

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2021-11-09
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE /

이 단원에서는 **지수법칙에 대한 계산 문제, 지수법칙을 응용하는 문제** 등이 자주 출제되며 단순한 계산문제가 많이 출제되므로 실수가 생기지 않도록 학습합니다.

평가문제

[단원 마무리]

- **1.** $2^{x+1} = A$, $3^x = B$ 라고 할 때, 24^x 을 A, B를 사용하여 나타내면?
 - ① $8A^3B$
- ② $\frac{1}{8}A^3B$
- $38A^3B^3$
- $4 \frac{1}{6}A^3B$
- ⑤ A^3B^2

[중단원 학습 점검]

- 2. 다음 □ 안에 알맞은 수들의 합은?
- (7) $(a^3)^3 \times (a^4)^2 \times (a^2)^3 = a^{\square}$
- (나) $x^2 \div (x^3 \div x^{\square}) \div x^5 = x^2$
- $(\Box) \ 64^2 \times 16^{\Box + 2} \div 2^7 = 8^7$
- ① 30
- ② 31
- 3 32
- 4 33
- (5) 34

[중단원 학습 점검

 $oxed{3.} \quad (-32)^3 \div (-4^2) imes 8^5 \div rac{1}{16} imes (-2^2)^3$ 을 간단히 나

타내면?

- $(1) 2^{36}$
- $(2) 2^{28}$
- 32^{36}
- (4) -2^{28}
- (5) 2³⁰

- [중단원 학습 점검]
- 4. 다음 표에서 가로, 세로, 대각선에 있는 세 단항 식의 곱셈 결과는 모두 같다. 이때, (가)~(마)에 들어 갈 식으로 바른 것은?

a^5b^4	(フト)	a^3b^5
a^4b^{10}	(나)	(다)
(라)	(마)	(日ト)

- ① (7) $a^{10}b^{17}$
- ② (나) a^5b^9
- ③ (다) a^6b^6
- ④ (라) a^9b^{13}
- 5 (\square) a^2b

- [중단원 학습 점검]
- **5.** $(-3xz)^4 \div \left(\frac{x}{3yz}\right)^a \div (3y^3z^2)^b = \frac{27x^2}{y^c}$ 일 때, 세 수

a, b, c에 대하여 a+b+c의 값을 구하면?

- ① 10
- ② 11
- ③ 12
- 4 13
- (5) 14

- [단원 마무리]
- **6.** $(-15x^2y^2) \div 5x^3y^4 \times (-2x^2)$ 을 간단히 하면?
- $\bigcirc \frac{6x^3}{y}$
- $\Im \frac{6x}{u^2}$
- $(4) \frac{6}{x^2y^2}$

[단원 마무리]

7. 다음을 모두 만족시키는 세 자연수 a, b, c에 대 하여 abc의 값을 구하면?

$$(1.3)^a = (1.7)^2$$
 $(0.6)^2 = \left(\frac{3^b}{c^2}\right)^2$

- ① 10
- ② 20
- 3 30
- **4**0
- (5) 50

[단원 마무리]

$27ab^3 \times ($	$-3ab^2)^3 \div \{$	$\times (-3a^2b)^2$ = $3b^5$

- ① $27b^2$
- $\bigcirc 27b^3$
- $(3) 27b^2$
- (4) 27ab
- (5) $27ab^2$

[중단원 학습 점검]

$oldsymbol{9}$. 다음을 만족시키는 세 $oldsymbol{4}$ $A,\ B,\ C$ 에 대하여 $B \div A \div C^2$ 을 구하면?

- ① $\frac{1}{25xy}$
- $3 25x^2y^2$
- $(4) \frac{1}{25x^2y}$
- \bigcirc $-25x^2u$

[중단원 학습 점검]

10. 다음 중 옳은 것은?

