One-Way (Single Factor) ANOVA Table

■ TABLE 3.3

The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	$\boldsymbol{F_0}$
	SS _{Treatments}		SS/dof	
Between treatments	$= n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{})^2$	k - 1	$MS_{\text{Treatments}}$	$F_0 = \frac{MS_{\text{Treatments}}}{MS_E} $
Error (within treatments)	$SS_E = SS_T - SS_{\text{Treatments}}$	N- k	MS_E	Z
_ Total	$SS_{\rm T} = \sum_{i=1}^{K} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{})^2$	<u>N-1</u>		(bi

First = F 1-0, N-1

	R =
$U_{1} = \frac{1}{2} - k \qquad k = 4$	
$J \rightarrow I - N$	
$9.9. 9_{13} = 63, 9_{34} = 67$	
70	_
Yij = M + Zi + Zij	(effects model)
$y_{ij} = \overline{y} + (\overline{y}_{i} - \overline{y}) + (y_{ij} - \overline{y}_{i})$	
$\sum \sum y_{ij}^2 = N \overline{y}^2 + \sum n_i (\overline{y_i} - \overline{y})^2 +$	ZZ (41)-41)
↓ ↓	<i>→</i>
SST SS treatment	SSemo

	<u> </u>	• (
	(2	3	4
j	Stainless Steel	Carbon Steel	Nickel Alloy	High Speed Steel
1	62	63	68	56
2	60	67	66	62
3	63	71	71	60
4	59	64	67	61
5	NaN	65	68	63
6	NaN	66	68	64
7	NaN	NaN	NaN	63
8	NaN	NaN	NaN	59
	N = 4	n ₂ =6	y _{ij}	M4 = 8

jth observation for ith metal

Here, i = 1, 2, 3, 4

(4 levels of variable 'metal')

$65_{+} = \sum \overline{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	j	Stainless Steel	Carbon Steel	Nickel Alloy	High Speed Steel
65 = 2231 = 62 + 60 + + 65 + + 59	1	62 •	63	68	56
24 terms	2	60	67	66	62
24 FeV Ms	3	63	71	71	60
	4	59	64	67	61
= 98644 (def = 24)	5	NaN	65	68	63
	6	NaN	66	68	64
2 2	7	NaN	NaN	NaN	63
SSman = N T = 24 x 64 = 98304 (duf 21)	8	NaN	NaN	NaN	59
$SS_{mean} = N \bar{y}^2 = 24 \times 64 = 98304 (duf_2)$	_		ı	1	
	(y = 64 h		y_{ii}	1=24
		•		Уij	
SSpreatment = ZNi(Vi-y)			i th observat	tion for i th m	etal
SStreatment = > MC91-9)			Horo	i = 1, 2, 3, 4	
			•		
$= 4 (61-64)^{2} + 6 (66-64)^{2} + 6 (68-64)^{2}$			(4 levels of	variable 'me	etal')
=4(61-64)+6(66-69)+6(68-64)					TT -61
+8 (61-68	,2	$y_1 = 6$	9 42 = 6	$\frac{6}{5}$, $\frac{9}{3} = \frac{1}{5}$	<u> </u>
78 (61-68)	• 1		5, Nz=6	
		111 = 4	1 112 = 6	0/ 113 = 6	11400
= 228 (dot = k-1=3)					
	O	R by sh	bra		
$SSemm = 77(4i-4i) = 62-60+\cdots + =$		· · · · · · · · · · · · · · · · · · ·		ST- SM-	Strat = 112

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platforms where it can be accessed by others.

