1.1 Definitions and Terminology a lesson for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

January 5, 2019

textbook: D. Zill, A First Course in Differential Equations with Modeling Applications, 11th ed.

basic

• a differential equation is an equation with a derivative somewhere in it

definitions

- idea: a differential equation contains an unknown function
 - context or tradition may identify it
- an ordinary differential equation (ODE) uses the kind of derivatives in calculus I and II
 - o primes (y' = dy/dx) or dots $(\dot{y} = dy/dt)$ are often used to denote ordinary derivatives
 - examples of ODEs:

$$\frac{dy}{dx} = x + y^2$$
 $y(x)$ is unknown function
$$y' = x + y^2$$
 ... exactly the same
$$\frac{d^2u}{dt^2} = -cu$$
 $u(t)$ is unknown function
$$\ddot{u} = -cu$$
 ... exactly the same

the unknown function in an ODE depends on one variable

contrast with PDEs

- MATH 302 is about ODEs
- ... but there are also partial differential equations (PDEs)
 - subscripts are often used to denote partial derivatives
 - examples:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad u(t,x) \text{ is unknown function}$$

$$u_{tt} = c^2 u_{xx} \qquad \dots \text{ exactly the same PDE}$$

$$w_t = k(w_{xx} + w_{yy}) \qquad w(t,x,y) \text{ is unknown function}$$

- the unknown function in a PDE depends on more than one variable
- do not worry about PDEs!; they are covered in MATH 421
 - mentioned here to explain why people say "ODE"

order

- the order of a differential equation is the maximum number of derivatives
 - o order has nothing to do with powers or exponentials
 - most of the differential equations in MATH 302 have order 1 or order 2
- examples:
 - o $y' = x + y^2$ has order one
 - \circ $\ddot{u} = -cu$ has order two
 - c is just a constant in this context
 - $y^3 + \frac{d^4y}{dx^4} = \left(\frac{d^2y}{dx^2} + \sin x\right)^5$ has order four

two main operations on ODEs

- there is more terminology to come ... but let's do something
- two common operations with differential equations are
 - verify that a given function is a solution
 - construct a solution ("solve the differential equation")
- example: verify that $y(x) = \sin(3x)$ solves y'' + 9y = 0

• example: construct a solution to $y' = y^2$

visualization of solutions

- a given differential equation generally has many solutions
- example (a): show that for any value of the parameter A the function $y(x) = Ae^{-x^2/2}$ solves $\frac{dy}{dx} = -xy$

• example (b): sketch several particular solutions from (a)

linear

- back to terminology
- a differential equation is *linear* if it can be written as a sum with only first powers on the unknown function and its derivatives
- examples:
 - o $3y'' 7y' + 8y = \sin x$ is linear because it is in the form

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

o $x\frac{y'}{y} = x^2 + 5$ is linear because it it *can* be written in the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

(set:
$$a_1(x) = x$$
, $a_0(x) = -x^2 - 5$, $g(x) = 0$)

nonlinear

- linear differential equations are special and easier
 - nature has been generous by allowing good linear differential equation models of surprisingly-many situations
- most differential equations are nonlinear which only means they are not linear
- examples:
 - o $y' = y^2$ is nonlinear
 - o $y'' + \sin y = 0$ is nonlinear
- we will be able to solve some nonlinear ODEs, but we will be systematic about solving linear ODEs

implicit solution

- first, remember implicit differentiation
 - example: find dy/dx if $x \sin y + y^2 = \ln x$

- "verify this implicitly-defined function is a solution of a differential equation" is implicit differentiation
 - example: verify $y = e^{xy}$ defines a solution of $(1 xy)y' = y^2$

the book mentions more terminology; none of this is terribly important, but it gets used in the rest of the semester:

- page 5 normal form means the highest derivative is on the left; the normal form of $y'-y^2=0$ is $y'=y^2$, and the normal form of $u''+9u=e^t$ is $u''=e^t-9u$
- page 7 a function y(x) can be discontinuous but when the book uses the term *solution* for y(x) then it solves a differential equation and we assume it is continuous on some interval
- page 11 a function like $F(x) = \int_a^x g(t) dt$ is an integral-defined function; the most important thing to know is that the derivative is easy: F'(x) = g(x) \longleftarrow see Mini-project 1

standard expectations

expectations: to learn this material, just watching this video is *not* enough

- you need to read section 1.1 in the textbook
- you need to do the WebAssign exercises for section 1.1
- you need to look around for other videos and related content;
 start with the Week 1 page at bueler.github.io/math302