①
$$2^4 + 2^4 = 2^x$$
, $2^2 \times 2^2 = 2^y$ 일 때, $x + y = 8$

②
$$2^{100} = x$$
일 때, $2^{101} - 2^{99} = \frac{3}{2}x$

$$(3) (-4x^2)^2 \div 2x^4 = 2$$

④
$$(5.4)^6 = \left(\frac{7}{3}\right)^x$$
일 때, $x = 3$

$$(5) (-x^3y)^3 \times \left(-\frac{y}{4x}\right)^2 = \frac{1}{16}x^7y^5$$

[중단원 학습 점검]

11. 다음 직사각형을 직선 l을 축으로 하여 1회전시 킬 때 생기는 입체도형의 부피를 직사각형의 넓이로 나눈 값을 구하면?

- ① $3\pi x^2 y$
- $\bigcirc 3\pi y$
- $\Im 3\pi xy$
- (4) $3\pi y^2$
- (5) $3\pi x^2$

[중단원 학습 점검]

12. 어떤 다항식 A에 4x를 곱한 후 B로 나누었더니 $20x^2 - 2xy + 8xy^2$ 이 되었다. 이때 $\frac{B}{A}$ 를 구하면?

①
$$5x^2 - \frac{y}{2} + 2y$$

①
$$5x^2 - \frac{y}{2} + 2y^2$$
 ② $\frac{10x - y + 4y^2}{2}$

$$3 \frac{2x}{10x^2 - xy + 4y^2}$$
 $4 5x - \frac{y}{2} + 2y^2$

$$4 5x - \frac{y}{2} + 2y^2$$

[중단원 학습 점검]

13. $3a^2 - [6a^2 + 10 + b - \{2a^2 - (a^2 - 4b + 3)\}]$ 을 간단하 했을 때 a^2 의 계수와 상수항의 곱은?

- ① 25
- 2 26
- ③ 27
- (4) 28
- (5) 29

[단원 마무리]

14. 두 순서쌍 $(x_1, y_1), (x_2, y_2)$ 에 대하여 $(x_1, y_1) \circ (x_2, y_2) = x_1x_2 - y_1y_2$ 라고 하자. 다음 식 을 만족하는 A와 B에 대해서 A+B의 값을 구하 며?

$$A = (x+1, 5) \circ (10y, x^2+2y+2)$$

$$B = (2x + 7y, -8x^2 + 3xy) \circ (-3x, -1)$$

- ① $19x^2 6xy + 5$ ② $-20x^2 + 3y 14$
- $3 19x^2 8xy 10$ $4 \cdot 10x^2 + xy + 3$
- $\bigcirc -14x^2 + 10xy 2$

[중단원 학습 점검]

15. 다음 그림과 같은 전개도로 직육면체를 만들었을 때, 마주 보는 면에 적힌 두 다항식의 합이 모두 같 다고 한다. 이때 다항식 A+B의 값은?

- ① $24x^2 2x + 16$
- ② $25x^2 + 4x 14$
- $3 18x^2 + 2x 20$
- $4) 28x^2 6x 13$
- (5) $12x^2 x + 19$

[단원 마무리]

- 16. 다음 조건을 만족하는 두 다항식 A, B에 대하여 4A-2B의 값을 구하면?
- (가) A에서 $4x^2 2$ 를 뺐더니 $1 x^2$ 이 되었다.
- (나) A에서 $2x^2+3x-7$ 을 더했더니 B가 되었다.
- ① $x^2 10$
- ② $5x^2 + 3x 8$
- (3) $-x^2+2x-1$
- $\bigcirc 2x^2 6x + 12$
- (5) $-10x^2+5x+1$

[단원 마무리]

17. 그림과 같이 (가)의 사각뿔과 (나)의 원기둥의 부 피가 서로 같다고 할 때, 원기둥의 밑넓이는?

(フト)

(나)

- ① $2a^2 \frac{4}{5}ab$
- ② $2a \frac{4}{5}ab$
- ③ $2a^2 8ab$ ④ $6a^2 \frac{12}{5}ab$
- $\bigcirc 2a^2b \frac{4}{5}ab$

[중단원 학습 점검]

18. 다음 그림과 같이 가로와 세로 길이가 각각 3x-4, 9y인 직사각형 모양의 액자에 폭이 각각 x-2, 3y로 일정하게 테두리를 남겨두고 나머지 부 분에 직사각형 모양의 사진을 붙였다. 이때 사진을 제외한 테두리 부분의 넓이를 구하면?