24 tems

j	Stainless Steel	Carbon Steel	Nickel Alloy	High Speed Steel
1	62	63	68	56
2	60	67	66	62
3	63	71	71	60
4	59	64	67	61
5	NaN	65	68	63
6	NaN	66	68	64
7	NaN	NaN	NaN	63
8	NaN	NaN	NaN	59

y_{ij}

jth observation for ith metal Here, i = 1, 2, 3, 4 (4 levels of variable 'metal')

j	Stainless Steel	Carbon Steel	Nickel Alloy	High Speed Steel
1	62	63	68	56
2	60	67	66	62
3	63	71	71	60
4	59	64	67	61
5	NaN	65	68	63
6	NaN	66	68	64
7	NaN	NaN	NaN	63
8	NaN	NaN	NaN	59

■ TABLE 3.3

The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Source of Variation	Sum of Squares	Degrees of Mean Freedom Squar		
Between treatments	228	3 2 28 3 76	New = 76 =	13.57
Error (within treatments)	11 2	N-L = 20 = 5	.4	lowpone with
Total	98 Ch 4	24. ~		
Mean	9830h	1.		h-a,3,20
				F0.95,3,20

Summary: Tests on Variances

■ TABLE 2.8

Tests on Variances of Normal Distributions

Hypothesis	Test Statistic	Fixed Significance Level Criteria for Rejection
H_0 : $\sigma^2 = \sigma_0^2$ H_1 : $\sigma^2 \neq \sigma_0^2$		$\chi_0^2 > \chi_{\alpha/2, n-1}^2$ or $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$
H_0 : $\sigma^2 = \sigma_0^2$ H_1 : $\sigma^2 < \sigma_0^2$	$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi_0^2 < \chi_{1-\alpha,n-1}^2$
H_0 : $\sigma^2 = \sigma_0^2$ H_1 : $\sigma^2 > \sigma_0^2$		$\chi_0^2 > \chi_{\alpha,n-1}^2$
H_0 : $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$	$F_0 = \frac{S_1^2}{S_2^2}$	$F_0 > F_{\alpha/2, n_1 - 1, n_2 - 1}$ or $F_0 < F_{1 - \alpha/2, n_1 - 1, n_2 - 1}$
$H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 < \sigma_2^2$	$F_0 = \frac{S_2^2}{S_1^2}$	$F_0 > F_{\alpha, n_2 - 1, n_1 - 1}$
$H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 > \sigma_2^2$	$F_0 = \frac{S_1^2}{S_2^2}$	$F_0 > F_{\alpha,n_1,n_2-1} + f_1 - \alpha,n_1-1,n_2-1$

The engineer is interested in determining if the RF power setting affects the etch rate, and she has run a completely randomized experiment with four levels of RF power and five replicates (see Table 1).

We will use the analysis of variance to test, H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

against the alternative, H_1 : Some means are different (OR at least one mean is different)

RF Power		Observed Etch Rate (Å/min)					
(W)	1	2	3	4	5		
160	575 —	<u> 542 — </u>	530	539	- 570		
180	565	593	590	579	610		
200	600	651	610	637	629		
220	725	700	715	685	710		

$$k=4$$
, $N=20$, $n!=5$

$$SS_{T} = \sum y_{1j}^{2} = 7704511$$

$$SS_{M} = N \overline{y}^{2} = 20 \times 617.75 = \frac{y_{1} = 551.2}{y_{1} = 551.2} = \frac{9}{160} = \frac{575.542}{200} = \frac{530.539}{500.579} = \frac{570}{610}$$

$$SS_{TWAITMENT} = \sum N'_{1} (\overline{y}_{1}^{2} - \overline{y}_{1}^{2}) = \frac{y_{1} = 551.2}{y_{2} = 567.4} = \frac{160}{200} = \frac{575.542}{600} = \frac{530.539}{590.579} = \frac{570}{610}$$

$$= 5 \times (551.2 - 617.72) + \frac{y_{1} = 707}{y_{2} = 707} = \frac{7}{150} = \frac{7$$

$$SSemv = (575 - 551.2) + (542 - 557.2)^{2} + ... = SS_{7} - SS_{m} - SS_{meatment}$$

$$+ (565 - 587.4)^{2} + (593 - 587.4)^{2} + ...$$

	S <i>S</i>	DOF	MS	Fo	-
SST	7704511	20	/		-
SSm	7632301.25	, .			
		h-1		7 44	_
SSheat	668 70:55	= 3,	22290.1	MStree = 66.80	
SSem	5339.70	16 /	333.08		

RF Power		Observed Etch Rate (Å/min)					
(W)	1	2	3	4	5	6	
160	(575)	542	530	(539) -	570	ø	
180	565	593	590	579	610	,	
200	600	651	610	637	629	•	
220	725	700	715	685	710		

