 [1922], 471). Randwinkel gegen Wasser und Luft: Nietz, *J. phys. Chem.* 32, 262. Über die Ausbreitung auf Wasser oder verd. Salzsäure und die Struktur monomolekularer Schichten vgl. A., *Pr. roy. Soc.* [A] 101, 461. — Verseifung durch Ricinuslipase: Piutti, de Conno, *Ann. Chim. applic.* 18, 475; *C.* 1929 I, 760.

γ-Brom-propylenglykol-dipalmitat, Glycerin-α-bromhydrin-dipalmitat, Dipalmito-α-bromhydrin $C_{35}H_{67}O_4$ Br = $CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_3 \cdot CH(O \cdot CO \cdot [CH_2]_{14} \cdot CH_3) \cdot CH_4$ Br. Linksdrehende Form. B. Durch Einw. von Palmitoylchlorid auf d·3-Brompropandiol-(1.2) in Pyridin + Chloroform zuerst in der Kälte, dann bei Zimmertemperatur (Weizmann, Haskelberg, Malkowa, H. 184, 244). — Krystalle (aus Alkohol). F: 62—63°. [α]_{n:} -32,5° (Alkohol; c=0,4). — Liefert bei der Umsetzung mit Leucin-Natrium bei 150—160° inaktives $\alpha.\beta$ -Dipalmitoyl-α'-leucyl-glycerin.

 γ -Jod-propylenglykol-dipalmitat, Glycerin-α-jodhydrin-dipalmitat, Dipalmito-α-jodhydrin $C_{31}H_{67}O_{4}I = CH_{3} \cdot [CH_{2}]_{14} \cdot CO \cdot CH_{3} \cdot CH(O \cdot CO \cdot [CH_{3}]_{14} \cdot CH_{3}) \cdot CH_{4}I$. B. Man löst Glycerin-α-jodhydrin in Chinolin und behandelt mit einer Lösung von Palmitoylchlorid in Chloroform in der Kälte (Amberger, Bromig, Bio. Z. 130, 258). — Krystalle (aus Alkohol). F: 46,2° (Am., B.), 43,6° (Weizmann, Haskelberg, C. r. 189, 105). Löslich in den meisten organischen Lösungsmitteln, unlöslich in Wasser (W., H.). — Liefert beim Kochen mit Silbernitrit in Methanol und wenig Wasser α.α' - Dipalmitin (Am., B.; Averill, Roche, King, Am. Soc. 51, 870). Beim Erhitzen mit Kaliumstearat auf 140—160° erhält man ein Gemisch von Glycerin - α.β-dipalmitat - β-stearat (Am., B.). Bei der Einw. von Glykokoll-Natrium erhält man α.β-Dipalmitoyl-α'-glycyl-glycerin (W., H.). Reagiert analog mit weiteren Aminosäuren (W., H.).

Glycerin-α-palmitat, α-Monopalmitin C₁₉H₂₈O₄ = CH₂· [CH₂]₁₄· CO·O·CH₂·CH(OH)·CH₂·OH (H 373). Diese Konstitution kommt der von Grün (B. 43 [1910], 1290) als β-Monopalmitin (E I 2, 166) beschriebenen Verbindung zu (E. Fischer, Bergmann, Bärwind, B. 53, 1605; Fairbourne, Foster, Soc. 1926, 3150). — B. Aus α.β-Isopropyliden-glycerin-α'-palmitat (Syst. Nr. 2691) durch Behandeln der ätherischen Lösung mit konz. Salzsäure bei 20—25° (Amberger, Wiesehahn, Z. Unters. Nahr.-Genußm. 46, 299; C. 1924 I, 1879) oder durch Einw. von 0,25 n-Schwefelsäure bei 40—45° (Averill, Roche, King, Am. Soc. 51, 869). Über eine Bildung aus Bleipalmitat und Glycerin-α-chlorhydrin durch Erhitzen im Kohlendioxyd-Strom auf 112° vgl. Brash, J. Soc. chem. Ind. 46, 481 T; C. 1928 I, 1166; vgl. aber auch A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fett-produkte, Bd. 1 [Wien 1936], S. 240; Rewadikar, Watson, J. indian Inst. Sci. [A] 13 [1930], 136). — Blättchen (aus Äther), Tafeln (aus Ligroin). F: 74—75° (Fai., Fo.), 77,5° (Am., Wi.), 77,6 (Am., Bromig, Bio. Z. 130, 261), 78—79° (Fi., Be., Bž.)¹). Ein erstarrter Schmelzfluß schmilzt bei 72—73°, ein aus ätherischer Lösung durch rasches Abkühlen erhaltenes Präparat bei 74—75° (Fi., Be., Bł.; vgl. R., Wa.). Fast unlöslich in Wasser, schwer löslich in kaltem Äther, leicht in den übrigen gebräuchlichen Lösungsmitteln (F., Be., Bł.). Läßt sich in heißem Wasser leicht emulgieren (Brash). Über die Ausbreitung auf Wasser und

¹) Über die Zuverlässigkeit früherer Angaben vgl. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 239.

die Struktur dünner Schichten vgl. Adam, Berry, Turner, Pr. roy. Soc. [A] 117, 535: C. 1928 I, 1272. — Liefert beim Behandeln mit Aceton in Gegenwart von Chlorwasserstoff und wasserfreiem Natriumsulfat. $\alpha.\beta$ -Isopropyliden-glycerin- α' -palmitat zurück (E. FISCHER, BERGMANN, BÄRWIND).

Glycerin- β -palmitat, β -Monopalmitin $C_{19}H_{38}O_4=CH_3\cdot [CH_2]_{14}\cdot CO\cdot O\cdot CH(CH_2\cdot OH)_2$ (E I 166). Die von Grün (B. 43 [1910], 1290) als β -Monopalmitin beschriebene Verbindung ist α -Monopalmitin (E. Fischer, Bergmann, Bärwind, B. 53, 1605; Fairbourne, Foster, Soc. 1926, 3150).

Glycerin- $\alpha.\alpha'$ -dibutyrat- β -palmitat, $\alpha.\alpha'$ -Dibutyro- β -palmitin, β -Palmito- $\alpha.\alpha'$ -dibutyrin $C_{27}H_{50}O_6$ = $CH_3\cdot[CH_2]_{14}\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot CH_2\cdot CH_2\cdot CH_3)_2$. B. Durch Erhitzen von 2 Mol Silberbutyrat und 1 Mol β -Palmito- α -dichlorhydrin auf 150° (Whitby, Soc. 1926. 1462). — Krystalle (aus Alkohol). F: 18°. n_D^{so} : 1,4530.

Glycerin - $\alpha.\beta$ -dilaurat - α' -palmitat, $\alpha.\beta$ -Dilauro - α' -palmitin, α' -Palmito - $\alpha.\beta$ -dilaurin $C_{43}H_{82}O_6 = CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{10} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{10} \cdot CH_3$. Uber die Einheitlichkeit vgl. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 258 Anm. 1. — B. Aus α -Monopalmitin und Lauroylchlorid in Chloroform bei Gegenwart von Pyridin unter anfänglicher Eiskühlung (E. FISCHER, BERGMANN, BÄRWIND, B. 53, 1605). — Nädelchen (aus Alkohol). Sintert bei 45° und schmilzt bei 47—48°. Sehr leicht löslich in Benzol, Chloroform und Tetrachlorkohlenstoff, leicht in Alkohol, Methanol und Aceton.

Glycerin- α . β -dimyristat- α' -palmitat, α' -Palmito- α . β -dimyristin $C_{47}H_{90}O_6=CH_3\cdot [CH_2]_{14}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{12}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{12}\cdot CH_3$. B. Aus α -Monopalmitin durch Einw. von 2 Mol Myristinsäurechlorid bei Gegenwart von Chinolin in der Kälte (Averill, Roche, King, Am. Soc. 51, 870). — F: 53,0°.

Glycerin- α . α' -dimyristat- β -palmitat, β -Palmito- α . α' -dimyristin $C_{47}H_{90}O_6=CH_3$: $[CH_2]_{14}\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot [CH_2]_{12}\cdot CH_3)_2$. B. Durch Einw. von Palmitinsäurechlorid auf α . α' -Dimyristin in Chloroform bei Gegenwart von Chinolin in der Kälte (AVERILL, ROCHE, KING, Am. Soc. 51, 870). — F: 59,8—60,0°.

Palmitodimyristine unbekannter Konstitution wurden von Bömer, Baumann (Z. Unters. Nahr.-Genuβm. 40, 148; C. 1921 I, 219) im Cocosfett und von Bömer, Schneider (Z. Unters. Nahr.-Genuβm. 47, 87; C. 1924 I, 2882) im Palmkernfett gefunden.

Glycerin - $\alpha.\beta$ - dipalmitat, $\alpha.\beta$ - Dipalmitin $C_{35}H_{66}O_5=CH_3\cdot [CH_2]_{14}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{14}\cdot CH_3)\cdot CH_2\cdot OH$ (H 373; E I 167). B. Aus Glycerin $\alpha.\beta$ -dichlorhydrin bzw. Glycerin - $\alpha.\beta$ -dibromhydrin beim Erhitzen mit Bleipalmitat bzw. Natriumpalmitat (Heiduschka, Schuster, J. pr. [2] 120, 152; Brash, J. Soc. chem. Ind. 46, 482 T; C. 1928 I, 1166); die so erhaltenen Präparate und das Präparat von Guth (Z. Biol. 44, 89; H 2, 373) sind aber vermutlich Gemische mit $\alpha.\alpha'$ -Dipalmitin (Fairbourne, Soc. 1930, 369, 372; A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 245).

Glycerin - α.α'- dipalmitat, α.α'- Dipalmitin $C_{35}H_{68}O_5 = CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3$ (H 373). B. Aus α-Dichlorhydrin durch Einw. von Natriumpalmitat oder Bleipalmitat (Brash, J. Soc. chem. Ind. 46, 482 T; C. 1928 I, 1166; Heiduschka, Schuster, J. pr. [2] 120, 151; vgl. a. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 246). Beim Kochen von Glycerin-α-jodhydrin-dipalmitat mit Silbernitrit in Methanol und wenig Wasser (Amberger, Bromig, Bio. Z. 130, 259; Averill, Roche, King, Am. Soc. 51, 870; vgl. aber auch A. Grün in Hefter-Schönfeld, Bd. 1, S. 235, 247). — Krystalle (aus Alkohol). F: 69,5° (Am., B.; Av., R., K.), 72° (H., Sch.).

Glycerin- α -acetat- β . α' -dipalmitat, α -Aceto- β . α' -dipalmitin $C_{37}H_{70}O_6$ — $CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{14} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot CH_3$ (H 373). B. Durch Einw. von Palmitoylchlorid auf Glycerin- α -acetat in Chloroform bei Gegenwart von Chinolin in der Kälte (Averill, Roche, King, Am. Soc. 51, 870). — F: 51—52° 1).

Glycerin- β -acetat- α . α' -dipalmitat, β -Aceto- α . α' -dipalmitin C_3 , $H_{70}O_6 = CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3 \cdot (H 373)$. B. Bei der Einw. von Acetvl-chlorid auf α . α' -Dipalmitin in Chloroform bei Gegenwart von Chinolin in der Kälte (AVERILL, ROCHE, KING, Am. Soc. 51, 870). — F: 54,0° 1).

Glycerin- β -butyrat- α . α' -dipalmitat, β -Butyro- α . α' -dipalmitin $C_{39}H_{74}O_6=CH_3\cdot [CH_2]_{14}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot CH_2\cdot C_2H_5)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{14}\cdot CH_3$. B. Durch Mischen von 2 Mol Silberpalmitat mit 1 Mol Glycerin- α . α' -dichlorhydrin-butyrat in Ather, Abdestillieren des Athers und nachfolgendes Erhitzen auf 170° (Whitby, Soc. 1926, 1461). — Krystalle

 $^{^{1})}$ Über die Zuverlässigkeit früherer Angaben vgl. a. Avæbill, Roche, King, $Am.\ Soc.\ 51,$ 867, 870.

(aus Alkohol). F: $43,6^{\circ}$. n_{ν}^{∞} : 1,4431; n_{ν}^{∞} : 1,4397; n_{ν}^{∞} : 1,4359. 100 g absol. Alkohol lösen bei 20° 0,55 g.

Glycerin - α -n-capronat- β . α' -dipalmitat, α -n-Capro- β · α' -dipalmitin $C_{41}H_{78}O_6=CH_3\cdot [CH_2]_{14}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{14}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_4\cdot CH_3$. B. Durch Einw. von Palmitoylchlorid auf Glycerin- α -n-capronat in Chloroform bei Gegenwart von Chinolin in der Kälte (AVERILL, ROCHE, KING, Am. Soc. 51, 870). — F: 60,0°.

Glycerin - β -n-capronat - $\alpha.\alpha'$ -dipalmitat, β -n-Capro - $\alpha.\alpha'$ -dipalmitin $C_{41}H_{78}O_6 = CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_4 \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3$. B. Bei der Einw. von n-Caproylchlorid auf $\alpha.\alpha'$ -Dipalmitin in Chloroform bei Gegenwart von Chinolin in der Kälte (AVERILL, ROCHE, KING, Am. Soc. 51, 870). — F: 60,0°.

Glycerin - α -laurat - β . α' -dipalmitat, α -Lauro - β . α' -dipalmitin, β . α' -Dipalmito- α -laurin $C_{47}H_{90}O_8$ = CH_3 [CH_2]₁₄ $CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{14} \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{10} \cdot CH_3$. B. Bei der Einw. von 2 Mol Palmitoylchlorid auf Glycerin- α -laurat in Chloroform bei Gegenwart von Chinolin in der Kälte (AVERILL, ROCHE, KING, Am. Soc. 51, 870). Man läßt auf α . β -Dipalmitin (s. S. 339) Thionylchlorid bei Gegenwart von Pyridin einwirken und er hitzt das Reaktionsprodukt (F: 48,6°) mit Natriumlaurat unter Luftabschluß auf 150° (Heiduschka, Schuster, J. pr. [2] 120, 152). — Nadeln. F: 53,5° (H., Sch.), 54,5° (A., R., K.). Leicht löslich in organischen Lösungsmitteln (H., Sch.).

Glycerin- β -laurat- $\alpha.\alpha'$ -dipalmitat, β -Lauro- $\alpha.\alpha'$ -dipalmitin $C_{47}H_{90}O_6 = CH_3$ · $[CH_2]_{14}$ · $CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{10} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3$. B. Durch Einw. von Lauroylchlorid auf $\alpha.\alpha'$ -Dipalmitin in Chloroform bei Gegenwart von Chinolin in der Kälte (Averill, Roche, King, Am. Soc. 51, 870; vgl. Heiduschka, Schuster, J. pr. [2] 120, 151). — F: 63,5—64° (A., R., K.).

Glycerin- α -myristat- β . α '-dipalmitat, α -Myristo- β . α '-dipalmitin $C_{49}H_{94}O_6 = (^{\circ}H_3 \cdot CH_2)_{14} \cdot CO \cdot CO \cdot (CH_2)_{12} \cdot CH_3$. Bei der Einw. von 2 Mol Palmitoylchlorid auf Glycerin- α -myristat in Chloroform bei Gegenwart von Chinolin in der Kälte (AVERILL, ROCHE, KING, Am. Soc. 51, 870). — F: 55,5°.

Glycerin- β -myristat- α . α' -dipalmitat, β -Myristo- α . α' -dipalmitin $C_{49}H_{94}O_6=CH_3$ · $[CH_2]_{14}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{12}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{14}\cdot CH_3$. B. Bei der Einw. von Myristoylchlorid auf α . α' -Dipalmitin in Chloroform bei Gegenwart von Chinolin in der Kälte (Averill, Roche, King, Am. Soc. 51, 870). — F: 58,5—59°.

Myristodipalmitine unbekannter Konstitution wurden von Bömer, Schneider (Z. Unters. Nahr.-Genuβm. 47, 87; C. 1924 I, 2882) im Palmkernfett und von de Conno, Scopinaro (Ann. Chim. applic. 19, 59; C. 1929 II, 1605) im Butterfett gefunden.

Glycerintripalmitat, Tripalmitin, Palmitin C₅₁H₉₈O₈ = CH₃·[CH₂]₁₄·CO·O·CH₂·CH(O·CO·[CH₂]₁₄·CH₃·CH₂·O·CO·[CH₂]₁₄·CH₃ (H 373; E I 167). V. Im Ol der Samen von Brachychiton populneum R. Br. (Morrison, J. Pr. Soc. N. S. Wales 59, 275; C. 1927 II, 760). Zum Vorkommen im Palmöl vgl. Brash, J. Soc. chem. Ind. 45, 440 T; C. 1927 I, 821. — B. Aus Glycerin und Palmitinsäure in Gegenwart von aus Naphthalin, Olsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens bei 100° (Ozaki, Bio. Z. 177, 159). — Röntgenogramm von festem und flüssigem Tripalmitin: Herzog, Jancke, Z. Phys. 45, 195; C. 1928 I, 639. Auf Grund thermischer Untersuchungen schließen Joglekar, Watson (J. Soc. chem. Ind. 47, 367 T; C. 1929 I, 988) auf die Existenz von 2 Modifikationen, Jefremow (Izv. ural polytech. Inst. 6, 162; C. 1928 II, 1967) und Loskit (Ph. Ch. 134, 137) auf die Existenz von 3 Modifikationen. Clarkson, Malkin (Soc. 1934, 669) konnten aus der Schmelze bei bestimmten Abkühlungsgeschwindigkeiten und geeigneten Temperaturen eine stabile krystallisierte Form, eine instabile krystallisierte Form und eine instabile glasartige Form isolieren; bei andersartigen thermischen Verhältnissen entstehen Gemische der verschiedenen Modifikationen, die weitere Modifikationen vortäuschen können (Cl., M.; vgl. Weygand. Z. ang. Ch. 44 [1931], 481; Wey., Grüntzig, Z. anorg. Ch. 206 [1932], 304). Schmelzpunkte der verschiedenen Formen s. Tabelle. Krystallisationsgeschwindigkeit und spontanes Krystallisationsvermögen der stabilen Form: Loskit, Ph. Ch. 134, 135. — Dⁿ. 0,8730; Dⁿ. 0,8633 (Jo., W.); Dⁿ. 0,8635 (Schoorl bei Tromp, R. 41, 298). Viscosität zwischen 70° (0,1679 g/cm sec) und 85° (0,1144 g/cm sec): Jo., W. Oberflächenspannung bei 70°: 28,3, bei 80°: 27,6 dyn/cm (Jo., W.). Parachor: Sugden, Soc. 125, 1184. — Löslichkeitsdiagramm der Systeme mit Benzol, Ather oder Chloroform: Loskit, Ph. Ch. 134, 141. Thermische Analyse der Gemische mit Tristearin: Jo., Wa., J. Soc. chem. Ind. 47, 368 T; C. 1929 I, 98

	JEFREMOW	Loskit	JOGLEKAR, WATSON	CLARKSON, MALKIN
Stabile Form	67,5°	64,8°	65,6°	65,5°
	53,8°	55,0°	—	56,0°
	48,4°	45,4°	46,2°	45°

Grenzflächenspannung von Lösungen in Benzol gegen verd. Natronlauge und gegen Boratund Phosphat-Puffer-Lösungen: Hartridge, Peters, Pr. roy. Soc. [A] 101, 357; C. 1923 I. 874. Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur dünner Schichten vgl. Labrouste, Ann. Physique [9] 14, 203; Adam, Pr. roy. Soc. [A] 101, 461, 523; C. 1923 I. 271, 272; Gorter, Grendel, Bio. Z. 192, 440, 446. Ausbreitung auf Wasser und Struktur dünner Filme aus Gemischen mit Trilaurin, Trimyristin und Tribenzoin: Collet, C. r. 174, 544; aus Gemischen mit Myristinsäure. a-Monomyristin, Athylpalmitat bzw. Palmitinsäurenitril: Adam, Jessop, Pr. roy. Soc. [A] 120, 479; C. 1929 I, 189. Brechungsindices von Gemischen mit Tristearin: Joglekar, Watson, J. Soc. chem. Ind. 47, 368 T. Potential-differenz an der Trennungsfläche zwischen Luft und einer Schicht von Tripalmitin auf verd. Salzsäure: Frumkin, Ph. Ch. 116, 495.

Oxydation von Tripalmitin in Petroläther durch Kaliumdichromat und Schwefelsäure: BLIX, Skand. Arch. Physiol. 48 [1926], 289. Geschwindigkeit der Verseifung durch Natronlauge unter verschiedenen Bedingungen: Norris, McBain, Soc. 121, 1367: McBain, Howes. Thorburn, J. phys. Chem. 31, 139. Versuche zur Umesterung durch Kochen mit Acctanhydrid: Holde, Bleiberg, B. 60, 2506. — Wird von Aspergillus flavus oxydiert (Tausson. Bio. Z. 193, 88). Nährwert für Ratten: Ozaki, Bio. Z. 177, 161; 189, 234; Pr. Acal. Tokyo 2, 14; 3, 439; C. 1926 II, 2192; 1928 I. 541. — Acidimetrische Mikrobestimmung: Stewart. White, Biochem. J. 19, 841, 842. Nephelometrische Bestimmung in kleinen Mengen: Bing, Heckscher, Bio. Z. 158, 398; vgl. Blix. Bio. Z. 167, 313.

Pentaerythrit-tetrapalmitat $C_{69}H_{132}O_8 = (CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_2)_4C$. Über die Ausbreitung auf Wasser und die Struktur dünner Schichten vgl. Adam, Dyer, Pr. roy. Soc. [A] 106, 706; C. 1925 I. 931; A.. Trans. Faraday Soc. 24. 153; C. 1928 II, 741; A., Jessop. Pr. roy. Soc. [A] 120, 480; C. 1929 I. 189; Einfluß auf die Ausbreitung dünner Schichten aus Äthylpalmitat oder α -Monomyristin auf Wasser: A., J., Pr. roy. Soc. [A] 120, 481.

Palmitinsäureanhydrid $C_{32}H_{62}O_3 = CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3$ (H 374). B. Beim Kochen von Palmitinsäure mit Acetanhydrid (Holde, Ripper, Zadek, B. 57, 103; Autenrieth, Thomae, B. 57, 430). Durch Erhitzen von Palmitoylchlorid und Silberpalmitat auf dem Wasserbad (Whitey, Soc. 1926, 1462). — Blättchen (aus Alkohol oder Benzol). F: 62—63° (Au., Th.), 63° (Wh.), 63—64° (Ho., Gentner, B. 58, 1424), 64° (Ho., R., Z.). Leicht löslich in Äther (Au., Th.), schwer in heißem Petroläther (Ho., R., Z.). 100 cm³ Alkohol lösen bei 15° 0,165 g (Au., Th.), bei 20° 0,18 g (Wh.). D_4^{∞} : 0,847 (Ho., G., B. 58, 1424); D_7^{∞} : 0,8383 (Ho., R., Z.). n_5^{∞} : 1,4364 (Ho., G., B. 58, 1424); n_7^{∞} : 1,4359 (Wh.). — Geht in Petroläther beim Schütteln mit Soda-Lösung nur langsam in Palmitinsäure über (Ho., G., B. 58, 1427). Ist gegen Luftfeuchtigkeit sehr beständig (Ho., G., B. 58, 1425).

Palmitinsäurechlorid, Palmitoylchlorid $C_{16}H_{31}OCl = CH_3 \cdot [CH_2]_{14} \cdot COCl$ (H 374; E I 167). Kp_{20} : 199—200° (Hann, Jamieson, Am. Soc. 50, 1443); $Kp_{0.8}$: 162—163° (E. Fischer. Bergmann. Bärwind, B. 53, 1603); $Kp_{0.2}$: 155—160° (Levene, Haller, J. biol. Chem. 63, 670). — Die Reaktion mit Phosphorpentachlorid im Rohr bei 160° liefert geringe Mengen eines höhersiedenden chlorhaltigen Öls (v. Braun, Jostes, Münch, A. 453, 147). Liefert mit Malonester und Natrium in absol. Äther ein Öl (Kp_{Vak} : 138°) und ein gelbliches Produkt (F: 138°) (v. Auwers, Jacobsen, A. 426, 222). Läßt man Natriumacetessigester auf Palmitinsäurechlorid einwirken und behandelt das Reaktionsprodukt mit Ammoniak. so entsteht β-Oxo-stearinsäureäthylester (Asahina, Nakayama, J. pharm. Soc. Japan 1925, Nr. 526, S. 5; C. 1926 I. 2670).

Palmitinsäureamid C₁₆H₃₃ON = CH₃·[CH₂]₁₄·CO·NH₂ (H 374). Blättchen (aus Petroläther). Röntgenogramm: Henderson, Pr. roy. Soc. Edinburgh 48, 25; C. 1928 I, 2903. F: 104—104,5° (Teunissen, R. 46, 208). Schr leicht löslich in Alkohol, Aceton, Chloroform. Benzol und Toluol, leicht in Petroläther und Essigester, ziemlich schwer in Ather und Schwefelkohlenstoff, unlöslich in Wasser (T.). Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, Jessop. Pr. roy. Soc. [A] 112, 366; C. 1926 II, 2399; A., Trans. Faraday Soc. 24, 151; C. 1928 II, 741. — Liefert bei der Einw. von Thionylchlorid auf dem Wasserbad Palmitinsäurenitril (Stephen, Soc. 127, 1875).

Palmitinsäurenitril, Palmitonitril, n-Pentadecylcyanid $C_{16}H_{31}N=CH_3\cdot [CH_2]_{14}\cdot CN$ (H 375). B. Aus Palmitinsäureamid bei der Einw. von Thionylchlorid auf dem Wasserbad (STEPHEN, Soc. 127, 1875) oder bei der Destillation mit Phosphorpentoxyd unter vermindertem Druck (TEUNISSEN, R. 46, 209). — Krystallinische Masse. Beginnt bei $30-31^{\circ}$ zu schmelzen (T). Kp₁₂: ca. 190° (T.). Über die Ausbreitung auf Wasser und die Struktur dünner Schichten vgl. ADAM. Pr. roy. Soc. [A] 103, 693; Trans. Faraday Soc. 24, 151; C. 1923 III. 1295; 1928 II. 741; A., JESSOP. Pr. roy. Soc. [A] 110, 428; 112. 366; C. 1926 I, 2548; II. 2399; CARY, RIDEAL, Pr. roy. Soc. [A] 109, 312, 333; C. 1926 I, 1126; A., J., Pr. roy. Soc. [A] 120, 475; C. 1929 I, 189. Einfluß von Cholesterin und Tripalmitin auf die Ausbreitung: A., J., Pr. roy. Soc. [A] 120, 480. — Liefert bei Einw. von Zinn(II)-chlorid in äther.

Chlorwasserstoffsäure und Behandlung des Reaktionsprodukts mit warmem Wasser Palmitinaldehyd (Stephen, Soc. 127, 1874, 1876).

Palmitamidin $C_{16}H_{34}N_3 = CH_3 \cdot [CH_2]_{14} \cdot C(NH_2): NH$ (H 375). B. Das Kaliumsalz entsteht aus Kaliumsmid und Palmitinsäurenitril in flüssigem Ammoniak (CORNELL, Am. Soc. 50, 3315). — $KC_{16}H_{33}N_2$. Krystalle. Unlöslich in flüssigem Ammoniak bei Zimmertemperatur.

Palmitinhydroxamsäure C₁₈H₃₃O₂N = CH₃·[CH₂]₁₄·CO·NH·OH (H 375). B. Aus Methylpalmitat und Hydroxylaminhydrochlorid in Natriummethylat-Lösung (Dieterle, Diester, Thimann, Ar. 1927, 186). — F: 100° (Lewis, Biochem. J. 20, 1358). — Natriumsalz. F: 134—140° (Zers.) (D., D., Th.). Auf der Unlöslichkeit des Natriumsalzes in Alkohol beruht eine Methode zur Abtrennung der Palmitinsäure von niederen gesättigten Fettsäuren, Oxysäuren und ungesättigten Säuren, deren Hydroxamsäuren in Alkohol lösliche Natriumsalze bilden (L.).

Substitutionsprodukte der Palmitinsäure.

2.2 - Dichlor-hexadecansäure-(1), $\alpha.\alpha$ -Dichlor-palmitinsäure $C_{18}H_{30}O_3Cl_2=CH_3$ · $[CH_2]_{13}\cdot CCl_2\cdot CO_2H$. B. In geringer Menge beim Erhitzen von $\alpha.\alpha$ -Dichlor-palmitinsäure-äthylamid mit konz. Salzsäure im Rohr auf 150—160° (v. Braun, Jostes, Münch, A. 453, 138). — Krystalle (aus Äther). F: 35—37°.

2-Brom-hexadecansäure-(1), α -Brom-palmitinsäure $C_{16}H_{31}O_{2}Br=CH_{3}\cdot [CH_{3}]_{18}\cdot CHBr\cdot CO_{2}H$ (H 376; E I 167). Über die Ausbreitung auf verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Adam, $Pr.\ roy.\ Soc.\ [A]$ 103, 688; $Trans.\ Faraday\ Soc.\ 24$, 151; $C.\ 1923\ III$, 1294; 1928 II, 741; A., Jessop, $Pr.\ roy.\ Soc.\ [A]$ 112, 365: $C.\ 1926\ II$, 2399.

Äthylester $C_{18}H_{35}O_2Br = CH_3 \cdot [CH_2]_{13} \cdot CHBr \cdot CO_2 \cdot C_2H_5$ (H 376). B. Man läßt Phosphor und Brom auf Palmitinsäure einwirken, gießt das erhaltene Reaktionsgemisch in kalten Alkohol und erwärmt unter Einleiten von Chlorwasserstoff auf dem Wasserbad (v. Braun, B. 56, 2179). — Krystallmasse. F: 27°. Kp₁₁: 224—227°.

Bromid, α -Brom-palmitoylbromid $C_{18}H_{30}OBr_2=CH_3\cdot[CH_2]_{13}\cdot CHBr\cdot COBr.$ B. Beim Erwärmen von Palmitinsäure mit Brom und rotem Phosphor; wurde nicht rein erhalten (v. Auwers, Wegener, J. pr. [2] 106, 245). — Feste, an der Luft rauchende Masse. Zersetzt sich bei der Vakuumdestillation unter Verkohlung.

- 16-Brom-hexadecansäure-(1), ω -Brom-palmitinsäure $C_{16}H_{31}O_{2}Br=CH_{2}Br\cdot[CH_{2}]_{14}$ · $CO_{2}H$. B. Aus Juniperinsäure (Syst. Nr. 223) durch Einw. von Bromwasserstoff in Eisessig (Chuit, Hausser, Helv. 12, 486). Krystalle (aus Petroläther). F: 70—70,5°. Kp₁: 214—217°.
- 2.3-Dibrom-hexadecansäure-(1), $\alpha.\beta$ -Dibrom-palmitinsäure, Dibromid der 2.3-Hypogäasäure $C_{1e}H_{30}O_2Br_2=CH_3\cdot [CH_2]_{1e}\cdot CHBr\cdot CHBr\cdot CO_2H$ (H 376). F: 65,5° (Gabel, Ukr. chemič. Ž. 1, 84; C. 1925 II, 1668). Liefert beim Erwärmen mit alkoh. Kalilauge auf 50—60° eine Verbindung vom Schmelzpunkt 86° (unlöslich in Wasser, löslich in Petroläther, Alkohol, Äther und Benzol).

Glycerin - dipalmitat - $[\theta.\iota$ - dibrom - palmitat], Dipalmito - zoomarin - dibromid $C_{51}H_{96}O_{6}Br_{2} = CH_{3} \cdot [CH_{2}]_{5} \cdot CHBr \cdot CHBr \cdot [CH_{2}]_{7} \cdot CO \cdot O \cdot C_{3}H_{5}(O \cdot CO \cdot [CH_{2}]_{14} \cdot CH_{3})_{2}$. B. Bei der Bromierung von Sandaal-Öl (Suzuki, Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841).

Glycerin-tris- $[\theta.\iota$ -dibrom-palmitat], Trizoomarinhexabromid $C_{51}H_{92}O_6Br_6=(CH_3\cdot[CH_2]_5\cdot CHBr\cdot CHBr\cdot[CH_2]_7\cdot CO\cdot O)_3C_3H_5$. B. Bei der Bromierung von Tintenfischöl, Rotsalmöl und Haifischleberöl (Suzuki, Pr. Acad. Tokyo 5, 270, 271; C. 1929 II, 2842).

6.7.10.11.14.15-Hexabrom-hexadecansäure, s. ζ .i.x.v. ξ -Hexabrom-palmitinsäure, Hiragonsäurehexabromid $C_{16}H_{26}O_2Br_6=CH_3\cdot CHBr\cdot CHBr\cdot CH_2\cdot CH_2\cdot CHBr\cdot CHBr\cdot CHBr\cdot CH_3\cdot CO_2H$. Zur Konstitution s. die bei Hiragonsäure (S. 462) aufgeführte Literatur. — B. Durch Bromieren von Hiragonsäure in Äther (Toyama, Tsuchiya, Bl. chem. Soc. Japan 4, 87; 10, 195; C. 1929 II, 439; 1935 II, 3321). — F: ca. 190°. Unlöslich in Äther.

Methylester $C_{17}H_{28}O_3Br_6=CH_3\cdot CHBr\cdot CHBr\cdot CH_2\cdot CH_3\cdot CHBr\cdot CHBr\cdot CHBr\cdot CH_3\cdot CH_3\cdot CH_3\cdot CHBr\cdot CHBr\cdot CHBr\cdot CHBr\cdot CH_3\cdot CH_3\cdot B$. Durch Bromieren von Hiragonsäure-methylester in Äther (TOYAMA, TSUCHIYA, Bl. chem. Soc. Japan 4, 87; 10, 195; C. 1929 II, 439; 1935 II, 3321). — F: ca. 180°. — Liefert bei der Behandlung mit Zinkstaub und Eisessig oder Salzsäure Hiragonsäure-methylester.

16-Jod-hexadecansäure-(1), ω -Jod-palmitinsäure $C_{1e}H_{31} \cdot O_{2}I = CH_{2}I \cdot [CH_{2}]_{14} \cdot CO_{2}H$ (E I 168). Liefert beim Kochen mit Silberoxyd in Benzol das Lacton der Juniperinsäure (Syst. Nr. 2459) (Haarmann & Reimer, D. R. P. 449217; C. 1927 II, 2351; Frdl. 15, 166).

- 2. 2-Methyl-pentadecansäure-(1), Pentadecan-carbonsäure-(2), α-Methyl-pentadecylsäure, Methyl-n-tridecyl-essigsäure $C_{16}H_{32}O_2 = CH_3 \cdot [CH_4]_{12} \cdot CH(CH_3) \cdot CO_2H$. B. Aus α -Brom-palmitinsäure durch Einw. von Methylmagnesiumjodid in Ather (MORGAN, HOLMES, J. Soc. chem. Ind. 48, 153 T; C. 1927 II, 1464). Beim Erhitzen von Methyl-n-tridecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1266). — Amorphes Pulver. F: 24° (St., J., A.), 48° (M., H.). Kp_{2,5}: 172—173°; D₄*: 0,8765; n_D: 1,4453 (St., J., A.). — Bactericide Wirkung: St., J., A.
- Pentadecan-carbonsäure-(3), α-Athyl-myristinsäure, Åthyl-n-dodecylessigsäure C₁₆H₃₂O₂ = CH₃· [CH₂]₁₁· CH(C₂H₅)· CO₂H. B. Beim Erhitzen von Athyln-dogen-scholler von Athyl F: 23°. Kp₈: 178—179°. D₄⁴: 0,8808. n₅⁵: 1,4460. — Bactericide Wirkung: St., J., A.
- 4. Pentadecan-carbonsäure-(4), Propyl-n-undecyl-essigsäure $C_{16}H_{32}O_2=CH_3\cdot[CH_3]_{10}\cdot CH(CH_2\cdot C_2H_3)\cdot CO_2H$. B. Beim Erhitzen von Propyl-n-undecyl-malonsäure über den Schmelzpunkt (STANLEY, JAY, ADAMS, Am. Soc. 51, 1266). F: 16,5—17°. Kp₃: 178-1790. D. O. 8808. n. 1,4460. — Bactericide Wirkung: St., J., A.
- 5. Pentadecan-carbonsäure-(5). a-Butyl-laurinsäure, Butyl-n-decylessigsäure $C_{16}H_{32}O_2 = CH_3 \cdot [CH_2]_9 \cdot CH([CH_2]_3 \cdot CH_3) \cdot CO_2H$. B. Beim Erhitzen von Butyl-n-decyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1266). — F: 13—14°. Kp₃: 175—176°. D₄²⁵: 0,8789. n_D²⁵: 1,4458. — Bactericide Wirkung: St., J., A.
- 6. Pentadecan carbonsäure (6). α -n-Amyl-undecylsäure, n-Amyl-n-nonyl-essigsäure $C_{16}H_{32}O_2=CH_3\cdot[CH_2]_8\cdot CH([CH_2]_4\cdot CH_3)\cdot CO_2H$. B. Beim Erhitzen von n-Amyl-n-nonyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1266). — F: 9—10°. Kp₃: 178—179°. D. : 0,8887. n. 1. 1,4518. — Bactericide Wirkung: St., J., A.
- Pentadecan-carbonsäure-(7), α -n-Octyl-caprylsäure, n-Hexyl-n-octylessigsdure $C_{16}H_{32}O_2 = CH_3 \cdot [CH_2]_7 \cdot CH([CH_2]_5 \cdot CH_3) \cdot CO_2H$. B. Beim Erhitzen von n-Hexyl-n-octyl-malonsäure über den Schmelzpunkt (STANLEY, JAY, ADAMS, Am. Soc. 51, 1266). — Kp_2 : 165—168°. D_4^a : 0,8768. n_5^a : 1,4495. — Bactericide Wirkung: St., J., A.
- Pentadecan-carbonsäure-(8), Di-n-heptyl-essigsäure $C_{16}H_{32}O_2 = (CH_3 \cdot C_{16}H_{32}O_2)$ [CH₂]_e)₂CH·CO₂H (H 376). B. Beim Erhitzen von Di-n-heptyl-malonsaure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1266). — F: 26—27°. Kp₄: 187—189°. D₄: 0,8771. n₂: 1,4497. — Bactericide Wirkung: St., J., A.
- 9. 2-Methyl-tetradecan-carbonsäure-(4), α -Isobutyl-laurinsäure, Isobutyl-n-decyl-essigsäure $C_{16}H_{32}O_2=CH_3\cdot [CH_2]_9\cdot CH[CH_2\cdot CH(CH_3)_2]\cdot CO_2H$. B. Beim Erhitzen von Isobutyl-n-decyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1266). — F: 17,5—18°. Kp₀: 187—188°. D_{\bullet}^{m} : 0,8763. n_{\uparrow}^{m} : 1,4448. — Bactericide Wirkung: St., J., A.
- 10. 3-Methyl-tetradecan-carbonsäure-(4), α -sek.-Butyl-laurinsäure, sek.-Butyl-n-decyl-essigsäure $C_{16}H_{32}O_2=CH_3\cdot[CH_2]_6\cdot CH[CH(CH_3)\cdot C_2H_5]\cdot CO_2H$. B. Beim Erhitzen von sek.-Butyl-n-decyl-malonsäure über den Schmelzpunkt (Stanley, JAY, ADAMS, Am. Soc. 51, 1266). — F: 38-39°. Kpo: 185-186°. — Bactericide Wirkung: St., J., A.
- 11. Carbonsäure $C_{16}H_{32}O_2$ aus Jalapinolsäure (H 376; E I 168) ist als Palmitinsäure erkannt (Asahina, Yaoi, C. 1926 I, 916).

17. Carbonsäuren $C_{17}H_{34}O_{2}$.

1. Heptadecansäure, Hexadecan-carbonsäure-(1), "Heptadecylsäure",

Margarinsäure C₁₇H₃₄O₂ = CH₃·[CH₂]₁₅·CO₂H (H 376; E I 169).

Das natürliche Vorkommen von Heptadecansäure (Margarinsäure, Daturinsäure, Dorosominsaure) ist bisher in keinem Fall exakt bewiesen. Ältere röntgenographische Untersuchungen an orientierten Schichten (A. MÜLLER, Soc. 123, 2046; TRILLAT, C. r. 180, 1330; Ann. Physique [10] 6, 82, 85; vgl. a. Thibaud, Nature 119, 852; C. 1927 II, 2146) sind nicht als Beweis für die Einheitlichkeit der untersuchten natürlichen Margarin-Säuren anzusehen (vgl. Francis, Piper, Malkin, Pr. roy. Soc. [A] 128 [1930], 223; Verkade, Coops, Bio. Z. 206, 469). Die von H. Meyer, Beer (M. 33, 311) beschriebene Heptadecylsäure (Daturinsäure) aus Daturaöl ist ein Gemisch aus Palmitinsäure und Stearinsäure im Verhältnis von ca. 5:1, das außerdem einige Prozente höhermolekulare und Spuren niedrigermolekulare Säuren enthält (V., C., Bio. Z. 206, 472); Gemische ähnlicher Zusammensetzung liegen in der von Klimont, Mayer (M. 36, 283) beschriebenen Margarinsäure aus Gänsefett (Bömer, Merten, Z. Unters. Nahr. Genuβm. 43 [1922], 101) und in der von Klimont, Meisl, Mayer (M. 35, 1115, 1122) beschriebenen Heptadecylsäure aus Pferdefett vor (Heiduschka, Steinruck, J. pr. [2] 102, 259). Die von Marcelet (C. r. 187, 145) aus dem Öl von Dorosoma nasus Bloch, isolierte Dorosominsäure war wahrscheinlich ebenfalls uneinheitlich (V., C.). Zum angeblichen natürlichen Vorkommen von Heptadecansäure vgl. noch A. Grün, W. Halden, Analyse der Fette und Wachse, Bd. 2 [Berlin 1929], S. 151, 180, 348, 515, 574, 710, 713, 762; Kablukow, Hirschberg, Izv. ross. Akad. [6] 12, 771; C. 1925 II, 577; Dubrisay, C. r. 181, 1061 sowie D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 619; T. P. Hilditch in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, 1. Bd. [Wien 1936], S. 23 Anm. 1. B. Durch Erhitzen von n-Heptadecylalkohol mit der 3-fachen Menge Kaliumhydroxyd

B. Durch Erhitzen von n-Heptadecvlalkohol mit der 3-fachen Menge Kaliumhydroxyd auf 240—250° (Heiduschka, Ripper, B. 56, 1739). Aus 1.1-Diphenyl-octadecen-(1) durch Oxydation mit Chromsäure in Eisessig (Skraup, Schwamberger, A. 462, 152). Durch Hydrierung von Heptadecen-(8)-säure-(1) in Methanol bei Gegenwart von Palladium (Sk., Sch., A. 462, 156). Bei der Oxydation von Hydrocampnospermonyl-methyläther (Syst. Nr. 748) mit Kaliumpermanganat in siedendem Aceton, neben anderen Produkten (Jones, Smith. Soc. 1928, 70). Die bei der Oxydation von Paraffin mit Sauerstoff bei höherer Temperatur entstehende Heptadecansäure (F. Fischer, Schneider, B. 53, 922; Kelber, B. 53, 1574) ist nicht einheitlich (Francis, Piper, Malkin, Pr. roy. Soc. [A] 128, 229; C. 1930 II, 1856).

Existiert nach röntgenographischen Untersuchungen an dünnen orientierten Schichten in 3 Modifikationen (PIPER, Trans. Faraday Soc. 25 [1929], 351; vgl. DE BOER, Nature 119. 634; C. 1927 II, 371; Thibaud, Nature 119, 852; C. 1927 II, 2146). Über das Röntgenogramm ciner dünnen, orientierten Margarinsäureschicht vgl. a. A. Müller, Shearer, Soc. 123, 3157. Beim Abkühlen der Schmelze erhält man die α -Form, die in die vielleicht aus 2 Modifikationen bestehende β -Form übergeht (Garner, King, Soc. 1929, 1855, 1856). Wärmetönung dieser Umwandlung: 1,55 kcal/Mol (G., K.). Die Umwandlung der α -Form in die β -Form erfolgt bei 54° (DE BOER), zwischen 53° und 37° (G., K.) — E: 60.81° (G., K.). F: 620 (Francis, Piper, Malkin, Pr. roy. Soc. [A] 128 [1930], 217). D; zwischen 90,6° (0,8355) und 146,5° (0,7961), Viscosität zwischen 67,6° (0,0926 g/cm sec) und 107,1° (0,0403 g/cm sec) und Oberflächenspannung zwischen 66,9° (27,9 dyn/cm) und 141,0° (22,5 dyn/cm): Hunten, Maass, Am. Soc. 51, 160. Parachor: H. M. Mittlere spezifische Wärme der flüssigen Substanz unterhalb 99°: 0,5604 cal/g (G., K.). Spezif. Wärme und Temperaturkoeffizient der spezif. Wärme der β -Form: G., K. Krystallisationswärme: 12,22 kcal/Mol (G., K.). Schmelzwärme der a-Form: 45,19 cal/g (G., K.). Schmelzwärme der β-Form: 50,93 cal/g (G., K.). — n_{α}^{∞} : 1,4296; n_{β}^{∞} : 1,4319; n_{β}^{∞} : 1,4371; n_{γ}^{∞} : 1,4416 (Waterman. Bertram, R. 46, 701). — Kontaktwinkel mit Wasser und Luft: Nietz, J. phys. Chem. 32. 262. Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur monomolekularer Filme vgl. Adam, Pr. roy. Soc. [A] 101, 457, 467, 521; C. 1923 I, 271, 272. Zur Bildung von Silber-Solen aus Margarinsäure und ihrem Silbersalz beim Erhitzen in Gegenwart von Wasserstoff auf 100° vgl. Giles, Salmon, Soc. 123, 1605. Liefert beim Erwärmen mit Brenzeatechin und Zinnehlorid n-Hexadecyl-[3.4-dioxy-phenyl]-keton (Majima, B. 55, 205).

Kaliumsalz. Röntgenogramm einer dünnen orientierten Schicht: PIPER, Soc. 1929. 236. Unlöslich in Äther (Heiduschka, Ripper, B. 56, 1739). — Cu(C₁₇H₃₃O₂)₂. Blaugrün. Unlöslich in Äther und Alkohol, leicht löslich in Benzol (H., R.). — AgC₁₇H₃₃O₂. Amorpher. lichtempfindlicher Niederschlag (H., R.). — Pb(C₁₇H₃₃O₂)₂. Niederschlag. Unlöslich in Äther und Alkohol, leicht löslich in heißem Benzol (H., R.).

Margarinsäureäthylester $C_{19}H_{38}O_2 = CH_3 \cdot [CH_2]_{15} \cdot CO_2 \cdot C_2H_5$ (H 377; E I 169). Krystalle. F: 28°; Kp₅: 185° (Jones, Smith, Soc. 1928, 70). — Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, Jessop, Pr. roy. Soc. [A] 110, 427; C. 1926 I, 2548.

[β . γ -Dibrom-propyl]-margarat, Glycerin- α . β -dibromhydrin-margarat, γ -Margaro- α . β -dibromhydrin $C_{20}H_{38}O_2Br_2=CH_3\cdot [CH_2]_{15}\cdot CO_2\cdot CH_2\cdot CHBr\cdot CH_2Br.$ B. Aus Margarinsäurechlorid und β -Dibromhydrin auf dem Wasserbad (Thomson, Trans. roy. Soc. Canada [3] 20 III, 457; C. 1927 II. 2242). — Nadeln (aus Alkohol). F: 35.5°. n_1^m : 1,4732: n_1^m : 1,4692; n_1^m : 1,4612. Leicht löslich in Chloroform, Butylalkohol, Äther, Phenetol, Aceton und Essigester, schwer in kaltem Alkohol.

 $[\beta.\beta'$ -Dichlor - isopropyl] - margarat, Glycerin - $\alpha.\alpha'$ -dichlorhydrin - margarat, β -Margaro- α -dichlorhydrin $C_{20}H_{38}O_2Cl_2 = CH_3 \cdot [CH_2]_{15} \cdot CO_2 \cdot CH(CH_2Cl)_2$. B. Aus Margarinsäurechlorid und α -Dichlorhydrin auf dem Wasserbad (Thomson, Trans. roy. Soc. Canada [3] 20 III, 448; C. 1927 II, 2242). — Nadeln (aus Chloroform). F: 26,5°. n; zwischen 40° (1,4538) und 75° (1,4405): Th. Löslich in Tetrachlorkohlenstoff, Petroläther. Ather, Butylalkohol, Aceton und Essigester.

Glycerin - α - margarat, α - Monomargarin $C_{30}H_{40}O_4 = CH_3 \cdot [CH_2]_{15} \cdot CO \cdot O \cdot CH_2 \cdot CH_3 \cdot [CH_2 \cdot OH]_{15} \cdot CO \cdot O \cdot CH_2 \cdot CH_3 \cdot CH_3$

Ather (Thomson, Trans. roy. Soc. Canada [3] 20 III. 448; C. 1927 II. 2242). — Tafeln (aus Ather). F: 76,4°. n_p^{o} : 1,4412. Löslichkeit in Alkohol und Äther bei 0° und 15°: Th. Leicht löslich in Chloroform, Benzol, Butylalkohol und Essigester, schwer in kaltem Äther.

Die von Thomson (*Trans. roy. Soc. Canada* [3] 20 III, 449) beim Erhitzen von β -Margaroz-dichlorhydrin mit Silbernitrit in einer Wasserstoffatmosphäre auf 120—1300 und nachfolgenden Verseifen erhaltene, als β -Monomargarin beschriebene Verbindung ist α -Monomargarin (FAIRBOURNE, FOSTER, Soc. 1926, 3148; FAI., Soc. 1930, 369, 372).

Glycerin- α . β -dipalmitat- α' -margarat, α . β -Dipalmito- α' -margarin, α' -Margaro- α . β -dipalmitin $C_{52}H_{100}O_6 = CH_3 \cdot [CH_2]_{15} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{14} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3$. B. Aus α -Monomargarin und Palmitoylchlorid in Chloroform in Gegenwart von Pyridin bei Zimmertemperatur (Thomson, Trans. roy. Soc. Canada [3] 20 III, 455; C. 1927 II, 2242). — Krystalle (aus Xther). F: 57.8°. n_0^1 zwischen 65° (1,4440) und 80° (1,4382): Th. Löslichkeit in Alkohol und Xther bei 0° und 15°: Th. Leicht löslich in Petroläther, Chloroform, Aceton und Essigester.

Glycerin- $\alpha.\alpha'$ -dipalmitat- β -margarat, $\alpha.\alpha'$ -Dipalmito- β -margarin, β -Margaro- $\alpha.\alpha'$ -dipalmitin $C_{52}H_{100}O_6=CH_3\cdot [CH_2]_{15}\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot [CH_2]_{14}\cdot CH_3)_2$. B. Beim Erhitzen von Bleipalmitat mit β -Margaro- α -dichlorhydrin auf 125° (Thomson, Trans. roy. Soc. Canada [3] 20 III, 453; C. 1927 II, 2242; vgl. a. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 234, 257). — Nadeln (aus Chloroform). F: 59,5° (Th.). n; zwischen 65° (1,4432) und 80° (1,4374): Th. Löslichkeit in Alkohol und Äther bei 0° und 15°: Th. Löslich in kaltem Tetrachlorkohlenstoff und warmem Petroläther, Äther, Aceton und Essigester (Th.).

Glycerin - $\alpha.\alpha'$ -dimargarat, $\alpha.\alpha'$ -Dimargarin, α -Dimargarin $C_{37}H_{72}O_5=(CH_3)$ - $[CH_2]_{15}\cdot CO\cdot O\cdot CH_2]_2CH\cdot OH$. B. Beim Erhitzen von margarinsaurem Kalium mit α -Dichlorhydrin in Xylol auf 160—170° (Thomson, Trans. roy. Soc. Canada [3] 20 III, 450; C. 1927 II, 2242; vgl. aber auch A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 246). Krystalle (aus Chloroform + Alkohol). F: 71,8° (Th.). $n_D^{5:}$: 1,4407; $n_D^{5:}$: 1,4388. Löslichkeit in Alkohol und Äther bei 0° und 15°: Th. Leicht löslich in Petroläther, Tetrachlorkohlenstoff, Butylalkohol, Aceton und Essigester.

Die von Thomson (Trans. roy. Soc. Canada [3] 20 III. 450; C. 1927 II. 2242) beim Erhitzen von margarinsaurem Kalium mit β-Dibromhydrin auf 160—170° erhaltene, als β-Dimargarin beschriebene Verbindung bestand vermutlich ganz oder zum größten Teil aus α-Dimargarin (FAIRBOURNE, Soc. 1930, 372; vgl. a. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, 1. Bd. [Wien 1936], S. 245).

Glycerin- α -palmitat- β . α' -dimargarat. α -Palmito- β . α' -dimargarin $C_{53}H_{102}O_6=CH_3\cdot [CH_2]_{15}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{15}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{14}\cdot CH_3$. B. Aus Margaroylchlorid, α -Monopalmitin und Chinolin in Chloroform (Thomson, Trans. roy. Soc. Canada [3] 20 III, 456; C. 1927 II, 2242). — Krystalle (aus Äther). F: 57,3°. n_0^{∞} : 1,4424; n_0^{∞} : 1,4364. Löslichkeit in Äther bei 0° und 15°: Th. Leicht löslich in Petroläther, Chloroform, Aceton und Essigester.

Glycerin - β -palmitat - α . α' -dimargarat, β -Palmito- α . α' -dimargarin $C_{53}H_{102}O_6=CH_3\cdot [CH_2]_{14}\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot [CH_2]_{15}\cdot CH_3)_2$. B. Beim Erhitzen von margarinsaurem Silber mit β -Palmito- α -dichlorhydrin auf 155° (THOMSON, Trans. roy. Soc. Canada [3] 20 III, 452; C. 1927 II, 2242; vgl. a. A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, 1. Bd. [Wien 1936], S. 257). — Nadeln (aus Ather). F: 58,3°. np. zwischen 65° (1.4428) und 80° (1.4368): Th. Löslichkeit in Alkohol und Äther bei 0° und 15°: Th. Leicht löslich in Petroläther, Chloroform, Butylalkohol, Aceton und Essigester (Th.).

Glycerintrimargarat, Trimargarin, Margarin $C_{54}H_{104}O_6 = CH_3 \cdot [CH_2]_{15} \cdot CO \cdot O \cdot CH(CH_2 \cdot O \cdot CO \cdot [CH_2]_{15} \cdot CH_3)_2$ (E I 169). B. Aus Glycerin und Margarinsäure in Gegenwart von aus Naphthalin, Ölsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens bei 100° (Ozaki, Bio. Z. 177, 159; Pr. Acad. Tokyo 2, 13; C. 1926 II, 2192). Beim Erhitzen von wasserfreiem Glycerin mit Margarinsäure auf 190—200° (Thomson, Trans. roy. Soc. Canada [3] 20 III, 451; C. 1927 II, 2242).— Krystalle (aus Alkohol). F: 62,7° (Th.). n₁₀°: 1,4421; n₁₅°: 1,4401; n₁₀°: 1,44382 (Th.). Löslichkeit in Alkohol und Ather bei 0° und 15°: Th. Löslich in kaltem Chloroform und Tetrachlorkohlenstoff, warmem Aceton. Ather, Butylalkohol und Essigester (Th.).— Über das Verhalten von Trimargarin ("Intarvin") im diabetischen Organismus vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt.. Bd. I [Berlin-Leipzig 1930], S. 846. Nährwert für Ratten: Heff. Kahn, Gies, Ber. Physiol. 29, 242; C. 1925 I, 1621; Ozaki.

Margarinsäurenitril, Cetyleyanid $C_{17}H_{33}N = CH_3 \cdot [CH_2]_{15} \cdot CN$ (H 377; E I 169). Über die Ausbreitung auf Wasser und die Struktur monomolekularer Schichten vgl. Adam, Jessop, Pr. roy. Soc. [A] 110, 428; C. 1926 I, 2548.

2-Brom-heptadecansäure-(1), α -Brom-margarinsäure $C_{17}H_{23}O_{2}Br = CH_{3} \cdot [CH_{2}]_{14} \cdot CHBr \cdot CO_{2}H$ (H 377). Über die Ausbreitung auf 0,01 n-Salzsäure und die Struktur monomolekularer Schichten vgl. Adam, $Pr.\ roy.\ Soc.\ [A]$ 103, 688; C. 1923 III, 1294; A., Jessop, $Pr.\ roy.\ Soc.\ [A]$ 112, 365; C. 1926 II, 2399.

17-Brom-heptadecansäure-(1), ω -Brom-margarinsäure $C_{17}H_{32}O_3Br=CH_2Br-[CH_2]_{15}\cdot CO_3H$. B. Bei der Einw. von Bromwasserstoff in Eisessig auf ω -Oxy-margarinsäure (CHUIT, HAUSSER, Helv. 12, 488). — Krystalle (aus Petroläther + wenig Benzol). F: 70,5° bis 71°. Kp₁: 219—220°. Löslich in Alkohol, Äther und Benzol, etwas schwerer in warmem Petroläther.

2. 2-Methyl-hexadecansäure-(1), Hexadecan-carbonsäure-(2), a-Methyl-palmitinsäure, Methyl-n-tetradecyl-essigsäure $C_{17}H_{34}O_2 = CH_3 \cdot [CH_2]_{18} \cdot CH(CH_3) \cdot CO_2H$. B. Man behandelt Palmitinsäure mit Brom in Gegenwart von rotem Phosphor, zersetzt das entstandene Bromid mit Wasser und setzt mit Methylmagnesiumbromid in Äther um (Morgan, Holmes, J. Soc. chem. Ind. 46, 153 T; C. 1927 II, 1464). — F: 54°.

[GERISCH]

18.. Carbonsäuren $C_{18}H_{36}O_2$.

1. Octadecansäure, Heptadecan-carbonsäure-(1), Stearinsäure $C_{18}H_{86}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2H$ (H 377; E I 170).

Vorkommen und Bildung.

Über Vorkommen der Stearinsäure in pflanzlichen und tierischen Fetten und Phosphatiden vgl. die Angaben bei A. Grün, W. Halden, Analyse der Fette und Wachse, 2. Bd. [Berlin 1929]; C. Wehmer, Die Pflanzenstoffe, 2. Aufl. [Jens 1929/1931]; D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933]; G. HEFTER, H. SCHÖNFELD, Chemie und Technologie der Fette und Fettprodukte, 1. Bd. [Wien 1936]. — B. Beim Einleiten von Sauerstoff in Paraffin (F: 50—51°) bei 150° in Gegenwart von Manganverbindungen (Kelber, B. 53, 1576) oder in Paraffin (F: 52-53° und 45-48°) in der Hitze in Gegenwart verschiedener Metallverbindungen unter Druck (Franck, Ch. Z. 44, 310; C. 1920 II, 781). Bei der Einw. elektrischer Glimmentladungen auf Ölsäure in Stickstoff-Atmosphäre (EICHWALD, Z. ang. Ch. 35, 505). Beim Behandeln von Kaliumoleat mit Wasserstoff bei Gegenwart von kolloidem Palladium in wäßr. Lösung (Biesalski, Z. ang. Ch. 41, 856). Durch Erhitzen von Ölsäure mit Tetralin in Gegenwart von Palladiumschwarz auf 115—120° (Akabori, Suzuki, Pr. Acad. Tokyo 5, 255; C. 1929 II, 2033). Beim Leiten von Ölsäure mit Wasserdampf über aktive Kohle bei 300° (Werschen-Weißenfelser Braunkohlen A.-G., Fürth, Hilden-Brand, D. R. P. 441164; C. 1927 I, 2135; Frdl. 15, 400). Durch Einw. von überschüssigem Hydrazinhydrat auf Olsäure in der Kälte und mehrtägiges Aufbewahren des entstandenen Hydrazinoleats oder durch Erhitzen von Hydrazinhydrat mit Kaliumoleat, neben geringen Mengen Hydrazinstearat (Hanus, Vorisek, Collect. Trav. chim. Tchécosl. 1, 225; C. 1929 II, 551). Durch Hydrieren von Stearolsäure mit Wasserstoff in Gegenwart von Platinschwarz in Essigsäure (Goñzalez, An. Soc. españ. 24, 163; C. 1926 II, 183). Durch Hydrierung von Ricinolsäure bei Gegenwart von Platinmohr in Eisessig (Sigmund, Haas, M. 50, 364). Zur Reindarstellung über den Athylester vgl. Wilkie, J. Soc. chem. Ind. 46, 471 T; C. 1928 I, 674.

H 378, Z. 5-6 v. o. statt "Hell, Sadomski, B. 24, 2388" lies "Oudemans, J. pr. [1] 89, 217".

Physikalische Eigenschaften.

Monokline Krystalle (aus Schwefelkohlenstoff) (A. MÜLLER, Nature 116, 45; Pr. roy. Soc. [A] 114, 546; C. 1925 II, 1347; 1927 II, 780). Tritt nach den röntgenographischen Untersuchungen von de Boer (Nature 119, 50, 634; C. 1927 I, 1410; II 371), Thibaud (C. r. 184, 24, 96) und Piper, Malkin, Austin (Soc. 1926, 2310) in 3 verschiedenen Modifikationen auf. Über weitere röntgenographische Untersuchungen vgl. Mü., Soc. 123, 2044; Nature 116, 45; Pr. roy. Soc. [A] 114, 546; Becker, Jancke, Ph. Ch. 99, 271; Trillat, C. r. 180, 1330; 184, 812; Ann. Physique [10] 6, 61; Prins, Coster, Nature 118, 83; C. 1926 II, 1366; Th., Nature 119, 852; C. 1927 II, 2146; Piggot, J. Washington Acad. 18, 332; C. 1928 II, 619. Härte der Krystalle: Reis, L. Zimmermann, Ph. Ch. 102, 330. F: 71° (Piper, Malkin, Austin, Soc. 1926, 2311), 70,5—71,5° (Levene, Taylor, J. biol. Chem. 59, 919). E: 69,35° (Joglekar, Watson, J. Soc. chem. Ind. 47, 366 T; C. 1929 I, 988), 68,6—68,7° (unkort.) (Ott, K. Zimmermann, A. 425, 336). Einfluß der Dicke einer Krystall-Lamelle auf den

Schmelzpunkt: Meissner, Z. anorg. Ch. 110, 181, 183. Sublimation im Vakuum: Niethammer, Bio. Z. 209, 456. Flüchtigkeit mit Wasserdampf: Arnold, Z. Unters. Nahr.-Genuβm. 42, 361; C. 1922 II, 918; Dieterle, Ar. 1926, 158; König, Kracht, Z. Unters. Lebensm. 57, 402; C. 1929 II, 1485.

402; C. 1939 11, 1485.

D⁶⁷: 0,846; D¹⁰⁰: 0,828 (Lautsch, Ph. Ch. [B] 1, 129); D; zwischen 70,0° (0,8480) und 145,0° (0,7975): Hunten, Maass, Am. Soc. 51, 160. D; 0,8394 (Schoorl, zit. bei Tromp, R. 41, 297); D¹³⁸: 0,8019 (Giles, Salmon, Soc. 123, 1603). Viscosität zwischen 100,7° (0,0456 g/cm sec) und 130,3° (0,0267 g/cm sec): Hu., M.; bei 138°: Gi., Sa. Einfluß dünner Schichten auf die gleitende Reibung zwischen Glas, Stahl, Wismut und Quarz: Hardy, Doubleday, Pr. roy. Soc. [A] 100, 560, 562; 101, 491; C. 1922 IV, 514; 1923 I, 876. Oberflächenspannung zwischen 70,0° (28,9 dyn/cm) und 150,0° (22,9 dyn/cm): H., M.; bei 138°: 22,7 dyn/cm (Gi., Sa.). Parachor: H., M., Am. Soc. 51, 161; Mumford, Phillips, Soc. 1929, 2128. Adhāsion an Stahl und Kupfer: Ha., Nottage, Pr. roy. Soc. [A] 118, 220; C. 1928 II, 864; an Kupfer, Nickel, Stahl und Duraluminium: McBain, Lee, J. phys. Chem. 32, 1181. Verbrennungswärme bei konstantem Volumen: 9482,5 cal/g (Verkade, Coops, R. 47, 608). n_α[∞]: 1,4310; n_b[∞]: 1,4332; n_b[∞]: 1,4336; n_b[∞]: 1,4330 (Waterman, Bertram, R. 46, 701); n_b[∞]: 1,4332; n_b[∞]: 1,4300 (Whitby, Dolid, Yorston, Soc. 1926, 1455; Wh., Soc. 1926, 1463). Zur Dispersion vgl. Verkade, Coops, R. 47, 48; W., B., R. 47, 52. Absorption von Röntgenstrahlen durch feste Stearinsäure: Stumpen, Z. Phys. 50, 226; C. 1928 II, 1859; durch geschmolzene Stearinsäure: Thibaud, Trillat, C. r. 189, 907. Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Manecke, Volbert, Farben-Ztg. 32, 2830, 2888; C. 1927 II, 2786; in Ather: Purvis, Pr. Cambridge phil. Soc. 23, 590; C. 1927 II, 379. Lichtaborption im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of Infra-red Spectra [Washington 1905], S. 214. Depolarisationsgrad des in flüssiger Stearinsäure bei 70° abgebeuzten Lichtes: Lautsch. Ph. Ch. [B] 1. 118. Dielektr.-Konst. bei 67°: 2,32; bei

Spectra [Washington 1905], S. 214. Depolarisationsgrad des in flüssiger Stearinsäure bei 70° abgebeugten Lichtes: Lautsch, Ph. Ch. [B] 1, 118. Dielektr.-Konst. bei 67°: 2,32; bei 100°: 2,26 (Lau., Ph. Ch. [B] 1, 129). Elektrische Leitfähigkeit von geschmolzener (?) Stearinsäure: GILES, SALMON, Soc. 123, 1602; von geschmolzener technischer Stearinsäure bei 100—190°: Lederer, Z. ang. Ch. 42, 1034; L., Hartleb, Seifens.-Ztg. 56, 346; C. 1929 II, 3080. Verhalten der Tropfen in elektrischen Feldern bei 120°: Ruff, Niese, Thomas, Ann. Phys. [4] 82, 634.

Bei 25° lösen sich 0,03 g in 100 g Wasser, 9,05 g in 100 g absol. Alkohol (Gregg-Wilson, Wright, Soc. 1928, 3112); 1 g löst sich bei 18° in 97 cm² 95 %igem Alkohol (Stezenko, Maslob. žir. Delo 1926, Nr. 7/8, S. 35; C. 1927 I, 1426). 100 cm³ Äther lösen bei 15° 5,5 g (Autenkieth, Thomae, B. 57, 429). Löslichkeit in wäßr. Alkohol bei 0° und 10°: Thomas, Mattikow, Am. Soc. 48, 971; bei 25°: Gr.-Wil, Wr.; in Glycerin bei 20°: Roborgh, Pharm. Weekb. 64, 1208; C. 1928 I, 547. Stearinsäure ist in 0,01 n-Salzsäure bei Zimmertemperatur nicht merklich löslich (Adam, Pr. roy. Soc. [A] 101, 467; C. 1923 I, 271). Löslich in flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105). Unlöslich in flüssigem Schwefeldioxyd und flüssigem Ammoniak (De Carli, G. 57, 352). Löst sich in Paraldehyd in der Kälte oder beim Erwärmen auf 40° und scheidet sich beim Zufügen von Wasser bzw. beim Abkühlen wieder aus (Cooper, Biochem. J. 18, 948). Ist bei Zusatz von Glykocholsäure oder Taurocholsäure in sauren Puffergemischen löslich (Verzár, Kúthy, Bio. Z. 205, 371; 210, 270, 281). Zur Bildung beständiger Silber-Sole in Stearinsäure vgl. Giles, Salmon, Soc. 123, 1600. Die Lösung in Äther gibt beim Schütteln mit Natriumcarbonat-Lösung eine gallertartige Fällung (Au., Th., B. 57, 429). Lösungsvermögen für Silberstearat: Gi., Sa. Ausflockung von Stearinsäure-Sol durch verschiedene Säuren: Ostwald, Koll.-Z. 40, 208; C. 1927 I, 573.

Schmelzpunkte bzw. Erstarrungspunkte von Gemischen mit Palmitinsäure, Arachinsäure und Behensäure: McGregor, Beal, Am. Soc. 48, 3153; von Gemischen mit Octadecen-(2)-säure-(1): Semeria, G. 55, 81. Thermische Analyse der binären Gemische mit Campher: Jefremow, Izv. ross. Akad. [6] 13, 768; C. 1925 II, 524; mit Palmitinsäure (tiefster Schmelzpunkt 52,5° bei 71% Palmitinsäure): Je, Izv. ural. polytech. Inst. 6, 167, 181; C. 1928 II, 1967; mit Behensäure: Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 70; C. 1926 II, 2729; mit Desoxycholsäure und Apocholsäure: Rheinboldt, H. 180, 183, 185; mit Hyodesoxycholsäure (3.6-Dioxy-cholansäure) und Cholsäure: Rh., H. 182, 253, 257. Ebullioskopisches Verhalten in Tetrachloräthylen: Walden, Ann. Acad. Sci. fenn. [A] 29, Nr. 23, 17, 25; C. 1928 I, 166.

Dichte einer 5 % igen alkoholischen Lösung bei 50°: Lifschitz, Beck, Koll.-Z. 26 [1920], 61. Diffusion aus alkoh. Lösung durch Kollodiumhülsen: Heiduschka, Riffer, Z. El. Ch. 29, 554. Grenzflächenspannung benzolischer Lösungen gegen Wasser und verd. Natronlauge: Dubrisay, Picard, C. r. 178, 206; Du., C. r. 178, 1976; 181, 1143; Bl. [4] 37, 999; Rev. gén. Collotdes 5, 486; C. 1927 II, 396. Einfluß von Natriumchlorid auf die Grenzflächenspannung benzolischer Lösungen gegen verd. Natronlauge: Du. Grenzflächenspannung benzolischer Lösungen von Stearinsäure + Myristinsäure bzw. Stearinsäure + Palmitinsäure gegen sehr verd. Natronlauge: Du., C. r. 181, 1061. Einfluß auf die Grenzflächenspannung zwischen Olen und Wasser: Mead, McCoy, Colloid Symp. Mon. 4, 48; C. 1928 II, 860.

Adsorption an Tierkohle aus Alkohol bei Zimmertemperatur: Griffin, Richardson. ROBERTSON, Soc. 1928, 2708; aus verschiedenen Lösungsmitteln an Kohle: NEKRASSOW. Ph. Ch. 136, 23. Adsorption von Natriumhydroxyd und Bariumhydroxyd aus wäßr. Lösung an Stearinsäure: KAWAMURA, J. phys. Chem. 30, 1369. Kontaktwinkel gegen Wasser: Nietz. J. phys. Chem. 32, 262; ADAM, JESSOF, Soc. 127, 1866; A., Morrell, Soc. 127, 2794. Verhalten und Struktur monomolekularer Filme auf Wasser, verd. Salzsäure und verschiedenen Salzlösungen: Labrouste, Ann. Physique [9] 14, 207; Woog, C. r. 178, 388; 177, 1108; ADAM, Pr. roy. Soc. [A] 101, 457, 521; C. 1923 I, 271, 272; Marcelin, C. r. 189, 238; Fahir. C. r. 189, 239; CARY, RIDEAL. Nature 115, 458; Pr. roy. Soc. [A] 109, 312, 320, 329; C. 1925 I, 2539; 1926 I, 1126; HARKINS, MORGAN, Pr. nation. Acad. USA. 11, 638; C. 1926 I. 1950; HA., Colloid Symp. Mon. 5, 24; C. 1928 II, 229; Hill, Phil. Mag. [7] 7, 945; C. 1929 II. 858. Dicke monomolekularer Schichten auf Quecksilber: Sheppard, Keenan, Nature 121. 982; C. 1928 II, 1524. Elastische Eigenschaften monomolekularer Schichten auf Wasser bei 20°: MOUQUIN, RIDEAL, Pr. roy. Soc. [A] 114, 694; C. 1927 II, 396. Ausbreitung von Gemischen mit Myricylalkohol, Cetylalkohol und Phenanthren auf Wasser: HA., Ph. Ch. [A] 139. 685; Colloid Symp. Mon. 5, 24. Brechungsindex einer 5% igen alkoholischen Lösung bei 50°: Lifschitz, Beck, Koll.-Z. 26 [1920], 61. Beugung von Röntgenstrahlen an einer Suspension in Alkohol: PIFER, MALKIN, AUSTIN, Soc. 1926, 2311. Röntgenographische Untersuchungen von Gemischen mit Palmitinsäure: P., M., A.; von Gemischen mit weiteren langkettigen Fettsäuren: Тніваud, C. r. 184, 25. Elektrische Leitfähigkeit von Lösungen in Ather: Rabinowitsch, Ph. Ch. 119, 75; Ж. 58, 236. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer Stearinsäureschicht auf verd. Salzsäure: Frumkin, Ph. Ch. 116, 493. Colorimetrische Bestimmung der Hydrolyse des Natrium- und Kaliumsalzes in wäßr. Lösung bei 90°: McBain, Hay, Soc. 1929, 598.

Chemisches und physiologisches Verhalten.

Stearinsäure bleibt beim Erhitzen in der Bombe auf 400° nahezu unverändert (HERNDON, Reid, Am. Soc. 50, 3070, 3072). Zersetzt sich beim Erhitzen mit Aluminiumchlorid über freier Flamme unter Kohlendioxyd-Entwicklung und liefert fast ausschließlich Paraffin-Kohlenwasserstoffe (Zelinsky, Lawrowsky, B. 61, 1057). Gibt beim Erhitzen mit etwas Eisenpulver in einem eisernen Gefäß auf 300° (GRÜN, ULBRICH, KRCZIL, Z. ang. Ch. 39, 423) oder in Gegenwart von Thoriumoxyd auf 400—430° Stearon (SAVILLE, SHEARER, Soc. 127, 592. 593); Stearon entsteht auch bei der trocknen Destillation des Natriumsalzes bei 550-600° und 12—15 mm Druck (neben Kohlenwasserstoffen und anderen Produkten) (Grün, Wirth, B. 53, 1307) und bei der trocknen Destillation des Calciumsalzes und des Magnesiumsalzes unter vermindertem Druck (SATO, J. Soc. chem. Ind. Japan Spl. 30, 73 B; C. 1929 II, 1986); Geschwindigkeit dieser Reaktion: S., Iro, J. Soc. chem. Ind. Japan Spl. 30, 75 B; C. 1929 II. 1986. Bei der Elektrolyse eines Gemisches von Stearinsäure und Palmitinsäure entsteht Dotriakontan (PIPER, BROWN, DYMENT, Soc. 127, 2196). Kaliumstearat wird beim Leiten von Luft in die wäßr. Lösung im Sonnenlicht (Palit, Dhar, J. phys. Chem. 32, 1265) oder in Lösungen in Natronlauge oder Natriumdicarbonat-Lösung, namentlich in Gegenwart von Metallhydroxyden, oxydiert (Pa., Dh., J. phys. Chem. 32, 1664). Bei der Oxydation von Stearinsäure mit Sauerstoff in Gegenwart von Manganstearat bei 120-130° erhält man geringe Mengen Ameisensäure, Essigsäure, Buttersäure und höhere Fettsäuren, ferner gesättigte zweibasische Säuren, Oxysäuren und deren Lactone (Salway, Williams, Soc. 121, 1345). Geschwindigkeit der Oxydation durch Wasserstoffperoxyd und konz. Schwefelsäure: Kerp, Arb. Gesundh. Amt. 57, 558; C. 1927 I. 1902. Bei der Oxydation von Ammoniumstearat mit etwa 5 Mol Wasserstoffperoxyd in Wasser bei 90° entstehen neben anderen Produkten Methyl-n-pentadecyl-keton, wenig γ -Oxo-stearinsäure und sehr geringe Mengen δ -Oxo-stearinsäure (?) (CLUTTERBUCK, RAPER, *Biochem. J.* 19, 388). Oxydation von Stearins säure durch Kaliumdichromat in Petroläther: Blix, Skand. Arch. Physiol. 48 [1926], 289; mit Chromschwefelsäure: Lieben, Molnar, M. 53/54, 7; Simon, C. r. 180, 1406. Korrosion von Nickel durch (technische) Stearinsäure bei 1900: LEDERER, Z. ang. Ch. 42, 1033.

Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff: Bhide, Sudborough, J. indian Inst. Sci. 8 A, 104, 109; C. 1926 I, 80. Kaliumstearat liefert bei Einwirkung auf 1 Mol geschmolzenes 3-Jod-propandiol-(1.2) bei 100° Glycerinα-monostearat, eine Verbindung C₄₂H₈₂O₇ (Krystallpulver; F: 70.5—71,3°) und Stearinsäure; beim Erhitzen unter 2 mm Druck auf 100° entsteht außerdem Glycid (GRÜN, LIMPÄCHER, B. 59, 692). Silberstearat liefert beim Verreiben oder bei 3/4stdg.

CH2 [CH3]15·CH3

B. 59, 692). Silberstearat liefert beim Verreiben oder bei 3/4stdg. Erhitzen mit 1 Mol geschmolzenem 3-Jod-propandiol-(1.2) unter 5 mm Druck auf 100° Stearinsäure und Glycid; bei längerem Erhitzen bilden sich Glycerinester und Polyglycerinester (Gr., L.). HO Liefert beim Erhitzen mit 3 Mol Resorcin in Gegenwart von Zink-

chlorid auf 200—215°, "Resorcin-stearein" (s. vorstehende Formel; Syst. Nr. 2514) (Sen, Sircar, Quart. J. indian chem. Soc. 1, 165; C. 1925 I, 1994). Bei längerem gelindem Kochen

mit überschüssigem Acetanhydrid unter Ausschluß der Luftfeuchtigkeit entsteht Stearinsäureanhydrid (HOLDE, GENTNER, B. 58, 1424). Geschwindigkeit der Veresterung mit Glycid: Gr., L., B. 59, 695.

Hemmende Wirkung auf enzymatische Vorgänge: VELLUZ, Bl. Soc. Chim. biol. 9, 485; C. 1927 II, 837. Wirkt in hohen Konzentrationen wachstumshemmend auf Penicillium palitans und auf Oidium lactis (STOKOE, Biochem. J. 22, 88). Bactericide Wirkung von Kalium- und Natriumstearat: WALKER, Ber. Physiol. 31, 938; C. 1926 I, 1589. Wird von Aspergillus flavus oxydiert (Tausson, Bio. Z. 193, 88). Oxydativer Abbau durch Penicillium cyclopium: DERX, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345. Nährwert für Ratten: (IZAKI, Bio. Z. 189, 238; Pr. Acad. Tokyo 3, 439; C. 1928 I, 541. Zur Resorption im Magen-Darmkanal vgl. Brugsch, Fränkel, Z. exp. Med. 38, 400; C. 1924 I, 1826. Über die physiologischen Wirkungen der Stearinsäure und ihrer Salze vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 847.

Analytisches.

Zusammenstellung von Reaktionen für den Nachweis von Stearinsäure (allein und in Gegenwart anderer Säuren): ROJAHN, STRUFFMANN, Ar. 1927, 295. Gibt mit Sudan III eine schwache Rosafärbung (Grün, Wittka, Z. ang. Ch. 34, 646). Nachweis in Gegenwart von Palmitinsäure, Ölsäure oder Buttersäure mit Hilfe des Phenacylesters: RATHER, REID, Am. Noc. 43, 632. — Nachprüfung verschiedener Verfahren zur quantitativen Trennung von anderen Fettsäuren: Meigen, Neuberger, Ch. Umschau Fette 29 [1922], 337. Die Abtrennung der Stearinsäure von niederen gesättigten Fettsäuren, Oxysäuren und ungesättigten Säuren gelingt auf Grund der verschiedenen Löslichkeit der Natriumsalze der Hydroxamsäuren in Alkohol (Lewis, Biochem. J. 20, 1360, 1362). Trennung von Palmitinsäure durch Krystallisation aus wäßr. Aceton: Escher, Helv. 12, 48; von Ölsäure durch fraktionierte Krystallisation der Barium-, Blei-, Lithium- und Natriumsalze: LAPWORTH, PEARSON, MOTTRAM, Biochem. J. 19, 8; von Ölsäure auf Grund der Schwerlöslichkeit des Thallium(I)-salzes in 96 %igem Alkohol: Meigen, Neuberger, Ch. Umschau Fette 29, 342; Holde, Selim, B. 58, 527; vgl. Holde, Selim, Bleyberg, Z. disch. Ol-Fettind. 44, 277, 298; C. 1924 II, 903, 1643; Z. ang. Ch. 37, 885. Zur Trennung von Ölsäure nach der Bleisalz-Ather-Methode vgl. Thomas. Yu, Am. Soc. 45, 114. Das Natriumsalz sowie das Bariumsalz lassen sich von den entsprechenden Salzen der Ölsäure in 90% igem Alkohol bei 20—25° nur unvollkommen trennen (Th., Y.). Trennung von Ölsäure, Palmitinsäure + Ölsäure oder Elaidinsäure + Ölsäure durch Behandlung der Bleisalze mit Alkohol: Steger, Scheffers, R. 46, 406; vgl. TWITCHELL, J. ind. Eng. Chem. 13 [1921], 806; WALLIS, BURROWS, Am. Soc. 46, 1951. Einfluß von Temperatur, Acidität bzw. Alkalität auf die Abtrennung aus Gemischen mit Ölsäure über die Magnesiumsalze: TH., Y. Trennung von Arachin- und Lignocerinsäure auf Grund der verschiedenen Löslichkeit der Säuren in Alkohol von 90,3 Vol.-%: TH., Y. Zur Bestimmung in Fettsäuregemischen vgl. a. Bertram, Z. dtsch. Öl-Fettind. 45, 735; C. 1926 II, 129. Titration mit methylalkoholischer Bariumhydroxyd-Lösung: Escher, Helv. 12, 103. Nephelometrische Bestimmung im Blut: BLOOR, PELKAN, ALLEN, J. biol. Chem. 52, 191. — Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 11.

Salze der Stearinsäure (Stearate).

Über Benzol-Wasser-Emulsionen mit verschiedenen Stearaten als Emulgierungsmittel

vgl. Finkle, Draper, Hildebrand, Am. Soc. 45, 2785. Hydrazinstearat $C_{18}H_{36}O_2 + N_3H_4$. B. Beim Erhitzen von Ölsäure mit überschüssigem Hydrazinhydrat auf dem Wasserbad (Hanuš, Vořišek, Collect. Trav. chim. Tchécosl. 1, 226; C. 1929 II, 551). — Krystalle (aus Chloroform). F: 114°.

Lithiumstearat LiC₁₈H₃₅O₂. Krystalle (aus Alkohol). F: 214° (Fränkel, Käsz, Bio. Z. 124, 224). Röntgenographische Untersuchung: Becker, Jancke, Ph. Ch. 99, 271. Umkehrung der Phasen bei Öl-Emulsionen in Lithiumstearat-Lösungen durch Elektrolyte: BHATNAGAR, Soc, 119, 63, 64.

Natriumstearate: NaC₁₈H₃₅O₂ + C₁₈H₃₆O₂. Röntgenograph.sche Untersuchung: PIPER, Soc. 1929, 238. — NaC₁₈H₃₅O₂. Elektrische Leitfähigkeit in geschmolzenem Zustand: Bhatnagar, Prasad, Koll.-Z. 34, 194; C. 1924 II, 1167. Die wahre Löslichkeit von Natriumstearat in Wasser bei 18°, festgestellt durch Ultrafiltration, beträgt höchstens 0,0001 Mol/l (Kratz. Z. dtsch. Öl-Fettind. 44, 50; C. 1924 I, 1489). Wäßr. Lösungen bis zu einer Konzentration 0,8 n sind bei 90° wasserhell und geben keinen Tyndalleffekt (Linderström-Lang, C. r. Trav. Carlsberg 16, Nr. 6, S. 40; C. 1926 II, 2398). Gelbildung der wäßr. Lösung: Ponder, Biochem. J. 18, 846. Einfluß von Wasser, Stearinsäure und Ölsäure auf die Dispergierung und Gelatinierung in Terpentinöl, Paraffinöl und Benzol: Holmes, Maxson, Colloid Symp. Mon. 5, 290, 296, 299; C. 1928 II, 226. Lösungsvermögen der wäßr. Lösung für verschiedene organische Verbindungen: TAMBA, Bio. Z. 145, 419. Über die Wirkung als Schutzkolloid vgl. IREDALE.

Soc. 119, 626; FREUNDLICH, LOEB, Koll.-Z. 34, 231; C. 1924 II, 443. Emulgierungsvermögen wäßr. Lösungen für Petroleum (D: 0,813) und Leinöl: White, Marden, J. phys. Chem. 24, 625, 627; für pflanzliche Öle: Jajnik, Ilahi, Koll.-Z. 37, 140; C. 1926 I, 34. Verlauf der Abkühlung einer 0,5 molaren wäßrigen Lösung: M. H. FISCHER, Koll.-Z. 46, 359; C. 1929 II, 399. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436. Elastizität von Solen und Gelen von Natriumstearat: Freundlich, Seiffiz, Ph. Ch. 104, 248. Viscosität wäßr. Natriumstearat-Lösungen bei 20°: Fr., Schaler, Ph. Ch. 108, 171; bei 25—30°: Nonaka, J. Soc. chem. Ind. Japan Spl. 30, 62 B, 219 B; C. 1928 I, 1374; 1929 II, 2125; bei 60°, 70° und 80°: JAJNIK, MALIK, Koll.-Z. 36, 325; C. 1925 II, 2134; vgl. a. M., Koll.-Z. 39, 323; C. 1926 II, 2401; Viscosität wäßr. Lösungen von Natriumstearat und von Natriumstearat + Natriumoleat und Natriumstearat + Natriumricinoleat: Fr., Jores, Koll.-Z. 36, 242; Koll. Beih. 22, 19, 26, 30; C. 1926 I, 3310. Viscosität von Lösungen in Alkohol und Butylalkohol bei 30°: Prasad, J. phys. Chem. 28, 639. Druckabhängigkeit der Viscosität von Natriumstearat-Lösungen: Ostwald, Ph. Ch. 111, 73; vgl. a. O., Koll.-Z. 36, 110; C. 1925 I, 1965. Ultrafiltration von wäßr. Natriumstearat-Lösungen durch eine Nickelmembran bei 80—90°: Manning, Soc. 1926, 1131; durch Membranfilter bei 18°: Kratz, Z. disch. Öl-Fettind. 44, 50; C. 1924 I, 1489. Oberflächenspannung wäßr. Lösungen: White, Marden, J. phys. Chem. 24, 623; PONDER, Biochem. J. 18, 846; bei 15°: LASCARAY, Koll.-Z. 34, 76; C. 1924 I, 2413; bei 40°: KAWAKAMI, J. Soc. chem. Ind. Japan Spl. 31, 281 B; C. 1929 I, 1549; bei 60°: WALKER, Soc. 119, 1523. Oberflächenspannung wäßr. Lösungen von Natriumstearst und von binären und ternären Gemischen mit Natriumoleat und Natriumlaurat in Wasser: Hirose, J. Soc. chem. Ind. Japan Spl. 31, 46 B; C. 1928 II, 504. Einfluß der Wasserstoffionen-Konzentration auf die Oberflächenspannung einer Natriumstearat-Lösung: Jarisch, Bio. Z. 134, 166. Suspendierende Wirkung auf Tierkohle: v. Buzagh, Koll.-Z. 43, 221; C. 1928 I, 656. Waschwirkung: Chapin, J. Oil Fat Ind. 5, 210; C. 1928 II, 1159. Mikroskopische und ultramikroskopische Untersuchungen an wäßr. Lösungen: Darke, McBain, Salmon, Pr. roy. Soc. [A] 98, 399, 402; C. 1922 II, 159; an den daraus entstehenden Gallerten: D., McB., S., Mac-LENNAN, J. Soc. chem. Ind. 42, 398 T; C. 1924 I, 1291; KRATZ, Z. dtsch. Öl-Fettind. 44, 38; C. 1924 I, 1489. Debye-Scherrer-Aufnahmen an Natriumstearat-Gallerten: PIPER, GRINDLEY, Pr. phys. Soc. London 35, 270; C. 1924 I, 2077. Elektrische Leitfähigkeit von Natriumstearat-Gelen: v. Buzagh, Ch. Rasch. Mitteleur. Balkan 2, 52; C. 1925 II, 271; von wäßr. Lösungen: Kr., Z. dtsch. Öl. Fettind. 44, 49; von Lösungen in Alkohol, Propylalkohol und Butylalkohol: Bhatnagar, Prasad, Koll.-Z. 34, 195; C. 1924 II, 1167. OH'-Konzentration wäßr. Lösungen bei 90°: McBain, Hay, Soc. 1929, 598. Hydrolysengrad wäßr. Lösungen: Kr.; Stocks, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786.

Kaliumstearate: KC₁₈H₃₆O₂ + C₁₈H₃₆O₂ (bei 105°). Krystalle (aus Alkohol) (STEZENKO, Maslob. žir. Delo 1926, Nr. 7/8, S. 35; C. 1927 I, 1426). Röntgenographische Untersuchung: PIPER, Soc. 1929, 237. F: 153° (St.). Bei 18° löst sich 1 g in 880 cm³ 95% igem Alkohol (St.). Wird durch Wasser bei 40—50° merklich hydrolysiert (St.). Zerfällt bei längerer Extraktion mit Ather oder Chloroform in Stearinsäure und neutrales Kaliumstearat (St.). — KC₁₈H₃₆O₂. Röntgenographische Untersuchung: PIPER, Soc. 1929, 236. Elektrische Leitfähigkeit in geschmolzenem Zustand: Bhatnagar, Prasad, Koll.-Z. 34, 194; C. 1924 II, 1167. Bei 18° löst sich 1 g in 270 cm³ 95% igem Alkohol (STEZENKO, Maslob. žir. Delo 1926, Nr. 7/8, S. 35; C. 1927 I, 1426). Bei 25° lösen 100 g 95% iger Alkohol ol. 3 (Thomas, Yu, Am. Soc. 45, 116). Löslichkeit in Gemischen aus Wasser + Alkohol bei 25°: Th., Y. Gelbildung der wäßr. Lösung: Ponder, Biochem. J. 18, 847. Einfluß von Stearinsäure und Ölsäure auf die Dispergierung und Gelatinierung in Terpentinöl, Paraffinöl und Benzol: Holmes, Maxson, Colloid Symp. Mon. 5, 290, 296, 299; C. 1928 II, 226. Über Emulsionen von Kerosin in Kaliumstearat-Lösung vgl. Griffin, Am. Soc. 45, 1654. Umkehrung der Phasen bei Öl-Emulsionen in Kaliumstearat-Lösungen durch Elektrolyte: Bh., Soc. 119, 63, 64. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436. Zeitliche Anderung der Viscosität der wäßr. Lösung: Dhar, Chakeravarti, Koll.-Z. 42, 122; C. 1927 II, 2654. Einfluß von Kaliumchlorid bzw. Kalilauge auf die Viscosität der wäßr. Lösung: Ch., Dh., Koll.-Z. 42, 127; C. 1927 II, 2654; Dh., Ghosh, Koll.-Z. 48 [1929], 44. Viscosität von Lösungen in Alkohol und Butylalkohol bei 30°: Pr., J. phys. Chem. 28, 638. Ultramikroskopische Untersuchungen an wäßr. Lösungen und den daraus entstehenden Gallerten: Darke, McB., S., Pr. roy. Soc. [A] 98, 399, 404; C. 1922 II, 159; Kratz, Z. dtsch. Öl-Fettind. 44, 38; C. 1924 II, 1489. Zeitliche Anderung der Leitfähigkeit des Sols: Dh., Ch., Ch. Z. 42, 122. Elektris

1167. OH'-Konzentration wäßr. Lösungen bei 90°: McBain, Hay, Soc. 1929, 598.

Kupfer(II)-stearat Cu(C₁₈H₂₅O₂). Elektrische Leitfähigkeit der Lösungen in Benzol, in Benzol + Chlorwasserstoff und in Benzol + Zinn(IV)-chlorid: Cady, Baldwin, Am. Soc. 43, 648. Giftwirkung auf Raupen: Brinley, J. agric. Res. 33, 179; C. 1926 II, 2107.

Silberstearat AgC₁₈H₃₅O₂. Lichtbeständiges amorphes Pulver (Gascard, A. ch. [9] 15, 362). Kolloidehemisches Verhalten in verschiedenen Lösungsmitteln: Whitey, Soc. 1926,

1459. 1 l Wasser löst bei 20° 0,00065 g (WH.). Löslichkeit in Stearinsäure: Giles, Salmon,

Magnesiumstearat $Mg(C_{18}H_{38}O_3)_2$. Krystalle (aus 95%igem Alkohol). Sintert bei 117—122° und schmilzt bei weiterem Erhitzen; die Schmelze bleibt beim Abkühlen glasartig 117—122° und schmilzt bei weiterem Erhitzen; die Schmelze bleibt beim Abkühlen glasartig (BILTZ, RÖHRS, Z. ang. Ch. 36, 609); schmilzt bei ca. 145° (MEAD, McCov, Colloid Symp. Mon. 4, 53; C. 1928 II, 860). Wird beim Reiben elektrisch (B., R.). Bei 25° lösen 100 g 90 %iger Alkohol 0,007 g (THOMAS, YU, Am. Soc. 45, 115). Löslichkeit in Gemischen aus Wasser und Alkohol bei 25°: TH., Y. Emulgierungsvermögen der wäßr. Lösung für Baumwollsaatöl: Lee, Rutzler, Oil Fat Ind. 6, Nr. 3, S. 16; C. 1929 II, 233. — Calciumstearat Ca(C₁₈H₃₅O₃). Feines, offenbar amorphes Pulver. Schmilzt bei 150—156°; die Schmelze bleibt beim Abkühlen glasartig (Biltz, Röhrs, Z. ang. Ch. 36, 609). Sintert bei 115—120°, zersetzt sich bei 155—160° (Harrison, Biochem. J. 18, 1223). F: 179—180° (Klimont, J. pr. [2] 109, 272). Wird beim Reiben elektrisch (B., R.). Löslich in alkoh. Salzsäure und siedendem Xylol, schwer löslich in siedendem Alkohol und Benzol, sehr schwer in siedendem Chloroform, unlöslich in Äther. Aceton, Petroläther und Wasser (H.). Einfuß von Stearinsäure und Ol. unlöslich in Äther, Aceton, Petroläther und Wasser (H.). Einfluß von Stearinsäure und Ölsäure auf die Dispergierung und Gelatinierung in Terpentinöl, Paraffinöl und Benzol: Holmes, MAXSON, Colloid Symp. Mon. 5, 290, 297; C. 1928 II, 226. Emulgierungsvermögen der wäßr. Lösung für Baumwollsaatöl: LEE, RUTZLER, Oil Fat Ind. 6, Nr. 3, S. 16; C. 1929 II, 233. — Strontiumstearat $Sr(C_{18}H_{35}O_2)_2$. Emulgierungsvermögen der wäßr. Lösung für Baumwollsaatöl: Lee, Rutzler. — Bariumstearat $Ba(C_{18}H_{35}O_2)_2$. Emulgierungsvermögen der wäßr. Lösung für Baumwollsaatöl: Lee, Rutzler.

Zinkstearat Zn(C₁₈H₃₅O₂)₂. Weißes Pulver. F: ca. 140° (Mead, McCoy, Colloid Symp. Mon. 4, 54; C. 1928 II, 860). Randwinkel mit Wasser und Luft: Nietz, J. phys. Chem. 32, 262. — Quecksilberstearat Hg(C₁₈H₃₅O₂)₂. B. Beim Erhitzen von Stearinsäure mit Quecksilberoxyd auf 180° im Olbad (Dietzel, Sedlmeyer, Ar. 1928, 515). Feinkrystallinisches Pulver (aus Alkohol + Chloroform + Pyridin oder aus Paraffinol + Ather). Bei 200 lösen sich in 1 l Alkohol 0,0006809 Mol, in 1 l Ather 0,00051 Mol, in 1 l Chloroform 0,00073 Mol, in 1 leines Gemisches von 6 Tln. Alkohol, 1 Tl. Chloroform und 3 Tln. Pyridin 0,0014 Mol

(D., S.). Giftwirkung auf Raupen: BRINLEY, J. agric. Res. 33, 179; C. 1926 II, 2107.
Aluminiumstearat Al(C₁₆H₃₅O₂)₃. Pulver. F: ca. 120° (Mead, McCoy, Colloid Symp. Mon. 4, 52; C. 1928 II, 860). Adsorption von Arabinose aus wäßr. Lösung an Aluminiumstearat. Supplys Man. 4 Mitarb. Lokus Cham 29, 475. Finflug auf die Chamfle hammen der State Cham 29, 475. Finflug auf die Chamfle hammen der State Chamfle auf die Chamfle auf di stearat: Shrivastava, Mitarb., J. phys. Chem. 29, 175. Einfluß auf die Grenzflächenspannung

zwischen Ölen und Wasser: M., McC.

Thallium(I)-stearat TlC₁₈H₃₅O₂. Nadeln (aus Alkohol). F: 119° (korr.) (Holde, Selim, B. 58, 527), 118° (korr.) (Walter, B. 59, 968), 117° (Meigen, Neuberger, Ch. Umschau Fette 29 [1922], 342). Die Schmelze ist zwischen 118° und 163° (korr.) krystallin-flüssig (W.). Brechungsindices der krystallin-flüssigen Phase zwischen ca. 110° und 150°: W., B. 59, 971. Löst sich bei Zimmertemperatur in 96% igem Alkohol zu 0,42%, in Wasser zu 0,014% (M., N.); Löslichkeit in 96% igem Alkohol zwischen 15° und 60° und in Wasser zwischen 15° und 75°: H., S. Schmelzpunkte von Gemischen mit den Thallium(I)-salzen der Ölsäure und Elaidinsäure: W., B. 59, 970. — Zirkoniumstearat. F: ca. 60° (MEAD, McCoy, und Elaidinsaure: W., B. 59, 970. — Zirköhlumsteafat. F: Ca. 60° (MEAD, MCCOY, Colloid Symp. Mon. 4, 52; C. 1928 II, 860). Einfluß auf die Grenzflächenspannung zwischen Ölen und Wasser: M., McC. — Bleistearat Pb(C₁₈H₃₅O₂). Schuppen (aus Toluol). Röntgenographische Untersuchung an einem dünnen Film: Trillat, C. r. 180, 1839; Ann. Physique [10] 6, 76. Bei 25° lösen 100 g absol. Äther 0,021 g (Thomas, Yu, Am. Soc. 45, 117). Giftwirkung auf Raupen: Brinley, J. agric. Res. 33, 179; C. 1926 II, 2107. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 351.

Funktionelle Derivate der Stearinsäure.

Stearinsäuremethylester, Methylstearat $C_{19}H_{36}O_3=CH_3\cdot [CH_2]_{16}\cdot CO_2\cdot CH_3$ (H 379; E I 172). B. Aus Stearinsäure beim Kochen mit methylalkoholischer Salzsäure (Skraup, Schwamberger, A. 462, 152) oder methylalkoholischer Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 913). Durch Erhitzen von Silberstearat und Methyljodid in Xylol auf 1000 (WHITBY, Soc. 1926, 1464) oder von Thallium(I)-stearat mit Methyljodid in Benzol (FEAR, MENZIES, Soc. 1926, 938). Durch Hydrierung von Petroselinsäuremethylester in Gegenwart von Nickel-Kieselgur bei 180° (Van Loon, R. 46, 497) oder von Ricinolsäuremethylester bei Gegenwart von Platinmohr in absol. Methanol oder absol. Ather (Sigmund, Haas, M. 50, 365)

Krystalle (aus Äther oder Aceton). Röntgenreflexionsaufnahmen an dünnen, orientierten Schichten: Shearer, Soc. 123, 3153. Optisches Verhalten der Krystalle: Vorländer, Selke, Ph. Ch. 129, 450. — F: 38,5° (SIGMUND, HAAS, M. 50, 365), 38,8° (WHITBY, Soc. 1926, 1464), 38,5—39,5° (korr.) (Levene, Taylor, J. biol. Chem. 59, 913), 38,70° (Verkade, Coops, Bio. Z. 206, 477), 39,2° (van Loon, R. 46, 497). Kp_{0,01}: 163—165° (Anderson, Chargaff, J. biol. Chem. 84, 711). Schmelz- und Erstarrungspunkte von Gemischen mit Methylpalmitat: Verkade, Coops; Schmelz- und Erstarrungspunkte von Gemischen mit Methylbehenat: Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 69: C. 1926 II, 2729. Ausbreitung monomolekularer Schichten auf Wasser: Adam, Pr. roy. Soc. [A] 103, 693; C. 1923 III, 1295. — Liefert beim Erwärmen mit Phenylmagnesiumbromid in Äther und Erhitzen des Reaktionsprodukts auf 220—240°1.1-Diphenyl-octadecen-(1) (Skraup, Schwamberger, A. 462, 152).

Stearinsäureäthylester, Äthylstearat C₂₀H₄₀O₂ = CH₃·[CH₂]_{1e}·CO₂·C₂H₅ (H 379; E I 172). B. Durch Erwärmen von Stearinsäure mit Alkohol und konz. Schwefelsäure (Holde, Bleyberg, B. 60, 2506) oder mit Alkohol, konz. Schwefelsäure und wasserfreiem Aluminiumsulfat (Kotake, Fujita, Bl. phys. chem. Res. Tokyo 1, 65; C. 1928 II, 1545). Durch Erhitzen von Silberstearat und Äthyljodid in Xylol auf 100° (Whitby, Soc. 1926, 1464). Durch Hydrierung von Ölsäureäthylester in Gegenwart von kolloidalem Palladium in Alkohol + Eisessig (Levene, Taylor, J. biol. Chem. 59, 910).

1404). Durch Hydrierung von Oisaureathyjester in Gegenwart von Rolloidalem Palladium in Alkohol + Eisessig (Levene, Taylor, J. biol. Chem. 59, 910).

Krystalle (aus Alkohol oder Aceton). Röntgenreflexionsaufnahmen an einer dünnen, orientierten Schicht: Shearer, Soc. 123, 3153. Optisches Verhalten dünner Schichten auf Glasplatten: Vorländer, Selke, Ph. Ch. 129, 451. F: 33° (Jones, Smith, Soc. 1928, 70), 33,0° bis 33,5° (Holde, Bleyberg, B. 60, 2506), 33—34° (kort.) (Levene, Taylor, J. biol. Chem. 59, 910), 33,6° (Whithey, Soc. 1926, 1464). Kp2: 182° (Piper, Malkin, Austin, Soc. 1926, 2311); Kp6,18: 152° (Le., T.). Dichte zwischen 36,3° (0,8481) und 167° (0,754): Lautsch, Ph. Ch. [B] 1, 126. na.: 1,4368; nb.: 1,4444; ny.: 1,4489 (Lau.); nb.: 1,4292 (Wh., Dolld, Yorston, Soc. 1926, 1455); nb.: 1,4320; ni.: 1,4238 (Wh., Soc. 1926, 1464). Depolarisation des bei 40° an Äthylstearat gestreuten Lichtes: Lau., Ph. Ch. [B] 1, 118. Dielektr.-Konst. zwischen 48° (2,92) und 167° (2,48): Lau., Ph. Ch. [B] 1, 126. Verhalten und Struktur monomolekularer Schichten auf Wasser und verd. Salzsäure: Adam, Pr. roy. Soc. [A] 101, 461, 523; C. 1923 I. 271, 272. Oberflächenspannung monomolekularer Schichten auf verd. Salzsäure bei Zimmertemperatur und geringen Drucken bis herab zu 0,01 dyn/cm: A., Jessop, Pr. roy. Soc. [A] 110, 427; C. 1926 I, 2548.

Oxydation mit Chromschwefelsäure: Simon, C. r. 180, 1406. Über Verdrängung des Äthylrests (Umesterung) beim Erhitzen mit Glycerin auf 270—280° vgl. Grün, B. 54, 297; über Verdrängung des Stearinsäurerests beim Erhitzen mit Eisessig oder Acetanhydrid vgl. Holde, Bleyberg, B. 60, 2507. Beim Erhitzen mit Zimtsäuremethylester in Gegenwart von Nickel auf 230—250° entsteht eine geringe Menge Hydrozimtsäuremethylester (Armstrong, Hilditch, Pr. roy. Soc. [A] 96, 329; C. 1920 I, 735). — Verseifung durch Ricinuslipase: Piutti, de'Conno, Ann. Chim. applic. 18, 473; C. 1929 I, 760; durch Pankreaslipase in 0,1 n-Natriumdicarbonat-Lösung: Abderhalden, Weil, Fermentf. 4, 81; C. 1920 III. 643. Nährwert für Ratten: Ozaki, Bio. Z. 189, 236; Pr. Acad. Tokyo 3, 441; C. 1928 I, 541.

[β -Brom-äthyl]-stearat $C_{20}H_{30}O_2$ Br = $CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot CH_2 \cdot CH_2$ Br. Schuppen. F:76° (Abderhalden, Paffrath, Sickel, *Pflügers Arch. Physiol.* 207, 248; *C.* 1925 II, 934).

Stearinsäurepropylester, Propylstearat $C_{21}H_{42}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot [CH_3]_{16} \cdot CO_2 \cdot CH_3 \cdot [CH_2]_{16} \cdot CO_3 \cdot CH_3 \cdot CH_3 \cdot [CH_3]_{16} \cdot CO_3 \cdot CH_3 \cdot$

Stearinsäureisopropylester, Isopropylstearat $C_{31}H_{43}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot CH(CH_3)_2$. Krystalle (aus Isopropylalkohol). F: 28° (Vorländer, Selke, *Ph. Ch.* 129, 452). Optisches Verhalten dünner Schichten auf Glasplatten: V., S.

[β.β'-Dichlor-isopropyl]-stearat, Glycerin-α.α'-dichlorhydrin-stearat, β-Stearo-α-dichlorhydrin $C_{21}H_{40}O_2Cl_2=CH_3\cdot[CH_2]_{16}\cdot CO_2\cdot CH(CH_2Cl)_2$. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch von Stearinsäure und trocknem Glycerin auf dem Wasserbad (Humnicki, Bl. [4] 45, 282). Aus Stearoylchlorid beim Erhitzen mit überschüssigem α-Dichlorhydrin auf dem Wasserbad (Whitten Soc. 1926, 1460; Thomson, Trans. roy. Soc. Canada [3] 20 III, 452; C. 1927 II, 2242) oder mit Epichlorhydrin im Rohr auf 130° (Wh.). — Krystalle (aus Alkohol). F: 39,5° (Wh.; Th.). $n_0^{\text{D}}: 1,4528$ (Wh.). — Geschwindigkeit der Verseifung durch 0,1n-Natriumdicarbonat-Lösung und ihre Beschleunigung durch Rinderpankreaslipase: Abderhalden, Weil, Fermentf. 4, 80; C. 1920 III, 643. Liefert beim Erhitzen mit Natriumpalmitat auf 160—180° (Amberger, Bromig, Z. Unters. Nahr.-Genußm. 42 [1921], 206) oder mit Silberpalmitat auf 135—155° (Wh.) ein Stearodipalmitin, das vermutlich mit α'-Stearo-α.β-dipalmitin identisch ist.

Stearinsäurebutylester, n-Butylstearat $C_{n2}H_{44}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot [CH_2]_3 \cdot CH_3$. B. Durch Erhitzen von Silberstearat und Butyljodid auf 100° (Whithey, Soc. 1926, 1464). — Krystalle (aus Alkohol oder Propylalkohol). F: $27,5^{\circ}$ (Wh.), 28° (Vorländer, Selke, Ph. Ch. 129, 453). Optisches Verhalten dünner Schichten auf Glasplatten: V., S. n_0° : 1,4328; n_0° : 1,4250 (Wh.). — Verwendung als Weichmacher: Th. H. Durrans, Solvents, 4. Aufl.

[London 1938], S. 194, 231, 232; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 244.

Stearinsäureisobutylester, Isobutylstearat $C_{22}H_{44}O_2=CH_3\cdot[CH_2]_{16}\cdot CO_2\cdot CH_2\cdot CH(CH_3)_2$ (E I 173). Ist dimorph; läßt man die Flüssigkeit bei 20° erstarren, so scheidet sich die bei 22° schmelzende Form aus; bei Eiskühlung erhält man die bei 28—29° schmelzende Modifikation (Vorländer, Selke, Ph. Ch. 129, 454). Optisches Verhalten dünner Schichten der bei 22° schmelzenden Form auf Glasplatten: V., S. Kp₁₅: ca. 223°.

Stearinsäure-n-amylester, n-Amylstearat $C_{23}H_{46}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot [CH_2]_4 \cdot CH_3$. B. Durch Erhitzen von Silberstearat und n-Amyljodid auf 100° (Whitex, Soc. 1926, 1464). F: 30° (Wh.). Parachor: Sugden, Soc. 125, 1184. n_n^{o} : 1,4342; n_n^{o} : 1,4266 (Wh.). — Verwendung als Weichmacher: H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 245.

Stearinsäureisoamylester, Isoamylstearat $C_{23}H_{46}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2$ (H 380; E I 173). B. Durch Erhitzen von Silberstearat und Isoamyljodid auf 100° (Whitby, Soc. 1926, 1464). — F: 23° (Wh.). Kp₂: 192° (Grün, B. 54, 297). n_0^{20} : 1,4333: n_0^{20} : 1,4260 (Wh.). — Uber Umesterung beim Erhitzen mit Glycerin ohne Katalysutor auf 270° bis 280° vgl. Grün. — Verseifung durch Ricinuslipase: Piutti, de'Conno, Ann. Chim. applic. 18, 474; C. 1929 I, 760. Verwendung als Weichmacher: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 195, 231, 232.

Stearinsäure-n-octylester, n-Octylstearat $C_{28}H_{52}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot [CH_2]_7 \cdot CH_3$. B. Durch Erhitzen von Silberstearat und n-Octylbromid auf 130—140° (Whitby, Soc. 1926, 1464). — F: 31,8°. n_0^{10} : 1,4373; n_0^{10} : 1,4300.

Stearinsäure-n-hexadecylester, Cetylstearat $C_{34}H_{68}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot [CH_2]_{15} \cdot CH_3$ (H 380). V. Im Walrat (Whitby, Soc. 1926, 1463). — B. Durch Erhitzen von Cetyljodid und Silberstearat auf dem Wasserbad (Wh.). — Tafeln (aus Äther oder Eisessig). Optisches Verhalten dünner Schichten auf Glasplatten: Vorländer, Selkr, Ph. Ch. 129, 455. F: 56,6° (Wh.), 56—57° (V., S.). n_2^{50} : 1,4410 (Wh.). 100 g absol. Äther lösen bei 22° 9,08 g. bei 0° 0,73 g; bei 22° lösen 100 g absol. Alkohol 0,0594 g, 100 g Eisessig 0,0388 g; leicht löslich in Aceton, Schwefelkohlenstoff und Chloroform, sehr leicht in Benzol (Wh.).

Stearinsäure-n-heptadecylester, n-Heptadecylstearat $C_{35}H_{70}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot [CH_2]_{16} \cdot CH_3$ (E I 173). B. Zur Bildung durch Erhitzen von Silberstearat mit Jod vgl. Gascard, A. ch. [9] 15, 374; Heiduschka, Ripper, B. 56, 1738. — Blättchen (aus 80% igem Alkohol). F: 64,6° (H., R.).

Trikosyl-(12)-stearat, Di-n-undecyl-carbinol-stearat $C_{41}H_{82}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot CH([CH_2]_{10} \cdot CH_3)_2$. B. Aus Trikosanol-(12) und Stearoylchlorid auf dem Wasserbad (Grün. Ulbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 29,5—30,5°. Sehr leicht löslich in Äther. Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in kaltem Alkohol.

Cerylstearat $C_{44}H_{88}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot C_{26}H_{53}(?)$. B. Beim Einleiten von Salszäure in ein geschmolzenes Gemisch aus Stearinsäure und Cerylalkohol (E II 1, 470) (GASCARD, A. ch. [9] 15, 374). — Blättchen (aus siedendem Benzol). Leicht löslich in siedendem Benzol, löslich in Aceton, schwer löslich in siedendem Alkohol.

Heptakosyl-(14)-stearat, Di-n-tridecyl-carbinol-stearat $C_{45}H_{90}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_3 \cdot CH([CH_2]_{12} \cdot CH_3)_2$. B. Aus Heptakosanol-(14) und Stearoylchlorid auf dem Wasserbad (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427). — Mikrokrystallinische Aggregate (aus Essigester). F: 39,5—40,5° (korr.). — Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in kaltem Alkohol.

Myricylstearat, Melissylstearat $C_{48}H_{96}O_2$ oder $C_{49}H_{98}O_2$. $CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot C_{30}H_{61}(?)$ oder $CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot C_{31}H_{63}(?)$. B. Beim Einleiten von Chlorwasserstoff in ein geschmolzenes Gemisch aus Stearinsäure und Myricylalkohol (E II 1, 472) (GASCARD, A. ch. [9] 15, 374). — Blättehen (aus Benzol). F: 76°.

Hentriakontyl-(16)-stearat, Di-n-pentadecyl-carbinol-stearat $C_{49}H_{98}O_2 = CH_3 \cdot [CH_2]_{16} \cdot CO_2 \cdot CH([CH_2]_{14} \cdot CH_2)_2$. B. Aus Hentriakontanol-(16) und Stearoylchlorid auf dem Wasserbad (Grün, Ulbrich, Krczil, Z. ang. Ch. 39, 427, 428). — Mikrokrystallinische Aggregate (aus Essigester). F: 50,5—51° (korr.). — Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in Alkohol.

Pentatriakontyl-(18)-stearat, Di-n-heptadecyl-carbinol-stearat $C_{53}H_{106}O_2 = CH_3$: $[CH_2]_{16} \cdot CO_2 \cdot CH([CH_2]_{16} \cdot CH_3)_2$. B. Aus Pentatriakontanol-(18) und Stearoylchlorid auf dem Wasserbad (Grün, Ülerich, Krczil, Z. ang. Ch. 39, 427, 428). — Mikrokrystallinische Aggregate (aus Essigester). F: 56—57° (korr.). — Sehr leicht löslich in Äther, Petroläther, Chloroform und Tetrachlorkohlenstoff, unlöslich in Alkohol.

Äthylenglykoldistearat $C_{38}H_{74}O_4 = CH_3 \cdot [CH_3]_{16} \cdot CO \cdot O \cdot CH_2 \cdot CH_3 \cdot O \cdot CO \cdot [CH_2]_{16} \cdot CH_3 \cdot [CH_3]_{16} \cdot CH_3 \cdot [CH_3]_{16} \cdot CH_3 \cdot [CH_3]_{16} \cdot CH_3 \cdot [CH_3]_{16} \cdot [CH_3$

γ-Jod-propylenglykol-distearat, Glycerin-α-jodhydrin-distearat, Distearo-α-jodhydrin $C_{28}H_{95}O_4I = CH_3 \cdot [CH_2]_{16} \cdot CO \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{16} \cdot CH_2) \cdot CH_4I$. B. Aus 3-Jod-propandiol-(1.2) und Stearoylchlorid bei Gegenwart von Chinolin in trocknem Chloroform (E. Fischer, B. 53, 1627). — Nadeln (aus Ather + Methanol). F: 52—53° (Fi.), 52,5° (Weizmann, Haskelberg, C. r. 189, 105), 52,6° (Amberger, Bromg, Bio. Z. 130, 262). — Leicht löslich in Ather, Aceton, Essigester, Chloroform, Tetrachlorkohlenstoff, Benzol, Petroläther, schwer in kaltem Methanol, Alkohol und Eisessig (Fi.). — Liefert beim Kochen mit Silbernitrit in Alkohol und wenig Wasser α.α'-Distearin (Fi.; A., Br.). Gibt bei der Einw. von Glykokoll-Natrium Glycerin-α-aminoacetat-α'.β-distearat; reagiert analog mit weiteren Aminosauren (W., H.). [GOTTFRIED]

Glycerin -α-stearat, α-Monostearin C₂₁H₄₂O₄ = CH₃·[CH₂]₁₆·CO·O·CH₂·CH(OH)·CH₂·OH (H 380; E I 173). Zur Konstitution vgl. E. Fischer, Bergmann, Bärwind, B. 58, 1588; F., B. 53, 1621; Grün, Wittea, B. 54, 273. — B. Neben α,β-Distearin, α.α'-Distearin, wenig Tristearin und anderen Produkten beim Erhitzen von β-Dibromhydrin mit Kaliumstearat in Dekalin auf 140° (A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 246). Zur Bildung aus γ-Chlor-propylenglykol und Natriumstearat (Guth, Z. Biol. 44, 83) vgl. Heiduschka, Schuster, J. pr. [2] 120, 148; zur Bildung aus γ-Jod-propylenglykol und Natriumstearat vgl. Gr., Limpächer, B. 59, 692; Gr., Collegium 1927, 1. Über die Einheitlichkeit der aus Glycerinhalogenhydrinen und Alkalistearaten dargestellten Monostearine vgl. A. Grün in Hefters-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, S. 240. Entsteht in geringer Menge bei der Spaltung von Tristearin mit konz. Schwefelsäure bei 70° (Gr., W., B. 54, 281). Beim Behandeln von inakt. β-Oxy-γ-stearoyloxy-propylamin-hydrochlorid mit Natriumnitrit und verd. Essigsäure bei 20° (Bergmann, Sabetay, H. 137, 60). Beim Behandeln einer Lösung von Glycerin-α,β-iso-propylidenäther-stearat (Syst. Nr. 2691) in Äther mit konz. Salzsäure (D: 1,19) (F., Be., Bär., B. 58, 1598; Averill, Roche, King, Am. Soc. 51, 869) oder mit 0,25 n-Schwefelsäure bei 40° (A., R., K.).

Krystallisiert aus Alkohol, Äther oder Petroläther je nachdem, ob man rasch oder langsam

Krystallisiert aus Alkohol, Äther oder Petroläther je nachdem, ob man rasch oder langsam krystallisieren läßt, in perimutterartig glänzenden Blättchen oder schwach transparenten Nadeln vom Schmelzpunkt 73,4—73,9° bzw. 81,2° (Grün, Limpächer, B. 59, 693), 74,9° bzw. 80,9° (Amberger, Bromig, Bio. Z. 130, 257), 76—77° bzw. 81—82° (E. Fischer, Bergmann, Bärwind, B. 53, 1599), 81,1° (Averill, Roche, King, Am. Soc. 51, 869), 81—82° (Bergmann, Sabetay, H. 137, 60), 83,5° (Heiduschea, Schuster, J. pr. [2] 120, 148); nach Rewaddean, Watson (J. indian Inst. Sci. [A] 13, 128; C. 1930 II, 3737) schmelzen die beiden Formen bei 74° und 82°. Die Krystalle vom Schmelzpunkt 81—82° schmelzen nach dem Erstarren bei erneutem Erhitzen bereits bei 75—76° (F., Be., Bär.). Der Schmelzpunkt sinkt beim Aufbewahren (Gr., L.; H., Sch.). Leicht löslich in den meisten gebräuchlichen Lösungsmitteln, schwer löslich in kaltem Äther und Petroläther, fast unlöslich in Wasser (F., Be., Bär.; Gr., L.). — Liefert bei der Oxydation mit Permanganat in Eisessig bei 30° Stearoyloxyessigsäure (Grün, Wittka, B. 54, 285). Geschwindigkeit der Spaltung mit Chlorwasserstoff in Benzol + Äther bei 30° und die dabei entstehenden Produkte vgl. Gr., L. Liefert beim Schütteln mit 1% Chlorwasserstoff enthaltendem Aceton bei Gegenwart von Natriumsulfat Glycerin-α.β-isopropylidenäther-stearat (Syst. Nr. 2691) (E. Fischer, Bergmann, Bärwind, B.53, 1599). Über das Gleichgewicht dieser Reaktion vgl. Gr., L., B.59, 700. — Dicarbanil-säureester (Bis-phenylurethan) C₂₅H₂₅O₆N₂. F: 86° bzw. 89° (Gr., W., B. 54, 289).

Über die Darstellung opt.-akt. α-Monostearine vgl. Bergmann, Sabetay, H. 137, 61; Baer, H. O. L. Fischer, Naturwiss. 25 [1937], 588; J. biol. Chem. 128 [1939], 482; A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 264.

Bis- $[\beta$ -oxy- γ -stearoyloxy-propyl]-äther, β - β '-Dioxy- γ - γ '-distearoyloxy-dipropyl-äther $C_{49}H_{22}O_7 = \{CH_3\cdot [CH_2]_{16}\cdot CO\cdot C\cdot CH_2\cdot CH(OH)\cdot CH_2\}_3O$. B. Neben anderen Produkten beim Erhitzen äquimolekularer Mengen γ -Jod-propylenglykol und Kaliumstearat auf 100° (Grün, Limpkoher, B. 59, 692). — Krystallpulver (aus Äther-Petroläther). F: 70,5—71,3°.

Glycerin- $\alpha.\alpha'$ -diacetat- β -stearat, $\alpha.\alpha'$ -Diaceto- β -stearin $C_{28}H_{46}O_6=CH_2\cdot [CH_2]_{16}\cdot CO\cdot O\cdot CH_2\cdot O\cdot CO\cdot CH_3\rangle_8$. B. Durch Erhitzen von $\alpha.\alpha'$ -Diacetin mit Stearoylchlorid in Chloroform bis zum Aufhören der Chlorwasserstoff-Entwicklung (Abderhalden, Weil.,

Fermentf. 4, 84; C. 1920 III, 643). — Krystalle (aus Alkohol + Methanol). F: 41,5°. — Geschwindigkeit der Verseifung durch 0,1 n-Natriumdicarbonat-Lösung bei 38° und Beschleunigung dieser Reaktion durch Pankreaslipase: A., W.

Glycerin- $\alpha.\beta$ -dilaurat- α' -stearat, $\alpha.\beta$ -Dilauro- α' -stearin, α' -Stearo - $\alpha.\beta$ -dilaurin $C_{45}H_{66}O_6=CH_3\cdot [CH_2]_{16}\cdot CO\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{10}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{10}\cdot CH_3$ (H 380). B. Bei der Einw. von 2 Mol Lauroylchlorid auf α -Monostearin in Chloroform + Chinolin unter Eiskühlung (AVERILL, ROCHE, KING, Am. Soc. 51, 870). — F: 45,401).

Glycerin- α . α' -dilaurat- β -stearat, α . α' -Dilauro- β -stearin, β -Stearo- α . α' -dilaurin $C_{45}H_{36}O_6=CH_3\cdot [CH_2]_{16}\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot [CH_2]_{10}\cdot CH_3)_3$ (H 381). B. Zur Bildung aus α . α' -Dilaurin und Stearoylchlorid vgl. Averill, Roche, King, Am. Soc. 51, 870. — Krystalle. F: 50,90 1).

Glycerin- $\alpha.\beta$ -dipalmitat- α' -stearat, $\alpha.\beta$ -Dipalmito- α' -stearin, α' -Stearo- $\alpha.\beta$ -dipalmitin $C_{58}H_{108}O_6 = CH_3 \cdot [CH_2]_{16} \cdot CO \cdot C\cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{14} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3 \cdot CH_3 \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3 \cdot CH_3$

- Glycerin-α.α'-dipalmitat-β-stearat, α.α'-Dipalmito-β-stearin, β-Stearo-α.α'-dipalmitin C₅₃H₁₀₂O₆ = CH₃·[CH₂]₁₆·CO·O·CH(CH₂·O·CO·[CH₂]₁₄·CH₃)₂ (H 381).

 a) Präparat von Amberger, Bromig und Bömer, Merten. V. Im Gänsefett (Amberger, Bromig, P. C. H. 62, 547; Z. Unters. Nahr.-Genuβm. 42, 208; Bio. Z. 130, 254, 280; Bömer, Merten, Z. Unters. Nahr.-Genuβm. 43, 119, 120; C. 1922 III, 277). B. Bei der Einw. von Stearoylchlorid au α.α'-Dipalmitin bei Gegenwart von Chinolin in kalter (Chloreform (Ax. Br. 200, 250). Chloroform (Am., Br., Bio. Z. 130, 259). — Krystalle (aus Ather). F: 59,1° (Am., Br., Bio. Z. 130, 260), 57,5° (Am., Br., Z. Unters. Nahr.-Genuβm. 42, 208), 57,6° (Bö., M.) *). 100 cm³ Ather lösen bei 15° 1,32 g (Am., Br., P. C. H. 62, 547).
- b) Prāparat von Averill, Roche, King. B. Bei der Einw. von Stearoylchlorid auf α.α'-Dipalmitin bei Gegenwart von Chinolin in Chloroform bei 0° (Ανεκιλλ, Roche, King, Am. Soc. 51, 870). — F: 64,8°.

Natürliche Glycerin-dipalmitat-stearate, Dipalmitostearine $C_{53}H_{103}O_6=C_{17}H_{35}$. $CO \cdot O \cdot C_3H_5(O \cdot CO \cdot C_{15}H_{31})_2$ (H 381; E I 174).

- a) Praparat aus Cocosfett. Wurde nicht rein erhalten. Krystalle (aus Aceton).
 F: 55,0° (Bömer, Baumann, Z. Unters. Nahr.-Genuβm. 40, 146, 150; C. 1921 I, 219).
- b) Präparate aus Gänsefett. Vgl. Vorkommen von α.β-Dipalmito-α'-stearin und $\alpha.\alpha'$ -Dipalmito- β -stearin (s. o.). Das Präparat von Klimont, Meisels (M. 30, 341) ist nicht einheitlich gewesen (Amberger, Bromig, Z. Unters. Nahr.-Genuβm. 42 [1921], 208).
- c) Praparat aus sibirischer Butter. F: 58,70 (korr.) (AISENBERG, Maslob. žir. Delo 1926, Nr. 10/11, S. 66; C. 1927 II, 2021).
- d) Praparat aus Schweinefett. F: 58,2° (Amberger, Wiesehahn, Z. Unters. Nahr.-Genußm. 46, 290, 294; C. 1924 I, 1879).
- e) Praparat aus Emufett. F: 61,50 (Morrison, J. Pr. Soc. N. S. Wales 60, 117; C. 1928 I, 2510). D_{ii}^{15} : 0,9912. n_{ii}^{46} : 1,4990.

Glycerin - bis - $[\vartheta.\iota$ - dibrom - palmitat] - stearat, Stearo - dizoomarin - tetrabromid $\begin{array}{l} \mathbf{C_{53}H_{98}O_{9}Br_{4}} = \mathbf{CH_{3}} \cdot [\mathbf{CH_{3}I_{6}} \cdot \mathbf{CO} \cdot \mathbf{O} \cdot \mathbf{C_{3}H_{5}(O} \cdot \mathbf{CO} \cdot [\mathbf{CH_{3}I_{7}} \cdot \mathbf{CHBr} \cdot \mathbf{CHBr} \cdot [\mathbf{CH_{2}I_{5}} \cdot \mathbf{CH_{3}I_{5}}]_{5} \cdot \mathbf{CH_{3}I_{5}}. \quad B. \quad \text{Bei} \\ \text{der Bromierung von Walfischtran (Suzuki, \textit{Pr. Acad. Tokyo} 5, 266; \textit{C. 1929 II, 2841}).} \quad -E:1^{\circ}. \end{array}$

Glycerin- α , β -dimargarat- α' -stearst, α , β -Dimargaro- α' -stearin, α' -Stearo- α , β -dimargarin $C_{55}H_{100}O_{5} = CH_{3} \cdot [CH_{2}]_{16} \cdot CO \cdot C \cdot CH_{2} \cdot CH(O \cdot CO \cdot [CH_{2}]_{15} \cdot CH_{3}) \cdot CH_{2} \cdot O \cdot CO \cdot [CH_{2}]_{15} \cdot CH_{3} \cdot CH_{3} \cdot CH_{3} \cdot CH_{3} \cdot CH_{3} \cdot CO \cdot CO \cdot [CH_{2}]_{15} \cdot CH_{3} \cdot CH_{3} \cdot CH_{3} \cdot CH_{3} \cdot CO \cdot CO \cdot [CH_{2}]_{15} \cdot CH_{3} \cdot CH_{3} \cdot CH_{3} \cdot CH_{3} \cdot CO \cdot CO \cdot [CH_{2}]_{15} \cdot CH_{3} \cdot CH_$

Glycerin- $\alpha.\alpha'$ -dimargarat- β -stearat, $\alpha.\alpha'$ -Dimargaro- β -stearin, β -Stearo- $\alpha.\alpha'$ -dimargarin $C_{55}H_{104}O_{6}=CH_{3}\cdot [CH_{2}]_{16}\cdot CO\cdot O\cdot CH(CH_{2}\cdot O\cdot CO\cdot [CH_{2}]_{15}\cdot CH_{3})_{2}\cdot B$. Beim Erhitzen von margarinsaurem Silber mit β -Stearo- α -dichlorhydrin auf 1550 (Thomson, Trans.

¹⁾ Vgl. S. 328 Anm. 1.

³⁾ Nach A. GRÜN in HEFTER-SCHÖNFELD, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 257 schmelzen indessen die symmetrischen zweisäurigen Triglyceride der aliphatischen Reihe ausnahmslos höher als die unsymmetrischen Isomeren.

roy. Soc. Canada [3] 20 III, 453; C. 1927 II, 2242). — Nadeln (aus Chloroform). F: 63,1°. $n_{\rm p}^{\rm m}$: 1,4450; $n_{\rm p}^{\rm m}$: 1,4430; $n_{\rm p}^{\rm m}$: 1,4410. 100 cm³ Alkohol lösen bei 15° 0,0095 g; 100 cm³ Äther lösen bei 0° 0,0475 g, bei 15° 0,4270 g.

Glycerin-α.β-distearat, α.β-Distearin, β-Distearin C₃₉H₇₆O₅ = CH₃·[CH₂]₁₆·CO·O·CH₂·CH(CH₂·OH)·O·CO·[CH₂]₁₆·CH₃ (H 381; E I 174). Zur Frage der Einheitlichkeit des von Guth (Z. Biol. 44, 86) und Renshaw (Am. Soc. 36, 537) aus β-Dibromhydrin und Natriumstearat sowie eines nach Grün, Theimer (B. 40, 1797) aus Glycerin-α-chlorhydrin-β.ά-distearat und Silbernitrit dargestellten α.β-Distearins vgl. Gr., Wittka, B. 54, 280; Fairbourne, Soc. 1930, 373, 382; A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 233, 245. Über Versuche zum Konstitutionsbeweis durch Oxydation mit Permanganat in Eisessig vgl. Gr., W., B. 54, 276, 278.—B. Neben gleichen Mengen α.α'-Distearin, geringeren Mengen α-Monostearin, wenig Tristearin und anderen Produkten beim Erhitzen von β-Dibromhydrin mit Kaliumstearat in Dekalin auf 140° (A. Grün in Hefter-Schönfeld, S. 246; vgl. a. Gr., Collegium 1927, 3).— F: 69° (A. Grün in Hefter-Schönfeld, S. 251). Ist bei 22.5° in Alkohol 5mal, in Äther 7¹/₂mal leichter löslich als α.α'-Distearin (Gr.).—Liefert beim Erwärmen mit Thionylchlorid auf dem Wasserbad Glycerin-α-chlorhydrin-β.α'-distearat und geringere Mengen α.α'-Distearin (Heiduschka, Schuster, J. pr. [2] 120, 150). Bei der Einw. von Phosphorpentoxyd auf geschmolzenes α.β-Distearin, Versetzen des Reaktionsprodukts mit in Äther suspendiertem Wasser und nachfolgendem Erhitzen auf 85° entstehen α.β-Distearoyl-glycerin-α'-phosphorsäure und ..sek. Distearinphosphorsäureester" (S. 360) (Gr., Limpächer, B. 60, 268). Liefert mit Chlorsulfonsäure in Petroläther α.β-Distearoyl-glycerin-α'-schwefelsäure und geringe Mengen α.α'-Distearoyl-glycerin-β-schwefelsäure (Gr., L., B. 60, 259).

Glycerin-α.α'-distearat, α.α'-Distearin, α-Distearin C₃₉H₇₆O₅ = (CH₃·[CH_{2]]6}·CO·CH₂)₂CH·OH (H 381; E I 174). Zur Frage der Einheitlichkeit des von Guth (Z. Biol. 44, 85) aus α-Dichlorhydrin und Natriumstearat dargestellten α.α'-Distearins vgl. Fairbourne, Noc. 1930, 373, 382; Λ. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 246. Über Versuche zum Konstitutionsbeweis durch Oxydation mit Permanganat in Eisessig vgl. Gr., Wittka, B. 54, 276, 278. — B. Neben gleichen Mengen α.β-Distearin, geringeren Mengen α-Monostearin, wenig Tristearin und anderen Produkten beim Erhitzen von β-Dibromhydrin mit Kaliumstearat in Dekalin auf 140° (A. Grün in Hefter-Schönfeld; vgl. a. Gr., Collegium 1927, 3). Zur Bildung aus α-Dichlorhydrin und Natriumstearat (Guth, Z. Biol. 44, 85; Kreis, Hafner, B. 36, 2767) vgl. Heiduschka, Schuster, J. pr. [2] 120, 149. Beim Kochen von Glycerin-α-jod-hydrin-distearat mit Silbernitrit in verd. Alkohol (E. Fischer, B. 53, 1627; Averill, Roche, King, Am. Soc. 51, 870). In geringer Menge beim Erwärmen von α.β-Distearin mit Thionyl-chlorid auf dem Wasserbad (H., Sch., J. pr. [2] 120, 150). — Nadeln oder Plättchen (aus Äther). Röntgenogramm: Becker, Jancke, Ph. Ch. 99, 271. F: 78,5—79° (korr.) (F.), 79,1° (A.. R., K.), 79,5° (Amberger, Bromig, Bio. Z. 130, 262). Der Schmelzpunkt sinkt beim Aufbewahren (H., Sch.; Gr., W.). Leicht löslich in den gebräuchlichen organischen Lösungsmitteln in der Wärner (F.). Ist bei 22,5° in Alkohol 5mal, in Äther 7¹/smal schwerer löslich als α.β-Distearin (A. Grün in Hefter-Schönfeld, S. 250). — Liefert mit Chlorsulfonsaure in Petroläther α.α'-Distearoyl-glycerin-β-schwefelsäure und geringe Mengen α.β-Distearoyl-glycerin-α'-schwefelsäure und geringe Mengen α.β-Distearoyl-glycerin-α'-schwefelsäure und geringe Mengen α.β-Distearoyl-glycerin-α'-schwefelsäure und geringe Mengen α.β-Distearoyl-glycerin-α'-schwefelsäure

Ein α.α'-Distearin (?) vom Schmelzpunkt 56° wurde einmal beim Erhitzen von Tristearin mit konz. Schwefelsäure auf 70° als Nebenprodukt erhalten (Grün, Wittka, B. 54, 283; vgl. Gr., B. 38 [1905], 2286; Berthelot, A. ch. [3] 41 [1854], 227). — Blättchen; geht beim Aufbewahren in eine bei 66° schmelzende Modifikation über; sehr leicht löslich in allen Lösungsmitteln (Gr., W.).

Glycerin- α -acetat- β . α' -distearat, α -Aceto- β . α' -distearin $C_{41}H_{78}O_6=CH_3\cdot [CH_3]_{16}\cdot CO\cdot O\cdot CH_3\cdot CH(O\cdot CO\cdot [CH_3]_{16}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot CH_3$ (H 382). B. Bei der Einw. von 2 Mol Stearoylchlorid auf α -Monoacetin in Chloroform + Chinolin unter Eiskühlung (E. FISCHER, B. 53, 1629; AVERILL, ROCHE, KING, Am. Soc. 51, 871). — Nadeln (aus Aceton). F: 56,6° (A., R., K.), 59° 1) (F.). In den gebräuchlichen organischen Lösungsmitteln in der Wärme leicht, in der Kälte schwer löslich (F.). 100 g Aceton lösen bei 21° 0,341 g (F., B. 53, 1623).

Glycerin- β -acetat- α . α' -distearat, β -Aceto- α . α' -distearin $C_{41}H_{78}O_6 = CH_3 \cdot CO \cdot O \cdot CH(CH_2 \cdot O \cdot CO \cdot [CH_2]_{16} \cdot CH_3)_2$ (H 382). B. Bei der Einw. von Acetylchlorid auf α . α' -Distearin in Chloroform + Pyridin bei 30° (E. FISCHER, B. 53, 1628) oder in Chloroform + Chinolin unter Eiskühlung (Averill, Roche, King, Am. Soc. 51, 870). — Nadeln (aus Alkohol oder Ather). F: 58° (Abderhalden, Weil, Fermentf. 4, 84; C. 1920 III, 643), 62,7° (Av., R., K.), 64° (Pr.). In den gebräuchlichen organischen Lösungsmitteln in der Wärme leicht, in der

¹⁾ Vgl. S, 328 Anm. 1.

Kälte schwer löslich (F.). 100 g Aceton lösen bei 21° 0.201 g (F., B. 53, 1623). — Geschwindigkeit der Verseifung durch 0,1 n-Natriumdicarbonat-Lösung bei 38° und Beschleunigung dieser Reaktion durch Paukreaslipase: ABD., W.

Glycerin- α -laurat- $\beta.\alpha'$ -distearat, α -Lauro- $\beta.\alpha'$ -distearin $C_{51}H_{98}O_6 = CH_3 \cdot [CH_2]_{16} \cdot CO \cdot CO \cdot [CH_2]_{10} \cdot CH_3 \cdot CH_3 \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{10} \cdot CH_3 \cdot (H382)$. B. Bei der Einw. von 2 Mol Stearoylchlorid auf α -Monolaurin in Chloroform + Chinolin unter Kühlung (E. Fischer. Bergmann, Bärwind, B. 53, 1603; Averill, Roche, King, Am, Soc. 51, 871). — Nadeln (aus Äther + Alkohol). F: 49—50° (F., B., B.), 50,9° \(^1\)) (A., R., K.). Schwer löslich in Alkohol, leicht in den gebräuchlichen organischen Lösungsmitteln.

Glycerin - α - myristat - β . α' - distearat, α - Myristo - β . α' - distearin $C_{53}H_{102}O_6 = CH_3$. [CH₂]₁₂·CO·O·C₃H₅(O·CO·[CH₂]₁₆·CH₃)₂ (H 382). V. Im Butterfett (DE'CONNO, SCOPINARO, Ann. Chim. applic. 19, 62; C. 1929 II, 1605). — Krystalle (aus Aceton). F: 57,5° (DE'C., Sc.). 59° 1) (A. Grün in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte. Bd. I [Wien 1936], S. 258).

Glycerin - α - palmitat - β . α' - distearat, α - Palmito - β . α' - distearin $C_{55}H_{106}O_6 = CH_3$: $[CH_2]_{16} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot [CH_2]_{16} \cdot CH_3) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{14} \cdot CH_3$ (H 382; E I 174). Diese Konstitution kommt der H 2, 383; E I 2, 174 als β -Palmito- α . α' -distearin beschriebenen Verbindung zu: die H 2, 382; E I 2, 174 als α -Palmito- β . α' -distearin beschriebene Verbindung ist als β -Palmito- α . α' -distearin aufzufassen (Amberger, Bromig, Bio. Z. 130, 255). — B. Bei der Einw. von Stearoylchlorid auf α -Monopalmitin in Chloroform + Chinolin unter Kühlung (Am., Br., Bio. Z. 130, 261). — Krystalle (aus.Äther). F: 63, 201) (Am., Br.). n_1^{β} : 1,5184—1,5186; n_1^{β} : 1,4423—1,4424 (Muschter, Visser, Chem. Weekb. 23, 250; C. 1926 II, 300). Mikroskopische Unterscheidung von β -Palmito- α . α' -distearin: M., V.

Ein Palmitodistearin, das vermutlich zum größten Teil aus α-Palmito-β.α'-distearin bestand, erhielt Whitby (Soc. 1926, 1461) beim Erhitzen von β-Palmito-α-dichlorhydrin mit 2 Mol Silberstearat auf 135—155° in An- oder Abwesenheit von Phenetol. — Gelbliche Nadeln (aus Äther). F: 64,8°. n₀¹⁰: 1,4467. Unlöslich in kaltem Alkohol.

Präparate, in denen vermutlich α -Palmito- β . α' -distearin vorgelegen hat, wurden isoliert: aus gehärtetem Kakaofett (F: 63.5°) (Amberger, Bauch, Z. Unters. Nahr.-Genußm. 48, 388; C. 1925 I, 1329), aus gehärtetem spanischen Olivenöl (F: 64.0°) (Täufel. Sarria. An. Soc. españ. 24, 40; C. 1926 I, 3105), aus Gänsefett (F: 63.5°) (Bömer, Merten, Z. Unters. Nahr.-Genußm. 43, 119; C. 1922 III, 277) und aus sibirischer Butter (F: 63.4°) (Aisenberg. Maslob. žir. Delo 1926, Nr. 10/11, S. 66; C. 1927 II, 2021).

Glycerin - β -palmitat - α . α' - distearat, β - Palmito - α . α' - distearin $C_{55}H_{106}O_6=CH_3\cdot [CH_2]_{14}\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot [CH_2]_{16}\cdot CH_3)_2$ (H 383; E I 174). Diese Konstitution kommt der H 2, 382; E I 2, 174 als α -Palmito - β . α' - distearin beschriebenen Verbindung zu; die H 2, 383; E I 2, 174 als β -Palmito - β . α' - distearin beschriebene Verbindung ist als α -Palmito - β . α' - distearin aufzufassen (Amberger, Bromig, Bio. Z. 130, 255). — B. Bei der Einw. von Palmitoylchlorid auf α . α' - Distearin in Chloroform + Chinolin unter Kühlung (Am., Br.). Bio. Z. 130, 263). — Krystalle (aus Äther oder Petroläther). F: 67,9°1) (Am., Br.). $n_{\rm D}^{\rm fr}$: 1,5180—1,5182; $n_{\rm D}^{\rm o}$: 1,4424 (Muschter, Visser, Chem. Weekb. 23, 250; C. 1926 II, 300). Mikroskopische Unterscheidung von α -Palmito- β . α' - distearin: M., V.

Präparate, in denen vermutlich β -Palmito- $\alpha.\alpha'$ -distearin vorgelegen hat, wurden isoliert: aus gehärtetem Kakaofett (F: 68,2°) (Amberger, Bauch, Z. Unters. Nahr.-Genußm. 48, 384, 387; C. 1925 I, 1329), aus gehärtetem Palmöl (F: 68,2°) (Brash, J. Soc. chem. Ind. 45, 439 T; C. 1927 I, 821) und aus Schweinefett (F: 68,0°) (Amberger, Wiesehahn, Z. Unters. Nahr.-Genußm. 46, 290, 294; C. 1924 I, 1879).

Glycerin- α -margarat- β , α' -distearat, α -Margaro- β , α' -distearin $C_{56}H_{108}O_6=CH_3$ · $[CH_2]_{16}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{16}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{16}\cdot CH_3$. B. Aus α -Monomargarin, Stearoylchlorid und Pyridin in Chloroform bei Zimmertemperatur (Thomson, Trans. roy. Soc. Canada [3] 20 III, 455; C. 1927 II, 2242). — Nadeln (aus Chloroform). F: 63,8°. n_0^{6} : 1,4445; n_0^{70} : 1,4426; n_0^{70} : 1,4407. 100 cm³ Alkohol lösen bei 15° 0,0212 g; 100 cm³ Ather lösen bei 0° 0,0345 g, bei 15° 0,2980 g.

Glycerin- β -margarat- $\alpha.\alpha$ -distearat, β -Margaro- $\alpha.\alpha$ -distearin $C_{56}H_{108}O_6=CH_3$: $[CH_2]_{15}\cdot CO\cdot O\cdot CH(CH_2\cdot O\cdot CO\cdot [CH_2]_{16}\cdot CH_3)_2$. B. Beim Erhitzen von stearinsaurem Blei mit β -Margaro- α -dichlorhydrin auf 145° (Thomson, Trans. roy. Soc. Canada [3] 20 III, 454; C. 1927 II, 2242). — Nadeln (aus Chloroform). F: 66,4°. n_1^m : 1,4425; n_1^m : 1,4405. 100 cm³ Alkohol lösen bei 15° 0,0090 g; 100 cm³ Ather lösen bei 0° 0,0240 g, bei 15° 0,1855 g.

Glycerintristearat, Tristearin, Stearin $C_{57}H_{110}O_6=CH_3\cdot [CH_2]_{16}\cdot CO\cdot C\cdot CH(CH_2\cdot C\cdot CO\cdot [CH_2]_{16}\cdot CH_3)_2$ (H 383; E I 174). V. In sehr geringer Menge im ungehärteten. in

¹⁾ Vgl. S. 328 Anm. 1.

beträchtlicher Menge im gehärteten Kakaofett (Amberger, Bauch, Z. Unters. Nahr.-Genußm. 48, 384, 386; C. 1925 I, 1329). In gehärtetem spanischen Olivenöl (Täufel, Sarria, An. Soc. españ. 24, 39; C. 1926 I, 3105). Im gehärteten Gänsefett (Amberger, Bromig, Z. Unters. Nahr.-Genußm. 42 [1921], 216). Im gehärteten Schweinefett (Amberger, Wiesehahn, Z. Unters. Nahr.-Genußm. 46, 283, 289; C. 1924 I, 1879). Zum Vorkommen im Hammeltalg vgl. Collin, Hilditch, Lea, J. Soc. chem. Ind. 48, 48 T; C. 1929 I, 2000; zum Vorkommen im Rinderfett vgl. Dekker, Pharm. Weekb. 59, 313; C. 1922 I, 1148. — B. Aus Glycerin und Stearinsäure in Gegenwart von aus Naphthalin, Ölsäure und konz. Schwefelsäure in Petroläther dargestelltem Twitchell-Reagens bei 100° (Ozaki, Bio- Z. 177, 159). In geringer Menge neben $\alpha.\beta$ -Distearin, $\alpha.\alpha'$ -Distearin, $\alpha.M$ onostearin und anderen Produkten beim Erhitzen von β -Dibromhydrin mit Kaliumstearat in Dekalin auf 140° (A. Grün IHffer. Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 246).

Existiert nach Joglekar, Watson (J. Soc. chem. Ind. 47, 367 T; C. 1929 I, 988) in zwei Modifikationen, nach Loskit (Ph. Ch. 134, 137) in drei monotrop-polymorphen Formen. Jefremow (Izv. ural. polytech. Inst. 6, 161; C. 1928 II, 1967) und Clarkson, Malkin (Soc. 1934, 669) schließen auf Grund thermischer und röntgenographischer Untersuchungen ebenfalls auf das Vorliegen von drei Modifikationen 1). Schmelzpunkte der drei Modifikationen s. in der Tabelle. Einfluß der Dicke einer Krystall-Lamelle auf den Schmelzpunkt: Meissner, Z. anorg. Ch. 110, 181. E: 71,3° (Joklekar, Watson). Erstarrungskurve eines käuflichen

Schmelzpunkte von Tristearin:

	Jefremow	Loskit	Joglekar, Watson,	CLARKSON, MALKIN
Stabile Form	69,3°	71,8°	71,8°	71,5°
	55,2°	65,4°	—	65,0°
	53,2°	55,0°	55,0°	54,5°

Präparats: Nicolet, J. ind. Eng. Chem. 12, 742; C. 1920 IV, 626. Beim Impfen von geschmolzenem Tristearin mit der stabilen Form oberhalb 60° scheidet sich stets die stabile Form aus; impft man unterhalb 56°, so erhält man die niedrigerschmelzende instabile Form (N.). Krystallisationsgeschwindigkeit und spontanes Krsytallisationsvermögen der stabilen Form: Loskit, Ph. Ch. 134, 135. D. 0,8606 (Schoorl bei Tromp, R. 41, 285, 298), 0,8632 (Joglekar, Watson, J. Soc. chem. Ind. 47, 367 T; C. 1929 I, 988). Viscosität bei 75°: 0,1850, bei 80°: 0,1621, bei 85°: 0,1431 g/cm sec (J., W.). Oberflächenspannung bei 80°: 28,1 dyn/cm (J., W.). Parachor: Sugden, Soc. 125, 1184; Mumford, Phillips, Soc. 1929, 2119. n. 1,4395 (J., W.).

Löslichkeit in Benzol, Äther, Chloroform, Schwefelkohlenstoff und Alkohol bei verschiedenen Temperaturen: Loskit, Ph. Ch. 134, 141, 146, 148, 150, 152. Thermische Analyse des Systems mit Tripalmitin: Jefremow, Izv. ural. polytech. Inst. 6, 160; C. 1928 II, 1967; Joglekar, Watson, J. Soc. chem. Ind. 47, 367 T; C. 1929 I, 988. Ebullioskopisches Verhalten in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1914], 1166; C. 1925 I, 1557. Adsorbierende Wirkung für Lipase: Willstätter, Waldschmidt-Lettz, Memmen, H. 125, 120; Wi., Wa.-L., H. 125, 184; Wi., Bamann, H. 173, 31. Randwinkel gegen Wasser: Nietz, J. phys. Chem. 32, 262. Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur molekularer Schichten vgl. Labrouste, Ann. Physique [9] 14, 204; Woog, C. r. 173, 388; Adam, Pr. roy. Soc. [A] 101, 461, 523; C. 1923 I, 271, 272. Einfluß von ungesättigtem Mineralöl oder Ölsäure auf die Struktur dünner Stearin-Schichten auf Wasser: W., C. r. 177, 1108. Einfluß von Tristearin auf die Struktur monomolekularer Schichten von Myristinsäure auf verd. Salzsäure: A., Jessop, Pr. roy. Soc. [A] 120, 480; C. 1929 I, 189.

Oxydation von Tristearin in Petroläther durch Kaliumdichromat und Schwefelsäure: BLIX, Skand. Arch. Physiol. 48 [1926], 289. Liefert bei der Spaltung mit konz. Schwefelsäure bei 70° (Grün, Corelli, Z. ang. Ch. 25, 668) außer Distearin auch Monostearin (Grün, Wittka, B. 54, 281). Gibt beim Behandeln mit überschüssigem Hydrazinhydrat bei Zimmertemperatur (FALCIOLA, G. 50 I, 163) oder beim Kochen mit methylalkoholischer Hydrazin-Lösung (Van Alphen, R. 44, 1067) Stearoylhydrazin. Geschwindigkeit der Verseifung durch Natronlauge bei 90°: McBain, Howes, Thorburn, J. phys. Chem. 31, 139; McB., Humphreys, Kawarami, Soc. 1929, 2191; vgl. a. T. P. Hilditch in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 320. Tristearin liefert beim Erhitzen

¹⁾ Vgl. 8. 328 Anm. 2.

mit absol. Athylalkohol oder Isoamylalkohol auf 200° bzw. 270° Glycerin und Stearinsäureäthylester bzw. Stearinsäureisoamylester (Gr., B. 54, 294). Zur Geschwindigkeit der Umesterung und über den stufenweisen Verlauf derselben vgl. Gr. Wird beim Kochen oder Erhitzen mit Acetanhydrid im Rohr auf ca. 200° nicht verändert (Holde, Bleyberg, B. 60, 2504). Beim Kochen von Tristearin mit Eisessig oder Acetanhydrid und wenig konz. Schwefelsäure tritt nur geringe, beim Erhitzen mit Eisessig im Rohr auf ca. 200° stärkere Umesterung ein (H., Bl.). Über die Umesterung mit Alkoholen und Säuren vgl. Normann, Ch. Umechau Fette 30 [1923], 250; Gr., Z. ang. Ch. 38, 827; Collegium 1927, 6; D. Holde, Kohlenwasserstofföle und Fette [Berlin 1933], S. 648; A. Gr. in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 282.

Tristearin wird von Aspergillus flavus oxydiert (Tausson, Bio. Z. 193, 88). Nährwert für Ratten: Ozaki, Bio. Z. 177, 161; 189, 234; Pr. Acad. Tokyo 2, 14; 3, 439; C. 1926 II, 2192; 1928 I, 541. — Nephelometrische Bestimmung geringer Mengen: Bing, Heckscher, Bio. Z. 158, 398; vgl. Blix, Bio. Z. 167, 313; He., Bio. Z. 181, 462, 483.

Glycerin- $\alpha.\beta$ -distearat- α' -schwefelsäure, $\alpha.\beta$ -Distearoyl-glycerin- α' -schwefelsäure, $\alpha.\beta$ -Distearin-schwefelsäure $C_{39}H_{76}O_{8}S=CH_{3}\cdot[CH_{2}]_{16}\cdot CO\cdot C\cdot CH_{2}\cdot CH(O\cdot CO\cdot [CH_{2}]_{16}\cdot CH_{3})\cdot CH_{2}\cdot O\cdot SO_{2}\cdot OH.$

- a) Rechtsdrehende Form. B. Aus der inaktiven Form durch Spaltung mit Strychnin (Grün, Limpächer, B. 60, 261). $KC_{39}H_{76}O_8S$. B. Aus dem Strychninsalz in Aceton durch Behandlung mit alkoh. Kalilauge (G., L.). Die Lösungen in Benzol und anderen Lösungsmitteln drehen bei 35—40° und darüber die Ebene des polarisierten Lichtes kaum merklich eder überhaupt nicht, bei niederen Temperaturen nehmen die Lösungen die Eigenschaften kolloider Lösungen an und zeigen beträchtliche Drehungswerte. Der Vorgang ist umkehrbar. [α] ls : +4160° (Benzol; c = 0,3), ca. +10000° (Benzol; c = 0,05—0,1). Einfluß von Temperatur und Zeit auf das Drehungsvermögen: G., L. Liefert beim Kochen mit l ₄— l ₈ Mol Schwefelsäure in äther. Suspension $\alpha.\beta$ -Distearin und wenig $\alpha.\alpha'$ -Distearin. Strychninsalz $C_{21}H_{22}O_2N_2 + C_{22}H_{76}O_8S$. In 100 g Benzol lösen sich bei 10° 13,90 g. Die Suspension in Äther liefert beim Kochen mit Schwefelsäure $\alpha.\beta$ -Distearin und wenig $\alpha.\alpha'$ -Distearin. Die Lösung in Aceton liefert mit alkoh. Kalilauge das Kaliumsalz (s. o.) und geringe Mengen des Kaliumsalzes der $\alpha.\alpha'$ -Distearin-sohwefelsäure.
- b) Linksdrehende Form. B. Aus der inaktiven Form durch Spaltung mit Strychnin (Grün, Limpächer, B. 60, 261). $KC_{39}H_{75}O_8S$. Verhält sich in bezug auf Drehungsvermögen und Spaltung mit Schwefelsäure wie die rechtsdrehende Form. Strychninsalz $C_{21}H_{22}O_2N_2 + C_{39}H_{76}O_8S$. In 100 g Benzol lösen sich bei 10° 1,50 g. Verhält sich gegen Schwefelsäure und gegen Kalilauge in Alkohol + Aceton wie das Strychninsalz der rechtsdrehenden Form.
- c) Inaktive Form (E I 175). B. Zur Bildung aus α.β-Distearin und Chlorsulfonsäure vgl. Grün, Limpächer, B. 60, 259. Läßt sich über das Strychninsalz in die optischen Antipoden spalten. Enthält ca. 10% α.α'. Distearin-schwefelsäure. KC₃₉H₇₅O₈S. Krystallmehl (aus Benzol + Aceton). Zersetzt sich je nach der Art des Erhitzens mehr oder weniger schnell. Gibt mit warmem Wasser eine neutrale, kolloide Lösung. Leicht löslich in heißem, schwer in kaltem Benzol, Xylol, Dekalin, Chloroform und Tetrachlorkohlenstoff, sehr schwer in siedendem Methanol, Alkohol und Aceton. Strychninsalz C₂₁H₂₂O₂N₂ + C₃₉H₇₆O₈S. Krystalle von unscharfem Schmelzpunkt (aus Benzol). Sehr leicht löslich in heißem, sehr schwer in kaltem Methanol, Alkohol und Aceton, leicht in Benzol, Xylol, Dekalin, Chloroform und Tetrachlorkohlenstoff, schwer in Äther, unlöslich in Petroläther und Wasser. Die Lösungen zersetzen sich beim Aufbewahren unter Abscheidung von Strychninsulfat. [α]₁^{11,5}: —10,5° (Chloroform; c = 3). Lagert sich in Lösung je nach Temperatur und Lösungsmittel mehr oder weniger rasch in das Strychninsalz der α.α'-Distearinschwefelsäure um. Die Lösung des Strychninsalzes in Aceton liefert mit alkoh. Kalilauge das Kaliumsalz (s. o.) und geringe Mengen des Kaliumsalzes der α.α'-Distearin-schwefelsäure. Brucinsalz C₃₃H₃₆O₄N₂ + C₃₉H₇₆O₈S. Krystalle (aus Benzol). Sintert bei 64—65°, Meniscusbildung bei 80°. Leicht löslich in heißem Ather, Petroläther, Aceton und Alkoholen. [α]_D: ca. —9,0° (Chloroform; c = 3).

Glycerin- α . α' -distearat- β -schwefelsäure, α . α' -Distearoyl-glycerin- β -schwefelsäure, α . α' -Distearin-schwefelsäure $C_{24}H_{76}O_8S = (CH_3\cdot [CH_4]_{14}\cdot CO\cdot O\cdot CH_3)_2CH\cdot O\cdot SO_3\cdot OH$. B. Das Strychninsalz entsteht bei der Einw. von Chlorsulfonsäure auf α . α' -Distearin in Petroläther und Neutralisieren des erhaltenen Schwefelsäureesters mit einer Lösung von Strychnin in Chloroform (Grün, Limpächer, B. 60, 265). Die Salze bilden sich in geringer Menge durch Umlagerung aus den entsprechenden Salzen der α . β -Distearin-schwefelsäure in Lösungen (G., L., B. 60, 260). — Strychninsalz $C_{21}H_{22}O_2N_3 + C_{23}H_{76}O_8S.$ [α] $_{0}^{B^3}$: —10,20 bis —10,70 Chloroform; c=3). Schwerer löslich als das Strychninsalz der α . β -Distearin-schwefelsäure, unlöslich in siedendem Äther. Liefert beim Kochen mit Schwefelsäure in Äther α . α' -Distearin und geringe Mengen α . β -Distearin.

Glycerin- $\alpha.\beta$ -distearat- α' -phosphorsäure, $\alpha.\beta$ -Distearoyl-glycerin- α' -phosphorsäure, $\alpha.\beta$ -Distearin-phosphorsäure $C_{39}H_{77}O_8P=CH_3\cdot[CH_2]_{16}\cdot CO\cdot C\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{16}\cdot CH_2)\cdot CH_2\cdot O\cdot PO(OH)_2$.

a) Rechtsdrehende Form. B. Aus der inaktiven Form durch Spaltung mit Strychnin (Grün, Limpächer, B. 60, 270). — $K_2C_{39}H_{76}O_8P$. Einheitlichkeit fraglich. Die Lösungen in Benzol-Kohlenwasserstoffen und Chlor-Kohlenwasserstoffen drehen die Ebene des polarisierten Lichtes oberhalb 30—40° kaum, beim Abkühlen zeigen die Lösungen starke Drehung. Der Vorgang ist umkehrbar. [α]|**: ca. +400° (Benzol; c = 0,3). — Strychninsalz. Schleimige Krystalle (aus Benzol + Aceton). Die Lösung in Benzol + Aceton liefert mit alkoh. Kalilauge das Dikaliumsalz (s. o.) und geringe Mengen des (nicht näher beschriebenen) Dikaliumsalzes der α . d'-Distearoyl-glycerin- β -phosphorsäure. Die Lösung in Benzol + Aceton liefert mit Schwefelsäure bei 20° inaktive α . β -Distearoyl-glycerin- α -phosphorsäure.

b) Linksdrehende Form. B. Aus der inaktiven Form durch Spaltung mit Strychnin (Grün, Limpächer, B. 60, 270). — K₂C₃₉H₇₈O₈P. Einheitlichkeit fraglich. [\alpha]₅: ca. —500° (Benzol; c = 0,3). Verhält sich bezüglich des Drehungsvermögens wie das Dikaliumsalz der rechtsdrehenden Form. — Strychninsalz. Schleimige Krystalle (aus Benzol + Aceton). Verhält sich gegen alkoh. Kalilauge wie das Strychninsalz der rechtsdrehenden Form.

Verhält sich gegen alkoh. Kalilauge wie das Strychninsalz der rechtsdrehenden Form.
c) Inaktive Form (E I 175; s. a. H 383). B. Zur Bildung aus α.β-Distearin und Phosphorpentoxyd vgl. Grün. Limpächer, B. 59, 1347; 60, 268. — Krystalle (aus Benzol). — Läßt sich mit Hilfe von Strychnin in die optischen Antipoden spalten (G., L., B. 60, 270). Lagert sich beim Behandeln mit Lösungsmitteln teilweise in α.α'-Distearoyl-glycerinβ-phosphorsäure um (G., L., B. 60, 266). Über die Bildung von Salzen mit β-Amino-äthylakhohol und Cholin vgl. G., L., B. 59, 1345; 60, 151; Schicht A.-G., D. R. P. 449532; C. 1927 II, 2354; Frdl. 15, 1671. — K₂C₃₉H₇₅O₈P (G., L., B. 60, 269). Hygroskopisches Pulver (aus Benzol + Aceton). Gibt mit Wasser eine kolloide Lösung. Unlöslich in Äther, Petroläther und Aceton, sehr schwer löslich in Alkohol, löslich in Benzol und Chloroform. — Strychninsalz C₂₁H₂₂O₂N₂ + C₃₉H₇₇O₈P (G., L., B. 60, 268). Krystallmehl (aus Benzol). Schmilzt in der evakuierten Capillare bei ca. 195°, wird oberhalb 200° dünnflüssig und zersetzt sich. [α]|\(^{11}_{15}:=-14.7^{\circ} (Chloroform: c = 3). Unlöslich in Wasser, Äther und Petroläther, sehr schwer löslich in heißem Aceton, leicht in Benzol, sehr leicht in Chloroform.

Glycerin- α . α' -distearat- β -phosphorsäure, $\alpha.\alpha'$ -Distearoyl-glycerin- β -phosphorsäure, $\alpha.\alpha'$ -Distearin-phosphorsäure $C_{39}H_{77}O_8P=(CH_3\cdot[CH_2]_{16}\cdot CO\cdot O\cdot CH_2)_2CH\cdot O\cdot PO(OH)_2$. B. Durch Umlagerung von $\alpha.\beta$ -Distearoyl-glycerin- α' -phosphorsäure in Lösung (Grün, Limpächer, B. 60, 266). — Über die Bildung von Salzen mit Cholin und β -Aminoäthylalkohol vgl. G., L., B. 60, 147, 156.

"Sek. Distearinphosphorsäureester" $C_{78}H_{151}O_{12}P = [C_{17}H_{35}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot C_{17}H_{35})\cdot CH_2\cdot O]_2PO\cdot OH$ (E I 175). B. Zur Bildung aus $\alpha.\beta$ -Distearin und Phosphorpentoxyd vgl. Grün, Limpächer, B. 60, 268, 271. — $KC_{78}H_{150}O_{12}P$. Hygroskopisches Pulver (aus Benzol + Aceton). Leicht löslich in Benzol und Chloroform, unlöslich in Ather, Petroläther und Aceton. — Strychninsalz $C_{21}H_{22}O_2N_2 + C_{78}H_{150}O_{12}P$. Krystalle (aus Benzol). Sintert in der evakuierten Capillare bei 59°, wird bei 63—65° dünnflüssig und zersetzt sich bei höherer Temperatur. [α] $_{5}^{1/3}$: —5,6° (Chloroform; c = 0,3). In allen Lösungsmitteln leichter löslich als das Strychninsalz des primären Esters.

 $\alpha.\alpha'$ -Distearoyloxy-aceton $C_{39}H_{74}O_5=(CH_3\cdot[CH_2]_{16}\cdot CO\cdot O\cdot CH_2)_2CO$. B. Uber die Bildung von $\alpha.\alpha'$ -Distearoxyloxy-aceton bei der Oxydation von $\alpha.\alpha'$ -Distearin mit Permanganat in Eisessig vgl. Grün, Wittka, B. 54, 276, 278.

Stearinsäureanhydrid $C_{36}H_{70}O_3 = CH_3 \cdot [CH_2]_{16} \cdot CO \cdot O \cdot CO \cdot [CH_2]_{16} \cdot CH_3$ (H 384). B. Zur Bildung aus Stearinsäure durch Einw. von siedendem Acetanhydrid (Albitzki, \Re . 31, 103: C. 1899 I, 1070) vgl. Holde, Ripper, Zadek, B. 57, 104; Autenrieth, Thomae, B. 57, 429: H., Gentner, B. 58, 1424. Bein Erhitzen von Stearoylchlorid mit, Silberstearst auf dem Wasserbad (Whitby, Soc. 1926, 1462). — Plättchen (aus Alkohol, Äther oder Aceton). F: 70.5° (Wh.), 70—71° (Au., Th.), 71—71,5° (H., G.), 72° (H., R., Z.). D $_{4}^{9}$: 0.8368; D $_{4}^{10}$: 0,8149; n $_{5}^{9}$: 1,4368 (H., G.); n $_{5}^{9}$: 1,4362 (Wh.); n $_{5}^{9}$: 1,4284 (H., R., Z.). 100 g absol. Alkohol lösen bei 20° 0,023 g (Wh.); 100 cm³ Äther lösen bei 15° 0,181 g (Au., Th.): schwer löslich in heißem Äther und Petroläther, leicht in Chloroform (H., R., Z.). Die Lösung in Äther bleibt beim Schütteln mit Natriumcarbonat-Lösung klar (Au., Th.).

Stearinsäurechlorid, Stearoylchlorid $C_{18}H_{36}OCl = CH_3 \cdot [CH_2]_{16} \cdot COCl$ (H 384; E I 176). B. Beim Erhitzen von Stearinsäure mit Oxalylchlorid (Averill, Roche, King, Am. Soc. 51, 868). — F: 24° (Gault, Ehrmann, Bl. [4] 39, 876). Kp₁₅: 211—219° (G., E.); Kp₉: 205° (Ott, Zimmermann, A. 425, 337); Kp_{0.5-1.6}: 164—166° (E. Fischer, Bergmann. Bärwind, B. 53, 1597); Kp_{0,4}: 165° (A., R., K.). — Liefert beim Behandeln mit Wasserstoff in Gegenwart von Palladium-Bariumsulfat in siedendem Xylol außer Stearinaldehyd

(ROSENMUND, B. 51, 592; D. R. P. 333154; C. 1921 II, 737; Frdl. 13, 263) dimeren Stearinaldehyd(?) (E II 1, 772) (FEULGEN, BEHRENS, H. 177, 226, 229).

Stearinsäureamid C₁₈H₃₇ON = CH₃·[CH₂]₁₆·CO·NH₂ (H 384). Nadeln (aus Ligroin und Ather) (Aucken, Chem. and Ind. 1925, 73; C. 1925 I, 1485). Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Adam, Pr. roy. Soc. [A] 101, 461, 523; 103, 693; C. 1923 I, 271, 272; III, 1295. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer Schicht von Stearinsäureamid auf verd. Salzsäure: Frumkin, Ph. Ch. 116, 496.

Stearinsäurenitril, Stearonitril $C_{18}H_{35}N=CH_3\cdot [CH_2]_{16}\cdot CN$ (H 384; E I 176). B. Beim Erwärmen von Stearinsäureamid mit Thionylchlorid auf dem Wasserbad (Stephen. Soc. 1927, 1875). — Über die Ausbreitung auf Wasser und verd. Salzsäure und die Struktur monomolekularer Schichten vgl. Adam, Pr. roy. Soc. [A] 101, 461, 523; C. 1923 I, 271, 272; A., Jessop, Pr. roy. Soc. [A] 110, 428; C. 1926 I, 2548. — Liefert beim Behandeln mit wasserfreiem Zinn(II)-chlorid in mit Chlorwasserstoff gesättigtem Äther und Verseifen des Reaktionsprodukts mit warmem Wasser Stearinaldehyd (St.).

Stearinhydroxamsäure C₁₈H₃₇O₂N = CH₃·[CH₂]₁₆·CO·NH·OH (H 385). B. Bei der Einw. von Hydroxylamin auf Stearinsäuremethylester in Natriummethylat-Lösung (DIETERLE, DIESTER, THIMANN, Ar. 1927, 186). Zur Bildung aus Tristearin und Hydroxylamin vgl. Lewis, Biochem. J. 20, 1357. — F: 105° (D., D., Th.). — Natriumsalz. F: 140—142° (Zers.) (D., D., Th.). Unlöslich in Methanol und Alkohol (L.). Auf der Unlöslichkeit des Natriumsalzes in Alkohol beruht eine Methode zur Abtrennung der Stearinsäure von niederen gesättigten Fettsäuren, Oxysäuren und ungesättigten Säuren, deren Hydroxamsäuren in Alkohol lösliche Natriumsalze bilden (L.).

Stearinsäurehydrazid, Stearoylhydrazin $C_{18}H_{38}ON_2 = CH_3 \cdot [CH_2]_{16} \cdot CO \cdot NH \cdot NH_2$. B. Bei der Einw. von überschüssigem Hydrazinhydrat auf Tristearin, Triolein oder Ölsäurethylester bei Zimmertemperatur (Falciola, G. 50 I, 163). Beim Kochen von Ölsäure oder Elaidinsäure mit Hydrazinhydrat (Hanus, Vorisek, Collect. Trav. chim. Tchécosl. 1, 226; C. 1929 II, 551). Aus Tristearin, Ölsäure, Elaidinsäure, Leinöl oder Erdnußöl beim Kochen mit methylalkoholischer Hydrazin-Lösung oder beim Erhitzen mit Hydrazinhydrat oder methylalkoholischer Hydrazin-Lösung im Rohr auf 100° (van Alphen, R. 44, 1067). — Krystallines Pulver (aus Methanol, Alkohol oder Chloroform). F: 111° (van A.), 114° (H., V.), 114,5—115° (F.).

Substitutionsprodukte der Stearinsäure.

- 2.2 Dichlor octadecansäure (1), $\alpha.\alpha$ Dichlor stearinsäure $C_{18}H_{34}O_2Cl_2 = CH_3$ · $[CH_2]_{15}$ · CCl_2 · CO_2H . B. Bei der Verseifung von $\alpha.\alpha$ -Dichlor-stearinsäure-äthylamid (v. Braun, Jostes, Münch, A. 453, 138). F: 51—53°.
- 2-Brom-octadecansäure-(1), 2-Brom-stearinsäure C₁₈H₃₅O₂Br = CH₃·[CH₃]₁₅·CHBr·CO₂H (H 385; E I 176). B. Zur Bildung aus Stearinsäure und Brom bei Gegenwart von Phosphor (H 2, 385) vgl. Radcliffe, Gibson, J. Soc. Dyers Col. 39, 6; C. 1923 III, 22. Monoklin prismatisch (A. Müller, Pr. roy. Soc. [A] 114, 547; C. 1927 II, 780). Röntgenogramm: Mü. F: 60° (Morgan, Holmes, J. Soc. chem. Ind. 46, 153 T; C. 1927 II, 1464). Über die Ausbreitung auf verd. Salzsäure und die Struktur monomolekulærer Schichten vgl. Adam. Pr. roy. Soc. [A] 103, 688; C. 1923 III, 1294; A., Jessop, Pr. roy. Soc. [A] 112, 365; C. 1926 II, 2399. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer Schicht von α-Brom-stearinsäure auf verd. Salzsäure: Frumkin, Ph. Ch. 116, 495. Liefert beim Kochen mit Silbernitrat und Alkohol vermutlich α-Oxy-stearinsäure und α-Äthoxy-stearinsäure (R., G.).
- 18-Brom-octadecansäure-(1), ω -Brom-stearinsäure $C_{18}H_{35}O_2Br=CH_2Br\cdot [CH_2]_{16}\cdot CO_2H$. B. Bei der Einw. einer 50 %igen Lösung von Bromwasserstoff in Eisessig auf ω -Oxystearinsäure (Chuit, Hausser, Helv. 12, 474, 489). Krystalle (aus Petroläther + wenig Benzol). F: 75,2—75,8°. Kp₄: 240—241°. Löslich in Äther, Benzol und Alkohol, ziemlich leicht löslich in heißem Petroläther.
- 6.7 Dibrom octadecansäure (1), ε.ζ Dibrom stearinsäure, Petroselinsäure-dibromid C₁₈H₃₄O₂Br₂ = CH₃·[CH₂]₁₀·CHBr·CHBr·[CH₂]₄·CO₂H. B. Aus Petroselinsäure und Brom in Chloroform (ΕΙΒΝΕΚ, WIDENMAYER, SCHILD, Ch. Umschau Fette 34 [1927]. 313). Perlmutterglänzende Blättchen (aus verd. Alkohol). F: 30—36,5°. Liefert beim Kochen mit Zink in Alkohol und nachfolgender Verseifung Petroselinsäure zurück.
- 9.10-Dibrom-octadecansäuren-(1), $\theta.\iota$ -Dibrom-stearinsäuren $C_{18}H_{34}O_2Br_2 = CH_3 \cdot [CH_2]_7 \cdot CHBr \cdot CHBr \cdot [CH_2]_7 \cdot CO_2H$.
- a) Ölsäuredibromid, Oleodibromstearinsäure (H 386; E I 177). Zur Konfiguration vgl. Inoue, Suzuki, Pr. Acad. Tokyo 7, 263; C. 1931 II, 2593; MARUYAMA, Su., Pr. Acad. Tokyo 7, 265, 382; C. 1931 II, 2594; 1932 I, 2307. B. Aus Ölsäure und Brom

in Tetrachlorkohlenstoff oder Petroläther (HOLDE, GORGAS, Z. ang. Ch. 39, 1444). — Krystalle (aus Petroläther in der Kälte). F: 28,5—29° (H., G.). D₄. 1,2422; n₂. 1,4899 (H., G.). — Gibt beim Behandeln mit Zink und alkoh. Salzsäure Ölsäure (H., G.; NICOLET, Am. Soc. 43, 2124). — Titration mit Bariumhydroxyd in Methanol und anderen organischen Lösungsmitteln: Escher, Helv. 12, 103.

b) Elaidinsäuredibromid, Elaidodibromstearinsäure (H 386). Zur Konfiguration vgl. die bei Ölsäuredibromid zitierte Literatur. — B. Aus Elaidinsäure und Brom in Petroläther (Holde, Gorgas, Z. ang. Ch. 39, 1444). — Nadeln (aus Äther). F: 29° bis 30°. D. 1,2458. n. 1. 1,4893. — Gibt beim Behandeln mit Zink und alkoh. Salzsäure

Elaidinsäure.

Glycerin-bis- $[\theta.\iota$ -dibrom-palmitat]- $[\theta.\iota$ -dibrom-stearat], Dizoomaro-olein-hexabromid $C_{52}H_{62}O_6Br_6=CH_3\cdot [CH_3]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CO\cdot O\cdot C_3H_5(O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_5\cdot CH_3)_3$. B. Bei der Bromierung von Fischtran (Suzuki, Masuda, Pr. Acad. Tokyo 3, 532; C. 1928I, 605). —Öl. Löslich in Petroläther, schwer löslich in Alkohol. —Liefert bei der Entbromung durch Kochen mit Zinkstaub in Eisessig und Oxydation des entstandenen Gemisches von ungesättigten Säuren mit sodaslkalischer Permanganat-Lösung eine Dioxypalmitinsäure vom Schmelzpunkt 115° und hochschmelzende $\theta.\iota$ -Dioxy-stearinsäure.

Glycerin - palmitat - bis - [$\theta.\iota$ - dibrom - stearat], Palmitodiolein - tetrabromid $C_{55}H_{192}O_6Br_4 = (CH_2\cdot[CH_2]_7\cdot CHBr\cdot[CH_2]_7\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot[CH_2]_{14}\cdot CH_2$. B. Bei der Bromierung des Öls der Seidenspinnerpuppe (Suzuki, Yokoyama, Pr. Acad. Tokyo 4, 163; C. 1928 II, 1401) und bei der Bromierung von Haifischleberöl (Suzuki, Pr. Acad. Tokyo 5, 271; C. 1928 II, 2842). — Das Präparat aus dem Öl der Seidenspinnerpuppe erstarrt bei ca. 5° und gibt bei der Hydrolyse mit Salzsäure Palmitinsäure und $\theta.\iota$ -Dibrom-stearinsäure(?) (S., Y.).

Glycerin-[θ . ι -dibrom-palmitat]-bis-[θ . ι -dibrom-stearat], Zoomaro-diolein-hexabromid, Dioleo-soomarin-hexabromid $C_{55}H_{100}O_6Br_6 = (CH_3 \cdot [CH_2]_7 \cdot CHBr \cdot CHBr \cdot [CH_2]_7 \cdot CO \cdot O)_2C_3H_5 \cdot O \cdot CO \cdot [CH_2]_7 \cdot CHBr \cdot [CH_2]_5 \cdot CH_3$. B. Bei der Bromierung von Sandaal-Öl (Suzuki, $Pr.\ Acad.\ Tokyo$ 5, 269; $C.\ 1929\ II$, 2841).

Glycerin -tris - [\$\textit{\textit{c}}.i\cdot\text{dibrom} - \text{stearat}], Triolein - hexabromid \$C_{57}H_{104}O_{6}Br_{6} = CH_{3}^{\text{CH}}[CH_{1}]_{7}\cdot CHBr \cdot CHBr \cdot CHBr \cdot CH_{1}]_{7}\cdot CHBr \cdot CHBr \cdot CH_{1}]_{7}\cdot CHBr \cdot CHBr \cdot CH_{1}]_{7}\cdot CHBr \cdot CHBr \cdot CHBr \cdot CHBr \cdot CH_{1}]_{7}\cdot CHBr \cdot CHBr \cdot CHBr \cdot CHBr \cdot CH_{1}]_{7}\cdot CHBr \cdot CHBr \cdot CHBr \cdot CHBr \cdot CH_{1}]_{7}\cdot CHBr \cdot CH

11.12 - Dibrom - octadecansäure - (1), $\varkappa\lambda$ - Dibrom - stearinsäure, Vaccensäure-dibromid $C_{18}H_{34}O_{3}Br_{2}=CH_{3}\cdot[CH_{3}|_{5}\cdot CHBr\cdot CHBr\cdot[CH_{3}|_{5}\cdot CO_{2}H$. B. Aus Vaccensäure (S. 428) und Brom in Petroläther (Bertram, Bio. Z. 197, 440). — Krystalle. F: 33°.

12.13-Dibrom-octadecansäure-(1), $\lambda\mu$ -Dibrom-stearinsäure $C_{18}H_{24}O_3Br_3 = CH_3$ · $[CH_3]_4 \cdot CHBr \cdot [CH_3]_{10} \cdot CO_2H$. B. Bei der Einw. von Brom auf ein Gemisch aus niedriger- und höherschmeizender Octadecen-(6)-säure-(18) in Petroläther bei 0—5° (GRÜN, CZERNY, B. 59, 60). — Gelbliches Öl. — Liefert beim Kochen mit 1 n-alkoholischer Kalilauge 6 (oder 7)-Brom-octadecen-(6)-säure-(18) und geringe Mengen Octadecin-(6)-säure-(18).

Äthylester C₃₀H₃₅O₂Br₂ = CH₃·[CH₃]₄·CHBr·CHBr·[CH₂]₁₀·CO₃·C₂H₅. B. Bei der Einw. von Brom auf das Gemisch der Äthylester der niedriger- und höherschmelzenden Octadecen-(6)-säure-(18) in Petroläther bei 0—5° (Grün, Czerny, B. 59, 60). — Nicht unzersetzt destillierbar.

9.10.12.13 • Tetrabrom - octadecansäuren - (1), $\theta.\iota.\lambda\mu$ - Tetrabrom - stearinsäuren, Linolsäuretetrabromide $C_{18}H_{23}O_{2}Br_{4}=CH_{3}\cdot[CH_{2}]_{4}\cdot CHBr\cdot CHBr\cdot$

a) Festes Linolsäurctetrabromid, "a - Linolsäurctetrabromid" (H 386; E I 177). Zur Konfiguration vgl. Maruyama, Suzuki, Pr. Acad. Tokyo 8, 186; C. 1932 II, 1609; Birosel, Univ. Philippines Sci. Bl. 2, 103; Chem. Abstr. 1933, 702; Brown, Frankel, Am. Soc. 60 [1938], 54; Riemenschneider, Wheeller, Sando, J. biol. Chem. 127 [1939], 391, 399; McCutcheon, Canad. J. Res. [B] 16, 158, 170; C. 1939 II, 374; Hilditch, Jasperson, J. Soc. chem. Ind. 58, 233; C. 1939 II, 2390. — B. Zur Bildung aus Linolsäure und Brom vgl. Takahashi, J. Tokyo chem. Soc. 40 [1919], 233; Chem. Abstr. 1919, 1583; Nicolet, Cox, Am. Soc. 44, 147; Dieperele, Ar. 1926, 162; West, Montes, Philippine J. Soi. 18 [1921], 627; Santiago, W., Philippine J. Soi. 32, 45; C. 1927 I, 2657. — Krystalle (aus Alkohol, Ather, Petroläther oder Ligroin). F: 112,3—114,3° (S., W.), 114° (Takahashi; Holde, Gentmer, B. 58, 1069), 114—115° (Dieterele, Ar. 1926, 163). — Titration mit Bariumhydroxyd in Methanol und anderen organischen Lösungsmitteln: Escher, Helv. 12, 103.

Salze des α -Linolsäuretetrabromids. NaC₁₈H₃₁O₂Br₄. Krystalle (aus Alkohol). Wird bei 194° braun; F: 201,1° (Zers.) (Oreta, West, Philippine J. Sci. 33, 174; C. 1927 II, 1939). — KC₁₈H₃₁O₂Br₄. Krystalle (aus Alkohol) (O., W.). — Cu(C₁₈H₃₁O₂Br₄)₂. Blaugrüne Krystalle (aus Chloroform). F: 142,4—145,4° (Jovellanos, West, Philippine J. Sci. 33, 353; C. 1927 II, 2744). — Mg(C₁₈H₃₁O₂Br₄)₂. F: 150,1—151,7° (J., W.). — Ca(C₁₈H₃₁O₂Br₄)₂. Wird bei 208° braun; F: 213,4° (Zers.) (O., W.). — Sr(C₁₈H₃₁O₂Br₄)₃. Wird bei 200° braun; F: 206° (Zers.) (O., W.). — Ba(C₁₈H₃₁O₃Br₄)₃. Wird bei 196° braun; F: 202,5° (Zers.) (O., W.). Zn(C₁₈H₃₁O₂Br₄)₂. Schmilzt zwischen 154,7° und 158,8° (O., W.). — Cd(C₁₈H₃₁O₂Br₄)₃. F: 135,7—137,8° (J., W.). — Mn(C₁₈H₃₁O₂Br₄)₃. Rotlicher Niederschlag. F: 144,9—147,5° (J., W.). — Co(C₁₈H₃₁O₂Br₄)₃. Roter Niederschlag. F: 156,5° (J., W.). — Löslichkeit der Salze in organischen Lösungsmitteln: O., W.; J., W.

 $\theta.\iota.\lambda.\mu$ -Tetrabrom-stearinsäure-methylester, Methylester des α-Linolsäuretetrabromids $C_{19}H_{24}O_3$ Br $_4$ = $CH_3 \cdot [CH_3]_4 \cdot CHBr \cdot CHBr \cdot CHBr \cdot CHBr \cdot [CH_1]_7 \cdot CO_2 \cdot CH_3$ (E I 177). B. Beim Kochen von α-Linolsäuretetrabromid mit Bromwasserstoff enthaltendem Methanol (Haworth, Soc. 1929, 1458). Durch Einw. von Phosphortrichlorid auf α-Linolsäuretetrabromid und Kochen des entstandenen Säurechlorids mit Methanol (Santos, West, Philippine J. Sci. 34, 201; C. 1928 I, 1019). — Tafeln (aus Methanol). F: 56° (H.), 58—60° (S., W.). Leicht löslich in den gebräuchlichen organischen Lösungsmitteln (S., W.).

θ.ι.λ.μ-Tetrabrom-stearinsäure-äthylester, Äthylester des α-Linolsäuretetrabromids C₂₀H₃₆O₂Br₄ = CH₃·[CH₂]₄·CHBr·CHBr·CH₂·CHBr·CHBr·[CH₂]₇·CO₃·C₂H₅ (E I 177).
 B. Durch Einw. von Phosphortrichlorid auf α-Linolsäuretetrabromid und Kochen des entstandenen Säurechlorids mit Alkohol (Santos, West, Philippine J. Sci. 34, 201; C. 1928 I, 1019).
 Krystalle. F: 58—60°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln.

 $\theta.t.\lambda.\mu$ -Tetrabrom-stearinsäure-propylester, Propylester des α -Linolsäuretetrabromids $C_{21}H_{38}O_2Br_4=CH_3\cdot [CH_2]_4\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CO_2\cdot C_2H_7$. B. Analog dem Athylester (Santos, West, Philippine J. Sci. 34, 202; C. 1928 I, 1019). — Krystalle (aus Methanol). F: 45—50°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln.

 θ .ι.λ.μ-Tetrabrom-stearinsäure-isopropylester, Isopropylester des α-Linolsäure-tetrabromids $C_{21}H_{38}O_3Br_4 = CH_3 \cdot [CH_2]_4 \cdot CHBr \cdot CHBr \cdot CH_2 \cdot CHBr \cdot CHBr \cdot [CH_2]_7 \cdot CO_2 \cdot CH(CH_2)_2$. B. Analog dem Äthylester (Santos, West, Philippine J. Sci. 34, 202; C. 1928 I, 1019). — Krystalle (aus Methanol). F: 50—52°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln.

 $\vartheta.\iota.\lambda.\mu$ -Tetrabrom-stearinsäure-allylester, Allylester des α-Linolsäuretetrabromids $C_{11}H_{34}O_{2}Br_{4}=CH_{3}\cdot [CH_{2}]_{4}\cdot CHBr\cdot CHBr\cdot CH_{3}\cdot CHBr\cdot CHBr\cdot [CH_{2}]_{7}\cdot CO_{3}\cdot CH_{2}\cdot CH: CH_{2}\cdot B$. Analog dem Athylester (Santos, West, *Philippine J. Sci.* 34, 202; *C.* 1928 I, 1019). — Gelblich, amorph. Schmilzt bei 72—80°. Leicht löslich in Chloroform, Benzol, Toluol, Xylol und Athylbenzoat.

- b) Flüssiges Linolsäuretetrabromid, "β-Linolsäuretetrabromid" C₁₈H₃₂O₂Br₄ = CH₃· [CH₃]₄· CHBr· CHBr· CH₃· CHBr· [CH₃]₇· CO₂H (H 387). Zur Konfiguration vgl. die bei "α-Linolsäuretetrabromid" zitierte Literatur. B. Zur Bildung aus Linolsäure und Brom vgl. Takahashi, J. Tokyo chem. Soc. 40 [1919], 233; Chem. Abstr. 1919, 1583; Santiago, West, Philippine J. Sci. 32, 46; C. 1927 I, 2657 ¹).

Glycerin-bis-[θ.ε-dibrom-palmitat]-[θ.ε.λμ-tetrabrom-stearat], Discomaro-lino-lein-oktabromid, Linoleo-discomarin-oktabromid C₅₈H₅₄O₆Br₅ = CH₅·[CH₅]·CHBr·CHBr·CHBr·CHBr·[CH₅]·CO·O·C₅H₅(O·CO·[CH₅]·CHBr·CHBr·CHBr·[CH₆]·CH₅]·CH₅. B. Bei der Bromierung von Lebertran erhielten Suzuki, Masuda (Pr. Acad. Tokyo 4, 167; C. 1928 II, 1401) ein öliges Präparat (leicht löslich in Alkohol, schwer in alkoholischer

¹⁾ TAKAHASHI (J. Tokyo ehem. Soc. 40 [1919], 233; Chem. Abstr. 1919, 1583) und SANTIAGO, WEST (Philippine J. Sci. 32, 46; C. 1927 I, 2657) bezeichnen das flüssige Linolsäuretetrabromid als "y-Linolsäuretetrabromid".

Calciumchlorid-Lösung); Suzuki (Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841) erhielt bei der Bromierung von Lebertran und Heringsöl ein bei 2° schmelzendes Präparat. Über Präparate aus anderen Fischölen vgl. Suzuki, Pr. Acad. Tokyo 5, 269, 270; C. 1929 II, 2841, 2842.

Glycerin-[ϑ . ι -dibrom-palmitat]-stearat-[ϑ . ι . ι ι μ -tetrabrom-stearat], Stearo-zoo-maro-linolein-hexabromid $C_{55}H_{100}O_6Br_6=CH_3\cdot[CH_2]_4\cdot CHBr\cdot CHBr\cdot$

Über ein Präparat aus dem Öl von Theragra chalcogramma vgl. Suzuki, *Pr. Acad. Tokyo* 5, 270; *C.* 1929 II, 2842.

Glycerin-[θ . ι -dibrom-palmitat]-bis-[θ . ι . λ . μ -tetrabrom-stearat], Zoomaro-dilino-lein-dekabromid, Dilinoleo-zoomarin-dekabromid $C_{55}H_{96}O_8Br_{10} = (CH_3 \cdot [CH_3]_4 \cdot CHBr \cdot CHBr \cdot CHBr \cdot [CH_2]_7 \cdot CO \cdot O)_2C_3H_5 \cdot O \cdot CO \cdot [CH_2]_7 \cdot CHBr \cdot CHBr \cdot [CH_2]_5 \cdot CH_3$. Bei der Bromierung von Sandaal-Öl (Suzuki, Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841).

Glycerin-stearat-[$\theta.\iota$ -dibrom-stearat]-[$\theta.\iota.\lambda.\mu$ -tetrabrom-stearat], Stearo-oleolinolein-hexabromid, Stearo-linoleo-olein-hexabromid $C_{57}H_{104}O_6Br_6=CH_3\cdot [CH_2]_4\cdot CHBr\cdot CHBr\cdot CHBr\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CO\cdot O\cdot C_3H_5(O\cdot CO\cdot [CH_2]_5\cdot CH_3)\cdot O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot [CH_2]_7\cdot CH_3$. Suzuki (Pr. Acad. Tokyo 5, 265, 268; C. 1929 II, 2841) erhielt bei der Bromierung von Sardinenöl zwei Präparate mit den Schmelzpunkten +6° und —5°. bei der Bromierung von Leinöl ein Präparat vom Erstarrungspunkt —4°.

Glycerin-bis-[$\theta.\iota$ -dibrom-stearat]-[$\theta.\iota\lambda.\mu$ -tetrabrom-stearat], Dioleo-linolein-oktabromid, Linoleo-diolein-oktabromid $C_{57}H_{102}O_6Br_8=CH_3\cdot[CH_2]_4\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CH_2\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot CH_3\cdot B.$ Bei der Bromierung von Leinöl erhielt Suzuki (Pr. Acad. Tokyo 5, 265; C. 1929 II, 2841) drei Präparate mit den Erstarrungspunkten -2^0 , $+3^0$ und $+5^0$.

Glycerin - [$\theta.\iota$ -dibrom-stearat] - bis - [$\theta.\iota.\lambda.\mu$ -tetrabrom-stearat], Oleo-dilinolein-dekabromid, Dilinoleo - olein - dekabromid $C_{57}H_{100}O_6Br_{10} = (CH_3\cdot[CH_2]_4\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CO\cdot O)_5C_3H_5\cdot O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CH_3$. B. Bei der Bromierung von Leinöl und Sojabohnenöl (SUZUKI, YOKOYAMA, Pr. Acad. Tokyo 3, 528, 530; C. 1928 I, 605). — Öl. Löslich in Petroläther, schwer löslich in heißem Alkohol. — Liefert bei der Hydrolyse Ölsäuredibromid und Linolsäuretetrabromid.

Eläostearinsäuretetrabromide (EI 177) s. S. 443, 444.

6.7.9.10.12.13-Hexabrom-octadecansäure-(1), $\varepsilon.\zeta.\vartheta.\iota.\lambda.\mu$ -Hexabrom-stearinsäure, γ -Linolensäure-hexabromid $C_{18}H_{30}O_{2}Br_{6}=CH_{3}\cdot[CH_{2}]_{4}\cdot[CHBr\cdot CHBr\cdot CH_{2}]_{3}\cdot[CH_{2}]_{3}\cdot CO_{2}H$ (E I 177). Krystalle (aus Eisessig). F: 203° (unter Gelbfärbung) (Eibner, Widenmayer. Schild, Ch. Umschau Fette 34, 315; C. 1928 I, 2873).

9.10.11.12.13.14 - Hexabrom - octadecansäure - (1), $\theta.\iota.\varkappa.\lambda.\mu.\nu$ - Hexabrom - stearinsäure, Eläostearinsäurehexabromid $C_{18}H_{30}O_2Br_6=CH_3\cdot[CH_2]_3\cdot[CHBr]_6\cdot[CH_2]_7\cdot CO_2H$. B. Aus α - oder β -Eläostearinsäure und Brom in Tetrachlorkohlenstoff bei Bestrahlung mit ultraviolettem Licht, neben flüssigen Bromiden (STEGER, VAN LOON, J. Soc. chem. Ind. 47, 361 T; C. 1929 I, 1063; R. 50 [1930], 33; vgl. BAUER, ROHRBACH, Ch. Umschau Fette 35. 4; C. 1928 I, 2801). — Nadeln (aus Äther). F: 157° (St., van L.). Ziemlich leicht löslich in Äther (St., van L.). — Liefert bei der Entbromung mit Zinkstaub und alkoh. Salzsäure β -Eläostearinsäure (B., R.; St., van L.).

9.10.12.13.15.16 - Hexabrom - octadecansäure - (1), $\vartheta . \iota . \lambda . \mu . \xi . o$ - Hexabrom - stearinsäure, Linolensäurehexabromid $C_{18}H_{30}O_{2}Br_{6} = CH_{3} \cdot [CH_{2} \cdot CHBr \cdot CHBr]_{3} \cdot [CH_{2}]_{7} \cdot CO_{2}H$.

a) Festes Linolensäurehexabromid, "α-Linolensäurehexabromid" (H 387; E I 177). B. Zur Bildung aus α-Linolensäure vgl. Agde, J. pr. [2] 112, 39; West, Montes. Philippine J. Sci. 18 [1921], 626; Imperial, W., Philippine J. Sci. 31, 442; C. 1927 I, 2204; Kimura, Ch. Umschau Fette 36, 126; J. Soc. chem. Ind. Japan Spl. 31, 251 B; C. 1929 I, 377, 2964. — Krystalle (aus Essigester und Benzol). F: 179,5—180,5° (Imp. West, Philippine J. Sci. 31, 444), 181—181,5° (Inoue, Suzuki, Pr. Acad. Tokyo 7, 375; C. 1932 I, 2307). 183° (Ki.). 185° (Kaufmann, Keller, Z. ang. Ch. 42, 74; Toms, Analyst 51 [1926], 388; Coffey, Soc. 119, 1308). Löslichkeit in organischen Lösungsmitteln: Imp., W.; C. Zersetzt sich bei längerem Kochen mit A. (C.).

Salze des a-Linolensäurehexabromids. KC₁₈H₂₉O₂Br₈. Färbt sich bei 180° bräunlich und schmilzt bei 185—190° unter Zersetzung (IMPERIAL, WEST, Philippine J. Sci. 31. 445; C. 1927 I, 2204). — Mg(C₁₈H₂₉O₂Br₆)₂. Färbt sich bei 203° braun und zersetzt sich bei 208° (Almoradie, West, Philippine J. Sci. 33, 260; C. 1927 II, 2276). — Ca(C₁₈H₂₉O₂Br₆)₂. Färbt sich bei 208° braun und zersetzt sich bei 218° (A., W.). — Sr(C₁₈H₂₉O₂Br₆)₂. Färbt sich bei 205° braun und zersetzt sich bei 219° (A., W.). — Ba(C₁₈H₂₉O₂Br₆)₂. Färbt sich bei 197—200°

braunschwarz (I., W.). — $Zn(C_{18}H_{29}O_2Br_6)_2$. Zersetzt sich bei 174° (I., W.). — $Pb(C_{18}H_{29}O_2Br_6)_2$. Färbt sich bei 160° bräunlich und schmilzt bei $190-195^{\circ}$ (Zers.) (I., W.). — $Ni(C_{18}H_{29}O_2Br_6)_2$. Grünlicher Niederschlag. Zersetzt sich bei $209-212^{\circ}$ (A., W.). — Löslichkeit der Salze in organischen Lösungsmitteln: I., W.; A., W.

- $\vartheta.\iota.\lambda.\mu.\xi.o$ -Hexabrom-stearinsäure-methylester, Methylester des α-Linolensäure-hexabromids $C_{19}H_{32}O_2Br_6 = CH_3 \cdot [CH_2 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO_2 \cdot CH_3$. B. Beim Erwärmen von α-Linolensäurehexabromid mit Thionylchlorid und Kochen des entstandenen Säurechlorids mit Methanol (Erdmann, Bedford, B. 42 [1909], 1331). F: 157—158°.
- $\vartheta.\iota.\lambda \mu.\xi.o$ -Hexabrom-stearinsäure-äthylester, Äthylester des α-Linolensäure-hexabromids $C_{20}H_{34}O_2Br_6 = CH_3 \cdot [CH_2 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO_2 \cdot C_2H_5$ (H 387). B. Zur Bildung aus Leinölfettsäuren nach Erdmann, Bedford (B. 42, 1330) vgl. Agde, J. pr. [2] 112, 42. Krystalle (aus Alkohol). F: 152,5° (korr.) (Toms, Analyst 51 [1926], 389).
- $\theta.\iota.\lambda.\mu.\xi.o$ -Hexabrom-stearinsäure-propylester, Propylester des α -Linolensäure-hexabromids $C_{21}H_{36}O_2Br_6 = CH_3 \cdot [CH_2 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO_2 \cdot CH_2 \cdot C_2H_5$. B. Beim Kochen von α -Linolensäurehexabromid mit Propylalkohol und Schwefelsäure (VICENTE. West, Philippine J. Sci. 36, 76; C. 1928 II, 1759). Krystalle (aus Alkohol). F: 144—146°. Löslich in den üblichen organischen Lösungsmitteln außer Petroläther.
- $\theta.\iota.\lambda.\mu.\xi.o$ -Hexabrom-stearinsäure-isopropylester, Isopropylester des α -Linolensäure-hexabromids $C_{21}H_{36}O_2Br_6 = CH_3 \cdot [CH_2 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO_2 \cdot CH(CH_3)_2$. B. Analog dem Propylester (Vicente, West, Philippine J. Sci. 36, 77; C. 1928 II, 1759). Krystalle. F: 141—143°. Löslich in den üblichen organischen Lösungsmitteln.
- ϑ .ι.λ.μ.ξ.ο-Hexabrom-stearinsäure-butylester, Butylester des α-Linolensäure-hexabromids $C_{22}H_{38}O_2Br_6 = CH_3 \cdot [CH_2 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO_2 \cdot [CH_2]_3 \cdot CH_3$. F: 160° (Brown, Beal, Am. Soc. 45, 1291 Anm. b).
- θ.ιλμ.ξ.ο-Hexabrom-stearinsäure-isobutylester, Isobutylester des α-Linolensäure-hexabromids $C_{22}H_{38}O_2Br_6=CH_3\cdot[CH_2\cdot CHBr\cdot CHBr]_3\cdot[CH_2]_7\cdot CO_2\cdot CH_2\cdot CH(CH_3)_2$. B. Analog dem Propylester (VICENTE, WEST, Philippine J. Sci. 36, 75; C. 1928 II, 1759). Krystalle (aus Alkohol). F: 136—138°. Unlöslich in heißem Methanol und Petroläther, löslich in den meisten übrigen organischen Lösungsmitteln.
- θ.ι.λ.μ.ξ.ο-Hexabrom-stearinsäure-isoamylester, Isoamylester des α-Linolensäure-hexabromids C₂₃H₄₀O₂Br₆ = CH₃·[CH₂·CHBr·CHBr]₃·[CH₂]₇·CO₂·CH₂·CH₂·CH₂·CH(CH₃)₂. B. Analog dem Propylester (VICENTE, West, Philippine J. Sci. 36, 76; C. 1928 II. 1759). Krystalle (aus Alkohol). F: 133—135°. Unlöslich in heißem Methanol und Petroläther, löslich in den meisten übrigen organischen Lösungsmitteln.
- b) Flüssiges Linolensäurehexabromid, "β Linolensäurehexabromid" $C_{18}H_{30}O_2Br_6 = CH_3 \cdot [CH_2 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO_2H$. B. Beim Behandeln von α-Linolensäure mit der berechneten Menge Brom in Äther, neben dem festen Linolensäurehexabromid (KIMURA, Ch. Umschau Fette 36, 127; J. Soc. chem. Ind. Japan Spl. 31, 251 B; C. 1929 I, 377, 2964; vgl. Smith, West, Philippine J. Sci. 32, 299, 304; C. 1927 II, 239). Ölig. Färbt sich bei längerem Aufbewahren an der Luft oder beim Erhitzen hellgelb bis rotbraun (K.). Liefert beim Kochen mit methylalkoholischer Salzsäure und nachfolgenden Verseifen des gebildeten Methylesters mit alkoh. Kalilauge eine als verunreinigte α-Linolensäure anzusprechende Linolensäure (K.).

Glycerin-bis- $[\theta.\iota$ -dibrom-palmitat]- $[\theta.\iota.\lambda.\mu.\xi.o$ -hexabrom-stearat], Dizoomaro-linolenin-dekabromid, Linoleno-dizoomarin-dekabromid $C_{53}H_{92}O_{6}Br_{10}=CH_{3}\cdot[CH_{2}\cdot CHBr\cdot CHBr\cdot [CH_{2}]_{7}\cdot CO\cdot O\cdot C_{3}H_{8}(O\cdot CO\cdot [CH_{2}]_{7}\cdot CHBr\cdot CHBr\cdot [CH_{2}]_{6}\cdot CH_{3})_{2}$. Bei der Bromierung von Lebertran erhielt Suzuki $(Pr.\ Acad.\ Tokyo\ 5,\ 267;\ C.\ 1929\ II,\ 2841)$ zwei Präparate mit den Schmelzpunkten —5° und —2°. Über weitere Präparate aus Seetierölen vgl. S., Masuda, $Pr.\ Acad.\ Tokyo\ 4,\ 167;\ C.\ 1928\ II,\ 1401;\ S.,\ Pr.\ Acad.\ Tokyo\ 5,\ 270,\ 271;\ C.\ 1929\ II,\ 2842.$

Glycerin-[\$\textit{\textit{e}}.\$\text{t-dibrom-palmitat}]-stearat-[\$\textit{\textit{\textit{e}}}.\$\text{\$\text{\$L\$},\$\text{\$L

Glycerin - palmitat - $[\vartheta.\iota$ -dibrom-stearat] - $[\vartheta.\iota\lambda\mu.\xi.o$ -hexabrom-stearat], Palmito-oleo - linolenin - oktabromid $C_{55}H_{98}O_6Br_6 = CH_3 \cdot [CH_2 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO \cdot O \cdot C_2H_5(O \cdot CO \cdot [CH_2]_4 \cdot CH_3) \cdot O \cdot CO \cdot [CH_2]_7 \cdot CHBr \cdot CHBr \cdot [CH_2]_7 \cdot CH_3$. B. Bei der Bromierung des öls der Seidenspinnerpuppe (SUZUKI, YOKOYAMA, Pr. Acad. Tokyo 4, 163; C. 1928 II, 1401). — Öl. — Gibt bei der Hydrolyse mit Salzsäure $\vartheta.\iota.\lambda.\mu.\xi.o$ -Hexabrom-stearinsäure, $\vartheta.\iota$ -Dibrom-stearinsäure und Palmitinsäure.

Glycerin-stearat-[θ . ι -dibrom-stearat]-[θ . ι - λ μ . ξ .o-hexabrom-stearat], Stearo-oleolinolenin - oktabromid $C_{57}H_{103}O_{e}Br_{8}=CH_{3}\cdot[CH_{2}\cdot CHBr\cdot CHBr]_{3}\cdot[CH_{2}]_{7}\cdot CO\cdot O\cdot C_{3}H_{5}(O\cdot CO\cdot [CH_{2}]_{16}\cdot CH_{3})\cdot O\cdot CO\cdot [CH_{2}]_{7}\cdot CHBr\cdot [CH_{2}]_{7}\cdot CH_{3}$. Bei der Bromierung von Leinöl (Suzuki, Pr. Acad. Tokyo 5, 265; C. 1929 II, 2841). — E: —7°.

Glycerin - bis - [θ .i - dibrom - stearat] - [θ .i. λ . μ . ξ .o - hexabrom - stearat], Dioleo-lino-lenin - dekabromid C_5 , $H_{100}O_6$ Br₁₀ = CH_3 ·[CH_3]·CHBr·CHBr]. CHBr]·CHBr·CHBr·CHBr·[CH_3]·CHBr·CHBr·CHBr·[CH_3]·CHBrschwer löslich in Petroläther. Bei der Hydrolyse mit Salzsäure entstehen $\vartheta.\iota.\lambda.\mu.\xi.o$ -Hexabromstearinsäure und O.s.-Dibrom-stearinsäure.

Glycerin-bis- $[\theta.\iota.\lambda\mu$ -tetrabrom-stearat]- $[\theta.\iota.\lambda\mu,\xi.o$ -hexabrom-stearat], Dilinoleo-linolenin-tetradekabromid $C_{57}H_{96}O_6Br_{14} = CH_3 \cdot [CH_3 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO \cdot O \cdot C_8H_5(O \cdot CO \cdot [CH_2]_7 \cdot CHBr \cdot CHBr \cdot CHBr \cdot CHBr \cdot [CH_2]_4 \cdot CH_2)_4 \cdot B$. Bei der Bromierung von Leinöl und Sojabohnenöl (Suzuki, Yokoyama, $Pr.\ Acad.\ Tokyo\ 3,\ 527,\ 529;\ C.\ 1928\ I,\ 605).$ — F: 78°. Schwer löslich in Petroläther. — Liefert bei der Hydrolyse mit Salzsäure θ.ι.λ.μ. Tetra brom-stearins äure und θ.ι.λ.μ.ξ.ο-Hexa brom-stearins äure.

Glycerin - [θ . ι -dibrom - stearat] - bis - [θ . ι . λ , μ . ξ .o - hexabrom - stearat], Oleo-dilino- $\begin{array}{ll} \operatorname{lenin} \cdot \operatorname{tetradekabromid} & \operatorname{C}_{67}H_{96}O_{6}\operatorname{Br}_{14} = (\operatorname{CH}_{3} \cdot [\operatorname{CH}_{2} \cdot \operatorname{CHBr} \cdot \operatorname{CHBr}]_{3} \cdot [\operatorname{CH}_{3}]_{7} \cdot \operatorname{CO} \cdot \operatorname{O})_{2}\operatorname{C}_{3}H_{5} \cdot \\ \operatorname{O} \cdot \operatorname{CO} \cdot [\operatorname{CH}_{2}]_{7} \cdot \operatorname{CHBr} \cdot \operatorname{CHBr} \cdot [\operatorname{CH}_{3}]_{7} \cdot \operatorname{CH}_{3}. \end{array}$

a) Praparat aus Leinöl. B. Bei der Einw. von Brom auf Leinöle verschiedener Herkunft in Ather bei -10° bis -5° (EIBNER, WIDENMAYER, SCHILD, Ch. Umschau Fette 34, 319; C. 1928 I, 2873). — Krystalle. F: 72—73,5°. Löslich in Aceton, unlöslich in Alkohol.

b) Präparate aus Sojabohnenöl. Bei der Bromierung von Sojabohnenöl erhielt SUZUKI (Pr. Acad. Tokyo 5, 266; C. 1929 II, 2841) drei Präparate mit den Erstarrungspunkten 3°, 5° und 6°.

- Glycerin-[\$\text{0.1.}\Lu\u^{\text{tetrabrom-stearat}}\]-bis-[\$\text{0.1.}\Lu\u^{\text{t.o-hexabrom-stearat}}\], Linoleodilinolenin-hexadekabromid \$C_{87}H_{24}O_6Br_{16} = (CH_3 \cdot [CH_3 \cdot CHBr \cdot CHBr]_3 \cdot [CH_2]_7 \cdot CO \cdot CO \cdot [CH_2]_7 \cdot CHBr YOKOYAMA, Pr. Acad. Tokyo 3, 528; C. 1928 I, 605). — Krystalle (aus Chloroform + Aceton oder Tetralin + Aceton). F: 154—156° (EI., W., SCHILD), 155—156° (EI., SCHM.), 158° (S., Y.). Schwer löslich in fast allen Lösungsmitteln (S., Y.). — Liefert bei der Hydrolyse mit Salzsäure $\vartheta.\iota.\lambda.\mu$ -Tetrabrom-stearinsäure und $\vartheta.\iota.\lambda.\mu.\xi.o$ -Hexabrom-stearinsäure (S., Y.).
- b) Niedrigerschmelzendes Präparat aus Leinöl und Sojabohnenöl. B. Bei der Bromierung von Leinöl und Sojabohnenöl_(Suzuki, Yokovama, Pr. Acad. Tokyo 3, 528, 529; C. 1928 I, 605). — F: 117-118°. Leicht löslich in Benzol, schwer in Ather.
- c) Höherschmelzendes Präparat aus dem Öl der Seidenspinnerpuppe. B. Bei der Bromierung des Öls der Seidenspinnerpuppe, neben einem niedrigerschmelzenden Präparat (s. u.) (Suzuki, Yokoyama, Pr. Acad. Tokyo 4, 162; C. 1928 II, 1400). — F: 154°. Liefert bei der Hydrolyse mit Salzsäure $\theta.\iota.\lambda.\mu.\xi.o$ -Hexabrom-stearinsäure und eine nicht näher beschriebene flüssige θ.ι.λ.μ-Tetrabrom-stearinsäure.
- d) Niedrigerschmelzendes Präparat aus dem Öl der Seidenspinnerpuppe. B. s. im vorangehenden Abschnitt. F: 133° (Suzuki, Υοκογαμα, Pr. Acad. Tokyo 4, 162; C. 1928 II, 1400). Gibt bei der Hydrolyse mit Salzsäure θ.ι.λ.μ.ξ.ο-Hexabrom-stearinsaure und eine nicht näher beschriebene flüssige θ.ι.λ.μ-Tetrabrom-stearinsaure.

Glycerin - tris - [θ.ι.λ.μ.ξ.o - hexabrom - stearst], Trilinolenin - oktadekabromid $\mathbf{C_{57}H_{93}O_{\underline{6}}Br_{18}} = (\mathbf{CH_3} \cdot \mathbf{[CH_3} \cdot \mathbf{CHBr} \cdot \mathbf{CHBr})_3 \cdot \mathbf{[CH_3]_7} \cdot \mathbf{CO} \cdot \mathbf{O})_3 \mathbf{C_8H_5}.$

a) Praparat vom Schmelzpunkt 166°. B. Bei der Bromierung von Sojabohnenöl (Suzuki, Yokovama, Pr. Acad. Tokyo 3, 530; C. 1928 I, 605). — Platten (aus Tetrachlorkohlenstoff). F: 166°. Schwer löslich in kaltem, löslich in heißem Benzol. — Gibt bei der Hydrolyse mit Salzsäure $\theta.\iota.\lambda.\mu.\xi.o$ -Hexabrom-stearinsäure.

b) Fraparat vom Schmelzpunkt 172°. B. Bei der Bromierung des Öls der Seidenspinnerpuppe (Suzuki, Yokoyama, Pr. Acad. Tokyo 4, 163; C. 1928 II, 1401). — F: 172°. — Liefert bei der Hydrolyse mit Salzsäure θ.ι.λ.μ.ξ.ο-Hexabrom-stearinsäure.

a-Oktabromstearinsäure, Stearidonsäureoktabromid $C_{18}H_{18}O_{1}Br_{8}=C_{17}H_{17}Br_{8}\cdot CO_{8}H$ (vielleicht identisch mit Therapinsäureoktabromid $C_{17}H_{18}O_{1}Br_{8}$ E I 2, 170). Reinheit fraglich. — B. Bei der Bromierung von Dorschlebertran und anderen Sectierölen und Hydrolyse

der bromierten Glyceride mit Salzsäure (Suzuki, Masuda, Pr. Acad. Tokyo 4, 167; C. 1928 II, 1401; vgl. a. S., Yokoyama, Pr. Acad. Tokyo 5, 272; C. 1929 II, 2842). — F: 200° (Zers.) (S., M.). — Bei der Behandlung mit Zinkstaub und Eisessig entsteht Stearidonsäure (S., M.).

Methylester $C_{19}H_{50}O_8Br_8=C_{17}H_{57}Br_8\cdot CO_3\cdot CH_3$. Reinheit fraglich. Amorph. F: 240° (Brown, Bral, Am. Soc. 45, 1300).

Glycerin - bis - [θ .t-dibrom - palmitat] - [a-oktabrom-stearat], Dizoomaro - stearidonin-dodekabromid, Stearidono-dizoomarin-dodekabromid $C_{53}H_{90}O_6Br_{12}=C_{17}H_{27}Br_8$: $CO \cdot O \cdot C_3H_5(O \cdot CO \cdot [CH_3]_7 \cdot CHBr \cdot CHBr \cdot [CH_2]_5 \cdot CH_5)_2$. B. Bei der Bromierung von Lebertran (Suzuki, Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841). — E: —4°.

b-Oktabromstearinsäure, Isostearidonsäureoktabromid¹) $C_{18}H_{28}O_2Br_8 = C_{17}H_{27}Br_8$. CO_2H . Reinheit fraglich. — B. Bei der Bromierung verschiedener Seetieröle und Hydrolyse der bromierten Glyceride mit 20%iger Salzsäure (Suzuki, Yokoyama, Pr. Acad. Tokyo 5, 272; C. 1929 II, 2842). — F: 104—105°. — Liefert bei der Behandlung mit Zinkstaub und Eisessig Isostearidonsäure.

Glycerin-[θ . ι -dibrom-palmitat]-[a-oktabrom-stearat]-[b-oktabrom-stearat], Zoomaro-stearidono-isostearidonin-oktadekabromid $C_{55}H_{89}O_{6}Br_{18}=(C_{17}H_{27}Br_{8}\cdot CO\cdot O)_{2}C_{8}H_{5}\cdot O\cdot CO\cdot [CH_{2}]_{7}\cdot CHBr\cdot [CH_{2}]_{5}\cdot CH_{3}$. B. Bei der Bromierung von Sardinenöl (Suzuki, $Pr.\ Acad.\ Tokyo\ 5,\ 267;\ C.\ 1929\ II,\ 2841)$. — F: 135°.

Glycerin-[θ . ι . λ μ . ξ .o-hexabrom-stearat]-bis-[b-oktabrom-stearat], Linoleno-disostearidonin - eikosidyobromid $C_{67}H_{88}O_6Br_{22}=CH_3\cdot[CH_2\cdot CHBr\cdot CHBr]_3\cdot[CH_2]_7\cdot CO\cdot O\cdot C_3H_6(O\cdot CO\cdot C_{17}H_{87}Br_8)_8$. Bei der Bromierung von Tintenfischöl (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842). — F: 81°.

Glycerin - bis - [a - oktabrom - stearat] - [b - oktabrom - stearat], Distearidono-isostearidonin - eikositetrabromid $C_{57}H_{86}O_6Br_{24}=(C_{17}H_{27}Br_8CO\cdot O)_2C_2H_5\cdot O\cdot CO\cdot C_{17}H_{87}Br_8\cdot B.$ Bei der Bromierung von Tintenfischöl (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842). — F: 125°.

Glycerin - tris - [b - oktabrom - stearat], Triisostearidonin - eikositetrabromid $C_{57}H_{66}O_6Br_{34}=(C_{17}H_{57}Br_8\cdot CO\cdot O)_4C_3H_5$. Bei der Bromierung von Tintenfischöl (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842). — F: 74°.

Dibromdijodstearinsäure, Linolsäure-bis-bromojodid $C_{18}H_{38}O_{3}Br_{2}I_{2}=CH_{3}\cdot [CH_{2}]_{4}\cdot C_{2}H_{3}BrI\cdot CH_{3}\cdot C_{2}H_{3}BrI\cdot [CH_{2}]_{7}\cdot CO_{2}H.$ B. Aus Linolsäure und Jodmonobromid in Eisessig (Holde, Gorgas, B. 58, 1074; 59, 114). — Krystalle (aus Petroläther oder Petroläther + Benzol). F: 77,8°. Löslich in Äther. — $Ca(C_{18}H_{31}O_{2}Br_{2}I_{2})_{2}$. Färbt sich bei 100° braun; F: 115° (Zers.) (H., G., B. 59, 115).

- 2. 2 Methyl heptadecansäure (1), Heptadecan carbonsäure (2), α -Methyl-margarinsäure, Methyl-n-pentadecyl-essigsäure $C_{18}H_{36}O_2 = CH_3 \cdot (CH_2)_{14} \cdot CH(CH_3) \cdot CO_2H$. Diese Konstitution kommt der von Böhme (Ar. 241, 14) aus Lichesterinsäure (Syst. Nr. 2619) erhaltenen λ -Isostearinsäure (H 2, 388) zu (Asano, Azumi, B. 68 [1935], 991). B. Beim Behandeln von α -Brom-margarinsäure mit Methylmagnesiumjodid in Ather (Morgan, Holmes, J. Soc. chem. Ind. 46, 153 T; C. 1927 II, 1464). Beim Erhitzen von Methyl-n-pentadecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1265). F: 34—35° (St., J., Ad.), 48—49° (As., Az.), 51—51,5° (M., H.). Kps: 179—183° (St., J., Ad.). Kp1: ca. 170° (As., Az.). Bactericide Wirkung: St., J., Ad.
- 3. Heptadecan-carbonsäure-(3), α -Åthyl-palmitinsäure, Äthyl-n-tetradecyl-essigsäure $C_{18}H_{26}O_3 = CH_3 \cdot [CH_3]_{13} \cdot CH(C_3H_5) \cdot CO_3H$. B. Beim Erhitzen von Athyl-n-tetradecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1265). F: 23—24°. Kp_{3,5}: 167—170°. D₄*: 0,8767. n_D*: 1,4531. Bactericide Wirkung: St., J., A.
- 4. Heptadecan-carbonsäure-(4), Propyl-n-tridecyl-essigsäure $C_{18}H_{36}O_2 = CH_2 \cdot [CH_3]_{18} \cdot CH(CH_2 \cdot C_3H_3) \cdot CO_3H$. B. Beim Erhitzen von Propyl-n-tridecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1265). F: 31—32°. Kp₅: 179—183°. Bactericide Wirkung: St., J., A.
- 5. Heptadecan-carbonsäure-(5), α -Butyl-myristinsäure, Butyl-n-dodecylessigsäure $C_{18}H_{24}O_3=CH_3\cdot [CH_2]_{11}\cdot CH([CH_2]_3\cdot CH_3)\cdot CO_2H$. B. Beim Erhitzen von Butyl-n-dodecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1265). F: 23—24°. Kp₄: 180—184°. D₄*: 0,8743. n_5 *: 1,4528. Bactericide Wirkung: St., J., A.

¹⁾ Zur Beseichnung Isostearidonsäure s. S. 469.

- 6. Heptudecan-carbonsäure-(6), n-Amyl-n-undecyl-essigsäure C₁₈H₃₆O₂ = CH₃·[CH₂]₁₀·CH([CH₂]₄·CH₃)·CO₂H. B. Beim Erhitzen von n-Amyl-n-undecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1265). Kp₄: 180—185°. D₁₅²⁵: 0,8829. n₂₅²⁵: 1,4519. Bactericide Wirkung: St., J., A.
- 7. Heptadecan-carbonsäure-(7), α -n-Hexyl-laurinsäure, n-Hexyl-n-decylessigsäure $C_{18}H_{36}O_2 = CH_3 \cdot [CH_2]_6 \cdot CH([CH_2]_5 \cdot CH_3) \cdot CO_2H$. B. Beim Erhitzen von n-Hexyl-n-decyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51. 1265). Kp_5 : 182—184°. D_4^{α} : 0,8741. n_2^{α} : 1,4527. Bactericide Wirkung: St., J., A.
- 8. Heptadecan-carbonsäure-(8), n-Heptyl-n-nonyl-essigsäure $C_{18}H_{36}O_2 = CH_3 \cdot [CH_2]_8 \cdot CH([CH_2]_6 \cdot CH_3) \cdot CO_2H$. B. Beim Erhitzen von n-Heptyl-n-nonyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1265). Kp₅: 180—183°. D_1^{∞} : 0,8747. n_2^{∞} : 1,4528. Bacterieide Wirkung: St., J., A.
- 9. Heptadecan-carbonsäure-(9), Di-n-octyl-essigsäure $C_{18}H_{36}O_2=(CH_3-CH_2)_{7,2}CH\cdot CO_2H$. B. Beim Erhitzen von Di-n-octyl-malonsäure über den Schmelzpunkt (STANLEY, JAY, Adams, Am. Soc. 51, 1265). F: 35—36°. Kp₅: 183–185°. Bactericide Wirkung: St., J., A.
- 10. 2-Methyl-hexadecan-carbonsäure-(3). Isopropyl-n-tridecyl-essigsäure $C_{18}H_{36}O_2 = CH_3 \cdot [CH_2]_{12} \cdot CH[CH(CH_3)_2] \cdot CO_2H$. B. Beim Erhitzen von Isopropyl-n-tridecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1265). F: 58° bis 59°. Kp₅: 178—182°. Bactericide Wirkung: St., J., A.
- 11. 2-Methyl-hexadecan-carbonsäure-(4), a-Isobutyl-myristinsäure. Isobutyl-n-dodecyl-essigsäure C₁₈H₃₆O₂ = CH₃·[CH₂]₁₁·CH[CH₂·CH(CH₃)₂]·CO₂H. B. Beim Erhitzen von Isobutyl-n-dodecyl-malonsäure über den Schmelzpunkt (Stanley. Jay, Adams, Am. Soc. 51, 1266). F: 26 –27°. Kp₄: 175–180°. Bactericide Wirkung: St., J., A.
- 12. 3-Methyl-hexadecan-carbonsäure-(4). α -sek.- Butyl-myristinsäure. sek.- Butyl-n-dodecyl-essigsäure $C_{18}H_{36}O_2=CH_3\cdot[CH_2]_{11}\cdot CH[CH(CH_3)\cdot C_2H_5]\cdot CO_2H$. B. Beim Erhitzen von sek.-Butyl-n-dodecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1266). F: 38—39°. Kp₆: 178—183°. Bactericide Wirkung: St., J., A.
- 13. 4 Methyl hexadecan carbonsäure (5). β Methyl α n undecyl-n-capronsäure $C_{18}H_{36}O_2 = CH_3 \cdot [CH_2]_{10} \cdot CH[CH(CH_3) \cdot CH_2 \cdot CH_3 \cdot CO_2H$. B. Beim Erhitzen von $[\alpha$ -Methyl-butyl]-n-undecyl-malonsäure über den Schmelzpunkt (Stanley, Jay, Adams, Am. Soc. 51, 1266). F: 37—38°. Kp₅: 175—178°. Bactericide Wirkung: St., J., A. [Hillger]

19. Carbonsäuren $C_{19}H_{38}O_2$.

1. Nonadecansäure. Octadecan - carbonsäure - (1), "Nonadecylsäure" $C_{19}H_{38}O_3 = CH_3 \cdot [CH_2]_{17} \cdot CO_2H$ (H 389; E I 178). B. Aus dem Nitril (s. u.) beim Kochen mit alkoh. Natronlauge (Levene, Taylor, J. biol. Chem. 59, 920). Entsteht wahrscheinlich bei der Oxydation von Paraffin mit Luft in verd. Soda-Lösung in Gegenwart von Eisen, Mangan oder Kupfer im Autoklaven bei 170° (F. FISCHER, SCHNEIDER, B. 53, 922; Abh. Kenntnis Kohle 4 [1919], 48; SCHN., Jantsch, Abh. Kenntnis Kohle 4, 127; vgl. Kelber. B. 53, 1568; Francis, Piper, Malkin, Pr. roy. Soc. [A] 128 [1930], 229, 235). — F: 69—70° (korr.) (L., T.). — Kaliumsalz. Röntgenogramm: Piper, Soc. 1929, 236.

Methylester $C_{20}H_{40}O_2 = CH_3 \cdot [CH_2]_{17} \cdot CO_2 \cdot CH_3$. B. Aus Nonadecansäure beim Kochen mit Methanol in Gegenwart von Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 913). — Krystalle (aus Aceton). F: 39,5—40,5° (korr.).

Äthylester $C_{21}H_{42}O_2=CH_3\cdot [CH_2]_{17}\cdot CO_2\cdot C_2H_5$. B. Aus Nonadecansäure beim Kochen mit Alkohol in Gegenwart von Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 911). — Krystalle (aus Aceton). F: 37—38° (korr.). Kp_{0,27}: 166—168°.

Nitril, n-Octadecylcyanid C₁₉H₃₇N = CH₃·[CH₂]₁₇·CN. B. Aus n-Octadecyljodid beim Kochen mit Kaliumcyanid in 99,5% igem Alkohol (Levene, Taylor, J. biol. Chem. 59, 917). — Krystalle (aus Aceton). F: 42,5—43,5° (korr.).

19-Brom-nonadecansäure-(1), ω -Brom-nonadecylsäure $C_{19}H_{27}O_2Br=CH_3Br-[CH_3]_{17}\cdot CO_3H$. B. Aus ω -Oxy-nonadecylsäure durch Einw. von Bromwasserstoff in Eisessig (Chuit, Hausser, Helv. 12, 489). — Krystalle (aus Petroläther + wenig Benzol oder aus Alkohol). F: 73—74°. Kp_{3,5}: 225—228°. Ziemlich schwer löslich in Alkohol.

- 2. 2-Methyl-octadecansäure-(1), Octadecan-carbonsäure-(2), α -Methyl-stearinsäure $C_{19}H_{38}O_2=CH_3\cdot[CH_2]_{15}\cdot CH(CH_3)\cdot CO_2H$. B. Aus α -Brom-stearinsäure und Methylmagnesiumjodid in Äther (Morgan, Holmes, J. Soc. chem. Ind. 46, 153 T; C. 1927 II, 1464). Amorphes Pulver (aus Alkohol oder Petroläther). F: 58°.
- 3. 9-Methyl-octadecansäure-(18), i-Methyl-stearinsäure, 9-Methyl-heptadecan-carbonsäure-(1), Tuberkelstearinsäure $C_{19}H_{38}O_2 = CH_3 \cdot [CH_2]_7 \cdot CH(CH_3) \cdot [CH_2]_8 \cdot CO_2H$. Zur Zusammensetzung und Konstitution vgl. Spielman, J. biol. Chem. 106 [1934], 87; Wieghard, Anderson, J. biol. Chem. 126 [1938], 521. B. Bei der Hydrolyse des acetonlöslichen Fetts aus Tuberkelbacillen (Anderson, Chargaff, J. biol. Chem. 85, 78, 83). F: 14—15° (A., Ch.). Opt.-inakt. (A., Ch.). Löslich in Ather (A., Ch.). Die freie Säure ist physiologisch unwirksam; das Natriumsalz zeigt bactericide Wirkung auf Bac. leprae (A., Ch.). AgC₁₉H₃₇O₂. Unlöslich in heißem Alkohol, Äther und Benzol (A., Ch.).

Methylester $C_{20}H_{40}O_2=C_{18}H_{37}\cdot CO_2\cdot CH_3$. B. Beim Kochen der Säure mit methylalkoholischer Salzsäure (Anderson, Chargaff, J. biol. Chem. 85, 80). — Läßt sich im Hochvakuum bei 140—145° destillieren.

20. Carbonsäuren $C_{20}H_{40}O_2$.

1. Eikosansäure, Nonadecan-carbonsäure-(1), Arachinsäure¹) C₂₀H₄₀O₂ = CH₃·[CH₂]₁₈·CO₂H (H 389; E I 178). Literatur: H. Heller in Ubbelohdes Handbuch der Chemie und Technologie der Öle und Fette, 2. Aufl., Bd. I [Leipzig 1929], S. 67. — T. P. Hilder in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 23. — D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 622. V. Eine Zusammenstellung über das Vorkommen in Pflanzen s. bei C. Wehmer, W. Thies,

M. HADDERS in G. KLEIN, Handbuch der Pflanzenanalyse, Bd. II, 1. Tl. [Wien 1932], S. 513; Literaturhinweise hierzu s. C. Wehmer, Pflanzenstoffe, 2. Aufl., Bd. I [Jena 1929], Bd. II [Jena 1931]. — Zum Vorkommen im Erdnußöl vgl. Heiduschka, Felser, Z. Unters. Nahr.-Genuβm. 38, 241; C. 1920 I, 654; Jamieson, Baughman, Brauns, Am. Soc. 43, 1372; Hilditch, Vidyarthi, J. Soc. chem. Ind. 46, 173 T; C. 1927 II, 238. Die von Gössmann (A. 89, 1) und Schweizer (Ar. 222, 757) aus Erdnußöl gewonnenen Arachinsäure-Präparate sind als Gemische von Eikosansäure mit Behensäure und anderen Säuren erkannt worden (EHRENSTEIN, STUEWER, J. pr. [2] 105, 200; vgl. TRILLAT, Ann. Physique [10] 6, 85; COHEN, Versl. Akad. Amsterdam 34, 462; C. 1926 I, 132; HOLDE, GODBOLE, B. 59, 36; Ho., BLEY-BERG, RABINOWITSCH, B. 62, 177; Ch. Umschau Fette 36, 245; JANTZEN, TIEDCKE, J. pr. [2] 127 [1930], 277). Arachinsäure findet sich als Glycerid im Mutterkornöl (BAUGHMAN. JAMIESON, Oil Fat Ind. 5, 88; C. 1928 II, 199), im Maisöl (B., J., Am. Soc. 43, 2696), in der Murumurubutter (?) (aus Astrocaryum murumuru) (André, Guichard, C. r. 181, 230), im Ol aus dem Fruchtfleisch von Persea gratissima Gaertn. (Avocadobaum) in geringer Menge (Jamieson, Baughman, Hann, Oil Fat Ind. 5, 204; C. 1928 II, 1159), im Senfsamenöl von Sinapis alba und S. nigra (Hilditch, Riley, Vidyarthi, J. Soc. chem. Ind. 46, 463 T; C. 1928 I, 707), im Sojabohnenöl (B., J., Am. Soc. 44, 2951; Wallis, Burrows, Am. Soc. 46, 1949), im Samenöl von Nephelium lappaceum (Rambutan-Talg) (Morgan, Bowen, J. Soc. chem. Ind. 43, 347 T; C. 1925 I, 482; M., Holmes, J. Soc. chem. Ind. 44, 219 T; C. 1925 II, 407), im Samenol der Jutepflanze (Corchorus capsularis) (SEN, J. indian chem. Soc. 5, 765; C. 1929 I, 1704), im Baumwollsaatöl (J., B., Am. Soc. 42, 1202; Oil Fat Ind. 4, 132), im Okrasamenöl (von Abelmoschus esculentus) (J., B., Am. Soc. 42, 169), im Chaulmoograöl (?) (Hashimoto, Am. Soc. 47, 2330), im Sesamöl (J., B., Am. Soc. 46, 778), im Samenöl des Riesenkürbis Cucurbita maxima (B., J., Am. Soc. 42, 155, 157) und im Sonnenblumensamenöl (J., B., Am. Soc. 44, 2955). Arachinsäure-Gehalt von spanischem Olivenöl: J., Oil Fat Ind. 4. 426; C. 1928 I, 1728. Uber das Vorkommen im Hefefett vgl. Smedley-MacLean, Thomas, Biochem. J. 14, 487. Arachinsäure findet sich als Glycerid im Renntierfett (BAUGHMAN. Jamieson, Kinney, Oil Fat Ind. 6, Nr. 8, S. 12; C. 1929 II, 1869), in den Körperölen verschiedener Walarten (Toyama, Ch. Umschau Fette 33, 297; 34, 23; J. Soc. chem. Ind. Japan Spl. 30, 138; C. 1927 I, 1331, 3201; 1928 I, 2417) und in verschiedenen Fischleberölen (To., Tsuchiya, J. Soc. chem. Ind. Japan Spl. 30, 58; C. 1929 II, 2278; Hilditch, Houlbrooke. Analyst 53, 256; C. 1928 II, 503). Arachinsäure findet sich in Form wachsartiger Ester in den Rinden von Picea excelsa (Zellner, M. 47, 678) und von Acer campestre L. (Feinberg. Mitarb., M. 44, 263), in der Rinde von Fagus silvatica L. (?) (Z., M. 47, 158) und in den Zweigen von Fabiana imbricata (Pichi-Pichi) (EDWARDS, ROGERSON, Biochem. J. 21, 1012). Araehinsäure findet sich in japanischem Petroleum (TANAKA, KUWATA, J. Fac. Eng. Tokyo Univ. 17, 293; C. 1929 I, 960).

¹⁾ Englisch auch arachidic acid.

Bildung. Arachinsäure entsteht wahrscheinlich bei der Oxydation von n-Triakontan mit Luftsauerstoff in Gegenwart von 5% Terpentinöl bei 95° (Francis, Wood, Soc. 1927, 1900; Francis, Piper, Malkin, Pr. roy. Soc. [A] 128 [1930], 229) sowie bei der Oxydation von Paraffin mit Sauerstoff in Gegenwart von Manganverbindungen bei 150° (Kelber, B. 53, 1576; vgl. Franck, Ch. Z. 44, 310; C. 1920 II, 781; Francis, P., M.). Beim Kochen von Arachinsaurenitril mit alkoh. Natronlauge (LEVENE, TAYLOR, J. biol. Chem. 59, 920). Bei der Hydrierung von Arachidonsäure (S. 469) in Gegenwart von kolloidalem Palladium in Alkohol unter geringem Überdruck (WESSON, J. biol. Chem. 60, 187). Zur Bildung durch Schmelzen

von Erucasäure mit Kaliumhydroxyd in Gegenwart von wenig Wasser (Fitz, B. 4, 444) vgl. Morgan, Bowen, J. Soc. chem. Ind. 43, 346 T; C. 1925 I, 482.

Physikalische Eigenschaften. Arachinsäure ist nach röntgenographischen Untersuchungen dimorph (Piper, Malkin, Austin, Soc. 1926, 2311; Francis, Pi., Ma., Pr. roy. Soc. [A] 128, 238; C. 1930 II, 1855; Thibaud, Nature 119, 853; Morgan, Holmes, J. Soc. chem. Ind. 47, 311 T; C. 1929 I, 14; Fr., Collins, Pi., Pr. roy. Soc. [A] 158 [1937], 694; C. 1937 II, 562). F: 75,35° (Fr., Pi., Am. Soc. 61 [1939], 578), 75—75,5° (Adam, Dyer, Soc. 127, 72). Spezif. Wärme cp der festen Substanz zwischen 20° und 66°: 0,4772 cal/g; der flüssigen Substanz bis 100°: 0.5663 cal/g: Schmelzwärme: 54 24 cal/g (Garrier Madder) der flüssigen Substanz bis 100°: 0,5663 cal/g; Schmelzwärme: 54,24 cal/g (GARNER, MADDEN, RUSHBROOKE, Soc. 1926, 2501). Löslichkeit von Gemischen mit Lignocerinsäure in 90,3 vol. % igem Alkohol bei 200 und 250: Thomas, Yu, Am. Soc. 45, 122. Thermische Analyse des Systems mit Stearinsäure: Morgan, Bowen, J. Soc. chem. Ind. 43, 347 T; C. 1925 I, 482. Schmelzpunktsdepression durch Palmitinsäure, Stearinsäure und Behensäure: McGregor, Beal, Am. Soc. 48, 3153. Beeinflussung der Grenzflächenspannung zwischen Benzol und wäßr. Natronlauge durch Arachinsäure: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 999; Rev. gén. Colloides 5, 487; C. 1927 II, 396. Randwinkel gegen Wasser: Adam, Jessop, Soc. 127, 1866; Nietz, J. phys. Chem. 32, 262. Zur Ausbreitung auf verd. Salzsäure vgl. Adam, Dyer, Pr. 109. Soc. [A] 106, 700; C. 1925 I, 931.

Bestimmung in fetten Olen: PRITZKER, JUNGKUNZ, Z. Unters. Nahr.-Genuβm. 42, 232; C. 1922 II, 590; Bertram, Z. dtsch. Öl-Fettind. 45, 735; C. 1926 II, 129; Wallis, Burrows, Am. Soc. 46, 1951; Thomas, Yu, Am. Soc. 45, 123. Trennung von Stearinsaure auf Grund der verschiedenen Löslichkeit in Alkohol von 90,3 Vol. %: TH., Yu.

Natriumsalz. Oberflächenspannung von Lösungen in Wasser und in wäßr. Lösungen Natriumsalz. Oberlächenspannung von Lösungen in Wasser und in waßt. Lösungen von Natriumstearat bei 60°: Walker, Soc. 119, 1523. Hydrolysengrad: Stocks, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786. — Neutrales Kaliumsalz KC₂₀H₃₉O₂. Röntgenogramm: Piper, Soc. 1929, 236; Francis, Pi., Malkin, Pr. roy. Soc. [A] 128 [1930], 224. Schwer löslich in Wasser und Äther (Zellner, M. 47. 158). — Saures Kaliumsalz KC₂₀H₃₉O₂ + C₃₀H₄₀O₂. B. Aus dem neutralen Kaliumsalz und 1 Mol Arachinsäure in warmem Alkohol (Malkin, B. 63 [1930], 1810). Röntgenogramm: Pi.; Fr., Pi., M.; M. — Bleisalz. Röntgenogramm: Trillat, Ann. Physique [10] 6, 76.

Arachinsäuremethylester, Methylarachinat $C_{21}H_{42}O_2=CH_3\cdot [CH_2]_{18}\cdot CO_2\cdot CH_3$. Die H 389 beschriebenen Präparate aus Arachinsäure des Erdnußöls sind Gemische von Arachinsäuremethylester mit Methylestern der Behensäure und anderen Säuren gewesen (vgl. dazu die S. 369 bei Arachinsäure zitierte Literatur sowie Morgan, Bowen, J. Soc. chem. Ind. 43, 347 T; C. 1925 I, 482; ADAM, DYER, Soc. 127, 70; LEVENE, TAYLOR, J. biol. Chem. 59, 911, 913; Francis, Piper, Malkin, Pr. roy. Soc. [A] 128 [1930], 238; C. 1930 II, 1855). B. Aus Arachinsäure und Methanol beim Einleiten von Chlorwasserstoff (ADAM, DYER, Soc. 127, 72) oder beim Kochen in Gegenwart von Schwefelsäure (Levene, Taylor). — F: 46—470 (A., D.; L., T.), 45,5—46,5° (MORGAN, BOWEN); existiert in 2 Modifikationen, die bei 45,8° und 46,6° schmelzen (Francis, Piper, Am. Soc. 61 [1939], 578). Kp₁₀: 215—216° (korr.) (Ehrenstein, Stuewer, J. pr. [2] 105, 205). Zur Ausbreitung von Arachinsäuremethylester auf Wasser vgl. A., D., Pr. roy. Soc. [A] 106, 700; C. 1925 I, 931.

Arachinsäureäthylester, Äthylarachinat $C_{22}H_{44}O_3=CH_3\cdot[CH_2]_{18}\cdot CO_2\cdot C_2H_5$. Die H 389 beschriebenen Präparate aus Arachinsäure des Erdnußöls sind Gemische gewesen; vgl. die in den Artikeln Arachinsäure (S. 369) und Arachinsäuremethylester (s. o.) zitierte Literatur. — B. Aus Arachinsäure und Athylalkohol beim Einleiten von Chlorwasserstoff (Adam, Dyer, Soc. 127, 72) oder beim Kochen in Gegenwart von Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 911). — F: 41,5—42,5° (A., D.; L., T.); zum Schmelzpunkt und über die Existenz zweier Modifikationen vgl. Francis, Collins, Piper, Pr. roy. Soc. [A] 158 [1937], 699; C. 1937 II, 562; Fr., Pl., Am. Soc. 61 [1939], 578. Zur Ausbreitung von Arachinsäureäthylester auf Wasser vgl. A., D., Pr. roy. Soc. [A] 106, 700; C. 1925 I, 931.

Arachinsäureamid $C_{20}H_{41}ON = CH_3 \cdot [CH_2]_{18} \cdot CO \cdot NH_2$ (H 390). F: 109° (ADAM, DYER, Soc. 127, 72).

Arachinsäurenitril, n-Nonadecylcyanid $C_{20}H_{20}N=CH_{2}$ [CH₂]₁₈·CN. B. Aus n-Nonadecyljodid beim Kochen mit Kaliumcyanid in Alkohol (Levene, Taylor, J. biol. Chem. 59, 917). — Krystalle (aus Aceton). F: 49,5—50,5° (korr.) (L., T.), 49,5° (ADAM, DYER,

371

Soc. 127, 72). Zur Ausbreitung auf Wasser vgl. Adam, Dyer, Pr. roy. Soc. [A] 106, 700; C. 1925 I, 931.

20-Brom-eikosansäure-(1), ω -Brom-arachinsäure $C_{20}H_{39}O_2Br=CH_2Br\cdot [CH_2]_{18}\cdot CO_2H$ (H 390). B. Aus ω -Oxy-arachinsäure durch Einw. von Bromwasserstoff in Eisessig (Churr, Hausser, Helv. 12, 490). — Krystalle (aus Petroläther + Benzol oder aus Alkohol). F: 77—78°. Kp₃: 245—247°.

Glycerin-palmitat-[a-oktabrom-stearat]-[$\vartheta.\iota$ -dibrom-arachinat], Palmito-stearidono-gadolein-dekabromid $C_{57}H_{100}O_{6}Br_{10}=CH_{3}\cdot[CH_{2}]_{9}\cdot CHBr\cdot CHBr\cdot [CH_{2}]_{7}\cdot CO\cdot O\cdot C_{3}H_{5}(O\cdot CO\cdot [CH_{2}]_{14}\cdot CH_{3})\cdot O\cdot CO\cdot C_{17}H_{27}Br_{8}$. Bei der Bromierung von Walfischtran (Suzuki, $Pr.\ Acad.\ Tokyo$ 5, 266; $C.\ 1929\ II$, 2841). — $E:\ -3^{0}$.

Glycerin - $[\vartheta.\iota.\lambda.\mu$ - tetrabrom - stearat] - bis - $[\vartheta.\iota$ - dibrom - arachinat], Digadoleo-linolein - oktabromid, Linoleo - digadolein - oktabromid $C_{01}H_{110}O_0Br_8 = (CH_3\cdot [CH_2]_9\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CO\cdot O)_2C_3H_8\cdot O\cdot CO\cdot [CH_3]_7\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot [CH_2]_4\cdot CH_3$. Suzuki $(Pr.\ Acad.\ Tokyo\ 5,\ 267,\ 268;\ C.\ 1929\ II,\ 2841)$ erhielt bei der Bromierung von Sardinenöl ein Präparat vom Erstarrungspunkt 2^0 , bei der Bromierung von Heringsöl ein Präparat vom Erstarrungspunkt 6^0 .

Glycerin- $[\vartheta.\iota.\lambda.\mu.\xi.o$ -hexabrom-stearat]-bis- $[\vartheta.\iota$ -dibrom-arachinat], Digadoleolinolenin - dekabromid $C_{e_1}H_{108}O_eBr_{10} = (CH_3\cdot[CH_2]_e\cdot CHBr\cdot CHBr\cdot [CH_2]_r\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot [CH_2]_r\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CH_2\cdot CHBr\cdot CH_2\cdot CH_3$. B. Bei der Bromierung von Haifischleberöl (Suzuki, $Pr.\ Acad.\ Tokyo\ 5,\ 271;\ C.\ 1929\ II,\ 2842$).

x-Oktabrom-arachinsäure, Arachidonsäureoktabromid C₂₀H₃₂O₂Br₈ = C₁₉H₃₁Br₈·CO₂H. Zur Konstitution vgl. die bei Arachidonsäure (S. 469) angeführte Literatur. Zur Frage der Einheitlichkeit vgl. Bosworth, Sisson, *J. biol. Chem.* 107 [1934], 492. — *B.* Durch Behandeln der im ungetrennten Gemisch der Fettsäuren aus Schweineleber enthaltenen Arachidonsäure mit Brom in Eisessig (Hartley, *J. Physiol.* 38, 359; *C.* 1909 II, 921). Durch Versetzen von Gehirnphosphatiden in Ather mit Brom (Wesson, *J. biol. Chem.* 60, 184). — Pulver. F: 245° (Zers.) (Levene, Simms, *J. biol. Chem.* 51, 289), 237—238° (Cartland, Hart, *J. biol. Chem.* 66, 629), 236—237° (Hart, Heyl, *J. biol. Chem.* 70, 672). 234—235° (Hart, Heyl, *J. biol. Chem.* 72, 399), cs. 225° (Zers.) (Wagner, *Bio. Z.* 174, 415), 222—224° (Zers.) (Hartley), 220° (Zers.) (Suzuki, Masuda, *Pr. Acad. Tokyo* 3, 53; *C.* 1928 I, 605). Unlöslich in Ather und Benzol (Cart., Hart; Hart, Heyl, *J. biol. Chem.* 72, 399); zur Löslichkeit in organischen Lösungsmitteln vgl. a. Hartley; Bo., Si. — Beim Erhitzen mit Zinkstaub und Alkohol entsteht Arachidonsäure (Wesson, *J. biol. Chem.* 60, 187).

Methylester $C_{21}H_{34}O_2Br_8 = C_{19}H_{31}Br_8 \cdot CO_2 \cdot CH_3$. F: 228—231° (Brown, J. biol. Chem. **80**, 458; vgl. Klenk, v. Schoenebeck, H. **209** [1932], 127; Brown, Sheldon, Am. Soc. **56** [1934], 2150), 230° (Bosworth, Sisson, J. biol. Chem. **107** [1934], 494).

Äthylester $C_{22}H_{36}O_2Br_8 = C_{19}H_{31}Br_8 \cdot CO_2 \cdot C_2H_5$. B. Aus Arachidonsäureäthylester und Brom in Äther (Wesson, J. biol. Chem. 60, 187). — Niederschlag.

Glycerin - bis - $[\theta.\iota$ -dibrom - palmitat] - $[\mathbf{x}$ - oktabrom - arachinat], Dizoomaro-arachidonin-dodekabromid, Arachidono-dizoomarin-dodekabromid $C_{55}H_{94}O_6Br_{12} = C_{19}H_{31}Br_8\cdot CO\cdot O\cdot C_3H_5(O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_5\cdot CH_3)_2$. B. Bei der Bromierung des Öls von Theragra, chalcogramma (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842).

Glycerin-[θ .t-dibrom-palmitat]-[θ .t. λ . μ -tetrabrom-stearat]-[\mathbf{x} -oktabrom-arachinat], Zoomaro-linoleo-arachidonin-tetradekabromid $C_{57}H_{96}O_6Br_{14}=C_{19}H_{31}Br_8\cdot CO\cdot O\cdot C_3H_5(O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_5\cdot CH_3)\cdot O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot [CH_2]_4\cdot CH_3$. B. Bei der Bromierung von Lebertran (Suzuki, Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841). — F: 255° (Zers.).

Glycerin-[θ .t-dibrom-palmitat]-[a-oktabrom-stearat]-[x-oktabrom-arachinat], Zoomaro-stearidono-arachidonin-oktadekabromid $C_{57}H_{92}O_6Br_{18}=C_{19}H_{31}Br_8\cdot CO\cdot O\cdot C_{31}H_{50}O\cdot CO\cdot [CH_{2}]_7\cdot CHBr\cdot CHBr\cdot [CH_{2}]_5\cdot CH_3)\cdot O\cdot CO\cdot C_{17}H_{27}Br_8.$ Bei der Bromierung von Heringsöl (Suzuki, Pr. Acad. Tokyo 5, 266; C. 1929 II, 2841). — F: 148°.

Glycerin-[$\theta.\iota.\lambda\mu$ -tetrabrom-stearat]-[$\theta.\iota.\lambda\mu$, $\xi.o$ -hexabrom-stearat]-[x-oktabrom-arachinat], Linoleo-linoleno-arachidonin-oktadekabromid $C_{59}H_{96}O_{6}Br_{18}=C_{19}H_{31}Br_{8}\cdot CO\cdot O\cdot C_{3}H_{5}(O\cdot CO\cdot [CH_{2}]_{7}\cdot CHBr\cdot CHBr\cdot CHBr\cdot CHBr\cdot [CH_{2}]_{4}\cdot CH_{3})\cdot O\cdot CO\cdot [CH_{2}]_{7}\cdot [CHBr\cdot CHBr\cdot CH_{3}]_{3}\cdot CH_{3}$. B. Bei der Bromierung von Rotsalmöl (Suzuki, $Pr.\ Acad.\ Tokyo$ 5, 270; $C.\ 1929\ II,\ 2842$). — $F:\ 103^{\circ}$.

Glycerin-[ϑ . $\iota\lambda\mu$ -tetrabrom-stearat]-[b-oktabrom-stearat]-[x-oktabrom-arachinat], Linoleo-isostearidono-arachidonin-eikosibromid $C_{59}H_{94}O_6Br_{20}=C_{19}H_{31}Br_8\cdot CO\cdot O\cdot C_8H_6(O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CH_2\cdot CHBr\cdot CHBr\cdot [CH_2]_4\cdot CH_3)\cdot O\cdot CO\cdot C_{17}H_{27}Br_8.$ B. Bei der Bromierung von Sandaal-Öl (Suzuki, Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841). — F: 153°.

MONOCARBONSÄUREN CnH2nO2

Glycerin-bis-[b-oktabrom-stearat]-[x-oktabrom-arachinat], Diisostearidono-arachidonin-eikositetrabromid $C_{59}H_{90}O_{9}Br_{24} = C_{19}H_{31}Br_{8} \cdot CO \cdot O \cdot C_{3}H_{5}(O \cdot CO \cdot C_{17}H_{27}Br_{8})_{2}$.

a) Niedrigerschmelzendes Präparat. B. Bei der Bromierung von Sardinenöl

- (Suzuki, Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841). F: 110°.
- b) Höherschmelzendes Präparat. B. Bei der Bromierung von Sandaal-Öl (Suzuki, Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841). F: 126°.

Glycerin- $[\theta.\iota$ -dibrom-stearat]-bis-[x-oktabrom-arachinat], Oleo-diarachidoninoktadekabromid, Diarachidono-olein-oktadekabromid $C_{61}H_{100}O_{6}Br_{18} = (C_{19}H_{31}Br_{8}\cdot CO\cdot CO)$ $\mathrm{O)_2C_3H_5} \cdot \mathrm{O} \cdot \mathrm{CO} \cdot [\mathrm{CH_2}]_7 \cdot \mathrm{CHBr} \cdot \mathrm{CHBr} \cdot [\mathrm{CH_2}]_7 \cdot \mathrm{CH_3}.$

- a) Niedrigerschmelzendes Präparat. B. Neben einem bei 216° schmelzenden Präparat (s. u.) bei der Bromierung von Walöl (Suzuki, Masuda, Pr. Acad. Tokyo 3, 532; C. 1928 I, 605). — F: 2000 (Zers.). Schwer löslich in kaltem, leicht in heißem Benzol. — Gibt bei der Hydrolyse mit Salzsäure x-Oktabrom-arachinsäure [F: 220° (Zers.)] und ölige (?) ϑ.ι-Dibrom-stearinsäure.
- b) Höherschmelzendes Präparat. B. s. o. beim niedrigerschmelzenden Präparat. F: 216° (Zers.) (Suzuki, Masuda, Pr. Acad. Tokyo 3, 532; C. 1928 I, 605). Schwer löslich in heißem Benzol. — Gibt bei der Hydrolyse mit Salzsäure x-Oktabrom-arachinsäure [F: 2200 (Zers.)] und ölige (?) 3.1-Dibrom-stearinsäure (S., M.).
- Glycerin- $[\theta.\iota.\lambda.\mu.\xi.o$ -hexabrom-stearat]-bis-[x-oktabrom-arachinat], Linolenodiarachidonin - eikosidyobromid $C_{61}H_{96}O_6Br_{22} = (C_{19}H_{31}Br_8 \cdot CO \cdot O)_2C_3H_5 \cdot O \cdot CO \cdot [CH_2]_7 \cdot [CHBr \cdot CHBr \cdot CH_2]_8 \cdot CH_3$. B. Bei der Bromierung von Rotsalmöl (Suzuri, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842). — F: 115°.

Glycerin- $[\vartheta.\iota$ -dibrom-arachinat] - bis - [x-oktabrom-arachinat], Gadoleo - diarachidonin-oktadekabromid, Diarachidono-gadolein-oktadekabromid $C_{63}H_{104}O_{6}Br_{18} =$ $(C_{19}H_{31}Br_8 \cdot CO \cdot O)_9C_8H_5 \cdot O \cdot CO \cdot [CH_9]_7 \cdot CHBr \cdot CHBr \cdot [CH_9]_9 \cdot CH_3.$

a) Niedrigerschmelzendes Präparat. B. Bei der Bromierung von Heringsöl (Suzuki, Pr. Acad. Tokyo 5, 266; C. 1929 II, 2841). — F: 180°.

b) Höherschmelzendes Präparat. B. Bei der Bromierung des Öls aus inneren Organen der Walart Balaenoptera physalus (Suzuki, Pr. Acad. Tokyo 7, 11; C. 1931 I, 2778). — F: 220° (Zers.).

Glycerin - tris - [x - oktabrom - arachinat], Triarachidonin - eikositetrabromid $C_{43}H_{98}O_6Br_{24}=(C_{19}H_{31}Br_8\cdot CO\cdot O)_3C_3H_5$. B. Bei der Bromierung von Sardinenöl, Tintenfischöl und Haifischleberöl und des Öls von Theragra chalcogramma (Suzuki, Pr. Acad. Tokyo 5, 267, 270; C. 1929 II. 2841, 2842). — F: 205° (Zers.).

2. $Dihydrolagansäure C_{20}H_{40}O_2$. B. Beim Behandeln des äther. Extrakts von Laganum (Echinoidea) mit Kalilauge und Hydrieren der neben Cholesterin erhaltenen, nicht isolierten Lagansäure¹) bei Gegenwart von Palladiumschwarz in Alkohol (Kotake, Pr. Acad. Tokyo 3, 153; Scient. Pap. Inst. phys. chem. Res. 6, 49; C. 1927 II, 708; 1928 I, 710). — Blättchen (aus Methanol oder 80% igem Alkohol). F: 68,5—70°.

Amid $C_{20}H_{41}ON = C_{19}H_{39} \cdot CO \cdot NH_2$. Krystalle (aus Alkohol). F: 104—105° (Kotake, Pr. Acad. Tokyo 3, 154; Scient. Pap. Inst. phys. chem. Res. 6, 50; C. 1927 II, 708; 1928 I, 710).

21. Carbonsäuren $C_{21}H_{42}O_{2}$.

1. Heneikosansäure, Eikosan - carbonsäure - (1), "Heneikosylsäure" $C_{11}H_{45}O_2 = CH_3 \cdot [CH_2]_{19} \cdot CO_2H$ (E 179). B. Aus dem Nitril (S. 373) beim Kochen mit 50% iger alkoholischer Natronlauge (Levene, Taylor, J. biol. Chem. 59, 920). Bei der Oxydation von Trikosanon-(2) mit Chromschwefelsäure (Morgan, Holmes, J. Soc. chem. Ind. 44, 492 T; C. 1926 I, 1525). — Krystalle (aus Alkohol + Petroläther). F: 74° (M., H.), 74,3° (Francis, Piper, Am. Soc. 61 [1939], 578), 75—76° (L., T.). Istin 0,01 n. Salzsäure bei Zimmertemperatur nicht merklich löslich (Adam, Pr. roy. Soc. [A] 101, 467; C. 1928 I, 271). Zur Ausbreitung auf Wasser und verd. Salzsäure vol. A. Pr. roy. Soc. [A] 101, 457, 524; C. 1928 I, 271, 272. auf Wasser und verd. Salzsäure vgl. A., Pr. roy. Soc. [A] 101, 457, 521; C. 1928 I, 271, 272. Bei der Destillation des Bariumsalzes mit Bariumacetat aus einem gußeisernen Gefäß unter vermindertem Druck erhält man Dokosanon-(2) (M., H.). — KC₂₁H₄₁O₂. Röntgenogramm: PIPEB, Soc. 1929, 236; FRANCIS, PI., MALKIN, Pr. roy. Soc. [A] 128 [1930], 224. — KC₂₁H₄₁O₂ + C₂₁H₄₂O₂. Röntgenogramm: PI.; FR., PI., MA.

¹⁾ Über Lagansäure vgl. a. die nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] erschienene Arbeit von Kotake, Kimoto, Pr. Acad. Tokyo 6 [1930], 237; C. 1980 II, 2587.

373

Methylester $C_{22}H_{44}O_2 = CH_3 \cdot [CH_2]_{19} \cdot CO_2 \cdot CH_3$ (E I 179). Krystalle (aus Aceton). F: 48—49° (Levene, Taylor, *J. biol. Chem.* 59, 913), 49,5° (Morgan, Holmes, *J. Soc. chem. Ind.* 44, 492 T; *C.* 1926 I, 1525); nach Francis, Piper (*Am. Soc.* 61 [1939], 578) existieren 2 Modifikationen mit den Schmelzpunkten 47,2° und 47,6°. Ausbreitung auf Wasser: Adam, *Pr. roy. Soc.* [A] 103, 693; *C.* 1923 III, 1295.

Äthylester $C_{23}H_{46}O_2 = CH_3 \cdot [CH_2]_{19} \cdot CO_2 \cdot C_2H_5$. B. Aus Heneikosansäure beim Kochen mit alkoh. Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 911). — Krystalle (aus Aceton). F: 45—46° (L., T.), 44,5° (Francis, Piper, Am. Soc. 61 [1939], 578).

Amid $C_{21}H_{43}ON = CH_3 \cdot [CH_2]_{19} \cdot CO \cdot NH_2$ (E I 179). Ausbreitung auf Wasser: Adam, *Pr. roy. Soc.* [A] 103, 693; *C.* 1923 III, 1295.

Nitril, n-Eikosylcyanid $C_{21}H_{41}N=CH_3\cdot[CH_2]_{19}\cdot CN$. B. Aus n-Eikosyljodid beim Kochen mit Kaliumcyanid in Alkohol (Levene, Taylor, J. biol. Chem. **59**, 918). — Krystalle (aus Aceton). F: 48,5—49,5°; die Schmelze zeigt nach dem Abkühlen und Erstarren den Schmelzpunkt 43,5—44°, nach längerem Aufbewahren wieder den ursprünglichen Schmelzpunkt.

2-Brom-heneikosansäure-(1), α -Brom-heneikosylsäure $C_{21}H_{41}O_2Br = CH_3 \cdot [CH_2]_{18}$ CHBr·CO₂H (E I 179). Ausbreitung auf 0,01 n-Salzsäure: ADAM, $Pr.\ roy.\ Soc.\ [A]$ 103, 690; C. 1923 III, 1294.

21-Brom-heneikosansäure-(1), ω -Brom-heneikosylsäure $C_{21}H_{41}O_2Br=CH_2Br-[CH_2]_{19}\cdot CO_2H$. B. Aus ω -Oxy-heneikosylsäure durch Einw. von Bromwasserstoff in Eisessig (Chuit, Hausser, Helv. 12, 491). — Krystalle (aus Petroläther + Benzol oder aus Alkohol). F: 75—76°. Löslich in Äther und Benzol, schwer löslich in Alkohol, unlöslich in kaltem Petroläther.

- 2. 2.6.10.14-Tetramethyl-heptadecansäure-(17), 3.7.11.15-Tetramethyl-hexadecan-carbonsäure-(1), $\gamma.\eta.\lambda.o$ -Tetramethyl-margarinsäure $C_{21}H_{42}O_2 = (CH_3)_2CH \cdot [CH_2]_3 \cdot CH(CH_3) \cdot [CH_2]_3 \cdot$
- 3. Cluytinsäure C₂₁H₄₂O₂ (E I 179). Ist von Morgan, Holmes (J. Soc. chem. Ind. 47, 309; C. 1929 I, 14) und Francis, Piper, Malkin (Pr. roy. Soc. [A] 128, 248; C. 1930 II, 1856) durch röntgenographische Untersuchungen als Gemisch erkannt worden; neben einer Säure C₂₁H₄₂O₂ kommen darin anscheinend Säuren mit niedrigerer und höherer Kohlenstoffzahl vor (Fr., P., M.). [Weegmann]

22. Carbonsäuren $C_{22}H_{44}O_2$.

1. Dokosansäure. Heneikosan-carbonsäure-(1). Behensäure C₂₂H₄₄O₂ = CH₃ [CH₂]₂₀·CO₂H (H 391; E I 179). V. Eine Zusammenstellung über das Vorkommen in Pflanzen s. bei C. Wehmer, W. Thies, M. Handers in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 514; Literaturhinweise hierzu s. C. Wehmer, Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931]. Findet sich vielleicht in veresterter Form in einem aus Maisöl abgeschiedenen Wachs (Shriner, Nabenhauer, Anderson, Am. Soc. 49, 1292). In geringer Menge als Glycerid in den fetten Ölen von Brassica campestris (Rapsöl) und Brassica juncea (indisches Senföl) (Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 42, 51; C. 1926 II, 2729); in einem Öl aus einer Varietät von Brassica campestris (Hiddither, Riley, Vidyarthi, J. Soc. chem. Ind. 46, 460 T; C. 1928 I, 707); im Jambaöl (Samenöl von Eruca sativa) (S., W., A., J. indian Inst. Sci. [A] 9, 59; C. 1926 II. 2729) und im Erdnußöl (Holde, Bleyberg, Rabinowitsch, B. 62, 178; Ch. Umschau Fette 36, 245; C. 1929 II, 3220; Jantzen, Tiedcke, J. pr. [2] 127 [1930], 280; vgl. Ehrenstein. Stuewer, J. pr. [2] 105, 200; Cohen, Versl. Akad. Amsterdam 34, 462; C. 1926 I, 132). Im Leberöl von Squalus wakiyae Tanaka (Toyama, Tsuchiya, J. Soc. chem. Ind. Japan Spl. 30, 58 B; C. 1929 II, 2278), im Leberöl von Scymnorhinus lichia und in anderen Fischleberölen (Hilditch, Houlbrooke, Analyst 53, 256; C. 1928 II, 503). Zum Vorkommen im Buckelwaltran und Finnwaltran vgl. To., Ch. Umschau Fette 31, 222, 240, 247; C. 1925 I, 789. — B. Beim Durchleiten von Luft durch Triakontan bei 95° (Francis, Wood, Soc. 1927, 1901; Fr., Piper, Malkin, Pr. roy. Soc. [A] 128, 229, 232; C. 1930 II, 1856). Entsteht wahrscheinlich beim Einleiten von Sauerstoff bei 150° (Kelber, B. 53, 1577) oder von Stickstoffdioxyd bei 120—130° (Gränacher, Schäufelberger, Helv. 5, 392) in Paraffin (vgl. Fr., Pi., Ma.; A. Grün in Heffers-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, 2. Bd. [Wien 1937], S. 682; Renn

Behensäurenitril beim Kochen mit alkoh. Natronlauge (Levene, Taylor, J. biol. Chem. 59, 920). Durch Hydrierung von Brassidinsäure mit Wasserstoff und Nickel (Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 67; C. 1926 II, 2729). Durch Hydrierung von Cetoleinsäure in Gegenwart von Platinschwarz in Alkohol (Toyama, Ch. Umschau Fette 31, 239; C. 1925 I, 789). — Darst. durch Hydrierung von Erucasäure mit Wasserstoff und Palladium in Alkohol mit Gummi arabicum als Schutzkolloid: Morgan, Holmes, J. Soc. chem. Ind. 44, 491 T; C. 1926 I, 1525; Thomas, Mattikow, Am. Soc. 48, 975.

Tritt nach den röntgenographischen Untersuchungen von PIPER, Malkin, Austin (Soc. 1926, 2311) in 2 Modifikationen auf; über weitere Röntgenuntersuchungen vgl. A. Müller, Soc. 123, 2044; Trillat, Ann. Physique [10] 6, 61; Piggott, J. Washington Acad. 18, 332; C. 1928 II, 619; Morgan, Holmes, J. Soc. chem. Ind. 47, 309 T; C. 1929 I. 14. Ein über den Äthylester besonders sorgfältig gereinigtes Präparat erstarrte bei 79,70° und schmolz bei 79,95° (Francis, Piper, Am. Soc. 61 [1939], 578). E: 79,15° (Garner, King, Soc. 1929, 1859). F: 79,2—80,0° (Holde, Bleyberg, Rabinowitsch, Ch. Umschau Fette 36, 250; C. 1929 II, 3221; B. 62, 182), 79,3—79,8° (Sudbrough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 67; C. 1926 II, 2729), 79,87° (McGregor, Beal, Am. Soc. 48, 3152), 81,0—82,0° (Flecker, Taylor, Soc. 121, 1102). Spezifische Wärme cp von fester Behensäure zwischen 18,0° und 71,7°: 0,4854 cal/g; von flüssiger Behensäure zwischen 79,2° und 108,9°: 0,5556 cal/g (Garner, King, Soc. 1929, 1859). Schmelzwärme: 55,09 cal/g (Ga., Ki.). Verdrennungswärme bei konstantem Volumen: 9743,4 cal/g (Verkader, Coops, R. 47, 608). — Ist in 0,01 n-Salzsäure bei Zimmertemperatur nicht merklich löslich (Adam, Pr. roy. Soc. [A] 101, 467; C. 1923 I, 271). Löslichkeit in wäßt. Alkohol bei 0° und 25°: Thomas, Mattikow, Am. Soc. 48, 971. Schmelzpunkte von Gemischen mit Palmitinsäure, Stearinsäure und Arachinsäure: McGregor, Beal, Am. Soc. 48, 3153. Schmelz- und Erstarrungspunkte von Gemischen mit Stearinsäure [Eutektikum bei 61,8° (Erstarrungspunkt) bzw. 62,6° (Schmelzpunkt) und 28 % Behensäure]: Sudboough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 70; C. 1926 II, 2729. Grenzflächenspannung einer Lösung in Benzol gegen saure und alkalische Phosphat-Puffer-Lösungen (p_R = 5,6 und 7,6) bei 23°: Harteidge, Peters, Pr. roy. Soc. [A] 101, 356; C. 1923 I, 874. Randwinkel mit Wasser: Nietz, J. phys. Chem. 32, 262. Struktur monomolekularer Schichten auf Wasser und verd. Salzsäure: Adam, Pr. roy. Soc. [A] 101, 457, 521; C. 1923 I, 271, 272. — Zur Bestim

NaC₂₂H₄₃O₂. Kolloidchemisches und kryoskopisches Verhalten in Wasser: Laing, Soc. 127, 2751. Dampfdruck wäßr. Lösungen bei 90°: McBain, Salmon, Am. Soc. 42, 436. Oberflächenspannung wäßr. Lösungen: Walker, Soc. 119, 1524, 1526, 1527. Dichte und elektrische Leitfähigkeit von wäßr. Lösungen bei 90°: Flecker, Taylor, Soc. 121, 1103. Elektrische Leitfähigkeit der wäßr. Lösung bei 18°: L. Hydrolyse: L.; McBain, Hay, Soc. 1929, 600. — KC₂₂H₄₃O₂. Röntgendiagramm: Piper, Soc. 1929, 236; Francis, Pi., Malkin, Pr. roy. Soc. [A] 128 [1930], 224. — KC₂₂H₄₃O₃ + C₂₂H₄₄O₂. B. Aus dem neutralen Kaliumsalz und 1 Mol Behensäure in warmem Alkohol (Malkin, B. 63 [1930], 1810). Röntgendiagramm: Pi.; Fr., Pi., Ma.; Ma.

Behensäuremethylester C₂₃H₄₆O₂ = CH₃·[CH₂]₂₀·CO₂·CH₃ (E I 180). B. Aus Behensäure beim Kochen mit schwefelsäurehaltigem Methanol (Levene, Taylor, J. biol. Chem. 59, 913). Beim Hydrieren von Erucasäuremethylester mit Wasserstoff und Nickel bei 190—200° (McGregor, Beal, Am. Soc. 48, 3152). — Krystalle (aus Aceton). F: 53° bis 54° (L., T.), 52° (Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 69; C. 1926 II, 2729). Ist dimorph; die eine Form schmilzt bei 52,7°, die andere bei 53,3° (Francis, Piper, Am. Soc. 61 [1939], 578). Schmelz- und Erstarrungspunkte von Gemischen mit Stearinsäuremethylester (Eutektikum bei etwa 33,7° und etwa 5,7% Behensäuremethylester): S., W., A.

Behensäureäthylester C₂₄H₄₈O₂ = CH₃·[CH₂]₂₀·CO₂·C₂H₅ (H 391). B. Aus Erucasäure beim Schütteln mit Wasserstoff in Alkohol + Eisessig in Gegenwart von kolloidalem Palladium (Levene, Taylor, J. biol. Chem. 59, 910). Aus Erucasäureäthylester durch Einw. von Wasserstoff in Gegenwart von Nickel bei 180—200° (v. Braun, Teufferet, Weissbach, A. 472, 132 Anm. 1). — Krystalle (aus Aceton). F: 48,5—49,5° (L., T., J. biol. Chem. 59, 912). Ist dimorph; die eine Form schmilzt bei 48,5°, die andere bei 48,7° (Francis, Piper, Am. Soc. 61 [1939], 578). Kp_{0,30}: 184—185° (L., T.). Struktur monomolekularer Schichten auf Wasser und verd. Salzsäure: Adam, Pr. roy. Soc. [A] 101, 461; C. 1923 I, 271.

Behensäure - n - dokosylester $C_{44}H_{88}O_{3}=CH_{3}\cdot[CH_{2}]_{80}\cdot CO_{2}\cdot[CH_{2}]_{81}\cdot CH_{3}$. B. Aus Behensäurechlorid und Dokosanol-(1) in Gegenwart von Chinolin in Chloroform (Brigl., Fuchs, H. 119, 310). — Perlmutterglänzende Schuppen. F: 75°.

Glycerintribehenat, Tribehenin $C_{69}H_{124}O_5 = (CH_2\cdot [CH_2]_{20}\cdot CO\cdot O)_5C_2H_5$. B. Aus Trierucin durch Einw. von Wasserstoff und Nickel-Kieselgur bei 180° (Sudborough, Watson,

AYYAR, J. indian Inst. Sci. [A] 9, 66; C. 1926 II, 2729). — Krystalle (aus Benzol oder Chloroform). F: 81—81,5°. n_D^{∞} : 1,4391; n_D^{∞} : 1,4375.

Behensäurenitril, n-Heneikosylcyanid C₂₂H₄₃N = CH₃·[CH₂]₂₀·CN. B. Aus n-Heneikosyljodid beim Kochen mit Kaliumcyanid in Alkohol (Levene, Taylor, J. biol. Chem. 59, 918). — Krystalle (aus Aceton). F: 55,5—56,5° (korr.); die abgekühlte Schmelze schmilzt bei erneutem Erhitzen bei 51,5—52,5° und zeigt nach längerem Aufbewahren wieder den höheren Schmelzpunkt.

2-Brom-dokosansäure-(1)-äthylester, α -Brom-behensäure-äthylester $C_{24}H_{47}O_2Br=CH_3\cdot [CH_2]_{19}\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 391). Monomolekulare Ausbreitung auf Wasser: Adam, $Pr.\ roy.\ Soc.\ [A]$ 103, 690; C. 1923 III, 1294.

Glycerin-stearat-bis-[$\kappa.\lambda$ -dibrom-behenat], Stearo-dicetolein-tetrabromid $C_{65}H_{122}O_6Br_4=(CH_3\cdot[CH_2]_2\cdot CHBr\cdot CHBr\cdot[CH_2]_2\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot[CH_2]_{16}\cdot CH_3$. Zur Konstitution vgl. Suzuki, Pr. Acad. Tokyo 7 [1931], 232 Anm. 1. — B. Bei der Bromierung von Lebertran (S., Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841). — F: —7° (S., Pr. Acad. Tokyo 5, 267).

Glycerin-[θ .:-dibrom-stearat]-bis-[κ . λ -dibrom-behenat], Oleo-dicetolein-hexabromid $C_{65}H_{120}O_6Br_6=(CH_3\cdot[CH_2]_9\cdot CHBr\cdot CHBr\cdot [CH_2]_9\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CH_3$. Zur Konstitution vgl. Suzuki, *Pr. Acad. Tokyo* 7 [1931], 232 Anm. 1. — *B.* Bei der Bromierung von Sardinenöl (S., *Pr. Acad. Tokyo* 5, 268; *C.* 1929 II, 2841). — F: —2° (S., *Pr. Acad. Tokyo* 5, 268).

Glycerin- $[\vartheta.\iota$ -dibrom-arachinat]-bis- $[\varkappa.\lambda$ -dibrom-behenat], Gadoleo-dicetolein-hexabromid $C_{e7}H_{194}O_{e}Br_{e} = (CH_{3}\cdot[CH_{2}]_{e}\cdot CHBr\cdot CHBr\cdot [CH_{2}]_{e}\cdot CO\cdot O)_{e}C_{3}H_{5}\cdot O\cdot CO\cdot [CH_{2}]_{7}\cdot CHBr\cdot CHBr\cdot [CH_{2}]_{e}\cdot CH_{3}$. Zur Konstitution vgl. Suzuki, Pr. Acad. Tokyo 7 [1931], 232 Anm. 1. — B. Bei der Bromierung von Heringsöl (S., Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841). — F: 5° (S., Pr. Acad. Tokyo 5, 267).

Glycerin - [x-oktabrom - arachinat] - bis - [x. λ -dibrom - behenat], Dicetoleo - arachidonin-dodekabromid $C_{67}H_{118}O_6Br_{12}=(CH_3\cdot[CH_2]_9\cdot CHBr\cdot CHBr\cdot [CH_2]_9\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot C_{19}H_{31}Br_8$. Zur Konstitution vgl. Suzuki, Pr. Acad. Tokyo 7 [1931], 232 Anm. 1. — B. Bei der Bromierung von Sardinenöl (S., Pr. Acad. Tokyo 5, 268; C. 1929 II, 2841). — F: —3° (S., Pr. Acad. Tokyo 5, 268).

Glycerin - tris - $[\kappa.\lambda$ -dibrom - behenat], Tricetolein - hexabromid $C_{69}H_{126}O_6Br_6 = (CH_3 \cdot [CH_2]_9 \cdot CHBr \cdot [CH_2]_9 \cdot CO \cdot O)_8C_3H_8$. Zur Konstitution vgl. Suzuki, Pr. Acad. Tokyo 7 [1931], 232 Anm. 1. — B. Bei der Bromierung von Walfischtran (Suzuki, Pr. Acad. Tokyo 5. 266; C. 1929 II, 2841), von Heringsöl (S., Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841), von Sandaal Ol (S., Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841) und von Rotsalmöl (S., Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842). — Das Präparat aus Walfischtran erstarrte bei — 2°, das Präparat aus Heringsöl bei — 4°.

x-Oktabrom-behensäure $C_{22}H_{36}O_2Br_8=C_{21}H_{36}Br_8\cdot CO_2H$. B. Bei der Bromierung von Sardinenöl und Heringsöl und nachfolgendem mehrstündigen Kochen der abgetrennten bromierten Glyceride mit 20% iger Salzsäure (Suzuki, Yokoyama, Pr. Acad. Tokyo 5, 272; C. 1929 II, 2842). — Krystalle (aus Benzol). F: 96°. — Liefert bei der Behandlung mit Zinkstaub und Eisessig eine Carbonsäure $C_{22}H_{36}O_2$ (S. 470).

 $\begin{aligned} & \textbf{Glycerin-[θ,ι-dibrom-palmitat]-[a-oktabrom-stearat]-[x-oktabrom-behenat]} \\ & \textbf{C}_{59}\textbf{H}_{96}\textbf{O}_{8}\textbf{Br}_{18} = \textbf{C}_{21}\textbf{H}_{35}\textbf{Br}_{8}\cdot \textbf{CO}\cdot \textbf{O}\cdot \textbf{C}_{3}\textbf{H}_{5}(\textbf{O}\cdot \textbf{CO}\cdot [\textbf{CH}_{2}]_{7}\cdot \textbf{CHBr}\cdot \textbf{CHBr}\cdot [\textbf{CH}_{2}]_{5}\cdot \textbf{CH}_{3})\cdot \textbf{O}\cdot \textbf{CO}\cdot \textbf{C}_{17}\textbf{H}_{27}\textbf{Br}_{8}. \end{aligned}$

a) Präparat vom Schmelzpunkt 150°. B. Bei der Bromierung von Heringsöl (Suzuki, Pr. Acad. Tokyo 5, 266; C. 1929 II, 2841). — F: 150°.

b) Präparat vom Schmelzpunkt 120°. B. Bei der Bromierung von Sardinenöl (Suzuki, Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841). — F: 120°.

Glycerin - [x-oktabrom - arachinat] - bis - [x-oktabrom - behenat] $C_{67}H_{106}O_6Br_{24} = (C_{21}H_{36}Br_8 \cdot CO \cdot O)_2C_3H_5 \cdot O \cdot CO \cdot C_{19}H_{31}Br_8$. B. Bei der Bromierung von Sardinenöl (Suzuki, Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841). — F: 85°.

Glycerin - $[\vartheta.\iota.\lambda.\mu.\xi.o$ -hexabrom - stearat] - $[\vartheta.\iota$ -dibrom - arachinat] - [x-oktabrom-behenat] $C_{63}H_{106}O_6Br_{16} = C_{21}H_{35}Br_8\cdot CO\cdot O\cdot C_3H_5(O\cdot CO\cdot [CH_2]_7\cdot [CHBr\cdot CHBr\cdot CH_2]_3\cdot CH_3)\cdot O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_9\cdot CH_3$. B. Bei der Bromierung von Heringsöl (Suzuki, Pr. Acad. Tokyo 5, 266; C. 1929 II, 2841). — F: 104°.

x-Dekabrom-behensäure C₂₂H₂₄O₂Br₁₀ = C₂₁H₂₅Br₁₀·CO₂H. Über die Beziehungen zu der E I 180 beschriebenen Dekabrombehensäure ist nichts bekannt. — B. Bei der Hydrolyse mehrerer bromierter Glyceride aus Lebertran (s. u.) mit Salzsäure (SUZUKI, MASUDA, Pr. Acad. Tokyo 3, 532; 4, 166; C. 1928 I, 605; II, 1401). — F: 162°. Löslich in Benzol.

Glycerin - $[\theta.\iota$ - dibrom - palmitat] - $[\theta.\iota.\lambda.\mu.\xi.o$ - hexabrom - stearat] - [x-dekabrom behenat], Zoomaro-linoleno-clupanodonin-oktadekabromid, Clupanodono-linoleno-zoomarin-oktadekabromid $C_{59}H_{96}O_{4}Br_{18} = C_{21}H_{33}Br_{10} \cdot CO \cdot O \cdot C_{3}H_{5}(O \cdot CO \cdot [CH_{2}]_{7} \cdot CHBr \cdot CHBr \cdot [CH_{3}]_{5} \cdot CH_{3}) \cdot O \cdot CO \cdot [CH_{2}]_{7} \cdot [CHBr \cdot CHBr \cdot CH_{2}]_{3} \cdot CH_{3}$. Bei der Bromierung von Lebertran (Suzuki, $Pr.\ Acad.\ Tokyo$ 5, 267; C. 1929 II, 2841). — F: 131°.

Glycerin - $[\theta.\iota$ - dibrom-palmitat] - [a-oktabrom-stearat] - [x-dekabrom - behenat], Zoomaro-stearidono-clupanodonin-eikosibromid, Clupanodono-stearidono-soomarin-eikosibromid C₅₉H₉₄O₆Br₂₀ = C₂₁H₃₃Br₁₀·CO·O·C₃H₅(O·CO·[CH₂]₇·CHBr·CHBr·[CH₃]₅·CH₃)·O·CO·C₁₇H₂₇Br₈. Zur Konstitution vgl. Suzuki, *Pr. Acad. Tokyo* 7 [1931], 231 Z. 1 v. u. — B. Bei der Bromierung von Lebertran (S., MASUDA, *Pr. Acad. Tokyo* 4, 167; C. 1928 II, 1401). — F: 220° (Zers.) (S., M.; S.). Löslich in heißem, unlöslich in kaltem Benzol (S., M.). — Liefert bei der Hydrolyse mit Salzsäure x-Dekabrom-behensäure, &.t-Dibrom-palmitinsäure und x-Oktabrom-stearinsäure (S., M.).

Glycerin - bis - [b-oktabrom - stearat] - [x-dekabrom - behenat], Diisostearidono-clupanodonin - eikosihexabromid $C_{61}H_{92}O_6Br_{36} = C_{21}H_{33}Br_{10} \cdot CO \cdot O \cdot C_3H_5(O \cdot CO \cdot C_{17}H_{27}Br_8)_8$. B. Bei der Bromierung von Sandaal-Ol (Suzuki, Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841). — F: 124°.

Glycerin- $[\theta,\iota$ -dibrom-palmitat]-[x-oktabrom-arachinat]-[x-dekabrom-behenat], Zoomaro-arachidono-clupanodonin-eikosibromid, Clupanodono-arachidono-zoo- $\underset{\text{marin -eikosibromid}}{\text{eikosibromid}} \underbrace{C_{\text{51}}H_{\text{98}}O_{\text{6}}Br_{\text{20}}}_{\text{6}} = \underbrace{C_{\text{21}}H_{\text{33}}Br_{\text{10}}\cdot CO\cdot O\cdot C_{\text{3}}H_{\text{5}}(O\cdot CO\cdot [CH_{\text{2}}]_{\text{7}}\cdot CHBr\cdot CHB$ $[CH_2]_5 \cdot CH_3 \cdot O \cdot CO \cdot C_{19}H_{31}Br_8.$

a) Prāparat vom Schmelzpunkt 150° bzw. 152°. B. Bei der Bromierung von Heringsöl (Suzuki, Pr. Acad. Tokyo 5, 266; C. 1929 II, 2841). — F: 150° (Zers.) bzw. 152° (Zers.) (S., Pr. Acad. Tokyo 5, 266).

b) Präparat vom Schmelzpunkt 105°. B. Bei der Bromierung von Lebertran (Suzuki, Masuda, Pr. Acad. Tokyo 4, 167; C. 1928 II, 1401). — F: 105°. Löslich in Essigester, unlöslich in heißem Benzol. — Liefert bei der Hydrolyse mit Salzsäure x-Dekabrombehensäure, x-Oktabrom-arachinsäure und 8.1-Dibrom-palmitinsäure.

Glycerin-[2., dibrom-stearat] - [x-oktabrom-arachinat] - [x-dekabrom-behenat], Oleo - arachidono - clupanodonin - eikosibromid, Arachidono - clupanodono - olein-eikosibromid $C_{63}H_{102}O_6Br_{90} = C_{21}H_{33}Br_{10}\cdot CO\cdot O\cdot C_3H_5(O\cdot CO\cdot [CH_2]_7\cdot CHBr\cdot CHBr\cdot [CH_2]_7\cdot CH_3)\cdot O\cdot CO\cdot C_{10}H_{31}Br_8$. B. Bei der Bromierung von Walöl (Suzuki, Masuda, Pr. Acad. Tokyo 3, 531; C. 1928 I, 605). — F: 95°. Löslich in Äther, schwer löslich in Petroläther. Gibt bei der Hydrolyse mit Salzsäure x-Oktabrom-arachinsäure, x-Dekabrom-behensäure und #.i-Dibrom-stearinsäure.

Glycerin- $[\vartheta,\iota,\lambda,\mu,\xi,o$ -hexabrom-stearat] - [x-oktabrom-arachinat] - [x-dekabrombehenat], Linoleno-arachidono-clupanodonin-eikositetrabromid, Clupanodono-arachidono-linolenin-eikositetrabromid $C_{43}H_{98}O_{4}Br_{24}=C_{21}H_{33}Br_{10}\cdot CO\cdot O\cdot C_{3}H_{5}(O\cdot CO\cdot [CH_{2}]_{7}\cdot [CHBr\cdot CH_{2}]_{3}\cdot CH_{3})\cdot O\cdot CO\cdot C_{19}H_{31}Br_{8}$. Bei der Bromierung von Haifischleberöl (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842). — F: 117°.

Glycerin-[a-oktabrom-stearat]-[x-oktabrom-arachinat]-[x-dekabrom-behenat], Stearidono-arachidono-clupanodonin-eikosihexabromid, Clupanodono-stearidono-arachidonin-eikosihexabromid $C_{63}H_{96}O_6Br_{36} = C_{91}H_{33}Br_{10} \cdot CO \cdot O \cdot C_3H_{5}(O \cdot CO \cdot C_{17}H_{47}Br_8) \cdot O \cdot CO \cdot C_{19}H_{31}Br_8$. B. Bei der Bromierung von Lebertran (Suzuki, Masuda, Pr. Acad. Tokyo 4, 167; C. 1928 II, 1401). — F: 240° (Zers.). Unlöslich in Essigester und Benzol. — Liefert bei der Hydrolyse mit Salzsäure x-Dekabrom-behensäure, x-Oktabrom-arachinsäure und x-Oktabrom-stearinsäure.

Glycerin-[b-oktabrom-stearat]-[x-oktabrom-arachinat]-[x-dekabrom-behenat], Isostearidono-arachidono-clupanodonin-eikosihexabromid $C_{63}H_{96}O_6Br_{36}=C_{21}H_{33}Br_{10}$ $CO \cdot O \cdot C_1H_5(O \cdot CO \cdot C_{17}H_{27}Br_8) \cdot O \cdot CO \cdot C_{19}H_{21}Br_8$. Bei der Bromierung von Sandaal-Ol (Suzuki, Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841). — F: 230°.

Glycerin-bis-[oktabrom-arachinat]-[x-dekabrom-behenat], Diarachidono-Cast 1006 - Cast 1

(Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842) und von Lebertran (S., Masuda, Pr. Acad. Tokyo 4, 166; C. 1928 II, 1401). — F: 112° (S., M.; S.). Leicht löslich in Aceton und Ather (S., M.). — Gibt bei der Hydrolyse mit Salzsäure x-Dekabrom-behensäure und x-Oktabromarachinsaure (S., M.).

Glycerin- $[\theta.\iota$ -dibrom-stearat]-bis-[x-dekabrom-behenat], Oleo-diclupanodonineikosidyobromid, Diclupanodono-olein-eikosidyobromid $C_{55}H_{104}O_6Br_{22} = (C_{21}H_{33}Br_{10})$ CO·O)₂C₃H₅·O·CO·[CH₂]₇·CHBr·CHBr·[CH₂]₇·CH₃. B. Bei der Bromierung von Walöl (Suzuki, Masuda, Pr. Acad. Tokyo 3, 532; C. 1928 I. 605). — F: 132°. Löslich in keltem Benzol, schwer löslich in Äther. - Liefert bei der Hydrolyse mit Salzsäure x-Dekabrombehensäure und Ø.i-Dibrom-stearinsäure.

Glycerin- $[\vartheta.\iota.\lambda.\mu.\xi.o$ -hexabrom-stearat] - bis - [x-dekabrom - behenat], Linolenodiclupanodonin - eikosihexabromid, Diclupanodono - linolenin - eikosihexabromid $\begin{array}{l} C_{65}H_{100}O_6Br_{26} = (C_{21}H_{33}Br_{10}\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot [CH_2]_7\cdot [CHBr\cdot CHBr\cdot CH_2]_3\cdot CH_3.\\ \textbf{a)} \ Pr\ddot{a}\ parat\ v\ om\ Schmel\ zpunkt\ 165^0. \ B.\ Bei\ der\ Bromierung\ des\ Ols\ von\ Theragra\\ \end{array}$

chalcogramma (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2841). — F: 165° (Zers.).
b) Präparat vom Schmelzpunkt 118°. B. Bei der Bromierung von Lebertran (Suzuki, Masupa, Pr. Acad. Tokyo 4, 166; C. 1928 II, 1401). — F: 118°. Schwer löslich in Aceton, leicht in Benzol. — Liefert bei der Hydrolyse mit Salzsäure θ.ι.λ.μ.ξ.ο-Hexabrom-stearinsäure und x-Dekabrom-behensäure.

Glycerin - [a - oktabrom - stearat] - bis - [x - dekabrom - behenat], Stearidono - diclupanodonin - eikosioktabromid, Diclupanodono - stearidonin - eikosioktabromid $C_{68}H_{98}O_6Br_{28}=(C_{21}H_{33}Br_{10}\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot C_{17}H_{27}Br_8$. B. Bei der Bromierung des Öls von Theragra chalcogramma (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2841) und von Lebertran (S., Masuda, Pr. Acad. Tokyo 4, 166; C. 1928 II, 1401). — F: 125° (S., M.; S.). Schwer löslich in Äther und Petroläther, leicht in Aceton (S., M.). — Gibt bei der Hydrolyse mit Salzsäure x-Dekabrom-behensäure und x-Oktabrom-stearinsäure (S., M.).

Glycerin - [x - oktabrom - arachinat] - bis - [x - dekabrom - behenat], Arachidonodiclupanodonin-eikosioktabromid, Diclupanodono-arachidonin-eikosioktabromid $\begin{array}{l} \textbf{C_{67}H_{102}O_6Br_{28} = (C_{21}\textbf{H}_{33}\textbf{Br_{10}}\cdot\textbf{CO}\cdot\textbf{O})_2\textbf{C}_3\textbf{H}_5\cdot\textbf{O}\cdot\textbf{CO}\cdot\textbf{C}_{19}\textbf{H}_{31}\textbf{Br_{8}}.} \\ \textbf{a) Präparat vom Schmelzpunkt 110°}. \quad B. \quad \text{Bei der Bromierung von Haifischleberöl} \end{array}$

(Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2842). — F: 110°.
b) Präparat vom Schmelzpunkt 95°. B. Bei der Bromierung des Öls von Theragra chalcogramma (Suzuki, Pr. Acad. Tokyo 5, 270; C. 1929 II, 2841). — F: 95°.

Glycerin - bis - $[x.\lambda]$ -dibrom - behenat] - [x-dekabrom - behenat], Dicetoleino - clupanodonin-tetradekabromid $C_{69}H_{120}O_6Br_{14} = C_{21}H_{33}Br_{10} \cdot CO \cdot O \cdot C_3H_5(O \cdot CO \cdot [CH_2]_9 \cdot CHBr \cdot [CH_2]_9 \cdot CH_3)_2$. Zur Konstitution vgl. Suzuki, *Pr. Acad. Tokyo* 7 [1931], 232 Ånm. 1. — B. Bei der Bromierung von Sandaal-Ol (S., Pr. Acad. Tokyo 5, 269; C. 1929 II, 2841). — Ol (S., Pr. Acad. Tokyo 7, 230).

13 (oder 14) - Jod-dokosansäure-(1), μ (oder ν) - Jod-behensäure $C_{22}H_{43}O_2I=CH_3\cdot [CH_2]_7\cdot C_2H_3I\cdot [CH_2]_1\cdot CO_2H$ (H 392; E I 180). — Calciumsalz, "Sajodin" Ca($C_{22}H_{42}O_2I$)2. Verhalten im Organismus: v. ISSEKUTZ, TUKATS, $Bio.\ Z.$ 145, 7. Über das physiologische Verhalten vgl. a. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 850. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 375.

Glycerin-stearat - [μ (oder ν) -jod-behenat] $C_{43}H_{83}O_5I = CH_3 \cdot [CH_2]_7 \cdot C_2H_3I \cdot [CH_2]_{11} \cdot CO \cdot O \cdot C_3H_5(OH) \cdot O \cdot CO \cdot C_{17}H_{35}$. B. Aus α -Monostearin und μ (oder ν)-Jod-behensäure-chlorid (Schicht A. G., D. R. P. 449532; C. 1927 II, 2354; Frdl. 15, 1671). — Krystalle. F: 36,6°. Schwer löslich. — Überführung in ein phosphatidartiges Produkt durch Umsetzung mit Phosphorpentoxyd und Cholindicarbonat: Schicht A. G.

- 13 (oder 14) Brom-14 (oder 13) jod-dokosansäure-(1), μ (oder ν) Brom ν (oder μ) jod-behensäure, Erucasäurebromojodid $C_{22}H_{42}O_2$ BrI = $CH_3 \cdot [CH_2]_7 \cdot C_2H_2$ BrI · [CH_3]₁₁ · CO_2 H. B. Aus Erucasäure und Jodmonobromid in Eisessig (Holde, Gorgas, B. 58, 1073; 59, 114). Krystalle (aus Petroläther bei —70°). F: 38° (H., G., B. 58, 1073 Anm. 12). D¹⁶: 1,2479; n¹⁶: 1,4922 (H., G., B. 58, 1074). Calciumsalz Ca($C_{22}H_{41}O_2$ BrI)₂. F: 136° (Zers.) (H., G., B. 59, 114).
- 2. 2.6.10.14 Tetramethyl octadecansäure-(18), 4.8.12.16 Tetramethylheptadecan-carbonsaure-(1), $\delta.\vartheta.\mu.\pi$ -Tetramethyl-stearinsaure $C_{22}H_{44}O_{2}$ = (CH₃)₂CH·[CH₂·CH₂·CH₂·CH₂(CH₃)]₃·[CH₂]₃·CO₂H. B. Beim Kochen von Dihydrophytylmalonsäurediäthylester mit alkoh. Kalilauge und nachfolgenden kurzen Erhitzen der nicht näher beschriebenen Dihydrophytylmalonsäure auf 170—190° (Kuhn, Suginomé, Helv. 12, 918). — Öl. Kp_{0,32}: 182⁰. D₄. 0,8772. n₁. 1,4548. Leicht löslich in Alkohol. Eisessig, Petroläther und Aceton, unlöslich in Wasser. — Das Ammonium-, Natrium- und Kaliumsalz sind leicht löslich in Wasser und geben stark schäumende Lösungen.
- 3. Isobehensäure C₂₃H₄₄O₂ (ET 180). Ist aus der Literatur zu streichen; vgl. Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte. 1. Bd. [Wien 1936], S. 24, 57.

23. Trikosansäure, Dokosan-carbonsäure-(1) $C_{22}H_{46}O_2 = CH_3 \cdot [CH_3]_{31} \cdot CO_2H$. B. Aus dem Nitril (s. u.) beim Kochen mit alkoh. Natronlauge (Levene, Taylor, J. biol. Chem. 59, 921). Bei der Oxydation von Cerebronsäure (Syst. Nr. 223) mit Kaliumpermangant in Aceton (Klene, H. 174, 221; Kl., Diebold, H. 215 [1933], 85; Chibhall, Piper, Williams, Biochem. J. 30 [1936], 108; vgl. Kl., Clarenz, H. 257 [1939], 270; vgl. jedoch Levene, Taylor, J. biol. Chem. 52, 236; 80, 223; Tay., Le., J. biol. Chem. 84, 23). Röntgendiagramm: Morgan, Holmes, J. Soc. chem. Ind. 47, 309 T; C. 1929 I, 14. E: 78,7° (Garner, King, Soc. 1929, 1860). F: 79,1° (Francis, Piper, Am. Soc. 61 [1939], 578), 80—81° (korr.) (L., T.). Existiert in einer stabilen α -Form und einer instabilen β -Form; die β -Form geht zwischen 54° und 72° in die α -Form über; Wärmetönung der Umwandlung: 1,62 kcal/Mol (Ga., Ki., Soc. 1929, 1856). Spezif. Wärme c_p von flüssiger Trikosansäure zwischen 78,7° und 108,8°: 0,5762 cal/g (Ga., Ki.). Schmelzwärme der α -Form: 49,66 cal/g; der β -Form: 54,23 cal/g (Ga., Ki.). — Kaliumsalz. Röntgendiagramm: Piper, Soc. 1929, 236.

Methylester C₂₄H₄₈O₅ = CH₃·[CH₂]₃₁·CO₂·CH₃. B. Beim Kochen von Trikosansäure mit methylalkoholischer Schwefelsäure (Klenk, H. 174, 224; Levene, Taylor, J. biol. Chem. 59, 913). — Krystalle (aus Aceton). F: 55—56° (L., T.), 55,5—56° (K.). Ist dimorph; die eine Form schmilzt bei 54,0°, die andere bei 54,4° (Francis, Piper, Am. Soc. 61 [1939], 578).

Äthylester $C_{35}H_{50}O_3 = CH_3 \cdot [CH_3]_{21} \cdot CO_3 \cdot C_2H_5$. B. Aus Trikosansäure beim Kochen mit alkoh. Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 912). — Krystalle (aus Aceton). F: 52—53° (L., T.), 51,4° (Francis, Piper, Am. Soc. 61 [1939], 578). $Kp_{0,27}$: 198—199° (L., T.).

Nitril, n-Dokosylcyanid $C_{23}H_{45}N=CH_3\cdot[CH_2]_{21}\cdot CN$. B. Aus n-Dokosyljodid beim Kochen mit Kaliumcyanid in Alkohol (Levene, Taylor, J. biol. Chem. 59, 918). — Krystalle (aus Aceton). F: 53,5—54,5°. Die abgekühlte Schmelze schmilzt bei erneutem Erhitzen bei 51,5—52,5° und zeigt nach längerem Aufbewahren wieder den höheren Schmelzpunkt.

24. Carbonsäuren C₂₄H₄₈O₂.

1. Tetrakosansäure, Trikosan-carbonsäure-(1) C_MH₄₈O₂ = CH₂·[CH₂]₂₂·CO₂H. Tetrakosansäure ist der Hauptbestandteil der Lignocerinsäure (S. 379) und vermutlich auch der Carnaubasäure (S. 380) (D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 622). — V. Über Vorkommen in einem aus Maisöl abgeschiedenen Wachs vgl. Sheiner, Nabenhauer, Anderson, Am. Soc. 49, 1292. Im Buchenholzteerparaffin und dem daraus gewonnenen Wachs, dem Lignocerin (Brigl, Fuchs, H. 119, 284, 303; Francis, Piper, Malkin, Pr. roy. Soc. [A] 128, 242; C. 1930 II, 1856). Im Bienenwachs (Matthissohn bei Holde, Bleyberg, Rabinowitsch, B. 62, 179; Z. ang. Ch. 43 [1930], 901). Vgl. a. die Angaben über das Vorkommen von Lignocerinsäure (S. 379) und Carnaubasäure (S. 380). — B. Über Bildung neben anderen normalen gesättigten Fettsäuren beim Durchleiten von Luft durch Triakontan bei 95° vgl. Francis, Wood, Soc. 1927, 1899; Fra., Piper, Malkin, Pr. roy. Soc. [A] 128, 229, 232; C. 1930 II, 1856; vgl. a. A. Grün in Hefferschenömfeld, Chemie und Technologie der Fette und Fettprodukte, 2. Bd. [Wien 1937], S. 682. Aus dem Nitril (s. u.) beim Kochen mit alkoh. Natronlange (Levene, Taylor, J. biol. Chem. 59, 921). Durch Hydrierung von Selacholeinsäure (= Nervonsäure, S. 449) in Gegenwart von Platinmohr in Alkohol (Tsujmoto, Z. disch. Öl-Fettind. 46, 387; J. Soc. chem. Ind. Japan Spl. 30, 229 B; C. 1928 II, 1156; 1928 I, 1385; vgl. Toyama, J. Soc. chem. Ind. Japan Spl. 30, 29 B; C. 1929 II, 1987) oder von Palladium in Ather (Klenk, H. 157, 288). — F: 84,15° (Francis, Piper, Malkin, Austin, Soc. 1926, 2311.

Methylester $C_{18}H_{50}O_2 = CH_3 \cdot [CH_2]_{98} \cdot CO_2 \cdot CH_2$. Krystalle (aus Aceton). F: 60° (Brigl, Fuchs, H. 119, 299), 59—60° (Levene, Taylor, J. biol. Chem. 59, 914), 58—59° (Shriner, Nabenhauer, Anderson, Am. Soc. 49, 1294). Dimorph; die eine Form schmilzt bei 57,8°, die andere bei 58,4° (Francis, Piper, Am. Soc. 61 [1939], 578).

Äthylester $C_{22}H_{52}O_2=CH_2\cdot [CH_2]_{22}\cdot CO_2\cdot C_2H_5$. Krystalle (aus Aceton). F: $55,5^{\circ}$ bis $56,5^{\circ}$ (Levene, Taylor, J. biol. Chem. 59, 912). Ist dimorph; die eine Form schmilzt bei $54,35^{\circ}$, die andere bei $54,8^{\circ}$ (Francis, Piper, Am. Soc. 61 [1939], 578). Kp_{0,34}: 198° bis 199° (L., T.).

n-Tetrakosylester $C_{48}H_{94}O_3=CH_3\cdot [CH_3]_{32}\cdot CO_3\cdot [CH_3]_{33}\cdot CH_3$. B. Durch Einw. von Trikosan-carbonsäure-(1)-chlorid auf Tetrakosanol-(1) bei Gegenwart von Chinolin in Chloroform (Brigl., Fuchs, H. 119, 310). — Krystalle (aus Chloroform). F: 80,5°.

Nitril, n-Trikosylcyanid $C_{24}H_{47}N=CH_{4}\cdot[CH_{4}]_{22}\cdot CN$. B. Aus n-Trikosyljodid beim Kochen mit Kaliumoyanid in Alkohol (Levers, Taylos, J. biol. Chem. 59, 918). — Krystalle (aus Aceton). F: 61—62° (korr.). Die abgekühlte Schmelze schmilst bei erneutem Erhitzen bei 55—56°.

2. Lignocerinsäure $C_{24}H_{48}O_2=C_{23}H_{47}\cdot CO_2H$ (?) (H 393; E I 181). Die Bezeichnung Lignocerinsäure wurde im Lauf der Zeit für die Mehrzahl der etwa um 81° schmelzenden, ungefähr der Zusammensetzung C24H48O2 entsprechenden gesättigten Fettsäuren aus Naturstoffen verwendet. Lignocerinsäure ist ein Gemisch, das als Hauptbestandteil Tetrakosansäure neben niedrigeren und höheren normalen gesättigten Fettsäuren enthält (HOLDE, BLEY-BERG, VOHRER, Z. ang. Ch. 43 [1930], 898; D. HOLDE, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 622; CHIBNALL, PIPER, WILLIAMS, Biochem. J. 30 [1936], 110; vgl. BRIGL, FUCHS, H. 119, 282, 293; LEVENE, TAYLOR, HALLER, J. biol. Chem. 61, 158; KLENK, H. 166, 279, 288; JANTZEN, TIEDCKE, J. pr. [2] 127, [1930] 278; FRANCIS, PIPER, MALKIN, Pr. roy. Soc. [A] 128, 242, 249; C. 1930 II, 1855; TAY., J. biol. Chem. 61 [1931], 542; KL., DIEBOLD, H. 215, [1933], 83). In der neueren Literatur wird die gereinigte Lignocerinsäure meist mit Tetrakosansäure gleichgesetzt (Br., Fu., H. 119, 282; H. Heller in Ubbelohdes Handbuch der Chemie und Technologie der Ole und Fette, 2. Aufl., 1. Bd. [Leipzig 1929], S. 69; Ho., Bl., Rabinowitsch, Ch. Umschau Fette 36 [1929], 250, 253; Kl., Die., H. 215 [1933], 83; T. P. Hilditch in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, 1. Bd. [Wien 1936], S. 24; vgl. jedoch Ho., Bl., Z. ang. Ch. 43 [1930], 898; Chibnall, Piper, Williams, Biochem. J. 30 [1936], 110; vgl. a. Ch., Mitarb., Biochem. J. 28 [1934], 2207). — V. Eine Zusammenstellung über das Vorkommen in Pflanzen s. bei C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 515; Literaturhinweise hierzu s. C. Wehmer, Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931]. Lignocerinsäure findet sich in geringer Menge als Glycerid im Maisöl (BAUGHMAN, JAMIESON, Am. Soc. 43, 2700), im Palmöl von Belgisch-Kongo (JAMIESON, KINNEY, Oil Fat Ind. 6. Nr. 6, S. 17; C. 1929 II, 1238), in Rüb., Raps. und Senfsamenölen (HILDITCH, RILEY, J. Soc. chem. Ind. 46, 459 T; VIDYARTHI, C. 1928 I, 707), in indischem Raps- und Senfsamenöl sowie in Jambaöl (von Eruca sativa) (Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 42; C. 1926 II, 2729) und im Goldlacksamenöl (H1., Jones, J. Soc. chem. Ind. 46, 468 T; C. 1928 I, 708). In besträchtlicher Menge als Glycerid im Öl aus den Samen von Adenanthera pavonina (Mudbidri, Ayyar, Watson, J. indian Inst. Sci. [A] 11, 178; C. 1929 I, 1358). In geringer Menge als Glycerid im Erdnußöl (Heiduschka, Felser, Z. Unters. Nahr.-Genuβm. 38, 247; C. 1920 I, 654; Heil, Pyriki, P. C. H. 66, 1; C. 1925 I, 974; JAMIESON, BAUGHMAN, BRAUNS, Am. Soc. 43, 1378; LEVENE, TAYLOR, HALLER, J. biol. Chem. 61, 158; COHEN, Versl. Akad. Amsterdam 34, 462; C. 1926 I, 132; HOLDE, GODBOLE, B. 59, 39; Z. dtsch. Öl-Fettind. 46 [1926], 129, 145, 163, 179; HILDITGH, VIDYARTHI, J. Soc. chem. Ind. 46, 173 T; C. 1927 II, 238); im Sojabohnenöl (BAUGHMAN, JAMIESON, Am. Soc. 44, 2951), im Samenöl der Jutepflanze (Corchorus capsularis L.) (SEN, J. indian chem. Soc. 5, 765; C. 1929 I, 1704), im Rayanöl (Samenöl von Mimusops hexandra) (PATEL, J. indian Inst. Sci. 7, 79; C. 1924 II, 1528), in mit Schwefelkohlenstoff aus Olivenpreßrückständen extrahiertem Öl (Sulfurolivenöl) (BAUER, MITSOTAKIS, Ch. Umschau Fette 35, 276; C. 1929 I, 320; vgl. Holde, Bleyberg, Rabinowitsch, B. 62, 179), im Sesamöl (Jamieson, Baughman, Am. Soc. 46, 778) und im Sonnenblumensamenöl (Ja., Bau., Am. Soc. 44, 2955). Findet sich in einer Braunkohle aus Forli in Italien (Ciusa, Galizzi, G. 51 I, 59).

B. Als Athyl- bzw. Methylester bei der Hydrolyse des Cerebrosids Kerasin mit alkoh. Schwefelsäure (Levene, Taylor, Haller, J. biol. Chem. 61, 160) oder methylalkoholischer Schwefelsäure (Klenk, H. 166, 279; Chibnall, Piper, Williams, Biochem. J. 30 [1936], 110); vgl. H. THIERFELDER, E. KLENK, Die Chemie der Cerebroside und Phosphatide Berlin 1930], S. 24, 35. Beim Erhitzen von Cerebronsäure (Syst. Nr. 223) mit Jodwasserstoff und rotem Phosphor in Eisessig auf 120—125° (KL., H. 179, 316). Die von Levene, Mitarb. bei der Oxydation von Cerebronsäure erhaltene, als Lignocerinsäure angesehene Verbindung (vgl. die E I 2, 186 zitierte Literatur sowie LEVENE, TAYLOR, J. biol. Chem. 80, 228; TAY., LE., J. biol. Chem. 84, 29) besteht vorwiegend aus Trikosansäure (KLENK, H. 174, 215, 222; KL., DIEBOLD, H. 215 [1933], 85; CHIBNALL, PIPER, WILLIAMS, Biochem. J. 30 [1936], 108; vgl. KL., CLARENZ, H. 257 [1939], 270).

Röntgendiagramm der freien Lignocerinsäure: PIPER, MALKIN, AUSTIN, Soc. 1926,

2311; Morgan, Holmes, J. Soc. chem. Ind. 47, 309 T; C. 1929 I, 14; des neutralen und sauren Kaliumsalzes: Piper, Soc. 1929, 236. Spezif. Wärme cp der festen Substanz zwischen 18,2° und 78,3°: 0,4656 cal/g; der flüssigen Substanz zwischen 83,2° und 109,3°: 0,5855 cal/g; Schmelzwärme: 57,27 cal/g (ermittelt an einer Lignocerinsäure vom Erstarrungspunkt 83,1°) (GARNER, KING, Soc. 1929, 1859). Löslichkeit von Lignocerinsäure sowie ihrem Kalium-, Garrer, King, Soc. 1929, 1839). Dominischer von Dignocerinsatie sowie infem Kalum.
Magnesium- und Bleisalz in Gemischen aus Wasser + Alkohol bei 25°: Thomas, Yu, Am. Soc.
45, 117. — Zur Bestimmung in Fettsäuregemischen oder in Fetten vgl. Th., Yu, Am. Soc.
45, 123; Bertram, Z. dtsch. Öl-Fettind. 45, 735; C. 1926 II, 129; H. P. Kaufmann in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 618.
Ein ähnlich wie Lignocerinsäure zusammengesetztes Gemisch liegt wahrscheinlich auch in der bei 78° schmelzenden Selachocerinsäure vor (Toyama, J. Soc. chem. Ind.
Janen Sel. 20, 20 B. C. 1929 II, 1987). die ven Tenuworo (Z. dtsch. Öl-Fettind. 48, 287.

Japan Spl. 30, 20 B; C. 1929 II, 1987), die von Tsujimoto (Z. diech. Öl-Fettind. 46, 387;

- C. 1926 II, 1156) aus Haifischleberölen und von Toyama (J. Soc. chem. Ind. Japan Spt. 30, 19 B; C. 1929 II. 1987) aus dem Leberöl des Yamato-Zitterrochens (Narcacion tokionis Tauaka) isoliert wurde.
- 3. Carnaubasăure C_MH₄₈O₃ = C₃₃H₄₇·CO₂H (?) (H 393; E I 182). Ist vermutlich ein Gemisch, das neben niedrigeren und höheren normalen gesättigten Fettsäuren hauptsächlich Tetrakosansäure enthält (D. HOLDE, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 622; BENGIS, ANDERSON, J. biol. Chem. 105 [1934], 149; CHIBNALL, Mitarb., Biochem. J. 28 [1934], 2201). Nach CHIBNALL, Mitarb. (Biochem. J. 28, 2207) ist die Bezeichnung Carnaubasäure aus der Literatur zu streichen. V. In geringer Menge als Glycerid im Öl der Hirse (Panicum miliaceum) (DUNBAR, BINNEWIES, Am. Soc. 42, 663) und im Kaffeebohnenöl (v. Noël, P. C. H. 70, 75; C. 1929 I, 2195). Struktur monomolekularer Schichten von Carnaubasäure und ihrem Ätbylester auf Wasser und verd. Salzsäure: Adam, Dyer, Pr. 109. Soc. [A] 106, 705; C. 1925 I. 931.
- 4. Gingkosäure $C_{34}H_{48}O_{3}=C_{23}H_{47}\cdot CO_{2}H$ (?) (H 394). Ist als Gemisch aufzufassen (Kawamura, Japan J. Chem. 3, 92; C. 1928 II, 2255).

25. Carbonsăuren $C_{25}H_{50}O_2$.

1. Pentakosansāure, Tetrakosan-carbonsāure-(1) $C_{ab}H_{b0}O_3 = CH_3 \cdot [CH_a]_{ab}CO_3H$. B. Aus dem Nitril (s. u.) beim Kochen mit alkoh. Natronlauge (Levene, Taylor, J. biol. Chem. 59, 921). — E: 82,9° (Garner, King, Soc. 1929, 1860). F: 84—85° (L., T.), 83,5° (Francis, Piper, Am. Soc. 61 [1939], 578). Existert in einer stabilen α -Form und einer instabilen β -Form; die β -Form geht zwischen 54° und 76° in die α -Form über; Wärmetönung der Umwandlung: 1,47 kcal/Mol (G., K., Soc. 1929, 1856). Spezif. Wärme c_p von flüssiger Pentakosansāure zwischen 33° und 109,8°: 0,5769 cal/g (G., K.). Schmelzwärme der α -Form: 52,30 cal/g; der β -Form: 56,14 cal/g (G., K.).

Methylester $C_{26}H_{52}O_2 = CH_3 \cdot [CH_2]_{23} \cdot CO_2 \cdot CH_3$. B. Aus Pentakosansäure beim Kochen mit methylalkoholischer Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 914). — Krystalle (aus Aceton). F: 61—62° (L., T.). Ist dimorph; die eine Form schmilzt bei 59,5°, die andere bei 60,0° (Francis, Piper, Am. Soc. 61 [1939], 578).

Äthylester $C_{27}H_{54}O_2=CH_3\cdot[CH_3]_{23}\cdot CO_2\cdot C_2H_5$. B. Aus Pentakosansäure beim Kochen mit alkoh. Schwefelsäure (Levene, Taylor, J. biol. Chem. 59, 912). — Krystalle (aus Aceton). F: 58—59° (L., T.), 57,15° (Francis, Piper, Am. Soc. 61 [1939], 578). Kp_{0.5}: 216—217° (L., T.).

- Nitril, n-Tetrakosyloyanid $C_{25}H_{49}N=CH_3\cdot[CH_2]_{23}\cdot CN$. B. Aus n-Tetrakosyljodid beim Kochen mit Kaliumcyanid in Alkohol (Levene, Taylor, J. biol. Chem. 59, 918). Krystalle (aus Aceton). F: 58—59°.
- 2. Hyänasäure $C_{15}H_{50}O_3(?)$ (H 394). Ist als Gemisch aufzufassen (Gascard, Damoy, C. r. 177, 1224 Anm. 1; D., J. Pharm. Chim. [7] 29 [1924], 231 Anm.).
- 3. Neocerotinsäure C₂₅H₅₀O₂ (?). Diese von Gascard, Damoy (C. r. 177, 1224) und Damoy (J. Pharm. Chim. [7] 29 [1924], 231) aus Bienenwachs erhaltene Säure ist als Gemisch aufzufassen (Chibnall, Mitarb., Biochem. J. 28 [1934], 2197, 2207).
- 4. Carbonsäure C₂₅H₅₀O₂ aus Montanwachs (E I 182). Angaben darüber s. bei Cerotinsäure (S. 381); vgl. a. Holde, Bleyberg, Z. ang. Ch. 43 [1930], 900.

26. Carbonsäuren $C_{26}H_{52}O_2$.

1. Hexakosansäure. Pentakosan-carbonsäure-(1) $C_{26}H_{52}O_2 = CH_3 \cdot [CH_2]_{24} \cdot CO_2H$. B. Aus dem Nitril beim Kochen mit alkoh. Natronlauge (Levene, Taylor, J. biol. Chem. 59, 921). — F: 88—89° (L., T.; vgl. jedoch Tropsch, Z. ang. Ch. 43 [1930], 574), 87,7° (Francis, Piper, Am. Soc. 61 [1939], 578). Röntgendiagramm: Morgan, Holmes, J. Soc. chem. Ind. 47, 310 T; C. 1929 I, 14.

Nitril, n-Pentakosylcyanid $C_{24}H_{51}N = CH_3 \cdot [CH_2]_{24} \cdot CN$. B. Aus n-Pentakosyljodid beim Kochen mit Kaliumcyanid in Alkohol (Levene, Taylor, J. biol. Chem. 59, 918). — Krystalle (aus Aceton). F: $61-62^{\circ}$.

2. Phthionsdure ("phthioic acid") C₂₄H₅₂O₂ = C₂₅H₅₁·CO₂H. Zur Zusammensetzung und Konstitution vgl. Spielman, Anderson, J. biol. Chem. 112 [1936], 760; Stenhagen, Ställberg, J. biol. Chem. 139 [1941], 345; vgl. a. Wagner-Jauregg, H. 247 [1937], 137. — B. Bei der Hydrolyse des in menschlichen Tuberkelbscillen enthaltenen Phosphatids bzw. acetonlöslichen Fettes (A., J. biol. Chem. 74, 547; 83, 173; A., Chargaff, J. biol. Chem.

84, 704, 714; **85**, 78, 85). Reinigung durch Destillation des Methylesters im Hochvakuum: Sp., A., J. biol. Chem. **112**, 762. — F: $20-21^{\circ}$ (Sp., A., J. biol. Chem. **112**, 763). [α]_p: $+12.6^{\circ}$ (Ather; c=5) (Sp., A., J. biol. Chem. **112**, 764). Unlöslich in Wasser; mit Alkohol und anderen organischen Lösungsmitteln in allen Verhältnissen mischbar (A., J. biol. Chem. 83, 174). — Gibt eine krystallisierte Additionsverbindung mit S-Benzyl-isothioharnstoff (A., J. biol. Chem. 74, 548). — Physiologische Wirkung: A., J. biol. Chem. 83, 170; 97, 640; A., Сн., J. biol. Chem. 85, 79. — Natriumsalz. Leicht löslich in Alkohol und Wasser (..., J. biol. Chem. 83, 174). — Kaliumsalz. Leicht löslich in Alkohol und Wasser (A., J. biol. Chem. 83, 174, A., CH., J. biol. Chem. 85, 85). — Silbersalz AgC₂₆H₅₁O₂. Amorph. F: 162-1640; unlöslich in Wasser, Alkohol, Äther und Benzol (A., CH., J. biol. Chem. 85, 86). Sehr lichtempfindlich (A., J. biol. Chem. 83, 174). — Bariumsalz. Amorph. Schwer löslich in Ather und kaltem Alkohol, leichter in heißem Alkohol (A., Ch., J. biol. Chem. 85, 86).

Methylester $C_{27}H_{54}O_2=C_{25}H_{51}\cdot CO_2\cdot CH_3$. Öl. $Kp_{0.003}$: 158° (Spielman, Anderson, $J.\ biol.\ Chem.$ 112 [1936], 763; vgl. A., Chargaff, $J.\ biol.\ Chem.$ 85, 84). Erstarrt bei $+10^\circ$ (A., Ch.). $[\alpha]_5^m$: $+12,2^\circ$ (Äther; c=6) (Sp., A.).

3. Cerotinsäure $C_{26}H_{52}O_2=C_{25}H_{51}\cdot CO_2H$ oder $C_{27}H_{54}O_2=C_{26}H_{53}\cdot CO_2H$ oder auch $C_{26}H_{50}O_2=C_{24}H_{49}\cdot CO_2H$ (H 394; E I 182). Die Bezeichnung Cerotinsäure wurde im Lauf der Zeit für die Mehrzahl der um 78° schmelzenden, ungefähr der Zusammensetzung $C_{26}H_{52}O_2$ oder $C_{27}H_{54}O_2$ oder auch $C_{25}H_{50}O_2$ entsprechenden Fettsäuren aus Naturstoffen verwendet. Bei den bisher als Cerotinsäure beschriebenen Präparaten der Literatur handelt es sich um Gemische (Holde, Bleyberg, Z. ang. Ch. 43 [1930], 898, 900; D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 622; T. P. HILDITCH in HEFTER-SCHÖNFELD, Chemie und Technologie der Fette und Fettprodukte, 1. Bd. [Wien 1936], S. 24), wie sich in einer Reihe von Fällen aus der fraktionierten Krystallisation (GASCARD, DAMOY, C. r. 177, 1223; DA., J. Pharm. Chim. [7] 29 [1924], 232), aus der fraktionierten Destillation im Hochvakuum (TROPSCH, KREUTZER, Brennstoffch. 3, 49, 198, 212; C. 1922 II, 762; IV, 561; TR., DILTHEY, Brennstoffch. 6, 67; C. 1925 I, 2129; TR., KOCH, Brennstoffch. 10, 82; C. 1929 I, 2002; HOLDE, BLEYBERG, RABINOWITSCH. B. 62, 179; Ch. Umschau Fette 36 [1929], 252; Ho., BL., VOHRER, Brennstoffch. 10 [1929], 102) und aus der röntgenographischen Untersuchung (Francis, Piper, Malkin, Pr. roy. Soc. [A] 128, 229, 243, 249; C. 1930 II, 1855; Chib-nall, Mitarb., Biochem. J. 28 [1934], 2196; vgl. a. Morgan, Holmes, Nature 117, 625; J. Soc. chem. Ind. 47, 309 T; C. 1926 II, 183; 1929 I, 14) ergab.

V. Eine Zusammenstellung über das Vorkommen in Pflanzen s. bei C. WEHMER, W. THIES, M. HADDERS in G. KLEIN, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 516; Literaturhinweise hierzu s. C. Wehmer, Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931]. In freier oder veresterter Form findet sich Cerotinsäure in den Sporen von Asplenium filix femina und von Aspidium filix mas (KIESEL, B. 58, 1387; H. 149, 233); im Wachs von Glyceria ramigera F. v. M. (H. G. SMITH, J. Soc. chem. Ind. 41, 372 T; C. 1923 I, 1191), im Wachs der Milchsäfte von Broussonetia papyrifera Vent., Ficus elastica Roxb., F. benjamina Linn., F. glomerata Roxb., F. glabella Bl., Artocarpus communis Forst., A. integra Merr., A. elastica Reinw. und Castilloa elastica Cerv. (ULTÉE, Bl. Jardin bot. Buit. [3] 7, 445; C. 1926 I, 1214). im Spinatfett (Speer, Wise, Hart, J. biol. Chem. 82, 107), im Erdnußöl (Holde, Godbole, B. 59, 39; Z. dtsch. Öl-Fettind. 46 [1926], 129, 145, 180; Ho., Bleyberg, Rabinowitsch. B. 62, 179, 182; Ch. Umschau Fette 36, 252; C. 1929 II, 3221; vgl. Morgan, Holmes, Nature 117, 625; J. Soc. chem. Ind. 47, 310 T; C. 1926 II, 183; 1929 I, 14), im Wachs der Blätter von Acer pseudoplatanus (FRICKE, H. 143, 284), in Herba Centaurii (Tausendgüldenkraut) (GAAL, Mag. gyógysz. Társ. Ert. 5, 67, 123; C. 1929 I; 1583), im Wachs des Milchsafts von Plumiera acutifolia Poir. (Ultre, Bl. Jardin bot. Buit. [3] 7, 445; C. 1926 I, 1214), im Harz aus der Rinde von Viburnum opulus (HEYL, J. am. pharm. Assoc. 11, 335; C. 1923 I, 1515), in Abscheidungen aus dem Samenöl von Sonnenblumen (Helianthus annuus) (BAREUTHER. Ch. Umschau Fette 30, 119; C. 1923 III, 630), in den Blütenköpfen von Artemisia afra Jacq. (Goodson, Biochem. J. 16, 492). Im Wachs der Schildlaus Coccus fabae Guérin (Gueriniella serratulae Fabr.) (Prandi, Staz. sperim. agrar. ital. 53, 309 Anm., 313; C. 1921 I, 225). Im Fett bzw. Wachs aus Tuberkelbacillen (Anderson, J. biol. Chem. 83, 519; 85, 345, 352; A., Chargaff, J. biol. Chem. 84, 705, 709). Im Montanwachs (Tropsch, Kreutzer, Brennstoffch. 3, 49, 198, 212; C. 1922 II, 762; IV, 561; Tr., Koch, Brennstoffch. 10, 82; C. 1990 I. 2002. F. Frank State of the State of 1929 I, 2002; F. EGGERT, zitiert bei HOLDE, BLEYBERG, VOHRER, Brennstoffch. 10 [1929]. 102; Ho., Bl., Vo., Brennstoffch. 11, 129, 146; C. 1930 II, 3883) und im Bitumen rheinischer Braunkohle (Tr., Dilthey, Brennstoffch. 6, 67; C. 1925 I, 2129). Isolierung aus chinesischem Insektenwachs: Gascard, C. r. 170, 1326; A. ch. [9] 15, 363; vgl. Holde, Bleyberg, Z. ang. Ch. 43 [1930], 900; aus Bienenwachs und Wollfett: Grassow, Bio. Z. 148, 61, 69. Cerotinsäure-Gehalt von Bienenwachs: Buchner, Ch. Z. 52, 319; C. 1928 I, 2675. — B. Ein der Cerotinsäure aus Naturstoffen ähnliches Produkt entsteht neben anderen Fettsäuren beim Durchleiten von Luft durch n-Triakontan bei 950 (Francis, Wood, Soc. 1927, 1898; Fr.,

PIPER, MALKIN, Pr. roy. Soc. [A] 128 [1930], 229). — Röntgendiagramm von Cerotinsäure: Thibaud, Nature 119, 852; C. 1927 II, 2146; von Cerotinsäure und Bleicerotat: Trillat, Ann. Physique [10] 6, 61. 76. Spezif. Wärme c_p der festen Substanz zwischen 17,6° und 67,6°: 0,4750 cal/g; der flüssigen Substanz zwischen 76,1° und 109,3°: 0,5712 cal/g; Schmelzwärme: 52,25 cal/g (ermittelt an einer Cerotinsäure aus Bienenwachs vom Erstarrungspunkt 76,1°, die nach der röntgenographischen Untersuchung mindestens die Säuren C₂₆H₅₂O₂ und C₂₆H₃₆O₃ enthielt) (GARNER, KING, Soc. 1929, 1852, 1859). Lichtabsorption im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red Spectra [Washington 1905], S. 155, 159, 161, 215. Adhāsion an Stahl und Durslumin: McBain, Lee, J. phys. Chem. 32, 1181. Randwinkel gegen Wasser: NIETZ, J. phys. Chem. 32, 262. Zur Bildung monomolekularer Schichten auf Wasser und verd. Salzsäure vgl. Adam, Pr. roy. Soc. [A] 101, 458; C. 1923 I, 271. Potentialdiffer nz an der Trennungsfläche zwischen Luft und einer monomolekularen Schicht von Cerotinsäure auf 0,01 n-Salzsäure: FRUMKIN, Ph. Ch. 116, 493.

Natriumsalz. Schutzwirkung bei Goldhydrosolen: IREDALE, Soc. 119, 631. Stabilität und Filmbildung von Emulsionen mit Octan: Harkins, Beeman, Colloid Symp. Mon. 5, 36; C. 1928 II, 229. Oberflächenspannung der Lösung in Wasser bei 186: Lascaray, Koll.-Z. 34, 76; C. 1924 I, 2413. — Verhalten von Thallium(I)-salzen verschiedener Cerotinsäuren beim Schmelzen: Walter, B. 59, 968, 969.

- 4. Tachardiacerinsäure $C_{28}H_{52}O_2 = C_{25}H_{51} \cdot CO_2H$ (?). Die von Tschirch, Schäfer (Pharm. Acta Helv. 1, 12; C. 1926 I, 2151) aus dem Wachs des indischen Stocklacks isolierte Tachardiacerinsäure ist als Gemisch aufzufassen (Chibnall, Mitarb., Biochem. J. 28 [1934], 2193, 2207).
- 27. Carbonsäure $C_{27}H_{54}O_2$ aus Montanwachs (E I 183). Angaben darüber s. S. 381 bei Cerotinsäure; vgl. a. Holde, Bleyberg, Z. ang. Ch. 43 [1930]. 900.
- 28. Montansäure C₂₈H₅₆O₂ = C₂₇H₅₅·CO₂H oder C₂₉H₅₈O₃ = C₂₈H₅₇·CO₂H (H 395; E I 183). Bei den bisher als Montansäure beschriebenen Präparaten der Literatur handelt es sich um Gemische (E I 183; Holde, Bleyberg, Z. ang. Ch. 43 [1930], 898, 900; D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 623), wie sich auch aus der fraktionierten Destillation im Hochvakuum (Tropsch, Kreutzer, Brennstoffch. 3, 49, 179, 193, 212; C. 1922 II, 762; IV, 561; Tr., Dilthey, Brennstoffch. 6, 67; C. 1925 I, 2129; Tr., Koch, Brennstoffch. 10, 82; C. 1929 I, 2002; Tr., Stadler, Brennstoffch. 15, 201; C. 1934 II, 379; Ho., Bleyberg, Vohrer, Brennstoffch. 10, 102, 127; 11, 129, 148; 15, 311; C. 1929 I, 3058; 1930 II, 3883; 1934 II, 2635) und aus der röntgenographischen Untersuchung (Francis, Piper, Malkin, Pr. roy. Soc. [A] 128, 247; C. 1930 II, 1855; Chibnall, Mitarb., Biochem. J. 28 [1934], 2197, 2207) ergab. V. Im Bienenwachs (Gascard, Damoy, C. r. 177, 1223; Da., J. Pharm. Chim. [7] 29 [1924], 233). Im Bitumen rheinischer Braunkohle (Tropsch, Dilthey, Brennstoffch. 6, 67; C. 1925 I, 2129). Zum Vorkommen im Montanwachs s. die in der Einleitung unter fraktionierter Destillation im Hochvakuum zitierte Literatur. Schmelzdiagramm des binären Systems mit Apocholsäure: Rheinboldt, A. 451, 273. Molekularstruktur dünner Schichten auf Wasser und verd. Salzsäure: Adam, Dyer, Pr. roy. Soc. [A] 108, 705; C. 1925 I, 931. Thallium(I)-salz. Krystalle (aus Xylol). F: 116—1170 (korr.); die Schmelze ist schwach krystallin-flüssig (Walter, B. 59, 969).

29. Carbonsäuren $C_{30}H_{60}O_2$.

- 1. Carbonsäure C₃₀H₆₀O₃ aus dem Alkohol C₃₀H₆₂O aus Carnaubawachs (E I 184). Ist auf Grund des Schmelzpunkts und der Zusammensetzung als Melissinsäure (s. u.) zu bezeichnen (Hell, A. 223, 278; A. Grün, Analyse der Fette und Wachse, Bd. I [Berlin 1925], S. 15; H. Heller in Ubbelohdes Handbuch der Chemie und Technologie der Öle und Fette, 2. Aufl., Bd. I [Leipzig 1929], S. 74).
- 2. Melissinsäure C₃₀H₅₀O₂ = C₂₉H₅₀·CO₂H oder C₃₁H₆₂O₂ = C₃₀H₆₁·CO₃H (H 396; E I 185). Die Bezeichnung Melissinsäure wurde im Laufe der Zeit für die Mehrzahl der um 90° schmelzenden, ungefähr der Zusammensetzung C₃₀H₆₀O₂ oder C₃₁H₆₂O₂ entsprechenden Fettsäuren aus Naturstoffen verwendet. Bei den bisher als Melissinsäure beschriebenen Präparaten der Literatur handelt es sich vermutlich um Gemische (Holde, Bleyberg, Z. ang. Ch. 48 [1930], 899; D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 623; vgl. a. Chibnall, Mitarb., Biochem. J. 28 [1934], 2197, 2207. V. Eine Zusammenstellung über das Vorkommen in Pflanzen s. bei C. Wehmer, W. Thies, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 517; Literaturhinweise hierzu s. C. Wehmer, Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931]. Über Vorkommen

383

in Mentha aquatica L. vgl. Gordon, Am. J. Pharm. 100, 517; C. 1928 II, 2196. Zum Vorkommen im Bienenwachs vgl. noch Gascard, Damoy, C. r. 177, 1223; Da., J. Pharm. Chim. [7] 29 [1924], 233; Melissinsäure findet sich in veresterter Form im Wachs der Schildlaus Gueriniella serratulae Fabr. (Prand, Staz. sperim. agrar. ital. 53, 315; C. 1921 I, 225), in freier und veresterter Form im Montanwachs (Tropsch, Koch, Brennstoffch. 10, 86; C. 1929 I, 2007; vgl. Holde, Bleyberg, Vohrer, Brennstoffch. 10, 102, 127; 11, 148; C. 1929 I, 3058; 1930 II, 3883). — B. Aus Myricylalkohol (aus Bienenwachs) beim Schmelzen mit Kaliumhydroxyd oder bei der Oxydation mit Kaliumdichromat in siedender Essigsäure (Gascard, A. ch. [9] 15, 365). — Röntgendiagramm: Trillat, Ann. Physique [10] 6, 61; Thibaud, Nature 119, 852; C. 1927 II, 2146. Beeinflussung der Grenzflächenspannung zwischen Benzol und Wasser durch Melissinsäure und ihr Natriumsalz: Dubrisay, C. r. 178, 1976; Bl. [4] 37, 999, 1004; in Gegenwart von Natriumchlorid: D., Rev. gén. Colloides 5, 487; C. 1927 II, 396. — Silbersalz. Elektrische Leitfähigkeit der Lösung in Benzol und Einfluß von Chlorwasserstoff darauf: Cady, Baldwin, Am. Soc. 43, 650. — Bleisalz. Röntgendiagramm: Trillat, Ann. Physique [10] 6, 76. Brechungsindices der Krystalle für langwellige Röntgenstrahlen: Thibaud, Helv. phys. Acta 2, 272; C. 1929 II, 2150.

Melissinsäure-myricylester $C_{60}H_{120}O_2(?)$ oder $C_{61}H_{122}O_2(?)$ oder $C_{62}H_{124}O_2(?)$ (H 396). B. Aus Melissinsäure (aus Bienenwachs) und Myricylalkohol (aus Bienenwachs) durch Einw. von Chlorwasserstoff bei Wasserbadtemperatur (GASCARD, A. ch. [9] 15, 377). — F: 90,5°.

- 30. Laccersäure $C_{32}H_{64}O_2 = C_{31}H_{63} \cdot CO_2H$ (E I 185). Ist als Gemisch aufzufassen (Chibnall, Mitarb., Biochem. J. 28 [1934], 2195, 2207). V. Zum Vorkommen im Wachs von Tachardia lacca (Stocklack-Wachs) vgl. noch Gascard, A. ch. [9] 15, 369; Tschirch, Schäfer, Pharm. Acta Helv. 1, 13; C. 1926 I, 2151. B. Bei der Oxydation von Laccerol mit Kaliumdichromat in siedendem Eisessig (G., A. ch. [9] 15, 370). Blättchen (aus Benzol). F: 95° (G.). Röntgendiagramm von Laccersäure: Thibaud, Nature 119, 852; C. 1927 II, 2146; von Laccersäure und ihrem Bleisalz: Trillat, Ann. Physique [10] 6, 61, 76. Löslich in der Wärme in Alkohol, Chloroform und Benzol, schwer löslich in Äther (G.). Flüchtig mit Wasserdampf (G.). Das Kaliumsalz ist unlöslich in Wasser, löslich in Alkohol, das Silbersalz ist amorph (G.).
- Äthylester $C_{34}H_{68}O_2 = C_{31}H_{63} \cdot CO_2 \cdot C_2H_5$ (?) (E I 186). Blättchen. F: 76° (Gascard, C. r. 159, 260; A. ch. [9] 15, 378).
- **Myricylester** $C_{62}H_{124}O_2(?)$ oder $C_{63}H_{126}O_2(?)$. Krystalle (aus Benzol). F: 92,5° (Gascard, C. r. 170, 888; A. ch. [9] 15, 378).
- **Laccerylester** $C_{64}H_{188}O_2 = C_{31}H_{63} \cdot CO_2 \cdot C_{32}H_{65}(?)$ (E I 186). Krystalle (aus Benzol). F: 95° (korr.) (Gascard, C. r. 159, 258; 170, 888; A. ch. [9] 15, 359, 381).
- 31. Heptatriakontan-carbonsäure-(19), Di-n-octadecyl-essigsäure $C_{38}H_{76}O_2=(CH_2\cdot [CH_2]_{17})_2CH\cdot CO_2H$. B. Durch Erhitzen von Di-n-octadecyl-malonsäure auf 160° (Adam, Dyer, Soc. 127, 71). Krystalle (aus Eisessig). F: 81—82°. [Behrle]

2. Monocarbonsäuren $C_nH_{2n-2}O_2$.

1. Propensäure, Äthylencarbonsäure, Acrylsäure $C_3H_4C_2=CH_2$: $CH\cdot CO_2H$ (H 397; E I 186). B. Neben anderen Produkten bei der Oxydation von Hexan mit Luftsauerstoff in Gegenwart von Silber auf Bimsstein bei 400° (Berl, Heise, Winnacker, Ph. Ch. [A] 139, 465). Beim Leiten eines Gemisches aus äquimolekularen Mengen Athylen und Kohlendioxyd über Kieselsäuregel, poröse Tonscherben oder mit Ferriphosphat imprägnierten Bimsstein bei Temperaturen von 200—350°; entsteht auch beim Leiten eines Gemisches aus Athylalkohol und Kohlendioxyd durch ein mit Aluminiumphosphat und konz. Phosphorsäure gefülltes Quarzrohr bei 300—380° (Röhm & Haas, D. R. P. 553179; C. 1932 II, 1365; Frdl. 19, 377). Zur Bildung aus Acrolein und Sauerstoff am Licht vgl. Moureu, Dufraisse, Badoche, Bl. [4] 35, 1582. Bei der Einw. von Sauerstoff auf eine 50% ige Lösung von Acrolein in Benzol bei 50° und 10 Atm. Druck unter Ausschluß von Wasser (R. & H., D. R. P. 583242; Frdl. 19, 380). Zur Bildung aus β -Chlor-propionsäure beim Kochen mit verd. Natronlauge vgl. Mou., Murat, Tampier, C. r. 172, 1268; A. ch. [9] 15, 227; Staudinger, Urboh, Wehrli, Helv. 12, 1126. Beim Leiten eines Gemisches aus β -Chlor-propionsäure und Benzol über aktive Kohle bei ca. 250° unter 10—100 mm Druck (R. & H., D. R. P. 607483; C. 1935 II, 1612; Frdl. 21, 168). Aus $\alpha.\beta$ -Dichlor-propionsäure beim Behandeln mit aktiviertem Zink in Gegenwart von Methanol (R. & H., D. R. P. 575423; C. 1938 II, 133; Frdl. 19, 379). Aus Malonsäure und Formaldehyd in Äther bei Gegenwart

von Pyridin, anfangs unter Kühlung (FLORENCE, Bl. [4] 41, 444). Bei Bestrahlung von Fumarsäure oder Maleinsäure in wäßr. Lösung mit ultraviolettem Licht (VOLMAR, C. r. 181, 467). Bei der Destillation von hydracrylsaurem Natrium mit konz. Schwefelsäure (van der Burg, R. 41, 23; Broude, H. 173, 4). Man läßt äquimolekulare Mengen Cyanessigsäure, Dimethylamin und Formaldehyd in wäßr. Lösung in der Kälte längere Zeit aufeinander einwirken und erhitzt das Reaktionsgemisch nach dem Sättigen mit Chlorwasserstoff (Mannich, Ganz, B. 55, 3503). Beim Überleiten eines Gemisches aus Maleinsäureanhydrid und bei 35° bis 40° mit Wasserdampf gesättigten Stickstoff über aktives Kieselsäuregel bei 400° (I. G. Farbenind., D. R. P. 445565; C. 1927 II, 869; Frdl. 15, 397). Bei der Destillation von β -[Indazyl-(2)]-propionsäure im Vakuum bei 200°, neben Indazol (v. Auwers, Allardt, R. 59, 400°, v. Au. Klennen, J. m. [2] 118, 69)

B. 59, 100; v. Au., Kleiner, J. pr. [2] 118, 69).

F: 12,3° (Moureu, Boutaric, J. Chim. phys. 18, 348; Mou., Murat, Tamfier, C. r. 172, 1268; A. ch. [9] 15, 229), 13° (Mannich, Ganz, B. 55, 3504). Kp: 141° (Lüthx, Ph. Ch. 107, 290); Kp₇₆₃: 141,6°: Kp₁₅: 48,5° (Mou., B.; Mou., Mu., T.). D¹: 1,0600 (unterkühlte Schmelze); D[∞]: 1,0511 (Mou., B.; Mou., Mu., T.). Verbrennungswärme bei konstantem Volumen: 327,9 kcal/Mol (Mou., B.; Mou., Mu., T.). n[∞]: 1,4224 (Mou., B.; Mou., Mu., T.). Ultraviolettes Absorptionsspektrum von Lössiger Acrylsäure: Katz, Ph. Ch. 125, 328; 2. ang. Ch. 41, 337. Elektrische Leitfähigkeit wäßr. Lösungen von Acrylsäure sowie von Natriumacrylat verschiedener Konzentrationen bei 18°: Mou., B.; Mou., Mu., T. Elektrolytische Dissoziationskonstante k bei 18°: 5,6×10⁻⁵ (aus der Leitfähigkeit berechnet) (Mou., B.; Mou., Mu., T.). Wärmetönung bei der Neutralisation mit 0,5 n. Natronlauge: Mou., B.; Mou., Mu., T.

Ganz reine Acrylsäure, die unter Anwendung von völlig peroxydfreiem Äther hergestellt ist, verändert sich in sauerstofffreier wäßriger Lösung in Stickstoff- oder Kohlendioxyd-Atmosphäre auch bei langem Erhitzen auf höhere Temperaturen nicht (Trommsdorff in H. Staudinger, Hochmolekulare organische Verbindungen [Berlin 1932], S. 353). Geschwindigkeit der Natriumsulfit-Addition in wäßr. Lösung bei 80°: Hägglund, Ringbom, Z. anorg. Ch. 150, 243. Reagiert mit Cyclopentadien in Äther unter Bildung von 2.5-Methylen-Δ²-tetrahydro-benzoesäure (Syst. Nr. 895) (Diels, Alder, A. 460, 117). Bei 3-tägigem Belichten einer Lösung von Acrylsäure und Anilin in Toluol mit einer Quarzquecksilberlampe erhält man β-Anilino-propionsäure und wenig β-Anilino-propionsäure-anilid (Stoermer, Robert, B. 55, 1037). Liefert beim Erhitzen mit 2-Amino-thiophenol auf 125—130° in einer Kohlendioxyd-Atmosphäre die Verbindung C₈H₄
(Mills, Whitworth, Soc. 1927, 2750). — Reduktion von Methylenblau durch Acrylsäure sowie durch Acrylsäure + Galaktose in Gegenwart von ruhendem Bact. coli: Quastel, Biochem. J. 20, 171, 179.

Polymere Acrylsäure, Polyacrylsäure $(C_3H_4O_2)_x = \cdots CH_2 - CH - CH_2 - CH - CH_2 - CH \cdots$

CO₂H CO₂H CO₂H

Literatur: E. TROMMSDORFF in H. STAUDINGER, Hochmolekulare organische Verbindungen [Berlin 1932], S. 333. — C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1069. — E. TROMMSDORFF in R. HOUWINK, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 350. — K. H. MEYER, Die hochpolymeren Verbindungen [Leipzig 1940]. S. 100.

Die Polyacrylsäuren sind nicht als einheitliche chemische Individuen, sondern als Gemische von Polymerhomologen aufzufassen; der Durchschnittspolymerisationsgrad hängt von den Polymerisationsbedingungen (Temperatur, Konzentration usw.) ab und erstreckt sich auf Werte von 50—2000 (Kern, Ph.Ch. [A] 181 [1938], 249; Ang. Ch. 51 [1938], 566). Die durchschnittlichen Molekulargewichte wurden viscosimetrisch in 2n-Natronlauge bestimmt (Staudinger, Trommsdorff, A. 502 [1933], 221; vgl. a. Tr. in H. Staudinger, Hochmolekulare organische Verbindungen [Berlin 1932], S. 351, 367).

B. Eukolloide Polyacrylsäuren entstehen: aus reiner Acrylsäure beim Belichten, am zweckmäßigsten in einer Stickstoff- oder Kohlendioxyd-Atmosphäre oder beim Erhitzen auf Temperaturen oberhalb 110° (Staudinger, Kohlschütter, B. 64 [1931], 2092; vgl. Moureu, Murat, Tampier, A. ch. [9] 15, 231; St., Urech, Helv. 12, 1110, 1126); aus wäßrigen, peroxydhaltigen Acrylsäure-Lösungen bei längerem Erhitzen im Rohr auf 100° (Trommsborf in H. St., Hochm. org. Verb., S. 354). Hemikolloide Polyacrylsäuren erhält man bei längerem Erhitzen wäßr. Lösungen von Acrylsäuren in Gegenwart von Wasserstoffperoxyd unter Stickstoff im Rohr auf 100° (Tr. in H. St., Hochm. org. Verb., S. 339). Polymeranaloge Polyacrylsäuren entstehen beim Verseifen von Polyacrylsäureäthylestern mit 2n-alkoh. Natronlauge unter vollständigem Sauerstoffausschluß in reinem Stickstoff (St., Tr., A. 502, 207, 214). Eine hochmolekulare Säure der Zusammensetzung der Polyacrylsäure.

385

die ähnliche Eigenschaften besitzt wie das durch Polymerisation der monomeren Säure erhaltene Produkt, erhielten St., U. (Helv. 12, 1125, 1132) beim Einleiten von Ozon in eine Lösung von Polystyrol in Tetrachlorkohlenstoff unter allmählichem Zusatz von Essigsäure, Zersetzen des Ozonids mit siedendem Wasser und nachfolgenden Kochen mit Salpetersäure.

Die physikalischen Eigenschaften der Polyacrylsäuren hängen weitgehend von der Art ihrer Herstellung ab (Staudinger, Kohlschütter, B. 64, 2092). Die durch Belichten oder Erhitzen reiner Acrylsäure erhaltenen Produkte sind je nach der Art der Bildungstemperatur glas-, porzellan- oder kautschukartige bzw. hochviscose amorphe inhomogene Massen (St., Urech, Helv. 12, 1126; St., Ko.). Sie zersetzen sich oberhalb 300° (St., U., Helv. 12, 1119). Beugung von Röntgenstrahlen an flüssiger Polyacrylsäure: Katz, Ph. Ch. 125, 328. Über Löslichkeit und Quellungsvermögen (St., U., Helv. 12, 1127) s. untenstehende Tabelle. Die Alkalisalze lösen sich unter starkem Quellen in Wasser; in Alkohol und Accton sind sie so unlöslich (St., U.). Die Lösungen der Alkalisalze geben mit Erdalkalisalzen und mit Schwermetallsalzen unlösliche, voluminöse Niederschläge (St., U.). Viscositätsuntersuchungen von Polyacrylsäuren und ihren Alkalisalzen in wäßr. Lösungen: St., Ko.; Trommsdorff in H. St., Hochm. org. Verb., S. 341ff.; St., Tr., A. 502, 215; Kern, Ph. Ch. [A] 181, 283. Osmotische Eigenschaften: Ke., Ph. Ch. [A] 181, 266. Elektrische Leitfähigkeit wäßr. Lösungen von Polyacrylsäuren und ihren Alkalisalzen: St., Ko.; Ke., Ph. Ch. [A] 181, 261. Potentiometrische Bestimmung der Wasserstoffionenaktivität: Ke., Ph. Ch. [A] 181, 255.

Lösungsmittel	Säure polymerisiert bei						
Losungsimittei	1000	1500	2000				
Wasser	quillt sehr stark, teil- weise löslich	löslich nach vorherigem Quellen	löslich ohne starkes Quellen				
Formamid	quillt	löslich unter Quellen	löslich				
Alkohol	"	etwas löslich unter Quellen	,,				
Glycerin	unlöslich	quillt stark	,,				
Monomere Acrylsäure	••	unlöslich	quillt etwas				
Essigsäure		,,	*,, ,,				
Ameisensäure	,,		,, ,,				
Valeriansäure	,,		,, ,,				
Palmitinsäure	,,	,	,, ,,				
Äther	,,		unlöslich				
Benzol							
Nitrobenzol	**		,,				
Pyridin	,,		• • • • • • • • • • • • • • • • • • • •				

Das Silbersalz gibt bei längerem Erhitzen mit Methyljodid in Benzol im Rohr auf 100° Polyacrylsäuremethylester (Staudinger, Urrch, Helv. 12, 1129). — Über Verwendungsmöglichkeiten in der Kunststoff-Industrie s. C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1072, 1079. — Acidimetrische Bestimmung in Gegenwart von Natriumchlorid oder Alkohol: Trommsdorff in H. St., Hochm. org. Verb., S. 340. Potentiometrische Bestimmung: St., Kohlschütter, B. 64, 2094.

Acrylsäuremethylester C₄H₆O₂ = CH₂:CH·CO₂·CH₃ (H 399). B. Aus Acrylsäure und Methanol in Gegenwart von Schwefelsäure auf dem Wasserbad (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 243). Beim Erhitzen von β-Halogen-propionsäuremethylester mit Diäthylanilin auf ca. 200° (Mou., Mu., T.). Beim Leiten von β-Chlor-propionsäuremethylester-Dampf über einen aus aktiver, mit Natriumsilicat imprägnierter Kohle, Bariumoxyd, Phosphorpentoxyd und Phosphorsäure hergestellten Mischkatalysator (I. G. Farbenind., D. R. P. 571524; Frdl. 19, 373) oder über mit wasserfreiem Zinkchlorid imprägnierte aktive Kohle bei 230—250° und einem Druck zwischen 200 und 300 mm (Röhm & Haas, D. R. P. 607483; C. 1935 II, 1612; Frdl. 21, 168). Entsteht auch aus β-Chlor-propionsäuremethylester beim Behandeln mit gepulvertem Kaliumhydroxyd unter Kühlung oder beim Kochen mit Kaliumcarbonat oder Lithiumacetat in Methanol (R. & H., D. R. P. 546141; C. 1932 I, 2642; Frdl. 18, 282). Beim Behandeln von α.β-Dichlor-propionsäuremethylester mit aktiviertem Zink in Gegenwart von Methanol (R. & H., D. R. P. 555933; C. 1932 II, 1969; Frdl. 19, 378). Aus Acrylsäurechlorid und ca. 6 Mol Methanol unter Kühlung (R. & H., D. R. P. 570955; C. 1933 I, 2608; Frdl. 19, 374). Aus β-Methoxy-propionsäuremethylester bei Einw. von konz. Schwefelsäure bei 180° (R. & H., D. R. P. 573724; C. 1933 I, 3630;

Frdl. 19, 376). Beim Erhitzen von Athylencyanhydrin mit Methanol und konz. Schwefelsäure (D: 1,80) bis auf ca. 160° (R. & H., D. R. P. 571123; Frdl. 18, 283). Neben anderen Produkten bei 24-stdg. Einw. von Natriumnitrit auf dl-Alanin-methylester-hydrochlorid in schwach salzsaurer Lösung bei Zimmertemperatur (BARKER, SKINNER, Am. Soc. 46, 410). Kp₇₆₁: 80,5° (korr.); D₄°: 0,9735; D₄°: 0,9564; D₄°: 0,9558; n₅°: 1,4117 (Moυ., Mυ., T.). Beugung von Röntgenstrahlen an flüssigem Acrylsäuremethylester: Katz, Kautschuk 1927, 220; C. 1927II, 1206. — Liefert bei der Einw. von Diazoäthan in Äther unter Kühlung 5-Methyl-△2-pyrazolin-carbonsäure-(3)-methylester (v. Auwers, Cauer, A. 470, 298).

Polymerer Acrylsauremethylester, Polyacrylsauremethylester (C.H.O.)x =

····CH₂—CH—CH₂—CH—CH₂—CH····

CO₃·CH₃ CO₂·CH₃ CO₃·CH₃ (vgl. H 399).

Literatur: C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1069. -E. TROMMSDORFF in R. HOUWINK, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 350. — K. H. MEYER, Die hochpolymeren Verbindungen [Leipzig 1940], S. 100.

B. Aus Acrylsäuremethylester beim Aufbewahren bei gewöhnlicher Temperatur in Gegenwart von Katalysatoren oder besser beim Erhitzen auf ca. 1000 (STAUDINGER, URECH, Helv. 12, 1127). Über die Beeinflussung der Polymerisation durch Sauerstoff vgl. St., U.; St., Kohlschütter, B. 64 [1931], 2091; Brettenbach, Raff, B. 69 [1936], 1108. Bei längerem Erhitzen des Silbersalzes der Polyacrylsäure mit Methyljodid in Benzol im Rohr auf 100° (St., U.). — Die Polymerisationsprodukte stellen, je nachdem ob sie bei niedriger Temperatur, bei 100° oder bei 200° erhalten wurden, glasartige, kautschukähnliche bzw. hochviscose Massen dar (Sr., U.). Röntgendiagramm von kautschukähnlichem Polyacrylsäuremethylester: Katz, Kautschuk 1927, 220; C. 1927 II, 1206. Zersetzt sich oberhalb 300° (St., U.). Polyacrylsäuremethylester ist in dem monomeren Ester löslich (St., U.). Die glasartigen Produkte sind in allen Lösungsmitteln in der Kälte unlöslich, quellen aber in Benzol, Chloroform, Eisessig und Anisol; sie lösen sich in siedendem Anisol und beim Erhitzen in Benzol im Rohr auf 130° (Sr., U.). Die bei Temperaturen oberhalb 130° erhaltenen kautschukartigen Produkte sind in Benzol, Chloroform, Aceton, Eisessig und Essigester löslich, in Alkohol, Ather, Petroläther und Wasser unlöslich, während die bei 200° dargestellten hochviscosen Massen sich in den meisten Lösungsmitteln außer Alkohol leicht lösen (St., U.). Ausbreitung dünner Schichten auf Wasser: K., Samwel, Naturwiss. 16, 593; C. 1928 II, 963. — Bei anhaltendem Erwärmen mit Methylmagnesiumjodid in Anisol auf 100° entsteht ein Alkohol ($C_bH_{10}O)_x$ (s. u.) (Sr., U.). — Über die vielseitigen Verwendungsmöglichkeiten der Polyacrylsäuremethylester, z. B. zur Herstellung von Lacken, Filmen, Klebstoffen, Mehrschichtenglas und Emulsionen für die Lederindustrie s. die oben angeführte Buchliteratur; vgl. ferner P. Nowak in W. Röhrs, H. Staudinger, R. Vieweg, Fortschritte der Chemie, Physik und Technik der makromolekularen Stoffe [München-Berlin 1939], S. 246; NEHER, Ind. Eng. Chem. 28 [1936], 270; KLEIN, PEARCE, Ind. Eng. Chem. 28, 635.

Alkohol ($C_5H_{10}O$)_x = $[CH_2:CH\cdot C(OH)(CH_2)_2]_x(?)$. B. Bei mehrtägigem Erwärmen von Polyaorylsäuremethylester mit Methylmagnesiumjodid in Anisol auf 100° (STAUDINGER, Urbch, Helv. 12, 1130). — Pulver (aus Äther + Benzol). Löslich in Eisessig, Äther und Alkohol, unlöslich in Benzol. — Gibt bei längerem Erhitzen mit einer 30% igen Lösung von Jodwasserstoff in Eisessig auf 120° einen Kohlen wasserstoff (C₅H₈)₁₈ [Pulver (aus Benzol oder Ather + Alkohol); löslich in Benzol; Ather, Eisessig und Chloroform, unlöslich in Alkohol und Wasser].

Acrylsäureäthylester $C_5H_5O_8$ = CH_2 : $CH \cdot CO_2 \cdot C_3H_5$ (H 399; E I 186). B. Aus Acrylsäure und Athylalkohol in Gegenwart von Schwefelsäure auf dem Wasserbad (Moureu, Murat, Tam-PIER, C.r. 172, 1269; A.ch. [9] 15, 237). Beim Erhitzen von β -Halogen-propionsäureäthylester mit Diathylanilin auf Temperaturen zwischen 180° und 230° (Mov., $\dot{M}v.$, $\dot{T}.$). Aus β -Chlorpropionsaureathylester beim Destillieren über einen aus aktiver Kohle, Phosphorpentoxyd und Phosphorsaure bei 200-240° hergestellten Mischkatalysator (I. G. Farbenind., D. R. P. 571 524; Frdl. 19, 373), beim Leiten über aktive Kohle bei 200—250° (Röhm & Haas, D. R. P. 607483; C. 1985 II, 1612; Frdl. 21, 168), beim Behandeln mit 20% iger alkoholischer Natronlauge unter Kühlung (R. & H., D. R. P. 546141; C. 1932 I, 2642; Frdl. 18, 282) sowie beim Destillieren mit konz. Schwefelsäure, Phosphorature oder wasserfreiem Zinkohlorid (I. G. Farbenind.). Beim Kochen von α.β-Dichlor-propionsäureäthylester mit Aluminiumgrieß in Gegenwart von verd. Alkohol (R. & H., D. R. P. 555933; C. 1982 II, 1969; Frd. 19, 378). Aus Acrylsäurechlorid und überschüssigem Äthylalkohol in Gegenwart von Natriumdioarbonat unter Kühlung (R. & H., D. R. P. 570955; C. 1933 I, 2608; Frdl. 19, 374). Beim Leiten von Hydracrylsäureäthylester über mit konz. Schwefelsäure imprägniertes Silicagel bei 200° (R. & H., D. R. P. 573724; C. 1933 I, 3630; Frdl. 19, 375). Aus Hydracrylsäureamid beim Erhitzen mit Äthylalkohol und 90% iger Phosphorsäure auf ca. 160° (R. & H., D. R. P. 571123; Frdl. 18, 283). Neben anderen Produkten bei 48-stdg. Einw. von Natriumnitrit auf dl-Alanin-athylester-hydrochlorid in wäßr. Lösung bei Zimmertemperatur: BARKHE, SKINNER, Am. Soc. 46, 412). Aus β-[p-Toluolsulfonyloxy]-propionsäureäthylester bei der Einw. von 2n-Natronlauge bei Zimmertemperatur oder beim Erhitzen mit wasserfreiem Kaliumearbonat auf ca. 100° (CLEMO, WALTON, Soc. 1928, 725, 728). — Flüssigkeit von durchdringendem und anhaftendem Geruch. Kp: 99—100° (korr.) (B., Sk.); Kp₇₆₁: 99,8° (korr.); D⁶₂: 0,9425; D¹⁵₄: 0,9245; D¹⁶₄: 0,9238; n¹⁵₅: 1,4072 (Mou., Mu., T.). Etwas löslich in Wasser (Mou., Mu., T.). — Liefert bei der Einw. von trocknem Natriumäthylat bei 80° bis 100° und Behandeln mit kalter verd. Säure viel β-Äthoxy-propionsäureäthylester neben en Methylor glutorsäurediäthylester (Closs Ingold P. Soc. 197, 2770). Verhindet sich mit a-Methylen-glutarsäurediäthylester (Goss, Ingold, Soc. 127, 2779). Verbindet sich mit Diazomethan in Äther unter Kühlung zu △2-Pyrazolin-carbonsäure-(3)-äthylester (v. Auwers, CAUER, A. 470, 297). Beim Kochen mit überschüssigem Piperidin entsteht β-Piperidinopropionsäureäthylester (PHILIPPI, GALTER, M. 51, 264).

Polymerer Acrylsäureäthylester, Polyacrylsäureäthylester $(C_5H_8O_2)_x = \cdots CH_2 - CH - CH_2 - CH \cdots$

CO₂·C₂H₅ CO₂·C₂H₅ CO₂·C₂H₅

Literatur: C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1069. – E. TROMMSDORFF in R. HOUWINK, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 350. — K. H. MEYER, Die hochpolymeren Verbindungen [Leipzig 1940], S. 100.

Die Polyacrylsäureäthylester sind nicht als einheitliche chemische Individuen, sondern als Gemische von Polymerhomologen aufzufassen; ihr Durchschnittsmolekulargewicht wurde kryoskopisch in Benzol und viscosimetrisch in Benzol und Butylacetat bestimmt (STAUDINGER, Trommsdorff, A. 502 [1933], 210, 213). — B. Polymeranaloge Polyacrylsäureäthylester erhält man aus Polyacrylsäuren durch Erhitzen der Silbersalze mit Athyljodid in äther. Lösung im Rohr auf 100° (Sr., Tr.). Polyacrylsäureäthylester entstehen ferner aus Acrylsäureäthylester durch Einw. von Sonnenlicht oder bei Bestrahlung mit ultraviolettem Licht

Polymerhomologe Reihe der Polyacrylsäureäthylester¹).

	Herstellung						Dunah	
Nr.	Konzen- tration des Esters in Mol/l	Lösungs- mittel	Tempe- ratur bei der Poly- meri- sation	Dauer des Erhitzens (Tage)	Aussehen und Eigenschaften	Löslichkeit in Benzol	Durch- schnitts- Polymeri- sations- grad	Durch- schnitts- Mol-Gew.
I	1	Butyl- acetat	190	4	Sehr dickflüssiges Öl, farblos	Ohne Quellung löslich	22	2 200
п	2	Butyl- acetat	200	20	Wie I, etwas dickflüssiger	Ohne Quellung löslich	40	4000
Ш	1	Butyl- acetat	100	25	Sehr zäh, noch flie- ßende Masse, klebt am Glas, fadenziehend	Ohne Quellung löslich	78	7800
IV	2	Butyl- acetat	100	25	Wie III, noch zäher, stark fadenziehend	Schwache Quellung, dann Lösung	145	14500
v	4	Butyl- acetat	100	25	Wie III, noch zäher, sehr fest am Glas haf- tend, fadenziehend	Schwache Quellung, dann Lösung	225	22 500
VI	6	Butyl- acetat	100	19	Sehr zäh, nicht mehr fließend, klebt stark am Glas, nicht oder kaum fadenziehend	Erst Quellung, dann Lösung	405	41 000
VII	reiner Ester	+ 0,1 cm ² peroxyd- haltiger Äther	100	12	Sehr zähe, elastische, kautschukähnliche Masse	Starke Quellung, dann Lösung	1750	175000
VIII	reiner Ester		100	12	Wie VII	Quillt auf das 50-fache seines Volumens, unlöslich		

¹⁾ STAUDINGER, TROMMSDORFF, A. 502, 209, 211.

(Moureu, Murat, Tampier, A. ch. [9] 15, 238) sowie beim Erwärmen (Mou., Mu., Ta.; St., Tr.). — Technische Darstellung durch Kochen von Acrylsäureäthylester in Aceton in einem eisernen Gefäß unter Durchleiten von Sauerstoff: Röhm & Haas, F. P. 663711; C. 1929 II, 3068: — Bei der thermischen Polymerisation nimmt mit steigender Temperatur und mit sinkender Konzentration der Durchschnittspolymerisationsgrad der Polymeren ab. Die physikalischen Eigenschaften ändern sich mit zunehmendem Polymerisationsgrad in gesetzmäßiger Weise. Über Herstellung, physikalische Eigenschaften, durchschnittliche Polymerisationsgrade und Molekulargewichte der Polyacrylsäureäthylester s. Tabelle S. 387. Viscosität in Benzol und Butylacetat: St., Tr. — Läßt sich durch Behandeln mit 2n-alkoh. Natronlauge unter vollständigem Sauerstoffausschluß in einer Stickstoff-Atmosphäre zu polymeranalogen Polyacrylsäureathylester, z. B. zur Herstellung von Lacken, Filmen, Klebstoffen, Mehrschichtenglas und Emulsionen für die Lederindustrie s. die S. 387 angeführte Buchliteratur; vgl. ferner P. Nowak in W. Röhrs. H. Staudinger, R. Vieweg, Fort schritte der Chemie, Physik und Technik der makromolekularen Stoffe [München-Berlin 1939] S. 246; Neher, Ind. Eng. Chem. 28, 270; Klein, Pearce, Ind. Eng. Chem. 28, 635.

Acrylsäurebutylester $C_7H_{12}O_2=CH_3:CH\cdot CO_3\cdot [CH_2]_3\cdot CH_3$ B. Aus Acrylsäure und Butylalkohol in Gegenwart von Schwefelsäure auf dem Wasserbad (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 245). Beim Erhitzen von β -Halogen-propionsäurebutylestern mit Diäthylanilin auf 200° (Mou., Mu., T.). — Kp₂₅: 59°. D₄°: 0,9202; D₄°: 0,9117; D₄°: 0,9110. $n_0^{11}: 1,4254$.

Acrylsäureisoamylester $C_8H_{14}O_2=CH_{2}:CH\cdot CO_2\cdot CH_2\cdot CH_3\cdot CH(CH_3)_2$. B. Aus Acrylsäure und Isoamylalkohol in Gegenwart von Schwefelsäure auf dem Wasserbad (Moureu, Murat, Tampier, C. r. 172, 1269; A. ch. [9] 15, 246). Beim Erhitzen von β -Halogen-propionsäure-isoamylestern mit Diäthylanilin auf 220° (Mou., Mu., T.). — Öl von angenehmem Geruch. $Kp_{754}: 157-159°; Kp_{32}: 71-72°. D_4°: 0,9188; D_4°: 0,9070, D_4°: 0,9020. n_5°: 1,4287.$

Acrylsäureallylester $C_0H_8O_3=CH_2:CH\cdot CO_2\cdot CH_2\cdot CH:CH_2$ (H 400). B. Aus Acrylsäure und Allylalkohol in Gegenwart von Schwefelsäure auf dem Wasserbad (Moureu, Murat, Tampier, A. ch. [9] 15, 248). — Flüssigkeit von unangenehmem Geruch. Kp₃₇: 72°. D°: 1,0001; D°: 0,9945; D°: 0,9886. $n^0_D: 1,4390$. Etwas löslich in Wasser. — Addiert am Licht 4 Atome Brom.

Acrylsäurechlorid, Acryloylchlorid C₂H₂OCl = CH₂: CH·COCl (H 400). Beim Erhitzen auf 150° erhält man in allen Lösungsmitteln unlösliches Polyacrylsäurechlorid als bräunliche Masse, beim Belichten bei gewöhnlicher Temperatur als glasartiges Produkt (STAUDINGER, URECH, *Helv.* 12, 1131).

Acrylsäureamid $C_2H_5ON=CH_2:CH\cdot CO\cdot NH_2$ (H 400; E I 186). Krystalle (aus Dichloräthylen). F: 84° (VAN DER BURG, R. 41, 23). — Spaltet beim Erhitzen auf 150° Ammoniak ab (STAUDINGER, URECH, Helv. 12, 1116, 1132).

Acrylsäurenitril, Vinylcyanid $C_2H_3N=CH_4$: CH·CN (H 400; E I 186). B. Zur Bildung aus β -Oxy-propionsäurenitril bei der Destillation mit Phosphorpentoxyd vgl. Moureu, Brown, Bl. [4] 27, 903; van der Burg, R. 41, 23. Aus β -Oxy-propionsäurenitril beim Leiten über aktive Kohle bei 260°, beim Kochen mit Zinn, verzinnten Eisenspänen, Kieselsäuregel oder Bimsstein-Zinndioxyd sowie beim Erhitzen mit NaHSO₄ auf 260—280° (I. G. Farbenind., D. R. P. 496372; C. 1930 II, 800; Frdl. 16, 286). Aus p-Toluolsulfonsäure-[β -cyan-āthylester] bei der Einw. von 2n-Natronlauge bei Zimmertemperatur oder beim Erhitzen mit wasserfreiem Kaliumcarbonat auf ca. 80° (Clemo, Walton, Soc. 1928, 724, 727). — E: —82°; Kp₇₈₀: 77,5—79° (Timmermans, Bl. Soc. chim. Belg. 31, 392; C. 1923 III, 1137). D²⁰: 0,811 (van der B.). — Polymerisiert sich innerhalb 2 Tagen zu einer wachsartigen Masse (van der B.). Liefert beim Behandeln mit Bromwasserstoff β -Brom-propionsäurenitril; daneben entsteht bisweilen eine bei 55—57° schmelzende unbeständige Verbindung, die vielleicht als β -Brom-propionsäurenitril und Resorcin in Ather mit Chlorwasserstoff in Gegenwart von Zinkohlorid und Behandeln des Reaktionsprodukts mit Wasser erhält man 7-Oxy-3.4-dihydro-cumarin (Syst. Nr. 2510) bzw. β -[2.4-Dioxy-phenyl]-propionsäure; analog verläuft die Reaktion bei entsprechender Einw. von Oroin und Phloroglucin (Langley, Adams, Am. Soc. 44, 2326, 2330).

Trichloracrylsäure C₂HO₂Cl₂ = CCl₂:CCl·CO₂H (H 402; E I 187). Elektrische Leitfähigkeit wäßr. Lösungen von Trichloracrylsäure und ihrem Natriumsalz bei 25°: BÖRSEKEN, R. 46, 844. — Das Bariumsalz gibt beim Erhitzen im Wasserstoffstrom Dichloracetylen und andere Produkte (BÖRSEKEN, CARRIÈRE, Versl. Akad. Amsterdam 22 [1914], 1187). Bei der Einw. von Chlor auf Trichloracrylsäure in Tetrachlorkohlenstoff am Sonnenlicht erhält man Pentachlorpropionsäure (B., R. 46, 841). Spaltet beim Erhitzen mit Ammoniak

auf 700—800° quantitativ Chlor als Ammoniumchlorid ab (Heslinga, R. 43, 179). Salze: B., R. 46, 845. — $Mg(C_3O_2Cl_3)_2 + 3^1/2H_2O$. Prismen. Leicht löslich in Wasser. Sr($C_3O_2Cl_3)_2 + 5H_2O$. Nadeln. Leicht löslich in Wasser. — $Zn(C_3O_2Cl_3)_2 + 3^1/2H_2O$. Pulver. — $Zn(C_3O_2Cl_3)_3 + 6H_2O$. Nadeln. — $Cd(C_3O_2Cl_3)_2 + 2H_2O$. Tafeln. — $Hg(C_3O_2Cl_3)_2$. Krystalle. Schwer löslich in Wasser.

Bis-trichloracryloyl-peroxyd $C_6O_4Cl_6=CCl_2:CCl\cdot CO\cdot O\cdot CO\cdot CCl: CCl_2$. B. Aus Trichloracrylsäure-chlorid und überschüssiger 20% iger Wasserstoffperoxyd-Lösung in Pyridin bei -3^0 bis 0^0 (Böeseken, Gelissen, R. 43, 266, 267). — Blättchen von schwachem, aber charakteristischem Geruch (aus Alkohol). F: 49°. Zersetzt sich, über freier Flamme erhitzt, nach dem Schmelzen heftig, aber ohne Detonation. Detoniert heftig beim Reiben im Mörser. Bei gewöhnlicher Temperatur flüchtig. Löslich in den gebräuchlichen organischen Lösungsmitteln, schwer löslich in Methanol, fast unlöslich in Wasser. — Wird durch kaltes Wasser in 24 Stunden nicht merklich hydrolysiert. Eine kalte alkoholische Lösung zersetzt sich langsam unter Bildung von Acetaldehyd. Zersetzt sich langsam in konz. Schwefelsäure. Reagiert heftig mit Anilin und Diphenylamin.

α.β-Dibrom-acrylsäure $C_3H_2O_2Br_2 = CHBr: CBr\cdot CO_2H$ (H 404). B. Neben anderen Produkten beim Kochen von α.β.γ.γ.γ'.γ'-Hexabrom-α.γ.γ'-trinitro-isovaleriansäure mitWasser (Wieland, Jung, A. 445, 88). — Prismen (aus Petroläther oder Wasser). F: 86°.

2. Carbonsäuren C4H6O2.

1. Buten-(1)-säure-(4). Δβ-Butensäure. Propen-(2)-carbonsäure-(1), Vinylessigsäure C₄H₆O₂ = CH₂:CH·CH₂·CO₂H (H 407; E I 187). B. Entsteht neben anderen Produkten, wenn man Vinylessigsäurenitril mit der äquimolekularen Menge konz. Schwefelsäure einige Tage stehen läßt und das Reaktionsgemisch mit Wasser kurze Zeit zum Sieden erhitzt (Bruyllants, Bl. Soc. chim. Belg. 33, 335; C. 1924 II. 1784). Aus Allylmagnesiumbromid und Kohlendioxyd in Äther, neben anderen Produkten (GILMAN, McGlumphy, Bl. [4] 43, 1327). — Leicht bewegliche, wie Buttersäure riechende Flüssigkeit. F: —38,2° (B.). Kp_{764,3}: 169—169,2° (B.); Kp₁₈: 73—74° (Stoermer, Robert, B. 55, 1034); Kp₁₃: 72,6—72,8° (B.). D₃²⁰: 1,0091; n₃²⁰: 1,4252 (B.). Ultraviolettes Absorptionsspektrum in Hexan, Wasser und in verd. Natronlauge: B., Castille, Bl. Soc. chim. Belg. 34, 273; C. 1926 I, 1962. Zeitliche, auf die durch Alkali hervorgerufene Isomerisation der Vinylessigsäure zu Crotonsäure zurückzuführende (s. u.) Veränderung des Spektrums in verd. Natronlauge: B., C. Mit Wasser mischbar (B.). — Bei längerem Kochen erhält man Crotonsäure und wahrscheinlich sehr geringe Mengen Isocrotonsäure (B.). Liefert bei der Oxydation mit Permanganat β.γ-Dioxy-buttersäure (Glattfeld, Miller, Am. Soc. 42, 2315). Isomerisiert sich bei längerer Einw. von überschüssiger Natronlauge zu Crotonsäure (B.). — AgC₄H₅O₂. Krystallinisch (Dojarenko, B. 60, 1549).

Amid C₄H₇ON = CH₂:CH·CH₂·CO·NH₂ (H 408). B. Aus Vinylessigsäurenitril beim Behandeln mit der äquimolekularen Menge konz. Schwefelsäure, anfangs unter Kühlung (BRUYLANTS, CASTILLE, Bl. Acad. Belgique [5] 13, 767, 776; C. 1928 I, 1644). — Schuppen (aus Alkohol oder Benzol). F: 74°. Ultraviolettes Absorptionsspektrum in wäßriger sowie in frisch hergestellter und in 14 Tage alter alkalischer Lösung: B., C.