- ① 23xy+36y
- ② 27xy+40y
- 31xy+36
- 4 24xy 36y
- (5) 23xy-40

실전문제

- **19.** $5^3 = x$ 라고 할 때, 625^3 을 x를 사용하여 나타내
 - ① $\frac{x^4}{5}$
- ② x^4
- $3) 5x^3$
- $\bigcirc 325x^2$
- \bigcirc 125x
- **20.** $2^{18} \times 5^{12}$ 은 n의 자리의 수일 때, n의 값을 구한 것은?
 - ① 14
- ② 15
- 3 16
- 4) 17
- (5) 18
- **21.** $\frac{5^8+5^8+5^8+5^8+5^8}{3^{11}+3^{11}+3^{11}} \times \frac{9^8+9^8+9^8+9^8+9^8}{5^5+5^5+5^5}$ 의 값은?
 - ① 18000
- ② 27000
- 3 54000
- **4** 108000
- (5) 162000
- **22.** 그림과 같은 직사각형 \overline{ABCD} 에서 \overline{AB} , \overline{AD} 를 각 각 축으로 하여 1회전 시킬 때 생기는 입체도형의 부피를 각각 V_1 , V_2 라고 한다. 이 때, $\dfrac{V_1}{V_2}$ 의 값은?

- **23.** $x + [x^2 \{5x (x^2 + 4x A)\}] = 3x^2 + 5x 2$ 때, A에 알맞은 식은?
- (1) $-2x^2 + x + 2$ (2) $-x^2 3x + 2$
- $3 x^2 5x + 2$
- $(4) x^2 + 3x 2$
- $(5) x^2 + 5x 2$
- 24. 가로, 세로, 대각선에 있는 다항식의 합이 모두 $9x^2-3x+3$ 이 되도록 할 때, (가)~(바)에 해당되는 다항식이 옳지 않은 것은?

(가)	$8x^2 + x + 5$	(나)
(다)	$3x^2 - x + 1$	(라)
$9x^2 + 2x + 3$	(미})	(비)

- (1) (7) $4x^2-1$
- ② (다) $-4x^2-5x+1$
- ③ (라) $8x^2 + 3x + 1$
- (4) (1) $-2x^2-3x-3$
- (5) (H) $2x^2 2x + 3$
- 25. 색칠한 부분의 넓이 나타낸 식으로 옳은 것은?

- ① $15a^2 + 27ab + 20b^2$
- ② $15a^2 + 21ab + 4ab^2$
- ③ $15a^2 + 54ab + 40b^2$ ④ $\frac{15}{2}a^2 + 27ab + 20b^2$

4

정답 및 해설

1) [정답] ②

[해설]
$$2^{x+1}=2^x\times 2=A$$
이므로 $2^x=\frac{A}{2}$,
$$24^x=(2^3\times 3)^x=(2^x)^3\times 3^x=\left(\frac{A}{2}\right)^3\times B=\frac{1}{8}A^3B$$
 따라서 ②이다.

2) [정답] ④

[해설] (가)
$$(a^3)^3 \times (a^4)^2 \times (a^2)^3 = a^9 \times a^8 \times a^6 = a^{23}$$
이 므로 $\square = 23$
(나) $x^2 \div (x^3 \div x^\square) \div x^5 = x^{2-(3-\square)-5} = x^2$ 이므로 $2-(3-\square)-5=2$, $\square = 8$
(다) $64^2 \times 16^{\square+2} \div 2^7$
 $= 2^{12} \times 2^{(4 \times \square + 8)} \div 2^7 = 2^{(4 \times \square + 13)}$
또 $8^7 = (2^3)^7 = 2^{21}$ 이므로 $2^{(4 \times \square + 13)} = 2^{21}$ 에서 $4 \times \square + 13 = 21$, $\square = 2$
따라서 \square 안에 알맞은 수들의 합은 $2^3 + 8 + 2 = 33$ 이다.

