Algebraic \mathcal{D} -modules

Pavel Etingof

E-mail address: etingof@math.mit.edu

ABSTRACT. Typeset notes from a course at MIT.

Contents

Part 1. Lecture 1: Algebraic \mathcal{D} -modules 1. Lecture 1	7 8
Part 2. Lecture 2: Hilbert Polynomials of filtered algebras 2. Lecture 2	9 10
Part 3. Lecture 3: Further properties of the algebra \mathcal{D} 3. section Plan	11 12
Part 4. Lecture 4: \mathcal{O} -coherent \mathcal{D} -modules, 1 4. section Plan	13 14
Part 5. Lecture 5: \mathcal{O} -coherent \mathcal{D} -modules, 2 5. section Plan	15 16
Part 6. Lecture 6: Functional dimension and homological algebra 6. section Plan	17 18
Part 7. Lecture 7: \mathcal{D} -modules on general affine varieties 7. section Plan	19 20
Part 8. Lecture 8: Functiorial Yoga, 1 8. section Plan	21 22
Part 9. Lecture 9: Proof of Kashiwara's theorem 9. section Plan	23 24
Part 10. Lecture 10: Theorem on Preservation of Holonomicity 10. section Plan	25 26
Part 11. Lecture 11: \mathcal{D} -modules on general varieties 11. section Plan	27 28
Part 12. Lecture 12: Equivariant \mathcal{D} -modules	29

4 CONTENTS

12. section Plan	30
Part 13. Lecture 13: Derived Categories, 1 13. section Plan	31 32
Part 14. Lecture 14: Derived Categories, 2 14. section Plan	33 34
Part 15. Lecture 15: Derived Functors 15. section Plan	35 36
Part 16. Lecture 16: Functorial Yoga, 2 16. section Plan	37 38
Part 17. Lecture 17: The derived category of holonomic \mathcal{D} -modules 17. section Plan	39 40
Part 18. Lecture 18: Functorial Yoga, 3 18. section Plan	41 42
Part 19. Lecture 19: \mathcal{D} -modules with regular singularities, 1 19. section Plan	43 44
Part 20. Lecture 20: \mathcal{D} -modules with regular singularities, 2	45
20. More on the Riemann-Hilbert Map	46
21. Example 1: case of a complete curve	46
22. Example 2: the projective line minus four points	47
23. Holonomic \mathcal{D} -modules with RS in higher dimensions	48

CONTENTS 5

Lecture 1: Algebraic \mathcal{D} -modules

1. Lecture 1

Lecture 2: Hilbert Polynomials of filtered algebras

2. Lecture 2

Lecture 3: Further properties of the algebra $\ensuremath{\mathcal{D}}$

Lecture 4: \mathcal{O} -coherent \mathcal{D} -modules, 1

Lecture 5: \mathcal{O} -coherent \mathcal{D} -modules, 2

Lecture 6: Functional dimension and homological algebra

Lecture 7: \mathcal{D} -modules on general affine varieties

Lecture 8: Functionial Yoga, 1

Lecture 9: Proof of Kashiwara's theorem

Lecture 10: Theorem on Preservation of Holonomicity

Lecture 11: \mathcal{D} -modules on general varieties

Lecture 12: Equivariant \mathcal{D} -modules

Lecture 13: Derived Categories, 1

Part 14 Lecture 14: Derived Categories, 2

Lecture 15: Derived Functors

Lecture 16: Functorial Yoga, 2

Lecture 17: The derived category of holonomic \mathcal{D} -modules

Lecture 18: Functorial Yoga, 3

Lecture 19: \mathcal{D} -modules with regular singularities, 1

Lecture 20: \mathcal{D} -modules with regular singularities, 2

20. More on the Riemann-Hilbert Map

Last lecture we considered the Riemann Hilbert map

 $\mathbf{RH}: \overset{Algebraic \ vector \ bundles \ on \ X}{\text{with an } \mathbf{RS} \ flat \ connection} \longrightarrow \mathbf{Rep} \pi_1(X)$

which assigns to each bundle (E, ∇) the monodromy representation of ∇ . Note that both categories for fixed rank r have a moduli space of objects which generically is an algebraic variety, and so in particular, a complex manifold. However, the map **RH** is not algebraic; it is only holomorphic.

Let's consider two examples of what this map does.

21. Example 1: case of a complete curve

Let X be a projective curve of genus g, then the moduli space \mathcal{M}_{dR} of line bundles with connection looks as follows: we have a map $\mathcal{M}_{dR} \longrightarrow \mathbf{Pic}_0(X) = \mathbf{Jac}(X)$ whose fiber is \mathbf{A}^g , an affine space bundle. Here \mathbf{A}^g is a torsor over $H^0(X,\Omega)$, and in particular is an algebraic variety of dimension 2g.

