

AT6558 BDS/GNSS 全星座 SOC 芯片 数据手册

版本:1.15

杭州中科微电子有限公司

标题	AT6558 BDS/GNSS 全星座 SOC 芯片
文档类型	数据手册
文档编号	

文档摘要

本手册提供 AT6558 芯片的功能特点,芯片概述以及使用简介。

目录

目	录		3
1	系统概	术	6
	1.1	芯片简介	6
	1.2	力能组合表	6
	1.3	主要特征	6
	1.4	性能指标	8
	1.5	芯片应用	8
2	管脚说	月	9
	2.1	管脚排列	9
	2.2	管脚说明	9
3	芯片架	勾	2
	3.1	芯片框图1	2
	3.2	电源管理	3
		3.2.1 低功耗电源连接方案	3
		3 . 2 . 2 外部 PMU 电源连接方案	3
		3.2.3 备份电源	4
		3.2.4 工作模式	5
	3.3	· · · · · · · · · · · · · · · · · · ·	6
4	射频前	湍	7
		↓.1 射频前端架构1	7

		4.2 有源天线检测	17
5	基带处	·理器	
	5.1	多系统卫星处理引擎	18
	5.2	实时时钟备份区域	18
	5.3	定时器	
	5.4	DMA 控制器	
	5.5	看门狗	
	5.6	UART	
	5.7	SPI	
	5.8	I2C	
6	电气特	· i性	20
	6.1	极限特性	20
	6.2	直流特性	20
	6.3	模拟相关特性	21
	6.4	射频相关特性	22
	6.5	卫星系统模式	22
7	接口属	。 【性	24
	7.1	RS232 接口时序	24
	7.2	SPI 接口时序	24
	7.3	SWD 接口时序	25
8	芯片封	l装	26
	8.1	芯片标识规则	26
	8.2	封装规格	27
w	ww.icof	china.com	杭州中科微电子有限公司

9 乽	多考设1	†····	• • • • •	• • • •	• • • •	• • • •	• • •	• • •	• • • •	• • •	• • •	• • • •	• • •	• • •	• • • •	28
	9.1 乽	参考方	案			· • • • •		• • •	• • • •	• • •			• • •	• • •	• • • •	28
	9.2 景	告件选	型	• • • • •				• • •								30
10	应用方	案建议	۷					• • •	• • • •	• • •						32
	10.1	有源ヲ	₹线馈	电和检	:测			• • •	• • • •							32
	10.2	射频轴	俞入					• • •	• • • •	• • •						32
	10.3	参考的	寸钟晶	振				• • •	• • • •		• • • ¹	错误	! 未	定义	と书3	\$.
	10.4	RTC B	付钟					• • •	• • • •	• • •	• • • •	错误	! 未	で定り	义书 多	\$.
	10.5	GPIO						• • •	• • • •		•••	错误	! 未	定义	と书3	\$.
	10.6	低功耒	毛设置					• • •	• • • •	• • •	•••	错误	! 未	定少	と书名	\$.
	1	.0.6.1 j	进入低:	功耗模	式			• • •	• • • •		•••	错误	! 未	定定》	と书3	\$.
	1	.0.6.2 <i>\$</i>	小围电 。	路连接	方案			• • •	• • • •		•••	错误	! 未	定定》	と书3	\$.
	10.7	DCDC						• • •	• • • •		•••	错误	! 未	之宝》	乂书3	\$.
11	包装与	运输.					· • • •	• • •	• • • •							38
	11.1	包装.						• • •	• • • •							38
	11.2	ESD 的	5护	• • • • •				• • •	• • • •							38
12	文档更	新记录	₹			· • • •		• • •	• • • •	• • •						38
ᄧᄼ	√ + +															40

1 系统概述

1.1 芯片简介

AT6558 是一款高性能 BDS/GNSS 多模卫星导航接收机 SOC 单芯片,片上集成射频前端,数字基带处理器,32 位的 RISC CPU, 电源管理功能。

AT6558 支持多种卫星导航系统,包括中国的 BDS(北斗卫星导航系统),美国的 GPS,俄罗斯的 GLONASS,欧盟的 GALILEO,日本的 QZSS 以及卫星增强系统 SBAS(WAAS,EGNOS,GAGAN,MSAS)。AT6558 是一款真正意义的六合一多模卫星导航单芯片,可以同时接收六个卫星导航系统的 GNSS 信号,并且实现联合定位、导航与授时。

1.2 功能组合表

型号	多模功能	电源	接口	特性
	GPS BDS GLONASS	2.7V~3.6V 1.65V~3.6V	UART1 UART2	Flash TCXO 天线检测 天线过流保护 前置 SAW
AT6558-5N-1X	•	•	• •	
AT6558-5N-2X	•	•	• •	
AT6558-5N-3X	• •	•	• •	
AT6558-5N-5X	• •	•	• •	
AT6558-5N-7X	• • •	•	• •	

1.3 主要特征

■ 功能规范

- 支持 BDS/GPS/GLONASS 多系统联合定位和单系统独立定位
- 支持 QZSS 和 SBAS
- 支持 A-GNSS
- 支持 D-GNSS 差分定位
- 最大定位更新率可以达到 10Hz
- 高性能解决方案
 - 冷启动捕获灵敏度:-148dBm
 - 跟踪灵敏度:-162dBm
- 低功耗
 - BDS/GPS 双模连续运行: <23mA(@3.3V)
 - 待机:<10uA(@3.3V)
- 电源管理
 - 支持 2.7~3.6V 电源供电,典型 3.3V 供电。
 - RTC 和备份电路电源可低至 1.5V
 - 内核电压 1.2V
- 串行接口
 - 2个独立的 UART 接口
 - 1个 I2C 接口
 - 2个独立的 SPI 接口
- 封装与尺寸
 - QFN 封装,40 管脚,芯片尺寸:5mm×5mm×0.8mm