3) [정답] ①

[해설]
$$(-32)^3 \div (-4^2) \times 8^5 \div \frac{1}{16} \times (-2^2)^3$$

= $(-2^5)^3 \times \frac{1}{(-2^4)} \times (2^3)^5 \times 2^4 \times (-2^2)^3$
= $(-2^{15}) \times (\frac{1}{-2^4}) \times 2^{15} \times 2^4 \times (-2^6) = -2^{36}$

4) [정답] ④

[해설] 표의 가로, 세로, 대각선에 있는 세 단항식의 곱셈 결과가 모두 같으므로

$$a^5b^4 \times a^4b^{10} \times (\operatorname{th}) = a^3b^5 \times (\operatorname{th}) \times (\operatorname{th})$$

따라서 (나)=
$$\frac{a^5b^4 \times a^4b^{10}}{a^3b^5} = a^6b^9$$
이다.

또 같은 방법으로

$$a^4a^{10} \times a^6b^9 \times (\mathbf{C}) = a^3b^5 \times (\mathbf{C}) \times (\mathbf{C})$$
이므로

$$(\mathrm{H}) = \frac{a^4 b^{10} \times a^6 b^9}{a^3 b^5} = a^7 b^{14} \mathrm{OTC}.$$

이때 대각선에 있는 세 단항식의 곱셈 결과는 $a^5b^4 \times a^6b^9 \times a^7b^{14} = a^{18}b^{27}$ 이므로

$$(7) = \frac{a^{18}b^{27}}{a^5b^4 \times a^3b^5} = a^{10}b^{18},$$

(라)=
$$\frac{a^{18}b^{27}}{a^5b^4 \times a^4b^{10}} = a^9b^{13}$$
,

$$(\Box \uparrow) = \frac{a^{18}b^{27}}{a^9b^{13} \times a^7b^{14}} = a^2 \circ |\Box \uparrow|.$$

5) [정답] ③

[해설]
$$(-3xz)^4 \div \left(\frac{x}{3yz}\right)^a \div (3y^3z^2)^b = \frac{27x^2}{y^c}$$
, $3^4x^4z^4 \times \frac{3^ay^az^a}{x^a} \times \frac{1}{3^by^{3b}z^{2b}} = \frac{27x^2}{y^c}$ 에서 $4-a=2$ 이므로 $a=2$, $\frac{3^4\times 3^2}{3^b} = 27$ 이므로 $b=3$, $\frac{y^2}{y^9} = \frac{1}{y^c}$ 이므로 $c=7$ 이다. $a+b+c=12$

6) [정답] ③

[해설]
$$(-15x^2y^2) \div 5x^3y^4 \times (-2x^2)$$

= $(-15x^2y^2) \times \frac{1}{5x^3y^4} \times (-2x^2) = \frac{6x}{y^2}$

7) [정답] ④

[해설]
$$(1.\dot{3})^a = \left(\frac{12}{9}\right)^a = \left(\frac{4}{3}\right)^a$$
, $(1.\dot{7}) = \left(\frac{16}{9}\right)^2 = \frac{4^4}{3^4}$ 이 므로 $\left(\frac{4}{3}\right)^a = \frac{4^4}{3^4}$, $a = 4$ 이다.
$$(0.6)^2 = \left(\frac{3}{5}\right)^2 = \left(\frac{3^2}{5^2}\right) = \left(\frac{3^b}{c^2}\right)$$
이므로 $b = 2$, $c = 5$ 이다. 따라서 $abc = 40$ 이다.

8) [정답] ③

[해설]
$$27ab^3 \times (-3ab^2)^3 \div \{ \underbrace{ [] \times (-3a^2b)^2 } \} = 3b^5$$
 $27ab^3 \times (-27a^3b^6) \times \underbrace{ 1 }_{] \times 9a^4b^2} = 3b^5$ $-81b^7 \times \underbrace{ 1 }_{] = 3b^5} = -27b^2$ $\therefore \underbrace{ [] = \frac{-81b^7}{3b^5} = -27b^2$

9) [정답] ③

[해설]
$$C \times (-y) = 1$$
 $\therefore C = -\frac{1}{y}$
$$B \div 2x^2y = C \qquad \therefore B = \left(-\frac{1}{y}\right) \times 2x^2y = -2x^2$$

$$A \times (-5x)^2 = -2x^2 \quad \therefore A = -\frac{2x^2}{25x^2} = -\frac{2}{25}$$

$$\therefore B \div A \div C^2 = -2x^2 \times \left(-\frac{25}{2}\right) \times y^2 = 25x^2y^2$$

10) [정답] ②

[해설] ①
$$2^4 + 2^4 = 2 \times 2^4 = 2^5$$
, $2^2 \times 2^2 = 2^4$ 이므로 $x = 5$, $y = 4$ 이다. 따라서 $x + y = 9$ ② $2^{100} = x$ 일 때,
$$2^{101} - 2^{99} = 2 \times 2^{100} - 2^{100} \div 2 = 2x - \frac{x}{2} = \frac{3}{2}x$$
이다. ③ $(-4x^2)^2 \div 2x^4 = 16x^4 \div 2x^4 = 8x^2$ ④ $(5.4)^6 = \left(\frac{49}{9}\right)^6 = \frac{7^{12}}{3^{12}} = \left(\frac{7}{3}\right)^{12}$ 이므로 $x = 12$

11) [정답] ⑤

[해설] (회전체의 부피) $=\pi(2x^2)^2y^3-\pi(x^2)^2y^3=3\pi x^4y^3$ (직사각형의 넓이)= x^2y^3 따라서 회전체의 부피를 직사각형의 넓이로 나눈 값은 $\frac{3\pi x^4y^3}{x^2y^3}=3\pi x^2$

12) [정답] ⑤

[해설]
$$A \times 4x \times \frac{1}{B} = 20x^2 - 2xy + 8xy^2$$

$$\frac{A}{B} = \frac{20x^2 - 2xy + 8xy^2}{4x} = \frac{10x - y + 4y^2}{2}$$

$$\therefore \frac{B}{A} = \frac{2}{10x - y + 4y^2}$$

13) [정답] ②

[해설] (주어진 식)
=
$$3a^2 - \{6a^2 + 10 + b - (2a^2 - a^2 + 4b - 3)\}$$

= $3a^2 - (6a^2 + 10 + b - a^2 - 4b + 3)$
= $3a^2 - (5a^2 - 3b + 13)$
= $3a^2 - 5a^2 + 3b - 13 = -2a^2 + 3b - 13$

14) [정답] ③

[해설]
$$A = 10xy + 10y - (5x^2 + 10y + 10)$$

= $-5x^2 + 10xy - 10$
 $B = -6x^2 - 21xy - (8x^2 - 3xy) = -14x^2 - 18xy$
따라서 $A + B = -19x^2 - 8xy - 10$

15) [정답] ①

[해설] 마주보는 두 면의 합은
$$10x^2 + x + 6$$

 $A + 2x^2 + 3x - 7 = 10x^2 + x + 6$ 이므로
 $A = 8x^2 - 2x + 13$
 $B - 6x^2 + x + 3 = 10x^2 + x + 6$ 이므로
 $B = 16x^2 + 3$
 $\therefore A + B = 24x^2 - 2x + 16$

16) [정답] ④

[해설]
$$A-(4x^2-2)=1-x^2$$
이므로 $A=3x^2-1$ $B=A+2x^2+3x-7$ 이므로 $B=3x^2-1+2x^2+3x-7=5x^2+3x-8$ 따라서 $4A-2B=4(3x^2-1)-2(5x^2+3x-8)$ $=2x^2-6x+12$

17) [정답] ①

[해설] (사각뿔의 부피)=
$$2a \times (5a-2b) \times 6ab \times \frac{1}{3}$$

= $20a^3b - 8a^2b^2$

(원기둥의 부피)=(원기둥의 밑넓이) $\times 10ab$ 두 입체도형의 부피가 같으므로 (원기둥의 밑넓이) $\times 10ab = 20a^3b - 8a^2b^2$ (원기둥의 밑넓이)= $2a^2 - \frac{4}{5}ab$

18) [정답] ④

[해설] (액자의 넓이)=
$$9y(3x-4)=27xy-36y$$

(사진의 가로)= $3x-4-2(x-2)=x$
(사진의 세로)= $9y-6y=3y$
따라서 (사진의 넓이)= $3xy$
이때 구하는 폭의 넓이는
 $27xy-36y-3xy=24xy-36y$

19) [정답] ②

[해설]
$$625 = 25^2 = 5^4$$
이므로 $625^3 = (5^4)^3 = (5^3)^4 = x^4$ 이다.

