

Mecânica do Voo

Estudo Simplificado do Movimento Látero-Direcional

Referências Bibliográficas

- ITEN 2.4: Paglione, P.; Zanardi, M. C., Estabilidade e Controle de Aeronaves, ITA, 1990.
- Nelson Flight Stability and Automatic Control
- Bernard Etkin, Lloyd Duff Reid, Dynamics of Flight Stability and Control, John Wiley & Sons, 3^a Ed, 1996.
- STEVENS, Brian L.; LEWIS, Frank L. Aircraft control and simulation. 2nd ed. Hoboken: John Wiley & Sons, 2003.

Faculdade UnB Gama 🌇

6.1. Movimento de rolamento puro:

Supondo-se que o avião dispõe de um único grau de liberdade em torno do eixo OX, suposto aqui como eixo principal de inércia, o movimento é portanto, regido somente pela equação do momento de rolamento, na qual:

 $I_{xz} = 0$ (0X é um eixo principal de inércia)

 $\delta_r = r = \beta = 0$ (um só grau de liberdade)

 $q=0\,$ (o avião é supostamente equilibrado longitudinalmente de maneira que a velocidade de arfagem seja nula)

Envolve só equação da velocidade de rolamento p:

$$\dot{p} - l_p p = l_{\delta_a} \, \delta_a$$

Movimento de rolamento puro:

$$\dot{p} - l_p p = l_{\delta_a} \, \delta_a$$

SOLUÇÃO É DADA PELA SOLUÇÃO DA EQUAÇÃO HOMOGÊNEA ($\dot p-l_p p=0$) MAIS UMA SOLUÇÃO PARTICULAR DA EQUAÇÃO NÃO HOMOGÊNEA ($\dot p-l_p p=l_{\delta_a} \, \delta_a$)

A SOLUÇÃO DE
$$\dot{p}-l_pp=0$$
 é $p(t)=K\,e^{l_p\,t}$

A resposta a uma entrada, do tipo degrau $\delta_{a,o}$, dos ailerons, a solução particular da equação:

$$p = -\frac{l_{\delta_a}}{l_p} \, \delta_{a,o}$$

Movimento de rolamento puro:

$$\dot{p} - l_p p = l_{\delta_a} \, \delta_a$$

A resposta a uma entrada do tipo degrau $\delta_{a,o}$, (com p=0 no instante inicial) pode ser escrita como:

$$p(t) = -\frac{l_{\delta_a}}{l_p} \left(1 - e^{l_p t} \right) \delta_{a,o}$$

$$l_p < 0, l_{\delta_a} < 0.$$

Consequentemente, para uma entrada degrau $\delta_{a,o}$ positiva dos ailerons (manche a esquerda), a velocidade de rolamento tende a um valor assintótico negativo (asa esquerda descendo).

EXEMPLO: Avião Airbus a uma deflexão $\delta_{a,o}=-5^\circ$ (manche a direita) Avião Mirage III a uma deflexão $\delta_{a,o}=-0.2^\circ$ (manche a direita), NAS condições de voo ($H_e=9120~km, M_e=0.8~\rightarrow~V_e=242,54~m/s$).

Movimento de rolamento puro:

$$p(t) = -\frac{l_{\delta_a}}{l_p} \left(1 - e^{l_p t} \right) \delta_{a,o}$$

EXEMPLO: Avião Airbus a uma deflexão $\delta_{a,o} = -5^{\circ}$ (manche a direita) Avião Mirage III a uma deflexão $\delta_{a,o}=-0.2^{\circ}$ (manche a direita), nas condições de voo ($H_e = 9120km, N_{Me} = 0.8 \rightarrow V_e = 242.54 m/s$).

