

Моделирование инфляции в Приморском крае

Выполнили: Уманец Е., Купцова А., Дорохов А., Козловский Е., Высоцкий Г.

Данные

- y_f прирост цен на продовольственные товары, в % к предыдущему месяцу
- y_nf прирост цен на непродовольственные товары, в % к предыдущему месяцу
- у_s прирост цен на услуги без ЖКХ, в % к предыдущему месяцу
- х1 прирост курса рубля, в % к предыдущему месяцу
- dif_x2_sa спрос на продовольственные товары
- dif_x3_sa спрос на непродовольственные товары
- х4 цены на промышленную продукцию, в % к предыдущему месяцу
- x5 цены на с/х продукцию, в % к предыдущему месяцу
- x6_sa номинальная з/п, в % к предыдущему месяцу
- х7 реальные доходы, в % к соответствующему месяцу предыдущего года
- x8_sa оборот розничной торговли продовольственными товарами, в % к предыдущему месяцу
- x9_sa оборот розничной торговли непродовольственными товарами, в % к предыдущему месяцу
- dif_x10 краткосрочные ставки по кредиту населению
- dif_x11 краткосрочные ставки по кредиту организациям
- dif_x12 разрыв между краткосрочной и долгосрочной ставками по кредиту населению
- dif_x14 долгосрочные ставки по депозитам
- dif_x15 краткосрочные ставки по депозитам

	XI	DIF_X2_SA	DIF_X3_SA	X 4	X 5	X6_SA	X7	X8_SA	X9_SA	DIF_X10	DIF_X11	DIF_X12	DIF_X14	DIF_X15
Y_f	-0,291	-0,049	0,009	0,393	0,325	-0,068	0,218	0,063	0,004	-0,060	-0,185	0,088	-0,362	-0,304
Y_nf	-0,253	0,046	0,072	0,332	0,268	-0,039	0,017	0,221	-0,076	-0,100	0,000	0,046	-0,396	-0,317
Y_s	-0,277	-0,057	0,005	0,070	-0,302	-0,154	0,168	0,013	0,051	-0,031	-0,145	0,003	-0,232	-0,222

Алгоритм отбора моделей

- Оценка регрессии происходила с помощью ARDL
- Пошаговым включением переменных отбиралась модель с наименьшим AIC
- Тестировалось наличие (на уровне значимости 5%):
 - Мультиколлинеарности
 - Гетероскедастичности
 - Пропущенных переменных
- Если изначальная модель проходила все тесты, она принималась, в противном случае производились модификации до тех пор, пока модель не пройдет все тесты

Моделирование инфляции на продовольственные товары: выбор регрессоров

Для моделирования инфляции были отобраны следующие переменные:

- X1 прирост курса рубля в % к предыдущему месяцу
- X2 спрос на продовольственные товары
- Х5 цены с/х продукции, в % к декабрю прошлого года
- Х6 номинальная з/п, в % к предыдущему месяцу
- Х14 долгосрочные ставки по депозитам
- X15 краткосрочные ставки по депозитам

Моделирование инфляции на продовольственные товары: оценка первичной модели и расчет VIF

