PRAKTIKUM ALJABAR MATRIKS

PERTEMUAN 9

Kombinasi Linear

Sebuah vektor \underline{W} disebut kombinasi linear dari vektor \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_k pada V jika \underline{W} dituliskan dalam bentuk:

$$W = c_1 v_1 + c_2 v_2 + + c_K v_K$$

dimana c_1, c_2, \dots, c_k suatu skalar bilangan riil

Contoh Soal:

1. Periksa apakah $\mathbf{w} = \begin{pmatrix} -4 \\ 5 \\ 4 \end{pmatrix}$ merupakan kombinasi linear dari $\mathbf{v_1} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ dan $\mathbf{v_2} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$

Pembahasan:

$$\frac{\mathbf{W} = c_1 \mathbf{V}_1 + c_2 \mathbf{V}_2}{\begin{pmatrix} -4 \\ 5 \\ 4 \end{pmatrix} = c_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}}$$
$$\begin{pmatrix} -4 \\ 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 2c_1 - c_2 \\ c_1 + 3c_2 \\ 2c_2 \end{pmatrix}$$
$$c_2 = 2$$
$$-4 = 2c_1 - c_2$$
$$-2 = 2c_1$$

$$-2 = 2c_1$$

 $c_1 = -1$

Karena $c_1 = -1$ dan $c_2 = 2$ juga memenuhi persamaan kedua Dengan demikian w adalah kombinasi linier dari v₁ dan v₁, dimana:

$$w = -v_1 + 2v_2$$

2. Misalkan $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$, $D = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}$

Periksa apakah D merupakan kombinasi linear dari A,B, dan C Pembasan:

 $D = k_1A + k_2B + k_3C$

$$\begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix} = k_1 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + k_2 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + k_3 \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix} = \begin{bmatrix} k_1 & k_1 \\ k_1 & k_1 \end{bmatrix} + \begin{bmatrix} k_2 & 2k_2 \\ 3k_2 & 4k_2 \end{bmatrix} + \begin{bmatrix} k_3 & k_3 \\ 4k_3 & 5k_3 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix} = \begin{bmatrix} k_1 + k_2 + k_3 & k_1 + 2k_2 + k_3 \\ k_1 + 3k_2 + 4k_3 & k_1 + 4k_2 + 5k_3 \end{bmatrix}$$

Dapat dituliskan menjadi:

$$\begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 1 & 2 & 1 & | & 7 \\ 1 & 3 & 4 & | & 7 \\ 1 & 4 & 5 & | & 9 \end{bmatrix} \text{lakukan OBD sehingga:} \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Dari matriks diatas, kita peroleh bahwa $k_3 = -1$, $k_2 = 3$, $k_1 = 2$

Dengan demikian, D merupakan kombinasi linear dari A, B, dan C, dimana:

$$D = 2A + 3B - C$$

Terpaut Linear

Vektor \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_k dalam ruang vektor \underline{V} disebut terpaut linear jika:

 $a_1\underline{v}_1 + a_2\underline{v}_2 + \dots + a_K\underline{v}_K = \underline{0}$ terdapat a $\neq 0$ untuk semua a

Contoh Soal:

1. Tunjukkan bahwa gugus vektor dibawah ini terpaut linear $\left\{\begin{pmatrix}1\\3\\-2\end{pmatrix},\begin{pmatrix}2\\3\\-8\end{pmatrix},\begin{pmatrix}-8\\-15\\28\end{pmatrix}\right\}$

Pembahasan:

$$a_1\begin{pmatrix} 1\\3\\-2 \end{pmatrix} + a_2\begin{pmatrix} 2\\3\\-8 \end{pmatrix} + a_3\begin{pmatrix} -8\\-15\\28 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

 $a_1 = 2$, $a_2 = 3$, $a_3 = 1$

Karena a₁, a₂. a₃ ≠ 0, maka terbukti terpaut linear

Catatan: hanya bisa merentang pada R^1 , R^2 , dan tidak pada R^3 , determinan = 0, rank tidak penuh, tidak merentang pada Rank, solusi tidak unik

Bebas Linear

Vektor \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_k dalam ruang vektor \underline{V} disebut bebas linear jika:

 $a_1\underline{v}_1 + a_2\underline{v}_2 + \dots + a_K\underline{v}_K = \underline{0}$ terdapat a = 0 untuk semua a

Contoh Soal:

1. Apakah gugus vektor di bawah ini merupakan bebas linear? $\left\{\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right\}$

