

Objectifs

- Prévoir les variations des prix dans les marchés
- Etudier la fiabilité des modèles de prédiction sur des données réelles

Contributions

- Prise de contact avec une banque d'investissement
- Implémentation d'un programme de résolution
- Vérification des résultats théoriques sur des données réelles

Plan

- I- Milieux d'étude
 - 1) Ecosystème chaotique (brown)
 - 2) Analogie avec le milieu financier
- II- Modélisation
 - 1) Approche probabiliste
 - 2) Vers la limite du continu et Black and Scholes
- III- Résolutions et fiabilités de modèles
 - 1) Résolutions analytique et numérique
 - 2) Fiabilité et Cox-Ross-Rubinstein

I- Milieux d'étude

1) Ecosystème chaotique (brown)

Observations de Robert Brown

- Mouvement irrégulier
- Trajectoire sans tangentes.
- Indépendant de la nature de la particule.
- Le mouvement est d'autant plus erratique que la particule est petite, la température élevée, la viscosité faible.
- Incessant.

Un mouvement aléatoire

I- Milieux d'étude

2) Analogie avec le milieu financier

L'analogie de Bachelier

Pollen en interaction (milieu physique)

Marché financier en interaction

Inadéquation avec l'époque

Siècle de la mécanique Newtonienne et du déterminisme Laplacien

Mouvement brownien non perçu dans le cadre de la physique

Approche probabiliste

Approche probabiliste

- Innovations de Bachelier
 - Introduction de la diffusion
 - Utilisation des probabilités (5 ans avant Einstein)
- Einstein utilise la densité de probabilité
- Il modélise la marche aléatoire

II- Modélisation

1) Approche probabiliste

La marche aléatoire

- Temps de collision moyen t_c≈2.10⁻¹⁰ s
- temps de mesure de l'appareil τ $\approx 1.10^{-2}$ (par rapport a t_c)

Discrétisation du temps

En une dimension...

- Deplacements de $\pm \Delta x$
- Intervalles de temps de t=nτ
- $\mathbb{F}('la\ particule\ se\ déplace\ de\ +\Delta x')=p$
- $\mathbb{F}('la\ particule\ se\ déplace\ de\ -\Delta x')=q$
- Avec $p \neq q$ et p+q=1
- $\mathbb{F}(k\Delta x, n\tau)$ ='probabilité que la particule se trouve $(k \in \mathbb{Z})$ en $k\Delta x$ après n déplacements'

$$-3\Delta x \quad -2\Delta x \quad -\Delta x \quad 0 \quad +\Delta x \quad +2\Delta x \quad +3\Delta x$$

Une affaire de probabilités

•
$$\mathbb{P}(k\Delta x, n\tau) = p^{\frac{n+k}{2}} q^{\frac{n-k}{2}} \frac{n!}{\frac{n+k}{2}! \frac{n-k}{2}!}$$

•
$$\mathbb{E}(X) = \sum_{k \in \mathbb{Z}} \mathbb{P}(k\Delta x, n\tau).k\Delta x = \sum_{k \in \mathbb{Z}} \frac{\mathbb{P}(k\Delta x, n\tau)}{\Delta} \Delta.k\Delta x$$

II- Modélisation

2) Vers la limite du continu et Black and Scholes

Vers la limite du continu...

Vers une équation de diffusion

•
$$\mathbb{P}(x, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}}$$
 vérifie:

•
$$\frac{\partial}{\partial t} \mathbb{P}(x, t) = D \frac{\partial^2}{\partial x^2} \mathbb{P}(x, t)$$

EN 3

DIMENSIONS...

$$\frac{\partial}{\partial t} \mathbb{P}(x, t) = D \cdot \Delta \mathbb{P}(x, t)$$

Equivalence avec Black and Scholes

$$\frac{\partial}{\partial t}P(x,t) + \frac{F(x)}{m\gamma} \frac{\partial}{\partial x}P(x,t) - D\frac{\partial^2}{\partial x^2}P(x,t) + \frac{1}{m\gamma}(\frac{\partial}{\partial x}F(x)).P(x,t) = 0$$

Equation de diffusion avec coefficients non constants

En posant...

$$x=S \qquad \frac{F(S)}{m\gamma} = rS \iff F(S) = m\gamma rS \qquad D = \frac{S^2 \sigma^2}{2} \qquad \frac{1}{m\gamma} (\frac{\partial}{\partial S} F(S)) = r$$

On obtient:

$$\frac{\partial}{\partial t} C(S,t) + rS \frac{\partial}{\partial S} C(S,t) + \frac{S^2}{2} \sigma^2 \frac{\partial^2}{\partial S^2} C(S,t) - rC(S,t) = 0$$

Black and Scholes

III- Résolutions et fiabilités de modèles

1) Résolutions analytique et numérique

Résolution analytique

Pic de Dirac

•
$$\mathbb{P}(x, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}}$$

Gaussienne

•
$$\mathbb{P}(x, t) = \frac{\sqrt{2\sigma}}{\sqrt{4\pi Dt + 2\sigma}} e^{-\frac{x^2}{4Dt + 2\sigma}}$$

Résolution numérique

III- Résolutions et fiabilités de modèles

2) Fiabilité et Cox-Ross-Rubinstein

Fiabilité

Cox-Ross-Rubenstein