1.4 性能指标

技术参数	指标
信号接收	BDS/GPS/GLONASS/GALILEO/QZSS/SBAS
射频通道数目	三通道射频,支持全星座 BDS、GPS 和 GLONASS 同时接收
冷启动 TTFF	≤32s
热启动 TTFF	≤1s
重捕获 TTFF	≤1s
冷启动捕获灵敏度	-148dBm
热启动捕获灵敏度	-156dBm
重捕获灵敏度	-160dBm
跟踪灵敏度	-162dBm
定位精度	<2m (1σ)
测速精度	<0.1m/s (1 σ)
授时精度	<30ns (1σ)
定位更新率	最大 10Hz

1.5 芯片应用

- 车载定位与导航
- 授时
- 可穿戴设备
- 便携式设备,如手机、平板电脑

2 管脚说明

2.1 管脚排列

图 2-1 芯片封装管脚排列

2.2 管脚说明

序号	名称	I/0 类型	功能描述
1	LNA_IN	模拟 IO	LNA 输入,内部已隔直
2	ANT_BIAS	模拟 10	有源天线供电,接到天线
3	VANT_IN	模拟电源	有源天线电源, Max 3.6V
4	VDD_RFLDO	模拟电源	RFLDO 电源,1.4~1.8V

13 VDD12_BB 数字电源 14 VDD_IO 数字电源 数字基带 IO 电源 15 GPI04 数字双向 通用 GPIO, 默认用于 UART1 的 TXD 发送3 据线 16 GPI05 数字双向 通用 GPIO, 默认用于 UART1 的 RXD 接收3 据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPI00 数字双向 据线 19 MPI00 数字双向				
7 TST_DIG 模拟 IO 数字测试端口,输出高电平为 1.2V 8 GPI08 数字双向 通用 GPIO,默认用于车速脉冲输入 1 9 GPI07 数字双向 通用 GPIO,默认用于车速脉冲输入 2 10 GPI09 数字双向 通用 GPIO,默认用于车速脉冲输入 2 11 GPI02 数字双向 通用 GPIO,默认用于 I2C 的 SCL 时钟线 12 GPI03 数字双向 通用 GPIO,默认用于 I2C 的 SDA 数据线 13 VDD12_BB 数字电源 数字基带内核电源, 1.2V,1uF 电容旁路型地 14 VDD_IO 数字电源 通用 GPIO,默认用于 UART1 的 TXD 发送3据线 15 GPI04 数字双向 通用 GPIO,默认用于 UART1 的 RXD 接收3据线 16 GPI05 数字双向 SWD 调试接口的数据线 17 TMS 数字双向 SWD 调试接口的时钟线 18 TCK 数字和向 通用 GPIO,默认用于 UART0 的 TXD 发送3据线 19 GPI00 数字双向 通用 GPIO,默认用于 UART0 的 RXD 接收3据线 20 GPI01 数字双向 通用 GPIO,默认用于 IPPS 输出脉冲 21 GPI06 数字双向 通用 GPIO,默认用于 1PPS 输出脉冲	5	TST_ANA	模拟 IO	模拟测试端口
B GPI08 数字双向 通用 GPI0 , 默认用于车速脉冲输入 1 9 GPI07 数字双向 通用 GPI0 , 默认用于车速脉冲输入 2 11 GPI09 数字双向 通用 GPI0 , 默认用于车速脉冲输入 2 11 GPI02 数字双向 通用 GPI0 , 默认用于 I2C 的 SCL 时钟线	6	AVDD	模拟电源	LDO 输出,1.2V,1uF 电容旁路到地
9 GPI07 数字双向 通用 GPI0,默认用于车载行驶方向 10 GPI09 数字双向 通用 GPI0,默认用于车速脉冲输入 2 11 GPI02 数字双向 通用 GPI0,默认用于 I2C 的 SCL 时钟线 12 GPI03 数字双向 通用 GPI0,默认用于 I2C 的 SDA 数据线 13 VDD12_BB 数字电源 数字基带内核电源,1.2V,1uF 电容旁路 14 VDD_IO 数字电源 数字基带 I0 电源 15 GPI04 数字双向 通用 GPI0,默认用于 UART1 的 TXD 发送 16 GPI05 数字双向 据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字和向 通用 GPI0,默认用于 UART0 的 TXD 发送 19 GPI00 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收 19 GPI01 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收 18 GPI01 数字双向 通用 GPI0,默认用于 IPPS 输出脉冲	7	TST_DIG	模拟 IO	数字测试端口,输出高电平为 1.2V
10 GPI09 数字双向 通用 GPI0,默认用于车速脉冲输入 2 11 GPI02 数字双向 通用 GPI0,默认用于 I2C 的 SCL 时钟线 12 GPI03 数字双向 通用 GPI0,默认用于 I2C 的 SDA 数据线 13 VDD12_BB 数字电源 数字基带内核电源, 1.2V,1uF 电容旁路 14 VDD_IO 数字电源 数字基带 I0 电源 15 GPI04 数字双向 通用 GPI0,默认用于 UART1 的 TXD 发送 16 GPI05 数字双向 SWD 调试接口的数据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字和入 SWD 调试接口的时钟线 19 GPI00 数字双向 通用 GPI0,默认用于 UART0 的 TXD 发送 据线 通用 GPI0,默认用于 UART0 的 RXD 接收 据线 20 GPI01 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收 据线 10 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收 据线 10 数字双向 通用 GPI0,默认用于 1PPS 输出脉冲	8	GPI08	数字双向	通用 GPIO,默认用于车速脉冲输入 1
11	9	GPI07	数字双向	通用 GPIO,默认用于车载行驶方向
12 GPI03 数字双向 通用 GPIO,默认用于 I2C 的 SDA 数据线 13 VDD12_BB 数字电源 数字基带内核电源, 1.2V,1uF 电容旁路至地 14 VDD_IO 数字电源 数字基带 I0 电源 15 GPI04 数字双向 通用 GPIO,默认用于 UART1 的 TXD 发送数据线 16 GPI05 数字双向 通用 GPIO,默认用于 UART1 的 RXD 接收数据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPI00 数字双向 通用 GPIO,默认用于 UART0 的 TXD 发送数据线 20 GPI01 数字双向 通用 GPIO,默认用于 UART0 的 RXD 接收数据线 21 GPI06 数字双向 通用 GPIO,默认用于 1PPS 输出脉冲	10	GPIO9	数字双向	通用 GPIO,默认用于车速脉冲输入 2