Первичная модель

Проверка на мультиколлинеарность

Variable	Coefficient	Std. Error	t-Statistic	Prob.*	=		Coefficient	Uncentered	Centered
Y_F(-1)	0.796961	0.112342	7.094057	0.0000		Variable	Variance	VIF	VIF
Y_F(-2)	-0.193639	0.095302	-2.031855	0.0460					
X1	-0.037464	0.015940	-2.350349	0.0216		Y_F(-1)	0.012621	10.24703	6.285060
X1(-1)	-0.058445	0.016901	-3.458083	0.0009		Y_F(-2)	0.009082	8.023442	4.844303
X1(-2)	0.030268	0.018236	1.659775	0.1015		X1	0.000054	2.775309	2.760064
X1(-3)	-0.051143	0.015129	-3.380410	0.0012					
DIF_X2_SA^2	0.000233	0.002640	0.088351	0.9299		X1(-1)	0.000286	3.133189	3.118332
DIF_X2_SA(-1)^2	-0.002307 -0.003740	0.003122 0.002655	-0.739126 -1.408752	0.4623 0.1634		X1(-2)	0.000333	3.756602	3.731798
DIF_X2_SA(-2)^2 X5	0.019197	0.002633	0.715297	0.1034		X1(-3)	0.000229	2.741509	2.707287
X5(-1)	-0.013771	0.027170	-0.506856	0.6139		DIF_X2_SA^2	6.97E-06	2.549538	1.863244
X5(-2)	0.088570	0.026822	3.302127	0.0015		DIF X2 SA(-1)^2	9.74E-06	3.565995	2.604424
X5(-3)	-0.043462	0.026345	-1.649743	0.1035		` '	7.05E-06	2.564834	1.890134
X6_SA	-0.009080	0.018436	-0.492507	0.6239		DIF_X2_SA(-2)^2			
X6_SA(-1)	0.035414	0.018654	1.898460	0.0618		X5	0.000720	5179.360	1.702592
DIF_X14	-0.169241	0.169099	-1.000843	0.3204		X5(-1)	0.000738	5307.612	1.746151
DIF_X14(-1)	-0.225290	0.162890	-1.383077	0.1711		X5(-2)	0.000719	5175.202	1.713726
DIF_X15	0.100611	0.111594	0.901581	0.3704		X5(-3)	0.000694	4998.536	1.659930
DIF_X15(-1) DIF_X15(-2)	-0.040805 0.168329	0.117424 0.083476	-0.347502 2.016498	0.7293 0.0476		X6_SA	0.000340	2489.951	1.407486
C	-7.457756	4.405762	-1.692728	0.0470		X6_SA(-1)	0.000348	2548.564	1.441761
R-squared	0.855669	Mean depend	ent var	0.645667		DIF_X14	0.028594	5.387531	5.376843
Adjusted R-squared	0.813834	S.D. depende		0.823170		DIF_X14(-1)	0.026533	5.009347	5.001521
S.E. of regression	0.355173	Akaike info cri	iterion	0.968540		DIF_X15	0.012453	5.420931	5.402040
Sum squared resid	8.704203	Schwarz crite		1.551829		DIF X15(-1)	0.013788	5.934362	5.924078
Log likelihood	-22.58430	Hannan-Quin		1.203756		DIF_X15(-2)	0.006968	3.003673	2.999492
F-statistic Prob(F-statistic)	20.45338 0.000000	Durbin-Watso	on stat	2.046468		C C	19.41074	13848.56	NA

Моделирование инфляции на продовольственные товары: тесты Бройша-Пагана и Рамсея

- Тест на гетероскедастичность
- Н0: гетероскедастичность отсутствует

- Тест на наличие пропущенных переменных
- Н0: пропущенные переменные отсутствуют

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	0.682005	Prob. F(20,69)	0.8301
Obs*R-squared	14.85488	Prob. Chi-Square(20)	0.7847
Scaled explained SS	5.999844	Prob. Chi-Square(20)	0.9989

Ramsey RESET Test Equation: UNTITLED

Specification: Y_F Y_F(-1) Y_F(-2) X1 X1(-1) X1(-2) X1(-3) DIF_X2_SA^2 DIF_X2_SA(-1)^2 DIF_X2_SA(-2)^2 X5 X5(-1) X5(-2) X5(-3) X6_SA X6_SA(-1) DIF_X14 DIF_X14(-1) DIF_X15 DIF_X15(-1) DIF_X15(-2) C

Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	2.557628	68	0.0128
F-statistic	6.541462	(1, 68)	0.0128

Моделирование инфляции на продовольственные товары: результаты первичного моделирования

- AIC=0,969
- Adjusted R-squared=0,814
- Гипотеза об отсутствии мультиколлинеарности отвергается
- Гипотеза об отсутствии гетероскедастичности не отвергается
- Гипотеза об отсутствии пропущенных переменных отвергается

Моделирование инфляции на продовольственные товары: модификация модели

- В предыдущей модели присутствовало множество незначимых переменных
- Исключая регрессоры с максимальным p-value, была получена следующая модель