Nitril, Vinylacetonitril, Allyleyanid C₄H₅N = CH₂:CH·CH₂·CN (H 408; E I 187). Die Produkte. die durch Erhitzen von Allylhalogenid mit Kaliumeyanid nach RINNE, Tollens (A. 159 [1875], 106). Lippmann (M. 12 [1891], 406) und Pomeranz (C. 1907 I. 704; A. 351 [1907], 357) entstehen, sind größtenteils Crotonsäurenitril (v. Auwers, B. 56, 1176; vgl. a. Bruylants, Bl. Acad. Belgique [5] 6, 479; C. 1921 III, 30; Bl. Soc. chim. Belg. 31, 183 Anm.). — B. Bei 48-stdg. Erwärmen von γ-Chlor-buttersäurenitril mit der äquimolekularen Menge Chinolin oder besser Pyridin auf dem Wasserbad (B., Bl. Acad. Belgique [5] 6, 481). — Darstellung durch Kochen von Allylbromid mit Kupfer(I)-cyanid: B., Bl. Soc. chim. Belg. 31, 176; C. 1923 I, 37; Supniewski, Salzberg. Org. Synth., Coll. Vol. I [1932], S. 38; deutsche Ausgabe, S. 37; vgl. a. Henri, Chem. N. 112. 151; C. 1923 I, 36; v. Au., B. 56, 1173. — F: —86,8° (korr.) (Laffortune, Bl. Soc. chim. Belg. 32, 315; C. 1924 I, 1660). Kp₇₆₃: 118,6—118,7° (B., Christiaen, Bl. Soc. chim. Belg. 34, 147; C. 1925 II, 538). D₄^{1,6}: 0,8407 (v. Au.); D₇⁰: 0,8341 (B., Bl. Soc. chim. Belg. 31, 177). Verbrennungswärme bei konstantem Volumen: 574,0 kcal/Mol (B., Ch.). n₁₆^{2,6}: 1,4063; n₁^{1,6}: 1,4087; n₁₆^{3,6}: 1,4151; n₂^{4,6}: 1,4200 (v. Au.); n₂₆^{2,7}: 1,4030; n₁₆^{2,7}: 1,4060; n₁₆^{2,7}: 1,4117 (B., Bl. Soc. chim. Belg. 31, 177). Ultraviolettes Absorptionsspektrum in Hexan, Wasser und in Natronlauge verschiedener Konzentration: B., Castille, Bl. Soc. chim. Belg. 34, 265; C. 1926 I, 1962. Thermische Analyse des binären Systems mit Anilin: La. — Vinylacetonitril verändert sich nicht beim Erhitzen auf 550° (B., Bl. Soc. chim. Belg. 31, 228; C. 1923 I, 38). Liefert in absol. Alkohol bei der Einw. von Natrium in Toluol bei 50° Butylamin, γ-Athoxy-butylamin und andere Produkte

(SUPNIEWSKI, Roczniki Chem. 7 [1927], 181). Beim Sättigen mit Bromwasserstoff ohne Kühlung entsteht β-Brom-buttersäurenitril (B., Bl. Soc. chim. Belg. 31, 179). Zur Überführung in β-Brom-buttersäureamid nach LESPIEAU (C. r. 139 [1904], 738; Bl. [3] 33 [1905], 58) vgl. B., Bl. Soc. chim. Belg. 31, 179. Läßt man Vinylacetonitril mit der äquimolekularen Menge konz. Schwefelsäure einige Tage stehen und erhitzt das Reaktionsgemisch mit Wasser kurze Zeit zum Sieden, so erhält man vorwiegend Vinylessigsäure neben wenig Crotonsäure (B., Bl. Soc. chim. Belg. 33, 335; C. 1924 II, 1784). Isomerisiert sich beim Kochen mit 0,1n-Natronlauge zu einem Gemisch aus Crotonsäurenitril und Isocrotonsäurenitril (B., Bl. Soc. chim. Belg. 33, 332; vgl. v. Au., B. 56, 1175); beim Erwärmen mit stärkerer Alkalilauge auf dem Wasserbad erhält man β-Oxy-buttersäure und wenig Crotonsäure (B., Bl. Soc. chim. Belg. 31, 182; vgl. Will, Körner, A. 125 [1863], 273; Pinner, B. 12 [1879], 2057). Gibt beim Behandeln mit wäßrig-alkoholischer Natronlauge β-Athoxy-buttersäurenitril und ein Gemisch der beiden isomeren Crotonsäurenitrile (B., Bl. Soc. chim. Belg. 33, 333; vgl. CLAUS, A. 131 [1864], 61). Liefert beim Erwärmen mit konzentriertem wäßrigem Ammoniak im Rohr auf ca. 75° hauptsächlich β -Amino-butyronitril neben einem Gemisch der beiden isomeren Crotonsäurenitrile und wenig Bis- $[\beta$ -cyan-isopropyl]-amin (?); bei Einw. von Methyl-, Äthyl-, Dimethyl- und Trimethylamin in wäßr. Lösung entstehen vorwiegend die entsprechenden N-Alkylderivate des β-Amino-butyronitrils (B., Bl. Soc. chim. Belg. 32, 256, 261, 263, 264, 268; C. 1924 I, 1668). Gibt beim Kochen mit überschüssigem Methanol in Gegenwart von wenig Natriummethylat β -Methoxy-buttersäurenitril; reagiert analog mit höheren aliphatischen Alkoholen unter gleichzeitiger Bildung polymerer Nitrile (B., Bl. Soc. chim. Belg. 31, 226). Phenol in Gegenwart von wenig Natriumphenolat in der Wärme (B., Bl. Soc. chim. Belg. 31, 227) oder höhere aliphatische Amine, z. B. Diäthylamin (B., Bl. Soc. chim. Belg. 32, 267), isomerisieren Vinylacetonitril zu Crotonsäurenitril und Isocrotonsäurenitril. Liefert bei der Einw. von Athylmagnesiumbromid in Ather oder von Natriumäthylat als Hauptprodukt Dicrotonsäure-dinitril neben Crotonsäurenitril, Isocrotonsäurenitril und anderen Produkten (B., Gevaert, Bl. Acad. Belgique [5] 9, 27, 36; Bl. Soc. chim. Belg. 32, 317, 324; C. 1923 III. 1263; B., Mathus, Bl. Acad. Belgique [5] 11, 651, 652; C. 1926 I, 3146).

a) Crotonsäure, feste Crotonsäure, a-Crotonsäure C₄H₆O₂=CH₅·CH·CH·CO₃H (H 408; E I 187). Der Crotonsäure kommt sehr wahrscheinlich die trans-Konfiguration zu. Zur Konfiguration vgl. die E I 2, 187 Anm. 1 angeführte Literatur; vgl. ferner González. An. Soc. españ. 23, 100; C. 1925 I, 2547; BOURGUEL, C. r. 180, 1753; 188, 1494; Bl. [4] 45, 1067; Hey, Soc. 1928, 2321; PAAL, SCHIEDEWITZ, B. 63 [1930], 766.

B. Aus Vinylessigsäure bei längerem Aufbewahren der Lösung in überschüssiger verdünnter Natronlauge bei Zimmertemperatur (Bruylants, Bl. Soc. chim. Belg. 38, 337; C. 1924 II, 1784). Aus Isocrotonsäure beim Erwärmen mit 60% iger Schwefelsäure (v. Auwers, Wissebach, B. 56, 729). Bei der Oxydation von Crotonaldehyd mit Sauerstoff bei ca. 70° (Duchesne, Dellérine, Bl. [4] 35, 1312; vgl. a. Kaufler, M. 53/54, 119) oder bei 20—40° in Eisessig bei Gegenwart von Mangan(III)-acetat (Elektrizitätswerk Lonza, D. R. P. 369636; C. 1923 II, 1247; Frdl. 14, 279). Zur Bildung aus Allylcyanid beim Erwärmen mit 20% iger Kalilauge vgl. Br., Bl. Soc. chim. Belg. 31, 182; C. 1923 I, 37. Beim Kochen von β-Chlor-butyronitril mit konz. Kalilauge (Dewael, Bl. Soc. chim. Belg. 33, 506; C. 1925 I, 359). Neben Isocrotonsäure beim Behandeln von α-Brom-butyrylbromid mit alkoh. Kalilauge (Phillips, Soc. 1926, 2981). Beim Behandeln von γ.γ-Dichlor-crotonsäure mit 3% igem Natriumamalgam in neutral gehaltener wäßriger Lösung, anfangs unter Eiskühlung, neben wenig Buttersäure (v. Au., B. 56, 730). Über Bildung beim Erwärmen von in Bac. mesentericus vulgatus oder Bact. megatherium enthaltenen Polymerisationsund Dehydratationsprodukten der β-Oxy-buttersäure mit Natronlauge vgl. Lemoigne, C. r. Soc. Biol. 94, 1291; Bl. Soc. Chim. biol. 8, 772, 777; Ann. Inst. Pasteur 41, 156, 158; C. 1926 II, 777, 2554; 1927 I, 2437; vgl. a. L., C. r. 178, 1093; 180, 1539. — Darstellung aus Acetaldehyd und Malonsäure in Pyridin: v. Au., A. 432, 58; in Pyridin bei Gegenwart von wenig Piperidin (Ausbeute 75%): Dutt, Quart. J. indian chem. Soc. 1, 299; C. 1925 II, 1853; in Ather bei Gegenwart von Pyridin (Ausbeute 70%): F. W. Henle, Anleitung für das organisch-chemische Praktikum [Leipzig 1927], S. 188; Backer, Bloemen, R. 45, 102; Florence, Bl. [4] 41, 444.

Schmelzwärme: 36,03 cal/g (Lynn, zit. bei Skau, Sakton, Am. Soc. 50, 2695 Anm. 11). Verbrennungswärme bei konstantem Volumen: 477,6 kcal/Mol (Rever in Landolt-Börnst. EI, 873). Ultraviolettes Absorptionsspektrum in Wasser: Bruylants, Castille, Bl. Soc. chim. Belg. 34, 276; C. 1926 I, 1962; vgl. Dahm, J. opt. Soc. Am. 15, 271; C. 1928 I, 1682;

in Hexan und 0,1 n-Natronlauge: Br., C.; in Alkohol: V. Henri, Études de photochimie [Paris 1919], S. 107. — 100 g Wasser von 25° lösen 9,4 g (Verkade, Söhngen, Zbl. Bakt. Parasienk. [II] 50 [1920], 86; C. 1920 I, 631). Verteilung von Crotonsäure bei 25° zwischen Wasser und Chloroform: Smith, J. phys. Chem. 25, 228; Sm., White, J. phys. Chem. 33, 1971; zwischen Wasser und Benzol: Sm., Wh., J. phys. Chem. 33, 1965; zwischen Wasser und Toluol: Sm., Wh., J. phys. Chem. 33, 1959; zwischen Wasser und Xylol: Sm., J. phys. Chem. 25, 221; zwischen Wasser und Ather: Sm., J. phys. Chem. 25, 620; zwischen Wasser und Olivenöl: V., S. Koagulierende Wirkung auf wäßr. Caseinnatrium-Lösungen: Isgary-schew, Bogcmolowa, Koll.-Z. 38, 239; C. 1926 I. 3306. Flüchtigkeit mit Wasserdampf: Virtanen, Pulkki, Am. Soc. 50, 3145; Ann. Acad. Sci. fenn. [A] 29 [Komppa-Festschr.], Nr. 25, S. 16; C. 1928 I, 167. Adsorption von Crotonsäure aus wäßr. Lösung an Tierkohle: Alexejewski, Ж. 59, 1036; C. 1928 I, 2916; Schilow, Nekrassow, Ph. Ch. 130, 70; Ж. 60, 110. Adsorption von Crotonsäure im Gemisch mit Buttersäure aus wäßr. Lösung an Tierkohle: A. Einfluß auf die Quellung von Casein in wäßr. Lösung: I., Pomeranzewa, Koll.-Z. 38, 236; C. 1926 I, 3129. Elektrische Leitfähigkeit in alkoh. Lösungen bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 1504. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßrigen, schwach salzsauren Crotonsäure-Lösungen: Frumkin, Ph. Ch. 111, 194.

Das Natriumsalz gibt bei der Elektrolyse in ca. 40% iger wäßriger Lösung vorwiegend Kohlendioxyd neben Kohlenoxyd, Allylen und Sauerstoff (Bouis, Bl. [4] 33, 1083). Crotonsäure ist in Pyridin oder Cyclohexanol auch bei Gegenwart von Hämin gegen Sauerstoff beständig (Kuhn, Meyer, H. 185, 202). Läßt sich teim Behandeln mit einer 5 Atomen Sauerstoff entsprechenden Menge Permanganat, am zweckmäßigsten zunächst in saurer. dann in alkalischer Lösung quantitativ zu 2 Mol Kohlendioxyd und je 1 Mol Essigsäure und Wasser oxydieren (Kuhn, Winterstein, Karlovitz, Helv. 12, 67). Zur Oxydation mit Chromschwefelsäure vgl. Simon, C. r. 180, 834. Beim Einleiten eines Gemisches aus gleichen Teilen Chlor und Luft in eine 5%ige wäßrige Lösung von Crotonsäure bei 5-90 und Behandeln des Bariumsalzes der entstandenen α -Chlor- β -oxy-buttersäure (H 3, 309) mit Silberoxyd in Wasser bei 70-80° (GLATTFELD, WOODRUFF, Am. Soc. 49, 2311) oder beim Behandeln von Crotonsäure mit Benzopersäure in Chloroform + Wasser (Braun, Am. Soc. 51, 229, 238, 241; vgl. Br., Am. Soc. 52 [1930], 3180; 54 [1932], 1135) entsteht dl-Erythro- $\alpha.\beta$ -dioxybuttersäure (F: 81,50). Bei der Oxydation von crotonsaurem Barium in barytalkalischer Lösung mit Bariumpermanganat unter Eiskühlung erhält man dagegen dl-Threo-α.β-dioxybuttersäure (F: 74—75°) (G., W.; vgl. Firtig. Kochs, A. 268 [1892], 8); dieselbe Verbindung und eine Chloroxybuttersäure C₄H₇O₃Cl vom Schmelzpunkt 76° entstehen neben sehr wenig Oxalsäure bei der Oxydation von Crotonsäure mit Barium-, Kalium- oder Silberchlorat in wäßr. Lösung bei Gegenwart von Osmiumtetroxyd je nach den Reaktionsbedingungen in wechselnden Mengen (BR., Am. Soc. 51, 232, 238, 242; vgl. a. G., W.; MEDWEDEW, ALEXEJEWA, C. 1927 II, 1012). Zur Überführung in $\alpha.\beta$ -Dioxy-buttersäure durch längere Einw. von 30% igem Wasserstoffperoxyd bei 40° vgl. WIELAND, A. 445, 200. Bei der Destillation des Ammoniumsalzes mit Wasserstoffperoxyd entstehen Acetaldehyd und Aceton (Wie., A. 436, 256). Geschwindigkeit der Hydrierung in alkoh. Lösung in Gegenwart von Platinschwarz bei 14°: Lebedew, Kobljanski, Jakubtschik, Ж. 56, 275; Soc. 127, 422; in Gegenwart von Palladium-Bariumsulfat bei 21°: PAAL, SCHIEDEWITZ, B. 63 [1930], 769. Wird langsamer als Isocrotonsäure zu Buttersäure hydriert (P., Sch.). Geschwindigkeit der Reduktion im Gemisch mit anderen ungesättigten Verbindungen in Alkohol bei Gegenwart von Platinschwarz: L., Ko., Jak.; L., Jak., Ж. 60, 805, 823; Soc. 1928, 2192, 2197. Bromierung mit N-Brom-acetamid in Aceton unter Kühlung: Wohl, Jaschinowski, B. 54, 478. Gibt bei längerem Kochen mit 20% iger Schwefelsäure oder Salzsäure β-Oxy-buttersäure; beim Kochen mit Salzsäure erhält man außerdem β -Chlor-buttersäure (Kaufler. M. 53/54, 124, 125). Geschwindigkeit der Addition von Brom in Tetrachlorkohlenstoff im Dunkeln bei 13° in Abwesenheit und bei Gegenwart von Bromwasserstoff oder Wasser: Williams, James, Soc. 1928, 345. Liefert in methylalkoholischer Lösung bei Gegenwart von Calciumcarbonat beim Einleiten von Chlor in Anwesenheit von Jod oder besser bei längerer Einw. von Chlorjod α -Jod- β -methoxy-buttersäure (Jackson, Pasiut, Am. Soc. 50, 2256, 2258; vgl. West, Krummel, Carter, J. biol. Chem. 122 [1937/38], 607). Bei längerer Einw. von Stickstofftrichlorid in Tetrachlorkohlenstoff bei 13° entsteht neben anderen Verbindungen das Hydrochlorid der α-Chlor-β-amino-buttersäure (Coleman, Mullins, Am. Soc. 51, 938). Geschwindigkeit der Addition von Natriumsulfit in wäßr. Lösung bei 80°: Hägg-Lund, Ringbom, Z. anorg. Ch. 150, 242. Bei der Einw. von Jod auf crotonsaures Silber in Ather bildet sich ein Produkt, das beim Behandeln mit Wasser in Silberjodid, Crotonsäure und andere ungesättigte Verbindungen zerfällt (Wieland, Fischer, A. 446, 66). Liefert beim Erhitzen mit Butadien-(1.3) im Rohr auf 150—170° 4. Tetrahydro-o-toluylsäure (Diels, Alder, A. 470, 90). Lagert in Eisessig + Tetrachlorkohlenstoff Rhodan nicht an (Kaufmann, B. 59, 1391). Bei 3-tägiger Bestrahlung einer Lösung von Crotonsäure und

392

Anilin in Benzol mit einer Quarzquecksilberlampe entstehen neben wenig Crotonsäureanilid und Isocrotonsäureanilid hauptsächlich β -Anilino-buttersäure und etwas β -Anilino-buttersäure-anilid (Stoermer, Robert, B. 55, 1035). Liefe.t beim Erhitzen mit 2-Amino-thiophenol auf 165—170° in einer Kohlendioxyd-Atmosphäre die Verbindung $C_0H_4 < NH$ —CO (Syst. Nr. 4278) (MILLS, WHITWORTH, Soc. 1927, 2749).

Das Natriumsalz wird in Gegenwart von Phosphatpuffer (p_H 7,4) durch Bact. coli zu Acetessigsäure oxydiert; in Gegenwart von Natriumnitrat findet die Reaktion auch in Abwesenheit von Sauerstoff statt (Quastel, Biochem. J. 20, 176). Bactericide Wirkung: Cheeseworth, Cooper, J. phys. Chem. 33, 720; Schöbl., Philippine J. Sci. 25, 129; C. 1925 I, 2699. — Bestimmung der Jodzahl nach verschiedenen Verfahren: Margosches, Hinner, Fr. 64, 69; Böeseken, Gelber, R. 46, 168. Verhalten bei der Jodzahl-Bestimmung nach Hübl: MacLean, Thomas, Biochem. J. 15, 322. — Lithiumsalz. Röntgenogramm: Becker, Jancke, Ph. Ch. 99, 272; Herzog, J., Z. ang. Ch. 34, 387. — Thallium(I)-salz. Nadeln (aus Methanol + Aceton). Existiert in drei festen Modifikationen und einer krystallinisch-flüssigen Phase (Walter, B. 59, 969). Sintert bei 119° und schmilzt bei 122° (korr.).

Crotonsäuremethylester C₅H₈O₂ = CH₃·CH·CH·CO₂·CH₃ (H 410; E I 188). Kp₇₈₀: 118,6—119,6° (Dasannacharya, Sudborough, *J. indian Inst. Sci.* 4 [1921], 184; D., *Am. Soc.* 46, 1629). — Geschwindigkeit der Umsetzung mit Alkohol in Gegenwart von Chlorwasserstoff bei 30°: D., S.; mit l-Menthol in Gegenwart von Chlorwasserstoff bei 30°: D. Reagiert mit Diazomethan in äther. Lösung unter Bildung von 4-Methyl-\(\alpha^3\)-pyrazolin-carbonsäure-(3)-methylester (v. Pechmann, Burkard, *B.* 33 [1900], 3592; v. Auwers, Cauer, A. 470, 300). Beim Behandeln von Crotonsäuremethylester mit Phenyldiazomethan in Äther, Oxydieren des erhaltenen Pyrazolinderivats mit Brom und nachfolgenden Kochen mit konz. Salzsäure entsteht 4-Methyl-5-phenyl-pyrazol-carbonsäure-(3) (v. Au., C.).

Crotonsäureäthylester $C_8H_{10}O_2=CH_3\cdot CH\cdot CO_2\cdot C_2H_5$ (H 411; E I 188). B. Zur Bildung aus α -Brom-buttersäureäthylester durch Erhitzen mit Diäthylanilin vgl. Goss, Ingold, Thorpe, Soc. 123, 3352. Neben anderen Produkten beim Behandeln von $\alpha.\alpha'$ -Dibrom- β -methyl-adipinsäure-diäthylester mit Diäthylamin (v. Braun, Leistner, Münch, B. 59, 1955). Bei der Reduktion von Acetessigester mit amalgamiertem Zink in mit Chlorwasserstoff gesättigtem absolutem Alkohol bei 15—25°, neben anderen Produkten (Steinkopf, Wolfram, A. 430, 117, 139). — Kp₇₆₀: 136,7—137,7° (Dasannacharya, Sudborough, J. indian Inst. Sci. 4 [1921], 184). Ultraviolettes Absorptionsspektrum in Hexan und Wasser: Grossmann, Ph. Ch. 109, 332, 333.

Liefert bei der Einw. von Bromwasserstoff in Eisessig unterhalb 10° β-Brom-buttersäureäthylester (Burton, Ingold, Soc. 1929, 2030). Beim Leiten von Crotonsäureäthylester und
Ammoniak über Aluminiumoxyd bei 480—500° entstehen Crotonsäurenitril, Isocrotonsäurenitril, Athylalkohol, Wasser, Athylen und Wasserstoff (Mailhe, Bl. [4] 27, 227; A.ch.
[9] 13, 221; Buelens, Bl. Soc. chim. Belg. 32, 336; C. 1924 I, 416). Reagiert mit Kalium
in einer Wasserstoff-Atmosphäre unter Bildung einer ockerfarbenen, in Ather fast unlöslichen Kaliumverbindung (Scheibler, Voss, B. 53, 401). Geschwindigkeit der Umsetzung
mit Methanol in Gegenwart von Chlorwasserstoff bei 30°: Dasannacharya, Sudborough,
J. indian Inst. Sci. 4 [1921], 192. Zur Reaktion mit Diazomethan vgl. a. v. Auwers,
Cauer, A. 470, 287. Liefert beim Kochen mit Kaliumcyanid in verd. Alkohol und Verseifen des Reaktionsprodukts mit Barytwasser Methylbernsteinsäure (Higginbotham, Lapworth, Soc. 121, 51). Gibt beim Erhitzen mit überschüssigem, wasserfreiem Methylamin
im Rohr auf 65° β-Methylamino-buttersäuremethylamid und geringe Mengen β-Methylamino-buttersäure-äthylester (Phillippi, Galter, M. 51, 261). Beim Erhitzen mit Piperidin
im Rohr auf 120° entsteht nur β-Piperidino-buttersäure-äthylester (Ph., G.). Beim Behandeln mit Methylmagnesiumbromid erhält man Dimethylpropenylcarbinol und Athylisovalerianat (?) (van Keersbilck, Bl. Soc. chim. Belg. 38, 207; C. 1929 II, 2036).

Crotonsäurechlorid, Crotonoylchlorid C₄H₅OCl = CH₃·CH·COCl (H 411; E I 188). B. Durch Einw. von Phosphortrichlorid auf mit absol. Ather angefeuchtetes crotonsaures Natrium (RUPE, SCHAERER, Helv. 8, 857). — Kp: 124° (J., M.). — Liefert beim Erwärmen mit trocknem Harnstoff auf 70° Crotonoylharnstoff vom Schmelzpunkt 234° (PH.). Gibt mit p-Kresolmethyläther bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff je nach den Reaktionsbedingungen und Mengenverhältnissen und je nach der Art der Aufarbeitung 2.6-Dimethyl-chromanon, 7-Oxy-3.4-dimethyl-hydrindon-(1) und Propenyl-[6-oxy-3-methyl-phenyl]-keton (v. Au. A. 421, 7, 31; B. 54, 993).

Crotonsäureamid C₄H₇ON = CH₃·CH:CH·CO·NH₃ (H 412; E I 188). Zur Bildung aus Crotonoylchlorid und Ammoniak vgl. Yathiraja, Sudborough, *J. indian Inst. Sci.* [A] 8, 57; C. 1926 I, 70; Phillips, Soc. 1926, 2981. Aus Crotonsäurenitril oder (neben Isocrotonsäureamid) aus Isocrotonsäurenitril beim Behandeln mit der äquimolekularen Menge konz. Schwefelsäure, anfangs unter Kühlung (Bruylants, Castille, Bl. Acad. Belgique [5] 13,

768; C. 1928 I, 1644). — Krystalle (aus Benzol). F: 159—160° (Y., S.), 158° (Ph.). Ultraviolettes Absorptionsspektrum in wäßriger und 0,1n-alkalischer Lösung: B., C. — Zur Umlagerung in Isocrotonsäureamid durch Bestrahlung mit einer Quarzquecksilberlampe vgl. Stoermer, Robert, B. 55, 1033. Geschwindigkeit der Verseifung durch verd. Natronlauge und verd. Schwefelsäure bei 100°: Y., S.

Crotonsäurenitril, Crotonitril C₄H₅N = CH₃·CH:CH·CN (H 412; E I 189). Zur Konfiguration vgl. v. Auwers, B. 56, 1174; Bruylants, Castille, Bl. Acad. Belgique [5] 13, 769; C. 1928 I, 1644. Ist der Hauptbestandteil der bisher für reines Vinylacetonitril gehaltenen, aus Allylhalogenid durch Erhitzen mit Kaliumcyanid entstandenen Präparate von RINNE, TOLLENS (A. 159, 105), LIPPMANN (M. 12, 406) und POMERANZ (C. 1907 I, 704; A. 351, 357) (v. Au.; vgl. Br., Bl. Acad. Belgique [5] 6, 479; C. 1921 III, 30; Bl. Soc. chim. Belg. 31, 183 Anm.). — B. Durch Einw. von Phosphorpentoxyd auf Crotonsäureamid (v. Au.). In geringer Menge im Gemisch mit wenig Vinylacetonitril beim Erhitzen von α-Cyan-croton-säure über den Schmelzpunkt (v. Au., B. 56, 1182; vgl. Fiquet, Bl. [3] 7 [1892], 769). Entsteht neben Isocrotonsäurenitril und anderen Produkten: anscheinend aus Allylbromid und Kaliumcyanid in 80 Vol.-%igem Alkohol (Br., Bl. Acad. Belgique [5] 6, 485); beim Leiten von Crotonsäureäthylester und Ammoniak über Aluminiumoxyd bei 480—500° (MAILHE, Bl. [4] 27, 227; A.ch. [9] 13, 221; BUELENS, Bl. Soc. chim. Belg. 32, 336; C. 1924 I. 416); aus Vinylacetonitril beim Kochen mit 0.1 n-Natronlauge (BRUYLANTS, Bl. Soc. chim. Belg. 33, 332; C. 1924 II, 1784; vgl. v. Au., B. 56, 1175), beim Behandeln mit konzentriertem wäßrigem Ammoniak oder aliphatischen Aminen je nach den Reaktionsbedingungen in wechselnden Mengen (Br., Bl. Soc. chim. Belg. 32, 256; C. 1924 I, 1668), beim Behandeln mit der äquimolekularen Menge Phenol in Gegenwart von Natriumphenolat, anfangs bei 80—100° (Br., Bl. Soc. chim. Belg. 31, 227; C. 1923 I, 38) und bei der Einw. von Äthylmagnesiumbromid in Äther oder von Natriumäthylat (Br., Gevaert, Bl. Acad. Belgique [5] 9, 29, 36; Bl. Soc. chim. Belg. 32, 319, 324; C. 1923 III, 1263); aus y-Chlor-butyronitril (Bruylants, Bl. Soc. chim. Belg. 31, 177; C. 1923 I, 37), β-Amino-butyronitril oder β-Piperidino-butyronitril (Br., Bl. Soc. chim. Belg. 32, 258, 269) bei langsamer Destillation; aus β -Chlor- oder β -Brom-butyronitril beim Behandeln mit gepulvertem Kaliumhydroxyd oder Pyridin (Br., Bl. Soc. chim. Belg. 31, 180); aus den Nitrilen der α-Chlor-oder β-Chlorbuttersäure (DE BOOSERÉ, Bl. Soc. chim. Belg. 32, 39, 45; C. 1923 III, 1163), der β Athoxybuttersäure oder β-Dimethylamino-buttersäure (Br., MATHUS, Bl. Acad. Belgique [5] 11, 638; C. 1926 I, 3145) bei Einw. der äquimolekularen Menge Athylmagnesiumbromid in Ather. Zur Bildung aus α- oder β-Oxy-butyronitril durch Einw. von Phosphorpentoxyd (HENRY. C. 1898 II, 662) neben Isocrotonsäurenitril vgl. Br., Bl. Acad. Belgique [5] 6, 483; Buelens, Bl. Soc. chim. Belg. 32, 334; C. 1924 I, 416; DEWAEL, Bl. Soc. chim. Belg. 33, 506; C. 1925 I, 359. Die Trennung der beiden isomeren Nitrile erfolgt durch fraktionierte Destilation (P. 1925).

ation (Br... Bl. Soc. chim. Belg. 31, 180).

F: —51,5° (TIMMERMANS, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp: 121,7—122,1° (ERRERA, LEPINGLE, Bl. Acad. Belgique [5] 11, 153; C. 1925 II, 897); Kp₇₆₀: 122,5° (T.); Kp₇₅₂: 120,8—120,9° (Bruylants, Christiaen, Bl. Soc. chim. Belg. 34, 147; C. 1925 II, 538). Verbrennungswärme bei konstantem Volumen: 572,9 kcal/Mol (Br., Ch.). Auf verschiedenen Wegen dargestellte Präparate zeigten: D^{11.5}: 0,8378; n^{11.5}; 1,4286; n^{11.5}; 1,4320; n^{11.5}; 1,44410; n^{11.5}; 1,4488 (v. Auwers, B. 56, 1174); D^{11.1}; 0,8304; n^{11.1}; 1,4216; n^{11.1}; 1,4249; n^{11.1}; 1,4336; n^{11.1}; 1,4410 (v. Au.); D^{11.1}; 0,8226; n^{11.1}; 1,4157; n^{11.1}; 1,4197; n^{11.1}; 1,4280; n^{11.1}; 1,4299 (Br., Bl. Soc. chim. Belg. 31, 181); D^{2.1}; 0,8224; n^{2.1}; 1,423 (De Booseré, Bl. Soc. chim. Belg. 32, 41). Ultraviolettes Absorptionsspektrum in Hexan, Wasser und 0,05 n-Natronlauge: Br., Castille, Bl. Soc. chim. Belg. 34, 270; C. 1926 I, 1962. Dielektr.-Konst. bei 18,5°: 28,08 (E., L.). Thermische Analyse des binären Systems mit Anilin: Lafortune, Bl. Soc. chim. Belg. 32, 315; C. 1924 I, 1660.

Gibt beim Erwärmen mit Kalilauge auf dem Wasserbad vorwiegend β-Oxy-buttersäure neben wenig Crotonsäure (Bruylants, Bl. Soc. chim. Belg. 31, 182). Addiert Brom in Chloroform unter Bildung von α.β-Dibrom-butyronitril vom Kp₁₈: 106—110° (vermutlich Gemisch zweier stereoisomerer Formen) (Br.). Liefert beim Behandeln mit der äquimolekularen Menge konz. Schwefelsäure, anfangs unter Kühlung, Crotonsäureamid (Br., Castille. Bl. Acad. Belgique [5] 13, 768). Wird durch Einw. von Natrium oder Natriumalkoholat in höhere Polymere übergeführt (Br., Mathus, Bl. Acad. Belgique [5] 11, 641). Bei der Einw. von Athylmagnesiumbromid unter verschiedenen Reaktionsbedingungen entstehen neben viel höheren Polymerisationsprodukten hauptsächlich ein viscoses trimeres (?) Nitril und sehr geringe Mengen trimeres Crotonsäurenitril vom Schmelzpunkt 173—174° (s. bei Isocrotonsäurenitril, S. 395) (Br., M., Bl. Acad. Belgique [5] 11, 638, 641, 652).

Reaktionen von Gemischen aus Crotonsäurenitril und Isocrotonsäurenitril: Liefert bei der Hydrierung in Gegenwart von Nickel bei 200—210° Crotylamin und wenig Dicrotylamin (?)

394

(MAILHE, Bl. [4] 27, 227; A. ch. [9] 18, 221; vgl. Buelens, Bl. Soc. chim. Belg. 32, 336). Beim Erwärmen mit 25% iger Schwefelsäure auf dem Wasserbad erhält man Crotonsäure (Bruylants, Bl. Soc. chim. Belg. 31, 230). Gibt beim Behandeln mit Dimethylamin in Wasser β-Dimethylamino-butyronitril (Br., Bl. Soc. chim. Belg. 32, 267).

Crotonsäureasid $C_4H_5ON_5 = CH_3 \cdot CH \cdot CH \cdot CO \cdot N_3$. B. Beim Behandeln von Crotonoylohlorid mit Natriumazid in Ather (JONES, MASON, Am. Soc. 49, 2533). — Scharf riechende Flüssigkeit. Beginnt bei 30-40° sich unter Entwicklung von Stickstoff zu zersetzen. -Liefert beim Erwärmen auf dem Wasserbad und Behandeln des nicht näher beschriebenen Propenylisocyanats mit Ammoniak in absol. Ather Propenylharnstoff.

b) Isocrotonsäure, flüssige Crotonsäure, β-Crotonsäure, Allocrotonsäure C₄H₄O₂ = CH₃·CH:CH·CO₂H (H 412; E I 189). Der Isocrotonsäure kommt sehr wahrscheinlich die cis-Konfiguration zu. Zur Konfiguration vgl. die im Artikel Crotonsäure, S. 390 angeführte Literatur. Die von Krämer, Grodzki (B. 11, 1359) im rohen Holzessig aufgefundene, als Isocrotonsäure angesehene Verbindung ist nach Sein (B. 60, 1392, 1395) als ein Gemisch von Crotonsäure, Isovaleriansäure und Methyläthylessigsäure anzusehen. - B. In geringer Menge neben Crotonsäure bei der Oxydation von Crotonaldehyd mit Sauerstoff (Kaufler, M. 58/54, 120). Neben Crotonsäure beim Behandeln von α-Brom-butyrylbromid mit alkoh. Kalilauge (PHILLIPS, Soc. 1926, 2981). In sehr geringer Menge bei ca. 10-tägiger Bestrahlung von Crotonsäure in Toluol mit einer Quarzquecksilberlampe (Stoermer, ROBERT, B. 55, 1033). Entsteht entgegen den Angaben von Pomeranz (A. 351 [1907], 359) nicht beim Erhitzen eines Gemisches aus den beiden isomeren Crotonsäurenitrilen mit 25% iger Schwefelsäure auf dem Wasserbad (BRUYLANTS, Bl. Soc. chim. Belg. 31, 230; C. 1923 I, 38; vgl. v. Auwers, B. 56, 1176; Bruy., Bl. Soc. chim. Belg. 31, 183 Anm.). Bei der partiellen Hydrierung von Tetrolsäure in wäßr. Lösung in Gegenwart von Nickel (González, An. Soc. españ. 28, 109; C. 1925 I, 2547), in Gegenwart von kolloidem Palladium + Stärke (Bourguel, C. r. 180, 1754; Bl. [4] 45, 1075) oder in alkoh. Lösung bei Gegenwart von Palladium-Bariumsulfat im Dunkeln (PAAL, SCHIEDEWITZ, B. 63 [1930], 768). — Krystalle (aus Petroläther). F: 14,4—14,6° (v. Au., A. 482, 60). Kp: 169° (Bou.); Kp₁₅: 74,4° (v. Au.), 73° (Bou.). D¹⁵: 1,028 (Bou.); D^{16,5}: 1,0267; $n_{\alpha}^{16,5}$: 1,4422; $n_{He}^{16,5}$: 1,4460; $n_{\beta}^{16,5}$: 1,4551; $n_{\gamma}^{16,5}$: 1,4631 (v. Au.); ni: 1,446 (Bou.). Ultraviolettes Absorptionsspektrum in Hexan: Bruy., Castille, Bl. Soc. chim. Belg. 34, 277; C. 1926 I, 1962. Ist mit Wasser und Olivenöl bei 25° in jedem Verhältnis mischbar (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50, 86; C. 1920 I, 630).

Liefert bei längerer Einw. von Benzopersäure, am zweckmäßigsten in wäßr. Lösung bei Zimmertemperatur dl-Threo- α , β -dioxy-buttersäure (F: 74—75°) (Braun, Am. Soc. 51, 230, 238, 242; vgl. Braun, Am. Soc. 52 [1930], 3180; 54 [1932], 1135). Bei der Oxydation mit Silberchlorat in wäßr. Lösung bei Gegenwart von Osmiumtetroxyd entsteht dagegen dl-Erythro- α . β -dioxy-buttersäure (F: 81,5°) (Braun, Am. Soc. 51, 234, 238, 245). Wird rascher als Crotonsäure zu Buttersäure hydriert; Geschwindigkeit der Hydrierung in Gegenwart von Palladium Bariumsulfat in Alkohol: PAAL, SCHIEDEWITZ, B. 63 [1930], 768. Lagert sich beim Erwärmen mit 60% iger Schwefelsäure vollständig in Crotonsäure um

(v. Auwers, Wissebach, B. 56, 729).

Das Natriumsalz wird in Gegenwart von Phosphatpuffer (pH 7,4) durch Bact coli zu Acetesigsäure oxydiert; in Gegenwart von Natriumnitrat tritt die Reaktion auch in Abwesenheit von Sauerstoff ein (Quastel, Biochem. J. 20, 176). Reduktion von Methylenblau durch Isocrotonsäure in Gegenwart von ruhenden Bact. coli: Qu., Biochem. J. 20, 180. — Thallium(I)-salz. Hygroskopische Blättchen (aus Aceton). Existiert in zwei festen Modifikationen (Walter, B. 59, 969). F: 107° (korr.). Die Schmelze ist in kleinen Tropfen monotrop krystallinisch-flüssig.

Athylester C₄H₁₀O₈ = CH₃·CH:CH·CO₂·C₅H₅ (H 414). B. Beim Erwärmen von isocrotonsaurem Silber mit Athyljodid in absol. Ather (v. Auwers, A. 432, 60). — Kp₇₄₈: 129—130,5°. D₁^{18,6}: 0,9246. n₄^{18,6}: 1,4226; n_{He}^{18,6}: 1,4259; n_{He}^{18,6}: 1,4329; n_{He}^{18,6}: 1,4397. Chlorid, Isocrotonoylchlorid C₄H₅OCl = CH₂·CH·CH·COCl. B. Durch Einw. von Phosphorpentachlorid (Autenrieth, Spiess, B. 34 [1901], 191) oder von Thionylchlorid (Jones, Mason, Am. Soc. 49, 2534) auf Isocrotonsäure, im letzten Fall in äther. Lösung. Aus dem Natriumsalz der Isocrotonsäure beim Erwärmen mit Thionylchlorid in Ather (STOERMER, ROBERT, B. 55, 1034). — Geht bei der Destillation unter Atmosphärendruck vollständig in Crotonoylchlorid über (Au., Sp.; J., M.). Liefert beim Behandeln mit Natriumazid in ather. Lösung bei 15-20°, Aufbewahren des entstandenen Azids bei 25-28°, wobei Stickstoff entweicht, und Einleiten von Ammoniak in die Lösung des erhaltenen Propenylisocyanats in Ather in der Kälte Propenylharnstoff (J., M.).

Amid C₂H₇ON = CH₂·CH·CH·CO·NH₂ (E I 189). B. Zur Bildung nach Stormer, Stockmann (B. 47 [1914], 1790) vgl. Stor., Robert, B. 55, 1033. Aus dem Chlorid und flüssigem Ammoniak in Ather (Stor., R.). Neben Crotonsäureamid beim Behandeln von

Isocrotonsäurenitril mit der äquimolekularen Menge konz. Schwefelsäure, anfangs unter Kühlung (BRUYLANTS, CASTILLE, Bl. Acad. Belgique [5] 18, 768; C. 1928 I, 1644). — F: 100° bis 101° (B., C.). Ultraviolettes Absorptionsspektrum in wäßriger und in 0,1 n-alkalischer Lösung: B., C.

Nitril, Isocrotonitril $C_4H_8N=CH_3\cdot CH:CH\cdot CN$. Zur Konfiguration und Bildung s. im Artikel Crotonsäurenitril, S. 393. — F: —72,6° (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp: 107,7—108,2° (Errera, Lepingle, Bl. Acad. Belgique [5] 11, 153; C. 1925 II, 897); Kp₇₆₄: 107,9—108,0° (Bruyllatts, Christiaen, Bl. Soc. chim. Belg. 34, 146; C. 1925 II, 538); Kp₇₆₀: 108,9—109,4° (T.). $D_1^{4.5}$: 0,8268 (E., L.); $D_2^{6.}$: 0,8244 (Br., Bl. Soc. chim. Belg. 31, 181; C. 1923 I, 37), 0,8225 (de Booseré, Bl. Soc. chim. Belg. 32, 41; C. 1923 III, 1163). Verbrennungswärme bei konstantem Volumen: 571,0 kcal/Mol (Br., Ch.). $n_1^{6.5}$: 1,4175 (E., L.); $n_2^{6.}$: 1,4150; $n_2^{6.}$: 1,4182; $n_2^{6.}$: 1,4265 (Br.); $n_2^{6.}$: 1,4162 (de B.). Ultraviolettes Absorptionsspektrum in Hexan, Wasser und 0,05n-Natronlauge: Br., Castille, Bl. Soc. chim. Belg. 34, 269; C. 1926 I, 1962. Dielektr.-Konst. bei 18,5°: 36,08 (E., L.). — Gibt beim Erwärmen mit Kalilauge auf dem Wasserbad vorwiegend β -Oxy-buttersäure neben wenig Crotonsäure (Br.). Addiert Brom in Chloroform unter Bildung von $\alpha.\beta$ -Dibrombutyronitril vom Kp₁₈: 106—110° (vermutlich Gemisch zweier stereoisomerer Formen) (Br.). Liefert beim Behandeln mit der äquimolekularen Menge konz. Schwefelsäure, anfangs unter Kühlung, Isocrotonsäureamid und Crotonsäureamid (Br., Ca., Bl. Acad. Belgique [5] 13, 768; C. 1928 I, 1644). Wird durch Einw. von Natrium oder Natriumalkoholat in höhere Polymere übergeführt (Br., Mathus, Bl. Acad. Belgique [5] 11, 641; C. 1926 I, 3145). Bei der Einw. von Athylmagnesiumbromid unter verschiedenen Reaktionsbedingungen erhält man neben viel höheren Polymerisationsprodukten hauptsächlich ein viscoses trimeres (?) Nitril, wenig trimeres Crotonsäurenitril vom Schmelzpunkt 173—174° (s. u.) und sehr geringe Mengen Diäthylpropenylcarbinol (Br., M., Bl. Acad. Belgique [5] 11, 638, 641, 652). — Reaktionen von Gemischen aus Isocrotonsäurenitril und Crotonsäurenitril s. S. 393.

Trimeres Crotonsäurenitril (C₄H₅N)₈. Zur Konstitution vgl. Bruylants, Mathus, Bl. Acad. Belgique [5] 11, 642; C. 1926 I, 3145. Das Mol.-Gew. ist ebullioskopisch in Benzol bestimmt (Br., M.). — B. In geringer Menge neben einem viscosen trimeren (?) Crotonsäurenitril, höheren Polymerisationsprodukten und anderen Verbindungen aus den Nitrilen der β-Chlor-buttersäure (DE Booserk, Bl. Soc. chim. Belg. 32, 39, 45; C. 1923 III, 1163; Br., M., Bl. Acad. Belgique [5] 11, 638, 641), der Crotonsäure, der Isocrotonsäure (s.o.), der β-Athoxybuttersäure (Br., M.) sowie der β-Dimethylamino-buttersäure (Br., M.; vgl. a. Br., Bl. Soc. chim. Belg. 32, 266; C. 1924 I, 1668) bei der Einw. von 2 Mol Athylmagnesiumbromid in Ather in der Kälte. — Nadeln (aus Benzol). F: 173—174° (DEB.; Br., M.). Unlöslich in Wasser, schwer löslich in Ather, leicht in Alkohol, Aceton, heißem Benzol und heißem Chloroform (DEB.; Br., M.). Löst sich in konz. Mineralsäuren und fällt beim Verdünnen wieder aus (Br., M.). — Gibt bei der Einw. von Brom in Chloroform, unlöslich in Wasser] (Br., M.). Beim Verseifen mit konz. Salzsäure auf dem Wasserbad entsteht eine Säure C₁₃H₁₆O₂N₃(s.u.) (Br., M.).

Säure C₁₂H₁₆O₂N₂. B. Aus trimerem Crotonsäurenitril beim Verseifen mit konz. Salzsäure auf dem Wasserbad (BRUYLANTS, MATHUS, Bl. Acad. Belgique [5] 11, 643; C. 1926 I, 3145). — Krystalle (aus Benzol). F: 108—109°. Leicht löslich in Alkohol, ziemlich leicht in Chloroform und Benzol, ziemlich schwer in Äther. — Gibt beim Behandeln mit sodaalkalischer Permanganat-Lösung bei 35—40° eine Dicarbonsäure C₁₂H₁₇O₄N [Nadeln (aus verd. Alkohol); F: 178—179°]. Beim Erwärmen mit Salpetersäure (D: 1,30) auf dem Wasserbad erhält man eine Dicarbonsäure C₁₀H₁₈O₄ oder C₁₀H₂₀O₄ [Krystalle (aus Wasser); F: 195°].

- c) Halogen-Substitutionsprodukte der beiden stereoisomeren Propen-(1)-carbonsäuren-(1). Zur Konfiguration der α und β -Halogen-Derivate vgl. v. Auwers, Wissebach, B. 56, 722.
- 2-Chlor-buten-(2)-säure-(1), 1-Chlor-propen-(1)-carbonsäure-(1) $C_4H_5O_3Cl=CH_2\cdot CH:CCl\cdot CO_4H$.
- a) Höherschmelzende Form, α -Chlor-crotonsäure $C_4H_5O_3Cl=CH_5\cdot CH\cdot CCl\cdot CO_3H$ (H 414; E I 189). B. Beim Behandeln von Butyrchloralhydrat mit 2 Mol Kaliumcyanid in wäßr. Lösung bei 40—50°, neben Butyrchloral-cyanhydrin (Chattaway, Irving, Soc. 1929, 1045). Nadeln (aus Petroläther). F: 98,5—99°.

Methylester C₅H₂O₂Cl = CH₃·CH:CCl·CO₂·CH₃ (H 414; E I 189). B. Aus Butyrchloralhydrat beim Behandeln mit 2 Mol Kaliumoyanid in Methanol unterhalb 15° (CHATTAWAY, IRVING, Soc. 1929, 1045). — Kp: 161°.

Äthylester $C_0H_0O_0Cl = CH_0 \cdot CH \cdot CCl \cdot CO_0 \cdot C_0H_0$ (H 415; E I 189). B. Aus α -Chlor-crotonsäure, Äthylalkohol und konz. Schwefelsäure (v. Auwers, A. 432, 61). Aus α -Chlor-

isocrotonsäure beim Erwärmen mit Äthylalkohol und konz. Schwefelsäure auf 100° (v. Au.). Über Bildung aus Butyrchloralhydrat und Kaliumcyanid in alkoh. Lösung vgl. Снаттамач, Івупа, Soc. 1929, 1045. Beim Aufbewahren des Äthylesters der bei 63° schmelzenden α.β-Dichlor-buttersäure, am zweckmäßigsten in alkoh. Lösung bei Gegenwart von Kaliumcyanid (Ch., I., Soc. 1929, 1044). Beim Behandeln von Butyrchloral-cyanhydrin mit 2 Mol Kaliumcyanid in alkoh. Lösung unterhalb 15° (Ch., I.). — Kp₇₆₀: 176°; Kp₃₅: 85° (Ch., I.); Kp₁₀: 61° (v. Au.). D^{4,3}: 1,1073; n^{4,3}: 1,4525; n^{4,5}: 1,4558; n^{6,5}: 1,4637; n^{4,5}: 1,4706 (v. Au.).

Propylester C₇H₁₁O₂Cl = CH₃·CH:CCl·CO₂·CH₂·C₂H₅. B. Beim Behandeln von Butyrchloralhydrat mit 2 Mol Kaliumcyanid in Propylalkohol unterhalb 15° (CHATTAWAY, IRVING, Soc. 1929, 1045). — Kp: 191°.

Butylester $C_8H_{13}O_2Cl=CH_3\cdot CH:CCl\cdot CO_2\cdot [CH_2]_3\cdot CH_3$. B. Aus Butyrchloral-hydrat beim Behandeln mit 2 Mol Kaliumeyanid in Butylalkohol unterhalb 15° (Chattaway, Irving, Soc. 1929, 1045). — Kp: 205°.

Amid C₄H₆ONCl = CH₃·CH:CCl·CO·NH₂ (H 415). B. Man versetzt Butyrchloral-hydrat mit Ammoniak (D: 0,880) und behandelt die in der Kälte mit Ammoniak gesättigte wäßrige Lösung des entstandenen Butyrchloralammoniaks mit 1 Mol Kaliumcyanid erst bei 10—35°, zuletzt bei 70° (CHATTAWAY, IRVING, Soc. 1929, 1046). — F: 113,5°.

b) Niedrigerschmelzende Form, α -Chlor-isocrotonsäure $C_4H_5O_2Cl=CH_3$ · $CH:CCl\cdot CO_2H$ (H 415; E I 189). Liefert beim Erwärmen mit Alkohol und konz. Schwefelsäure auf 100° α -Chlor-crotonsäureäthylester (S. 395) (v. Auwers, A. 432, 62).

Äthylester $C_0H_0O_2Cl=CH_3\cdot CH:CCl\cdot CO_2\cdot C_2H_5$. B. Aus dem Silbersalz der α -Chlorisocrotonsäure und Äthyljodid (v. Auwers, A. 432, 62). — Öl. Kp₃₀: 75°; Kp₁₂: 58°. D₄°: 1,1021. n_{α}^{is} : 1,4507; $n_{H_0}^{is}$: 1,4639; n_{B}^{is} : 1,4617; n_{A}^{is} : 1,4687.

3-Chlor-buten-(2)-säure-(1), 2-Chlor-propen-(1)-carbonsäure-(1) $C_4H_5O_3Cl=CH_3\cdot CCl: CH\cdot CO_3H.$

a) Höherschmelzende Form, β -Chlor-crotonsäure $C_4H_5O_3Cl = CH_3 \cdot CCl \cdot CH \cdot CO_3H$ (H 415; E I 189). Zur Darstellung aus Acetessigsäureäthylester und Phosphorpentachlorid nach Michael, Schulthess (J. pr. [2] 46 [1892], 236) vgl. Scheiblee, Voss, B. 53, 381; Skau, Saxton, Am. Soc. 50, 2696. — F: 93,6° (nach Sublimation) (Sk., Sa.). Spezifische Wärmen der festen und flüssigen Substanz beim Schmelzpunkt: Sk., Sa. Schmelzwärme: 41,08 cal/g (Sk., Sa.). Ultraviolettes Absorptionsspektrum in Hexan: Bruylants, Castille, Bl. Soc. chim. Belg. 34, 277; C. 1926 I, 1962. Thermische Analyse des binären Systems mit β -Chlor-isocrotonsäure: Sk., Sa.

Methylester $C_5H_7O_3Cl = CH_3 \cdot CCl \cdot CH \cdot CO_2 \cdot CH_3$ (E I 189). Liefert mit Natriumbenzylmercaptid in Methanol β -Benzylmercapto-crotonsäuremethylester (Scheibler, Voss, B. 53, 384; vgl. Schei., Topouzada, Schulze, J. pr. [2] 124, 20).

Äthylester $C_6H_9O_3Cl = CH_3 \cdot CCl \cdot CH \cdot CO_3 \cdot C_2H_6$ (H 416; E I 189). B. Aus β -Chlor-crotonsaure, Äthylaikohol und konz. Schwefelsaure (v. Auwers, A. 432, 61). — Kp₁₄: 75,3° bis 76,0° (Errera, Lepingle, Bl. Acad. Belgique [5] 11, 153; C. 1925 II, 897); Kp₁₀: 66° (v. Au.). $D_1^{i_1,0}$: 1,1526 (E., L.); $D_4^{i_1,0}$: 1,1018 (v. Au.). $n_1^{i_2,0}$: 1,4509 (E., L.); $n_3^{i_3,0}$: 1,4564; $n_3^{i_3,0}$: 1,4684; $n_3^{i_3,0}$: 1,4758 (v. Au.). Dielektr.-Konst. bei 18°: 7,67 (E., J. Phys. Rad. [6] 6, 392; C. 1926 I, 2528; vgl. E., L.). — Liefert mit Natriumbenzylmercaptid in Äther oder besser in Alkohol β -Benzylmercapto-crotonsäureäthylester (SCHEIBLER, Voss, B. 53, 385).

b) Niedrigerschmelzende Form, β -Chlor-isocrotonsäure $C_4H_5O_2Cl = CH_3$ · $CCl: CH \cdot CO_2H$ (H 416; E I 190). Zur Darstellung aus Acetessigsäureäthylester und Phosphorpentachlorid nach Michael, Schulthess, (J. pr. [2] 46 [1892], 236) vgl. Scheibler, Voss, B. 58, 381; Skau, Saxton, Am. Soc. 50, 2696. — F: 60,5° (nach Sublimation) (Sk., Sa.). Spezif. Wärmen der festen und flüssigen Substanz beim Schmelzpunkt: Sk., Sa. Schmelzwärme: 27,38 cal/g (Sk., Sa.). Ultraviolettes Absorptionsspektrum in Hexan: Bruylants, Castille, Bl. Soc. chim. Belg. 34, 277; C. 1926 I, 1962. Thermische Analyse des binären Systems mit β -Chlor-crotonsäure (Eutektikum bei 41,5°): Sk., Sa.

Methylester C₅H₇O₂Cl = CH₃·CCl:CH·CO₂·CH₃ (H 417; E I 190). B. Beim Kochen von β-Chlor-isocrotonsäure in 30% iger methylalkoholischer Lösung unter Zusatz von 10% konz. Schwefelsäure (Scheibler, Topouzada, Schulze, J. pr. [2] 124, 16; vgl. a. Scheil, Voss, B. 53, 381). Aus β-Chlor-isocrotonsäurechlorid beim Behandeln mit Methanol zunächst in der Kälte, dann bei 60° (Scheil, T., Schu., vgl. a. Scheil, V.). — Kp: 141—142° (Scheil, T., Schu.). — Liefert mit Natriumbenzylmercaptid in Methanol β-Benzylmercaptocrotonsäuremethylester (Scheil, V.; vgl. Scheil, T., Schu., J. pr. [2] 124, 20). Mit Natriumäthylmercaptid in Methanol unter Kühlung entsteht β-Athylmercapto-crotonsäuremethylester vom Kp₁₄: 116—132°, wohl ein Gemisch der beiden Stereoisomeren (Scheil, V.).

Äthylester $C_6H_9O_3Cl = CH_3 \cdot CCl : CH \cdot CO_2 \cdot C_2H_5$ (H 417; E I 190). B. Aus β-Chlorisocrotonsäure, Äthylalkohol und konz. Schwefelsäure auf dem Wasserbad (v. Auwers. A. 482, 62). — $Kp_{14} : 54,0^0$ (Errera, Lepingle, Bl. Acad. Belgique [5] 11, 153; C. 1925 II. 897); $Kp_{10} : 50^0$ (v. Au.). $D_4^{i,4} : 1,0920$ (v. Au.); $D_4^{i,5} : 1,0858$ (E., L.). $n_4^{i,4} : 1,4532 : n_{14}^{i,4} : 1,4568 : n_{15}^{i,4} : 1,4735$ (v. Au.); $n_{15}^{i,5} : 1,4530$ (E., L.). Dielektr.-Konst. bei 180: 4,70 (E., J. Phys. Rad. [6] 6, 392; C. 1926 I, 2528; vgl. E., L.). — Liefert mit Natriumbenzylmercaptid in Äther oder Alkohol öligen β-Benzylmercapto-isocrotonsäureäthylester und wenig β-Benzylmercapto-crotonsäureäthylester (Scheibler, Voss. B. 53, 385).

Chlorid $C_4H_4OCl_2 = CH_3 \cdot CCl : CH \cdot COCl (H 417)$. B. Aus β -Chlor-isocrotonsäure beim Kochen mit überschüssigem Thionylchlorid (Scheibler, Topouzada, Schulze, J. pr. [2] 124 [1930], 16). — Kp₇₆₀: 135—136°.

3-Chlor-propen-(1)-carbonsäure-(1)-äthylester, γ -Chlor-crotonsäure-äthylester $C_8H_9O_2Cl=CH_2Cl\cdot CH:CH:CO_2\cdot C_2H_5$ (H 418). Gibt beim Erhitzen mit überschüssiger alkoholischer Trimethylamin-Lösung in Gegenwart einer Spur Natriumjodid im Rohr auf 100° und Eindampfen des Reaktionsprodukts mit konz. Salzsäure γ -Dimethylamino-crotonsäure-chlormethylat (Linneweh, H. 176, 218).

3.3-Dichlor-propen-(1)-carbonsäure-(1), $\gamma.\gamma$ -Dichlor-crotonsäure $C_4H_4O_2Cl_2 = CHCl_2 \cdot CH : CH \cdot CO_2H$. B. Aus $\gamma.\gamma.\gamma$ -Trichlor-crotonsäure bei der Einw. von 3 % igem Natriumamalgam in neutral gehaltener währiger Lösung oder in besserer Ausbeute beim Behandeln mit Zinkstaub in Alkohol + Essigsäure (v. Auwers, Wissebach, B. 56, 730). — Prismen (aus Petroläther). F: $42-43^\circ$; $Kp_{18}:130^\circ$; $Kp_{12}:123^\circ$; $D_*^{\omega,i}:1,3331$; $n_G^{\omega,i}:1,4568$; $n_F^{\omega,i}:1,4597$; $n_B^{\omega,i}:1,4678$; $n_F^{\omega,i}:1,4757$ (v. Au., W., B. 56, 737). Leicht löslich in Alkohol, Äther, Eisessig, Chloroform und Schwefelkohlenstoff, weniger in kaltem Petroläther, schwer in kaltem Wasser. — Liefert bei der Reduktion mit 3% igem Natriumamalgam in neutral gehaltener währiger Lösung Crotonsäure und wenig Buttersäure (v. Au., W., B. 56, 730). Gibt mit der äquimolekularen Menge Brom in Chloroform im Sonnenlicht $\gamma.\gamma$ -Dichlor- $\alpha.\beta$ -dibrombuttersäure. Spaltet bei längerer Berührung mit Wasser Chlorwasserstoff nur in Spuren ab. Beim Erhitzen des Silbersalzes mit Wasser scheidet sich Silberchlorid ab; gleichzeitig bildet sich ein Silberspiegel und die Lösung gibt mit Fuchsinschwefligsäure eine rote Färbung (v. Au., W., B. 56, 737). Beim Behandeln mit konz. Schwefelsäure in der Kälte entsteht Bernsteinsäure. — Löst sich in warmer Natronlauge zunächst mit gelber Farbe, die schließlich über Braun in Rotbraun übergeht.

Methylester $C_5H_6O_2Cl_2 = CHCl_2 \cdot CH \cdot CO_2 \cdot CH_3$. B. Aus $\gamma.\gamma.\gamma.\gamma$ -Trichlor-croton-säuremethylester bei der Reduktion mit Zinkstaub in Alkohol + Essigsäure (v. Auwers, Wissebach, B. 56, 733, 739). — Unbeständige, leicht bewegliche Flüssigkeit von angenehmem Geruch. Kp₁₄: 77°. $D_4^{i\gamma.i}$: 1,3050. $n_3^{i\gamma.i}$: 1,4674; $n_1^{i\gamma.i}$: 1,4704; $n_2^{i\gamma.i}$: 1,4781; $n_3^{i\gamma.i}$: 1,4844.

Äthylester $C_6H_6O_2Cl_2$ = CHCl₂·CH·CO₂·C₂H₅. B. Aus γ . γ -Dichlor-crotonsäure, Äthylalkohol und Schwefelsäure (v. Auwers, Wissebach, B. 56, 733, 738). Aus γ . γ -Trichlor-crotonsäure-äthylester bei der Reduktion mit Zinkstaub in Alkohol + Essigsäure (v. Au., W.). — Kp₁₈: 82°. D₀. Sc.: 1,2323. n₀. 14610; n₀. 1,4635; n₀. 1,4710; n_y. 1,4771. — Polymerisiert sich leicht beim Aufbewahren.

Chlorid $C_4H_5OCl_3 = CHCl_2 \cdot CH : CH \cdot COCl.$ B. Aus $\gamma.\gamma$ -Dichlor-crotonsäure und siedendem Thionylchlorid (v. Auwers, Wissebach, B. 56, 733, 739). — Flüssigkeit von stechendem Geruch. Kp_{18} : 66—67°. $D_4^{19.5}$: 1,4429. $n_{\alpha}^{19.5}$: 1,4955; $n_{b}^{19.6}$: 1,4993; $n_{\beta}^{19.6}$: 1,5082; $n_{\gamma}^{19.6}$: 1,5167.

Amid $C_4H_5ONCl_2 = CHCl_2 \cdot CH \cdot CO \cdot NH_2$. B. Beim Sättigen einer Lösung von $\gamma \cdot \gamma \cdot D$ ichlor-crotonsäure-chlorid in absol. Ather mit Ammoniak in der Kälte (v. Auwers, Wissebach, B. 56, 740). — Nadeln (aus Benzol + Petroläther), Blättchen (aus verd. Methanol). F: 82—83°. Leicht löslich in den meisten organischen Lösungsmitteln, ziemlich schwer in warmem Wasser, schwer in Benzin.

Nitril $C_4H_3NCl_2=CHCl_2\cdot CH\cdot CH\cdot CN$. B. Beim Erwärmen von $\gamma.\gamma$ -Dichlor-croton-säure-amid mit Phosphorpentoxyd im Vakuum auf $50-60^\circ$ (v. Auwers, Wissebach, B. 56, 740). — Angenehm mandelartig riechendes Ol. Kp_{21} : 93,5—93,8°; Kp_{12} : 82—83°. D_0^{∞} : 1,3049. n_0^{∞} : 1,4937; n_0^{∞} : 1,4974; n_0^{∞} : 1,5071; n_2^{∞} : 1,5150.

3.3.3-Trichlor-propen-(1)-carbonsäure-(1), $\gamma.\gamma.\gamma$ -Trichlor-crotonsäure $C_4H_3O_2Cl_3$ = $CCl_3\cdot CH: CH: CO_2H$ (H 418; E I 190). Zur Konfiguration vgl. v. Auwers, Wisserbach, B. 56, 720. — Liefert bei der Reduktion mit Zinkstaub in Alkohol + Essigsäure $\gamma.\gamma$ -Dichlor-crotonsäure; bei der Reduktion mit 3% igem Natriumamalgam in neutral gehaltener Lösung entstehen geringe Mengen Buttersäure, $\gamma.\gamma$ -Dichlor-crotonsäure und andere Produkte (v. Au.,

W., B. 56, 730). Gibt bei längerem Aufbewahren mit konz. Schwefelsäure oder beim Kochen mit Wasser Fumarsäure.

Chlorid $C_4H_2OCl_4 = CCl_3 \cdot CH \cdot CH \cdot COCl.$ B. Aus $\gamma.\gamma.\gamma$ -Trichlor-crotonsaure und siedendem Thionylchlorid (v. Auwers, Wissebach, B. 56, 736). — Ol. Kp₁₁: 75°. D₄^{15,5}: 1,5292. $n_{\alpha}^{16,5}$: 1,5111; $n_{\beta}^{16,5}$: 1,5289; $n_{\gamma}^{16,5}$: 1,5382.

Amid C₄H₄ONCl₅ = CCl₅·CH:CH·CO·NH₂. B. Beim Sättigen einer Lösung von γ.γ.γ.Trichlor-crotonsäure-chlorid in absol. Äther mit Ammoniak in der Kälte (v. Auwers, Wissebach, B. 56, 736). — Blättchen (aus Benzol + Petroläther). F. 83°. Leicht löslich in den meisten organischen Lösungsmitteln, schwer in Wasser und Benzin.

Nitril $C_4H_2NCl_3 = CCl_3 \cdot CH \cdot CH \cdot CN$. B. Aus $\gamma \cdot \gamma \cdot \gamma \cdot Trichlor$ -crotonsäureamid beim Erwärmen mit Phosphorpentoxyd im Vakuum auf 50—60° (v. Auwers, Wissebach, B. 56, 736). — Angenehm riechende Flüssigkeit. Kp₂₅: 91°. $D_1^{ii,s}$: 1,4316. $n_{\alpha}^{ii,s}$: 1,5084; $n_{\alpha}^{ii,s}$: 1,5123; n_B^{11,2}: 1,5224; n_Y^{11,2}: 1,5314.

2-Brom-buten-(2)-säure-(1), 1-Brom-propen-(1)-carbonsäure-(1) $C_4H_5O_2Br =$ $CH_2 \cdot CH : CBr \cdot CO_2H$.

a) Höherschmelzende Form, a-Brom-crotonsdure (H 418; E I 190). B. Beim Kochen des Athylesters der α.β-Dibrom-buttersäure vom Schmelzpunkt 87° (S. 256) mit verd. Alkalilauge (Ingold, Oliver, Thorpe, Soc. 125, 2136). — F: 106°.

Methylester $C_5H_7O_9Br = CH_3 \cdot CH : CBr \cdot CO_2 \cdot CH_3$. $Kp_9 : 61^0$; $D_4^{17} : 1,5064$; $n_{\alpha}^{17} : 1,4832$; $\mathbf{n}_{\text{He}}^{17}$: 1,4870; $\mathbf{n}_{\text{H}}^{17}$: 1,4963; $\mathbf{n}_{\text{V}}^{17}$: 1,5044 (v. Auwers, Harres, Ph. Ch. [A] 143, 15, 18).

Äthylester $C_6H_9O_9Br = CH_3 \cdot CH : CBr \cdot CO_2 \cdot C_2H_5$ (H 419). B. Durch Einw. von Athyljodid auf das Silbersalz der α -Brom-isocrotonsäure (v. Auwers, Harres, Ph. Ch. [A] 143, 15). — $Kp_{12}: 75-76^{\circ}$. $D_4^{15,2}: 1,4094. n_3^{15,3}: 1,4754; n_{He}^{15,2}: 1,4789; n_{He}^{15,3}: 1,4876; n_{He}^{15,2}: 1,4789; n_{He}^{15,3}: 1,4876; n_{He}^{15,3}: 1,4876;$ 1,4952.

b) Niedrigerschmelzende Form, α -Brom-isocrotonsäure $C_4H_5O_2Br=CH_2\cdot CH:CBr\cdot CO_2H$ (H 419; E I 190). $D_4^{m,7}:$ 1,5809; $n_{\alpha}^{m,7}:$ 1,4813; $n_{\alpha}^{m,7}:$ 1,4855; $n_{\beta}^{m,7}:$ 1,4957 (v. Auwers, B. 60, 2140). — Bei der Einw. von Äthyljodid auf das Silbersalz entsteht, α -Brom-crotonsäure-äthylester (s. o.) (v. Au., Harres, Ph. Ch. [A] 143, 15).

Äthylester $C_6H_9O_2Br = CH_8 \cdot CH : CBr \cdot CO_2 \cdot C_2H_5$. B. Aus α -Brom-isocrotonsäure, Athylalkohol und konz. Schwefelsäure bei 80° (v. Auwers, Harres, Ph. Ch. [A] 148, 15). — Kp_{12} : 69—70°. $D_4^{18,4}$: 1,3952. $n_{\alpha}^{18,4}$: 1,4730; $n_{\mathbf{H}e}^{18,4}$: 1,4766; $n_{\beta}^{18,4}$: 1,4854.

- 1.2-Dibrom-propen-(1)-carbonsäure-(1) vom Schmelspunkt 94°, α.β-Dibromcrotonsäure $C_4H_4O_2Br_2 = CH_3 \cdot CBr \cdot CO_2H$ (H 420). $D_4^{100,1}$: 1,9963; $n_{\alpha}^{100,1}$: 1,5301; $n_{H_0}^{100,1}$: 1,5352; $n_{B}^{100,1}$: 1,5472 (v. Auwers, B. 60, 2140).
- 3. 2-Methyl-propen-(1)-säure-(3), Propen-(1)-carbonsäure-(2), a-Methylacrylsäure, Methacrylsäure C₄H₆O₂ = CH₂:C(CH₂)·CO₂H (H 421). B. Beim Erhitzen von Dimethylamino-dimethylmalonsäure oder Methylimino-bis-dimethylmalonsäure über den Schmelzpunkt, neben anderen Produkten (Mannich, Kather, B. 53, 1370). Literatur in den Schmelzpunkt, neben anderen Produkten (Mannich, Kather, B. 53, 1370). über Polymerisation vgl. C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1080.

Polymere Methacrylsäure $(C_4H_4O_2)_x =$

Sonnenlicht (S., B. 60, 1394; vgl. Albo, G. 81 II [1901], 473).

·····CH_a—C(CH_a)—CH_a—C(CH_a)—CH_a—C(CH_a)····· (vgl. E. Trommsdorff in R. Houwink, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 351) (H 422). Hat nach Seib (B. 60, 1393) in der Verbindung $C_{13}H_{22}O_8$ bzw. $(C_{13}H_{22}O_8)_x$ (H 2, 270) vorgelegen.—B. Beim Aufbewahren einer bei 159—162° siedenden Buttersäure-Fraktion aus rohem Holzessig im

Methylester C₅H₈O₅ = CH₅:C(CH₅)·CO₂·CH₅. B. Neben anderen Produkten bei 24-stdg. Einw. von Natriumnitrit auf α-Amino-isobuttersäure-methylester-hydrochlorid in schwach salzsaurer Lösung bei Zimmertemperatur (Barker, Skinner, Am. Soc. 46, 407). — Literatur über Polymerisation vgl. C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1080. Die Polymerisationsprodukte des Methacrylsäuremethylesters finden unter dam Namen Playieles in der Kunststoffindustrie Vermendung, vgl. daw. Er Terresponse dem Namen Plexiglas in der Kunststoffindustrie Verwendung; vgl. dazu E. Trommsporter in R. Houwing, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 350; Röhm, Ch. Fab. 9 [1936], 529; NEHER, Ind. Eng. Chem. 28 [1936], 270.

Äthylester $C_6H_{10}O_2=CH_2:C(CH_3)\cdot CO_2\cdot C_2H_5$ (H 423; E I 191). B. Beim Aufbewahren äquimolekularer Mengen Methylmalonsäure-monoäthylester, Diäthylamin und Formaldehyd in wäßr. Lösung, anfangs in der Kälte (Mannich, Ritsert, B. 57, 1117). Neben anderen Produkten bei 24-stdg. Einw. von Natriumnitrit auf α -Amino-isobuttersäure-äthylesterhydrochlorid in schwach salzsaurer Lösung bei Zimmertemperatur (Barker, Skinner, Am. Soc. 46, 405). — Kp: 118° (M., R.). — Literatur über Polymerisation vgl. C. Ellis, The chemistry of synthetic resins [New York 1935], S. 1080.

Amid C₄H₇ON = CH₂:C(CH₃)·CO·NH₂. B. In geringer Menge beim Behandeln von Methacrylsäurenitril mit der äquimolekularen Menge konz. Schwefelsäure, anfangs unter Kühlung (BRUYLANTS, CASTILLE, Bl. Acad. Belgique [5] 13, 767, 779; C. 1928 I, 1645). — Krystalle (aus Benzol). F: 102—106°. — Polymerisiert sich beim Aufbewahren der Krystalle oder bei kurzem Kochen in Benzol.

Nitril, Isopropenyleyanid $C_4H_5N=CH_2$: $C(CH_3)\cdot CN$ (H 423). Kp_{763} : $91,3-91,5^0$ (Bruylants, Castille, Bl. Soc. chim. Belg. 34, 265; C. 1926 I, 1962). Ultraviolettes Absorptionsspektrum in Hexan: B., C. [Pallutz]

3. Carbonsäuren $C_5H_8O_2$.

1. Penten-(1)-säure-(5), ΔΥ-Pentensäure, Buten-(3)-carbonsäure-(1), Allylessigsäure C₅H₈O₂ = CH₂:CH·CH₂·CH₂·CO₂H (H 425; E I 191). B. Entsteht in 18% iger Ausbeute neben 82% Buten-(2)-carbonsäure-(1) durch Reduktion von β-Vinylacrylsäure mit 3% igem Natriumamalgam in essigsaurer Lösung bei 15—25° (BURTON, INGOLD, Soc. 1929, 2034). Bei der Destillation von Allylmalonsäure (BHIDE, SUDBOROUGH, J. indian Inst. Sci. 8, 97; C. 1926 I, 81). — Kp₇₈₀: 181—183° (unkorr.) (VAVON, JAKEŠ, Bl. [4] 41, 92). Kp₈₈₂: 185—186°; Kp₈₈₃: 184—185° (BH., S.). Verbrennungswärme bei konstantem Volumen: 641,7 kcal/Mol (Roth, Ellinger in Landolt-Börnst. H 1602). — Liefert bei aufeinanderfolgender Behandlung mit Ozon in Chloroform bei 0°, mit siedendem Wasser und mit Wasserstoffperoxyd unter Kühlung Bernsteinsäure (BU., I.). Katalytische Hydrierung eines Gemisches äquimolekularer Mengen von Allylessigsäure und α-Pinen bei Gegenwart von Platinschwarz in Alkohol: V., Ja., Č. r. 183, 300; Bl. [4] 41, 88, 92. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: BH., S.

Äthylester $C_7H_{12}O_2 = CH_2 \cdot CH \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 425; E I 191). Zur Darst. aus Allylacetessigsäureäthylester durch Erhitzen mit Natriumäthylat auf 145—150° vgl. Philippi, M. 51, 277. — Kp_{14} : 44—45° (Ph.). Verbrennungswärme bei konstantem Volumen: 970,4 kcal/Mol (Reyer in Landolt-Börnst. E I 877). — Reaktion mit flüssigem Ammoniak im Einschlußrohr bei Zimmertemperatur: Ph., Galter, M. 51, 264.

- 2. Penten-(2)-säure-(1), Λ^{α} -Pentensäure, Buten-(1)-carbonsäure-(1), β -Athyl-acrylsäure, Propylidenessiysäure $C_5H_8O_2=CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3$
- a) Niedrigersiedende Form $C_5H_8O_9 = CH_9 \cdot CH_2 \cdot CH : CH \cdot CO_9H$. B. Durch katalytische Hydrierung von Butin-(1)-carbonsäure-(1) bei Gegenwart von kolloidalem Palladium in Essigester (Bourguel, Yvon, C. r. 182, 224; B., C. r. 188, 1494; Bl. [4] 45, 1076). Kp_{15} : 88—88,5°. D^{15} : 0,992; D^{41} : 0,988. n_1^{16} : 1,448.
- b) Höhersiedende Form C₅H₈O₂ = CH₃·CH₂·CH·CO₄H (H 426; E I 191). B. Entsteht bei der Verkohlung von Buchenholz und ist daher im rohen Holzessig enthalten (Seib, B. 60, 1396). Bei der Destillation von Δ^β-Dihydromuconsäure (Mereshkowski, Bl. [4] 37, 1186). Beim Behandeln von β-Athyl-acrolein mit wäßr. Silbernitrat-Lösung und Barytwasser (Delaby, C. r. 176, 1900; A. ch. [9] 20, 212). Zur Bildung aus Malonsäure und Propionaldehyd in Pyridin vgl. v. Auwers, A. 432, 49, 63; Florence, Bl. [4] 41, 444; in Pyridin unter Zusatz von etwas Piperidin vgl. Goldberg, Linstead, Soc. 1928, 2350. F: 10° (v. Au.), 8° (G., L.). Kp₁₉: 105° (G., L.); Kp₁₇: 108°; Kp₁₀: 99°; Kp₂: 71° (v. Au.). D^{a, 10}₄: 0,9935 (v. Au.). n^{a, 10}₄: 1,4489; n^{a, 10}₄: 1,4526; n^{a, 10}₆: 1,4616; n^{a, 10}₇: 1,4694 (v. Au.). Verbrennungswärme bei konstantem Volumen: 623,1 kcal/Mol (Roth, v. Auwers in Landolt-Börnst. E I 873). Katalytische Hydrierung eines Gemisches äquimolekularer Mengen von Propylidenessigsäure und α-Pinen bei Gegenwart von Platinschwarz in Alkohol: Vavon, Jakes, C. r. 183, 300; Bl. [4] 41, 92. Beim Kochen mit 25% iger Kalilauge stellt sich ein Gleichgewicht zwischen Büten-(1)-carbonsäure-(1) und Buten-(2)-carbonsäure-(1) ein (G., L., Soc. 1928, 2358).

Äthylester $C_7H_{19}O_2=C_2H_5\cdot CH\cdot CO_2\cdot C_2H_5$ (E I 191). B. Aus der Säure beim Behandeln mit Alkohol und Schwefelsäure (v. Auwers, A. 432, 65). — Kp_{745} : 157,6—158°; Kp_{11} : 48°. $D_1^{n_1}$: 0,9072. $D_{C_1}^{n_2}$: 1,4274; $D_{H_0}^{n_3}$: 1,4305; $D_1^{n_3}$: 1,4379; $D_2^{n_3}$: 1,4442. — Liefert mit Brom in Schwefelkohlenstoff α . β -Dibrom-n-valeriansäure-äthylester.

Chlorid, Propylidenacetylchlorid $C_5H_7OCl = C_2H_5 \cdot CH \cdot CH \cdot COCl$. B. Beim Erwärmen der Säure mit Phosphortrichlorid auf dem Wasserbad (v. Auwers, A. 432, 64). — Stechend riechende Flüssigkeit. Kp_{11} : 37° (v. Au.); Kp_{34} : 51° (Goldberg, Linstead, Soc. 1928, 2351). D_{i}^{in} : 1,0653 (v. Au.). n_{α}^{in} : 1,4622; n_{He}^{in} : 1,4662; n_{β}^{in} : 1,4760; n_{γ}^{in} : 1,4848 (v. Au.).

Amid $C_5H_5ON = C_9H_5 \cdot CH \cdot CH \cdot CO \cdot NH_2$. B. Beim Einleiten von Ammoniak in die Lösung des Chlorids in absol. Ather (v. Auwers, A. 432, 66) oder in Benzol (RINKES, R. 48, 963). — Blättchen (aus Benzol). F: 148° (v. Au.; R.), 152° (SEIB, B. 60, 1396). Leicht löslich in Methanol, Alkohol, Ather und Eisessig, löslich in Schwefelkohlenstoff, Aceton, Benzol und kaltem Wasser, unlöslich in Leichtbenzin (v. Au.). — Gibt, in Methanol bei —5° mit Natriumhypochlorit behandelt, [α-Butenyl]-carbamidsaure-methylester (Syst. Nr. 201) (R.).

- Nitril, Propylidenacetonitril $C_5H_7N=C_2H_5\cdot CH\cdot CN$ (vgl. H 426). a) Niedrigersiedende Form. B. Neben der höhersiedenden Form beim Erwärmen von Butyraldehydcyanhydrin mit Phosphorpentoxyd (Castille, Gueurden, Ann. Soc. scient. Bruxelles 47 I, 56; Bl. Soc. chim. Belg. 36, 509; C. 1927 II, 802). — Kp789: 127,0—127,2°. $D_p^m: 0.8191: n_p^m: 1,4201; n_p^m: 1,4238; n_p^m: 1,4313.$ Ultraviolettes Absorptionsspektrum in Hexan, verd. Alkohol und 0,02 n-Natronlauge: C., G. Läßt sich durch Erwärmen mit Natriumphenolat teilweise in das Isomere überführen.
- b) Höhersiedende Form. B. s. bei der niedrigersiedenden Form. Entsteht auch aus dem Amid beim Erwärmen mit Phosphorpentoxyd im Vakuum auf dem Wasserbad (v. Auwers, A. 432, 66). — Angenehm riechende Flüssigkeit. Kp₇₆₉: 144,4° (Castille, Gueurden, Ann. Soc. scient. Bruxelles 47 I, 57; Bl. Soc. chim. Belg. 36, 509; C. 1927 II, 802); Kp₁₀: 36°; Kp₂₀: 44° (v. Au.). $D_{i_1}^{u_2}$: 0,8311 (v. Au.); $D_{i_2}^{u_3}$: 0,8218 (C., G.). $n_{i_1}^{u_3}$: 1,4313; $n_{i_1}^{i_1 i_2}$: 1,4347; $n_{\beta}^{15.5}$: 1,4431; $n_{\gamma}^{15.5}$: 1,4499 (v. Au.); n_{α}^{80} : 1,4232; n_{D}^{80} : 1,4264; n_{β}^{80} : 1,4336 (C., G.). Ultraviolettes Absorptionsspektrum in Hexan, verd. Alkohol und 0,02 n-Natronlauge: C., G. Läßt sich durch Erwärmen mit Natriumphenolat teilweise in das Isomere überführen (C., G.).
- 4.5 Dibrom penten (2) säure (1), 3.4 Dibrom buten (1) carbonsäure (1) $C_5H_6O_2Br_1 = CH_2Br \cdot CHBr \cdot CH : CH \cdot CO_2H$. Zur Konstitution vgl. a. Muskat, Becker, Lowenstein, Am. Soc. 52 [1930], 326. Bei der Bromierung von β -Vinyl-acrylsäure in Schwefelkohlenstoff (Farmer, Healey, Soc. 1927, 1062). — Nadeln (aus Petroleum). F: 47° (F., H.). — Gibt bei Einw. von Diäthylamin in absol. Ather 3-Brom-butadien-(1.3)-carbonsäure-(1) (F., H.). Gibt beim Durchleiten von Ozon durch eine Lösung in Chloroform + Wasser Oxalsäure und $\alpha.\beta$ -Dibrom-propionaldehyd (F., H.).

Methylester $C_6H_8O_2Br_2 = CH_2Br \cdot CHBr \cdot CH : CH \cdot CO_2 \cdot CH_3$. Beim Behandeln von 3.4-Dibrom-buten-(1)-carbonsäure-(1) mit Methanol und Schwefelsäure (FARMER, HEALEY, Soc. 1927, 1062). — Blaßgelbes Öl. Kp₁₀: 136°.

3. Penten-(2)-säure-(5), Δ^{β} -Pentensäure, Buten-(2)-carbonsäure-(1), β -Athyliden-propionsäure $C_5H_5O_2=CH_3\cdot CH\cdot CH\cdot CH_2\cdot CO_2H$ (H 426; E I 191). Zur Bildung aus β -Vinyl-acrylsäure durch Reduktion mit Natriumamalgam vgl. a. Burton, Ingold, Soc. 1929, 2029, 2034; Goldberg, Linstead, Soc. 1928, 2351; v. Auwers, A. 432, 68. — Kp_{10} : 98° (G., L.); Kp_{17} : 94—96° (Bu., I.); Kp_{16} : 94° (v. Au.). $D_{\alpha}^{16.8}$: 0,9885 (v. Au.). $n_{\alpha}^{16.8}$: 1,4357; $n_{\beta}^{16.8}$: 1,4425; $n_{\gamma}^{16.8}$: 1,4420 (Bu., I.) Verges 1,4460 (Bu., I.) brennungswärme bei konstantem Volumen: 631,6 kcal/Mol (Roth, v. Auwers in Landolt-Börnst. E I 873). — Beim Kochen mit 25%iger Kalilauge stellt sich ein Gleichgewicht zwischen Buten-(2)-carbonsäure-(1) und Buten-(1)-carbonsäure-(1) ein (G., L.).

Äthylester $C_7H_{12}O_2 = CH_3 \cdot CH \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (E I 191). B. Entsteht wahrscheinlich neben anderen Produkten aus Lävulinsäureäthylester beim Einleiten von Chlorwasserstoff in die absolut-alkoholische Lösung bei 20° in Gegenwart von amalgamiertem Zink (Steinkopf, Wolfram, A. 430, 143).

Chlorid C₅H₇OCl = CH₃·CH:CH·CH₂·COCl. B. Aus der Säure beim Erwärmen mit Phosphortrichlorid auf dem Wasserbad (v. Auwers, A. 432, 69). — Kp₅₅: 53—54° (v. Au.); Kp₁₃: 46° (Goldberg, Linstead, Soc. 1928, 2351). Zersetzt sich bei der Destillation unter gewöhnlichem Druck (v. Au.). $D_i^{4,9}$: 1,0666 (v. Au.). $n_d^{6,9}$: 1,4472; $n_{H_0}^{16,9}$: 1,4499; $n_0^{18,9}$: 1,4573; ny: 1,4638 (v. Au.).

Amid $C_5H_3ON=CH_3\cdot CH\cdot CH_2\cdot CO\cdot NH_2$. B. Beim Einleiten von trocknem Ammoniakgas in die äther. Lösung des entsprechenden Chlorids (v. Auwers, A. 432, 70). — Krystalle (aus Benzol). F: 69—70°. Leicht löslich in den meisten organischen Lösungsmitteln außer Petroläther und Schwefelkohlenstoff. Leicht löslich in Wasser.

Nitril C₂H₇N = CH₂·CH:CH·CH₂·CN. (Identisch mit dem Nitril von STRASSMANN, M. 18 [1897], 735; vgl. H 427.) B. Beim Erwärmen des entsprechenden Amids mit Phosphorpentoxyd im Vakuum auf dem Wasserbad (v. Auwers, A. 482, 70). In geringer Ausbeute durch

Destillation von Propylidenmalonsäuremononitril (v. Au., B. 56, 1178, 1179, 1182). — Nach Mandeln riechendes Ol. Kp₁₁₀: 85—87° (v. Au., B. 56, 1182); Kp₇₄: 75° (v. Au., A. 432, 70). D₁^{18,8}: 0,8430; D₂¹⁰: 0,842 (v. Au., B. 56, 1183); D₃^{16,8}: 0,8423 (v. Au., A. 432, 70). $n_{\alpha}^{18,6}$: 1,4236; $n_{\beta}^{16,6}$: 1,4337; $n_{\gamma}^{16,6}$: 1,4397 (v. Au., B. 56, 1183); $n_{\alpha}^{16,6}$: 1,4208; $n_{He}^{16,6}$: 1,4300; $n_{\gamma}^{16,6}$: 1,4355 (v. Au., A. 432, 70).

4. Buten-(1)-carbonsdure-(2). α -Äthyl-acrylsäure $C_5H_8O_2 = CH_2 : C(C_2H_5) \cdot CO_2H$ (H 428). B. Neben anderen Produkten beim Erhitzen von α -Oxy- α -methyl-buttersäure auf 150—240° (Young, Dillon, Lucas, Am. Soc. 51, 2532). Durch Kochen einer wäßrigen, mit Natronlauge neutralisierten Lösung von Dimethylaminomethyl-äthyl-malonsäure oder von Methylaminomethyl-äthyl-malonsäure unter wiederholtem Neutralisieren mit verd. Schwefelsäure (Mannich, Ganz, B. 55, 3492). — Gelbliches, ranzig riechendes Öl. F: —16° (Y., D., L.). Kp: 179—180° (M., G.); Kp₁₂: 76,5—83° (korr.) (Y., D., L.).

Äthylester $C_7H_{12}O_2=CH_2:C(C_2H_5)\cdot CO_2\cdot C_2H_5$ (H 428). B. Bei Einw. von 30% iger Formaldehyd-Lösung auf mit Diäthylamin unter Kühlung neutralisierten Äthylmalonsäuremonoäthylester (Mannich, Ritsert, B. 57, 1117). — Kp: 138°.

- 5. 2-Methyl-buten-(2)-säure-(1), Buten-(2)-carbonsäure-(2), α -Methyl-crotonsäure, $\alpha.\beta$ -Dimethyl-acrylsäure, Angelicasäure und Tiglinsäure $C_5H_8O_2=\frac{CH_3\cdot C\cdot CO_2H}{H\cdot C\cdot CH_3}$ and $\frac{CH_3\cdot C\cdot CO_2H}{CH_3\cdot C\cdot H}$
- a) Angelicasdure $C_5H_8O_2=CH_3\cdot CH:C(CH_3)\cdot CO_2H$ (H 428; E I 192). Zur Konfiguration vgl. v. Auwers, Wissebach, B. 56, 723; Hey, Soc. 1928, 2321. F: 45,0—45,5° (Young, Dillon, Lucas, Am. Soc. 51, 2531), 45° (v. Auwers, A. 432, 71). $Kp_{12-13}:85,5-87,5°$ (Y., D., L.). $D_4^{\text{00.6}}:0,9298$ (v. Au.). $n_1^{\text{00}}:1,4167;$ $n_{\text{He}}^{\text{100}}:1,4200;$ $n_{\text{B}}^{\text{100}}:1,4285;$ $n_{\text{Y}}^{\text{100}}:1,4359$ (v. Au.).

Äthylester $C_7H_{12}O_2=CH_3\cdot CH:C(CH_3)\cdot CO_2\cdot C_2H_5$ (H 429). B. Aus dem Silbersalz und Äthyljodid (v. Auwers, A. 432, 71). — Kp: 142^9 (v. Auwers, Wissebach, B. 56, 724). Kp₃₉: 72—73°; Kp₁₈: $58-59^\circ$; Kp₁₁: $48.5-49.5^\circ$ (v. Au.). $D_4^{19.5}$: 0.9178 (v. Au.). $n_{\alpha}^{19.5}$: 1.4278: $n_{B_6}^{19.5}$: 1.4310; $n_{B_6}^{19.5}$: 1.4380; $n_{B_6}^{19.5}$: 1.4443 (v. Au.); n_{α}^{10} : 1.4304 (v. Au., W.). Verbrennungswärme bei konstantem Volumen: 963.1 kcal/Mol (Reyer in Landolt-Börnst. E I 876).

b) Tiglinsäure $C_5H_8O_2 = CH_3 \cdot CH : C(CH_3) \cdot CO_2H$ (H 430; E I 192). Zur Konfiguration vgl. v. Auwers, Wissebach, B. 56, 723; Hey, Soc. 1928, 2321. — V. Als Geranylester (?) in verschiedenen Geraniumölen (Schimmel & Co., Ber. Schimmel, Apr. 1894, 31; Okt. 1913, 57; Glichitch, Muller, Chim. et Ind. 1928, Sonder-Nr., S. 480; C. 1928 II. 1447). — B. Aus Pharbitin (einem Harzglykosid aus Pharbitis Nil Chois) bei der Alkalispaltung neben anderen Produkten (Asahina, Shimidzu, J. pharm. Soc. Japan 1922, Nr. 479; C. 1922 I. 976). Entsteht bei der Verkohlung von Buchenholz und ist daher im rohen Holzessig enthalten (Seib, B. 60, 1396). — F: 63,5—64° (Young, Dillon, Lucas, Am. Soc. 51, 2532). Kp11/5: 95,0—96° (Y., D., L.). D45.: 0,9427 (v. Auwers, A. 432, 70). $n_{\alpha}^{80.7}$: 1,4243; $n_{\rm He}^{80.7}$: 1,4245; $n_{\rm He}^{80.7}$: 1,4363; $n_{\rm He}^{90.7}$: 1,4441 (v. Au.).

Äthylester $C_7H_{12}O_2=CH_3\cdot CH:C(CH_3)\cdot CO_2\cdot C_2H_5$ (H 431; E I 192). B. Beim Behandeln von Tiglinsäure mit Alkohol und Schwefelsäure (v. Auwers, A. 432, 71). Zur Bildung im Gemisch mit Angelicasäureäthylester beim Erhitzen von α -Oxy- α -methyl-buttersäureäthylester mit Phosphortrichlorid auf dem Wasserbad vgl. Higginbotham, Lapworth, Soc. 123, 1331. — Kp: 152° (v. Auwers, Wissebach, B. 56, 724); Kp₁₁: 55,5°; Kp₁₇: 64°; Kp₄₅: 80,5—81,5° (v. Au.). $D_4^{10,4}$: 0,9247 (v. Au.). $n_{\alpha}^{10,5}$: 1,4324; $n_{H_6}^{10,5}$: 1,4355; $n_{\beta}^{10,5}$: 1,4429; $n_{\gamma}^{10,5}$: 1,4493 (v. Au.); $n_{\alpha}^{10,5}$: 1,4350 (v. Au., W.). Verbrennungswärme bei konstantem Volumen: 953,2 kcal/Mol (Reyer in Landolt-Börnst. E I 876).

Amid $C_5H_2ON = CH_3 \cdot CH : C(CH_2) \cdot CO \cdot NH_2$. F: 76,5—77° (Seib, B. 60, 1396).

6. 2-Methyl-buten-(2)-säure-(4), 2-Methyl-propen-(1)-carbonsäure-(1).
β-Methyl-crotonsäure, β.β-Dimethyl-acrylsäure C₅H₈O₃ = (CH₃)₂C: CH·CO₂H (H 432; E I 192).
B. Beim Kochen von β-Brom-isovaleriansäure mit Phenol und Kalilauge (v. Auwers.

B. Beim Kochen von β-Brom-isovaleriansäure mit Phenol und Kalilauge (v. Auwers, Mauss, B. 61, 2549). Durch Wasserabspaltung aus β-Oxy-isovaleriansäure-äthylester und Verseifung des Esters (Kon, Linstead, Soc. 127, 624). Zur Bildung aus Aceton und Malonsäure in Pyridin unter Zusatz von etwas Piperidin vgl. Dutt, Quart. J. indian chem. Soc. 1, 301; C. 1925 II, 1852. Entsteht neben anderen Produkten aus Isodehydracetsäureäthylester (Syst. Nr. 2619) beim Behandeln mit konz. Kalilauge (Feist, A. 433, 58). Durch Elektrolyse des Natriumsalzes von $\alpha.\alpha$ -Dimethyl-bernsteinsäure- α' -äthylester in verd. Methanol und nachfolgende Verseifung mit siedender 50 %iger Kalilauge, neben anderen Produkten (Farmer, Kracovski, Soc. 1926, 2321). — Nadeln (aus Wasser). F: 69° (Fa.,

KE.), 70° (KERN, SHRINER, ADAMS, Am. Soc. 47, 1157). Kp15: 105-110° (DARZENS, C. r. 189, 767). — Liefert bei der Hydrierung in salzsaurer Lösung bei Gegenwart von kolloidalem Platin (COMANT, CUTTER, Am. Soc. 44, 2653) oder in Benzol bei Gegenwart von mit Oxydisilin dargestellten Metallkatalysatoren (I. G. Farbenind., E. P. 301 577; F. P. 641 652; C. 1929 II, 93) Isovaleriansäure. Geschwindigkeit der Hydrierung in Alkohol in Gegenwart von Platin-oder Palladiumschwarz (aus den Oxyden) unter 2—3 Atm. Druck bei 25°: KE., SH., A., Am. Soc. 47, 1149. Katalytische Hydrierung von Gemischen äquimolekularer Mengen $\beta.\beta$ -Dimethyl-acrylsäure und α -Pinen bei Gegenwart von Platinschwarz in Alkohol: VAVON, JAKES, C. r. 183, 300; Bl. [4] 41, 92. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure bei 25°: Вніде, Sudbobough, J. indian Inst. Soi. 8, 96; C. 1926 I, 80.

EI 192, Z. 18 v. u. statt "1379" lies "1779".

Methylester $C_4H_{16}O_3=(CH_2)_3C:CH\cdot CO_2\cdot CH_3$ (H 433; E I 192). Verbrennungswärme bei konstantem Volumen: 804,3 kcal/Mol (Roth in *Landolt-Börnst*. H 1609).

Äthylester $C_2H_{12}O_2 = (CH_2)_2C:CH\cdot CO_2\cdot C_2H_3$ (H 433; E I 192). B. Neben Malonsäure-diäthylester beim Erhitzen von $\beta.\beta$ -Dimethyl-propan- $\alpha.\alpha.\nu$ -tricarbonsäure-triäthylester mit Natriumäthylat-Lösung im geschlossenen Gefäß auf 100° (Ingold, Powell, Soc. 119, 1978, 1980). Aus β -Brom-isovaleriansäure-äthylester beim Kochen mit Phenol und alkoh. Natronlauge oder durch Einw. auf Phenolnatrium in trocknem Benzol (v. Auwers, Marss, B. 61, 2549). — Kp_{48} : 72—73°; Kp_{28} : 64°; Kp_{50} : 61,5° (Philippi, M. 51, 277); D_a^{μ} : 0,9171 (v. Auwers, A. 432, 72). n_a^{μ} : 1,4333; n_{He}^{μ} : 1,4368; n_b^{μ} : 1,4446; n_a^{ν} : 1,4518 (v. Au.). — Liefert mit flüssigem Ammoniak im Einschmelzrohr bei Zimmertemperatur β -Amino-isovaleriansäure-äthylester; beim Erwärmen mit überschüssigem, wasserfreiem Methylamin im Rohr auf 65-70° entsteht β -Methylamino-isovaleriansäure-methylamid neben geringen Mengen β -Methylamino-isovaleriansäure-äthylester (Philippi, Galter, M. 51, 262). Bei 3-tägiger Einw. von Mercuriacetat in Methanol und folgender Behandlung mit Kaliumbromid-Lösung entsteht β -Methoxy- α -brommercuri-isovaleriansäure-äthylester (Schrauth, Geller, B. 55, 2788). Liefert bei der Kondensation mit Oxalsaurediäthylester in Gegenwart von Kaliumäthylat in Äther und Fällen des Reaktionsprodukts mit Schwefelsaure aus wäßr. Lösung 4-Methyl-pyron-(2)carbonsaure (6) und in geringer Menge deren Athylester (HIGGINBOTHAM, LAPWORTH, Soc. 123, 1326, 1327). Erhitzen mit Kaliumcyanid in verd. Alkohol auf dem Wasserbad und Verseifen des entstandenen Esters mit siedender Natronlauge führt zu α.α-Dimethyl-bernsteinsaure (H., L., Soc. 121, 53).

Chlorid $C_5H_7OCl = (CH_2)_9C:CH \cdot COCl (H 433; E I 193)$. B. Aus $\beta.\beta$ -Dimethyl-acrylsäure bei der Einw. von Thionylchlorid (Darzens, C. r. 189, 767) oder beim Erwärmen mit Phosphortrichlorid auf 100° (v. Auwers, A. 421, 41). — Kp: 145—147° (v. Au., A. 432, 72); Kp₁₃: 53° (D.). $D_{\epsilon}^{n,a}$: 1,0652 (v. Au., A. 432, 72). $n_{\alpha}^{n,a}$: 1,4748; $n_{H_0}^{n,a}$: 1,4798; $n_{\beta}^{n,a}$: 1,4914; nia: 1,5023 (v. Au., A. 432, 72). — Gibt bei der Einw. von Benzol und Aluminiumchlorid zuletzt im Vakuum bei 40° ω -Isopropyliden-acetophenon (D.); arbeitet man in Schwefel-kohlenstoff-Lösung im Sonnenlicht oder unter gelindem Erwärmen auf dem Wasserbad, so entsteht 3.3-Dimethyl-hydrindon-(1) (v. Au., B. 54, 994). Liefert mit p-Kresol-methylather in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid ohne Behandlung mit Natronlauge 6-0xy-3-methyl- ω -isopropyliden-acetophenon; bei nachfolgender Behandlung mit Natronlauge entstehen daneben 2.2.6-Trimethyl-chromanon und 7-0xy-3.3.4-trimethyl-hydrindon-(1) (v. Au., A. 421, 12, 42). Liefert mit 5-Methoxy-1.3-dimethyl-benzol in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid 2.2.5.7-Tetramethyl-chromanon (v. Au., A. 421, 91, 101).

Amid $C_1H_0ON = (CH_2)_1C: CH \cdot CO \cdot NH_2$. B. Durch Verreiben des Chlorids mit Ammonium carbonat (v. Auwers, A. 482, 72). — Nadeln. F: 65—66°. Leicht löslich in Alkohol, Ather und Benzol.

- α-Brom- β . β -dimethyl-acrylsäure C₅H₂O₂Br = (CH₂)₂C:CBr·CO₂H (E I 193). B. Bei der Oxydation von Brommesityloxyd mit Kaliumhypobromit-Lösung (Doruver, Bl. [4] 39, 1599). Krystalle (aus heißem Wasser). F: 88—89°.
- 7. 2-Methyl-buten-(3)-saure-(1), Buten-(3)-carbonsaure-(2), a-Vinyl-propionsaure, Methylvinylessigsaure $C_3H_3O_3=CH_3:CH\cdot CH(CH_3)\cdot CO_3H$. Thereine Verbindung, der vielleicht diese Konstitution sukommt, s. im Artikel 1.2.3-Tribrombutan (E II 1, 85).

4. Carbonsäuren $C_{a}H_{10}O_{a}$.

1. Hexen-(1)-saure-(6), A^5 -Hexensaure, A^5 -Hexensaure, Penten-(4)-carbonsaure-(1), β -Allyl-proptonsaure $C_0H_{10}O_2=CH_2:CH\cdot[CH_2]_2:CO_2H$ (H 434; EI 193). Zur Bildung aus s-Amino-n-capronsaure durch Einw. von salpetriger Saure nach Wallach (A. 812 [1900], 189; 848 [1905], 48) vgl. Helferich, Malkomes, B. 55, 704.

Chlorid $C_0H_0OCl = CH_3: CH \cdot [CH_1]_3 \cdot COCl$. B. Aus Penten-(4)-carbonsäure-(1) und Thionylchlorid (Helferich, Malkomes, B. 55, 704). — Leichtbewegliche wasserklare Flüssigkeit von sehr unangenehmem stechenden Geruch. $Kp_{17}: 49^{\circ}$. $D_i^{is}: 1,0113.$ $n_D^{is}: 1,4471.$ — Wird durch kaltes Wasser rasch zersetzt.

- 2. Hexen-(2)-säure-(1), Δ^2 -Hexensäure, Δ^{α} -Hexensäure, Penten-(1)-carbonsäure-(1), β -Propyl-acrylsäure, Δ^{α} -Dihydrosorbinsäure $C_6H_{10}O_2=CH_3\cdot CH_2\cdot CH_2\cdot CH:CH\cdot CO_2H$ (vgl. H 434; E I 193).
- a) Flüssige Form $C_6H_{10}O_2=C_2H_5\cdot CH_2\cdot CH:CH\cdot CO_2H$. B. Bei der Hydrierung von Pentin-(1)-carbonsäure-(1) in Gegenwart von kolloidalem Palladium in Essigester (BOURGUEL, Yvon, C. r. 182, 224; B., C. r. 188, 1494; Bl. [4] 45, 1077). $Kp_{760}:201-202^{\circ}; Kp_{19}:104,5-105,5^{\circ}; Kp_{17}:102,5-103,5^{\circ}. D^{31}:0,962; D^{15}:0,966. n_{11}^{51}:1,4495; n_{15}^{51}:1,452.$
- b) Feste Form $C_8H_{10}O_2 = C_2H_5 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3$

Äthylester $C_8H_{14}O_5=CH_3\cdot CH_2\cdot CH_2\cdot CH:CH\cdot CO_5\cdot C_2H_5$ (H 434). B. Aus der entsprechenden Säure beim Kochen mit Athylalkohol in Gegenwart von konz. Schwefelsäure (Walbaum, Rosenthal, J. pr. [2] 124, 65; v. Auwers, A. 432, 73). — $Kp_{31}:93,4-93,8^\circ; Kp_{14}:80,0-80,2^\circ$ (v. Au.); $Kp_6:56^\circ$ (W., R.). $D_2^\infty:0,9005$ (v. Au.). $n_{\infty}^\infty:1,4316:n_{He}^\infty:1,4347; n_{B}^\infty:1,4420; n_{T}^\infty:1,4485$ (v. Au.). — Liefert beim Erhitzen mit Acetessigester und Natrium-äthylat-Lösung auf dem Wasserbad das Natriumsalz des Propyldihydroresorcincarbonsäure-äthylesters NaO·C CH_2 · $CH(CH_2\cdot C_3H_5)$ CH· $CO_2\cdot C_2H_5$ (Syst. Nr. 1309) (Sonn, B. 61, 2480).

Chlorid, β -Propyl-acryloylchlorid $C_6H_9OCl=CH_3\cdot CH_2\cdot CH_2\cdot CH:CH\cdot COCl.$ $Kp_{23}:70^{\circ}$ (Goldberg, Linstead, Soc. 1928, 2351).

4.5 - Dibrom - hexen - (2) - säure - (1), 3.4 - Dibrom - penten - (1) - carbonsäure - (1), Sorbinsäuredibromid $C_4H_8O_2Br_2=CH_3\cdot CHBr\cdot CH:CH:CH:CO_2H$ (vgl. H 436). Ist identisch mit der Dibromhexensäure von Kachel; Fittig (A. 168 [1873], 287). Zur Konstitution vgl. v. Auwers, Heyna, A. 434, 143. — Liefert bei Einw. von Ozon in Chloroform unter Kühlung ein öliges Ozonid, das beim Erwärmen mit Wasser und Natriumacetat α -Bromcrotonsldehyd ergibt (v. Au., Hey., A. 434, 151). Bei der Reduktion mit Natriumamalgam in wäßrig-alkoholischer Schwefelsäure entsteht Δ^{β} -Dihydrosorbinsäure (v. Au., Hey., A. 434, 148). Gibt bei Einw. von Diäthylamin in Ather γ - oder δ -Brom-sorbinsäure (Farmer, Healey, Soc. 1927, 1064).

Zur Existenz einer flüssigen Form vgl. Farmer, Healey, Soc. 1927, 1063, 1064; INGOLD, PRITCHARD, SMITH, Soc. 1934, 83.

Methylester $C_7H_{10}O_8B_{12}=CH_2\cdot CHBr\cdot CH:CH\cdot CO_2\cdot CH_3$. B. Durch Esterifizierung von Sorbinsäuredibromid oder Bromierung von Sorbinsäuremethylester (FARMER, HEALEY, Soc. 1927, 1064). — Angenehm riechende Flüssigkeit. Kp₁₂: 146°.

Athylester $C_9H_{19}O_9Br_9 = CH_3 \cdot CHBr \cdot CH : CH : CH : CO_3 \cdot C_9H_5$. B. Aus Sorbinsüreäthylester und Brom in Schwefelkohlenstoff (v. Auwers, Heyna, A. 434, 155). — Gelbliches Öl von schwachem Geruch. $Kp_{11}: 139^{\circ}$ (Zers.).

3. Hexen-(2)-säure-(6), Δ⁴-Hexensäure, Δ^γ-Hexensäure, Penten-(3)-carbonsäure-(1), Δ^γ-Dihydrosorbinsäure C₆H₁₀O₂ = CH₂·CH·CH·CH₂·CH₂·CO₂H (H 335; E I 193). B. Neben Δ^β-Dihydrosorbinsäure bei der Reduktion von Sorbinsäure mit Natriumamalgam in Eisessig (Evans, Farmer, Soc. 1928, 1646, 1648; Burton, Ingold, Soc. 1929, 2035), in wäßr. Lösung unter Einleiten von Kohlendioxyd oder in schwach saurer Lösung (Goldberg, Linstead, Soc. 1928, 2348, 2352), in Natriumdicarbonat-Lösung unter Einleiten von Kohlendioxyd bei 40° (Ausbeute: 40%) (Burton, Ingold, Soc. 1929, 2035) oder in wäßr. Natriumsorbat-Lösung (E., F.); mit Aluminiumamalgam in feuchtem Ather (E., F.; G., L.), in 1n-Natriumdicarbonat-Lösung bei 16—27° oder in Natronlange (Ausbeute 45%)

(B., I., Soc. 1929, 2036) oder in wäßr. Natriumsorbat-Lösung (E., F.; B., I.). Die β-Form entsteht beim Erhitzen von Penten-(3)-dicarbonsäure-(1.1) im Glycerinbad auf 140° (Eccort, LINSTEAD, Soc. 1929, 2164). Zur Trennung von Penten-(2)-carbonsäure-(1) über die Cadmiumsalze nach Fichter (B. 29 [1896], 2370) vgl. G., L.

Existiert in zwei Formen:

a) Feste Form, α -Form. F: 0° (ECCOTT, LINSTEAD, Soc. 1929, 2164). Kp₈: 106° bis 108°. D^{α}₁, 0,9715. n^{α} ₁, 1,4413. — Addiert weniger Jod als die flüssige Form. b) Flüssige Form, β -Form. Unangenehm riechende Flüssigkeit, die in einer Kältemischung nicht ersterrt. Kp₂₀: 111—112° (ECCOTT, LINSTEAD, Soc. 1929, 2164). D^{α}₁, 100° (ECCOTT, LINSTEAD) (ECCO

0.9584. $n_D^{18,7}$: 1,4367.

Liefert bei der Oxydation mit Permanganat-Lösung in Gegenwart von Natriumdicarbonat und Magnesiumsulfat Essigsäure und Bernsteinsäure (Eccott, Linstead, Soc. 1929, 2164; vgl. Burton, Ingold, Soc. 1929, 2033, 2036). Wird durch Erhitzen mit Kalilauge nicht verändert (E., L.). Die flüssige Form addiert mehr Jod als die feste Form (E., L.). Die feste und die flüssige Form geben das gleiche Cadmiumsalz und Chlorid (E., L.).

H 2, 435, Z. 22 v. o. statt "einer Säure C₇H₁₀O₄" lies "α-Äthyliden-glutarsäure".
 Z. 23 v. o. nach "2370" füge zu "F., EGGERT, B. 31, 1998".

Chlorid $C_8H_9OCl = CH_3 \cdot CH \cdot CH_2 \cdot CH_2 \cdot COCl$. B. Aus der flüssigen oder festen Form der Säure und Thionylchlorid (Eccorr, LINSTEAD, Soc. 1929, 2164). -- Kp. 55-57°; Kp₂: 48-50°.

4. Hexen-(3)-säure-(1), Δ^3 - Hexensäure, Δ^{β} - Hexensäure, Penten-(2)carbonsäure-(1), Δ^β-Dihydrosorbinsäure, häufig schlechthin Hydrosorbinsäure genannt C₆H₁₀O₂ = CH₃·CH₂·CH·CH·CH₂·CO₂H (H 435; E I 193). Zur Konfiguration der Hydrosorbinsäure von Fittig, Delible (A. 255 [1889], 61), gewonnen durch Destillation von γ-Athyl-paraconsäure, vgl. Eccott, Linstead, Soc. 1929, 2159. Zur Bildung aus Sorbinsäure durch Reduktion mit Natriumamalgam oder Aluminiumamalgam vgl. den Artikel Penten-(3)-carbonsäure-(1) (S. 403); vgl. ferner v. Auwers, Heyna, A. 434, 148; Philippi, M. 51, 279. Zur Trennung von Penten-(3)-carbonsäure-(1) über die Cadmiumsalze nach Fichter (B. 29 [1896] 2370) vgl. Gov. prenden-(4)-carbonsäure-(4). [1896], 2370) vgl. GOLDBERG, LINSTEAD, Soc. 1928, 2348. Entsteht aus 3.4-Dibrom-penten-(1)carbonsäure (1) beim Behandeln mit Natriumamalgam in wäßrig alkoholischer Schwefelsäure (v. Au., H.). Bei der Oxydation von Hexen-(3)-ol-(1) mit Chromsäure (van Romburgh, Versl. Akad. Amsterdam 28, 85; C. 1920 I, 83). Durch Kochen von Penten-(1)-carbonsäure-(1) mit 40 % iger Kalilauge, Veresterung des Reaktionsprodukts mit kalter alkoholischer Salzsäure und Folgende Verseifung der Esterfraktion Kp_{15} : 67° mit Kalilauge (E., L., Soc. 1929, 2159).

Platten. F: 4—5°; Kp_{15} : 107° (E., L.). 2 Präparate zeigten: $D_i^{18,3}$: 0,9663; $D_i^{20,2}$: 0,9633; n_{α}^{18} : 1,4375; n_{β}^{18} : 1,4401; n_{β}^{18} : 1,4472; $n_{\alpha}^{20,2}$: 1,4386; $n_{\beta}^{10,2}$: 1,4380; $n_{\beta}^{20,2}$: 1,4450 (v. Au., H.). Elektrische Leitfähigkeit bei 25°: v. Au., H. — Liefert bei der Oxydation mit Permanganat in einer wäßr. Lösung von Natriumdicarbonat + Magnesiumsulfat Propionsäure und Oxalsäure (E., L.; vgl. G., L.). Geschwindigkeit der Jodaddition: E., L. Wandelt sich bei Einw. von 30% iger Kalilauge bei 100° teilweise in Penten-(1)-carbonsäure-(1) um; das Gleichgewichtsgemisch besteht aus ca. 30% Penten-(2)-carbonsäure-(1) und ca. 70% Penten-(1)-carbonsäure-(1) (E., L.; vgl. G., L.). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure bei 25°: Bhide, Sudborough, J. indian Inst. Sci. 8, 96; C. 1926 I, 80.

Methylester $C_7H_{12}O_2 = CH_3 \cdot CH_2 \cdot CH \cdot CH_2 \cdot CO_2 \cdot CH_3$. Kp₁₈: 154⁰ (Philippi, Galter, M. 51, 265). — Liefert mit flüssigem Ammoniak im Rohr bei Zimmertemperatur das entsprechende Amid.

Äthylester $C_8H_{14}O_8 = CH_8 \cdot CH_2 \cdot CH_1 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 436). Kp₁₅: 67° (Eccott, Linstead, Soc. 1929, 2161). D_4^{tr} : 0,8983. n_7^{tr} : 1,4272.

Chlorid $C_6H_9OCl=CH_9\cdot CH_2\cdot CH:CH\cdot CH_9\cdot COCl.$ B. Aus Penten-(2)-carbonsaure-(1) beim Behandeln mit Thionylchlorid (Ott, Zimmermann, A. 425, 331) oder mit Phosphortrichlorid (v. Auwers, A. 432, 73). — Flüssigkeit. $Kp_{18}:52^{\circ}$ (Goldberg, Linstead, Soc. 1928, 2351); $Kp_{12}:41-42^{\circ}$ (v. Au.); $Kp_{9}:42-43^{\circ}$ (O., Z.). $D_4^{is.6}:1,0142$ (v. Au.). $n_5^{is.6}:$ 1,4440; $n_{He}^{18.6}$: 1,4473; $n_{He}^{18.6}$: 1,4545; $n_{Y}^{19.6}$: 1,4604 (v. Au.).

Amid $C_6H_{11}ON = CH_3 \cdot CH_2 \cdot CH \cdot CH_3 \cdot CO \cdot NH_3$. B. Aus Penten-(2)-carbonsaure-(1)-methylester und flüssigem Ammoniak im Rohr bei Zimmertemperatur (Philippi, Galter, M. 51, 265). Durch Verreiben des Chlorids mit trocknem Ammoniumcarbonat (v. Auwers, A. 432, 73). — Blättchen (aus Benzol). F: 60° (v. Av.), 75° (Pr., G.). Leicht löslich in den meisten Lösungsmitteln (Рн., G.).

Nitril $C_0H_0N = CH_1 \cdot CH_2 \cdot CH_1 \cdot CH_2 \cdot CN$. B. Durch Erwärmen des Amids mit Phosphorpentoxyd (v. Auwers, A. 432, 74). — Flüssigkeit. Kp₉₁: 103—104°. D₄:: 0,8424. n₂:: 1,4302; n_{He}:: 1,4331; n_B:: 1,4398; n_Y:: 1,4456.

- 405
- 5. Hexensäure C₆H₁₀O₂ mit unbekannter Lage der Doppelbindung ("Iso-hydrosorbinsäure") (H 436). Die von Hjelt (B. 15 [1882], 618) beschriebene Hexensäure war vermutlich unreine Penten-(2) carbonsäure-(1) (ECCOTT, LINSTEAD, Soc. 1929, 2158).
- 6. **Penten (1) -** carbonsäure **(2)**, α **Propyl acrylsäure**, α **Methylen**n-valeriansäure $C_6H_{10}O_2 = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(:CH_2) \cdot CO_2H$.
- α-Propyl-acrylsäure-nitril C₆H₅N = C₂H₅·CH₂·C(:CH₂)·CN. B. Neben höhersiedendem und niedrigersiedendem α-Methyl-β-äthyl-acrylsäure-nitril beim Behandeln von Methylpropylketon-cyanhydrin mit Phosphorpentoxyd (Vermeulen, Adriaens, Bl. Soc. chim. Belg. 38, 302; C. 1930 I, 3545; vgl. Macq, C. 1927 I, 880). Beim Erwärmen von α-Chlormethyl-n-valeriansäure-nitril mit Chinolin auf dem Wasserbad (V., A., Bl. Soc. chim. Belg. 38, 306). — Kp_{757} : 135,7—135,9° (V., A.). D_{\bullet}^{∞} : 0,8157 (V., A.). n_{α}^{∞} : 1,4198; n_{D}^{∞} : 1,4228; n²₀: 1,4298 (V., A.). — Liefert beim Einleiten von Chlorwasserstoff α-Chlormethyl-n-valeriansäure-nitril (V., A.). Wird durch Erhitzen mit Natriumphenolat-Lösung nicht verändert (V., A.).
- 7. 2-Methyl-penten-(2)-säure-(1), α -Methyl- Δ^{α} -pentensäure, Penten-(2)carbonsäure-(2), α-Methyl-β-äthyl-acrylsäure C₆H₁₀O₂ = CH₂·CH₂·CH₂·CH₃·CO₂H (H 437). B. Aus α-Methyl-β-äthyl-acrolein durch Oxydation mit Silbernitrat und Natronlauge in verd. Alkohol (Goldberg, Linstead, Soc. 1928, 2355). — F: 22—23°. Kp₁₂: 112°. — Beim Kochen mit 25 % iger Kalilauge stellt sich ein Gleichgewicht zwischen Penten (2)carbonsaure-(2) und Penten-(3)-carbonsaure-(2) ein.

Chlorid C₆H₉OCl = C₂H₅·CH:C(CH₃)·COCl. Kp₁₆: 63° (GOLDBERG, LINSTEAD, Soc. 1928, 2355).

Amid C₆H₁₁ON = C₂H₅·CH:C(CH₃)·CO·NH₂. B. Durch Einw. von Ammoniak auf das Säurechlorid in Benzol (GOLDBERG, LINSTEAD, Soc. 1928, 2355). — Platten (aus Benzol oder Schwefelkohlenstoff). F: 80° (G., L.; vgl. Macq, C. 1927 I, 880; Vermeulen, Adriaens, Bl. Soc. chim. Belg. 38, 309; C. 1930 I, 3545).

Nitril $C_6H_9N = C_2H_5 \cdot CH : C(CH_3) \cdot CN$. B. Entsteht neben α -Propyl-acrylsäure-nitril in Form von 2 Stereoisomeren beim Behandeln von Methylpropylketon-cyanhydrin mit Phosphorpentoxyd (Vermeulen, Adriaens, Bl. Soc. chim. Belg. 38, 302; C. 1930 I, 3545; vgl. Macq, C. 1927 I, 880). Beim Erwärmen von β -Chlor- α -methyl-n-valeriansäure-nitril mit Chinolin auf dem Wasserbad (V., A., Bl. Soc. chim. Belg. 38, 307).

a) Niedrigersiedende Form. Kp₇₆₁: 138,7—139,1° (V., A.). D₄°: 0,8177. n_α°: 1,4245:

- n_D^{20} : 1,4286; n_B^{20} : 1,4350; n_Y^{20} : 1,4413.
- b) Höhersiedende Form. Zwei Präparate zeigten: Kp_{760} : 157—157,2°; D_{α}^{sn} : 0,8286: n_{α}^{sn} : 1,4371; n_{β}^{sn} : 1,4449; Kp_{763} : 157,2—157,6°; D_{α}^{sn} : 0,8274; n_{α}^{sn} : 1,4334; n_{α}^{sn} : 1,4364: n_{β}^{∞} : 1,4440; n_{γ}^{∞} : 1,4511 (V., A.).

Beide Formen liefern beim Einleiten von Chlorwasserstoff β-Chlor-α-methyl-n-valeriansäure-nitril (V., A.). Erhitzen mit Natriumphenolat-Lösung bewirkt keine Veränderung (V., A.).

8. 2-Methyl-penten-(2)-säure-(5), γ -Methyl- Δ^{β} -pentensäure, 3-Methylbuten-(2)-carbonsäure-(1), Δ^β-Isohexensäure, Brenzterebinsäure C₆H₁₀O₂ = (CH₃)₂C:CH·CH₃·CO₂H (H 438). B. Zur Darstellung durch trockne Destillation von Terebinsäure nach Fittig, Geisler (A. 208 [1881], 39) vgl. Goldberg, Linstead, Soc. 1928, 2354. Entsteht beim Erhitzen von 3-Methyl-buten-(4)-carbonsäure-(1) mit wäßr. Kalilauge (Goldberg, Linstead, Soc. 1928, 2354; L., Soc. 1929, 2506). In geringer Menge aus 4-Brom-2-methyl-buten-(2), Magnesium und Kohlendioxyd in Äther (Staudinger, Kreis, Schilt. Helv. 5, 755). Das Natriumsalz entsteht im Gemisch mit dem Natriumsalz der 3-Methyl-buten-(4) aurhorsäure-(4) mit 2 kthory. 3 methyl-buten generalize (4) stallation (4) stallat buten-(1)-carbonsaure-(1) und mit 2-Athoxy-3-methyl-butan-carbonsaure-(1)-åthylester durch Einw. von Natriumäthylat-Lösung auf 3-Methyl-buten-(1)-carbonsaure-(1)-åthylester bei Zimmertemperatur (L., Soc. 1929, 2508). — Kp₁₃: 103—106° (L.); Kp₁₀: 99° (G., L.). — Bei der Ozonisierung in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich in Chloroform entsteht ein Ozonid [F: 110° (Zers.); schwer löslich entsteht ein Ozonid [F: 110° (Zers.); schwer löslich entsteht entsteht ein Ozonid [F: 110° (Zers.); schwer löslich entsteht ents in Chloroform], das bei der Zersetzung mit Wasser Acetaldehyd, Aceton und Malonsäure liefert (G., L.). Beim Kochen mit 25 % iger Kalilauge stellt sich ein Gleichgewicht zwischen 3-Methyl-butén-(1)-carbonsäure-(1) und Brenzterebinsäure ein; daneben entsteht eine Oxysäure (G., L.). Liefert bei Einw. von Thionylchlorid ein Gemisch aus Brenzterebinsäurechlorid und γ -Chlor-isocaproylchlorid (L.).

Athylester $C_8H_{16}O_2 = (CH_3)_2C: CH \cdot CH_2 \cdot CO_2 \cdot C_2H_3$. B. Beim Behandeln von Brenzterebinsäure mit absolut-alkoholischer Salzsäure (LINSTEAD, Soc. 1929, 2506). Durch Destillation von y-Chlor-isocapronsäure-äthylester (L., Soc. 1929, 2510). — Kp11: 58—59°. Di: 0,9134. ni: 1,4329. — Zersetzt sich beim Aufbewahren. Liefert bei der Hydrolyse mit 15% iger Natronlauge bei Zimmertemperatur Brenzterebinsäure und Isocaprolacton. Liefert bei der Ozonisierung und Zersetzung des Reaktionsprodukts mit Wasser Acetonperoxyd und Formaldehyd (?).

Chlorid $C_0H_0OCl = (CH_0)_1C:CH\cdot CH_1\cdot COCl.$ B. Entsteht im Gemisch mit γ -Chlorisocaproylchlorid durch Einw. von Thionylchlorid auf Brenzterebinsäure (Linstead, Soc. 1929, 2509). — Kp₂₀: ca. 60° (L.); Kp₁₆: 62°; Kp₁₆: 60° (Goldberg, Linstead, Soc. 1928, 2354).

Nitril $C_6H_9N = (CH_3)_2C:CH \cdot CH_2 \cdot CN$ (H 438). B. In geringer Menge beim Erhitzen von Isobutyraldehyd mit Cyanessigsäure und nachfolgender Destillation (v. Auwers, B. 56, 1183). — Öl. $Kp_{14}:63^{\circ}$. $D_{1}^{is.s}:0.8556$. $n_{2}^{is.s}:1.4353$; $n_{2}^{is.s}:1.4380$; $n_{3}^{is.s}:1.4453$; $n_{2}^{is.s}:1.4453$; $n_{3}^{is.s}:1.4453$

9. 2-Methyl-penten-(3)-säure-(1), a-Methyl- Λ^{β} -pentensäure, Penten-(3)-carbonsäure-(2) $C_6H_{10}O_2=CH_3\cdot CH: CH\cdot CH(CH_3)\cdot CO_2H$ (H 438). Zur Bildung nach Fighter, Rudin (B. 37 [1904], 1616) vgl. Goldberg, Linstead, Soc. 1928, 2356. — Flüssigkeit. $Kp_{16}:102^{\circ}(G.,L.)$. — Beim Kochen mit 25 % iger Kalilauge stellt sich ein Gleichgewicht zwischen Penten-(3)-carbonsäure-(2) und Penten-(2)-carbonsäure-(2) ein.

Chlorid $C_8H_9OCl = CH_3 \cdot CH \cdot CH \cdot CH(CH_3) \cdot COCl.$ Kp_{17} : 47° (Goldberg, Linstead, Soc. 1928, 2356).

Amid $C_8H_{11}ON = CH_2 \cdot CH \cdot CH \cdot CH(CH_2) \cdot CO \cdot NH_2$. B. Aus dem Chlorid bei Einw. von Ammoniak in Benzol (Goldberg, Linstead, Soc. 1928, 2356). — Platten (aus Schwefelkohlenstoff oder Benzol). F: 74°.

- 4-Chlor-2-methyl-penten-(3)-säure-(1), γ -Chlor- α -methyl- Δ^{β} -pentensäure $C_4H_2O_2Cl=CH_2\cdot CCl:CH\cdot CH(CH_3)\cdot CO_2H$. B. Neben γ -Chlor- α - γ -dimethyl-itaconsaure bei Einw. von Phosphorpentachlorid auf in trocknem Chloroform gelösten α -Methyl- α -acetyl-bernsteinsäurediäthylester und folgendem Behandeln mit Wasser (Küster, Maurer, Palm, B. 59, 1021; H. 156, 29). Nadeln (aus Alkohol). F: 154°. Leicht löslich in Alkohol und Äther, sehr schwer in heißem Wasser. Flüchtig mit Wasserdampf.
- 10. 2-Methyl-penten-(3)-säure-(5), γ -Methyl- Δ^{α} -pentensäure, 3-Methylbuten-(1)-carbonsäure-(1), β -Isopropyl-acrylsäure, Δ^{α} -Isohexensäure $C_6H_{10}O_3=(CH_3)_3CH\cdot CH:CH\cdot CO_2H$ (H 438; E I 193). V. Im Holzöl (Pringshkim, Schreiber, Cellulosech. 8, 49, 59; C. 1927 II, 1224).

 B. Beim Erwärmen von Humulon (s. nebenstehnde Erwärlen von Humulon (s. nebenstehnde Erwärlen von Humulon (s. nebenstehnde CH3):C:CH·CH3:CH CCO CH3:CH(CH3):C

Formel; Syst. Nr. 826) mit alkoh. Natronlauge, neben anderen Produkten (Wöllmer, B. 49 [1916], 785; Wieland, B. 58, 103, 108). Beim Kochen von β -Chlor-isocapronsaure mit Alkali-

(CH₃)₂C; CH·CH₂·CH

CC

COO·CH₂·CH(CH₃)₂

OC

COO·CH₂·CH(CH₃)₂

HO

CH:CH·CH(CH₃)₂

laugen (Pace, G. 59, 583). Aus Isobutyraldehyd und Malonsäure in trocknem Pyridin unter Kühlung, neben Brenzterebinsäure und geringen Mengen β-Oxy-isocapronsäure (v. Auwers, A. 482, 52, 74), oder in Pyridin unter Zusstz von etwas Piperidin (Goldberg, Linstean, Soc. 1928, 2353). — Öl. Besitzt einen ranzigen, etwas an Hopfen erinnernden Geruch. Kp: 212° (Pa.), 202—205° (Pr., Sch.); Kp₁₀: 115—116°; Kp₁₀: 108° (L., Soc. 1929, 2505); Kp₁₁: 106—108° (v. Au.); Kp₁₁: 102—104° (Wie.). Di¹¹: 0,9589 (v. Au.); Di²²: 0,9529 (L.). ni²: 1,4471; ni¹¹_{He}: 1,4506; ni²: 1,4593; ni¹²: 1,4669 (v. Au.). ni²³: 1,4583; ni²⁴: 1,4489 (L.). Leicht löslich in Wasser (Wö.; Wie.). — Liefert beim Oxydieren mit Kaliumpermanganat oder konz. Salpetersäure Oxalsäure und Isobuttersäure (Pe., Sch.). Bei der Hydrierung mit Wasserstoff und Palladiumschwarz in Äther entsteht Isocapronsäure (Wie.). Beim Kochen mit 25%iger Kalilauge stellt sich ein Gleichgewicht zwischen 3-Methyl-buten-(1)-carbonsäure-(1) und Brenzterebinsäure ein (G., L., Soc. 1928, 2354, 2359). — AgC₂H₂O₂. Schwer löslich in heißem Wasser (Wö.; Wie.). — Zinksalz. Nadeln. Schwer löslich (Wö.). — Cadmiumsalz. Nadeln. Leichter löslich (Wö.).

Äthylester $C_8H_{14}O_9=(CH_2)_8CH\cdot CH\cdot CH\cdot CO_3\cdot C_2H_5$ (H 439). B. Aus der Säure beim Behandeln mit Alkohol und konz. Schwefelsäure (v. Äuwers, A. 432, 75; Linstead, Soc. 1929, 2505). Durch Einw. von überschüssigem Alkohol auf das Säurechlorid (L.). — Kp₁₈: 60° (L.); Kp₉: 55—56° (v. Au.). D¹; 0,8978 (L.); D^{16,5}: 0,8971 (v. Au.). n¹⁶; 1,4341 (L.); n^{16,5}; 1,4304; n^{16,5}; 1,4436; n^{16,5}; 1,4408; n^{16,5}; 1,4470 (v. Au.). — Liefert bei der Ozonisierung in Chloroform und Zerectzung des Reaktionsprodukts mit Wasser Isobutyraldehyd und beim Eindampfen des wäßrigen Rückstandes mit Alkalilauge Oxalsäure (L.). Entfärbt Permanganat in Aceton (L.). Bei Einw. von 1n-Natriumäthylat-Lösung (hergestellt aus gewöhnlichem "absolutem" Alkohol) bei Zimmertemperatur erhält man ein Gemisch der Natriumsalze der 3-Methyl-buten-(1)-carbonsäure-(1) und Brenzterebinsäure und von 2-Äthoxy-3-methyl-butan-carbonsäure-(1)-äthylester (L.). Bei Einw. von 1n-Natriumäthylat-Lösung (hergestellt aus sorgfältig getrocknetem Alkohol) bei 25° stellt sich ein

Gleichgewicht zwischen den Äthylestern von 3-Methyl-buten-(1)-carbonsäure-(1) und Brenzterebinsäure ein; daneben entsteht 2-Äthoxy-3-methyl-butan-carbonsäure-(1)-äthylester (L.).

Chlorid $C_0H_0OCl = (CH_2)_2CH \cdot CH \cdot CH \cdot COCl.$ B. Aus der Säure beim Behandeln mit Phosphortrichlorid (v. Auwers, A. 432, 75) oder mit Thionylchlorid (Linstead, Soc. 1929. 2505). — Öl. Kp₃₀: 67° (Goldberg, L., Soc. 1928, 2353); Kp₁₈: 58—59° (L.); Kp₁₂: 53—54° (v. Au.). $D_{\alpha}^{14,2}$: 1,0235 (v. Au.). $n_{\alpha}^{14,2}$: 1,4599; $n_{H_0}^{14,2}$: 1,4640; $n_{\beta}^{16,2}$: 1,4735; $n_{\gamma}^{14,2}$: 1,4818 (v. Au.).

Amid $C_6H_{11}ON = (CH_3)_2CH \cdot CH \cdot CO \cdot NH_3$. B. Durch Einleiten von Ammoniak in die äther. Lösung des Chlorids (v. Auwers, A. 432, 75). — Blättchen (aus Benzol). F: $82-86^{\circ}$. Leicht löslich in Alkohol und Äther, schwer in Benzol und Benzin, sehr schwer in Wasser.

Nitril $C_6H_9N = (CH_8)_9CH \cdot CH \cdot CH \cdot CN \text{ (H 439)}.$ B. Aus dem Amid bei der Einw. von Phosphorpentoxyd (v. Auwers, A. 432, 75). — Mandelartig riechende, leicht bewegliche Flüssigkeit. $Kp_{11}: 43-44^0$. $D_4^{16,5}: 0,8258.$ $n_6^{16,5}: 1,4324;$ $n_{16,5}^{16,5}: 1,4357;$ $n_{16,5}^{16,5}: 1,4437;$ $n_{17}^{16,5}: 1,4437;$

- 11. 2-Methyl-penten-(4)-säure-(1), α -Methyl- Δ^{γ} -pentensäure, Penten-(4)-carbonsäure-(2), α -Allyl-propionsäure, Methylallylessigsäure $C_0H_{10}O_2=CH_1:CH\cdot CH_2\cdot CH(CH_3)\cdot CO_2H$ (H 439). B. Beim Erhitzen von Methylallylmalonsäure auf 160° (Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 99, 104; C. 1926 I, 81). Flüssigkeit. Kp₆₈₃: 188—189° (korr.). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure: B., S.
- 12. 3-Methyl-penten-(2)-säure-(1), β -Methyl- Δ^{α} -pentensäure, 2-Methyl-buten-(1)-carbonsäure-(1), β -Methyl- β -āthyl-acrylsäure $C_6H_{70}O_2=CH_3\cdot CH_2\cdot C(CH_3):CH\cdot CO_3H$ (H 439). B. Aus β -Oxy- β -methyl-n-valeriansäure beim Kochen mit Essigsäureanhydrid oder, neben 2-Methyl-buten-(2)-carbonsäure-(1), bei der Dehydratation mit wasserfreier Ameisensäure (Kon, Linstead), Soc. 127, 623). Nadeln (aus Petroläther). F: 45° (K., L.; L., Soc. 1927, 357). Kp₂₁: 121—122° (K., L.); Kp₁₃: 104° (L.). Liefert bei der Oxydation mit alkal. Permanganat-Lösung Methyläthylketon und Oxalsäure (K., L.). Beim Kochen mit 60% iger wäßriger Kalilauge entsteht 2-Methyl-buten-(2)-carbonsäure-(1) (K., L.). Gleichgewicht zwischen 2-Methyl-buten-(1)-carbonsäure-(1) und 2-Methyl-buten-(2)-carbonsäure-(1): L. Geschwindigkeit der Reaktion mit Brom in Chloroform bei 25°: L.

Äthylester $C_8H_{14}O_2=CH_3\cdot CH_2\cdot C(CH_3):CH\cdot CO_2\cdot C_2H_5$ (H 439). $Kp_{24}\colon$ 67° (Kon, Linstead, Soc. 127, 624). $D_4^{r,s}\colon 0.9141$; $n_7^{r,s}\colon 1.4411$. — Liefert bei der Oxydation mit alkal. Permanganat-Lösung Methyläthylketon und Oxalsäure.

Chlorid $C_9H_9OCl=C_9H_5\cdot C(CH_9):CH\cdot COCl.$ B. Beim Behandeln der Säure mit Thionylchlorid (Kon, Linstead, Soc. 127, 623). — Kp₂₅: 65°. Liefert bei Einw. von Methylzinkjodid ein untrennbares Gemisch von 3-Methyl-hexen-(2)-on-(5) und 3-Methyl-hexen-(3)-on-(5) (Qudrat-I-Khuda, Soc. 1929, 1915). Liefert mit Äthylzinkjodid 3-Methyl-hepten-(3)-on-(5) (Abbott, Kon, Satchell, Soc. 1928, 2522).

Amid $C_0H_{11}ON = C_0H_5 \cdot C(CH_5) \cdot CH \cdot CO \cdot NH_5$. B. Beim Einleiten von Ammoniak in die äther. Lösung des Säurechlorids (Kon, Linstead, Soc. 127, 623). — Tafeln (aus Benzol + Petroläther). F: 99° (Kandiah, Linstead, Soc. 1929, 2151).

Nitril C₆H₅N = C₃H₅·C(CH₃); CH·CN (H 439). B. Aus dem Amid beim Erwärmen mit Phosphorpentachlorid in Phosphoroxychlorid (Kandiah, Linstrad, Soc. 1929, 2151). Beim Behandeln von 2-Methyl-buten-(2)-carbonsäure-(1)-nitril mit 1n-Natriumäthylat-Lösung bei 25° (K., L., Soc. 1929, 2152). — Kp₂₀: 63°. D₄^{m,3}: 0,8432. n₂^{m,3}: 1,4447. — Wandelt sich bei Einw. von 1n-Natriumäthylat-Lösung bei 25° nur in sehr geringer Menge in 2-Methyl-buten-(2)-carbonsäure-(1)-nitril um.

13. 3-Methyl-penten-(2)-säure-(5), β-Methyl-Δβ-pentensäure, 2-Methyl-buten-(2)-carbonsäure-(1) C₆H₁₀O₂ = CH₃·CH : C(CH₃)·CH₂·CO₂H (H 439). B. Bei der Dehydratation von β-Oxy-β-methyl-n-valeriansäure mit 12 % iger Schwefelsäure oder mit wasserfreier Ameisensäure (Kon, Linstead, Soc. 127, 623; L., Soc. 1927, 357). Entsteht in sehr reiner Form bei der Einw. von Phosphoroxychlorid oder Kaliumdisulfat auf β-Oxy-β-methyl-n-valeriansäure-äthylester und folgender Verseifung in der Kälte (Abbott, Kon, Satchell, Soc. 1928, 2522 Anm.). Aus β-Methyl-β-āthyl-acrylsäure beim Kochen mit 60% iger Kalilauge (K., L.). — Kp₂₃: 116° (K., L.); Kp₁₄: 101° (L.). D_m²³: 0,9784; n_m²³: 1,4469 (K., L.). — Liefert bei der Oxydation mit alkal. Permanganat-Lösung Essigsäure (K., L.). Bei der Oxydation mit Ozon und Zersetzung des Ozonids mit Wasser erhält man Acetaldehyd (K., L.). Gibt beim Kochen mit 60% iger Kalilauge sehr geringe Mengen 2-Methyl-buten-(1)-carbonsäure-(1) neben unveränderter Ausgangssubstanz (K., L.). Gleichgewicht zwischen 2-Methyl-buten-(2)-carbonsäure-(1) und 2-Methyl-buten-(1)-carbonsäure-(1): L. Geschwindigkeit der Reaktion mit Brom in Chloroform bei 25°: L.

Svst. Nr. 163

Äthylester $C_0H_{14}O_2=CH_3\cdot CH:C(CH_3)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Aus β -Oxy- β -methyln-valeriansäure-äthylester durch Erhitzen mit Kaliumdisulfat auf 160—180° (Kon, Linstead, Soc. 127, 623). — Kp₁₃: 62°. D_i^{a,a}: 0,9163; n_i^{a,a}: 1,4364. — Liefert bei der Ozonisierung und nachfolgenden Zersetzung des Reaktionsprodukts mit Wasser Acetaldehyd.

Chlorid C_2H_2 OCl = $CH_3 \cdot CH : C(CH_3) \cdot CH_2 \cdot COCl$. B. Bei der Einw. von Thionylchlorid auf die Säure (Kon, Linstead, Soc. 127, 623).—Kp₂₅: 57° (K., L.).—Liefert bei Einw. von Methylzinkjodid ein untrennbares Gemisch von 3-Methyl-hexen-(2)-on-(5) und 3-Methyl-hexen-(3)-on-(5) (QUDRAT-I-KHUDA, Soc. 1929, 1915). Bei Einw. der Natriumverbindung des Methylacetessigesters in Äther entsteht der Ester $CH_3 \cdot CH : C(CH_3) \cdot CH_2 \cdot CO \cdot C(CH_3) \cdot CO \cdot C(CH_3) \cdot CO \cdot CH_3 \cdot (Kp_{15}: 158-168°)$, der beim Kochen mit 10 %iger alkoholischer Natronlauge ein Gemisch von 3-Methyl-hepten-(2)-on-(5) und 3-Methyl-hepten-(3)-on-(5) gibt (Abbott, Kon, Satchell, Soc. 1928, 2522).

Amid C₈H₁₁ON = CH₂·CH:C(CH₃)·CH₂·CO·NH₂. B. Beim Einleiten von Ammoniak in die äther. Lösung des Chlorids (Kon, Linstead, Soc. 127, 623). — Platten (aus Benzol + Petroläther). F: 123—124° (Ko., L.), 124—125° (Kandiah, Linstead, Soc. 1929, 2151).

Nitril $C_6H_9N = CH_3 \cdot CH : C(CH_3) \cdot CH_2 \cdot CN$. B. Aus dem Amid beim Erwärmen mit Phosphorpentachlorid in Phosphoroxychlorid (Kandiah, Linstead, Soc. 1929, 2151). — $Kp_{19}:60^{\circ}$. $D_{\bullet}^{m.s}:0.8478$. $n_{\bullet}^{m.s}:1,4367$. — Wandelt sich bei Einw. von 1n-Natriumäthylatlösung bei 25° fast vollständig in β -Methyl- β -äthyl-acrylsäure-nitril um.

- 14. Penten-(2)-carbonsäure-(3), β -Methyl-a-āthyl-acrylsäure, α -Åthyl-crotonsäure und α -Äthyl-isocrotonsäure $C_6H_{10}O_2 = CH_2 \cdot CH \cdot C(C_2H_5) \cdot CO_2H$.
- a) Feste α-Āthyl-crotonsāure C₆H₁₀O₃ = CH₃·CH:C(C₂H₅)·CO₃H (H 440). B. Bei der Oxydation von niedrigersiedendem 3-Āthyl-penten-(2)-on-(4) mit alkal. Natriumhypochlorit-Lösung (Colonge, Bl. [4] 41, 328). Neben der flüssigen α-Āthyl-crotonsāure beim Kochen von Diāthylbromessigsāure-āthylester mit Diāthylanilin und Verseifen des entstandenen Estergemisches mit alkoh. Kalilauge (v. Auwers, A. 432, 76). Entsteht im Gemisch mit flüssiger α-Āthyl-crotonsāure und anderen Produkten bei der Behandlung von Diāthylbrom-acetyl-harnstoff mit siedender verdünnter Natronlauge (Newbern, Soc. 127, 300, 301). Entsteht im Gemisch mit der flüssigen Form und höherschmelzendem α-Āthyl-crotonsāure-amid bei 24-stdg. Erhitzen von höherschmelzendem α-Āthyl-crotonsāure-ureid mit konzentrierter wäßrig-alkoholischer Kalilauge oder bei 5-stdg. Erhitzen von niedrigerschmelzendem α-Āthyl-crotonsāure-amid (N.). Durch Erhitzen von niedrigerschmelzenden α-Āthyl-crotonsāure-amid (N.). Entsteht im Gemisch mit der flüssigen Form durch Kochen von Brom-diāthylacetylbromid mit wäßrig-alkoholischer Kalilauge (N.). Neben der flüssigen α-Āthyl-crotonsāure beim Kochen von niedrigersiedendem α-Āthyl-crotonsāure-nitril mit ca. 50%iger Schwefelsäure; entsteht als einziges Reaktionsprodukt. wenn Halogenwasserstoffsäuren hierbei sorgfältig ausgeschlossen werden (Macq. Bl. Acad. Belgique [5] 17 [1931], 1035). Beim Kochen von flüssiger α-Āthyl-crotonsāure mit 20%iger Schwefelsaure (M.). Nadeln (aus Wasser). F: 41° (M.), 41—42° (v. Au.), 42° (N.; C.), 45—46° (B., E.). Kp₇₅₅: 204—207° (M.). D[∞]₁: 0,9578 (B., E.); D[∞]₁: 1,4501; n[∞]₂: 1,4458 (v. Au.). Gibt bei aufeinanderfolgender Behandlung mit Phosphoroxychlorid und Harnstoff und Erhitzen des Reaktionsprodukts niedrigerschmelzendes α-Āthyl-crotonsāure-ureid (N.).

Äthylester $C_8H_{14}O_2=CH_2\cdot CH:C(C_2H_5)\cdot CO_2\cdot C_2H_5$ (H 440). B. S. o. bei der Säure. Entsteht ferner beim Behandeln der Säure mit Alkohol und Schwefelsäure (v. Auwers, A. 432, 77). — Kp: 167°. D_4^{ir} : 0,9106. n_{ir}^{ir} : 1,4341; n_{He}^{ir} : 1,4370; n_{B}^{ir} : 1,4444; n_{ir}^{ir} : 1,4507.

Chlorid C₆H₉CCl = CH₂·CH·C(C₂H₅)·COCl (H 440). Aus der flüssigen oder festen 2-Äthyl-crotonsäure und Phosphortrichlorid (Newbern, Soc. 127, 303). — Kp₄₄: 77° (v. Auwers, A. 432, 77); Kp₁₄: 58° (N.). — Gibt beim Erhitzen mit Harnstoff die niedrigerschmelzende Form des α-Äthyl-crotonsäure-ureids (N.). Beim Erwärmen mit p-Kresol auf 130—140° bildet sich α-Äthyl-crotonsäure-p-tolylester (v. Au., A. 439, 149). Liefert beim Behandeln mit p-Kresolmethyläther in Schwefelkohlenstoff bei Gegenwart von Aluminium-chlorid anfangs bei Zimmertemperatur, dann auf dem Wasserbade Propyl-[6-oxy-3-methyl-phenyl]-keton und 2.6-Dimethyl-3-äthyl-chromanon (v. Au., A. 439, 134, 146).

Amid $C_gH_{11}ON = CH_3 \cdot CH : C(C_gH_5) \cdot CO \cdot NH_g$ (vgl. H 441). B. Neben dem Amid der flüssigen α -Äthyl-crotonsäure beim Erwärmen des Nitrils der flüssigen α -Äthyl-crotonsäure mit konz. Schwefelsäure (Macq, Bl. Acad. Belgique [5] 12, 768; C 1927 I, 880; vgl. Bruylants, Ernould, Bl. Acad. Belgique [5] 17 [1931], 1032; C. 1932 I, 803). Durch 24-stdg. Erhitzen der höherschmelzenden Form von α -Äthyl-crotonsäure-ureid mit konzentrierter wäßrig-alkoholischer Kalilauge, neben anderen Produkten (Newbery, Soc. 127, 301). Aus

α-Äthyl-crotonsäure-chlorid beim Behandeln mit konzentriertem wäßrigem Ammoniak (N.) oder beim Einleiten von trocknem Ammoniak-Gas in die äther. Lösung (v. Auwers. A. 432, 77). Durch Erhitzen des niedrigerschmelzenden α-Äthyl-crotonsäure-ureids mit 1n-Kalilauge, neben fester α-Äthyl-crotonsäure (N.). Beim Erhitzen des Amids der flüssigen α-Äthyl-crotonsäure mit Eisessig-Bromwasserstoff auf dem Wasserbad (N.). — Blättehen (aus Petroläther). F: 114—115° (v. Au.), 118° (korr.) (N.), 118—119° (Br., E.; vgl. M.). Leicht löslich in Alkohol, ziemlich leicht in Benzol und Wasser, schwer in kaltem Äther, unlöslich in Petroläther (N.). In Schwefelkohlenstoff schwerer löslich als das Amid der flüssigen α-Äthyl-crotonsäure (M.). — Liefert bei der Reduktion mit 4% igem Natriumamalgam in Wasser α-Äthyl-buttersäure-amid (N.). Liefert beim Erhitzen mit 20% iger Natronlauge feste α-Äthyl-crotonsäure (N.). Bei Einw. der berechneten Menge Brom in Schwefelkohlenstoff bei 0° entsteht die niedrigerschmelzende Form des α.β-Dibrom-α-äthyl-buttersäure-amids (N.). Wird durch heißen Eisessig-Bromwasserstoff nicht verändert (N.).

Nitril $C_6H_9N = CH_3 \cdot CH : C(C_2H_5) \cdot CN$ (vgl. H 441). B. s. beim Nitril der flüssigen α -Athyl-crotonsäure. — Kp: $156-157^{\circ}$; geht bei wiederholter Destillation in die niedrigersiedende Form über (Macq. Bl. Acad. Belgique [5] 12, 767; C. 1927 I, 880); Kp₇₆₀: $155-156^{\circ}$; Kp₇₀: $155-156^{\circ}$; Kp₇₀: 15

b) Flüssige α -Äthyl-crotonsäure, α -Äthyl-isocrotonsäure $C_6H_{10}O_2=CH_3\cdot CH:C(C_2H_5)\cdot CO_2H$ (H 440). B. s. S. 408 bei der festen α -Äthyl-crotonsäure; die flüssige Form entsteht ferner durch 1-stdg. Erhitzen von höherschmelzendem α -Äthyl-crotonsäure-ureid mit verd. Kalilauge, neben dem Amid der flüssigen α -Äthyl-crotonsäure (Newberk, Soc. 127, 301). Durch 3-stdg. Kochen des Amids der flüssigen α -Äthyl-crotonsäure mit 20% iger Natronlauge, neben dem Amid der festen α -Äthyl-crotonsäure (N.). — Kp_{757} : 198—200° (Macq, Bl. Acad. Belgique [5] 12, 769; C. 1927 I, 880). D_i^{a} : 0,9805 (v. Auwers, A. 432, 78); D_i^{a} : 0,9557 (Bruylants, Ernould, Bl. Acad. Belgique [5] 17 [1931], 1037). n_{α}^{is} : 1,4502; n_{He}^{is} : 1,4534; n_{i}^{is} : 1,4617; n_{i}^{is} : 1,4688 (v. Au.); n_{α}^{sc} : 1,4405; n_{α}^{is} : 1,4438; n_{β}^{is} : 1,4520 (B., E.). — Geht beim Kochen mit 20% iger Schwefelsäure in feste α -Äthyl-crotonsäure über (M.).

Äthylester $C_8H_{14}O_2=CH_3\cdot CH:C(C_2H_5)\cdot CO_2\cdot C_2H_5$ (H 441). B. s. S. 408 bei der festen α -Äthyl-crotonsäure. Entsteht ferner aus der flüssigen Säure beim Behandeln mit Alkohol und Schwefelsäure (v. Auwers, A. 432, 78). — Kp: 158—159°. $D_4^{13,9}$: 0,9042. $n_{\alpha}^{13,9}$: 1,4278; $n_{He}^{13,9}$: 1,4306; $n_{\beta}^{13,9}$: 1,4375; $n_{\gamma}^{13,9}$: 1,4432.

Amid $C_6H_{11}ON=CH_3\cdot CH:C(C_2H_5)\cdot CO\cdot NH_2$ (vgl. H 441). B. Neben dem Amid der festen α -Åthyl-crotonsäure beim Erwärmen des Nitrils der flüssigen α -Åthyl-crotonsäure mit konz. Schwefelsäure (Macq, Bl. Acad. Belgique [5] 12, 767; C. 1927 I, 880; vgl. Bruy-Lants, Ernould, Bl. Acad. Belgique [5] 17 [1931], 1032; C. 1932 I, 803). Durch 1-stdg. Erhitzen der höherschmelzenden Form von α -Åthyl-crotonsäure-ureid mit verd. Kalilauge, neben flüssiger α -Åthyl-crotonsäure (Newbery, Soc. 127, 301). Entsteht neben anderen Produkten bei Einw. von siedender verdünnter Natronlauge auf Diäthylbromacetyl-harnstoff (N.). — Nadeln (aus Åther). F: 104° (korr.) (N.), 94° (M.), 93—94° (Br., E.). Leicht löslich in Alkohol und Chloroform, ziemlich leicht in Benzol und Wasser, unlöslich in Petroläther (N.). In Schwefelkohlenstoff leichter löslich als das Amid der festen α -Åthyl-crotonsäure (M.). — Liefert bei der Reduktion mit 4 %igem Natriumamalgam in Wasser α -Åthyl-buttersäure-amid (N.). Bei Einw. der berechneten Menge Brom in Schwefelkohlenstoff bei 0° entsteht die höherschmelzende Form des α . β -Dibrom- α -äthyl-buttersäure-amids (N.). Liefert bei 3-stdg. Erhitzen mit 20 %iger Natronlauge das Amid der festen α -Åthyl-crotonsäure und flüssige α -Åthyl-crotonsäure; bei 5-stdg. Erhitzen mit 40 %iger Natronlauge erhält man außerdem etwas feste α -Åthyl-crotonsäure (N.). Geht beim Erhitzen mit über (N.).

Nitril $C_8H_9N = CH_3 \cdot CH : C(C_2H_5) \cdot CN$ (vgl. H 441). B. Neben geringen Mengen des Nitrils der festen α -Athyl-crotonsäure beim Erwärmen von Diäthylketon-cyanhydrin mit Thionylchlorid auf dem Wasserbad (Macq. Bl. Acad. Belgique [5] 12, 766; C. 1927 I, 880; BRUYLANTS, ERNOULD, Bl. Acad. Belgique [5] 17 [1931], 1028; C. 1932 I, 803). — Kp₇₅₅: 139,4—139,6° (M.); Kp₇₅₈: 139—140°; Kp₇₀: 69—70° (B., E.). D₁°°: 0,8232 (M.), 0,8231 (B., E.). n_{∞}^{∞} : 1,4246; n_{∞}^{∞} : 1,4279; n_{∞}^{∞} : 1,4351 (M.); n_{∞}^{∞} : 1,4265; n_{∞}^{∞} : 1,4298; n_{∞}^{∞} : 1,4372; n_{∞}^{∞} : 1,4434 (B., E.). — Wird durch Natriumphenolat, Bromwasserstoff oder Amine nicht umgelagert (M.). Gibt beim Erwärmen mit konz. Schwefelsäure ein Gemisch der Amide der festen und flüssigen α -Athyl-crotonsäure, beim Kochen mit ca. 50% iger Schwefelsäure feste und flüssige α -Athyl-crotonsäure; bei sorgfältigem Ausschluß von Halogenwasserstoffsäuren entsteht nur die feste α -Athyl-crotonsäure (M.).

- 15. 2.3 Dimethyl buten (1) saure (4), 3 Methyl buten (3) carbon-saure (2) $C_0H_{10}O_2 = CH_3 \cdot C(CH_3) \cdot CH(CH_3) \cdot CO_3H$. B: Beim Erhitzen von 3-Methylbuten (3)-dicarbonsaure (2.2) (Kon, Speight, Soc. 1926, 2730). Bewegliches Öl. Kps: 108°. Liefert beim Kochen mit 64 % iger Kalilauge 3-Methyl-buten (2)-carbonsaure (2).
- 16. 2.3 Dimethyl-buten (2) sāure (1). 3 Methyl-buten (2) carbon-sāure (2). Trimethylacrylsāure $C_aH_{10}O_2 = (CH_a)_2C:C(CH_a)\cdot CO_2H$ (H 443; E I 193). B. Beim Kochen von 3-Methyl-buten-(3)-carbonsāure-(2) mit 64% iger Kalilauge (Kon, Speight, Soc. 1926, 2731). Man behandelt $\alpha.\beta.\beta$ -Trimethyl-glutarsāure mit Thionylchlorid, bromiert das entstandene Säurechlorid, trägt das Reaktionsprodukt in Alkohol ein und kocht den erhaltenen (nicht rein isolierten) $\alpha.\alpha'$ -Dibrom- $\alpha.\beta.\beta$ -trimethyl-glutarsāure-diāthylester mit Kalilauge (Pandya, Thorpe, Soc. 123, 2864). Durch Einw. von siedender Kalilauge auf das Lacton der α' (oder α)-Brom- α (oder α')-oxy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α' (α')-oxy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α')-oxy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α' 0 (α' 0 (α' 0)-0xy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α' 1 (α' 1)-0xy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α' 2 (α' 3)-0xy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α' 3 (α' 4)-0xy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α' 4 (α' 4)-0xy- $\alpha.\beta.\beta$ -trimethyl-glutarsāure von α' 5 (α' 4)-0xy- α' 5 (α' 5)-0xy- α' 6 (α' 4)-0xy- α' 5 (α' 4)-0xy- α' 5 (α' 5)-0xy- α' 6 (α' 5)-0xy- α' 6 (α' 6)-0xy- α' 7 (α' 7)-0xy- α' 8 (α' 7)-0xy- α' 8 (α' 8)-0xy- α' 9 (α' 8)-0xy-\alpha-\

Schmelzpunkt 155° (CH₂)₂C C(CH₃)(CO₂H)—O oder (CH₃)₂C CBr(CH₃)—CO (Syst. Nr. 2619) (P., Th.). Man erhitzt β-Oxy-α.β-dimethyl-buttersaure-athylester mit Phosphorpentachlorid auf dem Wasserbad, zersetzt das Reaktionsprodukt mit Eiswasser, extrahiert mit Ather, dampft ein und kocht den Rückstand mit überschüssiger alkoholischer Kalilauge (Bardhan, Soc. 1928, 2614). — Platten (aus Methanol). F: 70—71° (B.), 70,5—71° (P., Th.). Kp₃₇: 114—115° (B.). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Salzsäure bei 25°: Вніде, Sudborough, J. indian Inst. Sci. [A] 8, 96; C. 1928 I, 80.

Äthylester $C_0H_{14}O_2=(CH_3)_2C:C(CH_3)\cdot CO_2\cdot C_2H_5$ (H 443; E I 193). Zur Bildung aus Isopropylidenacetessigsäureäthylester nach Merling, Welde (A. 366 [1909], 140) vgl. Jupp, Kon, Lockton, Soc. 1928, 1642. — $D_4^{i,0}$: 0,9781 (J., K., L.); D_4^{ii} : 0,9244 (v. Auwers, A. 432, 78). n_3^{ii} : 1,4428; n_{He}^{ii} : 1,4458; n_3^{ii} : 1,4535; n_3^{ii} : 1,4605 (v. Au.); n_5^{ii} : 1,4580 (J., K., L.).

Chlorid C₀H₀OCl = (CH₂)₂C:C(CH₂)·COCl. B. Beim Erwärmen von Trimethylacrylsäure mit Phosphortrichlorid auf dem Wasserbad (Perkin, Soc. 69 [1896], 1480). — Kp: 145—150° (P.); Kp₇₆₆: 144—145° (Bardhan, Soc. 1928, 2614). [Ammerlahn]

5. Carbonsauren C7H12O2.

1. Hepten-(1)-squre-(7), Δ^c -Heptensqure, Δ^s -Heptensqure, Hexen-(5)-carbonsqure-(1) $C_7H_{12}O_2$ = $CH_2:CH\cdot[CH_2]_4\cdot CO_2H$ (H 443). B. Aus dem Athylester durch Verseifung mit alkoh. Kalilauge (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 75; C. 1926 Π , 188). — Kp: 224—226°.

Äthylester $C_bH_{16}O_2 = CH_2: CH \cdot [CH_2]_4 \cdot CO_2 \cdot C_2H_3$. B. In kleiner Menge bei der Elektrolyse des Natriumsalzes des Korksäuremonoäthylesters in verd. Alkohol bei 50—70° (FAIRWEATHER, Pr. roy. Soc. Edinburgh 48, 75; C. 1926 II, 188). — Kp: 190°.

- 2. Hepten-(2)-sdure-(7), \triangle^b -Heptensdure, \triangle^b -Heptensdure, Hexen-(4)-carbonsdure-(1) $C_7H_{11}O_1=CH_1\cdot CH\cdot [CH_1]_1\cdot CO_2H$ (H 443; E I 194). V. Im Holzgeist-Öl (Pringsheim, Schreiber, Cellulosech. 8, 49, 59; C. 1927 II, 1224). AgC, $H_{11}O_2$.
- 3. 2-Methyl-hexen-(2)-saure-(1), α -Methyl- Δ^{α} -hexensaure, Hexen-(2)-carbonsaure-(2), α -Methyl- β -propyl-acryledure $C_7H_{12}O_2=CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CO_3H$.
- 4.5-Dibrom-2-methyl-hexen-(2)-säure-(1), 4.5-Dibrom-hexen-(2)-carbonsäure-(2) C₇H₁₀O₂Br₂ = CH₂·CHBr·CHBr·CH: C(CH₂)·CO₂H. B. Aus α-Methyl-sorbinsäure in Schwefelkohlenstoff bei der Behandlung mit Brom im Sonnenlicht (v. Auwers, Heyra, A. 434, 158). Nadeln (aus Benxin). F: 114—115°. Schwer löslich in Wasser und Petroläther, sonst leicht löslich. Bei der Behandlung mit Ozon in Chloroform entsteht ein gelbes, öliges Ozonid, das bei der Zersetzung mit Wasser α-Brom-crotonaldehyd liefert.
- 4. 2-Methyl-hexen-(2)-saure-(6), δ-Methyl-Δ^γ-hexensaure, 4-Methyl-penten-(3)-carbonsaure-(1), ω.ω-Dimethyl-allylessigsaure, Δ^γ-Isohepten-saure C,H₁₂O₂=(CH₂)₂C:CH·CH₂·CO₂H (H 444). B. Zur Bildung aus ω.ω-Dimethyl-allylmalonsaure vgl. Staudinger, Kreis, Schilt, Helv. 5, 751. Kp₁₀: 103—105°. Das Natriumsalz liefert bei Behandlung mit Permanganat in Wasser in Gegenwart von Magnesiumsulfat Aceton, Bernsteinsaure und 2-Methyl-hexanol-(2)-on-(3)-saure-(6).

Chlorid $C_rH_{11}OCl = (CH_s)_sC:CH \cdot CH_s \cdot COCl.$ B. Aus der Saure und Thionylchlorid (Staudinger, Mitarb., Helv. 7, 404). — Kp₈: ca. 95°.

5. 2-Methyl-hexen-(3)-säure-(1), α-Methyl-1^β-hexendure, Hexen-(3)-carbonedure-(2) C₁H₁₂O₂=CH₂·CH₂·CH:CH·CH(CH₂)·CO₂H. Zur Einheitlichkeit vgl. Burron, Ingold, Soc. 1929, 2027. — B. Aus α-Methyl-sorbinsture bei der Reduktion mit

Natriumamalgam in durch Zusatz von Schwefelsäure schwach sauer gehaltener Lösung (v. Auwers, Heyna, A. 484, 158). — Flüssigkeit. Erstarrt nicht bei —10°; Kp₁₅: 113,5° (v. Au., H.). $D_{\bullet}^{a,a}$: 0,9477; $n_{\bullet}^{a,a}$: 1,4398; $n_{\bullet}^{b,a}$: 1,4425; $n_{\bullet}^{b,a}$: 1,4495; $n_{\bullet}^{a,a}$: 1,4551 (v. Au., H.). — Die Alkalisalze und Erdalkalisalze sind leicht löslich in Wasser; das Silbersalz ist schwer löslich in Wasser; das Cadmiumsalz löst sich schwerer in heißem als in kaltem Wasser (v. Au., H.).

6. 2-Methyl-hexen-(3)-säure-(6), δ -Methyl- Δ^{β} -hexensäure, 4-Methyl-penten-(2)-carbonsäure-(1), β -Isobutyliden-propionsäure, Δ^{β} -Isohepten-säure $C_7H_{19}O_2=(CH_2)_2CH\cdot CH: CH: CH_2\cdot CO_2H$ (H 445). B. Neben 2-Methyl-hexen-(4)-säure-(6) beim Verseifen von 2-Methyl-hexen-(3)-säure-(6)-nitril mit siedender 10% iger Kalilauge (v. Auwers, B. 56, 1185). Zur Bildung aus Isovaleraldehyd und Malonsäure vgl. v. Au., A. 432, 50, 79.

Nitril $C_7H_{11}N = (CH_2)_2CH \cdot CH \cdot CH_2 \cdot CN$ (H 445). B. Zur Bildung aus 4-Methyl-1-cyan-penten-(1)-carbonsäure-(1) vgl. v. Auwers, B. 56, 1184. — Die folgenden Angaben beziehen sich auf ein Präparat, welches vermutlich eine geringe Menge 2-Methyl-hexen-(4)-säure-(6)-nitril enthielt (v. Au.). Kp₁₁: 57—58°. $D_7^{m,3}$: 0,8241. $n_7^{m,3}$: 1,4269; $n_7^{m,3}$: 1,4293; $n_7^{m,3}$: 1,4361; $n_7^{m,3}$: 1,4417. — Liefert bei der Oxydation mit Ozon in Essigester Isobutyraldehyd. Bei der Verseifung mit siedender 10% iger Kalilauge entstehen 2-Methyl-hexen-(3)-säure-(6) und 2-Methyl-hexen-(4)-säure-(6).

7. 2-Methyl-hexen-(4)-säure-(6), δ-Methyl-Δα-hexensäure, 4-Methyl-penten-(1)-carbonsäure-(1), Isoamylidenssigsäure, Δα-Isoheptensäure C,H₁₂O₃ = (CH₃)₂CH·CH₂·CH:CH·CO₃H (H 445). B. Neben 2-Methyl-hexen-(3)-säure-(6) beim Verseifen von 2-Methyl-hexen-(3)-säure-(6)-nitril mit siedender 10 % iger Kalilauge (v. Auwers, B. 56, 1185). Zur Bildung aus Isovaleraldehyd und Malonsäure vgl. v. Au., A. 432, 50, 79. — Kp: 226—227°; Kp₁₅: 123—124°. D₄°: 0,9444. n_α°: 1,4509; n_{He}°: 1,4544; n_β°: 1,4629; n_γ°: 1,4704. Dichten und Brechungsindices eines anderen Präparates bei 14,5°: v. Au.

Äthylester $C_9H_{16}O_2=(CH_3)_2CH\cdot CH_2\cdot CH\cdot CO_2\cdot C_2H_5$. B. Aus der Säure durch Behandlung mit Alkohol und Schwefelsäure (v. Auwers, A. 432, 80). — Kp: 190°. $D_4^{i,5}$: 0,8930. $n_4^{i,5}$: 1,4354; $n_{16}^{i,6}$: 1,4385; $n_{15}^{i,5}$: 1,4458; $n_{15}^{i,5}$: 1,4523.

Chlorid $C_7H_{11}OCl = (CH_2)_2CH \cdot CH_2 \cdot CH : CH \cdot COCl. B.$ Aus der Säure durch Behandlung mit Phosphortrichlorid (v. Auwers, A. 432, 80). — Flüssigkeit. Kp₁₂: 64°. $D_4^{\eta,1}$: 0,9940. $n_3^{\eta,1}$: 1,4589; $n_{10}^{\eta,1}$: 1,4626; $n_{10}^{\eta,1}$: 1,4720; $n_3^{\eta,1}$: 1,4801.

Amid $C_7H_{18}ON = (CH_3)_2CH \cdot CH_2 \cdot CH : CH \cdot CO \cdot NH_2$. B. Aus dem Chlorid und Ammoniak in Äther (v. Auwers, A. 432, 81). — Schuppen (aus Benzol). F: 127—128°. — Liefert mit der äquimolekularen Menge Brom in Eisessig im Sonnenlicht $\alpha.\beta$ -Dibrom-isoamylessigsäureamid.

Nitril $C_7H_{11}N = (CH_2)_2CH \cdot CH_2 \cdot CH \cdot CN$. B. Aus dem Amid durch Behandlung mit Phosphorpentoxyd (v. Auwers, A. 432, 81). — Nach Mandeln riechende Flüssigkeit. $K_{D_{12}}$: 65°. D_4^{u} : 0,8286. n_3^{u} : 1,4402; n_{He}^{u} : 1,4435; n_{B}^{u} : 1,4513; n_{Y}^{u} : 1,4581.

- 8. 3-Methyl-hexen-(3)-säure-(1). β -Methyl- Δ^{β} -hexensäure, 2-Methyl-penten-(2)-carbonsäure-(1) $C_7H_{12}O_2 = CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CO_2H$. B. Im ungetrennten Gemisch mit 2-Methyl-penten-(3)-carbonsäure-(1) durch Reduktion von β -Methylsorbinsäure mit Natriumamalgam in Natriumdicarbonat-Lösung bei 40—45°, neben anderen Produkten (Bueton, Ingold, Soc. 1929, 2036).
- 9. 3-Methyl-hexen-(3)-säure-(6), γ-Methyl-Δβ-hexensäure, 3-Methyl-penten-(2)-carbonsdure-(1) C₂H₁₂O₃ = CH₃·CH₂·C(CH₃):CH·CH₂·CO₂H. Zur Einheitlichkeit vgl. Burton, Ingold, Soc. 1929, 2027. B. Aus γ-Methyl-sorbinsäure bei der Reduktion mit Natriumamalgam in durch Zusatz von Schwefelsäure schwach sauer gehaltener Lösung (v. Auwers, Heyna, A. 434, 163). Leicht bewegliches Ol. Kp₁₀: 111° (v. Au., Priv.-Mitt.). D₄^{4,2}: 0,9706 (v. Au., H.). n₄^{4,3}: 1,4503; n₅^{4,2}: 1,4529; n₅^{4,2}: 1,4600; n₇^{4,2}: 1,4660 (v. Au., H.). Liefert bei der Oxydation mit Permanganat in Soda-Lösung Methyläthylketon und Säuren, hauptsächlich Essigsäure (v. Au., H.).
- 10. 3-Methyl-hexen-(4)-sdure-(1), β -Methyl- Δ^{γ} -hexensäure, 2-Methyl-penten-(3)-carbonsdure-(1) $C_{7}H_{19}O_{2}=CH_{2}\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH_{2}\cdot CO_{2}H\cdot (H\cdot 447)$.

 B. Im ungetrennten Gemisch mit 2-Methyl-penten-(2)-carbonsäure-(1) durch Reduktion von β -Methyl-sorbinsäure mit 3 % igem Natriumamalgam in Natriumdicarbonat-Lösung unter Durchleiten von Kohlendioxyd bei 40—45° (Burton, Ingold, Soc. 1929, 2037). Aus dem

Diathylester der 4-Oxo-2-methyl-pentan-dicarbonsaure-(1.3) bei Behandlung mit Natriumamalgam in verd. Alkohol und folgendem Erhitzen des Reaktionsprodukts auf 240-320° (B., I., Soc. 1929, 2030). — Ol. Kp.: 103—105°. — Liefert bei Einw. von Ozon in Chloroform bei 0°, Zersetzung des entstandenen Ozonids durch siedendes Wasser und anschließender Behandlung mit Wasserstoffperoxyd Methylbernsteinsäure (B., I., Soc. 1929, 2033).

11. 3-Åthyl-penten-(2)-säure-(1), β-Åthyl-Δα-pentensäure, 2-Åthyl-buten-(1)-carbonsäure-(1), β-β-Diäthyl-acrylsäure C₇H₁₉O₃ = (C₂H₅)₂C:CH·CO₂H. Die H 447 beschriebene Verbindung ist als 3-Åthyl-penten-(2)-säure-(5) (s. u.) erkannt (Kon, Linstead, Soc. 127, 617). — B. In geringer Menge aus 3-Åthyl-penten-(2)-säure-(5) beim Kochen mit Kalilauge (L., Soc. 1927, 359). Aus β-β-Diäthyl-hydracrylsäure durch Behandlung mit Acetanhydrid (Kon, L., Soc. 127, 620). — Schwach stechend riechende Flüssigkeit. Kp₂₃: 129° (Kon, L.); Kp₁₄: 117—119° (Farrow, Kon, Soc. 1926, 2137). D₁₀^{0,0}: 0,9693; n₂^{0,0}: 1,4654 (F., Kon). — Liefert bei der Oxydation mit alkal. Permanganat-Lösung Diäthylketon und Oxalsäure (Kon, L.). Geschwindigkeit der Addition von Brom in Chloroform bei 25°: L., Soc. 1927, 357. Bei Behandlung mit Schwefelsäure von SO Vol. % entsteht av Methyl-β-äthyl, butyrolagton (Kon, L.). Liefert beim Kochen mit 50 Vol.-% entsteht γ-Methyl-β-äthyl-butyrolacton (Kon, L.). Liefert beim Kochen mit 60% iger Kalilauge in reversibler Reaktion 3-Athyl-penten-(2)-saure-(5); das sich hierbei einstellende Gleichgewicht liegt bei cs. 5% 3-Athyl-penten-(2)-saure-(1) (Kon, L.; L.); Geschwindigkeit der Einstellung des Gleichgewichts: L.

Als 3-Athyl-penten-(2)-saure-(1) wird eine von Dutt (Quart. J. indian chem. Soc. 1, 301; C. 1925 II, 1852) aus Diathylketon durch Einw. von Malonsaure in Pyridin in Gegenwart von wenig Piperidin und folgendes Erhitzen der Reaktionsmischung erhaltene Verbindung beschrieben. Die Möglichkeit einer Umlagerung zu 3-Äthyl-penten-(2)-saure-(5) ist aber nicht ausgeschlossen.

Äthylester $C_9H_{16}O_3=(C_9H_8)_2C:CH\cdot CO_3\cdot C_2H_5$ (H 447). Zur Konstitution vgl. Kon, Linstead, Soc. 127, 618. — B. Aus dem Säurechlorid (Kon, L., Soc. 127, 622). — $Kp_{755}:$ 187—188°; Kp_{23} : 87—88°. $D_{1}^{16.6}$: 0,9096. $n_{D}^{16.6}$: 1,4454. — Liefert bei der Spaltung mit Ozon Diathylketon und Oxalsaure.

Chlorid $C_7H_{11}OCl = (C_2H_5)_2C:CH\cdot COCl.$ $Kp_{25}:85^\circ$ (Kon, Linstead, Soc. 127, 622). Amid $C_7H_{18}ON = (C_8H_8)_9C: CH\cdot CO\cdot NH_9$. Nadeln (aus Ather + Petroläther oder Benzol + Petroläther). F: 89° (Kon, Linstead, Soc. 127, 622).

12. $3-\text{Å}thyl-penten-(2)-s\"{a}ure-(5)$, $\beta-\text{Å}thyl-\Delta^{\beta}-pentens\"{a}ure$, $2-\text{Å}thyl-buten-(2)-carbons\"{a}ure-(1)$ $C_7H_{12}O_3=CH_3\cdot CH:C(C_3H_3)\cdot CH_2\cdot CO_3H$. Als solche ist die H 447 als 3-Åthyl-penten-(2)-s\"{a}ure-(1) beschriebene Verbindung erkannt (Kon, Linstead, Soc. 127, 618). — B. Aus dem Äthylester durch Verseifung mit alkoh. Kalilauge (Kon, L.. Soc. 127, 620). Beim Kochen von 3-Äthyl-penten-(2)-säure-(1) mit Kalilauge (Kon, L.). Zur Bildung durch Behandlung von $\beta.\beta$ - Disthyl-hydracrylsäure mit verd. Schwefelsäure vgl. Farrow, Kon, Soc. 1926, 2138. — Ziemlich leicht bewegliche Flüssigkeit von schwechem, unangenehmem Geruch. Erstarrt nicht bei -20° (Kon, L.). Kp₇₆₅: 217°; Kp₂₄: 133 -134° (Kon, L.); Kp₁₈: 113 -13° (Fa., Kon); Kp₁₉: 112° (L., Soc. 1927, 357). D²⁶: 0,9660; n²⁶: 1,4511 (Fa., Kon). — Geschwindigkeit der Addition von Brom in Chloroform bei 25°: L. Liefert beim Kochen mit 60% iger Kalilauge in reversibler Reaktion 3-Athyl-penten-(2)-saure-(1); das sich hierbei einstellende Gleichgewicht liegt bei ca. 95% 3-Athyl-penten-(2)-saure-(5) (L.); Geschwindigkeit der Einstellung des Gleichgewichts: L.

Eine als 3-Athyl-penten-(2)-saure-(1) beschriebene Verbindung, in der vielleicht 3-Athyl-penten-(2)-saure-(5) vorgelegen hat, s. o.

Äthylester $C_9H_{16}O_2=CH_2\cdot CH:C(C_2H_5)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Aus dem Säurechlorid (Kon, Linstead, Soc. 127, 620). Beim Erhitzen des Athylesters der $\beta.\beta$ -Diäthyl-hydracrylsäure mit Kaliumdisulfat auf 160—180° (Kon, L.). — Kp₇₅₅: 183°; Kp₃₄: ca. 95°. Di^{7,5}: 0,9134. ni^{3,5}: 1,4367. — Liefert bei der Spaltung mit Ozon Acetaldehyd in fast theoretischer Ausbeute.

Chlorid $C_7H_{11}OCl = CH_8 \cdot CH : C(C_9H_5) \cdot CH_9 \cdot COCl$. B. Aus der Säure und Thionylchlorid (Kon, Linstead, Soc. 127, 621). — Bewegliche Flüssigkeit. $Kp_{14}: 60-61^{\circ}$.

Amid $C_7H_{13}ON = CH_3 \cdot CH : C(C_2H_5) \cdot CH_2 \cdot CO \cdot NH_2$. Tafeln (aus Aceton und Petroläther), Nadeln (aus Benzol und Petroläther). F: 113—114° (Kon, Linstead, Soc. 127, 621).

13. 2.3-Dimethyl-penten-(2)-säure-(1), $\alpha.\beta$ -Dimethyl- Δ^{α} -pentensäure, 3-Methyl-penten-(2)-carbonsäure-(2), $\alpha.\beta$ -Dimethyl- β -āthyl-acryleāure $C_7H_{18}O_2=CH_2\cdot CH_2\cdot C(CH_3)\cdot C(CH_3)\cdot CO_2H$. B. In geringer Menge beim Kochen von 3-Oxy-3-methyl-pentan-carbonsäure-(2) mit Acetanhydrid (Abbott, Kon, Satchell, Soc. 1928, 2519). — Kp_{18} : 116°. $D_1^{p,1}$: 0,9750. $n_2^{p,1}$: 1,4596.

Chlorid $C_7H_{11}OCl = CH_3 \cdot CH_2 \cdot C(CH_3) : C(CH_3) \cdot COCl.$ $Kp_{17} : 66^{\circ}$ (Abbott, Kon, Satchell, Soc. 1928, 2519).

- 14. 2-Methyl-penten-(2)-carbonsäure-(3), $\beta.\beta$ -Dimethyl-a-äthyl-acryl-säure $C_7H_{12}O_2=(CH_3)_2C:C(C_2H_5)\cdot CO_2H$. B. Beim Kochen der beiden Formen der $\alpha.\alpha'$ -Dibrom- $\beta.\beta$ -dimethyl- α -äthyl-glutarsäure mit wäßr. oder methylalkoholischer Kalilauge (Kon, Smith, Thorpe, Soc. 127, 572). In gleicher Weise aus α -Brom- $\beta.\beta$ -dimethyl- γ -äthylbutyrolacton- γ -carbonsäure (Syst. Nr. 2619) (K., Sm., Th.). Prismen (aus Wasser). F: 49,5°.
- 15. 2.3-Dimethyl-penten-(3)-säure-(1), $\alpha.\beta$ -Dimethyl- Δ^{β} -pentensäure, 3-Methyl-penten-(3)-carbonsäure-(2) $C_7H_{12}O_3 = CH_3 \cdot CH : C(CH_3) \cdot CH(CH_3) \cdot CO_2H$. B. Aus ihrem Athylester durch Einw. von alkoh. Natronlauge bei Zimmertemperatur (Abbott, Kon, Satchell, Soc. 1928, 2519). Kp_{20} : 116°. $D_1^{i,i,z}$: 0,9700. $n_2^{i,i,z}$: 1,4498.

Äthylester $C_9H_{18}O_3=CH_3\cdot CH:C(CH_3)\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Phosphoroxychlorid auf β -Oxy- α - β -dimethyl-n-valeriansäure-äthylester in Benzol (Abbott, Kon, Satchell, Soc. 1928, 2519). — Kp_{13} : 69°. $D_4^{\text{t.i.}}$: 0,9238. $n_7^{\text{t.i.}}$: 1,4363.

Chlorid $C_7H_{17}OCl = CH_3 \cdot CH : C(CH_3) \cdot CH(CH_3) \cdot COCl$. $Kp_{13}: 52^0$ (Abbott, Kon, Satchell, Soc. 1928, 2519).

6. Carbonsäuren $C_8H_{14}O_2$.

1. Octen - (1) - säure - (8). Δ²- Octensäure, Hepten - (6) - carbonsäure - (1) C₈H₁₄O₂ = CH₂: CH·[CH₂]₅·CO₂H. B. Durch Verseifung des Äthylesters (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 74; C. 1926 II, 188). — Kp₁₅: 123—125°. — Liefert bei Einw. von Brom in Chloroform, Kochen des Reaktionsprodukts mit wäßr. Natronlauge und nachfolgender Behandlung mit Permanganat bei 0° Pimelinsäure und wenig Adipinsäure (F.). Bei der Elektrolyse eines Gemisches der Natriumsalze von Hepten-(6)-carbonsäure-(1) und Tetradecan-dicarbonsäure-(1.14)-monomethylester entstehen Heneikosen-(20)-carbonsäure-(1)-methylester, Oktakosan-dicarbonsäure-(1.28)-dimethylester und andere Produkte (Ruzicka, Stoll, Schinz, Helv. 11, 681).

Äthylester $C_{10}H_{18}O_2=CH_2:CH\cdot[CH_2]_5\cdot CO_2\cdot C_2H_5$. B. Neben anderen Produkten bei der Elektrolyse des Natriumsalzes des Azelainsäure-monoäthylesters in wäßr. Alkohol bei ca. 50° (Fairweather, $Pr.\ roy.\ Soc.\ Edinburgh\ 46,\ 74;\ C.\ 1926\ II,\ 188)$ oder des Kaliumsalzes in Wasser bei 15° (Carmichael, $Soc.\ 121,\ 2549$). — Kp: 210— 212° (Ca.).

- 2. Octen=(2) säure-(1), Δ^2 Octensäure, Δ^{α} Octensäure, Hepten-(1) carbonsäure-(1), β -n-Amyl-acrylsäure $C_8H_{14}O_2=CH_3\cdot[CH_2]_4\cdot CH\cdot CO_2H$.
- a) cis (?)-\$\Delta^{\alpha}\$- Octensäure. B. Bei der Reduktion von Heptin-(1)-carbonsäure-(1) mit Wasserstoff in Gegenwart von kolloidem Palladium in Essigester (BOURGUEL, C. r. 188, 1494; Bl. [4] 45, 1077). Kp₁₅: 127°. D¹⁰: 0,944; D¹⁵: 0,940. n⁰₃: 1,459; n¹⁵: 1,456. Geht beim Erhitzen mit wenig Jod auf 100° in die trans(?)-Verbindung über.
- b) $trans(?)-\Delta^{\alpha}$ Octensäure. B. Beim Erhitzen der cis(?)-Verbindung mit wenig Jod auf 100° (BOURGUEL, C. r. 188, 1494; Bl. [4] 45, 1078). F: 5—6°. Kp₁₅: 143°. D¹⁷: 0,944. n¹⁷: 1,461.
 - c) Substitutionsprodukte der Octen-(2)-säure-(1).
- 2.3-Dibrom-octen-(2)-säure-(1), $\alpha.\beta$ -Dibrom- β -n-amyl-acrylsäure $C_8H_{12}O_2Br_2=CH_3\cdot[CH_2]_4\cdot CBr\colon CBr\cdot CO_2H$. Ist vielleicht ein Gemisch aus cis- und trans-Verbindung (Moureu, Schindler, Bl. [4] 35, 171). B. Bei der Einw. von 2 Atomen Brom in Chloroform auf Heptin-(1)-carbonsäure-(1) unter Kühlung (M., Sch.). Flüssigkeit. Erstarrt bei -80° zu einer harten durchscheinenden Masse. $Kp_3\colon 144^\circ$. $D_1^{is}\colon 1,6444$. $D_1^{is}\colon 1,5320$. Färbt sich am Licht. $KC_8H_{11}O_2Br_2$. Krystalle (aus Aceton). Leicht löslich in Wasser und Alkohol, löslich in warmem Aceton, schwer löslich in kaltem Aceton und Chloroform, unlöslich in Äther.—AgC₃ $H_{11}O_3Br_2$. Nadeln (aus Wasser). Löslich in warmem Wasser, Alkohol und Aceton, unlöslich in Ather und Chloroform. Beständig bei Ausschluß von Licht. Zersetzt sich bei 100° . $Pb(C_8H_{11}O_3Br_3)_2$. Nadeln (aus Alkohol oder Aceton). Sehr leicht löslich in Äther, leicht in siedendem Alkohol, löslich in warmem Aceton, sehr schwer in kaltem Aceton und Alkohol, unlöslich in Wasser. Zersetzlich. $Pb(C_8H_{11}O_3Br_3)_2$ + PbO. Nadeln. Schwer löslich in Chloroform und Benzol, unlöslich in Wasser, Alkohol und Äther. Sehr zersetzlich.
- 2.3-Dijod-octen-(2)-säure-(1), $\alpha.\beta$ -Dijod- β -n-amyl-acrylsäure $C_0H_{12}O_2I_3=CH_3$ · $[CH_2]_4$ · CI: CI: CI: CO_2H . Ist vielleicht eine der raumisomeren Formen (MOUREU, SCHINDLER, Bl. [4] 35, 171). B. Aus Heptin-(1)-carbonsäure-(1) durch Behandlung mit Jod unter kurzem Erwärmen im Wasserbad oder bei längerer Einw. des Tageslichts bei gewöhnlicher

MONOCARBONSÄUREN Cn H2n-2O2

Temperatur (M., Sch.). — Nadeln (aus Ligroin). F: 47,5—49,5°. Sehr leicht löslich in Alkohol, Äther, Benzol, Chloroform und Äthylbromid, leicht in Ligroin und Schwefelkohlenstoff, ziemlich schwer in Ligroin bei —18°, unlöslich in Wasser. Zersetzt sich schnell bei 100°, besonders in Gegenwart eines Lösungsmittels. — $KC_8H_{11}O_2I_2$. Krystalle (aus Alkohol + Aceton). Leicht löslich in Wasser, Alkohol, Isoamylalkohol und warmem Aceton, schwer in kaltem Aceton, unlöslich in Äther. Zersetzlich. — $Pb(C_8H_{11}O_2I_2)_2$. Nadeln. Löslich in Äther und heißem Alkohol. Zersetzlich.

- 3. α -Åthyl- Δ^{α} -hexensäure, Hepten-(3)-carbonsäure-(3), α -Åthyl- β -propylaryledure $C_{s}H_{1s}O_{1}=CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot C(C_{s}H_{s})\cdot CO_{2}H$.
- $\gamma.\delta$ -Dibrom - α -äthyl- A^{α} -hexensäure, 5.6-Dibrom -hepten-(3) -carbonsäure-(3) $C_{6}H_{18}O_{3}Br_{3}=CH_{3}\cdot CHBr\cdot CHBr\cdot CH:C(C_{4}H_{5})\cdot CO_{3}H$. B. Aus α -Athyl-sorbinsäure und Brom in Schwefelkohlenstoff (v. Auwers, Heyna, A. 434, 161). Nadeln (aus Benzin). F: 130,5° bis 131,5°. Bei der Einw. von Ozon und Spaltung des erhaltenen Ozonids bildet sich α -Brom-crotonaldehyd.
- 4. α -Åthyl- Δ^{β} -hexensäure, Hepten-(4)-carbonsäure-(3) $C_8H_{14}O_2$ = $CH_2 \cdot CH_2 \cdot CH: CH \cdot CH(C_2H_5) \cdot CO_2H$. Zur Einheitlichkeit vgl. Burton, Ingold, Soc. 1929, 2027. B. Aus α -Åthyl-sorbinsäure bei der Reduktion mit Natriumamalgam in durch Zusatz von Schwefelsäure schwach sauer gehaltener Lösung (v. Auwers, Heyna, A. 434, 160). Ol. Kp₁₂: 118—119° (v. Au., H.). Dist: 0,9313; $n_{\alpha}^{i.5}:$ 1,4412; $n_{\alpha}^{i.5}:$ 1,4436; $n_{\beta}^{i.5}:$ 1,4506; $n_{\gamma}^{i.5}:$ 1,4562 (v. Au., H.). Liefert bei der Behandlung mit Ozon in Chloroform und Zersetzung des entstandenen Ozonis mit Wasser Propionaldehyd, Butyraldehyd, Propionsäure und Buttersäure (v. Au., H.). Das Cadmiumsalz ist in heißem Wasser schwerer löslich als in kaltem (v. Au., H.).
- 5. α -Propyl- Δ^{α} -pentensäure. Hepten-(3)-carbonsäure-(4), β -Äthyl- α -propyl-acrylsäure $C_{1}H_{14}O_{2}=CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CH_{3}\cdot CH_{3}\cdot CO_{2}H$ (H 452).
- β -Äthyl- α -propyl-acrylsäure-amid $C_8H_{18}ON = CH_3 \cdot CH_2 \cdot CH_1 \cdot CH_2 \cdot CH_3 \cdot CH_3$
- a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form beim Erwärmen von niedrigersiedendem β -Äthyl- α -propyl-acrylsäure-nitril mit konz. Schwefelsäure auf dem Wasserbad (Macq, Bl. Acad. Belgique [5] 12, 759; C. 1927 I, 880). Nadeln (aus Schwefelkohlenstoff). F: 115,5°. Sehr schwer löslich in Alkohol, Äther und Chloroform; in Schwefelkohlenstoff schwerer löslich als die niedrigerschmelzende Form.
- b) Niedrigerschmelzende Form. B. s. bei der höherschmelzenden Form. Nadeln (aus Schwefelkohlenstoff). F: 89° (MACQ., Bl. Acad. Belgique [5] 12, 760). Sehr schwer löslich in Alkohol, Äther und Chloroform; in Schwefelkohlenstoff leichter löslich als die höherschmelzende Form.
 - β -Athyl- α -propyl-acrylsäure-nitril $C_8H_{18}N = CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3$
- a) Höhersiedende ("trans"-) Form. B. Neben überwiegenden Mengen der niedrigersiedenden Form bei Behandlung von Dipropylketon-cyanhydrin mit Thionylchlorid auf dem Wasserbad (Macq. Bl. Acad. Belgique [5] 12, 757; C. 1927 I, 880). Beim Erwärmen der niedrigersiedenden Form mit Natriumphenolat in Gegenwart von Phenol (Macq). Kp_{787} : 181—182°. D. 0,8217. n_0^{∞} : 1,4347; n_0^{∞} : 1,4377; n_0^{∞} : 1,4450. Geht bei der Destillation in die niedrigersiedende ("cis-") Form über.
- b) Niedrigersiedende ("cis-") Form. B. s. bei der höhersiedenden Form. Flüssigkeit von angenehmem Geruch. Kp_{758} : 175,8—1760 (Macq. Bl. Acad. Belgique [5] 12, 758). D_{α}^{m} : 0,8217. n_{α}^{m} : 1,4321; n_{β}^{m} : 1,4355; n_{β}^{m} : 1,4423. Löslich in organischen Lösungsmitteln, unlöslich in Wasser. Gibt beim Erwärmen mit konz. Schwefelsäure höherschmelzendes und niedrigerschmelzendes β -Athyl- α -propyl-acrylsäure-amid. Geht beim Erwärmen mit Natriumphenolat in Gegenwart von Phenol teilweise in die höhersiedende Form über.
- 6. a-Isopropyl- Δ^{γ} -pentensäure, 2-Methyl-hexen-(5)-carbonsäure-(3), Isopropylallylessigsäure $C_{t}H_{14}O_{1}=CH_{1}\cdot CH\cdot CH_{1}\cdot CH[CH_{0}]\cdot CO_{2}H$ (H 452).
- Isopropylallylessigsäureamid $C_0H_{15}ON=CH_2:CH\cdot CH_2\cdot CH(CH_0)_2:CO\cdot NH_3.$ F: 107° (J. D. Riedel, D. R. P. 461814; Frdl. 16, 2476; Bondbourn, C. 1827 II, 1079).
- 7. 2.4 Dimethyl hexen (2) säure (6), β.δ Dimethyl Δ' hexensäure, 2.4 Dimethyl-penten (3) carbonsäure (1) C₂H₁₄O₃ = (CH₂)₂C: CH·CH(CH₂)·CH₂·CO₂H (H 453). B. Durch Reduktion von β.δ-Dimethyl-sorbinsäure mit 3 % igem Natriumamalgam in Natriumdicarbonat-Lösung unter Durchleiten von Kohlendioxyd bei 40—45°, neben 2.4-Dimethyl-hexen (3)-säure (6) (Burton, Ingold, Soc. 1929, 2027, 2037). Liefert bei Einw. von Ozon in Chloroform bei 0°, Zersetzung des entstandenen Ozonids durch siedendes Wasser und anschließender Behandlung mit Wasserstoffpsroxyd Methylbernsteinsäure.

- 8. 2.4 Dimethyl hexen (3) säure (6), $\beta.\delta$ Dimethyl Δ^{β} hexensäure, 2.4 Dimethyl-penten (2) carbonsäure (1) $C_8H_{14}O_2 = (CH_2)_2CH \cdot CH \cdot C(CH_3) \cdot CH_2 \cdot CO_3H$ (H 453). B. Entsteht als Hauptprodukt neben 2.4 Dimethyl-penten (3) carbonsäure (1) bei der Reduktion von $\beta.\delta$ Dimethyl-sorbinsäure mit 3 % igem Natriumamalgam in Natrium-dicarbonat Lösung unter Durchleiten von Kohlendioxyd bei 40 45° (Burton, Ingold, Soc. 1929, 2027, 2037). Kp₁₂: 115°; D₁, 2009; D_{α} : 1,4452; D_{α} : 1,4480; D_{β} : 1,4551; D_{α} : 1,4611 (v. Auwers, Heyna, A. 434, 165).
- 9. 2.5 Dimethyl hexen-(2) säure-(6), a.5 Dimethyl Δ^{γ} hexensäure, 5-Methyl-hexen-(4)-carbonsäure-(2) $C_8H_{14}O_3=(CH_3)_8C:CH\cdot CH_2\cdot CH(CH_3)\cdot CO_2H$. B. Bei der Einwirkung von $\gamma.\gamma$ -Dimethyl-allylbromid auf Methylmalonsäurediäthylester in Natriumalkoholat-Lösung, Verseifung des entstandenen Methyl- $[\gamma.\gamma$ -dimethyl-allyl]-malonsäure-diäthylesters (Kp₁₃: 120—128°) und Abspaltung von Kohlendioxyd (Staudinger, Mitarb., Helv. 7, 404). Flüssigkeit. Kp₁₅: 125°. AgC₈H₁₅O₂.

Chlorid $C_0H_{19}OCl = (CH_2)_2C:CH\cdot CH_2\cdot CH(CH_2)\cdot COCl.$ B. Aus der Säure und Thionylchlorid in Petroläther (Staudinger, Mitarb., Helv. 7, 404). — Kp₁₂: 80—85°.

10. α -Methyl- α -āthyl- Δ '-pentensäure, 3-Methyl-hexen-(5)-carbon-säure-(3), Methyl-āthyl-allyl-essigsäure $C_8H_{14}O_2=CH_2:CH\cdot CH_2\cdot C(CH_3)(C_2H_5)\cdot CO.H$

Amid, Methyläthylallylacetamid $C_2H_{15}ON = CH_2: CH \cdot CH_2 \cdot C(CH_3)(C_2H_5) \cdot CO \cdot NH_2$. B. Beim Kochen des Nitrils mit alkoh. Kalilauge (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1481). — Krystalle (aus Ather). F: 51°.

Nitril, Methyläthylallylacetonitril $C_8H_{18}N=CH_2:CH\cdot CH_2\cdot C(CH_3)(C_2H_5)\cdot CN$. B. Beim Kochen von Methyläthylbromacetonitril mit Allylbromid und Kupferpulver in Toluol (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1481). — Ol. Kp₁₆: 50° bis 55°.

11. β -Methyl- α - α -dthyl- Δ^{β} -pentensäure, 4-Methyl-hexen-(4)-carbon-säure-(3) $C_8H_{14}O_3=CH_3\cdot CH:C(CH_3)\cdot CH(C_2H_5)\cdot CO_3H$. B. Durch Verseifung des Athylesters (Kon, Narayanan, Soc. 1927, 1545). — Durchdringend riechende Flüssigkeit. Kp₂₀: 122—1260. D_4^{m,4}: 0,9588. n_5^{m,4}: 1,4511. — Liefert bei der Behandlung mit Ozon in Chloroform und Zersetzung des Ozonids mit Wasser Acetaldehyd. — AgC₈H₁₃O₂.

Äthylester $C_{10}H_{18}O_3 = CH_3 \cdot CH \cdot C(CH_3) \cdot CH(C_3H_5) \cdot CO_2 \cdot C_3H_5$. Aus dem Äthylester der β -Oxy- β -methyl- α -äthyl-n-valeriansäure beim Erhitzen mit Kaliumdisulfat oder besser bei der Einw. von Phosphoroxychlorid (Kon, Nabayanan, Soc. 1927, 1544). — Kp₂₀: 84—88°. $D_4^{0.3}$: 0,9316. $n_2^{0.3}$: 1,4362.

Chlorid $C_3H_{18}OCl = CH_3 \cdot CH : C(CH_3) \cdot CH(C_3H_5) \cdot COCl$. B. Aus der Säure und Thionylchlorid (Kon, Narayanan, Soc. 1927, 1545). Neben anderen Produkten aus β -Oxy- β -methyl- α -äthyl-n-valeriansäure bei Einw. von Thionylchlorid (Kon, N., Soc. 1927, 1549). — Kp₁₈₋₂₀: 76—78°. — Liefert bei Behandlung mit Methylzinkjodid in Benzol 3-Methyl-4-äthyl-hexen-(2)-on-(5).

12. β -Methyl- α -dihyl- Δ^{α} -pentensdure, 4-Methyl-hexen-(3)-carbon-sdure-(3)^1) $C_3H_{14}O_2=CH_2\cdot CH_2\cdot C(C_3H_3)\cdot CO_3H$ (E I 194). B. In kleiner Menge beim Erhitzen von β -Oxy- β -methyl- α -sthyl-n-valerianssure mit Acetanhydrid (Kon, Narayanan, Soc. 1927, 1545). — Einheitlichkeit fraglich. Kp₁₅₋₁₈: 126—130°. $D_4^{\infty,4}$: 0,9593. $n_0^{\infty,4}$: 1,4519.

Chlorid $C_8H_{19}OCl = CH_2 \cdot CH_2 \cdot C(C_8H_5) \cdot C(C_8H_5) \cdot COCl.$ B. Aus der Säure und Thionylchlorid (Kon, Narayanan, Soc. 1927, 1545). Neben anderen Produkten aus β -Oxy- β -methyla-a-āthyl-n-valeriansāure bei Einw. von Thionylchlorid (Kon, N., Soc. 1927, 1549). — Kp₈₀: 86—90°. — Liefert bei Behandlung mit Methylzinkjödid in Benzol 3-Methyl-4-āthyl-hexen-(2)-on-(5).

13. 2.2.3-Trimethyl-penten-(3)-sdure-(1), a.a. β -Trimethyl- Λ^{β} -pentensdure, 2.3-Dimethyl-penten-(3)-carbonsdure-(2) $C_8H_{14}O_3=CH_3\cdot CH:C(CH_3)\cdot C(CH_3)_2\cdot CO_2H$. B. Aus dem Athylester durch Verseifung mit 10 % iger methylalkoholischer Kalilauge (Bardhan, Soc. 1928, 2616). — Kp₁₀: 113°. D₁^{n,3}: 0,9634. n₁^{n,4}: 1,4528. — Liefert bei Einw. von Brom in Schwefelkohlenstoff bei 0° und folgender Destillation des Reaktionsprodukts hauptsächlich das Lacton der 4-Oxy-2.3-dimethyl-penten-(3)-carbonsäure-(2) (Syst. Nr. 2460). — AgC₈H₁₃O₃.

Äthylester $C_{10}H_{18}O_2 = CH_2 \cdot CH : C(CH_2) \cdot C(CH_2)_2 \cdot CO_2 \cdot C_2H_5$. B. Man destilliert aus einer mit Phosphorpentoxyd versetzten Lösung von β -Oxy- α . α . β -trimethyl-n-valeriansäure-

¹⁾ Im Original irrefthrend als β -Methyl- $\alpha.\beta$ -diathyl- Δ^{α} -pentensaure (, β -methyl- $\alpha.\beta$ -diethyl- Δ^{α} -pentenoic acid") bezeichnet.

äthylester in Benzol die Hauptmenge des Lösungsmittels ab und destilliert den Rückstand unter vermindertem Druck (Bardhan, Soc. 1928, 2615). — Süß riechendes Öl. Kp45: 100° bis 102°. Dia: 0,9069. nis: 1,4388. — Liefert bei der Behandlung mit Ozon in Chloroform und Zersetzung des Ozonids Acetaldehyd.

- 14. 2.2.3-Trimethyl-penten-(3)-säure-(5), $\beta.\gamma.\gamma$ -Trimethyl- Λ^{α} -pentensäure, 2.3.3-Trimethyl-buten-(1)-carbonsäure-(1), β -Methyl- β -tert.-butyl-acrylsäure $C_8H_{14}O_3=(CH_3)_3C\cdot C(CH_3):CH\cdot CO_2H$. B. Aus β -Methyl- β -tert.-butyl-acrolein durch Oxydation an der Luft oder mit feuchtem Silberoxyd oder durch Kochen mit Kaliumferricyanid in alkalischem Medium (Locquin, Sung, C. r. 174, 1713; S., A. ch. [10] 1, 406).—Nadeln (aus Petroläther). F: 85—86°. Leicht löslich in Alkohol und Äther, schwer in Wasser.— Bei Behandlung mit 80% iger Schwefelsäure auf dem Wasserbad entsteht β -tert.-Butyl-butyrolacton.
- 15. 2.4-Dimethyl-penten-(2)-carbonsäure-(3), $\beta.\beta$ -Dimethyl- α -isopropylacrylsäure $C_8H_{14}O_2=(CH_3)_2C:C[CH(CH_3)_2]\cdot CO_2H$.
- $\beta.\beta$ -Dimethyl- α -isopropyl-acrylsäure-nitril $C_8H_{12}N=(CH_2)_2C:C[CH(CH_2)_2]\cdot CN$. B. Beim Erwärmen von Diisopropylketon-cyanhydrin mit Thionylchlorid (Macq. Bl. Acad. Belgique [5] 12, 772; C. 1927 I, 880). Stechend riechende Flüssigkeit. Kp₇₈₇: 178—179°. D_0^{∞} : 0,8384. n_0^{∞} : 1,4472. Löslich in organischen Lösungsmitteln, unlöslich in Wasser.

7. Carbonsäuren C₂H₁₆O₂.

1. Nonen-(1)-säure-(9), Δ^8 -Nonensäure, Octen-(7)-carbonsäure-(1) $C_9H_{18}O_2=CH_2$: $CH_2:CH_2:CO_2H$ (H 453). Fast geruchlos. Kp: 248—249° (unkor.) (Franke, Liebermann, M. 43, 595). — Liefert bei der Oxydation Korksäure. Addiert in Schwefelkohlenstoff Brom momentan unter Bildung eines dickflüssigen Öls.

Äthylester $C_{11}H_{20}O_2 = CH_2: CH \cdot [CH_2]_6 \cdot CO_2 \cdot C_2H_5$. Kp: 226—228° (Franke, Liebermann, M. 43, 596).

- 2. Nonen-(2)-säure-(1), Δ^2 -Nonensäure, Δ^{α} -Nonensäure, Octen-(1)-carbonsäure-(1), Önanthylidenessigsäure $C_0H_{10}O_2=CH_3\cdot[CH_2]_5\cdot CH:CH\cdot CO_2H$.
- a) $cis(?)-\Delta^{\alpha}$ -Nonensäure. B. Bei der Reduktion von Octin-(1)-carbonsäure-(1) mit Wasserstoff in Gegenwart von kolloidem Palladium in Cyclohexan (Bourguel, C. r. 188, 1494; Bl. [4] 45, 1079). Flüssigkeit. Kp_{15} : 140°. D^{15} : 0,9315. n_{15}^{15} : 1,458. Geht beim Erhitzen mit wenig Jod auf 100° in die trans(?)-Form über.
- b) $trans(?) \Delta^{\alpha}$ -Nonensäure $C_9H_{16}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH : CH \cdot CO_2H$. B. Aus cis(?)-Nonen-(2)-säure-(1) durch Erhitzen mit wenig Jod auf 100° (Bourguel, C. r. 188, 1494; Bl. [4] 45, 1079). F: 1—2°. Kp_{15} : 154,5°. D^{15} : 0,936. n_{15}^{15} : 1,4635.
- c) Δ^{α} -Nonensdure von fraglicher sterischer Einheitlichkeit $C_9H_{16}O_3=CH_3\cdot[CH_2]_5\cdot CH:CH:CO_2H$ (H 453; E I 194). B. Bei Behandlung von Önanthol in Benzol mit Bromessigester in Gegenwart von Zink, Erhitzen des Reaktionsprodukts mit Natrium-disulfat auf 90—100° und nachfolgender Verseifung, am besten durch Kochen mit 20% iger Schwefelsäure (v. Auwers, A. 432, 82). Zur Bildung aus Önanthol und Malonsäure in Pyridin vgl. Ott, Zimmermann, A. 425, 330; v. Au., A. 432, 52. Kp₀: 145° (Ott, Z.). $D_4^{n,1}: 0.9345$ (v. Au.). $n_{\alpha}^{n,1}: 1.4540$; $n_{\alpha}^{n,1}: 1.4573$; $n_{\alpha}^{p,1}: 1.4647$; $n_{\gamma}^{n,1}: 1.4712$ (v. Au.); Dichten und Brechungsindices eines anderen Präparats bei 15,6°: v. Au. Gibt bei der Oxydation mit 2% iger Permanganat-Lösung 1.2-Dioxy-octan-carbonsäure-(1) (Krohs, Ber. disch. pharm. Ges. 32, 337; C. 1923 I, 819).

Äthylester $C_{11}H_{20}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH : CH \cdot CO_2 \cdot C_2H_5$ (H 453; E I 194). Kp₁₂: 114—115° (v. Auwers, A. 432, 83). D_4^{19} : 0,8901; n_3^{19} : 1,4397; n_{He}^{19} : 1,4426; n_{β}^{19} : 1,4495; n_{γ}^{19} : 1,4554 (v. Au.). — Liefert bei längerer Behandlung mit Kaliumcyanid in siedendem verdünntem Alkohol und weiterem Kochen unter Zusatz von Natronlauge α -n-Hexyl-bernsteinsäure- α -amid (Higginbotham, Lapworth, Soc. 121, 52).

Chlorid $C_9H_{16}OCl = CH_3 \cdot [CH_2]_6 \cdot CH \cdot CH \cdot COCl$ (E I 194). $Kp_{13} : 90-91^{\circ}$ (v. Auwers, A. 432, 83); $Kp_{16} : 103-104^{\circ}$ (Ott., Zimmermann, A. 425, 330). $D_4^{10.2} : 0.9675$ (v. Au.). $n_{\alpha}^{10.2} : 1.4574 ; n_{16}^{10.2} : 1.4608 ; n_{16}^{10.2} : 1.4688 ; n_{16}^{10.2} : 1.4761$ (v. Au.).

Amid $C_0H_{17}ON = CH_2 \cdot [CH_2]_5 \cdot CH : CH \cdot CO \cdot NH_2$ (E I 194). Krystalle (aus Benzol). F: 118—119° (v. Auwers, A. 482, 83). Unlöslich in Petroläther (Rinkes, R. 45, 820). — Liefert bei Behandlung mit alkal. Natriumhypochlorit-Lösung in Methanol bei 0—10° Δ^{α} -Octenyl-carbamidsäure-methylester (R.).

Nitril $C_9H_{18}N = CH_3 \cdot [CH_2]_5 \cdot CH \cdot CN \cdot B$. Aus dem Amid durch Erwärmen mit Phosphorpentoxyd im Vakuum (v. Auwers, A. 432, 83). — Mandelartig riechendes Ol. Kp_{10} : 99—100°. $D_4^{15,1}$: 0,8365. $n_{\alpha}^{15,1}$: 1,4445; $n_{H}^{15,1}$: 1,4476; $n_{\beta}^{15,1}$: 1,4548; $n_{\gamma}^{15,1}$: 1,4610.

3. 3-Methyl-octen-(6)-säure-(1), β -Methyl-A'-octensäure, 2-Methyl-hepten-(5)-carbonsäure-(1) $C_9H_{16}O_2 = CH_3 \cdot CH \cdot CH \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot CH_3$

Äthylester $C_{11}H_{20}O_2=CH_3\cdot CH:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CH_2\cdot CO_2\cdot C_2H_5$. $Kp_{21}\colon 109^n$ bis 111° (v. Braun, Gossel, B. 57, 380).

4. β -Propyl- Δ^{β} -hexensäure, 2-Propyl-penten-(2)-carbonsäure-(1) $C_0H_{10}O_2=CH_3\cdot CH_2\cdot CH:C(CH_2\cdot C_2H_5)\cdot CH_2\cdot CO_2H$. B. Durch Verseifung des Äthylesters (Kon, May, Soc. 1927, 1552). Aus β -Propyl- Δ^{α} -hexensäure durch Kochen mit Kalilauge (Kon, May). Aus β -Oxy- β -propyl-n-capronsäure beim Kochen mit verd. Schwefelsäure oder bei der Behandlung ihrer ätherischen Lösung mit Phosphortrichlorid (Kon, May). Konnte nicht frei von einer geringen Menge β -Propyl- Δ^{α} -hexensäure erhalten werden. Flüssigkeit. Kp₂₂: 138—140°; Kp₁₁: 126—128°. D²⁰: ca. 0,94; n²⁰: ca. 1,46. — Wandelt sich beim Kochen mit Kalilauge teilweise in β -Propyl- Δ^{α} -hexensäure um; Gleichgewicht beider Verbindungen in siedender Kalilauge verschiedener Konzentration: Kon, May; Linstead, May. Soc. 1927, 2575. — Bestimmung im Gemisch mit β -Propyl- Δ^{α} -hexensäure: L. May.

Äthylester $C_{11}H_{20}O_2 = CH_3 \cdot CH_2 \cdot CH : C(CH_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Bei der Destillation von β -Oxy- β -propyl-n-capronsäure-äthylester mit Phosphorpentoxyd unter vermindertem Druck (Kon, May, Soc. 1927, 1552). — Kp₂₅: 116—118°. D₁°: 0,8926. n₂°: 1,4378.

Chlorid $C_9H_{15}OCl = CH_3 \cdot CH_2 \cdot CH : C(CH_2 \cdot C_2H_5) \cdot CH_2 \cdot COCl$. Nicht rein erhalten. Kp₈₀: 1070 (Kon, May, Soc. 1927, 1553).

Amid $C_9H_{17}ON = CH_3 \cdot CH_2 \cdot CH \cdot C(CH_2 \cdot C_2H_5) \cdot CH_2 \cdot CO \cdot NH_2$. Krystalle (aus Benzol Petroläther). F: 120—121°. Sublimierbar. Schwer löslich in Petroläther (Kon, May, Soc. 1927, 1553).

5. β -Propyl- Δ^{α} -hexensäure, 2-Propyl-penten-(1)-carbonsäure-(1). β . β -Dipropyl-acrylsäure $C_0H_{16}O_2=(CH_3\cdot CH_2\cdot CH_2)_2C:CH\cdot CO_2H$. Ist nach Kon, May (Soc. 1927, 1551) nicht identisch mit der H 454 beschriebenen Verbindung. — B. Aus β -Propyl- Δ^{β} -hexensäure beim Kochen mit Kalilauge (Kon, May, Soc. 1927, 1552). Beim Erhitzen von β -Oxy- β -propyl-n-capronsäure mit Acetanhydrid (Kon, May). — Krystalle. F: 9°. Kp₁₇: 144°. D₁^{\infty}: 0,9362. n₁^{\infty}: 1,4635. — Liefert bei Behandlung mit Permanganat Dipropylketon. Wandelt sich beim Kochen mit Kalilauge teilweise in β -Propyl- Δ^{β} -hexensäure um; Gleichgewicht beider Verbindungen in siedender Kalilauge verschiedener Konzentration: Kon, May; Linstead, May, Soc. 1927, 2575. — Bestimmung im Gemisch mit β -Propyl- Δ^{β} -hexensäure: L., May. — AgC₃H₁₅O₂ (Kon, May).

Äthylester $C_{11}H_{20}O_2=(CH_3\cdot CH_2\cdot CH_2)_2C:CH\cdot CO_2\cdot C_2H_5$. B. Aus dem Chlorid (Kon, Max, Soc. 1927, 1552). Aus β -Oxy- β -propyl-n-capronsaure-athylester durch Kochen mit wasserfreier Ameisensaure (Locquin, Sung, C. r. 174, 1713; S., A. ch. [10] 1, 396). — Kp₃₀: 122—128° (L., S.; S.); Kp₁₄: 108—109° (Kon, Max). $D_1^{(8)}: 0.8928; n_1^{(8)}: 1.4492$ (Kon, Max). Liefert bei der Spaltung mit Ozon Dipropylketon (Kon, Max).

Chlorid $C_9H_{15}OCl = (CH_3 \cdot CH_2 \cdot CH_2)_2C : CH \cdot COCl.$ $Kp_{25}: 128^{\circ}$ (Kon, May, Soc. 1927. 1552).

Amid $C_9H_{17}ON = (CH_9 \cdot CH_2 \cdot CH_2)_2C : CH \cdot CO \cdot NH_2$. Nadeln (aus Petroläther). F: 72° (Kon, May, Soc. 1927, 1552).

- 7. α -sek.-Butyl- Δ^{γ} -pentensäure, 5-Methyl-hepten-(1)-carbonsäure-(4). sek.-Butyl-allyl-essigsäure $C_9H_{16}O_2=CH_2:CH\cdot CH_2\cdot CH[CH(CH_3)\cdot C_2H_5]\cdot CO_2H$. B. Ausek.-Butyl-allyl-malonsäure-diäthylester durch Verseifung mit kochender Alkalilauge und Erhitzen der freien Säure auf 190° (J. D. RIEDEL-DE HAËN, D. R. P. 473519; C. 1929 II. 487; Frdl. 16, 2477). Kp: 228--230°.

Chlorid $C_0H_{15}OCl = CH_2:CH:CH_2:CH[CH(CH_3):C_0H_5]\cdot COCl.$ Öl. Kp_{12} : 60° (J. I). RIEDEL-DE HAËN, D. R. P. 473519; C. 1929 II, 487; Frdl. 16, 2477).

MONOCARBONSÄUREN CnH2n-2O2

8. $\alpha.\alpha$ - Diäthyl - Δ^{γ} - pentensäure, 3 - Åthyl - hexen - (5) - carbonsäure - (3), Diäthylallylessigsäure $C_0H_{16}O_2=CH_1:CH\cdot CH_1\cdot C(C_2H_5)_1\cdot CO_2H$.

Amid, Diäthylallylacetamid C₉H₁₇ON = CH₂:CH·CH₂·C(C₂H₅)₂·CO·NH₂. B. Aus dem Nitril durch Kochen mit alkoh. Kalilauge (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1481; I. G. Farbenind., D. R. P. 473329; C. 1929 II, 217; Frdl. 16, 285). — Krystalle (aus Äther + Petroläther). F: 80° (Höchster Farbw.). Kp₁₀: 155° (Höchster Farbw.). Leicht löslich in den meisten organischen Lösungsmitteln (Höchster Farbw.). Löslichkeit in Glykolmonoäthyläther und Glycerindiäthyläther: I. G. Farbenind., D. R. P. 447161; C. 1927 II, 1397; Frdl. 15, 1483. — Verwendung als Schlafmittel unter der Bezeichnung Novonal: Leffkowitz, C. 1928 I, 1679; Wimplinger, C. 1928 I, 1887; Levinger, C. 1928 I, 1887; Marx, C. 1929 II, 1426.

Nitril, Diäthylallylacetonitril $C_9H_{15}N=CH_2:CH\cdot CH_2\cdot C(C_2H_5)_2\cdot CN$. B. Durch Einw. von Allylbromid auf die Kaliumverbindung von Diäthylacetonitril in Äther oder Benzol oder auf die Natriumverbindung in Xylol (I. G. Farbenind., D. R. P. 473329; C. 1929 II, 217; Frdl. 16, 285). Beim Kochen von Diäthylbromessigsäure-nitril mit Allylbromid und Kupferpulver in Toluol (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1481). — Kp₁₀: 83—84° (Höchster Farbw.); Kp₀: 78° (I. G. Farbenind.).

8. Carbonsäuren $C_{10}H_{18}O_2$.

1. Decen-(1)-säure-(10), Λ°-Decensäure, Λ°-Decensäure, Nonen-(8)-carbonsäure-(1) C₁₀H₁₈O₃ = CH₃: CH·[CH₂]₇·CO₂H. V. In geringer Menge verestert in der Butter, aus der die Säure durch Umesterung mit Methanol isoliert werden kann (Grün, Wirth, B. 55, 2197). — B. Aus ω-Stearoyloxy-caprinsäure-methylester beim Erhitzen auf 270—340° und Verseifung des neben Stearinsäure und anderen Produkten im Destillat befindlichen 9-Decen-säure methylesters mit Alkali (G., W., B. 55, 2213). — Schmilzt unterhalb 0°. Kp₆: 143°; Kp₄: 142°. Leicht löslich in Fettlösungsmitteln. — Unbeständig. Liefert bei der Oxydation mit Ozon, Permanganat oder Chromsäure Ameisensäure und Azelainsäure. Bei längerer Behandlung mit 80% iger Schwefelsäure bei 90° entsteht γ-n-Hexyl-butyrolacton (?).

Methylester $C_{11}H_{20}O_3=CH_3:CH\cdot[CH_3]_7\cdot CO_3\cdot CH_3$. B. Beim Erwärmen von $\theta.\iota$ -Dibrom-caprinsäure-methylester mit Zink und methylalkoholischer Salzsäure auf dem Wasserbad (Grün, Wirth, B. 55, 2203). — Flüssigkeit von angenehmem Geruch. Kp₁₃: 115—116°. — Liefert bei der Behandlung mit Ozon in Chloroform und Zersetzung des Reaktionsprodukts durch Kochen mit Wasser Ameisensäure, Azelainsäure und vielleicht Azelainaldehydsäure.

2. Decen-(2)-säure-(10), Δ^{6} -Decensäure, Δ^{7} -Decensäure, Nonen-(7)-carbonsäure-(1), Iso decylensäure $C_{10}H_{18}O_{2}=CH_{3}\cdot CH:CH:[CH_{2}]_{6}\cdot CO_{2}H.$ B. Neben 2-Methyl-nonan-dicarbonsäure-(1.9) bei längerem Erhitzen von Malonsäuredimethylester mit 1.7-Dibrom-octan in Natriumäthylat-Lösung erst auf dem Wasserbad, dann im Autoklaven auf 180°, nachfolgendem Verseifen des Reaktionsprodukts und Erhitzen des erhaltenen Säuregemisches (Chuit, Mitarb., Helv. 10, 186). — Flüssigkeit von an Butter erinnerndem Geruch. Schmilzt zwischen —6° und 0°. Kp_{14} : 155—157°. D^{18} : 0,930.

Methylester C₁₁H₂₀O₂ = CH₃·CH·[CH·[CH₂]₆·CO₃·CH₃. Flüssigkeit von angenehmem Geruch. Kp₂₀: 121—123° (CHUIT, Mitarb., Helv. 10, 187). — D¹⁵: 0,896. — Liefert bei der Reduktion mit Natrium und Alkohol Decen-(2)-ol-(10).

- 3. 2-Methyl-nonen-(3)-säure-(9), η -Methyl- Δ^{ϵ} -nonensäure, 7-Methyl-octen-(5)-carbonsäure-(1) $C_{10}H_{18}O_{2}=(CH_{2})_{2}CH\cdot CH:CH:CH:[CH_{2}]_{2}:CO_{2}H$. Diese Konstitution kommt der Carbonsäure $C_{10}H_{18}O_{2}$ aus Capsaioin (E I 195) zu (Nelson, Dawson, Am. Soc. 45, 2181). Bei der Oxydation mit 5% iger Permanganat-Lösung bei Zimmertemperatur werden Isobuttersäure und Adipinsäure erhalten (N., D.). Beim Schmelzen mit Kaliumhydroxyd entstehen Essigsäure und eine Säure $C_{8}H_{18}O_{2}$ (S. 305) (N., Am. Soc. 42, 598). Liefert bei Behandlung mit Phosphortrichlorid das Chlorid, welches bei Einw. von Vanillylamin in Ather Capsaicin (Syst. Nr. 1869) gibt (N.).
- 4. 2.6 Dimethyl octen (2) säure (8), $\beta.\zeta$ Dimethyl Δ^2 octensäure, 2.6 Dimethyl hepten (5) carbonsäure (1) $C_{10}H_{10}O_{2} = (CH_{2})_{2}C:CH\cdot CH_{2}\cdot CH_{3}\cdot CH_{10}\cdot CH_{2}\cdot CH_{2$
- a) Rechtsdrehende 2.6-Dimethyl-octen-(2)-säure-(8), d-Citronellsäure C₁₈H₁₈O₃ = (CH₃)₂C:CH·CH₂·CH₂·CH₂·CH₂·CO₂H (H 455; E I 194). V. Verestert in afrikanischen Geraniumölen (GLIOHITCH, MULLEE, Chim. et Ind. 1928 Sondernummer, S. 479; C. 1928 II, 1447). Frei und verestert im äther. Öl der Früchte von Xanthoxylum piperitum Don. (UCHIDA, C. 1928 II, 2296). B. Aus d-Citronellal beim Aufbewahren

an der Luft (WATERMAN, ELSBACH, R. 47, 770). Neben anderen Produkten aus d-Citronellal bei Behandlung mit Aluminiumäthylat in siedendem, absolutem Alkohol und nachfolgender Verseifung des Reaktionsprodukts mit alkoh. Kalilauge (Verley, Bl. [4] 37. 538). Neben d-Citronellol aus d-Citronellal durch Einw. von Bact. xylinum in Wasser oder Bact. ascendens in physiologischer Kochsalz-Lösung in Gegenwart von Calciumcarbonat unter anaeroben Bedingungen bei 35—37° (Molinari, Bio. Z. 216, 212). — Kp₁₁: 142 bis 143°; D¹⁵: 0,9355 (Gl., M.). — AgC₁₀H₁₇O₂. Pulver. Färbt sich am Licht rosa (Wa., E.).

b) Inaktive Citronellsäure, dl-Citronellsäure C₁₀H₁₈O₂ = (CH₃)₂C:CH·CH₂·CH₂·CH₂·CH(CH₃)·CH₂·CO₃H (E I 195). V. Im Campheröl (Rochussen, J. pr. [2] 105, 124). — Kp₄: 126°; Kp₅: 121°; Kp₃: 116—118°. D¹⁵: 0.9557. n¹⁵: 1,4623; n⁵0: 1,4606. — Liefert bei der Oxydation mit Salpetersäure (D: 1,4) unter anderen Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffreien Produkts [Krystalle; F: 166—168°]. Bei der Oxydation mit siedender Chromschwefelten Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffreien Produkts [Krystalle; F: 166—168°]. Bei der Oxydation mit siedender Chromschwefelten Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffreien Produkts [Krystalle; F: 166—168°]. Bei der Oxydation mit siedender Chromschwefelten Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffreien Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffreien Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffreien Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffreien Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoff-freien Produkten eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen und eine geringe Menge eines neutralen, stickstoffatomen eine gesättigte Dicarbonsäure mit 7 Kohlenstoffatomen eine gesättigte Dicarbonsäure mit 7 Kohlenstoffa säure erhält man hauptsächlich β -Methyl-adipinsäure, außerdem eine Säure vom Schmelzpunkt 177—179° und andere Produkte. Das Kaliumsalz gibt bei der Oxydation mit Permanganat (4 Atome Sauerstoff) in Wasser β -Oxy- β -methyl-adipinsäure. Geht beim Kochen mit ca. 65% iger Schwefelsäure in das Lacton $C_{10}H_{18}O_{2}$ (s. u.) über. Ist beständig gegen siedende 10% ige Natronlauge. Bei der Kalischmelze bei 250—300° entstehen β -Methyl-capronsäure und andere Produkte. Addiert in Chloroform oder Tetrachlorkohlenstoff ca. 2 Atome Brom; das entstandene Produkt geht bei Behandlung mit Kaliumhydroxyd im Autoklaven bei 200° in eine Carbonsäure C₁₀H₁₆O₂ [Kp₄: 125—129°] über. — AgC₁₀H₁₇O₂ (R.).

Lacton C₁₀H₁₈O₂. Zur Konstitution vgl. Rochussen, J. pr. [2] 105, 126, 128. — B. Bei kurzem Kochen von inakt. Citronellsäure mit ca. 65 %iger Schwefelsäure (R.). — Kp_{4,5}:

102-103°. - Geht beim Verseifen in Oxysäure und ungesättigte Säure über.

Äthylester $C_{19}H_{23}O_9 = (CH_3)_2C:CH \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CO_3 \cdot C_2H_5$. B. Beim Kochen von inakt. Citronellsäure mit Alkohol in Gegenwart von wenig konz. Schwefelsäure (Rochussen, J. pr. [2]105, 125, 133). — Kp₃: 86°. — Liefert bei der Reduktion mit Natrium und Isoamylalkohol dl-Citronellol.

Amid $C_{10}H_{10}ON = (CH_3)_2C: CH \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2 \cdot CO \cdot NH_2$. B. Aus inakt. Citronellsäure durch Behandlung mit Phosphortrichlorid und mit Ammoniak (Rochussen, J. pr. [2] 105, 125). — Krystalle (aus Alkohol). F: 88—90°.

c) Menthonensaure $C_{10}H_{18}O_2 = (CH_3)_2C:CH \cdot CH_2 \cdot CH_3 \cdot CH(CH_3) \cdot CH_2 \cdot CO_2H(?)$.

Nitril, Menthonitril $C_{10}H_{17}N = (CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CH_2\cdot CN$ (?) (H 456). B. Neben anderen Produkten aus l-Menthonoxim durch Behandlung mit "japanischer saurer Erde" bei 200° (Inoue, Bl. chem. Soc. Japan 1, 178; C. 1926 II, 2711). — α_D^{19} : —12,2° (unverdünnt; l = 10 cm) (v. Braun, Kröper, Reinhardt, B. 62, 1303).

5. δ -Methyl- α -isopropyl- Δ '-hexensäure. 2.6-Dimethyl-hepten-(5)-carbonsäure-(3) $C_{10}H_{18}O_{2}=(CH_{3})_{2}C:CH\cdot CH_{2}\cdot CH[CH(CH_{3})_{2}]\cdot CO_{2}H$. B. In geringer Menge bei der Verseifung von 2.6-Dimethyl-hepten-(5)-dicarbonsäure-(3.3)-diäthylester mit alkoh. Kalilauge und Destillation des Verseifungsprodukts unter vermindertem Druck (Staudinger, Mitarb., Helv. 7, 405). — Ol. Kp₁₂: 140—145°.

Chlorid $C_{10}H_{17}OCl = (CH_3)_3C: CH \cdot CH_3 \cdot CH[CH(CH_3)_3] \cdot COCl.$ B. Aus der Säure und Thionylchlorid in Petroläther (Staudinger, Mitarb., Helv. 7, 405). — $Kp_{10}: 115^{\circ}$.

6. α - \tilde{A} thyl- α -isop $_{T}$ opyl- Δ^{γ} -pentensäure, 2-Methyl-3-äthyl-hexen-(5)carbonsaure - (3), Athyl-isopropyl-allyl-essigsaure $C_{10}H_{18}O_2 = CH_2: CH \cdot CH_2$. $C(C_2H_5)[CH(CH_3)_2] \cdot CO_2H.$

Nitril, Äthylisopropylallylacetonitril $C_{10}H_{17}N=CH_2\cdot CH\cdot CH_2\cdot C(C_2H_3)[CH(CH_3)_2]\cdot CN$. B. Durch Einw. von Allylbromid auf die Kaliumverbindung von Athylisopropylacetonitril in Benzol (I. G. Farbonind., D. R. P. 473329; C. 1929 II, 217; Frdl. 16, 285). Kp₇: 78—81°.

7. Carbansaure C₁₀H₁₈O₂ aus Capsaicin (E I 195) s. bei 2-Methyl-nonen-(3)-säure-(9).

9. Carbonsäuren $C_{11}H_{20}O_2$.

1. Undecen-(1)-säure-(11), Δ^{10} -Undecensäure, Decen-(9)-carbonsäure-(1), gewöhnliche Undecylensdure $C_{11}H_{20}O_2 = CH_2: CH \cdot [CH_2]_3: CO_2H (H 458; E I 195). Zur Konstitution vgl. a. Simon, C. r. 180, 835; s. dagegen Noller, Adams, Am. Soc. 48, 1075 Anm. 10. — V. In geringer Menge im äther. Öl der Blätter von Thujopsis dolabrata Sieb. et$ Zucc. (UCFIDA, C. 1929 I, 948). — B. Aus ω-Undecylenalkohol bei der Oxydation mit Natriumdichromat in Eisessig, zuletzt auf dem Wasserbad (Churt, Mitarb., Helv. 9, 1086). Zur Bildung aus Ricinusol durch Destillation unter vermindertem Druck vgl. Ott, Zimmer-Mann, A. 425, 329; Jones, Pyman, Soc. 127, 2597. — Kp₁₅: 165—167° (Keen, Shriner,

ADAMS, Am. Soc. 47, 1156), 168,3° (MYDDLETON, BERCHEM, Soc. 1927, 1929). Viscosität von unterkühlter Undecylensäure bei 20°: Vorländer, Walter, Ph. Ch. 118, 10. Parachor: MUMFORD, PHILLIPS, Soc. 1929, 2128. Mechanisch erzwungene Doppelbrechung: V., W. Mischbar mit Olivenöl, sehr schwer löslich in Wasser bei 25° (Verkade, Söhngen, C. 1920 I. 630; III, 56). Ausbreitung auf Wasser bei 25°: Harkins, Feldman, Am. Soc. 44, 2670. Erniedrigung der Oberflächenspannung des Wassers durch Undecylensäure: Nietz, J. phys. Chem. 32, 259. Randwinkel fester Undecylensäure mit Wasser: N. — Zur Überführung in Sebacinsäure durch Oxydation mit Ozon, Permanganat oder Chromtrioxyd vgl. Chuit. Mitarb., Helv. 9, 1087. Geschwindigkeit der Hydrierung in Alkohol in Gegenwart von Platinschwarz oder Palladiumschwarz unter 2—3 Atm. Druck bei 25°: K., Sh., A., Am. Soc. 47, 1149. Bei Behandlung mit Bromwasserstoff unter verschiedenen Bedingungen konnte 11-Brom-undecansäure.(1) nicht wieder erhalten werden (Flaschenträger, Halle, H. 159. 287). Liefert beim Schmelzen mit Kaliumhydroxyd bei 350—370° außer Essigsäure und Nonansäure gesättigte Carbonsäuren mit 5—8, vielleicht auch 3 und 4 Kohlenstoffatomen (Chuit, Mitarb., Helv. 10, 117). Über die beim Erhitzen des Bariumsalzes mit Natriumäthylat auf ca. 300° erhaltenen Produkte vgl. Waterman, van 'TSPIJKER, van Westen, R. 48. 1099. — Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371T; C. 1927 II, 1884. — Lithiumsalz. Röntgenogramm (Pulveraufnahme): Becker, Jancke. Ph. Ch. 99, 272.

Undecylensäuremethylester, Methylundecylenat $C_{12}H_{22}O_2$ — $CH_2:CH\cdot[CH_2]_8\cdot CO_2\cdot CH_3$ (H 459). B. In geringer Menge neben \triangle^9 -Undecensäuremethylester aus 9-Oxy-decancarbonsäure-(1)-methylester beim Erhitzen mit β -Naphthalinsulfonsäure auf 120—220° und folgenden Destillieren unter vermindertem Druck (Chujt, Mitarb., Helv. 9, 1090). Zur Bildung durch thermische Zersetzung von Ricinolsäuremethylester vgl. Grün, Wirth, B. 55, 2208; Panjutin, K. 60, 3; C. 1928 II, 747. — Liefert bei der Einw. von Ozon in Eisessig und Behandlung der mit Wasser und Äther verdünnten Lösung mit Zinkstaub hauptsächlich 9-Oxo-nonan-carbonsäure-(1)-methylester und weniger Sebacinsäuremomomethylester (Noller, Adams, Am. Soc. 48, 1076).

Undecylensäureäthylester, Äthylundecylenat $C_{13}H_{24}O_2=CH_2:CH\cdot[CH_2]_8\cdot CO_2\cdot C_2H_5$ (H 459; E I 196). B. Bei der Elektrolyse des Natriumsalzes des Decan-dicarbonsäure-(1.10)-monoäthylesters in wäßr. Alkohol bei 50—55° (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 74; C. 1926 II, 188). Zur Bildung durch thermische Zersetzung von Ricinolsäureäthylester vgl. Grün, Wirth, B. 55, 2208.

Undecylensäure- ω -undecenylester, ω -Undecenyl-undecylenat $C_{22}H_{40}O_2=CH_2$: $CH\cdot[CH_2]_8\cdot CO_2\cdot[CH_2]_9\cdot CH: CH_2\cdot B.$ Aus Undecylensäure und ω -Undecylenalkohol in Gegenwart von verd. Mineralsäure (Chuit, Mitarb., Helv. 9, 1074). — $Kp_8: 225^\circ$. $D^{15}: 0,877$.

Glycerintriundecylenat, Triundecylenin, Undecylein $C_{36}H_{62}O_6=(CH_2:CH\cdot[CH_2]_8\cdot CO\cdot O)_3C_3H_5$. B. Aus Glycerin und Undecylensäure in Gegenwart von Twitchells Reagens bei 100° (Ozaki, Bio. Z. 177, 159; C. 1926 II, 2192). — Schädliche Wirkung auf Ratten: O.

Undecylensäureamid $C_{11}H_{21}ON = CH_2: CH \cdot [CH_2]_8 \cdot CO \cdot NH_2$ (H 459). F: 87° (korr.) (Jones, Pyman, Soc. 127, 2598).

Undecylensäure-oxymethylamid $C_{12}H_{23}O_2N = CH_2: CH \cdot [CH_2]_8 \cdot CO \cdot NH \cdot CH_2 \cdot OH$. B. Aus Undecylensäureamid bei längerer Einw. von 40% iger Formaldehyd-Lösung in Gegenwart von Kaliumcarbonat (Jones, Pyman, Soc. 127, 2598). — Krystalle (aus Aceton). F: 77° (korr.).

2. Undecen - (2) - säure - (11), △º- Undecensäure, Decen - (8) - carbon-säure-(1) C₁₁H₃₀O₂ = CH₃·CH:CH·[CH₂]₇·CO₂H (H 459; E I 196). B. Aus Undecen-(2)-ol-(11) durch Oxydation mit Natriumdichromat in Essigsäure (CHUIT, Mitarb., Helv. 9, 1087). Zur Bildung durch Behandlung von △¹º-Undecensäure mit Kaliumhydroxyd oberhalb 200° vgl. CH., Mitarb., Helv. 9, 1088. — Kp₁₈: 166—167°. — Liefert bei der Ozonspaltung Azelainsäure. — Bariumsalz. Blättehen (aus verd. Alkohol).

Methylester $C_{12}H_{22}O_3=CH_3\cdot CH:CH:[CH_2]_7\cdot CO_2\cdot CH_3$. B. Neben anderen Produkten aus 10-Brom-undecansäure-(1)-methylester bei 20-stdg. Kochen mit Kaliumacetat in Eisessig (Churr, Mitarb., Helv. 9, 1092). Als Hauptprodukt aus 9-Oxy-decan-carbonsäure-(1)-methylester beim Erhitzen mit β -Naphthalinsulfonsäure auf 120—220° und folgenden Destillieren unter vermindertem Druck (Ch., Mitarb., Helv. 9, 1090). — Kp₁₄: 128—129°; Kp₁₂: 126—127°. D¹⁵: 0,894 (Ch., Mitarb., Helv. 9, 1089, 1091).

Amid $C_{11}H_{21}ON = CH_3 \cdot CH \cdot [CH_2]_7 \cdot CO \cdot NH_2$ (H 459; E I 196). Nadeln (aus verd. Alkohol). F: 98—99° (Chuir, Mitarb., *Helv.* 9, 1091).

3. 4-Methyl-decen-(4)-säure-(1), γ -Methyl- Δ^{γ} -decensäure, 3-Methyl-nonen-(3)-carbonsäure-(1) $C_{11}H_{20}O_3=CH_3\cdot [CH_2]_4\cdot CH:C(CH_3)\cdot CH_2\cdot CH_3\cdot CO_2H$. B. Beim Erhitzen des Dinatriumsalzes der β -Oxy- β -methyl- α -amyl-adipinsäure auf Temperaturen

oberhalb 115° (STAUDINGER, RUZICKA, Helv. 7, 254). Neben anderen Produkten durch Behandlung von Lävulinsäureäthylester mit 1-Brom-hexan-carbonsäure-(1)-äthylester und Zink in Benzol und Erhitzen des vom Lösungsmittel durch Destillation befreiten Reaktionsgemisches auf 150° (ST., R.). Neben anderen Produkten bei Erwärmen des Lactons des β -Oxy- β -methyl- α -amyl-adipinsäure-monoäthylesters (Syst. Nr. 2619) mit 25%iger Kallauge auf dem Wasserbad (ST., R.). — Dickes Öl. Kp₁₅: 160—163°. — Liefert bei der Oxydation mit Permanganat Buttersäure, Capronsäure, Bernsteinsäure. Lävulinsäure und andere Produkte.

Chlorid $C_{11}H_{19}OCl = CH_3 \cdot [CH_2]_4 \cdot CH \cdot C(CH_3) \cdot CH_2 \cdot CH_2 \cdot COCl.$ B. Aus der Säure und Thionylchlorid in Petroläther (Staudinger, Ruzicka, Helv. 7, 255). — Destilliert im Vakuum.

- 4. δ -Methyl- β -isobutyl- Δ^{β} -hexensäure, 4-Methyl- \geq -isobutyl-penten-(2)-carbonsäure-(1) $C_{11}H_{20}O_2 := (CH_3)_2CH \cdot CH : C[CH_2 \cdot CH(CH_3)_2] \cdot CH_2 \cdot CO_2H$. B. Man behandelt β -Oxy- β . β -diisobutyl-propionsäure mit verd. Schwefelsäure oder Acetanhydrid, wobei δ -Methyl- β -isobutyl- Δ^{β} -hexensäure und δ -Methyl- β -isobutyl- Δ^{α} -hexensäure entstehen (Kon, May, Soc. 1927, 1554). Ist nicht rein erhalten worden. Liefert beim Kochen mit Kalilauge in reversibler Reaktion δ -Methyl- β -isobutyl- Δ^{α} -hexensäure; in siedender 60 % iger Kalilauge liegt das sich einstellende Gleichgewicht bei ca. 51 % δ -Methyl- β -isobutyl- Δ^{β} -hexensäure (Kon, May; Linstead, May, Soc. 1927, 2577). Bestimmung im Gemisch mit δ -Methyl- β -isobutyl- Δ^{α} -hexensäure: L., May.
- 5. δ -Methyl- β -isobutyl- Δ^{α} -hexensäure. 4-Methyl-2-isobutyl-penten-(1)-carbonsäure-(1), β . β -Diisobutyl-acrylsäure $C_{11}H_{20}O_2=[(CH_3)_2CH\cdot CH_2]_2C:CH\cdot CO_2H$. B. Man behandelt β -Oxy- β . β -diisobutyl-propionsäure mit verd. Schwefelsäure oder Acetanhydrid, wobei δ -Methyl- β -isobutyl- 1^{α} -hexensäure und δ -Methyl- β -isobutyl- 1^{α} -hexensäure entstehen (Kon, May, Soc. 1927, 1554). Ist nicht rein erhalten worden. Liefert beim Kochen mit Kalilauge in reversibler Reaktion δ -Methyl- β -isobutyl- 1^{α} -hexensäure; in siedender 60% iger Kalilauge liegt das sich einstellende Gleichgewicht bei ca. 49% δ -Methyl- β -isobutyl- 1^{α} -hexensäure (Kon, May; Linstead, May, Soc. 1927, 2577). Bestimmung im Gemisch mit δ -Methyl- β -isobutyl- 1^{α} -hexensäure: L., May.

10. Carbonsäuren $C_{12}H_{22}O_2$.

1. Dodecen-(1) - $s\"{a}ure-(12)$. A^{11} - $Dodecens\"{a}ure$, Undecen-(10) - $carbon-s\"{a}ure-(1)$ $C_{12}H_{22}O_2=CH_2:CH\cdot[CH_2]_9\cdot CO_2H$. B. Durch Verseifung ihres Nitrils mit siedender alkoholischer Kalilauge als Hauptprodukt (Tomecko, Adams, Am.Soc. 49, 527; Chuit, Mitarb., Helv. 10, 113). — Wurde nicht rein erhalten (Ch., Mitarb.). Krystalle (aus Petroläther). F: 19° (Ch., Mitarb.). Kp₁₅: 171—172° (Ch., Mitarb.); Kp₃: 143—144° (T., A.). — $D_0^m: 0,9030$; $n_0^m: 1,4510$ (T., A.). — Liefert bei der Spaltung mit Ozon Nonan-dicarbonsäure-(1.9) (Chuit, Mitarb.). Gibt bei der Einw. von Schwefelsäure bei ca. 90° γ -n-Octyl-butyrolacton (?) (Syst. Nr. 2459) (Ch., Mitarb.). Geht beim Erhitzen mit konz. Kalilauge auf ca. 230° fast völlig in A^{10} . Dodecensäure über (Ch., Mitarb.). Bei Behandlung mit schmelzendem Kaliumhydroxyd bei $350-370^\circ$ entsteht hauptsächlich Caprinsäure (Ch., Mitarb.). — $Ba(C_{12}H_{21}O_2)_2$. Krystalle (aus wäßr. Alkohol) (Ch., Mitarb.).

Methylester C₁₃H₂₄O₂ = CH₂:CH·[CH₂]₉·CO₂·CH₃. B. Aus der nicht rein erhaltenen d¹¹-Dodecensäure durch Kochen mit Methanol in Gegenwart von wenig konz. Schwefelsäure (Tomecko, Adams, Am. Soc. 49, 528; vgl. Chuit, Mitarb., Helv. 10, 113). — Flüssigkeit von schwachem Geruch. Kp₁₃: 138—139° (Chuit, Mitarb.); Kp₃: 121—123° (T., A.). — Liefert bei der Einw. von Ozon in Eisessig und folgenden Behandlung der mit Wasser und Ather verdünnten Lösung mit Zinkstaub hauptsächlich 10-Oxo-decan-carbonsäure-(1)-methylester (T., A.; Davies, A., Am. Soc. 50, 1752) und weniger Nonan-dicarbonsäure-(1.9)-monomethylester (Lycan. A., Am. Soc. 51, 627).

Äthylester $C_{14}H_{26}O_2 = CH_2:CH \cdot [CH_2]_9 \cdot CO_2 \cdot C_2H_5$. Nicht rein erhalten. Flüssigkeit. $Kp_{18}: 154,5-155,5^6$. $D^{15}: 0,879$ (Chuit, Mitarb., Helv. 10, 114).

Nitril $C_{12}H_{21}N=CH_2\cdot CH\cdot [CH_2]_9\cdot CN$. B. Bei längerem Kochen von 11-Bromundecen-(1) mit Kaliumcyanid in wäßr. Alkohol (Tomecko, Adams, Am. Soc. 49, 528; Chuit, Mitarb., Helv. 10, 113). — Öl von starkem Nitrilgeruch. Kp₁₂: 142—143° (Ch., Mitarb.); Kp₄: 117—119° (T., A.). D₁₀¹⁰: 0,8405; n₁₀¹⁰: 1,4462 (T., A.). — Liefert bei alkal. Verseifung viel Δ ¹¹-Dodecensäure und wenig Δ ¹⁰-Dodecensäure (Ch., Mitarb.). Gibt bei längerem Erhitzen mit 50% iger alkoholischer Schwefelsäure und folgender alkalischer Verseifung eine Oxylaurinsäure, aus deren Äthylester durch Behandlung mit β -Naphthalinsulfonsäure bei 200—220° vorwiegend Δ ¹⁰-Dodecensäureäthylester und wenig Δ ¹¹-Dodecensäureäthylester (?) entstehen (Ch., Mitarb., Helv. 10, 116).

2. Dodecen:(2) - sdure-(12), Δ^{10} - Dodecensdure, Undecen-(9) - carbon-sdure-(1) $C_{12}H_{23}O_3=CH_2 \cdot CH:CH:[CH_2]_8 \cdot CO_2H$. B. Bei längerem Erwärmen von 1.10-Dibrom-undecan mit Kaliumcyanid in verd. Alkohol auf dem Wasserbad und Verseifen des als Hauptprodukt entstehenden Nitrils der Δ^{10} - Dodecensäure (CHUIT, Mitarb., Helv. 10, 113). Aus Δ^{11} - Dodecensäure beim Erhitzen mit konz. Kalilauge auf ca. 230° (CH., Mitarb.). Neben viel Δ^{11} - Dodecensäure bei alkal. Verseifung des Nitrils der Δ^{11} - Dodecensäure (CH., Mitarb.). Neben wenig Δ^{11} - Dodecensäure (?) bei längerem Erhitzen des Nitrils der Δ^{11} - Dodecensäure mit 50% iger alkoholischer Schwefelsäure, alkal. Verseifung des Reaktionsprodukts, abermaliger Veresterung mit Alkohol, Behandlung des entstandenen Oxylaurinsäureäthylesters mit wenig β -Naphthalinsulfonsäure bei 200—220° und Verseifung (CH., Mitarb.). — F: ca. 18°. $Kp_9:$ 166—168°. — Liefert bei der Spaltung mit Ozon Sebacinsäure.

Methylester $C_{12}H_{24}O_2=CH_3\cdot CH\cdot [CH_2]_8\cdot CO_3\cdot CH_2$. Flüssigkeit von schwachem Geruch. $Kp_{14}\colon 138-140^{\circ};\ D^{15}\colon 0,888$ (Churr, Mitarb., *Helv.* 10, 118).

3. Dodecen-(4)-säure-(1), Δ^4 -Dodecensäure, Δ^7 -Dodecensäure, Undecen-(3)-carbon-säure-(1), Lindersäure 1) $C_{12}H_{22}O_2 = CH_2 \cdot [CH_2]_6 \cdot CH \cdot CH \cdot CH_2 \cdot CH_2 \cdot CO_2H$. V. Verestert im fetten Öl der Samen von Linders obtusilobs (Iwamoto, Chem. Abstr. 18, 1112; TOYAMA, J. Soc. chem. Ind. Japan 40 [1937], 285 B; C. 1938 I, 2647; Komori, Uerio, Bl. chem. Soc. Japan 12 [1937], 433; C. 1938 I, 2859). — B. Durch Verseifung des Methylesters (T.; K., U.). — Hellgelbes Öl. F: 1—1,5° (I.), 1—1,3° (K., U.). Kp₁₂: 170—172° (K., U.). D₁₅: 0,9109 (T.), 0,9106 (K., U.). n₁₅: 1,4511 (I.), 1,4542 (T.); n₁₅: 1,4492 (I.), 1,4529 (K., U.) — Bei der Oxydation nach Hazura entsteht γ . Dioxy-laurinsäure (I.; K., U.). Gibt bei der Ozonspaltung Caprylaldehyd, Caprylsäure und Bernsteinsäure (I.).

Methylester $C_{12}H_{24}O_2 = CH_3 \cdot [CH_2]_4 \cdot CH \cdot CH_2 \cdot CH_2 \cdot CO_3 \cdot CH_2$. B. Aus dem fetten Ol der Samen von Linders obtusilobs durch Umesterung mit Methanol (TOYAMA, J. Soc. chem. Ind. Japan 40 [1937], 286 B; C. 1938 I, 2647; vgl. a. IWAMOTO, Chem. Abstr. 18, 1112). — $Kp_{18}: 130-134^{\circ}; \ D_{1}^{\circ}: 0,8907; \ n_{2}^{\circ}: 1,4452 \ (T.).$

4. 2.6-Dimethyl-decen-(2)-säure-(10). 4.8-Dimethyl-nonen-(7)-carbonsäure-(1), Citronellylessigsäure C₁₂H₁₂O₃ = (CH₂)₂C:CH·CH₂·CH₂·CH(CH₃)·CH₁·CH₂·CH₂·CH₂·CH₂·CH₂·CH(CH₃)·CO₂H. Linksdrehende(?) Form. Die über die Einheitlichkeit des Citronellals (E II 1, 803) gemachten Bemerkungen haben entsprechende Bedeutung für Citronellylessigsäure. — B. Aus linksdrehender Citronellidenessigsäure durch Reduktion mit Natrium in siedendem absolutem Alkohol (Ruzicka, Steiger, Helv. 10, 684). — Dickes Ol. Kp₁₂: 168—169°. D¹²₄: 0,9211. n¹³₅: 1,4595. — Liefert bei der Behandlung mit Ozon in Eisessig und folgendem Erwärmen der mit Wasser versetzten Lösung mit Chromtrioxyd auf dem Dampfbad 3-Methyl-hexan-dicarbonsäure-(1.6) (R., St., Helv. 10, 688).

Äthylester $C_{14}H_{26}O_2 = (CH_2)_2C:CH \cdot CH_2 \cdot CH_3 \cdot CH(CH_2) \cdot [CH_2]_2 \cdot CO_2 \cdot C_2H_5$. B. Aus der Säure durch Behandlung mit 1 % iger alkoholischer Schwefelsäure (Ruzicka, Steiger, Helv. 10, 685). — Wurde nicht rein erhalten. Kp₁₂: 145—155°. Ist linksdrehend.

11. Carbonsauren C₁₃H₂₄O₂.

1. Tridecen-(1) - sāure-(13), Δ¹³-Tridecensāure, Dodecen-(11)-carbon-sāure-(1) C₁₂H₂₄O₂ = CH₂·CH·[CH₂]₁₀·CO₂H. B. Beim Erhitzen von Dodecen-(11)-dicarbonsāure-(1.1) auf 110—190° (CHUIT, Mitarb., Helv. 10, 118) oder 150° (ΤΟΜΕСΚΟ, ΑΡΑΜS, Am. Soc. 49, 529). — Blāttchen (aus verd. Alkohol). F: 38—38,2° (Cπ., Mitarb.), 38—39° (T., A.). Kp₂₀: 192°; Kp₂: 162° (T., A.); Kp₂₁: 185° (Cπ., Mitarb.). Leicht lödich in Alkohol, Ather, Benzol und Petrolāther. — Liefert bei der Oxydation mit Permanganat in alkal. Lösung oder besser bei der Spaltung mit Ozon Decan-dicarbonsäure-(1.10) (Cπ., Mitarb.). Bei Behandlung mit Schwefelsäure bei 90° entsteht γ-n-Nonyl-butyrolacton (?) (Syst. Nr. 2459) (Cπ., Mitarb.). Geht beim Schwelzen mit Kaliumhydroxyd bei ca. 220° in Tridecen-(2)-sāure-(13) über; bei 310—360° werden hauptsächlich Undecansäure, in geringerer Menge Carbonsäuren CnH₂nO₂ mit 8, 9 und 10 Kohlenstoffatomen gebildet (Cπ., Mitarb.).

Methylester C₁₄H₂₆O₃ = CH₂:CH·[CH₂]₁₀·CO₃·CH₃. Fruchtartig riechende Flüssigkeit. Kp₈: 143° (Chult, Mitarb., Helv. 10, 119); Kp₂: 133° (Tomecko, Adams, Am. Soc. 49, 529). D^m₂: 0,8819; n^m₅: 1,4438 (T., A.). — Liefert bei der Einw. von Ozon in Eisessig und folgender Behandlung der mit Wasser und Äther verdünnten Lösung mit Zinkstaub 11-Oxoundecan-carbonsäure-(1)-methylester (T., A.) und weniger Decan-dicarbonsäure-(1.10)-monomethylester (Lycan, A., Am. Soc. 51, 627).

¹) Englisch: linderic acid; ist nicht identisch mit Linderasture C₁₅H₁₈O₃ (Kondo, Sanada, C. 1926 I, 2805; vgl. Suzuri, C. 1930 II, 3302).

Äthylester $C_{15}H_{18}O_3=CH_3:CH\cdot[CH_3]_{10}\cdot CO_3\cdot C_5H_5$. Fruchtartig riechende Flüssigkeit. Kp₈: 150° (CHUIT, Mitarb., *Helv.* 10, 119). D¹⁵: 0,880.

- ω-Tridecenylester $C_{ab}H_{48}O_3=CH_3:CH\cdot[CH_2]_{10}\cdot CO_3\cdot[CH_2]_{11}\cdot CH:CH_2$. B. Aus der Säure und Tridecen-(1)-ol-(13) in Gegenwart einer geringen Menge verd. Mineralsäure (Chuit, Mitarb., Helv. 10, 119). F: ca. 18°. $Kp_{18}:230-235^\circ$.
- 2. Tridecen-(2)-säure-(13), △¹¹-Tridecensäure, Dodecen-(10)-carbon-säure-(1) C₁₂H₂₄O₃ = CH₃·CH·CH·[CH₂]₃·CO₃H. B. Neben anderen Produkten bei der Verseifung des aus 1.10-Dibrom-undecan und Natrium-malonester in Alkohol im Autoklaven bei 150° entstehenden Reaktionsprodukts und folgendem Erhitzen des Gemisches der freien Säuren auf 100—190° (CHUIT, Mitarb., Helv. 10, 178). Beim Schmelzen von △¹¹²-Tridecensäure mit Kaliumhydroxyd bei cs. 220° (CHUIT, Mitarb., Helv. 10, 122). Blättchen (aus Petroläther). F: 28—29°; Kp₁₃₋₅: 183—185°; Kp₄: 161—162° (CH., Mitarb., Helv. 10, 122). Liefert bei der Behandlung mit Ozon in Tetrachlorkohlenstoff und Zersetzung des entstandenen Ozonids mit Wasser Nonan-dicarbonsäure-(1.9) (CH., Mitarb., Helv. 10, 122).

Methylester $C_{14}H_{26}O_{2}=CH_{3}\cdot CH\cdot [CH_{2}]_{9}\cdot CO_{2}\cdot CH_{3}$. Kp_{10} : 147—148° (Chuit, Miterb., Helv. 10, 123).

- 3. 10-Methyl-undecen-(1)-carbonsäure-(4), η -Methyl- α -allyl-pelargonsäure $C_{13}H_{24}O_3=(CH_3)_2CH\cdot[CH_2]_5\cdot CH(CH_2\cdot CH\cdot CH_2)\cdot CO_3H$. B. Aus dem durch Behandlung der Natriumverbindung von 7-Methyl-octan-dicarbonsäure-(1.1)-diathylester mit Allyl-bromid entstehenden Diäthylester der 10-Methyl-undecen-(1)-dicarbonsäure-(4.4) durch Verseifung und folgendes Erhitzen der freien Säure unter vermindertem Druck (Darzens, C. r. 183, 1111). Liefert beim Erwärmen mit 80 %iger Schwefelsäure auf 90° γ -Methyl- α -isooctyl-butyrolacton (Syst. Nr. 2459).
 - 4. Carbonsdure C₁₃H₂₄O₂ aus 2-Methyl-tetradecadien-(5.12 und 6.12) s. E II 1, 242. [Knobloch]

12. Carbonsäuren $C_{14}H_{26}O_2$.

- Tetradecen-(4)-săure-(1). Δ'-Tetradecensăure, Δ'-Tetradecensăure, Tridecen-(3)-carbonsăure-(1), Tsuzusăure C₁₄H₁₆O₃ = CH₃·[CH₃]₆·CH:CH·CH₂·CH₄·CO₃H. V. Im Tsuzuöl (Öl aus Samen von Tetradenia glauca Mats.) (Tsujimoto, Ch. Umschau Fette 35, 225; C. 1928 II, 2257). Krystalle. F: ca. 20°. Liefert bei der Ozonspaltung Caprinaldehyd, Caprinsäure, Bernsteinsäurehalbaldehyd und Bernsteinsäure.
- 2. Tetradecen-(5)-säure-(1), Δ⁵-Tetradecensäure, Δ⁶-Tetradecensäure, Tridecen-(4)-carbonsäure-(1). Physetersäure C₁₄H₂₆O₂ = CH₃· [CH₂]₇· CH·CH·[CH₂]₃· CO₂H. V. Im Spermacetiöl (Kopftran von Physeter macrocephalus) sowie in geringerer Menge im Delphintran (Kopftran von Delphinus longirostris) (Tsujimoto, Ch. Umschau Fette 30, 34; 35, 227; C. 1923 I, 1371; 1928 II, 2373). Flüssig. Erstarrt nicht bei 0° (T., Ch. Umschau Fette 35, 227). Kp₁₅: 190—200° (T., Ch. Umschau Fette 30, 34). D¹⁶₄: 0,9079; D¹⁶₇: 0,9044; n¹⁵₇: 1,4566; n¹⁶₇: 1,4547 (T., Ch. Umschau Fette 30, 34). D¹⁶₄: 0,9042; D¹⁶₄: 0,9048; n¹⁶₇: 1,4549 (Wagner, O'Fett-Zig. 24, 340; C. 1927 II, 708). Liefert bei der Ozonisierung in Chloroform ein Perozonid (s. u.) (T., Ch. Umschau Fette 32, 203 W.). Bei gelinder Oxydation mit Kaliumpermanganat entsteht δ.ε-Dioxy-myristinsäure (F: 119—120°) (T., Ch. Umschau Fette 30, 35; 35, 227). Gibt bei der Hydrierung in absol. Alkohol bei Gegenwart von Platinschwarz Myristinsäure (T., Ch. Umschau Fette 30, 34).

Uber eine Tetradecensäure $C_{14}H_{26}O_2$ aus dem Tran des kalifornischen Grauwals, die vielleicht mit Physetersäure identisch ist, vgl. Toyama, Ch. Umschau Fette 34, 20; C. 1927 I,

3201. — D4: 0,9030; n5: 1,4532 (nicht ganz einheitliches Präparat).

Physetersäure-perozonid C₁₄H₂₆O₆. Zur Konstitution vgl. Staudinger, B. 58, 1088. — B. Durch Ozonisierung von A⁵-Tetradecensäure in Chloroform (Tsujimoto, Ch. Umschau Fette 32, 203; Wagner, Öl-Fett-Ztg. 24, 340; C. 1927 II, 708). — Stechend riechende zähe Flüssigkeit. D¹⁵: 1,063; n; 1,4645 (T.). — Verpufft beim Erhitzen auf dem Platinblech (T.). Zersetzt sich beim Erwärmen mit Wasser unter Bildung von Nonylaldehyd, Pelargonsäure und Glutarsäure (T.; vgl. a. W.).

Methylester $C_{15}H_{25}O_{2} = CH_{3} \cdot [CH_{3}]_{7} \cdot CH \cdot [CH_{2}]_{5} \cdot CO_{2} \cdot CH_{3}$. Kp₁₅: 160—166°; n_D°: 1,4461 (Tsujimoto, *Ch. Umechau Fette* 30, 35; *C.* 1928 I, 1371).

3. Tetradecen-(5)-säure-(14), \(\Delta^2\)-Tetradecensäure, Tridecen-(8)-carbon-säure-(1), Myristoleinsäure \(C_{14} \)\ \(\Delta_{24} \)\ \(\Oldots_{2} = \CH_3 \)\ \([CH_3]_3 \)\ \(CH \cdots [C

Über eine wahrscheinlich nicht einheitliche Myristoleinsäure C₁₄H₂₆O₂ aus dem Leberöl von Scymnorhinus lichia und anderen Haifisch-Leberölen vgl. HILDITCH, HOULBROOKE, Analyst 53, 253, 256; C. 1928 II, 503.

4. 2-Methyl-tridecen-(12)-säure-(1). Tridecen-(12)-carbonsäure-(2) C₁₄H₂₆O₂ — CH₂: CH·[CH₂]₉·CH(CH₃)·CO₂H. B. Beim Erhitzen von Tridecen-(12)-dicarbonsäure-(2.2) (Syst. Nr. 179) auf 150—190° (Снит, Mitarb., Helv. 10, 124). — Krystalle. F: 8—9°; Kp₁₀: 182—184°; D¹⁵: 0.893; leicht löslich in Petroläther und anderen gebräuchlichen Lösungsmitteln (Сн., Mitarb., Helv. 10, 124). — Liefert beim Ozonisieren in Tetrachlorkohlenstoff und nachfolgenden Zersetzen mit warmem Wasser Undecan-dicarbonsäure-(1.10) und 11-Formyl-undecan-carbonsäure-(2) (Сн., Mitarb., Helv. 10, 124, 168).

Methylester $C_{15}H_{28}O_2=CH_2:CH\cdot[CH_2]_9\cdot CH(CH_3)\cdot CO_2\cdot CH_3$. Flüssig. $Kp_{10}:$ 148° bis 149°; $D^{15}:$ 0,879 (Chuit, Mitarb., Helv. 10, 124). — Liefert bei der Reduktion mit Natrium und absol. Alkohol 2-Methyl-tridecen-(12)-ol-(1).

Äthylester $C_{16}H_{30}O_2 = CH_2: CH \cdot [CH_2]_9 \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. Flüssig. $Kp_{10}: 160,4-161^9: D^{15}: 0,873$ (Chuit, Mitarb., *Helv.* 10, 124).

Amid C₁₄H₂₇ON = CH₂: CH·[CH₂]₀·CH(CH₃)·CO·NH₂. B. Beim Behandeln des aus Tridecen-(12)-carbonsäure-(2) mit Thionylchlorid bei 100° erhältlichen Chlorids mit wäßr. Ammoniak unter Kühlung (Сниіт, Mitarb., Helv. 10, 125). — Nadeln (aus verd. Alkohol). F: 86—86,5°.

5. 2.6-Dimethyl-dodecen-(2)-säure-(12), 6.10-Dimethyl-undecen-(9)-carbonsäure-(1), γ -Citronellyl-buttersäure $C_{14}H_{26}O_2=(CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CO_2H$. B. Man verseift $[\beta\cdot Citronellyl-athyl]$ -malonsäure-diäthylester (Syst. Nr. 179) durch Kochen mit überschüssiger alkoholischer Kalilauge und erhitzt die (nicht näher beschriebene) $[\beta\cdot Citronellyl-athyl]$ -malonsäure auf ca. 170° (Ruzicka, Steiger, Helv. 10, 686). — $Kp_{12}:$ 178—180°. Ist linksdrehend.

Äthylester $C_{16}H_{30}O_2=(CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CO_2\cdot C_2H_5$. Kp₁₂: 155—165° (Ruzicka, Steiger, *Helv.* 10, 686). Ist linksdrehend. — Liefert bei der Reduktion mit Natrium in absol. Alkohol δ -Citronellyl-butylalkohol.

13. Carbonsäuren $C_{15}H_{28}O_2$.

1. Pentadecen-(1)-säure-(15), Δ^{14} -Pentadecensäure, Tetradecen-(13)-carbonsäure-(1) $C_{15}H_{28}O_2=CH_2:CH\cdot[CH_2]_{12}\cdot CO_2H$. B. Beim Erhitzen von Tetradecen-(13)-dicarbonsäure-(1.1) auf 110—190° (Chutt, Mitarb., Helv.10, 127). — Blättchen (aus verd. Alkohol). F: 49,8—50°. Kp₈: 195°. — Liefert beim Ozonisieren Dodecan-dicarbonsäure-(1.12).

Methylester $C_{16}H_{30}O_{3}=CH_{3}:CH\cdot[CH_{3}]_{12}\cdot CO_{2}\cdot CH_{3}$. Öl. Kp₈: 167—168°; D¹⁵: 0,881 (Chuit, Mitarb., *Helv.* 10, 127). — Bei der Reduktion mit Natrium und absol. Alkohol entsteht Pentadecen-(1)-ol-(15).

Äthylester $C_{17}H_{32}O_2=CH_2:CH\cdot [CH_2]_{12}\cdot CO_2\cdot C_2H_5$. Öl. Kp_8 : 174—176°; D^{15} : 0.875 (Chuit, Mitarb., Helv. 10, 127).

ω-Pentadecenylester $C_{30}H_{56}O_2 = CH_2:CH \cdot [CH_2]_{12} \cdot CO_2 \cdot [CH_2]_{13} \cdot CH : CH_2$. Blättehen (aus Alkohol). F: 35—35,5°; Kp₁₀: 290—295° (Chuit, Mitarb., Helv. 10, 127).

2. Pentadecen-(2)-säure-(15), Δ^{13} -Pentadecensäure, Tetradecen-(12)-carbonsäure-(1) $C_{15}H_{26}O_2=CH_3\cdot CH\cdot [CH_2]_{11}\cdot CO_2H$. B. Bei der Kondensation von 1.12-Dibrom-tridecan mit Natrium-malonester, Verseifung des Reaktionsprodukts und Destillation der Säure (Chuit, Mitarb., Helv. 10, 130). — Blättchen (aus verd. Alkohol). F: 42,2—43°. Kp_{1,25}: 174—176°. — Liefert beim Ozonisieren in Tetrachlorkohlenstoff Brassylsäure.

Methylester $C_{16}H_{30}O_2 = CH_3 \cdot CH \cdot [CH_2]_{11} \cdot CO_2 \cdot CH_3$. Öl. Kp_8 : 166—168°; D^{15} : 0,883 (Churr, Mitarb., Helv. 10, 130). — Bei der Reduktion mit Natrium und absol. Alkohol erhält man Pentadecen-(2)-ol-(15).

Äthylester $C_{17}H_{32}O_3 = CH_3 \cdot CH \cdot CH \cdot [CH_2]_{11} \cdot CO_2 \cdot C_2H_5$. Öl. Kp_8 : 175—177°; D^{15} : 0.877 (Chuit, Mitarb., Helv. 10, 130).

14. Carbonsäuren C₁₆H₃₀O₂.

1. Hexadecen-(2)-säure-(1), Δ^2 -Hexadecensäure, Δ^{α} -Hexadecensäure. Pentadecen-(1)-carbonsäure-(1), Δ^{α} -Hypogäasäure $C_{16}H_{30}O_3 = CH_3 \cdot [CH_2]_{12} \cdot CH \cdot CO_2H$ (H 460; E I 196). Der Übergang in $\alpha.\beta$ -Dibrom-palmitinsäure durch Addition von Brom in Chloroform verläuft sehr träge (GABEL, Ukr. chemič. Z. 1, 84; C. 1925 II, 1668).

Liefert beim Erhitzen mit Acetanhydrid im Rohr auf 160—170° Δ^{α} - Hexadecensäure-anhydrid (s. u.) (GABEL, B. 58, 579).

Glycerin-tri- \varDelta^{α} -hexadecenoat, "Tri- \varDelta^{α} -palmitolein" $C_{51}H_{92}O_6=(CH_3\cdot [CH_2]_{12}\cdot (H:CH\cdot CO\cdot O)_3C_3H_5$. Nährwert für Ratten: Ozaki, *Bio. Z.* 189. 234.

 Λ^{α} -Hexadecensäure-anhydrid, Λ^{α} -Hypogäasäure-anhydrid $C_{32}H_{58}O_3 = (CH_3 \cdot (CH_2)_{12} \cdot (CH:CH:CO)_2O$. B. Beim Erhitzen von Λ^{α} -Hypogäasäure mit Acetanhydrid im Rohr auf 160—170° (GABEL, B. 58, 579; Ukr. chemič. Z. 1, 86; C. 1925 II, 1668). — Blättchen (aus absol. Äther). F: 60°.

- 2. Hexadecen-(6)-säure-(16). A^{10} -Hexadecensäure, Pentadecen-(9)-carbonsäure-(1) $C_{18}H_{30}O_3 = CH_3 \cdot [CH_2]_4 \cdot CH \cdot CH \cdot [CH_2]_8 \cdot CO_2H$. B. Über die Bildung des Methylesters bei der Hydrierung von Zoomarinsäuremethylester mit ca. $\frac{1}{3}$ der berechneten Menge Wasserstoff in Gegenwart von Nickel-Kieselgur bei 170—180° vgl. Hilditch. Vidyarthi, Pr. roy. Soc. [A] 122, 552, 555; C. 1929 I, 2163.
- 3. Hexadecen (7) säure (16), A^9 Hexadecensäure, Pentadecen (8) carbonsäure-(1), Zoomarinsäure. Palmitoleinsäure, Palmitölsäure, Physet-ölsäure $C_{16}H_{30}O_2 = CH_3 \cdot [CH_2]_5 \cdot CH \cdot CH \cdot [CH_2]_7 \cdot CO_2H$ (H 461; E I 196).

Zur Identität der Physetölsäure (H 461, Nr. 6) von Hofstädter, A. 91, 177, der Carbonsäure C₁₆H₃₀O₂ aus Seehundsfett (H 461, Nr. 7) von Ljubarski, J. pr. [2] 57, 19 und der Carbonsäure C₁₆H₃₀O₂ aus Dorschleberöl (H 461, Nr. 8) von Bull, B. 39, 3573 mit Palmitoleinsäure vgl. Armstrong, Hilditch, J. Soc. chem. Ind. 44, 182 T; C. 1925 II, 576; Hi., Vidyarthi, J. Soc. chem. Ind. 46, 172 T; C. 1927 II, 238; zur Identität von Palmitoleinsäure mit Zoomarinsäure vgl. Toyama, J. Soc. chem. Ind. Japan Spl. 30, 156; C. 1927 II, 2744; zur Identität von Physetölsäure mit Zoomarinsäure vgl. To., Ch. Umschau Fette 33, 294; C. 1927 I, 1331; Tsujimoto, Ch. Umschau Fette 35, 227; C. 1928 II, 2373.

V. Zum Vorkommen im Spermacetiöl (Kopf- oder Specktran von Physeter macrocephalus) vgl. a. Tsujimoto, Ch. Umschau Fette 28 [1921], 71; 35 [1928], 227; Toyama, Ch. Umschau Fette 31 [1924], 226; J. Soc. chem. Ind. Japan Spl. 30, 137; C. 1928 I, 2417. Findet sich in Waltranen verschiedener Herkunft (vgl. Milligan, Knuth, Richardson, Am. Soc. 46, 164; Armstrong, Hilditch, J. Soc. chem. Ind. 44, 182 T; C. 1925 II, 576; To., Ch. Umschau Fette 31, 225, 226, 244; 33, 296; 34, 20; C. 1925 I, 789; 1927 I, 1331, 3201; J. Soc. chem. Ind. Japan Spl. 30, 155; C. 1927 II, 2744) sowie im Robbentran (BAUER, NETH, Ch. Umschau Fette 31, 6; C. 1924 II, 561). Im Leberöl von Scymnorhinus lichia und anderen Haifisch-Leberölen (H., Houlbrooke, Analyst 53, 253, 256; C. 1928 II, 503; To., J. Soc. chem. Ind. Japan Spl. 30, 20; C. 1929 II, 1987; To., Tsuchiya, J. Soc. chem. Ind. Japan Spl. 30, 36, 58; C. 1929 II. 1987, 2278). Über Vorkommen von Zoomarinsäure im Forellenöl vgl. To., Ch. Umschau Fette 31, 226. Zoomarinsäure wurde ferner im Öl der Samen von Argemone mexicana L. (Mexikanischer Mohn oder Stachelmohn) gefunden (IYER, SUDBOROUGH, AYYAR, J. indian Inst. Sci. 8, 37; C. 1926 I, 1482; vgl. HILDITCH, VIDYARTHI, J. Soc. chem. Ind. 46, 172 T; C. 1927 II, 238). — Hellgelbe Flüssigkeit. Kp₁₅: 218—220° (To., Ch. Umschau Fette 31, 244). D¹⁵: 0,9003; n¹⁵: 1,4606; n¹⁶: 1,4586 (To., Ch. Umschau Fette 34, 20; vgl. a. To., Ch. Umschau Fette 31, 225, 244; 33, 296). — Bei der Einw. von 36% igem Wasserstoffperoxyd auf Zoomarinsäuremethylester in Eisessig bei Zimmertemperatur erhält man den Methylester der niedrigerschmelzenden Form der д.:-Dioxy-palmitinsäure (Syst. Nr. 230) (Hilditch, Soc. 1926, 1836). Beim Behandeln von Zoomarinsäure mit Permanganat in alkal. Lösung in der Kälte bildet sich die höherschmelzende Form der $\vartheta.\iota.$ Dioxy-palmitinsäure (Armstrong, Hi., J. Soc. chem. Ind. 44, 182 T; C. 1925 II, 576; To., Ch. Umschau Fette 31, 225; 33, 296: 34, 20). Beim Oxydieren des Methylesters mit Kaliumpermanganat in Aceton (A., Hr., J. Soc. chem. Ind. 44, 182 T; C. 1925 II, 576; To., J. Soc. chem. Ind. Japan Spl. 30, 155; C. 1927 II. 2744) oder in Essigsäure (A., HI.) entstehen Önanthsäure und Äzelainsäure. Zoomarinsäure gibt beim Ozonisieren ein nicht näher beschriebenes Ozonidperoxyd, das bei der Einwirkung von siedendem Wasser Onanthol, Onanthsäure und Azelainsäure liefert (To., J. Soc. chem. Ind. Japan Spl. 30, 155). Bei der Hydrierung von Zoomarinsäure in Gegenwart von Platinschwarz entsteht Palmitinsäure (To., Ch. Umschau Fette 31, 225). Bei der Hydrierung des Methylesters mit ca. ¹/₃ der berechneten Menge Wasserstoff in Gegenwart von Nickel-Kieselgur bei 170—180° entstehen die Methylester der 18-Hexadecensäure und der 110-Hexadecensäure (Hi.. Vidyarthi, Pr. roy. Soc. [A] 122, 555, 561; C. 1929 I, 2163).

Zoomarinsäuremethylester, Methylzoomarat $C_{17}H_{32}O_2=CH_3\cdot [CH_4]_5\cdot CH:CH\cdot [CH_2]_7\cdot CO_2\cdot CH_3$. Kp₅: 140—141° (Armstrong, Hilditch, *J. Soc. chem. Ind.* 44, 182 T: *C.* 1925 II, 576). — Verhalten bei der Oxydation und Hydrierung s. bei der Säure.

Zoomarinsäureäthylester, Äthylzoomarat $C_{18}H_{34}O_{2} = CH_{3} \cdot [CH_{2}]_{5} \cdot CH \cdot CH \cdot [CH_{2}]_{7} \cdot CO_{2} \cdot C_{2}H_{5}$. Flüssigkeit (Armstrong, Hilditch, J. Soc. chem. Ind. 44, 182 T).

- 4. Hexadecen-(8)-sdure-(1), \(\text{1s-Hexadecensdure}, \) Pentadecen-(7)-carbon-sdure-(1) \(C_{12}H_{20}O_3 = CH_3 \cdot [CH_2]_6 \cdot CH \cdot CH \cdot [CH_3]_6 \cdot CO_3H. \(B \cdot CD_3H \cdot B \cdot CD_3H \cdot
- 5. 4-Methyl-pentadecen-(14)-säure-(1), 3-Methyl-tetradecen-(13)-carbonsture-(1) C_{1e}H₂₀O₂ = CH₂: CH·[CH₂]₂· CH(CH₂)· CH₂· CH₃· CG₄H. B. Durch Kondensation von 1-Brom-2-methyl-tridecen-(12) mit Natriummalonester auf dem Wasserbad, Verseifung und Zersetzung der entstandenen Dicarbonsäure durch Erhitzen (CHUIT, Mitarb., Helv. 10, 131). Wurde in Form des Methylesters isoliert.

Methylester $C_{17}H_{23}O_3=CH_3\cdot CH\cdot [CH_2]_0\cdot CH(CH_3)\cdot CH_2\cdot CH_3\cdot CO_2\cdot CH_3$. Kp₁₀: 167° bis 173° (Churr, Mitarb., *Helv.* 10, 131). — Bei der Reduktion mit Natrium und absol. Alkohol bildet sich 4-Methyl-pentadecen-(14)-ol-(1).

6. 2.6-Dimethyl-tetradecen-(2)-säure-(14), 8.12-Dimethyl-tridecen-(11)-carbonsäure-(1), e-Citronellyl-n-capronsäure C_{1e}H₂₀O₂ = (CH₂)₂C:CH·CH₂·CH₂·CH₂·CH₃·CO₄. B. Man verseift [5-Citronellyl-butyl]-malonsäure-diäthylester mit siedender alkoholischer Kalilauge und zersetzt die nicht näher beschriebene [5-Citronellyl-butyl]-malonsäure durch Erhitzen (RUZICKA, STEICER, Helv. 10, 687). — Dickfüssiges Öl. Kp₁: 160—165°. — Liefert bei der Ozonisierung in Eisessig und Behandlung des Reaktionsprodukts mit Chromtrioxyd in Eisessig in der Wärme 3-Methyl-decan-dicarbonsäure-(1.10).

Äthylester $C_{18}H_{24}O_{3} = (CH_{3})_{2}C:CH\cdot CH_{3}\cdot CH_{4}\cdot CH_{4}\cdot CH_{5}\cdot [CH_{3}]_{7}\cdot CO_{3}\cdot C_{5}H_{5}$. Kp₁₈: 185° bis 190° (RUZICKA, STEIGER, *Helv.* 10, 687). Ist linksdrehend. — Liefert bei der Reduktion mit Natrium und absol. Alkohol ζ -Citronellyl-n-hexylalkohol.

7. Carbonsäure $C_{16}H_{20}O_2$ aus Cymbopogon caesius. V. Im ätherischen Öl der Blüten und Blätter von Cymbopogon caesius Stpf. (MOUDGILL, Quart. J. indian chem. Soc. 2, 35; C. 1926 I, 515). — Gelbes, ranzig riechendes Öl. D_4^{∞} : 0,8732. n_D^{∞} : 1,4583. Unlöslich in Wasser, leicht löslich in den gewöhnlichen organischen Lösungsmitteln. — $AgC_{16}H_{20}O_2$. Unlöslich in Wasser, sehr schwer löslich in Alkohol.

15. Carbonsauren $C_{17}H_{32}O_{2}$.

1. Heptadecen-(8)-säure-(1), △°-Heptadecensäure, Hexadecen-(7)-carbon-säure-(1) C₁₇H₂₈O₃= CH₃·[CH₂]₇·CH:CH·[CH₂]₆·CO₂H. B. Aus 1.1-Diphenyl-octadecadien-(1.9) durch Oxydation mit Chromsäure in Eisessig (SKRAUP, SOHWAMBERGER, A. 462, 142, 155). — Gelbliche Flüssigkeit. F: —1°. Kp₂₀: 226—227°. — Liefert beim Behandeln mit Wasserstoffperoxyd in Eisessig η.θ-Dioxy-margarinsäure. Bei der Oxydation des Methylesters mit Kaliumpermanganat in Aceton entstehen Pelargonsäure und Korksäure. Bei der Hydrierung der Säure in Methanol bei Gegenwart von Pallsdium(II)-chlorid und Gummi arabioum bildet sich Margarinsäure. — Das Bleisalz löst sich in Ather.

Methylester $C_{19}H_{34}O_9 = CH_3 \cdot [CH_2]_7 \cdot CH \cdot CH \cdot [CH_2]_6 \cdot CO_3 \cdot CH_3$. B. Aus Heptadecen-(8)-săure-(1) beim Behandeln mit methylalkoholischer Salzsäure (Skraup, Schwamberger, A. 462, 142, 156). — Gelbliches Öl. Kp_{18} : 195°.

2. 2.6 - Dimethyl - pentadecen - (2) - saure - (15), 9.13 - Dimethyl - tetradecen-(12)-carbonsäure-(1), ζ -Citronellyl-önanthsäure $C_{17}H_{22}O_{2}=(CH_{2})_2C$: CH: CH_{2} : $CH(CH_{3})$: $[CH_{2}]_{2}$: $CO_{2}H$. B. Durch Kochen von ζ -Citronellyl-n-hexylbromid mit Kaliumoyanid in verd. Alkohol und Verseifen des entstandenn Nitrils mit siedender Salzsäure (Rueicka, Steiger, Helv. 10, 689). — Dickflüssiges Öl. Kp_{0,5}: ca. 170°. — Liefert bei der Ozonisierung in Eisessig und Behandlung des Reaktionsprodukts mit Chromtrioxyd in Eisessig in der Wärme 3-Methyl-undecan-dicarbonsäure-(1.11) (Syst. Nr. 178).

16. Carbonsäuren $C_{18}H_{34}O_{2}$.

1. Octadecen - (2) - saure - (1), Δ^{2} - Octadecensaure, Δ^{α} - Octadecensaure, Heptadecen-(1)-carbonsaure-(1), A^{α} - Elaidinsaure " $C_{10}H_{24}O_{2}=CH_{2}$ [$CH_{2}h_{4}$ CH: CH · $CO_{2}H$ (H 462; E I 196). Zur Konfiguration vgl. Semeria, G. 55, 79; S., Ribotti-Lissone, G. 60 [1930], 863; Bertram, Kipperman, Chem. Weeld. 32, 626; C. 1936 I, 673. — Kryoskopische Konstante: 35,8 (S.). Kryoskopisches Verhalten in Stearinsaure: S. Struktur und Verhalten monomolekulare Schichten auf Wasser, verd. Salzsaure und verd. Natronlauge: Adam, Pr. rcy. Soc. [A] 101, 457, 463, 521; Trans. Faraday Soc. 24, 151; C. 1928 I. 271, 272; 1928 II, 741.

H.C.[CH.]. CO.H

Äthylester $C_{30}H_{33}O_3=CH_3\cdot [CH_3]_{14}\cdot CH:CH\cdot CO_3\cdot C_3H_5$ (H 462). Struktur monomolekularer Schichten auf Wasser: Adam, *Pr. roy. Soc.* [A] 103, 690; *C.* 1923 III, 1295.

Glycerin-tri- Δ^{α} -octadecenoat, "Tri- Δ^{α} -elaidin" $C_{57}H_{104}O_6 = (CH_3 \cdot [CH_2]_{14} \cdot CH : CH \cdot CO \cdot O)_2C_2H_5$. Nährwert für Ratten: Ozaki, Bio. Z. 189, 234; Pr. Acad. Tokyo 3, 439; C. 1928 I, 541.

- 2. Octadecen (6) säure (1), \triangle^6 Octadecensäure, \triangle^6 Octadecensäure, Heptadecen (5) carbonsäure (1) $C_{18}H_{34}O_2 = \frac{CH_2 \cdot [CH_2]_{10} \cdot C \cdot H}{H \cdot C \cdot [CH_2]_4 \cdot CO_2 H}$ und $H \cdot C \cdot [CH_3]_{10} \cdot CH_3$
- a) Petroselinsäure, Taroleinsäure C₁₈H₂₄O₂ = CH₃·[CH₂]₁₀·CH·CH·[CH₂]₄·CO₂H (H 462; E I 197). V. Zum Vorkommen als Glycerid im Samenöl der Petersilie (Petroselinum sativum Hoffm. [Apium petroselinum L.]) vgl. a. van Loon, R. 46, 493; Hilditch, Jones, J. Soc. chem. Ind. 46, 175 T; C. 1927 II, 238. Findet sich ferner als Glycerid im Samenöl von Heracleum spondylium L. und Angelica silvestris L. (HI., Jo., Biochem. J. 22, 328, 329). Im Samenfett von Fenchel (Foeniculum capillaceum Gilb.), Möhren (Daucus carota L.), Verienden (Corindarum sativum L.). Sellerie (Apium grayeschen L.) 329). Im Sameniett von Feinei (Foenculum capillaceum Gillo.), Monren (Daucus carota L.), Koriander (Coriandrum sativum L.), Sellerie (Apium gravoolens L.), Pastinake (Pastinaca sativa L.), Kerbel (Chaerophyllum sativum Gärtn.) und Kümmel (Carum carvi L.) (Christian, Hi., Biochem. J. 23, 327). Zum Vorkommen im Epheusamenöl vgl. a. Steger, van Loon, R. 47, 474. — Blättchen (aus Methanol oder 96 %igem Alkohol). F: 31,5° (Eibner, Widenmayer, Schild, Ch. Umschau Fette 34 [1927], 313), 30° (Hi., Jo., J. Soc. chem. Ind. 46, 176 T), 29,4° (van Loon, R. 46, 495; St., van L., R. 47, 474). E: 28,6° (van L., R. 48, 495). D. 20,8802; n. 1,4545; n. 1,4534 (van L., R. 48, 495, 496), 1,4527 (St., van L., R. 47, 474). $\mathbf{n}_{\alpha}^{\mathbf{v}}$: 1,4395; $\mathbf{n}_{\beta}^{\mathbf{v}}$: 1,4419; $\mathbf{n}_{\beta}^{\mathbf{v}}$: 1,4480; $\mathbf{n}_{\gamma}^{\mathbf{v}}$: 1,4530 (Bertram, *Bio. Z.* 197, 439). — Bei der Einw. von Stickoxyden auf dünne Schichten von Petroselinsäure entsteht Petroselidinsäure (HI., Jo., J. Soc. chem. Ind. 46, 176 T; St., VAN L., R. 46, 705). Beim Behandeln von Petroselinsäuremethylester mit Wasserstoffperoxyd in Eisessig entsteht der Methylester der niedrigerschmelzenden ε.ζ-Dioxy-stearinsäure (Hi., Jo., J. Soc. chem. Ind. 46, 176 T). Petroselinsäure gibt bei der Oxydation mit Kaliumpermanganat in alkalischer Lösung unter Kühlung die höherschmelzende Form der ε.ζ-Dioxy-stearinsäure (Hr., Jo., J. Soc. chem. Ind. 48, 176 T; St., van L., R. 46, 705). Bei der Oxydation von Petroselinsäuremethylester mit Permanganat in Aceton erhält man Laurinsäure und Adipinsäure (HI., Jo., J. Soc. chem. Ind. 46, 176 T). Der Methylester liefert beim Behandeln mit Benzopersäure in Chloroform den Methylester der bei $59,2^{\circ}$ schmelzenden $\varepsilon.\zeta$ -Oxido-stearinsäure (Syst. Nr. 2572) (STEGER, VAN L., R. 46, 706). Das aus Petroselinsäure mit Ozon in Chloroform entstehende Ozon id [Öl, erstarrt bei 15° zu einer fettartigen Masse; leicht löslich in Äther (EI., WI., SCHILD)] liefert bei der Spaltung mit heißem Wasser bzw. verd. Alkalilauge Laurinsäure und Adipinsäure (EI., WI., SCHILD; VAN L., R. 46, 496). Bei der Hydrierung des Methylesters in Gegenwart von Nickel-Kieselgur bei 180° bildet sich Stearinsäuremethylester (VAN L., R. 46, 497). Petroselinsaure liefert bei der Einwirkung von Brom in Chloroform ε.ζ-Dibrom-stearinsaure (Petroselinsauredibromid) (E1., W1., SCHILD).

Petroselinsäuremethylester, Methylpetroselinat $C_{19}H_{36}O_3 = CH_3 \cdot [CH_2]_{10} \cdot CH \cdot CH \cdot [CH_2]_4 \cdot CO_3 \cdot CH_3$. Flüssig (Strore, van Loon, R. 46, 706). — Verhalten bei der Oxydation und bei der Hydrierung s. bei Petroselinsäure.

- Glycerintripetroselinat, Tripetroselin $C_{57}H_{104}O_6 = (CH_3 \cdot [CH_2]_{10} \cdot CH \cdot CH \cdot [CH_2]_4 \cdot CO \cdot O)_5C_5H_5$ (H 462). B. Beim Erhitzen von Glycerin mit 3 Mol Petroselinsaure in Gegenwart von 2% Zinkstaub im Kohlendioxyd-Strom unter vermindertem Druck auf 180° (STEGER, VAN LOON, R. 46, 703). Nadeln (aus Äther + Alkohol). F: 26,2°.
- b) Petroseládinsäure, Petroseládinsäure, Turclaidinsäure C₁₈H₂₄O₂ = CH₂·[CH₂]₁₀·CH: CH·[CH₂]₄·CO₂H (H 462, Nr. 2b; E I 197, Nr. 5b). B. Bei der Einw. von Stickoxyden auf dünne Schichten von Petroselinsäure (Hildfich, Jones, J. Soc. chem. Ind. 46, 176 T; C. 1927 II, 238; STEGER, VAN LOON, R. 46, 705). Krystalle (aus Chloroform oder Methanol). F: 52—53° (Hl., Jo.), 52,7° (St., VAN L.). Sehr schwer löslich in Methanol und anderen Lösungsmitteln (Hi., Jo.). n_α[∞]: 1,4383; n₀[∞]: 1,4408; n₀[∞]: 1,4468; n₀[∞]: 1,4517 (Beetram, Bio. Z. 197, 439). Liefert bei der Oxydation mit Kallumpermanganat in alkal. Lösung unter Kühlung die niedrigerschmelzende Form der s.ζ-Dioxy-stearinsäure (St., VAN L.). Der Methylester gibt bei der Oxydation mit Benzopersäure in Chloroform den Methylester der bei 65,4° schmelzenden s.ζ-Oxido-stearinsäure (Syst. Nr. 2572) (St., VAN L.).

Petroselidinsäuremethylester, Methylpetroselidinat $C_{19}H_{20}O_{2}=CH_{3}\cdot [CH_{2}]_{10}\cdot CH$: $CH\cdot [CH_{2}]_{4}\cdot CC_{3}\cdot CH_{2}$. F: 20° (STEGER, VAN LOON, R. 48, 706). — Verhalten bei der Oxydation mit Benzopersäure s. bei Petroselidinsäure.

Glycerintripetroselidinat, Tripetroselidin $C_{57}H_{104}O_6 = (CH_3 \cdot [CH_2]_{10} \cdot CH : CH \cdot [CH_2]_4 \cdot CO \cdot O)_5C_3H_5$. B. Beim Erhitzen von Glycerin mit 3 Mol Petroselidinsäure in Gegenwart von 2% Zinkstaub im Kohlendioxyd-Strom unter vermindertem Druck auf 180° (STEGER. VAN LOON, R. 46, 705). — F: 50,1°.

- O) Derivate der Octadecen-(6)-s\u00e4ure-(1), von denen cs ungewiβ ist, ob sie sterisch zu u) oder b) geh\u00f6ren.
- 6.7-Dijod-octadecen-(6)-säure-(1), Taririnsäuredijodid $C_{18}H_{32}O_2I_2=CH_3\cdot [CH_2]_{10}\cdot CI:CI:[CH_2]_4\cdot CO_2H$ (H 463; E I 197). Herstellung von haltbaren Emulsionen des Wismutsalzes in Ölen für therapeutische Zwecke: Hoffmann-La Roche, D. R. P. 415 227; C. 1925 II, 956; Frdl. 15, 1580.
- 3. Octadecen (6) säure (18), Δ^{12} Octadecensäure, Heptadecen (11) $CH_3 \cdot [CH_2]_4 \cdot C \cdot H$ H·C· $[CH_2]_4 \cdot CH_3$ carbonsäure-(1) $C_{18}H_{24}O_2 = H_3 \cdot [CH_3]_4 \cdot COH_3$ und H·C· $[CH_3]_4 \cdot COH_3$
- carbonsäure-(1) C₁₈H₃₄O₂ = H·C·[CH₂]₁₀·CO₂H und H·C·[CH₂]₁₀·CO₂H H·C·[CH₂]₁₀·CO₂H H·C·[CH₂]₁₀·CO₂H a) Niedrigerschmelzende Form, "Δ¹²·Ölsäure", "12-Ölsäure". B. Beim Erhitzen von λ-Oxy-stearinsäure-äthylester auf 220° in Gegenwart von β-Naphthalinsulfonsäure entsteht ein Gemisch der Äthylester (Kp_{0,8}: 184°) der Δ¹²·Ölsäure und Δ¹²·Elaidinsäure, das mit siedender alkoholischer Kalilauge verseift wird; das Säuregemisch kann entweder in Petroläther-Lösung durch Abkühlung auf —20°, wobei die Δ¹²·Elaidinsäure auskrystallisiert. oder durch Überführung in die Bleisalze getrennt werden (Grün, Czerny, B. 59, 57, 59). Das Äthylestergemisch entsteht auch durch Behandlung von λ-Oxy-stearinsäure mit Thionylchlorid, Umsetzen des Reaktionsprodukts mit absol. Alkohol und nachfolgende Destillation unter vermindertem Druck (Grün, Czerny, B. 59, 56, 58). E: 8,2°. F: 9,8—10,4°. Kp_{1.5}: 196°. Geht durch Behandeln mit Salpetersäure (D: 1,4) und Quecksilber bei 25° in die höherschmelzende Form über. Das Bleisalz ist in kaltem Alkohol leichter löslich als das der höherschmelzenden Form.
- b) Höherschmelzende Form, "Δ¹²-Elaidinsäure", "12-Elaidinsäure" (vgl. E I 198, Nr. 6). B. Aus der niedrigerschmelzenden Form durch Behandeln mit Salpetersäure (D: 1,4) und Quecksilber bei 25° (Grün, Czerny, B. 59, 59). Bildung aus λ-Oxystearinsäure s. bei der niedrigerschmelzenden Form. Blättchen (aus Petroläther). E: 39,5°. F: 39,7—40,1°. Kp_{1,5}: 196°. Ziemlich leicht löslich in organischen Lösungsmitteln. Das Bleisalz ist in kaltem Alkohol sehr wenig löslich.
 - c) Derivat der Octadecen-(6)-säure-(18) [Stereoisomerengemisch].
- 6 (oder 7) Brom octadecen-(6) säure-(18) äthylester C₂₀H₃₇O₂Br = CH₃·[CH₂]₄·CH:CBr·[CH₂]₁₀·CO₂·C₂H₅ oder CH₃·[CH₂]₄·CBr:CH·[CH₂]₁₀·CO₃·C₂H₅. B. Beim Kochen von λ.μ-Dibrom stearinsäure- äthylester (Isomerengemisch) mit 2n-alkoh. Kalilauge und nachfolgenden Behandeln mit Bromwasserstoff in Alkohol (GRÜN, CZERNY, B. 59, 61). Kp_{0,8}: 193—195°. Beim Eindampfen mit konz. Kalilauge und nachfolgenden 10-stdg. Erhitzen auf 180° entsteht Heptadecin-(11)-carbonsäure-(1) (S. 458).
- 4. Octadecen (7) säure (18). \triangle^{11} Octadecensäure, Heptadecen (10) carbonsäure-(1) $C_{18}H_{34}O_2 = \frac{CH_3 \cdot [CH_2]_5 \cdot C \cdot H}{H \cdot C \cdot [CH_3]_5 \cdot CO_3 H} \quad \text{und} \quad H \cdot C \cdot [CH_2]_5 \cdot CO_3 H$
- a) Niedrigerschmelzende Form, "Δ11-Ölsäure", "11-Ölsäure" C₁₈H₂₄O₂ = CH₃·[CH₂]₅·CH:CH·[CH₂]₅·CO₂H (E I 198, Nr. 8). Die Einheitlichkeit des Präparats von FOKIN (Ж. 44, 658; С. 1912 II, 2058) ist fraglich; vgl. dazu Böeseken, R. 46, 634 Anm. 14; Bertram, Bio. Z. 197, 439.
- b) Höherschmelzende Form, "Δ11-Elaidinsäure", "11-Elaidinsäure", Vaccensäure C₁₈H₃₄O₃ = CH₃·[CH₃]₅·CH:CH·[CH₃]₆·CO₂H. V. Im Rinderfett, Schafsfett und Butterfett (Bertram, Bio. Z. 197, 433, 440). Isolierung aus Fettsäuren des Rinderfetts: Ber., Bio. Z. 197, 435. B. Aus chinesischem Holzöl durch Hydrieren bei 20 Atm. Druck und 100° in Gegenwart von Nickel und nachfolgendes Verseifen (Böeseken, R. 46, 632). Beim Hydrieren von α-Eläostearinsäure-äthylester mit 2 Mol Wasserstoff und nachfolgenden Verseifen (Böe., v. Krimpen, Versl. Akad. Amsterdam 37, 67, 68; C. 1928 I, 2704). Krystalle (aus Aceton oder Chloroform). E: 35,5°; F: 39,0° (Ber.), 38,5° (Böe., v. K.). D.°: 0,8560 (Ber.). n.°.: 1,4383; n.°.: 1,4407; n.°.: 1,4467 (Ber.). n.°.: 1,4432 (Böe., v. K.). Wird durch Behandlung mit salpetriger Säure nicht umgelagert (Ber.). Gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Önanthsäure und Nonan-dicarbonsäure-(1.9) (Böe.). Bei der Ozonisierung des Natriumsalzes in wäßr. Lösung und Nachoxydation der Aldehyde und Aldehydsäuren mit Permanganat entstehen ebenfalls Önanthsäure und Nonan-dicarbonsäure-(1.9) (Böe.; Ber.). Die Säure liefert beim Behandeln mit Brom in Petroläther x.λ-Dibrom-stearinsäure (Vaccensäuredibromid; S. 362) (Ber.).

Über eine Octadecen-(7)-säure-(18) C₁₈H₃₄O₂, die in geringer Menge als Glycerid im Waltran aus Südgeorgien (Antarktis) gefunden, aber nicht rein erhalten wurde, vgl. Armstrong, Hilditch, J. Soc. chem. Ind. 44, 182 T; C. 1925 II, 576.

- 5. Octadecen-(8)-säure-(1), Δ^8 -Octadecensäure, Heptadecen-(7)-carbon-säure-(1) $C_{18}H_{34}O_2 = CH_3 \cdot [CH_2]_8 \cdot CH \cdot [CH_2]_6 \cdot CO_2H$ (E I 198). B. Über die Bildung des Methylesters bei der Hydrierung von Methyloleat mit ca. $^{1}/_{3}$ der berechneten Menge Wasserstoff in Gegenwart von Nickel-Kieselgur vgl. HILDITCH, VIDYARTHI, Pr. roy. Soc. [A] 122, 552, 555; C. 1929 I, 2163.
- 6. Octadecen-(8)-säure-(18), Δ^{10} -Octadecensäure, Heptadecen-(9)-carbon-säure-(1) $C_{18}H_{34}O_2 = \frac{CH_3 \cdot [CH_2]_6 \cdot C \cdot H}{H \cdot C \cdot [CH_2]_8 \cdot CO_2 H}$ und $\frac{H \cdot C \cdot [CH_2]_6 \cdot CH_3}{H \cdot C \cdot [CH_2]_8 \cdot CO_2 H}$
- a) Feste Octadecen-(8)-säure-(18), feste Δ¹¹-Octadecensäure, Isoölsäure von Saizew C₁₈H₃₄O₂=CH₃·[CH₃]₆·CH:CH·[CH₂]₈·CO₂H (H 471; E I 198). V. In den Wurzelknöllchen von Pinellia tuberifera Ten. (Nakayama, J. Pharm. Soc. Japan 1925, Nr. 509, S. 5; C. 1925 I, 1751). B. Entsteht neben flüssiger Octadecen-(8)-säure-(18), Ölsäure und Elaidinsäure bei der Destillation von ι-Oxy-stearinsäure unter 100 mm Druck bei 300—345° (Veselý, Majtl, Chem. Listy 19 [1925], 351; Bl. [4] 39, 242). Neben flüssiger Octadecen-(8)-säure-(18) beim Erhitzen von ι-Oxy-stearinsäure-äthylester in Gegenwart von 3% β-Naphthalinsulfonsäure-monohydrat auf 190—200° und Verseifen des Reaktionsprodukts mit alkoh. Kalilauge (Ve., Mach, Chem. Listy 22, 326, 327; C. 1929 I, 1437). Bei der Einw. von trocknem Bromwasserstoff auf höherschmelzende ι.κ-Dioxy-stearinsäure unter Eiskühlung und Behandlung des Reaktionsprodukts mit Zink und alkoh. Salzsäure (Ve., Majtl, Chem. Listy 19, 353; Bl. [4] 39, 244). Über die Bildung des Methylesters bei der Hydrierung von Methyloleat mit ca. ¹/₃ der berechneten Menge Wasserstoff in Gegenwart von Nickel-Kieselgur vgl. Hildteh, Vidyarth, Pr. roy. Soc. [A] 122, 552, 555; C. 1929 I. 2163. Krystalle (aus Äther). Röntgenographische Untersuchung dünner Schichten auf Glas- bzw. Glimmerplatten: A. Müller, Shearer, Soc. 123, 3157, 3163. F: 43,5—44° (Ve., Majtl, Chem. Listy 19, 353; Bl. [4] 39, 243). 44° (N.). Kp₃: 208—216° (N.). Wird durch N₂O₃ nicht verändert (Ve., Majtl, Chem. Listy 19, 349; Bl. [4] 39, 236). Liefert bei der Oxydation mit alkal. Permanganat-Lösung die niedrigerschmelzende Form der ικ. Dioxy-stearinsäure, mit Caroscher Säure höherschmelzende ικ. Dioxy-stearinsäure (Ve., Majtl, Chem. Listy 19, 353; Bl. [4] 39, 235, 243, 244; vgl. a. N.). Einw. von konz. Schwefelsäure bei 45—50°: Ve., Majtl, Chem. Listy 19, 354; Bl. [4] 39, 245.

Anhydrid $C_{36}H_{66}O_3=(CH_3\cdot [CH_2]_6\cdot CH\cdot [CH_2]_6\cdot CO)_2O$. B. Beim Erhitzen von fester Octadecen-(8)-säure-(18) mit Acetanhydrid unter Rückfluß (Veselý, Majtl, Chem. Listy 19 [1925], 353; Bl. [4] 39, 235, 243). — Tafeln (aus absol. Alkohol). F: 34,5°.

- Amid C₁₈H₃₅ON = CH₃·[CH₂]₆·CH:CH·[CH₂]₈·CO·NH₂. B. Durch Einw. von Phosphortrichlorid auf feste Octadecen-(8)-säure-(18) bei 50° und Eintropfen des nicht isolierten Chlorids in 20%iges Ammoniak unter Eiskühlung (Veselt, Majtl, Chem. Listy 19 [1925], 353; Bl. [4] 39, 235, 243).—Krystalle (aus Alkohol + etwas Kalilauge). F: 83°.
- b) Flüssige Octadecen (8) säure (18), flüssige Δ^{10} Octadecensäure $C_{18}H_{34}O_2=CH_3\cdot [CH_2]_6\cdot CH:CH\cdot [CH_2]_8\cdot CO_2H$. B. s. bei der festen Octadecen-(8)-säure-(18). Zur Bildung des Methylesters bei der Hydrierung von Methyloleat mit ca. $^1/_3$ der berechneten Menge Wasserstoff in Gegenwart von Nickel-Kieselgur vgl. HILDITCH, VIDYABTHI, Pr. roy. Soc. [A] 122, 552, 555; C. 1929 I, 2163. Wurde nur im Gemisch mit Ölsäure erhalten (Vesely, Majtl, Chem. Listy 19 [1925], 349, 354, 355; Bl. [4] 39, 247; V., Mach, Chem. Listy 22, 326; C. 1929 I, 1437). Läßt sich durch N_2O_3 in die feste Octadecen-(8)-säure-(18) überführen (V., Majtl). [M. Ilberg]
- 7. Octadecen-(9)-säure-(1), \triangle° -Octadecensäure, Heptadecen-(8)-carbon-säure-(1) $C_{18}H_{34}O_{2}=\frac{H\cdot C\cdot [CH_{2}]_{7}\cdot CH_{3}}{H\cdot U\cdot [CH_{2}]_{7}\cdot CO_{2}H}$ und $CH_{3}\cdot [CH_{2}]_{7}\cdot C\cdot H$ Zur Konstitution und Konfiguration vgl. die zusammenfassende Abhandlung von Fiedler, Fette, Seifen 47 [1940], 219; vgl. ferner González, An. Soc. españ. 24, 156; C. 1926 II, 183; Paal, Schiedewitz, B. 60, 1221; Keffler, R. 49 [1930], 424; Inoue, Suzuki, Pr. Acad. Tokyo 7, 18; C. 1931 I, 2740; Lederer, Fettch. Umschau 40 [1933], 3; Neu, P. C. H. 76 [1935], 70.
- a) Ölsäure. Oleinsäure C₁₈H₃₄O₃ = CH₃·[CH₂]₇·CH:CH·[CH₂]₇·CO₂H (H 463; E I 198). Zur Identifizierung der H 2, 472 als Rapinsäure aufgeführten Verbindung mit Ölsäure vgl. a. Grabner, M. 42, 292; Hilditch, Riley, Vidvabthi, J. Soc. chem. Ind. 46 [1927], 463 T.

Vorkommen, Bildung und Darstellung.

Über Vorkommen der Ölsäure in pflanzlichen und tierischen Fetten und Phosphatiden vgl. die Angaben bei A. Grün, W. Halden, Analyse der Fette und Wachse, 2. Bd. [Berlin 1929]; C. Wehmer, Die Pflanzenstoffe, 2. Aufl. [Jena 1929/1931]; G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932]; D. Holde, Kohlenwasserstoffele und Fette, 7. Aufl. [Berlin 1933]; G. Heffer, H. Schönfeld, Chemie und Technologie der Fette und Fettprodukte, 1. Bd. [Wien 1936]. Olsäure findet sich ferner im flüssigen finnischen Harz (Nebenprodukt bei der Herstellung von Sulfatoellulose) (Pyhäll, Ch. Umschau Fette 34, 190; C. 1927 II, 2363). In der Getreidestärke (Taylor, Lehrman, Am. Soc. 48, 1740). Im Wachs der sog. Papierkohle (Prov. Tula, Rußland) (Legg, Wheeler, Soc. 1939, 2451, 2456).— R. Bei der partiellen Hydrierung von Stearolsäure in verd. Natronlauge bei Gegenwart von Nickel (González, An. Soc. españ. 24, 161; C. 1936 II, 183). Beim Kochen von Stearolsäure mit Zinkstaub und Salzsäure in Gegenwart von Titan(III)-chlorid in verd. Essigsäure (G. M. Robinson, R. Robinson, Soc. 127, 177). Neben niedrigschmelzender Ø.t.Dioxy-stearinsäure beim Erwärmen von Elaidinsäure mit Natriumchlorat, Osmiumtetroxyd und Natriumdicarbonat in Wasser auf dem Wasserbad (Medwedew, Alexedewa, C. 1927 II, 1012).— Zur Darstellung aus Olivenöl vgl. Lapworth, Pearson, Mottram, Biochem. J. 19, 10. Zur Reindarstellung aus käuflicher Olsäure fügt man 100 g zu einer erwärmten Mischung von 175 g Quecksilber(II)-acetat, 140 cm² Methanol und 35 cm² Einessig, kocht kurze Zeit, filtriert nach dem Abkühlen, fügt 50 cm² Salzsäure (D: 1,19) hinzu und schüttelt mit Petroläther aus; nach Abdestillieren des Petroläthers wird verseift, mit Schwefelsäure angesäuert, destilliert und mehrmals aus Aceton bei —10° bis —15° umkrystallieiert (Bertram, R. 46, 400). Reinigung käuflicher Ölsäure durch Bromierung in Petroläther und Behandeln des bei —78° abgeschiedenen Dibromids mit Zink und alkoh. Salzsäure: Holde, Gorgas, Z. ang. Ch. 39, 1444; vgl. Beeptram.

Physikalische Eigenschaften.

Ölsäure krystallisiert nach Beetram (R. 46, 400) in farblosen durchsichtigen Nadeln vom Schmelz- und Erstarrungspunkt 13,2° und in weißen undurchsichtigen Krystallen vom Schmelzpunkt 16°. Über den Dimorphismus der Ölsäure vgl. ferner Lapworth, Pearson, Mottram, Biochem. J. 19, 14; G. M. Robinson, R. Robinson, Soc. 127, 177; Scheffers, R. 46, 294. Röntgenographische Untersuchung dünner Schichten auf Glas- oder Glimmerplatten: A. Müller, Shearer, Soc. 123, 3157. Kp₄₀: 260° (Ledder, Seifens. Zig. 56 [1929], 263); Kp₇: 220—222° (Paal, Schiedewitz, B. 60, 1225); Kp₅: 203—205° (Holde, Riefer, R. 57, 100). Zur Destillation im Vakuum vgl. a. Escher, Helv. 12, 101. D²; 0,8896 (Tromp, R. 41, 297). Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 9; zwischen —236° und +178°: Vogel, Z. ang. Ch. 35, 563. Einfluß von Drucken bis 4000 kg/cm² auf die Viscosität bei 30° und 75°. Bridgman, Pr. nation. Acad. USA. 11, 604; Pr. am. Acad. Arts Sci. 61, 79; C. 1926 I, 1919; II, 1923. Oberflächenspannung bei 20°: 32,50 dyn/cm (Harkins, Clark, Roberts, Am. Soc. 42, 703), n⁶: 1,4614; n⁶: 1,4530; n⁶: 1,4440 (Schefers, R. 46, 295); n⁶: 1,4582 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4480; n⁷y, 1,4532 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4480; n⁷y, 1,4532 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4582 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4582 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4582 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4582 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4582 (Beetram, R. 46, 401), 1,4620 (Holde, Riete, B. 57, 100); n⁶x, 1,4396; n⁶x, 1,4418; n⁶y, 1,4480; n⁶y, 1,4480; n⁶y, 1,4480; n⁶y, 1,4480; n

Olsaure ist unlöslich in flüssigem Schwefeldioxyd und flüssigem Ammoniak (DE CARLI, G. 57, 352). Löslichkeit in Olivenol bei 25°: VERKADE, Söhngen, C. 1920 I, 631; Zbl. Bakt. Parasitenk. [II] 50 [1920], 86. Ist in Puffer-Lösungen bei Zusatz von Glykocholsaure oder Taurocholsaure auch bei saurer Reaktion löslich (VERZÁR, KÚTRY, Bio. Z. 205, 371; 210, 270, 281). Über kolloide Dispersion von Olsaure in Wasser vgl. Traube, Klein, Bio. Z. 120, 145, 147; Koll. Z. 29, 239; C. 1923 I, 233. Kolloide Dispersion in einer wäßr. Lösung von Natriumoleat: Tarl, C. 7, 172, 1292. Rinfluß von Olsaure auf die Dispersiorung und Gelierung von verschiedenen Stearsten und Oleaten in Terpentinöl, Paraffinöl und Benzol:

HOLMES, MAXSON, Colloid Symp. Mon. 5, 294, 296, 299; C. 1928 II, 226. Erstarrungspunkte von Gemischen mit Palmitinsäure: LAPWORTH, PEARSON, MOTTRAM, Biochem. J. 19, 14. Dichte einer 5 %igen Lösung in Alkohol bei 50°: LIFSCHITZ, BECK, Koll.-Z. 26, 61; C. 1920 III, 83. Einfluß einer dünnen Wandschicht von Ölsäure auf die Ausflußzeit von Wasser aus Glascapillaren: TRAUBE, WHANG, Ph. Ch. 138, 104, 110. Grenzflächenspannung gegen Wasser: HABRINS, CLARK, ROBERTS, Am. Soc. 42, 703; POUND, Soc. 123, 583; CARRIÈRE, R. 43, 288; 44, 129; Chem. Weekb. 20, 208; C. 1923 III, 422; FAHIR, C. r. 188, 1285. Einfluß verschiedener Substanzen auf die Grenzflächenspannung gegen Wasser: K. H. MEYER, Bio. Z. 208, 25; EFIMOW, REHBINDER, Bio. Z. 211, 157. Grenzflächenspannung gegen verd. Salzsäure: FA., C. r. 188, 1285; EF., REH., Bio. Z. 211, 157; gegen saure und alkalische Phosphat-Puffer-Lösungen: Hartridge, Peters, Pr. roy. Soc. [A] 101, 363; C. 1923 I, 874. Grenzflächenspannung von Lösungen in Benzol gegen Wasser und verd. Natronlauge: DUBRISAY, PICARD, C. r. 178, 206; Du., C. r. 181, 1143; Bl. [4] 37, 1002; Rev. gén. Colloides 5, 485; C. 1927 II, 396; gegen saure und alkalische Phosphat-Puffer-Lösungen: HART., PE., Pr. roy. Soc. [A] 101, 356, 358, 359, 360; C. 1928 I, 874. Einfluß auf die Grenzflächenspannung zwischen Ölen und Wasser: Du., Prc., C. r. 177, 589; Du., Bl. [4] 37, 997; LIMBURG, R. 45, 878; MEAD, McCoy, Colloid Symp. Mon. 4, 47, 48; C. 1928 II, 860. Grenzflächenspannung gegen Quecksilber: HARKINS, EWING, Am. Soc. 42, 2543; HARK., Pr. nation. Acad. USA. 5, 571; C. 1920 III, 222. Adsorption aus waßr. Suspension an Mineralien und ihre Beeinflussung durch Zusätze (Säuren, Kupfersalze, Gelatine): Bartsch, Koll. Beih. 20, 66; Koll.-Z. 88, 322; C. 1925 I, 2363; 1926 II, 174. Wird aus Ölen durch Calciumhydroxyd und Magnesiumhydroxyd adsorbiert (Gutlohn, Koll.-Z. 33, 355; C. 1924 I, 1331). Adsorption von Sudan II aus Lösungen in Ölsäure und Ölsäure + Benzol an Kohle: Weissenberger, Baumgarten, Henke, M. 46, 684. Art und Verhalten dünner Ölsäure-Schichten auf Wasser oder verd. Sauren: Marcelin, C. r. 178, 38; 175, 346; 176, 502; 177, 41; 178, 1079; 179, 33; 180, 2022; 189, 238; Wood, C. r. 173, 388; 177, 1109; HARK., FELDMAN, Am. Soc. 44, 2671; BRINEMAN, V. SZENT-GYÖRGYI, Bio. Z. 189, 276; TAYLOR, Ann. Physique [10] 1, 149; KNIGHT, STAMBERGER, Soc. 1928, 2794; HILL, Phil. Mag. [7] 7, 944; C. 1929 II, 858; ADAM, JESSOP, Nature 117, 484; Pr. roy. Soc. [A] 112, 366, 367, 371; 120, 475; C. 1926 I, 1928 I, 1 3388; II, 2399; 1929 I, 189; ADAM, Pr. roy. Soc. [A] 101, 460, 518; Trans. Faraday Soc. 24, 151; C. 1928 I, 271, 272; 1928 II, 741; CARY, RIDEAL, Pr. roy. Soc. [A] 109, 312, 320, 329, 335; C. 1926 I, 1126; GORTER, GRENDEL, Bio. Z. 192, 446; FAHIR, C. r. 188, 1284; GUASTALLA, C. r. 189, 241. Zur Ausbreitung innerhalb von Luftblasen in Wasser vgl. McTag-GART, Trans. roy. Soc. Canada [3] 21 III, 251; C. 1928 I, 1942. Einfluß von Ölsäure auf die Ausbreitung von Kohlenwasserstoffen auf Wasser: Edser, Pr. phys. Soc. London 38, 274; C. 1926 II, 172. Ausbreitung von Ölsäure auf einer Quecksilber-Oberfläche: Harkins, Feldman, Am. Soc. 44, 2680; Sheppard, Keenan, Nature 121, 982; C. 1928 II, 1524. Brechungsindex einer 5% igen Lösung in Alkohol bei 50°: Lifschitz, Beck, Koll.-Z. 26, 61; C. 1920 III, 83. Elliptische Polarisation von linear polarisiertem Licht bei der Streuung an der Oberfläche eines Films von Ölsäure auf Wasser: RAMAN, RAMDAS, Phil. Mag. [7] 3, 222; C. 1927 I, 2799. Tyndall-Effekt von Ölsäure in Wasser: Traube, Klein, Bio. Z. 120, 115; Koll.-Z. 29, 236; Č. 1922 I, 233. Elektrische Leitfähigkeit in Aceton: HOLDE, RIETZ, B. 57, 102; in Benzol, Benzol + Chlorwasserstoff und in einer benzolischen Lösung von Zinn(IV)-chlorid: Cady, Baldwin, Am. Soc. 43, 649. Überführungsmessungen an wäßr. Kaliumoleat-Lösungen: McBain, Bowden, Soc. 123, 2421, 2426; Holroyd, Rhodes, Soc. 125, 439. Potentialdifferenzen an der Trennungsfläche zwischen Luft und einer dünnen Ölsäure-Schicht auf verd. Salzsäure: FRUMKIN, Ph. Ch. 116, 494. Elektromotorische Kraft verschiedener Ketten: Salmon, Soc. 117, 535, 536; Liechti, Bio. Z. 171, 249, 250; ihre Beeinflussung durch Röntgenstrahlen: Liechti. Kataphorese von Ölsäure in Wasser: Te., Kl., Koll.-Z. 29, 242; C. 1922 I, 233. Einfluß von Ölsäure auf die Geschwindigkeit der Kataphorese von Paraffinöl in Wasser: LIMBURG, R. 45, 876. Einfluß des Anions auf die Geschwindigkeit der Elektroosmose in 0,002 n-Natronlauge durch Glascapillaren: Chou-OROUN, J. Chim. phys. 20, 425.

Chemisches Verhalten.

Ölsäure zersetzt sich beim Erhitzen in Gegenwart eines Kupfer-Aluminiumoxyd-Katalysators auf ca. 600° unter Bildung von Wasser, Kohlenoxyd, Kohlendioxyd, Wasserstoff und einem Gemisch von aliphatischen und aromatischen Kohlenwasserstoffen (Mailer, C. r. 174, 873; Bl. [4] 81, 679; A.ch. [9] 17, 326; Caoutch. Guttap. 19, 11474; C. 1928 III, 38). Die Zersetzung in Gegenwart von Nickel bei 200—490° liefert hauptsächlich Wasser, Kohlenoxyd, Kohlendioxyd und Kohlenwasserstoffe (Marks, Howard, J. phys. Chem. 32, 1041). Erwärmt man Ölsäure mit Aluminiumchlorid bis auf 150°, so entstehen neben Kohlendioxyd vorwiegend filtseige Kohlenwasserstoffe (Zellinski, Lawrowski, B. 61, 1054). Beim Leiten von Ölsäure-Dampf über Calciumchlorid in einem Eisenrohr bei 580° bilden sich Kohlendioxyd, Kohlenoxyd, Wasserstoff, Wasser, gesättigte und ungesättigte Kohlenwasserstoffe;

ähnlich verläuft die Zersetzung über Bariumchlorid bei 580—600° (M., Bl. [4] 37, 309). Die thermische Zersetzung des Calcium- oder Magnesiumsalzes führt zur Bildung von Oleon (Sato, J. Soc. chem. Ind. Japan Spl. 30, 74 B; C. 1929 II, 1986). Geschwindigkeit dieser Reaktion: S., Ito, J. Soc. chem. Ind. Japan Spl. 30, 75 B; C. 1929 II, 1986. Verhalten des Natriumsalzes bei der trocknen Destillation: Ogata, Mem. Coll. Sci. Kyoto [A] 11, 544; C. 1929 I, 1834. Ölsäure geht bei Einw. von Glimmentladungen in Stickstoff-Atmosphäre teilweise in Steerinsäure über (Eichwald, Z. ang. Ch. 35, 505).

C. 1929 I, 1834. Olsäure geht bei Einw. von Glimmentladungen in Stickstoff-Atmosphäre teilweise in Stearinsäure über (Eichwald, Z. ang. Ch. 35, 505).

Röntgenographische Verfolgung der Oxydation von Ölsäure durch Luftsauerstoff in Gegenwart von Bleioleat: Trillat, C.r. 181, 505; Ann. Physique [10] 6, 90. Die Autoxydation der Ölsäure wird durch ultraviolettes Licht beschleunigt (Yoder, J. biol. Chem. 70, 303; HOLM, GREENBANK, DEYSHER, Ind. Eng. Chem. 19, 157, 158; C. 1927 II, 2579). Ölsäure erlangt durch Bestrahlung mit ultraviolettem Licht oder Röntgenstrahlen in Gegenwart von Sauerstoff die Fähigkeit, die photographische Platte zu schwärzen (HAMANO, Bio. Z. 163, 441; 169, 434). Photochemische Zersetzung durch Sonnenlicht oder ultraviolettes Licht bei Gegenwart von Uransalzen: ALOY, VALDIGUIÉ, Bl. [4] 37, 1140. Beschleunigung der Autoxydation durch Säuren: Holm, Green., Dey.; durch Hämin in Pyridin-Lösung: Kuhn, Meyer, H. 185, 203. Das Kaliumsalz wird in wäßr. Lösung durch Luftsauerstoff im Sonnenlicht oxydiert (Palit, Dhar, J. phys. Chem. 32, 1265). Oxydation des Kaliumsalzes durch Luftsauerstoff in Gegenwart von Natronlauge, Natriumdicarbonat-Lösung und Lösungen verschiedener Metallhydroxyde: P., Dh., J. phys. Chem. 32, 1665. Olsäure liefert bei längerer Einw. von 36 wigem Wasserstoffperoxyd in Eisessig bei Zimmertemperatur niedrigerschmelzende $\theta.\iota$ -Dioxy-stearinsäure (Hilditch, Soc. 1926, 1833; vgl. Bauer, Kutscher, Ch. Umschau Fette 32, 61; C. 1925 II, 158). Beim Erhitzen des Natriumsalzes mit 36 wigem Wasserstoffperoxyd in verd. Natronlauge bildet sich in geringer Menge höherschmelzende 3.1-Dioxystearinsaure (HI.). Zur Oxydation mit Wasserstoffperoxyd bei Gegenwart von Eisen(III) sulfat und Beeinflussung dieser Reaktion durch Chloroform vgl. RAY, J. gen. Physiol. 5. 611, 619; C. 1923 III, 951. Geschwindigkeit der oxydativen Zerstörung durch 30% iges Wasserstoffperoxyd und konz. Schwefelsäure bei 102—158°: Kerp, Arb. Gesundh.-Amt 57, 558; C. 1927 I, 1902. Über die bei der Einw. von Permanganat auf Ölsäure in Eisessig entstehenden Produkte (Lifschütz, H. 55, 1) vgl. L., H. 114, 28. Bei der Oxydation von Ölsäure mit Chromsäure entsteht Azelainsäure (EDMED, Soc. 73 [1898], 631). Zur Oxydation mit Chromsäure in Petroläther vgl. Blix, Skand. Arch. Physiol. 48 [1926], 289; mit Chromschwefelsäure vgl. Simon, C. r. 180, 1406. Beim Erwärmen mit Natriumchlorat und Soda in Wasser bei Gegenwart von Osmiumtetroxyd auf dem Wasserbad entstehen hochschmelzende A.-Dioxy-stearinsäure und Elaidinsäure (Medwedew, Alexejewa, C. 1927 II, 1012). Geschwindigkeit der Oxydation durch Peressigsäure: Böeseken, Smit, Gaster, Versl. Akad. Amsterdam 32, 380; C. 1929 II, 716. Liefert bei der Oxydation mit Benzopersäure in Chloroform (Böeseker, Belinfante, R. 45, 918; Bauer, Bähr, J. pr. [2] 122, 202; vgl. Bau, Kutscher, Ch. Umschau Fette 32, 62; C. 1925 II, 158) oder Ather (Pigulewski, Petrowa, X. 58, 1063; C. 1927 I, 2060) niedrigerschmelzende θ . Oxido-stearinsäure.

Geschwindigkeit der Hydrierung von Olsäure in Gegenwart von Nickelsilicat bei 200—220°: Kahlenberg, Pi, J. phys. Chem. 28, 67. Einfluß des Druckes auf die Geschwindigkeit der Hydrierung mit Nickel bei 180°: Armstrong, Hilditch, Pr. roy. Soc. [A] 100, 247; C. 1922 I, 1267. Verhalten von ölsäurehaltigen Glyceriden (Erdnußöl, Sonnenblumenkernöl) bei der Fetthärtung: Kaufmann, Hansen-Schmidt, B. 60, 53, 55, 57. Geschwindigkeit der Hydrierung von Ölsäure in alkoh. Lösung bei Gegenwart von Platinschwarz unter 750 mm Druck bei 15°: Lebedew, Kobljanski, Jakubtschik, Soc. 127, 422, 424; Ж. 56, 265, 275; bei Gegenwart anderer ungesättigter Verbindungen: L., Ko., J. Einfluß von Katalysatorgiften auf die Reduktion von Ölsäure in Eisessig bei Gegenwart von Platin bei 50°: Maxted, Soc. 117, 1501; 119, 225. Geschwindigkeit der Hydrierung in Alkohol bei Gegenwart von Palladium-Bariumsulfat-Katalysator: Paal, Schiedewitz, B. 60, 1225. Ölsäure wird in Eisessig bei Gegenwart von Nickelkatalysatoren oder in Alkohol bei Gegenwart von kolloidem Palladium nur hydriert, wenn Sauerstoff zugegen ist (Willstätter, Waldschmidt-Leitz, B. 54, 130. 133: 56, 1394; vgl. dagegen Kelber, B. 54, 1704; 57, 136, 142; Normann R. 55, 2403.

Gegenwart von Nickelkatalysator: FAAL, SCHEDEWITZ, B. 60, 1225. CISAUTE WITG IN EISESSIG DEI Gegenwart von Nickelkatalysatoren oder in Alkohol bei Gegenwart von kolloidem Palladium nur hydriert, wenn Sauerstoff zugegen ist (WILLSTÄTTER, WALDSCHMIDT-LEITZ, B. 54, 130. 133; 56, 1394; vgl. dagegen Kelber, B. 54, 1701; 57, 136, 142; Normann, B. 55, 2193). Olsäure liefert beim Erhitzen mit Tetralin in Gegenwart von Palladiumschwarz auf 115—120° Stearinsäure (Akabori, Suzuki, Pr. Acad. Tokyo 5, 255; C. 1929 II, 2033). Beim Leiten von Ölsäure mit Wasserdampf über aktivierte Kohle bei 300° entsteht Stearinsäure (Werschen-Weißenfelser Braunkohlen A. G., Fürth, Hildenberand, D. R. P. 441164; C. 1927 I, 2135; Frdl. 15, 400). Bei der Einw. von überschüssigem Hydrazinhydrat auf Ölsäure in der Kälte bildet sich zunächst das Hydrazinsalz der Ölsäure, das bei mehrtägigem Aufbewahren in Stearinsäure umgewandelt wird (Hanuš, Vorišek, Collect. Trav. chim. Tchecosl. 1, 225; C. 1929 II, 551); bei mehrstündigem Erhitzen von Ölsäure und Hydrazinhydrat auf dem Wasserbad (H., V.) bzw. im Rohr auf cs. 100° (van Alphen, R. 44, 1069) bildet sich Stearinsäurehydrazid, während Kaliumoleat beim Erhitzen mit Hydrazinhydrat auf dem Wasserbad als Hauptprodukt Stearat und nur sehr geringe Mengen Stearinsäurehydrazid

liefert (H., V.). — Addition von Brom aus einer Lösung von Brom in mit Natriumbromid gesättigtem Methanol: Kaufmann, Z. Unters. Lebenem. 51 [1926], 13; Geschwindigkeit der Addition von Brom in Tetrachlorkohlenstoff bei 13° im Dunkeln: Williams, James, Soc. 1928, 346; bei Zimmertemperatur im Dunkeln und im ultravioletten Licht: Knauss, Smull, Am. Soc. 49, 2812. Ölsäure gibt beim Behandeln mit Brom in wäßr. Kaliumbromid-Lösung und Kochen des Reaktionsprodukts mit alkoh. Kalilauge niedrigerschmelzende v. Dioxystearinsäure (Read, Reid, Soc. 1928, 749). Liefert mit Jod und Alkohol bei nachfolgendem Versetzen mit Wasser v (oder t)- Jod-t (oder v)- oxy-stearinsäure (Holde, Gorgas, B. 58, 1073; 59, 113; vgl. Margosches, Hinner, Friedmann, Z. ang. Ch. 37, 334). Gleichgewichtskonstante bei der Addition von Jod in Tetrachlorkohlenstoff-Lösung bei 0° und 19,5° im Dunkeln: van der Steur, R. 46, 280, 412; in Benzol-Lösung bei 19,5° im Dunkeln: van der Steur, R. 46, 280, 412; in Benzol-Lösung bei 19,5° im Dunkeln: van der Jodlösung in Essigsäure: Cerdeiras, Bl. [4] 35, 904. Partielle Halogen-Addition bei der Einw. von Jodmonobromid auf Ölsäure in gesättigter methylalkoholischer Natriumbromid-Lösung: Kau., Z. ang. Ch. 42, 1155. Lagert in Eisessig-Tetrachlorkohlenstoff-Lösung Rhodan im Dunkeln quantitativ an (Kau., Ar. 1925, 714; B. 59, 1391; Z. Unters. Lebenem. 51 [1926], 19). — Wird beim Erhitzen mit 1% Schwefel in Gegenwart von Wasser auf 120—180° zu ca. 50% in Elaidinsäure umgelagert; bei Verwendung größerer Mengen Schwefel entsteht außerdem ein schwarzes, stark schwefelhaltiges Produkt (Rankow, B. 62, 2714, 2715). Elaidinsäure entsteht auch beim Erhitzen von Ölsäure mit Natriumdisulfit-Lösung auf 140—150°; beim Erhitzen des Reaktionsgemisches auf 180° bildet sich ein schwarzes Produkt von höherem Schmelzpunkt (R.; vgl. M. Saizew, A. Saizew, A. Saizew, A. 24, 477; C. 1893 I, 637; J. pr. [2] 50, 73). — Über Versuche zur Darstellung von y-Stearolacton aus Ölsäure durch Einw. von konz. Schwefelsäure (Shukow, Schestakow, K. 40,

Durch tropfenweise Zugabe von Bromtrinitromethan zu einer eisgekühlten Lösung von Ölsäure in Methanol entsteht θ (oder ι)-Brom-ι (oder θ)-methoxy-stearinsäure-methylester (Ε. Schmidt, Bartholomé, Lübke, B. 55, 2106). Liefert beim Behandeln mit Benzol in Gegenwart von Aluminiumchlorid θ (oder ι)-Phenyl-stearinsäure (Marcusson, Z. ang. Ch. 33, 234; Nicolet, de Milt, Am. Soc. 49, 1104). Analog verläuft die Umsetzung mit Toluol, Xylol, Naphthalin, Anthracen, Nitrobenzol, Anisol, Phenetol und anderen Verbindungen (Ma.; vgl. N., de Mi.). Beim Erhitzen von Ölsäure mit Arylhalogeniden in Gegenwart von Zinkchlorid, Zinkstearat oder Eisenchlorid auf 100—180° und Sulfurierung der entstandenen Produkte mit konz. Schwefelsäure und Chlorsulfonsäure erhält man wasserlösliche Sulfonsäuren (I. G. Farbenind., D. R. P. 491317; C. 1930 II, 802; Frdl. 16, 2113).

Biochemisches und physiologisches Verhalten.

Ölsäure wird von Aspergillus flavus oxydiert (Tausson, Bio. Z. 193, 88). Hemmende Wirkung auf das Wachstum von Penicillium cyclopium: Derk, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345. Wird (im Gegensatz zu Elaidinsäure) von Aspergillus niger und Penicillium glaucum assimiliert (Verkade, Söhngen, Zbl. Bakt. Parasilenk. [II] 50, 83; C. 1920 III, 56; Versl. Akad. Amsterdam 28, 364; C. 1920 I, 630). Einfluß auf die Atmung von Bact. coli: Nicolai, Bio. Z. 179, 101. Wachstumshemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 129; C. 1925 I, 2699. Veresterung mit verschiedenen Alkoholen durch Bac. pyocyaneus, Bac. prodigiosus und Staphylococcus aureus: van der Walle, Zbl. Bakt. Parasitenk. [II] 70, 371; C. 1927 II, 583. Veresterung von Ölsäure mit Isoamylalkohol in Gegenwart von Pankreaslipase und mit Glycerin in Gegenwart von Darmlipase: Groen, Arch. néerl. Physiol. 11, 178; C. 1926 II, 1955; mit Glycerin in Gegenwart von Blastolipase aus Ricinussamen: Willstätter, Waldschmidt-Leitz, H. 134, 222. Wirkt hemmend auf die Spaltung von Olivenöl durch Lipase (Willstätter, Waldschmiht-Leitz, Memmen, H. 125, 131). Einfluß von Natriumoleat auf die Spaltung von Triacetin und Olivenöl durch Pankreaslipase: Corran, Lewis, Biochem. J. 22, 457. Giftwirkung gegen Pflanzen: Ciamician, Galizzi, G. 52 I, 19. Insecticide Wirkung von Ölsäure: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 371 T; C. 1927 II, 1884. Toxizität und Ausscheidung von Wismutoleat bei Kaninchen: Leonard, J. Pharmacol. exp. Therap. 28, 121; C. 1926 II, 1883. Schicksal im Organismus des Hundes bei intravenöser Injektion: Lettes, Bio. Z. 180, 289; 197, 357. Wirkung auf die Keratinsubstanzen der menschlichen Haut: Menschell, Ar. Pth. 110, 5; C. 1926 II, 50. Wirkung auf Ratten beim Einbringen unter die Haut: Delore, Jeannin, C. r. Soc. Biol. 98, 702; C. 1928 I, 2963. Weitere ausführliche Angaben über die physiologische Wirkung von Ölsäure s. bei H. Staue in J. Houben, Fortschritte der Heilstoff-chemie, 2. Abt., Bd. I, 2. Hälfte [Berlin u. L

Analytisches.

Reagiert in reinem Zustand deutlich sauer gegen feuchtes Lackmuspapier (Eschen, Helv. 12, 101 Anm. 2. Eine alkoh. Lösung von Ölsäure und eine wäßr. Suspension von Natriumoleat geben mit wenig Phosphorwolframsäure einen gelblichen Niederschlag, der sich beim Behandeln mit Natronlauge dunkelblau färbt (Scheiner, Bio. Z. 205, 250). Die Lösung in Chloroform färbt sich auf Zusatz von Antimonpentachlorid rotbraun (STEINLE, KAHLEN-BERG, J. biol. Chem. 67, 449). Gibt erst nach mehrstündigem Durchleiten von Sauerstoff mit Guajakharz + Peroxydase Blaufärbung (Gallagher, Biochem. J. 17, 522). Zusammenstellung von Reaktionen für den Nachweis von Ölsäure: Rojahn, Struffmann, Ar. 1927, stellung von Keaktionen für den Nachweis von Olsaure: ROJAHN, STRUFFMANN, Ar. 1627, 302. Prüfung auf Reinheit: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausg. [Berlin 1930], S. 8. Titration mit methylslkoholischer Bariumhydroxyd-Lösung: Escher, Helv. 12, 103. Verhalten bei der Bestimmung der Jodzahl: Margoscher, Hinner, Friedmann, B. 57, 999; Holde, Gorgas, B. 58, 1073; vgl. a. Ma., Hi., Z. disch. Öl-Fettind. 44 [1924], 97; Z. ang. Ch. 37, 202; Ch. Umschau Fette 31 [1924], 41; Ma., Hi., Fr., Z. disch. Öl-Fettind. 44 [1924], 205; Z. ang. Ch. 37, 334; Kaufmann, Z. Unters. Lebensm. 51 [1926], 13; der Jodzahl und Überjodzahl: Ma., Fr., Tschörner, B. 58, 795; Ma., Mitarb., B. 58, 1066. Direkte Bestimmung der Jodzahl der Alkalisalze in verd. Alkohol: Ma., Fuchs, B. 60, 991. Jodometrische Bestimmung neben Elaidinsäure: van der Steur, R. 46, 409. Verhalten bei der Bestimmung der Rhodanzahl: Kaufmann, Ar. 1925, 714. Rhodanometrische Bestimmung neben Palmitinsäure und Linolsäure: Kau., Ar. 1925, 716; Z. Unters. Lebensm. 51 [1926], 20; in Pflanzenölen: Kau., Ar. 1925, 717ff. Bestimmung in Leinöl durch jodometrische und rhodanometrische Titration: KAU., KELLER, Z. ang. Ch. 42, 75. Bestimmung der Ölsäure im Gemisch mit höhermolekularen gesättigten Säuren durch Oxydation mit Permanganat in alkal. Lösung zu $\vartheta.\iota$ -Dioxy-stearinsäure: Lapworth, Mottram, Soc. 127, 1629. Über Bestimmung in Gegenwart von Linolsäure und Linolensäure vgl. L., M., Soc. 127, 1629. Leitfähigkeitstitration von Natriumoleat-Lösungen verschiedener Konzentration mit Salzsäure: Ekwall, Koll.-Z. 45, 302; C. 1928 II, 1594. Nephelometrische Bestimmung von Ölsäure im Blut: Bloor, Pelkan, Allen, J. biol. Chem. 52, 191.

Abtrennung der Ölsäure von höheren gesättigten Fettsäuren auf Grund der Leichtlöslichkeit des Natriumsalzes der Oleohydroxamsäure in Alkohol: Lewis, Biochem. J. 20, 1360, 1361, 1362. Trennung der Ölsäure von Palmitinsäure und Stearinsäure auf Grund der Löslichkeit von Thalliumoleat in Wasser und 96 %igem Alkohol: Holde, Selim, Bleyberg, Z. diech. Öl-Fettind. 44 [1924], 278, 298; Z. ang. Ch. 37, 885; H., S., R. 58, 523; vgl. Meigen, Neuberger, Ch. Umschau Fette 29 [1922], 337. Zur Trennung von Stearinsäure nach der Bleisalz-Äther-Methode vgl. Thomas, Yu, Am. Soc. 45, 114; Lapworth, Pearson, Mottram, Biochem. J. 19, 8. Trennung der Gemische von Ölsäure mit Palmitinsäure, Stearinsäure, Elaidinsäure, Palmitinsäure + Stearinsäure oder Stearinsäure + Elaidinsäure auf Grund der Alkohollöslichkeit von Bleioleat: Steger, Scheffers, R. 46, 406; vgl. Twitchell, Z. disch. Öl-Fettind. 41 [1921], 810; J. ind. Eng. Chem. 13, 806; C. 1921 IV, 1041; Wallis, Burrows, Am. Soc. 46, 1951. Das Natriumsalz sowie das Bariumsalz lassen sich von den entsprechenden Salzen der Stearinsäure in 90 %igem Alkohol bei 20—25° nur unvollkommen trennen (Th., Yu). Einfluß von Temperatur, Acidität und Alkalität auf die Abtrennung aus Gemischen mit Stearin- und Lignocerinsäure über die Magnesiumsalze: Th., Yu. Über die Bestimmung von Ölsäure in Fettgemischen und die Trennung von anderen Fettsäuren vgl. a. D. Holde, Kohlenwasserstofföle und Fette [Berlin 1933], S. 700; T. P. Hilditch in Hefferen Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 60.

Salze der Ölsäure (Oleate).

Ammoniumoleat NH₄C₁₈H₃₃O₃. Zur Frage des krystallin-flüssigen Zustands vgl. Lehmann, Z. anorg. Ch. 113, 263; de Broglie, Friedel, C. r. 176, 739; Fr., C. r. 180, 269; Fr., Ann. Physique [9] 18, 452; Zooher, Birstein, Ph. Ch. [A] 142, 178; vgl. a. Vorländer, Selke, Ph. Ch. 129, 448. Viscosimetrische Untersuchungen an Ammoniumoleat-Solen: Hatschek, Koll.-Z. 37, 25; 38, 259; Nature 119, 858; C. 1925 II, 1941; 1926 I, 3131; 1927 II, 1009; Hat., Jane, Koll.-Z. 38, 33; C. 1926 I, 2310; da C. Andrade, Lewis, Koll.-Z. 38, 260; C. 1926 I, 3131; Ostwald, Auerbach, Koll.-Z. 38, 276; C. 1926 I, 3132; Ost., Koll.-Z. 43, 157; C. 1928 I, 657. — Lithiumoleat LiC₁₈H₃₂O₃. Röntgenographische Untersuchung der Krystalle: Becker, Jancke, Ph. Ch. 99, 273; vgl. hierzu A. Müller, Soc. 123, 2046. Bewegung auf einer Wasseroberfläche: Zahn, R. 45, 790. — Natriumoleat NaC₁₈H₃₂O₃. F: 235° (Bhatnagar, Prasad, Singh, Koll.-Z. 38 [1926], 219). Zum krystallin-flüssigen Zustand vgl. Laing, MoBain, Soc. 117, 1510; Darke, McBain, Salmon, Pr. roy. Soc. [A] 98, 399, 402; C. 1923 II, 159; de Bro., Frie., C. r. 176, 738; Frie., C. r. 180, 269; Maclennan, J. Soc. chem. Ind. 43, 399 T; C. 1924 I, 1291; Vor., Sel., Ph. Ch. 129, 449; Zocher, Birstein, Ph. Ch. [A] 142, 178; Thiessen, Koll.-Z. 46, 350; C. 1929 II, 148; Thie, Triebel, Z. anorg. Ch. 179, 267; Zsigmondy, Koll.-Z. 47, 27; C. 1929 I, 1547. Röntgenographische Untersuchung

435 der krystallin-flüssigen Phase: DE BRO., FRIE.; FRIE., C. r. 180, 269. Oberflächenspannung und elektrische Leitfähigkeit von geschmolzenem Natriumoleat: BHATNAGAR, PRASAD, SINGH. Beugung von Röntgenstrahlen an festem Natriumoleat: KRISHNAMURTI, Indian J. Phys. 3, 322, 328; C. 1929 I, 2951. Über den Lösungsvorgang in Wasser vgl. Mikumo, J. Soc. chem. Ind. Japan Spl. 32, 7; C. 1929 I, 2001. Opalescenz der wäßr. Lösung: Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 139; C. 1928 I, 1156. Einfluß von Elektrolyten auf die Trübung wäßr. Lösungen: Ja-RISCH, Bio. Z. 134, 164; MINAKAMI, Bio. Z. 158, 315. Einfluß von Wasser, Ölsäure und Wasser **HSOH, 540. 2. 134, 104; MINARAMI, 540. 2. 158, 515. Emittle Voit Wasser, Olsatre and Wasser + Stearinsäure auf die Dispergierung und Gelierung in Terpentinöl: HOLMES, MAXSON, Colloid Symvp. Mon. 5, 293, 294, 300; C. 1928 II, 226. Löslichkeitsdiagramm der ternären Systeme von Natriumoleat und Wasser mit Phenol bei 0°, 20°, 40° und 60°, mit m-Kresol bei 20° und 60°, mit o- und p-Kresol bei 20°: Bailey, Soc. 123, 2580. Ebullioskopisches Verhalten in Alkohol: Patrick, Hyden, Milan, J. phys. Chem. 29, 1005. Dampfdruck von Natriumoleat-Solen und -Gelen bei 18°: LAING, McBAIN, Soc. 117, 1513. Über die Verdampfungsgeschwindigkeit einer wäßr. Natriumoleat-Lösung vgl. Du Noüw, C. r. 184, 1062. Spannung des Dampfes wer einer wahr. Natriumoleat-Lösung vg. be Noux, C. 7. 16-x, 1002. Spanning des Bamples über benzolhaltigen neutralen, sauren oder alkalischen Natriumoleat-Lösungen bei 15°: Hahne, Z. dtsch. Öl-Fettind. 45, 245, 264, 276, 309; C. 1925 II, 901. Dichte währ. Lösungen: Laing, McBain, Soc. 117, 1510; Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 137; C. 1928 I, 1156; alkoh. Lösungen: Lifschitz, Beck, Koll.-Z. 26, 61; C. 1920 III, 83. Viscosität währ. Lösungen: Freundlich, Jores, Koll. Beih. 22, 19; C. 1926 I, 3310; Nonaka, J. Soc. chem. Ind. Japan Spl. 30, 62, 219; C. 1928 I, 1374; 1929 II, 2125; Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 7, 272, C. 1928 I, 458, ihr. Besinflussung dusch Bengel und Oheinre, Hanne Z. Nr. 6, S. 57, 178; C. 1928 I, 1156; ihre Beeinflussung durch Benzol und Olsäure: HAHNE, Z. dtoch. Ol-Fettind. 45, 245, 274, 309; C. 1925 II, 901; durch Elektrolyte: NONAKA, J. Soc. chem. Ind. Japan Spl. 30, 63; C. 1929 II, 2125. Viscosität wäßr. Lösungen von Gemischen mit fettsauren Natriumsalzen: FREUNDLICH, JORES; HIBOSE, J. Soc. chem. Ind. Japan Spl. 31, 46; C. 1928 II, 504. Ultrafiltration wäßr. Lösungen: McBain, Jenkins, Soc. 121, 2330, 2333, 2340; Leeten, Z. dtsch. Öl-Fettind. 43, 82; C. 1923 I, 1390; Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 172, 192; C. 1928 I, 1156. Oberflächenspannung wäßr. Lösungen: Walker, Soc. 119, 1523; NARAYAN, SUBRAHMANYAM, Phil. Mag. [6] 43, 666, 669; C. 1922 III, 207; LAS-CARAY, Koll.-Z. 34,77; C. 1924I, 2413; EKWALL, Acta Acad. Abo. 4, Nr. 6, S. 151, 152, 198, 199; C. 1928 I, 1156; HIROSE, J. Soc. chem. Ind. Japan Spl. 31, 16, 43, C. 1928 II, 504; JOHLIN, J. biol. Chem. 84, 547; ihre Anderung in Abhängigkeit von der Zeit: Du Noux, C. r. 174, 962; 178, 1102; Phil. Mag. [6] 48 [1924], 265, 665; Johlin, J. phys. Chem. 29, 1131; Mina-kami Bio. Z. 158, 307; Bigelow, Washburn, J. phys. Chem. 32, 326; vgl. a. Kopaczewski, Szukiewicz, C. r. 182, 1277. Oberflächenspannung wäßr. Lösungen von binären Gemischen mit Natriumlaurat, Natriummyristat, Natriumpalmitat und Natriumstearat: Walker, Soc. 119, 1528; mit Natriumlaurat sowie von ternären Gemischen mit Natriumlaurat und Natriummyristat: HIBOSE, J. Soc. chem. Ind. Japan Spl. 31, 16, 43; C. 1928 II, 504. Beeinflussung der Oberflächenspannung wäßr. Natriumoleat-Lösungen durch Natronlauge: ERWALL, Acta Acad. Abo. 5, Nr. 5, S. 14; C. 1929 I, 2862; durch Säuren, Basen und Salze: Jarisch, Bio. Z. 134, 163; Mikumo, J. Soc. chem. Ind. Japan Spl. 30, 23; C. 1929 II, 2026; durch verschiedene Salze: MINAKAMI, Bio. Z. 158, 309; durch Benzol: HAHNE, Z. dtsch. Öl-Fettind. 45, 245, 274; C. 1925 II, 901. Anderung der Oberflächenspannung wäßr. Lösungen durch Berühren der Oberfläche mit Filtrierpapier: Jendrassik, Bio. Z. 169, 185. Einfluß auf die Oberflächenspannung von Serum oder Blut: Du Noüx, C. r. 174, 1258; Phil. Mag. [6] 48 [1924], 275; Brinkman, v. d. Velde, Bio. Z. 155, 188, 191. Grenzflächenspannung zwischen wäßr. Natriumoleat-Lösungen und Benzol und ihre Beeinflussung durch Natriumhydroxyd, Natriumchlorid und Olsäure: HARKINS, ZOLLMAN, Am. Soc. 48, 69. Einfluß auf die Grenzflächenspannung zwischen Ölen und Wasser: MEAD, McCoy, Colloid Symp. Mon. 4, 54; C. 1928 II, 860; auf die Beweglichkeit von Campherpulver auf Wasser: CARRIÈRE, Chem. Weekb. 20, 206; C. 1923 III, 422. Schaumkraft wäßr. Lösungen: Hirose, J. Soc. chem. Ind. Japan Spl. 31, 47; C. 1928 II, 504; ihre Beeinflussung durch Säuren, Basen und Salze: Jarisch, Bio. Z. 184, 164; durch Benzol und Ölsäure: HAHNE, Z. dtech. Öl-Fettind. 45, 245, 274, 309; C. 1925 II, 901. Schaumkraft wäßr. Lösungen von Gemischen mit Natriumpalmitat und Natriumlaurat: KAWAKAMI, J. Soc. chem. Ind. Japan Spl. 30, 59; C. 1929 II, 2125; mit Natriumstearat und Natriumlaurat: Hirose, J. Soc. chem. Ind. Japan Spl. 31, 47; C. 1928 II, 504. Zusammensetzung und Eigenschaften des Schaums wäßr. Natriumoleat-Lösungen: LAING, Pr. roy. Soc. [A] 109, 30; C. 1925 II, 2134. Adsorption an der Grenzfläche einer wäßr. Lösung gegen Luft: Nonaka, J. Soc. chem. Ind. Japan Spl. 31, 73; C. 1928 II, 134; Laing, McBain, Harrison, Colloid Symp. Mon. 6, 68; C. 1929 II, 844; gegen Benzol oder Toluol: Nonaka, J. Soc. chem. Ind. Japan Spl. 31, 73; C. 1928 II, 134. Adsorption an der Grenzfläche von neutralen, sauren und alkalischen Lösungen gegen Luft: Nonaka, J. Soc. chem. Ind. Japan Spl. 31, 207; C. 1939 I, 730. Struktur monomolekularer Schichten auf Wasser: Du Noüy, C. 7. 178, 1103; Phil. Mag. [6] 48 [1924], 272, 667. Koagulierende Wirkung auf Proteine: Cooper, Edgar, Biochem. J. 30, 1065; Serejski, Bio. Z. 169, 251. Schutzwirkung auf

Bensopurpurin 4 B-hydrosol: FREUNDLICH, LOEB, Koll.-Z. 84, 231; C. 1924 II, 443; auf die

Hydrosole von Arsentrisulfid, Antimontrisulfid und Cadmiumsulfid: BHATNAGAR, PRASAD, BAHL, Quart. J. indian chem. Soc. 2, 15, 16; C. 1926 I, 331; auf Goldhydrosole: IREDALE, Soc. 119, 626; PROSCH, Z. dtsch. Ol-Fettind. 42, 426; C. 1922 III, 1287. Goldzahl: Gortner, Am. Soc. 42, 597. Über Emulsionen mit Natriumoleat als Emulgierungsmittel und ihre Eigenschaften vgl. Briggs, J. phys. Chem. 24, 120; Briggs, Du Cassi, Clark, J. phys. Chem. 24, 153; Bhatnagar, Soc. 119, 63, 65, 66; Griffin, Am. Soc. 45, 1651; Finkle, Draper, 24, 153; BHATNAGAR, NOC. 119, 63, 60, 60; GRIFFIN, Am. Soc. 45, 1651; FINKLE, DRAPER, HILDEBRAND, Am. Soc. 45, 2785; RIEMAN, VAN DER MEULEN, Am. Soc. 47, 2507; MEAD, McCoy, Colloid Symp. Mon. 4, 54; C. 1928 II, 860; HARKINS, Colloid Symp. Mon. 5, 28; C. 1928 II, 229; KRANTZ, GORDON, Colloid Symp. Mon. 6, 181; C. 1929 II, 2166; WEICHHERZ, Koll.-Z. 47, 134; C. 1929 I, 2286. Tröpfchengröße in Emulsionen: HARKINS, BEEMAN, Am. Soc. 51, 1677. Hydratation: McBain, Jenkins, Soc. 121, 2336; Nonaka, J. Soc. chem. Ind. Japan Spl. 30, 219; C. 1928 I, 1374. Peptisierende Wirkung auf Tierkohle und Eisen(III)-hydroxyd-Gel: v. Buzágh, Koll.-Z. 43, 221, 222; C. 1928 I, 656. Suspendierende Wirkung auf Braunstein: Fall, J. phys. Chem. 31, 829; auf Zinkoxyd, Braunstein, Bariumcarbonat, Tullererde und andere Substanzen: BHATNAGAR, PRASAD, RAHL, Ougst J. indian. chem. Soc. Fullererde und andere Substanzen: Bhatnagar, Prasad, Bahl, Quart J. indian chem. Soc. 2, 16; C. 1926 I, 331. Waschwirkung: Chapin, Oil Fat Ind. 5, 210; C. 1928 II, 1159. Einfluß von Natriumoleat-Lösungen verschiedener Konzentration auf die Geschwindigkeit der katalytischen Zersetzung von Wasserstoffperoxyd durch kolloides Platin: IREDALE, Soc. 119, 113. Brechungsindices von alkoh. Lösungen: LIFSCHITZ, BECK, Koll.-Z. 26, 61; C. 1920 III, 83; von Natriumoleat-Solen und Gelen: Laing, McBain, Soc. 117, 1513. Beugung von Röntgenstrahlen an wäßr. Natriumoleat-Lösungen: Krishnamurti, Indian J. Phys. 3, 322, 326, 328; C. 1929 I, 2951. Elektrische Leitfähigkeit von wäßr. Natriumoleat-Lösungen: Laing, McBain, Soc. 117, 1511; Leeten, Z. disch. Öl-Fettind. 43, 66; C. 1923 I, 1390; Kratz, Z. dtoch. Ol-Fettind. 44, 49; C. 1924 I, 1489; EKWALL, Acta Acad. Abo. 4, Nr. 6, S. 159, 191; C. 1928 I, 1156; ihre Beeinflussung durch Benzol und Ölsäure: HAHNE, Z. dtsch. Öl-Fettind. 45, 245, 263, 275, 309; C. 1925 II, 901. Elektrische Leitfähigkeit in Alkohol, Propylalkohol und Butylalkohol: Bhatnagar, Prasad, Koll.-Z. 34, 195; C. 1924 II, 1167. Kataphorese- und Uberführungsversuche an Natriumoleat-Lösungen: LEETEN, Z. dtsch. Öl-Fettind. 43, 65, 66, 81; C. 1923 I, 1390; LAING, J. phys. Chem. 28, 673; HAHNE, Z. dtsch. Ol-Fettind. 45, 289, 308; C. 1925 II, 901; Nonaka, J. Soc. chem. Ind. Japan Spl. 32, 36; C. 1929 II, 272. Zur Extraktion von Ölsäure aus wäßr. Natriumoleat-Lösung durch Benzin vgl. a. Снакітяснком, Ж. 52, 101; C. 1923 III, 803. Kationenaustausch im System Natriumoleat-Calciumpermutit in Wasser oder verd. Alkohol bei verschiedenen Temperaturen: Wosnessenski, Artemowa, K. 62, 151; C. 1930 II, 1331. Grad der Hydrolyse in wäßr. Lösungen: Leeten, Z. dtsch. Öl-Fettind. 43, 66; C. 1923 I, 1390; Ekwall, Acta Acad. Abo. 4, Nr. 6, S. 165; C. 1928 I, 1156; McBain, Jenkins, Soc. 121, 2335; McBain, Hay, Soc. 1929, 599; Stocks, Oil Fat Ind. 4, 316; C. 1927 II, 2786; vgl. a. JARISCH, C. 1922 I, 780. Prüfung auf Reinheit:

Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 307.

Kaliumoleate KC₁₈H₃₃O₂ + C₁₈H₃₄O₂. Platten (aus Alkohol oder Ölsäure). Verflüssigt sich teilweise bei 43° unter Zerfall in Kaliumoleat und Ölsäure (McBain, Stewart, Soc. 1927, 1394). Schmilzt nach Stezenko (Maslob. žir. Delo 1926, Nr. 7/8, S. 35; C. 1927, 1426) bei 95°. Wird durch Wasser bei gewöhnlicher Temperatur merklich hydrolysiert (Sr.). Zerfällt bei längerer Extraktion mit Äther und Chloroform in Ölsäure und Kaliumoleat (Sr.). — KC₁₈H₃₃O₂. F: 235—240° (McBain, Elford, Soc. 1926, 422). Studien über den krystallin-flüssigen Zustand: De Broglie, Friedel, C. r. 176, 738; Friedel, C. r. 180, 269; McBain, Elford, Soc. 1926, 422; Vorländer, Selke, Ph. Ch. 129, 448; Zocher, Birstein, Ph. Ch. [A] 142, 178. Röntgenographische Untersuchung der krystallin-flüssigen Phase: de Bro., Frie.; Frie. Elektrische Leitfähigkeit von geschmolzenem Kaliumoleat: Bhatnagar, Prasad, Koll. Z. 34, 194; C. 1924 II, 1167. 100 g 95 %iger Alkohol lösen bei 25° 41,0 g Salz (Thomas, Yu, Am. Soc. 45, 116). Löslichkeit in verschiedenen Alkohol-Wasser-Gemischen bei 25°: Tho., Yu. Einfluß von Wasser und Ölsäure auf die Dispergierung und Gelierung in Terpentinöl und Paraffinöl: Holmes, Maxson, Colloid Symp. Mon. 5, 294, 296; C. 1928 II, 226. Lösungsvermögen der wäßr. Lösung für verschiedene organische Verbindungen: Tamba, Bio. Z. 145, 419. Löslichkeitsdiegramm der Systeme Kaliumoleat-Wasser und Kaliumoleat-Wasser kaliumolenden und Viscosität mäßriger und wäßrig-alkoholischer Lösungen: Bircumshaw, Soc. 123, 92, 94. Viscosität in Alkohol, Butylalkohol und Isobutylalkohl: Prasad, J. phys. Chem. 28, 638, 640. Oberflächenspannung von alkoh. Lösungen: Mikumo, J. Soc. chem. Ind. Japan Spl. 30, 188; C. 1928 I, 1373. Schutzwirkung auf Goldsole in Wasser und Wasser-Alkohol-Gemischen: Rideal, Bircumshaw, Soc. 128, 1565. Über Emulsionen mit Kaliumoleat als Emulgierungsmittel vgl. Finkle, Delape. Huldebrand, Am. Soc. 45, 2785; Kraemer, Stamm, Am. Soc. 46, 2715; Ha

McBain, Harborne, King, J. phys. Chem. 28, 8. Elektrische Leitfähigkeit in Alkohol, Propylalkohol und Butylalkohol: Bhatnagar, Prasad, Koll.-Z. 34, 195; C. 1924 II, 1167. Potential-differenzen an der Trennungsfläche zwischen Luft und wäßr. alkalischen Kaliumoleat-Lösungen: Frumkin, Ph. Ch. 111, 194; zwischen Quecksilber und wäßr. Lösungen von Kaliumoleat und Kaliumoleat + Kaliumchlorid: Talmud, Koll.-Z. 48, 164; C. 1929 II, 975. Überführungsversuche an Kaliumoleat-Lösungen: McBain, Bowden, Soc. 123, 2421, 2426; Holroyd, Rhodes, Soc. 125, 438. Grad der Hydrolyse in wäßr. Lösungen: McBain, Hay, Soc. 1929, 600. — Cäsiumoleat. Über Emulsionen mit Cäsiumoleat als Emulgierungsmittel vgl. Finkle, Draper, Hildebrand, Am. Soc. 45, 2785; Harkins, Colloid Symp. Mon. 5, 28; C. 1928 II, 229. Tröpfehengröße in Emulsionen: Harkins, Beeman, Am. Soc. 51, 1677. — Kupfer(II)-oleat Cu(C₁₈H₃₃O₂)₂. Oberflächenspannung von Lösungen in Äther und Alkohol + Äther: Mardles, Soc. 127, 2950. Elektrische Leitfähigkeit in Benzol, Benzol + Chlorwasserstoff und in einer benzolischen Lösung von Zinn(IV)-chlorid: Cady, Baldwin, Am. Soc. 43, 648. — Silberoleat. Weißes Pulver. Dispergierung und Gelierung in organischen Lösungsmitteln: White, Draper, Hildebrand, Am. Soc. 45, 2785. — Goldoleat. Zur Wirkung als Antiklopfmittel vgl. Sims, Mardles, Trans. Faraday Soc. 22, 367, 370; C. 1927 I, 384.

Magnesium oleat Mg(C₁₈H₃₃O₂)₂. Niederschlag. Bläht sich unterhalb 100° auf und schmilzt zu einem honigfarbenen Glas (Biltz, Röhrs, Z. ang. Ch. 36, 610). Nach Mead, McCoy (Colloid Symp. Mon. 4, 53; C. 1928 II, 860) scheint das Salz bei 80° zu schmelzen. 100 g 90% iger Alkohol lösen bei 25° 8,60 g Salz (Thomas, Yu, Am. Soc. 45, 115). Löslichkeit in verschiedenen Alkohol-Wasser-Gemischen bei 25°: Tho., Yu. Über Emulsionen mit Magnesiumoleat als Emulgierungsmittel vgl. Finkle, Draper, Hildebrand. Am. Soc. 45, 2785; HARKINS, Colloid Symp. Mon. 5, 36; C. 1928 II, 229; KRANTZ, GORDON, Colloid Symp. Mon. 6, 181; C. 1929 II, 2166. — Calciumoleat Ca(C₁₈H₃₃O₂)₂. Niederschlag. Bläht sich unterhalb 100° auf und schmilzt zu einem honigfarbenen Glas (Витz, Röhrs, Z. ang. Ch. 36, 610). Schmilzt nach Klimont (J. pr. [2] 109, 271) bei 83-840. Nach Harrison (Biochem. J. 18, 1223) backt das Salz bei 115-120° zusammen und zersetzt sich bei 140-160°. Unlöslich in Wasser, Alkohol, Äther, Aceton und Petroläther, löslich in Chloroform, Benzol und Xylol (HAR.; vgl. a. KLI.). Löslich in salzsäurehaltigem Alkohol (HAR.). Über Emulsionen mit Calciumoleat als Emulgierungsmittel vgl. Finkle, Draper, Hildebrand, Am. Soc. 45, 2785; HARKINS, Colloid Symp. Mon. 5, 31; C. 1928 II, 229; KRANTZ, GORDON, Colloid Symp. Mon. 6, 181; C. 1929 II, 2166. — Barium oleat $Ba(C_{18}H_{33}O_2)_2$. Krystalle (auswäßr. Propylalkohol) Leichter löslich in wäßr. Propylalkohol als in Methanol und Alkohol; löslich in Eisessig (Escher Helv. 12, 102 Anm. 4). Unlöslich in siedendem Benzol oder Toluol (Lapworff, Pearson. Mottram, Biochem. J. 19, 10). Löslichkeit in verschiedenen Lösungsmittel-Gemischen: Lap., Pear., Mott. — Zinkoleat Zn(C₁₈H₂₃O₂)₂. Mikroskopische Nadeln. F: 78° (Grabner, M. 42, 292). Löslich in siedendem Äther (Thomas, Yu, Am. Soc. 45, 115). Adsorption von Arabinose und Maltose an Zinkoleat aus wäßr. Lösungen: Shrivastava, Mitarb., J. phys. Chem. 29, 175. Über Emulsionen mit Zinkoleat als Emulgierungsmittel vgl. Finkle, Drafer, HILDEBRAND, Am. Soc. 45, 2785. — Quecksilber(II)-oleat Hg(C₁₈H₃₃O₂)₂. Schwer benetzbares Pulver (Friedländer, Apoth.-Zig. 44, 168; C. 1929 I, 1965). Zur Prüfung auf Reinheit vgl. Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 238. Aluminium oleat Al(C₁₈H₃₃O₂)₃. Verflüssigt sich bei 120°(Mead, McCov, Colloid Symp. Mon. 4, 53; C. 1928 II, 860). Über Emulsionen mit Aluminium oleat als Emulgierungsmittel vgl. Finkle, Draper, Hildebrand, Am. Soc. 45, 2785; Harkins, Colloid Symp. Mon. 5, 36; C. 1928 II, 229; Krantz, Gordon, Colloid Symp. Mon. 6, 181; C. 1929 II, 2166. — Thallium(I)-oleat TlC₁₈H₈₃O₂. Zur Darst. aus Olsäure und Thallium(I)-hydroxyd in verd. Alkohol vgl. Holde, Selim, Bleyberg, Z. ang. Ch. 37, 886; Z. disch. Öl-Fettind. 44, 278; C. 1924 II. 903; Holde, Selim, B. 58, 528; Christie, Menzies, Soc. 127, 2371. Blättchen (aus Aceton). F: 81° (korr.) (Walter, B. 59, 969), 83° (korr.) (Hol., Sel.). Die Schmelze ist zwischen 81º und 131—132º (korr.) krystallin-flüssig (WAL.). Brechungsindices der festen, krystallinflüssigen und amorph-flüssigen Phase: Wal. Löst sich in Wasser bei 15° zu 0,046%, bei 80° zu 0,3%, in 50% igem Alkohol bei 15° zu 0,9%, in 96% igem Alkohol bei 15° zu 2,2% (Hol... SEL., BLEY.; HOL., SEL.). Löslichkeit in 96 %igem Alkohol zwischen 150 und 450: Hol., SEL. SEL., BLEY.; HOL., SEL.). Löslichkeit in 96%igem Alkohol zwischen 15° und 45°: Hol., SEL. Krystallin-flüssige Mischschmelzpunkte mit Thallostearat und Thalloelaidat: Wal. — Bleioleat Pb(C₁₈H₃₈O₃)₂. Röntgenographische Untersuchung: Trillat, C. r. 180, 1839, 100 g absol. Ather lösen bei 25° 9,59 g Salz (Thomas, Yu, Am. Soc. 45, 116). — Wismutoleat. Emulgierung in Ölen: Hoffmann-La Roche & Co., D. R. P. 415227; C. 1925 II, 956; Frdl. 15, 1580. — Uranyloleat UO₄(C₁₈H₃₉O₃)₂ + 2 H₂O. Citronengelb, plastisch. Schmilzt bei 170—180° zu einer trüben Flüssigkeit (A. Müller, Z. anorg. Ch. 109, 240, 246). Löslich in Aceton, schwer löslich in Alkohol, unlöslich in Ather und Wasser. — Eisen(III)-oleat Fe(C₁₈H₃₂O₃)₃. Über Emulsionen mit Eisenoleat als Emulgierungsmittel vgl. Finkle, Draper, Hildebrand, Am Soc. 45, 2785.

Umwandlungsprodukte ungewisser Konstitution aus Ölsäure.

Isoölsäure von Moore $C_{18}H_{34}O_{2}$ (E I 202). Zur Zusammensetzung vgl. Hilditch, Vidyarthi, $Pr.\ roy.\ Soc.\ [A]\ 122,\ 552;\ C.\ 1929\ I,\ 2163.$ "Peroxido-ölsäure" $C_{18}H_{34}O_{4}=CH_{3}\cdot[CH_{2}]_{7}\cdot CH\cdot CH\cdot [CH_{2}]_{7}\cdot CO_{2}H$. Über eine Ver-

bindung, die vielleicht diese Konstitution besitzt, vgl. HILDITCH, LEA, Soc. 1928, 1577, 1583. Olsäure-ozonid C₁₈H₃₄O₅ (H 466, E I 202). Zur Formulierung als

 $CH_3 \cdot [CH_2]_7 \cdot CH < \bigcirc_O \cdot CH \cdot [CH_2]_7 \cdot CO_2H \text{ vgl. Staudinger}, B. 58, 1089, 1090. — Gibt$ beim Schütteln mit Kaliumferrooyanid-Lösung, Alkohol und Essigsäure Pelargonaldehyd (Harries, D. R. P. 321567; C. 1920 IV, 292; Frdl. 13, 266).
Ölsäure-ozonid-peroxyd C₁₈H₃₄O₆ (H 466; E I 203). Zur Konstitution vgl. Staudinger, B. 58, 1088. — Magnetische Susceptibilität: Vaidyanathan, Indian J. Phys. 2,

427; C. 1928 II, 1985. [MATERNE und HILLGER]

Funktionelle Derivate der Ölsäure.

Ölsäuremethylester, Methyloleat $C_{19}H_{36}O_3=C_{17}H_{33}\cdot CO_3\cdot CH_3$ (H467; EI 203). B. Beim Kochen von Ölsäure mit methylalkoholischer Salzsäure (Skraup, Schwamberger, A. 462, 155). — Kp₁₅: 215—216° (Skr., Schw.); Kp_{2,5}: 165—167° (Armstrong, Hilditch, J. Soc. chem. Ind. 4 [1925], 45 T). Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Manecke, Vol. Bert, Farben-Ztg. 32, 2888; C. 1927 II, 2786. — Liefert bei der Ozonisierung in Eisessig und folgenden Zersetzung mit Zinkstaub und Essigsäure in Äther Pelargonaldehyd und 9-Oxo-nonansäure-(1)-methylester (Noller, Adams, Am. Soc. 48, 1076; Helferich, Schäfer, B. 57, 1914); bei der Zersetzung des Ozonids in Gegenwart von Wasserstoffperoxyd entsteht Azelainsaure-monomethylester (Davies, Adams, Am. Soc. 50, 1754). Bei der Oxydation mit Perhydrol in Eisessig erhält man folgende Derivate der niedrigerschmelzenden 8.-Dioxy-stearinsaure: O.t-Dioxy-stearinsäure-methylester (nennenswerte Mengen, insbesondere bei niederer Temperatur), acetylierter O.t-Dioxy-stearinsäure-methylester (50% Ausbeute, bei höherer Temperatur beträchtlich mehr) und ölige Produkte, deren Hauptbestandteil wahrscheinlich durch den Peroxidosäureester $CH_3 \cdot [CH_2]_7 \cdot CH - CH \cdot [CH_2]_7 \cdot CO_2 \cdot CH_3$ gebildet wird (HILDITCH, LEA,

`O₂′ Soc. 1928, 1577, 1580; vgl. auch Hi., Soc. 1926, 1833). Bei der Oxydation mit Kaliumpermanganat in siedendem Aceton und Behandeln des Reaktionsprodukts mit siedender Natronlauge erhält man Azelainsäure und Pelargonsäure (AR., Hi., J. Soc. chem. Ind. 44, 45 T; C. 1925 I, 1586). Zur Hydrierung in Alkohol bei Gegenwart von Nickel-Katalysator vgl. Willstätter, Waldschmidt-Leitz, B. 54, 133. Zur Geschwindigkeit der Hydrierung in Eisessig und Alkohol bei Gegenwart von Platinschwarz vgl. Ueno, Kuzer, J. Soc. chem. Ind. Japan Spl. 30, 76 B; C. 1929 II, 2035. Über die Bildung von Octadecen-(8)-säure-(1)methylester und Octadecen-(8)-säure-(18)-methylester bei der partiellen Hydrierung in Gegenwart von Nickel-Kieselgur bei 114—220° vgl. Hi., Vidyarthi, Pr. roy. Soc. [A] 122, 555, 558; C. 1929 I, 2163; Moore, J. Soc. chem. Ind. 38, 320 T; C. 1919 III, 987. Wird durch Ammoniak über Aluminiumoxyd bei ca. 500° in Ölsäurenitril übergeführt (MAILHE, A. ch. [9] 13, 222; Bl. [4] 27, 228). Liefert beim Erwärmen mit Phenylmagnesiumbromid in Ather und folgenden Erhitzen des Reaktionsprodukts 1.1-Diphenyl-octadecadien-(1.9) (Skr., Schw.).

Ölsäureäthylester, Äthyloleat C₈₀H₈₈O₈ = C₁₇H₈₈·CO₂·C₂H₈(H 467; E I 203). Zur Zu: sammensetzung des käuflichen technischen Produkts vgl. Scanlan, Swern, Am. Soc. 62 [1940], 2306. — Schmilzt unterhalb —15° (Böeseken, Belinfante, R. 45, 917). Kp₈₀: 220° (B., B.); Kp_{8,5}: 172—175°(Armstrong, Hilditch, J. Soc. chem. Ind. 44 [1925], 45 T); Kp₈: 172°(Piper, Malkin, Austin, Soc. 1926, 2311). D¹⁶₁₈: 0,871 (Vorländer, Walter, Ph. Ch. 118, 11); D¹⁶₂: 0,8748; Dichte zwischen 28° (0,866) und 150° (0,779): Lautsch, Ph. Ch. [B] 1, 128. Viscosität bei 20°: V., W. n¹⁶₁₈: 1,4536 (P., M., Au.); n¹⁶_α: 1,4523; n²_β: 1,4610; n¹⁶_γ: 1,4662 (L.). Doppelbrechung der rotierenden Flüssigkeit: V., W. Depolarisationsgrad des Streulichtes bei der Streuung von grünem Licht in flüssigem Athyloleat bei 20°: L. Dielektr.-Konst. zwischen 28° (3,17) und 150° (2,63): L. Dipolmoment μ·10¹⁸ : 1,35 (homogene Flüssigkeit) (L.). Potentialdifferenz an der Trennungsfläche zwischen Luft und einer monomolekularen Schicht von tialdifferenz an der Trennungsfläche zwischen Luft und einer monomolekularen Schicht von Athyloleat auf verd. Salzsaure: FRUMKIN, Ph. Ch. 116, 495. — Entzündungstemperatur in Luft an einer Platinoberfläche: MASSON, HAMILTON, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Geschwindigkeit der Oxydation durch Sauerstoff bei Gegenwart und Abwesenheit von Hämin in Pyridin bei 20° und 37°: Kuhn, Meyer, H. 185, 204, 209. Wird durch Wasserstoffperoxyd in Aceton bei Gegenwart von Mangan- oder Kobaltresinat nur wenig verändert (BAUER, KUTSCHER, Ch. Umechau Fette 32, 62; C. 1925 II, 158). Die Oxydation

mit Benzopersäure in Chloroform bei Gegenwart von Mangan- oder Kobaltresinat führt zu einem dünnen rotbraunen Öl von charakteristischem Geruch, das nur eine schwache Peroxydreaktion gibt und sich in Alkohol, Ather, Chloroform und Petroläther leicht löst (B., K.). Liefert mit überschüssigem Hydrazinhydrat bei Zimmertemperatur Stearinsäurehydrazid (Falciola, G. 50 I, 163). — Nährwert für Ratten: Ozaki, Bio. Z. 189, 236; Pr. Acad. Tokyo 3, 441; C. 1928 I, 541. — Bestimmung durch quantitative Hydrierung: Grün, Halden, Z. dtsch. Öl-Fettind. 44, 4; C. 1924 I, 1458.

