ENGR 305 – Homework 4 solutions

5.17

$$V_{tn} = 0.4 V$$
 and $k_n = 2mA/V^2$

$$i_D = \frac{1}{2}k_n v_{ov}^2 = 0.05 \text{ mA} = \frac{1}{2} \times 2\text{mA/V}^2 \times v_{ov}^2$$

$$\Rightarrow v_{ov} = 0.22 V \text{ and } v_{DS} \ge 0.22 V$$

$$v_{GS} = 0.4 + 0.22 = 0.62 V$$

If
$$i_D = 200\mu A = 0.2 \ mA = \frac{1}{2} \times 2 \text{mA/V}^2 \times v_{ov}^2$$

$$\Rightarrow v_{ov} = 0.45 V \text{ and } v_{DS} \ge 0.45 V$$

$$v_{GS} = 0.4 + 0.45 = 0.85 V$$

<u>5.44</u>

Since $V_{DG} > 0$, the MOSFET is operating in saturation.

Then,
$$I_D = \frac{1}{2}k_n(V_{GS} - V_t)^2 = \frac{1}{2} \times 4 \, mA/V^2 \times (0.55 \, V - 0.4 \, V)^2 = 0.045 \, \text{mA}$$

$$R_D = \frac{1 - V_D}{I_D} = \frac{(1 - 0.1)V}{0.045 \, mA} = \frac{0.9V}{0.045 \, mA} = 20 \, \text{k}\Omega$$

$$R_S = \frac{-0.55V - (-1V)}{0.045 \, mA} = \frac{0.45 \, V}{0.045 \, mA} = 10 \, k\Omega$$

For I_D to remain unchanged from 0.045 mA, the MOSFET must remain in saturation. This in turn can be achieved by ensuring that V_D does not fall below V_G (which is zero) by more than V_t (0.4 V). At this point, V_D would be equal to $V_{G-}V_t = 0$ V - 0.4 V = -0.4 V. And then

$$1 V - I_D R_{Dmax} = -0.4 V$$
. and $R_{Dmax} = \frac{1.4 V}{0.045 mA} = 31.1 k\Omega$

<u>5.47</u>

$$V_{ov} = V_{GS} - V_t = 1.2 \text{ V} - 0.4 \text{ V} = 0.8 \text{ V}$$

To operate at the edge of saturation, we must have V_D (= V_{DS} here) = V_{OV} = 0.8 V.

Then
$$R_D = \frac{1.2 V - 0.8 V}{0.05 mA} = 8 k\Omega$$