THEOREM 6.13 Let Ω be a bounded $C^{2,\alpha}$ -domain in \mathbb{R}^n and f be dC^1 -function in $\overline{\Omega} \times \mathbb{R}$. Suppose $u, \overline{u} \in C^{2,\alpha}(\overline{\Omega})$ satisfy $u \leq \overline{u}$,

$$\Delta \underline{u} \ge f(x, \underline{u}) \text{ in } \Omega, \quad \underline{u} \le 0 \text{ on } \partial \Omega,$$

 $\Delta \overline{u} \le f(x, \overline{u}) \text{ in } \Omega, \quad \overline{u} \ge 0 \text{ on } \partial \Omega.$

Then there exists a solution $u \in C^{2,\alpha}(\overline{\Omega})$ of

$$\Delta u = f(x, \underline{u}) \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \ \underline{u} \le u \le \overline{u} \text{ in } \Omega.$$

记号约定:
$$m = \inf_{\overline{\Omega}} \underline{U}$$

$$M = \sup_{\overline{\Omega}} \overline{U}.$$

$$\overline{\Omega} > 0 ~ \lambda \otimes \lambda \wedge \text{ if } J_{\underline{c}}(x,z) \in \overline{\Omega} \times \mathbb{R}.$$

① 从 uo: = 以开始,构造选代序列:

假设 $U_k \in C^{2,*}(\Omega)$ 已规定,则定义 U_{k+1} 为以下问题的解:

$$\begin{cases} Lu := \Delta u - \lambda u = f(x, u_k) - \lambda u_k \implies \Delta u = f(x, u_k) \\ u \mid_{M} = 0 & u_k \implies v. \end{cases}$$

我们断言丛《以《证、》》《日成立、

事实上,对 k闭归物法: 11.0=11、成立.

其次加黑对水成立,

$$\mathbb{R}^{-1} \Delta(u_{k+1} - u) = \lambda(u_{k+1} - u) = \left(f(x, u_k) - f(x, u)\right) - \lambda(u_k - u)$$

异全类似地有:

$$L(\bar{u}-u_{k+1}) \leq -f(x, u_k) + \lambda u_k + f(x, \bar{u}) - \lambda \bar{u}$$

$$= (f_z(x, 0) - \lambda) (\bar{u}-u_k)$$

$$= (g_z(x, 0) - \lambda) (\bar{u}-u_k)$$

$$= (g_z(x, 0) - \lambda) (\bar{u}-u_k)$$

$$\mathbb{E} P \colon L(\bar{u} - u_{k+1}) \leq 0 \quad \hat{\mathbb{H}} \quad \bar{u} - u_{k+1} \geq 0 \quad \text{on} \quad \partial \Omega$$

U sur su, as desired.

② 对似公作整体估计:

THEOREM 5.26 For some constant $\alpha \in (0,1)$, let Ω be a bounded $C^{2,\alpha}$ -domain in \mathbb{R}^n , and a_{ij} , b_i , and c be $C^{\alpha}(\overline{\Omega})$ -functions. Suppose $u \in C^{2,\alpha}(\overline{\Omega})$ is a solution of (5.29) for some $f \in C^{\alpha}(\overline{\Omega})$ and $\varphi \in C^{2,\alpha}(\overline{\Omega})$. Then

 $\|u\|_{C^{2,\alpha}(\overline{\Omega})} \leq C\{\|u\|_{L^{\infty}(\Omega)} + \|f\|_{C^{\alpha}(\overline{\Omega})} + \|\varphi\|_{C^{2,\alpha}(\overline{\Omega})}\},$

where C is a positive constant depending only on n, α , λ , Ω , and the $C^{\alpha}(\bar{\Omega})$ -norms of a_{ij} , b_i , and c.

COROLLARY 5.28 Let Ω be a bounded $C^{1,1}$ -domain in \mathbb{R}^n , a_{ij} be continuous functions in Ω , and b_i , c be bounded functions in Ω . For some constant p > n, suppose $u \in W^{2,p}(\Omega)$ is a solution of (5.29) for some $f \in L^p(\Omega)$ and $\varphi \in W^{2,p}(\Omega)$. Then

 $||u||_{C^{1,1-\frac{n}{p}}(\Omega)} \le C\{||u||_{L^{p}(\Omega)} + ||f||_{L^{p}(\Omega)} + ||\varphi||_{W^{2,p}(\Omega)}\},$

where C is a positive constant depending only on n, p, λ, Ω , the moduli of continuity of a_{ij} and the $L^{\infty}(\Omega)$ -norms of a_{ij} , b_i , and c.

在方程
$$\int \Delta U_{k+1} - \lambda U_{k+1} = f(x, U_k) - \lambda U_k + \phi,$$
 $U_{k+1} |_{\partial \Omega} = 0$

因为Uke[m,M],故f(uk,x)-luk-致有界、

利用整体 C^{1.4} 估计: (M+m) 控制

 $\|u_k\|_{c^{2,\alpha}(\Omega)} \leq C_0 \left\{ \|u_k\|_{L^p(\Omega)} + \|f(u_{r,x}) - \lambda u_r\|_{L^p(\Omega)} \right\}$

=> || Ur || c1.4(D) 是-敬有界的.

于是又可以利用 C2.x 估计:

| Uk | C2, d ≤ C'

即 Ux 在 Czix 范数下也是一致有界的。

—> Ur、D¹Ur、Dur 是等度连续的.

定理 1.1 (Arzelà-Ascoli). 对闭区间 X=[a,b] 上的一族连续函数 $\mathscr{F}\subset C(X,\mathbb{R})$ 而言,以下两个条件等价:

- 罗 等度连续并且一致有界.

一> 存在 Ur 3列,不妨仍记为 Ur, 便:

Ur Co n' Dur Co D' D' Co D' Co Co D'

—> 可对方程 ΔUk-λUk=f(x, Uk)-λUk 两端取版限

$$\Rightarrow$$
 $\Delta u = f(x, u)$

COROLLARY 6.14 Let Ω be a bounded $C^{2,\alpha}$ -domain in \mathbb{R}^n and f be a bounded C^1 -function in $\overline{\Omega} \times \mathbb{R}$. Then there exists a solution $u \in C^{2,\alpha}(\overline{\Omega})$ of

$$\Delta u = f(x, u)$$
 in Ω ,
 $u = 0$ on $\partial \Omega$

PROOF: Set

$$M=\sup_{\Omega\times\mathbb{R}}|f|.$$

Let $\underline{u}, \overline{u} \in C^{2,\alpha}(\overline{\Omega})$ satisfy

$$\Delta \underline{u} = \underline{M}$$
 in Ω , $\underline{u} = 0$ on $\partial \Omega$,
 $\Delta \overline{u} = -\underline{M}$ in Ω , $\overline{u} = 0$ on $\partial \Omega$;

then

$$\Delta \underline{u} \ge \Delta \overline{u}$$
 in Ω , $\underline{u} = \overline{u}$ on $\partial \Omega$.

By the maximum principle, we have $\underline{u} \leq \overline{u}$ in Ω . It is obvious that

$$\Delta \underline{u} \ge f(x, \underline{u}), \quad \Delta \overline{u} \le f(x, \overline{u}) \text{ in } \Omega.$$

Hence \underline{u} and \overline{u} satisfy the conditions in Theorem 6.13. We obtain the desired result by Theorem 6.13.