

Lineare Algebra I, Lösung zur 3. und 4. Aufgabe

Aufgabe 3 (4 Punkte). Sei (G, \circ) eine Gruppe und $A \subset G$. Sei

$$\hat{A} = \{a_1 \circ \ldots \circ a_n \mid n \in \mathbb{N} \text{ und } a_i \in A \text{ oder } a_i^{-1} \in A \text{ für alle } i = 1, \ldots, n\}.$$

Erst einmal ein Beispiel...

 $G=(\mathbb{Z},+),\ A=\{3,5\}\subset\mathbb{Z},\ A$ ist natürlich selbst keine Gruppe (kein neutrales Element der Addition). Was ist nun also \hat{A} ?

$$3 \in A, 5 \in A \implies 3, 5 \in \hat{A}.$$

$$-(-3) = 3 \in A \implies -3 \in \hat{A}.$$

$$5 \in A, -(-3) \in A \implies 2 = 5 + (-3) \in \hat{A}, 8 = 5 + 3 \in \hat{A}.$$

$$3 \in A, -(-3) \in A \implies 3 + (-3) \in \hat{A}$$

Also überzeugt man sich: $\hat{A} = \mathbb{Z}$.

Zeigen Sie:

- \hat{A} ist eine Gruppe. Es reicht zu zeigen, dass \hat{A} eine Untergruppe von G ist, d.h., dass \hat{A} abgeschlossen ist bezüglich der Verknüpfung \circ .
 - Seien $\hat{a}, \hat{b} \in \hat{A}$. Dann existieren $n, m \in \mathbb{N}$ und a_i, b_i mit $a_i \in A$ oder $a_i^{-1} \in A$ für $i = 1, \ldots, n$ und $b_j \in A$ oder $b_j^{-1} \in A$ für $j = 1, \ldots, m$, und

$$\hat{a} = a_1 \circ \ldots \circ a_n, \quad \hat{b} = b_1 \circ \ldots \circ b_m.$$

Also ist

$$\hat{a} \circ \hat{b} = a_1 \circ \ldots \circ a_n \circ b_1 \circ \ldots \circ b_m \in \hat{A}$$

da $\hat{a} \circ \hat{b}$ die Verknüpfung von n+m Elementen ist, die entweder selbst in A sind oder deren Inverse in A sind.

- Sei $\hat{a} = a_1 \circ \ldots \circ a_n \in \hat{A}$. Dann ist

$$\hat{a}^{-1} = a_n^{-1} \circ \dots \circ a_1^{-1} \in \hat{A}$$
,

da \hat{a}^{-1} die Verknüpfung von n Elementen ist, die entweder selbst in A sind oder deren Inverse in A sind.

- Damit ist \hat{A} abgeschlossen bezüglich der Verknüpfung \circ und somit eine Untergruppe von G. Damit ist \hat{A} eine Gruppe.
- Ist $H \subset G$ eine Untergruppe von G mit $A \subset H$ dann gilt auch $\hat{A} \subset H$.

Z.z: Für alle $\hat{a} \in \hat{A}$ gilt $\hat{a} \in H$.

Sei also $\hat{a} = a_1 \circ \ldots \circ a_n \in \hat{A}$. Da $a_i \in A \subset H$ oder $a_i^{-1} \in A \subset H$, ist also $a_i \in H$ oder $a_i^{-1} \in H$. Da H eine Gruppe ist, ist mit $a_i \in H$ auch $a_i^{-1} \in H$ (bzw. mit $a_i^{-1} \in H$ ist auch $a_i = (a_i^{-1})^{-1} \in H$). Damit ist

$$\hat{a} = \underbrace{a_1}_{\in H} \circ \dots \circ \underbrace{a_n}_{\in H} \in H.$$

Das heißt, \hat{A} ist die kleinste Untergruppe von G, die A enthält. Man nennt \hat{A} die von A erzeugte Untergruppe.

Wie sieht \hat{A} aus, wenn A einelementig ist?

