Basics of Spin- $\frac{1}{2}$ Systems

Dr. Suchetana Chatterjee

1. In a sequential Stern-Gerlach experiment, where the incident beam is first split in the \hat{i} direction, the $|\uparrow\rangle_x$ is selected. This beam is now sent through another Stern-Gerlach apparatus, which splits the beam in \hat{k} direction. The beam is then found to be split evenly in two discrete bands. From this description, which among the following is a possible representation of $|\uparrow\rangle_x$ in the \hat{S}_z basis?

$$\mathbf{I.} \ \ \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 0 \end{array} \right).$$

II.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 0\\1 \end{pmatrix}$$
.

III.
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

IV.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$$
.

Ans. The beam is split evenly, which means the probability of finding a particle in the beam with $|\uparrow\rangle_z$ or $|\downarrow\rangle_z$ is $\frac{1}{2}$. But, since the particle was in the $|\uparrow\rangle_x$ beam, the initial state of the particle was $|\uparrow\rangle_x$. Hence, we can conclude,

$$|\langle \uparrow_x | \uparrow_z \rangle|^2 = |\langle \uparrow_x | \downarrow_z \rangle|^2 = \frac{1}{2}.$$

From this, we can guess the following possible representation:

$$\begin{split} |\!\!\uparrow\rangle_x &= \frac{1}{\sqrt{2}} \left(|\!\!\uparrow\rangle_z + |\!\!\downarrow\rangle_z \right) \\ &= \frac{1}{\sqrt{2}} \left[\left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right] \\ &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \end{split}$$

which is **IV**.

2. In the basis of \hat{S}_z . how do you express $|\downarrow\rangle_x$?

I.
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

II.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 0\\1 \end{pmatrix}$$
.

III.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}$$
.

IV.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\0 \end{pmatrix}$$
.

Ans.Since $|\downarrow\rangle_x$ is orthonormal to $|\uparrow\rangle_x$, and $|\uparrow\rangle_x$ is given by $\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$, we conclude that $|\downarrow\rangle_x$ is $\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}$, which is **III**.

3. In the previous sequential Stern-Gerlach experiment, suppose we replace the X-Stern-Gerlach apparatus with an Y-Stern-Gerlach apparatus, select the $|\uparrow\rangle_y$ beam instead, and send it through the the Z-Stern-Gerlach apparatus, only to find the same even splitting. Then, which among the following is a possible representation of $|\uparrow\rangle_y$ in the \hat{S}_z basis?

I.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\i \end{pmatrix}$$
.

II.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 0\\1 \end{pmatrix}$$
.

III.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}$$
.

IV.
$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\0 \end{pmatrix}$$
.

Ans. Here also, following Problem 1, we conclude that:

$$|\langle \uparrow_y | \uparrow_z \rangle|^2 = |\langle \uparrow_y | \downarrow_z \rangle|^2 = \frac{1}{2}.$$

So,

$$|\langle \uparrow_y \mid \uparrow_z \rangle| = |\langle \uparrow_y \mid \downarrow_z \rangle| = \frac{1}{\sqrt{2}}.$$

This is the only conclusion we can draw from the above experiment.

But certainly, the $|\uparrow\rangle_y$ state can be written as $\langle\uparrow_y|\uparrow_z\rangle|\uparrow\rangle_z + \langle\uparrow_y|\downarrow_z\rangle|\downarrow\rangle_z$, where the coefficients of $|\uparrow\rangle_z$ and $|\downarrow\rangle_z$ can be complex. Since, in dealing with the $|\uparrow\rangle_x$ and $|\uparrow\rangle_y$ states, we used real coefficients, and we are forced to keep the absolute values of the coefficients $\frac{1}{\sqrt{2}}$, we are thus forced to write $\langle\uparrow_y|\uparrow_z\rangle$ and $\langle\uparrow_y|\downarrow_z\rangle$ as $\frac{1}{\sqrt{2}}e^{i\theta}$, where θ is an arbitrary phase, which never goes into the expectation values, the quantities of physical interest. That being the case, we have some freedom of choosing θ for the two coefficients, and we exploit this to write $\langle\uparrow_y|\uparrow_z\rangle=\frac{1}{\sqrt{2}}$ and $\langle\uparrow_y|\downarrow_z\rangle=\frac{1}{\sqrt{2}}e^{i\delta}$. But, to determine this δ , we need to have some more information. And that infor-

mation is actually embedded deep inside the experimental descriptions accompanying the question. A good physical theory does not depend on preferential directions, and indeed, the Stern-Gerlach apparatus have no way of realizing what axes we are labeling them with. So, had the $|\uparrow\rangle_y$ beam been passed through a Stern-Gerlach apparatus aligned in the X direction, we would have expected the experimental result to be the same: a two way splitting. In this light,

$$|\langle \uparrow_y | \uparrow_x \rangle|^2 = |\langle \uparrow_y | \downarrow_x \rangle|^2 = \frac{1}{2}.$$

We can replace $|\uparrow\rangle_x$ and $|\downarrow\rangle_x$ by their representations in the \hat{S}_z basis to obtain the following: