

באנעני אנאינים . אנאינים .

: complementary slackness mess

$$\lambda_i(x_0+x_i-1)=0 \qquad \forall i^{=1,2,...,L} \geqslant 0$$

ארביתם אינוס אינסוד X;>0

(*) $(X_0 + X_i - I) = 0$ נדרוש: $X_i = \frac{1}{X_i} > 0$ for all i=1, 2, ..., L לכן נקבל: $X_1 = X_2 = \cdots = X_L$

 $\lambda_1 = \lambda_2 = \cdots = \lambda_1 \triangleq \lambda_1$ if $\lambda_1 = \lambda_2 = \cdots = \lambda_1$

ולכן נוכל לרשום:

 $X_{c} = \frac{1}{\lambda_{1}}$ i=1, 2, ..., L; $X_{6} = \frac{1}{L \cdot \lambda_{1}}$ (***)

دور (**) دمار (*)

دو که:

 $\frac{1}{1.2} + \chi_i - 1 = 0$

 $\frac{1}{L \cdot \lambda_1} + \frac{1}{\lambda_1} - 1 = 0 \implies - - \cdot \implies \lambda_1 = \frac{L + 1}{L}$

 $X_{i} = \frac{1}{\lambda_{1}} = \frac{L}{L+1}$ $j \quad X_{o} = \frac{1}{L+1}$

 $X_{0} = \frac{1}{\sum_{i=1}^{L} \lambda_{i}} \quad X_{i} = \frac{1}{\lambda_{i}} \quad i=1,2,...,L$ $X_{0} = \frac{1}{\sum_{i=1}^{L} \lambda_{i}} \quad X_{i} = \frac{1}{\lambda_{i}} \quad i=1,2,...,L$

נשים לב - הקצבים האופימליים תלויים בסכום של כופלי הלגראנז' במסלול שלהם זה לא מקרי!

כיצד נוכל להשתמש בתובנה המתמטית הזו לתכנון אלגוריתמיקה בפועל?