Electronique embarquée

Electronique des circuits numériques

Rappels sur le transistor MOS

Complementary Metal Oxide Semiconductor,

Représentation symbolique des transistors MOS

Le transistor NMOS

Régime bloqué:

 $V_{GS} < V_{TN}$ (isolation électrique entre drain et source)

Régime passant:

$$V_{GS} > V_{TN}$$

- si
$$V_{DS} < V_{GS} - V_{TN}$$
 régime ohmique

$$I_{DS} = \beta_N (V_{GS} - V_{TN} - V_{DS}/2) V_{DS}$$

- sl V_{DS} > V_{GS} - V_{TN} régime saturé

$$I_{DS} = \beta_N (V_{GS} - V_{TN})^2 / 2 (V_e \rightarrow \infty)$$

Le transistor PMOS

Régime bloqué:

 $V_{GS} > V_{TP}$ (isolation électrique entre drain et source)

Régime passant:

$$V_{GS} < V_{TP}$$

- si V_{DS} > V_{GS} - V_{TP} régime ohmique

$$I_{DS} = -\beta_P (V_{GS} - V_{TP} - V_{DS}/2) V_{DS}$$

- si V_{DS} < V_{GS} − V_{TP} régime saturé

$$\mu_{\sf ns} \approx 3 \ \mu_{\sf ps}$$

$$\mu_{\text{ns}} \approx 3$$
 μ_{ps} $I_{\text{DS}} = -\beta_{\text{P}} (V_{\text{GS}} - V_{\text{TP}})^2 / 2 (V_{\text{e}} \rightarrow \infty)$

Capacités parasites du transistor MOS

Les capacités parasites influent sur les performances dynamiques des opérateurs

Elles sont de deux sortes:

 la capacité de grille (grille-canal ou grille substrat)

$$C_G \approx W L C_{ox}$$

 les capacités des jonctions source-substrat et drain-substrat

$$C_{SB} \approx C_{DB} \approx W L_j C_j$$

C_j : capacité de jonction par unité de surface

- Association d'un transistor NMOS et d'un transistor PMOS
- La sortie S est isolée électriquement de l'entrée E.
- Étude du fonctionnement en utilisant le modèle "interrupteur" du transistor MOS

Réponse de l'inverseur NMOS à une impulsion

Transistor canal P:

$$E = V_{DD} \Rightarrow V_{GS} = 0 \text{ V} > V_T$$
 => transistor bloqué $I_{DS} = 0$

interrupteur ouvert

Transistor canal N:

 $E = V_{DD} > V_T$ => transistor passant $I_{DS} \neq 0$

interrupteur fermé

'1" logique sur l'entrée de l'inverseur => "0" en sortie

Consommation d'un inverseur CMOS

C_L modélise la charge de l'inverseur

Consommation statique:

$$P_{stat} = 0$$

Consommation dynamique:

$$P_{dyn} = f V_{DD}^2 C_L$$

Caractéristiques temporelles d'un inverseur CMOS

E ______ 5

Sur la sortie:

t_f: temps de descente

t, : temps de montée

Entre E et S:

t_{PLH}: temps de propagation lorsque S passe de 0 (Low) à 1 (High)

t_{pHL}: temps de propagation lorque S passe de 1 à 0

Représentation simplifiée des transistors MOS dans les schémas CMOS

Transistors bipolaires

Quelques points marquants du développement des technologies bipolaires :

- 1974 : utilisation des logiques TTL (Transistor-Transistor Logic) et TTL Schottky (TTL avec diodes Schottky pour augmenter la rapidité) pour des petits montages logiques rapides,
- 1975 : technologie I2L (Integrated Injection Logic) utilisant des transistors NPN à multicollecteurs et présentant une plus forte densité d'intégration que le TTL,
- 1979 : technologie ECL (Emitter Coupled Logic), permettant de réaliser des circuits très rapides.

Le transistor MOS

1966 : début du développement commercial des circuits intégrés MOS,

1974 : apparition de la logique CMOS à faible consommation, qui permet de réaliser des circuits de forte densité d'intégration,

1978-80: mise au point de la technologie HMOS (High Speed CMOS)

Années 90: mise au point de la technologie CMOS SOI (Silicon On Insulator). Insertion d'une couche d'isolant (oxyde de silicium) sous la zone active du substrat,

Les technologies alternatives

Au début des années 70,

Il s'agit d'un transistor à effet de champ à jonction métalsemiconducteur (MESFET) sur substrat en arséniure de gallium ou GaAs.