Ölsäurepropylester, Propyloleat $C_{21}H_{40}O_2 = C_{17}H_{33} \cdot CO_2 \cdot CH_2 \cdot C_2H_5$ (E I 203). B. Aus Ölsäure und Propylalkohol bei Einw. von Bac. pyocyaneus (van der Walle, Zbl. Bakt. Parasitenk. [II] 70, 371; C. 1927 II, 583).

[β . β '-Dichlor-isopropyl]-oleat, Glycerin- α . α '-dichlorbydrin-oleat, β -Oleo- α -dichlorbydrin $C_{21}H_{38}O_2Cl_2=C_{17}H_{38}\cdot CO_2\cdot CH(CH_2Cl)_2$. B. Durch Einw. von Ölsäurechlorid auf α -Dichlorbydrin oder durch Sättigen einer Mischung von Ölsäure und Glycerin mit Chlorwassers toff (Humnicki, Bl. [4] 45, 282). — Kp₁₅: 260—275°; zersetzt sich bei der Destillation unter 36 mm Druck. D_{20}^{∞} : 0,994. n_{20}^{∞} : 1,4754.

Ölsäurebutylester, Butyloleat $C_{22}H_{42}O_2 = C_{17}H_{33} \cdot CO_2 \cdot [CH_2]_3 \cdot CH_3$. Gelbes, mit Wasser nicht mischbares Öl. Kp: 350—360° (Zers.) (Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 194). D: 0,87—0,88. — Verwendung als Lösungsmittel und Weichmacher: Th. H. D., Solv.. S. 194, 231, 232; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 245.

Ölsäureisobutylester, Isobutyloleat $C_{22}H_{42}O_{2}=C_{17}H_{33}\cdot CO_{2}\cdot CH_{2}\cdot CH(CH_{3})_{2}$ (E I 203). B. Aus Ölsäure und Isobutylalkohol bei Einw. von Bac. pyocyaneus (VAN DER WALLE, Zbl. Bakt. Parasitenk. [II] 70, 371; C. 1927 II, 583).

Ölsäureisoamylester, Isoamyloleat $C_{23}H_{44}O_2 = C_{17}H_{33} \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2$ (H 467; E I 203). B. Aus Ölsäure und Isoamylalkohol bei Einw. von Bac. pyocyaneus (VAN DER WALLE, Zbl. Bakt. Parasitenk. [II] 70, 371; C. 1927 II, 583).

Ölsäure-n-hexylester, n-Hexyloleat $C_{24}H_{46}O_2=C_{17}H_{33}\cdot CO_2\cdot [CH_2]_5\cdot CH_3$. B. Aus Ölsäure und n-Hexylalkohol bei Einw. von Bac. pyocyaneus (VAN DER WALLE, Zbl. Bakt. Parasitenk. [II] 70, 371, 1927 II, 583).

Ölsäure-n-octylester, n-Octyloleat $C_{26}H_{50}O_2 = C_{17}H_{33} \cdot CO_2 \cdot [CH_2]_7 \cdot CH_3$. B. Aus Ölsäure und n-Octylalkohol bei Einw. von Bac. pyocyaneus (VAN DER WALLE, Zbl. Bakt. Parasitenk. [II] 70, 371; C. 1927 II, 583).

Undecyl-(2)-oleat, Methyl-n-nonyl-carbinol-oleat $C_{39}H_{56}O_2 = C_{17}H_{33} \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_8 \cdot CH_3$. B. Aus Ölsäure und Methyl-n-nonyl-carbinol bei Einw. von Bac. pyocyaneus (VAN DER WALLE, Zbl. Bakt. Parasitenk. [II] 70, 371; C. 1927 II, 583).

Äthylenglykoldioleat $C_{38}H_{70}O_4 = C_{77}H_{33} \cdot CO \cdot O \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot C_{17}H_{33}$. B. Bei10-stdg. Erhitzen berechneter Mengen von Silberoleat und Athylenbromid im Rohr auf 180° (Piutti, de'Conno, Ann. Chim. applic. 18, 475; C. 1829 I, 760). — Verseifung durch Ricinuslipase: P., de'C.

Glycerin - α - oleat, α - Monoolein $C_{21}H_{40}O_4 = C_{17}H_{33} \cdot CO \cdot O \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot OH$ (H 467). B. Aus Acetonglycerin (Syst. Nr. 2691) durch Einw. von Ölsäurechlorid bei 15—20° und Behandlung des erhaltenen Oleylacetonglycerins mit Salzsäure (Amberger, Bromig, Bio. Z. 130, 265; A., Wiesehahn, Z. Unters. Nahr.-Genußm. 46 [1923], 297).

Glycerin- $\alpha\beta$ -dibutyrat- α' -oleat, $\alpha\beta$ -Dibutyro- α' -olein $C_{29}H_{52}O_6 = C_{17}H_{35} \cdot CO \cdot O \cdot CH_1 \cdot CH(O \cdot CO \cdot CH_2 \cdot C_2H_5) \cdot CH_2 \cdot C \cdot CH_2 \cdot C_2H_5$ (vgl. E I 203). B. Durch Behandlung von α -Monoolein mit Butyrylchlorid (Eichwald, Z. ang. Ch. 35, 506). — Einw. elektrischer Glimmentladungen: Ei.

Glycerin- α -myristat- α' -oleat, α -Myristo- α' -olein $C_{3b}H_{66}Q_5 = C_{17}H_{38} \cdot CO \cdot O \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{12} \cdot CH_3$. B. Bei längerem Erhitzen von Glycerin- α -chlorhydrin- α' -myristat mit Natriumoleat im Kohlendioxydstrom auf 150° (Heiduschka, Schuster, J. pr. [2] 120, 158). — Salbenartige Masse (aus Äther und Alkohol), die sich bei etwa 20—23° verflüssigt.

Glycerin- α -caprylat- β -myristat- α' -oleat, α -Caprylo- β -myristo- α' -olein $C_{43}H_{80}O_6=C_{17}H_{33}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_1\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_6\cdot CH_3$. B. Aus α -Monocaprylin durch aufeinanderfolgende Veresterung mit Ölsäurechlorid in Chloroform + Pyridin und Myristinsäureanhydrid im Kohlendioxydstrom (Heiduschka, Schuster, J. pr. [2] 120, 156). — Gelbliche Krystalle, die beim Aufbewahren nachdunkeln. F: 10,5°. Leicht löslich in Äther und Chloroform.

Glycerin- β -caprylat- α -myristat- α' -oleat, β -Caprylo- α -myristo- α' -olein, α' -Oleo- β -caprylo- α -myristin $C_{43}H_{80}O_6=C_{17}H_{35}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_6\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{12}\cdot CH_3$. V. Ein Caprylomyristcolein, dem wahrscheinlich diese Konstitution zukommt,

findet sich in größerer Menge im Palmkernfett (Bömer, Ch. Umschau Fette 30, 202; C. 1923 IV, 738; B., Schneider, Z. Unters. Nahr.-Genußm. 47, 82; C. 1924 I, 2882). — B. Durch Verestern von α -Myristo- α' -olein mit Caprylsäurechlorid in Chloroform + Pyridin (Heiduschka, Schuster, J. pr. [2] 120, 158). — F: 14,8° (H., Sch.). Leicht löslich in Äther, heißem Alkohol und Chloroform (H., Sch.).

Glycerin-α-caprylat-α'-myristat-β-oleat, α-Caprylo-α'-myristo-β-olein, α-Caprylo-β-oleo-α'-myristin $C_{43}H_{80}O_6=CH_3\cdot [CH_2]_6\cdot CO\cdot CH_2\cdot CH(O\cdot CO\cdot C_{17}H_{33})\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{12}\cdot CH_3$. B. Aus α-Monomyristin durch aufeinanderfolgende Veresterung mit Capryloylchlorid in Chloroform + Pyridin und Ölsäurechlorid im Kohlendioxydstrom (ΗΕΙ-DUSCHKA, SCHUSTER, J. pr. [2] 120, 157). — Gelbliche dicke Flüssigkeit, die bei ca. 3,5° zu Krystallen erstarrt. F: 15,8°. Leicht löslich in Alkohol, Äther und Chloroform.

Myristopalmitoolein $C_{51}H_{96}O_6 = C_3H_5(O \cdot CO \cdot C_{13}H_{27})(O \cdot CO \cdot C_{15}H_{31})(O \cdot CO \cdot C_{17}H_{33})$ (H 467) von Klimont (M. 23, 57) ist nach Amberger, Bauch (Z. Unters. Nahr.-Genußm. 48, 383; C. 1925 I, 1329) ein Gemisch.

Glycerin-dipalmitat-oleat, Dipalmitoolein, Oleodipalmitin $C_{53}H_{100}O_6=C_{17}H_{33}\cdot CO\cdot O\cdot C_3H_5(O\cdot CO\cdot [CH_2]_{14}\cdot CH_3)_2$ (vgl. H 467; E I 204).

a) Praparat von Amberger, Bromig. V. Im Gänsefett (Amberger, Bromig, P. C. H. 62, 548; C. 1921 IV, 1239). — F: 33,5°.

b) Prāparat von Hashi. V. Im Sojabohnenöl (Hashi, J. Soc. chem. Ind. Japan Spl. 30, 222 B; С. 1928 I, 1470).

Glycerin- β -palmitat- α -stearat- α' -oleat, β -Palmito- α -stearo- α' -olein, α' -Oleo- β -palmito- α -stearin $C_{55}H_{104}O_6=C_{17}H_{33}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{16}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_3]_{16}\cdot CH_3$ (vgl. H 467). V. Im Kakaofett (Amberger, Bauch. Z. Unters. Nahr.-Genu β m. 48, 377; C. 1925 I, 1329). — F: 34,5°.

Glycerin- α -palmitat- α' -stearat- β -oleat, α -Palmito- α' -stearo- β -olein, β -Oleo- α -palmito- α' -stearin $C_{55}H_{104}O_6 = CH_3 \cdot [CH_2]_{14} \cdot CO \cdot O \cdot CH_2 \cdot CH(O \cdot CO \cdot C_{17}H_{33}) \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_{16} \cdot CH_3$. Das H 467 beschriebene Palmitostearoolein von Hansen ist wahrscheinlich α -Palmito- α' -stearo- β -olein (Amberger, Wiesehahn, Z. Unters. Nahr.-Genu β m. 46, 296; C. 1924 I, 1879).

Glycerin - α . β -distearat- α' -oleat, α . β -Distearo - α' -olein, α' -Oleo- α . β -distearin $C_{57}H_{108}O_6=C_{17}H_{33}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot [CH_2]_{16}\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{16}\cdot CH_3$ (H 467; vgl. E I 204). V. Im Schweinefett (Amberger, Wiesehahn, Z. Unters. Nahr.-Genußm. 46, 280; C. 1924 I, 1879). Im Kakaofett (A., Bauch, Z. Unters. Nahr.-Genußm. 48, 380; C. 1925 I, 1329). — B. In geringer Menge neben anderen Produkten aus α -Monoolein und Stearinsäurechlorid in Chloroform bei Gegenwart von Pyridin oder Chinolin (A., W.; A., Bromig, Bio. Z. 130, 265). — Gelbliche Krystalle (aus Äther + Alkohol). F: 42° (A., W.; A., Br.), 43,5° (A., Bau.). — Gibt bei der Hydrierung in Gegenwart von Nickel Tristearin (A., W.).

Glycerin-α-palmitat-α'.β-dioleat, α-Palmito-α'.β-diolein, α'.β-Dioleo-α-palmitin $C_{55}H_{102}O_6=C_{17}H_{33}\cdot CO\cdot O\cdot CH_2\cdot CH(O\cdot CO\cdot C_{17}H_{33})\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_{14}\cdot CH_3\cdot V.$ Im Schweinefett (Amberger, Wiesehahn, Z. Unters. Nahr.-Genuβm. 46, 287; C. 1924 I, 1879). Im Kakaofett (A., Bauch, Z. Unters. Nahr.-Genuβm. 48, 383; C. 1925 I, 1329). Im spanischen Olivenöl (Täufel, Sarria, An. Soc. españ. 24, 40; C. 1926 I, 3106). — B. Aus α-Monopalmitin und Ölsäurechlorid in Chloroform bei Gegenwart von Pyridin oder Chinolin (A., W.; A., Bromig, Bio. Z. 130, 263). — Gelbes zersetzliches Öl, das gegen 0^0 fest wird (A., W.; A., Br.). — Gibt bei der Hydrierung in Gegenwart von Nickel α-Palmito-α'.β-distearin (A., W.).

Glycerintrioleat, Triolein, Olein C₈₇H₁₀₄O₄ = (C₁₇H₃₃·CO·O)₃C₃H₅ (H 468; E I 204). B. Einfluß von Gasen auf die Bildung aus Ölsäure und Glycerin: Garner, J. Soc. chem. Ind. 47, 278 T; C. 1928 II, 2548. — D⁸: 0,9152 (Tromp, R. 41, 298). D⁸: 0,915 (Vorländer, Walter, Ph. Ch. 118, 10). Viscosität bei 20°: V., W.; Krüger, Ph. Ch. 109, 447. Doppelbrechung der rotierenden Flüssigkeit: V., W., Ph. Ch. 118, 10; Phys. Z. 25, 572; C. 1925 I, 617; Kr. Beugung von Röntgenstrahlen an flüssigem Triolein und vulkanisiertem Triolein: Knight, Stamberger, Soc. 1928, 2792. Zur Dielektr.-Konst. vgl. a. Kallmann, Dorsch, Ph. Ch. 126, 322. Grenzflächenspannung von Triolein gegen Wasser: Carrière, Chem. Weekb. 20, 208; C. 1923 III, 423; von Triolein und Triolein-Benzol-Lösungen gegen saure und schwach alkalische Phosphat- und Borat-Puffer-Lösungen bei Zimmertemperatur: Hartridge, Peters, Pr. roy. Soc. [A] 101, 355; C. 1923 I, 874. Einfluß von Essigsäure und Ölsäure auf diese Grenzflächenspannung: H., P. Ausbreitung mono-molekularer Schichten auf Wasser, 0,001 n-Salzsäure und 0,1 n-Salzsäure bei 1°, 15° und 40°: Gobter, Grendel, Bio. Z. 192, 446; vgl. auch Woog, C. r. 173, 388. Dicke monomolekularer Schichten von vulkanisiertem Triolein und von vulkanisierten Polymerisaten auf Wasser: Kn., St., Soc. 1928, 2792; Nature 122, 97; C. 1928 II, 1060. Struktur monomolekularer Schichten auf Wasser oder verd. Permanganat-Lösung bei 15,3°: Adam, Jessop, Pr. roy.

Soc. [A] 112, 368; C. 1926 II, 2399. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer monomolekularen Trioleinschicht auf verd. Salzsäure oder Kaliumchlorid-Lösung: Frumkin, Ph. Ch. 116, 495. — Reduktion von Kaliumdichromat durch Triolein in Petroläther: Blix, Skand. Arch. Physiol. 48 [1926], 288, 289. Liefert mit überschüssigem Hydrazinhydrat bei Zimmertemperatur Stearinsäurehydrazid (Falciola. G. 50 I, 163). Geschwindigkeit der Verseifung durch siedende Natronlauge von verschiedener Konzentration: Norris, McBain, Soc. 121, 1367. Hydrolyse durch Pankreaslipase: Coopur, Edgar, Biochem. J. 20, 1064. Einfluß der Dispersität auf die Spaltung durch Pankreatin: Rona, Kleinmann, Bio. Z. 174. 30. Spaltung durch Trichophyton gypseum: v. Mallinckrodt-Haupt, Zbl. Bakt. Parasitenk. [I] 103, 76; C. 1927 II, 1041. Vulkanisation mit Schwefel bei 160°: Stamberger, R. 46, 839; 47, 975. — Nährwert für Ratten: Ozaki, Bio. Z. 189, 234; Pr. Acad. Tokyo 3, 439; C. 1928 I, 541. Giftigkeit von Triolein-Suspensionen für Paramaecien: Degkwitz, Klin. Wschr. 8, 2226; C. 1930 II, 69. — Zur mikrochemischen Bestimmung nach Bang (Bio. Z. 91, 86) vgl. Maas, Bio. Z. 144, 379. Nephelometrische Bestimmung kleiner Mengen für sich oder zusammen mit Cholesterin: Bing, Heckscher, Bio. Z. 158, 396; H., Bio. Z. 181, 445, 448; vgl. Blix, Bio. Z. 167, 313.

Ölsäureanhydrid $C_{36}H_{66}O_3 = (C_{17}H_{33}\cdot CO)_2O$ (H 469). B. Zur Bildung nach Albitzki, 33. 103; C. 1899 I. 1070 vgl. noch A., J. pr. [2] 61 [1900], 99; Holde, Smelkus, B. 53, 1893; H., Tacke, Ch. Z. 45, 949; C. 1921 III, 1406. — Blättchen oder Schuppen (aus Alkohol oder Ather). F: 22,20. $D_1^{\text{tr}}: 0.900; D_2^{\text{tr}}: 0.8982$ (Holde, Rietz, B.57, 100). $n_7^{\text{tr}}: 1,4630$ (H., R.). Die Löslichkeit in 96 %igem und 85 %igem Alkohol wird durch die Anwesenheit freier Ölsäure stark erhöht (H., S.). Elektrische Leitfähigkeit in Aceton: H., T.; H., R. — Zersetzt sich bei der Destillation unter 10—11 mm Druck unter Bildung von reichlichen Mengen freier Ölsäure (H., S.).

Ölsäurenitril, Oleonitril, [Heptadecen-(8)-yl-(1)]-cyanid $C_{18}H_{38}N=C_{17}H_{38}\cdot CN$. B. Aus Ölsäuremethylester und Ammoniak-Gas beim Überleiten über Aluminiumoxyd bei ca. 500° (Mailhe, Bl. [4] 27, 228; A.ch. [9] 13, 222). — Kp: $330-335^{\circ}$ (geringe Zersetzung). — Liefert bei der Hydrierung in Gegenwart von Nickel bei $250-260^{\circ}$ eine geringe Menge eines Amins vom Siedepunkt $250-260^{\circ}$.

Oleinhydroxamsäure $C_{18}H_{35}O_2N = C_{17}H_{33} \cdot CO \cdot NH \cdot OH$ bzw. desmotrope Form (H 469). B. Beim Erhitzen von Athyloleat mit Hydroxylaminhydrochlorid in Natriumäthylat-Lösung (Nicolet, Pelc, Am. Soc. 44, 1146). Zur Bildung nach Morelli, R. A. L. [5] 17 II [1908], 77 vgl. Lewis, Biochem. J. 20, 1359. — Krystalle (aus Alkohol oder Aceton). — Liefert beim Erhitzen mit mehr als 2 Mol Acetanhydrid in wenig Aceton ein nicht trennsares Gemisch von cis. und trans-[Heptadecen-(8)-yl-(1)]-isocyanat (N., P.). — Das Natriumsalz ist in Alkohol und in einem Gemisch von Alkohol und Methanol ziemlich leicht löslich (L.).

Oleinhydroxamsäure-acetat, O-Acetyl-N-oleoyl-hydroxylamin $C_{30}H_{37}O_3N=C_{17}H_{33}\cdot CO\cdot NH\cdot O\cdot CO\cdot CH_3$. B. Aus Oleinhydroxamsäure beim Kochen mit Acetanhydrid in sehr geringem Überschuß in viel Aceton (Nicolet, Pelc, Am. Soc. 44, 1147). — Krystalle (aus Alkohol). F: 63°. — Liefert beim Erwärmen mit Alkalicarbonat-Lösung auf dem Wasserbad N.N'-Di[heptadecen-(8)-yl-(1)]-harnstoff vom Schmelzpunkt 59°, beim Erwärmen mit Natriumäthylat-Lösung auf 40° [Heptadecen-(8)-yl-(1)]-urethan vom Schmelzpunkt 42—43°.

N-Acetyl-oleinhydroxamsäure-acetat, O.N-Diacetyl-N-oleoyl-hydroxylamin $C_{22}H_{39}O_4N=C_{17}H_{33}\cdot CO\cdot N(CO\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Beim Erwärmen von Oleinhydroxamsäure-acetat mit 1 Mol Acetanhydrid in Aceton (Nicolet, Pelc, Am. Soc. 44, 1147). — Plättchen (aus Alkohol). F: $64-65^\circ$.

b) Elaidinsäure C₁₈H₃₄O₂ = CH₃·[CH₂]₇·CH:CH·[CH₂]₇·CO₂H (H 469; E I 204). Zur Konfiguration vgl. die S. 429 zitierte Literatur. — B. Zur Bildung durch Umlagerung von Olsäure mit Hilfe von Stickoxyd vgl. Philippi, M. 51, 277; mit Hilfe von NaHSO₃·Lösung nach M. Saizew, C. Saizew, A. Saizew, Ж. 24, 477; C. 1893 I, 637; J. pr. [2] 50 [1894], 73 vgl. Rankoff, B. 62, 2714, 2716. Die Umlagerung von Ölsäure in Elaidinsäure findet ferner statt: beim Erhitzen mit Wasser und wenig Schwefel im Rohr auf 120—150° (Ra.); bei 50-stdg. Erwärmen mit Natriumchlorat und Soda in Wasser bei Gegenwart von Osmiumtetroxyd auf dem Wasserbad (neben höherschmelzender 3·1·Dioxy-stearinsäure) (Medwedew, Alexelewa, C. 1927 II, 1012). Elaidinsäure entsteht ferner beim Kochen von Elaidinsäurenitril mit alkoh. Kalilauge (Mailhe, Bl. [4] 27, 228; A. ch. [9] 13, 222); beim Erhitzen von Stearolsäure mit Zinkstaub, Eisessig und etwas Salzsäure (González, An. Soc. españ. 24, 163; C. 1926 II, 183); bei der Destillation von ·Oxy-stearinsäure unter 160—200 mm Druck bei 300°, neben anderen Produkten (Veselt, Majtl., Bl. [4] 39, 240). — Zur Trennung von Ölsäure oder Stearinsäure + Ölsäure vgl. Steger, Scheffers, R. 46, 407. Reindarstellung mit Hilfe der Quecksilber(II)-acetat-Verbindung analog der Ölsäure: Bertram, R. 46, 401.

Röntgenogramm: BECKER, JANCKE, Ph. Ch. 99, 273; A. MÜLLER, Soc. 123, 2046; MÜ., SHEARER, Soc. 123, 3157. F: 44,40 (kort.) (HOLDE, RIETZ, B. 57, 101), 44,40 (RANKOFF, B. 62, 2716), 44,5° (WATERMAN, BERTRAM, VAN WESTEN, J. Soc. chem. Ind. 48, 50 T; C. 1929 I, 2118). Optisches Verhalten dünner, auf einer Glasplatte erstarrter Schmelzen: VORLÄNDER, SELKE, Ph. Ch. 129, 447. n_{α}^{m} : 1,4381; n_{β}^{m} : 1,4405; n_{β}^{m} : 1,4465; n_{γ}^{m} : 1,4515 (Bert., Bio. Z. 197, 439); n_{β}^{m} : 1,4308 (Ra.; H., Rie.). Schwer löslich in absol. Alkohol (H., Rie.); unlöslich in Wasser bei 25°; 100 g Olivenol lösen bei 25° 7,87 g Elaidinsäure (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50, 86; Versl. Akad. Amsterdam 28, 367; C. 1920 II, 631). Ebullioskopisches Verhalten in Trichlorathylen: WALDEN, Ann. Acad. Sci. fenn. [A] 29, Nr. 23, S. 15; C. 1928 I, 166. Adhāsion an polierten Aluminiumflächen: McBain, Lee, J. phys. Chem. 32, 1181. Dicke monomolekularer Filme auf Quecksilber bei 25°: Sheppard, Keenan, Nature 121, 982; C. 1928 II, 1524. Struktur monomolekularer Schichten auf verd. Salzsäure bei verschiedenen Temperaturen: ADAM, Pr. roy. Soc. [A] 101, 460, 518; Trans. Faraday Soc. 24, 151; C. 1923 I, 271, 272; 1928 II, 741; auf verd. Salzsäure und verd. Permanganat-Lösung bei Zimmertemperatur: A., Jessop, Pr. roy. Soc. [A] 112, 366, 371; C. 1926 II, 2399. Grenzflächenspannung einer Lösung in Benzol gegen saure und schwach alkalische Phosphat-Pufferlösungen: HARTRIDGE, PETERS, Pr. roy. Soc. [A] 101, 356; C. 1923 I, 874. Elektrische Leitfähigkeit in Aceton: H., Rig. Potentialdifferenz an der Trennungsfläche zwischen Luft und einer monomolekularen Schicht auf verd. Salzsäure: Frumkin, Ph. Ch. 116, 494.

Reagiert nach der Einw. von Röntgenstrahlen, insbesondere bei Gegenwart von Sauerstoff, stark auf photographische Platten (Hamano, Bio. Z. 169, 434). Geschwindigkeit der Oxydation durch Sauerstoff bei Gegenwart oder Abwesenheit von Hämin in Pyridin bei 370: Kuhn, Meyer, H. 185, 204. Liefert bei Einw. von 36%igem Wasserstoffperoxyd in Eisessig bei Zimmertemperatur höherschmelzende $\vartheta.\iota ext{-}$ Dioxy-stearinsäure (Hildfich, Soc.1926, 1835). Geschwindigkeit der Oxydation durch Peressigsäure bei 18-20: BÖESEKEN, R. 46, 624; Bör., Smit, Gaster, Pr. Akad. Amsterdam 32, 380; C. 1929 II, 716. Wird durch mindestens 3-tägige Einw. von Benzopersäure in Chloroform bei Zimmertemperatur zu höherschmelzender θ .i-Oxido-stearinsäure oxydiert (BAUER, BÄHR, J. pr. [2] 122, 203; vgl. auch Böe., Belinfante, R. 45, 918). Geschwindigkeit der Oxydation mit Benzopersäure bei 18—20°: Bör. Beim Erwärmen mit Natriumchlorat und Natriumdicarbonat in Wasser bei Gegenwart von Osmiumtetroxyd auf dem Wasserbad erhält man niedrigerschmelzende &.i-Dioxy-stearinsäure und Ölsäure (MEDWEDEW, ALEXEJEWA, C. 1927 II, 1012); beim Behandeln mit eiskalter, stark verdünnter alkalischer Permanganat-Lösung nur niedrigerschmelzende \(\theta.\text{t-Dioxy-stearins\(\text{aure}\) (H1.). Geschwindigkeit der Hydrierung in Gegenwart von Palladium-Bariumsulfat in Alkohol bei 18°: PAAL, SCHIEDEWITZ, B. 60, 1226. Elaidinsäure wird langsamer hydriert als Ölsäure (P., Sch.). Liefert beim Erhitzen mit Hydrazinhydrat Stearinsaurehydrazid (VAN ALPHEN, R. 44, 1068; HANUS, VOMISER, Collect. Trav. chim. Tchécosl. 1, 227; C. 1929 II, 551). Geschwindigkeit der Addition von Brom in Tetrachlorkohlenstoff bei 13° im Dunkeln: Williams, James, Soc. 1928, 345. Partielle Halogen-Addition bei der Einw. von Jodmonobromid in gesättigter methylalkoholischer Natriumbromid-Lösung: KAUFMANN, Z. ang. Ch. 42, 1155. Gleichgewichtskonstante bei der Addition von Jod in Tetrachlorkohlenstoff-Lösung bei 0° und $19,5^{\circ}$ im Dunkeln: van der Steur, R. 46, 280, 412; in Benzol-Lösung bei $19,5^{\circ}$ im Dunkeln: v.d. St., R. 46, 415. Kondensiert sich mit Benzol in Gegenwart von Aluminiumchlorid zu θ (oder ι)-Phenyl-stearinsäure (Marcusson, Z. ang. Ch. 33, 234). Lagert in Eisessig-Tetrachlorkohlenstoff-Lösung im Dunkeln Rhodan an (Kau., B. 59, 1391; vgl. Ar. 1925, 714).

H 469, Z. 5-4 v. u. streiche "Chromsäure gibt dieselben Oxydationsprodukte (EDMED)".

Nährwert für Ratten: Ozaki, Bio. Z. 189, 238; Pr. Acad. Tokyo 3, 442; C. 1928 I, 541. Wird im Gegensatz zu Ölsäure von Aspergillus niger und Penicillium glaucum bei 30° bzw. 22° nicht assimiliert (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50, 83; Versl. Akad. Amsterdam 28, 364; C. 1920 I, 630). Oxydativer Abbau durch Penicillium cyclopium bei 22—25°: Derx, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345. — Jodometrische Bestimmung neben Ölsäure: van der Steur, R. 46, 409. Verhalten bei der Bestimmung der Überjodzahl: Margosches, Mitarb., B. 58, 1067. Zur Bestimmung durch Oxydation mit Chromsaure vgl. Simon, C. r. 180, 1406.

NaC₁₈H₂₈O₂. Zur mikroskopischen Struktur vgl. MacLennan, J. Soc. chem. Ind. 42, 399 T; C. 1924 I, 1291. Stabilität und Filmbildung von Emulsionen aus verd. Natriumelaidat-Lösung und Octan oder schwerem Paraffinöl: Harkins, Colloid Symp. Mon. 5, 36; C. 1928 II, 229. Eiweißfallende Wirkung: Cooper, Edgar, Biochem. J. 20, 1065. -AgC₁₈H₃₅O₂. Ist in Mineralöl teilweise löslich und bildet eine Gallerte (Klimont, J. pr. [2]109, 271). — Calciumsalz. Backt bei ca. 100° zusammen; F: 137° (K.). Teilweise löslich in Äther, sehr leicht in heißem Mineralöl. — Quecksilbersalz. F: 115° (K.). Sehr schwer löslich in Äther, löslich in Mineralöl. — Thallium(I)-salz. Blättchen (aus Aceton). F: 90° (korr.); die Schmelze ist zwischen 144° und 90° (korr.) krystallinflüssig (Walter, B.59, 969). Schmelzpunkte von Gemischen mit Thallium(I)-oleat und -stearat: W. — $Pb(C_{18}H_{33}O_{3})_{3}$. Röntgenogramm: Trillat, C.r. 180, 1839.

"Peroxidoelaidinsäure" $C_{18}H_{34}O_4$ = $CH_3 \cdot [CH_2]_7 \cdot CH$ — $CH \cdot [CH_2]_7 \cdot CO_2H$. Übereine Verbindung, der vielleicht diese Konstitution zukommt, vgl. Hilditch, Lea, Soc. 1928, 1577, 1583.

Elaidinsäuremethylester, Methylelaidat $C_{19}H_{36}O_3 = C_{17}H_{33} \cdot CO_3 \cdot CH_3$ (H 470). Liefert bei der Oxydation mit Wasserstoffperoxyd in Eisessig folgende Derivate der höherschmelzenden $\theta.\iota$ -Dioxy-stearinsäure: $\theta.\iota$ -Dioxy-stearinsäure-methylester (nennenswerte Mengen, insbesondere bei niederer Temperatur), acetylierten $\theta.\iota$ -Dioxy-stearinsäure-methylester (50 % Ausbeute, bei höherer Temperatur beträchtlich mehr) und ölige Produkte, deren Hauptbestandteil wahrscheinlich durch den Peroxidosäureester $CH_3 \cdot [CH_2]_7 \cdot CH$ — $CH \cdot [CH_2]_7 \cdot CO_3 \cdot CH_3$ gebildet wird

(Hilditch, Lea, Soc. 1928, 1577, 1580; vgl. a. Hi., Soc. 1926, 1835). Wird durch Ammoniak über Aluminiumoxyd bei ca. 500° in Elaidinsäurenitril übergeführt (Mailhe, Bl. [4] 27, 228; A. ch. [9] 13, 222).

Elaidinsäureäthylester, Äthylelaidat $C_{20}H_{38}O_2=C_{17}H_{38}\cdot CO_2\cdot C_2H_6$ (H 470; E I 205). F: 20° (Böeseken, Belinfante, R. 45, 917). Kp₁₄: 213° (B., B.); Kp₁₈₋₁₄: 208—210° (Philippi, M. 51, 277). — Gibt bei der Reduktion mit Natrium und Alkohol Elaidinalkohol (Toyama, Ch. Umschau Fette 31, 16; C. 1924 I, 1216; André, François, C. r. 185, 281). — Nährwert für Ratten: Ozaki, Bio. Z. 189, 236; Pr. Acad. Tokyo 3, 441; C. 1928 I, 541.

Glycerintrielaidat, Trielaidin, Elaidin $C_{57}H_{104}O_6=(C_{17}H_{33}\cdot CO\cdot O)_3C_3H_5$ (H 470; E I 205). Hydrolyse durch Pankreaslipase: Cooper, Edgar, Biochem. J. 20, 1064. — Nährwert für Ratten: Ozaki, Bio. Z. 189, 234; Pr. Acad. Tokyo 3, 439; C. 1928 I, 541. — Zur Bestimmung durch Oxydation mit Chromsäure vgl. Simon, C. r. 180, 1406.

Elaidinsäureanhydrid $C_{36}H_{66}O_3 = (C_{17}H_{38}\cdot CO)_2O$ (H 470). B. Beim Kochen von Elaidinsäure mit Acetanhydrid (HOLDE, RIETZ, B. 57, 101; VESELÝ, MAJTL, Bl. [4] 39, 242). — Krystalle (aus Alkohol). F: 46,4° (korr.) (H., R.; V., M.). D_{18}^{18} : 0,8476; D_{15}^{18} : 0,8396; D_{1}^{40} : 0,8338 (H., R.). n_{1}^{100} : 1,4339 (H., R.). Elektrische Leitfähigkeit in Aceton: H., R.

Elaidinsäureamid $C_{18}H_{36}ON=C_{17}H_{33}\cdot CO\cdot NH_2$ (H 470). Struktur monomolekularer Schichten auf Wasser und verd. Permanganat-Lösung bei Zimmertemperatur: ADAM, JESSOP, Pr. roy. Soc. [A] 112, 366, 372; C. 1926 II, 2399.

Elaidinsäurenitril $C_{18}H_{33}N = C_{17}H_{33} \cdot CN$ (H 470). B. Aus Elaidinsäuremethylester und Ammoniak beim Überleiten über Aluminiumoxyd bei ca. 500° (MAILHE, Bl. [4] 27, 228; A. ch. [9] 13, 222). — Kp: 335—340°.

Elaidinhydroxamsäure $C_{18}H_{35}O_2N=C_{17}H_{33}\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Form. B. Beim Erhitzen von Athylelaidat mit Hydroxylaminhydrochlorid in Natriumäthylat-Lösung (Nicolet, Pelc, Am. Soc. 44, 1146). — Flocken (aus Alkohol). F: 86°. Schwerer löslich in Alkohol als Oleinhydroxamsäure. — Liefert beim Erhitzen mit mehr als 2 Mol Acetanhydrid in wenig Aceton ein nicht trennbares Gemisch von cis- und trans-[Heptadecen-(8)-yl-(1)]-isocyanat.

Elaidinhydroxamsäure-acetat, O-Acetyl-N-elaidoyl-hydroxylamin C₅₀H₃₇O₃N=C₁₇H₃₃·CO·NH·O·CO·CH₃. B. Aus Elaidinhydroxamsäure beim Kochen mit Acetanhydrid in sehr geringem Überschuß in viel Aceton (NICOLET, PELC, Am. Soc. 44, 1147). — Silberfarbene Flocken (aus Alkohol). F: 84°. — Liefert beim Erwärmen mit Alkalicarbonat-Lösung auf dem Wasserbad N.N'-Di-[heptadecen-(8)-yl-(1)]-harnstoff vom Schmelzpunkt 92—93°, beim Erwärmen mit Natriumäthylat-Lösung auf 70° [Heptadecen-(8)-yl-(1)]-urethan vom Schmelzpunkt 87—88°.

N-Acetyl-elaidinhydroxamsäure-acetat, O.N-Diacetyl-N-elaidoyl-hydroxylamin $C_{32}H_{39}O_4N=C_{17}H_{33}\cdot CO\cdot N(CO\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. Beim Erwärmen von Elaidinhydroxamsäure-acetat mit 1 Mol Acetanhydrid in Aceton (NICOLET, PELC, Am. Soc. 44, 1147). — F: 82°.

c) Derivat einer Octadecen-(9)-säure-(1), von dem es ungewiß ist, ob es sterisch zur Ölsäure oder zur Elaidinsäure gehört.

9.10-Dijod-octadecen-(9)-säure-(1), Stearolsäuredijodid C₁₈H₃₂O₃I₃ = CH₃·[CH₂]₇·CI:CI·[CH₂]₇·CO₂H (H 471; E I 205). Einfluß auf den Jodgehalt der Milch bei Verfütterung an Kühe: Scharrer, Schwalbold, *Bio. Z.* 207, 338.

8. Bromderivate einer Octadecensäure - (1) $C_{18}H_{34}O_2$ mit unbekannter Lage der Doppelbindung.

 $\textbf{a-Hišostearins}\\ \ddot{\textbf{a}}\textbf{uredibromid} \ \ \textbf{C}_{18}\textbf{H}_{22}\textbf{O}_{2}\textbf{Br}_{2} = \textbf{C}_{17}\textbf{H}_{21}\textbf{Br}_{2}\cdot\textbf{CO}_{2}\textbf{H} \ \ (\textbf{E}\ \textbf{I}\ \ 205).$

Der Artikel ist zu streichen. Über Eläostearinsäuredibromid C12H20O2Br. vgl. S. 459.

MONOCARBONSÄUREN CnH2n-2O2

Eläostearinsäuretetrabromide $C_{18}H_{30}O_{2}Br_{4}=C_{17}H_{29}Br_{4}\cdot CO_{2}H^{1}$) (E I 177). Zur Konstitution vgl. Böeseken, R. 48, 621; van Loon, R. 50 [1930], 643.

- a) Festes Eläostearinsäuretetrabromid (E I 177). B. Zur Bildung aus α-Eläostearinsäure und Brom in Eisessig vgl. Bauer, Herberts, Ch. Umschau Fette 29, 230; C. 1923 I, 103; Morrell, J. Soc. chem. Ind. 41, 328 T; C. 1923 I, 406; Merz, Farben-Ztg. 33, 2423; C. 1928 II, 643. Aus α-Eläostearinsäure und 2 Mol Brom in Chloroform bei —15° (Böesken, R. 46, 621). Beim Bromieren von Eläostearinsäuredibromid in Eisessig (Nicolet, Am. Soc. 43, 940) oder Chloroform, neben anderen Produkten (Ishio, J. pharm. Soc. Japan 1923, 55; C. 1924 II, 2744). Krystalle (aus Ligroin oder Äther). F: 114° (Böe.), 114,5—116° (B., H.). Liefert bei längerem Behandeln mit 60% igem Wasserstoffperoxyd in Eisessig Tetrabromdioxystearinsäure-monoacetat (Böe.). Gibt beim Kochen mit Zinkstaub in Alkohol β-Eläostearinsäure (B., H.).
- b) Flüssiges Eläostearinsäuretetrabromid (E I177). B. Aus α-Eläostearinsäure und Brom in Eisessig oder Äther, neben dem festen Isomeren (NICOLET, Am. Soc. 43, 939; EIBNER, SCHWAIGER, Ch. Umschau Fette 33, 81; C. 1926 I, 3439; STEGER, VAN LOON, R. 50 [1930], 35). Bei der Entbromung entsteht β-Eläostearinsäure (EI., SCH.).
- 9. 2-Methyl-heptadecen-(16)-säure-(1), Heptadecen-(16)-carbonsäure-(2) $C_{18}H_{24}O_3 = CH_2:CH \cdot [CH_2]_{13} \cdot CH(CH_3) \cdot CO_2H$. B. Man kondensiert 15-Brom-pentadecen-(1) mit Methylmalonsäure-diäthylester in Gegenwart von trocknem Natriumäthylat, verseift das Kondensationsprodukt (Kp₃: ca. 202°) und zersetzt die Dicarbonsäure durch Erhitzen (CHUIT, Mitarb., Helv. 10, 131). Nadeln (aus Petroläther). F: 43—43,5°. Kp₃: 186—187°. Ziemlich leicht löslich in Petroläther. Liefert bei der Oxydation mit Permanganat in soda-alkalischer Lösung oder mit Ozon in Tetrachlorkohlenstoff Pentadecan-dicarbonsäure-(1.14) (CH., Mitarb., Helv. 10, 189).

Methylester $C_{19}H_{36}O_2 = CH_2: CH \cdot [CH_2]_{13} \cdot CH(CH_3) \cdot CO_3 \cdot CH_3$. B. Aus 2-Methylheptadecen-(16)-säure-(1) durch Veresterung (Chuit, Mitarb., Helv. 10, 131). — Kp₃: 158—159°. D¹⁵: 0,876.

10. 2.6 - Dimethyl-hexadecen - (2) - säure - (16), ω -Citronellyl-caprylsäure $C_{18}H_{24}O_2=(CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot [CH_2]_2\cdot CO_2H$. B. Durch Verseifung von $[\omega$ -Citronellyl-n-hexyl]-malonsäure-diäthylester mit siedender überschüssiger alkoholischer Kalilauge und nachfolgendes Erhitzen der freien Säure (Ruzicka, Steiger, Helv. 10, 687). — Kp₁: 175—180°. — Liefert bei der Oxydation mit Ozon in Eisessig und nachfolgend mit Chromessigsäure auf dem Wasserbad 3-Methyl-dodecan-dicarbonsäure-(1.12).

Äthylester $C_{20}H_{38}O_2 = (CH_3)_2C:CH \cdot CH_2 \cdot CH_3 \cdot CH(CH_3) \cdot [CH_2]_9 \cdot CO_2 \cdot C_2H_5$. Kp₁₁: ca. 200° (Ruzicka, Steiger, *Helv.* 10, 687). — Liefert bei der Reduktion mit Natrium und Alkohol ω -Citronellyl-n-octylalkohol.

- 11. Cheiranthussäure $C_{18}H_{24}O_2$ (E I 205). Ist nach HILDITCH, JONES (J. Soc. chem. Ind. 46, 469 T; C. 1928 I, 708) aus der Literatur zu streichen.
- 17. 2.6-Dimethyl-heptadecen-(2)-säure-(17), ω -Citronellyl-pelargonsäure $C_{19}H_{36}O_{1}=(CH_{3})_{2}C:CH\cdot CH_{3}\cdot CH_{3}\cdot CH_{3}\cdot [CH_{2}]_{10}\cdot CO_{2}H.$ B. Beim Kochen von ω -Citronellyl-n-octylbromid mit Kaliumcyanid in verd. Alkohol und nachfolgenden Verseifen des Reaktionsprodukts mit siedender alkoholischer Kalilauge (Ruzicka, Steiger, Helv. 10, 688). Dickflüssiges Öl. $Kp_{0.5}:190^{\circ}$. Liefert bei der Oxydation mit Ozon in Eisessig und nachfolgend mit Chromessigsäure auf dem Wasserbad 3-Methyl-tridecan-dicarbonsäure-(1.13).

18. Carbonsäuren $C_{20}H_{38}O_2$.

1. Eikosen-(9)-säure-(20), Δ^{11} -Eikosensäure, Nonadecen-(10)-carbon-säure-(1), Gadoleinsäure $C_{20}H_{28}O_3=CH_2\cdot[CH_2]_7\cdot CH:CH\cdot[CH_2]_9\cdot CO_2H^3$) (H 472). V. Verestert im Tran von Mesoplodon bidens (Walart) (André, Canal, C. r. 183, 1065); im Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlim Leberöl von Bertol vo

¹⁾ Zur Konstitution der Eläostearinsäure vgl. 8. 465.

³) In einer nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] erschienenen Arbeit machen VESELÝ, CHUDOŽILOV (Collect. Trav. chim. Tchecosl. 2, 95; C. 1920 I, 2540) für Gadoleinsäure durch Synthese die obige Konstitution wahrscheinlich und erteilen ihr wegen des genetischen Zusammenhanges mit Ölsäure die cis-Konfiguration. Takano (J. Soc. chem. Ind. Japan Spl. 36, 551 B; C. 1934 I, 2513) und TOYAMA, TSUCHIYA (J. Soc. chem. Ind. Japan Spl. 37, 14 B; C. 1934 I, 2677) schreiben dagegen auf Grund der Ozonspaltung der Gadoleinsäure die Konstitution einer Eikosen-(9)-säure-(1) CH₂·[CH₂], CH:CH·[CH₃], CO₂H su.

- BROOKE, Analyst 53, 256; C. 1928 II, 503). Eine Säure C₂₀H₃₈O₃, von der zu vermuten ist, daß es sich ebenfalls um Gadoleinsäure handelt, findet sich als Glycerid im Tran des Spitzkopf-Finnfisches oder Seiwals (Balaenoptera borealis Less.) (Toyama, Ch. Umschau Fette 33, 297; C. 1927 I, 1331), im Leberöl von Narcacion tokionis Tanaka (T., J. Soc. chem. Ind. Japan Spl. 30, 20 B; C. 1929 II, 1987) und von Chimaera barbouri Garman (T., Tsuchiya, J. Soc. chem. Ind. Japan Spl. 30, 36 B; C. 1929 II, 1987). Gibt bei der Hydrierung Arachinsäure (T., Ch. Umschau Fette 33, 297). Natriumsalz. Oberflächenspannung und Schaumbildung 0,05—1% iger wäßriger Lösungen bei verschiedenen Temperaturen: Hirose, Shimomura, J. Soc. chem. Ind. Japan Spl. 31, 258 B; C. 1929 I, 1284.
- 2. 2.6.10.14-Tetramethyl-hexadecen-(14)-säure-(16), 2.6.10.14-Tetramethyl-pentadecen-(1)-carbonsäure-(1), Phytensäure C₂₀H₃₈O₂ = (CH₃)₂CH·[CH₂]₃·CH(CH₃)·[CH₂]₃·CH(CH₃)·[CH₂]₃·C(CH₃):CH·CO₂H (E I 206). Diese Konstitution kommt der Phytensäure in Übereinstimmung mit der des Phytols zu (vgl. E II 1, 503).
- 3. Isogadoleinsäure C₂₀H₃₈O₂. V. In geringer Menge im Chaulmoograöl (Hashimoto, Am. Soc. 47, 2331; vgl. 49, 1119). Krystalle (aus Äther, Alkohol oder Aceton). F: 65,5° bis 66° (unkorr.). Leicht löslich in Chloroform, Äther, Petroläther, heißem Alkohol, schwer in Aceton. Wird durch Kaliumpermanganat leicht oxydiert. Jodzahl: H. Kaliumsalz. Amorphes Pulver. Schwer löslich in Alkohol und Wasser. AgC₂₀H₃₇O₂. Amorpher Niederschlag.

19. Carbonsäuren $C_{22}H_{42}O_2$.

1. Dokosen-(1)-säure-(22), Δ^{21} -Dokosensäure, Heneikosen-(20)-carbon-säure-(1) $C_{22}H_{42}O_2=CH_2:CH\cdot[CH_2]_{19}\cdot CO_2H$. B. Aus dem Methylester durch Verseifung mit alkoh. Kalilauge (Ruzicka, Stoll, Schinz, Helv. 11, 682). — Mikroskopische Blättchen (aus Alkohol und Benzol). F:68- 69° . — Liefert bei der Ozonisierung in Tetrachlorkohlenstoff Nonadecan-dicarbonsäure-(1.19). Addiert Brom.

Methylester $C_{23}H_{44}O_2 = CH_2:CH\cdot[CH_2]_{19}\cdot CO_2\cdot CH_3$. B. Durch Elektrolyse eines Gemisches der Natriumsalze von Octen-(1)-säure-(8) und Tetradecan-dicarbonsäure-(1.14)-monomethylester, neben anderen Produkten (Ruzicka, Stoll, Schinz, Helv. 11, 681).

- 2. Dokosen-(8)-säure-(22), Δ¹⁴-Dokosensäure, Heneikosen-(13)-carbon-säure-(1) C₂₂H₄₂O₂ = CH₂·[CH₂]₆·CH:CH·[CH₂]₁₂·CO₂H. B. Über die Bildung des Methylesters bei der teilweisen Hydrierung von Erucasäuremethylester in Gegenwart von Nickel-Kieselgur bei 200° vgl. Hilditch, Vidyarthi, Pr. roy. Soc. [A] 122, 555, 562; C. 1929 I, 2163.
- 3. Dokosen-(9)-säure-(22), $A^{13}-Dokosensäure$, Heneikosen-(12)-carbonsäure-(1) $C_{22}H_{42}O_2=\frac{H\cdot C\cdot [CH_2]_7\cdot CH_3}{H\cdot C\cdot [CH_2]_1\cdot CO_2H}$ und $\frac{CH_3\cdot [CH_2]_7\cdot C\cdot H}{H\cdot C\cdot [CH_2]_1\cdot CO_2H}$ Zur Konfiguration vgl. die zusammenfassende Abhandlung von Fiedler, Fette, Seifen 47 [1940], 219; ferner Holde, Zadek, B. 56, 2055; González, An. Soc. españ. 24, 156; C. 1926 II, 183; Paal, Schiedewitz, B. 63 [1930], 766.
- a) Erucasāure C₂₂H₄₂O₃ = CH₃·[CH₂]₇·CH:CH·[CH₂]₁₁·CO₂H (H 472; E I 206). V. Verestert im Tran von Mesoplodon bidens (Walart) (André, Canal, C. r. 183, 1065). Als Glycerid in den fetten ölen der Samen von Eruca sativa (Jambaöl), von Brassica campestris (Rapsöl), von Brassica juncea (indisches Senföl), von Tropaeolum majus (Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 25; C. 1926 II, 2729) und von Robinia pseudacacia (Jaretzky, Ar. 1928, 608). Erucasäure (oder Brassidinsäure?) findet sich ferner im finnischen, "flüssigen Harz", einem Nebenprodukt bei der Sulfatcellulose-Fabrikation (Рұнҳід, Ch. Umschau Fette 34, 190; C. 1927 II, 2363). Erucasäuregehalt von Rüb-, Raps- und Senfsamenölen: Hilditch, Riley, Vidyarthi, J. Soc. chem. Ind. 46, 457 T; C. 1928 I, 707; von Goldlacksamenöl: Hilditch, Jones, J. Soc. chem. Ind. 46, 468 T; C. 1928 I, 708. B. Aus Behenolsäure durch partielle Hydrierung bei Gegenwart von Nickel in schwach alkalischer Lösung (González, An. Soc. españ. 24, 164; C. 1926 II, 183). Darstellung durch Verseifung von Rapsöl mit siedender alkoholischer Kalilauge: Org. Synth. 10 [1930], 44. Isolierung aus den Fettsäuren des Rüböls durch Ausscheidung der festen Fettsäuren aus alkoh. Lösung in Form der Bleisalze und nachfolgende Fällung mit Magnesiumacetat: Täufel. Bauschinger, Z. ang. Ch. 41, 158. Reinigung durch Umkrystallisieren aus Alkohol bei verschiedenen Temperaturen und fraktionierte Fällung mit Lithiumacetat: Holde, Wilke, Z. ang. Ch. 35, 290; mit Hilfe der Quecksilber(II)-acetat-Verbindung analog der Ölsäure: Beettram, R. 46, 401.

Röntgenogramm: Sogani, *Indian J. Phys.* 2, 102; *C.* 1928 I, 470; A. Müller, Shearer, *Soc.* 123, 3157. F: 32—32,5° (kort.) (Bhide, Sudborough, *J. indian Inst. Sci.* [A] 8 [1925], 104), 33,5° (Holde, Zadek, *B.* 56, 2053). no.: 1,4480 (Mirchandani, Simonsen, *Soc.* 1927,

374 Anm.). Optisches Verhalten dünner, auf einer Glasplatte erstarrter Schmelzen: Vorländer, Selke, Ph. Ch. 129, 447. Beugung von Röntgenstrahlen in flüssiger Erucasäure: Sog. Unlöslich in Wasser, sehr leicht löslich in Olivenöl bei 25° (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50, 86; Versl. Akad. Amsterdam 28, 367; C. 1920 I, 631). Löslichkeit in 91,5%igem Alkohol bei 0°: 2,356 g in 100 cm² Lösung (Thomas, Mattikow, Am. Soc. 48, 971). Grenzflächenspannung von Lösungen in Benzol gegen verd. Natronlauge: Dubrisay, Picard, C. r. 178, 206; D., Bl. [4] 37, 999; Rev. gén. Colloides 5, 486; C. 1927 II, 396. Adhäsionsenergie von Wasser an der Oberfläche von Erucasäure: Nietz, J. phys. Chem. 32, 262. Struktur monomolekularer Schichten auf verd. Salzsäure bei verschiedenen Temperaturen: Adam, Pr. roy. Soc. [A] 101, 460, 518; C. 1923 I, 271, 272; auf verd. Salzsäure und verd. Permanganat-Lösung bei Zimmertemperatur: A., Jessop, Pr. roy. Soc. [A] 112, 366, 371; C. 1926 II, 2399. Elektrische Leitfähigkeit in Aceton bei 18,2°, 32° und 38°: Holde, Zadek, B. 56, 2054.

Liefert beim Ozonisieren in Chloroform oder in essigsaurer Lösung in der Kälte Pelargonaldehyd, Pelargonsäure, Brassylsäure und 13-Oxo-tridecansäure-(1) (HOLDE, ZADEK, B. 56, 2055; VERKADE, HARTMANN, COOPS, R. 45, 388; MIRCHANDANI, SIMONSEN, Soc. 1927, 376; vgl. a. Chuit, Hausser, Helv. 12, 851). Wird durch mindestens 3-tägige Einw. von Benzopersäure in Chloroform bei Zimmertemperatur zu $\mu.v$ -Oxido-behensäure vom Schmelzpunkt 67,5° oxydiert (Baume, Bähe, J. pr. [2] 122, 203). Gibt bei der Oxydation mit Permanganat in alkal. Lösung die höherschmelzende, in Aceton-Lösung die niedrigerschmelzende Form der µ.». Dioxy-behensäure (Mi., S.). Bei der Hydrierung in Alkohol bei Gegenwart von kolloidalem Palladium entsteht Behensäure (Thomas, Mattikow, Am. Soc. 48, 975). Liefert mit Jod in verd. Alkohol μ (oder ν) - Jod - ν (oder μ) - oxy - behensäure (Holde, Gorgas, B. 58, 1074). Gleichgewichtskonstante bei der Addition von Jod in Tetrachlorkohlenstoff bei 19,5° im Dunkeln: VAN DER STEUR, R. 46, 412, vgl. 279. Geschwindigkeit der Addition von Jod in Tetrachlorkohlenstoff und Schwefelkohlenstoff zwischen 13,80 und 350: GROH, SZELESTEY, Z. anorg. Ch. 162, 334. Additionsvermögen für Jodmonobromid in Eisessig und für Jod in Tetrachlorkohlenstoff, Schwefelkohlenstoff, Chloroform und Eisessig: ANDRE, Bl. [4] 83, 1646. Beschleunigung der Jodaddition durch Kupfer: A., François, Bl. [4] 37, 171. Liefert beim Behandeln mit Jodmonobromid in Chloroform oder Eisessig $\mu(\text{oder }\nu)$ -Brom- $\nu(\text{oder }\mu)$ -jodbehensäure (H., G., B. 58, 1073; 59, 114). Partielle Halogen-Addition bei der Einw. von Jodmonobromid in gesättigter methylalkoholischer Natriumbromid-Lösung: KAUFMANN, Z. ang. Ch. 42, 1155. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Вніде, Sudborough, J. indian Inst. Sci. [A] 8, 104, 109; С. 1926 I, 80. Liefert mit Benzol in Gegenwart von Aluminiumchlorid ν (oder μ)-Phenyl-behensäure (MAR-CUSSON, Z. ang. Ch. 33, 234). Lagert in Eisessig-Tetrachlorkohlenstoff-Lösung im Dunkeln Rhodan an (K., B. 59, 1391; vgl. Ar. 1925, 714). — Wird im Gegensatz zu Brassidinsäure von Aspergillus niger und Penicillium glaucum bei 30° bzw. 22° assimiliert (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50, 83; Versl. Akad. Amsterdam 28, 364; C. 1920 I, 630).

Nachweis durch Sublimation im Vakuum: Niethammer, Bio. Z. 209, 456. Zur Bestimmung der Erucasäure in Form des Magnesiumsalzes vgl. Thomas, Yu, Am. Soc. 45, 129; Th., MATTIKOW, Am. Soc. 48, 970.

Natriumsalz. Oberflächenspannung und Schaumbildung 0,05—1% iger wäßriger Lösungen bei verschiedenen Temperaturen: Hirose, Shimomura, J. Soc. chem. Ind. Japan Spl. 31, 255 B; C. 1929 I, 1284. Einfluß der Wasserstoffionen-Konzentration auf die Oberflächenspannung, Schaumkraft und Trübung einer 0,3% igen Natriumerucat-Lösung: Jarisch, Bio. Z. 134, 166. Viscosität einer Lösung von 0,1% Natriumerucat und 0,21% Natriumoleat in Wasser bei ca. 13°: Freundlich, Jores, Koll. Beib. 22, 29; C. 1926 I, 3310. Hydrolyse in 0,3% iger wäßriger Lösung: Stocks, J. Oil Fat Ind. 4, 316; C. 1927 II, 2786. Direkte Bestimmung der Jodzahl in verd. Alkohol: Margosches, Fuchs, B. 60, 991. — Kaliumsalz. Adsorption bei der Filmbildung aus wäßrigen und alkoholischen Lösungen von Kaliumerucat und Kaliumlaurat bei 20—25°: Mikumo, J. Soc. chem. Ind. Japan Spl. 30, 215 B; C. 1928 I, 1373. — Magnesiumsalz. Löslichkeit in verschiedenen Alkohol-Wasser-Gemischen bei 25° und Dichten Dt dieser Lösungen: Thomas, Mattikow, Am. Soc. 48, 972. — Calciumsalz. F: 102—103° (Klimont, J. pr. [2] 109, 271). Löslich in heißem Benzol, Benzin und Mineralöl. Die Lösungen gelatinieren bei längerer Aufbewahrung. — Bariumsalz. Elektrische Leitfähigkeit von Lösungen in Benzol und in Benzol + Chlorwasserstoff: Cady, Baldwin, Am. Soc. 43, 648, 650. — Thallium(I)-salz. F: 78,5° (kort.) (aus Methanol) (Walter, B. 59, 969). Die Schmelzeist bis 125° krystallinfüssig. Brechungsindices der krystallin-flüssigen Phase: W. — Blei(II)-salz. Zur Löslichkeit in Alkohol vgl. Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 28; C. 1926 II, 2729. Löslichkeit in Äther bei 25°: 0,340 g in 100 cm² Lösung (Th., M.). Dichte Dt dieser Lösung: Th., M.

Erucasăuremethylester, Methylerucat $C_{22}H_{44}O_2=C_{21}H_{41}\cdot CO_2\cdot CH_2$. Liefert bei der Osonisierung in Eisessig und folgenden Zersetzung mit Zinkstaub und Essigsäure in Äther

Syst. Nr. 163]

Pelargonaldehyd und 13-Oxo-tridecansäure-(1)-methylester (Noller, Adams, Am. Soc. 48, 1076), bei der Oxydation mit Wasserstoffperoxyd in Eisessig den Methylester der niedrigerschmelzenden µ.v-Dioxybehensäure (Hildtrich, Riley, Vidyarth, J. Soc. chem. Ind. 46, 467 T; C. 1928 I, 708). Über die Bildung von Dokosen-(8)-säure-(22)-methylester und Dokosen-(10)-säure-(22)-methylester bei der partiellen Hydrierung von Methylerucat in Gegenwart von Nickel-Kieselgur bei 200° vgl. H., V., Pr. roy. Soc. [A] 122, 555, 562; C. 1929 I, 2163. Zur Geschwindigkeit der Hydrierung in Eisessig und Alkohol bei Gegenwart von Platinschwarz vgl. Ueno, Kuzei, J. Soc. chem. Ind. Japan Spl. 30, 76 B; C. 1929 II, 2035.

Erucasäureäthylester, Äthylerucat $C_{24}H_{46}O_2 = C_{21}H_{41} \cdot CO_3 \cdot C_2H_5$ (H 473; E I 207). B. Aus Erucasäure-anhydrid beim Kochen mit Alkohol oder Alkohol + Pyridin oder beim Behandeln der Lösung in Petroläther mit kalter 0,1 n.alkoholischer Kalilauge (Holde, Wilke, Z. ang. Ch. 35, 291). — F: 2—3° (H., Schmidt, Z. ang. Ch. 35, 502). Kp_{13,5}: 247°; Kp₂: 218° (Piper, Malkin, Austin, Soc. 1926, 2311); Kp_{0,2}: 172° (Hilditch, Riley, Vidyarthi, J. Soc. chem. Ind. 46 [1927], 466 T). D¹⁷: 0,865 (H., W.). — Verseifung durch Ricinuslipase: Piutti, de'Conno, Ann. Chim. applic. 18, 473; C. 1929 I, 760.

Glycerin-oleat-dierucat, Oleodierucin $C_{65}H_{190}O_6=(C_{21}H_{41}\cdot CO\cdot O)_2C_3H_5\cdot O\cdot CO\cdot C_{17}H_{38}\cdot V.$ Im Rüböl (Amberger, Z. Unters. Nahr.-Genußm. 40, 201; C. 1921 II, 571; Täufell, Bauschinger, Z. Unters. Lebensm. 56, 271; C. 1929 I, 1761).

Glycerintrierucat, Trierucin, Erucin $C_{89}H_{128}O_6 = (C_{21}H_{41}\cdot CO\cdot O)_3C_3H_5$ (H 474). Zum Vorkommen im Rüböl und im fetten Öl von Tropaeolum majus vgl. Täufel, Bauschinger, Z. Unters. Lebensm. 56, 271; C. 1929 I, 1761; Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 66; C. 1926 II, 2730. — F: 30,5—31,0° (S., W., A.). n_0^{th} : 1,4630; n_0^{th} : 1,4560; n_0^{th} : 1,4475 (S., W., A.). — Nährwert für Ratten: Ozaki, Bio. Z. 189, 234; Pr. Acad. Tokyo 3, 439; C. 1928 I, 541.

Erucasäureanhydrid C₄₄H₈₂O₃ = (C₂₁H₄₁·CO)₂O (H 474). Zur Bildung nach Albitzki, (Ж. 31, 103; C. 1899 I, 1070) vgl. noch A., J. pr. [2] 61 [1900], 100; Holde, Zadek, B. 56, 2053; H., Wilke, Z. ang. Ch. 35, 290. — Krystalle (aus Petroläther oder Alkohol). F: 47,5—48° (korr.) (H., Z.). n₁⁸⁰: 1,4561 (H., W.). n₁¹⁰⁰: 1,4377 (H., Z.). Elektrische Leitfähigkeit in Aceton bei 18,2°, 32° und 38°: H., Z. — Wird bei Einw. von salpetriger Säure in Brassidinsäureanhydrid umgelagert (H., Schmidt, Z. ang. Ch. 35, 502; H., Z.). Gibt beim Kochen mit Wasser unter Durchleiten von Wasserdampf Erucasäure (H., W.). Wird beim Schütteln der Lösung in Petroläther mit 0,1n-Natronlauge oder mit 25%iger Salzsäure nicht merklich verändert (H., W.). Liefert beim Kochen mit Alkohol oder Alkohol + Pyridin oder beim Behandeln der Lösung in Petroläther mit kalter 0,1n-alkoholischer Kalilauge Erucasäure und Erucasäureäthylester (H., W.).

Erucasäureamid $C_{22}H_{43}ON = C_{21}H_{41} \cdot CO \cdot NH_2$ (H 474). Struktur monomolekularer Schichten auf Wasser und verd. Permanganat-Lösung bei Zimmertemperatur: ADAM, JESSOP, Pr. roy. Soc. [A] 112, 366, 372; C. 1926 II, 2399.

b) Brassidinsäure C₃₂H₄₂O₃ = CH₃·[CH₂]₇·CH:CH·[CH₂]₁₁·CO₂H (H 474; E I 207). Zur Konfiguration vgl. die S. 445 zitierte Literatur. — Röntgenogramm: Sogani, Indian J. Phys. 2, 102; C. 1928 I, 470; A. MÜLLER, SHEARER, Soc. 123, 3157. F: 58,5—59° (korr.) (BHIDE, SUDBOROUGH, J. indian Inst. Sci. [A] 8 [1925], 104), 61,5° (korr.) (Holde, Zadek, B. 56, 2053). n⁶/₁: 1,4472 (Mirchandani, Simonsen, Soc. 1927, 374 Anm.); n⁶⁰/₁: 1,4347 (H., Z.). Beugung von Röntgenstrahlen in flüssiger Brassidinsäure: So. Unlöslich in Wasser 100 g Olivenöl lösen 0,75 g bei 25° (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50, 86; Versl. Akad. Amsterdam 28, 367; C. 1920 I, 631). Thermische Analyse der binären Systeme mit Hyodesoxycholsäure und Cholsäure: Rheinboldt, H. 182, 253, 258. Zur Struktur monomolekularer Schichten auf verd. Salzsäure vgl. Adam, Pr. roy. Soc. [A] 101, 460, 521; C. 1923 I, 271, 272; auf verd. Permanganat-Lösung: A., Jessor, Pr. roy. Soc. [A] 112, 371; C. 1926 II, 2399. Elektrische Leitfähigkeit in Aceton bei 18,1°, 32° und 38°: H., Z.

Liefert beim Ozonisieren in Chloroform Pelargonaldehyd, Pelargonsäure, Brassylsäure, 13-Oxo-tridecansäure-(1) und 13-Oxo-tridecansäure-(1)-peroxyd (Holde, Zadek, B. 56, 2057; vgl. a. Chuit, Hauser, Helv. 12, 851). Gibt bei der Oxydation mit Permanganat in alkalischer Lösung oder in Aceton-Lösung die niedrigerschmelzende Form der μ.ν-Dioxy-behensäure (Mirchandani, Simonsen, Soc. 1927, 378). Gleichgewichtskonstante bei der Addition von Jod in Tetrachlorkohlenstoff bei 19,5° im Dunkeln: van der Steur, R. 46, 412. Partielle Halogen-Addition bei der Einw. von Jodmonobromid in gesättigter methylalkoholischer Natriumbromid-Lösung: Kaufmann, Z. ang. Ch. 42, 1155. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 104, 110; C. 1926 I, 80. Lagert in Eisessig-Tetrachlorkohlenstoff-Lösung im Dunkeln Rhodan an (K., B. 59, 1391; vgl. Ar. 1925, 714). — Wird im Gegensatz zu Erugasäure von Aspergillus niger und Penicillium glaucum bei 30° bzw. 22° nicht assimiliert (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50, 83; Versl. Akad. Amsterdam 28, 364;

C. 1920 I, 630). Oxydativer Abbau durch Penicillium cyclopium bei 22—25°: Derx, Versl. Akad. Amsterdam 33, 549; C. 1924 II, 2345. — Zinksalz. Nadeln. F: 112—113° (MIRCHANDANI, SIMONSEN, Soc. 1927, 375). — Thallium (I)-salz. F: 96° (korr.) (aus Methanol) (Walter, B. 59, 969). Die Schmelze ist bis 122° (korr.) krystallin-flüssig.

Brassidinsäureäthylester, Äthylbrassidat $C_{24}H_{46}O_2 = C_{21}H_{41} \cdot CO_2 \cdot C_2H_5$ (H 475). F: 30—30,5° (HOLDE, Schmidt, Z. ang. Ch. 35, 502). $n_7^{\rm sc}$: 1,4587 (H., Sch.). Zur Struktur monomolekularer Schichten auf verd. Permanganat-Lösung vgl. Adam, Jessop, Pr. roy. Soc. [A] 112 [1926], 372.

Glycerintribrassidat, Tribrassidin, Brassidin $C_{69}H_{128}O_6 = (C_{21}H_{41} \cdot CO \cdot O)_3C_3H_5$ (H 475). F: 56—57° (Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 66; C. 1926 II, 2730). n_0^m : 1,4547.

Brassidinsäureanhydrid C₄₄H₈₂O₃ = (C₂₁H₄₁·CO)₂O. B. Durch Einw. von salpetriger Säure auf Erucasäureanhydrid (HOLDE, SCHMIDT, Z. ang. Ch. 35, 502; H., ZADEK, B. 56, 2053). Durch Kochen von Brassidinsäure mit Acetanhydrid (H., Z.). — Nadeln (aus Alkohol), Plättchen (aus Äther, Aceton oder Petroläther). F: 64° (H., SCH.), 63,5—64,5° (korr.) (H., Z.). D₄[∞]: 0,835 (H., SCH.). n₁[∞]: 1,4366 (H., Z.). Schwer löslich in Alkohol (H., SCH.). Elektrische Leitfähigkeit in Aceton bei 32° und 38°: H., Z.

- c) Derivate der Dokosen-(9)-säure-(22), von denen es ungewiß ist, ob sie sterisch zur Erucasäure oder zur Brassidinsäure gehören.
- 9.10-Dijod-dokosen-(9)-säure-(22)-äthylester, Behenolsäuredijodid-äthylester, Lipojodin $C_{24}H_{44}O_2I_2=CH_3\cdot[CH_2]_7\cdot CI:CI\cdot[CH_2]_{11}\cdot CO_2\cdot C_2H_5$ (E I 207). Resorption im tierischen Organismus: v. Issekutz, Tukats, Bio.Z. 145, 7. Therapeutische Verwendung: Morell, $Dtsch.\ med.\ Wschr.$ 52, 535; C. 1926 II, 464.
- 9.10-Dijod-dokosen-(9)-säure-(22)-isobutylester, Behenolsäuredijodid-isobutylester $C_{26}H_{48}O_2I_2=CH_3\cdot[CH_2]_7\cdot CI:CI\cdot[CH_2]_{11}\cdot CO_2\cdot CH_2\cdot CH(CH_3)_2$. B. Durch Veresterung von Behenolsäure mit Isobutylalkohol und konz. Schwefelsäure bei 100° und folgende 2-tägige Jodierung in Schwefelkohlenstoff bei 40° im Licht (I. G. Farbenind., D. R. P. 468021; C. 1929 I, 3142; Frdl. 16, 2842). Aus Behenolsäuredijodid beim Erhitzen mit Isobutylalkohol und konz. Schwefelsäure auf 100° (I. G. Farbenind.). Farbloses Öl. Krystallisiert bei 0° aus Alkohol. E: 14°.
- 9.10-Dijod-dokosen-(9)-säure-(22)-isoamylester, Behenolsäuredijodid-isoamylester $C_{27}H_{50}O_2I_3 = CH_3 \cdot [CH_2]_7 \cdot CI \cdot [CH_2]_{11} \cdot CO_2 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2$ (E I 207). B. Beim Erhitzen von Behenolsäuredijodid-äthylester mit chlorwasserstoffhaltigem Isoamylalkohol auf 100° (I. G. Farbenind., D. R. P. 468021; C. 1929 I, 3142; Frdl. 16, 2842). Fast farbloses Öl. Krystallisiert aus Alkohol bei Kühlung mit Kältemischung. E: 5—6°.
- d) Isoerucasäure $C_{22}H_{43}O_{2}$ (H 476; E I 207). Ist nach Mirchandani, Simonsen (Soc. 1927, 373) ein untrennbares Gemisch von Dokosen-(8)-säure-(22) $CH_{3} \cdot [CH_{2}]_{6} \cdot CH : CH \cdot [CH_{2}]_{12} \cdot CO_{2}H$ und Dokosen-(10)-säure-(22) $CH_{2} \cdot [CH_{2}]_{6} \cdot CH : CH \cdot [CH_{2}]_{12} \cdot CO_{2}H$, das auch in Derivaten scheinbar einheitlich auftritt. F: 55—57°. n_{0}^{th} : 1,4469. Wird bei Behandlung mit salpetriger Säure oder beim Aufbewahren in Alkohol bei Gegenwart von Jod im Sonnenlicht nicht verändert. Zinksalz. Blättchen (aus Benzol). F: 109°.

Methylester C₂₃H₄₄O₂=C₂₁H₄₁·CO₂·CH₃. B. Bei Einw. von Methanol und Schwefelsäure auf Isoerucasäure (Mirchandani, Simonsen, Soc. 1927, 375). — Nadeln. F: ca. 24—26°. E: 22°. Kp₁₄: 240°. Ziemlich schwer löslich in Methanol. — Liefert bei der Oxydation mit Permanganat in Aceton Caprylsäure, Decan-dicarbonsäure-(1.10) und Dodecan-dicarbonsäure-(1.12).

Äthylester $C_{24}H_{46}O_3=C_{21}H_{41}\cdot CO_2\cdot C_2H_5$. Viscoses Öl. Kp₈: 243° (Mirchandani, Simonsen, Soc. 1927, 375). — Liefert bei der Ozonisierung in Eisessig, Verseifung mit Ameisensäure und nachfolgenden Oxydation mit Chromsäure Decan-dicarbonsäure-(1.10) und Dodecan-dicarbonsäure-(1.12), neben anderen Produkten.

- 4. Dokosen-(10)-säure-(22), Δ^{12} -Dokosensäure, Heneikosen-(11)-carbon-säure-(1) $C_{12}H_{42}O_2=CH_3\cdot [CH_2]_6\cdot CH\cdot [CH_2]_{10}\cdot CO_2H$. B. Über die Bildung des Methylesters bei der teilweisen Hydrierung von Erucasäuremethylester in Gegenwart von Nickel-Kieselgur bei 200° vgl. Hilditch, Vidyarthi, $Pr.\ roy.\ Soc.\ [A]$ 122, 555, 562; C. 1929 I, 2163.
- 5. Dokosen-(11)-säure-(1), Δ¹¹-Dokosensäure, Heneikosen-(10)-carbon-säure-(1), Cetoleinsäure C₁₂H₄₂O₂ = CH₃·[CH₂]₉·CH:CH·[CH₂]₉·CO₂H. Zur Konstitution vgl. Toyama, J. Soc. chem. Ind. Japan Spl. 30, 154 B; C. 1927 II, 2744. V. Verestert im Tran verschiedener Walarten, z. B. des Buckelwals (Megaptera longimana Rudolphi) (To., Ch. Umschau Fette 31, 239; C. 1925 I, 789), des Seiwals oder Spitzkopf-Finnfisches (Balaenoptera borealis Less.) (To., Ch. Umschau Fette 33, 294; C. 1927 I, 1331; J. Soc. chem. Ind. Japan Spl. 30, 154 B; C. 1927 II, 2744) und des Pottwals (Physeter catodon L.) (To., J. Soc. chem. Ind. Japan Spl. 30, 138 B; C. 1928 I, 2417), ferner im Leberöl von Narcacion

tokionis Tanaka (To., J. Soc. chem. Ind. Japan Spl. 30, 20 B; C. 1929 II, 1987), von Chimaera barbouri Garman (To., Tsuchiya, J. Soc. chem. Ind. Japan Spl. 30, 36 B; C. 1929 II, 1987), von Squalus wakiyae Tanaka (To., Ts., J. Soc. chem. Ind. Japan Spl. 30, 58 B; C. 1929 II, 2278), von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hilditch, Houlbrooke. Analyst 53, 256; C. 1928 II, 503) sowie von jungen Menschenhaien (Cetorhinus maximus Günner) (André, Canal, Bl. [4] 45, 508). — Nadeln oder Blättchen (aus Petroläther oder 80% igem Alkohol). F: 32—33° (A., C.), 32,5—33° (To., Ch. Umschau Fette 33, 298; C. 1927 I. 1331). — Liefert beim Hydrieren in Gegenwart von Platinschwarz in Alkohol Behensäure (To., Ch. Umschau Fette 31, 239; C. 1925 I, 789).

Cetoleinsäuremethylester $C_{23}H_{44}O_2 = C_{21}H_{41} \cdot CO_2 \cdot CH_3$. Liefert bei der Oxydation mit Permanganat in Aceton Undecansäure und Nonan-dicarbonsäure-(1.9), bei der Ozonisierung Undecansäure, Nonan-dicarbonsäure-(1.9), Undecanal und vermutlich 11-Oxo-undecansäure-(1) (Toyama, J. Soc. chem. Ind. Japan Spl. 30, 154 B; C. 1927 II, 2744). Zur Geschwindigkeit der Reduktion in Eisessig und Alkohol bei Gegenwart von Platinschwarz vgl. UENO, KUZEI, J. Soc. chem. Ind. Japan Spl. 30, 77 B; C. 1929 II, 2035.

$\begin{aligned} \textbf{20. Tetrakosen-(9)-s\"{a}ure-(24),} \quad & \Delta^{15}\text{-}Tetrakosens\"{a}ure,} \quad & \text{Trikosen-(14)-carbons\"{a}ure-(1)} \quad & \text{$C_{24}H_{46}O_2$} = \frac{\text{$CH_3\cdot[CH_2]_7\cdot C\cdot H}}{\text{$H\cdot \ddot{C}\cdot[CH_2]_{13}\cdot CO_2H}} \quad & \text{und} \quad & \frac{\text{$H\cdot C\cdot [CH_2]_7\cdot CH_3$}}{\text{$H\cdot \ddot{C}\cdot [CH_2]_{13}\cdot CO_2H}} \cdot \\ \end{aligned}$

a) Selacholeinsäure, Erucylessigsäure, Nervonsäure C₂₄H₄₆O₂ = CH₃ [CH₂]₇·CH:CH:CH·[CH₂]₁₃·CO₂H. Zur Konstitution vgl. Klenk, H. 166, 287; 174, 217, 218 Anm.: Tsujimoto, J. Soc. chem. Ind. Japan Spl. 30, 229 B; C. 1928 I, 1385¹). — V. Verestert im Leberöl von Narcacion tokionis Tanaka (Toyama, J. Soc. chem. Ind. Japan Spl. 30, 20 B; C. 1929 II, 1987), von Chimaera barbouri Garman (To., Tsuchiya, J. Soc. chem. Ind. Japan Spl. 30, 36 B; C. 1929 II, 1987), von Squalus wakiyae Tanaka (To., Tsuch. J. Soc. chem. Ind. Japan Spl. 30, 36 B; C. 1929 II, 1987), von Squalus wakiyae Tanaka (To., Tsuch. J. Soc. chem. Ind. Japan Spl. 30, 58 B; C. 1929 II, 2278), von Scymnorhinus lichia und anderen Elasmobranchius-Arten (Hildthe, Houlbrooke, Analyst 53, 256; C. 1928 II, 503) sowie von Haifischen (Tsujimoto, Z. dtsch. Öl-Fettind. 46, 386; C. 1926 II, 1156). — B. Beim Kochen des aus Menschen- oder Rindergehirn erhaltenen Cerebrosidgemenges bzw. des daraus gewonnenen reinen Nervons (Syst. Nr. 4753 K) mit 10%iger methylalkoholischer Schwefelsäure und nachfolgenden Verseifen des neben anderen Produkten entstandenen Esters mit 0,5 n-methylalkoholischer Natronlauge auf dem Wasserbad (Klenk, H. 145, 256; 157, 285). — Blättchen (aus 75%igem Alkohol); Krystalle (aus Aceton). F: 42,5—43° (Tsuj.), 41° (K., H. 145, 258). Leicht löslich in Äther, Alkohol und Aceton. — Liefert beim Ozonisieren in Chloroform Pelargonaldehyd, Pelargonsäure, 15-Oxo-pentadecansäure-(1) und Tridecan-dicarbonsäure-(1.13) (K., H. 166, 288; 174, 217, 218 Anm.; vgl. Tsuj., J. Soc. chem. Ind. Japan Spl. 30, 229 B; C. 1928 I, 1385). Gibt bei der Hydrierung in Äther bei Gegenwart von Palladium-Tierkohle (K., H. 157, 288) oder in Alkohol bei Gegenwart von Platinmohr (Tsuj., Z. dtsch. Öl-Fettind. 46, 387; C. 1926 II, 1156; vgl. J. Soc. chem. Ind. Japan Spl. 30, 229 B; C. 1928 I, 1385). Tetrakosansäure. Bei Berührung mit nitrosen Gasen entsteht Selachelaidinsäure (Tsuj., Z. dtsch. Öl-Fettind. 46, 388; C. 1926 II, 1156; K., H. 145, 258). — Natriumsalz. Leic

b) Selachelaidinsäure, Brassidylessigsäure $C_{24}H_{46}O_2=CH_3\cdot [CH_2]_7\cdot CH:CH\cdot [CH_2]_{13}\cdot CO_2H^1$). B. Bei Einw. nitroser Gase auf Selacholeinsäure für sich oder in Aceton-Lösung (Klenk, H. 145, 258; Tsujimoto, Z. dtsch. Öl-Fettind. 46, 388; C. 1926 II, 1156). — Krystalle (aus 85%igem Alkohol). F: 60,5° (T.), 61° (K.). [Trewendt]

3. Monocarbonsäuren $C_nH_{2n-4}O_2$.

1. Propinsäure, Acetylencarbonsäure, Propiolsäure, Propargylsäure $C_3H_2O_2=CH:C\cdot CO_2H$ (H 477; E I 208). Zur Bildung aus Acetylendicarbonsäure nach Bandrowski (B. 13 [1880], 2340; 15 [1882], 2699) vgl. Ingold, Soc. 127, 1203. Zur Bildung aus Acetylenmagnesiumbromid und Kohlendioxyd in Äther nach Oddo (G. 38 [1908] I, 630)

¹⁾ Diese durch Ozonspaltung ermittelte Konstitution wird nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] von Vereit, Chudozilov, Collect. Trav. chim. Tchécoal. 2, 95; C. 1930 I, 2540; Hale, Lycan, Adams, Am. Soc. 52 [1930], 4536; vgl. A. Müller, B. 72 [1939], durch Synthese bestätigt. Dabei wird aus genetischen Gründen für Selacholeinsäure die cisund für Selachelsidinsäure die trans-Konfiguration angenommen.

vgl. Grignard, Lapayre, Tchéou Faki, $C.\,r.\,187,\,519.\,$ — Zur Darstellung aus Mononatriumacetylen und Kohlendioxyd unter Druck nach Skosarewski ($C.\,1904$ II, 1025) vgl. Straus, Voss, $B.\,59,\,1685$; D. R. P. 411107; $C.\,1925$ I, 2408; 1926 II, 2687; $Frdl.\,15,\,153.\,$ — Wasserfreie Propiolsäure bildet Blättchen vom Schmelzpunkt 18°; das Hydrat $C_3H_3O_3+\frac{1}{8}H_3O_3$ krystallisiert aus Wasser in Nadeln vom Schmelzpunkt 10°, während das Monohydrat $C_3H_3O_3+H_3O_3+H_3O_3$ heimizt (Str., Heyn, Schwemer, $B.\,63$ [1930], 1087, 1088). Schmelzdiagramm Propiolsäure-Wasser: Str., H., Schw. Propiolsäure gibt mit Wasser kein konstant siedendes Gemisch, so daß die wasserhaltige Säure durch Destillation entwässert werden kann; wasserfreie Propiolsäure siedet unter 12 mm Druck bei 57° (Str., H., Schw.). — Propiolsäure läßt sich längere Zeit unzersetzt aufbewahren; die von Baeyer ($B.\,19$ [1886], 2185) beobachtete langsame Umwandlung im Sonnenlicht in Trimesinsäure konnte nicht bestätigt werden; selbst beim Behandeln von Propiolsäure mit oberflächenaktiven Substanzen (z. B. aktiver Kohle oder Platinmohr) in der Hitze oder im Licht findet keine Veränderung statt (Str., $V., B.\,59,\,1683$). Beim Kochen von Propiolsäure mit absol. Alkohol in Gegenwart von wasserfreiem Kupfersulfat erhält man $\beta.\beta$ -Diäthoxy-propionsäure-äthylester (Syst. Nr. 279), Kohlendioxyd und Acetylen in wechselnden Mengen (Str., $V., B.\,59,\,1684$, 1688). — Toxische Wirkung: Pohl., $B.\,59,\,1684$.

Salze. NH₄C₂HO₂. Färbt sich bei 130° gelb und schmilzt bei 135° unter Zerfall in Ammoniak, Kohlendioxyd und Acetylen (Straus, Voss, B.59, 1689). — NaC₂HO₂. Silberweiße Schuppen, die sich rasch rosa färben. Verpufft bei 105° (Str., V.). — Kupfer(I)-salz(?). B. Aus Lösungen von Propiolsäure und Kupfer(II)-hydroxyd in 30 % iger Natronlauge scheiden sich unter Entfärbung orangerote Schuppen aus (wahrscheinlich identisch mit der Kupferverbindung von Baeyer, B. 18 [1885], 678), die beim Verdünnen mit dem doppelten Volumen Wasser vorübergehend in Lösung gehen, worauf eine zweite Kupferverbindung in Form grünstichig-gelber Nädelchen ausfällt (Straus, Heyn, Schwemer, B. 63 [1930], 1089). — Cu(C₂HO₂)₂. B. Beim Trocknen des nachfolgenden Kupfer(II)-salzes im Vakuum über Phosphorpentoxyd (Str., H., Schw.). Grün. Verpufft beim Erwärmen. Zersetzt sich leicht unter Bildung von schwarzem Kupfer(II)-acetylenid. — Cu(C₂HO₂)₃ + 4 H₂O. B. Beim Behandeln von Propiolsäure mit Kupfer(II)-hydroxyd in kaltem Äther unter Lichtausschluß oder beim Versetzen einer benzolischen Lösung von Kupfer-Acetessigester mit einer äther. Lösung von Propiolsäure (Str., H., Schw.). Hellblaue Krystalle (aus Äther + Petroläther), die beim Trocknen im Vakuum über Phosphorpentoxyd wasserfrei werden. Die Lösung in Wasser oder Alkohol ist blau, die Lösung in Ather grünblau. Zersetzt sich leicht im Licht oder in der Wärme unter Bildung von Kupfer(II)-acetylenid. — Über Silbersalze der Propiolsäure vgl. Str., V., B. 59, 1687.

Propiolsäuremethylester C₄H₄O₂ = CH:C·CO₂·CH₂ (E I 208). B. Beim Aufbewahren von Propiolsäure mit Methanol in Gegenwart von Schwefelsäure bei Zimmertemperatur (Ingold, Soc. 127, 1203). — Flüssigkeit. Kp₇₄₂: 102°. Reizt die Augen zu Tränen. — Gibt beim Erhitzen mit einer Lösung von Oxalsäuredimethylester in Äther in Gegenwart von Natrium auf dem Wasserbad, Behandeln des Reaktionsprodukts mit kalter methylalkoholischer Kalilauge und folgendem Reduzieren mit Zinkamalgam in saurer Lösung hauptsächlich Glutarsäure und Bernsteinsäure sowie etwas Brenzcatechin.

Propiolsäureäthylester $C_5H_4O_3=CH:C\cdot CO_3\cdot C_3H_5$ (H 477; E I 208). B. Beim Kochen von Propiolsäure mit der 3fachen Menge 10 % iger alkoholischer Schwefelsäure (STRAUS, Voss, B. 59, 1690 Anm.). — Gibt bei der Reduktion mit Zink und Salzsäure Acrylsäureäthylester, Propionsäureäthylester und chlorhaltige Produkte; der Athylpropargyläther $HC:C\cdot CH_2\cdot O\cdot C_3H_5$ von Baryer (B. 18 [1885], 2271) konnte hierbei nicht erhalten werden (STR., V.). Bei der Einw. von alkoh. Natriumäthylat-Lösung in Ather entsteht β - β -Diäthoxy-propionsäureäthylester (Ingold, Soc. 127, 1203). Propiolsäureäthylester liefert beim Erhitzen mit Fumarsäurediäthylester in Ather in Gegenwart von Natrium eine saure und eine neutrale Fraktion; beim Aufbewahren der sauren Fraktion im Vakuumexsiccator erhält man trans-trans-Mucohsäure; bei der Hydrolyse der neutralen Fraktion mit kalter methylalkoholischer Kalilauge und Reduktion des gewonnenen Produkts mit Zinkamalgam in saurer Lösung entstehen Butan-tricarbonsäure-(1.2.4) und Bernsteinsäure (I.). Liefert mit Diäthylamin in Benzol β -Diäthylamino-acrylsäure-äthylester; reagiert analog mit Anilin und Piperidin (STR., V.).

Propiolsäureamid $C_2H_2ON = CH: C\cdot CO\cdot NH_2$ (EI208). B. Beim Einleiten von trocknem Ammoniak in eine äther. Lösung von Propiolsäureanhydrid (STRAUS, Voss, B: 59, 1689). — Nädelchen. F:60,5—61° (STR., V.). Reaktionen mit Kupfer(I)-chlorid in ammoniakalischer

Syst. Nr. 164]

Lösung sowie mit Silbernitrat in ammoniakalischer und alkoholischer Lösung: Moureu, Bongrand, A. ch. [9] 14, 52.

Chlorpropiolsäure C₈HO₈Cl = CCl: C·CO₂H (H 478). B. Beim Chlorieren von Propiolsäure mit Hypochlorit in alkal. Lösung (I. G. Farbenind., D. R. P. 495787; C. 1930 II, 1439; Frdl. 16, 123). — F: 69—70°.

Brompropiolsäure C₃HO₂Br = CBr:C·CO₂H(H478). B. Beim Bromieren von Propiolsäure mit Kaliumhypobromit in alkal. Lösung bei 0° (I. G. Farbenind., D. R. P. 495787; C. 1930 II, 1439; Frdl. 16, 123). — Krystalle (aus Petroläther). Schmilzt wasserfrei bei 84—86°.

2. Butin-(2)-säure-(1), Propin-(1)-carbonsäure-(1), Methylpropiolsäure, Tetrolsäure $C_4H_4O_2=CH_3\cdot C:C\cdot CO_2H$ (H 479; E I 208). Liefert bei der Hydrierung in Gegenwart von kolloidalem Palladium in Wasser (Bourguel, C.r. 180, 1754; BL. [4] 45, 1076) oder in alkoh. Lösung in Gegenwart von Palladium-Bariumsulfat im Dunkeln (Paal, Schiedemptz, B. 63 [1930], 768) Isocrotonsäure. Bei der katalytischen Hydrierung mit Nickel bildet sich hauptsächlich Isocrotonsäure und nur in geringer Menge Crotonsäure (González, C. 1925 1, 2547). Geschwindigkeit der Addition von Natriumsulfit bei 80° : Higglund, Ringbom, Z. anorg. Ch. 169, 98.

3. Carbonsäuren C₅H₆O₂.

- 1. Pentin (2) säure (1), Butin (1) carbonsäure (1), Äthylpropiolsäure C₅H₄O₂ = CH₃·CH₂·C:C·CO₂H (H 481). Liefert bei der Reduktion mit Wasserstoff in Gegenwart von kolloidalem Palladium in Essigester die niedrigersiedende Buten (1) carbonsäure (1) (Bourguel, Yvon, C. r. 182, 224; B., C. r. 188, 1494; Bl. [4] 45, 1076).
- 2. Pentadien-(1.3)-säure-(5), $A^{\alpha\gamma}$ -Pentadiensäure, Butadien-(1.3)-carbonsäure-(1), β -Vinyl-acrylsäure $C_5H_6O_2=CH_2:CH\cdot CH\cdot CH\cdot CO_2H$ (H 481; E I 208). Zur Bildung nach Doebner (B. 35, 1137) aus Malonsäure, Acrolein und Pyridin vgl. Kohler, Butler, Am. Soc. 48, 1041; Burton, Ingold, Soc. 1929, 2028. F: 72° (K., But.; vgl. Former, Healey, Soc. 1927, 1062; Muskat, Becker, Lowenstein, Am. Soc. 52 [1930], 327; Treebs, A. 497 [1932], 300; Coffman, Am. Soc. 57 [1935], 1982). Liefert bei der Einw. von 3 %igem Natriumamalgam in Natriumdicarbonat-Lösung bei $40-45^\circ$ in CO_2 -Atm. Buten-(2)-carbonsäure-(1); bei der Reduktion mit 3 %igem Natriumamalgam in essigsaurer Lösung bei $15-25^\circ$ erhält man in überwiegender Menge Buten-(2)-carbonsäure-(1) neben Buten-(3)-carbonsäure-(1) (Burt., Ing.). Gibt mit 1 Mol Brom in Schwefelkohlenstoff, Ligroin, Chloroform, Tetrachlorkohlenstoff oder Eisessig 3.4-Dibrom-buten-(1)-carbonsäure-(1) (F., H.; vgl. M., B., L.).

Methylester $C_6H_6O_3=CH_3$: CH·CH·CH·CH·CO₃·CH₃. B. Aus dem Silbersalz der β-Vinylacrylsäure und Methyljodid (Kohler, Butler, Am. Soc. 48, 1041). Aus β-Vinylacrylsäure und Methanol in Gegenwart von Schwefelsäure (Farmer, Healey, Soc. 1927, 1065). — Flüssigkeit. Kp₂₅: 77—80° (K., B.). Zusatz von Hydrochinon stabilisiert den unbeständigen Ester für längere Zeit (F., H.). — Beim Kochen mit Natrium-Malonsäuredimethylester in Ather entsteht hauptsächlich Penten-(3)-tricarbonsäure-(1.1.5)-trimethylester (K., B.; F., H.). Gibt beim Erhitzen mit α-Cyan-propionsäure-äthylester und Natriummethylat in Ather 5-Cyan-hexen-(2)-dicarbonsäure-(1.5)-methylester-(1)-äthylester-(5) (F., H.).

Äthylester $C_7H_{10}O_2=CH_2:CH\cdot CH:CH\cdot CO_2\cdot C_2H_5$. B. Aus dem Silbersalz der β -Vinylacrylsäure und Athyljodid in Äther, neben anderen Produkten (v. Auwers, J. pr. [2] 105, 374; Kohler, Butler, Am. Soc. 48, 1045). — Angenehm riechendes Öl. Kp₃: 79—81° (K., B.); Kp₃: 70—71°; Kp₁₈: 59,9°; Kp₁₈: 57,2—57,5° (v. Au.). D₁^{n,5}: 0,9322; D₂^{m,6}: 0,9351; D₃^{n,6}: 0,9334; n_{\text{\}

3-Brom-butadien-(1.3) - carbonsäure-(1), β -[α -Brom-vinyl]-acrylsäure $C_5H_5O_2Br$ = $CH_2:CBr\cdot CH:CH:CO_2H$. Zur Konstitution vgl. Muskat, Becker, Lowenstein, Am. Soc. 52 [1930], 328. — B. Beim Behandeln von 4.5-Dibrom-penten-(2)-säure-(1) mit Disthylamin in Ather (Farmer, Healey, Soc. 1927, 1063). — Krystalle. F: ca. 106° (M., B., L.). — Polymerisiert sich beim Aufbewahren oder Erhitzen zu einer amorphen Masse (F., H.; M., B., L.).

Methylester $C_0H_2O_3Br = CH_3: CBr \cdot CH : CH \cdot CO_3 \cdot CH_3$. B. Beim Behandeln von 4.5-Dibrom-penten-(2)-säure-(1)-methylester mit Diäthylamin in Ather (FARMER, Healey, Soc. 1927, 1063). — $Kp_{16}: 95-98^{\circ}$. — Polymerisiert sich beim Aufbewahren.

[WEEGMANN]

452 Syst. Nr. 164

4. Carbonsäuren $C_6H_8O_2$.

- 1. Hexin-(2)-säure-(1), Pentin-(1)-carbonsäure-(1), Propylpropiolsäure C₆H₈O₂ = CH₃·CH₂·CH₂·CC·CO₂H (H 483). Kp₁₆: 120° (BOURGUEL, A. ch. [10] 3, 386). D³⁰: 0.982 (B.). n⁵_D: 1.465 (B.). Liefert bei der Reduktion mit Wasserstoff in Gegenwart von kolloidalem Palladium in Essigester flüssige Penten-(1)-carbonsäure-(1) (B., Yvon, C. r. 182, 224; B., C. r. 188, 1494; Bl. [4] 45, 1077).
- Hexadien (2.4) säure (1), Δ^{α,γ} Hexadiensäure, Pentadien (1.3) carbonsäure (1). Sorbinsäure C₆H₈O₂ = CH₃·CH·CH·CH·CH·CO₂H (H 483; E I 209).
 B. Durch Oxydation von Sorbinaldehyd mit Silbernitrat Lösung bei allmählichem Zusatz von verd. Natronlauge (BAUMGARTEN, GLATZEL, B. 59, 2663). Durch Einw. von Zinkstaub und Essigsäure auf y-Brom-sorbinsäure (FARMER, HEALEY, Soc. 1927, 1064). — Zur Darstellung aus Crotonaldehyd, Malonsäure und Pyridin nach Doebner (B. 38 [1900], 2141) vgl. Philippi. M. 51, 278. -- Geschwindigkeit der Oxydation in Pyridin-Lösung durch Sauerstoff bei Gegenwart von Hämin: Kuhn, K. Meyer, H. 185, 202. Sauerstoffverbrauch bei der Oxydation mit Permanganat in alkalischer oder saurer Lösung zu Essigsäure, Kohlendioxyd und Wasser: Kuhn, Winterstein, Karlovitz, Helv. 12, 67. Ein Gemisch von Δβ-Dihydrosorbinsäure und 14. Dihydrosorbinsäure entsteht in je nach den Bedingungen wechselnden Mengenverhältnissen bei der Reduktion von Sorbinsäure mit Natriumamalgam in Eisessig (Evans. FARMER, Soc. 1928, 1646, 1648; GOLDBERG, LINSTEAD, Soc. 1928, 2352; BURTON, INGOLD. Soc. 1929, 2035), in sehr verd. Schwefelsäure (G., L., Soc. 1928, 2346, 2352; vgl. v. Auwers. HEXNA, A. 433, 148); in wäßriger, durch Einleiten von Kohlendioxyd neutral gehaltener Lösung (G., L., Soc. 1928, 2351), in Natriumdicarbonat-Lösung unter Einleiten von Kohlendioxyd bei 40° (B., I.) oder in wäßr. Natriumsorbat-Lösung (E., F.), ferner bei der Reduktion mit Aluminiumamalgam in feuchtem Ather (E., F.), in 1 n-Natriumdicarbonat-Lösung bei 16–27°, in Natronlauge (B., I.) oder in wäßr. Natriumsorbat-Lösung (E., F.; B., I.). Sorbinsaure liefert bei der Reduktion mit Zink, Zinn oder Zinn(II)-chlorid in konz. Salzsäure + Essigsäure bei 85° γ-Caprolacton (B., I.). Bei der Addition von Brom in Schwefelkohlenstoff nach Kachel, Fittig (A. 168 [1873], 287) entsteht 3.4-Dibrom-penten-(1)-carbonsäure-(1) (v. Au., Hey., A. 434, 143; F., Healey, Soc. 1927, 1062) neben geringen Mengen nicht näher beschriebener 1.2-Dibrom-penten-(3)-carbonsäure-(1) und Sorbinsäuretetrabromid (I., PRITCHARD, SMITH, Soc. 1934, 80, 85). Geschwindigkeit der Addition von Natriumsulfit in wäßr. Lösung bei 800 und 900: Hägglund, Ringbom, Z. anorg. Ch. 150. 241. Sorbinsaure liefert beim Erhitzen mit Maleinsaureanhydrid ohne Lösungsmittel (Diels, Alder, A. 470, 91) oder in Benzol (Farmer, Warren, Soc. 1929, 906; Wagner-Jaurege, Helmert, B. 71 [1938], 2536 Anm.) 4-Methyl-cyclohexen-(5)-tricarbonsaure-HC·CH(CH₃)—CH·CO (Syst. Nr. 2620).

Methylester, Methylsorbat $C_7H_{10}O_2=CH_3\cdot CH:CH\cdot CH:CH\cdot CO_2\cdot CH_3$ (H 484; E I 209). Liefert bei dreimonatigem Aufbewahren mit flüssigem Ammoniak im Rohr geringe Mengen Sorbinsäureamid und andere Produkte (Philippi, Galter, M. 51, 265). Gibt beim Erhitzen mit α-Cyan-propionsäure-äthylester und Natriummethylat in Äther 4-Methyl-5-cyanhexen-(2)-dicarbonsaure-(1.5)-methylester-(1)-athylester-(5)(Farmer, Healey, Soc. 1927, 1065).

Äthylester, Äthylsorbat $C_8H_{12}O_2=CH_3\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH\cdot CO_2\cdot C_2H_5$ (H 484; E I 209). B. Aus Sorbinsäure und alkoh, Schwefelsäure oder aus dem Silbersalz der Sorbinsäure und Äthyljodid (v. Auwers, J. pr. [2] 105, 375). — Kp₁₅: 81°; Kp₁₂: 76,5° (v. Au.). $D_{\bullet}^{\text{Is.25}}$: 0,9405. $\eta_{\alpha}^{\text{Is.25}}$: 1,4978; $\eta_{\text{He}}^{\text{Is.25}}$: 1,4978; $\eta_{\text{He}}^{\text{Is.25}}$: 1,5140 (v. Au.). — Liefert beim Erwärmen mit Maleinsäureanhydrid 4-Methyl-cyclohexen-(5)-tricarbonsäure-(1.2.3)-anhydrid-(2.3)-äthyl-HC·CH(CH₃)——CH·CO (Syst. Nr. 2620) (Diels, Alder, A. 470, 92).

Äthylenglykolmonosorbat, Sorbinsäure-[β -oxy-äthylester] $C_8H_{12}O_3=CH_3\cdot CH:$ $CH\cdot CH: CH\cdot CO_2\cdot CH_2\cdot CH_2\cdot OH.$ B. Beim Kochen von festem oder in Wasser gelöstem Alkalisorbat mit Athylenchlorhydrin (BAYER & Co., D. R. P. 389086; C. 1924 I, 1717; Frdl. 14, 324). — Viscoses Öl. Kps. 145—150°. Leicht löslich in Alkohol, Benzol und Solventnaphtha. — Trocknet an der Luft unter Sauerstoff-Aufnahme.

Äthylenglykoldisorbat $C_{14}H_{18}O_4=[CH_2\cdot CH:CH:CH:CH:CH:CO\cdot O\cdot CH_2-]_2$. B. Aus Athylenglykolmonosorbat und Sorbinsäurechlorid bei Gegenwart von Pyridin in Benzol oder Solventnaphtha (BAYER & Co., D. R. P. 389086; C. 1924 I, 1717; Frdl. 14, 324). — Ol. Sehr leicht löslich in Alkohol, Benzol und Solventnaphtha. — Trocknet an der Luft unter Sauerstoffaufnahme.

 $\begin{array}{ll} \alpha\text{-}\textbf{M}\text{ethyl-propylenglykol-disorbat}, & 1.3\text{-}\textbf{B}\text{utylenglykol-disorbat} & \text{C}_{16}\text{H}_{20}\text{O}_4 = \\ \text{CH}_3\cdot\text{CH}:\text{CH}\cdot\text{CH}:\text{CH}\cdot\text{CH}:\text{CH}\cdot\text{CO}\cdot\text{O}\cdot\text{CH}(\text{CH}_3)\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{O}\cdot\text{CO}\cdot\text{CH}:\text{CH}\cdot\text{CH}\cdot\text{CH}\cdot\text{CH}\cdot\text{CH}_3}. & B. & \text{Aus} \end{array}$

1.3-Butylenglykol und Sorbinsäurechlorid bei Gegenwart von Pyridin in Solventnaphtha (BAYER & Co., D. R. P. 389086; C. 1924 I, 4717; Frdl. 14, 324). — Öl.

Sorbinsäurechlorid, Sorbylchlorid $C_6H_7OCl = CH_3 \cdot CH \cdot CH \cdot CH \cdot CH \cdot COCl$ (H 484). Darst. Aus dem mit Ather angefeuchteten Natriumsalz der Sorbinsäure beim Behandeln mit Phosphortrichlorid (Rupe, Schaerer, Helr. 8, 857). Durch Einw, von Phosphorpentachlorid auf Sorbinsäure (v. Auwers, Heyna, A. 434, 148). Durch Kochen von Sorbinsäure mit Thionylchlorid in Benzol (Staudinger, Schneider, B. 56, 710). — Kp₁₂: 69—71° (St., Sch.); Kp₁₄: 78—79° (v. Au., H.). $D_4^{p,\pi}$: 1,0666: $n_{\alpha}^{p,\pi}$: 1,5471: $n_{He}^{p,\pi}$: 1,5571; $n_{\beta}^{p,\pi}$: 1,5845 (v. Au., J. pr. [2] 105, 377).

Sorbinsäureamid, Sorbamid C₆H₉ON – CH₃·CH·CH·CH·CH·CH·C·NH₂(H484). B. In geringer Menge durch dreimonatige Einw. von flüssigem Ammoniak auf Sorbinsäuremethylester im Rohr (Philippi. Galter, M. 51, 265). — F: 170°.

γ-Brom-sorbinsäure C₆H₇O₂Br = CH₃·CH:CH:CH:CH:CO₂H (E I 209). Zur Konstitution vgl. Ingold, Pritchard, Smith, Soc. 1934, 86. -- B. Aus 3.4-Dibrom-penten-(1) carbonsäure-(1) durch Einw. von Diäthylamin in Äther (Farmer, Healey, Soc. 1927, 1064), Platten (aus Benzol + Petroleum). F: 140° (F., H.). — Gibt bei Einw. von Zinkstaub und Essigsäure Sorbinsäure (F., H.).

Methylester C₇H₉O₂Br = CH₃·CH:CBr·CH:CH·CO₂·CH₃. B. Durch Einw. von Diäthylamin auf 3.4-Dibrom-penten-(1)-carbonsäure-(1)-methylester in Äther (Farmer, Healey, Soc. 1927, 1064). — Angenehm riechendes, gelbes Öl. Kp₁₀: 104—1060.

3. 2-Methylen-penten - (4)-säure - (1). Pentadien - (1.4)-carbonsäure - (2). α -Allyl-acrylsäure $C_6H_8O_2$ = $CH_2\cdot CH\cdot CH_2\cdot C(:CH_2)\cdot CO_2H$. B. Durch Verseifen des Äthylesters (Mannich, Ritsert, B. 57, 1118). Durch Kochen von mit Natronlauge neutralisierter [Dimethylamino-methyl]-allyl-malonsäure in mit verd. Schwefelsäure neutral gehaltener Lösung (M., Ganz, B. 55, 3494). — Stechend riechende Flüssigkeit. Kp₁₆: 76—780 (M., G.): Kp: 159—1610 (M., R.) unter teilweiser Zersetzung (M., G.). — Bildet schwer lösliche Barium- und Bleisalze (M., G.). — AgC₆H₇O₂. Schwer löslich (M., G.).

Äthylester $C_8H_{12}O_2$ — $CH_2:CH\cdot CH_2\cdot C(:CH_2)\cdot CO_2\cdot C_2H_5$. B. Bei Einw. von 30% iger Formaldehyd-Lösung auf mit Diäthylamin neutralisierten Allylmalonsäuremonoathylester (Mannich, Ritsert, B. 57, 1118). — Kp_{16} : ca. 60° ; Kp: $155-156^{\circ}$ (teilweise Zersetzung).

5. Carbonsäuren $C_7H_{10}O_2$.

- 1. Heptin-(2)-säure-(1), Hexin-(1)-carbonsäure-(1), Butylpropiolsäure $C_2H_{10}O_2=CH_3\cdot[CH_2]_3\cdot C\colon C\cdot CO_2H$ (H 486). $Kp_{0,2}\colon 78^0\colon Kp_{0,5}\colon 89^0\colon D^{20}\colon 1.004\colon n_0^0\colon 1.458$ (Bourguel, A. ch. [10] 3, 386).
- 2. 2-Methyl-hexadien-(2.4)-säure-(1). Hexadien-(2.4)-carbonsäure-(2). α -Methyl-sorbinsäure $C_7H_{10}O_2=:CH_3\cdot CH:CH:CH:CH:C(CH_3)\cdot CO_2H$ (H 486). B. Durch Kondensation von α -Brom-propionsäure-äthylester mit Crotonaldehyd in Benzol bei Gegenwart von Zink und Erhitzen des Reaktionsprodukts mit verd. Schwefelsäure (v. Auwers, Heyna, A. 434, 157). Krystalle (aus Wasser). F: 100—101° (v. Au., H.). Liefert bei der Reduktion mit Natriumamalgam in durch Zusatz von Schwefelsäure schwach sauer gehaltener Lösung α -Methyl- Δ -hexensäure (v. Au., H., A. 434, 158; vgl. jedoch Burton, Ingold, Soc. 1929, 2027). Bei der Behandlung mit Brom in Schwefelkohlenstoff im Sonnenlicht entsteht γ - δ -Dibrom- α -methyl- Δ -hexensäure (v. Au., H.).

Äthylester $C_9H_{14}O_2=CH_3\cdot CH:CH:CH:C(CH_3)\cdot CO_2\cdot C_2H_5$. *B.* Aus der Säure beim Behandeln mit alkoh. Schwefelsäure (v. AUWERS, HEYNA, A. **434**. 158). — Fruchtartig riechendes Öl. Kp: 207°; Kp₁₅: ungefähr 100° (v. AU., H.). $D_4^{16,5}: 0.9501: n_{\alpha}^{16,5}: 1.4931; n_{He}^{16,5}: 1,5149; n_{\gamma}^{16,5}: 1,5300$ (v. AU., *J. pr.* [2] 105. 375).

- 3. 3-Methyl-hexadien-(2.4)-säure-(1). 2-Methyl-pentadien-(1.3)-carbon-säure-(1). β -Methyl-sorbinsäure $C_7H_{10}O_2=CH_3\cdot CH\cdot C(CH_3):CH\cdot CO_2H$.
- a) Höherschmelzende Form $C_7H_{10}O_2 CH_3 \cdot CH \cdot CH \cdot C(CH_3) \cdot CH \cdot CO_2H$. B. Aus 2-Oxy-2-methyl-penten-(3)-carbonsäure-(1)-äthylester durch Erhitzen mit wasserfreiem KHSO₄ oder besser durch Destillation und nachfolgende Verseifung des Reaktionsprodukts mit 15 %iger alkoholischer Kalilauge, neben anderen Produkten (Burton, Ingold, Noc. 1929, 2029). Nadeln und Platten (aus Alkohol). F: 120°. Liefert bei der Reduktion mit 3 %igem Natriumamalgam in NaHCO₃-Lösung bei 40—45° 2-Methyl-penten-(2)-carbonsäure-(1) neben 2-Methyl-penten-(3)-carbonsäure-(1) und einer Dicarbonsäure $C_{14}H_{22}O_4$ (Syst. Nr. 180).

Chlorid C₇H₉OCl == CH₃·CH·CH·C(CH₃):CH·COCl. B. Aus der Säure beim Behandeln mit Thionylchlorid (Burton, Ingold, Soc. 1929, 2029). Kp₁₅: 94--95°.

[Syst. Nr. 164

 $\begin{array}{lll} \textbf{Amid} & C_7H_{11}ON = CH_3 \cdot CH \cdot C(CH_3) : CH \cdot CO \cdot NH_2. & Nadeln \ (aus \, Benzol). & F:147-148^0 \\ (Burton, \, Ingold, \, Soc. \, 1929, \, 2029). & \end{array}$

- b) Niedrigerschmelzende Form $C_7H_{10}O_2 = CH_3 \cdot CH \cdot C(CH_3) \cdot CH \cdot CO_2H$. Zur Konstitution vgl. Kuhn, Hoffer, B. 65 [1932], 652, 653. B. Durch Destillation von 2-Oxy-2-methyl-penten-(3)-carbonsäure-(1)-äthylester und Verseifung des Reaktionsprodukts mit 15% iger alkoholischer Kalilauge, neben höherschmelzender β -Methyl-sorbinsäure (Burton, Ingold, Soc. 1929, 2029). Krystalle (aus verd. Methanol). F: 98—99° (K., H.). Sehr leicht löslich in den üblichen Lösungsmitteln außer in Wasser (B., I.).
- 4. 3-Methyl-hexadien-(2.4)-säure-(6), 3-Methyl-pentadien-(1.3)-carbon-säure-(1), γ-Methyl-sorbinsäure C₇H₁₀O₂ = CH₃·CH:C(CH₂)·CH:CH·CO₂H. B. Aus Tiglinaldehyd beim Behandeln mit Bromessigsäureäthylester in Benzol bei Gegenwart von Zink, Erwärmen des Reaktionsprodukts mit Kaliumdisulfat im Vakuum auf 60—70° und Verseifen des erhaltenen Athylesters mit heißer alkoholischer Lauge (v. Auwers, Heyna, A. 434, 162). Nadeln (aus verd. Alkohol). F: 94—95° (v. Au., H.). Leicht löslich in Alkohol, Ather und Benzol, schwer in Wasser und Petroläther (v. Au., H.). Geht schon bei kurzem Aufbewahren in ein gelbes Harz über (v. Au., H.). Liefert bei der Reduktion mit Natrium-amalgam in schwach schwefelsaurer Lösung 3-Methyl-penten-(2)-carbonsäure-(1) (v. Au., H.; vgl. jedoch Burton, Ingold, Soc. 1929, 2027).

Äthylester $C_0H_{14}O_2=CH_3\cdot CH:C(CH_3)\cdot CH:CH\cdot CO_2\cdot C_2H_5$. B. Aus der Säure beim Behandeln mit alkoh. Schwefelsäure (v. Auwers, Heyna, A. 434, 162). — Öl. Kp₁₃: 98—99° (v. Au., H.). $D_{\alpha}^{is.6}$: 0,9499 (v. Au., J. pr. [2] 105, 376). $n_{\alpha}^{is.6}$: 1,4948; $n_{He}^{is.6}$: 1,5009; $n_{B}^{is.6}$: 1,5164; $n_{A}^{is.6}$: 1,5314 (v. Au.).

5. 2.2-Dimethyl-pentin-(3)-säure-(5), 3.3-Dimethyl-butin-(1)-carbon-säure-(1), tert.-Butyl-propiolsäure, Trimethyltetrolsäure $C_7H_{10}O_2=(CH_2)_2C\cdot C\cdot CO_2H$ (H 486). B. Beim Kochen des Chlorids mit Natronlauge (IVITZKY, Bl. [4] 35, 358). — F: 48—49°. Kp_{10} : 106—107°.

Chlorid $C_7H_9OCl = (CH_3)_3C \cdot C : C \cdot COCl.$ B. Aus tert.-Butyl-acetylen-Natrium durch allmähliches Zufügen von Phosgen in Äther unter Kühlung, neben anderen Produkten (Ivitzky, Bl. [4] 35, 358). — Bewegliche Flüssigkeit von phosgenartigem Geruch. Kp₁₆: 46,5—47,5°. D_0^0 : 0,9959; D_0^{∞} : 0,9745. D_0^{∞} : 1,4443; D_0^{∞} : 1,4478; D_0^{∞} : 1,4559.

6. Carbonsäuren $C_8H_{12}O_2$.

1. Octin-(2)-säure-(1), Heptin-(1)-carbonsäure-(1), n-Amylpropiolsäure C₈H₁₈O₂ = CH₃·[CH₂]₄·C:C·CO₂H (H 487; E I 209). B. Aus Heptin-(1)-natrium und Kohlendioxyd ohne Lösungsmittel in Gegenwart von Natriumamid (Meunier, Desparmet, Bl. [4] 35, 483). — Darst. Man erhitzt 1-Chlor-hepten-(1) mit Natriumamid in Vaselinöl und leitet dann Kohlendioxyd ein (Lewinsohn, Perfum. essent. Oil Rec. 14 [1923], 292). — Liefert bei der Reduktion mit Wasserstoff bei Gegenwart von kolloidalem Palladium in Essigester niedrigersiedende β-n-Amyl-acrylsäure (Bourguel, C. r. 188, 1494; Bl. [4] 45, 1077). Bei der Einw. von 2 Atomen Brom in Chloroform entsteht α.β-Dibrom-β-n-amyl-acrylsäure; reagiert analog mit Jod (Moureu, Schindler, Bl. [4] 35, 173).

Methylester $C_9H_{14}O_9 = CH_3 \cdot [CH_2]_4 \cdot C : C \cdot CO_2 \cdot CH_3$ (H 487; E I 209). Kp₄: 87—88° (Meunier, Desparmet, Bl. [4] 35, 484).

Äthylester $C_{10}H_{16}O_3=CH_3\cdot [CH_2]_4\cdot C:C\cdot CO_3\cdot C_2H_5$ (H 487; E I 209). Geschwindigkeit der Hydrierung mit Wasserstoff und kolloidalem Palladium: BOURGUEL, GREDY, C.r. 189, 758.

Amid $C_8H_{13}ON = CH_3 \cdot [CH_3]_4 \cdot C : C \cdot CO \cdot NH_3$ (H 488; E I 209). Darst. Aus Heptin-(1)-carbonsäure-(1)-äthylester oder besser Heptin-(1)-carbonsäure-(1)-methylester und wäßr. Ammoniak (RINKES, R. 46, 274). — Liefert beim Behandeln mit alkal. Natriumhypochlorit-Lösung und nachfolgend mit 5 % iger Essigsäure in der Kälte Heptin-(1)-carbonsäure-(1)-chloramid; bei der Dampfdestillation der Lösung in alkal. Natriumhypochlorit-Lösung entstehen geringe Mengen Önanthsäurenitril.

E I 209, Z. 23/24 v. u. statt "D.".... der" lies: "Dichte und Brechungsindex einer".

Chloramid $C_8H_{18}ONCl = CH_3 \cdot [CH_3]_4 \cdot C \cdot CO \cdot NHCl$. B. Aus Heptin-(1)-carbonsäure-(1)-amid beim Behandeln mit alkal. Natriumhypochlorit-Lösung und nachfolgend mit 5% iger Essigsäure in der Kälte (RINKES, R. 46, 274). — Krystalle. F: ca. —3°. — Beim Behandeln der äther. Lösung mit Barytwasser entsteht Önanthsäurenitril.

2. 3-Methyl-heptadien-(2.6)-saure-(1), β -Methyl- $\Delta^{\alpha.s}$ -heptadiensaure, 2-Methyl-hexadien-(1.5)-carbonsaure-(1) $C_8H_{12}O_2=CH_2:CH\cdot CH_2\cdot C(CH_3):CH\cdot CO_2H$.

Äthylester $C_{10}H_{16}O_2 = CH_2:CH \cdot CH_2 \cdot CH_2 \cdot C(CH_2):CH \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von 2-Oxy-2-methyl-hexen-(5)-carbonsäure-(1)-äthylester mit Kaliumdisulfat auf 150° (v. Braun, Gossel, B. 57, 378). — Öl. Kp₃₂: 103—105°. — Liefert bei mehrmaliger Einw. von Natrium und Alkohol 3-Methyl-hepten-(6)-ol-(1).

3. Heptadien - (3.5) - carbonsaure - (3), α - Athyl-sorbinsaure $C_8H_{12}O_2 = CH_3$ · $CH: CH: CH: C(C_2H_5) \cdot CO_3H$ (H 489). B. Aus dem Athylester durch Verseifung mit alkoh. Kalilauge (v. Auwers, Heyna, A. 434, 159). — Nadeln (aus Wasser oder verd. Alkohol). F: 85—86° (v. Au., H.). Flüchtig mit Wasserdampf (v. Au., H.). — Verharzt leicht (v. Au., H.). Liefert bei der Reduktion mit Natriumamalgam in durch Zusatz von Schwefelsäure schwach sauer gehaltener Lösung α -Athyl- Δ^{β} -hexensäure (v. Au., H.; vgl. jedoch Burton, Ingold, Soc. 1929, 2027). Bei Einw. von Brom in Chloroform entsteht γ - δ -Dibrom- α -āthyl- Δ^{α} -hexensäure (v. Au., H.).

Äthylester $C_{10}H_{16}O_3=CH_3\cdot CH\cdot CH\cdot CH\cdot C(C_2H_3)\cdot CO_2\cdot C_2H_3$. B. Aus α -Brom-butter-säure-äthylester und Crotonaldehyd in Benzol bei Gegenwart von Zink und Erwärmen des Reaktionsprodukts mit Kaliumdisulfat unter vermindertem Druck auf 50—60° (v. Auwers, Heyna, A. 434, 159). Aus der Säure und alkoh. Schwefelsäure (v. Au., H.). — Kp₁₃: 103° bis 103,5° (v. Au., H.). D₁₄. 0,9345; $n_{\alpha}^{is,3}$: 1,4908; $n_{He}^{is,3}$: 1,4965; $n_{\beta}^{is,3}$: 1,5116; $n_{\gamma}^{is,3}$: 1,5261 (v. Au., J. pr. [2] 105, 375).

4. Heptadien - (1.6) - carbonsäure - (4), Diallylessigsäure $C_8H_{12}O_3=(CH_2:CH\cdot CH_4)_2CH\cdot CO_4H$.

Nitril, Diallylacetonitril $C_8H_{11}N = (CH_2:CH\cdot CH_3)_2CH\cdot CN$ (H 489). B. Durch Destillieren von Diallyloyanessigsäure (I. G. Farbenind., D. R. P. 473329; C. 1929 II, 217; Frdl. 16, 285). — Kp_{12} : 73°.

5. 2.4-Dimethyl-hexadien-(2.4)-sāure-(6), 2.4-Dimethyl-pentadien-(1.3)-carbonsāure-(1), β.δ-Dimethyl-sorbinsāure C₃H₁₂O₂ = (CH₃)₂C:CH·C(CH₃):CH·CO₂H (H 489). B. Zur Bildung nach Rupe, Lotz (B. 36 [1903], 15) vgl. v. Auwers, Heyna, A. 434, 163. — F: 92° (v. Au., H.). — Liefert bei der Reduktion mit 3 % igem Natriumamalgam in NaHCO₃-Lösung bei 40—45° 62% 2.4-Dimethyl-penten-(2)-carbonsäure-(1) und 38% 2.4-Dimethyl-penten-(3)-carbonsäure-(1) (Burton, Ingold, Soc. 1929, 2027, 2037). Zu der Hydrierung mit 3% igem Natriumamalgam in durch Zusatz von Essigsäure schwach sauer gehaltener Lösung unter Bildung von 2.4-Dimethyl-penten-(2)-carbonsäure-(1) (Rupe, Lotz, A. 369 [1909], 348; v..Au., H., A. 434, 165) vgl. B., I., Soc. 1929, 2027. Gibt ein öliges Dibromid (v. Au., H., A. 434, 165). — AgC₈H₁₁O₂. Farbloser Niederschlag. Zersetzt sich beim Erhitzen auf 100° unter Schwarzfärbung (v. Au., H.).

Äthylester $C_{10}H_{16}O_{2}=(CH_{2})_{2}C:CH\cdot C(CH_{3}):CH\cdot CO_{2}\cdot C_{2}H_{6}$ (H 490; E I 210). B. Aus dem Silbersalz der Säure beim Behandeln mit Äthyljodid in Äther (v. Auwers, Heyna, A. 434, 165). — Kp₂: 87° (v. Au., H.). $D_{4}^{16,5}:0.9343$; $n_{\alpha}^{15,5}:1.4830$; $n_{He}^{16,5}:1.4882$; $n_{\beta}^{16,5}:1.5018$; $n_{\gamma}^{16,5}:1.5145$ (v. Au., J. pr. [2] 105, 376).

6. Carbonsäuren $C_9H_{14}O_2$.

- 1. Nonin-(2)-säure-(1), Octin-(1)-carbonsäure-(1), n-Hexylpropiolsäure $C_9H_{14}O_2 = CH_3 \cdot [CH_3]_5 \cdot C:C \cdot CO_2H$ (H 490; E I 210). Liefert bei der Reduktion mit Wasserstoff in Gegenwart von kolloidalem Palladium in Cyclohexan niedrigersiedende Octen-(1)-carbonsäure-(1) (BOURGUEL, C. r. 188, 1494; Bl. [4] 45, 1079).
- 2. Nonadien (2.6) sdure (1), Octadien (1.5) carbonscure (1) C₃H₁₄O₃ = CH₃·CH₂·CH·CH₂·CH₂·CH·CH₂·CH·CO₃H. B. Bei der Oxydation von Nonadien (2.6)-al-(1) (E II 1, 810) mit Silbernitrat in Gegenwart von wäßrig-alkoholischer Natronlauge (Walbaum, Rosenthal, J. pr. [2] 124, 58; Ber. Schimmel, Jubiläums-Ausgabe 1929, 214). Kp₅: 136—138°. Dis: 0,9911. Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Oxalsäure. AgC₃H₁₈O₃.

Methylester C₁₀H₁₆O₂ = CH₂·CH₂·CH:CH·CH₂·CH:CH:CH·CO₂·CH₃. B. Aus der Säure durch Schütteln mit Dimethylsulfat und Natronlauge (Walbaum, Rosenthal, J. pr. [2] 124, 60; Ber. Schimmel, Jubiläums-Ausgabe 1929, 216). — Kp₅: 88—90°. D¹⁵: 0,9338. n¹⁰/₂: 1,4619. — Liefert bei der Hydrierung mit Wasserstoff in Gegenwart von Palladium(II)-chlorid in Methanol Pelargonsäuremethylester.

3. 3-Methyl-octadien-(2.6)-sdure-(1), 2-Methyl-heptadien-(1.5)-carbon-sdure-(1), Norgeraniumsdure $C_0H_{14}O_3=CH_3\cdot CH\cdot CH_2\cdot CH_3\cdot C(CH_3)\cdot CH\cdot CO_3H$. B. Beim Erhitzen von 2-Oxy-2-methyl-hepten-(5)-carbonsaure-(1) mit Natriumacetat und Acetanhydrid (v. Braun, Gossel, B. 57, 380). — Unangenehm riechende Flüssigkeit. Kp₁₈: 149—150°.

Äthylester $C_{11}H_{18}O_2 = CH_3 \cdot CH \cdot CH_2 \cdot CH_2 \cdot C(CH_3) \cdot CH \cdot CO_2 \cdot C_2H_5$. B. Beim Kochen der Säure mit alkoh. Schwefelsäure (v. Braun, Gossel, B. 57, 380). — Kp₁₈: 114—115°. — Liefert bei der Einw. von Natrium in Alkohol Norcitronellol (E II 1, 492) und 2-Methylhepten-(5)-carbonsäure-(1).

4. 2.3-Dimethyl-heptadien-(2.6)-säure-(1). 3-Methyl-heptadien-(2.6)-carbonsäure-(2) $C_9H_{14}O_2 - CH_2 \cdot CH \cdot CH_2 \cdot C(CH_3) \cdot C(CH_3) \cdot CO_2H$. B. Bei längerem Kochen von 3-Oxy-3-methyl-hepten-(6)-carbonsäure-(2) mit Acetanhydrid und Natriumacetat und nachfolgendem kurzem Erhitzen mit wäßrig-alkoholischer Kalilauge (v. Braun, Gossel, B. 57, 379). — Unangenehm riechendes Öl. Kp₁₈: 145—146°.

Äthylester $C_{11}H_{18}O_2 = CH_2:CH\cdot CH_2\cdot CH_2\cdot C(CH_3):C(CH_3)\cdot CO_2\cdot C_2H_5$. B. Aus der Säure und alkoh. Schwefelsäure (v. Braun. Gossel, B. 57, 379). — Kp₁₈: 103—105°. — Bei mehrmaliger Reduktion mit Natrium und Alkohol entsteht 2.3-Dimethyl-hepten-(6)-ol-(1).

7. Carbonsäuren $\mathrm{C_{10}H_{16}O_2}$.

1. Decin-(2)-säure-(1). Nonin-(1)-carbonsäure-(1), n-Heptylpropiolsäure C₁₀H₁₆O₂ == CH₃·[CH₂]₈·C:C·CO₂H (H 491). B. Aus n-Heptyl-acetylen-Natrium und Kohlendioxyd ohne Lösungsmittel in Gegenwart von Natriumamid (MEUNIER, DESPARMET, Bl. [4] 35, 483).

Methylester $C_{11}H_{18}O_2 = CH_3 \cdot [CH_2]_6 \cdot C : C \cdot CO_2 \cdot CH_3 (H 491)$. $Kp_4: 115$ —117° (Meunier, Desparmet, Bl. [4] 35, 484).

2. 2.3 - Dimethyl-octadien - (2.6) - säure - (1). 3 - Methyl-octadien - (2.6) - carbonsäure - (2) C₁₀H₁₆O₂ -- CH₃·CH·CH·CH₂·CH₂·C(CH₃)·C(CH₃)·CO₂H. B. Durch Erhitzen von 3-Oxy-3-methyl-octen-(6)-carbonsäure-(2)-äthylester mit Kaliumdisulfat, neben dem Äthylester (v. Braun, Gossel, B. 57, 381). — Riecht unangenehm. Kp₂₀: 152—155°.

Äthylester $C_{12}H_{20}O_2=CH_3\cdot CH\cdot CH\cdot CH_2\cdot CH_2\cdot C(CH_3)\cdot C(CH_3)\cdot CO_2\cdot C_2H_5$. B. Durch Erhitzen von 3-Oxy-3-methyl-octen-(6)-carbonsäure-(2)-äthylester mit Kaliumdisulfat, neben der Säure (v. Braun, Gossel, B. 57, 381). — Kp₁₉: 115—116°.

3. 7-Methyl-octadien-(1.6)-carbonsäure-(4). δ -Methyl- α -allyl- Δ -hexensäure $C_{10}H_{16}O_2=CH_2:CH\cdot CH_2\cdot CH(CO_2H)\cdot CH_2\cdot CH:C(CH_3)_2$. B. In geringer Menge beim Verseifen von 7-Methyl-octadien-(1.6)-dicarbonsäure-(4.4)-diäthylester und nachfolgenden Destillieren des Reaktionsprodukts im Vakuum (Staudinger, Mitarb., Helv. 7, 406). — Ol. Kp₁₀: 137—138°.

Chlorid $C_{10}H_{15}OCl = CH_2:CH \cdot CH_2 \cdot CH(COCl) \cdot CH_2 \cdot CH:C(CH_3)_2$. B. Aus 7-Methyloctadien-(1.6)-carbonsäure-(4) und Thionylchlorid in Petroläther (Staudinger, Mitarb., Helv. 7, 406). — $Kp_{10}:84^{\circ}$.

4. 2.6-Dimethyl-octadien-(2.6)-säure-(8). 2.6-Dimethyl-heptadien-(1.5)-carbonsäure-(1). Geraniumsäure C₁₀H₁₆O₂=(CH₃)₂C:CH·CH₂·CH₂·C(CH₃):CH·CO₂H (H 491; E I 210). V. In Citronen-Petitgrainöl (GLICHITCH, NAVES, Parf. France 7, 65; C. 1929 I, 3045). — B. Der Butylester sowie der Geranylester entstehen neben anderen Produkten durch Kochen von Butyraldehyd mit der Aluminiumverbindung des Geraniols; man verseift die (nicht näher beschriebenen) Ester mit alkoh. Kalilauge (VERLEY, Bl. [4] 37, 539). — Verbrennungswärme bei konstantem Volumen: 1378,8 kcal/Mol (ROTH, MOOSBRUGGER in Landolt-Börnst. H 1602).

Geraniumhydroxamsäure $C_{10}H_{17}O_2N=(CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot C(CH_3):CH\cdot C(:N\cdot OH)\cdot OH$ (H 492). B. Zur Bildung aus Citral und Benzolsulfhydroxamsäure nach Velardi (G. 34 II [1904], 72) vgl. Faltis, Heczko, M. 43, 384.

5. 3.4-Dimethyl-octadien-(2.6)-säure-(1), 2.3-Dimethyl-heptadien-(1.5)-carbonsäure-(1) $C_{10}H_{16}O_2=CH_3\cdot CH\cdot CH_2\cdot CH(CH_3)\cdot C(CH_3)\cdot CH\cdot CO_2H$.

Äthylester $C_{12}H_{20}O_2 = CH_3 \cdot CH \cdot CH_2 \cdot CH_3 \cdot CH(CH_3) \cdot C(CH_3) \cdot CH \cdot CO_2 \cdot C_2H_5$. B. Durch Erhitzen von 2-Oxy-2.3-dimethyl-hepten-(5)-carbonsäure-(1)-äthylester mit Kaliumdisulfat (v. Braun, Gossel, B. 57, 381). — Riecht angenehm. Kp₂₀: 123—124°.

6. Carbonsäure $C_{10}H_{16}O_2$ aus inakt. Citronellsäure s. im Artikel Citronellsäure (S. 419).

8. Carbonsäuren $C_{11}H_{18}O_2$.

1. Undecin-(1)-säure-(11), Decin-(9)-carbonsäure-(1), ω -Acetylenyl-pelargonsäure $C_{11}H_{18}O_2=CH:C\cdot[CH_2]_8\cdot CO_2H$ (H 493). F: 45° (Myddi eton, Barrett. Am. Soc. 49, 2261), 43—44° (My., Berchem, Soc. 1927, 1929). D25: 0,9060 (Harkins, Clark.

ROBERTS, Am. Soc. 42, 703, 705 Anm. 1). Oberflächenspannung bei 25°: 30,64 dyn/cm (H., C., R.). Grenzflächenspannung gegen Wasser bei 25°: H., C., R.; gegen Quecksilber bei 20°: H., EWING, Am. Soc. 42, 2543. — Oxydation mit Peressigsäure: BÖESEKEN, SMIT, GASTER, Pr. Akad. Amsterdam 32, 382; C. 1929 II, 716. Liefert bei längerer Einw. von ca. 88%iger Schwefelsäure geringe Mengen 9-Oxo-decan-carbonsäure-(1) (My., Ba., Am. Soc. 49, 2258). Bei Einw. von Quecksilber(II)-acetat in Eisessig bei 70—100° entsteht das Quecksilber(II)-salz der 10.10.10-Tris-acetoxymercuri-9-oxo-decan-carbonsäure-(1) (My., Ba., Am. Soc. 49, 2259).

Äthylester $C_{13}H_{22}O_2=CH:C\cdot [CH_2]_8\cdot CO_2\cdot C_2H_5$ (H 493). B. Aus der Säure beim Behandeln mit Alkohol und konz. Schwefelsäure (MYDDLETON, BERCHEM, Soc. 1927, 1929; My., BARRETT, Am.Soc. 49, 2261). — $AgC_{13}H_{21}O_2+AgNO_3$. Löslich in heißem Alkohol. Beständig am Sonnenlicht (My., Be.).

2. Undecin-(2)-säure-(11). Decin-(8)-carbonsäure-(1) $C_{11}H_{18}O_2 = CH_3 \cdot C:C \cdot [CH_2]_7 \cdot CO_2H$ (H 493). Oxydation mit Peressigsäure: Böeseken, Smit, Gaster, Pr. Akad. Amsterdam 32, 382; C. 1929 II, 716. Liefert bei längerer Einw. von ca. 88% iger Schwefelsäure 9-Oxo-decan-carbonsäure-(1) neben wenig 8-Oxo-decan-carbonsäure-(1) (Myddleton, Barrett, Am. Soc. 49, 2259). Bei Einw. von Quecksilber(II)-acetat in Eisessig bei 70% bis 100% entstehen Quecksilber(II)-salze von Bis-acetoxymercuri-oxo-decan-carbonsäuren-(1) (My., Ba.).

Äthylester $C_{13}H_{22}O_2=CH_3\cdot C\cdot C\cdot [CH_2]_7\cdot CO_2\cdot C_2H_5$ (H 493). B. Beim Kochen der Säure mit Alkohol und konz. Schwefelsäure (Myddleton, Barrett, Am. Soc. 49, 2261).

3. 2.3.7-Trimethyl-octadien-(2.6)-säure-(1). 3.7-Dimethyl-octadien-(2.6)-carbonsäure-(2) $C_{11}H_{18}O_2=(CH_3)_2C:CH\cdot CH_2\cdot C(CH_3):C(CH_3)\cdot CO_2H$.

Äthylester $C_{13}H_{22}O_2 = (CH_3)_2C: CH \cdot CH_2 \cdot CH_2 \cdot C(CH_3): C(CH_3) \cdot CO_2 \cdot C_2H_5$ (H 493). B. Beim Erhitzen von 3-Oxy-3.7-dimethyl-octen-(6)-carbonsäure-(2)-äthylester mit Kalium-disulfat auf 150° (v. Braun, Gossel, B. 57, 382). — Kp₂₀: 126—128°.

9. Carbonsäuren $C_{12}H_{20}O_2$.

1. Dodecin-(2)-säure-(1). Undecin-(1)-carbonsäure-(1). n-Nonylpropiol-säure $C_{12}H_{20}O_2=CH_3\cdot [CH_2]_8\cdot C:C\cdot CO_2H$ (H 493). B. Aus Undecin-(1)-natrium und Kohlendioxyd ohne Lösungsmittel in Gegenwart von Natriumamid (Meunier, Desparmet, Bl. [4] 35, 483).

Methylester $C_{13}H_{22}O_2=CH_3\cdot[CH_2]_6\cdot C:C\cdot CO_2\cdot CH_3$ (H 493). Kp₄: 148—158° (Meunier, Desparmet, Bl. [4] 35, 484).

Amid C₁₂H₂₁ON = CH₃·[CH₂]₈·C:C·CO·NH₂. B. Aus n-Nonylpropiolsäure-nitril beim Behandeln mit gleichen Teilen Essigsäure und Schwefelsäure (Grignard, Perrichon, A. ch. [10] 5, 31). — Perlmutterglänzende Blättchen. F: 78—79°.

Nitril $C_{12}H_{19}N=CH_3\cdot [CH_2]_8\cdot C:C\cdot CN$. B. Aus α -Undecinyl-magnesiumbromid in Ather durch Behandeln mit Chloreyan und nachfolgende Zersetzung mit Wasser (GRIGNARD, PERRICHON, A. ch. [10] 5, 30). — Flüssigkeit von starkem, anhaftendem Geruch. Kp₈: 121—122°. Di^{1,5}: 0,8596; ni^{1,5}: 1,4631.

2. 2.6-Dimethyl-decadien-(2.8)-säure-(10), 4.8-Dimethyl-nonadien-(1.7)-carbonsäure-(1). Citronellidenessigsäure $C_{12}H_{20}O_2=(CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CH_2\cdot CH:CH\cdot CO_2H$ (H 494). Zur Darstellung aus Citronellal, Malonsäure und Pyridin vgl. Ruzicka. Steiger, Helv. 10, 684. — Kp₁₅: 168—173°. Ist linksdrehend. — Liefert beim Kochen mit Natrium in Alkohol Citronellylessigsäure.

Äthylester $C_{14}H_{24}O_2$ =(CH₃)₂C:CH·CH₂·CH·CH₂·CH₂·CH₂·CH₁CH·CO₂·C₂H₅. Wurde nicht rein erhalten. *B.* Aus Citronellidenessigsäure beim Behandeln mit alkoh. Schwefelsäure (Ruzicka, Steiger, *Helv.* 10, 684). — Kp₁₃: 145—155°. Ist linksdrehend. — Liefert bei der Reduktion mit Natrium in Alkohol β -Citronellyl-äthylalkohol.

10. Carbonsäure $C_{14}H_{24}O_2 = C_{13}H_{23} \cdot CO_2H$. Über das Vorkommen einer Carbonsäure $C_{14}H_{24}O_2$ im Menhadenöl vgl. McGregor, Beal, Am. Soc. 48, 3157, 3161

11. Carbonsäuren $C_{18}H_{32}O_2$.

1. Octadecin-(6)-säure-(1). Heptadecin-(5)-carbonsäure-(1), Taririnsäure $C_{18}H_{32}O_2=CH_3\cdot [CH_2]_{10}\cdot C:C\cdot [CH_2]_4\cdot CO_2H$ (H 495; E I 211). Zur Oxydation von Taririnsäure und ihren Estern mit Chromschwefelsäure vgl. Simon, C.r. 180, 1406.

- 2. Octadecin-(6)-säure-(18), Heptadecin-(11)-carbonsäure-(1) C₁₈H₂₂O₂ = CH₃·[CH₂]₄·C:C·[CH₂]₁₀·CO₂H. B. Aus 11(oder 12)-Brom-heptadecen-(11)-carbonsäure-(1)-äthylester und Kaliumhydroxyd bei 180° (Grün, Czerny, B. 59, 61). Krystalle (aus Petroläther). F: 34,2°. Das Kaliumsalz wird durch Kaliumpermanganat oder durch Permanganat und Chromsäure hauptsächlich zu Decan-dicarbonsäure-(1.10) und n-Capronsäure oxydiert.
- Octadecin-(9)-säure-(1), Heptadecin-(8)-carbonsäure-(1), Stearolsäure $C_{19}H_{29}O_{2}=CH_{2}\cdot [CH_{2}]_{7}\cdot C:C\cdot [CH_{2}]_{7}\cdot CO_{2}H$ (H 495; E I 211). Darst. Aus Olsaure durch Addition von Brom und längeres Erhitzen der entstandenen $\theta.\iota$ -Dibrom-stearinsauren mit Addition von Brom und integers Efficient der entwestellen v.-Biomisserialisten integers Kaliumhydroxyd in Alkohol (González, An. Soc. españ. 24, 160; C. 1926 II, 183) oder Isoamylalkohol (Kino, J. Soc. chem. Ind. Japan Spl. 32, 188 B; C. 1929 II, 1523). — Monoklin prismatisch (A. Müller, Pr. roy. Soc. [A] 114, 548; C. 1927 II, 780). Röntgendiagramm: M. Über unvollständige Krystallisation vgl. M., Nature 117, 721; C. 1926 II, 527; vgl. a. M., Pr. roy. Soc. [A] 114, 556. F: 48,5° (Waterman, Bertram, van Westen, J. Soc. chem. Ind. 48, 50 T; C. 1928 I, 2118). Viscosität eines Gemisches von Natriumstearolat und Natriumstearolat und Natriumoleat in waßr. Lösung: Freundlich, Jores, Koll. Beih. 22, 29; C. 1926 I, 3310. Thermische Analyse der binären Systeme mit Hyodesoxychlorsäure und Cholsäure: RHEIN-BOLDT, H. 182, 253, 258. — Wird durch Kaliumpermanganat in alkal. Lösung in guter Ausbeute zu Azelainsäure und Pelargonsäure oxydiert (GRÜN, WITTKA, Ch. Umechau Fette 32, 258; C. 1926 I, 619); bei der Oxydation mit Chromschwefelsäure entstehen Azelainsäure, Pelargonsäure und wenig Korksäure (G., W.; vgl. Simon, C.r. 180, 1406), bei der Oxydation mit Peressigsäure Azelainsäure und Pelargonsäure neben anderen Produkten (BÖESEKEN, SLOOFF. R. 49 [1930], 97; vgl. B., Sl., C. 1929 II, 716). Bei der Hydrierung mit Wasserstoff und Palladiumkohle in einem indifferenten Lösungsmittel entsteht Stearinsäure (Grün, Halden, Z. dtoch. Öl-Fettind. 44, 5; C. 1924 I, 1458; WATERMAN, BERTRAM, VAN WESTEN, J. Soc. chem. Ind. 48, 51 T; C. 1929 I, 2118), die sich auch bei der Reduktion von Stearolsäure mit Wasserstoff und Platinschwarz in Essigsäure bildet (González, An. Soc. españ. 24, 163; C. 1926 II, 183). Die Hydrierung von Stearolsäure mit Wasserstoff und Nickel in sehr verd. Natronlauge (G.) oder mit Zinkstaub und Salzsäure in Gegenwart von Titan(III)-chlorid in essigsaurer Lösung (G. M. Robinson, R. Robinson, Soc. 127, 177) führt zu Ölsäure, während beim Erhitzen von Stearolsäure mit Zinkstaub, Eisessig und etwas Salzsäure Elaidinsäure entsteht (G.). Liefert bei Einw. von Schwefelsäure auch in einer Lösung von Hexan &-Oxostearinsäure und 1-0x0-stearinsäure (R., R., Soc. 1926, 2208). Lagert in Eisessig (Kaufmann, Ar. 1925, 714) und in Eisessig-Tetrachlorkohlenstoff-Lösung Rhodan nicht an (K., B. 59. 1391; vgl. a. W., B., van W., J. Soc. chem. Ind. 48, 51 T). Einw. von Quecksilber(II)-acetat in Eisessig bei 70-100° ergibt das Quecksilber(II)-salz der 8.8-Bis-acetoxymercuri-4-oxostearinsaure $CH_3 \cdot [CH_3]_1 \cdot CO \cdot C(Hg \cdot O \cdot CO \cdot CH_3)_3 \cdot [CH_2]_7 \cdot CO_3H$ (Myddleton, Berchem, Barrett, Am. Soc. 49, 2265).

Äthylester, Äthylstearolat $C_{20}H_{36}O_3 = CH_3 \cdot [CH_2]_7 \cdot C : C \cdot [CH_2]_7 \cdot CO_2 \cdot C_2H_3$. Gibt bei der Einw. von Natrium und Alkohol Stearolalkohol (Andrá, François, C. r. 185, 388).

Glycerintristearolat, Tristearolin, Stearolin $C_{57}H_{58}O_6 = (C_{17}H_{31}\cdot CO\cdot O)_3C_3H_5$ (H 496). Zum Nährwert für Ratten vgl. Ozakı, *Bio. Z.* 189, 234.

Stearolsäureamid $C_{1a}H_{as}ON = CH_a \cdot [CH_a]_7 \cdot C:C \cdot [CH_a]_7 \cdot CO \cdot NH_a$. F: 88° (González, An. Soc. españ. 24 [1926], 163 Anm.).

- 4. Octadecadien-(5.9)-säure-(18), Heptadecadien-(8.12)-carbonsäure-(1) $C_{1g}H_{2g}O_3=CH_2\cdot [CH_2]_5\cdot CH\cdot CH\cdot CH_2\cdot CH_2\cdot CH\cdot [CH_2]_7\cdot CO_2H$. Den unter dieser Formel in H 2, 100; E I 2, 212 beschriebenen Eläostearinsäuren kommt die Zusammensetzung von Heptadecatrien-(8.10.12)-carbonsäuren-(1) $C_{1g}H_{2g}O_2$ zu; s. S. 465, 467.
- 5. Octadecadien (6.8) sdure (18), \(\textit{A}^{10.18}\-\) Octadecadiensäure, \(Hepts-decadien (9.11) carbonsäure (1), \(Dihydroeldostearinsäure \) \(C_{18}^{\text{H}}_{\text{s}} O_{\text{g}} = CH_{3}^{\text{.}} \)

 [CH₃]₄·CH:CH:CH:CH:[CH₂]₈·CO₂H. \(B. \) Durch Verseifen des \(\text{Athylesters} \) (BÖRSEKEN, v. KRIMPEN, \(Versl. \) Akad. \(Amsterdam \) 37, 68; \(C. \) 1928 I, 2704; \(B., v. K., \) BLANKEN, \(R. \) 49 [1930], 252). \(-F: 28,5^{\text{o}} \) (B., v. K.). \(n_{\text{o}}^{\text{o}}: 1,4639 \) (B., v. K.). \(-Liefert \) beim Ozonisieren Sebacinsäure und n-Capronsäure (B., v. K.; B., v. K., B.): \(Aufnahme \) von Jod: \(B., v. K., B. \)

Äthylester $C_{20}H_{20}O_3=C_{17}H_{21}\cdot CO_2\cdot C_2H_3$. B. Aus α -Eläostearinsäure-äthylester durch Hydrieren mit 1 Mol Wasserstoff in Gegenwart von Nickel (Börseken, v. Krimpen, Verel. Akad. Amsterdam 37, 67; C. 1928 I, 2704; B., v. K., Blanken, R. 49 [1930], 251; vgl. B., Hoogland, R. 46, 630). — n_0^n : 1,4746 (B., v. K.).

5.10-Dichlor-octadecadien-(6.8)-säure-(18), Eläostearinsäuredichlorid $C_{12}H_{20}O_2Cl_2 = CH_2 \cdot [CH_2]_2 \cdot CHCl \cdot CH \cdot CH \cdot CH \cdot CHCl \cdot [CH_2]_2 \cdot CO_2H$. Zur Konstitution vgl. die bei Eläostearinsäuredibromid (S. 459) aufgeführte Literatur sowie Börsenn, Gelber, R. 46, 163. — B. Aus α -Eläostearinsäure durch Einw. von Chlor in Tetrachlorkohlenstoff bei —15°

- (ISHIO, J. pharm. Soc. Japan 1926, 24; C. 1926 I, 3594). Krystalle (aus Petroläther). F: 88° (I.). Färbt sich bei längerem Aufbewahren dunkel (I.). Einw. von Methanol oder Alkohol: I.
- Eläostearinsäure-dichlorid-diozonid C₁₈H₂₀O₂Cl₂. Durchsichtige, klebrige Masse (Iahro, J. pharm. Soc. Japan 1926, 24; C. 1926 I, 3594). Beim Kochen mit Wasser entstehen α-Chlor-capronsäure, α-Chlor-sebacinsäure und andere Produkte.
- 5.10 Dibrom octadecadien (6.8) säure (18), Eläostearinsäuredibromid C₁₈H₂₀O₂Br₂ = CH₃·[CH₂]₃·CHBr·CH:CH·CH:CH·CHBr·[CH₂]₃·CO₂H. Zur Konstitution vgl. Böbeken, R. 46, 622; Holde, Bleyberg, Aziz, Z. ang. Ch. 42, 283. B. Aus α-Eläostearinsäure und 1 Mol Brom in Chloroform (Böe., R. 46, 622), in Petroläther (Nicolet, Am. Soc. 43, 939; Ishio, J. pharm. Soc. Japan 1923, 54; C. 1924 II, 2744) oder in Ather (I.). Krystalle (aus Petroläther oder Ather). F: 91° (I.; H., Bl., A., Z. ang. Ch. 42, 283 Anm. 4). Leicht löslich in Alkohol, Benzol und hochsiedendem Petroläther, schwer in niedrigsiedendem Petroläther (N.). Unbeständig (N.). Liefert beim Bromieren in Eisessig (N.) oder Chloroform (I.) festes Eläostearinsäuretetrabromid und andere Produkte. Verhalten gegen alkoh. Kalilauge in der Kälte: I.; bei 130°: H., Bl., A. Einw. von Methanol oder Alkohol: I., J. pharm. Soc. Japan 1926, 22.
- 6. Octadecadien (6.9) säuren (18), Δ^{9.12}- Octadecadiensäuren, Heptadecadien-(8.11)-carbonsäuren-(1). Linolsäuren C₁₂H₂₂O₃ = CH₃·[CH₃]₄·CH:CH-CH₂·CH·CH₃·CH·CH₃·CO₃H. Die Konstitution (Lage der Doppelbindungen) ist bewiesen für die Linolsäuren aus Leinöl (Goldsobel, Ch. Z. 30 [1906], 825; Ж. 42, 55; C. 1910 I, 1231), Baumwollsamenöl (Hildtch, Vidyarthi, Pr. roy. Soc. [A] 123, 564; C. 1929 I, 2163), Sojabohnenöl (Hil, VI.; Haworth, Soc. 1929, 1457) und Mohnsamenöl (Ha.). Zur Frage der Einheitlichkeit der Linolsäuren ist vor allem zu berücksichtigen, daß sie bis zu den Arbeiten von Brown, Stoner (Am. Soc. 59 [1937], 3) und Brown, Frankel (Am. Soc. 60 [1938], 54) in verhältnismäßig reiner Form nur dadurch erhältlich waren, daß man sie als Tetrabrom-Additionsprodukte abschied und diese entbromete (Green, Hi., Biochem. J. 29 [1935], 1552; Kaufmann, Mestern, B. 69 [1936], 2684; vgl. Pfahler, Ch. Umschau Fette 33 [1926], 68; Knauss, Smull, Am. Soc. 49, 2813).
- Gewöhnliche Linolsäure, natürliche Linolsäure $C_{18}H_{12}O_2 = CH_2 \cdot [CH_2]_4$ CH:CH·CH₂·CH:CH·[CH₂]₇·CO₂H (H 496; E I 212). Die Linolsäure der ursprünglichen Samenfette existiert wahrscheinlich nur in einer Form oder enthält eine der 4 möglichen stereoisomeren Formen als Hauptbestandteil (Haworth, Soc. 1929, 1458; Smit, R. 49 [1930], 544; VAN DER VEEN, Ch. Umschau Fette 38, 119; C. 1931 II, 219; D. HOLDE, Kohlen-Wasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 630; Green, Hilditch, Biochem. J. 29 [1935], 1553, 1562; Riemenschneider, Wheeler, Sando, J. biol. Chem. 127 [1939], 393; McCutchon, Canad. J. Res. [B] 16, 158, 173; C. 1939 II, 374). Diese als gewöhnliche Linolsäure bezeichnete Form stellt am wahrscheinlichsten die cis-19-cis-119-Octadecadiensäure (s. nebenstehende Formel) dar (Inouz, Suzuki, Pr. Acad. Tokyo 7, 18; C. 1931 I, 2740; MARUYAMA, Su., Pr. Acad. Tokyo 8, 189; C. 1932 II, 1609; Rie., Wh., Sa., J. biol. Chem. 127 [1939], 400; Hilditch, Jasperson, J. Soc. chem. Ind. 58, 233 T; C. 1939 II, 2390; vgl. CHa · [CHa]4 · C · H H · C · CH a · C · H H-C-{OH_1}7-CO1H jedoch Brown, Frankel, Am. Soc. 60 [1938], 54). Die irrige Annahme des Vorkommens einer isomeren Linolssure $(,,\beta$ -Linolssure⁽¹⁾) in einigen Samenölen (E I 3, 213, Zeile 8 v. o.) auf Grund der Bildung eines flüssigen Tetrabromids (H 2, 387) bzw. einer Sativinsäure vom Schmelzpunkt 162—163° (vgl. E I 3, 169) geht auf F. Bedford (Dissert. [Halle 1906], S. 15, 43; vgl. Erdmann, Bedford, B. 42 [1909], 1333; H. 69 [1910], 79) zurück, der aus der Bildung von 2 verschiedenen θ.ι.λ.μ-Tetrabrom-stearinsäuren auf die Existenz zweier als α- und β-Linolsäure beziehneten Isomeren schloß; die beiden isomeren Tetrabrom-Additionsprodukte können sich jedoch aus derselben Linolsäure bilden (ROLLETT, H. 62 [1909], 421; 70 [1910/11], 404). Die Bezeichnungen α- und β-Linolsäure in diesem H. 6M [1909], 421; 70 [1910/11], 404). Die Bezeichnungen α- und β-Linolsäure in diesem Sinne sind daher unbegründet (vgl. z. B. van der Veen, Ch. Umschau Fette 38, 120; C. 1931 II, 219; Riemenschneider, Wheeler, Sando, J. biol. Chem. 127 [1939], 391 Arm. 1). Green, Hilditoh (Biochem. J. 29 [1935], 1552 Arm.; vgl. a. Kaufmann, Keller, Ch. Umschau Fette 38, 203; C. 1931 II, 2305) verstehen neuerdings unter α-Linolsäure lediglich die nach Hilditch, Jasperson (J. Soc. chem. Ind. 58, 233 T; C. 1939 II, 2390; vgl. z. B. auch Nicolet, Cox, Am. Soc. 44, 145 Arm. 7; Hi., Vidyarthi, Pr. roy. Soc. [A] 122 [1929], 565 Arm. 3; Green, Hi., Biochem. J. 29 [1935], 1553) sowie Brown, Frankel (Am. Soc. 60 [1938], 54; vgl. Matthews, Brode, Brown, Am. Soc. 63 [1941], 1064) mit der natürlichen Linolsäure gleichsusetzende, aus der festen θ.ι.λ.μ-Tetrabrom-stearinsäure (S. 362) regenerierte Linolsäure und entsprechend unter β-Linolsäure die aus der füßsigen θ.ι.λ.μregenerierte Linolsäure und entsprechend unter β-Linolsäure die aus der flüssigen θ...λ.μ-Tetrabrom-stearinsaure (S. 363) regenerierte Linoisaure.

V. Linolsaure ist in Pflanzenfetten weit verbreitet, sie war bis etwa 1930 in 71 Pflanzenfamilien nachgewiesen (E. Whimer, W. Thirs, M. Hadders in G. Klein, Handbuch der

Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 520; Literaturhinweise s. C. Wehmer, Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931]). Abhängigkeit des Linolsäuregehalts von Pflanzenölen vom Klima: S. Iwanow in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 381; vgl Pigulewski, Ж. 48, 324; C. 1924 I, 2435; EIRNER, BROSEL, Ch. Umschau Fette 35, 15.8; C. 1928 II. 829. Eine Übersicht über die Verteilung in den technologisch wichtigeren Fetten gibt T. P. HILDITCH in HEFTER-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I, S. 69—101. Von weiteren Vorkommen der Linolsäure in freier oder veresterter Form seien beispielsweise angeführt: Im Fett aus Tuberkelbacillen (Anderson, Chargaff, J. biol. Chem. 84, 705, 714). Im Hefefett (MacLean, Thomas, Biochem. J. 14, 487). Im Ol aus den Sporen von Aspidium filix mas (Kiesel, H. 149, 244). In dem Fett, das bei der Züchtung einer Penicillium-Art auf Kohlenhydrat- oder Glycerin-Lösungen gebildet wird (Barber, Biochem. J. 23, 1162). Im fetten Öl von Secale cornutum (Mutterkornöl) (Dieterle, Diester, Thimann, Ar. 1927. 173; MATTHES, SCHÜTZ, Ar. 1927, 542; BAUGHMAN, JAMIESON, J. Oil Fat Ind. 5. 87; C. 1928 II, 199). Im Chrysalidenöl (KIMURA, Ch. Umschau Fette 36, 188; C. 1929 II, 1093). Im Fett der Gonaden von Rhizostoma Cuvieri (Quallen) (HAUROWITZ, H. 112, 34). Im Fett der Boa constrictor (KERR. Am. Soc. 49, 2046). Im Lecithin aus Corpus luteum von Schlachtvieh (HART, HEYL, J. biol. Chem. 72, 396, 401). Im Fett von Ratten in verschiedenen Mengen je nach der Art der Ernährung (Eckstein, J. biol. Chem. 81, 617). Im Fett aus verschiedenen Körperteilen des Pferdes (Heiduschka, Steinruck. J. pr. [2] 102. 251). Im menschlichen Fett (E., J. biol. chem. 64, 804; WAGNER. Bio. Z. 174, 417). Linolsäuregehalt von reinen und technischen Knochenfetten: Stadlinger. Tschirch, Ch. Z. 51, 667, 686, 706; C. 1927 II, 2242. — Zur Darstellung über den Methylester des Linolsäuretetrabromids nach Rollett (H. 62 [1909], 411) eignen sich Mohnöl (Holde, Gentner. B. 58, 1069) oder Sojaöl (Pfahler, Ch. Umschau Fette 33 [1926], 69; HAWORTH, Soc. 1929. 1458), welche viel Linolsäure, aber nur wenig Linolensäure (5—6%) enthalten (D. Holde. Kohlenwasserstofföle und Fette. 7. Aufl. [Berlin 1933]. S. 715). Darstellung aus Baumwollsamenöl über den Athylester des Linolsäure-tetrabromids: Nicolet, Cox, Am. Soc. 44, 147. F: -9.5° bis -9°; E: -9.5° (HOLDE, GENTNER, B. 58, 1068; vgl. H., WEILL, Ch. Um-

F: —9.5° bis —9°; E: —9.5° (HOLDE, GENTNER, B. 58, 1068; vgl. H., Weill, Ch. Umschau Fette 30, 206; C. 1924 I. 1173). Kp₅: 210° (Böeseken, Mitarb., R. 46, 623); Kp_{1,4}: 202° (korr.) (H., G., B. 58, 1069). D¹⁵: 0,9050 (B., Ravenswaay, R. 44, 242); D¹⁸: 0,9038 (H., G.); D¹⁸: 0,9025 (H., W.); D¹⁸₄: 0,9007 (H., G.): D¹⁷: 0,8674 (B., Mitarb.). n¹⁵₅: 1,4715 (H., G.); n¹⁵₅: 1,4710 (B., R.): n¹⁵₅: 1,471 (H., W.; vgl. H., G., B. 58, 1069); n²⁵₆: 1,4683 (H., G.): n¹⁵₆: 1,4492 (B., Mitarb.). Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Manecke, Volbert, Farben-Ztg. 32, 2888; C. 1927 II. 2786. Umkehrung der Phasen bei Ol-Emulsionen in Natriumlinolat-Lösungen durch Elektrolyte: Bhatnagar, Soc. 119, 63.

Katalytische Zersetzung der ein Gemisch von Linolsäure und Linolensäure darstellenden Leinölfettsäuren an einem auf 550—600° erhitzten Gemisch von Kupfer mit Aluminiumoxyd: Mallhe, A. ch. [9] 17. 328: Caoutch. Guttap. 19, 11475; C. 1923 III, 38. Veränderungen beim Behandeln mit Aluminiumchlorid in Chloroform: Marcusson, Z. ang. Ch. 38, 235. ZurVeränderung von Linolsäure an der Luft vgl. Holde, Gentner, B. 58, 1069. Trocknungsvermögen: Eibner, Semmelbauer, Ch. Umschau Fette 31 [1924], 195. Geschwindigkeit der Sauerstoffabsorption: Nowikow, Maslob. žir. Delo 1927, Nr. 2, S. 17; C. 1927 I, 3155. Röntgenographische Verfolgung der Oxydation an der Luft auf einer Bleioberfläche: Trillat. C. r. 181, 505: Ann. Physique [10] 6, 90. Oxydation der Leinölfettsäuren mit Sauerstoff bei 20°: Wieland, Franke, A. 464, 220; vgl. a. Coffey, Soc. 119, 1413. Die Oxydation von Linolsäure durch Sauerstoff wird durch reduziertes Glutathion beschleunigt (Hopkins, Biochem. J. 19, 793). Zusatz von 1% β-Naphthol zu Linolsäure verhindert die Oxydation durch Sauerstoff bei 60° (No.). Gibt beim Ozonisieren Capronsäure und Azelainsäure (van Rijn van Alkemade: zit, bei Böeseken, R. 46, 622 Anm. 6). Liefert bei der Oxydation mit kalter alkalischer Permanganat-Lösung 2 stereoisomere Sativinsäuren (Syst. Nr. 248) (Nicolet. Cox, Am. Soc. 44, 150; vgl. Haworth, Soc. 1929, 1460). Oxydation mit Benzopersäure in Chloroform: Bauer, Bähr, J. pr. [2] 122, 207. Nimmt bei der Hydrierung mit Wasserstoff und Palladiumkohle 2 Mol Wasserstoff unter Bildung von Stearinsäure auf (Waterman, Bertram, van Westen, J. Soc. chem. Ind. 48, 50 T; C. 1929 I, 2118). Selektive Hydrierung von Gemischen mit Olsäure bei 200°: Williams, J. Soc. chem. Ind. 46, 447 T; C. 1928 I, 1242; vgl. a. Kaufmann, Hanssn-Schmidt, B. 60, 57. Geschwindigkeit der Bromaufnahme in Tetrachlorkohlenstoff bei Zimmertemperatur im Dunkeln und im ultravioletten Licht: Knauss, Smull, Am. Soc. 49, 2812. Gleichgewichtskonstante der

Reaktion $C_{18}H_{32}O_2 \stackrel{+}{\sim} \stackrel{+}{\sim} C_{18}H_{32}O_2 I_2 \stackrel{+}{\sim} C_{18}H_{32}O_2 I_4$ in Benzel bei 19,5°: van der Steur. R. 46, 415; in Tetrachlorkohlenstoff bei 0°: van der St... R. 46, 280; in Tetrachlorkohlenstoff bei 19,5°: van der St., R. 46, 412. Anlagerung von Jod an das Kaliumsalz in verd. Alkohol: Margosches, Fuchs. R. 60, 991. Bei Einw. von Jodmonochlorid in Eisessig oder Tetrachlorkohlenstoff verläuft die Addition von Jodmonochlorid an die zweite Doppelbindung

schr langsam; hierbei scheidet sich freies Jod ab, da mehr Chlor als Jod von der Säure addiert wird (Gelber, Böeseker, R. 48, 377). Einw. von Jodmonobromid in Eisessig ergibt Dibromdijodstearinsäure (Holde, Gorgas, B. 58, 1074; 59, 114). Kaliumlinolat liefert bei der Behandlung mit Kaliumhypochlorit-Lösung unter Einleiten von Kohlendioxyd Diehlordioxystearinsäure (Nicolet, Cox. Am. Soc. 44, 148). Reagiert analog mit Kaliumhypobromit (N., C.) und mit Jod in verd. Alkohol (unterjodiger Säure) (H., G., B. 58, 1074; 59, 115; vgl. a. Margosches, Friedmann, Tschörner, B. 58, 795). Reaktion mit Benzol bei Gegenwart von Aluminiumehlorid: Marcusson, Z. ang. Ch. 33, 234. Anlagerung von Rhodan; Kaufmann, Ar. 1925, 715; Waterman, Bertram, van Westen, J. Soc. chem. Ind. 48, 50 T; C. 1929 I. 2118. — Bactericide Wirkung der Kalium- und Natriumsalze: Walker, J. infect. Diseases 35, 557; C. 1926 I, 1589. Hyperglykämische Wirkung bei intravenöser Injektion beim Kaninchen: Lee, Bio. Z. 179, 212.

Verwendung des Kupfer-, Aluminium-, Blei-, Mangan- und Kobaltsalzes bei der Herstellung von Sikkativen: Bottler, C. 1924 I, 2306. — Gibt in Chloroform-Lösung mit Antimonpentachlorid eine rotbraune Färbung (Steinle, Kahlenberg, J. biol. Chem. 67, 449). Bestimmung in Leinöl durch jodometrische und rhodanometrische Titration: Kaufmann, Keller, Z. ang. Ch. 42, 75. Nephonetrische Bestimmung kleiner Mengen im

Natriumlinolat. F: 192° (Bhatnagar, Prasad, Singh, Koll.-Z. 38, 219; C. 1926 I, 3128). Oberflächenspannung und elektrische Leitfähigkeit von geschmolzenem Natriumlinolat bei verschiedenen Temperaturen: B., P., S. — Kaliumlinolat. F: 180° (B., P., S.). Oberflächenspannung und elektrische Leitfähigkeit von geschmolzenem Kaliumlinolat bei verschiedenen Temperaturen: B., P., S. — Wismuttinolat. Emulgierung in Mandelöl: Hoffmann-La Roche, D. R. P. 415227; C. 1925 II, 956; Frdl. 15, 1580.

Linolsäuremethylester, Methyllinolat $C_{19}H_{34}O_2 = C_{17}H_{31} \cdot CO_2 \cdot CH_3$ (H 496). Kp₁: 168—170° (Haworth, Soc. 1929, 1458). Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Manecke, Volbert, Farben-Ztg. 32, 2888; C. 1927 II, 2786. — Geschwindigkeit der Oxydation durch Sauerstoff bei Gegenwart von Hämin in Pyridin: Kuhn, Meyer, H. 185, 209. Liefert bei der Oxydation mit alkal. Kaliumpermanganat-Lösung Capronsäure, Oxalsäure, Malonsäure und Azelainsäure (Ha., Soc. 1929, 1459). Oxydation mit Peressigsäure bzw. Benzopersäure bei 28–20°: Böeseken, R. 46, 624. Bei der teilweisen Hydrierung mit Wasserstoff in Gegenwart von Nickel bei 100—105° und darauffolgenden Oxydation mit alkal. Kaliumpermanganat-Lösung erhält man Korksäure, Azelainsäure, Undecan-dicarbonsäure-(1.11), Dodecan-dicarbonsäure-(1.12) und andere Produkte (Hilditch, Vidyarthi, Pr. roy. Soc. [A] 122, 566; C. 1929 I, 2163).

Linolsäureäthylester, Äthyllinolat $C_{20}H_{36}O_2=C_{17}H_{31}\cdot CO_2\cdot C_2H_5$ (H497). Geschwindigkeit der Hydrierung mit Wasserstoff und Nickel in Abhängigkeit vom Druck bei 180°: Armstrong, Hilditch, $Pr.\ roy.\ Soc.\ [A]$ 100, 244; C. 1922 I, 1267.

Glycerintrilinolat, Trilinolin, Linolin $C_{57}H_{98}O_6 = (C_{17}H_{31} \cdot CO \cdot O)_3C_3H_5$ (E I 214). Nährwert für Ratten: Ozaki, $Bio.\ Z.$ 189, 234; $Pr.\ Acad.\ Tokyo$ 3, 439; C. 1928 I, 541.

Linolsäureanhydrid $C_{36}H_{62}O_3 = (C_{17}H_{31} \cdot CO)_2O$ (E I 214). Zur Bildung aus Linolsäure nach Grün. Schönfeld (Z. ang. Ch. 29 [1916], 47) vgl. Holde, Gentner, B. 58, 1070; vgl. a. H., Tacke, B. 53, 1904. — Feinkrystallinischer Niederschlag (aus Petroläther bei —50° in trocknem Kohlendioxyd). F: —4,5° bis —2,8° (H., G.). D_4^{25} : 0,901; n_D^{15} : 1,4775; n_D^{25} : 1,4737 (H., G.).

Linolhydroxamsäure C₁₈H₃₃O₂N = C₁₇H₃₁·CO·NH·OH bzw. desmotrope Form. *B.* Beim Erhitzen von Linolsäureäthylester mit Hydroxylaminhydrochlorid in Natriumäthylat-Lösung. (NICOLET, PILC, *Am. Soc.* 44, 1147). — F: 8—10°. — Wird durch Luftoxydation allmählich dunkel und verharzt.

b) Stereoisomere Linolsäuren aus Samenfetten C₁₈H₃₂O₂ = CH₃·[CH₂]₄·CH; CH·CH₂ COctadecadiensäure aus Samenfetten neben dem Hauptbestandteil (wahrscheinlich cis. △1º-cis. △1²-Coctadecadiensäure) vielleicht noch vorhandenen Stereoisomeren vgl. die kritische Übersicht von T. P. Hildipten in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. I [Wien 1936], S. 41. Gegen ihre Existenz vgl. Birosel, Univ. Philippines Sci. Bl. 2 [1932], 107; Chem. Abstr. 1933, 702; Am. Soc. 59 [1937], 689. — Über neben der gewöhnlichen Linolsäure in Sojabohnenöl vorkommende Linolsäuren vgl. Takahashi, J. Tokyo chem. Soc. 40, 233; Chem. Abstr. 1919, 1583; Maruyama, Suzuki, Pr. Imp. Acad. Tokyo 8, 487; C. 1934 II, 2065; vgl. dagegen Bi., Univ. Philippines Sci. Bl. 2, 113 Anm.; Am. Soc. 59, 689; über stereoisomere Linolsäuren in Baumwollsamenöl vgl. Nicolet, Cox, Am. Soc. 44, 144; vgl. dagegen Bi., Am. Soc. 59, 689; im Lumbangöl der Philippine vgl. Santiago, West, Philippine J. Sci. 32, 49; C. 1927 I, 2657; F. L. Smith, West, Philippine J. Sci. 32, 298; C. 1927 II. 239; vgl. dagegen Bi., Univ. Philippines Sci. Bl. 2, 107; Chem. Abstr. 1933, 702; Am. Soc. 59, 689.

- 7. Octadecadien (7.9) säure (18), $A^{9.11}$ Octadecadiensäure, Heptadecadien (8.10) carbonsäure (1), ,9.11 Linolsäure" $C_{18}H_{28}O_2 = CH_3 \cdot [CH_2]_5$ CH: CH: CH: CH: CH: CH: [CH₂]₇·CO₂H. Ist H 497, Nr. 5; E I 214 als Carbonsäure $C_{18}H_{29}O_2$ aufgeführt. Zur Konstitution vgl. Böeseken, Smit, R. 46, 623; B., S., Gaster, Pr. Akad. Amsterdam 32, 379; C. 1929 II, 716; S., R. 49 [1930], 545. B. Beim Destillieren von Ricinelaidinsäure unter gewöhnlichem Druck (B., S., R. 46, 623). Krystalle (aus Alkohol). F: 52,2° (B., S.), 53° (B., v. Krimpen, Versl. Akad. Amsterdam 37, 66; C. 1928 I, 2704). D⁷⁷: 0,8659; n⁵_D: 1,4624 (B., S.). Liefert beim Behandeln mit Ozon Onanthsäure und Azelainsäure (B., S.) neben Kohlendioxyd und anderen Produkten (B., S., G.; S.). Oxydation mit Peressigsäure oder Benzopersäure bei 18—20°: B., S., R. 46, 624. Addition von Jod: B., S.

Methylester $C_{19}H_{34}O_2=C_{17}H_{31}\cdot CO_2\cdot CH_3$. F: 29,8° (Böbseken, Smit, R. 46, 623). — Liefert mit Benzopersäure in Chloroform einen bei 47° schmelzenden $\vartheta.\iota;\varkappa.\lambda$ -Dioxido-stearinsäure-methylester (B., S., Gaster, Pr. Akad. Amsterdam 32, 379; C. 1929 II, 716) von fraglicher Einheitlichkeit (S., R. 49 [1930], 680).

Glycerin-tri- $\mathcal{D}^{9,11}$ -octadecadienoat $C_{57}H_{98}O_6=(C_{17}H_{31}\cdot \mathrm{CO}\cdot \mathrm{O})_5C_3H_5$. Über den Verlauf des Trocknens vgl. Scheiber, Farbe Lack 1928, 518; C. 1929 I, 1402.

- 8. Carbonsdure $C_{18}H_{32}O_2 = C_{17}H_{31} \cdot CO_2H$ (H 497, Nr. 5; E I 214). Ist als $\Delta^{0.11}$ -Octadecadiensäure erkannt (s. Nr. 7).
- 12. Dokosin-(9)-säure-(22), Heneikosin-(12)-carbonsäure-(1), Behenolsäure C₁₂H₄₀O₂ = CH₃·[CH₂]₇·C:C·[CH₂]₁₁·CO₂H (H 497; E I 214). B. Beim Erhitzen von 11-Brom-undecan-carbonsäure-(1)-methylester mit Decin-(1)-natrium auf 160° in Xylol und Verseifen des Reaktionsprodukts mit methylalkoholischer Kalilauge (Bhattacharya, Saletore, Simonsen, Soc. 1928, 2681). Monoklin prismatisch (A. Müller, Pr. roy. Soc. [A] 114, 548; C. 1927 II, 780). Röntgenogramm: M. Über unvollständige Krystallisation vgl. M., Nature 117, 721; C. 1926 II, 527; Pr. roy. Soc. [A] 114, 556. F: 58° (Rheinboldt, H. 182, 258). Thermische Analyse der binären Systeme mit Hyodesoxycholsäure und Cholsäure: Rheinboldt, H. 182, 253, 258. Zur Chromschwefelsäure-Oxydation vgl. Simon, C. r. 180, 1406. Liefert bei der Hydrierung mit Wasserstoff und Nickel in Essigsäure Erucasäure (González, An. Soc. españ. 24, 164; C. 1926 II, 183). Lagert in Eisessig (Kaufmann, Ar. 1925, 715) und in Eisessig-Tetrachlorkohlenstoff-Lösung Rhodan nicht an (K., B. 59, 1391). Einw. von Quecksilber(II)-acetat in Eisessig bei 70—100° ergibt das Quecksilber(II)-salz der µ.µ-Bis-acetoxymercuri-v-oxo-behensäure (Myddleton, Berchem, Barrett, Am. Soc. 49, 2265). Uranylsalz UO₄(C₂₂H₃₀O₂)₂ + H₃O. Hellgelbes, aromatisch riechendes Pulver. F: 160—165° (nach Sintern bei 100—110°) (A. Müller, Z. anorg. Ch. 109, 241, 246). Schwer löslich in Alkohol und Aceton, unlöslich in Wasser und Ather.

Behenolsäuremethylester, Methylbehenolat $C_{33}H_{43}O_2=CH_3\cdot[CH_3]_7\cdot C:C\cdot[CH_3]_{11}\cdot CO_3\cdot CH_3$ (H 498; E I 215). Liefert mit Quecksilber(II)-acetat in Eisessig bei 70—100° $\mu.\mu$ -Bis-acetoxymercuri- ν -oxo-behensäure-methylester (Myddleton, Berchem, Barrett, Am. Soc. 49, 2266).

4. Monocarbonsäuren C_nH_{2n-6}O₂.

1. 4-Allyl-heptadien-(1.6)-carbonsäure-(4), Triallylessigsäure $C_{11}H_{16}O_{2}=(CH_{2}:CH\cdot CH_{2})_{3}C\cdot CO_{3}H$.

Nitril, Triallylacetonitril $C_{11}H_{18}N=(CH_2:CH\cdot CH_2)_2C\cdot CN$. B. Durch Einw. von Allylbromid auf die Kaliumverbindung von Diallylacetonitril in Ather (I. G. Farbenind., D. R. P. 473 329; C. 1929 II, 217; Frdl. 16, 285). — Kp₄: 100—120°.

2. Hexadecatrien-(2.6.10)-säure-(16), $\Delta^{6.10.14}$ -Hexadecatriensäure, Pentadecatrien-(5.9.13)-carbonsäure-(1). Hiragonsäure $C_{18}H_{28}O_{8}=CH_{2}$ - $CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CH_{3}\cdot CH_$

des Hexabromids isoliert (Toyama, Tsuchiya, Bl. chem. Soc. Japan 4, 85; 10, 195; C. 1929 II, 439; 1985 II, 3321).— B. Durch Verseifen des Methylesters (T., T.).— Gelbe Flüssigkeit. Dis: 0,9330; Dis: 0,9296; nis: 1,4870; nis: 1,4850 (T., T.). — Bei der Hydrierung entsteht Palmitinsäure, bei der Bromierung in Äther ε.ζ.ι.κ.ν.ξ-Hexabrom-palmitinsäure (T., T.).

Eine vielleicht (vgl. Toyama, Tsuchiya, Bl. chem. Soc. Japan 4 [1929], 84) mit Hiragonsäure identische Carbonsäure C₁₆H₂₆O₂ findet sich im Menhadenöl und anderen Fischölen (Brown, Beal, Am. Soc. 45, 1289; McGregor, Beal, Am. Soc. 48, 3157).

Methylester C₁₇H₂₈O₂ = CH₃·[CH: CH·CH₂·CH₂]₃·CH₂·CH₂·CO₂·CH₃. B. Durch Behandlung von ε.ζ..κ.ν.ξ-Hexabrom-palmitinsāure-methylester mit Zinkstaub und Eisessig oder Salzsāure (ΤογΑΜΑ, ΤευснічΑ, Bl. chem. Soc. Japan 4, 87; 10, 195; C. 1929 II, 439; 1935 II, 3321). — Hellgelbe Flüssigkeit. Kp₁₅: 186—188°. D₄*: 0,9155; D₆**: 0,9122. n₅*: 1,4783; n_p: 1,4764.

3. Carbonsäuren $C_{18}H_{30}O_2$.

- 1. Octadecatrien-(3.6.9)-säuren-(18), $\Delta^{0.18.18}$ Octadecatriensäuren, Heptadecatrien-(8.11.14)-carbonsäuren-(1), Linolensäuren $C_{18}H_{30}O_2 = CH_3 \cdot [CH_2 \cdot CH:CH]_3 \cdot [CH_3]_7 \cdot CO_2H$. Zur Frage der Einheitlichkeit der Linolensäuren ist vor allem die Tatsache zu berücksichtigen, daß sie bis zu der Arbeit von Shinowara, Brown (Am. Soc. 60 [1938], 2734) in verhältnismäßig reiner Form nur dadurch erhältlich waren, daß man sie in Form von Hexabrom-Additionsprodukten abtrennte und diese entbromte (vgl. z. B. Green, HILDITCH, Biochem. J. 29 [1935], 1552; KAUFMANN, MESTERN, B. 69 [1936], 2684).
- a) Natürliche Linolensäure, α -Linolensäure $C_{18}H_{30}O_1=CH_3\cdot [CH_1\cdot CH:CH]_3\cdot [CH_1]_7\cdot CO_2H$ (H 499; E I 215). Zur Konstitution vgl. Hilditch, Vidyarthi, Pr. 109. Soc. [A] 122, 564; C. 1929 I, 2164; BAUER, ERMANN, Ch. Umschau Felie 37, 245; C. 1930 II, 2512; VAN DER VEEN, Ch. Umschau Fette 38, 95; C. 1931 II, 412; INOUE, SUZUKI, Pr. Acad. Tokyo 7, 375; C. 1932 I, 2307. Zur Konfiguration vgl. F. L. SMITH, WEST, Philippine J. Sci. 32, 306; C. 1927 II, 239; I., S., Pr. Acad. Tokyo 7, 378; C. 1932 I, 2307. Zum Vorkommen einer einzigen Form von Linolensäure in fetten Ölen vgl. z. B. Rollett, H. 62 [1909], 430; 70 [1910/11], 404; VAN DER V., Ch. Umochau Fette 38, 119; C. 1931 II, 219; D. HOLDE, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 630; GREEN, HI., Biochem. J. 29 [1935], 1553; McCutcheon, Canad. J. Res. [B] 18, 231; C. 1941 I, 359; vgl. jedoch Shinowara, Brown, Am. Soc. 60 [1938], 2737. Die Möglichkeit der Isolierung einer nativen Linolensaure durch fraktionierte Krystallisation der Zinksalze der Fettsäuren des Leinöls aus Alkohol (Erdmann, H. 74 [1911], 180) ließ sich nicht bestätigen (Coffey, Soc. 119, 1307; Agde, J. pr. [2] 112, 39, 53; KAUFMANN, KELLER, Z. ang. Ch. 42, 74; VAN DER V., Ch. Umschau Fette 38 [1931], 89). Zur Frage der Übereinstimmung der in der Natur vorkommenden mit der aus dem festen Hexabromid dargestellten Linolensäure vgl. Gr., Hi., Biochem. J. 29 [1935], 1553, 1559; Shinowara, Brown, Am. Soc. 80 [1938], 2737. Zur Nichteinheitlichkeit der aus dem festen Hexabromid dargestellten Linolensäure vgl. K., K., Z. ang. Ch. 42, 74; Matthews, Brode, Brown, Am. Soc. 63 [1941], 1064; vgl. a. Manecke, Volbert, Farben-Ztg. 82 [1927], 2889.

 V. Eine Zusammenstellung über das Vorkommen in Pflanzen s. bei C. Wehmer, W. Thies,
- M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd., 1. Tl. [Wien 1932], S. 520; Literaturhinweise hierzu s. C. Wehmer, Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931]. Abhängigkeit des Linolensäuregehalts von Pflanzenölen, besonders der Pinus-Arten, vom Klima: S. Iwanow in Hefter-Schönfeld, Chemie und Technologie der Fette und Fettprodukte, Bd. 1 [Wien 1936], S. 380; vgl. Proulewski, Ж. 48, 324; C. 1924 I, 2435; Eibner, Brosel, Ch. Umechau Fette 35, 158; C. 1928 II, 829. Eine Übersicht über die Verteilung in den technologisch wichtigen Fetten gibt T. P. Hilditch in Hefter-Schönfeld, Bd.1, S.69—101.— Linolensäure findet sich in veresterter oder auch in freier Form im Kiefernsamenöl (aus Pinus silvestris L.) (v. Friedrichs, Svensk farm. Tidskr. 1919, Nr. 25; C. 1920 I, 293; PIGULEWSKI, Ж. 48, 324; C. 1924 I, 2435; EIBNER, REITTER, Ch. Umschau Fette 33, 119; Farbe Lack 1926, 464; C. 1926 II, 299, 2507); im Fightensamenol (El., R., Ch. Umschau Fette 33, 122; Farbe Lack 1926, 464; C. 1926 II, 2507); im Fett von Gerste und Gerstenkeimlingen TAUFEL, RUSCH, Bio. Z. 209, 57); in Cocosnußölen (Armstrong, Allan, Moore, J. Soc. chem. Ind. 44, 66 T; C. 1925 II, 106); im Ol aus den Kernen der Walnuß (Juglans regia L.) (EIBNER, WICK, Farbe Lack 1926, 464; C. 1926 II, 2507); im Spinatfett (Speer, Wise, Hart, J. biol. Chem. 82, 108); im Ol der Samen von Argemone mexicana Linn. (Stachelmohn) (IYER, Sudborough, Ayyar, J. indian Inst. Sci. 8, 37; C. 1926 I, 1482); in Rüböl (aus Brassica campestris) aus England und von der Donau (Hilditch, Riley, Vidyarthi, J. Soc. chem. Ind. 46, 458 T; C. 1928 I, 707); in Rüböl (Colzaöl) aus Indien (RAYMOND, Bl. [4] 31, 416); im Rapsol aus Samen von Brassica napus (Sudborough, Watson, Ayyar, J. indian Inst. Sci. [A] 9, 27, 42; C. 1926 II, 2729); im Zellplasma der Blätter des Kohls (Brassica oleracea) (Chibnall, Channon, Biochem. J. 21, 481, 482, 1118); in Olen aus englischen schwarzen

und weißen Senfsamen (HI., RI., VI.,); in indischem Senfsamenöl (aus Brassica juncea) (S., W., A., J. indian Inst. Sci. [A] 9, 51; C. 1926 II, 2729); im Goldlacksamenöl (HI., Jones. J. Soc. chem. Ind. 46, 468 T; C. 1928 I 708); im Samenöl von Eruca sativa (Jambaol) (S., W., A., J. indian Inst. Sci. [A] 9, 59; C. 1928 II, 2729); im Sojabohnenöl (Baughman, Jamieson, Am. Soc. 44, 2949; Pfahler, Ch. Umschau Fette 33, 67; C. 1926 II, 125; Eibner, Pr., Farbe Lack 1926, 464; C. 1928 II, 2507); in Leinöl (Eibner, Schmidder, Ch. Umschau Fette 30, 297; Farbe Lack 1926, 464, 472; C. 1924 I, 1208; 1926 II, 2507; EI., Brosel, Ch. Umschau Fette 38, 160; C. 1928 II. 829); wahrscheinlich in der Rinde von Phellodendron Amurense (Shimo, Sci. Rep. Töhoku Univ. [I] 10, 335; C. 1922 I, 361); in den Schalen kalifornischer Orangen (Matlack, J. am. pharm. Assoc. 18, 26; C. 1929 I, 1703); im Lumbangöl der Philippinen (West, Montes, Philippine J. Sci. 18 [1921], 626; Santiago, West, Philippine J. Sci. 32, 45; C. 1927 I, 2657; vgl. F. L. Smith, West, Philippine J. Sci. 32, 299; C. 1927 II, 239; Cruz, West, Philippine J. Sci. 42, 254; C. 1930 II, 2711; Jamison, McKinney, Oil Soap 14, 204; C. 1937 II, 3403; Birosel, Am. Soc. 59 [1937], 689; Riebsomer, Foote, Pr. Indiana Acad. 45, 117; C. 1938 I, 1491); im Öl aus den Samen von Vaccinium Vitis Idaea (Pigulewski, Ж. 48, 324; C. 1924 I, 2435); im Samenöl von Salvia sclarea (Berlingozzi, Badolato, Boll. chim.-jarm. 63, 723; C. 1925 I, 2233); im Perillaöl (Eibner, Schönemann, Farbe Lack 1926, 464; C. 1926 II, 2507); wahrscheinlich in der indischen Baldrianwurzel (Bullock, Pharm. J. 117, 156; C. 1926 II, 1545); im Chiasaatöl (Baughman, Jamieson, Oil Fat Ind. 6, Nr. 9, S. 15; C. 1926 II, 2615); im Chrysalidenöl (Kimura, Ch. Umschau Fette 36, 188; C. 1929 II, 2093); im Öl der Larven von Colaspidema atra Oliv. (Timon-David, Cr. 188, 1123); im Fett der Gonaden von Rhizostoma Cuvieri (Quallen) (Haurowitz, H. 112, 34); im Nierenfett vom Emu (Morrison, J. Pr. Soc. N. S. Wales 60, 115; C. 1928 I, 2510);

B. Zur Bildung in verunreinigter Form aus flüssigem Linolensäurehexabromid durch Kochen mit Zinkstaub und methylalkoholischer Salzsäure und nachfolgendem Verseifen des gebildeten Methylesters mit alkoh. Kalilauge vgl. KIMURA, Ch. Umschau Fette 36, 127; J. Soc. chem. Ind. Japan Spl. 31, 251 B; C. 1929 I, 377, 2964. — Zur Darstellung durch Kochen von (aus Leinölfettsäuren gewonnenem) festem Linolensäurehexabromid mit Zinkstaub und Alkohol nach Erdmann, Bedford (B. 42 [1909], 1330) vgl. Wieland, Franke, A. 464, 214; mit Zinkstaub und methylalkoholischer Salzsäure und nachfolgendes Verseifen des gebildeten Methylesters mit alkoh. Kalilauge nach Rollett (H. 62 [1909], 423) vgl. Kimura, Ch. Umschau Fette 36 [1929], 126; vgl. a. Knauss, Smull, Am. Soc. 49, 2810. Zur nicht reproduzierbaren Darstellung durch fraktionierte Krystallisation der Zinksalze der Fettsäuren des Leinöls aus Alkohol nach Erdmann (H. 74 [1911], 180) s. die S. 463 aufgeführte Literatur. Kp4: 1970 (Wieland, Franke, A. 464, 214). Struktur dünner Schichten auf Wasser

und 0,01n-Salzsäure: Adam, Dyer, Pr. roy. Soc. [A] 106, 699; C. 1925 I, 931. — Katalytische Zersetzung der ein Gemisch von Linolensäure und Linolsäure darstellenden Leinölfettsäuren an einem auf 550-600° erhitzten Gemisch von Kupfer und Aluminiumoxyd: MAILHE, A. ch. [9] 17, 328; Caoutch. Guttap. 19, 11475; C. 1923 III, 38. Trocknungsvermögen: EIBNER, SEMMELBAUER, Ch. Umschau Fette 31 [1924], 195. Röntgenographische Verfolgung der Oxydation an der Luft auf einer Bleioberfläche: TRILLAT, C. r. 181, 505; Ann. Physique [10] 6, 91. Zur Oxydation durch Behandeln in dünner Schicht mit Sauerstoff bei 1000, wobei gasförmige Produkte entstehen, vgl. Coffey, Soc. 119, 1409. Die Oxydation durch Sauerstoff wird durch Eisen (Wieland, Franke, A. 484, 215), Thioglykolsäure (Меченог, Pflügers Arch. Physiol. 119, 547; C. 1923 III, 1089; v. SZENT-GYÖRGYI, Bio. Z. 146, 247), Cystein (MEY.), reduziertes Glutathion (TUNNICLIFFE, Biochem. J. 19, 204; HOPKINS, Biochem. J. 19, 793; Allott, Biochem. J. 20, 960, 961) und stark durch Eisen in Gegenwart von Thioglykolsäure, Dioxymaleinsäure oder Dioxyweinsäure beschleunigt (W., F.). Oxydation mit Wasserstoffperoxyd in Gegenwart von Eisen(II)-salzen: WIELAND, FRANKE, A. 475, 14; mit Wasserstoffperoxyd in Aceton und mit Benzopersäure in Chloroform bei Gegenwart von Mangan oder Kobaltresinat: BAUER, KUTSCHER, Ch. Umschau Fette 32, 58, 60; C. 1925 II, 158; mit Benzopersäure in Chloroform: BAUER, BÄHR, J. pr. [2] 122, 208. Liefert beim Erhitzen auf 400° unter Zusatz von Wasser und Tonerde bei 170 Atm. Druck Kohlenwasserstoffe, gesättigte Fettsäuren und geringe Mengen Kohlensäure und Wasserstoff enthaltende Gase neben anderen Produkten (Petrow, Ж. 61, 1855; B. 63, 80). Gibt beim Behandeln mit der berechneten Menge Brom in Ather ein festes und ein flüssiges Linolensäurehexabromid (KIMURA, Ch. Umschau Fette 36, 127; J. Soc. chem. Ind. Japan Spl. 31, 251 B; C. 1929 I, 377, 2964; vgl. F.L. SMITH, WEST, Philippine J. Sci. 32, 304; C. 1927 II, 239, SHINOWARA, BROWN, Am. Soc. 60 [1938], 2736); das von Erdmann, Bedford (B. 42 [1909] 1333) beschriebene flüssige Linolensäuretetrabromid wurde hierbei nicht erhalten (KI.); Zusammenfassung der älteren Literatur über die Bromierung von α-Linolensäure s. bei Kaufmann, Keller, Z. ang. Ch. 42, 21. Geschwindigkeit der Bromaufnahme in Tetrachlorkohlenstoff bei Zimmertemperatur im Dunkeln und im ultravioletten Licht: Knauss, Smull, Am. Soc. 49, 2812. Zur Aufnahme von Jod aus Wijsscher Lösung (Jodmonochlorid in Eisessig) oder aus einer Jodlösung in Essigsäure vgl. Cerdeiras, Bl. [4] 35, 904. Anlagerung von Rhodan: K., K., Z. ang. Ch. 42, 75. — Bactericide Wirkung des Kalium- und Natriumsalzes: Walker, J. infect. Diseases 35, 557; C. 1926 I, 1589. — Bestimmung in Leinöl durch jodometrische und rhodanometrische Titration: Kaufmann, Keller, Z. ang. Ch. 42, 75.

Calciumsalz. F: 74° (nach Sintern bei 71°) (KLIMONT, J. pr. [2] 109, 271). Schwer löslich in Äther und kaltem Benzin, leichter in heißem Benzin. Färbt sich beim Aufbewahren an der Luft gelbbraun bis rotbraun. — Zinksalze: Zn(C₁₈H₂₉O₂)₂. Krystallinisch (AGDE, J. pr. [2] 112, 56; vgl. Coffey, Soc. 119, 1308). — 2 Zn(C₁₈H₂₉O₂)₂ + ZnO. Zur Einheitlichkeit des Präparats von Erdmann (H. 74 [1911], 186) vgl. C., Soc. 109, 1308; A., J. pr. [2] 112, 55.

Linolensäuremethylester, Methyllinolenat $C_{19}H_{32}O_2=CH_3\cdot[CH_2\cdot CH:CH]_3\cdot[CH_2]_7\cdot CO_3\cdot CH_3$ (H 500). B. Zur Bildung durch Erhitzen von festem Linolensäurehexabromid mit Zinkstaub und methylalkoholischer Salzsäure nach Rollett (H. 62 [1909], 423) vgl. Kimura, Ch. Umschau Fette 36, 126; C. 1929 I, 377, 2964. — Wasserhelle Flüssigkeit (K.). — Veränderungen beim Erhitzen auf 300° in einer Wasserstoff-Atmosphäre: Mazume, Shobayashi, J. Soc. chem. Ind. Japan Spl. 31, 179 B; C. 1928 II, 2608. Oxydation mit Peressigsäure bzw. Benzopersäure bei 18—20°: Böeseken, R. 46, 624.

Linolensäureäthylester, Äthyllinolenat $C_{20}H_{34}O_3 = CH_3 \cdot [CH_2 \cdot CH : CH]_3 \cdot [CH_2]_7 \cdot CO_2 \cdot C_2H_5$ (H 500). B. Aus festem Linolensäurehexabromid beim Erhitzen mit Zinkstaub und alkoh. Salzsäure (Hilditch, Vidyarthi, Pr. roy. Soc. [A] 122, 565; C. 1929 I, 2163). — Oxydation mit Benzopersäure in Chloroform in Gegenwart von Mangan- oder Kobaltresinat: Bauer, Kutscher, Ch. Umschau Fette 32, 61, 63; C. 1925 II, 158. Bei der teilweisen Hydrierung in Gegenwart von Nickel bei 100—105° und darauffolgenden Oxydation mit Kaliumpermanganat in Aceton entstehen Korksäure, Azelainsäure, Dodecan-dicarbonsäure-(1.12) und andere Produkte je nach den Bedingungen in verschiedener Menge (H., V.).

Glycerin-oleat-erucat-linolenat, Oleo-eruco-linolenin, Oleo-linoleno-erucin $C_{e1}H_{108}O_{e}=C_{17}H_{29}\cdot CO\cdot C\cdot C_{3}H_{5}(O\cdot CO\cdot C_{17}H_{33})\cdot O\cdot CO\cdot C_{21}H_{41}$. Zum Vorkommen eines Oleo-linoleno-erucins im Rüböl vgl. Täufel, Bauschinger, Z. Unters. Lebensm. 56, 267; C. 1929 I, 1761.

Glycerintrilinolenat, Trilinolenin, Linolenin $C_{57}H_{92}O_6=(C_{17}H_{29}\cdot CO\cdot O)_3C_3H_5$. Nährwert für Ratten: Ozaki, *Bio. Z.* 189, 234; *Pr. Acad. Tokyo* 3, 439; *C.* 1928 I, 541.

- b) β -Linolensäure ¹) $C_{18}H_{30}O_2 = CH_3 \cdot [CH_2 \cdot CH : CH]_3 \cdot [CH_2]_7 \cdot CO_2H$ (H 499; E I 216). Zur Frage der Identität mit α -Linolensäure vgl. Rollett, H. 62 [1909], 427; 70 [1910/11], 404; Hilditch, Vidyarthi, $Pr.\ roy.\ Soc.\ [A]$ 122 [1929], 565 Anm. 3; McCutcheon, Canad. $J.\ Res.\ [B]$ 18, 231; $C.\ 1941$ I, 359; vgl. a. Kimura, $Ch.\ Umschau\ Fette$ 36 [1929], 128.
- 2. Octadecatrien (5.7.9) säuren (18), $\Delta^{9\cdot11\cdot18}$ Octadecatriensäuren. Heptadecatrien (8.10.12) carbonsäuren (1), Eläostearinsäuren $C_{18}H_{30}O_2=CH_{3}\cdot[CH_{3}]_{3}\cdot[CH:CH]_{3}\cdot[CH_{2}]_{7}\cdot CO_{2}H$.
- a) α Eläostearinsäure $C_{18}H_{30}O_2 = CH_3 \cdot [CH_2]_3 \cdot [CH:CH]_3 \cdot [CH_2]_7 \cdot CO_2H$ (H 497; E I 212). Zur Zusammensetzung und Konstitution vgl. Böeseken, Ravenswaay, Versl. Akad. Amsterdam 34, 207; C. 1926 I, 132; R. 44, 243; Kaufmann, B. 59, 1395; Grün, Z. ang. Ch. 39, 381; B., Gelber, R. 46, 163; B., R. 46, 620, 625; Manecke, Volbert, Farben-Zig. 38, 2829, 2888; C. 1927 II, 2786; B., v. Krimpen, Versl. Akad. Amsterdam 37, 66; C. 1928 I, 2704; Steger, van Loon, J. Soc. chem. Ind. 47, 361 T; C. 1929 I, 1063; G., B., R. 48, 380; Eibner, Rossmann, Ch. Umschau Fette 35, 197; C. 1930 I, 2653; B., J. Soc. chem. Ind. 48, 71 T; C. 1930 I, 2723. Eine Zusammenfassung der Arbeiten über die Konstitutionserforschung der α -Eläostearinsäure s. bei Scheiber, Farbe Lack 1927, 646; 1928, 146; C. 1928 I, 797. 2246; vgl. a. Fritz, Farben-Zig. 33, 1224; C. 1928 I, 2927. Zur Konfiguration vgl. Morrell. Samuels, Soc. 1932, 2251; Kaufmann, Baltes, Fette, Seifen 43, 94; C. 1936 II, 2472.— Darst. Durch Verseifung von chinesischem Holzöl mit methylalkoholischer (Nagel, Grüss. Wiss. Veröff. Siemens 4, 2. Heft, 295; C. 1928 II, 126) oder äthylalkoholischer Kalilauge (Böeseken, R. 46, 625) unter Luftabschluß (Vercruysse, Bl. Soc. chim. Belg. 32, 151; C. 1923 III, 1452; D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 715). Darstellung aus chinesischem Holzöl, das längere Zeit gestanden hat: Eißner, Merz, Munzert, Ch. Umschau Fette 31, 74; C. 1924 II, 406.— D⁵⁶; O,8980; n⁵⁶; 1,5080 (Böeseken, Ravenswaax, Versl. Akad. Amsterdam 34, 207; C. 1926 I, 132; R. 44, 242). Leicht löslich in Methanol (N., G.). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Manecke, Volbert, Farben-Zig. 32, 2830, 2888; C. 1927 II, 2786.

Verharzt an der Luft innerhalb weniger Stunden, ist auch in luft dicht verschlossenen braunen Glasflaschen nur kurze Zeit haltbar (Eibner, Merz, Munzert, Ch. Umschau Fette 31, 74;

¹⁾ Zur Bezeichnung β-Linolensäure vgl. a. GREEN, HILDITCH, Biochem. J. 29 [1935], 1552 Anm.

C. 1924 II, 406; NAGEL, GRÜSS, Wiss. Veröff. Siemens 4, 2. Heft, 295; C. 1926 II, 126; vgl. HOLDE, BLEYBERG, AZIZ, Farben-Ztg. 33 [1928], 2482). Veränderungen beim Erhitzen unter Luftabschluß auf 2000: BAUER, Ch. Umschau Fette 33, 53; C. 1926 II, 126. Übergang von α-Eläostearinsäure in β-Eläostearinsäure erfolgt in alkoh. Lösung am Sonnenlicht (Er., M., M., Ch. Umechau Fette 31, 76; C. 1924 II, 406; EI., SCHWAIGER, Ch. Umechau Fette 33, 81; C. 1926 I, 3439), beim Impfen der Lösung in Petroläther mit β -Eläostearinsäure (BAUER, Ch. Umschau Fette 33, 54; C. 1926 II, 126), beim Einleiten von Stickoxyden in die Lösung in Aceton (El., M., M., Ch. Umschau Fette 31, 76; El., Sch., Ch. Umschau Fette 33, 80) sowie beim Aufbewahren in äther. Salzsäure (NAGEL, Grüss, Wiss. Veröff. Siemens 4, 2. Heft, 301; C. 1926 II, 126). α-Eläostearinsäure geht über in β-Eläostearinsäure-methylester bei 24stdg. Behandeln mit 3 % iger methylalkoholischer Salzsäure (N., G., Wiss. Veröff. Siemens 4, 2. Heft, 301; C. 1926 II, 126; Z. ang. Ch. 39, 11) oder weniger gut beim Kochen mit Methanol und wenig konz. Schwefelsäure (BAUER, HERBERTS, Ch. Umschau Fette 29, 230; C. 1923 I, 103). Veränderungen bei der Einw. von Aluminiumchlorid in Benzol oder Chloroform: Marcusson, Z. ang. Ch. 33, 235. Das Kaliumsalz liefert beim Oxydieren mit Kaliumpermanganat in wäßr. Lösung n-Valeriansäure und Azelainsäure (Vercruysse, Bl. Soc. chim. Belg. 32, 153; C. 1923 III, 1452); dieselben Säuren entstehen beim Ozonisieren in Chloroform neben Bernsteinsäure (V.). Oxydation mit Peressigsäure: Böeseken, R. 46, 626; mit Benzopersäure: BAUER, BÄHR, J. pr. [2] 122, 208. Veränderungen bei der Reduktion mit Natrium in siedendem Amylalkohol: Isiio, J. pharm. Soc. Japan 1926, 22; C. 1926 I, 3594. Gibt beim Behandeln mit Chlor in Tetrachlorkohlenstoff bei —15° Eläostearinsäuredichlorid (S. 458) (I., J. pharm. Soc. Japan 1926, 24; C. 1926 I, 3594). Bei der Bromierung von α-Eläostearinsäure im Dunkeln oder am zerstreuten Tageslicht entstehen je nach den angewandten Mengen Brom und dem Lösungsmittel Eläostearinsäuredibromid (S. 459) (NICOLET, Am. Soc. 43, 939; I., J. pharm. Soc. Japan 1923, 54; C. 1924 II, 2744; BÖESEKEN, R. 46, 622) oder festes und flüssiges Eläostearinsäuretetrabromid (S. 443, 444) (N., Am. Soc. 43, 939; BAUEE, HERBERTS, Ch. Umschau Fette 29, 230; C. 1923 I, 103; MORRELL, J. Soc. chem. Ind. 41, 328 T; C. 1923 I, 406; I., J. Pharm. Soc. Japan 1923, 54; C. 1924 II, 2744; EIBNER, SCHWAIGER, Ch. Umschau Fette 33, 81; C. 1926 I, 3439; Börseken, R. 46, 621; Steger, van Loon, R. 50 [1931], 35; VAN L., R. 50, 639). Liefert mit Brom in Tetrachlorkohlenstoff bei Bestrahlung mit ultraviolettem Licht Eläostearinsäurehexabromid und flüssige Bromide (St., van L., J. Soc. chem. Ind. 47, 361 T; C. 1929 I, 1063; R. 50 [1931], 35; vgl. Bauer, Rohrbach, Ch. Umechau Fette 35, 54; C. 1928 I, 2801). Anlagerung von Chlor und Jod bei der Einw. von Wijsscher Lösung (Jodmonochlorid in Eisessig): BÖESEKEN, GELBER, R. 46, 163, 619; 48, 382; vgl. BöE., J. Soc. chem. Ind. 48, 72 T; C. 1930 I, 2723. Gibt beim Erhitzen mit Essigsäureanhydrid auf 150° ein als α-Eläostearinsäureanhydrid angesprochenes Öl, das beim Verseifen mit alkoh. Kalilauge α-Eläostearinsäure liefert (BAUER, HEBBERTS, Ch. Umschau Fette 29, 231; C. 1923 I, 103; vgl. MORRELL, J. Soc. chem. Ind. 41, 328 T; C. 1923 I, 406).

NaC₁₈H₂₉O₂ + C₁₈H₂₀O₂. Blättchen (aus Wasser). F: 122° (Böreken, R. 46, 626). — NaC₁₈H₂₉O₂. Krsytalle (aus Methanol), die sich oberhalb 200° braun färben (Nagel, Grüss, Wiss. Veröff. Siemens 4, 2. Heft, 296; C. 1926 II, 126). Ziemlich schwer löslich in Wasser, leicht in Methanol und Alkohol. Färbt sich an der Luft schon in wenigen Minuten gelb. — $KC_{18}H_{29}O_2$. Blättchen (aus Wasser), die auch beim Erhitzen über 230° nicht schmelzen (N., G.). Sehr schwer löslich in Wasser. Unbeständig. Geht bei längerer Belichtung in das Kaliumsalz der β -Eläostearinsäure über. — Cu(C₁₈H₂₉O₂)₂. Gelbgrünes Pulver (aus Alkohol). Schmilzt unterhalb 100° (N., G.). Unbeständig.

α-Eläostearinsäure-methylester, Methyl-α-eläostearat C₁₉H₂₈O₂= C₁₇H₂₉·CO₃·CH₃ (E I 212). B. Aus α-Eläostearinsäure durch Behandeln mit Diazomethan in Ather (Naghl, Grüss, Wiss. Veröff. Siemens 4, 2. Heft, 297, 309; Z. ang. Ch. 39, 11). Aus chinesischem Holzöl durch Einw. von methylalkoholischer Kalilauge (N., G.). — Hellgelbes Öl. Kp₁₉: 214°. Visoosität: N., G. — Gelatiniert nicht beim Erhitzen auf 300°. Veränderungen (Polymerisation) beim Erhitzen auf 200—360° und bei der Destillation im Vakuum: N., G. Liefert bei Einw. von methylalkoholischer Salzsäure den Methylester der β-Eläostearinsäure.

α-Eläostearinsäure-äthylester, Äthyl-α-eläostearat C₂₀H₂₄O₃ = C₁₇H₂₆·CO₃·C₂H₃.

B. Aus chinesischem Holzöl durch Behandeln mit äthylalkoholischer Kalilauge (NAGEL, GRÜSS, Wiss. Veröff. Siemens 4 [1925], 2. Heft, 303). — Gelbes Öl (N., G.). D¹⁵: 0,8968; 0,9074 (BÖBSEKEN, RAVENSWAAY, Versl. Akad. Amsterdam 34, 205; C. 1926 I, 132; R. 44, 242). n¹⁵/₅: 1,5038 (B., R.); n²⁰/₅: 1,5020 (B., R. 46, 630). — Gelatiniert nicht beim Erhitzen auf 300° (N., G.). Veränderungen (Polymerisation) beim Erhitzen auf 220° im Kohlendioxydstrom: Mazume, Nagao, J. Soc. chem. Ind. Japan Spl. 31, 114 B; C. 1928 II, 2608; bei der Destillation im Vakuum: N., G. Oxydation mit Peressigsäure und Benzopersäure bei 18—20°: B., R. 46, 624. Liefert bei der Reduktion mit Wasserstoff und Nickel Stearinsäursäthylester (B., R.; vgl. B., R. 46, 630). Zur partiellen Hydrierung vgl. B., v. Keimpen, Versl. Akad. Amsterdam 37, 67; C. 1928 I, 2704.

α-Eläostearinsäure-isoamylester, Isoamyl-α-eläostearat $C_{23}H_{40}O_3 = C_{17}H_{20} \cdot CO_2 \cdot C_5H_{11}$. B. Aus chinesischem Holzöl durch Behandeln mit isoamylalkoholischer Kalilauge (Nagel, Grüss, Wiss. Veröff. Siemens 4 [1925], 2. Heft, 305). — Hellgelbes Öl. Gelatiniert nicht beim Erhitzen auf 300°. Veränderungen bei der Destillation im Vakuum: N., G.

Glycerin-tri- α -eläostearat, Tri- α -eläostearin, α -Eläostearin $C_{57}H_{92}O_6 = (C_{17}H_{29}-CO\cdot O)_2C_3H_5$ (E I 212). Zur Bildung im Gemisch mit Mono- und Di- α -eläostearin durch Erhitzen von α -Eläostearinsäure mit Glycerin auf 210° im schwachen Vakuum im Kohlendioxyd-Strom vgl. Nagel, Grüss, Wiss. Veröff. Siemens 4 [1925], 2. Heft, 306; vgl. jedoch Rossmann, Ch. Umschau Fette 39 [1932], 223 Anm. 18.

b) β -Eläostearinsäure $C_{18}H_{30}O_{9}=CH_{3}\cdot[CH_{3}]_{3}\cdot[CH:CH]_{3}\cdot[CH_{3}]_{7}\cdot CO_{9}H$ (H 497; E I 212). Zur Zusammensetzung und Konstitution s. die bei α -Eläostearinsäure aufgeführte Literatur. Zur Konfiguration vgl. Morrell, Samuels, Soc. 1932, 2251. — B. Beim Entbromen von Eläostearinsäurehexabromid mit Zinkstaub und Alkohol (STEGER, VAN LOON, J. Soc. chem. Ind. 47, 361 T; C. 1929 I, 1063; R. 50 [1931], 35; vgl. BAUER, ROHRBACH, Ch. Umschau Fette 35, 54; C. 1928 I, 2801). Beim Entbromen von festem (BAUER, HERBERTS, Ch. Umschau Fette 29, 230; C. 1928 I, 103; EIBNER, MERZ, MUNZERT, Ch. Umschau Fette 31, 75; C. 1924 II, 406; El., Schwaiger, Ch. Umschau Fette 33, 82; C. 1926 I, 2439) und von flüssigem Eläostearinsäuretetrabromid (E1., Sch.; vgl. jedoch Rossmann, Fettch. Umschau 40 [1933], 102). Aus α-Eläostearinsäure beim Belichten ihrer alkoh. Lösung an der Sonne (Ei., M., M., Ch. Umschau Fette 31, 77; C. 1924 II, 406; Ei., Sch., Ch. Umschau Fette 33, 81; C. 1926 I, 3439), durch Impfen der Lösung von α-Eläostearinsäure in Petroläther mit β-Eläostearinsäure (Bauer, Ch. Umechau Fette 33, 54), beim Einleiten von Stickoxyden in die Lösung von α-Eläostearinsäure in Aceton (E1., M., M., Ch. Umschau Fette 31, 76; E1., Sch., Ch. Umschau Fette 33, 80) sowie beim Aufbewahren von a-Eläostearinsäure in äther. Salzsäure (NAGRL, GRÜSS, Wiss. Veröff. Siemens 4, 2. Heft, 301; C. 1926 II, 126). — Darst. Durch Stehenlassen von α-Eläostearinsäure in Petroläther bei Gegenwart von Jod im zerstreuten Tageslicht (BAUER, Ch. Umschau Fette 83, 54; D. Holde, Kohlenwasserstofföle und Fette, 7. Aufl. [Berlin 1933], S. 716). Gewinnung aus chinesischem Holzöl, das längere Zeit gestanden hat: EIBNER, MERZ, MUNZERT, Ch. Umschau Fette 31, 74; C. 1924 II, 406; aus chinesischem Holzöl, das längere Zeit dem Sonnenlicht ausgesetzt war: NAGEL, GRÜSS, Wiss. Veröff. Siemens 4. 2. Heft. 295.

Krystalle (aus Alkohol, Methanol oder Tetrachlorkohlenstoff). F: 72,5° (Kaufmann, B. 59, 1393). D*0: 0,8839 (Böeseken, Ravenswaay, Versl. Akad. Amsterdam 34, 405; C. 1926 I, 132; R. 44, 242). n\(^0_0: 1,5000\) (Kauff.); n\(^0_0: 1,4970\) (B., R.). Bedeutend leichter löslich in Methanol als \(\alpha\)-Eläostearins\(\alpha\) ure (Nagel, Gruss, Wiss. Ver\(\delta\)f. Siemens 4, 2. Heft, 295). Ultraviolett-Absorptionsspektrum in alkoh. L\(\delta\)sung: Manecke, Volbert, Farben-Ztg. 32, 2831, 2888; C. 1927 II, 2786. — Ver\(\alpha\) Ver\(\alpha\) der methatusschlu\(\beta\) auf 200°: Bauer. Ch. Umschau Fette 33, 54; C. 1926 II, 126. Ist in verschlossenen braunen Gl\(\alpha\)sern wie auch an der Luft haltbarer als \(\alpha\)-El\(\alpha\)ostensten wen sie nach ein- oder mehrt\(\alpha\)giger Aufbewahrung benutzt werden soll, zur Entfernung von Verunreinigungen aus Benzin frisch krystallisiert werden (Holde, Bleyberg, Azie, Farben-Ztg. 33, 2482; vgl. Kauf.). Ver\(\alpha\)nderungen beim Durchleiten von Luft bei 82°: Miller, Clanton, Ind. Eng. Chem. 20, 44, 46; C. 1928 I, 1241. Bei der Bromierung im Dunkeln oder im zerstreuten Tageslicht entstehen festes und fl\(\alpha\)siges El\(\alpha\)ostenstens\(\alpha\)-Eile, Schwaiger, Ch. Umschau Fette 33, 82; C. 1926 I, 2439; H., B., A., Farben-Ztg. 33, 2484; Steger, van Loon, R. 50 [1931], 35; van L., R. 50, 639; vgl. Kauf.). Bromierung unter Bestrahlung mit ultraviolettem Licht ergibt El\(\alpha\)ostearins\(\alpha\)-turehexabromid und fl\(\alpha\)siges Bromide (St., van L., J. Soc. chem. Ind. 47, 361 T; C. 1929 I, 1063; R. 50, 33; vgl. Kaufmann, B. 59, 1394). Anlagerung von Halogen bei der Einw. von Jod oder Jodmonobromid in Eisessig: H., B., A., Farben-Ztg. 33, 2482, 3141; C. 1928 II, 831, 2607; Z. ang. Ch. 42, 283. Anlagerung von Rhodan: Kauf.

β-Eläostearinsäure-methylester, Methyl-β-eläostearat C₁₀H₂₂O₂= C₁₇H₂₀·CO₂·CH₃ (E I 212). B. Ans α-Eläostearinsäure durch Einw. von etwa 3% iger methylalkoholischer Saltsture bei Zimmertemperatur (Nagel, Grüss, Wiss. Veröff. Siemens 4, 2. Heft, S. 301; C. 1926 II, 126; Z. ang. Ch. 39, 11; Miller, Clanton, Ind. Eng. Chem. 20, 43; C. 1928 I, 1241), weniger gut beim Kochen mit Methanol und wenig konz. Schwefelsäure (BAUER, Herberts, Ch. Umechau Fette 29, 230; C. 1923 I, 103). — Farbloses (Mi., Cl.) oder hellgelbes Öl (N., G.). Kp₁₃: 207° (N., G.). — Veränderungen bei der Destillation im Vakuum, beim Erhitzen auf 200—400° in Kohlendioxyd-Atmosphäre und beim Blasen mit Luft: N., G. Oxydation durch Luft bei 82°: Mi., Cl.

β-Eläostearinsäure-äthylester, Äthyl-β-eläostearat $C_{20}H_{24}O_2 = C_{17}H_{20} \cdot CO_2 \cdot C_2H_5$ (E I 212). B. Durch Aufbewahren von α-Eläostearinsäure in alkoh. Salzsäure (Nager., Grüss, Wiss. Veröff. Siemene 4 [1925], 2. Heft. S. 304). — Hellgelbes Öl. Kp₁₂: 215°. — Gelatiniert nicht bei längerem Erhitzen auf 300°.

Äthylenglykol-di- β -eläostearat $C_{38}H_{63}O_4=C_{17}H_{39}\cdot CO\cdot O\cdot CH_3\cdot CH_3\cdot O\cdot CO\cdot C_{17}H_{36}$. Wurde nicht rein erhalten. B. Aus α -Eläostearinsäure und Glykol in Gegenwart von Platin bei 180° in einer Kohlendioxyd-Atmosphäre (MILLER, CLAXTON, *Ind. Eng. Chem.* 20, 43; C. 1928 I, 1241). — Oxydation durch Luft bei 82°: M., C.

Glycerin-tri- β -eläostearat, Tri- β -eläostearin, β -Eläostearin $C_{57}H_{92}O_6=(C_{17}H_{32}\cdot CO\cdot O)_3C_5H_5$ (E I 212). Krystalle (aus Aceton). F: 60—61° (Kaufmann, B. 62, 394). D⁵⁰: 0,8991; n^m₀: 1,5051 (Böeseken, Ravenswaay, Versl. Akad. Amsterdam 34, 205; C. 1926 I, 132; R. 44, 242). — Geschwindigkeit des Trocknens an der Luft: Eibner, Merz, Munzert. Ch. Umschau Fette 31, 73; C. 1924 II, 406; vgl. Scheiber, Farbe Lack 1928, 518; C. 1929 I, 1402. Oxydation durch Luft bei 82°: Miller, Claxton, Ind. Eng. Chem. 20, 44; C. 1928 I. 1241. Oxydation der festen Substanz sowie der Lösung in Tetrachlorkohlenstoff oder Benzol durch Sauerstoff: Morrell, Marks, J. Oil Col. Chem. Assoc. 12, 188; C. 1929 II, 1867. Anlagerung von Brom unter verschiedenen Bedingungen: Kaufmann, B. 59, 1395; 62, 394, 398. Anlagerung von Rhodan: K., B. 59, 1394; 62, 398.

 β -Eläostearinsäure-amid $C_{12}H_{31}ON = C_{17}H_{29} \cdot CO \cdot NH_2$. B. Durch mehrtägiges Erhitzen von β -Eläostearinsäure-methylester mit methylalkoholischem Ammoniak auf 110° (NAGEL, GRÜSS, Wiss. Veröff. Siemens 4, 2. Heft, 303; C. 1926 II, 126). — Blättchen (aus 80% igem Alkohol). F: 111—112°. — Unbeständig.

 β -Eläostearinsäure-hydrazid $C_{18}H_{32}ON_2 = C_{17}H_{30} \cdot CO \cdot NH \cdot NH_2$. B. Durch Kochen von β -Eläostearinsäure-methylester mit Hydrazinhydrat (Nagel, Grüss, Wiss. Veröff. Siemens 4, 2. Heft, 303; C. 1926 II, 126). — Blättchen (aus Alkohol). F: 128—129°. — Beständig.

- 3. Octadecatrien-(6.9.12)-säure-(1), Δ^{6.9.12}-Octadecatriensäure. Heptadecatrien-(5.8.11)-carbonsäure-(1), ηγ-Linolensäure^ω C₁₈H₃₀O₂ = CH₃·[CH₂]₄·[CH:CH·CH₂]₃·[CH₂]₃·CO₂H (E I 216). Zur Konstitution vgl. EIBNER, WIDENMAYER, SCHILD, Ch. Umschau Fette 34, 316; C. 1928 I, 2873. Zum Vorkommen in Oenotheraöl vgl. EI., SCH., Ch. Umschau Fette 34, 341; C. 1928 II, 1153. Geschwindigkeit des Trocknens an der Luft: EI., SCH. Das grünlichgelbe, zähflüssige Ozonid peroxyd des Äthylesters liefert beim Kochen mit Wasser Adipinsäure, Adipinsäurediäthylester, Adipinaldehvdsäureäthylester und n-Capronsäure (EI., WI., SCH.).
- 4. Jecorinsäure $C_{18}H_{30}O_2 = C_{17}H_{20} \cdot CO_2H$ (E I 216). Ist ein Gemisch (Toyama, Tsuchya, Bl. chem. Soc. Japan 4 [1929], 83; 11 [1936], 741; C. 1937 I, 1831; vgl. I. Lewkowitsch, Chemical technology and analysis of oils, fats and waxes, 6. Aufl., Bd. 1 [London 1921], S. 214; André, Bl. [4] 33, 481; Tsujimoto, Bl. chem. Soc. Japan 3 [1928], 299).
- 4. O varensäure $C_{20}H_{34}O_{2}(?) = C_{19}H_{33} \cdot CO_{2}H(?)$. Zur Bezeichnung Ovarensäure vgl. Hart, Heyl, J. biol. Chem. 72, 400. Wurde nicht rein erhalten. V. Wurde über das Hexabromid aus dem Fett aus Ovarien von Schlachttieren bzw. dem Lecithin aus Corpus luteum isoliert (Cartland, Hart, J. biol. Chem. 66, 631; Heyl, Ha., J. biol. Chem. 70, 673; TOURTELLOTTE, Ha., J. biol. Chem. 71, 7; Ha., He., J. biol. Chem. 72, 396, 400). Bei der Hydrierung mit Wasserstoff und Palladium entsteht Arachinsäure (Ca., Ha., J. biol. Chem. 66, 630). Gibt ein festes Hexabromid (Ca., Ha.).

5. Monocarbonsäuren C_nH_{2n-8}O₂.

- 1. Isansäure $C_{14}H_{20}O_2=C_{13}H_{19}\cdot CO_2H$ (H 501). Die Existenz ist sehr zweifelhaft (I. Lewkowitsch, Chemical technology and analysis of oils, fats and waxes, 6. Aufl., Bd. 1 [London 1921], S. 214).
- 2. Therapinsäure $C_{12}H_{26}O_3 = C_{16}H_{25} \cdot CO_3H$ (E I 216). Hat die Zusammensetzung einer Säure $C_{18}H_{28}O_3$ (André, Bl. [4] 33, 481; A., Canals, Bl. [4] 45, 509; vgl. I. Lewkowitsch, Chemical technology and analysis of oils, fats and waxes, 6. Aufl., Bd. 1 [London 1921], S. 214), für die in der späteren Literatur die von Suzuki, Masuda (Pr. Acad. Tokyo 4, 168; C. 1928 II, 1401) stammende Bezeichnung Stearidonsäure (s. u.) bevorzugt wird.

3. Carbonsäuren $C_{18}H_{28}O_2$.

1. Steartdonsäure (Therapinsäure, Therapeutinsäure) $C_{12}H_{22}O_2 = C_{17}H_{27} \cdot CO_2H$ (vgl. E I 216). Zur Bezeichnung Steartdonsäure für eine Carbonsäure $C_{12}H_{22}O_2$ aus Fischölen vgl. Suzuri, Masuda, Pr. Acad. Tokyo 4, 168; C. 1928 II, 1401. Die Einheitlichkeit und Identität der aus den verschiedenen Fischölen erhaltenen Säuren ist nicht gesichert; vgl. z. B.

nach dem Literaturschlußtermin des Ergänzungswerks II [1. I. 1930] die Ausführungen über die Säure C₁₈H₂₈O₂ aus Sardinenöl von TOYAMA. TSUCHIYA (Bl. chem. Soc. Japan 10, 232; C. 1935 II. 3321) und FARMER, VAN DEN HEUVEL (J. Soc. chem. Ind. 57, 24 T; C. 1939 I. 5076). — V. Wurde in Form des Oktabromids abgeschieden aus Dorschlebertran (HEYERDAHL, Ch. Z. 19, Rep. 375; C. 1896 I, 171; BROWN, BEAL, Am. Soc. 45, 1293; SUZUKI, MASUDA, Pr. Acad. Tokyo 4, 165; C. 1928 II, 1401; Su., Pr. Acad. Tokyo 5, 267; C. 1929 II. 2841; vgl. GREEN, HILDITCH, J. Soc. chem. Ind. 55, 6 T; C. 1936 II, 393); aus Sardinenöl (TSUJIMOTO, Ch. Umschau Fette 29, 261; C. 1923 I, 38; B., B., Su., Pr. Acad. Tokyo 5, 267; C. 1929 II, 2841; vgl. Ts., Z. dtsch. Öl-Fettind. 40 [1920], 797; Ch. Umschau Fette 33 [1926], 291); aus Menhadenöl (B., B.; McGregor, Beal., Am. Soc. 48, 3157); aus Lachsöl (B., B.); aus Heringsöl (Schmidt-Nielsen, Ch. Umschau Fette 29, 54; C. 1922 I, 1047; B., B.); aus dem Öl von Theragra chalcogramma und aus Tintenfischöl (Su., Pr. Acad. Tokyo 5, 270; C. 1929 II. 2841) sowie aus dem Leberöl eines jungen Hais (Cetorhinus maximus Günner) (André, Canal., Bl. [4] 45, 508). — Bei der Hydrierung mit Wasserstoff und Platinschwarz entsteht Stearinsäure (Su., Ma., Pr. Acad. Tokyo 4, 167; C. 1928 II, 1401). Die Bromierung ergibt eine bei 200° unter Zersetzung schmelzende Oktabromstearinsäure (S. 366) (Su., Ma.).

Methylester $C_{19}H_{30}O_2 = C_{17}H_{27} \cdot CO_2 \cdot CH_3$. Reinheit fraglich. — Kp_{15} : 215° (Brown, Beal, Am. Soc. 45, 1300). n_0^{∞} : 1,4860.

- 2. Isostearidonsäure $C_{18}H_{28}O_2 = C_{17}H_{27} \cdot CO_2H$. Das in diesem Abschnitt beschriebene Isomere der Stearidonsäure hat die Redaktion als Isostearidonsäure bezeichnet, um die bromierten Glyceride (S. 367) benennen zu können. Reinheit fraglich. V. Wurde in Form des Oktabromids aus Seetierölen abgeschieden (Suzuki, Pr.Acad.Tokyo 5, 268; 269; C. 1929 II, 2841; S., Yokoyama, Pr.Acad.Tokyo 5, 272; C. 1929 II. 2842). Bei der Hydrierung mit Wasserstoff und Platinschwarz in Amylalkohol entsteht Stearinsäure, die Bromierung ergibt eine bei 104—105° schmelzende Oktabromstearinsäure (S., Y.).
- 4. Arachidonsäure $C_{20}H_{32}O_2 = C_{19}H_{31} \cdot CO_2H$. Nach dem Vorgang von P. Hartley (J. Physiol. 38, 360; C. 1909 II, 920) ist es im Laufe der Zeit üblich geworden, die von I. LEWKOWITSCH (Chemical technology and analysis of oils, fats and waxes, 4. Aufl., Bd. 1 [London 1909], S. 211; zitiert bei Levene, Simms, J. biol. Chem. 51, 285 Anm.) als Arachidonsäure bezeichnete Säure C₂₀H₃₂O₃ als Stammkörper der bei der Bromierung von Ölen und Fetten erhaltenen, sehr unscharf um 230° schmelzenden, in Äther bzw. Petroläther unlöslichen Oktabromarachinsäuren (S. 371) anzusehen (vgl. z. B. Klenk, v. Schoenebeck. H. 194 [1931], 192; PARRY, SMITH, Biochem. J. 30 [1936], 594). Zur Identität und Einheitlichkeit der verschiedenen Präparate vgl. Ault, Brown, J. biol. Chem. 107 [1934], 616, 620; Toyama, TSUCHIYA, Bl. chem. Soc. Japan 10, 243; C. 1935 II, 3322; SHINOWARA, BR., J. biol. Chem. 134 [1940], 332, 337; vgl. a. Farmer, van den Heuvel, J. Soc. chem. Ind. 57 [1938], 25. Zur Gleichsetzung der natürlichen mit der durch Entbromung erhaltenen Arachidonsaure vgl. Wesson, J. biol. Chem. 60, 185. Zur Konstitution vgl. To., Ts., Bl. chem. Soc. Japan 10, 243, 297; C. 1935 II, 3322; Sh., Br., J. biol. Chem. 134 [1940], 332, 340; Dolby, Nunn, Smedley-Maclean, Biochem. J. 34 [1940], 1425. — V. Das Vorhandensein geringer Mengen Arachidonsäure wurde über das Oktabromid nachgewiesen im Fett der Schweineleber (einschließlich Phosphatide) (HARTLEY, J. Physiol. 38, 360; C. 1909 II, 920; Brown, J. biol. Chem. 80, 456); in Lecithin aus Rindsleber (Levene, Simms, J. biol. Chem. 48, 196; 51, 286; KLENK, v. Schoenebeck, H. 209 [1932], 114); in den Lecithinen und Kephalinen aus Leber, Niere, Pankreas und Lunge (Bloor, J. biol. Chem. 80, 446, 452; vgl. SNIDER, Bl., J. biol. Chem. 99 [1932/33], 555); in Gehirnphosphatiden (Wesson, J. biol. Chem. 60, 183; Br., J. biol. Chem. 83, 784); in Gehirnlecithin (Le., Rolf, J. biol. Chem. 54, 100; vgl. Kl., H. 208 [1932], 25, 27, 34); im Kephalin aus dem Gehirn von Ochsen (LE., Ro., J. biol. Chem. 54, 92, 98; vgl. Kl., H. 206, 25, 27, 34); in Eilecithin (LE., Ro., J. biol. Chem. 51, 512); in Lecithin aus Corpus luteum (Hart, Heyl, J. biol. Chem. 70, 672; 72, 396, 399); im Fett aus Corpus luteum (Cartland, Hart, J. biol. Chem. 66, 625, 629); in den Lipoiden der Schweine-Schilddrüse sowie in den Lipoiden der Nebenniere bzw. der Milz von Ochsen (Br., J. biol. Chem. 83, 779); im Fett von Ochsenblut (Channon, Collinson, Biochem. J. 23, 1216); in Schweinespeck (Ellis, Isbell, J. biol. Chem. 69, 223, 244; vgl. Br., Deck, Am. Soc. 52 [1930], 1136); in verschiedenen Geweben des Hundes (Wesson, J. biol. Chem. 65, 246); im Körperfett von Ratten (WE., J. biol. Chem. 65, 236; ECKSTEIN, J. biol. Chem. 81, 617); im menschlichen Depotfett (ECK., J. biol. Chem. 64, 803; WAGNER, Bio. Z. 174, 415); in Fischtran (SUZUKI, MASUDA, Pr. Acad. Tokyo 3, 531; C. 1928 I, 605); im Tran des Spitzkopf-Finnwals (TOYAMA, Ch. Umschau Fette 33, 298; C. 1927 I, 1331); in Lebertran, Heringsöl, Sardinenöl und anderen Fischolen (Brown, Bral, Am. Soc. 45, 1293, 1303; Su., Pr. Acad. Tokyo 5, 266, 269; C. 1929 II, 2841, 2842; vgl. Tsujimoto, Ch. Umschau Fette 33 [1926], 286, 289 Ann. 17); im Leberöl eines jungen Hais (Cetorhinus maximus Günner) (André, Canal, Bl. [4] 45, 506).

B. Durch Erhitzen von Arachidonsäureoktabromid mit verkupfertem Zinkstaub und Alkohol (Wesson, J. biol. Chem. 60, 184). Aus dem Methylester durch Verseifen mit alkoh. Kalilauge (Brown, J. biol. Chem. 80, 458). — Farblose oder schwach gelbliche Flüssigkeit von anhaftendem fischartigen Geruch (We.). n. 15: 1,5563 (Br., J. biol. Chem. 80, 458). — Unbeständig (We.; Br., J. biol. Chem. 80, 458). Oxydation mit alkalischer Permanganat-Lösung ergibt geringe Mengen einer x-Oktaoxy-arachinsäure (H 3, 591) (Hartley, J. Physiol. 38, 367; C. 1909 II, 922). Wird durch Wasserstoff bei Gegenwart von kolloidalem Palladium in Alkohol zu Arachinsäure reduziert (We.). Beim Behandeln mit Brom in organischen Lösungsmitteln entstehen unlösliches Arachidonsäureoktabromid (Ha., J. Physiol. 38, 359; C. 1909 II, 920; We.) und andere Bromide (Br., J. biol. Chem. 83, 778; vgl. Br., Beal, Am. Soc. 45, 1301; Bosworth, Sisson, J. biol. Chem. 107 [1934], 492).

Methylester $C_{21}H_{34}O_2 = C_{19}H_{31} \cdot CO_2 \cdot CH_3$. B. Durch Erhitzen von x-Oktabrom-arachinsäure-methylester mit Zinkstaub in Methanol (Brown, J. biol. Chem. 80, 457; 83, 788). — Gelbliches Öl mit Fischgeruch. Kp₇: 200—210°. $n_5^{\rm m}$: 1,4818. — Beim Bromieren entsteht neben anderen Produkten ein unlösliches Oktabromid.

Äthylester $C_{22}H_{36}O_2 = C_{19}H_{31} \cdot CO_2 \cdot C_2H_5$. B. Bei der Reduktion von Arachidonsäure-oktabromid mit verkupfertem Zinkstaub in siedender alkoholischer Salzsäure (Wesson, J. biol. Chem. 60, 184). — Farblose oder schwach gelbliche Flüssigkeit von anhaftendem fischartigen Geruch.

5. Carbonsäure $C_{22}H_{36}O_2=C_{21}H_{35}\cdot CO_2\dot{H}$ (?). V. Wurde als Oktabromid nachgewiesen in Heringsöl und Sardinenöl (Suzuki, Pr. Acad. Tokyo 5, 266; C. 1929 II, 2841; S., Yokoyama, Pr. Acad. Tokyo 5, 272; C. 1929 II, 2842; vgl. dagegen Toyama, Tsuchiya, Bl. chem. Soc. Japan 10, 435, 440; C. 1936 I, 1034). Über Vorkommen in weiteren Ölen s. T., T., Bl. chem. Soc. Japan 10, 434. — B. Beim Behandeln von x-Oktabrom-behensäure (S. 375) mit Zinkstaub und Eisessig (S., Y.). — Gibt bei der Hydrierung mit Wasserstoff und Platinschwarz in Amylalkohol Behensäure (S., Y.).

6. Monocarbonsäuren $C_nH_{2n-10}O_2$.

- 1. Eikosapentaensäure $C_{20}H_{30}O_2=C_{19}H_{20}$ ·CO₂H. Über Vorkommen im Menhadenöl, Lachsöl, Lebertran, Heringsöl und Sardinenöl vgl. Brown, Beal, Am. Soc. 45, 1293, 1300; McGregor, Beal, Am. Soc. 48, 3157; Bonnevie-Svendsen, zitiert bei Schmidt-Nielsen, Ch. Umschau Fette 29, 54; C. 1922 I, 1047; vgl. a. Farmer, van den Heuvel, J. Soc. chem. Ind. 57, 30; C. 1939 I, 5076.
- 2. Dokosapentaensäure, Clupanodonsäure C₂₂H₃₄O₂ = C₂₁H₃₅·CO₂H (E I 216.) Zur Konstitution vgl. Tsujimoto, Bl. chem. Soc. Japan 3, 301; C. 1929 I, 988; Inoue, Sahashi, Pr. Acad. Tokyo 8, 371; C. 1933 I, 1427; I., Kato, Pr. Acad. Tokyo 10, 463; C. 1935 II, 2357; Toyama, Tsuchiya, Bl. chem. Soc. Japan 10, 441; 11, 747, 751; C. 1936 I, 1034; 1937 I, 1831; Takano, Bl. chem. Soc. Japan 12, 400; C. 1938 I, 2275. Clupanodonsäure ist nach Farmer, van Den Heuvel (J. Soc. chem. Ind. 57, 28; C. 1939 I, 5076; Soc. 1938, 427) kein ursprünglicher Bestandteil von japanischem Sardinenöl oder Lebertran, sondern entsteht wahrscheinlich aus der in diesen Ölen vorkommenden Dokosahexaensäure C₃₂H₃₂O₂ durch die Einw. der Hitze während der Aufarbeitung. V. Wurde erhalten bei der Trennung der Fettsäuren der Glyceride von Lebertran und anderen Seetierölen (Brown, Beal., Am. Soc. 45, 1293, 1303; Suzuki, Masuda, Pr. Acad. Tokyo 3, 531; 4, 166; C. 1928 I, 605; II, 1401; Su., Pr. Acad. Tokyo 5, 266, 269; C. 1929 II, 2841); von Robbentran (Bauer, Neth. Ch. Umschau Fette 31, 60, 138 B; C. 1924 II, 561); des Körperöls des Pottswals (Toyama, J. Soc. chem. Ind. Japan Spl. 30, 138 B; C. 1928 I, 2417); von Tran des Spitzkonffinnwals (To.. Ch. Umschau Fette 33, 299; C. 1927 I, 1331); des Ols aus dem Magen des Eissturmvogels (Fulmarus glacialis) (Rosenheim, Webster, Biochem. J. 21, 115). Zur Isolierung aus japanischem Sardinenöl mittels der Lithiumsalz-Aceton-Methode und nachfolgenden Fraktionierung der Methylester vgl. Tsujimoto, Ch. Umschau Fette 33, 288; C. 1928 I, 858. D¹⁶: 0,9410 (Ts., Bl. chem. Soc. Japan 3, 302; C. 1929 I, 988); D¹⁶: 0,9356 (Ts., Ch. Umschau Fette 33, 290). n¹⁶: 1,5057 (Ts., Bl. chem. Soc. Japan 3, 302); n¹⁶: 1,5039; n¹⁶: 1,5020 (Ts., Ch. Umschau Fette 33, 290). Struktur dünner Schichten auf Wasser und 0,01 n-Salzsäure: Adam, Dyeb, Pr. roy. Soc. [A] 106, 699; C. 1925 I, 931. Gibt ein unbeständiges hellgelbes Ozonid, das beim Erhitzen explosiv verbrennt und beim Zersetzen mit heißem Wasser B

Wasser Bernsteinsäuremonoamylester, Acetaldehyd und Kohlendioxyd (Ts., Bl. chem. Soc. Japan 3, 302). Reaktion mit Benzol bei Gegenwart von Aluminiumchlorid: MARCUSSON, Z. ang. Ch. 33, 234. Einw. auf die photographische Platte: Ts., K. Trocknungsvermögen: EIBNER, SEMMELBAUER, Ch. Umschau Fette 31, 194; C. 1924 II, 2376; Ts., KIMURA, Ch. Umechau Fette 33, 252; C. 1927 I, 118.

Die Metallsalze sind meistens viscos, leicht oder ziemlich leicht löslich in organischen Lösungsmitteln und oxydieren sich rasch an der Luft (Tsujimoto, Kimura, Ch. Umschau Fette 33, 253; C. 1927 I, 118). — Pb(C₂₂H₃₃O₂)₂ (EIBNER, SEMMELBAUER, Ch. Umochau Fette 31, 194; C. 1924 II, 2376).

Methylester $C_{23}H_{36}O_2=C_{21}H_{33}\cdot CO_2\cdot CH_3$ (E I 217). Kp₅: ca. 222°; D₄°: 0,9246, D₇°: 0,9204; n₇°: 1,4958, n₇°: 1,4943 (Tsujimoto, Ch. Umechau Fette 33 [1926], 290). — Geschwindigkeit der Hydrierung mit Wasserstoff und Platinschwarz in Eisessig und Alkohol: UENO, KUZEI, J. Soc. chem. Ind. Japan Spl. 30, 77 B; C. 1929 II, 2035. Reduktion mit Natrium in Alkohol: Ts., KIMURA, Ch. Umschau Fette 33, 254; C. 1927 I, 118.

3. Tetrakosapentaensäure $C_{24}H_{28}O_{2}=C_{22}H_{37}\cdot CO_{2}H$. Über das Vorkommen in den Fettsäuren der Lipoide des Ochsenhirns vgl. Brown, J. biol. Chem. 83, 784.

7. Monocarbonsäuren $C_nH_{2n-12}O_2$.

- 1. Tris-[tert.-butyl-acetylenyl]-essigsäure, Tris-[$\gamma.\gamma$ -dimethyl- α -butinyl]-essigsäure $C_{20}H_{28}O_2 = [(CH_2)_3C \cdot C : C]_3C \cdot CO_2H$. B. Bei der Einw. von Kohlendioxyd auf das Grignardierungsprodukt von Tris-[tert.-butyl-acetylenyl]-brommethan oder auf das durch Schütteln von Hexakis-[tert.-butyl-acetylenyl]-åthan mit Kalium-Natrium-Legierung in Äther erhaltene, nicht näher beschriebene Tris-[tert.-butyl-acetylenyl]-methylkalium (Salzberg, Marvel, Am. Soc. 50, 1743). — Krystalle (aus Petroläther). F: 202—2050 (korr.). Löslich in Methanol.
- 2. Dokosahexaensäure C₂₂H₃₂O₂ = C₂₁H₃₁·CO₂H. Über Vorkommen in Sardinenöl, Lebertran und anderen Fischölen vgl. Brown, Beal, Am. Soc. 45, 1293, 1303; McGregor, C. 1000 F. Beal, Am. Soc. 48. 3158; vgl. a. Toyama, Tsuchiya, Bl. chem. Soc. Japan 10, 437; C. 1936 I, 1034; Farmer, van den Heuvel, J. Soc. chem. Ind. 57, 28: C. 1939 I, 5076; Soc. 1938, 427.

B. Dicarbonsäuren.

1. Dicarbonsäuren $C_n H_{2n-2} O_4$.

1. Oxalsaure $C_2H_2O_4 = HO_2C \cdot CO_2H$ (H 502; EI 217).

Vorkommen.

Gelöste Oxalate finden sich häufig in Phanerogamen, besonders in Polygonaceen, Chenopodiaceen, Amarantaceen, Aizoaceen, Begoniaceen, Melastomaceen, Oxalidaceen, Cannaceen und Marantaceen (Molisch, Flora 111/112 [1918], 65, 69; vgl. Klein, Werner, H. 143, 151). Untersuchungen über Verbreitung und Lokalisierung gelöster Oxalate in Kryptogamen und Phanerogamen: Patschovsky, Dissert. [Jena 1921], 54—118. Oxalsaure findet sich als Kaliumsalz im wäßr. Auszug der Kawa-Wurzel (von Piper methysticum) (Schübel, Ar. Pth. 102, 264; C. 1924 II, 1005), als Kaliummagnesiumsalz(?) in getrockneten Pfirsichblättern (INUKI, Ber. Physiol. 41, 335; C. 1928 I, 80), in Form von Natriumsalzen und Kaliumsalzen in Sarcobatus vermioulatus (COUCH, Am. J. Pharm. 94, 631; C. 1923 III, 576), in Form von Kaliumsalzen im Milchsaft von Cichorium intybus L. (Zellner, M. 47, 700). Calciumoxalat findet sich in Pflanzen teils als Monohydrat, teils als Trihydrat; das unbeständigere Trihydrat kann sich auch in der lebenden Zelle in das Monohydrat umwandeln (FREY, Vjechr. naturf. Ges. Zürich 70, 5, 24, 36, 46, 49; C. 1925 II, 1366; vgl. Netolitzery, Ch. Z. 49, 397; C. 1925 II, 408; altere Literatur s. bei Netolitzery). Über die physiologische Bedeuting der Calciumoxalat-Absoheidung vgl. Frey, Vjschr. naturf. Ges. Zürich 70, 49. Ausbildungsformen der Calciumoxalat-Krystalle bei verschiedenen Pflanzen: Frey, Vjschr. naturf. Ges. Zürich 70, 5, 6, 10, 38, 48, 58; BRUNZEMA, Ar. 1928, 86; bei mitteleuropäischen Allium-Arten: JACCARD,

161; GEYS, C. 1928 I, 1724.

FREY, Vischr. naturf. Ges. Zürich 73, Nr. 15 [Festschr. H. Schinz], S. 127-144; C. 1929 II. 176. Veränderungen der Calciumoxalat-Krystalle bei gepfropften Pflanzen: Daniel, C. r. 186, 1143. Unter dem Einfluß von ultraviolettem Licht treten in Elodea densa und E. canadensis sowie in dem Moos Pterygophyllum hepaticaefolium infolge von Stärke-Abbau Calciumoxalat-Krystalle auf (Nadson, Rochline-Gleichgerwicht, C. r. Soc. Biol. 98. 363; 99, 131; C. 1928 I. 2949; II, 1108). Calciumoxalat-Krystalle finden sich auf der Epidermis einiger Lychnis-Arten und von Spergula arvensis L. im vorgeschrittenen Vegetationsstadium (Вонк, C. r. 181, 135). Calciumoxalat-Gehalt der Rinde und des Holzes verschiedener Acacia-Arten: Steel, Chem. N. 123, 315, 316; C. 1922 I, 975. Über Calciumoxalat-Krystalle in den Blättern und den Früchten verschiedener Rhamnus-Arten vgl. HEPPELER, Ar. 1928. 157, 159. Geringe Mengen Calciumoxalat scheiden sich beim Eindampfen von Zuckerrohrsaft aus (Bosz, Arch. Suikerind, Nederl. Indie 1920, 972; C. 1920 III, 637). Calciumoxalat findet sich ferner in den Blättern von Tradescantia virginica, von Agapanthus umbellatus (KLEIN, WERNER, H. 143, 151) und von Chenopodium ambrosoides L. (Santos, Philippine J. Sci. 28 [1925], 535), in der Rinde von Cornus sanguinea L. (ZELLNER, M. 48, 616), in den Blättern des Bilsenkrauts (Hyoscyamus niger L.) (Jurkowski, Bl. Soc. Sci. Poznań 2, 39; C. 1929 I, 2655) und in den Blättern von Galium lucidum (Klein, Werner, H. 143, 151). Gehalt von Rhabarberstengeln und blättern an saurem Kaliumoxalat und an Calciumoxalat: Anger-HAUSEN, Z. Uniters. Nahr.-Genuβm. 39, 83; C. 1920 IV, 189. Begonia semperflorens enthält in nitrathaltiger Nährlösung 21,3 %, in ammoniumsulfathaltiger Nährlösung 18,6 % Oxalsäure (größtenteils in Form von Salzen); die freie Oxalsäure in den Blättern nimmt während der Nacht zu; diese Zunahme ist bei niedriger Temperatur größer als bei höherer und in jungen Blättern stärker als in alten (Ruhland, Wetzel, Planta 1, 561, 563; C. 1926 II, 2067). Das Vorkommen von nicht näher definierten Oxalaten wurde nachgewiesen: Im Rhizom des Farns Nephrolepis cordifolia Prsl. (Ducloux, Awschalom, Rev. Fac. Cienc. quim. 2 I, 88; C. 1926 II, 2318). In den Beeren von Arum italicum (Klein, Werner, H. 143, 151). In den Blättern von Achyranthes Verschaffeltii (K., W.). In Salsola kali L. (Zellner, M. 47, 617). In geringer Menge in Glaucium luteum Scop. (Schmalfuss, H. 131, 167; Sch., Keitel, H. 138, 156). In den Blättern von Bryophyllum crenatum und von Echeveria glauca (Klein, WERNER, H. 143, 151). In sehr geringer Menge in Apfeln (Franzen, Helwert, H. 127, 24). In geringer Menge in getrockneten Brombeerblättern (Rubus fruticosus) (Fr., Keyssner. H. 129, 309) und im Brombeersaft (Nelson, Am. Soc. 47, 569). In sehr geringer Menge im Fruchtfleisch von Tamarindus indica (Fr., Kaiser, H. 129, 83). Findet sich in Vitis vinifera L. in den Blättern und den Beeren (Klein, Werner, H. 143, 151) und im Saft des Stammes (Wormall, Biochem. J. 18, 1194). In geringen Mengen im Heidelbeersaft (Kaiser, Z. ang. Ch. 37, 809, 1013). In den Blättern von Nicotiana rustica (KLEIN, WERNER, H. 143, 151). Über das Vorkommen von Oxalsäure im menschlichen und tierischen Harn vgl. noch Wegrzynowski, Ber. Physiol. 4, 372; C. 1921 I, 256; Okahara, C. 1928 I, 1199. Ausbildungsformen von Calciumoxalat-Krystallen im Harnsediment: BARDACH, Ch. Z. 49, 662; C. 1925 II, 1536. Oxalsäure Gehalt des Serums bei Urämie: Khouri, J. Pharm. Chim. [8] 3, 376; C. 1926 II, 2322. — Zum Vorkommen von Oxalsäure im Bier vgl. BAU, C. 1920 II.

Bildung.

Biochemische Bildungsweisen. Literatur über die Oxalsäure-Gärung s. bei K. Bernhauer in F. Nord, R. Weidenhagen, Handbuch der Enzymologie [Leipzig 1940], S. 1108. Über Bildung von Oxalsäure in Kartoffelwasser durch Bact. coli aus dem Darm von Oxalurikern vgl. Piccininni, Lombardi, Klin. Wschr. 5, 261; C. 1926 I. 2807. Oxalsäure entsteht neben anderen Verbindungen bei der Einw. von Aspergillus niger auf Calciumacetat (Challenger, Subramaniam, Walker, Soc. 1927, 207), auf Malonsäure (Wa., Su., Ch., Soc. 1927, 3052), auf glykolsaures Ammonium (Wa., Su., Ch., Soc. 1927, 3053), auf Calciumlactat (Wa., Coppock, Soc. 1928, 807), auf Gluconsäure (Bernhauer, Bio. Z. 197, 330, 335; vgl. Wehmer, B. 58, 2617), auf Salze der Citronensäure, Weinsäure und Chinasäure (Butkewitsch, Bio. Z. 129, 467, 469, 470, 472), auf das Ammoniumsalz der Aceton-α.α'-dicarbonsäure (Wa., Su., Ch., Soc. 1927, 3052) und auf Pepton (Bu., Bio. Z. 129, 445; daselbst auch ältere Literatur). Zur Bildung durch Einw. von Aspergillus niger auf Saccharose (in Gegenwart von Calciumcarbonat) vgl. Bu., Bio. Z. 136, 225; Wehmer, B. 57, 1660; Bernhauer, Bio. Z. 172, 309, 314, 329, 334; 197, 278, 281, 287; Be., Wolf, H. 177, 272; Kostytschew, Tsohesnokow, Planta 4, 185; C. 1928 II, 1452. Bei der Einw. von Aspergillus niger cinnamomeus auf Glycerin, "Glycerose", Erythrit und Mannit in Gegenwart von Calciumcarbonat (Amelung, H. 166, 1618; Am., H. 166, 182), auf verschiedene Citrate (We., B. 57, 1661, 1663; vgl. We., B. 58, 2617), auf Glucose, Fructose, Galaktose und Mannose in Gegenwart von Calciumcarbonat (Am., H. 166, 193, 194), auf Glucose, Fructose, Galaktose und Mannose in Gegenwart von Calciumcarbonat (Am., H. 166, 193, 194), auf Glucose, Fructose, Galaktose und Mannose in Gegenwart von Calciumcarbonat (Am., H. 166, 196, 197, 198, 200), auf Maltose in Gegenwart von Calciumcarbonat (Am.,

H. 166, 203) und auf Saccharose mit und ohne Zusatz von Calciumcarbonat (Am., H. 166, 177, 183). Bei der Vergärung verschiedener Kohlenhydrate sowie von Glycerin, Kalium. succinat, saurem Kaliummalat, Ammoniummalat, saurem Natriumtartrat, Ammoniumtartrat, Citraten, Natriumfumarat, zuckersaurem Kalium und Calciumgluconat durch entarteten Aspergillus fumaricus (SCHREYER, Bio. Z. 202, 140); nach WEHMER (B. 62, 2673) bildet der als Aspergillus mutatus bezeichnete Pilz Oxalsäure nicht aus Calciumgluconat, sondern nur aus Natriumgluconat. Oxalsäure entsteht in geringer Menge neben Citronensäure beim Wachstum von Penicillium glaucum in Saccharose-Lösung in Gegenwart von Calcium-carbonat (BUTKEWITSCH, Bio. Z. 136, 234). Über Bildung beim Wachstum verschiedener Penicilliumarten in Bierwürze vgl. CHRZASZCZ, TIUKOW, Bio. Z. 204, 112-119, 122. Bei der Einw. von Citromyces glaber und C. citricus auf Salze der Weinsäure, Citronensäure und Chinasäure (Bu., Bio. Z. 129, 467, 469, 472; 131, 339, 342, 347). Neben Citronensaure bei der Einw. von Citromyces glaber auf Glucose in Gegenwart von Calciumcarbonat (Bu., Bio. Z. 131, 339, 342) und von verschiedenen Citromyces-Arten auf Saccharose in Gegenwart von Calciumcarbonat (Bu., Bio. Z. 131, 332, 335). Bei der Einw. von Citromyces glaber und C. citricus auf Pepton (Bu., Bio. Z. 129, 458). Oxalsaure entsteht unter bestimmten Bedingungen beim Wachstum von Sterigmatocystis nigra auf saccharosehaltigen Nährböden (Molliard, C.r. 178, 45). Aus Fichtenholzsägespänen bei der Einw. des Fadenpilzes Coniophora cerebellum (Falck, D. R. P. 419911; C. 1926 I, 1714; Frdl. 15, 140).

Rein chemische Bildungsweisen. Oxalsäure bildet sich bei der Einw. von Wasser auf das aus Kohlenoxyd unter dem Einfluß der dunklen elektrischen Entladung entstehende polymere Kohlensuboxyd (vgl. E II 1, 857) (Lunt, Venkateswaran, Soc. 1927, 861, 862; L., Mumford, Soc. 1929, 1720). Kaliumoxalat entsteht beim Erhitzen von Kaliumcarbonat mit Kohlenoxyd auf 450—480° unter 232—245 Atm. Druck (Matignon, Faurholt, C.r. 179. 273). Oxalsäure entsteht neben anderen Verbindungen bei der Einw. von rauchender Salpetersäure auf Athylen (McKie, Soc. 1927, 964). Neben anderen Produkten beim Leiten von Acetylen in ca. 95% ige Salpetersäure bei 30° in Gegenwart oder Abwesenheit von Quecksilbernitrat (Orton, McKie, Soc. 117, 288) oder in rauchende Salpetersäure (D: 1,52) (Quilico, Freri, G. 59, 936). In beträchtlicher Menge beim Leiten von Acetylen oder besser von Acetylen und Luft in ein Gemisch aus 3 Vol. Salpetersäure (D: 1,42) und 1 Vol. Wasser in Gegenwart von Quecksilber(II)-nitrat (Kearns, Heiser, Nieuwland, Am. Soc. 45, 796; vgl. Gold- und Silberscheideanst., D. R. P. 377119; C. 1924 I, 1101; Frdl. 14, 286). Beim Leiten von Acetylen und Sauerstoff in Quecksilbersalze und Stickstoffdioxyd enthaltende 72% ige Schwefelsäure (A. Wacker, D. R. P. 409947; C. 1925 I, 1909; Frdl. 14, 291). Bei der Einw. von Stickoxyden (aus konz. Salpetersäure und Kupfer) auf Acetylen (K., H., N., Am. Soc. 45, 798). Beim Leiten von Acetylen über festes Quecksilbernitrat und Behandeln des festen Reaktionsprodukts oder der entweichenden Dämpfe mit Salpetersäure (K., H., N., Am. Soc. 45, 797, 798). Neben anderen Produkten beim Erwärmen äquimolekularer

Mengen Benzol und Stickstoffdioxyd im Rohr auf 80° (WIELAND, B. 54, 1778).

Neben anderen Verbindungen bei der Einw. von wäßriger unterchloriger Säure auf 2.4-Dinitro-naphthol-(1) in Chloroform (Seyewetz, Chaix, Bl. [4] 41, 201). Beim Erhitzen von 1 Mol Erythrit mit 3 Mol 97% igem Hydrazin im Autoklaven auf 220° (E. Müller, Kraemer-Willenberg, B. 57, 582). Abhängigkeit der Bildung von Oxalsäure bei der Oxydation von Athylenglykol mit alkal. Permanganat-Lösung bei 50° von der Alkalikonzentration: Evans, Adrins, Am. Soc. 41 [1919], 1402; bei der analogen Oxydation von Mannit, Sorbit und Dulcit bei 25°, 50° und 75°: E., Holl, Am. Soc. 47, 3103, 3104. Die Ausbeute an Oxalsäure bei der Oxydation von Erythrit und Arabit mit alkal. Permanganat-Lösung bei 50° ist nahezu unabhängig von der Alkalikonzentration (E., Mitarb., Am. Soc. 47, 3093, 3095). Oxalsäure entsteht aus Acetaldehyd beim Einleiten in ein Gemisch aus 3 Vol. Salpetersäure (D: 1,42) und 1 Vol. Wasser, neben Essigsäure, und bei der Einw. von Stickoxyden (aus Salpetersäure und Kupfer) (Kearns, Heiser, Nieuwland, Am. Soc. 45, 798, 799). Aus Glyoxal beim Abdampfen mit verd. Salpetersäure auf dem Wasserbad (Debus, A. 102 [1857], 28) und bei der Oxydation mit alkal. Permanganat-Lösung (Evans, Adrins, Am. Soc. 41 [1919], 1405; Hatcher, Holden, Toole, Trans. roy. Soc. Canada [3] 20 III, 400; C. 1927 II, 2050; vol. dagegen Heimrod, Levene, Bio. Z. 29 [1910], 33). Bei der Oxydation von o-Chinon mit alkalischer Permanganat-Lösung auf dem Wasserbad (Charrier, Beretta, G. 54, 992). Abhängigkeit der Oxalsäure-Bildung bei der Oxydation von Glycerinaldehyd mit alkal. Permanganat-Lösung bei 50° von der Alkalikonzentration: Evans, Mitarb., Am. Soc. 47, 3003.

Bildung von Natriumoxalat durch thermische Zersetzung von Natriumformiat s. S. 474. Bei der thermischen Zersetzung von Calciumformiat bei 360—370° nach Vignon (Bl. [4] 9, 19; A. ch. [9] 15, 55) konnten F. Fischer, Tropsch, Schellenberg (Abh. Kenntnis Kohle 6, 339; C. 1924 I, 2096) keine Bildung von Calciumoxalat feststellen. Oxalsäure entsteht beim Belichten einer Lösung von Chlorpikrin in Eisessig (Piutti, Badolato, R. A. L. [5] 33 I, 476). Bei der Einw. von konz. Salzsäure auf Nitroessigsäure auf dem Wasserbad (Heuberger, Svensk

kem. Tidskr. 38, 340; C. 1927 I, 834). Calciumoxalat entsteht neben Calciumformiat beim Erhitzen von Calciumcyanamid und Calciumcyanid mit Wasser unter Druck (American Cyanamid Co., D.R.P. 468807; Frdl. 16, 203). Oxalsaure entsteht bei der Oxydation von Glykolsaure mit Wasserstoffperoxyd in Gegenwart von Eisen(II)-sulfat (GOLDSCHMIDT, ASKENASY, PIERROS, B. 61, 231). Die Oxalsäure-Bildung bei der Oxydation von Glykolsäure mit alkal. Permanganat-Lösung ist von der Alkalikonzentration unabhängig (Evans, Adrins, Am. Soc. 41 [1919], 1406). Bildet sich als Hauptprodukt bei der elektrolytischen Oxydation von Weinsäure, am besten in alkal. Lösung an Eisen- oder Nickel-Anoden (Sievonen, Ann. Acad. Sci. jenn. [A] 16, Nr. 9, S. 142; C. 1922 III, 870). Neben Ameisensäure und Kohlendioxyd bei der Einw. von ammoniakalischer Silbernitrat-Lösung auf Weinsäure bei 60—62° (Maxted, Soc. 1926, 2182). Oxalsäure entsteht quantitativ bei der Oxydation von Weinsäure, Dioxymaleinsäure, Dioxyweinsäure und Mesoxalsäure mit alkal. Permanganat-Lösung (HATCHER, Trans. roy. Soc. Canada [3] 20III, 334; C. 1927II, 1815). Neben anderen Produkten bei der Einw. von Natronlauge oder Kalkwasser auf Dinitroweinsäure (LACHMAN, Am. Soc. 48, 580). Oxalsäure entsteht aus Glyoxylsäure bei der Elektrolyse in 3 n-Alkalilauge an einem glatten Platindraht, in geringerer Menge an glattem Eisen, neben anderen Produkten (S., Ann. Acad. Sci. jenn. [A] 16 (1921), Nr. 9, S. 101), beider Oxydation mit Wasserstoffperoxyd in Gegenwart von Eisen (II)sulfat (Goldschmidt, Askenasy, Pierros, B. 61, 231, 232) und bei der Einw. von ammoniakalischer Silbernitrat-Lösung bei 60-62° (M., Soc. 1926, 2182). Abhängigkeit der Oxalsäure-Bildung bei der Oxydation von Glyoxylsäure mit alkal. Permanganat-Lösung von der Alkalikonzentration: Evans, Adkins, Am. Soc. 41, 1407. — Das Natriumsalz bildet sich neben anderen Produkten beim Erhitzen von Betain mit Natronlauge auf 220° (Kato, Sobayima, J. Soc. chem. Ind. Japan Spl. 31 [1928], 106 B). Oxalsaure entsteht bei der Oxydation von Leucylglycin und von Seidenpepton mit Zinkpermanganat (ABDERHALDEN, QUAST, H. 151,

147, 148).

Oxalsäure entsteht beim Erhitzen von l-Arabinose mit ca. 66 % iger Kalilauge bis auf 270° (HÄGGLUND, BJÖRKMAN, Bio. Z. 147, 87). Neben anderen Produkten bei 4stdg. Erhitzen von Glucose mit 1 n-Kalilauge auf 100°, aber nicht bei ½, stdg. Erhitzen mit 60 % iger Kalilauge (FISCHLER, TÄUFEL, SOUCI, Bio. Z. 208, 208, 210). Neben anderen Produkten bei der Oxydation von in Kalkwasser gelöster Glucose oder Fructose mit Luft (Power, Upson, Am. Soc. 48, 196, 201). Abhängigkeit der Oxalsäure-Bildung bei der Oxydation von d- und l-Arabinose, d-Glucose, d-Mannose, d-Galaktose und d-Fructose mit alkal. Permanganat-Lösung bei 25°, 50° und 75° von der Alkalikonzentration: Evans, Mitarb., Am. Soc. 47, 3091, 3093, 3095; E., Buehler, Am. Soc. 47, 3099. Oxalsäure entsteht neben anderen Produkten bei längerer Einw. von wäßr. Kupferacetat-Lösung auf d-Glucose, d-Fructose und d-Galaktose (Evans, Mitarb., Am. Soc. 50, 2270, 2271). Neben Ameisensäure und Essigsäure bei der Kalischmelze von Xylan bei 220—240° (Heuser, J. pr. [2] 107, 4). Neben d-Zuckersäure bei der Oxydation von Reisstärke mit 20 % iger Salpetersäure, zuletzt bei 100° (Kiliani, B. 58, 2345). Neben Schleimsäure beim Erhitzen von Zuckerrüben-Pektinsäure mit Salpetersäure (D: 1,15) auf dem Wasserbad (Ehrlich, Schubert, B. 62, 1993). Bei der Alkalischmelze des Lignins (Heuser, Winsvold, Cellulosech. 2, 113; C. 1921 III, 1411; Hägglund, Brörrman, Bio. Z. 147, 87). Geringe Mengen Oxalsäure entstehen aus Cellulose, Lignin, Holz, Torf, Braunkohle und Steinkohle beim Erhitzen mit Luft in Gegenwart von Sodalösung auf 200° unter 45—50 Atm. Druck (F. Fischer, Schrader, Abh. Kenntnis Kohle 4, 348, 350; C. 1921 III, 422; F., SCh., Treibs, Abh. Kenntnis Kohle 5, 218, 225, 229, 255, 260, 281, 289; C. 1922 III, 1185; IV, 1064, 1065).

Darstellung.

Einfluß der Temperatur, des Drucks und der Zusammensetzung des zur Darstellung von Natriumoxalat angewandten Alkalis auf die Ausbeuten an Natriumoxalat beim Erhitzen von Natriumformiat: Leslie, Carpenter, Chem. met. Eng. 22, 1195; C. 1921 I, 131. Einfluß von Alkalihydroxyd-Zusätzen auf die Ausbeute an Natriumoxalat: Matignon, Marchal, Bl. [4] 31, 794. Zur Darstellung von Natriumoxalat durch thermische Zersetzung von Natriumformiat vgl. a. Chem. Fabrik Grünau, D. R. P. 377814; C. 1924 I, 963; Frdl. 14, 287. Gewinnung von Oxalsäure aus den bei der Einw. von Salpetersäure auf Äthylen und Homologe des Äthylens entstehenden Produkten: Chem. Fabrik Kalk, Oehme, D. R. P. 414376; C. 1925 II, 609; Frdl. 15, 141. Technische Darstellung aus Acetylen s. S. 473. Gewinnung von Oxalsäure durch Einw. von Stickoxyden auf cellulosehaltige Stoffe: BASF, D. R. P. 370972, 373129, 373130, 393551; C. 1924 II, 1022; Frdl. 14, 288, 289, 290, 291; A. Wacker, D. R. P. 409948; C. 1925 I, 1910; Frdl. 15, 139. Zur Darstellung durch Schmelzen von Sägespänen mit Alkalien vgl. Mahood, Cable, J. ind. Eng. Chem. 11, 651; C. 1920 II, 776; Wiffile, D. R. P. 352576; C. 1922 IV, 156; Frdl. 14, 286; Qvist, Acta Acad. Abo. 3, Nr. 9, S. 3, 6; C. 1925 I, 1587. Zur Darstellung von wasserfreier Oxalsäure breitet man das Hydrat auf Ton-oder Emaille-

Zur Darstellung von wasserfreier Oxalsaure breitet man das Hydrat auf Ton-oder Emailleplatten aus, die zuvor auf 98—99° erwärmt sind, und hält anschließend in einem Trockenschrenk 2 Std. auf dieser Temperatur (Bowden, Org. Synth. 10 [1930], 78).

Physikalische Eigenschaften.

Mechanische und thermische Eigenschaften. Nach Hoffmann, Mark (Ph. Ch. 111, 350) erhält man bei der Sublimation von wasserhaltiger Oxalsäure eine wasserfreie Modifikation von wahrscheinlich monokliner Struktur. Verhalten von durch mehrmonatiges Aufbewahren über konz. Schwefelsäure entwässerter Oxalsäure beim Schmelzen: Calcagni, G. 50 I, 247. Verlauf der Aufnahme von Wasser durch wasserfreie Oxalsäure aus mit Wasserdampf gesättigter Luft: Predwoditelew, Z. Phys. 46, 411; C. 1928 I, 1353; der Abgabe von Krystallwasser aus Oxalsäuredihydrat bei 18⁵: Pr., Z. Phys. 51, 139, 145; C. 1928 II; 2618; zwischen 60° und 92°: Schmitt, Fr. 71, 276. Über die Entfernung des außer dem Krystallwasser im Dihydrat noch inkludierten Wassers vgl. Hill, Smith, Am. Soc. 44, 548. Harte der Krystalle des Dihydrats: Reis, Zimmermann, Z. Kr. 57, 481, 487; Ph. Ch. 102, 330. Röntgenogramm (Drehkrystall-Aufnahme) der wasserfreien rhombischen, der wasserfreien monoklinen (?) und der wasserhaltigen Oxalsaure: HOFFMANN, MARK, Ph. Ch. 111, 325; vgl. a. Wood, Pr. Durham phil. Soc. 7, 111; C. 1927I, 1922; ROBERTSON, WOODWARD, Soc. 1936, 1817; Brill, Hermann, Peters, Naturwies. 27 [1939], 677. Dampfdruck von fester wasserfreier Oxalsäure zwischen 59,55° (0,0108 mm) und 105,28° (0,5374 mm): NOYES, WOBBE, Am. Soc. 48, 1886; des Dihydrats bei 0° (0,34 mm), 25° (2,69 mm) und 50° (15,60 mm): BAXTER, COOPER, Am. Soc. 46, 924; vgl. a. BAXTER, LANSING, Am. Soc. 42, 422; zwischen 18,15° (1,6 mm) und 82° (108 mm): Treadwell, Helv. 7, 529. Anderung des Dampfdrucks des Dihydrats mit abnehmendem Wassergehalt bei 50°: Wales, Nelson, Am. Soc. 45, 1659. D. (der wasserfreien Säure): 1,901 (Bil.tz., A. 453, 278; Bil.tz., Balz., Z. anorg. Ch. 170, 339). Verbrennungswärme von wasserfreier Oxalsäure bei konstantem Volumen: 61,0 kcal/Mol (Verkade, Coops, Hartman, R. 44, 212; 45, 377; vgl. Verkade, Hartman, Coops, Versl. Akad. Amsterdam 33, 767; C. 1925 I, 1281), 59,28 kcal/Mol (Pässler, Dissert. [Dresden '1930], S. 71).

Optische und elektrische Eigenschaften. Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneue, $C.\,r.$ 189, 916. Einfluß des p_B auf die Ultraviolettabsorption wäßr. Oxalsäure-Lösungen: Vles, Gex, $C.\,r.$ 180, 1342. — Das Dihydrat

ist nicht piezoelektrisch (NEUHAUS, Z. Kr. 90, 427).

Physikalische Eigenschaften von Oxalsäure-Gemischen.

Mechanische und thermische Eigenschaften. 100 g gesättigte wäßrige Lösung enthalten bei 15° 6,71 g, bei 20° 8,34 g und bei 25° 9,81 g wasserfreie Oxalsäure (Flöttmann, Fr. 78, 32, 39). 100 cm² der gesättigten wäßrigen Lösung enthalten bei 23,5° 10,4 g Oxalsäure CSCHILOW, LEPIN, Ph. Ch. 101, 363). Ultramikroskopische Untersuchung der währ: Lösung: Traube, Klein, Bio. Z. 120, 115; Tr., v. Behren, Ph. Ch. [A] 138, 91. Lößichkeit in verd. Schwefelsäure, Salzsäure und Salpetersäure bei 25°: Herz, Neukirce, Z. anorg. Ch. 181, 304. 100 cm³ der gesättigten ätherischen Lösung enthalten bei 23,5° 1,37 g Oxalsäure (Sch., L., Ph. Ch. 101, 363). Löslichkeit in Dioxan-Wasser-Gemischen bei 25°: Herz, Lorentz, Ph. Ch. [A] 140, 421. Verteilung zwischen Wasser und Ather bei 23,5°: Sch., L., bei 25°: Surwill I ahle Chem. 35. 623. Löslichkeitsdiagramm des termären Systems. L., bei 25°: SMITH, J. phys. Chem. 25, 623. Löslichkeitsdiagramm des ternären Systems H₂C₂O₄-H₂SO₄-H₂O bei 24,71°: ELÖD, ACKER, Z. anorg. Ch. 176, 306. — Geschwindigkeit der Krystallisation aus übersättigten wäßrigen Lösungen: Gapon, Ж. 61, 2319. Kryoskopisches Verhalten in Wasser: DRUCKER, Ph. Ch. 96, 410; ROTH, KNOTHE in Landolt-Börnst. H 1444. Einfluß auf den Erstarrungspunkt eines Alkohol-Benzol- oder Alkohol-Äthylenbromid-Gemisches: Weight, Soc. 127, 2335. Erstarrungspunkte wäßr. Lösungen von Oxalsaure + Eisen(III)-chlorid sowie von Oxalsaure + Eisen(III)-chlorid + Wasserstoffperoxyd: Walton, Graham, Am. Soc. 50, 1644.

Dichte wäßr. Lösungen bei 15°, 20° und 25°: Flöttmann, Fr. 78, 32, 39; bei 20°: King,

WAMPLER, Am. Soc. 44, 1897; bei 20° und 25°: WASASTJERNA, Acta Soc. Soi. fenn. 50, Nr. 2, S. 54, XXXV; bei 22°: Zahn, R. 45, 786. Kontraktion beim Lösen des Dihydrats in Wasser: RAKSHIT, Z. El. Ch. 31, 100. — Viscosität einer wäßr. Lösung zwischen 16° und 31°: DE KOLOSSOWSKY, G. 55, 854; zwischen 20° und 90°: HERZ, MARTIX, Z. anorg. Ch. 182, 46. Diffusion von wäßr. Oxalsäure-Lösungen durch Kollodiummembranen: Collander, Comment. biol. Helsingfors 2, Nr. 6, S. 13; C. 1926 II, 720; durch Pergament: Terada, Ph. Ch. 109, 210; in Gelatine und Einfluß von Cholesterin und Leoithin auf diese Diffusion: Affonsky, Bio. Z. 195, 391. — Oberflächenspannung einer wäßr. Lösung bei 15°: Traube, Verh. disch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 95; bei 20°: King, Wampler, Am. Soc. 44, 1897; bei 22°: Zahn, R. 45, 786.

Adsorption von Oxalsäure aus wäßr. Lösung an Cocoanußkohle und Acetylenruß: Namasivavam, Quart. J. indian chem. Soc. 4, 453; C. 1928 I, 662; an Holzkohle: Yajnik, Rama, J. phys. Chem. 28, 277; an aktivierte Holzkohle: Schilow, Lepin, Ph. Ch. 94, 44; Sch., Ph. Ch. 100, 426; Dubinin, Ph. Ch. 135, 27; an aktivierte Erlenholzkohle: Ruff, Z. ang. Ch. 38, 1166; Ruff, Hohlfeld, Koll.-Z. 36, 35; C. 1925 I, 2156; an Linden-oder

476

Buchenholzkohle: Sabalitschka, Erdmann, Z. ang. Ch. 38, 571. Adsorption an aktivierte Holzkohle aus Wasser-Alkohol- und Alkohol-Ather-Gemischen: Sch., Pewsner, Ph. Ch. 118, 364; Ж. 59, 164, 166; C. 1927 II, 1136; aus salzsaurer oder salpetersaurer Lösung: Du., Ph. Ch. 135, 29; Ж. 60, 957, 958; aus salzsaurer, schwefelsaurer oder essigsaurer Lösung oder aus einem Gemisch mit Kaliumoxalat-Lösung: Sch., Lepin, Ph. Ch. 94, 52. An Holzkohle adsorbierte Oxalsäure wird durch Schütteln der Kohle mit Benzol und Wasser fast quantitativ wiedergewonnen (Miller, Am. Soc. 46, 1154). — Adsorption aus wäßr. Lösung an Tierkohle bei 16—18°: Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogxi, Bio. Z. 120, 95; Sch., Nekrassow, Ph. Ch. 130, 67; Ж. 60, 106; bei Zimmertemperatur und Temperaturen von 25—99,8°: Yajnik, Rana, J. phys. Chem. 28, 269, 271; an aktivierte Zuckerkohle: Kolthoff, R. 46, 557; an Tierkohle oder Zuckerkohle, auch in Gegenwart von Blausäure: Warburg, Bio. Z. 136, 273; an Tierkohle und Zuckerkohle und Verdrängung von adsorbierter Oxalsäure durch Isoamylalkohol: Weight, Soc. 1927, 2324; an Tierkohle, Zuckerkohle, Knochenkohle oder Schwammkohle: Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288. Adsorption aus wäßr. Lösung an "aktive Kohle": Fromageot, Wurmser, C. r. 179, 973; Surun, C. r. 182, 1545; an Norit in Abhängigkeit vom pg.: Guerant, Salmon, J. biol. Chem. 80, 80; an Braunkohle und Steinkohle: Pentegow, Njankowskaja, C. 1928 II, 2762.

Adsorption aus wäßr. Lösung an Bariumsulfat: Sabalitschea, Erdmann, Z. ang. Ch. 38, 571; an Aluminiumoxyd: Weiser, Middleton, J. phys. Chem. 24, 649; Schilow, Ph. Ch. 100, 429; Sen, J. phys. Chem. 31, 690; an Aluminiumoxyd in Abhängigkeit vom ph. Guerrant, Salmon, J. biol. Chem. 80, 80; an geglühtem Bleioxyd: Kosakewitsch, K. 55, 481; C. 1925 II, 643; an Kieselsäure: Mehrotra, Dhar, Z. anorg. Ch. 155, 299; Bartell, Fu, J. phys. Chem. 33, 680; an Kieselgur: Sab., E., Z. ang. Ch. 38, 571. Adsorption von Oxalsäure bzw. Oxalat-Ion an Chrom(III)-oxyd aus wäßr. Lösung: Sen, J. phys. Chem. 31, 929; Weiser, J. phys. Chem. 29, 960; aus einem Gemisch von Oxalsäure und Kaliumoxalat in Wasser: Wei., Porter, J. phys. Chem. 31, 1389; an Eisen(III)-oxyd aus wäßr. Lösung: Wei., Middleton, J. phys. Chem. 24, 60; Sch., Ph. Ch. 100, 430; Sen, J. phys. Chem. 31, 526; aus Kaliumoxalat-Lösung: Wei., J. phys. Chem. 80, 80. Adsorption an Fullererde verschiedener Zusammensetzung und Verarbeitung aus wäßr. Lösungen zwischen ph. 0,98 und ph. 13,5: Gu., Sal., J. biol. Chem. 80, 80. Adsorption an Fullererde verschiedener Zusammensetzung und Verarbeitung aus wäßr. Lösungen an Torf: Schilow, Ph. Ch. 100, 432; an Filtrierpapier: Mokruschin, Koll.-Z. 37, 145; C. 1926 I, 605; an Bichromatschwarz in Gegenwart und Abwesenheit von Chloressigsäure: Stadnikow, Koll.-Z. 35, 232; C. 1925 I, 2154.

Wirkung auf die Quellung von Casein: Isgaryschew, Pomeranzewa, Ж. 58, 166; Koll.-Z. 38, 236; C. 1926 I, 3129; von Gelatine: Loeb, J. gen. Physiol. 3, 253; C. 1921 I, 371. Koagulierende Wirkung auf alkal. Casein- und Edestin-Lösungen: Isgaryschew, Bogomolowa, Ж. 58, 158; Koll.-Z. 38, 239; C. 1926 I, 3307; auf Serumeiweiß: Lorber, Bio. Z. 183, 18. Ausflockende Wirkung auf verschiedene Sole: Schilow, Ph. Ch. 100, 436; Ostwald, Koll.-Z. 40, 205, 208; C. 1927 I, 573.

Optische Eigenschaften. Brechungsindices wäßr. Lösungen bei 15°, 20° und 25°: Flöttmann, Fr. 73, 32, 39; bei 20° und 25°: Wasastjerna, Acta Soc. Sci. fenn. 50, Nr. 2, S. 54, XXXV—XXXVII; vgl. a. Hirsch, Fermentf. 6, 53; C. 1922 III, 557. Einfluß von Oxalsäure auf das Drehungsvermögen von wäßr. Ammoniumdlybdänsäuremalat-Lösung: Darmois, Honnelaitre, C. r. 179, 630; D., Bl. [4] 39, 723; H., A. ch. [10] 3, 45. Einfluß der Neutralisation von wäßr. Oxalsäure mit Natronlauge oder Kalilauge auf die Lichtbrechung: Hammett, J. Franklin Inst. 199, 95; C. 1925 I, 1479. Ultraviolett-Absorptionsspektrum von Uranylnitrat in wäßr. Oxalsäure: Ghosh, Mitra, Quart. J. indian chem. Soc. 4, 358; C. 1928 I, 649; von Uranylsulfat in wäßr. Oxalsäure: Anderson, Robinson, Am. Soc. 47, 718; Gillam, Morton, J. Soc. chem. Ind. 46 [1927], 418 T; von Eisen(III)-chlorid in wäßr. Oxalsäure: Gh., Mi., J. indian chem. Soc. 5, 195; C. 1928 II, 326. Absorption von Chromsäure + Mangansulfat + Schwefelsäure in wäßr. Oxalsäure zwischen 300—800 mµ: Mukerj, Dhar, J. indian chem. Soc. 5, 412, 415 Tafel II; C. 1928 II, 2331.

Elektrische Eigenschaften. Elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Marie, Noyes, Am. Soc. 43, 1097; Remesow, Bio. Z. 207, 77; bei Gegenwart von Bromwasser bei 30°: Sanyal, Dhar, Z. anorg. Ch. 189, 183; bei Gegenwart von Bleinitrat bei 20°, von Bleichlorid bei 20°, von Bleibromid bei 21° oder von Bleijodid bei 22°: Demassieux, C. r. 185, 460; Bl. [4] 45, 998; bei Gegenwart von Kaliumpermanganat bei 27,5°: Sanyal, Dhar, Z. anorg. Ch. 189, 187; bei Gegenwart von Ameisensäure und Benzoesäure: Kallan, Ph. Ch. 25, 234. Elektrische Leitfähigkeit in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 38, 1504; in wäßr. Alkohol bei 18°: Kolthoff, R. 39, 130; in Alkohol bei steigendem Zusats von Ammoniak, Harnstoff, Trimethylamin, Diäthylamin, Anilin, Methylaniin, Dimethylaniin, Diphenylamin, Bensylamin, p-Toluidin, α-Naphthylamin, β-Naphthylamin, o-Phenylendiamin, m-Phenylendiamin oder p-Phenylendiamin bei 25°: Hölle, M. 47, 759. Einfluß des

Druckes auf die elektrische Leitfähigkeit wäßr. Oxalsäure-Lösungen: TAMMANN, TOFAUTE, Z. anorg. Ch. 182, 357. Die elektrische Leitfähigkeit wäßr. Lösungen nimmt im magnetischen Feld stark ab (Beresowskaja, Ukr. chemič. Z. 2, 254, 276; C. 1927 I, 2634).

Kataphoretische Wanderungsgeschwindigkeit von in wäßr. Oxalsäure-Lösung suspendierter aktiver Kohle: Fromageot, C. r. 179, 1405. Anodische Stromspannungskurve von Oxalsäure in 0,2 n-Schwefelsäure an glattem Platin: Wright, Soc. 1927, 2329. Potentialdifferenzen an der Grenze zwischen Luft und wäßr. Oxalsäure-Lösungen: Frumkin, Ph. Ch. 111, 194; zwischen wäßriger und butylalkoholischer Lösung von Oxalsäure: Allemann, Z. El. Ch. 34, 379, 381. Reduktionspotential bei der Elektrolyse an einer Quecksilberkathode: Herasymenko, Z. El. Ch. 34, 133. Einfluß von Oxalsäure auf den Becquereleffekt in Farbstoff-Lösungen: Staechelin, Ph. Ch. 94, 554. Elektromotische Kraft der Ketten Pt\(\text{H}_2/C_2\text{H}_2O_4/KCl/0,01n-\text{H}_2SO_4/\text{H}_2Pt bei 180 bei verschiedenen Konzentrationen: Drucker. Ph. Ch. 96, 409; Z. El. Ch. 26, 368.

Elektrolytische Dissoziationskonstante der 1. Stufe k₁ in wäßr. Lösung bei 18°: $5,7\times10^{-2}$ (potentiometrisch bestimmt) (DRUCKER, Ph. Ch. 96, 413), 0,17 (potentiometrisch ermittelt) (BRITTON, Soc. 127, 1898, 1907); bei 21° : 7×10^{-2} (potentiometrisch ermittelt) (MIZUTANI, Ph. Ch. 118, 319); bei 25° : $5,7\times10^{-2}$ (aus der katalytischen Wirkung auf die Reaktion zwischen Aceton und Jod ermittelt) (Dawson, Smith. Soc. 1929, 2539); der 1. Stufe k_1 (bezogen auf Aktivitäten) bei 25° : 6.5×10^{-2} (potentiometrisch ermittelt) (Simms, J. phys. Chem. 32, 1128, 1497). Elektrolytische Dissoziationskonstante der 2. Stufe k_2 bei 15° : 3.5×10^{-5} (colorimetrisch ermittelt) (I. M. Kolthoff, Der Gebrauch von Farbenindikatoren. 3,5×10⁻² (colorimetrisch ermitteit) (1. M. Kolthoff, Der Gebrauch von Farbenhadkatoren, 2. Aufl. [Berlin 1923], S. 166), 4,5×10⁻⁵ (BJERRUM, zit. bei BRÖNSTED, PEDERSEN, Ph. Ch. 108, 203); bei 18°: 6,9×10⁻⁵ (durch Leitfähigkeit und potentiometrische Bestimmungen) (DRUCKER, Ph. Ch. 118, 405, 416), 7,1×10⁻⁵ (potentiometrisch ermittelt) (LARSSON, Z. anorg. Ch. 140, 297), 1,34×10⁻⁴ (potentiometrisch bestimmt) (BRI.); bei 25°: 7,2×10⁻⁵ (aus der katalytischen Wirkung auf die Reaktion zwischen Aceton und Jod ermittelt) (DA., SM.), 6.8×10^{-5} (ermittelt aus Löslichkeitsmessungen; auf Aktivitäten bezogen) (La., Z. anorg. Ch. 155, 252), 6.0×10^{-5} (potentiometrisch ermittelt; auf Aktivitäten bezogen) (Simms, J. phys. Chem. 32, 1128, 1497). Über die Bestimmung der Dissoziationskonstanten der 2. Stufe aus Löslichkeitsdaten vgl. auch Aumeras, J. Chim. phys. 24, 46. Elektrolytische Dissoziationskonstante der 1. Stufe bei 21° und der 2. Stufe bei 18° von Oxalsäure in Alkohol-Wasser-Gemischen (potentiometrisch ermittelt): MIZUTANI, Ph. Ch. 118, 319; der 1. und 2. Stufe bei 25° in Oxalsäure-Lösungen bei Zusatz verschiedener Salze (potentiometrisch ermittelt): SIMMS, J. phys. Chem. 32, 1128, 1497; J. gen. Physiol. 12 [1928/29], 246, 263. Einfluß von Kaliumchlorid auf die 2. Dissoziationskonstante der Oxalsäure: Dawson, Smith, Soc. 1929, 2534. Acidität von Oxalsäure, saurem Natriumoxalat und dem Puffergemisch beider zwischen 18° und 60°: KOLTHOFF, TEKELENBURG, R. 46, 34. Bestimmung der Acidität von Oxalsäure auf Grund ihres hemmenden Einflusses auf die Umlagerung von Glucose durch Kalilauge: GROOT. Bio. Z. 139, 197. Einfluß von Natriumchlorid, Kaliumchlorid, Magnesiumchlorid, Natriumsulfat und Magnesiumsulfat und von Gemischen dieser Salze auf das p_H von Lösungen von Oxalsäure in ca. 1,5 Äquivalenten verd. Natronlauge: Simms, J. gen. Physiol. 12, 248, 263: C. 1929 I, 1195, 1196.

Leitfähigkeitstitration von verd. Oxalsäure mit 0,64 n-Ammoniak: Kolthoff, Z. anorg. Ch. 111, 24; mit Lauge auch in Gegenwart von Alkohol: K., Z. anorg. Ch. 111, 43; von Oxalsäure mit Natronlauge bei 18°: Hirsch, Fr. 68, 166; von verd. Oxalsäure neben Borsäure und neben Phenol mit verd. Natronlauge: Kolthoff, Z. anorg. Ch. 111, 39. Potentiometrische Titration mit Natronlauge: Auerbach, Smolczyk, Ph. Ch. 110, 108; Klit, Ph. Ch. 131, 66; Britton, Soc. 127, 1898; 1926, 280; mit Kalilauge: Rabinowitsch, Kargin, Z. El. Ch. 33, 13.

Katalytische Wirkung. Oxalsäure beschleunigt die Oxydation von Anilindurch Natriumdichromat zu Anilinschwarz (Piccard, Helv. 6, 1029), verzögert die Zersetzung von Wasserstoffperoxyd durch Eisen(III)-chlorid (Walton, Graham, Am. Soc. 50, 1642) und desensibilisiert Jodsilber-Gelatine-Platten (Frieser, Phot. Ind. 25, 521; C. 1927 II, 203). Einfluß von Oxalsäure und Oxalsäure + saurem Kaliumoxalat auf die Geschwindigkeit der Reaktion von Aceton mit Jod bei 25° unter verschiedenen Bedingungen: Dawson, Hoskins, Smith, Soc. 1929, 1893; D., S., Soc. 1929, 2531. Katalytische Wirkung der Oxalsäure-Anionen auf die Zersetzung von Nitramid: Brönsted, Pedersen, Ph. Ch. 108, 205.

Chemisches Verhalten.

Veränderungen durch Licht, Wärme und Elektrizität. Geschwindigkeit der Zersetzung von wasserfreier und krystallisierter Oxalsäure und von gesättigter Oxalsäure-Lösung im kurzwelligen Ultraviolett (unterhalb 250 mµ): Noyes, Kouperman, Am. Soc. 45, 1398, 1399; vgl. N., C.r.176, 1468; Wobbe, N., Am. Soc. 48, 2865. Bei Wellenlängen zwischen 254 und 365 mµ zerfällt Oxalsäure in sorgfältig von Luft befreiter wäßriger Lösung primär

478

in je 1 Mol Ameisensäure und Kohlendioxyd; Wasserstoff und Kohlenoxyd werden nicht gebildet, dagegen entstehen geringe Mengen Formaldehyd; die Bildung von Formaldehyd nimmt mit abnehmender Wellenlänge zu (Allmand, Reeve, Soc. 1926, 2834, 2837, 2843, 2851). Energetik der photochemischen Zersetzung in währ. Lösung: A., R., Soc. 1926, 2848, 2850. Geschwindigkeit der Zersetzung von Oxalsäure und Kaliumtetraoxalat in währ. Lösung im Quarz-Quecksilber-Licht: KAILAN, M. 43, 7, 10. Bei 40-stdg. Belichtung einer gesättigten wäßrigen Lösung mit Quarz-Quecksilber-Licht entsteht ein reduzierender Zucker (Baly, Hellbron, Barker, Soc. 119, 1029). Zur photochemischen Zersetzung vgl. a. VOLMAR, C. r. 180, 1173.

Literatur über die photochemische Zersetzung von Oxalsäure in Gegenwart von Uranylsalzen: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 55: Uran [Berlin 1936], S. 262. Nach DHAR, SANYAL (J. phys. Chem. 29, 928) entsteht beim Belichten einer wäßr. Oxalsäure-Lösung in Gegenwart von Eisen(II)-ammoniumsulfat oder Uranylsalzen mit Sonnenlicht Formaldehyd. Mit steigender Acidität der Lösungen nimmt die Bildung von Uran(IV)-salzen zu, die Bildung von Ameisensäure ab (BAUR, Ph. Ch. 100, 39; BÜCHI, Ph. Ch. 111, 290). Das beim Belichten einer schwefelsauren Lösung von Oxalsäure und Uranylsulfat entwickelte Gas enthält etwas mehr Kohlendioxyd als Kohlenoxyd (BAUR). Geschwindigkeit der photochemischen Zersetzung von Oxalsäure in Wasser in Gegenwart von Uranylsulfat: Bowen, Watts, Soc. 1926, 1608; in Gegenwart von Uranylsulfat zwischen 25° und 45°: Anderson, Robinson, Am. Soc. 47, 719, 722; zwischen 3° und 63°: Pierce, Am. Soc. 51, 2732; in Gegenwart von Uranylsulfat und Uranylnitrat: Büchi, Ph. Ch. 111, 286, 288; in Gegenwart von Uranylacetat: Kunz-Krause, Manicke, Ber. dtsch. pharm. Ges. 32, 214; C. 1922 III, 1036. Geschwindigkeit der photochemischen Zersetzung von Oxalsäure und Kaliumtetraoxalat in Wasser bei Gegenwart von Uranylnitrat: Kallan, M. 43, 8, 10. Die photochemische Zersetzung in Gegenwart von Uranylsulfat wird durch Kohle verzögert (Sandonnini, R. A. L. [6] 2, 429). Einfluß von Quecksilber(II)-chlorid, Kaliumjodid, Eisen(II)-sulfat, Na₂SO₃, Hydrochinon, Pyrogallol und Ameisensäure auf die photochemische Zersetzung von Oxalsäure in Gegenwart von Uranylsulfat: BAUR, REBMANN, Helv. 5, 225; Einfluß von verd. Salzsäure, verd. Schwefelsäure und Ameisensäure: BÜCHI, Ph. Ch. 111, 289. Geschwindigkeit der Zersetzung in Gegenwart von Uransalzen als Maß der Intensität von ultraviolettem Licht: Anderson, Robinson, Am. Soc. 47, 723; Moss, Knapp, J. Soc. chem. Ind. 44, 453 T; C. 1926 I, 176; Gillam, Morton, J. Soc. chem. Ind. 46, 417 T; C. 1928 I, 96; Atkins, Poole, Scient. Pr. roy. Dublin Soc. [N. S.] 19, 321; C. Photochemische Zersetzung von Uranyloxalat-Lösung: Büchi, Ph. Ch. 111,

294; vgl. a. Courtois, Bl. [4] 33, 1783; Baur, Ph. Ch. 111, 315.

Oxalsäure zersetzt sich in 0,01 n-wäßr. Lösung bei der Einw. von durchdringender Radiumstrahlung unter Bildung von Ameisensäure; Uranylnitrat hat keinen Einfluß auf die Geschwindigkeit der Reaktion, bewirkt aber eine weitergehende Zersetzung der gebildeten Ameisensäure; Kaliumtetraoxalat wird in wäßr. Lösung durch Radiumstrahlung ebenfalls

zersetzt, liefert aber nur Spuren von Ameisensäure (Kailan, M. 43, 1, 9). Kinetik der thermischen Zersetzung von wasserfreier Oxalsäure zwischen 130° und 170°: Wobbe, Noyes, Am. Soc. 48, 2861, 2864. — Bei der Elektrolyse wäßr. Oxalsäure-Lösungen entwickeln sich an der Anode neben Kohlendioxyd beträchtliche Mengen Sauerstoff; die Sauerstoffentwicklung nimmt mit wachsender Stromdichte zu (DOUMER, C. r. 184, 747). Bei der Elektrolyse in einem Magnetfeld läßt sich die Bildung von Ameisensäure nachweisen (Beresowskaja, Ukr. chemič. Z. 2, 254, 276; C. 1927 I, 2364). Elektrolytische Reduk-

Oxydation. Kaliumoxalat wird in wäßr. Lösung durch Luft im Sonnenlicht oxydiert (Palit, Dhar, J. phys. Chem. 32, 1266). Natriumoxalat wird beim Erhitzen mit Luft in wäßriger und alkalischer Lösung unter Druck bei 210° teilweise, bei 260° fast vollständig zu Carbonat oxydiert (SCHRADER, Abh. Kenntnis Kohle 5, 198; C. 1922 III, 1154). Geschwindigkeit der Oxydation von Oxalsaure in währ. Lösung durch Luft in Gegenwart von Kohle unter verschiedenen Bedingungen: Gompel, Mayer, Wurmser, C. r. 178, 1026, 1027; May., Wu., Ann. Physiol. Physicoch. biol. 2, 338, 340; C. 1927 I, 1851; RIDEAL, Wright, Soc. 127, 1354; 1926, 1814, 3182, 3186; Wr., Soc. 1927, 2327. Oxydation von Natriumoxalat durch Luft bei Gegenwart von aktiver Kohle oder von Manganoxyden in Wasser bei 39° bzw. 40°: May., Wu., Ann. Physiol. Physicoch. biol. 2, 334. Oxalsäure wird in wäßt. Lösung durch Sauerstoff oder Luft auch in Gegenwart von Kupferpulver oder Kupfer(I)-chlorid zu Kohlendioxyd und Wasser oxydiert (Wieland, A. 434, 191; Dey, Dhar, Z. anorg. Ch. 144, 307); induzierte Oxydation erfolgt auch bei der Einw. von Luft auf Oxalsäure-Lösung in Gegenwart von gelbem Phosphor oder von Kupfer(I)-oxyd (Dey, Dhar) und auf Natriumoxalat- oder Kaliumoxalat- issung in Gegenwart von feinverteiltem Kupfer (DEY, DHAE) oder von Na₂SO₂ (DHAE, Versl. Akad. Amsterdam 29, 1024; C. 1922 I, 398; MITTRA, DHAE, J. phys. Chem. 29, 378; PALIT, DHAE, J. phys. Chem. 30, 946), Eisen (II) ammoniumsulfat (DEAR) oder frisch gefälltem Eisen(II)-hydroxyd (PA., DHAR).

Oxalsaure wird bei 4-stdg. Kochen mit 30%igem Wasserstoffperoxyd und Eisessig völlig zersetzt (Charrier, Moggi, G. 57, 739). Beim Erwärmen von überschüssiger wäßriger Oxalsäure-Lösung mit 3% igem Wasserstoffperoxyd in Gegenwart von Eisen(Π)-salzen oder mit Ammoniumpersulfat, Permanganat oder Quecksilber(II)-chlorid bildet sich Ameisensäure MIL AMMONIUM PERSUNAL, FERMANGARIA OUEF QUECKBILDET(11)-CHIOFIG DIRECT SICH AMERSERSAUTE (KRAUSS, BRUCHHAUS, B. 62, 487; K., BERGE, B. 63 [1930], 568; vgl. OBERHAUSER, HENSINGER, B. 61, 521; O., Schormüller, A. 470, 111). Geschwindigkeit der Oxydation von Oxalsäure mit Wasserstoffperoxyd in Wasser bei 20°: HATCHER, Trans. roy. Soc. Canada [3] 17 III, 121; C. 1924 II, 457; bei 25° und 50°: HA., HOLDEN, Trans. roy. Soc. Canada [3] 18 III, 234; C. 1925 I, 1288; in verd. Salzsäure, Schwefelsäure und Salpetersäure bei 20°: HA., bei 25° HA., HO. in Geschwart von Einschlitt ableid bei 25°. William Geschwart von Einschlitt ableid bei 25°. 200: Ha.; bei 250: Ha., Ho.; in Gegenwart von Eisen(III)-chlorid bei 250: Walton, Graham, Am. Soc. 50, 1643. Oxydation von Oxalsäure durch Wasserstoffperoxyd in Gegenwart von Kupfer(I)-chlorid: Wieland, A. 434, 193; durch Wasserstoffperoxyd und konz. Schwefelsaure: Kerr, Arb. Gesundh.-Amt 57, 559; C. 1927 I, 1902. Geschwindigkeit der Oxydation von Ammoniumoxalat mit Wasserstoffperoxyd in Wasser bei 200: HATCHER. Geschwindigkeit der Oxydation von Natriumoxalat durch Kaliumpersulfat bei Gegenwart von Silbernitrat in wäßr. Lösung bei 200 und 250: King, Am. Soc. 49, 2698; 50, 2091. Zur Dehydrierung von Oxalsäure in wäßr. Lösung mit Sauerstoff und Platinschwarz in Gegenwart von Wasserstoffperoxyd oder in Aceton-Lösung mit Dibenzoylperoxyd und Platinschwarz in Stickstoffatmosphäre vgl. Wieland, Fischer, B. 59, 1183.

Geschwindigkeit der Oxydation von Oxalsäure durch Chlor in Gegenwart von Salzsäure im Dunkeln und im Licht bei 15°, 25° und 35°: Bhattacharya, Dhar, J. Chim. phys. 26, 557, 559. Die durch Belichtung eingeleiteten Reaktionen von Oxalsäure und Kaliumoxalat in Wasser mit Brom und Jod verlaufen auch nach Verdunkelung noch einige Zeit beschleunigt weiter (Mukerji, Dhar, J. indian chem. Soc. 2, 279, 281; 5, 204; C. 1926 I, 2777; 1928 II, 427). Geschwindigkeit der Oxydation von Oxalsäure durch Brom in wäßr. Lösung im Dunkeln bei 20°, 25° und 30°: Jozefowicz, Bl. Acad. polon. 1929, 39, 57; C. 1928 II, 418; 1929 I, 3084; bei 30°: Sanyal, Dhar, Z. anorg. Ch. 139, 183; bei Gegenwart von Salzsäure und Salpetersäure oder von Neutralsalzen bei 20°: J., Bl. Acad. polon. 1929, 50. Geschwindigkeit der Reaktion von Oxalsaure mit Jod im Dunkeln bei 32°: Mu., DHAR, J. indian chem. Soc. 5 [1928], 204. Geschwindigkeit der Oxydation von Ammoniumoxalat durch Jod in wäßr. Lösung im Licht bei 21,5°: Mu., Dhar, J. phys. Chem. 32, 1314; vgl. a. Dhar, Versl. Akad. Amsterdam 29 [1921], 490; der Oxydation von saurem Natriumoxalat durch Brom in Wasser BELLENOT, J. Chim. phys. 21, 340; Helv. 7, 318; durch Jod im Dunkeln bei 78° und im Licht bei 60°. Berthoud, Bellenot, J. Chim. phys. 21, 340; Helv. 7, 318; durch Jod im Dunkeln bei 78° und im Licht bei 25° und 40°. Bee., Bell., J. Chim. phys. 21, 312; Helv. 7, 307; durch Jod im Licht bei 20° und 30°. Mu., Dhar., J. phys. Chem. 32, 1309, 1311; 33, 854; Mu., Bhattacharya, Dhar., J. phys. Chem. 32, 1309, 1311; 33, 854; vgl. a. Dhar., Versl. Akad. Amsterdam 29 [1921], 489; bei 31°: Mu., Dhar, Z. El. Ch. 31, 622. Einfluß der Lichtintensität auf die Geschwindigkeit der Oxydation von Kaliumoxalat durch Jod: Briers, CHAPMAN, WALTERS, Soc. 1926, 567. Beim Erwärmen von Silberoxalat mit Jod in Gegenwart von Quarz wird annähernd die theoretische Menge Kohlendioxyd entwickelt (Wieland, Fischer, A. 446, 71). Natriumoxalat reduziert wäßr. Natriumchlorit-Lösung in der Wärme langsam (LEVI, R. A. L. [5] 81 I, 373).

Geschwindigkeit der Oxydation von Oxalsäure durch Jodsäure (s. H 2, 508) im diffusen Licht zwischen 14° und 70°: LEMOINE, C. r. 171, 1094; bei 35°: F. G. FISCHER, WAGNER, B. 59, 2385; im Dunkeln bei 29°, 59° und 69°: Banerji, Dhar, Z. anorg. Ch. 134, 181; im Sonnenlicht bei verschiedenen Temperaturen: Le., C. r. 173, 192; Ba., Dh.; im Bogenlicht: Kunz-Krause, Manicke, Ber. disch. pharm. Ges. 32, 214; C. 1922 III, 1036; im diffusen Licht in Gegenwart von Platinmohr, Platinschwarz, Holzkohle und Zuckerkohle: Le., C. r. 173, 7. Die Reaktion mit Jodsaure wird durch das bei der Reaktion gebildete Jod ebenso wie durch Jodzusätze beschleunigt (LE., C. r. 171, 1098; Fi., WAGNER); die Hemmung durch Blausäure ist auf die Bindung des freien Jods in Form von Jodeyan zurückzuführen (Fi., Wagner, B. 59, 2387). Die Reaktion mit Jodsäure wird ferner durch kleine Mengen Eisen(II)-sulfat (Toda, Bio. Z. 171, 233; Warburg, B. 58, 1010; Bio. Z. 174, 498), Eisen(II)-ammonium-sulfat (Fi., Wagner) und Salzsäure (Wieland, F. G. Fischer, B. 59, 1173) beschleunigt, durch fein verteiltes Silber und durch Silbernitrat verzögert (Fl., Wagner). Einfluß von Eisen(II)-salzen: Wie, Fl.; vgl. dagegen Fl., Wagner. Die beschleunigende Wirkung der Eisen(II)-salze entspricht ungefähr der des bei ihrer Einw. auf Jodsäure freiwerdenden Jods; die hemmende Wirkung von Silber und Silbernitrat ist auf Bindung von Jod zurück-

zuführen (Fr., Wagner).

Geschwindigkeit der Oxydation von Oxalsäure mit Chromsäure im Sonnenlicht bei 35° und 45°: DHAR, Soc. 128, 1856; bei 30°: BHATTACHARYA, DHAR, Z. anorg. Ch. 175, 361; im Dunkeln und im Licht bei 20°, 30° und 40°: BH., DHAR, Z. anorg. Ch. 176, 377; bei Gegenwart von Mangan(II)-sulfat in schwefelsaurer Lösung im Licht bei 10° und 20°: Dhar, Soc.

123, 1857; bei 31°: MUKERJI, DHAR, J. phys. Chem. 32, 1312; 33, 857; M., BH., DHAR, J. phys. Chem. 32, 1836; im Dunkeln bei 0° und 21°: BANERJI, DHAR, Z. anorg. Ch. 134, 183. Die durch Belichtung eingeleitete Reaktion mit Chromsäure bei Gegenwart von Mangan(II)-sulfat und Schwefelsäure verläuft auch nach Verdunkelung noch einige Zeit beschleunigt weiter (M., DHAR, J. indian chem. Soc. 2, 283; C. 1926 I, 2777). Zum Mechanismus der Oxydation mit Chromsäure vgl. WAGNER, Z. anorg. Ch. 168, 279. Oxydation mit Chromschwefelsäure: Florentin, Bl. [4] 31, 1071; Lieben, Molnar, M. 53/54, 7.

Neutrales Ammoniumoxalat wird durch Permanganat in wäßr. Lösung bei gewöhnlicher Temperatur langsam, bei Siedetemperatur etwas rascher oxydiert (Engfeldt, H. 112, 182, 184). Bildung von Ameisensäure bei der Einw. von Permanganat auf Oxalsäure s. S. 479. Über Bildung von Wasserstoffperoxyd bei der Titration von Oxalsäure mit Permanganat vgl. Kolthoff, Fr. 64, 198. Geschwindigkeit der Oxydation mit Permanganat in wäßr. Lösung bei 27,5°: Sanyal, Dhar, Z. anorg. Ch. 139, 187; in Gegenwart von Mangan(II)-sulfat im diffusen Licht bei 0°, 10° und 20°: Purkayostha, Dhar, Z. anorg. Ch. 121, 157; bei 25°: Hatcher, West, Trans. roy. Soc. Canada [3] 21III, 273; C. 1928 I, 1929; im Dunkeln bei 0° und 21°: Banerji, Dhar, Z. anorg. Ch. 134, 185; im Dunkeln und im Licht von verschiedener Wellenlänge bei 8,5°, 14,5° und 24,5°: Mukerji, Dhar, J. phys. Chem. 33, 855; im Sonnenlicht bei 10° und 20°: Dhar, Soc. 123, 1857. Die durch Belichtung eingeleitete Reaktion mit Permanganat in Gegenwart von Mangan(II)-sulfat und Schwefelsäure verläuft auch nach Verdunkelung noch einige Zeit beschleunigt weiter (M., Dhar, Quart. J. indian chem. Soc. 2, 283; C. 1926 I, 2777). Einfluß verschiedener Salze auf die Geschwindigkeit der Reduktion von Permanganat durch Oxalsäure in schwefelsaurer und salpetersaurer Lösung: Bobtelsky, Kaplan, Z. anorg. Ch. 172, 204, 206, 210. Potentiometrische Titration von Oxalsäure mit schwefelsaurer Permanganat-Lösung: MaoInnes, Ph. Ch. 130, 219; E. Müller, Kogert, Ph. Ch. 136, 443.

Eine Lösung von Ammoniumkupferoxalat zersetzt sich im Sonnenlicht unter Abscheidung von Kupfer und Entwicklung von Kohlendioxyd; diese Reaktion bleibt bei Belichtung durch Kohle-, Thoroxyd- oder Zirkonoxyd-Bogenlicht aus (Dнав, Versl. Akad. Amsterdam 29, 489; С. 1921 III., 761). Die durch Belichtung eingeleitete Oxydation von Ammoniumoxalat durch Kupfer (II) - sulfat in Gegenwart von Eisen (III) - chlorid verläuft auch nach Verdunkelung noch einige Zeit beschleunigt weiter (Mukerji, Dhar, J. indian chem. Soc. 5, 207; C. 1928 II, 427). — Bildung von Ameisensäure bei der Einw. von Quecksilber(II)-chlorid auf Oxalsäure s. S. 479. Kaliumoxalat reagiert mit Quecksilber(II)-chlorid im Dunkeln nicht, setzt sich aber im Licht oder bei Gegenwart von Eisen(II)-salzen unter Bildung von Kohlendioxyd und Quecksilber(I)-chlorid um (Dhar, Versl. Akad. Amsterdam 29, 1027; C. 1922 I, 398). Geschwindigkeit dieser Reaktion in neutraler wäßriger Lösung bei 100° und 120° und Einfluß von Sauerstoff und von Eisen(II)-salzen auf die Reaktionsgeschwindigkeit: ROSEVEARE, OLSON, Am. Soc. 51, 1716, 1720, 1721. Die Oxydation von Kaliumoxalat durch Quecksilber(II)-chlorid im Licht wird durch Uranylnitrat beschleunigt, durch Mangan(II)-sulfat verzögert (Dhar, Versl. Akad. Amsterdam 29 [1921], 489). Geschwindigkeit der Oxydation von Ammoniumoxalat durch Quecksilber(II)-chlorid im Sonnenlicht: Sanyal, DHAR, Z. anorg. Ch. 128, 213; im Licht bei Gegenwart von Eosin als Sensibilisator bei 21,5°: MUKERJI, DHAR, J. phys. Chem. 32, 1323; 33, 858; PADOA, VITA, G. 54, 153; im Bogenlicht: Kunz-Krause, Manicke, Ber. disch. pharm. Ges. 32, 214; C. 1922 III, 1036; bei Gegenwart von Eisen(III)-chlorid in gewöhnlichem und in polarisiertem Licht: Bhatnagar, Anand, Gupta, J. indian chem. Soc. 5, 53; C. 1928 I, 2577. Wirksamkeit von Licht verschiedener Spektralgebiete: Dhar, Versl. Akad. Amsterdam 29 [1921], 490.

Geschwindigkeit der Oxydation durch Cer(IV)-sulfat in schwefelsaurer Lösung bei 0° und 25° und in Gegenwart von Ammoniumsulfat bei 20°: Benrath, Ruland, Z. anorg. Ch. 114, 271. Potentiometrische Titration von Oxalsäure mit schwefelsaurer Cer(IV)-sulfat-Lösung: Atanasiu, Stefanescu, B. 61, 1344. — Literatur über die Reaktion von Oxalsäure mit Eisen(III)-chlorid im Licht s. in Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 850—854. Oxydation von Oxalsäure durch Eisen(III)-chlorid in wäßr. Lösung in weißem und monochromatischem Licht und bei Sensibilisierung durch Zusatz von Chinindisulfat: Padoa, Vita, G. 54, 149, 151; P., C. 1924 I, 1000; vgl. Kunz-Krause, Manicke, Ber. dtsch. pharm. Ges. 32, 212; C. 1922 III, 1036; Kornfeld, Z. El. Ch. 34, 598. Oxydation von Ammoniumoxalat durch Eisen(III)-chlorid in Licht verschiedener Spektralgebiete: Dhar, Versl. Akad. Amsterdam 29 [1921], 490. — Oxalsäure reduziert Methylenblau im Licht unter Entwicklung von Kohlendioxyd (Levaillant, C. r. 177, 399).

Reduktion. Untersuchungen über die elektrolytische Reduktion von Oxalsäure zu Glyoxylsäure an Blei- und Quecksilber-Kathoden in schwefelsaurer Lösung: Mohrschulz, Z. El. Ch. 32, 437, 438, 443; vgl. Bayer & Co., D. R. P. 347605; C. 1922 II, 808; Frdl. 14, 294. Bei der elektrolytischen Reduktion von Eisen(II)-ammoniumoxalat in wäßr. Lösung an einer Eisenkathode entsteht außer Glyoxylsäure und Glykolsäure auch Bernsteinsäure (Sontag, Z. El. Ch. 30, 337, 338). Oxalsäure liefert bei der Reduktion mit Natriumamalgam in Gegenwart

von Zinkamalgam in salzsaurer Lösung bei 5—7° ausschließlich Glyoxylsäure (M., Z. El. Ch. 32, 451; Koepp & Co., D. R. P. 458436; C. 1928 II, 1616; Frdl. 16, 260). Wird beim Kochen mit Chrom (II)-sulfat-Lösung unter langsamem Zusatz von Ammoniak in Wasserstoff-Atmosphäre zu Glykolsäure reduziert (Traube, Lange, B. 58, 2774).

Weitere Umsetzungen. Das Natriumsalz liefert beim Erhitzen mit Natriumhydroxyd auf 290° und 430° Natriumcarbonat und Wasserstoff (Boswell, Canad. Chem. Met. 10, 139; C. 1926 II, 859). Oxalsäure gibt beim Erhitzen mit Alkalichloriden oder -nitraten in wäßr. Lösung Alkalioxalate (Tananajew, Z. anorg. Ch. 154, 186; vgl. Murawlew, Z. anorg. Ch. 165, 137). Geschwindigkeit der Einw. von wäßr. Oxalsäure-Lösung auf Bleioxyd: Kosake-witsch, Ph. Ch. 108, 284. Oxalsäure liefert bei der Einw. auf Bleichlorid und Bleibromid die Salze (PbCl)₂C₂O₄ und (PbBr)₂C₂O₄, bei der Einw. auf Bleijodid und Bleinitrat dagegen nur Bleioxalat (Demassieux, C. r. 185, 460; 189, 535; Bl. [4] 45, 989). Geschwindigkeit der Auflösung von Kupferblech in wäßr. Oxalsäure-Lösung bei Gegenwart von Wasserstoff-peroxyd: Glauner, Ph. Ch. [A] 142, 75. Die Zersetzung durch Acetanhydrid (E I 2, 221) beginnt schon bei gewöhnlicher Temperatur; sie wird durch Alanin, Chinolin, Cocain, Morphin, Strychnin und Brucin gehemmt, durch Pyridin und namentlich durch unreines Picolin, Lutidin und Kollidin beschleunigt; Geschwindigkeit der Reaktion bei 25°, 35° und 45° und in Gegenwart von Pyridin: Whittford, Am. Soc. 47, 2935, 2937. Beim Erwärmen von Oxalsäure mit Äthyl-[α.β-dichlor-vinyl]-äther entsteht Chloressigsäureäthylester (Crompton, Vanderstichele, Soc. 117, 692). Oxalsäure liefert bei längerem Erhitzen mit α-Naphthol und konz. Schwefelsäure auf 130° 3.4; 5.6-Dibenzo-xanthon (Syst. Nr. 2473) und harzige Produkte (Clar, B. 62, 357; vgl. Grabowsky, B. 4 [1871], 725; Hönig, M. 1 [1880], 251). Mechanismus der Bildung von Allylalkohol und Ameisensäure beim Erhitzen von Oxalsäure mit Glycerin: Coffey, Ward, Soc. 119, 1301. Bei der Einw. von Diazomethan auf wasserfreie Oxalsäure entsteht Dimethyloxalat (Biltz, Paetzold, A. 433, 85). Wasserfreie Oxalsäure gibt mit Kohlensuboxyd in Aceton bei 0° das Lacton der β-Oxy-isopropylmalonsäure (CH₃)₂C—CH·CO₂H

O-CO (Syst. Nr. 2619) (DIELS, BECKMANN, TÖNNIES, A. 439, 86). Beim

Erhitzen von wasserfreier Oxalsäure mit 2 Mol 2-Amino-phenol auf 180—200° entsteht eine Verbindung C₂₈H₂₄O₈N₄ (s. bei 2-Amino-phenol, Syst. Nr. 1827) (Levine, Wehmhoff, Am. Soc. 51, 1244); führt man die Reaktion bei 130—140° aus, so erhält man daneben geringe Mengen N.N'-Bis-[2-oxy-phenyl]-oxamid (L., W.). Bei kurzen Erhitzen von 1 Mol Oxalsäure und 2 Mol 2-Amino-phenol-hydrochlorid in geschmolingen N.S. C. Oxalia (L., W.).

zener Benzoesäure auf höchstens 200° bildet sich Diphendioxazin (s. nebenstehende Formel; Syst. Nr. 4630) (KEHRMANN, BENER, Helv. 8, 19). Wasserfreie Oxalsäure liefert beim Erhitzen mit

4 Mol Phenylmagnesiumbromid-Lösung sehr geringe Mengen Benzoylameisensäure (McKenzie, Duff, B. 60, 1340).

Biochemisches Verhalten.

Calciumoxalat wird durch thermophile Bakterien aus Schmutzwasser unter Bildung von Methan und Kohlendioxyd vergoren (Coolhaas, Zbl. Bakt. Parasitenk. [II] 75, 165; Ber. Physiol. 40, 440; C. 1928 II, 1342). Oxalsäure kann als Kohlenstoffquelle für Fusarium lini dienen (White, Willaman, Biochem. J. 22, 594). Oxalate werden durch Bact. coli nicht oxydiert (Cook, Stephenson, Biochem. J. 22, 1375). Oxalsäure wird durch Aspergillus prizes bei 250 lebbett oxydiert (Webusten, B. 58, 2847, Apm. 7).

oxydiert (Cook, Stephenson, Biochem. J. 22, 335). Oxalsäure wird durch Aspergillus niger bei 35° lebhaft oxydiert (Wehmer, B. 58, 2617 Anm. 7).

Fermentative Oxydation durch Weizenmehl oder Weizenkleie: Palladin, Lowtschinowskaja, Izv. imp. Akad. Petrog. [6] 10 [1916], 937; C. 1925 I, 2567; Zaleski, Kucharkowa, C. 1929 I, 3108. Oxalsäure wird in wäßr. Lösung durch Sauerstoff bei Gegenwart des Mooses Hypnum triquetrum zu Kohlendioxyd oxydiert; Oxalate werden unter den gleichen Bedingungen nicht verändert (Houget, Mayer, Plantefol, C. r. 185, 304). Oxydation von Oxalsäure zu Kohlendioxyd durch Sauerstoff wird bei Gegenwart von Jod durch Enzyme aus verschiedenen Pflanzenorganen, z. B. Zuckerrübenblättern, bewirkt (Stoklasa, Bio. Z. 176, 50; 211, 225). Dehydrierung durch Methylenblau in Gegenwart eines Ferments aus Gurkensamen: Thunberg, Bio. Z. 206, 111; in Gegenwart von Fermenten aus den Samen verschiedener Malvenarten, von Citrus aurantium und von Prunus communis: Th., Skand. Arch. Physiol. 54, 7; C. 1928 II, 32. Methylenblau wird bei Gegenwart von Weizenmehl durch Oxalsäure nicht reduziert (Palladin, Lowtschinowskaja). Oxalsäure hemmt die Reduktion von Methylenblau durch Milchsäure oder α-Oxy-buttersäure in Gegenwart eines Enzympräparats aus Acetonhefe (Bernheim, Biochem. J. 22, 1185) und die Reduktion von Methylenblau durch Milchsäure bei p_B. 7,4 in Gegenwart von intakten ruhenden oder mit Toluol behandelten Colibakterien, wirkt aber auf die unter den gleichen Bedingungen stattfindende Reduktion von Methylenblau durch Bernsteinsäure oder Ameisensäure kaum ein (Quastel, Wooldridge, Biochem. J. 22, 694, 695, 697, 698, 699). Einfluß auf die Reduktion von Methylenblau durch Glucose, Glutaminsäure, Ameisensäure, α-Oxy-butter-

saure und Glycerinsaure in Gegenwart von intakten Bact. coli bei p_R 7,4: Qu., W., Biochem. J. 22, 697.

Oxalsaure wird von Kaninchen nach subcutaner Injektion von Natriumoxalat größtenteils unverändert im Harn ausgeschieden; bei gleichzeitiger Injektion von Eosin und Belichtung erfolgt etwas weitergehender Abbau (Pincussen, Bio. Z. 126, 82). Umwandlung von Calciumoxalat in Calciumcarbonat in Geweben von Kaninchen und Meerschweinchen:

LOEPER, SCHULMANN, TONNET, C. 1925 II, 741.

Über das physiologische Verhalten der Oxalsäure und ihrer Salze vgl. die ausführliche Übersicht von H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 895—913; vgl. a. Oswald, Bio. Z. 127, 163; Koehler, C. 1926 I, 440; Rost, C. 1927 I, 1982. Schwellenwert des sauren Geschmacks und p_H der Lösung: Taylor, J. gen. Physiol. 11, 209; C. 1928 I, 2409. Einfluß des neutralen Kaliumsalzes auf die Pflanzenatmung: Klein, Pirschler, Bio. Z. 176, 26. Bactericide Wirkung auf Bac. pyocyaneus: Aubel, C. r. 170, 972.

Verwendung.

Anwendung von Oxalsäure zur Reinigung von synthetischem Methanol: I. G. Farbenind., D. R. P. 430623; C. 1926 II, 1190; Frdl. 15, 352; zur Entfärbung von Rohglycerin: Elektro-Osmose A. G., D. R. P. 347154, 355646; C. 1921 IV, 1043; 1922 II, 485; IV, 555; zur Reinigung von manganhaltiger Essigsäure: Konsort. f. elektrochem. Ind., D. R. P. 455582; C. 1928 I, 2537; Frdl. 16, 233; zum Haltbarmachen von Blausäure: Gold- u. Silberscheideanst., D. R. P. 352979; C. 1922 IV, 587; Bräuer-D'Ans 2, 1143. Verwendung bei der Herstellung von Kunstharzen: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 380577, 398256; C. 1924 I, 1715; II, 1412; Frdl. 14, 632, 633. Anwendung als Reduktionsmittel beim sauren Aufschluß von Mineralien: Grünwoldt, D. R. P. 458010; C. 1928 I, 2440. Anwendung von Alkalieisen (III) - oxalsten in Eisenblaupapieren: Bertsch, D. R. P. 320981, 354388; C. 1920 IV, 312; 1922 IV, 472.

Analytisches.

Literatur über Nachweis und Bestimmung: BERL-LUNGE, Chemisch-technische Untersuchungsmethoden, 8. Aufl. [Berlin 1931—1934], Bd. I, S. 503; Bd. III, S. 627, 1233; Bd. V, S. 349, 397; Ergänzungswerk zur 8. Aufl. von J. D'Ans [Berlin 1939—1940], Bd. I, S. 24; Bd. III, S. 68, 79, 348, 704. — J. Schmidt in G. Klein, Handbuch der Pflanzenanalyse, Bd. II, 1. Teil [Wien 1932], S. 414, 416, 472, 473. — A. BÖMER, O. WINDHAUSEN in A. BÖMER, A. JUCKENACK, J. TILLMANS, Handbuch der Lebensmittelchemie, Bd. II, 2. Teil [Berlin 1935], S. 1091.

Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 9; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939],

8. 484.

Nachweis. Man löst in der auf Oxalsäure zu prüfenden Lösung etwas Resorcin durch schwaches Erwärmen auf, kühlt ab und unterschichtet mit dem gleichen Volumen konz. Schwefelsäure; bei Anwesenheit von Oxalsäure bildet sich ein blauer Ring. Tritt die Färbung nicht sogleich auf, so fügt man nochmals 1 Vol. konz. Schwefelsäure zu oder erwärmt gegebenenfalls nach diesem Zusatz gelinde. Die Färbung verschwindet beim Abkühlen mit Eiswasser, tritt beim Erwärmen wieder auf und geht bei kurzem Kochen in Dunkelgrün, beim darauffolgenden Abkühlen in ein helles Gelbgrün über; die gelbgrüne Lösung gibt beim Unterschichten mit konz. Schwefelsäure wieder einen blauen Ring (Chernoff, Am. Soc. 42, 1785; vgl. Sihvonen, Ann. Acad. Sci. fenn. [A] 16, Nr. 9, S. 41; C. 1922 III, 867; Brauer, Ch. Z. 44 [1920], 494, 615; Kreis, Ch. Z. 44, 615; Gerrer, Ch. Z. 44, 615; Muller, C. 1923 IV, 82; Gutzeit, Helv. 13, 740). Das Verfahren ist auch als Mikromethode anwendbar (Schmalfuss, Keitel, H. 138, 160) und gestattet den gleichzeitigen Nachweis von Oxalsäure, Ameisensäure und Weinsäure nebeneinander (Krauss, Tampke, Ch. Z. 45, 521; C. 1921 IV, 319). Oxalsäure gibt beim Erhitzen mit Phloroglucin und konz. Schwefelsäure eine rötliche, mit Hydrochinon und konz. Schwefelsäure eine grüne Färbung (Brauer, Ch. Z. 44, 494). Gibt auch in sehr geringen Mengen beim Kochen mit saurem Kaliumjodat in Wasser nach einigen Minuten freies Jod; Citronensäure gibt diese Reaktion nicht, Apfelsäure und Weinsäure werden viel schwerer angegriffen als Oxalsäure (Rosenthaler, Fr. 61, 220). Entfärbt (ebenso wie einige Oxysäuren) Phosphormolybdänsäure (Mallarde, A. ch. [10] 11, 214). — Zum Nachweis von Oxalsäure als Calciumoxalat vgl. Polonowski, J. Pharm. Chim. [7] 24, 167; C. 1921 IV, 1030; Fernanders, Gatti, G. 53, 109, 111; Geossfeld, C. 1921 II, 457. Nachweis in Pflanzen durch Fällung von Eisen(II)-oxalat: Patschovsky, Dissert. [Jena 1921], S. 15. Zum Nachweis durch Überführung in das Phenylhydrazinsalz vgl. Sievonen, Ann. Acad. Sci. fenn. [A] 16, Nr. 9, S. 42; C.

Mikrochemischer Nachweis durch Sublimation und durch Überführung in verschiedene Salze: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 329; J. Schmidt in G. Klein, Handbuch der Pflanzenanalyse, Bd. II, 1. Teil [Wien 1932], S. 415;

durch Überführung in Silberoxalat: PLAHL, Z. wiss. Mikr. 37, 130; C. 1921 II, 158; ROSEN-THALER, Mikroch. 1, 48; C. 1924 I, 1981. Mikrochemischer Nachweis in Pflanzen durch Sublimation unter vermindertem Druck: KLEIN, WERNER, H. 143, 143, 145. Mikrochemischer Nachweis gelöster Oxalate in Pflanzen auf Grund verschiedener Fällungsreaktionen: Molisch,

Flora 111/112 [1918], 60.

Bestimmung durch Leitfähigkeitstitration s. bei physikalischen Eigenschaften von Oxalsaure-Gemischen, S. 477, bei Natriumoxalat, S. 485 und bei Kaliumoxalat, S. 486. In einer Lösung von Ammoniumoxalat in ca. 97% igem Alkohol läßt sich die Säure mit Hilfe von Phenolphthalein alkalimetrisch bestimmen (WILLSTÄTTER, WALDSCHMIDT-LEITZ, B. 54, 2988, 2990). Potentiometrische Titration mit Kaliumpermanganat: DEL FRESNO, Z. El. Ch. 31, 199; vgl. Popoff, Whitman, Am. Soc. 47, 2268; McInnes, Ph. Ch. 130, 219; Fr. 64, 393; RIDLEY, Chem. N. 130, 305; C. 1925 II, 513; SCHEFF, Bio. Z. 160, 390, 397; HAHN, WEILER, Fr. 70, 1. Calorimetrische Verfolgung der Titration von Oxalsäure mit Permanganat: MAYR, Fisch, Fr. 76, 434. Bestimmung durch Titration mit Permanganat neben Ameisensäure: Büchi, Ph. Ch. 111, 278; neben Schleimsäure: Whittier, Am. Soc. 45, 1393. Bestimmung im Harn durch Sublimation unter vermindertem Druck und Titration mit 0,025 n-Kaliumpermanganat-Lösung: MEYER ZU HÖRSTE, H. 168, 196. Mikrobestimmung durch Messung des bei der Oxydation mit Permanganat entstehenden Kohlendioxyds: van Slyke, Sendroy, J. biol. Chem. 84, 217. Bestimmung von Oxalsäure durch Erwärmen mit überschüssiger Kaliumjodat-Lösung und verd. Schwefelsäure und Titration des freigewordenen Jods mit Thiosulfat: ROSENTHALER, Fr. 61, 220.

Bestimmung im Harn durch Fällung als Calciumoxalat und Wägung: P. Rona, Praktikum der physiologischen Chemie, 2. Tl. [Berlin 1929], S. 435; durch Fällung als Calciumoxalat und Titration mit Permanganat: Holmberg, Bio. Z. 182, 463; Rona, Praktikum, 2. Tl., S. 436; vgl. WIDMARK, Bio. Z. 179, 263. Mikrobestimmung im Harn durch Fällung als Calciumoxalat und Titration mit Permanganat: Leulier, Velluz, Griffon, Bl. Soc. Chim. biol. 11, 52; C. 1929 I, 2674. Bestimmung im Harn durch Fällung als Calciumoxalat, Umwandlung in Calciumalizarinat, Veraschen und Wägen des erhaltenen Calciumoxyds: DADLEZ, JANKOWSKA, C. r. Soc. Biol. 90, 310; C. 1924 I, 1839; vgl. LAIDLAW, PAYNE, Biochem. J. 16, 494. Bestimmung neben Citronensäure durch Fällung als Calciumoxalat: BUTKEWITSCH, Bio. Z. 131, 328, 341; 134, 620. Zur Bestimmung von Oxalsäuse durch Fällung als Calciumoxalat vgl. ferner Dick, Fr. 77, 361; vgl. a. Bau, C. 1920 II, 160, 161, 298; Bio. Z. 114, 221, 231, 246; vgl. dagegen Salkowski, Bio. Z. 118, 259, 262; Mislowitzer,

Bio. Z. 126, 77.

Uber weitere Bestimmungsverfahren vgl. Abelmann, Ber. disch. pharm. Ges. 31, 130; C. 1921 IV, 7; Khouri, Bl. [4] 41, 394; Bl. Soc. Chim. biol. 9, 957, 961; C. 1928 II, 700; vgl. a. Kh., C. 1924 I, 1425; II, 738. Bestimmung von Oxalaten in nitroglycerinhaltigen Pulvern: Tonegutti, Ann. Chim. applic. 17, 531; C. 1928 I, 781.

Zur Anwendung von Oxalsäure und Oxalaten als Urtitersubstanzen in der Acidimetrie und Oxydimetrie vgl. Osaka, Ando, Mem. Coll. Sci. Kyoto 4 [1919/21], 371; Hill, Smith, Am. Soc. 44, 546; ROSENTHALER, Fr. 61, 221; KOLTHOFF, Fr. 64, 185, 192; SCHRÖDER, Fr. 64, 393; DEL FRESNO, Z. El. Ch. 81, 199; SCHMITT, Fr. 71, 280; SCHOORL, Chem. Weekb. 25, 73; C. 1938 I, 1440; Mika, Fr. 78, 273; vgl. a. Ishimaru, Sci. Rep. Töhoku Univ. 16, 865; C. 1938 I, 1440. Tabellen zur Reduktion des Volumens von 1n- und 0,1n-Oxalsäure-Lösung auf Normaltemperaturen von 15°, 20° und 25°: Osaka, Mem. Coll. Sci. Kyoto 4 [1919/21], 115.

Salze der Oxalsäure (Oxalate).

Ammoniumoxalate. Literatur: Gmelins Handbuch der anorganischen Chemie, N. 8. Aufl., Syst. Nr. 23: Ammonium [Berlin 1936], S. 400, 456, 466. — $(NH_4)H_3(C_2O_4)_2 + 2H_2O_4$ (,,Ammonium tetraoxalat") (H 512; E I 223). B. Durch ca. 15 Min. langes Kochen von Oxalurature oder aquivalenten Mengen Harnstoff und Oxalsaure mit Wasser, neben oxal-Oxalauraure oder aquivalenten Mengen Harnstoff und Oxalaure mit Wasser, neben Oxalaurem Harnstoff (Biltz, Schauder, J. pr. [2] 106, 153). Platten (aus Wasser). Krystallo: Graphische Untersuchung: Porter, Z. Kr. 66, 224. Zersetzt sich bei 128° (korr.) (Bi., Sch.). D: 1,655 (P.). Brechungsindices der festen Substanz: P. — NH4HC2O4 (vgl. H 512). Dis: 1,566—1,569 (Bi., Balz, Z. anorg. Ch. 170, 340). (NH4)2C2O4 + H2O (H 512; E I 223). B. Durch 2stdg. Kochen von Oxalursäure mit Wasser oder von äquivalenten Mengen Harnstoff und Oxalsäure mit Wasser (Biltz, Schauder, J. pr. [2] 106, 154). Blätter (aus Wasser). F: 238° (korr.) (Bi., Sch.). Härte der Krystalle: Ref. Zichermann, Z. Kr. 57, 488; Ph. Ch. 102, 332. Röntgenogramm: Wood, Pr. Durham 2bhl. Sch. 7, 145; C. 1987 I. 1992. Ontisches Verhalten der Krystalle: Longchambon.

phil. Soc. 7, 115; C. 1927 I, 1922. Optisches Verhalten der Krystalle: Longchambon,

C. r. 173, 91; Bl. Soc. franç. Min. 45, 240; C. 1924I, 2070. D.: 1,577-1,588 (BI., BALZ, Z. anorg. Ch. 170, 339). Ist piezoelektrisch (GIEBE, SCHEIBE, Z. Phys. 33, 765; C. 1926 I, 317). 100 g gesättigte wäßrige Lösung enthalten bei 15° 3,659 g, bei 20° 4,246 g, bei 25° 4,996 g Ammoniumoxalat (Flöttmann, Fr. 73, 26, 38). Löslichkeit in 100 cm³ Wasser zwischen 5° (3,07 g) und 35° (8,15 g): Guiguss, Bl. Sci. pharmacol. 34, 212; C. 1927 II, 209. Die Löslichkeit in Wasser nimmt beim Einleiten von Ammoniak ab (Weitz, Stamm, B. 61, 1146; WEITZ, Z. El. Ch. 31, 546). Unlöslich in Anilin bei 250 (Glasstone, Bridgman, Hodgson, Soc. 1927, 635). Sehr schwer löslich in Alkohol + Äther (Lemarchand, C. r. 179, 41). Lösungsvermögen der gesättigten wäßrigen Lösung für Natriumoxalat: MEYERFELD, Fr. 67, 150. Setzt die Löslichkeit von Anilin in Wasser herab (G., Br., H.). Dichte wäßr. Lösungen bei 15°, 20° und 25°: Flöttmann, Fr. 73, 26, 38; bei 18°: DE GARCÍA, An. Soc. quím. arg. 8 [1920], 382. Kontraktion beim Lösen in Wasser: RAKSHIT, Z. El. Ch. 31, 99. Geschwindigkeit der Krystallisation aus übersättigten wäßrigen Lösungen: Gapon, 3K. 61, 1736, 2321; C. 1930 II, 5. Einfluß auf die Fällung von Eisenhydroxyd-Solen: Weitz, St., B. 61, 1151. Wärmetönung beim Verdünnen der wäßr. Lösung mit Wässer und bei der Reaktion zwischen Ammoniumoxalat und Magnesiumchlorid in wäßr. Lösung: Lem., C. r. 179, 43. Brechungsindices wäßr. Lösungen bei 15°, 20° und 25°: Fl., Fr. 78, 26, 38; bei 18°: DE G., An. Soc. quim. arg. 8 [1920], 382. Einfluß von Ammoniumoxalat auf das Drehungsvermögen von wäßr. Ammoniumdimolybdänsäuremalat-Lösung: HONNELAITRE, A. ch. [10] 3, 45. Elektrische Leitfähigkeit wäßr. Lösungen: HERRMANN, Z. anorg. Ch. 182, 404. Potentialdifferenzen an der Grenze zwischen wäßr. und butylalkoholischen Lösungen: Allemann, Z. El. Ch. 34, 379, 381. Einfluß von Ammoniumoxalat auf den Becquereleffekt in Farbstoff-Lösungen: STAECHELIN, Ph. Ch. 94, 565. Beschleunigt die Oxydation von Anilin zu Anilinschwarz durch Natriumdichromat (PICCARD, Helv. 6, 1029). Liefert beim Erhitzen außer den H 2, 512 genannten Produkten auch Ammoniumcarbonat (Calcagni, G. 50 I, 248). Über Umsetzungen im System Ammoniumoxalat-Kupfersulfat-Ammoniak vgl. Herschkowitsch, Z. anorg. Ch. 178, 222. Zur Umsetzung von Ammoniumoxalat mit Magnesiumsulfat vgl. HERRMANN, Z. anorg. Ch. 182, 399. Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 26; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 40.

Lithium oxalate (H 512). Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 20: Lithium [Berlin 1927], S. 232. — Röntgenogramm von Lithiumoxalat:

BECKER, JANCKE, Ph. Ch. 99, 262.

Na

Natrium oxalate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 21: Natrium [Berlin 1928], S. 842. — NaHC₂O₄. Gibt beim Erhitzen auf 210—220° Kohlenoxyd, Kohlenoxyd und Wasser; bei 300—350° erhält man neutrales Natriumoxalat, oberhalb 400° Kohlenoxyd, Kohlendioxyd, Wasser, Ameisensäure, Natriumcarbonat und

wenig Oxalsäure (Calcagni, G. 50 I, 248).

Wenig Oxabsure (Calcauni, G. Bu I, 246).

Na₂C₂O₄ (H 513; E I 223). Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 332.

1 g löst sich bei 20° in 29 g Wasser (Winkler, P. C. H. 66, 669; C. 1926 I, 447). 100 cm³

Wasser lösen bei 0° 2,786 g, bei 25° 3,588 g (W. M. Fischer, Z. anorg. Ch. 145, 339). 100 g

gesättigte wäßrige Lösung enthalten bei 15° 3,125 g, bei 20° 3,302 g, bei 25° 3,475 g wasser
freies Natriumoxalat (Flöttmann, Fr. 73, 29, 39). 100 g einer bei 20° gesättigten wäßrigen

Lösung von Ammoniumoxalat lösen 2,5 g Natriumoxalat (Meyerfeld, Fr. 67, 150). Löslich

keit in werd Allychel verschiedener Korgentrationen bei 20° Wi. P. C. H. 66, 669, C. 1926 I. keit in verd. Alkohol verschiedener Konzentrationen bei 20°: WI., P. C. H. 66, 669; C. 1926I, 447. Unlöslich in alkalischem und in schwach essigsaurem 50 %igem Alkohol (Sihvonen, Ann. Acad. Sci. fenn. [A] 16, Nr. 9, S. 42; C. 1922III, 867). Lösungsvermögen der wäßr. Lösung für Croceokobaltnitrat bei 0° : Brönsted, Petersen, Am. Soc. 43, 2280; für Benzoesäure bei 25°: Larsson, Z. anorg. Ch. 155, 252. Einfluß von Natriumoxalat auf die Löslichkeit der Borsaute in Wasser bei 180: Kolthoff, R. 45, 609. Geschwindigkeit der Ausscheidung aus übersättigten wäßrigen Lösungen: F1., Z. anorg, Ch. 145, 338; GAFON, 3K. 61, 1736; C. 1930 II, 5. Beim Ausfällen aus der gesättigten wäßrigen Lösung mit Alkohol erhält man zwischen 0° und 25° ein Salz mit 2 H₂O, bei 60° ein Gemisch aus wasserfreiem und wasserhaltigem Salz (Fi.). Löslichkeitsdiagramm des quaternären Systems Na₂C₂O₄-H₂SO₄-Na₂SO₄-H₃O bei 24,77°: ELÖD, ACKER, Z. anorg. Ch. 176, 305. Dichte wäßr. Lösungen bei 15°, 20° und 25°: FLÖTT-MANN, Fr. 73, 29, 39; bei 19,5°: DE GARCÍA, An. Soc. quím. arg. 8 [1920], 384; bei 25°: WASASTJERNA, Acta Soc. Sci. fenn. 50 [1920], Nr. 2, S. 54, XXVII. Bewegung auf einer Wasseroberfläche: KARCZAG, ROBOZ, Bio. Z. 162, 23. Geschwindigkeit der Dialyse von Natriumoxalat durch Pergament: Terada, Ph. Ch. 109, 205. Hydrolytische Adsorption von Natriumoxalat aus wäßr. Lösung an aktive Kohle: Fromageot, Wurmser, C. r. 179, 973; an Kieselsäure: BARTELL, Fu, J. phys. Chem. 33, 682. Einfluß auf die Koagulation von Kupferferrocyanid-Sol durch Kaliumchlorid: Sen, Quart. J. indian chem. Soc. 3, 83; C. 1926 II, 2147; auf die Flockung von Eisenhydroxyd-Solen: Weitz, Stamm, B. 61, 1151; auf die Erstarrungszeit eines thixotropen Eisenhydroxyd-Sols: Freundlich, Söllner, Koll.-Z. 45, 353; C. 1928 II, 1535. Wärmetönung beim Koagulieren von Eisenoxyd-Sol mit Natriumoxalat: Browne,

MATHEWS, Am. Soc. 43, 2348, 2350. Brechungsindices wäßr. Lösungen bei 15°, 20° und 25°: FL., Fr. 73, 29, 39; bei 19,5°: DE G., An. Soc. quim. arg. 8 [1920], 384; bei 25°: WA., Acta Soc. Sci. fenn. 50 [1920], Nr. 2, S. XXVII, XXVIII. Absorption der wäßr. Lösung im sichtbaren und ultravioletten Gebiet: Scheibe, Z. El. Ch. 34, 499. Elektrische Leitfähigkeit von wäßr. Lösungen bei 25°: LORENZ, SCHEUERMANN, Z. anorg. Ch. 117, 128; von Gemischen von Oxalsäure und Natronlauge in verschiedenen Mengenverhältnissen bei 18°: Hirsch, Fr. 68, 167. Zur Änderung der Leitfähigkeit der wäßr. Lösung bei der Verdünnung vgl. Storch bei Muck, H. 122, 140. Änderung der Leitfähigkeit wäßr. Lösungen von Natriumoxalat durch Zusatz von Magnesiumchlorid: Simms, J. gen. Physiol. 12 [1928/29], 242. Kataphoretische Wanderungsgeschwindigkeit von in wäßr. Natriumoxalat-Lösung suspendierter aktiver Kohle: Fromageot, C. r. 179, 1405. Leitfähigkeitstitration von Natriumoxalat-Lösungen verschiedener Konzentration mit verd. Salzsäure: Kolthoff, Z. anorg. Ch. 111, 103; mit Silbernitrat: Ko., Fr. 61, 237; mit Bariumchlorid in Gegenwart von Alkohol: Ko., Fr. 61, 444; mit Bleinitrat: Ko., Fr. 61. 375. Potentiometrische Verfolgung der Reaktionen mit Aluminiumsulfat, Zirkonchlorid und Chromalaun: Britton, Soc. 1926, 276. Potentialdifferenzen an der Grenze zwischen wäßrigen und butylalkoholischen Lösungen: ALLEMANN, Z. El. Ch. 34, 379, 381. — Über eine Leuchterscheinung bei der Elektrolyse einer wäßr. Natriumoxalat-Lösung an Quecksilberelektroden vgl. Dumanski. Česchewa, Banow, Ph. Ch. [B] 3, 441. Liefert bei der thermischen Zersetzung (von ca. 200° ab) Natriumcarbonat, Kohlenoxyd, Kohlendioxyd und Kohle (Ott. Ph. Ch. 109, 17; Kato, Sobajima, J. Soc. chem. Ind. Japan Spl. 31, 106 B; C. 1928 II, 843); bei der thermischen Zersetzung im Vakuum entsteht daneben in geringer Menge Natriumoxyd (HERSCHKOWITSCH, Z. anorg. Ch. 115, 164). Die ausgeschiedene Kohle beschleunigt die Zersetzung (OTT). Über Versuche zur vollständigen Uberführung von Natriumoxalat in Natriumcarbonat vgl. MURAWLEW, Fr. 72, 17. — Natriumoxalat läßt sich ziemlich genau mit Bleinitrat und Alizarin S (Gemisch von Flavo- und Anthrapurpurin) als Indikator titrieren (Burstein, Ж. 59, 534). Reinheitsprüfung: E. MERCK. Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 443. — Die Schwerlöslichkeit des Natriumoxalats in gesättigter Lösung von Ammoniumoxalat kann zur Unterscheidung von Kalium- und Natriumsalzen dienen; beim Zusatz von Natriumsalzen zu einer gesättigten Lösung von Ammoniumoxalat entsteht ein feinkrystallinischer, milchiger Niederschlag, während beim Zusatz von Kaliumsalzen die Lösung klar bleibt (MEYERFELD, Fr. 67, 150).

Na₂C₂O₄ + 2 H₂O. B. Aus der übersättigten Lösung von Natriumoxalat beim Ausfällen mit Alkohol zwischen 0° und 25° (W. M. FISCHER, Z. anorg. Ch. 145, 339). — Na₃H(SO₄)₂ + H₂C₂O₄. B. Tritt in dem quaternären System Na₂C₂O₄. H₂SO₄. Na₂SO₄. H₂O unter bestimmten Konzentrationsverhältnissen als Bodenkörper auf (ELÖD, ACKER, Z. anorg. Ch. 178, 313, 314, 323). Krystalle. Löst sich in Wasser; aus der gesättigten Lösung scheidet sich NaHC₂O₄ +

H_•O aus. Kaliumoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 22: Kalium [Berlin 1937], S. 936. 1054. 1084, 1162. — $KH_9(C_2O_4)_2 + 2H_9O_4$ ("Kaliumtetraoxalat") (H 513; E I 224). Darstellung von reinem Kaliumtetraoxalat: SCHMITT, Fr. 71, 277. Krystallographische Untersuchung: PORTER, Z. Kr. 66, 219. D:1,860 (P.). Brechungsindices der festen Substanz: P. Über die Zersetzung bei der Einw. von ultraviolettem Licht oder durchdringender Radiumstrahlung s. bei Oxalsäure, S. 478. Wird beim Extrahieren mit Ather in Oxalsaure und saures Kaliumoxalat zerlegt (Sabalitschka, Ber. disch. pharm. Ges. 31, 197; C. 1921 III, 824). Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 321. — KHC₂O₄ (H 513; E I 224). Über Reindarstellung und Existenzbereich vgl. Osaka, Ando, Mem. Coll. Sci. Kyoto 4 [1919]21], 371. Ist nicht piezoelektrisch (HETTICH, SCHLEEDE. Z. Phys. 50, 253; C. 1929 I, 1893). Fast unlöslich in Alkohol und Äther (SA., Ber. dtsch. pharm. Ges. 31 [1921], 198). Leicht löslich in Chloressigsäure (Walden, Z. ang. Ch. 38, 812). Kryoskopisches Verhalten in Wasser: Drucker. Ph. Ch. 96, 413; in Chloressigsäure: Wa. Elektrische Leitfähigkeit wäßr. Lösungen bei 18°: Drucker, Ph. Ch. 96, 404; Z. El. Ch. 26, 367. Elektromotorische Kraft der Kette PtH₂|0,02 n-H₂SO₄|KCl|KHC₂O₄|PtH₂: D., Ph. Ch. 96, 414. Verhält sich beim Erhitzen wie saures Natriumoxalat, s. S. 484. Reinheitsprüfung: E. MERCK, Prüfung der chemischen

K₂C₂O₄ + H₂O (H 513; E I 224). Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 332. İst nicht piezoelektrisch (Hettich, Schleede, Z. Phys. 50, 253; C. 1929 I, 1893). 1 g löst sich bei 20° in 2,4 g Wasser (Winkler, P. C. H. 66, 669; C. 1926 I, 447). In 100 g Wasser lösen sich bei 20° 34,93 g wasserfreies Salz (Trifonow, Soobšč. nau. tech. Rab. 13, 72; C. 1925 II, 382; vgl. Meyerfeld, Fr. 67, 150). Löslichkeit in Wasser zwischen 0° und 107°: Woserbsenberaja, Z. anorg. Ch. 155, 119. Löslichkeit in verd. Alkohol verschiedener Konzentration bei 20°: Wi., P. C. H. 66, 669; C. 1926 I, 447. Leicht löslich in Chloressigsäure (Walder Z. ang. Ch. 32, 242). Ulbölich in Anilin bei 25° (Cl. 1855 ONE. Reprodukt. Hossoone. (WALDEN, Z. ang. Ch. 38, 812). Unlöslich in Anilin bei 250 (GLASSTONE, BRIDGMAN, HODGSON. Soc. 1927, 635). Lösungsgleichgewicht $K_2CO_3 + CaC_2O_4 \rightleftharpoons K_2C_2O_4 + CaCO_3$ bei 200 und 96°:

Reagenzien, 5. Aufl. [Darmstadt 1939], S. 238.

DICARBONSÄUREN CnH2n-2O4

RAMANN, SALLINGER, Ph. Ch. 98, 116. Thermische Analyse des Systems Kaliumoxalat-Wasser unterhalb 0° (Eutektikum bei —6,4°): Wo., Z. anorg. Ch. 155, 117. Über das System Kaliumoxalat-Quecksilberoxalat-Wasser s. S. 489. Kryoskopisches Verhalten in Wasser: FRICHE, Schützdeller, Z. anorg. Ch. 136, 299; in Chloressigsäure: Walden. Dichte wäßr. Lösungen bei 17°: DE GARCÍA, An. Soc. quím. arg. 8 [1920], 386; bei 18° und 25°: WASASTJERNA, Acta Soc. Sci. fenn. 50 [1920], Nr. 2, S. 54, XXIV; bei 25°: Fr., Sch., Z. anorg. Ch. 136, 303; JEFFERY, Trans. Faraday Soc. 20 [1924/25], 399. Viscosität wäßr. Lösungen bei 25°: Fr., Sch., JE. Diffusion durch Kollodiummembranen: ZILVA, MURA, Biochem. J. 15, 423; BARTELL, CARPENTER, J. phys. Chem. 27, 109; PRUNER, RODER, Z. El. Ch. 29, 57. Adsorption aus wäßr. Lösungen an aktivierte Holzkohle: Schilow, Lepin, Ph. Ch. 94, 45; an aktivierte Zuckerkohle: Miller, Am. Soc. 46, 1155. Hydrolytische Adsorption an Chrom(III)-oxyd: Weiser, J. phys. Chem. 29, 959; an Eisen(III)-oxyd: WEI., J. phys. Chem. 25, 405, 408. Adsorption durch kolloides Eisenoxyd in Gegenwart von Kaliumchlorid und Kaliumsulfat: WEI., J. phys. Chem. 25, 677. Ausflockende Wirkung von Kaliumoxalat auf Arsensulfid-Sol: MUKHERJEE. Chaudhuri, Soc. 125, 796. Einfluß auf die Koagulationsgeschwindigkeit eines Eisen(III)chlorid enthaltenden Eisen(III)-hydroxyd-Sols: Jablczynski, G. Kawenoki, J. Kawenoki, Bl. [4] 39, 1323; auf die Koagulation von Kupferferrocyanid-Sol durch Natriumchlorid oder Kaliumchlorid: Sen, Quart. J. indian chem. Soc. 3, 82; C. 1926 II, 2147. Über den Einfluß auf die Sedimentation einiger Suspensionen vgl. Schillow, Ph. Ch. 100, 442. Brechungsindices wäßr. Lösungen bei 17°: die García. An. Soc. quím. arg. 8 [1920], 386; bei 18° und 25°: Wasastjerna, Acta Soc. Sci. fenn. 50 [1920], Nr. 2, S. 54, XXV, XXVI. Ultraviolettes Absorptionsspektrum der wäßr. Lösung: Allmand, Webb, Soc. 1929, 1521. Absorption von Kupfersulfat + Uranylnitrat + Eisen(III)-chlorid in wäßr. Kaliumoxalat-Lösung zwischen 300 und 800 mμ: Mukerji, Dhar, J. indian chem. Soc. 5, 412; C. 1928 II, 2331. Elektrische in sich scheiden 200. Eisengen. Littlicheit auf 200. Eisengen. Leitfähigkeit wäßr. Lösungen: Jeffery, Trans. Faraday Soc. 20 [1924/25], 399. Einfluß von Kaliumoxalat auf die Kataphorese von Eisen(III)-hydroxyd-Sol: Gноян, Soc. 1929, 2699. Potentialdifferenzen an Kollodiummembranen zwischen Wasser und wäßr. Kaliumoxalat-Lösungen: Bartell, Carpenter, J. phys. Chem. 27, 212; zwischen wäßr. Kaliumoxalat-Lösungen verschiedener Konzentration: PREUNER, RODER, Z. El. Ch. 29, 55; MICHAELIS, Colloid Symp. Mon. 5, 141; C. 1928 II, 228. Leitfähigkeitstitration von Kaliumoxalat-Lösungen mit Quecksilber(II)-perchlorat: Kolthoff, Fr. 61, 341. Die Zersetzung von Kaliumoxalat beim Erhitzen im Vakuum wird bei 370° merklich (Matignon, Faurholt, C. r. 179. 272) und liefert Kaliumcarbonat, Kohlenoxyd und geringe Mengen Kaliumoxyd, Kohlendioxyd und Kohle (Herschkowitsch, Z. anorg. Ch. 115, 163; vgl. a. Calcagni, G. 50 I, 249). Versuche zur vollständigen Überführung von Kaliumoxalat in Kaliumcarbonat: Murawlew, Fr. 72, 17. Das feste Salz färbt sich beim Kochen mit Vanadiumoxychlorid unter Aufblähen schwarz (Brown, Snyder, Am. Soc. 47, 2673). Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 254; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 301.

Кb Rubidium oxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 24: Rubidium [Berlin 1937], S. 228. — $RbH_3(C_2O_4)_2 + 2H_4O$ ("Rubidium tetra-oxalat") (H 513). Krystallographische Untersuchung: PORTER, Z. Kr. 66, 222. D: 2,124.

Brechungsindices der festen Substanz: P.

Caesiumoxalate (H 513). Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 25: Caesium [Berlin 1938], S. 241. — $CsH_3(C_2O_4)_2 + 2H_2O$ ("Caesium-tetraoxalat"). Krystallographische Untersuchung: Porter, Z. Kr. 66, 226. D: 2,352.

Brechungsindices der festen Substanz: P.

Kupferoxalate: CuC_sO₄. B. Wurde an Stelle eines Hydrats durch Umsetzung eines Kupfersalzes mit Oxalsäure in wäßr. Lösung sowohl bei 30° als auch bei 100° erhalten (Сидт-TERJEE, DHAR, J. phys. Chem. 28, 1019). Zersetzt sich beim Erhitzen in Alkohol-Atmosphäre bei 300—315° (Constable, Pr. Cambridge phil. Soc. 23, 433; C. 1927 I, 1409). Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 250; C. 1924 I, 2874. CuC₂O₄ + NH₃. Blaßgrüne Krystalle (Herschkowitsch, Z. anorg. Ch. 178, 224). — CuC₂O₄ + 2 NH₃ + 2 H₂O (H 514). Ultramarinblaue Krystalle. Wird unterhalb 50° wasserfrei (Hz.). CuNa₃(C₂O₄)₂ + 2 H₂O (H 514). Ziemlich leicht löslich in kaltem Wasser mit tiefblauer Farbe; wird durch siedendes Wasser nur wenig zersetzt (RILEY, Soc. 1929, 1309). Beim Hinzufügen wird durch siedendes Wasser nur wenig zersetzt (KILEY, Soc. 1929, 1909). Beim Hinzurugen von verd. Salzsäure wird sofort Kupferoxalat gefällt (R.). Elektromotorische Kraft der Kette: Cu/CuSO₄/KNO₃/CuSO₄ + CuNa₂(C₂O₄)₄ + 2 H₂O/Cu: R. — CuK₂(C₂O₄)₅ (vgl. H 514). Polarographische Untersuchung (Quecksilber-Tropfelektrode) über die Beständigkeit des Komplexes: Demassieux, Heyrovsky, Bl. [4] 45, 34.

Silberoxalat Ag₂C₂O₄ (H 514; E I 224). 1 l: gesättigte wäßrige Lösung enthält bei 180
34 mg Ag₂C₂O₄ (SCHOLDER, B. 60, 1522). Schwer löslich in wäßr. Borsäure-Lösung (Kolthoff, R. 45, 616 Anm. 5). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,8°.

Son., B. 60, 1522. Elektromotorische Kraft von Silberoxalat enthaltenden Ketten: Thomas, Frazer, Soc. 193, 2974. Zerfällt beim Erhitzen im Vakuum in Silber und Kohlendioxyd; Gegenwart von Sauerstoff hemmt den Zerfall; die Zerfallsgeschwindigkeit wird durch die Darstellungsmethode des Salzes beeinflußt (MACDONALD, HINSHELWOOD, Soc. 127, 2764). Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N.128, 250; C. 1924I, 2874.

Berylliumoxalate. Literatur: GMELING Handbuch der anorganischen Chemie, 8. Aufl., Be Syst. Nr. 26: Beryllium [Berlin 1930], S. 156, 168, 170, 175, 179, 180. — Be₂H₄(C₂O₄)₃ + 5 H₂O (H 514). Wurde auch von Sidgwick, Lewis (Soc. 1926, 1292) nicht wieder erhalten. — BeC₂O₄ + 3 H₂O (H 514; E I 224). Röntgenogramm: Havestadt, Z. anorg. Ch. 171, 351. Löslichkeit in Wasser bei Gegenwart von Berylliumoxyd bei 25°: S., L. Löslichkeitsdiagramm des Systems BeC₂O₄-H₂C₃O₄-H₂O bei 25°: S., L. Kryoskopisches Verhalten: S., L. Dichte, Viscosität und Leitfähigkeit der neutralen und der Berylliumoxyd enthaltenden Lösung bei 25°: S., L.

Magnesiumoxalate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Mg Syst. Nr. 27: Magnesium, Teil B [Berlin 1938], S. 340, 462, 481. — MgC₂O₄ + 2 H₂O (H 514). 1 1 gesättigte wäßrige Lösung enthält bei 18° 0,296 g wasserfreies Salz (Scholder, B. 60, 1518), bei 36° 0,3 g, bei 92° 0,4 g wasserfreies Salz (Chatterjee, Dhar, J. phys. Chem. 28, 1020). 1000 g Wasser lösen bei 25° 0,307 g (Walker, Soc. 127, 65). Löslichkeit in Magnesiumsulfat-Lösung bei 25°: W. Löslichkeit in wäßr. Lösungen von Oxalsäure, Ammoniumoxalat und Ammoniumchlorid bei 12—15° und bei 100°: Bobtelsky, Malkowa-Janowski, Z. ang. Ch. 40, 1435. Unlöslich in Alkohol + Äther (Lemarchand, C. r. 179, 41, 43). Mitfällung durch Calciumoxalat: W. M. Fischer, Z. anorg. Ch. 153, 74; Herrmann, Z. anorg. Ch. 162, 409; 184, 289; vgl. Hüttig, Menzel, Fr. 68, 357. Stabilität übersättigter Lösungen: Fischer. Wärmetönung beim Verdünnen der wäßr. Lösung mit Wasser bei 6° und bei der Reaktion zwischen Magnesiumoxalat und Ammoniumchlorid in wäßr. Lösung: Le., C. r. 179, 42. Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,8°: Sch., B. 60, 1518. Gibt beim Erhitzen über 290° Kohlenoxyd, Kohlendioxyd und Magnesiumoxyd (Calcagni, G. 50 I., 250). Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 249; C. 1924 I., 2874.

Calciumoxalate (H 515; E I 224). Vorkommen s. S. 471. Bildungs- und Existenz- Ca bedingungen von CaC₂O₄ + H₂O und CaC₂O₄ + 3 H₂O: Frey, Vjschr. naturf. Ges. Zürich 70, 18—34; C. 1925 II, 1367. — Dissoziationsdruck von Calciumoxalat zwischen 375° und 422° und Wärmetönung des thermischen Zerfalls: Moles, Villamil., An. Soc. españ. 24, 478; C. 1926 II, 2957. Liefert bei der thermischen Zersetzung im Vakuum Calciumcarbonat, Kohlenoxyd, Kohlendioxyd und geringe Mengen Calciumoxyd und Kohle (Herschkowittsch, Z. anorg. Ch. 115, 164). Nach Moles, Villamil (An. Soc. españ. 24, 465) wird die Zersetzung von Calciumoxalat bei 370° merklich; bei Gegenwart von Kohle beginnt die Zersetzung schon bei 355°, in einer Kohlenoxyd-Atmosphäre dagegen erst bei 377°. Über den Verlauf der thermischen Zersetzung in Gegenwart und Abwesenheit von Feuchtigkeit vgl. M., V., An. Soc. españ. 22, 177; C. 1924 II, 615.

CaC₂O₄ + H₂O (Whewellit) (H 515). Fällt aus einer 0,1 n-Lösung von Oxalsäure bei Zusatz von Calciumchlorid aus (Auméras, C. r. 181, 214; vgl. a. Moles, Villamil, An. Soc. españ. 22, 176). Über die Geschwindigkeit der Bildung eines Calciumoxalat-Niederschlags aus Calciumnitrat-Lösung und Oxalsäure-Lösung vgl. Boussu, C. r. 176, 94. Krystallographisches: Frby, Vjschr. naturf. Ges. Zürich 70 [1925], 4; C. 1925 II, 1367; Bau, Z. tech. Biol. 7, 208; C. 1920 I, 495; Wherby, J. Washington Acad. 12, 196; C. 1922 III, 716. Ausscheidung von kolloidem Calciumoxalat: Büchner, Kalff, Versl. Akad. Amsterdam 28, 151; C. 1920 I, 314. 100 g Wasser lösen bei 15° 0,56 mg (Polonovski, J. Pharm. Chim. [7] 24, 167); 1 l gesättigte wäßrige Lösung enthält bei 18° 6 mg wasserfreies Salz (Scholder, B. 60, 1517). Löslichkeit in Wasser und verd. Salzsäure bei verschiedenen Temperaturen: Auméras, J. Chim. phys. 24, 34, 42, 47. Einfluß von Calciumchlorid und von Calciumchlorid + Natriumacetat auf die Löslichkeit in Wasser: Leulier, Veille, Griffom, Bl. Soc. Chim. biol. 11 [1929]. 47. Über das Gleichgewicht des Systems Calciumoxalat-verd. Salzsäure vgl. Carrière, Auméras, C. r. 177, 1288. Lösungsgleichgewicht K₂CO₂ + CaC₂O₄ ≠ K₂C₃O₄ + CaCO₂ bei 20° und 96°: Ramann, Sallinger, Ph. Ch. 98, 116. Löslich in kalten Strontiumformiat- und Bariumformiat-Lösungen (Scholder, B. 60, 1506). Fällung von Calciumoxalat in Gegenwart großer Mengen von Ammoniumsalzen: Großes, Chem.-Analyst 47, 8; C. 1926 II, 1670; in Gegenwart von Eisen, Aluminium, Titan, Mangan, Magnesium und Phosphaten: Chapman, Soil Sci. 26, 479; C. 1929 I, 1982. Mitfällung von Magnesiumoxalat durch Calciumoxalat: W. M. Fischer, Z. anorg. Ch. 153, 74; Herrmann, Z. anorg. Ch. 183, 409; 184, 289; vgl. Hüttig, Bei 18,8°: Sch., B. 60, 1517. Einw. ultravioletter Strahlen: Montighte, Bl. [4] 45, 708. Einw. von Schwefelsäure: Caerière, Vilon, C. r. 179, 1402. Umsetzung mit Natriumcarbonat-Lösung: Cuetman, Hart, Chem. N. 128, 249; C. 1924 I, 2874.

 ${
m CaC_2O_4}+2~{
m H_2O}$ (H 515). Das in der älteren Literatur beschriebene Dihydrat ist ein Gemisch von Mono- und Trihydrat (Frey, *Vjschr. naturf. Ges. Zürich* 70 [1925], 9); indessen beschreiben Jakób (*Roczniki Chem.* 5, 167; *C.* 1926 II, 1774) und Jakób, Luczak (*Roczniki Chem.* 9, 43; *C.* 1929 I, 1676) eine Verbindung ${
m CaC_2O_4}+2^1/_4$ H₂O, die sie unter bestimmten Arbeitsbedingungen bisweilen isolieren konnten.

CaC₂O₄ + 3 H₂O (H 515). Zur Reindarstellung vgl. Frey, Vjschr. naturf. Ges. Zürich 70, 9; C. 1925 II, 1367; Jakób. Luczak, Roczniki Chem. 9, 42; C. 1929 I, 1676. Krystallographisches: Frey, Vjschr. naturf. Ges. Zürich 70, 11; J., L.; Bau, Z. tech. Biol. 7, 208; C. 1920 I, 495. Ist oberhalb 0° instabil (F., vgl. a. J., L.). Verliert allmählich beim Aufbewahren über konz. Schwefelsäure, schneller beim Erwärmen auf 50° 2 H₂O, gibt auch unter Wasser bei gewöhnlicher Temperatur langsam. bei 40° in ca. 24 Stdn. 2 H₂O ab (J., L.).

CaC₂O₄ + K₂C₂O₄ + 2 H₂O. Krystalle. Wird durch Wasser sofort zersetzt (Scholder, Gadenne, Niemann, B. 60, 1495, 2034). — CaC₂O₄ + KcHO₂ + 2 H₂O. Stäbchen (Sch., B. 60, 1507). — CaC₂O₄ + Rb₂C₂O₄ + 2 H₂O. Krystalle. Wird durch Wasser sofort zersetzt (Sch., G., N.). — CaC₂O₄ + Cs₂C₂O₄ + 2 H₂O. Krystalle. Wird durch Wasser sofort zersetzt (Sch., G., N.). — CaC₂O₄ + Cs₂C₂O₄ + 2 H₂O. Krystalle. Wird durch Wasser sofort zersetzt (Sch., G., N.).

Strontiumoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 29: Strontium [Berlin 1931], S. 204, 225, 231, 234, 235. — SrC₂O₄ + H₂O (H 515) Plättchen (Scholder, B. 60, 1500). 1 gesättigte wäßrige Lösung enthält bei 18° 59 mg wasserfreies Salz (Sch., B. 60, 1517). Löslichkeit in konz. Lösungen von anorganischen Alkalisalzen, Alkaliformiaten und Alkaliacetaten: Sch., B. 60, 1500. Schwer löslich in kalter Calciumformiat-Lösung, löslich in kalter Bariumformiat-Lösung (Sch., B. 60, 1505, 1506). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,8°: Sch., B. 60, 1517, 1523. Gibt beim Erhitzen auf 200—300° Kohlenoxyd, wenig Kohlendioxyd und Strontiumcarbonat (Calcagni, G. 50 I, 250). Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 249; C. 1924 I, 2874. — 2 SrC₂O₄ + H₂C₂O₄. Blättchen (Scholder, Gadenne, Niemann, B. 60, 1494). — 2 SrC₂O₄ + H₂C₂O₄ + 2 H₂O (E I 224). Krystalle. Wird durch Wasser sofort zersetzt (Sch., G., N.). — 2 SrC₂O₄ + H₂C₂O₄ + 2,5 H₂O. Krystalle. Wird durch Wasser sofort zersetzt (Sch., G., N.). — SrC₂O₄ + H₂C₂O₄ + 2 H₂O von Souchay und Lenssen (A. 102, 39) (H 515) konnte nicht wieder erhalten werden (Sch., G., N., B. 60, 1493; vgl. a. Bruhns, Z. anorg. Ch. 95 [1916], 212).

 $2~\rm SrC_2O_4 + (NH_4)_2C_2O_4.$ Krystalle. Ist gegen Wasser verhältnismäßig beständig (Scholder, Gadenne, Niemann, B. 60, 1494). — $5~\rm SrC_2O_4 + Na_2C_2O_4 + 12~\rm H_2O.$ Krystalle (Sch., G., N., B. 60, 1495; Sch., B. 60, 1500). — $\rm SrC_4O_4 + Na_2C_2O_4 + NaNO_2 + H_2O.$ Platten. Geht bei Einw. von Wasser in $5~\rm SrC_2O_4 + Na_2C_2O_4 + Na_2C_2O_4 + Na_2O_2 + 12~\rm H_2O.$ Btäbchen. Wird durch Wasser zersetzt (Sch., B. 60, 1507). — $\rm SrC_2O_4 + KC_4O_2 + 2~\rm H_2O.$ Prismen (Sch., B. 60, 1507). — $\rm 3~\rm SrC_2O_4 + KC_4O_2 + 2~\rm H_2O.$ Prismen (Sch., B. 60, 1507). — $\rm 3~\rm SrC_2O_4 + KC_2O_2 + 12~\rm H_2O.$ Täfelchen (Sch., B. 60, 1501, 1506). — $\rm 5~\rm SrC_2O_4 + K_2C_2O_4 + 12~\rm H_2O.$ Krystalle (Sch., G., N.; Sch., B. 60, 1501). — $\rm 2~\rm SrC_2O_4 + K_2C_2O_4$ (nicht rein erhalten). Nadeln. Wird bereits durch kalte gesättigte Kaliumoxalat-Lösung zersetzt (Sch., G., N.). — $\rm SrC_2O_4 + RbCHO_2 + 2~\rm H_2O.$ Prismen. Bildet mit dem entsprechenden Kaliumsalz isomorphe Mischungen (Sch., B. 60, 1507). — $\rm 2~\rm SrC_2O_4 + Rb_2C_2O_4.$ Krystalle. Wird durch Wasser sofort zersetzt (Sch., G., N.). — $\rm 2~\rm SrC_2O_4 + Rb_2C_2O_4.$ Krystalle. Wird durch Wasser sofort zersetzt (Sch., G., N.).

Bariumoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 30: Barium [Berlin 1932], S. 320, 376, 380, 381. — BaC₂O₄ (vgl. H 515; E I 225). Kolloidale Ausscheidung von Bariumoxalat: Büchner, Kalff, Versl. Akad. Amsterdam 28, 151; C. 1920 I, 314. Bariumoxalat löst sich in kalten wäßrigen Calciumformiat- und Strontiumformiat-Lösungen (Scholder, B. 60, 1506). Gibt beim Erhitzen auf 400° Kohlenoxyd, Bariumcarbonat und Kohle (Calcagni, G. 50 I, 250). Umsetzung mit Natriumcarbonat- Lösungen: Curtman, Hart, Chem. N. 128, 249; C. 1924 I, 2874. — BaC₂O₄ + 0,5 H₂O (H 516; E I 225). 1 l gesättigte wäßrige Lösung enthält bei 18° 116,5 mg wasserfreies Salz (Scholder, B. 60, 1514). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,8°: Sch., B. 60, 1515. 1 l gesättigte wäßrige Lösung enthält bei 18° 88 mg wasserfreies Salz (Sch., B. 60, 1515). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,8°: Sch., B. 60, 1515. — BaC₂O₄ + 3,5 H₂O (H 515). 1 l gesättigte wäßrige Lösung enthält bei 18° 112,9 mg wasserfreies Salz (Sch., B. 60, 1515). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,8°: Sch., B. 60, 1515. Sch., B. 60, 1515). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,8°: Sch., B. 60, 1515).

2 BaC₁O₄ + (NH₄)₂C₃O₄. Krystalle. Unlöslich in Wasser, wird durch Wasser sofort zersetzt (Scholder, Gadenne, Niemann, B. 60, 1491). — 5 BaC₂O₄ + K₂C₂O₄ + 4 H₂O. Nadeln oder Blätter (Sch., G., N.). — BaC₂O₄ + K₂C₂O₄ + 2 H₂O. Blättchen oder Polyeder. Unlöslich in Wasser; wird durch Wasser sofort zersetzt (Sch., G., N.). — BaC₂O₄ + Rb₂C₂O₄ + 2 H₂O. Krystallpulver; unlöslich in Wasser; wird durch Wasser sofort zersetzt (Sch., G., N.). —

2 BaC₂O₄ + Cs₂C₂O₄. Krystalle. Unlöslich in Wasser; wird durch Wasser sofort zersetzt (Sch., G., N.). — $BaC_2O_4 + Ba(CHO_2)_2 + 6 H_2O$. Tafeln oder Prismen (Sch., B. 80, 1509).

Zinkoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Zn Syst. Nr. 32: Zink [Berlin 1924], S. 252, 308, 316. — ZnC₂O₄ + 2 H₂O (H 516). Zur Darstellung vgl. Chatterjee, Dhar, J. phys. Chem. 28, 1020. 1 l gesättigte wäßrige Lösung enthält bei 18° 20.9 mg wasserfreies Salz (Scholder, B. 60, 1518). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18.0° und 18.8°: SCH, B. 60, 1518, 1527. Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 250; C. 1924 I. 2874. — 2 ZnC₂O₄+ 3 KH₂PO₂ + 2 H₂O. Stäbchen (Sch., B. 60, 1509). — ZnC₂O₄ + 2 KCHO₂. Stäbchen. Löslich in Wasser: zersetzt sich in wäßr. Lösung allmählich unter Ausscheidung von Zinkoxalat (Sch., B. 60, 1507).

Cadmiumoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 33: Cadmium [Berlin 1925], S. 137, 140, 176. 187, 196. Uber die Umsetzung von Syst. Nr. 33: Cadmium [Berlin 1925], S. 137, 140, 176. 187, 196. — Uber die Umsetzung von Cadmiumoxalat mit Natriumcarbonat-Lösung vgl. Curtman, Hart, Chem. N. 128, 250; C. 1924 I. 2874. — $CdC_2O_4 + 3 H_2O$ (H 516). 11 gesättigte wäßrige Lösung enthält bei 18° 50 mg wasserfreies Salz (Scholder, B. 60, 1519). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,0° und 18.8°: Sch., B. 60, 1519, 1527. — $3 CdC_2O_4 + (NH_4)_2C_2O_4 + 7 H_2O$. Krystalle (Sch., B. 60, 1509). — $CdC_2O_4 + 2 KCHO_2 + H_2O$. Krystalle (Sch., B. 60, 1507). — $CdC_2O_4 + 2 KCHO_2 + 3H_2O$. Krystalle (Sch., B. 60, 1508). — $2 CdC_2O_4 + K_2C_2O_4 + 2 KCHO_2 + 2 H_2O$. Plättchen (Sch., B. 60, 1509). Quecksilber (1) - oxalat $Hg_2C_2O_4$ (H 516). Explodiert bei sehr vorsichtigem Verreiben Hg nicht (Langhans, Z. Schieß-Surengstotte, 15, 90; C. 1920 IV. 310). Leicht löslich in verd

nicht (Langhans, Z. Schieß-Sprengstoffw. 15, 90; C. 1920 IV, 310). Leicht löslich in verd. Salzsäure und Salpetersäure, unlöslich in siedender verdünnter Schwefelsäure. Färbt sich beim Übergießen mit Natriumthiosulfat-Lösung schwarz, ohne in Lösung zu gehen. Quecksilber(II)-oxalat HgC₂O₄ (H 516; EI 225). In 100 g Wasser lösen sich bei 20° 10.7 mg (Trifonow, Soobšč. nau. tech. Rab. 13, 72; C. 1925 II, 382). Leicht löslich in verd. Salzsäure und Salpetersäure, unlöslich in siedender verdünnter Schwefelsäure (L.; vgl. dagegen Davis, Mitarb., Am. Soc. 43, 600). Färbt sich mit Natriumthiosulfat-Lösung rotgelb, bleibt aber ungelöst (L.). Bildung Liesegangscher Ringe in Gelatine: Chatterji, Dhar, Koll.-Z. 40, 98; C. 1927 I, 36. Zusammensetzung der flüssigen Phase im System Quecksilber(II)-oxalat-Quecksilber(II)-chlorid-Kaliumchlorid-Wasser: Веснтелем, Ж. 57, 184; C. 1926 I, 3301. Zerfällt in wäßr. Lösung in Gegenwart von Eisen(II)-oxalat, Mangan(III)-oxalat oder Mangandioxyd auch im Dunkeln in Quecksilber(I)-oxalat und Kohlendioxyd (Winther, Ph. Ch. 100, 566). Über das System HgC_2O_4 - $\text{HgK}_4(\text{C}_2\text{O}_4)_2 + 2\,\text{H}_2\text{O}$ - $\text{HgK}_4(\text{C}_2\text{O}_4)_3 + 3\,\text{H}_2\text{O} \cdot \text{HgK}_6(\text{C}_2\text{O}_4)_4 + 4\,\text{H}_2\text{O} \cdot \text{K}_2\text{C}_2\text{O}_4$ bei 20° vgl. T., Soobšč. nau.-tech. Rab. 13, 72; C. 1925 II, 382. Oberhalb 20° gehen $\text{HgK}_4(\text{C}_2\text{O}_4)_3 + 3\,\text{H}_2\text{O} \cdot \text{und}\,\text{HgK}_6(\text{C}_2\text{O}_4)_4 + 4\,\text{H}_2\text{O}\,\text{in}\,\text{K}_3\text{C}_2\text{O}_4 + \text{H}_2\text{O}\,\text{und}\,\text{HgK}_2(\text{C}_2\text{O}_4)_2 + 2\,\text{H}_2\text{O}\,\text{über}\,\text{(T., Soobšč. nau.-tech. Rab. 13, 72)}.$ Die Doppelsalze werden durch Licht und durch Wasser zersetzt (T.).

Boroxalsäure C₂H₂O₄ + H₃BO₃ + 2 H₂O oder C₂H₂O₄ + HBO₂ + 3 H₂O. B. Man B kocht eine Lösung von 207 g Oxalsäure und 104 g Borsäure ¹/₂ Stde., kühlt mit Eise und filtriert kocht eine Lösung von 207 g Oxalsäure und 104 g Borsäure $\frac{1}{2}$ Stde., kühlt mit Eis und filtriert die Krystalle ab (CRETCHER, HIGHTOWER, J. am. pharm. Assoc. 13, 627; C. 1924 II, 2829). Prismen (aus Wasser). F: 90°. Zersetzt sich bei längerem Erhitzen auf 100—110°. Ist in Gegenwart von Mannit als dreibasische Säure titrierbar. — KHC₂O₄ + H₃BO₃ oder KHC₂O₄ + HBO₃ + H₂O. Diese Zusammensetzung kommt der von Wenner (Soc. 85, 1450) als K₄(BO)₂(C₂O₄)₂ + 3 H₂O (H 517) beschriebenen Verbindung zu (Cr., H., J. am. pharm. Assoc. 13, 626). Krystalle (aus Wasser). Leicht löslich in Wasser, unlöslich in den gebräuchlichen organischen Lösungsmitteln (Cr., H.). Wird bei längerem Behandeln mit kaltem Alkohol in die Komponenten gespalten (Cr., H.). Ist in Gegenwart von Mannit als zweibasische Säure titrierbar (Cr., H.). — K₂C₂O₄ + HBO₃. Vgl. darüber Cr., H., J. am. pharm. Assoc. 13, 628. 13, 628.

Aluminiumoxalate. Literatur: GmeLins Handbuch der anorganischen Chemie, Al 8. Aufl., Syst. Nr. 35: Aluminium, Teil B [Berlin 1934], S. 302, 355, 385, 486, 519, 528, 539, 576, 603, 607, 610. Zur Konstitution der komplexen Aluminiumoxalate vgl. A. WERNER. Neuere Anschauungen auf dem Gebiet der anorganischen Chemie, 5. Aufl. von P. PFEIFFER [Braunschweig 1923], S. 124, 155; WAHL, B. 60, 399; Comment. phys.-math. Helsingfors 4. Nr. 1, S. 1; C. 1929 II, 1277. — Diffusionserscheinungen in Schichtkrystallen aus Aluminiumchromoxalat und Aluminiumoxalat: Dittler, Z. anorg. Ch. 168, 311. Umsetzung von Aluminiumoxalat mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 249; C. 1924 I, 2874. — (NH₄)₂[Al(C₂O₄)₃] + 3 H₂O. a) Inaktive Form (H 517; E I 225). Ist dem optischen Verhalten der Krystalle zufolge triklin (Wahl, B. 60, 404). Verwittert sehr leicht an der Luft. Sehr leicht löslich in Wasser, fast unlöslich in Alkohol. — b) Rechtsdrehende Form. B. Aus der inakt. Form durch Umsetzung mit Strychninsulfat oder -nitrat in Wasser und Behandlung des Strychninsalzes mit Ammoniumjodid und wenig Wasser

(Waell, B. 60, 404, 406). Höchste beobachtete Drehung [α]_p: +20,35° (Wasser; p = 1). Rotationsdispersion: Wael. Racemisiert sich leicht in wäßr. Lösung. — Na₂[Al(C₂O₄)₂] + 5 H₂O (H 517; E I 225) (früher mit 4½, oder ½½, H₂O beschrieben). Zum Krystallwasser-Gehalt vgl. Burrows, Walker, Soc. 123, 2739, 2741. Kryoskopisches Verhalten in Wasser: B., Walker. Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: B., Walker. — K₂[Al(C₂O₄)₃] + 3 H₂O (H 517). B. Bei der Elektrolyse einer Lösung von Kaliumoxalat an einer Aluminium anode (Jeffer, Trans. Faraday Soc. 19, 54; C. 1934 I, 282). Krystallographische Untersuchung: Knaggs, Soc. 121, 2072. D[∞]_p: 2,026 (K.). Verwittert leicht an der Luft; sehr leicht löslich in Wasser, fast unlöslich in Alkohol (Wahl., B. 60, 401, 404). — Strychninsalz 3 C₂₁H₂₂O₂N₂ + H₂[Al(C₂O₄)₃] + 12 H₂O. Tafeln und Prismen (Wahl., B. 60, 404). [α]_p: −18,6° (50% iger Alkohol; p = 1). 1 l Wasser löst bei Zimmertemperatur ca. 12 g. Racemisiert sich beim Erwärmen mit Wasser.

Galliumoxalat $Ga_3(C_3O_4)_3 + 4H_3O$ (bei 120°). Hygroskopisches, mikrokrystallinisches Pulver. Zersetzt sich von ca. 160° an (TSCHAKIRIAN, C.r. 189, 251, 252). 100 Tle. kaltes Wasser lösen ca. 0,4 Tle. Sehr leicht löslich in Schwefelsäure. Wird durch Wasser leicht

hydrolysiert.

Thallium oxalate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 38: Thallium [Berlin 1940], 8. 403—409, 444, 460, 464, 467, 478, 495. — THC₂O₄ + H₂C₂O₄ + 2H₂O. B. Durch Einw. von wäßt. Oxalsäure-Lösung auf Thallium(I)-oarbonat (Carstanjen, J. pr. [1] 102 [1867], 138; Lamy, Des Cloizeaux, A. ch. [4] 17 [1869], 358; Poeter, Z. Kr. 66, 218) oder auf die Salze TiHC₂O₄ und Tl₂C₂O₄ (L., des C.). Krystalle. Triklin pinakoidal (L., des C.; P. Groth, Chemische Krystallographie, 3. Teil [Leipzig 1910], 8. 142; P., Z. Kr. 66, 229). D: 2,992 (P.), 2,921 (L., des C.). Bei 23° löst sich 1 Tl. in 1,3 Tln. Wasser (L., des C.); ziemlich leicht löslich in heißem Alkohol (Ca.). Zersetzt sich beim Erhitzen unter Abscheidung von Thallium und Entwicklung von Kohlenoxyd, Kohlendioxyd und Wasserdampf (Ca.). — THC₂O₄ (H 517). Kryoskopisches Verhalten in Wasser: Drucker, Ph. Ch. 96, 413. Elektrische Leitfähigkeit in Wasser bei 18°: D., Ph. Ch. 96, 406; Z. El. Ch. 26, 368. — Tl₂C₂O₄ (H 517; E I 225). Elektromotorische Kraft der Kette Tl-Hg/TINO₂/KNO₂/Tl₂C₂O₄/Tl-Hg: Drucker, Ph. Ch. 96, 407; Z. El. Ch. 26, 368. — Tl₂C₃O₄ + BaC₂O₄ + 2H₂O. Krystalle. Wird durch Wasser sofort zersetzt (Scholder, Gadenne, Niemann, B. 60, 1491).

Scandiumoxalat Sc₂(C₂O₄₎₂+6H₂O (H 518). B. Beim Fällen einer Lösung von Scandiumchlorid in warmer verdünnter Salzsäure mit warmer Oxalsäure-Lösung (Sterba-Börm, Skramovsky, Č. &l. Lékérn. 8, 212; C. 1929 I, 2399). — NH₄Sc(C₄O₄)₂+2H₂O. B. Man verdünnt 10 g 10 %ige Scandiumchlorid-Lösung auf 100 cm³, erwärmt auf dem Wasserbad, versetzt mit 5 g Ammoniumnitrat und 50 g 10 %iger Oxalsäure-Lösung und läßt 3—4 Stdn. im Wasserbad stehen (Sr.-B., Škr., Č. &l. Lékérn. 8, 212; C. 1929 I, 2399). Man erwärmt eine Lösung von 5,5 g Scandiumchlorid in 250 g Wasser und versetzt mit 10 cm³ etwa 30 %iger Salzsäure und 16 g Ammoniumoxalat in 250 g heißem Wasser (Sr.-B., Škr.). Krystalle. Beständig an der Luft und bei 100°. Sehr schwer löslich in Wasser, leicht in Ammoniumoxalat-Lösung; scheidet sich daraus unverändert aus. — NaSc(C₄O₄)₂+3H₄O. B. Man löst 1 g Scandiumoxalat und 1,6 g Natriumoxalat in 120 cm³ heißem Wasser, versetzt die siedende Lösung tropfenweise mit 1,5 cm³ 30 %iger Salzsäure und erwärmt längere Zeit im Wasserbad (Sr.-B., Škr., Č. &l. Lékárn. 8, 213; C. 1929 I, 2399). Mikroskopische Krystalle. In Wasser leichter löslich und an der Luft weniger beständig als das Kalium- und Ammoniumsalz Verliert über Calciumchlorid einen Teil des Wassers. — KSc(C₄O₄)₂+2H₂O. B. Beim Erwärmen einer Lösung aus 1 g Scandiumoxalat, 40 cm³ 30 %iger Salzsäure. 20 g Kaliumnitrat, 2 g saurem Kaliumoxalat und 170 g Wasser im Wasserbad (Šr.-B., Škr., Č. &l. Lékárn. 8, 213; C. 1929 I, 2399). Mikroskopische Krystalle. Beständig an der Luft. Verwittert bei höherer Temperatur. Sehr schwer löslich in Wasser, leicht in Alkalicarbonat- und Alkalioxalat-Lösungen. Ist weniger beständig als das Ammoniumsalz. — Na₂Sc(C₄O₄)₂+5H₄O. B. Durch Einw. einer gesättigten Kaliumoxalat und 3 g Natriumoxalat in 100 g Wasser bei 2—3-tägigem Erwärmen im Wassers die Lösung ist such in der Wärme beständig, Wird durch Salzsäure unter Bildung von Scandiumoxalat Lösung auf Scandiumoxalat in der Kälte (Šr.-B., Škr., Č. &l. Lékár

Yttriumoxalat $Y_3(C_2O_4)_2 + aq$ (H 518; E I 225). Löslichkeit in verd. Salpetersäure W; Lund in verd. Salpetersäure + Oxalsäure bei 90°: Neckers, Kremers, Am. Soc. 50, 953. — Lanthanoxalat La₂(C₂O₄)₂ + aq (H 518; E I 225). 1 l gesättigte wäßrige Lösung enthält bei 25° 2,06—2,14 mg wasserfreies Salz; Löslichkeit in verd. Salzsäure, Salpetersäure und Schwefelsäure und in verd. Salzsäure + Oxalsäure und verd. Salpetersäure + Oxalsäure bei 250: SARVER, BRINTON, Am. Soc. 49, 950, 952; in verd. Salpetersäure und in verd. Salpetersăure + Oxalsăure bei 90°: N., K., Am. Soc. 50, 953.

Cer(III) - oxalat Ce₂(C₂O₄)₈ + aq (H 518; EI 225). 11 gesättigte wäßrige Lösung ent. Ce hält bei 25° 0,80—1,09 mg wasserfreies Salz. Löslichkeit in verd. Salzsäure, Salpetersäure und Schwefelsäure und in verd. Salzsäure + Oxalsäure und verd. Salpetersäure + Oxalsäure bei 25°: Sarver, Brinton, Am. Soc. 49, 950, 952. — CeCl(C₂O₄) + 3 H₂O. Krystalle (Dede, Faber, B. 60, 1655). Gibt von 130° an Krystallwasser ab, wird aber erst bei 190—210° vollkommen wasserfrei. Unlöslich in organischen Lösungsmitteln, löslich in heißer, konzentrierter Salzsäure, verd. Schwefelsäure und verd. Salpetersäure. Wird durch kaltes Wasser nicht verändert, durch siedendes Wasser zersetzt. Läßt sich aus rauchender Salzsäure unzersetzt umkrystallisieren. — $Ce_2Cl_4(C_2O_4) + 8H_2O$. Krystalle (D., F., B. 60, 1656). Gibt beim Erhitzen auf 90—130° ca. 6 H_2O , den Rest erst bei 200° ab. Löslich in verd. Salpetersäure. verd. Schwefelsäure und in konz. Cer(III)-chlorid-Lösung. Zersetzt sich bei der Einw. von kaltem Wasser unter Bildung von Cer(III)-oxalat; zersetzt sich auch bei der Einw. von Alkohol. Ce₃Cl₄(C₃O₄) + 14 H₃O. Krystalle (D., F., B. 60, 1657). Praseodymoxalat $Pr_3(C_3O_4)_3$ (H 519; E I 225). Krystallisiert nach Ephraim, Bloch, Pr; 1

(B. 61, 79) mit 9 H.O. Reflexionsspektrum des entwässerten und des wasserhaltigen Salzes: E., B., B. 61, 80. 1 l gesättigte wäßrige Lösung enthält bei 25° 1,49—2,15 mg wasserfreies Salz; Löslichkeit in verd. Salzsäure, Salpetersäure und Schwefelsäure und in verd. Salzsäure + Oxalsaure und verd. Salpetersaure + Oxalsaure bei 25°: Sarver, Brinton, Am. Soc. 49. 950, 952; in verd. Salpetersäure und in verd. Salpetersäure + Oxalsäure bei 90°: NECKERS. Kremers, Am. Soc. 50, 953. Thermische Zersetzung im Sauerstoffstrom: Synda, Ö. &l. Lékárn. 7, 230; C. 1928 I, 1162. — Neodymoxalat Nd₄(C₄O₄)₃ + 10H₂O (H 519; E I 225). Reflexionsspektrum: Ephraim, Râx, B. 62, 1524. 11 gesättigte wäßrige Lösung enthält bei 25° 1,48—1,98 mg wasserfreies Salz; Löslichkeit in verd. Salzsäure, Salpetersäure und Schwefelsäure und in verd. Salpetersäure + Oxalsäure und verd. Salzsäure + Oxalsäure Schwerelsaure und in verd. Salpetersaure + Oxalsaure und verd. Salzsaure + Oxalsaure bei 25°: Sarver, Br., Am. Soc. 49, 950, 952; in verd. Salpetersäure und in verd. Salpetersäure + Oxalsäure bei 90°: Ne., Kr., Am. Soc. 50, 953. Thermische Zersetzung im Sauerstoffstrom: Švépa, Č. čsl. Lékárn. 7, 230; C. 1928 I, 1162. — Samariumoxalat Sm₂(C₂O₃)₃ Sm; 1 + 10 H₂O (H 519; E I 225). Reflexionsspektrum: E., R., B. 62, 1650. 1 l gesättigte wäßrige Gd; Lösung enthält bei 25° 1,37—1,48 mg wasserfreies Salz; Löslichkeit in verd. Salzsäure, Salpetersäure und Schwefelsäure und in verd. Salzsäure + Oxalsäure und verd. Salpetersäure + Oxalsäure verd. säure bei 25°: SARVER, BR., Am. Soc. 49, 950, 952; in verd. Salpetersäure und in verd. Salpetersäure+Oxalsäure bei 90°: NE., Kr., Am. Soc. 50, 953. – Europiumoxalat Eu₂(C₂O₄)₃+10H₂O. Krystallinisch. Gibt bei 100° 5 H₂O ab (Sarkar, Bl. [4] 41, 185, 186; A. ch. [10] 8, 253). – KEu(C₂O₄)₂+2H₂O. Krystallinisch (SARKAR, A. ch. [10] 8, 257).— Gadoliniumoxalat Gd₂(C₂O₄)₃ + 10 H₂O (H 519; E I 225). Löslichkeit in verd. Salzsäure, Salpetersäure und GG₂(C₂O₄)₂ + 10 H₂O (H 519; E I 225). Losiichkeit in verd. Salzsaure, Salpetersaure und Schwefelsäure und in verd. Salzsaure + Oxalsäure und verd. Salpetersaure + Oxalsäure bei 25°: Sarver, Brinton, Am. Soc. 49, 952. — KGd(C₂O₄)₂ + 4 H₂O. Krystallinisch. Fast unlöslich in Wasser, leicht löslich in verd. Schwefelsäure (Sarkar, Bl. [4] 39, 1394; A. ch. [10] 8, 245). — Dysprosiumoxalat Dy₂(C₂O₄)₃ + 10 H₂O (E I 226). Löslichkeit in verd. Salpetersäure und in verd. Salpetersäure bei 90°: Ne., Kr., Am. Soc. 50, 953. Thoriumoxalat Th(C₂O₄)₂ + 6 H₂O (H 520; E I 226). B. Aus Thoriumnitrat und Oxal- Th säure in wäßr. Lösung bei 30° und in der Siedehitze (Chatterle, Dhar, J. phys. Chem. 28, 1024). Empigryorgrößen von unter verschiedenen Redingungen hergestellten Redin

28, 1021). Emaniervermögen von unter verschiedenen Bedingungen hergestellten, Radio-

thorium enthaltenden Thoriumoxalat-Niederschlägen: Hahn, A. 462, 174.

Zinn(II)-oxalat SnC₂O₄ (H 520; E I 226). Umsetzung mit Natriumcarbonat-Lösung: Sn Curtman, Hart, Chem. N. 128, 250; C. 1924 I, 2874. — K₂Sn(C₂O₄)₂ + H₂O (H 520). B. Bei der Elektrolyse von Kaliumoxalat-Lösung an einer Zinnanode (JEFFERY, Trans. Faraday Soc. 20, 397; C. 1925 I, 2612). — Komplexe Zinn(IV)-oxalate: Sn(C₂O₄Na)₄+3H₂O. Krystalle (Elöd, Kolbach, Z. anorg. Ch. 164, 309). — SnCl₃(C₂O₄NH₄)₂+H₂O. Krystalle (E., K., Z. anorg. Ch. 164, 306). — SnCl₃(C₂O₄K)₂+H₂O. Krystalle (E., K., Z. anorg. Ch. 164, 308).

Bleioxalat PbC₂O₄ (H 520). B. Über Bildung bei der Einw. von Oxalsäure auf Pb Lösungen von Bleijodid oder Bleinitrat vgl. Demassieux, C. r. 185, 461. Röntgenogramm: MATHIEU, Bl. [4] 45, 1002 (Tafel). Verfärbt sich bei längerer Einw. von tropischem Sonnenlicht (SANYAL, DHAR, Z. anorg. Ch. 128, 215). Bei der thermischen Zersetzung von Bleioxalat unter gewöhnlichem oder vermindertem Druck entsteht neben Kohlenoxyd und Kohlendioxyd nicht, wie früher angenommen wurde, Bleisuboxyd Pb.O, sondern ein Gemisch von Bleioxyd und metallischem Blei, das unter bestimmten Reaktionsbedingungen auch

Bleicarbonat enthält (Švéda, Chem. Listy 17, 49, 81, 112; C. 1924 I, 2874; VAN ARKEL, R. 44, 652; Aufenast, Terrey, Soc. 1926, 1548; vgl. Boussingault, A.ch. [2] 54 [1833], 264; Winkelblech, J. pr. [1] 10 [1837], 227; Pelouze, A. 42 [1842], 207; Maumená, Bl. [2] 13 [1870], 194; Tanatar, Z. anorg. Ch. 27 [1901], 227; Herschkowitsch, Z. anorg. Ch. 115, 164). Bleioxalat wird durch Wasser praktisch nicht hydrolysiert (Kosakewitsch, Ph. Ch. 108, 285). Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 250; C. 1924 I, 2874. Mikroskopischer Nachweis in "Bleiaubxyd": Blom, Ch. Z. 49. 1057; C. 1926 I, 1455. — (PbCl)₂C₂O₄. B. Durch Einw. von 1 Mol Oxalsäure auf 2 Mol Bleichlorid in Wasser (Demassieux, C. r. 185, 460; 189, 536; Bl. [4] 45, 995, 998). Röntgenogramm: Mathieu, C. r. 189, 536; Bl. [4] 45, 1002. Geht bei weiterer Einw. von Oxalsäure in Bleioxalat über. — (PbBr)₂C₂O₄. B. Analog dem vorangehenden Salz (D., C. r. 185, 460; 189, 536; Bl. [4] 45, 996, 999). Röntgenogramm: M., C. r. 189, 536; Bl. [4] 45, 1002. — [Pb₂C₂O₄](ClO₄)₂ + 3 H₂O. B. Beim Auflösen von Bleioxalat in heißer 50%iger Überchlorsäure (Winkland, Pault, Z. anorg. Ch. 129, 252). Tafeln. Verpufft beim Erhitzen schwach. — [Pb₂C₂O₄](NO₃)₂ + 2 H₂O. B. Beim Auflösen von Bleioxalat in heißer 30%iger Salpetersäure (W., P.). Blättchen. — [Pb₄(C₂O₄)₃](ClO₄)₂ + 5 H₂O. B. Beim Auflösen von Bleioxalat in heißer 30%iger Salpetersäure (W., P.). Blättchen. — [Pb₄(C₂O₄+4 H₃O. B. Beim Eintragen von Bleioxalat in gesättigte Kaliumoxalat-Lösung bei gewöhnlicher Temperatur (Sch., G., N.). Nadeln. Wird durch Wasser sofort zersetzt. — 2 PbC₂O₄ + Rb₂C₂O₄ + 2 H₂O. B. Beim Eintragen von Bleioxalat in heiße Rubidiumoxalat-Lösung (Sch., G., N.). Krystalle. Wird durch Wasser sofort zersetzt. — 2 PbC₂O₄ + Rb₂C₂O₄ + 2 H₂O. B. Beim Eintragen von Bleioxalat in kalte Rubidiumoxalat-Lösung (Sch., G., N.). Nadeln. Wird durch Wasser sofort zersetzt. — 2 PbC₂O₄ + 2 H₂O. B. Analog dem v

K₃[Sb(C₂O₄)₃] + aq (H 521; E I 226). Krystallisiert nach Holmes, Turner (Soc. 127, 1753) aus Wasser unterhalb 50° in Nadeln mit 2H₂O. Wird bei 140° nicht völlig wasserfrei (H., T.). Absorptionsspektrum in Lösung im sichtbaren und ultravioletten Gebiet: Lifschitz, Rosenbohm, Z. wiss. Phot. 19, 205; C. 1920 I, 792. Wird durch Wasser oberhalb 50° hydrolysiert (H., T.). — (SbCl₄)₂C₂O₄ (H 521). B. Durch Einw. von Antimonpentachlorid auf Dimethyloxalat oder Diäthyloxalat in siedendem Chloroform (Pfeiffer, Z. anorg. Ch. 133,

105, 106). F: 143°.

BiWismutoxalate. Literatur: Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 19: Wismut [Berlin 1927], S. 181. — $Bi_4(C_4O_4)_3 + aq$ (H 521): $Bi_4(C_2O_4)_3 + H_4O$. B. Beim Erhitzen des Heptahydrats auf 130—150 6 (Moles, Portillo, An. Soc. españ. 21, 402; 22, 188; C. 1924 I, 881; II, 608); man erhält hierbei je nach der Art der Darstellung des Heptahydrats Produkte, die sich durch ihre rosa bis ziegelrote Färbung, durch die Geschwindigkeit der Wasseraufnahme an feuchter Luft und durch die Natur der dabei entstehenden Endprodukte unterscheiden. — $Bi_2(C_2O_4)_3 + 6H_2O$. Krystalle (aus mit Oxalsaure gesättigter, ca. 1n-Salzsäure) (Keschan, Fr. 67, 82). Löslichkeit in verd. Salpetersäure: K. — $\text{Bi}_2(\text{C}_2\text{O}_4)_3 + 7\text{H}_2\text{O}$ (Moles, Portillo, An. Soc. españ. 21, 404; C. 1924 I, 881). Je nach der Art der Darstellung krystallinisches oder mehr oder weniger amorphes Pulver. Das durch Fällung von Wismutsalzen mit Oxalaten dargestellte Heptahydrat ist im Vakuum über Schwefelsäure beständig, während das aus dem Monohydrat durch Aufnahme von Wasser erhaltene unter denselben Bedingungen 3H2O abgibt und das Wasser vermutlich in anderer Form gebunden enthält (M., P., An. Soc. spañ. 22, 194; C. 1924 II, 608). Durch Fällung erhaltenes Heptahydrat gibt bei 130—150° 6 H₂O ab (M., P., An. Soc. españ. 21, 402). — Wismutoxalat färbt sich bei der Einw. von tropischem Sonnenlicht unter gleichzeitiger Abgabe von 3H2O dunkel; die Färbung verschwindet beim Erhitzen im Dunkeln größtenteils wieder (Sanyal, Dhar, Z. anorg. Ch. 128, 216). Umsetzung mit Natriumcarbonat-Lösung: CURTMAN, HART, Chem. N. 128, 250; C. 1924 I, 2874. — Basisches Wismutoxalat (BiO)HC₂O₄ + $\frac{1}{2}$ H₂O (vgl. H 521). B. Bei der Einw. von Wasser auf Bi₂(C₄O₄)₃ + H₄O oder Bi₄(C₂O₄)₃ + 7H₂O (Moles, Portillo, An. Soc. españ. 21, 408). Niederschlag. Färbt sich beim Erhitzen auf 130—150° schwach grau (M., P.). Löslichkeit in verd. Salpetersäure: KESCHAN, Fr. 67, 82.

Komplexe Chrom(III)-oxalate: $[Cr(NH_3)_6]_2(C_2O_4)_3 + 4H_2O$ (H 522). Bei 17,5° lösen sich 0,00084 Mol in 1 l Wasser (Ephraim, Mosimann, B. 55, 1617). — $[Cr(NH_3)_5Cl]C_2O_4$ (H 522). Bei 0° lösen sich 0,00125 Mol in 1 l Wasser (Brönsted, Petersen, Am. Soc. 43, 2269). Löslichkeit in wäßr. Lösungen von Magnesiumsulfat und Kaliumformiat bei 0°: B., P., Am. Soc. 43, 2281, 2282. — $[Cr(NH_3)_5(OH)]C_3O_4 + 2H_2O$. B. Durch Einw. von Ammoniumoxalat auf eine Lösung von $[Cr(NH_3)_5(OH)]OH_3$ (King, Soc. 127, 2105). Ross Nadeln. Leicht löslich in Wasser mit schwach alkalischer Reaktion. Elektrische Leitfähigkeit in Wasser bei 25°: K., Soc. 127, 2107. — $[Cr(NH_3)_5(H_2O)]_3(C_2O_4)_3 + 4H_3O$. B. Durch Einw.

493

von 3 Mol Oxalsäure auf eine Lösung von [Cr(NH₂)₅(OH)]₂(OH)₂ (King, Soc. 127, 2101). Orangefarbene Tafeln. Verliert bei mehrtägigem Trocknen im Vakuum über Phosphorpentoxyd das Krystallwasser und einen geringen Teil des Ammoniaks; zersetzt sich bei

3-stdg. Erhitzen auf 100°.

Salze Me₃[Cr(C₂O₄)₃]. Zur Konstitution vgl. die bei Aluminiumoxalat (S. 489) zitierte Literatur. Potentiometrische Titration einer Lösung von $2H_3[Cr(C_2O_4)_3] \rightleftharpoons 3H_2C_2O_4 + Cr_4(C_2O_4)_3$ mit 0,1 n-Natronlauge: Britton, Soc. 1926, 279, 280. Anderung des Absorptionsspektrums der Lösung während der Titration: Br., Soc. 1926, 281. — $(NH_4)_3[Cr(C_2O_4)_3]$ + 3H₂O (H 522). Abgabe des Krystallwassers über Schwefelsäure verschiedener Konzentration und Verlauf der Dampfdruckkurve bei 25°: Palkin, Ж. 61, 2135; C. 1930 II. 534. Kryoskopisches Verhalten in Wasser: Burrows, Walker, Soc. 123, 2741. Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: Bu., W. — Na₃[Cr(C₂O₄)₃] (H 522). Krystallisiert nach Burrows, Walker (Soc. 123, 2739, 2740) und Bergman (Ж. 56, 206; C. 1926 I, 1097) mit 5 H₂O. Aus dem Verlauf der Abgabe des Krystallwassers über Schwefelsäure verschiedener Konzentration und dem Gang der Dampfdruckkurve bei 25° schließt Bergman auf die Existenz eines Hydrats mit 4 H₂O; ein Hydrat mit 4¹/₂ H₂O existiert nicht. Kryoskopisches Verhalten in Wasser: Bu., W., Soc. 123, 2741. Elektrische Leitfähigkeit in Wasser bei 25°: Bu., W. Zersetzt sich oberhalb 1280; hinterläßt beim Glühen Natriumchromat und Natriumcarbonat (BE.). — Inaktives Kaliumsalz $K_3[Cr(C_2O_4)_3] + 3H_2O$ (H 522; E I 226). Darstellung aus Chromtrioxyd, Kaliumoxalat und überschüssiger Oxalsäure: Britton, Soc. 1926, 282. Aus dem Verlauf der Abgabe des Krystallwassers über Schwefelsäure verschiedener Konzentration und dem Gang der Dampfdruckkurve bei 15° schließt Bergman (Ж. 56, 205; C. 1926 I, 1097), daß nur Hydrate mit 2 und 2,5 H₂O existieren; das Hydrat mit 2,5 H₂O bildet feste Lösungen mit Wasser, das Dihydrat bildet feste Lösungen mit dem wasserfreien Salz. Das wasserfreie Salz nimmt über ca. 20% iger Schwefelsäure das gesamte abgegebene Wasser wieder auf; es zersetzt sich beim Glühen unter Bildung von Kaliumchromat und Kaliumcarbonat (BE.). Absorptionsspektrum in Lösung im sichtbaren und ultravioletten Gebiet: Lifschitz, Rosenbohm, Z. wiss. Phot. 19, 204; C. 1920 I, 792. Magnetische Susceptibilität: Berkman, Zocher, Ph. Ch. 124, 324; Welo, Phil. Mag. [7] 6, 497; C. 1928 II, 2626. Elektrische Leitfähigkeit einer wäßr. Lösung bei hoher Spannung: Wien, Ann. Phys. 2020. Eiektrische Leitlanigkeit einer wahr. Lösung bei noner Spannung: WIEN, Ann. Phys. [4] 83, 347. Zeitliche Änderung des p_H der währ. Lösung: Britton, Soc. 1926, 283. Zersetzung durch Natronlauge: Br. — Rechtsdrehendes Kaliumsalz K₃[Cr(C₂O₄)₃] + H₂O (E I 226). Absorptionsspektrum im sichtbaren Gebiet in Wasser: Rideal, Thomas, Soc. 121, 197; Lifschitz, Rosenbohm, Z. wiss. Phot. 19, 210; C. 1920 I, 792; in währ. Aceton: Ri., Th. Rotationsdispersion in währ. Lösung: Li., Ro. Elektrische Leitfähigkeit in Wasser und in währ. Aceton bei 25°: Ri., Th., Soc. 121, 201. Elektromotorische Kraft der Kette Ag/K₃[Cr(C₂O₄)₃] + Ag₅C₂O₄/KNO₃/O₃/1 n-AgNO₃/Ag: Thomas, Fraser, Soc. 123, 2975. Geschwindigkeit der Racemisierung in währ. Lösung zwischen 0° und 24° und 19 währ. Aceton bei 22° Ri. Th. Soc. 121, 400, 200. zur Bacamisierung zwischen 0° und 24° und programmen währ Aceton bei 22° Ri. Th. Soc. 121, 400, 200. zur Bacamisierung zwischen 7° Programmen von 24° und in wäßr. Aceton bei 220: Ri., Th., Soc. 121, 199, 200; zur Racemisierung vgl. a. Th., Fr., Nadeln (Burron, Soc. 1926, 283. — Ba₃[Cr(C₂O₄)₃]₂ + 12 H₂O (H 522; vgl. a. E I 226). Violette Nadeln (Burrows, Walker, Soc. 123, 2740). — Ba(NH₄)[Cr(C₂O₄)₃] + 3 H₂O. Nadeln (aus Wasser) (Bu., W., Soc. 123, 2740). — [Cr(NH₃)₆][Cr(C₂O₄)₃] + 3 H₂O (H 523). Dichroitisch (kornblumenblau und olivgrün bis olivbraun) (Steinmetz, Z. Kr. 57, 249). —

 $\begin{array}{l} [\text{Co(NH}_3)_6][\text{Cr(C}_2\text{O}_4)_3] + 3\text{H}_2\text{O s. S. } 497. \\ \text{Salze Me[Cr(C}_2\text{O}_4)_2(\text{H}_2\text{O})_3] \text{ (vgl. H 523; E I 227). Uber Umwandlungen von Salzen} \end{array}$ der cis-Reihe in Salze der trans-Reihe und umgekehrt vgl. Werner, A. 406 [1914], 305; Meisenheimer, A. 438, 219, 226. — cis-Na[Cr(C₂O₄)₂(H₂O)₂]. B. Durch Eintragen von 7 Mol gesättigter Oxalsäure-Lösung in eine heiße konzentrierte Lösung von 1 Mol Natriumdichromat und nachfolgendes ¹/₂-stündiges Kochen (Gustavson, Am. Soc. 48, 2964; vgl. G., J. am. Leather Chem. Assoc. 20, 384; C. 1926 I, 3640). Abhängigkeit der Aufnahme durch Hautpulver vom p_H der Lösung: G. — Pyridinsalze $C_5H_5N + H[Cr(C_2O_4)_2(H_2O)_2]$ der cis- und trans-Reihe s. bei Pyridin, Syst. Nr. 3051.

Chlorooxalatotriamminchrom [CrCl(C_2O_4)(NH $_3$) $_3$]. B. Beim Erwärmen von grünem unlöslichem Trichlorotriamminchrom mit wäßr. Lösungen von Oxalsäure oder Oxalaten (Schlesinger, Werner, Am. Soc. 51, 3522). Ziegelrotes mikrokrystallines Pulver. Unlöslich in Wasser und Säuren (Sch., W.). Geht beim Erwärmen mit konz. Salzsäure wieder in grünes unlösliches Trichlorotriamminchrom über (Sch., W.). Gibt bei der Einw. von Chlorwasserstoff bei 190° eine Verbindung der Zusammensetzung (NH₄)₃C₃O₄ + 2CrCl₃ + 4NH₄Cl (Sch., W.). Einw. von Bromwasserstoffsäure (D: 1,2) und Jodwasserstoffsäure (D: 1,50): Sch.,

RICKLES, Am. Soc. 51, 3524.

Komplexe Chrom(III) oxalate, die Anilin, Pyridin und Cinchonin im Komplex enthalten, s. bei diesen Basen (Syst. Nr. 1598, 3051 und 3513).

Molybdanoxalate (H 524; E I 228). Literatur: GMELINS Handbuch der anorganischen Mo Chemie, S. Aufl., Syst. Nr. 53; Molybdän [Berlin 1935], S. 197, 244, 270, 278, 324, 381.

Nachweis von Molybdänsäure-Komplexen der Oxalsäure durch potentiometrische Titration: Honnelattre, A.ch. [10] 3, 51. — Molybdän(III)-oxalate: Mo₂O(C₂O₄)₂+6H₂O. B. Aus Oxalsäure beim Kochen mit Molybdän(III)-hydroxyd im Stickstoffstrom und nachfolgender elektrolytischer Reduktion (Wardlaw, Parker, Soc. 127, 1314; vgl. a. Bucknall, Carter, W., Soc. 1927, 519). Braun. Sehr unbeständig an der Luft. Leicht löslich in kaltem Wasser mit goldbrauner Farbe; die Lösung wird an der Luft hellrot und scheidet beim Erwärmen einen rotbraunen Niederschlag ab. Unlöslich in den üblichen organischen Lösungsmitteln. Reduziert Eisen(III)-salz-, Kupfersalz- und Silbersalz-Lösungen. Gibt beim Erwärmen mit konz. Schwefelsäure eine rote Lösung, die beim Verdünnen mit Wasser grüngelb wird und stark reduzierende Eigenschaften aufweist. — Mo₄O₃(C₂O₄)₅ + 12H₂O. Hellrotbraun. Unlöslich in Wasser und den üblichen organischen Lösungsmitteln (Wardlaw, Parker, Soc. 127, 1315). Leicht löslich in heißer konzentrierter Salzsäure und kalter konzentrierter Schwefelsäure mit rotbrauner Farbe. Die Lösung in warmer verdünnter Salpetersäure ist

hellrot und wird beim Kochen an der Luft entfärbt. Die Suspension in Wasser zeigt stark reduzierende Eigenschaften. Wird durch Alkali nicht gelöst, in der Kälte aber rotviolett

und in der Hitze schwarz gefärbt.

Molybdän(IV) oxalate: MoO(C₃O₄) + 3H₂O. Zur Konfiguration vgl. Spittle, Wardlaw, Soc. 1929, 792. Äußerst hygroskopisches rotes Pulver. Leicht löslich in Wasser mit fuchsinroter Farbe; die Lösung wird durch Alkalien blau gefärbt (W., Parker, Soc. 197, 1316). Schlägt allmählich aus Kupfersalz- und Silbersalz- Lösungen das Metall nieder, reduziert rasch Eisen(III)-salze (W., P.). — MoO(C₂O₄) + 2 oder 3 H₂O. B. Aus wäßr. Lösungen von Mo₄O₅(C₂O₄)₂ + 10H₂O oder Mo₅O₆(C₂O₄)₄ (s. u.) und Oxalsäure (Sp., W., Soc. 1929, 798). Rotbraune Masse. Liefert bei der Hydrolyse Mo₄O₅(C₂O₄)₃ + 10H₂O und Mo₅O₆(C₂O₄)₄. — Mo₅O₆(C₂O₄)₄. Rotbraune Krystalle. Leicht löslich in Wasser mit roter Farbe, unlöslich in Aceton und Alkohol (Sp., W., Soc. 1929, 798). — Mo₄O₅(C₂O₄)₃ + 10H₂O. Hellbrauner Niederschlag (Sp., W.). — (NH₄)₂[Mo₃O₄(C₂O₄)₃(H₂O)₅] + 1,5C₂H₅· OH. Purpurrote Krystalle. Leicht löslich in Wasser mit hellroter Farbe, unlöslich in Alkohol und Aceton; die wäßr. Lösung wird durch Hinzufügen von Alkali oder Ammoniumoxalat blau, nach dem Ansäuern wieder rot (Sp., W., Soc. 1929, 796). Die wäßr. Lösung reduziert Silbernitrat und Bleiacetat. Wird durch heiße Kalilauge oder Natronlauge zersetzt. Elektrische Leitfähigkeit einer wäßr. Lösung wird durch Hinzufügen von Alkali oder Ammoniumoxalat blau, nach dem Ansäuern wieder rot (Sp., W., Soc. 1929, 795, 796). Die wäßr. Lösung reduziert Silbernitrat und Bleiacetat. Wird durch heiße Kalilauge oder Natronlauge zersetzt.

Molybdän(V)-oxalate. Das Mol.-Gew. dieser Verbindungen wurde teilweise kryoskopisch in Wasser bestimmt (SPITTLE, WARDLAW, Soc. 1928, 2749). — Mo₃O₃(C₂O₄)₂ + 4 H₂O. B. Bei gelindem Kochen von Ba[MoO₂(C₂O₄)]₂ + 5 H₂O (s. u.) mit verd. Schwefelsäure in einer Stickstoffatmosphäre (Sr., W., Soc. 1928, 2747). Blaßgelb. Ist in trocknem Zustand luftbeständig. Unlöslich in kaltem Wasser, konz. Salzsäure und Salpetersäure, löslich in warmer Salzsäure mit grüner Farbe, in verd. Ammoniak oder verd. Alkalilaugen mit roter Farbe. Die Suspension in kaltem Wasser reagiert sauer. Löst sich in heißem Wasser unter gleichzeitiger Oxydation. — NH₄[MoO₃(C₂O₄)(H₂O)]. Rote Krusten (Sr., W., Soc. 1928, 2746). — NH₄[MoO₃(C₄O₄)(H₂O)] + 0,5 H₂O. Gelbes Pulver. Leitfähigkeit in Wasser bei 25°: Sp., W., Soc. 1928, 2745, 2751. — NH₄[MoO₃(C₂O₄)(H₂O)] + 1,5 H₂O. Orangefarbene Krystalle (Sr., W., Soc. 1928, 2745). Zeigt dieselben Eigenschaften wie das Bariumsalz. — K[MoO₃(C₂O₄)(H₂O)] + 0,5 H₂O. Gelbes Pulver. Leitfähigkeit in Wasser bei 25°: Sp., W., Soc. 1928, 2745, 2751. — K[MoO₃(C₂O₄)(H₂O)] + 1,5 H₂O. Rote Krystalle (Sr., W., Soc. 1928, 2745, 2751. — K[MoO₄(C₂O₄)(H₂O)] + 1,5 H₂O. Rote Krystalle (Sr., W., Soc. 1928, 2745; vgl. a. Ballhache, C.r. 135 [1902], 862; Bl. [3] 29 [1903], 162; 33 [1905], 442). — K[MoO₄(C₂O₄)(H₂O)] + 2,5 H₂O. Gelbe Nadeln. Zeitg dieselben Eigenschaften wie das Bariumsalz (Sr., W., Soc. 1928, 2745). — Ba[MoO₃(C₂O₄)(H₂O)]₂ + 3 H₂O. B. Durch Erwärmen von (NH₄)₂MoOCl₅ mit wäßr. Oxalsäure-Lösung und Kochen der roten Lösung mit Bariumchlorid-Lösung (James, Wardlaw, Soc. 1927, 2152; Spittle, W., Soc. 1928, 2744; vgl. a. Ballhache, C.r. 135 [1902], 864; Bl. [3] 29 [1903], 165; 33 [1905], 440). Bildet sich analog bei Anwendung von (C₂H₄N)₂[MoOCl₅] oder (C₂H₈N)₂[MoOCl₅] (Sr., W.). Rote Krystalle. Ist in trooknem Zustand an der Luft beständig, wird in Wasser allmählich oxydiert. Unlöslich in Alkohol,

Wolframsäureoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 54: Wolfram [Berlin 1933], S. 332, 338. — K₈W₄O₉(C₂O₄)₄ + aq (E I 228). Bei der Elektrolyse der wäßr. Lösungen an Platinelektroden bilden sich niedere Oxyde des Wolframs (NEUMANN, RICHTER, Z. El. Ch. 30, 475).

W

Uran(IV)-oxalate und Uranyloxalate. Literatur: GMELINS Handbuch der anorga- Unischen Chemie, 8. Aufl., Syst. Nr. 55: Uran [Berlin 1936], S. 166, 187, 195, 208, 219, 225, 227, 228, 231, 232, 235, 238, 239. — Uranyloxalate: UO₂(C₂O₄) + 2 H₂O. B. Beim Belichten eines Gemisches aus Diäthyläther, Uranylnitrat und Wasser mit Sonnenlicht (Rowell, Russell, Soc. 127, 2900). Gelber Niederschlag. — UO₂(C₂O₄) + 3 H₂O (H 525; E I 228). Zur Abgabe des Krystallwassers und Rückbildung aus den niedrigeren Hydratationsstufen vgl. Colani, Bl. [4] 37, 856; RAYNAUD, Bl. [4] 37, 1375. Verfärbt sich beim Erhitzen bis auf 300° nur wenig (A. MÜLLER, Z. anorg. Ch. 109, 249). Löslichkeit (g in 100 g Lösung) bei 11°: 0,45, bei 15°: 0,47, bei 20°: 0,50, bei 50°: 1,00, bei 75°: 1,65, bei 100°: 3,06 (C., Bl. [4] 37, 858); die Löslichkeit in Wasser wird durch Mineralsäuren und durch Oxalsäure erhöht (C.). Schwer löslich in Alkohol, unlöslich in Ather und Aceton (M.). Löslichkeitsdiagramm des Systems Uranyloxalat-Oxalsăure-Wasser bei 15° : C., Bl. (4) 37, 1860. Photochemische Zersetzung von Uranyloxalat s. S. 478. — $UO_3(C_2O_4) + U(OH)_4 + 2H_4O(?)$. B. Wurde bisweilen beim Belichten eines Gemischs aus Diäthyläther, Uranylnitrat und Wasser mit Sonnenlicht erhalten (Rowell, Russell, Soc. 1927, 2901; vgl. F. Soddy, Die Chemie der Radioelemente, deutsch von M. Iklá [Leipzig 1912], I. Teil, S. 66). Gelb. Löslich in Ammoniumcarbonat-Lösung (S.).

Losung (S.).

Manganoxalate: MnC₂O₄ + 2 H₂O (H 526). Darstellung durch Reduktion von Kaliumpermanganat mit überschüssiger Oxalsäure oder durch Umsetzung von Mangan(II)-salzen mit Oxalaten: Coltman, Ind. Eng. Chem. 16, 607, 608; C. 1924 II, 1489. Das reine Salz ist völlig farbloe; Mikrophotographie der Krystalle: Co. D⁶: 2,295 (Chamberlain, Hume, Topley, Soc. 1926, 2623). Die gesättigte wäßrige Lösung enthält bei 36° 0,375, bei 93° 0,78 g wasserfreies Salz in 1 l (Chatterjee, Dhar, J. phys. Chem. 28, 1019); Löslichkeit in Wasser (g wasserfreies Salz in 1000 g Lösung) zwischen 0,0° (0,198) und 36,0° (0,369): Cham., H., T., Soc. 1926, 2621. Prüfung auf Reinheit: Co. — MnC₂O₄ + 3 H₂O (H 526). Mikrophotographie der Krystalle: Co., Ind. Eng. Chem. 16, 607. D⁶: 1,9930 (Cham., H., T., Soc. 1926, 2620). Löslichkeit in Wasser (g wasserfreies Salz in 1000 g Lösung) zwischen 0,0° (0,326) und 30,0° (0,769): Cham., H., T. — Umsetzung von Mangan(II)-oxalat mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 250; C. 1924 I, 2874.

K₃[Mn(C₂O₄)₃] + 3 H₂O (H 526). Darstellung aus Kaliumpermanganat, Oxalsäure und Kaliumoxalat in wenig Wasser bei ca. 0°: Oberhauser, Hensinger, B. 61, 530; aus Mangandioxyd und saurem Kaliumoxalat: J. Meyer, Schramm, Z. anorg. Ch. 157, 192. Absorp-

dioxyd und saurem Kaliumoxalat: J. MEYER, SCHRAMM, Z. anorg. Ch. 157, 192. Absorptionsspektrum in wäßr. Lösung im sichtbaren und ultravioletten Gebiet: LIFSCHITZ, ROSEN-вонм, Z. wiss. Phot. 19, 205; C. 1920 I, 792; im sichtbaren Gebiet (quantitative Extinktionsmessungen): Ghosh, Kappanna, Quart. J. indian chem. Soc. 3 [1926], 130. Das reine, trockne Salz ist an der Luft auch im zerstreuten Sonnenlicht haltbar; in Gegenwart von Feuchtigkeit erfolgt rasche Zersetzung (MEYER, Sch., Z. anorg. Ch. 157, 193). Die durch Belichtung eingeleitete Zersetzung verläuft auch nach Verdunkelung noch einige Zeit beschleunigt weiter (Mukerji, Dhar, *J. indian chem. Soc.* 5, 207; C. 1928 II, 427). Geschwindigkeit der Zersetzung in geradlinig polarisiertem, zirkular polarisiertem, gewöhnlichem und monochromatischem Licht bei 6° und 16°: GH., KA., Quart. J. indian chem. Soc. 3, 131; C. 1926 II, 2144. Wirkt auf Kaliumjodid-Lösung oxydierend, auf Quecksilber(II)-chlorid-Lösung und auf schwach saure Natriumchloroplatinat-Lösung reduzierend (Oberhauseb, Hensinger). Wird durch viel Wasser hydrolysiert (J. MEYER, SCHRAMM, Z. anorg. Ch. 157, 194). — Tl₂[Mn(C₂O_{4)₃].} Vgl. darüber M., Sch., Z. anorg. Ch. 157, 194. — H[Mn(C₂O₄)₂(H₂O)₂]. B. Durch Einw. von gepulverter feuchter Oxalsäure auf Mangan(III)-hydroxyd unter Kühlung mit Eis-Kochsalz-Gemisch (M., Sch., Z. anorg. Ch. 157, 197). Olivgrün. Gibt mit Alkalien, Alkalioxalaten oder organischen Basen rote Lösungen. — Na[Mn(C₂O₄)₂(H₂O)₂](?). B. Durch Einw. von trocknem Natriumtetraoxalat auf feuchtes Mangan(IV)-oxyd bei rotem Licht unter Kühlung mit Fis Kochsalz-Gemisch (M. Sch., Z. anorg.) mit Eis-Kochsalz-Gemisch (M., Sch., Z. anorg. Ch. 157, 195). Sehr unbeständige hellgrüne Krystalle. Gibt mit Wasser eine vorübergehende Rotfärbung. Bildet mit Natronlauge und Natriumoxalat-Lösung rote Lösungen.

Eisenoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Fe Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 532, 850, 857, 874, 887, 937, 1020, 1035, 1052, 1089, 1094, 1121, 1126. — Eisen(II)-oxalat FeC₂O₄ + 2 H₂O (H 526; E I 229). Bildung aus Eisen(II)-sulfat und Oxalsaure: Chatterjee, Dhar, J. phys. Chem. 28, 1020; aus Eisen(II)ammoniumsulfat und Kaliumoxalat: François, J. Pharm. Chim. [8] 4 [1926], 435. Goldgelbe Blättchen (Barlot, Bl. [4] 35, 1027). Ist dichroitisch (farblos-gelb) (Patschovsky, Dissert. [Jens 1921], S. 17). Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 496; C. 1928 II, 2626. Die bei 18,0° gesättigte wäßrige Lösung enthält 35,3 mg wasserfreies Salz in 1 l (SCHOLDER, B. 60, 1521). Elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18°: SCH., B. 60, 1520, 1528. Gibt das Krystallwasser bei 180—210° ab; zersetzt sich micht, beim Erhitzen bis auf 250° (Fr., J. Pharm. Chim. [8] 4, 437; C. 1927 I, 916). Eisen(II)-

[Syst. Nr. 170

oxalat gibt bei der thermischen Zersetzung an der Luft Eisen(III)-oxyd und Kohlendioxyd, im Vakuum Eisen(II)-oxyd, Eisen, Kohlenstoff, Kohlenoxyd und Kohlendioxyd (Hebsch-Kowitsch, Z. anorg. Ch. 115, 159). Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 249; C. 1924 I, 2874. — K₂Fe(C₁O₄)₃ + H₂O (H 526; E I 229). Absorptionsspektrum kaliumoxalathaltiger Lösungen im sichtbaren und ultravioletten Gebiet: Allmand, Webb, Soc. 1929, 1522.

Eisen(III)-oxalaté (H 526; E I 229): Fe₂(C₂O₄)₃. B. Durch Auflösen von Eisen(III)-hydroxyd in wäßr. Oxalsäure-Lösung und Eindampfen auf dem Wasserbad (Allmand, Webb, Soc. 1929, 1518). Gelblichgrün, hygroskopisch. — Fe₂(C₂O₄)₃ + 4 H₂O. B. Durch Sättigen von wäßr. Oxalsäure-Lösung mit Eisen(III)-hydroxyd und Eindunsten der Lösung über Schwefelsäure (Barlot, Bl. [4] 35, 1028). Grünlichgelb, anscheinend amorph. Sehr leicht löslich in kaltem Wasser mit gelber Farbe; löslich in wäßr. Oxalsäure mit grüner Farbe. Die wäßr. Lösung ist einige Tage unverändert haltbar; Oxalsäure verringert die Beständigkeit. Bildet beständige Doppelsalze mit Ammoniumoxalat und Calciumoxalat. — Fe₂(C₂O₄)₃ + 5 H₂O. Zui Konstitution vgl. Weinland, Rein, Z. anorg. Ch. 178, 220. B. Beim Eindunsten einer Lösung von Fe(NO₃)₃ + 9 H₂O und Oxalsäure in viel konz. Salpetersäure über Schwefelsäure (W., R., Z. anorg. Ch. 178, 219, 223). Gelbes, mikrokrystallinisches Pulver. Löst sich in Wasser allmählich; die gelbe, sauer reagierende Lösung gibt mit Kaliumferricyanid nach einigen Stunden eine grüne Färbung und scheidet nach einigen Tagen Eisen(II)-oxalat aus. — Die Geschwindigkeit der photochemischen Zersetzung von Eisen(III)-oxalat in wäßr. Lösung ist bei Gegenwart und Abwesenheit von Chinin der Lichtintensität ungefähr proportional (Padoa, Vita, G. 58, 5); die Reaktion wird durch Sauerstoff gehemmt (Jodl-Bauer, Ph. Ch. 59 [1907], 516; Dunnicliff, Joshi, J. indian chem. Soc. 6, 125; C. 1929 II, 387). Vgl. a. Reaktion von Oxalsäure und Oxalsaten mit Eisen(III)-chlorid im Licht, S. 480. Umsetzung von Eisen(III)-oxalat mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 249; C. 1924 I, 2874.

 $H_3[Fe(C_2O_4)_3]$. Elektrische Leitfähigkeit in Wasser bei 25,2°: Allmand, Webb, Soc. 1929, 1519. — $(NH_4)_3[Fe(C_2O_4)_3] + 3H_2O$ (H 526). Kryoskopisches Verhalten in Wasser: Burrows, Walker, Soc. 123, 2742. Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: Burrows, Walker, Soc. 128, 2744. No Fe (CO) 1 + 5 HO (H 526). 7000 Kryotallwassergebalt BURROWS, WALKER, Soc. 123, 2741. — Na₃[Fe(C₂O₄)₃] + 5H₂O (H 526). Zum Krystallwassergehalt vgl. B., Wa., Soc. 123, 2739. Einfluß auf die kritische Lösungstemperatur des Systems Phenol-Wasser: Patterson, Duckett, Soc. 127, 628. Kryoskopisches Verhalten in Wasser: B., Wa., Soc. 123, 2741. Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: B., Wa. — K₃[Fe(C₂O₄)₃] + 3H₂O (H 527; E I 229). Darstellung durch Auflösen von frisch gefälltem Eisen(III)-hydroxyd in einer Lösung von saurem Kallumoxalat bei 35—40° unter Ausschluß von Light. Turkes. Sec. 110. 4444. Placebreitisch (durkelprii) elleriin, (Kyrosop Sec. 110. von Licht: Thomas, Soc. 119, 1141. Pleochroitisch (dunkelgrün-hellgrün) (Knaggs, Soc. 121, 2072). Krystallographische Untersuchung: Knaggs, Soc. 121, 2070. D. 2, 133 (Knaggs). Ultramikroskopische Untersuchung der Auflösung in Wasser: TRAUBE, v. BEHREN, Ph. Ch. [A] 138, 93. Kryoskopisches Verhalten in Wasser: Burrows, Walker, Soc. 123, 2741. Absorptionsspektrum in wäßr. Lösung im sichtbaren und ultravioletten Gebiet: Lifschitz, ROSENBOHM, Z. wies. Phot. 19. 205; C. 1920 I, 792; in Gegenwart und Abwesenheit von Kaliumoxalat im sichtbaren Gebiet: Allmand, Webb, Soc. 1929, 1521, 1522. Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: Bu., Wa., Soc. 123, 2741; bei 25,2°: A., Webb, Soc. 1929, 1519. Läßt sich mit Hilfe von d- und l-α-Phenäthylamin in optische Antipoden spalten, die sich ziemlich rasch racemisieren (Thomas, Soc. 119, 1141, 1142); potentiometrische Untersuchung über den Mechanismus der Racemisierung: Th., Fraser, Soc. 123, 2975. Zersetzt sich beim Belichten in wäßr. Lösung; hierbei scheidet sich nach EDER (M. 1 [1880], 757) und Allmand, Webs (Soc. 1929, 1518) neutrales Eisen(II)-oxalat, nach Thomas (Soc. 119, 1141) Kaliumeisen(II)-oxalat aus; bei Luftzutritt bildet sich außerdem auch basisches Eisen(II)-oxalat (Eder). Geschwindigkeit der photochemischen Zersetzung in wäßr. Lösung in weißem und monochromatischem Licht von verschiedener Wellenlänge und bei Gegenwart verschiedener Elektrolyte: A., Webb, Soc. 1929, 1526, 1531. Einfluß der Lichtintensität: A., Webb, Soc. 1929, 1530. Literatur über die photochemische Zersetzung s. a. in Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 851.

K₂[Fe(C₂O₄)₂Cl(H₂O)]. B. Durch Auflösen von 1 Mol Eisen(III)-hydroxyd in 1 Mol Oxalsäure-Lösung und 2 Mol 25 % iger Salzsäure und Umsetzen mit 1 Mol Kaliumdicarbonat (Weinland, Sierr, Z. anorg. Ch. 117, 71). Grünlichgelbes, sehr hygroskopisches Krystallpulver. Löslich in Wasser mit gelbgrüner Farbe. — Fe₂(C₂O₄)(C₂O₄H)₂(ClO₄)₅ + 14 H₂O(?). B. Bei längerem Erwärmen einer Lösung von 1 Mol FeCl₃ + 6 H₂O und 3 Mol Oxalsäure in 3 Mol 50% iger Überchlorsäure (W., Rein, Z. anorg. Ch. 178, 221, 224). Sehr hygroskopisches, hellgrünes Krystallpulver. Läßt sich aus Wasser nicht umkrystallisieren. Gibt im Vakuum über Schwefelsäure 6 H₂O ab. Verpufft beim Erhitzen schwach. Die wäßr. Lösung gibt mit Ammoniak sofort Eisen(III)-hydroxyd, mit Kaliumchlorid und Nitron sofort Kaliumperchlorat; mit Calciumchlorid entsteht erst nach Zusatz von Natriumacetat ein Niederschlag. — Eisen(III)-acetat-oxalat Fe₄(C₂H₂O₂)₈(C₂O₄)(OH)₂ + 2 H₂O

B. Durch Einw. von Oxalsäure, Ammoniumoxalat oder Kaliumoxalat auf "Eisen(III)-acetat" in Wasser (Weinland, Höhn, Z. anorg. Ch. 152, 6, 13). Braunrotes, mikrokrystallinisches Pulver. Schwer löslich in Wasser, Alkohol und Pyridin. — Komplexe Eisen(III)-oxalate, die Guanidin, Pyridin oder Chinolin enthalten, s. bei diesen (Syst. Nr. 207, 3051 und 3077).

Kobaltoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Co. Syst. Nr. 58: Kobalt, Teil A [Berlin 1932], S. 355, 357, 399, 405, 419, 420, 449, 456, 457, 460, 476; Teil B [Berlin 1930], S. 41, 64, 68, 69, 73, 110, 117, 118, 125, 132, 137, 143, 147, 157, 175, 199, 201, 282, 285, 287, 299, 313, 314, 322, 325, 326, 346, 347, 373. — Kobalt(II) oxalate: CoC₂O₄. Ein durch Erhitzen des Dihydrats bis auf 160° erhaltenes wasserfreies Präparat CoC₂O₄. Ein durch Erhitzen des Dihydrats bis auf 160° erhaltenes wasserfreies Praparat zeigte D_*^m : 3,021 (Bibr, Biltz, Z. anorg. Ch. 153, 120). — $CoC_2O_4 + 2H_2O$ (H 527). B. Durch Umsetzung von Kobalt(II)-salzen mit Oxalsäure bei Siedetemperatur (Chatterjee, Dhar, J. phys. Chem. 28, 1018; Scholder, B. 60, 1521). Läßt sich bei 160° entwässern; verglüht bei 250—270° (Bibr, Biltz, Z. anorg. Ch. 153, 124). Die bei 18,0° gesättigte wäßrige Lösung enthält 21,1 mg wasserfreies Salz in 1 l (Sch.). Elektrische Leitfähigkeit in Wasser bei 18,0°: Sch., B. 60, 1521, 1528. — $4CoC_2O_4 + 9H_2O$ (?). B. Durch Umsetzung von Kobalt(II)-salzen mit Oxalsäure bei 30° (Chatterjee, Dhar, J. phys. Chem. 28, 1018). — $CoC_2O_4 + 3H_2O$ (Ranig, A. ch. 10111. 59). Bosa Nadeln. — Beim Leiten von ozonisietem Sauerstoff in eine Lösung von [10] 11, 59). Rosa Nadeln. — Beim Leiten von ozonisiertem Sauerstoff in eine Lösung von Kobalt(II)-oxalat, Kaliumoxalat und Oxalsäure in Wasser entsteht das Salz $K_3[Co(C_3O_4)_3] +$ NOUSIGITI)-OXAIST, RAIGIMOXAIST UND OXAISSUTE IN WASSET EIGSTEIN GAS SAIZ $K_3[COC_4O_4]_3]$ + $3H_2O$ (8. u.) (Brunner, Helv. 12, 212). Umsetzung mit Natriumcarbonat-Lösung: Currman, Hart, Chem. N. 128, 250; C. 1924 I, 2874. — $CoC_2O_4 + 6NH_3$. B. Aus Kobalt(II)-oxalat in flüssigem Ammoniak (BIRK, BILTZ, Z. anorg. Ch. 153, 124). D_2^{ss} : 1,505 (B., B., Z. anorg. Ch. 153, 120). — $CoK_2(C_2O_4)_2 + 6H_2O$ (H 527; E I 229). Gibt das Krystallwasser bei 45—50° oder über Schwefelsäure bei 25° vollständig ab (Spacu, Voicu, Bulet. Cluj 4 [1928/29], 161). Lichtabsorption in Kallumoxalat-Lösung im sichtbaren Gebiet: Hill, Howeng Phil Mag [6] 48 [1924] 844 — Verbindungen mit Formisten Co HOWELL, Phil. Mag. [6] 48 [1924], 844. — Verbindungen mit Formiaten: $CoC_2O_4 + NH_4CHO_2 + H_2O$. Säulen (Scholder, B. 60, 1508). — $CoC_2O_4 + 3NaCHO_2$. Weinrote

NH₄CHO₂ + H₂O. Sāulen (SCHOLDER, B. 60, 1508). — CoC₂O₄ + 3 NaCHO₂. Weinrote Krystalle (SCH.). — CoC₂O₄ + 2 KCHO₂. Rötliche Krystalle (SCH.).

Komplexe Kobalt(III) - oxalate: [Co(NH₃)₆]₂(C₂O₄)₃ + 4 H₂O (H 528). D₄⁸: 1,593 (Birk, Biltz, Z. anorg. Ch. 153, 120). Magnetische Susceptibilität: Biltz, Z. anorg. Ch. 170, 182. Die bei 18⁹ gesättigte wäßrige Lösung enthält 0,00069 Mol/l (Ephraim, B. 56, 1531; vgl. E., Mosimann, B. 55, 1616). — [Co(NH₃)₆]₂(C₂O₄)₃ + 5 H₂C₃O₄ + 4 H₂O. Vgl. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 65. — [Co(NH₃)₆]₂(C₂O₄)₃ + 5 CoC₂O₄ + 14 H₂O. Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 65. — [Co(NH₃)₆][Cr(C₂O₄)₃] + 3 H₂O (H 529; E I 229). Dichroitisch (rötlichblau und grünlich hellbraun) (Steinmetz, Z. Kr. 57, 249).

[Co(NH₃)₅(H₂O)]₅(C₂O₄)₃ + 4 H₃O (H 528; E I 229). B. Aus Carbonatopentammin-kobalt(III):nitrat durch Erwärmen mit verd. Salpetersäure, Neutralisieren und Umsetzen mit Natriumoxalat oder durch Einw. von warmer Oxalsäure-Lösung (DUFF, Soc. 123, 565, 569). Ziegelrote Krystalle. Die bei 17,5° gesättigte wäßrige Lösung enthält 0,0019 Mol/l (Ephraim, B. 56, 1531). Beständigkeit gegen Wasser: Benrath, Z. anorg. Ch. 177, 291. —

(EPHRAIM, B. 56, 1531). Beständigkeit gegen Wasser: BENRATH, Z. anorg. Ch. 177, 291. $[\text{Co(NH_a)_5Cl}]\text{C}_2\text{O}_4 \text{ (H 528; E I 229)}.$ Die gesättigte wäßrige Lösung enthält bei 0° 0,00036 Mol/l (Brönsted, Petersen, Am. Soc. 43, 2269), bei 19º 0,00074 Mol/l (E., B. 56, 1531). Löslich-(H 528). Die bei 20° gesättigte wäßrige Lösung enthält 0,0004 Mol/l (E., B. 56, 1531). Löslichkeit in Magnesiumsulfat-Lösung bei 0°: Br., P., Am. Soc. 43, 2281. — [Co(NH₃)₆NO₃)]C₃O₄ (H 528). Die gesättigte wäßrige Lösung enthält bei 0° 0,000161, bei 20° 0,000432 Mol/l (Br., P., Am. Soc. 43, 2269), bei 19° 0,00042 Mol/l (E., B. 56, 1532). Löslichkeit in Magnesiumsulfat-Lösung bei 0°: Br., P., Am. Soc. 43, 2281. — [Co(NH₃)₆(NO₃)]C₂O₄ (H 528). Die bei 18° gesättigte wäßrige Lösung enthält 0.0042 Mol/l (E. B. 56, 1532). Löslichkeit in Magnesiumsulfat-Lösung bei 0°: Br., P., Am. Soc. 43, 2281. — [Co(NH₃)₆(NO₃)]C₂O₄ (H 528). Die bei 18° gesättigte wäßrige Lösung enthält 0.0042 Mol/l (E. B. 56, 1532). (H 528). Die bei 18° gesättigte wäßrige Lösung enthält 0,0043 Mol/l (E., B. 56, 1532). — [Co(NH₂)₈(CO₂)]₂C₂O₄ + 3H₂O. B. Beim Leiten von Luft durch ein Gemisch aus Kobalt(II)-oxalat, Ammoniumcarbonat und Ammoniak (D: 0,925) (Kranig, A.ch. [10] 11, 88). Rosa Krystalle. Sehr leicht löslich in Wasser.

Krystalle. Sehr leicht löslich in Wasser.

H[Co(NH₂)₄(H₂O)₂](C₂O₄)₃ (vgl. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 117). Sehr leicht löslich in Wasser (Ephraim, B. 56, 1538). — [Co(NH₃)₄(H₂O)₂]₂(C₂O₄)₃. B. Beim Erwärmen von Tetrammin-phosphato-kobalt mit Oxalsäure-Lösung auf dem Wasserbad (Klement, Z. anorg. Ch. 156, 243). Rote Krystalle (aus Wasser). Schwer löslich in kaltem Wasser. — [Co(NH₂)₄(H₂O)₂]₂ (C₂O₄)₃ + 4H₂O. Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 117. — [Co(NH₃)₄(CO₃)]₂C₃O₄. (vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 282). Einw. von Oxalsäure und Malonsäure: Schemm, Z. anorg. Ch. 180, 181.

Inaktives Kaliumtrioxalatokobaltiat K₃[Co(C₂O₄)₃] + 3 (oder 3½) H₃O (H 529; E I 229). B. Beim Leiten von ozonisiertem Sauerstoff in eine Lösung von Kobalt(II)-oxalat, Kaliumoxalat und wenig Oxalsäure in Wasser (Brunner, Helv. 12, 212). Dunkelgrüne

Kaliumoxalat und wenig Oxalasure in Wasser (Brunner, Helv. 12, 212). Dunkelgrüne Krystalle. Dichroitisch (dunkelblau-smaragdgrün) (Bergman, Ж. 56, 202; C. 1926 I, 1097). Gang der Dampfdruckkurve bei der Abgabe und Wiederaufnahme von Krystallwasser über

Schwefelsäure verschiedener Konzentration bei 150: Bergman. Absorptionsspektrum in wäßr. Lösung im sichtbaren und ultravioletten Gebiet: Lifschitz, Rosenbohm, Z. wiss. Phot. 19, 203; C. 1920 I, 792; Kranig, A. ch. [10] 11, 96. Magnetische Susceptibilität: Berkman, Zocher, Ph. Ch. 194, 324. Leitfähigkeitstitration mit [Co(NH₃)₆]Cl₂: K., A. ch. [10] 11, 69. Geschwindigkeit der photochemischen Zersetzung bei verschiedenen Konzen-[10] 11, 69. Geschwindigkeit der photochemischen Zersetzung dei verschiedenen Konzentrationen und in Gegenwart verschiedener Salze: Jaeger, Beeger, Versl. Akad. Amsterdam 29, 21, 25; R. 40, 156, 159. Zur photochemischen Zersetzung vgl. a. K., A. ch. [10] 11, 59. — Rechtsdrehendes Kaliumtrioxalatokobaltiat d- $K_s[Co(C_sO_d)_s] + H_sO$ (E I 229). Rotationsdispersion und Absorptionsspektrum in wäßr. Lösung: L., R., Z. wiss. Phot. 19, 210; C. 1920 I, 792. Elektromotorische Kraft der Kette $Ag/K_s[Co(C_sO_d)_s] + Ag_sC_sO_d/KNO_s/O,1 n-AgNO_s/Ag: Thomas, Franzer, Soc. 123, 2975. — KAg_s[Co(C_sO_d)_s]_s + 6$ oder $8H_sO$. Grüne Krystalle (Kranig, A. ch. [10] 11, 63). — $[Co(NH_s)_s][Co(C_sO_d)_s] + 3H_sO(H 529)$. Dichroitisch (blau-grün) (STEINMETZ, Z. Kr. 57, 248). Wird beim Erhitzen oder bei längerem 3H₂O (H 529). Trigonal (Steinmetz, Z. Kr. 57, 248). Wird beim Erhitzen oder bei längerem Aufbewahren über Schwefelsäure unter Gewichtsverlust rot (St.). Die gesättigte wäßrige Lösung enthält bei 0° 1,9×10-6 Mol/l (Brönsted, Petersen, Am. Soc. 43, 2269). Löslichkeit in Natriumchlorid-Lösung und Kaliumchlorid-Lösung: Br., P., Am. Soc. 43, 2289, 2290. Zersetzung in wäßr. Lösung am Tageslicht: K., A. ch. [10] 11, 82. — [Co(NH₃)₆] [Co(C₂O₄)₃] + K₃[Co(C₂O₄)₃] + 6H₂O. Vgl. dazu Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 70; vgl. a. Br., P., Am. Soc. 43, 2290 Anm. 1; K., A. ch. [10] 11, 68. — [Co(NH₃)₆(H₂O)] [Co(C₂O₄)₃] und [Co(NH₃)₆(H₂O)] [Co(C₂O₄)₃] + 10 H₂O. Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 110. — [Co(NH₃)₆(H₂O)] [Co(C₂O₄)₃] + K₃[Co(C₂O₄)₃] + 6H₂O. Vgl. Gmelins Handbuch, Syst. Nr. 58, Teil B, S. 110. — K[Co(NH₃)₆(OH)] [Co(C₂O₄)₃] + 6H₂O. B. Aus K₃[Co(C₂O₄)₃] und [Co(NH₃)₅(CO₃)] [Co(C₃O₄)₃] + 3H₃O. Vgl. Gmelins Handbuch, Syst. Nr. 58, Teil B, S. 118. — [Co(NH₃)₄(H₂O)₃] [Co(C₂O₄)₃] + 3H₃O. Vgl. Gmelins Handbuch, Syst. Nr. 58, Teil B, S. 118. — [Co(NH₃)₄(H₂O)₃] [Co(C₂O₄)₃] + K₃[Co(C₂O₄)₃] + 8h₃[Co(C₂O₄)₃] + 8h₃[C Aufbewahren über Schwefelsäure unter Gewichtsverlust rot (St.). Die gesättigte wäßrige [Co(C₂O₄)₃] + 4.5 H₂O. Tiefviolette Nadeln. Gibt im Exsiccator bei gewöhnlichem Druck 2.5 H₂O, im Vakuum alles Krystallwasser ab (Kranig, A. ch. [10] 11, 65).

Dioxalatodiamminkobaltisäure H[Co(NH₂)₂(C₂O₄)₂] + 2 H₂O. B. In geringer Menge

bei der Einw. von Schwefelsäure auf das Bariumsalz oder von Oxalsäure auf das Kobalt(II)-salz (Kranig, A.ch. [10] 11, 56). Nicht rein erhalten. Tiefviolette Krystalle. Sehr leicht löslich in Wasser. Zersetzt sich in konzentrierter wäßriger Lösung. Katalytische Wirkung des Anions auf die Zersetzung von Nitramid: Brönsted, Pedersen, Ph. Ch. 108, 195. des Anions auf die Zersetzung von Nitramid: Brönsted, Pedersen, Ph. Ch. 108, 195. — NH₄[Co(NH₂)₄(C₂O₄)₃] + H₂O (vgl. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 325). B. Durch aufeinanderfolgende Einw. von Oxalsäure und Ammoniumchlorid auf [Co(NH₂)₂(H₂O)₂Cl₃]Cl (Riesenfeld, Klement, C. anorg. Ch. 124, 11; vgl. Kr., A. ch. [10] 11, 53, 54) und auf NH₄[Co(NH₂)₄(SO₃)₃] (R., Z. anorg. Ch. 132, 113; C. 1924 I, 26). Violette Krystalle. Leicht löslich in kaltem Wasser mit blauvioletter Farbe (R., Kl.). Absorptionsspektrum in Wasser: Kr., A. ch. [10] 11, 96. Versuche zur Spaltung in optische Antipoden: R., Kl., Z. anorg. Ch. 124, 12. — Ba[Co(NH₂)₂(C₂O₄)₃]₃ + 4H₂O. Violett. 1gl öst sich in 400 cm³ Wasser (Kranig, A. ch. [10] 11, 54, 55). Gibt in wäßr. Lösung mit 1 Mol Schwefelsäure geringe Mengen der freien Säure und überwiegende Mengen des nachfolgenden Salzes. — Co¹¹[Co(NH₃)₃(C₂O₄)₃]₂ + 7H₂O. B. Beim Erwärmen von [Co(NH₃)₄(H₂O)₄Cl₃]Cl mit Oxalsäure und Wasser auf dem Wasserbad (Kr., A. ch. [10] 11, 53). Dunkelviolett. Schwer löslich in Wasser. Leicht löslich in Natronlauge und Ammoniak unter doppelter Umsetzung. — Co¹¹[Co(NH₃)₄(C₂O₄)₃]₃ + 10H₂O von Sörensen s. Gmelins unter doppelter Umsetzung. — CoⁿH[Co(NH₃)₂(C₂O₄)₃]₃+10H₂O von Sörensen (s. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 326) wird von Krang (A. ch. [10] 11, 52) als Gemisch angesehen. — $[Co(NH_8)_6][Co(NH_8)_2(C_2O_4)_2]_5 + 5H_2O$. Violette Nadeln (aus Wasser) (Kr., A. ch. [10] 11, 70). Schwer löslich in kaltem Wasser. Gibt bei langem Aufbewahren im Vakuumexsicoator nur 1 H₂O ab. Absorptionsspektrum in wäßr. Lösung: Kr., A.ck. [10] 11, 97. Elektrische Leitfähigkeit in Wasser bei 25°: Kr., A. ch. [10] 11, 98. Ist in wäßr. Lösung im Dunkeln beständig (Kr., A.ch. [10] 11, 71). — [Co(NH₃/₄Cl₂][Co(NH₉)₂ (C₂O₄)₃]. Die bei 0° gesättigte wäßrige Lösung enthält 1,71·10⁻⁵ Mol/l (Brönsted, Petersen, Am. Soc. 43, 2268). — [Co(NH₂/₄(NO₂)₃][Co(NH₂)₃(C₄O₄)₃]. Die bei 0° gesättigte wäßrige Lösung enthält 6,6·10⁻⁷ Mol/l (Br., P., Am. Soc. 43, 2268). — Dioxalatotriamminkobaltisäure H[Co(C₂O₄)₃(NH₃)₃] (E I 229). Katalytische Wirkung des Anions auf die Zersetzung von Nitramid: Brönsted, Pedersen, Ph. Ch. 108, 198. — [Co(NH₂)₄(NO₃)₃][Co(NH₃)₄(C₂O₄)₃]. Die bei 0° gesättigte wäßrige Lösung enthält 5,9·10⁻⁵ Mol/l (B., Petersen, Am. Soc. 43, 2268). Löslichkeit in wäßr. Kaliumchlorid-Lösungen: B. Am. Soc. 44, 246.

Lösungen: B., Am. Soc. 44, 946.

Oxalatotetramminkobalt(III)-salze: [Co(NH₂)₄(C₂O₄)]Cl (H 528). Absorptions-spektrum in wäßr. Lösung: Uspenski, Tsohibisow, Z. anorg. Ch. 164, 337; C. 1927 II, 139;

Kranig, A. ch. [10] 11, 96. Zersetzt sich beim Belichten der wäßr. Lösung unter Abscheidung von Kobalt (III)-hydroxyd und Bildung von Ammoniak, Ammoniumchlorid und Ammoniumoxalat; konduktometrische Verfolgung dieser Reaktion: Schwarz, Tede, B. 60, 68. — [Co(NH₃)₄(C₂O₄)]ClO₄. Die gesättigte wäßrige Lösung enthält bei 0° 0,0051, bei 20° 0,0140 Mol/l (Brönsted, Petersen, Am. Soc. 48, 2268). Löslichkeit in wäßr. Trichloressig-0,0140 Mol/I (BRÖNSTED, PETERSEN, Am. Soc. 43, 2268). Löslichkeit in wäßr. Trichloressigsäure, in verd. Kalilauge und in wäßr. Lösungen verschiedener Salze: Br., Am. Soc. 42, 773; Br., P., Am. Soc. 43, 2275. — [Co(NH₃)₄(C₂O₄)]₂SO₄ + 2H₂O (H 528). Absorptionsspektrum in wäßr. Lösung: U., Tsch., Z. anorg. Ch. 164, 337; C. 1927 II, 139. — [Co(NH₃)₄(C₂O₄)]₂S₂O₅. B. Bei der Einw. von Oxalsäure auf [Co(NH₃)₄(CO₃)]S₂O₅ (Schramm, Z. anorg. Ch. 180, 178). Die gesättigte wäßrige Lösung enthält bei 15° 0,0001545, bei 20° 0,000201 Mol/I; Löslichkeit in wäßr. Lösungen verschiedener Salze: Brönsted, Am. Soc. 45, 2906; Br., La Mer, Am. Soc. 46, 571. — [Co(NH₃)₄(C₂O₄)]₂S₂O₈. Die bei 20° gesättigte wäßrige Lösung enthält 0,000755 Mol/I; Löslichkeit in wäßr. Lösung von Natriumchlorid und Natriumsulfat: Br., Am. Soc. 45, 2906. — [Co(NH₃)₄(C₂O₄)]₂SeO₄ + 2H₂O. Karmoisinrote, mikroskopische Krystalle. Schwer löslich in kaltem Wasser (J. Meyer, Dirska, Clemens, Z. anorg. Ch. 139. 360). Gibt mit Calciumacetat - Lösung keinen Niederschlag. Z. anorg. Ch. 139, 360). Gibt mit Calciumacetat Lösung keinen Niederschlag. — [Co(NH₃)₄(C₂O₄)]NO₃ (H 528). Krystallisiert nach Schramm (Z. anorg. Ch. 180, 169) mit 1 H₂O. Die gesättigte wäßrige Lösung enthält bei 0° 0,0066, bei 20° 0,018 Mol/l (Br., P., Am. Soc. 43, 2268). Löslichkeit in wäßr. Lösungen von Natriumnitrat und Kaliumnitrat bei 0°: Br., Am. Soc. 44, 892. — $[Co(NH_3)_4(C_2O_4)][Co(NH_3)_2(NO_2)_4]$. Die bei 0^o gesättigte wäßrige Lösung enthält 0,00103 Mol/l (Br., P., Am. Soc. 43, 2268). Löslichkeit in wäßr. Salz-Lösungen bei 0^o : Br., P., Am. Soc. 43, 2275; in Wasser und wäßr. Salz-Lösungen bei 20°: Br., Am. Soc. 44, 888, BR., P., Am. Soc. 43, 2275; in Wasser und Waldt. Salz-Losungen Del ZU.: BR., Am. Soc. 43, 000, 890. — [Co(NH₂)₄(C₂O₄)]HC₂O₄. Vgl. GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 287. — [Co(NH₃)₄(C₂O₄)]₂C₂O₄ + CoC₂O₄ + 5 H₂O. B. Aus dem Salz K[Co(NH₃)₄(C₂O₄)]₂[Co(C₂O₄)₃] + 7 H₂O beim Aufbewahren, Erwärmen oder Belichten in Lösung (Kranig, A. ch. [10] 11, 81). Rote Krystalle. Fast unlöslich in kaltem Wasser. — [Co(NH₃)₄(C₂O₄)]₃C₂O₄ + CoC₂O₄ + 6 H₂O. Vgl. GMELINS Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 287. — [Co(NH₃)₄(C₂O₄)]₃[Co(C₂O₄)₃] + 4 H₂O(vgl. GMELINS Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 287). Schwarze Nadeln (Kr., A. ch. [10] 11, 77). Die bei 0° gesättigte wäßrige Lösung enthält 0.00083 Mol wasserfreies Salz in 11 (Brönster). Petersen. Am. Soc. 43. wāßrige Lösung enthält 0,00083 Mol wasserfreies Salz in 11 (Brönsted, Petersen, Am. Soc. 43, 2268). — K[Co(NH₃)₄(C₂O₄)]₅[Co(C₂O₄)₃]₈+9 H₂O. Schwarze Nadeln (aus Wasser) (Kranig, A.ch. [10] 11, 74). Konduktometrische Titration mit [Co(NH₃)₆]Cl₃: Kr. — K[Co(NH₃)₄(C₂O₄)]₂ [Co(C₂O₄)₃] + 2 H₂O. Vgl. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 287. — K[Co(NH₃)₄(C₂O₄)]₂[Co(C₂O₄)₃] + 7 H₂O. Nadeln. Löslich in Wasser (Kr., A. ch. [10] 11, 73). Geht in Lösung am Licht oder beim Erwärmen in das Salz [Co(NH₃)₄(C₂O₄)]₂Co₄ + CoC₂O₄ + 5 H₂O über. Konduktometrische Titration mit [Co(NH₃)₄Cl₂·Kr. — K₃[Co(NH₃)₄(C₂O₄)][Co(C₂O₄)₃] + 4 H₂O. Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 287. — Ag[Co(NH₃)₄(C₂O₄)]₂[Co(C₂O₄)₃] + 2 H₂O. Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 287. — Ba[Co(NH₃)₄(C₂O₄)][Co(C₂O₄)₃] + 2 H₂O. Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 287. — [Co(NH₃)₄(C₂O₄)][Co(C₁O₃)] [Co(NH₃)₄(C₂O₄)] [Co(NH wäßrige Lösung enthält 0.00083 Mol wasserfreies Salz in 1 l (Brönsted, Petersen, Am. Soc. 43,

Oxalatopentamminkobalt(III)-salze: $[Co(NH_3)_5(C_2O_4)]HSeO_4 + H_2O.$ B. Aus $[Co(NH_3)_6(H_2O)]_3(C_2O_4)_3 + 4H_3O$ durch Kochen mit Oxalsäure-Lösung und nachfolgende Umsetzung mit Selensäure (J. Meyer, Dirska, Clemens, Z. anorg. Ch. 139, 350). Ziegelrotes Krystallpulver. Ziemlich schwer löslich in Wasser mit saurer Reaktion. — $[Co(NH_3)_5(C_2O_4)]_3SeO_4 + 3H_4O.$ Rote Krystalle. Schwerer löslich als das saure Salz (M., D., C.). — $[Co(NH_3)_5(C_2O_4)]_3NO_3 + 2H_3O.$ B. Beim Behandeln von $[Co(NH_3)_5(H_2O)]_3(C_2O_4)_3 + 4H_4O$ mit Bariumaitrat in warmem Wasser (Duff, Soc. 123, 566). Ziegelrote Krystalle. Ziemlich schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D., Soc. 123, 573. Gibt mit Calciumchlorid erst nach Erwärmen oder nach Zusatz von Ammoniak einen Niederschlag. — $[Co(NH_3)_5(C_2O_4)]_2C_2O_4 + 4H_2C_2O_4$ (H 528). Beständigkeit gegen Wasser: Benrath, Z. anorg. Ch. 177, 291. — $[Co(NH_3)_5(C_2O_4)]_3C_2O_4 + CoC_2O_4 + 4H_3O.$ Vgl. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 201. — $[Co(NH_3)_5(C_2O_4)]_2[Co(C_2O_4)_3] + 6H_2O.$ Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 201. — $[Co(NH_3)_5(C_2O_4)]_2[Co(C_2O_4)_3] + 3H_2O.$ und K $[Co(NH_3)_5(C_2O_4)]_2[Co(C_2O_4)_3] + 4H_2O.$ Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 201. — KH $[Co(NH_3)_5(C_2O_4)]_2[Co(C_2O_4)_3] + 2H_3O.$ Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 201. — KH $[Co(NH_3)_5(C_2O_4)]_2[Co(C_2O_4)_3] + 2H_3O.$ Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 201. — KH $[Co(NH_3)_5(C_2O_4)]_2[Co(C_3O_4)_3] + 2H_3O.$ Vgl. Gmelins Handbuch, 8. Aufl., Syst. Nr. 58, Teil B, S. 201.

Dinitrooxalatodiamminkobaltiate Me $[C_0(NH_3)_3(C_3O_4)(NO_3)_3]$. Diese Salze können bei cis-Stellung der NH₃-Moleküle in einer inaktiven nicht spaltbaren Form (mit trans-Stellung der NO₃-Grappen; Formel I, S. 500) und einer inaktiven spaltbaren Form (mit cis-Stellung der NO₃-Grappen; Formel II, S. 500) auftreten, während bei trans-Stellung der NH₃-Moleküle

nur eine inaktive nicht spaltbare Form (Formel III) möglich ist. Die nach Formel II zu erwartende optische Spaltbarkeit der Dinitrooxalatodiamminkobaltiate ist von Shibata, Maruki (J. Coll. Sci. Univ. Tokyo 41 [1917/21], Nr. 2, S. 3) nachgewiesen worden; Thomas (Soc. 123, 618) konnte außer den der Formel II entsprechenden spaltbaren Salzen der eis-eis-Reihe auch die der Formel I entsprechenden nicht spaltbaren Salze der trans-eis-Reihe isolieren; die Trennung der beiden Salzreihen erfolgt durch fraktionierte Krystallisation der Bariumsalze. — Das von Jörgensen (Z. anorg. Ch. 11, 440) beschriebene Ammoniumsalz (H 529; vgl. a. Riesenfeld, Klement, Z. anorg. Ch. 124, 14) ist ein Gemisch aus den Salzen der eis-eis- und der trans-eis-Reihe (Thomas, Soc. 123, 618); dasselbe gilt für das Bariumsalz (Th.) und vermutlich auch für die übrigen, H 529 und im nachfolgenden Abschnitt beschriebenen Salze, die aus dem Ammoniumsalz durch doppelte Umsetzung oder auf ähnliche Weise wie das Ammoniumsalz hergestellt sind (Beilsfrein-Redaktion). — a) eis-eis-Reihe (Formel II).

a) Inaktive Salze: NH₄[Co(NH₃)₂(C₂O₄)(NO₂)₂] + H₂O. Rotbraune Krystalle. Rhomboedrisch (Knaggs, Soc. 121, 2073). D²⁰₁: 1,971. — K[Co(NH₃)₂(C₂O₄)(NO₂)₂] + H₂O. Dunkelrotbraune Krystalle. Rhomboedrisch (Knaggs, Soc. 121, 2077). D²⁰₂: 2,007. — Ba[Co(NH₃)₂(C₂O₄)(NO₂)₂] + 3 H₂O. Tief rötlichbraune Krystalle. Rhomboedrisch (Knaggs, Soc. 121, 2077; vgl. Th., Soc. 123, 618). D²⁰₁: 2,142. — \(\beta\) d. Salze: NH₄[Co(NH₃)₂(C₂O₄)(NO₂)₂]. [2]²₅: +1166 (Wasser; p = 0,1) (Shibata, Maruki, J. Coll. Sci. Univ. Tokyo 41 [1917/21], S. 11). — K[Co(NH₃)₂(C₂O₄)(NO₂)₂] + 1,5 H₂O. Bräunlichrote Nadeln. [2]²⁵₅: +1150 (Wasser;

p = 0,1) (SH., M.); $[\alpha]_D$: +154° (Thomas, Soc. 123, 619). — Cinchoninsalz $C_{19}H_{29}ON_8$ +H $[Co(NH_3)_2(C_2O_4)(NO_2)_2]$. Bräunliche Nadeln. $[\alpha]_D^{pc}$: +149° (Wasser; p = 0,25) (SH., M.). — Brucinsalz $C_{29}H_{24}O_4N_9$ +H $[Co(NH_3)_2(C_2O_4)(NO_2)_2]$ +H $_2O$. Krystalle (aus Wasser). In Wasser leichter löslich als das Brucin-l-salz (SH., M.). $[\alpha]_D^{pc}$: +68,3° (Wasser; p = 0,3). — γ) 1-Salze: NH $_4[Co(NH_3)_2(C_2O_4)(NO_2)_2]$. $[\alpha]_D^{pc}$: —107° (Wasser; p = 0,1) (SH., M.). — K $[Co(NH_3)_2(C_2O_4)(NO_2)_2]$ +1,5H $_2O$. Bräunlichrote Nadeln. $[\alpha]_D^{pc}$: —115° (Wasser; p = 0,1) SH., M.); $[\alpha]_D$: —154° (Thomas, Soc. 123, 619). — Strychninsalz $C_{21}H_{22}O_2N_2$ +H $[Co(NH_3)_2(C_2O_4)(NO_2)_2]$ +H $_2O$. Bräunliche Nadeln (SH., M.). — Brucinsalz $C_{22}H_{20}O_4N_2$ +H $[Co(NH_3)_2(C_2O_4)(NO_2)_2]$ +H $_2O$. Krystalle (aus Wasser). $[\alpha]_D^{pc}$: —70,7° (Wasser; p = 0,3) (SH., M.). — b) trans-cis-Reihe (Formel I): NH $_4[Co(NH_3)_2(C_2O_4)(NO_3)_2]$ +H $_2O$. Pleochroitische Krystalle (dunkel rötlichbraun und hell gelbbraun). Monoklin holoedrisch (KNAGGS, Soc. 121, 2074). D $[C_2O_4](NO_2)_2]$ + H $[Co(NH_3)_2(C_2O_4)(NO_3)_2]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3)_2]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3)_2]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3)_2]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3)_2]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3)_2]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3)_2]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3)_3]$ +H $[Co(NH_3)_2(C_3O_4)(NO_3$

Na[Co(NH₃)₂(C₃O₄)(NO₃)₂] (vgl. H 529). Löslichkeit in Lösungen von Natriumchlorid und Natriumnitrat bei 0°: Brönsted, Am. Soc. 44, 892. — K[Co(NH₃)₂(C₃O₄)(NO₃)₂] (vgl. H 529). Löslichkeit in Lösungen von Kaliumchlorid und Kaliumnitrat bei 0°: Br., Am. Soc. 44, 892. — K[Co(NH₃)₂(C₂O₄)(NO₂)₂] +1,5H₃O. Braune Krystalle (aus Wasser) (Kranig, A. ch. [10] 11, 49, 51). — Cu[Co(NH₃)₂(C₂O₄)(NO₂)₃]₂ +4NH₃. Rötliche mikroskopische Nadeln (Ephram, Moser, B. 53, 555). Sehr schwer löslich. — Zn[Co(NH₃)₃(C₃O₄)(NO₃)₃]₂ +4NH₃. Rote, mikroskopische Krystalle. Nimmt bei Temperaturen unterhalb 0° weiteres Ammoniak auf (E., M.). — Cd[Co(NH₃)₂(C₂O₄)(NO₂)₃]₂ +4NH₃. Hellrot, krystallinisch (E., M.). Sehr schwer löslich. — Ag[Co(NH₃)₂(C₂O₄)(NO₂)₃]₂ +4NH₃. Hellrot, krystallinisch (E., M.). Sehr schwer löslich. — Ag[Co(NH₃)₂(C₂O₄)(NO₂)₃]₂ +2NH₃. Hellrot, krystallinisch (E., M.). Löslichkeit in Wasser bei 0° und 20°: Brönsted, Am. Soc. 43, 2268. — Mg[Co(NH₃)₃(C₂O₄)(NO₃)₃]₃. Löslichkeit in Wasser bei 0° Br., P., Am. Soc. 43, 2268. — Tl[Co(NH₃)₃(C₂O₄)(NO₃)₃]. Löslichkeit in Wasser bei 0° und 20°: Br., P., Am. Soc. 43, 2268. — CoⁿlCo(NH₃)₃(C₄O₄)(NO₃)₃]. +2H₄O. Rotbraune Krystalle (aus Wasser). Ziemlich schwer löslich in kaltem Wasser (Riesenfello, Klement, Z. anorg. Ch. 124, 17). — CoⁿlCo(NH₃)₃(C₂O₄)(NO₃)₃]. +6H₂O. Rotbraune Krystalle (aus Wasser) (Kranig, A. ch. [10] 11, 50). — [Co(NH₃)₄(C₄O₄)(NO₃)₃]. +6H₂O (H 529). Löslichkeit in Wasser und wäßr. Lösungen verschiedener Salze: Brönsted, La Mer, Am. Soc. 46, 571; Br., Volqvartz, Ph. Ch. 184, 111; La Mer, Mason, Am. Soc. 49, 414; La Mer, Cook, Am. Soc. 51, 2624, 2628; in verd.

Salpetersäure, auch bei Gegenwart von Kaliumnitrat: Br., V. — $[Co(NH_3)_s(H_2O)][Co(NH_2)_g(C_2O_4)(NO_2)_2]_3 + 6H_2O$ (vgl. Br., V., Ph. Ch. 134, 98). Löslichkeit in verd. Salpetersäure und Natriumacetat-Lösung bei Gegenwart von Kaliumnitrat: Br., V., Ph. Ch. 134, 113. — $[Co(NH_3)_4(C_2O_4)][Co(NH_3)_2(C_2O_4)(NO_2)_2]$. Löslichkeit in wäßr. Lösungen verschiedener Salze: Br., Am. Soc. 45, 2906: Br., La Mer, Am. Soc. 46, 568. — $Ni[Co(NH_3)_2(C_2O_4)(NO_2)_2]_2 + 8NH_3$. Orangefarben, in getrocknetem Zustand gelbbraun. Addiert unterhalb 0° weiteres Ammoniak (Ephraim, Moser, B. 53, 554, 555).

 $K_4[\mathrm{Co_3(C_2O_4)_4(OH)_2}] + 3\,H_2\mathrm{O}.$ Diese Konstitution wird von Percival. Wardlaw (Soc. 1929, 2628) dem von Durrant (Soc. 87 [1905], 1785) als [KO_2C·C(OH)_2·O]_2Co·O·Co[O·C(OH)_4·CO_2K]_3, von Werner (A. 406 [1914], 271) als $K_2[\mathrm{Co}(C_2O_4)_2(OH)(H_2O)]$ for mulierten "Kaliumkobaltoxyoxalat" (H 529; E I 229) zugeschrieben. Kryoskopisches Verhalten in Wasser: D., Soc. 87, 1786; P., Wa., Soc. 1929, 2632. Die grüne wäßrige Lösung scheidet beim Erwärmen auf 70° oder auf Zusatz von Natronlauge einen braunen Niederschlag aus und wird auf Zusatz von Mineralsäuren oder Essigsäure unter Kohlendioxyd-Entwicklung rosa (P., Wa.). Elektrische Leitfähigkeit in Wasser bei 25°: P., Wa., Soc. 1929, 2633. — Ag_{4}[Co_{2}(C_{2}O_4)_4(OH)_2] + 5\,H_{2}O. Existiert in einer dunkelgrünen, krystallinen und einer hellgrünen, flockigen Form (P., Wa., Soc. 1929, 2631.) — Ca_{2}[Co_{2}(C_{2}O_4)_4(OH)_2] + 4\,H_{2}O. Grüner flockiger Niederschlag (P., Wa., Soc. 1929, 2631). — Ba_{2}[Co_{2}(C_{2}O_4)_4(OH)_2] + 5\,H_{2}O. Grüner Niederschlag (P., Wa., Soc. 1929, 2630). — Pb_{2}[Co_{3}(C_{2}O_4)_4(OH)_2] + 3\,H_{2}O. Grüner flockiger Niederschlag (P., Wa., Soc. 1929, 2630). — Pb_{2}[Co_{3}(C_{2}O_4)_4(OH)_2] + 3\,H_{2}O. Grüner flockiger Niederschlag (P., Wa., Soc. 1929, 2631).

Nickel(II)-oxalat NiC₂O₄ + 2H₂O (H 529; E I 230). Die bei 18° gesättigte wäßrige Ni Lösung enthält 3,0 mg/l; elektrische Leitfähigkeit der gesättigten wäßrigen Lösung bei 18,0°: SCHOLDER, B. 60, 1522. Nickeloxalat zerfällt beim Erhitzen im Vakuum auf 325—400° unter Bildung von Nickel und geringen Mengen Nickeloxyd und Nickelcarbonat und Entwicklung von Kohlendioxyd und wenig Kohlenoxyd (Herschkowitsch, Z. anorg. Ch. 115, 162; vgl. Brochet, C. r. 175, 819; Bl. [4] 27, 898). Umsetzung mit Natriumcarbonat-Lösung: Curtman, Hart, Chem. N. 128, 249; C. 1924 I, 2874. — Durch doppelte Umsetzung von Nickel(II)-cblorid und Oxalsäure erhielten Chatterjee, Dhar (J. phys. Chem. 28, 1018) bei gewöhnlicher Temperatur ein Salz $3NiC_2O_4 + 8H_2O$, in der Siedehitze ein Salz $3NiC_2O_4 + 7H_2O$; die Bildung des Hydrats $NiC_2O_4 + 2H_2O$ konnte nicht beobachtet werden. Bildung Liesegangscher Ringe in Stärke: Ch., Dh., Koll.-Z. 40, 100; C. 1927 I, 36. — $5NiC_2O_4 + 16NaCHO_2 + 5H_2O$. Tafeln. Gibt beim Erhitzen auf 155—158° nur 1—1,5 H_2O ab (Scholder, B. 60, 1504, 1509). — $NiK_2(C_2O_4)_2 + 6H_2O$ (H 529). Gibt bei 50° 4 Moleküle, zwischen 75° und 125° ein weiteres Molekül Wasser ab; der Rest wird erst bei 220° abgegeben (Spacu, Voict, Bulet. Chuj 4, 158; C. 1929 I, 3080). — $Ni[C_2(NH_3)_2(C_2O_4)(NO_2)_2]_2 + 8NH_3$ s. oben.

Komplexe Ruthenium-(III)-oxalate: $K_3[Ru(C_2O_4)_3]+4.5H_2O$. B. Beim Umkrystallisieren des nachfolgenden Salzes aus Wasser (Charonnat, C. r. 178, 1280). Grüne Prismen. Bildet Mischkrystalle mit $K_3[Al(C_2O_4)_3]$, $K_3[Cr(C_2O_4)_3]$, $K_3[Fe(C_2O_4)_3]$ und $d\cdot K_3[Ir(C_2O_4)_3]$. Versuche zur optischen Spaltung: Ch. — $2K_3[Ru(C_2O_4)_3]+KCl+8H_2O$. B. Durch Einw. von Kaliumoxalat auf HRuCl $_4+2H_2O$ bei 130° (Ch.). Grüne Rhomboeder. Zerfällt beim Umkrystallisieren aus Wasser in Kaliumchlorid und das vorangehende Salz. — $K_3[Ru(C_2O_4)_3(NO)Cl]$. B. Durch Einw. von 2 Mol Kaliumoxalat auf $K_3[Ru(NO)Cl_5]$ (Charonnat, C. r. 178, 1424). Sehr leicht löslich. Bildet sehr leicht übersättigte Lösungen. Liefert mit Alkaloiden unkrystallisierbare Salze. — Komplexe Ruthenium(III)-oxalate, die Pyridin im Komplex enthalten, s. bei Pyridin, Syst. Nr. 3051.

Kaliumrhodium(III)-oxalat. a) dl-Salz K₃[Rh(C₃O₄)₃] + 4¹/₉H₂O (H 530; E I 230). Rh Absorptionsspektrum in Lösung: Lifschitz, Rosenbohm, Ph. Ch. 97, 3. — d-Salz K₂[Rh(C₂O₄)₃] + H₂O (E I 230). Röntgenogramm: Burgers, Pr. roy. Soc. [A] 116, 572; C. 1938 I, 2050. Rotationsdispersion zwischen 490 und 700 mµ im krystallinischen Zustand und in wäßr. Lösung: Longchambon, C. r. 178, 1829; vgl. dazu B., Pr. roy. Soc. [A] 116, 564. Ist piezoelektrisch (Lucas, C. r. 178, 1892). Gibt mit 1 Mol l-K₃[Ir(C₃O₄)₃] ein krystallisierendes "optisch-aktives Racemat" (Delléptie, C. r. 172, 1051; Bl. [4] 29, 666). — l-Salz K₄[Rh(C₃O₄)₃] + H₂O (E I 230). Ist piezoelektrisch (Lu., C. r. 178, 1892). Gibt mit 1 Mol d-K₄[Ir(C₃O₄)₃] ein krystallisierendes "optisch-aktives Racemat" (De., C. r. 172, 1051; Bl. [4] 29, 666). — 2 K₄[Rh(C₃O₄)₃] + KCl + 8 H₂O. Granatrote Krystalle. Rhomboedrisch (Duffous, Bl. Soc. franç. Min. 45, 59; C. 1928 III, 1524).

Palladium(II)-oxalate: Na₂Pd(C_2O_4)₂ + 2 H₂O (H530). Formulierung als Na₂[Pd(C_2O_4)₃ Pd (H₂O)₃]: Landesen, Z. anorg. Ch. 154, 430. Goldgelbe, lichtempfindliche Nadeln (aus Wasser). Beständiger als das nachfolgende Salz. Löslichkeit in 100 g Wasser zwischen 17,9° (1,063 g) und 59,9° (4,979 g): L., Z. anorg. Ch. 154, 434. — K_2 Pd(C_2O_4)₃ + 4 H₂O (vgl. H 530). Formulierung als Na₂[Pd(C_2O_4)₃ + 4 H₂O (vgl. H 530).

502

lierung als $K_2[Pd(C_2O_4)_2(H_2O)_4]$: L., Z. anorg. Ch. 154, 434. Wird aus wäßr. Lösungen unterhalb 51° in gelben Nadeln, oberhalb 51° in orangefarbenen Prismen erhalten. Zersetzt sich bei längerem Aufbewahren in Substanz; wäßr. Lösungen trüben sich bei ca. 47° in 1 Stde. Löslichkeit in 100 g Wasser zwischen 27,0° (0,833 g) und 82,9° (9,98 g): L.

Iridiumoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl.. Syst. Nr. 67: Iridium [Berlin 1939], S. 81, 87, 97, 109—115, 121, 126, 129, 131, 133, 135, 140. — Kaliumiridium [III] - oxalat. a) dl-Salz K₃[Ir(C₂O₄)₃] + aq (H 530; E I 230). Gibt beim Erhitzen mit Pyridin und Wasser auf 1300 im Rohr trans-K[Ir(C₅H₅N)₂(C₂O₄)₂] + 2H₂O (Syst. Nr. 3051) (DELÉPINE, C. r. 176, 447; A. ch. [9] 19, 159). — d-Salz K₃[Ir(C₂O₄)₃] + H₂O (E I 230). Ist piezoelektrisch (Lucas, C. r. 178, 1892). Gibt mit 1 Mol l-K₃[Rh(C₂O₄)₃] ein krystallisierendes "optisch-aktives Racemat" (DE., C. r. 172, 1051; Bl. [4] 29, 666). — l-Salz K₃[Ir(C₂O₄)₃] + H₂O (E I 230). Ist piezoelektrisch (Lu., C. r. 178, 1892). Gibt mit 1 Mol d-K₃[Rh(C₂O₄)₃] ein krystallisierendes "optisch-aktives Racemat" (DE., C. r. 172, 1051; Bl. [4] 29, 666). — 2 K₃[Ir(C₂O₄)₃] + KCl + 8 H₂O. Orangegelbe Krystalle. Rhomboedrisch (Duffour, Bl. Soc. franc. Min. 45, 60; C. 1923 III, 1524).

Salze $K_3[Ir(C_2O_4)_2Cl_2]$: dl-cis-Form $K_3[Ir(C_2O_4)_2Cl_2] + H_2O$. Hat in dem H 531 beschriebenen Salz von Vèzes, Duffour (Bl. [4] 5, 869) vorgelegen; zur Konfiguration vgl. Delépine, C. r. 175, 1409; A. ch. [9] 19, 8, 146. B. Neben geringeren Mengen der trans-Form und einem amorphen Komplexsalz (s. u.) beim Erhitzen von Ka[IrCl₆] mit 2 Mol Kaliumoxalat-Lösung im Autoklaven auf 130° (De., C.r. 175, 1410; A. ch. [9] 19, 147). Aus der trans-Form bei 1-stdg. Erhitzen mit Kaliumchlorid-Lösung auf 130° (DE., C.r. 175, 1410; A. ch. [9] 19, 152). Läßt sich mit Hilfe von Strychnin in die optischen Antipoden spalten (DE., C. r. 175, 1409; A. ch. [9] 19, 153). Die Lösungen sind intensiver gefärbt als die der trans-Form; über das Absorptionsspektrum vgl. Dr., A. ch. [9] 19, 152. Geht beim Erhitzen mit Kaliumchlorid-Lösung teilweise in die trans-Form über (DE., C. r. 175, 1410; A. ch. [9] 19, 148, 150). Gibt mit verd. Silbernitrat-Lösung einen amorphen, allmählich krystallisierenden Niederschlag, mit Thallium(I)-nitrat-Lösung einen sofort in Nadeln krystallisierenden Niederschlag (De., A. ch. [9] 19, 152). — d-cis-Form $K_3[Ir(C_2O_4)_2Cl_2]+3H_2O$. B. Aus der dl-cis-Form über das Strychninsalz, neben der l-cis-Form (Delépine, C. r. 175, 1410; A. ch. [9] 19, 154). Granatrote, pleochroitische (rot und orange) Krystalle. Rhombisch (Duffour, Bl. Soc. franç. Min. 45, 49; C. 1923 III, 1524). Gibt das Krystallwasser im Gegensatz zur dl-cis-Form bei 100° leicht ab. Leichter löslich als die dl-cis-Form. wasser im Gegensatz zur di-cis-Form bei 100° leicht ab. Leichter löslich als die di-cis-Form (a_n) : +20.8° (Wasser; c=2). $-1 \cdot cis$ -Form $K_3[Ir(C_2O_4)_2Cl_2] + 3H_3O$. B. s. bei der d-cis-Form. Rhombisch (Du., Bl. Soc. franc. Min. 45, 50). $[a]_p$: -23.8° (Wasser; c=2) (De., C. r. 175, 1410; A. ch. [9] 19, 154). Gleicht in den übrigen Eigenschaften der d-cis-Form. — trans-Form $K_3[Ir(C_2O_4)_2Cl_2] + 4H_2O$. B. s. o. bei der dl-cis-Form. Entsteht ferner beim Erhitzen der dl-cis-Form mit Kaliumchlorid-Lösung auf 130° (De., C. r. 175, 1410; A. ch. [9] 19, 148, 150). Krystallisiert aus wäßr. Lösungen oberhalb 40° in granatroten monoklinen Nadeln, unterhalb 40° in triklinen Prismen; durch Auflösen der triklinen Form in Wasser bei 20° und Abbühlen auf 0° werden monokline Krystalle mit 5 H O erhelten (Dr. C. r. bei 200 und Abkühlen auf 00 werden monokline Krystalle mit 5 H₂O erhalten (DE., C. r. 175, 1410; A. ch. [9] 19, 146; Du., Bl. Soc. franç. Min. 45, 52). Wird bei 40° wasserfrei (DE., A. ch. [9] 19, 151). Die Lösungen sind schwächer gefärbt als die der dl-cis-Form (DE., C. r. 175, 1411; A. ch. [9] 19, 152). Geht beim Erhitzen mit Kaliumchlorid-Lösung auf 130° im Rohr teilweise in die dl-cis-Form über (Dr., C. r. 175, 1410; A. ch. [9] 19, 148, 150). Beim Erhitzen mit Kaliumoxalat-Lösung auf 130° entsteht dl-K₃[Ir(C₂O₄)₃] (DE., A. ch. [9] 19, 152). Liefert beim Erhitzen mit Pyridin und Wasser im Rohr auf 130° trans- $K[Ir(C_5H_5N)_2(C_2O_4)_2] + 2H_2O$ (Syst. Nr. 3051) (DE., C. r. 176, 446; A. ch. [9] 19, 160). Gibt mit verd. Silbernitrat-Lösung einen in Nadeln krystallisierenden, in Ammoniak löslichen, mit Thallium(I)-nitrat-Lösung einen rosa amorphen, aus heißem Wasser krystallisierbaren Niederschlag (DE., A. ch. [9] 19, 152).

 $K_3[Ir(C_2O_4)CI_4]+H_2O$ (E I 231). Gibt mit Pyridin auf dem Wasserbad das Salz $K_2[Ir(C_5H_5N)(C_2O_4)CI_3]+1,5H_2O$ (Syst. Nr. 3051) (Delépine, A.ch. [9] 19, 145). — $K_7[Ir_3(C_2O_4)_5CI_4]+5H_2O$ (bei 100°). B. Neben cis- und trans- $K_3[Ir(C_2O_4)_5CI_2]$ beim Erhitzen von $K_3[IrCI_2]$ mit Kaliumoxalat-Lösung auf 130° im Autoklaven (De., C. r. 175, 1410; A. ch. [9] 19, 157). Orangerot, amorph. Leicht löslich in Wasser, sehr schwer in Alkohol. Gibt mit Silbernitrat einen gelbbraunen, in Salpetersäure löslichen Niederschlag. Färbt sich bei der Einw. von Salpetersäure dunkelblau.

Platinoxalate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 68: Platin, Teil C [Berlin 1940], S. 121, 161, 199, 222, 264, 274, 279, 286, 296, 299, 302, 309, 316, 323, 327, 332, 336, 340, 347. — K₂[Pt(C₂O₄)(NO₂)₂] + H₂O (H 533). B. Aus cis-[Pt(NH₂)₂(NO₂)₂] und saurem Kaliumoxalat in siedendem Wasser (TSCHUGAJEW, KILTINO-WITSCH, Soc. 109 [1916], 1290; Ж. 52, 127). — [Pt(NH₂)₄][Pt(C₂O₄)(NO₂)₂]. Orangegelbe Nadeln (aus Wasser) (TSCH., K.). Schwer löslich. [ÖSTERTAG und GAEDE]

Funktionelle Derivate der Oxalsäure.

Oxalsäuremonomethylester, Monomethyloxalat C₃H₄O₄ = HO₂C·CO₂·CH₃ (H 534; E I 231). Geschwindigkeit der Verseifung des Kaliumsalzes mit Soda-Lösung, mit Soda-Lösung + Natriumdicarbonat-Lösung und mit Soda-Lösung in Gegenwart von Natrium-chlorid bei 25°: Skrabal, Singer, M. 41, 342. Beim Erwärmen mit Kaliummethylat-Lösung und Fluoren in Methanol + Ather auf dem Wasserbad entsteht Fluorenyl-(9)-glyoxylsäuremethylester (Syst. Nr. 1300) (Kuhn, Levy, B. 61, 2243).

Oxalsäuredimethylester, Dimethyloxalat C₄H₆O₄ = CH₃· O₂C· CO₃· CH₃ (H 534; E I 232). B. Beim Behandeln von wasserfreier Oxalsäure mit Diazomethan (Biltz, Paetzold, A. 483, 85). Zur Bildung aus Oxalsäurediäthylester und Methanol in Gegenwart von Kaliummethylat nach Pfannl (M. 31, 316) vgl. Reimer, Downes, Am. Soc. 43, 950. In geringer Menge beim Kochen von Azodicarbonsäure-dimethylester in Naphthalin (Stollé, Reichert, J. pr. [2] 123, 84). — Darst. Man löst 90 g wasserfreie Oxalsäure in 100 cm³ Methanol und läßt unter schwachem Erwärmen und starkem Rühren 35 cm³ konz. Schwiefelsäure langsam hippufließen: Augheute: 68—76% (Bowness Cra. Samth. 10 [1930] 70)

hinzufließen; Ausbeute: 68—76% (Bowden, Org. Synth. 10 [1930], 70).

Zur Polymorphie vgl. a. Bridgman, Phys. Rev. [2] 6 [1915], 23. Monoklin prismatisch (Wood, Pr. Durham phil. Soc. 7, 116; C. 1927 I, 1922). Röntgenogramm: W. Ist nicht piezoelektrisch (Hettich, Schleede, Z. Phys. 50, 253; C. 1929 I, 1893). F: 54° (Dutt, Soc. 123, 2714; Verkade, Coops, Hartman, R. 45, 600). Schmelzpunkt unter hohen Drucken bis zu 8000 kg/cm²: Br., Phys. Rev. [2] 6, 22. Volumenänderung beim Schmelzen unter hohen Drucken: Br. Kp₇₆₅: 164,2° (V., C., Ha., R. 45, 588); Kp₇₆₀: 164,2° (Lecat, Ann. Soc. scient. Bruxelles 45 [1926], 290; R. 46, 244). Ist bereits bei Zimmertemperatur flüchtig (Power, Chesnut, Am. Soc. 47, 1759). Spezifische Wärme zwischen 0° und 35°: 0,3152 cal/g (Padoa, G. 52 II, 203). Verbrennungswärme bei konstantem Volumen: 401,1 kcal/Mol (V., C., Ha., R. 45, 588; V., C., R. 47, 608). Absorptionsspektrum in Hexan und Methanol: Scheibe, B. 59, 1331, 1333.

Mischbarkeit mit Wasser: Kendall, Harrison, Trans. Faraday Soc. 24, 593; C. 1929 I. 835. Kryoskopisches Verhalten in Wasser: Ke., Ha.; in Malonitril: Schence, Finken, A. 462, 280. Thermische Analyse der binären Systeme mit Phenol, 2-, 3- und 4-Nitro-phenol, 2-4-Dinitro-phenol, Pikrinsäure, α - und β -Naphthol, Brenzcatechin, Resorcin, Hydrochinon, Pyrogallol und p-Toluidin: Kremann, Zechner, Dražil, M. 45, 369, 371. Siedepunkt und Zusammensetzung binärer azeotroper Gemische mit Oxalsäuredimethylester s. in der untenstehenden Tabelle.

Läßt sich durch Mischen mit überschüssigem gepulvertem Ätzkali verseifen (Tassilly, Belot, Descombes, C. r. 186, 1847). Liefert mit Antimonpentachlorid in siedendem Chloroform das Salz (Cl₄Sb)₂C₂O₄ (S. 492) (Pfeiffer, Z. anorg. Ch. 183, 105; vgl. Rosenheim, Löwenstamm, B. 35 [1902], 1119). Beim Schütteln mit Kaliumäthylat-Lösung unter Ausschluß von Feuchtigkeit erhält man Oxalsäurediäthylester (Reimer, Downes, Am. Soc. 48, 950). Liefert mit alkoholfreiem Natriumäthylat in Äther das Natriumsalz des Oxymethoxy-essigsäure-methylesters (S. 506) (Addickes, B. 58, 1998). Gibt beim Erhitzen mit Äthylenglykol auf 200° Oxalsäureäthylenester (Syst. Nr. 2759) (Tilitschejew,

Azeotrope, Oxalsauredimethylester enthaltende Gemische.

Komponente	Kp700	Gehalt an Oxalsäure- dimethyl- ester in Gew%	Komponente	Kp760	Gehalt an Oxalsaure- dimethyl- ester in Gew%
Trichlorhydrin 1)	154,0 148,65 162,05 155,0 156,6 164,1	28 42 65 32 30 98	Octanol-(2) 3	ca. 163,8 182,35 153,65 163,15 158,75	86 (?) ca. 8 ca. 15 81 55

¹⁾ LEGAT, Ann. Soc. scient. Bruzelles 48 I [1928], 120. — 2) L., Ann. Soc. scient. Bruzelles 45 I [1926], 175, 290. — 3) L., Ann. Soc. scient. Bruzelles 47 I [1927], 23, 24. — 4) L., R. 48, 244.

B. 56, 2219; BERGMANN, WOLFF, J. pr. [2] 128 [1930], 231). Liefert beim Erhitzen mit Glycerin polymeres Oxalylglycerin (S. 508), mit Trimethylenglykol polymeres Trimethylenoxalat (S. 508) (T., B. 56, 2221; 28. 58, 453, 456, 457). Oxalağuredimethylester gibt bei der Umsetzung mit Propiolsäuremethylester und Natrium in Ather auf dem Wasserbad, Hydrolyse des Reaktionsprodukts mit kalter methylalkoholischer Kalilauge und nachfolgenden Reduktion mit amalgamiertem Zink in salzsaurer Lösung hauptsächlich Glutarsäure,

geringe Mengen Bernsteinsäure, etwas Oxalsäure und Brenzcatechin (Ingold, Soc. 127, 1204). Liefert mit 1 Mol Malonitril in Kaliummethylat-Lösung das Kaliumsalz des α-Oxy-β.β-dicyanacrylsäuremethylesters (Syst. Nr. 302); bei Einw. von 2 Mol Malonitril erhält man daneben das Dikaliumsalz des 2.3-Dioxy-1.1.4.4-tetracyan-butadiens-(1.3) (Syst. Nr. 314) (Schenck, Finken, A. 462, 160, 169). Liefert mit Cyclopentan-diessigsäure-(1.1)-dimethylester und Natriummethylat in Äther 1.1-Tetramethylen-cyclopentandion-(3.4)-dicarbonsäure-(2.5)-dimethylester (Diokens, Kon, Thorpe, Soc. 121, 1502). Mit β-Methyl-β-āthyl-gyclopentandion-(3.4)-dicarbonsäure-(2.5)-dimethylester erhält man in analoger Reaktion nur wenig 1-Methyl-1-āthyl-cyclopentandion-(3.4)-dicarbonsäure-(2.5)-dimethylester, während bei Einw. auf β.β-Diāthyl-glutarsäure-dimethylester nur geringe Mengen 1.1-Diāthyl-cyclopentandion-(3.4) und 1.1-Diāthyl-cyclo-

 $2C_4H_6O_4+KI+5I$. B. Aus den Komponenten in wäßr. Lösung (CLOVER, Am. Soc. 42, 1254). Unbeständige Krystalle mit dunkelblaugrauem Glanz (aus Äther durch Chloroform). Beginnt bei 55° zu schmelzen. Schwer löslich in Wasser, leicht in Alkohol, Aceton und Äther. — $C_4H_6O_4+SnCl_4$. Zerfließliche Blättchen und Nadeln. F: 86° (HIEBER, A. 439, 119). Sehr leicht löslich in den gebräuchlichen Lösungsmitteln.

butanon-(3)-carbonsäure-(2)-methylester entstehen (D., K., TH.).

Verbindung C₄H₄O₄Cl₈Sb₂ (H 534). Die von Rosenheim, Löwenstamm (B. 35 [1902], 1119) unter dieser Formel beschriebene Verbindung wird von Pfeiffer (Z. anorg. Ch. 133, 103) als C₅O₄Cl₈Sb₂ = (Cl₄Sb)₂C₂O₄ (S. 492) erkannt.

Oxalsäuremonoäthylester, Monoäthyloxalat C₄H₆O₄ = HO₂C·CO₂·C₅H₅ (H 535; E I 232). B. Durch Erhitzen von Oxalsäurediäthylester mit wasserfreier Oxalsäure auf 120° bis 130° und nachfolgende fraktionierte Vakuumdestillation (Fourneau, Sabetay, Bl. [4] 41, 537; 43, 860; 45, 841). — Darst. Durch Destillation eines Gemisches von 90 g wasserfreier Oxalsäure, 100 g Alkohol und 460 g Tetrachlorkohlenstoff; Ausbeute: 61% (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 167; C. 1926 II, 1126; vgl. a. F., S., Bl. [4] 41, 540). — Sehr unbeständig; wandelt sich beim Aufbewahren schnell in Oxalsäureund Oxalsäurediäthylester um (C.-C.; Darmois, C. r. 181, 1139). Kp₄: 88°; Kp₁₂: 112°; Kp₁₅: 116,5°; D[∞]₄: 1,2427; D[∞]₄: 1,2663; n[∞]₂: 1,4213; n[∞]₅: 1,4236; n[∞]₅: 1,4294; n[∞]₇: 1,4334 (C.-C.). Ultrarot-Absorptionsspektrum zwischen 0,5 und 15 µ: Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel III. Leicht löslich in organischen Lösungsmitteln und in Wasser; in wäßr. Lösung wenig beständig (C.-C.).

Oxalsäurediäthylester, Diäthyloxalat $C_6H_{10}O_4=C_2H_5\cdot O_2C\cdot CO_2\cdot C_2H_5$ (H 535; E I 232). B. Bei der Destillation von Oxalsäure mit Alkohol unter Zusatz von Chloroform oder besser von Benzol (Ausbeute: 80—85%) (Wahl, Bl. [4] 37, 715) oder von Tetrachlorkohlenstoff (Ausbeute: 95%) (Hultman, Davis, Clarke, Am. Soc. 43, 369). Über die Bildung aus Oxalsäure und Alkohol in Gegenwart von Schwefelsäure, Aluminiumsulfat oder Kaliumdisulfat vgl. a. Senderens, Aboulenc, C. r. 153, 883; A. ch. [9] 18, 161; Kotake, Fujita, Bl. phys. chem. Res. Tokyo 1, 65; C. 1928 II, 1545. Beim Schütteln von Oxalsäuredimethylester mit Kaliumäthylat-Lösung unter Ausschluß von Feuchtigkeit (Reimer, Downes, Am. Soc. 43, 950).

Physikalische Eigenschaften. F: —41,7° (kort.) (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 13; C. 1927 I, 2398), —40,6° (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 435). Kp₇₈₀: 185,4° (T., He.-Ro.), 185,65° (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 155; R. 47, 15), 185,9—186° (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 187; C. 1926 II, 1127); Kp₇₄₀: 180—182° (Dutt, Soc. 123, 2714); Kp₂₄₅: 105—107° (Hultman, Davis, Clarke, Am. Soc. 43, 369); Kp₁₅: 78°; Kp₁₁: 74° (Franzen, Helwert, H. 122, 51). Abhängigkeit des Siedepunkts vom Druck: T., He.-Ro.); D[∞]: 1,0792; D[∞]: 1,1029 (Co.-Cr.); D[∞]: 1,10169; D[∞]: 1,08426; D[∞]: 1,06687 (T., He.-Ro.); D[∞]: 1,0786; D[∞]: 1,0376; D[∞]: 1,0093; D[∞]: 3. 0,9164 (Bolle, Guye, J. Chim. phys. 3 [1905], 43). Viscosität bei 20°: 0.01979 g/cm sec (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 7;), 0,0201 g/cm sec (Co.-Cr.); bei 15°: 0.02311, bei 30°: 0,01618 g/cm sec (T., He.-Ro.). Oberflächenspannung bei 15°: 32,83, bei 20°: 32,22, bei 30°: 31,03 dyn/cm (T., He.-Ro.). Parachor: Sugden, Soc. 125, 1183. n[∞]_α: 1,41011; n[∞]_{He}: 1,41239; n[∞]_B: 1,41761; n[∞]_Y: 1,42225 (T., He.-Ro.); n[∞]_α: 1,4077; n[∞]_P: 1,4100; n[∞]_P: 1,4155; n[∞]_Y: 1,4200 (Co.-Cr.). Brechungsindices für verschiedene Heliumlinien bei 15°: T., He.-Ro. Ultraviolettes Absorptionsspektrum zwischen 0,5 und 14 μ: Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel III; Lecomte, C. r. 178, 1700, 2074

Thermische Analyse der binären Systeme mit β-Naphthol, Resorcin und Hydrochinon: Kremann, Zechner, Dražil, M. 45, 375. Siedepunkt und Zusammensetzung binärer azeotroper Gemische mit Oxalsäurediäthylester s. in der Tabelle auf S. 505. Oberflächenspennung von Lösungen in Wasser bei 23°: Rengvist, Skand. Arch. Physiol. 40, 123; C. 1920 III, 425. Volumen- und Temperaturänderung beim Mischen mit Alkohol: Prel, Madgin, Briscoe, J. phys. Chem. 32, 288. Wärmetönung beim Mischen mit dem gleichen

Azeotrope, Oxalsäurediäthylester enthaltende Gemische.

Komponente	Kp760	Gehalt an Oxalsäure- diäthyl- ester in Gew%	Komponente	Kp760	Gehalt an Oxalsaure- diathyl- ester in Gew%
Wasser 1)	97,5		Linalool 2)	185,6	97
Hexachlorathan 2)	178,6	43	Phenol ⁵)	189,5	59
Terpinen 3)	173.5	45	o-Kresol ⁵)	194,1	36
α-Pinen 8)	154,8	20	m-Kresol [§])	202,3	3
Camphen 2)	158,5	16	p-Kresol ⁵)	202,0	6,5
1.4-Dichlor-benzol 4) .	174,25(?)	ca. 95	Acetamid 2	185,3	95,8
Jodbenzol®)	181,0	52	Cineol *)	173,5	28
Pseudocumol 5)	167,95	6	,	,	

1) FAILLEBIN, Bl. [4] 29, 273. — 2) LECAT, R. 47, 15, 16, 17. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928], 16, 55, 115, 117. — 4) L., Ann. Soc. scient. Bruxelles 47 I [1927], 155. — 3) L., Ann. Soc. scient. Bruxelles 49 [1929], 18, 113, 114.

Volumen Schwefelkohlenstoff bei Temperaturen zwischen -2° und $+28^{\circ}$: Ma., P., Br., Soc. 1927, 2875.

Chemisches Verhalten. Beim Leiten eines Gemisches aus Oxalsäurediäthylester-Dampf und Wasserstoff über einen Kupferkatalysator bei 210-220° erhält man Glykolsaureäthylester (I. G. Farbenind., D. R. P. 459603; C. 1928 II, 1717; Frdl. 16, 677). Oxalsäurediäthylester wird durch Wasser schon bei 20° allmählich verseift (DARMOIS, Bl. [4] 39, 731). Geschwindigkeit der Verseifung durch Wasser oder verd. Säuren (gemessen durch die Geschwindigkeit der Mutarotation von Oxalsäurediäthylester-Ammoniumdimolybdomalat-Gemischen) bei 20° und 44°: D., C. r. 181, 1138; Bl. [4] 39, 726. Geschwindigkeit der Verseifung durch Bromwasserstoff in Eisessig bei 16—18°: Tronow, Mitarb., 38. 59, Verseifung durch Bromwasserstoff in Eisessig dei 16—18°: Tronow, Mitard., Ж. 59, 553; C. 1928 I, 1016. Wird von siedendem Thionylchlorid nicht angegriffen (McMaster, Ahmann, Am. Soc. 50, 146). Beim Erwärmen mit Magnesiumbromid-hydrosulfid in Äther auf dem Wasserbad und Zersetzen des Reaktionsprodukts mit Eis entsteht Dithiooxalsäure (Mingola, G. 56, 842). Oxalsäurediäthylester gibt mit Antimonpentachlorid in siedendem Chloroform das Salz (Cl₄Sb)₂C₂O₄ (S. 492) (Pfeiffer, Z. anorg. Ch. 133, 106; vgl. Rosenheim, Löwenstamm, B. 35 [1902], 1120). — Liefert beim Erwärmen mit Dinitromesitylen und Natrium in Alkohol auf 40—45° und Zersetzen des Reaktionsprodukts mit konz. Salzsäure [2.4(oder 2.6)- Dinitro-3.5- dimethyl-phenyl]- brenztraubensäure (Dayles Huggolf 28, 2012), 2646). Gibt mit alkoholfreiem Natriumäthylat in Ather saure (Davies, Hickox, Soc. 121, 2646). Gibt mit alkoholfreiem Natriumathylat in Äther das Natriumsalz des Oxy-diathoxy-essigsaure-athylesters (S. 506); reagiert analog mit Kaliumathylat und Natriummethylat (ADICKES, B. 58, 1996). Liefert beim Erwärmen mit l-Menthol in Gegenwart von wenig Natrium unter 10—30 mm Druck auf 70—80° geringe Mengen Oxalsäure-di-[l-menthyl-ester] und andere Produkte (Shimomura, Cohen, Soc. 121, 886). Beim Erwärmen mit 2-Nitro-4-methoxy-toluol und Natriumäthylat-Lösung auf 35—40° und Zersetzen des Reaktionsprodukts mit Salzsäure erhält man 2-Nitro-4-methoxy-phenylund Zersetzen des Kesktonsproduse inte Salzsadre einet mit 2-Mitro-4-methody-phenyt-brenztraubensäure (Kermack, Perkin, Robinson, Soc. 119, 1630). Liefert beim Erhitzen mit Athylenglykol auf 200° Oralsäure-äthylenester (Syst. Nr. 2759) (Bergmann, Wolff, J. pr. [2] 128 [1930], 231; vgl. Bischoff, B. 40 [1907], 2805). Bei der Einw. von Methyl-propylketon in Gegenwart von Natriumäthylat in Alkohol erhält man 3-Athyl-cyclopentantrion-(2.4.5)-oxalylsäure-(1)-äthylester (Koenigs, Ottmann, B. 54, 1349). Oxalsäurediäthylester gibt bei der Einw. von 1 Mol Dibutyryl und 3 Mol alkoholfreiem Natriumäthylat in Ather 3.6-Dioxy-2.5-diathyl-benzochinon-(1.4) (Kögl, Lang, B. 59, 912). Last man 2 Mol Propionsäureäthylester zu einer Suspension von Natrium in Äther zutropfen, leitet dann Sauerstoff ein und fügt 1 Mol Oxalsaurediäthylester hinzu, so erhält man 3.6-Dioxy-2.5-dimethyl-benzochinon-(1.4) (K., L., B. 59, 913). Zur Bildung von Methyloxalessigsäure-diäthylester (Syst. Nr. 292) durch Einw. von Propionsäureäthylester auf Oxalsäurediäthylester in Ather in Gegenwart von Kalium- bzw. Natriumäthylat nach Wislicenus, Arnold (A. 246 [1888], 329) vgl. a. BLAIRIE, PERKIN, Soc. 125, 313; COX, MCELVAIN, Org. Synth. 17 [1937], 54. Oxalsäurediäthylester liefert beim Behandeln mit 1 Mol Malonitril in Kaliumäthylat-Lösung das Kaliumsalz des α -Oxy- β , β -dicyan-acrylsāureāthylesters (Syst. Nr. 302); mit überschüssigem Malonitril in Gegenwart von Kaliumāthylat entsteht daneben das Dikaliumsalz des 2.3-Dioxy-1.1.4.4-tetracyan-butadiens-(1.3) (Syst. Nr. 314) (SCHENCE, FINKEN, A. 462, 168). Liefert mit Glutar-saurediathylester und Natriumathylat in Ather Cyclopentandion-(4.5)-dicarbonsaure-(1.3)diathylester und a-Athoxalyl-glutarsaure-diathylester (Dioxens, Kon, Thorre, Soc. 121, 1501; vgl Dieckmann, B. 27 [1894], 965; 32 [1899], 1931; Gault, C. r. 148 [1909], 1113).

506

Gibt beim Erhitzen mit Benzylcyanid und Natrium mit oder ohne Alkohol auf dem Wasserbad und folgenden Ansäuern mit verd. Salzsäure α.α'-Diphenyl-ketipinsäure-dinitril (Dutt, Sen, Soc. 121, 2664). Liefert mit Cyclohexylmagnesiumbromid in siedendem Benzol hauptsächlich Dicyclohexylglykolsäure - āthylester und wenig Tetracyclohexyl - āthylenglykol (Gauerke, Marvel, Am. Soc. 50, 1180). Bei Einw. auf 4 Mol Phenylacetylenylmagnesiumbromid in kalter ätherischer Lösung und Zersetzen mit kalter verdünnter Essigsäure entsteht Tetrakis-phenylacetylenyl-āthylenglykol (Wilson, Hyslor, Soc. 125, 1557). Beim Aufbewahren von Oxalsäurediäthylester und 4-Benzyl-pyridin in Kaliumäthylat-Lösung entsteht Phenyl-γ-pyridyl-brenztraubensäureäthylester (Singh, Soc. 127, 2448). Oxalsäurediäthylester gibt beim Erhitzen mit 2-Amino-pyridin auf 160° oder beim Eintragen in eine Lösung von 2-Amino-pyridin in Natriumäthylat-Lösung N.N'-Di-α-pyridyl-oxamid (Tschitschirabin, B. 57, 1172; Ж. 57, 405). Liefert in Ather bei allmählicher Einw. auf Pyrrylmagnesium-jodid oder -bromid in Ather und Zersetzung des Reaktionsprodukts mit Eiswasser und Ammoniumchlorid eine Verbindung C₁₈H₁₈O₂N₄ (Tetrapyrryläthylen?; s. bei Pyrrylmagnesiumbromid, Syst. Nr. 3048) (Godnew, Naryschkin, B. 58, 2704; 59, 2898; vgl. H. Fischer, H. Orth, Die Chemie des Pyrrols, Bd. I [Leipzig 1934], S. 390 Anm. 4).

Vergiftungsverlauf bei Kaninchen bei intravenöser Injektion: Wachtel, Z. exp. Path. Therap. 21 [1920], 12. Giftwirkung gegen Pflanzen: Ciamician, Galizzi, G. 52 I, 17. — Verwendung als Weichmacher: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 200, 231.

 $C_8H_{10}O_4+SnCl_4$. Zerfließliche Nadeln. F: 82° (HIEBER, A. 489, 119). Sehr leicht löslich in indifferenten Lösungsmitteln außer Ligroin. Kryoskopisches Verhalten in Äthylenbromid: H., A. 489, 119. Verhalten gegen Malonester, Bernsteinsäureester und Glutarsäureester: H., A. 489, 111, 129.

Verbindung $C_6H_7O_4Cl_{12}Sb_3$ (H 538). Die von Rosenheim, Löwenstamm (B. 35 [1902], 1120) unter dieser Formel beschriebene Verbindung wird von Pfeiffer (Z. anorg. Ch. 133, 103) als $C_2O_4Cl_8Sb_2=(Cl_4Sb)_2C_2O_4$ (S. 492) erkannt.

Halborthooxalsäure-dimethylester-äthylester, Oxy-methoxy-äthoxy-essigsäure-methylester $C_6H_{18}O_5=CH_3\cdot O_2C\cdot C(OH)(O\cdot CH_3)\cdot O\cdot C_2H_5$. B. Das Natriumsalz bildet sich aus Oxalsäuredimethylester und alkoholfreiem Natriumäthylat in Äther (Addickes, B. 58, 1998). — Na $C_6H_{11}O_5$. Liefert bei der Einw. von Luftfeuchtigkeit je 1 Mol der Natriumsalze des Oxalsäuremonoäthylesters und des Oxalsäuremonomethylesters. Bei der Einw. von Kohlendioxyd in Äther erhält man Oxalsäuredimethylester, Oxalsäuremethylester und ein Gemisch von Natriumäthylcarbonat mit Natriummethylcarbonat.

Halborthooxalsäure-methylester-diäthylester, Oxy-methoxy-äthoxy-essigsäure-äthylester $C_7H_{14}O_5=C_2H_5\cdot O_2C\cdot C(OH)(O\cdot CH_3)\cdot O\cdot C_2H_5$. B. Das Natriumsalz bildet sich aus Oxalsäurediäthylester und alkoholfreiem Natriummethylat in Ather (Addokus, B. 58, 1997). — Na $C_7H_{13}O_5$. Liefert bei der Einw. von Luftfeuchtigkeit äquimolekulare Mengen der Natriumsalze des Oxalsäuremonoäthylesters und des Oxalsäuremonomethylesters. Bei Einw. von Kohlendioxyd in Ather erhält man Oxalsäurediäthylester, Oxalsäure-methylester-äthylester und ein Gemisch von Natriumäthylcarbonat und Natriummethylcarbonat.

Halborthooxalsäure-triäthylester, Oxy-diäthoxy-essigsäure-äthylester $C_8H_{16}O_6=C_2H_5\cdot O_2C\cdot C(OH)(O\cdot C_2H_5)_2$. B. Das Natriumsalz bildet sich aus Oxalsäurediäthylester und alkoholfreiem Natriumäthylat in Äther (Adickes, B. 58, 1996). — Na $C_8H_{16}O_6$. Leicht löslich in Äther, Benzol, Xylol und Petroläther. Sehr hygroskopisch. Geht durch Einw. von Luftfeuchtigkeit in das Natriumsalz des Oxalsäuremonoäthylesters über. Liefert bei 115° Diäthylcarbonat, Kohlenoxyd und andere Produkte. Beim Einleiten von Kohlendioxyd in Äther entsteht monoäthylkohlensaures Natrium. Liefert mit Eisessig Oxalsäurediäthylester, wenig Alkohol und Natriumoxalat. Beim Behandeln mit Schwefelkohlenstoff in Äther bildet sich äthylkanthogensaures Natrium. Wird durch Acetessigester in Äther zerlegt (A., B. 59, 2533). — $KC_8H_{16}O_6$. Gelbe Masse. Reagiert wie das Natriumsalz, aber viel heftiger (A., B. 58, 1999).

Oxalsäuremonopropylester, Monopropyloxalat $C_5H_8O_4 = HO_2C \cdot CO_3 \cdot CH_3 \cdot C_2H_5$ (H 539). Darst. Durch Destillation von 90 g Oxalsäure mit 106 g Propylalkohol; als Nebenprodukt entsteht Oxalsäure-dipropylester; Ausbeute 73,6% (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 170; C. 1926 II, 1126). — Kp:₁₃: 118°. D₄°: 1,1661. n_{α}^{∞} : 1,4233; n_{β}^{∞} : 1,4257; n_{β}^{∞} : 1,4315; n_{γ}^{∞} : 1,4363. Leicht löslich in Wasser und organischen Lösungsmitteln. Sehr unbeständig.

Oxalsäuredipropylester, Dipropyloxalat $C_8H_{14}O_4=C_2H_5\cdot CH_2\cdot O_2C\cdot CO_3\cdot CH_4\cdot C_2H_5\cdot C_1G_2\cdot CH_3\cdot C_1G_2\cdot CH_3\cdot C_1G_3\cdot CH_3\cdot C_2G_3\cdot CH_3\cdot C_2G_3\cdot CH_3\cdot C_3G_3\cdot C_$

Oxalsäuremonobutylester, Monobutyloxalat $C_6H_{10}O_4 = HO_2C \cdot CO_2 \cdot [CH_2]_3 \cdot CH_3$. Versuche zur Darstellung durch Erhitzen von Oxalsäure und Butylalkohol: Contzen-Crowet, Bl. Soc. chim. Belg. 35, 172; C. 1926 II, 1126.

Oxalsäuredibutylester, Dibutyloxalat C₁₀H₁₈O₄ = CH₃·[CH₂]₃·O₂C·CO₂·[CH₂]₃·CH₃ (H 540). B. Beim Einleiten von dampfförmigem Butylalkohol in ein siedendes Gemisch von Oxalsäure und Butylalkohol; Ausbeute: 90% (DUTT, Soc. 123, 2714). Bei der Destillation von Oxalsäure mit Butylalkohol unter Abtrennung des gebildeten Wassers; Ausbeute über 80% (HULTMAN, DAVIS, CLARKE, Am. Soc. 43, 369). — F: —29,6 ± 0,5° (TIMMERMANS, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27), —29,5° (CONTZEN-CROWET, Bl. Soc. chim. Belg. 35, 188; C. 1926 II, 1126). Kp₇₆₀: 245,5° (T.; CO.-CR.); Kp₇₄₀: 239—240° (DU.); Kp₅₀: 150° (H., Da., Cl.); Kp₁₀: 123—124° (PENFOLD, GRANT, Perfum. essent. Oil Rec. 17, 253; J. Pr. Soc. N. S. Wales 59, 350; C. 1928 II, 2458; 1927 II, 754). D⁵⁰: 0,9855; D⁵; 1,0097 (CO.-CR.); D⁵¹; 0,9935 (P.). n⁵⁰₁₀: 1,4208; n⁵⁰₁₀: 1,4232; n⁵⁰₁₀: 1,4288; n⁵⁰₁₀: 1,4334 (Co.-CR.). — Keimtötende Wirkung: P. — Verwendung als Weichmacher: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 201, 231; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 241.

Oxalsäurediisobutylester, Diisobutyloxalat $C_{10}H_{18}O_4 = (CH_3)_2CH \cdot CH_2 \cdot O_3C \cdot CO_2 \cdot CH_2 \cdot CH(CH_3)_2$ (H 540; E I 234). B. Über die Bildung aus Oxalsäure und Isobutylalkohol in Gegenwart von Schwefelsäure, Aluminiumsulfat oder Kaliumdisulfat vgl. a. Senderens, Aboulenc, C. r. 153, 883; A. ch. [9] 18, 161. — Verwendung als Weichmacher: H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 241.

Oxalsäure-mono-n-amylester, Mono-n-amyl-oxalat $C_7H_{12}O_4 = HO_2C \cdot CO_2 \cdot [CH_2]_4 \cdot CH_2$. Versuche zur Darstellung durch Erhitzen von Oxalsäure und n-Amylalkohol: Contzen-Crower, Bl. Soc. chim. Belg. 35, 173; C. 1926 II, 1126.

Oxalsäurediisoamylester, Diisoamyloxalat C₁₂H₂₈O₄=C₅H₁₁·O₅C·CO₂·C₅H₁₁(H 540; E I 234). B. Über die Bildung aus Oxalsäure und Isoamylalkohol in Gegenwart von Schwefelsäure, Aluminiumsulfat oder Kaliumdisulfat vgl. a. Senderens, Aboulenc, C. r. 153, 883; A. ch. [9] 18, 161. Beim Einleiten von dampfförmigem Isoamylalkohol in ein siedendes Gemisch von Oxalsäure und Isoamylalkohol unter vermindertem Druck (Dutt, Soc. 123, 2715). — Kp₇₈₀: 268,0° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 22, 24, 110); Kp₇₄₀: 260—262° (D.). Diisoamyloxalat bildet binäre azeotrope Gemische mit Diphenylmethan (Kp: 265,35°; 14 Gew.-% Diisoamyloxalat), mit α-Chlornaphthalin (Kp: 262,5°; ca. 8 Gew.-% Diisoamyloxalat), mit Isoeugenolmethyläther (Kp: 267,95°; 96% Diisoamyloxalat) und mit Phenylessigsäure (Kp: 262,35°; 50 Gew.-% Diisoamyloxalat) (L., Ann. Soc. scient. Bruxelles 49 [1929], 22, 24, 110, 111). — Verwendung als Weichmacher: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 201, 231; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 241.

Oxalsäure-methylester-[d-octyl-(2)-ester], Methyl-[d-octyl-(2)]-oxalat $C_{11}H_{20}O_4$ = $CH_2 \cdot O_2C \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$. B. Neben Oxalsäure-di-[d-octyl-(2)]-ester beim Erhitzen von Oxalsäuredimethylester mit rechtsdrehendem Octanol-(2) im offenen Gefäß auf 175—180° oder im Autoklaven auf 195—205° (Hall., Soc. 123, 35). — Fruchtartig riechende Flüssigkeit. Kp₂₀: 130—132°. D½ zwischen 30° (0,9745) und 140° (0,8636): H. n_7^{∞} : 1,4261; n_{164}^{∞} : 1,4280; n_{164}^{∞} : 1,4357. [a] n_7^{∞} : +14,22° (unverdünnt), +13,1° (Alkohol; c=5), +11,5° (Schwefelkohlenstoff; c=5). Rotationsdispersion der reinen Substanz (zwischen 19° und 126° für λ = 589,3 bis 435,8 m μ) und der Lösungen in Alkohol und Schwefelkohlenstoff (für λ = 589,3—435,8 m μ bei 20°): Hall.

Oxalsäure-äthylester-[d-octyl-(2)-ester], Äthyl-[d-octyl-(2)]-oxalat $C_{18}H_{32}O_4=C_{2}H_{5}\cdot O_{2}C\cdot CO_{3}\cdot CH(CH_{3})\cdot [CH_{2}]_{5}\cdot CH_{5}$. Neben Oxalsäure-di-[d-octyl-(2)-ester] beim Erhitzen von Oxalsäurediäthylester mit rechtsdrehendem Octanol-(2) im offenen Gefäß auf 175—180° oder im Autoklaven auf 195—205° (HALL, Soc. 123, 35). — Fruchtartig riechende Flüssigkeit. Kp₃₀: 138—140°. $D_{2}^{m,z}$: 0,9574; $D_{2}^{m,z}$: 0,9428; $D_{2}^{m,z}$: 0,9251; $D_{2}^{m,z}$: 0,9067. $n_{2}^{m,z}$: 1,4253; Brechungsindioes bei 26° zwischen λ = 643,8 m μ (1,4234) und 435,8 m μ (1,4348): H. [α] $_{2}^{m,z}$: +13,98° (unverdünnt), +13,6° (Alkohol; c = 5), +10,0° (Schwefelkohlenstoff; c = 5). Rotationsdispersion der reinen Substanz. (swischen 20° und 120° für λ = 589,3—435,8 m μ) und der Lösungen in Alkohol und Schwefelkohlenstoff (für λ = 589,3—435,8 m μ und 18°): HALL.

Oxalsäure-di-[d-octyl-(2)-ester], Di-[d-octyl-(2)]-oxalat $C_{18}H_{14}O_4=CH_3\cdot [CH_2]_5\cdot CH(CH_2)\cdot O_3C\cdot CO_3\cdot CH(CH_2)\cdot [CH_2]_5\cdot CH_3$. B. Beim Erhitzen von wasserfreier Oxalsäure mit rechtsdrehendem Octanol-(2) auf 150° (HALL, Soc. 123, 35). Aus Oxalsäurediäthylester oder -dimethylester und 2 Mol rechtsdrehendem Octanol-(2) beim Erhitzen im offenen Gefäß auf 175—180° oder im Autoklaven auf 195—205° (H.). — Schwach riechende Flüssigkeit. $K_{P_{11}}$: 198—199°. Di swischen 20° (0,9198) und 120° (0,8397): H. n_{1}^{2} : 1,4329; Brechungsindices bei 26° zwischen λ = 643,8 m μ (1,4309) und 435,8 m μ (1,4426): H. [α] $\frac{1}{10}$: + 22,72°

(unverdünnt); $[\alpha]_{0}^{n}$: $+23,7^{\circ}$ (Alkohol; c=5); $[\alpha]_{0}^{n}$: $+10,4^{\circ}$ (Schwefelkohlenstoff; c=5). Rotationsdispersion der reinen Substanz (zwischen 18,8° und 130° für $\lambda=589,3-435,8$ m μ) und der Lösungen in Alkohol und Schwefelkohlenstoff (für $\lambda=589,3-435,8$ m μ bei 18° bzw. 16°): Hall.

Oxalsäure-di-[l-octyl-(2)-ester], Di-[l-octyl-(2)]-oxalat $C_{18}H_{34}O_4 = CH_3 \cdot [CH_3]_5 \cdot CH(CH_3) \cdot O_3C \cdot CO_3 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$. [α]%: —22,60° (unverd.); Rotations dispersion der unverdünnten Substanz für Wellenlängen zwischen 670,8 und 400,5 m μ : Lowry, Richards, Soc. 125, 1596.

Polymeres Trimethylenoxalat (C₅H₆O₄)_x. B. Aus äquimolekularen Mengen Oxalsäuredimethylester und Trimethylenglykol beim Erhitzen auf 150—200° im Vakuum (Tiltenorejew, K. 58, 457; C. 1927 I, 440). — Krystalle (aus Chloroform + Methanol). F: 82—84°. — Zersetzt sich schon bei der Destillation im Vakuum teilweise. Liefert beim Erhitzen auf 240—265° unter starker Entwicklung von Kohlendioxyd und Kohlenoxyd wenig Propionaldehyd, Acrolein (?), Trimethylenglykol und andere Produkte.

Polymeres Oxalylglycerin $(C_5H_6O_5)_x$. B. Durch Erhitzen von Glycerin und Oxalsäuredimethylester auf ca. 150—195° (TILITSCHEJEW, B. 56, 2221; \Re . 58, 453, 456). — Glasartig. F: 220—225° (Zers.). Unlöslich in den gebräuchlichen Lösungsmitteln. — Zersetzt sich bei der trocknen Destillation, teilweise unter Bildung von Allylalkohol.

[AMMERLAHN]

Oxalsäure-äthylester-chlorid, Äthoxalylchlorid C₄H₅O₃Cl=ClOC·CO₂·C₂H₅ (H 541; E I 234). B. Durch Kochen von Oxalsäuremonoäthylester mit Thionylchlorid (FOURNEAU, SABETAY, Bl. [4] 41, 539; 43, 860). — Darst. Zur Darstellung aus Oxalsäurediäthylester und Phosphorpentachlorid vgl. Bert, Bl. [4] 37, 1401; 41, 1165; Barré, Bl. [4] 41, 47. — Liefert beim Behandeln mit Benzoacetodinitril in Äther und Pyridin C-Äthoxalyl-benzoacetodinitril C₈H₅·C(:NH)·CH(CN)·CO·CO₂·C₂H₅ (Benary, Soenderop, Bennewitz, B. 56, 911). Beim Erwärmen mit β-Acetyl-phenylhydrazin in Benzol auf dem Wasserbad entsteht β-Acetyl-α-āthoxalyl-phenylhydrazin (van Alphen, R. 47, 678).

Oxalsäuredichlorid, Oxalylchlorid $C_2O_2Cl_2 = CloC \cdot COCl$ (H 542; E I 234). Beim Kochen von 2 Mol Oxalylchlorid mit 1 Mol Arsentrioxyd erhält man Arsentrichlorid; analog entsteht mit 1 Mol Chromtrioxyd Chromylchlorid (Adams, Ulich, Am. Soc. 42, 607). — Oxalylchlorid reagiert als Säurechlorid mit 2-Methyl-naphthalin bzw. Dimethylnaphthalinen in Gegenwart von Aluminiumchlorid unter Bildung geringer Mengen 3-Methyl-acenaphthenchinon bzw. Dimethyl-acenaphthenchinonen und weiterer Verbindungen (Lesser, Gad, B. 60, 242). Mit Diphenyläther und Aluminiumchlorid in Schwefelkohlenstoff bildet sich 4.4'-Diphenoxybenzil (Schönberg, Kraemer, B. 55, 1190). Gibt mit β -Naphthol in Gegenwart von Aluminiumchlorid 4.5-Benzo-cumarandion-(2.3) (Giua, Atti Congr. naz. Chim. ind. 1924, 266; C. 1925 I, 2309). Mit β -Naphthol-methyläther in Gegenwart von Aluminiumchlorid erhält man außer 4.5-Benzo-cumarandion-(2.3) wenig 3-Methoxy-acenaphthenchinon (Staudinger, Schlenker, Goldstein, Helv. 4, 337). Oxalylchlorid setzt sich mit β -Thionaphthol zu 4.5-Benzo-thionaphthenchinon (Syst. Nr. 2482) um (Ges. f. chem. Ind. Basel, D. R. P.402994; C. 1925 I, 303; Frdl. 14, 474). Liefert bei Einw. von überschüssigem Dithiobrenzcatechin und folgendem kurzen Erwärmen auf dem Wasserbad 2.2'-Dioxy-dibenzdithiolyl-(2.2') $C_{\rm eH_4} < \frac{8}{\rm S} > C({\rm OH}) \cdot ({\rm HO}) C < \frac{8}{\rm S} > C_{\rm eH_4}$ (Syst. Nr. 3009) (Hurtley, Smiles, Soc. 1926, 2268).

Bei lingerem Erwärmen mit Dithiobrenzcatechin auf dem Wasserbad und Extrahieren des
Reaktionsprodukts mit heißer Essigsäure ent-

 übergeht (GiuA, Atti Congr. naz. Chim. ind. 1924, 266; G. 54, 594). Reagiert analog mit Indol und mit α-Methyl-indol (GiuA).

Da Oxalylchlorid bei Gegenwart von Aluminiumchlorid leicht in Kohlenoxyd und Phosgen zerfällt, reagiert es in vielen Fällen wie Phosgen. So entsteht beim Behandeln von Oxalylchlorid mit Äthylbenzol in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff unter Kühlung und nachfolgenden Zersetzen des Reaktionsprodukts mit Eis 4-Äthyl-benzoesäure (Schönberg, Kraemer, B. 55, 1189). Beim Behandeln mit Thioanisol bei Gegenwart von Aluminiumchlorid erhält man 4.4'-Bis-methylmercapto-benzophenon (Sch., A. 436, 218). Mit Resorcindimethyläther in Gegenwart von Aluminiumchlorid entsteht 2.4.2'.4'-Tetramethoxy-benzophenon (Staudinger, Schlenker, Goldstein, Helv. 4, 341). Durch Einw. von Dimethylanilin und Aluminiumchlorid entsteht Krystallviolett (Postowski, Z. chim. Promyšl 4, 552; C. 1927 II, 2183). Mit Cyclohexylmagnesiumbromid bildet sich hauptsächlich Dicyclohexylketon (Gauerke, Marvel, Am. Soc. 50, 1179). — Die Anhydride von Monocarbonsäuren geben beim Kochen mit 1,5—2,5 Mol Oxalylchlorid die entsprechenden Carbonsäurechloride (Adams, Ulich, Am. Soc. 42, 606).

Bei mehrtägigem Kochen von Oxalylchlorid mit Resorcin und Natrium in feuchtem Äther entsteht 3.6-Dioxy-9-[α.2.4-trioxy-benzyl]-xanthen (β-Resemin) (Syst. Nr. 2454) (Μικδιό, J. pr. [2] 119, 220). Beim Erwärmen mit 2 Mol Resorcin und Kalium in feuchtem Äther erhält man Bis-[3.6-dioxy-1.2.7.8-tetrahydro-xanthyl-(9.9') (Resjankin) (Syst. Nr. 2797) und wenig 3.6.9-Trioxy-9-[x.x-dioxy-x-oxymethylphenyl]-xanthen (Syst. Nr. 2455) (Μικδιό, J. pr. [2] 119, 224). Oxalylchlorid gibt bei der Einw. von 5 Mol Phenylacetylenylmagnesium-bromid in Ather bei —10° eine Verbindung C₃₄H₂₂O₂ (s. bei Phenylacetylen, Syst. Nr. 474) (Hess, Weltzien, B. 54, 2520).

Oxalsäuredibromid, Oxalylbromid C₂O₂Br₂ = BrOC·COBr (E I 236). H₂C CH₂ Gibt bei der Einw. von Acenaphthen bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff Pyracen-hemichinon (Syst. Nr. 680a; s. nebenstehende Formel) (Fleischer, Wolff, B. 53, 929). Liefert beim Kochen mit 2 Mol der Natriumsalze von Carbonsäuren in Benzol die entsprechenden Säurebromide (ADAMS, ULICH, Am Soc. 42, 608).

Oxalsäuremonoamid, Oxamidsäure C₂H₃O₃N = HO₂C·CO·NH₂ (H 543; E I 236). B. Beim Behandeln von Oxamidhydroxamsäure mit Bromwasser (DE PAOLINI, G. 56, 758). — Prismen (aus Alkohol). F: 214° (Zers.) (DE P.). Liefert bei der Oxydation mit Kaliumpermanganat in Ammoniak Cyansäure (Fosse, C. r. 172, 160). Zersetzt sich bei der Einw. von Natriumhypobromit-Lösung unter Stickstoffentwicklung (Cordier, M. 47, 337). — Wird durch Magen- und Sojabohnenurease nicht gespalten (Luck, Seth, Biochem. J. 18, 1230).

Oxamidsäuremethylester $C_3H_5O_3N=CH_3\cdot O_3C\cdot CO\cdot NH_2$ (H 544). F: 123° (Serabal, Muhry, M. 42, 48). Zusammensetzung des eutektischen Gemisches aus Oxamidsäuremethyl-, äthyl- und isobutylester: Praetorius, Fr. 64, 96. — Geschwindigkeit der Verseifung in alkalischer und saurer Lösung bei 25°: Ser., M.

Oxamidsäureäthylester, Oxamäthan $C_4H_7O_3N = C_3H_5 \cdot O_2C \cdot CO \cdot NH_2$ (H 544; E I 236). B. In geringer Menge neben Acetyloxalursäure beim Kochen von Oxalursäureäthylester mit Essigsäureanhydrid (Beherend, Härtel, A. 422, 97). — Zusammensetzung des eutektischen Gemisches aus Oxamidsäure-äthyl-, -methyl- und -inobutylester: Praetorius, Fr. 64, 96. — Geschwindigkeit der Verseifung in alkalischer und saurer Lösung bei 25°: Skrabal, Muhry, M. 42, 48. Liefert beim Erhitzen mit Acetylchlorid auf 130—140° Acetyloxamäthan (B., H.). Bei der Einw. von Phthalylchlorid im Vakuum bei 100—140° entsteht Cyanameisensäurechlorid (S. 511) (Ott, Ch. Z. 50, 448; C. 1926 II, 883). Gibt beim Erhitzen mit Methylanilin Tetravoxpiperazin (Forster, Saville, Soc. 121, 826). Beim Kochen mit 6 Mol Phenylmagnesiumbromid-Lösung erhält man Triphenylearbinol, Diphenyl und vermutlich Cyanameisensäureäthylester (McKenzie, Duff, B. 60, 1340).

N-Acetyl-oxamidsäure-äthylester, Acetyloxamäthan C₆H₉O₄N = C₂H₅·O₂C·CO·NH·CO·CH₃ (H 545; E I 237). B. Beim Erhitzen von Oxamidsäureäthylester mit Acetylchlorid auf 130—140° (BEHREND, HÄRTEL, A. 422, 99). In geringer Menge beim Kochen von Oxalursäureäthylester mit Essigsäureanhydrid, neben Acetyl-oxalursäure (B., H., A. 422, 96). — Rhombische Blättchen (aus Äther). F: 54—55°. — Zersetzt sich bei längerem Aufbewahren. Liefert beim Behandeln mit Methylamin Dimethyloxamid. Mit Anilin entstehen Oxanilsäureäthylester und wenig Oxanilid.

Oxamidsäureisobutylester $C_6H_{11}O_3N=(CH_2)_2CH\cdot CH_2\cdot O_2C\cdot CO\cdot NH_2$. Zusammensetzung des eutektischen Gemisches aus Öxamidsäure-isobutyl-, -methyl- und -āthylester: Praetorius, Fr. 64. 96.

Oxalsäurediamid, Oxamid $C_2H_4O_2N_3=H_4N\cdot CO\cdot CO\cdot NH_3$ (H 545; E I 237). B. Zur Bildung beim Einleiten von Dioyan in 44% ige Salzsäure vgl. Buoher, J. ind. Eng. Chem.

9, 251; C. 1920 IV, 245. Zur Bildung aus Dicyan in wäßr. Lösung bei Gegenwart von Acetaldehyd nach Liebig (A. 113, 246) vgl. Langenbeck, A. 469, 21. Oxamid entsteht beim Erhitzen der Semioxamazone des Acetons, Methyläthylketons, Acetophenons und Dibenzylketons (Wilson, Pickering, Soc. 127, 966). Bei der Elektrolyse von Harnstoff in Wasser (Schaum, B. 56, 2461). Aus Glycyl-glycin, Diglyoyl-glycin und Leucyl-diglycyl-glycin durch Oxydation mit wäßr. Zinkpermanganat-Lösung auf dem Wasserbad (Abderhalden, Klarmann, Komm, H. 140, 94; A., Komm, H. 143, 130). Aus Glycinanhydrid, Alanyl-glycinanhydrid, dl-Leucyl-glycinanhydrid, l-Leucyl-d-leucinanhydrid, Tyrosinanhydrid und weiteren Dioxopiperazinen durch Oxydation mit wäßr. Zinkpermanganat-Lösung auf dem Wasserbad (A., Kl., Komm, H. 140, 94; A., Komm, H. 143, 130; A., Quast, H. 151, 148). Bei der Einw von Phosphorpentachlorid auf die β'- oder γ'-Form des Oximinomalonsäure-amid-p-toluidids (Syst. Nr. 1689) in Ather (Plowman, Whiteley, Soc. 125, 600). Neben einem violettschwarzen Farbstoff C₆H₄O₂N₄ aus Glykosin (Syst. Nr. 4021) durch Einw. von überschüssigem 30% igem Wasserstoffperoxyd in schwach sohwefelsaurer Lösung (Lehmstedt, A. 456, 264). Bei der Oxydation von Rohrzucker in konz. Ammoniak-Lösung mit Calcimpermanganat (Fosse, C. r. 171, 398). Bei der Oxydation von Eiweißstoffen wie Seide, Wolle oder Elastin mit wäßr. Zinkpermanganat-Lösung (A., Kl., Komm, H. 140, 97; A., Komm, H. 143, 131; A., Quast, H. 151, 146) oder mit Wasserstoffperoxyd (A., Qu., H. 151, 148).

Härteanisotropie: Reis, Zimmermann, Ph. Ch. 102, 332. Löslichkeit in Wasser: Behrend, Härtel, A. 422, 95. Dichte und Oberflächenspannung der gesättigten wäßrigen Lösung bei 22°: Zahn, R. 45, 786. — Gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung allein oder in Gegenwart von Kupfer Cyansäure (Fosse, Laude, C. r. 173, 320). Entwickelt mit Natriumhypobromit-Lösung 1 Atom Stickstoff (Cordier, M. 47, 337). Verändert sich nicht beim Erhitzen mit überschüssiger Phenylmagnesiumbromid-Lösung (McKenzie, Duff, B. 60, 1340). — Wird durch Magen- und Sojabohnenurease nicht gespalten (Luck, Seth, Biochem. J. 18, 1230). — Oxamid gibt beim Erhitzen mit Nickelsulfat-Lösung und Versetzen mit Alkali noch bei großer Verdünnung einen gelben Niederschlag (Liška, Chem. Listy 23, 402; C. 1929 II, 2229). Verwendung dieser Reaktion zum Nachweis von Nickel: Liška. Mit Benzochinon-Lösung entsteht eine rote Färbung (Cooper, Nicholas, J. Soc. chem. Ind. 48, 60 T; C. 1927 I, 2203).

Äthyliden-bis-oxamid $C_6H_{10}O_4N_4=(H_2N\cdot CO\cdot CO\cdot NH)_2CH\cdot CH_3$ (H 546). Die von Berthelot, Péan de Saint-Gilles, $C.\tau$. 56, 1172; A. 128, 338; Schiff, A. 151, 211 als Athylidendioxamid bezeichnete Verbindung wird von Langenbeck, A. 469, 17 als Verbindung $C_4H_8O_3N_3$ (s. S. 512 bei Dicyan) erkannt.

Oxalsäure-methylester-nitril, Cyanameisensäure-methylester, "Cyankohlensäuremethylester" C₃H₃O₂N = CH₃·O₂C·CN (H 547; E I 238). Kp₇₆₀: 97° (Hebest, Koll. Beih. 23, 328; C. 1926 II, 2544). Flüchtigkeit: He. — Bei der Einw. von Pyrogallol in Äther bei Gegenwart von Zinkchlorid unter Einleiten von Chlorwasserstoff und folgenden kurzen Behandlung mit kaltem Wasser entsteht 2.3.4-Trioxy-benzoylameisensäure-methylester (Finger, Eirich, J. pr. [2] 103, 249). Gibt beim Behandeln mit 3 Mol Methylmagnesium-jodid in kaltem Äther und Zersetzen des Reaktionsprodukts mit Eis und verd. Schwefelsäure wenig Dimethylacetylcarbinol (Fi., Gaul., J. pr. [2] 111, 57). Mit Äthylmagnesiumbromid entsteht Diäthylpropionylcarbinol in besserer Ausbeute (Fi., G.). Bei der Reaktion mit Phenylmagnesiumbromid erhält man als Hauptprodukt Triphenylcarbinol und wenigms-Phenyl-benzoin (Fi., G.). Mit α-Naphthylmagnesiumbromid bildet sich das Imid des Di-α-naphthyl-α-naphthoyl-carbinols (Fi., G.). — Toxische Wirkung auf Katzen und Mäuse: Flury, Hase, Münch. med. Wschr. 67, 779; C. 1920 III, 428. — Ein Gemisch von Cyanameisensäure-methylester und -äthylester mit einem Gehalt von ca. 10% Chlorameisensäureester findet unter der Bezeichnung Cyklon (Zyklon) Verwendung zur Schädlingsbekämpfung (Fl., Ha.). Hautschädigungen durch Cyklon beim Menschen: Seligmann, C. 1922 I, 300.

Oxalsäure-äthylester-nitril, Cyanameisensäure-äthylester, "Cyankohlensäure-äthylester" $C_4H_5O_2N=C_2H_5\cdot O_2C\cdot CN$ (H 547; E I 238). Flüchtigkeit: Herbst, Koll. Beih. 23, 330; C. 1926 II, 2544. — Liefert beim Behandeln mit Malonitril und Alkohol bei Gegenwart von Kaliumäthylat unter Kühlung das Kaliumsalz des α -Oxy- α -äthoxy- β - β -dioyan-āthylens(?) (Syst. Nr. 293) (Schenck, Finken, A. 462, 170). Gibt durch Umsetzung mit Athylmagnesiumbromid in Ather Triäthylcarbinol und Diäthylpropionylcarbinol (Beuylants, Bl. Acad. Belgique [5] 10, 392; C. 1924 II, 2457). Bei der Einw. von $3^{1/2}$ Mol Phenylmagnesiumbromid-Lösung erhält man Triphenylcarbinol (McKenzie, Duff, B. 60; 1341), Beim Sättigen einer Lösung von Cyanàmeisensäure-äthylester und 2.3-Dimethyl-4-āthyl-pyrrol in absol. Äther mit Chlorwasserstoff entsteht [4.5-Dimethyl-3-āthyl-pyrryl-(2)]-glyoxylsäure-āthylester-imid (H. Fischer, Stangler, A. 459, 97). — Über ein Cyklon benanntes Gemisch aus Cyanameisensäure-methylester und -āthylester mit ca. 10% Chlorameisensäureester vgl. den vorangehenden Artikel.

Oxalsäure-äthylester-nitriloxyd $C_aH_bO_aN=C_aH_b\cdot O_aC\cdot C:N:O$ (H 548; E1 238). Furoxandicarbonsäurediäthylester (Syst. Nr. 4599; vgl. H 27, 714; E I, 27, 617) wird von Skinner (Am. Soc. 46, 733, 739) auf Grund kryoskopischer Mol.-Gew.-Bestimmungen als Gleichgewichtsgemisch aus Oxalsäure-äthylester-nitriloxyd und Furoxandicarbonsäure-diäthylester aufgefaßt.

Oxalsäure-butylester-nitriloxyd $C_6H_9O_3N=CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_$

Oxalsäure-chlorid-nitril, Cyanameisensäurechlorid $C_2ONCl = ClOC \cdot CN$. B. Bei der Einw. von Oxamäthan auf Phthalylchlorid im Vakuum bei $100-140^\circ$ (Ott, Ch. Z. 50, 448; C. 1926 II, 883). — Öl. Kp₇₈₀: 126—128°. — Gibt beim Behandeln mit absol. Alkohol Paracyanameisensäure-triäthylester (Syst. Nr. 3931). Zerfällt bei der Einw. von Wasser in Blausäure, Chlorwasserstoff und Kohlendioxyd.

Oxalsäure-iminoäthyläther-nitril, Cyanameisensäure-iminoäthyläther $C_4H_6ON_2 = C_9H_5 \cdot O \cdot C(:NH) \cdot CN$ (H 549; E I 238). Liefert beim Erhitzen mit alkal. Natriumarsenit-Lösung auf dem Wasserbad Natriumarseniat, Natriumcyanid und Äthylalkohol (Gutmann, B. 54, 1413; Fr. 66, 234).

Oxalsäuredinitril, Dicyan, Cyan C₂N₂ = NC·CN (H 549; E I 238). B. Die von Bunsen, Playfair (J. pr. [1] 42 [1845], 265) angegebene Bildung im Hochofen wird von Haufe, v. Schwarze (Arch. Eisenhüttenw. 1, 453; C. 1928 I, 1574) bestritten. Dicyan entsteht bei der Oxydation von Blausäure, Kaliumcyanid, Kaliumferrocyanid und Kaliumferricyanid mit verschiedenen Oxydationsmitteln wie Natriumpersulfat, Wasserstoffperoxyd, Kaliumpermanganat usw. (Ricca, Pirrone, Ann. Chim. applic. 18, 550; C. 1929 I, 1924; Bellucci, Ric., Atti Congr. naz. Chim. pura appl. 1923, 400; C. 1924 I, 1915). Bei der Elektrolyse von geschmolzenem Natriumcyanid (Bucher, J. ind. Eng. Chem. 9 [1917], 251). Aus Kaliumferricyanid in wäßr. Lösung durch Belichtung mit einer Kohlebogenlampe (Schwarz, Tede, B. 60, 70). In geringer Menge aus Acetylen und Stickstoff bei monatelanger Einw. von Sonnenlicht in Gegenwart von Kalilauge (Francesconi, Ciurlo, G. 54, 688). Beim Erhitzen der Verbindung HN:C(S·CH₃)·N:N·C(S·CH₃):NH (Syst. Nr. 217) auf 110°, neben anderen Produkten (Arndt, Milde, Eckert, B. 56, 1977). — Darst. Zur Darstellung aus Kaliumcyanid und Kupfersulfat in Wasser nach Jacquemin (Bl. [2] 43, 556; A. ch. [6] 6, 141) vgl. Ricca, Ann. Chim. applic. 16, 83; C. 1926 I, 3138; Noir, Tchèng-Datchang, C. r. 187, 126. Dicyan entsteht in reinerem Zustand bei der Einw. von wäßr. Blausäure-Lösung auf Kupfersulfat (N., Tch.-D.). Zur Darstellung aus Kupfer(I)-cyanid und Eisen(III)-chlorid-Lösung nach Jacquemin vgl. N., Tch.-D. Zur Darstellung aus Kupfer(I)-cyanid und Eisen(III)-chlorid-Lösung nach Jacquemin vgl. N., Tch.-D. Zur Darstellung aus Quecksilbercyanid durch Erhitzen mit Quecksilberchlorid vgl. Ricca, Ann. Chim. applic. 16, 89; C. 1926 I, 3139.

Kp₇₆₀:—21,17° (Perby, Bardwell, Am. Soc. 47, 2630). Dampfdruck von festem Dicyan zwischen —93,16° (1,7 mm) und —32,31° (412,9 mm) und von flüssigem Dicyan zwischen —27,17° (572,6 mm) und —7,12° (1388,4 mm): Perry, Bardwell, Am. Soc. 47, 2630. Tripelpunkt: —27,90° bei 552,2 mm (Per., Bar.). Viscosität bei 15°: 0,986·10-4 g/cmsec; bei 100°: 1,264·10-4 g/cmsec (Rankine, Pr. roy. Soc. [A] 99, 331; C. 1922 I, 951); bei 17°: 0,995·10-4 g/cmsec (Ran., Smith, Phil. Mag. [6] 42, 619; C. 1922 I, 800). Molarwärme C_v bei 15° und 1 Atm. Druck: 8,48 cal/Mol (Leduc, Chem. Reviews 6, 13; C. 1929 I, 2733). Verhältnis C_p:C_v bei 15°: 1,25 (Le.). Ultraviolettes Absorptionsspektrum von Dicyandampf: Acly, Ph. Ch. 135, 258. Bandenspektra: Barrat, Pr. roy. Soc. [A] 98 [1921], 40; Mecke, Phys. Z. 26 [1925], 217; Mulliern, Nature 114, 858; Phys. Rev. [2] 28 [1926], 481, 1202; Birge, Astrophys. J. 59 [1924], 45; Lord Rayleigh, Pr. roy. Soc. [A] 102 [1923], 453; Freundlich, Hochheim, Z. Phys. 26 [1924], 102; Duffieux, Ann. Physique [10] 4, 302; J. Phys. Rad. [6] 6 [1925], 93 S; C. r. 178, 475; Jevons, Pr. roy. Soc. [A] 112 [1926], 407; Johnson, Jeneins, Phil. Mag. [7] 2 [1926], 621; Jene., Phys. Rev. [2] 31 [1928], 539; Asundi, Ryde, Nature 124 [1929], 57; Herzberg, Z. Phys. 52 [1929], 815; Byck, Phys. Rev. [2] 34 [1929], 453; vgl. Holst, Oosterhuis, Versl. Akad. Amsterdam 29, 47; C. 1921 I, 443; Orubo, C. 1922 III, 754. Ausführlichere Angaben hierzu s. bei H. Kayser, H. Konen, Handbuch der Spektroskopie, Bd. VII [Leipzig 1924], S. 131; Bd. VIII [Leipzig 1932], S. 323. Dielektr.-Konst. bei 15° und 760 mm Druck: 1,00167 (Cordonnier, Guinchart, C.r. 185, 1449).

Dicyan reagiert bei der Einw. von α-Strahlen aus Radiumemanation unter Bildung eines schwarzen Polymeren und geringer Mengen Stickstoff (Lind, Bardwell, Perry, Am. Soc. 48, 1560). Geschwindigkeit der Polymerisation durch α-Strahlen bei 25°: Li., B., P. Einfluß von Xenon auf die Polymerisationsgeschwindigkeit: Li., B., Am. Soc. 48, 1579. — Entflammungsgrenzen von Gemischen mit Schwefelkohlenstoff und Luft: White, Soc. 1927, 796. Fortpflanzungsgeschwindigkeit der Explosionswelle in Gemischen von Dicyan mit Sauerstoff und mit Sauerstoff und Stickstoff: Campbell, Soc. 121, 2483; C., Dixon, Trans.

Faraday Soc. 22, 307; C. 1927 I, 247. Geschwindigkeit der der Explosionswelle vorangehenden Druckwelle in Dicyan-Sauerstoff-Stickstoffgemischen: C., Soc. 121, 2494. Beim Leiten eines Gemisches von Dicyan und 16 Raumteilen Sauerstoff durch ein erhitztes Quarzrohr in Gegenwart eines Platinthermoelements entstehen Kohlendioxyd und viel N₂O₄ (v. Wartenberg, Sieg, B. 53, 2201). Bei Abwesenheit von Platin findet auch bei ca. 1000° keine Verbrennung statt (v. W., S.). Ein Gemisch mit 14 Raumteilen Sauerstoff ist explosiv (v. W., S.). Liefert bei der Verbrennung mit Luft am Platin-Netz bei hoher Strömungsgeschwindigkeit bei 900° vorwiegend Stickoxyd und Kohlenoxyd, bei geringerer Strömungsgeschwindigkeit entsteht unterhalb 700° und oberhalb 900—950° bei höherer Dicyan-Konzentration mehr Stickstoff; daneben entstehen geringe Mengen anderer Produkte (Abe, Hara, Technol. Rep. Töhoku Univ. 7, 1; C. 1928 I, 1000). Dicyan reagiert mit Sauerstoff und Wasserstoff bei gleichzeitiger Einw. von α-Strahlen aus Radiumemanation unter Bildung von Polymerisationsprodukten (Lind, Bardwell, Perry; Li., B., Sci. 62, 423; C. 1926 I, 1131). Bei der Einw. von Stickoxyd bei Gegenwart einer Spur Sauerstoff im ultravioletten Licht von 360—220 mμ erhält man Stickstoffdioxyd, Stickstoff und Kohlendioxyd (Norrier, Licht von 360—220 mμ erhält man Stickstoffdioxyd, Stickstoff und Kohlendioxyd (Norrier, Rode, Z. anorg. Ch. 152, 349). — Bei der Explosion eines Gemischs von Dicyan und Acetylen unter ca. 3 Atm. Druck entstehen Blausäure, Wasserstoff, Stickstoff und Kenlembeck, A. 489, 21. Beim Aufbewahren mit Acetaldehyd in Wasser bei 0—15° erhält man als Zwischenprodukt eine Verbindung C₄H₅O₃N₂ (ε. u.) (La.). — Ausführliche Angaben über das physiologische Verhalten des Dicyans bei H. Staub in J. Houben, Fortschritte der Heilstoff-chemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 914.

Verbindung C₄H₈O₃N₂ (vielleicht Oxamidsäure-iminovinyläther CH₂:CH·O·C(:NH)·CO·NH₂+H₂O). Diese Verbindung ist von Berthelot, Péan de Saint-Gilles (C. r. 56, 1172; A. 128, 338) und Schiff (A. 151, 211) als Äthyliden-bis-oxamid (H 2, 546) beschrieben worden. — B. Beim Aufbewahren von Dicyan mit Acetaldehyd in Wasser bei 0—15° und folgenden Eindampfen des Reaktionsgemisches im Vakuum bei 30° (Langen-Beck, A. 489, 23). — Mikroskopische Nadeln. Sohmilzt bei raschem Erhitzen gegen 150° unter Zersetzung und erstarrt dann wieder. Beim Erhitzen im Vakuum auf 150° wird etwas Oxamid abgespälten. Durch Einw. von Wasser entstehen Acetaldehyd und Oxamid. Beim Kochen mit verd. Salzsäure entsteht anscheinend Crotonaldehyd. Addiert Brom in Wasser bei 0°.

Oxalsäure-amid-hydroxylamid, Oxamidhydroxamsäure $C_2H_4O_3N_3=H_2N\cdot CO\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Form (vgl. H 554; E I 239). Liefert beim Behandeln mit Bromwasser Oxamidsäure (DE PAOLINI, G. 56, 758).

Oxalsäuredihydroxylamid, Oxaldihydroxamsäure $C_2H_4O_4N_2 = HO \cdot NH \cdot CO \cdot CO \cdot NH \cdot OH$ bzw. desmotrope Form. — Oxaldihydroxamsäure von H. Lossen (H 555; E I 240). B. Zur Bildung des Hydroxylaminsalzes aus Oxalsäurediäthylester und methylalkoholischer Hydroxylamin-Lösung vgl. Ponzio, Sismondi, G. 56, 711. — Prismen (aus Wasser). F: 165° (Zers.). Unlöslich in Eisessig. — Liefert beim Behandeln mit Benzoylchlorid in alkal. Lösung entgegen den Angaben von W. Lossen, Schäfer (B. 27, 1114) nicht Dibenzhydroxamsäure, sondern das Dibenzoylderivat der Oxaldihydroxamsäure HO·C(:N·O·CO·C₆H₅)·C(OH):N·O·CO·C₆H₅ (Syst. Nr. 929) (P., S.). — Na₂Ni(C₂H₂O₄N₂)₂ + 2 H₂O. Dunkelrote Prismen (P., S.). — Na₂Ni(C₂H₂O₄N₂)₂ + 3 H₄O. Blutrote Prismen. Explodiert beim Erhitzen (P., S.). Schwer löslich in Wasser, unlöslich in den üblichen organischen Lösungsmitteln. Beständig gegen Essigsäure. Wird durch verd. Mineralsäuren zersetzt. — K₆Cu(C₂H₂O₄N₂)₂ + 5 H₂O. Rote Nadeln. Leicht löslich in Wasser (P., S.). — K₂Ni(C₂H₂O₄N₂)₂ + 2 H₂O. Rote Nadeln. Leicht löslich in Wasser (P., S.). — K₄Ni(C₂H₂O₄N₂)₂ + 5 H₂O. Rote Prismen (P., S.). — Die von Hofmann, Ehrhardt, B. 46, 1463; E I 240 beschriebenen Salze waren vermutlich unrein (Ponzio, Sismondi, G. 56, 709 Anm. 4).

Oxalsäure - bis - [amidoxim - methyläther], Diaminoglyoxim - dimethyläther $C_4H_{10}O_9N_4=CH_3\cdot O\cdot N:C(NH_3)\cdot C(NH_3):N\cdot O\cdot CH_3$ bzw. desmotrope Form. B. Beim Behandeln von Oxalsäurediamidoxim (H 2, 557; E I 2, 240) mit Dimethylsulfat in 20% iger Natronlauge (Avogadro, Tavola, G. 55, 329). — Blättehen (aus Alkohol). F: 144°. Löslich in kaltem Ather, Chloroform und Aceton, schwer löslich in kaltem Alkohol und Benzol, fast unlöslich in kaltem Ligroin.

Oxalsäure - äthylester - oxyimidehlorid, Oximinochloressigsäure - äthylester $C_4H_6O_5NCl=C_2H_5\cdot O_2C\cdot CCl:N\cdot OH~(H~556;~E~I~241).~B.~In~geringer~Menge~bei~der~Einw.$

von verd. Salzsäure auf Nitroessigsäureäthylester (Steinkopf, A. 434, 27). Beim Behandeln von Aminoessigsäureäthylester-hydrochlorid mit Natriumnitrit in verd. Salzsäure im Kältegemisch (Skinner, Am. Soc. 46, 738).

Oxalsäure - butylester - oxyimidehlorid, Oximinochloressigsäure - butylester $C_6H_{10}O_3NCl = CH_3 \cdot [CH_2]_3 \cdot O_3C \cdot CCl \cdot N \cdot OH$. Bei der Einw. von Natriumnitrit auf eine Lösung von Aminoessigsäure butylester in verd. Salzsäure unter Kühlung mit Kältegemisch (Skinner, Am. Soc. 46, 739). — Nadeln (aus Ligroin). F: 56° .

Oxalsäure-amid-oxyimidehlorid, Oximineehloressigsäure-amid $C_2H_3O_2N_1Cl=H_*N\cdot CO\cdot CCl:N\cdot OH$ (E I 241).

E I 241, Zeile 23 v. u. statt "225" lies "219".

Oxalsäure-bis-oxyimidehlorid, $\alpha.\beta$ -Diehlor- $\alpha.\beta$ -dioximino-äthan, Diehlor-glyoxim $C_2H_2O_3N_3Cl_3=HO\cdot N:CCl\cdot CCl:N\cdot OH$ (E I 242). B. Beim Einleiten von Chlor in die wäßr. Lösung des Natriumsalzes der labilen (α)-Glyoximcarbonsäure (Ponzio, DE PAOLINI, G. 56, 252). Aus Furoxancarbonsäure beim Lösen in Natronlauge, Ansäuern mit Schwefelsäure und Einleiten von Chlor oder beim Erhitzen in wäßr. Lösung auf 70—80°, Abkühlen und Einleiten von Chlor (P., DE P.). — Krystallpulver. F: 206° (unter Sublimation).

Oxalsäure-bis-oxyimidbromid, α.β-Dibrom-α.β-dioximino-äthan, Dibrom-glyoxim C₂H₂O₂N₂Br₂ = HO·N:CBr·CBr:N·OH. B. Beim Behandeln des Natriumsalzes der labilen (α)-Glyoximcarbonsäure mit Bromwasser (Ponzio, de Paolini, G. 56, 252). Aus Glyoximdicarbonsäure (= Dioximinobernsteinsäure) und Bromwasser (P., de P., G. 56, 252). Aus. 18). Aus Furoxancarbonsäure beim Lösen in Natronlauge, Ansäuern mit Schwefelsäure und Behandeln mit Bromwasser oder bei Einw. von Bromwasser auf eine anfangs auf 70—80° erhitzte, dann abgekühlte wäßr. Lösung von Furoxancarbonsäure (P., de P.).

— Blättchen (aus Äther + Petroläther). F: 216° (Zers.). Löslich in kaltem Alkohol, Äther und Aceton, schwer löslich in Wasser, fast unlöslich in Benzol, Chloroform und Ligroin.

— Liefert beim Behandeln mit Anilin in Wasser Oxalsäure-bis-anilidoxim. Beim Abdampfen der Lösung in Acetanhydrid im Vakuum erhält man das Diacetat.

Diacetat $C_8H_8O_4N_2Br_3=CH_3\cdot CO\cdot O\cdot N:CBr\cdot CBr:N\cdot O\cdot CO\cdot CH_3$. B. Beim Eindampfen einer Lösung von Dibromglyoxim in Acetanhydrid im Vakuum (Ponzio, de Paolini, G. 56, 253). — Prismen (aus Alkohol). F: 163° (unter Rotfärbung). Unlöslich in Wasser, sehr schwer löslich in kaltem Ather und Ligroin, schwer in kaltem Alkohol, Aceton, Benzol und Chloroform.

Bis-discetylamino-glyoximdimethyläther $C_{12}H_{18}O_6N_4=(CH_3\cdot CO)_2N\cdot C(:N\cdot O\cdot CH_3)\cdot C(:N\cdot O\cdot CH_3)\cdot N(CO\cdot CH_3)_2$. B. Beim Kochen von Diaminoglyoxim-dimethyläther (S. 512) ·mit Acetanhydrid in Gegenwart von Natriumacetat (Avogadro, Tavola, G. 55, 330). — Blättchen (aus Alkohol). F: 205°. Löslich in kaltem Aceton und Chloroform, sehr schwer löslich in kaltem Alkohol, Äther und Benzol, fast unlöslich in kaltem Ligroin.

Oxalsäure - amid - hydrazid, Semioxamaxid $C_2H_5O_2N_3=H_2N\cdot CO\cdot CO\cdot NH\cdot NH_2$ (H 559; E I 243). Über die Zersetzung mit salpetriger Säure in wäßr. Lösung vgl. Rosenthaler, Bio. Z. 207, 300. Liefert beim Kochen mit Pikrylchlorid in Alkohol Oxamidsäure-[2.4.6-trinitro-phenyl]-hydrazid (GIUA, PETRONIO, J. pr. [2] 110, 305). Die Kondensation mit Ketonen zu Semioxamazonen in wasserfreien Lösungsmitteln wird durch Zusatz von Jod beschleunigt (Wilson, Pickering, Soc. 123, 395; 125, 1152). Reagiert nicht mit Methyl-tert.-butyl-keton, Campher, Phenyl-styryl-keton und Fructose (W., Pi., Soc. 125, 1152). Bei 2-stdg. Erhitzen mit Benzylamin auf 175—180° erhält man N.N'-Dibenzyl-oxamid, Hydrazin und Ammoniak (W., Pi., Soc. 125, 1154). — NaC₂H₄O₂N₃. B. Aus Semioxamazid und Natriumäthylat-Lösung (W., Pi., Soc. 123, 397). Pulver. Wird durch Wasser zersetzt.

Chloral-semioxamason C₄H₄O₂N₂Cl₃ = H₂N·CO·CO·NH·N:CH·CCl₃. B. Aus Chloral und Semioxamazid (Knöpper, M. 41, 462). — Weiße Masse. Bräunt sich bei 204°, zersetzt sich bei 227°. Schwer löslich in Alkohol, löslich in Eisessig. — Beim Behandeln mit Kalilauge tritt ein eigenartiger Geruch auf.

Aceton-semioxamason $C_5H_9O_2N_3=H_2N\cdot CO\cdot CO\cdot NH\cdot N:C(CH_3)_3$. B. Beim Erhitzen von Semioxamazid mit wasserfreiem Aceton ohne Lösungsmittel oder in absol. Alkohol auf dem Wasserbad; Zusatz von Jod beschleunigt die Reaktion (WILSON, PICKERING, Soc. 123, 395). — Nadeln (aus Aceton). F: 147°. Wird von feuchtem Äther oder verd. Alkohol hydrolysiert. — Liefert beim Erhitzen auf 180° Dimethylketazin und ein Gemisch von Oxamid und Cyclooxalylhydrazid (§. 514) (W., P., Soc. 127, 967). — NaC $_5H_6O_2N_3$. Pulver. Zersetzt sich leicht in Gegenwart von Feuchtigkeit.

Methyläthylketon-semioxamaeon $C_gH_{11}O_2N_3=H_2N\cdot CO\ CO\cdot NH\cdot N:C(CH_2)\cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Wilson, Pickering, Soc. 123, 395). — Nadeln

(aus Alkohol). F: 127°. — Wird von feuchtem Äther oder verd. Alkohol hydrolysiert. Liefert beim Erhitzen auf 180° Methyläthylketazin und ein Gemisch von Oxamid und Cyclooxaiylhydrazid (s. u.) (W., P., Soc. 127, 967). — NaC₆H₁₀O₂N₃. Pulver. Zersetzt sich leicht in Gegenwart von Feuchtigkeit (W., P., Soc. 128, 397).

Methylisopropylketon-semioxomazon $C_7H_{13}O_2N_3=H_2N\cdot CO\cdot CO$ NH·N:C(CH₃)·CH(CH₃)₂. B. Analog der vorangehenden Verbindung (Wilson, Pickering, Soc. 123, 395). — Nadeln (aus absol. Alkohol). F: 143°.

Methylisobutylketon - semioxamazon $C_8H_{15}O_9N_3 = H_2N\cdot CO\cdot CO\cdot NH\cdot N:C(CH_3)\cdot CH_3\cdot CH(CH_3)_2$. B. Aus Semioxamazid und Methylisobutylketon in heißer wäßrig-alkoholischer Lösung (Wilson, Pickering, Soc. 123, 396). — Krystalle (aus Alkohol). F: 133°.

Önanthaldehyd-semioxamazon C₂H₁₇O₂N₃ = H₂N·CO·CO·NH·N·CH·[CH₂]₅·CH₃.

B. Aus Semioxamazid und Önanthaldehyd in Wasser bei 90° (Lapworth, McRae, Soc. 121.

2753). — Krystalle (aus 85% igem Alkohol). F: 227°.

Methyl-n-hexyl-keton-semioxamazon $C_{10}H_{10}O_2N_3 = H_2N \cdot CO \cdot CO \cdot NH \cdot N : C(CH_3) \cdot [CH_2]_5 \cdot CH_3$. B. Aus Methyl-n-hexyl-keton und Semioxamazid in siedendem Alkohol bei Gegenwart von wenig Jod (Wilson, Pickering, Soc. 125, 1153). — Nadeln (aus Alkohol). F: 115—116°. Sehr leicht hydrolysierbar.

Pentadecylaldehyd-semioxamason C₁₇H₂₃O₂N₃ = H₂N·CO·CO·NH·N:CH·[CH₂]₁₃·CH₃. B. Aus Semioxamazid und Pentadecylaldehyd in warmem Wasser (Landa, Bl. [4] 37, 1236). — Käsiger Niederschlag (aus verd. Alkohol). Unlöslich in allen organischen Lösungsmitteln außer Pyridin und heißer Essigsäure.

Mesityloxyd-semioxamazon $C_8H_{13}O_2N_3 = H_2N \cdot CO \cdot CO \cdot NH \cdot N : C(CH_3) \cdot CH : C(CH_3)_2$.

B. Beim Erhitzen von Semioxamazid mit Mesityloxyd in wäßrigem oder absolutem Alkohol (Wilson, Pickering, Soc. 123, 396). — Tafeln (aus Alkohol). F: 163—164°. — NaC₈H₁₈O₂N₃. Pulver. Zersetzt sich in Gegenwart von Feuchtigkeit.

Oxalsäuredihydrazid, Oxalhydrazid $C_2H_6O_2N_4=H_2N\cdot NH\cdot CO\cdot CO\cdot NH\cdot NH_2$ (H 559; E I 243). F: 243—244° (Zers.) (Franzen, Helwert, H. 122, 52), 244—245° (Borsche, Müller, Bodenstein, A. 475, 122). — Gibt bei Einw. von 2 Mol Chinon in verd. Salzsäure unter Eiskühlung eine Verbindung der Formel [$HO\cdot C_6H_4\cdot N:N\cdot CO-]_2$ bzw. [$O:C_6H_4:N\cdot NH\cdot CO-]_2$ (Syst. Nr. 671) (Bor., M., Bod.). Beim Behandeln mit Chinonoxim in Methanol und n-Salzsäure entsteht die Verbindung [$HO\cdot N:C_6H_4:N\cdot NH\cdot CO-]_2$ (Syst. Nr. 671) (Bor., M., Bod.).

Hydrazioxalyl, "Cyclo-oxalylhydrazid" $[C_2H_2O_2N_2]_x$ (H 559; E I 243). B. Durch Erhitzen von Acetophenon-semioxamazon auf 215°, neben anderen Produkten (Wilson, Pickering, Soc. 127, 966). Entsteht analog aus den Semioxamazonen von Aceton, Methyläthylketon und Dibenzylketon (W., P.).

Äthanmercarbid $C_1H_2O_4Hg_6 = HO \cdot Hg \cdot \left(O < \frac{Hg}{Hg} > \right)C \cdot C\left(< \frac{Hg}{Hg} > 0\right) \cdot Hg \cdot OH$ (H 562). B. Aus Quecksilber(II)-acetat oder in geringer Menge aus [4-Dimethylamino-phenyl]-quecksilberacetat beim Kochen mit überschüssiger alkoholisch-wäßriger Kalilauge (Whitmore, Hanson, Carnahan, Am. Soc. 51, 899). Beim Kochen von β -Oxy-äthyl-quecksilbersalzen (Syst. Nr. 444) mit Kalilauge, am besten in Gegenwart von Kaliumjodid (K. A. HOFMANN,

LESCHEWSKI, B. 56, 127).

Schwefelanaloga der Oxalsäure.

Dithiooxalsäure C₃H₂O₂S₃ = HS·CO·CO·SH bzw. desmotrope Form (H 565; E I 244).

B. Zur Bildung durch Umsetzung von 2 Mol Äthylmercaptan mit 1 Mol Oxalylchlorid und Behandlung des entstandenen Dithiooxalsäurediäthylesters mit alkoh. Kaliumhydrosulfid-

Behandlung des entstandenen Dithiooxalsäurediäthylesters mit alkoh. Kaliumhydrosulfid-Lösung vgl. FAIRHALL, J. ind. Hyg. 8, 532; C. 1927 I, 774. Beim Erwärmen von Oxalsäurediäthylester mit Magnesiumbromid-hydrosulfid in Äther auf dem Wasserbad (Mingola, G. 56, 842). Aus Dithiooxalsäure-O.O-diäthylester und alkoh. Kalilauge (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 74; C. 1927 I, 1301). — Gelbe Krystalle von charakteristischem Geruch. Schwer löslich in Wasser (S.). — PbC₂O₂S₂. Beständiges amorphes Pulver (M.).

Dithiooxalsäure-S.S-dimethylester, Thioloxalsäuredimethylester $C_4H_6O_2S_3=CH_2\cdot S\cdot CO\cdot CO\cdot S\cdot CH_3$ (H 565). B. Zur Bildung aus Oxalylchlorid und Methylmercaptan nach Jones, Tasker (Soc. 95, 1906) vgl. Arndt, Milde, Eckert, B. 56, 1982. In geringer Menge beim Erhitzen von Dithioazo-dicarbonsäure-S.S-dimethylester $CH_2\cdot S\cdot CO\cdot N:N\cdot CO\cdot S\cdot CH_3$ über den Schmelzpunkt (A., M., E.). — Gelbliche Krystalle von unangenehmem Geruch (aus Ather). F: 80°. Kp₇₆₀: 218°.

Dithiooxalsäure-O.O-dimethylester, Thionoxalsäuredimethylester $C_4H_4O_2S_2=CH_2\cdot O\cdot CS\cdot CS\cdot O\cdot CH_3$. B. Aus Oxalsäure-bis-iminomethyläther und Schwefelwasserstoff in Ather (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 74; C. 1927 I, 1301). — Unangenehm riechende gelbe Flüssigkeit. Kp₂₁: 50—53°.

Dithiooxalsäure-O.O-diäthylester, Thionoxalsäurediäthylester $C_6H_{10}O_2S_2=C_2H_5$: O·CS·CS·O·C₂H₅ (H 565; E I 244). B. Analog der vorangehenden Verbindung (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 74; C. 1927 I, 1301). — Kp₃₂: 80—82°. D₄ⁿ: 1,0565. Viscosität bei 21°: Sa.

Dithiooxalsäure-O.O-diisopropylester, Thionoxalsäurediisopropylester $C_8H_{14}O_2S_2=(CH_3)_2CH\cdot O\cdot CS\cdot CS\cdot O\cdot CH(CH_3)_2$. B. Analog der vorangehenden Verbindung (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 75; C. 1927 I, 1301). — Kp₄₃: 91—93°.

Dithiooxalsäure-S.S-bis-chlormethylester, Thioloxalsäure-bis-chlormethylester $C_4H_4O_2Cl_2S_2=CH_2Cl\cdot S\cdot CO\cdot CO\cdot S\cdot CH_2Cl$. Zeigt auf der Haut schwache Reizwirkung (Hanzlik, Tarr, J. Pharmacol. exp. Therap. 14, 226; C. 1920 I, 510).

Dithiooxamid, Rubeanwasserstoff C₂H₄N₂S₂ = H₂N·CS·CS·NH₂ bzw. desmotrope Form (H 565). Farbreaktionen mit Kupfer-, Kobalt- und Nickelsalzen und Anwendung zur Bestimmung von Kobalt und Nickel und zum mikrochemischen Nachweis von Kupfer, Kobalt und Nickel: RåY, RaY, Quart. J. indian chem. Soc. 3, 120; C. 1926 II, 2158. — Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 522. — CuC₂H₂N₂S₂. B. Aus alkoh. Rubeanwasserstoff-Lösung und Kupfersulfat-Lösung (R., R.). Bildet sich in wäßr. Lösung noch bei Anwesenheit von Kupfer in einer Verdünnung von 1:1000000 (R., R.). Schwarze Schuppen. Zersetzt sich oberhalb 160° zu einer roten Flüssigkeit und entwickelt bei weiterem Erhitzen Schwefeldioxyd, Ammoniak und Dieyan unter Bildung von Kupferoxyd (R., R.). Unlöslich in den gewöhnlichen organischen Lösungsmitteln; löslich in siedender verdünnter Salzsäure (R., R.). Zerfällt beim Kochen mit Alkalilaugen in Kupfersulfid, Alkalicyanid und -rhodanid (R., R.). Beständig gegen Ammoniak (R., R.). — CoC₂H₄N₄S₂. B. Aus alkoh. Rubeanwasserstoff-Lösung und Kobaltsalzen (R.; R.). Entsteht in wäßr. Lösung noch bei Anwesenheit von Kobalt in einer Verdünnung von 1:150000 (R., R.). Rotbraunes hygroskopisches Pulver. Gibt bis 130° nicht alles Wasser ab; zersetzt sich oberhalb 160° analog dem Kupfersalz unter Bildung von Kobaltsullfid und Kobaltoxyd (R., R.). Magnetische Susceptibilität: R., Bhar, J. indian nhem. Soc. 5 [1928], 500. Unlöslich in den gewöhnlichen organischen Lösungsmitteln; löst sich unzersetzt in heißen verdünnten Alkalilaugen (R., R.). Beim Behandeln einer Lösung von Carbonatotetrammin kobalt(III)- nitrat in verd. Ammoniak mit alkoh. Rubeanwasserstoff-Lösung (R., R.). Braunes Pulver. Verliert beim Erhitzen auf 115—120° 4 Mol H₂O. Unlöslich in Wasser und in den gebräuchlichen organischen Lösungsmitteln; Lösung noch bei Anwesenheit von Nickel in einer Verdünnung von 1:500000 (R., R.). Bläulichviolettes Pulver. Zersetzt sich oberhalb 160° analog dem Kupfers

Tetrathiooxalsäure C₂H₂S₄ = HS·CS·CS·SH. B. Beim Verseifen von Tetrathiooxalsäurediäthylester mit alkoh. Kalilauge (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 83; C. 1927 I, 1302; vgl. jedoch B. Fetkenheuer, H. Fetkenheuer, Lecus, B. 60, 2532). — Orangefarbige viscose Flüssigkeit. Schwer löslich in Wasser, leicht in den gewöhnlichen organischen Lösungsmitteln mit gelber Farbe.

 $\label{eq:total} \textbf{Tetrathiooxals\"{a}ure-dimethylester, Dimethyltetrathiooxalat} \ C_4H_6S_4 = CH_3 \cdot S \cdot CS \cdot CS \cdot S \cdot CH_s.$

Niedrigerschmelzende Form. Das Mol.-Gew. wurde kryoskopisch in Benzol und Eisessig bestimmt (B. FETKENHEUER, H. FETKENHEUER, LECUS, B. 60, 2534). — B. Man behandelt Schwefelkohlenstoff mit 0,8% igem Natriumamalgam, trägt das Reaktionsprodukt in 90% igen Alkohol ein und leitet in die Lösung Methylchlorid ein, oder man erwärmt das Reaktionsprodukt mit Dimethylsulfat in Schwefelkohlenstoff auf dem Wasserbad; daneben erhält man die höherschmelzende Form und andere Produkte (B. F., H. F., L., B. 60, 2529). — Hellgelbbraune Krystalle (aus Chloroform + Methanol). Monoklin prismatisch (HIMMEL, Z. Kr. 65, 497). F: 71,6°; D. 1,658 (B. F., H. F., L.). — Steigert die Reaktionsfähigkeit von Jod in Schwefelkohlenstoff (Feigl, Bondi, M. 53/54, 536). Liefert beim Kochen mit konzentrierter wäßrig-methylalkoholischer Natronlauge Natriumoxalat und Natriumcarbonat (B. F., H. F., L.).

Höherschmelzende Form. Das Mol.-Gew. wurde kryoskopisch in Benzol und Eisessig bestimmt (B. Fetkenheuer, H. Fetkenheuer, Lecus, B. 60, 2531). — B. s. bei der niedrigerschmelzenden Form. — Hellgelbe Krystalle (aus Methanol + Chloroform). Monoklin prismatisch (Himmel, Z. Kr. 65, 498). F: 100,9°; Kp_{0,1}: 210° (Zers.) (B. F., H. F., L.). D...

1,619; leicht löslich in Chloroform, löslich in Benzol, schwer löslich in Methanol, Alkohol, Ather und Eisessig (B. F., H. F., L.). — Steigert die Reaktionsfähigkeit von Jod in Schwefelkohlenstoff (Frigl, Bondi, M. 53/54, 536). Liefert beim Kochen mit konzentrierter wäßrigmethylalkoholischer Natronlauge Natriumoxalat und Natriumcarbonat (B. F., H. F., L.).

Tetrathiooxalsäurediäthylester $C_6H_{10}S_4=C_2H_5\cdot S\cdot CS\cdot CS\cdot CS\cdot C_2H_5$. B. Bei der Einw. von Dieyan und Chlorwasserstoff auf eine äther. Lösung von Athylmercaptan und nachfolgenden Behandlung des entstandenen, nicht näher beschriebenen, Dithiooxaliminodiäthylesters mit Schwefelwasserstoff (Sakurada, Mem. Coll. Sci. Kyoto [A] 10, 81; C. 1927 I, 1302; vgl. jedoch B. Fetkenheuer, H. Fetkenheuer, Lecus, B. 60, 2532). — Orangefarbene unangenehm riechende Flüssigkeit. Kp43: 90—93°. Unlöslich in Wasser.

2. Malonsäure $C_3H_4O_4 = HO_2C \cdot CH_2 \cdot CO_2H$ (H 566; EI 244).

Vorkommen, Bildung, Darstellung.

V. In Medicago sativa L. (Luzerne) (Turner, Hartman, Am. Soc. 47, 2044). — B. Durch Einw. von Aspergillus niger auf bernsteinsaures Calcium (Subramaniam, Stent, Walker, Soc. 1929, 2489) sowie auf Citronensäure bei 30°, neben anderen Produkten (Challenger, Su., Wa., Soc. 1927, 205; Wa., Su., Ch., Soc. 1927, 3051). Bei der Vergärung von Ammoniumeitrat durch Bac. pyocyaneus (Butterworff, Wa., Biochem. J. 23, 932). Zur Bildung bei der Gärung einer Rohrzucker-Lösung vgl. v. Lippmann, B. 53, 2069. Durch Einw. von Wasserstoffperoxyd auf Bernsteinsäure in Gegenwart von Eisen(II)-sulfat in verd. Schwefelsäure (Su., St., Wa., Soc. 1929, 2490). Durch Oxydation von di-Apfelsäure mit Wasserstoffperoxyd in verd. Ammoniak bei 20° (Su., St., Wa., Soc. 1929, 2492). — Zur Darstellung durch Umsetzung von chloressigsauren Salzen mit Cyaniden vgl. Staudinger, D.R.P. 362538; C. 1923 II, 478; Frdl. 14, 295; Weiner, Org. Synth. 18 [1938], 50.

Physikalische Eigenschaften.

Härte: Reis, Zimmermann, Z. Kr. 57, 486; Ph. Ch. 102, 330. Röntgenogramm: Gerstäcker, Möller, Reis, Z. Kr. 66, 427; Henderson, Pr. roy. Soc. Edinburgh 48, 20; C. 1928 I, 2903. F: 133,9—134,3° (korr.; Zers.) (Hinshelwood, Soc. 117, 157), 135° (Biltz, Balz, Z. anorg. Ch. 170, 339), 136° (Zers.) (Vogel, Soc. 1929, 1478). D: 1,631 (Ge., Mö., Reis); D. 1,618 (Biltz, A. 453, 278; Biltz, Balz, Z. anorg. Ch. 170, 339). — Verbrennungswärme bei konstantem Volumen: 207,1 kcal/Mol (Verkade, Hartman, Coops, R. 45, 377; vgl. V., Ha., C., Versl. Akad. Amsterdam 33, 767; C. 1925 I, 1281). — Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916.

Löslichkeit in Dioxan-Wasser-Gemischen bei 25°: Herz, Lorentz, Ph. Ch. [A] 140, 421. Verteilung zwischen Wasser und Äther bei 25°: Smith, J. phys. Chem. 25, 622; vgl. Sabalitschka, B. 53, 1386; zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 732. — Dichte wäßr. Lösungen bei 20°: King, Wampler, Am. Soc. 44, 1897. — Diffusion durch Kollodiummembranen: Collander, Comment. biol. Helsingfors 1926, 15; C. 1926 II, 720. — Oberflächenspannung wäßr. Lösungen bei 20°: King, Wampler, Am. Soc. 44, 1897. Bewegung auf Wasseroberflächen: Zahn, R. 45, 790. Adsorption an Tierkohle aus wäßr. Lösung: Schilow, Nekrassow, Ph. Ch. 130, 67; H. 60, 106; aus Alkohol: Griffin, Richardson, Robertson, Soc. 1928, 2708; an Blutkohle, Knochenkohle, Schwammkohle oder Zuckerkohle aus wäßr. Lösung: Sa., Pharm. Ztg. 74, 382; C. 1929 I, 2288. Adsorption aus verdünnter wäßriger Lösung an Eisenhydroxyd: Sen, J. phys. Chem. 31, 526. — Wirkung auf die Quellung von Casein: Isgaryschew, Pomeranzewa, H. 58, 166; Koll.-Z. 38, 236; C. 1926 I, 3129. Ausflockung verschiedener Sole durch Malonsäure: Ostwald, Koll.-Z. 40, 205, 208; C. 1927 I, 573. Koagulierende Wirkung auf alkal. Casein-oder Edestin-Lösungen: Is., Bogomolowa, H. 58, 158; Koll.-Z. 38, 239; C. 1926 I, 3306.

Lichtbrechung einer wäßr. Malonsäure-Lösung: Hirsch, Fermentf. 6, 53; C. 1922 III, 557. Ultraviolettes Absorptionsspektrum von Uranylnitrat in wäßr. Malonsäure-Lösung: Ghosh, Mitra, Quart. J. indian chem. Soc. 4, 359; C. 1928 I, 649; von Eisen(III)-chlorid in wäßr. Malonsäure-Lösung: Gh., M., J. indian chem. Soc. 5, 196; C. 1928 II, 326.

Elektrische Leitfähigkeit von Malonsäure in wäßr. Lösung bei 25°: Remesow, Bio. Z. 207, 77; Vogel., Soc. 1929, 1482; in Permanganat enthaltender wäßr. Lösung bei 30,5°: Sanyal, Dhar, Z. anorg. Ch. 139, 188; in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 1504; in Alkohol bei steigendem Zusatz von Ammoniak, Harnstoff, Trimethylamin, Diäthylamin, Äthylendiamin, Anilin, Methylanilin, Dimethylanilin, Diphenylamin, Benzylamin, p-Toluidin, α-Naphthylamin, β-Naphthylamin, o-Phenylendiamin, m-Phenylendiamin oder p-Phenylendiamin bei 25°: Hölzil, M. 47, 763. Einfluß des Druckes auf die elektrische Leitfähigkeit: Тамманн, Тораите, Z. anorg. Ch. 182, 358. — Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Malonsäure-Lösungen: Frumkin, Ph. Ch. 111,

194. — Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 18°: 2,02×10⁻³ (potentiometrisch bestimmt) (Britton, Soc. 127, 1906), 1,6×10⁻³ (potentiometrisch bestimmt) Mizutani, Ph. Ch. 118, 320); bei 20°: 1,8×10⁻³ (potentiometrisch bestimmt) (Mi., Ph. Ch. 118, 332); bei 25°: 1,41×10⁻³ (aus der Leitfähigkeit bestimmt) (Vogel, Soc. 1929, 1483), 1,77×10⁻³ (potentiometrisch bestimmt) (Gane, Ingold, Soc. 1928, 1598; 1929, 1698); der 1. Stufe k₁ (bezogen auf Aktivitäten) bei 25°: 1,29×10⁻³ (potentiometrisch bestimmt) (Simms, J. phys. Chem. 32, 1128, 1497). Elektrolytische Dissoziationskonstante der 2. Stufe k₂ bei 15°: 3×10⁻⁶ (colorimetrisch bestimmt) (I. M. Kolthoff, Der Gebrauch von Farbenindikatoren, 2. Aufl. [Berlin 1923], S. 166); bei 18°: 2,0×10⁻⁶ (elektrometrisch ermittelt) (Larsson, Z. anorg. Ch. 140, 297), 4,41×10⁻⁶ (Britton; vgl. Mizutani, Ph. Ch. 118, 320, 332); bei 25°: 1,9×10⁻⁶ (berechnet aus der Zersetzungsgeschwindigkeit von Diazoessigester in Gegenwart von saurem Natriummalonat) (Duboux, Frommell, J. Chim. phys. 24, 254), 4,37×10⁻⁶ (ermittelt durch elektrometrische Titration des Natriumsalzes) (Gane, Ingold, Soc. 1929, 1698); der 2. Stufe k₂ (bezogen auf Aktivitäten) bei 25°: 1,82×10⁻⁶ (potentiometrisch ermittelt) (Simms, J. phys. Chem. 32, 1128, 1497). Elektrolytische Dissoziationskonstante der 1. und 2. Stufe von Malonsäure in Alkohol-Wasser-Gemischen bei 18° (potentiometrisch ermittelt): Mizutani, Ph. Ch. 118, 320; in Methanol-Wasser-Gemischen bei 20° (potentiometrisch ermittelt): Mizutani, Ph. Ch. 118, 320; in Methanol-Wasser-Gemischen bei 20° (potentiometrisch ermittelt): M., Ph. Ch. 118, 320; in Methanol-Wasser-Gemischen bei 20° (potentiometrisch ermittelt): M., Ph. Ch. 118, 320; in Methanol-Wasser-Gemischen bei 20° (potentiometrisch ermittelt): M., Ph. Ch. 118, 320; in Methanol-Wasser-Gemischen bei 20° (potentiometrisch ermittelt): M., Ph. Ch. 118, 320; in Methanol-Wasser-Gemischen bei 20° (potentiometrisch ermittelt): M., Ph. Ch. 18, 32. — Potentiometr

Chemisches Verhalten.

Über den Zerfall von Malonsäure in Essigsäure und Kohlendioxyd bei Bestrahlung mit ultraviolettem Licht vgl. Volmar, C. r. 180, 1173. Reaktionsverlauf und Reaktionsgeschwindigkeit der photochemischen Zersetzung von Malonsäure in Gegenwart von Uranylsalzen: Pierce, Leviton, Noyes, Am. Soc. 51, 80; P., Am. Soc. 51, 2731; s. a. Gmelins Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 55: Uran [Berlin 1936], S. 267. — Malonsäure zersetzt sich langsam schon bei mehrtägigem Erhitzen auf 105° (Laskin, Trudy sibirsk. sel'skochoz. Akad. 6, Nr. 1, S. 3; C. 1928 I, 1254). Geschwindigkeit der Zersetzung der festen, geschmolzenen und unterkühlten Malonsäure zwischen 111° und 153,6°: Hinshelwood, Soc. 117, 157; der geschmolzenen Malonsäure bei 138—139,5°: Laskin. Kinetik der Kohlendioxyd-Abspaltung in 0,2n-wäßr. Lösung bei 66—99,5°: Bernoulli, Jakubowicz, Helv. 4, 1021; bei 75—110°: J., Z. anorg. Ch. 121, 113.

Über die elektrolytische Oxydation von Malonsäure vgl. Wright, Soc. 1927, 2329. —

Uber die elektrolytische Oxydation von Malonsäure vgl. Wright, Soc. 1927, 2329. — Oxydation durch Sauerstoff in Gegenwart von Kupferpulver bei 20°: Wieland, A. 434, 191. Wird in wäßr. Lösung durch Sauerstoff an Kohleoberflächen leicht oxydiert (Rideal, Wr., Soc. 1927, 2327); durch gleichzeitige Adsorption von Capronsäure wird die Oxydation gehemmt (Wr.) In Gegenwart von Palladium erfährt Malonsäure nur in geringem Maße Autoxydation, in Gegenwart von tierischem Gewebe ist sie beständig (Wieland, A. 436, 232, 235). Oxydation mit Wasserstoffperoxyd in Gegenwart von geringen Mengen Kupfer in schwach saurer Lösung: Battie, Smedley-Maclean, Biochem. J. 23, 598. Reduziert Amminiummetavanadat bei Wasserbadtemperatur (Schramm, Z. anorg. Ch. 161, 246). Wird von verd. Chromschwefelsäure bei 100° rasch zu Kohlendioxyd und Wasser oxydiert (Polonovski, C. r. 178, 578; Lieben, Molnar, M. 53/54, 7). Geschwindigkeit der Reaktion mit Permanganat in wäßr. Lösung: Sanyal, Dhar, Z. anorg. Ch. 139, 188; in schwefelsaurer Lösung: Hatcher, West, Trans. roy. Soc. Canada [3] 21 III, 272; C. 1928 I, 1929. Gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung allein oder in Gegenwart von Kupfer geringe Mengen Cyansäure (nachgewiesen als Harnstoff) (Fosse, Laude, C. r. 172, 1242). Im Gegensatz zu den Angaben von K. H. Meyer (B. 45, 2867) ist die Geschwindigkeit der Bromierung durch wäßr. Brom-Lösung bei 0° von der Konzentration des Broms abhängig (West, Soc. 125, 1277). Das Silbersalz wird beim Erwärmen mit Jod und Quarz teilweise unter Bildung von Kohlendioxyd zersetzt (Wieland, Fischer, A. 448, 71). Liefert bei Einw. von Kohlensuboxyd in absol. Äther, besser in Essigester, eine Verbindung C₁₈H₈O₁₆ (s. S. 521) (Diels, Beckmann, Tönnies, A. 439, 87).

FISCHER, A. 448, 71). Liefert bei Einw. von Kohlensuboxyd in absol. Ather, besser in Essigester, eine Verbindung C₁₈H₈O₁₆ (s. S. 521) (Diels, Beckmann, Tönnies, A. 439, 87). Uber die Grenzen der Veresterung mit verschiedenen Alkoholen in Gegenwart verschiedener Katalysatoren vgl. Senderens, Aboulenc, A. ch. [9] 18, 159. Über die Bildung von unbeständigem, nicht näher beschriebenem Mono-n-amyl-malonat bei der Einw. von n-Amyl-alkohol auf Malonsture vgl. Contzen-Crowet, Bl. Soc. chim. Belg. 35, 186; C. 1926 II, 1127. Geschwindigkeit der Veresterung mit wasserfreiem und wasserhaltigem Glycerin in Gegenwart von Chlorwasserstoff bei 25° und 35°: Kailan, Schrott, M. 47, 66. Malonsäure reagiert im Gemisch mit Formaldehyd und Dimethylamin unter Bildung von \(\beta\beta\beta\). Fis-di-

methylamino-isobuttersäure (Mannich, Kather, B. 53, 1371), mit Formaldehyd und Piperazin unter Bildung von Piperazin- $[\beta$ -propionsäure]-(1)- $[\beta$ -isobernsteinsäure]-(4) (Mannich, Ganz, B. 55, 3502). Zur Reaktion von Malonsäure mit Formaldehyd und Methylamin vgl. Mannich, Kather.

1 Mol Malonsäure liefert mit überschüssiger ätherischer Acetaldehyd-Lösung und 1 Mol Pyridin bei längerer Einw. unter Ausschluß von Feuchtigkeit, anfangs in Eiswasser, dann bei Zimmertemperatur Crotonsäure (F. W. HENLE, Anleitung für das organisch-präparative Praktikum [Leipzig 1909], S. 137; BACKER, BLOEMEN, R. 45, 102); daneben entsteht wenig β -Oxy-buttersäure (v. Auwers, A. 432, 59). Gibt man zu einer Lösung von 3 Tln. Malonsäure und 2 Tln. Acetaldehyd in 4 Tln. Pyridin bei —50 0,1 Vol. Piperidin und zersetzt das orangefarbene Produkt nach 12-stdg. Aufbewahren bei 0° mit kalter verdünnter Schwefelsäure bei -5° , so erhält man Äthylidenmalonsäure (Vogel, Soc. 1927, 1989). Liefert mit Benzaldehyd und ca. 8% igem alkoholischem Ammoniak auf dem Wasserbade β -Aminoβ-phenyl-propionsäure und Zimtsäure; die Reaktion verläuft analog mit m-Nitro-benzaldehyd oder Piperonal sowie beim Ersatz von Ammoniak durch Methylamin (Rodionow, Male-WINSKAJA, B. 59, 2956; Rod., D. R. P. 479228; C. 1930 I, 1537; Frdl. 16, 255). Malonsäure mit Benzaldehyd und 6%igem alkoholischem Ammoniak unter Kühlung behandelt, erhält man das Ammoniumsalz der Benzalmalonsäure (Boehm, Ar. 1929, 708; vgl. Rop., Am. Soc. 51, 851). Malonsäure liefert beim Erhitzen mit 5-Oxo-1-phenyl-pentadien-(1.3) in Eisessig auf 1000 [1-Phenyl-pentadien-(1.3)-yliden-(5)]-malonsäure (Vorländer, FISCHER, KUNZE, B. 58, 1287); die gleiche Verbindung entsteht in besserer Ausbeute beim Erwärmen der Komponenten in Alkohol + konzentriertem wäßrigem Ammoniak oder in Pyridin auf dem Wasserbad (Vor., Daehn, B. 62, 546); erhitzt man dagegen Malonsäure und 5-Oxo-1-phenyl-pentadien-(1.3) in Pyridin über freier Flamme, so entsteht 6-Phenyl-hexatrien-(1.3.5)-carbonsäure-(1) (Vor., D.). Beim Erwärmen von Malonsäure mit Gallusaldehyd in Alkohol erhält man bei Zusatz von Ammoniak oder Piperidin 3.4.5-Trioxyzimtsäure, bei Zusatz von Anilin das malonsaure Salz des Gallusaldehydanilins (Rosenминр, Военм, А. 437, 144). Liefert beim Erwärmen mit Piperonal und ca. 10% igem alkoholischen Ammoniak auf dem Wasserbad β -[3.4-Methylendioxy-phenyl]-acrylsäure, β -Amino- β -[3.4-methylendioxy-phenyl]-propionsäure und geringe Mengen Piperonylidenmalonsäure; bei Anwendung alkoh. Alkylamin-Lösungen entstehen neben β -[3.4-Methylendioxyphenyl]-acrylsäure die entsprechenden β-Alkylamino-β-[3.4-methylendioxy-phenyl]-acrylsäure die entsprechenden β-Alkylamino-β-[3.4-methylendioxy-phenyl]-propion-säuren (Rod., Malewinskaja, B. 59, 2954; Rod., D. R. P. 479228; C. 1930 I. 1537: Frdl. 16, 255; s. a. Rod., Am. Soc. 51, 850; Lohaus, J. pr. [2] 119, 244). Zur Bildung von β-[3.4-Methylendioxy-phenyl]-acrylsäure aus Malonsäure und Piperonal in Gegenwart von Pyridin und Piperidin vgl. noch Haworth, Perkin, Rankin, Soc. 125, 1693. — Beim Einengen einer Lösung von Malonsäure, 2.4.5-Trimethyl-3-formyl-pyrrol und Piperidin in Alkohol auf dem Wasserbad orbält man 2.4.5-Trimethyl-3-formyl-pyrrol und Piperidin in Alkohol auf dem Wasserbad erhält man 2.4.5-Trimethyl-pyrrol-[β -acrylsäure]-(3) (H. FISCHER, NENITZESCU, A. 439, 177, 179). Reagiert analog mit anderen Aldehyden der Pyrrolreihe (H. F., WALACH, B. 58, 2820; A. 447, 39, 44; H. F., KLARER, A. 442, 2, 4; H. F., STANGLER, A. 459, 69, 95). — Weitere Beispiele für die Umsetzung von Malonsäure mit Aldehyden in Gegenwart von katalytisch wirkenden Basen zu ungesättigten Monocarbonsäuren s. bei Dutt, Quart. J. indian chem. Soc. 1, 297; C. 1925 II, 1852; vgl. a. Linstead, WILLIAMS, Soc. 1926. 2741 (Bildung von Styrylessigsäure); CLEMO, HAWORTH, WALTON. Noc. 1929, 2376 (Bildung von 4-Oxy-2.5-dimethyl-zimtsäure) bzw. 4-Methoxy-2.5-dimethyl-zimtsäure); Ha., Perkin, Pink, Soc. 127, 1714 (Bildung von 3.4-Dimethoxy-zimtsäure); Perkin, Trikojus, Soc. 1926, 2932 (Bildung von 2.3-Methylendioxy-zimtsäure). Beispiele für die Umsetzung zu ungesättigten Mono- und Dicarbonsäuren: Vor., Gieseler, J. pr. [2] 121, 248 (Bildung von 4-Methoxy-cinnamalessigsäure bzw. 4-Methoxy-cinnamalmalonsäure); JACKSON, KENNER, Soc. 1928, 1661 (Bildung von 3.4-Dimethoxy-zimtsäure und 3.4-Dimethoxy-benzalmalonsäure).

Malonsäure gibt mit der äquimolekularen Menge Phenylpropargylaldehyd in Eisessig bei gewöhnlicher Temperatur 6-Phenyl-pyron-(2)-carbonsäure-(3), beim Erhitzen auf dem Wasserbad [γ.γ· Dioxy-γ· phenyl- propyliden]-malonsäure-dilacton (Syst. Nr. 2765) (KALFF. R. 46, 598). — Liefert mit 2-Amino-3-methoxy-benzaldehyd in Alkohol in Gegenwart von wenig Pyridin auf dem Wasserbad 2-Oxy-8-methoxy-chinolin-carbonsäure-(3) (TROEGER, GERÖ, J. mr. [2] 118, 307).

Gerö, J. pr. [2] 113. 307).

Die Kondensation von Malonsäure mit Opiansäure zu Mekonin-essigsäure-(3) erfolgt am besten beim Erwärmen der Komponenten in Pyridin bei Gegenwart von Piperidin auf dem Wasserbad und anschließenden Kochen (Edwards, Soc. 1926, 748; vgl. Liebermann, Kleemann, B. 19 [1886], 2290). Reaktionen mit Aminen und Oxoverbindungen s. S. 517. Gibt beim Kochen mit o-Phenylendiamin in 4n-Salzsäure N.N'-o-Phenylen-malonamid und Malonsäure-mono-[2-amino-anilid] (R. Meyer, J. Maier, A. 327 [1903], 26; Mey.. Lüders, A. 415 [1918], 33; Phillips, Soc. 1928, 2398). Reaktion mit 3.4-Diamino-phenylarsonsäure: Ph., Soc. 1928, 3139. Die Umsetzung von Malonsäure mit Isatin zu 2-Oxy-

chinolin-carbonsaure-(4) erfolgt auch beim Erhitzen der Komponenten auf 1350 (Chem. Fabr. Schering, D. R. P. 431510; C. 1926 II, 1162; Frdl. 15, 1727; AESCHLIMANN, Soc. 1926, 2903). Gibt bei längerem Erhitzen mit 1-Methyl-isatin in Eisessig auf 100° 2-Methylamino-β-carboxy-zimtsäure, neben 1-Methyl-2-oxo-1.2-dihydro-chinolin-carbonsäure-(4) (Borsche, Jacobs, B. 47 [1914], 361; Ae., Soc. 1936, 2908). Über eine analoge Reaktion mit halogenierten Isatin-Derivaten vgl. Chem. Fabr. Schering, D. R. P. 436518; C. 1927 I, 182; Frdl. 15, 1728; s. a. Ae., Soc. 1926, 2902. Liefert beim Verschmelzen mit der äquimolekularen Menge Oxindol-aldehyd-(3) β-[Oxindolyl-(3)]-acrylsäure (Chem. Fabr. Schering. D. R. P. 433099, 451957; C. 1926 II, 2223; 1928 I, 2459; Frdl. 15, 1730; 16, 2845).

Biochemisches Verhalten; Analytisches.

Bei der Vergärung von Ammoniummalonat durch Bac. pyocyaneus entstehen Essigsäure und wahrscheinlich auch Glykolsäure und Glyoxylsäure (BUTTERWORTH, WALKER, Biochem. J. 23, 929, 934). Gibt bei Einw. von Aspergillus niger in saurer Lösung bei 30° Glyoxylsäure und Oxalsäure (Challenger, Subramaniam, Walker, Soc. 1927, 205; Wa.. Su., Ch., Soc. 1927, 3052). Vergärung von Kaliummalonat durch Aspergillus fumaricus: Schreyer, Bio. Z. 202, 135, 144. Malonsäure allein wird durch Bact. coli nicht oxydiert (COOK, STEPHENSON, Biochem. J. 22, 1375), wohl aber in Gegenwart von Formiaten unter Bildung von Essigsäure und anderen Produkten (GREY, Pr. roy. Soc. [B] 96, 160; C. 1924 I. 2786). Malonsäure verzögert die Reduktion von Methylenblau durch Bernsteinsäure in Gegenwart von Bac. prodigiosus und Bac. proteus (QUASTEL, WOOLDRIDGE, Biochem. J. 19, 656) und in Gegenwart von mit Toluol behandelten Colibakterien (QUASTEL, WHETHAM, Biochem. J. 19, 525; Qu., Woo., Biochem. J. 22, 694). Malonsäure zeigt keinen Einfluß auf die Reduktion von Methylenblau durch Ameisensäure oder Milchsäure in Gegenwart von Colibakterien (Qu., Woo., Biochem. J. 22, 694). Reduktion von Methylenblau durch Gemische von Malonsäure mit Ameisensäure, Milchsäure, α-Oxy-buttersäure, Glycerinsäure, Glutaminsäure oder Glucose in Gegenwart von intakten Bact coli bei p_H 7,4: Qu., Woo., Biochem. J. 22, 697. — Einfluß des Ammoniumsalzes auf die Pigmentbildung in Nährböden durch Bac. pyocyaneus: Goris, Liot, C. r. 172, 1623. — Injektion von Malonsäure führt beim Hunde zur Ausscheidung von Milchsäure (Knoop, Jost, H. 130, 340; vgl. Brugsch, Hor-STERS, NARITA, Bio. Z. 164, 251, 255).

Malonsäure gibt mit einer verdünnten wäßrig-ammoniakalischen Phthalaldehyd-Lösung in der Kälte nur eine schwache Färbung, beim Kochen einen Niederschlag (Seekles, R. 48, 94). Mikrochemischer Nachweis: BEHRENS-KLEY, Organische mikrochemische Analyse [Leipzig 1922], S. 353.

Salze der Malonsäure (Malonate).

Ammonium malonate: NH₄C₃H₃O₄. D^{**}₅: 1,513 (Biltz, Balz, Z. anorg. Ch. 170, 340). — (NH₄)₂C₃H₂O₄. D^{**}₅: 1,447 (Biltz, Balz, Z. anorg. Ch. 170, 339). Die Löslichkeit in Wasser nimmt beim Einleiten von Ammoniak ab (Weitz, Z. El. Ch. 31, 546). — Natriummalonate: NaC₃H₃O₄. Elektrische Leitfähigkeit der wäßr. Lösung bei 25°: Vogel, Soc. 1929, 1485. — Na₂C₃H₂O₄. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: LORENZ, Scheuermann, Z. anorg. Ch. 117, 128; V., Soc. 1929, 1484. Konduktometrische Titration von Natriummalonat mit Salzsäure: Bureau, C. r. 181, 43; mit Quecksilber(II)-chlorat: Kolthoff, Fr. 61, 341. — Kupfermalonate: CuC₃H₂O₄+3H₂O. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: RILEY, FISHER, Soc. 1929, 2009. Färbt sich beim Erhitzen in Allehel Attachen 2009. in Alkohol-Atmosphäre von 280° an dunkel, zersetzt sich bei 300-310° (Constable, Pr. Cambridge phil. Soc. 23, 433; C. 1927 I, 1409). — CuC₃H₂O₄ + Na₅C₃H₂O₄ + 2H₂O. Hell-blaues Pulver. Löslich in Wasser (Riley, Soc. 1929, 1310). Über die Stabilität des Komplexes (potentiometrische Messungen) vgl. Riley.

plexes (potentiometrische Messungen) vgl. RILEY.

Berylliummalonat. Viscosität und elektrische Leitfähigkeit der wäßr. Lösung bei 25°: SIDGWICK, LEWIS, Soc. 1926, 2540. — BeC₃H₂O₄ + (NH₄)₂C₃H₂O₄. Nadeln. Sehr leicht löslich in Wasser (J. MEYER, MANTEL, Z. anorg. Ch. 123, 48). — BeC₃H₂O₄ + 2 Na₂C₃H₂O₄ + C₃H₄O₄. Nadeln. Unbeständig an der Luft, zerfällt in wäßr. Lösung (MEY., MA., Z. anorg. Ch. 123, 47). — BeC₃H₄O₄ + Na₂C₃H₂O₄ + H₃O (?). Krystalle (MEY., MA.). — BeC₃H₂O₄ + Na₂C₃H₄O₄ + H₄O. Nadeln. Sehr leicht löslich in Wasser (MEY., MA.). — Magnesiummalonat MgC₃H₄O₄ + 2 H₄O. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: RILEY. FISHER, Soc. 1929, 2009. — Strontiummalonat SrC₃H₄O₄. 100 g Wasser lösen bei 25°. O,5783 g (Walker, Soc. 127, 63). Löslichkeit in wäßr. Strontiumchlorid-Lösung bei 25°: WA. — Bariummalonat BaC₃H₄O₄. Katalytische Abscheidung der festen Phase aus übersättigten Lösungen bei 0° und 25°: Gapon, Ж. 61, 1736; C. 1930 II, 5. Über Gelbildung in wasserfreiem Glycerin, in absolutem und wasserhaltigem Methanol oder in Gemischen aus Glycerin, Wasser und verschiedenen Alkoholen vgl. Zocher, Albu, Koll.-Z. 46, 34; C. 1938 II, 2335.

Zinkmalonat ZnC₃H₂O₄ + H₄O. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°:

Zinkmalonat ZnC₃H₂O₄ + H₂O. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: RILEY, FISHER, Soc. 1929, 2009. — Cadmiummalonat. Elektrische Leitfähigkeit wäßr.

Lösungen bei 25°: R., F. — Thallium (I)-malonat. Dichte der gesättigten wäßrigen Lösung aus gleichen Teilen Thalliummalonat und Thalliumformiat bei 10°, 50° und 100°: CLERICI. R. A. L. [5] 31 I, 116. — Uber Bleimalonat-Doppelsalze vgl. BEHRENS-KLEY, Organische

mikrochemische Analyse [Leipzig 1922], S. 353.

Vanadyl-malonsäure H₂[VO(C₃H₂O₄)₂]. Hygroskopische Krystalle. Wurde nicht ganz rein erhalten (Schramm, Z. anorg. Ch. 161, 233). Geht beim Verreiben mit Alkohol in Divanadyl-malonsäure über. — Über Divanadyl-malonsäure vgl. Sch., Z. anorg. Ch.

Li₂[VO($(C_3H_2O_4)_2$] + 5H₂O. Rhombische oder monokline violettstichig blaue Krystalle. Löslich in Methanol, schwerer löslich in Alkohol unter geringer Zersetzung; unlöslich in Campher (Sch., Z. anorg. Ch. 161, 232, 269). — Na₂[VO($(C_3H_2O_4)_2$] + 2H₂O. Violettstichig blaue Krystalle. Verliert an der Luft allmählich Wasser, die wasserärmeren Produkte, die 0,75 und 1.5 H₂O enthalten, sind von rein blauer Farbe (Sch., Z. anorg. Ch. 161, 232, 270).

0,75 und 1,5 H₂O enthalten, sind von rein blauer Farbe (Sch., Z. anorg. Ch. 161, 232, 270).

— K₂[VO(C₃H₂O₄)₂]. B. Aus malonsäurehaltigem Kaliumvanadylmalonat durch Erwärmen in absol. Alkohol (Sch., Z. anorg. Ch. 161, 232, 274). Rosa. Nimmt an der Luft allmählich 4 Mol Wasser auf. — Über die Existenz der Verbindung K₂[VO(C₃H₂O₄)₂] + 0,5 H₂O vgl. Sch., Z. anorg. Ch. 161, 232, 273. — K₂[VO(C₃H₂O₄)₂] + 4 H₂O. Blaue rhombische Krystalle (aus Wasser). Lagert leicht freie Malonsäure an (Sch., Z. anorg. Ch. 161, 232, 271).

Rb₂[VO(C₃H₂O₄)₂]. Rosa Stäbchen (Sch., Z. anorg. Ch. 161, 232, 275). — Rb₂[VO(C₃H₂O₄)₂] + 3 H₂O. Blaue Krystalle. Verwittert an der Luft (Sch., Z. anorg. Ch. 161, 232, 275). — Rb₂[VO(C₃H₂O₄)₂] + 4 H₃O + C₂H₄O₄(?). Blaßblau (Sch., Z. anorg. Ch. 161, 274). — Cs₂[VO(C₃H₂O₄)₂]. Rosa Nadeln (Sch., Z. anorg. Ch. 161, 232, 276). — Cs₂[VO(C₃H₂O₄)₂] + 3 H₃O. Blaue Krystalle. Verwittert schnell (Sch., Z. anorg. Ch. 161, 232, 278). — Ag₂[VO(C₃H₂O₄)₃] + H₂O. Blaßviolette Nadeln (aus Wasser). Schwer löslich (Sch., Z. anorg. Ch. 161, 232, 254). Ist in reinem Zustand nahezu vollständig licht- und luft-beständig.

beständig.

 $Ca[VO(C_3H_2O_4)_2]$. Krystallisiert mit 0,5 H_2O mit stahlblauer, mit 4 H_2O mit hellblauer Farbe, mit 5H₂O in blaßvioletten Nadeln. Leicht löslich in heißem Wasser (Schramm, Z. anorg. Ch. 161, 232, 255). — Sr[VO(C₃H₂O₄)₂]. Krystallisiert mit 0,5 H₂O und 1,75 H₂O mit blaßblauer Farbe, mit 5 H₂O in blaßvioletten Nadeln. Das Pentahydrat ist schwer löslich in blaßvioletten Nadeln. Das Pentahydrat ist schwer löslich in blaßvioletten Nadeln. in Wasser und Alkohol (Sch., Z. anorg. Ch. 161, 233, 257). — Ba[VO($C_3H_2O_4$)₂]. Krystallisiert wasserfrei, mit 0,25 H₂O, mit 0,5 H₂O und 5 H₂O mit blaßblauer Farbe, mit 6H₂O in blaßvioletten Krystallen; das Hexahydrat ist instabil und geht allmählich in das Pentahydrat

über (Sch., Z. anorg. Ch. 161, 233, 258). Tl₂[VO($C_3H_2O_4$)₂] + H₂O. Indigoblaue Krystalle. Schwer löslich in Wasser. Zersetzt sich beim Erwärmen der wäßr. Lösung (Schramm, Z. anorg. Ch. 161, 233, 261). — Pb[VO (C₃H₂O₄)₂]. Krystallisiert mit 1,5 H₂O und 2,5 H₂O mit blaßblauer Farbe, mit 6 H₂O in blaßvioletten Nadeln; das Hexahydrat wird beim Erwärmen in Wasser fleischfarben (Sch.,

Z. anorg. Ch. 161, 233, 262).

Chrom(II)-malonat CrC₃H₂O₄ + 2 H₂O. Einw. von Alkalien in der Siedehitze: Trauber, Burmeister, Stahn, Z. anorg. Ch. 147, 60. — Kalium-, Barium- und Strychninverbindung des Chrom(III)-malonats (E I 246): Jaeger, R. 38, 294; Woldendorp, Verel. Akad. Amsterdam 27, 1213; C. 1920 I, 198. — KCa[Cr(C₃H₂O₄)₃] + 6 H₂O. Rhombische schwarze Krystalle, in durchfallenden Licht purpurot. D: 1,85 (Widmer, Z. Kr. 60. 1044).

194). — KSr[Cr(C₃H₂O₄)₃]+6H₂O. Rhombische schwarze Krystalle. D:1,92 (Wi.). Uranylmalonat UO₄C₃H₂O₄+2H₂O. Grüngelbe Krystalle. Schwer löslich in Wasser, unlöslich in Alkohol und Äther; zersetzt sich beim Erhitzen auf 160-180° (A. MÜLLER,

Z. anorg. Ch. 109, 240, 249).

Diaquo-dimalonato-mangan(III)-säure H[Mn(C₃H₂O₄)₂(H₂O)₂]. reiben von Malonsäure und Mangan(III)-hydroxyd-Schlamm mit etwas Alkohol, gegebenenfalls unter gelindem Erwärmen (J. MEYER, SCHRAMM, Z. anorg. Ch. 123, 58). Dunkelgrünes Pulver. Ist an der Luft und am Licht beständig. Löst sich in kaltem Wasser mit gelber Farbe. Die wäßr. Lösung scheidet beim Erwärmen Mangan(III)-hydroxyd aus. — NH₄[Mn(C₃H₂O₄)₄(H₂O)₃] + H₂O(?). Gelbgrüne Prismen. — Li[Mn(C₃H₂O₄)₄(H₂O)₃] + 3H₂O. Grüne Prismen. — Na[Mn(C₃H₃O₄)₄(H₂O)₃] + 3H₂O. Resedagrüne Krystalle. — Das Kaliumsalz und das Rubidiumsalz konnten nicht rein erhalten werden. — Über komplexe, dunkelrote Mangan(III)-malonate, die der Formel H₃[Mn(C₃H₂O₄)₃] entsprechen, vgl. M., Sch., Z. anorg. Ch. 123, 57.

Eisenmalonate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 59: Eisen, Teil B [Berlin 1932], S. 536. — [Fe₃(C₃H₂O₄)₃(OH)₃]ClO₄ + aq. Rosafarbenes Pulver; fast unlöslich in Wasser und Alkohol; verpufft beim Erhitzen (WEINLAND,

LOEBICH, Z. anorg. Ch. 151, 284).

Kobaltmalonate. Literatur: GMELINS Handbuch der anorganischen Chemie, 8. Aufl., Syst. Nr. 58: Kobalt, Teil B [Berlin 1930], S. 292, 330. — Kobalt(II)-malonate: (NH₄)₂[Co(C₃H₂O₄)₂] + 4H₂O. B. Aus Ammoniumtetranitrodiamminkobaltiat und Malonsäure in Wasser auf dem Wasserbad (RIESENFELD, KLEMENT, Z. anorg. Ch. 124, 19; vgl. Schramm, Z. anorg. Ch. 180, 177). Kirschrote Krystalle. — K₂[Co(C₂H₂O₄)₂] + 6H₂O. B. Aus Malonsäure beim Kochen mit Kaliumcarbonat und Kobaltcarbonat in Wasser (Percival, WARDLAW, Soc. 1929, 2631). Rote Krystalle. Geht beim Erwärmen mit Wasserstoffperoxyd

und Harnstoff auf 40° in die Verbindung K₄[Co₂(C₃H₂O₄)₄(OH)₂] + 5H₂O über.

Kobalt(III) malonate: K₃[Co(C₃H₂O₄)₃] + 3H₂O. B. Man löst Kobaltcarbonat in einer gesättigten Lösung von sauren Kaliummalonat, gibt zu der auf unter 0° abgekühlten Lösung überschüssiges Bleidioxyd und fügt unter Rühren allmählich 50% ige Essigsäure zu (Thomas, Soc. 119, 1144; vgl. Schramm, Z. anorg. Ch. 180, 182). Grüne Krystalle (aus verd. Alkohol). Die dunkelgrüne Lösung wird beim Aufbewahren unter Lichtausschluß bei gleich-Akkoloi). Die dunkergruite Bosini wird beim Autoewahren under Lindusseinung bei gekein zeitiger Abscheidung von hellrotem Kalium-kobalt(II)-malonat farblos; Gegenwart von Wasserstoffperoxyd verlangsamt diesen Vorgang. — $K_4[Co_2(C_3H_2O_4)(OH)_2] + 5H_2O$. Das Mol.-Gew. wurde kryoskopisch in Wasser bestimmt (Percival, Wardlaw, Soc. 1929, 2632). B. Durch Einw. einer Mischung von Wasserstoffperoxyd und Harnstoff auf die wäßr. Lösung von $K_2[Co(C_3H_2O_4)_2] + 6H_2O$ bei 40° (P., W.). Graugrün. Die wäßr. Lösung ist Lijker ist bei bei bei der wird bei Finny von Sänger unter Weblendigung der Verwicklung olivgrün, leicht zersetzlich und wird bei Einw. von Säuren unter Kohlendioxyd-Entwicklung rötlich. Gibt mit Natronlauge einen braunen Niederschlag. Leitfähigkeit der wäßr. Lösung bei 0° : P., W. — Ba $[\text{Co(NH}_3)_2(\text{NO}_2)_2(\text{C}_3\text{H}_2\text{O}_4)]_2 + 2\,\text{H}_4\text{O}$. B. Man mischt gesättigte Lösungen äquivalenter Mengen Malonsäure und Ammoniumtetranitrodiamminkobaltiat unter Zusatz

von Bariumchlorid-Lösung (Thomas, Soc. 123, 619). Leicht löslich.

[Co(NH₈)₄C₃H₂O₄]Cl. \dot{B} . Aus Malonsäure beim Erwärmen mit Carbonatotetrammin-kobalt(III)-chlorid in Wasser auf 65° (SCHRAMM, Z. anorg. Ch. 180, 175). Violettstichig rote kobalt (III)-chlorid in Wasser auf 65° (SCHRAMM, Z. anorg. Ch. 180, 175). Violettstichig rote Krystalle. Leicht löslich in Wasser (SCH.). Durch Oxalsäure wird Malonsäure aus dem Komplex verdrängt (SCH., Z. anorg. Ch. 180, 181). — [Co(NH₃)₄C₃H₂O₄] [AuCl₄]. B. Aus dem Komplexsalz [Co(NH₃)₄C₃H₂O₄]NO₃ + H₂O (s. u.) beim Erwärmen mit Goldchlorwasserstoffsäure auf 70° (SCH., Z. anorg. Ch. 180, 179). Braunrote Prismen. Schwer löslich; zersetzt sich nach einigen Monaten (SCH.). — [Co(NH₃)₄C₃H₂O₄]Br. Violettstichig hellrote Krystalle (SCH., Z. anorg. Ch. 180, 176). Ist gegen Oxalsäure beständig (SCH., Z. anorg. Ch. 180, 181). — Über die Komplexe [Co(NH₃)₄C₃H₂O₄]₂SO₄ + x H₂O, [Co(NH₃)₄C₃H₂O₄]₂SeO₄ + 3H₄O und [Co(NH₃)₄C₃H₂O₄]₃S₂O₈ + x H₂O vgl. SCH., Z. anorg. Ch. 180, 178. — [Co(NH₃)₄C₃H₂O₄]NO₃ + H₂O. Violettstichig rote Krystalle (aus Wasser) (SCH., Z. anorg. Ch. 180, 178). Löst sich in konz. Salzsäure mit roter Farbe, die rasch nach Violett umschlägt (SCH.). Wird beim Erwärmen mit Wasser gespalten (SCH.). Beim Behandeln mit konz. (SCH.). Wird beim Erwärmen mit Wasser gespalten (SCH.). Beim Behandeln mit konz. Bromwasserstoffsäure, Schwefelsäure, Selensäure oder Salpetersäure wird Malonsäure aus dem Komplex verdrängt (Sch.). — $[\text{Co}_2(\text{NH}_3)_{10}\text{C}_3\text{H}_2\text{O}_4](\text{NO}_3)_4 + 2\,\text{H}_2\text{O}$. B. Beim Behandeln von Carbonatopentamminkobalt(III)-nitrat mit verd. Salpetersäure bei 45°, Neutralisieren mit 2n Natronlauge und Erwärmen der Lösung mit 1 Mol Natriummalonat auf 45° (DUTT. Soc. 123, 565). Rosarote Tafeln. Schwer löslich in kaltem Wasser (D.). Elektrische Leitfähigkeit in Wasser bei 25°: D. Die währ. Lösung gibt mit Bariumchlorid nur beim Aufkochen einen Niederschlag; mit Kaliumchromat erhält man einen braungelben Niederschlag (D.). — [Co₂(NH₂)₁₀C₃H₂O₄](C₃H₂O₄)(NO₃)₂ + 2H₂O. B. Beim Erwärmen von Carbonatopentamminkobalt (III)-nitrat mit 1 Mol Malonsäure in Wasser auf 60° (D., Soc. 128, 20°). — [Co₂(NH₂)₁₀C₃(NH₂)₁₀C 569). Purpurrote Krystalle. Elektrische Leitfähigkeit in Wasser bei 25°: D. Gibt mit

Kaliumchromat-Lösung einen gelben Niederschlag.
[Co(NH₂)₄CO₃]₅C₃H₂O₄. B. Beim Einleiten eines kräftigen Luftstroms in eine Lösung von Kobalt(II)-malonat und Ammoniumcarbonat in Ammoniak (SCHRAMM, Z. anorg. Ch. 180, 180 Anm. 2). Einw. von Oxalsäure: Sch. Geht bei Einw. von Malonsäure in das Salz

 $[\text{Co(NH_4)}_4(\text{H}_2\text{O)}_4]_4^2(\text{C}_4\text{H}_4\text{O}_4)_3 \text{ "uber.} \\ \text{Athylendiaminhaltige Kobaltkomplexsalze s. Syst. Nr. 343; propylendiaminhaltige Kobaltkomplex s. Syst. Nr. 343; propylendiaminhaltige Syst. Syst. Nr. 343; propylendiaminhaltige Syst. Syst. Nr. 343; propylendia$ komplexsalze s. Syst. Nr. 344.

Umwandlungsprodukte von unbekannter Konstitution aus Malonsäure.

Verbindung C₁₈H₈O₁₆. B. Aus Malonsäure und Kohlensuboxyd in absol. Ather, besser in Essigester (Diels, Beckmann, Tönnies, A. 439, 87). — Gelb, bisweilen bräunlich. Außerst hygroskopisch. Zerfließt unter Braunfärbung und zersetzt sich bei ungefähr 60°. Unlöslich in allen indifferenten Lösungsmitteln. Bei Einw. von Wasser bildet sich unter Abspaltung von Kohlendioxyd Malonsäure. Liefert bei Einw, von absol. Methanol bei -20 Malonsauredimethylester, Acetondicarbonsaure-dimethylester, eine Verbindung $m C_{14}H_8O_{10}$

(s. u.) und andere Produkte. Reagiert analog mit Alkohol und Propylalkohol; mit Alkohol entsteht bei -20° neben Malonsäurediäthylester und Acetondicarbonsäure-diäthylester eine Verbindung C₁₈H₁₂O₁₀ (s. u.), mit Propylalkohol eine Verbindung C₁₈H₁₈O₁₀ (s. u.). Beim Behandeln mit Anilin erhält man Malonanilid, mit Phenylhydrazin Malonsäure-bis-phenylhvdrazid.

Verbindung C₁₄H₈O₁₀. B. Aus der Verbindung C₁₈H₈O₁₆ (S. 521) beim Behandeln mit absol. Methanol bei —20°, neben anderen Produkten (Diels, Beckmann, Tönnies, A. 439, 90). — Krystalle (aus Methanol oder Acetonitril). F: 183.5° (Zers.). Beim Erhitzen im Glührohr tritt Geruch nach Kohlensuboxyd auf. Leicht löslich in verd. Alkalien. Gibt mit

Eisenchlorid in verd. Methanol eine violettbraune Färbung.

Verbindung C₁₆H₁₂O₁₀. B. Aus der Verbindung C₁₈H₈O₁₆ (S. 521) beim Behandeln mit Alkohol bei —20°, neben anderen Produkten (Diels, Beckmann, Tönnies, A. 439, 91). — Krystalle (aus Alkohol). F: 150—151° (Zers.). Leicht löslich in verd. Alkalien. Gibt mit Eisenchlorid eine braune Färbung.

Verbindung $C_{18}H_{16}O_{10}$. B. Aus der Verbindung $C_{18}H_{6}O_{16}$ (S. 521) beim Behandeln mit Propylalkohol bei -20° (Diels, Beckmann, Tönnies, A. 439, 92). — Krystalle. F: 132°

bis 133°. Löslich in sehr verd. Alkalien.

Funktionelle Derivate der Malonsäure.

Malonsäuredimethylester, Dimethylmalonat $C_5H_8O_4=CH_8(CO_3\cdot CH_3)_3$ (H 572; E I 247). B. Beim Schütteln des Diäthylesters mit Methanol und Kaliummethylat unter Ausschluß von Feuchtigkeit (REIMER, DOWNES, Am. Soc. 48, 950). Gleichgewicht bei der Bildung aus Malonsaure und Methanol: SENDERENS, ABOULENC, C. r. 153, 883; A. ch. [9] 18, 159. — Erstarrt beim Abkühlen in flüssiger Luft glasig (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 215; C. 1921 III, 1266); ist bei —84° sirupartig und geht bei —59,6° in eine klare Flüssigkeit über (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 12; C. 1927 I, 2398). Kp₇₆₀: 183,25° (Ti., Ma.), 181,4° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 117); Kp_{13·5}: 73,6°; Kp_{11·0}: 70,3° (Verkade, Coops, Hartman, R. 45, 588). Viscosität bei 20°: 0.02213 g/cmsec (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 7). Verbrennungswärme bei konstantem Volumen: 554,0 kcal/Mol (Ver., Coops, H., R. 45, 589). Ultrarotes Absorptionsprektrum der Läungen spektrum: Lecomte, C. r. 178, 1700, 2074. Ultraviolettes Absorptionsspektrum der Lösungen in Wasser, Alkohol, 0,1 n-Natronlauge und Natriumäthylat-Lösung: Graham, Macbeth, Soc. 121, 1110. Dimethylmalonat enthaltende azeotrope Gemische s. in der Tabelle.

Dimethylmalonat enthaltende binäre azeotrope.Gemische.

Komponente	Кр ₇₆₀ 0	Dimethyl- malonat in Gew%	Komponente	Кр ₇₆₀ 0	Dimethyl- malonat n Gew%
Perchloräthan 2)	176,0	ca. 55	Jodbenzol ²)	178,0	
d-Limonen 1)	167,3	48	2-Brom-toluol 1)	174,45	44,5
α -Pinen 1)	151,5	ca. 22	4-Brom-toluol 2)	176,5	55
Camphen 1)	154,6	26	Phenetol 1)	169,8	23
1.4-Dichlor-benzol ²).	171,0	28	Cineol 1)	169.1	40.5

¹⁾ LECAT, Ann. Soc. scient. Bruxelles 45 [1926], 288. — 2) L., Ann. Soc. scient. Bruxelles [B] 48 [1928], 117, 120.

Wird durch Chromschwefelsäure-Gemisch nur unvollständig zu Kohlendioxyd verwith direct Chromschweieisaute-Geinisch nur unvollstandig zu Komendioxyd verbrannt (Guyor, Simon, C. r. 170, 516). Nimmt bei der Chlorierung in Tetrachlorkohlenstoff im Licht der Quarzlampe 2 Atome Chlor auf (Benrath, Hertel, Z. wiss. Phot. 23, 38; C. 1924 II, 822). Geschwindigkeit der Verseifung bei 25° durch Natriumdicarbonat- und Natriumcarbonat-Lösung: Skrabal, Singer, M. 41, 344; durch wäßrig-methylalkoholische Salzsäure: Sk., Matievic, M. 45, 40. — Liefert beim Kochen mit a-Nitro-stilben in Natriummethylat-Lösung [β -Nitro- α , β -diphenyl-äthyl]-malonsäuredimethylester und geringe Mengen 3.4.5-Triphenyl- Δ^2 -isoxazolinoxyd (Kohler, Barrett, Am. Soc. 48, 1773). Beim Schütteln mit Kaliumäthylat-Lösung unter Ausschluß von Feuchtigkeit erhält man Malonsäurediathylester (Reimer, Downes, Am. Soc. 48, 950). Gibt beim Erwarmen mit Phenylbenzoyl-acetylen in Gegenwart von wenig Natriumalkoholat-Lösung 4.6-Diphenyl-pyron-(2)carbonsaure (3) methylester (K., Am. Soc. 44, 382). Natriummalonsaure dimethylester liefert beim Kochen mit Vinylacrylsäure-methylester in Ather hauptsächlich Penten-(3)tricarbonsaure-(1.1.5)-trimethylester; reagiert analog mit Sorbinsaure-methylester (K., Butler, Am. Soc. 48, 1041). Beim Behandeln der Natriumverbindung mit dl-Dibrombernsteinsäure-dimethylester in absol. Methanol unterhalb 5° erhält man trans-Cyclopropan-

Thomas, Am. Soc. 50, 916).

tetracarbonsäure-(1.1.2.3)-tetramethylester; bei der Umsetzung mit meso-Dibrombernsteinsäure-dimethylester bilden sich daneben Fumarsäuredimethylester, Athan-tetracarbonsäure-(1.1.2.2)-tetramethylester und α-Carboxy-tricarballylsäure-tetramethylester (Ing. Perkin. Soc. 125, 1823). In analoger Reaktion erhalt man durch Einw. von dl. oder meso-α.α'-Dibromglutarsäure-dimethylester auf die Natriumverbindung in Benzol auf dem Wasserbad ein Gemisch aus der flüssigen und festen Form des Cyclobutan-tetracarbonsäure-(1.2.2.3)-tetramethylesters; wird die Reaktion in Methanol, zuerst in der Kälte und dann in der Siedehitze, mit einem Gemisch aus der dl- und meso-Form durchgeführt, so entsteht daneben 1-Bromcyclopropan-dicarbonsāure-(1.2)-dimethylester (Ing. P., Soc. 127, 2395). Bei Anwendung von dl- oder meso- α . α '-Dibrom-adipinsāure-dimethylester in Methanol erhält man Cyclopentan-tetracarbonsäure-(1.2.2.3)-tetramethylester (Bernton, Ing, P., Soc. 125, 1497). Dimethylmalonat liefert bei der Einw. auf $\alpha.\alpha'$ -Dibrom- β -methyl-glutarsäure-dimethylester in Natriummethylat-Lösung 5-Methyl-bicyclo-[0.1.2]-pentanon-(3)-tricarbonsäure-(1.2.4)trimethylester (Syst. Nr. 1368a) (Goss, Ingold, Soc. 1928, 1272). Beim Kochen eines Gemisches von Dimethylmalonat, 1-Brom-cyclopropan-dicarbonsäure-(1.2)-dimethylester und Natriummethylat Lösung und nachfolgenden Ansauern bildet sich vermutlich Bicyclo-[0.1.2]-pentanon-(3)-tricarbonsaure-(1.2.3)-trimethylester (Syst. Nr. 1368a) (Ing. Soc. 127, 2396). Natrium-malonsäuredimethylester liefert beim Behandeln mit Phosgen in Benzol unter Selbsterwärmung Methantricarbonsäuretrimethylester, Isobutylenhexacarbonsäure-hexamethylester und Aceton-tetracarbonsäure-tetramethylester; beim Hinzufügen von überschüssigem Phosgen bei —10° erhält man Aceton-tetracarbonsäure-tetramethylester und andere Produkte; bei Anwendung von sehr viel überschüssigem Phosgen und bei sehr heftigem Einsetzen der Reaktion entsteht außerdem 6-Methoxy-β-Acetoxy-α.α-dimethyl-butyrylchlorid in Ather 4.6-Dioxo-2.3.3trimethyl-2.3.5.6-tetrahydro-pyran-carbonsäure (5)-methylester (Anschütz, Quitmann, A. 462, 101). Malonsäure-dimethylester liefert mit Oxomalonsäure-dimethylester bei Gegenwart von Piperidin 1-Oxy-äthan-tetracarbonsäure-(1.1.2.2)-tetramethylester, bei Gegenwart von Zinkchlorid in Acetanhydrid Äthylentetracarbonsäure-tetramethylester (Corson, Hazen,

 $C_5H_8O_4 + SnCl_4$. Nadeln. Sintert bei 110° und ist bei 154° geschmolzen (Hieber, A. 439, 120). Löslich in Benzol und Äthylenbromid in der Wärme. — $C_5H_8O_4 + SnBr_4$. Hygroskopische Blättchen. F: 69° (H., A. 439, 130). Ziemlich schwer löslich in kaltem Ligroin, sehr leicht in anderen indifferenten Lösungsmitteln.

Malonsäuremonoäthylester, Monoäthylmalonat $C_5H_8O_4 = HO_2C \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 572). B. Durch vorsichtiges Erhitzen von Malonsäure und Alkohol in Gegenwart einer Spur Schwefelsäure (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 183; C. 1926 II, 1126). — F: —13,2°: Kp_3 : 106,5°: Kp_1 : 134,5° (C.-C.) D_1^{∞} : 1,486; D_4^{γ} : 1,2040 (C.-C.). Viscosität: C.-C. D_2^{∞} : 1,4262; D_2^{∞} : 1,4283; D_2^{∞} : 1,4338; D_2^{∞} : 1,438 (C.-C.). Leicht löslich in Wasser und organischen Lösungsmitteln (C.-C.). Ultrarotes Absorptionsspektrum zwischen 0,6 und 13,8 μ : Weniger, Phys. Rev. [1] 31 [1910], 420 Tafel III.

Zersetzt sich allmählich unter Bildung von Äthylacetat (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 184. C. 1926 II, 1126). Einfluß von Spannung und Elektrodenmaterial auf die Ausbeute an Bernsteinsäurediäthylester bei der Elektrolyse des Kaliumsalzes: Robertson, Soc. 127, 2057. Das Kaliumsalz liefert beim Erwärmen mit Hydrazinhydrat auf dem Wasserbad das Kaliumsalz der Malonhydrazidsäure (Curtius, Sieber, B. 54, 1432). Liefert beim Erhitzen mit l-Menthol in Gegenwart von Natrium auf 90° bei 15—30 mm Druck nicht rein isolierten Malonsäuremono-l-menthylester (Shimomura, Cohen, Soc. 121, 2055). Durch Elektrolyse eines Gemisches der Kaliumsalze von 1 Mol Malonsäuremonoäthylester und 3 Mol Korksäuremonoäthylester in Wasser an Platinelektroden und folgendes Verseifen mit Kalilauge erhält man Dodecan-dicarbonsäure-(1.12), Azelainsäure und Bernsteinsäure (Carmichael, Soc. 121, 2547). Malonsäure-monoäthylester liefert beim Neutralisieren mit Diäthylamin unter Kühlung und folgenden ca. 24-stdg. Aufbewahren mit 30 % iger Formaldehyd-Lösung unter Kühlung β -Diäthylamino-propionsäure-athylester und β - β '-Bis-diäthylamino-isobuttersäure-äthylester (Mannich, Ritsert, B. 57, 1116). — Die freie Säure und das Kaliumsalz sind gegen Lipase aus Schweineleber beständig (Christman, Lewis, J. biol. Chem. 47, 501).

Malonsäure-methylester-äthylester, Methyl-äthyl-malonat $C_6H_{10}O_4 = CH_3 \cdot O_2C \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Leiten des Dampfes von Oxalessigsäure-methylester-äthylester über Koksstücke oder Bimsstein bei 305—310° (Usines du Rhône, D. R. P. 427856; C. 1926 I, 3629; Frdl. 15, 381). — Aromatisch riechendes Öl. Kp: 182°. D¹²: 1,1083.

Malonsäurediäthylester, Diäthylmalonat, Malonester $C_7H_{12}O_4=CH_3(CO_3\cdot C_3H_5)_2$ (H 573; E I 247).

Bildung und Darstellung.

B. Bei tropfenweiser Zugabe von Essigester zu einer siedenden Lösung von Kohlensäurediäthylester in Benzol in Gegenwart von Natrium, neben Acetessigester (Lux, B. 62, 1827).
Beim Erwärmen von Malonsäure mit einem geringen Überschuß von Alkohol und der dem
Alkohol äquivalenten Menge Schwefelsäure in Gegenwart von Aluminiumsulfat auf 100°
(Kotake, Fujita, Bl. phys. chem. Res. Tokyo 1, 65; C. 1928 II, 1545). Über die Bildung
aus Malonsäure und Alkohol in Gegenwart von Schwefelsäure oder Salzsäure vgl. noch
Sugasawa, J. pharm. Soc. Japan 1927, 150; C. 1928 I, 1643. Beim Schütteln von Malonsäuredimethylester mit Alkohol und Kaliumäthylat-Lösung unter Ausschluß von Feuchtigkeit (Reimer, Downes, Am. Soc. 43, 950). Entsteht als Nebenprodukt bei der Veresterung
der Cyanessigsäure mit alkoh. Salzsäure (Stephens, J. Soc. chem. Ind. 43, 327 T; C. 1925 I,
358). Beim Leiten des Dampfes von Oxalessigsäurediäthylester über Koksstücke oder Bimsstein bei 305—310° (Usines du Rhône, D. R. P. 427856; C. 1926 I, 3629; Frdl. 15, 381).

Zur technischen Darstellung aus Chloressigsäure vgl. J. Schwyzer, Die Fabrikation

pharmazeutischer und chemisch-technischer Produkte [Berlin 1931], S. 102.

Physikalische Eigenschaften.

Bildet bei -73° eine dicke Masse, bei $-51,4^{\circ}$ (korr.) eine klare Flüssigkeit (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 13; C. 1927 I, 2398). Kp₇₀₀: 198,9° (Lecat, Ann. Soc. scient. Bruxelles 45 I [1926], 172), 198,4—198,5° (Conten. Crowet, Bl. Soc. chim. Belg. 35 [1926], 191; C. 1926 II, 1126); Kp₁₈: 92° (C.-C.). D₁[∞]: 1,0554; D₂^o: 1,0751 (C.-C.). Viscosität bei 20°: 0,0213 g/cmsec (Ceder), 0,0212 g/cmsec (C.-C.). Parachor: Sugden, Soc. 125, 1184. — n_0^{∞} : 1,4121; n_0^{∞} : 1,4142; n_0^{∞} : 1,4194; n_1^{∞} : 1,4238 (C.-C.). Absorptionsspektrum im Ultrarot: Ellis, Am. Soc. 51, 1386; Lecomte, C. r. 178, 1700, 2075. Über die Verschiebung der Ultraviolett-Absorption von Malonester in Hexan durch Zusatz von Wasser vgl. Scheibe, Z. El. Ch. 34, 498.

Bildet azeotrope Gemische mit d-Limonen (Kp: 177,5°; 10% Malonester) (Lecat, Ann. Soc. scient. Bruxelles 48I [1928], 56) und mit Methylbenzoat (Kp: 198,2°; ca. 54% Malonester) (L., Ann. Soc. scient. Bruxelles 45 I [1926], 172). Ebullioskopisches Verhalten in Trichloräthylen: Walden, Ann. Acad. Sci. jenn. [A] 29 [1927], (Komppa-Festschrift) Nr. 23, S. 10; C. 1928 I, 166. Dichte wäßr. Lösungen bei 20°: King, Wampler, Am. Soc. 44, 1899. Mol.-Volumen von Gemischen mit Toluol, m-Xylol, Phenol, o- und p-Kresol und Isoamylacetat: Richardson, Robertson, Soc. 1928, 1779. Oberflächenspannung wäßr. Lösungen bei 17°: Edwards, Soc. 127, 746; bei 20°: King, Wampler.

Chemisches Verhalten.

Oxydation; Einwirkung anorganischer Verbindungen. Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Wird von Chromschwefelsäure vollständig oxydiert (Guyot, Simon, C.r. 170, 516). Geschwindigkeit der Oxydation durch Kaliummolybdän(IV)-cyanid in Puffer-Lösung bei 23° und p_H 7,8: Conant, Pratt, Am. Soc. 48, 3229. Über die Umsetzung von Malonester mit Natrium nach Conrad (A. 204, 129) vgl. Pankoke, A. 441, 188. Verseifung von Malonester durch festes Kaliumhydroxyd: Tassilly, Belot, Descombes, C. r. 186, 1848. Geschwindigkeit der Verseifung durch wäßr. Natronlauge, Natriumdicarbonat-Lösung und Natriumcarbonat-Lösung bei 25°: Skrabal, Singer, M. 41, 346; durch wäßrig-alkoholische Natronlauge bei 27,0°: Gane, Ingold, Soc. 1926, 16; durch wäßrig-alkoholische Salzsäure bei 25°: Sk., Matievic, M. 45, 40. Beim Erhitzen mit Dischwefeldichlorid in Benzol erhält man aus freiem Malonester Athylentetracarbonsäure-tetraäthylester, aus Natriummalonester Athan-α.α.β.β-tetracarbonsäure-tetraäthylester (Naik, Soc. 119, 1239).

E I 248, Z. 11 u. 12 v. u. sind zu streichen.

Beispiele für die Einwirkung organischer Halogenverbindungen. "Dinatriummalonester" gibt beim Kochen mit 1.4-Dibrom-2-methyl-buten-(2) in absol. Alkohol auf dem Wasserbad 4-Methyl-pentadien-(1.4)-dicarbonsäure-(1.1)-diäthylester (?) und harzige Produkte; beim Verseifen des aus Mononatriummalonester und 1.4-Dibrom-2-methyl-buten-(2) erhaltenen Reaktionsgemisches mit alkoh. Kalilauge und Abspalten von Kohlendioxyd entstehen γ -Isopropenyl-butyrolacton(?), geringe Mengen einer Methylpentadiencarbonäure, eine Säure $C_8H_{10}O_4$ (S. 528), eine Säure $C_8H_{10}O_4$ (S. 528) und andere Produkte (Staudinger, Muntwyler, Kupfer, Helv. 5, 760). Natriummalonester gibt wie mit [β -Brom-āthyl]-acetat (Leuces, Gieseler, B. 45 [1912], 2121) auch mit Äthylenchlorhydrin, Athylenbromhydrin, [β -Chlor-āthyl]-acetat oder 4-Nitro-benzoesäure-[β -chlor-āthylester] geringe Mengen des Dilactons der Bis-[β -oxy-āthyl]-malonsäure (Formel I; Syst. Nr. 2760); in den letzteren Fällen entsteht daneben Äthylacetat bzw. 4-Nitro-benzoesäure-āthylester (Bennett, Sec.

127, 1278). 2 Mol Natriummalonester liefern beim Kochen mit 1 Mol Chlormethyläthylcarbinol in absol. Alkohol γ-Caprolacton-α-carbonsäure-äthylester (Helferich, Speidel, B. 54, 2637). Natriummalonester liefert mit überschüssigem α.β-Dichlor-diäthyläther in Ather unter Eis-Kochsalz-Kühlung [β-Chlor-α-äthoxy-äthyl]-malonsäurediäthylester und wenig Buten-(1)-tetracarbonsäure-(1.1.4.4)-tetraäthylester, mit unzureichender Menge α.β-Dichlor-diäthyläther in siedendem Äther oder Benzol dagegen fast ausschließlich Buten-(1)-tetracarbonsäure-(1.1.4.4)-tetraäthylester (Benary, Schinkopf, B. 56, 357, 359). Natriummalonester liefert mit Bromaceton in Äther + Alkohol anfangs unter Kühlung, zuletzt bei Zimmertemperatur Acetonylmalonsäurediäthylester und wenig Äthantetracarbonsäure-(1.1.2.2)-tetraäthylester (Gault, Salomon, C. r. 174, 755; A. ch. [10] 2, 143). Natriummalonester gibt mit α-Brom-isobutyraldehyd in absol. Alkohol γ-γ-Dimethyl-Δα-croton-lacton-α-carbonsäure-äthylester (Formel II; Syst. Nr. 2619) (Franke, Groeger, M. 43, 58). Malonester liefert bei längerem Kochen mit γ-Brom-n-valeriansäure-äthylester und Natriumäthylat-Lösung 2-Methyl-butan-tricarbonsäure-(1.1.4)-triäthylester, Valerolacton und ein Gemisch nicht näher beschriebener Methyl-cyclopentanon-(3) übergeführt werden (Staudinger, Ruzicka, Helv. 7, 249). Beim Kochen von Natriummalonester mit α.β-Dibrom-hydro-

I.
$$\frac{\text{H}_2\text{C} \cdot \text{CH}_2}{\text{O} - \text{CO}} = \frac{\text{CH}_2 \cdot \text{CH}_2}{\text{CO} - \text{O}} = \text{II.} = \frac{\text{H}_2\text{C} \cdot \text{CO}_2 \cdot \text{C}_2\text{H}_5}{\text{CO}} = \text{III.} = \frac{\text{H}_2\text{C} \cdot \text{CH}_2}{\text{H}_2\text{C} \cdot \text{CH}_2} = \frac{\text{CH}_2}{\text{CH}(\text{CO}_2 \cdot \text{C}_2\text{H}_5) \cdot \text{CO}} = \frac{\text{CH}_2}{\text{CH}_2} = \frac{\text{CO}_2 \cdot \text{C}_2\text{H}_5}{\text{CO}} = \frac{\text{CH}_2}{\text{CH}_2} = \frac{\text{CO}_2 \cdot \text{C}_2\text{H}_5}{\text{CO}} = \frac{\text{CH}_2}{\text{CH}_2} = \frac{\text{CH}_2}{$$

zimtsäure-äthylester in Alkohol erhält man 3-Phenyl-cyclopropan-tricarbonsäure-(1.1.2)-triäthylester, Zimtsäureäthylester, Äthan-tetracarbonsäure-(1.1.4.4)-tetraäthylester und 2 Fraktionen, die bei der Hydrolyse mit Salzsäure Phenylpropiolsäure bzw. Acetophenon geben (HAERDI, THORPE, Soc. 127, 1246). Bei der Einw. von Dibromcyanacetamid auf Natriummalonester in Alkohol, zuletzt auf dem Wasserbad, entstehen Äthylentetracarbonsäure-tetraäthylester und Äthantetracarbonsäure-(1.1.4.4)-tetraäthylester (GUPTA, THORPE, Soc. 121, 1901).

Malonester liefert mit einem Gemisch aus der dl- und der meso-Form des α.α'-Dibromglutarsäure-diäthylesters (s. Ingold, Soc. 119, 318; Ing, Perkin, Soc. 127, 2393) beim Aufbewahren in kalter Natriumäthylat-Lösung und anschließenden Kochen 1-Brom-cyclopropan-dicarbonsäure-(1.2)-diäthylester, Cyclobutan-tetracarbonsäure-(1.2.2.3)-tetraäthylester propan-dicarbonsaure-(1.2)-diathylester, Cyclobutan-tetracarbonsaure-(1.2.2.3)-tetraathylester und eine Verbindung $C_{14}H_{18}O_{7}$, die vermutlich mit dem Triäthylester der 4-Oxo-1.2-methylencyclobutan-tricarbonsäure-(1.2.3) (Syst. Nr. 1368a) identisch ist, und auch aus 1-Bromcyclopropan-dicarbonsäure-(1.2)-diäthylester beim Kochen mit Malonester in Natriumäthylat-Lösung erhalten werden kann (Ing. Perkin, Soc. 127, 2394, 2395). Gibt mit dl- α . α -Dibrom-adipinsäure-diäthylester in Natriumäthylat-Lösung Cyclopentan-tetracarbonsäure-(1.2.2.3)-tetraäthylester (Perkin, Robinson, Soc. 119, 1397; vgl. a. Bernton, Ing. P., Soc. 125, 1496). Natriummalonester liefert mit β -Chlor-glutaconsäure-diäthylester in kaltem Alkohol Isobutylentetracarbonsäure-tetraäthylester (Ingold, Nickolls, Soc. 121, 1643). Mit 1.3-Dibrom-propan-tetracarbonsäure-(1.1.3.3)-tetraathylester erhält man bei 2-stdg. Kochen in Alkohol Cyclopropan-tetracarbonsäure-(1.1.2.2)-tetraäthylester, mit 1.4-Dibrombutan- α . α . δ . δ -tetracarbonsäure-(1.1.4.4)-tetraäthylester Cyclobutan-tetracarbonsäure-(1.1.2.2)tetraäthylester; daneben entsteht in beiden Fällen Athan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (Lennon, Perkin, Soc. 1928, 1515, 1522). Eine absolut-alkoholische Lösung von Natriummalonester gibt bei langsamem Einleiten von Chlorcyan in der Kälte Chloräthan, Äthylmalonsäurediäthylester und Natriumcyanat; beim Einleiten von überschüssigem Chloreyan in der Wärme sowie bei Anwendung einer absolut-ätherischen Suspension von Natriummalonester erhält man Cyanmalonsäurediäthylester (MIGNONAC, RAMBECK, C. r. 188, 1299). Bei der Einw. von Bromcyan auf Natriummalonester in Alkohol oder Äther erhält man Äthylentetracarbonsäuretetraäthylester und Natriumcyanid sowie geringe Mengen Cyanmalonsäurediäthylester und Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester, bei der Einw. von Jodeyan fast ausschließlich Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (M., R.). Malonester gibt beim Erhitzen mit Bromeyan auf 100—110° Brommalonsäurediäthylester (STEINKOFF, A. 430, 102). Natriummalonester liefert beim Erwärmen mit α -Chlor- oder α -Brom- β -[4-methoxy-2.5-dimethyl-benzoyl]-propionsäure-äthylester in Benzol auf 80° 3-[4-Methoxy-2.5-dimethyl-benzoyl]-propan-tricarbonsäure-(1.1.2)-äthylester (Clemo, HAWORTH, WALTON, Soc. 1929, 2383).

Weitere Beispiele für die Einwirkung organischer Verbindungen. Malonester liefert mit Nitrosobenzol Phenyliminomalonsäure-diäthylester (Walker, Soc. 125, 1623 Ann.). Gibt beim Erhitzen mit Benzylazid auf 160—170° Benzylamino-malonsäure-diäthylester und geringe Mengen Benzylamin (Curtius, Ehrhart, B. 55, 1569). Beim Schütteln mit Methanol und Kaliummethylat unter Ausschluß von Feuchtigkeit erhält man Malonsäuredimethylester (Reimer, Downes, Am. Soc. 48, 950). Liefert beim Erhitzen mit Äthylenglykol auf 160° und anschließend im Vakuum auf 200—250° (Carothebs, Arvin, Am. Soc. 51, 2560) oder beim Erhitzen auf 150—195° (Tilitschejew, Ж. 58, 449, 459; C. 1927 I,

440) polymeres Äthylenmalonat (S. 529). Malonester gibt mit Crotonaldehyd in Gegenwart von Diäthylamin in der Kälte 4-Methyl-penten-(2)-tetracarbonsäure-(1.1.5.5)-tetraäthylester (S. 716) (Staudinger, Ruzicka, Helv. 7, 446). Bei der Kondensation mit 3-Äthylhexen-(2)-on-(5) oder 3-Äthyl-hexen-(3)-on-(5) (E II 1, 799, 800) und Natriumäthylat in der Hitze und nachfolgender Hydrolyse des Reaktionsprodukts mit siedendem verdünntem Barytwasser erhält man Diäthyldihydroresorcin (Syst. Nr. 667) (Kon, Linstead, Soc. 127, 819). Das Gleichgewicht der Reaktionen: Malonsäure-diäthylester $+\beta$. β -Dimethyl-acrylsäure-äthylester \Rightarrow 2.2-Dimethyl-propan-tricarbonsäure-(1.1.3)-triäthylester oder Malonsäure-diäthylester + Zimtsäureäthylester \Rightarrow 2-Phenyl-propan-tricarbonsäure-(1.1.3)-triäthylester ist von der Temperatur abhängig (Ingold, Powell, Soc. 119, 1978). Malonester liefert bei längerem Erwärmen mit Cyclopentanon und Essigsäureanhydrid in Gegenwart von Zinkchlorid, besser in Gegenwart der Doppelverbindung von Anilin und Zinkchlorid Cyclopentylidenmalonsäurediäthylester; reagiert analog mit Cyclohexanon (Kon, Speight, Soc. 1926, 2731, 2733). Wird 1-Methyl-cyclohexen-(1)-on-(3) (Syst. Nr. 616) mit Natriummalonester in kaltem Alkohol versetzt und anschließend 16 Stdn. auf dem Wasserbad gekocht, so bildet sich neben anderen Produkten β -Methyl- β -carboxymethyl-pimelinsäure-triäthylester (S. 691)

und wenig 1-Methyl-cyclohexanon-(3)-carbonsäure-(4)-essigsäure-(1)-diäthylester; wird das Reaktionsgemisch anschließend mehrere Tage bei Zimmertemperatur aufbewahrt, so erhält man neben viel 1-Methyl-cyclohexanon-(3)-carbonsäure-(4)-essigsäure-(1)-diäthylester Pro-

dukte, die bei der Hydrolyse verharzen (Farmer, Ross, Soc. 127, 2360, 2363, 2364, 2365). Malonester gibt beim Erhitzen mit [Cyclopenten-(1)-yl]-aceton und Natriumäthylat-Lösung auf dem Wasserbad Cyclopentan-[2-carbäthoxy-cyclohexandion-(3.5)]-spiran-(1.1') (Formel III auf S. 525; Syst. Nr. 1310) (Norris, Thorpe, Soc. 119, 1207). Beim Erwärmen von Malonester mit Hexahydrobenzylidenaceton und Natriumäthylat-Lösung entsteht 2-Cyclohexyl-cyclohexandion-(4.6)-carbonsäure-(1)-äthylester (Kon, Soc. 1926, 1799).

Bei der Einw. von alkoh. Ammoniak auf ein Gemisch von Malonester und Benzaldehyd auf dem Wasserbad erhalten Rodionow, Fedorowa (B. 60, 805) außer Benzalmalonsäure-diäthylester (vgl. H 2, 577) β-Amino-β-phenyl-isobernsteinsäure-diäthylester und kleine Mengen Benzalmalonsäurediamid; die Reaktion verläuft analog mit 3-Nitro-benzaldehyd und Piperonal; beim Ersatz des Ammoniaks durch Methylamin entstehen die entsprechenden Methylaminoderivate. Die Natriumverbindung liefert beim Erhitzen mit 1 Mol Styrylaceton in Alkohol und Kochen des Reaktionsprodukts mit wäßr. Natriumcarbonat-Lösung 1-Benzyl-cyclohexandion-(3.5) (LINSTEAD, WILLIAMS, Soc. 1926, 2744). Bei der Umsetzung

äthyl]-malonsäure-diäthylester (HILL, Am. Soc. 49, 568; vgl. Vorländer, Kalkow, B. 30 [1897], 2271). Liefert beim Erwärmen mit Propionylphenylacetylen in Natriumäthylat-Lösung 6-Äthyl-4-phenyl-pyron-(2)-carbonsäure-(3)-äthylester (Syst. Nr. 2619) (Bardhan, Soc. 1929, 2229). Natriummalonester gibt bei tagelangem Erhitzen mit Durochinon in Benzol bei Luftzutritt die Natriumverbindung des [2.5-Dioxy-3.4.6-trimethyl-benzal]-malonsäure-diäthylesters (Syst. Nr. 1164); in Stickstoff-Atmosphäre entsteht daneben Durohydrochinon

von Malonester mit Benzalpinakolin in Natriumäthylat-Lösung entsteht [α-Phenyl-β-pivaloyl-

(SMITH, DOBROVOLNY, Am. Soc. 48, 1694, 1701).

Bei der Reaktion zwischen Natriummalonester und Citraconsaurediäthylester entstehen je nach den Versuchsbedingungen und der Art der Aufarbeitung neben den schon E I 2, 250 genannten Produkten wechselnde Mengen 2.3 (oder 2.4) - Dicarbäthoxy - cyclopenten - (1) - yl-malonsäure - diäthylester oder 2.3 (oder 2.4) - Dicarbäthoxy - cyclopentyliden - (1.3) - malonsäure - diäthylester (Syst. Nr. 1023), Cyclopentanon - (3) - carbonsäure - (1) - äthylester (Syst. Nr. 1284), Cyclopentanon - (4) - dicarbonsaure - (1.3) - diathylester oder Cyclopentanon - (3) - dicarbonsäure (1.2) diäthylester (Syst. Nr. 1331a), 4-[β.γ-Dicarbäthoxy-propyl]-cyclopentanon-(3)tricarbonsaure (1.2.4) - triathylester und 4 - [α.β.-Dicarbathoxy - propyl] - cyclopentanon - (3)-tricarbonsaure (1.2.4) - triathylester (Ingold, Shoppee, Thorpe, Soc. 1926, 1484; I., Sh., Soc. 1926, 1916). Natriummalonester gibt mit Muconsäure-diäthylester in Ather Buten-(1)dicarbonsäure-(1.4)-malonsäure-(2)-tetraäthylester und geringe Mengen des entsprechenden Triäthylesters (FARMER, Soc. 121, 2017). Malonester liefert beim Erwärmen mit Carbamidsäureazid auf dem Wasserbad bis zum Aufhören der Stickstoffentwicklung Ureido-malonsäurediäthylester und Diureidomalonsäurediäthylester (Syst. Nr. 292), neben Urazol und Cyanursäure (Curtius, B. 56, 1581). Gibt beim Erwärmen mit Azodicarbonsäuredimethylester, etwas Äther und Kaliumacetat auf höchstens 48—50° Bis-[N.N'-dicarbomethoxyhydrazino]-malonsäure-diäthylester (Diels, Behnoke, B. 57, 655). Analog verläuft die Reaktion mit Azodicarbonsäure-diäthylester (D., B., B. 57, 654). Bei der Einw. von Diazoessigsäureäthylester auf Malonester unter Kühlung erhält man in Gegenwart von Natriummethylat den Dimethylester, in Gegenwart von Natriumäthylat den Diäthylester der 4-Oxypyrazol-dicarbonsäure-(3.5) (Syst. Nr. 3692) (Вектно, Nüssel, А. 457, 288). Malonester gibt mit Oxomalonsäure-diäthylester bei Gegenwart von Piperidin 1-Oxy-äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester, bei Gegenwart von Zinkehlorid in Acetanhydrid Athylentetracarbonsaure-tetraathylester (Corson, Hazen, Thomas, Am. Soc. 50, 917).

Beim Kochen von Malonester mit p-Toluolsulfonsäure-methylester und Natriumäthylat-Lösung entsteht Methylmalonsäure-diäthylester; analog verlaufen die Reaktionen mit anderen p-Toluolsulfonsäurealkylestern (Peacock, Tha, Soc. 1928, 2304). Bei der Einw. von Di-p-tolyl-disulfoxyd (Syst. Nr. 1521) auf Malonester in Natriumäthylat-Lösung und folgender Hydrolyse der erhaltenen Ester bilden sich S-p-Tolyl-thioglykolsäure und p-Toluol-sulfinsäure (Brooker, Smiles, Soc. 1926, 1725). Malonester gibt beim Kochen mit Dibenzyl-disulfoxyd (Syst. Nr. 1521) und Kaliumacetat in Alkohol und nachfolgenden Verseifen mit konz. Salzsäure S-Benzyl-thioglykolsäure (Chivers, Sm., Soc. 1928, 699). In analoger Weise verläuft die Einw. von Pentamethylen-bis-p-toluolthiosulfonat, während man beim Kochen von Malonester mit Äthylen-bis-thioglykolsäure und 1.3-Dithiolan-carbonsäure-(2) (Formel IV), beim Kochen mit Trimethylen-bis-p-toluolthiosulfonat und Kaliumacetat in Alkohol und nachfolgenden Verseifen Athylen-bis-p-toluolthiosulfonat und Kaliumacetat in Alkohol und nachfolgenden Verseifen 1.3-Dithian-carbonsäure-(2) (Formel V; Syst. Nr. 2846) erhält (Ch., Sm.). Malonester liefert mit Benzolsulfonsäureazid beim Kochen in Gegenwart von Natronlauge unter 20—25 mm Druck die Natriumverbindung der 1-Benzolsulfonyl-5-oxy-1.2.3-triazol-carbonsäure-(4) (Formel VI), bei der Kondensation in Gegenwart von Natriumäthylat-Lösung unter Kühlung die Natriumverbindung des 1-Benzolsulfonyl-5-oxy-1.2.3-triazol-carbonsäure-(4)-äthylesters (Curtius, Ehrhart, J. pr. [2] 106, 72; Cu.,

JEREMIAS, J. pr. [2] 112, 91). Reagiert analog mit p. Toluol-sulfonsäureazid in Natriumäthylat-Lösung (Cu., Klavehn, J. pr. [2] 112, 76) und mit Sulfanilsäureazid (Cu., Stoll, J. pr. [2] 112, 129, 136). Wird Malonester mit Benzylsulfonsäureazid und 2n-Natronlauge unter Kühlung geschüttelt, so bildet sich die Natriumverbindung des 1-Benzylsulfonyl-5-oxy-1.2.3-triazol-carbonsäure-(4)-äthylesters (Syst. Nr. 3939), die sich bei nachfolgendem Ansäuern bzw. Erwärmen auf dem Wasserbad und Ansäuern in Diazomalonsäure-äthylesterbenzylsulfonylamid bzw. Diazomalonsäure-monobenzylsulfonylamid umwandelt; erfolgt die Kondensation in der Wärme, so erhält man die Natriumverbindung des Benzylsulfonmalonesters; wird die Kondensation mit Natriumäthylat-Lösung unter Kühlung ausgeführt, so erhält man Diazomalonsäure-äthylester-benzylsulfonylamid und eine Additionsverbindung von 1 Mol Diazomalonsäure-äthylester-benzylsulfonylamid mit 2 Mol Benzylsulfonyl-malonsäure-diäthylester (Syst. Nr. 1521) nebeneinander (Cu., Jeremias, J. pr. [2] 112, 103).

Natriummalonester gibt mit Methylsenföl in Äther die Natriumverbindung des Methylaminothioformyl-malonsäure-diäthylesters (Syst. Nr. 335) (Worrall, Am. Soc. 50, 1457). Malonester liefert beim Erwärmen mit Salicylaldehyd-anil in Gegenwart von Piperidin auf dem Wasserbad Cumarin-carbonsäure-(3)-anilid (Syst. Nr. 2619) (Wayne, Cohen, Soc. 127, 457). Beim Erhitzen von Malonester mit 2 Mol 2-Amino-thiophenol in einer Kohlendioxyd-Atmosphäre auf 200° bildet sich Di-[benzthiazolyl-(2)]-methan (Syst. Nr. 4630) (Mills, Soc. 121, 464). Natriummalonester liefert mit Bis-benzolazo-äthylen in Benzol eine Verbindung C₁₈H₁₈O₃N₄ (s. bei Bis-benzolazo-äthylen, Syst. Nr. 2092) (Vorländer, Zeh, Enderlein, B. 60, 856). Natriummalonester gibt mit Cyclohexenoxyd in Alkohol bei 50°

ein Additionsprodukt, das bei nachfolgendem Ansäuern 2-Oxo-oktahydrocumaron-carbon-säure-(3)-äthylester (Formel VII), beim Behandeln mit β -Brom-propionsäure in Benzol bei Zimmertemperatur, Verseifen mit wäßrig-alkoholischer Natronlauge, Ansäuern und Aufkochen 2-Oxo-oktahydrocumaron-carbonsäure-(3)-äthylester-[β -propionsäure]-(3) liefert (Kendall, Osterberg, McKenzie, Am. Soc. 48, 1389). Beim Erhitzen von Malonester mit 2-Amino-pyridin auf 165—195° bildet sich Malonyl-2-amino-pyridin (Formel VIII; Syst. Nr. 3591) (Tschitschibabin, B. 57, 1170; Ж. 57, 402).

Biochemisches und physiologisches Verhalten; Analytisches.

Spaltung von Malonester durch Schweineleberlipase: Christman, Lewis, J. biol. Chem. 47, 501; Hyde, Lewis, J. biol. Chem. 56, 9. Narkotische Wirkung am Kaninchen: Loewy, Wolffenstein, Ar. Pth. 79 [1916], 333; Wachtel, Z. exp. Path. Therap. 21 [1920], 14.

Gibt beim Versetzen mit Pikrinsäure in alkoh. Lösung (Sasaki, Bio. Z. 114, 64) oder in wäßr. Lösung (Weise, Tropp, H. 178, 133) nach Zusatz von verd. Natronlauge in der Kälte eine rote Färbung. Bestimmung des aktiven Wasserstoffs nach Zerewitinow: H. Fischer, Walter, B. 60, 1988.

Metallverbindungen, additionelle Verbindungen und Umwandlungsprodukte des Malonsäurediäthylesters.

Mononatrium malonsäurediäthylester, Natrium malonester NaC₇H₁₁O₄ (H580). Zur Bildung nach Conrad (A. 204, 129) vgl. Pankoke, A. 441, 188. Zersetzt sich beim Erhitzen, ohne vorher zu schmelzen (Sidgwick, Brewer, Soc. 127, 2380). Unlöslich in Benzol, löst sich aber beim Erwärmen in Benzol unter Zusatz von Malonester (S., B.). Bei der Einw. von Methanol auf Natriummalonester in Petroläther, Benzol oder Xylol bei Zimmertemperatur erfolgt teilweise Umesterung zu Natriummalonsäuredimethylester (Adickes, B. 59, 2527). Weitere Umsetzungen s. S. 524—527. — Al[C₇H₁₁O₄]₃ (H 580). B. Aus Malonester und Aluminiumäthylat-Lösung (Burrows, Wark, Soc. 1928, 228). Leicht löslich in allen organischen Lösungsmitteln. Wird durch Wasser leicht zersetzt. — Ein aus Malonester mit Nitroprussidnatrium und Natriummethylat in Methanol erhaltenes Komplexsalz s. bei Isonitrosomalonsäurediäthylester (Syst. Nr. 292). — C₇H₁₂O₄ + SnCl₄ (EI251). Kryoskopisches Verhalten in Äthylenbromid: Hieber, A. 439, 120.

Säure C₈H₁₀O₄. B. Durch Umsetzung von Natriummalonester mit 1.4-Dibrom-2-methylbuten-(2) in Alkohol und nachfolgendes Verseifen des Reaktionsprodukts mit alkoh. Kallauge, neben anderen Produkten (Staudinger, Muntwyler, Kupfer, Helv. 5, 764). — Krystalle (aus Benzol oder Wasser). F: 119—122°. — Der Athylester schmilzt bei 85—86°.

Säure C₆H₁₄O₄. B. Durch Umsetzung von 2 Mol Natriummalonester mit 1 Mol 1.4-Dibrom-2-methyl-buten-(2) in Äther unter Kühlung und Verseifen des Reaktionsprodukts mit alkoh. Kalilauge, neben anderen Produkten (STAUDINGER, MUNTWYLER, KUPFER, Helv. 5, 764). — Krystalle. Schmilzt bei ca. 80°.

Malonsäure-bis-[β-chlor-äthylester], Bis-[β-chlor-äthyl]-malonat $C_7H_{10}O_4Cl_2=CH_4(CO_2\cdot CH_2\cdot CH_2Cl)_2$. B. Bei der Einw. von Athylenchlorhydrin auf Malonylchlorid (Bennett, Soc. 127, 1278) oder auf Malonsäure unter Zusatz von wasserfreiem Natriumsulfat bei gleichzeitigem Einleiten von Chlorwasserstoff bis zur Sättigung und nachfolgendem Erwärmen auf 60° (Gilman, Johnson, Am. Soc. 50, 3345). — Schweres Öl. Kp₂₄: 178—182°; Kp₄: 143—144° (G., J.); Kp₁₅: 164° (B.). Unlöslich in Wasser, löslich in den gewöhnlichen organischen Lösungsmitteln (G., J.). — Liefert bei der Oxydation mit Stickstofftetroxyd bei —5° in Gegenwart von wenig metallischem Natrium Mesoxalsäure-bis-[β-chlor-äthylester] (G., J.). Gibt beim Behandeln mit Natriumäthylat-Lösung geringe Mengen des Dilactons der Bis-[β-oxy-āthyl]-malonsäure (Syst. Nr. 2760) (B.).

Malonsäure-bis- $[\beta$ -brom-äthylester], Bis- $[\beta$ -brom-äthyl]-malonat $C_7H_{10}O_4Br_2=CH_3(CO_2\cdot CH_2\cdot CH_2Br)_2$. B. Durch Veresterung von Malonsäure mit Athylenbromhydrin und Bromwasserstoff in Gegenwart von wasserfreiem Natriumsulfat, zuletzt bei 60° (GILMAN, Johnson, Am. Soc. 50, 3346). — Schweres Öl, das bei längerem Aufbewahren dunkel wird. Kp₁: 153°; zersetzt sich bei der Destillation unter höherem Druck. Unlöslich in Wasser, löslich in allen organischen Lösungsmitteln, besonders in Tetrachlorkohlenstoff und Chloroform. — Liefert bei der Oxydation mit Stickstofftetroxyd in Gegenwart von wenig metallischem Natrium zuerst bei —5°, dann bei 0° Mesoxalsäure-bis- $[\beta$ -brom-äthyl-ester].

Malonsäuremonopropylester, Monopropylmalonat $C_6H_{10}O_4 = HO_2C \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot C_2H_5 \cdot C_2H_5 \cdot C_3H_5 \cdot B$. Durch vorsichtiges Erhitzen von Malonsäure und Propylalkohol unter verschiedenen Bedingungen (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 184; C. 1926 II, 1126). — Kp₅: 118,5°. D₄°: 1,1326; D₄°: 1,1499. n_{α}^{∞} : 1,4277; n_{β}^{∞} : 1,4301; n_{β}^{∞} : 1,4359; n_{γ}^{∞} : 1,4409. Viscosität: 0,162 g/cm sec.

Malonsäuredipropylester, Dipropylmalonat $C_0H_{16}O_4 = CH_{1}(CO_2 \cdot CH_3 \cdot C_2H_5)_2$ (H 581). Erstarrt beim Abkühlen glasig (Timmermans, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27). Kp_{760} : 229,2° (T.; Contzen-Crower, Bl. Soc. chim. Belg. 35, 191; C. 1926 II, 1126). D_a^{∞} : 1,0088; D_a^{α} : 1,0283 (C.-C.). n_a^{∞} : 1,4183; n_b^{∞} : 1,4206; n_b^{∞} : 1,4260; n_{γ}^{∞} : 1,4303 (C.-C.). Viscosität bei 20°: 0,0280 g/cm sec (C.-C.).

Malonsäuremonobutylester, Monobutylmalonat $C_7H_{13}O_4 = HO_5C \cdot CH_5 \cdot CO_5 \cdot [CH_3]_5 \cdot CH_3$. B. Durch vorsichtiges Erhitzen von Malonsäure und Butylalkohol (Contzen-Crower, Bl. Soc. chim. Belg. 35, 185; C. 1936 II, 1126). — Kp₃: 132°. D₄^m: 1,0932. n_{2}^{m} : 1,4303; n_{2}^{m} : 1,4328; n_{2}^{m} : 1,4385; n_{2}^{m} : 1,4435.

Malonsäure-äthylester-butylester, Äthylbutylmalonat $C_9H_{16}O_4=C_2H_5\cdot O_2C\cdot CH_2\cdot CO_2\cdot [CH_9]_3\cdot CH_9$. B. Beim Leiten des Dampfes von Oxalessigsäure-äthylester-butylester über Koksstücke oder Bimsstein bei 305—310° (Usines du Rhône, D. R. P. 427856; C. 1926 I, 3629; Frdl. 15, 381). — Kp: 222°. D^{18} : 1,0257.

Malonsäuredibutylester, Dibutylmalonat $C_{11}H_{20}O_4=CH_2(CO_2\cdot [CH_2]_2\cdot CH_3)_2$ (H 581). Erstarrt beim Abkühlen glasig (Timmermans, Bl. Soc. chim. Belg. 36, 506; C. 1928 I, 27).

Kp₁₈: 140° (T.; Contzen-Crowet, Bl. Soc. chim. Belg. 35, 192; C. 1926 II, 1126). D_{i}^{∞} : 0,9810; D_{i}^{α} : 1,0025 (C.-C.). n_{i}^{∞} : 1,4239; n_{i}^{∞} : 1,4262; n_{i}^{∞} : 1,4315; n_{i}^{∞} : 1,4359 (C.-C.).

Malonsäure - mono - [β.β.β-trichlor - tert.- butylester] C₇H₉O₄Cl₃ = HO₂C · CH₉ · CO₃ · C(CH₃)₂ · CCl₃ (E I 252). — Kupfer(II) - salz Cu(C₇H₈O₄Cl₃)₂. Geruch- und geschmackloses blaugrünes Pulver. Unlöslich in Wasser und Alkohol, löslich in Chloroform, Benzol und fetten Ölen (Wobbe, Ar. 1926, 328). Löst sich in Ammoniak mit lasurblauer Farbe. Beim Erhitzen mit wäßr. Kalilauge wird Chlor abgespalten. Wird unter dem Namen "Tracumin" in der Augenheilkunde verwandt. — Basisches Wismutsalz. Unlöslich in Wasser und Alkohol, leicht löslich in Chloroform, findet unter der Bezeichnung "Milanol" in der Heilkunde Verwendung (Anonymus, Pharm. Zig. 66, 906; C. 1922 II, 56).

Malonsäure-äthylester-[d-octyl-(2)]-ester, Äthyl-[d-octyl-(2)]-malonat $C_{13}H_{24}O_4$ $= C_2H_5 \cdot O_3C \cdot CH_2 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$. B. Neben d-Malonsäure-di-[d-octyl-(2)]-ester beim Erhitzen von Malonsäurediäthylester mit d-Octanol-(2) im offenen Gefäß auf 175—180° oder im Autoklaven auf 195—205° (HALL, Soc. 123, 35). Bei der Einw. von d-Octanol-(2) auf Malonsäure-äthylester-chlorid (H.). — Fruchtartig riechende Flüssigkeit. Kp₁₀: 198° bis 200°. D_4^{ac} : 0,9519; D_4^{ac} : 0,9328; D_4^{ac} : 0,9175; D_4^{ac} : 0,8867. D_4^{ac} : 1,4269; Brechungsindices bei 26° zwischen 643,8 m μ (1,4249) und 435,8 m μ (1,4361): H. [α] D_5^{ac} : +9,27° (unverd.); [α] D_5^{ac} : +7,3° (Alkohol; c = 5); [α] D_5^{ac} : -5,0° (Schwefelkohlenstoff; c = 5). Rotationsdispersion der reinen Substanz zwischen 20° und 120° für λ = 589,3—435,8 m μ und der Lösungen in Alkohol und Schwefelkohlenstoff für λ = 589,3—435,8 m μ bei Zimmertemperatur: H. — Liefert bei der Hydrolyse d-Octanol-(2).

Malonsäure-di-[d-octyl-(2)]-ester, Di-[d-octyl-(2)]-malonat $C_{19}H_{36}O_4=CH_2(CO_3\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_9\}_2$. B. Beim Sättigen eines Gemisches von Malonsäure und d-Octanol-(2) mit Chlorwasserstoff und nachfolgenden Erhitzen auf 100° (HALL, Soc. 123, 35). Beim Erhitzen von Malonsäurediäthylester mit d-Octanol-(2) in offenem Gefäß auf 175—180° oder im Autoklaven auf 195—205° (H.). — Fruchtartig riechende Flüssigkeit. Kp₁₀: 158° bis 160°. D' zwischen 21,2° (0,9189) und 122,5° (0,8395): H. $n_1^{ss.2}$: 1,4345; Brechungsindices bei 26,2° zwischen 643,8 m μ (1,4326) und 435,8 m μ (1,4443): H. [α] $_{ss.6}^{ss.2}$: + 19,37° (unverdünnt); [α] $_{ss.6}^{ss.2}$: + 9,6° (Alkohol; c = 5); [α] $_{ss.6}^{ss.2}$: — 13,1° (Schwefelkohlenstoff; c = 5). Rotations-dispersion der reinen Substanz zwischen 19,2° und 158° für λ = 643,8—435,8 m μ und der Lösungen in Alkohol und Schwefelkohlenstoff für λ = 589,3—435,8 m μ bei Zimmertemperatur: H. — Liefert bei der Hydrolyse d-Octanol-(2).

Polymeres Åthylenmalonat $[C_5H_6O_4]_x$. Zur Konstitution vgl. Carothers, Arvin, Am. Soc. 51, 2560; C., Dorough, Am. Soc. 52 [1930], 720. Das mittlere Mol.-Gew. ist ebullioskopisch in Essigsäure-methylester zu 2500—2700 und in Chloroform zu 2500—3500 bestimmt (C., A.). — B. Beim Erhitzen von Malonester mit Athylenglykol auf 160°, zuletzt im Vakuum auf 200—250° (Carothers, Arvin, Am. Soc. 51, 2560) oder auf 150—195° (Tilitschejew, 36, 549, 459; C. 1927 I, 440). — Sehr zähe, durchsichtige, gelbliche Masse. Leicht löslich in Chloroform und Aceton, schwer in den übrigen, gebräuchlichen Lösungsmitteln (T.). Wird aus einer Lösung im zweifachen Volumen Chloroform durch Zusatz von Methanol gefällt (T.). — Zersetzt sich bei der Destillation unter 3—4 mm Druck oberhalb 205° und liefert dabei geringe Mengen einer aus Alkohol krystallisierbaren, bei 159—160° schmelzenden Substanz (T.). Beim Erhitzen auf 205—240° bilden sich unter reichlicher Entwicklung von Kohlendioxyd Äthylacetat (1), Äthylenglykol-diacetat, eine Verbindung C₁₀H₁₄O₅(1) (Kp₄: 148—153°; Dⁿ₂: 1,2033; D^{n,n}₃: 1,1872; n^{n,n}₁: 1,4681), eine Verbindung C₂H₁₀O₅(1) [Krystalle, F: 108—108,5° (korr.)] und andere Produkte (T.).

Malonsäure-äthylester-chlorid $C_5H_7O_5Cl=C_9H_5\cdot O_2C\cdot CH_2\cdot COCl$ (H 582; E I 252). B. Zur Bildung aus Malonsäuremonoäthylester und Thionylchlorid nach Marguery (Bl. [3] 33, 546) vgl. Oddo, Albanese, G. 57, 833.

Malonsäuredichlorid, Malonylchlorid $C_3H_2O_2Cl_3=CH_3(COCl)_3$ (H 582; E I 252). Kp₁₅: 55° (McMaster, Ahmann, Am. Soc. 50, 146). — Wird allmählich tiefrot (McM., A.). Gibt beim Behandeln mit Bromwasserstoff unter Eiskühlung Malonylbromid (Fleischer, Hittel, Wolff, B. 53, 1848). Liefert bei der Einw. auf 1 Mol β-Naphthol in Gegenwart von Aluminiumchlorid in siedendem Schwefelkohlenstoff Malonsäure-di-β-naphthylester (Giua, R. A. L. [6] 2, 345).

Malonsäuredibromid, Malonylbromid $C_3H_3O_2Br_2 = CH_2(COBr)_2$. B. Beim Einleiten von Bromwasserstoff in Malonylchlorid unter Eiskühlung (Fleischer, Hittel, Wolff, B. 53, 1848). — Hellgelbe schwere Flüssigkeit von grüner Fluorescenz. Kp_{11} : 55—57°. — Bildet an der Luft Nebel und wird beim Aufbewahren allmählich braun. Liefert mit Acenaphthen bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff bei gelindem Erwärmen 5.6-Malonylacenaphthen (s. nebenstehende Formel; Syst. Nr. 681).

Malonsäure-äthylester-amid, Malonamidsäure-äthylester $C_8H_8O_8N=C_2H_8\cdot O_2C\cdot CH_8\cdot CO\cdot NH_9$ (H 582; E I 252). Gibt mit Acetaldehyd in Gegenwart von Diäthylamin je nach den Mengenverhältnissen Äthylidenmalonsäure-äthylester-amid oder β -Methyl- α - α -'- dicarbäthoxy-glutarsäure-diamid (Gupta, Soc. 119, 303).

H 582, Z. 11 v. u. statt: "Malonsäuremonoamidoxim" lies: "Malonsäure-amid-hydroxylamid (vgl. Pickard, Allen, Bowdler, Carter, Soc. 81, 1564)."

Malonsäurediamid, Malonamid C₃H₆O₂N₂ = CH₂(CO·NH₂)₂ (H 582; E I 252). B. Bei der Einw. von flüssigem Ammoniak auf Methantricarbonsäure-triäthylester oder Methantetracarbonsäure-teträäthylester im Rohr (Philippi, Hanusch, v. Wacer, B. 54, 901). — Krystallwachstum: Popoff, Fortsch. Min., Kryst., Petr. 11, 320; C.1927 I, 2627. Ultraviolettes Absorptionsspektrum der Lösungen in Wasser und 0,1 n-Natronlauge: Graham, Macbeth, Soc. 121, 1112. Verteilung zwischen Wasser und Ather bei 20—22°: Collander, Bärlund, Comment. biol. Helsingfors 2 [1926], Nr. 9, S. 9. Diffusion in Rinder-Erythrocyten: Mond, Hoffmann, Pflügers Arch. Physiol. 219, 471; C. 1928 II, 682. Oberflächenspannung wäßt. Lösungen bei 20°: Co., Bär. — Malonamid gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung allein oder in Gegenwart von Kupfer Cyansäure (Fosse, Laude, C.r. 173, 320). Liefert beim Erwärmen mit 1 Mol Brom in Eisessig auf dem Dampfbad Brommalonsäurediamid (Backes, West, Whiteley, Soc. 119, 365), beim Behandeln mit 2 Mol Brom bei 70—80° Dibrommalonsäurediamid (Freund, B. 17 [1884], 782). Geschwindigkeit der Reaktion mit Jodwasserstoffsäure in 4% Wasser und 2% Essigsäure enthaltendem Methanol bei 25° und 30°: West, Soc. 127, 753. Bei der Einw. von Benzoldiazoniumchlorid in Gegenwart von Natriumacetat in Wasser erhält man Phenylhydrazonomalonsäurediamid (Whiteley, Yapp, Soc. 1927, 528). — Malonamid gibt mit Pikrinsäure in verd. Natronlauge eine rote Färbung (Weise, Tropp, H. 178, 130).

Malonsäuremononitril, Cyanessigsäure C₃H₃O₂N = HO₂C·CH₂·CN (H 583; E I 253). Kp_{0,15}: 106—108° (unter teilweiser Zersetzung) (Schroeter, Seidler, J. pr. [2] 105, 171). Flockende Wirkung auf Eisen(III)-hydroxyd-Sol: Herrmann, Helv. 9, 786; auf Arsentrisulfid-Sol und weitere Sole: Ostwald, Koll.-Z. 40, 205, 208; C. 1927 I, 573. Elektrische Leitfähigkeit wäßrig-alkoholischer Lösungen bei 25° und 35°: Bradley, Lewis, J. phys. Chem. 29, 783; von Lösungen in Wasser, Äthylalkohol und in 35°: Bradley, Lewis, J. phys. Chem. 30, 73; von Lösungen in Cyanwasserstoff bei 25°: Kahlenberg, Schlundt, zit bei Walden, Z. El. Ch. 26, 75. Potentialdifferenzen an der Trennungsfläche zwischen Luft und wäßr. Cyanessigsäure-Lösungen: Frumkin, Ph. Ch. 111, 193.

Cyanessigsäure liefert beim Behandeln mit alkoh. Salzsäure Cyanessigester und Malonester (Stephens, J. Soc. chem. Ind. 43, 327 T; C. 1925 I, 358). Beim Schmelzen mit Triphenylcarbinol entstehen nicht zwei Triphenylmethylcyanessigsäuren (Fosse, Bl. [3] 35 [1906], 1015; Cl. r. 145, 197), sondern Triphenylmethylcyanessigsäure und N-Triphenylmethyl-malonamidsäure (Fosse, Bl. [4] 49, 165). Eine stark gekühlte, mit 50% iger Dimethylamin-Lösung neutralisierte Lösung von 1 Mol Cyanessigsäure liefert bei längerer Einw. von 1 Mol 33% iger Formaldehyd-Lösung ein Reaktionsgemisch, das beim Sättigen mit Chlorwasserstoff und Erhitzen Acrylsäure gibt (Mannich, Ganz, B. 55, 3503). Das Natriumsalz liefert beim Schütteln mit Önanthaldehyd in verd. Natronlauge oder wäßr. Piperidin-Lösung ein Gemisch von Onanthyliden-cyanessigsäure und vielleicht β-Oxy-α-cyan-pelargonsäure mit anderen Produkten (Lapworth, McRae, Soc. 121, 2748). Läßt man wenig 20% ige Natronlauge auf ein Gemisch von cyanessigsaurem Natrium und Önanthaldehyd einwirken, neutralisiert mit Essigsäure, behandelt dann mit Kaliumcyanid und verd. Essigsäure, versetzt mit Salzsäure und hydrolysiert das erhaltene Reaktionsprodukt mit rauchender Salzsäure, so entsteht n-Hexyl-bernsteinsäure (Lap., McRae, Soc. 121, 2750). Analog reagiert Acetaldehyd unter Bildung von Methylbernsteinsäure (Lap., McRae, Soc. 121, 2751). Beim Erwärmen mit N-Äthyl-harnstoff und Acetanhydrid unter Feuchtigkeitsausschluß auf 75° entsteht N-Äthyl-N-cyanacetyl-harnstoff (Biltz, Peukert, B. 58, 2191). Bei der Einw. von 2.4.5-Trimethyl-3-formyl-pyrrol in verdünnter alkoholischer Kalilauge bei gewöhnlicher Temperatur oder in Gegenwart von Natriumamid in siedendem Alkohol erhält man α-Cyan-β-[2.4.5-trimethyl-pyrryl-(3)]-acrylsäure (H. Fischer, Nenttzescu, A. 439, 181). Gibt beim Erhitzen mit 3.5-Dimethyl-4-formyl-pyrrol-carbonsäure-(2)-äthylester und Acetanhydrid auf dem Wasserbad α-Cyan-β-[2.4-dimethyl-5-carbäthoxy-pyrryl-(3)]-acrylsäure (F., Weiss, B. 57, 607).

[Fe₃(C₂H₂O₂N)₆(OH)₂[ClO₄ + 8 H₂O. Rote Krystalle (Weinland, Loebich, Z. anorg. Ch. 151, 283). Magnetische Susceptibilität: Welo, Phil. Mag. [7] 6, 487; C. 1928 II, 2626. Leicht löslich in Alkohol, löslich in Wasser (Wei., L.).

Cyanessigsäure - methylester $C_4H_5O_2N=CH_3\cdot O_2C\cdot CH_2\cdot CN$ (H 584; E I 253). Raman-Spektrum: Petrikaln, Ph. Ch. [B] 3, 362; Pe., Hochberg, Ph. Ch. [B] 4, 301. Dielektr.-Konst. bei 20°: 29,30 ($\lambda=5$ m) (Walden, Werner, Ph. Ch. 124, 406). Dielektr.-

Konst. von Lösungen von Triäthylamin-hydrochlorid, Tetraäthylammoniumpikrat und Tetrapropylammoniumjodid in Cyanessigsäuremethylester bei 20°: Wa., We., Ph. Ch. 124, 423.

Cyanessigsäuremethylester gibt beim Erhitzen mit 1-Methyl-cyclohexen-(1)-on-(3) in Gegenwart von Piperidin auf 120—125° höherschmelzenden und niedrigerschmelzenden [3-Methyl-cyclohexen-(2)-yliden]-cyanessigsäuremethylester (Syst. Nr. 968) und eine in Prismen krystallisierende Verbindung vom Schmelzpunkt 88° (FARMER, Ross, Soc. 1926, 1574). Diese entsteht auch aus Cyanessigsäuremethylester und Piperidin allein (F., R., Soc. 1926, 1574). Natriumcyanessigsäuremethylester liefert beim Erhitzen mit 1-Methylcyclohexen-(1)-on-(3) in Alkohol auf dem Wasserbad 1-Methyl-cyclohexanon-(3)-cyanessigsäure-(1)-methylester (Syst. Nr. 1331a) und [3-Methyl-cyclohexen-(2)-yliden]-cyanessigsäure vom Schmelzpunkt 1830 (F., R., Soc. 1926, 3237). Bei der Einw. von Benzalacetophenon in Natriummethylat-Lösung bei 50° entstehen β-Phenyl-γ-benzoyl-α-cyan-buttersäuremethylester und geringe Mengen Bis-[α-phenyl-β-benzoyl-äthyl]-cyanessigsäure-methylester (Kohler, Graustein, Merrill, Am. Soc. 44, 2541). Kondensiert sich mit Phenyl-benzoylacetylen in Natriummethylat-Lösung zu Bis-[α -phenyl- β -benzoyl-vinyl]-cyanessigsäuremethylester (Ko., Barrett, Am. Soc. 46, 749). Liefert beim Erwärmen mit 0,5 Mol Benzil in Gegenwart von Piperidin oder Diäthylamin auf 70° Desyliden-cyanessigsäuremethylester $C_6H_5\cdot CO\cdot C(C_6H_5)\cdot C(CN)\cdot CO_2\cdot CH_3$ (Bacher, $J.\ pr.\ [2]$ 120, 332). Bei der Einw. von dl- oder Meso- $\alpha.\alpha'$ -dibrom-glutarsäure-dimethylester auf Natrium-cyanessigsäuremethylester in Methanol erhält man in beiden Fällen ein Gemisch aus der flüssigen und festen Form des 1-Cyancyclobutan-tricarbonsäure-(1.2.4)-trimethylesters (Syst. Nr. 1022) (Ing, Perkin, Soc. 127, 2396). Natrium-cyanessigsäuremethylester gibt beim Behandeln mit 1 Mol 2-Methyl-cyclopropen-(1)dicarbonsaure-(1.3)-dimethylester in Methanol 1-Methyl-2.3-dicarbomethoxy-cyclopropan-cyanessigsaure-(1)-methylester (Goss, Ingold, Soc. 1928, 1273). Bei der Einw. von Cyanessigsäuremethylester auf 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3)-dimethylester in überschüssiger Natriummethylat-Lösung erhält man ein Gemisch von stabilem und instabilem 3 - Amino - 1 - methyl - bicyclo - [0.1.2] - penten - (2) - tricarbonsäure - (2.4.5) - trimethylester bzw. 5-Amino-2-methyl-cyclopentadien - (1.4) - tricarbonsäure - (1.3.4) - trimethylester (Syst. Nr. 1368a); als Nebenprodukte treten 3-Methoxy-3-methyl-cyclopropan-dicarbonsaure (1.2) (Syst. Nr. 1132), deren Monomethylester und 3-Amino-1-methyl-bicyclo-[0.1.2]-penten-(2)-tricarbonsäure-(2.4.5)-dimethylester (Syst. Nr. 1368a) auf (Goss, Ingold). Liefert beim Erhitzen mit Kaliumcyanat Cyanmalonsäure-methylester-amid (Pabst, Ar. 1929, 337). Die Natriumverbindung gibt beim Behandeln mit Äthoxymethylen-cyanessigsäureäthylester in Alkohol α.γ-Dicyanglutaconsäure-diäthylester, in Methanol α, γ-Dicyan-glutaconsäure-methylester-äthylester (Urushibara, Bl. chem. Soc. Japan 3, 220; C. 1929 I, 57). Cyanessigsäuremethylester reagiert mit Mesoxalsäure-dimethylester bei Gegenwart von Piperidin unter Bildung von 1.3-Dicyan-propan-tetracarbonsäure-(1.2.2.3)-tetramethylester (S. 718) (SCHMITT, A. ch. [8] 12 [1907], 421; Corson, Hazen, Thomas, Am. Soc. 50, 914). Liefert mit Benzoylameisensäuremethylester bei Gegenwart von Natriummethylat-Lösung sowie auch bei Gegenwart von Ammoniak, Methylamin oder Piperidin in Methanol unter Kühlung α-Oxy-α-phenyl-α'-cyanbernsteinsäure-dimethylester (Syst. Nr. 1183); bei Anwendung größerer Mengen Natriummethylat-Lösung oder beim Kochen des Reaktionsgemisches mit Eisessig entsteht α -Phenyla'-cyan-maleinsaure-dimethylester (Syst. Nr. 1009) (Kohler, Corzon, Am. Soc. 45, 1980). Natriumcyanessigsäuremethylester gibt mit Phenylisocyanat in Äther Cyanmalonsäuremethylester-anilid (Pabst, Ar. 1929, 344).

Cyanessigsäure-äthylester, Cyanessigester $C_8H_7O_2N=C_2H_8\cdot O_2C\cdot CH_2\cdot CN$ (H 585 E I 254).

Darstellung; physikalische Eigenschaften.

Durch Verestern von Cyanessigsäure mit alkoh. Salzsäure (Stephens, J. Soc. chem. Ind. 43, 327 T; C. 1925 I, 357). Darstellung durch Umsetzen von Chloressigsäure mit Natriumcyanid und Verestern der erhaltenen Cyanessigsäure: Inglis, Org. Synth. Coll. Vol. I [1932], 249; deutsche Ausgabe, S. 247. Bei der Darstellung aus Chloressigester und Kaliumcyanid in Methanol nach Noves (Am. Soc. 26, 1545) entsteht ein Gemisch von Cyanessigsäuremethylester und Cyanessigsäureäthylester (Urushibara, Bl. chem. Soc. Japan 2, 143; C. 1927 II, 913).

Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 15. Parachor: Mumford, Phillips, Soc. 1929, 2118. Dipolmoment: Smyth, Am. Soc. 47, 1896. Elektrische Leitfähigkeit bei 25°: Koch, Soc. 1928, 279. Lösungsvermögen von Cyanessigester für Silbernitrat bei 18°: K. Elektrische Leitfähigkeit von Silbernitrat in Cyanessigester bei 25°: K. Über Ionenbeweglichkeiten in Cyanessigester vgl. Ulich, Fortsch. Ch., Phys. 18 [1924/26], 600; Lattey, Phil. Mag. [7] 6, 263; C. 1928 II, 2430. EMK der Kette Silber/Silbernitrat in Wasser/Silbernitrat in Cyanessigester/Silber: Koch.

DICARBONSÄUREN Cn H2n-2O4

Chemisches Verhalten.

Beim Kochen von Cyanessigester oder dessen Natriumverbindung mit Dischwefeldichlorid in Benzol entsteht 1.2.3-Tricyan-cyclopropan-tricarbonsäure-(1.2.3)-triäthylester (NAIR, Soc. 119, 1239; THORPE, Priv.-Mitt.).

Beispiele für die Einwirkung organischer Halogenverbindungen. Natrium-cyanessigester liefern beim Erhitzen mit 1 Mol Tetrachlorkohlenstoff in Alkohol auf 100° $\alpha.\gamma$ -Dicyan-glutaconsäure-diäthylester, β -Imino- α -cyan-glutarsäure-diäthylester und Cyanacetamid (Ingold, Powell, Soc. 119, 1229). Bei der Einw. von Alkyljodiden in Gegenwart von Kaliumcarbonat bei Temperaturen zwischen 140° und 180° unter vermindertem Druck und nachfolgender Behandlung mit konz. Natronlauge entstehen Alkylmalonsäuren; so erhält man mit 1-Jod-heptan, 1-Jod-octan, 1-Jod-undecan bzw. 1-Jod-hexadecan n-Heptyln-Octyl-malonsäure, n-Undecyl-malonsäure bzw. n-Hexadecyl-malonsäure (Robinson, Soc. 125, 227). Bei analoger Einw. von Cyclohexyljodid bildet sich Cyclohexylmalonamidsäure (Ro.). Cyanessigester liefert mit Athyljodid und methylalkoholischer Natriummethylat-Lösung Diäthyl-cyanessigsäure-methylester und α-Cyan-buttersäuremethylester (Hessler, Lamb, Am. Soc. 43, 205). Beim Behandeln mit Butyljodid und alkoh. Natriumäthylat-Lösung entstehen Butyl-cyanessigsäure-äthylester und geringere Mengen Dibutyl-cyanessigsäure-äthylester (HESS., HENDERSON, Am. Soc. 43, 672). Mit Isobutyljodid und isobutylalkoholischer Natriumisobutylat-Lösung erhält man Diisobutyl-cyanessigsäure-isobutylester und geringere Mengen Isobutyl-cyanessigsäure-isobutylester (HESS., HEN.). Natrium-cyanessigester gibt beim Kochen mit 4-Chlor-1.3-dinitro-benzol in Alkohol 2.4-Dinitro-phenyl-cyanessigester (Fairbourne, Fawson, Soc. 1927, 47). Reagiert analog mit 4-Chlor-1-nitro-benzol und 2-Chlor-1.3.5-trinitro-benzol (F., F.). Mit Triphenylbrommethan in Alkohol oder Ather entstehen sehr geringe Mengen β.β.β-Triphenyl-α-cyan-propion-säure-āthylester (?) (Hellerman, Am. Soc. 49, 1737). 1 Mol Natriumoyanessigester gibt in alkoh. Lösung mit 2 Mol Phenacylbromid Diphenacyl-cyanessigsäure-äthylester und Phenacylcyan-essigsäure-äthylester (F: 54°) (Klobb, Bl. [3] 15 [1895], 1008; A.ch. [7] 10 [1897], 173, 179), mit ½ Mol Phenacylbromid überwiegend Phenacyl-cyanessigsaure-athylester (F: 54°) (THORPE, Soc. 91 [1907], 1006), mit 1 Mol Phenacylbromid Diphenacyl-cyanessigsäure-äthylester und wenig Phenacyl-cyanessigsäure-äthylester (?) (F: 127—128°) (R. M. Rây, I. N. Rây, Soc. 127, 2721); die letztgenannte Verbindung wird bei der Einw. von 1 Mol Phenacylchlorid auf 2 Mol Natriumcyanessigester in siedendem Benzol als einziges Reaktionsprodukt erhalten (Rây, Rây). Reaktionen mit halogenierten Carbonsäuren s. unter Einw. von Carbonsäuren (S. 533).

Beispiele für die Einwirkung von Oxo-Verbindungen. Cyanessigester liefert mit Diäthylketon in Gegenwart von Piperidin oder Essigsäureanhydrid und Zinkchlorid auf dem Dampfbad β . β -Diäthyl- α -cyan-acrylsäure-äthylester (Birch, Kon, Soc. 123, 2448). Gibt beim Erhitzen mit Mesityloxyd in Natriumäthylat-Lösung β . β -Dimethyl- γ -acetyl- α -cyan-buttersäure-äthylester (Qudrat-I-Khuda, Soc. 1929, 205). Kondensiert sich mit Onanthaldehyd in Gegenwart von wenig Piperidin zu Önanthyliden-cyanessigsäure-äthylester (Lapworth, McRae, Soc. 121, 2752). Liefert mit Cycloheptanon und alkoh. Ammoniak Cycloheptan-[bis-cyanessigsäure-(1.1)]-imid CH₂·CH₂·CH₂·CH₃·CH₄·CH₂·CH₃·CH₄·C

3369), Cyanacetamid und andere Produkte (DAY, KON, STEVENSON, Soc. 117, 643). Bei der Einw. von [Cyclohexen-(1)-yl]-aceton und alkoh. Ammoniak entsteht 2.6-Dioxo-4-methyl-4-Δ1-tetrahydrobenzyl-3.5-dicyan-piperidin (Syst. Nr. 3369) (Kon, Stev., Soc. 119, 92). Die Natriumverbindung gibt beim Erhitzen mit 1-Isopropyliden-cyclopentanon-(2) in Benzol β -[2-Oxo-cyclopentyl]- α -cyan-isovaleriansäure-äthylester (Syst. Nr. 1331a) und andere Produkte (Kon, Nutlann, Soc. 1926, 3108). Reagiert analog mit Campherphoron und 1-Cyclopentyliden-cyclopentanon-(2) (Kon, N.). Beim Erhitzen der Natriumverbindung mit 1-[Cyclohexen-(1) Haccons (Natriumverbindung mit 1-[Cyclohexen-(1) Haccons (Natriumverbindung mit 1-[Cyclohexen-(1) Loctor) (Natriumverbindung mit 1-[Cyclohexen-(1) Lo yl]-cyclohexanon-(2) in Benzol entsteht das Lacton NC CH CO O nebenstehender Formel (Syst. Nr. 2619) (Kon, N.).

Reaktion mit Phenacylchlorid und Phenacylbromid s. oben. Cyanessigester gibt mit Phenylacetaldehyd in Gegenwart von Diathylamin bei Zimmertemperatur Styryl-cyan-

regenwart von Distrylamin bei Zimmertemperatur Styryl-dyan-essigsäure-äthylester; in Gegenwart von Natriumäthylat erhält man außerdem β -Oxy- γ -phenyl- α -styryl-buttersäurenitril (†) (Linstrad, Williams, Soc. 1926, 2745). Liefert beim Erwärmen mit 0,5 Mol Benzil in Gegenwart von Piperidin oder Diäthylamin auf 70° Desylidencyanessigester (Bachér, J. $p\tau$. [2] 120, 331); bei Anwendung von überschüssigem Amin entsteht in größerer Menge eine bei 172° schmelzende Verbindung (vielleicht C_0H_s -CO·C(C_0H_s) [CH(CN)·CO₂·C₂H_s]₃), die sich beim Befeuchten mit Basen gelb färbt (Ba.). Reaktionen mit Oxogarbonsäuren s. im folgenden Abschnitt. Liefert mit [2] Oxogarbonsäuren s. im folgenden Abschnitt. mit Oxocarbonsäuren s. im folgenden Abschnitt. Liefert mit [2-Oxy-styryl]-[4-dimethylamino-styryl]-keton in heißer alkoholisch-wäßriger Natronlauge 3-[2-Oxy-phenyl]-2 - [4 - dimethylamino - cinnamoyl]-propan-dicarbonsäure-(1.1) (Hellbron, Forster, WentWORTH, Soc. 127, 2166). Gibt mit 2.4-Dimethyl-3-formyl-pyrrol in Alkohol in Gegenwart von Methylamin-hydrochlorid und Soda α-Cyan-β-[2.4-dimethyl-pyrryl-(3)]-acrylsäurc-äthylester (H. Fischer, Weiss, B. 57, 606). Analog reagieren 3.5-Dimethyl-4-formyl-pyrrol-carbonsäure-(2)-äthylester und weitere Pyrrolaldehyde (F., W.).

Beispiele für die Einwirkung von Carbonsäuren und ihren Derivaten. Bei der Kondensation von Natrium-cyanessigester mit Cyclohexylidenessigsäureäthylester und folgenden Hydrolyse des Reaktionsprodukts mit siedender 50 % iger Schwefelsäure erhält man Cyclohexan-diessigsäure (1.1) (Norris, Thorpe, Soc. 119, 1208). Beim Erwärmen der Natriumverbindung mit 2-Brommethyl-benzoesäure-äthylester in Alkohol auf dem Wasserbad entstehen β -[2-Carbäthoxy-phenyl]- α -cyan-propionsäure-äthylester und eine bei 280—282° siedende Verbindung (Davies, Perkin, Soc. 121, 2209). Natrium-cyanessigester liefert mit dl-α.α'-Dibrom-bernsteinsäure-diäthylester in absol. Alkohol 1 Cyan-cyclopropantricarbonsäure-(1.2.3)-triäthylester (Syst. Nr. 1022); mit Mesodibrombernsteinsäure-diäthylester bilden sich überwiegend a-Cyan-tricarballylsäure-triäthylester und nur wenig 1-Cyan-cyclopropan-tricarbonsäure-(1.2.3)-triäthylester (Ing. Perkin, Soc. 125, 1825). Natriumcyanessigester gibt mit einem Gemisch der dl- und Meso-Form des α.α'-Dibrom-glutarsäure-diäthylesters (vgl. Ingold, Soc. 119, 318) in Alkohol 1-Cyan-cyclobutan-tricarbonsaure-(1.2.4)-triathylester (vermutlich ein Gemisch zweier Stereoisomeren) (Syst. Nr. 1022) und wenig 1-Brom-cyclopropan - dicarbonsaure - (1.2) - diathylester (Ing. Perkin, Soc. 127, 2396). Natrium-cyanessigester liefert mit β -Chlor-glutaconsäure-diäthylester in kaltem Alkohol Cyanisobutylentricarbonsäuretriäthylester (S. 715) (INGOLD, NICKOLLS, Soc. 121, 1644). Beim Erhitzen von Natrium-cyanessigester mit α-Methyl-glutaconsäure-diäthylester in Alkohol und folgenden Zersetzen mit Salzsäure erhält man 1-Cyan-butan-dicarbonsäure-(1.3)-essigsäure-(2)triäthylester (S. 706) und ein saures Produkt, das beim Verestern mit Alkohol die gleiche Verbindung gibt (Ingold, Perren, Soc. 119, 1867). Cyanessigester gibt mit Isopropyliden-cyanessigsäure-äthylester und alkoh. Ammoniak $\beta.\beta$ -Dimethyl- α -dioyan-glutarsäure-imid (Syst. Nr. 3369) (BIRCH, KON, Soc. 123, 2447). Natrium-cyanessigester und Muconsaure-diathylester in Ather + Alkohol liefern Buten-(1)-dicarbonsäure-(1.4)-oyanessigsäure-(2)-triäthylester (Farmer, Soc. 121, 2017). Cyanessigester gibt bei der Einw. auf 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3)-diathylester in Natriumathylat-Lösung 3-Amino-1-methyl-bicyclo-[0.1.2]-penten-(2)tricarbonsaure-(2.4.5)-triathylester bzw. 5-Amino-2-methyl-cyclopentadien -(1.4)-tricarbonsäure-(1.3.4)-triäthylester (Syst. Nr. 1368a) und als-Nebenprodukt den zugehörigen Diäthylester (Goss, Ingold, Soc. 1928, 1277). Liefert mit Cyclopentylidenmalonsäure-diäthylester und alkoh. Ammoniak 2.6-Dioxo-4.4-tetramethylen-3-cyan-piperidin-carbonsaure (5) äthyl-CH₂—CH₂\

cH₃—CH₂—CH(CO₃·C₂H₅)·CO NH (Syst. Nr. 3369) (Kon, Speight, Soc. 1926, CH₃—CH₂—CH(CN)—CO NH (Syst. Nr. 3369) (Kon, Speight, Soc. 1926, 2733). Bei der Einw. von Styrylcyanessigsäure-äthylester und gesättigtem alkoholischem Ammoniak auf Cyanessigester bei 0° entstehen das Monoammoniumsalz des 2.6-Dioxy-4-benzyl·3.5-dicyan-pyridins, γ-Phenyl-α-cyan-buttersäureamid und Cyanacetamid (Linstead, Williams, Soc. 1926, 2746). Beim Erhitzen von Natrium-cyanessigester mit β-Chlor-tricarb-allylsäure-triäthylester in Alkohol erhält man-Aconitsäuretriäthylester, 1-Cyan-butan-tetracarbonsäure-(1.2.3.4)-tetraäthylester (S. 717) und ein Produkt, das beim Behandeln mit Schwefelsäure Cyclopentanon-(4)-dicarbonsäure-(1.2) gibt (Ingold, Soc. 119, 345, 351); die beiden letztgenannten Verbindungen entstehen auch bei der Reaktion mit Aconitsäure-triäthylester (Ingold, Soc. 119, 344, 347). Mit Propen-dicarbonsäure-(1.3)-essigsäure-(2)-triäthylester in siedendem Alkohol bildet sich Methan-triessigsäure-cyanessigsäure-tetraäthylester (Ingold, Nickolls, Soc. 121, 1645). Weitere Umsetzungen mit substituierten Glutaconsäureestern: Ingold, Perren, Soc. 119, 1582; 121, 1417.

Cyanessigester liefert beim Erhitzen mit Kaliumcyanat auf 140—145° Cyanmalonsäureäthylester-amid (Frerichs, Ch. Z. 37 [1913], 74; Pabst, Ar. 1929, 335). Das beim Kochen
mit überschüssigem Harnstoff nach Frerichs, Hartwig (J. pr. [2] 72, 489) entstehende
Produkt ist nicht das Ammoniumsalz der Verbindung OC NH C·CH₂·CO₂·C₂H₅ (H 25,
210), sondern das Ammoniumsalz des Cyanmalonsäure-äthylester-amids (Frerichs, Ch. Z.
37, 74; vgl. Pabst, Ar. 1929, 325). Liefert beim Erwärmen mit Azodicarbonsäurediäthylester
und Kaliumacetat auf ca. 60° und Destillieren des Reaktionsprodukts im Hochvakuum
Bis-[α.β-dicarbāthoxy-hydrazino]-cyanessigsäure-äthylester (Syst. Nr. 292) (Diels, Behncke,
B. 57, 654). Beim Erhitzen von Natrium-cyanessigester mit Milchsäureäthylester in Alkohol
auf dem Dampfbad und Zersetzen des Reaktionsprodukts mit verd. Salzsäure entsteht
wenig α-Cyan-glutarsäure-diäthylester (Ingold, Soc. 119, 329, 338). Durch Kondensation
mit Acetessigester-cyanhydrin und Behandeln des Reaktionsprodukts mit verd. Salzsäure
erhält man β-Methyl-α.β-dicyan-glutarsäure-diäthylester (Hope, Sheeldon, Soc. 121, 2228).
Weitere Umsetzungen mit Hydracrylsäure-äthylester, β-Oxy-buttersäure-šthylester und
anderen Oxysäureestern: Ingold, Soc. 119, 329, 341; Ingold, Thorpe, Soc. 119, 492. Cyan-

essigester gibt bei der Einw. von Diazoessigsäure-äthylester in Gegenwart von Natriumäthylat-Lösung unter Kühlung 4-Amino-pyrazol-dicarbonsäure-(3.5)-diäthylester (Вевтно, Nüssel, A. 457, 293). Beim Behandeln mit Acetessigester und konzentriertem wäßrigem Ammoniak entstehen β -Amino-crotonsäure-äthylester und 2.6-Dioxy-4-methyl-pyridin-carbonsäure-(3)-nitril (Syst. Nr. 3349) (Hope, Soc. 121, 2221). Die Kaliumverbindung kondensiert sich mit α -Methylacetessigester zu β - β -Dimethyl- α -cyan-glutaconsäure-diäthylester (Hope, Soc. 121, 2219). Bei der Einw. von α -Formyl-propionsäure-äthylester auf Natriumcyanessigester in Alkohol entsteht γ -Methyl- α -cyan-glutaconsäure-diäthylester (Ingold, Perren, Thorpe, Soc. 121, 1782). Cyanessigester gibt beim Aufbewahren mit γ -Acetyl-buttersäure-äthylester in alkoh. Ammoniak in der Kälte das Ammoniumsalz des 2.6-Dioxo-4-methyl-4-[γ -carbāthoxy-propyl]-3.5-dicyan-piperidins (Syst. Nr. 3369) (Farmer, Ross, Soc. 127, 2368).

Gibt mit Pikrinsäure in alkal. Lösung eine rote Färbung (Weise, Tropp, H. 178, 135). NaC₈H₆O₂N. Zersetzt sich beim Erhitzen, ohne zu schmelzen (Sidgwick, Brewer, Soc. 127, 2381, 2382). Unlöslich in Toluol, leicht löslich in warmem Benzol, das überschüssigen Cyanessigester enthält. — Kaliumverbindung. F: 135—137° (S., B.). Etwas löslich in Benzol und Toluol.

H 589, Z. 1-14 v. o. sind zu streichen.

Cyanessigsäure-propylester $C_6H_9O_2N=CH_3\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CN$ (E I 255). Oberflächenspannung einer wäßr. Lösung bei 23 $^{\circ}$: Renqvist, Skand. Arch. Physiol. 40 [1920], 122.

Cyanessigsäure-isopropylester $C_6H_9O_2N = (CH_3)_2CH \cdot O_9C \cdot CH_9 \cdot CN$. Oberflächenspannung einer wäßr. Lösung bei 18°: Renovist, Skand. Arch. Physiol. 40 [1920], 122.

Cyanessigsäure-butylester $C_7H_{11}O_2N=CH_3\cdot [CH_2]_3\cdot O_2C\cdot CH_2\cdot CN$ (E I 255). Oberflächenspannung einer wäßr. Lösung bei 23 0 : Rengvist, Skand. Arch. Physiol. 40 [1920], 122.

Cyanessigsäure-isobutylester $C_7H_{11}O_2N=(CH_3)_2CH\cdot CH_2\cdot CN$ (E I 255). Oberflächenspannung einer wäßr. Lösung bei 23°: Renqvist, Skand. Arch. Physiol. 40 [1920], 122.

Malonsäure-chlorid-nitril, Cyanacetylchlorid $C_3H_2ONCl = ClOC \cdot CH_3 \cdot CN$ (H 589). Darst. Man versetzt eine äther. Lösung von Cyanessigsäure allmählich mit Phosphorpentachlorid und destilliert den Äther unter gewöhnlichem Druck, das entstandene Phosphoroxychlorid im Vakuum ab (Schroeter, Seidler, J. pr. [2] 105, 171). — Gelbliches Öl. — Geht beim Aufbewahren in der Kälte in 6-Chlor-2.4-dioxy-nicotinsäure-nitril und amorphe Produkte über.

Malonsäure-amid-nitril, Cyanessigsäure-amid, Cyanacetamid $C_3H_4ON_2=H_2N\cdot CO\cdot CH_2\cdot CN$ (H 589; E I 256). B. Als Nebenprodukt beim Erhitzen von Natrium-cyanessigester mit Tetrachlorkohlenstoff in Alkohol auf 100° (Ingold, Powell, Soc. 119, 1229). — Darstellung aus Cyanessigester und alkoh. Ammoniak: Ott, Löpmann, B. 55, 1258; aus Cyanessigester und konzentriertem wäßrigem Ammoniak: Corson, Scott, Vose, Org. Synth. Coll. Vol. I [1932], 173; deutsche Ausgabe, S. 173.

Beim Kochen mit Dischwefeldichlorid in Benzol entsteht α.α'-Bis-aminoformyl-α.α'-dicyandimethyldisulfid (Syst. Nr. 239) (NAIK, PATEL, Quart. J. indian chem. Soc. 1, 33; C. 1925 I, 487). Cyanacetamid gibt beim Behandeln mit Acetaldehyd in verd. Kalilauge β -Methylα.α'-dicyan-glutarsäure-diamid, wenig 2-Oxo-6-imino-4-methyl-3-cyan-piperidin-carbonsäure-(5)-amid und sehr wenig 2.6-Dioxy-4-methyl-3.5-dicyan-pyridin (DAY, THORPE, Soc. 117, 1469). Reagiert analog mit Propionaldehyd und Butyraldehyd in verd. Kalilauge (D., Th.) sowie mit Isobutyraldehyd in Gegenwart von Diäthylamin (Curtis, Day, Kimmins, Soc. 123, 3134). Bei der Umsetzung mit Isovaleraldehyd in verd. Alkohol in Gegenwart von Diäthylamin entstehen 2-Oxo-6-imino-4-isobutyl-3-eyan-piperidin-carbonsaure-(5)-amid und wenig 2.6-Dioxy-4-isobutyl-3.5-dicyan-pyridin (C., Ď., K.). Cyanacetamid kondensiert sich mit Önanthaldehyd in Gegenwart von Piperidin in verd. Alkohol hauptsächlich zu β -n-Hexyl- α . α' -dicyanglutarsäure-diamid; daneben entsteht in geringer Menge 2-Oxo-6-imino-4-n-hexyl-3-cyanpiperidin-carbonsaure (5)-amid; bei Anwendung von Wasser als Lösungsmittel erhält man hauptsächlich Önanthyliden-cyanessigsaureamid (C., D., K.). Cyanacetamid liefert bei der Einw. von Mesityloxyd in Gegenwart von Natriumäthylat-Lösung 2-Oxy-2.4.4-trimethyl-5-cyan-piperidon-(6) (Qudrat-I-Khuda, Soc. 1929, 205). Gibt bei längerem Aufbewahren mit Benzaldehyd in verd. Alkohol bei 38—40° in Gegenwart von wenig Kalilauge Benzyl-cyanacetamid und 2.6-Dioxy-4-phenyl-3.5-dicyan-pyridin; in wäßr. Lösung entsteht nur Benzalcyanacetamid (Day, Thorpe, Soc. 117, 1473). Unter ähnlichen Bedingungen erhält man bei Anwendung von Phenylacetaldehyd γ-Phenyl-α-cyan-crotonešure-amid und β-Benzulcyan-genzel zyl-a.a'-dicyan-glutarsaure-diamid (Kon, Stevenson, Soc. 119, 93; St., Th., Soc. 121, 1720), bei Anwendung von Zimtaldehyd Cinnamyliden-cyanacetamid und β-Styryl-α.α'-dicyanglutarsaure-diamid (?) (Curtis, DAY, Kimmins, Soc. 123, 3138). Natriumcyanacetamid gibt bei der Einw. von Propionylphenylacetylen in Alkohol 6-Oxy-2-athyl-4-phenyl-5-cyanpyridin (Bardhan, Soc. 1929, 2229). Cyanacetamid gibt mit Benzalacetophenon in siedender

Natriummethylat-Lösung β-Phenyl-γ-benzoyl-α-cyan-butyramid (Kohler, Souther, Am. Soc. 44, 2906). Einw. von 1-Acetyl-cyclohexanon-(2) und Homologen: Sen, Bose, Quart. J. indian chem. Soc. 4, 57; C. 1927 II, 435. Cyanacetamid liefert beim Erhitzen mit Benzoylaceton in Alkohol bei Gegenwart von Diäthylamin auf dem Wasserbad 6-Oxy-4-methyl-2-phenyl-5-cyan-pyridin und etwas 6-Oxy-2-methyl-4-phenyl-5-cyan-pyridin (Bar.). Bei der Kondensation mit Salicylaldehyd in Wasser oder verd. Alkohol unter Zusatz von wenig Natronlauge entsteht Salicylidencyanessigsäureamid (Curtis, Dat, Kimmins, Soc. 123, 3139). Analog reagieren Anisaldehyd, Vanillin und Piperonal (C., D., K.).

Natrium-cyanacetamid liefert beim Erhitzen mit Cyclopenten- (1)-yl-essigsäurenitril in Alkohol auf dem Wasserbad und Kochen des Reaktionsprodukts mit verd. Salzsäure 2.6-Dioxo-4.4-tetramethylen-3-cyan-piperidin (s. nebenstehende Formel) (BIRCH, KON, Soc. 123, 2446). Bei der analogen Umsetzung mit [Cyclohexen-(1)-yl]-essigsäurenitril erhält man 2.6-Dioxo-4.4- (CHCN)-CO NH (2)-entamethylen-3-cyan-piperidin und eine Verbindung C₁₄H₁₆O₂N₄ (s. bei [Cyclohexen-(1)-yl]-essigsäurenitril, Syst. Nr. 894) (BI., K., Soc. 123, 2445). Cyanacetamid gibt mit Acetyl-brenztraubensäureäthylester bei Gegenwart von Diäthylamin in warmem Alkohol oder mit dem Ammoniumsalz des Esters in Wasser 6-Oxy-2-methyl-5-cyan-pyridin-carbonsäure-(4)-äthylester (BARDHAN, Soc. 1929, 2227). Bei der Kondensation mit Cyclohexanon-(2)-carbonsäure-(1)-āthylester in Natriumäthylat-Lösung entsteht 1.3.10-Trioxy-4-cyan-5.6.7.8.9.10-hexahydro-isochinolin(?) (Syst. Nr. 3372) (Sen, Bose, Quart. J. indian chem. Soc. 4, 63; C. 1927 II, 435). Cyanacetamid gibt bei gelindem Kochen mit Cumarin und einigen Tropfen Piperidin in Alkohol 3.4-Dihydro-cumarin-cyanessigsäure-(4)-amid (Seshadri, Soc. 1928, 168). Reagiert analog mit 6-Amino-cumarin (Se.).

Malonsäuredinitril, Malonitril, Methylencyanid C₃H₂N₂ = CH₂(CN)₂ (H 589; E I 256). Darstellung aus Cyanacetamid und Phosphorpentachlorid: Corson, Scott, Vose, Org. Synth. 10 [1930], 66. — Kp₇: 105—107° (ÖSTLING, Öf. Fi. 57, Nr. 11, S. 9; C. 1921 I. 613). Kryoskopische Konstante: 4,89 (für 1 kg Lösungsmittel) (Schenck, Finken, A. 462, 280; vgl. Landolt-Börnst. E II, 1468). Kryoskopisches Verhalten verschiedener anorganischer und organischer Verbindungen in Malonitril: Sch., Fin.

Beim Einleiten von 2 Mol Chlor in eine wäßr. Lösung von Malonitril unter Eiskühlung erhält man Dichlormalonsäuredinitril, dessen Dichlorid $CCl_2(CN)_2 + Cl_2$ und Dichlorcyanacetamid (Ott, Löpmann, B. 55, 1260; O., Finken, B. 58, 1703). Gibt — entgegen den Angaben von Hesse, Am. 18, 728 — beim Behandeln mit 1 Mol Brom in kaltem Wasser Dibrommalonsäuredinitril und wenig Brommalonsäuredinitril, mit 2 Mol Brom Dibrommalonsäuredinitril und wenig Dibromcyanacetamid (O., L.; O., Fin.). Malonitril geht beim Erwärmen mit Natriumäthylat oder Diäthylamin (in Gegenwart von Diäthyloxalat) auf dem Wasserbad in Trismalonitril I (S. 536), beim Einleiten von Ammoniak in eine Suspension in Benzol in Trismalonitril II (S. 536) über (Schenck, Finken, A. 462, 273, 274). Gibt bei der Einw. von Isoamylnitrit in Natriumäthylat-Lösung bei 0° β-Amino-β-oxy-β-äthoxy-α-oximino-propionsäurenitril (Syst. Nr. 292) (Diels, Borgwardt, B. 54, 1336). Liefert mit Phloroglucin in Äther beim Einleiten von Chlorwasserstoff nach Sonn (B. 50 [1917], 1295) 2-Cyanacetyl-phloroglucin, nach Shinoda (J. pharm. Soc. Japan 1927, 111; C. 1928 I, 333) 5.7-Dioxy-2.4-diimino-chroman (Syst. Nr. 2553).

Malonitril liefert mit 40%iger Formaldehyd-Lösung in Alkohol unter Zusatz von wenig Piperidin bei 0° Methylendimalonitril, bei weiterem Aufbewahren bei Zimmertemperatur 1.1.3.3.5.5-Hexacyan-pentan (Diels, Gärtner, Kaar, B. 55, 3445; D., Conn, B. 56, 2078 Anm. 5, 2081). Liefert mit Acetaldehyd in Gegenwart von wenig Piperidin ohne Lösungsmittel bei 0° 2.4-Dimethyl-1.1.3.3-tetracyan-cyclobutan; bei Ausführung der Reaktion in alkoh. Lösung bei 0° bildet sich Äthylidendimalonitril (D., G., K.). Über die Einw. von Aldehyden bei Gegenwart von Piperidin vgl. auch Östling, Öf. Fi. 57, Nr. 11, S. 9; C. 1921 I, 613. Bei längerer Einw. von Aceton auf Malonitril bei Gegenwart von Kaliumäthylat in Alkohol erhält man α.α-Dimethyl-β.β-dicyan-äthylen (Schenck, Finken, A. 462, 271). Reagiert ranalog mit Benzophenon in alkoh. Ammoniak und mit Fluorenon in alkoh. Ammoniak oder Diäthylamin-Lösung (Sch., Fi., A. 462, 271). Bei der Einw. von 1 Mol Aceton auf 2 Mol Malonitril bei Gegenwart von Piperidin oder Diäthylamin entsteht eine Verbindung C₁₈H₁₄N_g [Krystalle; verflüchtigt sich bei ca. 400°, ohne zu schmelzen]; mit überschüssigem Aceton in Gegenwart von Piperidin bildet sich eine Verbindung C₁₈H₈ [Prismen; schmilzt bei 175—180°; gibt beim Erhitzen mit konz. Salzsäure im Rohr auf 150° eine Verbindung C₁₇H₂₄ON₄, beim Behandeln mit methylalkoholischer Kalilauge eine Verbindung C₁₈H₈₀ON₅] (Östling). Malonitril gibt mit Benzalacetophenon in siedender Natriummethylat-Lösung [α-Phenyl-β-benzoyl-āthyl]-malonsäuredinitril (Kohler, Souther, Am. Soc. 44, 2907). Liefert bei der Einw. von α-Naphthochinon und Ammoniak-Gas in Äther das Ammoniumsalz des β-Imino-β-[naphthochinon-(1.4)-yl-(2)]-propionsäure-nitrils (Kesting, Z. ang. Ch. 41, 747).

Beim Behandeln von Malonitril mit überschüssigem Ameisensäureäthylester bei Gegenwart von Kaliumäthylat in Alkohol erhält man das Kaliumsalz des Oxymethylen-malonitrils (Syst. Nr. 292) (SCHENCK, FINKEN, A. 462, 170). Malonitril gibt beim Kochen mit Orthoameisensäureäthylester in Essigsäureanhydrid Äthoxymethylen-malonitril (Syst. Nr. 243) (DIELS, GÄRTNER, KAACK, B. 55, 3441). Liefert mit 1 Mol Oxalsäurediäthylester in Kaliumäthylat-Lösung das Kaliumsalz des $\beta.\beta$ -Dicyan-brenztraubensäure-äthylesters (Syst. Nr. 302) (Sch., Fr., A. 462, 168). Überschüssiges Malonitril gibt mit Oxalsäurediäthylester in Gegenwart von Kaliumäthylat außerdem das Dikaliumsalz des 2.3-Dioxy-1.1.4.4-tetracyan-butadiens (1.3) (Syst. Nr. 314) (Sch., Fl.). Bei der Umsetzung mit Cyanameisensäureäthylester in Kaliumäthylat-Lösung unter Kühlung entsteht unter Abspaltung von Blausäure das Kaliumsalz des α-Oxy-α-äthoxy-β-β-dicyan-äthylens(?) (Syst. Nr. 293) (Sch., Fi.). Die Natriumverbindung gibt mit Acetessigester in siedendem Alkohol 2-Methyl-3.3-dicyanpropen-(1)-carbonsäure-(1)-äthylester (URUSHIBARA, Bl. chem. Soc. Japan 2, 306; C. 1928 I, 798). Malonitril liefert beim Erhitzen mit 6-Amino-3-methoxy-benzaldehyd in Alkohol bei Gegenwart von wenig Pyridin auf dem Wasserbad 6-Methoxy-2-amino-3-cyan-chinolin (TRÖGER, COHAUS, J. pr. [2] 117, 108). Gibt beim Aufbewahren mit 2.4-Dimethyl-3-formyl-Through the state of the pyrrol in absol. Alkohol in Gegenwart von Methylaminhydrochlorid und Soda 2.4-Dimethyl-3- $[\beta,\beta$ -dicyan-vinyl]-pyrrol (H. Fischer, Zeile, A. 462, 224). Reagiert analog mit 3.5-Dimethyl-4-formyl-pyrrol bei Gegenwart von Methylaminhydrochlorid und Soda (F., Z.) sowie beim Erwärmen mit 2.4.5-Trimethyl-3-formyl-pyrrol in Acetanhydrid (F., Nenitzescu, A. 439, 180) und mit 3.5-Dimethyl-4-formyl-pyrrol-carbonsäure-(2)-äthylester in Acetanhydrid F., Weiss, B. 57, 609).

Malonitril gibt in alkoh. Lösung mit Naphthochinon-(1.4) und Benzochinon-(1.4) blaue Färbungen, mit Naphthochinon-(1.2) eine rote Färbung; die Färbungen treten um so langsamer auf, je kleiner der p_H. Wert der Lösung ist (Kesting, Z. ang. Ch. 41, 358). Nachweis durch die Rotfärbung, die beim Erwärmen mit Fluorenon in alkoh. Lösung in Gegenwart von Ammoniak oder Diäthylamin auftritt: Schenck, Finken, A. 462, 269.

Trismalonitril I (C₃H₂N₂)₃. Ist wahrscheinlich identisch mit Trismalonitril III; das Mol. Gew. ist ebullioskopisch in Pyridin bestimmt (SCHENCK, FINKEN, A. 462, 273, 277).

— B. Aus Malonitril durch Erhitzen mit Natriumäthylat oder Diäthylamin (in Gegenwart von Oxalsäurediäthylester) auf dem Wasserbad (SCH., F.). — Krystalle (aus Pyridin + Wasser oder verd. Ameisensäure). Färbt sich von 290° an dunkel und schmilzt langsam bei weiterem Erhitzen. Löslich in Pyridin, Anilin und konz. Ameisensäure.

Trismalonitril II (C₃H₃N₂)₃. Das Mol.-Gew. ist kryoskopisch in Campher bestimmt (Schenck, Finken, A. 462, 274, 278). — B. Beim Einleiten von Ammoniak in eine Suspension von Malonitril in Benzol (Sch., F.). — Krystalle (aus Alkohol). F: 218°. Löslich in Aceton, Wasser, Eisessig und Alkohol. Wird durch Alkohol oberhalb 50° zersetzt. — Beim Erhitzen über den Schmelzpunkt entsteht Trismalonitril III. Liefert beim Erhitzen mit Anilin eine bei 236° (Zers.) schmelzende Substanz [gelbe Nadeln; löslich in Pyridin, Phenol, Campher und heißem Alkohol].

Trismalonitril III (C₃H₂N₂)₃. Ist wahrscheinlich identisch mit Trismalonitril I; das Mol.-Gew. ist kryoskopisch in Phenol bestimmt (SCHENCK, FINKEN, A. 462, 274, 278). — B. Beim Erhitzen von Trismalonitril II über den Schmelzpunkt (SCH., F.). — Goldglänzende Nadeln (aus Ameisensäure). Schmilzt bei ca. 300° (unter Verkohlen). Löslich in Pyridin, Ameisensäure, Anilin und Phenol.

Malonsäuremonohydroxylamid, Malonmonohydroxamsäure $C_3H_5O_4N=HO_2C\cdot CH_2\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Form (H 590).

H 590, Z. 7 v. u. statt "des Malonhydroxamsäureoxims" lies "der Malondihydroxamsäure".

Malonsäure-amid-hydroxylamid $C_3H_6O_3N_2=H_2N\cdot CO\cdot CH_2\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Form. Zur Konstitution vgl. Pickard, Allen, Bowdler, Carter, Soc. 81 [1902], 1564. — B. Aus Malonsäure-äthylester-amid und salzsaurem Hydroxylamin in Gegenwart von Soda oder Ammoniak (Schiff, A. 321 [1902], 361). — Verhalten beim Titrieren gegen Phenolphthalein: Sch. — CuC₃H₄O₃N₂. Charakteristischer grüner Niederschlag (Sch.).

Malonsäure-mono-amidoxim, β -Oximino- β -amino-propionsäure $C_3H_6O_3N_3=HO_3C\cdot CH_3\cdot C(NH_3):N\cdot OH$ (H 590).

H 590, Z. 4 bis 3 v. u. streiche den Satz: "Durch Einwirkung Schiff, (A. 321, 361)".

H 591, Z. 2 v. o. statt " $CuC_3H_4O_3N_9$. Grüner Niederschlag (M.; Sch.)" lies: " $Cu(C_3H_5O_3N_9)_2$ (M.)".

Malonsäuremonohydrazid, Malonhydrazidsäure C₃H₆O₄N₂ = HO₂C·CH₂·CO·NH·NH₂. B. Das Kaliumsalz entsteht aus dem Kaliumsalz des Malonsäuremonoäthylesters beim Erwärmen mit Hydrazinhydrat auf dem Wasserbad (Curtius, Sieber, B. 54, 1432). — Das Kaliumsalz gibt beim Behandeln mit Natriumnitrit und Salzsäure unter Kühlung Malon-

säuremonoazid und Malonsäure. – KC₃H₅O₃N₂. Hygroskopische Krystallmasse. F: 174°. Unlöslich in absol. Alkohol und Äther.

Malonsäuredihydrazid $C_3H_8O_2N_4 = H_2N\cdot NH\cdot CO\cdot CH_2\cdot CO\cdot NH\cdot NH_8$ (H 592). Beim Zufügen der Lösung von Malonsäuredihydrazid in verd. Salzsäure zu einer Lösung von 2 Mol Chinon in Wasser unter Kühlung entstehen die Verbindung $CH_8(CO\cdot N:N\cdot C_8H_4\cdot OH)_8$ (Syst. Nr. 671) und eine (nicht isolierte) Verbindung $HO\cdot C_8H_4\cdot N:N\cdot CO\cdot CH_2\cdot CO\cdot NH\cdot NH_8$, die mit Benzaldehyd die Verbindung $HO\cdot C_8H_4\cdot N:N\cdot CO\cdot CH_2\cdot CO\cdot NH\cdot N:CH\cdot C_8H_5$ (Syst. Nr. 671) gibt (Borsche, Müller, Bodenstein, A. 475, 127).

Malonsäuremonoazid, Malonazidsäure $C_3H_3O_3N_3=HO_2C\cdot CH_2\cdot CO\cdot N_3$. B. Aus dem Kaliumsalz des Malonsäuremonohydrazids beim Behandeln mit Natriumnitrit und Salzsäure unter Kühlung, neben Malonsäure (Curtius, Sieber, B. 54, 1434). — Öl. Nicht rein erhalten. Mischbar mit Wasser, Alkohol und Äther. Zersetzt sich beim Aufbewahren.

Substitutionsprodukte der Malonsäure.

Chlormalonsäure C₃H₃O₄Cl = CHCl(CO₂H)₂ (H 592). Geschwindigkeit der Kohlendioxyd-Abspaltung in 0,2 n-wäßr. Lösung bei 90° und 99,7°: Bernoulli, Jakubowicz, Helv. 4, 1027; Jak., Z. anorg. Ch. 121, 125. Zersetzung von chlormalonsaurem Natrium durch Einw. von ultraviolettem Licht: Jaeger, Berger, R. 41, 80. — Verwendung bei der Herstellung von Kunstharz: I. G. Farbenind., D. R. P. 449276; C. 1927 II, 2237; Frdl. 15, 1220.

Dimethylester $C_5H_7O_4Cl=CHCl(CO_2\cdot CH_3)_2$ (H 592). B. Beim Erwärmen von Malonsäure-dimethylester mit 1 Mol Sulfurylchlorid (HIRST, MACBETH, Soc. 121, 2177). — Öl. Kp_{14} : 95° (H., M.); Kp_{19} : 105—106° (ECCLES, Pr. Leeds phil. lit. Soc. 1, 358; C. 1929 I, 2633). — Bei der Einw. von äther. Jod-Lösung auf eine Suspension der Natriumverbindung in Methanol erhält man Äthylentetracarbonsäure-tetramethylester (E.). Oxydiert Hydrazin quantitativ unter Stickstoff-Entwicklung (H., M.). Liefert beim Erhitzen mit 1 Mol Sulfurylchlorid Dichlormalonsäure-dimethylester (H., M.). — $NaC_5H_6O_4Cl$. Krystalle (E.).

Diäthylester C₇H₁₁O₄Cl = CHCl(CO₂·C₂H₅)₂ (H 593; E I 257). B. Zur Bildung durch Chlorieren von Malonsäurediäthylester nach Conrad. Bischoff (B. 13 [1880], 600; A. 209 [1883], 220)vgl. Gault, Klees, Bl. [4] 39, 1009. Beim Erwärmen von Malonsäurediäthylester mit 1 Mol Sulfurylchlorid (Macbeth, Soc. 121, 1120). — Kp₃₀: 140—143° (Conant, Kirner, Hussey, Am. Soc. 47, 498); Kp₁₁: 108—109° (G., Kl.). n₅: 1,4363 (M.). Ultraviolettes Absorptionsspektrum: Graham, M., Soc. 121, 1110. — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 10°: Co., Kl., H. Bei der Einw. von Hydrazinhydrat in alkoh. Lösung entsteht quantitativ Stickstoff (M.). Gibt bei der Kondensation mit Natriumacetessigester in Alkohol oder heißem Toluol 3-Oxo-butan-tricarbonsäure-(1.1.2)-triäthylester (Syst. Nr. 302) und andere Produkte (G., Kl.). Geschwindigkeit der Reaktion mit Pyridin bei 16—18°: Tronow, Ж. 58, 1286; C. 1927 II, 1145; bei 18° bis 20°: Tr., Akiwiss, Orlowa, Ж. 61, 345; C. 1929 II, 2550.

Diamid $C_3H_5O_2N_2Cl=CHCl(CO\cdot NH_2)_2$ (H 593). Schmeckt sehr süß; die Süßkraft ist ungefähr die dreifache des Rohrzuckers (Dox, Houston, Am. Soc. 46, 1280)

Dichlormalonsäure C₂H₂O₄Cl₂ = CCl₂(CO₂H)₂ (H 593; E I 257). Geschwindigkeit der Kohlendioxyd-Abspaltung in 0,2 n-wäßr. Lösung bei 90° und 99,7°: Bernoulli, Jakubowicz, Helv. 4, 1027; Jak., Z. anorg. Ch. 121, 125.

Dimethylester $C_5H_6O_4Cl_2 = CCl_2(CO_2 \cdot CH_3)_2$ (H 593). B. Beim Erwärmen von Chlormalonsäure-dimethylester mit 1 Mol Sulfurylchlorid (Hirst, Macbeth, Soc. 121, 2177). — Kp₁₅: 110°. — Oxydiert Hydrazin in Alkohol quantitativ unter Stickstoff-Entwicklung.

Diäthylester $C_7H_{10}O_4Cl_2 = CCl_2(CO_2 \cdot C_2H_5)_2$ (H 593; E I 257). B. Bei der Einw. von 1 Mol Sulfurylchlorid auf Chlormalonsäurediäthylester (Macbeth, Soc. 121, 1120). — Kp_{776} : 233—234°; Kp_6 : 110°. n_5^{μ} : 1,4450. — Mit Hydrazinhydrat in alkoh. Lösung entsteht quantitativ Stickstoff.

Diamid $C_3H_4O_3N_3Cl_2 = CCl_3(CO\cdot NH_2)_2$ (H 593). B. Zur Bildung aus Malonsäure-diamid und Chlor nach Zincke, Kegel (B. 23 [1890], 246) vgl. Dox, Houston, Am. Soc. 46, 1279. — Schmeckt sehr süß; die Süßkraft ist die neunfache des Rohrzuckers.

Amid-nitril, Dichlorcyanacetamid C₂H₂ON₂Cl₂ = H₂N·CO·CCl₂·CN (H 594). B. In geringer Menge beim Behandeln von Malonsäuredinitril mit 2 Mol Chlor in kaltem Wasser oder besser in (feuchtem?) Tetrachlorkohlenstoff (OTT, LÖPMANN, B. 55, 1260; OTT, FINKEN, B. 58, 1703). — Tafeln (aus Chloroform). F: 91°. Kp₁₅: 150°.

Dinitril, Dichlormalonitril C₃N₂Cl₃ = CCl₃(CN)₃. B. Beim Einieiten von 2 Mol Chlor in Malonsäuredinitril in kaltem Wasser, neben anderen Produkten (Ott, Löpmann, B. 55, 1260). — Flüssigkeit von intensivem, an Methyldichloramin und Chlorpikrin erinnernden Geruch. Kp₇₆₄: 97°. — Addiert leicht Chlor unter Bildung des Dichlorids.

Dichlormalonitril-dichlorid $C_5N_2Cl_4=CCl_2(CN)_2+Cl_2$. B. Beim Einleiten von Chlor in Lösungen von Malonsäuredinitril oder Dichlormalonsäuredinitril in kaltem Wasser (Ott, Löpmann, B. 55, 1260). — Kp_{759} : 183—184° (unter geringer Zersetzung); Kp_{14} : 75°.

Brommalonsäure C₃H₃O₄Br = CHBr(CO₂H)₂ (H 594; E I 257). Liefert beim Erhitzen mit Thiophenol für sich oder in Benzol-Lösung Diphenyldisulfid, wenig Bernsteinsäureanhydrid und Bromwasserstoff (BISTRZYCKI, RISI, Helv. 8, 591).

Dimethylester $C_5H_7O_4Br=CHBr(CO_2\cdot CH_3)_2$ (H 594; E I 257). Ultraviolettes Absorptionsspektrum in Alkohol: Graham, Macbeth, Soc. 121, 1110.

Diäthylester C₇H₁₁O₄Br = CHBr(CO₂·C₂H₅)₂ (H 594; E I 257). B. Beim Erhitzen von Malonester mit Bromeyan auf 100—110° (Steinkopf, A. 430, 102). — Kp₂₀: 130—132° (Whitmore, Thurman, Am. Soc. 51, 1499); Kp₁₁: 119—121° (Gaultt, Klees, Bl. [4] 39, 1000). Ultraviolettes Absorptionsspektrum in alkoholischer Lösung: Graham, Macbeth, Soc. 121, 1110. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd bei 0°: Henderson, Hirst, Macbeth, Soc. 123, 1134.

Reduktion mit Titan(II)-chlorid: Black, Hirst, Macbeth, Soc. 121, 2532. Oxydiert Hydrazinhydrat in alkoh. Lösung quantitativ zu Stickstoff (HI., M., Soc. 121, 910). Gibt beim Kochen mit Salzsäure Bromessigsäure (GAULT, KLEES, Bl. [4] 39, 1004). Liefert beim Erhitzen mit wasserfreiem Natriumcarbonat auf 150-160° Athylentetracarbonsäure-tetraäthylester (Corson, Benson, Org. Synth. 11 [1931], 36). Reagiert beim Erhitzen mit Thiophenol für sich oder in Benzol-Lösung wie Brommalonsäure (BISTRZYCKI, RISI, Helv. 8, 591). Gibt mit Dithiocarbazinsäure-benzylester in alkoh. Ammoniak auf dem Wasserbad 5-Oxy-2-benzylmercapto-1.3.4-thiodiazin-carbonsaure-(6)-athylester (Syst. Nr. 4603) (Bose, Quart. J. indian chem. Soc. 3, 152; C. 1926 II, 1651). Gibt bei Kondensation mit Natriumacetessigester unter Kühlung und nachfolgender fraktionierter Vakuumdestillation Malonsaurediathylester, 1.3(oder 2.3)-Diacetyl-propan-tetracarbonsäure-(1.2.2.3 oder 1.1.2.3) - tetraathylester und andere Produkte (G., K.L., Bl. [4] 39, 1001). Beim Behandeln von Brommalonsäurediäthylester mit der Natriumverbindung des α -Methyl-acetessigsäureäthylesters in Alkohol erhält man Athan-tetracarbonsäure-(1.1.2.2)-tetraäthylester und andere Produkte (G., Kl., Bl. [4] 39, 1008). Beim Kochen mit Quecksilber-di-p-tolyl in Toluol entstehen p-Tolylquecksilberbromid, Malonsäurediäthylester, 4-Brom-toluol und andere Produkte (Whitmore, Thurman, Am. Soc. 51, 1499). Geschwindigkeit der Reaktion mit äquimolekularen Mengen Pyridin und Chinolin bei 18-20°: Tronow, Akiwiss, Orlowa, K. 61, 345; C. 1929 II, 2550.

Dipropylester $C_9H_{15}O_4Br=CHBr(CO_2\cdot CH_2\cdot C_2H_5)_2$. B. Bei der Bromierung von Malonsäuredipropylester (Hirst, Macbeth, Soc. 121, 910). — Kp_{12} : 135° (H., M.). Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Graham, M., Soc. 121, 1110. — Reagiert mit Hydrazinhydrat analog Brommalonsäurediäthylester (H., M.).

Diamid $C_3H_5O_2N_2Br = CHBr(CO\cdot NH_2)_2$. B. Bei allmählichem Zugeben von 1 Mol Brom in Eisessig zu einer auf dem Dampfbad erwärmten Lösung von Malonamid in Eisessig (Backes, West, Whiteley, Soc. 119, 360, 364). — Prismen (aus Alkohol). F: 181° (Zers.) (Ba., We., Whi.). Ultraviolettes Absorptionsspektrum in wäßr. Lösung: Graham, Macreth, Soc. 121, 1112). — Wird durch Kaliumjodid in Eisessig bei Zimmertemperatur langsam, bei 60° rasch zu Malonamid reduziert (Ba., We., Whi.). Spaltet beim Kochen mit Titan(II)-chlorid unter Durchleiten von Kohlendioxyd quantitativ Brom ab (Black, Hirst, M., Soc. 121, 2533).

Äthylester - nitril, Bromcyanessigsäure - äthylester $C_5H_6O_2NBr = C_2H_5 \cdot O_2C \cdot CHBr \cdot CN (H 594)$. Liefert beim Kochen mit Benzil und mit Kupfer aktiviertem Zink in Benzol Desyliden-cyanessigsäureäthylester $C_6H_5 \cdot CO \cdot C(C_6H_5) \cdot C(CN) \cdot CO_2 \cdot C_2H_5$ (Syst. Nr. 1345) (Bachér, J. pr. [2] 120, 333).

