

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

5. Introduzione alle Reti Logiche

Architettura dei calcolatori [MN1-1143]

Corso di Laurea in INFORMATICA Prof. Alessandro Capotondi (D.M.270/04) [16-215]
Anno accademico 2022/2023 | Prof. Alessandro Capotondi@unimore.it

È vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

È inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia.

Capitoli Libri

- Capitolo 3, «Progettazione Digitale», Fummi et al.,
 McGraw Hill
- Capitolo 2, «Reti Logiche», Morris et al., Pearson

Programma del corso

VLSI design

1. Reti logiche

- RL combinatorie
- RL sequenziali
- Macchine a stati finiti (FSM)

2. Instruction Set Architecture RISC V

- Struttura dell'ISA RISCV
- programmazione assembly RISCV

3. Progettazione di una CPU RISC V

- Datapath e logica di controllo
- Pipeline
- Hazards e forwarding
- Sottosistema di memoria

Reti logiche

- Livello di astrazione che studia i sistemi digitali a livello di componenti LOGICI elementari indipendentemente dalla tecnologia con cui il sistema viene realizzato.
- Rete logica: sistema digitale avente n segnali binari di ingresso ed m segnali binari di uscita.
- I segnali sono rigorosamente binari (0/1).

Reti logiche

I segnali sono grandezze funzioni del tempo

 I segnali di ingresso ed uscita delle reti logiche possono essere singoli segnali binari (es. RESET) o segnali digitali composti in parole codificate come un insieme di segnali binari

Proprietà delle reti logiche (1/2)

• Proprietà di interconnessione: l'interconnessione di più reti logiche, aventi per ingresso segnali esterni o uscite di altre reti logiche e per uscite segnali di uscita esterne o ingressi di altre reti logiche, è ancora una rete logica

7

Proprietà delle reti logiche (2/2)

- Proprietà di decomposizione: una rete logica complessa può essere decomposta in reti logiche più semplici (fino all'impiego di soli blocchi o gate elementari)
- Proprietà di decomposizione in parallelo: una rete logica a m uscite può essere decomposta in m reti logiche ad 1 uscita, aventi ingressi condivisi

Reti combinatorie e sequenziali (1/3)

- Reti COMBINATORIE $z_i(t) = f(x_0(t),...,x_{n-1}(t))$
- Reti SEQUENZIALI $z_i(t) = f((x_0(t),...,x_{n-1}(t), t)$
- Rete combinatoria: ogni segnale di uscita dipende solo dai valori degli ingressi in quell'istante
- Rete sequenziale: ogni segnale di uscita dipende dai valori degli ingressi in quell'istante E dai valori che gli ingressi hanno assunto negli istanti precedenti

Reti combinatorie e sequenziali (2/3)

- Rete combinatoria: rete senza memoria (l'uscita cambia istantaneamente dopo che l'ingresso è cambiato)
- Rete sequenziale: rete con memoria; è una rete in cui l'uscita cambia in funzione del cambiamento dell'ingresso e della specifica configurazione interna in quell'istante (STATO). Lo stato riassume la sequenza degli ingressi precedenti

Architettura dei calcolatori

10

Reti combinatorie e sequenziali (3/3)

- Una rete combinatoria, quindi NON HA STATO. Non ricorda gli ingressi precedenti.
 - Transitori a parte, basta conoscere gli ingressi in un istante per sapere esattamente quali saranno tutte le uscite nel medesimo istante.
- Le reti sequenziali, invece, HANNO STATO (MEMORIA). Per sapere l'uscita in un certo istante ho due possibilità:
 - Mi ricordo TUTTI gli ingressi che si sono presentati alla rete dalla sua accensione
 - Memorizzo uno STATO del sistema, che riassume in qualche modo tutti gli ingressi precedenti al fine di valutare il valore delle uscite.

Reti combinatorie e sequenziali

Esempio di rete combinatoria

Conversione di valori BCD su display a sette segmenti

- Descrizione comportamentale (a parole):
 progettare una rete logica che permette la visualizzazione su un
 display a sette segmenti di un valore in codice BCD.
- Codifica BCD: impiego di 4 cifre binarie per la rappresentazione di un numero decimale da 0 a 9.
- **Es**: 15 decimale 1111 binario 0001 0101 BCD

13

 L'uscita Z={a,b,...g} dipende in ogni istante dalla configurazione degli ingressi {x₃,x₂,x₁,x₀}

Esempio di rete sequenziale

Progettare la rete logica di gestione di un ascensore.

