Arithmetically Cohen-Macaulay Curves cut out by Quadrics

Sheldon Katz
Department of Mathematics
Oklahoma State University
Stillwater, OK 74078

The following question was raised by M. Stillman.

Main Question: Let $C \subset \mathbf{P}^r = \mathbf{CP}^r$ be a smooth arithmetically Cohen-Macaulay curve which is cut out scheme theoretically by quadrics. Is the homogeneous ideal of C necessarily cut out by quadrics?

In [4], it was shown that the question has an affirmative answer if $r \leq 5$. The purpose of this note is to show that the question has a negative answer (there is a counterexample with r = 7).

It is a pleasure to thank D. Eisenbud, M. Stillman, and C. Walter for helpful conversations.

1 Homogeneous and Scheme-Theoretic Generation by Quadrics

Let X be a projective variety. It is often of interest to know whether or not the homogeneous ideal of X can be generated by quadrics, e.g. if X is a general canonical curve. In such a case, X is cut out scheme-theoretically by quadrics as well. It is usually easier to verify the scheme-theoretic statement—this amounts to ignoring the vertex of the affine cone over X.

Problem: Let $C \subset \mathbf{P}^r = \mathbf{CP}^r$ be a smooth curve which is cut out scheme theoretically by quadrics. Is the homogeneous ideal of C necessarily cut out by quadrics?

In [4], this problem was investigated. The answer is a resounding <u>no</u>. A counterexample was found with r = 5. However, positive results were found. The problem has an affirmative answer for curves on scrolls, all curves with

 $r \leq 4$, and arithmetically Cohen-Macaulay curves which lie on projectively normal K3 surfaces cut out by quadrics (this includes all arithmetically C-M curves with r=5). This leads to a more precise question, which we could not answer:

Question: Let $C \subset \mathbf{P}^r = \mathbf{CP}^r$ be a smooth arithmetically Cohen-Macaulay curve which is cut out scheme theoretically by quadrics. Is the homogeneous ideal of C necessarily cut out by quadrics?

It turns out that this question also has a negative answer.

Proposition 1 Let $C \subset \mathbf{P}^7$ be a general degree 19 embedding of a general genus 12 curve over an algebraically closed field of characteristic 0. Then C is smooth and arithmetically Cohen-Macaulay, C is cut out scheme-theoretically by quadrics, and the homogeneous ideal of C is not cut out by quadrics.

2 Candidates for a Counterexample

Let $C \subset \mathbf{P}^r$ be an arithmetically Cohen-Macaulay curve of degree d and genus g. Assume in addition that $\mathcal{O}_C(1)$ is non-special, i.e. $H^1(\mathcal{O}_C(1)) = 0$. Then d = g + r.

It turns out that for certain values of g and r, the homogeneous ideal of such a curve C cannot be cut out by quadrics, for simple dimension reasons. Let I denote the ideal sheaf of C. Then if

(1)
$$(r+1)h^0(I(2)) < h^0(I(3)),$$

the natural map

$$H^0(I(2)) \otimes H^0(\mathcal{O}_{\mathbf{P}^r}(1)) \to H^0(I(3))$$

cannot be surjective, so that the homogeneous ideal of C cannot be generated by quadrics. Using Riemann-Roch, (1) becomes

$$(2) g > \frac{r(r-2)}{3}.$$

On the other hand, if we want C to be scheme-theoretically cut out by quadrics, then we must have enough quadrics, i.e.

$$\binom{r}{2} - g \ge r - 1.$$

Equality holds if and only if C is a complete intersection of r-1 quadrics; but in this case the homogeneous ideal is cut out by quadrics as well. This can be improved slightly: in [4, Cor. 2.5] it was shown that if C is cut out scheme theoretically by r quadrics, then necessarily

(3)
$$g = (r-1)d/2 + 1 - 2^{r-1}.$$

So if (3) does not hold, then

$$(4) g \le \frac{r^2 - 3r - 2}{2}$$

There are no counterexamples to the main question for $r \leq 5$ [4]. Suppose that there is a non-special counterexample with r = 6. Then $g \geq 9$ by (2). Since (4) gives $g \leq 8$, it follows that (3) holds, and g = 9. But then d = 15, and a contradiction is reached.