13 VDD12_BB 数字电源 数字基带内核电源, 1.2V,1uF 电容旁路 14 VDD_IO 数字电源 数字基带 IO 电源 15 GPIO4 数字双向 通用 GPIO, 默认用于 UART1 的 TXD 发送。据线 16 GPIO5 数字双向 通用 GPIO, 默认用于 UART1 的 RXD 接收。据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPIO0 数字双向 通用 GPIO, 默认用于 UART0 的 TXD 发送。据线 20 GPIO1 数字双向 20 GPIO1 数字双向 30 通用 GPIO, 默认用于 UART0 的 RXD 接收。据线 21 GPIO6 数字双向 31 通用 GPIO, 默认用于 1PPS 输出脉冲	11	GPIO2	数字双向	通用 GPIO,默认用于 I2C 的 SCL 时钟线
13 VDD12_BB 数字电源 14 VDD_IO 数字电源 数字基带 IO 电源 15 GPIO4 数字双向 通用 GPIO, 默认用于 UART1 的 TXD 发送数据线 16 GPIO5 数字双向 据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字和入 SWD 调试接口的时钟线 19 GPIO0 数字双向 通用 GPIO, 默认用于 UART0 的 TXD 发送数据线 20 GPIO1 数字双向 20 GPIO6 数字双向 30 通用 GPIO, 默认用于 UART0 的 RXD 接收数据线 21 GPIO6 数字双向 30 通用 GPIO, 默认用于 1PPS 输出脉冲	12	GPIO3	数字双向	通用 GPIO,默认用于 I2C 的 SDA 数据线
14 VDD_IO 数字电源 数字基带 IO 电源 15 GPIO4 数字双向 通用 GPIO,默认用于 UART1 的 TXD 发送3 据线 16 GPIO5 数字双向 通用 GPIO,默认用于 UART1 的 RXD 接收3 据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPIO0 数字双向 通用 GPIO,默认用于 UART0 的 TXD 发送3 据线 20 GPIO1 数字双向据线 21 GPIO6 数字双向 通用 GPIO,默认用于 1PPS 输出脉冲	12	VDD12 DD	*** 中海	数字基带内核电源, 1.2V ,1uF 电容旁路到
通用 GPIO	13	ANDITS RR)	地
15 GPI04 数字双向 据线 16 GPI05 数字双向 通用 GPI0,默认用于 UART1 的 RXD 接收的据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPI00 数字双向 通用 GPI0,默认用于 UART0 的 TXD 发送的据线 20 GPI01 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收的据线 21 GPI06 数字双向 通用 GPI0,默认用于 1PPS 输出脉冲	14	VDD_IO	数字电源	数字基带 10 电源
据线 16 GPI05 数字双向 通用 GPI0,默认用于 UART1 的 RXD 接收数据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPI00 数字双向 通用 GPI0,默认用于 UART0 的 TXD 发送数据线 20 GPI01 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收数据线 21 GPI06 数字双向 通用 GPI0,默认用于 1PPS 输出脉冲	15	CDTO4	*** \$ 30 \$	通用 GPIO,默认用于 UART1 的 TXD 发送数
16 GPI05 数字双向 据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPI00 数字双向 通用 GPI0, 默认用于 UART0 的 TXD 发送数据线 20 GPI01 数字双向 通用 GPI0, 默认用于 UART0 的 RXD 接收数据线 21 GPI06 数字双向 通用 GPI0, 默认用于 1PPS 输出脉冲	15	GP104	数子从凹	据线
据线 17 TMS 数字双向 SWD 调试接口的数据线 18 TCK 数字输入 SWD 调试接口的时钟线 19 GPI00 数字双向 通用 GPI0, 默认用于 UART0 的 TXD 发送数据线 20 GPI01 数字双向 通用 GPI0, 默认用于 UART0 的 RXD 接收数据线 21 GPI06 数字双向 通用 GPI0, 默认用于 1PPS 输出脉冲	16	CDTOE	粉☆双点	通用 GPIO,默认用于 UART1 的 RXD 接收数
18 TCK 数字输入 SWD 调试接口的时钟线 19 GPI00 数字双向 通用 GPI0,默认用于 UART0 的 TXD 发送数据线 20 GPI01 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收数据线 21 GPI06 数字双向 通用 GPI0,默认用于 1PPS 输出脉冲	16	GP105	数子从问	据线
19 GPI00 数字双向 通用 GPI0,默认用于 UART0 的 TXD 发送3 据线 20 GPI01 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收3 据线 21 GPI06 数字双向 通用 GPI0,默认用于 1PPS 输出脉冲	17	TMS	数字双向	SWD 调试接口的数据线
19 GPI00 数字双向 据线 20 GPI01 数字双向 通用 GPIO, 默认用于 UARTO 的 RXD 接收数据线 21 GPI06 数字双向 通用 GPIO, 默认用于 1PPS 输出脉冲	18	TCK	数字输入	SWD 调试接口的时钟线
20 GPI01 数字双向 通用 GPI0,默认用于 UART0 的 RXD 接收数据线 21 GPI06 数字双向 通用 GPI0,默认用于 1PPS 输出脉冲	10	CDTOO	*** \$ 30 \$	通用 GPIO,默认用于 UART0 的 TXD 发送数
20 GPI01 数字双向 据线 21 GPI06 数字双向 通用 GPI0,默认用于 1PPS 输出脉冲	19	GP100	数子从问	据线
21 GPI06 数字双向 通用 GPIO, 默认用于 1PPS 输出脉冲	20	CDTC1	** - 30 -	通用 GPIO,默认用于 UARTO 的 RXD 接收数
	20	GPIUI	数子从问	据线
22 VDD_POR 模拟电源 POR 电源输入,电池备份主电源	21	GPI06	数字双向	通用 GPIO,默认用于 1PPS 输出脉冲
	22	VDD_POR	模拟电源	POR 电源输入,电池备份主电源
23	23	nRST	模拟 IO	外部复位输入,上拉
24 BBLDO_OUT 模拟 IO BBLDO 输出,1.2V	24	BBLDO_OUT	模拟 10	BBLDO 输出,1.2V
25 BBLDO_IN 模拟电源 BBLDO 输入, 1.4V~3.6V	25	BBLDO_IN	模拟电源	BBLDO 输入,1.4V~3.6V
26 DCDC_OUT 模拟 IO DCDC 输出	26	DCDC_OUT	模拟 10	DCDC 输出
27 DCDC_IN 模拟电源 DC-DC 输入	27	DCDC_IN	模拟电源	DC-DC 输入