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-9.814010	2.728824	-3.596424	0.0006
Y_F(-1)	0.613931	0.065669	9.348860	0.0000
X1	-0.049988	0.012322	-4.056869	0.0001
X1(-1)	-0.056350	0.012682	-4.443419	0.0000
X1(-3)	-0.036080	0.011609	-3.108043	0.0026
DIF_X2_SA(-1)^2	-0.005276	0.002114	-2.495488	0.0146
X5(-2)	0.064749	0.022492	2.878756	0.0051
X6_SA(-1)	0.035221	0.016245	2.168182	0.0331
DIF_X14(-1)	-0.381665	0.086684	-4.402929	0.0000
DIF_X15(-2)	0.271408	0.060764	4.466578	0.0000
R-squared	0.826662	Mean depend	lent var	0.645667
Adjusted R-squared	0.807161	S.D. depende		0.823170
S.E. of regression	0.361482	Akaike info cri		0.907231
Sum squared resid	10.45354	Schwarz crite	rion	1.184987
Log likelihood	-30.82538	Hannan-Quin	n criter.	1.019238
F-statistic	42.39172	Durbin-Watso	n stat	1.632568
Prob(F-statistic)	0.000000			

Моделирование инфляции на продовольственные товары: тесты для новой модели

Расчет VIF

Variance Inflation Factors

Date: 06/03/17 Time: 00:45 Sample: 2009M01 2016M09 Included observations: 90

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C	7.446482	5128.852	NA
Y_F(-1)	0.004312	3.380197	2.073260
X1	0.000152	1.601045	1.592251
X1(-1)	0.000161	1.703070	1.694994
X1(-3)	0.000135	1.558200	1.538749
DIF_X2_SA(-1)^2	4.47E-06	1.578948	1.153185
X5(-2)	0.000506	3513.222	1.163375
X6_SA(-1)	0.000264	1865.818	1.055521
DIF_X14(-1)	0.007514	1.369553	1.367413
DIF_X15(-2)	0.007514	1.536504	1.534366

Тест на гетероскедастичность

Heteroskedasticity Test: Breusch-Pagan-Godfrey								
F-statistic	0.565412	Prob. F(9,80)	0.8214					
Obs*R-squared	5.382427	Prob. Chi-Square(9)	0.7998					
Scaled explained SS	3.576521	Prob. Chi-Square(9)	0.9370					

Тест на пропущенные переменные

Ramsey RESET Test

Equation: UNTITLED

Specification: Y_F C Y_F(-1) X1 X1(-1) X1(-3) DIF_X2_SA(-1)^2 X5(-2)

X6_SA(-1) DIF_X14(-1) DIF_X15(-2)
Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.747471	79	0.0844
F-statistic	3.053656	(1,79)	0.0844
Likelihood ratio	3.413297	1	0.0647

Моделирование инфляции на продовольственные товары: результаты для новой модели

- AIC=0,907
- Adjusted R-squared=0,807
- Гипотеза об отсутствии мультиколлинеарности отвергается
- Гипотеза об отсутствии гетероскедастичности не отвергается
- Гипотеза об отсутствии пропущенных переменных не отвергается
- Принимается модифицированная модель (меньшее значение AIC, решена проблема пропущенных переменных, частично решена проблема мультиколлинеарности)

Интерпретация результатов моделирования инфляции на продовольственные товары

- Инфляция сильно зависит от своего прошлого состояния
- У всех переменных, кроме курса валют, текущее состояние переменной не значимо
- Гипотезы о направлении зависимости подтвердились у всех переменных, кроме краткосрочных ставок по депозитам
- Параболическая зависимость от спроса на продовольственные товары с подстройкой через период после изменения

Интерпретация результатов моделирования инфляции на продовольственные товары

• Уравнение продовольственной инфляции задается как:

•
$$y_t^f = -9.81 + 0.61y_{t-1}^f - 0.05X1 - 0.06X1_{t-1} - 0.04X1_{t-3} + 0.06X5_{t-2} + 0.04X6_{t-1} - 0.38difX14_{t-1} + 0.27difX15_{t-2} - 0.005(difX2_{t-1})^2$$