AIRBUS

$$p = -9.316 (1 - e^{-1.492 t}) \delta_a$$

MIRAGE

$$p = -5,544 (1 - e^{-1,532 t}) \delta_a$$

$$l_p = \frac{\rho \, S \, V_e \, l^2}{2 \, I_x} \, C_{l_p}$$

$$l_{\delta_a} = \frac{\rho \, S \, V_e^2 \, l}{2 \, I_\chi} \, C_{l_{\delta_a}}$$

Movimento de rolamento puro:

$$p(t) = -\frac{l_{\delta_a}}{l_p} \left(1 - e^{l_p t} \right) \delta_{a,o}$$

EXEMPLO: Avião Airbus a uma deflexão $\delta_{a,o}=-5^\circ$ (manche a direita) Avião Mirage III a uma deflexão $\delta_{a,o}=-0.2^\circ$ (manche a direita), nas condições de voo ($H_e=9120km,N_{Me}=0.8 \rightarrow V_e=242.54~m/s$).

AIRBUS

$$p = -9.316 (1 - e^{-1.492 t}) \delta_a$$

MIRAGE

$$p = -55,44 (1 - e^{-1,532 t}) \delta_a$$

$$l_p = \frac{\rho \, S \, V_e \, l^2}{2 \, I_x} \, C_{l_p}$$

$$l_{\delta_a} = \frac{\rho \, S \, V_e^2 \, l}{2 \, I_x} \, C_{l_{\delta_a}}$$

6.2. MOVIMENTO ESPIRAL

Movimento espiral: envolve a equação de guinada e de cinemática:

Deseja-se fazer uma curva sem rolamento, apenas com β , ϕ , r. Supondo-se agora que β , p e r são pequenos e variam lentamente, então, nestas condições, os momentos das forças de inércia são pequenos e os momentos aerodinâmicos preponderantes.

O lado esquerdo das equações do movimento são desprezados.

Desprezando Y_{δ_r} e Y_{δ_a} , da equação de força lateral:

$$mV_e \cos\beta \left(\dot{\beta} - p \, sen\alpha_e + r \, cos\alpha_e\right) = \frac{1}{2} \rho_e SV_e^2 \, \left(C_{y_\beta} \, \beta + C_{y_{\delta_a}} \delta_a + C_{y_{\delta_r}} \delta_r\right) + \, m \, g \, sen \, \phi \cos\theta_e$$

Determina se:
$$Y_{\beta}\beta + g \phi = 0$$
 \Longrightarrow $\frac{\beta}{\phi} = -\frac{g}{Y_{\beta}} > 0,$ $Y_{\beta} < 0$

Por exemplo, se o avião está inclinado à direita ($\phi > 0$), surge uma derrapagem $\beta > 0$, devido à inclinação ϕ :

$$\beta = -\frac{g}{Y_{\beta}} \phi > 0$$

Devido à esta derrapagem β , aparecem dois momentos aerodinâmicos:

a) um momento de guinada que induz uma velocidade de guinada r:

$$n_{\beta} \beta + n_r r = 0$$

$$\frac{\mathbf{r}}{\beta} = -\frac{n_{\beta}}{n_{r}}$$

O nariz da aeronave gira a direita (r > 0).

b) um momento de rolamento devido ao efeito do diedro : $l_{eta} \, eta \, < 0$ pois $l_{eta} \, < 0$,

ROLAMENTO À ESQUERDA mas r gera um outro momento de rolamento l_r r > 0 ,

pois $l_r > 0$, ROLAMENTO À DIREITA

O ROLAMENTO É ENTÃO DADO POR: $l_{\beta} \beta + l_{r} r$

O ROLAMENTO É ENTÃO DADO POR: $l_{\beta} \beta + l_{r} r$

 $l_{\beta} \beta < 0$, ROLAMENTOÀ ESQUERDA.

 l_r r > 0 ROLAMENTO À DIREITA.