20) [정답] ①

[해설]
$$2^{18} \times 5^{12} = (2 \times 5)^{12} \times 2^6 = 10^{12} \times 64$$
이므로 14
자리의 수이다.

21) [정답] ③

[해설]
$$\frac{5^8 \times 4}{3^{11} \times 3} \times \frac{9^8 \times 4}{5^5 \times 3}$$
$$= \frac{5^8 \times (3^2)^8 \times 4^2}{3^{13} \times 5^5}$$
$$= \frac{5^8 \times 3^{16} \times 4^2}{3^{13} \times 5^5}$$
$$= 5^3 \times 3^3 \times 4^2$$
$$= 54000$$

22) [정답] ①

[하성]
$$V_1 = \pi \times (3a^2b)^2 \times 2ab^3 = 18a^5b^5\pi$$

$$V_2 = \pi \times (2ab^3)^2 \times 3a^2b = 12a^4b^7\pi$$

$$\therefore \frac{V_1}{V_2} = \frac{18a^5b^5\pi}{12a^4b^7\pi} = \frac{3a}{2b^2}$$

23) [정답] ③

[해설]
$$x + [x^2 - \{5x - (x^2 + 4x - A)\}] = 3x^2 + 5x - 2$$

 $x + \{x^2 - (5x - x^2 - 4x + A)\} = 3x^2 + 5x - 2$
 $x + \{x^2 - (-x^2 + x + A)\} = 3x^2 + 5x - 2$
 $x + (x^2 + x^2 - x - A) = 3x^2 + 5x - 2$
 $2x^2 - A = 3x^2 + 5x - 2$
 $\therefore A = 2x^2 - (3x^2 + 5x - 2) = -x^2 - 5x + 2$

24) [정답] ③

[해설] 구할 수 있는 것부터 차례대로 구해본다. $(8x^2+x+5)+(3x^2-x+1)+(\mathbf{P})=9x^2-3x+3$ $\Rightarrow (\mathbf{P})=(9x^2-3x+3)-(11x^2+6)=-2x^2-3x-3$ $(9x^2+2x+3)+(-2x^2-3x-3)+(\mathbf{P})=9x^2-3x+3$ $\Rightarrow (\mathbf{P})=(9x^2-3x+3)-(7x^2-x)=2x^2-2x+3$

$$(7) + (3x^2 - x + 1) + (2x^2 - 2x + 3) = 9x^2 - 3x + 3$$

$$\Rightarrow (7) = (9x^2 - 3x + 3) - (5x^2 - 3x + 4) = 4x^2 - 1$$

$$(4x^2 - 1) + (1) + (9x^2 + 2x + 3) = 9x^2 - 3x + 3$$

$$\Rightarrow (1) = (9x^2 - 3x + 3) - (13x^2 + 2x + 2) = -4x^2 - 5x + 1$$

$$(-4x^2 - 5x + 1) + (3x^2 - x + 1) + (1) = 9x^2 - 3x + 3$$

$$\Rightarrow (1) = (9x^2 - 3x + 3) - (-x^2 - 6x + 2) = 10x^2 + 3x + 1$$

$$(1) + (10x^2 + 3x + 1) + (2x^2 - 2x + 3) = 9x^2 - 3x + 3$$

$$\Rightarrow (1) = (9x^2 - 3x + 3) - (12x^2 + x + 4) = -3x^2 - 4x - 1$$
25) [정답] ④
[해설] (색칠한 부분의 넓이)

25) [정답] ④

[예절] (직접한 부분의 넓어)

$$= \frac{1}{2} \times 10b(3a+4b) + \frac{1}{2} \times 3a(5a+8b)$$

$$= 5b(3a+4b) + \frac{3}{2}a(5a+8b)$$

$$= 15ab + 20b^2 + \frac{15}{2}a^2 + 12ab$$

$$= \frac{15}{2}a^2 + 27ab + 20b^2$$