2022암호경진대회 1번 문제

1. 만약 M_m 의 크기가 블록암호의 블록 크기와 같다면 Σ 는 어떤 형태인가?

nonce
$$N$$

$$M = M_1 \parallel M_2 \parallel \cdots \parallel M_m$$

$$L = E_K(N)$$

$$\Sigma = 0$$

$$For i = 1 \sim m - 1:$$

$$\Sigma = \Sigma \oplus M_i$$

$$Pad = E_K(len(M_m) \oplus L)$$

$$C_m = M_m \oplus MSB_{len(M_m)}(Pad) = M_m \oplus Pad \quad (\because len(M_m) = len(Pad) = n)$$

$$\therefore \Sigma = \Sigma \oplus Pad \oplus C_m \parallel 0^* = \Sigma \oplus Pad \oplus C_m \quad (\because len(C_m) = n)$$

$$= \Sigma \oplus Pad \oplus (M_m \oplus Pad)$$

$$= \Sigma \oplus Pad \oplus (Pad \oplus M_m)$$

$$= \Sigma \oplus (Pad \oplus Pad) \oplus M_m$$

$$= \Sigma \oplus 0 \oplus M_m$$

$$= \Sigma \oplus M_m$$

$$= M_1 \oplus M_2 \oplus \cdots \oplus M_m$$

- 2. 중복된 태그값을 갖는 메시지(혹은 암호문)을 찾는 것을 태그 위조공격(forgery attack) 이라고 한다. 위에 제시된 인증모드에서 서로 다른 두 메시지(혹은 암호문)이 동일한 태그 값을 갖게 만드는 위조공격을 설명하시오. (단, 공격자는 nonce를 재사용 가능함.)
 - 1. 새로운 평문 만들기

encryption mode:

$$plaintext\ M=M_1\parallel M_2\parallel \cdots \parallel M_m.$$

$$\Sigma = 0 \oplus M_1 \oplus M_2 \oplus ... \oplus M_{m-1} \oplus Pad \oplus (C_m \parallel 0^*),$$

where
$$Pad = E_K(len(M_m) \oplus L)$$
,

$$C_m = M_m \oplus MSB_{len(M_m)}(Pad).$$

$$T = E_K(\Sigma \oplus L)$$

Let
$$M_{inject} = 00 \cdots 00 (n \ bits)$$
.

$$M_{inject} \oplus (n - bit M_{any}) = M_{any}.$$

$$\therefore 0 \oplus x = x.$$

- \therefore as long as M_{inject} does not compromise the integrity of each component of Σ , it can be injected to M an arbitrary number of times.
- \therefore A new plaintext M' can be generated by injecting M_{inject} into M an arbitrary number of times in the places described below;
- (i) before M_1 ;
- (ii) between M_i and M_{i+1} , $1 \le i < m$;
- (iii) after M_m .

2. 새로운 암호문 만들기

decryption mode:

 $Ciphertext \ C = C_1 \parallel C_2 \parallel \cdots \parallel C_m.$

 $\Sigma = 0 \oplus M_1 \oplus M_2 \oplus \cdots \oplus M_{m-1} \oplus Pad \oplus (\mathcal{C}_m \parallel 0^*),$

where $M_i = D_K(C_i \oplus L) \oplus L$,

 $Pad = E_k(len(C_m) \oplus L).$

 $T' = E_k(\Sigma \oplus L).$

Let $C_{inject} = encrypt(M_{inject})$.

 $\Rightarrow decrypt \left(\mathit{C}_{inject} \right) \, = \, decrypt \left(encrypt \left(\mathit{M}_{inject} \right) \right) = \mathit{M}_{inject} = 00 \cdots 00.$

- \therefore injecting C_{inject} in C in a way that does not change each component
- of Σ will ensure T' = T
- : if each C_i $(1 \le i < m)$ is intact, then so will M_i ,

and $Pad_{encrypt} = Pad_{decrypt}$ (: $len(C_m) = len(M_m)$.)

- \therefore A new ciphertext C' can be generated by injecting C_{inject} into C an arbitrary number of times in the places described below;
- (i) before C_1 ;
- (ii) between C_i and C_{i+1} , $1 \le i < m$;
- (iii) after C_m .