ANOVA: Residuals

Residuals are the difference between what is ACTUALLY observed (Experiment) vs. what is PREDICTED
from a model that is used to adequately describe the data

$$\epsilon_{ij} = y_{ij} - \widetilde{y_{ij}}$$

• In One-way ANOVA, what is the model?

$$\underline{y_{ij}} = \mu + \tau_i + \widehat{\epsilon_{ij}}$$

What is the prediction?

$$\widetilde{y_{ij}} = \mu + \tau_i$$
 "Effects Model"

 μ = grand mean

 $\tau_{\rm j}$ = treatment mean

 $\varepsilon_{ij} = \text{error}$

Remember, we had assumed that the residuals (or errors) are random and normally distributed.

So is that assumption valid IF we use the particular model? -> Model Adequacy Check!

$$\varepsilon_{ij} = y_{ij} - \frac{\mu - \tau_{i}}{U} = y_{ij}$$

ANOVA: Model Adequacy Checking

Normality Assumption can be checked using several methods

- A dot diagram
- Histogram of residuals
- Normal probability plot

Etch Rate Data and Residuals from Example 3.1^a

		O	Observations (j)				
Power (w)	1	2	3	4	5	$\hat{y}_{ij} = \bar{y}_i.$	
	23.8	-9.2	-21.2	-12.2	18.8		·
160	√575 (13)	542 (14)	530 (8)	539 (5)	570 (4)	551.2	V 9,
	-22.4	5.6	2.6	-8.4	22.6		•
180	565 (18)	593 (9)	590 (6)	579 (16)	610 (17)	587.4	42
	(-25.4)	25.6	-15.4	11.6	3.6		
200	600 (7)	651 (19)	(610)(10)	637 (20)	→ 629 (1)	625.4	= 43
	18.0	-7.0	8.0	-22.0	3.0		
220	ر25 (2) ھے	700 (3)	715 (15)	685 (11)	710 (12)	707.0	54

^aThe residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made.

Model Adequacy Checking

term (may be interaction term) is

needed in the model.

Model Adequacy Checking

Dot Diagram of Residuals (Errors) vs Model Predictions

If the model is adequate and the assumptions are satisfied, the errors or residuals, ϵ_{ij} , should be INDEPENDENT of observations

ANOVA: Model Adequacy Checking

Etch Rate Data and Residuals from Example 3.1a

	Observations (j)					
Power (w)	1	2	3	4	5	$\hat{y}_{ij} = \bar{y}_i.$
	23.8	-9.2	-21.2	-12.2	18.8	
160	575 (13)	542 (14)	530 (8)	539 (5)	570 (4)	551.2
	-22.4	5.6	2.6	-8.4	22.6	
180	565 (18)	593 (9)	590 (6)	579 (16)	610 (17)	587.4
	(-25.4)	25.6	-15.4	11.6	3.6	
200	600 (7)	651 (19)	610 (10)	637 (20)	629 (1)	625.4
	18.0	-7.0	8.0	-22.0	3.0	
220	725 (2)	700 (3)	715 (15)	685 (11)	710 (12)	707.0

^aThe residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made.

A rough check for outliers may be made by examining the standardized residuals

$$d_{ij} = \frac{e_{ij}}{\sqrt{MS_E}}$$
 (3.18)

If the errors ϵ_{ij} are $N(0, \sigma^2)$, the standardized residuals should be approximately normal with mean zero and unit variance. Thus, about 68 percent of the standardized residuals should fall within the limits ± 1 , about 95 percent of them should fall within ± 2 , and virtually all of them should fall within ± 3 . A residual bigger than 3 or 4 standard deviations from zero is a potential outlier.

For the tensile strength data of Example 3.1, the normal probability plot gives no indication of outliers. Furthermore, the largest standardized residual is

$$d_1 = \frac{e_1}{\sqrt{MS_E}} = \frac{25.6}{\sqrt{333.70}} = \frac{25.6}{18.27} = 1.40$$

NOTE: You do NOT have permission to share this file or any c which should cause no concern.

e accessed by others.