28	TEST	数字输入	芯片测试模式控制,高电平进入测试模式;
20	1631	数于机入	下拉(电池备份域)
29	ON_OFF	数字输入	关断控制,上拉(电池备份域)
30	XREF	模拟 IO	参考频率输入端,外接 TCXO 或者无源晶体
31	VDD_BK	模拟电源	备份电源的输入,1.5~3.6V
32	VDD12_BK	模拟 IO	备份 LDO 的输出,1.2V,1uF 电容旁路到地
33	RTC_XO	模拟 IO	RTC OSC 的输出
34	RTC_XI	模拟 IO	RTC OSC 的输入
35	VDD_PLD0	模拟电源	PLL LDO 电源,1.4~1.8V
36	DVDD	模拟 IO	锁相环数字电源,1.2V,1uF 电容旁路到地
37	VDD_PLL	模拟 IO	锁相环模拟电源,1.2V,1uF 电容旁路到地
38	RFA_IN	射频 IO	RFA 输入,内部已隔直
39	VDD_RF	模拟 IO	射频电源,1.2V,1uF 电容旁路到地
40	LNA_OUT	射频 IO	LNA 输出,内部已隔直
ED	CND	封装底部	公共接地点,必须良好接地
EP	GND	金属	· 公六按地点,必须良灯按地

3 芯片架构

3.1 芯片框图

图 3-1 AT6558 系统模块框图

3.2 电源管理

3.2.1 低功耗电源连接方案

如图 3-2 所示,主电源(MAIN POWER)提供 3.3V 电源,给整个芯片供电:连接到 VDD_IO 给芯片的 IO PAD 和 FLASH 供电;

连接到 VDD POR 给内部 POR 供电,同时通过一个二极管给备份区域供电;

连接到 DCDC 的输入端 DCDC_IN 对 DCDC 供电 ,使用 DCDC 输出作为内部 LDO 输入,由内部的 LDO 对芯片的射频前端部分,模拟部分和数字部分供电。

外接纽扣电池作为备份电源(VBAT)对芯片的备份区域供电,可在主电源掉电的情况下为备份电路供电。

图 3-2 AT6558 电源连接方案(低功耗方案)

3.2.2 外部 PMU 电源连接方案

在有外部 PMU 情况下,可不使用芯片内部的 DCDC 和 BB_LDO,外部 PMU 提供 3 组电源分别对芯片的各个部分供电:

如图 3-3 所示 , 外部 PMU 提供 3.3V 电源 , 连接到 VDD_IO 给芯片的 IO PAD

和 FLASH 供电;连接到 VDD_POR 给内部 POR 供电,同时通过一个二极管给备份区域供电;

外部 PMU 提供 1.5V 电源,连接到芯片内部的 RF_LDO 和 BB_LDO,由内部的 LDO 对芯片的射频前端部分,模拟部分供电。

外部 PMU 提供 1.2V 电源,连接到芯片内部的 VDD12_BB,直接对芯片的数字部分供电。

外接纽扣电池作为备份电源(VBAT)对芯片的备份区域供电,可在主电源掉电的情况下为备份电路供电。

图 3-3 AT6558 电源连接方案(外部 PMU 方案)

3.2.3 备份电源

推荐外接一个可充电的 3V 钮扣电池或者法拉电容,以提供 RTC 和备份 RAM 的备份电源。内置涓流充电电路与防反充电路,无需外接二极管和限流电阻。充电电流最大为 500uA,充电电压最大为 VDD_POR。注意钮扣电池的最大充电电压可达到 VDD_POR-0.3V;如果采用法拉电容,注意电容的耐压值。

www.icofchina.com

杭州中科微电子有限公司

如果系统不需要热启动功能,VDD_BK管脚可悬空。当 VDD_POR 掉电后,RTC和备份 RAM 由于没有电源供给,将停止工作,定位信息不能保存,热启动功能将失效。

图 3-4 备份电源连接方案图

3.2.4 工作模式

AT6558 有 4 种工作模式:全工作模式、自动低功耗模式、外控低功耗模式和电池备份模式。

全工作模式:当所有电源正常供电,且 ON_OFF 管脚为高电平时,芯片处于全工作模式,进行正常的信号接收和解算。

自动低功耗模式:在某些应用场合,并不需要进行连续定位,而更注重低功耗,这时就需要芯片适时关闭部分功能以节省功耗。在这种模式下,所有电源正常供电,一旦芯片正常工作且定位后,内部程序会自动关闭耗电模块,进入低功耗状态,并启动定时(RTC定时器)。定时器会自动唤醒芯片并进行下一次定位。

