Universidad Tecnológica Nacional Facultad Regional Buenos Aires

Gestión de Datos

Trabajo Práctico 1º Cuatrimestre 2025

FRBA - Fábrica de sillones

ESTRATEGIA

Grupo: GGDIENTOS N°

Nombre y Apellido	Legajo
Lucas Chiesa	175.728-3
Alan Lionel Figueredo Aguilar	207.712-7
Luz Deniz	177.113-9
Lara Galván	206.425-0

Índice

Atributos Total	3
Atributos Precio	3
Estado	3
Detalle Pedido - Factura - Compra	4
Materiales	4
Cancelación Pedido	4
Localidad y Provincia	5
Primary Keys	
Sillon	5
Sillon_Material	6
Item factura e Item pedido	6
Modelo Bl	
DER	
DER BI	g

Aclaraciones

Atributos Total

Se decidió incluir el atributo "total" en las entidades Pedido, Factura, Envio y Compra ya que consideramos que al almacenar el mismo podemos evitar recalcular constantemente, lo que mejora la eficiencia en las búsquedas.

Hoy en día el costo de almacenamiento es menor al costo de procesamiento por lo que tiene sentido almacenar un dato calculado aunque esto antes fuese considerado una mala práctica.

Atributos Precio

Además de los campos que ya venían de la tabla Maestra, decidimos agregar el precio del material en la tabla Sillon_Material bajo la idea de tener un registro histórico de los precios de los materiales utilizados.

La estrategia de mantener un registro histórico de precios se implementó en varias tablas del sistema. Por ejemplo, en la tabla "Sillon" almacenamos tanto el precio de las medidas como del modelo, mientras que en las tablas "Item_Factura" e "Item_Pedido" guardamos los precios unitarios correspondientes a cada operación.

Estado

Creamos una entidad llamada "Estado" para representar los tres posibles estados de un pedido (pendiente, entregado o cancelado).

Durante el análisis de los datos de la tabla maestra, se observó que el estado "pendiente" no existía en los datos históricos y es necesario para el funcionamiento del sistema. Por lo tanto, además de migrar los

estados existentes, se agregó explícitamente este estado para asegurar que el sistema pueda manejar todos los estados posibles de un pedido.

Detalle Pedido - Factura - Compra

Se decidió identificar el detalle del pedido, detalle de la factura y detalle de la compra como las entidades Item_Pedido, Item_Factura e Item_Compra sucesivamente. De esta manera, rompemos la relación de muchos a muchos y agregamos los atributos correspondientes a esta tabla. También se decidió que cada tabla contenga su propia PK, para mantener un registro de la tabla en sí.

Materiales

Por un lado, necesitamos una tabla Material para la relación con Item_Compra, pero por el otro, necesitamos diferenciar los tipos de material (siendo actualmente Tela, Madera y Relleno) a la hora de armar el sillón, cada uno teniendo sus respectivos atributos. Por eso decidimos utilizar la solución propuesta, con la tabla Material teniendo una PK propia y relacionándose con las tablas Tela, Madera o Relleno con una FK en una de estas tablas, y con la tabla Item_Material de por medio que relaciona Sillon con Material, contando además con la posibilidad de poder agregar más tipos de material en el futuro.

Cancelación Pedido

Se optó por modelar la cancelación de un pedido como una entidad aparte para poder registrar los casos en los que un pedido es cancelado y especificando el motivo, teniendo en cuenta además que su relación con Pedido tiene modalidad opcional.

Al ser de cardinalidad 1 a 1 con Pedido, utilizamos como PK la FK que la relaciona a Pedido.

Localidad y Provincia

Con respecto a la ubicación en general, se decidió por modelar las entidades Localidad y Provincia y no modelar la de Dirección. Las localidades y provincias son valores reutilizables entre muchas sucursales, clientes y proveedores. Al modelarlas, evitamos la redundancia y nos permite actualizar nombres o corregir errores en un solo lugar.

Las direcciones al ser únicas para cada entidad no aportan reutilización alguna.

Además, las localidades están relacionadas con una provincia permitiendo diferenciar distintas localidades con el mismo nombre.

Primary Keys

Se optó por utilizar primary keys numéricas del tipo BIGINT o decimal(18,0). Las claves numéricas ofrecen mejor rendimiento en búsquedas en comparación con las alfanuméricas. Además, en varias tablas decidimos que la PK esté conformada por un solo atributo de este tipo.

Sillon

Dispusimos que el armado de sillon se trate de una tabla principal llamada Sillon que va a estar compuesta por diferentes códigos usados como "plantillas". En este caso, tiene un código para el modelo creado en la tabla Sillon_Modelo y un código para la medida creada en la tabla Medida.

Esta tabla puede contener sillones con el mismo modelo y misma medida pero al ser una tabla que contiene datos históricos se refieren a sillones distintos, por lo que pueden tener distinto precio (Relacionando el sillón, con el ítem pedido y posteriormente con el pedido podemos obtener la fecha del precio de ese sillón).