On the other hand, the betti moduli space \mathcal{M}_b is the moduli space of representations of $\pi_1(X)$. Once we fix generators for $\pi_1(X)$:

$$a_1, \ldots, a_g, b_1, \ldots, b_g, \prod [a_i, b_i] = 1,$$

then we can identify

$$\mathcal{M}_b \simeq (\mathbf{C}^*)^{2g}$$
.

Here the **RH** map is a holomorphic isomorphism

$$\mathcal{M}_{dR}\simeq \mathcal{M}_{b}.$$

Clearly it cannot be algebraic, since we have

LEMMA 21.1. Any regular map $\mathbb{C}^* \to Jac(X)$ is constant.

PROOF. The map extends to

$$\mathbf{CP}^1 \to \mathbf{Jac}(X)$$
,

passage to the universal cover then yields

$$\mathbf{CP}^1 \to \mathbf{C}^n$$
.

Now Liouville's theorem shows this map is constant.

In more detail, RH is inverse to a map

$$f: \mathcal{M}_b \to \mathcal{M}_{dR}$$
.

To construct *f* , let's construct

$$\pi: (\mathbf{C}^*)^{2g} \to \mathbf{Jac}(X) = \mathbf{Pic}_0(X);$$

which is an affine space bundle. To define f, consider the 4g-gon:

fig-4g-gon.png

Given

$$(\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g) \in (\mathbf{C}^*)^{2g}$$

we consider the trivial line bundle on the polygon and glue together a line bundle on X by using α_1 along a_1 , β_1 along b_1 etc.

22. Example 2: the projective line minus four points

Let $X = \mathbf{P}^1 - \{0, 1, \lambda, \infty\}$ with $\lambda \neq 0, 1, \infty$ and let's restrict to connections with trivial determinant. Now \mathcal{M}_{dR} has an open set \mathcal{M}_{dR}° of connections which have first order poles on the trivial bundle. Let's also restrict further to fixed monodromy; i.e. \mathcal{M}_{dR}° is the set of connections

$$abla = \partial - rac{a_0}{z} - rac{a_1}{z-1} - rac{a_\lambda}{z-\lambda}$$
, $\mathbf{Tr}(a_j) = 0$

and let $a_{\infty} = -a_0 - a_1 - a_{\lambda}$. Denote by

$$\mathcal{M}_{dR}^{\circ}(\alpha_0, \alpha_1, \alpha_{\lambda}, \alpha_{\infty}) = \{ \nabla, a_j \sim \begin{pmatrix} \alpha_j & 0 \\ 0 & -\alpha_j \end{pmatrix} \}$$
 then letting

RH:
$$\mathcal{M}_b(\alpha_0, \alpha_1, \alpha_\lambda, \alpha_\infty) \longrightarrow \{A_0, A_1, A_\lambda, A_\infty, A_\infty, A_\infty\}$$

$$A_j \sim \begin{pmatrix} e^{2\pi i \alpha_j} & 0 \\ 0 & e^{-2\pi i \alpha_j} \end{pmatrix}$$
 we see the map

$$A_0A_1, A_\lambda A_\infty = 1$$

This map is highly transcendental.

Namely, let $\mathcal{P} \in \mathcal{M}_b(\alpha_0, \alpha_1, \alpha_\lambda, \alpha_\infty)$ and consider the point $Q_\lambda = \mathbf{R}\mathbf{H}_\lambda^{-1}(\mathcal{P}) \in \mathcal{M}_{dR}^{\circ}(\alpha_0, \alpha_1, \alpha_\lambda, \alpha_\infty)$. This defines a flow on $\mathcal{M}_{dR}^{\circ}(\alpha_0, \alpha_1, \alpha_\lambda, \alpha_\infty)$ known as the Painlavé-6 flow.

23. Holonomic \mathcal{D} -modules with RS in higher dimensions

23.1. Constructible sheaves and complexes. Let X be a C-algebraic variety. Denote by X^{an} the corresponding analytic variety considered with the classical topology. Let C_X be the constant sheaf on X^{an} and $Sh(X^{an})$ the category of C_X -modules i.e. sheaves of C-vector spaces. The derived category of bounded C_X -complexes will be denoted $D(X^{an})$.