Se $l_{\beta} \beta + l_r r < 0$

Prevalece o rolamento à esquerda, que tenderá a levantar a asa direita, anulando φ

Mas
$$l_{\beta} \beta + l_{r} r = l_{\beta} \beta + l_{r} \frac{n_{\beta}}{n_{r}} \beta = \beta \left(l_{\beta} - l_{r} \frac{n_{\beta}}{n_{r}} \right) = \frac{\beta}{n_{r}} \left(l_{\beta} n_{r} - l_{r} n_{\beta} \right) < 0$$

Como
$$n_r < 0$$
 então $l_\beta \, n_{\rm r} \, - \, l_r \, n_\beta > \, 0$ \Longrightarrow $l_r \, n_\beta - \, l_\beta \, n_{\rm r} < \, 0$

$$Q_{r_{eta}}=l_r~n_{eta}-~l_{eta}~n_r~$$
 - Condiciona a estabilidade $Q_{r_{eta}}$ - Coeficiente de estabilidade estática espiral,

 $Q_{r_{\beta}} < 0$, ϕ TENDE A SE EQUILIBRAR.

$$Q_{r_{\beta}} > 0$$
, ϕ AUMENTA LENTAMENTE, β CRESCE CURVA SE FECHA

Não é correto falar em estabilidade estática , pois o efeito de ϕ no movimento de rolamento é indireto através de β e r.

RETOMANDO AS EQUAÇÕES DO MOVIMENTO, INCLUINDO OS TERMOS NA VELOCIDADE DE ROLAMENTO p E GUINADA r, com δ_a e δ_r nulos - as superfícies de controle são supostas em suas posições neutra :

$$V_e r - Y_{\beta} \beta - g \phi = 0$$
 (*)
 $l_{\beta} \beta + l_r r + l_p p = 0$ (**)
 $n_{\beta} \beta + n_r r + n_p p = 0$ (***)

Utilizando (**) e (***) obtemos:
$$Q_{r_{\beta}}r + Q_{p_{\beta}}p = 0$$
 (4 *) $Q_{p_{\beta}}\beta + Q_{p_{r}}r = 0$ (5*)

$$Q_{r_eta} = l_r \; n_eta - l_eta \, n_{
m r}$$
 sendo: $Q_{p_eta} = l_P \, n_eta - l_eta \, n_P$ $Q_{p_r} = l_P \, n_{
m r} - l_r \, n_P$

Eliminando
$$\beta$$
 de (*) e (5*) : $\left(V_e + Y_\beta \frac{Q_{p_r}}{Q_{p_\beta}}\right) r - g \ \phi = 0$

$$W = V + Y_{\beta} \frac{Q_{p_r}}{Q_{p_{\beta}}}$$

$$Wr - g \phi = 0$$

Derivando:
$$\dot{r} = \frac{g}{w}\dot{\phi}$$

Mas pela equação cinemática: $\dot{\phi}=p+tg\;\theta\;(q\;sen\;\phi+r)$ com as simplificações

assumidas: $\dot{\phi} = p$

Logo:
$$\dot{r} = \frac{g}{W}p$$

Combinando com (4*) :
$$\dot{r} + \frac{g}{w} \frac{Q_{r_{\beta}}}{Q_{p_{\beta}}} r = 0$$

CUJA SOLUÇÃO
$$r=\ r_0\,e^{at}$$
 com $a=-rac{g}{W}rac{Q_{r_{eta}}}{Q_{p_{eta}}}$