外控低功耗模式:所有电源正常供电,且芯片正常工作后,外部主机将ON_OFF管脚拉低,芯片内部程序会自动保存当前电路状态,并关闭射频电路和基带电路,进入低功耗状态。当 ON_OFF管脚拉高后,芯片将自动恢复全工作模式(相当于热启动)。

电池备份模式:关闭除 VDD_BK 之外的所有电源,芯片将进入备份模式。这www.icofchina.com 杭州中科微电子有限公司

时只需要极小的电流维持 RTC 时钟和备份 RAM 即可。电源恢复后,导航程序可以从备份 RAM 恢复,以实现快速的热启动。

模式	射频前端	基带内核	IO/POR	RTC/备份 RAM
全工作模式	√	√	√	√
自动低功耗模式	×	×	√	√
外控低功耗模式	×	×	√	√
电池备份模式	×	×	×	√

3.3 芯片复位

芯片内部集成上电复位电路,并支持从芯片外部复位。复位时序如下:

图 3-5 芯片复位时序图

4 射频前端

4.1 射频前端架构

射频前端包括三个独立的接收通道,支持全星座的卫星信号频点:BDS B1、GPS L1、Galileo L1、GLONASS L1。三个通道共用射频前端和 PLL,支持多种参考频率。集成有源天线检测电路,集成时钟倍频电路,ADC 采样频率可配置。

图 4-1 AT6558 射频前端模块框图

4.2 有源天线检测

芯片集成了有源天线检测电路,可以给外部有源天线馈电。并根据馈电电流的大小,指示有源天线的状态。有源天线检测电路还提供了短路保护,通过限制给有源天线馈电的电流,保护芯片和有源天线不被损坏。

有源天线检测电路定义了三种状态,当电流小于设定值时,指示天线开路; 当电流大于设定值时,指示天线正常;当电流过大或者发生短路时,指示天线过 流。

5 基带处理器

5.1 多系统卫星处理引擎

AT6558 集成了最新的多系统卫星处理引擎,支持 BDS,GPS,GLONASS,Galileo,以及 QZSS 和 SBAS 系统。可以同时接收这六个系统的信号,并实现联合定位,可以显著改善定位精度和定位可用度,尤其是在城市峡谷等复杂环境下,性能改进更显著。

5.2 实时时钟备份区域

实时时钟(RTC)位于电池供电区域,并且配备有一块备份 RAM。使用独立的低功耗 LDO 进行供电。RTC 在主电源供电消失的情况下能够正常工作,同时保证备份 RAM 中的数据不丢失。

5.3 定时器

共使用三个带有 PWM 功能的定时器电路,其产生的定时中断可以作为处理器的中断输入,也可以作为 DMA 的硬件请求源。定时周期可根据外设时钟频率再分频进行调节,理论上最长可达外设周期的 2 32 倍。

5.4 DMA 控制器

DMA 控制器支持 8 个通道的单向传输,每个通道可以独立进行以下三种数据传输:内存到外设;外设到内存;内存到内存。

5.5 看门狗

看门狗电路用于检测硬件和软件是否发生超时错误。当有超时复位信号输出,则芯片会被该信号复位。因此,从硬件上保证了芯片的可靠性。

5.6 UART

包含两个独立的全双工 UART 模块,实现数据在串行和并行之间的转换,波特率最大支持 256000bps,并且具有自动波特率检测功能。

每个 UART 具有独立的发送 FIFO 和接收 FIFO,深度均为 32 字节。UART 支持 DMA 工作模式。

5.7 **SPI**

AT6558 包含一个 SPI 主设备接口和一个 SPI 从设备接口。

SPI 主设备接口,用于连接 SPI 接口的器件,比如 MEMS 传感器、FLASH 等。
SPI 从设备接口可作为与外部应用处理器的数据接口,外部应用处理器通过
SPI 接口获取芯片的定位信息。相比 UART 而言,SPI 的数据传输速度有显著的提升。

5.8 I2C

I2C 接口为主设备接口,可进行标准传输(100Kbps)和快速传输(400Kbps)。 支持 7bit 地址或者 10bit 地址模式。接收和发送均含有 4 字节深度 FIFO,并且可配置为 DMA 工作模式。

6 电气特性

6.1 极限特性

参数	最大摆幅	单位
电源对地电压(模拟内核电源、数字内核电源)	-0.3~1.8	V
电源对地电压(数字 IO 后驱电源、LDO 输入电源)	-0.3~4.1	V
模拟引脚电压	-0.3~1.8	V
其他引脚电压	-0.3~4.1	V
最大射频输入功率	5	dBm
工作环境温度	-40~85	°C
结温	150	°C
存储温度	-50~125	°C

6.2 直流特性

电源管脚

参数	最小值	典型值	最大值	单位
VDD12_BB	1.08	1.2	1.32	V
VDD12_BK	1.08	1.2	1.32	V
VDD_IO	2.7	3.3	3.6	V
VDD_POR	2.7	3.3	3.6	٧
VANT_IN	1.8	3.3	3.6	V
VDD_BK	1.5	3.3	3.6	V
VDD_PLD0	1.4	1.5	1.8	V
VDD_RFLDO	1.4	1.5	1.8	V
VDD_BBLDO	1.4	1.5	1.8	٧
DCDC_IN	2.7	3.3	3.6	V
DCDC_OUT	1.4	1.5	1.75	٧
AVDD	1.14	1.2	1.26	٧
DVDD	1.14	1.2	1.26	V
VDD_RF	1.14	1.2	1.26	V
VDD_PLL	1.14	1.2	1.26	V
BBLDO_OUT	1.14	1.2	1.26	V

