Multi-objective ranking model

Friday, March 29, 2024 9:3

Multi-objective ranking model

Friday, March 29, 2024

Model Training:

. , , , , , ,	click rete	like vote	collect rate	forward rate
estimate:	P.	P2	P3	P4
	1			
target:	y۱	/2	/3	Y 4
<u> </u>				

loss function:
$$\sum_{i=1}^{4} \alpha_i CE(y_i, P_i)$$

each prediction is a "binary classification"

1) whether click? 2) whether like? 3) whether collect?

@ whether forward/share?

Too many negative samples:

downsample the negative samples.

make balance between positive and negative samples.

Multi-objective ranking model

Friday, March 29, 2024

Calibrate Estimate:

- ① # of positive and negative samples: n_+ n_- ② down sample negative samples: $\alpha \cdot n_ \alpha \in [0, 1]$
- 3 overestimate click rate because an << 1-

$$P_{\text{true}} = \frac{n_+}{n_+ + n_-} \qquad P_{\text{pred}} = \frac{n_+}{n_+ + \alpha \cdot n_-}$$

From ①:
$$n_{+} = \frac{P_{+}n_{e}}{1 - P_{+}n_{e}}$$
 plug into ②

Ptrue =
$$\frac{\alpha \cdot P_{pred}}{(1 - P_{pred}) + \alpha \cdot P_{pred}}$$

- O use model to about Ppred
- 1 then calibrate to obtain Ptrue
- 3 use Ptrue to rank items