Fin des années 80, BiCMOS

combinant des opérateurs CMOS et des transistors bipolaires, (vitesse, consommation, et densité d'intégration impossibles à obtenir avec chacune des technologies prise séparément. coût élevé de production

A partir du milieu des années 90, les technologies GaAs et BiCMOS sur silicium ont commencé à céder la place aux circuits **SiGe BiCMOS**

15

Opérateurs CMOS élémentaires : NAND

Fonctions complexes : synthèse au niveau transistor ou au niveau porte

- Deux approches sont possibles pour construire une fonction logique complexe
 - Utilisation d'une bibliothèque de portes élémentaires (INV, NAND, NOR, ...)
 - => pas besoin de connaître la structure des portes
 - Synthèse directe au niveau transistor
 - =>blocs logiques moins encombrants et plus rapides
 - => dépend de l'outil de conception utilisé

Structure générale des opérateurs statiques CMOS

Un seul des réseaux doit être passant

=> même nombre de NMOS et de PMOS

=> structures des 2 réseaux duales

Fonction obtenue sous forme complémentée

 NMOS : transmission d'un 0 logique en sortie lorqu'un 1 est appliqué sur sa grille

 PMOS: transmission d'un 1 logique en sortie lorqu'un 0 est appliqué sur sa grille

 V_{DD}

Structure générale des opérateurs statiques CMOS

- Si f est un complément => synthèse directe
- Sinon, synthèse de f et faire suivre d'un inverseur
- Construction du réseau NMOS
 - placer les transistors N
 - en série pour réaliser les fonctions ET
 - en parallèle pour réaliser les fonctions OU

Construction du réseau PMOS

- placer les transistors P
 - en parallèle pour réaliser les fonctions ET
 - en série pour réaliser les fonctions OU

Opérateurs CMOS à base d'interrupteurs

■ Porte de transfert ou interrupteur MOS

Porte de transfert NMOS

$$E = V_{DD} \Rightarrow S = V_{DD} - V_{TN}$$

 $V_{DD} - V_{TN} V_{DD}$

Opérateurs CMOS à base d'interrupteurs

Porte de transfert PMOS

»
$$C = 1 (V_{DD}) =>$$

»
$$C = 0 (V_{SS}) =>$$

E----- 8

mais

 $E < -V_{TP} => transistor bloqué$

Porte de transfert CMOS

- C = 1 et CB = 0, transistors passants
 => E S
- C = 0 et CB = 1, transistors bloqués => E S

Exemple d'utilisation de l'interrupteur CMOS : les opérateurs trois états

- Si T = 1, S = S'
- Si T = 0, S = Z : état haute impédance (sortie déconnectée)

Exemple d'utilisation d'opérateurs trois états

Structures organisées autour d'un bus

- Possibilité d'accès au bus pour plusieurs unités logiques
- Une seule unité à la fois doit être connectée pour éviter

Opérateurs CMOS à base d'interrupteurs

Performances statiques similaires à celles de l'inverseur

- Points de fonctionnement (V_{SS}, V_{DD}) et (V_{DD}, V_{SS})
- Pas de consommation statique

Performances dynamiques

Pour un opérateur constitué d'une couche logique

$$P_{dyn} = f_S V_{DD}^2 C_L$$

où f_S est la fréquence de commutation de l'opérateur (de sa sortie)

 Pour un opérateur constitué de plusieurs couches logiques ou un circuit complet

$$P_{dyn} = \sum P_i$$

L'avenir des circuits CMOS

Evolution des technologies CMOS

Complexité

Réduction de taille des transistors dans un rapport k^2 tous les 3 ans (k = 1,5)

- => complexité accrue dans un rapport k²
- Vitesse

vitesse accrue dans un rapport compris entre k et k^2

Consommation

Consommation accrue dans un rapport k^2 à k^3 à V_{DD} constant.

- => facteur limitant de la croissance de la densité d'intégration
- => diminution de V_{DD}

L'avenir des circuits CMOS

Technologies commercialement disponibles et à venir

```
    couramment utilisées : CMOS 90 nm/ 65 nm,
    V<sub>DD</sub> ~ 0,8 à 1,1V
    densité d'intégration : 360 Mtr/cm² (ASIC)
```

- prochaine génération (2009): CMOS 50 nm, (μP: f_{max}~ 8 GHZ), V_{DD} ~ 0,8 à 1,0V
 densité d'intégration: 570 Mtr/cm² (ASIC)
- technologies à l'étude : CMOS 5 nm,
 f_{max} > 75 GHz, V_{DD} ~ 0,5 à 0,7V
 => densité d'intégration > 7,2 Gtr/cm² (ASIC)

L'avenir des circuits CMOS