数字 10 管脚

参数	说明	最小值	典型值	最大值	单位
Ileak	漏电流输入管脚		<1		uA
Vil	低电平输入电压	-0.3	0	VDD_IO*0.2	٧
Vih	高电平输入电压	VDD_IO*0.8		VDD_IO+0.3	٧
Vol	低电平输出电压		0	0.4	٧
Voh	高电平输出电压	VDD_IO-0.4			٧
Rpu	上拉电阻		40		kΩ
Rpd	下拉电阻		40		kΩ

6.3 模拟相关特性

序号	参数	条件		参数指标	单位	
ת ק		本日	最小值	典型值	最大值	<u>+</u>
1	复位电压		2.35	2.45	2.6	V
2	复位时间 ^[1]	晶振频率		160		ms
	<u> </u>	26.000MHz				
3	TCXO 晶振频率 ^[2]			26.000		MHz
4	TCXO 幅度		0.5	1.5	3.6	Vpp
5	Crystal 频率 ^[2]		10	26.000	32	MHz
6	Crystal 等效				80	Ω
0	串联电阻 Rs				80	22
7	有源天线		2.4	3	3.6	mA
/	检测电流 ^[3]		2.4	3	3.0	IIIA
8	有源天线		45	50	60	mA
0	短路保护电流 ^[4]		43	30	00	IIIA
9	天线检测电路压降	输入 3.3V,				V
9	八头似则 七时近阵	50mA 负载			0.3	V
10	工作电流	@3.3V		23		mA
		BD+GPS				

11	电池备份电流		10	40	uA
12	RTC Crystal 频率		32.768		kHz
13	RTC Crystal 等效 串联电阻 <i>Rs</i>			80	κΩ

- [1]复位时间与晶振频率有关,16.369MHz 时为 250mS, 26MHz 时为 160mS。
- [2]芯片默认使用 26.000MHz 频率 TCXO。其他频率以及无源晶体需定制程序。
- [3][4]有源天线的检测电流和短路保护电流可以配置。

6.4 射频相关特性

序	参数	条件	参数指标			单
号	多数 	米 竹	最小值	典型值	最大值	位
		GPS		1575.42		MHz
1	输入频率	Galileo		1575.42		MHz
1	F _{in}	BD		1561.098		MHz
		GLONASS	1597.78	1602	1605.66	MHz
2	输入信号电平 P _{IN}		-110		-65	dBm
3	输入反射系数 S11				-10	dB
4	噪声系数 NF			2.5		dB
5	1dB 压缩点			-75		dBm
6	镜像抑制比		16	26		dB
7	锁相环锁定时间				100	us
8	AGC 稳定时间				100	us

6.5 卫星系统模式

芯片提供多种卫星系统模式的组合,如下表。

考虑带宽、群时延及射频端口匹配等因素,请选用合适的 SAW 滤波器和天线。

模式 GPS	BD	GLONASS
--------	----	---------

1	•		
2		•	
3			•
4	•	•	
5	•		•
6		•	•
7	•	•	•

7 接口属性

7.1 RS232 接口时序

图 7-1 RS-232 接口时序图

7.2 SPI 接口时序

描述	标注	最小	最大	单位
CS 建立时间	T1	0.5T	-	ns
CS 保持时间	T2	0.5T	-	ns
SDO 建立时间	Т3	0.5T - 3t	0.5T - 2t	ns
SDO 保持时间	T4	0.5T + 2t	0.5T + 3t	ns
SDI 建立时间	T5	3t	-	ns
SDI 保持时间	T6	10	-	ns

注:1. T 代表 SCK 时间周期,可配置范围为(SPICLK/2)MHz~(SPICLK/4096)MHz。

2. t 代表 SPICLK 的时间周期,可以为高速总线时钟或外设时钟。

图 7-2 SPI 接口时序图

7.3 SWD 接口时序

描述	标注	最小	最大	单位
TMS(I)输入到 TCK 上升沿的建立时间	T1	0.35T	-	ns
TMS(I)输入到 TCK 上升沿的保持时间	T2	0.15T	-	ns
TCK 上升沿到 TMS(0)数据有效的时间	Т3	-	0.5T	ns
TCK 上升沿到 TMS(0)的保持时间	T4	0	-	ns

注:T 代表 JTAG 接口 TCK 的周期,最大为 50MHz。

图 7-3 SWD 接口时序图

8 芯片封装

8.1 芯片标识规则

编码	说明
AT6558	芯片型号
LLLLLLLLLL	芯片流水号

8.2 封装规格

芯片采用 QFN5×5-40L(P0.4T0.8)封装,下面是封装尺寸。

Side View

封装尺寸

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.203	REF.	0.008	REF.	
D	4.924	5.076	0.194	0.200	
Е	4.924	5.076	0.194	0.200	
D1	3.300	3.500	0.130	0.138	
E1	3.300	3.500	0.130	0.138	
k	0.200	OMIN.	0.008MIN.		
b	0.150	0.250	0.006	0.010	
е	0.400TYP.		0.016TYP.		
L	0.324	0.476	0.013	0.019	

9 参考设计

9.1 参考方案

图 9-2 无源天线方案

该方案采用无源天线或者有源天线,芯片外总增益建议大于 18dB,小于 35dB。有源天线或者无源天线的 LNA 通过 ANT_BIAS 供电。

注意,LNA_IN 的直流电压不超过 1.2V。如果天线单元电路输出是带直流的,则电感 L2 之前必须加 470pF 隔直电容 。

定位信息通过串口输出,默认输出端口为 UART1,对应为 TXD1/RXD1。

材料清单:器件选型请参考"AT6558 主要外围器件 BOM 表"