• La rete ha tre uscite UP, DW e O. UP, DW indicano le direzioni su e giù mentre O vale 1 se la porta deve essere aperta e 0 altrimenti. La rete ha come ingresso due segnali che indicano il piano {0,1,2,3} corrispondente al tasto premuto. Per calcolare l'uscita è necessario conoscere il piano corrente che indica lo stato interno.

Descrizione delle reti combinatorie

- 1. Descrizione comportamentale a parole: descrizione a parole del comportamento della rete logica (poco formale e precisa)
- 2. **Tabelle di verità:** descrizione esaustiva di tutte le configurazioni di uscita per ogni possibile configurazione di ingresso
- 3. Mappe: altra rappresentazione delle tabelle della verità
- 4. Espressioni dell'algebra Booleana
- 5. Schema logico: descrizione strutturale
- 6. Forme d'onda: descrizione comportamentale in funzione del tempo
- 7. Linguaggi di descrizione dell'hardware (HDL, es. VHDL, Verilog)

Descrizione delle reti combinatorie

- Tabella di verità: tabella che associa tutte le possibili combinazioni degli ingressi alle corrispondenti configurazioni delle uscite e indica esaustivamente il comportamento della rete logica
- Se la rete combinatoria ha n ingressi e m uscite, allora la tabella di verità ha (n+m) colonne e 2^n righe
- Oppure per la proprietà di decomposizione si possono definire tante tabelle quante sono le uscite

Architettura dei calcolatori

16

Tabelle di verità (1/2)

- Si dicono COMPLETAMENTE SPECIFICATE se ogni valore della tabella assume il valore logico di vero o falso (1, 0)
- Si dicono NON COMPLETAMENTE SPECIFICATE se contengono condizioni di indifferenza. Si verifica in due casi:
 - C.1) se alcune configurazioni di ingressi sono vietate

Es: conversione BCD 7 segmenti

<i>x3</i>	<i>x2</i>	<i>x1</i>	x0	а	b	С	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	-	-	-	-	-	-	-
1	0	1	1	-	-	-	-	-	-	-
1	1	0	0	-	-	-	-	-	-	-
1	1	0	1	-	-	-	-	-	-	-
1	1	1	0	-	-	-	-	-	-	-
1	1	1	1	-	-	-	-	-	-	-

Tabelle di verità (2/2)

C.2) se le uscite sono indifferenti per alcune configurazioni di ingresso

Esempio: progettare una rete che indichi se due ingressi binari sono entrambi uguali a zero, se il segnale di parità pari è corretto. Altrimenti indichi errore.

x1	x2	Р	Zero	Е
0	0	0	1	0
0	0	1	-	1
0	1	0	-	1
0	1	1	0	0
1	0	0	-	1
1	0	1	0	0
1	1	0	0	0
1	1	1	-	1

18

Funzioni combinatorie e gate elementari

- Le reti logiche combinatorie sintetizzano funzioni combinatorie.
- Per ogni n, è finito il numero di funzioni combinatorie di n variabili di ingresso. Alcune funzioni combinatorie elementari hanno una rappresentazione logica e grafica elementare (gate)

Funzioni di 1 sola variabile indipendente

Funzioni di 2 variabili indipendenti (1/2)

$\mathbf{x}_1 \mathbf{x}_0$	z_0 z_1	$z_2 z_3$	Z_4	Z ₅	Z ₆	Z ₇
0 0 0 1 1 0 1 1	0 0 0 0 0 0 0 1	0 0 0 0 1 1 0 1	1	1 0		0 1 1

vale 1 se e solo se tutti gli ingressi valgono 1 (equivale al prodotto logico in logica positiva)

vale 1 se e solo se almeno uno degli ingressi vale 1 (equivale alla somma logica in logica positiva)

vale 1 se e solo se x_1 o x_0 valgono 1 ma non entrambi (diseguaglianza)

Funzioni di 2 variabili indipendenti (2/2)

$X_1 X_0$	Z ₈	Z ₉	Z ₁₀	Z ₁₁	Z ₁₂	Z ₁₃	Z ₁₄	Z ₁₅
0 0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1

vale 1 se e solo se nè x_1 nè x_0 valgono 1 (l'uscita è il complemento di z_7)

<u>EQUIVALENCE</u>: vale 1 se e solo se x_1 e x_0 sono uguali (l'uscita è il complemento di z_6)

vale 0 se e solo se nè x_1 nè x_0 valgono 0 (l'uscita è il complemento di z_1)

Funzioni combinatorie

- Quante sono le possibili funzioni binarie di n variabili ?
 - Tutte le combinazioni delle uscite per ogni configurazione di ingresso, ossia 2 elevato al numero delle possibili configurazioni di ingresso