Turning next to r = 7, (2) gives $g \ge 12$, and (4) gives $g \le 13$. In the following section, we show that in fact the *general* curve of degree 19 and genus 12 in \mathbf{P}^7 is a counterexample.

3 The counterexample

Pick 22 general points $p_1, p_2, p_3, q_1, \ldots, q_7, r_1, \ldots, r_{12}$ in \mathbf{P}^2 . Let C' be a general plane curve of degree 9 passing through the p_i with multiplicity 3, through the q_i with multiplicity 2, and simply through the r_i . The linear system |L| of degree 7 curves passing doubly through the p_i and simply through the q_i and r_i maps C' birationally to a smooth curve C of degree 19 and arithmetic genus 12 in P^7 .

It is a simple matter to use MACAULAY [3] to construct such a curve. In describing the calculation, I will informally say that a general curve has a certain property, when I mean that the property is satisfied for an example curve constructed using MACAULAY's pseudo-random number generator. In fact, I repeated the construction several times with different pseudo-random coefficients, and the properties mentioned below held in each instance. Thus, as expected, a "general" curve has been constructed.

MACAULAY's pseudo-random number generator is used to construct 22 "general" points in $\mathbf{P^2}_{\mathbf{F_{31991}}}$, and from this the curve C' (actually, there is no harm in supposing that the p_i are (1,0,0),(0,1,0),(0,0,1), to shorten computations). By calculating the Jacobian of C', it is checked that the singular scheme of C' has degree 19 as expected (triple points count at least 4 times). Hence C' has the expected geometric genus 12. The equations of the image curve C can then be explicitly calculated. C is cut out ideal theoretically by 9 independent quadrics and 2 independent cubics, and has Hilbert function $(1+6t+12t^2)(1-t)^{-2}$. In particular C has arithmetic genus 12; being the image of the normalization of C' by the base point free system |L| on the blowup of $\mathbf{P^2}$, it follows that C is smooth. Let $\tilde{C} \subset \mathbf{P^2}$ be the scheme cut out by the 9 quadrics alone. Via MACAULAY, \tilde{C} has degree 19 and arithmetic genus 12. It follows easily that $C = \tilde{C}$, i.e. C is cut out scheme-theoretically by quadrics.

Next, to see that C is arithmetically Cohen-Macaulay, note that C is non-special since the projective dimension of the embedding system is 7, is linearly normal by construction, and is quadratically normal by Riemann-Roch and $h^0(I_C(2)) = 9$ found by Macaulay. This suffices to show that C is arithmetically Cohen-Macaulay by [1, P. 222] or the argument in the proof of Theorem 1.2.7 in [8].

Proof of Proposition 1: The key point is to show that the conditions "arithmetically Cohen-Macaulay" and "scheme-theoretically cut out by quadrics" are dense.

A curve is arithmetically Cohen-Macaulay if and only if it is projectively normal. So C is arithmetically Cohen-Macaulay if and only if $H^1(I_C(n)) = 0$ for all $n \geq 0$, where I_C is the ideal sheaf of C. By [7], $H^1(I_C(n)) = 0$ for all $n \geq 13$, so there are only finitely many cohomology groups that are required to vanish in addition. By upper semicontinuity of $h^1(I_C(n)) = \dim H^1(I_C(n))$, this is a Zariski open condition in the Hilbert scheme.