Моделирование инфляции на непродовольственные товары: выбор регрессоров

Для моделирования инфляции были отобраны следующие переменные:

- X1 прирост курса рубля в % к предыдущему месяцу
- ХЗ спрос на непродовольственные товары
- Х4 цены промышленных товаров, в % к декабрю предыдущего года
- Х7 реальные доходы, в % к соответствующему месяцу
- X11 краткосрочные ставки по кредиту организациям
- Х14 долгосрочные ставки по депозитам
- X15 краткосрочные ставки по депозитам

Моделирование инфляции на непродовольственные товары: оценка первичной модели и расчет VIF

Первичная модель

Проверка на мультиколлинеарность

Variable	Coefficient	Std. Error	t-Statistic	Prob.*	Variable	Coefficient Variance	Uncentered VIF
Y_NF(-1)	0.660696	0.101249	6.525483	0.0000	variable	variance	VIF
Y_NF(-2)	-0.218174	0.098497	-2.215044	0.0306			
X1	0.003797	0.009515	0.399051	0.6913	Y_NF(-1)	0.010251	15.61289
X1(-1)	-0.026770	0.009025	-2.966221	0.0043	Y_NF(-2)	0.009702	15.07742
X1(-2)	-0.005908	0.008582	-0.688399	0.4939	X1	9.05E-05	3.976941
X1(-3)	-0.011859	0.008187	-1.448447	0.1527	X1(-1)	8.15E-05	3.586904
DIF_X3_SA	0.001733	0.002961	0.585479	0.5604	X1(-2)	7.37E-05	3.249618
DIF_X3_SA(-1)	-0.003536	0.002969	-1.191072	0.2383	• •		
X4	-0.018773	0.020906	-0.897968	0.3728	X1(-3)	6.70E-05	3.040248
X4(-1)	-0.001388	0.020540	-0.067596	0.9463	DIF_X3_SA	8.77E-06	1.808220
X4(-2)	0.044464	0.021014	2.115946	0.0385	DIF_X3_SA(-1)	8.82E-06	1.815707
X7	-0.008069	0.006409	-1.258929	0.2129	X4	0.000437	12600.90
X7(-1)	0.003788	0.007583	0.499462	0.6193 0.1066	X4(-1)	0.000422	12161.46
X7(-2) X7(-3)	-0.012352 0.019539	0.007540 0.007455	-1.638216 2.620770	0.1066	` ,	0.000422	12729.66
X7(-3) X7(-4)	-0.010160	0.007455	-1.558314	0.0111	X4(-2)		
DIF X11	-0.173277	0.060833	-2.848396	0.0060	X7	4.11E-05	1267.970
DIF X11(-1)	0.101712	0.059228	1.717300	0.0000	X7(-1)	5.75E-05	1779.872
DIF X11 ²	-0.019240	0.010503	-1.831883	0.0719	X7(-2)	5.68E-05	1763.286
DIF X11(-1)^2	-0.091641	0.048575	-1.886587	0.0641	X7(-3)	5.56E-05	1726.717
DIF X11(-2)^2	0.150940	0.044527	3.389890	0.0012	X7(-4)	4.25E-05	1321.891
DIF X14	-0.125586	0.083118	-1.510941	0.1361	DIF X11	0.003701	7.360200
DIF X14(-1)	0.197849	0.079258	2.496250	0.0153	_		
DIF_X14^2	0.470920	0.168412	2.796236	0.0069	DIF_X11(-1)	0.003508	6.978800
DIF_X14(-1)^2	-0.430675	0.161382	-2.668673	0.0098	DIF_X11^2	0.000110	5.788384
DIF_X14(-2)^2	-0.049706	0.043388	-1.145630	0.2565	DIF_X11(-1)^2	0.002360	123.8099
DIF_X14(-3)^2	0.082054	0.041548	1.974953	0.0529	DIF_X11(-2)^2	0.001983	104.0319
DIF_X14(-4)^2	0.040740	0.024361	1.672336	0.0997	DIF_X14	0.006909	5.180344
С	-1.455476	3.472250	-0.419174	0.6766	DIF_X14(-1)	0.006282	4.773381
	0.000040			0.544740	DIF X14 ⁽¹⁾	0.028363	123.6976
R-squared	0.909940	Mean depend		0.544719	-		
Adjusted R-squared	0.867913	S.D. depende		0.486626	DIF_X14(-1)^2	0.026044	113.6678
S.E. of regression	0.176858 1.876734	Akaike info cr		-0.369541	DIF_X14(-2)^2	0.001882	8.215933
Sum squared resid	45.44457	Schwarz crite Hannan-Quin		0.441363 -0.042689	DIF_X14(-3)^2	0.001726	7.533211
Log likelihood F-statistic	45.44457 21.65093	Durbin-Watso		1.887093	DIF_X14(-4)^2	0.000593	2.589915
Prob(F-statistic)	0.000000	Durbin-watst	วก รเสเ	1.007093	C ,	12.05652	34305.24
1 100(1 -3 (a (13 (10)	0.000000					.2.00002	