N. conf=
$$2^{(2^n)}$$

 Esempio di rete logica con gate elementari: Progettare un HALF ADDER, ossia un sommatore senza riporto in ingresso

Algebra di Boole (1/2)

- Uno strumento potente di rappresentazione delle reti logiche combinatorie è data dalle espressioni dell'ALGEBRA DI BOOLE o ALGEBRA DI COMMUTAZIONE.
- E' il sistema matematico usato per la sintesi e per l'analisi, per passare dalle tabelle della verità allo schema logico e viceversa

Algebra di Boole (2/2)

- L'algebra di Boole è un sistema matematico che descrive funzioni di variabili binarie: è composto da
 - un insieme di simboli B={0,1}
 - un insieme di operazioni O={+,•,'}
 - + somma logica (OR)
 - prodotto logico (AND)
 - ' complementazione (NOT)
 - un insieme P di postulati (assiomi):

P1)
$$0 + 0 = 0$$
 P5) $0 \cdot 0 = 0$ P9) $0' = 1$ P2) $0 + 1 = 1$ P6) $0 \cdot 1 = 0$ P10) $1' = 0$ P3) $1 + 0 = 1$ P7) $1 \cdot 0 = 0$ P4) $1 + 1 = 1$ P8) $1 \cdot 1 = 1$

Algebra di Boole (2/2)

Proprietà di chiusura:

per ogni a,
$$b \in B$$
 $a + b \in B$ $a \bullet b \in B$

- COSTANTI dell'algebra: i simboli 0 ed 1
- VARIABILE: un qualsiasi simbolo che può essere sostituito da una delle due costanti

25

Funzioni Booleane

- Una funzione completamente specificata di n variabili $f(x_{n-1},...,x_1,x_0)$ è l'insieme di tutte le possibili coppie formate da un elemento di B^n (dominio) e da un elemento di B (codominio).
- La tabella della verità è un tipico modo per descrivere una funzione dell'algebra di Boole.

Architettura dei calcolatori

26

Funzioni Booleane

 Esiste corrispondenza 1:1 tra una tabella della verità e funzione Booleana.

f(x2,x1,x0)):BxBxB	\rightarrow B
-------------	---------	-----------------

x2	x1	x0	f(x2,x1,x0)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Formattazione

- Complementazione: A complementato si indica come A' oppure \overline{A} .
- Il simbolo del prodotto logico viene spesso omesso.

Espressioni Booleane

Un'espressione secondo l'algebra di Boole è una stringa di elementi di B che soddisfa una delle seguenti regole:

- una costante è un'espressione;
- una variabile è un'espressione;
- se X è un'espressione allora il complemento di X è un'espressione;
- se X,Y sono espressioni allora la somma logica di X e Y è un'espressione;
- se X,Y sono espressioni allora il prodotto logico di X e Y è un'espressione.

Espressioni Booleane

TEOR: ogni espressione di n variabili descrive una funzione completamente specificata che può essere **valutata** attribuendo ad ogni variabile un valore assegnato. f(x2,x1,x0):BxBxB →B

es: dalla tabella della verità precedente:

x2	x1	x0	f(x2,x1,x0)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 Se ogni espressione definisce univocamente una funzione non è vero il contrario: per ogni funzione esistono più espressioni che la descrivono e si dicono logicamente equivalenti.

TEOR: una espressione di n variabili descrive in maniera univoca uno schema logico di AND, OR e NOT

Analisi di uno schema logico (1/7)

 Dallo schema logico tramite le espressioni è possibile ricavare il comportamento di una rete logica

Analisi di uno schema logico (2/7)

Analisi:

- 1. nominando tutte le uscite dei gate logici
- per sostituzione a partire dalle uscite si ottiene una funzione Booleana delle sole variabili di ingresso

Esercizio: Eseguire l'analisi del seguente schema

Analisi di uno schema logico (3/7)

Analisi:

- nominando tutte le uscite dei gate logici
- per sostituzione a partire dalle uscite si ottiene una funzione Booleana delle sole variabili di ingresso

Esercizio: Eseguire l'analisi del seguente schema

Analisi di uno schema logico (4/7)

Analisi:

- 1. nominando tutte le uscite dei gate logici
- per sostituzione a partire dalle uscite si ottiene una funzione Booleana delle sole variabili di ingresso

Esercizio: Eseguire l'analisi del seguente schema

Analisi di uno schema logico (5/7)

Analisi:

- 1. nominando tutte le uscite dei gate logici
- per sostituzione a partire dalle uscite si ottiene una funzione Booleana delle sole variabili di ingresso

