Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Lukáš Lejdar **Naměřeno:** 25. března 2025

Obor: F Skupina: Út 14:00 Testováno:

Úloha č. 11: Operační zesilovač

1. Úvod

Operační zesilovač je součástka reprezentovaná diagramem na obrázku 1, která zesiluje rozdíl napětí mezi jeho invertujícím a neinvertujícím vstupem. Je to aktivní součástka, kterou je potřeba napájet, což reprezentují dva volné vstupy pod zesilovačem.

Obrázek 1: Schématická značka operačního zesilovače

Ideální zesilovač má nekonečné zesílení a neteče skrz něj proud. V tomto praktiku ověřím jeho základní vlastnosti v několika jednoduchých zapojeních a chování při střídavém vstupu.

2. Měření

2.1. Komparátor

Operační zesilovač jsem zapojil podle obrázku 2 a sledoval která z diod se rozsvítí, jak se mění napětí U_1 a $U_{\rm ref}$. V případě, že U_1 bylo větší než $U_{\rm ref}$, rozsvítila se dioda propouštějící proud nahoru, tj. na výstupu bylo záporné napětí a v opačném případě naopak.

Obrázek 2: Komparátor

2.2. Zapojení s invertujícím vstupem

Schéma zapojení je na obrázku 3, kde smyslem obvodu je zesílit napětí U_1 o nějaký násobek a obrátit jeho polaritu. K obrácení dochází kvůli zapojení na invertující vstup a zvětšení zajišťuje zpětnovazební rezistoru, který uzemní vstup A, takže rezistory R_1 a R_2 teče stejný proud.

$$U_0 = -\frac{R_2}{R_1} U_1 \tag{1}$$

Obrázek 3: Zapojení zesilovače s invertujícím vstupem

Jako odpory jsem použil $R_1=10~\mathrm{k}\Omega$ a $R_2=20~\mathrm{k}\Omega$, takže zesílení čekám o velikosti $-R_2/R_1=-2$. Změřená data pro několik vstupních napětí jsou v tabulce 1, které jsem nafitoval přímkou pro sklon

$$\frac{U_0}{U_1} = -2.033 \pm 0.001. \tag{2}$$

U_1 (V)	U_0 (V)	U_0 (V) teoretická
1.49	-3.04	-2.98
1.76	-3.58	-3.52
1.99	-4.06	-3.98
2.26	-4.59	-4.52
2.47	-5.02	-4.94
2.97	-6.04	-5.94
3.25	-6.59	-6.50
3.48	-7.08	-6.96
3.74	-7.60	-7.48

Tabulka 1: Naměřené napětí při zapojení s invertujícím vstupem

Graf 1: Závislost výstupního napětí na vstupním při zapojení s invertujícím vstupem

2.3. Šířka pásma

Zapojení nechám stejné, ale tentokrát na vstup přivedu střídavé napětí o frekvenci ω a výstup budu měřit osciloskopem. Naměřená data jsou uvedená v tabulce 3 a zesílení $A_u = U_0/U_1$ jsem vynesl do grafu 2. Je vidět, že zesílení si drží hodnotu 2 až do frekvence vstupu $\omega = 25$ Hz a pak postupně klesá k nule. Šířka operačního pásma je tedy rozmezí (0, 25) Hz.

ω (Hz)	U_0 (V)	U_1 (V)	A_u
00.500	4.266	2.133	2.000
10.000	4.296	2.133	2.014
20.000	4.297	2.133	2.015
25.000	4.210	2.133	1.974
30.000	3.906	2.133	1.831
32.000	3.600	2.133	1.688
34.000	3.515	2.133	1.648
36.000	3.320	2.133	1.556
38.000	3.125	2.133	1.465
40.000	3.027	2.133	1.419
42.000	2.832	2.133	1.328
45.000	2.637	2.133	1.236
47.000	2.539	2.133	1.190
50.000	2.441	2.133	1.144
60.000	1.953	2.133	0.916

Graf 2: Závislost zesílení na na frekvenci

Tabulka 2: Změřené amplitudy napětí střídavého vstupního a výstupního napětí

2.4. Dolnofrekvenční propust

Malou změnou zapojení z obrázku 2 na 4 dostaneme zapojení, které propouští pouze nízké frekvence vstupního signálu. Přidaný kondenzátor snižuje impedanci zpětnovazební větve pro vysoké frekvence, což vede k zesílení

$$\frac{U_0}{U_1} = A_u = -\frac{R_F}{R_A} \frac{1}{\sqrt{1 + \omega^2 C_F^2 R_F^2}} \tag{3}$$

Obrázek 4: Dolnofrekvenční propust

Použil jsem kondenzátor o kapacitě $C_F=10$ nF a odpory $R_F=100$ k Ω a $R_A=10$ k Ω , takže očekávám maximální zesílení pro $\omega=0$

$$A_{\rm u \ max} = 10.0 \tag{4}$$

Na vstup jsem přivedl střídavé napětí o frekvenci ω a stabilní amplitudě $U_1 = 1.120$ a měřil amplitudu výstupního napětí. Naměřená data jsou v tabulce 3 a graf 3 je porovnává s teoretickým vztahem (3).