$$r = r_0 e^{at}$$

AS SOLUÇÕES PARA p, β , ϕ SÃO OBTIDAS COM O AUXÍLIO DAS EQUAÇÕES ANTERIORES

$$Q_{p_{\beta}}\beta + Q_{p_{r}}r = 0$$

$$\beta = -\frac{Q_{p_{r}}r_{0}}{Q_{p_{\beta}}}(e^{at})$$

$$Q_{r_{\beta}}r + Q_{p_{\beta}}p = 0$$

$$p = -\frac{Q_{r_{\beta}}r_{0}}{Q_{p_{\beta}}}(e^{at})$$

$$\dot{\phi} = p$$

$$\phi = -\frac{Q_{r_{\beta}}r_{0}}{Q_{p_{\alpha}}}(e^{at} - 1)$$

ANALISANDO O SINAL DE
$$a = -\frac{g}{W} \frac{Q_{r_{\beta}}}{Q_{p_{\beta}}}$$

- o coeficiente \mathcal{C}_{n_P} é, em geral pequeno.
- Logo, $Q_{p_{\beta}}=l_p \, n_{\beta}-l_{\beta} \, n_p$ tem o mesmo sinal que $n_{\beta} \, l_p$, ou seja, negativo.
- W é próximo de V (o termo $Y_{\beta} \frac{Q_{p_r}}{Q_{p_{\beta}}}$ é pequeno comparado a V).
- Assim, a tem o mesmo sinal que $Q_{r_\beta}=l_r$ $n_\beta-l_\beta\,n_{\rm r}$, e o movimento é amortecido se Q_{r_β} for negativo.

Exemplo 1: AIRBUS

$$I_{xz}=0, \qquad V=242,84m/s, \qquad H=9120~m$$
 $Q_{p_r}=0,5090 \quad ; \qquad Q_{p_\beta}=-4.529 \quad ; \qquad Q_{r_\beta}=-0,8577$ $1+\frac{Y_\beta}{V}\frac{Q_{p_r}}{Q_{p_\beta}}=1,0230, \qquad W=247,46$

Logo a = -0,0075

• Exemplo 2: MIRAGE III

$$l_{\beta} = -14,184$$
 ; $l_{P} = -1,532$; $l_{r} = 0,3677$

$$n_{\beta}=6,369$$
 ; $n_{P}=0,05055$, $n_{r}=-0,6434$, $Q_{p_{r}}=0,9671$; $Q_{p_{\beta}}=-9.0418$;

$$Q_{r_{\beta}} = -6,7648, \qquad \frac{y_{\beta}}{V_e} = -0,1622, \qquad 1 + \frac{Y_{\beta}}{V} \frac{Q_{p_r}}{Q_{p_{\beta}}} = 1,01753 \quad ; \quad W = 246,77$$

Logo a = -0,0297

Faculdade UnB Gama

6.3. Oscilação em derrapagem (Dutch Roll)

Admite se que a derrapagem está diretamente associada com a velocidade de guinada

Com simplificações, as equações que regem o movimento são:

$$\dot{p} = l_p p + l_r r + l_\beta \beta$$

$$\dot{r} = n_p p + n_r r + n_\beta \beta$$

$$\dot{\beta} = -r$$

Equação característica:

$$\begin{vmatrix} l_p - s & l_r & l_\beta \\ n_p & n_r - s & n_\beta \\ 0 & -1 & -s \end{vmatrix} = 0$$
$$(l_p - s)[s (n_r - s) - n_\beta] + n_p (l_\beta - s l_r) = 0$$

Oscilação em derrapagem

$$(l_p - s)[s (n_r - s) - n_\beta] + n_p (l_\beta - s l_r) = 0$$

Em geral, n_p é pequeno (como já visto). Desprezando-se este termo, obtém se as soluções aproximadas:

$$s = l_p$$

$$s^2 - n_r s + n_\beta = 0$$

Equação característica de grau 3, com uma raiz real (de rolamento puro) e

1 raiz complexa conjugada (movimento oscilatório amortecido)

Com
$$w_o = \sqrt{n_\beta}$$

$$\xi = -\frac{n_r}{2\sqrt{n_\beta}}$$

EXEMPLOS:

Para o avião Airbus nas condições de voo $V=242,84~m/s, H=9120 \mathrm{m}$, tem-se:

$$s^2 + 0.3266 s + 2.796 = 0$$

O que fornece $w_o=1,672$, $\xi=0,0977$ e as duas raízes $u\pm i\ v=-0,1633\pm i\ 1,6641$

O período é portanto, $T = \frac{2\pi}{1.6641} = 3.8 \, s$ e o movimento é fracamente amortecido.