Amid-nitril, Bromcyanessigsäure-amid, Bromcyanacetamid $C_3H_3ON_2Br = H_2N \cdot CO \cdot CHBr \cdot CN$. B. Beim Erwärmen von Dibromcyanacetamid mit Dimethylanilin in Benzol, neben 4-Brom-dimethylanilin (Gupta, Thorpe, Soc. 121, 1902). — Krystalle (aus Alkohol). F: 120—121°.

Chlorbrommalonsäure $C_3H_3O_4ClBr = CClBr(CO_2H)_2$. B. Durch aufeinanderfolgende Behandlung einer Lösung von Malonsäure in eiskaltem, trocknem Äther mit Brom und mit Sulfurylchlorid (Read, McMath, Soc. 1926, 2187). — Sehr zerfließliche Nadeln (aus Äther + Petroläther). Schmilzt bei 138° unter Kohlendioxyd-Entwicklung und Bildung von Chlorbromessigsäure. Leicht löslich in Wasser, Alkohol und Äther. Spaltet in wäßr. Lösung unter 100°, im Vakuum bereits bei Zimmertemperatur Kohlendioxyd ab. — Saures Brucinsalz. [\alpha]_{\text{c}}: —15,2° (Chloroform; c = 0,7).

Dibrommalonsäure C₃H₂O₄Br₂ = CBr₂(CO₂H)₂ (H 594; E I 257). Liefert beim Erhitzen auf 125° Dibromessigsäure (Mohrschulz, Z. El. Ch. 32, 435). Geschwindigkeit der Kohlendioxyd - Abspaltung in 0,2 n-wäßr. Lösung bei 99,5°: Bernoulli, Jakubowicz, Helv. 4, 1027; J., Z. anorg. Ch. 121, 126.

Dimethylester $C_5H_5O_4Br_9=CBr_9(CO_2\cdot CH_3)_8$ (H 595). Liefert bei längerem Erhitzen mit Cyclohexen und Methanol im Rohr bei 100^0 2-Brom-cyclohexanol-(1)-methyläther (SCHMIDT, ASCHERL, v. KNILLING, B. 59, 1885).

Diäthylester C₇H₁₀O₄Br₂ = CBr₂(CO₂·C₂H₅)₂ (H 595; E I 257). Kp₂₅: 148—155° (GUPTA, THORPE, Soc. 121, 1902); Kp₁₅: 128—132° (LENNON, PERKIN, Soc. 1928, 1521). Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Graham, Macbeth, Soc. 121, 1110. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd bei 0°: Henderson, Hirst, M., Soc. 123, 1134. — Reduktion mit Titan(II)-chlorid: Black, Hi., M., Soc. 121, 2532. Bei der Einw. von Hydrazinhydrat in alkoh. Lösung entsteht quantitativ Stickstoff (Hi., M., Soc. 121, 910). Gibt beim Behandeln mit p-Kresol-natrium in Alkohol auf dem Wasserbad Di-p-tolyloxymalonsäure-diäthylester (Scheibler, Baumann, B. 62, 2063). Liefert beim Kochen mit dem Dinatriumsalz des Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylesters in Alkohol Äthylentetracarbonsäure-tetraäthylester (L., P.).

Diamid $C_3H_4O_2N_2Br_2 = CBr_2(CO\cdot NH_2)_2$ (H 595). B. Zur Bildung aus Malonsäurediamid und Brom nach Freund (B. 17 [1884], 782) vgl. Backes, West, Whiteley, Soc. 119, 365. — Schmeckt süß mit unangenehmem peroxydähnlichem Nachgeschmack (Dox, Houston, Am. Soc. 46, 1280). F: 203°; leicht löslich in Eisessig, schwer in Aceton, unlöslich in Chloroform, Kohlenstofftetrachlorid, Äthylacetat und Benzol (Ba., We., Wh.). Ultraviolettes Absorptionsspektrum in wäßr. Lösung: Graham, Macbeth, Soc. 121, 1112. — Wird durch Kaliumjodid in Eisessig bei Zimmertemperatur langsam, oberhalb 60° rasch zu Malonamid reduziert (Ba., We., Wh., Soc. 119, 360). Spaltet beim Kochen mit Titan(II)-chlorid im Kohlendioxyd-Strom quantitativ Brom ab (Black, Hirst, M., Soc. 121, 2533).

Amid-nitril, Dibromeyanacetamid $C_3H_2ON_2Br_2 = H_2N \cdot CO \cdot CBr_2 \cdot CN$ (H 595). Diese Konstitution kommt der von Hesse (Am. 18 [1896], 729) als Dibrommalonsäuredinitril beschriebenen Verbindung zu (Ott, Löpmann, B. 55, 1255; O., Finken, B. 58, 1703). — B. Zur Bildung aus Cyanacetamid und Brom in Wasser nach Hesse (Am. 18, 725) vgl. Gufta, Thorpe, Soc. 121, 1900. Neben anderen Produkten beim Behandeln von Malonsäuredinitril mit 2 Mol Brom in kaltem Wasser (O., L.; O., F.). Bei der Einw. von kalter verdünnter Soda-Lösung auf Dibrommalonitril (O., F.). — Krystalle (aus Chloroform oder Benzol). F: 123—124° (O., L.; O., F.), 126° (G., Th.). — Liefert beim Erhitzen mit bei 0° gesättigter Bromwasserstoffsäure im Rohr auf 100° Dibromacetonitril (O., L.; O., F.). Beim Behandeln mit Natrium-malonsäurediäthylester in Alkohol erhält man Athylentetracarbonsäure-tetraäthylester und Athan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (G., Th.). Gibt bei der Einw. von verd. Natronlauge und Harnstoff Tribromacetamid (G., Th.). Liefert beim Erwärmen mit Dimethylanilin in Benzol 4-Brom-dimethylanilin und Bromcyanacetamid (G., Th.). Beim Aufbewahren mit Anilin in Alkohol entsteht Oxalsäure-amid-[N.N'-diphenylamidin] (Syst. Nr. 1618) (G., Th.).

Dinitril, Dibrommalonitril $C_3N_2Br_2=CBr_2(CN)_2$ (vgl. H 596). Die von Hesse (Am. 18 [1896], 729) als Dibrommalonitril beschriebene Verbindung ist als Dibromcyanacetamid erkannt (Ott, Löpmann, B. 55, 1255; O., Finken, B. 58, 1703). — B. Dibrommalonitril entsteht aus Malonsäuredinitril und 2 Mol Brom in kaltem Wasser, neben wenig Dibromcyanacetamid (O., L.; O., F.). — Ol von intensivem, dem Bromcyan ähnlichen Geruch. F: $+3^\circ$; Kp_{10} : 49,2° (O., L.). — Bei der Einw. von kalter verdünnter Soda-Lösung entsteht Dibromcyanacetamid (O., F.).

Nitromalonsäure-diäthylester C₇H₁₁O₆N = O₂N·CH(CO₃·C₂H₅)₂ (H 596; E I 257). Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Graham, Macbeth, Soc. 121, 1112. — Spaltet beim Kochen mit Titan(II)-chlorid im Kohlendioxyd-Strom die Nitrogruppe quantitativ ab (Black, Hirst, Macbeth, Soc. 121, 2532). Mit Hydrazinhydrat wird kein Stickstoff entwickelt (H., M., Soc. 121, 911). — Kaliumsalz. Ultraviolettes Absorptionsspektrum der wäßr. Lösung: G., M.

Nitromalonsäure-äthylester-nitril, Nitrocyanessigsäure-äthylester $C_5H_6O_4N_9=C_2H_5\cdot O_4C\cdot CH(NO_2)\cdot CN$ (H 598; E I 258). Zur Konstitution vgl. Hantzsch, B. 54, 2631.

Chlornitromalonsäure-diäthylester C₇H₁₀O₈NCl = O₂N·CCl(CO₂·C₂H₅)₂. B. Durch Einleiten von Chlor in eine wäßr. Lösung des Kaliumsalzes des Nitromalonsäurediäthylesters (Масветн, Транц, Soc. 127, 1121). — Kp₈: 127°. — Liefert bei der Einw. von 50 % igem Hydrazinhydrat oder Ammoniak in alkoh. Lösung das Hydrazin- bzw. Ammoniumsalz des Chlornitroessigsäureäthylesters.

Bromnitromalonsäure - diäthylester $C_7H_{10}O_8NBr = O_2N \cdot CBr(CO_2 \cdot C_2H_5)_2$ (H 600; E I 259). Kp₁₈: 143—144° (v. Auwers, Harres, B. 62, 2296). $D_4^{\eta,4}$: 1,4835 (v. Au., Ha.); $D_4^{\eta_2}$: 1,4910 (Schmidt, Ascherl, v. Knilling, B. 59, 1887). $n_{\alpha}^{\eta,4}$: 1,4523; $n_{He}^{\eta,4}$: 1,4550; $n_{\beta}^{\eta,4}$: 1,4617 (v. Au., Ha.); $n_D^{\eta_2}$: 1,4498 (Sch., A., v. K.). Ultraviolettes Absorptionsspektrum in alkoh. Lösung: Graham, Macreth, Soc. 121, 1112. — Spaltet beim Kochen mit Titan(II)-chlorid im Köhlendioxyd-Strom die Nitrogruppe und das Brom ab (Black, Hirst, M.,

Soc. 121, 2532). Mit Hydrazinhydrat in alkoh. Lösung wird unter Stickstoff-Entwicklung das Brom quantitativ entfernt (HI., M., Soc. 121, 911). Bei längerem Erhitzen mit Cyclohexen und Methanol im Rohr auf dem Wasserbad bildet sich 2-Brom-cyclohexanol-(1)-methyläther (Sch., A., v. K.).

Derivat der Thiomalonsäure.

α-Thiomalonsäure - α'- monoamid, Methan - carbonsäureamid - thiocarbonsäure (Thiomalonamidsäure) $C_3H_4O_4NS = H_4N \cdot CO \cdot CH_4 \cdot COSH$. B. Das Ammoniumsalz entsteht beim Eintragen der Verbindung $C_8H_4O_4S_3$ (?) (E II 1, 857) in konzentriertes wäßriges Ammoniak unter Eiskühlung (Diels, Beckmann, Tönnies, A. 439, 93). — $NH_4C_3H_4O_4NS$. Krystalle (aus Methanol). [KÜHN]

3. Dicarbonsäuren C4H6O4.

1. Äthan-dicarbonsäure-(1.2), Bernsteinsäure $C_4H_6O_4=HO_3C\cdot CH_2\cdot CH_3\cdot CO_3H$ (H 601; E I 259).

Vorkommen.

Im japanischen Reisessig (MIYAJI, H. 184, 158). Im balsamischen Essig von Modena (Parisi, Ann. Chim. applic. 18, 405; C. 1928 II, 2603). Über Vorkommen in Käse vgl. noch WINTERSTEIN, HUPPERT, Bio. Z. 141, 216. Über Vorkommen in den Blattstielen des Rhabarbers (Rheum undulatum) vgl. KLEIN, WERNER, H. 143, 151. Über ein Vorkommen des Calciumsalzes auf Anemonenblättern vgl. v. Lippmann, B. 54, 3112. Im Hornmohn (Glaucium luteum Scop.) (Schmalfuss, H. 131, 167; Sch., Keitel, H. 138, 156). In den Blättern von Echeveria secunda glauca (Franzen, Ostertag, B. 55, 2999). In Johannisbeeren (Ribes rubrum) (Fr., Helwert, H. 124, 65). In Vogelbeeren (Pirus Aucuparia Gärtn.) (Fr., Ost., H. 119, 156; v. L., B. 55, 3040). In Mispelfrüchten (Eriobotrya japonica) (Tranetta-Mosca, Parocchia, Galimberti, Ann. Chim. applic. 13, 339; C. 1924 I, 2375). In Apfeln (Pirus malus) (Fr., He., H. 127, 27). In getrockneten Blättern (Fr., Keysener, H. 129, 310) und Früchten der Brombeere (Rubus fructicosus) (Nelson, Am. Soc. 47, 569). In den Blättern der Himbeere (Rubus idaeus) (Fr., Stern, H. 121, 212). In Kirschen (Prunus avium) (Fr., He., H. 122, 65). In den Früchten der Tamarinden (Tamarindus indica) (Fr., Kaiser, H. 129, 83; Kai., Z. ang. Ch. 37, 809, 1013). In geringer Menge im Saft des Zuckerahorns (Aoer saccharinum Wangh.) (N., Am. Soc. 50, 2007, 2028). Im Saft des Stammes (Wormall, Biochem. J. 18, 1194, 1195) und in den Beeren (Klein, Werner, H. 143, 152) von Vitis vinifera. In Heidelbeersaft (Kaiser, Z. ang. Ch. 37, 809, 1013). In Mentha aquatica L. (Goedon, Am. J. Pharm. 100, 441; C. 1928 II, 2078). Zum Vorkommen in Tomaten vgl. Bornträger, Z. Unters. Nahr. Genußm. 50, 281; C. 1926 I, 2155. In Digitalis (Bourcer, Fourton, Bl. Sci. pharmacol. 35, 346; C. 1928 II, 793). In den Samen von japanischem Wegerich (Plantago major L. var. asiatica Decne) (Ogata, Nishoji, J. pharm. Soc. Japan 1924, Nr. 514, S. 5; C. 1925 I, 1751). Zusammenstellung über das Vorkommen in Tomaten vgl. Bol. 76, 321; C. 1925 I, 1861. [Plantago L. 18]. Kritik älter

Im wäßr. Extrakt des Regenwurms (Lumbricus terrestris) (Ackermann, Kutscher, Z. Biol. 75, 321; C. 1922 III, 736). In der Flüssigkeit der durch Echinococcus multilocularis und Echinococcus unilocularis erzeugten Cysten (Flössner, Z. Biol. 82, 299; C. 1925 I, 1218). Im Ochsengehirn (Shimizu, Bio. Z. 117, 254). Im Hydrolysat der Hühnergalle (Windaus, van Schoor, H. 161, 143). In der menschlichen Galle (Wieland, Reverby, H. 140, 190). Gehalt in frischen Muskeln verschiedener Säugetiere: Moyle, Biochem. J. 18, 355.

Bildung.

Biochemische Bildungen. Bernsteinsäure entsteht neben anderen Produkten bei der Einw. von Bact. coli auf Glycerin (de Graaff, Le Fevre, Bio. Z. 155, 320), auf Glycerin, Apfelsäure, Weinsäure oder Citronensäure in Gegenwart von Formiaten (Grey, Pr. 109. Soc. [B] 96, 160; C. 1924 I, 2786), auf Fumarsäure + Ammoniak oder auf Asparaginsäure tei pg. 7,4 in Abwesenheit von Zellgiften unter anaeroben Bedingungen (Quastel, Woolf, Biochem. J. 20, 549, 551); bei der Einw. von Bact. coli auf Glucose in Gegenwart von Calcium-carbonat (Kay, Biochem. J. 20, 324), in Gegenwart von Formiaten (Grey, Pr. 109. Soc. [B] 96, 157), in Gegenwart von Glykokoll oder Asparagin (Fernández, Garmendia, An. Soc. españ. 21, 491; C. 1924 I, 1813); bei der Einw. von Bact. coli auf die Natriumselze der d-Fructorediphosphorsäure (Harden-Young-Ester) oder d-Glucosemonophosphorsäure (Robison-Ester) unter anaeroben Bedingungen (Manning, Biochem. J. 21, 352), auf Gluconsäure, Glucuroresäure und Zuckersäure unter anaeroben Bedingungen (Kay, Biochem. J. 20, 324)

sowie auf d-Glucosamin (Takao, H. 131, 313). Über die Bildung von Bernsteinsäure bei der Vergärung von Glucose durch Colibakterien vgl. auch VIRTANEN, Ann. Acad. Sci. jenn. 29 [Komppa-Festschr.], Nr. 26; C. 1928 I, 215. Bei der Züchtung von Bact. coli auf einem Gemisch von Lactat und Fumarat unter anaeroben Bedingungen (QUASTEL, STEPHENSON, WHETHAM, Biochem. J. 19,317). In Gegenwart von ruhenden Bact. coli oder Bac. pyocyaneus WHITAMAN, BOOKEN. 1997. The State of the St 1941], S. 2324). Ferner wird Bernsteinsäure gebildet bei der Einw. von Bact. lactis aerogenes auf Inosit (HARDEN, zit. bei HEWITT, STEABBEN, Biochem. J. 15, 665), auf Gluconsaure und Zuckersäure in Gegenwart von Calciumcarbonat unter anaeroben Bedingungen (KAY, Biochem. J. 20, 326), von Bact. paratyphi B auf Glycerin (DE GRAAFF, LE FEVRE, Bio. Z. 155, 320), von Bac. subtilis auf d-Glucosamin (Takao, H. 131, 308), von Bact. xylinum auf α-Oxo-glutarsäure (IWATSURU, Bio. Z. 168, 35), von Essigbakterien auf Glutaminsäure (MIYAJI, J. 184, 157) und von Trockenpräparaten des Propionsäurebacteriums auf Glucose bei Gegenwart von Phosphat und Toluol (VIRTANEN, Comment. phys. math. Helsingfors 2, Heft 20, S. I; C. 1925 II, 1609; vgl. dagegen MAURER, Bio. Z. 191, 84). In geringer Menge bei der Vergärung von Ammoniumcitrat durch Bac. pyocyaneus (Butterworth, Walker, Biochem. J. 23, 934). Bei der Einw. von Bac. suipestifer auf Citronensäure oder Fumarsäure sowie von Bac. aertrycke oder Bac. paratyphosus C auf Fumarsäure (Brown, Duncan, Henry, J. Hyg. 23, Nr. 1, S. 8, 12; C. 1925 I, 241) sowie von Bac. proteus vulgaris auf l-Leucin in Gegenwart von Glycerin, Milchzucker und Uranylphosphat (Arai, Bio. Z. 122, 256). Die Desaminierung von Asparaginsäure zu Bernsteinsäure wird außer durch Bact. coli (s. o.) unter anseroben Bedingungen in Abwesenheit von Zellgiften bei $p_{\rm H}$ 7,4 auch verursacht durch Bact alkaligenes, Bac subtilis, Bact phlei, Bact megatherium, Bac pyocyaneus, Bac prodigiosus, Bac proteus, Bac fluorescens, Bact sporogenes, Bac histolyticus und Bac. tertius; unter den gleichen Bedingungen entsteht Bernsteinsäure auch bei Einw. von Bac. pyocyaneus, Bac. prodigiosus, Bac. proteus oder Bac. fluorescens auf ein Gemisch von Natriumfumarat und Ammoniumchlorid (COOK, WOOLF, Biochem. J. 22, 474). Bei der Einw. von Luftbakterien auf weinsaures Ammonium erhielt TERADA (J. pharm. Soc. Japan 1924, Nr. 511, S. 1; C. 1927 I, 1845) entgegen den Angaben von König (B. 14 [1881], 211; 15 [1882], 172) nur geringe Mengen Bernsteinsäure. Bernsteinsäure entsteht in guter Ausbeute bei der Vergärung von Ammoniumeitrat durch Luftbakterien bzw. ein aus diesen isoliertes, dem Bact. candican ähnliches stäbchenförmiges Bacterium (Terada). Bildung bei der Fäulnis von Leichenteilen: van Itallie, Steenhauer, *Pharm. Weekb.* 66, 14; C. 1929 I, 1236.

Zur Bildung von Bernsteinsäure bei der schnellen Vergärung von Rohrzucker durch Preßhefe in Gegenwart von Calciumcarbonat vgl. Kostytschew, Frey, H. 146, 277, 280. Ausbeuten an Bernsteinsäure bei der Vergärung von Rohrzucker durch Saké-Hefen in Gegenwart von Natriumglutaminat bzw. Asparagin: Nakamoto, J. Coll. Agric. Univ. Tokyo 5, 287; C. 1925 I, 977. In beträchtlicher Menge erhält man Bernsteinsäure neben Fumarsäure bei der Einw. von Mucor stolonifer auf Essigsäure in Gegenwart von Calciumcarbonat (Butkewitsch, Federoff, Bio. Z. 207, 305). Sehr wenig Bernsteinsäure entsteht bei längerer Einw. von Aspergillus niger auf Calciumbutyrat (Stent, Subramaniam, Walker, Soc. 1929, 1990) sowie von Rhizopus-Species auf Calciumgluconat bzw. Calciumacetat (Taka-

HASHI, ASAI, Pr. Acad. Tokyo 3, 86; C. 1927 II, 583).

Bei der Autolyse der Früchte des amerikanischen Holzapfels (Pirus coronaria) unter anaeroben Bedingungen (Sando, Bartlett, J. agric. Res. 22, 221; C. 1925 I, 98). Bei der Einw. von Enzymen aus Rinderleberextrakt auf β -Oxy-buttersäure, neben Fumarsäure und Äpfelsäure (Kühnau, Bio. Z. 200, 46, 54). Bildung in Muskeln verschiedener Säugetiere bei Inkubation in Puffer-Lösungen unter verschiedenen Bedingungen: Moyle, Biochem. J. 18, 354.

Rein chemische Bildungen. In sehr geringer Menge bei längerer Einw. von 10%iger Wasserstoffperoxyd-Lösung auf Aceton im Brutschrank (Knoop, Geheke, H. 146, 66). Über die Bildung von Bernsteinsäure bei der Einw. von Wasserstoffperoxyd auf Essigsäure vgl. K., G., H. 146, 65. In geringer Menge beim Erhitzen von essigsaurem und chloressigsaurem Natrium in Gegenwart von Chrompulver auf 110—120° und Behandeln des Reaktionsprodukts mit verd. Salzsäure (Chakrabarty, Dutt, J. indian chem. Soc. 5, 518; C. 1929 I, 501). In guter Ausbeute bei der Einw. von konz. Schwefelsäure auf γ.γ-Dichlor-crotonsäure in der Kälte (v. Auwers, Wissebach, B. 56, 737). Neben anderen Produkten bei der Elektrolyse von Eisen(II)-ammoniumoxalat in wäßr. Lösung an einer Eisenkathode (Sontag, Z. El. Ch. 30, 333, 338). In geringer Menge neben zahlreichen anderen Produkten bei der Behandlung von α.β-Dibrom-glutarsäure oder α-Brom-glutaconsäure-diäthylester mit siedender 6n-methylalkoholischer Kalilauge (Farmer, Ingold, Soc. 119, 2017, 2020). Bernsteinsäure erhält man in geringer Menge neben anderen Produkten, wenn man Propiolsäure-

methylester und Oxalsäure-dimethylester in Äther bei Gegenwart von Natrium erwärmt und die neutralen Anteile des Reaktionsprodukts mit kalter methylalkoholischer Kalilauge hydrolysiert und anschließend mit amalgamiertem Zink in salzsaurer Lösung reduziert (Ingold, Soc. 127, 1204). Entsteht auch bei analoger Behandlung von Propiolsäureäthylester und Fumarsäurediäthylester (I., Soc. 127, 1205). Durch Reduktion von Fumarsäure mit überschüssigem amalgamiertem Aluminium in Alkohol bei 50—60° (Philippi, Seka, M. 45, 277). Zur Bildung bei der Reduktion von Fumarsäure mit Chrom(II)-chlorid vgl. Conant, Cutter, Am. Soc. 48, 1025. Über eine Bildung aus Fumarsäure durch Reduktion mit Natrium vgl. Girard, Platard, C. r. 178, 1213. Zur Bildung bei der elektrolytischen Reduktion von Fumarsäure bzw. Maleinsäure vgl. Norris, Cummings, Ind. Eng. Chem. 17, 306; C. 1925 II, 26. Bei der Reduktion von Maleinsäure mit Chrom(II)-chlorid in salzsaurer Lösung unter Luftausschluß (Co., Cutter, Am. Soc. 44, 2654). Beim Kochen von Maleinsäure mit Tetrahydrochinolin in wäßr. Lösung bei Gegenwart von Palladiumschwarz (Akabobi, Suzuki, Pr. Acad. Tokyo 5, 256; C. 1929 II, 2033). Bei der Reduktion einer stark alkalischen Lösung von glykolsaurem Natrium mit Zinkstaub auf dem Wasserbad (Sontag, Z. El. Ch. 30, 343). Neben anderen Produkten bei der Elektrolyse von mit Eisen(II)-sulfat versetzten ammoniakalischen Lösungen von glykolsaurem oder weinsaurem Ammonium mit Diaphragma an einer Eisenkathode (So., Z. El. Ch. 30, 339, 343). Geringe Mengen Bernsteinsäure bilden sich neben anderen Produkten beim Erhitzen wäßr. Lösungen von Natriumglykolat oder Natriumtartrat mit Wasserstoff in Gegenwart von Nickeloxyd und Tonerde unter 85 Atm. Anfangsdruck auf 220—230° bzw. 245—250° (Ipatjew, Rasuwajew, B. 60, 1972, 1975; Ж. 59, 1078, 1085), in größerer Menge bei analoger Behandlung von Natriummalat bei 250° und 100 Atm. Anfangsdruck (Ir., R., B. 60, 1974; Ж. 59, 1084). Das Thalliumsalz entsteht in geringer Menge beim Behandeln von Thiophen mit Thalliumhydroxy

Ferner entsteht Bernsteinsäure neben anderen Produkten, meist in geringer Menge, bei der Oxydation zahlreicher kohlenstoffreicher Verbindungen, so z. B. bei der Oxydation von Triakontan mit trockner kohlensäurefreier Luft in Gegenwart von 5% Terpentinöl bei 95° (Francis, Wood, Soc. 1927, 1898); bei längerem Erhitzen von Methylcyclobutan mit Salpetersäure (D: 1,075) im Rohr auf 125° (Rosanow, Ж. 61, 2296; C. 1930 II, 234); beim Erhitzen von 1-Methyl-cyclopenten-(1) mit Chromschwefelsäure auf dem Wasserbad (SKRAUP, BINDER, B. 62, 1135); bei der elektrolytischen Oxydation von Chlorbenzol oder 4-Chlor-phenol in 1n-Schwefelsäure an einer gekühlten Bleidioxyd-Anode (FICHTER, ADLER, Helv. 9, 279, 280); bei der Oxydation von Cyclohexanol mit Permanganat in Soda-Lösung (v. Braun, Lemke, B. 55, 3529 Anm. 2); bei der elektrolytischen Oxydation von Guajacol, Veratrol oder Resorcinmonomethyläther in 2n-Schwefelsäure an einer Bleidioxyd-Anode (ohne Diaphragma) (FICHTER, DIETRICH, Helv. 7, 137, 141); beim Erhitzen von Muscon mit Chromtrioxyd in wenig Wasser enthaltendem Eisessig im Wasserbad (Ruzicka, Helv. 9, 723, 725); bei der elektrolytischen Oxydation von Benzolsulfonsäure in wäßr. Lösung an Platin- oder Bleidioxyd-Anoden (Fichter, Stocker, Helv. 7, 1065); bei der Oxydation von 2-Methyl-tetra-hydrofuran, 2-Methyl-tetrahydropyran oder 2.6-Dimethyl-tetrahydropyran mit 1% iger Permanganat-Lösung bei Zimmertemperatur (Franke, Lieben, M. 43, 231, 233, 235); bei der Kalischmelze von Xylan mit 10 Tln. Kaliumhydroxyd und 10 Tln. Wasser bei 1500 bis 280° (Неизев, Roth, J. pr. [2] 107, 3); bei der Einw. von alkal. Kaliumhypobromit-Lösung auf Ovalbumin bei 0° (Goldschmidt, Mitarb., A. 456, 35); bei der Oxydation von Alkali-Lignin und von Salzsäure-Lignin mit Wasserstoffperoxyd (Anderzén, Holmberg, B. 56, 2045; Hägglund, Björkman, Bio. Z. 147, 77, 87); bei der Oxydation von Huminstoffen aus bituminöser Kohle mit Wasserstoffperoxyd (Francis, Wheeler, Soc. 127, 2243) sowie bei der Druckoxydation von Cellulose und Braunkohle bei 200° (F. FISCHER, SCHRADER, Abh. Kenntnis Kohle 5, 208; C. 1922 IV, 1064; FISCHER, SCH., TREIBS, Abh. Kenntnis Kohle **5**, 260; C. 1922 IV, 1065).

In fast quantitativer Ausbeute erhält man Bernsteinsäure bei der Oxydation von γ -Butyrolacton oder γ -Valerolacton mit Salpetersäure (D: 1,4) unterhalb 20° (Verein f. chem. Ind. A. G., D. R. P. 473 262; C. 1929 I, 2820; Frdl. 16, 266) und bei der elektrolytischen Oxydation von Furfurol in verd. Schwefelsäure an Blei-Elektroden bei 35° (Kenkyujo, D. R. P. 469 234; Frdl. 16, 268).

Physikalische Eigenschaften.

Eigenschaften der reinen Substanz. Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 330. Röntgenogramm: Becker, Jancke, Ph. Ch. 99, 254; Yardley, Pr. roy. Soc. [A] 105, 451; Z. Kr. Strukturber. 1, 667; C. 1924 I, 2859; Trillat, C. r. 180, 1330; Ann. Physique [10] 6, 69; vgl. a. Henderson, Pr. roy. Soc. Edinburgh 48, 20; C. 1928 I, 2903. F: 182,7° (Viseur, Bl. Soc. chim. Belg. 35, 427; C. 1927 I, 1543). Temperatur des

Zusammenbackens: Tammann, Z. anorg. Ch. 157, 325. D.*: 1,572 (Biltz, A. 453, 278). Mittlere spezifische Wärme zwischen 0° und 35°: 0,2965 cal/g (Padoa, G. 52 II, 203). Verbrennungswärme bei konstantem Volumen: 357,4 kcal/Mol (Verkade, Hartman, Coops, R. 45, 378), 357,1 kcal/Mol (Becker, Rott in Landolt-Börnst. E III, 2901). Ultraviolettes Absorptionsspektrum in wäßr. Lösung: Menczel, Ph. Ch. 125, 208; in alkoh. Lösung: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916. Bernsteinsäure zeigt keine Piezoelektrizität (Hettich, Schleede, Z. Phys. 50, 253; C. 1929 I, 1893; Neuhaus, Z. Kr. 90 [1935], 427). Magnetische Susceptibilität: Bhagavantam, Indian J. Phys. 4, 6; C. 1929 II, 2314.

Eigenschaften von Bernsteinsäure enthaltenden Gemischen. Über den Verlauf der Auflösung in Wasser vgl. Traube, v. Behren, Ph. Ch. [A] 138, 91. 100 cm³ der gesättigten wäßrigen Lösung enthalten bei 17,5° 5,65 g (Perschke, Z. anorg. Ch. 151, 248; K. 58, 505), bei 23° 7,2 g Bernsteinsäure (Schilow, Lepin, Ph. Ch. 101, 362); 100 g Wasser lösen bei 20° 6,8 g, bei 30° 10,5 g Bernsteinsäure; 100 g absol. Alkohol lösen bei 20° 10,1 g, bei 30° 12,0 g Bernsteinsäure; 100 g 50 %iger Alkohol lösen bei 20° 13,8 g, bei 30° 21,0 g Bernsteinsäure (Wright, Soc. 1927, 1336). 100 cm³ der gesättigten ätherischen Lösung enthalten bei 17,5° 0,32 g (P.), bei 23° 0,38 g Bernsteinsäure (Sch., Le.). Löslichkeit in mit Ather gesättigtem Wasser und in mit Wasser gesättigtem Äther: P. 100 cm³ der bei 20° gesättigten Lösung in Aceton enthalten 3,86 g Bernsteinsäure (Viseur, Bl. Soc. chim. Belg. 35, 440; C. 1927 I, 1543). Löslichkeit von Gemischen mit Fumarsäure und mit Maleinsäure in Aceton: V., Bl. Soc. chim. Belg. 35, 442, 445; C. 1927 I, 1543. 100 g p-Cymol lösen bei 25° 0,02 g Bernsteinsäure (Wheeler, Am. Soc. 42, 1845). Löslichkeit in Dioxan-Wasser-Gemischen bei 25°: Herz, Lorentz, Ph. Ch. [A] 140, 421. Einfluß auf die kritische Lösungstemperatur des Systems Wasser-Phenol: Dubrisay, A. ch. [9] 17, 240. Verteilung von Bernsteinsäure zwischen Wasser und Chloroform bei 25°: Smith, J. phys. Chem. 25, 230; zwischen Wasser und Ather: Sabalitschka, B. 53, 1386; Sm., J. phys. Chem. 25, 624; Schilow, Lepin, Ph. Ch. 101, 367; Pawlow, Koll.-Z. 35, 88; C. 1924 II, 2012; Johnson, Cereal Chem. 2 [1925], 351; Perschke, Z. anorg. Ch. 151, 248; K. 58, 506; zwischen Wasser und Diisoamyläther: Sch., Le., Ph. Ch. 101, 371; zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 733.

Schmelzpunkte von Gemischen mit Fumarsäure und mit Maleinsäure: Viseur, Bl. Soc. chim. Belg. 35, 438; C. 1927 I, 1543. Thermische Analyse der binären Systeme mit Phenol, α- und β-Naphthol, Resorcin, Brenzcatechin, Hydrochinon, Pyrogallol, 3- und 4-Nitrophenol, 2.4-Dinitro-phenol und Pikrinsäure: Kremann, Zechner, Dražii., M. 45, 356; mit Harnstoff: K., Weber, Z., M. 46, 202, 222; mit α- und β-Naphthylamin und mit o- und p-Phenylendiamin: K., We., Z., M. 46, 195, 211; mit Azobenzol: K., Z., M. 46, 171, 176. Ebullioskopisches Verhalten in Äther-Aceton-Gemischen: Carroll, Rollefson, Mathews, Am. Soc. 47, 1795; in Methanol-Schwefelkohlenstoff-Gemischen: Drucker, Weissbach, Ph. Ch. 117, 212.

Dichte wäßr. Lösungen bei 20°: KING, WAMPLER, Am. Soc. 44, 1898; BERNER, Ph. Ch. [A] 141, 123; bei 22°: ZAHN, R. 45, 786; bei 25°: BURROWS, J. Pr. Soc. N. S. Wales 53 [1919], 76; von Lösungen in 80% igem Alkohol bei 20°, 40° und 60°: HERZ, SCHELIGA, Z. anorg. Ch. 169, 168. Viscosität einer wäßr. Lösung zwischen 20° und 90°: HERZ, MARTIN, Z. anorg. Ch. 132, 46; von Lösungen in 80% igem Alkohol bei 20°, 40° und 60°: HERZ, SCH., Z. anorg. Ch. 169, 168. Diffusion von Bernsteinsäure durch Kollodiummembrane: Collander, Comment. biol. Helsingtors 2, Nr. 6, S. 15, 18; C. 1926 II, 720. Osmotischer Druck einer 0,24 molaren Lösung in Aceton bei 25°: MURRAY, J. phys. Chem. 33, 915. Oberflächenspannung wäßr. Lösungen bei 15°: TRAUBE, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 95; bei 20°: King, Wampler; bei 22°: Zahn.

Adsorption von Bernsteinsäure aus wäßr. Lösung an Tierkohle: Traube, Verh. dtsch. phys. Ges. 10 [1908], 901; T., Somogyi, Bio. Z. 120, 95; Alexejewski, K. 59, 1040; C. 1928 I, 2916; Schilow, Nekrassow, Ph. Ch. 130, 67; K. 60, 106; an aktivierte Erlenholzkohle: Ruff, Hohlfeld, Koll.-Z. 36, 35; C. 1925 I, 2156; Ruff, Z. ang. Ch. 38, 1166; an aktivierte Zuckerkohle: Bartell, Miller, Am. Soc. 45, 1109; an verschiedene aktive Kohlen: Fromageot, Wurmser, C. r. 179, 973; Heyne, Polanyi, Ph. Ch. 132, 386, 393, 395; Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288. Einfluß des p_H auf die Adsorption an Norit aus wäßr. Lösung: Phelps, Peters, Pr. 102, Soc. [A] 124, 557, 560; C. 1929 II, 2546. Adsorption aus alkoh. Lösung an Tierkohle: Griffin, Richardson, Robertson, Soc. 1928, 2708; Alexejewski, K. 59, 1041; C. 1928 I, 2916; an nicht näher bezeichnete aktive Kohle: Heyne, Polanyi; aus Lösungen in Alkohol-Wasser- und Alkohol-Ather-Gemischen an aktivierte Holzkohle: Schilow, Pewsner, Ph. Ch. 118, 364, 366; K. 59, 165, 167. Adsorption von Bernsteinsäure im Gemisch mit Maleinsäure aus wäßriger und aus alkoholischer Lösung an Tierkohle: Alexejewski. An aktivierte Zuckerkohle adsorbierte Bernsteinsäure kann durch längeres Schütteln mit Benzol und Wasser quantitativ wiedergewonnen werden (Miller, Am. Soc. 46, 1154). Adsorption von Bernsteinsäure aus wäßr.

Lösungen an Kieselsäure: Mehrotra, Dhar, Z. anorg. Ch. 155, 299; Bartell, Fu, J. phys. Chem. 38, 680; an Chrom(III)-hydroxyd: Sen, J. phys. Chem. 31, 929; an gefälltes Mangandioxyd und Torf: Sch., Ph. Ch. 100, 431; an Eisen(III)-hydroxyd: Sen, J. phys. Chem. 31, 526. Adsorption an Platinschwarz aus wäßriger und ätherischer Lösung: Platonow, K. 61, 1058; C. 1930 I, 348. Aufnahme von Bernsteinsäure aus wäßr. Lösung durch Gelatine: Cooper, Edgar, Biochem. J. 20, 1068; durch Hautpulver: Pawlow, Timochin, Koll.-Z. 40, 130; C. 1927 I, 42. Ausbreitung auf Wasser-Oberflächen: Ramdas, Indian J. Phys. 1, 16, 21; C. 1926 II, 1935. Einfluß von Bernsteinsäure auf die Quellung von Gelatine in Wasser: Coo., E., Biochem. J. 20, 1066; von Casein in Wasser: Isgaryschew, Pomeranzewa, K. 58, 166; Koll.-Z. 38, 236; C. 1926 I, 3129. Ausflockende Wirkung wäßr. Bernsteinsäure-Lösungen auf Stearinsäure-Sol: Ostwald, Koll.-Z. 40, 208; C. 1927 I, 573; auf Serumeiweiß-Sole: Cikánek, Haylík, Kubánek, Bio. Z. 145, 101; auf Lösungen von Casein und Edestin in sehr verd. Natronlauge: I., Bogomolowa, K. 58, 158; Koll.-Z. 38, 239; C. 1926 I, 3306. — Wärmetönung der Adsorption von Bernsteinsäure aus wäßriger und aus alkoholischer Lösung an aktive Kohle: Heyne, Polanyi, Ph. Ch. 132, 396.

Lichtbrechung wäßr. Lösungen: Hirsch, Fermentf. 6, 53; C. 1922 III, 557; Berner, Ph. Ch. [A] 141, 123. Ultraviolettes Absorptionsspektrum von Uranylnitrat in wäßr. Bernsteinsäure-Lösung: Ghosh, Mitra, Quart. J. indian chem. Soc. 4 [1927], 360; von Eisen(III)-chlorid in wäßr. Bernsteinsäure-Lösung: Gh. M. J. indian chem. Soc. 5 [1928], 196.

chlorid in wäßr. Bernsteinsäure-Lösung: GH., M., J. indian chem. Soc. 5 [1928], 196.

Elektrische Leitfähigkeit in Wasser bei 18°: Marie, Noyes, Am. Soc. 43, 1097; Kolthoff, R. 45, 397; bei 25°: Remesow, Bio. Z. 207, 77; in 0,5 m-Borsäure-Lösung bei 18°: K., R. 45, 397; in 20% iger Rohtzucker-Lösung bei 18°: K., R. 48, 224; in Dioxan-Wasser-Gemischen bei 25°: Herz, Lorentz, Ph. Ch. [A] 140, 422. Elektrische Leitfähigkeit in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 1504; in Alkohol bei steigendem Zusatz von Ammoniak, Harnstoff, Athylamin, Benzylamin, Anilin, Methylanilin, Dimethylanilin, α. und β-Naphthylamin, o., m. und p-Phenylendiamin und Diphenylamin bei 25°: Höll, M. 47, 586. — Kataphoretische Wanderungsgeschwindigkeit von in wäßr. Bernsteinsäure-Lösung suspendierter aktiver Kohle: Fromageot, C. r. 179, 1405. — Potentialdifferenz an der Grenze zwischen Luft und wäßr. Bernsteinsäure-Lösungen: Frumkin, Ph. Ch. 111, 194; zwischen wäßrigen und butylalkoholischen Bernsteinsäure-Lösungen: Allemann, Z. El. Ch. 34, 379.

Elektrolytische Dissoziationskonstanten k_1 und k_2 der Bernsteinsäure in wäßr. Lösung s. in der untenstehenden Tabelle; zur Dissoziation in wäßr. Lösung vgl. a. MIZUTANI, Ph. Ch.

Elektrolytische Dissoziationskonstanten der Bernsteinsäure in wäßr. Lösung.

Temperatur	1. Stufe k ₁	2. Stufe kg	Methode
15°		5,9·10-8	kolorimetrisch 7)
180		2,4·10-6 a)	potentiometrisch)
180	9.2 · 10 - 5	5.3 · 10-4	,, a)
180	$6,6 \cdot 10^{-5}$ a)	$2,7 \cdot 10^{-6}$ a)	"," 8)
200	6.86 - 10 - 5	3,97 · 10-6	", 1
250	7.36 - 10 - 4	4.5 • 10-6	"," 6)
250	6,38·10-5 a)	$2,69 \cdot 10^{-6}$ a)	", 12)
25°		2.51·10-6 a)	Löslichkeitsmessungen 10)
25°	6,30 · 10-5		katalytisch (Jodierung von Aceton) ³)
250		2,8 · 10-4	katalytisch (Zersetzung von Diazoessigester) ⁵)
500	6,03·10 ⁻⁵ a)	1,86 · 10-4 *)	potentiometrisch (1)
1000		1,86·10 ⁻⁴ a) 1,5·10 ⁻⁴	4)

a) Diese Werte sind auf Ionenaktivitäten bezogen. — ¹) Auerbach, Smolczyk, Ph. Ch. 110, 113. — ²) Britton, Soc. 127, 1900, 1906. — ²) Dawson, Hall, Key, Soc. 1928, 2848. — ²) Dubouk, J. Chim. phys. 19, 185. — ²) Dubouk, Frommelt, J. Chim. phys. 24, 255. — ²) Gane, Ingold, Soc. 1928, 1598. — ²) I. M. Kolthoff, Der Gebrauch von Farbenindikateren, 2. Aufi. [Berlin 1923], S. 166. — ²) Kolthoff, Bosch, R. 47, 862, 871. — ²) Larsson, Z. anorg. Ch. 125, 288, 294. — ¹°) Larsson, Z. anorg. Ch. 155, 253. — ¹¹) Ölander, Ph. Ch. [A] 144, 67, 131. — ¹²) Simms, J. phys. Chem. 32, 1128, 1498.

116, 320, 323; Duboux, Tsamados, Helv. 7, 863. Dissoziation in Wasser bei Gegenwart von Natriumchlorid oder Magnesiumchlorid bei 25°: Simms, J. phys. Chem. 32, 1128. Dissoziationskonstante der ersten Stufe in Methanol bei 18°: 3,2·10-° (potentiometrisch

bestimmt) (EBERT, B. 58, 182). Dissoziationskonstanten der 1. und der 2. Stufe in Methanol-Wasser-Gemischen bei 200 und in Alkohol-Wasser-Gemischen bei 180: MIZUTANI, Ph. Ch. 118, 320, 333; zur Dissoziation in wäßr. Alkohol vgl. a. Duboux, Tsamados, Helv. 7, 863. Einfluß der Temperatur auf die Wasserstoffionen-Konzentration von verdünnten wäßrigen Lösungen von Bernsteinsäure, saurem Natriumsuccinat, neutralem Natriumsuccinat und einem Puffergemisch aus gleichen Teilen Bernsteinsäure und saurem Natriumsuccinat zwischen 18° und 60°: Kolthoff, Tekelenburg, R. 46, 35. Einfluß von Neutralsalzen auf das p_H von verdünnten wäßrigen Lösungen eines äquimolekularen Gemisches von Bernsteinsäure und saurem Natriumsuccinat bzw. von saurem und neutralem Natriumsuccinat bei 18°: K., Bosch, R. 47, 863, 865. Konduktometrische und potentiometrische Titrationen s. S. 548. Katalytische Wirkung von Bernsteinsäure auf die Zersetzung von Nitramid: BRÖNSTED,

PEDERSEN, Ph. Ch. 108, 205; auf die Bildung von Glycerinchlorhydrinen aus Glycerin und Chlorwasserstoff: Smith, Ph. Ch. 94, 701; auf die Geschwindigkeit der Reaktion von Aceton mit Jod in wäßr. Lösung: Dawson, Hall, Key, Soc. 1928, 2848.

Chemisches Verhalten.

Zur Spaltung von Bernsteinsäure in Kohlendioxyd und Propionsäure bei der Einw. ultravioletter Strahlen vgl. Volmar, C. r. 180, 1173; 181, 467. Bei der Elektrolyse einer mit Eisen(II)-sulfat versetzten schwach bernsteinsauren Lösung von Ammoniumsuccinat an einer Eisenkathode entstehen Kohlendioxyd und Kohlenoxyd; gleichzeitig wird kohlenstoff-haltiges Eisen abgeschieden (Sontag, Z. El. Ch. 30, 342; vgl. auch Schmidt, Z. El. Ch. 32, 37).

Oxydation in sehr verdünnter wäßriger Lösung durch Sauerstoff in Gegenwart von Kupferpulver bei 20°: Wieland, A. 484, 190, 194. Einfluß des p_H auf die Geschwindigkeit der Oxydation durch Luft in Gegenwart von Blutkohle bei 40°: Gompel, Mayer, Wurmser, C. r. 178, 1026. Oxydation des Natriumsalzes durch Luft bei Gegenwart von aktiver Kohle oder von Mangandioxyd in Wasser bei 39° bzw. 40°: Max., Wu., Ann. Physiol. Physicoch. biol. 2 [1926], 334; Ber. Physiol. 37, 501. Bei der Einw. von viel Wasserstoffperoxyd auf eine siedende, sehr verdünnte Bernsteinsäure-Lösung wird auch in Abwesenheit von Eisen(II)sulfat Acetaldehyd gebildet (Wie., A. 436, 249). Bei der Oxydation mit Wasserstoff-peroxyd in verd. Schwefelsäure bei Gegenwart von Eisen(II)-sulfat bei 30—37° entstehen außer Acetaldehyd Malonsäure und Apfelsäure (Subbamniam, Stent, Walker, Soc. 1929, 2487, 2490). Bei der Einw. von Wasserstoffperoxyd in Gegenwart von geringen Mengen Kupfersalzen in schwach saurer Lösung bei 60° werden Kohlendioxyd, Ameisensäure und Essigsäure erhalten (Battie, Smedley-MacLean, Biochem. J. 23, 596). Geschwindigkeit der Oxydation durch Wasserstoffperoxyd in Gegenwart von Eisen(III)-chlorid und Kupfersulfat bei 25°: Walton, Graham, Am. Soc. 50, 1646; bei Gegenwart von geringen Mengen Kupfersalzen in schwach saurer Lösung bei 60°: B., Sm.-MacL.; in Gegenwart von konz. Schwefelsäure bei 112—155°: Kerp, Arb. Gesundh.-Amt 57, 559; C. 1927 I, 1902. Geschwindigkeit der Kohlendioxyd-Bildung bei Einw. von Wasserstoffperoxyd in Gegenwart von Eisen(III)-sulfat bei 20°: RAY, J. gen. Physiol. 5, 615; C. 1923 III, 951. Oxydation mit Chromschwefelsäure in Gegenwart und Abwesenheit von Quecksilber(II)-sulfat: Florentin, Bl. [4] 35, 229; vgl. LIEBEN, MOLNAR, M. 53/54, 7. Bernsteinsäure gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung Spuren von Cyansaure (nachgewiesen als Harnstoff) (Fosse, Laude, C. r. 172, 1242). Oxydation von Bernsteinsäure in sehr verdünnter wäßriger Lösung durch Chinon in Gegenwart von Kupferpulver: Wieland, A. 434, 196. Einwirkung von Jod auf Silbersuccinat: Wieland, Fischer, A. 446, 71. Verhalten von

Bernsteinsäure beim Erhitzen mit Wasser und Luft im Autoklaven auf 180°: SSADIKOW, Bio. Z. 143, 503. Beim Kochen von Bernsteinsäure mit Thionylchlorid wird Bernsteinsäureanhydrid gebildet (McMaster, Ahmann, Am. Soc. 50, 146). Als Hauptprodukt entsteht Bernsteinsäureanhydrid auch beim Erhitzen eines äquimolekularen Gemisches von Bernsteinsäure und Schwefeltrioxyd auf ca. 120° (BACKER, VAN DER ZANDEN, R. 46, 479). Beim Erwärmen von Bernsteinsäure mit 2¹/2—4 Mol Schwefeltrioxyd auf 40—50° entsteht ein Gemisch von Mono- und Disulfobernsteinsäure; erhitzt man Bernsteinsäure mit 4 Mol Schwefeltrioxyd auf 120°, so erhält man Disulfobernsteinsäure; beim Erhitzen von Bernsteinsäure mit 4¹/2 Mol Schwefeltrioxyd auf 115° wird neben Mono- und Disulfobernsteinsäure Maleinsäure gebildet (Ba., v. d. Z.). Entgegen der Angabe von Foa (G. 39 II [1909], 531) entsteht bei der Einw. von Phosphortriselenid auf Bernsteinsäure kein Selenophen (Briscoe, Peel, Soc. 1928, 1741).

Geschwindigkeit der Veresterung in absol. Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Вниж, Sudborough, J. indian Inst. Sci. [A] 8, 92; С. 1926 I, 80. Zur Veresterung mit Alkoholen in Gegenwart von Schwefelsäure, Kaliumdisulfat oder Aluminiumsulfat vgl. auch Senderens, Aboulenc, A.ch. [9] 18, 161. Bei 4-stdg. Erhitzen mit Phenol und Zinn(IV)-chlorid entsteht Phenolsuccinein (Syst. Nr. 2535) (Dutt, Soc. 1926, 1135). Beim Erhitzen eines äquimolekularen Gemisches von Bernsteinsäure und p-Kresol mit 72 %iger Schwefelsäure auf 180° erhält man eine in rotbraunen Nadeln krystallisierende Verbindung vom Schmelzpunkt 71—72° (Thompson, Eder, Am. Soc. 47, 2557). Über die bei der

Veresterung von Bernsteinsäure mit Glykolen entstehenden Produkte vgl. Carothers, Arvin, Am. Soc. 51, 2560; C., Dobough, Am. Soc. 52 [1930], 711; vgl. a. die Artikel polymeres Athylensuccinat (S. 552), polymeres Trimethylensuccinat (S. 553), polymeres Hexamethylensuccinat (S. 553) und polymeres Dekamethylensuccinat (S. 553). Bernsteinsäure liefert mit Athyl-[α.β-dichlor-vinyl]-äther in der Wärme Bernsteinsäureanhydrid und Chloressigsäureäthylester (Crompton, Vanderstichele, Soc. 117, 692). Gibt beim Kochen mit überschüßigem Zimtaldehyd, Acetanhydrid und Bleioxyd 1.8-Diphenyl-octatetraen-(1.3.5.7) in guter Ausbeute; die gleiche Verbindung entsteht beim Kochen von Bleisuccinat mit Zimtaldehyd, Acetanhydrid und Eisessig (Kuhn, Winterstein, Helv. 11, 109). Im Gegensatz zu den Angaben von Fittig, Batt (A. 331 [1904], 160) erhält man beim Erhitzen von Natriumsuccinat mit Zimtaldehyd und Acetanhydrid unter 100° Dicinnamylidenbernsteinsäureanhydrid, über 130° sehr wenig 1.8-Diphenyl-octatetraen-(1.3.5.7) (K., W., Helv. 11, 92). Beim Kochen von Bernsteinsäure mit β-Styryl-acrolein, Acetanhydrid und Bleioxyd entstehen 1.12-Diphenyl-dodekahexaen-(1.3.5.7.9.11) und wenig 1.8-Diphenyl-oktatetraen (1.3.5.7) (K., W., Helv. 11, 113). Salzbildung mit aromatischen Aminen: Sabalitschka, Daniel, Ber. disch. pharm. Ges. 30, 481; C. 1921 I, 357. Bernsteinsäure liefert beim Kochen mit 1 Mol o-Phenylendiamin in 4n-Salzsäure N.N'-Bis-[2-amino-phenyl]-succinamid und β-[Benzimidazyl-(2)]-propionsäure (Syst. Nr. 3646), beim Kochen mit 2 Mol o-Phenylendiamin dagegen hauptsächlich 1.2-Di-[benzimidazyl-(2)]-äthan (Syst. Nr. 4027) (Phillips, Soc. 1928, 2398). Gibt beim Erhitzen mit Hexamethylentetramin auf 140—160° N.N'-Methylen-disuccinimid (Syst. Nr. 3201) (Passerini, G. 53, 336).

Biochemisches und physiologisches Verhalten.

Ausführliche Darstellung der Dehydrierung von Bernsteinsäure durch Succinodehydrase verschiedenen Ursprungs s. bei C. Oppenheimer, Die Fermente und ihre Wirkungen, Bd. II [Leipzig 1926], S. 1707; Suppl. Bd. II [Den Haag 1939], S. 1504, 1548, 1629; W. Franke in H. v. Euler, Chemie der Enzyme, II. Teil, 3. Abschnitt [München 1934], S. 215, 234, 414, 511; F. B. Straub in E. Bamann, K. Myrblog, Die Methoden der Fermentforschung [Leipzig 1940], S. 2321. Über das Oxydations-Reduktions-Potential im System Bernsteinsäure-Dehydrase-Fumarsaure s. J. Lehmann in E. Bamann, K. Myrback, Die Methoden der Fermentforschung [Leipzig 1940], S. 834; R. Wurmser in F. F. Nord, R. Weidenhagen, Handbuch der Enzymologie [Leipzig 1940], S. 306; W. Franke in H. v. Euler, Chemie der Enzyme, II. Teil, 3. Abschnitt [München 1934], S. 516. Zur Dehydrierung von Bernsteinsaure vgl. ferner: Reduktion von Methylenblau durch Bernsteinsäure in Gegenwart von intakten Coli-Bakterien oder Enzympräparaten daraus unter verschiedenen Bedingungen: QUASTEL, WHETHAM, Biochem. J. 18, 519; 19, 523, 649; Qu., Biochem. J. 20, 168, 179; Qu., Wooldridge, Biochem. J. 21, 150, 1234; 22, 692; Young, Biochem. J. 28, 836; in Gegenwart von ruhenden Bac. prodigiosus, Bac. proteus oder Bac. faecalis alkaligenes: Qu., Woo., Biochem. J. 19, 653 in Gegenwart von Bac. typhosus: Stickland, Biochem. J. 23, 1192; in Gegenwart von Muskelextrakt: Widmark, Skand. Arch. Physiol. 41, 207; C. 1921 III, 1362; in Gegenwart von Muskelpräparaten: v. Euler, Nilsson, Jansson, H. 163, 204; in Gegenwart von gewaschenem Muskel oder Sarkomgewebe: Fleisch, Biochem. J. 18, 302. Isolierung von Fumarsäure bei der Einw. von Methylenblau auf Natriumsuccinat in Gegenwart von Bact. coli: Qu., Wh., Biochem. J. 18, 528. In Gegenwart von ruhenden Bact. coli oder Bac. pycovaneus besteht das reversible Gleichgewicht: Bernsteinsäure + Methylenblau \rightleftharpoons Fumarsäure + Leukomethylenblau (Qu., Wh., Biochem. J. 18, 526). Bei der Dehydrierung von Natriumsuccinat durch Methylenblau oder Sauerstoff in Gegenwart von Muskelbrei oder Muskelextrakt entsteht ein Gleichgewichtsgemisch von Fumarsäure und l-Apfelsäure (Battelli, Stern, C. r. Soc. Biol. 84, 305; C. 1921 I, 581; F. G. Fischer, B. 60, 2260; vgl. Hahn, Haarmann, Z. Biol. 86, 523; 87, 111). Dehydrierung von Bernsteinsäure durch Dithiodiglykolsaure in Gegenwart von ausgewaschenem Leberbrei in einer Stickstoffatmosphare: Wieland, Bergel, A. 489, 210. Sauerstoffaufnahme bei der Einw. von Bact. coli commune bzw. Bac. pyccyaneus auf Natriumsuccinat: Quastel, Whetham, Biochem. J. 18, 531. Dehydrierung von Bernsteinsäure durch Sauerstoff in Gegenwart von gewaschenem Rattenmuskel: Fleisch, Biochem. J. 18, 303. Die Sauerstoffaufnahme bei der Einw. von Leber-Schnitten oder extrahierten Froschmuskeln auf Natriumsuccinat wird durch Natriumarseniat gefördert (Meyerhof, Pflügers Arch. Physiol. 188, 146; C. 1921 III, 892). In dem System Natriumsuccinat, Succinodehydrase, tierische Peroxydase und molekularer Sauerstoff wird Nitrit oxydiert; daraus wird auf Peroxyd-Bildung bei der aeroben Oxydation von Bernwho Minter geschlossen (Thurlow, Biochem. J. 19, 182). Geschwindigkeit der Apfelstursbeinsture geschlossen (Thurlow, Biochem. J. 19, 182). Geschwindigkeit der Apfelstursbildung bei der Einw. von Kaninohenmuskel oder Kaninohenleber auf Natziumsuccinat in Gegenwart von Sauerstoff: Clutterbuck, Biochem. J. 21, 516. Die Überführung von Bernsteinsture in l-Apfelsture durch Muskelgewebe wird durch 0,03% Kaliumcyanid vollständig unterbunden (Cl., Biochem. J. 21, 517). Natziumchlorid hemmt die Bildung von l-Apfelsture aus Bernsteinsture in Gegenwart von Leberbrei (Cl., Biochem. J. 22, 1202).

Bernsteinsäure wird in Gegenwart von Calciumformiat durch Bact. coli unter Bildung von Wasserstoff, Kohlensäure, Ameisensäure, Essigsäure und Milchsäure gespalten (Grey, Pr. roy. Soc. [B] 96, 166; C. 1924 I, 2786). Bei der Vergärung von Ammoniumsuccinat durch Bac. pyocyaneus entstehen Kohlensäure, Propionsäure, wenig Ameisensäure und weitere niedere Fettsäuren (Quastel, Biochem. J. 18, 365). Geschwindigkeit der Vergärung von Ammoniumsuccinat durch Bac. pyocyaneus: Qu., Biochem. J. 18, 368. Bernsteinsäure wird auch vergoren durch Bakterien der Typhus-Coli-Gruppe (Wagner, Z. Hyg. Inf.-Kr. 90, 60; C. 1920 III, 100) sowie durch Bact. diphtheriae (Wolf, Biochem. J. 16, 545). Unter aeroben Bedingungen wird Bernsteinsäure verwertet durch Bact. coli commune, Bac. pyocyaneus, Bac. proteus und Bac. prodigiosus, bei Anaerobiose wachsen die gleichen Bakterien in einem Succinat-Medium nur bei Gegenwart von Nitrat, Bac. prodigiosus auch bei Gegenwart von Fumarat (Quastel, Biochem. J. 18, 374; Stephenson, Whetham, Biochem. J. 18, 504; Qu., Ste., Wh., Biochem. J. 19, 310, 311; Qu., Ste., Biochem. J. 19, 661). Über die Verwertung von Bernsteinsäure durch Bakterien vgl. ferner Qu., Biochem. J. 18, 365; Braun, Cahn-Bronner, Zbl. Bakt. Parasitenk. [I] 86, 10; C. 1921I, 914; Br., Stamatelakis, Kondo, Bio. Z. 145, 390, 394; Br., Mitarb., Bio. Z. 146, 577; Koser, Ber. Physiol. 24, 144; C. 1924 II, 482.

Bei der Einw. von Aspergillus niger auf Calciumsuccinat entstehen dl- und l-Apfelsäure (Stent, Subramaniam, Walker, Soc. 1929, 1990) sowie Malonsäure und Brenztraubensäure (Su., St., Wa., Soc. 1929, 2489). Kaliumsuccinat wird durch Aspergillus fumaricus zu Oxalsäure und Kohlendioxyd vergoren (Schrever, Bio. Z. 202, 135, 144). Abbau durch Mucor stolonifer in Gegenwart von Calciumcarbonat: Butkewitsch, Fedoroff, Bio. Z. 207, 303. Assimilation durch Torulaarten: Berwald, Z. Brauw. 47, 49; C. 1924 II, 2669.

Über die biochemische Umwandlung von Bernsteinsäure in Milchsäure in der Leber des normalen oder pankreasdiabetischen Hundes vgl. Narita, Bio. Z. 164, 252, 255. Über Ausnutzung im Zellstoffwechsel des Kaninchens vgl. Laufberger, Bio. Z. 158, 266.

Schwellenwert des sauren Geschmacks und p_H der Lösung: Taylor, *J. gen. Physiol.* 11, 209; *C.* 1928 I, 2409. Bactericide Wirkung auf Bact. coli: Cheeseworth, Cooper, *J. phys. Chem.* 33, 720. In Abwesenheit von Nitrat hemmt Succinat das Wachstum von Bact. coli auf Lactat-Fumarat-Nährboden (Quastel, Wooldridge, *Biochem. J.* 23, 121, 124). Einfluß von Bernsteinsäure auf die Atmung von Bact. coli: Nicolai, *Bio. Z.* 179, 101. Einfluß von Ammoniumsuccinat auf die Pigmentbildung durch Bac. pyocyaneus: Goris, Liot, *C. r.* 172, 1623. Giftwirkung auf Sporen von Phytophthora colocasiae Rac.: Uppal, *J. agric. Res.* 32, 1084; *C.* 1926 II, 1572. Giftwirkung von Kaliumsuccinat auf Bohnenpflänzchen: Ciamician, Galizzi, *G.* 52 I, 17. Chemotaktische Wirkung von Calciumsuccinat gegenüber den Larven des Schiffsbohrwurms (Teredo Norvegica): Harington, *Biochem. J.* 15, 737. Weitere ausführliche Angaben über das physiologische Verhalten von Bernsteinsäure s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin und Leipzig 1930], S. 921.

Analytisches.

Literatur über Nachweis und Bestimmung von Bernsteinsäure: F. B. STRAUB in E. BAMANN, K. MYRBÄCK, Die Methoden der Fermentforschung [Leipzig 1941], S. 2327; A. BÖMER, O. WINDHAUSEN in A. BÖMER, A. JUCKENACK, J. TILLMANS, Handbuch der Lebensmittelchemie, 2. Bd., 2. Teil [Berlin 1935], S. 1095, 1161; J. SCHMIDT in G. KLEIN, Handbuch der Pflanzenanalyse, Bd. II [Wien 1932], S. 419, 463, 468, 473; F. HOPPE-SEYLER, G. THIERFELDER, Handbuch der physiologisch- und pathologisch-chemischen Analyse, 9. Aufl. von H. THIERFELDER [Berlin 1924], S. 95. Zusammenstellung von Reaktionen für den Nachweis von Bernsteinsäure (allein und in Gegenwart anderer Säuren): ROJAHN, STEUFFMANN, Ar. 1927, 295. Die Pyrrol-Reaktion von NEUBERG (H. 31 [1901], 574) ist nicht charakteristisch für Bernsteinsäure; sie wird auch gegeben von Milchsäure, Brenztraubensäure, Dioxyaceton und Acetaldehyd (Virtanen, Fontell, Ann. Acad. Sci. fenn. [A] 26, Nr. 10, S. 1; C. 1927 I, 153). Nachweis durch Überführung in das Bis-benzalhydrazid (F: 233—234°): Franzen, Helwert, H. 128, 53. Mikrochemischer Nachweis: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 333. Mikro- und histochemischer Nachweis im Pflanzengewebe durch Sublimation unter vermindertem Druck: Klein, Werner, H. 143, 143. Abtrennung aus Gemischen mit Fumarsäure durch Sublimation bei 200° oder durch Behandlung des Säuregemisches in schwefelsaurer Lösung mit heißer Permanganat-Lösung: Butkewitsch, Fedoroff, Bio. Z. 207, 305, 311; aus Gemischen mit Milchsäure durch Fällung aus der Lösung in Methanol mit methylalkoholischer Permanganat-Lösung: Flaschenträger, Löhr, H. 174, 304; aus Gemischen mit Essigsäure, Buttersture, Oxalsäure, Fumarsäure, Apfelsäure, Weinsäure oder Citronensäure als Diphenacylester: Rather, Reid, Am. Soc. 43, 631. — Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arsneibuch, 5. Ausgabe [Berlin 1930], S. 12; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 81.

Konduktometrische Titration von Succinaten mit Salzsäure: Kolthoff, Z. anorg. Ch. 111, 105; mit Silbernitrat: Ko., Fr. 61, 238; mit Quecksilber(II)-perchlorat: Ko., Fr. 61, 341; mit Bleinitrat: Ko., Fr. 61, 375. Potentiometrische Titration mit Natronlauge: AUERBACH, SMOLCZYK, Ph. Ch. 110, 113; BRITTON, Soc. 127, 1900.

Bestimmung von Bernsteinsäure neben Fumarsäure durch Ermittlung des Gesamt-Säuregehalts und Titration der Fumarsäure mit heißer Permanganat-Lösung in schwefelsaurer Lösung: Butkewitsch, Fedoroff, Bio. Z. 207, 305, 311. Bestimmung in Wein auf Grund der Verteilungskoeffizienten der organischen Säuren des Weins zwischen Wasser und Ather: v. Fellenberg, Z. Unters. Nahr.-Genuβm. 43, 217; C. 1922 IV, 64, 677. Zur Bestimmung in Gär-Lösungen fällt man Bernsteinsäure aus der enteiweißten Lösung als Silbersalz und ermittelt den Silbergehalt des Salzes volumetrisch (QUASTEL, Biochem. J. 18, 367). Bestimmung von Bernsteinsäure durch Überführung in l-Apfelsäure durch Muskeloder Lebergewebe und Polarisation der in Lösung befindlichen Apfelsäure nach Zusatz von Uranylacetat: Clutterbuck, Biochem. J. 21, 515. Bestimmung in tierischen Geweben und in Blut: Moyle, Biochem. J. 18, 352; Cl., Biochem. J. 22, 745; HAHN, HAARMANN, Z. Biol. 89, 161; C. 1929 II, 1949.

Salze der Bernsteinsäure (Succinate).

Ammonium succinate: NH₄C₄H₅O₄. D.:: 1,454 (Biltz, Balz, Z. anorg. Ch. 170, 340). Beim Ausschütteln wäßr. Lösungen mit Ather nimmt der Ather Bernsteinsäure auf (Sabalitschka, Schrader, Z. anorg. Ch. 116, 191; Sa., Kubisch, Z. anorg. Ch. 134, 81, 85).

— (NH₄)₄C₄H₄O₄. D^{*}₆: 1,390 (Bi., Ba., Z. anorg. Ch. 170, 339). Dissoziationsdruck bei 111°:
43 mm (Bi., Ba., Z. anorg. Ch. 170, 343). Die Löslichkeit in Wasser wird durch Ammoniak erniedrigt (Weitz, Z. El. Ch. 31, 546). Zusammensetzung der festen und flüssigen Phasen im System Ammoniumsuccinat-Ammoniumchlorid-Wasser: Lanzing, R. 47, 901. Dichte und Brechungsindices wäßr. Lösungen bei 17,5°: DE GARCÍA, An. Soc. quím. arg. 8 [1920], 382. Potentialdifferenzen an der Grenze zwischen wäßrigen und butylalkoholischen Lösungen bei 25°: ALLEMANN, Z. El. Ch. 34, 379.

Natriumsuccinate: Na₂C₄H́₄O₄. Lösungsvermögen wäßr. Lösungen für Isoamylalkohol bei 18°: Traube, Schöning, Weber, B. 60, 1811; für Benzoesäure bei 25°: Larsson, Z. anorg. Ch. 155, 253. Einfluß auf die kritische Lösungstemperatur des Systems Wasser-Phenol: Dubrisay, A. ch. [9] 17, 240. Zusammensetzung der festen und flüssigen Phasen der ternären Systeme von Natriumsuccinat und Methanol mit den Dinatriumsalzen der Fumarsäure und der Maleinsäure bei 200: Timmermans, Bl. Soc. chim. Belg. 36, 180; C. 1927 II, 1427. Dichte wäßr. Lösungen bei 220: DE GARCÍA, An. Soc. quim. arg. 8 [1920], 384. Dichte und Viscosität von Lösungen in Formamid: Davis, Johnson, Publ. Carnegie Inst. Nr. 260 [1918], S. 85. Oberflächenspannung wäßr. Lösungen: Doumanski, Jakowlew, Bl. [4] 43, 977; \Re . 61, 156. Adsorption aus wäßr. Lösungen an Aluminiumhydroxyd: Dou., J., Bl. [4] 43, 976; \Re . 61, 155. Hydrolytische Adsorption von Bernsteinsäure aus Natriumsuccinat-Lösungen durch aktivierte Zuckerkohle: MILLER, Am. Soc. 46, 1155. Brechungsindices wäßr. Lösungen bei 220: DE G. Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Lorenz, Scheuermann, Z. anorg. Ch. 117, 129; von Lösungen in Formamid bei 15°, 25° und 35°: Da., Jo. Potentialdifferenzen an der Grenze zwischen wäßrigen und butylalkoholischen Lösungen bei 25°: ALLEMANN, Z. El. Ch. 34, 379. — Na₂C₄H₄O₄ + 6H₂O. Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 332.

Kaliumsuccinate: KC₄H₅O₄. Beim Ausschütteln wäßr. Lösungen mit Äther nimmt der Äther Bernsteinsäure auf (Sabalitschka, B. 53, 1387; Sa., Schrader, Z. anorg. Ch. 116, 191; Sa., Kubisch, Z. anorg. Ch. 134, 81, 85). — K₂C₄H₄O₄ + aq. Zusammensetzung der festen und flüssigen Phasen der ternären Systeme von Dikaliumsuccinat und Methanol mit den Dikaliumsalzen der Fumarsäure und der Maleinsäure: TIMMERMANS, Bl. Soc. chim. Belg. 36, 183; C. 1927 II, 1427. Dichte und Brechungsindices wäßr. Lösungen bei 19°: DE GAECÍA, An. Soc. quím. arg. 8 [1920], 386. — Kupfer(II)-succinat CuC₄H₄O₄. Fărbt sich beim Erhitzen in Alkohol-Atmosphäre von 270° an braun, zersetzt sich bei 330—355° (Constable, Pr. Cambridge phil. Soc. 23, 433; C. 1927 I, 1409). — Calcium succinat CaC₄H₄O₄ + aq. 100 g Wasser lösen bei 25° 1,287 g wasserfreies Salz (Walker, Soc. 127, 63). Löslichkeit in wäßr. Lösungen von bernsteinsaurem Natrium und Magnesium bei 25°: Wa. — Strontium succinat $SrC_4H_4O_4$. 100 g Wasser lösen bei 25° 0,4098 g (Wa.). Löslichkeit in wäßr. Lösungen von bernsteinsaurem Natrium bei 25°: Wa. — Barium succinat

keit in wäßr. Lösungen von bernsteinsaurem Natrium bei 25°: Wa. — Bariumsuccinat BaC₄H₄O₄. 100 g Wasser lösen bei 25° 0,3978 g Salz (Wa.). Löslichkeit in wäßr. Lösungen von bernsteinsaurem Natrium, Calcium und Magnesium bei 25°: Wa. 1 Tl. Salz löst sich in 2000 Tln. Methanol von 18° (Flaschenträger, Löhr, H. 174, 304).

Quecksilber(I)-succinat $Hg_1C_4H_4O_4$ (Votočer, Kašparer, Bl. [4] 33, 115). — Thallium(I)-succinat $Tl_2C_4H_4O_4$. Plättchen. F: 246—248° (Christie, Menzies, Soc. 127, 2370). — Praseodymsuccinate: $Pr_2(C_4H_4O_4)_3$. Reflexionsspektrum: Erheam, Rây, B. 62, 1512, 1519. — $Pr_2(C_4H_4O_4)_2 + 2H_2O$. Reflexionsspektrum: E., R. — $Pr_2(C_4H_4O_4)_2 + 5H_2O$. Grünlichweißer, anscheinend amorpher Niederschlag. Verliert bei 130° 3 Mol,

bei 160° 5 Mol H₂O (E., R., B. 62, 1517). Reflexionsspektrum: E. R., B. 62, 1512, 1519. Löslich in Säuren. — Bleisuccinat PbC₄H₄O₄. Die bei 18° gesättigte wäßrige Lösung enthält 228 mg/l (AUERBACH, WEBER, Z. anorg. Ch. 147, 75). Löslichkeit in 0,01 und 0,1 n-Salzsäure, in 1- und 4-molarer Natrium- und Ammoniumacetat-Lösung und in 50 gew.-%igem Alkohol bei 18°: Au., WE. p_H der bei 18° gesättigten wäßrigen Lösung: 6,1 (Au., WE.). — Uranylsuccinat UO₂C₄H₄O₄ + 2H₅O. Gelb, mikrokrystallin. Beim Erhitzen bis auf 300° tritt Farbvertiefung ein, beim Glühen hinterbleibt ein Gemisch von schmutziggrünem und ziegelgelbem Oxyd (A. MÜLLER, Z. anorg. Ch. 109, 240, 250). Schwer löslich in Wasser, unlöslich in Alkohol, Äther und Aceton. — Komplexe Kobalt(III)-succinate: [Co(NH₃)₅(H₂O)](C₄H₄O₄)(NO₃). B. Beim Erwärmen von [Co(NH₃)₅(CO₃)](NO₃) + H₂O mit 1 Mol Bernsteinsäure in Wasser auf 60° (DUFF, Soc. 123, 569, 570). Rötliche Krystalle. Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D. Soc. 123, 573. Gibt in Kaliumchromat-Lösung einen braunen Niederschlag von [Co(NH₄). bei 160° 5 Mol H₂O (E., R., B. 62, 1517). Reflexionsspektrum: E. R., B. 62, 1512, 1519. D., Soc. 123, 573. Gibt in Kaliumchromat-Lösung einen braunen Niederschlag von [Co(NH₃)₅ $(CrO_4)[(NO_3)](D_1, Soc. 123, 571).$ $= [Co(NH_3)_5(H_2O)]_3(C_4H_4O_4)(NO_3)_4$. B. Aus $[Co(NH_3)_5(CO_3)]_4$ $= (NO_3) + H_2O$ durch Erwärmen mit verd. Salpetersäure, Neutralisieren mit 2n-Natronlauge und Erwarmen mit 1 Mol Natriumsuccinat auf 450 (Duff, Soc. 123, 561, 567). Braunrote Krystalle. Schwer löslich in kaltem, leichter in heißem Wasser (D., Soc. 123, 567). Elektrische Leitfähigkeit in Wasser bei 25°: D., Soc. 123, 573. Die warme wäßrige Lösung gibt mit Kaliumchromat einen braunen Niederschlag von Chromatopentamminkobalt(III) nitrat [Co(NH₂)₅(CrO₄)](NO₃) (D., Soc. 123, 567).

Funktionelle Derivate der Bernsteinsäure.

Bernsteinsäuremonomethylester, Monomethylsuccinat $C_5H_8O_4=HO_2C\cdot CH_2\cdot CH_2\cdot CO_2\cdot CH_3$ (H 608; E I 263). B. Beim Erhitzen eines Gemisches von Bernsteinsäure und Bernsteinsäuredimethylester auf ca. 2000 und Fraktionierung des Reaktionsprodukts unter vermindertem Druck (FOURNEAU, SABETAY, Bl. [4] 45, 841). — F: 56° ; Kp_{4} : $121-123^{\circ}$ (F., S.). — Geht beim Erhitzen auf 200° teilweise in Bernsteinsäure und Bernsteinsäuredimethylester über (F., S.). Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff bei 25°: BHIDE, SUDBOROUGH, J. indian Inst. Sci. 8 [A], 96; C. 1926 I, 80. Geschwindigkeit der Verseifung durch verdünnte wäßrige Alkalien bei 25°: SKRABAL, SINGER, M. 41, 351, 354. Die Verseifung durch verd. Natronlauge bei 18° wird durch Blutkohle verzögert (van Duin, R. 47, 724).

Bernsteinsäuredimethylester, Dimethylsuccinat C₆H₁₀O₄ = CH₃·O₂C·CH₂·CH₂·CO₃·CH₃ (H 609; E I 263). B. Beim Schütteln von Bernsteinsäurediäthylester mit Methanol in Gegenwart von wenig Kaliummethylat (REIMER, DOWNES, Am. Soc. 43, 951).

E: 18,2° (VISEUR, Bl. Soc. chim. Belg. 35, 428; C. 1927 I, 1543), 18,7° (VERKADE, COOPS, HARTMAN, R. 45, 600). F: 20° (kort.) (CEDER, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 13; C. 1927 I, 2398). Kp_{764*6}: 195,2—195,3° (VE., C., H., R. 45, 589); Kp_{760*6}: 196,4° (LECAT, R. 45, 622; Ann. Soc. scient. Bruxelles 45 I [1926], 289; 48 I [1928], 57), 195,9—196° (VI.); Kp. 80 0° (VE. C. H.) Dis. 4 1253 · Dis. 4 1219 · Dis. 4 14196 · Dis. 4 1410 (VI.) Viscosität. Kp₁₁: 80,0° (Ve., C., H.). D₄:: 1,1253; D₄:: 1,1219; D₅:: 1,1196; D₅:: 1,1140 (VI.). Viscosität bei 20°: 0,02816 g/cm sec (C., Ann. Univ. fenn. Abo [A] 2, Nr. 4, S. 7). Verbrennungswärme von flüssigem Bernsteinsäuredimethylester bei konstantem Volumen: 706,8 kcal/Mol (VE., C., H.; VE., C., R. 47, 608). Zum Absorptionsspektrum im Ultrarot vgl. Lecomte, C. r. 178, 1700, 2074. Kryoskopisches Verhalten in Zinn(IV)-bromid: HIEBER, A. 439, 131. Thermische Analyse der binären Systeme mit Fumarsäuredimethylester und Maleinsäuredimethylester: VISEUE, Bl. Soc. chim. Belg. 35, 431. Bernsteinsäuredimethylester bildet azeotrope Gemische mit n-Octylalkohol (Kp₇₆₀: 192,5°; 50 Gew.-% Bernsteinsäuredimethylester) (L., R. 45, 622), Terpinen (Kp₇₆₀: 178,0°; 32 Gew.-% Bernsteinsäuredimethylester) (L., Ann. Soc. scient. Bruxelles 481, 115), d-Limonen (Kp₇₆₀: 175,5°; 26 Gew.-% Bernsteinsäuredimethylester) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289) und Camphen (Kp₇₆₀: ca. 159°) (L., Ann. Soc. scient. Bruxelles 451, 289°) (L., Ann. So Soc. scient. Bruxelles 48 I, 57). Oberflächenspannung einer Lösung in Wasser bei 23°: RENOVIST, Skand. Arch. Physiol. 40, 123; C. 1920 III, 425.

Geschwindigkeit der stufenweisen Verseifung durch wäßr. Alkalien bei 25°: SKRABAL, SINGER, M. 41, 352, 356. Liefert beim Schätteln mit absol. Alkohol in Gegenwart von wenig Kaliumāthylat Bernsteinsāurediāthylester (Reimer, Downes, Am. Soc. 43, 951). — Verbindung mit Zinn(IV)-bromid C₄H₁₀O₄+SnBr₄. F: 42° (Hieber, A. 439, 130). Kryoskopisches Verhalten in Äthylenbromid: H. — Verbindung mit Trichloressigsäure C₄H₁₀O₄+2CCl₂·CO₄H. F: 8,3° (Kendall, Booge, Soc. 127, 1773). Dissoziationsgrad beim Schmelzen: K., B., Soc. 127, 1768. Kryoskopisches Verhalten in Bernsteinsäuredimethylester und in Benzol: K., B.

Bernsteinsäuremonoäthylester, Monoäthylsuccinat $C_0H_{10}O_4 = HO_1C \cdot CH_2 \cdot CH_3 \cdot CO_3 \cdot C_2H_3$ (H 609; E I 263). B. Neben Bernsteinsäurediäthylester bei längerer Aufbewahrung eines Gemisches von Bernsteinsäure und Alkohol bei Zimmertemperatur, schneller in Gegenwart von sehr wenig konz. Schwefelsäure; man entfernt das bei der Reaktion entstandene Wasser als ternares azeotropes Gemisch Wasser + Alkohol + Tetrachlorkohlenstoff (ContzenCROWET, Bl. Soc. chim. Belg. 35, 173; C. 1926 II, 1126). Bei längerem Erhitzen eines Gemisches von Bernsteinsäure und Bernsteinsäurediäthylester auf 180-200 (Badtemp.) und Fraktionierung des Reaktionsprodukts unter vermindertem Druck (FOURNEAU, SABETAY, Bl. [4] 48, 861). — E: 8° (C.-C.). Kp₁₇: 146—149° (F., S.); Kp₃: 119° (C.-C.). \dot{D}_{4}^{o} : 1,1611; \dot{D}_{7}^{m} : 1,1468 (C.-C.); \dot{D}_{1}^{a} : 1,148 (F., S.). \dot{n}_{α}^{m} : 1,4303; \dot{n}_{β}^{m} : 1,4327; \dot{n}_{β}^{m} : 1,4381; \dot{n}_{γ}^{m} : 1,4424 (C.-C.); nⁿ: 1,4323 (F., S.). Viscosität bei 20°: 0,28 g/cm sec (C.-C.). Ultrarotes Absorptionsspektrum zwischen 0,5 μ und 14 μ: Weniges, *Phys. Rev.* [1] 31 [1910], 420 Tafel III.

Das Silbersalz liefert bei der Einw. von Jod in Äher eine Verbindung C₁₈H₁₈O₂IAg,

die beim Erhitzen auf 150° in Gegenwart von Quarzsand Bernsteinsäure, Bernsteinsäure-monoäthylester, Bernsteinsäurediäthylester (?), Maleinsäuremonoäthylester, Bernsteinsäureäthylesteräthylester-[β-carbäthoxy-āthylester] (Syst. Nr. 222), Kohlendioxyd und andere Produkte gibt
(WIELAND, FISCHER, A. 446, 64). — AgC₆H₂O₄. Nadeln. Löst sich in Wasser bei 25° zu 2,18% (Wie., F., A. 446, 63).

Bernsteinsäurediäthylester, Diäthylsuccinat $C_3H_{14}O_4 = C_2H_5 \cdot O_3C \cdot CH_2 \cdot CH_2 \cdot CO_3 \cdot C_2H_5 \cdot (H \cdot 609; E I 263)$. B. In geringer Menge beim Erhitzen von Chloressigsäureäthylester und Äthylacetat in Gegenwart von Chrompulver auf 120—130° (CHAKRABARTY, DUTT, J. indian chem. Soc. 5, 517; C. 1929 I, 500). Bei der Elektrolyse des Kaliumsalzes des Malonsäuremonoäthylesters in Wasser (BROWN, WALKER, A. 261 [1891], 115; ROBERTSON, Soc. 197, 2057). Zur Bildung aus Bernsteinskure und Albehol in Gesenwart von Sch-efelben. 127, 2057). Zur Bildung aus Bernsteinsäure und Alkohol in Gegenwart von Schwefelsäure, Kaliumdisulfat oder Aluminiumsulfat vgl. Senderens, Aboulenc, A.ch. [9] 18, 161; Vogel, Soc. 1928, 2021; Kotake, Fujita, Bl. phys. chem. Res. Tokyo 1, 65; C. 1928 II, 1545. Beim Schütteln von Bernsteinsäuredimethylester mit absol. Alkohol in Gegenwart von wenig Kaliumäthylat (Reimer, Downes, Am. Soc. 43, 951). Neben Apfelsäurediäthylester bei der Hydrierung von Oxalessigester in Äther in Gegenwart von Platinschwarz (FAILLEBIN, A. ch. [10], 4, 480). — Darst.: S. P. Schotz, Synthetic organic compounds [London 1925], S. 83.

Physikalische Eigenschaften. F: —22° (VISEUR, Bl. Soc. chim. Belg. 35, 428; C. 1927 I, 1543), —20,5° (CONTZEN-CROWET, Bl. Soc. chim. Belg. 35, 188; C. 1926 II, 1126), C. 1927 I, 1043), —20,5° (CONTZEN-CROWET, Bl. Soc. Chim. Beig. 36, 185; C. 1928 II, 1120), —21,3° (T., Bl. Soc. chim. Belg. 31, 392; 36, 506; C. 1928 III, 1137; 1928 I, 26), —21,8° (CEDER, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 13; C. 1927 I, 2398). Kp₇₈₀: 217,25° (Leoat, Ann. Soc. scient. Bruxelles 45 I [1926], 290; 47 I [1927], 154), 217,3° (korr.) (C.-C.), 217,7° (T., Bl. Soc. chim. Belg. 36, 506), 217,7—217,8° (korr.) (VI.); Kp₁₄: 103° (Vogel, Soc. 1928, 2021); Kp_{0,3}: 55° (Faillebin, A. ch. [10] 4, 481). D⁰₂: 1,0599; D⁵₂: 1,0406 (C.-C.); D¹⁵₂: 1,0456 (VI.); D^{15,5}₁: 1,0454 (V. Auwers, Ottens, B. 57, 442); D^{17,6}₂: 1,0384 (Vo.). Viscositāt bei 20°: 0,02755 g/cmsec (C., Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 7), 0,0277 g/cmsec (C.-C.); Zur. Viscositāt val. a Vollānder Walter Ph. Ch. 118, 15. Viscosität vgl. a. Vorländer, Walter, Ph. Ch. 118, 15. n₀^{15,5}: 1,4224 (Fai.); n_α^{15,5}: 1,4201; $n_{He}^{is.5}$: 1,4223; $n_{B}^{is.5}$: 1,4274; $n_{Y}^{is.5}$: 1,4316 (v. Au., O.); n_{α}^{io} : 1,4179; n_{D}^{io} : 1,4201; n_{B}^{io} : 1,4251; n_{Y}^{io} : 1,4293 (C.-C.); $n_{D}^{io.5}$: 1,4193 (Vo.). Ultrarotes Absorptionsspektrum zwischen 0,5 und 14 μ : WENIGER, Phys. Rev. [1] 31 [1910], 420 (Tafel III); zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 140, 202.

Thermische Analyse der binären Systeme mit Fumarsäurediäthylester und Maleinsäurediäthylester: VISEUR, Bl. Soc. chim. Belg. 35, 432. Bernsteinsäurediäthylester bildet azeotrope Gemische mit Naphthalin (Kp_{7e0}: 216,3°; 61,5 Gew.-% Bernsteinsäurediäthylester) (Lecat, Ann. Soc. scient. Bruxelles 45 I [1926], 290), Menthol (Kp_{7e0}: 215°) (Le., Ann. Soc. scient. Bruxelles 47 I [1927], 154), 4-Chlor-phenol (Kp_{7e0}: ca. 231,8°) (Le., Ann. Soc. scient. Bruxelles 45 I, 292) und Athylphenylketon (Kp_{7e0}: 216,7°; 67 Gew.-% Bernsteinsäurediäthylester (Le., Ann. Soc. scient. Bruxelles 45 I, 290). Diothe wäßr. Lösungen bei 20°: KNO. WANN. W. Ann. Soc. Scient. Bruxelles 45 I, 290). King, Wampler, Am. Soc. 44, 1899. Oberflächenspannung wäßr. Lösungen bei 18°: EDWARDS, Soc. 127, 746; bei 20°: King, W. Lichtsbsorption im Ultraviolett in Hexan und

Einfluß von Wasser auf den Verlauf der Extinktionskurve: Scheibe, Z. El. Ch. 34, 498. Chemisches und biochemisches Verhalten. Verseifung durch Behandlung mit festem Kaliumhydroxyd: Tassilly, Belot, Descombes, C.r. 186, 1848. Geschwindigkeit der Reaktion mit Bromwasserstoff in Eisessig bei 16—189: Tronow, Mitarb., Ж. 59, 554; C. 1928 I, 1016. Bei Belichtung einer Lösung von Chlorpikrin in Bernsteinsäurediäthylester entstehen hauptsächlich Bernsteinsäure und sehr wenig Oxalsäure (PIUTTI, BADOLATO, R. A. L. [5] 33 I, 476). Beim Schütteln mit Kaliummethylat-Lösung entsteht Bernstein-

sauredimethylester (Reimer, Downes, Am. Soc. 48, 951). Liefert beim Erwärmen mit Natriumäthylat in Alkohol außer Succinylobernsteinsäuredisthylester 2.5- Dioxy-terephthalssuredisthylester (McLiacoi, G. 57, 914). Liefert bei der Kondensation mit Fluorenon und folgendem Anhydrisieren der erhaltenen Fulgensäuren 3 Bisdiphenylenfulgide der nebenstehenden Formel (Syst. Nr. 2488) (STOBBE, STEINBERGER, B. 55, 2236

Anm.). Beim Behandeln mit 4-Athoxy-phenylmagnesiumbromid in Athory und nachfolgendem Anhydrage and Anhyd

dem Kochen des Reaktionsprodukts mit Eisessig entstehen 1.1.4.4-Tetrakis-[4-sthoxy-

phenyl]-butadien-(1.3) und eine krystallinische Verbindung vom Schmelzpunkt 262° (Brand, Horm, J. pr. [2] 115, 378). Liefert bei der Einw. auf 1 Mol Pyrrylmagnesiumjodid in Äther β -[α -Pyrroyl]-propionsäure-äthylester (Pieroni, R. A. L. [5] 32II, 178); mit überschüssigem Pyrrylmagnesiumjodid in Äther bilden sich α . β -Di- α -pyrroyl-äthan und eine Verbindung $C_{30}H_{32}O_{2}N_{4}$ (braunes Pulver) (Godnew, Naryschkin, J. pr. [2] 121, 371).

Wird beim Behandeln mit Schweineleberlipase in 0,05—0,01 n-wäßr. Lösung bei gewöhnlicher Temperatur wahrscheinlich in Bernsteinsäuremonoäthylester übergeführt (Christman, Lewis, J. biol. Chem. 47, 498); Geschwindigkeit dieser Reaktion: Chr., L.; Hyde, L., J. biol. Chem. 56, 10. Schädliche Wirkung auf junge Bohnenpflanzen: Ciamician, Galizzi, G. 52 I, 17.

Additionelle Verbindungen. $C_8H_{14}O_4 + 2CaCl_2$. Nadeln (Wagner-Jaurego, M. 53/54, 809). — $C_8H_{14}O_4 + CaBr_2$. Krystalle (W.-J.). — $2C_8H_{14}O_4 + CaJ_2$. Gelbliche, hygroskopische, lichtempfindliche Krystalle (W.-J.). — $C_8H_{14}O_4 + SnCl_4$. Krysokopisches Verhalten in Athylenbromid und in Benzol: Hieber, A. 439, 120.

Bernsteinsäure-bis- $[\beta$ -chlor-äthylester], Bis- $[\beta$ -chlor-äthyl]-succinat $C_8H_{18}O_4Cl_2$ = $CH_2Cl\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_$

Bernsteinsäuremonopropylester, Monopropylsuccinat $C_7H_{12}O_4 = HO_3C \cdot CH_2 \cdot CH_2 \cdot CO_3 \cdot CH_2 \cdot C_2H_5$. Sehr dicke Flüssigkeit. F: 15° (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 176; C. 1926 II, 1126). Kp₃: 126°. D⁰ (unterkühlt): 1,1260; D[∞]: 1,1071. n^{∞}_{α} : 1,4320; n^{∞}_{D} : 1,4343; n^{∞}_{B} : 1,4399; n^{∞}_{D} : 1,4444.

Bernsteinsäuredipropylester, Dipropylsuccinat $C_{10}H_{18}O_4 = C_2H_5 \cdot CH_2 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot CH_2 \cdot CO_2 \cdot CH_3 \cdot CO_2 \cdot CH_3 \cdot CO_2 \cdot CH_3 \cdot CO_3 \cdot CH_3

Bernsteinsäuremonobutylester, Monobutylsuccinat $C_8H_{14}O_4=HO_2C\cdot CH_3\cdot CH_3\cdot CO_3\cdot [CH_3]_3\cdot CH_3\cdot F$; 8,5° (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 177; C. 1926 II, 1126). Kp₃: 136,5° (unter geringer Zersetzung). D^o (unterkühlt): 1,0910; D^o: 1,0732. n^o: 1,4336; n^o: 1,4360; n^o: 1,4419; n^o: 1,4467. Löslich in organischen Lösungsmitteln, schwer löslich in Wasser. — Geht beim Destillieren unter 12 mm Druck in Bernsteinsäure und Bernsteinsäuredibutylester über.

Bernsteinsäuredibutylester, Dibutylsuccinat $C_{12}H_{23}O_4 = CH_3 \cdot [CH_2]_3 \cdot O_2C \cdot CH_3 \cdot CH_4 \cdot CO_3 \cdot [CH_2]_3 \cdot CH_2$. F: $-29,25^{\circ}$ (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 26). Kp₇₆₀: 274,5° (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 189; C. 1926 II, 1126; T.); Kp₁₈: 150,5°; Kp₁₄: 142,5°; Kp₄: 108° (C.-C.). D_4° : 0,9963; D_4° : 0,9760 (C.-C.). n_{α}° : 1,4273; n_{β}° : 1,4298; n_{β}° : 1,4357; n_{β}° : 1,4406 (C.-C.).

Bernsteinsäurediisobutylester, Diisobutylsuccinat $C_{19}H_{12}O_4 = (CH_3)_2CH \cdot CH_2 \cdot O_3C \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot CH_$

Bernsteinsäure-mono-n-amylester, Mono-n-amyl-succinat $C_9H_{16}O_4=HO_9C\cdot CH_9\cdot CH_2\cdot CO_3\cdot [CH_2]_4\cdot CH_2\cdot F: 17,2^0$ (Contentable Contentable Cont

Bernsteinsäure-di-n-amylester, Di-n-amyl-succinat $C_{14}H_{26}O_4 = CH_3 \cdot [CH_2]_4 \cdot O_2C \cdot CH_3 \cdot CH_2 \cdot CO_3 \cdot [CH_2]_4 \cdot CH_3$. F: —9° (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 190; C. 1926 II, 1126; Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 26). Kp_{16} : 171,5° (C.-C.; T.); Kp_3 : 146° (C.-C). D_4^m : 0,9613 (C.-C). n_{α}^m : 1,4330; n_{β}^m : 1,4355; n_{β}^m : 1,4414; n_{γ}^m : 1,4461 (C.-C).

Bernsteinsäure-di-akt.-amylester $C_{16}H_{26}O_4 = C_3H_5 \cdot CH(CH_3) \cdot CH_2 \cdot O_3C \cdot CH_3 \cdot$

Bernsteinsäure-mono-[1-2-methyl-butyl-(3)]-ester, saures Succinat des l-Methylisopropylcarbinols $C_9H_{16}O_4=HO_2C\cdot CH_2\cdot CH_2\cdot CO_2\cdot CH(CH_3)\cdot CH(CH_3)_2$. Öl. $[\alpha]_p:-11,1^o$ (Chloroform; c=5) (Pickard, Kenyon, Soc. 101 [1912], 631). — Brucinsalz $C_{23}H_{26}O_4N_2+C_9H_{16}O_4$. Krystalle (aus Aceton). F: 84–86°. $[\alpha]_p:-43,9^o$ (Alkohol; c=5).

Bernsteinsäurediisoamylester, Diisoamylsuccinat $C_{14}H_{26}O_4 = C_5H_{11} \cdot O_2C \cdot CH_2 \cdot CO_2 \cdot C_4H_{11}$ (H 611; E I 264). B. Zur Bildung aus Bernsteinsäure und Isoamylalkohol in Gegenwart von Schwefelsäure, Aluminiumsulfat oder Kaliumdisulfat vgl. Senderens, Aboulenc, A. ch. [9] 18, 161.

Bernsteinsäure - methylester-[d-octyl-(2)] - ester, Methyl-[d-octyl-(2)]-succinat $C_{13}H_{24}O_4=CH_3\cdot O_2C\cdot CH_2\cdot CH_2\cdot CO_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3$. B. Neben Bernsteinsäure-di-[d-octyl-(2)]-ester beim Erhitzen von Bernsteinsäuredimethylester mit d-Octanol-(2) auf 175—180° oder im Autoklaven auf 195—205° (HALL, Soc. 123, 36, 40, 42, 43). — Fruchtartig riechende Flüssigkeit. Kp₁₅: 163—164°. Di zwischen 20° (0,9672) und 120° (0,8822): H. nb. 1,4305; nb. 1,4323; nb. 1,4399. [a]b. -3,54° (unverdimnt); -1,3° (Alkohol; c=5); +12.7° (Schwefelkohlenstoff; c=5). Rotationsdispersion der unverdümnten Substanz zwischen 20° und 120° und von Lösungen in Alkohol und Schwefelkohlenstoff bei 20° für $\lambda = 589,3-435,8$ m μ : H. — Bei der Verseifung wird d-Octanol-(2) zurückerhalten.

Bernsteinsäure - äthylester - [d-octyl-(2)] - ester , Äthyl - [d-octyl-(2)] - succinat $C_{14}H_{26}O_4=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot CO_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3$. B. Neben Bernsteinsäuredi-[d-octyl-(2)]-ester beim Erhitzen von Bernsteinsäurediäthylester mit d-Octanol-(2) auf 175—180° oder im Autoklaven auf 195—205° (Hall, Soc. 123, 36, 40, 42, 43). — Fruchtartig riechende Flüssigkeit. Kp₁₆: 160—162°. D; zwischen 20° (0,9600) und 120° (0,8740): H. $n_0^{\text{m.s.}}$: 1,4308; Brechungsexponenten für weitere Wellenlängen zwischen 643,8 m μ (1,4289) und 435,8 m μ (1,4402) bei 25,6°: H. [α] $_{\text{m.s.}}^{\text{m.s.}}$: +5,33° (unverdünnt); [α] $_{\text{m.s.}}^{\text{m.s.}}$: +1,9° (Alkohol; c = 5); [α] $_{\text{m.s.}}^{\text{m.s.}}$: -13,3° (Schwefelkohlenstoff; c = 5). Rotationsdispersion der unverdünnten Substanz zwischen 20° und 120° und von Lösungen in Alkohol und Schwefelkohlenstoff bei Zimmertemperatur für λ = 643,8—435,8 m μ : H. — Bei der Verseifung wird d-Octanol-(2) zurückerhalten.

Bernsteinsäure-di-[d-octyl-(2)]-ester, Di-[d-octyl-(2)]-succinat $C_{20}H_{38}O_4 = CH_3 \cdot [CH_2]_5$, $CH(CH_3) \cdot O_2C \cdot CH_2 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5$, CH_3 . B. Beim Erhitzen von Bernsteinsäuredimethylester oder Bernsteinsäurediäthylester mit d-Octanol-(2) auf 175—180° oder im Autoklaven auf 195—205° (Hall, Soc. 123, 36, 37, 40, 43). Bei der Einw. von d-Octanol-(2) auf Succinylchlorid (H.). — Schwach riechende Flüssigkeit. Kp₁₆: 208—211°. D₄ zwischen 19.7° (0,9175) und 162,5° (0,8072): H. $n_1^{p_2}$. 1,4367; Brechungsexponenten für weitere Wellenlängen zwischen 643,8 m μ (1,4349) und 435,8 m μ (1,4463) bei 25,8°: H. $[\alpha]_{\infty,s}^{p_2}$: +7,63° (unverdünnt); $[\alpha]_1^{p_1}$: +1,8° (Alkohol; c=5); $[\alpha]_2^{p_2}$: —21,2° (Schwefelkohlenstoff; c=5). Rotationsdispersion der unverdünnten Substanz zwischen 19,2° und 144° und von Lösungen in Alkohol und Schwefelkohlenstoff bei Zimmertemperatur für $\lambda=643.8$ bis 435,8 m μ : H. — Bei der Verseifung wird d-Octanol-(2) zurückerhalten.

Dimeres Äthylensuccinat $C_{12}H_{16}O_8 = \frac{H_2C \cdot CO \cdot O \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot CH_2}{H_2C \cdot CO \cdot O \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot CH_2}$ (?). Zur Konstitution vgl. Carothers, Dorough, Am. Soc. 52 [1930], 718, 5307). — B. In kleiner Menge beim Erhitzen von polymerem Äthylensuccinat (s. u.) auf 340—390° bei 3—6 mm Druck (Tilitschelew, \mathcal{H} . 57, 147; C. 1926 I, 2667). — Das Mol.-Gew. wurde kryoskopisch in Eisessig und Benzol und ebullioskopisch in Äthylenchlorid bestimmt (T.; C., D.). Krystalle (aus Alkohol). F: 129—130° (T.), 130° (C., D.). Bei der Verseifung entstehen Äthylenglykol und Bernsteinsäure (C., D.).

Polymeres Äthylensuccinat $[C_6H_8O_4]_x = [\cdots 0 \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO \cdot \cdots]_x$ (vgl. H 612). Zur Konstitution vgl. Carothers, Arvin, Am. Soc. 51, 2560; C., Dorough, Am. Soc. 52 [1930], 711; C. Ellis, The chemistry of synthetic resins [New York 1935], S. 871. — Die polymeren Äthylensuccinate sind keine einheitlichen chemischen Individuen, sondern Gemische von Polymeren verschiedenen Polymerisationsgrades; die Durchschnittspolymerisationsgrade schwanken je nach den Herstellungsbedingungen zwischen 7 und 23, die ebullioskopisch in Athylenchlorid bestimmten Molekulargewichte zwischen 1000 und 3400 (Carothers, Dorough, Am. Soc. 52, 715).

B. Beim Erhitzen von Bernsteinsäure mit Athylenglykol auf 160—180°, zuletzt im Vakuum von 0,2 mm auf 200—250° (Carothers, Arvin, Am. Soc. 51, 2560; C., Dorough, Am. Soc. 52, 712, 713). — Doppelbrechende, hygroskopische Krystalle (aus Alkohol oder aus Chloroform + Ather). Der Schmelzpunkt ist von der Herstellungsart und der Schnelligkeit des Erhitzens abhängig; er schwankt zwischen 73° und 108° und steigt mit dem Polymerisationsgrad (C., A.; C., D.). Wird beim Reiben elektrisch (C., A.). Löslich in Chloroform, schwer löslich in Aceton, Essigsäure, Essigester, Acetanhydrid und Bernsteinsäurediäthylester

in der Hitze, fast unlöslich in Wasser, Alkohol, Äther, Benzol und Petroläther (C., A.; C., D.).

— Beim Erhitzen auf 350—355° werden Äthylen, Acetaldehyd, Bernsteinsäureanhydrid, Kohlendioxyd und andere Produkte erhalten (Tilitscheden, X. 57, 148; C. 1926 I, 2667); bei 340—390° unter 3—6 mm Druck entstehen Bernsteinsäureanhydrid, wenig dimeres Äthylensuccinat (S. 552) und andere Produkte (T., X. 57, 147; C., D.). Phosphortribromid in siedendem Chloroform wirkt wenig ein (C., D.). Bei der Verseifung entstehen Äthylenglykol und Bernsteinsäure (C., A.). Reagiert anscheinend nicht mit siedendem Acetanhydrid; ebenso erfolgt keine Reaktion mit Phenylisocyanat oder Naphthylisocyanat (C., D.). Reaktion mit 4-Brombenzoesäure-anhydrid bei 175—185°: C., D. — Verwendung zur Herstellung von Gespinstfasern und Kunstharzen: C. Ellis, The chemistry of synthetic resins [New York 1935], S. 871; I. Rinse in R. Houwink, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 300.

Polymeres Trimethylensuccinat $[C_7H_{10}O_4]_x = [\cdots O \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH_2

Polymeres Hexamethylensuccinat $[C_{10}H_{16}O_4]_x = [\cdots O \cdot CH_2 \cdot (CH_2)_4 \cdot CH_2 \cdot O \cdot CO \cdot CH_2 \cdot CH_3 \cdot CO \cdot CH_3 \cdot CH_3 \cdot CO \cdot CH_3 \cdot CO \cdot CH_3 \cdot CO \cdot CH_3 \cdot$

Polymeres Dekamethylensuccinat $[C_{14}H_{24}O_4]_x = [\cdots O \cdot CH_2 \cdot (CH_2)_8 \cdot CH_2 \cdot O \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO \cdot CH_2 \cdot$

Polymeres Succinylperoxyd $[C_4H_4O_4]_x = [O \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO \cdot O]_x$ (H 612). B.

Zur Bildung aus Succinylchlorid und Natriumperoxyd in Eiswasser vgl. Fichter, Fritsch, Helv. 6, 330. — Wurde nicht rein erhalten. Amorphes Pulver. — Liefert bei der Explosion in einer rasch auf 180° erhitzten Stahlbombe Äthylen, Kohlenoxyd, Kohlendioxyd, Sauerstoff und mitunter Methan (F., F.). Bei der Zersetzung in siedendem Xylol entstehen Äthylen, Kohlendioxyd, Sauerstoff und wenig Bernsteinsäure (F., F.). Reaktion mit Phenylmagnesiumbromid: Gilman, Adams, Am. Soc. 47, 2818.

Acetyl - [β - carboxy - propionyl] - peroxyd, "Acetyl peroxyd bernsteinsäure" $C_6H_8O_6=CH_3\cdot CO\cdot O\cdot CO\cdot CH_2\cdot CH_2\cdot COOH$. B. Aus Succinmonopersäure (H 2, 613) und Acetanhydrid bei Zimmertemperatur (Brunner, Helv. 8, 653). — Krystalle. F: 72—75°. Verpufft bei 120°. Leicht löslich in Alkohol, schwer in Äther, unlöslich in Wasser. — Liefert bei der Zersetzung in einer rasch auf 180° erhitzten Bombe Buttersäure und Kohlendioxyd.

Bis-[β-carboxy-propionyl]-peroxyd, saures Succinperoxyd $C_8H_{10}O_8=[HO_3C\cdot CH_2\cdot CH_2\cdot CO\cdot O-]_2$ (H 613). Liefert bei schnellem Erhitzen auf 280° Adipinsäure und Kohlendioxyd (Reijnhart, R. 46, 71).

Bernsteinsäure-methylester-chlorid, β -Carbomethoxy-propionylchlorid $C_6H_7O_8Cl = CH_3 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot COCl$. B. Aus Bernsteinsäuremonomethylester und Thionylchlorid (G. M. Robinson, R. Robinson, Soc. 127, 180; Clutterbuck, Raper, Biochem. J. 19, 392). — Flüssigkeit. Kp₁₈: 93° (Rob., Rob.; Cl., R.).

Bernsteinsäuredichlorid, Succinylchlorid C₄H₄O₂Cl₂= ClOC·CH₂·CH₂·COCl (H 613; E I 264). Zur Konstitution vgl. Garner, Sugden, Soc. 1927, 2878. — B. Aus trimerer β-Aldehydo-propionsäure (Syst. Nr. 280 a) und 2 Mol Phosphorpentachlorid auf dem Wasserbad (Carrière, A. ch. [9] 17, 90). Zur Bildung aus Bernsteinsäure und Phosphorpentachlorid vgl. Curtus, Hechtenberg, J. pr. [2] 105, 302 Anm. 2. — F: 18,5° (korr.) (G., S., Soc. 1927, 2880). Kp₃₀: 95° (korr.) (G., S.); Kp₁₈: 95—96° (Ca.). D; zwischen 21° (1,371) und 83,5° (1,301): G., S. Oberflächenspannung zwischen 20,0° (38,75 dyn/cm) und 79,5° (32,21 dyn/cm): G., S. Parachor: G., S.; Mumford, Phillips, Soc. 1929, 2119. — Beim Eintropfen von Brom in auf 140—150° erhitztes Succinylchlorid nach R. Meyer, Marx (B. 41 [1908], 2465) bilden

sich die Dichloride der dl-α.α'-Dibrom-bernsteinsäure und meso-α.α'-Dibrom-bernsteinsäure (Ing, Perkin, Soc. 125, 1815, 1822). Reagiert mit flüssigem Schwefelwasserstoff bei Zimmertemperatur unter Bildung eines gelben bis roten flüssigem Produkts (Bergeson, Wilkinson, Am. Soc. 51, 1455). Gibt beim Behandeln mit Dinatriumsalicylat in siedendem Ather die Verbindung der nebenstehenden Formel (Syst. Nr. 2960) (Kaufmann, Voss, B. 56, 2513). Succinylchlorid liefert mit Glycinäthylester in Benzol unter Kühlung Bernsteinsäure-bis-[carbāthoxy-methylamid] (Syst. Nr. 364) (Cu., H., J. pr. [2] 105, 313); beim Erhitzen mit Glycinäthylester-hydrochlorid in Gegenwart von Soda (Radenhausen, J. pr. [2] 52 [1895], 440) oder mit 1 Mol Glycinäthylester-hydrochlorid allein in Benzol (Cu., H., J. pr. [2] 105, 302) entsteht dagegen Succinimidoessigsäure-äthylester.

H 613, Z. 21 v. u. statt ,,(s. S. 607)" lies ,,(s. S. 608)".

Bernsteinsäuremonoamid, Succinamidsäure $C_4H_7O_3N = HO_3C \cdot CH_2 \cdot CH_3 \cdot CO \cdot NH_3$ (H 613; E I 264). Elektrolytische Dissoziationskonstante k als Säure bei 19°: 2,72×10⁻¹ (potentiometrisch bestimmt) (v. Euler, Ölander, *Ph. Ch.* [A] 137, 395).

N.N'- Methylen - di - succinamidsäure C₂H₁₄O₆N₂ = (HO₂C·CH₂·CH₂·CO·NH)₂CH₂. B. Aus N.N'-Methylen-di-succinimid beim Behandeln mit sehr verd. Natronlauge (Passerini, G. 53, 336). — Tafeln (aus Wasser). F: 207—208°. — Liefert bei längerem Kochen mit Wasser Formaldehyd. Beim Erhitzen mit verd. Schwefelsäure erhält man Ammoniak, Formaldehyd und Bernsteinsäure.

Bernsteinsäurediamid, Succinamid $C_4H_8O_2N_3=H_2N\cdot CO\cdot CH_3\cdot CH_3\cdot CO\cdot NH_2$ (H 614; E I 265). F: 233,5—234,1° (VISEUR, Bl. Soc. chim. Belg. 35, 427; C. 1927 I, 1543). Ist nicht piezoelektrisch (Hettich, Schleede, Z. Phys. 50, 254; C. 1929 I, 1893). Dichte von Lösungen in Wasser bei 25°: Burrows, J. Pr. Soc. N. S. Wales 53 [1919], 76. Thermische Analyse des binären Systems mit Fumarsäurediamid: V., Bl. Soc. chim. Belg. 35, 437. — Gibt bei der Oxydation mit Permanganat in ammoniakalischer Lösung, besser in Gegenwart von Kupfer, wenig Cyansäure (nachgewiesen als Harnstoff) (Fosse, Laude, C. r. 173, 320).

Bernsteinsäure-äthylester-nitril, β -Cyan-propionsäure-äthylester $C_6H_9O_2N=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_3\cdot CN$ (H 615; E I 265). B. Bei der Destillation von [Oximinomethyl]-bernsteinsäurediäthylester im Vakuum (Carrière, A. ch. [9] 17, 55). — Kp₁₈: 114—115°.

Bernsteinsäuredinitril, Äthylencyanid C₄H₄N₂ = NC·CH₂·CH₂·CN (H 615; E I 265). B. Bei der Einw. dunkler elektrischer Entladungen auf ein Gemisch von Acetylen und Blausäure (Francesconi, Ciurlo, R. A. L. [5] 32 I, 481; G. 53, 330). — Kp₁₆: 151° (Morgan, Soc. 123, 2906). Dipolmoment μ·10¹⁸: 3,8 (verd. Lösung; Benzol) (Williams, Ph. Ch. [A] 138, 79). Mischbarkeit mit Wasser, Alkohol und Isobutylalkohol bei verschiedenen Drucken: Timmermans, J. Chim. phys. 20, 506. — Liefert beim Behandeln mit Kaliumamid in flüssigem Ammoniak bei gewöhnlicher Temperatur die Dikaliumverbindung des Bernsteinsäurediamidins (Cornell, Am. Soc. 50, 3315). Beim Durchleiten von Chlorwasserstoff durch eine Lösung von Athylencyanid und Resorcin in Ather in Gegenwart von Zinkchlorid und Zersetzen des Reaktionsprodukts mit Wasser entsteht β-[2.4-Dioxybenzoyl]-propionsäure (Murai, Bl. chem. Soc. Japan 1, 129; Sci. Rep. Töhoku Univ. 15, 676; C. 1926 II, 1853; 1927 I, 1156). — 2C₄H₄N₂ + CuNO₃. Farblose Krystalle. Leicht löslich in Wasser. Aus der wäßr. Lösung scheidet sich langsam hydratisches Kupfer(I)-oxyd ab (Morgan). — Über eine Komplexverbindung mit Silbernitrat vgl. Pawelka, Z. El. Ch. 30, 184. — C₄H₄N₂ + BeCl₂. Feinkörniger, sehr hygroskopischer Niederschlag (aus Benzol). Leicht löslich in Ather, löslich in Benzol, schwer in Benzin (Fricke, Rode, Z. anorg. Ch. 152, 350). Wird beim Behandeln mit Wasser oder Alkohol zersetzt.

Bernsteinsäurediamidin, Succinamidin $C_4H_{10}N_4=H_2^{-}N\cdot C(:NH)\cdot CH_2\cdot C(:NH)\cdot NH_2$ (H 616). — $K_2C_4H_3N_4$. B. Aus Kaliumamid und Bernsteinsäuredinitril in flüssigem Ammoniak bei Zimmertemperatur (Cornell, Am. Soc. 50, 3315). Krystalle. Unlöslich in flüssigem Ammoniak bei Zimmertemperatur.

Bernsteinsäuredihydramid, Succinhydramid $C_4H_{19}O_9N_4=H_*N\cdot NH\cdot CO\cdot CH_4\cdot CH_2\cdot CO\cdot NH\cdot NH_1$ (H 617; E I 266). B. Zur Bildung aus Bernsteinsäurediäthylester und Hydrazinhydrat vgl. Borsche, Müller, Bodenstein, A. 475, 122. — F: 168° (B., M., B.). 1 g löst sich in 63 cm³ siedendem gewöhnlichem Alkohol und in 140 cm² siedendem absolutem Alkohol (Franzen, Helwert, H. 122, 53). — Liefert beim Behandeln mit 2 Mol Chinon in verd. Salzsäure unter Kühlung die Verbindung [HO· $C_9H_4\cdot N:N\cdot CO\cdot CH_2-]_2$ (isoliert als Dibenzoylderivat, Syst. Nr. 2112); reagiert analog mit 2-Methyl-benzochinon-(1.4) und Chinonoxim (B., M., B.).

Bernsteinsäurediasid, Succinasid $C_4H_4O_2N_6=N_3\cdot CO\cdot CH_3\cdot CH_2\cdot CO\cdot N_3$ (H 617). Gibt beim Erwärmen der Lösung in Chloroform oder Tetrachlorkohlenstoff Äthylendiiso-

oyanat (Syst. Nr. 343) (Curtius, Hechtenberg, J. pr. [2] 105, 315). Beim Behandeln mit verd. Salzsäure, Eindampfen und Erhitzen des Rückstands mit Calciumhydroxyd entsteht wenig Athylendiamin.

Substitutionsprodukte der Bernsteinsäure.

Chlorbernsteinsäure C₄H₈O₄Cl = HO₂C·CH₈·CHCl·CO₂H. Zur Konfiguration der stereoisomeren Chlorbernsteinsäuren vgl. Kuhn, Wagner-Jauregg, B. 61, 508, 509; Freudenberg, Luches, B. 61, 1083; Timmermans, R. 48, 892; K. Freudenberg in K. Freudenberg, Stereochemie [Leipzig 1933], S. 682, 704; Th. Wagner-Jauregg, ebenda, S. 899; Holmberg, B. 61, 1897; Ph. Ch. [A] 187, 27; W. Hückel, Theoretische Grundlagen der organischen Chemie, 3. Aufl., Bd. I [Leipzig 1940], S. 381, 383.

- a) Rechtsdrehende Chlorbernsteinsäure, d(+)-Chlorbernsteinsäure $C_4H_5O_4Cl = HO_3C \cdot CH_2 \cdot CHCl \cdot CO_3H$ (H 618; E I 266). B. Durch Ozonisierung von linksdrehendem 3-Chlor-hexadien (1.5) (E II 1, 230) in Chloroform und aufeinanderfolgende Behandlung der wäßr. Lösung des Ozonids mit Brom und mit Sibersulfat (Levene, Haller, J. biol. Chem. 83, 188). Neben inakt. Chlorbernsteinsäure und wenig Fumarsäure bei 2-stdg. Erhitsen von linksdrehender Brombernsteinsäure mit 2 n-Salzsäure auf dem Wasserbad (Holmberg, B. 59, 132). Krystalle (aus Äther + Petroläther). F: 168—711° (L., Ha.). Thermische Analyse der binären Systeme mit rechts- und linksdrehender Brombernsteinsäure (Bildung einer lückenlosen Mischkrystallreihe mit rechtsdrehender Brombernsteinsäure): Themenans, R. 48, 893. [a] $_5^{\text{in}}$: +20,3° (Wasser; p = 9); [a $_5^{\text{in}}$: +24,7° (Wasser; p = 9) (Clough, Soc. 1926, 1676); [a] $_5^{\text{in}}$: +18,9° (Wasser; c = 5), +47,7° (Alkohol + Äther; c = 11) (L., Ha.). Das Dinatriumsalz liefert bei Behandlung mit Kaliumzanthogenat in verdünnter wäßriger Lösung vorwiegend das Salz einer schwach rechtsdrehenden Äthylxanthogen-bernsteinsäure (Ho).
- d(+)-Chlorbernsteinsäure-dimethylester $C_8H_8O_4Cl=CH_3\cdot O_2C\cdot CH_3\cdot CHCl\cdot CO_3\cdot CH_3$ (H 618). B. Beim Behandeln von l(-)-Äpfelsäure-dimethylester mit Phosphoroxychlorid in Pyridin unter Kühlung mit einer Kältemischung und nachfolgenden Aufbewahren bei Zimmertemperatur (Wagner-Jauregg, Helv. 12, 63). Kp_{16,5}: 110—111°; Kp₁₆₋₁₁: 106° bis 107° (unkorr.). Racemisierungsgeschwindigkeit in chlorwasserstoffhaltigem Eisessig bei 25°, 40° und 60°: W.-J., M. 53/54, 808. $C_8H_9O_4Cl+CaBr_2$ (W.-J., M. 53/54, 800, 810). $C_6H_9O_4Cl+CaI_3$ (W.-J.).
- d(+)Chlorbernsteinsäure-diäthylester $C_8H_{12}O_4Cl = C_9H_5 \cdot O_8C \cdot CH_2 \cdot CHCl \cdot CO_8 \cdot C_9H_8$ (H 618; E I 266). B. Beim Behandeln von l(-)-Äpfelsäure-diäthylester mit Phosphoroxychlorid in Pyridin unter Kühlung mit einer Kältemischung und nachfolgenden Aufbewahren bei Zimmertemperatur (WAGNER-JAUERGG, Helv. 12, 63).
- d(+)-α-Chlor-bernsteinsäure-α'-amid, rechtsdrehende β-Chlorsuccinamidsäure $C_4H_5O_3NCl=H_5N\cdot CO\cdot CH_3\cdot CHCl\cdot CO_3H$. B. Neben einer kleineren Menge von linksdrehendem α-Chlor-bernsteinsäure-α'-amid bei 50 Minuten langem Erhitzen von linksdrehendem α-Brom-bernsteinsäure-α'-amid mit verd. Kochsalz-Lösung auf dem Wasserbad (Holmberg, B. 59, 134, 1574). Krystalle (aus Essigester). F: 126—128° (Zers.). [α]_D: +52,1° (absol. Alkohol; c=6).
- b) Linksdrehende Chlorbernsteinsdure, l (—) Chlorbernsteinsdure $C_4H_5O_4Cl = HO_3C \cdot CH_3 \cdot CHCl \cdot CO_2H$ (H 618; E I 266). B. Bei der Hydrolyse von linksdrehendem α -Chlor-bernsteinsäure- α -amid mit 1 n-Schwefelsäure auf dem Wasserbad (Holmberg, B. 59, 1575). Aus l(+)-Asparaginsäure beim Behandeln mit Natriumnitrit in verd. Kochsalz-Lösung oder Salzsäure unter Kühlung (Ho., B. 60, 2197; 61, 1902) oder mit Silbernitrit in verd. Salzsäure bei 0° (Kuhn, Zumstein, B. 59, 486 Anm. 19). F: 178—178,5° (Zers.) bei raschem Erhitzen (Ho.). $[\alpha]_p : -21,3^\circ$ (Wasser; c=6), $-49,7^\circ$ (absol. Alkohol; c=6), $-56,4^\circ$ (Essigester; c=6) (Ho.); $[\alpha]_p : -21,6^\circ$ (Wasser; c=6) (K., Z.), $-21,0^\circ$ (Wasser; c=6), $-22,3^\circ$ (Wasser; c=6) (Ho.); c=60. (Wasser; c=60). Drehungsvermögen wäßr. Lösungen zwischen Zimmertemperatur und c=60. CL.

wäßr. Lösungen zwischen Zimmertemperatur und 40°: CL.
Wird durch verd. Salzsäure bei 25° schr langsam racemisiert (Holmberg, B. 60, 2197).
Bei der Hydrolyse des Dinatriumsalzes auf dem Wasserbad entstehen Fumarsäure und Apfelsäure, in alkal. Lösung vorwiegend d(+)-Apfelsäure, in saurer oder anfangs neutraler Lösung vorwiegend 1(-)-Apfelsäure; beim Erhitzen der freien Säure, des Mono- und des Dinatriumsalzes in wäßr. Lösung in Gegenwart von Silbernitrat oder des Kupfer(II)-, Beryllium-, Magnesium-, Calcium- und Aluminium-Salzes in Wasser entstehen ebenfalls Gemische von d(+)- und 1(-)-Apfelsäure, in denen meistens eine der beiden Komponenten vorwiegt (Ho., B. 60, 2198). Geschwindigkeit der Hydrolyse des Dinatriumsalzes in Wasser, auch in Gegenwart von Kupfersulfat: Ho., B. 60, 2192; Geschwindigkeit der Hydrolyse des Dinatriumsalzes bzw. Bariumsalzes durch Natronlauge bzw. Barytwasser bei 25°: Ho.

Saures Natriumsalz. $[\alpha]_D$: $-29,1^0$ (Wasser; c=6, auf freie Säure bezogen) (Ho.). — Neutrales Natriumsalz. $[\alpha]_D$: $-30,4^0$ (Wasser; c=6, auf freie Säure bezogen) (Ho.).

- l(—) Chlorbernsteinsäure diäthylester $C_8H_{19}O_4Cl = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CHCl \cdot CO_2 \cdot C_2H_5$. B. Aus linksdrehender Chlorbernsteinsäure beim Behandeln mit absol. Alkohol und konz. Schwefelsäure (Holmberg, B. 61, 1905). — Kp₁₂: 118—119°. D₄²: 1,149. [α]_D: -33,3° (unverdünnt).
- l(-)- α -Chlor-bernsteinsäure- α -amid, linksdrehende β -Chlor succinamidsäure $C_4H_6O_3NCl=H_2N\cdot CO\cdot CH_2\cdot CHCl\cdot CO_2H$. B. Aus l(-)-Asparagin beim Behandeln mit Natriumnitrit in 2 n-Salzsäure in Gegenwart von Natriumchlorid unter Kühlung (Holmberg, B. 59, 1572). — Nadeln (aus Essigester). F: 129—130° (Zers.). $[\alpha]_D$: —28,9° (Wasser; c = 6), —56,1° (absol. Alkohol; c = 6). — Beim Erhitzen auf 135—140° bilden sich Maleinsäureanhydrid und Ammoniumchlorid. Liefert beim Erwärmen mit Wasser oder 1n-Schwefelsäure auf dem Wasserbad vorwiegend linksdrehende Chlorbernsteinsäure und l(-)-Apfelsäure, neben wenig Fumarsäure. Beim Erwärmen des Natriumsalzes mit verd. Natronlauge auf dem Wasserbad entsteht Fumaramidsäure. Geschwindigkeit der Umsetzung der freien Säure und des Natriumsalzes mit Wasser bei Wasserbadtemperatur: Holm-BERG. Beim Behandeln mit verd. Silbernitrat-Lösung auf dem Wasserbad und Eindampfen der filtrierten, schwach alkalisch gehaltenen Lösung auf dem Wasserbad wird vorwiegend l(-)-Apfelsäure erhalten. Bei der Einw. von Silberoxyd in Wasser auf dem Wasserbad erhalt man aus der freien Säure 1(-)-Äpfelsäure und 1(-)-Äpfelsäure- β -amid, aus dem Natriumsalz Fumaramidsäure. Beim Behandeln des Natriumsalzes mit Kaliumxanthogenat in Wasser entsteht rechtsdrehendes α-Athylxanthogen-bernsteinsäure-α'-amid. — Natriumsalz. $[\alpha]_0$: -31,9° (Wasser; c = 6, auf freie Säure bezogen).
- Inaktive Chlorbernsteinsäure C₄H₅O₄Cl = HO₂C·CH₂·CHCl·CO₂H (H 619; E I 266). Adsorption aus Wasser an verschiedene Kohlen: Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288. — Über die Spaltung in die optisch-aktiven Komponenten mit l-α-Phenäthylamin vgl. Holmberg, Ph. Ch. [A] 187, 21.

Eine Chlorbernsteinsaure unbekannter sterischer Zugehörigkeit entsteht aus Asparaginsäure beim Erwärmen mit einem Gemisch von verd. Salzsäure und Salpetersäure auf dem Wasserbad (Chem. Fabr. Flora, D. R. P. 348671; Frdl. 14, 1435).

Diäthylester $C_8H_{13}O_4Cl = C_2H_5 \cdot O_8C \cdot CH_2 \cdot CHCl \cdot CO_2 \cdot C_2H_5$ (H 619). B. Aus Diazobernsteinsäurediäthylester beim Behandeln mit Chlorwasserstoff unter Kühlung (Levene, MIKESKA, J. biol. Chem. 52, 493) oder beim Schütteln mit einer Lösung von Natriumchlorid in 2n-Salzsäure (Holmberg, B. 61, 1903); vgl. Weissberger, Haase, B. 64 [1931], 2896. — $\mathrm{Kp_{0,06}}$: 68—70° (L., M.).

- dl- α -Chlor-bernsteinsäure- α -amid, inaktive β -Chlor-succinamidsäure $C_4H_6O_3NCl=H_2N\cdot CO\cdot CH_2\cdot CHCl\cdot CO_2H$. B. Aus gleichen Teilen der opt.-akt. Komponenten in heißem Essigester (Holmberg, B. 59, 1575). Krystalle. F: 127—128° (Zers.).
- $\alpha.\alpha'$ -Dichlor-bernsteinsäure $C_4H_4O_4Cl_2 = HO_2C\cdot CHCl\cdot CHCl\cdot CO_2H$. Zur Konfiguration der stereoisomeren $\alpha.\alpha'$ -Dichlor-bernsteinsäuren vgl. Kuhn, Wagner-Jauregg, B. 61, 507; Holmberg, Ph. Ch. [A] 137, 27; K. Freudenberg in K. Freudenberg, Stereochemie [Leipzig und Wien 1933], S. 687, 704; W. Hückel, Theoretische Grundlagen der organischen Chemie, 3. Aufl., Bd. I [Leipzig 1940], S. 382ff.
- a) Rechtsdrehende Dichlorbernsteinsäure, d(+)-Dichlorbernsteinsäure C₄H₄O₄Cl₂=HO₅C·CHCl·CHCl·CO₂H (E I 267). F: 166—167° (Zers.) (HOLMBERG, Ark. Kemi 8, Nr. 2, S. 23, 33; C. 1921 I, 830). Die bei 25° gesättigte Lösung in 10 Vol.-% Essigester enthaltendem Benzol enthält 22,6 g/l. [α]⁶: +3,6° (Wasser; c = 3), +1,1° (Wasser; c = 12), +79,8° (Essigester; c = 6). Liefert beim Behandeln mit wäßr. Ammoniak in Gegenwart von Ammoniamablarid Chlorium währen. von Ammoniumchlorid Chlorfumarsäure. Beim Erwärmen des Dikaliumsalzes in wäßr. Von Ammonumenioria Unioriumarsaure. Beim Erwarmen des Dikaiumsaizes in wadr. Silbernitrat-Lösung entstehen Mesoweinsäure, wenig Trawelensäure und wenig l-Weinsäure. $-KC_4H_2O_4Cl_2$. Tafeln oder Prismen (aus Wasser). [α] $_5^6$: $+7,9^0$ (Wasser; c=6, auf freie Säure bezogen). $-K_2C_4H_2O_4Cl_2$. Tafeln (aus Wasser). [α] $_5^6$: $+11,8^0$ (Wasser; c=6, auf freie Säure bezogen). -S aures $d-\alpha$ -Phenäthylaminsaiz $C_8H_{11}N + C_4H_4O_4Cl_2$. F: 149° bis 150° (Zers.) bei schnellem Erhitzen. Die bei 25° gesättigte wäßrige Lösung enthält 21,8 g/l. -S aures -3° bei schnellem Erhitzen. Die bei 25° gesättigte wäßrige Lösung enthält 75,4 g/l.
- d(+)-Dichlorbernsteinsäure-diäthylester $C_8H_{12}O_4Cl_8 = C_2H_5 \cdot O_4C \cdot CHCl \cdot CHCl \cdot CO_2 \cdot C_2H_5$. B. Aus rechtsdrehender Dichlorbernsteinsäure, Alkohol und konz. Schwefelsäure bei längerem Aufbewahren (Holmberg, Ark. Kemi 8, Nr. 2, S. 25, 34; C. 1921 I, 830). Wurde nicht optisch rein erhalten. Öl. D_4^{ac} : 1,239. [α] $_5^{ac}$: +55° (absol. Alkohol; c=7) (für optisch reinen Ester berechnet).

- 557
- b) Linksdrehende Dichlorbernsteinsäure, l(-)-Dichlorbernsteinsäure $C_4H_4O_4Cl_2=HO_3C\cdot CHCl\cdot CHcl\cdot CO_2H$ (E I 267). F: 166—167° (Zers.) (Holmberg, Ark. Kemi 8, Nr. 2, S. 27, 34; C. 1921 I, 830). Die bei 25° gesättigte Lösung in 10 Vol.-% Essigester enthaltendem Benzol enthält 22,5 g/l. $[\alpha]_0^{16}$: —2,1° (Wasser; c=6), —71,0° (absol. Alkohol; c=6), —63,5° (Aceton; c=6), —79,5° (Essigester; c=6). Das Dikaliumsalz liefert beim Erwärmen der wäßrigen, annähernd neutral gehaltenen Lösung auf dem Wasserbad hauptsächlich d-Weinsäure. Saures d- α -Phenäthylaminsalz $C_8H_{11}N+C_4H_4O_4Cl_2$. Schmilzt bei schnellem Erhitzen bei 136—137°. Die bei 25° gesättigte wäßrige Lösung enthält 75,8 g/l. Saures l- α -Phenäthylaminsalz $C_8H_{11}N+C_4H_4O_4Cl_2$. Schmilzt bei schnellem Erhitzen bei 147—148°. Die bei 25° gesättigte wäßrige Lösung enthält 21,8 g/l.
- 1(—)-Dichlorbernsteinsäure-dimethylester $C_6H_8O_4Cl_2=CH_3\cdot O_2C\cdot CHCl\cdot CHCl\cdot CO_2\cdot CH_8$. Ist identisch mit dem E I 267 beschriebenen linksdrehenden $\alpha.\alpha'$ -Dichlor-bernsteinsäure-dimethylester von Darzens, Séjourné (C. r. 154, 1615) (Holmberg, Ark. Kemi 8, Nr. 2, S. 29, 34; C. 1921 I, 830). B. Aus linksdrehender Dichlorbernsteinsäure, Methanol und konz. Schwefelsäure bei längerem Aufbewahren (Ho.). Krystalle. F: 64—65,5° (Ho.). Kp₁₃: 117—118° (korr.) (Kuhn, Wagner-Jauregg, B. 61, 515). [α] $_{0}^{13}$: —68,4° (Chloroform; c = 13) (Ho.); [α] $_{0}^{13}$: —43,0° (Methanol; c = 6), —63,1° (Essigester; c = 7), —114,1° (Schwefelkohlenstoff; c = 7); [α] $_{0}^{13}$: —69,5° (Chloroform; c = 13) (K., W.-J.). Rotationsdispersion in Chloroform bei 22°: K., W.-J. Bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat und Natriumacetat in Methanol entsteht Bernsteinsäuredimethylester (K., W.-J., B. 61, 508, 515).
- 1(—)-Dichlorbernsteinsäure-diäthylester C₈H₁₉O₄Cl₂ = C₂H₅·O₂C·CHCl·CHCl·CO₂·C₂H₅. Ist wahrscheinlich mit dem E I 267 beschriebenen aktiven α.α'-Dichlor-bernsteinsäure-diäthylester von Darzens, Séjourné (C. r. 154, 1615) identisch; vgl. die Angaben beim Dimethylester. B. Bei längerem Aufbewahren einer bei 0° mit Chlorwasserstoff gesättigten Lösung des Dimethylesters der linksdrehenden Dichlorbernsteinsäure in 99 %igem Alkohol (Kuhn, Wagner-Jauregg, B. 61, 516). Beim Erhitzen von Thionyl-d-weinsäure-diäthylester mit Thionylchlorid und Pyridin-hydrochlorid auf dem Wasserbad (Wood, Nicholas, Soc. 1928, 1691). Kp₁₈₋₁₃: 128° (W., N.); Kp₁₁: 127—130° (korr.) (K., W.-J.). D₄°: 1,2784 (K., W.-J.); D₄°: 1,2495; D₄°: 1,1902; D₄°: 1,1346 (W., N.). [α]₀°: —53,6° (unverdünnt) (K., W.-J.); [α]₀°: —42,5° (unverdünnt) (W., N.; W., J. Soc. chem. Ind. 46, 427 T; C. 1928 I, 1748). Drehungsvermögen und Rotationsdispersion der unverdünnten Substanz zwischen 12,7° und 104,1°: K., W.-J.; W., N.; W.; Drehungsvermögen der Lösungen in Alkohol, Chloroform und Schwefelkohlenstoff bei 22° und 22,5°: K., W.-J. Beim Aufbewahren tritt Verminderung der optischen Aktivität ein (W., N.).
- c) Inaktive niedrigerschmelzende Dichlorbernsteinsäure, racemische Dichlorbernsteinsäure, Isodichlorbernsteinsäure C₄H₄O₄Cl₂ = HO₂C·CHCl·CHCl·CO₂H (H 619; E I 267). B. Beim Einleiten von Chlor in eine mit Kochsalz gesättigte Lösung von Dinatriumfumarat im zerstreuten Tageslicht in fast theoretischer Ausbeute (Terry, Eichelberger, Am. Soc. 47, 1068, 1076; vgl. dagegen Kuhn, Wagner-Jauregg, B. 61, 519, 520). Zur Bildung nach Michael, Tissot (J. pr. [2] 46 [1892], 393) vgl. K., W.-J., B. 61, 501. Bei gleichzeitigem Einleiten von Chlor und Stickstoffmonoxyd in eine salzsaure, in der Kälte mit Chlor gesättigte Lösung von dl-α.α.'Diamino-bernsteinsäure (K., Zumstein, B. 59, 485). Krystalle (aus Äther + Petroläther). F: 170—172° (Zers.) (K., W.-J.), 174° bis 175° (Zers.) (Holmberg, Ark. Kemi 8 [1920], Nr. 2, S. 33), 175° (K., Z.; Dimkoth, Eber, Wehr, A. 446, 145). Die bei 0° gesättigte wäßrige Lösung enthält 640 g/l (K., W.-J., B. 61, 487); die bei 25° gesättigte Lösung in 10 Vol. Essigester enthaltendem Benzol enthält 11,03 g/l (Ho.). Adsorption aus Wasser an Tierkohle bei 21°: K., W.-J., B. 61, 488. Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 16,0°: 3,72×10-³; der 2. Stufe k₂ bei 16,7°: 1,80×10-³ (potentiometrisch ermittelt unter Berücksichtigung der Ionenaktivität) (K., W.-J., B. 61, 497). Zur Spaltung in die opt.-akt. Komponenten mit Hilfe von d- und l-α-Phenäthylamin vgl. Ho., Ark. Kemi 8, Nr. 2, S. 20, 33; Ph. Ch. [A] 137, 25. Das Dikaliumsalz liefert beim Erwärmen der wäßrigen, annähernd neutral gehaltenen Lösung auf dem Wasserbad hauptsächlich Traubensäure; in saurer oder alkalischer Lösung entsteht Chlorfumarsäure (Ho., Ark. Kemi 8, Nr. 2, S. 18, 33; C. 1921 I, 830). KC₄H₃O₄Cl₂ + 2H₂O. Prismen (aus Wasser) (Ho.). Saures dl-α-Phenäthylaminsalz C₈H₁₁N+C₄H₄O₄Cl₂. Prismen (aus Wasser). Schmilzt bei schnellem Erhitzen bei 149—150°. Die bei 25° gesättigte wäßrige Lösung enthält 18,67 g/l (Ho.).

Dimethylester $C_6H_8O_4Cl_2 = CH_2 \cdot O_2C \cdot CHCl \cdot CO_2 \cdot CH_2$ (Ε I 267). B. Aus racem. Dichlorbernsteinsäure und methylalkoholischer Schwefelsäure bei gewöhnlicher Temperatur (Holmberg, Ark. Kemi 8, Nr. 2, S. 17, 33; C. 1921 I, 830). Durch Einw. von Thionylchlorid auf den Dimethylester der niedrigerschmelzenden β-Chlor-dl-äpfelsäure in

Pyridin unter Kühlung und längeres Erhitzen des Reaktionsprodukts auf 70° (Kuhn, Wagner-Jauregg, B. 61, 514). — Kp_{12,5}: 116,5—120,5° (korr.) (K., W.-J.).

Diäthylester $C_8H_{12}O_4Cl_3 = C_3H_5 \cdot O_2C \cdot CHCl \cdot CHCl \cdot CO_2 \cdot C_2H_5$ (H 620). B. Aus racem. Dichlorbernsteinsäure und Alkohol in Gegenwart von Chlorwasserstoff (Kuhn, Wagner-Jauregg, B. 61, 504). — Beständiges, esterartig riechendes Öl. Kp₁₅: 132° (korr.); Kp_{12.5}: 129,5° (K., W.-J., B. 61, 485, 504). $D_4^{n_1}$: 1,1963; $D_4^{n_2}$: 1,1636. $n_3^{n_4}$: 1,4521; $n_2^{n_5}$: 1,4512; $n_2^{n_5}$: 1,4296. Refraktionsdispersion bei 20° und 64,5°: K., W.-J., B. 61, 491. Kryoskopisches Verhalten in Benzol: K., W.-J., B. 61, 486, 492.

Dichlorid C₄H₂O₂Cl₄ = ClOC·CHCl·CHCl·COCl. B. Aus racem. Dichlorbernsteinsäure und Phosphorpentachlorid (Lutz, Am. Soc. 49, 1110). — Krystalle. F: 39°. Kp₇: 78,5°. — Liefert mit Benzol in Gegenwart von Aluminiumchlorid niedrigerschmelzendes 1.2-Dichlor-1.2-dibenzoyl-äthan.

- d) Inaktive höherschmelzende Dichlorbernsteinsäure, Mesodichlorbernsteinsäure C₄H₄O₄Cl₂ = HO₂C·CHCl·CHCl·CO₂H (H 619; E I 267). B. Als Hauptprodukt beim Einleiten von Chlor in mit Kochsalz gesättigte Lösungen von Fumarsäure im Sonnenlicht oder von Dinatriumfumarat oder Dinatriummaleinat im zerstreuten Tageslicht (K., W.-J., B. 61 501, 519, 520, 521; vgl. dagegen Terry, Eichelberger, Am. Soc. 47, 1068, 1076). Aus Mesodiaminobernsteinsäure durch Einw. von Nitrosylchlorid oder Silbernitrit in salzsaurer Lösung in der Kälte (K., Zumstein, B. 59, 485, 486).
- F: 220° (korr.; Zers.) im zugeschmolzenen Röhrchen (Kuhn, Wagner-Jauregg, B. 61, 502). Die bei 0° gesättigte wäßrige Lösung enthält 120 g/l (K., W.-J., B. 61, 487). Die bei 25° gesättigte Lösung in 10 Vol.-% Essigester enthaltendem Benzol enthält 3,17 g/l (Holmberg, Ark. Kemi 8 [1920], Nr. 2; S. 32). Adsorption an Tierkohle aus Wasser bei Zimmertemperatur: K., W.-J., B. 61, 488. Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 20,2°: 3,61×10-²; der 2. Stufe k₂ bei 17,8°: 9,4×10-⁴ (potentiometrisch ermittelt, unter Berücksichtigung der Ionenaktivität) (K., W.-J., B. 61, 497). Beim Erwärmen des Dikaliumsalzes in wäßriger, neutral gehaltener Lösung auf dem Wasserbad entstehen Acetaldehyd, Kohlendioxyd und Mesoweinsäure; in verd. Schwefelsäure bilden sich Chlorfumarsäure und Chlormaleinsäure (Holmberg, Ark. Kemi 8, Nr. 2, S. 6, 32; C. 1921 I, 830). KC₄H₃O₄Cl₂. Prismen (Ho.). Saures Salz des d-α-Phenäthylamins C₈H₁₁N + C₄H₄O₄Cl₂. Tafeln (aus Wasser). Schmilzt bei schnellem Erhitzen bei 128—129° (Ho.). Die bei 25° gesättigte wäßrige Lösung enthält 76,4 g/l. Saures Salz des d-α-Phenäthylamins C₈H₁₁N + C₄H₄O₄Cl₂. Tafeln (aus Wasser). Schmilzt bei schnellem Erhitzen bei 128—129° (Ho.). Die bei 25° gesättigte wäßrige Lösung enthält 76,1 g/l. Saures Salz des d-α-Phenäthylamins C₈H₁₁N + C₄H₄O₄Cl₂. Tafeln (aus Wasser). Schmilzt bei schnellem Erhitzen bei 133—134° (Ho.). Die bei 25° gesättigte wäßrige Lösung enthält 81,4 g/l.

Diäthylester $C_8H_{12}O_4Cl_2 = C_2H_5 \cdot O_2C \cdot CHCl \cdot CHCl \cdot CO_2 \cdot C_2H_5$ (H 619). F: 63°; $Kp_{18,5}$: 125,5° (korr.) (Kuhn, Wagner-Jauregg, B. 61, 504). $D_4^{B_1}$: 1,1490 (K., W.-J., B. 61, 486). $n_2^{B_1}$: 1,4266 (K., W.-J., B. 61, 485). Refraktionsdispersion bei 20° und 64,5°: K., W.-J., B. 61, 491. Kryoskopisches Verhalten in Benzol: K., W.-J., B. 61, 492.

Dichlorid $C_4H_2O_2Cl_4=CloC\cdot CHCl\cdot CHCl\cdot COCl$ (H 619; E I 267). Liefert mit Benzol in Gegenwart von Aluminiumchlorid hochschmelzendes 1.2-Dichlor-1.2-dibenzoyl-āthan als Hauptprodukt neben je nach den Reaktionsbedingungen wechselnden Mengen $\alpha.\beta$ -Dichlor- $\gamma.\gamma$ -diphenyl-butyrolacton (Syst. Nr. 2467) (Lutz, Am. Soc. 49, 1108).

Tetrachlorbernsteinsäure C₄H₂O₄Cl₄ = HO₂C·CCl₂·CCl₂·CO₂H. B. In geringer Menge bei der Einw. von Kupferpulver auf Trichloressigsäure (Doughty, Frreman, Am. Soc. 44, 639). — Nur in Lösung erhalten. — Anilinsalz 2C₄H₇N + C₄H₂O₄Cl₄. F: 149—150° korr.).

Diäthylester (P) $C_8H_{10}O_4Cl_4 = C_2H_5 \cdot O_2C \cdot CCl_2 \cdot CCl_2 \cdot CO_3 \cdot C_2H_5$. B. Beim Behandeln von Trichloressigsäureäthylester mit Kupferpulver auf dem Wasserbad (Doughty, Freman, Am. Soc. 44, 638). — Würzig riechende Flüssigkeit. Kp₁₃: 156°. Zersetzt sich bei 175°. — Beim Kochen mit konz. Salzsäure entsteht ein harziges Produkt. Liefert bei längerem Erhitzen mit konz. Jodwasserstoffsäure wenig Bernsteinsäure.

Brombernsteinsäure C₄H₅O₄Br = HO₂C·CH₃·CHBr·CO₂H. Zur Konfiguration der stereoisomeren Brombernsteinsäuren vgl. Freudenberg, Luchs, B. 61, 1083; Timmermans, R. 48, 892; Holmberg, B. 61, 1897; Ph. Ch. [A] 137, 27; K. Freudenberg in K. Freudenberg, Stereochemie [Leipzig und Wien 1933], S. 704; Th. Wagner-Jauregg, ebenda, S. 899; W. Hückel, Theoretische Grundlagen der organischen Chemie, 3. Aufl., Bd. I [Leipzig 1940], S. 381, 383.

- a) Rocktsdrehende Brombernsteinsäure, d (+) Brombernsteinsäure $C_4H_aO_4Br = HO_2C \cdot CH_a \cdot CHBr \cdot CO_2H$. F: 172° (Levene, Mikeska, J. biol. Chem. 55, 797). [α] $_{0}^{b}$: +41,9° (Wasser; c = 5); [α] $_{0}^{b}$: +50,5° (Wasser; c = 5) (Clough, Soc. 1926, 1676); [α] $_{0}^{b}$: +67,9° (Ather) (L., M.). Die thermische Analyse des Systems mit rechtsdrehender Chlorbernsteinsäure ergibt die Existenz einer lückenlosen Reihe von Mischkrystallen (Timmernams, R. 48, 893). Dinatriumsalz. [α] $_{0}^{b}$: +43,1° (Wasser; c = 4, auf freie Säure bezogen) (Cl.).
- d(+)-Brombernsteinsäure-dimethylester C₈H₉O₄Br = CH₃·O₂C·CH₃·CHBr·CO₄·CH₈ (H 620). Kp_{1s}: 117—119° (korr.); Kp_{1,5}: 76—79° (Wagner-Jauregg, M. 53/54, 802, 803). n₅^{m,5}: 1,4638 (W.-J.). Die von Walden (B. 31 [1898], 1417) beschriebene "Autoracemisierung" wird durch äußerst geringe Mengen katalytisch wirkender Halogenionen hervorgerufen; Geschwindigkeit der Racemisierung in Gegenwart verschiedener Katalysatoren in Methanol, Aceton und anderen Lösungsmitteln: W.-J.; Kuhn, W.-J., Naturwiss. 17, 103; C. 1939 I, 1437. C₂H₂O₄Br+Cal₂. Gelbbraunes, amorphes, hygroskopisches Pulver. Wird durch Wasser in die Komponenten zerlegt (W.-J., M. 53/54, 800, 811).
- d(+)-Brombernsteinsäure-diäthylester C₈H₁₃O₄Br = C₂H₅·O₂C·CH₂·CHBr·CO₂·C₂H₅ (H 620; E I 267). B. Die im folgenden beschriebenen Bildungsweisen liefern teilweise racemisierte Präparate. Aus l(-)-Apfelsäurediäthylester und Thionylbromid in Pyridin unter Kühlung (Kuhn, Wagner-Jauregg, B. 61, 514). Durch Einw. von Bromessigsäure auf den Diäthylester der rechtsdrehenden O-[Dimethylaminchioformyl]-äpfelsäure (Syst. Nr. 335) in siedendem Benzol (Holmberg, B. 58, 1830). Aus l(+)-Asparaginsäure-diäthylester beim Behandeln mit Natriumnitrit und Natriumbromid in verd. Bromwasserstoffsäure unter Kühlung (Ho., B. 61, 1905).
- b) Linksdrehende Brombernsteinsäure, l (—) Brombernsteinsäure $C_4H_5O_4Br = HO_2C \cdot CH_3 \cdot CHB_r \cdot CO_4H$ (H 621; E I 268). B. Aus l(+)-Asparaginsäure beim Behandeln mit Natriumnitrit und Natriumbromid in verd. Bromwasserstoffsäure (Holmberg, B. 60, 2205). F: 177—1780 (Zers.) bei schnellem Erhitzen (Ho.), 1790 (Freudenberg, Luchs, B. 61, 1087). [α]_n: -43,80 (Wasser; c = 6), -65,00 (absol. Alkohol; c = 6), -73,50 (Aceton; c = 6); -75,80 (Essigester; c = 6) (Ho.). Thermische Analyse des binären Systems mit d(+)-Chlorbernsteinsäure: Timmermans, R. 48, 894.

Liefert beim Erwärmen mit 2n-Salzsäure vorwiegend d(+)-Chlorbernsteinsäure neben inaktiver Chlorbernsteinsäure und Fumarsäure (Holmberg, B. 59, 132). Gibt mit Na. SO. in schwach alkalischer wäßriger Lösung bei Zimmertemperatur rechtsdrehende Sulfobernsteinsäure und andere Produkte (BACKER, VAN DER ZANDEN, R. 46, 490). Beim Erwärmen mit Natriumnitrat in wäßr. Lösung entsteht Fumarsäure (Hó., B. 61, 1892). Bei der Hydrolyse des Dinatriumsalzes auf dem Wasserbad bilden sich Fumarsäure und Apfelsäure, in alkal. Lösung vorwiegend d(+)-Apfelsäure, in saurer oder anfangs neutraler Lösung vorwiegend l(-)-Apfelsäure; beim Erhitzen der freien Säure, des Mono- und des Dinatriumsalzes in wäßr. Lösung in Gegenwart von Silbernitrat oder des Kupfer(II)-, Beryllium-, Magnesium-, Calcium- und Aluminium-Salzes in Wasser entstehen ebenfalls Gemische von $\mathbf{d}(+)$ - und l(-)-Apfelsäure, bei welchen meistens eine der beiden Komponenten vorwiegt (Ho., B. 60, 2198); beim Erwärmen der freien Säure mit wäßr. Silbernitrat-Lösung entsteht außer den oben genannten Verbindungen wenig l-Äpfelsäurenitrat (Ho., B. 61, 1892). Geschwindigkeit der Hydrolyse des Dinatriumsalzes in wäßr. Lösung, auch in Gegenwart von Kupfersulfat: Ho., B. 60, 2192. Zur Reaktion des Dikaliumsalzes mit Kaliumhydrosulfid (Holmberg, C. 1916 I, 968; 1917 I, 1081) vgl. Rørdam, Soc. 1928, 2453. Bei der Einw. von Natriumäthylmercaptid auf das Dinatriumsalz in Wasser bei 0° entsteht rechtsdrehende Athylmercaptobernsteinsäure (Firger, B. 54, 2947). Zur Bildung von optisch-aktiven äthylkanthogenbernsteinsauren Salzen aus dem Dinatriumsalz und Kaliumkanthogenat vgl. Levene, Mikeska, J. biol. Chem. 60, 686; Einfluß von Konzentration und Alkalität bei Gegenwart von Kaliumnitrat auf das Mengenverhältnis der entstehenden d- und l-äthylxanthogenbernsteinsauren Salze: Rø., Soc. 1929, 1288; zur Umsetzung der Alkali- und Erdalkalisalze mit Alkali-xanthogenaten vgl. a. Rø., Soc. 1928, 2450. Das Dinatriumsalz liefert beim Behandeln mit N-äthyl-thiocarbamidsaurem Kalium in konzentrierter wäßriger Lösung unter Eiskühlung rechtsdrehende S-[Athylaminoformyl]-thioäpfelsäure (Syst. Nr. 336) (Kallenberg, B. 56, 320); reagiert analog mit den Kaliumselzen der N-Methyl-thiocarbamidsäure und N.N-Dimethyl-thiocarbamidsäure (K.).

Mononatriumsalz. $[\alpha]_D$: —37,7° (Wasser; c=6, auf freie Säure bezogen) (Holmburg, B. 60, 2205). — Dinatriumsalz. $[\alpha]_D$: —42,0° (Wasser; c=6, auf freie Säure bezogen) (Ho.).

1(—)-Brombernsteinsäure-dimethylester $C_6H_9O_4Br=CH_2\cdot O_3C\cdot CH_3\cdot CHBr\cdot CO_3\cdot CH_4$ (H 621). B. Aus dem Dichlorid und Methanol (Freudenberg, Luchs, B. 61, 1087). — Kp₁: 79°. D¹⁹: 1,513. [α]²⁰: —65,3° (unverdünnt).

- l(—)-Brombernsteinsäure-diäthylester $C_8H_{13}O_4Br = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CHBr \cdot CO_2 \cdot C_2H_5$. B. Aus l(—)-Brombernsteinsäure und absol. Alkohol in Gegenwart von Chlorwasserstoff unter Eiskühlung (Holmberg, B. 59, 129). Die folgenden Angaben beziehen sich auf ein optisch nicht einheitliches Präparat. Kp₁₈: 132—133°. D_4^{∞} : 1,360. n_D^{∞} : 1,4539. [α] $_D^{\infty}$: $-48,2^{\circ}$ (unverdünnt).
- l(-)-Brombernsteinsäure-dipropylester $C_{10}H_{17}O_4Br=C_2H_5\cdot CH_2\cdot CH_2\cdot CHBr\cdot CO_2\cdot CH_3\cdot C_2H_5$. Kp₁: 1080 (Freudenberg, Luchs, B. 61, 1088). D^{21} : 1,279. [α]th_p: —41,50 (unverdinnt).
- l(—)-Brombernsteinsäure-dichlorid $C_4H_3O_2Cl_3Br=CloC\cdot CH_2\cdot CHBr\cdot COCl.$ B. Aus l(—)-Brombernsteinsäure und Phosphorpentachlorid in Chloroform (Freudenberg, Luchs, B. 61, 1087). Kp₁: 56° . D^{22} : 1,796. $[\alpha]_{0}^{m}$: — $58,4^{\circ}$ (unverdünnt).
- 1(—)-α-Brom-bernsteinsäure-α'-amid, linksdrehende β -Bromsuccinamidsäure $C_4H_6O_3NBr=H_2N\cdot CO\cdot CH_2\cdot CHBr\cdot CO_2H$ (H 621; E I 268). Liefert beim Erwärmen mit Kochsalz-Lösung auf dem Wasserbad vorwiegend rechtsdrehendes und geringere Mengen linksdrehendes α-Chlor-bernsteinsäure-α'-amid (Holmberg, B. 59, 134, 1574). Beim Behandeln mit Silberchlorid in Wasser bei Wasserbadtemperatur entstehen die teilweise racemisierten linksdrehendenFormen der Chlorbernsteinsäure und Brombernsteinsäure; das Natriumsalz liefert unter diesen Bedingungen die teilweise racemisierten linksdrehenden Formen der Äpfelsäure und β-Malamidsäure (Ho., B. 59, 1580).
- c) Inaktive Brombernsteinsäure C₄H₅O₄Br = HO₅C·CH₅·CHBr·CO₂H (H 621; E I 268). Verteilung zwischen Wasser und Äther, Wasser und Xylol und zwischen Glycerin und Aceton bei 25°: SMITH, J. phys. Chem. 25, 220, 620, 730. Adsorption aus Wasser an verschiedene Kohlen: Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288; aus Alkohol an Tierkohle bei Zimmertemperatur: Griffin, Richardson, Robertson, Soc. 1928, 2708. Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 19°: 2,05×10⁻⁸ (potentiometrisch unter Berücksichtigung der Ionenaktivität ermittelt) (Olander, Ph. Ch. [A] 144, 70); der zweiten Stufe k₂ bei 50°: 2,05×10⁻⁶ (aus reaktionskinetischen Messungen unter Berücksichtigung der Ionenaktivität berechnet) (O., Ph. Ch. [A] 144, 100).

Liefert beim Behandeln mit Kaliummetabisulfit in Wasser bei 100° Sulfobernsteinsäure und Apfelsäure (Backer, van der Zanden, R. 46, 482). Reaktion mit Silbernitrat in wäßr. Lösung: Sanyal, Dhar, Z. anorg. Ch. 139, 177. Geschwindigkeit der Abspaltung von Bromwasserstoff bei der Einw. von Wasser auf Brombernsteinsäure bei 65°, 75° und 85° und auf saure und neutrale Salze bei 25°, 55° und 75°: Zawidzki, Wyczalkowska, Roczniki Chem. 6, 415, 462; Bl. Acad. polon. [A] 1928, 293; C. 1927 I, 2966; 1929 I, 1884; Einfluß verschiedener Säuren und Salze auf die Reaktionsgeschwindigkeit: Z., W. Geschwindigkeit der Zersetzung in neutralen, sauren und alkalischen Lösungen bei 25° und 50°, auch in Gegenwart von Puffern und Neutralsalzen: Benrath, Z. anorg. Ch. 151, 59; Olander, Ph. Ch. [A] 144, 77, 93, 110, 133. Bei der Einw. von Natriumäthylmercaptid auf das Dinatriumsalz in Wasser entstehen Äthylmercaptobernsteinsäure und wenig Fumarsäure (Fitger, B. 54, 2945).

Eine Brombernsteinsäure unbekannter sterischer Zugehörigkeit entsteht aus Asparaginsäure bei der Einw. eines Gemisches von Bromwasserstoffsäure und Salpetersäure (Chem. Fabr. Flora, D. R. P. 348671; Frdl. 14, 1435).

Diäthylester $C_8H_{13}O_4Br=C_2H_5\cdot O_3C\cdot CH_3\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 622; E I 268). B. Aus Diazobernsteinsäurediäthylester beim Behandeln mit Bromwasserstoff in Äther (Levene, Mikeska, J. biol. Chem. 52, 493; 55, 797; vgl. Weissberger, Haase, B. 64 [1931], 2898) oder mit Natriumbromid in verd. Bromwasserstoffsäure (Holmberg, B. 61, 1903). — Kp_{0,05}: 81—82° (L., M.). — Liefert beim Behandeln mit siedender 10% iger Salzsäure Chlorbernsteinsäure, Brombernsteinsäure und Fumarsäure (L., M.).

- α -Chlor- α' -brom-bernsteinsäure $C_4H_4O_4ClBr = HO_2C\cdot CHCl\cdot CHBr\cdot CO_2H$. Zur Kollfiguration der stereoisomeren α -Chlor- α' -brom-bernsteinsäuren vgl. Kuhn, Wagner-Jauregg, B. 61. 498.
- a) Inaktive niedrigerschmelzende Chlorbrombernsteinsäure, "racemische Chlorbrombernsteinsäure" (H 622). B. Zur Bildung nach Walden (B. 30, [1897], 2887) vgl. Kuhn, Wagner-Jaurege, B. 61, 502. Krystalle (aus Essigester oder Äther + Benzin). F: 162° (korr.; Zers.). Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 20° : 3.5×10^{-2} ; der 2. Stufe k₂ bei 20.1° : 1.7×10^{-3} (potentiometrisch unter Berücksichtigung der Ionenaktivität ermittelt) (K., W.-J., B. 61, 498).
- b) Inaktive höherschmelzende Chlorbrombernsteinsäure, "Mesochlorbrombernsteinsäure" (H 622). Zersetzt sich im zugeschmolzenen Röhrchen bei 214,5° (korr.) (Kuhn, Wagner-Jaurrge, B. 61, 502). Elektrolytische Dissoziationskonstante der 1. Stufe k_1 bei 19,2°: 3,7×10⁻³; der 2. Stufe k_2 bei 19,5°: 2,5×10⁻³ (potentiometrisch unter Berücksichtigung der Ionensktivität ermittelt) (K., W.-J., B. 61, 498).

- $\alpha.\alpha'$ -Dibrom bernsteinsäure $C_4H_4O_4Br_2=HO_2C\cdot CHBr\cdot CHBr\cdot CO_2H$. Zur Konfiguration der stereoisomeren $\alpha.\alpha'$ -Dibrom-bernsteinsäuren vgl. die S. 556 bei $\alpha.\alpha'$ -Dichlorbernsteinsäure angeführte Literatur.
- a) Rechtsdrehende Dibrombernsteinsäure, d(+)-Dibrombernsteinsäure $C_4H_4O_4Br_2 = HO_3C \cdot CHBr \cdot CHBr \cdot CO_2H$ (E I 269). B. Durch Einw. von Nitrosylbromid auf linksdrehende $\alpha.\alpha'$ -Diaminobernsteinsäure in schwefelsaurer Lösung (Kuhn, Zumstein, B. 59, 488).
- b) Inaktive niedrigerschmelzende Dibrombernsteinsäure, racemische Dibrombernsteinsdure, Isodibrombernsteinsäure C₄H₄O₄Br₂ = HO₂C·CHBr·CHBr·CO₂H (H 625; E I 269). B. Neben Mesodibrombernsteinsäure bei der Einw. von Brom auf Dinatriumfumarat oder Dinatriummaleinat in Gegenwart von viel Natriumbromid in wäßr. Lösung (Terry, Eichelberger, Am. Soc. 47, 1068, 1076; Ei., Am. Soc. 48, 1321). Beim Behandeln von racemischer α.α'-Diamino-bernsteinsäure mit Nitrosylbromid in schwefelsaurer Lösung (Kuhn, Zumstein, B. 59, 486). Zur Bildung aus Bromfumarsäure nach Fittig, Petri (A. 195 [1879], 68) und Michael (J. pr. [2] 52 [1895], 292) vgl. K., Wagner-Jauregg, B. 61, 502. F: 169—170° (korr.) (K., W.-J.), 171° (korr.) (van Duin, R. 45, 359). Adsorption aus Wasser an Tierkohle bei Zimmertemperatur: K., W.-J., B. 61, 488. Aufnahme aus wäßr. Lösung durch Gelatine: Cooper, Edgar, Biochem. J. 20, 1068. Eiweißfällende Wirkung: C., E., Biochem. J. 20, 1065. Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 17,8°: 4,15×10-²; der 2. Stufe k₂ bei 17,9°: 8,17×10-⁴ (potentiometrisch unter Berücksichtigung der Ionenaktivität ermittelt) (K., W.-J., B. 61, 499).

Uber die Spaltung in die optisch-aktiven Komponenten mit l-α-Phenäthylamin vgl. Holmberg, Ph. Ch. [A] 137, 25. Die Geschwindigkeit des Zerfalls in Bromfumarsäure und Bromwasserstoff in wäßr. Lösung bei 25° wird durch Blutkohle herabgesetzt (Kruyt, van Duin, Versl. Akad. Amsterdam 31, 401; van D., R. 47, 732). Die Geschwindigkeit der Reaktion mit Kaliumjodid in Wasser bei 25° wird durch Blutkohle erhöht (Kr., van D.; van D., R. 47, 733); Geschwindigkeit der Umsetzung mit Kaliumjodid in verd. Alkohol bei 25°: van D., Am. Soc. 47, 587; R. 45, 359. — Bactericide Wirkung: C., E., Biochem. J. 20, 1062.

Dimethylester $C_eH_eO_4Br_2=CH_3\cdot O_2C\cdot CHBr\cdot CHBr\cdot CO_2\cdot CH_3$ (H 626). Prismen (aus Ligroin). F: 43° (Ing, Perkin, Soc. 125, 1822). Leicht löslich in Methanol.

Diäthylester $C_8H_{12}O_4Br_2 = C_2H_5 \cdot O_2C \cdot CHBr \cdot CHBr \cdot CO_2 \cdot C_2H_5$ (H 626; E I 269). B. Beim Behandeln des Dichlorids der racemischen Dibrombernsteinsäure mit Alkohol (Ing., Perkin, Soc. 125, 1822). Aus Maleinsäurediäthylester und Brom (I., P.). — Erstarrt nicht bei —15°. Kp₁₁: 137—138°. — Liefert mit Natriummalonester in Alkohol unterhalb 5° trans-Cyclopropan-tetracarbonsäure-(1.1.2.3)-tetraäthylester. Bei der Einw. von Natriumcyanessigester in Alkohol entsteht 1-Cyan-cyclopropan-tricarbonsäure-(1.2.3)-triäthylester. Bei der Umsetzung mit Natriumacetessigester in Alkohol wird 5-Methyl-2.3-dihydro-furan-tricarbonsäure-(2.3.4)-triäthylester (Syst. Nr. 2612) gebildet; analog reagiert die Natriumverbindung des Benzoylessigsäureäthylesters.

Dichlorid C₄H₂O₂Cl₂Br₂ = ClOC·CHBr·CHBr·COCl. B. Neben dem Dichlorid der Mesodibrombernsteinsäure beim Eintropfen von Brom in auf 140—150° erhitztes Succinylchlorid (R. Meyer, Marx, B. 41 [1908], 2465; Ing, Perkin, Soc. 125, 1815, 1822). Aus racemischer Dibrombernsteinsäure und Phosphorpentachlorid (Lutz, Am. Soc. 49, 1110). — Kp₄: 85° (L.). — Liefert beim Behandeln mit Benzol in Gegenwart von Aluminiumchlorid niedrigerschmelzendes 1.2-Dibrom-1.2-dibenzoyläthan (L.).

o) Inaktive höherschmelzende Dibrombernsteinsäure, Mesodibrombernsteinsdure C₄H₄O₄Br₂ = HO₂C·CHBr·CHBr·CO₂H (H 623; E I 269). B. Zur Bildung aus Fumarsäure und Brom in Wasser vgl. Backer, van der Zanden, R. 47, 777. Neben wenig racemischer Dibrombernsteinsäure bei der Einw. von Brom auf Dinatriumfumarat oder Dinatriummaleinat in Natriumbromid-Lösung (Terry, Eichelberger, Am. Soc. 47, 1068, 1076; El., Am. Soc. 48, 1321). Beim Behandeln von Maleinsäure mit Brom in Wasser (Read, Red, Soc. 1928, 747; vgl. B., v. d. Z.). In geringer Menge neben racemischer Dibrombernsteinsäure beim Behandeln von Maleinsäureanhydrid mit Brom in Chloroform im Sonnenlicht und Zersetzung des Reaktionsprodukts mit Wasser (Kuhn, Wagner-Jauregg, B. 61, 502). Aus Mesodiaminobernsteinsäure durch Behandlung mit Nitrosylbromid in schwefelsaurer Lösung oder mit Silbernitrit und verd. Bromwasserstoffsäure unter Kühlung (Kuhn, Zumstein, B. 59, 486). — Darst. Man läßt 276 g Brom unter starkem Rühren in ca. 1 Stde. in ein siedendes Gemisch von 200 g Fumarsäureund 400 g Wasser einlaufen, kühlt unter Rühren auf 10° ab, filtriert und wäscht mit Wasser; Ausbeute 72—84% der Theorie (Rhinesmith, Org. Synth. 18 [1938], 17). Zur Darstellung aus Fumarsäure und Brom in Eisessig nach Michael (J. pr. [2] 52, 294) vgl. Bailey, Potter, Am. Soc. 44, 215; Ott, Schröter, B. 60, 632.

F: 256—257° (korr.) (van Duin, R. 45, 358; 47, 734), 257° (korr.; im zugeschmolzenen Röhrchen (Kuen, Wagner-Jauregg, B. 61, 502); zersetzt sich bei ca. 260° (Backer, R. 47, 778). Schwer löslich in Chloroform (Terry, Etchelberger, Am. Soc. 47, 1076). Adsorption aus währ. Lösung an Tierkohle: K., W.-J., B. 61, 488; an hydratisiertes Eisen(III)-oxyd: Sen, J. phys. Chem. 31, 526. Aufnahme durch Gelatine und Einfluß auf die Quellung der Gelatine: Cooper, Edgar, Biochem. J. 20, 1066, 1068. Eiweißfällende Wirkung: C., E., Biochem. J. 20, 1065. Elektrolytische Dissoziationskonstante der 1. Stufe k, bei 16,9°: 3,57×10-8; der 2. Stufe k, bei 19,5°: 2,39×10-8 (potentiometrisch unter Berücksichtigung der Ionenaktivität ermittelt) (K., W.-J., B. 61, 499, 500). Geschwindigkeit der Umsetzung mit Kaliumjodid in verd. Alkohol bei 25°: van Duin, Am. Soc. 47, 587; R. 45, 358. Die Reaktion mit Kaliumjodid in wäßr. Lösung wird durch Blutkohle beschleunigt (Kruyt, van Duin, Versl. Akad. Amsterdam 31, 402; van D., R. 47, 734). — Bactericide Wirkung: C., E., Biochem. J. 20, 1062.

E I 269, Z. 12 v. u. statt "ein Tripyridinsalz" lies: "das Dipyridinsalz". Z. 8 v. u. vor "48, 1057" schalte ein: "47, 1591;"

Dimethylester $C_6H_8O_4Br_8 = CH_8 \cdot O_8C \cdot CHBr \cdot CO_8 \cdot CH_8$ (H 624). B. Zur Bildung aus Fumarsäuredimethylester und Brom vgl. Ing, Perkin, Soc. 125, 1823. — Prismen (aus Ligroin). F: 65°. — Liefert beim Behandeln mit Natriummalonsäuredimethylester in absol. Methanol unterhalb 5° und folgendem kurzen Kochen auf dem Wasserbad Fumarsäuredimethylester, Äthan-tetracarbonsäure-(1.1.2.2)-tetramethylester, α -Carboxy-tricarballylsäuretetramethylester und trans-Cyclopropan-tetracarbonsäure-(1.1.2.3)-tetramethylester (I., P., Soc. 125, 1815, 1816, 1823).

Diäthylester C₈H₁₂O₄Br₃ = C₂H₅·O₂C·CHBr·CHBr·CO₃·C₂H₅ (H 624; E I 270). B. Beim Behandeln des Dichlorids mit Alkohol (Ing. Perkin, Soc. 125, 1822). Zur Bildung aus Fumarsäurediäthylester und Brom vgl. I., P. — F: 58°. — Liefert beim Behandeln mit Natriummalonester in Alkohol unterhalb 5° Fumarsäurediäthylester, Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester und andere Produkte; der von Perkin (Soc. 47 [1885], 822) bei dieser Reaktion erhaltene Cyclopropan-tetracarbonsäure-(cis-1.2.3-trans-1)-tetraäthylester war ein Gemisch (I., P., Soc. 125, 1815, 1816; H 9, 990 Anm.). Bei der Einw. von Natriumcyanessigester in Alkohol entsteht hauptsächlich α-Cyan-tricarballylsäure-triäthylester und wenig 1-Cyan-cyclopropan-tricarbonsäure-(1.2.3)-triäthylester (I., P., Soc. 125, 1818, 1826). Reagiert mit Natriumacetessigester in Alkohol unter Bildung von Diacetbernsteinsäurediäthylester und α-Acetyl-tricarballylsäure-triäthylester (I., P., Soc. 125, 1821, 1829). Bei der Umsetzung mit Natriumbenzoylessigsäureäthylester in Alkohol entstehen α.α'-Dibenzoyl-bernsteinsäure-diäthylester, α-Benzoyl-tricarballylsäure-triäthylester und wenig Fumarsäure-diäthylester (I., P., Soc. 125, 1827).

Dichlorid C₄H₄O₂Cl₅Br₂ = CIOC·CHBr·CHBr·COCl (H 625). B. Wird bei der Bildung nach R. Meyer, Mark (B. 41 [1908], 2465) im Gemisch mit dem Dichlorid der dl-Dibrombernsteinsäure erhalten (Ing. Perkin, Soc. 125, 1814). — Liefert beim Behandeln mit Benzol in Gegenwart von Aluminiumchlorid höherschmelzendes 1.2-Dibrom-1.2-dibenzoyl-äthan (Lutz, Am. Soc. 49, 1110).

2. Athan-dicarbonsäure - (1.1), Methylmalonsäure, Isobernsteinsäure $C_4H_4O_4=CH_3\cdot CH(CO_2H)_2$ (H 627; E I 271). Bildung und Darstellung des Diäthylesters s. bei diesem, S.563. Verbrennungswärme bei konstantem Volumen: 361,8 kcal/Mol (Verkade, Coops, R. 47, 608). Elektrische Leitfähigkeit wäßr. Lösungen der Säure und des Dinatriumsalzes bei 25°: Vogel, Soc. 1929, 1482. Elektrolytische Dissoziationskonstante der 1. Stufe k, bei 25°: 7,99 × 10⁻⁴ (aus der Leitfähigkeit berechnet) (V.), 1,07 × 10⁻³ (potentiometrisch ermittelt) (Gane, Ingold, Soc. 1929, 1698); der 2. Stufe k₃: 3,43 × 10⁻⁶ (potentiometrisch ermittelt) (G., I.); zur Dissoziationskonstante der 2. Stufe vgl. a. V., Soc. 1929, 1486. — Liefert beim Behandeln mit Benzaldehyd und alkoh. Ammoniak auf dem Wasserbad β -Amino- β -phenylisobuttersäure und eine stickstofffreie, ungesättigte Säure vom Schmelzpunkt 173° (Zers.); bei analoger Behandlung mit Piperonal entstehen β -Amino- β -[3.4-methylendioxy-phenyl]-isobuttersäure und geringe Mengen einer stickstofffreien, ungesättigten Säure vom Schmelzpunkt 201—202° (Rodionow, Postowskaja, Am. Soc. 51, 845). Bei der Einw. von 0,5 Mol Methylamin und 1 Mol Formaldehyd in Wasser unter Kühlung entsteht Methylimino-bis-dimethylmalonsäure (Syst. Nr. 372); mit 1 Mol Dimethylamin und 1 Mol Formaldehyd in Wasser bildet sich Methyl-[dimethylamino-methyl]-malonsäure (Mannice, Kathee, B. 53, 1369).

Methylmalonsäure-dimethylester $C_0H_{10}O_3 = CH_3 \cdot CH(CO_3 \cdot CH_3)_3$ (H 628; E I 271). Kp₇₉₈: 171—174°; Kp₁₆: 68—70° (Dieckmann, Wittmann, B. 55, 3346). — Geschwindigkeit der Verseifung durch verd. Salessure und Alkalilaugen bei 25°: SKRABAL, SINGER, M. 41, 367, 373. Methylmalonsäure-monoäthylester $C_6H_{10}O_4=CH_2\cdot CH(CO_2H)\cdot CO_2\cdot C_2H_5$ (H 629). Liefert beim Behandeln mit ca. 1 Mol Diäthylamin und ca. 1 Mol Formaldehyd in Wasser α -Methyl-acrylature-athylester; außerdem entsteht N.N.N'.N'.Tetraäthyl-methylendiamin (MANNICH, RITSERT, B. 57, 1117).

Methylmalonsäure-diäthylester $C_8H_{14}O_4=CH_3\cdot CH(CO_3\cdot C_8H_8)_2$ (H 629; E I 271). B. Zur Bildung aus Natriummalonester und Methylhalogenid vgl. Lucas, Young, Am. Soc. 5. Zur Didung aus Natriummaionester und Metnyinalogenia vgl. Lucas, Young, Am. Noc. 51, 2536. Beim Kochen von Malonester mit p-Toluolsulfonsäuremethylester und Natriumäthylat-Lösung (Peacock, Tha, Soc. 1928, 2304). — Darstellung durch Kochen von α-Oxalpropionsäure-diäthylester: Cox, McElvain, Org. Synth. 17 [1937], 56. — Kp₇₅₄: 196—1970 (Gane, Ingold, Soc. 1926, 14); Kp₃₀: 105—1100 (P., Tha). — Geschwindigkeit der Verseifung durch wäßrig-alkoholische Alkalilaugen bei 250 und 270: Skrabal, Singer, M. 41, 368; G., I. Liefert bei längerem Erhitzen mit Acetaldehyd und Acetanhydrid im Rohr auf 4400 als Hauptnydukt. 3.07xy.hutan.digerbongäure. (2) diäthylasten (Ingas. Young als Hauptprodukt 3-Oxy-butan-dicarbonsaure-(2.2)-diathylester (Lucas, Young, Am. Soc. 51, 2536). Beim Erwarmen mit Benzaldehyd und alkoh. Ammoniak im Rohr auf 100° entsteht 1-Amino-1-phenyl-propan-dicarbonsaure-(2.2)-diathylester; analog reagiert Piperonal (Rodionow, Postowskaja, Am. Soc. 51, 844). Liefert beim Behandeln mit α-Bromisobuttersäure-äthylester und Natrium in Alkohol bei 100° Pentan-tricarbonsäure-(2.2.4)-triäthylester (Bischoff, Mintz, B. 28 [1890], 649; vgl. v. Auwers, Jackson, B. 28, 1600; BONE, PERKIN, Soc. 67 [1895], 431). Beim Erhitzen mit 2-Aminopyridin auf 165—190° bildet sich die Verbindung nebenstehender Formel (Syst. Nr. 3591) (TSCHITSCHIBABIN, B. 57, 1171;

3K. 57, 404). — Die Natrium-Verbindung löst sich in warmem, Methylmalonsäurediäthylester enthaltendem Benzol (Sidgwick, BREWER, Soc. 127, 2382).

Methylmalonsäure-diamid, C-Methyl-malonamid $C_4H_8O_2N_2=CH_3\cdot CH(CO\cdot NH_3)_2$ (H 630; E I 271). F: 209° (Peacock, Tha, Soc. 1928, 2304). — Beim Einleiten von Chlor in eine Lösung in Eisessig entsteht Methylchlormalonsäure-diamid (Dox, Houston, Am. Soc. 46, 1279).

Methylmalonsäure - methylester - nitril, α -Cyan - propionsäure - methylester, Methyloyanessigsäure-methylester $C_5H_7O_3N=CH_3\cdot CH(CO_3\cdot CH_3)\cdot CN$. Liefert beim Behandeln mit 4-Chlor- ω -benzal-acetophenon in Methanol in Gegenwart von wenig Natriummethylat zwei isomere Formen des α -Methyl- β -phenyl- γ -[4-chlor-benzoyl]- α -cyan-buttersaure-methylesters (Kohler, Graustein, Merrill, Am. Soc. 44, 2542). Reagiert mit Phenylbenzoylacetylen in siedendem Methanol in Gegenwart von wenig Natriummethylat unter Bildung von 1-Oxo-1.3-diphenyl-4-cyan-penten-(2)-carbonsäure-(4)-methylester (Syst. Nr. 1345); in Gegenwart von 1 Mol Natriummethylat entstehen [β -Phenyl- γ -cyan- α -butenyl]phenyl-keton (Syst. Nr. 1300) und eine in grünlichgelben Nadeln vom Schmelzpunkt 264° krystallisierende Verbindung, die sich beim Kochen mit Methanol in 3-Methyl-4.6-diphenylpyron-(2) (Syst. Nr. 2469) umwandelt (K., BARRETT, Am. Soc. 46, 750).

Methylmalonsäure-äthylester-nitril, a-Cyan-propionsäure-äthylester, Methylcyanessigsäure-äthylester $C_aH_aO_aN=C\dot{H}_a\cdot C\dot{H}(CO_a\cdot C_a\dot{H}_b)\cdot CN$ (H 630; E I 271). Liefert beim Erwärmen mit Cyclohexanon und Ammoniak in Methanol oder Alkohol 2.6-Dioxo-3.5-dimethyl-4.4-pentamethylen-3.5-dicyan-piperidin (Syst. Nr. 3369) und eine Verbindung $C_{12}H_{20}ON_3(?)$ (s. bei Cyclohexanon, Syst. Nr. 612) (Kon, Thorpe, Soc. 121, 1802). Beim Erwärmen mit β -Vinyl-acrylsäure-methylester in Methanol + Ather in Gegenwart von wenig Natriummethylat entsteht 5-Cyan-hexen-(2)-dicarbonsäure-(1.5)-methylester-(1)-äthylester-(5) (S. 698); bei analoger Behandlung mit Sorbinsäuremethylester wird 4-Methyl-5-cyanhexen-(2)-dicarbonsaure- $(\overline{1}.5)$ -methylester-(1)-athylester-(5) (S. 698) erhalten (Farmer, HEALEY, Soc. 1927, 1065).

Methylmalonsäure - amid - nitril, α - Cyan - propionamid, Methylcyanacetamid $C_4H_4ON_3=CH_3\cdot CH(CO\cdot NH_3)\cdot CN$ (H 630). Nadeln (aus Alkohol). F: 100—101° (BARDHAN, Soc. 1929, 2231). — Kondensation mit 1-Acetyl-cyclohexanon-(2): Sen, Bose, Quart. J. indian chem. Soc. 4, 61; C. 1927 II, 435.

Methylmalons are -monohydrasid $C_4H_8O_2N_2 = CH_3 \cdot CH(CO_2H) \cdot CO \cdot NH \cdot NH_2$. B. Das Kaliumsalz entsteht beim Erwärmen des Kaliumsalzes des Methylmalonsäuremono-Sthylesters mit Hydrazinhydrat auf dem Wasserbad (CURTIUS, SIEBER, B. 54, 1433). — Das Kaliumsalz liefert beim Behandeln mit Natriumnitrit und Salzsäure in Wasser Methylmalonsauremonoazid (C., S., B. 54, 1436). — KC₂H₇O₂N₃. Krystalle. F: 120—122°.

Methylmalonsäure-monoasid C₄H₅O₅N₅ = CH₅·CH(CO₅H)·CO·N₅. B. Aus Methylmalonhydrazidsäure und Natriumnitrit in verd. Salzsäure unter Kühlung (Curtius, Sieber, B. 54, 1496). — Ol. Leicht löslich in Wasser und Alkohol. — Zersetzt sich beim Auf bewahren langsam unter Entwicklung von Stickstoff und Kohlendioxyd. Liefert beim

Behandeln mit methylalkoholischer bzw. äthylalkoholischer Salzsäure Alaninmethylester-hydrochlorid bzw. Alaninäthylester-hydrochlorid.

Methylchlormalonsäure-diäthylester, α -Chlor-isobernsteinsäure-diäthylester $C_8H_{13}O_4Cl=CH_3\cdot CCl(CO_2\cdot C_2H_5)_2$. Geschwindigkeit der Reaktion mit Pyridin bei 18—20°: Tronow, Akiwis, Orlowa, \mathcal{K} . 61, 347; C. 1929 II, 2550.

Methylchlormalonsäure-diamid, α -Chlor-isobernsteinsäure-diamid $C_4H_7O_2N_4Cl = CH_3 \cdot CCl(CO \cdot NH_2)_2$. B. Beim Einleiten von Chlor in eine Lösung von Methylmalonsäure-diamid in Eisessig (Dox, Houston, Am. Soc. 46, 1279). — Nicht rein erhalten. Nadeln. F: 224—225°. Schmeckt in wäßr. Lösung süßer als Rohrzucker.

Methylbrommalonsäure-diäthylester, α -Brom-isobernsteinsäure-diäthylester $C_8H_{18}O_8Br=CH_3\cdot CBr(CO_2\cdot C_2H_5)_2$ (H 631; E I 272). Reagiert mit Hydrazinhydrat in Alkohol unter Bildung von Methylmalonsäure-diäthylester (Hirst, Macbeth, Soc. 121, 910). Bei der Einw. von Natriumacetessigester in Alkohol entstehen Methylmalonsäure-diäthylester und andere Produkte (Gault, Klees, Bl. [4] 39, 1008). Geschwindigkeit der Reaktion mit Natriummethylat in Methanol und mit Pyridin bei 18—20°: Tronow, Akiwis, Orlowa, \mathcal{H} . 61, 347, 349; \mathcal{C} . 1929 II, 2550.

Methylbrommalonsäure-diamid, α -Brom-isobernsteinsäure-diamid $C_4H_7O_2N_2Br=CH_3\cdot CBr(CO\cdot NH_2)_2$. B. Aus Methylmalonsäure-diamid und Brom in heißem Wasser oder Eisessig (STEVENS, WARD, Soc. 125, 1329). — Krystalle (aus Wasser oder Alkohol). F: 172°.

Nitro-methylmalonsäure-diäthylester, α -Nitro-isobernsteinsäure-diäthylester $C_8H_{13}O_6N=CH_3\cdot C(NO_2)(CO_2\cdot C_2H_5)_2$ (H 631; E I 272). B. Zur Bildung nach Steinkopf, Supan (B. 43, 3245) vgl. Macbeth, Traill, Soc. 127, 896. — Ultraviolettes Absorptionsspektrum in Alkohol: Graham, Macbeth, Soc. 121, 1112. [Knobloch]

4. Dicarbonsäuren C₅H₈O₄.

1. Propan-dicarbonsdure (1.3), Glutarsdure C₅H₈O₄ = HO₂C·[CH₂]₃·CO₂H (H 631; E I 272). B. Entsteht neben anderen Produkten, wenn man Propiolsäuremethylester und Oxalsäuredimethylester in Ather bei Gegenwart von Natrium erhitzt, das Reaktionsprodukt mit kalter methylalkoholischer Kalilauge hydrolysiert und danach mit Zinkamalgam in saurer Lösung reduziert (Ingold, Soc. 127, 1204). In geringer Menge neben anderen Produkten beim Kochen von α.β-Dibrom-glutarsäure mit 6n-methylalkoholischer Kalilauge (Farmer, Ingold, Soc. 119, 2011, 2017, 2019). Beim Erhitzen von α-Carboxy-glutarsäure über den Schmelzpunkt (Dickens, Kon, Thorpe, Soc. 121, 1502; Lennon, Perrin, Soc. 1928, 1524; vgl. Ingold, Soc. 119, 336, 338, 339). Bei der Oxydation von δ-Valerolacton mit Chromsäure (Sircar, Soc. 1928, 902). — Darstellung durch Oxydation von Cyclopentanon mit Salpetersäure nach Hentzschel, Wislicenus (A. 275, 315): Clutterbuck, Raper, Biochem. J. 19, 393; Vogel, Soc. 1929, 726; Allen, Ball, Org. Synth. 14 [1934], 90; durch Behandeln von Trimethylencyanid mit konz. Salzsäure nach Reboul (C. r. 82, 1197; A. ch. [5] 14, 501): Jaeger, Blumendal, Z. anorg. Ch. 175, 164; Marvel, Tuley, Org. Synth., Coll. Vol. I [1932], 283; deutsche Ausgabe, S. 283; durch Kochen von Methylendimalonsäureteträäthylester mit Salzsäure nach Knoevenagel (B. 27, 2346): Otterbacher, Org. Synth., Coll. Vol. I [1932], 284; deutsche Ausgabe, S. 284.

Röntgenographische Untersuchung: Henderson, Pr. roy. Soc. Edinburgh 48, 20; C. 1928 I, 2093. F: 98—99° (Kerr, Am. Soc. 51, 617), 98° (Verkade, Hartman, Coops, R. 45, 378), 97.5° (Franke, Lieben, M. 43, 230; He.), 97° (Vogel, Soc. 1929, 726). D. 1.424 (Biltz, A. 453, 278), 1,423 (Bi., Balz, Z. anorg. Ch. 170, 339). Verbrennungswärme bei konstantem Volumen: 514,9 kcal/Mol (V., H., C., R. 45, 379; Versl. Akad. Amsterdam 33, 767; C. 1925 I, 1281; V., C., R. 47, 608). Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916. Verteilung von Glutarsäure (bei 25°) zwischen Wasser und Chloroform: Smith, J. phys. Chem. 25, 229; zwischen Wasser und Ather: Sm., J. phys. Chem. 26, 622; zwischen Glycerin und Aceton: Sm., J. phys. Chem. 25, 732. Dichte wäßr. Lösungen bei 20°: Berner, Ph. Ch. [A] 141, 117. Adsorption von Glutarsäure aus wäßr. Lösungen an Blutkohle, Knochenkohle, Schwammkohle und Zuckerkohle: Sabalitschka, Pharm. Ztg. 74, 382; C. 1929 I, 2288; an Tierkohle: Schilow, Nekrassow, Ph. Ch. 130, 67; H. 60, 106. Lichtbrechung wäßr. Lösungen: Hirsch, Fermentf. 6, 53; C. 1922 III, 557. Flektrolytische Dissoziationskonstante der ersten Stufe k, bei 25°: 4,60×10-6, der zweiten Stufe k, bei 25°: 5,34×10-6 (aus potentiometrischen Messungen berechnet) (Gane, Ingold, Soc. 1928, 1598, 2268); der ersten Stufe k, bei 25°: 4,69×10-6 (aus Leitfähigkeitsmessungen berechnet) (Spiers, Thorpe, Soc. 127, 544); der zweiten Stufe k, 6,0×10-6 (berechnet aus der Zersetzungsgeschwindigkeit von Diszoessigester) (Duboux, Frommeit, J. Chim. phys. 24, 256); zur Dissoziationskonstante vgl. a. Mizutani, Ph. Ch. 118, 320. Verbraucht entgegen der Angabe von Decemer (C. 1897 II, 936) bei der Neutralisation die berechnete Menge Kalilauge (Franke, Lieben, M. 43, 231).

Spaltet im Licht der Quecksilberlampe nur sehr geringe Mengen Kohlendioxyd ab (Volmar, C. r. 180, 1173). Liefert beim Erhitzen auf 300—304° Buttersäure (Vogel, Soc. 1929, 726). Verhalten beim Erhitzen mit Eisenfeile und Baryt: Vogel. Das Calciumsalz liefert bei der trocknen Destillation im Stickstoffstrom Aceton sowie geringe Mengen Cyclohexanon (?) und Phenol (Kon, Soc. 119, 828). Glutarsäure wird durch Chromschwefelsäure kaum oxydiert (Lieben, Molnar, M. 53/54, 7). Beim Erhitzen mit Thionylchlorid entsteht je nach den Bedingungen Glutarsäureanhydrid (CLUTTERBUCK, RAPER, Biochem. J. 19, 393; McMaster, Ahmann, Am. Soc. 50, 146) oder Glutarylchlorid (Skraup, Guggen-HEIMER, B. 58, 2493). Beim Erhitzen des Silbersalzes mit Jod in Gegenwart von Sand auf 150° entsteht y-Butyrolacton (Windaus, Klänhardt, B. 54, 585; Sircar, Soc. 1928, 901; vgl. a. Wieland, Fischer, A. 446, 73). Geschwindigkeit der Veresterung von Glutarsaure in absol. Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Вніде, Sudborough, J. indian Inst. Sci. [A] 8, 92; C. 1926 I, 80. — Glutarsäure liefert beim Erhitzen mit Phenol (Dutt, Soc. 1926, 1135).

Schwellenwert des sauren Geschmacks und p_H der Lösung: Taylor, *J. gen. Physiol.* 11, 209; *C.* 1928 I, 2409. Über das physiologische Verhalten der Glutarsäure vgl. H. Staub in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 925; vgl. a. Rose, J. Pharmacol. exp. Therap. 24, 149; C. 1924 II, 2410. — Einfluß des neutralen Ammoniumsalzes auf die Pigmentbildung durch Bac. pyocyaneus: Goris, Liot, C. r. 172.

Ammonumsaizes au die Figmentondung durch Bac. Pydocyandus: Goris, C. 7. 172.

1623. — Konduktometrische Titration von Glutarsäure: Bureau, C. 7. 181, 43.

NH₄C₅H₇O₄. D[∞]: 1,336 (Billtz, Balz, Z. anorg, Ch. 170, 343). Dissoziationsdruck bei 111°: 37 mm (Bi., Ba.). — (NH₄)₂C₅H₆O₄. D[∞]: 1,284 (Bi., Ba.). Dissoziationsdruck bei 111°: 274 mm (Bi., Ba.). — [(NH₃)₅Co·O₂C·CH₂·CH₂·CH₂·CH₂·CO₂·Co(NH₃)₅](NO₃)₄. B. Durch Erwärmen von Carbonatopentamminkobalt(III)·nitrat [Co(NH₃)₅(CO₃)](NO₃) + H₂O mit verd. Salpetersäure, Neutralisieren mit 2 n-Natronlauge und Umsetzen mit 1 Mol glutarsaurem Natrium bei 45° (DUFF, Soc. 123, 568). Hellrote Krystalle. Elektrische Leitfähigkeit in Wasser bei 25°: D. Gibt mit Kaliumehromat-Lösung ein bräunlichgelbes Chromat. [(NH₃)₅Co·O₂C·CH₂·CH₂·CH₂·CO₂·CO(NH₃)₅](C₅H₆O₄)(NO₃)₂. B. Beim Erwärmen von Carbonatopentamminkobalt(III)-nitrat mit 1 Mol Glutarsäure in Wasser auf 60° (D.). Hellrote Krystalle. Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D. Gibt mit Kaliumchromat-Lösung einen gelben Niederschlag.

Glutarsäuremonomethylester, Monomethylglutarat $C_6H_{10}O_4 = HO_2C \cdot [CH_2]_3 \cdot CO_2 \cdot$ CH3. B. Beim Erhitzen äquimolekularer Mengen von Glutarsäure und Glutarsäuredimethylester auf 230º (Fourneau, Sabetay, Bl. [4] 45, 838). Beim Kochen von Glutarsäureanhydrid mit 2 Mol Methanol (Clutterbuck, Raper, Biochem. J. 19, 393). — Viscose Flüssigkeit von saurem Geschmack. Kp₂₀: 153° (Cl., R.); Kp₁₀: 150—151° (F., S.). D¹⁸: 1,164; n₁": 1,4392 (F., S.). Löslich in Wasser (F., S.). — Liefert beim Kochen mit überschüssigem Thionylchlorid Glutarsäuremethylesterchlorid (Cl., R.).

Glutarsäuredimethylester, Dimethylglutarat $C_7H_{12}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_3 \cdot CO_2 \cdot CH_3$ Glutarsauredimethylester, Dimethylglutarat $C_7\Pi_{12}U_4 = CH_3 \cdot C_2 \cdot [CH_{2]_5} \cdot CU_2 \cdot CH_3$ (H 633; E I 273). B. Zur Bildung aus Glutarsäure und methylalkoholischer Salzsäure nach Meerburg (R. 18 373) vgl. Verkade, Coops, Hartman, R. 45. 586. — E: —42,5° (Timmermans, Mattaar, Bl. Soc. chim. Belg. 30, 215; C. 1921 III, 1266), —37,4° (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 12; C. 1927 I, 2398). $Kp_{10,5}$: 93,6° (V., C., H.). Viscosität bei 20°: 0,02711 g/cm sec (Ce.). Verbrennungswärme bei konstantem Volumen: 862,6 kcal/Mol (V., C., H., R. 45, 590). Ultrarotes Absorptionsspektrum oberhalb 7 μ : Lecomte, C. r. 178, 1700, 2074. — Geschwindigkeit der Verseifung von Glutarsäuredimethylsten der Verseifung von Glutarsäure von Gl ester durch wäßrig-methylalkoholische Salzsäure bei 25°: PALOMAA, LEIMU, Ann. Acad. Sci. fenn. [A] 29, Nr. 10, S. 5; C. 1927 II, 1814; durch wäßrig-methylalkoholische Natron-lauge bei 250: SKRABAL, SINGER, M. 41, 360. — C₇H₁₂O₄ + SnCl₄. Prismen oder Tafeln. F: 108° (HIEBER, A. 439, 120).

Glutarsäuremonoäthylester, Monoäthylglutarat $C_7H_{12}O_4 = HO_2C \cdot [CH_2]_3 \cdot CO_2 \cdot C_2H_5$ (H 633). B. Beim Erhitzen äquimolekularer Mengen von Glutarsäure mit Glutarsäurediathylester auf 230° (Fourneau, Sabetay, Bl. [4] 45, 839). — Flüssigkeit. Kp.: 143—145°. Löslich in Wasser.

Glutarsäurediäthylester, Diäthylglutarat $C_9H_{16}O_4=C_2H_5\cdot O_2C\cdot [CH_2]_3\cdot CO_2\cdot C_2H_5$ (H 633, E I 273). B. Beim Kochen von Glutarsäure mit absol. Alkohol und konz. Schwefel-Kart, B. 1219.
B. Beim Rochen von Glutarsaure mit absol. Alkonol und konz. Schwefelsäure (A. Müller, Rölz, M. 50, 107).
F: —24,1° (korr.) (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 13; C. 1927 I, 2398).
Kp: 230° (Ingold), Soc. 119, 339); Kp₂₀: 127—129°: Kp₅: 108—110° (M., R.).
Viscosität bei 20°: 0,02862 g/cm sec (C.).
Bei der Einw. von Kalium auf Glutarsäurediäthylester in kaltem Xylol entsteht ein amorphes Produkt (Kon, Soc. 121, 519). Liefert bei der Reduktion mit Natrium und Alkohol
Pentamethylogischel (A. Müller, Bern M. 50, 407).
Charleid Schwing auf Versichel (A. Müller, Bern M. 50, 407).

Pentamethylenglykol (A. MÜLLER, RÖLZ, M. 50, 107). Geschwindigkeit der Verseifung von

[Syst. Nr. 174

Glutarsäurediäthylester durch wäßrig-alkoholische Salzsäure bei 25°: PALOMAA, LEIMU, Ann. Acad. Sci. fenn. [A] 29, Nr. 10, S. 6; C. 1927 II, 1814; durch wäßrig-alkoholische Natronlauge bei 25°: SKRABAL, SINGER, M. 41, 361. Beim Zufügen von Natriumamid zu einer Mischung von 1 Mol Glutarsäurediäthylester und 4 Mol Acetophenon in Äther unter Kühlung entstehen 1.3.7.9-Tetraoxo-1.9-diphenyl-nonan, 4.6-Dioxo-6-phenyl-hexan-carbonsäure-(1) und andere Produkte (Wieland, Drishaus, A. 473, 111). Bei der Umsetzung von Glutarsäurediäthylester mit Pyrrylmagnesiumjodid in Äther entsteht 1.3-Di-\alpha-pyrroyl-propan (Syst. Nr. 3592) neben geringen Mengen eines amorphen braunen Produkts (Godden, Naryschkin, J. pr. [2] 121, 372). — Geschwindigkeit der Verseifung durch Schweineleber-Lipase: Hydelewis, J. biol. Chem. 56, 9, 11.

Glutarsäure - di - [d - octyl - (2)] - ester, Di - [d - octyl - (2)] - glutarat $C_{21}H_{40}O_4 = CH_3 \cdot [CH_2]_5 \cdot CH(CH_3) \cdot O_2C \cdot [CH_2]_3 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$. Bei der Einw. von rechtsdrehendem Octanol - (2) auf Glutarsäuredichlorid (Hall, Soc. 123, 40). — Flüssigkeit. Kp3: 175—177°. Di zwischen 15° (0,9204) und 164° (0,8035): H. ng5°: 1,4384; Brechungsindiees bei 25,8° zwischen 643,8 m μ (1,4365) und 435,8 m μ (1,4480): H. [α] $_{ass,s}^{m}$: +15,35° (unverd.); [α] $_{ass,s}^{m}$: +8,4° (Alkohol; c = 5); [α] $_{ass,s}^{m}$: -11,7° (Schwefelkohlenstoff; c = 5). Rotationsdispersion der reinen Substanz (zwischen 17° und 148° für λ 643,8—435,8 m μ) und der Lösungen in Alkohol und Schwefelkohlenstoff (für λ 589,3—435,8 m μ bei 18° bzw. 16°): H.

Glutarsäure - methylester - chlorid $C_eH_9O_3Cl = CH_3 \cdot O_2C \cdot [CH_2]_3 \cdot COCl$. B. Beim Kochen von Glutarsäuremonomethylester mit überschüssigem Thionylchlorid (CLUTTERBUCK, RAPER, Biochem. J. 19, 393). — Kp₂₀: 110°. — Gibt mit überschüssigem Äthylzinkjodid in Toluol in der Kälte δ -Oxo-önanthsäure-methylester; mit Propylzinkjodid entsteht in analoger Reaktion δ -Oxo-caprylsäure-methylester.

Glutarsäuredichlorid, Glutarylchlorid $C_5H_6O_2Cl_2 = ClOC \cdot [CH_2]_3 \cdot COCl$ (H 634; E I 273). B. Beim Erwärmen von Glutarsäure mit überschüssigem Thionylchlorid auf 40—50° (Skraup, Guggenheimer, B. 58, 2493). — Liefert beim Erhitzen mit Glycinäthylester-hydrochlorid in trocknem Benzol bis zum Aufhören der Chlorwasserstoff-Entwicklung Glutarsäurechlorid-[carbäthoxy-methylamid] (Curtius, Hechtenberg, J. pr. [2] 105, 321).

Glutarsäure-äthylester-nitril, γ -Cyan-buttersäure-äthylester $C_7H_{11}O_2N=C_2H_5$: $O_2C\cdot[CH_2]_3\cdot CN$ (H 634). B. Bei längerem Erhitzen von Hydracrylsäureäthylester mit Natriumcyanessigester in Alkohol, Zersetzung mit verd. Salzsäure und nachfolgender Destillation der sauren Anteile des Reaktionsprodukts (Ingold, Soc. 119, 336, 339). — Kp₇₅₅: 200—202°.

Glutarsäuredinitril, Trimethylencyanid $C_5H_6N_2=NC\cdot[CH_2]_3\cdot CN$ (H 635; E I 273). Liefert bei der Umsetzung mit Äthylmagnesiumbromid nach Blaise (C. r. 178, 313) sehr geringe Mengen $\alpha.\gamma$ -Dipropionyl-propan (E II 1, 847) und andere Produkte, nach Bruylants (Bl. Acad. Belgique [5] 9, 37; C. 1923 III, 1263; vgl. Bl. Acad. Belgique [5] 7, 252; C. 1921 III, 1349) sehr geringe Mengen γ -Propionyl-buttersäure-nitril und 1Methyl-2-āthyl-cyclohexen-(1)-on-(6) neben geringen Mengen eines nicht näher beschriebenen dimeren Glutarsäuredinitrils, das bei der Zersetzung mit Wasser in 4-Oxo-heptan-tricarbonsäure-(1.3.7)-trinitril (Syst. Nr. 302) und beim Behandeln mit konz. Salzsäure auf dem Wasserbad in 4-Oxo-heptan-dicarbonsäure-(1.7) übergeht. Gibt bei der Umsetzung mit 2 Mol Benzylmagnesiumchlorid 2.2-Dibenzyl-piperidon-(6)-imid (Syst. Nr. 3187) (Bruylants, Dewael, Bl. Acad. Belgique [5] 12, 465; C. 1927 I, 887).

Glutarsäuredihydrazid $C_5H_{12}O_2N_4 = H_2N \cdot NH \cdot CO \cdot [CH_2]_3 \cdot CO \cdot NH \cdot NH_2$ (H 635). B. Zur Bildung aus Glutarsäurediäthylester und Hydrazinhydrat (Curtius, Clemm, J. pr. [2] 62, 194) vgl. Borsche, Müller, Bodenstein, A. 475, 122. — Liefert bei der Umsetzung mit 2 Mol Benzochinon in verd. Salzsäure unter Eiskühlung die Verbindung $O:C_6H_4:N \cdot NH \cdot CO \cdot [CH_2]_3 \cdot CO \cdot NH \cdot N:C_4H_4:O$ (Syst. Nr. 671) (Bor., M., Bod.). Reaktion mit Chinonoxim: Bor., M., Bod.

α-Brom-glutarsäure-diäthylester $C_9H_{15}O_4Br = C_3H_5 \cdot O_2C \cdot CH_2 \cdot CH_3 \cdot CHBr \cdot CO_2 \cdot C_2H_5$ (H 636). B. Beim Erwärmen von Glutarsäure mit Thionylchlorid, Behandeln des Reaktionsprodukts mit 2 Atomen Brom im Bogenlicht bei 60° und Eingießen in Alkohol (Incold, Soc. 119, 316). — Kp_{11} : 142° (I.). — Bei längerem Kochen von α-Brom-glutarsäure-diäthylester mit 2n-Soda-Lösung entsteht α-Oxy-glutarsäure als Hauptprodukt neben wenig trans-Cyclopropan-dicarbonsäure-(1.2), während beim Kochen mit 6n-methylalkoholischer Kalilauge hauptsächlich trans-Cyclopropan-dicarbonsäure-(1.2), geringere Mengen α-Oxy-glutarsäure und sehr geringe Mengen Paraconsäure, cis-Cyclopropan-dicarbonsäure-(1.2) und Glutaconsäure gebildet werden (I., Soc. 119, 310, 318, 319).

Liefert beim Erhitzen mit 2-Amino-thiophenol in Kohlen-

Liefert beim Erhitzen mit 2-Amino-thiophenol in Kohlendioxyd-Atmosphäre auf 120—130° 3-Oxo-dihydro-[benzo-1.4-thiazin]-[β -propionsäure]-(2)-äthylester (s. nebenstehende

S CH-CH2-CH2-CO2-C2H4

Formel; Syst. Nr. 4330); daneben entsteht 2.2'-Diamino-diphenyldisulfid (MILLS, WHIT-WORTH, Soc. 1927, 2745).

 β -Brom-glutarsäure-mononitril, β -Brom- γ -cyan-buttersäure $C_8H_8O_2NBr = HO_2C$ - CH_3 · CH_3

β-Brom-glutarsäure-dinitril, β-Brom-trimethylencyanid $C_5H_5N_2Br=CHBr(CH_2\cdot CN)_2$. B. Beim Sättigen von β-Oxy-glutarsäure-dinitril oder Glutaconsäuredinitril mit Bromwasserstoff (Lespieau, C. r. 176, 755; Bl. [4] 33, 729). — Nadeln (aus Wasser). F: 87—88°. Schwer löslich in kaltem Wasser. — $C_5H_5N_2Br+HBr$. Krystalle. F: 230°. Löslich in Wasser.

α.β-Dibrom-glutarsäure C₃H₆O₄Br₂ = HO₂C·CH₃·CHBr·CHBr·CO₃H (E I 273). Zur Konfiguration vgl. Verkade, Coors, R. 39, 589. — Darst. Zur Darstellung aus Glutaconsäure und Brom nach Verkade (Versl. Akad. Amsterdam 24, 1538; C. 1916 II, 560) vgl. V., C. — Krystalle (aus wasserfreier Ameisensäure). F: 157° (korr.; geringe Zersetzung) (V., C.). Ziemlich leicht löslich in kalter Ameisensäure (V., C.). — Silbernitrat fällt aus der wäßr. Lösung nach einiger Zeit, langsamer aus salpetersaurer Lösung Silberbromid (V., C.). Liefert beim Kochen mit Zinkstaub in verd. Schwefelsäure Glutaconsäure (V., C.). Beim Kochen von α.β-Dibrom-glutarsäure mit 2 n-Soda-Lösung entstehen als Hauptprodukte α.β-Dioxyglutarsäure und α-Oxo-glutarsäure und geringe Mengen Glutaconsäure, β-Oxy-glutarsäure, trans-Cyclopropan-dicarbonsäure-(1.2), Cyclopropen-(2)-dicarbonsäure-(1.2), Pyromellitsäure und amdere Produkte; beim Kochen mit 6 n-methylalkoholischer Kalilauge bilden sich hauptsächlich α-Oxo-glutarsäure, cis-Cyclopropan-dicarbonsäure-(1.2) und andere Produkte (Farmer, Ingold, Soc. 119, 2011, 2013, 2017).

Diäthylester $C_0H_{14}O_4Br_2 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CHBr \cdot CHBr \cdot CO_2 \cdot C_2H_5$ (E I 273). B. Zur Bildung aus Glutaconsäurediäthylester und Brom nach Feist (B. 44, 137) vgl. Verkade, Coops, R. 39, 591. — Flüssigkeit von schwach stechendem Geruch. Kp₂: 135—136°; Kp₁₉: 168—169° (geringe Zersetzung) (V., C.). — Wird beim Erhitzen mit 27 %iger Bromwasserstoffsäure zu α.β-Dibrom-glutarsäure verseift (V., C.). Liefert beim Vermischen mit nahezu siedendem Diäthylanilin α- oder γ-Brom-glutaconsäure-diäthylester (Farmer, Ingold, Soc. 119, 2013).

 $\alpha.\alpha'$ -Dibrom-glutarsäure $C_5H_6O_4Br_2 = CH_2(CHBr \cdot CO_2H)_2$.

a) Niedrigerschmelzende $\alpha.\alpha'$ -Dibrom-glutarsäure, racemische $\alpha.\alpha'$ -Dibrom-glutarsäure $C_8H_9O_4Br_9=CH_2(CHBr\cdot CO_9H)_9$ (H 636). B. Neben viel Meso- $\alpha.\alpha'$ -dibrom-glutarsäure bei der Einw. von Thionylchlorid auf Glutarsäure, Behandeln des Reaktionsprodukts mit 4 Atomen Brom im Bogenlicht bei 100° und Eingießen in Ameisensäure (Ingold, Soc. 119, 316). — Prismen (aus Chloroform und Aceton + Benzol). F: 142°.

Dimethylester $C_7H_{10}O_4Br_2=CH_2(CHBr\cdot CO_2\cdot CH_3)_2$. B. Beim Kochen von racem.- $\alpha.\alpha'$ -Dibrom-glutarsäure mit methylalkoholischer Schwefelsäure (Ing. Perkin, Soc. 127, 2393). — Öl. Kp₁₀: 143—145°. — Wird beim Behandeln mit wenig Natriummethylat-Lösung in Meso- $\alpha.\alpha'$ -dibrom-glutarsäure-dimethylester umgelagert; mit größeren Mengen Natriummethylat bildet sich unter Abscheidung von Natriumbromid 1-Brom-cyclopropan-dicarbonsäure-(1.2)-dimethylester. Liefert beim Behandeln mit der Natriumverbindung des Cyanessigsäuremethylesters in Methanol anfangs in der Kälte, später auf dem Wasserbad ein Gemisch der festen und flüssigen Form des 1-Cyan-cyclobutan-tricarbonsäure-(1.2.4)-trimethylesters. Bei der Umsetzung mit Natriummalonsäuredimethylester in siedendem Benzol entsteht ein Gemisch der flüssigen und festen Form des Cyclobutan-tetracarbonsäure-(1.1.2.4)-tetramethylesters.

Diäthylester $C_0H_{14}O_4Br_2 = CH_1(CHBr \cdot CO_2 \cdot C_2H_3)_2$. B. Im Gemisch mit dem Diäthylester der Meso- $\alpha.\alpha'$ -dibrom-glutarsäure beim Erwärmen von Glutarsäure mit Thionylchlorid, Behandeln des Reaktionsprodukts mit 4 Atomen Brom im Bogenlicht bei 100° und Eingießen in Alkohol (Ingold, Soc. 119, 316, 318).

b) Höherschmelzende $\alpha.\alpha'$ -Dibrom - glutarsäure, Meso - $\alpha.\alpha'$ - dibrom-glutarsäure $C_5H_6O_4Br_2=CH_9(CHBr\cdot CO_2H)_9$ (H 636). B. s. bei der racemischen Form. — Prismen (aus Chloroform oder Äther + Chloroform). F: 170° (Ingold, Soc. 119, 316; Farmer, Scott, Soc. 1929, 179).

Dimethylester $C_7H_{10}O_4Br_8 = CH_8(CHBr\cdot CO_2\cdot CH_8)_8$. Beim Kochen von meso-a.a'-Dibrom-glutarsäure mit methylalkoholischer Schwefelsäure (Ing. Perkin, Soc. 127, 2393). Zur Bildung durch Umlagerung aus der racemischen Form s. dort. — Krystalle (aus Methanol). F: 45°. — Die Umsetzungen mit Natriumcyanessigsäuremethylester und Natriummalonsäuredimethylester verlaufen analog wie bei der racemischen Form.

Diäthylester $C_0H_{14}O_4Br_2 = CH_0(CHBr \cdot CO_2 \cdot C_2H_5)_9$ (H 636). Liefert beim Erwärmen mit überschüssigem Diäthylamin hauptsächlich Pyromellitsäure-tetraäthylester, außerdem $\alpha.\alpha'$ -Bis-diäthylamino-glutarsäure-diäthylester, (nicht näher beschriebenen) 3.6-Dihydro-pyromellitsäure-tetraäthylester und andere Produkte (v. Braun, Leistner, Münch, B. 59, 1957).

 $\alpha.\alpha'$ -Dijod-glutarsäure-dimethylester $C_7H_{10}O_4I_2=CH_2(CHI\cdot CO_2\cdot CH_2)_2$. a) Feste Form. B. Neben der flüssigen Form beim Kochen des Gemisches der Methylester der racemischen und Meso-α.α'-dibrom-glutarsäure mit Natriumjodid in Methanol

- (Ing, Perkin, Soc. 127, 2393). Prismen (aus Methanol). F: 75°.
 b) Flüssige Form. B. s. o. bei der festen Form. Blaßgelbes Ol. Erstarrt nicht bei -200 (Ing, Perkin, Soc. 127, 2393). Nur unter Zersetzung destillierbar. — Färbt sich beim
- Aufbewahren infolge Abspaltung von Jod braun und geht dabei langsam in die feste Form über. Wird beim Behandeln mit Natriummethylat-Lösung zum Teil in die feste Form umgelagert, daneben entsteht 1-Jod-cyclopropan-dicarbonsäure-(1.2)-dimethylester. [HILLGER]
- 2. Propan-dicarbonsäure-(1.2). Methylbernsteinsäure, Brenzweinsäure $C_5H_8O_4=HO_2C\cdot CH_2\cdot CH(CH_3)\cdot CO_2H$. Für die von Brenzweinsäure abgeleiteten Namen

wird in diesem Handbuch folgende Stellungsbezeichnung gebraucht: $\text{HO}_2\text{C} \cdot \overset{\alpha}{\text{CH}}_3 \cdot \overset{\beta}{\text{CH}} < \overset{\zeta}{\overset{C}{\text{H}}_3}_{\text{CO}_2\text{H}}$.

- a) d-Brenzweinsäure $C_5H_8O_4 = HO_2C \cdot CH_2 \cdot CH(CH_3) \cdot CO_2H$ (H 637; E I 273). B. Aus rechtsdrehendem β -Methyl-tetramethylenglykol durch längere Einw. der berechneten Menge 1% iger wäßriger Permanganat-Lösung bei Zimmertemperatur (v. Braun, Jostes, P. 50, 4447). B. 59, 1447). — Krystalle (aus Benzol + Ather). F: 112°. [α_{10}^{10} : +9,8° (Wasser; p = 20).
- b) dl-Brenzweinsäure C₅H₈O₄ = HO₂C·CH₂·CH(CH₃)·CO₂H (H 637; E I 274). B. Durch Kondensation von Acetaldehyd mit cyanessigsaurem Natrium in verd. Natronlauge, Umsetzung des Reaktionsprodukts mit Kaliumcyanid in warmer essigsaurer Lösung und nachfolgendem Behandeln mit rauchender Salzsäure, zuletzt in der Siedehitze (LAPWORTH, McRae, Soc. 121, 2751). Beim Erhitzen von Crotonsäureäthylester mit Kaliumcyanid in verd. Alkohol und Verseifen des entstandenen Esters durch Kochen mit Bariumhydroxyd (Higginbotham, Lapworth, Soc. 121, 51). Beim Erhitzen von Propan-tricarbonsäure-(1.1.2) auf mindestens 120° (Конler, Витler, Am. Soc. 48, 1044). Beim Erhitzen der wäßr. Lösungen der Natriumsalze der Milchsäure (IPATJEW, RASUWAJEW, B. 59, 2032; Ж. 58, 1347), der α -Oxy- α -methyl-bernsteinsäure, der α -Oxy- α -dimethyl-bernsteinsäure, der α -Oxy- α -methyl- α -athyl-bernsteinsäure (RA., B. 60, 1977; \Re . 59, 1071), der Citronensäure und der Brenztraubensäure mit Wasserstoff unter Druck in Gegenwart von Nickel(II)-oxyd und Tonerde auf Temperaturen zwischen 230° und 270° (I., Ra., B. 80, 1973, 1975; Ж. 59. 1080, 1086). In geringer Menge bei tropfenweiser Zugabe von dl- oder meso-1.3-Dimethyleyelohexanon-(5) zu der 12-fachen Menge 40% iger, auf 100° erwärmter Salpetersäure, neben $\alpha.\beta'$ -Dimethyl-adipinsäure (v. Braun, Haensel, B. 59, 2006). Bei der Oxydation von β -Methyl-butyrolacton mit Kaliumdichromat und 10% iger Schwefelsäure auf dem Wasserbad (SIRCAR, Soc. 1928, 901). Durch Hydrierung von Citraconsäureanhydrid bei Gegenwart von Palladium(II)-chlorid und Tierkohle in Wasser unter 1,6 Atm. Druck (MAYER, STAMM, B. 56, 1426). Bei der Reduktion von Itaconsäureanhydrid mit Natriumamalgam (Kohler, Butler, Am. Soc. 48, 1045).

Verbrennungswärme bei konstantem Volumen: 3903,3 cal/g (VERKADE, Coops, R. 47. 608; vgl. Hartman in Landolt-Börnst. E I 873; E II 1642). — Dichte wäßr. Lösungen bei 20°: Berner, Ph. Ch. [A] 141, 122. Elektrolytische Dissoziationskonstante der ersten Stufe k, bei 18°: 7,4×10-5 (ermittelt aus der Leitfähigkeit) (Larsson bei Bjerrum, Ph.Ch. 106, 227; vgl. a. L., Z. anorg. Ch. 125, 288); bei 25° : $8,36\times10^{-5}$ (V., R. 40, 205). Elektrolytische Dissoziationskonstante der 2. Stufe k, bei 180 (auf Ionenaktivitäten bezogen): 2,3×10-6

(potentiometrisch bestimmt) (L., Z. anorg. Ch. 125, 291).

Beim Bestrahlen der wäßr. Lösung mit Quecksilberdampflicht wird Kohlendioxyd abgespalten (Volmar, C. r. 181, 467). Liefert beim Erhitzen auf höhere Temperatur unter Entwicklung von Kohlendioxyd neben Brenzweinsäureanhydrid eine Verbindung $C_9H_{12}O_4$ (hochviscoses Ol; Kp₁₅: 198—199°) (Verkade, R. 40, 209). Beim Erhitzen mit 2 Mol Schwefelsäureanhydrid auf 100—110° entsteht β -Sulfo-brenzweinsäure; bei Verwendung von mehr Schwefelsäureanhydrid erhält man außerdem eine Disulfonsäure und andere schwefelhaltige Säuren (Backer, Buining, R. 47, 111, 113, 114). — Reduktion von Methylenblau durch Brenzweinsäure in Gegenwart von Bact. coli: Quastel, Biochem. J. 20, 179. Hemmende Wirkung auf die Reduktion von Methylenblau durch Bernsteinsäure oder Milchsäure in Gegenwart von Bact. coli: Qu., Wooldridge, Biochem. J. 22, 692.

Diäthylester $C_9H_{16}O_4=C_2H_5\cdot O_3C\cdot CH_2\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$ (H 639). Kp: 217—2180 (IPATJEW, RASUWAJEW, B. 59, 2033; Ж. 58, 1348). $D_0^{16.5}$: 1,0154 (I., R.); $D_4^{16.6}$: 1,0110 (v. Auwers, Ottens, B. 57, 442). n_0^{16} : 1,4210 (I., R.); $n_0^{16.6}$: 1,4172; $n_{H_0}^{16.6}$: 1,4194; $n_{H_0}^{16.6}$: 1,4243; n_Y^{19,6}: 1,4286 (v. Au., O.).

Diamid $C_5H_{10}O_2N_2=H_2N\cdot CO\cdot CH_2\cdot CH(CH_2)\cdot CO\cdot NH_2$ (H 640; E I 274). Gibt beim Erhitzen anfangs auf 180°, danach auf 220° Methylbernsteinsäureimid (Späth, Prokoff, B. 57, 478).

- 569
- 2-Brom-propan-dicarbonsäure-(1.2), β -Brom-brenzweinsäure, Citrabrombrenzweinsäure $C_5H_7O_4Br = HO_2C\cdot CH_2\cdot CBr(CH_3)\cdot CO_2H$ (H 641; E I 274). Zur optischen Spaltung mit akt. α -Phenäthylamin vgl. Holmberg, $Ph.\ Ch.\ [A]$ 137, 22. Beim Stehenlassen einer bei 0^0 mit Ammoniak neutralisierten, mit Ammoniumsulfit versetzten Lösung von Citrabrombrenzweinsäure in Wasser entsteht β -Sulfo-brenzweinsäure, neben Citraconsäure und Citramalsäure (Backer, Buining, R. 47, 112, 117).
- 3-Brom-propan-dicarbonsäure-(1.2), γ -Brom-brenzweinsäure, Itabrombrenzweinsäure $C_5H_7O_4Br = HO_2C\cdot CH_2\cdot CH(CH_2Br)\cdot CO_2H$ (E I 275). B. Durch Kochen von γ -Äthoxy-brenzweinsäure mit Bromwasserstoffsäure (D: 1,49) (Ingold, Shoppee, Thorpe, Soc. 1926, 1488). Zur Bildung nach Fittig, Beer (A. 216, 79) vgl. Sircar, Soc. 1927, 1257. Krystalle (aus Essigester + Ligroin). F: 137° (I., Sh., Th.). Liefert bei Einw. von überschüßigem feuchtem Silberoxyd Paraconsäure (I., Sh., Th.). Zersetzt sich teilweise beim Umkrystallisieren aus heißem Wasser (Backer, Buining, R. 46, 850). Das Ammoniumsalz liefert mit Ammoniumsulfit in schwach ammoniakalischer Lösung γ -Sulfo-brenzweinsäure und Itaconsäure (B., B.).
- 1.2 Dibrom propan dicarbonsäure (1.2), $\alpha.\beta$ Dibrom brenzweinsäure, Citra-dibrombrenzweinsäure $C_5H_6O_4Br_2 = HO_2C \cdot CHBr \cdot CBr(CH_3) \cdot CO_2H$ (H 642).

- Z. 27 v. o. nach "B. 33, 494" schalte ein: "; vgl. Stolz, B. 36, 3274; Fichter, J. pr. [2] 74, 304."
- 3-Jod-propan-dicarbonsäure-(1.2), γ -Jod-brenzweinsäure, Itajodbrenzweinsäure $C_5H_7O_4I = HO_2C \cdot CH_2 \cdot CH(CH_2I) \cdot CO_2H$ (H 643; E I 275). B. Durch Kochen von γ -Äthoxy-brenzweinsäure mit Jodwasserstoffsäure (Ingold, Shoppee, Thorpe, Soc. 1926, 1488). Krystalle (aus Essigester + Ligroin). F: 138°. Liefert bei Einw. von überschüssigem feuchtem Silberoxyd Paraconsäure.
- 3. Propan dicarbonsäure (1.1). Äthylmalonsäure C₅H₈O₄ = CH₃·CH₂·CH(CO₂H)₂ (H 643; E I 275). B. Der Diäthylester entsteht durch Behandlung von Malonester mit Magnesiumäthylat in Alkohol und anschließendes Kochen mit Diäthylsulfat (Terentjew, ж. 60, 89; C. 1928 II, 745), durch Kochen von Malonester mit p-Toluolsulfonsäureäthylester in Natriumäthylat-Lösung (Peacock, Tha. Soc. 1928, 2304), durch Einw. von Athyljodid auf die Lithiumverbindung des Malonesters in absol. Alkohol (Rojahn, Schulten, B. 59, 500), bei langsamem Einleiten von Chlorcyan in eine Lösung von Natriummalonester in kaltem absolutem Alkohol (Mignonac, Rambeck, C. r. 188, 1299), bei der Hydrierung von Athylidenmalonsäurediäthylester in Gegenwart von kolloidalem Palladium in verd. Alkohol (Higginbotham, Lapworth, Soc. 123, 1622), aus Äthyl-acetyl-malonsäurediäthylester durch Einw. von Natriumäthylat-Lösung (Dieckmann, Wittmann, B. 55, 3346). Röntgenographische Untersuchung: Henderson, Pr. roy. Soc. Edinburgh 48, 22, 24; C. 1928 I, 2903. Verbrennungswärme bei konstantem Volumen: 3929,5 cal/g (Verkade, Coops, R. 47, 608). Elektrische Leitfähigkeit der wäßr. Lösungen der Säure und des Dinatriumsalzes bei 25°: Vogel, Soc. 1929, 1478. Elektrolytische Dissoziationskonstante bei 25° der ersten Stufe k₁ (ermittelt aus der Leitfähigkeit): 1,030×10-3 (V.), 1,26×10-3 (Gane, Ingold, Soc. 1929, 1698); der 2. Stufe k₂: 2,81×10-6 (ermittelt durch elektrometrische Titration) (G., I.).

Geschwindigkeit der Kohlendioxyd-Abspaltung in 0,2 n-wäßriger Lösung zwischen 80° und 110°: Bernoulli, Jakubowicz, Helv. 4, 1025; Ja., Z. anorg. Ch. 121, 119. Liefert beim Erhitzen mit Benzaldehyd und überschüssigem alkoholischem Ammoniak anfangs auf dem Wasserbad, später auf 145° und nachfolgenden Behandeln des Reaktionsprodukts mit Chlorwasserstoff das Hydrochlorid der β-Amino-α-äthyl-β-phenyl-propionsäure und eine Säure C₁₁H₁₂O₂ vom Schmelzpunkt: 107°; mit Piperonal entsteht in analoger Reaktion β-Amino-α-āthyl-β-[3.4-methylendioxy-phenyl]-propionsäure und eine Säure C₁₂H₁₂O₄ vom Schmelzpunkt 135° (Rodionow, Postowskaja, Am. Soc. 51, 845). Ein Gemisch von 2 Mol Athylmalonsäure und 1 Mol 33%iger Dimethylamin-Lösung liefert bei Einw. von 2 Mol 33%iger Formaldehyd-Lösung unter Kühlung [Dimethylamino-methyl]-äthyl-malonsäure; analog entsteht bei Anwendung von Methylamin [Methylamino-methyl]-äthyl-malonsäure (Mannich, Ganz, B. 55, 3492). Liefert beim Behandeln mit kalter Benzoldiazonium-chlorid-Lösung unter Zusatz von Natriumacetat N.N'-Diphenyl-C-äthyl-formazan (Syst. Nr. 2092) (Walker, Soc. 123, 2778). — Reduktion von Methylenblau durch Gemische von Athylmalonsäure mit Milchsäure oder Bernsteinsäure in Gegenwart von intakten Bact. coli bei P_R 7,4: Quastel, Wooldride, Biochem. J. 22, 697.

Äthylmalonsäure-dimethylester $C_7H_{19}O_4=C_2H_5\cdot CH(CO_9\cdot CH_2)_2$ (H 644). Geschwindigkeit der Verseifung in wäßr. Natriumcarbonat-Lösung bei 25°: Serabal, Singer, M. 41, 370.

Äthylmalonsäure - monoäthylester $C_7H_{19}O_4 = C_2H_5 \cdot CH(CO_2H) \cdot CO_2 \cdot C_2H_5$ (H 644). Das Kaliumsalz liefert beim Erwärmen mit wasserfreiem Hydrazin und absol. Alkohol auf dem Wasserbad das Kaliumsalz des Äthylmalonsäure - monohydrazids (Curtus, Sieber, B. 55, 1554). Liefert beim Neutralisieren mit Diäthylamin unter Kühlung und Aufbewahren mit 30 % iger Formaldehyd - Lösung α - Athyl-acrylsäure - äthylester; außerdem entsteht N.N.N'.N'-Tetraäthyl-methylendiamin (Mannich, Ritser, B. 57, 1117). — KC₇H₁₁O₄. Täfelchen (C., S.).

Äthylmalonsäure - dišthylester C₅H₁₆O₄ = C₂H₅·CH(CO₂·C₅H₆)₂ (H 644; E I 275). B. s. S. 569 bei Äthylmalonsäure. — Technische Darstellung: J. Schwyzer, Die Fabrikation pharmazeutischer und chemisch-technischer Produkte [Berlin 1931], S. 105. — Kp₇₆₅: 208° bis 210° (Vocel, Soc. 1929, 1478); Kp₇₆₅: 207—209° (korr.) (Volumler, Am. Soc. 47, 2239); Kp₇₆₅: 203° (Higginbotham, Lapworth, Soc. 123, 1622); Kp₁₆: 86° (Dieckman, Wittmann, B. 55, 3346). — Wird von Chromschwefelsäure nur unvollständig oxydiert (Guyot, Simon, C.r. 170, 516). Liefert beim Chlorieren Äthylchlormalonsäure-dišthylester (Cloves, A. 319 [1901], 356; Hirst, Macbeth, Soc. 121, 2177). Kinetik der Verseifung mit wäßrig-alkoholischer Natronlauge bei 27,0°: Gane, Ingold, 16. Beim Erhitzen mit Benzaldehyd und überschüssigem alkoholischem Ammoniak im Rohr auf dem Wasserbad und Behandeln des in Äther gelösten Reaktionsprodukts mit Chlorwasserstoff bilden sich 1-Amino-1-phenylbutan-dicarbonsäure-(2,2)-diäthylester-hydrochlorid und geringe Mengen einer Verbindung vom Schmelzpunkt 74° (Rodionow, Postowskaja, Am. Soc. 51, 844). Die Natriumverbindung liefert bei der Einw. von Phenacylbromid in Alkohol 2-Oxo-3-äthyl-5-phenyl-2.3-dihydrofuran-carbonsäure-(3)-äthylester (Râx, Râx, Soc. 127, 2722). Äthylmalonsäure-diäthylester liefert mit p-Toluolsulfonsäureazid kein Triazolderivat (Curtius, Klavehn, J. pr. [2] 112, 84). Beim Erhitzen mit Anilin erhält man 2.4-Dioxy-3-äthyl-chinolin (Baumgarten, Kärgel, B. 60, 839). Beim Erhitzen mit 2-Amino-pyridin auf 190—200° entsteht die Verbindung nebenstehender Formel (Syst. Nr. 3591) (Tschitschi-Babin, B. 57, 1171; Ж. 57, 404).

Äthylmalonsäure-diamid, C-Äthyl-malonamid $C_5H_{10}O_2N_3=C_2H_5\cdot CH(CO\cdot NH_2)_3$ (H 644; E I 275). Liefert mit Sulfurylchlorid Äthylchlormalonsäure-diamid (Dox, Houston, Am. Soc. 46, 1279).

Äthylmalonsäure - mononitril, α - Cyan - buttersäure, Äthylcyanessigsäure $C_8H_7O_2N=C_2H_5$ ·CH(CN)·CO₂H (H 645; E I 275). Gibt mit Äthyl- oder Amylnitrit und Kaliumäthylat in absol. Äther bei 0° α -Oximino-buttersäure-nitril (Walker, Soc. 125, 1625). Liefert mit diazotiertem p-Toluidin und Natriumacetat in verd. Alkohol bei 0° α -p-Tolylhydrazono-butyronitril; reagiert analog mit diazotiertem 4-Chlor-anilin in Eisessig (W.).

α-Cyan-buttersäure-methylester, Äthyleyanessigsäure-methylester $C_8H_8O_4N=C_9H_5\cdot CH(CN)\cdot CO_9\cdot CH_3$. B. Neben Diāthyleyanessigsäure-methylester bei der Einw. von Äthyljodid und Natriummethylat-Lösung auf Cyanessigsäure-äthylester oder von Äthylbromid und Natriumäthylat-Lösung auf Cyanessigsäure-methylester (Hessler, Lamb, Am. Soc. 43, 205). — Wird durch 10 %ige Natronlauge verseift.

α-Cyan-buttersäure-äthylester, Äthylcyanessigsäure-äthylester $C_7H_{11}O_2N=C_2H_5\cdot CH(CN)\cdot CO_2\cdot C_2H_5$ (H 645; E I 275). Gibt bei mehrstündigem Kochen mit Äthylmagnesiumjodid in Toluol Äthyldipropionylmethan (Mavrodin, $C.\tau.$ 188, 1505). Reagiert analog mit Phenylmagnesiumbromid.

Äthylmalonsäure-monohydraxid $C_8H_{10}O_3N_2=C_2H_5\cdot CH(CO_2H)\cdot CO\cdot NH\cdot NH_2$. B. Das Kaliumsalz entsteht aus dem Kaliumsalz des Äthylmalonsäure-monoäthylesters beim Erwärmen mit wasserfreiem Hydrazin und absol. Alkohol auf dem Wasserbad (Curtius, Sieber, B. 55, 1554). — Liefert beim Diazotieren unter guter Kühlung Athylmalonsäure-monoazid und Äthylmalonsäure-amid-azid(?). — $KC_5H_9O_3N_2$. Sehr hygroskopische krystalline Masse. Leicht löslich in Alkohol, unlöslich in Äther.

Åthylmalonsäure-monoasid C₅H₇O₅N₃ = C₂H₅·CH(CO₂H)·CO·N₃. B. Beim Diazotieren von Athylmalonsäure-monohydrazid unter guter Kühlung, neben Athylmalonsäure-amid-azid (?) (CURTIUS, SIEBER, B. 55, 1555). — Gelbliches Öl, das beim Erhitzen auf dem Spatel schwach verpufft. Löslich in Wasser, sehr leicht löslich in Äther, Chloroform und Alkohol. — Gibt mit Silbernitrat bereits in der Kälte Silberazid. Explodiert zuweilen beim Kochen in indifferenten Medien. Liefert beim Kochen mit Äther, weniger gut mit Chloroform, 2.5-Dioxo-4-äthyl-oxazolidin und ein gelbes Öl, das beim Eindampfen mit konz. Salzsäure Äthylmalonsäure gibt. Beim Kochen mit Äther und absol. Methanol entstehen α-Carbomethoxyamino-buttersäure und geringe Mengen des polymeren α-Amino-buttersäureanhydrids (s. bei α-Amino-buttersäure, Syst. Nr. 366).

Äthylmalonsäure-amid-axid (P) $C_5H_8O_2N_4=C_9H_5\cdot CH(CO\cdot NH_8)\cdot CO\cdot N_8$. B. Neben Athylmalonsäure-monoazid beim Diazotieren von Äthylmalonsäure-monohydrazid unter guter Kühlung (Curtius, Sieber, B. 55, 1555). — Nadeln. F: 82—83°.

Äthylchlormalonsäure - diäthylester $C_9H_{15}O_4Cl=C_9H_5\cdot CCl(CO_2\cdot C_9H_5)_2$ (H 646). Kp₁₆: 105° (Hrst, Macbeth, Soc. 121, 2177). — Führt Hydrazin unter Abspaltung des Chlors quantitativ in Stickstoff über.

Äthylchlormalonsäure-diamid $C_5H_9O_2N_3Cl = C_2H_5 \cdot CCl(CO \cdot NH_2)_2$. B. Aus Athylmalonsäure-diamid durch Chlorierung in Eisessig oder durch Einw. von Sulfurylchlorid (Dox, Houston, Am. Soc. 46, 1279). — Prismen. F: 135°. Schmeckt sehr süß; die Süßkraft ist die neunfache des Rohrzuckers.

Äthylbrommalonsäure-diäthylester $C_9H_{15}O_4Br=C_9H_5\cdot CBr(CO_3\cdot C_2H_5)_2$ (H 646). Gibt mit der Natriumverbindung des α -Methyl-acetessigsäure-äthylesters in Alkohol Athylmalonsäurediäthylester und andere Produkte (Gault, Klees, Bl. [4] 39, 1008). Führt Hydrazinhydrat in Alkohol unter Abspaltung des Broms fast quantitativ in Stickstoff über (Hirst, Macbeth, Soc. 121, 910).

Äthylbrommalonsäure-diamid $C_5H_9O_5N_2Br=C_2H_5\cdot CBr(CO\cdot NH_2)_2$. B. Beim Eindampfen einer warmen Lösung von Äthylmalonsäure-diamid und Brom in heißem Eisessig im Vakuum über Natriumhydroxyd (Stevens, Ward, Soc. 125, 1329). Bei allmählichem Eintragen von überschüssigem Brom in eine wäßr. Lösung von Äthylmalonsäure-diamid (St., W.). — Krystalle (aus Alkohol oder Wasser). F: 161,5°.

[β -Brom-äthyl]-malonsäure-dimethylester $C_7H_{11}O_4Br=CH_9Br\cdot CH_1\cdot CH_2\cdot CH_3\cdot B$. Beim Behandeln von [β -Brom-äthyl]-malonsäure mit Diazomethan (Küster, Grassner, H. 145, 48). — Kp. 216°; Kp₂₈: 150—152°.

[β-Brom-āthyl]-malonsäure-diāthylester C₉H₁₁O₄Br = CH₂Br·CH₂·CH(CO₂·C₂H₅)₂.

B. Beim Einleiten von trocknem Bromwasserstoff in Cyclopropan-dicarbonsäure-(1.1)-diāthylester bei 0° (Küster, Grassner, H. 145, 47). — Eigentümlich riechendes, farbloses Ol. Kp₈: 132—134°. — Liefert beim Kochen mit Natriumāthylat-Lösung, beim Kochen mit Acetylchlorid und Pyridin in Toluol, beim Erwärmen mit Natrium und Acetylchlorid in Alkohol und beim Behandeln mit Ammoniak in Alkohol bei Zimmertemperatur Cyclopropan-dicarbonsäure-(1.1)-diāthylester; im letzten Fall entstehen außerdem noch Cyclopropan-dicarbonsäure-(1.1)-āthylester-amid und Cyclopropan-dicarbonsäure-(1.1)-diamid, Liefert beim Kochen mit Anilin Cyclopropan-dicarbonsäure-(1.1)-diamilid (K., G.).

 $\alpha\gamma$ -Dibrom-äthylmalonsäure, [β -Brom-äthyl]-brommalonsäure $C_5H_6O_4Br_2=CH_2Br\cdot CH_2\cdot CBr(CO_2H)_2$ (H 646). B. Aus Cyclopropan-dicarbonsäure-(1.1) und Brom in Tetrachlorkohlenstoff bei Bestrahlung mit ultraviolettem Licht (Nicolet, Sattler, Am. Soc. 49, 2070). — F: 111°; gibt bei 113° Kohlendioxyd ab.

Diäthylester $C_9H_{14}O_4Br_2 = CH_2Br\cdot CH_2\cdot CBr(CO_2\cdot C_2H_5)_2$. B. Bei der Einw. von Brom auf Cyclopropan-dicarbonsäure-(1.1)-diäthylester, am besten oberhalb 50° bei Belichtung mit Quecksilberdampflicht (Nicolet, Sattler, Am. Soc. 49, 2069). — Kp₁₀: 146° bis 151°. — Liefert beim Kochen mit konstant siedender Bromwasserstoffsäure $\alpha.\gamma$ -Dibrombuttersäure (?), die bei Behandlung mit Silberoxyd in Wasser in $\alpha.\gamma$ -Dioxy-buttersäure übergeht.

Äthylester-nitril, $\alpha.\gamma$ -Dibrom- α -cyan-buttersäure-äthylester $C_7H_9O_2NBr_2=CH_9Br\cdot CH_9\cdot CBr(CN)\cdot CO_9\cdot C_9H_8$. B. Beim Bromieren von 1-Cyan-cyclopropan-carbonsäure-(1)-äthylester bei Temperaturen in der Nähe des Siedepunktes (NICOLET, SATTLER, Am. Soc. 49, 2070). — Kp_{11} : 136—140°.

4. Propan - dicarbonsäure - (2.2), Dimethylmalonsäure C₂H₂O₄ == (CH₃)₂C(CO₂H)₃ (H 647; E I 276). B. Bei der Oxydation von Dimethyl-aconitsäure oder Trimethyl-aconitsäure mit Permanganat in alkal. Lösung bei 0° unter Durchleiten von Kohlendioxyd und folgendem Aufbewahren der Reaktions-Lösung bei Zimmertemperatur, neben Oxalsäure bzw. Brenztraubensäure (Farmer, Ingold, Thorppe, Soc. 121, 150; Grimwood, I., Th., Soc. 123, 3309). Aus Tetramethylacetondicarbonsäure-anhydrid (Syst. Nr. 2490) beim Behandeln mit Wasser, neben Isobuttersäure (Staudinger, Felix, Harder, Helv. 8, 312). Aus dem (aus Dimethylketen und Kohlendioxyd erhaltenen) gemischten Anhydrid aus Tetramethylacetondicarbonsäure und Dimethylmalonsäure (Syst. Nr. 2798) beim Behandeln mit alkoh. Kalilauge, neben Isobuttersäure (St., F., H.). — F: 193,5° (Zers.) (Vogel, Soc. 1929, 1478). — Elektrische Leitfähigkeit der wäßr. Lösungen der Säure und des Dinatriumsalzes bei 25°: V. Elektrolytische Dissoziationskonstante bei 25° der ersten Stufe k, (aus der Leitfähigkeit bestimmt): 6,57×10⁻⁴ (V.), 8,27×10⁻⁴ (Gane, Ingold, Soc. 1929, 1699); der 2. Stufe k₂: 1,53×10⁻⁴ (ermittelt durch elektrometrische Titration) (G., I.). — Liefert bei tagelanger Einw. von Essigsäureanhydrid polymeres Dimethylmalonsäureanhydrid (S. 572) (Sr., F., H., Helv. 8, 310).

Diäthylester C₂H₁₆O₄ = (CH₃)₂C(CO₂·C₂H₅)₂ (H 648; E I 276). Kp₇₄₅: 196—197°; Kp₇₄₅: 194—194,3° (Gane, Ingold, Soc. 1926, 14). — Kinetik der Verseifung mit wäßrigalkoholischer Natronlauge: Skrabal, Singer, M. 41, 370; G., I.; mit wäßrig-alkoholischer Salzsäure: Sk., S. Wird durch Chromschwefelsäure nur unvollständig oxydiert (Guyot, Simon, C. r. 170, 516). Liefert mit Propylmagnesiunchlorid Isobuttersäure-äthylester, Dipropylketon, Propylisopropylketon, Dipropylcarbinol, Tripropylcarbinol und wenig 5.5-Dimethyl-nonandiol-(4.6); mit Propylmagnesiumbromid entstehen Dipropylcarbinol, Tripropylcarbinol und 5.5-Dimethyl-nonandiol-(4.6) (Leroide, A. ch. [9] 16, 385).

Dimethylmalonsäure-monochlorid C₅H₇O₃Cl = (CH₂)₂C(CO₂H)·COCl (H 648). Liefert mit 4-Nitro-anilin Dimethylmalonsäure-mono-[4-nitro-anilid] (STAUDINGER, FELIX, GEIGER, Helv. 8, 320).

Dimethylmalonsäure - dichlorid, Dimethylmalonylchlorid $C_8H_4O_2Cl_2 = (CH_3)_6C(COCl)_2$ (H 648; E I 276). Liefert bei der Kondensation mit Tetrahydronaphthalin und Aluminiumchlorid in Schwefelkohlenstoff 1.2-Dimethylmalonyl-5.6.7.8-tetrahydronaphthalin (Fleischer, Siefert, B. 53, 1256; A. 422, 287); reagiert analog mit Tetrahydroacenaphthen (F., S., B. 53, 1256; A. 422, 304). Bei der Einw. auf Hydrochinondimethyläther und Aluminiumchlorid in Schwefelkohlenstoff bilden sich neben 2-Isobutyryl-hydrochinon-monomethyläther geringe Mengen 4-Oxv.7-methoxy-2.2-dimethyl-indandion-(1.3) und 4.7-Dimethoxy-2.2-dimethyl-indandion-(1.3) (F., A. 422, 258). Die entsprechende Umsetzung mit Veratrol liefert 4.5(oder 5.6)-Dioxy-2.2-dimethyl-indandion-(1.3) und dessen Monomethyläther und Dimethyläther (F., A. 422, 261).

E I 276, Z. 14—12 v. u. statt: "Gibt mit Benzol in Gegenwart von Aluminiumchlorid $\beta.\beta$ -Dibenzoyl-propan. (FREUND, FLEISCHER, A. 399, 197; vgl. Sm.)" lies: "Gibt mit Benzol in Gegenwart von Aluminiumchlorid $\beta.\beta$ -Dibenzoyl-propan (Sm.); FREUND, FLEISCHER (A. 399, 197) erhielten bei dieser Umsetzung Isopropylphenylketon und zwei Verbindungen $C_{17}H_{16}O_2$ (E I 5, 107)".

Verbindung $(C_5H_4O_3)_X$ (polymeres Dimethylmalonsäureanhydrid) (H 648; E I 276). Ist nach Staudinger, Felix, Harder (Helv. 8, 310, 311 Anm. 1) vielleicht niedriger polymer als das in H 2, 648 angeführte Anhydrid. — B. Zur Darstellung aus Dimethylmalonsäure und Essigsäureanhydrid in Gegenwart von Schwefelsäure vgl. St., F., H., Helv. 8, 309. Entsteht am einfachsten aus Dimethylmalonsäure bei tagelanger Einw. von Essigsäureanhydrid (St., F., H.). — Zersetzt sich bei ca. 100°. Unlöslich in organischen Lösungsmitteln. Quillt in Benzol leicht auf und gelatiniert. — Geht an feuchter Luft in Dimethylmalonsäure über (St., F., H.). Liefert beim Erhitzen im Vakuum auf 100° Dimethylketen (St., F., H.). Gibt beim Erhitzen im Rohr auf 100° 1.1.3.3-Tetramethyl-cyclobutandion-(2.4) (St., F., H.; vgl. a. St., F., Meyer, H., Helv. 8, 325). Beim Erhitzen mit einer geringen Menge Trimethylamin in Äther im Rohr auf 70—80° oder beim Erhitzen in Gegenwart von Trimethylamin unter einem Kohlendioxyddruck von 25—40 Atm. auf 40—50° erhält man Tetramethylacetondicarbonsäure-anhydrid (St., F., H.).

Dimethylmalonsäure - bis - bromamid, N.N'-Dibrom-C.C-dimethyl-malonamid $C_5H_8O_3N_2Br_2=(CH_3)_2C(CO\cdot NHBr)_2$. B. Bei Einw. von Natronlauge auf eine Mischung aus Dimethylmalonsäurediamid und Brom (Ingold, Sako, Thorpe, Soc. 121, 1192). — Blaßgelbe Nadeln. Zersetzt sich bei ca. 157°, ohne zu schmelzen. — Gibt bei der Einw. von Natriummethylat-Lösung erst in der Kälte, dann in der Hitze 5.5-Dimethyl-hydantoin.

[GOTTFRIED]

5. Dicarbonsäuren $C_6H_{10}O_4$.

1. Butan - dicarbonsäure - (1.4), Adipinsäure C₆H₁₀O₄ = HO₂C·[CH_{2]4}·CO₂H (H 649; E I 277). B. Adipinsäure entsteht beim Erhitzen von β-Jod-propionsäure mit kurze Zeit im Wasserstoff-Strom auf 500° erhitztem Aluminiumpulver zuerst auf 100° bis 120°, schließlich auf 180—200° (Ray, Dutt, J. indian chem. Soc. 5, 104, 107; C. 1928 I, 2371). Aus dem sauren Succinperoxyd (S. 553) beim Erhitzen auf 280° (Reijnhart, R. 46, 71). Beim Kochen von α.α'-Dibrom-azelainsäure-diäthylester mit 16 %iger Natronlauge und Behandeln des Reaktionsprodukts mit Kaliumpermanganat-Lösung unter Kühlung (Challenor, Thorpe, Soc. 123, 2484). Bei längerem Kochen von Butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester (S. 702) mit verd. Salzsäure (Lennon, Perkin, Soc. 1928, 1524). Aus Cyclohexen beim Behandeln einer Lösung in Benzol mit Sauerstoff in Gegenwart von Osmiumdioxyd auf Asbest (Medwedew, Alexedewa, Sbornik Rabot chim. Inst. Karpov [1927], Bach-Festschrift S. 118, 124; C. 1927 II, 1012) oder bei der Oxydation mit 2—4 %iger Permanganat-Lösung unter Kühlung (Voct, Mitt. Kohlenjorschungsinst. Breslau 2, 80; C. 1926 I, 2341). Aus Cyclohexanon durch Einw. von Ozon in Tetrachlorkohlenstoff und Kochen des Reduktionsprodukts mit Wasser (Rupe, Messener, Kambli, Helv. 11, 458). — Zur Darstellung von Adipinsäure durch Oxydation von Cyclohexanol mit Salpetersäure nach

BOUVEAULT, LOCQUIN (Bl. [4] 3 [1909], 438) vgl. CHAVANNE, Bl. Soc. chim. Belg. 31, 334; C. 1923 IV, 69; VOGT; CLUTTERBUCK, RAPER, Biochem. J. 19, 393; LOCQUIN, ELGHOZY, Bl. [4] 41, 446 Anm. 8; Deutsche Hydrierwerke A.-G., D. R. P. 484904; C. 1930 I, 740; Frdl. 16, 412. Zur Darstellung von Adipinsäure durch Oxydation von Cyclohexanol mit Kaliumpermanganat in alkal. Lösung nach Mannich, Hancu (B. 41 [1908], 575) vgl. v. Braun, Lemke, B. 55, 3529; Zelinski, Schuikin, B. 62, 2183; K. 61, 2248. Darstellung von Adipinsäure aus Cyclohexanol und 50% iger Salpetersäure in Gegenwart von Ammoniumvanadat bei 50-60°: Deutsche Hydrierwerke A.-G., D. R. P. 473960; Frdl. 16, 266;

niumvanadat bei 50—60°: Deutsche Hydrierwerke A. G., D. R. P. 473900; Fral. 16, 206; Foster, Org. Synth. 13 [1933], 110; aus Cyclohexanol und 60%iger Salpetersäure in Gegenwart von Quecksilbersulfat bei 50°: Deutsche Hydrierwerke A.-G., D. R. P. 473960.

Krystalle (aus Wasser oder Aceton + Ligroin). Röntgenogramm: Trillat, C. r. 180, 1330; Ann. Physique [10] 6, 69; Henderson, Pr. roy. Soc. Edinburgh 48, 20; C. 1928 I, 2903; Caspari, Soc. 1928, 3235. F: 153° (Verkade, Hartman, Coops, R. 45, 379; Henderson), 152,0° (van Voorst, Chem. Weekb. 25, 22; C. 1928 I, 1073). D₁²²: 1,360 (Biltz, A. 453, 278; Biltz, Balz, Z. anorg. Ch. 170, 339); D^{12,5}: 1,366 (van Voorst). Verbrennungswärme bei konstantem Volumen: 668,6 kcal/Mol (Ver., Hart., Coops, R. 45, 379; Ver., Coops, R. 47, 608). Ultraviolett-Absorptionsspektrum der alkoh. Lösung: Ramart-Lucas. Salmon-47, 608). Ultraviolett-Absorptionsspektrum der alkoh. Lösung: Ramart-Lucas, Salmon-LEGAGNEUR, C. r. 189, 916. Adipinsaure ist fast unlöslich in Benzol (Adickes, B. 58, 213) und in Ligroin (Vogr, Mitt. Kohlenforschungsinst. Breslau 2, 81; C. 1926 I, 2341). 100 g Wasser lösen bei 15° 1,4 g, bei 100° 160 g Adipinsäure (Schrauth, Ch. Z. 53 [1929], 42). Adsorption durch Holzkohle aus wäßr. Lösung bei Zimmertemperatur: Schilow, Nekrassow, Ph. Ch. 130, 67; Ж. 60, 106; an Tierkohle aus alkoh. Lösung bei Zimmertemperatur: Griffin, Richardson, Robertson, Soc. 1928, 2708. Bewegung auf Wasseroberflächen: Zahn, R. 45, 790. Elektrische Leitfähigkeit von Adipinsäure in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 1504; in Wasser bei Gegenwart von Borsäure bei 180: Kolthoff, R. 45, 398. Elektrolytische Dissoziationskonstante der ersten Stufe k, bei 18°: 4,6×10-6 (potentiometrisch bestimmt) (Ko., Bosch, R. 47, 866), bei 25°: 3,90×10-5 (potentiometrisch bestimmt) (GANE, Ingold, Soc. 1928, 1598); der zweiten Stufe k₂ bei 150: 5×10-6 (kolorimetrisch ermittelt) (I. M. Kolthoff, Der Gebrauch von Farbenindikatoren, 2. Aufl. [Berlin 1923], S. 166); bei 18° : 3.6×10^{-6} (potentiometrisch bestimmt) (Ko., Bosch); bei 25° : 5.29×10^{-6} (potentiometrisch bestimmt) (Gane, I.). Einfluß von Neutralsalzen auf das $p_{\rm H}$ von verdünnten wäßrigen Lösungen äquimolekularer Gemische aus Adipinsäure und saurem Natriumadipat bzw. aus saurem und neutralem Natriumadipat: Ko., Bosch, R. 47, 867, 868.

Adipinsäure wird durch Erhitzen auf 315-3200 hauptsächlich in Cyclopentanon übergeführt; daneben entsteht etwas n-Valeriansäure (Vocel, Soc. 1929, 722, 727). Ausbeuten an Cyclopentanon bei der Zersetzung des Calciumsalzes im Kohlendioxyd-Strom bei 350° bis 5000, des Thoriumsalzes unter gewöhnlichem und vermindertem Druck und des Bleisalzes: Ruzicka, Mitarb., Helv. 9, 515; bei der Zersetzung des Zinksalzes in einer Eisenretorte: Godchot, Bedos, C. r. 182, 394. Die von Aschan (A. 383, 59; B. 45, 1606) angenommene Bildung einer ungesättigten Säure bei der Destillation von Adipinsäure im Kohlendioxyd-Strom wird von Vogel (Soc. 1929, 726) bezweifelt. Das Silbersalz liefert beim Erhitzen mit Jod und Quarz auf 150° neben freier Adipinsäure δ -Valerolacton (Wieland, Fischer, A. 446, 56, 74). Geschwindigkeit der Veresterung von Adipinsäure mit absol. Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 126; C. 1926 I, 80. Beim Erhitzen von Adipinsäure mit Äthylenglykol auf 160° und dann im Vakuum auf 2000 bis 2500 entsteht polymeres Äthylenadipat; analog verläuft die Reaktion mit Trimethylen-, Hexamethylen- und Dekamethylenglykol (Carothers, Arvin, Am. Soc. **51**, 2560).

Adipinsäure wird durch Bact. coli nicht verändert (Andersen bei Flaschenträger, H. 159, 300). Das Monokaliumsalz wird durch Aspergillus niger in Kaliumcitrat übergeführt (Challenger, Mitarb., Nature 121, 244; C. 1928 I, 2183). Verhalten von adipinsaurem Natrium im Kaninchenkörper bei subcutaner Injektion: Mori, J. biol. Chem. 35 [1918], 347. Subcutan injizierte Adipinsäure wird im Organismus des Hundes zu ca. 50% abgebaut (Flaschenträger, H. 159, 302). Verhalten nach Verfütterung im Organismus des Menschen und des Hundes: Andersen bei Fl., H. 159, 299. Uber das physiologische Verhalten von Adipinsaure vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I

[Berlin-Leipzig 1930], S. 926.
Uber technische Verwendungsmöglichkeiten von Adipinsäure und ihren Salzen und Uber technische verwendungsmoglichkeiten von Adipinsaure und ihren Salzen und Estern vgl. z. B. Noll, Ch. Z. 51 [1927], 567; Schrauth, Ch. Z. 53, 41; C. 1929 I, 1395; BAYER & Co., D. R. P. 317412, 318222; C. 1920 II, 341, 536; Frdl. 13, 184; Österreichische Chemische Industrie A.-G., Ö. P. 92778; C. 1924 I, 981; Tetralin G. m. b. H., D. R. P. 406013; C. 1925 I, 799; Frdl. 14, 704.

Salze der Adipinsäure. NH₄C₆H₉O₄. D^m₄: 1,309 (Biltz, Balz, Z. anorg. Ch. 170, 340, 343). Dissoziationsdruck bei 143°: 20 mm (Biltz, Balz). — (NH₄)₂C₆H₈O₄. D^m₄: 1,275 (Biltz, Balz, Z. anorg. Ch. 170, 340, 343). Dissoziationsdruck bei 111°: 26 mm; bei 143°:

124 mm (BILTZ, BALZ). — $\text{Tl}_2\text{C}_4\text{B}_3\text{O}_4$ (bei 100°). Blättchen (aus Glykol + Butylalkohol) (Menzies, Wilkins, Soc. 125, 1150). Sehr leicht löslich in Glykol. — $[(NH_3)_5\text{Co}\cdot\text{O}_2\text{C}\cdot[CH_3]_4\cdot\text{CO}_2\cdot\text{Co}(NH_3)_5](NO_3)_4$. B. Durch Erwärmen von Carbonatopentamminkobalt(III)-nitrat $[\text{Co}(NH_3)_5(\text{CO}_3)]\text{NO}_5 + \text{H}_4\text{O}$ mit verd. Salpetersäure, Neutralisieren mit 2n-Natronlauge und Umsetzen mit 1 Mol adipinsaurem Natrium bei 45° (Duff, Soc. 123, 565, 568, 573). Krystalle. Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D. — $[\text{Co}(NH_3)_5(\text{H}_4\text{O})](O_3\text{C}\cdot[\text{CH}_3]_4\cdot\text{CO}_3)(NO_3)$. B. Durch Erwärmen von Carbonatopentamminkobalt(III)-nitrat mit 1 Mol Adipinsäure in Wasser auf 60° (D., Soc. 123, 569, 570, 573). Krystalle. Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D.

Adipinsäuredimethylester, Dimethyladipat $C_8H_{14}O_4=CH_3\cdot O_2C\cdot [CH_2]_4\cdot CO_3\cdot CH_3$ (H 652; E I 277). B. Durch Kochen von Adipinsäure mit 2% iger methylalkoholischer Salzsäure (Verkade, Hartman, Coops, R. 45, 590, 600) oder mit methylalkoholischer Schwefelsäure (Müller, Sauerwald, M. 48, 523). Durch Hydrierung von trans-trans- und cis-cis-Muconsäuredimethylester (F: 156° und 75°) in Gegenwart von kolloidalem Palladium (Farmer, Duffin, Soc. 1927, 410). — E: 10,3° (V., H., C.). F: 8,5° (korr.) (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 7, 12; C. 1927 I, 2398). Kp₁₁: 107,6° (V., H., C.); Kp₁₂: 110° (M., S.). Verbrennungswärme bei konstantem Volumen: 1,0187 kcal/Mol (V., H., C.). Viscosität bei 20°: 0,03292 g/cm sec (Ceder).

 $C_8H_{14}O_4 + SnCl_4$. Ziemlich hygroskopische Nadeln. F: 132° (Hieber, A. 439, 120). In der Kälte schwer löslich in organischen Lösungsmitteln. Kryoskopisches Verhalten in Athylenbromid: H. — $C_8H_{14}O_4 + SnBr_4$. Sehr zerfließliche Nadeln und Blättchen. F: 45° (H., A. 439, 130). Leicht löslich in allen Lösungsmitteln.

Adipinsäuremonoäthylester, Monoäthyladipat C₈H₁₄O₄ = HO₂C·[CH₂]₄·CO₄·C₂H₅ (E I 277). B. Aus Adipinsäurediäthylester durch partielle Verseifung mit alkoh. Kalilauge (RAPER, WAYNE, Biochem. J. 22, 192). Durch Erhitzen von Adipinsäurediäthylester mit Adipinsäure auf 250° (FOUNEAU, SABETAY, Bl. [4] 43, 861). Durch vorsichtiges Erhitzen von Adipinsäure mit Alkohol und Tetrachlorkohlenstoff in Gegenwart von Schwefelsäure, neben Adipinsäurediäthylester (CONTZEN-CROWET, Bl. Soc. chim. Belg. 35, 180; C. 1926 II, 1126). — E: 29,2° (Co.-Cr.). F: 28—29° (F., S.). Kp: 285—287° (geringe Zersetzung) (Co.-Cr.); Kp₁₇: 169—170° (F., S.); Kp₁₀: 163° (Co.-Cr.). D²⁰: 1,081 (unterkühlt) (F., S.). n[∞]₁₀: 1,4365; n[∞]₁₀: 1,43444; n[∞]₁₀: 1,4489 (unterkühlt) (Co.-Cr.). n[∞]₁₀: 1,4384 (F., S.). — Geschwindigkeit der Hydrolyse durch Schweineleber-Lipase: McGINTY, Lewis, J. biol. Chem. 67, 569.

Adipinsäurediäthylester, Diäthyladipat $C_{10}H_{18}O_4=C_2H_5\cdot O_2C\cdot [CH_2]_4\cdot CO_2\cdot C_2H_5$ (H 652; E I 277). B. Durch Kochen von Adipinsäure mit Alkohol und Benzol in Gegenwart von Schwefelsäure (van Rysselberge, Bl. Soc. chim. Belg. 35, 312; C. 1926 II, 1846; 1927 I, 268; Pinkney, Org. Synth. 17 [1937], 32) oder mit Alkohol und Toluol bei Gegenwart von etwas Salzsäure (Locquin, Elghozy, Bl. [4] 41, 446). — F: —21,4° (korr.) (Ceder, Ann. Univ. Jenn. Abo. [A] 2, Nr. 4, S. 7, 13; C. 1927 I, 2398), —21° (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp₁₇₇: 134° (Lo., El.); Kp₄₁: 141°; Kp₁₈: 127° (van Ry.). D_1^{∞} : 1,0076; D_2^{∞} : 1,0261 (van Ry.). n_{∞}^{∞} : 1,4251; n_{∞}^{∞} : 1,4272; n_{∞}^{∞} : 1,4324; n_{γ}^{∞} : 1,4371 (van Ry.). Viscosität bei 20°: 0,03568 g/cm sec (Ceder). — Adipinsäurediäthylester liefert mit der äquimolekularen Menge Oxalsäurediäthylester in absol. Äther in Gegenwart von Natriumäthylat bei Zimmertemperatur α -Oxal-adipinsäure-triäthylester (Wislicenus, Schwan-Häusser, A. 297 [1897], 110; Adickes, B. 58, 212). — Geschwindigkeit der Spaltung von Adipinsäure-diäthylester durch Schweineleber-Lipase: Hyde, Lewis, J. biol. Chem. 56, 12; Mc Ginty, Le., J. biol. Chem. 67, 572.

Adipinsäuremonopropylester, Monopropyladipat $C_9H_{16}O_4 = HO_2C \cdot [CH_2]_4 \cdot CO_2 \cdot CH_2 \cdot C_2H_3$. B. Durch vorsichtiges Erhitzen von Adipinsäure und Propylalkohol in Gegenwart von Schwefelsäure, neben Adipinsäuredipropylester (Contzen-Crowet, Bl. Soc. chim. Belg. 35, 181, 187; C. 1926 II, 1126). — Sehr viscose Flüssigkeit. Kp4: 146°. D4°: 1,0574. n_2^m : 1,4379; n_2^m : 1,4401; n_2^m : 1,4460; n_2^m : 1,4506.

Adipinsäuredipropylester, Dipropyladipat $C_{12}H_{23}O_4 = C_2H_5 \cdot CH_2 \cdot O_2C \cdot [CH_2]_4 \cdot CO_2 \cdot CH_2 \cdot C_2H_3 \cdot B$. s. bei Adipinsäuremonopropylester. — F: —20,25° (Themermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27), —20° (Contzen-Crower, Bl. Soc. chim. Belg. 35, 187, 190; C. 1926 II, 1126). Kp₁₆: 155°; D₄°: 0,9790; D₄°: 0,9997; n_{α}°: 1,4292; n_{α}°: 1,4314; n_{α}°: 1,4369; n_{α}°: 1,4413 (Co.-Cr.).

Adipinsauremonobutylester, Monobutyladipat $C_{10}H_{10}O_4 = HO_4C \cdot [CH_2]_4 \cdot CO_2 \cdot CH_2 \cdot C_1H_2 \cdot C_2H_3 \cdot C_3 \cdot CH_3 \cdot C_3 \cdot CH_3 \cdot C_3

Adipinsäuredibutylester, Dibutyladipat $C_{14}H_{18}O_4 = C_2H_5 \cdot CH_2 \cdot CH_2 \cdot O_2C \cdot [CH_2]_4 \cdot CO_2 \cdot CH_2 \cdot CH_3 \cdot$

Adipinsäure - di - [d - octyl - (2)] - ester, Di - [d - octyl - (2)] - adipat $C_{32}H_{42}O_4 = CH_3$ · $[CH_2]_5$ · $CH(CH_3)$ · O_5C · $[CH_3]_4$ · CO_2 · $CH(CH_3)$ · $[CH_2]_5$ · CH_3 . B. Bei der Einw. von rechtsdrehendem Octanol-(2) auf Adipinsäuredichlorid (Hall, Soc. 123, 36, 38, 40, 41, 43). — Flüssigkeit. Kp₃: 175°. D'₅ zwischen 20° (0,9135) und 124° (0,8371): H. n_5^{m} : 1,4402; n_{564}^{m} : 1,4497. $[\alpha]_5^{m}$: +11,23°; $[\alpha]_5^{m}$: +9,5° (Alkohol; c=5); $[\alpha]_5^{m}$: —11,0° (Schwefelkohlenstoff; c=5). Rotationsdispersion der reinen Substanz zwischen 19,8° und 122° und der Lösungen in Alkohol und Schwefelkohlenstoff bei 17° und 18° für λ 589,3—435,8 m μ : H.

Polymeres Äthylenadipat $[C_8H_{12}O_4]_x = \{\cdots\cdot O\cdot CH_2\cdot CH_2\cdot O\cdot CO\cdot [CH_2]_4\cdot CO\cdot \cdots\}_x$. Zur Konstitution dieser und der folgenden analogen Verbindungen vgl. den Artikel polymeres Äthylensuccinat (S. 552). Kryoskopische Mol.-Gew.-Bestimmungen in Eisessig und Benzol und ebullioskopische Bestimmungen in Benzol ergaben Werte zwischen 2700 und 3600. — B. Beim Erhitzen von Äthylenglykol mit Adipinsäure auf 160°, zuletzt im Vakuum auf 200—250° (Carothers, Arvin, Am. Soc. 51, 2560). — Krystalle. F: 50°. Der Schmelzpunkt ist von der Art des Erhitzens abhängig. Unlöslich in Wasser, Alkohol, Äther und Petroläther, ziemlich schwer löslich in Aceton, Essigester und Eisessig, leicht in kaltem Benzol.

Polymeres Trimethylenadipat $[C_0H_{14}O_4]_x = \{\cdots\cdot\cdot\cdot CH_2\cdot CH_2\cdot CH_2\cdot C\cdot\cdot C\cdot\cdot [CH_2]_4\cdot C\cdot\cdot\cdot\cdot\}_x$. Kryoskopische Mol.-Gew.-Bestimmungen in Eisessig ergaben die Werte 2400 und 4300. — B. Beim Erhitzen von Trimethylenglykol und Adipinsäure auf 160°, zuletzt im Vakuum auf 200—250° (Carothers, Arvin, Am. Soc. 51, 2560). — Krystalle. F: 45°. Der Schmelzpunkt ist von der Art des Erhitzens abhängig. Unlöslich in Wasser, Alkohol, Ather und Petroläther, ziemlich schwer löslich in Aceton, Essigester und Eisessig, leicht in kaltem Benzol.

Polymeres Hexamethylenadipat $[C_{12}H_{20}O_4]_x = \{\cdots O \cdot CH_2 \cdot [CH_2]_4 \cdot CH_2 \cdot O \cdot CO \cdot [CH_2]_4 \cdot CO \cdots \}_x$. Die kryoskopische Mol.-Gew.-Bestimmung in Essigsäure ergab den Wert 3300. — B. Beim Erhitzen von Hexamethylenglykol und Adipinsäure auf 160°, zuletzt auf 200—250° im Vakuum (Carothers, Arvin, Am. Soc. 51, 2560). — Krystalle. F: 56°. Der Schmelzpunkt ist von der Art des Erhitzens abhängig. Unlöslich in Wasser, Alkohol, Petroläther und Äther, ziemlich schwer löslich in Aceton, Essigester und Eisessig, leicht in kaltem Benzol.

Polymeres Dekamethylenadipat $[C_{16}H_{80}O_4]_x = \{\cdots O \cdot CH_{8} \cdot [CH_{2}]_8 \cdot CH_{2} \cdot O \cdot CO \cdot [CH_{8}]_4 \cdot CO \cdots \}_x$. Kryoskopische Mol.-Gew.-Bestimmungen in Benzol ergaben die Werte 3200 und 3300. — B. Beim Erhitzen von Dekamethylenglykol und Adipinsäure auf 160°, zuletzt im Vakuum auf 200—250° (Carothers, Arvin, Am. Soc. 51, 2560). — Krystalle. F. 17°. Der Schmelzpunkt ist von der Art des Erhitzens abhängig. Unlöslich in Wasser, Alkohol, Äther und Petroläther, ziemlich schwer löslich in Aceton, Essigester und Eisessig, leicht in kaltem Benzol.

Adipinsäure-äthylester-chlorid $C_8H_{13}O_3Cl = C_2H_6 \cdot O_2C \cdot [CH_2]_4 \cdot COCl$ (E I 277). Gibt mit Benzol in Gegenwart von Aluminiumchlorid δ -Benzoyl-n-valeriansäureäthylester (Syst. Nr. 1293) (RAPER, WAYNE, Biochem. J. 22, 193).

Adipinsäuredichlorid, Adipylchlorid C₆H₈O₂Cl₂=ClOC·[CH₂]₄·COCl (H 653; E I 277). Zur Darstellung aus Adipinsäure und Thionylchlorid nach MEYER, JÄGEE (A. 347, 49) und BLARS, KOEHLER (C. r. 148, 490; Bl. [4] 5, 683) vgl. SERAUF, GUGGENHEIMER, B. 58, 2495 Anm. — Gibt beim Einleiten von 2 Atomen Chlor in Gegenwart von Jod bei 80° und Eingießen des Reaktionsprodukts in Alkehol α-Chlor-adipinsäure-diäthylester (Ingold, Soc. 119, 261); bei analoger Einw. von 2 Atomen Brom entsteht α-Brom-adipinsäure-diäthylester (I.), während man durch Einw. von 4 Atomen Brom die beiden α.α'-Dibrom-adipinsäure-diäthylester (Schmelzpunkt 67° und 9,5°) und wenig α.α-Dibrom-adipinsäure-diäthylester erhält (I.; vgl. a. Vogt, Mitt. Kohlenforschungsinst. Breslau 2, 80; C. 1926 I, 2341). Liefert mit Bensol in Gegenwart von Aluminiumehlorid 1.4-Dibenzoyl-butan (ĒTAIX, A. ch. [7] 9 [1896], 372) und δ-Benzoyl-n-valeriansäure (Borsche, Wollemann, B. 45 [1912], 3715; BAUER, C. r. 155 [1912], 289; A. ch. [9] 1 [1914], 344, 394). Mit Chlorbenzol und Aluminiumehlorid liefert Adipinsäuredichlorid je nach den Reaktionsbedingungen wechselnde Mengen 1.4-Bis-[4-chlor-benzoyl]-butan, δ-[4-chlor-benzoyl]-n-valeriansäure und 1-[4-Chlor-phenyl]-2-[4-chlor-benzoyl]-oyclopenten-(1 oder 5) (SER., Gu.). Gibt in Benzol-Lösung mit Triäthyl-amin im Wasserstofistrom bei starker Kühlung eine Verbindung C₁₂H₁₃O₄ (s. u.) (Wedelend, Miller, Weinand, J. pr. [2] 109, 166). Zur Reaktion von Adipinsäuredichlorid mit Pyridin in Benzol vgl. Wed., M., Wei.

Verbindung C₁₂H₁₂O₄ ("Cyclodecanbiscyclobutandion"). Das Mol.-Gew. ist in Benzol und Phenol kryoskopisch bestimmt. — B. Entsteht in geringer Menge aus Adipinsäuredichlorid durch Einw. von Triäthylamin in Benzol im Wasserstoffstrom bei starker Kühlung mit Kältemischung (WEDEKIND, MILLER, WEINAND, J. pr. [2] 109, 166). — Krystalle (aus Benzol). F: 141—142°. Kp₁₀₋₁₅: 200—210° (unter teilweiser Zersetzung). Unlöslich in Wasser, Ligroin, Äther, löslich in Benzol, Toluol, Eisessig und Alkohol. Löst sich allmählich in starker Salzsäure, nicht dagegen in Alkalien und Soda-Lösung. — Liefert bei der Oxydation mit Perhydrol in Gegenwart von wenig Alkali oder mit Natriumperoxyd in Wasser eine zweibasische Säure C₁₀H₁₄O₄ (Krystalle aus Wasser; F: 170—171°; leicht löslich in Methanol, Alkohol, Aceton und heißem Wasser) und geringe Mengen einer Säure C₄H₁₀O₃ (Krystalle aus Benzol; F: 81—82°; löslich in Äther, Alkohol und Benzol). Wird beim Erhitzen mit amalgamiertem Zink und rauchender Salzsäure unter Bildung von Adipinsäure zuufgespalten. Gibt mit Phenylhydrazin auf dem Wasserbad ein Bis-phenylhydrazon C₂₄H₂₄O₂N₄ (Krystalle aus Pyridin + Ligroin; F: 182—184°; unlöslich in Äther, Ligroin, leicht löslich in anderen organischen Lösungsmitteln).

Adipinsäurediamid $C_6H_{12}O_2N_2=H_2N\cdot OC\cdot [CH_2]_4\cdot CO\cdot NH_2$ (H 653; E I 277). B. Durch Eintragen von Adipinsäuredichlorid in kaltes konz. Ammoniak (v. Braun, Lemke, B. 55, 3529; Slotta, Tschesche, B. 62, 1404). Zur Darstellung nach Bayer & Co. (D. R. P. 241897) vgl. Müller, Sauerwald, M. 48, 157 Anm. 2.

Adipinsäuredinitril, Tetramethylendicyanid $C_8H_8N_2 = NC \cdot [CH_2]_4 \cdot CN$ (H 653). B. Aus Adipinsäurediamid und Phosphorpentachlorid bei ca. 150° (SLOTTA, TSCHESCHE, B. 62, 1404). — Kp₂₀: 180—182°. — Gibt bei der Reduktion mit Natrium und Alkohol Hexamethylendiamin.

Adipinsäuredihydraxid $C_6H_{14}O_2N_4 = H_2N \cdot NH \cdot CO \cdot [CH_2]_4 \cdot CO \cdot NH \cdot NH_2$ (E I 277). Zur Bildung aus Adipinsäurediäthylester und Hydrazinhydrat nach Curtius (*J. pr.* [2] 91, 4) vgl. Borsche, Müller, Bodenstein, *A.* 475, 122. — F: 178°. — Liefert mit 2 Mol Chinon in salzsaurer Lösung unter Kühlung die Verbindung $HO \cdot C_6H_4 \cdot N : N \cdot CO \cdot [CH_2]_4 \cdot CO \cdot N : N \cdot C_6H_4 \cdot OH$ (Syst. Nr. 671). Reaktion mit Chinonmonoxim: Bor., M., Bod.

- α-Chlor-adipinsäure-diäthylester $C_{10}H_{17}O_4Cl=C_2H_5\cdot O_2C\cdot [CH_2]_3\cdot CHCl\cdot CO_2\cdot C_2H_5$. B. Man erwärmt Adipinsäure mit Thionylchlorid, leitet nach Zusatz von etwas Jod Chlor bei 80° ein und gießt das Chlorierungsprodukt in Alkohol (Ingold, Soc. 119, 961). Öl. Kp₁₀: 129—131°. Löslich in Äther. Liefert beim Kochen mit 2n-Natriumcarbonat-Lösung α-Oxy-adipinsäure; beim Kochen mit 6 n-methylalkoholischer Kalilauge erhält man α-Oxy-adipinsäure als Hauptprodukt neben Δ^{α} -Dihydromuconsäure und sehr geringen Mengen cis-Cyolobutan-dicarbonsäure-(1.2).
- β . β' -Dichlor-adipinsäure $C_0H_0O_4Cl_2=HO_3C\cdot CH_3\cdot CHCl\cdot CH_2\cdot CO_2H$ (H 653). B. Zur Bildung durch Sättigen einer Lösung von Δ^β -Dihydromuconsäure in Eisessig mit Chlor nach Ruhemann (Soc. 57, 939) vgl. Farmer, Soc. 123, 2540. Krystallpulver (aus Wasser). F: 212°. Liefert bei aufeinanderfolgender Behandlung mit 2 Mol Phosphorpentachlorid und 2 Mol Brom auf dem Wasserbad und Eingießen des Reaktionsprodukts in eiskalten Alkohol den festen und den flüssigen β . β' -Dichlor- α . α' -dibrom-adipinsäure-diäthylester.
- α-Brom-adipinsäure-diäthylester $C_{10}H_{17}O_4Br=C_2H_5\cdot O_2C\cdot [CH_2]_3\cdot CHBr\cdot CO_2\cdot C_3H_5$. B. Analog dem α-Chlor-adipinsäure-diäthylester (s. o.) (INGOLD, Soc. 119, 961). Öl. Kp₁₁: 161—163°. Liefert beim Kochen mit 2n-Natriumcarbonat-Lösung α-Oxy-adipinsäure; beim Kochen mit 6n-methylalkoholischer Kalilauge erhält man α-Oxy-adipinsäure als Hauptprodukt neben Δ^{α} -Dihydromuconsäure und sehr geringen Mengen cis-Cyclobutan-dicarbonsäure-(1.2).
- β -Brom-adipinsäure $C_0H_0O_4Br = HO_3C\cdot CH_2\cdot CH_2\cdot CH_3\cdot CO_3H$ (H 653). B. Beim Erhitzen von β -Methoxy-adipinsäure-dimethylester mit einer gesättigten Lösung von Bromwasserstoff in Eisessig im Rohr auf 100° (Farmer, Soc. 123, 3330). Prismen (aus Eisessig oder Ather). F: 147°.
- α.α Dibrom adipinsäure diäthylester $C_{10}H_{14}O_4Br_8 = C_8H_5\cdot O_3C\cdot [CH_2]_8\cdot CBr_2\cdot CO_2\cdot C_2H_3$. B. Entsteht in geringer Menge neben racemischem und Meso-α.α'-dibrom-adipinsäure-diāthylester beim Erwärmen von Adipinsäure mit Thionylchlorid, Bromieren des entstandenen Adipinsäurechlorids mit etwas mehr als 2 Mol Brom und Eingießen des Reaktionsprodukts in Alkohol (Ingold, Soc. 119, 956, 963). Wurde nicht ganz rein erhalten. Kp_{10.5}: 192—193°. Liefert bei der Verseifung mit verdünnter alkoholischer Kalilauge α-Oxoadipinsäure.

 $\alpha.\alpha'$ -Dibrom-adipinsaure $C_4H_8O_4Br_2 = HO_2C \cdot CHBr \cdot CH_2 \cdot CH_2 \cdot CHBr \cdot CO_2H$.

a) Rechtsdrehende $\alpha.\alpha'$ -Dibrom-adipinsäure. B. Aus der racemischen $\alpha.\alpha'$ -Dibrom-adipinsäure über das saure d- α -Phenäthylaminsalz (Holmberg, Müller, B. 58.

- 1603). Krystalle. F: 151—153°. $[\alpha]_D$: +66,3° (in absol. Alkohol; c=5). Saures d- α -Phenāthylaminsalz $C_8H_{11}N+C_9H_8O_4Br_8$. Krystalle. F: 101—103° bei langsamem Erhitzen, 108—110° bei schnellem Erhitzen.
- b) Linksdrehende α.α'-Dibrom-adipinsäure. B. Aus der racemischen α.α'-Dibrom-adipinsäure über das saure l-α-Phenäthylaminsalz (Holmberg, Müller, B. 58, 1604). Krystalle. F: 151—153°. [α]_D: —65,1° (in absol. Alkohol; c = 5) (H., M., B. 58, 1603 Anm. 13). Saures l-α-Phenäthylaminsalz C₈H₁₁N + C₆H₈O₄Br₂. Krystalle. F: 108° bis 109°.
- c) Inaktive niedrigerschmelzende α.α'-Dibrom-adipinsäure, racemische α.α'-Dibrom-adipinsäure (H 654). Zur Konfiguration vgl. Holmberg, Müller, B. 58, 1603. B. Neben wenig Meso-α.α'-dibrom-adipinsäure beim Verseifen des niedrigerschmelzenden α.α'-Dibrom-adipinsäure-diäthylesters mit mäßig konz. Schwefelsäure (Ingold, Soc. 119, 955, 962). Aus den opt.-akt. Komponenten (Holmberg, Müller, B. 58, 1604). F: 143—144° (H., M.). Läßt sich mit l-α-Phenäthylamin in die opt.-akt. Komponenten spalten, dabei krystallisiert zuerst das saure l-α-Phenäthylaminsalz der linksdrehenden α.α'-Dibrom-adipinsäure aus (H., M.).
- d) Inaktive höherschmelzende α.α'-Dibrom-adipinsäure, Meso-α.α'-dibrom-adipinsäure (H 653; E I 278). Zur Konfiguration vgl. Holmberg, Müller, B. 58, 1603. B. Beim Kochen des höherschmelzenden α.α'-Dibrom-adipinsäure-diäthylesters mit ziemlich konz. Schwefelsäure (Ingold, Soc. 119, 955, 962). Salz mit l-α-Phenäthylamin. Krystalle. F: 97—99° (Holmberg, Müller, B. 58, 1603). Liefert mit Salzsäure Meso-α.α'-dibrom-adipinsäure zurück.

Fester α.α'-Dibrom-adipinsäure-dimethylester C₂H₁₂O₄Br₂ = CH₃·O₂C·CHBr·CH₃·CH₃·CH₃·CH₃·CH₃·CH₃·CH₃·CH₄·CH₄·CH₄·CH₅·

Flüssiger $\alpha.\alpha'$ -Dibrom-adipinsäure-dimethylester $C_8H_{12}O_4Br_2 = CH_3 \cdot O_2C \cdot CHBr \cdot CH_2 \cdot CH_3 \cdot C$

Niedrigerschmelsender α.α'-Dibrom-adipinsäure-diäthylester C₁₀H₁₆O₄Br₂ = C₂H₅·O₂C·CHBr·CH₂·CH₂·CHBr·CO₃·C₂H₅ (H 654). B. s. bei der höherschmelzenden Form. — F: 9,5° (frisch dargestellt) (Ingold, Soc. 119, 962). — Ist bei 0° mehrere Wochen beständig (Ingold), beim Aufbewahren bei gewöhnlicher Temperatur oder bei der Destillation unter vermindertem Druck findet teilweise Umlagerung in die höherschmelzende Form statt (Ingold), Bernton, Ing, Perkin, Soc. 125, 1501); auch durch Einw. von Natriumäthylat auf die alkoh. Lösung wird diese Umlagerung bewirkt (Be., Ing, Pe.). Bei der Verseifung mit mäßig konzentrierter Schwefelsäure entsteht racemische α.α'-Dibrom-adipinsäure und eine geringe Menge der Meso-α.α'-dibrom-adipinsäure (Ingold, Soc. 119, 955, 962). Beim Kochen mit 2n-Soda-Lösung wurde racemische α.α'-Dioxy-adipinsäure erhalten (Ingold, Soc. 119, 957, 966). Mit siedender 6n-methylalkoholischer Kalilauge erhält man als Hauptprodukt trans-trans-Muconsäure (Ingold, Soc. 119, 957, 966; Chandrasena, Ingold, Soc. 121, 1314), daneben entstehen Meso- und racemische α.α'-Dioxy-adipinsäure, cis- und trans-Tetrahydrofuran-dicarbonsäure-(2.5) und in sehr geringer Menge Cyclobuten-(1)-dicarbonsäure-(1.2) (Ingold, Soc. 119, 957, 966). Beim Kochen mit Natrium-malonsäure-(1)-dicarbonsäure-(1.2) (Ingold, Soc. 119, 957, 966). Beim Kochen mit Natrium-malonsäure-(1)-dicarbonsäure-(1.2) (Ingold, Soc. 119, 957, 966). Beim Kochen mit Natrium-malonsäure-(1)-dicarbonsäure-(1.2) (Ingold, Soc. 119, 957, 966). Beim Kochen mit Natrium-malonsäure-(1)-dicarbonsäure-(1.2) (Ingold, Soc. 119, 957, 966).

 β -Diāthylamino-propionsāure-āthylester und $\alpha.\alpha'$ -Bis-diāthylamino-adipinsāure-diāthylester (v. Braun, Leistner, Münch, B. 59, 1954; Fuson, Am. Soc. 50, 1446).

Höherschmelsender α.α'-Dibrom-adipinsäure-diäthylester $C_{10}H_{10}O_4Br_2 = C_2H_5$. $O_4C \cdot CHBr \cdot CH_2 \cdot CHBr \cdot CO_2 \cdot C_2H_5$ (H 654; E I 278). B. Durch Erwärmen von Adipinsäure mit Thionylchlorid, Behandeln des nicht isolierten Adipinsäuredichlorids mit der entsprechenden Menge Brom und Eintragen des Reaktionsprodukts in Alkohol (Ingold, Soc. 119, 962; Vogt, Mitt. Kohlenforschungsinst. Breslau 2, 82; C. 1926 I, 2341); man trennt von der gleichzeitig entstandenen niedrigerschmelzenden Form durch etwa 2-tägiges Aufbewahren, wobei die höherschmelzende Form auskrystallisiert (Ingold, Soc. 119, 962). Aus dem niedrigerschmelzenden α.α'-Dibrom-adipinsäure-diäthylester beim Aufbewahren bei gewöhnlicher Temperatur oder bei der Destillation unter vermindertem Druck (Ingold, Soc. 119, 956; Bernton, Ing, Perkin, Soc. 125, 1501) oder auch durch Einw. von Natriumäthylat-Lösung (Be., Ing, P., Soc. 125, 1501). — Krystalle (aus Alkohol). F: 66—67° (Perkin, Robinson, Soc. 119, 1396; Be., Ing, P., Soc. 125, 1500). 65° (Vogt).

Robinson, Soc. 119, 1396; Be., Ing, P., Soc. 125, 1500), 65° (Vogt).

Wird durch siedende, ziemlich konzentrierte Schwefelsäure zur Meso-α.α'-dibromadipinsäure verseift (Ingold, Soc. 119, 955, 962). Liefert beim Kochen mit 2n-Soda-Lösung Meso-α.α'-dioxy-adipinsäure (Ingold, Soc. 119, 957, 966). Beim Kochen mit 6 n-methylalkoholischer Kalilauge erhält man als Hauptprodukt trans-trans-Muconsäure (Ingold, Soc. 119, 957, 966; Chandrasena, Ingold, Soc. 121, 1314) neben Meso- und dl-α.α'-Dioxy-adipinsäure und cis-Tetrahydrofuran-dicarbonsäure-(2.5) (Ingold, Soc. 119, 957, 966). Bei der Einw. von siedender Natriumäthylat-Lösung wurden trans-trans-Muconsäure, Tetrahydrofuran-dicarbonsäure-(2.5), α.α'-Diāthoxy-adipinsäure-anhydrid und α-Oxy-α'-āthoxy-adipinsāure-lacton erhalten (Vogt, Mitt. Kohlenforschungsinst. Bresiau 2 [1926], 83). Die Lösung in absol. Alkohol liefert beim Kochen mit überschüßigem Kaliumcyanid oder besser Natriumcyanid 1-Cyan-cyclobutan-dicarbonsäure-(1.2)-diāthylester (Fuson, Kao, Am. Soc. 51, 1538). Läßt man Natrium-malonester auf höherschmelzenden α.α'-Dibrom-adipinsäure-diāthylester in Alkohol einwirken, so entsteht Cyclopentan-tetracarbonsäure-(1.1.2.5)-tetraäthylester (Pe., Robinson, Soc. 119, 1397). Reagiert mit Natrium-acetessigester unter Bildung eines Öles (Kpie: 181—190°), das bei der Verseifung Cyclopentan-tricarbonsäure-(1.2.3) liefert (Be., Ing, Pe., Soc. 125, 1498). Bei der Kondensation des höherschmelzenden α.α'-Dibromadipinsäure-diäthylesters mit der Natriumverbindung des Benzoylessigeäureäthylesters in Alkohol wird 1-Benzoyl-cyclopentan-tricarbonsäure-(1.2.5)-triäthylester gebildet (Be., Ing, Pe., Soc. 125, 1498).

Liefert mit 3 Mol Methylamin in Benzol bei längerem Aufbewahren bei Zimmertemperatur und folgendem Erwärmen auf 100° α.α'-Dibrom-adipinsäure-bis-methylamid, 1-Methylpyrrolidin-dicarbonsäure-(2.5)-diäthylester und andere Produkte (v. Braun, Seemann, B. 56, 1841; vgl. Willstätter, Lessing, B. 85 [1902], 2067). Beim Erhitzen mit 3 Mol Anilin auf dem Wasserbad entsteht fast ausschließlich 1-Phenyl-pyrrolidin-dicarbonsäure-(2.5)-diäthylester; analog verläuft die Reaktion mit Benzylamin (v. Br., See.), während man bei der entsprechenden Umsetzung mit 4-Methyl-benzylamin (v. Br., See.), während man bei der entsprechenden Umsetzung mit 4-Methyl-benzylamino]-adipinsäure-diäthylester isoliert (v. Br., Leistner, B. 59, 2325); bei der Umsetzung mit β-Phenäthylamin in Chloroform erhält man 1-β-Phenäthyl-pyrrolidin-dicarbonsäure-(2.5)-diäthylester und α.α'-Bis-phenäthylamino-adipinsäure-diäthylester (v. Br., Cahn, A. 436, 267). Höherschmelzender α.α'-Dibrom-adipinsäure-diäthylester liefert beim Erwärmen mit 6 Mol Diäthylamin β-Diäthylamino-propionsäure-äthylester und Brenztraubensäureäthylester, neben wenig α.α'-Bis-diäthylamino-adipinsäure-diäthylester (v. Braun, Leistner, Münch, B. 59, 1953, 1954, 1955; Fuson, Am. Soc. 50, 1446, 1448). Analog verläuft die Reaktion mit Dipropylamin und mit Diisoamylamin (v. Braun, Lei., Münch; Fuson, Am. Soc. 50, 1446 Anm. 5), mit Methyläthylamin, mit Methylpropylamin und Methylisopropylamin (v. Br., Jostes, Wagner, B. 61, 1426), mit Piperidin (Fuson, Bradley, Am. Soc. 51, 601; vgl. a. v. Be., Münch, B. 59, 1948), mit α- und β-Pipecolin (v. Br., Jo., Wa.) und mit 2-Methyl-5-āthyl-piperidin (v. Br., Lei., Münch, B. 59, 1948), mit α- und β-Pipecolin (v. Br., Jo., Wa.) und mit 2-Methyl-5-āthyl-piperidin (v. Br., Lei., Münch, B. 59, 1948), mit α- und β-Pipecolin (v. Br., Jo., Wa.) und mit 2-Methyl-5-āthyl-piperidin (v. Br., Lei., Münch, B. 59, 1948), mit α- und β-Pipecolin (v. Br., Jo., Wa.) und mit 2-Methyl-5-āthyl-piperidin (v. Br., Lei., Münch, B. 59, 1945; vgl. Fuson, Am. Soc. 50, 1446 Anm

α.α'-Dibrom-adipinsäure-diamid C₂H₁₀O₂N₂Br₂ = H₂N·CO·CHBr·CH₂·CH₂·CHBr·CO·NH₂. B. Aus dem flüssigen sowie aus dem festen α.α'-Dibrom-adipinsäure-dimethylester bei der Einw. von konzentriertem wäßrigem Ammoniak (Bernton, Ing. Perkin, Soc. 125, 1502). — Krystalle (aus Wasser). Färbt sich bei 180° dunkel und schmilzt dann bei 196°.

Hochschmelsender $\beta.\beta'$ - Dibrom - adipinsäure - dimethylester $C_8H_{12}O_4Br_2 = CH_2 \cdot CO_2 \cdot CH_2 \cdot CH_3 \cdot CO_3 \cdot CH_3 \cdot CH_$

bei der Reduktion mit Zinkstaub in Aceton auf dem Wasserbad Δ^{β} -Dihydromuconsäuredimethylester (S. 656) (F., Duffin, Soc. 1927, 410).

Niedrigschmelsender $\beta.\beta'$ -Dibrom-adipinsäure-dimethylester $C_8H_{12}O_4Br_2=CH_3\cdot O_2C\cdot CH_2\cdot CHBr\cdot CHBr\cdot CH_2\cdot CO_2\cdot CH_3$. B. s. bei dem hochschmelzenden Isomeren. — Krystallpulver (aus Methanol). F: 43°; destilliert unterhalb 15 mm Druck ohne merkliche Zersetzung (Farmer, Soc. 123, 2542). — Liefert beim Erhitzen mit Pyridin auf 100° oder bei der Einw. von Natriummethylat-Lösung trans-trans- und eis-eis-Muconsäuredimethylester (F: 156° und F: 75°) und andere Produkte (F.). Liefert bei der Reduktion mit überschüssigem Zinkstaub in Aceton auf dem Wasserbad Δ^{β} -Dihydromuconsäuredimethylester (F., Duffin, Soc. 1927, 410).

Fester $β \cdot β'$ -Dibrom-adipinsäure-diäthylester $C_{10}H_{16}O_4Br_2 = C_2H_5 \cdot O_3C \cdot CH_3 \cdot CHBr \cdot CH_2 \cdot CO_3 \cdot C_2H_5 \cdot (H 654)$. B. Neben dem flüssigen Isomeren durch Einw. von Brom auf eine eiskalte Lösung von $Δ^β$ -Dihydromuconsäurediäthylester in Tetrachlorkohlenstoff (Farmer, Soc. 123, 2542; vgl. Ruhemann, Blackman, Soc. 57 [1890], 372). Aus $β \cdot β'$ -Dioxyadipinsäure-diäthylester beim Erwärmen mit Phosphorpentabromid in Chloroform (Pankoke, A. 441, 191). — Prismen (aus Alkohol oder Petroläther), Nadeln (aus verd. Alkohol). F: 64° (F., Soc. 123, 2542; P.). — Beim Erhitzen mit alkoh. Kalilauge entsteht trans-trans-Muconsäure (P.). Liefert beim Erhitzen mit Pyridin auf 100° oder bei der Einw. von Natriummethylat-Lösung trans-trans- und cis-cis-Muconsäurediäthylester (F: 62° und F: 13°) (F., Soc. 123, 2547). Gibt mit Natrium-cyanessigester in siedendem Alkohol trans-trans-Muconsäurediäthylester und wenig 1-Cyan-cyclopropan-carbonsäure-(1)-diessigsäure-(2.3)-triäthylester, in kaltem Alkohol fast ausschließlich Muconsäurediäthylester (F., Soc. 123, 3333, 3336).

Flüssiger $\beta.\beta'$ -Dibrom-adipinsäure-diäthylester $C_{10}H_{16}O_4Br_2=C_2H_5\cdot O_2C\cdot CH_2\cdot CHBr\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. aus Δ^{β} -Dihydromuconsäurediäthylester s. beim festen Isomeren. — Öl. Wurde nicht rein erhalten (Farmer, Soc. 123, 2542).

Fester β . β' -Dichlor- α . α' -dibrom-adipinsäure-diäthylester $C_{10}H_{14}O_4Cl_2Br_3=C_2H_5$. $O_2C\cdot CHBr\cdot CHCl\cdot CHBr\cdot CO_2\cdot C_2H_5$. B. Entsteht neben dem flüssigen Isomeren bei aufeinanderfolgender Behandlung von 1 Mol β . β' -Dichlor-adipinsäure mit 2 Mol Phosphorpentachlorid und 2 Mol Brom auf dem Wasserbad und Eingießen des Reaktionsprodukts in eiskalten Alkohol (Farmer, Soc. 123, 2533, 2540, 2544). — Prismen (aus Alkohol). F: 1390 bis 1400. Mäßig löslich in siedendem Alkohol. — Gibt bei Einw. von alkoh. Natriumäthylat-Lösung unter Kühlung trans-trans- α . α' -Dibrom-muconsäure-diäthylester (F: 1230) (F., Soc. 123, 2544).

Flüssiger β , β' -Dichlor- α , α' -dibrom-adipinsäure-diäthylester $C_{10}H_{14}O_4Cl_2Br_2=C_2H_5\cdot O_2C\cdot CHBr\cdot CHCl\cdot CHCl\cdot CHBr\cdot CO_2\cdot C_2H_5$. B. s. bei dem festen Isomeren. — Flüssigkeit. Konnte nicht rein erhalten werden (Farmer, Soc. 123, 2533, 2541). — Einw. von Natrium-äthylat-Lösung: F., Soc. 123, 2544.

Fester $\alpha.\beta.\alpha'.\beta'$ -Tetrabrom - adipinsäure - diäthylester $C_{10}H_{14}O_4Br_4=C_2H_5\cdot O_2C\cdot CHBr\cdot CHBr\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 655). B. Neben dem flüssigen Isomeren aus transtrans-Musonsäurediäthylester und Brom in Chloroform (Farmer, Soc. 123, 2533, 2539; vgl. Ruhemann, Dufton, Soc. 59 [1891], 753). — Prismen (aus Alkohol). F: 70° (F., Soc. 123, 2540). — Liefert beim Erhitzen mit überschüssigem Pyridin in Benzol auf dem Wasserbad oder beim Behandeln mit Natriumäthylat-Lösung unter Kühlung cis-cis- und cis-trans- $\alpha.\alpha'$ -Dibrom-muconsäure-diäthylester (F: 93,5° und F: 28°) (F., Soc. 123, 2542, 2543).

Flüssiger $\alpha.\beta.\alpha'.\beta'$ -Tetrabrom-adipinsäure-diäthylester $C_{10}H_{14}O_4Br_4=C_2H_5\cdot O_2C\cdot CHBr\cdot CHBr\cdot CHBr\cdot CC_2\cdot C_2H_5$. B. s. bei dem festen Isomeren. — Viscoses, rotbraunes Öl. Zersetzt sich beim Erhitzen (Farmer, Soc. 123, 2540). — Beim Erhitzen mit überschüssigem Pyridin in Benzol auf dem Wasserbad oder beim Behandeln mit alkoh. Natrium-äthylat-Lösung unter Kühlung erhält man trans-trans- und cis-trans- $\alpha.\alpha'$ -Dibrom-muconsäure-diäthylester (F: 123° und F: 28°) (Farmer, Soc. 123, 2542, 2543).

Höherschmelsende $\alpha.\alpha'$ -Dijod-adipinsäure $C_0H_3O_4I_2=HO_2C\cdot CHI\cdot CH_2\cdot CH_3\cdot CHI\cdot CO_2H$. B. Durch Verseifung von höherschmelzendem $\alpha.\alpha'$ -Dijod-adipinsäure-diäthylester (8.580) mit mäßig konzentrierter Schwefelsäure (Ingold, Soc. 119, 964). — Nadeln (aus Eisesig). F: 213° (Zers.). — Liefert beim Kochen mit 2 n-alkoh. Kalilauge cis-Tetrahydrofuran-dicarbonsäure-(2.5).

Niedrigerschmelsende α.α'-Dijod-adipinsäure C₆H₈O₄I₂ = HO₂C·CHI·CH₂·CH₂·CH₂·CH₁·CO₂H. B. Bei der Verseifung von niedrigerschmelzendem α.α'-Dijod-adipinsäure-diāthylester (8.580) mit mäßig konzentrierter Schwefelsäure (Ingold, Soc. 119, 964). — Krystalle (aus Ameisensäure). F: 170° (Zers.). — Gibt beim Kochen mit 2n-alkoh. Kalilauge trans-Tetrahydrofuran-dicarbonsäure-(2.5).

Höherschmelsender $\alpha.\alpha'$ -Dijod-adipinsäure-dimethylester $C_8H_{13}O_4I_3 = CH_3\cdot O_2C\cdot CHI\cdot CH_2\cdot CH_3\cdot CH$

aus dem rohen Gemisch der beiden α.α'-Dibrom-adipinsäure-dimethylester beim Kochen in methylalkoholischer Lösung mit Natriumjodid; man trennt die Isomeren durch fraktionierte Krystallisation aus Methanol und Petroläther (Bernton, Ing. Perkin, Soc. 125. 1501). Aus dem niedrigerschmelzenden Isomeren durch Einw. von Natriummethylat-Lösung oder methylalkoholischer Kalilauge, langsamer durch Einw. von verdünntem methylalkoholischem Ammoniak (B., I., P., Soc. 125, 1495, 1502). — Krystalle (aus Petroläther). F: 111—112°. 0,5 g lösen sich in 100 cm³ Methanol.

Niedrigerschmelsender $\alpha.\alpha'$ -Dijod-adipinsäure-dimethylester $C_8H_{12}O_4I_2=CH_3$ · $O_2C\cdot CHI\cdot CH_2\cdot CH_2\cdot CHI\cdot CO_3\cdot CH_4$. B. s. bei der höherschmelzenden Form. — Krystalle (aus Aceton). F: 63° (Bernton, Ing., Perkin, Soc. 125, 1495, 1501). 7,8 g lösen sich in 100 cm³ Methanol. — Lagert sich bei der Einw. von Natriummethylat-Lösung, methylalkoholischer Kalilauge oder verdünntem methylalkoholischem Ammoniak in die höherschmelzende Form um. Beim Sättigen der Lösung in Methanol mit Ammoniak unter Kühlung und längerem Aufbewahren entsteht $\alpha.\alpha'$ -Dijod-adipinsäure-diamid.

Höherschmelsender $\alpha.\alpha'$ -Dijod-adipinsäure-diäthylester $C_{10}H_{10}O_4I_2=C_4H_5\cdot O_2C\cdot CHI\cdot CH_2\cdot CH_3\cdot CHI\cdot CO_2\cdot C_2H_5$. Neben etwa gleichen Mengen des niedrigerschmelzenden Isomeren beim Kochen von niedrigerschmelzendem oder höherschmelzendem $\alpha.\alpha'$ -Dibromadipinsäure-diäthylester mit Natriumjodid in Alkohol (Ingold, Soc. 119, 963). — Nadeln (aus Alkohol). F: 92°. — Beim Verseifen mit mäßig konzentrierter Schwefelsäure erhält man die höherschmelzende $\alpha.\alpha'$ -Dijod-adipinsäure (I.). Liefert beim Kochen mit 2 n-Soda-Lösung Meso- $\alpha.\alpha'$ -dioxy-adipinsäure (I., Soc. 119, 957, 966). Beim Kochen mit 6 n-methylalkoholischer Kalilauge erhält man trans-trans-Muconsäure (I.; Chandrasena, I., Soc. 121, 1314). Meso- und dla. α' -Dioxy-adipinsäure und eis-Tetrahydrofuran-dicarbonsäure-(2.5) (I.).

Niedrigerschmelzender $\alpha.\alpha'$ -Dijod-adipinsäure-diäthylester $C_{10}H_{16}O_4I_8=C_2H_5$. $O_2C\cdot CHI\cdot CH_2\cdot CH_1\cdot CO_2\cdot C_2H_5$. B. s. im vorangehenden Artikel. — Nadeln (aus Petroläther). F: 46° (Ingold, Soc. 119, 964). — Liefert bei der Verseifung mit mäßig konzentrierter Schwefelsäure niedrigerschmelzende $\alpha.\alpha'$ -Dijod-adipinsäure (I.). Gibt beim Kochen mit 2 n-Soda-Lösung racemische $\alpha.\alpha'$ -Dioxy-adipinsäure (I., Soc. 119, 957, 966). Beim Kochen mit 6 n-methylalkoholischer Kalilauge erhält man als Hauptprodukt trans-trans-Muconsäure (I.; Chandrasena, I., Soc. 121, 1315), daneben in geringer Menge Meso- und dl- $\alpha.\alpha'$ -Dioxy-adipinsäure, cis- und trans-Tetrahydrofuran-dicarbonsäure-(2.5) und Cyclobuten-(1)-dicarbonsäure-(1.2) (I.).

 $\alpha.\alpha'$ -Dijod-adipinsäure-diamid $C_0H_{10}O_2N_2I_2=H_2N\cdot CO\cdot CHI\cdot CH_2\cdot CHI\cdot CO\cdot NH_2$. B. Durch Einw. von methylalkoholischem Ammoniak auf niedrigerschmelzenden $\alpha.\alpha'$ -Dijod-adipinsäure-dimethylester in der Kälte (Bernton, Ing., Perkin, Soc. 125, 1502). — Krystalle (aus Methanol). F: 238° (Zers.).

2. Butan-dicarbonsäure-(1.3), α-Methyl-glutarsäure C₄H₁₀O₄ = HO₂C·CH₂·CH₃·CH(CH₃·CO₄H (H 655; E I 278). α-Methyl-glutarsäure hat in der von Khlani (B. 51, [1918], 1626) als Athylbernsteinsäure angesehenen Verbindung (vgl. E I 2, 279) vorgelegen (Windaus, Willerding, H. 143, 40). — B. Neben überwiegenden Mengen α.α-Dimethylbernsteinsäure bei mehrtägigem Erhitzen von α.α-Dimethyl-α-carboxy-bernsteinsäure-triäthylester mit Natriumäthylat-Lösung im Rohr auf 100° und Zersetzung des Reaktionsprodukts mit siedender 20 %iger Salzsäure (E. H. Ingold, Soc. 127, 473, 473). Beim Erhitzen von α-Methyl-α-carboxy-glutarsäure-trimethylester mit 2 n-Salzsäure im Rohr auf 200° (Wieland, Vocke, H. 177, 74). Zur Bildung aus α-Methyl-α-carboxy-glutarsäure-triäthylester durch Kochen mit Salzsäure nach Auwers (A. 292, 210) vgl. Ch. K. Ingold, Soc. 127, 393. Entsteht aus α-Methyl-α-cyan-glutarsäure-diäthylester (S. 685) beim Kochen mit 20 %iger Salzsäure (E. H. I., Soc. 127, 475) oder bei längerer Behandlung mit konz. Schwefelsäure unterhalb 30°, folgendem Zusatz von Wasser und Kochen (Ch. K. I., Soc. 119, 336, 339). Der Diäthylester entsteht beim mehrstündigen Kochen von α-Methyl-α-acetyl-glutarsäure-äthylester mit Methylmagnesiumjodid in Ather (Clemo, Welch, Soc. 1928, 2627). Aus α-Methyl-γ-cyan-buttersäure-äthylester (S. 581) durch Kochen mit verd. Schwefelsäure (Ch. K. I., Soc. 119, 337, 339). Man kondensiert α-Oxy-isobuttersäure-äthylester mit Natriumoyan-essigsäure-äthylester in Alkohol auf dem Wasserbad, behandelt das saure Reaktionsprodukt mit kalter konzentrierter Schwefelsäure, verdünnt mit Wasser und kocht (Ch. K. I., Soc. 119, 336, 339).

Krystalle (aus konz. Salzsäure). F: 78—80° (Wieland, Vocke, H. 177, 74). — Beim Kochen mit Wasserstoffperoxyd entsteht Aceton (W., V., H. 177, 70). Durch Erwärmen von α -Methyl-glutarsäure mit Thionylchlorid, Behandeln des nicht isolierten α -Methyl-glutarsäure-dichlorids mit Chlor bei 40° und Eintragen des Reaktionsprodukts in Methanol bzw. Alkohol erhält man hauptsächlich α -Chlor- α -methyl-glutarsäure-dimethyl- bzw. -diäthylester, neben geringen Mengen der entsprechenden α -Chlor- α -methyl-glutarsäure-ester (Ch. K. Ingold, Soc. 127, 393, 394). Beim Behandeln des nicht isolierten α -Methyl-glutarsäure-

dichlorids mit Brom bei $40-60^{\circ}$ und Eintragen des Reaktionsprodukts in Methanol bzw. Alkohol erhält man die entsprechenden α' -Brom- (und α -Brom-) α -methyl-glutarsäure-ester (I., Soc. 127, 393, 394).

Diäthylester $C_{10}H_{18}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. B. s. bei der Säure. — Kp: 238° (Ch. K. Ingold, Soc. 119, 339); Kp₁₅: 122—125° (Clemo, Welch, Soc. 1928, 2627).

- α-Methyl-glutarsäure-α-äthylester-α'-nitril, α-Methyl-γ-cyan-buttersäure-äthylester $C_8H_{13}O_2N=NC\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$ (H 656). B. Man kondensiert α-Oxy-isobuttersäure-äthylester mit Natriumcyanessigsäure-äthylester in Alkohol auf dem Dampfbad, zersetzt das Reaktionsprodukt mit verd. Salzsäure und destilliert unter vermindertem Druck (Ch. K. Ingold, Soc. 119, 336, 338). Kp₇₈₅: 210—212°.
- α'-Chlor-α-methyl-glutarsäure-dimethylester $C_8H_{13}O_4Cl = CH_3 \cdot O_3C \cdot CHCl \cdot CH_2 \cdot CH(CH_3) \cdot CO_2 \cdot CH_3$. B. Aus α-Methyl-glutarsäure durch aufeinanderfolgende Behandlung mit Thionylchlorid und mit Chlor und Eingießen des Reaktionsprodukts in Methanol (Ch. K. Ingold, Soc. 127, 393, 394). Enthält geringe Mengen α-Chlor-α-methyl-glutarsäuredimethylester. Öl. Kp₁₅₋₁₆: 120—124°.
- α'-Chlor-α-methyl-glutarsäure-diäthylester $C_{10}H_{17}O_4Cl = C_2H_5 \cdot O_3C \cdot CHCl \cdot CH_2 \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Aus α-Methyl-glutarsäure analog der vorhergehenden Verbindung (CH. K. Ingold, Soc. 127, 393, 394). Aus dem Lacton des α'-Oxy-α-methyl-glutarsäure-monöāthylesters durch Einw. von Phosphorpentachlorid und Eintragen des Reaktionsprodukts in Alkohol (Goss, Ingold, Soc. 127, 2779). Enthält geringe Mengen α-Chlorα-methyl-glutarsäure-diāthylester (I.). Öl. Kp_{14-16} : 128—130° (I.). Liefert bei Einw von Natriumäthylat in der Wärme und Verseifung des Reaktionsgemisches trans-1-Methyl-cyclopropan-dicarbonsäure (1.2), α'-Oxy-α-methyl-glutarsäure-lacton, trans-α-Methyl-glutaconsäure und α'-Äthoxy-α-methyl-glutarsäure (G., I.).
- α' -Brom- α -methyl-glutarsäure-dimethylester $C_8H_{13}O_4Br = CH_3 \cdot O_2C \cdot CHBr \cdot CH_2 \cdot CH(CH_3) \cdot CO_2 \cdot CH_3$. B. Man erwärmt α -Methyl-glutarsäure und Thionylchlorid, bis kein SO₃ mehr entweicht, setzt bei 40° Brom hinzu, erwärmt die Reaktions-Lösung dann auf 60° und gießt das Reaktionsprodukt in Methanol (CH. K. INGOLD, Soc. 127, 393, 394). Enthält geringe Mengen α -Brom- α -methyl-glutarsäure-dimethylester. Öl. Kp_{14-15} : 139—144°.
- α'-Brom-α-methyl-glutarsäure-diäthylester $C_{10}H_{17}O_4Br = C_2H_5\cdot O_3C\cdot CHBr\cdot CH_2\cdot CH(CH_3)\cdot CO_3\cdot C_2H_5$. Analog dem α'-Brom-α-methyl-glutarsäure-dimethylester (Ingold, Soc. 127, 393). Enthält geringe Menge α-Brom-α-methyl-glutarsäure-diäthylester. Kp₁₄₋₁₅: 145—150°. Beim Kochen mit wäßr. 2n-Na₂CO₃-Lösung wurde das Lacton der α'-Oxy-α-methyl-glutarsäure erhalten. Beim Eintragen in siedende 6 n-methylalkoholische Kalilauge, wiederholtes Eindampfen mit Wasser, Ansäuern mit Chlorwasserstoff und Destillieren unter vermindertem Druck erhält man viel trans-1-Methyl-cyclopropan-dicarbonsäure-(1.2) und α'-Oxy-α-methyl-glutarsäure-lacton, α-Methyl-paraconsäure, cis-1-Methyl-cyclopropan-dicarbonsäure (1.2), trans-α-Methyl-glutaconsäure, α-Methylen-glutarsäure, Dimethylfumarsäure, Methylmethylenbernsteinsäure und Dimethyl-maleinsäureanhydrid.
- $\beta.\alpha'$ -Dibrom- α -methyl-glutarsäure $C_0H_0O_4Br_2 = HO_2C \cdot CHBr \cdot CH(CH_3) \cdot CO_2H$ (H 657). B. Bei der Einw. von Bromdampf auf feingepulverte trans- α -Methyl-glutaconsäure (Ingold, Oliver, Thorpe, Soc. 125, 2134). Prismen (aus Chloroform + Benzol). F: 178° (Zers.). Geht beim Kochen mit verd. Alkalilauge wieder in trans- α -Methyl-glutaconsäure über.
- α' Jod α methyl-glutarsäure dimethylester $C_8H_{13}O_4I=CH_3\cdot O_2C\cdot CHI\cdot CH_2\cdot CH(CH_2)\cdot CO_2\cdot CH_3$. B. Durch Erwärmen von α' -Chlor- α -methyl-glutarsäure-dimethylester mit Natriumjodid und Alkohol (Ingold, Soc. 127, 394). Enthält geringe Mengen α -Jod- α -methyl-glutarsäure-dimethylester. $Kp_{12-13}\colon 174-176^{\circ}$.
- α' Jod α methyl glutarsäure diäthylester $C_{10}H_{17}O_4I = C_2H_5 \cdot O_2C \cdot CHI \cdot CH_2 \cdot CH(CH_2) \cdot CO_2 \cdot C_2H_5$. B. Analog α' -Jod- α -methyl-glutarsäure-dimethylester (Ingold, Soc. 127, 394). Enthält geringe Mengen α -Jod- α -methyl-glutarsäure-diäthylester. Kp_{12-13} : 194—197°.
- 3. Butan-dicarbonsdure-(1.1), Propylmalonsdure C₆H₁₀O₄ = CH₂·CH₂·CH₃·CH₄·CH₂·CH₃·CH(CO₂H)₃ (H 657; E I 278). B. Durch Verseifung des Diäthylesters mit 50 %iger Kalilauge (Backer, Toxoréus, R. 45, 895). Röntgenogramm: Henderson, Pr. roy. Soc. Edinburgh 48, 22; C. 1928 I, 2903. F: 96° (B., T.), 94.5° (He.). Verbrennungswärme bei konstantem Volumen: 675,6 kcal/Mol (Verrade, Coops, R. 47, 608; vgl. Landolt-Börnst. E II, 1642). Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 25°: 1,07×10⁻³, der 2. Stufe k₂: 2,08×10⁻⁴ (potentiometrisch ermittelt) (Gane, Ingold, Soc. 1929, 1699). Liefert beim Behandeln mit Schwefeltrioxyd zuerst unter Kühlung mit Eis-Kochsalz-Gemisch, zum Schluß unter Erwärmen auf dem Wasserbad α-Sulfo-n-valeriansäure (B., T.).

DICARBONSAUREN Cn H2n-2O4

Propylmalonsäure-diäthylester $C_{10}H_{18}O_4 = CH_2 \cdot CH_2 \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5)_2$ (H 657). B. Zur Bildung aus Malonester und Propylbromid in Natriumäthylat-Lösung vgl. Backer, Toxorźus, R. 45, 895. — Kp: 215—218° (B., T.); Kp₇₅₀: 222—227° (korr.) (Volwiler, Am. Soc. 47, 2239). — Geschwindigkeit der Verseifung mit wäßrig-alkoholischer Natronlauge bei 27,0°: Gane, Ingold, Soc. 1926, 16.

Propylchlormalonsäure - diäthylester $C_{10}H_{17}O_4Cl = CH_3 \cdot CH_3 \cdot CH_3 \cdot CCl(CO_3 \cdot C_3H_5)_3$. Beim Chlorieren von Propylmalonsäure-diäthylester (Hirst, Macbern, Soc. 121, 2178). — Kp_{13} : 125°; Kp_{11} : 120°. — Öxydiert Hydrazin nur langsam und unvollständig zu Stickstoff.

Propylchlormalonsäure-diamid C₈H₁₁O₂N₂Cl = CH₂·CH₂·CH₃·CCl(CO·NH₂)₂. B. Durch Einleiten von Chlor in eine Lösung von Propylmalonsäure-diamid (E I 2, 278) in Eisessig (Dox, Houston, Am. Soc. 46, 1279). — Prismen. F: 150°. Schmeckt süß; die Süßkraft ist etwa die neunfache des Rohrzuckers.

- α.δ-Dibrom-propylmalonsäure-diäthylester, [γ-Brom-propyl]-brommalonsäure-diäthylester $C_{10}H_{16}O_4Br_2=CH_2Br\cdot CH_2\cdot CH_2\cdot CBr(CO_2\cdot C_2H_5)_2$ (H 658). Bei der Kondensation mit 4-Methyl-benzylamin anfangs unter Kühlung, später unter Erwärmen auf dem Wasserbad entsteht 1-[4-Methyl-benzyl]-pyrrolidin-dioarbonsäure-(2.2)-diäthylester (Syst. Nr. 3274) (v. Braun, Leistner, B. 59, 2329).
- 4. 2-Methyl-propan-dicarbonsäure-(1.3), $\beta\text{-Methyl-glutarsäure}$ $C_{4}H_{10}O_{4}=CH_{3}\cdot CH(CH_{3}\cdot CO_{2}H)_{2}$ (H 659; E I 279). B. Aus β -Methyl- α -cyan-glutarsäure-diäthylester (S. 685) durch Kochen mit verd. Schwefelsäure (Ingold, Soc. 119, 336, 340). Aus dem sauren Reaktionsprodukt, das neben β -Methyl- α -cyan-glutarsäure-diäthylester bei der Kondensation von β -Oxy-buttersäure-äthylester mit Natrium-cyanessigsäureäthylester in Alkohol auf dem Dampfbad entsteht, durch Behandlung mit kalter konzentrierter Schwefelsäure, Verdünnung mit Wasser und Kochen (I., Soc. 119, 336, 340). Aus β -Methyl- γ -cyan-buttersäure-äthylester (s. u.) durch Kochen mit verd. Schwefelsäure (I., Soc. 119, 336, 340). Aus β -Methyl- α - α -dicarbäthoxy-glutarsäure-diamid durch Kochen mit verd. Salzsäure (Gupta, Soc. 119, 304). Bei der Hydrolyse von β -Methyl- α - α -dicyan-glutarsäure-diamid mit Salzsäure (Day, Thorpe, Soc. 117, 1469). Beim Erhitzen von β -Methyl- δ -valerolacton (Syst. Nr. 2459) mit Kaliumdichromat und 10% iger Schwefelsäure auf dem Wasserbad (Sircar, Soc. 1928, 902). Bei der Hydrolyse von 2.6-Dioxo-4-methyl-3-cyan-piperidin-carbonsäure-(5)-amid oder von 2-Oxo-6-imino-4-methyl-3-cyan-piperidin-carbonsäure-(5)-amid oder von 2-Oxo-6-imino-4-m

Krystalle (aus Benzol oder Salzsäure). F: 87° (Day, Thorpe, Soc. 117, 1469; Gupta, Soc. 119, 304). Elektrolytische Dissoziationskonstante der 1. Stufe k_1 bei 25°: 6,0×10-6 (durch Leitfähigkeitsmessungen bestimmt) (Spiers, Thorpe, Soc. 127, 544). Elektrolytische Dissoziationskonstante der 1. Stufe k_1 bei 25°: 5,77×10-8, der 2. Stufe k_2 bei 25°: 6,28×10-7 (potentiometrisch bestimmt) (Gane, Ingold, Soc. 1928, 2268). — Beim Erwärmen von 4 Tln. β-Methyl-glutarsäure mit 8 Tln. Thionylchlorid, Versetzen des Reaktionsprodukts mit 4,6 Tln. Brom bei 50—55° und Eingießen in Methanol bzw. Alkohol entsteht α-Brom-β-methyl-glutarsäure-methyl- bzw. -āthylester (Ingold, Soc. 121, 2684). Läßt man die doppelte Menge Brom bei 100° einwirken und gießt das Reaktionsprodukt in siedende Ameisensäure bzw. in Methanol oder Alkohol, so erhält man die beiden α.α'-Dibrom-β-methyl-glutarsäuren (F: 154° und 118°) bzw. deren Dimethylester oder Diäthylester (I., Soc. 121, 2685). Das Silbersalz der β-Methyl-glutarsäure gibt beim Erhitzen mit Jod und Sand auf 100—150° β-Methyl-butyrolacton (Sircar, Soc. 1928, 901). Bei der trocknen Destillation des Calciumsalzes im Stickstoffstrom wurden Aceton, Methyl-propylketon, 1-Methyl-cyclohexanon-(3), ein Keton, das ein Semicarbazon C₉H₁₅ON₂ vom Schmelzpunkt 156—158° gibt, und m-Kresol erhalten (Kon, Soc. 119, 828).

Diäthylester $C_{10}H_{18}O_4 = CH_2 \cdot CH(CH_2 \cdot CO_2 \cdot C_2H_5)_2$. Kp: 235° (Ingold, Soc. 119, 340).

Äthylester-nitril, β -Methyl- γ -cyan-buttersäure-äthylester $C_8H_{13}O_3N=C_2H_5$: $O_2C\cdot CH_3\cdot CH(CH_3)\cdot CH_2\cdot CN$ (H 659). B. Aus dem durch Kondensation von β -Oxy-buttersäure-äthylester mit Natriumcyanessigester in Alkohol auf dem Dampflack und Zersetzen des Reaktionsprodukts mit verd. Salzsäure neben β -Methyl- α -cyan-glutarsäure-diäthylester entstehenden sauren Produkt durch Destillation unter vermindertem Druck (Ingold, Soc. 119, 336, 339). — Kp: 205—209°.

 $\alpha.\beta$ - Dichlor - β - methyl-glutarsäure - diäthylester $C_{10}H_{10}O_4Cl_2=C_2H_5\cdot O_4C\cdot CH_3\cdot CCl(CH_3)\cdot CHCl\cdot CO_2\cdot C_3H_5$. B. Wurde einmal beim Behandeln des Diäthylesters der niedrigerschmelzenden β -Methyl-glutaconsäure (S. 659) mit Chlor bei 20—25° in Gegenwart von rotem Phosphor in nicht ganz reinem Zustand erhalten (Feist, Breuer, A. 428, 66). — Orangegelbes Öl. Kp₁₂: 159—161°.

 $\alpha.\beta.x$ -Trichlor- β -methyl-glutarsäure-diäthylester $C_{10}H_{15}O_4Cl_2=C_4H_5Cl_2(CO_4\cdot C_2H_5)_2$. B. Durch Chlorierung des Diäthylesters der niedrigerschmelzenden β -Methylesters.

- glutaconsaure (S. 659) mit oder ohne Lösungsmittel und in Gegenwart oder Abwesenheit von Katalysatoren (Feist, Breuer, A. 428, 66). Kp_{11} : 169—171°; $Kp_{0,57}$: 116,5°.
- α-Brom-β-methyl-glutarsäure-dimethylester $C_8H_{19}O_4Br=CH_3\cdot O_3C\cdot CH_3\cdot CH(CH_3)\cdot CHBr\cdot CO_3\cdot CH_3$. Beim Erwärmen von β-Methyl-glutarsäure mit Thionylchlorid, Versetzen mit Brom bei 50—55° und Eingießen in Methanol (Ingold, Soc. 121, 2684). Ol. Kp₁₃:143—145°. Liefert beim Erwärmen mit Natriumjodid in Alkohol α-Jod-β-methyl-glutarsäure-dimethylester.
- α-Brom-β-methyl-glutarsäure-diäthylester $C_{10}H_{17}O_4Br=C_2H_5\cdot O_2C\cdot CH_2\cdot CH(CH_3)\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 659). B. Beim Erwärmen von β-Methyl-glutarsäure mit Thionylchlorid, Umsetzen mit Brom bei 50—55° und Eingießen in Alkohol (Ingold, Soc. 121, 2685). Kp₁₁: 160°. Liefert beim Digerieren mit Natriumjodid in Alkohol α-Jod-β-methyl-glutarsäure-diäthylester. Beim Kochen mit 2 n-Natriumcarbonat-Lösung und Ansäuern mit konz. Salzsäure entstehen trans-3-Methyl-cyclopropan-dicarbonsäure-(1.2) (Syst. Nr. 964) und α-Oxy-β-methyl-glutarsäure-lacton (Syst. Nr. 2619). Beim Kochen mit 6 n-methyl-säure-lacton (Syst. Nr. 2619). Beim Kochen mit 6 n-methyl-säure-(1.2) neben geringeren Mengen α-Oxy-β-methyl-glutarsäure, β-Methyl-glutaconsäure (F: 149°), γ-Methyl-itamalsäure, γ-Methyl-paraconsäure, γ-Methyl-itaconsäure, β-Xthyl-äpfelsäure vom Schmelzpunkt 108—109° und γ-Methyl-citraconsäure.
- α.β-Dibrom-β-methyl-glutarsäure $C_6H_8O_4Br_5 = HO_3C \cdot CH_2 \cdot CBr(CH_3) \cdot CHBr \cdot CO_2H$. B. Bei der Einw. von Bromdampf auf β-Methyl-glutaconsäure vom Schmelzpunkt 149° (INGOLD, OLIVER, THORPE, Soc. 125, 2134). Krystalle (aus Chloroform + Petroläther). F: 142°. Liefert beim Kochen mit verd. Alkalilauge β-Methyl-glutaconsäure vom Schmelzpunkt 115°.
- α.β-Dibrom-β-methyl-glutarsäure-diäthylester $C_{10}H_{16}O_4Br_2 = C_2H_5 \cdot O_4C \cdot CH_2 \cdot CBr(CH_3) \cdot CHBr \cdot CO_2 \cdot C_2H_5$. Aus dem Diäthylester der niedrigerschmelzenden β-Methylglutaconsäure (S. 659) beim Behandeln mit Brom in Chloroform unter Kühlung (Feist, Breuer, A. 428, 67). Kp_{0,11}: 108°; Kp₁₃: 159—160°. Bei der Einw. von Natriummalonester in Alkohol entstehen Athan-tetracarbonsäure-(1.1.2.2)-tetraäthylester und β-Oxalbuttersäure-diäthylester (?) (Feist, Breuer, A. 428, 67).
 - $\alpha.\alpha'$ -Dibrom- β -methyl-glutarsäure $C_8H_8O_4Br_2 = CH_3 \cdot CH(CHBr \cdot CO_2H)_2$.
- a) Höherschmelzende Form. B. Entsteht neben der niedrigerschmelzenden Form beim Erwärmen von β -Methyl-glutarsäure mit Thionylchlorid, Versetzen mit 2 Mol Brom bei 100° und Kochen mit Ameisensäure (Ingold, Soc. 121, 2685). Prismen (aus Essigester + Benzol). F: 153—154°. Ist stark lichtbrechend. Sehr leicht löslich in Methanol, Alkohol, Aceton, heißem Essigester, ziemlich leicht in kaltem Essigester, Ameisensäure, Aceton und heißem Chloroform, schwer in kaltem Chloroform und heißem Benzol, fast unlöslich in kaltem Benzol. Liefert beim Kochen mit 2n-Natriumcarbonat-Lösung und folgenden Ansäuern $\alpha.\alpha'$ -Dioxy- β -methyl-glutarsäure-lacton vom Schmelzpunkt 136° (Formel I; Syst. Nr. 2624).
- b) Niedrigerschmelzende Form. B. s. bei der höherschmelzenden Form. Nadeln (aus Benzol). F: 116—118° (Ingold, Soc. 121, 2685). Sehr leicht löslich in den meisten organischen Lösungsmitteln, schwer in kaltem Benzol, unlöslich in Ligroin. Liefert beim Kochen mit 2 n-Natriumcarbonat-Lösung und folgenden Ansäuern die beiden $\alpha.\alpha'$ -Dioxy- β -methyl-glutarsäure-lactone vom Schmelzpunkt 117—118° und Schmelzpunkt 136° (Formel I; Syst. Nr. 2624).
- α.α'-Dibrom -β-methyl-glutarsäure dimethylester $C_8H_{12}O_4Br_2 = CH_3 \cdot CH(CHBr\cdot CO_2 \cdot CH_3)_2$. B. Beim Erwärmen von β-Methyl-glutarsäure mit Thionylchlorid, Umsetzen mit 2 Mol Brom bei 100° und Eingießen in Methanol (Ingold, Soc. 121, 2686). Kp₂₀: 179° bis 180° (I.). Liefert beim Koohen mit 2 n-Natriumcarbonat-Lösung und folgenden Ansäuren die beiden α.α'-Dioxy-β-methyl-glutarsäuren bzw. deren Lactone (F: 118° und 136°; Formel I) und 1-Brom-3-methyl-cyclopropan-dicarbonsäure-(1.2) (I., Soc. 121, 2692). Gibt bei der Einw. von Malonsäuredimethylester in Natriummethylat-Lösung 5-Methyl-bicyclo-[0.1.2]-penten-(2)-ol-(3)-tricarbonsäure-(1.2.4)-trimethylester (Goss, Ingold, Soc. 1928, 1272).
- α.α'- Dibrom -β-methyl-glutarsäure diäthylester $C_{10}H_{10}O_4Br_2 = CH_3 \cdot CH(CHBr\cdot CO_3 \cdot C_4H_4)_4$. B. Beim Erwärmen von β-Methyl-glutarsäure mit Thionylchlorid, Versetzen mit 2 Mol Brom bei 100° und Eingießen in Alkohol (Ingold, Soc. 121, 2686). Kp₂₈₋₂₉: 189—190°. Liefert beim Kochen mit 2 n-Natriumcarbonat-Lösung und folgenden Ansäuern die beiden α.α'-Dioxy-β-methyl-glutarsäuren bzw. deren Lactone (Formel I) und 1-Brom-3-methyl-cyclopropan-dicarbonsäure-(1.2) (I.). Beim Erhitzen mit 6 n-methylalkoholischer Kalilauge auf 100° erhält man die beiden α.α'-Dioxy-β-methyl-glutarsäuren (bzw. I. CH₂ · CH·CH(OH)·CO II. OCO·CH·OH beiden α.α'-Dioxy-β-methyl-cyclopropen-(1)-dicarbonsäure-(2.3), 1-Methoxy-3-methyl-cyclopropan-dicarbonsäure-(1.2) und das Lacton der 1.3-Dioxy-butan-dicarbonsäure-(1.2) (Formel II) (I.). Reagiert mit Malonsäurediäthylester

und Natriumäthylat analog wie $\alpha.\alpha'$ -Dibrom- β -methyl-glutarsäure-dimethylester (Goss, I., Soc. 1928, 1272).

- α-Jod-β-methyl-glutarsäure-dimethylester $C_8H_{13}O_4I=CH_3\cdot O_4C\cdot CH_3\cdot CH(CH_3)\cdot CHI\cdot CO_3\cdot CH_3$. Beim Erwärmen von α-Brom-β-methyl-glutarsäure-dimethylester mit Natriumjodid in Alkohol (Ingold, Soc. 121, 2685). Kp₁₂₋₁₃: 180°.
- α-Jod-β-methyl-glutarsäure-diäthylester $C_{10}H_{17}O_4I=C_2H_5\cdot O_3C\cdot CH_2\cdot CH(CH_3)\cdot CHI\cdot CO_3\cdot C_3H_5$. B. Analog der vorangehenden Verbindung. Kp₁₀: 199—200° (Ingold, Soc. 121, 2685).
- 5. Butan-dicarbonsaure-(1.2), Athylbernsteinsaure $C_4H_{10}O_4 = HO_2C \cdot CH_2 \cdot CH(C_2H_3) \cdot CO_2H$ (H 660; E I 279). Die von Killani (B. 51, 1627, 1628) als Athylbernsteinsaure angesehene Verbindung wurde als α -Methyl-glutarsaure erkannt (Windaus, Willerding, H. 143, 40).

Zur Bildung von Äthylbernsteinsäure aus Butan-tricarbonsäure-(1.1.2) durch Destillation nach Polko (A. 242, 121) vgl. Carrière, A. ch. [9] 17, 56. Äthylbernsteinsäure entsteht bei der Oxydation von β-Äthyl-butyrolacton (Syst. Nr. 2459) (Sircar, Soc. 1928, 901) und von α-Äthyl-γ-caprolacton (Syst. Nr. 2459) (Windaus, Klänhardt, B. 54, 587) mit verd. Chromschwefelsäure auf dem Wasserbad. Aus dem Lacton der 1.3-Dioxy-butan-dicarbon-säure-(1.2) (Formel II; S. 583) beim Kochen mit Jodwasserstoffsäure, neben β-Äthyl-äpfelsäure (F: 108—109°) (Ingold, Soc. 121, 2695). — Verbrennungswärme bei konstantem Volumen: 670,3 kcal/Mol (Hartman in Landolt-Börnst. E I, 873), 669,9 kcal/Mol (Verkade, Coops, R. 47, 608). Adsorption an Tierkohle aus alkoh. Lösung bei Zimmertemperatur: Griffin, Richardson, Robertson, Soc. 1928, 2708. — Äthylbernsteinsäure gibt beim Erhitzen mit Acetylchlorid Äthylbernsteinsäureanhydrid (Syst. Nr. 2475) (Carrière).

Dichlorid $C_6H_8O_9Cl_2 = ClOC \cdot CH_9 \cdot CH(C_9H_8) \cdot COCl.$ B. Beim Erhitzen von Athylbernsteinsäureanhydrid mit Phosphorpentachlorid auf 130—140° (Carrière, A. ch. [9] 17, 60). — Kp_{14} : 94—95°.

6. 2-Methyl-propan-dicarbonsäure-(1.2), α.α-Dimethyl-bernsteinsäure $C_8H_{10}O_4 = HO_2C \cdot CH_3 \cdot C(CH_3)_2 \cdot CO_2H$ (H 661; E I 279). B. Bei mehrtägigem Erhitzen von β.β-Dimethyl-acrylsäure-äthylester mit Kaliumcyanid in verd. Alkohol auf dem Wasserbad und Verseifen des Reaktionsprodukts mit siedender Natronlauge (Higginbotham. Lapworth, Soc. 121, 53). Durch Einw. von Kaliumcyanid auf Isopropyliden-cyanessigester in Alkohol und Erhitzen des Reaktionsprodukts mit konz. Salzsäure (Vocel, Soc. 1928, 2020). Aus α.α-Dimethyl-α'-carboxy-bernsteinsäure durch Erhitzen auf 170° (E. H. Ingold, Soc. 127, 473). Bei der Oxydation von 1.1-Dimethyl-cyclopentandion-(2.4) (Syst. Nr. 667) mit alkal. Hypochlorit-Lösung (Farmer, Ch. K. Ingold, Thorpe, Soc. 121, 157; Totvonen, Ann. Acad. Sci. fenn. [A] 28, 12; C. 1929 II, 1525). Durch Oxydation von β.β-Dimethyl-butyrolacton (Syst. Nr. 2459) mit verd. Chromschwefelsäure auf dem Wasserbad (Windaus, Klänhardt, B. 54, 586; Sircar, Soc. 1928, 901).

Der Schmelzpunkt ist infolge Anhydridbildung von der Art des Erhitzens abhängig; es wurde gefunden: F: 136—137° (HIGGINBOTHAM, LAPWORTH, Soc. 121, 53), 140° (WINDAUS, KLÄNHARDT, B. 54, 586; FARMER, INGOLD, THORPE, Soc. 121, 157), 140—141° (ASAHINA, TERADA, J. pharm. Soc. Japan 1923, 67; C. 1927 I, 1818), 141° (DEUSSEN, J. pr. [2] 117, 284; VOGEL, Soc. 1928, 2020), 142° (VERKADE, R. 40, 208). Verbrennungswärme bei konstantem Volumen: 662,6 kcal/Mol (Ve., Coops, R. 47, 608), 670,6 kcal/Mol (Hartman in Landolt-Börnst. E I, 873). Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 25° (ermittelt aus der Leitfähigkeit): 8,25×10⁻⁶ (Verkade).

H 662, Z. 14 v. o. statt ,,(Syst. Nr. 2651)" lies: ,,(H 18, 485)".

α.α - Dimethyl - bernsteinsäure - α - äthylester ("b-Monoäthylester") $C_9H_{14}O_4=HO_2C\cdot CH_2\cdot C(CH_3)_2\cdot CO_2\cdot C_2H_5$ (E I 279). B. Durch Kochen von α.α-Dimethyl-bernsteinsäure-anhydrid mit überschüssigem Alkohol, neben dem "a-Monoäthylester" und geringer Menge des Diäthylesters (Farmer, Kracovski, Soc. 1926, 2321). Das Natriumsalz entsteht aus α.α-Dimethyl-bernsteinsäure-anhydrid beim Behandeln mit Natriumäthylat-Lösung unter Eiskühlung, neben dem "a-Monoäthylester" und Spuren des Diäthylesters (Le Prietier De Rosanbo, A. ch. [9] 19, 336; vgl. Blaise, Bl. [3] 21 [1899], 716). — Wurde nicht ganz frei vom "a-Monoäthylester" erhalten (Le P. de R.; vgl. a. F., K., Soc. 1926, 2320). — Öl. Kp₁₅: 147° (F., K.). — Eine Suspension des Natriumsalzes in verd. Methanol liefert bei der Elektrolyse und nachfolgenden Verseifung mit wäßrig-alkoholischer Kalilauge α.α.α'.α'-Tetramethyl-adipinsäure und Methoxypivalinsäure (?) (F., K.).

α.α - Dimethyl - bernsteinsäure - α'- äthylester ("a-Monoäthylester") $C_0H_{14}O_4=C_2H_4\cdot O_4C\cdot CH_2\cdot C(CH_2)_2\cdot CO_2H$ (H 663). B. s. im vorangehenden Artikel. — F: 68° (FARMER, Kracovski, Soc. 1926, 2320), 66° (Le Peletier de Rosambo, A. ch. [9] 19, 336). — Das

Natriumsalz liefert bei der Elektrolyse in verd. Methanol und nachfolgender Verseifung mit wäßrig-alkoholischer Kalilauge $\beta.\beta$ -Dimethyl-acrylsäure, β -Methoxy-isovaleriansäure, und $\beta.\beta.\beta'.\beta'$ -Tetramethyl-adipinsäure (F., K., Soc. 1926, 2321).

- α.α-Dimethyl-bernsteinsäure-diäthylester $C_{10}H_{18}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot C(CH_3)_2 \cdot CO_3 \cdot C_2H_5$ (H 663; E I 279). Zur Bildung aus α.α-Dimethyl-bernsteinsäure, Alkohol und konz. Schwefelsäure nach Barnstein (A. 242, 139) vgl. Vogel, Soc. 1928, 2020. Kp₁₈: 101° Vogel). D_4^{44} : 0,9988 (v. Auwers, Ottens, B. 57, 442); D_4^{47} : 0,9945 (Vogel). Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 15. n_4^{44} : 1,4219; n_1^{14} : 1,4241; n_1^{16} : 1,4293; n_2^{44} : 1,4334 (v. Au., O.); n_2^{67} : 1,4209 (Vogel). Liefert mit Propylmagnesiumchlorid 4.4-Dimethyl-2.2.5-tripropyl-tetrahydrofuran (Leroide, A. ch. [9] 16, 402).
- α.α-Dimethyl-bernsteinsäure-α'-äthylester-α-chlorid $C_8H_{13}O_3Cl = C_9H_5 \cdot O_2C \cdot CH_9 \cdot C(CH_9)_9 \cdot COCl$ (H 663). B. Aus α.α-Dimethyl-bernsteinsäure-α'-äthylester und Thionylchlorid bei ca. 60° (Le Peletier de Rosanbo, A. ch. [9] 19, 337). Liefert mit Äthylzinkjodid in Essigester + Toluol γ -Oxo- β . β -dimethyl-capronsäure-äthylester.
- α.α Dimethyl bernsteinsäure α äthylester α'-chlorid $C_8H_{18}O_3Cl = ClOC \cdot CH_{2} \cdot C(CH_{3})_2 \cdot CO_2 \cdot C_2H_5$. B. Aus α.α-Dimethyl-bernsteinsäure-α-äthylester und Thionylchlorid bei ca. 60° (Le Peletier de Rosanbo, A. ch. [9] 19, 351). Liefert mit Äthylzinkjodid in Essigester + Toluol γ-Οχο-α.α-dimethyl-capronsäure-äthylester.
- α.α-Dimethyl-bernsteinsäure-diamid $C_eH_{18}O_2N_2 = H_eN \cdot CO \cdot CH_e \cdot C(CH_s)_2 \cdot CO \cdot NH_e$. B. Beim Aufbewahren von α.α-Dimethyl-bernsteinsäure-dinitril in konz. Schwefelsäure (Dickens, Horton, Thorpe, Soc. 125, 1839). Prismen (aus Benzol + Petroläther). F: 153°.
- α.α-Dimethyl-bernsteinsäure-dinitril $C_6H_8N_2 = NC \cdot CH_2 \cdot C(CH_3)_2 \cdot CN$ (H 663). B. Beim Erhitzen von β.β-Dimethyl-α.β-dicyan-propionsäure-äthylester mit wäßrig-alkoholischer Natronlauge (Dickens, Horton, Thorpe, Soc. 125, 1838). Prismen (aus Äther). F: 68°. Liefert beim Aufbewahren in konz. Schwefelsäure α.α-Dimethyl-bernsteinsäure-diamid.
- 7. Butan-dicarbonsäure (2.2), Methyläthylmalonsäure $C_8H_{10}O_4=C_3H_8$. C(CH₃)(CO₃H)₂(H 664; E I 279). F: 121° (Vogel, Soc. 1929, 1478). Elektrische Leitfähigkeit der wäßr. Lösungen der Säure und des Dinatriumsalzes bei 25°: V. Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 25°: 1,394×10⁻³ (V.). Diffusion durch Kollodium-Membranen: Collander, Comment. biol. Helsingfors 2, Nr. 6, S. 15, 26; C. 1926 II, 720.
- 8. Butan-dicarbonsäure-(2.3), a.a'-Dimethyl-bernsteinsäure $C_6H_{10}O_4=HO_2C\cdot CH(CH_2)\cdot CH(CH_3)\cdot CO_2H$.
- a) Rechtsdrehende a.a'- Dimethyl-bernsteinsäure (E I 280). Zur Bildung durch Spaltung der racem. Säure nach Wenner, Basyrin (B. 46, 3230) vgl. Ott, B. 61, 2134. Tafeln (aus Wasser oder Chloroform). Rhombisch (Steinwachs, B. 61, 2135).
- b) Linksdrehende a.a'-Dimethyl-bernsteinsäure (EI 280). Zur Bildung durch Spaltung der racem. Säure nach Werner, Basyrin (B. 46, 3230) vgl. Ott, B. 61, 2134. Tafeln (aus Wasser oder Chloroform). Rhombisch (Steinwachs, B. 61, 2135). Verbrennungswärme bei konstantem Volumen: 671,8 kcal/Mol (Verkade bei Ott, B. 61, 2127; Landoll-Börnst. EII, 1642). [a]. —8° (Wasser; p = 5) (O.).
- c) Inaktive niedrigerschmelzende α.α'-Dimethyl-bernsteinsäure, race-mische α.α'-Dimethyl-bernsteinsäure C₅H₁₀O₄ = HO₅C·CH(CH₅)·CH(CH₅)·CO₅H (H 667; E I 280). B. In geringer Menge beim Erhitzen von α-Brom-propionsäure mit Thiophenol in Gegenwart von Zinn(IV)-chlorid in Benzol und nachfolgenden Behandeln des neben Diphenyldisulfid entstandenen Produkts mit heißem Wasser (Bistrzycki, Risi, Helv. 8, 590). Neben überwiegenden Mengen Meso-α.α'-dimethyl-bernsteinsäure bei der Hydrierung von dimethylmaleinsaurem Natrium in Gegenwart von Palladium- oder Nickel-Tierkohle (Ott, B. 61, 2126, 2132). Entsteht auch aus Dimethylfumarsäure bei der Reduktion mit Zinkstaub und Essigsäure oder bei der Hydrierung in Gegenwart von Palladium- oder Nickel-Tierkohle in salzsaurer bzw. neutraler Lösung, neben je nach den Reaktionsbedingungen wechselnden Mengen der Meso-Form (Ott, B. 61, 2127, 2133). Krystallisiert nicht rhombisch (Vater, B. 20 [1887], 2743), sondern monoklin (Steinwachs, B. 61, 2135). F: 129° (Berner, Arch. Math. Naturvid. 39, Nr. 6, S. 117; C. 1926 II, 2538), 122—123° (BI., RISI; Ott), 123° (Farmer, Healy, Soc. 1927, 1067). Verbrennungswärme bei konstantem Volumen: 671,6 kcal/Mol (Haetman in Landolt-Börnst. E I, 873; Verkade, Coops, R. 47, 608).
- Disthylester $C_{10}H_{18}O_4 = C_2H_4 \cdot O_2C \cdot CH(CH_2) \cdot CH(CH_3) \cdot CO_3 \cdot C_2H_3$ (H 668). $D_4^{44.9}$: 1,0015 (v. Auwers, Ottens, B. 57, 442). Verbrennungswärme bei konstantem Volumen: 1321,5 kcal/Mol (Beener, Arch. Math. Naturvid. 39, Nr. 6, S. 118; C. 1926 II, 2538). $n_{\alpha}^{44.9}$: 1,4236; $n_{He}^{44.9}$: 1,4257; $n_{\beta}^{44.9}$: 1,4308; $n_{\gamma}^{44.9}$: 1,4352 (v. Au., O.); n_{D}^{50} : 1,4227 (B.).

DICARBONSÄUREN Cn Hgn-gO4

d) Inaktive höherschmelzende a.a'-Dimethyl-bernsteinsäure, Meso-a.a'dimethyl-bernsteinsdure $C_4H_{10}O_4 = HO_4C \cdot CH(CH_2) \cdot CH(CH_3) \cdot CO_3H$ (H 665; E I 280). B. aus Dimethylmaleinsäure und aus Dimethylfumarsäure s. bei der racem. Form. — F: 193° (Berner, Arch. Math. Naturvid. 39, Nr. 6, S. 117; C. 1936 II, 2538), 195° (Farmer, Healey, Soc. 1927, 1067), 198° (Zers.), beim schnellen Erhitzen im vorgewärmten Bade: 208° (Ott, B. 61, 2132). Verbrennungswärme bei konstantem Volumen: 673,1 kcal/Mol (Hartman in Landolt-Börnst. E I, 873; Verkade, Coops, R. 47, 608).

Diāthylester $C_{16}H_{16}O_4=C_2H_5\cdot O_2C\cdot CH(CH_2)\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$ (H 667). $D_4^{4,9}$: 1,0000 (v. Auwers, Ottens, B. 57, 442). Verbrennungswärme bei konstantem Volumen: 1322,6 kcal/Mol (Berner, Arch. Math. Naturvia. 39, Nr. 6, S. 118; C. 1926 II, 2538). ng., 1,4216; nHe: 1,4238; nHe: 1,4289; nY: 1,4331 (v. Au., O.); nD: 1,4213 (B.).

9. 2-Methyl-propan-dicarbonsäure-(1.1), Isopropylmalonsäure $C_0H_{10}O_4=(CH_3)_2CH\cdot CH(CO_2H)_3$ (H 669; E I 280). B. Durch Kochen von Isopropylcyanessigester (s. u.) mit alkoh. Kalilauge (Vogen, Soc. 1928, 2020). — Krystallisiert aus Chloroform mit Krystall-Lösungsmittel, das beim Aufbewahren an der Luft entweicht. F: 88—89° (Zers.) (V.). Elektrolytische Dissoziationskonstante der 1. Stufe k, bei 25°: 1,17×10-*, der 2. Stufe k, 1,59×10⁻⁴ (potentiometrisch ermittelt) (Gane, Ingold, Soc. 1929, 1699). — Geschwindigkeit der Veresterung mit absol. Alkohol in Gegenwart von Chlorwasserstoff bei 25°: Bhide, SUDBOROUGH, J. indian Inst. Sci. [A] 8, 98; C. 1926 I, 81.

Diäthylester $C_{10}H_{18}O_4 = (CH_2)_2CH \cdot CH(CO_2 \cdot C_2H_3)_2$ (H 669). Die Darstellung durch Einw. von Isopropylhalogenid auf Natriummalonester muß in möglichst wasserfreiem Alkohol ausgeführt werden (BHIDE, SUDBOROUGH, J. indian Inst. Sci. [A] 8, 98; C. 1926 I, 81). — Kp₇₄₈: 215—217° (korr.) (Volwiler, Am. Soc. 47, 2239). — Geschwindigkeit der Verseifung mit wäßrig-alkoholischer Natronlauge bei 27,0°: GANE, INGOLD, Soc. 1926, 16. Gibt bei längerem Schütteln mit konz. Ammoniak nur sehr geringe Mengen des Diamids (Dox, Yoder, Am. Soc. 44, 1567). Die Natriumverbindung liefert mit Phenacylbromid in Alkohol 5-Oxo-4-isopropyl-2-phenyl-dihydrofuran-carbonsaure-(4)-HC—C(CO₂·C₂H₅)·CH(CH₃)₃ (Syst. Nr. 2619) (R. M. Rây, I. N. Rây, Soc.

athylester $C_0H_5 \cdot C \cdot O \cdot CO$ 127, 2723).

Monoamid $C_0H_{11}O_2N = (CH_2)_2CH \cdot CH(CO_2H) \cdot CO \cdot NH_2$. Inaktive Form (E I 280). Gibt mit Hydrazinhydrat das Monohydrazid (Curtius, Sieber, B. 54, 1437).

Diamid, C-Isopropyl-malonamid $C_0H_{12}O_2N_3=(CH_2)_2CH\cdot CH(CO\cdot NH_2)_2$. B. Aus Isopropylmalonsāure-dimethylester (H 2, 669) und 28% igem wäßrigem Ammoniak unter Luftabschluß (Dox, Yoder, Am. Soc. 44, 1565). — Krystalle (aus Wasser). F: 260°. Schwer löslich in kaltem, löslich in heißem Wasser, leicht löslich in heißem Alkohol.

Äthylester - nitril , Isopropylcyanessigsäure - äthylester $C_8H_{18}O_2N=(CH_3)_2CH\cdot CH(CN)\cdot CO_3\cdot C_2H_5$. Inaktive Form (H 669; E I 281). B. Durch Reduktion von Isopropylidencyanessigsäure-äthylester (S. 661) mit amalgamiertem Aluminium in feuchtem Äther (Vogel, Soc. 1928, 2019). — Kp₁₈: 99°. Di^{1,2}: 0,9880; Di^{2,2}: 0,9862; Di^{2,3}: 0,9481; Di^{2,3}: 0,9281. Oberflächenspannung bei 23,3°: 31,49, bei 61,8°: 27,60, bei 86,6°: 25,32 dyn/cm. ng^{3,2}: 1,4243.

Monohydramid $C_0H_{12}O_3N_3=(CH_2)_3CH\cdot CH(CO_3H)\cdot CO\cdot NH\cdot NH_3$. Inaktive Form. (E I 281). B. Aus dem Monoamid (s.o.) und Hydrazinhydrat (Curtus, Sieber, B. 54, 1437).

Isopropylchlormalonsäure - dimethylester $C_2H_{19}O_4Cl = (CH_2)_2CH \cdot CCl(CO_4 \cdot CH_2)_2$. B. Beim Leiten von Chlor in Isopropylmalonsäuredimethylester bei ca. 60° (Dox, Houston, Am. Soc. 46, 1279). — Ol. Kp₂₇: 110—112°; Kp₇₅₇: 221—222°. Riecht stechend, aber nicht

Isopropylchlormalonsäure-diamid $C_0H_{11}O_2N_2Cl = (CH_2)_3CH \cdot CCl(CO \cdot NH_2)_3$. B. Beim Eindampfen einer Lösung von Isopropylchlormalonsaure-dimethylester in alkoh. Ammoniak unter vermindertem Druck (Dox, Houston, Am. Soc. 46, 1279). — Nadeln. F: 1779. Schmeckt süß; die Süßkraft ist die neunfache des Rohrzuckers.

Isopropylbrommalonsäure - diäthylester $C_{10}H_{12}O_4Br = (CH_3)_9CH \cdot CBr(CO_9 \cdot C_9H_4)_8$ (H 669). Einw. auf Hydrazinhydrat: Hirst, MacBeth, Soc. 121, 911. M. ILBERG

6. Dicarbonsauren C7H12O4.

1. Pentan-dicarbonedure-(1.5), Pimelinedure C₇H₁₉O₄ = HO₂C·[CH₂]₅·OO₂H (H 670; E I 281). B. In geringer Menge aus Pentamethylenbromid durch Umsetzung mit Kalium- oder Natriumcyanid in Alkohol und nachfolgende Hydrolyse mit siedender 48 kiger Bromwasserstoffsaure oder 50—60 % iger Schwefelsaure (Marvel, Mitaril., Am. Soc. 46, 2341; Vogel, Soc. 1929, 728; Verkade, Hartman, Coops, R. 45, 380). Bei der Oxydation von Cyclohepten (Rueroka, Brugger, Helv. 9, 403) oder von Di-[cyclohepten-(1)-yl] (Godonof, CAUQUIL, C. r. 186, 769) mit verd. Permanganat-Lösung. — Zur Darstellung aus Salicylsäure nach Einhorn, Lumsden, A. 286, 280; Walker, L., Soc. 79, 1198 vgl. Müller, Rölz, M. 48, 734; Org. Synth. 11 [1931], 42.

Röntgenographische Untersuchungen: Trillat, C. r. 180, 1331; Ann. Physique [10] 6, 70; Caspari, Soc. 1928, 3237; Henderson, Pr. 1928. Soc. Edinburgh 48, 20; C. 1928 I, 2903. F: 103° (Bille, Balz, Z. anorg. Ch. 170, 339), 103° (korr.) (Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 104; C. 1926 I, 80), 105—105,5° (Verkade, Hartman, Coops, R. 45, 380). Kp₁₇: 210—215° (Ve., H., C.). D.*: 1,291 (Bi., Ba.), 1,287 (Bi., A. 453, 278). Verbrennungswärme bei konstantem Volumen: 827,1 kcal/Mol (Ve., H., C., R. 45, 380; vgl. a. Ve., H., C., Versl. Akad. Amsterdam 33, 767; C. 1925 I, 1281; Ve., C., R. 47, 608). Ultraviolettes Absorptionsspektrum in Alkohol: Ramaet-Lucas, Salmon-Legagneur, C. r. 189, 916. Adsorption aus verdünnter wäßriger Lösung durch Kohle: Schilow, Nekrassow, Ph. Ch. 130, 67; K. 60, 106. Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 25°: 3,33×10-5, der zweiten Stufe k₂ bei 25°: 4,87×10-6 (potentiometrische Bestimmungen) (Gane, Ingold, Soc. 1928, 1598). — Liefert bei der Destillation bei ca. 336° Cyclohexanon und etwas Capronsäure (Vogel, Soc. 1929, 728). Eine ähnliche Zersetzung erfolgt bei Gegenwart von Eisenfeile oder Baryt (Vogel). Bei der thermischen Zersetzung des Thoriumsalzes unter gewöhnlichem oder vermindertem Druck entsteht ebenfalls Cyclohexanon (Ruzicka, Mitarb., Helv. 9, 515). Geschwindigkeit der Veresterung mit Alkohol: Gegenwart von Chlorwasserstoff bei 25°: Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 104; C. 1926 I, 80. — Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 927.

Saures Ammoniumsalz. D_{\bullet}^{s} : 1,245 (Biltz, Balz, Z. anorg. Ch. 170, 341). Dissoziationsdruck bei 111°: 182 mm; bei 80°: 5 mm (Bi., Ba., Z. anorg. Ch. 170, 343). — Neutrales Ammoniumsalz. D_{\bullet}^{s} : 1,226 (Bi., Ba.). Dissoziationsdruck bei 111°: 650 mm; bei 80°: 120 mm (Bi., Ba.). — Thallium(I)-salze: $TIC_7H_{11}O_4$. Prismen (aus Isoamylalkohol). F: 137—140° (Menzies, Wilkins, Soc. 125, 1150). Leicht löslich in Wasser, fast unlöslich in Alkohol. — $TI_2C_7H_{10}O_4$. Nadeln (aus Isoamylalkohol). Schwer löslich in siedendem Isoamylalkohol, fast unlöslich in Alkohol (M., W.).

Pimelinsäuredimethylester $C_9H_{16}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_5 \cdot CO_3 \cdot CH_3$ (E I 281). F: —20,6° (korr.) (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 12; C. 1927 I, 2398). E: —18,7° (Verkade, Coops, Hartman, R. 45, 590). Kp_{10} : 119,3—119,6° (V., C., H.). Viscosität bei 20°: 0,03666 g/cmsec (C.). Verbrennungswärme bei konstantem Volumen: 1174,8 kcal/Mol (V.,.C., H.).

 $C_0H_{10}O_4 + SnCl_4$. B. Aus den Komponenten in Tetrachlorkohlenstoff (Hibber, A. 439, 121). Feinkrystallines, ziemlich hygroskopisches Pulver. F: 116°. Schwer löslich in kalten organischen Lösungsmitteln.

Pimelinsäuremonoäthylester $C_9H_{16}O_4=HO_2C\cdot[CH_3]_5\cdot CO_3\cdot C_2H_5$ (H 671; E I 282). B. Beim Erhitzen äquimolekularer Mengen von Pimelinsäure und Pimelinsäurediäthylester auf ca. 250—270° (FOURNEAU, SABETAY, Bl. [4] 45, 839). — Schmeckt herbe. Kp₈: 162°. n_2^n : 1,4450; n_2^n : 1,4415.

Pimelinsäurediäthylester $C_{11}H_{20}O_4=C_2H_5\cdot O_3C\cdot [CH_2]_5\cdot CO_2\cdot C_2H_5$ (H 671; E I 282). B. Zur Bildung durch Kochen von Pimelinsäure mit Alkohol und konz. Schwefelsäure vgl. MÜLLER, RÖLZ, M. 48, 735; Org. Synth. 11 [1931], 43. Durch Einw. von Alkohol auf Pimelinsäuredichlorid (Adickes, B. 58, 214). — F: —23,8° (korr.) (Ceder, Ann. Univ. jenn. Abo. [A] 2, Nr. 4, S. 13; C. 1927 I, 2398). Kp₇₄₀: 260° (A.); Kp₂₄: 153—156°; Kp₂₅: 148—152° (M., R., Org. Synth. 11 [1931], 43); Kp₇₇: 145—147° (M., R., M. 48, 735). Viscosität bei 20°: 0,04024 g/cmsec (C.). — Wird durch Natrium in siedendem Alkohol zu Heptamethylenglykol reduziert (M., R., M. 48, 735; Carothers, McEwen, Org. Synth. 14 [1934], 22). Liefert mit Diäthyloxalat bei Gegenwart von Natriumäthylat in Ather α-Oxal-pimelinsäure-triäthylester (Adickes).

Pimelinsäure - di-[d-octyl-(2)] - ester $C_{23}H_{44}O_4 = CH_3 \cdot [CH_3]_5 \cdot CH(CH_3) \cdot O_2C \cdot [CH_2]_5 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_5 \cdot CH_3$. B. Bei Einw. von d-Octanol-(2) auf Pimelinsäuredichlorid (HALL, Soc. 123, 40). — Fast geruchlose, schwach viscose Flüssigkeit. Kp₃: 188—190°. D'₁ zwischen 20° (0,9105) und 161° (0,8058): H. $n_{7}^{m_{10}} \cdot 1,4409$; Brechungsindices bei 25,8° zwischen 643,8 m μ (1,4392) und 435,8 m μ (1,4509): H. [α] $_{100}^{m_{10}} \cdot 1,4009$; Prochungsvermögen und Rotationsdispersion der reinen Substanz (zwischen 19,5° und 145°) und der Lösungen in Alkohol und Schwefelkohlenstoff bei 18°: H.

Pimelinsäuredinitril, Pentamethylendicyanid $C_7H_{10}N_2 = NC \cdot [CH_2]_5 \cdot CN$ (H 671). Kp₁₃: 164—165° (Vogel, Soc. 1929, 728).

 α,α' -Dibrom-pimelinsäure-diäthylester $C_{11}H_{18}O_4Br_3=C_2H_5\cdot O_2C\cdot CHBr\cdot [CH_3]_5\cdot CHBr\cdot CO_3\cdot C_2H_5$ (H 671; E I 282). Ist nach v. Braun, Leistner, Münch (B. 59, 1957)

588

wahrscheinlich ein Gemisch der Meso- und Racem-Form. — Liefert bei der Einw. von methylalkoholischer Kalilauge Piperylendicarbonsäure (S. 675), Cyclopentanol-(1)-dicarbonsäure-(1.2), Cyclopenten-(2)-dicarbonsäure-(1.2) und $\alpha.\alpha'$ -Dimethoxypimelinsäure (Hassbal, Ingold, Soc. 1926, 1468). Bei längerem Erwärmen mit Diäthylamin auf dem Wasserbal erhält man einen $\alpha.\alpha'$ -Bis-diäthylamino-pimelinsäure-diäthylester, der sich nach dem Verseifen in 2 stereoisomere $\alpha.\alpha'$ -Bis-diäthylamino-pimelinsäuren zerlegen läßt (v. B., L., M.). Gibt bei Einw. von 4-Methyl-benzylamin 1-[4-Methyl-benzyl]-piperidindicarbonsäure-(2.6)-diäthylester und andere Verbindungen (v. B., L., B. 59, 2327).

 $\alpha.\beta.\gamma.\beta'\text{-Tetrabrom-pimelinsäure} \quad C_7H_8O_4Br_4 = HO_2C\cdot CH_2\cdot [CHBr]_4\cdot CO_2H \quad (H \ 672).$ F: 217° (Zers.) (Hassell, Ingold, Soc. 1926, 1468).

2. Pentan-dicarbonsäure-(1.4), α -Methyl-adipinsäure $C_7H_{12}O_4 = HO_2C \cdot [CH_2]_5 \cdot CH(CH_5) \cdot CO_2H$ (H 672). B. Aus 2-Methyl-2.3.4.5-tetrahydro-benzoesäure durch Oxydation mit Permanganat (Mazza, DI Mase, G. 57, 309). — Krystalle (aus Petroläther und Benzol). F: 61°.

Diäthylester $C_{11}H_{20}O_4=C_2H_5\cdot O_2C\cdot [CH_2]_2\cdot CH(CH_2)\cdot CO_2\cdot C_2H_5$ (H 672). B. Zur Bildung aus 1-Methyl-cyclopentanon-(2)-carbonsäure-(1)-äthylester und alkoh. Natriumäthylat-Lösung vgl. Haller, Cornubert, C. r. 179, 316; Bl. [4] 39, 1628. — Kp₂₆: 141° (korr.).

3. Pentan-dicarbonsäure – (1.1), Butylmalonsäure $C_7H_{18}O_4=CH_9\cdot [CH_2]_8\cdot CH(CO_9H)_9$ (H 673; E I 282). B. Bei der Verseifung von Butyloyanessigsäure-äthylester mit alkoh. Kalilauge (McRae, Manske, Soc. 1928, 487, 489). — Röntgenographische Untersuchung: Henderson, Pr. roy. Soc. Edinburgh 48, 22; C. 1928 I, 2903. F: 102° (McR., M.), 101,5° (H.).

Disthylester $C_{11}H_{30}O_4 = CH_3 \cdot [CH_2]_3 \cdot CH(CO_2 \cdot C_2H_5)_2$ (E I 282). Zur Darstellung vgl. Adams, Marvel, Am. Soc. 42, 316; Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 98; C. 1926 I, 81; Levene, Taylor, J. biol. Chem. 54, 358. — Kp₇₄₅: 242—245° (korr.) (Volwilee, Am. Soc. 47, 2239); Kp: 235—240°; Kp₄₀: 144—145° (A., M.); Kp₁₃: 122° (L., T.). D_4^{∞} : 0,9745; n_5^{∞} : 1,4222 (L., T.).

Diamid, C-Butyl-malonamid $C_7H_{14}O_2N_2 = CH_2 \cdot [CH_2]_2 \cdot CH(CO \cdot NH_2)_2$. B. Beim Schütteln von Butylmalonsäure-diäthylester mit konz. Ammoniak (Dox, Yoder, Am. Soc. 44, 1578). — Nadeln (aus Alkohol). F: 200°. Schwer löslich in Wasser, leicht in Alkohol.

Mononitril, α -Cyan-n-capronsäure, Butyloyanessigsäure $C_7H_{11}O_2N=CH_2\cdot [CH_2]_3\cdot CH(CN)\cdot CO_2H$. B. Durch Verseifung des Äthylesters mit 10% iger Natronlauge (Hessler, Henderson, Am. Soc. 48, 675). — Schwach riechende, sirupöse Flüssigkeit. Erstarrt nicht bei 0°. Schwer löslich in Wasser (H., H.). — $A_2C_7H_{10}O_2N$. Amorpher Niederschlag (H., H.). — $B_3(C_7H_{10}O_2N)_2+H_2O$. Krystalle (aus Wasser). Wird im Vakuum über konz. Schwefelsäure wasserfrei (H., H.). Sehr leicht löslich in Wasser. — $Cd(C_7H_{10}O_2N)_2+3H_2O$. Amorph. Sehr leicht löslich in Wasser (H., H.).

Butylcyanessigsäure-äthylester $C_8H_{18}O_8N=CH_3\cdot[CH_3]_3\cdot CH(CN)\cdot CO_3\cdot C_2H_8$. B. Neben wenig Dibutylcyanessigsäure-äthylester bei der Einw. von Butyljodid auf Cyanessigester in Natriumäthylat-Lösung (Hessler, Henderson, Am. Soc. 43, 675). Durch Einw. von Äthyljodid auf das Silbersalz der Butylcyanessigsäure (H., H.). — Sirupöse Flüssigkeit von schwachem angenehmem Geruch. Kps: 129–130°; Kpys4: 230–233° (H., H.). Dis: 0,9576 (H., H.). — Wird durch 10% ige Natronlauge zu Butylcyanessigsäure (H., H.), durch alkoh. Kalilauge zu Butylmalonsäure verseift (Morae, Manske, Soc. 1928, 487, 489).

Butylcyanessigsäure-butylester $C_{11}H_{19}O_9N=CH_3\cdot [CH_2]_3\cdot CH(CN)\cdot CO_2\cdot [CH_2]_3\cdot CH_3$. B. Aus dem Silbersalz der Butylcyanessigsäure beim Erwärmen mit Butyljodid (HESLIER, HENDERSON, Am. Soc. 43, 676). — Schwach riechende, sirupöse Flüssigkeit. Kp₇₃₉: 255° bis 260°; Kp₃₀: 157—161°. D₃₁: 0,9369.

Butylcyanessigsäure-amid, Butylcyanecetamid C₇H₁₂ON₂ = CH₃·[CH₂]₃·CH(CN)·CO·NH₂ (H 673). B. Beim Schütteln von Butylcyanessigsäure-äthylester mit konz. Ammoniak (Hessler, Henderson, Am. Soc. 43, 676). — Krystalle (aus verd. Alkohol). F: 125°.

Butylchlormalonsäure-diamid $C_7H_{12}O_2N_2Cl = CH_2 \cdot [CH_2]_2 \cdot CCl(CO \cdot NH_2)_2$. B. Durch Chlorierung von C-Butyl-malonamid in Eisessig (Dox, Houston, Am. Soc. 46, 1279). — Nadeln. F: 136°. — Schmeckt intensiv bitter und süß.

Butylbrommalonsäure-diäthylester $C_{11}H_{19}O_4Br=CH_3\cdot[CH_3]_3\cdot CBr(CO_3\cdot C_2H_3)_3$. B. Durch tropfenweise Zugabe von mit wenig Jod versetztem Brom zu Butylmalonsäure-diäthylester auf dem Wasserbad (Dox, Yoder, Am. Soc. 44, 1579). — Angenehm fruchtartig rischendes Öl. Kp_{787} : 252—253° (Zers.); Kp_{50} : 152—153°. D_{50}^{40} : 1,238.

4. 2-Methyl-butan-dicarbonsdure-(1.4), β -Methyl-adipinedure $C_7H_{18}O_4 = HO_2C \cdot CH_1 \cdot CH_2 \cdot CH_3 \cdot CH_4 \cdot CO_2H$.

a) Rechtsdrehende Form, $d-\beta$ -Methyl-adipinsäure $C_7H_{12}O_4 = HO_2C \cdot CH_2 \cdot CH_4 \cdot CH(CH_2) \cdot CH_2 \cdot CO_2H$ (H 673; E I 282). B. Beim Erhitzen des Dinitrils (s. u.) mit konz. Salzsäure im Rohr auf 110° (v. Braun, Jostes, B. 59, 1095). Bei der Oxydation von 2.6-Dimethyl-octantriol-(2.3.8) (aus Java-Citronellöl) (E II 1, 588) mit Chromschwefelsäure (Körz, Steche, J. pr. [2] 107, 207) und bei der Oxydation von β -Methyl-adipindialdehyd (E II 1, 843) mit feuchtem Silberoxyd (Prileshajew, Bl. [4] 41, 690). — F: 94° (Kon, Nutland, Soc. 1926, 3110), 87,5—88,5° (P.), 86° (K., St.). [α] $_{11}^{m}$: +8,3° (Wasser; p=16) (v. B., J.). — Liefert beim Überleiten mit wenig Methanol über Thoriumoxyd bei 360—380° 1-Methyl-cyclopentanon-(3) (Zelinsky, Rjachina, B. 57, 1931).

Dichlorid $C_7H_{10}O_9Cl_2 = CloC \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2 \cdot COCl (H 674; E I 283). Kp₁₃: 127° (v. Braun, Jostes, B. 59, 1093). <math>D_4^{\infty}$: 1,217. $[\alpha]_1^{\infty}$: +1,40° (unverdunnt).

Diamid $C_7H_{14}O_2N_2 = H_2N \cdot CO \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2 \cdot CO \cdot NH_2$ (H 674). B. Bei der Einw. von Ammoniak auf d-β-Methyl-adipinsäure anfangs bei 165—170°, dann bei 200° bis 210° (BAYER & Co., D. R. P. 241897; Ĉ. 1912 I, 176; Frdl. 10, 107; v. BRAUN, JOSTES, B. 59, 1093). — Krystalle (aus Wasser oder Alkohol + Äther). F: 191° (v. B., J.). [α]₁ⁿ: +14,7° (Wasser; p = 8) (v. B., J.). — Liefert beim Behandeln mit Hypobromit-Lösung rechtsdrehendes 1.4-Diamino-2-methyl-butan (v. B., J.).

Dinitril $C_7H_{10}N_2 = NC \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2 \cdot CN$. B. Durch längeres Kochen von rechtsdrehendem 1.4-Dibrom-2-methyl-butan mit überschüssiger wäßrig-alkoholischer Kaliumeyanid-Lösung (v. Braun, Jostes, B. 59, 1095). — Flüssigkeit. Kp₁₀: 150°. D⁴.: 0,9573. [α]⁵.: —5,65° (Alkohol; p = 12). — Liefert bei der Verseifung mit konz. Salzsäure im Rohr bei 110° rechtsdrehende β -Methyl-adipinsäure.

b) Inaktive Form, dl-β-Methyl-adipinsdure C₇H₁₁O₄ = HO₂C·CH₂·CH₂·CH₂·CH(CH₃)·CH₂·CO₂H (H 675; E I 283). B. Aus 1-Methyl-cyclohexanol-(4) durch Oxydation mit ca. 50% iger Salpetersäure in Gegenwart von Ammoniumvanadat, Molybdänoxyd oder Quecksilbersulfat bei 50—60° oder mit Luft in Gegenwart von Vanadinsäure bei 300—400° (Deutsche Hydrierwerke A.·G., D.R.P. 473960; Frdl. 16, 265). Bei der Einw. von alkal. Natriumhypobromit-Lösung auf 1-Methyl-cyclohexanon-(4)(Ruzicka, van Veen, A. 468, 143). Bei der Oxydation von inakt. Citronellsäure mit siedender Chromschwefelsäure (Rochussen, J. pr. [2] 105, 129). Bei der Hydrierung von hochschmelzender β-Methyl-muconsäure (F: 231°) in Gegenwart von kolloidem Palladium in verd. Alkohol (Rinkes, van Hasselt, Chem. Weekb. 14, 893; C. 1917 II, 680). Aus dem Dinatriumsalz der β-Oxy-β-methyl-adipinsäure durch Erhitzen auf 150° und Reduktion des Reaktionsprodukts mit Wasserstoff in Gegenwart von Palladium oder mit Natriumamalgam (Staudinger, Ruzicka, Helv. 7, 252). — Krystalle (aus Aceton + Benzol oder aus Petroläther). F: 94—95° (Ro.), 94—96° (Chavanne, Bl. Soc. chim. Belg. 35, 285; C. 1926 II, 1845; 1927 I, 267), 93—94° (Ru., van V.); die wieder erstarte Schmelze schmilzt etwa 10° tiefer (Ru., van V.). Kp1s: 190—200° (Ru, van V.). — Liefert beim Kochen mit Wasserstoffperoxyd Aceton (Wieland, Vocke, H. 177, 70). Geht beim Erhitzen mit überschüssigem Essigsäureanhydrid in β-Methyl-adipinsäureanhydrid (Syst. Nr. 2475) über (Farmer, Kracovski, Soc. 1927, 684). — Ag2C7H10O4(Ro.).

Dimethylester $C_9H_{16}O_4=CH_3\cdot O_2C\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3\cdot CO_3\cdot CH_3$ (E I 283). Zur Lichtabsorption im Ultrarot vgl. Lecomte, C. r. 178, 1700, 2074.

