1. Ramesh's basic salary is input, his dearness allowance is 40% of basic salary, and house rent allowance is 20% of basic salary.

```
PYTHON
                      \mathbf{C}
                                                                          JAVA
#include <stdio.h>
                                                  import java.util.Scanner;
                                                                                                            # Input basic salary
                                                                                                            basic salary = float(input("Enter Ramesh's basic
int main() {
                                                  public class SalaryCalculation {
                                                                                                             salary: "))
  float basic salary, da, hra, gross salary;
                                                    public static void main(String[] args) {
                                                      Scanner scanner = new Scanner(System.in);
                                                                                                            # Calculate DA and HRA
  // Input basic salary
                                                                                                            da = 0.4 * basic salary
                                                                                                            hra = 0.2 * basic_salary
  printf("Enter Ramesh's basic salary: ");
                                                      // Input basic salary
                                                      System.out.print("Enter Ramesh's basic salary: ");
  scanf("%f", &basic_salary);
                                                       double basicSalary = scanner.nextDouble();
                                                                                                            # Calculate gross salary
                                                                                                            gross\_salary = basic\_salary + da + hra
  // Calculate DA and HRA
  da = 0.4 * basic salary;
                                                      // Calculate DA and HRA
  hra = 0.2 * basic salary;
                                                      double da = 0.4 * basicSalarv:
                                                                                                            # Output results
                                                                                                            print(f"Dearness Allowance: {da:.2f}")
                                                       double hra = 0.2 * basicSalary;
                                                                                                            print(f"House Rent Allowance: {hra:.2f}")
  // Calculate gross salary
  gross salary = basic salary + da + hra;
                                                                                                            print(f"Gross Salary: {gross_salary:.2f}")
                                                      // Calculate gross salary
                                                      double grossSalary = basicSalary + da + hra;
  // Output results
printf("Dearness Allowance: %.2f\n", da);
                                                      // Output results
printf("House Rent Allowance: %.2f\n", hra);
                                                    System.out.printf("Dearness Allowance: %.2f\n", da);
  printf("Gross Salary: %.2f\n", gross_salary);
                                                 System.out.printf("House Rent Allowance: %.2f\n", hra);
                                                      System.out.printf("Gross Salary: %.2f\n",
                                                 grossSalary);
  return 0;
                                                      scanner.close();
    1. Time Complexity:
             o Calculations (DA, HRA, Gross Salary) involve constant-time operations: O(1).
```

- \circ Input and output operations are also O(1).
- **Overall Time Complexity: O(1).**

2. Space Complexity:

o Variables used: basic salary, da, hra, gross salary (constant memory).

Overall Space Complexity: O(1).

Each program has constant time and space complexity since the operations and memory usage do not scale with input size.

Why %.2f is Used

- 1. **%f**:
- The %f format specifier outputs floating-point numbers by default with six digits after the decimal point (e.g., 123.456789).
- o If you use %f, it will display the result with unnecessary precision, which may not look neat or practical for salary calculations.
- 2. **%.2f**:
 - The .2 part specifies that only two decimal places should be displayed.
 - o It is commonly used in financial or practical applications to show currency or measurements, as more than two decimal places are usually not meaningful.

Example Without and With %.2f

Let's assume da = 123.456789.

Using %f:

```
printf("%f\n", da);
```

Output:

123.456789

• Using %.2f:

```
arduino printf("%.2f\n", da);
```

Output:

123.46

The value is rounded to two decimal places for better readability.

If you do not use %.2f but only %f, the output will include six decimal places by default, which is generally less desirable for formatted financial results.

what if use give %.3f..

If you use %.3f instead of %.2f, the output will display **three digits after the decimal point** instead of two. This simply changes the level of precision for the floating-point value being displayed.