Высшая школа экономики, Москва, 2017

Centered

VIF

6.854133

6.552134

3.951261

3.565890

3.236343

3.016205

1.800662

1.807783

1.386115

1.344968

1.408816

3.443489

4.660416

4.428819

4.154027

3.064616

7.340700

6.959039

5.635026

120.5279

101.2748

5.163309

4.763898

118.0930

108.3828

7.834078

7.186153

2.470645

NA

Моделирование инфляции на непродовольственные товары: тесты Бройша-Пагана и Рамсея

- Тест на гетероскедастичность
- Н0: гетероскедастичность отсутствует

- Тест на наличие пропущенных переменных
- Н0: пропущенные переменные отсутствуют

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	0.649344	Prob. F(28,60)	0.8942
Obs*R-squared	20.69750	Prob. Chi-Square(28)	0.8377
Scaled explained SS	11.66417	Prob. Chi-Square(28)	0.9972

Ramsey RESET Test Equation: UNTITLED

Specification: Y_NF Y_NF(-1) Y_NF(-2) X1 X1(-1) X1(-2) X1(-3) DIF_X3_SA DIF_X3_SA(-1) X4 X4(-1) X4(-2) X7 X7(-1) X7(-2) X7(-3) X7(-4) DIF_X11

DIF_X11(-1) DIF_X11^2 DIF_X11(-1)^2 DIF_X11(-2)^2 DIF_X14

DIF_X14(-1) DIF_X14^2 DIF_X14(-1)^2 DIF_X14(-2)^2 DIF_X14(-3)^2

DIF_X14(-4)^2 C

Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.483710	59	0.1432
F-statistic	2.201397	(1, 59)	0.1432

Моделирование инфляции на непродовольственные товары: результаты первичного моделирования

- AIC=-0,370
- Adjusted R-squared=0,868
- Гипотеза об отсутствии мультиколлинеарности отвергается
- Гипотеза об отсутствии гетероскедастичности не отвергается
- Гипотеза об отсутствии пропущенных переменных не отвергается

Моделирование инфляции на непродовольственные товары: модификация модели

- В предыдущей модели присутствовала мультиколлинеарность
- Исключая часть регрессоров с большим VIF, была получена следующая модель

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.706274	0.489583	1.442603	0.1529
Y_NF(-1)	0.366403	0.058296	6.285244	0.0000
X1(-2)	-0.026928	0.006501	-4.142014	0.0001
X7(-2)	-0.017677	0.006395	-2.764236	0.0070
X7(-3)	0.013378	0.006523	2.051014	0.0435
DIF_X11(-2)^2	0.046652	0.007525	6.199912	0.0000
DIF_X14(-1)	0.132343	0.060033	2.204502	0.0303
DIF_X14^2	0.160491	0.019612	8.183499	0.0000
R-squared	0.829381	Mean dependent var		0.547778
Adjusted R-squared	0.814816	S.D. depende	nt var	0.484754
S.E. of regression	0.208604	Akaike info cri	terion	-0.212069
Sum squared resid	3.568289	Schwarz criter	rion	0.010137
Log likelihood	17.54309	Hannan-Quin	n criter.	-0.122462
F-statistic	56.94318	Durbin-Watso	n stat	1.593816
Prob(F-statistic)	0.000000			

