Laboratory Exercise 9

Timer

I. Objectives:

本次練習的目標是要完成Timer的module,此module會在被Host設定好秒數並 切換state後,開始倒數,同時將倒數進度回傳給Host,在經由7段顯示器顯示出 來。透過本次練習,同學們將學會操控counter,即依據特定Hz的clock,做出一 個已設定好秒數的Timer。

II. Theory and Procedure:

此module有兩個state:一為設定,一為倒數, state由某個switch(sw[14])控制。

- (1) 設定state時,要keep住Host傳來的new second,讓current second等於new second。
- (2) 倒數state時,每一秒要讓current second減1,減到0時停止。

我們使用的cycle是25M Hz,如果想要每過一秒就讓current second減1的話,我們必須創一個可以數cycle的counter,讓它在每個post edge加1,一旦counter加到25000000(剛好過了一秒),就讓current second減1。

p.s. 25000000 = 25'b101111110101111100001000000

III. System Diagram & Pins Definition:

PART-I: System Diagram & System Description

本次實驗的system diagram如下:

System diagram

同學們只需實作Timer的module內容(只需要改動Timer.v中的內容即可)。當 sw[14]=1時,Host端給Timer的set訊號為1,Timer會接收來自Host的new_sec,此時由button調控new_sec大小(此部分由Host處理),秒數會顯示於FPGA板上的7段顯示器上。

當sw[14]=0時,Timer從剛拿到new_sec開始倒數,同時將及時秒數cur_sec回傳給Host,Host會透過七段顯示器顯示即時秒數,當cur_sec倒數到0後,就停住不再繼續往下減。

PART-II: Pins Definition

Name	I/O	Bits	Description
clk	I	1	25MHz clock訊號
rst	I	1	非同步reset訊號,rst=1時為reset
set	I	1	Host給的控制訊號,由sw[14]控制,set=1為設定秒數
			state,set =0時為倒數秒數state。
new_sec	I	4	由Host module傳入的設定秒數。
cur_sec	О	4	由此module傳出的數字信號,Host會將此數字顯示於七
			段顯示器上,設定秒數時cur_sec等於new_sec,倒數秒
			數時cur_sec顯示倒數的即時秒數。