Example: Using %.3f

Let's assume a value of 123.456789.

```
printf("%.3f\n", 123.456789);
```

• **Output**: 123.457

Explanation

- 1. The .3 specifies that the number should be rounded to **three decimal places**.
- 2. If the number has more than three decimal places, the value will be **rounded**:
 - o Example: 123.456789 becomes 123.457.
- 3. If the number has fewer than three decimal places, zeros will be appended to ensure exactly three decimal places:
 - o Example: 123.4 becomes 123.400.

Comparison Between %.2f and %.3f

Specifier Input Value Output

%f	123.456789	123.456789
%.2f	123.456789	123.46
%.3f	123.456789	123.457
%.3f	123.4	123.400

When to Use %.3f

- You would use %.3f when higher precision is necessary, such as in scientific calculations or scenarios where three decimal places are meaningful.
- In the given salary problem, two decimal places (%.2f) are more practical, but you can choose %.3f if you want to display the results with three decimal places for added precision.

2. The distance between two cities (in km.) is input. Program to convert and print this distance in meters, feet, inches and centimeters

C	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	# Input distance in kilometers
		distance_km = float(input("Enter the distance
int main() {	public class DistanceConverter {	between two cities (in km): "))
float distance_km, distance_m, distance_ft,	<pre>public static void main(String[] args) {</pre>	
distance_in, distance_cm;	Scanner scanner = new Scanner(System.in);	# Convert to other units
		distance_m = distance_km * 1000
// Input distance in kilometers	// Input distance in kilometers	# Meters
printf("Enter the distance between two cities	System.out.print("Enter the distance between two	distance_cm = distance_m * 100
(in km): ");	cities (in km): ");	# Centimeters
scanf("%f", &distance_km);	double distanceKm = scanner.nextDouble();	distance_ft = distance_m * 3.28084
_ //		# Feet
// Convert to other units	// Convert to other units	distance_in = distance_ft * 12 # Inches
distance_m = distance_km * 1000;	double distanceM = distanceKm * 1000;	
// Meters	// Meters	# Print results
distance_cm = distance_m * 100;	double distanceCm = distanceM * 100;	print(f"Distance in meters: {distance_m:.2f} m")
// Centimeters	// Centimeters	print(f"Distance in centimeters:
distance_ft = distance_m * 3.28084;	double distanceFt = distanceM * 3.28084;	{distance_cm:.2f} cm")
// Feet	// Feet	print(f"Distance in feet: {distance_ft:.2f} ft")
distance_in = distance_ft * 12;	double distanceIn = distanceFt * 12;	print(f"Distance in inches: {distance_in:.2f} in")
// Inches	// Inches	princ(1 Bistance in mones: (distance_ini21) in)
, menes	There's	
// Print results	// Print results	
printf("Distance in meters: %.2f m\n",	System.out.printf("Distance in meters: %.2f m\n",	
distance_m);	distanceM);	
printf("Distance in centimeters: %.2f cm\n",	System.out.printf("Distance in centimeters: %.2f	
distance_cm);	cm\n", distanceCm);	
printf("Distance in feet: %.2f ft\n",	System.out.printf("Distance in feet: %.2f ft\n",	
distance_ft);	distanceFt);	
printf("Distance in inches: %.2f in\n",	System.out.printf("Distance in inches: %.2f in\n",	
distance_in);	distanceIn);	
G1564120_111/,	distanceni),	
return 0;	scanner.close();	
}	}	
,	}	
]]	L

Time Complexity

- 1. **Input Operation:** Reading the distance in kilometers takes O(1).
- 2. Conversion Calculations: Each conversion (meters, centimeters, feet, inches) involves simple arithmetic operations, each taking O(1). There are 4 conversions, so this part is also O(1).
- 3. Output Operations: Printing the results involves constant-time operations, O(1). Overall Time Complexity: O(1).

Space Complexity

- 1. The program uses variables to store:
 - o The input (distance_km).
 - o Converted distances (distance_m, distance_cm, distance_ft, distance_in).
- 2. These are constant-sized variables, and no additional data structures are used. Overall Space Complexity: O(1).