ω (Hz)	U_1 (V)	U_0 (V)	U_0 teorie (V)	A_u
10	1.120	-10.898	11.16	-9.980
50	1.120	-10.494	10.67	-9.540
80	1.120	-10.0	9.98	-8.935
100	1.120	-9.28	9.46	-8.467
130	1.120	-8.476	8.65	-7.744
150	1.120	-8.072	8.13	-7.277
170	1.120	-7.669	7.64	-6.834
200	1.120	-7.26	6.96	-6.226
220	1.120	-6.86	6.55	-5.861
250	1.120	-6.054	6.00	-5.370
270	1.120	-5.65	5.67	-5.078
300	1.120	-5.24	5.23	-4.686
350	1.120	-4.84	4.62	-4.139
400	1.120	-4.43	4.13	-3.696
500	1.120	-3.63	3.39	-3.033
600	1.120	-3.229	2.86	-2.563

Graf 3: Závislost zesílení na frekvenci vstupního napětí

Tabulka 3: Měření dolnofrekvenční propustnosti

2.5. Zapojení s neinvertujícím vstupem

Zapojení je stejné jako při invertujícím, ale napětí U_1 je tentokrát přivedeme na neinvertující vstup. Obvod se ustálí ve stavu, kdy je na invertujícím vstupu stejné napětí jako na neinvertujícím a poměr napětí opět získáme z úvahy o proudu.

$$U_0 = \left(1 + \frac{R_2}{R_1}\right) U_1 \tag{5}$$

Obrázek 5: Zapojení neinvertujícího zesilovače

Odpory $R_2=20~{\rm k}\Omega,~R_1=10~{\rm k}\Omega$ zůstali stejné, takže zesílení signálu bude $R_2/(R_1+R_2)=3.$ Naměřená data jsou v tabulce (3) a fitem přímkou jsem dostal zesílení

$$\frac{U_0}{U_1} = 3.045 \pm 0.002 \tag{6}$$

U_1 (V)	U_0 (V)	U_0 (V) teoretická
1.25	3.83	3.75
1.49	4.54	4.47
1.76	5.37	5.28
1.99	6.07	5.97
2.25	6.86	6.75
2.50	7.61	7.5
2.75	8.38	8.25
2.99	9.09	8.97
3.26	9.91	9.78
3.49	10.62	10.47

Tabulka 4: Naměřené napětí při zapojení s neinvertujícím vstupem

Graf 4: Závislost výstupního napětí na vstupním při zapojení s neinvertujícím vstupem

2.6. Rozdílový zesilovač

Kombinací invertujícího a neinvertujícího zesilovače jde vytvořit rozdílový zesilovač uvedený na obrázku 6. Pro jeho výstupní napětí platí vztah

$$U_0 = U_2 \frac{R_4(R_1 + R_2)}{R_1(R_3 + R_4)} - U_1 \frac{R_2}{R_1}.$$
 (7)

Obrázek 6: Rozdílový zesilovač

Velikost rezistorů zvolím $R_1=R_3=10~{\rm k}\Omega$ a $R_2=R_4=20~{\rm k}\Omega$, čímž se vztah (6) zjednoduší na tvar $U_0=2(U_2-U_1)$. Naměřená data jsou v tabulce 5 a z fitu přímkou vyšlo zesílení

$$\frac{U_0}{U_2 - U_1} = 2.028 \pm 0.002 \tag{8}$$

U_1 (V)	U_2 (V)	U_0 (V)	U_0 (V) teoretická
1.49	1.26	-0.46	-0.46
1.49	1.49	0.00	0.00
1.49	2.00	1.04	1.02
1.49	2.24	1.52	1.50
1.49	2.50	2.04	2.02
1.49	2.75	2.56	2.52
1.49	2.97	3.02	2.96
1.49	3.25	3.57	3.52
1.49	3.50	4.08	4.02
1.49	3.74	4.57	4.50
1.49	4.00	5.08	5.02
2.05	1.50	-1.09	-1.1
2.05	1.75	-0.60	-0.6

Tabulka 5: Naměřená vstupní a výstupní napětí

Graf 5: Závislost výstupního napětí na vstupních rozdílu napětí.

2.7. Derivátor

Derivátor je zapojení, které by mělo na výstupu U_0 udávat derivaci vstupního napětí U_1 . Je stejné jako zapojení s invertujícím vstupem, s rozdílem, že jeden odpor je nahrazený kondenzátorem. Proud jím tekoucí je přímo úměrný derivaci napětí na něm, a protože oběma větvemi teče stejný proud, máme

$$U_0 = -\frac{R}{C}\dot{U}_1\tag{9}$$

Obrázek 7: Zapojení zesilovače jako derivátoru

Na vstupním napětí jsem nastavil sinusový signál $\sin(x)$ a na výstupu pozoroval $-\cos(x)$, jak to předpovídá vztah (8). Druhým testem bylo vstupní napětí ve tvaru pily, kde na výstupu byly vidět obdélníkové pulzy.

3. Závěr

V této úloze jsem ověřil základní vlastnosti operačního zesilovače. U zapojení komparátoru jsem pozoroval očekávané přepínání polarity výstupního napětí v závislosti na rozdílu vstupních hodnot U_1 a $U_{\rm ref}$ a při zapojení s invertujícím a neinvertujícím vstupem jsem získal zesílení -2.033 ± 0.001 a 3.045 ± 0.002 , což bylo v dobré shodě s předpokládanou hodnotou -2 a 3.

Šířku pásma zesilovače jsem určil přibližně do 25, Hz, nad touto frekvencí zesílení začínalo klesat asymptoticky až k nule. U zapojení dolnofrekvenční propustnosti se potvrdila její funkce - pro nízké

frekvence byla zachována vysoká úroveň zesílení, zatímco pro vyšší frekvence amplituda signálu klesala v souladu s teoretickým modelem.

Dobře fungovalo i zapojení derivátoru, kde jsem na výstupu pozoroval časovou derivaci napětí na vstupu.

Reference

[1] Hustota pevných látek. Dostupné z http://www.converter.cz/tabulky/hustota-pevne.htmf.