Diäthylester $C_{11}H_{20}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. Erstarrt beim Abkühlen in flüssiger Luft glasig (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp: 257° (Wedekind, Miller, Weinand, J. pr. [2] 109, 174); Kp₁₅: 130° (T.).

Dipropylester $C_{13}H_{24}O_4 = C_2H_5 \cdot CH_2 \cdot O_3C \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_4 \cdot C_2H_5$. Erstarrt beim Abkühlen in flüssiger Luft glasig (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp_{15} : 151°.

Dibutylester $C_{15}H_{26}O_4 = CH_3 \cdot [CH_2]_3 \cdot O_2C \cdot CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_3 \cdot CH_2 \cdot CO_2 \cdot [CH_2]_3 \cdot CH_3$. Erstarrt beim Abkühlen in flüssiger Luft glasig (Timmermans, Bl. Soc. chim. Belg. 36, 507; C. 1928 I, 27). Kp₁₆: 174,6°.

- αα'-Dibrom- β -methyl-adipinsäure-diäthylester $C_{11}H_{18}O_4Br_3=C_2H_5\cdot O_3C\cdot CHBr\cdot CH_2\cdot CH(CH_2)\cdot CHBr\cdot CO_3\cdot C_2H_5$ (E I 283). Liefert bei Einw. von Diäthylamin neben anderen Produkten Brenztraubensäureäthylester, Crotonsäureäthylester, 4-Diäthylamino-2-methylbuten-(1)-dicarbonsäure-(1.4)-diäthylester, β -Diäthylamino-buttersäure-äthylester und eine Fraktion, die nach längerem Kochen mit wäßrig-alkoholischer Alkaliauge niedrigschmelzende Methyl-muconsäure gibt (v. Braun, Leistner, Münch, B. 59, 1955; vgl. Fuson, Am. Soc. 50, 1446 Anm. 5).
- 5. Pentan-dicarbonsäure-(1.2), Propylbernsteinsäure C₇H₁₂O₄ = CH₂·CH₂·CH₂·CH₂·CH₃·CH₄·CO₂H (H 675). B. Zur Bildung nach Waltz (A. 214, 59) vgl. Schribler, Schrift, B. 54, 153. Das Natriumsalz liefert beim Destillieren mit Phosphortrisulfid 3-Propyl-thiophen.

- 590
- 6. Pentan-dicarbonsäure-(1.3), α-Āthyl-glutarsäure C₇H₁₂O₄ = HO₂C·CH₂·CH₃·CH(C₂H₅)·CO₂H (H 676). Beim Erhitzen des Silbersalzes mit Jod und Sand entsteht γ-Caprolacton (Windaus, Klänhardt, B. 54, 586).
- 7. 2₃-Āthyl-propan-dicarbonsāure-(1.3), β-Āthyl-glutarsāure C₇H₁₂O₄ = CH₂·CH₂·CH₂·CH₂·CO₃H)₂ (H 676). B. Bei längerem Kochen von α.α'-Dicyan-β-āthyl-glutarsāure-diamid mit verd. Salzsāure (Day, Thorpe, Soc. 117, 1470). Bei der Oxydation von β-Āthyl-β-valerolacton mit Chromsāure (Sircar, Soc. 1928, 902). Bei der Hydrolyse von 2-Oxo-β-imino-4-āthyl-β-cyan-piperidin-carbonsāure-(5)-amid oder 2.β-Dioxo-4-āthyl-β-cyan-piperidin-carbonsāure-(5)-amid mit Schwefelsaure (D., Th.). Krystalle (aus verd. Salzsāure). F: 73° (D., Th.). Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 25°: 5,29 × 10⁻⁸ (aus der elektrischen Leitfähigkeit berechnet) (Spiers, Th., Soc. 127, 544). Beim Erhitzen des Silbersalzes mit Jod und Sand auf 100—150° entsteht β-Āthyl-γ-butyrolacton (Si.). Ag₆C₇H₁₀O₄. Nadeln (aus Wasser) (Si.).
- 8. 3-Methyl-butan-dicarbonsäure-(1.3), a.a-Dimethyl-glutarsäure $C_7H_{13}O_4=HO_3C\cdot CH_3\cdot CH_3\cdot C(CH_3)_3\cdot CO_2H$ (H 676; E I 283). B. In geringer Menge bei der Oxydation von Carotin (H 30, 84) in Benzol mit wäßr. Permanganat-Lösung in der Wärme (Karrer, Helfenstein, Helv. 12, 1143).

Diäthylester $C_{11}H_{30}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot C(CH_3)_2 \cdot CO_2 \cdot C_2H_5$ (H 677). Liefert mit Propylmagnesiumbromid in Ather $\alpha.\alpha$ -Dimethyl- $\delta.\delta$ -dipropyl- δ -valerolacton(?) (Leroide, A. ch. [9] 16, 403).

- 9. 2-Methyl-butan-dicarbonsäure-(1.3), $\alpha.\beta$ -Dimethyl-glutarsäure $C_2H_{14}O_4 = HO_4C \cdot CH_1 \cdot CH(CH_3) \cdot CO_2H$.
- $\alpha'\text{-Brom-}\alpha.\beta\text{-dimethyl-glutars}\\ \text{aure-diathylester}\quad C_{11}H_{10}O_4Br=C_2H_5\cdot O_2C\cdot CHBr\cdot CH(CH_2)\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5 \ \, (H\ 679).$

H 679, Z. 24 v. o. statt "PCl₅" lies: "PBr₅".

10. 2 - Methyl - butan - dicarbonsäure - (1.1), sek. - Butyl - malonsäure $C_7H_{18}O_4=CH_3\cdot CH_3\cdot CH(CH_3)\cdot CH(CO_2H)_3$.

Dimethylester $C_9H_{16}O_4 = CH_3 \cdot CH_2 \cdot CH(CH_3) \cdot CH(CO_2 \cdot CH_3)_2$. B. Bei wiederholter längerer Einw. von siedendem absolutem Methanol auf den Diäthylester in Gegenwart von Natriummethylat (Dox, Yoder, Am. Soc. 44, 1566). — Kp_{748} : 217—218°.

- Disthylester $C_{11}H_{20}O_4 = CH_3 \cdot CH_2 \cdot CH_3 \cdot CH(CO_3 \cdot C_2H_5)_2$ (H 679). Kp_{785} : 234° bis 236° (Dox, Yoder, Am. Soc. 44, 1565); Kp_{762} : 239—240° (korr.) (Volwiler, Am. Soc. 47, 2239).
- Diamid, C-sek.-Butyl-malonamid $C_7H_{14}O_9N_8 = CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH(CO \cdot NH_2)_3$. B. In mäßiger Ausbeute bei mehrtägiger Einw. von konz. Ammoniak auf den Dimethylester bei Zimmertemperatur (Dox, Yoder, Am. Soc. 44, 1566). Krystalle (aus verd. Alkohol). F: 242°. Fast unlöslich in kaltem Wasser, leicht löslich in Alkohol.
- 11. Pentan dicarbonedure (2.3), α Methyl α' δ thyl bernsteinsdure $C_7H_{12}O_4=HO_2C\cdot CH(C_2H_3)\cdot CH(CH_4)\cdot CO_2H$. Hochschmelzende Form (H 679). B. Neben anderen Produkten bei 4-tägigem Erhitzen einer wäßr. Lösung von α -oxy-buttersaurem Natrium mit Wasserstoff in Gegenwart von Nickeloxyd und Aluminiumoxyd auf 280—290° unter 70 Atm. Druck (Іратуем, Rasuwajew, B. 61, 635; Ж. 60, 910). F: 182—183° (KÜSTER, H. 145, 65), 175—176° (I., R.).
- 12. 3 Methyl butan dicarbonsäure (1.2), Isopropylbernsteinsäure $C_7H_{18}O_4=(CH_4)_8CH\cdot CH_(CO_8H)\cdot CH_8\cdot CO_8H$.
- a) Rechtsdrehende Form, d-Isopropylbernsteinsäure. B. Aus dl-Isopropylbernsteinsäure durch Spaltung mit Hilfe von Strychnin; das Salz der d-Säure scheidet sich aus Wasser und Alkohol zuerst aus (Henry, Paget, Soc. 1928, 79; v. Braun, Reinhardt, B. 62, 2585). F: 94° (H., P.), 87—88° (v. B., R.). Löslichkeit in Wasser bei 20°: 47,89 g in 100 g Lösung (v. B., R.). $[\alpha]_0^{\text{in}}$: +23,0° (Wasser; c = 5,6) (H., P.), +24,0° (Wasser; p = 10) (v. B., R.). Strychninsalz. F: 130—132° (v. B., R.).
- b) Linksdrehende Form, l-Isopropylbernsteinsdure $C_7H_{19}O_4 = (CH_3)_8CH \cdot CH(CO_2H) \cdot CH_2 \cdot CO_3H$. Die H 680 beschriebene aktive Isopropylbernsteinsäure war, wie der Schmelzpunkt zeigt, dl-Isopropylbernsteinsäure (Beilstein-Red.). B. Aus dl-Isopropylbernsteinsäure durch Spaltung mit Strychnin; die in den Mutterlangen verbleibende linksdrehende Säure wird über das Brucinsalz gereinigt (Heney, Pager, Soc. 1928, 79). Entsteht neben anderen Verbindungen bei der Oxydation von verschiedenen Handelspräparaten von linksdrehendem z-Phellandren mit verd. Chromschwefelsäure (H., P., Soc. 1928, 75, 78). Bei der Oxydation von 2-Isopropyl-cyclopropan-carbonsäure-(1)-essignäure-(3)(?),

α-Isopropyl-γ-acetyl-γ-butyrolacton oder α-Isopropyl-γ-butyrolacton-γ-carbonsäure (Ausgangsmaterial: linksdrehendes α-Phellandren) mit Permanganat (H., P.). — Platten (aus Wasser). F: 95° (H., P.). [α]₀¹⁰: —22,6° (Wasser; c = 8,8); [α]₀¹⁰: —23,5° (Wasser; c = 12,9) (H., P.; vgl. v. Braun, Reinhardt, B. 62, 2585). Sehr leicht löslich in Wasser (H., P.).

Diäthylester C₁₁H₂₀O₄ = (CH₃)₂CH·CH(CO₂·C₂H₅)·CH₂·CO₃·C₂H₅. B. Durch Veresterung von linksdrehender Isopropylbernsteinsäure (v. Braun, Reinhardt, B. 62, 2587).

— Flüssig. Kp: 119—120°. D²⁰: 0,9896. [a]²⁰₀: —15,05° (unverdünnt).

- o) Inaktive Form, di-Isopropylbernsteinsäure C₇H₁₂O₄ = (CH₂)₂CH·CH(CO₂H)·CH₂·CO₂H (H 680). B. Bei längerem Kochen von α-Isopropyl-α-carboxy-bernsteinsäuretriäthylester mit überschüssiger konz. Salzsäure (Goldberg, Linstead, Soc. 1928, 2353). Aus dl-Isopropylbernsteinsäureanhydrid durch Einw. von konz. Salzsäure (v. Braun, Reinhardt, B. 62, 2585). Durch Oxydation von dl-β-Isopropyl-γ-butyrolacton-γ-carbonsäure mit Blei(IV)-oxyd in Schwefelsäure (Gibson, Simonsen, Soc. 1929, 1080). Krystalle (aus Wasser oder Benzol). F: 115—116° (G., S.), 116° (v. B., R.), 117° (Henry, Paget, Soc. 1928, 78). Kp₁₅: 130° (v. B., R.). Löslichkeit in Wasser bei 20°: 6,27 g in 100 g Lösung (v. B., R.). Geht bei der Destillation unter 15 mm Druck größtenteils in das Anhydrid über (v. B., R.).
- 13. Pentan-dicarbonsaure-(2.4), $\alpha.\alpha'$ -Dimethyl-glutarsaure $C_7H_{12}O_4 = HO_2C \cdot CH(CH_2) \cdot CH_2 \cdot CH_1 \cdot CO_2H$.
- a) Inaktive hochschmelzende Form, Racem-Form C₇H₁₂O₄ = HO₂C·CH(CH₂)·CH₂·CH(CH₃)·CO₄H (H 681; E I 284). B. Durch Reduktion von "trans"-a.a'-Bis-jodmethylglutarsäure mit Natriumamalgam und Soda-Lösung im Kohlendioxyd-Strom (Asahina, Terada, J. pharm. Soc. Japan 1923, 66; C. 1927 I, 1819). Zur Bildung durch Kochen von Pentan-tricarbonsäure-(2.2.4)-triäthylester mit verd. Säuren vgl. Ingold, Soc. 127, 475. F: 140° (A., T.).

Diäthylester $C_{11}H_{20}O_4=C_2H_5\cdot O_5C\cdot CH(CH_3)\cdot CH_2\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. *B.* Durch Veresterung der Säure mit alkoh. Schwefelsäure (v. Auwers, Ottens, *B.* 57, 445). — Angenehm riechendes Öl. Kp: 231°. $D_4^{is,0}$: 0,9807. $n_{\alpha}^{is,0}$: 1,4219; $n_{H_0}^{is,0}$: 1,4240; $n_{\beta}^{is,0}$: 1,4291; $n_{\gamma}^{is,0}$: 1,4335.

"trans" - α.α' - Bis - jodmethyl - glutarsäure C₇H₁₀O₄I₂ = HO₂C·CH(CH₂I)·CH₂·CH(CH₂I)·CH₂·CH(CH₂I)·CO₂H. B. Neben "cis"-α.α'-Bis-jodmethyl-glutarsäure bei längerem Erhitzen des Lactons der 1.2-Bis-oxymethyl-cyclopropan-dicarbonsäure-(1.2) (Syst. Nr. 2624) mit Jodwasserstoffsäure (D: 1,9) und etwas rotem Phosphor auf 90° (Asahina, Terada, J. pharm. Soc. Japan 1923, 65; C. 1927 I, 1819). — F: 144°. In Benzol eichter löslich als "cis"-α.α'-Bis-jodmethyl-glutarsäure. — Gibt bei der Reduktion mit Natriumamalgam und Soda-Lösung im Kohlendioxyd-Strom racemische α.α'-Dimethyl-glutarsäure.

b) Inaktive niedrigschmelzende Form. Meso - Form $C_7H_{19}O_4 = HO_8C \cdot CH(CH_2) \cdot CO_2H$ (H 682; E I 284). B. Durch Reduktion von "cis"- $\alpha.\alpha'$ -Bisjodmethyl-glutarsäure mit Natriumamalgam und Soda-Lösung im Kohlendioxyd-Strom (ASAHINA, TERADA, J. pharm. Soc. Japan 1923, 65; C. 1927 I, 1819). — F: 127—128° (A., T.). — Liefert beim Kochen mit überschüssigem α -Naphthylamin $\alpha.\alpha'$ -Dimethyl-glutarsäure-a-naphthylimid (Syst. Nr. 3201) und geringere Mengen $\alpha.\alpha'$ -Dimethyl-glutarsäure-bis- α -naphthylamid; reagiert analog mit β -Naphthylamin (v. Auwers, A. 443, 312).

Diäthylester $C_{11}H_{30}O_4 = C_2H_5 \cdot O_2C \cdot CH(CH_3) \cdot CH_2 \cdot CH(CH_3) \cdot CO_3 \cdot C_2H_5$. *B.* Durch Veresterung der Säure mit alkoh. Schwefelsäure (v. Auwers, Ottens, *B.* 57, 445). — Angenehm riechendes Öl. Kp: 231°. D_4^{ir} : 0,9824. n_{α}^{ir} : 1,4220; n_{He}^{ir} : 1,4242; n_{β}^{ir} : 1,4292; n_{γ}^{ir} : 1,4334.

- "cis"-α.α'-Bis-jodmethyl-glutarsäure C₇H₁₀O₄I₂ = HO₂C·CH(CH₂I)·CH₂·CH(CH₂I)·CO₂H. B. s. oben bei "trans"-α.α'-Bis-jodmethyl-glutarsäure. F: 169° (Asahina, Terada, J. pharm. Soc. Japan 1923, 65; C. 1927 I, 1819). Gibt bei der Reduktion mit Natriumamalgam und Soda-Lösung im Kohlendioxyd-Strom Meso-α.α'-dimethyl-glutarsäure.
- o) Derivat einer a.a'-Dimethyl-glutarsäure unbekannter konfigurativer Zugehörigkeit,
- α.β Dibrom α.α' dimethyl glutarsäure $C_7H_{10}O_4Br_2 = HO_2C \cdot CH(CH_3) \cdot CHBr \cdot CBr(CH_3) \cdot CO_2H$. B. Bei der Einw. von Bromdampf auf α.γ-Dimethyl-glutaconsäure (Ingold, Oliver, Thorre, Soc. 125, 2135). Krystalle (aus Benzol). F: 134°. Einw. von Alkalilauge: I., O., Th.
- 14. 3-Methyl-butan-dicarbonsäure-(1.1), Isobutylmalonsäure $C_7H_{12}O_4=(CH_2)_2CH\cdot CH_2\cdot CH(CO_2H)_2$.
- **Dilthylester** $C_{11}H_{20}O_4 = (CH_2)_2CH \cdot CH_3 \cdot CH(CO_3 \cdot C_2H_5)_2$ (H 683; E I 284). Kp₇₅₆: 217⁸ bis 227⁹ (korr.) (Volwiler, Am. Soc. 47, 2239).

Mononitril, Isobutyleyanessigsäure $C_7H_{11}O_2N = (CH_2)_2CH \cdot CH_2 \cdot CH(CN) \cdot CO_2H$ (E I 284). B. Durch Verseifung des Isobutylesters (s. u.) mit 10% iger Natronlauge (HESSLER, HENDERSON, Am. Soc. 43, 673). — $Ca(C_7H_{10}O_2N)_2 + 2H_2O$. Sehr leicht löslich in Wasser. — $Zn(C_7H_{10}O_2N)_2 + H_2O$. Zerfließliche Krystalle. Sehr leicht löslich in Wasser. — $Pb(C_7H_{10}O_2N)_2 + 3H_2O$. Schwer löslich in kaltem, leicht in heißem Wasser.

Isobutyleyanessigsäure-isobutylester $C_{11}H_{19}O_2N = (CH_3)_2CH \cdot CH_4 \cdot CH(CN) \cdot CO_3 \cdot CH_4 \cdot CH(CH_3)_2$. B. Neben viel Diisobutyleyanessigsäure-isobutylester bei der Einw. von Isobutyljodid auf Cyanessigsäureäthylester in Natriumisobutylat-Lösung (Hessler, Henderson, Am. Soc. 48, 672). — Wird durch 10% ige Natronlauge verseift.

Isobutylchlormalonsäure-diamid $C_7H_{13}O_2N_3Cl = (CH_3)_2CH \cdot CH_2 \cdot CCl(CO \cdot NH_2)_3$. B. Durch Einleiten von Chlor in eine Lösung von Isobutylmalonsäure-diamid (E I 2, 284) in Eisessig (Dox, Houston, Am. Soc. 46, 1279). — Schuppen. F: 132°. Schmeckt stark bitter.

Isobutylbrommalonsäure-diäthylester $C_{11}H_{19}O_4$ Br = $(CH_2)_9CH \cdot CH_2 \cdot CBr(CO_2 \cdot C_2H_3)_2$. Wird in siedender alkoholischer Lösung durch Hydrazinhydrat nur langsam (Hirst, Macretia, Soc. 121, 911), durch Titan(II)-chlorid nur teilweise reduziert (Black, H., M., Soc. 121, 2532).

15. 2.2-Dimethyl-propan-dicarbonsdure-(1.3), β.β-Dimethyl-glutarsdure C₇H₁₂O₄ = (CH₃)₂C(CH₂·CO₂H)₂ (H 684; E I 284). B. Bei der Oxydation von 1.1-Dimethyl-cyclopentandion-(3.4) mit Wasserstoffperoxyd in Soda-Lösung (Kon, Soc. 121, 525) und bei der Oxydation von β.β-Dimethyl-δ-valerolacton mittels Chromsäure (SIRCAR, Soc. 1928, 903). — Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 25° (aus der Leitfähigkeit ermittelt): 1,98×10⁻⁴ (SPIERS, THORPE, Soc. 127, 544), 2,03×10⁻⁴ (durch elektrometrische Titration bestimmt) (GANE, INGOLD, Soc. 1928, 2268); der 2. Stufe k₂ bei 25° (durch elektrometrische Titration bestimmt): 5,51×10⁻⁷ (G., I.). — Bei der trocknen Destillation des Calciumsalzes im Stickstoffstrom treten Aceton, Mesityloxyd, Isophoron und Isobutylen auf (Kon, Soc. 119, 819); Aceton, Mesityloxyd und Isophoron erhielten Windaus, Ehrenstein (Nachr. Ges. Wiss. Göttingen 1922, 2; C. 1923 I, 831) auch bei der trocknen Destillation des Bariumsalzes. Beim Erhitzen des Silbersalzes mit Jod in Gegenwart von Sand entsteht β.β-Dimethyl-γ-butyrolacton (W., Klänhardt, B. 54, 585; Sircar, Soc. 1928, 901).

Monošthylester $C_9H_{16}O_4=HO_9C\cdot CH_9\cdot C(CH_9)_2\cdot CH_9\cdot CO_2\cdot C_3H_5$. B. Durch Erhitzen von $[\beta.\beta$ -Dimethyl-glutarsäure]-anhydrid mit absol. Alkohol auf dem Wasserbad (QUDRAT-I-KHUDA, Soc. 1929, 208). — Kp_{16} : 164°. $D_4^{ia.1}$: 1,0557. $n_5^{ia.1}$: 1,4403.

Diäthylester $C_{11}H_{20}O_4=(CH_2)_2C(CH_2\cdot CO_2\cdot C_2H_5)_2$ (H 684). Liefert bei der Einw. von Kalium in kaltem Xylol $\beta.\beta$ -Dimethyl-glutarsäure, ihren Monoäthylester und geringe Mengen 1.1-Dimethyl-cyclopentandion-(3.4) (Kon, Soc. 121, 524).

Äthylester-chlorid $C_9H_{15}O_9Cl=C_9H_5\cdot O_9C\cdot CH_9\cdot C(CH_9)_9\cdot CH_9\cdot COCl.$ B. Durch Erhitzen von $\beta.\beta$ -Dimethyl-glutarsäure-monoäthylester mit Thionylchlorid auf dem Wasserbad (Qudrat-I-Khuda, Soc. 1929, 208). — Bewegliche Flüssigkeit. Kp₁₆: 117°. — Liefert mit Methylzinkjodid in kaltem Benzol γ -Acetyl- $\beta.\beta$ -dimethyl-buttersäure-äthylester.

- α Brom β dimethyl glutarsäure dimethylester $C_9H_{15}O_4Br=CH_3\cdot O_2C\cdot CHBr\cdot C(CH_3)_2\cdot CH_2\cdot CO_3\cdot CH_3$ (H 685).
 - H 685, Z. 10-11 v. o. nach "Phosphorpentabromid" schalte ein: "und Brom".
- - H 685, Z. 14 v. o. statt: "Phosphorpentachlorid" lies: "Phosphorpentabromid und Brom".
- $\begin{array}{ll} \alpha\text{-Brom -}\beta.\beta\text{-dimethyl-glutars}\\ \text{$\mathbb{C}(CH_3)_3\cdot CH_3\cdot CO_3\cdot C_2H_5$ (H 685)}. \end{array}$
 - H 685, Z. 19 v. o. nach "Phosphorpentabromid" schalte ein: "und Brom".
- α.α'-Dibrom- $\beta.\beta$ -dimethyl-glutarsäure-monoäthylester $C_2H_{34}O_4Br_2=C_2H_5\cdot O_2C\cdot CHBr\cdot C(CH_2)_2\cdot CHBr\cdot CO_2H$ (H 685). Diese Konstitution kommt nach Kon, Stevenson, Thorpe (Soc. 121, 657) wahrscheinlich der von Perkin, Thorpe (Soc. 79, 755) als α.α-Dibrom- $\beta.\beta$ -dimethyl-glutarsäure-monoäthylester (H 2, 685) beschriebenen Verbindung zu.
- α.α'-Dibrom - β . β -dimethyl-glutarsäure diäthylester $C_{11}H_{18}O_4Br_8 = C_2H_5\cdot O_3C\cdot CHBr\cdot C(CH_8)_8\cdot CHBr\cdot CO_3\cdot C_2H_5$ (H 685; E I 285). B. Zur Bildung nach Perkin, Thorpe (Soc. 79, 754) vgl. Toivonen, Comment. phys.-math. Helsingfore 26, 22; C. 1923 I, 1356.
- 16. 2-Methyl-butan-dicarbonedure-(1.2), a-Methyl-u-dthyl-bernsteinsdure $C_7H_{12}O_4 = CH_2 \cdot CH_2 \cdot C(CH_2) \cdot CO_2H

Schwefelsäure (Singh, Thorpe, Soc. 123, 119). Durch Oxydation von β -Methyl- β -äthylbutyrolacton mit Kaliumdichromat in 10% iger Schwefelsäure (Sircar, Soc. 1928, 901). — F: 103° (Singh, Th.).

17. Pentan - dicarbonsäure - (3.3), Diäthylmalonsäure C₇H₁₉O₄ = (C₂H₅)₂C(CO₂H)₃ (H 686; E I 285). B. Aus Veronal beim Kochen mit 33%iger Kalilauge (RINKES, R. 46, 271). — F: 127° (Henderson, Pr. roy. Soc. Edinburgh 48, 24; C. 1928 I, 2903; Vogel, Soc. 1929, 1478), 125° (R.). Röntgenographische Untersuchung: H. — Elektrische Leitfähigkeit der wäßr. Lösungen der Säure und des Dinatriumsalzes bei 25°: V. Beeinflussung der elektrischen Leitfähigkeit durch Borsäure: Böesenen, R. 39, 179. Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 25° (aus der Leitfähigkeit bestimmt): 6,39×10⁻³ (V.), 6,23×10⁻³ (durch elektrometrische Titration bestimmt) (Gane, Ingold, Soc. 1929, 1698); der 2. Stufe k₂: 0,590×10⁻⁷ (ermittelt durch elektrometrische Titration) (G., I.). — Geschwindigkeit der Kohlendioxyd-Abspaltung in wäßr. Lösung bei 95—110°: Bernoulli, Jakubowicz, Helv. 4, 1024; Ja., Z. anorg. Ch. 121, 121. Liefert mit siedender alkoholischer Salzsäure den Mono- und Diäthylester, sowie Spuren von Diäthyl-essigsäureäthylester (Dumesnil, Bl. [4] 31, 420).

Monoäthylester $C_9H_{18}O_4 = (C_9H_8)_9C(CO_9H)\cdot CO_9\cdot C_9H_8$. B. Durch teilweise Verseifung von Diäthylmalonsäurediäthylester mit wäßrig-alkoholischer Natronlauge (DUMESNIL, C. r. 172, 1044; Bl. [4] 31, 320, 322). — Fast geruchlose Krystalle. F: 19°. Kp.: 115—120°. Unlöslich in Wasser, leicht löslich in organischen Lösungsmitteln. — Zersetzt sich beim Erhitzen unter gewöhnlichem Druck von 140° an langsam, von 175° an rasch unter Bildung von Diäthylessigsäure-äthylester. Geschwindigkeit der Verseifung mit wäßrig-alkoholischer Natronlauge: D., Bl. [4] 31, 323. Liefert mit siedender alkoholischer Salzsäure ein Gemisch von Diäthylmalonsäure-diäthylester und Diäthylessigsäure-äthylester.

Diäthylester $C_{11}H_{20}O_4=(C_2H_5)_2C(CO_2\cdot C_2H_5)_2$ (H 686; E I 285). Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 15. Ultraviolettes Absorptionsspektrum der Lösung in Alkohol: Graham, Macbeth, Soc. 121, 1110. — Wird von Chromschwefelsäure nur unvollständig oxydiert (Guyot, Simon, C. r. 170, 516). Geschwindigkeit der Verseifung mit wäßrigalkoholischer Natronlauge bei 15° und 85°: Dumesnil, C. r. 172, 1045; Bl. [4] 31, 320, 322; bei 27°: Gane, Ingold, Soc. 1926, 16.

[Diäthylmalonsäure-monoäthylester]-anhydrid, [Diäthyl-carbäthoxy-essigsäure]-anhydrid $C_{18}H_{30}O_7=[(C_2H_5)_2C(CO_3\cdot C_2H_5)\cdot CO]_3O$. B. Neben Diäthylmalonsäureäthylesterchlorid (s. u.) bei der Einw. von Thionylchlorid auf Diäthylmalonsäure-monoäthylester (Dumesnil, Bl. [4] 31, 688). — Kp₃₄: 210°. Löslich in den gewöhnlichen Lösungsmitteln. — Reagiert nicht mit Alkoholen.

Diäthylmalonsäure-äthylester-chlorid $C_9H_{15}O_9Cl = (C_2H_5)_9C(CO_3 \cdot C_2H_5) \cdot COCl.$ B. Neben dem Anhydrid (s. o.) bei der Einw. von Thionylchlorid auf Diäthylmalonsäure-monoäthylester (Dumesnil, Bl. [4] 31, 688). — Bewegliche Flüssigkeit von unangenehmem Geruch. Kp₈₀: 102°. Löslich in den gewöhnlichen Lösungsmitteln.

Diäthylmalonsäure - dichlorid, Diäthylmalonylchlorid $C_7H_{10}O_8Cl_2=(C_2H_8)_8$ C(COCl)₂ (H 687; E I 285). B Zur Bildung aus Diäthylmalonsäure und Phosphorpentachlorid vgl. Fleischer, Siefert, A. 422, 295; Rinkes, R. 46, 271. — Liefert beim Erhitzen mit Toluol in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 5-Mehlyl-2.2-diāthyl-indandion-(1.3), neben 4-Methyl-2.2-diāthyl-indandion-(1.3) und Diäthyl-di-p-toluyl-methan (Fl., A. 422, 242); über analoge Reaktionen mit einer Reihe weiterer aromatischer Kohlenwasserstoffe vgl. Fl.; Fl., Siemmer, A. 422, 268; Fl., Siefert, A. 422, 296; B. 53, 1257; Fl., Retze, B. 56, 230. Gibt beim Erhitzen mit β -Acetyl-phenylhydrazin auf 130° 1-Phenyl-2-acetyl-3.5-dioxo-4.4-diāthyl-pyrazolidin (Syst. Nr. 3587) (Kaufmann, Z. ang. Ch. 40, 79).

E I 285, Z. 21—20 v. u. Der Passus "Gibt mit Benzol das Lacton der β-Oxy-α.α-diäthyl-β.β-diphenyl-propionsäure" ist durch folgenden zu ersetzen: "Gibt mit Benzol und Aluminium-chlorid 2.2-Diāthyl-indandion-(1.3) (Freund, Fleischer, A. 378, 308, 310; 414, 30), Diāthyl-dibenzoyl-methan (Fr., Fl.; v. Auwers, Bergmann, A. 472, 306) und eine Verbindung C₁₈H₂₀O₂ vom Schmelzpunkt 89—90° (E I 5, 107) (Fr., Fl.)."

Diäthylmalonsäure - äthylester - amid $C_9H_{17}O_3N = (C_2H_5)_9C(CO_2 \cdot C_2H_5) \cdot CO \cdot NH_2$ (H 688). B. Aus Diäthylmalonsäure-äthylester-chlorid oder [Diäthylmalonsäure-monoäthylester]-anhydrid durch Einw. von Ammoniak (Dumesnil, Bl. [4] 31, 688). — F: 79°. Schwer löslich in kaltem Wasser.

Diäthylmalonsäure-diamid, C.C-Diäthyl-malonamid $C_7H_{14}O_2N_2=(C_2H_5)_3C(CO\cdot NH_2)_3$ (H 688; E I 285). B. Aus Diäthylmalonsäure-dichlorid und Ammoniak (RINKES, R. 46, 271). — Krystalle (aus Wasser). F: 222°. — Liefert bei Behandlung mit alkalischer Natriumhypochlorit-Lösung und nachfolgender Einw. von 25% iger Schwefelsäure in der Kälte Diäthylmalonsäure-amid-chloramid, bei Zimmertemperatur 5.5-Diäthylhydantoin.

Diäthylmalonsäure - amid - chloramid, N - Chlor - C.C - diäthyl - malonamid $C_rH_{12}O_sN_sCl \Rightarrow (C_sH_s)_sC(CO \cdot NH_s) \cdot CO \cdot NHCl.$ B. Aus Diäthylmalonsäure - diamid bei Behandlung mit alkalischer Natriumhypochlorit - Lösung und nachfolgender Einw. von 25 % iger Schwefelsäure in der Kälte (RINKES, R. 46, 271). — Krystalle (aus Benzol). F: 135°.

Diäthylmalonsäure - bis - bromamid, N.N' - Dibrom - C.C - diäthyl - malonsäure-diamid $C_7H_{12}O_2N_9Br_2=(C_2H_5)_2C(CO\cdot NHBr)_2$. B. Bei der Einw. von Natronlauge auf ein Gemisch von Diäthylmalonsäure-diamid und Brom (Ingold, Sako, Thorpe, Soc. 121, 1192). — Krystallinisch. Zersetzt sich bei ca. 160°, ohne zu schmelzen. — Gibt bei der Einw. von Natriummethylat-Lösung erst in der Kälte, dann in der Hitze 5.5-Diäthyl-hydantoin.

Diäthylmalonsäure-mononitril, Diäthyloyanessigsäure $C_7H_{11}O_9N = (C_2H_4)_9C(CN) \cdot CO_9H$ (H 689; E I 285). B. Durch Verseifung des Methylesters mit methylalkoholischer Kalilauge (HESSLER, LAMB, Am. Soc. 48, 205). — Krystalle. F: 64—65°.

Diäthyloyanessigsäure-methylester $C_8H_{13}O_5N=(C_2H_5)_2C(CN)\cdot CO_2\cdot CH_3$. B. Neben Athyloyanessigsäuremethylester bei der Einw. von Athyljodid und Natriummethylat-Lösung auf Cyanessigsäuremethylester oder von Athylbromid und Natriumäthylat-Lösung auf Cyanessigsäuremethylester (HESSLER, LAMB, Am. Soc. 43, 205). — Wohlriechende Flüssigkeit. Kp₁₄₅: 205—206°, Kp₂₄₅: 103—105°. D²¹: 0,977. Leicht löslich in Alkohol und Ather. — Wird durch 10%ige Natronlauge nicht verseift; gibt mit methylalkoholischer Kalilauge Diäthyloyanessigsäure.

Diäthyleyanessigsäure - äthylester $C_9H_{15}O_2N=(C_9H_5)_7C(CN)\cdot CO_3\cdot C_9H_5$ (H 689; E I 286). Gibt beim Erhitzen mit Allylharnstoff und Natriumäthylat-Lösung auf 102—105° unter Druck 1-Allyl-5.5-diäthyl-barbitursäure-imid-(6) und eine als Acetat isolierbare isomere Verbindung, die sich beim Aufbewahren ebenfalls in 1-Allyl-5.5-diäthyl-barbitursäure-imid-(6) umwandelt (DIELS, A. 432, 118, 123, 130). Einw. auf N-[$\beta.\gamma$ -Dibrom-propyl]-harnstoff in Natriumäthylat-Lösung: DIELS, A. 432, 136.

Diäthylmalonsäure-dinitril, Diäthylmalonitril $C_7H_{10}N_2=(C_2H_3)_2C(CN)_2$ (H 689). Gibt beim Erhitzen mit Allylharnstoff und Natriumäthylat-Lösung auf 102—105° unter Druck 1-Allyl-5.5-diäthyl-barbitursäure-diimid-(4.6) (DIBLS, A. 432, 133). Einw. auf N- $[\beta.\gamma$ -Dibrom-propyl]-harnstoff in Natriumäthylat-Lösung: D., A. 432, 136.

Diäthylmalonsäure - bis - [O - methyl - hydroxylamid], N.N'-Dimethoxy-C.C-diäthyl - malonamid $C_9H_{18}O_4N_9=(C_2H_8)_9C(CO\cdot NH\cdot O\cdot CH_9)_2$. B. Aus Diäthylmalonsäuredichlorid und O-Methyl-hydroxylamin bei Gegenwart von wasserfreiem Kaliumcarbonat in Ather bei Zimmertemperatur (Jones, Major, Am. Soc. 49, 1538). — Krystalle (aus Benzol + Ligroin). F: 130°. Sehr leicht löslich in Wasser, löslich in Ather, unlöslich in Ligroin.

Diäthylmalonsäure-bis-[O-äthyl-hydroxylamid], N.N'-Diäthoxy-C.C-diäthylmalonamid $C_{11}H_{22}O_4N_2 = (C_2H_4)_2C(CO\cdot NH\cdot O\cdot C_2H_4)_2$. B. Analog der vorangehenden Verbindung (Jones, Major, Am. Soc. 49, 1538). — Krystalle (aus Benzol + Ligroin). F: 117° bis 118°. — Sehr leicht löslich in Wasser, löslich in Ather, unlöslich in Ligroin. — Physiologische Wirkung: J., M.

- γ -Chlor-diäthylmalonsäure-diäthylester, Äthyl-[β-chlor-äthyl]-malonsäure-diäthylester $C_{11}H_{19}O_4Cl=CH_2Cl\cdot CH_2\cdot C(C_2H_5)(CO_2\cdot C_2H_3)$. B. Bei der Einw. von 2-Chlor-1-jod-āthan auf die Natriumverbindung des Äthylmalonsäurediäthylesters in siedendem Äther (Voorhees, Skinner, Am. Soc. 47, 1125). Kp₅: 131—133°.
- 18. 2 Methyl butan dicarbonsäure (2.3), Trimethylbernsteinsäure C₇H₁₈O₄ = HO₂C·CH(CH₂)·C(CH₃)₂·CO₂H. Inaktive Form (H 690; E·I 286). B. Zur Bildung nach Higson, Thorpe, Soc. 89, 1467 vgl. Bardhan, Soc. 1928, 2611. Durch Oxydation von α.β.β-Trimethyl-lāvulinsäure mit Natriumhypobromit-Lösung in verd. Kalilauge bei 0° (B.). Durch Erhitzen von 1-Oxo-2.2-dimethyl-butan-dicarbonsäure-(1.3) (B.). F: 148° (Zers.) (Toivonen, Ann. Acad. Sci. jenn. [A] 29, Nr. 20, S. 22; C. 1927 II, 1248), 149,5° (Kon, Stevenson, Thorpe, Soc. 121, 664), 152° (bei sehr raschem Erhitzen) (Verkade, R. 40, 213). Verbrennungswärme bei konstantem Volumen: 829,9 kca/Mol (Harman in Landolt-Börnst. E I, 873). Elektrolytische Dissoziationskonstante der 1. Stufe k₁ bei 25° (ermittelt aus der Leitfähigkeit): 3,02×10⁻⁴ (V.). Ag₂C₇H₁₉O₄. Ziemlich schwer löslich in Wasser (T.).

a-Monomethylester $C_0H_{14}O_4$ (H 690). Das Produkt von Bone, Sudbobough, Spraneling (Soc. 85, 552) ist nach Bardhan (Soc. 1928, 2606) ein Gemisch der isomeren Monomethylester $CH_2 \cdot O_2C \cdot C(CH_3)_2 \cdot CH(CH_3) \cdot CO_2H$ und $HO_2C \cdot C(CH_3)_2 \cdot CH(CH_2) \cdot CO_3 \cdot CH_3$.

b-Monomethylester C₂H₁₄O₄ (H 690). Das Produkt von Bone, Sudbobough, Sprane-Ling (Soc. 85, 551) ist nach Bardhan (Soc. 1928, 2606) ein Gemisch der isomeren Monomethylester CH₂·O₂C·C(CH₂)₂·CH(CH₂)·CO₂H und HO₂C·C(CH₂)₂·CH₂·CO₂·CH₂.

Diäthylester $C_{11}H_{20}O_4 = C_2H_5 \cdot O_3C \cdot CH(CH_3) \cdot C(CH_3)_2 \cdot CO_2 \cdot C_2H_5$. B. Durch Verestern der Säure mit alkoh. Schwefelsäure (v. Auwers, Ottens, B. 57, 445). — Angenehm riechendes Öl. Kp: 226°. $D_4^{a,\tau}$: 0,9956. $n_5^{a,\tau}$: 1,4266; $n_{H_2}^{a,\tau}$: 1,4289; $n_5^{a,\tau}$: 1,4340; $n_7^{a,\tau}$: 1,4384.

19. 2.2-Dimethyl-propan-dicarbonsäure-(1.1), tert.-Butyl-malonsäure $C_1H_{13}O_4=(CH_3)_3C\cdot CH(CO_3H)_3$.

tert.-Butyl-brommalonsäure $C_7H_{11}O_4Br = (CH_8)_8C \cdot CBr(CO_9H)_8$. B. Durch Einw. von tert.-Butylbromid auf Natriummalonester in alkoh. Lösung, Verseifen mit 55% iger Kalilauge und Behandeln des Reaktionsprodukts mit Brom in Äther (Abderhalden, Rossner, H. 163, 177). — Krystalle (aus Benzol + Äther). Sehr leicht löslich in Alkohol und Äther, löslich in Wasser, sehr schwer löslich in Benzol. — Schmilzt bei 183° unter Bildung von α -Brom- β - β - β -trimethyl-propionsäure und Kohlendioxyd. [Gottfried]

7. Dicarbonsăuren $C_8H_{14}O_4$.

Hexan-dicarbonsaure-(1.6), Korksaure $C_8H_{14}O_4 = HO_2C \cdot [CH_2]_6 \cdot CO_2H$ (H 691; E I 286). B. Korksäure entsteht neben anderen Produkten bei der Oxydation verschiedener Verbindungen mit acht oder mehr Kohlenstoffatomen, so z. B. aus 1-Methylcycloocten (1) bei der Oxydation mit Permanganat-Lösung sowie bei der Ozonisierung (Ruzicka, Brugger, Helv. 9, 406), aus Cycloheptadecen in Benzol durch Behandlung mit wäßr. Permanganat-Lösung (Ru., Schnz, Seidel, Helv. 10, 702), aus Cyclooctyl-carbinol bei der Oxydation mit Chromsäure (Ru., Br., Helv. 9, 408), aus Cyclooctanon durch Oxydation mit verd. Chromschwefelsäure (Ru., Br., Helv. 9, 348) oder mit Salpetersäure (Rosanow, Brikow, H. 61, 2306), aus Muscon (Syst. Nr. 614) durch Behandlung mit Chromessigsäure (Ru., Helv. 9, 723, 725), aus Zibeton (Syst. Nr. 619) durch aufeinanderfolgende Einw. von Permanganat bzw. Ozon und von Natriumhypobromit-Lösung (Ru., Helv. 9, 243), aus α-Brom-azelainsäure beim Kochen mit verd. Natronlauge oder methylalkoholischer Kalilauge und folgenden Behandeln mit Permanganat-Lösung (CHALLENOR, THORPE, Soc. Namenge und longenden bestanden mit Fermanganat-Losung (Challenok, 12023), 2484, 2485); bei der Einw. von Permanganat in alkal. Lösung auf Ricinolsäure (Stosius, Wibsler, Bio. Z. 111, 5), auf Sativinsäure (Syst. Nr. 248) (Haworth, Soc. 1929, 1461) sowie auf hochschmelzende 6.1-Dioxy-stearinsäure (Lapworth, Mottram, Soc. 127, 1987). Korksäure bildet sich bei der Einw. von Natriumamalgam in Wasser auf Hexen-(1)-dicarbonsäure-(1.6) sowie auf Hexadien-(1.5)-dicarbonsäure-(1.6) (Goss, Ingold, Soc. 1926, 1474).

— Dorst. Zur Darstellung von Korksäure aus Ricinusöl durch Oxydation mit Salpetersäure vgl. Day, Kon, Stevenson, Soc. 117, 641; Carmichael, Soc. 121, 2546; Kiliani, \hat{B} . 54, 463. Man kann die Ausbeute an Korksäure verbessern, indem man das Ricinusöl zunächst verseift und dann die Oxydation mit Salpetersäure ausführt (Ca., Soc. 121, 2547; Derx, R. 41, 338; Verkade, Hartman, Coops, R. 45, 383; vgl. auch Ve., R. 46, 141; Baker, Ingold, Soc. 123, 128). — Zur Trennung von Azelainsäure wird das bei der Oxydation von Ricinusöl oder Ricinolsäure erhaltene Säuregemisch in siedendem Benzol suspendiert und durch Zusatz von absol. Alkohol in Lösung gebracht; beim Abkühlen scheidet sich fast reine Korksäure aus (Day, Kon, Stevenson, Soc. 117, 641; Baker, Ingold, Soc. 123, 129; vgl. auch Verkade, Haetman, Coops, R. 45, 383; Ve., R. 46, 141; Vogel, Soc. 1928, 2033). Auch durch Auswaschen des Säuregemisches mit Ather, worin Azelainsäure sehr viel leichter löslich ist als Korksäure, läßt sich eine Trennung bewerkstelligen (CARMICHAEL, Soc. 121, 2547; VE.). Trennung von Azelainsäure durch fraktionierte Krystallisation aus Wasser: KILIANI, B. 54, 470; durch fraktionierte Vakuumdestillation der Dimethylester: Rosanow, Belikow, 2K. 61, 2306; C. 1930 II, 228. Zur Trennung von Azelainsäure tiber die Calciumsalze (H 2, 692) vgl. KILIANI, B. 54, 471.

Röntgenogramm: Caspari, Soc. 1928, 3237; Trillat, C. r. 180, 1330; Ann. Phys. [10] 6, 69; Henderson, Pr. roy. Soc. Edinburgh 48, 20; C. 1928 I, 2903. — F: 140° (korr.) (Bride, Sudbobough, J. indian Inst. Sci. 8 A, 104), 141° (Verhade, Hartman, Coops, R. 45, 384). D. 1,266 (Bilte, Balle, Z. anorg, Ch. 170, 339). Verbrennungswärme bei konstantem Volumen: 982,4 kcal/Mol (V., H., Coops). Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneue, C. r. 189, 916. Adsorption aus wäßt. Lösung an Kohle: Schilow, Neerassow, Ph. Ch. 130, 67; X. 60, 106. Bewegung auf Wasser-oberflächen: Zahn, R. 45, 790. Elektrolytische Dissoziationskonstante in Wasser bei 25° der eesten Stufe k.: 3,07·10-5; der zweiten Stufe k.: 4,71·10-6 (potentiometrisch bestimmt) (Gane, Ingold, Soc. 1928, 1598); elektrolytische Dissoziationskonstante der ersten Stufe und der zweiten Stufe in Methanol bei 18° (potentiometrisch ermittelt): Erert, B. 58, 182.

Über das Auftreten einer ungesättigten Säure bei der Destillation von Korksäure im Kohlendioxyd-Strom nach Aschan (B. 45, 1606) vgl. Vogel, Soc. 1929, 725, 726. Thermische Zersetzung der Korksäure und ihrer Salze in Gegenwart und Abwesenheit von Katalysatoren: Vogel, Soc. 1929, 729; Rosanow, Ж. 61, 2306; C. 1930 II, 228; Ruzicka, Mitarb., Helv. 9, 515; Börseken, Derx, R. 40, 530; D., R. 41, 338. Korksäure liefert bei

DICARBONSAUREN Cn H2n-2O4

aufeinanderfolgender Behandlung mit Thionylchlorid und Brom in der Wärme und Kochen des Reaktionsprodukts mit Ameisensäure höherschmelzende und niedrigerschmelzende a.a'.Dibrom-korksäure (Goss, Ingold, 50c. 1926, 1473). Veresterung durch Destillation mit Alkohol und Toluol in Gegenwart geringer Mengen Chlorwasserstoff: Sugasawa, J. pharm. Soc. Japan 1927, 150; C. 1928 I, 1643. Geschwindigkeit der Veresterung mit Alkohol in Gegenwart von Chlorwasserstoff: Bhide, Sudborough, J. indian Inst. Sci. 8 A, 127; C. 1926 I, 80. Geschwindigkeit der Veresterung durch Isoamylalkohol in Gegenwart von Chlorwasserstoff oder von Benzol und Chlorwasserstoff: Bh., Watson, Soc. 1927, 2105. — Verhalten im Tierkörper: Flaschenträger, H. 159, 302; Rose, Mitarb., J. Pharmacol. exp. Therap. 25, 63; C. 1926 II, 669; vgl. a. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. I [Berlin-Leipzig 1930], S. 927.

Saures Ammoniumsalz $NH_4C_8H_{18}O_4$. D_4^m : 1,234 (Biltz, Balz, Z. anorg. Ch. 170, 341). Dissoziationsdruck bei 111°: 18 mm (Bi., Ba., Z. anorg. Ch. 170, 343). — Neutrales Ammoniumsalz (NH_4)₂C₈H₁₈O₄. D_4^m : 1,212 (Bi., Ba., Z. anorg. Ch. 170, 340). Dissoziationsdruck bei 111°: 229 mm (Bi., Ba., Z. anorg. Ch. 170, 343). — Natriumsalz. Oberflächenspannung wäßr. Lösungen bei 25°: K. H. Meyer, Bio. Z. 214, 270. — Calciumsalz $CaC_8H_{18}O_4 + H_8O$. Gibt bei 105° das Krystallwasser ab (Kiliani, B. 54, 472).

Korksäuremonomethylester, Monomethylsuberat $C_9H_{16}O_4=HO_2C\cdot[CH_2]_6\cdot CO_3\cdot CH_3$. B. Durch teilweise Verseifung von Korksäuredimethylester (CHUIT, HAUSSER, Helv. 12, 466). — Flüssig. Erstarrt bei ca. 10° krystallinisch. Wandelt sich bei der Destillation unter 1 mm Druck bei 146—150° in Korksäure und Korksäuredimethylester um. D²⁰: 1,047. — Beim Erhitzen des Kaliumsalzes mit Natrium in absol. Alkohol und Kochen des Reaktionsgemisches mit Eisessig und konz. Salzsäure erhält man ω -Oxy-caprylsäure.

Korksäuredimethylester, Dimethylsuberat $C_{10}H_{19}O_4 = CH_3 \cdot O_2C \cdot [CH_3]_6 \cdot CO_3 \cdot CH_3$ (H 693; E I 286). B. Aus Korksäure durch Behandlung mit Diazomethan (RUZICKA, Helv. 9, 245) oder durch Kochen mit 2% iger methylalkoholischer Salzsäure (Verkade, Coops, Hartman, R. 45, 586, 591). — E: —4,3° (V., C., H.). F: —3,1° (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 12; C. 1927 I, 2398). Kp₁₂: 130° (Ru.); Kp₁₀,5: 132,4° (V., C., H.). D[∞]₁: 1,0176 (Rosanow, H. 61, 2307). Viscosität bei 20°: 0,04181 g/om sec (Ce.). Verbrennungswärme bei konstantem Volumen: 1330,8 kcal/Mol (V., C., H.). n[∞]₁: 1,4334 (Ro.). — Geschwindigkeit der Verseifung durch wäßrig-methylalkoholische Natronlauge bei 25°: SKRABAL, SINGER, M. 41, 363. — $C_{10}H_{18}O_4 + SnCl_4$. Prismen und Nadeln. Sintert bei 80° und ist bei 10° geschmolzen (Hieber, A. 439, 121). Schwer löslich in indifferenten Lösungsmitteln außer Chloroform. Kryoskopisches Verhalten in Äthylenbromid: Hieber.

Korksäuremonoäthylester, Monoäthylsuberat $C_{10}H_{18}O_4 = HO_2C \cdot [CH_2]_6 \cdot CO_2 \cdot C_2H_5$ (E I 286). B. Beim Erhitzen von Korksäurediäthylester mit Korksäure auf 280° (Fourneau, Sabetax, Bl. [4] 43, 861). — F: 21—22°; Kp₁₆: 186—188,5°; D³³: 1,037; n⁵°: 1,4412 (Fou., S.). — Bei der Elektrolyse des Natriumsalzes in wäßr. Alkohol entstehen Dodecan-dicarbonsäure-(1.12)-diäthylester (Brown, Walker, A. 261 [1891], 123; Farrweather, Pr. roy. Soc. Edinburgh 46, 75; C. 1926 II, 188) und Hexen-(5)-carbonsäure-(1)-āthylester (F.). Elektrolysiert man das Kaliumsalz zusammen mit 3 Mol Kaliumsalz des Malonsäuremonoäthylesters an Platinelektroden bei 15° und verseift das entstandene Öl durch Einw. von Kalilauge, so erhält man unter anderem Azelainsäure und Dodecan-dicarbonsäure-(1.12) (Carmichael, Soc. 121, 2547).

Korksäurediäthylester, Diäthylsuberat $C_{12}H_{12}O_4 = C_2H_5 \cdot O_3C \cdot [CH_2]_6 \cdot CO_2 \cdot C_2H_5$ (H 693; E I 286). Darst. Zur Darstellung nach Gautter, Hell (B. 13, 1170) vgl. F. Schmidt, B. 55, 1586. — F: 5,9° (korr.) (Ceder, Ann. Univ. fenn. Abo. [A] 2, Nr. 4, S. 13; C. 1927 I. 2398). Viscosität bei 20°: 0,04453 g/cm sec (Ce.). — Liefert beim Erhitzen mit Natriumpulver auf 120—140° Cycloheptanon-(2)-carbonsäure-(1)-äthylester (Dieckmann, B. 55, 2485). Beim Behandeln mit 4 Mol Phenylmagnesiumbromid erhält man 1.8-Dioxy-1.1.8.8-tetraphenyl-octan (Godchot, C. r. 171, 798).

Korksäure - di - [d - ootyl - (2)] - ester , Di - [d - octyl - (2)] - suberat $C_{34}H_{46}O_4=CH_2\cdot [CH_3]_5\cdot CH(CH_3)\cdot O_3C\cdot [CH_3]_6\cdot CH_3(H_3)\cdot [CH_3]_6\cdot CH_3$. B. Bei der Einw. von d-Ootanol-(2) auf Korksäuredichlorid (Hall, Soc. 123, 40). — Flüssigkeit. Kp₃: 202—204°. Di zwischen 20° (0,9084) und 128° (0,8285): H. $n_5^{m_1}$: 1,4419; Brechungsindices zwischen 643,8 m μ (1,4400) und 435,8 m μ (1,4516) bei 25,7°: H. [α] $_5^m$: +1,01° (unverdünnt); [α] $_5^m$: +9,0° (Alkohol; c=5); [α] $_5^m$: —9,6° (Schwefelkohlenstoff; c=5); Rotationsdispersion der reinen Substanz (zwischen 20° und 127°) und der Lösungen in Alkohol und Schwefelkohlenstoff bei Zimmertemperatur: H.

Korksäuredichlorid, Suberylchlorid $C_8H_{18}O_2Cl_8 = ClOC \cdot [CH_9]_8 \cdot COCl$ (H 694; E I 287). Liefert bei der Einw. von Wasserstoff in Gegenwart von Palladium-Kieselgur und geschwefeltem Chinolin in siedendem Xylol Korksäuredialdehyd (ROSENMUND, ZETZECHE, B. 54, 2889).

Syst. Nr. 177]

Korksäuredinitril, Hexamethylendicyanid $C_8H_{12}N_2=NC\cdot[CH_2]_e\cdot CN$ (H 694; E I 287). B. Beim Einleiten von Chlor in ein Gemisch aus Korksäurediamid und Phosphortrichlorid (Schering-Kahlbaum A.G., D. R. P. 485897; C. 1930 I, 738; Frdl. 16, 2513).

Korksäure-dihydrazid $C_8H_{18}O_2N_4 = H_2N\cdot NH\cdot CO\cdot [CH_2]_6\cdot CO\cdot NH\cdot NH_2$ (H 694). B. Zur Bildung aus Korksäurediäthylester und Hydrazinhydrat vgl. F. Schmidt, B. 55, 1586. \rightarrow F: 186—1870 (Ruzicka, Helv. 9, 245).

Korksäurediazid $C_8H_{12}O_2N_6=N_3\cdot CO\cdot [CH_2]_6\cdot CO\cdot N_3$ (H 694). Liefert bei längerem Kochen mit trocknem Ather Hexamethylendiisocyanat (F. Schmidt, B. 55, 1587). Bei vorsichtigem Erwärmen mit absol. Alkohol entsteht Hexamethylen-diurethan (Syst. Nr. 344); in Gegenwart von Wasser bilden sich daneben N.N'-Bis-[ζ -carbäthoxyamino-hexyl]-harnstoff (Syst. Nr. 344) und N.N'-Hexamethylen-harnstoff (Syst. Nr. 3557).

- $\alpha.\alpha'$ -Dibrom-korksäure $C_8H_{12}O_4Br_2 = HO_2C\cdot CHBr\cdot [CH_2]_4\cdot CHBr\cdot CO_2H$. Wurde in zwei Formen isoliert.
- a) Höherschmelzende Form (H 694). B. Neben geringeren Mengen der niedrigerschmelzenden Form bei aufeinanderfolgender Behandlung von Korksäure mit Thionylchlorid und Brom in der Wärme und Kochen des Reaktionsprodukts mit Ameisensäure (Goss, Ingold, Soc. 1926, 1473). Krystalle (aus Wasser). F: 172—173°. Liefert beim Kochen mit Soda-Lösung α.α'-Dioxy-korksäure.
- b) Niedrigerschmelzende Form. B. s. bei der höherschmelzenden Form. Krystalle (aus Chloroform). F: 120—121° (Goss, Ingold, Soc. 1926, 1473). Liefert beim Kochen mit Soda-Lösung α.α'-Dioxy-korksäure.

Subercolsäure $C_8H_{10}O_4$ (H 695). Ist von Goss, Ingold (Soc. 1926, 1472) als Hexadien-(1.5)-dicarbonsäure-(1.6) (S. 676) erkannt worden.

- $\alpha.\alpha'$ -Dibrom-korksäure-diäthylester $C_{12}H_{20}O_4Br_2=C_2H_6\cdot O_2C\cdot CHBr\cdot [CH_2]_4\cdot CHBr\cdot CO_2\cdot C_2H_5$ (H 695). Ist nach v. Braun, Leistner, Münch (B. 59, 1956) ein durch Destillation nicht trennbares Gemisch von Mesoform und Racemform. B. Man behandelt Korksäure aufeinanderfolgend mit Thionylchlorid und Brom und gießt das Reaktionsprodukt in Alkohol (Goss, Ingold, Soc. 1926, 1473). Kp31: 230° (G., I.); Kp14: 213° (v. Br., L., M.). Liefert bei Einw. von 6n-methylalkoholischer Kalilauge die höherschmelzende und die niedrigerschmelzende Form der $\alpha.\alpha'$ -Dimethoxy-korksäure sowie Hexadien-(1.5)-dicarbonsäure-(1.6), neben geringeren Mengen Cyclohexen-(1)-dicarbonsäure-(1.2) und wenig Cyclohexen-(2)-dicarbonsäure-(1.2) (G., I.). Bei längerem Erwärmen mit Diäthylamin auf dem Wasserbad erhält man einen $\alpha.\alpha'$ -Bis-diäthylamino-korksäure-diäthylester, der beim Verseifen mit Salzsäure höherschmelzende und niedrigerschmelzende $\alpha.\alpha'$ -Bis-diäthylamino-korksäure liefert (v. Br., L., M.).
- 2. Hexan-dicarbonsaure-(1.5), a-Methyl-pimelinsaure $C_8H_{14}O_4=HO_5C\cdot [CH_2]_4\cdot CH(CH_2)\cdot CO_2H$ (H 695). B. Aus 7-Methyl-4.5.6.7-tetrahydro-indoxazen oder aus 7-Methyl-4.5.6.7-tetrahydro-anthranil bei längerem Kochen mit 20% iger alkoholischer Natronlauge (v. Auwers, Bahr, Frese, A. 441, 67).
- α-Methyl-pimelinsäure-α-nitril, ε-Cyan-önanthsäure $C_8H_{18}O_2N=HO_2C\cdot[CH_3]_4\cdot CH(CH_2)\cdot CN$. B. Aus 1-Methyl-1-cyan-cyclohexanon-(2) beim Behandeln mit 10% iger Natronlauge (v. Auwers, Bahr, Frese, A. 441, 86). Schwerflüssiges Öl von starkem Geruch. Kp₁₄: 183—184°. $D_4^{\eta_10}$: 1,2050. $n_4^{\eta_10}$: 1,4469; $n_1^{\eta_10}$: 1,4494; $n_3^{\eta_10}$: 1,4549; $n_4^{\eta_10}$: 1,4597.
- 3. Hexan-dicarbons dure-(1.1), n-Amyl-malons dure $\mathrm{C_6H_{14}O_4}=\mathrm{CH_3}\cdot[\mathrm{CH_2}]_4\cdot\mathrm{CH(CO_3H)_3}.$
- n-Amyl-malonsäure-diäthylester $C_{12}H_{22}O_4=CH_2\cdot [CH_2]_4\cdot CH(CO_2\cdot C_2H_5)_2$. B. Aus Malonsäure-diäthylester und n-Amylbromid in Natriumäthylat-Lösung (Dox, Jones, Am. Soc. 50, 2034). Schwach fruchtartig riechendes Öl. Kp_{14} : 134—136°.
- n-Amyl-malonsäure-diamid $C_8H_{18}O_2N_2=CH_3\cdot[CH_3]_4\cdot CH(CO\cdot NH_2)_3$. B. Bei längerem Behandeln von n-Amyl-malonsäure-diathylester mit überschüssigem konzentriertem Ammoniak (Dox, Jones, Am. Soc. 50, 2034). Nadeln (aus verd. Alkohol). F: 206°. Leicht löslich in Alkohol, unlöslich in Ather und Wasser. Liefert bei kürzerer Behandlung mit Chlor in Eisessig n-Amyl-chlormalonsäure-diamid.
- n-Amyl-chlormalonsäure-diamid $C_8H_{15}O_2N_3Cl = CH_3 \cdot [CH_3]_4 \cdot CCl(CO \cdot NH_2)_3$. B. Aus n-Amyl-malonsäure-diamid bei kürzerer Einw. von Chlor in Eisessig (Dox, Jones, Am. Soc. 50, 2034). Krystalle (aus verd. Alkohol). F: 134—135°. Schmeckt sehr süß.
- 4. Hexan-dicarbonsäure-(1.2), Butylbernsteinsäure $C_8H_{14}O_4=CH_8\cdot[CH_9]_3\cdot CH_1(CO_9H)\cdot CH_2\cdot CO_9H$ (H 695). B. Beim Erhitzen von Hexan-tricarbonsäure-(1.2.2) auf 160° (SCHEIBLER, RETTIG, B. 59, 1195). Beim Erhitzen des Natriumsalzes mit Phosphortrisulfid erhält man 3-Butyl-thiophen.

598

2-Propyl-propan-dicarbonsäure-(1.3), β -Propyl-glutarsäure $C_8H_{14}O_4=$ CH₃·CH₄·CH₄·CH(CH₃·CO₄H)₂. B. Aus Butyliden-bis-[cyanessigsäureamid] (S. 707) beim Kochen mit verd. Salzsäure (DAY, THORPE, Soc. 117, 1471). Aus 2.6-Dioxo-4-propyl-3-cyanpiperidin-carbonsäure-(5)-amid sowie aus 2-Oxo-6-imino-4-propyl-3-cyan-piperidin-carbonpropertum-carbon-saure-(5)-amid sowie aus 2-0x0-0-inin0-2-propyi-5-cyan-piperidin-carbon-saure-(5)-amid beim Behandeln mit Schwefelsaure (D., Th.). — Nadeln (aus Salzsaure). F: 52° (D., Th.). Leicht löslich in Wasser und den meisten organischen Lösungsmitteln (D., Th.). Elektrolytische Dissoziationskonstante der ersten Stufe (k_1 : 4,97×10-5) und der zweiten Stufe (k_2 : 4,32×10-7) bei 25° (potentiometrisch bestimmt): Gane, Ingold, Soc. 1928, 2268. — Liefert bei Einw. von Acetylchlorid β -Propyl-glutarsäureanhydrid (Syst. Nr. 2475) (D., Th.). — Ag₂C₈H₁₂O₄. Amorphes Pulver (D., Th.).

Diäthylester $C_{12}H_{22}O_4 = CH_3 \cdot CH_2 \cdot CH_2 \cdot CH(CH_2 \cdot CO_3 \cdot C_2H_5)_2$. B. Aus β -Propylglutarsäure beim Behandeln mit Alkohol und Schwefelsäure (DAY, THORPE, Soc. 117, 1472). — Ol. Kp₁₀: 132°. B. Aus β -Propyl-

6. Hexan-dicarbonsäure-(2.2), Methylbutylmalonsäure $C_8H_{14}O_4=CH_3$. $[CH_2]_3 \cdot C(CH_3)(CO_2H)_2$.

Diäthylester $C_{12}H_{22}O_4 = CH_3 \cdot [CH_2]_3 \cdot C(CH_3)(CO_2 \cdot C_2H_5)_2$ (H 697). B. Bei Einw. von Methyljodid auf die Natriumverbindung des Butylmalonesters in der Wärme (SOMMAIRE, Bl. [4] 33, 190).

7. 2-Methyl-pentan-dicarbonsäure-(1.1), Pentyl-(2)-malonsäure $C_8H_{14}O_4=CH_3\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CH(CO_2H)_2$. B. Durch Verseifung des Diäthylesters (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 496; C. 1925 I, 358). — F: 88—89°. Sehr leicht löslich in Alkohol, Äther und Benzol, ziemlich leicht in Wasser. — Liefert beim Erhitzen auf 120° β -Methyl-n-capronsäure.

Diäthylester $C_{12}H_{22}O_4 = CH_3 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH(CO_3 \cdot C_2H_5)_2$. B. Beim Behandeln von Natriummalonester mit 2-Brom-pentan (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 495; C. 1925 I, 358). — Olige Flüssigkeit. Kp_{787} : 244—246°. D_4^{∞} : 0,9713. n_2^{∞} : 1,4263. Löslich in Alkohol und Äther, unlöslich in Wasser.

8. 4 - Methyl - pentan - dicarbonsäure - (1.3), α - Isopropyl - glutarsäure $C_8H_{14}O_4=(CH_3)_2CH\cdot CH(CO_2H)\cdot CH_2\cdot CO_2H$.

a) Rechtsdrehende Form. B. Aus inaktiver α -Isopropyl-glutarsäure durch Spaltung

mit Brucin (Darstellung des sauren Brucinsalzes) (Read), Reid), J. Soc. chem. Ind. 47, 11 T; C. 1928 I, 2374). — Nadeln (aus Wasser). F: 88—89°. [α]₁¹; +9,35° (Alkohol; c = 1,3). — Saures Brucinsalz. Nadeln (aus Alkohol). F: 110° (Zers.). [α]₁¹; -19,4° (Alkohol; c = 1,3). b) Inaktive Form (H 698; E I 287). B. Aus α-Isopropyl-α-cyan-glutarsäurediäthyl-

- ester beim Behandeln mit 50% iger Schwefelsäure (Hariharan, Menon, Simonsen, Soc. 1928, 434). Krystalle (aus Salzsäure). F: 94—95° (S., Soc. 119, 1654). Liefert bei aufeinanderfolgender Einw. von Phosphorpentachlorid und Brom, Ausschütteln der äther. Lösung des Reaktionsprodukts mit Soda-Lösung, Ansäuern und Kochen mit alkoh. Kalilauge das Lacton der α-Oxy-α-isopropyl-glutarsäure (H., M., S.). Läßt sich mit Hilfe von Brucin in die optisch-aktiven Komponenten spalten (READ, REID, J. Soc. chem. Ind. 47, 11 T; C. 1928 I, 2374). — Saures Brucinsalz. Krystalle (aus Alkohol). $[\alpha]_0^{\text{ib}}$: —38,20 (Alkohol; c = 1,3) (Read, Reid). — Neutrales Brucinsalz. Nadeln (aus Alkohol). $[\alpha]_0^{\text{ib}}$: -37,30 (READ, REID).
- II 698, Z. 5-6 v. o. statt: ,,Durch Erhitzen von Soc. 69, 1495)" lies: ,,Durch Erhitzen von 8-Methyl-pentan-a.a.y-tricarbonsäure (S. 834) (Perkin, Soc. 69, 1495) oder von δ-Methyl-pentan-α.γ.γ-tricarbonsäure (S. 833) (Heinke, Perkin, Soc. 69, 1507)."
- β -Chlor- α -isopropyl-glutarsäure-diäthylester $C_{12}H_{21}O_4Cl=(CH_3)_2CH\cdot CH(CO_3\cdot C_2H_5)\cdot CHCl\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Beim allmählichen Erwärmen von β -Oxy- α -isopropyl-glutarsäure-diäthylester mit Phosphorpentachlorid auf 50° (Hariharan, Menon, Simonsen, Soc. 1928, 436). — Riecht durchdringend. — Gibt beim Erhitzen mit Diäthylanilin auf 180° bis 190° ein Gemisch von eis- und trans- $\alpha(\text{oder }\gamma)$ -Isopropyl-glutaconsäure-diäthylester.

9. 2-Methyl-pentan-dicarbonsäure-(1.4), α.β'-Dimethyl-adipinsäure C₈H₁₄O₄ = HO₂C·CH₂·CH(CH₃)·CH₂·CH(CH₃)·CO₂H (vgl. H 698).

a) Krystallisierende inaktive Form. B. Aus cis-1.3-Dimethyl-cyclohexanon-(5)

beim Behandeln mit überschüssiger, auf 100° erwärmter 40 % iger Salpetersäure (v. Braun, HAENSEL, B. 59, 2011). — Krystallpulver (aus Äther + Petroläther). F: 63—64°. Kp₁₄: 206—210°. Leicht löslich in Äther, löslich in Petroläther.
b) Nicht krystallisierende inaktive Form. B. Aus trans-1.3-Dimethyl-cyclo-hexanon-(5) beim Behandeln mit überschüssiger, auf 100° erwärmter 40 %iger Salpetersäure

(v. Braun, Haensel, B. 59, 2010). — Kp14: 208—212°.

Ein Gemisch der beiden obengenannten Formen wurde von v. Braun, Haensel (B. 59, 2006) bei Einw. von überschüssiger warmer 40 %iger Salpetersäure auf ein Gemisch von cis- und trans-1.3-Dimethyl-cyclohexanon-(5) erhalten; aus ihm wurden folgende Derivate gewonnen: Diäthylester $C_{12}H_{22}O_4$ (Kp₁₄: 131—132°; $D_4^{u_1}$: 0,990), Dichlorid $C_8H_{12}O_2Cl_2$ (Kp₁₄: 127—131°; $D_4^{u_1}$: 1,1730), Diamid $C_8H_{12}O_2N_2$ (aus Alkohol + Ather; F: 153—159°) und Dihydrazid $C_8H_{18}O_2N_4$ (Krystalle aus Alkohol; F: 139—142°).

10. 3-Methyl-pentan-dicarbonsäure-(1.1), β -Methyl-butyl]-malonsäure, αl -Amyl-malonsäure $C_0H_{14}O_4=CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot

Diäthylester $C_{12}H_{23}O_4 = CH_3 \cdot CH_3 \cdot CH_4 \cdot CH_5 \cdot CH_4 \cdot CH(CO_2 \cdot C_2H_5)_2$. B. Bei längerem Kochen von Natrium-malonester mit 1-Brom-2-methyl-butan in Alkohol (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 501; C. 1925 I, 359). — Flüssigkeit. Kp_{761} : 250°. D_4^{50} : 0,9757. n_{10}^{50} : 1,4206. Sehr schwer löslich in Wasser.

11. 4-Methyl-pentan-dicarbonsäure-(1.1), Isoamylmalonsäure $C_8H_{14}O_4=(CH_2)_8CH\cdot CH_2\cdot CH_3\cdot CH(CO_2H)_2$ (H 700; E I 287). F: 95° (Zers.) (Smith, Pr. Leeds phil. lit. Soc. 1, 197; C. 1928 I, 1757). — Beim Erhitzen entsteht Isoamylessigsäure (Paal, Hoffmann, B. 23 [1890], 1498; Smith).

Diäthylester C₁₂H₂₂O₄ = (CH₂)₂CH·CH₂·CH₂·CH(CO₂·C₂H₅)₂ (H 700; E I 288).

B. Bei der Hydrierung von 4-Methyl-pentadien-(1.4)-dicarbonsäure-(1.1)-diäthylester in Gegenwart von Platin in Alkohol (Staudinger, Muntwyler, Kupfer, Helv. 5, 761). — Kp₇₄₇: 245—250° (korr.) (Volwiler, Am. Soc. 47, 2239). — Liefert bei Einw. von Diazoessigsäureäthylester in Gegenwart von Natriumäthylat in der Kälte 4-Oxy-5-isoamyl-pyrazol-carbonsäure-(3)-äthylester (Bertho, Nüssel, A. 457, 291).

Mononitril, Isoamylcyanessigsäure $C_8H_{18}O_2N = (CH_2)_2CH \cdot CH_3 \cdot CH_3 \cdot CH(CN) \cdot CO_2H$ (E I 288). B. Der Isoamylester entsteht neben Diisoamylcyanessigsäure-isoamylester bei der Einw. von Natriumisoamylat-Lösung und Isoamyljodid auf Cyanessigsäureäthylester bei 130° (Hessler, Lamb, Am. Soc. 43, 206).

Isoamylchlormalonsäure-diamid $C_0H_{15}O_2N_3Cl=(CH_2)_2CH\cdot CH_3\cdot CCl(CO\cdot NH_2)_3$. B. Aus Isoamylmalonsäure-diamid (H 2, 700) beim Behandeln mit Sulfurylchlorid (Dox, Houston, Am. Soc. 46, 1279). — Schuppen. F: 157°. Schmeckt stark bitter.

12. Hexan-dicarbonsäure-(3.3), Äthylpropylmalonsäure $C_8H_{14}O_4=CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot C(C_2H_5)(CO_2H)_8$ (H 701; E I 288). Krystalle (aus Chloroform + Petroläther). F: 116° (Vogel, Soc. 1929, 1478), Röntgenogramm: Henderson, Pr. 1929. Soc. Edinburgh 48, 24; C. 1928 I, 2903. Elektrische Leitfähigkeit wäßr. Lösungen der Säure und des Dinatriumsalzes bei 25°: V. Elektrolytische Dissoziationskonstante für die erste Stufe k_1 bei 25°: 7,37×10-8 (ras der Leitfähigkeit) (V.).

Distryleater $C_{19}H_{99}O_4 = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(C_2H_5)(CO_3 \cdot C_2H_5)_2$ (H 701). Kp_{765} : 236' (Vogel, Soc. 1929, 1478).

Äthyl-[y-brom-propyl]-malonsäure-diäthylester $C_{12}H_{11}O_4Br=CH_2Br\cdot CH_2\cdot CH_2\cdot CH_3\cdot C(C_2H_2)(CO_2\cdot C_2H_3)_2$. B. Durch Einw. von überschüssigem Trimethylenbromid auf die Natriumverbindung des Äthylmalonesters in Benzol, anfangs in der Kälte, zuletzt bei Siedetemperatur (Dox, Yoder, Am. Soc. 45, 1758). — Öl. Kp₂₀: 169—174°.

- 13. 2.3-Dimethyl-butan-dicarbonsäure-(1.4), β . β '-Dimethyl-adipinsäure $C_8H_{14}O_4 = HO_2C \cdot CH_2 \cdot CH(CH_3) \cdot CH(CH_3) \cdot CH_3 \cdot CO_3H$.
- a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form beim Erhitzen von β-Jod-buttersäure mit Kupferpulver und Bimsstein im Rohr in Gegenwart von Crotonsäure anfangs auf 110°, dann auf 135—140° (Faltis, Wagner, A. 433, 109) oder (in geringerer Ausbeute) mit Kupferpulver auf 160° (Higginbotham, Lapworth, Soc. 123, 1624; vgl. F., W.). Entsteht, anscheinend ebenfalls neben der niedrigerschmelzenden Form, beim Behandeln von Athylidenmalonsäurediäthylester mit Natriumamalgam in verd. Alkohol unter Zusatz von Essigsäure oder Natriumdicarbonat, Verseifen und Erhitzen des entstandenen Säuregemisches auf 160° (H., L., Soc. 123, 1623). Krystalle (aus Wasser); F: 133° (korr.) (F., W.). Krystalle (aus Tetrachlorkohlenstoff); F: 136—137° (H., L.). Leicht löslich in Ather, schwer in kaltem Wasser, fast unlöslich in Ligroin (F., W.). Über ein Eutektikum mit der niedrigerschmelzenden Form vgl. H., L.; vgl. dagegen F., W. Liefert beim Erhitzen mit Acetanhydrid und folgender Destillation 1.2-Dimethyl-cyclopentanon-(4), dessen Semicarbazon bei 175,5—176° (korr.) schmilzt (F., W.).
- b) Niedrigerschmelzende Form. B. s. bei der höherschmelzenden Form. Krystalle (aus Äther). F: 104—105° (korr.) (Faltis, Wagner, A. 438, 111). Löslich in Wasser. Liefert beim Erhitzen mit Acetanhydrid und folgender Destillation 1.2-Dimethyl-cyclopentanon-(4), dessen Semicarbazon bei 201—202° (korr.) schmilzt.

14. 2-Methyl-pentan-dicarbonsäure-(1.3), β -Methyl- α -äthyl-glutarsäure $C_8H_{14}O_4=CH_3\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_2\cdot CO_2H$.

Dinitril, 2-Methyl-1.3-dicyan-pentan, β -Methyl- α -äthyl-trimethylendicyanid $C_8H_{12}N_2=CH_3\cdot CH_2\cdot CH(CN)\cdot CH(CH_3)\cdot CH_2\cdot CN$. B. Beim Kochen von 1.3-Dibrom-2-methyl-pentan mit Kaliumeyanid in 80% igem Alkohol (DE MONTMOLLIN, MARTENET, Helv. 12, 608). — Öl. Kp₁₂: 189—193°.

15. 2-Isopropyl-propan-dicarbonsäure-(1.3). β-Isopropyl-glutarsäure $C_8H_{14}O_4 = (CH_3)_2CH \cdot CH(CH_2 \cdot CO_2H)_2$ (H 703; E I 288). B. Bei der Oxydation von d-Carvotanaceton mit Permanganat in verd. Natronlauge (Simonsen, Rau, Soc. 121, 880). Beim Kochen von α.α'-Dicyan-β-isopropyl-glutarsäure-diamid mit verd. Salzsäure (Curtis, Day, Kimmins, Soc. 123, 3134). Aus 1-Methyl-3-isopropyl-cyclopentanon-(5) durch stufenweise Oxydation anfangs mit Chromessigsäure oder Kaliumpermanganat und darauf mit Natrium-hypochlorit-Lösung (Tolvonen, Ann. Acad. Sci. fenn. [A] 28, Nr. 8, S. 20; C. 1928 II, 39). Aus 2-Oxo-6-imino-3-cyan-4-isopropyl-piperidin-carbonsäure-(5)-amid bei der Hydrolyse mit Salzsäure (C., D., K.). — Nadeln (aus Wasser oder verd. Salzsäure); F: 102° (C., D., K.). Krystalle (aus Benzol); F: 101—102° (Gibson, S., Soc. 1929, 1079). Plättchen (aus Wasser); F: 103—104° (S., R., Soc. 121, 881). Ziemlich schwer löslich in kaltem Benzol, leicht in Chloroform (G., S.). — Liefert bei aufeinanderfolgender Behandlung mit Phosphorpentachlorid, Brom und Alkohol α-Brom-β-isopropyl-glutarsäure-diäthylester (G., S., Soc. 1929, 1078).

Diäthylester $C_{12}H_{22}O_4=(CH_3)_2CH\cdot CH(CH_2\cdot CO_2\cdot C_2H_5)_2$ (H 703). B. Neben dl- β -Isopropyl-butyrolacton- γ -carbonsäure-äthylester beim Erhitzen von α -Brom- β -isopropyl-glutar-säure-diäthylester mit Diäthylanilin auf 190—200° (Gibson, Simonsen, Soc. 1929, 1079).

- α-Brom-β-isopropyl-glutarsäure-diäthylester $C_{12}H_{21}O_4Br=C_2H_5\cdot O_2C\cdot CH_3\cdot CH[CH(CH_3)_2]\cdot CHBr\cdot CO_2\cdot C_2H_5$. B. Aus β-Isopropyl-glutarsäure durch aufeinanderfolgende Einw. von Phosphorpentachlorid, Brom und Alkohol (Gibson, Simonsen, Soc. 1929, 1078). Kp₃₀: 178°. Liefert beim Erhitzen mit Diäthylanilin auf 190—200° β-Isopropyl-glutarsäure-diäthylester und dl-β-Isopropyl-butyrolacton-γ-carbonsäure-äthylester.
- 16. 2-Åthyl-butan-dicarbonsäure-(1.1), Pentyl-(3)-malonsäure $C_8H_{14}O_4 = (CH_3 \cdot CH_2)_2CH \cdot CH(CO_2H)_2$.

Diäthylester $C_{12}H_{22}O_4 = (CH_3 \cdot CH_2)_2CH \cdot CH(CO_2 \cdot C_2H_5)_3$ (H 703; E I 288). B. Bei der Kondensation von 3-Brom-pentan mit Natriummalonester (J. D. RIEDEL-DE HAËN, D. R. P. 481733; C. 1929 II, 3037; Frdl. 16, 2460). — Kp_{13} : 124—128°.

17. 2-Methyl-2-āthyl-propan-dicarbonsāure-(1.3). β -Methyl- β -āthyl-glutarsāure $C_8H_{14}O_4=CH_3\cdot CH_2\cdot C(CH_3)(CH_2\cdot CO_2H)_3$ (H 703; E I 288). B. Durch Einw. von Bromwasser auf eine Lösung von 1.4-Dimethyl-1-āthyl-cyclohexandion-(3.5) in 10% iger Natronlauge bei 0° (Becker, Thorpe, Soc. 121, 1305). Neben anderen Produkten beim Kochen von 1-Methyl-1-āthyl-cyclopentandion-(3.4)-dicarbonsäure-(2.5)-dimethylester mit 20% iger Schwefelsäure (DICKENS, Kon, Th., Soc. 121, 1504). Aus β -Methyl- β -āthyl- δ -valerolacton bei der Oxydation mit Chromsäure (Sircar, Soc. 1928, 903). — Tafeln (aus Benzol und Petrolāther). F: 82—83° (B., Th.). Elektrolytische Dissoziationskonstante k bei 25°: 2,44 × 10⁻⁴ (aus der Leitfähigkeit) (Spiers, Th., Soc. 127, 544). — Beim Erhitzen des Silbersalzes mit Jod und Sand auf 100—150° erhält man β -Methyl- β -āthyl-butyrolacton (Si., Soc. 1928, 901).

Dimethylester $C_{10}H_{18}O_4=CH_3\cdot CH_2\cdot C(CH_3)(CH_2\cdot CO_2\cdot CH_3)_2$. Kp_{19} : 128° (Dickens, Kon, Thorff, Soc. 121, 1503). — Bei der Kondensation mit Oxalsäure-dimethylester bei Gegenwart von Natriumäthylat in Äther entsteht etwas 1-Methyl-1-äthyl-cyclopentandion-(3.4)-dicarbonsäure-(2.5)-dimethylester.

Monoäthylester $C_{10}H_{18}O_4=CH_3\cdot CH_2\cdot C(CH_3)(CH_2\cdot CO_2H)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Beim Kochen von β -Methyl- β -äthyl-glutarsäure-anhydrid mit Alkohol (QUDRAT-I-KHUDA, Soc. 1929, 1917). — Öl. — Liefert beim Erhitzen mit Thionylchlorid auf 50—60° und Umsetzen des Reaktionsprodukts mit Methylzinkjodid in Benzol in der Kälte δ -Oxo- β -methyl- β -äthyl-n-capronsäure-äthylester. — $AgC_{10}H_{17}O_4$.

α.α'- Dibrom-β-methyl-β-äthyl-glutarsäure $C_8H_{12}O_4Br_5 = CH_3 \cdot CH_2 \cdot C(CH_3)(CHBr \cdot CO_2H)_2$.

a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form beim Erwärmen von β -Methyl- β -äthyl-glutarsäure oder deren Anhydrid mit Phosphorpentachlorid, Erhitzen des entstandenen Säurechlorids mit Brom auf dem Wasserbad und gelinden Erwärmen des Reaktionsprodukts mit Ameisensäure (Singh, Thorpe, Soc. 123, 117). — Krystalle (aus Chloroform + Petroläther). F: 173° (Zers.). — Liefert beim Kochen mit Soda-Lösung α -Oxy- β -methyl- β -äthyl-butyrolacton- γ -carbonsäure.

b) Niedrigerschmelzende Form. B. s. bei der höherschmelzenden Form.—Krystalle (aus Chloroform + Petroläther). F: 146° (SINGH, THORPE, Soc. 123, 117). Löslich in Benzol.

- Liefert beim Kochen mit Soda-Lösung α-Oxy- β -methyl- β -āthyl-butyrolacton- γ -carbon-sāure.
- 18. 2-Åthyl-butan-dicarbonsäure-(1.2), $\alpha.\alpha-\text{Diäthyl-bernsteinsäure}$ $C_8H_{14}O_4=HO_2C\cdot CH_2\cdot C(CH_2\cdot CH_3)_2\cdot CO_2H$. B. Aus $\beta.\beta$ -Diäthyl- α -cyan-acrylsäure-äthylester bei längerem Behandeln mit Kaliumcyanid in verd. Alkohol und Kochen des entstandenen Esters mit Salzsäure (Dutt, Thorpe, Soc. 125, 2528; Sircar, Soc. 1927, 1254). Bei der Oxydation von $\beta.\beta$ -Diäthyl-butyrolacton mit Chromschwefelsäure auf dem Wasserbad (S., Soc. 1928, 901). Krystalle (aus Salzsäure oder aus Benzol + Petroläther). F: 108° (D., Th.; S., Soc. 1927, 1254).
- 19. 2.3 Dimethyl-butan-dicarbonsäure-(1.3). $\alpha.\alpha.\beta$ -Trimethyl-glutar-säure $C_8H_{14}O_4=HO_9C\cdot CH_8\cdot CH(CH_8)\cdot C(CH_8)\cdot CO_2H$ (H 704; E I 288). F: 103—104° (RAY, Am. Soc. 50, 562).
- 20. 4 Methyl pentan dicarbonsäure (2.2), Methylisobutylmalonsäure $C_4H_{14}O_4=(CH_3)_3CH\cdot CH_1\cdot C(CH_2)(CO_2H)_3$.

Diäthylester $C_{12}H_{22}O_4 = (CH_3)_2CH \cdot CH_2 \cdot C(CH_3)(CO_2 \cdot C_3H_5)_3$ (H 705). B. Aus Isobutylmalonsäurediäthylester beim Erwärmen mit Methyljodid und Natriumäthylat auf dem Wasserbad (SOMMAIRE, Bl. [4] 33, 192). -- Kp: 232—236°.

- 21. 2.2-Dimethyl-butan-dicarbonsäure-(1.3). α.β.β-Trimethyl-glutarsäure C₈H₁₄O₄ = HO₂C·CH(CH₃)·C(CH₃)·CH₂·CO₂H (H 705; E I 289). B. Beim Erhitzen von α.β.β-Trimethyl-α-carboxy-glutarsäure auf 200° (RAY, Am. Soc. 51, 931). Zur Bildung aus Balbianos Säure (α'-Oxo-α.β.β-trimethyl-glutarsäure) durch Erhitzen mit Jodwasserstoffsäure und rotem Phosphor im Rohr auf 150—160° vgl. Bardhan, Soc. 1928, 2618. Aus 1.1.2-Trimethyl-cyclohexandion-(3.5) durch Oxydation mit Natriumhypobromit-Lösung (Crossley, Soc. 79 [1901], 147; Pandya, Thorpe, Soc. 123, 2858). Aus α.β.β.Ν-Tetramethyl-α.α'-dicyan-glutarsäureimid beim Behandeln mit Schwefelsäure (Kon, Thorpe, Soc. 121, 1799). Krystalle (aus Benzol + Benzin) oder Prismen (aus verd. Salzsäure). F: 87° bis 88° (K., Th.), 86—87° (B.). Über die bei Bromierung des Dichlorids entstehenden Produkte vgl. P., Th.
- $\alpha.\alpha'$ -Dibrom $\alpha.\beta.\beta$ trimethyl glutarsäure $C_8H_{12}O_4Br_2 = HO_2C \cdot CBr(CH_2) \cdot C(CH_2)_2 \cdot CHBr \cdot CO_2H$.
- a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form beim Behandeln des Dichlorids der $\alpha.\beta.\beta$ -Trimethyl-glutarsäure mit 4,5—5 Mol Brom, Eintragen des Reaktionsgemisches in wasserfreie Ameisensäure und nachfolgendes Eindampfen (Pandya, Thorpe, Soc. 123, 2861). Krystalle (aus Chloroform und Aceton). F: 196° bis 197° (Zers.).
- b) Niedrigerschmelzende Form. B. s. oben bei der höherschmelzenden Form. Blättchen (aus Benzol). F: 158—159° (Zers.) (Pandya, Thorpe, Soc. 123, 2861). Liefert beim Kochen mit Soda-Lösung das Lacton der 3-Oxy-1.2.2-trimethyl-cyclopropan-dicarbonsäure-(1.3) sowie eine Lactonsäure C₈H₁₂O₅ (s. unten).
- Lactonsäure $C_8H_{12}O_5$. B. Entsteht neben anderen Verbindungen bei der Einw. von siedender Soda-Lösung auf niedrigerschmelzende $\alpha.\alpha'$ -Dibrom- $\alpha.\beta.\beta$ -trimethyl-glutarsäure, auf den durch Behandeln von $\alpha.\beta.\beta$ -Trimethyl-glutarsäure-dichlorid mit 4,5—5 Mol Brom und Eintragen des Reaktionsprodukts in Alkohol erhaltenen $\alpha.\alpha'$ -Dibrom- $\alpha.\beta.\beta$ -trimethyl-glutarsäure-diäthylester und auf α' (oder α)-Brom- α (oder α')-oxy- $\alpha.\beta.\beta$ -trimethyl-glutarsäure-lacton vom Schmelzpunkt 155° (Syst. Nr. 2619) (Pandya, Thorpe, Soc. 123, 2863, 2864). Nadeln (aus Benzol + Aceton). F: 217,5—218°. Gibt kein Silbersalz. Verhält sich gegen siedende 0,04 n-Bariumhydroxyd-Lösung wie eine einbasische Säure; der Lactonring wird erst beim Kochen mit 0,1 n-Alkalilaugen aufgespalten.
- 22. 2.3-Dimethyl-butan-dicarbonsäure-(2.3), Tetramethylbernsteinsäure $C_8H_{14}O_4=HO_3C\cdot C(CH_3)_3\cdot CO_2H$ (H 706; E I 290). B. Aus flüssigem oder festem 1.1.2.2.4-Pentamethyl-3-acetyl-cyclopentanol-(4) durch Oxydation mit Chromessigsäure (Vogel, Soc. 1927, 600). Über die Bildung von Tetramethylbernsteinsäure durch Oxydation verschiedener anderer cyclischer Verbindungen vgl. INGOLD, SHOPPEE, Soc. 1928, 405, 407, 1873. Krystalle (aus Essigester + Benzol). Elektrolytische Dissoziationskonstante k bei 25° (ermittelt aus der Leitfähigkeit): 3,13×10-4 (Verkade, R. 40, 216).
- Diäthylester $C_{19}H_{20}O_4 = C_2H_5 \cdot O_3C \cdot C(CH_9)_2 \cdot C(CH_9)_3 \cdot CO_3 \cdot C_2H_5$ (H 707). B. Aus dem Silbersalz der Tetramethylbernsteinsäure beim Behandeln mit Äthyljodid (v. Auwers, Ottens, B. 57, 446). Kp: 219°. $D_4^{m,7}$: 0,9928. $n_{\alpha}^{m,7}$: 1,4325; $n_{He}^{m,7}$: 1,4348; $n_{B}^{m,7}$: 1,4400; $n_{\mu}^{m,7}$: 1,4445. [Baumann]

8. Dicarbonsäuren C₂H₁₆O₄.

1. Heptan-dicarbonsäure-(1.7), Azelainsäure C₉H₁₆O₄ = HO₂C·[CH₂]₇·CO₂H (H 707; E I 290). V. In den Hydrolyseprodukten der mit Alkohol-Ather und Wasser extrahierten Sporen von Aspidium filix mas (Kiesel, H. 149, 252). — B. Azelainsäure findet sich als Produkt der spontanen Oxydation in Fullererde, die zur Reinigung von Baumwollsamenöl benutzt worden ist, und zwar vorwiegend in veresterter Form (Nicolet, Liddle, J. Ind. Eng. Chem. 8, 416; C. 1920 III, 276). Entsteht neben Bernsteinsäure und Dodecan-dicarbonsäure-(1.12) beim Elektrolysieren einer wäßr. Lösung von 1 Mol des Kaliumsalzes des Korksäuremonoäthylesters und 3 Mol des Kaliumsalzes des Malonsäuremonoäthylesters an Platin-Elektroden bei 15° (Carmichael, Soc. 121, 2547). — Darst. Zur Darstellung aus Ricinolsäure bzw. Ricinusöl durch Oxydation mit Salpetersäure vgl. Kiliani, B. 54, 469; Day, Kon, Stevenson, Soc. 117, 642; Carmichael, Soc. 121, 2546; Baker, Ingold, Soc. 123, 128; Verkade, Hartman, Coops, R. 45, 384; V., R. 46, 142, 205. Darstellung aus Ricinolsäure bzw. Ricinusöl durch Oxydation mit alkal. Permanganat-Lösung: Hill, McEwen, Org. Synth. 13 [1933], 4. Trennung von der bei der Oxydation von Ricinolsäure gleichzeitig entstehenden Korksäure s. dort (S. 595).

Azelainsäure existiert in 2 Modifikationen; die α-Form entsteht vorwiegend beim langsamen Eindunsten, die β-Form beim raschen Abkühlen wäßr. Lösungen (Caspari, Soc. 1929, 2709). Beide Formen sind monoklin prismatisch und zeigen denselben Schmelzpunkt (Ca., Soc. 1928, 3237; 1929, 2710). Röntgenographische Untersuchung: Ca., Soc. 1928, 3237; 1929, 2710; Trillat, C. r. 180, 1331: Ann. Physique [10] 6, 70; Normand, Ross, Henderson, Soc. 1926, 2633; Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328. F: 107° (Vogel, Soc. 1928, 2033; No., Ross, Hen.), 107,5° (Franke, Liebermann, M. 43, 590), 107—108° (Verkade, Hartman, Coops, R. 45, 384), 109° (Vercruysse, Bl. Soc. chim. Belg. 32 [1923], 154). Dħ: 1,225 (Biltz, Balz, Z. anorg. Ch. 170, 339). Verbrennungswärme bei konstantem Volumen: 6066,7 cal/g (Verkade, Coops, R. 47, 608). Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916. Leicht löslich in siedendem Benzol (Verkade, R. 46, 204). Adhäsion an polierten Kupferflächen: McBain, Lee, J. phys. Chem. 32, 1181. Adsorption aus wäßr. Lösung durch Tierkohle: Schilow, Nekrassow, Ph. Ch. 180, 67; Ж. 60, 106. Elektrolytische Dissoziationskonstanten in Wasser bei 25° k₁: 2,82·10-5; k₂: 4,64·10-6 (potentiometrisch bestimmt) (Gane, Ingold, Soc. 1928, 1589); k₁: 2,99·10-5; k₂: 4,63·10-6 (potentiometrisch bestimmt); auf Ionenaktivitäten bezogen) (Simms, J. phys. Chem. 32, 1128, 1498). Beeinflussung der Dissoziationskonstanten durch die Anwesenheit von Natriumchlorid oder Magnesiumchlorid: Simms.

Bei längerem Erhitzen auf Temperaturen oberhalb 350° entstehen Caprylsäure und geringe Mengen Cyclooctanon; in Gegenwart von Eisenfeile und Baryt beträgt die Ausbeute an Cyclooctanon 10% (Vogel, Soc. 1929, 730), bei der Destillation mit Thoriumoxyd ist sie geringer (Rosanow, Ж. 61, 2307; C. 1930 II, 228). Das Thoriumsalz liefert bei der Zers. im Vakuum bei ca. 300° Cyclooctanon, Cyclohexanon (Ruzicka, Brugger, Helv. 9, 348), wenig Cyclohexadecandion-(1.9) und sehr geringe Mengen eines Diketons Cas Halo, 348, wenig Cyclohexadecandion-(1.9) und sehr geringe Mengen eines Diketons Cas Halo, (Krystalle aus Methanol; F: 75—76°; das Disemicarbazon schmilzt bei 128—130°) (Ru., Mitarb., Helv. 11, 500). Bei der analogen Zersetzung des Calciumsalzes entstehen entgegen den H 2, 708 aufgeführten Angaben erhebliche Mengen Cyclooctanon; daneben bilden sich Methyl-n-heptyl-keton, Cyclohexanon und ein Keton, dessen Semicarbazon bei 155—157° schmilzt (Ru., Br.). Über die thermische Zersetzung weiterer Salze der Azelainsäure vgl. Ru., Br. Oxydation mit Salpetersäure (D: 1,36): Verkade, R. 46, 204. Bei der Oxydation mit Permanganat in alkalischer Lösung bildet sich Oxalsäure (Skraup, Schwamberger, A. 462, 151). Liefert bei 40-stdg. Erwärmen mit Brom und Phosphor auf dem Wasserbad und Behandeln des Reaktionsproduktes mit absol. Alkohol α.α'-Dibrom-azelainsäure-diāthylester (v. Braun, Münch, B. 59, 1946). Veresterung mit Alkohol durch Destillation der Komponenten mit Toluol in Gegenwart von geringen Mengen Salzsäure: Sugasawa, J. pharm. Soc. Japan 1927, 150; C. 1928 I, 1643.

Saures Ammoniumsalz NH₄C₆H₁₅O₄. D₄^m: 1,203 (BILTZ, Balz, Z. anorg. Ch. 170, 339). Dissoziationsdruck und Dissoziationswärme: B., B. — Neutrales Ammoniumsalz (NH₄)₅C₅H₁₄O₄. D₄^m: 1,163 (BILTZ, Balz, Z. anorg. Ch. 170, 343). Dissoziationsdruck und Dissoziationswärme: B., B. — Calciumsalz CaC₅H₁₄O₄ + H₅O. Diese Zusammensetzung kommt dem aus der verdünnten wäßrigen Lösung des Dikaliumsalzes durch Calciumchlorid bei Zimmertemperatur gefällten Salz zu (Kiliani, B. 54, 471). Gibt bei 100° das Krystallwasser nicht ab. — Über die Darstellung eines Thoriumsalzes und eines Cersalzes vgl. Ruzicka, Brugger, Helv. 9, 347, 354.

Azelainsäuremonomethylester $C_{10}H_{18}O_4 = HO_2C \cdot [CH_3]_7 \cdot CO_3 \cdot CH_3$ (E I 290). B. Azelainsäure und Methanol in Gegenwart von Schwefelsäure, neben Azelainsäuredimethylester (CEUTT, Helv. 9, 265). Durch Ozonisierung von Ölsäure-methylester in Eisessig und Zersetzung

des Ozonids in Gegenwart von Wasserstoffperoxyd (DAVIES, ADAMS, Am. Soc. 50, 1754). Bei der Oxydation von Azelsinaldehydsäure-methylester an der Luft (Noller, A., Am. Soc. 48, 1078). — F: 22—24° (korr.) (N., A.), ca. 25° (Ch.). Kp₂: 158,5—159,5° (N., A.); Kp₁₅: 185° (Ch.). D⁴₄: 1,0348; n⁵₅: 1,4451 (N., A.).

Abelainsäuredimethylester $C_{11}H_{20}O_4=CH_2\cdot O_3C\cdot [CH_2]_7\cdot CO_3\cdot CH_3$ (E I 290). B. Durch wiederholtes Kochen von Azelainsäure mit 2% iger methylalkoholischer Salzsäure (Verkade, Coops, Haetman, R. 45, 586). Aus Azelainsäure und Methanol in Gegenwart von Schwefelsäure, neben Azelainsäuremonomethylester (Chuff, Helv. 9, 265). — F: —3,9° (korr.) (Chuer, Ass. Univ. Jess. Abo. [A] 2, Nr. 4, S. 8, 12; C. 1927 I, 2398), —0,8° (V., Co., Hart.). Kps: 146° (Chuff). Kp10: 146,2—146,3°; Kp13: 148,7° (V., Co., Hart.). D4°: 1,0026 (Rosanow, M. 61, 2307). Viscosität bei 20°: 0,04996 g/cm sec (Cm.). Verbrennungswärme bei konstantem Volumen: 1486,6 kcal/Mol (V., Co., Hart.). n5: 1,4364 (R.). — Liefert bei der Reduktion mit Natrium und absol. Alkohol viel Nonandiol-(1.9) und wenig ω -Oxy-pelargonsäure (Chuff, Hausser, Helv. 12, 468). Geschwindigkeit der Verseifung durch 50% iges Methanol bei 25°: Skrabal, Singer, M. 41, 364. — $C_{11}H_{10}O_4$ + SnCl₄. Nadeln. F: 95° (Hieber, A. 439, 121). Raucht stark und zerfließt an der Luft.

Azelainsäuremonoäthylester C₁₁H₂₀O₄ = HO₂C·[CH₂]₇·CO₂·C₂H₅ (H 709). B. Durch Erwärmen von Azelainsäurediäthylester mit der berechneten Menge alkoh. Kalilauge (Stosius, Wiesi.e., Bio.Z. 108, 78; G. M. Robinson, R. Robinson, Soc. 1926, 2206; Raper, Wayne, Biochem. J. 22, 193). Bei 6-stdg. Erwärmen von 1 Mol Azelainsäure mit 3 Mol Alkohol und ca. ½ Mol konz. Schwefelsäure (Raper, Wayne). Man erhitzt 1 Mol Azelainsäure mit 2,5 Mol Alkohol oder 1 Mol Azelainsäure-diäthylester mit 2,5 Mol Wasser im Rohr auf 150° (Asano, J. phorm. Soc. Japan 1924, Nr. 504, S. 8; C. 1927 I, 1817). Durch 5-stdg. Erhitzen äquimolekularer Mengen von Azelainsäure und Azelainsäurediäthylester auf ca. 280° (Fourneau, Saberay, Bl. [4] 45, 840). — F: 26—27° (A.), 28—29° (F., Sa.), 32° (Ro., Ro.). Kp₂: 169—170°; Kp₄: 178° (A.); Kp₅: 178—179° (F., Sa.); Kp₁: 187—192° (Chuit, Helv. 9, 265); Kp₁: 198° (Ro., Ro.). Dis: 1,020 (Ch.). Unlöslich in Wasser (F., Sa.).

Geht beim Erhitzen auf 280° in den Diäthylester über (Fourneau, Saberay, Bl. [4] 45, 841). Beim 3-stdg. Erhitzen mit Eisenpulver auf 283—290° und nachfolgenden Kochen

Geht beim Erhitzen auf 280° in den Diäthylester über (Fourneau, Sabetay, Bl. [4] 45, 841). Beim 3-stdg. Erhitzen mit Eisenpulver auf 283—290° und nachfolgenden Kochen mit 20% iger Salzsäure entsteht 8-Oxo-pentadecan-dicarbonsäure-(1.15) als Hauptprodukt (Ruzicka, Mitarb., Helv. 11, 504). Die Alkalisalze liefern bei der Elektrolyse in verd. Alkohol oder Wasser Tetradecan-dicarbonsäure-(1.14)-diäthylester und Hepten-(6)-carbonsäure-(1)-äthylester (Carmiohael, Soc. 121, 2548; Fairweather, Pr. roy. Soc. Edinburgh 48, 73; vgl. Stosius, Wiesler, Bio. Z. 108, 78). — Kaliumsalz. Löst sich in 0,5 Tln. kaltem Wasser (St., W.).

Arelainsäurediäthylester $C_{19}H_{24}O_4=C_4H_5\cdot O_2C\cdot [CH_2]_7\cdot CO_2\cdot C_2H_5$ (H 709; E I 290), B. Durch Erhitzen von Azelainsäure mit Alkohol im Chlorwasserstoff-Strom (Franke, Liebermann, M. 43, 590). — F: —16° (kort.) (Fairweather, Phil. Mag. [7] 1, 947; C. 1926 II, 2146), —18,5° (kort.) (Ceder, Ann. Univ. Jenn. Abo. [A] 2, Nr. 4, S. 8, 13; C. 1927 I, 2398). Kp₅: 130—132° (Jones, Smith, Soc. 1928, 68); Kp₅: 154—155° (Chuit, Helv. 9, 265); Kp₁₈: 175° (Fr., L.); Kp₇₆₀: 290° (J., S.). D²/₄: 0,9756 (Gr.). Viscosität bei 20°: 0,05203 g/cm sec (Cr.). — Einw. von 4 Mol Phenylmagnesiumbromid führt zu 1.9-Dioxy-1.1.9.9-tetraphenyl-nonan (Godchot, C. r. 171, 798).

Asolainsäure-di-[d-ootyl-(3)]-ester $C_{35}H_{46}O_4=CH_3\cdot [CH_2]_3\cdot CH(CH_3)\cdot O_3C\cdot [CH_2]_3\cdot CO_3\cdot CH(CH_3)\cdot [CH_2]_3\cdot CH_3\cdot B$. Bei der Einw. von d-Octanol-(2) auf Azolainsäure-dichlorid (Hall, Soc. 123, 38, 40, 43). — Flüssigkeit. Kp₂: 208—210°. D₄ zwischen 20° (0,9053) und 210° (0,7695): H. n₅: 1,4432; Brechungsindices bei 25° zwischen 643,8 m μ (1,4412) und 435,8 m μ (1,4532): H. [α] $_{164}^{186}$: +12,76° (unverdünnt); [α] $_{15}^{18}$: +9,2° (Alkohol; c = 5); [α] $_{15}^{18}$: —7,9° (Schwefelkohlenstoff, c = 5). Rotationsdispersion der reinen Substanz zwischen 19,4° und 129° für 643,8—435,8 m μ und der Lösungen in Alkohol und Schwefelkohlenstoff für 589,3—435,8 m μ bei Zimmertemperatur: H.

Aselainsäure-methylester-ohlorid $C_{10}H_{17}O_3Cl=CH_3\cdot O_3C\cdot [CH_3]_7\cdot COCl.$ B. Beim Kochen von Azelainsäure-monomethylester mit Thionylchlorid (DAVIES, ADAMS, Am. Soc. 50, 1754). — $Kp_{4,5}$: 139—141°. — Liefert mit n-Heptylmagnesiumbromid in Äther θ -Oxopalmitinsäure.

Azelainsäure-äthylester-chlorid $C_{11}H_{19}O_3Cl = C_3H_5 \cdot O_2C \cdot [CH_2]_7 \cdot COCl.$ B. Aus Azelainsäure-monoäthylester durch Einw. von Thionylchlorid ohne Lösungsmittel (G. M. Robinson, R. Robinson, Soc. 1926, 2206) oder in Petroläther (Ruzicka, Stoll, Helv. 10, 693). — Kp₁₅: 155—158° (Ru., St.); Kp₂₆: 182° (Ro., Ro.).

 α -Brom-aselainsäure $C_0H_{15}O_4Br=HO_2C\cdot CHBr\cdot [CH_2]_4\cdot CO_2H$. Über eine Bildung von α -Brom-aselainsäure vgl. CHALLENOR, THORPE, Soc. 123, 2484.

a.a'-Dibrom-aselainsaure $C_0H_{16}O_4Br_2 = HO_2C \cdot CHBr \cdot [CH_2]_4 \cdot CHBr \cdot CO_2H$ (H 709). B. Zur Bildung aus Aselainsaure vgl. Challenon, Thorpe, Soc. 123, 2483. — Krystalle

- (aus Wasser). F: 140° (Ch., Th.). Leicht löslich in heißem, unlöslich in kaltem Wasser (Ch., Th.). Liefert beim Behandeln mit Alkalilauge und Oxydieren des Reaktionsprodukts mit Kaliumpermanganat außer Adipinsäure auch beträchtliche Mengen Pimelinsäure (Verkade, R. 46, 206).
- α.α'- Dibrom azelainsäure iäthylester $C_{13}H_{22}O_4Br_3 = C_3H_5 \cdot O_2C \cdot CHBr \cdot [CH_2]_5 \cdot CHBr \cdot CO_2 \cdot C_2H_5 \cdot (E I 291)$. B. Zur Bildung nach Le Sueur, Soc. 103, 1124 vgl. Challenor. Thorpe, Soc. 123, 2483; v. Braun, Münch, B. 59, 1946. Fast farblose Flüssigkeit. Kp₁₂: 215° (v. Br., M.). Bei Einw. von 6 n-methylalkoholischer Kalilauge erhält man als Hauptprodukt ein Gemisch der meso- und racem. Form der α.α'-Dimethoxy-azelainsäure, geringere Mengen α.α'-Dioxy-azelainsäure, α-Oxo-azelainsäure und andere Produkte (Goss. Ingold, Soc. 1926, 1475). Liefert beim Behandeln mit Dimethylamin in Benzol α.α'-Bisdimethylamino-azelainsäure-diäthylester in geringer Ausbeute neben anderen Produkten, mit 4 Mol Piperidin in Benzol α.α'-Dipiperidino-azelainsäure-diäthylester (v. Br., M.).
- 2. Heptan-dicarbonsäure-(1.1), n-Hexyl-malonsäure $C_9H_{16}O_4=CH_3\cdot [CH_3]_5\cdot CH(CO_2H)_2$. B. Beim Verseifen des Diäthylesters mit wäßrig-alkoholischer Kalilauge (Dox. Am. Soc. 46, 1708). Krystalle von bitterem, adstringierendem Geschmack (aus Benzol). F: 105—106°. Zersetzt sich bei ca. 130° unter Kohlendioxyd-Entwicklung. Löslich in Benzol. Alkohol und Äther, schwer löslich in Wasser, unlöslich in Petroläther.

Diäthylester $C_{13}H_{24}O_4=CH_3\cdot [CH_2]_5\cdot CH(CO_2\cdot C_2H_5)_2$. B. Durch Einw. von n-Hexylbromid auf Natriummalonester in siedendem absolutem Alkohol (Dox, Am. Soc. 46, 1708). — Fruchtartig riechendes Ol. Kp_{749} : $268-270^{\circ}$. D^{25} : 0.9556.

Diamid $C_9H_{18}O_2N_2 = CH_3 \cdot [CH_2]_5 \cdot CH(CO \cdot NH_2)_2$. B. Bei tagelanger Einw. von konzentriertem Ammoniak auf n-Hexyl-malonsäurediäthylester (Dox, Am. Soc. 46, 1708). — Nadeln (aus verd. Alkohol). F: 208°. Löslich in Alkohol, schwer löslich in Wasser, unlöslich in Benzol und Äther.

- n-Hexyl-chlormalonsäure-diamid $C_9H_{17}O_2N_2Cl = CH_3 \cdot [CH_3]_5 \cdot CCl(CO \cdot NH_2)_2$. B. Beim Einleiten von Chlor in eine Lösung von n-Hexyl-malonsäure-diamid in Eisessig (Dox, Houston, Am. Soc. 46, 1279). Nadeln. F: 130°. Schmeckt intensiv süß. Sehr schwer löslich in Wasser.
- 3. Heptan-dicarbonsäure-(1.5), a-Åthyl-pimelinsäure $C_9H_{16}O_4 = HO_2C \cdot [CH_2]_4 \cdot CH(C_2H_5) \cdot CO_2H$ (H 709). B. Beim Erhitzen von Heptan-tricarbonsäure-(1.5.5) auf 140—180° (CARTER, Am. Soc. 50, 1969). Bei der Reduktion von 3-Oxo-hepten-(1)-dicarbonsäure-(1.5) oder 3-Oxo-heptan-dicarbonsäure-(1.5) mit Jodwasserstoffsäure und rotem Phosphor im Rohr bei 190—200° (C., Am. Soc. 50, 2304, 2305). Krystalle. F: 41,5—43,0°; Kp₁₇: 218—223°; löslich in heißem Wasser, Alkohol und heißem Benzol (C., Am. Soc. 50, 1969). $Ag_2C_9H_{14}O_4$ (C., Am. Soc. 50, 1969).
- 4. 3-Methyl-hexan-dicarbonsäure-(1.6). γ -Methyl-korksäure $C_0H_{10}O_4=HO_2C\cdot[CH_2]_2\cdot CH(CH_3)\cdot CH_2\cdot CH_2\cdot CO_2H$. Linksdrehende Form. B. Durch Ozonisierung von linksdrehender Citronellylessigsäure in Eisessig und Behandlung der Reaktionsmischung mit Chromsäure auf dem Wasserbad (Ruzicka, Steider, Helv. 10, 688). Krystallpulver (aus Wasser). F: 81° (R., St.). $[\alpha]_D$: ca. —1,3° (Alkohol; p=25) (R., Schinz, Pfeiffer, Helv. 11, 689 Anm. 1).
- 5. Heptan-dicarbonsäure -(3.3), Åthylbutylmalonsäure $C_9H_{16}O_4=CH_3$ · $[CH_2]_3\cdot C(C_2H_5)(CO_2H)_2$ (H 712; E I 291). Krystalle (aus Ligroin). Röntgenogramm: Henderson, Pr. roy. Soc. Edinburgh 48, 24; C. 1928 I, 2903. F: 115° (Levene, Taylor, J. biol. Chem. 54, 354), 116° (Tiffeneau, Bl. [4] 33, 186). 100 g Wasser von 15° lösen ca. 3 g (Ti.).
- Diäthylester $C_{13}H_{24}O_4 = CH_3 \cdot [CH_2]_s \cdot C(C_2H_5)(CO_2 \cdot C_2H_5)_s$ (H 712). B. Zur Bildung nach Raper (Soc. 91 [1907], 1837) vgl. Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 98; C. 1926 I, 81. Durch Einw. von Athylbromid auf Butylmalonsäurediäthylester in Natrium-sthylat-Lösung (Dox, Yoder, Am. Soc. 44, 1580). Kp₇₀₅: 240—245° (Tiffeneau, Bl. [4] 83, 186); Kp₇₅₅: 243—245° (D., Y.); Kp₁₂: 125—130° (Shonle, Moment, Am. Soc. 45, 248); Kp₇: 128—129° (Levene, Taylor, J. biol. Chem. 54, 353). D₄²⁸: 0,9646 (L., Tay.); D₂₅²⁸: 0,9756 (Sh., M.). n₂₅²⁸: 1,4222 (Sh., M.); n₂₅²⁸: 1,4284 (L., Tay.).
- 6. Heptan-dicarbonsäure-(3.5), $\alpha.\alpha'$ -Diäthyl-glutarsäure $C_9H_{16}O_4 = HO_9C \cdot CH(C_2H_5) \cdot CH_2 \cdot CH(C_2H_5) \cdot CO_9H$ (H 713). Beim Erhitzen des Silbersalzes mit Jod in Gegenwart von Sand entsteht α -Äthyl- γ -caprolacton (Syst. Nr. 2459) (Windaus, Klänhardt, B. 54, 587).
- 7. 3.3-Dimethyl-pentan-dicarbonsdure-(1.5), $\gamma.\gamma$ -Dimethyl-pimelinsdure $C_0H_{16}O_4=(CH_3)_2C(CH_3\cdot CH_3\cdot CO_2H)_2$. B. Durch Erhitzen von $\gamma.\gamma$ -Dimethyl-pentamethylen-

dicyanid mit Salzsaure (D: 1,19) im Rohr auf 120° (Komppa, B. 62, 1372). — Nadeln (aus Benzol + Ligroin). F: 83°.

Diamid $C_9H_{18}O_2N_8=(CH_9)_2C(CH_2\cdot CH_3\cdot CO\cdot NH_2)_2$. B. Aus dem Chlorid der Säure und konz. Ammoniak (Komppa, B. 62, 1372). — Krystalle. F: 176°. Löslich in Wasser, Benzol und Alkohol, unlöslich in Chloroform.

Dinitril, $\gamma.\gamma$ -Dimethyl-pentamethylendicyanid $C_9H_{14}N_9=(CH_9)_9C(CH_9\cdot CH_2\cdot CN)_9$. B. Durch tagelanges Kochen von $\gamma.\gamma$ -Dimethyl-pentamethylendichlorid mit Kaliumcyanid in verd. Alkohol (Komppa, B. 62, 1372). — Schuppen (aus Benzol + Ligroin). F: 123°. Ziemlich schwer löslich in Äther.

- 8. Heptan-dicarbonsäure-(4.4), Dipropylmalonsäure $C_9H_{16}O_4=(CH_3\cdot CH_2\cdot CH_3)_2C(CO_2H)_3$ (H 713; E I 291). Krystalle (aus Chloroform). Röntgenogramm: Henderson, Pr. roy. Soc. Edinburgh 48, 24; C. 1928 I, 2903. F: 161° (Zers.) (Vogel, Soc. 1929, 1478), 155,5° (H.). Elektrolytische Dissoziationskonstante in Wasser bei 25° k_1 : ca. 9·10-8 (konduktometrisch bestimmt) (V.), 8,67·10-8 (potentiometrisch bestimmt) (GANE, INGOLD, Soc. 1929, 1698); k_3 : 3,42·10-8 (potentiometrisch bestimmt) (G., I.). Elektrische Leitfähigkeit wäßr. Lösungen des Dinatriumsalzes bei 25°: V.
- 9. 2-Isopropyl-butan-dicarbonsäure-(1.4), β -Isopropyl-adipinsäure $C_0H_{16}O_4=HO_2C\cdot CH_1\cdot CH_2\cdot CH[CH_2O_2H_1\cdot CO_2H_1\cdot CO_2H_1\cdot CH_2\cdot CH_2\cdot CO_2H_1\cdot CH_2\cdot CO_2H_1\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CO_2H_1\cdot CH_2\cdot
- a) Inaktive β-Isopropyl-adipinsäure (H 714; EI 292). B. Durch Oxydation von 1-Isopropyl-cyclohexanol-(3) (Crossley, Pratt, Soc. 107 [1915], 175) oder von dl-p-Menthanon-(2) (Iver, Simonsen, Soc. 1926, 2051) mit alkalischer Permanganat-Lösung. Durch längeres Schütteln von kleineren Mengen 1-Isopropyl-cyclohexanol-(4) (Gemisch von cis- und trans-Form) mit alkal. Permanganat-Lösung unterhalb 10° (v. Braun, Werner, B. 62, 1054). Nadeln (aus Äther + Petroläther). Schmilzt in der Regel bei 75°; in einem Fall wurde ein bei 80° schmelzendes Präparat erhalten (v. Br., W.); F: 78—80° (J., S.), 83—84° (C., P.). Kp₁₂: 215—218° (v. Br., W.). Läßt sich über das Strychninsalz in die aktiven Komponenten spalten (v. Br., W.). Ag₂C₉H₁₄O₄ (I., S.).

Diäthylester $C_{13}H_{24}O_4 = C_2H_5 \cdot O_3C \cdot CH_2 \cdot CH_2 \cdot CH[CH(CH_3)_2] \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Aus inakt. β -Isopropyl-adipinsäure durch Behandeln mit Alkohol und Chlorwasserstoff (v. Braun, Werner, B. 62, 1055). — Öl. Kp₁₃: 145—150°. D₄°: 0,9776.

b) Rechtsdrehende β -Isopropyl-adipinsäure $C_9H_{16}O_4 = HO_2C \cdot CH_2 \cdot CH_2 \cdot CH_1CH_2(CH_3)_2 \cdot CH_3 \cdot CO_2H$ (E I 292). B. Aus inakt. β -Isopropyl-adipinsäure über das Strychninsalz (v. Braun, Werner, B. 62, 1055). Aus rechtsdrehender 5-Oxo-2-isopropyl-hexan-carbonsäure-(1) durch Einw. von eisgekühlter Bromlauge (v. Br., W.). — Krystalle (aus Wasser). F: 66°. Kp₁₄: 215—220°. Ist in Wasser schwerer löslich als die intakt. Form. — Natriumsalz. [α] $_5$: +5,6° (Wasser; p=23). (v. Br., W.). — Strychninsalz. F: 182°. Ist in Wasser schwerer löslich als das Strychninsalz der linksdrehenden Säure.

Diäthylester $C_{18}H_{24}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH[CH(CH_3)_2] \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Aus rechtsdrehender β -Isopropyl-adipinsäure durch Behandeln mit Alkohol und Chlorwasserstoff (v. Beaun, Werner, B. 62, 1056). — Kp₁₈: 145—150°. D₄°: 0,9776. [α]_D°: —1,53° (unverdünnt).

Dichlorid $C_9H_{14}O_9Cl_2=ClOC\cdot CH_2\cdot CH_2\cdot CH[CH_2)_2]\cdot CH_2\cdot COCl.$ B. Aus rechtsdrehender β -Isopropyl-adipinsäure durch Behandeln mit Thionylchlorid in der Kälte (v. Braun, Werner, B. 62, 1056). — Fl. Kp₁₈: 145—146°. D_4^{∞} : 1,1023. [α] $_5^{\infty}$: +1,13° (unverdünnt).

Diamid $C_9H_{18}O_9N_9=H_2N\cdot CO\cdot CH_2\cdot CH_3\cdot CH\left[CH(CH_2)_2\right]\cdot CH_2\cdot CO\cdot NH_2$. B. Aus dem Chlorid der rechtsdrehenden β -Isopropyl-adipinsäure durch Behandeln mit konzentriertem wäßrigem Ammoniak (v. Braun, Werner, B. 62, 1056). — Krystalle (aus Methanol). F: 169,5°. [a] $_{\rm B}^{\rm pc}$: + 9,5° (Wasser; p = 2,2). Schwer löslich in Wasser.

- c) Linksdrehende β -Isopropyl-adipinsäure $C_9H_{16}O_4=HO_2C\cdot CH_2\cdot CH_3\cdot CH_3\cdot CH_4$ CH[CH(CH₂)₂]·CH₂·CO₂H. B. Aus der inakt. Säure über das Strychninsalz (v. Braun, Werner, B. 62, 1055). F: ca. 60°. Natriumsalz. [α]_p: —4,1° (Wasser; p = 38). Das Strychninsalz ist leichter löslich in Wasser als das der rechtsdrehenden Säure.
- 10. 2-Isobutyl-propan-dicarbonsăure-(1.3), β -Isobutyl-glutarsăure $C_0H_{19}O_4=(CH_3)_2CH\cdot CH_2\cdot CH(CH_3\cdot CO_2H)_2$ (H 714). B. Beim Kochen von 2-Oxo-6-imino-4-isobutyl-3-cyan-piperidin-carbonsăure-(5)-amid (Syst. Nr. 3369) mit ca. 19 % iger Salzsăure (Curtis, Day, Kimmins, Soc. 123, 3136). Nadeln (aus verd. Salzsăure). F: 47°. Beim Kochen mit Acetylchlorid erhält man das Anhydrid als ein in Natriumdicarbonat-Lösung unlösliches Öl.

DICARBONSÄUREN CnH2n-2O4

11. 5 - Methyl-hexan-dicarbonsäure-(2.2), Methylisoamylmalonsäure $C_9H_{16}O_4 = (CH_9)_2CH \cdot CH_3 \cdot C(CH_3)(CO_2H)_3$ (E I 292). B. Durch Verseifung des Diäthylesters (SOMMAIRE, Bl. [4] 33, 193). — Krystalle (aus Wasser). F: 131—132°. Gibt beim Erhitzen Methylisoamylessigsäure.

Diäthylester $C_{13}H_{24}O_4 = (CH_3)_2CH \cdot CH_3 \cdot C(CH_3)(CO_3 \cdot C_2H_5)_3$. B. Durch Einw. von Methyljodid auf die Natriumverbindung des Isoamylmalonsäurediäthylesters (SOMMAIRE, Bl. [4] 38, 193). — Kp: 242—247°.

- 12. 3.3-Dimethyl-pentan-dicarbonsaure-(1.4), $\alpha.\beta.\beta$ -Trimethyl-adipinsaure $C_2H_{16}O_4 = HO_3C \cdot CH_3 \cdot CH_2 \cdot C(CH_3)_3 \cdot CH(CH_3) \cdot CO_2H$. B. Neben anderen Produkten bei der Öxydation von 1.5-Dioxy-6.7.8-triacetoxy-4.4.5-trimethyl-nonan (8. 162) mit alkal. Permanganat-Lösung oder mit Salpetersäure (D: 1,2) (GORTER, Bl. Jardin bot. Buit. 1 [1920], 333, 336). Nadeln (aus W.). F: 130—131°. Ist im Vakuum ohne Anhydridbildung destillierbar. Löslich in 180 Tln. Wasser von 26°. Elektrolytische Dissoziationskonstante k: 4,2·10-5 (colorimetrisch bestimmt). $Ag_3C_3H_{14}O_4$.
- 13. 2 Methyl-hexan-dicarbonsäure-(3.3), Propylisopropylmalonsäure $C_0H_{16}O_4=(CH_1)_2CH\cdot C(CH_2\cdot C_2H_5)(CO_3H)_2$.

Distrylester $C_{13}H_{24}O_3 = (CH_2)_3CH \cdot C(CH_2 \cdot C_2H_3)(CO_3 \cdot C_2H_3)_3$. Kp_{43} : 143°; D_{86}^{86} : 0,9803; n_{10}^{80} : 1,4239 (Shonle, Moment, Am. Soc. 45, 246).

14. 5 - Methyl - hexan - dicarbonsäure - (3.3), Äthylisobutylmalonsäure $C_9H_{16}O_4=(CH_9)_1CH\cdot CH_2\cdot C(C_2H_5)(CO_2H)_2$ (E I 292). B. Durch Verseifung des Diäthylesters mit alkoh. Kalilauge (TIFFENEAU, Bl. [4] 33, 187). — Krystalle (aus Wasser oder Tetrachlorkohlenstoff). F: 107—108°. — Liefert beim Erhitzen auf 180—200° Athylisobutylessigsäure.

Diäthylester $C_{13}H_{24}O_4=(CH_3)_cCH\cdot CH_3\cdot C(C_2H_5)(CO_2\cdot C_2H_5)_3$. B. Durch Einw. von Athylbromid auf die Natriumverbindung des Isobutylmalonsäurediäthylesters (Tiffeneau, Bl. [4] 33, 187) oder von Isobutylbromid auf die Natriumverbindung des Äthylmalonsäurediäthylesters in Alkohol (Shonle, Moment, Am. Soc. 45, 246). — Kp: 234—240° (Ti.); Kp₈: 119—120° (Sh., M.). D_m.: 0,9682; n₀.: 1,4228 (Sh., M.):

15. 2.2-Dimethyl-pentan-dicarbonsäure-(1.3), β,β-Dimethyl-α-āthyl-glutarsāure C₂H₁₈O₄ = HO₂C·CH(C₂H₅)·C(CH₃)·CH₃·CO₃H. B. Bei der Hydrolyse von β.β-Dimethyl-α-āthyl-α.α'-dicyan-glutarsāure-imid oder -āthylimid (Syst. Nr. 3369) (Kon, Thorpe, Soc. 121, 1800; vgl. K., Smith, Th., Soc. 127, 570). — Prismen (aus Benzol + Benzin). F: 112—113° (K., Th.). — Liefert bei der Kalischmelze Essigsäure und Buttersäure, beim Kochen mit starker Schwefelsäure Buttersäure und eine Verbindung C₂H₁₂O₂ (Nadeln aus Petroläther; F: 82°) (K., S., Th.). Bei aufeinanderfolgender Einw. von Thionylchlorid und Brom und Eingießen des Reaktionsprodukts in Ameisensäure erhält man je nach den Bedingungen wechselnde Mengen zweier α.α'-Dibrom-β.β-dimethyl-α-āthyl-glutarsāuren vom Schmelzpunkt 145° und 178° (s. u.) und eine Verbindung C₂H₁₂O₄Br (Krystalle aus Aceton + Benzin; F: 154—155°), die bei der Behandlung mit Alkalien dieselben Produkte wie die niedrigerschmelzende α.α'-Dibrom-β.β-dimethyl-α-āthyl-glutarsāure liefert (K., S., Th.).

Niedrigerschmelsende $\alpha.\alpha'$ - Dibrom - $\beta.\beta$ - dimethyl - α - äthyl - glutarsäure $C_0H_{14}O_4Br_2=HO_2C\cdot CBr(C_2H_3)\cdot C(CH_3)_2\cdot CHBr\cdot CO_3H$. Zur Konfiguration vgl. Kon, Smith, Thorpe, Soc. 127, 571. — B. Neben dem höherschmelzenden Isomeren und anderen Produkten durch aufeinanderfolgende Einw. von Thionylchlorid und Brom auf $\beta.\beta$ -Dimethyl- α -āthyl-glutarsäure und Eingießen des Reaktionsprodukts in wasserfreie Ameisensäure (K., S., Th.). — Krystalle (aus Benzol + Benzin). F: 145° (Zers.). Löslich in Benzol. — Beim Kochen mit 10% iger Soda-Lösung entsteht ein Öl der Zusammensetzung $C_2H_{14}O_5$ (Gemisch zweier Oxylactoncarbonsäuren?). Liefert beim Kochen mit verd. Kalilauge 2-Methyl-penten-(2)-carbonsäure-(3) und Oxalsäure. Gibt beim Kochen mit 5n-methylalkoholischer Kalilauge 2-Methyl-penten-(2)-carbonsäure-(3) und eine Verbindung $C_2H_{12}O_4$ (Tafeln zus Benzol + Benzin; F: 80°).

Höherschmelsende α.α'-Dibrom- β . β -dimethyl- α -äthyl-glutarsäure $C_9H_{14}O_4Br_9=HO_2C\cdot CBr(C_2H_3)\cdot C(CH_2)_3\cdot CHBr\cdot CO_2H$. Zur Konfiguration vgl. Kon, Smith, Teorre, Soc. 127, 571. — B. s. oben beim niedrigerschmelzenden Isomeren. — Krystalle (aus Aceton + Benzol). F: 178° (Zers.) (K., S., Ts.). Unlöslich in Benzol. — Liefert bei der Behandlung mit wäßr. Alkalilaugen, methylalkoholischer Kalilauge und Soda-Lösung dieselben Produkte wie die bei 145° schmelzende isomere Verbindung.

 $\alpha.\alpha'$ -Dibrom- $\beta.\beta$ -dimethyl- α -āthyl-glutarsāure-diāthylester $C_{13}H_{23}O_4Br_3=C_2H_5$. $O_2C\cdot CBr(C_2H_5)\cdot C(CH_3)_3\cdot CHBr\cdot CO_3\cdot C_3H_5$. Über die Zugehörigkeit zu einer der beiden obenstehenden isomeren Säuren ist nichts bekannt. — B. Durch aufeinanderfolgende Einw. von Thionylchlorid und Brom auf $\beta.\beta$ -Dimethyl- α -āthyl-glutarsäure und Eingießen des

Reaktionsprodukts in Alkohol (Kon, Smith, Thorpe, Soc. 127, 570). — Nicht rein erhalten. Gelbes viscoses Öl. — Zersetzt sich bei der Destillation unter vermindertem Druck. Bei Einw. von siedender 10 % iger Soda-Lösung erhält man dasselbe Öl der Zusammensetzung $C_9H_{14}O_5$ wie bei analoger Behandlung der niedrigerschmelzenden $\alpha.\alpha'$ -Dibrom- $\beta.\beta$ -dimethyl- α -äthylglutarsäure. Bei Einw. von siedender verdünnter Kalilauge entstehen 2-Methyl-penten-(2)-carbonsäure-(3), Oxalsäure und eine geringe Menge einer Verbindung $C_9H_{12}O_4$ [Tafeln aus Wasser; F: 208° (Zers.)]. Liefert beim Kochen mit 5n-methylalkoholischer Kalilauge eine Verbindung $C_9H_{14}O_5$ (Tafeln aus Benzol + Benzin; F: 63°).

16. 4-Methyl-hexan-dicarbons dure-(3.3), Athyl-sek.-butyl-malons dure $C_0H_{10}O_4 = CH_2 \cdot CH_2 \cdot CH_3 \cdot C(C_2H_3) \cdot C(C_2H_3) \cdot CO_3H_3$.

Disthylester $C_{12}H_{24}O_4 = CH_2 \cdot CH_2 \cdot CH(CH_2) \cdot C(C_2H_3)(CO_2 \cdot C_2H_3)_2$. B. Bei der Einw. von sek. Butylbromid auf die Natriumverbindung des Athylmalonsaure-disthylesters in absol. Alkohol (Showle, Moment, Am. Soc. 45, 246). — $Kp_{40}:155-160^{\circ}$. $D_{22}^{**}:0,9858$. $n_{22}^{**}:1,4264$.

17. 2.2 - Diāthyl-propan - dicarbonsäure - (1.3), β.β-Diāthyl-glutarsāure C_bH₁₆O₄ = (C₂H₃)₂C(CH₃·CO₂H)₂ (H 717). B. Zur Bildung nach Guarrschi (C. 1901 I, 821) vgl. Deshapande, Thorpe, Soc. 121, 1435. Bei der Oxydation von β.β-Diāthyl-δ-valerolation mit Chromsäure (Sircar, Soc. 1928, 902, 903). — Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 25°: 3,44×10⁻⁴ (konduktometrisch bestimmt) (Spiers, Thorpe, Soc. 127, 544), 3,40×10⁻⁴ (potentiometrisch bestimmt) (Gane, Ingold, Soc. 1928, 2268); der zweiten Stufe k₂ bei 25°: 7,85×10⁻⁶ (potentiometrisch bestimmt) (G., I.). — Beim Behandeln mit Phosphorpentschlorid oder Thionylchlorid und nachfolgenden Bromieren im Licht bei 70° und Eingießen des Reaktionsprodukts in 85%ige Ameisensäure entsteht α.α'-Dibrom-β.β-diāthyl-glutarsäure (D., Th.). Das Silbersalz gibt beim Erhitzen mit Jod und Sand auf 100—150° β.β-Diāthyl-butyrolacton (Siecar, Soc. 1928, 901). Das Calciumsalz liefert bei der trocknen Destillation im Stickstoffstrom Aceton, β-Athyl-α-butylen, Diāthylketon, 3-Athyl-hexen.(2)-on-(5) und eine Verbindung C₁₁H₁₆O, die zwischen 240° und 260° siedet (Kon, Soc. 119, 821).

Dimethylester $C_{11}H_{20}O_4 = (C_2H_5)_2C(CH_2 \cdot CO_3 \cdot CH_2)_2$. Kp₁₆: 131° (Digeens, Kon, Thorre, Soc. 121, 1504). — Liefert bei der Einw. von Oxalsäure-dimethylester und Natriummethylat in Äther geringe Mengen 1.1-Diāthyl-cyclopentandion-(3.4) und 1.1-Diāthyl-cyclopentandion-(3.4) und 1.1-Diāthyl-cyclopentandion-(3.4) und 1.1-Diāthyl-cyclopentandion-(3.4), eine geringe Menge 1.1-Diāthyl-cyclopentandion-(3.4), eine geringe Menge 1.1-Diāthyl-cyclopentandion-(3.4) schmelzende Substanz (Nadeln aus Alkohol).

Monoäthylester $C_{11}H_{20}O_4 = HO_sC \cdot CH_2 \cdot C(C_2H_5)_2 \cdot CH_3 \cdot CO_2 \cdot C_2H_5$. B. Durch Kochen von $\beta.\beta$ -Diāthyl-glutarsāureanhydrid mit der doppelten Menge absol. Alkohol (QUDRATI-KHUDA, Soc. 1929, 1919). — Sirup. — $AgC_{11}H_{19}O_4$.

 $\alpha.\alpha'$ - Dibrom - $\beta.\beta$ - diäthyl - glutareäure $C_0H_{14}O_4Br_2 = (C_2H_5)_2C(CHBr\cdot CO_2H)_2$. Zur Konfiguration vgl. Deshapande, Thorpe, Soc. 121, 1433. — B. Man führt $\beta.\beta$ -Diäthylglutareäure mit Hilfe von Thionylchlorid oder Phosphorpentachlorid in das Chlorid über, bromiert bei 70° im Licht und trägt das Reaktionsprodukt in 85% ige Ameisensäure ein (D., Th.). — Prismen (aus Benzol). F: 153° (Zers.). — Gibt bei der Einw. von Acetylchlorid das Säureanhydrid.

Diäthylester $C_{13}H_{23}O_4Br_3=(C_2H_5)_2C(CHBr\cdot CO_2\cdot C_2H_5)_2$. B. Man führt $\beta.\beta$ -Diäthylglutarsäure mit Hilfe von Thionylchlorid oder Phosphorpentachlorid in das Chlorid über, bromiert bei 70° im Licht und kocht das Reaktionsprodukt mit Alkohol (Deshapande, Thorpe, Soc. 121, 1435). — Öl. Kp₇: 190°. — Liefert beim Kochen mit verd. Soda-Lösung $\alpha.\alpha'$ -Dioxy- $\beta.\beta$ -diäthyl-glutarsäure-monolacton und α -Oxo- $\beta.\beta$ -diäthyl-glutarsäure; beim Kochen mit konz. Kalilauge entstehen α -Oxo- $\beta.\beta$ -diäthyl-glutarsäure und wenig 2-Oxy-1.1-diäthyl-oyolopropan-dioarbonsäure-(2.3) (Syst. Nr. 1132).

18. 2.2.3 - Trimethyl-butan - dicarbonsaure - (1.3), a.a. β , β - Tetramethyl-glutarsaure $C_8H_{16}O_4=HO_2C\cdot CH_2\cdot C(CH_2)_2\cdot C(CH_2)_2\cdot CO_2H$. B. Bei der Oxydation von 1.1.2.2-Tetramethyl-cyclopentanon-(3) mit kalter neutraler Permanganat-Lösung in Aceton oder besser mit siedender Salpetersaure (D: 1,2) (INGOLD, SHOPPER, Soc. 1928, 408). Beim Kochen des 1.1.2.2-Tetramethyl-cyclopentandion-(3.4)-oxims-(3) vom Schmelzpunkt 172° (Syst. Nr. 667) mit Formaldehyd und konz. Salzsaure (I., Sh., Soc. 1928, 401). Neben anderen Produkten bei der Oxydation von 4-Benzoyloxy-1.1.2.2-tetramethyl-cyclopenten-(3)-on-(5) mit Wasserstoffperoxyd in wäßr. Aceton in Gegenwart von etwas Eisen(II)-sulfat bei 0° (I., Sh., Soc. 1928, 1873). Aus 2.2.3.3-Tetramethyl-bicyclo-[0.1.2]-pentanol-(1)-on-(5) (Syst. Nr. 740) durch Oxydation mit 6 % iger Wasserstoffperoxyd-Lösung in Gegenwart von Natrium-carbonat bei Zimmertemperatur (I., Sh., Soc. 1928, 407). — Blättehen (aus Essigester + Ligroin). F: 144°.

9. Dicarbonsăuren $C_{10}H_{18}O_4$.

1. Octan-dicarbonsäure-(1.8), Sebacinsäure C₁₀H₁₈O₄ = HO₂C·[CH₂]₈·CO₂H (H 718; E I 293). B. Sebacinsäure bildet sich neben anderen Produkten bei der Oxydation verschiedener organischer Verbindungen, die zehn oder mehr Kohlenstoffatome enthalten; so z. B. aus Cycloheptadecen in Benzol durch Behandlung mit Kaliumpermanganat in Wasser (RUZICKA, SEIDEL, Helv. 10, 701), in geringer Menge aus ω-Undecylenylalkohol durch Oxydation mit Chromessigsäure (Chuit, Mitarb., Helv. 9, 1086), bei der Einw. von Chromtrioxyd in essigsaurer Lösung auf Cyclodecanon (Ru., Stoll, Schinz, Helv. 9, 254) sowie auf Muscon (Ru., Helv. 9, 726), aus Δ¹⁰⁻¹²-Octadecadiensäure durch Ozonisieren (Böeseken, van Krimpen, Versl. Akad. Amsterdam 37, 66; C. 1928 I, 2704) sowie aus ω-Oxycaprinsäure durch Oxydation mit Chromessigsäure (Chuit, Mitarb., Helv. 9, 1079). Zur Bildung durch Destillation von Ricinolsäure mit Alkalilaugen vgl. Verkade, Hartman, Coops, R. 45, 385; Grün, Wirth, B. 55, 2214. Sebacinsäure bildet sich neben anderen Produkten beim Erwärmen von ι-Oximino-myristinsäure mit konz. Schwefelsäure auf dem Wasserbad und nachfolgenden Erhitzen mit rauchender Salzsäure im Rohr auf 180—200° (Votoček, Prelog, Collect. Trav. chim. Tchécosl. 1, 62; C. 1929 II, 579). Aus dem Semicarbazon der γ-Oxo-sebacinsäure beim Erhitzen mit Natrium und Alkohol auf 170° (Asahina, Fujita, Acta phytoch. 1, 42; C. 1922 III, 716). Aus δ-Oxo-sebacinsäure beim Kochen mit amalgamiertem Zink und konz. Salzsäure oder beim Erhitzen des Semicarbazons mit Natrium und Alkohol im Rohr auf 180—190° (Hückel, A. 441, 31). Entsteht auch bei der Hydrierung von Furan-di-[β-propionsäure]-(2.5) sowie von Dihydroanemonin (Syst. Nr. 2762) bei Gegenwart von Platinschwarz in Eisessig (A., F., Acta phytoch. 1, 24, 26; C. 1921 III, 485; 1922 III, 714).

Monoklin prismatische Krystalle (aus konz. Salpetersäure) (Caspari, Soc. 1928, 3235, 3236). Röntgenogramm: Ca.; Thibaud, Nature 119, 852; C. 1927 II, 2146; Trillat, C. r. 180, 1330; Ann. Physique [10] 6, 69; Henderson, Pr. roy. Soc. Edinburgh 48, 20; C. 1928 I, 2903. Da: 1,207 (Biltz, Balz, Z. anorg. Ch. 170, 339). Verbrennungswärme bei konstantem Volumen: 1295,9 kcal/Mol (Verkade, Hartman, Coops, R. 45, 386). Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916. Adsorption an Silberjodid bei verschiedenen Silberionenkonzentrationen: Obrutschewa, Bio. Z. 207, 26. Adsorption aus alkoh. Lösung an Tierkohle: Griffin, Richardson, Robertson, Soc. 1928, 2708.

Liefert bei der Destillation Pelargonsäure neben einem Keton (Vogel, Soc. 1929, 732). Bei der thermischen Zersetzung nach Aschan (B. 45, 1607) treten wahrscheinlich keine ungesättigten Säuren auf (V., Soc. 1929, 726). Beim Erhitzen in Gegenwart von Eisenfeile und Bariumhydroxyd erhält man Methyl-n-octyl-keton (V., Soc. 1929, 732). Bei der thermischen Zersetzung des Thoriumsalzes im Vakuum entstehen Cyclononanon, Suberon, Methyl-n-octyl-keton, ein Keton, das ein Semicarbazon vom Schmelzpunkt 173—175° gibt (Ruzicka, Brugger, Helv. 9, 398) und Cyclooctadecandion-(1.10) (R., Mitarb., Helv. 11. 506). Entgegen der Angabe von Neison (J. 1874, 625) wird Sebacinsäure bei 2-stdg. Erwärmen mit einem 7,4% K₂Cr₂O₇ und 75% Schwefelsäure enthaltenden Chromschwefelsäure-Gemisch zu ca. 40% oxydiert (Lieben, Molnar, M. 53/54, 7). Sebacinsäure liefert beim Erhitzen mit Äthylenglykol anfangs auf 160° und dann im Vakuum auf 200—250° polymeres Äthylensebacinat (S. 609), reagiert analog mit Trimethylen-, Hexamethylen- und Dekamethylenglykol (Carothers, Arvin, Am. Soc. 51, 2560). — Sebacinsäure wird vom Hund nach subcutaner Injektion zu einem großen Teil unverändert ausgeschieden (Flaschenträger, H. 159, 303). Einfluß auf die Pigmentbildung durch Bac. pyocyaneus: Goris, Liot, C. r. 172, 1623.

Saures Ammoniumsalz. D. 1,182 (Biltz, Balz, Z. anorg. Ch. 170, 341). Dissoziationsdruck bei 111°: 25 mm (Bi., Ba., Z. anorg. Ch. 170, 343). — Neutrales Ammoniumsalz. D. 1,109 (Bi., Ba., Z. anorg. Ch. 170, 339). Dissoziationsdruck bei 111°: 296 mm (Bi., Ba., Z. anorg. Ch. 170, 343). — Natriumsalz. Oberflächenspannung wäßr. Lösungen bei 26°: K. H. Meyer, Bio. Z. 214, 270. — Bariumsalz. Unlöslich in Methanol (Flaschenträger, H. 159, 305).

Sebacinsäuremonomethylester $C_{11}H_{20}O_4 = HO_2C \cdot [CH_2]_3 \cdot CO_2 \cdot CH_3$. B. [Aus dem Dimethylester durch teilweise Verseifung mit alkoh. Kalilauge (Grün, Wirth, B. 55, 2216). Durch Oxydation von Sebacinaldehydsäure-methylester an der Luft (Noller, Adams, Am. Soc. 48, 1078). — F: 40—41° (korr.) (N., A.). — Das Kaliumsalz liefert beim Behandeln mit Natrium in Alkohol ω -Oxy-caprinsäure (Gr., W.).

Bebacinsäuredimethylester $C_{13}H_{23}O_4 = CH_3 \cdot O_3C \cdot [CH_2]_8 \cdot CO_2 \cdot CH_3$ (H 719; E I 293). B. Aus Sebacinsäure beim Kochen mit methylalkoholischer Salzsäure (Verkade, Coops, Hartman, R. 45, 586) oder beim Behandeln mit Diazomethan (Hückel, A. 441, 31). —

Nadeln (aus Äther) oder Prismen (aus der Schmelze). F: 27—28° (Grün, Wirth, B. 55, 2214), 26,6° (V., C., H.). Kp_{5,5}: 158° (V., C., H.). Verbrennungswärme bei konstantem Volumen: 1633,7 koal/Mol (krystallin), 1642,6 kcal/Mol (unterkühlt) (V., C., H.). Kryoskopisches Verhalten in Zinntetrabromid: Hieber, A. 439, 131. — Geschwindigkeit der Verseifung durch Natronlauge in wäßr. Methanol bei 25°: Skrabal, Singer, M. 41, 364. — C₁₂H₂₅O₄ + SnCl₄. Krystalle. F: 90° (Hieber, A. 439, 122). Kryoskopisches Verhalten in Äthylenbromid: H.

Sebacinsäuremonoäthylester $C_{12}H_{32}O_4 = HO_3C \cdot [CH_3]_3 \cdot CO_3 \cdot C_2H_5$ (H 719). B. Aus Sebacinsäurediäthylester durch teilweise Verseifung mit der berechneten Menge 2 n-alkoh. Kalilauge in der Wärme (Grün, Wirth, B. 55, 2215) oder durch Erhitzen mit Sebacinsäure auf 280—300° (Fourneau, Sabetan, Bl. [4] 43, 861). — Krystalle (aus Petroläther). F: 36° (Gr., W.), 35° (Maquennescher Block) (Fou., S.). Kp₁₈: 210° (Gr., W.); Kp₁₅: 202—203° (Fou., S.). Unlöslich in Wasser (Fou., S.). — Liefert bei der Destillation unter Atmosphärendruck Sebacinsäure und Sebacinsäurediäthylester (Gr., W.). Bei der Elektrolyse des Kaliumsalzes entsteht neben Hexadecan-dicarbonsäure-(1.16)-diäthylester und Octen-(7)-carbonsäure-(1)-äthylester auch Sebacinsäurediäthylester (Brown, Walker, A. 274 [1893], 60; Franke, Liebermann, M. 43, 593). Bei der Einw. von Natrium in Alkohol auf das Kaliumsalz erhält man ω -Oxy-caprinsäure (Gr., W.). — Bariumsalz. Unlöslich in Methanol (Flaschenträger, H. 159, 305).

Sebacinsäurediäthylester C₁₄H₂₆O₄ = C₂H₅·O₂C·[CH₂]₈·CO₂·C₂H₅ (H 719; E I 293). E: —1° (korr.) (Fairweather, Phil. Mag. [7] 1, 947; C. 1926 II, 2146). Kp: 309° (Franke, Liebermann, M. 43, 595); Kp₁₈: 181° (Ruzicka, Brugger, Helv. 9, 394); Kp.: 172° (Grün, Wieth, B. 55, 2215). Viscosität bei 20°: 0,06091 g/cmsec (Ceder, Ann. Univ. jenn. Abo. [A] 2, Nr. 4, S. 8; C. 1927 I, 2398). Parachor: Sugden, Soc. 125, 1184. — Liefert bei der Einw. von Phenylmagnesiumbromid 1.10-Dioxy-1.1.10.10-tetraphenyl-decan (Godchot, C. r. 171, 798).

Sebacinsäurediisoamylester $C_{20}H_{28}O_4 = C_5H_{11} \cdot O_2C \cdot [CH_2]_8 \cdot CO_3 \cdot C_5H_{11}$ (H 719; F I 293). Parachor: Sugden, Soc. 125, 1184; Mumford, Phillips, Soc. 1929, 2119.

Sebacinsäure-di-[d-octyl-(2)]-ester $C_{26}H_{50}O_4 = CH_3 \cdot [CH_2]_5 \cdot CH(CH_3) \cdot O_2C \cdot [CH_2]_6 \cdot CO_2 \cdot CH(CH_3) \cdot [CH_2]_6 \cdot CH_2 \cdot B$. Bei der Einw. von rechtsdrehendem Octanol-(2) auf Sebacinsäuredichlorid (HALL, Soc. 123, 40). — Flüssigkeit. Kp₂: 240—242°. Dichte D; zwischen 20,6° (0,9035) und 163° (0,8019): H. $n_5^{m_1} \cdot 1,4441$; Brechungsindices bei 25,8° zwischen 643,8 m μ (1,4421) und 435,8 m μ (1,4538): H. $[\alpha]_{266,1}^{m_2} \cdot 1+12,04°$ (unverdünnt); $[\alpha]_{15}^{m_3} \cdot 1+8,71°$ (Alkohol; c=5); -8,06° (Schwefelkohlenstoff; c=5); Rotationsdispersion der reinen Substanz zwischen 18,8° und 155° und der Lösungen in Alkohol und Schwefelkohlenstoff bei 18°: H.

Polymeres Äthylensebacinat $[C_{18}H_{20}O_4]_x = \{\cdots O \cdot CH_3 \cdot CH_3 \cdot O_2C \cdot [CH_2]_8 \cdot CO \cdots\}_x$. Zur Konstitution dieser und der folgenden analogen Verbindungen vgl. den Artikel polymeres Äthylensuccinat (S. 552). Bei der kryoskopischen Mol.-Gew.-Bestimmung in Benzol wurde der Wert 3100 gefunden. — B. Beim Erhitzen von Athylenglykol mit Sebacinsäure auf 160°, zuletzt im Vakuum auf 200—250° (CAROTHERS, ARVIN, Am. Soc. 51, 2560). — Hygroskopische Krystalle. F: 79°; der Schmelzpunkt ist von der Art des Erhitzens abhängig. Unlöslich in Wasser, Alkohol, Petroläther und Äther, ziemlich leicht löslich in Aceton, Essigester und Eisessig, löslich in Benzol.

Polymeres Trimethylensebacinat $[C_{12}H_{22}O_4]_x = \{\cdots 0 \cdot [CH_2]_3 \cdot O_2C \cdot [CH_4]_8 \cdot CO \cdots \}_x$. Die kryoskopische Bestimmung in Benzol ergab als Mol.-Gew. 3100; bei der ebullioskopischen Bestimmung in Dichlorathylen wurden 4600 und 5000 gefunden. — B. Beim Erhitzen von Trimethylenglykol mit Sebacinsäure auf 160°, zuletzt im Vakuum auf 200° bis 250° (Carothers, Arvin, Am. Soc. 51, 2560). — Hygroskopische Krystalle. F: 56°. Der Schmelzpunkt ist von der Art des Erhitzens abhängig. Unlöslich in Wasser, Alkohol, Petroläther und Äther, ziemlich leicht löslich in Aceton, Essigester und Eisessig, löslich in kaltem Benzol.

Polymeres Hexamethylensebacinat $[C_{10}H_{18}O_4]_X = \{\cdots O \cdot [CH_1]_6 \cdot O_3C \cdot [CH_2]_6 \cdot O_5C \cdot O$

Polymeres Dekamethylensebacinat $[C_{50}H_{30}O_4]_x = \{\cdots O \cdot [CH_2]_{10} \cdot O_2C \cdot [CH_2]_6 \cdot CO \cdots \}_x$. Die kryoskopische Bestimmung in Benzol ergab das Mol.-Gew. 3000. — B. Beim Erhitzen von Dekamethylenglykol mit Sebacinsäure auf 160°, zuletzt im Vakuum auf 200° bis 250° (Carothers, Aevin, Am. Soc. 51, 2560). — Hygroskopische Krystalle. F: 74°; der

DICARBONSÄUREN CnH2n-2O4

Schmelzpunkt ist von der Art des Erhitzens abhängig. Unlöslich in Wasser, Alkohol, Äther und Petroläther, ziemlich leicht löslich in Aceton, Essigester und Eisessig, löslich in Benzol.

Sebacinsäure-äthylester - chlorid $C_{12}H_{11}O_3Cl = C_1H_5\cdot O_2C\cdot [CH_2]_8\cdot COCl.$ B. Aus Sebacinsäuremonoäthylester beim Kochen mit Thionylchlorid (G. M. Robinson, R. Robinson, Soc. 127, 178; Flaschenträger, H. 159, 304) oder beim Behandeln mit Thionylchlorid in Petroläther (Ruzicka, Stoll, Helv. 10, 693). — Kp₁₅: 168—170° (Ru., St.). — Liefert beim Behandeln mit Methylzinkjodid in Xylol unter Kühlung 9-Oxo-decan-carbonsäure-(1)-äthylester (Ru., St.). Bei der Kondensation mit der Natriumverbindung des α-n-Heptyl-acetessigsäureäthylesters und aufeinanderfolgenden Behandlung des entstandenen Esters mit kalter verdünnter Natronlauge, siedender verdünnter Schwefelsäure und mit siedender verdünnter Natronlauge erhält man ι-Oxo-stearinsäure (Ro., Ro.).

Sebacinsäuredichlorid, Sebacylchlorid $C_{10}H_{16}O_3Cl_2=ClOC\cdot[CH_2]_8\cdot COCl$ (H 719; E I 293). B. Bei der Einw. von Siliciumtetrachlorid auf Sebacinsäure in Benzol + Ather bei 50° (Монтона, Am. Soc. 49, 2115). Zur Bildung aus Sebacinsäure und Phosphorpentachlorid nach Auger (A. ch. [6] 22, 361) vgl. Rosenmund, Zetzsche, B. 55, 609 Anm. 2. — Kp₁₁: 165—167° (Waser, Helv. 8, 124). D_4^o : 1,1375; D_4^o : 1,1212 (W.). — Liefert bei der Hydrierung in siedendem Xylol bei Gegenwart von Palladium-Calciumcarbonat (W.) oder von Palladium-Kieselgur und geschwefeltem Chinolin (R., Z.) Sebacindialdehyd.

Sebacinsäuremonoamid, Sebamidsäure $C_{10}H_{10}O_3N = HO_2C \cdot [CH_2]_8 \cdot CO \cdot NH_2$ (H 719). B. Durch Verseifung von Sebacinsäure-äthylester-amid mit methylalkoholischer Bariumhydroxyd-Lösung (Flaschenträßer, H. 159, 305).—Nadeln (aus Wasser). F: 126,5°. Leicht löslich in den meisten organischen Lösungsmitteln außer Benzol, Petroläther und Chloroform, fast unlöslich in Äther. — Wird im Organismus des Hundes zum größten Teil abgebaut. — Bariumsalz. Unlöslich in Methanol.

Das von Étaix (A. ch. [7] 9, 403) beschriebene Präparat vom Schmelzpunkt 170° ist vermutlich ein Gemisch von Monoamid und Diamid gewesen (Flaschenträger, H. 159, 301).

Sebacinsäure-äthylester-amid, Sebamidsäureäthylester $C_{12}H_{23}O_3N = C_2H_5 \cdot O_2C \cdot [CH_2]_8 \cdot CO \cdot NH_2$. B. Durch Behandlung von Sebacinsäure-äthylester-chlorid mit konz. Ammoniak in der Kälte (Flaschenträger, H. 159, 304). — Nadeln (aus Wasser). F: 70° bis 71°. Leicht löslich in Methanol und Alkohol, löslich in Wasser.

Sebacinsäuredinitril, Oktamethylendicyanid $C_{10}H_{16}N_2 = NC \cdot [CH_2]_8 \cdot CN$ (H 720). B. Aus Sebacinsäurediamid (H·2, 720) durch Destillation mit Phosphorpentoxyd im Vakuum (SLOTTA, TSCHESCHE, B. 62, 1405) sowie durch Erhitzen mit Phosphoroxychlorid ohne Lösungsmittel oder in Benzol (Schering-Kahlbaum A. G., D. R. P. 495099; C. 1930 I, 3608; Frdl. 16, 2513).

Sebacinsäuredihydrazid $C_{10}H_{23}O_2N_4=H_2N\cdot NH\cdot CO\cdot [CH_2]_8\cdot CO\cdot NH\cdot NH_2$ (H 720). F: 187—188° (Borsche, Müller, Bodenstein, A. 475, 122).

2. Octan - dicarbonsäure - (1.1), n - Heptyl - malonsäure $C_{10}H_{18}O_4 = CH_3 \cdot CH(CO_2H)_2$ (H 721). B. Beim Erhitzen von n-Heptyljodid mit Cyanessigsäureäthylester in Gegenwart von Kaliumcarbonat im Vakuum und Erhitzen des Reaktionsprodukts mit wäßr. Natronlauge auf 100° (Robinson, Soc. 125, 228). — Prismen (aus Benzol + Petroläther). Röntgenogramm: Henderson, Pr. roy. Soc. Edinburgh 48, 22; C. 1928 I, 2903. F: 95° (R.), 96,25° (H.). Verbrennungswärme bei konstantem Volumen: 6422,4 cal/g (Verkade, Coops, R. 47, 608). Ist entgegen den Angaben des Hptw. ziemlich leicht löslich in kaltern Wasser (R.).

Diäthylester $C_{14}H_{26}O_4 = CH_3 \cdot [CH_2]_6 \cdot CH(CO_2 \cdot C_2H_5)_9$. B. Aus Natriummalonester beim Behandeln mit n-Heptyljodid (SOMMAIRE, Bl. [4] 33, 195). — Kp: 273—275°. D^{20} : 0,951.

- 3. Octan-dicarbonsäure-(1.2), n-Hexyl-bernsteinsäure $C_{10}H_{18}O_4=CH_3\cdot [CH_3]_5\cdot CH(CO_4H)\cdot CH_3\cdot CO_4H$.
- a) Inaktive n-Hexyl-bernsteinsäure (H 721). B. Durch Verseifen des Monoamids (S. 611) mit verd. Schwefelsäure (HIGGINBOTHAM, LAFWORTH, Soc. 121, 52). Aus Önanthyliden-cyanessigsäure bei längerem Behandeln mit Kaliumcyanid in essigsaurer Lösung und Zersetzen des Reaktionsprodukts mit rauchender Salzsäure anfangs in der Kälte, zuletzt in der Siedehitze (LAFWORTH, MCRAE, Soc. 121, 2750). Krystalle (aus verd. Salpetersäure). F: 83—84° (H., L.), 87° (WREN, BURNS, Soc. 117, 267). Läßt sich mit Hilfe von Chinin in die optisch aktiven Komponenten spalten (WREN, BURNS). Bei der Destillation des Ammoniumsalzes unter vermindertem Druck entsteht C-n-Hexyl-succinimid (L., McR.). Ammoniumsalz. Krystalle (L., McR.).

- α-n-Hexyl-bernsteinsäure-α-amid C₁₀H₁₀O₃N = CH₃·[CH₂]₅·CH(CO·NH₃)·CH₂·CO₃H. B. Beim Kochen von Önanthylidenessigsäureäthylester mit Kaliumcyanid in verd. Alkohol und Verseifen des entstandenen Esters mit siedender Natronlauge (Ніссіпвотнам, Lapworth, Soc. 121, 52). Nadeln (aus verd. Alkohol). F: 125—126°.
- b) Linksdrehende n-Hewyl-bernsteinsäure $C_{10}H_{18}O_4=CH_3\cdot [CH_3]_5\cdot CH(CO_3H)\cdot CH_2\cdot CO_3H$. B. Durch Spaltung der inakt. Form mit Hilfe von Chinin (Wren, Burns, Soc. 117, 266). Krystallpulver (aus Wasser oder verd. Alkohol). F: 82—83°. [α]₅: 26,6° (Alkohol; α) (Aceton; α); [α]₀: +0,5° (Benzol; α). In wäßr. Lösung tritt keine, in wäßrig-alkoholischer Lösung geringe Racemisierung ein.
- 4. 2 Methyl heptan dicarbonsäure (1.1.), Heptyl (2) malonsäure $C_{10}H_{18}O_4=CH_2\cdot [CH_2]_4\cdot CH(CO_2H)_2$ (H 721).

H 721, Z. 1 v. u. statt ,,1802,7 Cal" lies: ,,1302,7 Cal".

5. Octan-dicarbons dure-(3.3), Athyl-n-amyl-malons dure $C_{10}H_{18}O_4 = CH_3 \cdot [CH_3]_4 \cdot C(C_3H_5)(CO_3H)_3$.

Diäthylester $C_{14}H_{26}O_4=CH_3\cdot [CH_2]_4\cdot C(C_2H_5)(CO_2\cdot C_2H_5)_2$. B. Aus Äthylmalonsäurediäthylester und n-Amylbromid in Natriumäthylat-Lösung (Dox, Jones, Am. Soc. 50, 2035). — Kp₁₄: 139—141°.

6. Octan-dicarbonsäure-(4.4), Propylbutylmalonsäure $C_{10}H_{18}O_4=CH_3\cdot C(CH_2\cdot C_2H_5)$ (CO₂H)₃. B. Durch Verseifung des Diäthylesters (SOMMAIRE, Bl. [4] 33, 190). — Krystalle (aus Chloroform oder Benzol). F: 150—151°. — Liefert beim Erhitzen auf 180° Propylbutylessigsäure.

Diäthylester $C_{14}H_{36}O_4 = CH_3 \cdot [CH_2]_3 \cdot C(CH_2 \cdot C_2H_5)(CO_2 \cdot C_2H_5)_2$. B. Aus Butylmalonester beim Erwärmen mit Propylbromid in Gegenwart von Natriumäthylat (SOMMAIRE, Bl. [4] 33, 190). — Öl. Kp: 248—253°.

7. 2 - Propyl - pentan - dicarbonsäure - (1.1), Heptyl - (4) - malonsäure, "Isoheptyl malonsäure" $C_{10}H_{18}O_4 = (CH_2 \cdot CH_2 \cdot CH_2)_2CH \cdot CH(CO_2H)_2$. B. Durch Hydrolyse des Monoäthylesters (Kon, Max, Soc. 1927, 1554). — Liefert bei der Destillation β -Propyl-n-capronsäure.

Monoäthylester $C_{12}H_{22}O_4 = (CH_3 \cdot CH_2 \cdot CH_2)_2CH \cdot CH(CO_2H) \cdot CO_2 \cdot C_2H_5$. B. Bei der Kondensation von 4-Brom-heptan mit Natriummalonester in Alkohol (Kon, May, Soc. 1927, 1554). — Kp₃₆: 168°.

8. 2-Methyl-heptan-dicarbonsäure-(3.3), Isopropylbutylmalonsäure C₁₀H₁₈O₄ = (CH₃)₂CH·C(CO₂H)₂·[CH₂]₃·CH₃. B. Durch Verseifung des Diäthylesters mit alkoh. Kalilauge (Jones, Pyman, Soc. 127, 2596). — Prismen (aus Alkohol). F: 113° (Knoll A.G., Hildebrandt, Leube, D. R. P. 494320; C. 1930 I, 3355; Frdl. 16, 2475), 105° (korr.) (J., P.). — Liefert beim Erhitzen Isopropylbutylessigsäure (J., P.).

Disthylester $C_{14}H_{26}O_4=(CH_3)_2CH\cdot C(CO_3\cdot C_2H_3)_2\cdot [CH_2]_3\cdot CH_3$. B. Durch Einw. von Butylbromid auf Isopropylmalonester (Jones, Pyman, Soc. 127, 2596) oder besser von Isopropylbromid auf Butylmalonester (Knoll A.G., Hildebrandt, Leube, D. R. P. 494320; C. 1930 I, 3354; Frdl. 16, 2475) in Natriumäthylat-Lösung, zuletzt bei Siedetemperatur. — Kp: 254—256° (K. A.G., H., L.); Kp₁₄: 136° (Shonle, Moment, Am. Soc. 45, 248). D_m. 0,9742; n₀. 1,4291 (Sh., M.).

- 9. 6-Methyl-heptan-dicarbonsäure-(2.5), α -Methyl- α' -isopropyl-adipinsäure $C_{10}H_{18}O_4=HO_2C\cdot CH(CH_2)\cdot CH_2\cdot CH_2\cdot CH[CH(CH_3)_3]\cdot CO_2H$ (vgl. H 724). Die optische Aktivität wurde nicht untersucht. B. Beim Ozonisieren von 2-Oxymethylenmenthon in Tetrachlorkohlenstoff unter Kühlung und nachfolgenden Erwärmen mit Wasser (Rupe, Gubler, Helv. 9, 584). Krystalle (aus Benzin). F: 104°.
- 10. 6 Methyl heptan dicarbonsäure (3.3), Äthylisoamylmalonsäure C₁₀H₁₈O₄ = (CH₂)₂CH·CH₂·C(C₂H₃)(CO₂H)₂ (E I 294). B. Durch Verseifen des Diathylesters (TIFFENEAU, Bl. [4] 33, 187). Krystalle (aus Wasser). F: 116—118°.

Distrylester $C_{14}H_{26}O_4 = (CH_2)_2CH \cdot CH_2 \cdot CH_2 \cdot C(C_2H_3)(CO_2 \cdot C_2H_5)_2$. B. Bei der Einw. von Athylbromid auf die Natriumverbindung des Isoamylmalonesters (TIFFENEAU, Bl. [4] 38, 187). — Kp₇₀₅: ca. 248—253° (T.); Kp₂₀: 150° (Shonle, Moment, Am. Soc. 45, 248). Ds. 0,9540; ns. 1,4255 (Sh., M.).

11. 2.5 - Dimethyl - hexan - dicarbonsdure - (2.5), $\alpha.\alpha.\alpha'.\alpha'$ - Tetramethyladipinsdure $C_{19}H_{19}O_4 = HO_2C \cdot C(CH_3)_2 \cdot CH_2 \cdot C(CH_3)_3 \cdot CO_2H$. B. Neben anderen Produkten durch Elektrolyse des Natriumsalzes des $\alpha.\alpha$ -Dimethyl-bernsteinsäure- α -äthylesters in verd. Methanol und Verseifung des Reaktionsprodukts (Farmer, Kracovski, Soc. 1926, 2322). — Krystalle. F: 191°. Schwer löslich in siedendem Wasser, ziemlich schwer in

organischen Lösungsmitteln. — Geht bei längerem Erhitzen für sich oder beim Kochen mit Acetanhydrid teilweise in das Anhydrid über (F., K., Soc. 1927, 683, 684). Läßt sich durch aufeinanderfolgende Einw. von Phosphorpentachlorid und Brom nicht bromieren (F., K., Soc. 1926, 2322).

- 12. 2.2.3.3-Tetramethyl-butan-dicarbonsäure-(1.4), β.β.β΄.β΄-Tetramethyl-adipinsäure C₁₀H₁₈O₄ = HO₂C·CH₂·C(CH₃)₂·C(CH₃)₂·CH₂·CO₂H. B. Neben anderen Produkten durch Elektrolyse des Natriumsalzes des α.α-Dimethyl-bernsteinsäure-α΄-äthylesters in verd. Methanol und Verseifung des Reaktionsprodukts (FARMER, KRACOVSKI, Soc. 1926, 2322). Durch Reduktion von Isopropyliden-cyanessigsäure-äthylester mit feuchtem Aluminiumamalgam in Ather und Kochen des Reaktionsprodukts mit konz. Salzsäure (Voger, Soc. 1928, 2020). Prismen (aus Wasser). F: 207—208° (F., K., Soc. 1926, 2322). 207° (V.). Ziemlich leicht löslich in Benzol, Äther und Wasser (F., K., Soc. 1928, 2322). Liefert beim Erhitzen mit überschüssigem Acetanhydrid β.β.β΄.β΄-Tetramethyl-adipinsäure-anhydrid (F., K., Soc. 1927, 683). Läßt man auf die Säure Phosphorpentachlorid in der Wärme einwirken und behandelt das entstandene Chlorid mit Brom und dann mit Alkohol. so erhält man α-Brom-β.β.β΄.β΄-tetramethyl-adipinsäure-diäthylester (F., K., Soc. 1927, 684).
- α-Brom-β.β.β',β'-tetramethyl-adipinsäure-diäthylester $C_{14}H_{25}O_4Br=C_2H_5\cdot O_2C\cdot CH_2\cdot C(CH_3)_2\cdot C(CH_3)_2\cdot CHBr\cdot CO_2\cdot C_2H_5$. Beim Erwärmen von β.β.β'.β'-Tetramethyladipinsäure mit Phosphorpentachlorid und Behandeln des entstandenen Säurechlorids mit 1 Mol Brom und dann mit Alkohol (Farmer, Kracovski, Soc. 1927, 684). Gelbes Öl. Liefert beim Kochen mit methylalkoholischer Kalilauge β.β.β'.β'-Tetramethyl-adipinsäure; daneben erhält man in geringer Menge eine Säure vom Schmelzpunkt 212° und andere Produkte.
- 13. 3.4-Dimethyl-hexan-dicarbonsäure-(3.4), $\alpha.\alpha'$ -Dimethyl- $\alpha.\alpha'$ -diäthylbernsteinsäure $C_{10}H_{18}O_4 = HO_2C \cdot C(CH_3)(C_2H_5) \cdot C(CH_3)(C_2H_5) \cdot CO_3H$ (vgl. E I 294). Niedrigerschmeizende Form. B. Beim Eintragen von $\alpha.\alpha'$ -Azo-[methyläthylessigsäure Idinitril in auf 100° erwärmte 75% ige Schwefelsäure und Erhitzen des Reaktionsgemischs auf 125° (Dox, Am. Soc. 47, 1474). Krystalle. Schmilzt bei 147—148° unter Gasentwicklung und Übergang in das Anhydrid. Ammoniumsalz. Krystalle.
- 14. 2-Methyl-3-äthyl-pentan-dicarbonsäure-(2.4), $\alpha.\alpha.\alpha'$ -Trimethyl- β -äthyl-glutarsäure $C_{10}H_{18}O_4 = HO_2C \cdot CH(CH_3) \cdot CH(C_2H_5) \cdot C(CH_3)_2 \cdot CO_2H$. B. Aus δ -Oxy- $\alpha.\gamma.\gamma$ -trimethyl- β -äthyl-n-valeriansäure durch Oxydation mit Kaliumpermanganat (Meerwein, B. 53, 1835). Krystalle (aus Wasser). F: 135—136°.

10. Dicarbonsäuren $\mathrm{C_{11}H_{20}O_4}$.

1. Nonan-dicarbonsäure-(1.9) C₁₁H₂₀O₄ = HO₂C·[CH₂]₉·CO₂H (H 727; E I 295). B. Bei der Verseifung des Monomethylesters mit 10% iger Natronlauge (Lycan, Adams, Am. Soc. 51, 627). Aus Cycloundecanon durch Oxydation mit Chromtrioxyd in essigsaurer Lösung auf dem Wasserbad (Ruzicka, Stoll, Schinz, Helv. 9, 255). Bei der Ozonspaltung von Dodecen-(10)-carbonsäure-(1) in Tetrachlorkohlenstoff (Chuit, Mitarb., Helv. 10, 122). Aus höherschmelzendender A¹¹-Octadecensäure (S. 428) beim Oxydieren mit Kaliumpermanganat in alkal. Lösung oder bei der Ozonspaltung, neben anderen Produkten (Böeseken, R. 46, 633, 634). Aus Cetoleinsäuremethylester (S. 449) bei der Oxydation mit Kaliumpermanganat in Aceton sowie bei der Ozonspaltung, neben anderen Produkten (Toyama, J. Soc. chem. Ind. Japan Spl. 30, 154; C. 1927 II, 2744). Zur Bildung aus 10-Oxy-decan-carbonsäure-(1) nach Walker, Lumsden (Soc. 79, 1194) vgl. Verkade, Hartman, Cooff, R. 45, 387. Aus 10-Oximino-tetradecan-carbonsäure-(1) beim Behandeln mit warmer konzentrierter Schwefelsäure und folgenden Erhitzen mit 48% iger Bromwasserstoffsäure im Rohr auf 170° (Asahina, Akasu, J. pharm. Soc. Japan 1925, Nr. 523, S. 4; C. 1926 I, 915). Entsteht analog neben anderen Produkten beim Behandeln von 10-Oximino-pentadecan-carbonsäure-(1) (As., Yaoi, J. pharm. Soc. Japan 1925, Nr. 523, S. 6; C.1926 I, 916).

Krystalle (aus Benzol). F: 111° (CHUIT, Helv. 9, 266). Verbrennungswärme bei konstantem Volumen: 1453,8 kcal/Mol (VERKADE, HARTMAN, COOPS, R. 45, 386). Ultraviolettes Absorptionsspektrum in Alkohol: RAMART-LUCAS, SALMON-LEGAGNEUR, C. r. 189, 916. Unlöslich in Petroläther (BÖRSEKEN, R. 46, 633). — Beim Erhitzen des Thoriumsalzes auf 350—400° bei 30—40 mm Druck erhält man Cyclodecanon und geringe Mengen Methyln-nonyl-keton (RUZICKA, STOLL, SCHINZ, Helv. 9, 252); bei der Zersetzung des Yttriumsalzes bei 350—500° unter 18 mm Druck wurde daneben auch Cycloeikosandion-(1.11) erhalten (R., St., Sch., Helv. 11, 674).

Monomethylester $C_{12}H_{22}O_4 = HO_2C \cdot [CH_2]_2 \cdot CO_2 \cdot CH_2$. B. Bei der Ozonspaltung von Undecen-(10)-carbonsäure-(1)-methylester (LYCAN, ADAMS, Am. Soc. 51, 627).

Dimethylester $C_{13}H_{24}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_9 \cdot CO_2 \cdot CH_3$. B. Aus Nonan-dicarbon-säure-(1.9) beim Kochen mit methylalkoholischer Salzsäure (Verkade, Coops, Hartman, R. 45, 600). — E: 20,3° (V., C., H.). Kp₃: 140—141° (Chuit, Helv. 9, 266). D¹⁵: 0,990 (Ch.).

Monoäthylester C₁₃H₂₄O₄ = HO₂C·[CH₂]₉·CO₂·C₂H₅. B. Aus dem Diäthylester durch partielle Verseifung (RUZICKA, STOLL, SCHINZ, Helv. 11, 1178). — Wurde nicht rein erhalten. F: ca. 40°. — Lièfert bei der Elektrolyse in methylalkoholischer Kalilauge bei 40—50° und folgenden Behandlung mit siedender alkoholischer Kalilauge Octadecan-dicarbonsäure-(1.18).

Di-[d-octyl-(2)]-ester $C_{27}H_{52}O_4=CH_3\cdot [CH_2]_5\cdot CH(CH_3)\cdot O_2C\cdot [CH_2]_9\cdot CO_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3$. B. Bei der Einw. von rechtsdrehendem Octanol-(2) auf das Dichlorid der Nonandicarbonsäure-(1.9) (Hall, Soc. 123, 40). — Flüssigkeit. Kp₁: 205—207°. D; zwischen 25° (0,8991) und 98° (0,8463): H. n_5^{es} : 1,4448; n_{56}^{es} : 1,4466; $n_{56,s}^{es}$: 1,4545. [α] n_5^{es} : +10,37° (unverdünnt); [α] n_5^{es} : +8,93° (Alkohol; c = 5), —7,75° (Schwefelkohlenstoff; c = 5); Rotations-dispersion der reinen Substanz zwischen 20° und 132° und der Lösungen in Alkohol und Schwefelkohlenstoff bei 18°: H.

Diamid $C_{11}H_{22}O_2N_2 = H_2N \cdot OC \cdot [CH_2]_9 \cdot CO \cdot NH_2$. F: 173° (Barnicoat, Soc. 1927, 2928). Dinitril, Enneamethylendicyanid $C_{11}H_{18}N_2 = NC \cdot [CH_2]_9 \cdot CN$ (E I 295). Kp₇: 189—190° (Chuit, Helv. 9, 266).

- 2. Nonan-dicarbonsäure-(1.1), n-Octyl-malonsäure C₁₁H₂₀O₄=CH₃·[CH₂]₇·CH(CO₂H)₂. Auf n-Octylmalonsäure beziehen sich auch die H 729 aufgeführten Angaben über eine Octylmalonsäure mit unbekannter Struktur der Octylgruppe (vgl. dazu Stohmann, Ber. sächs. Akad. 45 [1893], 639; Smith, Ph. Ch. 25 [1898], 193). B. Beim Erhitzen von n-Octyljodid mit Cyanessigsäureäthylester und Kaliumcarbonat unter 14 mm Druck erst auf 120°, dann auf 160—167° und Verseifen des Reaktionsprodukts mit 20% iger Natronlauge auf dem Wasserbad (Robinson, Soc. 125, 228). Prismen (aus Benzol + wenig Petroläther oder aus Chloroform). F: 115° (R.), 112° (St.). Verbrennungswärme bei konstantem Volumen: 1456,8 kcal/Mol (St.), 1453,6 kcal/Mol (Verkade, Coops, R. 47, 608; vgl. V., C., R. 52 [1933], 754). Bei der trockenen Destillation entsteht Caprinsäure (R.). Wird auch bei längerer Einw. von Kaliumhypobromit-Lösung oder Bromwasser nicht angegriffen (R.).
- 3. 2-n-Hexyl-propan-dicarbonsäure-(1.3), $\beta-n-Hexyl-glutarsäure$ $C_{11}H_{20}O_4=CH_3\cdot [CH_2]_5\cdot CH(CH_2\cdot CO_2H)_2$ (H 727). B. Entsteht bei Einw. von siedender verdünnter Salzsäure auf β -n-Hexyl-glutarsäureimid (Syst. Nr. 3201), auf β -n-Hexyl- α - α -dicyan-glutarsäure-diamid oder auf 2-Oxo-6-imino-4-n-hexyl-piperidin-dicarbonsäure-(3.5)-amid-(5)-nitril-(3) (Syst. Nr. 3369) (Curtis, Day, Kimmins, Soc. 123, 3136). Krystalle (aus verd. Salzsäure). F: 38° . $Ag_2C_{11}H_{18}O_4$.
- 4. 2-Methyl-octan-dicarbonsäure-(1.1), Octyl-(2)-malonsäure $C_{11}H_{20}O_4 = CH_3 \cdot [CH_2]_5 \cdot CH(CH_3) \cdot CH(CO_2H)_2$. B. Durch Verseifen des Diäthylesters mit überschüssiger Natronlauge (Levene, Taylor, J. biol. Chem. 54, 355). Liefert beim Erhitzen auf 180° 2-Methyl-octan-carbonsäure-(1).

Monoäthylester $C_{13}H_{24}O_4 = CH_3 \cdot [CH_3]_5 \cdot CH(CH_3) \cdot CH(CO_2 \cdot C_2H_5) \cdot CO_3H.$ — Basisches Wismutsalz Bi(OH) $C_{13}H_{23}O_4$. Ist lipoidlöslich (Levaditi, Ann. Inst. Pasteur 42, 1493; C. 1929 I, 1370). Physiologische Wirkung: L.

Diäthylester $C_{15}H_{26}O_4=CH_3\cdot [CH_3]_5\cdot CH(CH_3)\cdot CH(CO_2\cdot C_2H_5)_3$. B. Bei der Kondensation von 2-Jod-octan mit Natriummalonester (Levene, Taylor, J. biol. Chem. 54, 355). — Kp_{10} : 157—158°. D_1^{∞} : 0,9496. n_2^{∞} : 1,4324.

5. Nonan-dicarbonsäure-(3.3), Äthyl-n-hexyl-malonsäure $C_{11}H_{20}O_4 = CH_2 \cdot [CH_2]_5 \cdot C(C_2H_5)(CO_2H)_2$. B. Durch Verseifung des Diäthylesters mit siedender wäßrig-alkoholischer Kalilauge (Dox, Am. Soc. 46, 1710). — Nadeln. Zeigt sauren Geschmack und stark bitteren, adstringierenden Nachgeschmack. F: 75°. Löslich in Wasser, Tetrachlorkohlenstoff und den meisten organischen Lösungsmitteln, unlöslich in aliphatischen Kohlenwasserstoffen. — Zersetzt sich bei ca. 140° unter Entwicklung von Kohlendioxyd.

Diäthylester $C_{15}H_{26}O_4 = CH_3 \cdot [CH_2]_5 \cdot C(C_2H_5)(CO_2 \cdot C_2H_5)_9$. B. Beim Erwärmen von n-Hexylbromid mit Athylmalonsäurediäthylester in Natriumäthylat-Lösung (Dox, Am. Soc. 46, 1709). — Öl. Kp_{755} : 280—282°; Kp_6 : 133—134°. D^{25} : 0.9473.

6. Nonan - dicarbonsāure - (5.5), Dibutylmalonsāure $C_{11}H_{20}O_4=(CH_3\cdot [CH_1]_2)_2C(CO_3H)_2$ (E I 295). Röntgenogramm: Henderson, Pr. roy. Soc. Edinburgh 48, 24; C. 1928 I, 2903. F: 160° (H.).

Diäthylester $C_{15}H_{26}O_4=(CH_3\cdot[CH_2]_3)_2C(CO_3\cdot C_2H_5)_2$ (E I 295). Zum ultraroten Absorptionsspektrum vgl. Lecomte, C.~r.~178,~1700.

Mononitril, Dibutyleyanessigsäure $C_{11}H_{19}O_2N=(CH_3\cdot[CH_2]_3)_2C(CN)\cdot CO_2H$. B. Aus dem Äthylester durch Verseifung mit kalter methylalkoholischer Kalilauge (HESSLER, HENDERSON, Am. Soc. 43, 676). — Nadeln von schwachem angenehmen Geruch (aus Petroläther). F: 60°. Schwer löslich in Wasser. — $AgC_{11}H_{18}O_2N$. Niederschlag. — $Cd(C_{11}H_{18}O_2N)_2$. Nadeln.

Äthylester-nitril, Dibutyleyanessigsäureäthylester $C_{13}H_{23}O_2N=(CH_3\cdot[CH_2]_3)_2$ $C(CN)\cdot CO_3\cdot C_2H_5$. B. Neben Butyleyanessigsäureäthylester beim Behandeln von Cyanessigester mit Butylbromid bei Gegenwart von Natriumäthylat (Hessler, Henderson, Am. Soc. 43, 675). — Flüssigkeit von schwachem Geruch. $Kp_{738}\colon 255-260^\circ;\ Kp_{22}\colon 154-156^\circ.\ D^{23}\colon 0,9196$. — Wird durch 10% ige Natronlauge nicht verseift, wohl aber durch kalte methylalkoholische Kalilauge.

Amid-nitril, Dibutylcyanacetamid $C_{11}H_{20}ON_2 = (CH_3 \cdot [CH_2]_3)_2C(CN) \cdot CO \cdot NH_2$. B. Durch Einw. von Phosphorpentachlorid auf Dibutylcyanessigsäure und Behandeln des entstandenen Chlorids mit konzentriertem wäßrigem Ammoniak (Hessler, Henderson, Am. Soc. 43, 676). — Nadeln (aus verd. Alkohol). F: 123°.

7. 7-Methyl-octan-dicarbonsäure-(4.4), Propylisoamylmalonsäure $C_{11}H_{20}O_4=(CH_3)_2CH\cdot CH_2\cdot CH_2\cdot C(CH_2\cdot C_2H_5)(CO_2H)_2$. B. Durch Verseifung des Diäthylesters (Sommaire, Bl. [4] 33, 194). — Krystalle (aus Benzol). F: 143—143,5°. — Liefert beim Erhitzen Propylisoamylessigsäure.

Diäthylester $C_{15}H_{28}O_4 = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot C(CH_2 \cdot C_2H_5)(CO_2 \cdot C_2H_5)_2$. B. Aus der Natriumverbindung des Isoamylmalonsäurediäthylesters beim Behandeln mit Propyljodid (Sommaire, Bl. [4] **33**, 194). — Kp₇₆: 254—259°.

- [γ -Brom-propyl]-isoamyl-malonsäure-diäthylester $C_{15}H_{27}O_4Br = (CH_3)_2CH \cdot CH_2 \cdot CH_2 \cdot C(CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3)_2 \cdot B$. Beim Erhitzen der Natriumverbindung des Isoamylmalonsäurediäthylesters mit überschüssigem Trimethylenbromid in Benzol auf ca. 85° (Dox, Yoder, Am. Soc. 45, 1760). Zähes Öl. Kp₁₃: 175—182°.
- 8. 2.2-Dipropyl-propan-dicarbonsäure-(1.3). β.β-Dipropyl-glutarsäure C₁₁H₂₀O₄ = (C₂H₅·CH₂)₂C(CH₂·CO₂H)₂ (E I 295). B. Zur Bildung nach Guareschi (G. 49 I, 126) vgl. Bains, Thorpe, Soc. 123, 1209. Schuppen (aus Wasser). F: 114,5—115° (B.. Th.). Leicht löslich in siedendem Wasser und heißem Benzol, sehr schwer in Äther (B., Th.). Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 25°: 2,03×10⁻⁴, der 2. Stufe k₂ bei 25°: 5,42×10⁻⁸ (Gane, Ingold, Soc. 1928, 2268); zur elektrolytischen Dissoziationskonstante vgl. auch Spiers, Th., Soc. 127, 544. Liefert beim Erhitzen mit 2 Mol Phosphorpentachlorid, Behandeln mit 2,4 Mol Brom auf dem Wasserbad und Aufbewahren des Reaktionsproduktes mit absol. Alkohol α.α'-Dibrom-β.β-dipropyl-glutarsäure-monöäthylester; den Monoäthylester erhält man in größerer Ausbeute bei Verwendung von Thionylchlorid an Stelle von Phosphorpentachlorid (B., Th., Soc. 123, 1210). Erwärmt man mit Thionylchlorid auf dem Wasserbad und behandelt das Reaktionsprodukt mit 3,6 Mol Brom in der Wärme, so erhält man α.α.α'-Tribrom-β.β-dipropyl-glutarsäure (nachgewiesen durch Überführung in α.γ-Dibrom-β.β-dipropyl-butyrolacton-γ-carbonsäure-äthylester) (B., Th., Soc. 123, 2744). Beim Kochen mit überschüssigem Acetylchlorid entsteht das Anhydrid (Syst. Nr. 2475) (B., Th., Soc. 123, 1210).
- α-Brom-β.β-dipropyl-glutarsäure-monoäthylester $C_{13}H_{23}O_4Br = (C_2H_5 \cdot CH_2)_2C(CHBr \cdot CO_2H)(CH_2 \cdot CO_2 \cdot C_2H_5)$ oder $(C_2H_5 \cdot CH_2)_2C(CH_2 \cdot CO_2H)(CHBr \cdot CO_2 \cdot C_2H_5)$. B. Entsteht in geringerer Menge neben α.α'-Dibrom-β.β-dipropyl-glutarsäurediäthylester beim Behandeln von β.β-Dipropyl-glutarsäure mit Phosphorpentachlorid oder besser mit Thionyl-chlorid und dann mit 2,4 Mol Brom auf dem Wasserbad und folgenden Aufbewahren mit absol. Alkohol (Bains, Thorpe, Soc. 128, 1210). Flüssigkeit. Zersetzt sich beim Erhitzen.
- α.α'-Dibrom- β . β -dipropyl-glutarsäure $C_{11}H_{10}O_4Br_2=(C_2H_5\cdot CH_2)_2C(CHBr\cdot CO_2H)_2$. B. Aus β . β -Dipropyl-glutarsäure durch aufeinanderfolgende Behandlung mit 2 Mol Phosphorpentachlorid und mit 2,4 Mol Brom auf dem Wasserbad und Erwärmen des Reaktionsprodukts mit wasserfreier Ameisensäure (Bains, Thorpe, Soc. 123, 1211). Prismen (aus Benzol). Erweicht bei 145° und schmilzt bei ca. 155°. Fast unlöslich in kaltem Benzol. Liefert beim Erwärmen mit Eisessig α-Brom- β . β -dipropyl-butyrolacton- γ -carbonsäure.
- $\alpha.\alpha'$ -Dibrom- $\beta.\beta$ -dipropyl-glutarsäure-diäthylester $C_{15}H_{26}O_4Br_3=(C_2H_5\cdot CH_2)_2C$ (CHBr·CO₂·C₂H₂)₂. B. Aus $\beta.\beta$ -Dipropyl-glutarsäure durch aufeinanderfolgende Behandlung mit 2 Mol Phosphorpentachlorid und mit 2,4 Mol Brom auf dem Wasserbad und Aufbewahren des Reaktionsprodukts mit absol. Alkohol (Bains, Thorpe, Soc. 123, 1210). Öl. Wurde

nicht ganz rein erhalten. — Liefert bei der Destillation unter vermindertem Druck α -Brom β,β -dipropyl-butyrolacton- γ -carbonsäure-äthylester.

9. 2 - Isopropyl - hexan - dicarbonsāure - (1.5), α - Methyl - β' - isopropyl-pimelinsāure $C_{11}H_{20}O_4 = HO_2C \cdot CH(CH_3) \cdot CH_2 \cdot CH_2CH_2CH_3 \cdot CH_3

Dimethylester $C_{13}H_{24}O_4 = CH_3 \cdot O_3C \cdot CH(CH_3) \cdot CH_2 \cdot CH_3 \cdot CH[CH(CH_3)_3] \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Durch Hydrierung von 2-Isopropenyl-hexen-(4)-dicarbonsäure-(1.5)-dimethylester in Gegenwart von Platinschwarz in Methanol (Ruzicka, Trebler, Helv. 3, 779). — $Kp_{0.33}$: ca. 108° . — Beim Kochen mit Natrium in Xylol und Verseifen des Reaktionsprodukts mit alkoh. Kalilauge oder mit konz. Salzsäure erhält man Tetrahydrocarvon.

Diäthylester $C_{1t}H_{36}O_4=C_2H_5\cdot O_3C\cdot CH(CH_3)\cdot CH_2\cdot CH_2\cdot CH[CH(CH_3)_2]\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Analog der vorangehenden Verbindung. — Dünnflüssiges Öl. $Kp_{0,33}$: ca. 115° (RUZICKA, TREBLER, Helv. 3, 779).

10. 2.6 - Dimethyl - heptan - dicarbonsäure - (3.3), Isopropyl - isoamylmalonsäure $C_{11}H_{20}O_4 = (CH_3)_2CH \cdot CH_2 \cdot C(CO_2H)_2 \cdot CH(CH_3)_2$.

Diäthylester $C_{15}H_{38}O_4 = (CH_3)_2CH \cdot CH_2 \cdot CH_3 \cdot C(CO_3 \cdot C_2H_5)_3 \cdot CH(CH_3)_2$ (H 728). Kp₂₅: 140° (Shonle, Moment, Am. Soc. 45, 248). D₂₅: 0,9575. n₂₅: 1,4273.

11. 2.6 - Dimethyl - heptan - dicarbonsäure - (4.4), Diisobutylmalonsäure $C_{11}H_{20}O_4 = [(CH_3)_2CH \cdot CH_2]_2C(CO_2H)_2$.

Mononitril, Diisobutyloyanessigsäure $C_{11}H_{19}O_2N=[(CH_3)_2CH\cdot CH_2]_2C(CN)\cdot CO_2H$ (E I 296). Nadeln (aus Petroläther), Krystalle (aus Äther + Petroläther). F: 85—86° (Hessler, Henderson, Am. Soc. 43, 672). — $Ca(C_{11}H_{18}O_2N)_2+2H_2O$. Nadeln. — $Ba(C_{11}H_{18}O_2N)_2+H_2O$. Nadeln. — $Cd(C_{11}H_{18}O_2N)_2+H_2O$. Nadeln. — $Co(C_{11}H_{18}O_2N)_2+H_2O$. Das wasserhaltige Salz ist purpurfarben, das wasserfreie blau.

Diisobutyleyanessigsäure-isobutylester $C_{15}H_{27}O_2N = [(CH_3)_2CH\cdot CH_2]_2C(CN)\cdot CO_2\cdot CH_4\cdot CH(CH_3)_3$. B. Neben Isobutyleyanessigsäure-isobutylester bei der Einw. von Isobutyljodid auf Cyanessigsäureäthylester in Natriumisobutylat-Lösung (Hessler, Henderson, Am. Soc. 43, 672). — Sirupöse Flüssigkeit. Erstarrt nicht bei Abkühlung mit Eis-Kochsalz-Gemisch. Kp_{739} : 250—260°; Kp_{35} : 155—160°. D^{19} : 0,9118. Wird durch wäßrige verdünnte Natronlauge nicht, durch methylalkoholische Kalilauge leicht verseift.

12. Octylmalonsäure mit unbekannter Struktur der Octylgruppe $C_{11}H_{20}O_4=C_8H_{17}\cdot CH(CO_2H)_2$ (H 729). Vgl. den Artikel n-Octyl-malonsäure, S. 613. [BAUMANN]

11. Dicarbonsäuren $C_{12}H_{22}O_4$.

1. Decan-dicarbonsäure-(1.10), Dekamethylendicarbonsäure C₁₂H₂₁O₄ = HO₂C·[CH₂]₁₀·CO₂H (H 729; E I 296). B. Bei der Verseifung des Monomethylesters mit 10% iger Natronlauge (Lycan, Adams, Am. Soc. 51, 627). Aus ω-Cyan-undecylsäure-methylester (Bhattacharya, Saletore, Simonsen, Soc. 1928, 2679) und aus Dekamethylendicyanid (Chutt, Helv. 9, 267) durch Verseifung mit wäßrig-alkoholischer Kalilauge. Bei der Oxydation von Cyclododecanon (Ruzicka, Stoll, Schinz, Helv. 9, 257) und von Muscon (Syst. Nr. 614) (Ru., Helv. 9, 723, 727) mit Chromtrioxyd in Eisessig bzw. verd. Essigsäure auf dem Wasserbad, neben anderen Produkten. Beim Ozonisieren der Fettsäuren aus gehärtetem Erdnußöl und nachfolgenden Spalten mit verd. Wasserstoffperoxyd-Lösung, neben anderen Produkten (Bauer, Mitsotakis, Ch. Umschau Fette 35, 138; C. 1928 II, 1870).

Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2633; Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328. F: 126,5—127° (Lycan, Adams, Am. Soc. 51, 627), 127,8—128° (Chuit, Helv. 9, 267), 129° (kort.) (Fairweather, Pr. roy. Soc. Edinburgh 48, 72; Phil. Mag. [7] 1, 945; C. 1926 II, 188, 2146). Verbrennungswärme bei konstantem Volumen: 1608,2 kcal/Mol (Verkade, Hartman, Coops, R. 45, 387; vgl. V., H., Coops, Versl. Akad. Amsterdam 33, 767; C. 1925 I, 1281). Ultraviolettes Absorptionsspektrum in Alkohol: Ramaet-Lucas, Salmon-Legagneur, C. r. 189, 916. 100 cm² Wasser lösen bei 20° ca. 4 mg (Bertram, Bio. Z. 197; 438). — Das Thoriumsalz liefert beim Erhitzen auf 350—400° unter 30—40 mm Druck Cycloundecanon und andere Produkte (Ruzicka, Stoll, Schinz, Helv. 9, 254). Bei der Zersetzung des Yttriumsalzes bei 300—450° unter 10 mm Druck entstehen Cycloundecanon, Cyclodokosandion-(1.12) und Methyl-n-decyl-keton (Ru., St., Sch., Helv. 11, 682). — Magnesiumsalz. Leicht löslich in Wasser (Mirchandani, Simonsen, Soc. 1927, 376).

616

Decan-dicarbonsäure-(1.10)-monomethylester $C_{13}H_{24}O_4 = HO_3C \cdot [CH_3]_{10} \cdot CO_3 \cdot CH_3$. B. Durch teilweise Verseifung des Dimethylesters mit warmer 2 n-alkoholischer Kalilauge (Bhattacharya, Saletore, Simonsen, Soc. 1928, 2679). Bei der Ozonspaltung von Dodecen-(11)-carbonsäure-(1)-methylester in Eisessig (Lycan, Adams, Am. Soc. 51, 627). — Prismen (aus Methanol). F: 51° (Bh., Sa., Si.), 51,5—52° (L., A.).

Decan-dicarbonsäure-(1.10)-dimethylester $C_{14}H_{26}O_4=CH_2\cdot O_2C\cdot [CH_2]_{10}\cdot CO_2\cdot CH_3$. B. Beim Behandeln des Disilbersalzes der Säure mit Methyljodid (Mirchandani, Simonsen, Soc. 1927, 377). — Krystalle. F: 31° (Chuit, Helv. 9, 268). Kp₀: 167—169° (Ch.); Kp₁₀: 170° (Bhattacharya, Šaletore, Si., Soc. 1928, 2679), 175—177° (M., Si.).

Decan-dicarbonsäure-(1.10)-monoäthylester $C_{14}H_{26}O_4 = HO_2C \cdot [CH_2]_{10} \cdot CO_2 \cdot C_2H_6$. B. Das Natriumsalz entsteht bei der teilweisen Verseifung des Diäthylesters mit alkoh. Natronlauge (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 72; C. 1926 II, 188). — Blättchen. F: 39—41° (RUZICKA, STOLL, SCHINZ, Helv. 11, 1179). — Das Natriumsalz liefert bei der Elektrolyse in verd. Alkohol bei 50—55° Eikosan-dicarbonsäure-(1.20)-diäthylester und geringere Mengen Undecylensäureäthylester (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 72; C. 1926 II, 188; vgl. a. R., St., Sch.).

Decan-dicarbonsäure-(1.10)-diäthylester $C_{16}H_{30}O_4 = C_2H_5 \cdot O_3C \cdot [CH_3]_{10} \cdot CO_3 \cdot C_2H_5$. Beim Behandeln der Säure mit alkoh. Salzsäure (Fairweather, Pr. roy. Soc. Edinburgh 46, 72; C. 1926 II, 188). — Krystalle. F: 15° (F.), ca. 16° (Chuit, Helv. 9, 268). Kp_{0.3-0.7}: 149° (Thoms, Deckert, Ber. dtsch. pharm. Ges. 31 [1921], 26); Kp_{3.5}: 165—166° (CH.); Kp₁₄: 192—193° (Child, Pyman, Soc. 1929, 2015). D²⁰: 0,849 (CH.). Struktur monomolekularer Schichten auf Wasser: Adam, Jessop, Pr. roy. Soc. [A] 112, 377; C. 1926 II, 2399.

Decan-dicarbonsäure-(1.10)-di-[d-octyl-(2)]-ester $C_{38}H_{54}O_4=CH_3\cdot [CH_3]_5\cdot CH(CH_3)\cdot O_3C\cdot [CH_2]_{10}\cdot CO_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3$. B. Bei der Einw. von rechtsdrehendem Octanol-(2) auf Decan-dicarbonsäure-(1.10)-dichlorid (HALL, Soc. 123, 39, 40, 42). — Fl. Kp₁: 205—210°. D; zwischen 30° (0,8960) und 142° (0,8110): H. n_5^{54} : 1,4463; Brechungsindices zwischen λ 643,8 m μ (1,4453) und 435,8 m μ (1,4560) bei 25,8°: H. [α] $_5^6$: +10,36° (unverdünnt); [α] $_5^6$: +9,3° (Alkohol; c = 5); [α] $_5^6$: -7,7° (Schwefelkohlenstoff; c = 5). Rotationsdispersion der reinen Substanz zwischen 20° und 133° und der Lösungen in Alkohol und Schwefelkohlenstoff bei Zimmertemperatur für λ 589,3—435,8 m μ : H.

Decan - dicarbonsäure - (1.10) - diamid $C_{19}H_{24}O_2N_2 = H_2N \cdot OC \cdot [CH_2]_{10} \cdot CO \cdot NH_2$. B. Beim Behandeln des Dichlorids mit Ammoniak etwas oberhalb 120° (Barnicoat, Soc. 1927, 2928). — F: 189°.

Decan-dicarbonsäure-(1.10)-mononitril, ω -Cyan-undecylsäure $C_{12}H_{21}O_2N=HO_2C$ - $[CH_2]_{10}\cdot CN$. B. Beim Kochen von ω -Brom-undecylsäure mit Natriumcyanid und Soda in verd. Methanol (Perkins, Cruz, Am. Soc. 49, 1073). — Krystalle (aus Tetrachlorkohlenstoff). F: 57°. Fast unlöslich in Wasser und Petroläther, leicht löslich in den meisten organischen Lösungsmitteln. — Bariumsalz. Krystalle (aus verd. Alkohol oder aus Wasser).

Methylester $C_{13}H_{23}O_3N=CH_3\cdot O_2C\cdot [CH_2]_{10}\cdot CN$. B. Beim Behandeln von ω -Bromundecylsäure-methylester mit Kaliumcyanid in Alkohol (Bhattacharya, Saletore, Simonsen, Sc. 1928, 2679). — Kp_{10} : 180° .

Chlorid $C_{12}H_{20}ONCl = CloC \cdot [CH_2]_{10} \cdot CN$. B. Aus ω -Cyan-undecylsäure und Phosphortrichlorid in Toluol (Perkins, Cruz, Am. Soc. 49, 1074).

Decan-dicarbonsäure-(1.10)-dinitril, Dekamethylendicyanid $C_{19}H_{20}N_{9}=NC-[CH_{1}]_{10}\cdot CN$ (H 729). B. Aus 1.10-Dibrom-decan und Kaliumeyanid (Churr, Helv. 9, 266). — F: 16°. Kp₈: 195°.

- 2. Decan-dicarbonsäure-(1.9) C₁₉H₂₉O₄ = HO₂C·[CH₂]₈·CH(CH₂)·CO₄H. B. Man erhitzt ω-Brom-pelargonsäure-methylester mit der Natriumverbindung des Methylmalonsäure-diäthylesters in Alkohol erst auf dem Wasserbad, dann im Autoklaven auf 140°, verseift den erhaltenen Ester (Kp₂: ca. 200°) und erhitzt die Tricarbonsäure auf 190° (CHUIT, Mitarb., Helv. 10, 168). Nadeln (aus Wasser). F: 80—80,5°. Leicht löslich in Benzol.
- 3. 2-Methyl-nonan-dicarbonsäure-(1.9) $C_{19}H_{29}O_4=HO_3C\cdot[CH_{2}]\cdot CH(CH_3)\cdot CH_2\cdot CO_2H$. B. Neben Nonen-(7)-carbonsäure-(1) bei längerem Erhitzen von 1.7-Dibromoctan mit Natriummalonsäuredimethylester in Alkohol erst auf dem Wasserbad, dann im Autoklaven auf 180°, Verseifen des Reaktionsprodukts und Erhitzen des erhaltenen Säuregemisches (Churr, Mitarb., Helv. 10, 186). Nicht rein erhalten. F: 40—42°. Kp₅: 210—215°.

Dimethylester $C_{14}H_{36}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_7 \cdot CH(CH_3) \cdot CH_3 \cdot CO_2 \cdot CH_3$. $Kp_{15}: 174-178^\circ$; $D^{15}: 0,955$ (Churr, Mitarb., *Helv.* 10, 186).

4. Decan-dicarbonsaure-(3.3), Athyl-n-heptyl-malonsaure $C_{12}H_{22}O_4 = CH_2 \cdot [CH_2]_4 \cdot C(C_2H_3)(CO_2H)_2$.

Diäthylester $C_{16}H_{30}O_4 = CH_3 \cdot [CH_3]_6 \cdot C(C_2H_5)(CO_2 \cdot C_2H_5)_2$. B. Beim Behandeln von n-Heptyl-malonsäure-diäthylester mit Äthyljodid in Gegenwart von Natriumäthylat (Sommare, Bl. [4] 33, 195). — Kp_{15} : 168—171°.

- 5. 2.7-Dimethyl-octan-dicarbonsäure-(4.5), $\alpha.\alpha'$ -Diisobutyl-bernsteinsäure $C_{12}H_{22}O_4 = (CH_2)_2CH \cdot CH_2 \cdot CH(CO_2H) \cdot CH(CO_2H) \cdot CH_2 \cdot CH(CH_3)_2$ (H 730).

 H 730, Z. 19 v. o. statt "Schmelzpunkt" lies "Siedepunkt".
- 6. $\beta.\beta$ -Dimethyl- β' -sek.-butyl-adipinsdure (?) $C_{12}H_{22}O_4 = CH_3 \cdot CH_3 \cdot CH(CH_3) \cdot CH(CH_2 \cdot CO_2H) \cdot C(CH_3) \cdot CH_3 \cdot CO_2H$ (?). B. Beim Behandeln des aus Elemol erhaltenen Ketons $C_{19}H_{36}O$ (Syst. Nr. 648) mit Ozon in Tetrachlorkohlenstoff und Zersetzen des entstandenen Ozonids mit Wasser (Ruzicka, van Veen, A. 476, 76). Bei der Oxydation der aus Elemol erhaltenen Oxocarbonsäure $C_{15}H_{26}O_3$ (Syst. Nr. 281) mit Brom in wäßriger Natronlauge bei gewöhnlicher Temperatur (Semmler, Liao, B. 50 [1917], 1290; R., Pfeiffer, Helv. 9, 854). Kp₁₀: 180—205°; D³⁰: 1,1000; n_D: 1,4792; α_D : —8° (S., L.).

Dimethylester $C_{14}H_{26}O_4 = C_2H_5 \cdot CH(CH_3) \cdot CH(CH_2 \cdot CO_2 \cdot CH_3) \cdot C(CH_3)_2 \cdot CH_2 \cdot CO_2 \cdot CH_3$. Beim Behandeln des Silbersalzes mit Methyljodid (RUZICKA, PFEIFFER, Helv. 9, 855.) — Kp_{12} : 170—175° (R., Pf.). — Liefert beim Erhitzen mit Natrium in Benzol und Kochen des Reaktionsprodukts mit Barytwasser 1.1-Dimethyl-2-sek.-butylcyclopentanon-(4) (?) (Syst. Nr. 614) (R., VAN VEEN, A. 476, 107).

7. 3.4 - Diāthyl-hexan-dicarbonsāure-(3.4). Tetraāthylbernsteinsāure $C_{12}H_{92}O_4 = HO_2C \cdot C(C_2H_5)_2 \cdot C(C_2H_5)_2 \cdot CO_2H$ (H 730; E I 297). B. Bei allmāhlichem Eintragen des Dinitrils der $\alpha.\alpha'$ -Azo-diāthylessigsāure in 75% ige Schwefelsāure bei 100° und nachfolgenden Erhitzen auf 140° (Dox, Am. Soc. 47, 1475). — Nadeln. F: 150—151°. Verbrennungswärme bei konstantem Volumen: 1617,9 kcal/Mol (Hartman in Landolt-Börnst. E I 873).

Diäthylester $C_{16}H_{30}O_4=C_2H_5\cdot O_2C\cdot C(C_2H_5)_3\cdot C(C_2H_5)_3\cdot CO_2\cdot C_2H_5$ (H 731). B. Bei längerem Kochen von Diäthylbromessigsäure-äthylester mit Kupferpulver in Xylol (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1479). — Kp₁₀: 158°.

Diamid $C_{13}H_{24}O_2N_2 = H_2N \cdot OC \cdot C(C_2H_5)_2 \cdot C(C_2H_5)_2 \cdot CO \cdot NH_2$ (E I 297). B. Durch Erhitzen des Diathylesters mit alkoh. Ammoniak oder durch Behandeln des Dinitrils mit Schwefelsäure (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1479). — F: 49°.

Dinitril, Tetraäthyläthylendicyanid $C_{12}H_{20}N_2 = NC \cdot C(C_2H_5)_2 \cdot C(C_2H_5)_2 \cdot CN$ (E I 297). B. Beim Kochen von Diäthylbromessigsäure-nitril mit Kupferpulver in Xylol (Höchster Farbw., D. R. P. 412820; C. 1925 II, 92; Frdl. 15, 1479). Neben der freien Säure bei allmählichem Eintragen von $\alpha.\alpha'$ -Azo-diäthylessigsäure-dinitril in auf 100° erwärmte 75% ige Schwefelsäure und Erhitzen des Reaktionsgemisches auf 140° (Dox, Am. Soc. 47, 1475). — Prismen von starkem campherähnlichem Geruch. F: 47° (D.), 51° (Höchster Farbw.). Kp₁₀: 151—153° (Höchster Farbw.). Mit Wasserdampf leicht flüchtig (D.). Leicht löslich in allen organischen Lösungsmitteln (Höchster Farbw.). — Liefert beim Erhitzen mit Salzsäure unter Druck auf 180° Tetraäthyl-bernsteinsäureanhydrid (D.)

12. Dicarbonsäuren $C_{13}H_{24}O_4$.

1. Undecan-dicarbonsdure-(1.11). Brassylsdure C₁₃H₂₄O₄ = HO₂C·[CH₂]₁₁·CO₃H (H 731; E I 297). B. Bei der Kondensation von 1.9-Dibrom-nonan mit Natrium-malonester in Alkohol auf dem Wasserbad oder im Autoklaven bei 125°, Verseifung und Erhitzen der Tetracarbonsäure auf 180° (Chutt, Helv. 9, 270). Bei der Oxydation von Cyclotridecanon mit Chromtrioxyd in Eisessig auf dem Wasserbad (Ruzicka, Stoll, Schinz, Helv. 9, 258). Bei der Ozonspaltung von Tetradecen-(12)-carbonsäure-(1) in Tetrachlor-kohlenstoff (Chutt, Mitarb., Helv. 10, 130) und von Erucasäure oder Brassidinsäure in Chloroform (Holde, Zadek, B. 56, 2056; Verkade, Hartman, Coops, R. 45, 388) oder in Eisessig (Mirchandani, Simonsen, Soc. 1927, 377). Bei der Hydrierung von Undecadiin-(1.10)-dicarbonsäure-(1.11) in Gegenwart von Platinschwarz in absol. Alkohol (Lespieau, Bl. [4] 43, 1193). — Blättchen (aus 50 %igem Alkohol); Krsytalle (aus Essigester). Monoklin prismatisch (Caspari, Soc. 1928, 3235). Röntgenographische Untersuchungen: Normand, Ross, Henderson, Soc. 1926, 2633; Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328; Ca., Soc. 1928, 3237. F: 112—113° (M., Si.), 113° (V., Ha., C.), 113,5° (N., Ro., He., Soc. 1926, 2633). Verbrennungswärme bei konstantem Volumen: 1766,3 kcal/Mol (V., Ha., C., R. 45, 389; vgl. V., Ha., C., Verel. Akad. Amsterdam 33, 767; C. 1925 I, 1281). Ultraviolettes Absorptionsspektrum in Alkohol: Ramarr-Lucas, Salmon-Legagneur, C. r. 189, 916. — Beim Erhitzen des Thoriumsalzes oder des Yttriumsalzes auf 350—400° unter 30—40 mm Druck bilden sich Cyolododecanon, Methyl-n-undecyl-keton und andere Produkte (Ruzicka, Stoll, Schinz, Helv. 9, 250, 256; 11, 685).

DICARBONSAUREN Cn H2n-2O4

Brassylsäuremonomethylester $C_{14}H_{26}O_4 = HO_2C \cdot [CH_2]_{11} \cdot CO_2 \cdot CH_3$. B. Durch Oxydation von 12-Oxo-dodecan-carbonsäure-(1)-methylester an der Luft (Noller, Adams, Am. Soc. 48, 1078). — Krystalle (aus Petroläther). F: 57—57,5° (korr.).

Brassylsäuredimethylester $C_{15}H_{26}O_4=CH_3\cdot O_2C\cdot [CH_2]_{11}\cdot CO_3\cdot CH_3$ (H 731). B. Beim Behandeln der Säure mit Methanol und Schwefelsäure (Churr, Helv. 9, 270). — Krystalle (aus verd. Alkohol). F: 33,2°. Kp₁₁: 192—194°.

Brassylsäurediäthylester $C_{17}H_{38}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{11} \cdot CO_2 \cdot C_2H_5$. Krystalle. Röntgenographische Untersuchungen: Normann, Ross, Henderson, Soc. 1926, 2635; Pr. roy. Soc. Edinburgh 47, 79; C. 1927 II, 1328. F: 20° (Chuit, Helv. 9, 270; N., R., H.), 20° (korr.) (Fairweather, Phil. Mag. [7], 1, 947; C. 1926 II, 2146). Kp₁₂: 204° (Ch.). Struktur monomolekularer Schichten auf Wasser bei 1°: Adam, Jessop, Pr. roy. Soc. [A] 112, 377; C. 1926 II, 2399.

Brassylsäure-di-[d-octyl-(2)]-ester $C_{39}H_{56}O_4=CH_3\cdot [CH_2]_5\cdot CH(CH_3)\cdot O_2C\cdot [CH_2]_{11}\cdot CO_2\cdot CH(CH_3)\cdot [CH_2]_5\cdot CH_3.$ B. Bei der Einw. von rechtsdrehendem Octanol-(2) auf Brassylsäure-dichlorid (HALL, Soc. 123, 36, 39, 40, 44). — Plättchen. F: 21°. Kp₃: 215—217°. Dixischen 31° (0,8894) und 142° (0,8021): H. nö: 1,4456; nö: 1,4475; nö: 1,4553. [a]ö: +9,25° (unverdünnt); [a]ö: +9,4° (Alkohol; c = 5); [a]ö: -6,3° (Schwefelkohlenstoff; c = 5). Rotationsdispersion der reinen Substanz zwischen 20° und 126° und der Lösungen in Alkohol und Schwefelkohlenstoff bei Zimmertemperatur für λ = 589,3—435,8 m μ : H.

Brassylsäure-äthylester-chlorid $C_{15}H_{27}O_3Cl=C_2H_5\cdot O_2C\cdot [CH_2]_{11}\cdot COCl.$ B. Durch teilweise Verseifung von Brassylsäurediäthylester mit wäßrig-alkoholischer Kalilauge und Behandlung des entstandenen Monoäthylesters mit Thionylchlorid in Petroläther (Ruzzeka, Stoll, Helv. 10, 692). — Öl. Kpca. 5: 185—188°. — Gibt mit Methylzinkjodid in Essigester + Benzol + Xylol unter Eiskühlung 12-Oxo-tridecan-carbonsäure-(1)-äthylester.

Brassylsäure-äthylester-amid $C_{15}H_{29}O_3N=C_2H_5\cdot O_2C\cdot [CH_2]_{11}\cdot CO\cdot NH_2$. B. Beim Behandeln von Brassylsäure-äthylester-chlorid mit konz. Ammoniak (Ruzicka, Stoll, Helv. 10, 692). — Krystalle (aus Alkohol). F: 91—92°.

2. Undecan-dicarbonsäure-(1.10) C₁₈H₂₄O₄ = HO₄C·[CH₄]₂·CH(CH₃·CO₄H. B. Bei 40·stdg. Erwärmen von 1.10-Dibrom-undecan mit Kaliumcyanid in verd. Alkohol auf dem Wasserbad und Verseifen des Reaktionsprodukts, neben anderen Produkten (Chutt, Mitarb., Helv. 10, 115, 170). Bei der Kondensation von ω-Brom-caprinsäure mit Natriummethylmalonsäure-diäthylester in Alkohol-Benzol auf dem Wasserbad, Verseifen mit Kalilauge und Erhitzen der entstandenen Tricarbonsäure auf 150—180° (Ch., Mitarb., Helv. 10, 170). Beim Ozonisieren von Tridecen-(12)-carbonsäure-(2) und nachfolgenden Zersetzen mit warmem Wasser, neben 12-Oxo-dodecan-carbonsäure-(2) (Ch., Mitarb., Helv. 10, 168). Bei der Oxydation von 12-Oxo-dodecan-carbonsäure-(2) mit alkal. Permanganat-Lösung (Ch., Mitarb., Helv. 10, 169). — Nadeln (aus Benzol + Petroläther). F: 76—76,5° (Ch., Mitarb., Helv. 10, 169).

Dimethylester $C_{18}H_{28}O_4 = CH_3 \cdot O_3C \cdot [CH_3]_9 \cdot CH(CH_3) \cdot CO_3 \cdot CH_3$. Flüssigkeit. $Kp_{13} \cdot 187 - 188^0$; $D^{18} \cdot 0.966$ (Churr, Mitarb., $Helv. \ 10$, 169).

Diäthylester $C_{17}H_{32}O_4 = C_4H_5 \cdot O_2C \cdot [CH_2]_9 \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. Flüssigkeit. Kp₁₂: 197°; D¹⁵: 0,940 (Churr, Mitarb., *Helv.* 10, 169).

3. 2-Methyl-decan-dicarbons dure-(1.10) $C_{13}H_{24}O_4 = HO_sC \cdot [CH_3]_s \cdot CH(CH_3) \cdot CH_1 \cdot CO_2H$ (H 731). Kp₁: 210—211°; Kp₇: 237—238° (CHUIT, Mitarb., Helv. 10, 174).

Dimethylester $C_{15}H_{36}O_4 = CH_3 \cdot O_3C \cdot [CH_3]_8 \cdot CH(CH_3) \cdot CH_2 \cdot CO_3 \cdot CH_3$ (H 731). Kps: 175—176°; D¹⁸: 0,975 (CHUIT, Mitarb., *Helv.* 10, 174).

Disthylester $C_{17}H_{32}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_8 \cdot CH(CH_3) \cdot CH_2 \cdot CO_2 \cdot C_2H_8$. Kp₈: 187—189°; D¹⁵: 0,947 (CHUIT, Mitarb., *Helv.* 10, 174).

4. 3-Methyl-decan-dicarbonsdure-(1.10) C₁₃H₂₄O₄ = HO₂C·[CH₂]·CH(CH₃)·CH₄·CH₂·CO₂H. B. Durch Ozonisierung von s-Citronellyl-n-capronsäure in Eisessig und nachfolgende Einw. von Chromessigsäure (Ruzicka, Steiger, Helv. 10, 689). — Krystalle (aus Benzol-Petroläther). F: 71°.

Diāthylester $C_{17}H_{38}O_4 = C_2H_5 \cdot O_3C \cdot [CH_2]_7 \cdot CH(CH_3) \cdot CH_2 \cdot CH_3 \cdot CO_2 \cdot C_2H_5$. Kp₀₇₅: ca. 140° (Ruzicka, Steiger, *Helv.* 10, 689).

5. Undecan-dicarbonsäure - (3.3), Äthyl-n-octyl-malonsäure $C_{12}H_{24}O_4=CH_2\cdot[CH_2]_7\cdot C(C_2H_5)(CO_2H)_2$. B. Bei mehrstündigem Erhitzen des Diäthylesters mit wäßrigalkoholischer Kalilauge (v. Braun, Teuffert, B. 62, 238). — F: 72°. — Liefert beim Erhitzen Äthyl-n-octyl-essigsäure.

Diäthylester $C_{17}H_{32}O_4 = CH_2 \cdot [CH_2]_7 \cdot C(C_2H_5)(CO_2 \cdot C_2H_5)_2$. B. Bei der Kondensation von Natrium-äthyl-malonsäure-diäthylester mit n-Octylbromid in Äther (v. Braun, Teuffert,

- B. 62, 237). Angenehm riechende Flüssigkeit. Kp₁₈: 171—180°. Wird erst bei mehrstündigem Erhitzen mit wäßrig-alkoholischer Kalilauge verseift.
- 6. Undecan-dicarbonsäure-(4.4), Propyl-n-heptyl-malonsäure $C_{12}H_{24}O_4=CH_2\cdot[CH_2]_6\cdot C(CH_2\cdot C_2H_6)$ (CO₂H)₂. Krystalle. F: 110—111° (v. Braun, Kröper, B. 62, 2882). Gibt beim Erhitzen im Vakuum Propyl-n-heptyl-essigsäure.

Diäthylester $C_{17}H_{39}O_4 = CH_{3} \cdot [CH_{3}]_{6} \cdot C(CH_{3} \cdot C_{2}H_{5})(CO_{3} \cdot C_{3}H_{5})_{8}$. B. Durch Einw. von Propylbromid auf die Natriumverbindung des n-Heptyl-malonesters (v. Braun, Kröper, B. 62, 2882). — Flüssigkeit. Kp_{10} : 165°.

7. Undecan-dicarbonsäure-(5.5), Butyl-n-hexyl-malonsäure $C_{13}H_{24}O_4=CH_3\cdot[CH_3]_5\cdot C(CO_2H)_2\cdot[CH_3]_5\cdot CH_3$. Krystalle (aus Äther + Petroläther). F: 134° (v. Braun, Kröper, B. 62, 2883). — Gibt beim Erhitzen im Vakuum Butyl-n-hexyl-essigsäure.

Diäthylester $C_{17}H_{39}O_4 = CH_3 \cdot [CH_2]_5 \cdot C(CO_2 \cdot C_2H_5)_2 \cdot [CH_2]_3 \cdot CH_3$. B. Durch Einw. von n-Hexylbromid auf die Natriumverbindung des Butylmalonesters (v. Braun, Kröper, B. 62, 2883). — Kp₁₅: 172—175°.

8. Undecan-dicarbonsaure-(6.6), Di-n-amyl-malonsaure $C_{11}H_{24}O_4 = (CH_3 \cdot [CH_2]_4)_2C(CO_2H)_2$.

Diäthylester $C_{17}H_{32}O_4 = (CH_3 \cdot [CH_2]_4)_2C(CO_3 \cdot C_2H_5)_3$. B. Neben überwiegenden Mengen von n-Amyl-malonsäure-diäthylester bei der Einw. von n-Amylbromid auf Natriummalonester in Alkohol (Dox, Jones, Am. Soc. 50, 2035). — Nicht rein erhalten. Kp₁₁: 158° bis 161°.

9. 4-Methyl-decan-dicarbonsäure-(3.3), Äthyl-octyl-(2)-malonsäure $C_{13}H_{14}O_4=CH_3\cdot [CH_2]_5\cdot CH(CH_3)\cdot C(C_2H_5)(CO_2H)_2$.

Äthyl - octyl - (2) - malonsäure - diäthylester $C_{17}H_{22}O_4 = CH_3 \cdot [CH_3]_5 \cdot CH(CH_3) \cdot C(C_2H_5)(CO_3 \cdot C_2H_5)_2$.

- a) Äthyl-[d-octyl-(2)]-malonsäure-diäthylester. B. Aus der Natriumverbindung des Äthylmalonsäure-diäthylesters und rechtsdrehendem 2-Brom-octan in Alkohol (HSUEH, MARVEL, Am. Soc. 50, 858). Kp₃: 137—138°. D₄°: 0,9323. n_D°: 1,4370. [α]₀°: +8,22° (unverd.).
- b) Äthyl-[l-octyl-(2)]-malonsäure-diäthylester. B. Aus der Natriumverbindung des Äthylmalonsäure-diäthylesters und linksdrehendem 2-Brom-octan in Alkohol (HSUEH, MARVEL, Am. Soc. 50, 858). Kp₃: 137—138°. D[∞]₄: 0,9323. n[∞]₅: 1,4370. [α][∞]₅: -8.07° (unverd.).
- c) Äthyl-[dl-octyl-(2)]-malonsäure-diäthylester. B. Aus der Natriumverbindung des Äthylmalonsäure-diäthylesters und inaktivem 2-Brom-octan in Alkohol (HSUEH, MARVEL, Am. Soc. 50, 858). Kp₂: 135—140°; Kp₆: 137—142°; Kp₁₇: 158—165°; Kp₂₇: 170—175°. D₄*: 0,9434. n₅*: 1,4365.
- 10. 3-Methyl-2-isoamyl-pentan-dicarbonsäure-(1.5), γ -Methyl- β -isoamyl-pimelinsäure $C_{19}H_{24}O_4 = HO_4C \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH(CH_2 \cdot CO_3H) \cdot CH_2 \cdot CH_3 \cdot CH(CH_3)_3$.

Diäthylester $C_{17}H_{22}O_4=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CH(CH_2\cdot CO_2\cdot C_2H_5)\cdot CH_2\cdot CH_2\cdot CH(CH_3)_2$. B. Bei der Hydrierung von 3-Methyl-2-isoamyl-penten-(1)-dicarbonsaure-(1.5)-diathylester bei Gegenwart von Platinschwarz in Essigester (Ruzicka, Pfeiffer, Helv. 9, 858). — Kp₁₂: 165°. — Liefert beim Kochen mit Natrium in Xylol und Erhitzen des Reaktionsproduktes mit 20 % iger Salzsäure 1-Methyl-2-isoamyl-cyclohexanon-(4).

11. 2.8 - Dimethyl - nonan - dicarbonsäure - (5.5), Diisoamylmalonsäure $C_{13}H_{24}O_4=[(CH_3)_1CH\cdot CH_3\cdot CH_3]_2C(CO_2H)_3$ (H 732).

Diisoamyleyanessigsäure-isoamylester $C_{18}H_{28}O_8N = [(CH_3)_2CH \cdot CH_2 \cdot CH_3]_4C(CN) \cdot CO_3 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot$

12. 3.7-Dimethyl-nonan-dicarbonsdure (5.5), Di-dl-amyl-malonsdure $C_{18}H_{24}O_4 = [CH_2 \cdot CH_2 \cdot CH(CH_2) \cdot CH_3]_8C(CO_2H)_2$.

Diäthylester $C_{17}H_{28}O_4 = [CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2]_2C(CO_3 \cdot C_2H_5)_3$. B. Neben dl-Amyl-malonsäurediäthylester bei längerem Kochen von Natriummalonester mit 1-Brom-2-methyl-butan (Dewael, Weckering, Bl. Soc. chim. Belg. 33, 501; C. 1925 I, 358). — Flüssigkeit. Kp: 292°. D_4^{a} : 0,9426. Unlöslich in Wasser. — Läßt sich nur durch mehrtägiges Erhitzen mit konz. Kalilauge zu der als Sirup erhaltenen freien Säure verseifen.

13. Dicarbonsăuren $C_{14}H_{26}O_4$.

1. Dodecan - dicarbonsäure - (I.12) C₁₄H₂₆O₄ = HO₃C· [CH₃]₁₂· CO₂H (H 732; E I 298). B. Bei der Oxydation von Cyclotetradecanon mit Chromtrioxyd in Eisessig auf dem Wasserbad (Ruzicka, Stoll, Schinz, Helv. 9, 259). Bei der Ozonspaltung von Tetradecen-(13)-carbonsäure-(1) (Chuit, Mitarb., Helv. 10, 127). — Röntgenographische Untersuchungen: Normand, Ross, Henderson, Soc. 1926. 2633; Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328. F: 125,8° (Ch., Helv. 9, 272), 126,5° (kort.) (Fairweather, Pr. roy. Soc. Edinburgh 46, 73; C. 1926 II, 188; Phil. Mag. [7] 1, 945; C. 1926 II, 2146). Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916. — Beim Erhitzen des Yttriumsalzes oder des Thoriumsalzes auf 350—400° unter 30—40 mm Druck entstehen Cyclotridecanon, Methyl-n-dodecyl-keton und andere Produkte (Ruzicka, Stoll, Schinz, Helv. 9, 257; 11, 685). — Magnesiumsalz. Schwer löslich in Wasser (Mirchandani, Simonsen, Soc. 1927, 376). — BaC₁₄H₂₄O₄ (M., Si.).

Dimethylester $C_{16}H_{30}O_4=CH_3\cdot O_2C\cdot [CH_2]_{12}\cdot CO_2\cdot CH_3$ (H 732). F: 42° (Ruzicka, Stoll, Schinz, Helv. 9, 259), 43° (Chuit, Helv. 9, 272). Kp₈: 193—194° (Ch.); Kp₁₀: 191—192° (Mibchandani, Simonsen, Soc. 1927, 377).

Monoäthylester $C_{16}H_{30}O_4 = HO_2C \cdot [CH_3]_{12} \cdot CO_2 \cdot C_2H_5$. Röntgenographische Untersuchungen: Normand, Ross, Henderson, Soc. 1926, 2636; Pr. roy. Soc. Edinburgh 47, 76; C. 1927 II, 1328. F: 55° (N., R., H., Soc. 1926, 2636). — Das Natriumsalz liefert bei der Elektrolyse in verd. Alkohol bei 55—60° Tetrakosan-dicarbonsäure-(1.24)-diäthylester und andere Produkte (Fairweather, Pr. roy. Soc. Edinburgh 48, 73; C. 1926 II, 188).

Diäthylester $C_{18}H_{34}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{12} \cdot CO_2 \cdot C_2H_5$ (H 732). Röntgenographische Untersuchungen: Normand, Ross, Henderson, Soc. 1926, 2635; Pr. roy. Soc. Edinburgh 47, 79; C. 1927 II, 1328. F: 27° (koff.) (Fairweather, Phil. Mag. [7] 1, 947; C. 1926 II, 2146).

2. **Dodecan-dicarbonsäure-(1.11)** $C_{14}H_{26}O_4 = HO_2C \cdot [CH_2]_{10} \cdot CH(CH_3) \cdot CO_2H$. B. Durch Kondensation von ω -Brom-undecylsäure mit Natriummethylmalonsäurediäthylester in Alkohol + Benzol bei 100°, Verseifen und Erhitzen der entstandenen Tricarbonsäure auf 190° (CHUIT, Mitarb., *Helv.* 10, 175). — Krystalle (aus Benzol + Petroläther). F: 87,5—88,5°. Kp₄: ca. 220°.

Dimethylester $C_{16}H_{30}O_4=CH_3\cdot O_2C\cdot [CH_2]_{10}\cdot CH(CH_3)\cdot CO_2\cdot CH_3$. Flüssigkeit. Kp_9 : 185° (Churt, Mitarb., Helv. 10, 176).

- 3. Dodecan-dicarbonsäure-(1.1), n-Undecyl-malonsäure $C_{14}H_{26}O_4=CH_3\cdot (CH_3)_{10}\cdot CH(CO_3H)_2$ (E I 298). B. Man erwärmt Cyanessigsäureäthylester mit n-Undecyljodid und Kaliumcarbonat unter 14 mm Druck auf 150° und verseift das Reaktionsprodukt mit 20 %iger Natronlauge bei 100° (Robinson, Soc. 125, 230). Nadeln (aus Chloroform). F: 108°. Gibt bei der trockenen Destillation n-Tridecylsäure.
- 4. 2-Methyl-undecan-dicarbonsāure-(1.11) C₁₄H₂₆O₄=HO₂C·[CH₂]₂·CH(CH₃)·CH₃·CO₂H. B. Beim Verseifen von 2-Methyl-11-cyan-undecan-dicarbonsāure-(1.1)-diāthylester mit alkoh. Kalilauge und Erhitzen der entstandenen Tricarbonsāure (Churt, Mitarb., Helv. 10, 177). Krystalle (aus Benzol-Petroläther). F: 68,5—69,5°.

Dimethylester $C_{16}H_{30}O_4 = CH_3 \cdot O_3C \cdot [CH_3]_6 \cdot CH(CH_3) \cdot CH_3 \cdot CO_3 \cdot CH_3$. Kp₈: 182—185°; D¹⁵: 0,958 (Churr, Mitarb., *Helv.* 10, 177).

- 5. 3-Methyl-undecan-dicarbonsäure-(1.11) $C_{14}H_{26}O_4 = HO_2C \cdot [CH_3]_8 \cdot CH$ (CH₃)·CH₃·CH₂·CO₂H. B. Durch Ozonisierung von ω -Citronellyl-önanthsäure in Eisessig und Oxydation des Reaktionsproduktes mit Chromessigsäure (Ruzicka, Steicke, Helv. 10, 689). Krystalle (aus Petroläther und wenig Benzol). F: 47°. Kp_{0.5}: 190—200°.
- 6. Dodecan-dicarbonsäure-(5.5), Butyl-n-heptyl-malonsäure $C_{14}H_{26}O_4 = CH_2 \cdot [CH_2]_6 \cdot C(CO_2H)_3 \cdot [CH_2]_5 \cdot CH_2$. B. Durch Erhitzen des Diäthylesters mit überschüssiger alkoholischer Natronlauge (Levene, Taylor, J. biol. Chem. 54, 358). Nadeln (aus wäßr. Aceton). F: 117°.

Diäthylester $C_{18}H_{24}O_4=CH_3\cdot [CH_3]_{\epsilon}\cdot C(CO_3\cdot C_8H_5)_{\epsilon}\cdot [CH_3]_{\epsilon}\cdot CH_3$. Be led er Kondensation von Natriumbutylmalonsäurediäthylester mit Heptyljodid in Alkohol (Levene, Taxlor, J. biol. Chem. 54, 358). — Kp₁₈: 177—178°. D₄°: 0,9318. n₅°: 1,4366.

14. Dicarbonsäuren C₁₅H₂₈O₄.

1. Tridecan-dicarbonsäure-(1.13) C₁₅H₁₂₀O₄ = HO₂C·[CH₂]₁₃·CO₂H. B. Bei der Oxydation von Cyclopentadecanon mit Chromtrioxyd in Eisessig auf dem Wasserbad (RUZICKA, STOLL, SCHINZ, Helv. 9, 261). Aus 1-Benzal-cyclopentadecanon-(2) in Eisessig bei

621

aufeinanderfolgender Oxydation mit Ozon unter Eiskühlung und mit Chromtrioxyd in Wasser (R., Mitarb., Helv. 11, 508). Bei der Kondensation von 1.11-Dibrom-undecan mit Natrium-malonester im Autoklaven bei 120°, Verseifen und Erhitzen der erhaltenen Tetracarbonsäure auf 190° (Chuit, Helv. 9, 273). Beim Ozonisieren von Selacholeinsäure (Nervonsäure) (S. 449) in Chloroform, Spalten des Ozonids mit Wasser auf dem Wasserbad und Oxydieren mit Kaliumpermanganat (Klenk, H. 166, 288, 292; 174, 217, 218 Anm.; Tsujimoto, J. Soc. chem. Ind. Japan Spl. 30, 229 B; C. 1928 I, 1385). Durch Verseifung des Dinitrils mit alkoh. Kalilauge (Ch., Hausser, Helv. 12, 851). Bei der Oxydation von 14-Oxy-tetradecan-carbonsäure-(1) mit Chromsäure in Eisessig (Ru., St., Helv. 11, 1167) oder mit Chromschwefelsäure in Eisessig (Kerschbaum, B, 60, 909). — Krystalle (aus Eisessig, Essigester oder Benzol), Nadeln (aus Ligroin). F: 114,6—114,8° (Ch.), 113—114° (Ke.), 113° (Ts.). Ultraviolettes Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916. Sehr leicht löslich in den meisten organischen Lösungsmitteln, schwer in Ligroin (Kp: 80—90°), unlöslich in Wasser (Kl., H. 166, 292). — Das Thoriumsalz liefert beim Erhitzen auf 350—400° unter 30—40 mm Druck Cyclotetradecanon und andere Produkte (Ruzicka, Stoll, Schinz, Helv. 9, 258).

Dimethylester $C_{17}H_{32}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{13} \cdot CO_2 \cdot CH_3$. Blättchen (aus Alkohol). F: 42° (Ruzicka, Stoll, Schinz, *Helv.* 9, 261), 43° (Chuit, *Helv.* 9, 273). Kp₁₁: 203—205° (Ch.).

Diäthylester $C_{19}H_{36}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{13} \cdot CO_2 \cdot C_2H_5$. F: 30° (Chuit, Helv. 9, 273). Kp₃: 192—193°.

Dinitril, 1.13-Dicyan-tridecan $C_{15}H_{26}N_2 = NC \cdot [CH_2]_{13} \cdot CN$. B. Beim Erwärmen von 1.13-Dibrom-tridecan mit Kaliumcyanid in verd. Alkohol auf dem Wasserbad (Chuit, Hausser, Helv. 12, 851). — Krystalle (aus Petroläther + Benzol). F: 31—31,5°. Kp₂,5: 215—216°; Kp₉: ca. 225°.

2. 2- Methyl - dodecan - dicarbonsäure - (1.12) C₁₅H₂₈O₄ = HO₂C·[CH₂]₁₀·CH(CH₃)·CH₂·CO₂H. B. Bei der Kondensation von 1.10-Dibrom-undecan mit Natrium-malonsäurediäthylester bei 150° unter Druck, Verseifen des entstandenen Esters und Erhitzen der Tetracarbonsäure auf 190°, neben anderen Produkten (Снит, Mitarb., Helv. 10, 178). — Krystalle (aus verd. Alkohol). F: 75,2°; Kp₄: 239—241° (Сн., Mitarb.). Sehr leicht löslich in siedendem, schwer in kaltem Benzol, leicht in Äther, sehr schwer in Petroläther (Сн., Mitarb.). — Das Thoriumsalz liefert bei der thermischen Zersetzung nicht rein erhaltenes 2-Methyl-tetradecanon-(13) oder 4-Methyl-tetradecanon-(2) (Е II 1, 771) (RUZICKA, SCHINZ, PFEIFFER, Helv. 11, 690).

Dimethylester $C_{17}H_{32}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{10} \cdot CH(CH_3) \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Aus der Säure oder dem Dinitril beim Behandeln mit Methanol und konz. Schwefelsäure auf dem Wasserbad (Chuit, Mitarb., Helv. 10, 179). — Flüssigkeit. Kp₉: 194—196°; Kp₁₇: 208—215°. D¹⁵: 0,957.

 $\begin{array}{ll} \textbf{Diäthylester} & C_{19}H_{36}O_{4} = C_{2}H_{5} \cdot O_{2}C \cdot [CH_{2}]_{10} \cdot CH(CH_{3}) \cdot CH_{2} \cdot CO_{2} \cdot C_{2}H_{5}. & Ol. & Kp_{9} \colon 205 \\ \text{bis } & 207^{0} \text{ (CHUIT, Mitarb., } & Helv. \ \textbf{10}, \ 179). & D^{15} \colon 0,938. \end{array}$

Dinitril, 2-Methyl-1.12-dicyan-dodecan $C_{15}H_{36}N_2 = NC \cdot [CH_2]_{10} \cdot CH(CH_3) \cdot CH_2 \cdot CN$. B. Bei längerem Behandeln von 1.12-Dibrom-2-methyl-dodecan mit Kaliumcyanid in Alkohol auf dem Wasserbad, neben anderen Produkten (Chuit, Mitarb., Helv. 10, 179). — Nicht ganz rein erhalten. Kp₁₆: 229—232°. D¹⁵: 0,901.

- 3. 3 Methyl dodecan dicarbonsäure (1.12) $C_{15}H_{28}O_4 = HO_2C \cdot [CH_2]_9 \cdot CH(CH_2) \cdot CH_2 \cdot CH_3 \cdot CO_2H$. B. Durch Ozonisierung von ω -Citronellyl-caprylsäure in Eisessig und Oxydation des Reaktionsproduktes mit Chromessigsäure auf dem Wasserbad (Ruzicka, Steiger, Helv. 10, 690). Krystalle (aus Benzol). F: 76—77°.
- 4. 4 Methyl dodecan dicarbonsäure (1.12) $C_{15}H_{28}O_4 = HO_2C \cdot [CH_2]_8 \cdot CH(CH_9) \cdot [CH_2]_3 \cdot CO_2H$. B. Aus 3-Methyl-decan-dicarbonsäure-(1.10)-diāthylester durch aufeinanderfolgende Reduktion mit Natrium und absol. Alkohol, Behandlung mit HBr, Umsetzung mit Kaliumcyanid in siedendem verdünntem Alkohol und Verseifung des entstandenen Dinitrils mit Salzsäure (Ruzicka, Steiger, Helv. 10, 689). Krystalle (aus Benzol-Petroläther). F: 74—75°.
- 5. Tridecan-dicarbonsäure-(3.12) $C_{15}H_{28}O_4 = HO_2C \cdot CH(CH_3) \cdot [CH_2]_9 \cdot CH(CH_3) \cdot CO_3H$.
- a) Niedrigerschmelzende Form. B. Durch Kondensation von 1.9-Dibrom-nonan mit der Natriumverbindung des Methylmalonsäurediäthylesters in absol. Alkohol erst auf dem Wasserbad, dann im Autoklaven bei 150°, Verseifen und Erhitzen der erhaltenen Tetracarbonsäure auf den Schmelzpunkt (Chuit, Boelsing, Malet, Helv. 12, 1097). Nicht ganz rein erhalten. F: 47—49°.

DICARBONSÄUREN CnH2n-2O4

Dimethylester $C_{17}H_{32}O_4=CH_3\cdot O_2C\cdot CH(CH_3)\cdot [CH_2]_9\cdot CH(CH_3)\cdot CO_2\cdot CH_3$. Kp₂: ca. 168—170° (Chuit, Boelsing, Maler, Helv. 12, 1097).

b) Höherschmelzende Form $C_{15}H_{29}O_4 = HO_2C \cdot CH(CH_2) \cdot [CH_2]_9 \cdot CH(CH_3) \cdot CO_2H$. B. Durch Kondensation von 1.9-Dibrom-nonan mit der Natriumverbindung des Methylmalonsäurediäthylesters in absol. Alkohol + Benzol, Verseifen und Erhitzen des Reaktionsprodukts (Chuit, Boelsing, Malet, Helv. 12, 1097). — Krystalle (aus Benzol + Petroläther). F: 67—68°. Kp_{1-1,5}: 225—226°.

Dimethylester $C_{17}H_{32}O_4 = CH_3 \cdot O_3C \cdot CH(CH_3) \cdot [CH_2]_9 \cdot CH(CH_3) \cdot CO_3 \cdot CH_3$. Flüssigkeit. Kp_{1,5}: 167—168°; D¹⁵: 0,9525 (CHUIT, BOELSING, MALET, Helv. 12, 1097).

15. Dicarbonsäuren $C_{16}H_{80}O_4$.

1. Tetradecan - dicarbonsäure - (1.14), Thapsiasäure $C_{18}H_{30}O_4 = HO_2C \cdot [CH_2]_{14} \cdot CO_2H$ (H 733; E I 298). B. Durch Kondensation von 1.12-Dibrom-dodecan mit Natriummalonester, Verseifen und Erhitzen der erhaltenen Tetracarbonsäure (CHUIT, Helv. 9. 274). Bei der Oxydation von in Benzol gelöstem Zibetan mit wäßr. Permanganat-Lösung, neben anderen Produkten (Ruzicka, Schinz, Seidel, Helv. 10, 701). Bei der Oxydation von Cyclohexadecanon mit Chromtrioxyd in Eisessig auf dem Wasserbad (Ru., Stoll, SCHINZ, Helv. 9, 262). Durch Reduktion von 7-Oxo-tetradecan-dicarbonsaure-(1.14) mit amalgamiertem Zink in siedender konzentrierter Salzsäure unter Durchleiten von Chlor-wasserstoff (Ru., Mitarb., Helv. 11, 504). — Krystalle (aus Äther, Eisessig, Benzol oder Aceton). Röntgenographische Untersuchungen: Normand, Ross, Henderson, Soc. 1926, 2633: Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328. F: 123° (Stosius, Wiesler, Bio. Z. 108, 80), 124° (Carmichael, Soc. 121, 2548), 124—124,2° (Chuit, Helv. 9, 274), 125° (korr.) (Fairweather, Pr. roy. Soc. Edinburgh 46, 73; Phil. Mag. [7] 1, 945; C. 1926 II, 188, 2146). Ultraviolettes Absorptionsspektrum in Alkohol: RAMART-LUCAS, SALMON-LEGAGNEUR, C. r. 189, 916. Unlöslich in Wasser, schwer löslich in Petroläther, leicht in Alkohol, Äther, Chloroform und Aceton (Stos., W.). — Das Thoriumsalz liefert beim Erhitzen auf 350—400° unter 30—40 mm Druck Cyclopentadecanon, Methyl-n-tetradecyl-keton, Di-n-tetradecyl-keton, Cyclotriakontandion-(1.16) und andere Produkte (Ru., Stoll, Sch., Helv. 9, 250, 260; 11, 671 Anm. 3, 685; Ru., Mitarb., Helv. 11, 499, 509).

Thapsiasäuremonomethylester $C_{17}H_{33}O_4 = HO_3C \cdot [CH_3]_{14} \cdot CO_3 \cdot CH_3$. B. Beim Behandeln des Dimethylesters mit wäßrig-methylalkoholischer Kalilauge in der Kälte (Ruzicka, STOLL, SCHINZ, Helv. 11, 1179). — Blattchen (aus Benzol). F: 65—67°. — Liefert bei der Elektrolyse an Platinelektroden in Methanol bei Gegenwart von Kaliumcarbonat und nachfolgenden Verseifung mit siedender 5% iger alkoholischer Kalilauge Oktakosan-dicarbonsäure-(1.28) (R., St., Sch., Helv. 11, 1179). Bei der Elektrolyse des Natriumsalzes im Gemisch mit dem Natriumsalz der Hepten-(6)-carbonsäure-(1) entstehen Heneikosen-(20)carbonsäure-(1)-methylester, Oktakosan-dicarbonsäure-(1.28)-dimethylester und andere Produkte (R., St., Sch., Helv. 11, 681).

Thapsiasäuredimethylester $C_{18}H_{24}O_4 = CH_8 \cdot O_2C \cdot [CH_2]_{14} \cdot CO_2 \cdot CH_3$. Krystalle (aus Methanol), Blättchen (aus Alkohol). F: 50° (RUZICKA, STOLL, SCHINZ, Helv. 9, 262), 51,6° (CHUIT, Helv. 9, 274).

Thapsiasäuremonoäthylester $C_{19}H_{34}O_4 = HO_3C \cdot [CH_2]_{14} \cdot CO_2 \cdot C_2H_5$. Das Natriumsalz liefert bei der Elektrolyse in verd. Alkohol bei $60-65^{\circ}$ Oktakosan-dicarbonsäure-(1.28)diathylester und andere Produkte (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 74; C. 1926 II, 188).

Thapsiasäurediäthylester $C_{20}H_{38}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{14} \cdot CO_3 \cdot C_2H_5$ (E I 298). B. Durch Elektrolyse der Alkalisalze des Azelainsäuremonoäthylesters in Wasser bei 15—40° (STORIUS, WIESLER, Bio. Z. 108, 80; CARMICHAEL, Soc. 121, 2548) oder in verd. Alkohol bei ca. 55° (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 73; C. 1926 II, 188). — Krystalle (aus Alkohol oder Methanol). F: 39° (Ca.). Kp₁₇: 230° (St., W.).

2. Tetradecan - dicarbons dure - (1.13) $C_{16}H_{20}O_4 = HO_3C \cdot [CH_2]_{19} \cdot CH(CH_3) \cdot CO_3H$. B. Bei der Kondensation von ω -Brom-tridecylsäure-methylester mit Natrium-methylmalonsäure-diäthylester in Benzol, Verseifen des Reaktionsprodukts und Erhitzen der entstandenen Tricarbonsaure auf 190° (CHUIT, Mitarb., Helv. 10, 183). Ein Gemisch mit 2-Methyl-tridecandicarbonsäure (1.13) entsteht bei der Oxydation von Muscon mit Chromtrioxyd in Essigsäure auf dem Wasserbad, neben anderen Produkten (Ruzioka, Helv. 9, 728, 1015). — Krystalle (aus Benzol + Petroläther). F: 93,5—94,5°; Kp₄: 228—230° (Ch., Mitarb.). — Verhalten des Yttriumsalses beim Erhitzen: R., Schinz, Pfeiffer, Helv. 11, 691.

Dimethylester $C_{18}H_{24}O_4 = CH_2 \cdot O_2C \cdot [CH_2]_{12} \cdot CH(CH_2) \cdot CO_2 \cdot CH_2$. Kp₅: 193—195°; D¹⁵: 0,941 (CHUIT, Mitarb., Helv. 10, 183).

- 3. 2 Methyl tridecan dicarbonsäure (1.13) $C_{16}H_{30}O_4 = HO_2C \cdot [CH_2]_{11} \cdot CH(CH_3) \cdot CH_2 \cdot CO_2H$.
- a) * Rechtsdrehende Form. B. Aus Benzylidenmuscon (Syst. Nr. 648) durch aufeinanderfolgende Einw. von Ozon und von Chromsäure in Eisessig (Ruzicka, Helv. 9, 1016). Krystalle (aus Benzol + Petroläther). F: $68-69^{\circ}$; der erstarrte Schmelzfluß zeigt F: $58-60^{\circ}$. $[\alpha]_{\rm p}$: ca. $+5^{\circ}$ (Benzol; c = ca. 40).

Dimethylester $C_{18}H_{34}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{11} \cdot CH(CH_3) \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Beim Kochen der Säure mit methylalkoholischer Schwefelsäure (Ruzicka, Helv. 9, 1017). — $[\alpha]_D$: ca. $+4^0$ (Benzol; c = ca. 33).

b) Inaktive Form. B. Bei 3-tägigem Kochen des Monoamids (s. u.) mit wäßrig-alkoholischer Kalilauge und nachfolgendem je 1-tägigem Erhitzen auf 150° und 190° unter Druck (Chuit, Mitarb., Helv. 10, 184). Durch Hydrierung von 2-Methyl-tridecen-(1)-dicarbonsäure-(1.13)-dimethylester in Gegenwart von Platinschwarz und nachfolgende Verseifung mit siedender alkoholischer Kalilauge (Ruzicka, Stoll, Helv. 10, 694). Entsteht im Gemisch mit Tetradecan-dicarbensäure-(1.13) bei der Oxydation von Muscon mit Chromtrioxyd in Essigsäure auf dem Wasserbad, neben anderen Produkten (R., Helv. 9, 728, 1015). — Krystalle (aus Benzol + Petroläther). F: 76—77° (Ch., Mitarb.; R., St.). Schmilzt unmittelbar nach dem Wiedererstarren bei 60—61° (R., St.), nach einiger Zeit wieder bei 76—77° (Ch., Mitarb.). Kpcs. 1: 215—220° (Ch., Mitarb.).

Dimethylester $C_{18}H_{24}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{11} \cdot CH(CH_3) \cdot CH_2 \cdot CO_2 \cdot CH_3$. $Kp_8: 203-204^\circ$; $D^{15}: 0,950$ (Churt, Mitarb., *Helv.* 10, 184).

Monoamid $C_{16}H_{31}O_3N=H_3N\cdot OC\cdot [CH_2]_{11}\cdot CH(CH_2)\cdot CH_2\cdot CO_2H$ oder $HO_2C\cdot [CH_3]_{11}\cdot CH(CH_3)\cdot CH_2\cdot CO\cdot NH_3$. Be längerem Erwärmen des Dinitrils (s. u.) mit wäßrig-alkoholischer Kalilauge auf dem Wasserbad (Churr, Mitarb., Helv. 10, 184). — Krystalle (aus Benzol . F: 110—111°.

Diamid $C_{16}H_{25}O_2N_8=H_2N\cdot OC\cdot [CH_3]_{11}\cdot CH(CH_3)\cdot CH_2\cdot CO\cdot NH_2$. Krystalle (aus verd. Alkohol). F: 145—150° (Ruzicka, Stoll, Helv. 10, 694).

Dinitril, 2-Methyl-1.13-dicyan-tridecan $C_{16}H_{26}N_2 = NC \cdot [CH_2]_{11} \cdot CH(CH_3) \cdot CH_2 \cdot CN$. Bei längerem Kochen von 1.13-Dibrom-2-methyl-tridecan mit Kaliumeyanid in verd. Alkohol (Churt, Mitarb., Helv. 10, 184). — $Kp_9: 227^{\circ}.$ $D^{15}: 0,908.$

Dihydraxid $C_{16}H_{24}O_3N_4=H_2N\cdot NH\cdot OC\cdot [CH_2]_{11}\cdot CH(CH_3)\cdot CH_2\cdot CO\cdot NH\cdot NH_2$. Krystalle (aus Alkohol). F: 148—152° (Ruzicka, Stoll, Helv. 10, 694).

4. 3 - Methyl - tridecan - dicarbonsāure - (1.13) C₁₆H₃₀O₄ = HO₂C·[CH₂]₁₀·CH(CH₃)·CH₂·CH₂·CO₂H. B. Durch Ozonisierung von ω-Citronellyl-pelargonsäure in Eisessig und nachfolgende Behandlung mit Chromessigsäure auf dem Wasserbad (Ruzicka, Steiger, Helv. 10, 691). Bei 2-tägigem Kochen des Dinitrils (s. u.) mit überschüssiger alkoholischer Kalilauge und nachfolgendem Erhitzen im Autoklaven auf 140° (Churt, Mitarb., Helv. 10, 185). — Krystalle (aus Benzol-Petroläther). F: 69—69,6°; Kp₃: 226—227° (Ch., Mitarb.). — Das Yttriumsalz liefert beim Erhitzen im Rohr auf ca. 170—180° 1-Methyl-cyclotetradecanon-(4) und 3-Methyl-pentadecanon-(14) oder 5-Methyl-pentadecanon-(2) (E II 1, 772) (R., Schinz, Pfeiffer, Helv. 11, 691).

Dinitril, 3-Methyl-1.13-dicyan-tridecan $C_{16}H_{26}N_2=NC\cdot[CH_2]_{10}\cdot CH(CH_3)\cdot CH_2\cdot CH_2\cdot CN$. B. Bei der Einwirkung von Kaliumcyanid auf 1.13-Dibrom-3-methyl-tridecan (Churr, Mitarb., Helv. 10, 185). — Schwach riechende Flüssigkeit. Kp₃: 177—178°. D¹⁵: 0,905.

5. 4 - Methyl - tridecan - dicarbonsäure - (1.13) $C_{16}H_{30}O_4 = HO_3C \cdot [CH_3]_9 \cdot CH(CH_3) \cdot [CH_2]_3 \cdot CO_3H$. B. Durch Kondensation von 1.11-Dibrom-3-methyl-undecan mit Natriummalonsäuredimethylester in absol. Alkohol auf dem Wasserbad, Verseifen und Erhitzen der entstandenen Tetracarbonsäure (CHUIT, Mitarb., Helv. 10, 188). Aus 3-Methyl-undecan-dicarbonsäure-(1.11)-diäthylester durch Reduktion mit Natrium und absol. Alkohol, Behandlung des Reaktionsprodukts mit Bromwasserstoff, Umsetzung mit Kaliumcyanid in siedendem verdünntem Alkohol und Verseifung mit siedender Salzsäure (RUZICKA, STEIGER, Helv. 10, 690). — Krystalle (aus Petroläther). F: 54—55° (R., St.), 60—61° (CH., Mitarb.). Kp₃₊₆: 229—230° (CH., Mitarb.).

Dimethylester $C_{18}H_{24}O_4=CH_3\cdot O_3C\cdot [CH_3]_6\cdot CH(CH_3)\cdot [CH_3]_3\cdot CO_3\cdot CH_3$. Kp_{14} : 210° bis 215° (CHUIT, Mitarb., Helv. 10, 188).

- 6. Tetradecan dicarbonsāure (2.13) $C_{16}H_{30}O_4 = HO_2C \cdot CH(CH_3) \cdot [CH_2]_{10} \cdot CH(CH_3) \cdot CO_4H$.
- a) Hochschmelzende Form. B. Entsteht neben der niedrigschmelzenden Form bei der Kondensation von 1.10-Dibrom-decan mit der Natriumverbindung des Methylmalonsäurediäthylesters in absol. Alkohol auf dem Wasserbad, Verseifen des Reaktionsprodukts und

Erhitzen auf 120—190° (Chuff, Boelsing, Malet, Helv. 12, 1098). Beim Erhitzen von Dodecantetracarbonsäure -(1.1.12.12)-tetraäthylester mit Methylbromid und Natriumäthylat-Lösung im Autoklaven auf 120°, Verseifen und Erhitzen der erhaltenen Tetracarbonsäure (Ch., B., M.). — Krystalle (aus Essigester). F: 111—111,4° (Ch., B., M.). — Verhalten des Thoriumsalzes beim Erhitzen: Ruzicka, Schinz, Pfeiffer, Helv. 11, 690.

Dimethylester $C_{18}H_{34}O_4=CH_3\cdot O_2C\cdot CH(CH_9)\cdot [CH_9]_{10}\cdot CH(CH_3)\cdot CO_9\cdot CH_8$. Die Einheitlichkeit der Verbindung ist fraglich. — Flüssigkeit. Kp_{3,5}: 179—180°; D¹⁵: 0,947 (CHUIT, BOELSING, MALET, *Helv*. 12, 1099).

Diäthylester $C_{20}H_{38}O_4=C_2H_5\cdot O_2C\cdot CH(CH_3)\cdot [CH_2]_{10}\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. Die Einheitlichkeit der Verbindung ist fraglich. — Flüssigkeit. Kp_{3,5}: 190—191°; D¹⁵: 0,932 (CHUIT, BOELSING, MALET, *Helv*. 12, 1099).

b) Niedrigschmelzende Form. Bildung s. bei der hochschmelzenden Form. — Krystalle (aus Essigester). F: 66—67,5° (Chuit, Boelsing, Malet, Helv. 12, 1100).

[HOMANN]

16. Dicarbonsäuren $C_{17}H_{32}O_4$.

1. Pentadecan-dicarbonsäure-(1.15) C₁₇H₃₉O₄ = HO₂C·[CH₂]₁₅·CO₄H. B. Beim Behandeln von Cycloheptadecen mit Ozon in Tetrachlorkohlenstoff, Zersetzen des Ozonids mit Wasser und Erhitzen des von Tetrachlorkohlenstoff befreiten Reaktionsprodukts auf 110° (RUZICKA, SCHINZ, SEIDEL, Helv. 10, 702). Bei der Oxydation von ω-Oxy-margarinsäure (R., STOLL, Helv. 11, 1173) und von Cycloheptadecanon (R., Helv. 9, 248; R., St., SCHINZ, Helv. 9, 263) mit Chromtrioxyd in Eisessig. Man kondensiert 1.13-Dibrom-tridecan mit Natriummalonester, verseift und erhitzt die entstandene Tetracarbonsäure auf 190° (CHUIT, Helv. 9, 275). — Blättchen (aus Methanol). F: 116—117° (R.), 118° (CH.). Ultraviolett-Absorptionsspektrum in Alkohol: RAMART-LUCAS, SALMON-LEGAGNEUR, C. r. 189, 916. — Bei der trockenen Destillation des Yttriumsalzes oder des Thoriumsalzes unter vermindertem Druck entstehen Methyl-n-pentadecyl-keton, Cyclohexadecanon und andere Produkte (R., St., Sch., Helv. 9, 261; 11, 686).

Dimethylester $C_{19}H_{36}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{15} \cdot CO_2 \cdot CH_3$. Blättchen (aus Alkohol). F: 52° (Ruzicka, Helv. 9, 248), 52,3° (Chuit, Helv. 9, 275). Kp_{15} : 235° (Ch.).

Diäthylester $C_{21}H_{40}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{15} \cdot CO_2 \cdot C_2H_5$. Krystalle (aus Alkohol). F: 41,6° (Chuit, $Helv. \Theta, 276$). Kp₃: $200-210^\circ$.

2. Pentadecan-dicarbonsäure-(1.14), α-Methyl-thapsiasäure C₁₇H₃₂O₄ = HO₃C·[CH₂]₁₃·CH(CH₃)·CO₂H. B. Durch Kondensation von nicht näher beschriebenem ω-Brom-myristinsäure-methylester mit Natrium-methylmalonsäurediäthylester, Verseifung und nachfolgendes Erhitzen (Chuit, Mitarb., 10, 190). Bei der Oxydation von 16-Oxyhexadecan-carbonsäure-(2) mit Chromtrioxyd in Eisessig (Ch., Mitarb.). Aus Heptadecen-(16)-carbonsäure-(2) beim Behandeln mit Ozon in Tetrachlorkohlenstoff und Zersetzen des entstandenen Ozonids oder bei der Oxydation des Natriumsalzes mit Permanganat (Ch., Mitarb.). — Krystalle (aus Essigester + wenig Petroläther). F: 89—90°. Kp_{0,2}: 223—225°. — Beim Erhitzen des Thoriumsalzes entsteht ein Gemisch von Ketonen, das flüssige Semicarbazone liefert (Ruzicka, Schinz, Pfeiffer, Helv. 11, 692).

Dimethylester $C_{19}H_{36}O_4 = CH_2 \cdot O_2C \cdot [CH_2]_{13} \cdot CH(CH_3) \cdot CO_2 \cdot CH_3$. Existiert in einer stabilen krystallinen Form vom Schmelzpunkt 19—21° und einer instabilen krystallinen Form vom Schmelzpunkt 3—4° (CHUIT, Mitarb., *Helv.* 10, 189). Kp₈: 210—213°; Kp₅: ca. 200°; Kp₁: 172—175°. Die niedrigerschmelzende Form hat D^{15} : 0,9465.

3. 2-Methyl-tetradecan-dicarbonsäure-(1.14), β-Methyl-thapsiasäure C₁₇H₃₉O₄ = HO₃C·[CH₂]₁₃·CH(CH₃)·CH₂·CO₂H. B. Als Hauptprodukt beim Behandeln von 1.12-Dibrom-tridecan mit Natriummalonester in Alkohol, Verseifen und Erhitzen der erhaltenen Tetracarbonsäure (CHUIT, Mitarb., Helv. 10, 191). — Krystalle (aus Essigester). F: 77,2—77,4°; Kp₃: ca. 250° (CH., Mitarb.). Leicht löslich in Äther (CH., Mitarb.). — Das Yttriumsalz und das Thoriumsalz liefern beim Erhitzen 2-Methyl-hexadecanon-(15) oder 4-Methyl-hexadecanon-(2) (E II 1, 772), sehr wenig 1-Methyl-cyclopentadecanon-(3) (?) und andere Produkte (RUZICKA, SCHINZ, PFEIFFER, Helv. 11, 687, 694).

Dimethylester $C_{19}H_{24}O_4 = CH_3 \cdot O_2C \cdot [CH_3]_{12} \cdot CH(CH_3) \cdot CH_2 \cdot CO_2 \cdot CH_3$. Flüssigkeit. Kp₃₋₅: 198—200°; D¹⁵: 0,946 (CHUIT, Mitarb., *Helv.* 10, 192).

Disthylester $C_{a_1}H_{a_0}O_a = C_aH_5 \cdot O_aC \cdot [CH_a]_{1a} \cdot CH(CH_a) \cdot CH_a \cdot CO_a \cdot C_aH_5$. Flussigkeit Kp₃₊₅: 209—211°; D¹⁵: 0,931 (CHUIT, Mitarb., *Helv.* 10, 192).

4. 3-Methyl-tetradecan-dicarbonsaure-(1.14), γ -Methyl-thapsiasaure $C_{17}H_{22}O_4 = HO_1C \cdot [CH_2]_{11} \cdot CH(CH_4) \cdot CH_2 \cdot CO_2H$. B. Beim Erhitzen von 1.12-Dibrom-

2-methyl-dodecan mit Natriummalonester in Alkohol im Autoklaven auf 140°, Verseifen des Reaktionsprodukts und Erhitzen (Chult, Mitarb., Helv. 10, 192). Beim Verseifen des Dinitrils mit alkoh. Kalilauge (Chult, Mitarb.). — Krystalle (aus Essigester). F: 78—78,4°; Kp_{oa. 1}: 238—240° (Ch., Mitarb.). — Das Thoriumsalz liefert bei der thermischen Zersetzung unter vermindertem Druck 1-Methyl-cyclopentadecanon-(4) und andere Produkte (RUZICKA, SCHINZ, PFEIFFER, Helv. 11, 696).

Dimethylester $C_{19}H_{34}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{11} \cdot CH(CH_3) \cdot CH_2 \cdot CH_3 \cdot CO_3 \cdot CH_3$. E: ca. 15° (Churr, Mitarb., *Helv.* 10, 193). Kp₄: 203—204°. D¹⁵: 0,948.

Diäthylester $C_{31}H_{40}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{11} \cdot CH(CH_2) \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. Flüssig keit. Kp₈: 223—225°; D¹⁸: 0,934 (Churt, Mitarb., *Helv.* 10, 193).

- Dinitril, 3-Methyl-1.4-dicyan-tetradecan C₁₇H₃₀N₃ = NC·[CH₃]₁₁·CH(CH₃)·CH₂·CH₂·CH₃·CN. B. Beim Erhitzen von 1.14-Dibrom-3-methyl-tetradecan mit Kaliumcyanid in wasserhaltigem Alkohol, anfangs auf dem Wasserbad, dann im Autoklaven auf 150° (CHUIT, Mitarb., Helv. 10, 193). Blättchen (aus verd. Alkohol). F: 36,6—36,8°. Kp₈: 235—245°.
- 5. 4-Methyl-tetradecan-dicarbonsäure-(1.14), δ-Methyl-thapsiasäure C₁₇H₂₃O₄ = HO₂C·[CH₂]₁₀·CH(CH₃)·[CH₂]₃·CO₂H. B. Beim Erhitzen von 1.12-Dibrom-3-methyl-dodecan mit Natriummalonester in Alkohol im Autoklaven auf 150°, Verseifen und Erhitzen der entstandenen Tetracarbonsäure auf 110—190° (CHUIT, Mitarb., Helv. 10, 194). Beim Behandeln von 1.14-Dibrom-4-methyl-tetradecan mit Kaliumcyanid und Verseifen des entstandenen Dinitrils mit kochender Salzsäure (RUZICKA, STEIGER, Helv. 10, 690). Krystalle (aus verd. Alkohol, Benzol oder Benzol + Petroläther). F: 78,8—79° (CH., Mitarb.), 75—76° (R., St.). Kp₃: 252—253° (CH., Mitarb.). Leicht löslich in organischen Lösungsmitteln (CH., Mitarb.). Das Thoriumsalz liefert bei der thermischen Zersetzung unter vermindertem Druck 1-Methyl-cyclopentadecanon-(5), ein Keton, dessen Semicarbazon bei 113—116° schmilzt, und andere Produkte; das Yttriumsalz eines von d-Citronellal abstammenden Präparats gab hierbei ein schwach rechtsdrehendes 1-Methyl-cyclopentadecanon-(5) (R., SCHINZ, PFEIFFER, Helv. 11, 697).
- $\begin{array}{ll} \textbf{Dimethylester} & C_{19}H_{36}O_4 = CH_3 \cdot O_2C \cdot [CH_3]_{10} \cdot CH(CH_3) \cdot [CH_2]_3 \cdot CO_2 \cdot CH_3. & \text{Ol.} & Kp_3: \\ 200-202^{o}; & D^{18}: & 0,950 & (CHUIT, & Mitarb., & Helv. & 10, 194). \end{array}$
- $\begin{array}{ll} \textbf{Diäthylester} & C_{21}H_{40}O_4 = C_2H_5 \cdot O_2C \cdot [CH_3]_{10} \cdot CH(CH_3) \cdot [CH_2]_3 \cdot CO_2 \cdot C_2H_5. & \text{Ol.} & Kp_9 : \\ 234-236^0; & D^{15} : 0,931 \text{ (CHUIT, Mitarb., } \textit{Helv. 10, 194}). \end{array}$
- 6. Pentadecan dicarbonsaure (2.2), Methyl-n-tridecyl-malonsaure $C_{17}H_{32}O_4 = CH_3 \cdot [CH_3]_{12} \cdot C(CH_3)(CO_2H)_2$.

Disthylester $C_{31}H_{40}O_4 = CH_3 \cdot [CH_3]_{12} \cdot C(CH_3)(CO_3 \cdot C_2H_5)_2$. Kp₃: 167—170°; D_4^{κ} : 0,9181; n_5^{κ} : 1,4418 (Stanley, Jay, Adams, Am. Soc. 51, 1265).

7. Pentadecan - dicarbonsäure - (3.3), Äthyl - n - dodecyl-malonsäure $C_{17}H_{22}O_4 = CH_3 \cdot [CH_2]_{11} \cdot C(C_2H_5)(CO_2H)_2$.

Diathylester $C_{31}H_{40}O_4 = CH_3 \cdot [CH_3]_{11} \cdot C(C_2H_5)(CO_2 \cdot C_2H_5)_2$. Kp_4 : 181—183°; D_4^* : 0,9249; n_5^* : 1,4422 (Stanley, Jay, Adams, Am. Soc. 51, 1265).

8. 2.12 - Dimethyl - tridecan - dicarbonsaure - (1.13) $C_{17}H_{22}O_4 = HO_2C \cdot CH_2 \cdot CH(CH_3) \cdot [CH_2]_0 \cdot CH(CH_3) \cdot CH_2 \cdot CO_2H$. B. Aus dem Dinitril beim Erhitzen mit alkoh. Kalilauge im Autoklaven auf ca. 150° (CHUIT; BOELSING, MALET, Helv. 12, 1100). — Krystalle (aus Petroläther + Benzol); F: 63—64°; aus den Mutterlaugen scheiden sich Krystalle einer zweiten, bei 50° schmelzenden Modifikation aus. Kp₁: 236—238°.

Dimethylester $C_{19}H_{26}O_4 = CH_2 \cdot O_2C \cdot CH_2 \cdot CH(CH_3) \cdot [CH_2]_9 \cdot CH(CH_3) \cdot CH_2 \cdot CO_2 \cdot CH_3$. Flüssigkeit. $Kp_9 \colon 209^\circ; D^{15} \colon 0.944$ (Churr, Boelsing, Malet, Helv. 12, 1101).

Dinitril, 2.12-Dimethyl-1.13-dicyan-tridecan $C_{17}H_{30}N_2 = NC \cdot CH_2 \cdot CH(CH_3) \cdot [CH_2]_0 \cdot CH(CH_3) \cdot CH_2 \cdot CN$. B. Bei längerem Erwärmen von 1.13-Dibrom-2.12-dimethyl-tridecan mit wäßrig-alkoholischer Kaliumcyanid-Lösung auf dem Wasserbad (CHUIT, BOELSING, MALET, Helv. 12, 1100). — Kp_{0.85}: 185—186°.

9. Pentadecan - dicarbonsäure - (4.4), Propyl - n - undecyl - malonsäure $C_{17}H_{32}O_4 = CH_3 \cdot [CH_2]_{10} \cdot C(CO_2H)_2 \cdot CH_3 \cdot C_2H_5$.

Diäthylester $C_{21}H_{40}O_4 = CH_3 \cdot [CH_3]_{10} \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH_2 \cdot C_2H_5$. Kp₄: 178—179°; D₄: 0,9186; n₅: 1,4422 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

10. **Pentadecan - dicarbonsāure - (5.5),** Butyl - n - decyl - $malonsāure C_{17}H_{21}O_4 = CH_3 \cdot [CH_2]_5 \cdot C(CO_2H)_2 \cdot [CH_2]_3 \cdot CH_3$.

Diathylester $C_{11}H_{40}O_4 = CH_3 \cdot [CH_2]_9 \cdot C(CO_3 \cdot C_3H_8)_3 \cdot [CH_2]_3 \cdot CH_3$. Kp₄: 181—183° D₄²: 0,9220; n₅²: 1,4424 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

11. Pentadecan - dicarbonsāure - (6.6), $n-Amyl-n-nonyl-malonsāure C_{17}H_{22}O_4 = CH_2 \cdot [CH_2]_3 \cdot C(CO_2H)_2 \cdot [CH_2]_4 \cdot CH_3$.

- n-Amyl-n-nonyl-malonsäure-diäthylester $C_{11}H_{40}O_4 = CH_2 \cdot [CH_3]_6 \cdot C(CO_3 \cdot C_4H_5)_5 \cdot [CH_3]_6 \cdot CH_3$. Kp₅: 185—186°; D₄*: 0,9282; n₅*: 1,4462 (Stanley, Jay, Adams, Am. Soc. 51, 1265).
- 12. Pentadecan dicarbonsäure (7.7), n Hexyl n octyl malonsäure $C_{17}H_{22}O_4 = CH_2 \cdot [CH_2]_7 \cdot C(CO_2H)_2 \cdot [CH_3]_6 \cdot CH_3$.

Disthylester $C_{21}H_{40}O_4 = CH_3 \cdot [CH_2]_7 \cdot C(CO_2 \cdot C_2H_5)_2 \cdot [CH_2]_5 \cdot CH_2$. Kp₄: 175—178°; D₄°: 0,9168; n₅°: 1,4458 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

- 13. Pentadecan-dicarbonsaure-(8.8), Di-n-heptyl-malonsaure $C_{17}H_{44}O_4 = (CH_4 \cdot [CH_3]_a)_a C(CO_2H)_3$.
- Disthylester $C_{21}H_{40}O_4 = (CH_3 \cdot [CH_3]_8)_2C(CO_3 \cdot C_2H_5)_2$. Kp₃: 178—180°; D₄²⁵: 0,9169; n_D²⁵: 1,4459 (Stanley, Jay, Adams, Am. Soc. 51, 1265).
- 14. 2-Methyl-tetradecan-dicarbonsdure-(4.4), Isobutyl-n-decyl-malonsdure $C_{17}H_{22}O_4=CH_2\cdot[CH_2]_0\cdot C(CO_2H)_2\cdot CH_3\cdot CH(CH_2)_2$.

Disthylester $C_{21}H_{40}O_4 = CH_2 \cdot [CH_2]_9 \cdot C(CO_2 \cdot C_2H_3)_2 \cdot CH_2 \cdot CH(CH_2)_2$. Kps: 160—162°; D_4^m : 0,9207; n_5^m : 1,4428 (Stanley, Jay, Adams, Am. Soc. 51, 1265).

15. 3 - Methyl - tetradecan - dicarbonsdure - (4.4), sek. - Butyl - n - decylmalonsdure $C_{17}H_{22}O_4 = CH_2 \cdot [CH_2]_6 \cdot C(CO_2H)_3 \cdot CH(CH_3) \cdot C_2H_3$.

Disthylester $C_{21}H_{40}O_4 = CH_2 \cdot [CH_2]_0 \cdot C(CO_2 \cdot C_2H_5)_0 \cdot CH(CH_2) \cdot C_2H_5$. $Kp_{10} : 196-198^\circ$; $D_a^* : 0,9253$; $n_b^* : 1,4454$ (Stanley, Jay, Adams, Am. Soc. 51, 1265).

17. Dicarbonsāuren $C_{18}H_{84}O_4$.

1. Hexadecan-dicarbonsdure - (1.16) C₁₈H₂₄O₄ = HO₂C·[CH₁]₁₈·CO₂H (H 734). B. Beim Behandeln von 1.14-Dibrom-tetradecan mit Natriummalonester, Verseifen des Reaktionsprodukts und Erhitzen (CHUIT, Helv. 9, 276). Bei der Oxydation von Cyclooctadecanon mit Chromtrioxyd in Eisessig auf dem Wasserbad (RUZICKA, STOLL, SCHINZ, Helv. 9, 264). Zur Bildung des Diäthylesters nach CRUM BROWN, WALKER (A. 261, 125) vgl. Franke, Liebermann, M. 43, 594. Bei der Reduktion von 4-Oxo-hexadecan-dicarbonsäure-(1.16) mit amalgamiertem Zink und Salssäure (Shriner, Adams, Am. Soc. 47, 2730, 2737). — Monoklin prismatisch (Caspari, Soc. 1928, 3235). Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2633; Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328; Caspari. F: 124°(N., R., H.), 124°(korr.) (Fairweather, Phil. Mag. [7] I [1926], 945), 124,6—124,8° (CH.). Ultraviolett-Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, C. r. 189, 916. — Das Yttriumsalz und das Thoriumsalz liefern bei der thermischen Zersetzung unter vermindertem Druck Methyl-n-hexadecyl-keton, Cycloheptadecanon und andere Produkte (R., St., Sch., Helv. 9, 262; 11, 686).

Dimethylester $C_{ae}H_{ae}O_{4}=CH_{a}\cdot O_{2}C\cdot [CH_{a}]_{16}\cdot CO_{3}\cdot CH_{a}$. Krystalle (aus Alkohol). F: 60° (Churr, Helv. 9, 276). Kp₈: 205—207°.

Monoäthylester C₂₀H₂₀O₄ = HO₂C·[CH₂]₁₆·CO₂·C₂H₅. B. Aus dem Diäthylester durch teilweise Verseifung mit alkoh. Natronlauge unter Kühlung (FARWEATHER, Pr. roy. Soc. Edinburgh 45, 284; C. 1926 I, 1391). — Krystalle (aus wäßr. Methanol). Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2636; Pr. roy. Soc. Edinburgh 47, 76; C. 1927 II, 1328. F: 71° (F.; N., R., H.). Ausbreitung monomolekularer Schichten auf verd. Salzsäure: Adam, Jessop, Pr. roy. Soc. [A] 112, 378. — Das Natriumsalz liefert bei der Elektrolyse in wäßr. Alkohol bei 70—75° Dotriakontan-dicarbonsäure-(1.32)-diäthylester und andere Produkte (F.). — AgC₂₀H₂₇O₄ (F.).

Diäthylester C₂₂H₄₂O₄ = C₂H₅·O₂C·[CH₂]₁₅·CO₂·C₂H₅ (H 734). Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2635; Pr. roy. Soc. Edinburgh 47, 79; C. 1927 II, 1328. F: 43° (Franke, Liebermann, M. 43, 595; N., R., H.), 43° (korr.) (Fairweather, Phil. Mag. [7] 1 [1926], 947), 48,2° (Chuit, Helv. 9, 276). Kp₁₅: 240° (Fr., L.); Kp₁₅: 201—204° (Ch.). Ausbreitung monomolekularer Schichten auf Wasser bei 1°, 10,4° und 20,6°: Adam, Jessop, Pr. roy. Soc. [A] 112, 377; C. 1926 II, 2399.

2. Hexadecan – dicarbonedure – (2.15) C₁₅H₂₄O₄ = HO₂C·CH(CH₂)·[CH₂]₁₅·CH(CH₂)·CO₂H. B. Neben anderen Produkten beim Erwärmen von 1.12-Dibrom-dodeean mit Natrium-methylmalonsäurediäthylester in Alkohol auf dem Wasserbad, Verseifen des Reaktionsprodukts und Erhitzen (CHUIT, BOELSING, MALET, Helv. 12, 1101). — Krystalle (aus Alkohol, Essigester und Benzol); F: 110—110,2° (CH., B., M.), 110—111° (RUEICKA, SCHINS, PERIFFER, Helv. 11, 694); aus den Mutterlaugen erhält man geringere Mengen einer niedrigerschmelzenden Form, die aus verd. Alkohol in Nadeln vom F: 83—84° (CH., B., M.) bzw. 86—87° (R., SCH., Pr.) krystallisiert. Verhalten der beiden Formen beim Erhäusen der Yttriumsalze: R., SCH., Pr.

3. 2.13-Dimethyl-tetradecan-dicarbonsäure-(1.14) C₁₈H₂₄O₄ = HO₂C·CH₂·CH(CH₂)·[CH₂]₁₀·CH(CH₃)·CH₂·CO₂H. B. Aus dem Dinitril durch Erhitzen mit wäßrigalkoholischer Kalilauge erst auf dem Wasserbad, dann im Autoklaven auf 150° (Chult, Boelsing, Malet, Helv. 12, 1102). — Existiert in zwei Formen, die sich durch Krystallisation aus Benzol, Petroläther und 60 % igem Alkohol trennen lassen. a) Niedrigerschmelzende Form. Bildet ca. 70% des Reaktionsprodukts. Nadeln. F: 66,5—67° (Ch., B., M.). — b) Höherschmelzende Form. Krystalle. F: 81—81,5° (Ch., B., M.). — Die Yttriumsalze der beiden Formen liefern bei der thermischen Stretzeung 2.13-Dimethyl-hexadecanon-(15) und andere Produkte (Ruzicka, Schnz. Preisper Helv. 11, 605) Produkte (RUZICKA, SCHINZ, PFEIFFER, Helv. 11, 695).

Dimethylester $C_{20}H_{28}O_4 = CH_3 \cdot O_2C \cdot CH_2 \cdot CH(CH_3) \cdot [CH_2]_{10} \cdot CH(CH_3) \cdot CH_2 \cdot CO_3 \cdot CH_3$. F: ca. 13° (Chuit, Boelsing, Malet, Helv. 12, 1103). $Kp_{1,5}$: 178—183°.

Dinitril, 2.13-Dimethyl-1.14-dicyan-tetradecan $C_{18}H_{33}N_8 = NC \cdot CH_2 \cdot CH(CH_3) \cdot [CH_3]_{10} \cdot CH(CH_2) \cdot CH_3 \cdot CN$. B. Bei längerem Erwärmen von 1.14-Dibrom-2.13-dimethyltetradecan mit wäßrig-alkoholischer Kaliumcyanid-Lösung auf dem Wasserbad (Chuit, Borlsing, Malet, Helv. 12, 1102). — Kp.: 1970.

18. Dicarbonsäuren $C_{19}H_{38}O_4$.

- Heptadecan-dicarbonsaure-(1.17) $C_{19}H_{36}O_4 = HO_2C \cdot [CH_2]_{17} \cdot CO_2H$ (H 734). Die Angaben über das Vorkommen im Japanwachs konnten nicht bestätigt werden (Ruzicka, Stoll, Schinz, Helv. 11, 674). — B. Beim Erhitzen von Heptadecan-tetracarbonsäure-(1.1.17.17) (Chuit, Helv. 9, 276; Ch., Hausser, Helv. 12, 854). Beim Erwärmen von Cyclononadecanon mit Chromtrioxyd in Essigsäure auf dem Wasserbad (R., St., Sch., Helv. 11, 1175). — Krystalle (aus Benzol oder Essigester). F: 119,2° (CH.), 119—120,5° (R., St., Sch.). — Bei der thermischen Zersetzung des Yttriumsalzes oder des Thoriumsalzes unter vermindertem Druck erhält man Methyl-n-heptadecyl-keton, Cyclooctadecanon und andere Produkte (R., St., Sch., Helv. 9, 263; 11, 686).
- Dimethylester $C_{21}H_{40}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{17} \cdot CO_2 \cdot CH_3$. Blättchen (aus Alkohol). F: 60,2° (Chuit, *Helv.* 9, 277). Kp₃: 212—213°.
- Diäthylester $C_{29}H_{44}O_4 = C_{2}H_{5} \cdot O_{3}C \cdot [CH_{2}]_{17} \cdot CO_{2} \cdot C_{2}H_{5}$. F: 49,2° (Churr, Helv. 9, 277). Kp_{1,5}: 212—213°. Blättchen (aus Alkohol).
- 2. Heptadecan-dicarbonsäure (1.1), n-Hexadecyl-malonsäure, Cetyl-malonsäure $C_{19}H_{34}O_4=CH_3\cdot [CH_2]_{15}\cdot CH(CO_2H)_2$ (H 734; E I 299). B. Durch Erhitzen von Cetyljodid mit Cyanessigester und Kaliumcarbonat auf 170—180° unter 20 mm Druck und längeres Kochen des Reaktionsprodukts mit 25 %iger Kalilauge (Robinson, Soc. 125, 230). — Nadeln (aus Ligroin). F: 119°.
- 3. Heptadecan dicarbonsäure (2.2), Methyl-n-pentadecyl-malonsäure $C_{19}H_{36}O_4 = CH_8 \cdot [CH_2]_{14} \cdot C(CH_3)(CO_2H)_2.$

Disthylester $C_{ss}H_{44}O_4 = CH_3 \cdot [CH_3]_{14} \cdot C(CH_3)(CO_3 \cdot C_3H_5)_3$. 0,9119; n_5^m : 1,4453 (Stanley, Jay, Adams, Am. Soc. 51, 1265). Kp₅: 179—183°; D₄*:

4. Heptadecan - dicarbonsdure - (2.16) $C_{19}H_{39}O_4 = HO_2C \cdot CH(CH_3) \cdot [CH_2]_{13}$ $CH(CH_2) \cdot CO_3H$. B. Beim Erwärmen von 1.13-Dibrom-tridecan mit Natrium-methylmalonsäurediäthylester in Alkohol auf dem Wasserbad, Verseifen des Reaktionsprodukts und Erhitzen (CHUIT, BOELSING, MALET, Helv. 12, 1103). — Krystalle (aus Petroläther + Benzol). F: 80—81°; aus den Mutterlaugen wurde eine niedrigerschmelzende Form(?) vom Schmelzpunkt 65—67° isoliert. Kp $_{0,5-1}$: 233—235°.

Dimethylester $C_{g_1}H_{40}O_4 = CH_2 \cdot O_2C \cdot CH(CH_2) \cdot [CH_2]_{13} \cdot CH(CH_2) \cdot CO_2 \cdot CH_3$. keit. Kp_8 : 225—227°; D^{15} : 0,932 (Churr, Boelsing, Maler, *Helv.* 12, 1104).

5. **Heptadecan-di**carbon**s**äure-(3.3), Åthyl-n-tetradecyl-malonsäure $C_{19}H_{36}O_4 = CH_8 \cdot [CH_2]_{13} \cdot C(C_2H_5)(CO_2H)_2.$

Disthylester $C_{13}H_{44}O_4 = CH_3 \cdot [CH_3]_{13} \cdot C(C_2H_5)(CO_3 \cdot C_2H_5)_3.$ 0,9163; n_5^m : 1,4461 (STANLEY, JAY, ADAMS, Am.Soc. 51, 1265). Kp₃: 172—177°; D₄^{ss}:

 Heptadecan - dicarbonsaure - (4.4), Propyl-n-tridecyl-malonsaure $\mathbf{C}_{19}\mathbf{H}_{26}\mathbf{O}_4 = \mathbf{C}\mathbf{H}_3 \cdot [\mathbf{C}\mathbf{H}_3]_{13} \cdot \mathbf{C}(\mathbf{C}\mathbf{H}_3 \cdot \mathbf{C}_3\mathbf{H}_5)(\mathbf{C}\mathbf{O}_3\mathbf{H})_3.$

Disthylester $C_mH_{44}O_4 = CH_2 \cdot [CH_3]_{12} \cdot C(CH_2 \cdot C_2H_5)(CO_2 \cdot C_2H_5)_2$. Kp₅: 183—187°; D₄: 0,9048; n₅: 1,4475 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

7. 3.13-Dimethyl-pentadecan-dicarbons aure-(1.15) $C_{19}H_{30}O_4 = HO_3C \cdot CH_2 \cdot CH_3 \cdot CH(CH_3) \cdot [CH_3] \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CO_3H$. B. Neben anderen Produkten bei längerem Erwärmen von 1.13-Dibrom-2.12-dimethyl-tridecan mit Natrium-malons auredimethylester in Alkohol auf dem Wasserbad, Verseifen des Reaktionsprodukts und Erhitzen auf 120—200°

(CHUIT, BOELSING, MALET, Helv. 12, 1104). — Bei der fraktionierten Krystallisation aus organischen Lösungsmitteln erhält man neben einer öligen Säure Gemische von Stereoisomeren mit den Schmelzpunkten 59-60°, 48-51° und 40-43°.

8. Heptadecan - dicarbonsäure - (5.5), Butyl - n - dodecyl - malonsäure $\mathbf{C_{19}H_{36}O_4} \stackrel{.}{=} \mathbf{CH_3} \cdot [\mathbf{CH_2}]_{11} \cdot \mathbf{C}(\mathbf{CO_2H})_2 \cdot [\mathbf{CH_2}]_3 \cdot \mathbf{CH_3}.$

 $\label{eq:Disthylester} \text{ C_{23}H}_{44}O_4 = \text{CH}_3 \cdot [\text{CH}_3]_{11} \cdot \text{C}(\text{CO}_3 \cdot \text{C}_3\text{H}_{\frac{5}{2}})_3 \cdot [\text{CH}_3]_3 \cdot \text{CH}_3. $ Kp_{3,5} \colon 175-180^\circ;$ D. : 0,9104; n. : 1,4473 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

9. Heptadecan-dicarbonsäure-(6.6), n-Amyl-n-undecyl-malonsäure $C_{19}H_{36}O_4 = CH_3 \cdot [CH_2]_{10} \cdot C(CO_2H)_2 \cdot [CH_2]_4 \cdot CH_3.$

Distributes $C_{33}H_{44}O_4 = CH_3 \cdot [CH_2]_{10} \cdot C(CO_2 \cdot C_2H_3)_2 \cdot [CH_2]_4 \cdot CH_3$. Kp₅: 180—185°; D₄^{*}: 0,9124; n₅^{*}: 1,4509 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

10. Heptadecan - dicarbonsäure - (7.7), n-Hexyl-n-decyl-malonsäure $C_{19}H_{36}O_4 = CH_3 \cdot [CH_2]_9 \cdot C(CO_2H)_2 \cdot [CH_2]_5 \cdot CH_3.$

Diäthylester $C_{23}H_{44}O_4 = CH_3 \cdot [CH_2]_9 \cdot C(CO_2 \cdot C_2H_5)_3 \cdot [CH_2]_5 \cdot CH_3$. $Kp_{2,5}$: 185—188°; D_4^m : 0,9118; n_5^m : 1,4476 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

11. Heptadecan - dicarbonsäure - (8.8), n - Heptyl - n - nonyl-malonsäure $C_{19}H_{36}O_4 = CH_3 \cdot [CH_2]_8 \cdot C(CO_2H)_2 \cdot [CH_2]_6 \cdot CH_3$

Diathylester $C_{23}H_{44}O_4 = CH_3 \cdot [CH_3]_6 \cdot C(CO_2 \cdot C_2H_5)_2 \cdot [CH_2]_6 \cdot CH_3$. Kp_5 : 193—197°; Dis: 0,9118; np.: 1,4471 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

Heptadecan-dicarbonsaure-(9.9), Di-n-octyl-malonsaure $C_{19}H_{18}O_4 =$ $(CH_3 \cdot [CH_2]_7)_2 C(CO_2H)_2$.

Diäthylester. $C_{23}H_{44}O_4 = (CH_3 \cdot [CH_2]_7)_2C(CO_3 \cdot C_2H_5)_2$ (H 735). Kp₃: 192—195°; D_4^{ss} : 0,9135; np. 1,4471 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

13. 2-Methyl - hexadecan - dicarbonsäure - (3.3), Isopropyl - n - tridecylmalonsaure $C_{19}H_{34}O_4 = CH_3 \cdot [CH_9]_{12} \cdot C(CO_9H)_2 \cdot CH(CH_9)_2$.

Diäthylester $C_{23}H_{44}O_4 = CH_3 \cdot [CH_2]_{12} \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH(CH_3)_2$. Kp₅: 179—183°; Dis: 0,9144; np: 1,4491 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

14. 2 - Methyl - hexadecan - dicarbonsäure - (4.4), Isobutyl - n - dodecylmalons dure $C_{19}H_{36}O_4 = CH_3 \cdot [CH_2]_{11} \cdot C(CO_2H)_3 \cdot CH_3 \cdot CH(CH_3)_2$.

 $\textbf{Diäthylester} \ \ C_{23}H_{44}O_{4} = CH_{3} \cdot [CH_{2}]_{11} \cdot C(CO_{2} \cdot C_{2}H_{5})_{2} \cdot CH_{2} \cdot CH(CH_{3})_{2}. \ \ Kp_{5} \colon 180-185^{0};$ D. : 0,9115; n. : 1,4481 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

15. 3-Methyl-hexadecan-dicarbonsaure-(4.4), sek.-Butyl-n-dodecylmalons dure $C_{19}H_{36}O_4 = CH_3 \cdot [CH_2]_{11} \cdot C(CO_2H)_2 \cdot CH(CH_3) \cdot C_2H_5$.

Diathylester $C_{23}H_{44}O_4 = CH_3 \cdot [CH_2]_{11} \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH(CH_3) \cdot C_2H_5$. $Kp_5: 180-184^0$; D₄: 0,9163; n_D: 1,4501 (STANLEY, JAY, ADAMS, Am. Soc. 51, 1265).

 4 - Methyl - hexadecan - dicarbonsäure - (5.5), Pentyl - (2) - n - undecyl $malons aure C_{19}H_{34}O_4 = CH_8 \cdot [CH_2]_{10} \cdot C(CO_2H)_2 \cdot CH(CH_3) \cdot CH_2 \cdot C_2H_5.$

Diathylester $C_{23}H_{44}O_4 = CH_3 \cdot [CH_2]_{10} \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH(CH_3) \cdot CH_2 \cdot C_2H_5$. Kp₄: 175° bis 178°; D₄: 0,9155; n₅: 1,4509 (Stanley, Jay, Adams, Am. Soc. 51, 1265).

19. Dicarbonsäuren $C_{20}H_{38}O_4$.

1. Octadecan-dicarbonsäure-(1.18) $C_{50}H_{35}O_4 = HO_3C \cdot [CH_2]_{18} \cdot CO_3H$ (H 735). Die Angaben über das Vorkommen im Japanwachs konnten nicht bestätigt werden (Ruzioka, Stoll, Schinz, Helv. 11, 674). — B. Bei der Elektrolyse von Nonan-dicarbonsäure-(1.9)-monoäthylester in ca. $^{1}/_{3}$ Mol Kaliumhydroxyd enthaltendem Methanol bei 40—50° und Verseifung des entstandenen Octadecan-dicarbonsäure-(1.18)-diäthylesters mit alkoh. Kalilauge (R., St., Sch., Helv. 11, 1178). Bei der Reduktion von 9-Oxo-octadecan-dicarbonsäure-(1.18) mit amalgamiertem Zink und siedender konzentrierter Salzsäure (R., St., Sch., Helv. 11, 677). Beim Erhitzen von Octadecan-tetracarbonsäure-(1.1.18.18) auf ca. 200° (CHUIT, HAUSSER, Helv. 12, 855). Über Bildung aus Cycloeikosanon durch Oxydation mit Chromtrioxyd in Essigsäure auf dem Wasserbad vgl. R., St., Sch., Helv. 11, 680. — Krystalle (aus Essigester oder Benzol). F: 123° (CH., H.), 124—125° (R., St., Sch.). — Das Thoriumsalz liefert bei der thermischen Zersetzung unter vermindertem Druck Cyclononadecanon und andere Produkte (R., St., Sch., Helv. 11, 1174).

Dimethylester $C_{32}H_{43}O_4=CH_2\cdot O_3C\cdot [CH_2]_{16}\cdot CO_3\cdot CH_3$. Blättchen (aus Methanol). F: 65,5—66° (Chuit, Hausser, Helv. 12, 856). Kp₃: 223—224°.

 $\begin{array}{lll} \textbf{Diäthylester} & C_{24}H_{46}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{18} \cdot CO_2 \cdot C_2H_5. & \text{Blättchen (aus Alkohol)}. \\ \textbf{F: 54,5-55}^o & (Chuit, Hausser, \textit{Helv. 12}, 856). & Kp_2: 230-232^o. \end{array}$

2. 3.14-Dimethyl-hexadecan-dicarbonsäure-(1.16) $C_{20}H_{38}O_4 = HO_2C \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CO_2H$. B. Durch Kondensation von 1.14-Dibrom-2.13-dimethyl-tetradecan mit Natriummalonester in Alkohol, anfangs auf dem Wasserbad, dann im Autoklaven bei 150°, Verseifen des Reaktionsprodukts und Erhitzen (CHUIT, BOELSING, MALET, Helv. 12, 1106). — Krystalle (aus Benzol-Petroläther). F: 104—105°.

Dimethylester $C_{32}H_{43}O_4 = CH_3 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot [CH_2]_{10} \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot CH_3$. Flüssigkeit. $Kp_{1,7}$: 205—207°; D^{15} : 0,9518 (Chuit, Boelsing, Malet, Helv. 12, 1106).

3. **6.11-Dimethyl-hexadecan-dicarbons** \(\text{aure-(2.15)}, \ \ \text{Perhydrocrocetin} \\ \text{C}_{20} \text{H}_{38} \text{O}_4 = [\text{HO}_2 \text{C} \text{H} (\text{CH}_3) \cdot \text{CH}_2 \cdot \text{C}_2 \cdot

Perhydrocrocetin - dimethylester $C_{22}H_{42}O_4 = [CH_3 \cdot O_2C \cdot CH(CH_3) \cdot CH_2 \cdot$

Perhydrocrocetin-diamid $C_{20}H_{40}O_2N_2 = [H_2N \cdot CO \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_2 -]_2$ s. H 30, 107.

20. Dicarbonsäuren C₂₁H₄₀O₄.

1. Nonadecan-dicarbonsäure-(1.19) C₂₁H₄₀O₄ = HO₂C·[CH₂]₁₉·CO₂H (H 735). B. Durch Ozonisierung von Heneikosen-(20)-carbonsäure-(1) in Tetrachlorkohlenstoff (RUZICKA, STOLL, SCHINZ, Helv. 11, 682). Beim Erhitzen von Nonadecan-tetracarbonsäure-(1.1.19.19) (CHUIT, HAUSSER, Helv. 12, 857). Aus Cycloheneikosanon durch Kondensation mit Benzaldehyd in Gegenwart von Natriumäthylat-Lösung, Erhitzen des Reaktionsprodukts mit Natriumdisulfat auf 200°, Ozonisieren des erhaltenen Benzylidenderivats in Eisessig und Nachbehandlung mit wäßr. CrO₂-Lösung bei 60° (R., St., Sch., Helv. 11, 1176).

sation into Benzaldenyd in Gegenwart von Natriumathylat-Lossing, Erintzen des Reaktionsprodukts mit Natriumdisulfat auf 200°, Ozonisieren des erhaltenen Benzylidenderivats in
Eisessig und Nachbehandlung mit wäßr. CrO₃-Lösung bei 60° (R., St., Sch., Helv. 11, 1176).

Isolierung aus Japanwachs: R., St., Sch., Helv. 11, 679. — Krystalle (aus Alkohol, Essigester oder Benzol). F: 118—120° (R., St., Sch.), 123° (Ch., H.). — Das von Geitel, v. d. Want,
(J. pr. [2] 61, 153) beim Erhitzen von Nonadecan-dicarbonsäure-(1.19) auf 200° erhaltene
Keton vom Schmelzpunkt 82—83° konnte nicht wieder erhalten werden (R., St., Sch.,
Helv. 11, 674). Das Thoriumsalz liefert bei der thermischen Zersetzung unter vermindertem
Druck Cycloeikosanon und andere Produkte (R., St., Sch.).

Dimethylester $C_{23}H_{44}O_4 = CH_3 \cdot O_2C \cdot [CH_2]_{10} \cdot CO_2 \cdot CH_3$. Blättchen (aus Methanol). F: 65,3—65,8° (Chuit, Hauseer, Helv. 12, 857), 60—61° (Ruzicka, Stoll, Schinz, Helv. 11, 679). Kp₃: 225—228° (Ch., H.).

Diäthylester $C_{25}H_{48}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{19} \cdot CO_2 \cdot C_2H_5$ (H 735). Blättchen (aus Alkohol). F: 52° (korr.) (Fairweather, *Phil. Mag.* [7] 1 [1926], 947), ca. 57° (Chuit, Hausser, *Helv.* 12, 857). Kp₃: 238—239 (Ch., H.).

- 2. Nonadecan-dicarbonsäure (1.1). n-Octadecyl-malonsäure $C_{21}H_{40}O_4=CH_3\cdot[CH_3]_{17}\cdot CH(CO_2H)_2$ (H 735; E I 299). B. Aus dem Diäthylester beim Verseifen mit konz. Kalilauge (ADAM, DYER, Soc. 127, 71). Röntgenographische Untersuchung: Henderson, Pr. roy. Soc. Edinburgh 48, 22; C. 1928 I, 2903. F: 121,2° (H.).
- 21. Eikosan-dicarbonsäure (1.20), Phellogensäure $C_{22}H_{42}O_4 = HO_2C \cdot [CH_2]_{80} \cdot CO_2H$. Zur Konstitution vgl. Drake, Carhart, Mozingo, Am. Soc. 63 [1941], 617. B. Aus dem Diäthylester durch Verseifung mit alkoh. Kaliauge (Fairweather, Pr. roy. Soc. Edinburgh 46, 72; C. 1926 II, 188; Ruzicka, Stoll, Schinz, Helv. 11, 1178). Bei der Reduktion von 10-0xo-eikosan-dicarbonsäure-(1.20) mit amalgamiertem Zink in siedender konzentrierter Salzsäure (R., St., Sch., Helv. 11, 684). Bei der Kalischmelze von 21-0xy-tricosan-carbonsäure-(1) (Phellonsäure) (v. Schmidt, M. 25 [1904], 284; D., C., M.) und von Kork (v. Sch., M. 25, 287). Krystalle (aus Alkohol, Chloroform oder Benzol). Rontgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2633: Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328. F. 121° (v. Sch.), 123—124° (R., St., Sch.), 123,8° (N., R., H.), 123,75° (korr.) (F.). Das Yttriumsalz liefert bei 350—450° im Vakuum Cycloheneikosanon und andere Produkte (R., St., Sch., Helv. 11, 1175). Na₂C₂₂H₄₀O₄. Krystalle (aus Alkohol) (v. Sch.). K_2 C₂₂H₄₀O₄ (F.).

Diäthylester C₁₈H₅₀O₄ = C₂H₅·O₂C·[CH₂]₂₀·CO₂·C₂H₅. B. Aus Decan-dicarbon-säure-(1.10)-monoäthylester durch Elektrolyse wäßrig-alkoholischer Lösungen des Natrium-salzes (FARWEATHER, Pr. roy. Soc. Edinburgh 46, 72; C. 1926 II, 188) oder des Kalium-salzes (RUZIOKA, STOLL, SCHINZ, Helv. 11, 1179) in der Wärme. — Krystalle (aus Petroläther). Röntgenographische Untersuchung: NORMAND, Ross, HENDERSON, Soc. 1926–2635; Pr.

roy. Soc. Edinburgh 47, 79; C. 1927 II, 1328. F: 56° (N., R., H.), 56° (korr.) (F., Phil. Mag. [7] 1 [1926], 947). Ausbreitung monomolekularer Schichten auf Wasser: Adam, Jessop, Pr. roy. Soc. [A] 112, 377; C. 1926 II, 2399.

22. 4.8.12.16-Tetramethyl-heptadecan-dicarbonsäure-(1.1), Dihydrophytylmalonsäure $C_{23}H_{44}O_4=(CH_3)_2CH\cdot [CH_2\cdot CH_2\cdot CH_2\cdot CH(CH_3)]_3\cdot CH_2\cdot CH_2\cdot CH_3\cdot

Diäthylester $C_{27}H_{52}O_4 = (CH_3)_2CH \cdot [CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_2 \cdot CH_3

23. 3.7.12.16-Tetramethyl-octadecan-dicarbonsäure-(1.18), Perhydronorbixin $C_{24}H_{46}O_4 = [HO_2C \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot$

Perhydronorbixin-monomethylester, Perhydrobixin $C_{35}H_{48}O_4 = HO_2C \cdot CH_2 \cdot CH_$

Perhydro-norbixin-dimethylester, Perhydro-methylbixin $C_{26}H_{50}O_4=[CH_3\cdot O_2C\cdot CH_2\cdot

Perhydronorbixin-diäthylester $C_{36}H_{54}O_4 = [C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot CH_2 \cdot C$

 $\label{eq:charge_energy} \begin{aligned} & \textbf{Perhydro-norbixin-diamid} & C_{24}H_{48}O_2N_2 = [H_2N\cdot CO\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot CH_2\cdot

- x.x.x.x Pentabrom 3.7.12.16 tetramethyl octadecan dicarbonsäure (1.18) dimethylester, Pentabromperhydromethylbixin C₂₆H₄₅O₄Br₅. B. Beim Behandeln von Perhydro-norbixin (s. o.) mit überschüssigem Brom und rotem Phosphor, zuletzt im siedenden Wasserbad und nachfolgenden Erwärmen des Reaktionsprodukts mit absol. Methanol (FALTIS, VIEBÖCK, B. 62, 707). Dickflüssiges Öl. Im Vakuum nicht destillierbar. Zersetzt sich beim Erhitzen unter Entwicklung von Bromwasserstoff. [KNOBLOCH]
- 24. Tetrakosan-dicarbonsäure-(1.24) $C_{36}H_{50}O_4 = HO_2C \cdot [CH_2]_{24} \cdot CO_2H$. B. Durch Verseifung des Diäthylesters (Fairweather, Pr. roy. Soc. Edinburgh 46, 73; C. 1926 II, 188). Krystalle (aus Chloroform). F: 123,5° (korr.) (F.). Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2633; Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328.

Diäthylester $C_{20}H_{58}O_4=C_2H_5\cdot O_2C\cdot [CH_2]_{24}\cdot CO_2\cdot C_2H_5$. B. Durch Elektrolyse des Natriumsalzes des Dodecan-dicarbonsäure-(1.12)-monoäthylesters in wäßr. Alkohol bei 55—60°, neben anderen Produkten (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 73; C. 1926 II, 188). — Krystalle (aus Petroläther). F: 66°.

25. 0ktakosan-dicarbonsäure-(1.28) $C_{30}H_{58}O_4 = HO_2C \cdot [CH_2]_{28} \cdot CO_2H$. B. Durch Verseifung des Dimethylesters (Ruzicka, Stoll, Schinz, Helv. 11, 1179) oder des Diäthylesters (Fairweather, Pr. roy. Soc. Edinburgh 46, 74; C. 1926 II, 188) mit alkoh. Kalilauge. Bei der Reduktion von 14-0xo-octakosan-dicarbonsäure-(1.28) mit konz. Salzsäure und amalgamiertem Zink, neben anderen Produkten (R., Mitarb., Helv. 11, 510). — Krystalle (aus Benzol). F: 123,25° (F.), 125—126° (Ziegler, Hechelhammer, A. 528 [1937], 133). — Beim Erhitzen des Yttriumsalzes auf 300—470° unter 15 mm Druck entsteht Cyclononakosanon (R., St., Sch., Helv. 11, 1177).

Dimethylester $C_{32}H_{63}O_4=CH_3\cdot O_2C\cdot [CH_2]_{22}\cdot CO_2\cdot CH_3$. B. Aus Thapsiasäure-monomethylester durch Elektrolyse einer methylalkoholischen Lösung des Kaliumsalzes (Ruzioka, Stoll, Schinz, Helv. 11, 1179). — Blättchen (aus Alkohol). F: 74—75° (R., St., Sch.), 82—83° (Ziegler, Hechelhammer, A. 528 [1937], 132).

Diäthylester $C_{24}H_{66}O_4 = C_2H_5 \cdot O_2C \cdot [CH_3]_{28} \cdot CO_3 \cdot C_3H_5$. Aus Thapsiasäure-monoäthylester durch Elektrolyse einer wäßrig-alkoholischen Lösung des Natriumsalzes bei 60° bis 65°, neben anderen Produkten (FAIRWEATHER, Pr. roy. Soc. Edinburgh 46, 74; C.

631

1926 II, 188). — Krystalle (aus Petroläther). Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2635; Pr. roy. Soc. Edinburgh 47, 79; C. 1927 II, 1328. F: 74° (F.).

26. Dotriakontan-dicarbonsäure-(1.32) $C_{34}H_{66}O_4 = HO_2C \cdot [CH_2]_{32} \cdot CO_2H$. B. Durch Verseifung des Diäthylesters mit alkoh. Kalilauge (FAIRWEATHER, Pr. roy. Soc. Edinburgh 45, 285; C. 1926 I, 1391). — Krystalle (aus Chloroform). F: 123° (korr.) (F.). Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2633; Pr. roy. Soc. Edinburgh 47, 72; C. 1927 II, 1328. Sehr schwer löslich in den meisten organischen Lösungsmitteln, unlöslich in Wasser (F.). — $K_2C_{34}H_{64}O_4$. Löslich in Wasser unter Bildung einer Seifen-Lösung (F.).

Diäthylester $C_{38}H_{74}O_4 = C_2H_5 \cdot O_2C \cdot [CH_2]_{32} \cdot CO_2 \cdot C_2H_5$. B. Aus Hexadecan-dicarbon-säure-(1.16)-monoäthylester durch Elektrolyse einer wäßrig-alkoholischen Lösung des Natriumsalzes, neben anderen Produkten (FAIRWEATHER, Pr. roy. Soc. Edinburgh 45, 284; C. 1926 I, 1391). — Mikroskopische Tafeln (aus Äther). Röntgenographische Untersuchung: Normand, Ross, Henderson, Soc. 1926, 2635; Pr. roy. Soc. Edinburgh 47, 79; C. 1927 II, 1328. F: 80° (korr.). Schwer löslich in Alkohol, Petroläther und Äther (F.). Über die Ausbreitung monomolekularer Schichten auf Wasser vgl. Adam, Jessop, Pr. roy. Soc. [A] 112, 378; C. 1926 II, 2399.

27. Heptatriakontan-dicarbonsäure-(19.19), Di-n-octadecyl-malonsäure $C_{29}H_{76}O_4 = CH_3 \cdot [CH_2]_{17} \cdot C(CO_2H)_3 \cdot [CH_3]_{17} \cdot CH_3$. B. Durch Erhitzen von n-Octadecyl malonsäure-äthylester mit n-Octadecyljodid und Natrium in absol. Alkohol bei Gegenwart von Äther und Verseifen des erhaltenen Esters mit siedender alkoholischer Kalilauge (ADAM, DYER, Soc. 127, 71). — Krystalle (aus Eisessig). Röntgenographische Untersuchung: Henderson, Pr. roy. Soc. Edinburgh 48, 22; C. 1928 I, 2903. F: 93,5—94° (A., D.). — Liefert beim Erhitzen auf 160° Di-n-octadecyl-essigsäure (A., D.). [Gottfried]

2. Dicarbonsäuren C_nH_{2n-4}O₄.

- 1. Dicarbonsăuren $C_4H_4O_4$.
- 1. Åthylen-a. β -dicarbonsäure, Fumarsäure und Maleinsäure $C_4H_4O_4=HO_4C\cdot CH\cdot CH\cdot CO_2H$.
- a) trans-Form, Fumarsäure $C_4H_4O_4 = \frac{HO_3C \cdot C \cdot H}{H \cdot C \cdot CO_3H}$ (H 737; E I 299). Zur Konfiguration vgl. auch Errera, Henri, $C \cdot r$. 181, 549.

Vorkommen.

In Amanita muscaria (King, Soc. 121, 1753). In den Blättern und der Rinde von Tiliacora acuminata Miers (van Itallie, Steenhauer, Pharm. Weekb. 59, 1383; C. 1923 I, 548). In Glaucium luteum Scop. (Schmalfuss, H. 131, 167). Im Hirtentäschelkraut (Capsella bursa pastoris) (Zechmeister, Szécsi, B. 54, 172). Im Ahornsirup (Nelson, Am. Soc. 50, 2007). Im Ahornzucker-"Sand" (N., Am. Soc. 50, 2028). Im Kraut von Myrrhis odorata Scop. (van I., St., Pharm. Weekb. 63, 6; C. 1926 I, 2408). Zusammenstellung über das Vorkommen von Fumarsäure in Pflanzens. bei C. Wehmer, W. Thiess, M. Hadders in G. Klein, Handbuch der Pflanzenanalyse, 2. Bd. 1. Tl. [Wien 1932], S. 524; Literaturhinweise hierzus. bei C. Wehmer, Pflanzenstoffe, 2. Aufl., 1. Bd. [Jena 1929], 2. Bd. [Jena 1931].

Bildung.

Biochemische Bildungen. Aus Glycerin oder aus Essigsäure bei Einw. von Mucor stolonifer (Rhizopus nigricans) in Gegenwart von Calciumcarbonat (Butkewitsch, Fedoroff, Bio. Z. 207, 304). Bei der Vergärung von d-Glucose, d-Fructose oder Invertzucker durch Mucor stolonifer entstehen in Abwesenheit von Calciumcarbonat nur geringe, in Gegenwart von Calciumcarbonat dagegen beträchtliche Mengen Fumarsäure (B., Bio. Z. 182, 105; B., F., Bio. Z. 206, 445). Rhizopus-Species bilden Fumarsäure neben anderen Produkten auch aus Weinsäure und Gluconsäure (Takahashi, Asai, Pr. Acad. Tokyo 3, 86; C. 1927 II, 583). Bei der Einw. von Aspergillus niger auf das Calciumsalz von dl-Apfelsäure, wobei die l-Apfelsäure bevorzugt abgebaut wird (Stent, Subramaniam, Walker, Soc. 1929, 1993). Aspergillus fumaricus hatte sein früher vorhandenes Vermögen, aus Zuckern

Fumarsäure zu bilden (vgl. Wehmer, B. 51, 1663), bei späteren Versuchen vollständig eingebüßt (Schreyer, Bio. Z. 202, 132). Ausführliche Angaben über die Fumarsäuregärung s. bei K. Bernhauer in F. F. Nord, R. Weidenhagen, Handbuch der Enzymologie [Leipzig 1940], S. 1087; K. Bernhauer, H. Knobloch in E. Bamann, K. Myrbäck, Die Methoden der Fermentforschung [Leipzig 1941], S. 2467.

Bei der Dehydrierung von Bernsteinsäure durch Methylenblau bei p_H 7,2 in Gegenwart von Bact. coli (QUASTEL, WHETHAM, Biochem. J. 18, 528). Bei der Einw. von Bact. coli auf l-Äpfelsäure in Gegenwart von 2% Propylalkohol unter anaeroben Bedingungen (WOOLF, Biochem. J. 23, 474; vgl. Qu., WH., Biochem. J. 18, 530). Bei der Einw. von Bact. coli, Bac. pyocyaneus, Bac. prodigiosus, Bac. proteus oder Bact. fluorescens auf Natrium-l-asparaginat in Gegenwart von 2—4% Propylalkohol, 0,1 n-Natriumnitrit oder Toluol bei p_H 7,4 und 37° unter anaeroben Bedingungen (Qu., Woolf, Biochem. J. 20, 546, 548; Cook, Woolf, Biochem. J. 22, 475, 479). Über die Bildung neben l-Äpfelsäure bei der Einw. von Bact. coli auf 1-Asparaginsäure in Gegenwart von Propylalkohol vgl. Woolf, Biochem. J. 23, 476. Bei der Einw. von Bac. pyocyaneus auf Asparagin, neben anderen Produkten (AUBEL, C. r. 173, 180). — Uber die reversiblen Gleichgewichte Fumarsäure + Leukomethylenblau

Bernsteinsäure + Methylenblau, Fumarsäure ⇌ Äpfelsäure sowie Fumarsäure + Ammoniak ⇌ Asparaginsäure in Gegenwart von Bakterien s. S. 636. Bei der Dehydrierung von Natrium-Asparaginsaure in Gegenwart von Bakterien s. S. 630. Bei der Denydrierung von Nathumsuccinat durch Methylenblau oder Sauerstoff in Gegenwart von Muskelbrei oder Muskelsextrakt entsteht ein Gemisch von Fumarsäure und l-Äpfelsäure (BATTELLI, STERN, C. r. Soc. Biol. 84, 305; C. 1921 I, 581; F. G. FISCHER, B. 60, 2260; vgl. Hahn, HAARMANN, Z. Biol. 86, 523; 87, 111; C. 1928 I, 89, 2076). Fumarsäure entsteht auch bei der Einw. von Muskelextrakt oder Muskelbrei auf l-Äpfelsäure (B., St.; F., B. 60, 2262). Über das Gleichgewicht Fumarsäure = l-Äpfelsäure in Gegenwart des in tierischen Geweben enthalten. Enzyms Fumarase s. S. 635. Bei der Einw. von Enzymen aus Rinderleberextrakt auf β -Oxybuttersäure, neben Bernsteinsäure und Apfelsäure (KÜHNAU, Bio. Z. 200, 46, 54). Ausführliche Angaben über die Bildung bei der Dehydrierung von Bernsteinsäure durch Succinodehydrase s. bei C. Oppenheimer, Die Fermente und ihre Wirkungen, Bd. II [Leipzig 1926], S. 1707; Suppl. Bd. II [Den Haag 1939], S. 1504, 1548; F. B. STRAUB in E. BAMANN, K. Myrbäck, Die Methoden der Fermentforschung [Leipzig 1941], S. 2321.

Rein chemische Bildungen. Neben anderen Produkten bei der elektrolytischen Oxydation von Jodbenzol in verd. Schwefelsäure an Bleidioxyd-Anoden mit Diaphragma (FICHTER, LOTTER, Helv. 8, 438); entsteht auf gleiche Weise aus 4-Jod-toluol (FICHTER, Lo., Helv. 8, 441) und Guajacol (FICHTER, DIETRICH, Helv. 7, 137). Aus y.y.y. Trichlorcrotonsäure durch Einw. von konz. Schwefelsäure oder durch längeres Kochen mit Wasser (v. Auwers, Wissebach, B. 56, 728). Neben Brombernsteinsäure und wenig Chlorbernsteinsäure bei der Verseifung von Brombernsteinsäurediäthylester mit siedender 10% iger Salzsäure (Levene, Mikeska, *J. biol. Chem.* 55, 798; vgl. Weissberger, Haase, *B.* 64 [1931], 2901). In sehr geringer Menge neben Äthylmercaptobernsteinsäure bei der Einw. von Athylmercaptan auf das Natriumsalz der dl-Brombernsteinsäure in Natronlauge unter anfänglicher Kühlung (FITGER, B. 54, 2945). — Zur Bildung aus Maleinsäure beim Bestrahlen der wäßr. Lösung mit ultraviolettem Licht vgl. E. WARBURG, Sber. preuß. Akad. 1919, 972; C. 1920 I, 199; Volmar, C. r. 181, 469. Über Bildung aus Maleinsäure im Magnetfeld vgl. Beresowskaja, Ukr. chemič. Z. 1 [1925], 58; 2, 261; C. 1927 I, 2634. Über Bildung aus Maleinsäure in wäßr. Lösung in Gegenwart von kolloidem Schwefel unter verschiedenen Bedingungen vgl. Freundlich, Schikorr, Koll. Beih. 22, 4; C. 1926 I, 3130. Über Bildung bei der Auflösung von Zink in einer salzsauren Maleinsäure-Lösung vgl. B., Ukr. chemič. 2. 1,55. Bei der Einw. von trockenem Chlorwasserstoff in statu nascendi auf Maleinsäure entstehen nur sehr geringe Mengen Fumarsäure (v. Auwers, Wissebach, B. 56, 719, 729). Beim Kochen von Maleinsäure mit 60% iger Schwefelsäure bildet sich langsam Fumarsäure; Natriumchlorid beschleunigt die Reaktion (v. Au., Wi., B. 56, 729). Fumarsäure entsteht aus Maleinsäure in schwefelsaurer Lösung unter der Einw. von photochemisch erzeugtem atomaren Brom (Wachholtz, Z. El. Ch. 33, 547; Ph. Ch. 135, 151, 168) sowie von Bromatomen, die bei der Einw. von Reduktionsmitteln, am besten Eisen(II)-sulfat, auf Bromsäure, unterbromige Säure oder Brom erzeugt werden (EGGERT, Öst. Chemiker-Zig. 30, 110; C. 1927 II, 788; Wach., Z. El. Ch. 33, 545; Ph. Ch. 135, 160, 170). Auch beim Aufbewahren oder Erwärmen eines Maleinsäure-Bromsäure-Gemisches erhält man Fumarsäure (WACH., Z. El. Ch. 33, 546). Fumarsaure fällt aus bei kurzem Einleiten von Schwefeldioxyd in eine Suspension von Mangandioxyd in wäßr. Maleinsäure-Lösung, verschwindet aber wieder bei längerem Einleiten von Schwefeldioxyd (P. Neogi, S. Neogi, Chatterji, J. indian chem. Soc. 5, 280; C. 1928 II, 1428). Aus Acetylendicarbonsäure bei der Hydrierung in Gegenwart von gebrauchtem Palladium-Tierkohle-Katalysator, neben ca. 17% Maleinsäure; mit frischem Katalysator entsteht nur ca. 1% Fumarsäure neben viel Maleinsäure (OTT, SCHRÖTER, B. 60, 633).

Einfluß von Zeit, Temperatur und Konzentration auf das Gleichgewicht von Fumarsäure und dl-Apfelsaure in wäßr. Lösung: Weiss. Downs. Am. Soc. 44, 1122. Geht man von 1-Apfelsäure aus, so stellt sich ebenfalls ein Gleichgewicht zwischen Fumarsäure und dl-Apfelsäure ein (W., Do., Am. Soc. 44, 1124). Fumarsäure entsteht neben anderen Produkten aus dl-Athylsulfoxydbernsteinsäure beim Kochen mit Essigester sowie in sehr geringer Menge beim Erwärmen mit Wasser (FITGER, B. 54, 2954). Neben Maleinsäure beim Kochen von Glyoxylsäure mit Malonsäure in Pyridin in Gegenwart von sehr wenig Piperidin (Dutt, Quart. J. indian chem. Soc. 1, 299; C. 1925 II, 1852). In geringer Menge neben anderen Produkten bei der elektrolytischen Oxydation von Benzolsulfonsäure, Benzol-disulfonsaure-(1.4), Phenol-sulfonsaure-(4) sowie Brenzcatechin-sulfonsaure-(4) (FICHTER, STOCKER, Helv. 7, 1065, 1067, 1077). Beim Erhitzen von Asparaginsäure mit 1 %iger Salzsäure oder Wasser und Luft im Autoklaven auf 180º (SSADIKOW, Bio. Z. 143, 498). Bei der Oxydation von Furfurol oder Brenzschleimsäure mit Natriumchlorat bei Gegenwart von Vanadiumpentoxyd in heißem Wasser (Milas, Am. Soc. 49, 2008; Org. Synth. 11 [1931], 46. Aus Gelatine beim Kochen mit 25%iger Schwefelsäure (ABDERHALDEN, HAAS, H. 151, 125) sowie beim Erhitzen mit 1,2% iger Salzsäure oder Wasser und Luft im Autoklaven auf 160-180° (Ss., Bio. Z. 143, 496, 499). Geringe Mengen Fumarsäure entstehen beim Erhitzen von Cellulose mit Luft in Gegenwart von Soda-Lösung unter Druck auf 2000 (F. FISCHER, SCHRADER, Abh. Kenntnis Kohle 5, 208; F., SCHR., TREIBS, Abh. Kenntnis Kohle 5, 212, 215; C. 1922 IV, 1064).

Physikalische Eigenschaften.

Monoklin prismatisch (Reis, Schneider, Z. Kr. 68, 547). Röntgenogramm: Yardley, Soc. 127, 2207; R., Sch., Z. Kr. 68, 549. F: 273—273.3° (Viseur, Bl. Soc. chim. Belg. 35, 427; C. 1927 I, 1543), 284° (Weiss, Downs, Am. Soc. 45, 1004), 284,5—285° (Bad 260°; Erhitzungsdauer von 260—270° 50 Sek., von 270—280° 60 Sek., von 280—285° 40 Sek.) im zugeschmolzenen Röhrchen (Schreyer, Bio. Z. 202, 151). Mittlere spezifische Wärme zwischen 0° und 36°: 0,2894 cal/g, zwischen 0° und 78°: 0,3944 cal/g (Padoa, G. 52 II, 203). Verbrennungswärme bei konstantem Volumen: 320,2 kcal/Mol (Roth in Landolt-Börnst. H 1604).

100 g Wasser lösen bei 25° 0,63 g (VERKADE, SÖHNGEN, Zbl. Bakt. Parasitenk. [II] 50 [1920], 86; Versl. Akad. Amsterdam 28, 367; C. 1920 I, 631), 0,70 g (Weiss, Downs, Am. Soc. 45, 1006), bei 40° 1,07 g, bei 60° 2,4 g, bei 100° 9,8 g Fumarsaure (W., D.). Die gesättigte wäßrige Lösung zeigt einen schwachen Tyndall-Effekt (Traube, Klein, Bio. Z. 120, 115). Bei 29,7° lösen 100 g 95% iger Alkohol 5,75 g, 100 g Aceton 1,72 g Fumarsäure (W., D.). 100 cm² der gesättigten Lösung in Aceton enthalten bei 20° 1,29 g Fumarsäure (VISEUR, Bl. Soc. chim. Belg. 35, 440; C. 1927 I, 1543). 100 g Äther lösen bei 25° 0,72 g Fumarsäure (W., D.). Löslichkeit in Chloroform, Tetrachlorkohlenstoff, Benzol und Xylol: W., D. Löslichkeit von Gemischen mit Bernsteinsäure und mit Maleinsäure in Aceton: VI., Bl. Soc. chim. Belg. 35, 441, 445. Fast unlöslich in Olivenöl (VERKADE, SÖHNGEN). Unlöslich in flüssigem Schwefeldioxyd und in flüssigem Ammoniak (DE CARLI, G. 57, 352) sowie in geschmolzenem Campher (SSADI-KOW, MICHAILOW, 3K. 56, 113; C. 1926 I, 815). Verteilung von Fumarsäure zwischen Wasser und Äther bei 22°: Sabalitschka, B. 53, 1386; bei 25°: Smith, J. phys. Chem. 25, 621; zwischen Wasser und Olivenöl bei 25°: Ve., Sö.; zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 732. Schmelzpunkte von Gemischen mit Bernsteinsäure und mit Maleinsäure: VISEUR, Bl. Soc. chim. Belg. 35, 438; C. 1927 I, 1543. Dichte wäßr. Lösungen bei 20°: King, Wampler, Am. Soc. 44, 1898. Dichte und Viscosität einiger Lösungen in 80 % igem Alkohol bei 20°, 40° und 60°: HERZ, SCHELIGA, Z. anorg. Ch. 169, 168. Viscosität einer Lösung in Alkohol bei 20°: CAUQUIL, C. r. 184, 1250. Oberflächenspannung wäßr. Lösungen bei 20°: King, Wa. Adsorption von Fumarsäure aus wäßr. Lösung an Tierkohle: Alexejewski, Ж. 59, 1038; C. 1928 I, 2916; Schilow, Nekrassow, Ph. Ch. 130, 70; Ж. 60, 110; an Blutkohle: Freundlich, Schikorr, Koll. Beih. 22, 3; C. 1926 I, 3130; an aktivierte Erlenholzkohle: Ruff, Z. ang. Ch. 38, 1166; R., Hohlfeld, Koll. Z. 36, 35; C. 1925 I, 2156; an verschiedene palladiumfreie und palladiumhaltige Kohlen: Sabalitschka, Moses, B. 60, 788. Adsorption an Kohle aus wäßr. Lösung und aus salzsaurer Lösung: HERMANS, Ph. Ch. 113, 388. Einfluß der Wasserstoffionen-Konzentration auf die Adsorption an aktive Kohle aus wäßr. Lösung: PHELPS. Soc. 1929, 1726. Adsorption aus methylalkoholischer Lösung an Tierkohle: AL.; aus alkoh. Lösung an Tierkohle: AL.; GRIFFIN, RICHARDSON, ROBERTSON, Soc. 1928, 2708; an eine nicht näher bezeichnete Adsorptionskohle bei 0° und 25°: HEYNE, POLANYI, Ph. Ch. 132, 393. Adsorption von Fumarsäure im Gemisch mit Maleinsäure aus wäßriger und methylalkoholischer Lösung an Tierkohle: AL. Adsorption von Fumarsäure aus wäßriger und methylalkoholischer Lösung an Tierkohle: AL. Adsorption von Fumarsaure aus wäßriger und methylalkoholischer Lösung an Tierkohle: AL. saure aus waßr. Lösung an Viscoseseide: Brass, Frei, Koll.-Z. 45, 251; C. 1928 II, 1037; an Gelatine sowie an vorher mit Formalin, Chinon oder salpetriger Säure behandelte Gelatine: Cooper, Edgar, Biochem. J. 20, 1068, 1069. Adsorption an Platinschwarz aus wäßriger und aus atherischer Lösung: Platonow, Ж. 61, 1057, 1059, 1062; С. 1930 I, 348. — Einfluß

von Fumarsäure auf die Quellung von Gelatine in Wasser: Coo., E., Biochem. J. 20, 1066; von Casein in Wasser: Isgaryschew, Pomeranzewa, Koll.-Z. 38, 236; C. 1926 I, 3129. Koagulierende Wirkung auf Lösungen von Casein und Edestin in sehr verdünnter Natronlauge: I., Bogomolowa, Koll.-Z. 38, 239; C. 1926 I, 3307. Fällung verschiedener Proteine aus wäßr. Lösung: Coo., E., Biochem. J. 20, 1065.

Strom-Spannungs Kurven an der Quecksilber-Tropfkathode (Polarogramm): Hebasymenko, Z. El. Ch. 34, 74. Elektrische Leitfähigkeit in Wasser bei 18°: Kolthoff, R. 45, 398; bei 25°: Remesow, Bio. Z. 207, 77; in 0,5 m-Borsäure-Lösung bei 18°: K.; in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 33, 1504. Leitfähigkeit von Gemischen mit inakt. Apfelsäure und Maleinsäure in wäßr. Lösung bei 25°: Höjendall, J. phys. Chem. 28, 761. Elektrolytische Dissoziationskonstante der ersten Stufe k, bei 20°: 9,2·10-4 (potentiometrisch bestimmt) (Freundlich, Schikorr, Koll. Beih. 22 [1926], 6; vgl. Mizutani, Ph. Ch. 118, 321, 334), der zweiten Stufe k, bei 15°: 5×10-6 (colorimetrisch ermittelt) (I. M. Kolthoff, Der Gebrauch von Farbenindikatoren, 2. Aufl. [Berlin 1923], S. 166), bei 18°: 3,4×10-6 (potentiometrisch bestimmt) (Larsson, Z. anorg. Ch. 126, 290, 294; vgl. M., Ph. Ch. 118, 321, 334; F., Sch.), bei 25°: 2,73×10-6 (berechnet aus der Zersetzungsgeschwindigkeit von Diazoessigester in Gegenwart von saurem Natriumfumarat) (Duboux, Frommelt, J. Chim. phys. 24, 257), 3,16·10-6 (aus Löslichkeitsmessungen ermittelt; auf Aktivitäten bezogen) (L., Z. anorg. Ch. 155, 253). Dissoziationskonstanten der ersten und der zweiten Stufe in Methanol bei 18°: Ebert, B. 58, 182; in Methanol-Wasser-Gemischen bei 21° bzw. 21,5°: Mizutani, Ph. Ch. 118, 334; in Alkohol-Wasser-Gemischen bei 18°: M., Ph. Ch. 118, 321. Einfluß der Temperatur auf die Wasserstoffionen-Konzentration von verdünnten wäßrigen Lösungen von saurem Natriumfumarat und seinen Puffergemischen mit Fumarsäure und mit neutralem Natriumfumarat zwischen 18° und 40°: Kolthoff, Tekelenburg, R. 48, 37.

Chemisches Verhalten.

Zur Bildung gasförmiger Zersetzungsprodukte bei der Bestrahlung von wäßr. Fumarsäure-Lösungen mit ultraviolettem Licht vgl. Volmar, C. r. 181, 467; vgl. dagegen E. Warburg, Sber. preuß. Akad. 1919, 961; C. 1920 I, 199. Zur Überführung von Fumarsäure in Maleinsäure im ultravioletten Licht vgl. W., Sber. preuß. Akad. 1919, 972; V., C. r. 181, 469. Beim Bestrahlen von wäßr. Fumarsäure-Lösungen mit ultraviolettem Licht entsteht auch Acrylsäure (V., C. r. 181, 468). Zur Einw. von Radiumstrahlen auf wäßr. Lösungen von Fumarsäure-Maleinsäure-Gemischen vgl. Kailan, Ph. Ch. 95, 215; M. 41, 305. Über von Fumarsaure-Maleinsaure-Gemischen vgl. KAILAN, Ph. Ch. 95, 210; M. 41, 305. Uber Umwandlung von Fumarsäure in Maleinsäure im Magnetfeld vgl. Beresowskaja, Ukr. chemič. Z. 2, 261; C. 1927 I, 2634. — Oxydation in sehr verdünnnter wäßriger Lösung durch Sauerstoff in Gegenwart von Kupferpulver bei 20°: Wieland, A. 434, 191. Geschwindigkeit der Kohlendioxyd-Bildung bei der Einw. von Wasserstoffperoxyd und Eisen(III)-sulfat in Gegenwart und Abwesenheit von Chloroform: Ray, J. gen. Physiol. 5, 615, 621; C. 1923 III, 951. Die Chromschwefelsäure-Oxydation verläuft quantitativ (Simon, C.r. 180, 674). Verlauf der Oxydation durch Permanganat in schwefelsaurer Lösung: Hatcher, West, Tenne roy Soc. Canada [3] 21 III 272. C. 1928 II 4929. Zur Oxydation durch Kelium. Trans. roy. Soc. Canada [3] 21 III, 272; C. 1928 I, 1929. Zur Oxydation durch Kaliumpermanganat vgl. auch Sabalitschka, Tietz, Metallbörse 17, 817; C. 1927 II, 611. -Geschwindigkeit der Hydrierung von Fumarsäure in Alkohol bei Gegenwart von Palladium-Bariumsulfat-Katalysator bei 24° und der Hydrierung von Natriumfumarat in Wasser bzw. verd. Natronlauge bei Gegenwart von Palladium-Calciumcarbonat-Katalysator bei 20° bzw. 23° und 24°: Paal, Schiedewitz, B. 60, 1222. Katalytische Aktivität verschiedener Kohle-Palladium-Katalysatoren bei der Hydrierung von Fumarsäure: Sa., Moses, B. 60, None-Fanadum-Atalysatoren bei der Hydrierung von Fulmarsaure: 5A., moss, D. 60, 789. Geschwindigkeit der Hydrierung von Fulmarsaure in Wasser und in Ather bei Gegenwart von Platinschwarz: Platonow, 3K. 61, 1060; C. 1930 I, 348. Geschwindigkeit der Hydrierung von Fulmarsaure-α-Pinen-Gemischen in Alkohol + Athylacetat bei Gegenwart von Platinschwarz: Vavon, C. r. 173, 361. Fulmarsaure wird durch überschüssiges amalgamiertes Aluminium in Alkohol bei 50—60° zu Bernsteinsaure reduziert (Philippi, Seka, M. 45, 277). Durch Reduktion mit Chrom(II)-chlorid-Lösung in wäßr. Lösung wird Fumarsaure quantitativ in Bernsteinsaure übergeführt (Conant, Cutter, Am. Soc. 48, 1025). Scheinbares Reduktionspotential in 0,2 Mol Chlorwasserstoff enthaltendem Alkohol bzw. Aceton bei 24°: Co., Lurz, Am. Soc. 45, 1052, 1056.

Beim Einleiten von Chlor in eine mit Kochsalz gesättigte wäßrige Fumarsäure-Lösung im Sonnenlicht entsteht Mesodichlorbernsteinsäure (KUHN, WAGNER-JAUREGG, B. 61, 521). Bei der Einw. von Chlor auf eine mit Natriumchlorid gesättigte wäßrige Natriumfumarat-Lösung im zerstreuten Tageslicht erhält man racemische Dichlorbernsteinsäure in fast theoretischer Ausbeute (Terry, Eichelberger, Am. Soc. 47, 1068, 1076); nach KUHN, WAGNER-JAUREGG (B. 61, 511, 520) entsteht dabei hauptsächlich Mesodichlorbernsteinsäure, weniger racemische Dichlorbernsteinsäure und sehr wenig β -Chlor-dl-äpfelsäure. Beim Behandeln von Natriumfumarat mit Chlorwasser wird neben β -Chlor-dl-äpfelsäure vom Schmelzpunkt 145° (korr.) (Dakin, J. biol. Chem. 48, 279) eine β -Chlor-dl-äpfelsäure vom Schmelzpunkt 153,5° (korr.)

pharm. Ges. 30, 482; C. 1921 I, 357.

gebildet (Ku., Ebel, B. 58, 919, 925). Läßt man Brom auf eine mit viel Natriumbromid versetzte wäßrige Lösung von Natrium-, Kalium- oder Strontiumfumarat einwirken, so erhält man hauptsächlich Mesodibrombernsteinsäure neben wenig racemischer Dibrombernsteinsäure (T., El., Am. Soc. 47, 1068, 1076; El., Am. Soc. 48, 1321). Abhängigkeit der Reaktion zwischen Natriumfumarat und Brom in Wasser von der Konzentration: Read, Reid, Soc. 1928, 746, 748. Einw. von neutralen, sauren und alkalischen Brom-Kaliumbromid-Lösungen sowie von sauren Bromid-Bromat-Lösungen auf Fumarsäure: Margosches, Hinner, Fr. 64, 64—68. Reaktion von Silberfumarat mit Jod in siedendem Xylol: Wieland, Fischer, A. 446, 76. Fumarsäure lagert in Eisessig-Tetrachlorkohlenstoff-Lösung Rhodan nicht an (Kaufmann, B. 59, 1391). Verhalten beim Erhitzen mit Wasser und Luft im Autoklaven auf 180°: Ssadikow, Bio. Z. 143, 499. Gesohwindigkeit der Addition von Na₂SO₃ an Fumarsäure in wäßr. Lösung bei 80°: Hägglund, Ringbom, Z. anorg. Ch. 150, 245; der Addition von Na₂SO₃ und NaHSO₃ an Fumarsäure in wäßr. Lösung bei 25,2°: van der Zanden, R. 45, 424. Geschwindigkeit der Addition von NaHSO₃ an das saure und an das neutrale Natriumsalz der Fumarsäure in wäßr. Lösung bei 80°: Hä., Ri. Beim Erwärmen von Kaliumfumarat mit KHSO₃ in Wasser wird Sulfo-bernsteinsäure gebildet (Backer, van der Zanden, R. 46, 476, 484). Wird von siedendem Thionylchlorid, auch in Benzol, Petroläther oder Pyridin, nicht angegriffen (McMaster, Ahmann, Am. Soc. 50, 147). Greift Glas an (Höjendahl, J. phys. Chem. 28, 764). — Beim Erhitzen von Fumarsäure und p-Kresol mit starker Schwefelsäure auf 130—180° entsteht 6-Methylcumarin (Ponndorf, D. R. P. 338737; C. 1921 IV, 1224; Frall. 13, 631; Thompson, Edee, Am. Soc. 47, 2557). Fumarsäure liefert mit 2-Amino-thiophenol bei 150—160° 1-Thiophenmorpholon-(3)-essigsäure-(2) C₆H₄ NH. CO

Biochemisches und physiologisches Verhalten.

Durch das in niederen und höheren Pflanzen sowie in tierischen Geweben weit verbreitete katalysiert. Ausführliche Angaben darüber finden sich bei C. Oppenheimer, Die Fermente und ihre Wirkungen, Bd. II [Leipzig 1926], S. 1716; Suppl. Bd. II [Den Haag 1939], S. 1540. -C. NEUBERG, E. SIMON in C. OPPENHEIMER, Handbuch der Biochemie des Menschen und der Tiere, 2. Aufl., Ergänzungsw. 1. Bd. [Jena 1933], S. 930.—F. WILLE in E. BAMANN, K. MYRBÄCK, Die Methoden der Fermentforschung [Leipzig 1941], S. 2567. — W. Franke in F. F. Nord, R. Weidenhagen, Handbuch der Enzymologie [Leipzig 1940], S. 775. — W. Franke in H.v. Euler, Chemie der Enzyme 2. Teil, 3. Abschnitt [München 1934], S. 529. — Bei der Einw. von ruhenden Bact. coli stellt sich das Gleichgewicht Fumarsäure ⇌ l-Apfelsäure nur in Gegenwart von 2% Propylalkohol ein, in Abwesenheit eines Hemmungsstoffes wird die anfangs entstandene Apfelsäure weiter abgebaut (WOOLF, Biochem. J. 23, 474; vgl. QUASTEL, WHETHAM, Biochem. J. 18, 519). Über das Fumarsäure-Apfelsäure-Gleichgewicht in Gegenwart von Muskelfasern vgl. F. G. Fischer, B. 60, 2262. — Bei der Einw. von ruhenden Bact. coli auf Fumarsäure und Ammoniumchlorid bei p_H 7,4 unter anaeroben Bedingungen wird in Gegenwart und Abwesenheit von Nitrit, Toluol oder Propylalkohol l-Asparaginsäure gebildet; in Abwesenheit der Zellgifte wird die entstandene l-Asparaginsäure zu Bernsteinsäure reduziert (QUASTEL, WOOLF, Biochem. J. 20, 547). In Gegenwart von 1% Nitrit oder 4% Propylalkohol sind die Vorgänge unter aeroben Bedingungen die gleichen wie bei Anaerobiose (Qu., Wo., Biochem. J. 20, 552). In Gegenwart von 4% Propylalkohol wird bei der Einw. von ruhenden Coli-Bakterien auf Fumarsäure und Ammoniumchlorid auch etwas Apfelsäure gebildet, und es entsteht ein Gleichgewicht zwischen Apfelsäure, Fumarsäure und l-Asparaginsäure (Wo., Biochem. J. 23, 477; vgl. dagegen Qu., Wo., Biochem. J. 20, 549; Cook, Wo., Biochem. J. 22, 475). Läßt man dagegen mit 2%iger Cyclohexanol-Lösung vorbehandelte Coli-Bakterien, in denen die Fumarase zerstört ist, in Gegenwart von 2% Cyclohexanol auf Fumarsaure und Ammoniumchlorid einwirken, so findet nur die Gleichgewichtsreaktion Fumarsaure + Ammoniak = 1-Asparaginsaure statt (Wo., Biochem. J. 23, 478). Bac. pyocyaneus, Bac. prodigiosus, Bac. proteus und Bact. fluorescens verhalten sich gegenüber Fumarsaure und Ammoniak ebenso wie Bact. coli (C., Wo., Biochem. J. 22, 475). Zur Überführung von Fumarsäure in l-Asparaginsäure durch das Ferment Aspartase und insbesondere über das Gleichgewicht Fumarsäure + Ammoniak ⇌ l-Asparaginsäure in Gegenwart der erwähnten Bakterien vgl. auch C. Oppenheimer, Die Fermente und ihre Wirkungen, Suppl. Bd. I [Den Haag 1936], S. 592; Suppl. Bd. II [Den Haag 1939], S. 1543; W. Franks in H. v. Euler, Chemie der Enzyme, 2. Teil, 3. Abschnitt [München 1934], S. 533.

Natriumfumarat dehydriert Leukomethylenblau in Gegenwart von ruhenden Bact. ooli, Bac. pyocyaneus, Bac. prodigiosus oder Bac. proteus und hemmt die Reduktion von Methylen-

blau, oxydiertem Glutathion oder Cystein durch diese Bakterien (QUASTEL, WHETHAM. Biochem. J. 18, 524; Qu., Wooldridge, Biochem. J. 19, 654). In Gegenwart von ruhendem Bact. coli oder Bac. pyocyaneus besteht das reversible Gleichgewicht: Fumarsäure + Leukomethylenblau

Bernsteinsäure + Methylenblau (Qu., Wн., Biochem. J. 18, 526; vgl. hierzu C. Орренненмен, Die Fermente und ihre Wirkungen Bd. II [Leipzig 1926], S. 1713; Suppl. Bd. II [Den Haag 1939], S. 1508; W. Franke in H. v. Euler, Chemie der Enzyme 2. Teil, 3. Abschnitt [München 1934], S. 515; F. B. Straub in E. Baumann, K. Myrbäck, Die Methoden der Fermentforschung [Leipzig 1941], S. 2324). Über das Oxydations-Reduktions-Potential im System Bernsteinsäure-Dehydrase-Fumarsäure s. J. Lehmann in E. Bamann, K. Myrbäck, Die Methoden der Fermentforschung [Leipzig 1940], S. 834; R. Wurmer in F. F. Nord, R. Weidenhagen, Handbuch der Enzymologie [Leipzig 1940], S. 306; W. Franke in H. v. Euler, Chemie der Enzyme, 2. Teil, 3. Abschnitt [München 1934], S. 516. Unter aeroben Bedingungen wachsen Bac. pyocyaneus und Bact. coli auf Fumarat-Nährböden (Quastel, Biochem. J. 18, 374; 19, 643), anaerob nur in Gegenwart von Nitrat, Bact. coli auch Gegenwart von Nitrat, Bact. coli auch in Gegenwart von Glycerin oder Lactat (Qu., Stephenson, Whetham, Biochem. J. 19, 310, 316; Qu., St., Biochem. J. 19, 660). In Gegenwart von Bact, coli wirkt Fumarsäure in einem Fumarat und Nitrat enthaltenden Nährmedium als Sauerstoffacceptor (Qu., St., Wh., Biochem. J. 19, 310); in einem Fumarat und Lactat enthaltenden Medium wirkt sie als Wasserstoffacceptor und wird in Bernsteinsäure übergeführt (Qv., Sr., Wh., Biochem. J. 19, 317). Über das anaerobe Wachstum von Bact. coli auf Fumarat + Lactat unter verschiedenen Bedingungen vgl. Qu., St., Biochem. J. 19, 665; Qu., WOOLDRIDGE, Biochem. J. 23, 119—136. Über die Aktivierung von Fumarsäure durch Bact. coli unter verschiedenen Bedingungen vgl. auch Qv.,

Biochem. J. 20, 180; Qu., Wo., Biochem. J. 21, 152, 1234.

Bei der aeroben Vergärung durch Bac. pyocyaneus entstehen Kohlensäure, niedere Fettsäuren und Brenztraubensäure (QUASTEL, Biochem. J. 18, 366, 376). Geschwindigkeit der aeroben Vergärung von Ammoniumfumarat durch Bac. pyocyaneus: Qv., Biochem. J. 18, 368. Sauerstoff-Aufnahme und Kohlendioxyd-Abgabe bei der Vergärung durch Bac, pyocyaneus: Qu., Biochem. J. 18, 374. Zur Oxydation von Fumarsäure in Gegenwart von ruhendem Bact. coli oder Bac. pyocyaneus vgl. Qu., Whetham, Biochem. J. 18, 531. Bei der Vergärung von Ammoniumfumarat durch Bac. fluorescens liquefaciens entsteht neben anderen Produkten Brenztraubensäure (Qu., Biochem. J. 18, 370, 373). Brenztraubensäure wird ferner beim Wachstum von Bac. prodigiosus auf Fumarsäure + Nitrat gebildet (Qu., Stephenson, Biochem. J. 19, 661). Über das aerobe und anaerobe Wachstum von Bac. prodigiosus auf Fumarat-Nährböden vgl. auch Qu., St., Biochem. J. 19, 661. Bei der Einw. von Bac. suipestifer, Bac. aertrycke oder Bac. paratyphosus C auf Fumarsäure entsteht neben anderen Produkten Bernsteinsäure (Brown, Duncan, Henry, J. Hyg. 23, Nr. 1, S. 13; C. 1925 I, 240). Bei der Vergärung von Natriumfumarat durch Aspergillus fumaricus wird Oxalsäure gebildet (Schreyer, Bio. Z. 202, 145). Verwertung von Fumarsäure durch Aspergillus niger und durch Penicillium glaucum: Verkade, Söhngen, Versl. Akad. Amsterdam 28, 364; C. 1920 I, 630. Über die Bildung von Milchsäure und Kohlendioxyd bei der Einw. von Hefe auf Natriumfumarat vgl. H. MÜLLER, Helv. 5, 164. — Reduktion von Methylenblau durch Fumarsäure in Gegenwart eines Ferment-Extraktes aus Gurkensamen: Thun-BERG, Bio. Z. 206, 111. Einfluß der Temperatur auf die Oxydation von Fumarsäure durch Rattenmuskulatur: Tsuneyoshi, J. Biochem. Tokyo 7, 259; C. 1927 II, 2079.

Fumarsäure hemmt die Stärkehydrolyse durch Speichel stärker als Maleinsäure und beschleunigt die Hydrolyse von Protein durch Pepsin etwas stärker als Maleinsäure (Cooper, EDGAR, Biochem. J. 20, 1063). Beschleunigt die Vergärung von Zucker durch Hefe (Jung, H. Müller, Helv. 5, 241). Wirkt stärker keimtötend auf Bact. coli und Paramaecium als Maleinsäure (Coo., E., Biochem. J. 20, 1061; Снебеновтн, Соо., J. phys. Chem. 33, 720, 723). Saures Zinkfumarat wirkt schwächer bactericid auf Bact. coli als das entsprechende Salz der Maleinsäure (Coo., E., *Biochem. J.* 20, 1062). Einfluß von Ammoniumfumarat auf die Pigmentbildung durch Bac. pyocyaneus: Goris, Liot, C. r. 172, 1623. Giftwirkung auf Pflanzen: Ciamician, Galizzi, G. 52 I, 19. Fumarsäure steigert den Gewebegaswechsel überlebender Muskeln (Grönvall, Skand. Arch. Physiol. 45, 310; C. 1924 II, 496). Weitere Angaben über das physiologische Verhalten von Fumarsäure s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin und Leipzig 1930], S. 928.

Verwendung: Analytisches.

Verwendung von Fumarsäure und von Fumaraten in der Textilindustrie: CARPENTER,

J. ind. Eng. Chem. 13, 410; C. 1921 IV, 654.

Literatur über Nachweis und Bestimmung von Fumarsäure: F. B. STRAUB und F. WILLE in E. Bamann, K. Myrbäck, Die Methoden der Fermentforschung [Leipzig 1941], S. 2328, 2570. — A. Bömer, O. Windhausen in A. Bömer, A. Juckenack, J. Tillmans, Handbuch der Lebensmittelchemie, 2. Bd., 2. Teil [Berlin 1935], S. 1142. — J. Schmidt in G. Klein, Handbuch der Pflanzenanalyse, Bd. II [Wien 1932], S. 422. — Mikrochemischer Nachweis: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 339; van Itallie, Pharm. Weekb. 59, 1312; C. 1923 II, 509; Wagenaar, Pharm. Weekb. 64, 9; C. 1927 I, 1623. Abtrennung aus Gemischen mit Bernsteinsäure oder Maleinsäure als Diphenacylester: Rather, Reid, Am. Soc. 43, 632. Über Bestimmung von Fumarsäure mit schwach alkalischer Brom-Kaliumbromid-Lösung oder schwach saurer Bromid-Bromat-Lösung vgl. Margosches, Hinner, Fr. 64, 66, 67, 68, 72. Bestimmung neben Bernsteinsäure durch Titrieren mit Permanganat: Butkewitsch, Fedoroff, Bio. Z. 207, 310. Bestimmung neben Bernsteinsäure und Äpfelsäure durch Fällung als Quecksilber(I)-fumarat mit Quecksilber(I)-nitrat in schwach salpetersaurer Lösung: Hahn, Haarmann, Z. Biol. 87, 108; C. 1928 I, 2076; Ölander, Ph. Ch. [A] 144, 52. Bestimmung neben Meinsäure auf Grund der elektrischen Leitfähigkeit wäßr. Lösungen: Kahlan, Ph. Ch. 87 [1914], 338; Warburg, Sber. preuß. Akad. 1919, 962; C. 1920 I, 199; Beresowskaja, Ukr. chemič. Z. 2, 265; C. 1927 I, 2634; auf Grund der verschiedenen Löslichkeit der beiden Säuren: Wachholtz, Ph. Ch. 135, 149. Bestimmung von Fumarsäure in Gemischen mit Maleinsäure und Äpfelsäure: Weiss, Downs, Am. Soc. 44, 1121. Zur Bestimmung in Gärlösungen fällt man Fumarsäure aus der enteiweißten Lösung als Silbersalz und ermittelt den Silbergehalt des Salzes volumetrisch (Quastel, Biochem. J. 18, 368). Bestimmung im Muskel: Hahn, Haarmann, Z. Biol. 87, 112; 89, 160; C. 1928 I, 2076; 1929 II, 1949.

Salze der Fumarsäure (Fumarate).

Ammoniumfumarate: NH₄C₄H₃O₄. Triklin pinakoidal (YARDLEY, Phil. Mag. [6] 50, 872, 878; C. 1926 I, 2877). Röntgenogramm: Y. D¹⁸: 1,574 (Y.). Beim Ausschütteln wäßr. Lösungen mit Äther nimmt der Äther Fumarsäure auf (Sabalitschka, Kubisch, Z. anorg. Ch. 134, 81, 86). — $(NH_4)_2C_4H_2O_4$. Krystalle. Ist in wäßr. Lösung bei 60° beständig; beim Kochen der wäßr. Lösung wird Ammoniak abgespalten (Weiss, Downs, Am. Soc. 45, 2341). Die Löslichkeit in Wasser wird durch Ammoniak erniedrigt (Weitz, Z. El. Ch. 31, 2541). Die Löstenkeit in Wasser wird durch Ammoniak einheungt (WEILZ, Z. Et. Ch. St., 546). — Natriumfumarate: NaC₄H₃O₄. Krystalle. 100 g Wasser lösen bei 25° 6,87 g, bei 40° 10,74 g, bei 60° 18,15 g, bei 100° 30,2 g (WEISS, Downs, Am. Soc. 45, 2348). — Na₂C₄H₂O₄. Krystalle. 100 g Wasser lösen bei 25° 22,83 g (WEISS, Downs, Am. Soc. 45, 2348). Ausflockende Wirkung auf Eisen(III)-hydroxyd-Sol: WEITZ, STAMM, B. 61, 1151. Lösungsvermögen wäßr. Lösungen für Benzoesäure, Zimtsäure und Hippursäure bei 25°: LARSON, Z. anorg. Ch. 155, 253. Zusammensetzung der festen und flüssigen Phasen der ternären Contamp und Methanel mit den Dinatriumsalzen der Bernsteinsäure Systeme von Natriumfumarat und Methanol mit den Dinatriumsalzen der Bernsteinsäure und der Maleinsäure: TIMMERMANS, Bl. Soc. chim. Belg. 36, 180; C. 1927 II, 1427. Oberflächenspannung einer wäßr. Lösung: Ribas, An. Soc. españ. 23, 150; C. 1925 II, 1028. — Kaliumfumarate: 2KC₄H₃O₄ + C₄H₄O₄. Krystalle (aus Wasser). Verändert sich nicht beim Erhitzen auf 150°; leicht löslich in heißem Wasser, schwer in kaltem Alkohol (Zechtumspannung Späce). MEISTER, SZÁCSI, B. 54, 172). — KC₄H₃O₄. Beim Ausschütteln wäßr. Lösungen mit Äther nimmt der Äther Fumarsäure auf (Sabalitschka, B. 53, 1386; Sa., Kubisch, Z. anorg. Ch. 134, 81, 86). — K₂C₄H₂O₄. Zusammensetzung der festen und flüssigen Phasen der ternären Systeme von Kaliumfumarat und Methanol mit den Dikaliumsalzen der Bernsteinsäure Systeme von Kaliumfumarat und Methanol mit den Dikaliumsalzen der Bernsteinsäure und der Maleinsäure: Tl., Bl. Soc. chim. Belg. 36, 181; C. 1927 II, 1427. — CuC₄H₂O₄ + 2H₂O. Blaßblauer Niederschlag. 100 g Wasser lösen bei 30° 0,02 g (Weiss, Downs, Am. Soc. 45, 2348). — Ag₂C₄H₂O₄. 100 g Wasser lösen bei 30° 0,013 g (Weiss, Downs, Am. Soc. 45, 2348). — Calciumfumarate: Ca(C₄H₂O₄)₃ + 2H₂O. Krystalle. 100 g Wasser lösen bei 30° 5,19 g (Weiss, Downs, Am. Soc. 45, 2343, 2348). Fällung von Gliadin in alkoh. Lösung durch saures Calciumfumarat: Cooper, Edgar, Biochem. J. 20, 1065. — CaC₄H₂O₄ + 2H₂O. Rhombische Tafeln (Wherry, Hann, J. Washington Acad. 12, 288; C. 1923 I, 738). Optische Eigenschaften der Krystalle: Wh., H. — CaC₄H₂O₄ + 3H₂O. 100 g Wasser lösen bei 30° 1,56 g (Weiss, Downs, Am. Soc. 45, 2343, 2348). Fällung von Gliadin in alkoh. Lösung durch Calciumfumarat: C., E. — SrC₄H₂O₄. 100 g Wasser lösen bei 30° 0,29 g (Weiss, Downs, Am. Soc. 45, 2343, 2348). — Saures Zinkfumarat. Eiweißfällende Wirkung in wäßriger und in alkoholischer Lösung: C., E. — ZnC₄H₄O₄ + 5H₄O. Krystalle. 100 g in wäßriger und in alkoholischer Lösung: C., E. — ZnC₄H₂O₄+5H₂O. Krystalle. 100 g Wasser lösen bei 30° 1,96 g (Weiss, Downs, Am. Soc. 45, 2345, 2348). Eiweißfällende Wirkung Wasser lösen bei 30° 1,96 g (Weiss, Downs, Am. Soc. 45, 2345, 2348). Eiweißfällende Wirkung in wäßriger und in alkoholischer Lösung: C., E. — CdC₄H₂O₄. Niederschlag. 100 g Wasser lösen bei 30° 0,09 g (Weiss, Downs, Am. Soc. 45, 2347, 2348). — Tl₂C₄H₂O₄. Prismen. F: 268° (Zers.) (Christie, Menzies, Soc. 127, 2370). Schwer löslich in Wasser. — PbC₄H₂O₄. Krystalle. 100 g Wasser lösen bei 30° 0,025 g (Weiss, Downs, Am. Soc. 45, 2347, 2348). — UO₂C₄H₂O₄ + H₂O. Grüngelb, mikrokrystallinisch. Schwer löslich in Wasser, unlöslich in Alkohol und in Äther (A. Müller, Z. anorg. Ch. 109, 240, 250). — MnC₄H₂O₄. Körner. 100 g Wasser lösen bei 30° 0,14 g (W., D., Am. Soc. 45, 2348). Das von Rieckher. (A. 49, 48) beschrieben. Tribydage konste nicht erhelten werden. — Kohaltfumerste. (A. 49, 46) beschriebene Trihydrat konnte nicht erhalten werden. — Kobaltfumarate: CoC₄H₂O₄+2H₂O. Bläulich (W., D., Am. Soc. 45, 2344). — CoC₄H₂O₄+3H₂O. Das von Rieckher (A. 49, 47) beschiebene Trihydrat konnte nicht erhalten werden (W., D., Am. Soc. 45, 2344). — CoC₄H₂O₄+4H₂O. Rötliche Krystalle. Färbt sich bei 100°

bläulich unter Bildung des Dihydrats; 100 g Wasser lösen bei 30° 0,88 g (W., D., Am. Soc. 45, 2344, 2348). — $[Co(NH_3)_b(H_2O)](C_4H_2O_4)(NO_3) + 2H_2O$. B. Beim Erwärmen von Carbonatopentamminkobalt(III)-nitrat $[Co(NH_3)_b(CO_3)](NO_3) + H_2O$ mit 1 Mol Fumarsäure in Wasser auf 60° (Duff, Soc. 123, 570). Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: Duff, Soc. 123, 573. Gibt mit Kaliumchromat-Lösung einen braunen Niederschlag von Chromatopentamminkobalt(III)-nitrat. — $[Co(NH_3)_b(H_2O)]_2$ $(C_4H_2O_4)(NO_3)_4 + 2H_2O$. B. Man erwärmt Carbonatopentamminkobalt(III)-nitrat mit verd. Salpetersäure bis zur Beendigung der Kohlendioxyd-Entwicklung, neutralisiert mit 2n-Natronlauge und erwärmt mit 1 Mol fumarsaurem Natrium auf 45° (Duff, Soc. 123, 561, 567). Krystalle. Gibt bei 100° nur 1 Mol Wasser ab. Ziemlich schwer löslich in Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: Duff, Soc. 123, 573. Die wäßr. Lösung gibt mit Silbernitrat sofort einen Niederschlag von Silberfumarat, mit Kaliumchromat einen krystallinischen Niederschlag von Chromatopentamminkobalt(III)-nitrat. — Nickelfumarate: NiC₄H₂O₄ + 4H₂O. Grüne Krystalle (Weiss, Downs, Am. Soc. 45, 2344). — NiC₄H₂O₄ + 5H₂O. 100 g Wasser lösen bei 30° 0,36 g (W., D.).

Funktionelle Derivate der Fumarsäure.

Fumarsäuredimethylester, Dimethylfumarat C₆H₈O₄ = CH₃·O₂C·CH:CH·CO₂·CH₃ (H 741; E I 302). B. Durch Kochen von Fumarsäure mit absol. Methanol und etwas konz. Schwefelsäure (Skrabal, Raith, M. 42, 246). Durch Einw. von Dimethylsulfat auf Fumarsäure in Soda-Lösung (Stoermer, Kirchner, B. 53, 1298). Durch Erwärmen von Maleinsäuredimethylester mit Kaliumstaub in Äther (Meerwein, Weber, B. 58, 1267). Neben anderen Produkten bei der Umsetzung von Mesodibrombernsteinsäuredimethylester mit Natriummalonsäuredimethylester in absol. Methanol unterhalb 5° und folgendem kurzen Kochen des Reaktionsgemischs (Ing, Perkin, Soc. 125, 1816, 1823). — F: 102° (korr.) (Sugden, Whittaker, Soc. 127, 1873). E: 101,7° (Viseur, Bl. Soc. chim. Belg. 35, 428; C. 1927 I, 1543). Kp₇₆₀: 193,2—193,3° (V.). D¹⁰⁰: 1,049; D¹²¹: 1,032; D¹²⁰: 1,020; D¹²⁰: 0,999; D¹²⁰: 0,987 (Su., Wh.). Oberflächenspannung zwischen 106° (25,67 dyn/cm) und 163° (19,18 dyn/cm): Su., Wh. Parachor: Su., Wh. Thermische Analyse von Gemischen mit Bernsteinsäuredimethylester: V., Bl. Soc. chim. belg. 35, 431; mit Maleinsäuredimethylester: V., Bl. Soc. chim. Belg. 35, 431; R. SCHMIDT, Ph. Ch. [B] 1, 209. — Scheinbares Reduktionspotential in 0,2 Mol Chlorwasserstoff enthaltendem Alkohol oder Aceton bei 24°: Conant, Lutz, Am. Soc. 45, 1052, 1056. Kinetik der Addition von Brom in Tetrachlorkohlenstoff in grünem und blauem Licht zwischen 10° und 30°: Sch., Ph. Ch. [B] 1, 221. Geschwindigkeit der Verseifung durch Natriumcarbonat und Natriumcarbonat + Natriumdicarbonat in wäßr. Lösung bei 25°: Skrabal, Raith, M. 42, 246. — Ch₆0₄ + SnCl₆. An der Luft rasch zerfließende Prismen oder Plättohen. F: 91—92° (Hieber, A. 439, 122). Leicht löslich in den meisten indifferenten Lösungsmitteln.

Fumarsäurediäthylester, Diäthylfumarat $C_8H_{18}O_4 = C_2H_5 \cdot O_2C \cdot CH \cdot CH \cdot CO_3 \cdot C_2H_5$ (H 742; E I 302). B. Neben anderen Produkten bei der Einw. von Mesodibrombernsteinsäurediäthylester auf Natriummalonsäurediäthylester in absol. Alkohol unterhalb 5° und folgendem kurzen Kochen des Reaktionsgemischs (Ing, Perkin, Soc. 125, 1823). In geringer Menge neben anderen Produkten bei der Umsetzung von Mesodibrombernsteinsäurediäthylester mit der Natriumverbindung des Benzoylessigsäureäthylesters in Alkohol (I., P., Soc. 125, 1827). Durch Belichtung von Maleinsäurediäthylester in Tetrachlorkohlenstoff in Gegenwart von Brom als Sensibilisator (Eggert, Phys. Z. 24, 505; 25, 19; 26, 865; C. 1924 I, 1740; 1926 I, 2173; Wachholtz, Ph. Ch. 125, 7). Bei der Zersetzung von Diazoessigester durch Einw. von wenig wasserfreiem Kupfer(II)-sulfat in Äther bei 27° (Lorey, J. pr. [2] 124, 189), durch Einw. von Kupfercarbid in trocknem Äther (C. MÜLLER, GOTTFRIED, J. pr. [2] 110, 40) sowie in geringer Menge durch Erhitzen von Diazoessigester mit Mesitylen auf 135—140° oder besser auf 110—115° in Gegenwart von Kupferpulver (Buchner, Schottenhammer, B. 53, 869). — Darst. Durch Veresterung von Fumarsäure mit Alkohol in Gegenwart von konz. Schwefelsäure bei 115—120° unter ständigem Abdestillieren des entstandenen Wassers; Ausbeute 80% der Theorie (Corson, Adams, Scott, Org. Synth. 10 [1930], 48; 11 [1931], 102).

E: $+0.2^{0}$ (Viseur, Bl. Soc. chim. Belg. 35, 429; C. 1927 I, 1543), $+1.90^{\circ}$ (Wachholtz, Ph. Ch. 125, 3). Kp₁₀: 96° (v. Auwers, Harres, Ph. Ch. [A] 143, 10); Kp₁₄: 100° (Kern, Sheiner, Adams, Am. Soc. 47, 1157); Kp₇₀₀: 218,3—218,4° (Vi.). D₄⁴: 1,0572 (Vi.); D₄⁴⁵: 1,0522 (v. Auwers, Harres, B. 62, 1686; vgl. v. Au., Ha., Ph. Ch. [A] 143, 10). Zähigkeit bei 20°: Vorländer, Walter, Ph. Ch. 118, 15. Parachor: Sugden, Soc. 125, 1184. n_{3}^{46} : 1,4363; n_{44}^{46} : 1,4396; n_{5}^{46} : 1,4475; n_{5}^{46} : 1,4545 (v. Au., Ha., B. 62, 1686). Fällt Pepton aus seiner Lösung in wasserfreiem Phenol (Cooper, Edgar, Biochem. J. 20, 1065). Kryoskopisches Verhalten von Diäthylfumarat in Zinn(IV)-bromid: Hieber, A. 439, 131.

Thermische Analyse des Systems mit Maleinsäurediäthylester (Eutektikum bei —18,63° und 31,9% Diäthylfumarat): Wachholtz, Ph. Ch. 125, 3; vgl. Viseur, Bl. Soc. chim. Belg. 35, 432; C. 1927 I, 1543. Dichte und Oberflächenspannung wäßr. Lösungen bei 20°: King, Wampler, Am. Soc. 44, 1899.

Geschwindigkeit der Hydrierung in Alkohol in Gegenwart von Platin- oder Palladium-schwarz unter 2—3 Atm. Druck bei 25°: Kern, Shriner, Adams, Am. Soc. 47, 1149. Kinetik der photochemischen Addition von Brom in Tetrachlorkohlenstoff-Lösung: Wach-HOLTZ, Ph. Ch. 125, 18; EGGERT, Z. El. Ch. 33, 543. Diäthylfumarat liefert beim Erhitzen mit Athylenglykol im Stickstoffstrom auf 190-230° unter allmählicher Verminderung des Druckes, zuletzt auf 4 mm, polymeres Athylenfumarat (CAROTHERS, ARVIN, Am. Soc. 51, 2569). Gibt beim Erhitzen mit Propiolsäureäthylester in Ather bei Gegenwart von Natrium eine saure und eine neutrale Fraktion; beim Aufbewahren der sauren Fraktion im Vakuumexsiccator erhält man Muconsaure; bei der Hydrolyse der neutralen Fraktion mit kalter methylalkoholischer Kalilauge und Reduktion des gewonnenen Produkts mit amalgamiertem Zink in saurer Lösung entstehen Butan-tricarbonsäure-(1.2.4) und Bernsteinsäure (INGOLD, Soc. 127, 1205). Einwirkung von Benzopersäure auf Diäthylfumarat: Böeseken, R. 45, 839. Diäthylfumarat reagiert mit Acetessigester in Gegenwart von Natrium-Pulver in siedendem Ather oder von Natriumäthylat in siedendem Alkohol unter Bildung von α -Acetyl-tricarballylsäure-triäthylester und Cyclohexandion-(3.5)-dicarbonsäure-(1.2)-diäthylester (MITTER, Roy, J. indian chem. Soc. 5, 38; C. 1928 I, 2395). Liefert mit der Natriumverbindung des Benzoylessigsäureäthylesters in Alkohol a-Benzoyl-tricarballylsäure-triäthylester (Ing. Perkin, Soc. 125, 1828). — Geschwindigkeit der Hydrolyse durch Schweineleber-Lipase: McGinty, Lewis, J. biol. Chem. 67, 571; durch Pankreaslipase: Cooper, Edgar, Biochem. J. 20, 1064. C₈H₁₈O₄ + SnCl₄. Hygroskopische Blättchen. F: 81—82° (Hieber, A. 439, 122). Ziemlich leicht löslich in indifferenten Lösungsmitteln; läßt sich aus Diäthylfumarat umkrystallisieren. Kryoskopisches Verhalten in Äthylenbromid: H., A. 439, 123. — C₈H₁₂O₄+2SbCl₅. Hygroskopisches krystallines Pulver. F: 140° (Zers.). (H.). Ziemlich leicht löslich in kalten Chloroform.

Fumarsäuredipropylester, Dipropylfumarat $C_{10}H_{16}O_4 = C_2H_5 \cdot CH_2 \cdot O_3C \cdot CH : CH \cdot CO_3 \cdot CH_3 \cdot C_2H_5 \cdot (H 742)$. $D_4^{is,0}$: 1,0120; $n_{\alpha}^{is,0}$: 1,4397; $n_{He}^{is,0}$: 1,4428; $n_{\beta}^{is,0}$: 1,4503; $n_{\gamma}^{is,0}$: 1,4570 (v. Auwers, Harres, B. 62, 1686).

Polymeres Äthylenfumarat $[C_6H_6O_4]_x = [\cdots O \cdot CH_2 \cdot CH_3 \cdot O_3 C \cdot CH : CH \cdot CO \cdots]_x$ (vgl. H 743). Zur Konstitution vgl. den Artikel polymeres Äthylensuccinat, S. 552. — B. Beim Erhitzen von Diäthylfumarat und Äthylenglykol im Stickstoffstrom auf 190—230° unter allmählicher Verminderung des Druckes, zuletzt auf 4 mm (Carothers, Arvin, Am. Soc. 51, 2569). — Gelbliche, zähe Masse. Ist nach dem Trocknen in allen Lösungsmitteln unlöslich.

Polymeres Fumarylperoxyd $[C_4H_2O_4]_x$ (H 743). B. Zur Bildung aus Fumarsäuredichlorid und Natriumperoxyd nach Vanino, Thiele (B. 29 [1896], 1726) vgl. Fighter, Fritsch, Helv. 6, 333. — Bei der Explosion in einer Stahlbombe entstehen geringe Mengen Acetylen und Kohlendioxyd.

Fumarsäure-methylester-chlorid $C_5H_5O_3Cl=CH_2\cdot O_2C\cdot CH:CH\cdot COCl.$ B. Aus Fumarsäuredichlorid und 1 Mol Methanol in Äther (Anschütz, A. 461, 189). — Leicht bewegliche Flüssigkeit. Kp₁₇: 83°. Leicht löslich in Äther. — Wird durch Wasser in Fumarsäuremonomethylester übergeführt.

Fumarsäure - äthylester - chlorid $C_5H_7O_5Cl=C_2H_5\cdot O_2C\cdot CH\cdot CH\cdot COCl.$ B. Aus Fumarsäuredichlorid und 1 Mol Alkohol in Äther (Anschütz, A. 461, 189). — Leicht bewegliche Flüssigkeit. Kp₁₇: 84°.

Fumarsäuredichlorid, Fumarylchlorid C₄H₂O₃Cl₂ = ClOC·CH:CH·COCl (H 743; E I 302). Fumarsäuredichlorid konnte entgegen den Angaben von H. Meyer (M. 22, 421) durch Einw. von Thionylchlorid auf Fumarsäure nicht erhalten werden (McMaster, Ahmann, Am. Soc. 50, 147). — Fumarsäuredichlorid liefert mit Benzol in Gegenwart von Aluminium-chlorid bei Zimmertemperatur trans-a.β-Dibenzoyl-äthylen (Conant, Lutz, Am. Soc. 45, 1305). Die Umsetzungen von Fumarsäuredichlorid mit 4-Chlor-benzol, Toluol, m-Xylol, Mesitylen, Diphenyl und Anisol verlaufen analog (C.,

Toluol, m-Xylol, Mesitylen, Diphenyl und Anisol verlaufen analog (C., L.; Oddy, Am. Soc. 45, 2159). Gibt beim Kochen mit Dinatriumsalicylat in Ather γ.γ-Benzoylendioxy-Δαβ-crotonlacton (s. nebenstehende Formel; Syst. Nr. 2960) (KAUFMANN, Voss, B. 56, 2514).

Fumarsäuredibromid, Fumarylbromid $C_4H_2O_2Br_3=BrOC\cdot CH\cdot CH\cdot COBr.$ B. Aus Fumarsäuredichlorid beim Behandeln mit trocknem Bromwasserstoff bei 120° (Anschütz, A. 461, 188). — Hellgelbe Flüssigkeit. Kp_{33} : 113—115°. — Zersetzt sich an feuchter Luft.

Fumarsäuremonoamid, Fumaramidsäure $C_4H_5O_3N = HO_2C \cdot CH : CH \cdot CO \cdot NH_2$ (H 743). B. Aus dem Natriumsalz von α -Chlor-bernsteinsäure- α -amid durch Einw. von Natronlauge oder durch Behandlung mit Silberoxyd in Wasser (HOLMBERG, B. 59, 1579). — Prismen. F: 224° (Zers.).