As to the condition of being scheme-theoretically cut out by quadrics, we may restrict to considering curves which are arithmetically Cohen-Macaulay. Let V be the 9 dimensional space of quadrics containing C. Consider the maps

(5)
$$V \otimes H^0(\mathcal{O}_{\mathbf{P}^7}(k)) \to H^0(I_C(k+2))$$

V cuts out C scheme-theoretically if and only if (5) is surjective for some

 $k \ge 12$ (since C is 14-regular by [7]; a smaller bound for effective k can be given if desired). This is again an open condition.

Finally, let $\operatorname{Hilb}_{19n-11}^0$ be the subset of the Hilbert scheme parametrizing smooth, irreducible curves in \mathbf{P}^7 of degree 19 and genus 12. It is open in the Hilbert scheme by [9, P. 99]. $\operatorname{Hilb}_{19n-11}^0$ is defined over Spec \mathbf{Z} and is irreducible (its geometric fibers are equidimensional and irreducible; this follows from the irreducibility of \mathcal{M}_{12} in arbitrary characteristic [5], and the non-speciality of |L|).

Hence the set of smooth arithmetically Cohen-Macaulay curves scheme-theoretically cut out by quadrics is non-empty and open, hence dense, in $\operatorname{Hilb}_{19n-11}^0$. This completes the proof of Proposition 1.

QED

It seems appropriate to conclude with some related questions.

In [1], [6, §3], it was proven that a general linear system of degree $d \ge [(3g+4)/2]$ on a curve C of genus g embeds C as an arithmetically Cohen-Macaulay curve. Rather than looking for a bound for all curves, instead one can ask:

Problem: Find the smallest possible d(g) such that for all $d \ge d(g)$, a general curve of genus g admits a degree d complete embedding which is arithmetically Cohen-Macaulay.

Remark. Suppose that $d \geq (2g+1+\sqrt{8g+1})/2$. Then the general degree d embedding of a general curve of genus g is arithmetically Cohen-Macaulay [2]. This bound is in fact sharp for non-special embeddings. The inequality is just the solution of the inequality $h^0(\mathcal{O}_{\mathbf{P}^r}(2)) \geq h^0(\mathcal{O}_C(2))$ for a general non-special embedding.

Similarly, one can ask

Problem: Find the smallest possible d'(g) such that a general degree d embedding of a general curve of genus g is scheme theoretically cut out by quadrics if $d \geq d'(g)$.

By work of Green and Lazarsfeld [8, Prop. 2.4.2], $d'(g) \leq [(3g+6)/2]$, and Proposition 1 shows that this is not sharp.

Question: Is Proposition 1 true without restriction on the characteristic? Is there a counterexample to the main question with r = 6?

References

- [1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris. Geometry of Algebraic Curves, Vol I, Springer 1985.
- [2] E. Ballico and Ph. Ellia. On postulation of curves: Embeddings by complete linear series. Arch. Math. **43** (1984) 244–249.
- [3] D. Bayer and M. Stillman. Macaulay, a computer algebra system. Available free from the authors for the Macintosh, VAX, SUN, and many other computers (1989) (with scripts by D. Eisenbud and M. Stillman).
- [4] L. Ein, D. Eisenbud, and S. Katz. Varieties cut out by quadrics: Schemetheoretic versus homogeneous generation of ideals. In: Algebraic Geometry, Sundance 1986, SLN 1311.
- [5] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Publ. Math. IHES **36** (1969), 75–110.
- [6] M. Green and R. Lazarsfeld. On the projective normality of complete linear series on an algebraic curve. Inv. Math. 83 (1986) 73–90.
- [7] L. Gruson, R. Lazarsfeld, and C. Peskine. On a theorem of Castelnuovo, and the equations defining space curves. Inv. math. **72** (1983) 491–506.
- [8] R. Lazarsfeld. A sampling of vector bundle techniques in the study of linear series. Informal note for lectures at ICTP College on Riemann Surfaces, Trieste, December 1987.
- [9] D. Mumford. Geometric Invariant Theory. Springer-Verlag, Heidelberg-Berlin-New York, 1965.