Can Image Enhancement Help the Reasoning for Vision-Language Models?

Zhiyu Xue, Yihao Wu

Background: Vision-Language Models (VLMs)

Closed Source VLMs

Open Source VLMs

GPT-4 [2]

MiniCPM-V

LLaVA [4]

Flamingo [5]

MiniGPT4 [6]

InstructBLIP [7]

MiniCPM [8]

- 1. Bordes, Florian, et al. "An Introduction to Vision-Language Modeling." arXiv preprint arXiv:2405.17247 (2024).
- 2. https://cdn.openai.com/papers/GPTV System Card.pdf GPT-4V System Card
- 3. https://deepmind.google/technologies/gem Gemeni
- 4. Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2024).
- 5. Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." Advances in neural information processing systems (2022)
- 6. Zhu, Deyao, et al. "Minigpt-4: Enhancing vision-language understanding with advanced large language models." arXiv preprint arXiv:2304.10592 (2023).
- 7. Dai, Wenliang, et al. "Instructblip: Towards general-purpose vision-language models with instruction tuning." Advances in Neural Information Processing Systems 36 (2024).
- 8. https://github.com/OpenBMB/MiniCPM-V, MiniCPM

Background: Open Source VLMs

Background: Visual Question Answering (VQA)

It seems that GPT4 is super excellent at VQA, even for some complicated tasks.

However, there are still many failure cases that are easy to human.

Background: MMVP Baseline

Step 1

Finding CLIP-blind pairs.

Discover image pairs that are proximate in CLIP feature space but distant in DINOv2 feature space.

Step 2

Spotting the difference between two images.

For a CLIP-blind pair, a human annotator attempts to spot the visual differences and formulates questions.

Formulating questions and options for both images.

Where is the yellow animal's head lying in this image?
(a) Floor (b) Carpet

Step 3

Benchmarking multimodal LLMs.

Evaluate multimodal LLMs using a CLIP-blind image pair and its associated question.

Where is the yellow animal's head lying in this image?
(a) Floor (b) Carpet

The model receives a score only when **both** predictions for the CLIP-blind pair are correct.

[1] Tong, Shengbang, et al. "Eyes wide shut? exploring the visual shortcomings of multimodal Ilms." arXiv preprint arXiv:2401.06209 (2024).

Background: MMVP Baseline

Is the dog facing left or right from the In this image, how many eyes can you see on the animal? camera's perspective? (a) Left (b) Right (a) 1 (b) 2 (b) (a) (a) (b) × (a) (b) (a) (b) × (b) (b) (b) (b) x

MMVP Baseline[1]

Background: MMVP Baseline

Background: Image Enhancement by Traditional Digital Image

Processing Methods

Original Capybara

Sobel Detector

Canny Detector

Thresholding

Active Contour Tracing

Potential Benefits of Using Traditional Image

•Enhancing Image Contrast and Details:

Highlighting key areas of the image, easier for the model to detect and recognize

•Multi-Scale Analysis:

Processing of images at different scales, extracting multi-level information, highly beneficial for understanding complex scenes

•Improving Image Segmentation:

Enabling the model to more precisely analyze and process the image content, thereby improving the performance

process_image(input_image, method)

This function provides a series of image processing algorithms.

Calling different algorithms as needed and pass the corresponding parameters when calling.

Algorithm Evaluation

- Dataset: BSDS300 (Berkeley Segmentation Dataset and Benchmark)
 Widely used for evaluating image processing algorithms, especially for edge detection and segmentation.
- Ideal for evaluating image processing algorithms due to its versatility, high quality annotations, standard evaluation benchmarks, and widespread use
- 100 images in test set are used

Test Results

Hough transform

Performs excellently across all performance metrics Highly suitable for scenarios requiring precise edge detection.

Active Contour

Best performance, achieving top results in almost all metrics longer processing time

Algorithm	Precision	Recall	F1 Score	Processing Time (s)
Active_contour	0.995647	0.994959	0.99747	1.400346
Canny	0.237822	0.149056	0.155135	0.000999
Hough	0.984124	0.942315	0.969973	0.007831
Marr_hildreth	0.261623	0.636124	0.360671	0.164979
Sobel	0.379839	0.023172	0.042099	0.003503
Threshold_region	0.280154	0.998114	0.428306	0.002500

Canny algorithm

It has a significant advantage in speed, although its precision and F1 score are not as high as Hough and Active Contour. It may be the better choice for real-time processing applications.

Sobel and Threshold

Average performance in precision and F1 score but have faster processing speeds, making them suitable for quick preliminary analysis.

Test Results

Our Idea

Motivation: Enhance the visual features of the input image may boost the reasoning ability of VLMs

Results

	and other all the annual	11		anna de Balanda	there also be also as a size of	
	original image	sobel	canny	marr_hildreth	threshold_region	active_contour
LLaVANeX-Mixtral-7B	38.00%	33.33%	33.33%	22.00%	35.33%	37.33%
LLaVA-LLaMA2-7B	14.66%	13.33%	13.33%	12.00%	13.33%	12.66%
LLaVA-LLaMA2-13B	20.66%	21.33%	22.66%	18.66%	19.33%	20.66%
MiniCPM-LLaMA3-7B	34.66%	26.00%	26.66%	12.00%	24.66%	28.66%
GPT4	42.67%	X	X	X	40.67%	38.00%

Random Guess: 25%

Blend Factor

Results for Different Blend Factors

LLaVANeX-Mixtral-7B	0 (original image)	0.2	0.4	0.6	0.8	1
canny	38.00%	31.33%	30.66%	29.33%	23.33%	16.00%
sobel	38.00%	38.00%	36.00%	30.00%	23.33%	15.33%
threshold_region	38.00%	38.00%	40.00%	34.66%	28.66%	15.33%
active_contour	38.00%	35.33%	36.66%	36.66%	38.00%	38.00%

Credits

Yihao Wu:

- Image processing algorithm design, coding
- Testing, benchmarking
- Test results analyzation

Zhiyu Xue:

- Implement VLM models
- Evaluation pipeline on MMVP with image enhancement

Thank you for Listening!