Fumarsäurediamid, Fumaramid $C_4H_6O_3N_2=H_2N\cdot OC\cdot CH\cdot CH\cdot CO\cdot NH_2$ (H 743; E I 302). B. Neben Maleinsäurediamid bei der Einw. von starker Ammoniak-Lösung auf Maleinsäuredimethylester unter Kühlung im Dunkeln (Rinkes, R. 46, 272). Beim Sohmelzen von Maleinsäurediamid (R.). Bei der Einw. von alkoh. Ammoniak auf p-Toluolsulfonyl-l-äpfelsäure-diäthylester oder -dimethylester bei -50° (Freudenberg, Noë, B. 58, 2406). — Krystalle (aus Wasser). F: 265,6—265,9° (Viseur, Bl. Soc. chim. Belg. 35, 427; C. 1927 I, 1543). Thermische Analyse des Systems mit Bernsteinsäurediamid: V., Bl. Soc. chim. Belg. 35, 435.

Substitutionsprodukte der Fumarsäure.

Chlorfumarsäure $C_4H_3O_4Cl=HO_2C\cdot CH:CCl\cdot CO_2H$ (H 744; E I 302). B. Durch längeres Kochen von $\alpha.\alpha'$ -Dichlor-bernsteinsäure-diäthylester mit 30% iger Schwefelsäure (Patterson, Todd, Soc. 1929, 1770). — F: 193° (P., T.). — Liefert beim Erhitzen mit der äquimolekularen Menge Chlorfumarsäuredichlorid auf 125° Chlormaleinsäureanhydrid (Chattaway, Parkes, Soc. 125, 466 Anm.). — (NH₄)₂C₄HO₄Cl. Wahrscheinlich monoklin sphenoidisch (Yardley, Phil. Mag. [6] 50, 871; C. 1926 I, 2877). D₄^{18,5}: 1,532 (Y., Phil. Mag. [6] 50, 869). Röntgenographische Untersuchung: Y.

Chlorfumarsäuredimethylester $C_6H_7O_4Cl = CH_3 \cdot O_2C \cdot CH : CCl \cdot CO_2 \cdot CH_3$ (H 744; E I 302). Kp_{15} : 108°; $D_4^{r,\theta}$: 1,3028; $n_{\alpha}^{r,\theta}$: 1,4683; $n_{He}^{r,\theta}$: 1,4720; $n_{\beta}^{r,\theta}$: 1,4812; $n_{\gamma}^{r,\theta}$: 1,4892 (v. Auwers, Harres, *B.* 62, 1685, 1686).

Chlorfumarsäuremonoäthylester $C_6H_7O_4Cl = HO_2C \cdot CH : CCl \cdot CO_2 \cdot C_2H_5$. B. Entsteht neben Chlorfumarsäurediäthylester und anderen Produkten, wenn man Diäthyltartrat zu Phosphorpentachlorid hinzusetzt, das Reaktionsprodukt auf dem Wasserbad erhitzt und dann unterhalb 40° mit Wasser behandelt (Patterson, Todd, Soc. 1929, 1770). — Krystalle (aus Petroläther). F: 52—53°. Kp_{12-14} : 161—163°.

Chlorfumarsäurediäthylester $C_8H_{11}O_4Cl = C_2H_5 \cdot O_2C \cdot CH : CCl \cdot CO_2 \cdot C_2H_5$ (H 745: E I 302). B. s. bei der vorangehenden Verbindung. — Kp₁₂: 119° (v. Auwers, Harres, B. 62, 1685); Kp₁₅: 108° (v. Au., H., Ph. Ch. [A] 143, 10). $D_2^{16,3}$: 1,1822 (v. Au., H., B. 62, 1686). $n_3^{16,3}$: 1,4564; $n_{He}^{16,3}$: 1,4598; $n_{He}^{16,3}$: 1,4680; $n_{He}^{16,3}$: 1,4752 (v. Au., H., B. 62, 1686); $n_{He}^{16,3}$: 1,4581 (v. Au., H., Ph. Ch. [A] 143, 10). — Liefert mit 2-Chlor-phenol und dessen Natrium-verbindung in siedendem Xylol [2-Chlor-phenoxy]-fumarsäurediäthylester (Ruhemann, B. 54, 916). — Der Dampf greift die Augen stark an (Ruggli, Hartmann, Helv. 3, 513).

Diehlorid, Chlorfumarylchlorid $C_4HO_2Cl_3 = ClOC \cdot CH : CCl \cdot COCl$ (H 745; E I 303). B. Zur Bildung aus Weinsäure und Phosphorpentachlorid nach Perkin (Soc. 53, 696) vgl. Ruggli, Hartmann, Helv. 3, 512. Aus Acetylendicarbonsäure und Phosphorpentachlorid unter Kühlung mit Kältemischung, neben anderen Produkten (R., Helv. 3, 569). — Kp₃₀: 73—75° (R., Helv. 3, 569). — Liefert mit Hydrazinhydrat in starker Essigsäure das Hydrazinsalz des N.N΄-Bis-[α-chlor-β-carboxy-acryloyl]-hydrazins (?) (s. u.) (R., H., Helv. 3, 513). Bei der Einw. von 3n-alkoh. Kalilauge unter Kühlung entsteht das Kaliumsalz der Acetylendicarbonsäure (Ingold, Soc. 127, 1202). Liefert beim Erhitzen mit der äquimolekularen Menge Chlorfumarsäure auf 125° Chlormaleinsäureanhydrid (Chattaway, Parkes, Soc. 125, 466 Anm.). Reagiert mit 4-Chlor-anilin in Äther unter Bildung von Chlorfumarsäure-bis-[4-chlor-anilid] und wenig Chlormaleinsäure-[4-chlor-anil] (Ch., P., Soc. 125, 466).

Diamid $C_4H_5O_2N_2Cl = H_2N \cdot CO \cdot CH : CCl \cdot CO \cdot NH_2$. B. Bei Einw. von überschüssigem wäßrigem Ammoniak auf Chlorfumarsäuredichlorid (Chattaway, Parkes, Soc. 125, 467). — Nadeln (aus Alkohol). F: 187°. Ziemlich leicht löslich in siedendem Alkohol.

N.N'-Bis-[α -chlor- β -carboxy-acryloyl]-hydrazin (?) $C_8H_6O_6N_2Cl_2=[-NH\cdot CO\cdot CCl: CH\cdot CO_2H]_2$ (?). B. Das Hydrazinsalz bildet sich aus Chlorfumarylchlorid und Hydrazinhydrat in starker Essigsäure (Ruggli, Harmann, Helv. 3, 513). — Schmilzt oberhalb 360°. Nur in Alkalien löslich mit dunkelgelber Farbe. — Reduziert Fehlingsche Lösung nicht, ammoniakalische Silber-Lösung erst in der Wärme. — Hydrazinsalz $C_8H_6O_6N_2Cl_2+2N_2H_4+2H_2O$. Dunkelgelbe Krystalle. F: 218° (R., H.). Löslich in heißem Methanol oder Wasser unter teilweiser Hydrolyse. Löst sich in Alkali und in wäßr. Ammoniak mit dunkelgelber Farbe. Reduziert Fehlingsche Lösung und ammoniakalische Silber-Lösung sofort.

Bromfumarsäure $C_4H_2O_4Br = HO_2C \cdot CH : CBr \cdot CO_2H$ (H 745; E I 303). Zur Darstellung nach Michael (*J. pr.* [2] **52** [1895], 301) vgl. v. Auwers, Harres, *B.* **62**, 1685. — F: 180—183°.

Bromfumarsäuredimethylester $C_0H_2O_4Br = CH_2 \cdot O_2C \cdot CH : CBr \cdot CO_3 \cdot CH_3$ (H 746). F: 27,5—28,5°; Kp_9 : 115°; $D_7^{m,3}$: 1,5381; $n_{\alpha}^{m,3}$: 1,4755; $n_{He}^{m,3}$: 1,4794; $n_{\beta}^{m,3}$: 1,4892; $n_{\gamma}^{m,3}$: 1,4979 (v. Auwers, Harres, B. 62, 1685, 1686).

Bromfumarsäurediäthylester $C_8H_{11}O_4Br = C_2H_5 \cdot O_3C \cdot CH \cdot CBr \cdot CO_2 \cdot C_2H_5$. Kp₁₂: 135° bis 136°; D₁4.3: 1,4174; $n_{\alpha}^{t_{\alpha}s}$: 1,4783; $n_{He}^{t_{\alpha}s}$: 1,4819; $n_{\beta}^{t_{\alpha}s}$: 1,4912; $n_{\gamma}^{t_{\alpha}s}$: 1,4993 (v. Auwers, Harres, B. 62, 1686).

Bromfumarsäuredichlorid, Bromfumarylchlorid C₄HO₂Cl₅Br=ClOC·CH:CBr·COCl. B. Aus Bromfumarsäure und Phosphorpentachlorid (ANSCHÜTZ, A. 461, 182). — Hellgelbe Flüssigkeit. Kp₁₄: 93°.

Dibromfumarsäure $C_4H_2O_4Br_2 = HO_2C \cdot CBr \cdot CBr \cdot CO_2H$ (H 747; E I 303). Zur Darstellung aus Acetylendicarbonsäure und Brom (H 2, 747; E I 2, 303) vgl. Ruggli, *Helv.* 3, 569.

Dihydrazid $C_4H_6O_3N_4Br_2 = H_2N\cdot NH\cdot CO\cdot CBr: CBr\cdot CO\cdot NH\cdot NH_2$. B. Durch Einw. einer äther. Hydrazinhydrat-Lösung auf eine Lösung von Dibromfumarylchlorid in Petroläther, neben anderen Produkten (Ruggli, Helv. 3, 569). — Krystalle (aus Alkohol). Zersetzt sich bei ca. 154°. Leicht löslich in heißem Alkohol, ziemlich schwer in kaltem Wasser, schwer in Benzol.

Diasid $C_4O_3N_6Br_2=N_3\cdot OC\cdot CBr:CBr\cdot CO\cdot N_3$. B. Aus Dibromfumarsäuredihydrazid und Natriumnitrit in verd. Essigsäure unter Eiskühlung (Ruggli, Helv. 3, 570). — Pulver. Explodiert bei leichtem Reiben mit großer Heftigkeit. — Liefert beim Erwärmen mit Alkohol unter Stickstoffentwicklung ein krystallines Produkt (vermutlich $C_2H_5\cdot O_3C\cdot NH\cdot CBr:CBr\cdot NH\cdot CO_3\cdot C_2H_5$).

Dijodfumarsäure C₄H₂O₄I₂ = HO₂C·CI:CI·CO₂H (H 747). B. Bei tagelanger Einw. von überschüssiger Jod-Kaliumjodid-Lösung auf acetylendicarbonsaures Natrium bei 37° (EICHELBERGER, Am. Soc. 48, 1321). — Krystalle (aus Äther + Petroläther). Zersetzt sich unter Jodabspaltung von 220° ab und schmilzt bei 275°. Löslich in Wasser, Alkohol und Äther, unlöslich in Chloroform, Ligroin und Benzol. — Zersetzt sich am Licht. [KOBEL]

b) cis-Form, Maleinsäure C₄H₄O₄ = $\frac{\text{H} \cdot \text{C} \cdot \text{CO}_2\text{H}}{\text{H} \cdot \text{C} \cdot \text{CO}_2\text{H}}$ (H748; E1303). Zur Konstitution und Konfiguration der Maleinsäure und ihrer Derivate vgl. Errera, Henri, C. r. 181, 549; Anschütz, A. 461, 187; v. Auwers, Harres, B. 62, 1678; Meerwein, B. 74 A [1941], 37.

Bildung.

Neben Fumarsäure beim Kochen von Glyoxylsäure mit Malonsäure in Pyridin in Gegenwart geringer Mengen Piperidin (Dutt, Quart. J. indian chem. Soc. 1, 299; C. 1925 II, 1852). Neben anderen Verbindungen bei der Einw. von 4,6 Mol Schwefeltrioxyd auf Bernsteinsäure bei 115° (Backer, van der Zanden, R. 46, 480). Zur Bildung aus Fumarsäure durch Bestrahlung mit ultraviolettem Licht vgl. Warburg, Sber. preuß. Akad. 1919, 961; C. 1920 I, 199; Volmar, C. r. 181, 469. Über eine Bildung aus Fumarsäure im Magnetfeld vgl. Beresowskaja, Ukr. chemič. Ž. 2, 261; C. 1927 I, 2634. Bei der Hydrierung von Acetylendicarbonsäure in Gegenwart von kolloidalem Palladium in Wasser oder in einem Gemisch von Wasser und Essigester (Bourguell, C. r. 180, 1754; Bl. [4] 45, 1075); bei Verwendung von reinem Wasserstoff und frisch hergestellter Palladium-Tierkohle erhält man dabei nur unbedeutende Mengen Fumarsäure (Ott, Schröter, B. 60, 634). Maleinsäure und Maleinsäureanhydrid entstehen beim Leiten von Benzoldampf und Luft oder Sauerstoff über Vanadiumoxyd auf Bimsstein bei 300—550° (Barrett Co., D. R. P. 365894; Frdl. 14, 294; vgl. dazu Weiss, Downs, J. ind. eng. Chem. 12 [1920], 229; van der Horn van den Bos, Chem. Weekb. 20, 575; C. 1924 I, 444) sowie bei der analogen Behandlung von Toluol bei 410° (Barrett Co., D. R. P. 475808; Frdl. 16, 673). Aus aromatischen Verbindungen oder Furfurol bei der oxydativen Ringsprengung durch längere Einw. von Chlordioxyd in Wasser im Dunkeln in Gegenwart von Vanadiumpentoxyd bei 200—300° (Sessions, Am. Soc. 50, 1696) oder von verschiedenen Verbindungen der Furanreihe in Gegenwart von Vanadiumoder Molybdän-Oxyde enthaltenden Katalysatoren bei Temperaturen zwischen 150° und. 500° (C. H. Boehringer & Sohn, D. R. P. 478726; C. 1929 II, 1468; Frdl. 16, 671). Durch elektrolytische Oxydation von Furfurol an einer Bleidioxyd-Anode bei 35° (Kenkyujo, D.R. P. 469234; Frdl. 16, 268). Bei analoger Behandlung von 2.3-Dimethyl-benzochinon-(1.4) in 20%iger Schwefelsäure bei 45° (Yokoyama, Helv. 12, 772).

Physikalische Eigenschaften.

Röntgenogramm: Beckee, Jancke, Ph. Ch. 99, 262; Yardley, Soc. 127, 2207. Über den Schmelzpunkt der Maleinsäure liegen in der Literatur widersprechende Angaben vor. Zum Beispiel schmilzt nach Sessions (Am. Soc. 50, 1697) aus Wasser umkrystallisierte Maleinsäure bei 138—139° (korr.), aus Alkohol + Benzol umkrystallisierte bei 130—131°; Kern, Shriner, Adams (Am. Soc. 47, 1157) haben an aus Wasser umkrystallisierter Maleinsäure F: 132° festgestellt; Viseur (Bl. Soc. chim. Belg. 35, 427; C. 1927 I, 1543) fand an aus Wasser oder Äther umkrystallisierter Säure F: 130—130,3°. Hurd, Roe, Williams (J. org. Chem. 2 [1938], 315) führen die unterschiedlichen Befunde auf eine namentlich bei langsamem Erhitzen erfolgende teilweise Umwandlung in Fumarsäure zurück. Mittlere spezifische Wärme zwischen 0° und 36°: 0,2662 cal/g, zwischen 0° und 78°: 0,3050 cal/g (Padoa, G. 52 II, 203). Über Auslösung von Elektronen in Maleinsäure durch Röntgenstrahlen vgl. Fricke, Glasser, Z. Phys. 29, 377; Pr. nation. Acad. USA. 10, 443; C. 1925 I, 611.

100 g Wasser von 10° lösen 50 g Maleinsäure (King, Wampler, Am. Soc. 44, 1901). Bei 25° lösen sich in 100 g Wasser 78,8 g (Weiss, Downs, Am. Soc. 45, 1006), 80,8 g (Ver-KADE, SÖHNGEN, Zbl. Bakt. Parasitenk. [II] **50** [1920], 86; Versl. Akad. Amsterdam **28** [1920], 367), in 100 g Ather 8,19 g (W., D.), in 100 g Benzol 0,024 g (W., D.). 100 g 95 % iger Alkohol lösen bei 29,7° 69,9 g Maleinsäure (W., D.). 100 g Aceton lösen bei 29,7° 35,77 g (W., D.); 100 cm² der bei 20° gesättigten Lösung in Aceton enthalten 25,01 g (VISEUR, Bl. Soc. chim. Belg. 35, 440; C. 1927 I, 1543). Löslichkeit in Chloroform, Tetrachlorkohlenstoff und Xylol sowie in Wasser von verschiedener Temperatur: W., D.; in Olivenol: Vz., S. Löslichkeit von Gemischen mit Bernsteinsäure und mit Fumarsäure in Aceton: V., Bl. Soc. chim. Belg. 35, 441, 442. Unlöslich in Schwefeldioxyd und Ammoniak (DE CARLI, G. 57. 352). Verteilung zwischen Wasser und Äther bei 25°: SMITH, J. phys. Chem. 25, 622; bei 22°: Sabalitschka, B. 53, 1386; zwischen Glycerin und Aceton bei 25°: Sm., J. phys. Chem. 25, 732. Thermische Analyse von Gemischen mit Bernsteinsäure und mit Fumarsäure: VISEUR, Bl. Soc. chim. Belg. 35, 438; C. 1927 I, 1543. Wirkung auf die Quellung von Casein in Wasser: ISGARYSCHEW, POMERANZEWA, Koll.-Z. 38, 236; C. 1926 I, 3129; Is., Bogomo-LOWA, Koll.-Z. 39, 238; C. 1926 I. 3306; auf die Quellung von Gelatine: Cooper, Edgar, LOWA, Koll.-Z. 39, 238; C. 1926 I. 3306; auf die Quellung von Gelatine: Cooper, Edgar, Biochem. J. 20, 1066. Eiweißfällende Wirkung: Cooper, Edgar, Biochem. J. 20, 1065. Dichte wäßr. Lösungen bei 20°: King, Wampler, Am. Soc. 44, 1898. Dichte und Viscosität von Lösungen in 80% igem Alkohol bei 20°, 40° und 60°: Herz, Scheliga, Z. anorg. Ch. 169, 168. Viscosität einer Lösung in Alkohol bei 20°: Cauquil, C. r. 184, 1250. Oberflächenspannung wäßr. Lösungen bei 20°: King, Wa. Adsorption an Kohle aus wäßr. Lösung: Hermans, Ph. Ch. 118, 388; Alexejewski, Ж. 59, 1038; C. 1928 I. 2916; Schilow, Nekrassow, Ph. Ch. 130, 70; Ж. 60, 110; Freundlich, Schikorr, Koll. Reih 92, 2. C. 1926 I. 3130: aus wäßr. Lösung verschiedener Aridität (p. 15 bis 8). Beil. 22, 2; C. 1926 I, 3130; aus wäßr. Lösung verschiedener Azidität (pg 1,5 bis 8): Phelps, Soc. 1929, 1726; Adsorption von Maleinsäure aus Methanol und Alkohol, von Maleinsäure + Fumarsäure aus Wasser und Methanol und von Maleinsäure + Bernsteinsäure aus Wasser und Alkohol an Kohle: ALEXEJEWSKI. Adsorption von Maleinsäure aus wäßr. Lösung an Viscoseseide: Brass, Frei, Koll.-Z. 45, 251; C. 1928-II, 1037. Adsorption an Platinschwarz aus Wasser und Ather: Platonow, 28. 61, 1057, 1062; C. 1930.I, 348; an verschiedene Palladium-Katalysatoren aus Wasser: Sabalitschka, Moses, B. 60, 788. Aufnahme von Maleinsäure durch Gelatine: COOPER, EDGAR, Biochem. J. 20, 1068.

Strom-Spannungs-Kurven an der Quecksilber-Tropfkathode (Polarogramm): Herasymenko, Z. El. Ch. 34, 74. Elektrische Leitfähigkeit in Wasser bei 25°: Remesow, Bio. Z. 207, 77; in Alkohol bei 30°: Hunt, Briscoe, J. phys. Chem. 38, 1504. Leitfähigkeit der Gemische mit inakt. Apfelsäure sowie mit inakt. Apfelsäure und Fumarsäure in wäßr. Lösung bei 25°: Höjendahl., J. phys. Chem. 28, 761. Elektrolytische Dissoziationskonstante der ersten Stufe k, in wäßr. Lösung bei 18°: 5,0×10-2 (potentiometrisch ermittelt) (Mizutani, Ph. Ch. 118, 322); bei 20,5°: 4,2×10-2 (potentiometrisch ermittelt) (Mi.); der zweiten Stufe k, in wäßr. Lösung bei 18°: 1,13×10-6 (potentiometrisch ermittelt) (Mi.), 5,1×10-7 (potentiometrisch ermittelt) (Larsson, Z. anorg. Ch. 140, 297); 8×10-7 (colorimetrisch ermittelt) (I. M. Kolthoff, Der Gebrauch von Farbenindikatoren [Berlin 1923], S. 166); bei 21°: 1,18×10-6 (potentiometrisch ermittelt) (Mi.); bei 25°: 7,7×10-7 (berechnet aus der Zersetzungsgeschwindigkeit von Diszoessigester in Gegenwart von saurem Natriummaleinat) (Duboux, Frommelt, J. Chim. phys. 24, 257). Mit Hilfe von Indikatoren ermittelte relative Acidität in wasserfreiem und wasserhaltigem Chloroform und Alkohol: Mizutani. Potentiometrische Titration mit Natriumäthylat in alkoh. Lösung bei 25°: Bishop, Kittreeder, Hildeberand, Am. Soc. 44, 137. Einfluß der Temperatur auf die Wasserstoffionen-Konzentrationen wäßr. Lösungen von saurem maleinsaurem Natrium und

seinen Puffergemischen mit Maleinsäure und mit neutralem maleinsaurem Natrium zwischen 18° und 40°: Kolthoff, Tekelenburg, R. 46, 37. Magnetische Doppelbrechung in wäßr. Lösung: Ramanadham, *Indian J. Phys.* 4, 114; C. 1929 II, 3216.

Chemisches Verhalten.

Lagert sich bei mehrtägigem Erhitzen ohne Lösungsmittel auf 100° vollständig in Fumarsäure um (GARRE, Z. anorg. Ch. 164, 83); beim Erhitzen auf ca. 140° entstehen Fumarsäure. Apfelsaure und Maleinsaureanhydrid (HÖJENDAHL, J. phys. Chem. 28, 764). Geschwindigkeit dieser Reaktion bei 139,6° und 149,8°: Hö.; bei 140°: Weiss, Downs, Am. Soc. 44, 1124. dieser Keaktion dei 139,0° und 149,8°: Ho.; dei 140°: WEISS, DOWNS, Am. Soc. 44, 1124. Einfluß von Zeit, Temperatur und Konzentration auf die Umwandlung in Fumarsäure und dl-Apfelsäure beim Erwärmen der wäßr. Lösung auf Temperaturen oberhalb 140°: Weiss, Downs, Am. Soc. 44, 1122. Beim Eindampfen wäßr. Lösungen auf dem Wasserbad tritt keine Veränderung der Maleinsäure ein (P. Neogi, S. Neogi, Chatterji, J. indian chem. Soc. 5 [1928], 281 Anm.). Teilweise Umlagerung in Fumarsäure durch Bestrahlung einer Lösung mit ultraviolettem Licht verschiedener Wellenlänge: Warburg, Sher. preuß. Akad. 1919, 972; C. 1920 I, 199. Volmar (C. r. 181, 408) fand nach der Bestrahlung einer Lösung mit ultraviolettem Licht Acryleäure und geringe Mengen Fumarsäure. wäßr. Lösung mit ultraviolettem Licht Acrylsäure und geringe Mengen Fumarsäure. Zur Bildung gasformiger Zersetzungsprodukte bei der Bestrahlung mit ultraviolettem Licht vgl. Volmar; vgl. dagegen Warburg. Einw. von Radiumstrahlen auf Fumarsäure-Maleinsäure-Gemische: Kailan, Ph. Ch. 95, 215, 219; M. 41, 305. Über eine Umwandlung in Fumarsäure im Magnetfeld vgl. Beresowskaja, Ukr. chemič. Ž. 1 [1925], 58; 2, 261; C. 1927 I, 2634. Umwandlung in Fumarsäure tritt auch ein, wenn in einer salzsauren Maleinsäure-Lösung metallisches Zink aufgelöst wird (BE., Ukr. chemič. Ž. 1 [1925], 55). Läßt man bei Zimmertemperatur Chlorwasserstoff in statu nascendi auf eine Lösung von Maleinsäure in konz. Schwefelsäure einwirken, so entstehen geringe Mengen Fumarsäure; beim Kochen mit 60% iger Schwefelsäure erhält man erst nach 25 Min. Spuren von Fumarsaure; nach Zugabe von Natriumchlorid bildet sich Fumarsaure schon nach wenigen Minuten (v. Auwers, Wissebach, B. 56, 729). Maleinsäure geht zum Teil in Fumarsäure über, wenn man auf die schwefelsaure Lösung photochemisch (Wachholtz, Z. El. Ch. 33, 547; Ph. Ch. 135, 157, 168) oder durch Einw. von Reduktionsmitteln auf Bromsäure, unterbromige Säure oder Brom erzeugte Bromatome (EGGERT, Z. El. Ch. 33, 543; Ost. Chemiker-Ztg. 30, 110; C. 1927 II, 788; WACHHOLTZ, Z. El. Ch. 33, 545; Ph. Ch. 135, 160, 170) einwirken läßt. Auch beim Stehenlassen oder Erwärmen eines Maleinsäure-Bromsäure-Gemisches entsteht Fumarsäure (WACH., Z. El. Ch. 38, 546). Geschwindigkeit der Umwandlung in Fumarsaure in wäßr. Lösung bei 99,2° in Gegenwart von Chlorwasserstoff, Bromwasserstoff oder Kaliumrhodanid: Terry, Eichelberger, Am. Soc. 47, 1403; in Gegenwart von kolloidem Schwefel zwischen 60° und 100°: Freundlich, Schikore, Koll. Beih. 22, [1926], 12. Beim Versetzen einer wäßr. Lösung mit Mangandioxyd und nachfolgenden Einleiten von Schwefeldioxyd findet teilweiser Übergang in Fumarsäure statt (P. NEOGI, S. NEOGI, CHATTERJI, J. indian chem. Soc. 5, 280; C. 1928 II, 1428).

Verlauf der Oxydation durch Permanganat in Gegenwart von Schwefelsäure: HATCHER, West, Trans. roy. Soc. Canada [3] 21 HI, 270; C. 1928 I, 1929; vgl. a. Sabalitschka, Tietz, C. 1927 II, 611. Maleinsäure wird durch Chromschwefelsäure quantitativ oxydiert (SIMON, C. r. 180, 674). Kinetik der Reaktion mit Chromsäure im Dunkeln in Gegenwart und Abwesenheit von Mangan(II)-sulfat zwischen 25° und 35°: DEY, DHAR, Z. El. Ch. 32, 590. Wird von ca. 3% iger Wasserstoffperoxyd-Lösung bei Zimmertemperatur in Gegenwart von Eisen(III)sulfat im Gegensatz zu Fumarsäure nicht angegriffen (RAY, J. gen. Physiol. 5, 615; C. 1923 III, 951). Geschwindigkeit der Hydrierung in verschiedenen Lösungsmitteln bei Zimmertemperatur in Gegenwart verschieden hergestellter Palladium- oder Platin-Katalysatoren: Lebedew, Kobljanski, Jakubtchik, Soc. 127, 422; Ж. 56, 277; Shriner, Adams, Am. Soc. 46, 1686, 1691; KERN, SH., AD., Am. Soc. 47, 1149; PLATONOW, H. 61, 1060; Sabalitschka, Moses, B. 60, 789; Paal, Schiedewitz, B. 60, 1222. Verlauf der Hydrierung von Gemischen mit Carvomenthen und mit α-Pinen in Gegenwart von Platinschwarz in Alkohol: Vavon, C. r. 178, 361. Maleinsäure wird beim Kochen mit 0,5 Mol Tetrahydrochinolin in Wasser in Gegenwart von Palladiumschwarz quantitativ zu Bernsteinsaure reduziert (Akabori, Suzuki, *Pr. Acad. Tokyo* 5, 256; *C.* 1929 II, 2033). Wird durch Chrom(II)chlorid in salzasurer Lösung, nicht aber durch Na,S,O, in alkal. Lösung zu Bernsteinsäure reduziert (Conant, Cutter, Am. Soc. 44, 2654). Maleinsäure oder Dinatriummaleinat liefern in wäßriger, mit Natriumchlorid gesättigter Lösung beim Einleiten von Chlor bei Zimmertemperatur im diffusen Tageslicht Mesodichlorbernsteinsäure (Kuhn, Wagner. Jauregg, B. 61, 501, 521; Terry, Eighelberger, Am. Soc. 47, 1076) und wenig niedrigerschmelzende inaktive β -Chlor-apfelsaure (Kuen, W.-J., B. 61, 519); bei Abwesenheit von Natriumchlorid erhält man die beiden Reaktionsprodukte im umgekehrten Mengenverhältnis (Kuhn, W.-J., B. 61, 518). Bei der Einw. von Bromwasser im Tageslicht erfolgt außer

[Syst. Nr. 179

Anlagerung von HOBr (E I 2, 304) auch Addition von Brom unter Bildung von Mesodibrombernsteinsäure (Read, Reid, Soc. 1928, 746). Die neutralen Salze liefern beim Chlorieren in 4,8n-Natriumbromid-Lösung hauptsächlich Mesodibrombernsteinsäure und wenig racem.-Dibrombernsteinsäure (Terry, Eichelberger, Am. Soc. 47, 1068). Bromverbrauch bei der Einw. von Bromwasser, saurer Bromid-Bromat-Lösung oder von saurer oder alkalischer Brom-Kaliumbromid-Lösung: Margosches, Hinner, Fr. 64, 64. Das Silbersalz verpufft beim Erwärmen mit Jod auf 50—55°; dabei entstehen Maleinsäureanhydrid und wenig Fumarsäure (Wieland, Fischer, A. 446, 75).

Beim Kochen von Maleinsäure mit Thionylchlorid erhält man Maleinsäureanhydrid (H. Meyer, M. 22 [1901], 421; McMaster, Ahmann, Am. Soc. 50, 147). Geschwindigkeit der Addition von Na, SO₃ und NaHSO₃ in Wasser bei 25°: van der Zanden, R. 45, 424; bei 80°: Hägglund, Ringbom, Z. anorg. Ch. 150, 245. Das neutrale Kaliumsalz liefert mit Kaliummetabisulfit K, S, O₅ in Wasser nach kurzem Aufkochen Sulfobernsteinsäure (Backer, van der Z., R. 46, 483). Maleinsäure liefert beim Erhitzen mit p-Kresol und 72 %iger Schwefelsäure auf 160—180° 6-Methyl-cumarin (Thompson, Eder, Am. Soc. 47, 2557). Lagert in Eisessig-Tetrachlorkohlenstoff-Lösung Rhodan nicht an (Kaufmann, B. 59, 1391). Gibt mit 2-Amino-thiophenol 1-Thio-phenmorpholon-(3)-essigsäure-(2) (s. nebenstehende Formel; Syst. Nr. 4330) (Mills, Whitworth, Soc. 1927, 2751).

Biochemisches und physiologisches Verhalten.

Maleinsäure wird im Gegensatz zu Fumarsäure durch Aspergillus niger und Penicillium glaucum (Verkade, Söhngen, Versl. Akad. Amsterdam 28, 359; C. 1920 I, 630) und durch Hefe (Jung, Müller, Helv. 5, 240) nicht angegriffen. — Einfluß geringer Mengen Maleinsäure auf die Wirkung von Diastase, Lipase und Pepsin: Cooper, Edgar, Biochem. J. 20, 1063. Keimtötende Wirkung der Maleinsäure und ihres sauern Zinksalzes auf Bact. coli commune: Coo., Ed.; Cheeseworth, Coo., J. phys. Chem. 33, 720. Giftwirkung gegen Pflanzen: Clamician, Galizzi, G. 52 I, 19. Weitere Angaben über physiologische und biochemische Eigenschaften der Maleinsäure s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 929.

Verwendung; Analytisches.

Verwendung von Maleinsäure und ihren Salzen in der Textilindustrie: Carpenter, J. ind. Eng. Chem. 13, 410; C. 1921 IV, 654. — Zur Bestimmung mit schwach alkalischer Brom-Kaliumbromid-Lösung oder schwach saurer Bromid-Bromat-Lösung vgl. Margosches, Hinner, Fr. 64, 66, 67, 68, 72. Acidimetrische Bestimmung, auch in Gegenwart schwacher Säuren: Tizard, Boeree, Soc. 119, 141. Bestimmung neben Fumarsäure auf Grund der Leitfähigkeit wäßr. Lösungen: Kailan, Ph. Ch. 87 [1914], 338; Warburg, Sber. preuß. Akad. 1919, 962; C. 1920 I, 199; Beresowskaja, Ukr. chemič. Ž. 2, 265; C. 1927 I, 2634: auf Grund der verschiedenen Löslichkeit beider Säuren: Wachholtz, Ph. Ch. 135, 149. Bestimmung von Maleinsäure in Gemischen mit Fumarsäure und Äpfelsäure: Weiss, Downs, Am. Soc. 44, 1120.

Salze der Maleinsäure (Maleinate).

Saures Natriumsalz NaC₄H₃O₄ + 3H₃O. 100 g Wasser lösen bei 25° 6,73 g, bei 40° 12,81 g, bei 60° 31,3 g, bei 100° 288,0 g (Weiss, Downs, Am. Soc. 45, 2348). Beim Ausschütteln der wäßr. Lösung nimmt Äther Maleinsäure auf (Sabalitschka, Kubisch, Z. anorg. Ch. 134, 81). Anwendung als Puffer im p_H-Bereich von 5,2 bis 6,8: Temple, Am. Soc. 51, 1755. — Neutrales Natriumsalz Na₂C₄+0,5 H₂O. Krystalle. 100 g Wasser lösen bei 25° 96,06 g (Weiss, D.). Oberflächenspannung der wäßr. Lösung: Ribas, An. Soc. españ. 23, 150; C. 1925 II, 1028. Flockungsvermögen für Eisen(III)-hydroxyd-Sol: Weitz, Stamm. B. 61, 1151. Zusammensetzung der festen und flüssigen Phasen der ternären Systeme mit Natriumfumarat und Methanol sowie mit Natriumsuccinat und Methanol: Timmermans. Bl. Soc. chim. Belg. 36, 180; C. 1927 II, 1427. — Saures Kaliumsalz. Beim Ausschüteln der wäßr. Lösung nimmt Äther Maleinsäure auf (Sa., Ku.). — Neutrales Kaliumsalz K₂C₄H₂O₄. Zusammensetzung der festen und flüssigen Phasen der ternären Systeme mit Kaliumfumarat und Methanol sowie mit Kaliumsuccinat und Methanol: Ti. — Kupfer(II)-salz CuC₄H₂O₄ + H₂O (bei 100°). Tiefblauer krystalliner Niederschlag. 100 g Wasser lösen bei 30° 0,12 g (Weiss, D.). — Silbersalz Ag₂C₄H₂O₄ (bei 100°). Niederschlag. 100 g Wasser lösen bei 30° 0,12 g (Weiss, D.). Zersetzt sich beim Erhitzen unter Silber-Abscheidung.

Calciumsalze: $Ca(C_4H_3O_4)_2 + 5H_3O$. Krystalle. In 100 g Wasser lösen sich bei 25° 21,13 g, bei 40° 41,89 g, bei 60° 94,78 g (Weiss, D.). — $CaC_4H_3O_4 + H_3O$. Nadeln. Krystallographische Untersuchung: Wherry, Hann, J. Washington Acad. 12, 291; C. 1923 I, 738. 100 g Wasser lösen bei 25° 2,49 g, bei 40° 2,88 g (Weiss, D.). — Zinksalze: $Zn(C_4H_3O_4)_2 + 2H_3O$. Eiweißfällende Wirkung: Cooper, Edgar, Biochem. J. 20, 1065. — $ZnC_4H_3O_4 + 2H_3O$. Körniger Niederschlag. Eiweißfällende Wirkung: C., E. Beim Erhitzen der Lösung erfolgt Zersetzung unter Bildung eines flockigen Niederschlages (Weiss, D.). — Cadmiumsalz $CdC_4H_3O_4 + 2H_3O$. Krystalle. 100 g Wasser lösen bei 30° 0,66 g (Weiss, D.). — Thallium(I)-salz $Tl_2C_4H_3O_4$. Prismen. F: 164-166° (Christie, Menzies, Soc. 127, 2370). Leicht löslich in Wasser. — Lanthansalz $La_2(C_4H_2O_4)_2 + 10H_3O$. Krystalle. In 100 g Wasser von 25° lösen sich 4,19 g (Coniglio, Rend. Accad. Sci. fis. Napoli [3] 33, 81; C. 1928 I, 1515). — Cer(III)-salz $Ce_3(C_4H_3O_4)_3 + 10H_4O$. Krystalle. In 100 g Wasser von 25° lösen sich 8,05 g wasserfreies Salz (Co.). — Praseodymsalz $Pr_3(C_4H_2O_4)_3 + 10H_3O$. Blaßgrüne Krystalle. In 100 g Wasser von 25° lösen sich 8,05 g wasserfreies Salz (Co.). — Praseodymsalz $Pr_3(C_4H_2O_4)_3 + 10H_3O$. Blaßgrüne Krystalle. In 100 g Wasser von 25° lösen sich 6,05 g wasserfreies Salz (Co.). — Neodymsalz $Nd_3(C_4H_3O_4)_3 + 10H_3O$. Violettrote Krystalle. In 100 g Wasser von 25° lösen sich 6,54 g wasserfreies Salz (Co.). — Samariumsalz $Sm_3(C_4H_2O_4)_3 + 10H_4O$. Krystalle. In 100 g Wasser von 25° lösen sich 6,54 g wasserfreies Salz (Co.). — Samariumsalz $Sm_3(C_4H_2O_4)_3 + 10H_4O$. Krystalle. In 100 g Wasser von 25° lösen sich 6,54 g wasserfreies Salz (Co.). — Samariumsalz $Sm_3(C_4H_2O_4)_3 + 10H_4O$. Krystalle. In 100 g Wasser von 25° lösen sich 6,54 g wasserfreies Salz (Co.). — Samariumsalz $Sm_3(C_4H_4O_4)_3 + 10H_4O$. Krystalle. In 100 g Wasser von 25° lösen sich 6,54 g wasserfreies Salz (Co.). — Samariumsalz $Sm_3(C_4H_4O_$

Bleisalz PbC₄H₂O₄. B. Aus Bleinitrat und Natriummaleinat in Wasser (Weiss, D.). 100 g Wasser lösen bei 30° 0,052 g. — Uranylsalz UO₂C₄H₂O₄ + ½ H₂O. Grüngelbes, mikrokrystallines Pulver. Leicht löslich in heißem Wasser, schwer in Alkohol und Aceton, unlöslich in Ather (A. Müller, Z. anorg. Ch. 109, 240, 251). Verändert sich nur wenig beim Erhitzen auf 300°. — Mangan(II)-salze: Mn(C₄H₃O₄)₂+4,5 (?)H₂O. Rosa Krystalle (aus Wasser). Ist bei Zimmertemperatur an der Luft und im Vakuum über Schwefelsäure beständig (Weiss, D.). — MnC₄H₂O₄+3 H₂O. Ist anscheinend bei 100° beständig. Die wäßr. Lösung zersetzt sich unter Abscheidung von Mangandioxyd (Weiss, D.). — Eisen(III)-salz Fe₂(C₄H₂O₄)₂+2 H₂O(?) (bei 100°). Fast schwarz, amorph (Weiss, D.). — Kobalt(II)-salz CoC₄H₂O₄)₄+11(?)H₂O(Weiss, D.).—KomplexeKobalt(III)-salze: [Co(NH₃)₅(C₄H₂O₄)]NO₃. Rosa Krystalle. Ziemlich schwer löslich in Wasser (Duff, Soc. 123, 567). Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: Duff. Gibt bei Zusatz von Kaliumchromat zur wäßr. Lösung keinen Niederschlag. — [Co₂(NH₃)₁₀(C₄H₂O₄)](NO₃)₄. Rosa Krystalle. Ziemlich schwer löslich in warmem Wasser (Duff, Soc. 123, 567). Elektrische Leitfähigkeit in Wasser bei 25°: Duff. Gibt mit Kaliumchromat in Wasser einen gelbbraunen Niederschlag. Die wäßr. Lösung gibt mit Bariumchlorid erst nach dem Erhitzen einen Niederschlag von maleinsaurem Barium.

Funktionelle Derivate der Maleinsäure.

Maleinsäuremonomethylester, Monomethylmaleinat $C_5H_4O_4 = HO_3C \cdot CH : CH \cdot CO_2 \cdot CH_3$ (E I 305). B. Aus Maleinsäuredimethylester beim Behandeln mit der berechneten Menge Barytwasser (Anschürz, A. 461, 190).

Maleinsäuredimethylester, Dimethylmaleinat C₆H₈O₄ = CH₃·O₃C·CH:CH·CO₂·CH₃ (H 751; E I 305). B. Als Hauptprodukt bei längerem Erhitzen von Maleinsäure anhydrid mit Methanol im Rohr auf 100° (Anschütz, A. 461, 189). Aus Maleinsäure und Methanol in Gegenwart von Schwefelsäure im Dunkeln (Rinkes, R. 46, 272). — E: 7,6° (Vibeur, Bl. Soc. chim. Belg. 35, 428; C. 1927I, 1543). Kp₇₀₀: 204,3—204,4° (V.); Kp₁₇: 102° (Meerwein, Weber, B. 58, 1267), 102° (korr.) (Sugden, Whittacker, Soc. 127, 1873); Kp₁₀: 100° (Ri.). D₂¹¹: 1,44513 V.); D₂²⁰: 1,1517 (M., We.); D₂²⁰: 1,160; D₂²⁰: 1,144; D₂²⁰: 1,115; D₂²⁰: 1,031 (S., Wh.). Oberflächenspannung zwischen 24° (37,31 dyn/cm) und 143° (23,42 dyn/cm): S., Wh. Parachor: S., Wh. n₂²⁰: 1,4381 (M., We.). Thermische Analyse des binären Systems mit Fumarsäuredimethylester: R. Schmidt, Ph. Ch. [B] 1, 209; V.; mit Bernsteinsäuredimethylester: V. — Geht beim Erwärmen mit fein verteiltem Kalium in Äther auf dem Wasserbad in Fumarsäure-dimethylester über (Meerwein, Weber, B. 58, 1267). Kinetik der Umwandlung in Fumarsäuredimethylester in Gegenwart von Brom bei Bestrahlung mit Licht verschiedener Wellenlängen in Tetrachlorkohlenstoff: EGGERT, Z. El. Ch. 38, 543; in Tetrachlorkohlenstoff und in Wasser: R. Schmidt, Ph. Ch. [B] 1, 212. Einfluß von Säuren und Salzen auf die Geschwindigkeit dieser Reaktion in Wasser: Wachholtz, Ph. Ch. 135, 159. Kinetik der Addition von Brom im Licht verschiedener Wellenlängen: E.; SCH. Geschwindigkeit der Verseifung in alkal. Lösung bei 25°: Serabal, Raith, M. 42, 247. Bei der Einw. von Ammoniak unter Kühlung bei Lichtausschluß entsteht Maleinsäurediamid neben Fumarsäure-diamid (Rinkes, R. 46, 272). Liefert bei der Einw. von Diazoäthan in Äther 5-Methyl-A²-pyrazolin-dicarbonsäure(3.4)-dimethylester (Syst. Nr. 3666) (v. Auwebs, Cauer, A. 470, 304). — C₂H₃O₄ + SnCl₄. Hygroskopische Tafeln oder Blättchen. F: 123° (Hieber, A. 439, 123). Leicht löslich in indifferenten organischen Lösungsmitteln.

Maleinsäurediäthylester, Diäthylmaleinst C₈H₁₂O₄ = C₂H₅ · O₂C · CH : CH · CO₂ · C₂H₈ (H 751; E I 305). B. Beim Erwärmen von Maleinsäure mit einem geringen Überschuß von Alkohol, der dem Alkohol-Überschuß äquivalenten Menge Schwefelsäure und wasserfreiem Aluminiumsulfat auf 100° (Kotake, Fujita, Bl. phys. chem. Res. Tokyo 1, 65; C. 1928 II, 1545). — E: —10,46° (Wachholtz, Ph. Ch. 125, 3), —17° (Viseur, Bl. Soc. chim. Belg. 35, 429; C. 1927 I, 1543). Kp₇₆₀: 222,6—222,7° (V.); Kp₇₄₆: 221° (Kern, Sherner, Adams, Am. Soc. 47, 1157). Parachor: Sugden, Soc. 125, 1184. Thermische Analyse der binären Systeme mit Fumarsäurediäthylester: W.; V.; mit Bernsteinsäurediäthylester: V. — Geschwindigkeit der Hydrierung in Alkohol in Gegenwart von Platin- oder Palladiumschwarz unter 2—3 Atm. Druck bei 25°: K., Sh., A., Am. Soc. 47, 1149. Gibt bei der Einw. von Brom in Tetrachlorkohlenstoff im Licht Fumarsäurediäthylester und α.α'- Dibrombernsteinsäure-diäthylester; Kinetik dieser Reaktion: EGGERT, Phys. Z. 25 19; 26, 865; C. 1926 I, 2173; Z. El. Ch. 33, 543; Wachholtz, Ph. Ch. 125, 6, 18. Läßt man Brom in äther. Lösung im Dunkeln einwirken, so erhält man den Diäthylester der racemischen Dibrombernsteinsäure (Ing, Perkin, Soc. 125, 1822). Bei wochenlanger Einw. von Benzopersäure in Tetrachlorkohlenstoff tritt keine Oxydation ein; es entstehen nicht näher beschriebene Polymerisationsprodukte (Bößenen, R. 45, 839). — Geschwindigkeit der Spaltung durch Lipase aus Schweineleber: McGinty, Lewis, J. biol. Chem. 67, 572; aus Rinder-Pankreas: Cooper, Edgar, Biochem. J. 20, 1064. — C₈H₁₂O₄ + SnCl₄. Krystalle. F: 114—115° (Hieber, A. 439, 123). Kryoskopisches Verhalten in Athylenbromid: H. — C₈H₁₂O₄ + SnBr₄. Zerfließliche Blätten. F: 35—36° (H., A. 439, 130). — C₈H₁₂O₄ + 2SbCl₅. Gelbliche, sehr hygroskopische Blätter. Schmilzt unscharf bei 120° (H., A. 439, 124). Schwer löslich in Chloroform.

Maleinsäuredipropylester, Dipropylmaleinat $C_{10}H_{16}O_4 = C_2H_5 \cdot CH_2 \cdot O_2C \cdot CH : CH \cdot CO_2 \cdot CH_2 \cdot C_2H_5 \cdot C_3H_5 \cdot (H 752)$. $D_3^{is.0}$: 1,0271; $n_{\alpha}^{is.0}$: 1,4405; $n_{He}^{is.0}$: 1,4433; $n_{\beta}^{is.0}$: 1,4501; $n_{\gamma}^{is.0}$: 1,4560 (v. Auwers, Harres, B. 62, 1686).

Maleinsäure-di-akt.-amylester, Di-akt.-amyl-maleinat $C_{14}H_{24}O_4 = C_2H_5 \cdot CH(CH_3) \cdot CH_3 \cdot O_3C \cdot CH \cdot CO_3 \cdot CH_3 \cdot CH(CH_3) \cdot C_2H_5$ (H 751; E I 305). Parachor: Sugden, Sec. 125, 1184.

Polymeres Äthylenmaleinst $[C_0H_0O_4]_x = [\cdots O \cdot CH_2 \cdot CH_2 \cdot O \cdot CO \cdot CH : CH \cdot CO \cdot \cdots]_x$ (vgl. H 752). Zur Konstitution vgl. den Artikel polymeres Äthylensuccinat (S. 552). — B. Beim Erhitzen von Maleinsäureanhydrid und Äthylenglykol auf 195—200°, zuletzt im Vakuum auf 210—215° (CAROTHERS, ARVIN, Am. Soc. 51, 2570). — Pulver. Schmilzt bei 88—95°. Ist nach dem Trocknen im Vakuum in den gewöhnlichen Lösungsmitteln unlöslich ·und schmilzt dann nicht mehr unter 250°.

Maleinsäuremonoamid $C_4H_5O_5N=HO_2C\cdot CH:CH\cdot CO\cdot NH_5$ (H 752). Krystalle (aus Alkohol). F: 172—173° (korr.; Zers.) (Rinkes, R. 45, 821), 152,5° (Semenzow, Ж. 61, 1128; C. 1980 I, 1286). — Bei Behandlung mit alkal. Natriumhypochlorit-Lösung in Methanol unterhalb 25° erhält man β-[Carbomethoxy-imino]-propionsäure (R., R. 45, 821); bei Ausführung der Reaktion in Wasser entsteht β-[Carboxy-imino]-propionsäure (R., R. 46, 269, 274).

Maleinsäurediamid $C_4H_6O_2N_3=H_2N\cdot CO\cdot CH: CH\cdot CO\cdot NH_2$. B. Neben Fumarsäurediamid bei der Einwirkung von wäßr. Ammoniak auf Maleinsäuredimethylester im Dunkeln (RINKES, R. 46, 272; vgl. VISEUR, Bl. Soc. chim. Belg. 35, 430; C. 1927 I, 1543). — Krystalle (aus Methanol). Schmilzt bei 180° unter schwacher Gasentwicklung; die Schmelze erstarrt nach kurzer Zeit wieder infolge Umwandlung in Fumarsäurediamid und schmilzt erneut bei 266° (Zers.) (RI., R. 46, 272). — Liefert bei Behandlung mit alkal. Hypochlorit-Lösung bei -5° und nachfolgendem Versetzen mit Schwefelsäure Uracil (RI., R. 46, 273). Beim Erhitzen mit Zinkchlorid im Vakuum entsteht Maleinimid (RI., R. 48, 961).

Substitutionsprodukte der Maleinsäure.

Chlormaleinsäure $C_4H_3O_4Cl = HO_2C \cdot CCl \cdot CH \cdot CO_2H (H 752)$. — Saures Kaliumsalz $KC_4H_2O_4Cl$. Röntgenogramm: Yardley, *Phil. Mag.* [6] 50, 866; *C.* 1926 I, 2877.

Dimethylester $C_6H_7O_4Cl = CH_2 \cdot O_2C \cdot CCl : CH \cdot CO_2 \cdot CH_3$ (E I 305). $Kp_{17}: 100^6$; $D_7^{n,s}: 1,2775$; $n_{C}^{n,s}: 1,4583$; $n_{He}^{n,s}: 1,4617$; $n_{B}^{n,s}: 1,4701$; $n_{Y}^{n,s}: 1,4775$ (v. Auwers, Harres, B. 62, 1686).

Diäthylester $C_0H_{11}O_0Cl = C_2H_5 \cdot O_0C \cdot CCl : CH \cdot CO_2 \cdot C_2H_5$ (H 753; E I 305). Kp₁₈: 120° (v. Auwers, Harres, Ph. Ch. [A] 143, 10). $D_1^{0,0}: 1,1754$ (v. Au., H., B. 62, 1686). Parachor: Mumford, Phillips, Soc. 1929, 2115. $n_{cl}^{0,0}: 1,4521$; $n_{He}^{0,0}: 1,4553$; $n_{bl}^{0,0}: 1,4631$; $n_{cl}^{0,0}: 1,4700$ (v. Au., H., B. 62, 1686).

Brommaleinsäure $C_4H_3O_4Br = HO_1C \cdot CBr : CH \cdot CO_2H$ (H 754; E I 305). B. Durch Oxydation von $\alpha'.\beta'$ -Dibrom- Δ^{α} -dihydromuconsäure-diāthylester oder von $\alpha'.\beta'$ -Dibrom- $\alpha.\beta$ -dioxy-adipinsäure-diāthylester mit Permanganat in wäßr. Aceton bei 50° (CHANDRASENA, INGOLD, Soc. 121, 1316). Bei der Darstellung nach MICHAEL (J. pr. [2] 52, 296) entsteht außer Brommaleinsäure stets Bromfumarsäure (v. Auwers, Harres, B. 62, 1688).

Dimethylester $C_0H_7O_4Br = CH_3 \cdot O_2C \cdot CBr : CH \cdot CO_3 \cdot CH_3$ (H 755). $Kp_{10}: 105^0$; $D_1^{is,0}: 1,5497$; $n_{\overline{H}^0}^{is,0}: 1,4836$; $n_{\overline{H}^0}^{is,0}: 1,4876$; $n_{\overline{h}^0}^{is,0}: 1,4973$; $n_{\underline{\gamma}}^{is,0}: 1,5058$ (v. Auwers, Harres, B. 62, 1686, 1688).

Dibrommaleinsäure C₄H₂O₄Br₂ = HO₂C·CBr:CBr:CO₂H (H 756; E I 306). Wird durch Pyridin in der Wärme zersetzt (Ruggli, *Helv.* 3, 566). — Pyridinsalz s. bei Pyridin, Syst. Nr. 3051.

Monoäthylester $C_6H_6O_4Br_2 = HO_3C \cdot CBr \cdot CO_2 \cdot C_2H_5$ (H 757). B. Aus Dibrom-maleinsäureanhydrid beim Erwärmen mit alkoh. Salzsäure auf dem Wasserbad, neben dem Diäthylester (Ruggli, Hartmann, Helv. 3, 503). — Gelbliche Nadeln (aus Petroläther). F: 65—67°. Ziemlich leicht löslich in Wasser.

Diäthylester $C_8H_{10}O_4Br_2=C_2H_5\cdot O_2C\cdot CBr\colon CBr\cdot CO_2\cdot C_2H_5$ (H 757). B. Aus Dibrom-maleinsäureanhydrid beim Erwärmen mit alkoh. Salzsäure auf dem Wasserbad, neben dem Monoäthylester (Ruggli, Hartmann, Helv. 3, 503). — Kp₁₆: 158—160° (Ru., H., Helv. 3, 503). — Liefert bei 60stdg. Kochen mit Zinkstaub in Benzol Åcetylendicarbonsäurediäthylester und harzige Produkte (Ru., Helv. 3, 567). Gibt mit Hydrazinhydrat in alkoh. Lösung eine blauviolette Färbung; nach einiger Zeit scheidet sich Hydrazinhydrobromid aus (Ru., H., Helv. 3, 496). Reagiert mit Organomagnesiumverbindungen heftig unter Bildung öliger, undestillierbarer Produkte (Ru., H., Helv. 3, 503)

Diamid $C_4H_4O_2N_2Br_2=H_2N\cdot CO\cdot CBr: CBr\cdot CO\cdot NH_2$. B. Aus Dibrommaleinsäurediäthylester und konzentriertem wäßrigem Ammoniak bei Zimmertemperatur (Ruggli, Hartmann, Helv. 3, 504). — Nadeln. Färbt sich von 120^o an braun und zersetzt sich gegen 200^o unter Bromentwicklung. Schwer löslich in kaltem Wasser und kaltem Alkohol, ziemlich schwer löslich in warmem Aceton und Äther. — Wird beim Auflösen in heißem Wasser oder heißem Alkohol verseift. Liefert beim Erhitzen mit Brom im Rohr auf 90^o Dibrommaleinsäureimid.

Dihydroxylamid, Dibrommaleindihydroxamsäure $C_4H_4O_4N_8Br_9 = HO\cdot NH\cdot CO\cdot CBr\colon CBr\cdot CO\cdot NH\cdot OH$ bzw. desmotrope Formen. B. Das Dinatriumsalz bildet sich bei der Einwirkung von Hydroxylamin auf Dibrommaleinsäurediäthylester in Methanol in Gegenwart von Natriumäthylat (Ruggli, Hartmann, Helv. 3, 512). — Die freie Säure ist nur in Lösung bekannt. — Dinatriumsalz $Na_3C_4H_9O_4N_8Br_9$. Nicht ganz rein erhalten. Sehr hygroskopische Flocken.

Monohydrazid, Dibrommaleinhydrasidsäure C₄H₄O₃N₂Br₈ = HO₂C·CBr:CBr·CO·NH·NH₂. B. Man gießt eine Lösung von 1 Mol Dibrommaleinsäureanhydrid und 2 Mol Hydrazinhydrat in Methanol oder Alkohol unter Kühlung in Wasser (Ruggli, Hartmann, Helv. 3, 506). — Ist nur als Hydrazinsalz isoliert. — Das Hydrazinsalz wird beim Stehenlassen mit Wasser oder mit verd. Alkohol sowie beim Schütteln mit Benzaldehyd unter Bildung von Dibrommaleinsäure zersetzt. Beim Kochen mit Dibrommaleinsäureanhydrid in Alkohol entsteht das cylische Hydrazid OC CBr:CBr CO (Syst. Nr. 3588). — Hydrazinsalz N₂H₄ + C₄H₄O₂N₂Br₂. Nadeln (aus verd. Alkohol). F: 130° (nach vorangehender Bräunung). Leicht löslich in Wasser.

2. Äthylen- $\alpha.\alpha$ -dicarbonsäure, Methylenmalonsäure $C_1H_1O_4 = CH_1:C(CO_1H)_2$

Diäthylester $C_8H_{18}O_4=CH_2:C(CO_2\cdot C_2H_5)_2$ (H 758; E I 306). Beim Erhitzen mit l-Menthol in Gegenwart von Natrium auf $130-150^\circ$ bei gewöhnlichem Druck oder auf 90° bei 15-30 mm Druck entsteht Methylenmalonsäure-di-l-menthylester (Shimomura, Cohen, Soc. 121, 2054). Liefert bei der Einw. von Nitrosobenzol in wenig Chloroform N-Phenylformylmalonsäurediäthylester-isoxim (Syst. Nr. 1654); reagiert analog mit 4-Chlor-1-nitrosobenzol (Ingold, Weaver, Soc. 125, 1459, 1460; Burkhardt, Lapworth, Soc. 127, 1747).

Paramethylenmalonsäurediäthylester $(C_8H_{18}O_4)_x$ (H 758; E I 306). B. Bei 24stdg. Einw. von $\alpha.\beta$ -Dibrom-propionsäure-äthylester auf Pentan-hexacarbonsäure-(1.1.3.3.5.5)-hexaäthylester in alkohol-ätherischer Natriumäthylat-Lösung unter Kühlung, neben anderen Produkten (Lennon, Perkin, Soc. 1928, 1525). — Krystalle (aus Alkohol). F: 145—148°.

2. Dicarbonsăuren $C_5H_6O_4$.

- 1. Propen-dicarbonsaure-(1.3), Glutaconsaure¹) $C_5H_6O_4 = HO_2C \cdot \overset{\alpha}{C}H_4 \cdot \overset{\beta}{C}H : \overset{\gamma}{C}H \cdot CO_3H^4$).
- a) trans-Glutaconsäure C₅H₆O₄ = HO₂C·CH₂·CH·CH·CO₂H. Identisch mit der früher (H 758; E I 307) beschriebenen gewöhnlichen Glutaconsäure; vgl. Evans, Rydon, Beiscor, Soc. 1939, 1673. Zur Konfiguration vgl. Malachowski, B. 62, 1323; vgl. auch Verkade, C. 1916 II, 560. B. Beim Erhitzen von cis-Glutaconsäure (S. 649) auf ca. 150°, neben Glutaconsäureanhydrid (M.). Neben anderen Produkten beim Kochen von α-Bromglutarsäure-diāthylester mit 6 n-methylalkoholischer Kalilauge (Ingold), Soc. 119, 319, 321). Aus α-β-Dibrom-glutarsäure durch Kochen mit Zinkstaub in verd. Schwefelsäure (Verkade, Coops, R. 39, 589; vgl. a. Farmer, Scott, Soc. 1929, 179) oder (neben anderen Produkten) beim Kochen mit 2n-Natriumcarbonat-Lösung oder mit 6 n-methylalkoholischer Kalilauge (Farmer, Ingold, Soc. 119, 2013, 2015, 2017). Zur Bildung nach Conrad, Guthzeit (A. 222, 253) vgl. Kohler, Reid, Am. Soc. 47, 2807. Über Bildung bei Einw. von Kaliumcyanid auf α-Dichlorhydrin und nachfolgender Verseifung vgl. Lespieau, C. r. 176, 754; Bl. [4] 38, 726. Durch Erhitzen des Pyridinsalzes des 6-Oxy-pyron-(2)-dicarbonsäure-(3.5)-diäthylesters mit starker Salzsäure) (Pirsoh. B. 61, 38).

Starker Salzsäure) (Pirsch, B. 61, 38).

Krystalle (aus Ather + Benzol oder Aceton + Benzol). Krystallographisches: Woyno, B. 62, 1326. F: 138—138,5° (korr.) (Malachowski, B. 62, 1325). Sehr leicht löslich in Essigester (Verkade, R. 41, 211). Elektrolytische Dissoziationskonstante k (konduktometrisch ermittelt) bei 0°: 1,74×10-4 (M.), 1,71×10-4 (V., R. 41, 219); bei 25°: 1,76×10-4; bei 45°: 1,64×10-4 (V., C. 1916 II, 560; R. 41, 219, 222).

Glutaconsäure wird durch Bestrahlung mit Sonnenlicht oder ultraviolettem Licht nicht verändert (Verkade, R. 41, 215). Bei 36-stdg. Einw. von Bromdämpfen auf Glutaconsäure oder mit geringerer Ausbeute bei Einw. von Brom auf ihre wäßr. Lösung (vgl. hierzu auch Killani, B. 18 [1885], 2517) oder am Licht auf ihre Lösung in Ameisensäure entstehen α.β-Dibrom-glutarsäure und andere Produkte (V., Coors, R. 39, 588, 590; vgl. auch V., Versi. Akad. Amsterdam 24, 1538; C. 1916 II, 560). Liefert mit Quecksilber(II)-acetat in Wasser ein in Wasser unlösliches und je nach den Versuchsbedingungen wechselnde Mengen Quecksilber enthaltendes Produkt, das sich bei 100—105° unter Gelbfärbung und Gewichtsverlust zersetzt und mit Schwefelwasserstoff in salzsaurer Lösung Glutaconsäure und Quecksilbersulfid, in alkalischer Lösung Glutaconsäure, β-Oxy-glutarsäure und Quecksilbersulfid liefert

(V., R. 45, 485, 487; vgl. auch V., C. 1916 II, 560). Gibt beim Erwärmen mit Thiosalicylsäure und konz. Schwefelsäure auf 40° die Verbindung der Formel I (Syst. Nr. 2745) (SMILES, HART, Soc. 123, 2911). Beim Erhitzen mit 1 Mol 2-Amino-thiophenol auf 120—130° in Kohlendioxyd-Atmosphäre entsteht die Verbindung der Formel II (Syst. Nr. 4330) (MILLS, Whitworth, Soc. 1927, 2743). — Reduktion von Methylenblau durch Glutaconsäure in Gegenwart von Bact. coli: Quastel, Biochem. J. 20, 180, 182. Wird durch Aspergillus niger und Penicillium glaucum langsam angegriffen (Verkade, Söhngen, Versl. Akad. Amsterdam 28, 364; C. 1920 I, 630). Bei Einw. von zerkleinertem Muskelgewebe vom Hund oder Kaninchen auf das Natriumsalz entsteht wenig β-Oxy-glutarsäure (Dakin, J. biol. Chem. 52, 187).

¹⁾ Monosubstituierte Glutaconsäuren vom Typus HO₂C·CHR·CH:CH·CO₂H und polysubstituierte Glutaconsäuren von den Typen HO₂C·CHR·CR:CH·CO₂H und HO₄C·CHR·CR:CK'·CO₂H zeigen neben cis-trans-Isomerie teilweise auch tautomerieähnliche Verschiebungen der Doppelbindung unter Wanderung eines H-Atoms ("Dreikohlenstoff-Tautomerie"), wodurch die Isomeren der Typen HO₂C·CR:CH·CH₂·CO₂H, HO₂C·CR:CR·CH₂·CO₂H und HO₂C·CR:CR·CHR'·CO₂H gebildet werden. Die Isomerieverhältnisse auf dem Gebiet der Glutaconsäuren können durch neuere Arbeiten wohl im wesentlichen als geklärt gelten (vgl. z. B. McCombs, Packer, Thorpe, Soc. 1931, 547; Kon, Nanji, Soc. 1931, 560; 1932, 2426, 2557; K., Watson, Soc. 1932, 1, 2434; GIDVANI, K., WRIGHT, Soc. 1933, 1027; G., K., Soc. 1932, 2443; K., Nandi, Soc. 1933, 1628; FITZGERALD, K., Soc. 1937, 725; vgl. ferner auch Verkader, R. 41, 208; 45, 475). — Da isomerenfreie Ester nur bei Anwendung besonders milder Veresterungsmethoden erhalten werden, waren die früher als einheitliche Alkylglutaconsäureester beschriebenen Präparate vermutlich Gemische aus α- und γ-Alkyl-glutaconsäureestern (vgl. hierzu z. B. Feist, A. 428, 38; K., W., Soc. 1932, 2, 2442; Fi., K.).

²⁾ Die Stellungsbezeichnung in den von Glutaconsäure abgeleiteten Namen ist in der Literatur nicht einheitlich.

trans-Glutaconsäure-dimethylester $C_7H_{10}O_4 = CH_3 \cdot O_2C \cdot CH_2 \cdot CH \cdot CO_2 \cdot CH_3$. B. Aus der Säure und Methanol in Gegenwart von Schwefelsäure (Kohler, Reid, Am. Soc. 47, 2808). — Kp₅: 105—110°. — Liefert beim Kochen mit Cyanessigsäure-methylester in Methanol bei Gegenwart von wenig Natriummethylat Cyanisobutan-tricarbonsäure-trimethylester (S. 703).

trans-Glutaconsäure-diäthylester $C_9H_{14}O_4=C_9H_5\cdot O_9C\cdot CH_9\cdot CH\cdot CH\cdot CO_2\cdot C_2H_5$ (H 759; E I 307). B. Aus β -Oxy-glutarsäure-diäthylester bei 36-stdg. Kochen mit Natrium-cyanessigester in Alkohol, neben anderen Produkten (Ingold, Thorpe, Soc. 119, 499). Neben anderen Produkten beim Kochen von α -Dichlorhydrin mit Kaliumcyanid in verd. Methanol und Behandeln des rohen Reaktionsprodukts mit siedender alkoholischer Schwefelsäure (Dreifuss, Ingold, Soc. 123, 2965). — K_{12} : 125° (Verkade, Coops, R. 39, 591; V., R. 41, 211).

trans-Glutaconsäure-dinitril $C_5H_4N_2=NC\cdot CH_2\cdot CH:CH\cdot CN$. B. Beim Destillieren von β -Oxy-glutarsäure-dinitril mit Phosphorpentoxyd unter 10—15 mm Druck, neben andern Produkten (Lesteau, Bl. [4] 33, 730). — Prismen. F: 31,5°. Kp₁₂: 129—130°. D¹⁰: 1,0302; n¹⁰₁₅: 1,469 (unterkühltes, nicht vollkommen reines Präparat). — Gibt beim Sättigen mit Bromwasserstoff das Hydrobromid des β -Brom-glutarsäure-dinitrils. — Erzeugt Jucken auf der Haut.

- b) cis-Glutaconsäure C₅H₆O₄ = HO₂C·CH₂·CH:CH·CO₂H. B. Man trägt Glutaconsäureanhydrid (Syst. Nr. 2476) in Wasser von 10—12° ein, bewahrt bis zum Verschwinden der grünen Eisenchlorid-Reaktion auf, filtriert, dunstet rasch im Vakuum ein und extrahiert den Rückstand mit Äther (Malachowski, B. 62, 1325). Krystalle (aus Äther oder Aceton + Benzol). Krystallographisches: Woyno, B. 62, 1326. F: 136—136,5° (korr.). Leicht löslich in Wasser, Alkohol und Aceton, schwer löslich in Äther, unlöslich in Chloroform und Benzol. Elektrolytische Dissoziationskonstantek bei 0°:1,43·10—4 (konduktometrisch ermittelt). Ist in festem Zustand oder in ätherischer Lösung wochenlang beständig. Gibt beim Erhitzen auf 145—150° trans-Glutaconsäure und wenig Glutaconsäureanhydrid. Auch in wäßr. Lösung erfolgt rasche Umlagerung in die trans-Form; Geschwindigkeit dieser Reaktion bei 0° und bei 15—20°: M. Bei 2-stdg. Erwärmen mit Acetanhydrid auf 40° erhält man quantitativ Glutaconsäureanhydrid. Entfärbt Permanganat-Lösung sofort. Gibt mit Eisen(III)-chlorid keine Färbung; bei längerer Einw. entsteht ein gelatinöser Niederschlag.
 - c) Substitutionsprodukte der Glutaconsäure.

2-Chlor-propen-dicarbonsäure-(1.3), β -Chlor-glutaconsäure $C_5H_5O_4Cl = HO_2C \cdot CH_2 \cdot CCl : CH \cdot CO_2H$ (vgl. H 760).

a) Höherschmelzende Form, cis-Form(?). Zur Konfiguration vgl. Malachowski, Kalinski, Roczniki Chem. 6 [1926], 768, 770; van der Zanden, R. 54 [1935], 289. — B. Man mischt Acetondicarbonsäurediäthylester möglichst schnell unterhalb 50° mit der ungefähr gleichen Menge Phosphorpentachlorid, behandelt mit Eiswasser und verseift den erhaltenen Ester mit 20% iger Salzsäure (Ingold, Nickolls, Soc. 121, 1642; Smiles, Hart, Soc. 123, 2910, 2912; vgl. auch Mal., K., Roczniki Chem. 6, 770); unter ähnlichen Bedingungen wurde in geringer Menge außerdem die bei 124° schmelzende Form (s. u.) erhalten (Makulec, Malachowski, Manitius, Roczniki Chem. 8 [1928], 578). — Glasige Krystalle (aus konz. Salzsäure). F: 136—137° (Mal., K.), 141—142° (v. d. Z.). — Reagiert bei gewöhnlicher Temperatur und am Licht nicht mit Brom in Chloroform (Mal., K.). Geht beim Erwärmen mit Acetanhydrid auf 60° in 4-Chlor-6-oxy-pyron-(2) (Syst. Nr. 2476) über (Mal., K.).

Liefert beim Erwärmen mit Thiosalicylsäure und konz. Schwefelsäure auf 40° die Verbindung nebenstehender Formel (Syst. Nr. 2745)

(Sm., H.).
b) Niedrigerschmelzende Form, trans-Form (?). Bildung s. bei der höherschmelzenden Form; vielleicht war auch das von Burton, v. Prchmann, B. 20 [1887], 147 (H 2, 760) erhaltene Präparat vom Schmelzpunkt 129° die (noch unreine?) niedrigerschmelzende Form. — F: 124° (Makulec, Malachowski, Manitius, Roczniki Chem. 8 [1928], 578) — Reggiert nicht mit Acetanhydrid.

578). — Reagiert nicht mit Acetanhydrid.

- β -Chlor-glutaconsäure-diäthylester $C_0H_{15}O_4Cl=C_2H_5\cdot O_2C\cdot CH_3\cdot CCl: CH\cdot CO_3\cdot C_2H_6$. B. Aus höherschmelzender β -Chlor-glutaconsäure beim Kochen mit Alkohol und konz. Schwefelsäure (Ingold, Nickolls, Soc. 121, 1643). Bewegliches Ol von stißem, fruchtartigem Geruch. Kp₁₁: 136—137°. Liefert mit Natriummalonester in Alkohol β -Dicarboxymethyl-glutaconsäure-tetrsäthylester; mit Natriumcyanessigester erhält man β -[Carboxyoyan-methyl]-glutaconsäure-triäthylester.
- 3-Chlor-propen-(1)-dicarbonsäure-(1.8), α-Chlor-glutaconsäure C₈H₈O₄Cl = HO₂C·CHCl·CH: CH·CO₂H ¹). B. Beim Kochen von α-Brom-α.γ-dicarboxy-glutaconsäure-tetraäthylester mit wäßrig-alkoholischer Salzsäure, Abdampfen und abermaligen Behandeln mit siedender konzentrierter Salzsäure (URUSHIBARA, Bl. chem. Soc. Japan 3, 202; C. 1928 II, 1870). Krystalle (aus Wasser). F: 155°. Leicht löslich in Wasser, Alkohol, Eisessig, Aceton

¹⁾ Vgl. auch Anm. 1 auf S. 648.

und Äther, schwer löslich in Benzol und Chloroform. — Wird durch alkalische Permanganat-Lösung oxydiert.

1-Brom-propen - dicarbonsäure - (1.8) - diäthylester, α (oder γ)-Brom-glutaconsäure-diäthylester oder Gemisch beider $C_0H_{12}O_4Br=C_2H_5\cdot O_3C\cdot CH:CH\cdot CHBr\cdot CO_2$ $C_2H_5\cdot O_3C\cdot CH_2\cdot CH:CBr\cdot CO_3\cdot C_2H_5^{-1}$. B. Bei Behandlung von α.β-Dibrom-glutarsäure-diäthylester mit nahezu siedendem Diäthylanilin (Farmer, Ingold, Soc. 119-2013). — Öl. Kp₁₀: 140—143°. — Liefert bei 20-stdg. Kochen mit 2 n-Soda-Lösung α-Oxoglutarsäure als Hauptprodukt sowie trans-Cyclopropan-dicarbonsäure-(1.2), Cyclopropen-(2)-dicarbonsäure-(1.2), Pyromellitsäure und andere Produkte. Gibt beim Eintragen in siedende 6n-methylalkoholische Kalilauge hauptsächlich α-Oxo-glutarsäure und Pyromellitsäure neben geringeren Mengen Bernsteinsäure, cis- und trans-Cyclopropan-dicarbonsäure-(1.2), Cyclopropen-(2)-dicarbonsäure-(1.2) und anderen Produkten.

2-Brom-propen-dicarbonsäure-(1.3), β-Brom-glutaconsäure C₅H₅O₄Br = HO₄C·CH₂·CBr: CH·CO₂H. B. Durch Einw. von 65%iger Bromwasserstoffsäure auf Propin-dicarbonsäure-(1.3) unter Kühlung (Makulec, Malachowski, Manitius, Roczniki Chem. 8, 580; C. 1929 I, 1328). — Nadeln (aus 35%iger Bromwasserstoffsäure). F: 143—144°. Leicht löslich in Wasser und Alkohol. — Liefert bei der Einw. von Acetanhydrid β-Brom-glutacon-

săure-anhydrid (Syst. Nr. 2476).

- 2-Chlor-1-brom-propen-(1)-dicarbonsäure-(1.3), β-Chlor-γ-brom-glutaconsäure C_H,O_LClBr = HO₂C·CH₂·CCl:CBr·CO₂H. B. Aus 4-Chlor-3-brom-6-oxy-pyron-(2) (Syst.-Nr. 2476) durch Hydrolyse mit Wasser oder besser mit konz. Salzsäure bei 70—80° (Malachowski, Kalinski, Roczniki Chem. 6, 769, 773; C. 1927 I, 2985). Krystalle (aus Benzol). F: 131—132°.
- 1.2 Dibrom propen (1) dicarbonsäure (1.3), $\beta.\gamma$ Dibrom glutaconsäure $C_5H_4O_4Br_2=HO_2C\cdot CH_2\cdot CBr\cdot CO_2H$. B. Aus Propin-dicarbonsäure-(1.3) und Brom in Eisessig (Makulec, Malachowski, Manitius, Roczniki Chem. 8, 577, 580, 581; C. 1929 I. 1328). Nadeln (aus 35 %iger Bromwasserstoffsäure). F: 132°. Leicht löslich in Wasser. Alkohol und Äther. Bei der Einwirkung von Brom im Rohr wird Bromwasserstoff entwickelt (Bildung von $\alpha.\beta.\gamma$ -Tribrom-glutaconsäure?). Liefert bei der Einw. von Acetanhydrid Dibromglutaconsäure-anhydrid (Syst. Nr. 2476). Silbersalz. Käsiger Niederschlag. Unlöslich in Wasser. Schwärzt sich beim Erwärmen. Quecksilbersalz. Unlöslich in Wasser.
- 1.2.3 Tribrom propen dicarbonsäure (1.3), $\alpha.\beta.\gamma$ Tribrom glutaconsäure $C_8H_8O_4Br_9=HO_2C\cdot CHBr\cdot CBr\cdot CBr\cdot CO_2H$. B. Durch Einw. von überschüssigem Brom in Eisessig auf Propin-dicarbonsäure-(1.3) im Rohr bei 100° (Makulec, Malachowski, Manitius. Roczniki Chem. 8, 581; C. 1929 I, 1328). Nadeln (aus 35% iger Bromwasserstoffsäure). F: 151°. [Gerisch]
- 2. Propen (2) dicarbonsaure (1.2), Methylenbernsteinsaure, Itaconsaure $C_1H_4O_4=HO_4C\cdot CH_2\cdot C(:CH_2)\cdot CO_2H$ (H 760; E I 308). Für die von Itaconsaure abgeleiten Namen wird in diesem Handbuch folgende Stellungsbezeichnung gebraucht:
- HO₃C·CH₃·C(: CH₃)·CO₃H. B. Aus Itabrombrenzweinsäure durch Einw. von Ammoniumsulfit in schwach ammoniakalischer Lösung, neben anderen Produkten (Backer, Buining, R. 46, 851). Das Kaliumsalz entsteht bei der Wasserdampfdestillation des aus dem Kaliumsalz der [Dimethylamino-methyl]-bernsteinsäure und Methyljodid erhaltenen Jodmethylats mit Kalilauge (Mannich, Ganz, B. 55, 3503). Daret. Durch rasche trockne Destillation von Citronensäure unter Vermeidung von Überhitzung und Kochen des entstandenen Itaconsäure-anhydrids mit Wasser (Shriner, Ford, Roll, Org. Synth. 11 [1931], 70; Wilson, Allen, Org. Synth. 13 [1933], 111). Verbrennungswärme bei konstantem Volumen: 475,3 kcal/Mol (Reyer in Landolt-Börnst. E I 873). Adsorption aus wäßr. Lösung an Platinschwarz: Platonow, X. 61, 1061; C. 1930 I, 348. Einfluß auf die Quellung von Gelatine in Wasser: Cooper, Eddan, Biochem. J. 20, 1066. Elektrolytische Dissoziationskonstante der 2. Stufe k, bei 18°: 2,9×10-6 (potentiometrisch bestimmt) (Larbson, Z. anorg. Ch. 140, 297). Beim Bestrahlen der wäßr. Lösung mit der Quecksilberdampflampe wird Kohlendioxyd abgespalten (Vollar, C. r. 181. 167). Die Oxydation mit Chromschwefelsäure verläuft quantitativ (Smon, C. r. 180, 674). Geschwindigkeit der Hydrierung mit Wasserstoff in Gegenwart von Platinschwarz in Alkohol bei 20°: Lebedew, Kobljanski, Jakubetschie, Soc. 127, 423; X. 56, 265; in Wasser: P.; der Hydrierung von binären Gemischen mit anderen ungesättigten Verbindungen in Alkohol: L., K., J., Soc. 127, 3K. 56, 289. Einw. von Bromwasser verschiedener Konzentration: Read, Reid,
 $[\text{Co}_3(\text{NH}_3)_{10}\text{C}_5\text{H}_4\text{O}_4](\text{NO}_3)_4$. B. Man behandelt Carbonatopentamminkobalt(III)-nitrat $[\text{Co}(\text{NH}_3)_5(\text{CO}_3)](\text{NO}_3) + \text{H}_4\text{O}$ mit verd. Salpetersäure bei 45°, neutralisiert mit 2n-Natronlauge und erwärmt mit 1 Mol itaconsaurem Natrium auf 45° (Duff, Soc. 123, 561, 568). Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D. Die wäßr. Lösung gibt mit Kaliumchromat einen fast unlöslichen braungelben Niederschlag. — $[\text{Co}_5(\text{NH}_3)_{10}\text{C}_5\text{H}_4\text{O}_4](\text{C}_5\text{H}_4\text{O}_4)(\text{NO}_3)_2$. B. Beim Erwärmen von Carbonatopentamminkobalt(III)-nitrat mit 1 Mol Itaconsäure in Wasser auf 60° (D., Soc. 123, 570). Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D. Gibt mit Kaliumchromat-Lösung einen gelben Niederschlag.

Diäthylester C₈H₁₄O₄ = C₂H₅·O₂C·CH₂·C(:CH₂)·CO₃·C₅H₅ (H 762; E I 308). B. Als Nebenprodukt bei der Behandlung von Citraconsäurediäthylester mit Malonester und Natriumäthylat-Lösung (Ingold, Shoppee, Thorpee, Soc. 1926, 1485). — Kp₂₆: 119—120° (I., Sh., Th., Soc. 1926, 1484); Kp₁₀: 106—108° (Stosius, Philippi, M. 45, 469). — Itaconsäurediäthylester gibt bei monatelangem Aufbewahren mit flüssigem Ammoniak im Rohr Pyrrolidon-(5)-carbonsäure-(3)-amid (St., Ph.). Bei Einw. von Natriumäthylat in Alkohol bei Zimmertemperatur entstehen Athoxymethyl-bernsteinsäure-diäthylester und Mesaconsäurediäthylester (I., Sh., Th., Soc. 1926, 1487). Liefert bei Einw. von Malonester in Gegenwart von Natriumäthylat in Alkohol bei 15° oder bei 80° oder bei Gegenwart von Natrium in siedendem Benzol Mesaconsäurediäthylester, Butan-tetracarbonsäure-(1.1.2.3)-tetraäthylester, Butan-tetracarbonsäure-(1.1.3.4)-tetraäthylester, Cyclopentanon-(3)-tricarbonsäure-(1.1.3.4)-tetraäthylester, Cyclopentanon-(3)-carbonsäure-(1.1.3.4)-tetraäthylester, Cyclopentanon-(3)-carbonsäure-(1.1.3.4)-tetraäthylester und andere Produkte; bei Gegenwart von Natrium in Ather an Stelle von alkoh. Natriumäthylat-Lösung erhöht sich die Ausbeute an Butan-tetracarbonsäure-(1.1.3.4)-tetraäthylester auf 65—75%, während Butan-tetracarbonsäure-(1.1.2.3)-tetraäthylester nicht isoliert werden konnte (I., Sh., Th., Soc. 1926, 1486; vgl. I., Sh., Soc. 1926, 1912). Beim Erhitzen mit Acetessigester und Natriumpulver in Äther entstehen dieselben Produkte wie aus Citraconsäurediäthylester (S. 653) (Mitter, Roy, J. indian chem. Soc. 5, 35, 37; C. 1928 I, 2394).

- **8-Brom-propen-(2)-dicarbonsäure-(1.2),** γ-Brom-itaconsäure $C_5H_5O_4Br = HO_2C \cdot CH_2 \cdot C(:CHBr) \cdot CO_2H$ (H 763). Das von Swarts (J. 1873, 584) beschriebene Präparat ist als β-Brom-paraconsäure $H_2C CBr \cdot CO_2H$ (Syst. Nr. 2619) erkannt worden (Carrière, A.ch. [9] 17, 95).
- 3. Propen-(1)-dicarbonsdure-(1.2), Mesaconsdure und Citraconsdure $C_5H_4O_4=HO_5C\cdot CH:C(CH_3)\cdot CO_2H$. Für die von Mesaconsdure bzw. Citraconsdure abgeleiteten Namen wird in diesem Handbuch folgende Stellungsbezeichnung gebraucht: $HO_5C\cdot CH:C(CH_5)\cdot CO_5H$.
- a) trans-Form, Methylfumarsäure, Mesaconsäure C₅H₆O₄ = H·C·C·C·C·H₈
 (H 763; E I 308). Zur Konfiguration vgl. a. Erbera, Henbei, C. r. 181, 549. V. In Kohlblättern (Buston, Schryver, Biochem. J. 17, 470; B., Biochem. J. 22, 1523). B. Aus dem Diamid durch Kochen mit Salzsäure (Stosius, Philippi, M. 45, 468). Bei der elektrolytischen Oxydation einer wäßr. Lösung von o-Toluolsulfonsäure an Platin- oder besser Blei(IV)-oxyd-Anoden, neben anderen Produkten (Fichter, Stocker, Helv. 7, 1076). Darst. Durch Eindampfen von Citraconsäureanhydrid oder Citraconsäure mit verd. Salpetersäure bis zum Beginn der Entwicklung roter Dämpfe (Sheiner, Ford, Roll, Org. Synth. 11 [1931], 74). Verbrennungswärme bei konstantem Volumen: 476,2 kcal/Mol (Reyer in Landolt-Börnst. E I 873). 100 g Olivenöl lösen bei 25° 0,06 g Mesaconsäure (Verrade, Söhngen, Versl. Akad. Ansterdam 28, 367; Zbl. Bakt. Parasitenk. [II] 50 [1920], 86; C. 1920 I, 630). Eiweißfällende Wirkung: Cooper, Eddar, Biochem. J. 20, 1065. Viscosität der Lösung in Alkohol bei 20°: Cauquil, C. r. 184, 1250. Adsorption an Kohle bei Zimmertemperatur aus wäßr. Lösung: Schilow, Nekrassow, Ph. Ch. 130, 70; Ж. 60, 110; aus alkoh. Lösungen: Griffin, Richardson, Robertson, Soc. 1928, 2708. Adsorption aus wäßr. Lösung an Platinschwarz: Platonow, Ж. 61, 1061; C. 1930 I, 348; an Gelatine: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1068. Einfluß a

Beim Bestrahlen der wäßr. Lösung mit Quecksilberdampflicht wird Kohlendioxyd abgespalten; die Zersetzung verläuft langsamer als bei Citraconsäure (Volmar, C. r. 181, 467).

Die Chromschwefelsäureoxydation verläuft nicht vollkommen quantitativ (SIMON, C. r. 180, 674). Geschwindigkeit der Hydrierung mit Wasserstoff und Platinschwarz in Wasser: Platonow, K. 61, 1061; C. 1930 I, 348; der Hydrierung der freien Säure mit Wasserstoff und Palladium-Bariumsulfat in Alkohol und des Natriumsalzes mit Wasserstoff und Palladium-Calciumcarbonat in Wasser: Paal, Schiedewitz, B. 60, 1224. Mesaconsäure und ihr Natriumsalz werden langsamer katalytisch reduziert als Citraconsäure und ihr Natriumsalz (P., Sch.). Bei der Einw. von Ammoniumsulfit auf das Ammoniumsalz in siedendem Wasser entsteht Propan-dicarbonsäure-(1.2)-sulfonsäure-(2) (Backer, Buining, R. 47, 111, 116). Geschwindigkeit der Addition von Natriumsulfit in währ. Lösung bei 80°: Hägglund, Ringbom, Z. anorg. Ch. 150, 246. — Hemmt die Stärkehydrolyse durch Speichel und beschleunigt die Proteinhydrolyse durch Pepsin (Cooper, Edgar, Biochem. J. 20, 1063). Wachstumshemmende Wirkung auf Bact. coli commune und andere Bakterien: C., E., Biochem. J. 20, 1062. Reduktion von Methylenblau durch Mesaconsäure in Gegenwart von Bact. coli: Quastel, Biochem. J. 20, 180. Einfluß des Ammoniumsalzes auf die Farbstoffbildung durch Bac. pyocyaneus: Goris, Liot, C. r. 172, 1623. Toxische Wirkung auf Paramäcien: Cheeseworth, Cooper, J. phys. Chem. 33, 723.

Mesaconsäure- α -methylester $G_6H_8O_4=CH_3\cdot O_4C\cdot CH:C(CH_3)\cdot CO_2H$ (H 765). Liefert bei 30-tägigem Aufbewahren mit flüssigem Ammoniak im Rohr Homoasparagin und wahrscheinlich Mesaconsäure- α -amid (Stosius, Ришири, M. 45, 467).

Mesaconsäuredimethylester, Dimethylmesaconat $C_7H_{10}O_4 = CH_3 \cdot O_2C \cdot CH$: $C(CH_2) \cdot CO_2 \cdot CH_3$ (H 765). Kp_{16} : 100^0 (korr.) (Sugden, Whittaker, Soc. 127, 1873). $D_1^{4.6}$: 1,1266 (v. Auwers, Harres, B. 62, 1686); D^{80} : 1,126; D^{80} : 1,115; D^{45} : 1,098; D^{45} : 1,076; D^{80} : 1,060 (S., Wh.). Viscosität bei 20° : Vorländer, Walter, Ph. Ch. 118, 15. Oberflächenspannung zwischen 20° (34,68 dyn/cm) und 80° (27,68 dyn/cm): S., Wh. Parachor: S., Wh. $(n_3^{4.4}$: 1,4544; $n_3^{4.4}$: 1,4579; $n_3^{4.4}$: 1,4669; $n_3^{4.4}$: 1,4747 (v. Au., H.).

Mesaconsäure - α - methylester - β-äthylester C₂H₁₂O₄ = CH₃·O₂C·CH:C(CH₃)·CO₂·C₂H₅ (H 766). D₁^{13,6}: 1,0821; n_α^{13,6}: 1,4503; n_β^{13,6}: 1,4622; n_γ^{13,6}: 1,4694 (v. Auwers, Harres, B. 62, 1686).

Mesaconsäure - β - methylester - α-äthylester $C_8H_{12}O_4 = C_2H_5 \cdot O_2C \cdot CH \cdot C(CH_2) \cdot CO_2 \cdot CH_3$ (H 766). $D_4^{in_3}$: 1,0851; $n_{\alpha}^{in_3}$: 1,4516; $n_{\beta}^{in_3}$: 1,4547; $n_{\beta}^{in_3}$: 1,4635; $n_{\gamma}^{in_3}$: 1,4709 (v. Auwers, Harres, B. 62, 1686).

Mesaconsäurediäthylester, Diäthylmesaconat $C_9H_{14}O_4=C_9H_5\cdot O_2C\cdot CH:C(CH_3)\cdot CO_3\cdot C_2H_5$ (H 766; E I 309). B. Durch Einw. von alkoh. Natriumäthylat-Lösung auf Itaconsäurediäthylester bei Zimmertemperatur, neben 3-Athoxy-propan-dicarbonsäure-(1.2)-diäthylester (Ingold, Shopper, Thorfe, Soc. 1926, 1487). Neben anderen Produkten bei der Behandlung von Itacon- oder Citraconsäurediäthylester mit Malonester und Natrium in Alkohol oder Äther unter verschiedenen Bedingungen (I., Sh., Th., Soc. 1926, 1485). — Dia:: 1,0516; $n_{\alpha}^{\text{M-7}}$: 1,4481; $n_{\alpha}^{\text{h-7}}$: 1,4513; $n_{\beta}^{\text{h-7}}$: 1,4596; $n_{\gamma}^{\text{M-8}}$: 1,4666 (v. Auwers, Harres, B. 62, 1686). — Liefert bei 21-tägigem Aufbewahren mit flüssigem Ammoniak im Rohr Mesaconsäurediamid (Stosius, Philippi, M. 45, 468). Gibt bei 2-tägigem Erhitzen mit bei 0° gesättigtem alkoholischem Ammoniak im Rohr auf 100° Homoasparaginsäurediäthylester und geringere Mengen Homoasparaginsäureimid (Syst. Nr. 3427) (St., Ph.).

Mesaconsäure - β-methylester - α-chlorid $C_6H_7O_3Cl = ClOC \cdot CH : C(CH_3) \cdot CO_2 \cdot CH_3$ (H 767). $D_4^{u,7}: 1,2368; n_{\alpha}^{u,7}: 1,4737; n_{\beta}^{u,7}: 1,4778; n_{\beta}^{u,7}: 1,4884; n_{\gamma}^{u,7}: 1,4977$ (v. Auwers, Harres, B. 62, 1686).

Mesaconsāure-α-āthylester-β-chlorid $C_7H_9O_3Cl-C_2H_5\cdot O_2C\cdot CH:C(CH_3)\cdot COCl$ (H767). $D_4^{ta,ss}: 1,1777; n_α^{ta,ss}: 1,4696; n_b^{ta,ss}: 1,4733; n_β^{ta,ss}: 1,4831; n_Y^{ta,ss}: 1,4918$ (v. Auwers, Harres, B. 62, 1686).

Mesaconsäure - β - äthylester - α - chlorid $C_7H_9O_3Cl = CloC \cdot CH : C(CH_3) \cdot CO_2 \cdot C_2H_5$ (H 767). $D_3^{i_1,i_2}: 1,1823; n_{\alpha}^{i_2,i_3}: 1,4713; n_{D}^{i_2,i_3}: 1,4752; n_{\beta}^{i_2,i_3}: 1,4856; n_{\gamma}^{i_2,i_3}: 1,4950$ (v. Auwers, Harres, B. 62, 1686).

Mesaconsäuredichlorid , Mesaconylchlorid $C_5H_4O_3Cl_2=ClOC\cdot CH:C(CH_2)\cdot COCl$ (H 767). Liefert bei Einw. von p-Anisidin in Petroläther Citraconsäure-mono-p-anisidid und eine bei 235° schmelzende krystalline Substanz (Piutti, G. 40 I, 535).

Mesaconsäure - α - amid, Mesacon- α -amidsäure $C_3H_7O_3N=H_3N\cdot CO\cdot CH: C(CH_3)\cdot CO_3H$ (H 767). B. Entsteht wahrscheinlich neben anderen Produkten bei 30-tägigem Aufbewahren von Mesaconsäure- α -methylester mit flüssigem Ammoniak im Rohr (Stosius, Philippi, M. 45, 467).

b) cis-Form, Methylmaleinsäure, Citraconsäure $C_5H_6O_4 = H_6C_0$ (H 768; E I 309). Zur Konfiguration vgl. a. Errera, Henri, C. r. 181, 549. — B. Bei der Einw. von Barytwasser auf 2.5-Dioxo-4-methyl-pyrrolin-carbonsäure-(3)-äthylester (Küster,

H. 131, 144). — Darstellung durch Behandeln von Citraconsäureanhydrid mit Wasser: Shriner, Ford, Roll, Org. Synth. 11 [1931], 28. — F: 92—93° (Sh., F., R.). Verbrennungswärme bei konstantem Volumen: 479,1 kcal/Mol (Reyer in Landolt-Börnst. E I 873). Bei 25° lösen 100 g Wasser 360 g und 100 g Olivenöl etwa 0,4 g Citraconsäure (Verkade, Söhngen, Versl. Akad. Amsterdam 28, 367; Zbl. Bakt. Parasitenk. [II] 50 [1920], 86; C. 1920 I, 630). Verteilung zwischen Wasser und Olivenöl bei 25° V., S. Eiweißfällende Wirkung: Cooper, Edgar, Biochem. J. 20, 1065. Viscosität einer Lösung in Alkohol bei 20°: Cauquil, C. τ. 184, 1250. Adsorption aus wäßr. Lösung an Kohle bei Zimmertemperatur: Schilow, Nekrassow, Ph. Ch. 130, 70; Ж. 60, 110; an Platinsohwarz: Platonow, Ж. 61, 1061; C. 1930 I, 348; an Gelatine: C., E., Biochem. J. 20, 1068. Einfluß auf die Quellung von Gelatine durch Wasser: C., E., Biochem. J. 20, 1066, 1067. Extinktion wäßr. Lösungen zwischen 360 und 220 mμ: Dahm, J. opt. Soc. Am. 15, 269; C. 1928 I, 1682. Elektrolytische Dissoziationskonstante der 2. Stufe ka bei 18°: 0,68×10-6 (potentiometrisch bestimmt) (Larsson, Z. anorg. Ch. 140, 297). Potentiometrische Titration mit Natronlauge: Klit, Ph. Ch. 131, 69.

Beim Bestrahlen der wäßr. Lösung mit Quecksilberdampflicht wird Kohlendioxyd abgespalten; die Zersetzung verläuft schneller als bei Mesaconsäure (Volmar, C. r. 181, 467). Wird in schwefelsaurer Lösung durch Chromtrioxyd nur teilweise, durch Silberdichromat fast quantitativ oxydiert (Simon, C. r. 180, 674). Geschwindigkeit der Hydrierung mit Wasserstoff und Platinschwarz in Wasser: Platonow, K. 61, 1061; C. 1930 I, 348; der Hydrierung der freien Säure mit Wasserstoff und Palladium-Bariumsulfat in Alkohol und des Natriumsalzes mit Wasserstoff und Palladium-Calciumcarbonat in Wasser: Paal, Schiedewitz, B. 60, 1224. Citraconsäure und ihr Natriumsalz werden schneller hydriert als Mesaconsäure und ihr Natriumsalz (P., Sch.). Gibt mit ammoniakalischer Ammoniumsulfit-Lösung bei gewöhnlicher Temperatur Propan-dicarbonsäure-(1.2)-sulfonsäure-(2) (Backer, Buining, R. 47, 115). Geschwindigkeit der Addition von Natriumsulfit in wäßr. Lösung bei 80°: Hägglund, Ringbom, Z. anorg. Ch. 150, 245. — Hemmt die Stärkehydrolyse durch Speichel und beschleunigt die Proteinhydrolyse durch Pepsin (Cooper, Edgar, Biochem. J. 20, 1063). Wachstumshemmende Wirkung auf Bact. coli commune und andere Bakterien: C., E., Biochem. J. 20, 1062. Reduktion von Methylenblau durch Citraconsäure in Gegenwart von Bact. coli: Quastel, Biochem. J. 20, 180. Einfluß des Ammoniumsalzes auf die Farbstoffbildung durch Bac. pyooyaneus: Goris, Liot, C. r. 172, 1623. Toxische Wirkung auf Paramäcien: Cheeseworth, Cooper, J. phys. Chem. 33, 723.

NH₄C₂H₅O₄. F: 139—140° (Anschütz, A. 461, 165). — (NH₄)₂ C₅H₄O₄. Krystalle (aus Wasser). F: ca. 152° (Migliacci, Furia, G. 58, 107). — $[\text{Co}_2(\text{NH}_3)_{10}\text{C}_5\text{H}_4\text{O}_4](\text{NO}_3)_4$. B. Man behandelt Carbonatopentamminkobalt(III)-nitrat $[\text{Co}(\text{NH}_3)_5(\text{CO}_3)](\text{NO}_3) + \text{H}_2\text{O}$ mit verd. Salpetersäure bei 45°, neutralisiert mit 2 n-Natronlauge und erwärmt mit 1 Mol citraconsaurem Natrium auf 45° (Duff, Soc. 123, 568). Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D. Die wäßr. Lösung gibt mit Kaliumchromat einen braungelben Niederschlag. — $[\text{Co}_2(\text{NH}_3)_{10}\text{C}_5\text{H}_4\text{O}_4](\text{C}_5\text{H}_4\text{O}_4)(\text{NO}_3)_2$. B. Beim Erwärmen von Carbonatopentamminkobalt(III)-nitrat mit 1 Mol Citraconsäure in Wasser auf 60° (D., Soc. 123, 570). Schwer löslich in kaltem Wasser. Elektrische Leitfähigkeit in Wasser bei 25°: D. Gibt mit Kaliumchromat-Lösung einen gelben Niederschlag.

Citraconsäuredimethylester $C_7H_{10}O_4=CH_2\cdot O_2C\cdot CH:C(CH_2)\cdot CO_2\cdot CH_3$ (H 770; E I 309). Kp_{1e}: 103,5° (korr.) (Sugden, Whittaker, Soc. 127, 1873). $D_1^{t.4}:1,1097$; $D_2^{t.5}:1,1088$ (v. Auwers, Harres, B. 62, 1686); $D_2^{t.6}:1,113$; $D_2^{t.6}:1,101$; $D_2^{t.6}:1,091$; $D_2^{t.6}:1,081$; $D_2^{t.6}:1,070$; $D_2^{t.6}:1,056$ (S.,Wh.). Oberflächenspannung zwischen 20° (35,69 dyn/cm) und 79° (28,2 dyn/cm): S., Wh. $n_{\alpha}^{t.6}:1,4439$; $n_{H_0}^{t.6}:1,4471$; $n_{H_0}^{t.6}:1,4548$; $n_{\gamma}^{t.6}:1,4616$ (v. Au., H.). — Citraconsäuredimethylester liefert bei 12-tägigem Aufbewahren mit flüssigem Ammoniak im Rohr Homoasparaginsäuredimid neben Homoasparaginsäureimid (Syst. Nr. 3427) (Stosius, Philippi, M. 45, 465). Gibt mit Diazomethan in Ather 3-Methyl- \mathcal{A}^1 -pyrazolin-dicarbonsäure-(3.4)-dimethylester (Syst. Nr. 3666) und geringere Mengen 4-Methyl- \mathcal{A}^1 -pyrazolin-dicarbonsäure-(3.4)-dimethylester und 1-Methyl-cyclopropan-dicarbonsäure-(1.2)-dimethylester (v. Auwers, Cauer, A. 470, 304).

15° oder bei 80° oder bei Gegenwart von Natrium in siedendem Benzol Itaconsäurediäthylester, Mesaconsäurediäthylester, Butan-tetracarbonsäure-(1.1.2.3)-tetraäthylester, Butan-tetracarbonsäure-(1.1.3.4)-tetraäthylester, Cyclopentanon-(3)-tricarbonsäure-(1.2.4)-triäthylester, Cyclopentanon-(1)-dicarbonsäure-(2.3 oder 2.4)-diåthylester, Cyclopentanon-(3)-carbonsäure-(1)-äthylester, [2.3(oder 2.4)-Dicarbäthoxy-oyclopenten-(1)-yl-(1)]-malonsäurediäthylester bei Gegenwart von Natrium in Äther an Stelle von alkoholischer Natriumäthylat-Lösung erhöht sich die Ausbeute an Butan-tetracarbonsäure-(1.1.2.3)-tetraäthylester auf 80%, während Butan-tetracarbonsäure-(1.1.3.4)-tetraäthylester nicht isoliert werden konnte (I., Sh., Th., Soc. 1926, 1486). Behandlung der aus Citraconsäurediäthylester mit Malonester und Natrium in Alkohol erhaltenen Natriumverbindungen mit Salzsäure und Ather liefert 1-[β.γ-Dicarbäthoxy-propyl]-cyclopentanon-(2)-tricarbonsäure-(1.3.4)-triäthylester (Formel I)

$$I. \xrightarrow{C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot C(CO_2 \cdot C_2H_5) \cdot CO} CH \cdot CO_2 \cdot C_2H_5} CCH \cdot CO_2 \cdot C_2H_5$$

und $1-[\alpha.\beta-\text{Dicarbäthoxy-propyl}]$ -cyclopentanon-(2)-tricarbonsäure-(1.3.4)-triäthylester (Formel II) (I., Sh., Soc. 1926, 1916). Beim Erhitzen von Citraconsäurediäthylester mit Butantetracarbonsäure-(1.1.3.4.)-tetraäthylester in Gegenwart von alkoh. Natriumäthylat-Lösung entsteht der Ester der Formel I, beim Erhitzen mit Butan-tetracarbonsäure-(1.1.2.3)-tetraäthylester in Gegenwart von alkoh. Natriumäthylat-Lösung der Ester der Formel II (I., Sh.).

$$II. \xrightarrow{C_2H_5 \cdot O_2C \cdot CH(CH_3) \cdot CH(CO_5C_2H_5) \cdot C(CO_2 \cdot C_2H_5) \cdot CO} CH \cdot CO_2 \cdot C_2H_5$$

Citraconsäurediäthylester gibt mit Cyanessigester in siedender alkoholischer Natriumäthylat-Lösung 4-Cyan-butan-tricarbonsäure-(1.2.4)-diäthylester (1.2.4) diäthylester-(1.2.1) triäthylester und 4-Cyan-butan-tricarbonsäure-(1.2.4)-diäthylester-(1.2.1) (MITTER, ROY, J. indian chem. Soc. 5, 41, 47; C. 1928 I, 2395), bei Gegenwart von Natrium in siedendem Benzol 2-Methyl-1-cyan-propan-tricarbonsäure-(1.2.3)-triäthylester (M., R.). Mit der äquimolekularen Menge Acetessigester in Gegenwart von trockenem Natriumäthylat bei ca. 130° entstehen 4-Oxo-2-methyl-pentan-tricarbonsäure-(1.2.3)-triäthylester und 1-Methyl-cyclohexandion-(3.5)-dicarbonsäure-(1.2)-diäthylester (M., R., J. indian chem. Soc. 5, 34, 43; C. 1928 I, 2395); dieselben Produkte bilden sich beim Erhitzen mit Natrium in Alkohol entstehen dagegen 5-Oxo-hexan-tricarbonsäure-(1.2.4)-triäthylester und Cyclohexandion-(4.6)-carbonsäure-(1)-essigsäure-(3)-diäthylester (M., R.).

Citraconsäure - α - amid, Citracon- α -amidsäure $C_5H_7O_3N=H_2N\cdot CO\cdot CH:C(CH_3)\cdot CO_2H$. Zur Konstitution vgl. Anschütz, A. 461, 163. — B. Das Ammoniumsalz entsteht aus Citraconsäureanhydrid bei Einw. von Ammoniak in Benzol, Äther oder Toluol (A., A. 461, 165). — Nadeln. F: 125°. — Geschwindigkeit des Übergangs in das saure Ammoniumsalz der Citraconsäure beim Behandeln mit Wasser: A: — $NH_4C_5H_6O_3N$. F: 135—136°. — $AgC_5H_6O_3N$.

Citraconsäure - β -methylester - α -amid $C_0H_0O_3N=H_2N\cdot CO\cdot CH: C(CH_2)\cdot CO_3\cdot CH_3$. B. Aus dem Silbersalz der Citracon- α -amidsäure und Methyljodid (Anschütz, A. 461, 166). — Nadeln oder Prismen (aus Äther). F: 84—85°.

- α -Brom-citraconsäure $C_bH_bO_4Br=HO_2C\cdot CBr: C(CH_3)\cdot CO_2H$ (H 771). B. Das Ammoniumsalz entsteht aus dem Ammoniumsalz des Monoamids beim Behandeln mit Wasser (Anschütz, A. 461, 180).
- α-Brom-citraconsäure-monoamid $C_5H_4O_3NBr=H_2N\cdot CO\cdot CBr: C(CH_3)\cdot CO_2H$ oder $HO_2C\cdot CBr: C(CH_3)\cdot CO\cdot NH_2$. B. Das Ammoniumsalz entsteht beim Einleiten von Ammonisk in eine Lösung von α-Brom-citraconsäure-anhydrid in Chloroform bei 0° (ΑΝΣCHÜTZ, A. 461, 180). Beim Behandeln des Ammoniumsalzes mit Wasser bildet sich das Ammoniumsalz der α-Brom-citraconsäure. $NH_4C_5H_5O_3NBr$. Zersetzt sich von 24° an und ist bei 27—29° geschmolzen. $AgC_5H_5O_3NBr$. Nicht rein erhalten.
- 4. Propen-(1)-dicarbonsäure-(1.1), Äthylidenmalonsäure $C_5H_9O_4=CH_3$ · $CH:C(CO_3H)_3$ (vgl. H 772). B. Beim Behandeln von Malonsäure mit Acetaldehyd in Pyridin + Piperidin bei —5° (Vogel, Soc. 1927, 1989). Blaßgelb. F: 82°.

Åthylidenmalonsäure-diäthylester, Äthylidenmalonester $C_pH_{14}O_4 = CH_2 \cdot CH : C(CO_3 \cdot C_2H_3)_3$ (H 773; E I 310). B. Die bei der Kondensation von Malonsäurediäthylester mit

Acetaldehyd in Gegenwart von Essigsäureanhydrid (Goss, Ingold, Thorpe, Soc. 123, 3353), Natriumathylat oder Piperidin (Higginbotham, Lapworth, Soc. 128, 1622) bzw. mit Athylidenbromid und Natrium in Alkohol (LOEVENICH, LOSEN, DIERICHS, B. 60, 957) entstehenden Präparate enthalten wahrscheinlich auch nach der Reinigung durch fraktionierte Destillation im Vakuum noch beträchtliche Mengen Malonsäurediäthylester (Vogel, Soc. 1927, 1989); dementsprechend sind die in H 773 und E I 310 aufgeführten Präparate als unrein anzusehen (vgl. V.). In reiner Form ist Äthylidenmalonsäurediäthylester durch Verestern der freien Säure mit Alkohol und Schwefelsäure erhältlich (V., Soc. 1927, 1990). — Kpls: 1150 bis 117° (V.). Dita: 1,0194; note: 1,4308 (V.). — Geht bei der Hydrierung mit Wasserstoff bei Gegenwart von kolloidalem Palladium in verd. Alkohol in Athylmalonsäurediäthylester über (Hr., La., Soc. 123, 1622). Bei der Reduktion mit Aluminiumamalgam in feuchtem Äther entsteht 2.3-Dimethyl-butan-tetracarbonsaure-(1.1.4.4)-tetraathylester (Gemisch von 2 Stereoisomeren) (V., Soc. 1927, 1990), der sich neben anderen Produkten auch bei der Reduktion mit Natriumamalgam unter Zusatz von Essigsäure oder Natriumdicarbonat bildet (Hi., La., Soc. 123, 1623). Liefert bei der Kondensation mit Benzaldehyd in Gegenwart von konz. Schwefelsäure und nachfolgendem Verseifen des nicht näher beschriebenen Esters mit Natronlauge Cinnamylidenmalonsäure; reagiert analog mit Anisaldehyd und Piperonal (HI., La., Soc. 121, 2827, 2829). Bei tropfenweiser Zugabe von Kalilauge zu einem Gemisch von a-Anilino-phenylacetonitril und Athylidenmalonsäurediäthylester in kaltem Alkohol erhält man neben geringen Mengen anderer Produkte die Kaliumverbindung des [β -Anilino- β -phenyl- β cyan-isopropyl]-malonsaurediathylesters (Syst. Nr. 1908) und ein Filtrat, aus dem sich nach längerem Erhitzen 3-Methyl-1.2-diphenyl-2-cyan-pyrrolidon-(5)-carbonsaure-(4) gewinnen läßt (HI., La., Simpson, Soc. 125, 2340). Athylidenmalonsaurediathylester addiert Phenylhydrazin unter Bildung von [α-Phenylhydrazino-āthyl]-malonsāure-diāthylester (STEVENS, WARD, Soc. 125, 1329).

Äthylidenmalonsäure-äthylester-amid, α -Aminoformyl-crotonsäure-äthylester $C_7H_{11}O_3N=CH_3\cdot CH:C(CO_3\cdot C_2H_3)\cdot CO\cdot NH_3$. B. Aus Malonsäure-äthylester-amid und Acetaldehyd bei Gegenwart von Diäthylamin (Gupta, Soc. 119, 303). — Krystalle. F: 78°. Sehr leicht löslich in Wasser und Alkohol. — Addiert Malonsäure-äthylester-amid unter Bildung von β -Methyl- α . α '-dicarbāthoxy-glutarsäure-diamid (S. 704).

Äthylidenmalonsäure-mononitril, α -Cyan-crotonsäure, Äthylidencyanessigsäure $C_5H_5O_2N=CH_2\cdot CH:C(CN)\cdot CO_2H$ (H 773). Enthält vielleicht eine Beimengung von Vinylcyanessigsäure $CH_2:CH\cdot CH(CN)\cdot CO_2H$ (vgl. v. Auwers, B. 56, 1179). — B. Aus Acetaldehyd und Cyanessigsäure in Gegenwart von Piperidin bei 70° (v. Au., B. 56, 1181). — Blättehen (aus Benzol). F: 80°.

Äthylester $C_7H_9O_9N=CH_9\cdot CH:C(CN)\cdot CO_9\cdot C_2H_8$. Reinheit fraglich. B. Durch Veresterung der Säure mit Alkohol und konz. Schwefelsäure bei 110° (v. Auwers, B. 56, 1182). — Öl. $Kp_{20}:112^{\circ}$. $D_{4}^{i.a.}:1,0255;\ n_{1}^{c.a.}:1,4499;\ n_{1}^{u.a.}:1,4530;\ n_{1}^{i.a.}:1,4617;\ n_{1}^{v.a.}:1,4689.$

Äthylidenmalonsäure-dinitril, Äthylidenmalonitril C₅H₄N₂ = CH₂·CH·C(CN)₄.

B. Aus Malonitril und Acetaldehyd bei Gegenwart von Piperidin in Wasser (Östling, Öf. Fs.

57, Nr. 11, S. 8, 13; C. 1921 I, 613). Konnte von Diels, Gärtner, Kaack (B. 55, 3440, 3445) aus Malonitril und Acetaldehyd bei Gegenwart von Piperidin in Alkohol nicht erhalten werden.

Krystalle (aus Alkohol). F: 77—78° (O.).

3. Dicarbonsăuren $C_6H_8O_4$.

- 1. Buten-(1)-dicarbonsaure-(1.4), Δ^{α} -Dihydromuconsaure $C_0H_0O_4=HO_2C\cdot CH_2\cdot CH_2\cdot CH:CH\cdot CO_4H$.
- a) Höherschmelzende-Form. B. Durch Behandeln von β -Formyl-propionsäure mit Malonsäure in Gegenwart von Pyridin und nachfolgendes Erwärmen auf dem Wasserbad (CARRIÈRE, A. ch. [9] 17, 111). Krystallpulver (aus Wasser). F: 208—210°. Entfärbt Kaliumpermanganat-Lösung. Addiert Brom.
- b) Niedrigerschmelzende Form (H 773). B. Zur Bildung durch Erhitzen von Δβ-Dihydromuconsäure mit Natronlauge nach Kupe (A. 256 [1890], 14) vgl. Farmer, Soc. 128, 3326. Neben anderen Produkten in geringer Ausbeute beim Kochen von α-Brom- oder α-Jodadipinsäure-diäthylester mit methylalkoholischer Kalilauge (Ingold, Soc. 119, 954, 965). Krystalle. F: 169° (I.).

Dimethylester $C_9H_{19}O_4=CH_3\cdot O_2C\cdot CH_2\cdot CH_3\cdot CH:CH\cdot CO_3\cdot CH_3$ (H 773). F: 86° (Ingold, Soc. 119, 965).

656

- o) Derivate, von denen unbekannt ist, zu welcher der beiden Formen der Δ^{a} -Dihydromuconsäure sie gehören.
- α.α'.β'- Trichlor Λ^{α} dihydromuconsäure dimethylester $C_8H_8O_4Cl_3 = CH_2 \cdot O_2C \cdot CHCl \cdot CH: CCl \cdot CO_2 \cdot CH_3$. B. Durch aufeinanderfolgende Behandlung von Schleimsäure mit Phosphorpentachlorid bei ca. 130° und mit Methanol unter Kühlung, neben anderen Produkten (Farmer, Soc. 123, 2545). Blaßgelbes Öl, das bis —25° nicht erstarrt. Kp₁₃: 162—163°. Liefert beim Kochen mit überschüssigem Pyridin oder beim Schütteln mit Ammoniak die trans-trans- und cis-cis-Form des α.α'-Dichlor-muconsäure-dimethylesters.
- $\alpha.\alpha'.\beta'$ Trichlor Δ^{α} dihydromuconsäure diäthylester $C_{10}H_{18}O_4Cl_8 = C_2H_5 \cdot O_2C \cdot CHCl \cdot CH: CCl \cdot CO_3 \cdot C_2H_5$. B. Durch aufeinanderfolgende Behandung von Schleimsäure mit Phosphorpentachlorid bei ca. 130° und mit Alkohol unter Kühlung, neben anderen Produkten (Farmer, Soc. 123, 2546). Blaßgelbes Öl. Kp₁₅: 163—165°. Liefert beim Kochen mit überschüssigem Pyridin oder beim Schütteln mit Ammoniak die trans-trans- und cis-cis-Form des $\alpha.\alpha'$ -Dichlor-muconsäure-diäthylesters.
- β'-Chlor-α'-brom- Δ^{α} -dihydromuconsäure-dimethylester $C_8H_{10}O_4ClBr = CH_3 \cdot O_2C \cdot CHBr \cdot CHCl \cdot CH \cdot CO_2 \cdot CH_2^1$). B. Beim Erhitzen von α'-Brom-β'-oxy- Δ^{α} -dihydromuconsäure mit Phosphorpentachlorid und Zersetzen des Reaktionsproduktes mit Methanol (Chandrasena, Ingold, Soc. 121, 1318). Prismen (aus Petroläther). F: 41—43°.
- α',β' Dibrom- Δ^{α} -dihydromuconsäure-dimethylester, Muconsäuredibromiddimethylester $C_8H_{10}O_4Br_3=CH_3\cdot O_3C\cdot CHBr\cdot CH:CH\cdot CO_3\cdot CH_3$.

 a) Höherschmelzende Form. B. Entsteht neben der niedrigerschmelzenden Form
- a) Höherschmelzende Form. B. Entsteht neben der niedrigerschmelzenden Form (s. u.) im Verhältnis 12:1 durch Einw. von 1 Mol Brom auf trans-trans-Muconsäuredimethylester in Chloroform im Sonnenlicht (Farmer, Duffin, Soc. 1927, 407). Prismen (aus Alkohol oder Petroläther). F:104—105°. In Alkohol und Petroläther schwerer löslich als die niedrigerschmelzende Form. Liefert bei der Behandlung mit Diäthylamin in Äther die cis-cis- und cis-trans-Form des α-Brom-muconsäure-dimethylesters im Verhältnis 9:1; dieselben Produkte entstehen bei der Einw. von überschüssigem heißem Pyridin oder der berechneten Menge kalter Natriummethylat-Lösung.
- b) Niedrigerschmelzende Form. Bildung s. o. bei der höherschmelzenden Form. Pulver. F: 50° (Farmer, Duffin, Soc. 1927, 407). In Alkohol und Petroläther leichter löslich als die höherschmelzende Form. Liefert bei der Behandlung mit Diäthylamin in Äther, mit überschüssigem heißem Pyridin oder mit der berechneten Menge kalter alkoholischer Natriummethylat-Lösung trans-trans-α-Brom-muconsäure-dimethylester.
- $\alpha'.\beta'$ Dibrom Δ^{α} dihydromuconsäure diäthylester, Muconsäuredibromid-diäthylester $C_{10}H_{14}O_4Br_5 = C_2H_5 \cdot O_5C \cdot CHBr \cdot CHBr \cdot CH : CH \cdot CO_2 \cdot C_2H_5$ (vgl. H 775). Geht bei der Oxydation mit Kaliumpermanganat in Gegenwart von Magnesiumsulfat in Alkohol in $\alpha.'\beta'$ -Dibrom- $\alpha.\beta$ -dioxy-adipinsäure-diäthylester über (Chandrasena, Ingold, Soc. 121, 1316). Bei vollständiger Oxydation mit Permanganat in wäßr. Aceton bei 50° und nachfolgendem Verseifen erhält man Brommaleinsäure und Oxalsäure. Gibt beim Kochen mit 2n-Natronlauge die cis-trans-Form der α -Brom-muconsäure. Beim Kochen mit 1,5n- bis 8,5n-methylalkoholischer Kalilauge entstehen wechselnde Mengen von trans-trans-Muconsäure, α' -Brom- β' -oxy- Δ^{α} -dihydro-muconsäure, 4-Brom-3.6-dioxy-octadien-(1.7)-tetracarbonsäure-(1.4.5.8) und 3.6-Dioxy-octatrien-(1.4.7)-tetracarbonsäure-(1.4.5.8).
- 2. Buten (2) dicarbonsāure (1.4), Δ^{β} Dihydromuconsāure $C_{4}H_{3}O_{4}=HO_{4}C\cdot CH_{1}\cdot CH\cdot CH_{2}\cdot CO_{3}H$ (H 774). Als solche wird von Farmer (Soc. 123, 3331) die von Leuchs, Möbis (B. 42 [1909], 1230, 1233) als Lacton der β -Oxy-adipinsäure beschriebene Verbindung (H 18, 371) aufgefaßt. B. Aus dem Diäthylester durch Verseifung mit verd. Schwefelsäure (Farmer, Duffin, Soc. 1927, 409). Zur Bildung aus α -Dichlormuconsäure (H 2, 804) und Natriumamalgam nach Rupe (A. 256 [1890], 9) vgl. Kuhn, Winterstein, Helv. 11, 94, 112. Zur Bildung beim Behandeln von trans-trans-Muconsäure mit Natriumamalgam nach Rupe (A. 256, 26) vgl. Farmer, Soc. 123, 2541. Zur Reinigung vgl. Meresh-kowski, Bl. [4] 37, 1186. F: 197° (F., D., Soc. 1927, 409). Zur Überführung in Δ^{α} -Dihydromuconsäure durch Erhitzen mit Natronlauge nach Rupe (A. 256 [1890], 14) vgl. F., Soc. 123, 3326. Bei der Destillation entsteht β -Äthyl-acrylsäure; die Destillation des Calciumsalzes ergibt geringe Mengen Cyclopenten-(1)-on-(3), Butadien-(1.3) und Kohlenoxyd (M.)-Liefert beim Sättigen der Lösung in Eisessig mit Chlor Chlordihydromuconsäure (S. 657), und geringe Mengen β - β '-Dichlor-adipinsäure (F., Soc. 123, 2540).

Dimethylester $C_8H_{12}O_4=CH_3\cdot O_3C\cdot CH_2\cdot CH\cdot CH\cdot CH_2\cdot CO_3\cdot CH_3$ (H 774). B. Durch Behandeln des höherschmelzenden und des niedrigerschmelzenden $\beta.\beta$ -Dibrom-adipinsaure-dimethylesters mit Zinkstaub in Aceton (Farmer, Duffin, Soc. 1927, 410). Aus β -Dihydromuconsaure durch Behandlung mit Methanol und Schwefelsaure (F., Soc. 123, 2541). Durch Reduktion von trans-trans- und cis-cis-Muconsauredimethylester mit Zinkstaub und Eisessig

¹⁾ Die Angaben des Originals über Bruttoformel und Analyse beruhen wohl auf einem Versehen.

657

(F., Soc. 123, 2541; F., D., Soc. 1927, 410). Durch Reduktion von trans-trans- und cis-cis- $\alpha.\alpha'$ -Dichlor-muconsäure-dimethylester mit Zinkstaub und Eisessig (F.). Durch Erhitzen von trans- trans- und cis-trans- α -Brom-muconsäure-dimethylester mit überschüssigem Zinkstaub und Eisessig (F., D., Soc. 1927, 409). — Prismen (aus Petroläther). F: 16° (F., D.). Kp₁₄: 125° (F.). — Gibt bei Einw. von überschüssigem Brom in kaltem Tetrachlorkohlenstoff höherschmelzenden und niedrigerschmelzenden $\beta.\beta'$ -Dibrom-adipinsäure-dimethylester (F., Soc. 123, 2541). Bei der Einw. von Natriummethylat-Lösung entsteht β -Methoxy-adipinsäure-dimethylester (F., Soc. 123, 3327, 3330, 3331).

Diāthylester $C_{10}H_{16}O_4=C_4H_5\cdot O_2C\cdot CH_2\cdot CH\cdot CH_2\cdot CO_2\cdot C_2H_5$ (H 774). B. Aus $_{1}$ β-Dihydromuconsāure durch Behandlung mit Alkohol und Schwefelsäure (Farmer, Soc. 123, 2541). Durch Reduktion von trans-trans-Muconsäurediāthylester mit Zinkstaub und Eisessig auf dem Wasserbad (F.) oder mit amalgamiertem Aluminium in feuchtem Ather (Evans, F., Soc. 1928, 1646). Durch Reduktion von trans-trans- und cis-cis-α.α'-Dichlormuconsäure-diāthylester mit Zinkstaub und Eisessig (F., Soc. 123, 2541; F., Duffin, Soc. 1927, 410) und von trans-trans-, cis-cis- und cis-trans-α.α'-Dibrom-muconsäure-diāthylester mit Zinkstaub und Essigsäure (F., D., Soc. 1927, 409). — Prismen (aus Petroläther). F: ca. 2° (F., D.). Kp₁₁: 133° (F.); Kp₁₈: 127° (E., F.). — Reagiert mit überschüssigem Brom in kaltem Tetrachlorkohlenstoff unter Bildung von β.β'-Dibrom-adipinsäure-diāthylester (F., Soc. 123, 2542). Die Reaktion mit Natriumäthylat-Lösung verläuft wie beim Dimethylester (F., Soc. 123, 3331). Liefert beim Erhitzen mit Natriummalonester in Alkohol auf dem Wasserbad Butån-dicarbonsäure-(1.4)-malonsäure-(2)-tetraäthylester und Cyclopentanon-(5)-dicarbonsäure-(1.4)-essigsäure-(2)-triäthylester (F., Soc. 123, 3326, 3329).

3. Derivat der Δ^{α} -Dihydromuconsäure oder der Δ^{β} -Dihydromuconsäure.

x-Chlor-Δ^α- oder -Δ^β-dihydromuconsäure C₈H₇O₄Cl (H 774). B. Beim Sättigen einer Lösung von Δβ-Dihydromuconsäure in Eisessig mit Chlor, neben geringen Mengen anderer Produkte (FARMER, Soc. 123, 2540). — F: 119°.

4. Buten-(3)-dicarbonsäure-(1.3), α -Methylen-glutarsäure $C_6H_8O_4=HO_3C\cdot CH_3\cdot CH_2\cdot C(:CH_2)\cdot CO_2H$ (H 775). B. In geringer Menge durch Erhitzen eines Gemisches von α' -Brom- α -methyl-glutarsäure-diäthylester und wenig α -Brom- α -methyl-glutarsäure-diäthylester mit 6 n-methylalkoholischer Kalilauge, neben anderen Produkten (Ingold, Soc. 127, 398).

Diäthylester $C_{10}H_{16}O_4=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot C(:CH_2)\cdot CO_2\cdot C_2H_5$. B. In geringer Menge beim Erwärmen von Acrylsäureäthylester mit festem Natriumäthylat auf 80—100°, neben anderen Produkten (Goss, Ingold, Soc. 127, 2779). — Kp₄: 120°.

5. Buten-(1)-dicarbons äure-(1.1), Propyliden malons äure $C_6H_8O_4=CH_3\cdot CH_1\cdot CH:C(CO_4H)_6$.

Propylidenmalonsäure - mononitril, α -Cyan- Δ^{α} -pentensäure, Propylidencyanessigsäure $C_0H_7O_2N=C_2H_5\cdot CH:C(CN)\cdot CO_2H$ (H 775). Zur Konstitution vgl. v. Auwers, B. 56, 1178. — B. Aus Propionaldehyd und Cyanessigsäure in Gegenwart von Piperidin bei 60—700 (v. Au., B. 56, 1182). — Nadeln (aus Benzol). F: 82—84°.

Äthylester $C_8H_{11}O_2N = C_2H_5 \cdot CH : C(CN) \cdot CO_2 \cdot C_2H_5$. B. Durch Veresterung der Säure mit Alkohol und konz. Schwefelsäure bei 120° (v. Auwers, B. 56, 1182). — Öl. Kp₂₅: 121° bis 122°. $D_4^{19.9}$: 1,0004. $n_5^{19.9}$: 1,4499; $n_5^{19.9}$: 1,4529; $n_6^{19.9}$: 1,4615; $n_5^{19.9}$: 1,4687. [Behrle]

- 6. Buten-(2)-dicarbonsäure-(1.3), γ -Methyl-glutaconsäure $C_6H_8O_4=HO_2C\cdot C(CH_3)$: $CH\cdot CH_2\cdot CO_3H$ (vgl. H 775; E I 310). Die früher als cis- α -Methyl-glutaconsäure beschriebenen Präparate sind (eutektische?) Gemische aus cis- γ -Methyl-glutaconsäure mit wenig trans- α -Methyl-glutaconsäure (FITZGERALD, KON, Soc. 1937, 726).
- 7. Buten (1) dicarbons dure (1.3), α -Methyl-glutacons dure $C_6H_8O_4=HO_4C\cdot CH\cdot CH\cdot CH(CH_3)\cdot CO_3H^3$.
- a) trans-Form $C_6H_8O_4=HO_3C\cdot CH: CH\cdot CH(CH_3)\cdot CO_3H$ (H 775; E I 310). Zur Konstitution und Konfiguration vgl. Fitzgerald, Kon, Soc. 1937, 725. B. Neben anderen Produkten aus α' -Chlor- α -methyl-glutarsäure-diāthylester durch Einw. von Natriumäthylat in der Wärme und nachfolgende Verseifung (Goss, Ingold, Soc. 127, 2779). Beim Erhitzen von (nicht rein erhaltenem) α' -Brom- α -methyl-glutarsäure-diāthylester mit 6 n-methylalkoholischer Kalilauge, neben anderen Produkten (I., Soc. 127, 395, 397). Beim Kochen von $\beta.\alpha'$ -Dibrom- α -methyl-glutarsäure mit verd. Alkalilauge (I., Oliver, Thorpe, Soc. 125, 2134). Aus γ -Methyl- α -cyan-glutaconsäure-diāthylester durch Kochen mit 50% iger Schwefelsäure (I., Perren, Soc. 119, 1597). Bei der Verseifung von 1.3-Dicyan-cyclobutan-dicarbonsäure-(1,3)-di-[α -propionsäure]-(2.4)-tetrašthylester mit alkoh. Kalilauge (I., P., Th., Soc. 121, 1787). Bei der Oxydation von 5-Imino-2-methyl-cyclopenten-(1)-tricarbonsäure-

¹⁾ Vgl. S. 648 Anm. 1.

1.3.4)-trimethylester bzw. 3-Imino-1-methyl-bicyclo-[0.1.2]-pentan-tricarbonsäure-(2.4.5)-trimethylester vom Schmelzpunkt 130° (Syst. Nr. 1368a) mit Wasserstoffperoxyd bei Gegenwart von Eisen(II)-sulfat (G., I., Soc. 1928, 1276). — Liefert mit Bromdampf $\alpha'.\beta$ -Dibrom- α -methyl-glutarsäure (I., O., Th., Soc. 125, 2134).

Diäthylester $C_{10}H_{16}O_4=C_2H_5\cdot O_3C\cdot CH\cdot CH\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$ (vgl. H 776; E I 310). Die früher beschriebenen Präparate waren vermutlich Gemische der Diäthylester der α - und γ -Methyl-glutaconsäure (Feist, A. 428, 32, 38; Fitzgerald, Kon, Soc. 1937, 725). — Ein Präparat, das vermutlich auch γ -Methyl-glutaconsäure-diäthylester enthielt, lieferte bei 24-stdg. Erhitzen mit Natriumcyanessigester in Alkohol auf dem Dampfbad und Zersetzen des Reaktionsprodukts mit Salzsäure 1-Cyan-butan-dicarbonsäure-(1.3)-essigsäure-(2)-triäthylester und ein saures Produkt, welches bei Veresterung mit Alkohol die gleiche Verbindung gab (Ingold, Perren, Soc. 119, 1867).

- b) cis-Form $C_6H_8O_4=HO_2C\cdot CH\cdot CH\cdot CH(CH_3)\cdot CO_2H$. Die früher (H 2, 775; E I 2, 310) als cis- α -Methyl-glutaconsäure beschriebenen Präparate sind (eutektische?) Gemische aus cis- γ -Methyl-glutaconsäure mit wenig trans- α -Methyl-glutaconsäure (FITZGERALD, Kon, Soc. 1937, 726).
- 8. Buten-(3)-dicarbonsäure-(1.1), Allylmalonsäure C₆H₈O₄ = CH₁: CH·CH₂·CH(CO₂H)₂ (H 776; E I 310). Neutralisiert man 1 Mol Allylmalonsäure mit konz. Ammoniak in der Kälte, fügt ein weiteres Mol Allylmalonsäure zu und behandelt das Reaktionsgemisch mit 2 Mol Formaldehyd-Lösung, so erhält man Aminomethyl-allyl-malonsäure (Mannich, Sutter, B. 58, 1328). Bei Anwendung von Methylamin an Stelle von Ammoniak erhält man Methylaminomethyl-allyl-malonsäure (M., S.). Analog verlaufen die Reaktionen mit Dimethylamin (M., Ganz, B. 55, 3493) und Piperidin (M., S.). Liefert beim Behandeln mit p-Toluoldiazoniumsulfat in Gegenwart von Natriumacetat in kaltem Wasser N.N'-Diptolyl-C-allyl-formazan (Syst. Nr. 2096) (Walker, Soc. 123, 2776); bei nachfolgender Einwvon salpetriger Säure entsteht p-Toluolazo-C-allyl-formaldoxim (Syst. Nr. 2096) (W., Soc. 127, 1861). Einw. weiterer Diazoniumsalze aus 4-Nitro-anilin, o-Toluidin, m-Toluidin und α-Naphthylamin: W., Soc. 123, 2777.

Monoäthylester $C_8H_{12}O_4=CH_2\cdot CH\cdot CH_2\cdot CH(CO_2H)\cdot CO_2\cdot C_2H_5$. Liefert beim Neutralisieren mit Diäthylamin unter Kühlung und folgenden Behandeln mit 30% iger Formaldehyd-Lösung α -Allyl-acrylsäure-äthylester (Mannich, Ritsert, B. 57, 1118).

Diäthylester $C_{10}H_{16}O_4=CH_2\cdot CH\cdot CH_2\cdot CH(CO_2\cdot C_2H_5)_2$ (H 776; E I 311). Relative Viscosität bei 20°: Vorländer, Walter, *Ph. Ch.* 118, 15. — Liefert beim Erhitzen mit Natrium in Alkohol auf dem Wasserbad Penten-(1)-ol-(5) (Helferich, Schäfer, *B.* 57, 1916).

- [γ -Chlor-allyl]-malonsäure-diäthylester $C_{10}H_{15}O_4Cl = CHCl:CH\cdot CH_2\cdot CH(CO_2\cdot C_2H_5)_2$. B. Bei der Einw. von γ -Chlor-allylchlorid auf Natriummalonester in Alkohol (Hill, Fischer, Am. Soc. 44, 2593). Hellgelbes Öl von angenehmem, an Malonester erinnerndem Geruch. Kp₁₂: 161—163°; siedet unter Atmosphärendruck zwischen 255—275° unter Zersetzung.
- 9. 2 Methyl propen dicarbonsäure (1.3), β Methyl glutaconsäure $C_6H_8O_4=HO_2C\cdot CH_2\cdot C(CH_3):CH\cdot CO_2H$.
- a) Höherschmelzende Form, trans Form (?) $C_6H_8O_4 = HO_2C\cdot CH_8\cdot C(CH_8)$: $CH\cdot CO_2H$ (H 777; E I 311). Zur Konfiguration vgl. auch Feist, Breuer, A. 428, 59. B. Beim Kochen von α -Brom- β -methyl-glutarsäure-diäthylester mit 6 n-wäßrig-methyl-alkoholischer Kalilauge, neben anderen Produkten (Ingold, Soc. 121, 2690). Entsteht als Hauptprodukt neben der niedrigerschmelzenden Form durch 6-stdg. Erhitzen von 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3) mit Jodwasserstoffsäure (D: 1,7) in Gegenwart von rotem Phosphor im Rohr auf 180° (Goss, Ingold, Thorpe, Soc. 123, 357). Durch Kochen von 3-Äthoxy-3-methyl-cyclopropan-dicarbonsäure-(1.2) mit Jodwasserstoffsäure (D: 1,7) (G., I., Th., Soc. 123, 360). Krystalle (aus konz. Salzsäure). F: 149° (I.; G., I., Th.). Liefert mit Bromdampf $\alpha.\beta$ -Dibrom- β -methyl-glutarsäure (I., Oliver, Th., Soc. 125, 2134).

Diäthylester $C_{10}H_{16}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot C(CH_3) : CH \cdot CO_2 \cdot C_2H_5$ (H 778; E I 311). B. Neben anderen Produkten bei der Umsetzung von Athan-α.α.α-triessigsäure-triäthylester mit feinverteiltem Natrium oder Kalium + etwas Alkohol in Xylol bei 140° (Ingold, Soc. 121, 1149). — Kp₂₅: 134—135°; Kp₂₄: 132—133° (I., Soc. 121, 1151, 1152); Kp₁₂: 127° (v. Auwers, Ottens, B. 57, 441); Kp₂: 94—96° (Kohler, Reid, Am. Soc. 47, 2809). D_4^{mit} : 1,4515; D_7^{mit} : 1,4588; D_7^{mit} : 1,4654 (v. A., O., B. 57, 444); D_7^{mit} : 1,0329; D_7^{mit} : 1,4505 (Kon, Warson, Soc. 1932, 11). — Liefert bei der Ozonisierung in Essigester ein öliges Ozonid, das bei mehrstündiger Einw. von Wasser in Acetessigester und Glyoxylsäure-äthylester zerfällt (Feist, Breuer, A. 428, 65; vgl. a. F., A. 428, 38). Gibt beim Kochen mit Cyanessigsäureäthylester in Natriumäthylat-Lösung 1-Cyan-propan-carbonsäure-(1)-diessigsäure-(2.2)-triäthylester (Kohler, Reid, Am. Soc. 47, 2810).

b) Niedrigerschmelzende Form, cis-Form (?) C₆H₈O₄ = HO₂C·CH₂·C(CH₃): CH·CO₂H (E I 311). Zur Konfiguration vgl. a. Feist, Breuer, A. 428, 59. — B. Beim Kochen von α.β-Dibrom-β-methyl-glutarsäure mit verd. Alkalilauge (Ingold, Oliver, Thorpe, Soc. 125, 2135). Durch 5-stdg. Kochen von 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3) mit Jodwasserstoffsäure (D: 1,7) (Goss, I., Th., Soc. 123, 356). Bei der Oxydation von 5-Imino-2-methyl-cyclopenten-(1)-tricarbonsäure-(1.3.4)-trimethylester bzw. 3-Imino-1-methyl-bicyclo-[0.1.2]-pentan-tricarbonsäure-(2.4.5)-trimethylester vom Schmelzpunkt 130° (Syst. Nr. 1368a) mit Wasserstoffperoxyd bei Gegenwart von Eisen(II)-sulfat (G., I., Soc. 1928, 1276). — Krystalle (aus Xylol). F: 115° (I., O., Th., G., I., Th.).

H 777, Z. 6 v. u. statt "Barythydrat-Lösung (1 Mol.-Gew.)" lies "Barythydrat-Lösung ($1_{\mathbf{k}}$ Mol.-Gew.)".

Diāthylester $C_{10}H_{16}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot C(CH_3) \cdot CH \cdot CO_2 \cdot C_2H_5$ (E I 311). B. Aus der freien Säure und alkoh. Schwefelsäure (v. Auwers, Ottens, B. 57, 445 Anm. 23) oder aus dem Silbersalz beim Behandeln mit Athyljodid (v. Au., O., B. 57, 445 Anm. 24; Kon, Watson, Soc. 1932, 10). — Kp_{0,41}: 91,5° (Feist, Breuer, A. 428, 63); Kp₃: 97—100° (Kohler, Red, A. 80c. 47, 2809). Siedepunkte für Drucke von 11—33 mm: F., Br. D₂^{10,4}: 1,0352; n₃^{10,5}: 1,4492; n_{He}^{10,6}: 1,4524; n₃^{10,6}: 1,4599; n₃^{10,6}: 1,4664 (v. Au., O., B. 57, 444); D₂^{10,6}: 1,0296; n₃^{10,6}: 1,4505 (K., W.) (Prāparate aus dem Silbersalz und Āthyljodid). D₂^{10,6}: 1,0326; n₃^{10,6}: 1,4488; n₄^{10,6}: 1,4519; n₃^{10,6}: 1,4593; n₃^{10,6}: 1,4658 (v. Au., Q.) (Prāparat aus der Säure mit Alkohol und Schwefelsäure). — Ozonspaltung s. u. Bei der Chlorierung in Gegenwart von rotem Phosphor bei 20—25° wurde einmal α.β-Dichlor-β-methyl-glutarsäure-diāthylester erhalten; die Chlorierung des unverdünnten oder gelösten Esters bei Gegenwart oder Abwesenheit von rotem Phosphor oder fein verteiltem Silber führt meist zu α.β.x-Trichlor-β-methyl-glutarsäure-diāthylester (Feist, Breuer, A. 428, 66). Bei Einw. von Brom in Chloroform unter Kühlung entsteht α.β-Dibrom -β-methyl-glutarsäure-diāthylester (F., Br.). Bei der Reaktion mit Methyljodid und Natrium in Ather wurde einmal Trimethyl-glutaconsäure-diāthylester (vieleicht cis-α.α.β-Trimethyl-glutaconsäure-diāthylester (vieleicht cis-α.α.β-Trimethyl-glutaconsäure-diāthylester (vieleicht cis-α.α.β-Trimethyl-glutaconsäure-diāthylester) erhalten (Feist, A. 428, 69). Die Kalium-verbindung liefert beim Behandeln mit Āthyljodid in Āther einen Ester (Kp₂₂: 146°; D₄¹⁰: 1,0028; n₃¹⁰: 1,4637), der vielleicht die cis-Form des β-Methyl-α-āthyl-glutaconsäure-diāthylesters darstellt (K., W. Soc. 1932, 5, 11).

Ozonid $C_{10}H_{16}O_7$. B. Aus dem Äthylester der niedrigerschmelzenden β -Methyl-glutaconsäure beim Ozonisieren in Essigester (Feist, Breuer, A. 428, 63). — Viscoses Öl. Fast unlöslich in Wasser; die Lösung reagiert sauer. Bei mehrstündiger Einw. von Wasser entstehen Acetessigester, außerdem Alkohol, Aceton, geringe Mengen Essigsäure und Oxalsäure sowie andere, nicht näher untersuchte Produkte. Gibt mit Silbernitrat-Lösung einen weißen Niederschlag, der sich in Salpetersäure löst. Reagiert mit konz. Schwefelsäure unter Wärmeentwicklung, Bräunung und Aufschäumen. Reduziert sodaalkalische Permanganat-Lösung und kalte ammoniakalische Silber-Lösung nur langsam, Fehlingsche Lösung erst bei gelindem Erwärmen.

- 2-Methyl-3-cyan-propen-(2)-carbonsäure-(1), β -Methyl-glutaconsäure- γ -nitril $C_0H_7O_3N=HO_3C\cdot CH_3\cdot C(CH_3)$: CH·CN (vgl. H 778). Das von Guareschi (C. 1901 I, 821) unter dieser Formel beschriebene Produkt wird von Gibson, Simonsen (Soc. 1929, 1075) als 2.6-Dioxy-4-methyl-pyridin (H 21, 165) erkannt.
- 10. Buten-(1)-dicarbonsaure-(1.2), Äthylfumarsaure und Äthylmaleinsaure $C_aH_aO_4=HO_3C\cdot CH\colon C(C_aH_s)\cdot CO_3H$.
- a) trans-Form, Athylfumarsäure, γ -Methyl-mesaconsäure $C_6H_8O_4 = HO_2C \cdot C \cdot C_2H_5$ (H 779). B. Beim Erwärmen von α -Athyl-fumarsäure- α' -äthylester mit über-

H·C·CO₂H schüssiger verdünnter Kalilauge (Anschütz, A. 461, 169). Durch Erhitzen von α-Äthylmaleinsäure-α'-anilid mit überschüssiger wäßriger Kalilauge auf 110—115° (An.).— F: 194° bis 195°.— Beim Erhitzen mit Acetylchlorid auf 110° entsteht Äthylmlaeinsäureanhydrid.

α-Āthyl-fumarsäure-α-äthylester, γ -Methyl-mesaconsäure- β -äthylester $C_8H_{12}O_4=HO_2C\cdot CH$: $C(C_2H_5)\cdot CO_2\cdot C_2H_5$. B. Durch Bromieren von α-Äthyl-acetessigester und Kochen des Reaktionsprodukts mit Bariumcarbonat in Wasser (Anschütz, A. 461, 169). — Nadeln (aus Äther). F: 88°.

α-Äthyl-fumarsäure-α-äthylester, γ-Methyl-mesaconsäure-α-äthylester $C_8H_{18}O_4=C_2H_5\cdot O_2C\cdot CH:C(C_2H_5)\cdot CO_2H$. B. Aus Äthylfumarsäurediäthylester durch halbseitige Verseifung (Anschütz, A. 461, 169). — F: 53°.

Äthylfumarsäurediäthylester, γ -Methyl-mesaconsäure-diäthylester $C_{10}H_{16}O_4=C_2H_5\cdot O_2C\cdot C_1C_2H_5\cdot CO_2\cdot C_2H_5$ (H 779). B. Aus α -Athyl-fumarsäure- α -äthylester beim

Behandeln mit Alkohol und Chlorwasserstoff (Anschütz, A. 461, 169). — Leicht bewegliche Flüssigkeit. Kp₁₂: 122—123°.

- b) cis Form, Äthylmaleinsäure, γ Methyl citraconsäure $C_6H_8O_4=HO_2C\cdot C\cdot C_2H_5$ (H 778). B. Aus dem Ammoniumsalz des γ -Methyl-citraconsäure- α -amids $HO_2C\cdot C\cdot H$ beim Ansäuern mit Salzsäure oder beim Aufbewahren der wäßr. Lösung (Anschütz, A. 461, 170). Calciumsalz und Bariumsalz sind in kaltem Wasser leichter löslich als in heißem Wasser (Ingold, Soc. 121, 2690).
- α-Äthyl-maleinsäure-α'-amid, γ -Methyl-citraconsäure-α-amid $C_6H_9O_3N=H_2N$ - $CO\cdot CH: C(C_2H_5)\cdot CO_2H$. B. Das Ammoniumsalz entsteht aus Äthylmaleinsäureanhydrid durch Einw. von Ammoniak in Äther, Benzol oder Toluol (Anschütz, A. 461, 170). Die aus dem Ammoniumsalz mit Salzsäure freigemachte Säure geht unter Abspaltung von Ammoniak in Äthylmaleinsäure über. $NH_4C_6H_8O_3N$. Hygroskopisches Pulver. F: 123—124° (Zers.). Geht in wäßr. Lösung in das Ammoniumsalz der Äthylmaleinsäure über.
- 11. Buten-(2)-dicarbonsäure-(1.2), Äthylidenbernsteinsäure, γ -Methylitaconsäure $C_6H_6O_4=HO_2C\cdot CH_2\cdot C(:CH\cdot CH_3)\cdot CO_2H$ (H 779). B. Beim Kochen von α -Brom- β -methyl-glutarsäure-diäthylester mit 6 n-methylalkoholischer Natronlauge, neben anderen Produkten (Ingold, Soc. 121, 2689). Krystalle (aus Wasser). F: 166°.
- 12. Buten (1) dicarbonsäure (2.3) , Methylmethylenbernsteinsäure , α -Methyl-itaconsäure $C_6H_8O_4=HO_2C\cdot CH(CH_3)\cdot C(:CH_2)\cdot CO_2H$ (H 780). B. In geringer Menge aus einem Gemisch von α -Brom- α -methyl-glutarsäure-diäthylester mit viel α' -Brom- α -methyl-glutarsäure und nachfolgende Einw. von Äthylalkohol) beim Erhitzen mit 6 n-methylalkoholischer Kalilauge (Ingold, Soc. 127, 398). Neben viel Dimethylmarsäure durch 44-stdg. Erhitzen des neutralen Natriumsalzes der Dimethylmaleinsäure in wäßr. Lösung auf 180° und nachfolgendes schnelles Abkühlen (Ott, B. 61, 2132). Krystalle (aus Essigester + Chloroform). F: 151° (I.).
- 13. Buten-(2)-dicarbonsäure-(2.3), Dimethylfumarsäure und Dimethylmaleinsäure $C_6H_8O_4=HO_2C\cdot C(CH_3)\cdot CO_2H$.
- a) trans-Form, Dimethylfumarsäure C₈H₈O₄ = HO₂C·C·CH₃ (H 781). B. Beim Erhitzen von Dimethylmaleinsäureanil mit überschüssiger Kalilauge auf 190—200° (Anschütz, A. 461, 176). In geringer Menge neben dem Anhydrid der Dimethylmaleinsäure beim Erhitzen eines Gemisches von α'-Brom-α-methyl-glutarsäure-diäthylester und wenig α-Brom-α-methyl-glutarsäure-diäthylester (erhalten durch Bromierung des Dichlorids der α-Methyl-glutarsäure und nachfolgende Einw. von Alkohol) mit 6n-methylalkoholischer Kalilauge (Ingold, Soc. 127, 397). Neben geringen Mengen α-Methyl-itaconsäure bei 44-stdg. Erhitzen des neutralen Natriumsalzes der Dimethylmaleinsäure auf 180° und nachfolgenden schnellen Abkühlen (Ott, B. 61, 2132). Krystalle (aus Wasser). F: 240° (I.); zersetzt sich bei schnellem Erhitzen im vorgewärmten Bade bei 244—245° (unkorr.) (O.). Liefert bei der Reduktion mit Zinkstaub und Essigsäure oder bei der Hydrierung in Gegenwart von Palladium-Tierkohle in saurer Lösung, langsamer bei Gegenwart der zur Neutralisation notwendigen Menge Natronlauge wechselnde Mengen der Meso- und Racemform der α.α'-Dimethyl-bernsteinsäure (O.). Die Hydrierung von dimethylumarsaurem Natrium in Gegenwart von Nickel-Tierkohle in neutraler Lösung liefert fast ausschließlich die Racemform der α.α'-Dimethyl-bernsteinsäure (O.).

Dimethylester $C_8H_{13}O_4=CH_3\cdot O_2C\cdot C(CH_3)\cdot C(CH_3)\cdot CO_2\cdot CH_3$. B. Aus der freien Säure und siedender methylalkoholischer Schwefelsäure oder aus ihrem Silbersalz und Methyljodid (v. Auwers, Harres, B. 62, 1685). — Nadeln. F: 41°; Kp₁₂: 95° (v. Au., H.). D₄^{80,6}: 1,0494; D₄^{80,6}: 1,0490; $n_8^{\infty,6}$ 1,4333; $n_8^{\infty,6}$: 1,4334; $n_8^{\frac{80,6}{10}}$: 1,4369; $n_8^{\frac{80,6}{10}}$: 1,4460; $n_8^{\infty,6}$: 1,4506 (Werte zweier Präparate, die durch unterschiedliche Veresterungsmethoden erhalten wurden) (v. Au., H.). Sehr leicht löslich in den gebräuchlichen Lösungsmitteln (v. Au., H.). — Beim Behandeln von Dimethylfumarsäuredimethylester mit alkoh. Kalilauge und nachfolgenden Ansäuern wurde statt Dimethylfumarsäure gelegentlich Dimethylmaleinsäureanhydrid erhalten (v. Au., B. 65 [1932], 831; vgl. v. Au., H.).

Diäthylester $C_{10}H_{16}O_4 = C_2H_5 \cdot O_2C \cdot C(CH_8) \cdot C(CH_8) \cdot CO_2 \cdot C_2H_5$. Kp_{13} : $111-112^o$ (v. Auwers, Harres, B. 62, 1685). $D_3^{10.4}$: 1,0244. $n_{\alpha}^{10.4}$: 1,4426; $n_{\alpha}^{10.4}$: 1,4457; $n_{\beta}^{10.4}$: 1,4594 (v. Au., H.). — Verhält sich beim Behandeln mit alkoh. Kalilauge analog wie der Dimethylester (s. o.) (v. Au., B. 65 [1932], 831; vgl. v. Au., H.).

b) cis-Form, Dimethylmaleinsäure, Pyrocinchonsäure $C_6H_8O_4 = \frac{CH_3 \cdot C \cdot CO_2H}{CH_8 \cdot C \cdot CO_2H}$

(H 780). B. Das Kaliumsalz wurde gelegentlich beim Behandeln von Dimethylfumarsäuredimethylester mit alkoh. Kalilauge unter gewissen, nicht näher bekannten Umständen erhalten (v. Auwers, Harres, B. 62, 1685; v. Au., B. 65 [1932], 831). Das Anhydrid (Syst. Nr. 2476) entsteht beim Behandeln einer äther. Lösung von Acetbernsteinsäurediäthylester mit Kaliumcyanid und der berechneten Menge Salzsäure unter Kühlung und nachfolgenden Schütteln des öligen Reaktionsprodukts mit 25 %iger Salzsäure (H. Fischer, Schneller, H. 128, 249). Das Anhydrid entsteht ferner in sehr geringer Menge bei der elektrochemischen Oxydation einer wäßr. Lösung von m-Xylol-sulfonsäure-(4) an einer Bleidioxyd-Anode unter Verwendung eines Tondiaphragmas und 20 %iger Schwefelsäure als Katholyt bei 75—80° sowie bei der elektrochemischen Oxydation von 2.3-Dimethyl-benzochinon-(1.4) in 20 %iger Schwefelsäure bei 45° unter sonst ähnlichen Bedingungen (Yokoyama, Helv. 12, 758, 772). Über eine weitere Bildung vgl. den Artikel Dimethylfumarsäure. — Eine wäßr. Lösung des neutralen Natriumsalzes liefert bei 44-stdg. Erhitzen auf 180° und schnellem Abkühlen Dimethylfumarsäure und geringe Mengen α-Methyl-itaconsäure (Отт, B. 61, 2132). Bei der Hydrierung einer wäßr. Lösung des neutralen Natriumsalzes in Gegenwart von auf Tierkohle niedergeschlagenem Palladium oder Nickel erhält man die Meso- und Racemform der α.α'-Dimethyl-bernsteinsäure im Verhältnis 1: 0,16 (O.).

Dimethylester $C_8H_{12}O_4 = CH_3 \cdot O_2C \cdot C(CH_3) \cdot C(CH_3) \cdot CO_2 \cdot CH_3$ (H 781). B. Aus Dimethylmaleinsäureanhydrid beim Kochen mit Methanol und Schwefelsäure (v. Auwers, Cauer, A. 470, 307). — Kp₁₇: 106° (v. Au., C.); Kp₁₂: 106° (v. Au., Harres, B. 62, 1685). D₁°···: 1,0997; D₄°···: 1,1050; n_α°···: 1,4523; n_γ°··: 1,4549; n_{He}···: 1,4555; n_{He}···: 1,4583; n_γ°···: 1,4633; n_γ°···: 1,4660; n_γ°···: 1,4701; n_γ°···: 1,4722 (Werte zweier Präparate, die durch unterschiedliche Veresterungsmethoden erhalten wurden) (v. Au., H., B. 62, 1686). — Liefert bei 2—3-wöchigem Behandeln mit Diazomethan in Äther 3.4-Dimethyl- Λ ¹-pyrazolin-dicarbonsäure-(3.4)-dimethylester (v. Au., C.).

Diäthylester $C_{10}H_{16}O_4 = C_2H_5 \cdot O_2C \cdot C(CH_3) \cdot C(CH_3) \cdot CO_2 \cdot C_2H_5$ (H 781). Kp₂₀: 133° bis 134° (v. Auwers, Harres, B. **62**, 1685). D₄^{15,5}: 1,0434; $n_{\alpha}^{15,5}$: 1,4495; $n_{He}^{15,5}$: 1,4526; $n_{\beta}^{15,6}$: 1,4597; $n_{\gamma}^{15,5}$: 1,4659.

H 781, Z. 21 v. o. hinter "Dimethylfumarsäurediamid (?)" füge ein: ", ", Dimethylmaleinsäure-diamid (?) und Dimethylmaleinsäure-imid".

Monoamid $C_6H_9O_3N=HO_2C\cdot C(CH_3)\cdot CO\cdot NH_2$. B. Das Ammoniumsalz entsteht aus Dimethylmaleinsäureanhydrid durch Einw. von Ammoniak (ANSCHÜTZ, A. 461, 173). — Die aus dem Ammoniumsalz mit konz. Salzsäure oder aus dem Silbersalz mit Schwefelwasserstoff freigemachte Säure verwandelt sich sofort in Dimethylmaleinsäureanhydrid. — $NH_4C_6H_8O_3N$. Pulver. F: 123—124° (Zers.). Verliert beim Aufbewahren Ammoniak. Zersetzung in wäßr. Lösung: A. — $AgC_6H_8O_3N$. Weißer Niederschlag. Wird am Licht dunkel.

Methylester-amid $C_7H_{11}O_3N = CH_3 \cdot O_2C \cdot C(CH_3) : C(CH_3) \cdot CO \cdot NH_2$. B. Aus dem Silbersalz des Dimethylmaleinsäure-monoamids beim Erwärmen mit Methyljodid in Äther (Anschütz, A. 461, 174). — Gelbliche Nadeln. F: 57—58°.

14. 2-Methyl-propen - dicarbonsäure - (1.1), Isopropylidenmalonsäure $C_6H_8O_4=(CH_3)_2C:C(CO_2H)_2$.

Diäthylester $C_{10}H_{16}O_4=(CH_3)_2C:C(CO_2\cdot C_2H_5)_2$ (H 781; E I 312). B. Zur Bildung durch Kondensation von Malonsäurediäthylester mit Aceton in Gegenwart von Acetanhydrid und etwas Zinkchlorid (Meyenberg, B. 28 [1895], 786) vgl. auch Vogel, Soc. 1928, 2018. — Kp₁₄: 116—120° (Clemo, Welch, Soc. 1928, 2625). — Liefert bei der Einw. von Natriumäthylat-Lösung und überschüssigem Methyljodid 3-Methyl-buten-(3)-dicarbonsäure-(2.2)-diäthylester (Kon, Speight, Soc. 1926, 2730; vgl. auch Cope, Hancock, Am. Soc. 60 [1938], 2645).

Äthylester-nitril, $\beta.\beta$ -Dimethyl- α -cyan-acrylsäure-äthylester, Isopropylidencyanessigsäure-äthylester $C_8H_{11}O_2N=(CH_3)_2C:C(CN)\cdot CO_2\cdot C_2H_5$ (H 782; E I 312). B. Zur Bildung durch Kondensation von Cyanessigester mit Aceton (Komppa, B. 33 [1900], 3532) vgl. auch Birch, Kon, Soc. 123, 2447. — F: 33°; Kp₁₄: 115° (Vogel, Soc. 1928, 2019). — Liefert bei der Reduktion mit Aluminiumamalgam in feuchtem Äther Isopropyl-cyanessigsäure-äthylester und ein viscoses, rotbraunes Öl (unreiner $\beta.\beta.\beta'.\beta'$ -Tetramethyl- $\alpha.\alpha'$ -dicyan-adipinsäure-diäthylester), das bei Einw. von überschüssigem Ammoniak (D: 0.88) $\beta.\beta.\beta'.\beta'$ -Tetramethyl- $\alpha.\alpha'$ -dicyan-adipinsäure-äthylester-amid, beim Kochen mit konz. Salzsäure $\beta.\beta.\beta'.\beta'$ -Tetramethyl-adipinsäure liefert (V.). Bei Einw. von Natriumäthylat-Lösung entsteht 1.1.3-Trimethyl-2.6-dicyan-cyclohexen-(3)-on-(5)-carbonsäure-(2)-äthylester (Syst. Nr.

662

1368a) (B., K.). Bei der Einw. von Kaliumcyanid in verd. Alkohol und folgendem Erhitzen mit konz. Salzsäure erhält man $\alpha.\alpha$ -Dimethyl-bernsteinsäure (V.). Beim Behandeln mit 1 Mol Cyanessigester und alkoh. Ammoniak erhält man $\beta.\beta$ -Dimethyl- $\alpha.\alpha'$ -dicyan-glutarsäure-imid (Syst. Nr. 3369) (B., K.).

Dinitril, $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -dicyan-äthylen $C_6H_6N_3=(CH_3)_2C:C(CN)_2$. B. Aus Malonitril und Aceton in Alkohol bei Gegenwart von Kaliumäthylat anfangs unter Kühlung, dann bei Zimmertemperatur (Schenk, Finken, A. 462, 271). — Krystalle (aus Alkohol). F: 171,5° (Zers.?). Löslich in Aceton, Eisessig, Äther und Alkohol. Kryoskopisches Verhalten in Eisessig: Sch., F. Scheint sich beim Aufbewahren allmählich zu polymerisieren.

4. Dicarbonsäuren $C_7H_{10}O_4$.

1. Penten-(1)-dicarbonsäure-(1.1), Butylidenmalonsäure $C_7H_{10}O_4=CH_3\cdot CH_2\cdot CH_2\cdot CH:C(CO_2H)_2$.

[β .γ-Dibrom-butyliden]-malonsäure-diäthylester $C_{11}H_{16}O_4Br_2=CH_3\cdot CHBr\cdot CHBr\cdot CH\cdot C(CO_2\cdot C_2H_5)_2$. B. Aus Crotylidenmalonsäure-diäthylester beim Behandeln mit Brom in Chloroform (v. Auwers, Heyna, A. 434, 156). — Dickes bräunlichgelbes Ol. — Beim Behandeln mit Ozon in Chloroform unter Kühlung, Zersetzen des entstandenen Ozonids mit Wasser und Zufügen von salzsaurem Semicarbazid und Natriumacetat entstand einmal Mesoxalsäurediäthylester-semicarbazon, einmal dagegen das saure Natriumsalz der α-Oxy-α-semicarbazino-malonsäure (v. Auwers, Heyna, A. 434, 156; v. Au., Privatmitt.).

2. Penten-(3)-dicarbonsäure-(1.1), $[\beta-Butenyl]$ -malonsäure, Crotyl-malonsäure $C_7H_{10}O_4=CH_3\cdot CH\cdot CH_2\cdot CH(CO_2H)_2$. B. Durch Hydrolyse des Diäthylesters mit Kalilauge (Eccott, Linstead, Soc. 1929, 2163). — Nadeln (aus Benzol). F: 115°. — Liefert beim Erhitzen auf 140° die flüssige Form der Penten-(3)-carbonsäure-(1) (S. 404).

Diäthylester, Crotylmalonsäure - diäthylester $C_{11}H_{18}O_4 = CH_3 \cdot CH : CH \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5)_2$. B. Durch Erhitzen einer Mischung von Crotylbromid mit Malonester und alkoh. Natriumäthylat-Lösung (Eccott, Linstead, Soc. 1929, 2163). — Flüssigkeit. $Kp_{20}: 132^{\circ}$. $D_4^{\circ}: 0.9953$. $n^{\circ}: 1,4372$.

Äthylester-nitril, Crotyleyanessigsäure-äthylester $C_9H_{13}O_2N=CH_3\cdot CH\cdot CH\cdot CH_2\cdot CH(CN)\cdot CO_2\cdot C_2H_5$. B. Bei der Einw. von Crotylbromid auf die Natriumverbindung des Cyanessigesters (I.G. Farbenind., D. R. P. 489251; C. 1930 I, 2590; Frdl. 16, 2458). — Kp_{155} : 112°.

3. Penten-(1)-dicarbonsäure-(1.3). α -Äthyl-glutaconsäure $C_7H_{10}O_4=HO_2C\cdot CH\cdot CH\cdot CH(C_2H_5)\cdot CO_2H$ (vgl. H 783; E I 313) 1). Von den beiden möglichen stereoisomeren Formen ist nur eine bekannt; Fitzgerald, Kon (Soc. 1937, 726) schreiben dieser E I 2, 313 als höherschmelzende Form aufgeführten Verbindung die trans-Konfiguration zu. Die E I 2, 313 als tieferschmelzende Form aufgeführte Verbindung ist vermutlich cisy-Äthyl-glutaconsäure, die nicht vollkommen frei von α -Äthyl-glutaconsäure erhalten wurde (F., K.). — B. Bei der Verseifung von γ -Äthyl- α -cyan-glutaconsäure-diäthylester mit 50 %iger Schwefelsäure (Ingold, Perren, Thorpe, Soc. 121, 1782).

E I 313 Z. 21 v. o. statt "höherschmelzende" lies "bei 170° schmelzende".

- 4. Penten-(2)-dicarbonsäure-(1.3), γ -Äthyl-glutaconsäure $C_7H_{10}O_4 = HO_2C\cdot CH_2\cdot CH:C(C_2H_5)\cdot CO_2H$. Von den beiden möglichen stereoisomeren Formen ist nur eine bekannt; FITZGERALD, Kon (Soc. 1937, 726) schreiben dieser E I 2, 313 als tieferschmelzenden Form der α -Äthyl-glutaconsäure (s. im vorangehenden Artikel) die cis-Konfiguration zu. Nach dem Ergebnis der Ozonisation ist die Säure jedoch nicht einheitlich.
- 5. Penten-(4)-dicarbonsäure-(2.2), Methylallylmalonsäure $C_7H_{10}O_4 = CH_2:CH\cdot CH_3\cdot C(CH_3)(CO_2H)_2$. B. Durch Verseifung des Diäthylesters (s. u.) mit alkoh. Kalilauge (STAUDINGER, Mitarb., Helv. 6, 301; BHIDE, SUDBOROUGH, J. indian Inst. Sci. [A] 8, 99; C. 1926 I, 81). Blättchen (aus Benzol). F: 98—99° (BH., S.), 74—76° (ST., Mitarb.). Beim Erhitzen auf 160° entsteht Methylallylessigsäure (BH., S.).

Diäthylester $C_{11}H_{18}O_4 = CH_2 \cdot CH \cdot CH_2 \cdot C(CH_3)(CO_2 \cdot C_2H_5)_2$. B. Aus Allylmalonsäurediäthylester und Methyljodid in Natriummethylat-Lösung unterhalb 40° (Staudinger, Mitarb., Helv. 6, 301; Вніде, Sudborough, J. indian Inst. Sci. [A] 8, 99; С. 1926 І, 81). — Крев: 222—226° (Вн., S.); Кр₁₇: 112—115° (St., Mitarb.).

6. Penten-(2)-dicarbonsäure-(2.3). Methyl-äthyl-maleinsäure $C_7H_{10}O_4=HO_2C\cdot C(CH_3)\cdot C(C_2H_5)\cdot CO_2H$ (H 785; E I 313). B. Das Anhydrid entsteht im Gemisch mit

¹⁾ Vgl. S. 648 Anm. 1.

dem Imid (Syst. Nr. 3202) durch Anlagerung von Blausäure an α -Äthyl-acetessigester, Verseifung des entstandenen Nitrils mit Salzsäure und Destillieren des Reaktionsprodukts (KÜSTER, H. 137, 80).

7. 3-Methyl-buten-(2)-dicarbonsäure-(1.2), Isopropylidenbernstein-säure, γ.γ-Dimethyl-itaconsäure, Teraconsäure C₇H₁₀O₄ = (CH₃)₂C:C(CO₂H)·CH₃·CO₂H (H 786). B. Beim Erhitzen von α.α-Dimethyl-aconitsäure mit Wasser im Rohr auf 180° (Farmer, Ingold, Thorpe, Soc. 121, 150). — Krystalle (aus Wasser). Schmilzt bei langsamem Erhitzen bei 154—156°, bei raschem Erhitzen bei 160°.

Flüssiger Monoäthylester $C_9H_{14}O_4 = (CH_3)_2C:C(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_2H$ (H 786).

H 786, Z. 17 v. u. statt "die absolut-alkoholische Lösung des Terebinsäureäthylesters" lies "mit Äther überschichteten Terebinsäureäthylester".

Z. 16 v. u. statt "A. 220, 225" lies "A. 220, 255".

8. 2-Methyl-buten-(2)-dicarbonsäure-(1.3). β.γ-Dimethyl-glutaconsäure C₇H₁₀O₄ = HO₂C·C(CH₃)·C(CH₃)·CH₂·CO₂H (H 787; E I 314)¹). Von den beiden möglichen stereoisomeren Formen ist nur eine bekannt; Kon, Watson (Soc. 1932, 2, 5) schreiben dieser H 2, 787 als α.β-Dimethyl-glutaconsäure beschriebenen und E I 2, 314 als höherschmelzende Form der α.β-Dimethyl-glutaconsäure angeführten Verbindung die cis-Konfiguration zu (vgl. auch Feist, A. 428, 62; v. Auwers, Ottens, B. 57, 441). — Das Silbersalz liefert beim Kochen mit Athyljodid in Äther praktisch reinen β.γ-Dimethyl-glutaconsäure-diäthylester (K., W., Soc. 1932, 2, 5). Bei der Veresterung mit Alkohol und Schwefelsäure (Feist, A. 428, 69) entstehen durch Umlagerung auch größere Mengen α.β-Dimethyl-glutaconsäure-diäthylester (K., W., Soc. 1932, 2). Liefert beim Aufbewahren in Bromdampf bis zum Aufhören der Bromwasserstoff-Entwicklung α-Brom-β.γ-dimethyl-glutarsäure (Ingold), Oliver, Thorpe, Soc. 125, 2135). Die Bromierung in Gegenwart von Lösungsmitteln führt zu Harzen (I., O., Th.). — Die Brucin-, Strychnin- und Chininsalze sind leichtlösliche Öle (Feist, A. 428, 70).

Diäthylester $C_{11}H_{18}O_4 = C_2H_5 \cdot O_2C \cdot C(CH_3) \cdot C(CH_3) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (EI314). Die früher beschriebenen Präparate (E I 2, 314; Feist, A. 428, 69) waren Gemische mit ziemlich viel α.β-Dimethyl-glutaconsäure-diäthylester (Kon, Warson, Soc. 1932, 2, 5). — B. Ausdem Silbersalz der freien Säure beim Kochen mit überschüssigem Methyljodid in Äther; enthält geringe Mengen α.β-Dimethyl-glutaconsäure-diäthylester (K., W.). — Kp₁₈: 141° (K., W.); D₁^{18,7}: 1,0304; n₁₈^{25,7}: 1,4522; n₁₈^{25,7}: 1,4553; n₁₈^{25,7}: 1,4626; n₁₈^{19,7}: 1,4688 (v. Auwers, Ottens, B. 57, 444); D₁^{25,7}: 1,0289; n₁₈^{25,7}: 1,4545 (K., W.) (Präparate aus dem Silbersalz der freien Säure und Methyljodid). — Ein aus dem Silbersalz der Säure und Methyljodid gewonnenes Präparat lieferte bei der Ozonspaltung Brenztraubensäureäthylester, Acetessigsäureäthylester und sehr geringe Mengen α-Methyl-acetessigsäure-äthylester und Oxalsäure (K., W.). Ozonspaltung eines Präparats geringerer Reinheit: Feist, A. 428, 70, 74. Addiert Brom nur schwer unter Entwicklung von Bromwasserstoff und Bildung von Ölen, die sich bei der Vakuumdestillation zersetzen (F., A. 428, 70).

- 1-Brom-2-methyl-buten-(2)-dicarbonsäure-(1.3), α -Brom- β . γ -dimethyl-glutaconsäure $C_7H_9O_4Br = HO_2C \cdot C(CH_3) \cdot C(CH_3) \cdot CHBr \cdot CO_2H$. B. Bei der Einw. von Bromdampf auf β . γ -Dimethyl-glutaconsäure bis zum Aufhören der Bromwasserstoff-Entwicklung (Ingold), Oliver, Thorpe, Soc. 125, 2135). Prismen (aus Benzol + Chloroform). F: 115° (Zers.). Einw. von Alkalilaugen: I., O., Th.
- 9. 2-Methyl-buten-(1)-dicarbonsäure-(1.3), $\alpha.\beta$ -Dimethyl-glutaconsäure $C_7H_{10}O_4=HO_2C\cdot CH:C(CH_3)\cdot CH(CH_3)\cdot CO_2H$ (H 787; E I 313)¹). Von den beiden möglichen stereoisomeren Formen ist nur eine bekannt; Kon, Watson (Soc. 1932, 6) schreiben dieser E I 2, 313 als tieferschmelzende Form der $\alpha.\beta$ -Dimethyl-glutaconsäure aufgeführten Verbindung unter Vorbehalt die trans-Konfiguration zu (vgl. auch Feist, A. 428, 68; v. Auwers, Ottens, B. 57, 441). Die H 2, 787; E I 2, 314 als höherschmelzende Form angeführte Verbindung ist $\beta.\gamma$ -Dimethyl-glutaconsäure (K., W.). Bei der Veresterung durch Erhitzen mit Alkohol und Schwefelsäure (Bland, Thorpe, Soc. 101, 1567; Feist, A. 428, 69) entstehen durch Umlagerung größere Mengen $\beta.\gamma$ -Dimethyl-glutaconsäure-diäthylester (K., W., Soc. 1932, 2). Das saure und neutrale Strychninsalz und das saure Chininsalz lösen sich sehr leicht in Wasser (F., A. 428, 70). Neutrales Chininsalz $C_7H_{10}O_4+2C_{20}H_{24}O_2N_2+6H_2O$. Nadeln (F.).

Diäthylester $C_{11}H_{18}O_4 = C_2H_5 \cdot O_2C \cdot CH : C(CH_3) \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$ (E I 314). Der Diäthylester konnte nicht frei von $\beta.\gamma$ -Dimethyl-glutaconsäure-diäthylester gewonnen werden (Kon, Watson, Soc. 1932, 2). — B. Ein Präparat, das nur geringe Mengen $\beta.\gamma$ -Dimethyl-glutaconsäure-diäthylester enthält (K., W., Soc. 1932, 2, 6), entsteht beim Kochen der

¹⁾ Vgl. S. 648 Anm. 1.

Kaliumverbindung des Diäthylesters der (höherschmelzenden?) β -Methyl-glutaconsäure mit Methyljodid in Äther (K., W.). — Kp₁₅: 131°; D₁°: 1,0179; n₀°: 1,4525 (Präparat aus der Kaliumverbindung des β -Methyl-glutaconsäure-diäthylesters und Methyljodid) (K., W., Soc. 1932, 6). Dichten und Brechungsindices weiterer Präparate: v. Äuwers, Ottens, B. 57, 441; K., W., Soc. 1932, 5. — Bei der Ozonspaltung eines durch Methylierung der Kaliumverbindung des β -Methyl-glutaconsäure-diäthylesters gewonnenen Präparats entstehen Glyoxylsäureäthylester, α -Methyl-acetessigsäure-äthylester und geringe Mengen Acetessigsäureäthylester (K., W., Soc. 1932, 6). Ozonspaltung weiterer Präparate: Feist, A. 428, 70, 72; K., W., Soc. 1932, 5, 6.

- 3-Methyl-4-cyan-buten-(3)-carbonsäure-(2), $\alpha.\beta$ -Dimethyl-glutaconsäure- γ -nitril $C_7H_9O_2N=NC\cdot CH:C(CH_9)\cdot CH(CH_9)\cdot CO_2H$ (H 787). Das von Guareschi (C. 1907I, 459) mit dieser Formel beschriebene Produkt wird von Gibson, Simonsen (Soc. 1929, 1075) als 2.6-Dioxy-3.4-dimethyl-pyridin erkannt.
- 10. Penten-(3)-dicarbonsäure-(2.3), Methyl-äthyliden-bernsteinsäure, a.y-Dimethyl-itaconsäure $C_7H_{10}O_4=CH_3\cdot CH:C(CO_2H)\cdot CH(CH_3)\cdot CO_2H$.
- 4-Chlor-penten-(3)-dicarbonsäure-(2.3), γ-Chlor-α.γ-dimethyl-itaconsäure C₇H₉O₄Cl = CH₃·CCl:C(CO₂H)·CH(CH₃)·CO₂H. B. Neben anderen Produkten durch Einw. von Phosphorpentachlorid auf α-Methyl-α'-acetyl-bernsteinsäure-diäthylester, Verseifen des erhaltenen Reaktionsprodukts mit Wasser und anschließendes Kochen mit Salzsäure (KÜSTER, MAURER, PALM, B. 59, 1021; H. 156, 27; K., M., PACKENDORFF, H. 172, 246). Krystalle. F: 127—128° (Zers.) (K., M., PALM). Leicht löslich in Alkohol, Ather, Chloroform und heißem Wasser (K., M., PALM). Ist mit Wasserdampf nur wenig flüchtig (K., M., PALM). Liefert bei der Destillation unter 15 mm Druck das Anhydrid der γ-Chlor-α.γ-dimethylitaconsäure (Syst. Nr. 2476) (K., M., PALM). Bei der Destillation unter Atmosphärendruck entstehen 4-Chlor-penten-(4)-dicarbonsäure-(2.3)-anhydrid (Syst. Nr. 2476) und ein charakteristisch riechendes, mit Wasserdampf flüchtiges Öl (vielleicht Methyl-[α-chlor-āthyl]-maleinsäureanhydrid), das beim Kochen mit 50% igem Barytwasser 4-Chlor-penten-(4)-dicarbonsäure-(2.3) liefert (K., M., PALM, PALM, PALM). Beim Kochen mit 10% iger Natronlauge erfolgt Zersetzung (K., M., PALM, H. 156, 31). (NH₄)₂C₇H₇O₄Cl. Nadeln. F: 157° (Zers.)(K., M., PALM). Spaltet leicht Ammoniak ab. Na₂C₇H₇O₄Cl. Blättchen (K., M., PALM, H. 156, 29).

Diäthylester $C_{11}H_{17}O_4Cl = CH_3 \cdot CCl : C(CO_2 \cdot C_2H_5) \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von γ -Chlor- α . γ -dimethyl-itaconsäure mit absol. Alkohol und konz. Schwefelsäure (Küster, Maurer, Palm, B. 59, 1021; H. 156, 30). — Nach frischen Äpfeln riechendes Öl. Kp: 216°. — Liefert mit Natriumäthylat das Natriumsalz der γ -Chlor- α . γ -dimethyl-itaconsäure (K., M., Palm; K., M., Packendorff, H. 172, 247).

- 11. Penten-(4)-dicarbonsäure-(2.3), α -Methyl- α '-vinyl-bernsteinsäure $C_7H_{10}O_4 = HO_2C \cdot CH(CH:CH_2) \cdot CH(CH_3) \cdot CO_2H$.
- 4-Chlor-penten-(4)-dicarbonsäure-(2.3), α-Methyl-α'-[α-chlor-vinyl]-bernsteinsäure C₇H₂O₄Cl = HO₂C·CH(CCl: CH₂)·CH(CH₃)·CO₂H. B. Bei der Destillation von γ-Chlor-α.γ-dimethyl-itaconsäure unter Atmosphärendruck und anschließendem Kochen des neben 4-Chlor-penten-(4)-dicarbonsäure-(2.3)-anhydrid erhaltenen Öls (wahrscheinlich Methyl-[α-chlor-āthyl]-maleinsäureanhydrid) mit 50% igem Barytwasser (KÜSTER, MAURER, PACKEN-DORFF, H. 172, 247, 249). Beim Kochen von 4-Chlor-penten-(4)-dicarbonsäure-(2.3)-anhydrid (Syst. Nr. 2476) mit 10% iger Natronlauge (K., M., P.). Blättchen (aus Wasser). F: 152°. Das Ammoniumsalz liefert beim Erhitzen ein Sublimat und einen bei 166° schmelzenden Rückstand. (NH₄)₂C₇H₇O₄Cl. Flockige Masse. BaC₇H₇O₄Cl. Undeutliche Krystalle (aus Wasser).
- 12. Penten (2) dicarbonsaure (2.4), $\alpha.\gamma$ Dimethyl glutaconsaure $C_7H_{10}O_4=HO_2C\cdot CH(CH_2)\cdot CH:C(CH_2)\cdot CO_2H$. Höherschmelzende Form (H 788; E I 314). Liefert mit Bromdampf $\alpha.\beta$ -Dibrom- $\alpha.\alpha'$ -dimethyl-glutarsaure (Ingold, Oliver, Thorpe, Soc. 125, 2135).

Verbindung $C_7H_7O_2Cl$. Die H 2, 788 beschriebene Verbindung von Feist, Reuter (A. 370, 84) ist 6-Chlor-3.5-dimethyl-pyron-(2) (E I 17/19, 156) (Thole, Thorpe, Soc. 99 [1911], 2236).

13. 3-Methyl-buten-(3)-dicarbonsäure-(2.2), Methyl-isopropenyl-malonsäure $C_7H_{10}O_4=CH_2:C(CH_2)\cdot C(CH_2)(CO_2H)_2$. B. Beim Verseifen des Diäthylesters (s. u.) mit 64% iger Kalilauge in Gegenwart von etwas Alkohol (Kon, Speight, Soc. 1926, 2730). — Nadeln (aus Salzsäure). F: 135° (Zers.). — Liefert beim Erhitzen 3-Methyl-buten-(3)-carbonsäure-(2).

Diäthylester $C_{11}H_{18}O_4 = CH_3 : C(CH_3) \cdot C(CH_3)(CO_3 \cdot C_2H_3)_3$. B. Bei Einw. von Natriumäthylat-Lösung und überschüssigem Methyljodid auf Isopropylidenmalonsäure-diäthylester

665

(Kon, Speight, Soc. 1926, 2730; vgl. auch Cope, Hancock, Am. Soc. 60 [1938], 2645). — Kp₁₈: 124° (K., Sp.); Kp₁₈: 110— 111° ; D^{ss.}: 1,0095 (C., H.); D^{ss.}: 1,0116 (K., Sp.). $n_D^{ss.}$: 1,4402 (K., Sp.); $n_D^{ss.}$: 1,4370 (C., H.).

5. Dicarbonsäuren $C_8H_{12}O_4$.

1. Hexen-(1)-dicarbons dure-(1.6), Dihydrosubercols dure $C_8H_{12}O_4 = HO_2C$

[CH₂]₄·CH:CH·CO₂H.

a) Höherschmelzende Form. B. Durch Reduktion von Hexadien-(1.5)-dicarbonsäure-(1.6) mit 4%igem Natriumamalgam auf dem Wasserbad (Goss, Ingold, Soc. 1926, 1477) — Nadeln (aus Wasser). F: 170°. — Entfärbt alkal. Permanganat-Lösung momentan. Beim Kochen der wäßr. Lösung mit Natriumamalgam entsteht Korksäure.

- b) Niedrigerschmelzende Form. B. Entsteht neben Korksäure durch Reduktion einer wäßr. Lösung von Hexadien-(1.5)-dicarbonsäure-(1.6) mit 4%igem Natriumamalgam in der Siedehitze (Goss, Ingold, Soc. 1926, 1474). Nadeln (aus Wasser). F: 125°. Entfärbt alkal. Permanganat-Lösung in der Kälte momentan. Liefert bei weiterem Kochen mit Wasser und Natriumamalgam Korksäure.
- 2. **4-Methyl-penten-(2)-dicarbonsäure-(1.5)** C₈H₁₂O₄ = HO₂C·CH₂·CH:CH·CH(CH₃)·CH₂·CO₂H (H 790). B. Beim Kochen von 4-Methyl-penten-(2)-tetracarbonsäure-(1.1.5.5)-tetraäthylester mit 20% iger Salzsäure (Staudinger, Ruzicka, Helv. 7, 446). Öl.

Dimethylester $C_{10}H_{16}O_4=CH_3\cdot O_2C\cdot CH_2\cdot CH\cdot CH\cdot CH(CH_3)\cdot CH_2\cdot CO_2\cdot CH_3$. B. Aus der freien Säure durch Verestern mit methylalkoholischer Schwefelsäure (STAUDINGER, RUZICKA, Helv. 7, 446). — Öl. Kp₁₂: 134°. — Liefert bei der Ozonspaltung Methylbernsteinsäure.

3. 4-Methyl-penten-(1oder 2)-dicarbonsäure-(1.3), $\alpha(oder\gamma)$ -Isopropylglutaconsäure $C_aH_{12}O_4 = HO_2C \cdot CH : CH \cdot CH[CH(CH_3)_2] \cdot CO_2H$ oder $HO_2C \cdot CH_2 \cdot CH$:

 $C[CH(CH_3)_2] \cdot CO_2H^{-1}$.

- a) Niedrigerschmelzende Form, "cis"-Form. B. Neben der höherschmelzenden Isopropylglutaconsäure beim Verseifen des aus β-Chlor-α-isopropyl-glutarsäure-diäthylester beim Erhitzen mit Diäthylanilin auf 180—190° erhaltenen Estergemischs; man trennt die beiden Isomeren, indem man das Säuregemisch mit Acetylchlorid erhitzt, wobei die niedrigerschmelzende Isopropylglutaconsäure in 6-Chlor-3(oder 5)-isopropyl-pyron-(2) übergeht, das über das Kaliumsalz des α(oder γ)-Isopropyl-glutaconsäure-anhydrids in die freie Säure übergeführt wird (ΗΑΚΙΗΑΚΑΝ, ΜΕΝΟΝ, SIMONSEN, Soc. 1928, 437). Tafeln (aus verd. Salzsäure). F: 101°. Leicht löslich in Wasser, Chloroform und Benzol, schwer in Petroläther. Entfärbt in alkal. Lösung Permanganat. Nimmt in Essigsäure kein Brom auf. Gibt ein in Wasser leicht lösliches Calcium- und Bariumsalz.
- b) Höherschmelzende Form, "trans"-Form. B. s. bei der niedrigerschmelzenden Form. Nadeln (aus Chloroform). F: 1320 (Hariharan, Menon, Simonsen, Soc. 1928, 437). Ziemlich schwer löslich in kaltem Wasser, Chloroform und Benzol, sehr schwer in Petroläther. Entfärbt in alkal. Lösung Permanganat. Nimmt in Essigsäure kein Brom auf. Bariumsalz. Tafeln (aus Wasser).
- 4. 4-Methyl-penten-(1)-dicarbonsäure-(1.1), Isoamylidenmalonsäure $(CH_3)_2CH \cdot CH_3 \cdot CH \cdot C(CO_2H)_2$.

Isoamylidenmalonsäure-mononitril, Isoamylidencyanessigsäure, "Cyanisoheptensäure" $C_8H_{11}O_2N=(CH_3)_2CH\cdot CH_2\cdot CH:C(CN)\cdot CO_2H$ (H 792). Zur Konstitution vgl. v. Auwers, B. 56, 1183. — Krystalle (aus Schwerbenzin). F: 53°. D_4^{100} : 0,9711. $n_{\beta}^{\text{00.6}}$: 1,4437; $n_{\beta}^{\text{00.6}}$: 1,4469; $n_{\beta}^{\text{00.6}}$: 1,4560; $n_{\beta}^{\text{00.6}}$: 1,4641. — Gibt bei der Ozonspaltung in Essigester im wesentlichen Isovaleraldehyd. Liefert beim Erhitzen geringe Mengen β -Isobutyliden-propionitril.

Äthylester $C_{10}H_{18}O_8N = (CH_8)_2CH \cdot CH_9 \cdot CH : C(CN) \cdot CO_2 \cdot C_2H_5$. B. Aus dem Silbersalz der vorangehenden Säure und Äthyljodid in siedendem Äther (v. Auwers, B. 56, 1184). — Angenehm riechende Flüssigkeit. Kp_{13} : 121—122°. $D_4^{19,7}$: 0,9666. $n_{\alpha}^{19,7}$: 1,4520; $n_{b}^{19,7}$: 1,4550; $n_{b}^{19,7}$: 1,4704.

5. 4-Methyl-penten-(3)-dicarbonsäure-(1.1), [v.y-Dimethyl-allyl]-malonsäure C₃H₁₂O₄ = (CH₂)₂C: CH·CH₂·CH(CO₂H)₂ (H 792). B. Beim Aufbewahren des Diäthylesters mit wäßrig-alkoholischer Kalilauge (Staudinger, Kreis, Schilt, Helv. 5, 750). — Krystalle (aus Benzol). F: 95,5—96°. — Gibt beim Erhitzen auf 160° 4-Methyl-penten-(3)-carbonsäure-(1) und Kohlendioxyd.

¹⁾ Vgl. S. 648 Anm. 1.

Diäthylester $C_{12}H_{20}O_4 = (CH_3)_2C:CH\cdot CH_2\cdot CH(CO_2\cdot C_2H_5)_2$ (H 792). B. Aus Natrium-malonester und 4-Brom-2-methyl-buten-(2) in Alkohol auf dem Wasserbad (STAUDINGER, KREIS, SCHILT, Helv. 5, 750). — Kp_{11} : 127°.

- 6. Hexen-(5)-dicarbonsaure-(3.3), Athyl-allyl-malonsaure $C_0H_{10}O_4=CH_1:CH\cdot CH_1\cdot C(C_0H_0)(CO_0H)_0$.
- 6-Chlor-hexen-(5)-dicarbonsäure-(3.8)-diäthylester, Äthyl- $[\gamma$ -chlor-allyl]-malonsäure-diäthylester $C_{19}H_{19}O_4Cl=CHCl:CH\cdot CH_2\cdot C(C_2H_5)(CO_2\cdot C_2H_5)_2$. B. Bei der Einw. von γ -Chlor-allylchlorid auf die Natriumverbindung des Äthylmalonsäure-diäthylesters in Alkohol (Hill, Fischer, Am. Soc. 44, 2594). Fruchtartig riechendes Öl. Kp₁₂: 157—160°.
- 7. 2-Methyl-penten-(3)-dicarbonsäure-(1.3), β -Methyl- α -äthyliden-glutarsäure, Dicrotonsäure $C_8H_{19}O_4=CH_3\cdot CH:C(CO_2H)\cdot CH(CH_2)\cdot CH_2\cdot CO_2H$ (H 793). B. Beim Kochen des Dinitrils (s. u.) mit Kalilauge (Bruylants, Gevarr, Bl. Acad. Belgique [5] 9, 33; C. 1923 III, 1263). Aus dem Imid (Syst. Nr. 3202) beim Verseifen mit Alkalien Br., G., Bl. Acad. Belgique [5] 9, 32). F: 127—128°. Kp₁₈: 203—205°. Ziemlich leicht löslich in Benzol.

Dinitril $C_8H_{10}N_2 = CH_3 \cdot CH \cdot C(CN) \cdot CH(CH_3) \cdot CH_2 \cdot CN$. B. Bei Einw. von Äthylmagnesiumbromid in Äther oder von Natriumäthylat-Lösung auf Vinylessigsäurenitril, neben anderen Produkten (Bruylants, Gevaert, Bl. Acad. Belgique [5] 9, 27, 136; Bl. Soc. chim. Belg. 32, 317, 324; C. 1923 III, 1263; Br., Mathus, Bl. Acad. Belgique [5] 11, 651; C. 1926 I, 3146). — Krystalle. F: 13—14° (Br., G.). Kp: 267—270°; Kp₂₀: 145—146°; Kp₁₁: 131—132° (Br., G.). D₂₀²⁰: 0,9465; n_{20}^{20} : 1,4594 (Br., G.). — Liefert bei Einw. von rauchender Salzsäure auf dem Wasserbad Dicrotonsäureimid (Syst. Nr. 3202) (Br., G.).

8. 2-Methyl-penten-(1)-dicarbonsäure-(1.3), β -Methyl- α -äthyl-glutaconsäure $C_8H_{18}O_4=HO_5C\cdot CH:C(CH_5)\cdot CH(C_8H_5)\cdot CO_5H$ (E I 315)¹). Zur Konstitution vgl. Kon, Watson, Soc. 1932, 4, 10. — Von den beiden möglichen sterecisomeren Formen ist nur eine bekannt; Kon, Watson (Soc. 1932, 10) schreiben dieser, E I 2, 315 als tieferschmelzende Form der β -Methyl- α -äthyl-glutaconsäure aufgeführten Verbindung die trans-Konfiguration zu. — Die H 2, 793 beschriebene und E I 2, 315 als höherschmelzende Form der β -Methyl- α -äthyl-glutaconsäure aufgeführte Verbindung ist cis(?)- β -Methyl- γ -äthyl-glutaconsäure (K., W.). Über nicht rein erhaltenen cis(?)- β -Methyl- α -äthyl-glutaconsäure-diäthylester, entstanden bei der Einw. von Athyljodid auf die Kaliumverbindung des Diäthylesters der niedrigerschmelzenden Form der β -Methyl-glutaconsäure, vgl. K., W., Soc. 1932, 5, 11.

Diäthylester $C_{12}H_{30}O_4 = C_2H_5 \cdot O_3 \cdot C \cdot H \cdot C(CH_3) \cdot CH(C_2H_5) \cdot CO_3 \cdot C_2H_6$ (E 1 315). B. Aus dem Silbersalz der freien Säure und Äthyljodid (Kon, Watson, Soc. 1932, 10). Bei der Einw. von Äthyljodid auf die Kaliumverbindung des Diäthylesters der höherschmelzenden β-Methyl-glutaconsäure entsteht ein Präparat, das noch geringe Mengen β-Methyl-γ-āthylglutaconsäure-diäthylester enthält (K., W., Soc. 1932, 11). Nach BLAND, THORPE (Soc. 101, 1568) aus Isodehydracetsäureāthylester (Syst. Nr. 2619) bei aufeinanderfolgender Einw. von Natriumäthylat und Äthyljodid in kaltem Alkohol erhaltener Ester enthält noch erhebliche Mengen β-Methyl-γ-āthyl-glutaconsäure-diāthylester (K., W.). — Kp₁₂: 136°; D[∞]₁: 1,0055; n[∞]₁: 1,4540 (K., W.). Weitere Angaben über Präparate unbekannten Reinheitsgrades s. bei v. Auwers, Ottens, B. 57, 441, 444. — Bei der Ozonspaltung erhält man Oxalsäure und α-Äthyl-acetessigsäure-āthylester (K., W.).

- 2-Methyl-1-cyan-penten-(1)-carbonsäure-(3), β -Methyl- α -äthyl-glutaconsäure- γ -nitril $C_5H_{11}O_2N=NC\cdot CH:C(CH_3)\cdot CH(C_3H_5)\cdot CO_3H$ (H 793). Das von Guareschi (C. 1907 I, 459) beschriebene Produkt wird von Gibson, Simonsen, Soc. 1929, 1075 als 2.6-Dioxy-4-methyl-3-äthyl-pyridin (Syst. Nr. 3134) erkannt.
- 9. 2-Methyl-penten-(2)-dicarbonsäure-(1.3), β -Methyl- γ -äthyl-glutaconsäure $C_8H_{12}O_4=HO_2C\cdot C(C_2H_3)\cdot C(CH_2)\cdot CH_2\cdot CO_2H$ (H 793; E I 315). Zur Konstitution vgl. Kon, Watson, Scc. 1932, 4, 10. Von den beiden möglichen stereoisomeren Formen ist nur eine bekannt; Kon, Watson (Scc. 1932, 10) schreiben dieser, H 2, 793 beschriebenen und E I 2, 315 als höherschnelzende Form der β -Methyl- α -äthyl-glutaconsäure aufgeführten Verbindung die cis-Konfiguration zu.

Diäthylester $C_{19}H_{20}O_4 = C_2H_5 \cdot O_2C \cdot C(C_2H_5) \cdot C(H_2 \cdot CO_2 \cdot C_2H_3)$ (E I 315). B. Aus dem Silbersalz der Säure und Äthyljodid in siedendem Äther; enthält nur geringe Mengen an β -Methyl- α -äthyl-glutaconsäure-diäthylester (Kon, Watson, Soc. 1932, 10). — Kp₁₀: 1260; D₁²: 1,0076; n₁²: 1,4528 (K., W.). Weitere Daten über Präparate unbekannten Reinheitsgrades vgl. bei v. Auwers, Ottens, B. 57, 441, 444. — Bei der Ozonspaltung entsteht hauptsächlich Acetessigsäure-äthylester neben geringen Mengen Oxalsäure und α -Äthylacetessigsäure-äthylester (K., W.).

¹⁾ Vgl. S. 648 Anm. 1.

- 10. Hexen-(3)-dicarbonsäure-(3.4), Diäthylmaleinsäure, Xeronsäure $C_8H_{12}O_4 = HO_2C \cdot C(C_2H_5) \cdot C(C_2H_5) \cdot CO_2H$ (H 794).
 - H 794, Z. 11 v. u. statt ,, A. 346, 80" lies ,, A. 346, 17".

 Z. 8 v. u. statt ,, bernsteinsäure" lies ,, bernsteinsäureanhydrid".

Monoamid $C_8H_{13}O_5N = HO_2C \cdot C(C_2H_5) \cdot C(C_2H_5) \cdot CO \cdot NH_2$. B. Das Ammoniumsalz entsteht aus Diäthylmaleinsäureanhydrid beim Einleiten von Ammoniak in die äther. Lösung (Anschütz, A. 461, 177). — Ammoniumsalz. Pulver. F: 136—137°. — Silbersalz. AgC. H. O.N. Ziemlich lichtbeständig.

- 11. 2-Isopropyl-propen-(1)-dicarbonsäure-(1.3), β -Isopropyl-glutaconsäure $C_8H_{19}O_4=(CH_3)_2CH\cdot C(CH_2\cdot CO_2H)\cdot CH\cdot CO_2H$.
- β -Isopropyl-glutaconsäure- γ -nitril, 2-Isopropyl-3-cyan-propen-(2)-carbonsäure-(1) $C_8H_{11}O_2N=(CH_3)_2CH\cdot C(CH_2\cdot CO_2H):CH\cdot CN$ (H 795). Das von Guareschi (C. 1907 I, 459) beschriebene Produkt wird von Gibson, Simonsen (Soc. 1929, 1075) als 2.6-Dioxy-4-isopropyl-pyridin (Syst. Nr. 3134) erkannt.
- 12. 2-Åthyl-buten-(1)-dicarbonsäure-(1.1), Pentyliden-(3)-malonsäure, Diathylmethylen-malonsaure $C_8H_{12}O_4 = (C_2H_5)_2C:C(CO_2H)_2$.

Äthylester - nitril, $\beta.\beta$ - Diäthyl - α - cyan - acrylsäure - äthylester $C_{10}H_{15}O_2N=$ (C₂H₅)₂C:C(CN)·CO₂·C₂H₅. B. Durch Kondensation von Diäthylketon mit Cyanessigester in Gegenwart von Piperidin oder Acetanhydrid und Zinkchlorid auf dem Wasserbad (Birch, Kon, Soc. 123, 2448). — Kp₃₀: 132—140°; Di^{a,c}: 0,9941; ni^{a,c}: 1,4670 (B., K.). — Liefert beim Behandeln mit Cyanessigester und alkoh. Ammoniak das Imid der $\beta.\beta$ -Diäthyl- $\alpha.\alpha'$ -dicyanglutarsäure (B., K.). Gibt beim Aufbewahren mit Kaliumcyanid in Alkohol und Kochen des Reaktionsprodukts mit konz. Salzsäure α.α-Diäthylbernsteinsäure (Sircar, Soc. 1927, 1254).

Dinitril, $\alpha.\alpha$ - Diäthyl - $\beta.\beta$ - dieyan - äthylen $C_8H_{10}N_2 = (C_2H_5)_2C:C(CN)_2$. B. Aus Malonitril und Diäthylketon bei Gegenwart von Piperidin in Alkohol (Ostling, Of, Fi. 57, Nr. 11, S. 7, 13; C. 1921 I, 613). — Krystalle (aus Alkohol). F: 165—167°.

13. 2.3 - Dimethyl - buten - (1) - dicarbonsäure - (1.3), $\alpha.\alpha.\beta$ - Trimethyl- $\textbf{glutaconsaure} \ C_8H_{12}O_4 = HO_2C \cdot CH : C(CH_3) \cdot C(CH_3)_2 \cdot CO_2H. \ \ Niedrigerschmelzende$ Form (H 795; E I 316).

H 796, Z. 4 v. o. statt "PCl₅" lies "PBr₅".

 $\textbf{Diäthylester} \ C_{12}H_{20}O_4 = C_2H_5 \cdot O_2C \cdot CH : C(CH_3) \cdot C(CH_3)_2 \cdot CO_2 \cdot C_2H_5 \ (E\ I\ 316). \ B. \ Wurde$ einmal aus β -Methyl-glutaconsäure-diäthylester bei der Einw. von Methyljodid und Natrium in Äther erhalten (FEIST, A. 428, 69). - Kp18: 130-131°.

6. Dicarbonsäuren $C_9H_{14}O_4$.

1. 2-Isopropyl-buten-(1)-dicarbonsäure-(1.4), β -Tanacetogendicarbonsäure, , β -Tanacetondicarbonsäure' $C_0H_{14}O_4=HO_2C\cdot CH_2\cdot CH_2\cdot C[CH_1(CH_3)_2]\cdot CH_1(CH_3)_2$ CO₂H (H 798; E I 316). B. Aus α-Tanacetogendicarbonsaure-dimethylester (Syst. Nr. 964) durch längeres Kochen, nachfolgende Destillation und Verseifung mit kalter Natronlauge (TOIVONEN, Ann. Acad. Sci. fenn. [A] 28, Nr. 8, S. 22; C. 1928 II, 39). — Krystalle (aus Benzol und Wasser). F: 117—119°.

Dimethylester $C_{11}H_{18}O_4 = CH_3 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot C[CH(CH_3)_2] \cdot CH \cdot CO_2 \cdot CH_3$. B. Aus der Säure beim Behandeln mit Methanol und konz. Schwefelsäure (Torvonen, Ann. Acad. Sci. fenn. 28, Nr. 8, S. 24; C. 1928 II, 39). — Fast geruchlose Flüssigkeit. Kp_{14} : 140°. $D_{n,s}^{\text{m.s.}}$: 1,0351; $n_{n,s}^{\text{m.s.}}$: 1,4602. — Reagiert mit Natriummethylat-Lösung wie α -Tanacetogendicarbonsäure-dimethylester unter Bildung von Tanacetophoroncarbonsäure-methylester (E I 10, 302).

- CH[CH(CH₃)₂]·CH₂·CO₂H. Diese Konstitution kommt vielleicht der als 1-Isopropyl-cyclo-propan-carbonsäure-(2)-essigsäure-(1) (Syst. Nr. 964) abgehandelten Verbindung zu.
- 3. 5 Methyl hexen (4) dicarbonsaure (2.2), Methyl- $[\gamma, \gamma]$ -dimethylallyl] malonsaure $C_0H_{14}O_4 = (CH_3)_2C:CH:CH_2:C(CH_3)(CO_2H)_2$ s. bei 2.5-Dimethylhexen-(2)-säure-(6), S. 415.

7. Dicarbonsäuren ${ m C_{10}H_{16}O.}$

1. Octen - (1) - dicarbonsäure - (1.1), Önanthylidenmalonsäure $C_{10}H_{16}O_4 =$ $CH_3 \cdot [CH_2]_5 \cdot CH : C(CO_3H)_3$.

Önanthylidenmalonsäure-mononitril, β -n-Hexyl- α -cyan-acrylsäure, n-Heptyliden-cyanessigsäure $C_{10}H_{18}O_2N=CH_3\cdot[CH_2]_5\cdot CH:C(CN)\cdot CO_2H$ (H 799). B. Beim Kochen von n-Heptyliden-cyanessigsäure-amid mit verd. Salzsäure (Curtis, Day, Kimmins, Soc. 123, 3137). Beim Schütteln von cyanessigsaurem Natrium mit Önanthol in verd. Natronlauge, neben anderen Produkten (Lapworth, McRae, Soc. 121, 2748). — Krystalle (aus Benzol + Petroläther). F: 127° (C., D., K.). — Liefert bei längerer Einw. von Kaliumcyanid in verd. Essigsäure und nachfolgender Hydrolyse mit rauchender Salzsäure n-Hexyl-bernsteinsäure (L., McR.).

Äthylester C₁₂H₁₉O₂N = CH₃·[CH₂]₅·CH:C(CN)·CO₂·C₂H₅. B. Bei der Kondensation von Cyanessigsäureäthylester mit Önanthol bei Gegenwart von wenig Piperidin in der Kälte (Lapworth, McRae, Soc. 121, 2752; McRae, Manske, Soc. 1928, 488). — Kp₁₃: 144—145° (L., McR.), 152—154° (McR., M.). — Liefert bei der Ozonspaltung Önanthol (L., McR.). Reagiert mit Brom bei Zimmertemperatur nur langsam (L., McR.). Bei Einw. von Brom auf eine Lösung in Natriumäthylat + Alkohol wird ein viscoses bromhaltiges Produkt erhalten (L., McR.). Beim Kochen mit alkoh. Kalilauge entstehen Önanthol und Ammoniak (L., McR.). Die goldgelbe Lösung in Natriumäthylat-Lösung (vgl. darüber L., McR., Soc. 121, 2743, 2744) gibt beim Erwärmen mit Butyljodid auf dem Wasserbad Butyl-α-heptenyl-cyanessigsäure-äthylester (McR., M.); beim Erhitzen mit Benzylchlorid entsteht vermutlich ein Gemisch aus dem Äthylester der α-Cyan-α-benzyl-Δβ-nonensäure und ihrem Nitril (L., McR.). Bei Einw. von Kaliumcyanid-Lösung und nachfolgendem Ansäuern entsteht α-β-Dicyan-pelargonsäure-äthylester (L., McR.). Durch Schütteln mit NaHSO₃-Lösung erhält man nicht näher beschriebene Additionsprodukte (L., McR.).

Amid C₁₀H₁₆ON₂ = CH₃·[CH₂]₅·CH·:C(CN)·CO·NH₂. B. Neben anderen Produkten bei der Kondensation von Cyanacetamid mit Önanthol in Gegenwart von Piperidin in wäßr. Lösung (Curtis, Day, Kimmins, Soc. 123, 3137). — Platten (aus Alkohol). Schmilzt bei 197° zu einer braunen Flüssigkeit. Sehr leicht löslich in Alkohol. — Geht beim Kochen mit verd. Salzsäure teilweise in n-Heptyliden-cyanessigsäure über

2. 6-Methyl-hepten-(1)-dicarbonsäure-(4.4), Isobutyl-allyl-malonsäure $C_{10}H_{10}O_4 = CH_2 \cdot CH \cdot CH_2 \cdot C(CO_2H)_2 \cdot CH_3 \cdot CH(CH_3)_2$.

Diäthylester $C_{14}H_{34}O_4 = CH_2 : CH \cdot CH_2 \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH_2 \cdot CH(CH_3)_2$. B. Aus Natrium-isobutylmalonsäure-diäthylester und Allylbromid (Darzens, C. r. 183, 1111). — Kp_{14} : 125° bis 130° (Chem. Fabr. Sandoz, Schweiz. Pat. 135161; C. 1930 I, 2799).

3. 5-Methyl-hepten-(1)-dicarbonsäure-(4.4), sek.-Butyl-allyl-malonsäure $C_{10}H_{16}O_4=CH_2:CH\cdot CH_2\cdot C(CO_2H)_2\cdot CH(CH_3)\cdot CH_2\cdot CH_3$. B. Durch Kochen des Diäthylesters mit konz. Kalilauge (RIEDEL-DE HAËN, D. R. P. 473519; Frdl. 16, 2477). — Liefert beim Erhitzen auf 190° sek.-Butyl-allyl-essigsäure.

Diäthylester $C_{14}H_{24}O_4=CH_2:CH\cdot CH_2\cdot C(CO_2\cdot C_2H_5)_3\cdot CH(CH_3)\cdot CH_2\cdot CH_3$. B. Aus sek.-Butyl-malonsäure-diäthylester durch Kochen mit Allylbromid in Natriumäthylat-Lösung (Riedel-de Haen, D. R. P. 473519; Frdl. 16, 2477). — Kp₁₂: 145—148°.

8. Dicarbonsäuren $C_{11}H_{18}O_4$.

1. Nonen-(2)-dicarbonsäure-(1.2), Önanthylidenbernsteinsäure, γ -n-Hexyl-itaconsäure $\mathrm{C_{11}H_{18}O_4}=\mathrm{CH_3\cdot[CH_3]_5\cdot CH:C(CO_2H)\cdot CH_2\cdot CO_2H}$ (H 800).

H 800, Z. 8 v. u. statt "und Natriumäthylat" lies "durch Erwärmen mit Natriumäthylat-Lösung und Kochen des Reaktionsprodukts mit Natronlauge".

2. 2.6 - Dimethyl-hepten-(5)-dicarbonsäure-(3.3), Isopropyl-fy. γ -dimethyl-allyl]-malonsäure $C_{11}H_{18}O_4=(CH_3)_3C:CH\cdot CH_3\cdot C(CO_3H)_3\cdot CH(CH_3)_3$.

Diäthylester $C_{15}H_{26}O_4=(CH_3)_2C:CH\cdot CH_3\cdot C(CO_3\cdot C_3H_5)_2\cdot CH(CH_3)_2$. B. Bei der Einwvon Isopropylbromid auf 4-Methyl-penten-(3)-dicarbonsäure-(1.1)-diäthylester oder weniger gut durch Kondensation von Isopropylmalonsäurediäthylester mit 4-Brom-2-methyl-buten-(2) in alkoh. Lösung (Staudinger, Mitarb., Helv. 7, 405). — Liefert beim Verseifen mit alkoh. Kalilauge auf dem Wasserbad und nachfolgenden Destillieren im Vakuum wenig 2.6-Dimethyl-hepten-(5)-carbonsäure-(3) und ein in Soda-Lösung unlösliches Lacton.

9. 3-Methyl-nonen-(3)-dicarbonsaure-(1.4) $C_{12}H_{20}O_4=CH_3\cdot[CH_2]_4\cdot C(CO_2H):$ $C(CH_3)\cdot CH_2\cdot CH_3\cdot CO_2H.$

Monoäthylester $C_{14}H_{24}O_4 = CH_2 \cdot [CH_2]_k \cdot C(CO_2 \cdot C_2H_5) \cdot C(CH_2) \cdot CH_2 \cdot CO_2H$. B. Entsteht neben anderen Produkten aus Lävulinsäureäthylester durch Einw. von α -Bromönanthsäure-äthylester und mit Jod aktiviertem Zink in Benzol und nachfolgendes Erhitzen auf 150° in Abwesenheit von Benzol (Staudinger, Ruzicka, Helv. 7, 256). — Öl. $Kp_{0,4}$: 150°.

669

— Entfärbt Brom- und Permanganat-Lösung. Wird durch Wasserstoff in Gegenwart von Palladium oder durch Natriumamalgam nicht reduziert.

Diäthylester $C_{16}H_{28}O_4 = CH_3 \cdot [CH_3]_4 \cdot C(CO_2 \cdot C_2H_5) : C(CH_3) \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Aus dem Natriumsalz des Monoäthylesters und Äthyljodid (Staudinger, Ruzicka, Helv. 7, 257). — Öl. Kp_{15} : 170—180°. — Liefert beim Kochen mit Natrium in Xylol und Erhitzen des Reaktionsprodukts mit 20% iger Schwefelsäure 1-Methyl-2-n-amyl-cyclopenten-(1)-on-(3).

10. 3-Methyl-2-isoamyl-penten-(1)-dicarbonsäure-(1.5) $C_{13}H_{22}O_4 = HO_2C \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3

Diäthylester $C_{17}H_{30}O_4 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH(CH_3) \cdot C[CH_2 \cdot CH_2 \cdot CH(CH_3)_2] \cdot CH \cdot CO_2 \cdot C_2H_5$. B. Beim Kochen des Lactons der 2-Oxy-3-methyl-2-isoamyl-pentan-dicarbon-säure-(1.5)-äthylesters-(1) $H_2C \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2$ (Syst. Nr. 2619) mit gesättigter alkoholischer Bromwasserstoff-Lösung, neben anderen Produkten (Ruzicka, Pfeiffer, Helv. 9, 858). — Kp_{0,25}: 134—135°. — Liefert bei der Hydrierung in Gegenwart von Platinschwarz in Essigester γ-Methyl-β-isoamyl-pimelinsäure-diäthylester.

11. Dicarbonsäuren $C_{14}H_{24}O_4$.

1. **Dodecen-(11)-dicarbonsäure-(1.1),** ω -Undecenyl-malonsäure $C_{14}H_{24}O_4=CH_2$: $CH\cdot[CH_2]_9\cdot CH(CO_2H)_2$. B. Durch Verseifung des Diäthylesters mit alkoh. Kalilauge (Tomecko, Adams, Am. Soc. 49, 528). — Krystalle (aus Benzol). F: 112—113°. — Geht bei 150° in Dodecen-(11)-carbonsäure-(1) über.

Diäthylester $C_{18}H_{32}O_4=CH_2:CH\cdot[CH_2]_9\cdot CH(CO_2\cdot C_2H_5)_2$. B. Beim Kochen von Natriummalonester mit 11-Brom-undecen-(1) in Alkohol (Tomecko, Adams, Am. Soc. 49, 528). — $Kp_2:154^0$. $D_0^{\infty}:0.9411.$ $n_0^{\infty}:1.4450.$

 $\begin{array}{ll} 2. & \textbf{\textit{Dodecen-(6)-dicarbons\"aure-(5.5), Butyl-\alpha-heptenyl-malons\"aure}} \\ C_{14}H_{24}O_4 = CH_3 \cdot [CH_2]_4 \cdot CH \cdot C(CO_2H)_2 \cdot [CH_2]_3 \cdot CH_3. \end{array}$

Äthylester-nitril, Butyl- α -heptenyl-cyanessigsäure-äthylester $C_{10}H_{27}O_2N=CH_3\cdot [CH_2]_4\cdot CH\cdot CH\cdot C(CN)(CO_2\cdot C_2H_5)\cdot [CH_2]_3\cdot CH_3$. B. Beim Erwärmen der Natriumverbindung des n-Heptyliden-cyanessigsäure-äthylesters mit Butyljodid auf dem Wasserbad (McRae, Manske, Soc. 1928, 488). — Kp₁₁: 154—156°. — Absorbiert in Tetrachlorkohlenstoff Brom, dabei wird bei längerer Einw. auch Bromwasserstoff entwickelt. Gibt beim Einleiten von Ozon, Erwärmen des Ozonids mit 4% iger Schwefelsäure auf dem Wasserbad und anschließender Wasserdampfdestillation Ameisensäure, n-Capronaldehyd und ein Produkt, das beim Verseifen mit alkoh. Kalilauge Butylmalonsäure liefert.

12. Dicarbonsäuren $\mathrm{C_{15}H_{26}O_4}$.

1. Tridecen-(12)-dicarbonsäure-(2.2), Methyl- ω -undecenyl-malonsäure $C_{18}H_{26}O_4 = CH_2:CH \cdot [CH_2]_6 \cdot C(CH_3)(CO_2H)_2$.

Diäthylester $C_{19}H_{34}O_4=CH_2:CH\cdot[CH_2]_9\cdot C(CH_3)(CO_2\cdot C_2H_5)_2.$ B. Bei der Einw. von 11-Brom-undecen-(1) und Natriumäthylat-Lösung auf Methylmalonsäurediäthylester in Gegenwart von Benzol auf dem Wasserbad (Chuir, Mitarb., Helv. 10, 124). — Kp₃: 160°. $D^{15}:0,939.$ — Liefert beim Verseifen die freie Säure (Flüssigkeit), die bei allmählichem Erhitzen auf 190° in Tridecen-(12)-carbonsäure-(2) übergeht.

2. **6.10 - Dimethyl-undecen-(9) - dicarbonsäure-(1.1)**, β - Citronellylathylj-malonsäure $C_{15}H_{26}O_4 = (CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot [CH_2]_4\cdot CH(CO_2H)_2$.

Diäthylester $C_{19}H_{34}O_4=(CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot [CH_2]_4\cdot CH(CO_2\cdot C_3H_5)_2$. Linksdrehende Form. B. Bei der Kondensation von β -Citronellyl-äthylbromid mit Natriummalonester auf dem Wasserbad; wurde nicht vollkommen rein erhalten (Ruzicka, Steiger, Helv. 10, 686). — Kp_{0,5}: 160—165°. [α]_p: —2,0°. — Liefert bei der Verseifung mit siedender alkoholischer Kalilauge und nachfolgendem Erhitzen auf ca. 170° γ -Citronellyl-buttersäure.

13. Dicarbonsäuren $m C_{16}H_{28}O_4$.

1. Tetradecen - (13) - $dicarbons\"{a}ure$ - (1.1). ω - Tridecenyl - $malons\"{a}ure$ $C_{1e}H_{2e}O_4$ = $CH_2:CH \cdot [CH_2]_{11} \cdot CH(CO_2H)_2$. B. Beim Erhitzen von 13-Brom-tridecen-(1) mit

[Syst. Nr. 179

Malonsäurediäthylester und Natriumäthylat-Lösung im Autoklaven auf 1500 und nachfolgenden Verseifen (Churt, Mitarb., Helv. 10, 127). — F: ca. 111°. Löslich in Äther und Benzol.

bis 180°. D15: 0,947.

2. 2-Methyl-tridecen-(1)-dicarbonsaure-(1.13) $C_{16}H_{28}O_4 = HO_2C \cdot [CH_2]_{11}$ C(CH₃): CH·CO₃H. B. Durch Einw. von Bromessigester auf 12-Oxo-tridecan-carbonsaure-(1)äthylester in Benzol bei Gegenwart von Zink und Behandlung des Reaktionsprodukts mit Phosphortribromid in Benzol und mit alkoh. Kalilauge; wurde nicht vollkommen rein erhalten (Ruzicka, Stoll, Helv. 10, 693). — Krystalle.

Dimethylester $C_{18}H_{32}O_4 = CH_3 \cdot O_3C \cdot [CH_3]_{11} \cdot C(CH_3) : CH \cdot CO_2 \cdot CH_3$. B. Aus defreien Säure und methylalkoholischer Schwefelsäure (Ruzicka, Stoll, Helv. 10, 694). Kp₂: 186—187°. — Liefert bei der Hydrierung in Gegenwart von Platinschwarz und nachfolgenden Verseifung 2-Methyl-tridecan-dicarbonsäure-(1.13).

14. 8.12 - Dimethyl - tridecen - (11) - dicarbonsäure - (1.1), $[\delta$ - Citronellyl butyl]-malonsäure $C_{17}H_{30}O_4 = (CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot [CH_2]_6\cdot CH(CO_2H)_2$.

Diäthylester $C_{21}H_{38}O_4 = (CH_3)_2C:CH\cdot CH_2\cdot CH_2\cdot CH(CH_3)\cdot [CH_2]_6\cdot CH(CO_2\cdot C_2H_5)_2$. Linksdrehende Form. B. Bei der Kondensation von δ -Citronellyl-butylbromid mit Natriummalonester auf dem Wasserbad (Ruzicka, Steiger, Helv. 10, 687). — Dickflüssiges Ol. Kp₁: 180—185°. [α]_D: —1,0°. — Liefert bei der Verseifung mit siedender alkoholischer Kalilauge und nachfolgendem Erhitzen der Dicarbonsäure ε-Citronellyl-n-capronsäure.

15. 10.14 - Dimethyl - pentadecen - (13) - dicarbonsäure - (1.1), [ζ-Citronellyl-n-hexyl]-malonsäure $C_{19}H_{34}O_4 = (CH_3)_2C: CH \cdot CH_2 \cdot CH_3 \cdot CH(CH_3) \cdot [CH_3]_8$ CH(CO₂H)₂.

Diäthylester $C_{33}H_{43}O_4 = (CH_3)_3C:CH\cdot CH_3\cdot CH_2\cdot CH(CH_3)\cdot [CH_3]_8\cdot CH(CO_2\cdot C_2H_5)_2$. Linksdrehende Form. B. Bei der Kondensation von ζ -Citronellyl-n-hexylbromid mit Natriummalonester auf dem Wasserbad (RUZICKA, STEIGER, Helv. 10, 687). — Dickflüssiges Öl. $Kp_{0.5}$: 175—180°. $[\alpha]_0$: —0,6°. — Liefert bei der Verseifung mit siedender alkoholischer Kalilauge und nachfolgendem Erhitzen der erhaltenen Dicarbonsäure ω-Citronellylcaprylsäure. [GERISCH]

3. Dicarbonsäuren C_nH_{2n-6}O₄.

1. Acetylendicarbonsäure $C_4H_2O_4 = HO_2C \cdot C \cdot C \cdot CO_2H$ (H 801; E I 317). B. In geringer Menge bei 20-tägiger Einw. von Kohlendioxyd unter Druck auf ein Gemisch von Mononatriumacetylenid oder besser Dinatriumacetylenid mit 10—15 Tln. Seesand (Straus, Voss, B. 59, 1686, 1688). Zur Bildung aus Acetylen-bis-magnesiumbromid nach Jozitsch (Bl. [3] 30 [1903], 210) vgl. Ruggli, Helv. 3, 565; Grignard, Lapayre, Tchrou Faki, C. r. 187, 518. Das Dikaliumsalz entsteht bei der Einw. von 3n-äthylalkoholischer Kalilauge auf Chlorfumarsäuredichlorid unter Kühlung (Ingold, Soc. 127, 1203). — Zur Darstellung aus $\alpha.\alpha'$ -Dibrom-bernsteinsäure und alkoh. Kalilauge nach Baryer (B. 18 [1885], 677, 2269) vgl. R., *Helv.* 3, 564; BACKER, VAN DEE ZANDEN, *R.* 47, 778; ABBOTT, ARNOLD, THOMPSON, *Org. Synth.* 18 [1938], 3. — Röntgenographische Untersuchung: BECKER, JANCKE, *Ph. Ch.* 99, 265. F: 176° (Zers.) (St., V.), 177° (Zers.) bei raschem Erhitzen (R.), 178° (Zers.) (EICHELBERGER, Am. Soc. 48, 1321).

Liefert bei der Hydrierung in Gegenwart von kolloidalem Palladium in Wasser oder in Wasser + Athylacetat Maleinsäure (Bourguel, C. r. 180, 1754; Bl. [4] 45, 1075). Bei der Hydrierung in Gegenwart von frisch bereitetem Palladium-Tierkohle-Katalysator in Ather entsteht Maleinsäure neben ca. 1% Fumarsäure; bei wiederholter Anwendung desselben Katalysators nimmt die Ausbeute an Fumarsäure zu (Ott, Schröter, B. 60, 633). Reduktion mit verschiedenartig vorbehandeltem Palladium-Katalysator: O., Schr. Gibt beim Behandeln mit Phosphorpentachlorid unter Kühlung mit einer Kältemischung Chlorfumaräusredichlorid (Ruggus, Helv, 3, 569). Liefert bei tegelengen Fehitzen mit einem großen säuredichlorid (Ruggli, Helv. 3, 569). Liefert bei tagelangem Erhitzen mit einem großen Überschuß von Jod-Kaliumjodid-Lösung auf 37° Dijodfumarsäure (Eighberberger, Am. Soc. 48, 1321). Das Kaliumsalz liefert mit 2 Mol Kaliummetabisulfit K₂S₂O₅ bei 100° das Trikaliumsalz der a.a'-Disulfo-bernsteinsäure (Backer. van der Zanden, R. 47, 778). Gibt beim Erhitzen mit Diphenylketen wenig Kohlensuboxyd (Staudinger, Schlubach, Schneider, Helv. 6, 290).

H 802, Z. 15 v. u. streiche "Acetylchlorid oder". Z. 13 v. u. streiche "; 29, 1792".

Acetylendicarbonsäure-dimethylester $C_6H_5O_4=CH_3\cdot O_2C\cdot C:C\cdot CO_2\cdot CH_3$ (H 803; E I 317). Gibt mit Azidobenzol in Tetrachlorkohlenstoff bei 100° 1-Phenyl-1.2.3-triazoldicarbonsäure-(4.5)-dimethylester (H 26, 298) (Michael, J. pr. [2] 48 [1893], 94; M., Luehn, Higbee, Am. 20 [1898], 380); reagiert analog mit 2-Azido-p-xylol (Bertho, Hölder, J. pr. [2] 119, 194).

Acetylendicarbonsäure-diäthylester $C_8H_{10}O_4=C_2H_5\cdot O_2C\cdot C:C\cdot CO_2\cdot C_2H_5$ (H 803; E I 317). B. Neben harzigen Produkten bei 60-stdg. Kochen von Dibrommaleinsäure-diäthylester mit Zinkstaub in Benzol (Ruggli, Helv. 3, 567). — Krystallisiert beim Abkühlen mit einer Kältemischung. F: 1—2° (R.). Di: 1,0690 (R.). — Bei der Hydrierung mit einem durch unreinen Wasserstoff vergifteten Palladium-Tierkohle-Katalysator erhielten Ott, Schröter (B. 60, 633) Fumarsäurediäthylester und wenig Maleinsäurediäthylester. Liefert beim Behandeln mit überschüssigem Hydroxylamin-hydrochlorid und Natriumäthylat-Lösung in Methanol unter Eiskühlung das Dinatriumsalz des Acetylendicarbonsäuremonohydroxylamids (R.).

Acetylendicarbonsäure-monohydroxylamid C₄H₃O₄N = HO₂C·C:C·CO·NH·OH. B. Das Dinatriumsalz bildet sich beim Behandeln von Acetylendicarbonsäure-diäthylester mit überschüssigem Hydroxylamin-hydrochlorid und Natriumäthylat-Lösung in absol. Alkohol + Methanol unter Eiskühlung (Ruggli, Helv. 3, 567). — Dinatriumsalz Na₂C₄HO₄N. Nicht rein erhalten. Sehr hygroskopische gelbe Krystalle. Löst sich in Wasser mit alkal. Reaktion. Verpufft beim Erhitzen. Wird durch verd. Säuren zersetzt. Gibt mit Eisenchlorid-Lösung eine intensiv violette Färbung oder Fällung. Gibt mit angesäuerten Lösungen von Kupfersalzen olivgrüne, mit Silbernitrat gelbliche Fällungen.

2. Propin-dicarbonsäure-(1.3), Allylen- $\alpha.\gamma$ -dicarbonsäure, Glutinsäure $C_8H_4O_4=HO_2C\cdot CH_2\cdot C:C\cdot CO_2H$ (H 803). Gibt beim Erwärmen mit Brom in Eisessig je nach den Mengenverhältnissen $\beta.\gamma$ -Dibrom-glutaconsäure oder $\alpha.\beta.\gamma$ -Tribromglutaconsäure; bei der Einw. von Bromwasserstoffsäure erhält man β -Brom-glutaconsäure (Makulec, Malachowski, Manitius, Roczniki Chem. 8, 577, 580; C. 1929 I, 1327). Liefert bei der Einw. von Acetanhydrid 6-Oxy-4-acetoxy-pyron-(2).

Dimethylester $C_7H_8O_4=CH_3\cdot O_2C\cdot CH_2\cdot C:C\cdot CO_2\cdot CH_3$. B. Beim Behandeln von Propin-dicarbonsäure-(1.3) mit Diazomethan (Makulec, Malachowski, Manitus, Roczniki Chem. 8, 579; C. 1929 I, 1328). — Flüssigkeit von scharfem, durchdringendem Geruch. Kp₆: 101,0—101,5°. D_4^m : 1,1657. n_5^m : 1,4878. Unlöslich in Wasser. — Gibt mit Natronlauge oder Kalilauge eine intensiv rote Färbung, die beim Ansäuern verschwindet.

- 3. Butadien (1.3) dicarbonsäure (1.4), Erythren $\alpha.\delta$ dicarbonsäure, Muconsäure $C_0H_0O_A = HO_0C \cdot CH \cdot CH \cdot CH \cdot CO_0H$.
- a) Muconsäure vom Schmelzpunkt 305°, trans-trans-Muconsäure, gewöhnlich schlechthin als Muconsäure bezeichnet C₆H₆O₄ = HO₂C·CH HC·CO₂H

 E I 318). Zur Konfiguration vgl. Böeseken, Kerkhoven, R. 51 [1932], 964; vgl. a. Farmer, Soc. 123, 2535. B. Beim Erwärmen von Propiolsäureäthylester mit Fumarsäurediäthylester in Äther bei Gegenwart von Natrium auf dem Wasserbad und Aufbewahren des Reaktionsprodukts im Vakuumexsiccator (Ingold, Soc. 127, 1205, 1206). Neben anderen Produkten beim Kochen von hochschmelzendem α.α'-Dibrom-adipinsäure-diäthylester mit Natriumäthylat-Lösung (Vogt, Mitt. Kohlenforschungsinst. Breslau 2, 83; C. 1926 I, 2341). Bei der Einw. von konzentrierter methylalkoholischer Kalilauge auf hochschmelzenden oder niedrigschmelzenden α.α'-Dibrom- oder α.α'-Dijod-adipinsäure-diäthylester, neben anderen Verbindungen (I., Soc. 119, 957, 967; Chandrasena, I., Soc. 121, 1314). Zur Bildung aus β.β'-Dibrom-adipinsäure nach Rupe (A. 256, 23) und aus dem Lacton der β-Oxy-β'-sulfo-adipinsäure nach Behbend, Koolman (A. 394, 228) vgl. Ch., I. Neben anderen Produkten beim Kochen von α'-β'-Dibrom-Δα-dihydro-muconsäure-diäthylester mit 1,5 n- bis 8,5 n-methylalkoholischer Kalilauge (Ch., I.). Vgl. a. Bildung des Dimethylesters (s. u.) und des Diäthylesters (s. u.). Bildet sich im Organismus des Kaninchens nach intraperitonealer Injektion von Benzol (Therefelder, Klenk, H. 141, 30), aber nicht nach subcutaner Injektion von Benzol (Neumaerker, H. 126, 208).

F: 305°(Zers.) (Chandrasena, Ingold, Soc. 121, 1314), 289°(Zers.) bei langsamem Erhitzen, 300—305° bei raschem Erhitzen (Farmer, Soc. 123, 2548); bräunt sich bei 280—290° und zersetzt sich bei 306—307° unter Aufschäumen (Vogt, Mitt. Kohlenforschungsinst. Breslau 2, 83; C. 1926 I, 2341). Sublimation: V. In Essigester leichter löslich als in Äther (Neumarker, H. 126, 205). — Das Kaliumsalz wird durch Aspergillus niger in Kaliumcitrat übergeführt (Challenger, Mitarb., Nature 121, 244; C. 1928 I, 2183). Nach subcutaner Injektion einer wäßr. Lösung des Natriumsalzes an Kaninchen findet sich Muconsäure zum großen Teil unverändert im Harn wieder (N.). — Wird durch neutrales Bleiacetat aus neutraler Lösung quantitativ gefällt (N.).

trans-trans-Muconsäuredimethylester $C_8H_{10}O_4 = CH_3 \cdot O_2C \cdot CH : CH \cdot CH \cdot CO_2 \cdot CH_3$ (H 804; E I 318). B. Neben der cis-cis-Form (F: 75°) und anderen Produkten aus der hochschmelzenden oder niedrigschmelzenden Form des β.β'. Dibrom-adipinsäure-dimethylesters durch Erhitzen mit Pyridin auf 100° oder weniger gut durch Einw. von methylalkoholischer Natriummethylat-Lösung (Farmer, Soc. 123, 2546). Aus trans-trans-Muconsäure durch Einw. von siedender methylalkoholischer Salzsäure, von Dimethylsulfat in 10 % iger Natronlauge oder von Diazomethan in Äther sowie durch Behandlung mit Phosphorpentachlorid und Phosphoroxychlorid und nachfolgende Einw. von Methanol (Vogt, Mitt. Kohlenforschungsinst. Breslau 2, 90, 91; C. 1926 I, 2341). Beim Kochen von trans-trans-α-Brommuconsäure-dimethylester mit überschüssigem Zinkstaub und Aceton oder Alkohol (F., Soc. 1927, 409). — F: 154° (V.), 156° (F.; F., D.), 159° (Chandrasena, Ingold, Soc. 121, 1315). Unlöslich in Ather (F.). — Polymerisiert sich beim Erhitzen unter Druck auf 200° (V.). Gibt bei der Hydrierung in Gegenwart von kolloidem Palladium Adipinsäure-dimethylester (F., D.). Liefert bei der Reduktion mit Zinkstaub und Eisessig Δβ-Dihydromuconsäure-dimethylester (F.; F., D.). Gibt mit 1 Mol Brom in Chloroform im Sonnenlicht α'.β'-Dibrom-Δα-dihydromuconsäure-dimethylester vom Schmelzpunkt 104—105° und vom Schmelzpunkt 50° im Verhältnis 12: 1 (F., D.). Wird durch mäßig konzentrierte Schwefelsäure verseift (F.).

trans-trans-Muconsäurediäthylester $C_{10}H_{14}O_4=C_2H_5\cdot O_2C\cdot CH\cdot CH\cdot CH\cdot CH\cdot CO_2\cdot C_2H_5$ (H 804; E I 318). B. Aus festem $\beta.\beta'$ -Dibrom-adipinsäure-diäthylester durch Erhitzen mit Pyridin auf 100° oder durch Einw. von Natriumäthylat-Lösung, neben geringen Mengen cis-cis-Muconsäure-diäthylester (F: 13°) (Farmer, Soc. 123, 2547). Beim Erhitzen von transtrans-Muconsäure mit Alkohol unter Druck auf 200° (Voot, Mitt. Kohlenforschungsinst. Breslau 2, 92; C. 1926 I, 2341). Die Veresterung der Säure mit Hilfe von alkoh. Salzsäure oder Schwefelsäure ergibt geringe Ausbeuten (Chandrasena, Ingold, Soc. 121, 1315; vgl. a. V.). Beim Erwärmen von trans-trans-Muconsäure mit Phosphorpentachlorid und anschließenden Behandeln mit Alkohol (Ch., I.). Bei längerem Aufbewahren von cis-cis-Muconsäure-diäthylester in der Wärme (F.). — Krystalle (aus Alkohol). F: 62° (F.), 64° (Ch., I.; V.). D_4^{sol} : 1,4618; $n_{\text{He}}^{\text{sol}}$: 1,4675; n_{β}^{sol} : 1,4826; n_{γ}^{sol} : 1,4969 (v. Auwers, J. pr. [2] 105, 383).

Polymerisiert sich bei 5-stdg. Erhitzen im Rohr auf 180° unter Bildung eines Dimeren vom Kp₁: 221—222° und einer schwarzen pechartigen Masse (Vogt, Mitt. Kohlenforschungsinst. Breslau 2 [1926], 94). Gibt bei der Reduktion mit Zinkstaub und Eisessig auf dem Wasserbad (Farmer, Soc. 123, 2541) oder mit amalgamiertem Aluminium und feuchtem Äther (Evans, Farmer, Soc. 1928, 1646) Δβ-Dihydromuconsäure-diäthylester. Wird durch mäßig konzentrierte Schwefelsäure verseift (F., Soc. 123, 2548). Gibt beim Behandeln mit Natrium-cyanessigester in Äther + wenig Alkohol Buten-(1)-dicarbonsäure-(1.4)-cyanessigsäure-(2)-triäthylester, mit Natriummalonester in Äther Buten-(1)-dicarbonsäure-(1.4)-malonsäure-(2)-tetraäthylester und geringe Mengen des entsprechenden Triäthylesters (F., Soc. 121, 2017). Beim Erhitzen mit Maleinsäure-anhydrid in Benzol auf 100° entsteht [3.6-Dicarbäthoxytetrahydrophthalsäure]-anhydrid (F., Warren, Soc. 1929, 904; vgl. Diels, Alder, B. 62, 2088).

trans - trans - α.α' - Dichlor - muconsäure - dimethylester, α - Dichlor muconsäure dimethylester C₈H₈O₄Cl₂ = CH₃·O₂C·CCl:CH·CH:CCl·CO₂·CH₃ (H 804). B. Aus α.α'.β'-Trichlor-Δα-dihydromuconsäure-dimethylester durch Kochen mit überschüssigem Pyridin oder durch Schütteln mit konz. Ammoniak, neben der cis-cis-Form (Farmer, Soc. 123, 2545). Durch aufeinanderfolgende Behandlung von Schleimsäure mit Phosphorpentachlorid bei ca. 130° und mit Methanol unter Kühlung, neben der cis-cis-Form und anderen Produkten (F., Soc. 123, 2544). — Nadeln (aus Methanol). F: 154° (F., Soc. 128, 2545). — Liefert bei der Reduktion mit Zinkstaub und Eisessig unter Kühlung Δβ-Dihydromuconsäure-dimethylester (F., Soc. 123, 2541). Gibt beim Behandeln mit Natriummalonsäuredimethylester in Methanol einen festen und einen flüssigen Dicyclopropyl-hexacarbon-CH-OC-HC

säure-hexamethylester (CH₃·O₃C·HC) (CH·CH·CC) (CH₂·CH₃) (Syst. Nr. 1049) (F., Soc. 123, 3335, 3338, 3339).

trans-trans- $\alpha.\alpha'$ -Dichlor-muconsäure-monoäthylester $C_8H_8O_4Cl_2=C_2H_5\cdot O_2C\cdot CCl:CH\cdot CH:CCl\cdot CO_2H$. B. Das Natriumsalz entsteht durch Einw. von Natriumäthylat-Lösung auf den Diäthylester (Farmer, Soc. 123, 2546). — Prismen (aus Alkohol + Petroläther). F: 134°. — Na $C_8H_7O_4Cl_2$. Krystallpulver (aus Alkohol). Schwer löslich in siedendem Alkohol.

trans-trans- $\alpha.\alpha'$ -Dichlor-muconsäure-diäthylester, α -Dichlormuconsäure-diāthylester $C_{10}H_{12}O_4Cl_2=C_2H_5\cdot O_2C\cdot CCl\colon CH\cdot CH\colon CCl\cdot CO_2\cdot C_2H_5$ (H 804). B. Aus $\alpha.\alpha'.\beta'$ -Trichlor- Δ a-dihydromuconsäure-diäthylester durch Kochen mit überschüssigem Pyridin oder durch Schütteln mit konz. Ammoniak, neben der cis-cis-Form (Farmer, Soc. 123, 2546). Durch aufeinanderfolgende Behandlung von Schleimsäure mit Phosphorpenta-chlorid bei ca. 130° und mit Alkohol unter Kühlung, neben der cis-cis-Form und $\alpha.\alpha'.\beta'$ -Trichlor- Δ a-dihydromuconsäure-diäthylester (F., Soc. 123, 2545). — Prismen (aus Alkohol). F: 84° (F.). Ist unzersetzt destillierbar (F.). — Liefert bei der Reduktion mit Zinkstaub und Eisessig unter Kühlung Δ P-Dihydromuconsäure-diäthylester (F., Soc. 123, 2541; F.. Duffin, Soc. 1927, 410). Bei der Einw. von Natriumäthylat-Lösung entsteht das Natriumsalz des Monoäthylesters (F., Soc. 123, 2546). Gibt beim Behandeln mit Natriummalonester in Alkohol einen festen und einen flüssigen Dicyclopropyl-hexacarbonsäure-hexaäthylester $C_2H_5\cdot O_2C\cdot HC$ CH·CC $_2\cdot C_2H_5$ (Syst. Nr. 1049) (F., Soc. 123, 3335, 3339).

trans-trans-α.α'-Dichlor-muconsäure-diamid, α-Dichlormuconsäure-diamid $C_6H_6O_2N_2Cl_2 = H_2N \cdot CO \cdot CCl : CH \cdot CH : CCl \cdot CO \cdot NH_2$ (H 805). B. Durch Einw. von wäßr. Ammoniak auf den Dimethylester oder Diäthylester bei 40—50° (Farmer, Soc. 123, 2546).—Zersetzt sich bei langsamem Erhitzen bei 250°, bei schnellem Erhitzen bei 268°.

trans-trans- α -Brom-muconsäure-dimethylester $C_8H_9O_4Br=CH_3\cdot O_2C\cdot CH:CH:CH:CH:CBr\cdot CO_2\cdot CH_3$. Zur Konfiguration vgl. Farmer, Duffin, Soc. 1927, 403, 408. — B. Aus $\alpha'.\beta'$ -Dibrom- Δ'' -dihydromuconsäure-dimethylester vom Schmelzpunkt 50° durch Einw. von Diäthylamin in Äther, von überschüssigem heißem Pyridin oder der berechneten Menge kalter Natriummethylat-Lösung (F., D.). — Nadeln (aus Alkohol oder Petroläther). F: 89°. — Liefert bei der Reduktion mit überschüssigem Zinkstaub und Eisessig auf dem Wasserbad Δ P-Dihydromuconsäure-dimethylester; beim Kochen mit überschüssigem Zinkstaub und Alkohol oder Aceton entsteht trans-trans-Muconsäure-dimethylester. Gibt beim Behandeln mit konzentriertem wäßrigem Ammoniak bei Zimmertemperatur trans-trans- α -Brommuconsäure-diamid.

trans-trans- α -Brom-muconsäure-diamid $C_6H_7O_2N_2Br=H_2N\cdot CO\cdot CH:CH\cdot CH:CBr\cdot CO\cdot NH_2$. Zur Konfiguration vgl. Farmer, Duffin, Soc. 1927, 408. — B. Durch 4-stdg. Einw. von konzentriertem wäßrigem Ammoniak auf trans-trans- α -Brom-muconsäure-dimethylester bei Zimmertemperatur (F., D.). — Pulver (aus Wasser). F: 235°. Schwerer löslich als cis-cis- und cis-trans- α -Brom-muconsäure-diamid.

trans-trans- $\alpha\alpha'$ -Dibrom - muconsäure - diäthylester $C_{10}H_{19}O_4Br_2 = C_2H_5 \cdot O_2C \cdot CBr$: $CH \cdot CH : CBr \cdot CO_2 \cdot C_2H_5$. Zur Konfiguration vgl. Farmer, Soc. 123, 2535. — B. Durch Einw. von Natriumäthylat-Lösung auf den festen $\beta.\beta'$ -Dichlor- $\alpha.\alpha'$ -dibrom-adipinsäure-diäthylester unter Kühlung (F., Soc. 123, 2544). Entsteht neben der cis-trans-Form im Verhältnis 1:4 durch Behandeln des flüssigen $\alpha.\alpha'.\beta.\beta'$ -Tetrabrom-adipinsäure-diäthylesters mit überschüssigem Pyridin in Benzol auf dem Wasserbad oder mit Natriumäthylat-Lösung unter Kühlung (F., Soc. 123, 2543). Aus der cis-cis- und der cis-trans-Form beim Erhitzen auf höhere Temperaturen (F., Soc. 123, 2534, 2543). — Nadeln (aus Alkohol). F: 123° (F.). Kp₁₂: ca. 190° (F.). — Liefert bei der Reduktion mit Zinkstaub und Eisessig auf dem Wasserbad $\Delta\beta$ -Dihydromuconsäure-diäthylester (Farmer, Duffin, Soc. 1927, 409). Gibt beim Erwärmen mit Ammoniak auf 40—50° unter Druck trans-trans- $\alpha.\alpha'$ -Dibrom-muconsäure-diamid (F.).

trans-trans- $\alpha.\alpha'$ -Dibrom-muconsäure-diamid $C_6H_6O_2N_2Br_2=H_2N.CO\cdot CBr:CH\cdot CH:CBr\cdotCO\cdot NH_2$. B. Durch längeres Erwärmen von trans-trans- $\alpha.\alpha'$ -Dibrom-muconsäure-diäthylester mit konzentriertem wäßrigem Ammoniak auf 40—50° unter Druck (Farmer. Soc. 123, 2544). — Gelbliches Krystallpulver. Zersetzt sich bei langsamem Erhitzen bei 245°, bei raschem Erhitzen oberhalb 255°. Unlöslich in Wasser und Alkohol.

Krystalle (aus Wasser). F: 187° (F.), 187—188° (B.). Leicht löslich in siedendem Wasser, sehr schwer in Äther (F.).

cis-cis-Muconsäure-dimethylester $C_8H_{10}O_4=CH_3\cdot O_3C\cdot CH:CH\cdot CH\cdot CH\cdot CO_3\cdot CH_8$. Aus der hochschmelzenden und niedrigschmelzenden Form des $\beta.\beta'$ -Dibrom-adipinsäure-dimethylesters durch Erhitzen mit Pyridin auf 100° oder weniger gut durch Einw. von Natriummethylat-Lösung, neben der trans-trans-Form und anderen Produkten (Farmer, Soc. 123, 2547). — Nadeln (aus Petroläther). F: 75°. Löslich in Äther. — Gibt bei der Reduktion mit Zinkstaub und Eisessig $\Delta\beta$ -Dihydromuconsäure-dimethylester, mit Wasserstoff in Gegenwart von kolloidalem Palladium Adipinsäuredimethylester (Farmer, Duffin, Soc. 1927, 410). Liefert bei der Verseifung mit der berechneten Menge wäßrig-methylalkoholischer Natronlauge cis-cis-Muconsäure und eine Verbindung $C_6H_6O_4$ (s. u.) (F.).

Verbindung C₆H₆O₄. Zur Konstitution vgl. Farmer, Soc. 123, 2548. — B. Bei der Verseifung von eis-eis-Muconsäure-dimethylester mit wäßrig-methylalkoholischer Natronlauge, neben eis-eis-Muconsäure (F.). — Krystallpulver (aus Äther). F: 93°. Löslich in Äther.

cis-cis-Muconsäure-diäthlester $C_{10}H_{14}O_4 = C_2H_5 \cdot O_2C \cdot CH : CH \cdot CH : CH \cdot CO_3 \cdot C_2H_5$. B. Entsteht neben überwiegenden Mengen trans-trans-Ester aus $\beta.\beta'$ -Dibrom-adipinsäure-diäthylester durch Erhitzen mit Pyridin auf 100° oder weniger gut durch Einw. von Natrium-methylat-Lösung (Farmer, Soc. 123, 2547). — Mikrokrystallines Pulver (aus Alkohol bei -25°). F: 13° . — Wandelt sich bei längerem Aufbewahren im warmen Raum teilweise in die trans-trans-Form um.

cis-cis- $\alpha.\alpha'$ -Dichlor-muconsäure-dimethylester $C_8H_8O_4Cl_2=CH_3\cdot O_3C\cdot CCl: CH\cdot CH: CCl\cdot CO_2\cdot CH_2$. B. Durch Kochen von $\alpha.\alpha'.\beta'$ -Trichlor- Δ^α -dihydromuconsäure-dimethylester mit überschüssigem Pyridin oder durch Schütteln mit Ammoniak, neben der trans-trans-Form (Farmer, Soc. 123, 2545). Durch aufeinanderfolgende Behandlung von Schleimsäure mit Phosphorpentachlorid bei ca. 130° und mit Methanol unter Kühlung, neben der transtrans-Form und anderen Produkten (F., Soc. 123, 2545). — Nadeln (aus Alkohol). F: 68°. — Wandelt sich bei der Destillation teilweise in die trans-trans-Form um (F., Soc. 123, 2545). Gibt bei der Reduktion mit Zinkstaub und Eisessig unter Kühlung Δ^β -Dihydromuconsäure-dimethylester (F., Soc. 123, 2541). Liefert beim Behandeln mit Natriummalonsäuredimethylester in Methanol einen festen und einen flüssigen Dicyclopropyl-hexacarbonsäure-hexa-

ester in Methanol einen festen und einen flüssigen Dicyclopropyl-hexacarbonsäure-hexamethylester $CH_3 \cdot O_3C \cdot HC$ $CH \cdot CO_3 \cdot CH_3$ (Syst. Nr. 1049) (F., Soc. 123, 3335, 3339).

cis - cis - $\alpha.\alpha'$ - Dichlor - muconsäure - diäthylester, β -Dichlormuconsäure-diäthylester $C_{10}H_{12}O_4Cl_2 = C_2H_5 \cdot O_2C \cdot CCl \cdot CH \cdot CH \cdot CCl \cdot CO_2 \cdot C_2H_5$ (H 805). B. Entsteht neben der trans-trans-Form aus $\alpha.\alpha'.\beta'$ -Trichlor- Δ a-dihydromuconsäure-diäthylester durch Kochen mit überschüssigem Pyridin oder durch Schütteln mit Ammoniak (Farrer, Soc. 123, 2546). Durch aufeinanderfolgende Behandlung von Schleimsäure mit Phosphorpentachlorid bei ca. 130° und mit Alkohol unter Kühlung, neben der trans-trans-Form und $\alpha.\alpha'.\beta'$ -Trichlor- Δ a-dihydromuconsäure-diäthylester (Farrer, Soc. 123, 2545). — Krystalline Masse. F: 28°. — Wandelt sich bei der Destillation teilweise in die trans-trans-Form um (F., Soc. 123, 2545). Liefert bei der Reduktion mit Zinkstaub und Eisessig unter Kühlung Δ P-Dihydromuconsäure-diäthylester (F., Soc. 123, 2541; F., Duffin, Soc. 1927, 410). Gibt beim Behandeln mit Natrium-malonsäure-diäthylester in Alkohol einen festen und einen flüssigen $C_2H_5 \cdot O_2C \cdot HC$ Dicyclopropyl-hexacarbonsäure-hexaäthylester $C_2H_5 \cdot O_2C \cdot HC$ $C_2H_5 \cdot O_2C \cdot HC$ $C_2H_5 \cdot O_2C \cdot C_2H_5$ $C_2H_5 \cdot C_2C \cdot C_2H_5$

Nr. 1049) (F., Soc. 128, 3335, 3339).

cis - cis - $\alpha.\alpha'$ - Dichlor - muconsäure - diamid, β -Dichlor muconsäure - diamid $C_6H_6O_2N_4Cl_2=H_2N\cdot CO\cdot CCl: CH\cdot CH: CCl\cdot CO\cdot NH_4$ (H 805). B. Durch Rinw. waßr. Ammoniak auf den Dimethylester oder auf den Diäthylester bei 40—50° (FARMER, Soc. 128, 2546). — Nadeln (aus Wasser). F: 232° (Zers.).

cis-cis- α -Brom-muconsäure-dimethylester $C_2H_2O_4Br=CH_2\cdot O_3C\cdot CH:CH:CH:CBr\cdot CO_3\cdot CH_2$. Zur Konfiguration vgl. Farmer, Duffin, Soc. 1927, 403, 408. — B. Aus $\alpha'.\beta'$ -Dibrom- $\Delta'\alpha$ -dihydromuconsäure-dimethylester vom Schmelzpunkt 104—105° durch Einw. von Diäthylamin in Äther, von überschüssigem heißem Pyridin oder der berechneten Menge kalter Natriummethylat-Lösung, neben der cis-trans-Form im Verhältnis 9:1 (F., D.). — Prismen (aus Alkohol oder Petroläther). F: 68°. Schwerer löslich als die cis-trans-Form. — Wird durch Erhitzen mit Zinkstaub in Eisessig, Aceton oder Alkohol nicht reduziert. Gibt beim Behandeln mit konzentriertem wäßrigem Ammoniak bei Zimmertemperatur das Diamid.

cis-cis-α-Brom-muconsäure-diamid C₆H₂O₂N₂Br = H₂N·CO·CH:CH·CH:CBr·CO·NH₂. Zur Konfiguration vgl. FARMER, DUFFIN, Soc. 1927, 408. — B. Durch 9-stdg. Einw. von konzentriertem wäßrigem Ammoniak auf cis-cis-α-Brom-muconsäure-dimethylester

675

bei Zimmertemperatur (F., D.). — Prismen. F: 197°. Leichter löslich als das trans-trans-Diamid und schwerer als das cis-trans-Diamid.

cis - cis - $\alpha.\alpha'$ - Dibrom-muconsäure-diäthylester $C_{10}H_{12}O_4Br_3=C_2H_5\cdot O_3C\cdot CBr:CH\cdot CH:CBr\cdot CO_2\cdot C_2H_5$. Zur Konfiguration vgl. Farmer, Soc. 123, 2535. — B. Neben der cistrans-Form aus festem $\alpha.\beta.\alpha'.\beta'$ -Tetrabrom-adipinsäure-diäthylester beim Erwärmen mit überschüssigem Pyridin in Benzol auf dem Wasserbad oder besser beim Behandeln mit Natriumäthylat-Lösung unter Kühlung (F., Soc. 123, 2542). — Nadeln (aus Alkohol). F: 93,5° (F.). — Geht beim Destillieren zum Teil in die trans-Form über (F.). Liefert bei der Reduktion mit Zinkstaub und Eisessig auf dem Wasserbad $\Delta\beta$ -Dihydromuconsäure-diäthylester (F., Duffin, Soc. 1927, 409). Gibt beim Erhitzen mit Ammoniak kein Diamid (F.).

c) cis-trans-Muconsäure $C_0H_0O_4=\frac{HC-CH}{HC\cdot CO_2H} \cdot \frac{CH}{HC\cdot CO_2H}$.

cis-trans- α -Brom-muconsäure $C_8H_5O_4Br=HO_2C\cdot CH:CH:CH:CH:CBr\cdot CO_2H$. B. Beim Kochen von $\alpha'.\beta'$ -Dibrom- Δ' -dihydromuconsäure-diäthylester mit 2n-Natronlauge (Chandrasena, Ingold, Soc. 121, 1317). — Prismen (aus Wasser oder Aceton + Benzol). F: 185°. — Entfärbt sofort alkalische Permanganat-Lösung. Gibt bei der Oxydation mit einer unzureichenden Menge kalter alkalischer Permanganat-Lösung neben viel Oxalsäure das γ -Lacton der α -Brom- $\alpha'.\beta'$ -dioxy- Δ' -dihydromuconsäure (Syst. Nr. 2624).

cis-trans-α-Brom-muconsäure-dimethylester $C_8H_9O_4Br=CH_9\cdot O_2C\cdot CH:CH\cdot CH:CBr\cdot CO_3\cdot CH_3$. Zur Konfiguration vgl. Farmer, Duffin, Soc. 1927, 403. — B. Aus höherschmelzendem α΄.β΄-Dibrom-Δα-dihydromuconsäure-dimethylester durch Einw. von Diäthylamin in Äther, von überschüssigem heißem Pyridin oder der berechneten Menge kalter Natriummethylat-Lösung, neben der cis-cis-Form im Verhältnis 1:9 (F., D., Soc. 1927, 408). Man erwärmt cis-trans-α-Brom-muconsäure mit Phosphorpentachlorid und kocht mit Methanol (Chandrasena, Ingold, Soc. 121, 1317). — Prismen (aus Alkohol oder Petroläther). F: 55° (F., D.), 56° (Ch., I.). Leichter löslich in Alkohol und Petroläther als die cis-cis-Form (F., D.). — Verwandelt sich in einigen Jahren in eine braune gummiartige Substanz (Ch., I.). Geht im Gemisch mit der cis-cis-Form nach einigen Tagen in ein viscoses, blaßgelbes Öl über (F., D.). Liefert bei der Reduktion mit überschüssigem Zinkstaub und Eisessig auf dem Wasserbad 1β-Dihydromuconsäure-dimethylester (F., D.). Gibt beim Behandeln mit konzentriertem wäßrigem Ammoniak bei Zimmertemperatur das Diamid (F., D.).

cis-trans- α -Brom-muconsäure-diamid $C_0H_7O_2N_2Br = H_2N \cdot CO \cdot CH \cdot CH \cdot CH \cdot CBr \cdot CO \cdot NH_2$. Zur Konfiguration vgl. Farmer, Duffin, Soc. 1927, 408. — B. Durch $2^1/_2$ -stdg. Einw. von konzentriertem wäßrigem Ammoniak auf den Dimethylester bei Zimmertemperatur (F., D.). — Nadeln. F: 156°. Leichter löslich als das trans-trans- und das cis-cis-Diamid.

cis-trans- α . α' -Dibrom-muconsäure-diäthylester $C_{10}H_{12}O_4Br_2=C_2H_5\cdot O_2C\cdot CBr: CH\cdot CH: CBr\cdot CO_2\cdot C_2H_5$. Zur Konfiguration vgl. Farmer, Soc. 123, 2535. — B. Neben der cis-cis-bzw. der trans-trans-Form beim Behandeln der festen bzw. flüssigen Form des $\alpha.\beta.\alpha'.\beta'$ -Tetrabrom-adipinsäure-diäthylesters mit überschüssigem Pyridin in Benzol auf dem Wasserbad oder mit Natriumäthylat-Lösung unter Kühlung (F.). — Krystallpulver (aus Alkohol). F: 28° (F.). — Geht beim Destillieren unter vermindertem Druck zum Teil in die trans-trans-Form über (F.). Gibt bei 5-tägigem Erwärmen mit Ammoniak auf 40—50° unter Druck das Diamid (F.). Liefert bei der Reduktion mit Zinkstaub und Eisessig auf dem Wasserbad Δ P-Dihydromuconsäure-diäthylester (F., Duffin, Soc. 1927, 409).

cis-trans- $\alpha\alpha'$ -Dibrom-muconsäure-diamid $C_6H_6O_2N_2Br_8=H_2N\cdot CO\cdot CBr:CH\cdot CH\cdot CBr:CO\cdot NH_2$. B. In sehr geringer Menge bei 5-tägiger Einw. von Ammoniak auf den Diäthylester bei $40-50^\circ$ unter Druck (Farmer, Soc. 123, 2544). — Nadeln (aus Wasser). Färbt sich oberhalb 200° dunkel und zersetzt sich bei 221°.

4. Dicarbonsäuren C7H8O4.

- 1. Pentadien (1.3) dicarbonsäure (1.5), Piperylendicarbonsäure C₇H₂O₄ = HO₂C·CH₂·CH·CH·CH·CH·CO₂H (H 805). B. Durch Einw. von 6 n-methylalkoholischer Kalilauge auf α.α'-Dibrom-pimelinsäure-diäthylester, neben anderen Produkten (HASSELL, INGOLD, Soc. 1926, 1468; vgl. Grundmann, B. 70 [1937], 1149). Krystalle (aus Äther). F: 169° (H., I.). Liefert bei der Oxydation mit Permanganat viel Oxalsäure und etwas Malonsäure (H., I.).
- 2. 2-Methyl-butadien-(1.3)-dicarbonsäure-(1.4), Isopren-a.5-dicarbonsäure, β -Methyl-muconsäure $C_7H_8O_4=HO_3C\cdot CH:C(CH_3)\cdot CH:CH\cdot CO_3H$.
- a) Hochschmelzende β -Methyl-muconsäure (E I 2, 318; H 30, 114). B. Beim Verseifen des α' -Methylesters (S. 676) mit methylalkoholischer Kalilauge (RINKES,

- van Hasselt, Chem. Weekb. 14, 893; C. 1917 II, 680) oder mit 10%iger Alkalilauge (R., R. 48, 604). Durch Kochen von niedrigschmelzender β -Methyl-muconsäure oder deren Monomethylester mit konz. Natronlauge (R., R. 48, 605, 1094). Krystalle (aus Wasser). F: 231° (Zers.) (R., van H.). Liefert bei der Hydrierung in Gegenwart von kolloidem Palladium β -Methyl-adipinsäure (R., van H.). Beim Kochen mit methylalkoholischer Salzsäure entsteht überwiegend der α '-Methylester (s. u.), mit Dimethylsulfat und Kalilauge der Dimethylester (s. u.) (R., R. 48, 1095).
- α-Methylester $C_8H_{10}O_4=CH_3\cdot O_2C\cdot CH:C(CH_3)\cdot CH:CH\cdot CO_2H$. B. Beim Kochen des Dimethylesters mit schwacher methylalkoholischer Kalilauge (Rinkes, R. 48, 1095). Krystalle (aus Benzol). F: 120—121°.
- α'- Methylester $C_3H_{10}O_4=HO_3C\cdot CH:C(CH_3)\cdot CH:CH\cdot CO_3\cdot CH_3$ (H 30, 114). B. Beim Kochen von hochschmelzender β -Methyl-muconsäure mit methylalkoholischer Salzsäure (Rinkes, R. 48, 1095). Bei der Oxydation von 2-Methyl-1-formyl-butadien-(1.3)-carbonsäure-(4)-methylester mit Silberoxyd in Wasser bei 95° (R., van Hasselt, Chem. Weekb. 14, 893; C. 1917 II, 680). Krystalle (aus Tetrachlorkohlenstoff). F: 126° (R.). Ozonisierung in Äthylacetat und Zersetzung mit Wasser bei 80° ergibt β -Methyl- β -formyl-acrylsäure und wenig β -Acetyl-acrylsäure-methylester (R., R. 48, 1095). Liefert beim Verseifen mit methylalkoholischer Kalilauge (R., van H.) oder beim Kochen mit 10% iger Alkalilauge hochschmelzende β -Methyl-muconsäure (R., R. 48, 604).

Dimethylester $C_9H_{12}O_4=CH_3\cdot O_2C\cdot CH:C(CH_3)\cdot CH:CH\cdot CO_2\cdot CH_3$ (E I 318). B. Beim Kochen von hochschmelzender β -Methyl-muconsäure mit Dimethylsulfat in Kalilauge (RINKES, R. 48, 1095). — Krystalle (aus Petroläther). F: 58—59°. — Beim Kochen mit schwacher methylalkoholischer Kalilauge entsteht der α -Methylester (s. o.).

b) Niedrigschmelzende β -Methyl-muconsäure (E I 319). B. Neben anderen Produkten bei der Einw. von Diäthylamin auf $\alpha.\alpha'$ -Dibrom- β -methyl-adipinsäure-diäthylester unter anfänglichem Erwärmen und folgendem längerem Kochen der bei 150—165° (16 mm) siedenden Anteile des Reaktionsprodukts mit wäßrig-alkoholischer Alkalilauge (v. Braun, Leistner, Münch, B. 59, 1955). — Krystalle (aus Wasser). F: 173°.

Monomethylester $C_8H_{10}O_4 = CH_3 \cdot O_2C \cdot CH : C(CH_3) \cdot CH : CH \cdot CO_2H$ oder $HO_2C \cdot CH : C(CH_3) \cdot CH : CH \cdot CO_2 \cdot CH_3$. Liefert beim Kochen mit konz. Natronlauge hochschmelzende β -Methyl-muconsäure (RINKES, R. 48, 1094).

Dimethylester $C_9H_{12}O_4=CH_3\cdot O_2C\cdot CH:C(CH_3)\cdot CH:CH\cdot CO_2\cdot CH_3$ (E I 319). B. Beim Behandeln des Silbersalzes der Säure mit Methyljodid (v. Auwers, J. pr. [2] 105, 383). — F: 38—39°. Kp₁₃: 144—146°; Kp₁₉: 152—153°. D^{4.9}: 1,1005; D^{4.7}: 1,0964. $n_{\alpha}^{8.8}$: 1,5014; $n_{H_6}^{8.9}$: 1,5076; $n_{h_6}^{8.9}$: 1,5241; $n_{\gamma}^{8.9}$: 1,5399; $n_{\alpha}^{8.7}$: 1,4987; $n_{H_6}^{8.9}$: 1,5048; $n_{\beta}^{8.7}$: 1,5211; $n_{\gamma}^{8.7}$: 1,5369.

Diäthylester $C_{11}H_{16}O_4 = C_2H_5 \cdot O_3C \cdot CH : C(CH_3) \cdot CH : CH \cdot CO_2 \cdot C_2H_5 \cdot B$. Beim Behandeln des Silbersalzes der Säure Athyljodid (v. Auwess, J. pr. [2] 105, 383). — Erstarrt nicht in einer Kältemischung. Kp_{1s}: 163—164°. $D_4^{\text{is.s}}$: 1,0578; $D_4^{\text{ii.ss}}$: 1,0658. $n_{\alpha}^{\text{is.s}}$: 1,4965; $n_{He}^{\text{is.s}}$: 1,5023; $n_{\beta}^{\text{ii.ss}}$: 1,5175; $n_{\gamma}^{\text{ii.ss}}$: 1,5321; $n_{\alpha}^{\text{ii.ss}}$: 1,4997; $n_{He}^{\text{ii.ss}}$: 1,5056; $n_{\beta}^{\text{ii.ss}}$: 1,5207; $n_{\gamma}^{\text{ii.ss}}$: 1,5355.

Diamid $C_7H_{10}O_2N_2 = H_2N \cdot CO \cdot CH : C(CH_3) \cdot CH : CH \cdot CO \cdot NH_2$ (E I 319). F: 218° (RINKES, R. 48, 605). — Gibt beim Behandeln mit Natriumhypochlorit in verd. Methanol unterhalb 0°, "Isoprendiurethan" $CH_3 \cdot O \cdot CO \cdot NH \cdot CH : C(CH_3) \cdot CH : CH \cdot NH \cdot CO_2 \cdot CH_3$ (Syst. Nr. 201).

3. Pentadien-(1.3)-dicarbonsäure-(1.1), Crotylidenmalonsäure $C_7H_8O_4=CH_3\cdot CH\cdot CH\cdot CH\cdot CCO_2H)_2$.

Diäthylester $C_{11}H_{16}O_4 = CH_3 \cdot CH \cdot CH \cdot CH \cdot C(CO_3 \cdot C_2H_5)_3$. B. Aus Crotonaldehyd und Malonsäurediäthylester in Gegenwart von Piperidin bei 70—80° (v. Auwers, Heyna, A. 434, 155). — Gelbes Öl von schwachem Geruch. Kp₁₅: 148—151° (v. Au., H.); Kp₁₅: 149° (v. Au., J. pr. [2] 105, 376). — $D_4^{4.8}$: 1,0508; $D_4^{4.7}$: 1,0483 (v. Au.). $n_{\alpha}^{4.5}$: 1,4787; $n_{He}^{4.6}$: 1,4835; $n_{he}^{6.5}$: 1,4780; $n_{He}^{4.7}$: 1,4829; $n_{he}^{6.7}$: 1,4957 (v. Au.). — Bei der Einw. von Brom in Chloroform entsteht [β.γ-Dibrom-butyliden]-malonsäure-diäthylester (v. Au., H.). Gibt beim Behandeln mit alkoh. Kalilauge harzige Produkte (v. Au., H.).

5. Dicarbonsäuren $C_8H_{10}O_4$.

1. Hexadien - (1.5) - dicarbonsäure - (1.6), Subercolsäure $C_8H_{10}O_4 = HO_2C \cdot CH \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_4 \cdot CH_5

- mit alkal. Permanganat-Lösung Oxalsäure und Bernsteinsäure. Bei der Reduktion mit 4%igem Natriumamalgam in siedendem Wasser erhält man je nach den Mengenverhältnissen die höherschmelzende Dihydrosubercolsäure oder niedrigerschmelzende Dihydrosubercolsäure und Korksäure.
- .2. Hexadien (2.4) dicarbonsäure (1.6) C₈H₁₀O₄ = HO₂C·CH₂·CH:CH:CH:CH:CH:CH:CH:CH₂·CO₂H. Die Lage der Doppelbindungen ist nicht sicher. Eine Hexadien-(2.4)-dicarbonsäure-(1.6) von abweichenden Eigenschaften wird nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] von Kuhn, Grundmann (B. 69 [1936], 1759, 1763) beschrieben. B. Durch erschöpfende Methylierung von 1-Methyl-pyrrolidin-diessigsäure-(2.5)-diäthylester (Willstätter, Bommer, A. 422, 28). Nadeln. Schmilzt unscharf bei 260° (W., B.). Ziemlich leicht löslich in heißem Wasser (W., B.).
- 3. 4-Methyl-pentadien-(1.4)-dicarbonsäure-(1.1), [γ -Methyl- γ -buteny-liden]-malonsäure $\mathrm{C}_8\mathrm{H}_{10}\mathrm{O}_4=\mathrm{CH}_2\colon\mathrm{C}(\mathrm{CH}_3)\cdot\mathrm{CH}_2\cdot\mathrm{CH}\colon\mathrm{C}(\mathrm{CO}_2\mathrm{H})_2$.

Diäthylester (?) $C_{19}H_{18}O_4 = CH_2:C(CH_2)\cdot CH_2\cdot CH:C(CO_2\cdot C_2H_5)_2$ (?). B. Beim Kochen von Dinatriummalonester mit 1.4-Dibrom-2-methyl-buten-(2) in absol. Alkohol (STAUDINGER, MUNTWYLER, KUPFER, Helv. 5, 760). — Nicht rein erhalten. Flüssigkeit. Kp₁₅: 117—118°. — Liefert bei der Hydrierung bei Gegenwart von Platin in Alkohol Isoamylmalonsäure-diäthylester. Nimmt 1 Mol Brom auf. Beim Verseifen mit alkoh. Kalilauge entsteht eine Lacton-carbonsäure, die beim Erhitzen in Kohlendioxyd und ein Lacton vom Kp₁₆: ca. 118—120° zerfällt.

- 4. Hexadien (1.5) dicarbonsäure (2.5)(?), α.α'- Dimethylen-adipinsäure (?) C₈H₁₀O₄ = HO₂C·C(:CH₂)·CH₂·CH₂·C(:CH₂)·CO₂H(?) (E I 319). B. Entsteht vielleicht bei der Elektrolyse des Kaliumsalzes des cis-Cyclopropan-dicarbonsäure-(1.2)-monomethylesters in Wasser oder Methanol mit Platinanode und Kupferkathode (FICHTER, SPIEGELBERG, Helv. 12, 1162, 1164; F., Z. El. Ch. 35, 711).
- 6. Heptadien (1.6) dicarbonsäure (4.4), Diallylmalonsäure $C_9H_{19}O_4=(CH_1:CH\cdot CH_2)_2C(CO_2H)_2$ (H 807; E I 319). B. Durch Verseifung der Ester mit überschüssigem pulverisiertem Kaliumhydroxyd (Tassilly, Belot, Descombes, C. r. 186, 1848). Geschwindigkeit der Kohlendioxyd-Abspaltung in 0,2 n-wäßr. Lösung bei 78—110°: Bernoulli, Jakubowicz, Helv. 4, 1023; J., Z. anorg. Ch. 121, 116.

Diäthylester $C_{18}H_{20}O_4=(CH_2:CH\cdot CH_2)_2C(CO_2\cdot C_2H_5)_2$ (H 807; E I 319). Liefert beim Kochen mit Schwefelsäure das Dilacton der Bis- $[\beta$ -oxy-propyl]-malonsäure (Syst. Nr. 2760) (Bennett, Soc. 127, 1281). Einw. von Quecksilber(II)-acetat in wäßriger oder alkoholischer Lösung: Schoeller, D. R. P. 387850; C. 1924 I, 2397; Frdl. 14, 1363.

Diallylmalonsäure - mononitril, Diallyleyanessigsäure $C_9H_{11}O_2N = (CH_2:CH\cdot CH_2)_2C(CN)\cdot CO_2H$. B. Durch Verseifen des Äthylesters (I. G. Farbenind., D. R. P. 473329; C. 1929 II, 218; Frdl. 16, 285). — Liefert bei der Destillation Diallylacetonitril.

Diallylcyanessigsäure-äthylester $C_{11}H_{15}O_1N = (CH_2:CH\cdot CH_2)_2C(CN)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Allylbromid auf die Natriumverbindung des Allylcyanessigsäure-äthylesters in Äther (I. G. Farbenind., D. R. P. 473329; C. 1929 II, 218; Frdl. 16, 285). — Kp_{12} : 115° bis 120°.

 $\delta.\delta'$ -Dichlor-diallylmalonsäure-diäthylester, Bis-[γ -chlor-allyl]-malonsäure-diäthylester $C_{18}H_{18}O_4Cl_3=(CHCl:CH\cdot CH_3)_8C(CO_2\cdot C_2H_5)_2$. B. Bei der Einw. von γ -Chlorallylchlorid auf Dinatriummalonester in Alkohol (Hill, Fischer, Am. Soc. 44, 2594). — Gelbliches, angenehm riechendes Öl. Kp₁₂: 190°. Siedet unter Atmosphärendruck bei 300° unter teilweiser Zersetzung.

7. Octadien-(1.6)-dicarbonsaure-(4.4), Allyl- β -butenyl-malonsaure Allyl-crotyl-malonsaure $C_{10}H_{14}O_4 = CH_3 \cdot CH \cdot CH_2 \cdot C(CO_2H)_2 \cdot CH_3

Diäthylester $C_{14}H_{22}O_4 = CH_2 \cdot CH \cdot CH_2 \cdot C(CO_2 \cdot C_2H_3)_3 \cdot CH_2 \cdot CH \cdot CH_2$. B. Bein Kochen von Allylmalonsäurediäthylester mit Crotylbromid und Natriumäthylat-Lösung (I.G. Farbenind., D. R. P. 489 251; C. 1980 I, 2590; Frdl. 16, 2458). — Flüssigkeit von angenehmem Geruch. $Kp_{15}: 132^{\circ}$.

Allyl-crotyl-cyanessigsäure-äthylester $C_{19}H_{17}O_2N = CH_3 \cdot CH \cdot CH_2 \cdot C(CN)(CO_3 \cdot C_2H_3) \cdot CH_3 \cdot CH \cdot CH_4$. B. Beim Kochen von Crotylcyanessigsäureäthylester mit Allylbromid in Natriumäthylat-Lösung (I. G. Farbenind., D. R. P. 489251; C. 1930 I, 2590; Frdl. 16, 2458). — Öl. Kp_{13} : 130°.

[Syst. Nr. 180

8. Dicarbonsäuren $C_{11}H_{16}O_4$.

- 1. Nonadien (2.7) dicarbonsdure (5.5), Di β butenyl malonsdure, Dicrotylmalonsdure $C_{11}H_{16}O_4 = (CH_3\cdot CH\cdot CH_2)_2C(CO_2H)_2$. B. Beim Erwärmen von 2 Mol Crotylbromid mit 1 Mol Dinatriummalonester in Alkohol auf dem Wasserbad (v. Braun, Schirmacher, B. 56, 548). Kp₁₇: 152—154°. Liefert beim Erhitzen mit Harnstoff und Natriumäthylat-Lösung im Rohr auf 100° 5.5-Dicrotyl-barbitursäure.
- 2. 7-Methyl-octadien-(1.6)-dicarbonsäure-(4.4), Allyl-fy. γ -dimethylallylj-malonsäure $C_{11}H_{16}O_4=CH_1\cdot CH\cdot CH_1\cdot C(CO_2H)_1\cdot CH_1\cdot CH: C(CH_3)_2$.

Diäthylester $C_{15}H_{24}O_4 = CH_2 : CH \cdot CH_2 : C(CO_2 \cdot C_2H_5)_2 \cdot CH_1 \cdot CH : C(CH_5)_2$. B. Bei der Einw. von Allylbromid auf $[\gamma.\gamma-\text{Dimethyl-allyl}]$ -malonsäurediäthylester oder in geringer Menge durch Kondensation von Allylmalonsäure-diäthylester mit $\gamma.\gamma$ -Dimethyl-allylbromid in Natriumäthylat-Lösung (STAUDINGER, Mitarb., Helv. 7, 405). — Kp₁₀: 143—144°. — Liefert beim Verseifen und nachfolgenden Destillieren des Reaktionsprodukts im Vakuum wenig 7-Methyl-octadien-(1.6)-carbonsäure-(4) und ein Lacton.

3. 2-Isopropenyl-hexen-(4)-dicarbonsäure-(1.5) (?), 6-Methyl-heptadien-(2.6)-carbonsäure-(2)-essigsäure-(5) (?) $C_{11}H_{16}O_4=HO_2C\cdot C(CH_3):CH\cdot CH_2\cdot CO_2H\cdot C(CH_3):CH_2(?)$. Die Lage der Doppelbindungen ist nicht sicher. — B. Bei mehrtägigem Kochen von 6-Methyl-2-cyan-heptadien-(2.6)-essigsäure-(5)-äthylester (s. u.) mit wäßrig-alkoholischer Kalilauge auf dem Wasserbad (RUZICKA, TREBLER, Helv. 3, 776). — Zähe Masse. — Liefert beim Erhitzen mit Acetanhydrid im Rohr auf ca. 180° Carvacrylacetat.

Dimethylester $C_{13}H_{30}O_4 = CH_3 \cdot O_2C \cdot C(CH_3) : CH \cdot CH_3 \cdot CH(CH_3 \cdot CO_3 \cdot CH_3) \cdot C(CH_3) : CH_3(?)$. Be Beim Behandeln der Säure mit Dimethylsulfat und konzentrierter wäßriger Kalilauge (Ruzicka, Trebler, Helv. 3, 777). — Dünnflüssiges Öl. Kp_{0,53}: 115°. — Liefert bei der Hydrierung in Gegenwart von Platinschwarz in Methanol 2-Isopropyl-hexan-dicarbonsäure-(1.5)-dimethylester.

Diäthylester $C_{15}H_{34}O_4=C_3H_5\cdot O_2C\cdot C(CH_3):CH\cdot CH_2\cdot CH(CH_2\cdot CO_3\cdot C_3H_5)\cdot C(CH_3):CH_4(?)$. B. Beim Erhitzen der Säure mit Äthyljodid und Natriumäthylat-Lösung im Rohr auf 120° (Ruzicka, Trebler, Helv. 3, 777). — Dünnflüssiges Öl. Kp_{0,2}: 115°. — Gibt bei der Hydrierung in Gegenwart von Platinschwarz in Alkohol 2-Isopropyl-hexan-dicarbonsäure-(1.5)-diäthylester.

- 2-Isopropenyl-hexen-(4)-dicarbonsäure-(1.5)-äthylester-(1)-nitril-(5) (?), 2-Methyl-6-cyan-heptadien-(1.5)-essigsäure-(3)-äthylester (?) $C_{13}H_{19}O_4N=NC\cdot C(CH_4):CH\cdot CH_2\cdot CH(CH_2\cdot CO_2\cdot C_2H_3)\cdot C(CH_2):CH_2(?)$. Die Lage der Doppelbindungen ist nicht sicher. B. Neben anderen Produkten beim Behandeln von Pinonsäure-cyanhydrin (Syst. Nr. 1132) mit Phosphorpentachlorid in Chloroform unter Kühlung in einer Kältemischung, Zugeben von absol. Alkohol und Kochen der Fraktion $Kp_{0.53}: 120-150^{\circ}$ mit Chinolin in Xylol; wurde nicht ganz rein erhalten (Ruzicka, Trebler, Helv. 3, 775). Schwach gelbes Ol. $Kp_{0.53}: 120-130^{\circ}$.
- 9. Dicarbonsäure $C_{14}H_{22}O_4=CH_2\cdot CH\cdot CH\cdot C(CH_2)(CH_2\cdot CO_2H)\cdot C(CH_3)(CH_2\cdot CO_2H)\cdot CH\cdot CH\cdot CH_2$ oder $HO_2C\cdot CH_2\cdot C(CH_2)\cdot CH\cdot CH(CH_2)\cdot CH(CH_2)\cdot CH\cdot C(CH_2)\cdot CH_2\cdot CO_2H$ oder $CH_3\cdot CH\cdot C(CH_2)\cdot CH_2\cdot CO_2H$ oder $CH_3\cdot CH\cdot C(CH_2)\cdot CH_2\cdot CO_2H$. B. Bei der Reduktion von β -Methyl-sorbinsäure mit 3% igem Natriumamalgam in Natriumdicarbonat-Lösung bei $40-45^\circ$, neben anderen Produkten (Burton, Ingold, Soc. 1929, 2037). Nadeln (aus verd. Alkohol). F: 198—199°.

4. Dicarbonsäuren C_nH_{2n-8}O₄.

4.8-Dimethyl-nonatrien-(1.3.7)-dicarbonsäure-(1.1), Citryliden malonsäure $C_{18}H_{18}O_4=(CH_2)_2C:CH\cdot CH_2\cdot CH_2$ C(CH₂):CH·CH:C(CO₂H)₂ (H 809). Wird von Kuhn, Hoffer (B. 64 [1931], 1246) als Dilacton der Menthandiol-(1.4)-malonsäure-(3) (CH₂)₂CH (CH

UNDECADIINDICABBONSÄURE

5. Dicarbonsauren $C_n H_{2n-10} O_4$.

- 1. Dicarbonsäuren $C_{13}H_{16}O_4$.
- 1. Undecadiin-(1.10)-dicarbonsdure-(1.11) C₁₂H₁₆O₄ = HO₂C·C:C·[CH₂]₇·C:C·CO₂H. B. Bei der Einw. von Athylmagnesiumbromid auf Undecadiin-(1.10) und Behandlung des Reaktionsprodukts mit Köhlendioxyd (Lespieau, Bl. [4] 43, 1193). Krystalle (aus Ather). F: 111,5—112,5°. Sehr schwer löslich in Wasser, schwer in kaltem Benzol, leicht in Ather. Gibt bei der Hydrierung in Gegenwart von Platinschwarz in absol. Alkohol Undecan-dicarbonsäure-(1.11). K₂C₁₃H₁₄O₄. Krystalle (aus Wasser).
- 2. 5-Methyl-decatetraen-(2.4.6.8)-dicarbonsaure-(2.9) $C_{13}H_{16}O_4 = HO_2C \cdot C(CH_3) \cdot CH \cdot CH \cdot CH \cdot CH \cdot CH \cdot C(CH_3) \cdot CO_3H$ und den entsprechenden Dimethylester s. H 30, 108.
- 2. Hexahydrocrocetin $C_{20}H_{20}O_4$ s. H 80, 107.
- 3. 2.9 Dimethyl 4.7 bis [β . β dimethyl vinyl] decadien (2.8) dicarbon-säure (4.7), α . α . α '. Tetraisocrotyl adipinsäure $C_{22}H_{24}O_4 = [(CH_3)_2C:CH]_2C(CO_2H)\cdot CH_2\cdot C(CO_2H)[CH:C(CH_3)_3]_2$. B. Das neutrale Natriumsalz entsteht durch Einw. von Kohlendioxyd auf das Reaktionsprodukt aus 2.6-Dimethyl-4-methylen-heptadien-(2.5) (E II 1, 245) und Natriumpulver in Äther (SCHLENK, BERGMANN, A. 463, 71). Flüssig. Na₂C₂₂H₃₂O₄. Gelbliche Flocken.

6. Dicarbonsäuren C_nH_{2n-12}O₄.

3.8 - Dimethyl-decapentaen-dicarbonsäure-(1.10) $C_{14}H_{16}O_4 = [HO_2C\cdot CH: CH\cdot C(CH_2):CH\cdot CH =]_s$ und Derivate s. H 30, 118.

7. Dicarbonsäuren $C_n H_{2n-14} O_4$.

6.11-Dimethyl-hexadecahexaen - (3.5.7.9.11.13) - dicarbonsāure - (2.15), Dihydrocrocetin $C_{20}H_{26}O_4 = [HO_3C \cdot CH(CH_3) \cdot CH : CH \cdot CH : C(CH_3) \cdot CH : CH-]_3$ und den zugehörigen Dimethylester und Diäthylester s. H 80, 107.

8. Dicarbonsäuren C_nH_{2n-16}O₄.

6.11 - ulmethyl - hexadecaheptaen - (2.4.6.8.10.12.14) - dicarbonsäure - (2.15), Crocetin $C_mH_mO_4 = [HO_2C \cdot C(CH_3) : CH \cdot CH : CH \cdot C(CH_3) : CH \cdot CH =]_3$.

Stabiles Crocetins. H 30, 106; Monomethylester und Dimethylester des stabilen Crocetins (β-Crocetin und γ-Crocetin) s. H 30, 108.

Labiles Crocetin (Crocetin II) und dessen Dimethylester s. H 30, 109.

9. Dicarbonsauren $C_nH_{2n-18}O_4$.

Dihydro-norbixin $C_{24}H_{20}O_4 = [HO_3C \cdot C_9H_8(CH_3)_8 -]_8$ s. H 80, 111. Dihydrobixin $C_{25}H_{21}O_4 = HO_3C \cdot C_{16}H_{16}(CH_3)_4 \cdot CO_3 \cdot CH_8$ s. H 80, 113. Dihydro-methylbixin $C_{26}H_{24}O_4$ s. H 80, 114.

10. Dicarbonsäuren C_nH_{2n-20}O₄.

3.7.12.16-Tetramethyl-octadecanonaen-(1.3.5.7.9.11.13.15.17) -dicarbonsaure - (1.18), Norbixin $C_{bc}H_{bc}O_{c} = [HO_{c}C \cdot CH : CH \cdot C(CH_{c}) : CH \cdot CH : CH \cdot C(CH_{c}) : CH \cdot CH =]_{c}$

Stabiles Norbixin (Isonorbixin, β -Norbixin) s. H 30, 109; Monomethylester des stabilen Norbixins (Isobixin, β -Bixin) und Dimethylester des stabilen Norbixins (Isomethylbixin, β -Methylbixin) s. H 30, 110.

Labiles Norbixin s. H 30, 110; Monomethylester des labilen Norbixins (Bixin, labiles Methylbixin) s. H 30, 112. — Norbixin-monoäthylester, Norbixinmethylester äthylester und Norbixindiäthylester s. H 30, 115. [HOMANN]

C. Tricarbonsäuren.

1. Tricarbonsäuren C_nH_{2n-4}O₆.

1. Methantricarbonsäure C₄H₄O₆=CH(CO₂H)₃.

Trimethylester, Tricarbomethoxy-methan $C_7H_{10}O_6 = CH(CO_2 \cdot CH_3)_2$ (E I 320). B. Zur Bildung aus Methantetracarbonsäuretetraäthylester durch Behandeln mit Natriummethylat in Methanol nach Scholl, Egerer (A. 397, 362) vgl. Carothers, Am. Soc. 48, 3197. Bei der Aufarbeitung der Produkte, die bei längerer Einw. von überschüssigem Phosgen auf Natriummalonsäuredimethylester in Benzol entstehen (Schroetter, B. 59, 981, 983). — Darst. Man stellt durch Zusatz von 69 g Malonsäuredimethylester zu 13 g geschmolzenem Natrium in 400 cm³ Xylol das Natriumsalz her, kühlt auf ca. 65° ab, fügt 57 g Chlorameisensäuremethylester hinzu, erwärmt langsam zum Sieden und kocht unter Rühren 5 Stunden; Ausbeute 37—39% der Theorie (CORSON, SAYRE, Org. Synth. 13 [1933], 100). — Krystalle. F: 46° (SCHR.). — Liefert beim Erwärmen mit Brom in Chloroform bei Gegenwart von wenig Jod Brom-tricarbomethoxymethan (CA.). — NaC, H₂O₆ (SCHR.).

Triäthylester, Tricarbäthoxy-methan $C_{10}H_{16}O_6$ =CH($CO_2 \cdot C_2H_5$)₃ (H 810; E I 320). B. Zur Bildung aus Natriummalonester und Chlorameisensäureäthylester vgl. Philippi, Hanusch, v. Wacek, B. 54, 901. — Darst. Man fügt 30 cm³ einer Mischung von 160 g Malonester und 80 cm³ absol. Alkohol zu 25 g Magnesium in 25 cm³ Alkohol bei Gegenwart von 1 cm³ Tetrachlorkohlenstoff, kühlt, gibt 300 cm³ Äther hinzu und erwärmt auf dem Wasserbad; dann versetzt man mit 100 cm³ Chlorameisensäureäthylester in 100 cm³ Äther, erwärmt auf dem Wasserbad und zersetzt die erhaltene Magnesiumverbindung durch verd. Essigsäure; Ausbeute 88—93% der Theorie (Lund, Voigt, Org. Synth. 17 [1937], 86). — F: 29° (Ph., H., v. W.). — Liefert bei der Einw. von flüssigem Ammoniak im Rohr Malonamid und Urethan (Ph., H., v. W.).

Cyanmalonsäure-diäthylester $C_8H_{11}O_4N=NC\cdot CH(CO_2\cdot C_2H_5)_2$ (H 811; E I 321). B. Beim Einleiten von Chlorcyan in eine Suspension von Natriummalonsäurediäthylester in absol. Äther (MIGNONAC, RAMBECK, C. r. 188, 1299). — Kp_{14} : 138—140°. D_1^{∞} : 1,1128. n_2^{∞} : 1,4295.

Cyanmalonsäure-methylester-amid $C_8H_8O_3N_2=NC\cdot CH(CO_2\cdot CH_3)\cdot CO\cdot NH_8$. Diese Konstitution kommt nach Frerichs (Ch. Z. 37 [1913], 74) der von Frerichs, Hartwig (J. pr. [2] 72, 490) als Methylester des N.N'-[Carboxy-äthenyl]-harnstoffs (H 25, 209) beschriebenen Verbindung zu. — B. Beim Erhitzen von Cyanessigsäure-methylester mit Kaliumcyanat (Pabst, Ar. 1929, 337). — Prismen mit 11 ₃ (?) 11 ₄O (aus Wasser). Schmilzt wasserhaltig bei 11 6— 11 7° unter Aufschäumen, wasserfrei bei 12 8° unter Zersetzung (P.). — Löst Zink (P.). Liefert beim Erhitzen auf etwa 14 0° 10 0° 10 2° a. 10 2° carbonsäure-methylester- 10 2° carbonsäureamid (s. u.) (P.).

Cyanmalonsäure-äthylester-amid $C_0H_0O_3N_0=NC\cdot CH(CO_4\cdot C_2H_5)\cdot CO\cdot NH_2$. Diese Konstitution kommt nach Frerichs (Ch.Z.37 [1913], 74) der von Frerichs, Hartwig (J.pr. [2] 72, 489) als Äthylester des N.N'-[Carboxy-āthenyl]-harnstoffs (H 25, 210) beschriebenen Verbindung zu. — B. Beim Erhitzen von Cyanessigester mit Kaliumoyanat auf 140—145° (Pabst, Ar. 1929, 335; Frerichs, Ch.Z. 37 [1913], 74). — Nadeln (aus Wasser). F: 162—163° (Zers.) (P.). — Liefert beim Kochen mit Wasser Cyanacetamid (P.).

 $\alpha.\alpha'$.- Dicyan - diacetamid - α - carbonsäuremethylester - α' - carbonsäureamid $C_9H_8O_5N_4=CH_3\cdot O_2C\cdot CH(CN)\cdot CO\cdot NH\cdot CO\cdot CH(CN)\cdot CO\cdot NH_2$. B. Beim Erhitzen von Cyanmalonsäure-methylester-amid auf etwa 140° (Pabst, Ar. 1929, 341). — Krystalle (aus wäßr. Ammoniak durch Fällen mit Salzsäure). Zersetzt sich langsam bei etwa 220°. — Fast unlöslich in Wasser, unlöslich in Alkohol und Äther; leicht löslich in Alkaliaugen, wäßr. Ammoniak und Alkalicarbonat-Lösungen. — Gibt mit Eisen-(III)-chlorid ein in Äther unlösliches braunrotes Salz.

 $\begin{array}{l} \alpha.\alpha'\text{-Dioyan-diacetamid-}\alpha\text{-carbons}\\ \text{"aureathylester-}\alpha'\text{-carbons}\\ \text{"aureamid }C_{10}H_{10}O_{2}N_{4}\\ \text{=} C_{2}H_{5}\cdot O_{2}C\cdot CH(CN)\cdot CO\cdot NH\cdot CO\cdot CH(CN)\cdot CO\cdot NH_{2}. \ \ Diese\ Konstitution\ kommt\ der\ H\ 25, \end{array}$

681

210 aufgeführten Verbindung $C_8H_7O_4N_3$ zu (Pabst, Ar. 1929, 330). — B. Beim Erhitzen von Cyanmalonsäure-äthylester-amid auf 170° (P., Ar. 1929, 339). — Krystalle (aus wäßr. Ammoniak durch Fällen mit Salzsäure). Läßt sich mit Kalilauge bei Gegenwart von Phenolphthalein als zweibasische Säure titrieren. — Gibt mit Eisen(III)-chlorid eine rotbraune, in Äther unlösliche Fällung. — $Ag_2C_{10}H_8O_5N_4$. Flocken. — $BaC_{10}H_8O_5N_4+6$ H_2O . Nadeln. Gibt bei längerem Trocknen bei 115° etwa 4 Mol Wasser ab.

Tricyanmethan, Cyanoform $C_4HN_3 = CH(CN)_3$ (H 812). B. Zur Bildung des Natriumsalzes nach Schmidtmann (B. 29, 1172) vgl. Birckenbach, Huttner, B. 62, 157. — Elektrische Leitfähigkeit in wäßr. Lösung: B., H., Stein, B. 62, 2070. Zersetzungsspannung des Kaliumsalzes in 0,1 n-wäßriger Lösung und in gesättigter Lösung in absol. Alkohol: B., H. — Beim Behandeln des Silbersalzes mit Brom in Äther bei —10° in geschlossenem Gefäßerhält man Bromtricyanmethan (B., H.). — AgC_4N_3 . Bleibt in reinem Zustand am Licht unverändert (B., H.).

Brommethantricarbonsäure - trimethylester, Bromtricarbomethoxymethan $C_7H_9O_6Br=CBr(CO_3\cdot CH_9)_3$. B. Beim Erwärmen von Tricarbomethoxymethan mit Brom in Chloroform bei Gegenwart von wenig Jod (Carothers, Am. Soc. 48, 3197). — Krystalle (aus Äther + Petroläther). F: 50,5—51°. Kp₅: 116—117°.

Brommethantricarbonsäure-triäthylester, Bromtricarbäthoxymethan $C_{10}H_{15}O_8Br = CBr(CO_3 \cdot C_2H_5)_3$ (H 812; E I 321). D. 1,3610 (Schmidt, Ascherl, v. Knilling, B. 59, 1886). n_0^{∞} : 1,4473. — Liefert bei längerem Erhitzen mit Cyclohexen und Methanol im Rohr auf dem Wasserbad 2-Brom-cyclohexanol-(1)-methyläther.

Bromtricyanmethan C₄N₃Br = CBr(CN)₃. B. Bei Einw. von Brom auf das Silbersalz des Tricyanmethans in Ather im geschlossenen Gefäß bei —10° (BIRCKENBACH, HUTTNER, B. 62, 158). — Krystalle von stechendem Geruch (aus Ather oder durch Sublimation unterhalb 40°). Wird bei 68° gelbrot und schmilzt bei 72° unter Zersetzung (B., H., B. 62, 155). Löslich in fast allen Lösungsmitteln (B., H., B. 62, 155). Leitfähigkeit von Lösungen in Wasser: B., H., Stein, B. 62, 2074; in Nitrobenzol: B., H., B. 62, 162. Atherische Lösungen leiten den Strom nicht (B., H., B. 62, 155). — Wird durch Wasser und Alkaliaugen zersetzt (B., H., B. 62, 155, 156). Macht aus Ammoniumjodid in Alkohol, aus Kaliumjodid in Wasser sowie aus Silberjodid in Ather oder Benzol Jod frei (B., H., B. 62, 155, 156). Eine Lösung von Jod in Benzol wird durch Bromtricyanmethan aufgehellt (B., H., B. 62, 156). Unverändert löslich in flüssigem Schwefeldioxyd (B., H., B. 62, 155); bei Einw. von wäßriger schwefliger Säure entsteht Tricyanmethan (B., H., B. 62, 156, 159). Beim Behandeln der ätherischen Lösung mit 2 Mol Kaliumcyanid in Wasser erhält man das Kaliumsalz des Tricyanmethans (B., H., B. 62, 160). Verhalten beim Überleiten von trockenem Athylen: B., H., B. 62, 161.

2. Äthan-tricarbonsäure (1.1.2), Carboxybernsteinsäure $C_5H_6O_6=HO_2C\cdot CH_2\cdot CH(CO_3H)_2$ (H 812). Beim Behandeln mit Dimethylamin und Formaldehyd-Lösung unter Kühlung erhält man 3-Dimethylamino-propan-tricarbonsäure-(1.2.2) (Mannich, Ganz, B. 55, 3502).

Triäthylester $C_{11}H_{18}O_6 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5)_2$ (H 813; E I 321). Kp₁₇: 163—165° (Whitmore, Thurman, Am. Soc. 51, 1501). — Liefert beim Behandeln mit Brom 1-Brom-āthan-tricarbonsāure-(1.1.2)-triāthylester (Wh., Th.). Beim Kochen mit verd. Salzsaure erhält man Bernsteinsäure (Gault, Klees, Bl. [4] 39, 892).

1-Brom-äthan-tricarbonsäure-(1.1.2)-triäthylester $C_{11}H_{17}O_{6}Br=C_{8}H_{5}\cdot O_{2}C\cdot CH_{2}\cdot CBr(CO_{2}\cdot C_{2}H_{5})_{3}$. B. Bei der Einw. von Brom auf Äthan-tricarbonsäure-(1.1.2)-triäthylester (Whitmore, Thurman, Am. Soc. 51, 1501). —Kp₁₅: 175—177°. — Liefert bei längerem Kochen mit 2 Mol Di-p-tolyl-quecksilber in Toluol p-Tolyl-quecksilber-bromid, wenig Äthylentricarbonsäure-triäthylester und andere Produkte.

3. Tricarbonsäuren CaHaOa.

1. Propan - tricarbonsäure - (1.1.3), α - Carboxy - glutarsäure $C_eH_eO_e = HO_aC \cdot CH_a \cdot CH_a \cdot CH(CO_aH)_a$. B. Aus dem Triäthylester durch Verseifung (Dickens, Kon, Thorpe, Soc. 121, 1502). Beim Kochen von Propan-tetracarbonsäure (1.1.3.3)-tetraäthylester mit verd. Salzsäure (Lennon, Perkin, Soc. 1928, 1519, 1524). — Nadeln (aus Wasser), Prismen (aus Äther + Petroläther). F: ca. 125° (L., P.), 123° (D., K., Th.). Sehr leicht löslich in Wasser (L., P.). — Gibt oberhalb des Schmelzpunktes Kohlendioxyd ab und geht in Glutarsäure über (L., P.; D., K., Th.).

Tristhylester $C_{19}H_{90}O_{6}=C_{2}H_{5}\cdot O_{2}C\cdot CH_{2}\cdot CH_{2}\cdot CH(CO_{2}\cdot C_{2}H_{5})_{9}$ (H 814; E I 321). Öl. Kp₃₆: 184° (Dickens, Kon, Thorpe, Soc. 121, 1501).

TRICARBONSAUREN

- 1-Cyan-propan-dicarbonsäure-(1.3)-diäthylester, α -Cyan-glutarsäure-diäthylester $C_{10}H_{15}O_4N=C_2H_5\cdot O_3C\cdot CH_3\cdot CH(CN)\cdot CO_3\cdot C_2H_5$ (H 814). B. Neben anderen Produkten bei der Kondensation von Natriumeyanessigsäure-äthylester in Alkohol mit Milchsäureäthylester oder mit Hydracrylsäureäthylester (Ingold, Soc. 119, 336, 338, 339). Kp₃₁₋₃₂: 140—145°. Beim Erhitzen mit Schwefelsäure erhält man Glutarsäure.
- 2. Propan-tricarbonsaure (1.2.3), β Carboxy glutarsaure, Tricarballylsaure $C_aH_aO_b=HO_bC\cdot CH_a\cdot CH(CO_aH)\cdot CH_a\cdot CO_aH$ (H 815; E I 321). Für die von Tricarballylsaure abgeleiteten Namen wird in diesem Handbuch folgende Stellungs-

bezeichnung gebraucht: HO₂C·CH₂·CH(CO₂H)·CH₂·CO₂H. — V. Über das Auftreten des Calciumsalzes in den Saftvorwärmern bei der Fabrikation von Rohrzucker aus Zuckerrüben vgl. v. Lippmann, B. 61, 222. Das Vorkommen des Calciumsalzes in den beim Einsampfen von Zuckershornsaft auftretenden kalkhaltigen Niederschlägen wird von Neuson (Am. Soc. 50, 2028) bestätigt. — B. Aus 3-Cyan-propan-dicarbonsäure-(1.2)-diäthylester durch Verseifung mit Schwefelsäure (Ingold, Soc. 119, 341). Neben anderen Produkten bei der Einw. von Kaliumcyanid auf α-Dichlorhydrin und nachfolgenden Verseifung (Lespteau, Bl. [4] 33, 727). Aus Cyclohexen-(4)-dicarbonsäure-(1.3) beim Ozonisieren und folgenden Behandeln mit Kaliumpermanganat-Lösung bei 0° (Farmer, Richardson, Soc. 1926, 2178). Durch Hydrierung von cis-Aconitsäure, besser von trans-Aconitsäure bei Gegenwart von Platinschwarz in Wasser (Malachowski, Bl. Acad. polon. [A] 1929, 271; C. 1929 II, 2176). — Elektrolytische Dissoziationskonstante der 1. Stufe k₁: 3,25×10⁻⁴; der 2. Stufe k₂: 2,65×10⁻⁵; der 3. Stufe k₃: 1,48×10⁻⁶ (ermittelt bei 30° durch potentiometrische Titration) (Morton, Trans. Faraday Soc. 24, 22; C. 1928 I, 1151). — Reduktion von Methylenblau in Gegenwart von Bact. coli durch Tricarballylsäure: Quaxtel, Biochem. J. 20, 179; durch Tricarballylsäure + Bernsteinsäure: Qu., Wooldridge, Biochem. J. 20, 270, 179; durch Tricarballylsäure + Bernsteinsäure: Qu., Wooldridge, Biochem. J. 22, 692. — Uranylsalz (UO₂)₃(C₆H₅O₆)₂ + 3 H₂O. Gelb, mikrokrystallin. Bräunt sich beim Erhitzen auf 200° (A. Müller, Z. anory. Ch. 109, 240, 252). Leicht löslich in Wasser, schwer löslich in Alkohol und Aceton, unlöslich in Äther.

Tricarballylsäure - α - methylester $C_7H_{10}O_8=HO_2C\cdot CH_2\cdot CH(CO_2H)\cdot CH_2\cdot CO_2\cdot CH_2$. Das H 816 beschriebene ölige Produkt ist ein Gemisch von Isomeren (Malachowski, Bl. Acad. polon. [A] 1929, 269; C. 1929 II, 2176). — B. Bei der Einw. von Wasser auf $\alpha.\beta$ -Anhydrotricarballylsäure-methylester (Syst. Nr. 2620) (M.). Aus $\alpha.\beta$ -Anhydrotricarballylsäure beim Behandeln mit Methanol anfangs bei Zimmertemperatur, dann bei 40°, neben Tricarballylsäure- β -methylester (M.). Aus trans-Aconitsäure- α -methylester bei der Hydrierung bei Gegenwart von Platinschwarz in Äther (M.). — F: 111—112°. Leicht löslich in Wasser und Ather, löslich in Aceton, fast unlöslich in Chloroform und Benzöl.

Tricarballylsäure- β -methylester $C_7H_{10}O_6=HO_2C\cdot CH_2\cdot CH(CO_2\cdot CH_3)\cdot CH_2\cdot CO_2H$. Das H 816 beschriebene Produkt ist ein Gemisch von Isomeren (Malachowski, Bl. Acad. polon. [A] 1929, 269; C. 1929 II, 2176). — B. Neben Tricarballylsäure- α -methylester bei der Einw. von absol. Methanol auf α . β -Anhydro-tricarballylsäure (Syst. Nr. 2620) (M.). — Krystallisiert schwer.

Tricarballylsäuretrimethylester $C_9H_{14}O_9=CH_2\cdot O_9C\cdot CH_2\cdot CH(CO_2\cdot CH_2)\cdot CH_2\cdot CO_2\cdot CH_3$ (H 816). Kp₁₀: 130—135° (Kohler, Butler, Am. Soc. 48, 1044).

Tricarballylsäuretriäthylester $C_{19}H_{90}O_6=C_9H_8\cdot O_2C\cdot CH_3\cdot CH(CO_2\cdot C_2H_8)\cdot CH_3\cdot CO_3\cdot C_9H_5$ (H 816; E I 322). Kp₂₀: 200—205° (Ingold, Soc. 119, 340). — 2 $C_{19}H_{20}O_6+2$ SnCl₄. Hygroskopische Krystalle. F: 118° (Hieber, A. 444, 255). — 2 $C_{19}H_{20}O_6+3$ SnCl₄. Hygroskopische krystalline Masse. Raucht stark an der Luft (H.).

H 816, Z. 10 v. u. statt " β -Benzal-glutarsäureanhydrid" lies "ein Estergemisch, das beim Kochen mit Alkalilauge und Ansäuern der entstandenen Lösung β -Benzal-glutarsäureanhydrid gibt"

Tricarbalıylsäuretriamid $C_0H_{11}O_2N_2=H_2N\cdot CO\cdot CH_2\cdot CH(CO\cdot NH_2)\cdot CH_2\cdot CO\cdot NH_3$ (H 817). Dichte wäßr. Lösungen bei 25°: Burrows, J. Pr. Soc. N. S. Wales 53 [1919], 77.

3-Cyan-propan-dicarbonsäure-(1.2)-diäthylester, γ -Cyan-brensweinsäure-diäthylester $C_{10}H_{15}O_4N=C_2H_5\cdot O_3C\cdot CH_3\cdot CH(CO_3\cdot C_2H_5)\cdot CH_2\cdot CN$. B. Durch Erhitzen von 1-Cyan-propan-tricarbonsäure-(1.2.3)-diäthylester-(2.3) (MTTTER, ROY, J. indian chem. Soc. 5, 43, 48; C. 1928 I, 2396). Bei der Kondensation von Äpfelsäurediäthylester mit Natrium-cyanessigsäureäthylester in Alkohol und Destillation der sauren Anteile des Reaktionsprodukts (Ingold, Soc. 119, 336, 340). — Kp: 282° (M., R.); Kp₃₇: 166—169° (I.).

Tricarballylsäuretrihydraxid $C_0H_{14}O_2N_0=H_2N\cdot NH\cdot CO\cdot CH_3\cdot CH(CO\cdot NH\cdot NH_3)\cdot CH_3\cdot CO\cdot NH\cdot NH_3$ (H 817). B. Aus Tricarballylsäuretrimethylester beim Behandeln mit Hydraxinhydrat in Methanol (Kohler, Butler, Am. Soc. 48, 1044). — Nadeln (aus verd. Methanol). F: 183—186° (K., B.). — $C_0H_{14}O_2N_0+HCl$. Krystalle (aus Alkohol). Regulär haxakisektsedrisch (Jarger, Versl. Akad. Amsterdam 35, 68; C. 1926 II, 209).

Syst. Nr. 184]

TRICARBALLYLSÄURE

- 2-Chlor-propan-tricarbonsäure-(1.2.3)-triäthylester, β -Chlor-tricarballylsäure-triäthylester $C_{12}H_{19}O_6Cl = C_2H_5$. $O_2C\cdot CH_3\cdot CCl(CO_2\cdot C_2H_5)\cdot CH_2\cdot CO_2\cdot C_2H_5$. Liefert beim Erhitzen mit Natriumcyanessigester in Alkohol auf dem Wasserbad Aconitsäuretriäthylester, 1-Cyan-butan-tetracarbonsäure-(1.2.3.4)-tetraäthylester und ein Produkt, das bei Behandlung mit Schwefelsäure in Cyclopentanon-(4)-dicarbonsäure-(1.2) übergeht (INGOLD, Soc. 119, 351).
- 1.2 Dibrom propan tricarbonsäure (1.2.3), $\alpha.\beta$ Dibrom tricarballylsäure $C_0H_0O_0Br_0=HO_0C\cdot CH_2\cdot CBr(CO_0H)\cdot CHBr\cdot CO_0H$. B. Bei der Einw. von Bromdampf auf cis-Aconiteäure (Malacrowski, Maslowski, B. 61, 2524). Wurde nicht rein erhalten. Nadeln (aus Aceton + Chloroform). F: 117—120°.
- 1.2-Dibrom-propan-tricarbonsäure-(1.2.3)-triäthylester, $\alpha.\beta$ -Dibrom-tricarballylsäure-triäthylester $C_{12}H_{12}O_qBr_2=C_2H_5\cdot O_2C\cdot CH_2\cdot CBr(CO_2\cdot C_2H_3)\cdot CHBr\cdot CO_2\cdot C_2H_3$ (H 817). B. Bei längerer Einw. von Bromdampf auf trans-Aconitsäure-triäthylester (Imgold, Oliver, Thorra, Soc. 125, 2132). Spaltet bei der Destillation unter vermindertem Druck Athylbromid ab unter Bildung eines Lactons $C_{12}H_{12}O_qBr$ ($Kp_{10}:205^0$). Beim Erhitzen mit Bariumhydroxyd erhält man entgegen der Angabe von Ruhmmann, Allhusm (Soc. 65, 10) nicht Oxalsäure und Bernsteinsäure, sondern, ebenso wie beim Kochen mit Sodalösung sowie beim Behandeln mit methylalkoholischer Kalilauge in der Hitze, Aconiteäure. Bei der Einw. von Natriumäthylat-Lösung in der Kälte entsteht 1-Brom-propen-(1)-tricarbonsäure-(1.2.3)-triäthylester.
- 3. Propan-tricarbonsdure-(1.1.2), α-Methyl-α'-carboxy-bernsteinsdure $C_0H_0O_0 = HO_0C \cdot CH(CH_0) \cdot CH(CO_0H)_0$. Inaktive Form (H 818). B. Entsteht wahrscheinlich bei der Oxydation des nach Extraktion von Steinkohle mit Benzol unter Druck erhaltenen Rückstandes mit alkalischer Kaliumpermanganat-Lösung im Autoklaven bei 70° (Bone, Quarendon, Pr. roy. Soc. [A] 110, 541; C. 1926 I, 2860). F: 147—148° (Backer, Buining, R. 47, 1002). Beim Erwärmen mit konz. oder rauchender Schwefelsäure oder mit Chlorsulfonsäure auf ca. 100° erhält man Propan-dicarbonsäure-(1.2)-sulfonsäure-(1) (Ba., Bul.).

Trimethylester $C_9H_{14}O_8=CH_2\cdot O_9C\cdot CH(CH_3)\cdot CH(CO_2\cdot CH_3)_2$. B. Aus 2-Methylpenten-(3)-tricarbonsäure-(1.1.5)-trimethylester durch Ozonisierung in Tetrachlorkohlenstoff, Oxydation mit Wasserstoffperoxyd und Veresterung mit methylalkoholischer Schwefelsäure (Kohler, Butler, Am. Soc. 48, 1044). — Bewegliche Flüssigkeit. Kp7(?): 127—131°.

Tristhylester $C_{19}H_{20}O_4=C_2H_5\cdot O_2C\cdot CH(CH_3)\cdot CH(CO_3\cdot C_2H_5)_2$ (H 818). B. Zur Bildung aus Natriummalonester und α -Brom-propionsaure-athylester vgl. Backer, Buining, R. 47, 1002. — Kp₁₀₀: 270° (geringe Zers.); Kp₁₀: 150° (Ba., Bui.). — Die Natriumverbindung reagiert mit Chlorsulfonsaure-athylester unter Bildung von 1-Chlor-propan-tricarbonsaure-(1.1.2)-triäthylester und Natriummonoathylsulfit (Ba., Bui.). Kondensation der Natriumverbindung mit 4-Methoxy-2.5-dimethyl- β -phenāthylbromid in Benzol: Clemo, Haworth, Walkun, Soc. 1939, 2380.

1-Cyan-propan-dicarbonsaure-(1.2)-diathylester, α -Cyan-brenzweinsaure-diathylester $C_{10}H_{15}O_4N=C_3H_5\cdot O_2C\cdot CH(CH_2)\cdot CH(CN)\cdot CO_2\cdot C_2H_5$ (H 819). B. Zur Bildung aus Cyanessigsaureathylester und α -Brom-propionsaureathylester vgl. Küster, H. 130, 10. — Kp₂₀: 167° (Verkade, R. 40, 205). — Liefert beim Behandeln mit 85% iger Schwefelsaure erst in der Kälte, dann bei 40—50° eine Verbindung $C_{10}H_{17}O_5N$ (Krystalle aus Äther und Alkohol; F: 148—147°; sersetzt sich bei Einw. von kons. Lauge) (K., H. 172, 241).

Propan - tricarbonsäure - (1.1.2) - trihydrasid $C_0H_{14}O_0N_0=H_0N\cdot NH\cdot CO\cdot CH(CH_0)\cdot CH(CO\cdot NH\cdot NH_0)_0$. B. Aus Propan-tricarbonsäure-(1.1.2)-trimethylester und Hydrasinhydrat in Methanol (Kohler, Butler, Am. Soc. 48, 1044). — F: 208° (Zers.). Leicht löslich in Wasser, unlöslich in Methanol und Äther.

1 - Chlor - propan - tricarbonsäure - (1.1.2) - triäthylester $C_{12}H_{19}O_5Cl = C_2H_5 \cdot O_2C \cdot C(CH_5) \cdot CCl(CO_2 \cdot C_2H_6)_2$. B. Aus der Natriumverbindung des Propan-tricarbonsäure (1.1.2)-triäthylesters beim Behandeln mit Chlorsulfonsäure-äthylester (Backer, Buining, R. 47, 1005). — Kp_{20} : 160—168°. [Baumann]

4. Tricarbonsauren $C_7H_{10}O_6$.

1. Butan-trioarbonsdure-(1.2.4), β-Carboay-adipinsdure C₁H₁₀O₆=HO₂C·CH₂·CH₂·CH₂·CH₃·CO₆H (H 819; E I 322). B. Beim Erhitzen von Propiolsäure-äthylester mit Fumansäure-däthylester in Äther bei Gegenwart von Natrium auf dem Wasserbad, Verseifen mit kalter methylalkoholischer Kalilauge und Behndeln des Reaktionsprodukts mit Zinkamalgam in saurer Lösung (Incold), Soc. 127, 1205). Zur Bildung aus γ.δ-Dicyan-nvaleriansäure-äthylester nach Luncum, Mönis (B. 42, 1233). vgl. Killani, B. 62, 640. Beim

Erwärmen von 4-Cyan-butan-dicarbonsäure-(1.2)-diäthylester, 4-Cyan-butan-tricarbonsäure-(1.2.4)-triäthylester oder 5-Oxo-hexan-tricarbonsäure-(1.2.4)-triäthylester mit verd. Salzsäure (Mrtter, Roy, J. indian chem. Soc. 5, 45, 47; C. 1928 I, 2395). Aus △³-Tetrahydroisophthalsäure bei aufeinanderfolgender Oxydation mit Ozon in Natriumcarbonat-Lösung und mit verd. Permanganat-Lösung bein 0° (Farmer, Richardson, Soc. 1927, 61). Entsteht anscheinend neben andern Verbindungen beim Erhitzen des Lactons der 2-Oxy-cyclohexylessigsäure mit 30%iger Salpetersäure (v. Braun, Münch, A. 465, 61). — Krystalle (aus Essigester + Petroläther oder kaltem Wasser). Triklin (Steinmetz, B. 62, 641). F: 121° (F., Ri.), 123° (K.). Das Calcium- und Bariumsalz sind in heißem Wasser schwerer löslich als in kaltem (K.).

E I 322. Z. 7 v. u. statt "β-Acetyl-adipinsäure" lies "α-Acetonyl-glutarsäure".

- 4-Cyan-butan-dicarbonsäure-(1.2)-diäthylester, [β -Cyan-äthyl]-bernsteinsäure-diäthylester $C_{11}H_{17}O_4N=NC\cdot CH_2\cdot CH_2\cdot CH(CO_2\cdot C_2H_3)\cdot CH_2\cdot CO_3\cdot C_2H_3$. B. Beim Erhitzen von 4-Cyan-butan-tricarbonsäure-(1.2.4)-diäthylester-(1.2) unter Atmosphärendruck (MITTER, Roy, J. indian chem. Soc. 5, 47; C. 1928 I, 2395). Kp: 286°.
- 2. Methantriessigsäure, β-Carboxymethyl-glutarsäure C₇H₁₀O₆ = CH(CH₂·CO₂H)₃ (H 820; E I 323). B. Durch Kochen des Triäthylesters mit überschüssiger konzentrierter Salzsäure (Ingold, Thorpe, Soc. 119, 501). Beim Kochen von β-Cyanmethylglutarsäurediäthylester mit verd. Schwefelsäure (I., Th., Soc. 119, 500). Beim Kochen von β-Carboxymethyl-glutaconsäure mit Natriumamalgam in verd. Salzsäure (I., Nickolls, Soc. 121, 1640, 1645). Beim Erhitzen von Äthan-dicarbonsäure-(1.1)-diessigsäure-(2.2)-tetraäthylester mit verd. Schwefelsäure bis zum Aufhören der Kohlendioxydentwicklung (Dreifus, I., Soc. 123, 2966). Beim Erhitzen von α-Cyan-methantriessigsäure-trimethylester mit Salzsäure auf dem Wasserbad (Kohler, Reid, Am. Soc. 47, 2808). Zur Bildung aus α-Cyan-methantriessigsäure-triäthylester durch Verseifung (Thorpe, Wood, Soc. 103, 1581) vgl. a. I., Soc. 119, 336, 340, 352; I., Th. Beim Kochen von Methan-dimalonsäure-cyanessigsäure-pentaäthylester mit verd. Schwefelsäure (I., Perren, Soc. 121, 1417, 1420). Beim Behandeln von Penten-(4)-tricarbonsäure-(1.3.5)-essigsäure-(2) mit alkalischer Permanganat-Lösung (I., P., Thorpe, Soc. 121, 1786). Nadeln (aus Äther). F: 126° (I., P.; D., I.; K., R.). Liefert beim Behandeln mit Acetylchlorid Methantriessigsäure-anhydrid (Syst. Nr. 2620) (I., Soc. 119, 353).

Triäthylester $C_{13}H_{22}O_6=CH(CH_2\cdot CO_2\cdot C_2H_5)_3$. B. Aus Methantriessigsäure beim Kochen mit alkoh. Schwefelsäure unter Durchleiten von Alkoholdampf (Dreifuss, Ingold, Soc. 123, 2966). Entsteht als Hauptprodukt bei der Kondensation von β-Oxy-glutarsäure-diäthylester mit Natriumeyanessigester in Alkohol, Zersetzen des Reaktionsprodukts mit verd. Salzsäure, nachfolgendem Kochen mit verd. Schwefelsäure und Veresterung mit alkoh. Schwefelsäure (Ingold, Thorpe, Soc. 119, 499, 500). Beim Kochen von 4-Oxo-pentandicarbonsäure-(1.3)-essigsäure-(2)-triäthylester mit Natriumäthylat-Lösung (D., I.). — Kp₁₀: 200—205° (D., I.; vgl. I., Thorpe, Soc. 119, 501).

 β -Cyanmethyl-glutarsäure-diäthylester $C_{11}H_{12}O_4N=NC\cdot CH_2\cdot CH(CH_2\cdot CO_2\cdot C_2H_5)_2$. B. Beim Erhitzen von β -Oxy-glutarsäure-diäthylester mit Natriumcyanessigester in Alkohol, Zersetzen des Reaktionsprodukts mit verd. Salzsäure und Destillieren des sauren Kondensationsprodukts unter vermindertem Druck (Ingold, Thorpe, Soc. 119, 500). — Kp₁₅: 158° bis 160°.

3. Butan - tricarbonsäure - (1.3.3), a - Methyl - a - carboxy - glutarsäure C₇H₁₀O₆ = HO₂C·CH₃·C(CH₃)(CO₂H)₂. B. Neben anderen Verbindungen beim Erhitzen der Dioxodicarbonsäure C₃₃H₃₄O₆ (F: 216°) nebenstehender Formel (s. 4. Hauptabteilung; Sterine) mit Salpeterschwefelsäure (Wieland, Vocke, H. 177, 71).

— Prismen (aus konz. Salzsäure). F: 134°. Sehr leicht löalich in Wasser, Alkohol und Äther, schwer in Benzol. — Zersetzt sich beim Erhitzen

auf ca. 150°.

Trimethylester $C_{10}H_{16}O_6 = CH_2 \cdot O_2C \cdot CH_3 \cdot CH_2 \cdot C(CH_3)(CO_3 \cdot CH_3)_3$. Kp₁₈: 150—152° (Wieland, Vocke, H. 177, 72). — Geht beim Erhitzen mit 2 n-Salzsäure im Rohr auf 200°

unter Kohlendioxyd-Entwicklung in a-Methyl-glutarsäure über.

4. 2-Methyl-propan-tricarbone aure-(1.1.3), β -Methyl-a-carboxy-glutar-sture $C_7H_{10}O_6=HO_3C\cdot CH_1\cdot CH(CH_2)\cdot CH(CO_2H)_3$.

Triāthylester $C_{12}H_{23}O_6 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH(CH_3) \cdot CH(CO_2 \cdot C_2H_5)_2$ (H 821). B. Zur Bildung aus Natriummalonsäure-diāthylester und Crotonsäure-āthylester in Alkohol vgl. INGOLD, POWELL, Soc. 119, 1978.

- β -Methyl-α-cyan-glutarsäure-diäthylester $C_{11}H_{17}O_4N=C_3H_5\cdot O_3C\cdot CH_2\cdot CH(CH_3)\cdot CH(CN)\cdot CO_3\cdot C_2H_5$ (H 821). B. Beim Erhitzen von β -Oxy-buttersäure-äthylester mit Natriumoyanessigsäure-äthylester in Alkohol, Zersetzen des Reaktionsprodukts mit verd. Salzsäure und Destillieren des neutralen Kondensationsprodukts unter vermindertem Druck (INGOLD, Soc. 119, 336, 339). Kp₂₄: 180—185°. Liefert beim Behandeln mit Schwefelsäure β -Methyl-glutarsäure.
- 5. Butan tricarbonsäure (1.1.3), α Methyl α' carboxy glutarsäure $C_7H_{18}O_4 = HO_3C \cdot CH(CH_3) \cdot CH_2 \cdot CH(CO_3H)_3$.
- 1-Cyan-butan-dicarbonsäure-(1.3)-diäthylester, α -Methyl- α -cyan-glutarsäure-diäthylester $C_{11}H_{17}O_4N=C_2H_5\cdot O_2C\cdot CH(CH_3)\cdot CH_2\cdot CH(CN)\cdot CO_3\cdot C_2H_5$. B. Beim Erhitzen von α -Oxy-isobuttersäure-äthylester mit Natriumcyanessigsäure-äthylester in Alkohol, Zersetzen des Reaktionsprodukts mit verd. Salzsäure und Destillieren des neutralen Kondensationsprodukts unter vermindertem Druck (INGOLD, Soc. 119, 336, 338). Beim Erhitzen von Pentan-trioarbonsäure-(2.2.4)-triäthylester mit Natriumcyanessigester in Alkohol im Rohr auf 100° (I., Soc. 127, 474). Kp₂₄: 160—162° (I., Soc. 119, 339). Liefert beim Kochen mit verd. Mineralsäuren α -Methyl-glutarsäure (I., Soc. 119, 339; 127, 475).
- 6. 2-Methyl-propan-tricarbonsäure-(1.2.3), β -Methyl- β -carboxy-glutar-säure, β -Methyl-tricarballylsäure $C_7H_{10}O_6=HO_2C\cdot CH_2\cdot C(CH_3)(CO_2H)\cdot CH_3\cdot CO_2H$ (H 822; E I 323). B. Beim Erwärmen von β -Methyl- α -cyan-tricarballylsäure-triäthylester mit verd. Salzsäure (Mitter, Roy, J. indian chem. Soc. 5, 47; C. 1928 I, 2395). Aus β -Methyl- α - β -dicyan-glutarsäure-diäthylester beim Kochen mit konz. Salzsäure oder Erhitzen mit 70% iger Schwefelsäure auf ca. 140° (Hope, Sheldon, Soc. 121, 2227). Krystalle (aus Ameisensäure oder Salzsäure). F: 164° (H., Sh.).
- 7. Butan tricarbonsäure (1.2.2), α Äthyl- α -carboxy bernsteinsäure $C_7H_{10}O_6=HO_2C\cdot CH_2\cdot C(C_2H_5)(CO_2H)_2$. B. Beim Eintragen von Jod in die siedende alkoholische Lösung von α -Äthyl- α -carboxy-bernsteinsäure-trihydrazid (Curtius, Gund, J. pr. [2] 107, 179, 187). Krystalle. F: 119°.

Triäthylester $C_{18}H_{22}O_6=C_2H_5\cdot O_2C\cdot CH_3\cdot C(C_2H_5)(CO_2\cdot C_2H_5)_2$ (H 822; E I 323). Kp₃: 153—155° (Curtius, Gund, J. pr. [2] 107, 183).

Trihydraxid $C_7H_{16}O_3N_6=H_2N\cdot NH\cdot CO\cdot CH_2\cdot C(C_2H_5)(CO\cdot NH\cdot NH_2)_8$. B. Aus α -Athylac-carboxy-bernsteinsäure-triäthylester beim Kochen mit Hydrazinhydrat in 90% igem Alkohol oder beim Behandeln mit wasserfreiem Hydrazin ohne Lösungsmittel (Curtius, Gund, J. pr. [2] 107, 179, 183, 184). — Prismen (aus 90% igem Alkohol). F: 167°. Leicht löslich in kaltem Wasser, schwerer in absol. Alkohol, unlöslich in Ather, Chloroform und Benzol. — Beim Eintragen von Jod in die siedende alkoholische Lösung entsteht unter Stickstoffentwicklung α -Athyl- α -carboxy-bernsteinsäure. — $C_7H_{16}O_2N_6+3$ HCl. Tafeln oder Nadeln. F: 185°. Leicht löslich in Wasser, schwer in absol. Alkohol. — Tripikrat $C_7H_{16}O_3N_6+3$ $C_8H_2O_7N_3$. F: 185°.

Tris-isopropylidenhydrasid $C_{16}H_{26}O_2N_6=(CH_3)_2C:N\cdot NH\cdot CO\cdot CH_2\cdot C(C_2H_5)[CO\cdot NH\cdot N:C(CH_3)_2]_2$. B. Aus α -Äthyl- α -carboxy-bernsteinsäure-trihydrazid und Aceton (Curtius, Gund, J. pr. [2] 107, 180, 185). — Tafeln (aus 90% igem Alkohol). F: 156°. Löslich in Wasser, Alkohol und Chloroform, unlöslich in Benzol.

Tris-[β -acetyl-hydrazid] $C_{13}H_{22}O_6N_6=CH_3\cdot CO\cdot NH\cdot NH\cdot CO\cdot CH_2\cdot C(C_2H_5)(CO\cdot NH\cdot NH\cdot CO\cdot CH_3)_2$. B. Aus α -Athyl- α -carboxy-bernsteinsäure-trihydrazid und Acetanhydrid (Curtius, Gund, J. pr. [2] 167, 180, 186). — Tafeln. F: 222°. Löslich in Wasser und Alkohol, unlöslich in Benzol und Chloroform.

Triasid $C_7H_7O_3N_9=N_9\cdot CO\cdot CH_2\cdot C(C_9H_5)(CO\cdot N_9)_9$. B. Beim Behandeln von α -Äthyla-carboxy-bernsteinsäure-trihydrazid mit Natriumnitrit in verd. Salzsäure (Curtius, Gund, J. pr. [2] 107, 180, 188). — Blaßgelbes, explosives Öl von stechendem Geruch. Erstarrt noch nicht bei —10°. — Entwickelt bereits unterhalb 0° Stickstoff. Liefert beim Kochen mit trocknem Äther oder Benzol 1.2.2-Tris-carbonylamino-butan (Syst. Nr. 358).

8. 2-Methyl-propan-tricarbonsäure-(1.1.2), a.a-Dimethyl-a'-carboxybernsteinsäure $C_7H_{10}O_6=HO_5C\cdot C(CH_3)_2\cdot CH(CO_5H)_2$ (H 823). B. Beim Kochen von a.a-Dimethyl-a'-cyan-bernsteinsäure-diäthylester mit konz. Kalilauge (Ingold, Soc. 127, 470, 473). — Prismen (aus Äther + Chloroform). F: 166—167° (Zers.). Leicht löslich in Wasser, löslich in Äther, schwer löslich in Chloroform. — Zerfällt beim Erhitzen auf 170° in Kohlendioxyd und a.a-Dimethyl-bernsteinsäure.

Triäthylester $C_{12}H_{22}O_6 = C_2H_5 \cdot O_2C \cdot C(CH_3)_2 \cdot CH(CO_2 \cdot C_2H_5)_2$. B. Beim Erhitzen einer äther. Suspension des Silbersalzes der $\alpha.\alpha$ -Dimethyl- α -carboxy-bernsteinsäure mit Äthyljodid (Ingold, Soc. 127, 471, 473). — Kp₂₂: 158—165°. — Gibt bei der Hydrolyse mit

TRICARBONSÄUREN

Salzsäure oder beim Erhitzen mit Natriumäthylat-Lösung auf 78° und Kochen des Reaktionsprodukts mit 20 % iger Salzsäure $\alpha.\alpha$ -Dimethyl-bernsteinsäure. Bei längerem Erhitzen mit Natriumäthylat-Lösung im Rohr auf 100° und Kochen des Reaktionsprodukts mit 20 % iger Salzsäure erhält man neben $\alpha.\alpha$ -Dimethyl-bernsteinsäure etwas α -Methylglutarsäure.

- α.α Dimethyl α' cyan bernsteinsäure diäthylester $C_{11}H_{17}O_4N = C_2H_5 \cdot O_2C \cdot C(CH_2)_2 \cdot CH(CN) \cdot CO_2 \cdot C_2H_5$ (H 823). Kp₁₁: 147—150° (Le Peletier de Rosanbo, A. ch. [9] 19, 333); Kp₂: 142—143° (Verkade, R. 40, 208). Liefert beim Kochen mit konz. Kalilauge α.α-Dimethyl-α'-carboxy-bernsteinsäure (Ingold, Soc. 127, 470, 473).
- α.α-Dimethyl-α'-cyan-bernsteinsäure-α-amid, $\beta.\beta$ -Dimethyl- β -aminoformyl-α-cyan-propionsäure $C_7H_{10}O_2N_3=H_2N\cdot CO\cdot C(CH_3)_2\cdot CH(CN)\cdot CO_2H$. B. Beim Kochen der Natriumverbindung des $\beta.\beta$ -Dimethyl-α. β -dicyan-propionsäure-äthylesters mit verd. Alkohol und Schütteln des entstandenen Natriumsalzes der nicht näher beschriebenen $\beta.\beta$ -Dimethyl-α. β -dicyan-propionsäure mit Salzsäure (Dickens, Horton, Thorpe, Soc. 125, 1831, 1837). Krystalle (aus Wasser). F: 142° (Zers.). Liefert beim Kochen mit Eisessig α.α-Dimethyl-α'-cyan-bernsteinsäure-imid (Syst. Nr. 3367).
- α.β-Dicyan-isovaleriansäure-äthylester, β.β-Dimethyl-α.β-dicyan-propionsäure-äthylester $C_2H_{12}O_2N_2=NC\cdot C(CH_2)_3\cdot CH(CN)\cdot CO_3\cdot C_2H_3$ (H 824). Die Natriumverbindung gibt beim Kochen mit verd. Alkohol α.α-Dimethyl-bernsteinsäure-dinitril und das Natriumsalz der nicht näher beschriebenen β.β-Dimethyl-α.β-dicyan-propionsäure, das beim Schütteln mit Salzsäure α.α-Dimethyl-α'-cyan-bernsteinsäure-α-a-mid und α.α-Dimethyl-α'-cyan-bernsteinsäure-imid (Syst. Nr. 3367) liefert (Dickens, Horton, Thorpe, Soc. 125, 1831, 1837). Beim Kochen der Natriumverbindung mit Bromessigsäureäthylester und Erhitzen mit konz. Salzsäure bildet sich α.α-Dimethyl-tricarballylsäure (Clemo, Welch, Soc. 1928, 2624). Beim Behandeln der Natriumverbindung mit β-Jod-propionsäure-äthylester in Alkohol erhält man 4-Methyl-3.4-dicyan-pentan-dicarbonsäure-(1.3)-diäthylester (Gibson, Hariharan, Simonsen, Soc. 1927, 3011).

5. Tricarbonsăuren $C_8H_{12}O_6$.

1. Pentan - tricarbonsäure - (1.3.5), γ - Carboxy-pimelinsäure $C_0H_{10}O_0 = HO_1C \cdot CH_1 \cdot CH_2 \cdot CH_3 \cdot CO_3H)_2$.

Triäthylester $C_{14}H_{34}O_6 = C_2H_5 \cdot O_2C \cdot CH(CH_2 \cdot CH_2 \cdot CO_3 \cdot C_2H_5)_2$ (H 824). Kp₁₄: 186° bis 189° (Pfeiffer, Seydel, Hansen, *J. pr.* [2] 123, 348).

2. Butan-dicarbonsäure-(1.4)-essigsäure-(2), β -Carboxymethyl-adipinsäure- $C_8H_{12}O_6=HO_2C\cdot CH_2\cdot

Triäthylester $C_{14}H_{24}O_3=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot CH_2\cdot CO_2\cdot C_2H_5)_3$. B. Beim Behandeln von β -Carboxymethyl-adipinsäure mit Alkohol und Schwefelsäure (Carrière, A. ch. [9] 17, 108). — Kp₁₅: 200°.

3. 2-Methyl-butan-tricarbonscure-(1.1.4), β -Methyl-a-carboxy-adipinscure $C_0H_{10}O_0=HO_1C\cdot CH_1\cdot CH_1\cdot CH(CO_2H)_1$.

Triäthylester $C_{14}H_{24}O_6 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH(CH_2) \cdot CH(CO_3 \cdot C_2H_5)_2$. B. Beim Kochen von Malonsäurediäthylester mit γ -Brom-n-valeriansäure-äthylester und Natrium-äthylat in Alkohol (Staudinger, Ruzicka, Helv. 7, 249). — Öl. Kp_{6,4}: 135°. — Liefert beim Kochen mit konz. Salzsäure β -Methyl-adipinsäure.

- 4. Pentan-tricarbonsaure -(1.3.4), α -Methyl- β -carboxy-adipinedure, Hamotricarbonsaure $C_aH_{10}O_a=HO_aC\cdot CH_a\cdot CH(CO_aH)\cdot CH(CH_a)\cdot CO_aH$.
- a) Höherschmelzende Form (H 825; E I 323). B. Beim Erwärmen von niedrigsrschmelzender Penten-(1)-tricarbonsäure-(1.3.4) mit Natriumamalgam in alkal. Lösung (Küszus, H. 180, 5, 17). Zur Bildung aus 3-Cyan-pentan-tricarbonsäure-(1.3.4)-triäthylester därch Kochen mit konz. Salzsäure vgl. K., H. 180, 11. Neben der niedrigerschmelzenden Form beim Erhitzen von Pentan-tetracarbonsäure-(1.3.3.4)-tetraäthylester mit konz. Salzsäure auf dem Wasserbad (K., H. 180, 4, 11). F: 177°. Läßt sich durch Brucks nicht in die

optisch aktiven Komponenten spalten. Gibt beim Behandeln mit Brom und rotem Phosphor, Zersetzen des Reaktionsprodukts mit heißem Wasser und Kochen des erhaltenen Sirups mit 40% iger Kalilauge niedrigerschmelzende Penten-(1)-tricarbonsäure-(1.3.4) und eine Säure $C_8H_{10}O_7$ (s. u.) — Brucinsalze: $2C_{22}H_{26}O_4N_2+C_8H_{12}O_6+4H_2O$. Nadeln. Wird bei 110° wasserfrei. F: 154—156°. $[\alpha]_D^{10}$ —29,5° (Wasser; c=2,5), —30,1° (Wasser; c=25). Löslich in 45 Tln. Wasser von 15°. — $3C_{23}H_{26}O_4N_2+C_8H_{12}O_6+4H_2O$. Nadeln. Wird bei 110° wasserfrei. F: 148—151°. $[\alpha]_D^{10}$: —30,97° bis —31,62° (Wasser; c=10). Löslich in 10 Tln. Wasser von 20°.

Säure $C_8H_{10}O_7$. B. Neben niedrigerschmelzender Penten-(1)-tricarbonsäure-(1.3.4) beim Behandeln von höherschmelzender Pentan-tricarbonsäure-(1.3.4) mit Brom und rotem Phosphor, Zersetzen des Reaktionsprodukts mit heißem Wasser und Kochen des erhaltenen Sirups mit 40% iger Kalilauge (Küster, H. 130, 6, 15, 17). — Sirup. Löslich in Essigester und warmem Wasser. — Bei der Reduktion mit Zink und Salzsäure entsteht eine Säure $C_8H_{12}O_7$ [Sirup; löslich in Essigester]. — $Ag_3C_8H_7O_7$. Niederschlag. Wird beim Aufbewahren dunkelbraun. — $Ca_3(C_8H_7O_7)_9$. Niederschlag.

- b) Niedrigerschmelzende Form (H825). B. Beim Behandeln von höherschmelzender Penten-(1)-tricarbonsäure-(1.3.4) mit Natriumamalgam in alkal. Lösung (Küster, H. 130, 5, 20). Neben der höherschmelzenden Form beim Erhitzen von 3-Cyan-pentan-tricarbonsäure-(1.3.4)-triäthylester oder Pentan-tetracarbonsäure-(1.3.3.4)-tetraäthylester mit konz. Salzsäure auf dem Wasserbad (K., H. 130, 4, 11). F: 140—141°. Läßt sich durch Brucin nicht in die optisch aktiven Komponenten spalten. Gibt beim Behandeln mit Phosphortribromid und Brom, Zersetzen des Reaktionsprodukts mit heißem Wasser und Kochen des erhaltenen Sirups mit 40 %iger Kalilauge höherschmelzende Penten-(1)-tricarbonsäure-(1.3.4) und eine Säure C₈H₁₀O₇ (s. u.). Brucinsalz 2C₂₂H₂₆O₄N₂ + C₈H₁₂O₆. [α]_D²⁰: —20,31° bis —26,04° (Wasser; c = 2,5 bis 3).
- Säure $C_0H_{10}O_7$. B. Neben höherschmelzender Penten-(1)-tricarbonsäure-(1.3.4) beim Behandeln von niedrigerschmelzender Pentan-tricarbonsäure-(1.3.4) mit Phosphortribromid und Brom, Zersetzen des Reaktionsprodukts mit heißem Wasser und Kochen des erhaltenen Sirups mit 40 %iger Kalilauge (Küster, H. 130, 18, 20). Sirup. Löslich in Ather. Gibt bei der Reduktion mit Zink und Salzsäure eine Säure $C_0H_{12}O_7$ [gelbes Harz; leicht löslich in Essigester, sehwer in Ather]. $Ag_3C_0H_7O_7$. Niederschlag. $Ca_3(C_0H_7O_7)_2$. Niederschlag.
- 5. Pentan-tricarbonsäure-(1.2.2), α -Propyl- α -carboxy-bernsteinsäure $C_aH_{1s}O_a=CH_a\cdot CH_a\cdot CH_a\cdot CO_aH_a\cdot CO_aH$.

Triäthylester $C_{14}H_{24}O_6 = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 826; E I 324). Kp₁₈: 184° (kort.) (Scheibler, Schmidt, B. 54, 152).

- 6. Butan dicarbonsdure (1.3) essigsdure (2), β $[\alpha$ Carboxy dthyl] glutarsdure, α -Methyl- β -carboxymethyl-glutarsdure, α -Methyl-methantriessigsdure $C_8H_{12}O_6=HO_2C\cdot CH(CH_2)\cdot CH(CH_2\cdot CO_2H)_2$ (H 827). B. Beim Kochen von 1-Cyan-butan-dicarbonsdure-(1.3)-essigsdure-(2)-triathylester mit verd. Schwefelsdure (Ingold, Perren, Soc. 119, 1868). In analoger Weise aus 3-Cyan-butan-dicarbonsdure-(1.3)-essigsdure-(2)-triathylester (I., P., Soc. 119, 1588, 1600). Beim Behandeln des bei der Einw. von Cyanessigester auf γ -Methyl- α -carboxy-glutaconsdure-triathylester in Natriumathylat-Losung bei Zimmertemperatur entstehenden Kondensationsprodukts (Kp₁₀: ca. 200°) mit 50% iger Schwefelsdure (I., P., Soc. 119, 1598). Prismen (aus Essigester) F: 138—139° (I., P., Soc. 119, 1868).
- 7. 3-Methyl-butan-tricarbonsäure-(1.2.4), β -Methyl- β '-carboxy-adipinsäure $C_2H_{12}O_4=HO_2C\cdot CH_2\cdot CH(CH_2)\cdot CH(CO_2H)\cdot CH_2\cdot CO_2H$ (E I 324). B. Zur Bildung nach Thorre (Soc. 115, 684) vgl. indessen Kohler, Reid, Am. Soc. 47, 2804, 2806, 2810.
- 8. Athan -α.α.α-triessigsdure, β-Methyl-β-carboxymethyl-glutarsdure, Methylmethantriessigsdure C₈H₁₂O₆ = CH₃·C(CH₂·CO₂H)₃ (E I 324). B. Zur Bildung aus 1-Cyan-propan-carbonsäure-(1)-diessigsäure-(2.2)-triäthylester (β-Methyl-β-[carboxy-cyan-methyl]-glutarsäure-triäthylester) nach Thorre, Wood (Soc. 103, 1583) vgl. Ingold, Soc. 121, 1148; Kohler, Reid, Am. Soc. 47, 2805, 2807. Beim Behandeln von 1-Methyl-cyclohexanon-(3)-carbonsäure-(4)-essigsäure-(1) mit alkal. Permanganat-Lösung in der Kälte (Farmer, Ross, Soc. 127, 2361, 2367). Beim Kochen von [2.6-Dioxo-4-methyl-piperidyl-(4)]-essigsäure mit 10 % iger Natronlauge (Kohler, Reid, Am. Soc. 47, 2807, 2810). Prismen (aus Aceton + Chloroform). F: 165—169° (K., Reid), 172° (F., Ross). Liefert beim Behandeln mit Phosphorpentabromid und Brom und Verezern des Reaktionsprodukts mit absol. Alkohol je nach den Reaktionsbedingungen Äthan-α.α.-bis-essigsäureāthylester-α-bromessigsäure, Äthan-α.α.α-tris-bromessigsäure-triäthylester (Farmer, Soc. 123, 3337; Bersley, Thorpe, Soc. 117, 610, 619).

Äthan- $\alpha.\alpha.\alpha$ -triessigsäure-triäthylester $C_{14}H_{34}O_6=CH_3\cdot C(CH_3\cdot CO_2\cdot C_2H_5)_8$. B. Beim Einleiten von Alkohol-Dampf in eine erhitzte Mischung von Äthan- $\alpha.\alpha.\alpha$ -triessigsäure, absol. Alkohol und konz. Schwefelsäure (Ingold, Soc. 121, 1149). — Öl. Kp₂₃: 185—187°. — Liefert beim Erhitzen mit Natrium oder Kalium in Xylol auf 140° Acetessigsäureäthylester, den Diäthylester der höherschmelzenden β -Methyl-glutaconsäure, 1-Methyl-cyclobutanon-(3)-essigsäure-(1)-äthylester und Orcin.

Äthan- α . α -bis-essigsäureäthylester- α -bromessigsäure $C_{12}H_{19}O_6Br=HO_2C\cdot CHBr\cdot C(CH_2)(CH_2\cdot CO_2\cdot C_2H_5)_2$. B. Neben anderen Verbindungen beim Behandeln von Athan- α . α -triessigsäure mit Phosphorpentabromid und Brom und Eintragen des Reaktionsprodukts in absol. Alkohol (Farmer, Soc. 123, 3337). — Blaßgelbes Öl. — Liefert beim Behandeln mit konz. Kalilauge in alkoh. Lösung bei 150° 1-Methyl-cyclopropan-dicarbonsäure-(2.3)-essigsäure-(1) in zwei diastereoisomeren Formen neben anderen Produkten.

Äthan- α -essigsäure- α . α -bis-bromessigsäure-triäthylester $C_{14}H_{28}O_6Br_3=C_2H_5$ · $O_4C\cdot CH_3\cdot C(CH_3)(CHBr\cdot CO_2\cdot C_2H_5)_2$. B. Beim Behandeln von Äthan- α . α . α -triessigsäure mit Phosphorpentabromid und 2 Mol Brom bei ca. 20° und Verestern des Reaktionsprodukts mit absol. Alkohol unterhalb 25° (Beesley, Thorpe, Soc. 117, 610). — Ol. — Liefert bei der Destillation unter vermindertem Druck oder besser beim Kochen mit Pyridin das Dilacton des 1.3-Dioxy-2-methyl-propan-dicarbonsäure- Oco-CH2 (1.3)-essigsäure-(2)-äthylesters-(1) (Formel I; Syst. Nr. 2896). Beim Behandeln mit konz. Kalilauge in alkoh. Lösung bei 150° bildet sich OC-O-CH-CO₂· C₂H₅ II. CH₃· C-C-C₂· CO₂H 3-Methyl-bicyclo-[0.1.1]-butan-tricarbonsäure-(1.2.4) (Formel II; Syst. Nr. 1006) in drei diastereoisomeren Formen.

Äthan-a.a.a-tris-bromessigsäure $C_8H_9O_6Br_8 = CH_3 \cdot C(CHBr \cdot CO_2H)_8$. Zur Stereochemie vgl. Senior, B. 60, 73; Hahn, B. 60, 1362; F. Ebel in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 601.

- 9. 3-Methyl-butan-tricarbonsäure (1.2.3), α.α-Dimethyl-β-carboxy-glutarsäure, α.α-Dimethyl-tricarballylsäure C₈H₁₂O₆ = HO₂C·CH₂·CH(CO₂H)·C(CH₂)₂·CO₂H (H 827). B. Beim Kochen der Natriumverbindung des α.β-Dicyan-isovaleriansäure-äthylesters mit Bromessigester und Erhitzen des Reaktionsprodukts mit konz. Salzsäure (CLEMO, Welch, Soc. 1928, 2624). Aus 4-Oxo-3.3-dimethyl-pentan-dicarbonsäure-(1.2) beim Behandeln mit Natriumhypochlorit in alkal. Lösung (Totvonen, Ann. Acad. Sci. tenn. [A] 29, Nr. 20, S. 8, 20; C. 1927 II, 1248) oder mit Natriumhypobromit in neutraler Lösung (Bhagvat, Simonsen, Soc. 1927, 80, 87). Neben anderen Verbindungen beim Behandeln von α-Campholytsäure mit Natriumchlorat und Osmiumtetroxyd in alkal. Lösung bei 60° oder in essigsaurer Lösung bei 20° (Chandrasena, Ingold, Thorpe, Soc. 121, 1545, 1549, 1550). Beim Erwärmen von 1.1.5-Trimethyl-cyclopentanon-(4)-carbonsäure-(2) mit Salpetersäure (D: 1,2) auf dem Wasserbad (Tol.). Neben anderen Verbindungen beim Erhitzen von d-Fenchon mit Salpetersäure (D: 1,1) im Rohr auf 130—135° (Nametrin, J. pr. [2] 108, 35, 43; Na., Ljubowzowa, Chochrjakowa, Ж. 54, 173; C. 1923, III, 1012). Beim Erhitzen der inaktiven und der linksdrehenden Form der 1.1.2-Trimethyl-cyclopenten-(2)-dicarbonsäure-(3.5) mit Salpetersäure (D: 1,2 bis 1,4) (BH., S., Soc. 1927, 80, 85, 86). Prismen (aus Wasser oder verd. Salzsäure). F: 149° (Clemo, Welch, 154—155° (Toivonen; vgl. Bh., S.), 156—157° (Cha., I., Th.). Bleibt beim Erhitzen mit Wasser auf 230° unverändert (Tol.).
- 10. Pentan-tricarbonsäure-(2.2.4), $\alpha.\alpha'$ -Dimethyl- α -carboxy-glutarsäure $C_8H_{12}O_6=HO_2C\cdot CH(CH_2)\cdot CH_2\cdot C(CH_3)(CO_2H)_3$.

Triäthylester $C_{14}H_{24}O_4=C_2H_5\cdot O_2C\cdot CH(CH_3)\cdot CH_2\cdot C(CH_3)(CO_2\cdot C_2H_5)_3$ (H 828; E I 325). Kp₃₁: 165—170° (Ingold, Soc. 127, 474). — Beim Kochen mit 20% iger Salzsäure entstehen die hochschmelzende und die niedrigschmelzende Form der $\alpha.\alpha'$ -Dimethyl-glutarsäure. Liefert beim Erhitzen mit Natriumcyanessigester in Alkohol im Rohr auf 100° α -Methyl- α' -oyanglutarsäure-diäthylester und Methylmalonsäure-diäthylester.

11. 2.2 - Dimethyl - propan-tricarbonsäure - (1.1.3), β.β-Dimethyl-α-carboxy-glutarsäure C₈H₁₂O₈ = HO₂C·CH₂·C(CH₃)₂·CH(CO₂H)₂ (H 828). B. Beim Behandeln von 4-Oxo-2.2-dimethyl-pentan-dicarbonsäure-(1.1) mit Natriumhypobromit-Lösung (QUDRAT-I-KHUDA, Soc. 1929, 207). — F: 173° (Zers.).

Triäthylester $C_{14}H_{24}O_6 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot C(CH_3)_2 \cdot CH(CO_2 \cdot C_2H_5)_2$ (H 829). Kp₂₈: 181° (Ingold, Powell, Soc. 119, 1980). — Liefert beim Erbitzen mit der äquivalenten Menge Natriumäthylat-Lösung auf 100° Malonsäurediäthylester und $\beta \cdot \beta$ -Dimethylacrylsäureäthylester; Gleichgewicht der Reaktion bei 35° und 100°: I., P.

12. 2-Methyl-butan-tricarbonsäure-(1.2.3), $\alpha.\beta$ -Dimethyl- β -carboxyglutarsäure, $\alpha.\beta$ -Dimethyl-tricarballylsäure $C_8H_{12}O_6=HO_2C\cdot CH_2\cdot C(CH_3)(CO_2H)\cdot CH(CH_3)\cdot CO_2H$ (vgl. H 829).

Die von Michael (B. 33, 3764) als $\alpha.\beta$ -Dimethyl-tricarballylsäure beschriebene Verbindung ist nach Hope, Sheldon (Soc. 121, 2225 Anm.) als $\alpha.\alpha'$ -Dimethyl-tricarballylsäure vom Schmelzpunkt 203—204° (vgl. H 2, 830; E I 2, 325) aufzufassen.

B. Neben einer nicht isolierten, niedrigerschmelzenden diastereoisomeren Säure beim Kochen von α.β-Dimethyl-β.α'. dicyan-glutarsäure-diäthylester mit konz. Salzsäure (Hope, Sheldon. Soc. 121, 2225, 2230). Beim Erhitzen von 2.6-Dioxo-3.4-dimethyl-piperidin-carbonsäure-(4)-methylester mit konz. Salzsäure im Rohr auf 175° (H., Sh.). — Krystalle (aus Ameisensäure oder Salzsäure). F: 165°—167° (Zers.). Unlöslich in Petroläther. Chloroform und Benzol. leicht löslich in Wasser und Essigsäure. — Liefert beim Schmelzen ein amorphes Anhydrid.

Trimethylester $C_{11}H_{18}O_6 = CH_3 \cdot O_2C \cdot CH_2 \cdot C(CH_3)(CO_2 \cdot CH_3) \cdot CH(CH_3) \cdot CO_2 \cdot CH_3$. B. Aus $\alpha.\beta$ -Dimethyl-tricarballylsäure (Diastereoisomerengemisch) und Methanol beim Sättigen mit Chlorwasserstoff (Hope, Sheldon, Soc. 121, 2230). — Kp_{22} : 162°.

13. 3 - Methyl - butan - tricarbonsäure - (1.2.2), α -Isopropyl - α - carboxybernsteinsäure $C_8H_{12}O_6=HO_2C\cdot CH_2\cdot C(CO_2H)_2\cdot CH(CH_3)_2$.

Triäthylester $C_{14}H_{24}O_6=C_2H_5\cdot O_2C\cdot CH_2\cdot C(CO_2\cdot C_2H_5)_2\cdot CH(CH_3)_2$ (vgl. H 829). Kp₁₀: 153—155° (GOLDBERG, LINSTEAD, Soc. 1928, 2353). — Gibt beim Kochen mit konz. Salzsäure Isopropylbernsteinsäure.

14. Pentan-tricarbonsäure (2.3.4), $\alpha.\alpha'$ -Dimethyl- β -carboxy-ylutarsäure. $\alpha.\alpha'$ -Dimethyl-tricarballylsäure $C_8H_{12}O_6 = HO_2C \cdot CH(CH_3) \cdot CH(CO_2H) \cdot CH(CH_3) \cdot CO_3H$.

Säure vom Schmelzpunkt 203—204° (H 830; E I 325). Als solche ist die von Michael (B. 33, 3764) als α.β-Dimethyl-tricarballylsäure beschriebene Verbindung (vgl. H 2, 829) aufzufassen (Hope, Sheldon, Soc. 121, 2225 Anm.).

- 15. 3-Methyl-butan-tricarbonsäure-(2.2.3), $\alpha.\alpha.\alpha'$ -Trimethyl- α' -carboxybernsteinsäure $C_8H_{12}O_6=HO_2C\cdot C(CH_3)_2\cdot C(CH_3)(CO_2H)_2$.
- α.α.α'-Trimethyl-α'-cyan-bernsteinsäure-diäthylester $C_{12}H_{19}O_4N = C_2H_5 \cdot O_2C \cdot C(CH_3)_2 \cdot C(CH_3)(CN) \cdot CO_2 \cdot C_2H_5$ (H 831). Kp₁₁: 143—145° (Verkade, R. 40, 213).
- $\alpha.\beta$ Dimethyl $\alpha.\beta$ dicyan buttersäure äthylester $C_{10}H_{14}O_2N_3 = NC \cdot C(CH_3)_2 \cdot C(CH_3)(CN) \cdot CO_2 \cdot C_2H_5$ (H 831). Kp₂₅: 159—162° (Bardhan, Soc. 1928, 2611).

6. Tricarbonsäuren $C_9H_{14}O_6$.

1. Hexan-tricarbonsäure - (1.2.2), α -Butyl- α -carboxy-bernsteinsäure $C_9H_{14}O_8=HO_2C\cdot CH_2\cdot C([CH_2]_3\cdot CH_3)(CO_2H)_2$. B. Der Triäthylester entsteht beim Kochen von Natrium-butylmalonsäure-diäthylester mit Chloressigssäureäthylester in Benzol; man verseift durch Kochen mit konz. Kalilauge (SCHEIBLER, RETTIG, B. 59, 1195). — Liefert bei allmählichem Erhitzen auf 160° Butylbernsteinsäure und etwas n-Capronsäure.

Triäthylester $C_{15}H_{26}O_6 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot C([CH_2]_3 \cdot CH_3)(CO_2 \cdot C_2H_5)_2$. B. s. bei der Säure. — Kp₇₆₀: 183—185° (Scheibler, Rettio, B. 59, 1195).

- 2. 2-Methyl-butan-dicarbonsäure-(1.4)-essigsäure-(2). β -Methyl- β -carboxymethyl-adipinsäure $C_0H_{11}O_6=HO_2C\cdot CH_2\cdot C(CH_3)(CH_2\cdot CO_2H)_2$. B. Beim Kochen von β -[2.6-Dioxo-4-methyl-3.5-dicyan-piperidyl-(4)]-propionsäure-äthylester mit verd. Schwefelsäure (Farmer, Ross, Soc. 127, 2368). Prismen (aus Aceton + Chloroform). F: 148—149°.
- 3. 4-Methyl-pentan-tricarbonsäure-(1.3.4), $\alpha.\alpha$ -Dimethyl- β -carboxy-adipinsäure $C_0H_{14}O_6=HO_2C\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3$

127, 1301; vgl. Bhagvat, S., Soc. 1927, 80). — Krystalle (aus Salzsäure). F: 155—1570

(Zers.); der Schmelzpunkt ist von der Art des Erhitzens abhängig (G., S.).

Triäthylester $C_{15}H_{26}O_6 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5) \cdot C(CH_3)_2 \cdot CO_3 \cdot C_2H_5$ (H 832). Kp₄: 161° (Gibson, Hariharan, Simonsen, Soc. 1927, 3012). — Gibt beim Erwärmen mit Natrium in Benzol auf dem Wasserbad 1.1-Dimethyl-cyclopentanon-(5)-dicarbonsäure-(2.4)-diäthylester und andere Produkte.

- 4. 4-Methyl-pentan-tricarbonsäure (1.2.4), $\alpha.\alpha$ -Dimethyl- β' -carboxy-adipinsäure $C_9H_{14}O_6 = HO_2C \cdot CH_2 \cdot CH(CO_2H) \cdot CH_2 \cdot C(CH_3)_2 \cdot CO_2H$. B. Beim Behandeln von β -Oxy- $\alpha.\alpha$ -dimethyl- β' -carboxy-adipinsäure-triäthylester mit rauchender Jodwasserstoffsäure (D: 1,93) und rotem Phosphor (ROBERTS, Am. Soc. 48, 1977). Krystalle. F: 1390 hig 1416
- 5. 4-Methyl-pentan-tricarbonsaure-(1.3.3), α -Isopropyl- α -carboxy-giutarsaure $C_0H_{14}O_4 = HO_2C \cdot CH_2 \cdot CH_2 \cdot C(CO_2H)_2 \cdot CH(CH_3)_3$.
- α-Isopropyl-α-cyan-glutarsäure-diäthylester C₁₂H₂₁O₄N=C₂H₅·O₅C·CH₂·CH₂·C(CN)(CO₂·C₂H₅)·CH(CH₂)₈. B. Bei der Einw. von β-Jod-propionsäure-äthylester auf die Natriumverbindung des Isopropylcyanessigsäure-äthylesters in Alkohol unterhalb 0° (Hariharan, Menon, Simonsen, Soc. 1928, 434). Viscoses gelbes Öl von schwachem, unangenehmem Geruch. Kp₃₂: 195°. Gibt beim Behandeln mit 50% iger Schwefelsäure α-Isopropyl-glutarsäure.
- 6. 3-Methyl-butan-dicarbonsaure-(1.3)-essigsaure-(2), a.a-Dimethyl- β -carboxymethyl-glutarsaure, Isocamphoronsaure $C_5H_{14}O_6=HO_2C\cdot C(CH_3)_2\cdot CH(CH_2\cdot CO_2H)_2$ (H 835; E I 325). B. Neben anderen Verbindungen beim Erhitzen von Tricyclen (Syst. Nr. 459) mit Salpetersaure (D: 1,075) im Rohr auf 125—130° (Nametrkin, Zabeodin, A. 441, 185, 187; \Re . 57, 96). Zur Bildung aus Camphenilon vgl. a. N., J. pr. [2] 108, 44. Neben anderen Verbindungen beim Erhitzen von d-Fenchon mit Salpetersaure (D: 1,1) im Rohr auf 130—135° (N., J. pr. [2] 108, 35, 43; N., Ljubowzowa, Chochrjakowa, \Re . 54, 173; C. 1928 III, 1012).

H 836, Z. 6 v. o. statt "(Syst. Nr. 195)" lies "(Syst. Nr. 185)".

- 7. 2.2-Dimethyl-butan-tricarbonsäure-(1.3.3), $\alpha.\beta.\beta$ -Trimethyl- α -carboxyglutarsäure $C_8H_{14}O_6=HO_2C\cdot CH_2\cdot C(CH_3)_3\cdot C(CH_3)(CO_2H)_2$. B. Durch längeres Kochen von $\alpha.\beta.\beta$ -Trimethyl- α -cyan-glutarsäure-diäthylester mit 50% iger Kalilauge, Eindampfen der Lösung und längeres Erhitzen des Rückstands auf 120° (Ray, Am. Soc. 51, 931). Krystalle (aus Benzol). F: 189—190° (Zers.). Liefert beim Erhitzen auf 200° $\alpha.\beta.\beta$ -Trimethyl-glutarsäure.
- 8. 2.3-Dimethyl-butan-tricarbonsäure-(1.2.3), a.a. β -Trimethyl-tricarballylsäure, Camphoronsäure $C_0H_{14}O_6=HO_1C\cdot CH_2\cdot C(CH_2)(CO_2H)\cdot C(CH_3)_2\cdot CO_2H$.

Linksdrehende Form, l-Camphoronsäure (H 837; E I 326). B. Neben anderen Verbindungen bei längerem Kochen von 2-Brom-2-nitro-camphan mit einer Mischung von 3 Tln. konz. Salpetersäure und 2 Tln. Wasser (Ginnings, Noyes, Am. Soc. 44, 2571). — Zur Darstellung aus d-Campher vgl. Goebel, Noyes, Am. Soc. 45, 3066. — F: 164—165° (Goe., N.). Elektrolytische Dissoziationskonstante der 1. Stufe k, bei 30°: 2,95×10-4; der 2. Stufe k, bei 30°: 1,05×10-5; der 3. Stufe k, bei 30°: 3,7×10-6 (ermittelt durch potentiometrische Titration mit Natronlauge) (Morton, Trans. Faraday Soc. 24, 23; C. 1928 I, 1151).

Linksdrehender $\alpha.\alpha.\beta$ -Trimethyl-tricarballylsäure- α -äthylester, [l-Camphoronsäure]-monoäthylester $C_{11}H_{18}O_6=C_2H_5\cdot O_2C\cdot CH_2\cdot C(CH_2)(CO_2H)\cdot C(CH_3)_2\cdot CO_2H$ (vgl. H 838). B. Beim Einleiten von Chlorwasserstoff in eine Lösung von l-Camphoronsäure in absol. Alkohol (Goebel, Noves, Am. Soc. 45, 3067). — Krystalle (aus Wasser). F: 139—140°. [a] $^{\rm m}_{\rm E}$: —30,2° (absol. Alkohol). — Liefert beim Erhitzen mit überschüssigem Ammoniak in absol. Alkohol unter Druck auf 140° Camphoronsäureimid vom Schmelzpunkt 199,4—200,2°.

- [1-Camphoronsäure]-diäthylester $C_{19}H_{99}O_6 = (C_9H_5 \cdot O_9C)_9C_9H_{11} \cdot CO_9H$ (H 838). $[\alpha]_5^{\infty}$: —9,9° (absol. Alkohol) (Goebel, Noyes, Am.~Soc.~45, 3067).
- [1-Camphoronsäure]-monoäthylester-monoamid $C_{11}H_{19}O_5N=H_2N\cdot CO\cdot C_6H_{11}(CO_3\cdot C_3H_5)\cdot CO_3H$ (H 839).

H 839, Z. 4 v. o. statt "; vgl. HJELT, B. 13, 798)" lies ") oder festem Anhydrocamphoroneäureäthylester (HJELT, B. 13, 797)".

- 9. 3-Methyl-pentan-tricarbonsaure-(2.3.4), $\alpha.\beta.\alpha'$ -Trimethyl- β -carboxyglutarsaure, $\alpha.\beta.\alpha'$ -Trimethyl-tricarballylsaure $C_0H_{14}O_0=HO_1C\cdot CH(CH_0)\cdot C(CH_0)(CO_2H)\cdot CH(CH_0)\cdot CO_2H$.
- Trimethylester $C_{12}H_{20}O_4 = CH_2 \cdot O_3C \cdot CH(CH_3) \cdot C(CH_4)(CO_3 \cdot CH_2) \cdot CH(CH_4) \cdot CO_3 \cdot CH_2$.

 B. Beim Kochen von 3-Methyl-2.3-dicyan-pentan-dicarbonsaure-(2.4)-diathylester mit

40% iger Schwefelsäure und Behandeln des Reaktionsprodukts mit Chlorwasserstoff in Methanol (Hope, Sheldon, Soc. 121, 2226, 2234). — Kp₂₄: 164—167°. — Liefert beim Behandeln mit alkoh. Kalilauge und Kochen des Reaktionsprodukts mit Salzsäure das Anhydrid der $\alpha.\beta.\alpha'$ -Trimethyl-tricarballylsäure (Syst. Nr. 2620).

10. Tricarbonsäure $C_9H_{14}O_6(?)$ (E I 326). B. Durch Oxydation der aus Aminocamphonansäuremethylester (Syst. Nr. 1884) entstehenden Trimethylcyclopentencarbonsäure(?) mit Kaliumpermanganat (Skinner, Am. Soc. 45, 1505; vgl. dagegen Ray, Am. Soc. 51, 931).

7. Tricarbonsäuren C₁₀H₁₆O₆.

1. Heptan - tricarbonsäure - (1.5.5), α - Äthyl - α - carboxy - pimelinsäure $C_{10}H_{10}O_6 = HO_2C \cdot [CH_2]_4 \cdot C(C_2H_5)(CO_2H)_2$. B. Durch Verseifung des Triäthylesters mit siedender 20% iger Natronlauge (Carter, Am. Soc. 50, 1969). — Krystalle. F: 86—88°. — Zersetzt sich zwischen 140° und 180° unter Bildung von Heptan-dicarbonsäure-(1.5).

Triäthylester $C_{16}H_{28}O_6=C_2H_5\cdot O_2C\cdot [CH_2]_4\cdot C(C_2H_5)(CO_2\cdot C_2H_5)_2$ (H 840). B. Beim Kochen von Natriumäthylmalonester mit δ -Jod-n-valeriansäure-äthylester in Alkohol (Carter, Am. Soc. 50, 1969). — Kp₈₀: 195—200°.

2. 2-Methyl-pentan-dicarbonsäure-(1.5)-essigsäure-(2), β-Methyl-β-carboxymethyl-pimelinsäure C₁₀H₁₆O₆ = HO₂C·[CH₂]₃·C(CH₃)(CH₂·CO₂H)₂. B. Beim Behandeln von 1-Methyl-cyclohexanon-(3)-malonsäure-(1)-monoamid mit Kalilauge (FARMER, Ross, Soc. 1926, 3239). Aus 1-Methyl-cyclohexanon-(3)-carbonsäure-(4)-essigsäure-(1)-monoathylester durch Hydrolyse (F., R., Soc. 127, 2366). Beim Kochen von γ-[2.6-Dioxo-4-methyl-piperidyl-(4)]-buttersäure mit Kalilauge (F., R., Soc. 1926, 3239). Aus γ-[2.6-Dioxo-4-methyl-3.5-dicyan-piperidyl-(4)]-buttersäure-äthylester beim Kochen mit verd. Schwefelsäure (F., R., Soc. 127, 2368). Bei längerem Kochen von 6-Oxo-4-methyl-2.4-trimethylen-3.4.5-6-tetrahydro-pyridin-carbonsäure-(5) mit 10% iger Kalilauge (F., R., Soc. 1926, 3238). — Prismen (aus Aceton + Chloroform). F: 125° (F., R., Soc. 1926, 3238). — Liefert beim Erhitzen mit Acetylchlorid [2-Methyl-pentan-dicarbonsäure-(1.5)-essigsäure-(2)]-anhydrid (Syst. Nr. 2620) (F., R., Soc. 127, 2364).

Triäthylester $C_{16}H_{28}O_6=C_2H_5\cdot O_2C\cdot [CH_2]_3\cdot C(CH_3)(CH_2\cdot CO_2\cdot C_3H_5)_2$. B. Entsteht aus der Säure beim Sättigen einer alkoh. Lösung mit Chlorwasserstoff bei 0^0 (Farmer, Ross, Soc. 127, 2364). Beim Erhitzen von 1-Methyl-cyclohexen-(1)-on-(3) mit Natriummalonester in Alkohol auf dem Wasserbad (F., R., Soc. 127, 2360, 2363). — Öl. Kp₁₈: 200°. — Liefert beim Erhitzen mit Natrium in Benzol oder Toluol 1-Methyl-cyclohexanon-(3)-carbonsäure-(4)-essigsäure-(1)-diäthylester, 1-Methyl-cyclohexanon-(3)-carbonsäure-(4)-essigsäure-(1)-monoāthylester und 1-Methyl-bicyclo-[2.2.2]-octandion-(3.5)-carbonsäure-(2)-āthylester(?) (Syst. Nr. 1310).

β-Methyl-β-carboxymethyl-pimelinsäure-α-amid $C_{10}H_{17}O_5N = HO_2C \cdot [CH_2]_3 \cdot C(CH_3)(CH_2 \cdot CO_2H) \cdot CH_2 \cdot CO \cdot NH_2$. B. Bei kurzem Kochen von 6-Oxo-4-methyl-2.4-trimethylen-3.4.5.6-tetrahydro-pyridin-carbonsäure-(5) mit 10% iger Kalilauge (Farmer, Ross, Soc. 1926, 3239). — Wurde nicht rein erhalten. — Liefert beim Behandeln mit Kalilauge β-Methyl-β-carboxymethyl-pimelinsäure, beim Kochen mit 15% iger Salzsäure γ-[2.6-Dioxo-4-methyl-piperidyl-(4)]-buttersäure.

8. Tricarbonsauren C11H18O6.

- 1. Octan-tricarbonsdure-(1.1.2), $\alpha-Hexyl-\alpha'-carboxy-bernsteinsdure <math>C_{11}H_{18}O_4=CH_2\cdot [CH_2]_5\cdot CH(CO_2H)\cdot CH(CO_2H)_2$.
- $\alpha.\beta$ -Dicyan pelargonsäure äthylester $C_{13}H_{20}O_2N_2=CH_2\cdot [CH_2]_5\cdot CH(CN)\cdot CH(CN)\cdot CO_2\cdot C_2H_5$ (H 844). B. Beim Behandeln von α-Cyan- β -n-hexyl-acrylsäure-äthylester mit Kaliumeyanid-Lösung (Lapworth, McRae, Soc. 121, 2752).
- 2. 3-Methyl-hexan-dicarbonsäure-(1.6)-essigsäure-(4), γ -Methyl- γ' -carboxymethyl-korksäure $C_{11}H_{18}O_6=HO_2C\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_(CH_3)\cdot CH(CH_2\cdot CO_2H)\cdot CH_2\cdot CH_3\cdot CO_3H$.

Trimethylester $C_{14}H_{24}O_6=CH_3\cdot O_2C\cdot CH_3\cdot CH_4\cdot CH(CH_3)\cdot CH(CH_3\cdot CO_3\cdot CH_3)\cdot CH_2\cdot CH_3\cdot CO_3\cdot CH_3$. Beim Behandeln von 7-Oxo-3-methyl-octan-carbonsäure-(1)-essigsäure-(4) mit Brom und Natronlauge und Kochen des Reaktionsprodukts mit Methanol und konz. Schwefelsäure (Ruzicka, van Veen, A. 468, 149, 162). — $Kp_{0,3}$: 140—150°.

[Syst. Nr. 184

9. 3-Methyl-nonan-tricarbonsäure-(1.4.4), β -Methyl- α -n-amyl- α -carboxy-adipinsäure $C_{13}H_{23}O_6 = HO_2C \cdot CH_2 \cdot CH_2 \cdot CH(CH_2) \cdot C(CO_2H)_2 \cdot [CH_3]_4 \cdot CH_3$.

Triäthylester $C_{19}H_{34}O_8=C_2H_5\cdot O_2C\cdot CH_3\cdot CH_3\cdot CH(CH_3)\cdot C(CO_3\cdot C_2H_5)_2\cdot [CH_2]_4\cdot CH_3.$ B. Neben anderen Verbindungen beim Erhitzen von 2-Methyl-butan-tricarbonsäure-(1.1.4)-triäthylester mit n-Amylbromid und Natriumäthylat-Lösung auf 120° (Staudinger, Ruzicka, Helv. 7, 250). — Kp_{0,2}: 134—137°.

- 10. 2 Methyl-undecan-tricarbonsäure-(1.1.11) $C_{16}H_{26}O_6 = HO_2C \cdot [CH_2]_e \cdot CH(CO_3H)_2$.
- 2-Methyl-11-cyan-undecan-dicarbonsäure-(1.1)-diäthylester $C_{19}H_{35}O_4N=NC\cdot [CH_2]_9\cdot CH(CH_3)\cdot CH(CO_2\cdot C_2H_5)_2$. B. Neben anderen Verbindungen beim Erwärmen von Natriummalonester mit \varkappa -Brom-lauronitril in Alkohol (CHUIT, Mitarb., Helv. 10, 177). Kp₄: 210°.
- 11. Pentadecan-tricarbonsäure (1.3.15) $C_{18}H_{32}O_6 = HO_2C \cdot [CH_2]_{12} \cdot CH(CO_2H) \cdot CH_2 \cdot CO_2H$ (H 848). B. Bei der Oxydation von 13.15-Diformyl-pentadecan-carbonsäure-(1) mit Chromessigsäure bei Zimmertemperatur (Shriner, Adams, Am. Soc. 47, 2738). Aus Chaulmoograsäure bei der Oxydation mit Kaliumpermanganat in 90%iger Essigsäure bei ca. 20° (Barrowcliff, Power, Soc. 91, 572, 574; Perkins, Am. Soc. 48, 1723). Entsteht in analoger Weise aus α oder β -Dioxydihydrochaulmoograsäure (Per.).

Trimethylester $C_{21}H_{38}O_6 = CH_3 \cdot O_2C \cdot [CH_2]_{12} \cdot CH(CO_2 \cdot CH_3) \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot CH_3$ (H 848). F: 37—38° (Shriner, Adams, Am. Soc. 47, 2738), 39,5° (Perkins, Am. Soc. 48 1724). E: 38° (P.) [Materne]

2. Tricarbonsäuren C_nH_{2 n-6}O₆.

1. Äthylentricarbonsäure C₅H₄O₆ = HO₂C·CH:C(CO₂H)₂. B. Bei mehrtägigem Erhitzen von Äthylentetracarbonsäure mit Acetylchlorid in Äther (Staudinger, Kreis, Helv. 6, 325). — Nicht rein erhalten. F: 180—184°.

Triäthylester, Tricarbäthoxyäthylen $C_{11}H_{16}O_6 = C_2H_5 \cdot O_2C \cdot CH : C(CO_2 \cdot C_2H_5)_2$ (H 848). B. In geringer Menge bei längerem Kochen von 1-Brom-äthan-tricarbonsäure-(1.1.2)-triäthylester mit überschüssigem Quecksilber-di-p-tolyl in Toluol, neben anderen Produkten (Whitmore, Thurman, Am. Soc. 51, 1501).

2. Tricarbonsäuren $C_6H_6O_6$.

1. Propen-(2)-tricarbonsäure-(1.1.3), α -Carboxy-glutaconsäure, Iso-aconitsäure $C_6H_6O_6=HO_2C\cdot CH\cdot CH\cdot CH(CO_2H)_2$ 1).

