Ruoye Wang
Jinchen Wu
Weijian Zhang

A Multimodal Method to Detect DeepFake Videos

Overall Project Goals

Motivation

- DeepFake threats
- Manual detection fails
- Learning-based methods in need

Goals

- Prior works: single modality
- Multimodal method
- Increase accuracy

Specific Aims

Specific Aims

Aims

- Multimodal deepfake detection
- Facial and vocal information
- Lip-speech synchronization

Goals

- Design a proper architecture
- Combine features
- Distinguish real/fake

Technical Approach

Basic ideas

- Strong correlation exists between different modalities of the same subject, e.g. visual and audio modalities
- Affective cues from different modalities would point to the same perceived emotions.

Feature extraction

Training network

Similarity Loss 1:
$$\rho_1 = \max(L_1 + m_1, 0)$$

 $L_1 = d(m_{real}^s, m_{real}^f) - d(m_{real}^s, m_{fake}^f)$

Similarity Loss 2:
$$\rho_2 = \max(L_2 + m_2, 0)$$

 $L_2 = d(e_{real}^s, e_{fake}^s) - d(e_{real}^s, e_{fake}^f)$

Testing network

Distance 1: $d_m = d(m^f, m^s)$

Distance 2: $d_e = d(e^f, e^s)$

Datasets

DF-TIMIT

620 pairs of real and fake videos

DFDC

19,154 real videos and 99,992 fake videos

CMU-MOSEI

describes the perceived emotion space with 6 discrete emotions: happy, sad, angry, fearful, surprise, and disgust, and a "neural" emotion to denote the rest of the emotions

Related Work

Prior work

- Many prior works split the video into frames and study the connection between them:
- Li et al.[1] proposed to use DNN to detect artifacts observed during the face warping step of the generation algorithms
- Yang et al.[2] used the discontinuity of head pose in synthetic videos as a basis for recognition

Prior work

- In addition, different network structures have been employed by many previous works:
- The capsule network structure proposed by Nguyen et al.[3]
- XceptionNet proposed by Rossler et al.[4]

Prior work

- Previous researchers have also noticed that temporal coherence is not enforced effectively in the synthesis process of deepfakes:
- Sabir et al. [5] leveraged the use of spatiotemporal features of video streams to detect deepfakes
- Guera and Delp et al.[6] used a CNN with a Long
 Short Term Memory (LSTM) to detect deepfake videos

References

- [1] Yuezun Li and Siwei Lyu. 2018. Exposing deepfake videos by detecting face warping artifacts. arXiv preprint arXiv:1811.00656 (2018). https://arxiv.org/abs/1811.00656
- [2] Xin Yang, Yuezun Li, and Siwei Lyu. 2019. Exposing deep fakes using inconsistent head poses. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8261-8265. https://arxiv.org/abs/1811.00661
- [3] Huy H Nguyen, Junichi Yamagishi, and Isao Echizen. 2019. Capsule-forensics: Using capsule networks to detect forged images and videos. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2307-2311. https://arxiv.org/abs/1810.11215
- [4] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner. 2019. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE International Conference on Computer Vision. 1–11. https://arxiv.org/abs/1901.08971
- [5] EkraamSabir, JiaxinCheng, AyushJaiswal, WaelAbdAlmageed, IacopoMasi, and Prem Natarajan. 2019. Recurrent convolutional strategies for face manipulation detection in videos. Interfaces (GUI) 3 (2019), 1
- [6] David Güera and Edward J Delp. 2018. Deepfake video detection using recurrent neural networks. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 1–6. https://ieeexplore.ieee.org/document/8639163

Current Status

Data preprocessing

- OpenFace
- pyAudioAnalysis

Network building

- Emotions Don't Lie
- Restore using PyTorch

Next steps

Experiment:
new features

References

- [1] Yuezun Li and Siwei Lyu. 2018. Exposing deepfake videos by detecting face warping artifacts. arXiv preprint arXiv:1811.00656 (2018). https://arxiv.org/abs/1811.00656
- [2] Xin Yang, Yuezun Li, and Siwei Lyu. 2019. Exposing deep fakes using inconsistent head poses. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8261-8265. https://arxiv.org/abs/1811.00661
- [3] Huy H Nguyen, Junichi Yamagishi, and Isao Echizen. 2019. Capsule-forensics: Using capsule networks to detect forged images and videos. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2307-2311. https://arxiv.org/abs/1810.11215
- [4] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner. 2019. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE International Conference on Computer Vision. 1–11. https://arxiv.org/abs/1901.08971
- [5] EkraamSabir, JiaxinCheng, AyushJaiswal, WaelAbdAlmageed, IacopoMasi, and Prem Natarajan. 2019. Recurrent convolutional strategies for face manipulation detection in videos. Interfaces (GUI) 3 (2019), 1
- [6] David Güera and Edward J Delp. 2018. Deepfake video detection using recurrent neural networks. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 1-6. https://ieeexplore.ieee.org/document/8639163