元件编号	可选
C1、C2、C4、C5、C6、C9、	0.1uF±5%贴片电容
C10、C12、C17	
C3、C7、C11、C13、C14、C16	1uF±5%贴片电容
C8	10uF±5%贴片电容
C15	470pF±5%贴片电容,用作隔直
R1、R2	10k Ohm±5%贴片电阻
L1	4.7uH±10%贴片电感
L2	4.3 nH±5%高频贴片电感
L3	5%高频贴片电感
	根据 LNA 输入阻抗匹配定值
X1	TCXO 晶振,推荐 0.5ppm
X2	3V 可充电钮扣电池或超级电容
Х3	RTC 晶振,32.768kHz
X4	SAW 滤波器
X5	外置 LNA

9.2 器件选型

AT6558 主要外围器件 BOM 表

器件名称	参数	封装	规格	厂家	型号
DC/DC 功率电感 4.7uH		0603	±20%,620mA,0.5 欧	SAMSUNG	CIG10W4R7MNC
ひこ	4.7un	0003	±20%,620IIIA,0.5 &	MURATA	LQM18PN4R7MFR
	4.3nH		±0.2nH,750mA,0.07 欧		LQW15AN4N3C00D
	4.51111		±0.3nH,300mA,0.21 欧		LQG15HN4N3S02
高频电感	6.8nH	6.8nH 0402	±3%,570mA,0.13 欧	NALIDATA	LQW15AN6N8H00D
一同频电感	0.81111 0402	±5%,300mA,0.29 欧	- MURATA	LQG15HN6N8J02	
	33nH		±3%,260mA,0.63 欧		LQW15AN33NH00D
	33111	±5%,200mA,0.67 欧		LQG15HN33NJ02	
DTC B /ht	22 7601/	SMD3215	20nnm CL=12 EnE	EPSON	FC-135
RTC 晶体	32.768K	SINID2512	20ppm,CL=12.5pF	KDS	DST310S
			2 2)/	EDSON	TG-5035CG
TCXO 晶振	26M	SMD2520	3.3V,	EPSON	TG-5006CG
			0.5ppm@-30°Cto +85°C	KDS	DSB221SDN

www.icofchina.com

杭州中科微电子有限公司

			或 0.5ppm@-40℃to +85℃	KYOCERA	KT2520K26000ACW33T	
			- 或 0.5ppm@-40 Q0 +85 C	NDK	NT2520SB	
				TXC	7L26003	
				SIWARD	STO-2520A	
低噪声放大器	LNA	6UDFN	Gain=21.5dB,NF=0.8dB	杭州中科微	AT2659	
			Insertion Loss= 0.9dB@1575.42M			
滤波器 SAW			impedance=50 欧	TDK EPCOS	B39162B9416K610	
	CANA		Insertion Loss = 0.95dB@1575.42M		SAFEB1G57KE0F00	
		CN4D4444	impedance=50 欧	A 41 ID ATA		
	SAW	V SMD1411	Insertion Loss = 0.9dB@1575.42M	MURATA		
			1.3dB@1602M, impedance=50 欧		SAFEA1G58KA0F00	
			Insertion Loss = 1.0dB@1575.42M			
			1.3dB@1602M, impedance=50 欧	WISOL	SFHG89DQ102	

10 应用方案建议

10.1 有源天线馈电和检测

如下图,芯片的有源天线检测电路可以检测有源天线的状态,VANT_IN 接到系统电源,最大电压 3.6V。ANT_BIAS 向有源天线馈电,接一个 33nH 和 0.1uF 电感电容的滤波器用于阻隔交流信号。

注意:即使加入了阻隔交流信号的 LC 滤波器,低频的交流大信号仍可能会馈通到 ANT_BIAS 端口,造成检测电路误判。特别是在强干扰环境或者大功率发射装置附近,出现误判的概率会增大。

天线接入的最小检测电流为 2.5mA, 短路保护的限流电流默认为 50mA。

10.2 射频输入

信号从 LNA_IN 输入,外置天线单元(无源介质+LNA,或者有源天线)的增益建议为 18~35dB。无论何种形式的天线,建议通过 ANT_BIAS 进行供电。芯片会通过天线的状态自动调整内部增益,以使得芯片工作在最佳增益状态。

10.3 参考时钟晶振

参考时钟的频率稳定度将很大程度的影响接收机的性能,包括灵敏度、定位精度、授时精度等。所以通常情况下为获得最优的性能,建议使用者选用高稳定度的晶振作为导航芯片的时钟参考源。推荐选用频率稳定度为 0.5ppm、并对温度和环境振动不敏感的温补晶振 TCXO。

本芯片也支持无源晶振作为时钟参考源,由于无源晶振频率瞬时漂移较大, 定位精度比 TCXO 差。由于无源晶振频率不固定,精度差,针对每种每批次的无 源晶振的导航固件都需要定制,所以不推荐使用无源晶振。

常用有源晶振和无源晶振的电路接法如下:

其中无源晶体一端 P1 接地,另一端 P2 接芯片 XREF,同时 P2 上对地并联一个电容 C_L。C_L的取值为晶体的负载电容,不同晶体可能不同,一般 12pF 即可。

10.4 RTC 时钟

实时时钟(RTC)位于电池供电区域,保证主电源掉电后备份 RAM 中的数据不丢失,当主电源重新上电后能够快速重定位。RTC OSC 采用无源晶体,接在芯片的 XIN 和 XOUT 引脚,无需片外电容和反馈电阻,如下图:

32k RTC 无源晶体

芯片也支持直接时钟输入,用户可以选择从 XIN 或者 XOUT 输入,但需要确保 XIN 或者 XOUT 上的瞬时电压不超过 1.5V。如下图,时钟信号经电阻分压后加到 XOUT 上,调整 R1 与 R2 比值,使 XOUT 上时钟高电平为 1.2V。

32k 直接时钟输入(电阻分压)

