E.A.3.1 (Esplorazione di Spazi degli Stati 1)

1.1 Ricerca in profondità

DFS (depth first search)

#		azioni	esplorati	frontiera
0	Ø	{}	{}	(S, g: 0, h: 7, f: 7, d: 0) <
1	S	{A, B, D}	{S }	(D, g: 5, h: 4, f: 9, d: 1) < (B, g: 7, h: 3, f: 10, d: 1) (A, g: 2, h: 9, f: 11, d: 1)
2	D	{C, E, S}	{D, S}	(E, g: 8, h: 5, f: 13, d: 2) < (C, g: 8, h: 2, f: 10, d: 2) (B, g: 7, h: 3, f: 10, d: 1) (A, g: 2, h: 9, f: 11, d: 1)
3	E	{G2}	{D, E, S}	(G2, g: 15, h: 0, f: 15, d: 3) < (C, g: 8, h: 2, f: 10, d: 2) (B, g: 7, h: 3, f: 10, d: 1) (A, g: 2, h: 9, f: 11, d: 1)
4	G2	{}	{D, E, G2, S}	is goal

Percorso $S \to D \to E \to G2$

Costo 5 + 3 + 7 = 15

Iterazioni 4

Ottimalità il cammino non è ottimale (il costo ottimale è 14, generalmente la DFS non garantisce l'ottimalità)

1.2 Ricerca in ampiezza

BFS (breadth first search)

#		azioni	esplorati	frontiera
0	Ø	{}	{}	(S, g: 0, h: 7, f: 7, d: 0)
1	S	{A, B, D}	{S }	(A, g: 2, h: 9, f: 11, d: 1) (B, g: 7, h: 3, f: 10, d: 1) (D, g: 5, h: 4, f: 9, d: 1)
2	А	{B}	{A, S}	(A, g: 2, h: 9, f: 11, d: 1) (B, g: 7, h: 3, f: 10, d: 1) (D, g: 5, h: 4, f: 9, d: 1)
3	В	{C, G1}	{A, B, S}	(D, g: 5, h: 4, f: 9, d: 1) (C, g: 10, h: 2, f: 12, d: 2) (G1, g: 16, h: 0, f: 16, d: 2)
4	D	{C, E, S}	{A, B, D, S}	(C, g: 10, h: 2, f: 12, d: 2) (G1, g: 16, h: 0, f: 16, d: 2) (E, g: 8, h: 5, f: 13, d: 2)
5	С	{F, J, S}	{A, B, C, D, S}	(G1, g: 16, h: 0, f: 16, d: 2) (E, g: 8, h: 5, f: 13, d: 2) (F, g: 12, h: 3, f: 15, d: 3) (J, g: 15, h: 1, f: 16, d: 3)
6	G1	{}	{A, B, D, G1, S}	is goal

 $\mathbf{Percorso}\ \mathrm{S} \to \mathrm{B} \to \mathrm{G1}$

Costo 7 + 9 = 16

Iterazioni 1

Ottimalità il cammino non è ottimale

Generalmente la BFS garantisce l'ottimalità solo se il costo per tutte le azioni è lo stesso (perché la BFS trova il minor numero di azioni per raggiungere l'obiettivo), e se è possibile trovare un piano (quindi le azioni per un dato stato non sono infinite).

1.3 Ricerca a costi uniformi

Min cost search

#		azioni	esplorati	frontiera
0	Ø	{}	{}	{ (S, g: 0, h: 7, f: 7, d: 0), }
1	S	{A, B, D}	{S}	{ (A, g: 2, h: 9, f: 11, d: 1), (D, g: 5, h: 4, f: 9, d: 1), (B, g: 7, h: 3, f: 10, d: 1), }
2	А	{B}	{A, S}	{ (D, g: 5, h: 4, f: 9, d: 1), (B, g: 6, h: 3, f: 9, d: 2), }
3	D	{C, E, S}	{A, D, S}	{ (B, g: 6, h: 3, f: 9, d: 2), (C, g: 8, h: 2, f: 10, d: 2), (E, g: 8, h: 5, f: 13, d: 2), }
4	В	{C, G1}	{A, B, D, S}	{ (C, g: 8, h: 2, f: 10, d: 2), (E, g: 8, h: 5, f: 13, d: 2), (G1, g: 15, h: 0, f: 15, d: 3), }

