Ch-07 估计

7.1 最大似然估计

使用 $X = (X_1, \dots, X_n) \sim P_{\theta}, \theta \in \Theta$ 表示统计模型。

引入两类求 $\hat{\theta}(x_1,\dots,x_n)$ 的方法——最大似然法的模型。第一类模型是离散统计模型:设 (X_1,\dots,X_n) 为样本,其中 $X_i(i=1,\dots,n)$ 为离散型随机变量,样本分布列具有下列一般形式

$$P_{ heta}((X_1,\cdots,X_n)=(x_1,\cdots,x_n))=\prod_{i=1}^n P_{ heta}(X_i=x_i),\quad heta\in\Theta$$

此处 θ 为参数。对于固定的样本值 (x_1, \dots, x_n) , 作为参数 θ 的函数

$$L(heta) = \prod_{i=1}^n P_ heta(X_i = x_i) = P_ heta(X_i = x_i, i = 1, \cdots, n)$$

称为似然函数。

第二种是**连续统计模型**: 此时 X_i ($i=1,\cdots,n$) 为连续型随机变量,样本 (X_1,\cdots,X_n) 具有联合密度

$$\prod_{i=1}^n p(x_i, heta),\quad heta\in\Theta$$

对于固定的样本值 (x_1, \dots, x_n) , θ 的函数

$$L(heta) = \prod_{i=1}^n p(x_i, heta) = p_{ heta, ec{X}}(x_1, \cdots, x_n)$$

也称为似然函数。

似然函数 $L(\theta)$ 就是当总体参数为 θ 的情况下,事件 $\{(X_1, \dots, X_n) = (x_1, \dots, x_n)\}$ 的概率。最大似然估计就是挑选使 $P_{\theta}((X_1, \dots, X_n) = (x_1, \dots, x_n))$ 达到最大的 θ 值作为真值的估计。

定义 1.1 设 $\theta \in \Theta$ 为统计模型 $(X_1, \dots, X_n) \sim P_\theta$ 的参数。统计模型可为连续型,也可为离散型。设 x_1, \dots, x_n 为总体的样本值。若存在 $\hat{\theta}(x_1, \dots, x_n)$ 使得

$$L(\hat{ heta}(x_1,\cdots,x_n)) = \max_{ heta \in \Theta} L(heta)$$

则称 $\hat{\theta}(x_1 \cdots, x_n)$ 为 θ 的最大似然估计(简称 ML 估计)。

若 $\hat{\theta}$ 为参数 θ 的 ML 估计,则 θ 的函数 $g(\theta)$ 的 ML 估计定义为 $g(\hat{\theta})$.

7.2 矩估计

定义 **2.1** 设 X_1, \dots, X_n 为来自总体 $X \sim F_{\theta}(\theta \in \Theta)$ 的一个样本。若所涉及的矩存在,则

- $(1)\ l$ 阶样本矩 $a_l=rac{1}{n}\sum_{i=1}^n X_i^l$ 为相应的总体矩 $lpha_l=E_ heta(X^l)$ 的矩估计, $l\in N^+$
- (2) 若存在连续函数 ϕ 使 $g(\theta) = \phi(\alpha_1, \dots, \alpha_k)$ 成立,则 $g(\theta)$ 的矩估计定义为

$$\widehat{g(\theta)} = \phi(a_1, \cdots, a_k)$$

其中 a_l 为相应的总体矩 $a_l(l=1,\dots,k)$ 的样本矩。

7.3 估计的无偏性

定义 **3.1** 设 $X_1, \dots, X_n \sim \text{iid}F(x,\theta)$, $\theta \in \Theta$ 为一个统计模型, $g(\theta)$ 为待估量,统计量 $T(X_1, \dots, X_n)$ 称为 $g(\theta)$ 的无偏估计,如果 T 满足