Esercizio: Eseguire l'analisi del seguente schema

Analisi di uno schema logico (6/7)

Analisi:

- 1. nominando tutte le uscite dei gate logici
- 2. per sostituzione a partire dalle uscite si ottiene una funzione Booleana delle sole variabili di ingresso

Esercizio: Eseguire l'analisi del seguente schema

Analisi di uno schema logico (7/7)

Analisi:

- 1. nominando tutte le uscite dei gate logici
- per sostituzione a partire dalle uscite si ottiene una funzione Booleana delle sole variabili di ingresso

Esercizio: Eseguire l'analisi del seguente schema

36

Teoremi dell'algebra di Boole (1/8)

Principio di Dualità:

- ogni espressione algebrica presenta una forma duale ottenuta scambiando l'operatore OR con AND, la costante 0 con la costante 1 e mantenendo i letterali invariati.
- ogni proprietà vera per un'espressione è vera anche per la sua duale.
- il principio di dualità è indispensabile per trattare segnali attivi alti e segnali attivi bassi.
 - Logica Negativa (Segnali Veri -> Ground (0 Volt))
 - Logica Positiva (Segnali Veri -> Vdd)

Teoremi dell'algebra di Boole (2/8)

Teor, di Identità

• (T1)
$$X + 0 = X$$

$$(T1')$$
 $X \cdot 1 = X$

Teor. di Elementi nulli

•
$$(T2)$$
 $X + 1 = 1$

$$(T2') X \cdot 0 = 0$$

- sono molto utili nella sintesi di reti logiche: gli elementi nulli permettono di "lasciar passare" un segnale di ingresso in determinate condizioni
- Esempio: progettare una rete logica che fornisca in uscita il valore di X se un pulsante P viene premuto altrimenti l'uscita valga sempre 0

Teoremi dell'algebra di Boole (3/8)

Idempotenza

• (T3)
$$X + X = X$$

• (T3') $X \cdot X = X$

si usa per l'amplificazione dei segnali ed eliminazione disturbi

Involuzione

• (T4)
$$(X')' = X$$

Teoremi dell'algebra di Boole (4/8)

Complementarietà

- (T5) X + X' = 1
- $(T5') X \cdot X' = 0$

Proprietà commutativa

- (T6) X + Y = Y + X
- (T6') $X \cdot Y = Y \cdot X$

Teoremi dell'algebra di Boole (5/8)

Proprietà associativa

• (T7)
$$(X + Y) + Z = X + (Y + Z) = X + Y + Z$$

• (T7')
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) = X \cdot Y \cdot Z$$

Teoremi dell'algebra di Boole (6/8)

Proprietà di assorbimento

• (T8)
$$X + X \cdot Y = X$$

• (T8')
$$X \cdot (X + Y) = X$$

permette di minimizzare il n. di gate

Proprietà distributiva

• (T9)
$$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$$

• (T9')
$$(X + Y) \cdot (X + Z) = X + Y \cdot Z$$

Teoremi dell'algebra di Boole (7/8)

Proprietà della combinazione

- $(T10)(X + Y) \cdot (X' + Y) = Y$
- $(T10') X \cdot Y + X' \cdot Y = Y$

Proprietà del consenso

• (T11)
$$(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$$

• (T11')
$$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$$

Dimostrazione:
$$xy + \bar{x}z + yz = xy + \bar{x}z + yz(x + \bar{x})$$

$$= xy + \bar{x}z + xyz + \bar{x}yz$$

$$= xy + xyz + \bar{x}z + \bar{x}yz$$

$$= xy(1+z) + \bar{x}z(1+y)$$

$$= xy(1) + \bar{x}z(1)$$

$$= xy + \bar{x}z$$

Teoremi dell'algebra di Boole (8/8)

Teorema di De Morgan

- (T12) (X + Y)' = (X' Y')
- $(T12')(X \bullet Y)' = (X' + Y')$
- generalizzabile per n variabili

Corollario:

Dai teoremi dell'assorbimento o dalla proprietà distributiva

$$XY'+Y=XY'+XY+Y=X+Y$$

$$XY' + Y = (X + Y)(Y' + Y) = X + Y$$

Parità (1/3)

- I codici rilevatori d'errori sono codici in cui è possibile rilevare se sono stati commessi errori nella trasmissione
- Codici ridondanti: in cui l'insieme dei simboli dell'alfabeto è minore dell'insieme di configurazioni rappresentabili col codice
- Codici con bit di parità: alla codifica binaria si aggiunge un bit di parità (codice ridondante in quanto usa 1 bit in più del necessario)