DEFINITION 23.1. A C_X -module \mathcal{F} is constructible if there exists a stratification

$$X = \cup_i X_i$$

of X by locally closed algebraic subvarieties such that $\mathcal{F}|_{X^{an}}$ is a locally constant complex of finite dimensional vector spaces.

REMARK 23.2. Note that a C_X -complex is constructible if all of its cohomology sheaves are constructible as C_X -vector spaces.

The full subcategory of $\mathbf{D}(X^{an})$ consisting of constructible complexes will be denoted by $\mathbf{D}_{con}(X^{an})$.

Any morphism $\pi: X \to Y$ of algebraic varieties induces a continuous map $\pi^{an}: X^{an} \to Y^{an}$, and we can consider the functors

$$\pi_!, \pi_*: \qquad \mathbf{D}(X^{an}) \longrightarrow \mathbf{D}(Y^{an})$$

$$\pi^*, \pi^!: \mathbf{D}(Y^{an}) \longrightarrow \mathbf{D}(A^{an})$$

We also have

$$\mathbb{D}: \qquad \mathbf{D}(X^{an}) \longrightarrow \mathbf{D}(X^{an})$$

We have

Theorem 23.3. These functors preserve the subcategory of derived constructible sheaves \mathbf{D}_{con} , and on them we have

$$\mathbb{D}^2 = \mathbf{Id}$$

$$\mathbb{D}\pi^*\mathbb{D} = \pi^!$$

$$\mathbb{D}\pi_*\mathbb{D} = \pi_!$$

and $\mathbb{D}M = \mathbf{RHom}_{an}(M, \mathbf{C}_X)$.

23.2. De Rham Functor. Let \mathcal{O}_X^{an} be the structure sheaf of X^{an} . We will assign to each \mathcal{O}_X -module M the corresponding analytic sheaf of \mathcal{O}_X^{an} -modules M^{an} , which is locally given by

$$M^{an} = \mathcal{O}_X^{an} \otimes_{\mathcal{O}_X} M$$

•

This defines an exact functor

$$an: M(\mathcal{O}_X) \to M(\mathcal{O}_{X^{an}})$$

and in particular an exact functor

$$an: M(\mathcal{D}_X) \to M(\mathbf{D}_X^{an})$$

, where \mathcal{D}_{X}^{an} is the sheaf of analytic differential operators.

DEFINITION 23.4. The De Rham Functor

$$\mathbf{DR}: \mathbf{D}^b(\mathcal{D}_X) \to \mathbf{D}^b(X^{an}) = \mathbf{D}^b(\mathbf{Sh}(X^{an}))$$

is

$$\mathbf{DR}(M^{\circ}) = \Omega_X^{an} \otimes_{\mathcal{D}_Y^{an}} (M^{\circ})^{an}$$

Remark 23.5. Since $\mathbf{dR}(\mathcal{D}_X)$ is a locally projective resolution of Ω_X we have

$$\mathbf{DR}(M^{\circ}) = \mathbf{dR}(\mathcal{D}_{X}^{an}) \otimes_{\mathcal{D}_{X}^{an}} (M^{\circ})^{an} [\dim X]$$

In particular, if M is an \mathcal{O} -coherent \mathcal{D}_X -module corresponding to a vector bundle with a flat connection and $\mathcal{L} = M^{flat}$ is the local system of flat sections, then

$$\mathbf{DR}(M) = \mathcal{L}[dimX]$$

by Poincaré's lemma.

Here is the main theorem about the connection between \mathcal{D} -modules and constructible sheaves:

THEOREM 23.6. • $\mathbf{DR}(\mathbf{D}_{hol}(\mathcal{D}_X)) \subset \mathbf{D}_{con}(X^{an})$, and on \mathbf{D}_{hol} \mathbf{DR} commutes with both tensor product and \mathbf{D} .

- On the subcategory \mathbf{D}_{rs} the functor $\dot{\mathbf{D}}\mathbf{R}$ commutes with all of the above functors
- $\mathbf{DR}: \mathbf{D}_{rs}(\mathcal{D}_X) \to \mathbf{D}_{con}(X^{an})$ is an equivalence.

23.3. Definitions concerning vector bundles with flat connection. Let *M* be a vector bundle on *X* with a flat connection.

DEFINITION 23.7. M lies in \mathbf{D}_{rs} if the restriction of M to any curve has regular singularities.

DEFINITION 23.8. An irreducible M in \mathbf{D}_{hol} has regular singularities if $M = j_{!*}L$ for L a vector bundle with flat connection and regular singularities.

REMARK 23.9. An object $M \in \mathbf{D}_{hol}$ has regular singularities if and only if all composition factors have regular singularities.