$$E_{ heta}(T(X_1,\cdots,X_n))=g(heta), \quad orall \ heta \in \Theta$$

无偏估计在平均意义下是准确的。

定理 3.1 设总体 X 的方差 var(X) 存在且为有限, X_1, \dots, X_n 为 X 的一个样本,则

$$S_n^2=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$$

不能片面追求无偏性

7.4 无偏估计的优良性

无偏性是对估计的最基本的要求,通常用均方误差作为刻画一个估计偏离目标值的波动的度量。

设 $X_1, \dots, X_n \sim \mathrm{iid}F_{\theta}(x)(\theta \in \Theta)$ 为统计模型, $g(\theta)$ 为待估量, $g(\theta)$ 的估计量 $T(X_1, \dots, X_n)$ 的均方误差定义为

$$R(\theta,T) = E_{\theta}[T(X_1,\cdots,X_n) - g(\theta)]^2$$

均方误差 $R(\theta,T)$ 依赖于未知参数 θ ,是刻画估计的性能的一个数量指标。寻找使均方误差 越小越好的估计,并希望找到具有一致最小均方误差的估计:对任何参数的真值 θ ,该估计相应的均方误差均达到最小。但一致最小均方误差不一定存在,因此所估计的均方误差也被 称为风险函数。

定义 **4.1** 设 $X_1, \dots, X_n \sim \text{iid}F_{\theta}(x)$, $\theta \in \Theta$,其中 $F_{\theta}(x)$ 为 $X_i (i = 1, \dots, n)$ 的共同分布函数。又设 $g(\theta)$ 为一维的待估量,统计量 $T(X_1, \dots, X_n)$ 为 $g(\theta)$ 的一个估计量。T 称为 $g(\theta)$ 的最小方差无偏估计(UMVU 估计),如果满足

- 1. $T \in g(\theta)$ 的无偏估计
- 2. 对于 $g(\theta)$ 的任何其他无偏估计 T, 其方差不比 T 的小,即

$$var_{ heta}(T) \leq var_{ heta}(\tilde{T}), \quad orall \ heta \in \Theta$$

定义 **4.2** 设 $(X_1, \dots, X_n) \sim F_{\theta}(z_1, \dots, z_k)$, $\theta \in \Theta$. 统计量 $T(X_1, \dots, X_n)$ 称为充分统计量,如果对于任何其他的统计量 $T(X_1, \dots, X_n)$,T 在 T 的值已知的条件下的条件分布与参数 θ 无关。

定理 **4.1** 因子分解定理 设 $X_1, \dots, X_n \sim \mathrm{iid} p(x, \theta), \theta \in \Theta$, 其中 $p(x, \theta)$ 在连续情况为分布密度,在离散情况为分布列。若 (X_1, \dots, X_n) 的联合密度具有下列形式

$$\prod_{i=1}^n p(x_i, heta) = q_ heta(T(x_1,\cdots,x_n)) \cdot h(x_1,\cdots,x_n)$$

式中 $h(x_1,\dots,x_n)$ 与参数 θ 无关, $q_{\theta}(T)$ 表示它可以写成与 θ 有关,但作为 x_1,\dots,x_n 的函数具有复合函数 $q_{\theta}(T(x_1,\dots,x_n))$ 的形式,则 $T(x_1,\dots,x_n)$ 是充分统计量。

充分数据量可在不丢失数据所含信息的条件下将数据进行简化。充分统计量不一定唯一。

定义 **4.3** 设 $X_1, \dots, X_n \sim \text{iid} p(x, \theta)$, $\theta \in \Theta$, 其中 θ 为参数,也可以为向量函数。设 T 为充分统计量。若对任何满足下列条件的统计量 $\phi(T(X_1, \dots, X_n))$:

$$E_{ heta}[\phi(T(X_1,\cdots,X_n))]\equiv 0, \quad orall \ heta\in \Theta$$

可推知 $P_{\theta}(\phi(T(X_1,\cdots,X_n))=0)=1, \forall \theta \in \Theta$,则称 T 为完全充分统计量。

