LP23: Mécanismes de la conduction électrique dans les solides

Alexandre Fafin

24/05/18

Références	Objectifs	
[1] N. W. Ashcroft and N. D. Mermin. <i>Physique des solides</i> . EDP Sciences, 2002.	 Modèle classique de la conductivité électrique Notion de théorie ds bandes Distinction entre isolant, conducteur et semi-conducteur 	
[2] A. Durupthy. Chimie des matériaux inorganiques. H-prépa, 1996.		
[3] J.Ph. Pérez. <i>Electromagnetisme : fondements et applications</i> . Dunod, 2011.		
[4] MN. Sanz. Physique tout-en-un, PC, PC*. Dunod, 2014.	Table des matières	
Niveau	1 Modèle de Drude[1]	2
	1.1 Hypothèses	2
L2	1.2 Calcul de la conductivité électrique	2
	1.3 Lien entre la loi d'Ohm locale et intégrale[4]	2
Prè-requis	2 Prise en compte d'effets quantiques	2
— Electrostatique	2.1 Limites du modèle de Drude[1]	2
 — Electricité — Théorie cinétique des gazs 	2.2 Modèle de Sommerfeld[1]	2
— Theorie chiefique des gazs — Mécanique	2.3 Bandes d'énergie dans les solides $[2, 3]$	2
— Distribution de Fermi-Dirac	2.4 Cas des semi-conducteurs	2

Introduction

$1 \mod$ èle de Drude[1]

1.1 Hypothèses

Citer les hypothèses du modèle :

- Pas d'intéraction éléctrons/électrons et électrons/ions entre deux collisions → Mouvement rectiligne uniforme (approximation des
- Collisions = évenements instantannés. Drude pensait que les électrons collisionnaient sur les noyaux.
- Probabilité de collision par unité de temps $1/\tau$ avec τ le temps de libre parcours moyen

1.2 Calcul de la conductivité électrique

— Calcul en régime permanent pour arriver à la vitesse limite. On arrive à $\vec{\jmath}=\gamma E$ avec

$$\gamma = \frac{ne^2\tau}{m} \tag{1}$$

— Ordre de grandeur pour un métal. Application au cuivre où $\rho=8,96.10^3$ kg.m⁻³ et M=63,5 g/mol. Le nombre de porteur par unité de volume est :

$$n = \frac{\rho N_A}{M} \tag{2}$$

— Dans le cas des métaux la durée du régime transitoire est négligeable [3]

1.3 Lien entre la loi d'Ohm locale et intégrale[4]

- Loi d'Ohm local : $\vec{j} = \gamma \vec{E}$
- Dans le cas statique, Loi d'Ohm intégrale U = RI avec

$$R = \frac{l}{\gamma S} \tag{}$$

2 Prise en compte d'effets quantiques

2.1 Limites du modèle de Drude[1]

- Le modèle de Drude prévoit une augmentation de la résistance en fonction de la racine de la température. Or expérimentalement on constate de la résistance diminue linéairement avec la température.
- Manip Mesure de la conduction électrique en fonction de la température
- Loi de Wiedemann-Franz : on obtient l'ordre de grandeur mais il y a un facteur 2

2.2 Modèle de Sommerfeld[1]

- Présentation de la statistique de Fermi-Dirac
- Présentation du modèle de Sommerfeld
- Loi de Wiedmann-Franz : bon ordre de grandeur
- Problème : On ne peut pas distinguer isolants et semi-conducteurs d'un métal

2.3 Bandes d'énergie dans les solides[2, 3]

- Amener la notion de bandes d'énergie.
- Discuter du niveau de Fermi pour un isolant et métal (et peut-être semi-conducteur)
- Donner des ordres de grandeurs

2.4 Cas des semi-conducteurs

Conclusion

Drude et Sommerfeld : pas mal pour reproduire certaines propriétés des métaux. Par contre ça ne permet pas de distinguer un isolant d'un métal. Ouvrir sur la supraconductivité, ou un corps à une température inférieur

à sa température critique ne présente aucune résistance électrique. Modèle quantique nécessaire (théorie BCS, paires de cooper).