Pembahasan:

$$a_1\begin{pmatrix}1\\0\\0\end{pmatrix}+a_2\begin{pmatrix}0\\1\\0\end{pmatrix}+a_3\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}$$

Hanya nilai $a_1 = 0$, $a_2 = 0$, $a_3 = 0$ yang membuat vektor nol maka dapat dikatakan bahwa gugus vektor tersebut bebas linear

Catatan: bebas linear merentang pada rank tertinggi, determinan ≠0, rank penuh

Merentang Linear

 $S = \{S_1, S_2, ..., S_K\}$ disebut sebagai gugus yang merentang ruang vektor V jika dan hanya jika setiap vektor V dapat ditulliskan sebagai kombinasi linear yang dapat dituliskan sebagai berikut:

$$V = c_1 \underline{s}_1 + c_2 \underline{s}_2 + \dots + c_K \underline{s}_K$$

Contoh Soal:

1. Apakah S =
$$\left\{S_1 = \begin{pmatrix} 4 \\ 4 \end{pmatrix}, S_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right\}$$
 merentang pada R²?

Pembahasan:

$$a_1\begin{pmatrix} 4\\4 \end{pmatrix}$$
, + $a_2\begin{pmatrix} 1\\0 \end{pmatrix}$ = $\begin{pmatrix} p\\q \end{pmatrix}$; a,b $\in R$

Apakah SPL nya konsisten/ tidak?

Mari kita cek: r(A) = 2; $r(A \mid \underline{b}) = 2 \rightarrow konsisten$

SPL konsisten, a₁ dan a₂ ada

Maka S adalah gugus yang merentang R²

2. Apakah himpunan dibawah ini merentang pada R²?

$$\left\{ {1 \choose 2}, {2 \choose -4} \right\}$$

Pembahasan:

$$c_1 \begin{pmatrix} -1 \\ 2 \end{pmatrix}, + c_2 \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} -1 & 2 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \sim E_{21(2)}$$
$$\begin{pmatrix} -1 & 2 & x \\ 0 & 0 & 2x + y \end{pmatrix}$$

Solusi yang didapat tidak konsisten dan tidak mungkin sehingga tidak mungkin. Alasannya karena $0c_1 + 0c_1 = 2x + y \dots$?

Catatan:

Kalau ada gugus yang merentang, kemudian digabung dengan vektor lain maka gugus itu merentang

Sifat gugus yang merentang:

- Sebuah vektor dapat direntang oleh lebih dari satu gugus yang merentang -> ada kemungkinan span(S1) = span(S1) = V
- Jika S adalah gugus yang merentang V dan didefinisikan Z = S U T (digabung dengan yang lain) maka Z adalah gugus yang merentang

Landasan

Syatnya ialah:

- 1. Bebas linear
- 2. Merentang

Contoh Soal:

1.
$$\underline{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \underline{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Apakah e_1 dan e_2 adalah landasan bagi E di ruang vektor R^2 ?

adb kalau E membangun R²

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Untuk menentukan sistem ini memenuhi syarat yaitu E membangun ruang vektor R^2 cukup diperiksa nilai determinannya. det(E) = 1, maka e merupakan kombinasi linear dari E, sehingga E membangun ruang vektor R^2

adb E merupakan bebas linear:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hanya nilai $e_1=e_2=0$ yang membuat 0, maka E dapat dikatakan bebas linear

maka E merupakan basis/ladasan di ruang vektor R²

Landasan Orthogonal

Syarat: BBL, Merentang, dan Tegak Lurus

Landasan Orthonormal

Syarat: BBL, Merentang, Tegak Lurus ($a^T \underline{b} = 0$), dan Panjangnya 1

Contoh Soal:

1. diketahui a dan b vektor-vektor ortogonal dengan a ≠ 0, dan b ≠ 0. Tunjukkan a dan b BBL

Jawab:

$$c_1 \underline{a} + c_2 \underline{b} = \underline{0}$$

$$c_1 \underline{a^T} \underline{a} + c_2 \underline{a^T} \underline{b} = \underline{0}$$

$$c_1 \underline{a^T} \underline{a} + c_2 \underline{0} = \underline{0}$$

$$c_1 \underline{a^T} a = 0$$

$$c_1 = 0$$

$$c_1 \underline{a} + c_2 \underline{b} = \underline{0}$$

$$0 \underline{a} + c_2 \underline{b} = \underline{0}$$

$$c_2 \underline{b} = \underline{0}$$

$$c_2 = 0$$

Karena c_1 dan c_2 = 0, maka <u>a</u> dan <u>b</u> merupakan BBL