Моделирование инфляции на непродовольственные товары: тесты для новой модели

Расчет VIF

Тест на гетероскедастичность

Variance Inflation Factors

Date: 06/05/17 Time: 21:38 Sample: 2009M01 2016M09 Included observations: 90

Variable	Coefficient Variance	Uncentered VIF
С	0.239691	1.151102
Y_NF(-1)	0.003398	3.806461
X1(-2)	4.23E-05	1.384058
X7(-2)	4.09E-05	2.294740
X7(-3)	4.25E-05	2.320023
DIF_X11(-2)^2	5.66E-05	2.135598
DIF_X14(-1)	0.003604	1.972437
DIF_X14^2	0.000385	1.206579

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic		Prob. F(7,82)	0.6584
Obs*R-squared		Prob. Chi-Square(7)	0.6373
Scaled explained SS	4.167624	Prob. Chi-Square(7)	0.7603

Тест на пропущенные переменные

Ramsey RESET Test Equation: UNTITLED

Specification: Y_NF C Y_NF(-1) X1(-2) X7(-2) X7(-3) DIF_X11(-2)^2

DIF_X14(-1) DIF_X14^2

Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	0.700181	81	0.4858
F-statistic	0.490253	(1, 81)	0.4858
Likelihood ratio	0.543083	1	0.4612

Моделирование инфляции на непродовольственные товары: результаты для новой модели

- AIC=-0,212
- Adjusted R-squared=0,815
- Гипотеза об отсутствии мультиколлинеарности не отвергается
- Гипотеза об отсутствии гетероскедастичности не отвергается
- Гипотеза об отсутствии пропущенных переменных не отвергается
- Принимается модифицированная модель (выполняются все тесты)

Интерпретация результатов моделирования инфляции на непродовольственные товары

- Инфляция положительно зависит от своего предыдущего значения
- Увеличение реальных доходов положительно влияет на инфляцию по прошествии трех месяцев
- Увеличение ставки процента по кредитам организациям приводит к сокращению инфляции с задержкой в 2 месяца
- Влияние долгосрочных ставок по депозитам не линейное, а гиперболическое

Интерпретация результатов моделирования инфляции на непродовольственные товары

• Уравнение непродовольственной инфляции задается как:

• $y_{nft} = 0.7 + 0.37 * y_{nf_{t-1}} - 0.03 * X1_{t-2} - 0.017 * X7_{t-2} + 0.013 * X7_{t-3} + 0.047 * dif X11_{t-2}^2 + 0.16 * dif X14_t^2 + 0.13 * X714_{t-1}$

Моделирование инфляции на услуги: выбор регрессоров

Для моделирования инфляции были отобраны следующие переменные:

- X1 прирост курса рубля в % к предыдущему месяцу
- X5 цены на с/х продукцию, в % к декабрю предыдущего года
- X7 реальные доходы, в % к соответствующему месяцу
- X10 краткосрочные ставки по кредиту населению
- X11 краткосрочные ставки по кредиту организациям
- Х14 долгосрочные ставки по депозитам
- X15 краткосрочные ставки по депозитам