Sillon_Material

Para obtener los materiales utilizados en el sillón tenemos la entidad Sillon_Material. Inicialmente íbamos a tener 3 atributos en la tabla Sillon y que cada uno se refiera a un material (Tela, Relleno, Madera).

Sin embargo, decidimos crear una entidad en la que podamos tener N materiales asociados a un sillón, haciendo el modelo mucho más escalable. Si en el futuro se quiere agregar otro tipo de material, se debería agregar una entidad nueva que se relacione con la entidad Material y agregar un nuevo tipo de material en la entidad Tipo_Material.

Item factura e Item pedido

A pesar de que las entidades "Item_Factura" e "Item_Pedido" comparten atributos similares, se decidió mantenerlas como estructuras independientes ya que un pedido podría no llegar a facturarse, manteniendo así la integridad de los datos históricos.

Modelo BI

Para el modelo BI hemos hecho las tablas correspondientes a cada una de las 7 dimensiones que pedía el enunciado. Hemos creado 6 tablas de hechos, las cuales utilizan las PK de algunas de las 7 dimensiones anteriormente mencionadas, además de codigo_sucursal de la tabla Sucursal, como PK compuesta para diferenciar sus filas. Esto facilita considerablemente la concreción de consultas hacia esta base de datos. En todas las tablas existen un atributo cantidad y total (salvo en BI_Envios, el atributo cantidad se consigue sumando los atributos bi_envios_cumplidos y bi_envios_no_cumplidos). Además, se crearon

los atributos bi_facturacion_tiempo_fabricacion en la tabla BI_Facturacion y los atributos bi_envios_cumplidos y bi_envios_no_cumplidos de la tabla BI_Envios, así también las tablas de hechos BI_Ventas y BI_Compra_Materiales para facilitar notablemente la realización de alguna vista en particular.

DER

DER BI BI_Facturacion PK bi_facturacion_sucursal BIGINT BIGINT PK/FK bi_facturacion_tiempo PK/FK bi_facturacion_ubicacion BIGINT bi_facturacion_tiempo_fabricacion bi_facturacion_cantidad_facturas INT DECIMAL(38,2) bi_facturacion_total BI_Compra_Materiales bi_compra_materiales_sucursal BIGINT PK/FK bi_compra_materiales_tiempo BIGINT BI_Tiempo BI_Tipo_Material PK/FK bi_compra_materiales_tipo_material BIGINT PK bi_tiempo_codigo BIGINT bi_compra_materiales_cantidad INT PK bi_tipo_material_codigo bi_tiempo_anio INT bi_compra_materiales_total DECIMAL(18,2) bi_tipo_material VARCHAR(255) bi_tiempo_mes DECIMAL(2,0) bi_tiempo_cuatrimestre | DECIMAL(1,0) BI_Compras PK bi_compras_sucursal BIGINT PK/FK bi_compras_tiempo BIGINT bi_compras_cantidad INT DECIMAL(18,2) bi_compras_total Bl_Modelo_Sillon BIGINT → PK | bi_modelo_sillon_codigo BI_Ventas BI_Rango_Etario VARCHAR(255) bi_modelo_sillon PK/FK bi_ventas_tiempo BIGINT PK bi_rango_etario_codigo BIGINT bi_modelo_sillon_descripcion VARCHAR(255) PK/FK bi_ventas_modelo BIGINT VARCHAR(50) bi_rango_etario_detalle DECIMAL(12,2) bi_modelo_sillon_precio PK/FK bi_ventas_ubicacion BIGINT bi_rango_etario_desde INT PK/FK bi_ventas_rango_etario BIGINT INT bi_rango_etario_hasta BIGINT bi_ventas_cantidad bi_ventas_total DECIMAL(38,2) BI_Turno BI_Pedidos PK bi_turno_codigo BIGINT bi_turno_detalle VARCHAR(50) BIGINT PK bi_pedidos_sucursal PK/FK bi_pedidos_turno BIGINT TIME(7) bi_turno_desde PK/FK |bi_pedidos_tiempo BIGINT bi_turno_hasta PK/FK bi_pedidos_estado BIGINT bi_pedidos_cantidad BIGINT DECIMAL(18,2) bi_pedido_total BI_Estado_Pedido PK bi_estado_pedido_codigo BIGINT + BI_Ubicación bi_estado_pedido VARCHAR(255) BI_Envios ⊢ PK bi_ubicacion_codigo BIGINT PK/FK bi_envios_ubicacion BIGINT VARCHAR(255) bi_ubicacion_provincia PK/FK | bi_envios_ubicacion_cliente | BIGINT bi_ubicacion_localidad VARCHAR(255) PK/FK bi_envios_tiempo **BIGINT** DECIMAL(18,2) bi_envios_total

INT

bi_envios_cumplidos

bi_envios_no_cumplidos