10.5 GPIO

芯片提供 10 个 GPIO, 可复用为 UART、I2C、SPI 等。其内部主要结构如下,

使用中必须保持 PAD 电压小于 VDD_IO+0.5V,否则会出现 ESD 二极管 D2 正向导通,导致芯片工作异常。

特别注意:当 GPIO 作为输入 IO,如 RXD1/RXD2 等,芯片 VDD_IO 掉电时,外部设备应将该 GPIO 口的信号电压设置为低电平。

10.6 低功耗设置

AT6558 可提供自动低功耗模式和外控低功耗模式两种低功耗方案。

自动低功耗模式是在非连续定位场景下,芯片定位后,内部程序自动关闭耗 电模块,进入待机状态;通过定时器自动唤醒芯片并进行下一次定位。根据不同 的应用场景,程序需要定制。

外控低功耗模式有 3 种进入方式:1)关闭主电源;2)将 ON_OFF 引脚设置为低电平;3)通过 UART 发送低功耗指令。

功耗模式	s. v	内核	IO/POR	LNA	тсхо	天线	RTC	主电源
全工作模式		√	√	√	√	√	√	ON
自动低功耗模式		×	√	×	×	×	√	ON
外控	关闭主电源	×	×	×	×	×	√	OFF
低功耗	ON_OFF 拉低	×	√	×	×	×	√	ON
模式	UART 指令	×	√	×	√	×	√	ON

10.6.1 进入低功耗模式

1)关闭主电源

在如下图所示的电源连接中,关闭主电源 VMAIN。则除备份电路之外,其他所有电路掉电,功耗接近于 0。

特别注意:作为输入的 GPIO,如 RXD1/RXD2 等,芯片 VDD_IO 掉电时,外部设备应将该 GPIO 口的信号电压设置为低电平。

2)将 ON_OFF 引脚设置为低电平

主电源 VMAIN 正常上电,通过外部 MCU 将 ON_OFF 引脚设置为低电平,芯片将进入低功耗待机状态,芯片仅消耗极小的功耗。外部的有源天线、LNA、TCXO

等随之关闭。

3) 通过 UART 发送指令

主电源 VMAIN 正常上电,通过外部 UART 发送进入低功耗模式的指令,芯片将关闭大部分电路,进入低功耗待机状态。外部的有源天线、LNA 等关闭。TCXO正常工作。

4)自动低功耗模式

在系统定义的休眠与唤醒时间间隔下,芯片自动的进入低功耗模式。

10.6.2 外围电路连接方案

1)芯片供电

2)天线或者外部 LNA 使能

通过 ANT BIAS 为外部 LNA 或者天线单元供电,实现使能。

正常工作时,ANT_BIAS 输出为外部 LNA 或者天线单元供电;低功耗工作时,ANT_BIAS 关闭,随之外部 LNA 或者天线被关闭,不再消耗电流。

3) TCXO 供电

ON_OFF 低功耗模式和自主低功耗模式,需要关闭 TCXO 以进一步降低功耗。

单独的 LDO 或者 NPN-PNP 复合三极管芯片给 TCXO 供电,用芯片 DCDC 的输出 VDX 作为使能信号。

用 LDO 给 TCXO 供电

用复合三极管芯片给 TCXO 供电

10.7 DCDC

为获得最低的功耗和最优的性能,建议使用片上 DCDC 变换器,DCDC 的输出再供给片上 LDO。这样可有效降低芯片功耗。

为减小 DCDC 开关频率对芯片性能的影响,必须尽量减小 4.7uH 电感和 10uF 电容与管脚 DX_OUT 的连线长度。滤波电路特别重要,建议每个电源输入都加入 1uF 滤波电容,必要时加上其他电源滤波电路。

特别注意,电源输入 DX_IN 的滤波电容的地线,输出 DX_OUT 电感后的滤波电容的地线,二者都应该分别与 GND 有良好的连接;如果二者的地线是通过 PCB 过孔与 GND 连接的,应该分别通过过孔与 GND 连接,并尽量增加过孔数目。

11 包装与运输

11.1 包装

AT6558 芯片采用防潮卷带包装。

11.2 ESD 防护

请注意在芯片运输和生产过程中防静电和防潮。

CAUTION! ESD SENSITIVE DEVICE!

请注意使用、包装和运输过程中的静电防护!

12 文档更新记录

日期	版本	说明
2015.06.30	V1.08	正式发布的第一个版本
2015.07.20	V1.09	1 修改 ANT_BIAS 管脚定义
		2 增加备份电源说明 3.2.3
		3 增加功耗模式说明 3.2.4
		4 增加芯片复位说明 3.3
		5 修改参考设计
		6 增加应用方案及建议章节
2015.07.20	V1.10	暂不支持无源晶体
2015.08.12	V1.11	1 修改默认支持晶振频率
		2 添加参考时钟晶振选用章节 10.3

2015.12.01	V1.12	1 修改 IO/POR 电源范围至 2.8~3.6V	
		2 增加 DCDC 说明	
		3 修改无源天线方案	
		4 增加 RTC 时钟直接输入说明	
		5 增加 GPIO 说明	
		6.增加功能组合说明,包括 单 GPS 定位,单 BDS	
		定位,GPS+BDS 双模定位,GPS+GLONASS 双模	
		定位,GPS+BDS+GLONASS 三模定位	
		7.更新第9章参考设计	
		8.更新第 10 章应用方案建议	
		9.其他文字完善	
2016.3.25	V1.13	1. 合并 9.1 有源天线方案, 9.2 无源天线方案为	
		新的 9.1 参考方案,并修改电路图	
		2. 修订 9.2 器件选型。	
2016.4.7	V1.14	1. 修改 9.1 方案图, 9.3 内容	
		2. 修改 10.1-10.7 内容	

联系方式

杭州中科微电子有限公司

Hangzhou Zhongke Microelectronics Co., Ltd
www.icofchina.com

地址(Add): 杭州市滨江区江南大道 3850 号创新大厦 10 楼

10F Innovation Tower, #3850 Jiangnan Avenue Binjiang,

Hangzhou, China

电话(Tel): +86-571-28918107

传真(Fax): +86-571-28918122