Моделирование инфляции на услуги: оценка первичной модели и расчет VIF

Первичная модель

Проверка на мультиколлинеарность

Variable	Coefficient	Std. Error	t-Statistic	Prob.*	Variable	Coefficient Variance	Uncentered VIF	Centered VIF
Y_S(-1)	-0.005555	0.101355	-0.054810	0.9565			9-45	
Y_S(-2)	-0.037819	0.096925	-0.390192	0.6976	V 0/4\	0.010273	2 227245	1 575705
Y_8(-3)	-0.004596	0.091692	-0.050124	0.9602	Y_S(-1)		2.237245	1.575735
Y_S(-4)	-0.249215	0.093227	-2.673193	0.0094 0.1722	Y_S(-2)	0.009394	2.047681	1.436198
Y_S(-5) Y_S(-6)	-0.125956 -0.223508	0.091296 0.089911	-1.379647 -2.485888	0.1722	Y_S(-3)	0.008407	1.833926	1.283884
1_5(-0) X5^2	-0.223300	0.000252	-3.931911	0.0154	Y_S(-4)	0.008691	1.916226	1.329632
X7^(1/2)	0.204818	0.437687	0.467955	0.6413	Y_S(-5)	0.008335	1.860615	1.286181
X7(-1)^(1/2)	-0.834594	0.486684	-1.714857	0.0909	Y_S(-6)	0.008084	1.872021	1.277563
X7(-2)^(1/2)	0.918155	0.424798	2.161393	0.0342				
DIF_X10	-0.031362	0.068316	-0.459072	0.6476	X5^2	6.33E-08	1376.891	1.815527
DIF_X10(-1)	-0.138353	0.073132	-1.891825	0.0628	X7^(1/2)	0.191570	4247.267	3.033482
DIF_X10(-2)	-0.014543	0.067146	-0.216582	0.8292	X7(-1)^(1/2)	0.236861	5258.568	3.623765
DIF_X10(-3)	0.072152	0.067630	1.066864	0.2898	X7(-2)^(1/2)	0.180453	4011.685	2.660251
DIF_X10(-4)	-0.079309	0.069012	-1.149205	0.2545	DIF_X10	0.004667	1.778534	1.772823
DIF_X10(-5)	-0.155666	0.059634	-2.610346	0.0111		0.005348	2.052529	2.047987
DIF_X15	-0.275697	0.100000	-2.756973	0.0075	DIF_X10(-1)			
DIF_X15(-1)	-0.265443	0.109513	-2.423857	0.0180	DIF_X10(-2)	0.004509	1.735089	1.730516
C	7.993957	4.473699	1.786879	0.0784	DIF_X10(-3)	0.004574	1.764515	1.757496
R-squared	0.549437	Mean depend	dent var	0.538930	DIF_X10(-4)	0.004763	1.860182	1.854212
Adjusted R-squared	0.430171	S.D. depende		0.846099	DIF_X10(-5)	0.003556	1.374899	1.371977
S.É. of regression	0.638695	Akaike info cr		2.131602	DIF_X15	0.010000	1.341053	1.335065
Sum squared resid	27.73935	Schwarz crite	rion	2.670134	DIF_X15(-1)	0.011993	1.586128	1.581299
Log likelihood	-73.72471	Hannan-Quir	ın criter.	2.348453				
F-statistic	4.606799	Durbin-Watso	on stat	1.893091	С	20.01398	4268.404	NA

Моделирование инфляции на услуги: тесты Бройша-Пагана и Рамсея

- Тест на гетероскедастичность
- Н0: гетероскедастичность отсутствует

- Тест на наличие пропущенных переменных
- Н0: пропущенные переменные отсутствуют

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	0.697137	Prob. F(18,68)	0.8020
Obs*R-squared	13.55354	Prob. Chi-Square(18)	0.7577
Scaled explained SS	21.89602	Prob. Chi-Square(18)	0.2366

Ramsey RESET Test

Equation: UNTITLED

Specification: Y_S Y_S(-1) Y_S(-2) Y_S(-3) Y_S(-4) Y_S(-5) Y_S(-6) X5^2

X7^(1/2) X7(-1)^(1/2) X7(-2)^(1/2) DIF_X10 DIF_X10(-1) DIF_X10(-2)

DIF_X10(-3) DIF_X10(-4) DIF_X10(-5) DIF_X15 DIF_X15(-1) C

Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	1.033903	67	0.3049
F-statistic	1.068956	(1, 67)	0.3049

Моделирование инфляции на услуги: результаты первичного моделирования

- AIC=2,132
- Adjusted R-squared=0,43
- Гипотеза об отсутствии мультиколлинеарности отвергается
- Гипотеза об отсутствии гетероскедастичности не отвергается
- Гипотеза об отсутствии пропущенных переменных не отвергается

Моделирование инфляции на услуги: модификация модели

- В предыдущей модели присутствовала мультиколлинеарность
- Исключая часть регрессоров с большим VIF, была получена следующая модель