Triäthylester $C_{12}H_{18}O_6 = C_2H_5 \cdot O_2C \cdot CH : CH \cdot CH(CO_2 \cdot C_2H_5)_2$ (H 848). B. Beim Erwärmen von Cyclobutan-tetracarbonsäure-(1.1.3.3)-diessigsäure-(2.4)-hexaäthylester mit Natriumäthylat-Lösung (Ingold, Perren, Thorpe, Soc. 121, 1784). — Gibt beim Aufbewahren oder bei der Einw. von wenig Piperidin nicht Cyclobutan-dicarbonsäure-(1.3)-dimalonsäure-(2.4)-hexaäthylester (H 9, 1008), sondern Cyclobutan-tetracarbonsäure-(1.3)-diessigsäure-(2.4)-hexaäthylester, dem wahrscheinlich geringe Mengen des als Zwischenprodukt anzunehmenden ungesättigten Esters ($C_2H_5 \cdot O_2C_2C_2H_5 \cdot CH(CH_2 \cdot CO_2 \cdot C_2H_5) \cdot CH(CO_2 \cdot C_2H_5)$ beigemengt sind (I., P., Th., Soc. 121, 1769, 1784). Zersetzt sich bei der Destillation unter Bildung geringer Mengen 6-Åthoxy-pyron-(2)-carbonsäure-(5)-äthylester (Syst. Nr. 2624) (I., P., Soc. 119, 1601). Liefert beim Erhitzen mit Natriumcyanessigester in Alkohol hauptsächlich Malonsäure-diäthylester und α-Cyan-glutaconsäure-diäthylester (I., P., Soc. 119, 1592). Kondensiert sich mit α-γ-Dicarboxy-glutaconsäure-tetraäthylester bei Gegenwart von Piperidin zu Cyclobutan-tetracarbonsäure-(1.1.3.3)-essigsäure-(2)-malonsäure-(4)-heptsäthylester; reagiert analog mit γ-Methyl-α-cyan-glutaconsäure-diäthylester (I., P., Th., Soc. 121, 1788).

8-Cyan-propen-(1)-dicarbonsaure-(1.8)-methylester-(1)-athylester-(3), α -Cyanglutaconsaure- γ -methylester- α -athylester $C_aH_{11}O_4N=CH_2\cdot O_6C\cdot CH\cdot CH\cdot CH(CN)$

¹⁾ Über die Isomerieverhältnisse bei Carboxyglutaconsäuren und alkylsubstituierten Carboxyglutaconsäuren und ihren Derivaten vgl. die Anmerkung bei Glutaconsäure (8.648).

- ${\rm CO_2 \cdot C_2 H_5}$. B. Aus Natrium-formylessigsäure-methylester und Cyanessigsäure-äthylester in Alkohol auf dem Wasserbad (Verkade, Versl. Akad. Amsterdam 27, 1136; C. 1920 I, 798). Gleicht dem Diäthylester. Scheidet bei längerem Aufbewahren geringe Mengen einer krystallinen stickstoffhaltigen Substanz ab.
- .3 Cyan propen (1) dicarbonsäure (1.3) diäthylester, α -Cyan-glutaconsäure-diäthylester $C_{10}H_{13}O_4N=C_2H_5\cdot O_2C\cdot CH:CH\cdot CH(CN)\cdot CO_2\cdot C_2H_5$ (H 849; E I 327). B. Neben anderen Produkten beim Erhitzen von α -Carboxy-glutaconsäure-triäthylester mit Natriumcyanessigester in Alkohol (Ingold, Perren, Soc. 119, 1593).
- 2. Propen-(1)-tricarbonsäure-(1.2.3), β -Carboxy-glutaconsäure, Aconitsäure $C_8H_8O_6=HO_2C\cdot CH_2\cdot C(CO_2H): CH\cdot CO_2H$. Für die von Aconitsäure abgeleiteten Namen wird in diesem Handbuch folgende Stellungsbezeichnung gebraucht: $HO_2C\cdot CH_2\cdot \beta$ $C(CO_2H): CH\cdot CO_2H$. Für die gewöhnliche Aconitsäure ist die trans-Konfiguration (s. u.) von Malachowski, Maslowski (B. 61, 2522) durch Isolierung der zugehörigen cis-Form sichergestellt worden. Die in E I 2, 327 aufgeführte, von Bland, Thorpe (Soc. 101 [1912], 1497) beschriebene "labile Form" der Aconitsäure war unreine gewöhnliche Aconitsäure (Mal., Mas.).
- a) trans-Aconitsäure, gewöhnliche Aconitsäure C₆H₆O₆ = $\frac{\text{HO}_2\text{C} \cdot \text{C} \cdot \text{H}}{\text{HO}_2\text{C} \cdot \text{CH}_2} \cdot \overset{\circ}{\text{C}} \cdot \text{CO}_2\text{H}}$ (H 849; E I 327). V. Findet sich in beträchtlicher Menge in der Zuckerrohrmelasse (Nelson, Am. Soc. 51, 2809) und in den Blättern von Helinus ovatus (Goodson, Soc. 117, 143). Über Aconitsäure aus Aconitum- und Delphinium-Arten vgl. Beath, Am. Soc. 48, 2156. B. Beim Erhitzen von α.β-Dibrom-tricarballylsäure-triäthylester oder γ-Brom-aconitsäure-triäthylester mit Barytwasser, Soda-Lösung oder methylalkoholischer Kalilauge (Ingold), Oliver, Thorpe, Soc. 125, 2133, 2134). Entsteht rasch beim Kochen von cis-Aconitsäure mit Wasser oder langsamer neben anderen Produkten beim Erhitzen von cis-Aconitsäure auf 125° (Malachowski, Maslowski, B. 61, 2524). Beim Erhitzen des Bariumsalzes der aktiven Isocitronensäure auf 300° (Nelson, Am. Soc. 47, 571). Darst. Man erhitzt Citronensäuremonohydrat mit 1 Tl. Wasser und 2 Tln. konz. Schwefelsäure 7 Stdn. auf 140—145° (Badtemperatur) (Bruce, Org. Synth. 17 [1937], 1).

Brechungsindices der Krystalle: Wherry, Keenan bei Nelson, Am. Soc. 47, 571 Anm. 9. Aconitsäure zersetzt sich beim Erhitzen im Capillarrohr ziemlich plötzlich unter starker Gasentwicklung; die Zersetzungstemperatur hängt sehr stark von der Geschwindigkeit des Erhitzens und der Heizbad-Temperatur ab (Bruce, Org. Synth. 17, 2); aus Eisessig krystallisierte Aconitsäure zersetzt sich bei 198—199° (Badtemperatur 190°; Temperatur-Erhöhung 2—3°/Min.), bei 204—205° (Badtemperatur 195°), 209° (im Apparat von Dennis, Shelton, Am. Soc. 52 [1930], 3128) (Bruce); ein aus konz. Salzsäure und dann aus Wasser umkrystallisiertes Präparat zersetzte sich bei 194—195° (korr.) (Temperatur-Erhöhung 4—5°/Min.) (Malachowski, Maslowski, B. 61, 2523). Bei 25° lösen 100 g Wasser 40,0 g, 100 g Olivenöl 0,008 g Aconitsäure (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50 [1920], 86; Versl. Akad. Amsterdam 28, 367; C. 1920 I, 630). Unlöslich in flüssigem Schwefeldioxyd und flüssigem Ammoniak (de Carli, G. 57, 352). Verteilung zwischen Wasser und Olivenöl bei 25°: V., S. Elektrolytische Dissoziationskonstante der 2. Stufe k, bei 15°: 1,1×10-6 (colorimetrisch bestimmt) (I. M. Kolthoff, Der Gebrauch von Farbenindikatoren, 2. Aufl. [Berlin 1923], S. 166).

Liefert bei der Hydrierung in Gegenwart von Platin in Wasser Tricarballylsäure (Malachowski, Bl. Acad. polon. [A] 1929, 271; C. 1929 II, 2176). Reagiert in festem Zustand nicht mit Bromdampf (Mal., Maslowski, B. 61, 2524). Zur Überführung in α.γ-Anhydroaconitsäure und β.γ-Anhydroaconitsäure (E I 18, 511) durch Behandeln mit Acetanhydrid nach Verkade (R. 40 [1921], 383) vgl. Mal., Giedroyć, Jerzmanowska, B. 61, 2530, 2532. Liefert mit Thiosalicylsäure in Gegenwart von konz. Schwefelsäure bei 25° [Thionaphtheno-2'.3':5.6-pyron-(2)]-carbonsäure-(4) (s. nebenstehende Formel; Syst. Nr. 2895) (Smiles, Hart, Soc. 123, 2910).

— Hemmende Wirkung auf die Reduktion von Methylenblau durch das System Citronensäure-Leberenzym: Bernheim, Biochem. J. 22, 1181.

Wird durch Aspergillus niger und Penicillium glaucum assimiliert (Verkade, Söhngen, Zbl. Bakt. Parasitenk. [II] 50 [1920], 83; Versl. Akad. Amsterdam 28, 364; C. 1920 I, 630).

Das Natriumsalz hemmt die Blutgerinnung (Lumière, C. r. 180, 867).

Uranylsalze. $(UO_3)_3(C_6H_3O_6)_2 + 8H_6O$. Citronengelbes Pulver, das sich bei $120-125^\circ$ zersetzt. Löslich in Wasser und Alkohol (A. MÜLLER, Z. anorg. Ch. 109, 240, 253). — $UO_2C_6H_4O_6 + xH_5O$. Citronengelbe Krusten. Zersetzt sich bei $110-120^\circ$. Leicht löslich in Wasser, unlöslich in Alkohol und Ather (M., Z. anorg. Ch. 109, 240, 254).

TRICARBONSÄUREN

- γ-Methylester $C_7H_8O_8=HO_8C\cdot CH_8\cdot C(CO_9H):CH\cdot CO_9\cdot CH_8$. Be Beim Erhitzen von cis-Açonitsäure-α-methylester auf $120-125^\circ$ oder beim Bestrahlen einer mit Brom versetzten Lösung von cis-Aconitsäure-γ-methylester in Äther + Chloroform mit Sonnenlicht oder mit ultraviolettem Licht (Μαλακηοωνκή, Giedroyć, Jerzmanowska, B. 61, 2534). Prismen (aus Aceton + Benzol). F: 154,5-155° (korr.). Leicht löslich in Wasser, Alkohol und Äther. Liefert beim Erwärmen mit Acetanhydrid auf 40° β.γ-Anhydro-aconitsäure-methylester (Syst. Nr. 2620).
- α-Methylester $C_7H_8O_6=CH_3\cdot O_2C\cdot CH_2\cdot C(CO_2H):CH\cdot CO_2H$. B. Beim Bestrahlen einer mit Brom versetzten Lösung von eis-Aconitsäure-α-methylester in Äther + Chlorofom mit Sonnenlicht oder ultraviolettem Licht (ΜΑΙΑCHOWSKI, GIEDROYĆ, JERZMANOWSKA, B. 61, 2534). Beim Aufbewahren einer methylalkoholischen Lösung von α-γ-Anhydro-aconitsäure (Syst. Nr. 2620) (M., G., J., B. 61, 2536). Kugelige Aggregate (aus Aceton + Benzol). F: 136—137° (korr.) (M., G., J.), 138° (M., Bl. Acad. polon. [A] 1929, 272; C. 1929 II, 2176). Sehr leicht löslich in Benzol, löslich in Wasser, Alkohol und Äther (M., G., J.). Liefert bei der Hydrierung in Gegenwart von Platin in Äther Tricarballylsäure-α-methylester (M.).
- β-Methylester $C_7H_8O_8 = HO_2C \cdot CH_2 \cdot C(CO_2 \cdot CH_3) : CH \cdot CO_2H$. B. Beim Bestrahlen einer mit Brom versetzten Lösung von cis Aconitsäure β methylester in Äther + Chloroform mit Sonnenlicht oder ultraviolettem Licht (ΜΑΙΑCHOWSKI, GIEDROYĆ, JERZMANOWSKA, B. 61, 2534). Tafeln (aus Aceton + Benzol). F: 144—145° (korr.). Löslich in Wasser, Alkohol und Äther. Liefert beim Erwärmen mit Acetanhydrid auf 45—48° α.γ-Anhydro-aconitsäuremethylester (Syst. Nr. 2620).

Trimethylester $C_9H_{12}O_6=CH_3\cdot O_2C\cdot CH_2\cdot C(CO_2\cdot CH_3)$: $CH\cdot CO_2\cdot CH_3$ (H 852; E I 328). Kp_{20} : 160° (Ingold, Oliver, Thorpe, Soc. 125, 2133).

Triäthylester $C_{12}H_{18}O_6=C_2H_5\cdot O_2C\cdot CH_3\cdot C(CO_2\cdot C_2H_5):CH\cdot CO_2\cdot C_2H_5$ (H 852; EI 328). B. Durch Veresterung von Aconitsaure mit alkoh. Schwefelsaure (Ingold, Soc. 119, 350). — Kp₁₈: 172° (I., Oliver, Thorpe, Soc. 125, 2132). — Verhalten beim Erhitzen mit Natriumäthylat und Methyljodid in Alkohol: Urushibara, Bl. chem. Soc. Japan 3, 218; C. 1929 I, 56). Liefert beim Erhitzen mit Natriumcyanessigester in Alkohol auf dem Dampfbad 1-Cyanbutan-tetracarbonsäure-(1.2.3.4)-tetraäthylester und eine Verbindung, die bei der Behandlung mit Schwefelsäure in Cyclopentanon-(4)-dicarbonsäure-(1.2) übergeht (I., Soc. 119, 344, 347).

- b) cis-Aconitsäure $C_0H_0O_0=\frac{H\cdot C\cdot CO_2H}{HO_2C\cdot CH_3\cdot C\cdot CO_2H}$. B. Beim Lösen von $\beta.\gamma$ -Anhydro-aconitsäure (Syst. Nr. 2620) in Wasser (Malachowski, Maslowski, B. 61, 2524; Mal., Giedroyć, Jerzmanowska, B. 61, 2532; Breusch, H. 250 [1937], 263 Anm.). Nadeln (aus Wasser). F: 125° (Mal., Mas.). Ist in Wasser leichter, in Ather schwerer löslich als trans-Aconitsäure (Mal., Mas.). Liefert beim Erhitzen auf 125° trans-Aconitsäure und $\beta.\gamma$ -Anhydro-aconitsäure; beim Kochen mit Wasser bildet sich fast reine trans-Aconitsäure, beim Aufbewahren mit Acetanhydrid entsteht $\beta.\gamma$ -Anhydro-aconitsäure (Mal., Mas.). Geht bei der Hydrierung in Gegenwart von Platin in Tricarballylsäure über (Mal., Mas.). Geht bei der Hydrierung in Gegenwart von Platin in Tricarballylsäure über (Mal., Mas.). Pl. Acad. polon. [A] 1929, 271; C. 1929 II, 2176). Bei der Einw. von Bromdampf auf die feste Säure entsteht $\alpha.\beta$ -Dibrom-tricarballylsäure (Mal., Mas.). Neutrales Natriumsalz. Pulver (Mal., Mas.). Bariumsalz Ba $_2(C_0H_2O_0)_2+2H_2O$. Flockiger Niederschlag (Mal., Mas.). Kupfersalz. Löslich in Wasser. Liefert beim Erwärmen mit Wasser auf 70° das Kupfersalz der trans-Aconitsäure (Mal., Mas.).
- γ -Methylester C₇H₈O₆ = HO₈C·CH₂·C(CO₂H): CH·CO₂·CH₃. B. Neben dem β -Methylester beim Erwärmen von β . γ -Anhydro-aconitsäure mit Methanol auf 40° (Malachowski, Giedroyć, Jerzmanowska, B. 61, 2534). Prismen (aus Aceton + Benzol). F: 126—127° (korr.). Schwer löslich in Äther, leicht in Wasser und Alkohol. Geht beim Bestrahlen mit Sonnenlicht oder ultraviolettem Licht bei Gegenwart von Brom in Äther + Chloroform in trans-Aconitsäure- γ -methylester über. Beim Behandeln mit Acetanhydrid entsteht β . γ -Anhydro-aconitsäure-methylester.
- α-Methylester $C_7H_8O_6=CH_3\cdot O_8C\cdot CH_3\cdot C(CO_2H)\cdot CH\cdot CO_2H$. B. Aus $\beta.\gamma$ -Anhydroaconitsäure-methylester und Wasser (Malachowski, Giedboyć, Jerzmanowska, B. 61. 2533). Tafeln (aus Ather oder Aceton + Benzol). F: 101—102° (korr.). Löslich in Wasser, Alkohol und Ather, unlöslich in Benzol. Geht beim Erhitzen auf 120—125° in trans-Aconitsäure- γ -methylester, beim Belichten mit Sonnenlicht oder ultraviolettem Licht in Gegenwart von Brom in Ather + Chloroform in trans-Aconitsäure- α -methylester über. Beim Behandeln mit Acetanhydrid wird $\beta.\gamma$ -Anhydro-aconitsäure-methylester zurückgebildet.
- β-Methylester $C_7H_8O_8 = HO_8C \cdot CH_2 \cdot C(CO_2 \cdot CH_3) : CH \cdot CO_2H$. B. Neben dem γ-Methylester beim Erwärmen von β.γ-Anhydro-aconitsäure mit Methanol auf 40° (Malachowski, Giedboyć, Jerzmanowska, B. 61, 2534). Nadeln (aus Aceton + Benzol). F: 102—104°

(korr.). Löslich in Äther, Alkohol und Wasser. — Lagert sich beim Bestrahlen mit Sonnenlicht oder ultraviolettem Licht bei Gegenwart von Brom in Äther + Chloroform in trans-Aconitsäure-β-methylester um. Beim Kochen mit Eisessig und Acetanhydrid und Zufügen einer mit Natriumacetat versetzten Benzoldiazoniumsalz-Lösung entsteht 2.6-Dioxo-5-phenyl-hydrazono-5.6-dihydro-1.2-pyran-carbonsäure-(4)-methylester.

c) Aconitsäure-Derivat ungewisser sterischer Zugehörigkeit.

1-Brom-propen-(1)-tricarbonsäure-(1.2.3)-triäthylester, γ -Brom-aconitsäure-triäthylester $C_{12}H_{12}O_6Br=C_2H_5\cdot O_2C\cdot CH_2\cdot C(CO_2\cdot C_2H_5):CBr\cdot CO_2\cdot C_2H_6$. B. Bei der Einw von Natriumäthylat-Lösung auf $\alpha.\beta$ -Dibrom-tricarballylsäure-triäthylester (Ingold, Oliver, Thorpe, Soc. 125, 2134). — Öl. Kp₂₀: 194°. — Beim Erhitzen mit Barytwasser, Soda-Lösung oder methylalkoholischer Kalilauge entsteht trans-Aconitsäure. Setzt sich mit Natriummalonester in kaltem Alkohol um unter Bildung von trans-Aconitsäure-triäthylester und Athan-tetracarbonsäure-(1.1.2.2)-tetraäthylester.

3. Tricarbonsäuren $C_7H_8O_6$.

1. Propen - dicarbonsäure - (1.3) - essigsäure - (2), β - Carbocymethylglutaconsäure (Isobutylentricarbonsäure) $C_7H_8O_6=HO_2C\cdot CH:C(CH_2\cdot CO_2H)_2$. B. Bei 48-stdg. Kochen von β -Dicarboxymethyl-glutaconsäure-tetraäthylester mit 20% iger Salzsäure (Ingold, Nickolls, Soc. 121, 1644). — Nadeln (aus konz. Salzsäure, Ather oder Chloroform + Aceton). F: 140°. Sehr leicht löslich in Wasser, Alkohol und Aceton, schwer in Ather, Chloroform und Benzol. — Liefert bei der Reduktion mit Natriumamalgam in siedender verdünnter Salzsäure Methantriessigsäure (I., N., Soc. 121, 1640, 1645). — Calciumsalz. Krystallinisch.

Triäthylester $C_{13}H_{20}O_6=C_2H_5\cdot O_2C\cdot CH:C(CH_2\cdot CO_2\cdot C_2H_5)_2$. Bewegliches Öl. Kp₁₁: 174—175° (Ingold, Nickolls, Soc. 121, 1645). — Liefert bei einwöchiger Einw. von bei Ö⁰ gesättigtem wäßrigem Ammoniak im Rohr bei Zimmertemperatur [2.6-Dioxy-pyridyl-(4)]-essigsäure-amid. Gibt beim Kochen mit Natriumcyanessigester in Alkohol Methan-triessigsäure-cyanessigsäure-tetraäthylester.

- 2. 2 Methyl propen tricarbonsdure (1.1.3), β Methyl α carboxyglutaconsdure $C_7H_8O_6 = HO_3C \cdot CH : C(CH_3) \cdot CH(CO_3H)_2^{-1}$.
- 2-Methyl-3-cyan-propen-(1)-dicarbonsäure-(1.3)-diäthylester, β -Methyl- α -cyan-glutaconsäure-diäthylester $C_{11}H_{15}O_4N=C_2H_5\cdot O_3C\cdot CH:C(CH_2)\cdot CH(CN)\cdot CO_2\cdot C_2H_5$ (H 854; E I 328). Über die Bildung aus Acetessigester und Natriumcyanessigester nach Robertson, Thorp (Soc. 87 [1905], 1687) vgl. Hore, Soc. 121, 2218. Liefert beim Erhitzen mit Wasser im Rohr auf 180° Alkohol, Aceton und Cyanessigester (H., Soc. 121, 2218, 2222). Beim Aufbewahren mit konz. Ammoniak entsteht β -Amino-crotonsäure-äthylester und eine Verbindung, die beim Kochen mit Natronlauge 2.6-Dioxy-4-methyl-pyridin-carbonsäure-(3)-nitril gibt (H., Soc. 121, 2219). Addiert Blausäure unter Bildung von β -Methyl- α . β -dicyan-glutarsäure-diäthylester (H., Sheldon, Soc. 121, 2226, 2228).
- 2-Methyl-3.3-dicyan-propen-(1)-carbonsäure-(1)-äthylester $C_9H_{10}O_2N_2=C_2H_5$. $O_2C\cdot CH: C(CH_2)\cdot CH(CN)_2$. B. Bei der Kondensation von Natrium-malonitril und Acetessigester in siedendem Alkohol und nachfolgendem Ansäuern mit verd. Salzsäure (URUSHIBARA, Bl. chem. Soc. Japan 2, 306; C. 1928 I, 798). Braunes Öl.
- 3. Buten-(2)-tricarbonsaure-(1.1.3), γ -Methyl- α -carboxy-glutaconsaure $C_7H_3O_4=HO_3C\cdot C(CH_3):CH\cdot CH(CO_3H)_2^{-1}$).

Triäthylester $C_{13}H_{30}O_6=G_2H_5\cdot O_3C\cdot C(CH_3)$: $CH\cdot CH(CO_3\cdot C_2H_5)_2$ (E I 328). Bei der Destillation größerer Mengen entsteht etwas 6-Athoxy-3-methyl-pyron-(2)-carbonsäure-(5)-äthylester (Syst. Nr. 2624) (Ingold, Perren, Soc. 119, 1601). Liefert bei 24-stdg. Behandlung mit 2 Mol Natriumcyanessigester in Alkohol bei Zimmertemperatur neben anderen Produktes Malonsäure-diäthylester, γ -Methyl- α -cyan-glutaconsäure-diäthylester und ein Kondensationsprodukt (Kp₁₀: ca. 200°), das bei Behandlung mit 50% iger Schwefelsäure Butan-dicarbonsäure-(1.3)-essigsäure-(2) gibt (I., P., Soc. 119, 1587, 1596). Neben den erstgenannten beiden Diäthylestern bilden sich aus γ -Methyl- α -carboxy-glutaconsäure-triäthylester und 2 Mol Natriumcyanessigester bei 30-stdg. Erhitzen in Alkohol Propionsäure-triäthylester, α - γ -Dicyan-glutaconsäure-diäthylester und 1.3-Dicyan-cyclobutan-dicarbonsäure-(1.3)-di-[α -propionsäure](2.4)-tetraäthylester (dimerer γ -Methyl- α -cyan-glutaconsäure-diäthylester) (I., P., Soc. 119, 1587, 1596; vgl. I., P., Thorpe, Soc. 121, 1770, 1787); die letztgenannte Verbindung entsteht gelegentlich als Hauptprodukt (I., P., Soc. 119, 1588).

¹⁾ Vgl. S. 648 Anm. 1.

1-Cyan-buten-(2)-dicarbonsäure-(1.3)-diäthylester, γ-Methyl-α-cyan-glutaconsäure - diäthylester C₁₁H₁₅O₄N = C₂H₅·O₂C·C(CH₃):CH·CH(CN)·CO₃·C₂H₅. B. Neben anderen Produkten beim Behandeln von Natriumcyanessigsäure-äthylester in Alkohol mit γ-Methyl-α-carboxy-glutaconsäure-triäthylester (Ingold, Perren, Soc. 119, 1596, 1598) oder mit α-Formyl-propionsäure-āthylester (I., P., Thorpe, Soc. 121, 1782). — Öl. Kp₁₁: 150—155° (I., P., Th.); Kp₁₅: 160° (I., P.). — Beim Aufbewahren bei gewöhnlicher Temperatur tritt, insbesondere in Gegenwart von Piperidin, Dimerisation unter Bildung von 1.3-Dicyan-cyclobutan-dicarbonsäure-(1.3)-di-[α-propionsäure]-(2.4)-tetraäthylester ein (I., P., Th., Soc. 121, 1770, 1787). Liefert beim Kochen mit 50%iger Schwefelsäure α-Methyl-glutaconsäure (I., P., Soc. 119, 1597). Gibt beim Erhitzen mit 2 Mol Natriumcyanessigester in Alkohol neben dem Dimerisationsprodukt und anderen Produkten α.γ-Dicyan-glutaconsäure-diäthylester (I., P., Soc. 119, 1598). Kondensiert sich mit α-Carboxy-glutaconsäure-triäthylester bei Gegenwart von Piperidin zu 1-Cyan-cyclobutan-tricarbonsäure-(1.3.3)-essigsäure-(2)-[α-propionsäure]-(4)-pentaäthylester; reagiert anscheinend analog mit α.γ-Dicarboxy-glutaconsäure-tetraäthylester (I., P., Th., Soc. 121, 1788). — In wäßrig-alkoholischer Lösung erzeugt Eisen(III)-chlorid eine rötlich-braune Färbung (I., P., Soc. 119, 1597).

4. Tricarbonsäuren $C_8H_{10}O_6$.

1. Penten - (3) - tricarbonsäure - (1.1.5) $C_8H_{10}O_6 = HO_9C \cdot CH_9 \cdot CH \cdot CH_9 \cdot CH_1 \cdot$

Trimethylester $C_{11}H_{16}O_6=CH_3\cdot O_2C\cdot CH_3\cdot CH\cdot CH\cdot CH_2\cdot CH(CO_3\cdot CH_3)_2$. B. Beim Kochen von β-Vinyl-acrylsäure-methylester mit Natriummalonsäure-dimethylester in Äther (Kohler, Butler, Am. Soc. 48, 1041). — Kp₁₁: 147—150° (K., B.); Kp₁₃: 172°; Kp₁₇: 178—180° (Farmer, Healey, Soc. 1927, 1064). — Das bei der Einw. von Ozon in Tetrachlor-kohlenstoff entstehende Ozonid gibt beim Kochen mit Wasser Acetaldehyd, Malonaldehydsäure und [β-Oxo-āthyl]-malonsäure (nachgewiesen durch Oxydation zu den entsprechenden Säuren und Überführung in die Methylester) (K., B.). Reagiert nicht mit Natriumcyanessigester (F., H.).

Triamid C₈H₁₃O₃N₃ = H₂N·CO·CH₂·CH:CH·CH₂·CH(CO·NH₂)₂. B. Durch Einw. von alkoh. Ammoniak auf Penten-(3)-tricarbonsäure-(1.1.5)-trimethylester (FARMER, HEALEY, Soc. 1927, 1065). — Prismen. F: 213°.

- 2. Buten-(1)-dicarbonsaure-(1.4)-essigsaure-(2), 2-Carboxymethylbuten-(1)-dicarbonsaure-(1.4) $C_8H_{10}O_6=HO_2C\cdot CH_2\cdot CH_2\cdot C(CH_2\cdot CO_2H): CH\cdot CO_2H$.
- a) Höherschmelzende Form. B. Beim Erhitzen von Buten-(1)-dicarbonsäure-(1.4)-malonsäure-(2)-triäthylester oder -tetraäthylester (S. 716) mit konz. Salzsäure (Farmer, Soc. 121, 2018). Durch Verseifung des Triäthylesters mit konz. Salzsäure oder verd. Schwefelsäure (F., Soc. 121, 2019). Krystalle (aus Essigester oder verd. Salzsäure). F: 179°. Schwer löslich in kaltem Wasser, fast unlöslich in Äther, Benzol und Chloroform. Bei der Oxydation mit alkal. Kaliumpermanganat-Lösung entstehen Oxalsäure und Bernsteinsäure. Liefert beim Kochen mit Acetylchlorid ein Anhydrid (Syst. Nr. 2620). Ag₃C₈H₇O₆. Käsiger Niederschlag.

Triäthylester $C_{14}H_{22}O_6 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot C(CH_2 \cdot CO_2 \cdot C_2H_5) : CH \cdot CO_2 \cdot C_2H_5$. Reinheit fraglich. — B. Beim Erhitzen von Buten-(1)-dioarbonsäure-(1.4)-cyanessigsäure-(2)-triäthylester mit verd. Schwefelsäure und folgenden Verestern mit alkoh. Schwefelsäure, neben anderen Produkten (Farmer, Soc. 121, 2018). — Bewegliches Ol. Kp₁₉: 195—205°.

- b) Niedrigerschmelzende Form. B. Aus dem Tetranatriumsalz der Buten-(1)-dicarbonsäure-(1.4)-malonsäure-(2) beim Versetzen mit der berechneten Menge verd. Salzsäure (FARMER, Soc. 121, 2020). Krystalle (aus Ather). F: 152°. Sehr leicht löslich in kaltem Wasser, fast unlöslich in Benzol und Chloroform. Ag₅C₈H₇O₆. Käsiger Niederschlag.
- 3. Penten (1) tricarbonsaure (1.3.4) $C_8H_{10}O_6 = HO_3C \cdot CH : CH \cdot CH(CO_2H) CH(CH_3) \cdot CO_2H$.
- a) Höherschmelzende Form. B. Neben anderen Produkten beim Behandeln von niedrigerschmelzender Pentan-tricarbonsäure-(1.3.4) mit Phosphortribromid und Brom, Zersetzen des Reaktionsprodukts mit heißem Wasser und Kochen des erhaltenen Sirups mit 40 %iger Kalilauge (Küster, H. 130, 18). Nadeln (aus Wasser). F: 114°. Bei der Reduktion mit Natriumamalgam entsteht wieder die niedrigerschmelzende Pentan-tricarbonsäure-(1.3.4). Ag₃C₈H₇O₆. Niederschlag.

Diäthylester $C_{12}H_{18}O_6 = C_2H_5 \cdot O_2C \cdot CH : CH \cdot CH(CO_2H) \cdot CH(CH_3) \cdot CO_4 \cdot C_2H_5$ (7). B. Beim Erhitzen der höherschmelzenden Penten-(1)-tricarbonsäure-(1.3.4) mit alkoh. Schwefelsäure (Küster, H. 130, 19). — Dickes Ol. Kp₁₈: 199—201°.

b) Niedrigerschmelzende Form. B. Neben anderen Produkten beim Behandeln von höherschmelzender Pentantricarbonsäure-(1.3.4) mit rotem Phosphor und Brom, Zersetzen des Reaktionsprodukts mit heißem Wasser und Kochen des erhaltenen Sirups mit 40 %iger Kalilauge (Küster, H. 130, 15). — Nadeln (aus Wasser). F: 112°. Löslich in 3 Tln. Wasser von 20°; leicht löslich in Alkohol, Äther und Essigester. — Gibt bei der Reduktion mit Natriumamalgam in Alkalilauge wieder die höherschmelzende Pentan-tricarbonsäure-(1.3.4). — Ag₅C₅H₇O₆. Niederschlag.

Diäthylester $C_{12}H_{13}O_5=C_2H_5\cdot O_2C\cdot CH:CH\cdot CH(CO_2H)\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5(?)$. B. Beim Erhitzen der niedrigerschmelzenden Penten-(1)-tricarbonsäure-(1.3.4) mit alkoh. Schwefelsäure (Küster, H. 130, 17). — Ol. Kp₂₀: 206°.

- 4. Penten-(2)-tricarbonsäure-(1.1.3), γ -Äthyl- α -carboxy-glutaconsäure $C_8H_{10}O_4=HO_2C\cdot C(C_2H_5):CH\cdot CH(CO_4H)_5^{-1}$).
- 1-Cyan-penten-(2)-dicarbonsäure-(1.3)-diäthylester, γ -Äthyl- α -cyan-glutaconsäure-diäthylester $C_{12}H_{17}O_4N=C_3H_5\cdot O_2C\cdot C(C_2H_5):CH\cdot CH(CN)\cdot CO_2\cdot C_2H_5$. Bei der Einw. von α -Formyl-buttersäure-äthylester auf Natriumcyanessigester in Alkohol (Ingold, Perren, Thorpe, Soc. 121, 1782). Bewegliches Öl. Kp₁₄: 163°. Gibt bei der Verseifung mit 50% iger Schwefelsäure α -Äthyl-glutaconsäure.
- 5. 2-Methyl-buten-(1)-tricarbonsäure-(1.3.3), $\alpha.\beta$ -Dimethyl- α -carboxyglutaconsäure $C_8H_{10}O_6=HO_3C\cdot CH\cdot C(CH_3)\cdot C(CH_3)(CO_2H)_2$.
- 2 Methyl 3 cyan buten (1) dicarbonsäure-(1.3) diäthylester, $\alpha.\beta$ -Dimethyl- α -cyan-glutaconsäure-diäthylester $C_{12}H_{17}O_4N = C_2H_5 \cdot O_2C \cdot CH : C(CH_3) \cdot C(CH_3) \cdot (CN) \cdot CO_2 \cdot C_2H_5 \cdot (H 856; E I 329).$
- Der Artikel des Ergänzungswerks I ist durch folgenden Text zu ersetzen: "Ist nach THORPE (Pr. chem. Soc. 28, 52; C. 1912 II, 185), BLAND, THORPE (Soc. 101, 887) und HOPE (Soc. 121, 2216) α.β-Dimethyl-γ-cyan-glutaconsäure-diäthylester".
- 6. 3-Methyl-buten-(1)-tricarbonsāure-(1.2.3), α.α-Dimethyl-aconitsāure $C_8H_{10}O_6 = HO_3C \cdot CH : C(CO_2H) \cdot C(CH_3)_2 \cdot CO_2H$. B. Neben anderen Produkten bei der Oxydation von 1.1-Dimethyl-cyclopenten-(2)-dion-(4.5)-carbonsāure-(2) mit Wasserstoffperoxyd in sodaalkalischer Lösung oder von 5.5-Dimethyl-bicyclo-[0.1.2]-pentanon-(3)-carbonsāure-(1) mit Kaliumferricyanid (FARMER, INGOLD, THORPE, Soc. 121, 146, 149). Beim Erwärmen des Anhydrids der α.α-Dimethyl-aconitsāure (Syst. Nr. 2620) mit Alkalien und nachfolgenden Ansāuern (F., I., Th.). Krystallpulver (aus Ather + Petrolāther). F: 138° (Zers.). Unlöslich in Benzol, ziemlich schwer löslich in Ather, sehr leicht in Wasser. Liefert bei der Oxydation mit alkal. Kaliumpermanganat-Lösung Dimethylmalonsāure und Oxalsāure. Beim Erhitzen mit Wasser im Rohr auf 180° entsteht γ.γ-Dimethyl-itaconsāure.
- 7. 2-Methyl-buten-(1)-tricarbonsäure-(1.1.3), a. β -Dimethyl- γ -carboxy-glutaconsäure $C_8H_{10}O_6=HO_2C\cdot CH(CH_3)\cdot C(CH_3)$: $C(CO_2H)_2^{-1}$.
- 2-Methyl-1-cyan-buten-(1)-dicarbonsäure-(1.3)-diäthylester, $\alpha.\beta$ -Dimethyl- γ -cyan-glutaconsäure-diäthylester $C_{12}H_{17}O_4N=C_3H_5\cdot O_3C\cdot CH(CH_3)\cdot C(CH_3):C(CN)\cdot CO_2\cdot C_2H_6$. Nach Thorpe (Pr. chem. Soc. 28, 52; C. 1912 II, 185), Bland, Thorpe (Soc. 101, 887) und Hope (Soc. 121, 2216) ist die von Rogerson, Thorpe (Soc. 87, 1695) als $\alpha.\beta$ -Dimethyl- α -cyan-glutaconsäure-diäthylester $C_2H_5\cdot O_2C\cdot CH:C(CH_3)\cdot C(CH_3)(CN)\cdot CO_2\cdot C_2H_5$ (H 856) aufgefaßte Verbindung als $\alpha.\beta$ -Dimethyl- γ -cyan-glutaconsäure-diäthylester zu formulieren. Zur Umlagerung in $\beta.\gamma$ -Dimethyl- α -cyan-glutaconsäure-diäthylester beim Behandeln mit alkoh. Natriumäthylat-Lösung vgl. Hope, Soc. 121, 2248, 2222. Liefert beim Erhitzen mit Wasser auf 180° Methyläthylketon, Cyanessigester und α -Methyl-acetessigester (H., Soc. 121, 2218, 2223). Löst sich sehr langsam in Ammoniak, gibt erst nach längerem Schütteln mit konz. Ammoniak dieselben Produkte wie $\beta.\gamma$ -Dimethyl- α -cyan-glutaconsäure-diäthylester (s. u.) (H., Soc. 121, 2217, 2221). Beim Behandeln mit Blausäure in Gegenwart von Kaliumcyanid in verd. Alkohol entsteht 2-Methyl-1.2-dicyan-butan-dicarbonsäure-(1.3)-diäthylester (H., Sheldon, Soc. 121, 2224, 2231).
- 8. 2-Methyl-buten-(2)-tricarbonsaure-(1.1.3), $\beta.\gamma$ -Dimethyl- α -carboxy-glutaconsaure $C_8H_{10}O_6 = HO_2C \cdot C(CH_2) \cdot CH(CO_2H)_2$.
- 2-Methyl-1-cyan-buten-(2)-dicarbonsäure-(1.3)-diäthylester, $\beta.\gamma$ -Dimethyl- α -cyan-glutaconsäure-diäthylester $C_{12}H_{17}O_4N=C_2H_5\cdot O_2C\cdot C(CH_3):C(CH_2)\cdot CH(CN)\cdot CO_2\cdot C_2H_5$ (H 856; E I 329). B. Bei der Bildung durch Erhitzen von Cyanessigester mit α -Methyl-acetessigester und Natrium in Alkohol nach Rogerson, Thorpe (Soc. 87 [1905],

¹⁾ Vgl. S. 648 Anm. 1.

1699) wird das Natrium besser durch Kalium ersetzt (Hope, Soc. 121, 2219). Zur Bildung aus $\alpha.\beta$ -Dimethyl- γ -cyan-glutaconsäure-diäthylester beim Behandeln mit alkoh. Natriumäthylat-Lösung vgl. H., Soc. 121, 2218, 2222. — Spaltet sich beim Erhitzen mit Wasser auf 180° in Methyläthylketon, Cyanessigester und α -Methyl-acetessigester (H., Soc. 121, 2218, 2222). Liefert beim Aufbewahren mit konz. Ammoniak β -Amino- α -methyl-crotonsäure-äthylester und eine krystallinische Verbindung, die sich bei ca. 320° zersetzt und beim Kochen mit Natronlauge 2.6-Dioxy-4.5-dimethyl-pyridin-carbonsäure-(3)-nitril gibt (H., Soc. 121, 2220). Beim Behandeln mit Blausäure in Gegenwart von Kaliumcyanid in verd. Alkohol entsteht 2-Methyl-1.2-dicyan-butan-dicarbonsäure-(1.3)-diäthylester (H., Sheldon, Soc. 121, 2224, 2229).

E I 329, Z. 13-9 v. o. Der Passus "Nach THORPE.... zu formulieren" ist zu streichen.

5. Tricarbonsauren CoH12O4.

1. Hexen-(2)-tricarbons dure-(1.5.5) $C_0H_{12}O_0 = HO_2C \cdot CH_2 \cdot CH \cdot CH_2 \cdot C(CH_2) \cdot (CO_2H)_2$.

5-Cyan-hexen-(2)-dicarbonsäure-(1.5)-methylester-(1)-äthylester-(5) $C_{12}H_{17}O_4N=CH_3\cdot O_3C\cdot CH_2$ CH: CH·CH₃·C(CH₂)(CN)·CO₂·C₂H₅. B. Durch Kochen von 2 Mol α -Cyan-propionsäure-äthylester und 1 Mol β -Vinyl-acrylsäure-methylester mit $\frac{1}{6}$ Mol Natrium-methylat in Methanol + Äther (Farmer, Healey, Soc. 1927, 1061, 1065). — Gelbliche Flüssigkeit. Kp₁₆: 182—185°. — Liefert bei der Ozonspaltung in Chloroform Acetaldehyd und ein Produkt, das bei der Oxydation mit Wasserstoffperoxyd und nachfolgendem Kochen mit 40% iger Kalilauge Methylbernsteinsäure liefert.

2. 2-Methyl-penten-(3)-tricarbonsdure-(1.1.5) $C_9H_{12}O_4=HO_2C\cdot CH_2\cdot CH:$ $CH\cdot CH(CH_2)\cdot CH(CO_2H)_2.$

Trimethylester $C_{12}H_{12}O_6 = CH_3 \cdot O_1C \cdot CH_2 \cdot CH \cdot CH \cdot CH(CH_3) \cdot CH(CO_2 \cdot CH_3)_2$. B. Beim Kochen von Sorbinsäuremethylester mit Natriummalonsäure-dimethylester in Ather (Kohler, Butler, Am. Soc. 48, 1043; Farmer, Healey, Soc. 1927, 1064). — Flüssigkeit. Kp₁₀: 155°; Kp₂₀: 185° (K., B.). — Wird beim Kochen mit Natriummethylat · Lösung in Ather unter Bildung von Sorbinsäuremethylester und Malonsäuredimethylester zerlegt (K., B.). Liefert bei der Ozonisierung in Tetrachlorkohlenstoff ein Ozonid, das durch siedendes Wasser unter Bildung von Acetaldehyd, Malonaldehydsäure und [Oxoisopropyl]-malonsäure zersetzt wird (Nachweis der beiden letztgenannten Verbindungen durch Überführung in Malonsäure-dimethylester bzw. Propantricarbonsäure-(1.1.2)-trimethylester) (K., B.).

- 3. 3-Methyl-penten-(3)-tricarbonsdure-(2.2.4), $\alpha.\beta.\gamma$ -Trimethyl- α -carboxy-glutaconsdure $C_pH_{12}O_4=HO_pC\cdot C(CH_p)\cdot C(CH_p)\cdot C(CH_p)(CO_2H)_p$.
- 3-Methyl-4-cyan-penten-(2)-dicarbonsäure-(2.4)-diäthylester, $\alpha.\beta.\gamma$ -Trimethyl- α -cyan-glutaconsäure-diäthylester $C_{15}H_{19}O_4N=C_5H_5\cdot O_5C\cdot C(CH_3)\cdot C(CH_3)\cdot C(CH_4)\cdot C(CH_5)\cdot
- 4. 4-Methyl-penten-(2)-tricarbonsäure (2.3.4), Trimethylaconitsäure $C_0H_{12}O_0=HO_2\tilde{C}\cdot C(CH_2):C(CO_2H)\cdot C(CH_2)_2\cdot CO_2H$. B. Beim Behandeln von 1.1.3-Trimethylcyclopenten-(2)-dion-(4.5)-carbonsäure-(2) mit Wasserstoffperoxyd in sodaalkalischer Lösung, neben anderen Produkten (Grimwood, Ingold, Thorre, Soc. 123, 3308). Krystallpulver (aus Äther + Petroläther). F: 120° (Zers.). Unlöslich in Benzol. Liefert beim Schmelzen oder Behandeln mit Acetylchlorid Trimethylaconitsäureanhydrid (Syst. Nr. 2620). Bei der Oxydation mit Kaliumpermanganat in alkal. Lösung entstehen Dimethylmalonsäure und Brenztraubensäure.
- 6. 4-Methyl-hexen-(2)-tricarbonsaure-(1.5.5) $C_{10}H_{2d}O_0=HO_2C\cdot CH_2\cdot CH:CH\cdot CH(CH_2)\cdot C(CH_2)(CO_2H)_0.$
- 4-Methyl-5-cyan-hexen-(2)-dicarbonsäure-(1.5)-methylester-(1)-äthylester-(5) C₁₂H₁₂O₄N = CH₂·O₂C·CH₂·CH·CH·CH·CH(CH₂)·C(CH₂)(CN)·CO₂·C₂H₃. B. Durch Erhitzen von 2 Mol α-Cyan-propionsäure-äthylester und 1 Mol Sorbinsäuremethylester mit ¹/_s Mol Natriummethylat in Methanol + Ather (Farmer, Healey, Soc. 1937, 1065). Gelbliche Finseigkeit. Kp₁₆: 185—188°. Liefert bei der Ozonspaltung in Chloroform Acetaidehyd und ein Produkt, das bei der Ozydation mit Wasserstoffperoxyd und nachfolgendem Kochen mit 40%iger Kalilauge die beiden Formen der α.α'-Dimethyl-bernsteinsäure gibt.

ÄTHANTETRACARBONSÄURE

699

3. Tricarbonsauren C_nH_{2n-8}O₆.

Propadientricarbonsaure, Allentricarbonsaure $C_eH_4O_6=HO_3C\cdot CH:C:C(CO_3H)_9.$

Triäthylester $C_{12}H_{16}O_6 = C_9H_5 \cdot O_2C \cdot CH : C : C(CO_2 \cdot C_2H_5)_2$ (H 857). Die Konstitution dieser Verbindung ist fraglich (Faltis, de Roxas, M. 42, 460; vgl. a. die Angaben bei Allentetracarbonsäuretetraäthylester, S. 716). [Behrle]

D. Tetracarbonsäuren.

1. Tetracarbonsauren C_nH_{2 n-6}O₈.

1. Methantetracarbonsaure $C_5H_4O_8=C(CO_2H)_4$.

Tetramethylester $C_9H_{13}O_8=C(CO_3\cdot CH_3)_4$ (EI 331). Röntgenographische Untersuchung: Burgeni, Halla, Kratky, Z. Kr. 71, 264. Dichte, Dielektr.-Konst. u. Molekularpolarisation des festen Esters: Ebert, Eisenschitz, v. Hartel, Ph. Ch. [B] 1, 110. Dichte, Dielektr.-Konst. und Molekularpolarisation von Lösungen in Benzol und Tetrachlorkohlenstoff: E., Ei., v. H.; vgl. a. Schleede, Jung, Hettich, Ph. Ch. [B] 3, 480.

Tetraäthylester $C_{13}H_{20}O_8=C(CO_2\cdot C_3H_5)_4$ (E I 331). F: 12—13° (Philippi, Hanusch, v. Wacek, B. 54, 901). Dichte, Dielektr.-Konst. und Molekularpolarisation im festen und im flüssigen Zustand: Ebert, Eisenschitz, v. Hartel, Ph. Ch. [B] 1, 110. Dichte, Dielektr.-Konst. und Molekularpolarisation von Lösungen in Benzol und Tetrachlorkohlenstoff: E., Ei., v. H. — Gibt mit flüssigem Ammoniak im Rohr Malonamid und Urethan (Ph., H., v. W.).

2. Åthan-tetracarbonsäure (1.1.2.2), "Acetylentetracarbonsäure" $C_sH_sO_s = (HO_sC)_sCH\cdot CH(CO_sH)_s$ (H 857). B. Aus dem wasserfreien Tetrakaliumsalz in absol. Benzol beim Durchleiten von trockenem Chlorwasserstoff (Philippi, Seka, M. 45, 278). Entsteht in geringer Menge beim Behandeln einer äther. Lösung von Äthylentetracarbonsäure mit überschüssigem amalgamiertem Aluminium und verd. Alkohol oder mit Wasserstoff in Gegenwart von kolloidalem Palladium (Ph., S.). Durch katalytische Hydrierung von Äthylentetracarbonsäure in Aceton in Gegenwart von palladinierter Kohle (Mannich, Ganz, B. 55, 3509). — Krystalle (aus Aceton). F: 167—169° (Zers.) (M., G.). — Liefert beim Erwärmen mit Acetanhydrid auf 70—75° (Ph., Hanusch, B. 53, 1300), beim Kochen mit Acetylchlorid in Äther oder beim Behandeln mit äther. Oxalylchlorid-Lösung (Staudinger, Kreis, Helv. 6,

324) das Dianhydrid O CO·CH·CO O; ebenso reagiert das Silbersalz mit Oxalylchlorid (Sr., K.). Einw. von Methylamin und Formaldehyd in konzentrierter wäßriger Lösung: M., G., B. 55, 3491. — Das Natriumsalz hemmt die Blutgerinnung (Lumnkr., C. r. 180, 867). — Na₄C₆H₂O₈ + 3 H₂O. Krystalle. Gibt das Krystallwasser im Vakuum bei 110° ab (Pr., S.). — K₄C₆H₂O₈ + 2 H₂O. Krystalle. Gibt das Krystallwasser im Vakuum bei 120° ab (Pr., S.).

Tetramethylester C₁₀H₁₄O₆ = (CH₂·O₂C)₂CH·CH(CO₂·CH₃)₂ (H 858; E I 331). B. Neben anderen Produkten bei der Umsetzung von Mesodibrombernsteinsäure-dimethylester mit 2 Mol Natriummalonsäuredimethylester in absol. Methanol (Ing., Perkin, Soc. 125, 1816, 1823). — Krystalle (aus Benzol). F: 138⁶ (I., P.). — Dikaliumverbindung. Entsteht aus dem Ester durch Behandeln mit Kaliumalkoholat (Bachér, J. pr. [2] 130, 307).

Tetraäthylester C₁₄H₂₂O₂ = (C₂H₃·O₂C)₂CH·CH(CO₂·C₂H₃)₂ (H 858; E I 331). B. Aus Athylentetracarbonsäure-tetraäthylester bei der Reduktion mit überschüssigem amalgamiertem Aluminium in verd. Alkohol bei 50—80° oder mit Wasserstoff in Gegenwart von kolloidalem Palladium (Philipper, Seka, M. 45, 277). Durch Einw. von wasserfreiem Kaliumacetat auf α-Brom-α.γ-dicarboxy-glutaconsäure-tetraäthylester in siedendem absolutem Alkohol, neben anderen Produkten (Pirsoh, B. 61, 36). Neben anderen Verbindungen aus Natriummalonsäurediäthylester beim Kochen mit Dischwefeldichlorid in Benzol (Naik, Soc. 119, 1239); bei der Einw. von Tetrabromkohlenstoff oder Chlotpikrin in Alkohol (Ingold, Powell, Soc. 119, 1230); von Bromaceton in Äther (Gaulet, Salomon, C. v. 174, 755; A. ch. [10] 2, 141, 149); von Bromcyan oder Jodeyan in Alkohol oder Ather (Mignonac, Rambeck, C. v. 168, 1300); von Dibromcyanacetamid in Alkohol (Gupta, Thorpe, Soc. 121, 1901); bei der Umsetzung mit 1-Brom-propen-(1)-tricarbonsäure-(1.2.3)-triäthylester in Alkohol (Ingold,

OLIVER, THORPE, Soc. 125, 2132, 2136); beim Kochen mit 1.3-Dibrom-propan-tetracarbonsäure-(1.1.3.3)-tetraäthylester oder 1.4-Dibrom-butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester in Alkohol (Lennon, Perkin Jr., Soc. 1928, 1522); bei der Kondensation mit α-Bromoder α-Chlor-acetessigester in Alkohol oder Ather unter Kühlung (GAU., KLEES, C. r. 179, 601; Bl. [4] 39,886, 890); beim Kochen mit $\alpha.\beta$ -Dibrom-hydrozimtsäure-äthylester oder $\alpha.\beta$ -Dibromzimtsäure-äthylester in Alkohol (HAERDI, THORPE, Soc. 127, 1246, 1247); beim Kochen mit 1.2-Dibrom-eyelohexan in Alkohol (COFFEY, R. 42, 399). Bei der Kondensation von Brommalonsäure-diäthylester mit der Natriumverbindung des Acetessigesters oder des α-Methylacetessigesters in Alkohol oder Ather unter Kühlung, neben anderen Produkten (GAU., K., C. r. 179, 601; Bl. [4] 39, 1001, 1008). — Krystalle (aus Alkohol + Petroläther). F: 76° (GU., Th.). Kp₁₁: 200—215° (PIRSCH). Leicht löslich in den gebräuchlichen organischen Lösungsmitteln außer in Petroläther (C.). — Gibt beim Kochen mit Bis-chlormethyl-sulfid und Natrium in absol. Alkohol den Tetraäthylester der Tetrahydrothiophen-tetracarbonsäure-(3.3.4.4) (Syst. Nr. 2612) (MANN, POPE, Soc. 128, 1175). Liefert beim Kochen mit Dibrommalonsäure-diäthylester in Natriumäthylatlösung Äthylentetracarbonsäure-tetraäthylester (Lennon, Perkin jr., Soc. 1928, 1521). Liefert beim Erhitzen mit 1.3-Dibrom-propantetracarbonsäure-(1.1.3.3)-tetraäthylester in Natriumäthylat-Lösung Äthylentetracarbonsäure-tetraäthylester und Cyclopropan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (L., P.). Analog erhält man mit 1.4-Dibrom-butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester Äthylentetracarbonsaure - tetraathylester und Cyclobutan - tetracarbonsaure - (1.1.2.2) - tetraathylester (L., P.). Die Dikaliumverbindung liefert beim Aufbewahren mit Benzoylchlorid in Toluol 1.2-Dibenzoyl-äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (BACHÉR, J. pr. [2] 120, 336). Dikalium verbindung. B. Entsteht aus dem Ester in Toluol beim Behandeln mit möglichst fein zerstäubtem Kalium (BACHÉR). — 2 C₁₄H₂₂O₈ + 2 SnCl₄. Krystallines Pulver. F: 124° (Zers.) (Hieber, A. 444, 254). — 2 C₁₄H₂₂O₈ + 3 SnCl₄. Hygroskopisches Pulver. F: 124° (Zers.) (H.) — 2 C₁₄H₂₂O₈ + 4 SnCl₄. Feinkrystallines Pulver (H.).

Tetraamid $C_9H_{10}O_4N_4=(H_2N\cdot CO)_2CH\cdot CH(CO\cdot NH_9)_2$ (H 859). Zur Bildung nach Bischoff, Rach (B. 17, 2788) vgl. Philippi, Handsch, v. Wacek, B. 54, 898. — Unlöslich in allen organischen Lösungsmitteln, schwer löslich in siedendem Wasser. — Neigt zur Ammoniakabspaltung. Gibt beim Aufbewahren über Schwefelsäure 2.5-Dioxo-pyrrolidindicarbonsäure-(3.4)-diamid.

Tetrahydraxid $C_8H_{14}O_4N_8=(H_2N\cdot NH\cdot CO)_2CH\cdot CH(CO\cdot NH\cdot NH_2)_3$ (E I 332). Krystallinisch. F: 210° (Zers.). Der Schmelzpunkt variiert etwas je nach Art des Erhitzens (Coffey, R. 42, 400). — Sehr schwer löslich in allen organischen Lösungsmitteln. — Wird in wäßr. Lösung hydrolytisch gespalten. Wird aus der Lösung in kalter Natriumcarbonat-Lösung durch Säuren nicht gefällt.

1.2 - Dinitro - äthan - tetracarbonsäure - (1.1.2.2) - tetraäthylester $C_{14}H_{20}O_{12}N_3=(C_2H_5\cdot O_2C)_2C(NO_2)\cdot C(NO_2)(CO_2\cdot C_2H_5)_3$ (H 859). Krystalle (aus Petroläther). F: 74—75° (Allsop, Kenner, Soc. 123, 2315). — Wird bei 2-stdg. Kochen mit alkoh. Kalilauge oder beim Behandeln mit Kaliumcyanid-Lösung kaum verändert (A., K.). Verhalten gegen Hydrazinhydrat in Kalilauge bei 80°: A., K.

3. Tetracarbonsāuren $C_7H_8O_8$.

1. Propan - tetracarbonsäure - (1.1.2.3), α - Carboxy - tricarballylsäure $C_7H_8O_8 = HO_2C \cdot CH_2 \cdot CH(CO_2H) \cdot CH(CO_2H)_8$.

Tetramethylester (?) $C_{11}H_{16}O_8 = CH_3 \cdot O_2C \cdot CH_2 \cdot CH(CO_2 \cdot CH_3) \cdot CH(CO_2 \cdot CH_3)_2$ (?). B. Neben anderen Produkten bei der Umsetzung von Mesodibrombernsteinsäuredimethylester mit 2 Mol Natriummalonsäuredimethylester in absol. Methanol (Ing. Perkin, Soc. 125, 1823). — Öl. Kp₀: 175—178°. — Liefert beim Kochen mit Salzsäure und nachfolgenden Erhitzen Tricarballylsäure.

- 1-Cyan-propan-tricarbonsäure-(1.2.3)-diäthylester-(2.8), α -Cyan-tricarballylsäure- β . α' -diäthylester $C_{11}H_{18}O_8N=C_2H_5\cdot O_2C\cdot CH_2\cdot CH(CO_2\cdot C_2H_3)\cdot CH(CN)\cdot CO_2H$. B. Beim Kochen von Fumarsäurediäthylester und Cyanessigester mit Natriumäthylat-Lösung (MITTER, Roy, J. indian chem. Soc. 5, 42, 48; C. 1928 I, 2395). Liefert beim Erhitzen 1-Cyan-propan-dicarbonsäure-(2.3)-diäthylester.
- 1-Cyan-propan-tricarbonsäure-(1.2.3) -triäthylester, α -Cyan-tricarballylsäure-triäthylester $C_{1g}H_{19}O_gN=C_gH_5$. $O_gC\cdot CH_g\cdot CH(CO_g\cdot C_gH_g)\cdot CH(CN)\cdot CO_g\cdot C_gH_g$. B. Als Hauptprodukt bei der Umsetzung von Mesodibrombernsteinsäurediäthylester mit der Natriumverbindung des Cyanessigsäureäthylesters in absol. Alkohol (Ing. Perkin, Soc. 125, 1826). Aus Fumarsäurediäthylester und Cyanessigester durch Erhitzen mit Natriumäthylat-Lösung (Mitter, Roy, J. indian chem. Soc. 5, 42, 48; C. 1928 I, 2395). Neben 3-Cyan-propan-dicarbonsäure-(1.2)-diäthylester bei 36-stdg. Erhitzen von Apfelsäurediäthylester mit Natriumi

cyanessigsäure-äthylester in Alkohol auf dem Dampfbad und Zersetzen des Reaktionsprodukts mit verd. Salzsäure (Ingold, Soc. 119, 336, 340). — Ol. Kp₁₈: 210—215° (Ing. P.); Kp₁₄: 190—192° (Ingold); Kp₇: 167° (M., R.). — Liefert beim Kochen mit Salzsäure (Ing. P.; M., R.) oder Schwefelsäure (Ingold) Tricarballylsäure. Die Natriumverbindung gibt beim Behandeln mit β -Jod- oder β -Chlor-propionsäure-åthylester in Alkohol 3-Cyan-pentan-tetracarbonsäure-(1.2.3.5)-tetraäthylester (Küster, H. 130, 20).

2. Propan - tetracarbonsäure - (1.1.3.3), $\alpha.\alpha'$ - Dicarboxy - glutarsäure, Methylendimalonsäure $C_7H_8O_8=(HO_2C)_2CH\cdot CH_2\cdot CH(CO_2H)_2$ (H 860). Einw. von Methylamin und Formaldehyd in konzentrierter wäßriger Lösung: Mannich, Ganz, B. 55, 3491.

Tetraäthylester $C_{15}H_{24}O_8 = (C_2H_5 \cdot O_2C)_2CH \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5)_2$ (H 860; E I 332). B. Bei der Umsetzung von ...a. Dichlor-dimethyläther mit Malonester in Gegenwart von Natriumäthylat-Lösung unterhalb 50° (Dox, Yoder, Am. Soc. 44, 649). Neben Isopropylidenmalonsäure-diäthylester in geringer Menge beim Kochen von Isopropylidendimalonsäure-tetraäthylester mit Methylenjodid in Natriumäthylat-Lösung (Clemo, Welch, Soc. 1928, 2625). Bei 5-stdg, Kochen von 1.3-Dibrom-propan-tetracarbonsäure-(1.1.3.3)-tetraäthylester mit Phenol (Lennon, Perkin, Soc. 1928, 1524). — Kp₁₄: 195—197° (L., P.); Kp₁₁: 194—195° (Short, Soc. 1927, 961); Kp₆: 185—190° (D., Y.); Kp₃: 150—158° (Böeseken, Peek, R. 44. 843). — Liefert bei längerem Kochen mit Salzsäure Propan-tricarbonsäure (1.1.3) (L., P.). Liefert beim Verseifen und nachfolgenden Erhitzen auf 200° Glutarsäure (D., Y.). Beim Kochen mit Isobutylendibromid in Gegenwart von Natriumpulver in Toluol entsteht in geringer Menge ein Ester, der beim Verseifen und anschließenden Erhitzen auf 220-230° ein Gemisch von cis- und trans-1.1-Dimethyl-cyclopentan-dicarbonsäure-(2.4) liefert (SH.).

Tetranitril, Methylendimalonitril, 1.1.3.3-Tetracyan-propan $C_7H_4N_4 = (NC)_2CH$ Tetrantrii, Tetrapiendimaionitrii, 1.1.3.3-Tetracyan-propan C,H₂N₄ = (NC)₂CH·CH₂·CH(CN)₂. B. Aus Malonitrii, 40%iger Formaldehyd-Lösung und wenig Piperidin in Alkohol bei 0° (Diels, Gärtner, Kaack, B. 55, 3445; D., Conn, B. 56, 2078 Anm. 5). — Prismen (aus Acetonitrii + Benzol). Sintert bei 136—137° und schmilzt bei 160—180° zu einer gelben Flüssigkeit (D., C.). — Sehr leicht löslich in kaltem Acetonitrii, Eisessig und Essigester, löslich in Alkohol, Benzol und Äther, fast unlöslich in kaltem Wasser. Löst sich leicht in kalter Soda-Lösung (D., C.). — Liefert bei kurzem Erhitzen mit Wasser eine Erwetzling in kalter Soda-Lösung (D., C.). krystalline, in kalter Soda-Lösung sehr leicht lösliche Verbindung, die sich bei 130° dunkel färbt und bei 192—195° schmilzt; beim weiteren Erhitzen mit Wasser entsteht eine in Blättchen krystallisierende Verbindung, die sich bei 200° verfärbt, bei 231—233° schmilzt und sich erst beim Erwärmen in Soda-Lösung unter Abspaltung von Ammoniak löst (D., G., K.; D., C.). Bei längerem Kochen mit Wasser über freier Flamme bildet sich Pentan-hexacarbonsäure-(1.1.3.3.5.5)-hexanitril; beim Erwärmen mit Wasser auf dem Wasserbad entsteht ein Krystallpulver, das beim Behandeln mit heißer Ameisensäure oder verd. Salzsäure in die Verbindung $H_2C \xrightarrow{CH(CO \cdot NH_2)} C = C \xrightarrow{CH(CO \cdot NH_2)} CO$ übergeht, ferner ein gelber Niederschlag, der beim Kochen mit 90% iger Ameisensäure die Verbindung $H_2N \cdot CO \cdot HC \subset CH_2 \cdot C(CN) \cdot CH_2

(D., C.).

- 1.3 Dibrom propan tetracarbonsäure (1.1.3.3) tetraäthylester, α.α' Dibrom α.α' - dicarboxy - glutarsäure - tetraäthylester $C_{15}H_{23}O_8Br_2 = (C_2H_5 \cdot O_2C)_2CBr \cdot CH_2 \cdot CBr(CO_3 \cdot C_2H_5)_2$ (H 861). F: 55° (Lennon, Perkin, Soc. 1928, 1521). — Liefert beim Kochen mit Natriummalonester in Alkohol Cyclopropan-tetracarbonsaure-(1.1.2.2)-tetraathylester und Athan-tetracarbonsäure-(1.1.2.2)-tetraathylester. Beim Erhitzen mit Athan-tetracarbonsäure-(1.1.2.2)-tetraäthylester in Natriumäthylat-Lösung erhält man Äthylentetracarbonsäuretetraäthylester und Cyclopropan-tetracarbonsäure-(1.1.2.2)-tetraäthylester. Wirkt zuweilen bromierend und liefert z. B. bei 5-stdg. Kochen mit Phenol Bromphenol und Propan-tetra-carbonsäure-(1.1.3.3)-tetraäthylester. Ähnlich ist die Wirkung auf β -Naphthol in Natriumäthylat-Losung; dabei erhält man jedoch neben Bromnaphthol Cyclopropan-tetracarbonsäure-(1.1.2.2)-tetraäthylester.
- 3. Propan tetracarbonsäure (1.2.2.3), β Carboxy tricarballylsäure C₇H₈O₈ = HO₂C·CH₂·C(CO₂H)₂·CH₂·CO₂H (H 861). B. Durch Oxydation von 1.5-Dioxopentan dicarbonsaure (3.3) mit Chromschwefelsaure (Perkin, Pink, Soc. 127, 194). Nadeln (aus Ather). Schmilzt bei 151° unter Zerfall in Tricarballylsäure und Kohlendioxyd.

Tetraäthylester C₁₅H₂₄O₈ = C₂H₅·O₂C·CH₂·C(CO₂·C₂H₅)₂·CH₂·CO₂·C₂H₅ (H 862; E I 333), B. Neben anderen Produkten bei der Kondensation von α-Chlor-acetessigester mit Natriummalonester in Alkohol (GAULT, KLEES, Bl. [4] 39, 892). — Gibt beim Kochen mit [GOTTFRIED] 50% iger Salzsäure Tricarballylsäure.

4. Tetracarbonsäuren C₈H₁₀O₈.

1. Butan-tetracarbonsäure-(1.1.3.4), $\alpha.\beta'$ -Dicarboxy-adipinsäure $C_9H_{10}O_9=HO_2C\cdot CH_2\cdot CH(CO_2H)\cdot CH_2\cdot CH(CO_2H)_2$.

Tetraäthylester $C_{1e}H_{2e}O_8=C_2H_5\cdot O_2C\cdot CH_2\cdot CH(CO_2\cdot C_2H_5)\cdot CH_2\cdot CH(CO_2\cdot C_2H_5)_2$ (H 862; E I 333). B. Durch Kondensation von Itaconsäurediäthylester mit Malonester in Gegenwart von Natrium in Äther (Ingold, Shoppee, Thorpe, Soc. 1926, 1486). Neben Butan-tetracarbonsäure-(1.1.2.3)-tetraäthylester und anderen Produkten bei der Kondensation von Citraconsäurediäthylester mit Natriummalonester in siedendem Benzol (I., Sh., Th.). — Kp₁₀: 198° bis 199° (I., Sh., Th.). — Liefert beim Erhitzen mit Citraconsäure-diäthylester in Gegenwart von Natriumäthylat-Lösung 1-[β . γ -Dicarbäthoxy-propyl]-cyclopentanon-(2)-tricarbonsäure-(1.3.4)-triäthylester (Syst. Nr. 1393) (I., Sh., Soc. 1926, 1916).

- 4-Cyan butan tricarbonsäure (1.2.4) diäthylester (1.2) $C_{12}H_{17}O_4N = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CH(CN) \cdot CO_2H$. B. Beim Erhitzen von Citraconsäurediäthylester und Cyanessigester mit Natriumäthylat in Alkohol auf dem Wasserbad, neben dem Triäthylester (s. u.) (Mrtter, Rox, J. indian chem. Soc. 5, 47; C. 1928 I, 2395). Wurde nicht rein erhalten. Viscoses Öl. Liefert beim Erhitzen unter Atmosphärendruck 4-Cyan-butan-dicarbonsäure-(1.2)-diäthylester.
- 4-Cyan-butan-tricarbonsäure-(1.2.4)-triäthylester $C_{14}H_{21}O_6N=C_2H_5\cdot O_2C\cdot CH_2\cdot CH(CO_2\cdot C_2H_5)\cdot CH_2\cdot CH(CN)\cdot CO_2\cdot C_2H_5$. Bildung s. beim Diäthylester. Kp₅: 170° (MITTER, ROY, *J. indian chem. Soc.* 5, 47; *C.* 1928 I, 2395). Liefert beim Erhitzen mit Salzsäure auf dem Wasserbad Butan-tricarbonsäure-(1.2.4).
- 2. Butan-tetracarbonsäure-(1.1.4.4), Äthylendimalonsäure, $\alpha.\alpha'$ -Dicarboxy-adipinsäure $C_8H_{10}O_8=(HO_2C)_2CH\cdot CH_1\cdot CH_2\cdot CH(CO_2H)_3$.
- Tetraäthylester $C_{16}H_{26}O_8=(C_2H_5\cdot O_3C)_3CH\cdot CH_2\cdot CH_3\cdot CH(CO_2\cdot C_2H_5)_3$ (H 862; E I 333). B. Durch Reduktion von Buten-(1)-tetracarbonsäure-(1.1.4.4)-tetraäthylester oder von Butadien-(1.3)-tetracarbonsäure-(1.1.4.4)-tetraäthylester mit Zinkstaub und siedendem Eisessig (Benary, Schinkoff, B. 56, 358). Kp_{14} : 211—215° (Lennon, Perkin, Soc. 1928, 1521). Gibt bei längerem Kochen mit Salzsäure Adipinsäure (L., P., Soc. 1928, 1524). Liefert beim Kochen mit 1.4-Dibrom-butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester in Natriumäthylat-Lösung Cyclobutan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (Syst. Nr. 1022) (L., P.).
- E I 333, Z. 23 v. u. statt "dessen Hydrolyse" lies "der bei Hydrolyse und nachfolgendem Erhitzen auf 190° ".
- 1.4 Dibrom butan tetracarbonsäure (1.1.4.4) tetraäthylester $C_{16}H_{34}O_8Br_2=(C_2H_5\cdot O_2C)_2CBr\cdot CH_2\cdot CBr(CO_2\cdot C_2H_5)_2$ (H 862). F: 83—85°) Lennon, Perkin, Soc. 1928, 1521). Liefert beim Kochen mit Phenol Bromphenol und Butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester (L., P., Soc. 1928, 1519, 1524). Gibt beim Kochen mit Natriummalonester in Alkohol Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester und Cyclobutan-tetracarbonsäure-(1.1.2.2)-tetraäthylester in Natriumäthylat-Lösung entstehen Äthylen-tetracarbonsäure-(1.1.2.2)-tetraäthylester in Natriumäthylat-Lösung entstehen Äthylen-tetracarbonsäure-tetraäthylester und Cyclobutan-tetracarbonsäure-(1.1.2.2)-tetraäthylester. Mit Butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester erhält man ausschließlich die letztgenannte Verbindung.
- 1.2.4 Tribrom butan tetracarbonsäure (1.1.4.4) tetraäthylester $C_{16}H_{23}O_8Br_3 = (C_2H_5\cdot O_2C)_2CBr\cdot CH_2\cdot CHBr\cdot CBr(CO_2\cdot C_2H_5)_2\cdot B$. Aus Buten (1) tetracarbonsäure (1.1.4.4) tetraäthylester und Brom in Chloroform unter Kühlung (Benary, Schinkopf, B. 56, 359). Krystalle (aus Alkohol). F: 61—63°. Unlöslich in Wasser, schwer löslich in Petroläther, ziemlich schwer löslich in Alkohol und Äther. Beständig gegen wäßr. Alkalien; durch alkoh. Kalilauge wird Bromwasserstoff abgespalten. Liefert beim Erhitzen für sich unter 13 mm Druck auf 120—150° oder beim Erwärmen mit Pyridin auf dem Wasserbad und nachfolgenden Behandeln mit Eiswasser Butadien (1.3) tetracarbonsäure (1.1.4.4) tetraäthylester. Mit alkoh. Ammoniak entsteht eine tiefblaue Färbung.
- 3. Butan-tetracarbonsaure-(1.2.3.4), β.β'-Dicarboxy-adipinsaure C₈H₁₀O₈ = HO₂C·CH₂·CH(CO₂H)·CH(CO₂H)·CH₂·CO₂H. Niedrigerschmelzende Form (H 863; E I 333). B. Aus 1-Cyan-butan-tetracarbonsäure-(1.2.3.4)-tetraäthylester bei aufeinanderfolgender Einw. von kalter konzentrierter Schwefelsäure, siedender verdünnter Schwefelsäure und siedender konzentrierter Salzsäure (Ingold, Soc. 119, 348). Bei der Oxydation von eis-d'-Tetrahydrophthalsäure mit Kaliumpermanganat in verd. Soda-Lösung unter Eiskühlung (Dimes, Alder, B. 62, 2090; Farmer, Warren, Soc. 1929, 903). Nadeln. F: 188—189° (D., A.; F., W.).

Tetraäthylester $C_{16}H_{26}O_8 = C_2H_5 \cdot O_3C \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5) \cdot CH(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (H 864). B. Aus der Säure durch Einw. von Alkohol und Schwefelsäure (Ingold, Soc. 119, 348). — Kp_{12} : 201°.

4. Athan-dicarbonsaure-(1.1)-diessigsaure-(2.2), β -Dicarboxymethyl-glutarsaure (Isobutantetracarbonsaure) $C_8H_{10}O_8=(HO_2C)_2CH\cdot CH(CH_1\cdot CO_2H)_2$.

Tetraäthylester $C_{16}H_{26}O_8 = (C_2H_5 \cdot O_3C)_2CH \cdot CH(CH_3 \cdot CO_2 \cdot C_2H_5)_2$. B. Beim Behandeln von β -Oxy-glutarsäure-diäthylester mit Phosphorpentachlorid in trockenem Ather und Erhitzen des (nicht näher beschriebenen) β -Chlor-glutarsäure-diäthylesters mit Malonsäure-diäthylester in Natriumäthylat-Lösung auf dem Wasserbad (Dreifuss, Ingold, Soc. 123, 2966). — Kp₁₂: 200—205°. — Liefert beim Erhitzen mit Schwefelsäure unter Kohlendioxyd-Entwicklung Methantriessigsäure.

- β -[Carbomethoxy-cyan-methyl]-glutarsäure-dimethylester (Cyanisobutantricarbonsäuretrimethylester, α -Cyan-methantriessigsäure-trimethylester) $C_{11}H_{15}O_{\bullet}N=CH_{3}\cdot O_{\bullet}C\cdot CH(CN)\cdot CH(CH_{2}\cdot CO_{2}\cdot CH_{3})_{3}.$ B. Beim Kochen von Glutaconsäuredimethylester mit Cyanessigsäuremethylester in Natriummethylat-Lösung (Kohler, Reid, Am. Soc. 47, 2808). Kp_1: 203—205°; Kp_4: 185°; Kp_3: 172°. Liefert beim Erhitzen mit Salzsäure auf dem Wasserbad Methantriessigsäure.
- β-[Carbäthoxy-cyan-methyl]-glutarsäure-diäthylester (Cyanisobutan-tricarbonsäure-triäthylester, α-Cyan-methantriessigsäure-triäthylester) $C_{14}H_{21}O_6N=C_2H_5\cdot O_4C\cdot CH(CN)\cdot CH(CH_2\cdot CO_3\cdot C_2H_5)_2$ (E I 333). Bei 36-stdg. Erhitzen von α-Oxy-glutarsäure-diäthylester mit Natriumcyanessigester in siedendem Alkohol und Zersetzen des Reaktionsprodukts mit verd. Salzsäure sowie durch Veresterung eines bei dieser Reaktion erhaltenen sauren Nebenprodukts (Ingold), Soc. 119, 336, 340). Entsteht analog aus β-Oxy-glutarsäure-diäthylester und Natriumcyanessigester (I., Soc. 119, 352; I., Thorpe, Soc. 119, 499). Kp₁₃: 203—204° (I.; I., Th.). Liefert bei der Behandlung mit Schwefelsäure Methantriessigsäure (I.). Beim Kochen mit Methyljodid und Natriumäthylat-Lösung entsteht 3-Cyan-butan-dicarbonsäure-(1.3)-essigsäure-(2)-triäthylester (I., Perren, Soc. 119, 1600). Gibt beim Erhitzen mit Jodessigsäure-äthylester in Natriumäthylat-Lösung auf dem Wasserbad 2-Cyan-butan-tricarbonsäure-(1.2.4)-essigsäure-(3)-tetraäthylester (I., Nickolls, Soc. 121, 1647).
- 5. Methancarbonsäuretriessigsäure, Carboxymethantriessigsäure, β-Carboxy-β-carboxymethyl-glutarsäure C₈H₁₀O₈ = HO₂C·C(CH₂·CO₂H)₃. B. Aus Cyclopentan-diessigsäure-(1.1) und Cyclohexan-diessigsäure-(1.1) bei der Oxydation mit heißer Kaliumpermanganat-Lösung (INGOLD, POWELL, Soc. 119, 1869, 1871). Nadeln mit 1 H₂O (aus Wasser); F: 181⁰ (Zers.); gibt das Krystallwasser an trockener Luft teilweise, bei 2-stdg. Erhitzen auf 120⁰ vollständig ab. Krystalle (aus Aceton + Chloroform); F: 208—210⁰ (Zers.). Sehr leicht löslich in Wasser. Liefert beim Kochen mit überschüssigem Acetanhydrid das Dianhydrid CO·CH₂·CO (Syst. Nr. 2797). Ba₂C₈H₆O₈ + 3 H₂O (bei 95°). Krystalle. Sehr schwer löslich in Wasser. 2 Mol Krystallwasser werden bei 160°, das letzte bei 220° abgegeben.

Tetraäthylester $C_{16}H_{26}O_8 = C_2H_5 \cdot O_3C \cdot C(CH_2 \cdot CO_2 \cdot C_2H_5)_3$. B. Beim Erhitzen von Carboxymethantriessigsäure mit Alkohol und konz. Schwefelsäure auf 120° (Ingold, Powell, Soc. 119, 1873). — Kp_{15} : 208°.

- 6. 2 Methyl propan tetracarbonsäure (1.1.2.3), β Methyl α carboxy-tricarballylsäure $C_1H_{10}O_8=HO_1C\cdot CH_1\cdot C(CH_3)(CO_2H)\cdot CH(CO_2H)_2$.
- 2-Methyl-1-cyan-propan-tricarbonsäure-(1.2.3)-triäthylester, β -Methyl- α -cyan-tricarballylsäure-triäthylester $C_{14}H_{21}O_{2}N=C_{2}H_{5}\cdot O_{2}C\cdot CH_{2}\cdot C(CH_{3})(CO_{2}\cdot C_{2}H_{5})\cdot CH(CN)\cdot CO_{2}\cdot C_{2}H_{5}$ (H 865). B. Beim Erhitzen von Citraconsäurediäthylester mit Cyanessigester in Gegenwart von Natrium in Benzol auf dem Wasserbad (MITTER, ROY, J. indian chem. Soc. 5, 47; C. 1928 I, 2395). Kp₆: 190°. Liefert bei der Verseifung mit Salzsäure auf dem Wasserbad β -Methyl-tricarballylsäure.
- β-Methyl-α.β-dicyan glutarsäure diäthylester $C_{12}H_{16}O_4N_2=C_2H_5 \cdot O_2C \cdot CH_2 \cdot C(CH_2)(CN) \cdot CH(CN) \cdot CO_2 \cdot C_2H_5$ (E I 333). B. Beim Behandeln von 1 Mol β-Methyl-α-cyanglutaconsäure-diäthylester mit 2 Mol Kaliumcyanid in verd. Alkohol oder Wasser und 1,5 Mol verd. Salzsäure unter Eiskühlung (Hope, Sheldon, Soc. 121, 2226, 2228). Bei allmählichem Versetzen von Acetessigester-cyanhydrin mit Natriumcyanessigester in Alkohol unter Kühlung und Behandeln des Reaktionsprodukts mit verd. Salzsäure (H., Sh.). Viscoses Öl. Kp₁₉: 197—200°. Unlöslich in Wasser. Sehr leicht löslich in 10% iger Kaliumcarbonat-Lösung, ziemlich schwer in 10% iger Soda-Lösung mit gelber Farbe. Wird aus den Carbonat-Lösungen

beim Ansäuern unverändert gefällt. Leicht löslich in 10 % igen Alkalilaugen unter Hydrolyse. — Liefert bei längerer Einw. von konz. Ammoniak β -Amino-crotonsäure-äthylester und ein Produkt, das beim Kochen mit Alkalilauge 2.6-Dioxy-4-methyl-3-cyan-pyridin (Syst. Nr. 3349) gibt. Beim Kochen mit konz. Salzsäure und folgenden Eindampfen oder beim Erhitzen mit 70 % iger Schwefelsäure auf ca. 140° entsteht β -Methyl-tricarballylsäure. Beim Erhitzen mit Methyljodid und Natriumäthylat-Lösung auf dem Wasserbad erhält man 2-Methyl-2.3-dicyan-butan-dicarbonsäure-(1.3)-diäthylester.

7. Butan-tetracarbons dure -(1.1.2.3), a-Methyl-a'-carboxy-tricarballyl-saure $C_3H_{10}O_8=HO_3C\cdot CH(CH_3)\cdot CH(CO_2H)\cdot CH(CO_2H)_1$.

Tetraäthylester $C_{16}H_{26}O_8=C_2H_5\cdot C_3C\cdot CH(CH_3)\cdot CH(CO_2\cdot C_2H_5)\cdot CH(CO_2\cdot C_2H_5)_2$ (E I 334; ist H 864 als β-Methyl-α-carboxy-tricarballylsäure-tetraäthylester beschrieben; vgl. Hope, Soc. 101 [1912], 893). B. Durch Kondensation von ltaconsäurediäthylester mit Malonester in Gegenwart von Natrium in Alkohol bei 15° oder 80°, neben anderen Produkten (Ingold, Shoppee, Thorpe, Soc. 1926, 1484, 1486). Zur Bildung aus Citraconsäurediäthylester und Natriummalonester nach Hope (Soc. 101, 900) vgl. I., Sh., Th. — Kp₁₁: 189—190° (I., Sh., Th.). — Liefert beim Erhitzen mit Citraconsäure-diäthylester in Gegenwart von Natrium-āthylat-Lösung 1-[α,β- Dicarbāthoxy-propyl]-cyclopentanon-(2)-tricarbonsäure-(1.3.4)-tri-āthylester (Syst. Nr. 1393) (I., Sh., Soc. 1926, 1916).

Tetraamid $C_8H_{14}O_4N_4 = H_2N \cdot OC \cdot CH(CH_3) \cdot CH(CO \cdot NH_3) \cdot CH(CO \cdot NH_3)_2$ (ist H 865 als β-Methyl-α-carboxy-tricarballylsäure-tetraamid beschrieben; vgl. Hope, Soc. 101 [1912], 893). B. Durch Einw. von wäßr. Ammoniak auf Butan-tetracarbonsäure-(1.1.2.3)-tetraäthylester (Ingold, Shoppee, Soc. 1926, 1917). — Krystalle (aus Wasser). F: 267° (Zers.).

8. 2-Methyl-propan-tetracarbonsäure-(1.1.3.3), β -Methyl-a.a'-dicarboxy-glutarsäure, Äthylidendimalonsäure $C_8H_{10}O_8=(HO_2C)_2CH\cdot CH(CH_3)\cdot CH(CO_2H)_2$.

Tetraëthylester, Äthylidendimalonester $C_{18}H_{26}O_8 = (C_2H_5 \cdot O_2C)_2CH \cdot CH(CH_8) \cdot CH(CO_2 \cdot C_2H_5)_3$ (H 865; E I 334). Zur Bildung aus Natriummalonester und Äthylidenmalonester nach Kötz, Stalmann (*J. pr.* [2] 68, 157) vgl. Goss, Ingold, Thorpe, Soc. 123, 3354. — Kp₃₀: 200—210°; Kp₁: 170—175° (Ray, Am. Soc. 50, 561).

- β-Methyl-α.α'-dicarbāthoxy-glutarsāure-diamid $C_{12}H_{20}O_5N_2 = C_2H_5 \cdot O_2C \cdot CH(CO \cdot NH_2) \cdot CH(CH_3) \cdot CH(CO \cdot NH_2) \cdot CO_2 \cdot C_2H_5$. B. Beim Behandeln von Malonsäure-āthylesteramid mit Acetaldehyd in Gegenwart von wenig Kalilauge unter Kühlung-oder in Gegenwart von wenig Diāthylamin (GUPTA, Soc. 119, 303, 304). Aus Athylidenmalonsäure-āthylesteramid und Malonsäure-āthylester-amid in Gegenwart von wenig Alkohol oder Wasser (G.). Krystalle (aus Alkohol). F: 177,5°. Liefert beim Erwärmen mit Salzsäure β-Methyl-glutar-säure
- β-Methyl-α.α'-dicyan-glutarsäure-diamid, Äthyliden-bis-[cyanessigsäure-amid] $C_8H_{10}O_9N_4=H_2N\cdot CO\cdot CH(CN)\cdot CH(CH_9)\cdot CH(CN)\cdot CO\cdot NH_2$. B. Aus Cyanacetamid und Acetaldehyd unter Zusatz von wenig Kalilauge, neben anderen Produkten (Day, Thorpf, Soc. 117, 1469). Krystalle. F: 161°. Gibt beim Erwärmen mit Salzsäure β-Methyl-glutarsäure

Äthylidendimalonsäure - tetranitril, Äthylidendimalonitril $C_8H_6N_4=CH_5$ · $CH[CH(CN)_2]_2$. B. Aus Malonitril und Acetaldehyd in Alkohol in Gegenwart von wenig Piperidin bei 0° (DIELS, GÄRTNER, KAACK, B. 55, 3445). — Krystalle (aus Benzol + Acetonitril). F: 113—114°. Leicht löslich in kaltem Alkohol, Acetonitril und Eisessig, sehr schwer löslich in Benzol. — Zersetzt sich beim Erwärmen mit Wasser unter Abspaltung von Acetaldehyd.

5. Tetracarbonsäuren $C_9H_{12}O_8$.

1. Pentan - tetracarbonsäure - (1.1.5.5), a.a' - Dicarboxy - pimelinsäure $C_0H_{18}O_8 = (HO_2C)_1CH \cdot [CH_2]_2 \cdot CH(CO_2H)_2$.

Tetraäthylester $C_{17}H_{26}O_8 = (C_2H_5 \cdot O_2C)_2CH \cdot [CH_2]_2 \cdot CH(CO_2 \cdot C_2H_5)_2$ (H 866; E I 334). Liefert beim Erwärmen mit Natriumäthylat-Lösung auf dem Wasserbad Cyclohexanon-(2)-dicarbonsäure-(1.3)-diäthylester (Uschakow, \mathcal{H} . 61, 797; C. 1931 II, 231).

2. Pentan - tetracarbonsäure - (1.2.3.5), $\beta.\gamma$ - Dicarboxy - pimelinsäure, "Hämotetracarbonsäure" $C_9H_{12}O_9=HO_9C\cdot CH_2\cdot CH_2\cdot CH_1\cdot CH_1\cdot CH_2\cdot

Wasser von 20°. — Gibt beim Erhitzen mit Acetylchlorid auf dem Wasserbad ein Anhydrid $C_9H_{10}O_7$ (s. u.). — $Ag_4C_9H_8O_8$. Niederschlag. Wird beim Trocknen braun. — $Cu_2C_9H_8O_8$. Smaragdgrüner Niederschlag. — $Ba_2C_9H_8O_8+1/2H_2O$.

Anhydrid $C_9H_{10}O_7$. B. Beim Erhitzen von Pentan-tetracarbonsäure-(1.2.3.5) mit Acetylchlorid auf dem Wasserbad (Küster, H. 130, 21). — Krystalle. F: 220—221°.

- 3. Pentan tetracarbonsäure (1.3.3.5), $\gamma . \gamma$ Dicarboxy pimelinsäure $C_9H_{19}O_8 = (HO_2C)_2C(CH_2 \cdot CH_2 \cdot CO_2H)_2$.
- 3-Cyan-pentan-tricarbonsäure-(1.3.5)-triäthylester, γ -Carboxy- γ -cyan-pimelinsäure-triäthylester $C_{15}H_{25}O_6N = C_2H_5 \cdot O_2C \cdot C(CN)(CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5)_2$ (H 866). B. Durch Kondensation von Natriumcyanessigester mit β -Chlor-propionsäureäthylester (Pfeiffer, Backes, B. 61, 434; Pf., Seydel, Hansen, J. pr. [2] 123, 348).
- 4. Butan tricarbonsäure (1.1.4) essigsäure (2), Butan dicarbonsäure (1.4) malonsäure (2), β -Dicarboxymethyl-adipinsäure $C_9H_{12}O_8 = HO_2C \cdot CH_1 \cdot CH_2 \cdot CH(CH_2 \cdot CO_2H) \cdot CH(CO_2H)_2$.

Tetraäthylester $C_{17}H_{28}O_8=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot CH(CH_2\cdot CO_2\cdot C_2H_5)\cdot CH(CO_2\cdot C_2H_5)_2$. B. Beim Erhitzen von Buten-(2)-dicarbonsäure-(1.4)-diäthylester mit Natriummalonester in Alkohol auf dem Wasserbad, neben Cyclopentanon-(2)-dicarbonsäure-(1.3)-essigsäure-(4)-triäthylester (Farmer, Soc. 123, 3329). — Öl. Kp₁₅: 213°. — Liefert beim Kochen mit 25 % iger Schwefelsäure bis zur Auflösung nicht näher beschriebene Butan-dicarbonsäure-(1.4)-malonsäure-(2), die beim Erhitzen mit Wasser im Rohr auf 180° unter Kohlendioxyd-Abspaltung in Butan-dicarbonsäure-(1.4)-essigsäure-(2) übergeht. — Gibt mit Eisen(III)-chlorid keine Färbung.

- 5. Butan-tricarbonsäure-(1.2.4)-essigsäure-(2), β -Carboxy- β -carboxy-methyl-adipinsäure $C_0H_{12}O_8 = HO_2C \cdot CH_2 \cdot CH_2 \cdot C(CO_2H)(CH_2 \cdot CO_2H)_2$. B. Neben Carboxymethantriessigsäure bei der Oxydation von Cyclohexan-diessigsäure-(1.1) mit alkal. Permanganat-Lösung (Ingold, Powell, Soc. 119, 1870; vgl. I., Nickolls, Soc. 121, 1646). Wasserhaltige Krystalle (aus Wasser), Prismen (aus Chloroform + Äther). F: 120° (Zers.). Sehr leicht löslich in Wasser. Das Bariumsalz ist unlöslich.
- 6. Butan-tricarbonsäure-(1.2.4)-essigsäure-(3), β -Carboxy- β '-carboxymethyl-adipinsäure (Isopentantetracarbonsäure) $C_9H_{12}O_8=HO_2C\cdot CH_2\cdot CH(CO_9H)\cdot CH(CH_2\cdot CO_2H)_2$. B. Aus 2-Cyan-butan-tricarbonsäure-(1.2.4)-essigsäure-(3)-tetraäthylester durch aufeinanderfolgende Behandlung mit konz. Schwefelsäure bei Zimmertemperatur, siedender 47 %iger Schwefelsäure und siedender 20 %iger Salzsäure (Incold, Nickolls, Soc. 121, 1647). Nadeln (aus Aceton + Chloroform). F: 182°. Sehr leicht löslich in Wasser und Aceton, schwer in Chloroform und Benzol.
- 7. Pentan-tetracarbonsäure-(1.3.3.4), α -Methyl- β - β -dicarboxy-adipinsäure $C_0H_{12}O_8 = HO_2C \cdot CH_2 \cdot CH_2 \cdot C(CO_2H)_2 \cdot CH(CH_3) \cdot CO_2H$.

Tetraäthylester $C_{17}H_{28}O_8 = C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von 3-Cyan-pentan-tricarbonsäure-(1.3.4)-triäthylester mit Alkohol und Schwefelsäure im Rohr auf 130—135° (Küster, H. 130, 11). — Zähe Flüssigkeit. Kp₁₂: 222°. Schwer löslich in Wasser, leicht löslich in Alkohol und Äther. — Gibt beim Erhitzen mit konz. Salzsäure auf dem Wasserbad höherschmelzende und niedrigerschmelzende Pentantricarbonsäure-(1.3.4).

- 3-Cyan-pentan-tricarbonsäure-(1.3.4)-triäthylester $C_{15}H_{22}O_6N=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot C(CN)(CO_2\cdot C_2H_5)\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$ (H 867). B. Zur Bildung aus der Natriumverbindung des α-Methyl-α'-cyan-bernsteinsäure-diäthylesters und β-Jod-propionsäureäthylester nach Haworth, Perkin (Soc. 93, 581) vgl. Küster, H. 130, 3, 10. Kp₂₀: 208° (K., H. 130, 11). Gibt beim Kochen mit konz. Salzsäure auf dem Wasserbad die höherschmelzende und niedrigerschmelzende Pentan-tricarbonsäure-(1.3.4) (K., H. 130, 11). Liefert bei der Einw. von ca. 85% iger Schwefelsäure 2.5-Dioxo-4-methyl-pyrrolidin-carbonsäure-(3)-[β-propionsäure]-(3)-diäthylester (Syst. Nr. 3369) (K., H. 172, 242).
- 8. Butan-tricarbonsāure-(1.3.3) essigsāure-(2) $C_0H_{12}O_8 = (HO_2C \cdot CH_2)_2CH \cdot C(CH_3)(CO_2H)_2$.
- 3-Cyan-butan-dicarbonsäure-(1.3)-essigsäure-(2)-triäthylester $C_{15}H_{23}O_6N=(C_2H_5\cdot O_2C\cdot CH_2)_2CH\cdot C(CH_2)(CN)\cdot CO_2\cdot C_2H_5$. Beim Kochen von α -Cyan-methantriessigsäure-triäthylester mit Methyljodid und Natriumäthylat-Lösung (Ingold, Perren, Soc. 119, 1600). Viscoses Öl. Kp₁₂: 206—208°. Liefert bei Behandlung mit Schwefelsäure α -Methylmethantriessigsäure (S. 687).

- 9. Butan-tricarbonsaure-(1.1.3)-essigsaure-(2), α -Methyl- β -dicarboxy-methyl-glutarsaure $C_0H_{12}O_3=HO_2C\cdot CH(CH_2)\cdot CH(CH_2\cdot CO_2H)\cdot CH(CO_2H)_2$.
- 1-Cyan-butan-dicarbonsäure-(1.3)-essigsäure-(2)-triäthylester $C_{15}H_{22}O_6N=C_2H_5\cdot O_5C\cdot CH(CH_2\cdot CO_2\cdot C_2H_5)\cdot CH(CN)\cdot CO_3\cdot C_2H_5$. B. Bei 24-stdg. Erhitzen von (nicht rein erhaltenem) α -Methyl-glutaconsäure-diäthylester (S. 658) mit Natriumcyanessigester in Alkohol auf dem Dampfbad und Zersetzen des Reaktionsprodukts mit Salzsäure sowie durch Veresterung eines bei dieser Reaktion erhaltenen sauren Nebenprodukts (INGOLD, PERREN, Soc. 119, 1867). Öl. Kp₂₃: 218—222°. Liefert bei der Behandlung mit Schwefelsäure α -Methyl-methantriessigsäure.
- 10. 2-Åthyl-propan-tetracarbonsäure-(1.1.3.3), β -Åthyl- α . α '-dicarboxy-glutarsäure, Propylidendimalonsäure $C_9H_{12}O_8=(HO_2C)_2CH\cdot CH(C_2H_5)\cdot CH(CO_2H)_2$.
- β -Äthyl- α . α' -dicyan-glutarsäure-diamid, Propyliden-bis-[cyanessigsäure-amid] $C_0H_{12}O_2N_4=H_2N\cdot CO\cdot CH(CN)\cdot CH(C_3H_5)\cdot CH(CN)\cdot CO\cdot NH_2$. B. Beim Behandeln von Cyanacetamid mit Propionaldehyd in sehr verd. Kalilauge (Day, Thorpe, Soc. 117, 1470). Nadeln (aus Alkohol + Benzol). F: 147°. Schwer löslich in den üblichen organischen Lösungsmitteln. Liefert beim Kochen mit verd. Salzsäure β -Äthyl-glutarsäure.
- 11. Propan-dicarbonsäure-(1.1)-diessigsäure-(2.2), β -Methyl- β -dicarboxymethyl-glutarsäure, β -Methyl- α -carboxy- β -carboxymethyl-glutarsäure $C_0H_{10}O_8=(HO_2C\cdot CH_2)_2C(CH_2)\cdot CH(CO_2H)_2.$

Triäthylester-nitril, 1-Cyan-propan-carbonsäure-(1)-diessigsäure-(2.2)-triäthylester $C_{18}H_{23}O_8N=(C_2H_5\cdot O_2C\cdot CH_2)_2C(CH_2)\cdot CH(CN)\cdot CO_2\cdot C_2H_5$ (E I 335). B. Aus dem Diäthylester der höherschmelzenden β -Methyl-glutaconsäure durch Kochen mit Cyanessigsäureäthylester in Natriumäthylat-Lösung (Kohler, Reid, Am. Soc. 47, 2806, 2810). — Blaßgelbes Öl. Kp₅: 180—185°. — Liefert beim Erhitzen mit konz. Salzsäure auf dem Wasserbad [2.6-Dioxo-4-methyl-piperidyl-(4)]-essigsäure (Syst. Nr. 3367).

- 12. Methantetraessigsäure, $\beta.\beta$ -Bis-carboxymethyl-glutarsäure $C_0H_{12}O_6=C(CH_3\cdot CO_1H)_4$. B. Aus Cyanmethantetraessigsäure-tetraäthylester (S. 717) durch aufeinanderfolgende Einw. von kalter konzentrierter und von siedender cs. 47% iger Schwefelsäure (Ingold, Nickolls, Soc. 121, 1646). Krystalle (aus Wasser). Tetragonal holoedrisch (Knagos, Soc. 123, 78). Erweicht bei langsamem Erhitzen bei 2266 unter allmählicher Wasserabgabe; schmilzt bei raschem Erhitzen bei 2486 (I., N.). D_4^{ss} : 1,460 (K.). Brechungsindices der Krystalle: K. Schwer löslich in Äther, löslich in Acton und Wasser (I., N.). Bildet beim Erhitzen mit Acetylchlorid im Rohr auf 140° ein Dianhydrid $C_9H_8O_6$ (Syst. Nr. 2797) (I., N.). $Ag_4C_9H_8O_6$. Käsiger lichtbeständiger Niederschlag (I., N.). Unlöslich. Ba $_2C_9H_8O_8$. Nadeln (aus sehr verdünnter wäßriger Lösung) (I., N.). Unlöslich.
- 13. 2-Methyl-butan-tetracarbonsaure-(1.2.3.3), $\alpha.\beta$ -Dimethyl- $\alpha.\beta$ -dicarboxy-glutarsaure $C_0H_{12}O_8 = HO_2C \cdot CH_2 \cdot C(CH_2)(CO_2H) \cdot C(CH_3)(CO_2H)_2$.
- 2-Methyl-2.3-dicyan-butan-dicarbonsäure-(1.3)-diäthylester, $\alpha.\beta$ -Dimethyl- $\alpha.\beta$ -dicyan-glutarsäure-diäthylester $C_{12}H_{18}O_4N_2=C_2H_5\cdot O_2C\cdot CH_2\cdot C(CH_2)(CN)\cdot C(CH_3)(CN)\cdot CO_3\cdot C_2H_5$. B. Beim Erhitzen von β -Methyl- $\alpha.\beta$ -dicyan-glutarsäure-diäthylester mit Methyljodid und Natriumäthylat-Lösung auf dem Wasserbad (Hope, Shelloon, Soc.121, 2232). Öl. Kp₁₇: 196—197°. Liefert beim Kochen mit 60% iger Schwefelsäure und Behandeln des Reaktionsprodukts mit Methanol und Chlorwasserstoff 2.6-Dioxo-3.4-dimethyl-piperidin-carbonsäure-(4)-methylester (Syst. Nr. 3367). Gibt beim Aufbewahren mit konz. Ammoniak eine bei 265° schwelzende, in Wasser und Methanol schwer lösliche Verbindung.
- 14. Pentan-tetracarbonedure (2.2.4.4), a.a'-Dimethyla.a' dicarboxy glutaredure $C_0H_{18}O_0 = (HO_2C)_2C(CH_3) \cdot CH_2$. C(CH₃) (CO₂H)₂ (H 868). Liefert mit Diphenylketen in absol. Ather CH₃·O-CH₂ O·CH₃·O-CH₃ Pentan-tetracarbonesure (2.2.4.4)-dianhydrid (s. nebenstehende Formel) und Diphenylessigsäureanhydrid (STAUDINGER, KREIS, Helv. 6, 325).
- 15. 2-Methyl-butan-tetracarbonsdure-(1.1.2.3), $\alpha.\beta$ -Dimethyl- $\beta.\alpha'$ -dicarboxy-glutarsdure $C_aH_{10}O_a = HO_aC \cdot CH(CH_a) \cdot C(CH_a)(CO_aH) \cdot CH(CO_aH)_a$.
- 2-Methyl-1.2-dicyan butan dicarbonsäure (1.3) diäthylester, $\alpha.\beta$ -Dimethyl- $\beta.\alpha'$ dicyan glutarsäure diäthylester $C_{13}H_{16}O_4N_2 = C_3H_5\cdot O_3C\cdot CH(CH_3)\cdot C(CH_3)(CN)\cdot CH(CN)\cdot CO_3\cdot C_3H_5$. B. Beim Behandeln von 1 Mol $\beta.\gamma$ -Dimethyl- α -cyan glutaconsäure-diäthylester mit 2 Mol Kaliumcyanid in Alkohol und 1,5 Mol verd. Salzsäure unter Eiskühlung und folgenden Eingießen in Wasser (Hope, Sheldon, Soc. 121, 2229). Öl. Kp3: 200—206°. Unlöslich in 10% iger Soda-Lösung, löslich in 10% iger Kaliumcarbonst-Lösung

und in 10% igen Alkalilaugen. — Liefert beim Aufbewahren mit konz. Ammoniak β -Amino- α -methyl-crotonsäure-äthylester und eine oberhalb 320° schmelzende, in Wasser lösliche Verbindung, die beim Kochen mit Alkalien 2.6-Dioxy-4.5-dimethyl-3-cyan-pyridin (Syst. Nr. 3349) gibt. Liefert beim Kochen mit konz. Salzsäure, Einengen und Behandeln des Rückstandes mit Methanol und Chlorwasserstoff $\alpha.\beta$ -Dimethyl-tricarballylsäure-trimethylester. Beim Erwärmen mit Methyljodid und Natriumäthylat-Lösung entsteht 3-Methyl-2.3-dicyan-pentan-dicarbonsäure-(2.4)-diäthylester.

16. 2.2 - Dimethyl - propan - tetracarbonsäure - (1.1.3.3), $\beta.\beta$ -Dimethyl-a.a'-dicarboxy-glutarsäure, Isopropylidendimalonsäure $C_0H_{12}O_8$ = $(HO_1C)_2CH$ - $C(CH_2)_2$ - $CH(CO_2H)_2$.

Tetraäthylester, Isopropylidendimalonester. $C_{17}H_{26}O_8 = (C_2H_5 \cdot O_2C)_2CH \cdot C(CH_3)_3 \cdot CH(CO_3 \cdot C_2H_5)_3$ (H 868). B. Konnte aus Isopropylidenmalonester und Natriummalonester nicht in den von Kötz (J. pr. [2] 75, 498) angegebenen Ausbeuten erhalten werden (Clemo, Welch, Soc. 1928, 2622, 2625; Kerr, Am. Soc. 51, 616). — Kp₁: 155° (Cl., W.). — Die Dinatriumverbindung gibt beim Kochen mit Methylenjodid in Alkohol Isopropyliden-malonsäurediäthylester und wenig Methylendimalonsäure-tetraäthylester (Cl., W.; vgl. a. Kerr).

6. Tetracarbonsauren C₁₀H₁₄O₈.

- 1. Hexan-tetracarbonsäure-(1.2.4.6), $\beta.\gamma'$ -Dicarboxy-korksäure $C_{10}H_{14}O_8=HO_2C\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3\cdot CH_3\cdot CH_3\cdot CH_3\cdot CH_3\cdot CO_2H$ (?). B. Durch Einw. von 3% iger Kaliumpermanganat-Lösung auf 3-[$\beta.\gamma$ -Dicarboxy-propyl]-cyclopentanon-(4)-carbonsäure-(1) (Syst. Nr. 1368a) in Natriumdicarbonat-Lösung (Ingold, Shopper, Soc. 1926, 1917). F: 206—207°.
- 2. 2-Propyl-propan-tetracarbonsaure-(1.1.3.3), β -Propyl- α . α' -dicarboxy-glutarsaure, Butylidendimalonsaure $C_{10}H_{14}O_8=(HO_2C)_2CH\cdot CH(CH_2\cdot CH_2\cdot CH_3)\cdot CH(CO_2H)_2$.
- β -Propyl- α . α' -dicyan-glutarsäure-diamid, Butyliden-bis-[cyan-essigsäure-amid] $C_{10}H_{14}O_{2}N_{4}=H_{2}N\cdot CO\cdot CH(CN)\cdot CH(CH_{2}\cdot CH_{2}\cdot CH_{3})\cdot CH(CN)\cdot CO\cdot NH_{2}$. B. Aus Cyanacetamid und Butyraldehyd in sehr verd. Kalilauge (Day, Thorpe, Soc. 117, 1471). Mikrokrystallines Pulver (aus Alkohol + Benzol). F: 136°. Liefert beim Kochen mit verd. Salzsäure β -Propyl-glutarsäure.
- 3. 4-Methyl-pentan-letracarbonsäure-(1.3.3.4), a.a-Dimethyl- $\beta.\beta$ -dicarboxy-adipinsäure $C_{10}H_{14}O_8 = HO_2C \cdot CH_2 \cdot CH_3 \cdot C(CO_2H)_2 \cdot C(CH_3)_3 \cdot CO_3H$.
- 4-Methyl-3.4-dicyan-pentan-dicarbonsäure-(1.3)-diäthylester $C_{14}H_{30}O_4N_3=C_2H_5\cdot O_4C\cdot CH_2\cdot CH_3\cdot C(CN)(CO_2\cdot C_2H_6)\cdot C(CH_3)_3\cdot CN$. B. Beim Behandeln von α.β-Dicyanisovaleriansäureäthylester mit β-Jod-propionsäureäthylester in Natriumäthylat-Lösung unter anfänglicher Kühlung (Gibson, Harharan, Simonsen, Soc. 1927, 3011). Gelbliches, etwas unangenehm riechendes, viscoses Öl. Kp₅: 184°. Gibt durch Einw. von konz. Schwefelsäure unter Kühlung, Versetzen mit Wasser und Kochen 4-Methyl-pentan-tricarbonsäure (1.3.4).
- 4. 2.3-Dimethyl-butan-tetracarbonsdure-(1.1.4.4). $\beta.\beta'$ -Dimethyl-a.a'-dicarboxy-adipinsdure $C_{10}H_{14}O_8 = (HO_4C)_2CH\cdot CH(CH_3)\cdot CH(CH_3)\cdot CH(CO_4H)_2$ (H 869).
- a) Racemische Form. B. Entsteht neben der Meso-Form beim Erhitzen des Tetraäthylesters (s. u.) mit alkoholisch-wäßriger Kalilauge auf dem Wasserbad und folgenden Ansäuern mit verd. Schwefelsäure; Trennung erfolgt durch Krystallisation aus konz. Salzsäure, Aceton, Essigester oder Benzol + Alkohol (Voeel, Soc. 1927, 1990. Prismen (aus konz. Salzsäure). F: 185—185,5° (Zers.) (V.). Schwerer löslich als die Meso-Form (V.). Ein Gemisch der Racem- und Meso-Form zersetzt sich beim Erhitzen auf 200° unter Kohlendioxyd-Entwicklung und Bildung eines Gemischs von $\beta.\beta'$ -Dimethyl adipinsäuren (V.; vgl. Higginbotham, Lapworth, Soc. 123, 1623).

Meso-Form. Bildung s. bei der Racem-Form. — F: 152—154° (Zers.) (Vogel, Soc. 1927, 1990). Leichter löslich als die Racem-Form (V.).

Tetraäthylester (Gemisch der beiden Stereoisomeren) $C_{18}H_{30}O_8 = (C_2H_5 \cdot O_3C)_2CH \cdot CH(CH_2) \cdot CH(CO_2 \cdot C_2H_5)_3$ (vgl. H 869). B. Neben anderen Produkten bei der Reduktion von Athylidenmakonsäurediäthylester mit Natriumamakgam unter Zusatz von Resignaure oder Natriumdicarbonat (Higginbotham, Larworth, Soc. 123, 1623) oder besser mit Aluminiumamakgam in feuchtem Ather unter Kühlung (Vogel, Soc. 1927, 1990). — Viscose Füssigkeit von schwachem Geruch. Kp₁₆: 225—226° (V.). Dit 1,0887; nit 1,4487 (V.). — Gibt beim Erhitzen mit alkoholisch-währiger Kalilauge auf dem Wasserbad und folgenden

Ansäuern mit verd. Schwefelsäure Racem- und Meso-2.3-Dimethyl-butan-tetracarbonsäure- (1.1.4.4) (V.). Beim Behandeln der Dinatriumverbindung mit Brom in Äther und Methanol oder Alkohol entsteht 3.4-Dimethyl-cyclobutan-tetracarbonsäure- (1.1.2.2)-tetraäthylester (V.).

- 5. 2-Isopropyl-propan-tetracarbonsäure-(1.1.3.3), β -Isopropyl-a.a'-dicarboxy glutarsäure, Isobutylidendimalonsäure $C_{10}H_{14}O_8=(HO_2C)_2CH\cdot CH[CH(CH_3)_2]\cdot CH(CO_2H)_2.$
- β -Isopropyl-α.α'-dicyan-glutarsäure-diamid, Isobutyliden-bis-[cyan-essigsäure-amid] $C_{10}H_{14}O_2N_4=H_2N\cdot CO\cdot CH(CN)\cdot CH[CH(CH_3)_2]\cdot CH(CN)\cdot CO\cdot NH_2$. B. Beim Behandeln von Cyanacetamid mit Isobutyraldehyd in Gegenwart von Diäthylamin in Wasser (CURTIS, DAY, KIMMINS, Soc. 123, 3134). Krystalle (aus Alkohol + Benzol). F: 151°. Ziemlich schwer löslich in Alkohol, schwer in Benzol. Unlöslich in kalter 2 n-Salzsäure. Spaltet bei längerem Kochen mit Alkohol oder Wasser Cyanacetamid ab. Liefert beim Kochen mit verd. Salzsäure β -Isopropyl-glutarsäure.
- 6. 3-Methyl-pentan-tetracarbonsaure-(2.2.3.4), $\alpha.\beta.\alpha'$ -Trimethyl- $\alpha.\beta$ -dicarboxy-glutarsaure $C_{10}H_{14}O_8 = HO_2C \cdot CH(CH_3) \cdot C(CH_3)(CO_2H) \cdot C(CH_3)(CO_2H)_2$.
- 3-Methyl-2.3-dicyan-pentan-dicarbonsäure-(2.4)-diäthylester, $\alpha.\beta.\alpha'$ -Trimethyl- $\alpha.\beta$ -dicyan-glutarsäure-diäthylester $C_{14}H_{20}O_4N_2=C_2H_5\cdot O_2C\cdot CH(CH_3)\cdot C(CH_3)(CN)\cdot C(CH_3)(CN)\cdot CO_2\cdot C_2H_5$. Beim Erwärmen von 2-Methyl-1.2-dicyan-butan-dicarbonsäure-(1.3)-diäthylester mit Methyljodid und Natriumäthylat-Lösung (Hope, Sheldon, Soc. 121. 2234). Öl. Kp₂₃: 202—207°. Unlöslich in 10% iger Kalilauge. Löst sich in konz. Am·uoniak erst nach langem Aufbewahren. Liefert beim Kochen mit 40% iger Schwefelsäure und Behandeln des Reaktionsprodukts mit Methanol und Chlorwasserstoff $\alpha.\beta.\alpha'$ -Trimethyltricarballylsäure-trimethylester.
- 7. 2.2.3.3-Tetramethyl-butan-tetracarbonsäure (1.1.4.4), $\beta.\beta.\beta'.\beta'$ -Tetramethyl- $\alpha.\alpha'$ -dicarboxy-adipinsäure $C_{12}H_{18}O_8=(HO_2C)_2CH\cdot C(CH_3)_2\cdot C(CH_3)_2\cdot CH(CO_2H)_2$.

 $\beta.\beta.\beta'.\beta'$ -Tetramethyl- $\alpha.\alpha'$ -dicyan-adipinsäure-äthylester-amid $C_{14}H_{21}O_3N_3=C_2H_5\cdot O_2C\cdot CH(CN)\cdot C(CH_3)_2\cdot CH(CN)\cdot CO\cdot NH_2.$ B. Bei der Reduktion von Isopropyliden-cyanessigsäureäthylester mit feuchtem Aluminiumamalgam in Äther und Behandeln des ne ben Isopropyl-cyanessigsäureäthylester entstandenen Reaktionsprodukts mit überschüssigem Ammoniak (D: 0,88) (Vogel, Soc. 1928, 2019). — Prismen (aus verd. Methanol). F: 95°.

8. 2-n-Hexyl-propan-tetracarbonsäure-(1.1.3.3), β -n-Hexyl- α . α' -dicarboxy-glutarsäure, Önanthylidendimalonsäure $C_{18}H_{20}O_8=(HO_2C)_2CH\cdot CH([CH_2]_5\cdot CH_3)\cdot CH(CO_2H)_2$.

 β -n-Hexyl-α.α'-dicyan-glutarsäure-diamid, Önanthyliden-bis-[cyanessigsäure-amid] $C_{13}H_{20}O_2N_4=H_2N\cdot CO\cdot CH(CN)\cdot CH([CH_2]_5\cdot CH_3)\cdot CH(CN)\cdot CO\cdot NH_2$. B. Als Haupt-produkt bei der Kondensation von Cyanacetamid mit Önanthaldehyd in Gegenwart von Piperidin in verd. Alkohol (Curtis, Day, Kimmins, Soc. 128, 3136). — Tafeln (aus Alkohol). F: 147°. — Liefert beim Kochen mit verd. Salzsäure β-n-Hexyl-glutarsäureimid und β-n-Hexyl-glutarsäure.

9. Dodecan-tetracarbonsäure-(1.1.12.12), Dekamethylendimalonsäure, Decan-dimalonsäure-(1.10) $C_{16}H_{26}O_8=(HO_3C)_2CH\cdot[CH_3]_{10}\cdot CH(CO_3H)_4$.

Tetraäthylester $C_{24}H_{42}O_8 = (C_2H_5 \cdot O_2C)_2CH \cdot [CH_2]_{10} \cdot CH(CO_2 \cdot C_2H_5)_2$ (EI 336). B. Beim E rhitzen von 1.10-Dibrom-decan mit Natrium-malonsäurediäthylester in absol. Alkohol im A utoklaven auf 150° (Chuit, Boelsing, Malet, Helv. 12, 1099). — Kp₅: 260—270°; Kp₅: ca. 248°.

E I 336, Z. 17 v. o. nach ,, Kp: 250-2650" füge zu ,, unter vermindertem Druck"

10. Tridecan-tetracarbonsaure-(2.2.12.12) $C_{17}H_{26}O_6 = (HO_2C)_2C(CH_3)\cdot [CH_2]_2 \cdot C(CH_3)(CO_2H)_2$. Vgl. hierzu Chuit, Boelsing, Malet, Helv. 12, 1097.

- 709
- 11. Heptadecan-tetracarbonsäure-(1.1.17.17), Pentadecan-dimalonsäure-(1.15) $C_{21}H_{36}O_8 = (HO_2C)_2CH \cdot [CH_2]_{15} \cdot CH(CO_2H)_2$. B. Durch Kondensation von 1.15-Dibrom-pentadecan mit Natriummalonester in Alkohol und Verseifung des erhaltenen Tetraäthylesters (Chuit, Helv. 9, 276; Ch., Hausser, Helv. 12, 855). Krystalle (aus Benzol). Fr 89-90° (Ch., H.). Liefert beim Erhitzen Heptadecan-dicarbonsäure-(1.17) (Ch.).
- 12. Octadecan-tetracarbonsäure-(1.1.18.18), Hexadecan-dimalonsäure-(1.16) $C_{22}H_{38}O_8 = (HO_2C)_2CH\cdot[CH_2]_{16}\cdot CH(CO_2H)_2$. B. Beim Kochen von 1.16-Dibrom-hexadecan mit Natrium-malonsäuredimethylester in Alkohol und nachfolgenden Verseifen des Tetramethylesters mit alkoh. Kalilauge (Chuit, Hausser, Helv. 12, 855). Nadeln (aus Benzol + Alkohol). F: ca. 93°. Leicht löslich in Alkohol, ziemlich leicht in Äther, sehr schwer in Benzol.
- 13. Nonadecan-tetracarbonsäure-(1.1.19.19), Heptadecan-dimalonsäure-(1.17) $C_{23}H_{40}O_8=(HO_2C)_2CH\cdot[CH_2]_{17}\cdot CH(CO_2H)_2$. B. Beim Erhitzen von 1.17-Dibrom-heptadecan mit Natrium-malonsäuredimethylester in Alkohol auf dem Wasserbad und Verseifen des Tetramethylesters mit alkoh. Kalilauge (CHUIT, HAUSSER, Helv. 12, 857). F: 96—97°. [KÜHN]

2. Tetracarbonsäuren $C_n H_{2n-8} O_8$.

1. Äthylentetracarbonsäure $C_6H_4O_8=(HO_2C)_2C:C(CO_2H)_2$ (H 874; E I 336). Gibt bei der Hydrierung in Gegenwart von Palladiumkohle Äthan-tetracarbonsäure-(1.1.2.2) (Mannich, Ganz, B. 55, 3509); diese wird bei der Hydrierung in Gegenwart von kolloidem Platin und bei der Reduktion mit amalgamiertem Aluminium und verd. Alkohol in Äther nur in geringer Menge erhalten (Philippi, Seka, M. 45, 275). Geht beim Erwärmen mit Acetanhydrid auf $40-50^{\circ}$ nicht in ein Anhydrid über (Ph., S., M. 45, 279). Liefert bei mehrtägigem Kochen mit Acetylchlorid in Äther Äthylentricarbonsäure (Staudinger, Kreis, Helr. 6, 325). Beim Kochen mit Oxalylchlorid entsteht ein dunkelbraunes, amorphes Produkt (St., K.).

E 1 336, Z. 27 v. u. statt "HNO3" lies "salpetriger Säure".

Äthylentetracarbonsäure-tetramethylester $C_{10}H_{12}O_8=(CH_3\cdot O_2C)_2C:C(CO_2\cdot CH_3)_2$ (H 875). B. Bei der Einw. von äther. Jodlösung auf die in Methanol suspendierte Natriumverbindung des Chlormalonsäure-dimethylesters (ECCLES, Pr. Leeds phil. lit. Soc. 1, 359; C. 1929 I, 2633). Durch Kondensation von Malonsäuredimethylester mit Mesoxalsäure-dimethylester in Gegenwart von Zinkchlorid in Acetanhydrid auf dem Wasserbad (CORSON, HAZEN, THOMAS, Am. Soc. 50, 918). Bei der Einw. von kalter konzentrierter Schwefelsäure auf 1-Oxy-äthan-tetracarbonsäure-(1.1.2.2)-tetramethylester (C., H., Th., Am. Soc. 50, 916). — F: 119—120° (korr.) (C., H., Th.). Ziemlich schwer löslich in Äther (C., H., Th.).

Äthylentetracarbonsäure-tetraäthylester $C_{14}H_{20}O_8 = (C_2H_5 \cdot O_2C)_2C \cdot C(CO_2 \cdot C_2H_5)_2$ (H 875; E I 336). B. Beim Kochen von Malonester mit Dischwefeldichlorid ohne Lösungsmittel oder in Benzol (NAIK, Soc. 119, 1239). Neben anderen Produkten bei der Einwirkung von Bromeyan auf Natriummalonester in Alkohol oder Äther (Mignonac, Rambeck, C. r. 188, 1300) und bei der Einw. von Dibromeyanacetamid auf Natriummalonester in Alkohol (Gupta, Thore, Soc. 121, 1901). Durch Kondensation von Malonester mit Mesoxalsäurediäthylester bei Gegenwart von Zinkehlorid in Acetanhydrid auf dem Wasserbad (Corson, Hazen, Thomas, Am. Soc. 50, 917). Entsteht aus der Dinatriumverbindung des Athan-tetracarbonsäure-(1.1.2.2)-tetraäthylesters bei der Einw. von Dibrommalonsäure-diäthylester in siedendem Alkohol (Lennon, Perkin, Soc. 1928, 1521) sowie (neben anderen Produkten) bei analoger Einw. von 1.3-Dibrom-propan-tetracarbonsäure-(1.1.3.3)-tetraäthylester oder von 1.4-Dibrombutan-tetracarbonsäure-(1.1.4.4)-tetraäthylester (L., P., Soc. 1928, 1522, 1523). Bei der Einw. von kalter konzentrierter Schwefelsäure auf 1-Oxy-äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (C., H., Th.). — Darstellung durch Erhitzen von Brommalonsäurediäthylester mit wasserfreiem Natriumcarbonat auf 150—160°, Behandlung des Reaktionsgemisches mit Xylol und Wasser und Destillation: Corson, Benson, Org. Synth. 11 [1931], 36.

F: 57—58° (NAIK, Soc. 119, 1239), 56° (LENNON, PERKIN, Soc. 1928, 1521). Kp₈: 197°; Kp₁₃: 203°; Kp₂₂: 210°; Kp₃₃: 221°; Kp₄₈: 234° (CORSON, BENSON, Org. Synth. 11 [1931], 37). Löslichkeit in 100 cm³ Alkohol zwischen 0° (2,0 g) und 36,5° (61,0 g): C., B. — Liefert bei der

710

Reduktion mit Wasserstoff in Gegenwart von kolloidem Palladium oder mit amalgamiertem Aluminium und verd. Alkohol bei 50—60° Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester (Philippi, Seka, M. 45, 275, 277).

Verbindungen mit Zinn(IV)-chlorid: $C_{14}H_{20}O_8 + SnCl_4$. Nadeln (aus Tetrachlorkohlenstoff). F: $94-95^\circ$ unter vorangehendem Sintern (Hieber, A. 444,253). $-2\,C_{14}H_{20}O_8 + 3\,SnCl_4$. Ziemlich hygroskopische Nadeln (aus Tetrachlorkohlenstoff). F: $94-95^\circ$ (H.). In der Kälte unlöslich in indifferenten Lösungsmitteln. $-C_{14}H_{20}O_8 + 2\,SnCl_4$. Außerordentlich hygroskopische Krystallmasse. F: $94-95^\circ$ (H., A. 444,254). Raucht an der Luft stark.

Cyanäthylentricarbonsäure-triäthylester $C_{12}H_{15}O_6N=C_2H_5\cdot O_2C\cdot C(CN):C(CO_2\cdot C_2H_5)_2$ (H 875). Konnte aus Cyanessigester und Mesoxalsäurediäthylester weder nach den Angaben von Schmitt (C. r. 140, 1401; A. ch. [8] 12, 413) noch in Gegenwart von Zinkchlorid erhalten werden (Corson, Hazen, Thomas, Am. Soc. 50, 915).

2. Propen-tetracarbonsäure-(1.1.3.3), $\alpha.\gamma$ -Dicartoxy-glutaconsäure $C_7H_6O_8=(HO_2C)_2CH\cdot CH\cdot C(CO_2H)_2$.

Propen-tetracarbonsäure-(1.1.3.3)-dimethylester-diä: ylester $C_{13}H_{18}O_8 = (CH_3 \cdot O_2C)_2CH \cdot CH : C(CO_2 \cdot C_2H_5)_2 \cdot oder (C_2H_5 \cdot O_2C)_2CH \cdot CH : C(CO_2 \cdot CH_3)_2$. B. Die Natriumverbindung entsteht bei der Einw. von Athoxymethylenmalonsäurediäthylester auf Natriummalonsäuredimethylester in Methanol (URUSHIBARA, Bl. chem. Soc. Japan 3, 220; C. 1929 I, 57). — Natriumverbindung. Krystalle (aus Alkohol).

Propen - tetracarbonsäure - (1.1.3.3) - methylester - triäthylester $C_{14}H_{20}O_8 = C_2H_5$. $O_2C \cdot CH(CO_3 \cdot CH_3) \cdot CH : C(CO_2 \cdot C_2H_5)_3$ oder $(C_2H_5 \cdot O_3C)_2CH \cdot CH : C(CO_2 \cdot CH_3) \cdot CO_3 \cdot C_2H_5$. B. Die Natriumverbindung entsteht bei der Einw. von Athoxymethylenmalonsäurediäthylester in Alkohol auf Natriummalonsäuredimethylester oder auf die aus Malonsäuredimethylester und Natriumäthylat-Lösung erhaltene Natriumverbindung (URUSHIBARA, Bl. chem. Soc. Japan 3, 220; C. 1929 I, 57). — Natriumverbindung. Krystalle (aus Alkohol).

Propen-tetracarbonsäure-(1.1.3.3)-tetraäthylester, α.γ-Dicarboxy-glutaconsäure-tetraäthylester $C_{15}H_{32}O_8 = (C_2H_5 \cdot O_2C)_2CH \cdot CH : C(CO_2 \cdot C_2H_5)_2$ (H 876; E I 336). Über das Keto-Enol-Gleichgewicht($C_2H_5 \cdot O_2C)_2CH \cdot CH : C(CO_2 \cdot C_2H_5)_2$ (I) $\rightleftharpoons C_2H_5 \cdot O \cdot C(OH) : C(CO_2 \cdot C_2H_5)_2$ (II) in alkoh. Lösung vgl. Stobbe, Wildensee, J. pr. [2] 115, 165. Die Lösungen in Åther, Aceton, Chloroform, Benzol und Hexan enthalten α.γ.Dicarboxy-glutaconsäure-tetraäthylester nur als I (St., W., J. pr. [2] 115, 171). — B. Zur Bildung aus Malonester, Natriumäthylat und Chloroform (H 876; E I 336) vgl. Faltis, de Roxas, M. 42, 461; F., Pirsch, B. 60, 1623; Ingold, Perren, Soc. 119, 1591; St., W., J. pr. [2] 115, 177. Zur Bildung der Natriumverbindung aus Tetrachlorkohlenstoff und Dinatriummalonester (Zelinski, Doroschewski, B. 27, 3774) vgl. I., Powell, Soc. 119, 1228. — Kp₁₈: 200—204°; Kp₂₈: 208—210° (Stobbe, Wildensee, J. pr. [2] 115, 177). Ultraviolett-Absorptionsspektrum in Alkohol, alkoh. Salzsäure, Äther, Chloroform und Hexan: St., W., J. pr. [2] 115, 173.

Bei der Polymerisation in Gegenwart von Piperidin (vgl. H 2, 877) bilden sich neben überwiegenden Mengen Cyclobutan-tetracarbonsäure-(1.1.3.3)-dimalonsäure-(2.4)-oktaäthylester vom Schmelzpunkt 103° geringe Mengen Penten-(4)-hexacarbonsäure-(1.1.3.3.5.5)-malonsäure-(2)-oktaäthylester (S. 719) und Piperidinomethylenmalonsäure-dithylester (Ingollo, Perren, Thorpe, Soc. 121, 1784). Beim Behandeln von α.γ-Dicarboxy-glutaconsäure-tetraäthylester mit 1 Mol Brom und 1 Mol Pyridin in Ather (Urushibara, Bl. chem. Soc. Japan 3, 200; C. 1928 II, 1870) oder bei der Einw. von 3 Atomen Brom auf das Kupfersalz in Chloroform (Faltis, de Roxas, M. 42, 462) entsteht α-Brom-α.γ-dicarboxy-glutaconsäure-tetraäthylester. Erhitzt man die Natriumverbindung mit Isopropylbromid oder Isopropyljodid in Alkohol im Rohr auf 140—160°, so entstehen Trimesinsäure-triäthylester, Malonester und Propylen (Clemo, Welch, Soc. 1928, 2625; vgl. Hariharan, Menon, Simonsen, Soc. 1928, 434). Bei der Einw. von Acetylchlorid auf die Natriumverbindung in Ather im Rohr bei gewöhnlicher Temperatur erhält man 6-Äthoxy-pyron-(2)-dicarbonsäure-(3.5)-diäthylester (Cl., W.).

α.γ-Dicarboxy-glutaconsäure-tetraāthylester liefert bei mehrwöchiger Einw. von Cyanessigester in Gegenwart von Piperidin bei Zimmertemperatur Methan-dimalonsäure-oyanessigsäure-pentaäthylester sowie γ-Carboxy-α-cyan-glutaconsäure-triāthylester und Malonester (I., P., Soc. 121, 1417, 1419). Die Natriumverbindung liefert bei 18-stdg. Kochen mit Natrium-cyanessigester in Alkohol die Natriumverbindungen des γ-Carboxy-α-cyan-glutaconsäure-triāthylesters (S. 711) und des α.γ-Dicyan-glutaconsäure-diäthylesters (S. 712), neben Malonester und 6-Äthoxy-pyron-(2)-dicarbonsäure-(3.5)-diāthylester (Ingold, Perren, Soc. 119, 1593). α.γ-Dicarboxy-glutaconsäure-tetraāthylester kondensiert sich mit γ-Methyl-α-cyanglutaconsäure-diäthylester bei Gegenwart von Piperidin innerhalb von 2 Monaten zu 3-Cyan-cyclobutan-tricarbonsäure-(1.1.3)-[α-propionsäure]-(2)-malonsäure-(4)-hexsäthylester; reagiert analog mit α-Carboxy-glutaconsäure-triāthylester unter Bildung von Cyclobutan-tetra-

carbonsäure-(1.1.3.3)-essigsäure-(2)-malonsäure-(4)-heptaäthylester (I., P., Thorpe, Soc. 121, 1788).

NaC₁₈H₂₁O₈. Ultraviolett-Absorptionsspektrum in Alkohol: Stobbe, Wildensee, J. pr. [2] 115, 173. — KC₁₈H₂₁O₈. Gelb. Schmilzt von ca. 100° an unter Zersetzung (Faltis, Pirsch, B. 60, 1627). Sehr leicht löslich in kaltem absolutem Alkohol mit eitronengelber Farbe. Gibt mit Eisen(III)-chlorid eine violette Färbung. — Cu(C₁₈H₂₁O₈)₂. Hellgrüne Nadeln. F: 170° (F., de Roxas, M. 42, 462). Löslich in Chloroform und in warmem Benzol und Alkohol, fast unlöslich in Schwefelkohlenstoff (F., de R.), unlöslich in Wasser (F., P.). — Ca(C₁₈H₂₁O₈)₂. Gelb (F., P., B. 60, 1629).

Propen-tetracarbonsäure-(1.1.3.3)-dimethylester-(1.3)-diamid-(1.3), $\alpha.\gamma$ -Bisaminoformyl-glutaconsäure-dimethylester $C_9H_{12}O_6N_2=H_2N\cdot CO\cdot CH_1(CO_2\cdot CH_3)\cdot CH$: $C(CO_2\cdot CH_3)\cdot CO\cdot NH_2$. B. Aus $\alpha.\gamma$ -Dicyan-glutaconsäure-dimethylester-halbhydrat (S. 713) durch Behandeln mit Brom in Chloroform und Eintragen des Reaktionsprodukts in feuchten Ather (URUSHIBARA, Bl. chem. Soc. Japan 2, 241; C. 1927 II, 2279). — Bildet ein Pikrat $C_9H_{12}O_6N_2+C_6H_3O_7N_3$.

Propen-tetracarbonsäure-(1.1.3.3)-diäthylester-(1.3)-diamid-(1.3), $\alpha.\gamma$ -Bis-aminoformyl-glutaconsäure-diäthylester $C_{11}H_{16}O_6N_2=H_5N\cdot CO\cdot CH(CO_3\cdot C_2H_5)\cdot CH:C(CO_2\cdot C_2H_5)\cdot CO\cdot NH_2$. B. Bei nicht zu langem Kochen von $\alpha.\gamma$ -Dicyan-glutaconsäure-diäthylesterhalbhydrat (S. 713) mit verd. Salzsäure (Urushibara, Bl. chem. Soc. Japan 2, 239; C. 1927 II, 2279). Das Hydrobromid entsteht beim Eintragen der Verbindung $C_{22}H_{26}O_9N_4+HBr+Br_6$ (S. 713) in mit Wasser gesättigten Ather (U., Bl. chem. Soc. Japan 2, 32; C. 1927 I, 2061). Das Pikrat wird bei der Einw. von Pikrinsäure auf $\alpha.\gamma$ -Dicyan-glutaconsäure-diäthylesterhalbhydrat in etwas Wasser enthaltendem Alkohol und auf die Verbindung $C_{22}H_{26}O_9N_4+HBr+Br_6$ in Alkohol erhalten (U., Bl. chem. Soc. Japan 2, 34). — Das Hydrobromid gibt beim Kochen mit verd. Bromwasserstoffsäure und nachfolgendem Zufügen von konz. Salzsäure 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diäthylester (U., Bl. chem. Soc. Japan 2, 34). Das Hydrobromid wird durch konz. Natronlauge erst bei langem Kochen unter Ammoniak-Entwicklung zersetzt (U., Bl. chem. Soc. Japan 2, 33). — $C_{11}H_{16}O_6N_2+HBr$. Nadeln. Schmilzt bei ca. 180° unter Zersetzung zu einer roten Flüssigkeit (U., Bl. chem. Soc. Japan 2, 32). Löslich in Wasser (mit saurer Reaktion) und in Alkohol (mit schwacher Fluorescenz), unlöslich in Äther. — Pikrat $C_{11}H_{16}O_6N_2+C_6H_3O_7N_3$. F: 196—197° (korr.) (U., Bl. chem. Soc. Japan 2, 33).

Propen-(1)-tetracarbonsäure-(1.1.3.3)-diäthylester-(3.3)-diamid-(1.1) $C_{11}H_{16}O_0N_2=(C_2H_5\cdot O_2C)_2CH\cdot CH:C(CO\cdot NH_2)_3$. Zur Konstitution vgl. URUSHIBARA, Bl. chem. Soc. Japan 3, 223; C. 1929 I, 57. — B. Aus 3.3-Dicyan-propen-(2)-dicarbonsäure-(1.1)-diäthylester beim Aufbewahren der angesäuerten wäßrigen Lösung (U., Bl. chem. Soc. Japan 2, 281; 3, 223; C. 1928 I, 321; 1929 I, 57). — Krystalle. F: 139—140°; erstarrt wieder und zersetzt sich bei weiterem Erhitzen.

- 3-Cyan-propen-(2)-tricarbonsäure-(1.1.3)-triäthylester, α -Carboxy- γ -cyanglutaconsäure-triäthylester $C_{18}H_{17}O_8N=(C_3H_5\cdot O_3C)_2CH\cdot CH:C(CN)\cdot CO_2\cdot C_2H_5$. Zur Konstitution vgl. Urushibara, Bl. chem. Soc. Japan 3, 223; C. 1929 I, 57. B. Die Natriumverbindung entsteht aus Natriummalonester und Äthoxymethylencyanessigsäure-äthylester in kaltem Alkohol (U., Bl. chem. Soc. Japan 2, 280; C. 1928 I, 320). Allmählich krystallisierendes Öl. Löst sich in Soda-Lösung unter Kohlendioxyd-Entwicklung (U., Bl. chem. Soc. Japan 2, 281). Gibt mit Eisen(III)-chlorid in Alkohol eine violette Färbung (U., Bl. chem. Soc. Japan 3, 223). Na $C_{13}H_{16}O_8N$. Hygroskopische Krystalle. Löslich in Wasser unter Wärmeentwicklung (U., Bl. chem. Soc. Japan 2, 280).
- 3-Cyan-propen-(1)-tricarbonsäure-(1.1.3)-triäthylester, γ -Carboxy- α -cyanglutaconsäure-triäthylester $C_{13}H_{17}O_6N=C_2H_5\cdot O_2C\cdot CH(CN)\cdot CH\cdot C(CO_2\cdot C_2H_5)_2$ (H 878). B. Neben anderen Verbindungen bei längerer Einw. von Cyanessigester auf $\alpha.\gamma$ -Dicarboxyglutaconsäure-tetraäthylester in Gegenwart von Piperidin bei Zimmertemperatur (Ingold, Perren, Soc. 121, 1417). Die Natriumverbindung entsteht neben anderen Verbindungen bei 8-stdg. Kochen von Natrium- $\alpha.\gamma$ -dicarboxy-glutaconsäure-tetraäthylester mit Natrium-cyanessigester und Cyanessigester in Alkohol (I., P., Soc. 119, 1593) und bei der Einw. von 2 Mol Natriumcyanessigester auf α -Methyl- $\alpha.\gamma$ -dicarboxy-glutaconsäure-tetraäthylester in Alkohol bei Zimmertemperatur (I., P., Soc. 119, 1599). Neben Malonester bei der Einw. von Natriumäthylat-Lösung auf Methan-dimalonsäure-cyanessigsäure-pentaäthylester (I., P., Soc. 121, 1418). Gelbliches Öl. Zersetzt sich bei der Vakuumdestillation vollständig (I., P., Soc. 121, 1418). Liefert bei kurzem Erwärmen mit konz. Salzsäure 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diäthylester (I., P., Soc. 119, 1595). Die Natriumverbindung liefert bei 24-stdg. Erhitzen mit Cyanessigester in Natriumäthylat-Lösung $\alpha.\gamma$ -Dicyan-glutaconsäure-diäthylester und Malonester (?) (I., P., Soc. 119, 1595). Gibt mit Eisen(III)-chlorid in wäßr. Alkohol eine tief carminrote Färbung (I., P., Soc. 119, 1594). NaC₁₃H₁₆O₆N. Gelblich,

krystallin. Schwer löslich in Wasser und Alkohol (I., P., Soc. 119, 1595). — Ca(C₁₃H₁₆O₆N)₂. Gelbes Krystallpulver (I., P., Soc. 119, 1595).

- 3-Cyan-propen-(2)-tricarbonsäure-(1.13)-diäthylester-(1.1)-amid-(3), α -Carbäthoxy- γ -cyan-glutaconsäure- α -äthylester- γ -amid $C_{11}H_{14}O_5N_2=(C_2H_5\cdot O_2C)_2CH\cdot CH:C(CN)\cdot CO\cdot NH_2$. B. Aus 3.3-Dieyan-propen-(2)-dicarbonsäure-(1.1)-diäthylester beim Aufbewahren der alkoh. Lösung (URUSHIBARA, Bl. chem. Soc. Japan 3, 222; C. 1929 I, 57). Krystalle. F: 212°. Gibt mit Eisenchlorid in Alkohol keine Farbreaktion.
- 1.3 Dicyan propen dicarbonsäure (1.3) dimethylester, $\alpha.\gamma$ Dicyan glutaconsäure-dimethylester $C_9H_8O_4N_2=CH_3\cdot O_2C\cdot CH(CN)\cdot CH:C(CN)\cdot CO_2\cdot CH_3$. B. Die Natriumverbindung entsteht bei der Kondensation von Cyanessigsäuremethylester mit Chloroform in Natriummethylat-Lösung (URUSHIBARA, Bl. chem. Soc. Japan 2, 240; C. 1927 II, 2279) und von β -Athoxymethylencyanessigsäuremethylester mit Natrium-cyanessigester in Methanol (URUSHIBARA, Bl. chem. Soc. Japan 3, 220; C. 1929 I, 57). Beim Ansäuern der heißen mäßrigen Lösung des Natriumsalzes entsteht $\alpha.\gamma$ -Dicyan-glutaconsäure-dimethylester-halbhydrat (s. u.) (U., Bl. chem. Soc. Japan 2, 240). Na $C_9H_7O_4N_2+2$ CH $_4O$. Krystalle (aus Methanol). Gibt das Krystall-Lösungsmittel bei 150—160° ab und krystallisiert dann aus Wasser mit 1 H_2O (U., Bl. chem. Soc. Japan 2, 240).

Verbindung $C_{18}H_{18}O_9N_4$ ($\alpha.\gamma$ -Dieyan-glutaconsäure-dimethylester-halbhydrat). Zur Konstitution vgl. die Angaben bei der Verbindung $C_{22}H_{26}O_9N_4$, S. 713. — B. Aus dem Natriumsalz des $\alpha.\gamma$ -Dieyan-glutaconsäure-dimethylesters beim Ansäuern der heißen wäßrigen Lösung (URUSHIBARA, Bl. chem. Soc. Japan 2, 240; C. 1927 II, 2279). — Gelbe Krystalle. F: 225° (korr.). Unlöslich in Methanol, Alkohol, Aceton und Benzol. — Gibt beim Behandeln mit Brom in Chloroform und Eintragen des Reaktionsprodukts in feuchten Äther $\alpha.\gamma$ -Bis-aminoformyl-glutaconsäure-dimethylester.

1.3 - Dicyan - propen - dicarbonsäure - (1.3) - methylester - äthylester, $\alpha.\gamma$ -Dicyanglutaconsäure-methylester-äthylester $C_{10}H_{10}O_4N_2=CH_3\cdot O_2C\cdot CH(CN)\cdot CH:C(CN)\cdot CO_2\cdot C_2H_5\cdot O_2C\cdot CH(CN)\cdot CH:C(CN)\cdot CO_2\cdot CH_3$. B. Die Natriumverbindung entsteht bei der Kondensation von Äthoxymethylen-cyanessigsäure-äthylester mit Natrium-cyanessigsäure-methylester in Methanol oder von Äthoxymethylen-cyanessigsäure-methylester mit Natrium-cyanessigsäure-äthylester in Alkohol (Urushibara, Bl. chem. Soc. Japan 3, 220; C'. 1929 I, 57). — Beim Behandeln der Natriumverbindung mit verd. Salzsäure entsteht die Verbindung $C_{20}H_{22}O_9N_4$ (s. u.). — Na $C_{10}H_9O_4N_2$. Fast farblose Krystalle (aus Wasser).

Verbindung C₂₀H₂₂O₉N₄ (α.γ-Dicyan-glutaconsäure-methylester-äthylester-halbhydrat). Zur Konstitution vgl. die Angaben bei der Verbindung C₂₂H₂₆O₉N₄, S. 713. — B. Aus der Natriumverbindung des α.γ-Dicyan-glutaconsäure-methylester-äthylesters durch Einw. von verd. Salzsäure (U., Bl. chem. Soc. Japan 3, 220; C. 1929 I, 57). — F: 197° (korr.).

1.3-Dicyan-propen-dicarbonsäure-(1.3)-diäthylester, $\alpha.\gamma$ -Dicyan-glutaconsäure-diäthylester $C_{11}H_{12}O_4N_2=C_2H_5\cdot O_2C\cdot CH(CN)\cdot CH:C(CN)\cdot CO_2\cdot C_2H_5$ (H 878). Die H 878 als freier Ester beschriebenen Präparate sind als Verbindung $C_{22}H_{26}O_9N_4$ (S. 713) erkannt worden: dagegen leitet sich die Natriumverbindung vom wahren α.γ-Dieyan-glutaconsäure-diäthylester ab (Urushibara, Bl. chem. Soc. Japan 2, 28, 236; C. 1927 I, 2061; II, 2278). — B. Zur Bildung der Natriumverbindung aus Natriumevanessigester und Chloroform vgl. U., Bl. chem. Soc. Japan 2, 237; C. 1927 II, 2278. Die Natriumverbindung wird aus Natriumcyanessigester und Jodoform in reinerem Zustand erhalten als bei Anwendung von Chloroform (U., Bl. chem. Soc. Japan 2, 28; C. 1927 I, 2061). Zur Bildung der Natriumverbindung aus Tetrachlorkohlenstoff und Natriumcyanessigester vgl. Ingold, Powell, Soc. 119, 1225, 1229. Die Natriumverbindung entsteht bei der Einw. von Trichloressigsäureäthylester auf Cyanessigester in Natriumäthylat-Lösung (U., Bl. chem. Soc. Japan 2, 237; C. 1927 II, 2278). Über Bildung der Natriumverbindung beim Kochen von Cyanessigester mit Orthoameisensäuretriäthylester und Acetanhydrid und Behandeln des Reaktionsprodukts mit Natriumäthylat-Lösung vgl. U., Bl. chem. Soc. Japan 2, 239. Die Natriumverbindung entsteht aus Äthoxymethylencyanessigsäureäthylester und Natriumcyanessigester in absol. Alkohol (U., Bl. chem. Soc. Japan 2, 240) sowie aus Athoxymethylen-cyanessigsäure-methylester und Natriumcyanessigsäure-methylester oder -äthylester in Alkohol (URUSHIBARA, Bl. chem. Soc. Japan 3, 220; C. 1929 I, 57). Die Natriumverbindung entsteht neben anderen Produkten bei der Einw. von Natriumevanessigester auf die Natriumverbindung des α.γ-Dicarboxy-glutaconsäuretetraäthylesters in Gegenwart von überschüssigem Cyanessigester, auf die Natriumverbindung des γ-Carboxy-α-cyan-glutaconsäure-triäthylesters, auf γ-Methyl-α-carboxy-glutaconsäure-triäthylester und auf γ-Methyl-α-cyan-glutaconsäure-diäthylester in siedendem Alkohol (Ingold, Perren, Soc. 119, 1593, 1595, 1596, 1598). — Bei der Einw. von Salzsäure auf das Natriumsalz oder auf das Ammoniumsalz entsteht die Verbindung C₂₂H₂₆O₂N₄ (S. 713) (U. Bl. chem. Soc. Japan 2, 28, 238).

Das von Ruhemann, Browning (Soc. 73, 282) beschriebene Salz $NH_4C_{11}H_{11}O_4N_2 + \frac{1}{2}H_2O$ ist wahrscheinlich ein Derivat der Verbindung $C_{22}H_{26}O_9N_4$ (Urushibara, Bl. chem. Soc. Japan 2, 239; C. 1927 II, 2278). — $NH_4C_{11}H_{11}O_4N_2 + 2H_2O$. Gibt bei 130° 1 H_2O ab (U., Bl. chem. Soc. Japan 2, 238). — $NaC_{11}H_{11}O_4N_2 + 2H_2O$. Fast farblose Krystalle (aus Wasser). F: ca. 265° (U., Bl. chem. Soc. Japan 2, 28; C. 1927 I. 2061), 263—265° (Ingold, Perren, Soc. 119, 1597).

 $\begin{aligned} Verbindung \quad & C_{22}H_{26}O_9N_4 = & C_2H_5 \cdot O_2C \cdot \underbrace{C(CN) \cdot CH \cdot C(CO_2 \cdot C_2H_5) \cdot C(:NH) \cdot NH \cdot CO \cdot \underbrace{H}_{1} \end{aligned}$

 $\underbrace{C(CO_2 \cdot C_2H_5) \cdot CH \cdot C(CN) \cdot CO_2 \cdot C_2H_5(?) \ (\alpha,\gamma-Dicyan-glutaconsăure-diăthylester-halb-H)}_{H}$

hydrat). Diese Verbindung hat in den früher als freier α.γ-Dicyan-glutaconsäure-diäthylester (H 878) beschriebenen Präparaten vorgelegen; zur Zusammensetzung und Konstitution vgl. URUSHIBARA, Bl. chem. Soc. Japan 2, 26, 236, 283; C. 1927 I, 2061; II, 2278; 1928 I, 321. Das Mol.-Gew. ist in Aceton ebullioskopisch bestimmt (U., Bl. chem. Soc. Japan 2, 30). --B. Bei der Einw. von Salzsäure auf die Natriumverbindung und auf die Ammoniumverbindung des α.γ-Dicyan-glutaconsäure-diäthylesters (U., Bl. chem. Soc. Japan 2, 28, 238). — Gelbe Krystalle (aus Aceton). F: 1830 (korr.) (U., Bl. chem. Soc. Japan 2, 28), 1840 (U., Bl. chem. Soc. Japan 3, 220; C. 1929 I, 57), 184-1860 (INGOLD, PERREN, Soc. 119, 1595). Unlöslich in Ather und Benzol, schwer löslich in kaltem Alkohol und Aceton (U., Bl. chem. Soc. Japan 2, 29). — Gibt auch beim Erhitzen im Luftstrom auf 150° kein Wasser ab (U., Bl. chem. Šoc. Japan 2, 30). Liefert bei der Einw. von Brom in Chloroform die Verbindung C₂₂H₂₆O₉N₄ + $\operatorname{HBr} + \operatorname{Br}_6$ (s. u.) (U., Bl. chem. Soc. Japan 2, 31). Gibt bei kurzem Kochen mit verd. Salzsäure $\alpha.y$ -Bis-aminoformyl-glutaconsäure-diäthylester; bei längerem Kochen bildet sich 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diäthylester (U., Bl. chem. Soc. Japan 2, 239). $\alpha.y$ -Bisaminoformyl-glutaconsäure-diäthylester entsteht auch bei der Einw. von alkoh. Pikrinsäure-Lösung auf die Verbindung $C_{22}H_{26}O_9N_4$ (U., Bl. chem. Soc. Japan 2, 34). Beim Erhitzen mit Alkalilaugen wird Ammoniak entwickelt (U., Bl. chem. Soc. Japan 2, 30). — $C_{22}H_{26}O_9N_4$ + HBr + Br₆. B. Durch Einw. von Brom auf die Verbindung $C_{22}H_{26}O_9N_4$ in Chloroform (URU-SHIBARA, Bl. chem. Soc. Japan 2, 31; C. 1927 I, 2061). Ziegelrote Krystalle (aus Benzol). F: 146—149°. Wird durch Wasser, Alkohol und Äther zersetzt. Beim Eintragen in mit Wasser gesättigten Äther entsteht das Hydrobromid des α.γ-Bis-aminoformyl-glutaconsäurediäthylesters.

- 3.3 Dicyan propen (2) dicarbonsäure (1.1) diäthylester, [β.β Dicyan-vinyl]-malonsäure-diäthylester $C_{11}H_{12}O_4N_2 = (C_2H_5 \cdot O_2C)_2CH \cdot CH \cdot C(CN)_2$. Zur Konstitution vgl. Urushibara, Bl. chem. Soc. Japan 3, 222; C. 1929 I, 57. B. Die Natriumverbindung entsteht aus Äthoxymethylenmalonsäurediäthylester und Natriummalonitril oder aus Äthoxymethylenmalonsäuredinitril und Natriummalonester in Alkohol (U., Bl. chem. Soc. Japan 2, 281; C. 1928 I, 321). Den freien Ester erhält man als Öl, wenn man die angesäuerte wäßrige Lösung des Natriumsalzes sofort ausäthert; bei späterem Ausäthern erhält man Propen-(1)-tetracarbonsäure-(14.3.3)-diäthylester-(3.3)-diamid-(4.1) (U., Bl. chem. Soc. Japan 2, 281; 3, 223). In alkoh. Lösung wandelt sich der freie Ester in α-Carbäthoxy-γ-eyanglutaconsäure-α-äthylester-γ-amid (S. 712) um (U., Bl. chem. Soc. Japan 3, 222). Der freie Ester und die Natriumverbindung geben mit Eisen(III)-chlorid in Alkohol violette Färbungen (U., Bl. chem. Soc. Japan 3, 222). NaC₁₁H₁₁O₄N₂ + 1 ₂ H₂O. Fast farblose Krystalle (aus Wasser). F: 238—239° (unkorr.) (U., Bl. chem. Soc. Japan 2, 282).
- 1.3.3-Tricyan-propen-carbonsäure-(1)-äthylester $C_9H_7O_2N_3=(NC)_2CH\cdot CH\cdot C(CN)\cdot CO_2\cdot C_2H_5$ oder $C_2H_5\cdot O_2C\cdot CH(CN)\cdot CH\cdot C(CN)_2$. Natrium verbindung Na $C_9H_6O_2N_3+H_2O$. Zur Konstitution vgl. Urushibara, Bl. chem. Soc. Japan 3, 223; C. 1929 I. 57. B. Aus Äthoxymethylencyanessigsäureäthylester und Natrium-malonitril oder aus Äthoxymethylen-malonitril und Natriumcyanessigester in Alkohol (U., Bl. chem. Soc. Japan 2, 284; C. 1928 I. 321). Fast farblose Krystalle (aus Wasser). F: 241—242° (unkorr.). Sehr leicht löslich in Wasser, Alkohol, Accton, Essigester und Pyridin. Beim Ansäuern der wäßr. Lösung entsteht die Verbindung $C_{18}H_{16}O_5N_6$ (s. u.).

Verbindung $C_{18}H_{16}O_{5}N_{6} = [C_{8}H_{7}O_{2}N_{2}] \cdot CO \cdot NH \cdot C(:NH) \cdot [C_{8}H_{7}O_{2}N_{2}]$ (?) (Tricyan-propen-carbonsäureäthylester-halbhydrat). Zur Konstitution vgl. die Angaben bei der Verbindung $C_{22}H_{26}O_{6}N_{4}$ (s. oben). — B. Durch Einw. von Salzsäure auf die Natriumverbindung des 1.3.3-Tricyan-propen-carbonsäure-(1)-äthylesters in Wasser (Urushibara, Bl. Soc. chem. Japan 2, 284; C. 1928 I, 321). — Gelbe Krystalle. F: 190° (korr.).

α.γ-Dicyan-glutaconsäure-nitril-iminoäthyläther $C_9H_8ON_4 = (NC)_2C:CH\cdot CH(CN)\cdot C(:NH)\cdot O\cdot C_2H_5$ oder $(NC)_2CH\cdot CH:C(CN)\cdot C(:NH)\cdot O\cdot C_2H_5$ (H 878). Zur Konstitution des von Kötz, Zörnig $(J.\ pr.\ [2]\ 74.\ 435)$ beschriebenen Halbhydrats vgl. Urushibara, $Bl.\ chem.\ Soc.\ Japan\ 2\ [1927],\ 29.\ 278.$

- 1.1.8.8 Tetracyan propen $C_7H_2N_4 = (NC)_2CH \cdot CH : C(CN)_2$. B. Neben der Natriumverbindung aus Äthoxymethylen-malonitril und Natriummalonitril in Alkohol (URUSHIBARA, Bl. chem. Soc. Japan 2, 285; C. 1928 I, 321). Krystalle mit $1C_2H_6O$ (aus Alkohol). F: $211-212^{\circ}$. NaC₇HN₄ + H₂O. Nadeln (aus Wasser). Wird durch Salzsäure nicht verändert.
- 1-Brom-propen-tetracarbonsäure-(1.1.3.3)-tetraäthylester, α -Brom- α - γ -dicarboxy-glutaconsäure-tetraäthylester $C_{15}H_{21}O_8Br=(C_2H_5\cdot O_2C)_2CBr\cdot CH:C(CO_2\cdot C_2H_6)_2$ (EI 337). B. Entsteht aus α - γ -Dicarboxy-glutaconsäure-tetraäthylester bei der Einw. von 1 Mol Brom und 1 Mol Pyridin in Äther (URUSHIBARA, Bl. chem. Soc. Japan 3, 200; C. 1928 II, 1870) und beim Behandeln des Kupfersalzes mit 3 Atomen Brom in Chloroform (Faltis, de Roxas, M. 42, 462). Zur Bildung nach Guthzeit, Hartmann (J. pr. [2] 81, 350) vgl. Faltis, Pirsch, B. 60, 1625. Angenehm esterartig riechendes Öl. Unlöslich in Alkalilauge (U.).

Zersetzt sich bei längerem Erwärmen auf dem Wasserbad (Faltis, der Roxas, M. 42, 463). Geht beim Erhitzen auf 180—220° unter vermindertem Druck in 5-Oxo-2.5-dihydro-furantricarbonsäure-(2.2.4)-triäthylester $C_2H_5 \cdot O_2C \cdot C = CH$ (Syst. Nr. 2622) über (F.,

OC·O·C(CO₃·C₃H₅)₂ (Syst. Nr. 2022) doer (F., DE R., M. 42, 463; F., Pirsch, B. 60, 1630). Beim Kochen mit wäßrig-alkoholischer Salzsäure erhält man α-Chlor-glutaconsäure (Urushibara, Bl. chem. Soc. Japan 3, 202). Gibt bei der Einw. von Kaliumäthylat-Lösung bei —16° die Kaliumverbindung des α.γ-Dicarboxy-glutaconsäure-teträäthylesters, Diäthylcarbonat, polymeren α-Brom-acrylsäure-äthylester und andere Produkte (F., P., B. 60, 1627). Bei sehr langer Einw. von Natriumdicarbonat in Äther entsteht die Natriumverbindung des α.γ-Dicarboxy-glutaconsäure-teträäthylesters (Pirsch, B. 61, 33, 36). Liefert bei längerem Kochen mit Silberoxyd in Alkohol (F., P., B. 60, 1625) oder beim Kochen mit Trinatriumphosphat in absol. Alkohol (P., B. 61, 34, 36) Bicyclo-[0.1.1]-butan-tetracarbonsäure-(2.2.4.4)-dimalonsäure-(1.3)-oktaäthylester (Syst. Nr. 1050) (vgl. dazu Ingold, Shoppee, Soc. 1930, 1619); geringe Mengen dieses Esters entstehen ferner neben Natrium-α.γ-dicarboxy-glutaconsäure-tetraäthylester und Diäthylcarbonat beim Kochen mit wasserfreiem Natriumcarbonat in absol. Alkohol (P.). Destilliert man das bei der Einw. von Silberoxyd erhaltene Reaktionsprodukt unter vermindertem Druck, so bildet sich 6-Athoxy-pyron-(2)-dicarbonsäure-(3.5)-diäthylester (I., Sh.; vgl. F., P.). Beim Kochen mit Kaliumacetat in absol. Alkohol bilden sich Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester, α.γ-Dicarboxy-glutaconsäure-tetraäthylester, Äthylacetat und Diäthylcarbonat (P., B. 61, 34, 36). Beim Erhitzen mit Diäthylanilin auf 190—200° entstehen keine einheitlichen Produkte (FALTIS, DE ROXAS, M. 42, 463). Liefert beim Kochen mit Pyridin das Pyridinsalz des 6-Oxy-pyron-(2)-dicarbonsäure-(3.5)-diäthylesters (Pirsch, B. 61, 37). — Gibt mit Eisen(III)-chlorid keine Farbreaktion (F., DE R., M. 42, 462).

3. Tetracarbonsäuren $C_8H_8O_8$.

1. Buten-(1)-tetracarbonsäure-(1.1.4.4), $\alpha.\alpha'$ -Dicarboxy- Δ^{α} -dihydromuconsäure $C_8H_8O_8=(HO_9C)_9CH\cdot CH_9\cdot CH: C(CO_9H)_9$. B. Durch Verseifung des Tetraäthylesters mit alkoh. Kalilauge (Benary, Schinkoff, B. 56, 359). — Amorphe spröde Masse. Zerfließt an der Luft. — $Pb_3(C_9H_5O_8)_9$. Gelblich. Unlöslich in Wasser.

Buten - (1) - tetracarbonsäure - (1.1.4.4) - tetraäthylester C₁₆H₃₄O₈ = (C₂H₅·O₃C)₅CH·CH₂·CH·C(CO₂·C₂H₅)₃. B. Bei langsamem Eintragen von α.β-Dichlor-diāthyläther in eine siedende Lösung von Natriummalonester in Äther oder Benzol (Benary, Schinkopp, B. 56, 357). — Dickes Öl. Kp₁₃: 223—225° (unter geringer Verharzung). Leicht löslich in den üblichen organischen Lösungsmitteln, unlöslich in Wasser. — Reduziert ammoniakalische Silber-Lösung sofort. Gibt bei der Reduktion mit Zinkstaub und Eisessig Butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester. Liefert mit Brom in Chloroform unter Kühlung 1.2.4-Tribrom-butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester. Wird durch siedende wäßrige Alkalilaugen nicht verändert, durch siedende alkoholische Kalilauge zur freien Säure verseift. — Gibt mit Eisen(III)-chlorid in Alkohol eine blutrote Färbung.

Buten -(1)-tetracarbonsäure- (1.1.4.4) - äthylester - (1)-triamid- (1.4.4) $C_{10}H_{15}O_5N_3 = (H_2N \cdot CO)_2CH \cdot CH_2 \cdot CH \cdot C(CO_3 \cdot C_2H_5) \cdot CO \cdot NH_2$. B. Bei der Einw. von kaltem alkoholischem Ammoniak auf Buten-(1)-tetracarbonsäure-(1.1.4.4)-tetraäthylester (Benary, Schinkopf, B. 56, 358). — Nadeln (aus Wasser). F: 230° (Zers.). Schwer löslich in Wasser, unlöslich in den üblichen organischen Lösungsmitteln. — Reduziert ammoniakalische Silber-Lösung stark. Wird durch kalte verdünnte Alkalilauge langsam unter Ammoniak-Entwicklung verseift.

715

- Buten (1) tetracarbonsäure (1.1.4.4) tetraamid $C_8H_{12}O_4N_4 = (H_2N \cdot CO)_8CH \cdot CH_2 \cdot CH : C(CO \cdot NH_8)_8$. B. Aus Buten-(1)-tetracarbonsäure-(1.1.4.4)-tetraäthylester bei längerer Einw. von konzentriertem wäßrigem Ammoniak (Benary, Schinkopf, B. 56, 358). Nadeln (aus Wasser). Verändert sich von ca. 238° an und schmilzt unter Zersetzung bei 257°. Schwer löslich in Wasser, unlöslich in den üblichen organischen Lösungsmitteln.
- 2. Propen-(2)-tricarbonsaure-(1.1.3)-essigsaure-(2), β -Dicarboxymethylglutaconsaure (Isobutylentetracarbonsaure) $C_8H_8O_8=HO_2C\cdot CH:C(CH_1\cdot CO_2H)\cdot CH(CO_2H)_2$.

Tetraäthylester $C_{16}H_{54}O_8=C_5H_5\cdot O_3C\cdot CH:C(CH_2\cdot CO_2\cdot C_2H_5)\cdot CH(CO_3\cdot C_3H_5)_2$. B. Bei der Einw. von Natriummalonester auf β -Chlor-glutaconsäure-diäthylester in Alkohol, zuletzt auf dem Wasserbad (Ingold, Nickolls, Soc. 121, 1643). — Kp12: 220—2220 (unter geringer Zersetzung). — Liefert bei 48-stdg. Kochen mit 20 % iger Salzsäure β -Carboxymethyl-glutaconsäure.

- β -[Carboxy-cyan-methyl]-glutaconsäure-triäthylester (Cyanisobutylentricarbonsäure-triäthylester) $C_{14}H_{19}O_6N=C_2H_5\cdot O_2C\cdot CH:C(CH_2\cdot CO_2\cdot C_2H_5)\cdot CH(CN)\cdot CO_2\cdot C_2H_5$. B. Bei der Einw. von Natriumcyanessigester auf β -Chlor-glutaconsäure-diäthylester in Alkohol (INGOLD, NICKOLLS, Soc. 121, 1644). Nicht rein erhalten. Kp₁₂: ca. 230° (unter teilweiser Zersetzung).
- 3. Buten-tetracarbonsäure-(1.1.3.3), α -Methyl- α . γ -dicarboxy-glutaconsäure $C_8H_8O_8=(HO_2C)_8C:CH\cdot C(CH_2)(CO_2H)_8$.

Tetraäthylester $C_{16}H_{34}O_8 = (C_2H_5 \cdot O_1C)_2C: CH \cdot C(CH_3)(CO_2 \cdot C_2H_5)_8$ (H 879; E I 337). Anlagerung von Brom in Ather: Urushibara, *Bl. chem. Soc. Japan* 3, 201; *C.* 1928 II, 1870. Liefert bei 2-stdg. Einw. von 2 Mol Natriumcyanessigester in Alkohol bei Zimmertemperatur Methylmalonsäure-diäthylester und γ -Carboxy- α -cyan-glutaconsäure-triäthylester (Ingold, Perren, *Soc.* 119, 1599).

- 4. 2-Methyl-propen-tetracarbonsäure-(1.1.3.3), β -Methyl-a.y-dicarboxyglutaconsäure $C_8H_8O_8=(HO_2C)_2CH\cdot C(CH_3):C(CO_2H)_2$.
- 2-Methyl-1.3-dicyan-propen-dicarbonsäure-(1.3)-dimethylester, β -Methyl- α y-dicyan-glutaconsäure-dimethylester $C_{10}H_{10}O_4N_2=CH_3\cdot O_3C\cdot CH(CN)\cdot C(CH_3):C(CN)\cdot CO_3\cdot CH_3$. B. Die Natriumverbindung entsteht aus β -Athoxy- α -cyan-crotonsäure-methylester und Natrium-cyanessigsäure-methylester in Methanol (URUSHIBARA, Bl. chem. Soc. Japan 3, 264; C. 1929 I, 226). Natrium verbindung. Krystallinisch. $AgC_{10}H_3O_4N_3$. Krystalle (aus absol. Alkohol). Brechungsindices der Krystalle: U.
- 2-Methyl-1.3-dicyan-propen-dicarbonsäure-(1.3)-methylester-äthylester, β -Methyl- α . γ -dicyan-glutaconsäure-methylester-äthylester $C_{11}H_{12}O_4N_2=CH_2\cdot O_2C\cdot CH(CN)\cdot C(CH_3):C(CN)\cdot CO_2\cdot C_2H_5$ oder $C_2H_5\cdot O_2C\cdot CH(CN)\cdot C(CH_3):C(CN)\cdot CO_2\cdot CH_3$. B. Die Natriumverbindung entsteht bei der Kondensation von β -Athoxy- α -cyan-crotonsäure-äthylester mit Natrium-cyanessigsäure-methylester in Methanol oder von β -Athoxy- α -cyan-crotonsäure-methylester mit Natrium-cyanessigsäure-äthylester in Alkohol (UBUSHIBARA, B). C: Aben. Soc. Japan 3, 263; C: 1929 I, 225). AgC₁₁H₁₁O₄N₂. Nadeln (aus absol. Alkohol). Röntgenogramm und Brechungsindices der Krystalle: U. Geht bei langem Kochen mit Alkohol in ein unlösliches Produkt über.
- 2-Methyl-1.3-dicyan-propen-dicarbonsäure-(1.3)-diäthylester, β -Methyl- α . γ -dicyan-glutaconsäure-diäthylester $C_{12}H_{14}O_4N_2=C_2H_5\cdot O_2C\cdot CH(CN)\cdot C(CH_3)\cdot C(CN)\cdot CO_3\cdot C_2H_5$. B. Die Natriumverbindung entsteht durch Einw. von Natriumcyanessigester auf β -Athoxy- α -cyan-crotonsäure-äthylester in Alkohol (Urushibara, Bl. chem. Soc. Japan 3, 104; C. 1928 II, 33). Rote Krystallmasse. Löslich in Ather. Na $C_{12}H_{13}O_4N_2$. Krystalle (aus absol. Alkohol). $AgC_{12}H_{13}O_4N_2$. Krystalle (aus Alkohol).

4. Tetracarbonsāuren $C_9H_{10}O_8$.

1. Buten-(1)-dicarbonsäure-(1.4)-malonsäure-(2) $C_9H_{10}O_t$ = $HO_9C\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot

Triäthylester $C_{15}H_{22}O_8=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot C(:CH\cdot CO_2\cdot C_2H_5)\cdot CH(CO_2H)\cdot CO_2\cdot C_2H_5$. B. s. im folgenden Artikel. — Öl. Liefert beim Kochen mit konz. Salzsäure höherschmelzende Buten-(1)-dicarbonsäure-(1.4)-essigsäure-(2) (FARMER, Soc. 121, 2018).

Tetraäthylester $C_{17}H_{26}O_8=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot C(:CH\cdot CO_2\cdot C_2H_5)\cdot CH(CO_2\cdot C_2H_5)_2$. B. Neben geringen Mengen des Triäthylesters bei der Einw. von Natriummalonester auf trans-trans-Muconsäurediäthylester (F: 62°) in Äther bei gewöhnlicher Temperatur (FARMER, Soc. 121, 2017). — Öl. Kp₁₄: 215°. — Liefert beim Kochen mit konz. Salzsäure höherschmelzende Buten-(1)-dicarbonsäure-(1.4)-essigsäure-(2).

Buten - (1) - dicarbonsäure - (1.4) - cyanessigsäure - (2) - triäthylester $C_{15}H_{21}O_6N=C_2H_5\cdot O_2C\cdot CH_2\cdot CH_2\cdot C(:CH\cdot CO_2\cdot C_2H_5)\cdot CH(CN)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Natriumcyanessigester auf trans-trans-Muconsäurediäthylester in Alkohol + Ather bei gewöhnlicher Temperatur (Farmer, Soc. 121, 2017). — Gelbliches Öl. Kp₂₀: 210° (unter geringer Zersetzung). Zersetzt sich bei der Destillation bei mehr als 20 mm Druck vollständig. — Liefert bei der Oxydation mit Permanganat in verd. Natronlauge bei 0° β -Oxo- α -cyan-adipinsäure-monoäthylester und Oxalsäure. Gibt bei mehrtägigem Aufbewahren mit konz. Schwefelsäure, Verdünnen mit Wasser und nachfolgendem Kochen höherschmelzende Buten-(1)-dicarbonsäure-(1,4)-essigsäure-(2), 2.6-Dioxy-pyridin und β -[2.6-Dioxy-pyridyl-(4)]-propionsäure.

2. Penten-(1)-tetracarbonsäure-(1.1.3.3), a-Äthyl-a.y-dicarboxy-glutaconsäure $C_9H_{10}O_8=CH_3\cdot CH_2\cdot C(CO_2H)_2\cdot CH\cdot C(CO_2H)_2$.

Tetraäthylester $C_{17}H_{26}O_8 = CH_3 \cdot CH_2 \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH : C(CO_2 \cdot C_2H_5)_2$ (H 879; E I 337). Ultraviolett-Absorptionsspektrum in Alkohol: Stobbe, Wildensee, $J.\ pr.\ [2]\ 115,\ 173.$

5. Tetracarbonsäuren $C_{10}H_{12}O_8$.

- 1. Penten-(4)-tricarbonsäure-(1.3.5)-essigsäure-(2) $C_{10}H_{12}O_8=HO_2C\cdot CH:$ $CH\cdot CH(CO_2H)\cdot CH(CH_2\cdot CO_2H)_2$. B. Beim Kochen von Penten-(4)-hexacarbonsäure-(1.1.3.3.5.5)-malonsäure-(2)-oktaäthylester mit 20% iger Salzsäure (Ingold, Perren, Thorpe, Soc. 121, 1786). Sirup. Gibt bei der Oxydation mit alkal. Permanganat-Lösung Oxalsäure und Methantriessigsäure.
- 2. **4-Methyl-penten-(2)-tetracarbonsäure-(1.1.5.5)** $C_{10}H_{12}O_8 = (HO_2C)_2CH \cdot CH \cdot CH \cdot CH(CO_2H)_2$.

Tetraäthylester $C_{18}H_{28}O_8 = (C_2H_5 \cdot O_2C)_2CH \cdot CH : CH \cdot CH(CH_3) \cdot CH(CO_2 \cdot C_2H_5)_2$. B. Durch Kondensation von Crotonaldehyd mit Malonester in Gegenwart von Diäthylamin in der Kälte (Staudinger, Ruzicka, Helv. 7, 446). — Dickes Öl. Kp_{0.5}: 174—175°. — Liefert beim Kochen mit 20% iger Salzsäure 4-Methyl-penten-(2)-dicarbonsäure-(1.5).

3. Tetracarbonsäuren $C_nH_{2n-10}O_8$.

1. Propadien-tetracarbonsäure, Allentetracarbonsäure $\mathrm{C_7H_4O_8} = (\mathrm{HO_2C)_2C:C:C(CO_2H)_2}.$

Tetraäthylester $C_{15}H_{20}O_8 = (C_2H_5 \cdot O_2C)_2C : C : C(CO_2 \cdot C_2H_5)_2$. Die von Faltis, Pirsch (B. 60, 1626) so formulierte Verbindung vom Schmelzpunkt 84° ist als Bievelo-[0.1.1]-butantetracarbonsäure-(2.2.4.4)-dimalonsäure-(1.3)-oktaäthylester (Syst. Nr. 1050) erkannt worden: die von Faltis, Pirsch aus α-Brom-α-γ-dicarboxy-glutaconsäure-tetraäthylester durch Einw. von Silberoxyd und Destillation unter vermindertem Druck erhaltene und ebenfalls als Allentetracarbonsäureäthylester angesehene Substanz ist 6-Äthoxy-pyron-(2)-dicarbonsäure-(3.5)-diäthylester (Syst. Nr. 2626) gewesen (Ingold, Shoppee, 1930, 1619).

2. Butadien - (1.3) - tetracarbonsäure - (1.1.4.4), $\alpha.\alpha'$ - Dicarboxy - mucon - säure $C_8H_6O_8=(HO_2C)_2C:CH\cdot CH:C(CO_9H)_8$.

Tetraäthylester $C_{16}H_{22}O_8=(C_2H_5\cdot O_2C)_2C$: $CH\cdot CH\cdot C(CO_2\cdot C_2H_5)_2$. B. Aus 1.2.4-Tribrom-butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester beim Erwärmen mit Pyridin auf dem Wasserbad oder beim Erhitzen auf 120—150° unter 13 mm Druck (Benary, Schinkopf, B. 56, 360). — Nadeln (aus Alkohol). F: 56—57°. Kp_{13} : ca. 250°. Unlöslich in Wasser, ziemlich leicht löslich in Alkohol, sehr leicht in Chloroform und Äther. — Reduziert ammoniakalische Silber-Lösung und entfärbt Permanganat und Bromwasser. Gibt bei der Reduktion mit Zinkstaub und Eisessig Butan-tetracarbonsäure-(1.1.4.4)-tetraäthylester. Bei mehrstündigem Kochen mit rauchender Salzsäure erhält man $\beta.\beta'$ -Diäthoxy-α.α'-dicarboxy-adipinsäure und $\beta.\beta'$ -Diäthoxy-adipinsäure.

E. Pentacarbonsäuren.

1. Pentacarbonsäuren C_nH_{2n-8}O₁₀.

1. Propan - pentacarbonsäure - (1.1.2.3.3), $\alpha.\alpha'$ - Dicarboxy - tricarballylsäure $C_8H_8O_{10}=(HO_2C)_2CH\cdot CH(CO_2H)\cdot CH(CO_2H)_2$.

Pentaäthylester $C_{18}H_{28}O_{10}=(C_2H_5\cdot O_2C)_2CH\cdot CH(CO_2\cdot C_2H_5)\cdot CH(CO_2\cdot C_2H_5)_2$ (H 881). B. Neben anderen Produkten bei der Kondensation von $\alpha.\alpha$ -Dichlor-acetessigsäure-äthylester mit Natriummalonester in Alkohol (Gault, Klees, Bl. [4] 39, 893). — Kp₁₅: 223°.

2. Butan - pentacarbonsäure - (1.1.2.3.4), $\alpha.\beta.\beta'$ - Tricarboxy - adipinsäure $C_9H_{10}O_{10} = HO_2C \cdot CH_2 \cdot CH(CO_2H) \cdot CH(CO_2H) \cdot CH(CO_2H)_2$.

1-Cyan-butan-tetracarbonsäure-(1.2.3.4)-tetraäthylester, β - β '-Dicarboxy- α -cyan-adipinsäure-tetraäthylester $C_{17}H_{25}O_8N=C_2H_5\cdot O_2C\cdot CH_2\cdot CH(CO_2\cdot C_2H_5)\cdot CH(CO_2\cdot C_2H_5)\cdot CH(CN)$ $CO_2\cdot C_2H_5$. B. Neben anderen Verbindungen bei der Einw. von Natriumevanessigester auf Aconitsäure-triäthylester, β -Chlor-tricarballylsäure-triäthylester oder Citronensäuretriäthylester in siedendem Alkohol (Ingold, Soc. 119, 344, 347, 351, 353). — Zähflüssiges Öl. Kp₁₁: 230°. — Liefert bei aufeinanderfolgender Behandlung mit kalter konzentrierter Schwefelsäure, siedender verdünnter Schwefelsäure und siedender konzentrierter Salzsäure Butan-tetracarbonsäure-(1.2.3.4).

3. Pentacarbonsäuren $C_{10}H_{12}O_{10}$.

1. Pentan-pentacarbonsäure-(1.2.3.3.5), $\beta.\gamma.\gamma$ -Tricarboxy-pimelinsäure $\mathrm{C_{10}H_{12}O_{10}} = \mathrm{HO_2C\cdot CH_2\cdot CH_2\cdot C(CO_2H)_2\cdot CH(CO_2H)\cdot CH_2\cdot CO_2H}.$

3-Cyan-pentan-tetracarbonsäure-(1.2.3.5) -tetraäthylester, $\beta.\gamma$ -Dicarboxy- γ -cyan-pimelinsäure - tetraäthylester $C_{18}H_{27}O_{6}N=C_{2}H_{5}\cdot O_{2}C\cdot CH_{2}\cdot CH_{2}\cdot C(CN)(CO_{2}\cdot C_{2}H_{5})\cdot CH(CO_{2}\cdot C_{2}H_{5})\cdot CH_{2}\cdot CO_{2}\cdot C_{2}H_{5}$. B. Aus der Natriumverbindung des α-Cyan-tricarballylsäure-triäthylesters bei der Umsetzung mit β -Jod-propionsäure-äthylester oder β -Chlor-propionsäure-äthylester in Alkohol (Küster, H. 130, 20). — Zähes Öl. Kp₈₋₁₀: 227—228°. Schwer löslich in Wasser, leicht in Alkohol und Äther. — Gibt bei 25-stdg. Erwärmen mit konz. Salzsäure auf dem Wasserbad Pentan-tetracarbonsäure-(1.2.3.5).

- 2. Butan-tetracarbonsäure-(1.2.2.4)-essigsäure-(3), $\beta.\beta$ -Dicarboxy- β' -carboxymethyl-adipinsäure (Isopentanpentacarbonsäure) $C_{10}H_{12}O_{10} = (HO_2C \cdot CH_2)_2CH \cdot C(CO_2H)_2 \cdot CH_2 \cdot CO_2H$.
- 2-Cyan-butan-tricarbonsäure -(1.2.4)-essigsäure -(3)-tetraäthylester (Cyanisopentan-tetracarbonsäuretetraäthylester) $C_{18}H_{27}O_8N = (C_2H_5 \cdot O_2C \cdot CH_2)_2CH \cdot C(CN)(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Aus der Natriumverbindung des Cyan-isobutantricarbonsäure-triäthylesters (E I 2, 333) und Jodessigsäureäthylester in siedendem Alkohol (INGOLD, Nickolls, Soc. 121, 1647). Dickflüssiges Öl. Kp₁₀: 222—224°. Liefert bei Einw. von kalter konzentrierter Schwefelsäure und nachfolgendem Kochen mit verd. Schwefelsäure und mit 20 %iger Salzsäure β -Carboxy- β' -carboxymethyl-adipinsäure.
- 3. Methan triessigsäure malonsäure $C_{10}H_{12}O_{10} = (HO_2C)_2CH \cdot C(CH_2 \cdot CO_2H)_3$. Methan-triessigsäure-cyanessigsäure-tetraäthylester (Cyanmethantetraessigsäuretetraäthylester) $C_{18}H_{27}O_8N = C_2H_5 \cdot O_2C \cdot CH(CN) \cdot C(CH_2 \cdot CO_2 \cdot C_2H_5)_3$. B. Durch Einw. von Natriumcyanessigester auf β -Carboxymethyl-glutaconsäure-triäthylester in siedendem Alkohol (Ingold, Nickolls, Soc. 121, 1645). Gelbliches zähflüssiges Öl. Kp₁₃: 234—235°. Liefert bei Einw. von konz. Schwefelsäure und nachfolgendem Kochen mit verd. Schwefelsäure Methantetraessigsäure.

2. Pentacarbonsäuren C_nH_{2 n-10}O₁₀.

Propen-pentacarbonsăure-(1.1.2.3.3), $\alpha.\gamma$ -Dicarboxy-aconitsăure $C_8H_6O_{10}=(HO_2C)_2CH\cdot C(CO_2H):C(CO_2H)_2$.

Pentamethylester C₁₃H₁₆O₁₀ = (CH₃·O₂C)₂CH·C(CO₂·CH₃):C(CO₂·CH₃)₂ (H 882).

H 882, Z. 20 v. o. statt "Phenylhydrazinodicarboxytricarballylsäuretrimethylester" lies "Phenylhydrazinodicarbomethoxytricarballylsäuretrimethylester".

[Syst. Nr. 192

1.3-Dicyan-propen-tricarbonsäure-(1.2.3)-triäthylester, α . γ -Dicyan-aconitsäure-triäthylester $C_{14}H_{16}O_{6}N_{2}=C_{2}H_{5}\cdot O_{5}C\cdot CH(CN)\cdot C(CO_{2}\cdot C_{2}H_{5}):C(CN)\cdot CO_{2}\cdot C_{2}H_{5}$ (H 882). Zur Konstitution des von Errera, Perciabosco (B. 34, 3704) beschriebenen Halbhydrats vgl. Urushibara, Bl. chem. Soc. Japan 2 [1927], 29, 278.

F. Hexacarbonsäuren.

1. Hexacarbonsäuren $C_nH_{2n-10}O_{12}$.

1. Äthanhexacarbonsäure $C_8H_6O_{12} = (HO_2C)_3C \cdot C(CO_2H)_2$.

Hexaäthylester $C_{30}H_{30}O_{12} = (C_2H_5 \cdot O_2C)_3C \cdot C(CO_2 \cdot C_2H_5)_3$ (H 883). Darstellung durch Elektrolyse von Natrium-methantricarbonsäure-triäthylester in wäßr. Lösung: Philippi, Hanusch, v. Wacek, B. 54, 900. — Krystalle (aus Äther). F: 101° . — Reagiert nicht mit Ammoniak.

- 2. Propan hexacarbonsäure (1.1.2.2.3.3), $\alpha.\beta.\alpha'$ Tricarboxy tricarbally|säure $C_9H_8O_{12}=(HO_2C)_2CH\cdot C(CO_2H)_2\cdot CH(CO_2H)_2$.
- 1.3 Dicyan propan tetracarbonsäure (1.2.2.3) tetramethylester $C_{13}H_{14}O_8N_2 = CH_3 \cdot O_2C \cdot CH(CN) \cdot C(CO_2 \cdot CH_3)_2 \cdot CH(CN) \cdot CO_2 \cdot CH_3$ (H 884). B. Zur Bildung aus Mesoxalsäuredimethylester und Cyanessigsäuremethylester in Gegenwart von Piperidin vgl. Corson, Hazen, Thomas, Am. Soc. 50, 914. Krystalle (aus Methanol oder verd. Essigsäure). F: 118° bis 120° (korr.). Sehr leicht löslich in Aceton, löslich in Alkohol, Chloroform und Benzol, schwer löslich in Äther, unlöslich in Toluol und Petroläther.
- 1.3 Dicyan propan tetracarbonsäure (1.2.2.3) dimethylester (1.3) diäthylester-(2.2) $C_{15}H_{18}O_8N_2 = CH_3 \cdot O_2C \cdot CH(CN) \cdot C(CO_2 \cdot C_2H_5)_3 \cdot CH(CN) \cdot CO_2 \cdot CH_3$ (H 884). B. Zur Bildung aus Mesoxalsäurediäthylester und Cyanessigsäuremethylester in Gegenwart von Piperidin vgl. Corson, Hazen, Thomas, Am. Soc. 50, 915. F: 114—115° (korr.). Liefert beim Kochen mit 20% iger Salzsäure Tricarballylsäure.
- 3. Methantrimalonsäure (Isobutanhexacarbonsäure) C₁₀H₁₀O₁₂=CH[CH(CO₂H)₃]₃.

Methan-dimalonsäure-cyanessigsäure-pentaäthylester $(\omega.\omega'$ -Dicarboxy- ω'' -cyan-methantriessigsäure-pentaäthylester) $C_{20}H_{20}O_{10}N=C_2H_5\cdot O_2C\cdot CH(CN)\cdot CH[CH(CO_2\cdot C_2H_5)_2]_2\cdot B$. Bei längerer Einw. von Cyanessigsäureäthylester auf $\alpha.\gamma$ -Dicarboxy-glutaconsäure-tetraäthylester in Gegenwart von Piperidin bei Zimmertemperatur, neben anderen Verbindungen (Ingold, Perren, Soc. 121, 1418). — Öl. Kp₁₇: 242°. — Wird durch Natriumäthylat-Lösung in γ -Carboxy- α -cyan-glutaconsäure-triäthylester und Malonester gespalten. Gibt bei der Hydrolyse mit starken Mineralsäuren Methantriessigsäure.

4. Pentan-hexacarbonsäure-(1.1.3.3.5.5), $\alpha.\gamma.\gamma.\alpha'$ -Tetracarboxy-pimelinsäure $C_{11}H_{12}O_{12}=(HO_2C)_2CH\cdot CH_2\cdot C(CO_2H)_2\cdot CH_2\cdot CH(CO_2H)_2$.

Hexaäthylester $C_{23}H_{36}O_{12} = (C_2H_5 \cdot O_2C)_2CH \cdot CH_2 \cdot C(CO_3 \cdot C_2H_5)_2 \cdot CH_2 \cdot CH(CO_3 \cdot C_2H_5)_2$ (H 885). Bei der Einw. von α.β-Dibrom-propionsäure-äthylester und Natriumäthylat in Alkohol + Äther unter Kühlung entstehen Paramethylenmalonsäure-diäthylester (S. 647) und Cyclopentan-pentacarbonsäure-(1.1.3.3.4)-pentaäthylester (Lennon, Perkin, Soc. 1928, 1520, 1525).

Hexanitril, 1.1.3.3.5.5 - Hexacyan - pentan $C_{11}H_6N_6 = (NC)_2CH \cdot CH_2 \cdot C(CN)_3 \cdot CH_2 \cdot CH(CN)_2$. B. Durch Kochen, von Methylen-bis-malonitril mit Wasser über freier Flamme (Diels, Conn, B. 56, 2078). Durch Einw. von Formaldehyd-Lösung auf Malonitril bei Gegenwart von Piperidin in Alkohol bei gewöhnlicher Temperatur (D., C., B. 56, 2080, 2081). — Blättchen (aus Alkohol). Färbt sich bei ca. 180° braun, schmilzt bei 228° und zersetzt sich bei 275°. Fast unlöslich in kaltem Wasser, sehr schwer löslich in Benzol, Ather und Chloroform, ziemlich schwer in Eisessig, ziemlich leicht in Methanol, sehr leicht in Aceton. Löst sich in kalter Soda-Lösung mit gelber Farbe. Ebullioskopisches Verhalten in Aceton: D., C., B. 56, 2081. Reagiert in Wasser schwach saurer gegen Phenolphthalein, nach längerem Aufbewahren oder kurzem Kochen auch gegen Lackmus. — Gibt bei 1-stdg. Erwärmen mit 50 Tln. Wasser auf dem Wasserbad 3-Oxo-4.4′-dicyan-dicyclobutyliden-(1.1′)-dicarbonsäure-(2.2′)-diamid.

2. Hexacarbonsäuren $C_nH_{2n-12}O_{12}$.

Äthylen- α . α -dicarbonsäure- β . β -dimalonsäure (Iso butylen hexacarbon-säure) $C_{10}H_2O_{12} = (HO_2C)_2C:C[CH(CO_2H)_2]_2$.

Hexamethylester $C_{16}H_{20}O_{13} = (CH_3 \cdot O_2C)_2C \cdot C[CH(CO_2 \cdot CH_3)_3]_2$. B. Neben anderer Verbindungen bei der Einw. von Phosgen auf Natrium-malonsäuredimethylester in Benzol (Schroffer, B. 59, 981). — Krystalle (aus Alkohol). F: 114—115°. Schwer löslich in Wasser, leicht in organischen Lösungsmitteln. Verbraucht bei der Titration gegen Phenolphthalein 1 Mol Natronlauge. — Natriumsalz. Gelb. Leicht löslich in Wasser.

G. Oktacarbonsäuren.

Penten - (4) - hexacarbonsäure - (1.1.3.3.5.5) - malonsäure - (2) $C_{14}H_{12}O_{16} = (HO_3C)_2C:CH\cdot C(CO_2H)_2\cdot CH[CH(CO_2H)_2]_2$.

Oktaäthylester $C_{30}H_{44}O_{16} = (C_2H_5 \cdot O_2C)_2C: CH \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH[CH(CO_2 \cdot C_2H_5)_2]_2$. B. Neben überwiegenden Mengen Cyclobutan-tetracarbonsäure-(1.1.3.3)-dimalonsäure-(2.4)-oktaäthylester vom Schmelzpunkt 103° bei längerem Aufbewahren von $\alpha.\gamma$ -Dicarboxy-glutaconsäure-tetraäthylester in Gegenwart von Piperidin (Ingold, Perren, Thorpe, Soc. 121, 1785). Entsteht aus Cyclobutan-tetracarbonsäure-(1.1.3.3)-dimalonsäure-(2.4)-oktaäthylester beim Schmelzen oder beim Aufbewahren in Lösung, namentlich bei Gegenwart von Piperidin (I., P., Th.). — Öl. Gibt mit Eisen(III)-chlorid-Lösung eine hellbraune Färbung. Reduziert neutrale Permanganat-Lösung sofort. Geht in Berührung mit wenig Piperidin in Cyclobutan-tetracarbonsäure-(1.1.3.3)-dimalonsäure-(2.4)-oktaäthylester über. Bei der Einw. von Natriumäthylat-Lösung erhält man $\alpha.\gamma$ -Dicarboxy-glutaconsäure-tetraäthylester. Gibt beim Kochen mit 20% iger Salzsäure Penten-(4)-tricarbonsäure-(1.3.5)-essigsäure-(2).

Register.

Λ.	Acetyl-acetonchloracetimid	Aconitsäuretrimethylester
	193.	694.
Acet- s. a. Acetyl-, Essig=	— bromid 176.	Acryloylchlorid 388.
säure	- butylacetat 169.	Acrylsäure 383.
Acet-amid 177.	- carboxypropionylperoxyd	Acrylsäure, polymere 384.
amidbromid 180.	553.	Acrylsäure-äthylester 386.
- amidin 183.	— chlorid 175.	— äthylester, polymerer 387.
amidjodid 181.	elaidinhydroxamsäure	- allylester 388.
anhydrid 170.	acetat 443.	- amid 388.
Acetate 113.	— elaidoylhydroxylamin 443.	butylester 388.
Acet-bromamid 180.	Acetylen-carbonsäure 449.	chlorid 388.
— chloramid 180.	dicarbonsäure 670.	- isoamylester 388.
hydroxamsäure 184.	— dicarbonsäurediäthylester	— methylester 385.
- hydroximsäureäthylester	671.	methylester, polymerer
184.	dicarbonsauredimethyl=	386.
- hydroximsäurechlorid 184.		— nitril 388.
- iminoäthyläther 181.	- dicarbonsäurehydroxyl	Adipinsäure 572.
iminomethyläther 181.	amid 671.	Adipinsäure-äthylester 574.
nitrolsäure 185.	— tetracarbonsäure 699.	— äthylesterchlorid 575.
Aceto-dibromhydrin 139.	Acetylenyl-pelargonsäure 456.	butylester 574.
— dipalmitin 339.	— pelargonsäureäthylester	— diathylester 574.
- distearin 356.	457.	— diamid 576.
Acetoinacetat 169.	Acetyl-fluorid 175.	— dibutylester 575.
Acetol-acetat 168.	— formhydroximsäureäthyl=	— dichlorid 575.
— acetatdiäthylacetal 168.	ester 184.	- dihydrazid 576.
- äthyllactolid 28.	— formoximinoäthyläther	- dimethylester 574.
— formiat 34.	184.	— dinitril 576.
Acetonchloroformacetat 143.	— hydrazin 185.	- dioctylester 575.
Acetonitril 181.	- hydroperoxyd 174.	— dipropylester 574.
Acetonsemioxamazon 513.	— isobutyrylhydroxylamin	- propylester 574.
Acetoximinoäthyläther 184.	262.	Adipylchlorid 575.
Acetoxy-aceton 168.	— jodid 177.	Äthan-bisessigsäureäthyl=
— acetondiäthylacetal 168.	— metaborat 175.	esterbromessigsäure 688.
— äthylallylsulfid 155.	— nitrat 175.	— dicarbonsaure 540, 562.
— äthylbutylsulfid 155.	— nonylacetat 169.	- dicarbonsäurediessigsäure
— butadienaldehyd 169.	— oleinhydroxamsäureacetat	tetraäthylester 703.
— butyraldehyddimethyl:	441.	- essigsäurebisbromessig-
acetal 168.	— oleoylhydroxylamin 441.	säuretriäthylester 688.
— butyraldoxim 168.	— oxamäthan 509.	- hexacarbonsäurehexa-
— diäthylaceton 169.	— oxamidsäureäthylester	äthylester 718.
— dipropylaceton 169.	509.	— mercarbid 514.
— isopropylsulfonsäure 167.	— peroxyd 174.	— tetracarbonsäure 699.
— laurinaldehyd 169.	— peroxydbernsteinsäure	— tetracarbonsäuretetra:
— methansulfonsäure 166.	553.	äthylester 699.
— methylacetamid 180.	— phosphorigsäure 175.	— tetracarbonsäuretetra:
— nonylaldehyd 169.	— propylacetat 169.	amid 700.
- oxopentadien 169.	— sabinaldehyd 169.	— tetracarbonsäuretetra:
— pelargonaldehyd 169.	— schwefelsäure 174.	hydrazid 700.
— propansulfonsäure 167.	Aconitsäure 693, 694.	— tetracarbonsäuretetra:
Acetpersäure 174.	Aconitsäure-methylester 694.	methylester 699.
Acetyl- s. a. Acet-, Aceto	— triäthylester 694.	tricarbonsäure 681.

Athyl-capronat 285.

Athan-tricarbonsauretriathyl= |

Äthylenglykol-distearat 354.

ester 681. capronsäure 304. methylätheracetat 154. – triessigsäure 687. sorbat 452. capronsäureäthylester 304. — triessigsäuretriäthylester capronsäurechlorid 304. Äthylen-maleinat, polymeres 688. caprylat 302. 646. - trisbromessigsäure 688. caprylsäure 313. malonat, polymeres 529. — trisbromessigsäuretri= sebacinat, polymeres 609.
succinat, dimeres 552. carboxybernsteinsäure und äthylester 688. Derivate 685. Athenyl- s. Vinyl-. carboxypimelinsäure 691. - succinat, polymeres 552. Äthinyl- s. Acetylenyl-. Äthylchlor-åthylmalonsäure- tetracarbonsäure 709. Äthoxalylchlorid 508. diäthylester 594. — tetracarbonsäuretetra≤ Äthoxy-acetoxyäthan 155. allylmalonsäurediäthykäthylester 709. - acetoxybutan 157. ester 666. tetracarbonsäuretetra= acetoxydiäthyläther 155. malonsäurediäthylester methylester 709. - acetoxypropan 156. --- tricarbonsäure 692. 571. - äthylacetat 155, 166. malonsäurediamid 571. -- tricarbonsäuretriäthyl= — methylacetat 163. Äthylcrotonsäure 408, 409. ester 692. - methylbutyrat 250. Äthyl-erucat 447. Äthylcrotonsäure-äthylester - methylformiat 34. formiat 26. 408. methylpropionat 222. - amid 408, 409. — formylformal 34. Äthyl-acetat 129. chlorid 408. — fumarsäure 659. acrykaure 399, 401. – nitril 409. fumarsäureäthylester 659. — acrylsäureäthylester 399, Äthylcyan-essigsäure 570. — fumarsäurediäthylester 401. - essigsäureäthylester 570. 659. – acrylsäureamid 400. essigsäuremethylester 570. glutaconsäure 662. — glutarat 565. acrylsäurechlorid 400. glutaconsäurediäthylester – glutarsäure 590. – acrylsäurenitril 400. 697. — adipat 574. Äthyl-cyanid 225. glycerintriacetat 162. äthylenglykoldiacetat 156. dibutylorthoacetat 141. glycerintriformiat 34. allylacetat 151. dicarboxyglutaconsäure= — heptylmalonsäurediäthyl= tetraäthylester 716. ester 617. amylmalonsäurediäthyl= ester 611. dichlortribromäthyläther hexandiolacetat 158. - arachinat 370. 205. – hexandiolbutyrat 249. — behenat vgl. 374. dicyanglutarsäurediamid -- hexencarbonsäureamid bernsteinsäure 584. 418. 706. bernsteinsäuredichlorid dipropylorthoacetat 139. hexencarbonsäurenitril dodecylessigsäure 343. 418. hexensäure 414. — brommalonsäurediäthyl= — dodecylmalonsäuredi= hexylcarbinolformiat 32. ester 571. äthylester 625. brommalonsäurediamid eläostearat 466, 467. — hexylessigsäure und Deris vate 313. elaidat 443. Äthylen- s. a. Äthylenglykol-. hexylmalonsäure 613. — brompropylmalonsäurehexylmalonsäurediäthyl= diathylester 599. Athylen-adipat, polymeres - butandicarbonsäure 601. 575. ester 613. Äthyliden-bernsteinsäure 660. - carbonsäure 383. – butandicarbonsäure≈ biscyanessigsäureamid 704. diäthylester 600. cyanid 554. bisoxamid 510. Athylbuten-carbonsäure 412. diacetat 155. cyanessigsäure 655. — dicarbonsäure 631. – carbonsäureäthylester 412. - dicarbonsäuredimalon= cyanessigsäureäthylester carbonsăureamid 412. - carbonsäurechlorid 412. 655. säurehexamethylester diacetat 167. dicarbonsäureäthylesters dimalonester 704. nitril 667. - dimalonsäuretetraäthyl= dimalonitril 704. dicarbonsăuredinitril 667. ester 702. fumarat, polymeres 639. dimalonsäuretetraäthyl= Äthylbuttersäure 291. ester 704. Äthylenglykol- s. a. Äthylen-. Athylbutyl-acetylchlorid 304. dimalonsäuretetranitril — essigsäure 304. Athylenglykol-acetat 154. 704. - essigsäureäthylester 304. äthylätheracetat 155. dipropionat 223. diacetat 155. essigsäurechlorid 304. glykolacetatpropionat 223. dicaprylat 303 — malonat 528. glykoläthylätheracetat dieläostearat 468. -- malonsäure 604. 166. dilaurat 320 malonsäurediäthylester - glykoldiacetat 167. dimyristat 327. 604, 607. glykoldipropionat 223. dioleat 439. Athyl-butyrat 244. - malonester 654. dipalmitat 338. - caprinat 311.

- malonitril 655.

— caprinsăure 321.

disorbat 452.

Äthylidenmalonsäure 654. Allyldimethylallylmalons Athyl-octylsuccinat 552. Äthylidenmalonsäure-äthylsaurediathylester 678. oleat 438. Allylendicarbonsäure 671. esteramid 655. oxalat 504 diathylester 654. palmitat 336. Allyl-essigsäure 399. — dinitril 655. palmitinsäure 367. essigsäureäthylester 399. nitril 655. formiat 32. pentancarbonsäurenitril Athylidenpropionsäure und heptadiencarbonsaures 305. Derivate 400. pentensăure 412. nitril 462. pentensäureäthylester 412. Athylisoamyl-acetylchlorid isocapronsäure 417. pentensäureamid 412. malonsäure 658. 309. malonsäureäthylester 658. pentensäurechlorid 412. - essigsäure 309. – essigsäureamid 309. - pimelinsäure 604. malonsäurediäthylester – malonsäure 611. pivalinat 280. malonsäurediäthylester propandicarbonsaure 590. mercaptoäthylacetat 155. propiolsaure 451. palmitat 338. propionat 219. propionsaure 402, 407. Äthylisobutyl-essigsäure 304. — essigsäureamid 305. Äthylpropyl-acrylsäureamid propionsäurechlorid 403. 414. Aluminium-acetat 119. — essigsäurechlorid 304. acrylsäurenitril 414. eyanid 60. — malonsäure 606. essigsäure 299. formiat 22. malonsäurediäthylester malonsāure 599. oleat 437. malonsäurediäthylester oxalat 489 Athyl-isobutyrat 260. palmitat 335. - isocapronat 289. trimethylenglykolbutyrat stearat 351. isocrotonsăure und Deris 249. Ameisenpersäure 34. vate 409. Athyl-sorbat 452. Ameisensäure 3. Athylisopropyl-allylacetonitril sorbinsaure 455. Ameisensäure-acetonylester sorbinsäureäthylester 455. - allylessigsäurenitril 419. stearat 352. äthylester 26. bromacetylbromid 299. stearolat 458. — allylester 32. — bromessigsäureamid 299. suberat 596. - amid s. Formamid. - essigsäure 299. succinat 549. amylester 31. - pentensäurenitril 419. tetradecylessigsäure 367. butenylester 32. Athyl-isovalerianat 275. tetradecylmalonsäurebutylester 29, 30. - isovaleriansäure 299. chlormethylester 34. diäthylester 627. — laurat 319. trimethylenglykolacetat citronellylester 32. — linolat 461. dibrompropylester 29. 157. — linolenat 465. undecylenat 420. dodecylester 32. — maleinsäure 660. - valerianat 266, 270. essigsäureanhydrid 170. — maleinsäureamid 660. - valeriansäure 299. geranylester 33. — malonamid 570. vinylcarbinolacetat 151. heptenylester 32. - malonat 523. vinylcarbinolformiat 32. hexadecylester 32. Äthylmalonsäure 569. zoomarat 425. isoamylester 31. Äthylmalonsäure-äthylester Aldolacetat-dimethylacetal isobutylester 30. 570. 168. isopropylester 29. – amidazid 571. oxim 168. methylester 25. - azid 570. Allen-tetracarbonsäuretetranerylester 33. — diäthylester 570. äthylester 716. nitril 37. --- diamid 570. tricarbonsäuretriäthylester nonylester 32. - dimethylester 570. 699. octylester 31. - hydrazid 570. Allocrotonsäure 394. pentenylester 32. — nitril 570. propylester 28. Allyl-acetat 150. Athyl-mercaptoquecksilbertetradecylester 32. acrylaäure 453. acetat 118. acrylsäureäthylester 453. Amino-formylcrotonsäure myristat 326. butenylmalonsäurediäthyläthylester 655. - myristinsaure 343. methandisulfonsaure 37. ester 677. — nitrolsäure 185. capronat 285. Ammonium-acetat 113. octandiolacetat 158. caprylat 303. butyrat 242. Athyloctyl-essigsäure 321. carbinolacetat 150. cyanid 51. essigsäureäthylester 321. carbinolformiat 32. eisencyanid 65, 76. crotylcyanessigsäureäthylmalonat 529. ferricyanid 76. - malonsaure 618. ester 677. ferrocyanid 65. crotylmalonsäurediäthyleester 677. - malonsäurediäthylester formiat 19. 618, 619. malonat 519. oxalat 507. cyanid 389. oleat 434.

REGISTER 723

Ammonium-oxalat 483. Azelainsäure-methylester 602. | Bernsteinsäure-methylester - propionat 217. methylesterchlorid 603. succinat 548. Azido-buttersäure 257. methylesterchlorid 553. tetraoxalat 483. essigsäureäthylester 208. — methylesteroctylester 552. Amyl- s. a. Isoamyl-, Pentyl-. propionsäure 234. propylester 551. Amyl-acetat 143, 144 Anm. Azomethandisulfonsäure 89. Beryllium-acetat 116. – acrylsäure 413. acetatpropionat 217. — butyrat 247. butyrat 242. - capronat 285. R. eisencyanid 71. -- chlormalonsäurediamid — ferrocvanid 71. Barium-acetat 117. — formiat 21. - cyanid 286, 291. cyanid 57. malonat 519. eisencyanid 72, 78. Amylenglykoldiacetat 157. - oxalat 487. ferricyanid 78. Amyl-formiat 31. propionat 217. — ferrocvanid 72. – malonsäure 599; s. a. 598. Bis- s. a. Di-. malonsäurediäthylester — formiat 21. Bisacetoxy-äthylmercapto 597, 599; s. a. 598, 600. — malonat 519. diäthylsulfid 156. — oleat 437. — malonsäurediamid 597. isobutylacetylen 159. — nonylessigsäure 343. oxalat 488. methyläther 163. nonylmalonsäurediäthyl= platincyanid 87. propyläther 156. platincyanür 87. ester 626. Bisäthoxyacetoxyäthyl= oxalat 507 platocyanid 87. acetylen 162. - palmitat 337. propionat 218. Bisaminoformylglutacon= propiolsäure und Derivate - stearat 351. säure-diäthylester 711. succinat 548. 454. propionat 221. Batylalkoholdiacetat 160. dimethylester 711. — stearat 353. Behenolsäure 462. Bis-bromäthylmalonat 528. Behenolsäure-dijodidäthyl succinat 551. carboxymethylglutarsäure ester 448. undecylessigsäure 368. dijodidisoamylester 448. — undecylmalonsäures carboxypropionylperoxyd — dijodidisobutylester 448. diäthylester 628. - undecylsäure 343. methylester 462. chloräthylmalonat 528. Behensäure 373. valerianat 266 chlorathylsuccinat 551. – valeriansäure 313. Behensäure-äthylester 374. chlorallylmalonsäure= Angelicasäure 401. dokosylester 374. diäthylester 677. Angelicasäure-äthylester 401. methylester 374. chlorearboxyacryloyl= - nitril 375. - hydrojodid 271. hydrazin 640. Berliner-blau 80, 81. Antimon-cyanid 60. diacetylaminoglyoxim= - oxalat 492. weiß 74. dimethyläther 513. Arachidic acid 369 Anm. Bernsteinsäure 540. dibrommethylsulfon 90. Bernsteinsäure-äthylester Arachidono-clupanodonos - dibrommethylsulfoxyd 90. oleineikosibromid 376. isoamylacetylhydrazin diclupanodonineikosis äthylesternitril 554. 298. oktabromid 377. āthylesteroctylester 552. jodmethylglutarsäure amid 554. dizoomarindodekabromid 371. amylester 551. oxystearoyloxypropyl= Arachidonsäure 469. bischloräthylester 551. äther 354. Arachidonsäure-äthylester butylester 551. sulfomethyldiimid 89. diathylester 550. **4**70. thioacetylsulfid 212. methylester 470. - diamid 554. thioformyldisulfid, polys – oktabromid 371. – diamidin 554. meres 90. – diamylester 551. Arachinsäure 369. thioformylsulfid, polys - diazid 554. Arachinsäure-äthylester 370. meres 90. dibutylester 551. -- amid 370. trichloracetoxyäthylsulfid — methylester 370. dichlorid 553. nitril 370. dihydrazid 554. — trichloracetylhydrazin diisoamylester 552. Aurocyanid 56. 201. diisobutylester 551. Azelainsäure 602. trichloracryloylperoxyd dimethylester 549. Azelainsäure-äthylester 603. - athylesterchlorid 603. dinitril 554

dioctylester 552.

dipropylester 551.

- diäthylester 603.

dioctylester 603.

dimethylester 603.

trimethylacetylhydrazin

281.

Bixin 680.

Blausäure 37; Vorkommen 38; Bildung 38; Eigenschaften 42; chemisches Verhalten 43; biochemi= sches Verhalten 47; Verwendung 48; Analys tisches 49; additionelle Verbindungen und Salze 51; Umwandlungs= produkte 88. Blausäure, pulverförmige 48. Blausäuresesquihydrochlorid Blei-acetat 120, 121. butyrat 242. - cyanid 60. eisencyanid 73, 79. eisennitrosopentacyanid essig 120. - ferrocyanid 73. - formiat 23. — laurat 319. - malonat 520. - myristat 326. — oleat 437. -- 'oxalat 491. - palmitat 335. - propionat 218. stearat 351. — succinat 549. tetraacetat 121. Blutlaugensalz 67, 76. Borfluoridessigsäure 118. Boroxalsäure 489. Borsäureessigsäureanhydrid Bortriacetat 175. Borylacetat 175. Brassidin 448. Brassidinsäure 447. Brassidinsäure-äthylester 448. anhydrid 448. Brassidylessigsäure 449. Brassylsäure 617. Brassylsäure-äthylesteramid äthylesterchlorid 618. – diäthylester 618. dimethylester 618. - dioctylester 618. methylester 618. Brenzterebinsäure 405. Brenzterebinsäure-äthylester 405. chlorid 406. — nitril 406. — ozonid 405.

Brenzweinsäure 568.

Brom-acetamid 180.

- acetylbromid 203.

568.

diamid 568.

Brenzweinsäure-diäthylester

acetylschwefelsäure 203.

Brom-aconitsäuretriäthylester adipinsäure 576. adipinsäurediäthylester 576. äthantricarbonsäuretris äthylester 681. Bromäthyl-acetat 167. brommalonsäure 571. buttersäure 292. buttersäureäthylester 292. buttersäureamid 293. butyrylbromid 292. butyrylchlorid 292. Bromathylidentrimethylens glykoldiacetat 159. Bromathyl-isopropylacetylbromid 299. isopropylessigsäureamid 299. malonsäurediäthylester malonsäurediamid 571. malonsäuredimethylester palmitat 336. stearat 352. Brom-allylacetat 150. arachinsäure 371. azelainsäure 603. behensäureäthylester 375. Brombernsteinsäure 558, 559, Brombernsteinsäure-amid 560. diathylester 559, 560. dichlorid 560. dimethylester 559. dipropylester 560. Brom-brenzweinsäure 569. bromäthylmalonsäure 571. brompropylmalonsäures diäthylester 582. butadiencarbonsaure 451. butadiencarbonsauremethylester 451. butensäure 398. Brombuttersäure 255, 256. Brombuttersäure-äthylester 255, 256. allylester 255. amid 255. bromid 255. isopropylester 255. nitril 255, 256. propylester 255. Brom-butylmalonsäure 595. butylmalonsäurediäthylester 588. butyramid 255. butyronitril 255, 256. butyrylbromid 255. - caprinsaure 312. caprinsauremethylester 312.

– capronsäure 287.

caproylchlorid 287. caprylsäure 303. cetylacetat 147. citraconsaure 654. citraconsăureamid 654. crotonsäure 398. crotonsäureäthylester 398. crotonsäuremethylester 398. cyanacetamid 538. - cyanbuttersäure 567. — cyanessigsäureäthylester cyanessigsäureamid 538. cyanundecan 321. - decansäure 312. Bromdiathyl-acetylbromid 292. acetylchlorid 292. essigsäure 292. essigsäureäthylester 292. essigsäureamid 293. Brom-dibutylessigsäureamid 313. dicarboxyglutaconsäure= tetraäthylester 714. Bromdimethyl-acrylsäure 402. allylacetat 151. buttersäure 293, 294. butyrylbromid 294. glutaconsaure 663. glutarsäureäthylester glutarsäurediäthylester 590, 592. glutarsäuredimethylester 592. Brom-dipropylglutarsäure äthylester 614. dodecansaure 321. dodecylacetat 146. dokosansäureäthylester 375. eikosansäure 371. Bromessigsäure 201. Bromessigsäure-äthylester 202. anhydrid 203. bromäthylester 203. methylester 202. octylester 203. Brom-fumarsäure 640. fumarsäurediäthylester fumarsäuredichlorid fumarsäuredimethylester fumarylchlorid 641. glutaconsăure 650. glutaconsäurediäthylester

Brom-caprovlbromid 287.

REGISTER 725

- Brom-glutarsäurediäthylester 566.
- glutarsäuredinitril 567.
- glutarsäurenitril 567.
 heneikosansäure 373.
- heneikosylsäure 373.
- heptadecansäure 346.
- heptylacetat 168.
- hexadecansäure 342.
- isoamylacetat 167.
- isobernsteinsäurediäthyl= ester 564.
- isobernsteinsäurediamid 564.

Bromisobuttersäure 263. Bromisobuttersäure-äthylester 263.

- allylester 263.
- isopropylester 263.
- methylester 263.
- propylester 263.

Brom-isobutylacetat 167.

- isobutylessigsäure 290.
- isobutylmalonsäurediäthylester 592
- isobutyramid 263.
- isobutyronitril 263.
- isobutyrylbromid 263.
- isobutyrylchlorid 263.
- isocapronamid 291.
- isocapronsäure 290, 291.

isocrotonsäureäthylester

- isocaproylchlorid 291.
- isocrotonsäure 398.
- 398.
- isopropylglutarsäure= diathylester 600.
- isopropylmalonsäure= diathylester 586.

Bromisovaleriansaure 278,

Bromisovaleriansäure-äthyl= ester 278, 279.

- allylester 279.
- bromid 280.
- chlorid 279, 280.
- isopropylester 279. propylester 279.

Brom-isovalerylbromid 279.

- isovalerylchlorid 278, 279.
- itaconsäure 651.
- jodbehensäure 377
- joddokosansäure 377.
- jodmethansulfonsäure 36.
- laurinsäure 321. laurinsäuremethylester
- 321.
- lauronitril 321.
- lauroylbromid 321.
- maleinsäure 647.
- maleinsäuredimethylester 647.

Brommalonsäure 538. Brommalonsäureäthylesternitril 538.

- Brommalonsäure-amidnitril 538.
- diäthylester 538.
- diamid 538.
- dimethylester 538.
- dipropylester 538.

Brommargarinsäure 346. Brommethan-disulfonsäure

- tricarbonsäuretriäthyl=
- ester 681. — tricarbonsäuretrimethyl=
- ester 681.

Brommethionsäure 35.

- Brommethyl-acetat 166. äthylacetonitril 271.
- äthylacetylchlorid 270.
- äthylcarbinolacetat 141.
- äthylessigsäure 270.
- butendicarbonsäure 663.
- buttersäure 270, 271.
- buttersäureäthylester 270. buttersäurechlorid 270.
- buttersäurenitril 271.
- butylformiat 31.
- butyrylchlorid 271. Brommethylentrimethylen-

glykoldiacetat 158. Brommethyl-glutarsäures

- diathylester 581, 583.
- glutarsäuredimethylester 581, 583.
- isopropylacetylbromid 294.
- malonsäurediäthylester 564.
- malonsäurediamid 564. Brom-muconsäurediamid 673, 674, 675.
- muconsäuredimethylester 673, 674, 675.
- myristinsäure 329
- nitroäthylacetat 137.
- nitrobuttersäureäthylester 257.
- nitroessigsäureäthylester 208.
- nitromalonsäurediäthylester 539.
- nitropropionsäureäthyl= ester 234.
- --- nonadecansäure 368.
- nonadecylsäure 368.
- octadecansäure 361. octadecensäureäthylester
- önanthoylbromid 296.
- önanthsäure 296.
- önanthsäureäthylester 296. palmitinsäure 342.
- palmitinsäureäthylester
- 342.
- palmitoylbromid 342.
- pelargonsäure 308.
- pelargonsäurebromnonyl= ester 308.

- Brom-pelargonsäuremethyl= ester 308.
- pentadecansaure 330.
- pentadecylsäure 330.
- pivalinsaure 281.
- pivaloylchlorid 281.
- propandicarbonsäure 569.
- Brompropen-carbonsäure 398.
- dicarbonsaure 650, 651.
- dicarbonsäurediäthylester
- tetracarbonsäuretetra= äthylester 714.
 - tricarbonsäuretriäthylester 695.
- Brom-propiolsäure 451.
- propionamid 229, 230, 231.
- propionitril 231.
- Brompropionsäure 228, 229,
- Brompropionsäure-äthylester 228, 229, 230, 231.
- allylester 230.
- butylester 230, 231.
- imid 231.
- imidbromid 231, 388.
- isoamylester 231.
- isopropylester 230.
- methylester 229, 231.
- propylester 229.

Brompropionyl-bromid 230. chlorid 229, 231.

- Brom-propylacetat 139.
- propylbrommalonsäure: diathylester 582.
- propylenglykoldipalmitat **33**8.
- propylisoamylmalonsäure: diathylester 614.
- sorbinsäure 453.
- sorbinsäuremethylester 453.
- stearinsäure 361.
- succinamidsäure 560.
- tetradecansaure 329.
- tetramethyladipinsäure:
- diäthylester 612.
- tricarbäthoxymethan 681. tricarbomethoxymethan
- tricyanmethan 681.
- tridecansaure 323.
- Bromtridecylsäure 323. Bromtridecvlsäure-amid 323.
- bromtridecylester 323.
- methylester 323.
- nitril 323.
- Brom-trimethylencyanid 567.
- trimethylessigsäure 281.
- trimethylessigsäurechlorid **281**.
- undecansäure 315.
- undecylsäure 315.
- undecylsäureäthylester

Butyl-decylessigsäure 343.

Brom-undecylsauremethyl-Butenyl-malonsaure 662. ester 315. valeriansaure 268, 269. valeriansäureäthylester 269. valerylbromid 268. valerylchlorid 268, 269. - vinylacrylsaure 451. vinylacrylsäuremethylester 451. Butadien-carbonsaure 451. carbonsäureäthvlester 451. carbonsauremethylester **4**51. - dicarbonsaure 671. - tetracarbonsăuretetraäthvlester 716. Butan-carbonsaure 263, 270. dicarbonsaure 572, 580, 581, 584, 585. dicarbonsăureessigsăure 686, 687. dicarbonsăureessigsăuretriäthylester 686. dicarbonsăuremalonsăuretetraäthylester 705. tetracarbonsaure 702. tetracarbonsäuretetras äthylester 702, 703, 704. tetracarbonsăuretetraamid 704. - tricarbonsaure 683, 684, tricarbonsāureessigsāure tricarbonsăureessigsăuree tetraäthylester 705. tricarbonsauretrimethylester 684. Butantrioltriacetat 162. Butencarbonsaure 399, 400, 401, 402. Butendicarbonsaure 655, 656, 657, 658, 659, 660. Butendicarbonsaure-cyans essigsäuretriäthylester 716. --- essigsäure 696. essigsäuretriäthylester 696. — malonsäure 715. - malonsäuretetraäthylester --- malonsäuretriäthylester Butendiol-diacetat 158. - formiat 33. Butensäure 389, 390. Butentetracarbonsaure 714. Butentetracarbonsaure-athylestertriamid 714. - tetraäthylester 714, 715. tetraamid 715.

Butentricarbonsauretriathyl-

ester 695.

Butenyl- s. a. Crotyl-.

decylmalonsaurediathylmalonsäureäthylesternitril ester 625, 626. malonsäurediäthylester dodecylessigsāure 367, 662. Butincarbonsaure 451. dodecylmalonsäurediäthyl-Butinsaure 451. ester 628. Butoxyl 157. Butylenglykol-s. a. Methyl-Butterpersäure 251. trimethylenglykol-. Buttersäure 235. Butylenglykol-diacetat 156, 157. Buttersäure-äthylester 244. amid 251. disorbat 452. amylester 247. Butyl-essigsäure 291. anhydrid 251. essigsaurenitril 291. bromid 251. formiat 29, 30. butylester 246, 247. formylformal 34. glycerintriacetat 162. chlorathylester 250. chlorheptylester 250. Butylheptenyl-cyanessigchlorid 251. säureäthylester 669. chlorisobutylester 250. malonsaureathylesterchlormethylester 250. nitril 669. chlornitroäthylester 246. Butylheptyl-essigsäure 324. citronellylester 248. essigsäureäthylester 324. dichlorisopropylester 246. malonsäure 620. malonsäurediäthylester dodecylester 248. geranylester 248. 620. heptenylester 248. Butylhexyl-essigsäure 322. isoamylester 247. essigsäureäthylester 322. isobutylester 247. malonsaure 619. linalylester 248. malonsaurediathylester methylester 243. 619. Butylidenbiscyanessigsaure nerylester 248. octylester 248. amid 707. propylester 246. Butyl-isovalerianat 275. rhodinylester 248. laurat 319. trichlorhexylester 248. laurinsaure 343. trichlormethylbutylester malonamid 588, 590. malonat 528. 247 malonsaure 588. vinylester 248. Butyl-acetat 140, 141, 142. malonsäurediäthylester adipat 574. 588, 590. allylacetat 151. malonsāurediamid 588, allylessigsäure 417. 590. allylessigsäurechlorid 417. malonsäuredimethylester allylmalonsäure 668. allylmalonsäurediäthylmalonsaurenitril 588. mercaptoathylacetat 155. ester 668. bernsteinsäure 597. myristat 326. myristinsäure 367, 368. brommalonsaure 595. brommalonsaurediathyloleat 439. ester 588. oxalat 507. butyrat 246, 247. Butyloxymethyl-acetat 163. capronsaure 313. butyrat 250. formiat 34. carboxybernsteinsaure 689. propionat 223. carboxybernsteinsaure-Butyl-palmitat 336. triäthvlester 689. pentensaure 417. chlormalonsaurediamid pentensäurechlorid 417. propiolsaure 453, 454. Butyloyan-acetamid 588. propiolsäurechlorid 454. essignaure 588. propionat 221. propionsaure 296, 297. essigsaureathylester 588. essigsaureamid 588. stearat 352. essigsäurebutylester 588. succinat 551 Butyleyanid 267, 281. valerianat 266.

Butylvinylcarbinol-acetat 151. butyrat 248. – formiat 32. Butyramid 251. Butyramidin 252. Butyrate 242. Butyrhydroxamsäure 252. Butyrin 249. Butyro-dichlorhydrin 246. dipalmitin 339. - nitril 252. Butyryl-bromid 251. - chlorid 251. - hydroperoxyd 251. - schwefelsäure 251. Cadetsche Flüssigkeit 108.

Cadmium-acetat 117. cyanid 57. — eisencyanid 73, 78—79. ferricyanid 79. — ferrocyanid 73. — malonat 519. — oxalat 489. Caesium-acetat 115. — butyrat 242. cyanid 54. – eisencyanid 70, 78. ferricyanid 78. ferrocyanid 70. — formiat 20. oleat 437. — oxalat 486. — palmitat 335. — propionat 217. tetraoxalat 486. Calcium-acetat 116. - butyrat 242. - evanid 56. – eisencyanid 71, 78. ferricyanid 78. — ferrocyanid 71. — formiat 21. laurat 319. oleat 437. — oxalat 487, 488. — palmitat 335. propionat 218. - stearat 351. - succinat 548. Camphoronsaure 690. Camphoronsäure-äthylester

äthylesteramid 690.
diäthylester 690.
Caprin 311.
Caprinhydroximsäurechlorid 312.
Caprinsäure 309.
Caprinsäure-äthylester s. Äthyloaprinat.
amid 311.

690.

Caprinsaure-anhydrid 311. methylester s. Methylcaprinat. Caprodipalmitin 340. Capronamid 286. Capronate 284. Capronitril 286. Capronpersäure 286. Capronsaure 281, 291. Capronsäure-äthylester s. Athylcapronat. amid 286. - anhydrid 285. chlorid 286. methylester s. Methyle capronat. Caproyl-chlorid 286. hydroperoxyd 286. Caprylate 302. Capryl-hydroxamsäure 303. hydroximsäurechlorid **3**03. Caprylin 303. Caprylo-lauromyristin 327, **32**8. myristoolein 439, 440. oleomyristin 440. Capryloylchlorid 303. Caprylsäure 300. Caprylsäure-äthylester s. Athylcaprylat. amid 303. anhydrid 303. - chlorid 303. methylester s. Methyls caprylat. - nitril 303. Capsaicin, Carbonsäure $C_{10}H_{18}O_2$ aus — 418. Carbäthoxycyan-glutacons

säureäthylesteramid 712.

methylglutarsäurediäthylester 703.
Carbaminyl- s. Aminoformyl-Carbomethoxy-cyanmethylglutarsäuredimethylester 703.

— propionylchlorid 553. Carboxy-adipinsaure 683. — äthylglutarsaure 687.

— athylglutarsaure 687 — bernsteinsaure 681.

bernsteinsäure 681.
hernsteinsäuretriäthvleste

- bernsteinsäuretriäthylester 681. Carboxycarboxymethyl-

adipinsaure 705.
— glutarsaure 703.

— glutarsäuretetraäthylester 703.

Carboxy-cyanglutaconsaures triathylester 711. — cyanmethylglutaconsaures

triäthylester 715. — cyanpimelinsäuretriäthylsester 705.

— glutaconsaure 693.

Carboxy-glutaconsăuretrisăthylester 692.

glutarsäure 681, 682.
glutarsäuretriäthylester

— methantriessigsäure 703.

 methantriessigsäuretetras äthylester 703.

Carboxymethyl-adipinsaure 686.

 adipinsäuretriäthylester 686.

butendicarbonsāure 696.
butendicarbonsāuretris

--- butendicarbonsauretris athylester 696.

glutaconsäure 695.
 glutaconsäuretriäthylester

695. — glutarsāure 684.

— glutarsäuretriäthylester

684. Carboxy-pimelinsäuretriäthyleester 686.

— tricarballylsäure 701.

tricarballylsäuretetrasäthylester 701.

methylester 700.

Carnaubasäure 380.

Carnaubawachs, Carbonsäure C₃₀H₆₀O₂ aus — 382; Chloracetat des Alkohols

Chloracetat des Alkohols C₈₀H₆₉O aus — 193.

Cellosolveacetat 155. Ceracetat 119.

Cerotinsaure 381. Ceroxalat 491.

Ceryl-acetat 147.

— palmitat 337.

-- stearat 353.

Cetoleinsäure 448. Cetoleinsäuremethy

Cetoleinsäuremethylester 449. Cetyl-acetat 146.

— cyanid 345.

— formiat 32. — malonsäure 627.

- myristat 326.

— palmitat 337.

propionat 222.stearat 353.

Cheiranthussäure 444. Chimylalkoholdiacetat 160.

Chlor-acetamid 180, 193.
— acetimidchlorid 194.

- acetonitril 194.

— acetonitrii 194. — acetoxypentan 143.

 acetylacetylacetonamin 193.

— acetylacetylacetonimid 193.

— acetylchlorid 193.

 adipinsäurediäthylester 576.
 Chloräthyl-acetat 136, 167.

— butyrat 250.

728 REGISTER

Chlorathyl-malonsauredis Chlor-crotonsäurepropylester Chlor-isocapronsăureisoamyl= ester 290. äthylester 571. malonsäurediamid 571. decansauremethylester isocapronsăurenitril 290. 312. — pentachloräthylsulfid 211. isocaproylchlorid 290. — propionat 223. – diäthylmalonamid 594. isocrotonsäure 396. — diäthylmalonsäurediäthyl= isocrotonsäureäthylester tetrachloräthylsulfid 211. 396, 397. ester 594. trichloräthylsulfid 210. dibromacetylchlorid 205. isocrotonsäurechlorid 397. — valerianat 266. - dibrompropionsäure 232. isocrotonsäuremethylester Chloral-amid 37. dibrompropionsäureäthyls 396. formamid 37. ester 232. isopropylglutarsäures — hydratdiacetat 167. dihydromuconsäure 657. diäthylester 598. Chlorallylmalonsäurediäthyl- dimethylitaconsäure 664. isopropylmalonsäure: ester 658. dimethylitaconsäure= diamid 586. Chloralsemioxamazon 513. diäthylester 664. isopropylmalonsäure: Chlor-amylacetat 143. Chloressigsäure 187. dimethylester 586. amylmalonsäurediamid Chloressigsäure-äthylester jodacetamid 207. 597. jodacetylchlorid 207. Chlorbernsteinsäure 555, 556. amid 193. jodessigsäure 206, 207. Chlorbernsteinsäure-amid 555, anhydrid 193. jodmethansulfonsäure 36. butylester 192. maleinsäure 646. – diäthylester 555, 556. chlormethylester 193. maleinsäurediäthylester dimethylester 555. isopropylester 192. 646. Chlorbrom-acetamid 204. methylester 191. maleinsäuredimethyl= acetylbromid 204. octylester 192. ester 646. acetylchlorid 204. Chlorfumarsäure 640. malonsaure 537. — bernsteinsäure 560. Chlorfumarsäure-äthylester malonsäurediäthylester - dihydromuconsäure 537. **64**0. dimethylester 656. diäthylester 640. malonsäurediamid 537. essigsäure 203, 204. diamid 640. malonsäuredimethylester - essigsäureäthylester 204. dichlorid 640. **537.** — essigsäureamid 204. dimethylester 640. Chlormethyl-acetat 166. - glutaconsäure 650. Chlor-fumarylchlorid 640. butyrat 250. - malonsäure 538. glutaconsäure 649. formiat 34. - methansulfonsäure 35. glutaconsäurediäthylester glutarsäurediäthylester nitroessigsäureäthylester 649. glutarsäuredimethylester heptylacetat 168. - propendicarbonsaure 650. heptylbutyrat 250. — propionsäure 231. malonsäurediäthylester – hexendicarbonsäures Chlor-butensäure 395, 396. diäthylester 666. **564**. hexylenglykolacetat 157. — buttersäure 253. malonsäurediamid 564. buttersäureäthylester 253, hexylmalonsäurediamid pentensäure 406. 604. propionat 223. - buttersäureamid 253. isoamylacetat 167. propylcarbinolacetat 143. buttersäurechlorid 253, isoamylmalonsäure= valerianat 266. 254. diamid 599. valeronitril 288, 289. buttersäurenitril 253, isobernsteinsäurediäthyl: Chlornitroacetoxy-butan 141. ester 564. 254.butyryloxypropan 249. isobernsteinsäurediamid isovaleryloxypropan 276. butylacetat 141. — butylmalonsäurediamid 564. propionyloxypropan 222. Chlornitro-athylacetat 136. Chlorisobutyl-acetat 167. 588. äthylbutyrat 246. butyramid 252, 253. acetylchlorid 290. butyrat 250. äthylisovalerianat 275. butyronitril 253, 254. butyrylchlorid 253, 254. essigsäure 290. athylpropionat 220. essigsäureäthylester 290. buttersäureäthylester 257. caprinsäuremethylester malonsäurediamid 592. 312. diacetoxypropan 156. propionat 223. essigsäureäthylester 208. — capronsäure 287. -- crotonsäure 395, 396. valerianat 266. isopropylacetat 140. Chlor-isobutyramid 262. – crotonsäureäthylester 395, malonsäurediäthylester — isobutyronitril 263. 396, 397. **539**. – crotonsäureamid 396. isobutyrylchlorid 263. oxyacetoxypropan 156. isocapronitril 290. crotonsäurebutylester* oxybutyryloxypropen isocapronsăure 290. isocapronsäureäthylester crotonsäuremethylester oxyisovaleryloxypropan

290.

395, 396.

REGISTER 729

Chlornitro-qxypropionyloxyspropan 222.

- propionsäureäthylester 234.

Chlornitrotrimethylenglykolacetat 156.

- acetatbutyrat 249.

acetatisovalerianat 276.

acetatpropionat 222.

— butyrat 249.

- diacetat 156.

- isovalerianat 276.

- propionat 222.

Chlorooxalatotriamminchrom 493.

Chloroximino-athan 184.

- essigsäureäthylester 512.

— essigsäureamid 513.

— essigsäurebutylester 513.

methan 89.

Chlor-oxopentenylacetamid 193.

oxopentylidenacetamid
 193.

— oxybuttersäure 391.

— oxymethylacetamid 193.

pentendicarbonsäure 664.
 propantricarbonsäures

triäthylester 683.

— propencarbonsäure 395, 396.

-- propencarbonsäureäthylsester 397.

ester 397.

— propendicarbonsäure 649.

- propiolsäure 451.

- propionamid 226.

propioniminoäthyläther
 227.

- propionitril 227.

propionsäure 226.

propionsäureäthylester
 226, 227.

propionsäurebutylester 227.

propionsäurechlorid 227.
propionsäureisoamylester

227.
— propionsäuremethylester 226, 227.

- propionylchlorid 227.

- propylacetat 139.

 propylenglykoldibutyrat 248.

propylenglykolmyristat
 327.

— propylmalonsäurediäthylsester 582.

— propylmalonsäurediamid 582.

- propylpropionitril 289.

succinamidsäure 555, 556.
tricarballylsäuretriäthyls

ester 683.

- valeramid 267.

— valeriansāure 267, 268.

Chlor-valeriansäureäthylester 267, 268.

— valeronitril 267, 268. Chrom-acetat 122.

cyanid 61.
 formiat 23.

— malonat 520.

— maionat 520 — oxalat 492.

Citrabrombrenzweinsäure 569.

Citraconamidature 654.

Citraconsäure 652; Stellungsbezeichnung 651.

Citraconsaure-amid 654.

- diathylester 653.

— diamid 654.

- dimethylester 653.

- methylesteramid 654.

Citradibrombrenzweinsäure 569.

Citralacetat 154.

Citronellalacetat 154.

Citronelliden-essigsäure 457. — essigsäureäthylester 457.

Citronellsäure 418, 419. Citronellsäure-äthylester 419.

— amid 419.

Citronellyl-acetat 152.

 äthylmalonsäurediäthyl= ester 669.

- buttersäure 424.

buttersäureäthylester 424.

butylmalonsäurediäthylsester 670.

— butyrat 248.

capronsäure 426.

capronsäureäthylester 426.

— caprylsäure 444.

caprylsäureäthylester 444.

— essigsäure 422.

essigsäureäthylester 422.

— formiat 32.

- hexylmalonsäurediäthyle ester 670.

- isobutyrat 261.

- isovalerianat 276.

— önanthsäure 426.

- pelargonsäure 444.

— propionat 222.

Citrylidenmalonsäure 678.

Clupanodono-arachidonolinolenineikositetrabromid 376.

arachidonozoomarineikosis
 bromid 376.

 diarachidonineikosihexas bromid 376.

— linolenozoomarinoktas dekabromid 376.

stearidonoarachidonins
 eikosihexabromid 376.
 stearidonozoomarineikosis

bromid 376. Clupanodonsäure 470.

Clupanodonsäuremethylester 471.

Cluytinsäure 373. Crocetin 679.

Crotonaldehydformylhydrazon 89.

Crotonitril 393.

Crotonoylchlorid 392.

Crotonsäure 390, 394.

Crotonsäure-äthylester 392.

— amid 392.

— azid 394.

— chlorid 392.

- dibromid, Derivate 256.

— methylester 392.

— nitril 393.

- nitril, trimeres 395.

Crotyl-acetat 150.

— cyanessigsäureäthylester 662.

Crotylidenmalonsäurediäthylsester 676.

Crotyl-malonsäure 662.

— malonsäurediäthylester 662.

- trichloracetat 200.

Cupri-cuprocyanammoniak 54, 55.

- cyanid 55.

- ferricyanid 78.

- ferrocyanid 70.

Cuprocyanid 54.

Cyan 511.

Cyan-acetamid 534.

acetylchlorid 534.

 äthylbernsteinsäures diäthylester 684.

 äthylentricarbonsäuretriäthylester 710.
 Cyanameisensäure-äthylester

510. — chlorid 511.

- iminoäthyläther 511.

- methylester 510.

— metnylester 510. Cyanbrenzweinsäurediäthylsester 682, 683.

Cyanbutan-dicarbonsäures diäthylester 684, 685.

dicarbonsäureessigsäurestriäthylester 705, 706.

 tetracarbonsäuretetras äthylester 717.

tricarbonsäurediäthylester 702.

tricarbonsäureessigsäurestetraäthylester 717.

tricarbonsäuretriäthylester

702. Cyan-butendicarbonsäures diäthylester 696.

— buttersäure 570.

 buttersäureäthylester 566, 570.

-- buttersäuremethylester 570.

— capronsäure 588. — crotonsäure 655.

Cyanpropan-tricarbonsăure-Cyan-crotonsaureathylester 655. essigester 531. Cyanessigsaure 530. Cyanessigsäure-äthylester 531. amid 534. – butylester 534. - isobutylester 534 - isopropylester 534. - methylester 530. propylester 534. Cyan-glutaconsaurediathylester 693. glutaconsauremethylesterathylester 692. glutarsäurediäthylester - hexendicarbonsauremethylesterathylester 698. Cyanide 51. Cyanisobutantricarbonsauretriathylester 703. trimethylester 703. Cyan-isobutylentricarbonsäuretriäthylester 715. isoheptensäure 665. isopentantetracarbons sauretetraathylester 717. kalium 52. kohlensäureäthviester 510. kohlensäuremethylester malonsäureäthylesteramid malonsäurediäthylester malonsauremethylesters amid 680. - methantetraccaigsauretetraathylester 717. - methantriessigaāuretriathylester 703. methantriessigsaure

trimethylester 703.

ester 684.

natrium 52.

Cyanoform 681.

Cyanogas 48.

- önanthsäure 597.

Cyan-pentantetracarbons

pentantricarbonsaure-

pentendicarbonsaure-

dicarbonsaurediathylester

triathylester 705.

diathylester 697.

pentensaure 657.

682, 683.

Cyanpropan-carbonsaurediessigsäuretriäthylester

diathylester 700. Decin-carbonsaure 456, 457. tricarbonsäuretriäthylester carbonsaureathylester 457. 700. Decinsaure 456. Decylsaure 309. Cyanpropen-dicarbonsaure diathylester 693. Dekabrom behensäure 375. dicarbonsauremethylester-Dekamethylen-adipat, polymeres 575. äthylester 692. tricarbonsaurediathyldicarbonsaure 615. esteramid 712. dievanid 616. tricarbonsauretriäthylester dimalonsauretetraathyl-711. **ester** 708. Cyan-propionamid 563. sebacinat, polymeres 609. succinat, polymeres 553. propionsaureathylester Dekaoxymethylendiacetat *55*4, *56*3. propionsauremethylester 165. 563. Di- s. a. Bis-Diacetamid 180. tricarballylsaurediathylester 700. Diacetin 160. tricarballylsauretriathyl-Diacetostearin 354. ester 700. Discetoxy-aceton 168, 169. undecylsäure 616. brommethylenpropan 158. undecylsaurechlorid 616. butan 156, 157. buten 158. undecylsäuremethylester diathyläther 155. wasserstoff 37. diathylaulfid 156. dimethyläther 163. dimethylbutan 157. Cyclo-decanbiscyclobutandion dipropylather 156. oxalylhydrazid 514. dodecan 158. propancarbonsaurenitril, polymeres 254. beneikosan 158. Cyklon 510. heptan 157. Cymbopogon caesius, Carbonhexadecan 158. hexadien 159. saure $C_{16}H_{26}O_{2}$ aus — 426. hexan 157. hexen 159. methylbutan 157. methyldodecan 158. methylheptan 157. Daturinsaure 343. Decan-carbonsaure 314. methylpentan 157. dicarbonsaure 615, 616. octadien 159. dicarbonsaureathylester pentadecan 158. pentan 157. dicarbonsaurediathylester penten 158, 159. undecan 158. **6**16, **6**17. methylglutarsaurediathyldicarbonsaurediamid 616. Diacetyl-disulfid 210. dicarbonsauredimethylelaidoylhydroxylamin 443. glycerinphosphorsäure 161. hydrazin 185. ester **6**16. dicarbonsauredinitril 616. dicarbonsauredioctylester methylendismin 180. methylglyoxal 168. 616. dicarbonsauremethylester methylglyoxal uperoxyd säuretetraäthylester 717. dicarbonsaurenitril 616. oleoylhydroxylamin 441. dimalonsauretetraathylorthosalpetersaure 175. ester 708. peroxyd 174. Decansaure 309. sulfid 210. trisulfid 210. Decen-carbonsaure 419, 420. carbonsaureamid 420. Diathoxy-acetoxypropan 168.
— diacetoxyhexin 162. carbonsauremethylester 420. diathylmalonamid 594.

Diathyl-acetonitril 292.

acetylbromid 292.

Decenylacetat 152.

Decensiure 418.

Diäthyl-acetylcarbinolacetat 169.
— acetylchlorid 292.
— acrylsäure 412.
- acrylsäureäthylester 412.
— acrylsaureamid 412.
— acrylsäurechlorid 412.
— adipat 574.
— allylacetamid 418.
— allylacetonitril 418.
— allylessigsäureamid 418.
— allylessigsäurenitril 418.
— bernsteinsäure 601.
bromacetylbromid 292.
- bromacetylchlorid 292.
— bromessigsäureäthylester
292.
— bromessigsäureamid 293.
carbāthoxyessigsāures
anhydrid 593.
— carbinolacetat 143.
— cyanacrylsäureäthylester
667.
— cyanessigsäure 594.
cyanessigsäureäthylester
594.
— cyanessigsäuremethylester
594.
— dicyanāthylen 667.
Diäthylenglykol-acetat 155.
 äthylätheracetat 155. diacetat 155.
Diäthylessigsäure 291. Diäthylessigsäure-äthylester
292.
202.
amid 909
— amid 292.
— bromid 292.
bromid 292.chlorid 292.
 bromid 292. chlorid 292. nitril 292.
 bromid 292. chlorid 292. nitril 292. Diäthyl-fumarat 638.
 bromid 292. chlorid 292. nitril 292. Diäthyl-fumarat 638. glutarat 565.
 bromid 292. chlorid 292. nitril 292. Diäthyl-fumarat 638. glutarat 565. glutarsäure 604, 607.
 bromid 292. chlorid 292. nitril 292. Diäthyl-fumarat 638. glutarat 565. glutarsäure 604, 607. glutarsäureäthylester 607.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsaure 604, 607. glutarsaure 607. glutarsauredimethylester
 bromid 292. chlorid 292. nitril 292. Diathyl-fumarat 638. glutarat 565. glutarsaure 604, 607. glutarsaureathylester 607. glutarsauredimethylester 607.
 bromid 292. chlorid 292. nitril 292. Diåthyl-fumarat 638. glutarat 565. glutarsäure 604, 607. glutarsäureäthylester 607. glutarsäuredimethylester 607. hexandicarbonsäure 617.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646. maleinsāure 667.
 bromid 292. chlorid 292. nitril 292. Diäthyl-fumarat 638. glutarat 565. glutarsäure 604, 607. glutarsäureäthylester 607. glutarsäuredimethylester 607. hexandicarbonsäure 617. maleinat 646. maleinsäure 667. maleinsäureamid 667.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646. maleinsāure 667. maleinsāureamid 667. malonamid 593.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarsā 1638. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646. maleinsāure 667. maleinsāureamid 667. malonamid 593. malonat 524.
 bromid 292. chlorid 292. nitril 292. Diåthyl-fumarat 638. glutarat 565. glutarsäure 604, 607. glutarsäureåthylester 607. glutarsäuredimethylester 607. hexandicarbonsäure 617. maleinat 646. maleinsäure 667. maleinsäure 667. malonamid 593. malonat 524. malonitril 594.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646. maleinsāureamid 667. malonamid 593. malonat 524. malonitril 594. Diāthylmalonsāure 593.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646. maleinsāureamid 667. malonamid 593. malonat 524. malonitril 594. Diāthylmalonsāure 593. Diāthylmalonsāure-āthylester
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646. maleinsāure 667. maleinsāureamid 667. malonamid 593. malonitril 594. Diāthylmalonsāure-āthylester 593. āthylmalonsāure-āthylester 593. āthylesteramid 593.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. hexandicarbonsāure 617. maleinat 646. maleinasure 667. maleinsāureamid 667. maleinsāureamid 667. malonamid 593. malonat 524. plāthylmalonsāure-āthylester 593. Diāthylmalonsāure-āthylester 593. āthylesteramid 593. āthylesteranhydrid 593. āthylesteranhydrid 593.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. hexandicarbonsāure 617. maleinat 646. maleinasure 667. maleinsāureamid 667. maleinsāureamid 667. malonamid 593. malonat 524. plāthylmalonsāure-āthylester 593. Diāthylmalonsāure-āthylester 593. āthylesteramid 593. āthylesteranhydrid 593. āthylesteranhydrid 593.
 bromid 292. chlorid 292. nitril 292. Diāthyl-fumarat 638. glutarat 565. glutarsāure 604, 607. glutarsāureāthylester 607. glutarsāuredimethylester 607. hexandicarbonsāure 617. maleinat 646. maleinsāure 667. maleinsāureamid 667. malonamid 593. malonitril 594. Diāthylmalonsāure-āthylester 593. āthylmalonsāure-āthylester 593. āthylesteramid 593.

bisathylhydroxylamid 594.

bismethylhydroxylamid

bisbromamid 594.

Diathylmalonsaure-diathyl= Dibrom-äthylmalonsäures ester 593. diathylester 571. diamid 593. amylacrylsäure 413. dichlorid 593. - azelainsäure 603. — dinitril 594. azelainsäurediäthylester nitril 594. Diathyl-malonylchlorid 593. bernsteinsäure 561. mesaconat 652. bernsteinsäurediäthylester methylenmalonsäureäthyls 561, 562, esternitril 667. bernsteinsäuredichlorid methylenmalonsäure-561, 562. dinitril 667. bernsteinsäuredimethylnitroprussid 88. ester 561, 562. orthoformiat 28. bisisovaleraminoāthan 278. oxalat 504. brenzweinsäure 569. pentensäureamid 418. butantetracarbonsăures pentensäurenitril 418. tetraäthylester 702. butencarbonsaure 400. propandicarbonsaure 607. - propionsäure 299. butencarbonsauremethylsuberat 596. ester 400. succinat 550. buttersaure 256. Diallyl-acetonitril 455. – buttersäureäthylester 256. cyanessigsaure 677. - buttersäureamid 256. buttersäurechlorid 256. cyanessigsäureäthylester 677. buttersäurenitril 256. butylidenmalonsäureessigsāurenitril 455. – malonsäure 677. diathylester 662. malonsäurediäthylester butyramid 256. caprinsäuremethylester 677. malonsaurenitril 677. 312. Diaminoglyoximdimethyls capronsaure 287, 288. ather 512. crotonsaure 398. Diamylen, Carbonsäure cyanacetamid 539. C₈H₁₈O₂ aus — 305. cyanbuttersäureäthylester Diamyl-maleinat 646. 571. decansauremethylester malonsäurediäthylester 312. diacetamid 203. succinat 551. Dibromdiathyl-essigsaures Diaquodimalonatomangan athylester 293. säure 520. essigsāureamid 293. Diarachidono-clupanodonins glutarsäure 607. eikosihexabromid 376. gadoleinoktadekabromid glutarsäurediäthylester oleinoktadekabromid 372. malonsäurediamid 594. Dibarium diformia to eisens Dibromdicarboxyglutarsäureeyanid 78. tetraäthylester 701. Dibromdihydromuconsaure-Dibrom-acetonitril 205. acetylbromid 205. diäthylester 656. acrylsäure 389. dimethylester 656. Dibrom-diisovaleryläthylen-- adipinsaure 576, 577. diamin 278. adipinsaurediathylester 576, 577, 578, 579. dijodstearinsaure 367. adipinsaurediamid 578. Dibromdimethyl-athyladipinsauredimethylester glutarsaure 606. 577, 578, 579. Dibromāthyl-amin 180. äthylglutarsäurediäthylester 606. - butyramid 293. glutarsaure 591. glutarsäureäthylester 592. capronsaure 304. glutarsäurediäthylester hexensaure 414. 592. malonsaure 571. malonsaureathylesternitril malonamid 572. Dibromdioximinoathan 513.

571.

Dibrom-muconsaurediathyls

Dibrom-dipropionamid 231. - dipropylglutarsäure 614. — dipropylglutarsäurediäthylester 614. - essigsäure 205. --- fumarsäure 641. - fumarsäurediazid 641. — fumarsäuredihydrazid 641. – glutaconsäure 650. - glutarsäure 567. - glutarsäurediäthylester 567. - glutarsäuredimethylester 567. glyoxim 513. glyoximdiacetat 513.
heptancarbonsäure 304. - heptencarbonsaure 414; s. a. 413. hexadecansaure 342 - hexancarbonsäure 297. — hexencarbonsäure 410. – hexensäure 403. — is amylessigsäureamid **298**. isobutylessigsäure 291. — isocapronsäure 291. isopropylpalmitat 336. – korksäure 597. - korksäurediäthylester 597. - maleindihydroxamsäure maleinhydrazidsäure 647. Dibrommaleinsäure 647. Dibrommaleinsäure-äthylester 647. diäthylester 647. — diamid 647. — dihydroxylamid 647. - hydrazid 647. Dibrommalonitril 539. Dibrommalonsäure 538.

539.

- diäthylester 539.

— dimethylester 539.

diathylester 589.

– äthylglutarsäure 600.

— glutarsaure 581, 583.

hexensäure 410.

- valeriansāure 289.

– diamid 539.

— dinitril 539.

- allylacetat 150.

583.

583.

- capronsaure 297.

ester 673, 675. muconsäurediamid 673, - nitroäthvlacetat 137. - nitroessigsäureäthylester - octadecadiensäure 459. octadecansāure 361, 362. — octensäure 413. - palmitinsäure 342. Dibrompenten-carbonsäure **4**03. carbonsäureäthylester 403. carbonsäuremethylester 403. säure 400. - säuremethylester 400. Dibrom-pimelinsäurediäthyl= ester 587. pivalinsāure 281. pivalinsäuremethylester Dibrompropan-dicarbonsaure 569. tetracarbonsäuretetra: äthylester 701. tricarbonsaure 683. tricarbonsäuretriäthyl= ester 683. Dibrom-propencarbonsäure 398. propendicarbonsaure 650. propionitril 232. Dibrompropionsäure 232. Dibrompropionsäure-äthyl= ester 232. chloräthylester 232. isopropylester 232. --- methylester 232. — nitril 232. propylester 232. Dibrompropyl-acetat 139. formiat 29. Dibrommalonsäure-amidnitril malonsäurediäthylester د.582 – margarat 344. palmitat 336. Dibrom-stearinsaure 361, 362. stearinsäureäthylester 362. Dibrommethansulfonsäure 36. tricarballylsäure 683. Dibrommethyl-adipinsaures — tricarballylsäuretriäthyls ester 683. - trimethylglutarsäure 601. --- undecansäure 315. - undecylsäure 315. valeramid 269. - glutarsäurediäthylester – valeriansäure 269, 270. valeriansäureäthylester glutarsäuredimethylester 269, 270. valeronitril 269. valerylchlorid 270.

Dibutyl-acetonitril 313. acetylchlorid 313. adipat 575. bromessigsäureamid 313. cyanacetamid 614. cyanessigsäure 614. cyanessigsäureathylester 614. essigsäure 313. essigsäureäthylester 313. malonat 528. Dibutylmalonsäure 613. Dibutylmalonsäure-äthylesternitril 614. amidnitril 614. diathylester 614. - nitril 614. Dibutyl-oxalat 507. succinat 551. Dibutyro-chlorhydrin 248. 'olein 439. palmitin 339. Dicaproyl-hydrazin 287. peroxyd 286. Dicarbonsäuren 471. Dicarboxy-aconitsäurepentamethylester 717. adipinsäure 702. adipinsäuretetraäthylester 702, 703. cyanadipinsäuretetraäthylester 717. cyanmethantriessigsäurepentaäthylester 718. cyanpimelinsäuretetraäthylester 717. dihydromuconsaure 714. glutaconsäuretetraäthyls ester 710. glutarsäure 701. glutarsäuretetraäthylester glutarsäuretetranitril 701. — korksäure 707. – methyladipinsäuretetraäthylester 705. methylglutaconsäuretetras äthylester 715. methylglutarsäuretetraäthylester 703. muconsäuretetraäthylester 716. - pimelinsäure 704. – pimelinsäureanhydrid 705. — pimelinsäuretetraäthylester 704. --- tricarballylsäurepentaäthylester 717. Dicetoleino- s. Dicetoleo-. Dicetoleo-arachidonindodekabromid 375. clupanodonintetradekabromid 377.

Dibutenylmalonsäure 678.

Dichlor-acetamid 196. — acetylchlorid 196. – adipinsäure 576. Dichlorathyl-pentachlorathylsulfid 211. tetrachloräthylsulfid 211. - trichloräthylsulfid 210. Dichlorbernsteinsäure 556. 557, 558. Dichlorbernsteinsäure-dis äthylester 556, 557, 558. dichlorid 558. - dimethylester 557. Dichlor-bromacetylchlorid - brompropionsäure 231. brompropionsäureäthyl= ester 232. – buttersäure 254. - buttersäureäthylester 254. buttersäureamid 254. buttersäurebutylester 255. buttersäurechlorid 254. buttersäuremethylester 254.butyramid 254. - butyrylchlorid 254. - crotonsäure 397. crotonsäureäthylester 397. crotonsäureamid 397. crotonsäurechlorid 397. - crotonsäuremethylester 397. crotonsäurenitril 397. cvanacetamid 537. - diacetamid 194. — diallylmalonsäurediäthyl= ester 677. Dichlordibrom-adipinsaure diäthylester 579. buttersäure 257. buttersäureäthylester 257. - buttersäureamid 257. buttersäuremethylester 257. - butyramid 257. Dichlor-dioximinoathan 513. – essigsäure 194. essigsäureäthylester 196. - essigsäureallylester 196. - essigsäureamid 196. essigsäuremethylester 196. - essigsäurepropylester 196. glyoxim 513. hexadecansäure 342. Dichlorhydrin- s. a. Glycerindichlorhydrin-. Dichlorhydrincapronat 285. Dichlorisopropyl-acetat 140. - butyrat 246. - capronat 285.

Dichlorisopropyl-isovalerianat | Dicyandiacetamidcarbon= 275. säuremethylestercarbon= — laurat 319. säureamid 680. - margarat 344. Dicyanglutaconsäure-diäthyl= — myristat 326. ester 712. — oleat 439. diäthylesterhalbhydrat - palmitat 336. 713. — propionat 221. dimethylester 712. – stearat 352. - dimethylesterhalbhydrat Dichlor-malonitril 537. 712. malonitrildichlorid 538. methylesteräthylester 712. malonsäure 537. methylesteräthylester= malonsäureamidnitril 537. halbhydrat 712. malonsäurediäthylester nitriliminoäthyläther 713. 537. Dicyan-isovaleriansäureäthyl= malonsäurediamid 537. ester 686. malonsäuredimethylester pelargonsäureäthylester 537. malonsäuredinitril 537. Dicyanpropantetracarbon= methansulfonsäure 35. säure-dimethylester= — methansulfonsäureamid diathylester 718. tetramethylester 718. – methylformamidin 88. Dicyanpropendicarbonsäure- methylglutarsäurediäthyl= diathylester 712, 713. ester 582. dimethylester 712. muconsäureäthylester methylesteräthylester 712. 673. Dicyan-propentricarbonsäures muconsäurediäthylester triathylester 718. 673, 674. tridecan 621. muconsäurediamid 673, — vinylmalonsäurediäthyl= 674. ester 713. muconsäuredimethylester Dieikosioxymethylendiacetat 672, 674. nitroäthylacetat 137. Difluor-acetamid 185. nitroessigsäureäthylester - acetonitril 185. — äthylacetat 136. octadecadiensäure 458. essigsäure 185. octadecansäure 361. essigsäureäthylester 185. palmitinsäure 342. essigsäureamid 185. propencarbonsäure 397. Diformin 33, 34. propionamid 228. Diformyloxydimethyloctan — propionsäure 228. propionsäureäthylester Digadoleo-linoleinoktabromid **228**. 371. propionylchlorid 228. linolenindekabromid 371. — stearinsäure 361. Diglycerintetraacetat 160. — tribromdiäthyläther 205. Diheptadecylcarbinol-acetat Diclupanodono-arachidonin-147. eikosioktabromid 377. laurat 320. linolenineikosihexabromid - myristat 327. - palmitat 338. oleineikosidyobromid 377. stearat 353. stearidonineikosioktas Diheptyl-essigsäure 343. bromid 377. malonsäurediäthylester Dicrotonsäure 666. Dicrotonsäuredinitril 666. Dihvdro-bixin 679. Dicrotylmalonsäure 678. citronellsaure 314. Dicyan 511. Dicyan-aconitsäuretriäthyl= — citronellylacetat 146. — crocetin 679. ester 718. diacetamidcarbonsäure= eläostearinsäure 458. äthylestercarbonsäure: eläostearinsäureäthylester

458.

amid 680.

Dihydro-lagansäure 372. lagansaureamid 372. linalylacetat 152. – methylbixin 679. - muoonsäure 655, 656. - muconsäurediäthylester muconsäuredimethylester 655, 656. – norbixin 679. - phytylmalonsäurediäthylester 630. - rhodinylacetat 146. — sorbinsăure 403, 404. - sorbinsäureäthylester 403, 404. - sorbinsäureamid 404. - sorbinsäurechlorid 403. 404. sorbinsäuremethylester 404. - sorbinsäurenitril 404. subercolsaure 665. Diisoamyl-cyanessigsäureisoamylester 619. oxalat 507. succinat 552. Diisobutyl-acetylenglykoldis isovalerianat 277. acrylsäure 421. - bernsteinsäure 617. - cyanessigsäure 615. cyanessigsāureisobutyls ester 615. isobutyrat 261. — malonsäurenitril 615. --- oxalat 507. succinat 551. Diisobutyramid 262. Disobutyryl-hydrazin 262. oxyhexen 261. Diisopropylacetylenglykols diisobutyrat 261. Diisostearidono-arachidonineikositetra bromid 372. clupanodonineikosihexabromid 376. Diisovaleryl-dibromäthylendiamin 278. oxyocten 277. Dijod-adipinsaure 579. adipinsäurediäthylester adipinsaurediamid 580. adipinsauredimethylester *57*9, *5*80. - **äthylam**in 181. - amylacrylsäure 413. - capronsaureamid 288.

dokosensäureäthylester .

- dokosensäureisoamylester

448.

Dimethyl-allylmalonsaures Dijod-dokosensäureisobutyls diäthvlester 666. ester 448. fumarsăure 641. aminoformylcyanpropionglutarsäuredimethylester säure 686. amylacetat 146. isoamylessigsäureäthyls amylessigsäure 308. ester 298. Dimethylbernsteinsäure 584, isoamylessigsäureamid 585, 586. Dimethylbernsteinsaure-**298**. athylester 584. isobutylessigsäureamid āthylesterchlorid 585. 291. isocapronsăureamid 291. diathylester 585, 586. methansulfonsäure 36. diamid 585... octadecensăure 428, 443. dinitril 585. Dimethyl-bisdimethylvinyloctensäure 413. Dilaurin 320. decadiendicarbonsaure Dilauro-myristin 328. palmitin 339. - butancarbonsäure 300. stearin 355. butandicarbonsāure 599. Dilinoleo-linolenintetradeka 601. butantetracarbonsaure 707. bromid 366. butantricarbonsaure 690. oleindekabromid 364. zoomarindekabromid 364. butendicarbonsaure 667. butensäure 410. Dimargarin 345. Dimargarostearin 355. Dimethinhydrazodihydrazon butincarbonsăure 454. buttersaure und Derivate 293. Dimethoxy-acetoxybutan Dimethylbutyl-adipinsaure 617. 168. adipinsauredimethylester diathylmalonamid 594. Dimethyl-acetoxymethyls 617. sulfoniumhydroxyd 166. essigsāure 304, 305. acetylcarbinolacetat 169. essigsäureäthylester 305. acetylenylcarbinolacetat essigsāureamid 304, 305. essigsäurechlorid 304, 305. 153. aconitsăure 697. Dimethylcapronsaure 304, **3**05. acrylsäure 401. acrylsäureäthylester 402; Dimethylcarboxy-adipinsaure s. a. 401. 689, 690. acrylsäureamid 402; adipinsäuretriäthylester s. a. 401. **69**0. acrylsäurechlorid 402. bernsteinsäure 685. acrylsauremethylester 402. bernsteinsäuretriäthylester adipat 574. adipinsaure 598, 599. glutarsaure 688, 689. glutarsäuretriäthylester adipinsaure, Derivate 599, Z. 2—4 v. o. 688, 689. Dimethyläthyl-acetonitril 293. glutarsauretrimethylester acrylaäure 412, 413. acrylsaurechlorid 413. methylglutarsäure 690. Dimethylcyan-acrylaaure carbinolacetat 143. carbinoltrichloracetat 200. athylester 661. Dimethyl-athylenglykolbernsteinsäureamid 686. diacetat 157. bernsteinsäurediäthylester āthylessigsāure und Deri-vate 293. glutaconsäurediäthylester āthylglutarsāure 606. athylorthoacetat 137. Dimethyl-decadiensaure 457. allylacetat 151. decansaure 322. allylcarbinolacetat 151. decapentaendicarbonsaure allylessigsaure 410. allylessigsäurechlorid 410. decensaure 422. allylmalonsaure 665. decenylacetat 152.

Dimethyldiäthylbernsteins Dimethyl-hexandicarbonsäure | Dimethyl-octindioldiacetat saure 612. 611, 612. **159**. Dimethyldicarboxy-adipins hexendioldiisobutyrat 261. octylessigsäureamid 322. saure 707. - hexensäure 414, 415. önanthsäure 308, 309. adipinsäuretetraäthylester - hexensäurechlorid 415. önanthsäureamid 308. 707. — hexylacetat 146. oxalat 503. - glutarsāure 706. isobutylessigsäure 305. pentadecandicarbonsaure glutarsäuretetraäthylester isobutylessigsäureamid pentadecendicarbonsaure Dimethyldicyan-athylen 662. isobutylessigsäurechlorid diäthylester 670. buttersäureäthylester 689. 305. pentadecensäure 426. glutarsäurediäthylester isobutylidenacetonoxim; pentadiencarbonsäure 455. 706. pentamethylendicyanid acetat 184. propionsäureäthylester isopropylacrylsäurenitril 605. 686. 416. pentancarbonsaure 305. tetradecan 627. isopropylessigsäure 300. pentandicarbonsaure 604, - tridecan 625. — isovaleriansäure 300. Dimethyldodecensäure 424. — itaconsăure 663. pentencarbonsaure 414. Dimethylenadipinsaure 677. maleinat 645. 415. Dimethyl-erythrenglykols maleinsäure und Derivate pentencarbonsaureathyldiacetat 159. ester 415. fumarat 638. malonat 522. pentensäure 412, 413. - fumarsäure 660. – malonsäure 571. pentinsäure 454. fumarsäurediäthylester malonsäureanhydrid, pimelinsäure 604. 660. polymeres 572. pimelinsäurediamid 605. fumarsauredimethylester malonsäurebisbromamid - pimelinsäuredinitril 605. 572. – propandicarbonsäure 592. glutaconsăure 663, 664. — malonsäurechlorid 572. propantetracarbonsäure glutaconsäurediäthylester malonsäurediäthylester tetraäthylester 707. 663. propantricarbonsaure 689. glutaconsäurenitril 664. malonsäuredichlorid 572. propionsäure 280. — glutarat 565. – malonylchlorid 572. Dimethylpropyl-acetamid — glutarsäure 590, 591, 592. - mesaconat 652. 299. – glutarsäureäthylester 592. — nonadiencarbonsaure 457. acetylchlorid 299. — glutarsäureäthylester» — nonancarbonsäure 322. carbinolacetat 145. chlorid 592. nonandicarbonsăures essigsäure 299. glutarsäurediäthylester diäthylester 619. essigsäureamid 299. 590, 591, 592. nonansäure 315. essigsäurechlorid 299. glycerintriformiat 34. nonatriendicarbonsäure essigsäuremethylester 299. - heptadecensäure 444. 678. Dimethyl-sorbinsaure 455. — heptadiencarbonsäure 456. — nonencarbonsäure 422. sorbinsäureäthylester 455. - heptadiencarbonsaure — nonenylacetat 152. suberat 596. äthylester 456. nonylacetat 146. succinat 549. - heptadiensäure 456. octadiencarbonsäures tetradecandicarbonsäure heptancarbonsäure 314. äthylester 457. und Derivate 627. octadiensäure 456. heptandicarbonsäure. tetradecencarbonsäure 426. Derivate 615. octadiensäureäthylester tetradecensäure 426. - heptencarbonsäure 418, tetrathiooxalat 515. 419. octanearbonsäure 315. tricarballylsäure 688, 689. heptencarbonsaurechlorid — octancarbonsäureäthvl= tricarballylsäuretris 419. ester 315, 316. methylester 689. heptendicarbonsăures octancarbonsäureamid 316. trichlormethylcarbinols diathylester 668. octancarbonsäuremethyls acetat 143. heptenylacetat 152. tridecandicarbonsaure und ester 315. — hexadecaheptaendicaroctancarbonsăurenitril Derivate 625. bonsaure 679. 315, 316. tridecencarbonsaure 426. hexadecahexaendicarbonoctandicarbonsaure 617. tridecendicarbonsaure saure 679. octandioldiformiat 33. diathylester 670. hexadecandicarbonsaure octandiolformiat 33. undecencarbonsaure 424. octansaure 314. undecendicarbonsaures - hexadecensäure 444. octendioldiisovalerianat diäthylester 669.

valeriansaure 299.

Dimyristin 328.

277.

- octensäure 418.

- hexadiensaure 455.

- hexadienylacetat 153.

736 Dinitro-äthantetracarbon= säuretetraäthylester 700. oxalatodiamminkobaltiate Dioctadecyl-essigsäure 383. malonsaure 631. Dioctyl-adipat 575. - essigsäure 368. — glutarat 566. — malonat 529. — malonsäurediäthylester 628. - oxalat 507, 508. suberat 596. - succinat 552. Dioleo-linoleinoktabromid - linolenindekabromid 366. - palmitin 440. zoomarinhexabromid 362. Dioxalato-diamminkobaltis säure 498. triamminkobaltisäure 498. Dioxy-acetoxydimethyle pentan 162. distearoyloxydipropyläther 354. methylendiacetat 163. triacetoxytrimethylnonan 162. Dipalmitin 339. Dipalmito-bromhydrin 338. jodhydrin 338. - laurin 340. - margarin 345. olein 440. — stearin 355. - zoomarindibromid 342. Dipentadecylcarbinol-laurat **32**0. myristat 327. — palmitat **33**8. stearat 353. Dipivaloylhydrazin 281. Dipropionamid 224. Dipropyl-acetylcarbinolacetat 169. acetylchlorid 304. acetylenylcarbinolacetat 153. - acrylsäure 417. acrylsäureäthylester 417. — acrylsäureamid 417. — acrylsäurechlorid 417. adipat 574. - essigsäure 304. essigsäureamid 304. essigsäurechlorid 304. - fumarat 639. - glutarsāure 614.

maleinat 646.

malonsaure 605.

- malonat 528.

Dipropyl-oxalat 506. propandicarbonsaure 614. propionsaure 308, 309. succinat 551. Distearidonoisostearidonins eikositetrabromid 367. Distearin 356. Distearin-phosphorsäure 360. phosphorsäureester 360. schwefelsäure 359. Distearo-jodhydrin 354. olein 440. Distearoyl-glycerinphosphor= säure 360. glycerinschwefelsäure 359. - oxyaceton 360. Disulfodehydracetsäure 175. Dithioameisensäure, trimere 90. Dithioameisensäure-äthylester, trimerer 90. methylester, trimerer 90. propylester, trimerer 90. Dithio-essigsäure 212. essigsäureäthylester 212. essigsäureanhydrid 212. – oxalsäure 514. oxalsäurebischlormethyls ester 515. oxalsäurediäthylester 515. oxalsäurediisopropylester 515. oxalsäuredimethylester 514. oxamid 515. propionsaure 235. propionsäureäthylester Ditridecylcarbinol-laurat 320. – myristat 327. palmitat 337. stearat 353. Ditrimethylenglykolätherdiacetat 156. Diundecylcarbinol-laurat 319. myristat 326. palmitat 337. stearat 353. Divalerylhydrazin 267. Divanadylmalonsäure 520. Dizoomaro-arachidonin= dodekabromid 371. linoleinoktabromid 363. linolenindekabromid 365. oleinhexabromid 362. stearidonindodekabromid

Dodecandicarbonsăurediathylester 620. dimethylester 620. Dodecandiol-acetat 158. diacetat 158 Dodecansaure 316. Dodecantetracarbonsäures tetraäthylester 708. Dodecen-carbonsäure 422, 423. carbonsäureäthylester 423. carbonsauremethylester 422, 423. carbonsäuretridecenylester 423. dicarbonsaure 669. dicarbonsaureathylesternitril 669. dicarbonsäurediäthylester 669. Dodecensäure 421, 422. Dodecensäure-äthylester 421. methylester 421, 422. nitril 421. Dodecinsaure 457. Dodecyl-butyrat 248. formiat 32. isovalerianat 276. propionat 222. Dodekaoxymethylendiacetat 165. Dokosahexaensäure 471. Dokosancarbonsäure und Derivate 378. Dokosansäure 373. Dokosapentaensäure 470. Dokosensäure 445, 448. Dokosensäuremethylester 445. Dokosinsäure 462. Dokosylcyanid 378. Dorosominsaure 343. Dotriakontan-dicarbonsäure dicarbonsäurediäthylester 631. Dyaprosiumoxalat 491.

E.

Eikosan-carbonsäure 372.

— carbonsäure, Derivate 373.

— dicarbonsäure 629.
Eikosansäure 369.
Eikosapentaensäure 470.
Eikosensäure 444.
Eikosidyooxymethylendiacetat 166.
Eikosioxymethylendiacetat 166.
Eikosylacetat 147.
Eikosyloyanid 373.

Eisenacetat 124.

dicarbonsäureäthylester

Dodecan-carbonsaure 322,

dicarbonsăure 620.

323, 324.

620.

Eisen-acetatoxalat 496.	Verhalten 105; biochemis	Essigsäure-dimethyldecenyls
— cyanid 64.	sches Verhalten 110; Ver-	ester 152.
- cyanwasserstoff 64, 75;	wendung, Analytisches	— dimethylheptenylester 152.
Eisensalze 74, 79, 80.	111; additionelle Verbins	- dimethylhexadienylester
- formiat 24.	dungen und Salze 113;	153.
kobaltcyanid 84.	funktionelle Derivate 125;	— dimethylhexenylester 152.
— malonat 521.	Substitutionsprodukte 185; Schwefel- und Selens	— dimethylnonenylester 152.
 — nitrosopentacyanwassers stoff 81. 	analoga 208.	— dimethylnonylester 146.
oleat 437.	l 	— dimethyloctadienylester 154.
- oxalat 495, 496.	Essigsaure- s. a. Acet-,	- dimethyloctatrienylester
— palmitat 335.	Acetyl	154.
Eläostearin 467, 468.	Essigsäure-acetonylester 168.	— dimethyloctenylester 152.
Eläostearinsäure 465, 467.	— åthinylheptylester 153.	- dimethyloctylester 146.
Eläostearinsäure-äthylester	— äthylester 129.	— eikosylester 147.
466, 467.	— äthylheptenylester 152. — allylester 150.	— elaidylester 153.
— amid 468.	— amid 177.	— farnesylester 154.
— anhydrid 466.	— amylester 143.	— fluoräthylester 136
— dibromid 459; s. a. 443.	— anhydrid 170.	— fluorid 175.
— dichlorid 458.	— bromäthylester 167.	— geranylester 153.
dichloriddiozonid 459.hexabromid 364.	— bromallylester 150.	— heptenylester 151. — hexadecylester 146.
- hydrazid 468.	- brombutylester 141.	— hexadecylester 146. — hexenylester 151.
- isoamylester 467.	- bromdimethylallylester	- hexplester 145.
— methylester 466, 467.	151.	- hydrazid 185.
— tetrabromid 444.	- bromdodecylester 146.	- hydrobromidperbromid
Elaidin 443.	- bromheptylester 168.	113.
Elaidin-hydroxamsäure 443.	- bromhexadecylester 147.	— isoamylester 144.
— hydroxamsāureacetat 443.	— bromid 176.	— isobutylester 142.
Elaidinsäure 441.	bromisoamylester 167.	— isohexylester 145.
∆∝-Elaidinsāure 426.	— bromisobutylester 167. — brommethylester 166.	— isopropylallylester 151.
△¹¹-Elaidinsäure 428.	- bromnitroäthylester 137.	— isopropylester 139.
△12-Elaidinsäure 428.	- brompropylester 139.	- isovaleriansäureanhydrid
Elaidinsäure-äthylester 427, 443.	— butenylester 150.	277. — jodäthylester 136.
amid 443.	— butinylester 153.	— jodid 177.
- anhydrid 443.	— buttersäureanhydrid 251.	— jodmethylester 166.
— dibromid 362.	— butylester 140, 141, 142.	— jodpropylester 139.
— methylester 443.	— cerylester 147.	— linalylester 153.
— nitril 443.	- chlorathylester 136, 167.	— methylallylester 150.
Elaidodibromstearinsäure 362.	- chloramylester 143.	— methylbutinylester 153.
Elaidylacetat 153.	— chlorbutylester 141. — chloressigsäureanhydrid	— methylester 125.
Ennea-dekaoxymethylen	193.	— methylheptylester 146.
discetst 165.	- chlorheptylester 168.	— methylhexenylester 152.
— methylendicyanid 613.	— chlorid 175.	— methylhexylester 145, 146.
— oxymethylendiacetat 164. Enolcitralacetat 154.	- chlorisoamylester 167.	— methylpentenylester 151.
Enolcitronellalacetat 154.	- chlorisobutylester 167.	— methylpentylester 145.
Erucasăure 445.	— chlormethylester 166.	- myricylester 147.
Erucasaure-athylester 447.	- chlornitroäthylester 136.	— nerylester 153.
— amid 447.	— chlornitrobutylester 141.	- nitrobutylester 141.
— anhydrid 447.	- chlornitroisopropylester	— nitroisopropylester 140.
— bromojodid 377.	140.	— nitropentylester 143.
— methylester 446.	— chlorpentylester 143.	- nonakosylester 147.
Erucin 447.	— chlorpropylester 139.	- octadecylester 147.
Erucylessigsäure 449.	— citronellylester 152. — decenylester 152.	— octylester 146. — oleylester 153.
Erythrendicarbonsäure 671.	- dibrommethylallylester	— pentatriakontylester 147.
Erythrolformiat 33. Essig-ester 129.	150.	— pentarriacontylester 147.
- gärung 91.	— dibromnitroëthylester 137.	— pentylester 143.
— persaure 174.	— dibrompropylester 139.	— propylester 137.
Essigsaure 91; Vorkommen	— dichlorisopropylester 140.	- tetradecylester 146.
91; Bildung 91, 93; Dar-	- dichlornitroäthylester 137.	- tetrahydronerolidylester
stellung 96; Eigenschaf-	— difluoräthylester 136.	153.
ten 97, 98; chemisches	— dimethylbutylester 145.	— tetrakosylester 147.

47

Essignaure-thioessignaureanhydrid 210. tribromäthylester 136. — trichlorāthylester 136. — trichlorbutylester 141, 143. — trichlorhexylester 145. — trichlormethylbutylester 143. trichlorpentylester 143. - tridecenylester 152. - trifluorisopropylester 140. trimethylallylester 151. trimethyldodecenylester 152. trimethyldodecinylester 154. — trimethylpentinylester 153. trimethylvinylester 151. trisbutylacetylenylmethyls ester 154. - undecenylester 152. vinylester 147. Europium-acetat 119. oxalat 491. - platincyanid 87. Everittsalz 74.

F.

Farnesylacetat 154. Ferri-cyanwasserstoffsäure 75. ferrocyanid 80. pentacyanverbindungen 81. Ferro-cyanid 64. .cyanwasserstoff 64. cyanwasserstoffsäure 64. — ferricyanid 80. kobalticyanid 84. - pentacyanverbindungen 74. Fluor-acetamid 185. acetonitril 185. - äthylacetat 136. - essigsäure 185. - essigsäureäthylester 185. – essigsäureamid 185. - essigsäureanhydrid 185. Formamid 36. Formamid-oxim 89. oximmethyläther 89. Formhydroxamsäure 89. Formhydroximsäure-äthylester 89. – methylester 89. - propylester 89. Formiate 19. Formimino-äthyläther 37. – methyläther 37. propyläther 37. Formoximino-athylather 89. - methyläther 89. - propyläther 89.

Formyl-acetylhydrasin 185. formamidoxim 89. hydroperoxyd 34. oxyaceton 34. Fumaramid 640. Fumaramidsaure 640. Fumarate 637. Fumarsäure 631. Fumarsäure-äthylesterchlorid amid 640. diathylester 638. diamid 640. dibromid 639. dichlorid 639. dimethylester 638. dipropylester 639. methylesterchlorid 639. Fumaryl-bromid 639. ohlorid 639. peroxyd, polymeres 639.

G.

Gadoleo-diarachidoninokta-

dicetoleinhexabromid 375.

dekabromid 372.

Gadoleinsäure 444.

Gadolinium-formiat 22. oxalat 491. Gärungsessig 96. Gallium-eisencyanid 73. oxalat 490. Geraniumhydroxamsäure 456. Geraniumsäure 456. Geranyl-acetat 153. butyrat 248. formiat 33. isobutyrat 261. isovalerianat 276. Gingkosäure 380. Ginnolacetat 147. Glutaconsăure 648, 649. Glutaconsäure-diäthylester 649. dimethylester 649. dinitril 649. Glutarsäure 564. Glutarsaure-athylester 565. athylesternitril 566. diathylester 565. dichlorid 566. dihydrazid 566. dimethylester 565. dinitril 566. - dioctylester 566. methylester 565. methylesterchlorid 566. Glutarylchlorid 566. Glutinsaure 671 Glycerin-acetat 159. acetatdipalmitat 339. acetatdistearat 356.

Glycerin bisdi brom behenatdekabrombehenat 377. Glycerinbisdibrompalmitatdibromstearst 362. hexabromstearat 365. oktabromarachinat 371. oktabromstearat 367. stearat 355. - tetrabromstearat 363. Glycerinbisdibromstearathexabromstearat 366. tetrabromstearat 364. Glycerinbisoktabromarachinatdekabrombehenat 376. Glycerinbisoktabromstearatdekabrombehenat 376. oktabromarachinat 372. oktabromstearat 367. Glycerin-bistetrabromstearathexabromstearat 366. bromhydrindipalmitat butyrat 249. butyratdipalmitat 339. caprinat 311. capronat 285. capronatdipalmitat 340. caprylat 303. caprylatlauratmyristat 327. caprylatmyristatoleat 439, chlorhydrindibutyrat 248. chlorhydrinmyristat 327. diacetat 160. diacetatstearat 354. dibromarachinatbisdibrombehenat 375. dibromarachinatbisoktabromarachinat 372. Glycerindibromhydrin-acetat 139. - formiat 29. – margarat 344. - palmitat 336. Glycerindibrompalmitat-bisdibromstearat 362. bistetrabromstearat 364. hexabromstearatdekabrombehenat 376. oktabromarachinatdekabrombehenat 376. okta bromstearatdekabrombehenat 376. oktabromstearatoktabromarachinat 371. oktabromstearatoktabrombehenat 375. oktabromstearatoktabromstearat 367. stearathexabromstearat

365.

364.

stearattetra bromstearat

Glycerindibrompalmitate tetra bromsteara toktabromarachinat 371. Glycerindibromstearat-bisdekabrombehenat 377. bisdibrombehenat 375. bishexabromstearat 366. bisoktabromarachinat 372. bistetrabromstearat 364. - oktabromarachinatdekabrombehenat 376. Glycerindibutyrat-oleat 439. palmitat 339. Glycerindichlorhydrin-acetat 140. butyrat 246. capronat 285. - isovalerianat 275. laurat 319. — margarat 344. — myristat 326. --- oleat 439. palmitat 336. - propionat 221. stearat 352. Glycerin-diformiat 33, 34. dilaurat 320. – dilauratmyristat 328. — dilauratpalmitat 339. — dilauratstearat 355. - dimargarat 345. dimargaratstearat 355. — dimyristat 328. — dimyristatpalmitat 339. — dipalmitat 339. dipalmitatdibrompalmitat 342. dipalmitatmargarat 345. - dipalmitatoleat 440. dipalmitatstearat 355. — distearat 356. - distearatoleat 440. - distearatphosphorsäure — distearatschwefelsäure 359. - formiat 33. Glycerinhexabromstearat-bisdekabrombehenat 377. bisdibromarachinat 371 bisoktabromarachinat 372. - bisoktabromstearat 367. - dibromarachinatoktabrombehenat 375. oktabromarachinatdekas

brombehenat 376.

- jodhydrindipalmitat 338.

jodhydrindistearat 354.

lauratdimyristat 328.

– lauratdipalmitat 340.

— margaratdistearat 357.

– lauratdistearat 357. - margarat 344.

Glycerin-hexadecylathers

diacetat 160.

- laurat 320.

Glycerin-myristat 327. Glycerin-trionanthat 295. myristatdipalmitat 340. trioleat 440. myristatdistearat 357. tripalmitat 340. myristatoleat 439. tripelargonat 308. octadecylätherdiacetat tripentadecylat 330. 160. tripetroselidinat 428. Glycerinoktabromarachinattripetroselinat 427. bisdekabrombehenat 377. tripropionat 222. bisdibrombehenat 375. trisdibrombehenat 375. bisoktabrombehenat 375. trisdibrompalmitat 342. Glycerinoktabromstearat-biss trisdibromstearat 362 dekabrombehenat 377. trishexabromstearat 366. oktabromarachinatdekatrisoktabromarachinat brombehenat 376. Glycerin-oleat 439. trisoktabromstearat 367. oleatdierucat 447. tristearat 357. oleaterucatlinolenat 465. tristearolat 458 oleylätherdiacetat 160. tritridecylat 323. Glycerinpalmitat 338, 339. triundecylat 314. Glycerinpalmitat-bisdibromtriundecylenat 420. stearat 362. Glykol- s. a. Athylen-, dibromstearathexabrom-Äthylenglykol-. stearat 365. Glykolaldehyd-hydrattris dimargarat 345. acetat 168. dioleat 440. triacetat 168. distearat 357. Glykoldiacetat 155. oktabromstearatdibroms Glyoxal-dihydrattetraacetat arachinat 371. 168. stearatoleat 440. tetraacetat 168. Glycerinstearat 354. Gold-cyanid 56. Glycerinstearat-bisdibromoleat 437. behenat 375. dibromstearathexabroms stearat 366. H. dibromstearattetrabroms stearat 364. Hämotetracarbonsäure 704. jodbehenat 377. Hämotricarbonsäure 686. Halborthooxalsäure-dimethyl= Glycerintetra bromstearatbisdibromarachinat 371. esteräthylester 506. bishexabromstearat 366. methylesterdiäthylester hexabromstearatoktabromarachinat 371. triäthylester 506. oktabromstearatoktabrom= Hendekaoxymethylendiacetat arachinat 371. Glycerin-triacetat 160. Heneikosancarbonsäure 373. Heneikosandioldiacetat 158. tribehenat 374. tribrassidat 448. Heneikosansäure 372. – tributyrat 249. Heneikosen-carbonsaure 445, tricaprinat 311. 448. carbonsäuremethylester tricapronat 285. 445. tricaprolat 303. trieläostearat 467, 468. trielaidat 443. Heneikosylcyanid 375. Heneikosylsaure 372. trierucat 447. Heneikosylsäure, Derivate triformiat 34. trihexadecenoat 425. 373. Hentriakonten 338. triisobutyrat 261. Hentriakontyl-laurat 320. triisovalerianat 277. myristat 327. trilaurat 320. palmitat 338. trilinolat 461. stearat 353. trilinolenat 465. trimargarat 345. Heptaacetylvolemit 163. trimyristat 328.

trioctadecadienoat 462.

trioctadecenoat 427.

740 Heptadecadiencarbonsaures methylester 462. Heptadecan-carbonsaure 346, 367, 368. dicarbonsaure 627. dicarbonsäurediäthylester 627, 628. — dicarbonsäuredimethyl= ester 627. dimalonsăure 709. --- säure 343. - tetracarbonsäure 709. Heptadecatriencarbonsäure 463, 465, 468. Heptadecen-carbonsaure 426, 427, 428, 429, 444. carbonsauremethylester 444. - säure 426. - säuremethylester 426. Heptadecenylcyanid 441. Heptadecincarbonsaure 457, **45**8. Heptadecyl-säure 343. stearat 353. Heptadekaoxymethylendiacetat 165. Heptadien-carbonsaure 455. - carbonsäureäthylester - carbonsäurenitril 455. - dicarbonsäure 677. Heptakosyl-laurat 320. myristat 327.

- palmitat 337. stearat 353. Heptan-carbonsaure 300, 304.

dicarbonsaure 602, 604, 605. dioldiacetat 157.

- pentolpentaacetat 162. - tricarbonsăure 691.

– trioltriacetat s. Triacetoxyheptan.

Heptaoxymethylendiacetat Heptatriakontan-carbonsaure

383.

dicarbonsaure 631. Hepten-carbonsaure 413, 414.

- carbonsäureäthylester 413. - saure 410.

– säureäthylester 410. Heptinearbonsäure 454. Heptinsäure 453. Heptyl-capronsaure 324.

cyanid 303. Heptyliden- s. a. Onanthyliden-.

Heptyliden-cyanessigsäure **668.**

cyanesigsäureäthylester 668.

cyanessignauresmid 668. Heptylin 295.

Heptyl-malonsäure 610, 611. malonsäureäthviester 611.

malonsäurediäthylester

nonylessigsäure 368.

— nonylmalonsäurediäthyl= ester 628.

propiolsäure 456. propiolsäuremethylester

456.

säure 294.

Hexacetateisenchromsalze

Hexacetatotrieisenbasen. Salze 124.

Hexaacetyl-mannit 163. sorbit 163.

Hexabrom-hexadecansăure 342.

octadecansaure 364. palmitinsäure 342.

palmitinsäuremethylester 342.

stearinsaure 364.

stearinsäureäthylester 365.

stearinsäurebutylester 365. stearinsäureisoamylester

stearinsäureisobutylester

stearinsäureisopropylester 365.

stearinsauremethylester 365.

stearinsäurepropylester 365.

trinitroisovaleriansäure 279.

Hexacarbonsäuren 718. Hexachlordiäthylsulfid 211. Hexacyanpentan 718.

Hexadecan-carbonsăure 343,

dicarbonsaure 626.

dicarbonsaureathylester

dicarbonsaurediathylester

 dicarbonsäuredimethyls ester 626.

dimalonsaure 709.

diolacetat 158.

dioldiacetat 158.

säure 330.

Hexadecatriensaure 462.

Hexadecen-carbonsaure 426. carbonsauremethylester 426.

Hexadecensaure 424, 425, 428.

Hexadecensaure- s. a. Zoomarinsaure-. Hexadecensäureanhydrid 425.

Hexadecyl- s. a. Cetyl-. Hexadecylmalonsaure 627. Hexadekaoxymethylendiacetat 165.

Hexadien-carbonsaure 453. dicarbonsaure 676, 677.

dioldiscetat 159. saure 452.

Hexahydro-crocetin 679.

hyptolid 162.

Hexakosansäure 380.

Hexamethylen-adipat, polys meres 575.

dicyanid 597.

sebacinat, polymeres 609. - succinat, polymeres 553. Hexammineisenacetat 124.

Hexan-carbonsaure 294, 296, 299.

dicarbonsaure 595, 597,

dicarbonsäurediäthylester

dioldiacetat 157.

- tetracarbonaăure 707.

tetroldiscetat 162. tricarbonsăure 689.

trioltriacetats. Triacetoxy. hexan.

Hexapropionatodihydroxotrichromehlorid 218. triferrichlorid 218.

Hexen-carbonsaure 410.

carbonsaureathylester 410. dicarbonsaure 665, 667.

dioldiacetat 159.

Hexensäure 402, 403, 404, 405. Hexensaure-athylester 403,

404. amid 404.

chlorid 403, 404.

methylester 404. nitril 404.

Hexincarbonsaure 453.

Hexinsäure 452. Hexyl-acetat 145.

bernsteinsäure 610, 611.

bernsteinsäureamid 611. capronsäure 322.

chlormalonsäurediamid

cyanacrylsäure 668. cyanacrylsäureäthylester

cyanacrylsaureamid 668.

cyanid 296.

decylessigsaure 368.

decylmalonsaurediathyls ester 628.

dicyanglutarsaurediamid 708.

glutaraaure 613. heptylcarbinolacetat 146.

- itaconsaure 668.

- laurat 319. – laurin**ešure 368.**

- malo**nežure 604.**

Hexyl-malonsaurediathylester - malonsäurediamid 604. - myristat 326. octylessigsäure 343. — octylmalonsäurediäthylester 626. oleat 439. — propandicarbonsaure 613. - propiolsāure 455. - saure 281. - valeriansäure 315. valeriansäurechlorid 315. Hiragonsäure 462. Hiragonsäure-hexabromid 342. - methylester 463. Hyaenanche globosa, Acetat des Alkohols C₂₄H₅₀O aus - 147. Hyanasaure 380. Hydracetylacetonacetat 169. Hydrargyrum oxycyanatum verum 59. Hydrazin-cyanid 52. eisencyanid 65. stearat 349. Hydrazioxalyl 514. Hydrazoformaldehyd-.dihydrazon 90. Hydro- s. s. Dihydro-, Tetrahydro- usw. Hydrosorbinsäure 404.

I.

Hydrovanadylmalonat 520.

propionat 217.

Hypogäasäure 424.

dibromid 342.

Intervin 345.

Iridium-cyanid 86.

Hydroxylamin-myristat 325.

Hypogäasäure-anhydrid 425.

oxalat 502. Isansaure 468. Isocconiteauretriathylester 692. Isoamyl-acetat 144. - buttersäure 309. - butyrat 247. - chlormalonsäurediamid 599. - cyanessigsäure 599. - cyanid 290. - dijodessigsäureäthylester

cyanwasserstoff 86.

dijodessigsāureamid 298. - eläostearat 467.

- essignature 297.

- essignaureathylester 297.

rigutureamid 297.

Isoamyl-essigsäureazid 298. essigsäurehydrazid 297.

formiat 31.

Isoamyliden-cyanessigsäure 665.

cyanessigsäureäthylester 665.

essigsäure und Derivate **4**1Ĭ.

malonsäurenitril 665. Isoamyl-isobutyrat 261.

isocapronat 289.

- isovalerianat 276. – malonsäure 599.

- malonsäurediäthylester

– malonsäurenitril 599.

— mvristat 326. oleat 439.

 palmitat 337. propionat 221.

stearat 353. valerianat 266.

valeriansaure 313. Isobehensäure 377.

Isobernsteinsäure 562. Isobixin 680.

Isobutantetracarbonsăures tetraäthvlester 703. Isobuttersäure 257.

Isobuttersäure-äthylester 260.

amid 262. anhydrid 262. bromid 262.

- chlorid 262.

— citronellylester 261. - geranylester 261. - isoamylester 261.

isobutylester 260.

- linalvlester 261.

 methylester 260. – nerylester 261.

octylester 261.

propylester 260. rhodinylester 261.

trimethylamylester 261. Isobutyl-acetat 142.

allylacetat 152. allylessigsäure 417.

allylmalonsäurediäthylester 668.

bromessigsaure 290.

brommalonsäurediäthylester 592.

buttersäure 304.

butyrat 247.

chloressigsäure 290.

chlormalonsaurediamid

cyanessigsäure 592.

cyanessigsaureisobutylester 592.

cyanid 278.

decyleasignaure 343.

Isobutyl-decylmalonsäure= diathylester 626.

dijodessigsäureamid 291.

dodecylessigsäure 368. dodecylmalonsäurediäthylester 628.

Isobutylen-hexacarbonsäure= hexamethylester 719.

tetracarbonsauretetraäthylester 715.

tricarbonsaure 695. tricarbonsäuretriäthyls

ester 695.

Isobutyl-essigsäure 289. formiat 30.

glutarsäure 605.

glutarsäureanhydrid 605. Isobutyliden-biscyanessigsaureamid 708.

propionsaure 411.

propionsăurenitril 411. Isobutyl-isobutyrat 260.

isovalerianat 276.

isovalerylcarbinolisovalerianat 277.

laurinsäure 343.

- malonsäurediäthylester

malonsăurenitril 592. myristinsāure 368.

oleat 439.

palmitat 337. pentensäure 417.

propandicarbonsaure 605...

propionat 221.

propionsăure 299. stearat 353.

valerianat 266.

valeriansaureamid 309.

Isobutyramid 262. Isobutyrate 259.

Isobutyr-hydroxamsäure 262. hydroxamsāureacetat 262.

Isobutyroinisobutyrat 262. Isobutyronitril 262.

Isobutyryl-bromid 262. chlorid 262.

Isocamphoronsäure 690. Isocapronamid 290.

Isocapronamidin 290. Isocapronitril 290.

Isocapronsaure 289. Isocapronsäure-äthylester

s. Athylisocapronat. amid 290.

- chlorid 289.

methylester s. Methylisocapronat.

Isocaproylchlorid 289. Isocrotonitril 395. Isocrotonoylchlorid 394.

Isocrotonsaure 394. Leocrotonsäure-äthylester 394.

amid 394. - chlorid 394.

Isopropyl-caproylchlorid 309. Isocrotonsaure-dibromidamid 256. carboxybernsteinsäuretris äthylester 689. nitril 395. chlormalonsaurediamid Isodecylen-säure 418. sauremethylester 418. Isodibrombernsteinsäure 561. chlormalonsäuredimethylester 586. Leodichlorbernsteinsaure 557. cyanessigsäureäthylester Iscerucasāure 448. 586. Isogadoleinsäure 445 cyanglutarsäurediäthyl-Isoheptensäure 410, 411. ester 690. Isoheptensaure-athylester cyanid 262. 411. – **a**mid 411. cyanpropencarbonsaure 667. — chlorid 410, 411. dicyanglutarsäurediamid - nitril 411. Isoheptylmalonsäure 611. 708. dimethylallylmalonsäure-Isoheptylsäure 297. Isohexensäure 405, 406. diäthylester 668. Isohexensäure-äthylester 405, essigsaure 271. formiat 29. 406. amid 407. formylformal 34. glutaconsăure 665. – chlorid 406, 407. — dibromid 291. glutaconsăurenitril 667. – nitril 406, 407. glutarsäure 598, 600. glutarsäurediäthylester Isohexylacetat 145. Isohexylsäure 289. 600. Isohydrosorbinsäure 405. hexandicarbonsaure Isomethylbixin 680. 615. Isopropyliden-bernsteinsäure Isonorbixin 680. Isoölsäure 429, 438. Isoölsäure-amid 429. bernsteinsäureäthylester anhydrid 429. Isopentantetracarbonsaure cyanessigsäureäthylester 705. 661. Isoprendicarbonsaure 675. dimalonester 707. Isopropenyl-cyanid 399. dimalonsauretetraathylhexendicarbonsaure und ester 707. malonsäureäthylesternitril Derivate 678. Isopropyl-acetat 139. acrylsaure 406. malonsäurediäthylester acrylsaureathylester 406. 661. - acrylsäureamid 407. malonsăuredinitril 662. - acrylsäurechlorid 407. Isopropyl-isoamylmalon= – acrylsäurenitril 407. säurediäthylester 615. — adipinsāure 605. isobutyrylcarbinoliso-- adipinsäurediäthylester butyrat 262. 605. isocrotylcarbinolacetat – adipinsäurediamid 605. 152. isovalerianat 275. adipinsäuredichlorid 605. - allylacetat 151. malonamid 586. - malonsaure und Derivate – allylessigsäureamid 414. bernsteinsäure 590, 591. - bernsteinsäurediäthylester oxymethylacetat 163. oxymethylbutyrat 250. brommalonsäurediäthyls oxymethylformiat 34. oxymethylpropionat 222. palmitat 336. ester 586. butandicarbonsaure 605. - butendicarbonsaure 667. propandicarbonsaure - buttersäure 299. 600. butylessigsäure 308.
butylmalonsäure 611.
butylmalonsäurediäthyle propionsaure 294.

ester 611. capronature 308.

- capronaiureamid 309.

steerst 352.

ester 628.

valerianet 266.

Isostearidonoarachidonoclupanodonineikosihexabromid 376. Isostearidon-säure 469. säureoktabromid 367. Isostearinsaure 367. Isovaleramid 277. Isovalerianate 274 Isovaleriansaure 271. Isovaleriansäure-äthylester s. Athylisovalerianat. amid 277. anhydrid 277. bromid 277. chlorid 277. methylester s. Methylisovalerianat. Isovalerodichlorhydrin 275. Isovaleroinisovalerianat 277. Isovaleronitril 278. Isovaleryl-bromid 277. chlorid 277. magnesiumbromid 277. Itabrombrenzweinsäure 569. Itaconsaure 650. Itaconsäurediäthylester 651. Itajodbrenzweinsäure 569. J. Jalapinolsäure, Carbonsaure C16H22O2 aus -Jecorinsaure 468. Jod-acetat 174 acetonitril 206. athoxybutylmercaptomethan 90. äthoxyngethylbutylsulfid 90. athylacetat 136. äthylidenbisbutylsulfid 212. behensäure 377. bisbutylmercaptoäthan brenzweinsäure 569. buttersäure 257. dokosansäure 377. essigsäure 206. essigsäureäthylester 206. essigsäuremethylester 206. essigsäureoctylester 206. hexadecansaure 342. methoxyacetoxypropan methylacetat 166. methylbuttersäure 271. Jodmethylglutersäure-diathylester 581, 584. — dimethylester 581, 584.
Jod-palmitinsture 342.
— propandicarbonesure 569.
— propionanid 233.
— propionasure 233, 234. tridecylessigsaure 368. tridecylmalonsaurediathylJod-propionsäureäthylester 233. 234.

propionylchlorid 233, 234.

propylacetat 139.

Jodpropylenglykol-dilaurat **32**0.

- dipalmitat 338.

- distearat 354.

- methylätheracetat 156.

Jod-triacetat 174.

trisbromacetat 203.

trischloracetat 193.

— trisdichloracetat 196.

--- tristrichloracetat 200.

- valeriansäure 270. - valeriansäureäthylester

270.

K.

Kalium-acetat 115. - aluminiumeisencvanid 73.

- butyrat 242.

— chromeyanid 61.

— cyanid 52.

- eisenaquopentacyanid 81.

- eisencyanid 67, 76.

— eisensulfonitrosopentacyanid 75.

ferricyanid 76, 77.

- ferrocyanid 67.

formiat 20.

– iridiumoxalat 502.

 kobaltoarbonylpentacyanid 83.

- kobalteyanid 83.

kobaltoxyoxalat 501.

--- laurat 318.

— linolat 461.

— myristat 326.

-- nickelcyanid 84, 85.

nickeleisencyanid 74.

- oleat 436.

-- oxalat 485

— palmitat 334.

platincyanid 87.

- quecksilbercyanid 59.

— rhodiumoxalat 501.

--- stearat 350.

- succinat 548:

- tetraoxalat 485.

 trioxalatokobaltiat 497, 498.

Kobalt-acetat 124.

cvanid 82.

oyanwasserstoff 83.

- diacetat 124.

- eisencyanid 74.

formiat 24.

Kobalticyanwasserstoff 83.

Kobaltmalonat 521.

Kobalto-evanid 82.

ferrocyanid 74.

Kobaltovalst 497.

Kobalt-succinat 549.

thiosulfatopentacyanid 84.

triacetat 124.

Korksäure 595.

Korksäure-äthylester 596.

diathylester 596.

diazid 597.

dichlorid 596.

- dihydrazid 597. dimethylester 596.

- dinitril 597.

dioctylester 596.

- methylester 596.

Kupfer-acetat 115.

butyrat 242.

cyanid 54, 55.

- eisencyanid 70, 78.

– formiat 20.

— malonat 519.

- oleat 437.

oxalat 486.

palmitat 335. propionat 217.

- stearat 350.

succinat 548.

L.

Laccersaure 383.

Lacoersäure-äthylester 383.

laccerylester 383.

myricylester 383.

Lagansaure 372 Anm.

Lanthan-acetat 119.

oxalat 491.

platincyanid 87.

Laurate 317.

Laurin 320.

Laurinhydroxamsaure 321.

Laurinsaure 316.

Laurinsäure-äthylester

s. Athyllaurat. amid 321.

— anhydrid 321.

chlorid 321.

methylester s. Methyl-

laurat.

Laurodichlorhydrin 319. Laurodimyristin 328.

Laurodipalmitin 340.

Laurodistearin 357.

Lauroylchlorid 321.

Lauryl- s. Dodecyl-.

Lignocerinsaure 379.

Linalyl-acetat 153.

butyrat 248.

isobutyrat 261.

Linderic soid 422 Anm.

Lindersiure 422.

Lindersäuremethylester 422.

Linolenin 465.

Linolenoarachidonoclupas nodonineikositetra bro-

mid 376.

Linoleno-diarachidonineikosidyobromid 372.

diclupanodonineikosihexabromid 377.

diisostearidonineikosidyobromid 367.

dizoomarindekabromid 365.

Linolensäure 463, 465, 468. Linolensäure-äthylester 465.

athylesterozonidperoxyd 468.

hexabromid 364, 365.

hexabromidāthylester 365.

 hexabromidbutvlester 365. hexabromidisoamylester

365. hexabromidisobutylester

365. hexabromidisopropylester

hexabromidmethylester

365. hexabromidpropylester 365.

methylester 465.

Linoleo-digadoleinoktabromid 371.

dilinoleninhexadekabromid 366.

dioleinoktabromid 364.

dizoomarinoktabromid

isostearidonoarachidonineikosibromid 371.

linolenoarachidoninokta-

dekabromid 371. Linolhydroxamsaure 461.

Linolin 461. Linolsäure 459, 461, 462.

Linolsäure-äthylester 461.

- anhydrid 461.

bisbromojodid 367. methylester 461; s. a. 462.tetrabromid 362, 363, 363

Anm.

tetrabromidathylester 363. – tetrabromidallylester 363.

tetrabromidisopropylester

tetrabromidmethylester

tetrabromidpropylester 363.

Lipojodin 448.

Lithium-acetat 113.

butyrat 242.

oyanid 52 eisencyanid 66, 76.

formiat 19.

- laurat 317.

oleat 434.

 oxalat 484. platinoyanid 86.

- stearat 349.

M.

Magnesium-acetat 116. bromidpropionat 217.

butyrat 242.

- cyanid 56.

- eisencyanid 71, 78.

- formiat 21.

jodidpropionat 218.

- laurat 319. malonat 519.

- oleat 437.

oxalat 487.

- platincyanid 87.

- propionat 217. stearat 351.

Maleinate 644. Maleinsäure 641.

Maleinsäure-amid 646.

- diäthylester 646.

— diamid **64**6.

diamvlester 646.

— dimethylester 645.

--- dipropylester 646. methylester 645.

Malon-amid 530. amidsäureäthylester 530.

- azidsäure 537.

ester 524.

- hydrazidsäure 536.

 hydroxamsäure 536. Malonitril 535.

Malonsäure 516.

Malonsäure-äthylester 523.

- äthylesteramid 530.

äthylesterbutylester 528.

- äthylesterchlorid 529. äthylesteroctylester 529.

— amidhydroxylamid 536. — amidnitril 534.

amidoxim 536.

- azid 537.

 bisbromäthylester 528. bischloräthylester 528.

— butylester 528.

chloridnitril 534.

- diäthylester 524.

– diamid 530.

- dibromid 529

– dibutylester 528.

dichlorid 529.

- dihydrazid 537.

dimethylester 522.

– dinitril 535. --- dioctylester 529.

– dipropylester 528.

hydrazid 536.

- hydroxylamid 536. methylesteräthylester 523.

– nitril 530.

propylester 528.

trichlorbutylester 529. Malonyl-bromid 529.

chlorid 529, Manganacetat 123. Mangan-cyanid 63, 64. eisencyanid 74.

formist 24.

malonat 520.

oxalat 495. Mannithexaacetat 163.

Margarin 345.

Margarinsäure 343. Margarinsäure-äthylester 344.

nitril 345.

Margaro-dibromhydrin 344.

dichlorhydrin 344.

dipalmitin 345.

distearin 357 Melissinsäure 382.

Melissinsäuremyricylester 383.

Melissyl-acetat 147. alkohol, Chloracetat 193.

palmitat 337.

stearat 353. Menthonensäurenitril 419.

Menthonitril 419.

Mercuretin 118.

Mercuricyanid 58. Mesaconamidsäure 652.

Mesaconsaure 651; Derivate

652.

Mesaconylchlorid 652. Mesityloxyd-oximacetat 184.

semioxamazon 514.

Mesochlor brom bernsteinsäure

Mesodibrom-adipinsaure 577.

bernsteinsäure 561.

bernsteinsäurediäthylester 562.

bernsteinsäuredichlorid 562.

bernsteinsäuredimethylester 562.

glutarsāure 567.

glutarsäurediäthylester 567.

glutarsäuredimethylester

Mesodichlor-bernsteinsäure 558.

bernsteinsäurediäthylester 558.

bernsteinsäuredichlorid

Mesodimethyl-bernsteinsäure

bernsteinsäurediäthylester

butantetracarbonsaure vgl. 707.

 dicarboxyadipinsäure vgl. 707.

glutarsaure vgl. 591. Metaboracetat 175

Methacrylsaure 398. Methacrylsäure, polymere 398. Methacrylsäure-äthylester 399.

- amid **399** .

Methacrylsaure-methylester 398

nitril 399.

Methancarbonsaure-amids thiocarbonsäure 540.

triessigsäure 703.

triessigsauretetraathylester 703.

Methan-dimalonsaurecvanessigsäurepentaäthylester

tetracarbonsaures tetraäthylester 699.

tetracarbonsăuretetra-

methylester 699. tetraessigsäure 706.

tricarbonsäuretriäthylester 680.

tricarbonsauretrimethyl= ester 680.

triessigsäure 684.

triessigsäurecyanessigsäuretetraäthylester 717.

triessigsäuretriäthylester 684.

trisulfonsäure 35.

Methoxy-acetoxyathan 154.

acetoxybutan 157. athylacetat 154.

methylacetat 163.

Methyl-acetat 125.

acetonylcarbinolacetat

acetoxybutylketon 169. acetoxyisopropylketon169.

acetoxymethylsulfid 166. acetoxynonylketon 169.

acetoxypropylketon 169.

acetylcarbinolacetat 169. acetylglyoximdiacetat 184.

acrylsaure 398. Methyladipinsaure 588, 589.

Methyladipinsaure-diathylester 588, 589.

diamid 589.

dibutylester 589. dichlorid 589.

dimethylester 589.

dinitril 589. dipropylester 589.

Methyläthyl-acrylsäure 405, 407, 408.

acrylsäureäthylester 407; s. a. 408, 409

acrylsaureamid 405, 407; s. a. 408, 409.

acrylsäurechlorid 405, 407; s. s. 408.

acrylsäurenitril 405, 407;

s. a. 409. allylacetamid 415.

allylacetonitril 415.

allylessigsäure 415. allylessigsäureamid 415. allylessigsäurenitril 415.

Methyläthyl-bernsteinsäure 590, 592.

— bromacetonitril 271.

- bromacetylchlorid 270.

- bromessigsäure 270.

— capronsaure 309.

— essigsäure 270.— essigsäureäthylester 270.

— essigsäureamid 270.

- essigsäurechlorid 270.

— glutaconsăure 666.

 glutaconsäurediäthylester 666.

- glutaconsăurenitril 666.

— glutarsäure 600.

- glutarsäureäthylester 600.

 glutarsäuredimethylester 600.

— glutarsăuredinitril 600.

glycerintriformiat 34.
hexencarbonsäurenitril

419.

Mathyläthylidan alutarsäura

Methyläthyliden-glutarsäure 666.

— glutarsäuredinitril 666.

Methyläthyl-ketonsemioxams azon 513.

— maleinsäure 662.

- malonat 523.

— malonsaure 585.

— pentandicarbonsaure 612.

- pentensaure 415.

— pentensäureäthylester 415.

— pentensäureamid 415.

pentensäurechlorid 415.

— pentensäurenitril 415.

propandicarbonsäure 600.

— propylallylacetat 152.

propylessigsäureamid 305.

— trimethylendicyanid 600.

— valeriansäureamid 305.

Methylallyl-acetat 150.

- essigsäure 407.

— basigsaure 407. — hexensaure 456.

- hexensäurechlorid 456.

— malonsäure 662.

malonsäurediäthylester

662.

--- pelargonsäure 423.

Methyl-amindisulfonsäure 37.
— amylcarboxyadipinsäure

-- amylcarboxyadipinsäuretriäthylester 692.

- arachinat 370.

— azaurolsāure 89.

— behenat vgl. 374.

- behenolat 462.

--- bernsteinsäure 568.

- bernsteinsäurediäthylester

- bernsteinsäurediamid 568.

- bisbrommethylessigsäure 281.

- bixin 680.

brommalonsäurediäthylester 564.

Methyl-brommalonsäures diamid 564.

butadiendicarbonsāure
 675.

Methylbutan-carbonsäure 289, 291, 293, 294.

— dicarbonsäure 588, 590, 592, 594.

dicarbonsäurediäthylester
 591.

— dicarbonsäureessigsäure 689, 690.

 tricarbonsäure 687, 688, 689.

— tricarbonsäuretriäthylsester 686, 689.

Methylbuten-carbonsäure 405, 406, 407, 410.

- carbonsäureäthylester 405, 406, 407, 408, 410.

- carbonsāureamid 407, 408.

carbonsäurechlorid 406,
 407, 408, 410.

— carbonsäurenitril 406, 407, 408.

— dicarbonsāure 663, 664.

- säure 401, 402.

— tricarbonsäure 697. Methyl-butenylidenmalons

säurediäthylester 677.
— buttersäure 270, 271.

Methylbutyl-acetonitril 297.

- acetylchlorid 296.

- acetylenylcarbinolacetat

153. — acrylsäure 416.

carbinolacetat 145.

— essigsäure 296, 297.

— essigsäureäthylester 296,

297.
— essigsaureamid 296, 297.

— malonsäure 599.

— malonsäurediäthylester 598.

Methyl-butyrat 243.

- caprinat 311.

— capronamid 298, 299.

- capronat 284.

— capronitril 298, 299.

- capronsaure 297, 298.

capronsäureäthylester
 298.

— capronsāureamid 298, 299.

capronsāurechlorid 298,
 299.

— capronsāurenitril 298, 299. — caproylchlorid 298, 299.

- caprylat 302.

Methylcarboxy-adipinsaure

686, 687. — adipinsäuretriäthylester

686.

 bernsteinsäure und Deris vate 683.

Methylcarboxy-carboxymethylglutarsäuretriäthylesternitril 706.

 glutaconsäuretriäthylester 695.

– glutarsäure 684, 685.

— glutarsäuretriäthylester 684.

 glutarsäuretrimethylester 684.

Methylcarboxymethyl-adipinsäure 689.

— glutarsäure 687.

korksäuretrimethylester
 691

– pimelinsäure 691.

— pimelinsäureamid 691.

— primelinsäuretriäthylester

Methylcarboxytricarballyls säure-tetraäthylester 704

— tetraamid 704. Methyl-cellosolveacetat 154.

— chlormalonsaurediathyle

chlormalonsäurediamid
 564.

- chlorvinylbernsteinsäure 664.

citraconsäure 660.

— citraconsaureamid 660.

— crotonsäure 401

Methylcyan-acetamid 563.

butencarbonsäure 664.
butendicarbonsäure

diäthylester 697.

— buttersäureäthylester 581,

582.
— essigsäureäthylester 563.

— essigsäuremethylester 563.
— glutaconsäurediäthylester

695, 696.
— glutarsäurediäthylester

- heptadienessigsäureäthylsester 678.

 hexendicarbonsäures methylesteräthylester 698.

Methylcyanid 181.

Methylcyan-pentencarbons säure 666.

 pentendicarbonsäures diäthylester 698.

— propantricarbonsauretriathylester 703.

propencarbonsāure 659.
propendicarbonsāuredis

åthylester 695.

- tricarballylsäuretriäthylsester 703.

 undecandicarbonsäures diäthylester 692.
 Methyldecancarbonsäures

amid 322.

Methyldecan-dicarbonsäure

dicarbonsäurediäthylester
 618; s. a. 619.

 dicarbonsäuredimethyle ester 618.

Methyl-decansaure 315.
— decatetraendicarbonsaure

- decatetraendicardonsaur 679.

— decensäure 420.

decensäurechlorid 421.

- decylacetamid 323.

decylacetonitril 323.
decylacetylchlorid 323.

— decylessigsäure 323.

 decylessigsäureäthylester 323.

diäthylcarbinolacetat
 145.

diäthylessigsäure 299.

— diäthylorthoacetat 137.
— diäthylpentensäure

415 Anm.
— dicarbäthoxyglutarsäures
diamid 704.

Methyldicarboxy-adipinsäurestetraäthylester 705.

— glutaconsäuretetraäthylsester 715.

glutarsäuretetraäthylsester 704.

— methylglutarsäuretriäthylsesternitril 706.

Methyldicyan-butandicarbons säurediäthylester 706.

— dodecan 621.

glutaconsäurediäthylester
 715.

glutaconsäuredimethylsester 715.

glutaconsäuremethylesteräthylester 715.

glutarsäurediäthylester
 703.

— glutarsäurediamid 704.

— pentan 600.

 pentandicarbonsäures diäthylester 707, 708.

propencarbonsäureäthyleester 695.

 propendicarbonsäures diäthylester 715.

propendicarbonsäuredimethylester 715.

propendicarbonsäuremethylesteräthylester
 715.

- tetradecan 625.

— tridecan 623.

Methyldimethylallylmalonsäurediäthylester 415. Methyldipropyl-acetonitril

--- essigsāure 309.

Methyldipropyl-essigsäures äthylester 309.

- essigsäureamid 309.

Methyldodecan-dicarbonsäure 621.

dicarbonsäurediäthylester
 621.

dicarbonsäuredimethylsester 621.

- dicarbonsäuredinitril 621.

- dioldiacetat 158.

— säure 323. Methyl-eläostearat 466, 467.

— elaidat 443.

Methylen-acetochlorhydrin 166.

 aminoacetonitril, dimolekulares 88; trimolekulares 88.

- bernsteinsäure 650.

- bisacetamid 180.

- cyanid 535.

diacetat 163.dimalonitril 701.

— dimalonsäure 701.

— dimalonsäuretetraäthyl

ester 701.
— dimalonsäuretetranitril

701.
— disuccina midsäure 554.

- glutarsäure 657.

— glutarsäurediäthylester 657.

Methylenglykol-äthylätheracetat 163.

äthylätherbutyrat 250
äthylätherformiat 34.

— äthylätherpropionat 222.

— butylätheracetat 163.

— butylätherbutyrat 250. — butylätherpropionat 223.

— diacetat 163.

— isopropylätheracetat 163.

isopropylätherbutyrat 250.

 isopropylätherpropionat 222.

— methylätheracetat 163. Methylen-malonsäurediäthylester 647.

— pentensäure 453. Methyl-erucat 446.

— erythrenglykoldiacetat 158, 159.

- formiat 25.

— fumarsäure 651.

— glutaconsaure 657, 658.

 glutaconsäurediäthylester 658, 659.

— glutaconsaurenitril 659.

— glutaconsăureozonid 659. — glutarat 565.

— glutarsäure 580, 582.

— glutarsäureäthylesternitril 581, 582.

Methyl-glutarsäurediäthylester 581, 582.

— glycerintriacetat 162. — glycxalhydratdiacetat 168.

 — glyoxaloximmethyläthers oximacetat 184.

— heptadecancarbonsäure 369.

- heptadecansäure 367.

— heptadecensäure 444.

heptadecensäuremethyleester 444.

Methylheptadien-carbonsaure 455, 456.

— carbonsäureäthylester 456.

carbonsäureessigsäure 678.
säureäthylester 455.

Methylheptan-carbonsäure 308, 309.

dicarbonsäure 611.

— dioldiacetat 157. Methylhepten-carbonsäure

417. — carbonsäureäthylester

417.

carbonsāurechlorid 417.
dicarbonsāure 668.

Methylheptenylacetat 152. Methylheptyl-acetonitril 312.

- acetylchlorid 312.

essigsäure 312.
essigsäureäthylester 312.

— essigsäureamid 312. Methyl-hexadecancarbons

säure 368.

— hexadecandicarbonsäurediäthylester 628.

— hexadecansaure 346.

— hexadiencarbonsaureäthylester 455.

— hexadiensäure 453, 454. Methylkexan-carbonsäure 304, 305.

carbonsäureäthylester 304.
carbonsäureamid 304, 305.

— carbonsäurechlorid 304, 305.

— dicarbonsäure 604, 606. — dicarbonsäurediäthylester

608, 607.

 dicarbonsäureessigsäure trimethylester 691.

Methylhexen-carbonsaure 415. — carbonsaureathylester 415.

— carbonsaureamid 415.

carbonsăurechlorid 415.
carbonsăurenitril 415.

— dicarbonsaure 667.

Methyl-hexenon 408.
— hexensäure 410, 411.

- hexensaureathylester 411.

hexensäureemid 411.
hexensäurechlorid 410, 411.

— hexensäurenitril 411. — hexylacetat 145, 146.

- Methylhexylcarbinol-acetat 146. — bromacetat 203. — butyrat 248.
- chloracetat 192. — formiat 31.
- isobutyrat 261.
- isovalerianat 276.
 jodacetat 206.
 propionat 222.

Methylhexylketonsemioxams azon 514.

azon 514. Methylisoamyl-essigsäure 305.

- essigsäureamid 305.
 essigsäurechlorid 305.
- malonsäure 606.
- malonsäurediäthylester 606.
- pentandicarbonsäures diäthylester 619.
- pentendicarbonsäures diäthylester 669.
- pimelinsäurediäthylester 619.

Methylisobutyl-essigsäure 299.

— hexensäure 421.

- ketonsemioxamazon 514.
- malonsäurediäthylester 601.
- pentencarbonsäure 421. Methyl-isobutyrat 260.
- isocapronat 289.
- isocrotylcarbinolacetat 151.
- isohexylessigsäure 309.
- isopropenylmalonsäure 664.
- isopropenylmalonsäures diäthylester 664.

Methylisopropyl-adipinsaure 611.

- bromacetylbromid 294.
- -- carbinol, saures Succinat 552.
- carbinoltrichloracetat 200.
- essigsaure 294.
- hexensäure 419.
 hexensäurechlorid 419.
- ketonsemioxamazon 514.
- pimelinsäure 615.
 pimelinsäurediäthylester 615.
- pimelinsäuredimethylester 615.

Methyl-isovalerianat 274.

- isovaleriansäure 294.isuretin 89.
- itaconsaure 660.
- itaconsaure 600. — korksäure 604.
- laurat 319.
- linolat 461.
- linolenat 465.
- maleinat 645. — maleinsäure 652.
- malonamid 563.

Methylmalonsäure 562. Methylmalonsäure-äthylester 563.

- äthylesternitril 563.
- amidnitril 563.
- azid 563.
- diathylester 563.
- diamid 563.
- dimethylester 562.
- hydrazid 563.
- methylesternitril 563.
- Methyl-margarinsäure 367.
 mercaptomethylacetat 166.
- mesaconsäure 659. — mesaconsäureäthylester
- 659. — mesaconsäurediäthylester 659.
- methantriessigsäure 687.
- methylenbernsteinsäure 660.
- muconsäure 675, 676.
 muconsäurediäthylester 676.
- muconsäurediamid 676.
 muconsäuredimethylester
 676.
- muconsäuremethylester 676.
- myristat 326.
- nonancarbonsäure 315.
 nonandicarbonsäure 616.
- nonandicarbonsaures
 nonandicarbonsaures
 dimethylester 616.
- nonansäure 312, 313.
- nonantricarbonsäures triäthylester 692.
- nonencarbonsäure 420.
 nonencarbonsäurechlorid
- 421. --- nonendicarbonsäureäthyl=
- ester 668.

 nonendicarbonsäures
- diathylester 669.

 nonensäure 418.
- nonensaure 418.
 nonvicarbinololeat 439.
- octadecansäure 369.
- Methyloctadien-carbonsäure 456.
- carbonsäureäthylester 456.
 carbonsäurechlorid 456.
- dicarbonsäurediäthylester 678.
 - saure 455.
- Methyl-octanoarbonsāure 313.
 octandicarbonsāure 613,
- octencarbonsäure 418.
- octensäure 417.
- octensäureäthylester 417.
 octyloxalat 507.
- octylsuccinat 552.
- önanthsäureäthylester 304.
 Methylolchloracetamid 193.
 Methyloleat 438.

- Methyloltrichloracetamid 201. Methyl-oxalat 503.
- metnyi-oxaiat 503 — palmitat 335.
- palmitinsäure 346.
- pelargonsäure 313. — pelargonsäureäthylester 313.
- pentadecansäure 343.
- pentadecensäure 426.
- pentadecensäuremethyl= ester 426.
 - pentadecylessigsäure 367.
- pentadecylmalonsäure
- diäthylester 627.
 pentadecylsäure 343.
- pentadiencarbonsaure
- 453, 454.

 pentadiendicarbonsäure
- diäthylester 677.

 Methylpentan-carbonsäure
 - 297, 298, 299.
- dicarbonsäure 598, 599.
 dicarbonsäureessigsäure
 - dioldiacetat 157.
- tricarbonsäure 689, 690.
- tricarbonsäuretrimethylsester 690.
- Methylpenten-carbonsäure 410, 411, 412, 413.
- carbonsäureāthylester
- 411, 413. — carbonsäureamid 411.
- carbonsaureamid 411. — carbonsaurechlorid 410,
- 411, 413. — carbonsäurenitril 411.
- dicarbonsäure 665, 666. — dicarbonsäuredimethyl:
- ester 665. Methylpentensäure 405, 406, 407.
- Methylpentensäure-äthylester
- 405, 406, 407, 408.

 amid 405, 406, 407, 408.
- chlorid 405, 406, 407, 408. - nitril 405, 406, 407, 408.
- Methylpenten-tetracarbons
- säuretetraäthylester 716. – tricarbonsäure 698.
- tricarbonsäuretrimethylsester 698.
- Methyl-pentenylacetat 151.
 petroselidinat 427.
- petroselinat 427.
- pimelinsäure 597. — pimelinsäurenitril 597.
- Methylpropan-carbonsaure 271, 280.
- dicarbonsaure 582, 584, 586.
- tetracarbonsäuretetraäthylester 704.
- tricarbonsaure 685.
 tricarbonsauretriathylsester 684, 685.

Methyltridecen-dicarbonsaure

dicarbonsauredimethyl-

670.

ester 670.

Methyl-tridecensäure und Myristate 325. Methylpropargylacetat 153. Myristinsäure 324. Methylpropen-carbonsaure Derivate 424. **401**. tridecylessigsäure 343. Myristinsäure-äthylester 326. amid 329. tridecylmalonsaurediathyl= — dicarbonsăure 658. anhydrid 329. ester 625. — dicarbonsäureäthylesters butylester 326. trimethylenglykoldiacetat nitril 661. chlorid 329. dicarbonsäurediäthylester 157. 658, 659, 661 trimethylenglykolmethylhexadecylester 326. hexylester 326. dicarbonsauredinitril 662. ätheracetat 157. undecandicarbonsaure 620. isoamylester 326. - säure 398. Methyl-propiolsäure 451. undecandicarbonsäure: methylester 326. dimethylester 620. tetradecylester 326. propionat 218. undecencarbonsäure 423 Myristo-chlorhydrin 327. — propylacetonitril 288. undecendicarbonsaure 423. dilaurin 328 propylcarbinolacetat 143. propylenglykoldisorbat dipalmitin 340. --- undecenylmalonsäures distearin 357. diäthylester 669. 452. Myristoleinsäure 423, 424. - undecylat 314. propylessigsäure und Deris undecylcapronsäure 368. Myristo-nitril 329. vate 288. - propylglycerintriacetat undecylenat 420. olein 439. 162. valerianat 265. - palmitoolein 440. valeriansäure 288, 289, Myristoylchlorid 329. -- propylthioessigsäure 288. 291. — propylvaleriansäure 309. valeriansäurenitril 291. — sorbat 452. — sorbinsäure 453, 454. vinylcarbinolacetat 150. N. vinylcarbinoltrichloracetat - sorbinsäureäthylester 453, Natrium-acetat 113. 200. 454. vinylessigsäure 402. butyrat 242. sorbinsäureamid 454. cyanid 52. sorbinsäurechlorid 453. zoomarat 425. eisenamminpentacyanid — stearat 351. Milanol 529. - stearinsäure 369. Molybdän-cyanid 61, 62. 75, 81. eisenaquopentacyanid 74. stearinsäuremethylester oxalat 493, 494. säureformiat 24. 369. Monacetin 159. eisenarsenitopentacyanid – suberat 596. succinat 549. Mono-acetin 159. eisencyanid 66, 76. tetradecancarbonsäure --- butyrin 249. - caprin 311. eisennitritopentacyanid 75, 82. tetradecandicarbonsäure - caproin 285. caprylin 303. eisennitrosopentacyanid 624, 625. Monocarbonsäuren 3. tetradecencarbonsăure 426. Mono-formin 33. eisensulfitopentacyanid 75. tetradecencarbonsăures laurin 320. eisensulfonitrosopentamethylester 426. margarin 344, 345. cyanid 75. - ferricyanid 76. tetradecylessigsäure 346. — myristin 327. — tetramethylenglykol= olein 439. - ferrocyanid 66. palmitin 338, 339. formiat 19. diacetat 157. thapsiasäure 624, 625. stearin 354. - laurat 317, 318. - linolat 461 thapsiasäurediäthylester Montansäure 382. Montanwachs, Acetat des Alkohols C₂₄H₈₀O aus malonat 519. 624, 625. - malonester 528. thapsiasauredimethylester 624, 625. 147; Carbonsauren aus myristat 325. 380, 382. oleat 434. - thapsiasäuredinitril 625. - tricarballylsäure 685. Mowilith H 148. oxalat 484. Methyltridecan-dicarbonsaure palmitat 333 Mowilith N 148. 623. propionat 217. Muconsaure 671, 673; s. a. dicarbonsăureamid 623. stearat 349. 675. succinat 548. – dicarbonsäurediamid 623. Muconsaure-diathylester 672, dicarbonsăuredihydrazid vanadylcyanid 60. 674. dibromiddiathylester 656. Neocerotinsaure 380. Neodym-oxalat 491. dicarbonsäuredimethyl= dibromiddimethylester platineyanid 87. ester 623. 656. - dicarbonsăuredinitril 623. dimethylester 672, 674. Nervonsaure 449.

Myricyl-acetat 147.

palmitat 337.

- stearat 353.

alkohol, Chloracetat 193.

Neryl-acetat 153.

butyrat 248.

- isobutyrat 261.

- formiat 33.

Octadecinsäure 457, 458. Octadecyl-acetat 147.

evanid 368.

Neryl-isovalerianat 276. - propionat 222. Neuronal 293. Nickel-acetat 125. - cyanid 85. — diacetat 125. --- eisencyanid 74. — formiat 24. - kobalteyanid 84. Nickelo-ferrocyanid 74. kobalticyanid 84. Nickel-oxalat 501. triacetat 125. Nitro-acetoxybutan 141. - buttersäureäthylester 257. - cyanessigsäureäthylester 539. Nitroessigsäure 207. Nitroessigsäure-äthylester 207. isoamylester 208. - isobutylester 208. isopropylester 207. — methylester 207. propylester 207. Nitro-isobernsteinsäuredi= äthylester 564. — isopropylacetat 140. - malonsäureäthylesternitril 539. malonsäurediäthylester 539. — methylmalonsäurediäthyl= ester 564. — methylpropylcarbinols acetat 143. - propionamid 234. — propionsäureäthylester $23\overline{4}.$ - prussidnatrium 81. - prussidsäure 81. – prussidsilber 82. Nitrosylacetylschwefelsäure 175. Nonadecan-carbonsaure 369. - dicarbonsäure 629. - dicarbonsäurediäthylester 629 dicarbonsäuredimethyls ester 629. - säure 368. tetracarbonsăure 709. Nonadecencarbonsaure 444. Nonadecylcyanid 370. Nonadecylsaure und Derivate **368**. Nonadekaoxymethylens diacetat 165. Nonadiendicarbonsăure 678. Nonadiensäure 455. Nonancarbonsaure 309, 312, Nonandicarbonsăure 612, 613. Nonandicarbonsaure-athyl= ester 613. - diäthylester 613.

Nonandicarbonsäure-diamid 613. dimethylester 613. — dinitril 613. dioctylester 613. methylester 612. Nonandiolacetat 158. Nonen-carbonsäure 418. carbonsäuremethylester 418. dicarbonsaure 668. Nonensäure 416. Nonensäure-äthylester 416. - amid 416. — chlorid 416. — nitril 417. Nonincarbonsaure 456. Noninsäure 455. Noncoxymethylendiacetat 164. Nonylcaprinat 311. Nonylin 308. Nonylnonadecylcarbinolacetat Nonylpropiolsäure und Deris vate 457. Nonylsäure 306. Norbixin 679, 680. Norgeraniumsäure 455. Norgeraniumsäureäthylester 456. Novonal 418. 0. Octadecadien-säure 458, 459,

Octadecan-carbonsäure 368, 369.

— carbonsäureäthylester 368.

— carbonsäuremethylester 368.

— carbonsäurenitril 368.

— dicarbonsäurediäthylester 629.

— dicarbonsäuredimethylester 629.

— dicarbonsäuredimethylester 628.

— säure 346.

— tetracarbonsäure 709.

Octadecatriensäure 463, 465, 468.

Octadecensäure 426, 427, 428, 429.

Octadecensäure-s. a. Elaidine

linsäure-.

amid 429.

– anhydrid 429.

427.

Octadecensäure-äthylester

säure-, Ölsäure-, Petrose≤

säuremethylester 462.

— malonsäure 629. Octadien-carbonsäure 455. carbonsäuremethylester dicarbonsäurediäthylester dioldiacetat 159. Octan-carbonsäure 306, 308. dicarbonsäure 608, 610, Octencarbonsäure 416. Octencarbonsäure-äthylester 416. amid 416. — chlorid 416. nitril 417. Octensäure 413. Octensäureäthylester 413. Octincarbonsaure 455. Octinsäure 454. Octooxymethylendiacetat 164. Octyl-acetat 146. butyrat 248. caprylsäure 343. cvanid 308. isovalerianat 276. laurat 319. malonsäure 613, 615. malonsäureäthylester 613. malonsäurediäthylester 613. oleat 439. palmitat 337 säure 300. - stearat 353. Ölsäure 429. ∆¹¹ Ölsäure 428. **⊿¹²-Ölsäure 428.** Olsäure-äthylester 438. anhydrid 441. butylester 439. dibromid 361. hexylester 439. isoamylester 439. isobutylester 439. methylester 438. nitril 441. octvlester 439. ozonid 438. ozonidperoxyd 438. propylester 439. undecylester vgl. 439. Onanth-aldehydsemioxam= azon 514. amid 296. hydroximsäurechlorid 296. Onanthin 295. Onanthoylbromid 296. Önanthsäure 294. Onanthsäure-äthylester 295. — amid 296.

— bromid 296.

Önanthsäure-hexylester 295. — methylester 295. – nitril 296. Önanthyliden- s. a. Hepty: liden-. Önanthylidenbernsteinsäure biscyanessigsäureamid 708. — essigsäure 416. essigsäureäthylester 416. - essigsäureamid 416. — essigsäurechlorid 416. — essigsäurenitril 417. malonsäurenitril 668. Oktabrom-arachinsäure 371 — arachinsäureäthylester 371. - arachinsäuremethylester behensäure 375. - stearinsäure 366, 367. — stearinsäuremethylester 367. Oktacarbonsäuren 719. Oktakosan-dicarbonsäure 630. dicarbonsäurediäthylester 630. — dicarbonsäuredimethyl= ester 630. Oktamethylendicyanid 610. Oktaoxymethylendiacetat 164. Oleate 434. Olein 440. Olein-hydroxamsäure 441. hydroxamsäureacetat 441. Oleinsäure 429. Oleo-arachidonoclupanodonin= eikosibromid 376. caprylomyristin 439. — diarachidoninoktadeka= bromid 372. - dibromstearinsāure 361. — dicetoleinhexabromid 375. — dichlorhydrin 439. diclupanodonineikosidyos bromid 377. — dierucin 447. — dilinoleindekabromid 364. dilinolenintetradeka= bromid 366. dipalmitin 440. - distearin 440. — erucolinolenin 465. — linolenoerucin 465. nitril 441. palmitostearin 440. Oleylacetat 153. Orthoameisensäure-diäthyls ester 28. triäthylester 28. triisoamylester 31.
triisobutylester 31. - trimethylester 26. trioctylester 32. Orthoessigsäureäthyldibutyl=

ester 141.

Orthoessigsäure-äthyl= dipropylester 139. dimethyläthylester 137. methyldiäthylester 137. triäthylester 137. trimethylester 128. Orthopropionsäuretriäthyl= ester 220. Osmiumcyanid 86. Ovarensäure 468. Oxalate 483. Oxalato-pentamminkobalt= salze 499. tetramminkobaltsalze 498. Oxaldihydroxamsäure 512. Oxalhydrazid 514. Oxalsäure 471; Vorkommen 471; Bildung 472; Dar= stellung 474; Eigen= schaften 475; chemisches Verhalten 477; biochemis sches Verhalten 481; Verwendung, Analytisches 482; Salze 483. Oxalsäureäthylester 504. Oxalsäureäthylester-chlorid 508. — nitril 510. nitriloxyd 511. octylester 507. oxyimidehlorid 512. Oxalsaure amid 509. amidhydrazid 513. amidhydroxylamid 512. amidoxyimidchlorid 513. amylester 507. bisamidoximmethyläther bisoxyimidbromid 513. bisoxyimidehlorid 513. butylester 507. butylesternitriloxyd 511. butylesteroxyimidchlorid 513. chloridnitril 511. diathylester 504. diamid 509. dibromid 509. dibutylester 507. dichlorid 508. dihydrazid 514. dihydroxylamid 512. diisoamylester 507. diisobutylester 507. dimethylester 503. dinitril 511. dioctylester 507, 508. dipropylester 506. iminoäthyläthernitril 511. methylester 503. methylesternitril 510. methylesteroctylester 507. propylester 506. Oxalyl-bromid 509. chlorid 508.

Oxalylglycerin, polymeres 508. Oxamäthan 509. Oxamid 509. Oxamidhydroxamsäure 512. Oxamidsäure 509. Oxamidsäure-äthylester 509. iminovinyläther 512. isobutylester 509. methylester 509. Oximinoaminopropionsäure 536. Oximinochloressigsäureäthylester 512. amid 513. butylester 513. Oxopentenylchloracetamid Oxopentylidenchloracetamid 193. Oxyacetoxy-äthylhexan 158. äthyloctan 158. diathyläther 155. diäthylsulfid 156. - dodecan 158. hexadecan 158. nonan 158. pentan 157. propan 156. Oxyathyl-acetat 154. mercaptandiacetat 210. Oxy-diathoxyessigsaureathylester 506. diäthoxymethan 28. — formyloxydimethyloctan 33. methandisulfonsäure 35. Oxymethoxyäthoxyessig= säure-äthylester 506. methylester 506. Oxy-methylchloracetamid methylendiacetat 163. methyltrichloracetamid 201. P. Palladiumoxalat 501. Palmitamidin 342. Palmitate 333.

Palladiumoxalat 501.
Palmitamidin 342.
Palmitate 333.
Palmitin 340.
Palmitinin 340.
Palmitininin 330.
Palmitininin 330.
Palmitininin 330.
Palmitininin 338.

— allylester 338.

— amid 341.

— amylester 337.

— anhydrid 341.

— butylester 336.

— chlorid 341.

— hexadecylester 337.

— isoamylester 337.

– isobutylester 337.

Palmitinsäure-isopropylester Pentadecantricarbonsaures Pentatriakontylstearat 353. Pentencarbonsaure 402, 403, 338. trimethylester 692. methylester 335. Pentadecatriencarbonsaure 404, 405, 406, 407, 408. - nitril 341. Pentencarbonsäure-äthyl= — octvlester 337. Pentadecencarbonsaure 424. ester 403, 404, 408, 409. propylester 336. 425, 426. amid 404, 405, 406, 408, Palmito-dibromhydrin 336. Pentadecensäure 424. – dibutyrin 339. Pentadecensäure-äthylester — chlorid 403, 404, 405, 406, — dichlorhydrin 336. 424. --- dilaurin 339. methylester 424. — methylester 404. - dimargarin 345. - pentadecenylester 424. – nitril 404, 405, 409. Penten-dicarbonsäure 662,664. — dimyristin 339. Pentadecylaldehydsemioxams — diolein 440. azon 514. dioldiacetat 158, 159. — dioleintetrabromid 362. Pentadecylcyanid 341. — hexacarbonsäuremalon= distearin 357. Pentadecylin 330. säureoktaäthylester 719. Palmitölsäure 425. Pentadecylsäure 329. Pentensäure 399, 400. Palmitoleinsäure 425. Pentadecylsäure-äthylester Pentensäure-äthylester 399, Palmito-nitril 341. 400. - oleolinoleninoktabromid amid 330. amid 400. 365. methylester 330. — chlorid 400. stearidonogadoleindeka nitril 330. nitril 400. bromid 371. Penten-tetracarbonsäuretetra= Pentadekaoxymethylens stearoolein 440. diacetat 165. äthylester 716. Palmitovlchlorid 341. Pentadien-carbonsäure 452, tricarbonsaure 696. Paraffin, Carbonsäure **4**53. - tricarbonsäurediäthylester $C_{15}H_{30}O_{2}$ aus — 330. Paramethylenmalonsäures dicarbonsăure 675. 696, 697. dicarbonsäurediäthylester tricarbonsäureessigsäure diäthylester 647. 716. Pelargonhydroximsäure Pentadiensäure 451. tricarbonsäuretriamid 696. chlorid 308. Pentadiensäure-äthylester tricarbonsäuretrimethyl= Pelargonin 308. ester 696. Pelargonitril 308. methylester 451. Pentincarbonsaure 452. Pelargonoylchlorid 308. Pentaerythrit-tetraacetat Pentinsäure 451. Pelargonsäure 306. 162. Pentyl- s. a. Amyl-. Pelargonsäure-äthylester tetraformiat 34. Pentylidenmalonsäure-äthyl= 307. – tetrapalmitat 341. esternitril 667. — amid 308. Pentakosan-carbonsäure 380. - dinitril 667. carbonsäurenitril 380. — chlorid 308. Pentyl-malonsäure 598. geranylester 308. - **sä**ure 380. - malonsäurediäthylester heptylester 307. Pentakosylcyanid 380. 598, 600. methylester 307. Pentamethylen-dicyanid 587. undecylmalonsäurediäthyl= octylester 307. glykoldiacetat 157. ester 628. Pentaacetoxyheptan 162. Pentamethylpropionsäure Perameisensäure 34. Pentabrom-perhydromethylund Derivate 305. Perbuttersäure 251. bixin 630. Percapronsaure 286. Pentan-carbonsäure 281, 288, tetramethyloctadecandis 291. Peressigsäure 174. carbonsauredimethyl-588. Perhydro-bixin 630. dicarbonsaure 586, ester 630. 589, 590, 591, 593. crocetin 629. methylbixin 630. Pentacarbonsāuren 717. hexacarbonsäurehexa-Pentacetat 144 Anm. äthylester 718. norbixin 630. Pentachlor-diathylsulfid 210, Peroxido-elaidinsaure 443. - hexacarbonsäurehexaölsäure 438. nitril 718. 211. Petroselaidinsäure 427. propionsäure 228. tetracarbonsaure 704, 706. Petroselidin-säure 427. Pentacyansaure 88. – tetracarbonsäuretetra-Pentadecan-carbonsaure 330, säuremethylester 427. äthylester 704, 705. Petroselinsäure 427. - tricarbonsaure 686, 689. 343. Petroselinsäure-dibromid 361. – dicarbonsăure 624. tricarbonsäuretriäthyl-— dicarbonsāurediāthylester 686, 687, 688. – methylester 427. ozonid 427. ester 624, 625, 626. Pentantrioltriacetat s. Tri-Pfefferminzöl, Carbonsäure dicarbonsăuredimethyle acetoxypentan. Pentaoxymethylendiacetat $C_{11}H_{22}O_2$ aus japanischem ester 624. 316. - dimalonsaure 709. 164 Pentatriakontyl-laurat 320. Phellogensäure 629. - dioldiacetat 158. Phellogensäurediäthylester sāure 329. myristat 327.

palmitat 338.

– tricarbonsäure 692.

629.

Propen-carbonsaure 389, 390, | Propyl-acrylsaure 403. Phocensäure 271. Phosphorsäurediacetoxys dicarbonsāure 647, 650. propylester 161. Phthioic acid 380. 651, 654. dicarbonsaureessigsaure Phthionsäure 380. Phthionsäuremethylester 381. Physetersäure 423. pentacarbonsăurepentas Physetersäure-methylester methylester 717. Propensaure 383. 423. perozonid 423. Propentetracarbonsäure-Physetölsäure 425. diäthylesterdiamid 711. Phytensäure 445. dimethylesterdiäthylester 710. Pimelinsäure 586. dimethylesterdiamid 711. Pimelinsäure-äthylester 587. diathylester 587. methylestertriäthylester — dimethylester 587. 710. — dinitril 587. tetraäthylester 710. dioctylester 587. Propen-tricarbonsaure 693. Pinakondiacetat 157. tricarbonsaureessigsaure= Piperylendicarbonsäure 675. tetraäthylester 715. Pivalinsäure 280. tricarbonsäuretriäthylester Pivalinsäureamid 281. Propin-carbonsäure 451. 582. Pivaloinpivalinat 280. Pivaloyl-chlorid 280. dicarbonsaure 671. hydrazin 281. dicarbonsauredimethyl= Platin-cyanid 86. **707.** ester 671. --- cyanwasserstoff 86, 88. Propinsäure 449. oxalat 502. Propiodichlorhydrin 221. Plato-cyanid 86. Propiolsäure 449. cyanwasserstoff 86. Propiolsäure-äthylester 450. Plexiglas 398. - amid 450. - anhydrid 450. Polyacrylsäure 384. - methylester 450. Polyacrylsäure-äthylester 387. chlorid 388. Propionamid 223. methylester 386. Propionamidin 226. Propionate 217. Poly-glycerinacetat 160. - methacrylsäure 398. Propionhydroxamsäure 226. oxymethylendiacetate 163. Propionitril 225. - vinylacetat 148. Propionsäure 212. — vinylalkohol 149. Propionsäure-äthylester 219. Praseodym-oxalat 491. amid 223. succinat 548. amylester 221. Propadien-tetracarbonsäure= anhydrid 223. tetraäthylester 716. butylester 221. chlorathylester 223. chlorid 223. — tricarbonsäuretriäthyl= ester 699. Propan-carbonsäure 235, 257. chlorisobutylester 223. chlormethylester 223. 70Ğ. - dicarbonsäure 564, 568, chlornitroäthylester 220. 569, 571. dicarbonsăurediessigsăure: citronellylester 222. 657. triäthylesternitril 706. dichlorisopropylester 221. pentacarbonsäurepenta= dodecylester 222. äthylester 717. hexadecylester 222. tetracarbonsaure 701. isoamylester 221. isobutylester 221. Propantetracarbonsäuremethylester 218. tetraäthylester 701. - nerylester 222. tetramethylester 700. - octylester 222. - tetranitril 701. propylester 220. Propantricarbonsaure 681, 682, 683. trichlorhexylester 222. 313. Propantricarbonsäuretrichlormethylbutylester triāthylester 681, 683. 221. trihydrazid 683. Propionylchlorid 223. — trimethylester 683. Propargylsaure 449. Propyl-acetat 137. acryloylchlorid 403.

acrylsäureäthylester 403. acrylsäurechlorid 403. acrylsäurenitril 405. adipat 574. äthylenglykoldiacetat 157. allylacetat 151. amylessigsäure 313. bernsteinsäure 589. butylacetylchlorid 308. butylessigsäure 308. butylessigsäureamid 308. butylmalonsäure 611. butylmalonsäurediäthyls ester 611. butyrat 246. capronsaure 308. carboxybernsteinsäuretriäthylester 687. chlormalonsäurediäthyl= ester 582. chlormalonsäurediamid cyanid 252. dicyanglutarsäurediamid Propylen-diacetat 156. - glykoldiacetat 156. Propyl-formiat 28. glutarsäure 598. glutarsäurediäthylester glycerintriacetat 162. heptylessigsäure 321. heptylessigsäureäthylester — heptylmalonsäure 619. heptylmalonsäurediäthyls ester 619. — hexensäure 417. — hexensäureäthylester 417. - hexensäureamid 417. hexensäurechlorid 417. Propyliden-acetonitril 400. acetonoximacetat 184. acetylchlorid 400. biscyanessigsäureamid cyanessigsäure 657. cyanessigsäureäthylester essigsäure 399. essigsäureäthylester 399. essigsäureamid 400. essigsäurechlorid 400. essigsäurenitril 400. malonsäurenitril 657. propionamid 224. Propylisoamyl-acetylchlorid essigsäure 313. essigsäureamid 313. malonsaure 614. malonsäurediäthylester

Propyl-isobutylessigsäures amid 309. isobutyrat 260. - isocapronat 289. — isopropylmalonsäures diathylester 606. - isovalerianat 275. — laurat 319. malonat 528. - malonsäure 581. malonsäurediäthylester 582. önanthsäure 313. — oleat 439. — oxalat 506. — palmitat 336. pentancarbonsăure 308. pentandicarbonsäure 611. – pentencarbonsäure 417. — pentencarbonsäureäthyl= ester 417. - pentencarbonsaureamid 417. pentencarbonsäurechlorid - propandicarbonsaure 598. - propiolsäure 452. - propionat 220. stearat 352. succinat 551. - tridecylessigsäure 367. tridecylmalonsäurediäthyl= ester 627. — undecylessigsäure 343. undecylmalonsäurediäthyl= ester 625. valerianat 266. - valeriansäure 304. Prussisalze 81. Prussoverbindungen 74. Pyroboracetat 175. Pyrocinchonsäure 661.

Q.

Quecksilber-acetat 118. cyanid 58, 59. - formiat 22. — cleat 437. — oxalat 489. — oxveyanid 59. — palmitat 335. --- stearat 351. succinat 548.

R.

Rapinsäure 429. Rhodinyl-butyrat 248. isobutyrat 261. Rhodiumcyanid .86. Rubeanwasserstoff 515. Rubidiumacetat 115.

Rubidium butyrat 242. cyanid 54. eisencyanid 70, 78. — formiat 20. — oxalat 486. — propionat 217. – tetraoxalat 486. Ruthenium-cyanid 85. --- cyanwasserstoff 85. - oxalat 501. S. Sajodin 377. Salpetersäureessigsäure= anhydrid 175. Samarium-acetat 119. - formiat 22. oxalat 491. Scandiumoxalat 490. Schwefelsäure-bromessig= säureanhydrid 203. buttersäureanhydrid 251. essigsäureanhydrid 174. Schweinfurter Grün 116. Sebacinsäure 608. Sebacinsäure-äthylester 609. äthylesteramid 610. äthylesterchlorid 610. amid 610. diäthylester 609. dichlorid 610. dihydrazid 610. diisoamylester 609. dimethylester 608. — dinitril 610. dioctylester 609. methylester 608. Sebacylchlorid 610. Sebamidsäure 610. Sebamidsäureäthylester 610. sek.-Butyl- s. unter Butyl-. Selachelaidinsäure 449. Selachocerinsäure 379. Selacholeinsäure 449. Selachylalkoholdiacetat 160. Selenoacetamid 212. Semioxamazid 513. Silber-acetat 116. eyanid 55. - eisencyanid 71. - formiat 21. – oleat **43**7. — oxalat 486. palmitat 335. - propionat 217. stearat 350. Sorbamid 453. Sorbinsäure 452. Sorbinsäure-äthylester 452. amid 453. chlorid 453. — dibromid 403.

Sorbithexaacetat 163. Sorbylchlorid 453. Stearate 349. Stearidono-arachidonoelupanodonineikosi: hexabromid 376. diclupanodonineikosi: oktábromid 377. dizoomarindodekabromid 367. Stearidonsäure 468. Stearidonsäure-methylester 469. oktabromid 366. oktabromidmethylester 367. Stearin 357. Stearinhydroxamsäure 361. Stearinsaure 346. Stearinsäure-äthylester 352. - amid **3**61. -- amylester 353. --- anhydrid 360. butvlester 352. --- chlorid 360. heptadecylester 353. hexadecylester 353. - hydrazid 361. — isoamylester 353. isobutylester 353. isopropylester 352. — methylester 351. nitril 361. - octylester 353. propylester 352. Stearo-dicetoleintetrabromid - dichlorhydrin 352. - dilaurin 355. dimargarin 355. dipalmitin 355. dizoomarintetrabromid 355. Stearolin 458. Stearo-linolenozoomarin= oktabromid 365. - linoleooleinhexabromid 364. Stearolsäure 458. Stearolsäure-äthylester 458. — amid 458. — dijodid **443**. Stearo-nitril 361. oleolinoleinhexabromid --- oleolinoleninoktabromid 366. Stearoyl-chlorid 360. – hydrazin 361. Stearozoomarolinoleinhexa: bromid 364. Strontium-acetat 116. - butyrat 242. - - cyanid 57. cisencyanid 72.

methylester 452.

-- oxyäthylester 452.

— malonat 519. — oxalat 488. - stearat 351. succinat 548. Subercolsäure 676. Subervichlorid 596. Succinamid 554. Succinamidin 554.

Succinamidsaure 554. Succinate 548. Succinazid 554. Succinhydrazid 554.

Strontium-formiat 21.

Succinperoxyd, saures 553. Succinyl-chlorid 553. peroxyd, polymeres 553.

Sulfido-bisacetamid 184. – bisbutyramid 252. - chloracetamid 194. Sulfoisopropylacetat 167. Sulfomethylacetat 166.

T.

Tachardiacerinsäure 382. Tanacetogen-dicarbonsäure 667.

dicarbonsauredimethyl= ester 667. Tanacetondicarbonsaure 667. Tarelaidinsäure 427.

Taririnsaure 457. Taririnsäuredijodid 428. Taroleinsäure 427. Teraconsaure 663.

tert.-Amyl- s. unter Amyl-. tert.-Butyl- s. unter Butyl-. Tetraacetoxyäthan 168. Tetraathyl-athylendicyanid 617.

- bernsteinsäure 617. - bernsteinsäurediäthylester

617. bernsteinsäurediamid

617. - bernsteinsäuredinitril 617.

Tetrabrom-adipinsaures diathylester 579.

dimethylsulfin 90. dimethylsulfon 90.

— dimethylsulfoxyd 90.

— octadecansaure 362. - pimelinsäure 588.

Tetrabromstearinsäure 362. Tetrabromstearinsäure-äthyls ester 363.

- allylester 363.

isopropylester 363.methylester 363.

propylester 363. Tetracarbonsäuren 699.

Tetracarboxypimelinsäure-hexaäthylester 718.

- hexanitril 718.

Tetrachlor-bernsteinsäure 558.

bernsteinsäurediäthylester 558.

diathylsulfid 210. Tetracyan-propan 701.

propen 714.

Tetradecan-carbonsaure 329. — dicarbonsäure 622, 623.

 dicarbonsäurediäthylester 624.

dicarbonsauredimethyl= ester 622; 624.

Tetradecansäure 324.

Tetradecen-carbonsaure 424. carbonsäureäthylester

- carbonsäuremethylester

 carbonsäurepentadecenyls ester 424.

dicarbonsäure 669. - säure 423.

- säuremethylester 423. Tetradecyl-cyanid 330.

· formiat 32.

myristat 326. Tetradekaoxymethylen= diacetat 165.

Tetrahydro-farnesylacetat 152.

geraniumsäure 314. geranylacetat 146.

linalylacetat 146.

nerolidylacetat 153. pseudoglucaldiacetat 162.

Tetraisocrotyladipinsäure 679. Tetrakisacetoxymethylmethan 162.

Tetrakosan-carbonsäure 380.

carbonsäureäthylester 380. carbonsäuremethylester

380.

carbonsăurenitril 380. --- dicarbonsäure 630.

dicarbonsaurediathylester 630.

saure 378. Tetrakosapentaensäure 471.

Tetrakosensäure 449 Tetrakosyl-acetat 147.

cyanid 380. Tetramethyl-adipinsaure 611,

612.

äthylenglykoldiacetat 157. bernsteinsäure 601.

bernsteinsäurediäthylester 601.

butandicarbonsaure 612. - buttersäure 305.

 buttersäureäthylester 305. – buttersāureamid 305.

buttersäurechlorid 305.

dicyanadipinsaureathylesteramid 708.

Tetramethylen-dicyanid

glykoläthylätheracetat 157.

glykoldiacetat 157. Tetramethyl-glutarsäure 607.

glycerinacetat 162.

heptadecancarbonsaure

heptadecandicarbonsäure: diäthylester 630.

heptadecansaure 373. hexadecancarbonsaure

hexadecensäure 445.

 hexanolontrimethylacetat 280.

margarinsäure 373.

octadecandicarbonsaure

--- octadecanonaendicarbon= säure 679.

octadecansäure 377. pentadecencarbonsäure 445.

– stearinsäure 377.

Tetraoxymethylendiacetat 164.

Tetrathio-oxalsaure 515.

oxalsäurediäthylester

-- oxalsäuredimethylester 515.

Tetrolsäure 451.

Tettarakontapentaoxy: methylendiacetat 166.

Thallium-acetat 119.

butyrat 242.

cyanid 60. eisencyanid 73, 79.

- formiat 22.

— laurat 319.

— malonat 520.

- myristat 326. oleat 437.

oxalat 490.

palmitat 335.

propionat 218. stearat 351.

succinat 548. Thalloferrocyanid 73.

Thapsiasaure und Derivate

Therapeutinsaure 468. Therapinsäure 468. Thiacetsäure 208.

Thioacetamid 210.

Thioacetiminoäthyläther

Thioathylenglykol-allylatheracetat 155.

butylätheracetat 155. diacetat 210.

REGISTER 755

Thio-bisacetamid 184.

— bisbutyramid 252.

--- bischloracetamid 194.

butyramid 257.

diglykolacetat 156.

diglykoldiacetat 156. Thioessigsäure 208.

Thioessigsäure-äthylester 209.

anhydrid 210.

— butylester 209.

 dithioessigsäureanhydrid 212.

isoamylester 210.

- isobutylester 209.

- isopropylester 209.

- methylester 209. — propylester 209.

Thioisocapronsauremethyl= ester 291.

Thioisovaleriansäuremethyl= ester 280.

Thiol-essigsäureäthylester 209.

essigsäuremethylester **20**9.

 oxalsäurebischlormethyls ester 515.

--- oxalsäuredimethylester 514.

Thiomalonamidsäure 540. Thiomalonsäureamid 540. Thion-essigsäureäthylester 209.

essigsäuremethylester 209.

oxalsäurediäthylester

oxalsäurediisopropylester

oxalsäuredimethylester

Thionpropionsäure-äthylester

--- butylester 235.

- isoamylester 235.

- isobutylester 235.

isopropylester 235.

- propylester 235.

Thiopropionamid 235. Thiopropionsäure 234.

Thiopropionsäure-äthylester 234.

— butylester 235.

— isoamylester 235.

— isobutylester 235.

— isopropylester 235.

 propylester 235. Thorium-eisencyanid 73.

formiat 22.

oxalat 491.

Tiglinsaure 401.

Tiglinsäure-äthylester 401.

amid 401.

hydrobromid 271.

– hydrojodid 271. Titanacetat 119.

Tracumin 529. Triacetin 160.

Triacetoxy-äthan 168.

butan 162.

heptan 162.

- hexan 162.

pentan 162.

Triäthoxymethan 28. Triäthyl-acetonitril 305.

essigsäurenitril 305.

orthoacetat 137. orthoformiat 28.

orthopropionat 220.

Triallyl-acetonitril 462.

essigsäurenitril 462. Triarachidonineikositetra-

bromid 372. Triazo-s. Azido-.

Tribehenin 374. Tribrassidin 448.

Tribrom-acetamid 206.

acetylbromid 206. — äthylacetat 136.

— butantetracarbonsäure»

tetraäthylester 702. dinitropropylen 280.

essigsäure 205.

essigsäureäthylester 205.

essigsäureisoamylester 20**6**.

— essigsäuretribromäthyls ester 206.

glutaconsăure 650.

 propendicarbonsäure 650.

— propionsāure 232.

propionsäureäthylester 233.

Tributyrin 249.

Tricaprin 311. Tricaproin 285.

Tricaprylin 303.

Tricarbathoxy-athylen 692.

methan 680.

Tricarballylsäure 682.

Tricarballylsäure-methylester 682.

- triäthylester 682. triamid 682.

trihydrazid 682.

trimethylester 682.

Tricarbomethoxymethan 680. Tricarbonsauren 680.

Tricetoleinhexabromid 375. Trichlor-acetamid 201.

acetiminoäthyläther 201.

acetiminomethyläther 201.

Trichlor-acetonitril 201.

acetpersäure 200.

acetylchlorid 200.

acrylsäure 388.

äthylacetat 136. äthylchlorvinylsulfid 211.

äthylidendiacetat 167. äthyltetrachloräthylsulfid

211.

- äthyltrichloräthylsulfid 211.

buttersäure 255.

– crotonsäure 397.

– crotonsäureamid 398. crotonsäurechlorid 398.

crotonsäurenitril 398.

diacetoxypropan 156.

Trichlordihydromuconsäurediäthylester 656.

dimethylester 656. Trichloressigsäure 196.

Trichloressigsäure-äthylester 200.

amid 201.

anhydrid 200.

butenylester 200.

chlormethylester 200.

isoamylester 200.

methylester 199.

trichloräthylester 200. Trichlormethyl-äthylcarbinol=

acetat 141 butylcarbinolacetat 145.

butylcarbinolbutyrat **248**.

butylcarbinolpropionat 222.

glutarsäurediäthylester 582.

isopropylcarbinolacetat 143.

isopropylcarbinolbutyrat 247.

isopropylcarbinolpropionat 221.

mercaptoiminoäthan 212.

propylcarbinolacetat 143. Trichlor-oxyathylformamid 37.

oxymethylacetamid 201. peressigsäure 200.

propencarbonsaure 397.

- propionsaure 228.

propionsäureäthylester

propylenglykoldiacetat 156.

thioessigsäuremethylester

thioacetiminomethyläther

211. Tricyanmethan 681.

Tricyanpropencarbonsaureäthylester 713.

äthylesterhalbhydrat 713.

Tridecan-carbonsäure 324. - dicarbonsäure 620, 621 bis dicarbonsäurediäthylester 621. dicarbonsäuredimethyl= ester 621, 622. - dicarbonsäuredinitril 621. - säure 322. – tetracarbonsäure 708. Tridecen-carbonsaure 423, carbonsäureäthylester 424. - carbonsäureamid 424. carbonsäuremethylester 423, 424. dicarbonsäurediäthylester 669. Tridecensäure 422, 423. Tridecensäure-äthylester **423**. - methylester 422, 423. tridecenylester 423. Tridecenyl-acetat 152. - malonsäure 669. malonsäuredimethylester 670. Tridecylcyanid 329. Tridecylin 323. Tridecylsäure 322. Tridecylsäureäthylester 323. Trieläostearin 467, 468. Trielaidin 427, 443. Trierucin 447. Trifluor-acetamid 186. - acetonitril 186. — acetylfluorid 186. - essigsaure 186. - essigsäureäthylester 186. essigsäureamid 186. essigsäureanhydrid 186. - essigsäureisoamylester 186. isopropylacetat 140. orthoessigsäurediäthyl= ester 186. Triformin 34. Triglycerinpentaacetat 160. Triisoamylorthoformiat 31. Triisobutylorthoformiat 31.

Triisobutyrin 261.

Triisovalerin 277.

ester 378.

Trikosansaure 378.

nitril 378.

methylester 378.

tetrakosylester 378.

Trikosencarbonsaure 449.

bromid 367.

Triisostearidonineikositetra-

Trikosancarbonsäure 378.

Trikosancarbonsäure-äthyl=

Trikosyl-cyanid 378. laurat 319. myristat 326. palmitat 337. stearat 353. Trilaurin 320. Trilinolenin 465. Trilinoleninoktadekabromid 366. Trilinolin 461. Trimargarin 345. Trimethoxymethan 26. Trimethyl-acetonitril 281. acetylchlorid 280. aconitsäure 698. acrylsäure 410. acrylsäureäthylester 410. acrylsäurechlorid 410. adipinsäure 606. äthylenbromhydrinformiat 31. äthylglutarsäure 612. bernsteinsäure 594. bernsteinsäurediäthyl= ester 595. - bernsteinsäuremethylester 594. butancarbonsäure 305. butandicarbonsaure 607. butencarbonsäure 416. carboxyglutarsäure 690. carboxyglutarsäure= trimethylester 690. cyanbernsteinsäure= diathylester 689. cvanglutaconsäure= diäthylester 698. dicyanglutarsäurediäthyl= ester 708. dodecinylacetat 154. Trimethylen-adipat, polys meres 575. cvanid 566. - diacetat 156. glykolacetat 156. glykoläthylätheracetat glykoldiacetat 156. oxalat, polymeres 508. sebacinat, polymeres - succinat, polymeres Trimethyl-essigsäure 280. essigsäureäthylester 280. essigsäureamid 281. essigsäurechlorid 280. essigsäurehydrazid 281. essigsāurenitril 281. - glutaconsăure 667. glutaconsäurediäthylester 667. glutarsäure 601.

Trimethyl-nonanpentoltris acetat 162. octadiensäureäthylester **457.** - orthoacetat 128. orthoformiat 26. pentensäure 415, 416. pentensäureäthylester 415. tetrolsäure 454. tetrolsäurechlorid 454. tricarballylsäure 690. – tricarballylsäureäthylester 690. tricarballylsäuretrimethyl = ester 690. valeriansäure 305. – vinylacetat 151. Trimyristin 328. Trioctylorthoformiat 32. Triönanthin 295. Triolein 440. Trioleinhexabromid 362. Trioxymethylendiacetat 164. Tripalmitin 340. Tripalmitolein 425. Tripelargonin 308. Tripentadecylin 330. Tripetroselidin 428. Tripetroselin 427. Tripropionin 222. Trisbutylacetylenyl-carbinol= acetat 154. essigsäure 471. Trisdimethylbutinylessig= säure 471. Trismalonitril 536. Tristearin 357. Tristearolin 458 Tritridecylin 323 Triundecylenin 420. Triundecylin 314. Trizoomarinhexabromid 342. Tsuzusäure 423. Tuberkel-stearinsäure 369. stearinsäuremethylester 369. Turnbullsblau 81.

U.

Undecadiindicarbonsäure
679.
Undecan-carbonsäure 316,
321, 322.
— dicarbonsäure 617, 618,
619.
Undecandicarbonsäure- s. a.
Brassylsäure-.
Undecandicarbonsäurediäthylester 618, 619.
— dimethylester 618.
Undecandioldiacetat 158.
Undecansäure 314.

Undecen-carbonsäure 421,	Valeriminoäthyläther	Verbindung C ₁₅ H ₃₀ O ₂ 330.
422.	267.	$-C_{15}H_{28}ON_5 535$.
		C U O 599
carbonsäureäthylester	Valeronitril 267.	C ₁₆ H ₁₂ O ₁₀ 522.
421.	Valerylchlorid 266, 270.	$-C_{16}H_{26}O_2^{-1}$ 463.
carbonsäuremethylester	Vanadyl-malonat 520.	$-C_{16}H_{28}O_7$ 160.
421, 422.	- malonsäure 520.	$ C_{16}H_{30}O_2$ 426.
carbonsäurenitril 421.		$ C_{16}^{16} H_{32}^{30} O_2^2$ 343.
	Verbindung C ₂ N ₂ S ₃ 88.	C16113202 040.
Undecensäure 419, 420.	- C ₂ N ₂ Se ₂ 88.	$-C_{17}H_{24}ON_4$ 535.
Undecensäure-amid 420.	$-(C_3H_4N_2)_X$ 88.	$- C_{18} H_8 O_{16} 521.$
methylester 420.	$\begin{array}{l} C_4 H_8 O_3 N_2 512. \\ C_4 H_2 O_{16} N_4 Hg_5 108. \end{array}$	$-C_{18}H_{16}O_{10}$ 522.
Undecenyl-acetat 152.	— C.H.O., N.Hg. 108.	$-C_{18}H_{32}C_{2}$ 462.
malonsäure 669.	- C ₄ H ₄ O ₄ Cl ₈ Sb ₂ 504.	C H O N 713
	(C II) 200	$-C_{18}H_{16}O_{5}N_{6}$ 713.
malonsäurediäthylester	$ (C_5 H_8)_{18}$ 386.	$-C_{18}H_{18}O_{\bullet}N_{4}$ 712.
669.	$-(C_5H_6O_3)_x$ 572.	$ U_{20}H_{22}U_{2}N_{4}$ 551.
— undecylenat 420.	$-(C_5H_{10}O)_x$ 386.	$-C_{20}H_{22}O_{9}N_{4}$ 712.
Undecin-carbonsaure 457.	- C,H,O, 674.	$-C_{22}^{20}H_{36}O_{2}$ 470.
	(1 H N 402	(2113602 410.
- saure 456, 457.	$-C_6H_7N_3$ 183.	- C ₂₂ H ₄₂ O ₂ 602.
— säureäthylester 457.	$-C_6H_{10}O_3$ 576.	$-C_{22}H_{26}O_{9}N_{4}$ 713.
Undecylein 420.	$-C_6H_7O_4Cl_{12}Sb_3$ 506.	$-C_{23}H_{44}O_{2}$ 602.
Undecylensäure 419.	- C ₇ H ₆ N ₂ 183.	$-C_{24}H_{24}O_2N_4$ 576.
Undecylensäure-äthylester	$-C_7H_8N_2$ 183.	$-C_{25}^{24}H_{50}^{22}O_{2}^{2}$ 380.
	07118112 100.	C251150 C2 360.
420.	$-C_7H_{12}O_2$ 606.	$-C_{27}H_{54}O_{2}$ 382.
amid 420.	C ₇ H ₇ O ₂ Cl 664.	$-C_{30}H_{60}O_{3}$ 382.
— dibromid 315.	$-C_7H_{14}N_4S_2$ 210.	- C ₄₂ H ₈₂ O ₇ 348.
— methylester 420.	_ CH 0 528	
	$- C_8 H_{10} O_4 528.$	Vinyl-acetat 147.
- oxymethylamid 420.	$-C_8H_{10}O_7$ 687.	— acetonitril 389.
— undecenylester 420.	$-C_8H_{12}O_5$ 601.	- acrylsäure 451.
Undecylin 314.	$-C_{8}H_{12}O_{7}$ 687.	— acrylsäureäthylester
Undecylmalonsäure 620.	$-C_8H_{16}O_2$ 305.	
Undecyloleat 439.	CHO S 475	451.
	$-C_8H_8O_{10}S_2$ 175.	— acrylsäuremethylester
Undecylsäure 314.	$-C_9H_8N_4$ 535.	451.
Undecylsäure-amid 314.	$-C_9H_{10}O_5$ 529.	1
— methylester 314.	- C ₉ H ₁₂ O ₄ 606, 607.	— äthylenglykolformiat 33.
Undekaoxymethylendiacetat	- C ₉ H ₁₉ N ₆ 88.	— butyrat 248.
165.	CH O 500	- cyanid 388.
	$- C_{9}H_{14}O_{4} 528.$	— essigsäure 389.
Uranoxalat 495.	$-C_0H_{14}O_5$ 607.	
Uranplatincyanid 87.	$-C_{9}H_{14}O_{6}$ 691.	— essigsäureamid 389.
Uranyl-acetat 122.	$-C_9H_{18}C_2$ 309.	— essigsäurenitril 389.
- butyrat 243.	CH O P- 606	— propionsäure 402.
	- C ₉ H ₁₃ O ₄ Br 606.	- propylacetat 151.
cyanid 63.	- C ₉ H ₁₄ N ₆ S 88.	
eisencyanid 73.	$-C_{10}H_{14}O_{4}$ 576.	- propylformiat 32.
— formiat 24.	$-C_{10}H_{14}O_{5}$ 529.	Volemitheptaacetat 163.
kobaltacetat 124.	$-C_{10}H_{16}O_{3}$ 419.	
— malonat 520.	C H C 440 440	
	$-C_{10}H_{18}O_3$ 418, 419.	w.
— oleat 437.	$-(C_{10}H_{18}O_2)_x$ 280.	11.
— oxalat 495.	$-C_{10}H_{18}O_4$ 395.	
— propionat 218.	$-C_{10}^{10}H_{20}^{10}O_{4}^{1}$ 395.	Walöl, Carbonsäure C ₉ H ₁₈ O ₂
- succinat 549.	C U C U 449	aus — 309.
Untinged 17	$-C_{10}H_{10}O_{10}Hg_{5}$ 118.	Whewellit 487.
Urtiarsyl 17.	- C ₁₀ H ₁₃ O ₆ Br 683.	
	$ C_{10}H_{17}O_{5}N$ 683.	Wilmsches Salz 88.
	$-C_{11}H_{18}O$ 607.	Wismut-acetat 121.
v.	— C ₁₁ H ₃₂ O ₃ 316.	- cyanid 61.
• •	C H O 576	— formiat 23.
Vacconui um 100	$\begin{array}{c} - C_{13}H_{13}O_4 \ 576. \\ - C_{12}H_{14}N_3Br \ 395. \end{array}$	— linolat 461.
Vaccensäure 428.	$-C_{19}H_{14}N_3Br$ 395.	1
Vaccensäuredibromid 362.	$-C_{19}H_{16}O_{2}N_{2}$ 395.	— oleat 437.
Valeramid 266, 270.	$-C_{13}H_{17}O_4N$ 395.	— oxalat 492.
Valeramidin 267.	- C.H.O.IA 550	— palmitat 335.
Valeriansäure 263, 270.	— C ₁₈ H ₁₈ O ₈ IAg 550.	— propionat 218.
	$-C_{13}H_{33}O_{8}$ 243.	
Valeriansäure-äthylester	$\begin{array}{c} - (C_{13}H_{12}O_8)_x 243. \\ - (C_{13}H_{24}O_8)_x 243. \\ - C_{13}H_{24}O_8 223. \end{array}$	Wolframcyanid 62, 63.
s. Äthylvalerianat.	— C, H. O. 423.	Wolframsäureoxalat 494.
— amid 266.	$-C_{14}H_{\bullet}O_{10}$ 522.	1
— anhydrid 266.	CH O 679	1
	— C ₁₄ H ₂₂ O ₄ 678.	· v
— chlorid 266.	$-C_{14}H_{24}O_{2}$ 457.	X.
— methylester s. Methyl-	$ C_{14}H_{20}O_3CI$ 227.	1
valerianat.	$\begin{array}{l} - C_{16}^{*}H_{16}^{**}O_{3}^{*}Cl \ 227. \\ - C_{15}H_{14}N_{6} \ 535. \end{array}$	Xeronsäure 667.
•		

REGISTER

Y.

Yttrium-eisencyanid 79.

- oxalat 491.
- platineyanid 87.

Z.

Zink-acetat 117.

- -- cyanid 57.
- --- eisencyanid 72, 78.
- formiat 21.
- kobaltcyanid 83.
- -- laurat 319.
- malonat 519.

Zink-nickelcyanid 85.
— oleat 437.
— oxalat 489.

- stearat 351.
- Zinn-acetat 120. - cyanid 60.
- eisencyanid 73.
- formiat 23.
- oxalat 491.
- Zirkoniumstearat 351.
- Zirkonyleisencyanid 73, 79.
- Zoomarinsäure 425.
- Zoomarinsäure-äthylester 425.
- methylester 425. Zoomaroarachidonoclupano-
- donineikosibromid 376.

Zoomaro-dilinoleindekabromid 364.

- dioleinhexabromid 362.
- linolenoclupanodoninoktadekabromid 376.
- linoleoarachidonintetra: dekabromid 371.
 - stearidonoarachidonin= oktadekabromid 371.
- stearidonoclupanodonin-eikosibromid 376.
- stearidonoisostearidonin= oktadekabromid 367.
- stearolinoleninoktabromid 365.

Zyklon 510.

Nachträge und Berichtigungen.

Ergänzungswerk II Band 1.

					Erg	anzungswerk II banu I.
Seite	4 0	Zeile	13	v. u.	statt:	,,15 m μ " lies: ,,15 μ ".
••	285	••	18	v. u.	statt:	,,338" lies: ,,388".
••	409	,,	2	v. o.	statt:	"Buttersäureester" lies: "Isobuttersäureester".
.,	586	••	22	v. u.	statt:	"E II 3, 4" lies: "E I 3, 4".
**	753	••	1	v. o.	statt:	"oder mit Chromschwefelsäure entsteht Önanthsäure" lies "entsteht Önanthsäure, beim Kochen mit Chromschwefelsäure α-Brom-önanthsäure".
• •	780	••	18	v. u.	statt:	"Chlorbromacetylchlorid" lies: "Chlorbromacetylbromid".
		,,	8	v. u.	streic	he: ,,geringe Mengen".
••	798	,,	23	v. u.	statt:	"3-Methyl-hepten-(2)-on-(5)" lies: "3-Methyl-hepten-(3)-on-(5)".
,,	799	,,	3	v. o.	statt:	"3-Methyl-hepten-(3)-on-(5)" lies: "3-Methyl-hepten-(2)-on-(5)".
,,	816	,,	24	٧. o.	nach:	"(Syst. No. 824)" füge ein: "neben sehr viel Glykolsäure".
,,						25 v. o. schalte ein: "Volemit 613".

Hauptwerk Band 2.

Seite 611 Zeile 25 v. o. statt: "A. 279, 180" lies: "A. 280, 180".

Ergänzungswerk I Band 2.

Seite 205 Textzeile 12-7 v. u. und die zugehörige Fußnote sind zu streichen.

Hauptwerk Band 3.

Seite 398 Zeile 12—23 v. o. streiche die Angaben aus der Arbeit von Fittig, Kochs (A. 268, 8).

Druck der Universitätsdruckerei H. Stürtz A.G., Würzburg.

Indian Agricultural Research Institute (Pusa) LIBRARY, NEW DELHI-110012

This book can be issued on or before

Return Date	Return Date