定理 **4.2** 设 $X_1, \dots, X_n \sim \mathrm{iid} p(x, \theta), \theta \in \Theta, T$ 为完全充分统计量。设 $\phi(T)$ 满足

$$E_{ heta}[\phi(T)] = g(heta), \quad orall \ heta \in \Theta$$

则 $\phi(T)$ 为 $g(\theta)$ 的 UMVU 估计。

对于待估量 $g(\theta)$,只要找到依赖于完全充分统计量的函数 $\phi(T)$,使得 $\phi(T)$ 是 $g(\theta)$ 的无偏估计,则 $\phi(T)$ 就是 $g(\theta)$ 的 UMVU 估计。因此,寻找 $g(\theta)$ 的 UMVU 估计时,只需要在完全充分统计量的函数中寻找即可。并且,在完全充分统计量 T 存在的前提下, $g(\theta)$ 的 UMVU 估计必定是 T 的函数。

定义 **4.4** 设 $p(x,\theta)$, $\theta \in \Theta$ 为密度函数或分布列。 $\{p(x,\theta), \theta \in \Theta\}$ 称为构成**指数族分布**(或指数型分布),若 $p(x,\theta)$ 能分解成如下几个因子的形式:

$$p(x, heta) = S(heta)h(x)\exp\{\sum_{k=1}^m C_k(heta)T_k(heta)\},\quad heta\in\Theta$$

引理 **4.1** 设 $X \sim p(x,\theta)$, $\theta \in \Theta$, 其分布族为指数族, 又设 X_1, \dots, X_n 为 X 的一个样本。将 (X_1, \dots, X_n) 看成随机向量,则 (X_1, \dots, X_n) 的联合分布密度为

$$\prod_{i=1}^n p(x_i, heta) = S^n(heta) \prod_{i=1}^n h(x_i) \exp\{\sum_{k=1}^m C_k(heta) \cdot \sum_{i=1}^n T_k(x_i)\}$$

联合分布也是指数族分布。

定理 4.3 设 X 具有指数族分布, 其密度函数为

$$p(x, heta) = S(heta)h(x)\exp\{\sum_{k=1}^m C_k(heta)T_k(heta)\}, \quad heta \in \Theta$$

若

- 1. Θ 是 \mathbb{R}^m 中有内点的集合
- 2. (C_1, \dots, C_m) : $\Theta \to \mathbb{R}^m$ ——对应的连续函数
- 3. $C_k(\theta)$, 1 < k < m, 线性无关; $T_k(x)$, $1 \le k \le m$, 线性无关

则 $(T_1(X), \cdots, T_m(X))$ 是该分布族的完全充分统计量。

7.5 估计的相合性

定义 **5.1** 设 X_1, \dots, X_n 为来自某总体 $X \sim F_{\theta}(x)$ 的一个样本,待估参数为 $g(\theta)$, $T_n(X_1, \dots, X_n)$ 为 $g(\theta)$ 的一个估计。若对任何 $\epsilon > 0$,

$$P_{ heta}(\mid T_n(X_1,\cdots,X_n)-g(heta)\mid \geq \epsilon) o 0,\quad n o \infty$$

则称估计序列 $T_n(X_1,\dots,X_n)$ 为 $g(\theta)$ 的相合估计,或称 $g(\theta)$ 的估计 $T_n(X_1,\dots,X_n)$ 具有相合性。

估计的相合性是对估计的最基本的要求。

定理 **5.1** 设 $X_1, \dots, X_n \sim \text{iid}F_{\theta}(x), \theta \in \Theta, E_{\theta}(X_i) \ (i = 1, 2, \dots, n)$ 存在且有限,则

$$\overline{X}_n = rac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\longrightarrow} E_ heta(X_1) \quad (n o \infty)$$

或等价地,对任何 $\epsilon > 0$,有

$$P_{ heta}(\mid \overline{X}_n - E_{ heta}(X_1) \mid \geq \epsilon)
ightarrow 0 \quad (n
ightarrow \infty)$$

推论 **5.1** 设 $X_1, \dots, X_n \sim \mathrm{iid}F_{\theta}(x)$, $\theta \in \Theta$,则 $\alpha_l = E_{\theta}(X_1^l)$ 的矩估计 $a_l = \frac{1}{n} \sum_{i=1}^n X_i^l$ 为 α_l 的相合估计。