V	Variable	Coefficient	Std. Error	t-Statistic	Prob.
,	C Y_S(-4)	6.488231 -0.251588	3.584330 0.085186	1.810165 -2.953399	0.0741 0.0041
	Y_S(-6) X5^2	-0.235135 -0.000942	0.084948 0.000204	-2.768003 -4.620886	0.0070 0.0000
	X7(-2)^(1/2)	0.378861	0.269697	1.404766	0.1640
	DIF_X10(-5) DIF_X15	-0.122663 -0.296448	0.053056 0.090891	-2.311965 -3.261576	0.0234 0.0016
	DIF_X15(-1)	-0.308132	0.091488	-3.368011	0.0012
	R-squared	0.460121	Mean depend		0.538930
	Adjusted R-squared S.E. of regression	0.412284 0.648642	S.D. depende Akaike info cr		0.846099 2.059577
	Sum squared resid Log likelihood	33.23820 -81.59159	Schwarz crite Hannan-Quin		2.286327 2.150882
	F-statistic	9.618439	Durbin-Watso		1.989599
	Prob(F-statistic)	0.000000			

Моделирование инфляции на услуги: тесты для новой модели

Расчет VIF

Тест на гетероскедастичность

Variance Inflation Factors

Date: 06/03/17 Time: 17:43 Sample: 2009M01 2016M09 Included observations: 87 Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	1.963992	Prob. F(7,79)	0.0705
Obs*R-squared	12.89593	Prob. Chi-Square(7)	0.0747
Scaled explained SS	26.37241	Prob. Chi-Square(7)	0.0004

Variable	Coefficient Variance	Uncentered VIF
C	12.84742	2656.592
Y_S(-4)	0.007257	1.551213
Y_S(-6)	0.007216	1.620193
X5^2	4.15E-08	875.1033
X7(-2)^(1/2)	0.072736	1567.804
DIF_X10(-5)	0.002815	1.055169
DIF_X15	0.008261	1.074158
DIF_X15(-1)	0.008370	1.073284

Тест на пропущенные переменные

Ramsey RESET Test Equation: UNTITLED

Specification: Y_S C Y_S(-4) Y_S(-6) X5^2 X7(-2)^(1/2) DIF_X10(-5)

DIF_X15 DIF_X15(-1)

Omitted Variables: Squares of fitted values

	Value	df	Probability
t-statistic	0.000542	78	0.9996
F-statistic	2.94E-07	(1,78)	0.9996
Likelihood ratio	3.27E-07	1	0.9995

Моделирование инфляции на услуги: результаты для новой модели

- AIC=2,060
- Adjusted R-squared=0,41
- Гипотеза об отсутствии мультиколлинеарности отвергается
- Гипотеза об отсутствии гетероскедастичности не отвергается
- Гипотеза об отсутствии пропущенных переменных не отвергается
- <u>Принимается модифицированная модель (меньшее</u> значение AIC, частично решена проблема мультиколлинеарности)

Интерпретация результатов моделирования инфляции на услуги

- Инфляция отрицательно зависит от своего значения четырех- и шестимесячной давности
- Имеется параболическая зависимость инфляции от прироста цен на с/х товары
- Влияние изменения реальных доходов статистически незначимо, однако мы не исключаем регрессор из модели
- Рост краткосрочных ставок по кредиту населению отрицательно влияет на инфляцию услуг (подстройка происходит за 5 месяцев)
- Увеличение краткосрочной ставки по депозитам отрицательно влияет на инфляцию услуг

Интерпретация результатов моделирования инфляции на услуги

• Уравнение непродовольственной инфляции задается как:

•
$$y_t^s = 6.4 - 0.25 * y_{t-4}^s - 0.24 * y_{t-6}^s - 0.0009 * X5^2 + 0.38 * X7_{t-2}^{\frac{1}{2}} - 0.12 * X10_{t-5} - 0.3 * X15 - 0.3 * X15_{t-1}$$

Спасибо за внимание!

101000, Россия, Москва, Мясницкая ул., д. 20 Тел.: (495) 621-7983, факс: (495) 628-7931 www.hse.ru