Parità (2/3)

 parità pari rende pari il numero di 1 presenti nella parola (vale 1 se ci sono un n. dispari di 1)

parità dispari: il contrario

 I codici di parità rilevano la presenza di un numero dispari di errori (e quindi di errori singoli)

es. valore definito con 8 bit 11001011
con 9 bit con parità (pari) 110010111

Parità (3/3)

Simboli alfabeto cod. Binaria cod. Binaria con parità pari

0	000	000 0
1	001	001 1
2	010	010 1
3	011	011 0
4	100	100 1
5	101	101 0
6	110	110 0
7	111	111 1

- Ad ogni simbolo dell'alfabeto corrisponde una configurazione a parità pari.
- Le configurazioni a parità dispari non codificano alcun simbolo dell'alfabeto.
- Se viene rilevata una configurazione a parità dispari significa che si è verificato un errore che ha alterato un numero dispari di bit (1, 3, 5, ..).

Esempio

- Supponiamo un errore di trasmissione durante la scrittura in memoria così che il numero memorizzato sia 001011000.
- Quando il dato viene riletto ed utilizzato viene fatto il check di parità e si verifica che quel numero non è ammissibile per la codifica binaria con parità pari perché la somma dei bit a 1 è dispari.

Quindi viene rilevato un errore.

Indovinello?

Successivamente alla nascita della singolarità tecnologica, 10 umani vengono catturati da una malvagia intelligenza artificiale. Essa li pone di fronte a un pericoloso gioco

«vi disporrò in fila indiana e metterò poi in testa a ciascuno un cappello, il cui colore sarà casualmente nero o bianco.

Partendo dall'ultimo della fila, ciascuno di voi dovrà dire il colore del cappello che ha in testa. Vi è concesso un solo errore, altrimenti sarete terminati.»

Come fanno gli umani a salvarsi?

Evaluation (it is your moment)

Collegati
https://menti.com

Inserisci il codice

8771 4098

Mentimeter

Oppure usa il QR code

Esercizi (1/7)

Esercizio 1

Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate utilizzando solo gate elementari AND, OR e NOT

$$F = X(Y+Z)$$

$$F = \overline{X} + Y + X\overline{Z}$$

Esercizio 2

Date le seguenti reti logiche determinare le tabella di verità e le funzioni logiche corrispondenti

Architettura dei calcolatori

51

Esercizi (2/7)

Esercizio 3

Date le reti di figura ricavare le tabelle di verità, le funzioni logiche in forma algebrica e dimostrare, facendo uso dei teoremi dell'algebra di Boole, che risultano logicamente equivalenti.

Esercizi (3/7)

Esercizio 4

Ricavare le tabelle di verità delle seguenti espressioni

- Z = W'X + Y'Z' + X'Z + Y
- Z = W + X'(Y' + Z)
- Z = WX+Y(Z'+X)+Z(X'+Y')
- Z = ABC + (A' + B' + C)C'

Esercizi (4/7)

Esercizio 5

Ricavare le tabelle di verità e semplificare le seguenti funzioni. Indicare anche il teorema utilizzato per ciascun passaggio della semplificazione:

- Y = (A+B)(A+BC) + A'B' + A'C'
- Y = ABC+ABC'+A'BD+ABD+A'D
- F = (X+Y+W')(X+Y+W)(X+Y'+W)(X'+Y'+W)
- Y = A'C(A'BD)'+A'BC'D'+AB'C
- Y = (A'+B)(A+B+D)D'
- Y = A'B'C'D+A'B'CD+A'BC'D+AB'C'D
- W = X'Y + X'Y'Z

54

Esercizi (5/7)

Esercizio 6:

Una assicurazione è disposta a fornire una assicurazione nei seguenti casi: il contraente è maschio e ha meno di 30 anni oppure ha più di 30 anni ed ha figli; il contraente ha più di 30 anni, non ha figli e, o è maschio o è sposato; il contraente ha più di 30 anni, non ha figli e non è sposato.

Valutazione: una donna con figlio non sposata e con meno di 30 anni può essere assicurata?

Esercizi (6/7)

Esercizio 7

Ricavare la funzione logica in forma algebrica e semplificare applicando i teoremi dell'algebra booleana. Disegnare il diagramma della rete semplificata.

Esercizi (7/7)

Esercizio 8

Ricavare la funzione logica in forma algebrica e semplificare applicando i teoremi dell'algebra booleana. Disegnare il diagramma della rete semplificata.

Evaluation (it is your moment)

Collegati
https://menti.com

Inserisci il codice

1109 4440

Mentimeter

Oppure usa il QR code