#		azioni	esplorati	frontiera
5	С	{F, J, S}	{A, B, C, D, S}	{ (E, g: 8, h: 5, f: 13, d: 2), (F, g: 10, h: 3, f: 13, d: 3), (J, g: 13, h: 1, f: 14, d: 3), (G1, g: 15, h: 0, f: 15, d: 3), }
6	E	{G2}	{A, B, C, D, E, S}	{ (F, g: 10, h: 3, f: 13, d: 3), (J, g: 13, h: 1, f: 14, d: 3), (G1, g: 15, h: 0, f: 15, d: 3), (G2, g: 15, h: 0, f: 15, d: 3), }
7	F	{D, G2}	{A, B, C, D, E, F, S}	{ (J, g: 13, h: 1, f: 14, d: 3), (G2, g: 14, h: 0, f: 14, d: 4), (G1, g: 15, h: 0, f: 15, d: 3), }
8	J	{G1}	{A, B, C, D, E, F, J, S}	{ (G2, g: 14, h: 0, f: 14, d: 4), (G1, g: 15, h: 0, f: 15, d: 3), }
9	G2	{}	{A, B, C, D, E, F, G2, J, S}	is goal

Percorso $S \to D \to C \to F \to G2$

Costo 5 + 3 + 2 + 4 = 14

Iterazioni 1

Ottimalità il costo del cammino è ottimale

L'algoritmo min cost trova sempre il cammino ottimale (se l'albero di ricerca è finito).

1.4 Ricerca ad approfondimento iterativo

Iterative deepening search

1.4.1 Iterazione 1

1.4.2 Iterazione 2

#		azioni	esplorati	frontiera
0	Ø	{}	{}	[(S, g: 0, h: 7, f: 7, d: 0),]
1	S	{A, B, D}	{S}	[(A, g: 2, h: 9, f: 11, d: 1), (B, g: 7, h: 3, f: 10, d: 1), (D, g: 5, h: 4, f: 9, d: 1),]
2	D	{}	{D, S}	[(A, g: 2, h: 9, f: 11, d: 1), (B, g: 7, h: 3, f: 10, d: 1),]
3	В	{}	{B, D, S}	[(A, g: 2, h: 9, f: 11, d: 1),]
4	Α	{}	{A, B, D, S}	
5	Ø	{}	{}	[(S, g: 0, h: 7, f: 7, d: 0),]
6	S	{A, B, D}	{ S }	[(A, g: 2, h: 9, f: 11, d: 1), (B, g: 7, h: 3, f: 10, d: 1), (D, g: 5, h: 4, f: 9, d: 1),]
7	D	{C, E, S}	{D, S}	[(A, g: 2, h: 9, f: 11, d: 1), (B, g: 7, h: 3, f: 10, d: 1), (C, g: 8, h: 2, f: 10, d: 2), (E, g: 8, h: 5, f: 13, d: 2),]
8	E	{}	{D, E, S}	[(A, g: 2, h: 9, f: 11, d: 1), (B, g: 7, h: 3, f: 10, d: 1), (C, g: 8, h: 2, f: 10, d: 2),]
9	С	{}	{C, D, E, S}	[(A, g: 2, h: 9, f: 11, d: 1), (B, g: 7, h: 3, f: 10, d: 1),]
10	В	{C, G1}	{B, C, D, E, S}	[(A, g: 2, h: 9, f: 11, d: 1), (G1, g: 16, h: 0, f: 16, d: 2),]
11	G1	{}	{B, C, D, E, G1, S}	is goal

Percorso $S \rightarrow B \rightarrow G1$ Costo 7 + 9 = 16Iterazioni 2

Ottimalità il cammino non è ottimale

Generalmente non è detto che la ricerca ad approfondimento iterativo trovi un cammino con costo ottimale.