Sei $A = \{g\}$ mit $g \in G$. Da \hat{A} alle Kompositionen von endlich vielen Elementen in A enthält, sind genau die Potenzen von g die Elemente von \hat{A} :

$$\hat{A} = \{ g^n \mid n \in \mathbb{Z} \} .$$

(Spezialfälle: Wenn g = e, dann ist $\hat{A} = \{e\}$. Wenn $g^n \neq e$ für ale $n \in \mathbb{Z}$, dann ist $|\hat{A}| = \infty$, sonst erhält man eine endliche Gruppe. Aufgabe 4 zeigt: \hat{A} ist isomorph zu einer zyklischen Gruppe).

Aufgabe 4 (4 Punkte). Sei G eine Gruppe und $A = \{g\}$ mit $g \in G$. Zeigen Sie: wird G von A erzeugt, d.h. $G = \hat{A}$, dann ist G isomorph zu \mathbb{Z} oder $\mathbb{Z}/q\mathbb{Z}$ mit $q \in \mathbb{N}, q \geq 1$.

Zunächst erhält man mit Aufgabe 3: $G = \{g^n \mid n \in \mathbb{Z}\}.$

Fallunterscheidung:

1. Fall: $|G| = \infty$

Definiere $\varphi: \mathbb{Z} \to G, m \mapsto g^m \in G$. Dann ist φ Gruppenhomomorphismus, da

$$\varphi(m+n) = g^{m+n} = g^m \cdot g^n = \varphi(m) \cdot \varphi(n)$$
.

Beh: φ ist injektiv:

$$\varphi(m) = \varphi(n) \implies g^m = g^n \stackrel{\text{Üb.}}{\Longrightarrow} e = g^m \cdot g^{-n} = g^{m-n}$$

Wäre $k=m-n\neq 0$, dann entält die Gruppe G wegen $g^{l+k}=g^l\cdot g^k=g^l$ für alle $l\in\mathbb{Z}$ höchstens k Elemente. Widerspruch! Also ist k=0, d.h. m=n, und damit ist φ injektiv.

Beh: φ ist surjektiv: Sei $h \in G$, d.h. es existiert $m \in \mathbb{Z}$ mit $h = g^m$. Für dieses gilt dann

$$\varphi(m) = g^m = h\,,$$

also ist φ surjektiv.

Da φ somit ein bijektiver Gruppenhomomorphismus ist, sind G und \mathbb{Z} isomorph.

2. Fall: $|G| = q < \infty$

Dann ist q die kleinste natürliche Zahl mit $q \ge 1$ und $g^q = e$ und es gilt $h^q = e$ für alle $h \in G$ (vergl. Übungsgruppen).

Definiere $\varphi: \mathbb{Z}/q\mathbb{Z} \to G, [m] \mapsto g^m$. Diese Abbildung ist wohldefiniert, da für $[m] = [\tilde{m}]$ gilt, daß $m = \tilde{m} + qk$ mit $k \in \mathbb{Z}$ und daher

$$\varphi([m]) = g^m = g^{\tilde{m}+qk} = g^{\tilde{m}} \cdot (g^q)^k = g^{\tilde{m}} \cdot e^k = g^{\tilde{m}}.$$

 φ ist Gruppenhomomorphismus, da

$$\varphi([m]+[n])\overset{\mathrm{Def\ von}\ +\ \mathrm{in}\ \mathbb{Z}/q\mathbb{Z}}{=}\varphi([m+n])=g^{m+n}=g^m\cdot g^n=\varphi([m])\cdot \varphi([n])\,.$$

Beh: φ ist injektiv: Seien $u,v\in\mathbb{Z}/q\mathbb{Z}$ mit $\varphi(u)=\varphi(v)$. Wähle Repräsentanten $m\in u$ und $n\in v$ so dass $0\leq n\leq m\leq q-1$ (geht: siehe Vl.). Dann gilt $g^m=g^n$, und damit (s.o.) $g^{m-n}=e$. Da q die kleinste natürliche Zahl ≥ 1 ist, für die $g^q=e$ ist also m-n=0. Damit ist φ injektiv.

Beh: φ ist surjektiv: Sei $h \in G$, d.h., es existiert $m \in \mathbb{Z}$ mit $h = g^m$. Dann gilt für $[m] \in \mathbb{Z}/q\mathbb{Z}$:

$$\varphi([m]) = g^m = h\,,$$

also ist φ surjektiv.

Da φ somit ein bijektiver Gruppenhomomorphismus ist, sind G und $\mathbb{Z}/q\mathbb{Z}$ isomorph.