定理 **5.2** 设 $X_1, \dots, X_n \sim \text{iid}F_{\theta}(x)$, $\theta \in \Theta$. 若 θ 的函数 $g(\theta)$ 的矩估计 $\hat{g}_{\theta}(X_1, \dots, X_n)$ 存在,则 $\hat{g}_n(X_1, \dots, X_n)$ 必为 $g(\theta)$ 的相合估计。

只要存在矩估计,就可以保证矩估计的相合性。

设 $X_1, \dots, X_n \sim \mathrm{iid} N(\mu, \sigma^2)$. 参数 σ/μ 称为正态分布的变异系数。

7.6 估计的渐进分布

定理 **6.2** 中心极限定理 设 $X_i (i=1,\cdots,n)$ 是独立同分布的, $E(X_i)=\mu$, $var(X_i)=\sigma^2<\infty$,那么 $\sqrt{n}(\overline{X}-\mu)\overset{d}{\to}N(0,\sigma^2)$.

定理 6.3Δ 方法 设 T_n 为 θ 的估计。若

$$\sqrt{n}(T_n- heta)\stackrel{d}{\longrightarrow} N(0, au^2) \quad (n o\infty)$$

则对于函数 $h(\theta)$, 当 $h'(\theta)$ 存在且不为 0 时,有

$$\sqrt{n}[h(T_n)-h(heta)]\stackrel{d}{\longrightarrow} N(0, au^2[h'(heta)]^2) \quad (n o\infty)$$

定义 **6.2** 设 $X_1, \dots, X_n \sim \text{iid}F_{\theta}, \theta \in \Theta$, $T(X_1, \dots, X_n)$ 是 $g(\theta)$ 的估计。若对每一个 $\theta \in \Theta$ 下式成立

$$\sqrt{n}[T(X_1,\cdots,X_n)-g(heta)]\stackrel{d}{\longrightarrow} N(0,\sigma^2) \quad (n o\infty)$$

则称估计 $T(X_1, \dots, X_n)$ 是渐近正态的,其渐近分布为 $N(0, \sigma^2)$. 渐近分布 $N(0, \sigma^2)$ 的方 差 σ^2 称为估计的渐近方差(σ^2 也可依赖于 θ)。

7.7 置信区间与置信限

用一个"点" $T(X_1, \dots, X_n)$ 估计 $g(\theta)$ 的值称为点估计,用置信区间或置信限估计 $g(\theta)$ 的方式称为区间估计。

如果给出两个统计量 \underline{T} 和 \overline{T} ,对很小的正数 α 保证满足 $P(\underline{T} \le a \le \overline{T}) \ge 1 - \alpha$ 即可。通常称 $1 - \alpha$ 为置信度或置信水平,称 $[T, \overline{T}]$ 为置信度为 $1 - \alpha$ 的置信区间。

有的问题只需要考虑**置信上限或置信下限**,置信上限和置信下限统称**置信限**。置信区间和 置信限都是对参数的一种估计,称为区间估计。

定义 7.1 设 $X_1, \dots, X_n \sim \operatorname{iid} F_\theta$ ($\theta \in \Theta$) 为某统计模型,其中 θ 可为向量参数。又设 $g(\theta)$ 为 θ 的实值函数(在统计中 $g(\theta)$ 也称为参数或一维参数)。

1. 设 \underline{T} 和 \overline{T} 为满足条件 \underline{T} < \overline{T} 的两个统计量, $\alpha \in (0,1)$ 为某常数。若对任意 $\theta \in \Theta$,有