1.5 Ricerca best-first greedy

Best-first greedy search

#		azioni	esplorati	frontiera
0	Ø	{}	{}	{ (S, g: 0, h: 7, f: 7, d: 0), }
1	S	{A, B, D}	{S}	{ (B, g: 7, h: 3, f: 10, d: 1), (D, g: 5, h: 4, f: 9, d: 1), (A, g: 2, h: 9, f: 11, d: 1), }
2	В	{C, G1}	{B, S}	{ (G1, g: 16, h: 0, f: 16, d: 2), (C, g: 10, h: 2, f: 12, d: 2), (D, g: 5, h: 4, f: 9, d: 1), (A, g: 2, h: 9, f: 11, d: 1), }
3	G1	{}	{B, G1 , S}	is goal

 $\mathbf{Percorso}\ \mathrm{S} \to \mathrm{B} \to \mathrm{G1}$

Costo 7 + 9 = 16

Iterazioni 1

Ottimalità la soluzione non è ottimale

L'algoritmo best-first non è ottimale, a meno che l'euristica non corrisponde esattamente alla distanza minima per raggiungere un goal. Questo perché il best-first non considera i costi effettivi (che sono maggiori o uguali all'euristica).

#		azioni	esplorati	frontiera
0	Ø	{}	{}	{ (S, g: 0, h: 7, f: 7, d: 0), }
1	S	{A, B, D}	{ S }	{ (D, g: 5, h: 4, f: 9, d: 1), (B, g: 7, h: 3, f: 10, d: 1), (A, g: 2, h: 9, f: 11, d: 1), }
2	D	{C, E, S}	{D, S}	{ (B, g: 7, h: 3, f: 10, d: 1), (C, g: 8, h: 2, f: 10, d: 2), (A, g: 2, h: 9, f: 11, d: 1), (E: g: 8, h: 5, f: 13, d: 2), }
3	В	{C, G1}	{B, D, S}	{ (C, g: 8, h: 2, f: 10, d: 2), (A, g: 2, h: 9, f: 11, d: 1), (E: g: 8, h: 5, f: 13, d: 2), (G1: g: 16, h: 0, f: 16, d: 2), }
4	С	{F, J, S}	{B, C, D, S}	{ (A, g: 2, h: 9, f: 11, d: 1),

#		azioni	esplorati	frontiera
				(E: g: 8, h: 5, f: 13, d: 2), (F: g: 10, h: 3, f: 13, d: 3), (J: g: 13, h: 1, f: 14, d: 3), (G1: g: 16, h: 0, f: 16, d: 2), }
5	А	{B}	{A, B, C, D, S}	{ (E: g: 8, h: 5, f: 13, d: 2), (F: g: 10, h: 3, f: 13, d: 3), (J: g: 13, h: 1, f: 14, d: 3), (G1: g: 16, h: 0, f: 16, d: 2), }
6	E	{G2}	{A, B, C, D, E, S}	{ (F: g: 10, h: 3, f: 13, d: 3), (J: g: 13, h: 1, f: 14, d: 3), (G2: g: 15, h: 0, f: 15, d: 3), (G1: g: 16, h: 0, f: 16, d: 2), }
7	F	{D, G2}	{A, B, C, D, E, F, S}	{ (G2, g: 14, h: 0, f: 14, d: 4), (J: g: 13, h: 1, f: 14, d: 3), (G1, g: 16, h: 0, f: 16, d: 2), }
8	G2	{}	{A, B, C, D, E, F, G2, S}	is goal

 $\begin{array}{l} \textbf{Percorso} \ \ S \rightarrow D \rightarrow C \rightarrow F \rightarrow G2 \\ \textbf{Costo} \ \ 5+3+2+4=14 \end{array}$

Iterazioni 1

Ottimalità la soluzione è ottimale

L'algoritmo A^* è ottimale quando la funzione h(s) è consistente (quindi anche ammissibile). In questo esempio l'euristica è ammissibile ma non consistente, il che non basta per avere l'ottimalità di A^* .

1.7 Euristica

Come si nota dalla tabella sotto l'euristica **è ammissibile**, perché per ogni stato s vale h(s) è minore o uguale al costo minimo per raggiungere un obiettivo.

s	h(s)	dist(s)
A	4	13
В	3	9
С	2	6
D	4	9
E	5	7
F	3	4
G1	0	0
G2	0	0
J	1	3
S	7	14

L'euristica non è consistente: 9 = h(A) > 4 + h(B) = 4 + 3 = 7.