$$P_{\theta}(\underline{T} \leq g(\theta) \leq \overline{T}) \geq 1 - \alpha$$

则称 $[T, \overline{T}]$ 为 $g(\theta)$ 的置信度是 $1 - \alpha$ 的置信区间。

2. 设 T 为某统计量, $\alpha \in (0,1)$ 为某常数。若对任意 $\theta \in \Theta$,有

$$P_{\theta}(\underline{T} \leq g(\theta)) \geq 1 - \alpha$$

则称 T 为 $g(\theta)$ 的置信度为 $1-\alpha$ 的**置信下限**。

3. 设 \overline{T} 为某统计量, $\alpha \in (0,1)$ 为某常数。若对任意 $\theta \in \Theta$,有

$$P_{\theta}(g(\theta) < \overline{T}) > 1 - \alpha$$

则称 \overline{T} 为 $g(\theta)$ 的置信度为 $1-\alpha$ 的置信上限。

一、枢轴量法

枢轴量是与参数有关而其分布与参数无关的随机变量。

定义 7.2 设 $X_1, \dots, X_n \sim \text{iid}F_{\theta}$ ($\theta \in \Theta$) 为其统计模型,其中 θ 可为向量参数。又设 $g(\theta)$ 为 θ 的实值函数。 $g(\theta)$ 的样本 X_1, \dots, X_n 的函数 $h(X_1, \dots, X_n; g(\theta))$ 称为枢轴量,如果它的分布和 θ 无关。

二、正态分布中参数的置信区间

枢轴量为
$$\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}$$
,由 $P(|\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}| \le z_{1-\alpha/2}) = 1-\alpha$,得置信区间为 $[\overline{X}-\frac{\sigma z_{1-\alpha/2}}{\sqrt{n}},\overline{X}+\frac{\sigma z_{1-\alpha/2}}{\sqrt{n}}].$

总体模型为 $X \sim N(\mu, \sigma_0^2)$, σ_0^2 已知,则 X 的均值 μ 的置信度为 $1-\alpha$ 的置信区间为 $[\overline{X} - \frac{\sigma_0 z_{1-\alpha/2}}{\sqrt{n}}, \overline{X} + \frac{\sigma_0 z_{1-\alpha/2}}{\sqrt{n}}].$

设 $X_1, \cdots, X_n \sim \mathrm{iid}N(\mu, \sigma^2), \mu \in (-\infty, +\infty), \sigma^2 > 0$

1.
$$rac{\sqrt{n}(\overline{X}-\mu)}{\sigma} \sim N(0,1)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1)$$

3.
$$\overline{X}$$
 与 $\sum_{i=1}^n (X_i - \overline{X})^2$ 相互独立,则

$$T = rac{\sqrt{n}(\overline{X} - \mu)}{\sqrt{rac{1}{n-1}\sum_{i=1}^n(X_i - \overline{X})^2}}$$

的分布为自由度 n-1 的 t 分布。

三、参数的近似置信区间

定理 7.2 设 $X_1, \dots, X_n \sim \mathrm{iid}F_\theta, \theta \in \Theta$,又设 $T(X_1, \dots, X_n)$ 是 $g(\theta)$ 的渐近正态估计,当 $n \to \infty$ 时,

$$\sqrt{n}[T(X_1,\cdots,X_n)-g(heta)]\stackrel{d}{\longrightarrow} N(0,\sigma^2)$$

1. 若 σ^2 已知,则 $g(\theta)$ 的置信度为 $1-\alpha$ 的近似置信区间为

$$[T(X_1,\cdots,X_n)-rac{\sigma}{\sqrt{n}}z_{1-lpha/2},T(X_1,\cdots,X_n)+rac{\sigma}{\sqrt{n}}z_{1-lpha/2}]$$

2. 若 σ^2 未知,则 $g(\theta)$ 的置信度为 $1-\alpha$ 的近似置信区间为

$$[T(X_1,\cdots,X_n)-\frac{\hat{\sigma}}{\sqrt{n}}z_{1-\alpha/2},T(X_1,\cdots,X_n)+\frac{\hat{\sigma}}{\sqrt{n}}z_{1-\alpha/2}]$$
其中 $\hat{\sigma}$ 是 σ 的相合估计, $\hat{\sigma}=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})}$

总结:

设 $X_1,\cdots,X_n\sim \mathrm{iid}N(\mu,\sigma^2),\mu\in(-\infty,+\infty),\sigma^2>0$,求 μ 的置信度为 $1-\alpha$ 的置信区间

 $1. \sigma^2$ 已知:

设 (x_1, \dots, x_n) 是总体的样本 (X_1, \dots, X_n) 的观察值,枢轴量 $h(X_1, \dots, X_n; \mu) = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1)$,令 $z_{1-\alpha/2}$ 为标准正态分布的 $1 - \alpha/2$ 分位数,则

$$P(\mid rac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\mid \leq z_{1-lpha/2}) = 1-lpha$$

由此可得

$$P(\overline{X} - rac{\sigma}{\sqrt{n}} z_{1-lpha/2} \leq \mu \leq \overline{X} + rac{\sigma}{\sqrt{n}} z_{1-lpha/2}) = 1 - lpha$$

则参数 μ 的置信度为 $1-\alpha$ 的置信区间为

$$[\overline{X} - rac{\sigma}{\sqrt{n}} z_{1-lpha/2}, \overline{X} + rac{\sigma}{\sqrt{n}} z_{1-lpha/2}]$$

 $2. \sigma^2$ 未知:

设 (x_1,\cdots,x_n) 是总体的样本 (X_1,\cdots,X_n) 的观察值,令 $\hat{\sigma}=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2}\text{ , 枢轴量 }h(X_1,\cdots,X_n;\mu)=\frac{\sqrt{n}(\overline{X}-\mu)}{\hat{\sigma}}\sim N(0,1)$, 令 $t_{1-\alpha/2}(n-1)$ 为自由度为 n-1 的 t 分布的 $1-\alpha/2$ 分位数,则

$$P(\mid rac{\sqrt{n}(X-\mu)}{\hat{\sigma}}\mid \leq t_{1-lpha/2}(n-1)) = 1-lpha$$

由此可得

$$P(\overline{X} - \frac{\hat{\sigma}}{\sqrt{n}}t_{1-\alpha/2}(n-1) \leq \mu \leq \overline{X} + \frac{\hat{\sigma}}{\sqrt{n}}t_{1-\alpha/2}(n-1)) = 1 - \alpha$$

则参数 μ 的置信度为 $1-\alpha$ 的置信区间为

$$[\overline{X}-rac{\hat{\sigma}}{\sqrt{n}}t_{1-lpha/2}(n-1),\overline{X}+rac{\hat{\sigma}}{\sqrt{n}}t_{1-lpha/2}(n-1)], \hspace{1cm}
onumber
onumber \hat{\sigma}=\sqrt{rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2}$$

设 $X_1,\cdots,X_n\sim \mathrm{iid}N(\mu,\sigma^2),\mu\in(-\infty,+\infty),\sigma^2>0$,求 μ 的置信度为 $1-\alpha$ 的置信上限

 $1. \sigma^2$ 已知:

设 (x_1, \dots, x_n) 是总体的样本 (X_1, \dots, X_n) 的观察值, 枢轴量

$$h(X_1,\cdots,X_n;\mu)=rac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\sim N(0,1)$$
,令 z_{1-lpha} 为标准正态分布的 $1-lpha$ 分

位数,则

$$P(\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma} \geq -z_{1-\alpha}) = 1-\alpha$$

由此可得

$$P(\mu \leq \overline{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}) = 1 - \alpha$$

则参数 μ 的置信度为 $1-\alpha$ 的置信上限为

$$\overline{X} + rac{\sigma}{\sqrt{n}} z_{1-lpha}$$

 $2. \sigma^2$ 未知:

设
$$(x_1,\cdots,x_n)$$
 是总体的样本 (X_1,\cdots,X_n) 的观察值,令 $\hat{\sigma}=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2}$, 枢轴量 $h(X_1,\cdots,X_n;\mu)=\frac{\sqrt{n}(\overline{X}-\mu)}{\hat{\sigma}}\sim N(0,1)$

, 令 $t_{1-\alpha}(n-1)$ 为自由度为 n-1 的 t 分布的 $1-\alpha$ 分位数,则

$$P(rac{\sqrt{n}(\overline{X}-\mu)}{\hat{\sigma}} \geq -t_{1-lpha}(n-1)) = 1-lpha$$

由此可得

$$P(\mu \leq \overline{X} + rac{\hat{\sigma}}{\sqrt{n}}t_{1-lpha}(n-1)) = 1-lpha$$

则参数 μ 的置信度为 $1-\alpha$ 的置信上限为

$$\overline{X} + rac{\hat{\sigma}}{\sqrt{n}} t_{1-lpha}(n-1), \qquad \quad
ext{ }
otag \hat{\sigma} = \sqrt{rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2}$$