Para o Mirage III, nas mesmas condições de voo, tem-se:

$$s^2 + 0,6434 s + 6,369 = 0$$

O que fornece $w_o = 2,524$, $\xi = 0,1275$ e as duas raízes $u \pm i \ v = -0,3217 \pm i \ 2,5031$

O período é portanto,
$$T = \frac{2\pi}{v} = 2.5 \ s$$

Faculdade UnB **Gama**

NA PRÁTICA NÃO SE DEVE UTILIZAR OS VALORES APROXIMADOS POIS APRESENTAM RESULTADOS GROSSEIROS, MAS AS RAÍZES DA EQUAÇÃO CARACTERÍSTICA COMPLETA:

$$(l_p - s)[s (n_r - s) - n_\beta] + n_p (l_\beta - s l_r) = 0$$

OBSERVAÇÃO

Movimento látero direcional livre é a superposição dos 3 modos:

- Rolamento puro,
- Modo espiral
- Oscilação de derrapagem (Dutch Roll)

7. MOVIMENTO LÁTERO DIRECIONAL COMPLETO (ITEM 2.5 DA APOSTILA)

Equações do movimento látero-direcional considerando $\cos \beta = 1$ e $\sin \beta = \beta$

$$\begin{split} \text{m } V_{\mathbf{e}}(\hat{\boldsymbol{\beta}} - \mathbf{p} \, \text{sen } \boldsymbol{\alpha}_{\mathbf{e}} + \mathbf{r} \, \text{cos } \boldsymbol{\alpha}_{\mathbf{e}}) &= \frac{1}{2} \, \rho_{\mathbf{e}} S V_{\mathbf{e}}^2 \, \left(C_{\mathbf{y}_{\boldsymbol{\beta}}} \boldsymbol{\beta} + C_{\mathbf{y}_{\boldsymbol{\delta} \mathbf{a}}} \cdot \delta_{\mathbf{a}} + C_{\mathbf{y}_{\boldsymbol{\delta} \mathbf{r}}} \, \delta_{\mathbf{r}} \right) &+ \\ &+ \text{mg sen } \boldsymbol{\phi} \, \text{cos} \, \boldsymbol{\theta}_{\mathbf{e}} \\ \\ I_{\mathbf{x}} \, \dot{\mathbf{p}} - I_{\mathbf{x} \mathbf{z}} \, \dot{\mathbf{r}} + (I_{\mathbf{z}} - I_{\mathbf{y}}) \, \mathbf{r} \mathbf{q}_{\mathbf{e}} - I_{\mathbf{x} \mathbf{z}} \, \mathbf{p} \, \mathbf{q}_{\mathbf{e}} = \frac{1}{2} \, \rho_{\mathbf{e}} S V_{\mathbf{e}}^2 \, \ell \left(C_{\ell_{\boldsymbol{\beta}}} \cdot \boldsymbol{\beta} + \right. \\ &+ C_{\ell_{\mathbf{p}}} \cdot \frac{\mathbf{p}\ell}{V_{\mathbf{e}}} + C_{\ell_{\mathbf{r}}} \cdot \frac{\mathbf{r}\ell}{V_{\mathbf{e}}} + C_{\ell_{\boldsymbol{\delta} \mathbf{a}}} \cdot \delta_{\mathbf{a}} + C_{\ell_{\boldsymbol{\delta} \mathbf{r}}} \cdot \delta_{\mathbf{r}}) \end{split}$$

Aproximação válida para $eta \leq 10^\circ$. Considerando ainda $\cos \varphi = 1$ e $\sin \varphi = \varphi$

Observação: Manobras normais para ângulos de inclinação lateral para aviões de transporte φ vai até 45° (AIRBUS por exemplo) e para aviões do tipo caça φ vai até 60° (Mirage III por exemplo)

Introduzindo a notação:

Faculdade UnB **Gama**

$$y_{\beta} = \frac{\rho_{e}^{SV_{e}^{2}}}{2m} c_{y_{\beta}}$$
; $y_{\delta a} = \frac{\rho_{e}^{SV_{e}^{2}}}{2m} c_{y_{\delta a}}$;

$$Y_{\delta r} = \frac{\rho_e S V_e^2}{2m} c_{Y_{\delta r}}$$

$$L_{\beta} = \frac{\rho_{e} SV_{e}^{2} \ell}{2} C\ell_{\beta} ; \quad N_{\beta} = \frac{\rho_{e} SV_{e}^{2} \ell}{2} C_{n_{\beta}} ;$$

$$L_{p}^{1} = \frac{\rho_{e} S V_{e} \ell^{2}}{2} C_{\ell_{p}}$$
; $N_{p}^{1} = \frac{\rho_{e} S V_{e} \ell^{2}}{2} C_{n_{p}}$;

$$L_{r}^{i} = \frac{\rho_{e} S V_{e} \ell^{2}}{2} C_{\ell_{r}}$$
; $N_{r}^{i} = \frac{\rho_{e} S V_{e} \ell^{2}}{2} C_{n_{r}}$;

$$L_{\delta a} = \frac{\rho_e S V_e^2 \ell}{2} C_{\ell_{\delta}} ; \quad N_{\delta a} = \frac{\rho_e S V_e^2 \ell}{2} C_{n_{\delta a}}$$

$$L_{\delta r} = \frac{\rho_e S V_e^2 \ell}{2} C_{\ell_{\delta r}} ; N_{\delta r} = \frac{\rho_e S V_e^2 \ell}{2} C_{n_{\delta r}} ,$$

Temos:

$$\hat{\beta} = \frac{g \cos \theta_e}{V_e} \phi + \frac{y_\beta}{V_e} \beta + p \sin \alpha_e - r \cos \alpha_e + \frac{y_{\delta a}}{V_e} \delta a + \frac{y_{\delta r}}{V_e} \delta r$$

$$I_{x}p - I_{xz}r = L_{\beta}\beta + (L_{p}^{i} + I_{xz}q_{e})p + |L_{r}^{i} - (I_{z} - I_{y})q_{e}|r + L_{\delta}a \cdot \delta a + L_{\delta}r \cdot \delta r$$

$$I_z r - I_{xz} p = N_\beta \beta + |N_p' - (I_y - I_x)q_e| p + (N_r' - I_{xz} q_e) r + N_{\delta a} \cdot \delta a + N_{\delta r} \cdot \delta r$$

$$\phi = q_e tg \theta_e \phi + p + r tg \theta_e$$

Universidade de Brasília Faculdade UnB Gama 💜

Definindo:

$$L_{p} = L'_{p} + I_{xz} q_{e} ; \qquad N_{p} = N'_{p} - (I_{y} - I_{x}) q_{e} ;$$

$$L_{r} = L'_{r} - (I_{z} - I_{y}) q_{e} ; \qquad N_{r} = N'_{r} - I_{xz} q_{e} , e$$

$$\ell_{x} = \frac{I_{z}L_{x} + I_{xz}N_{x}}{I_{x}I_{z} - I_{xz}^{2}} e \qquad n_{x} = \frac{I_{xz}L_{x} + I_{x}N_{x}}{I_{x}I_{z} - I_{xz}^{2}}$$

O índice x representa as variáveis $\beta, p, r, \delta_a, \delta_r$. LINEARIZA-SE AS EQUAÇÕES DO **MOVIMENTO**

$$\begin{cases} \dot{\phi} \\ \dot{\beta} \\ \dot{p} \\ \dot{r} \end{cases} = \begin{bmatrix} q_e t g \; \theta_e & 0 & 1 & t g \; \theta_e \\ \frac{g \cos \theta_e}{V_e} & \frac{y_\beta}{V_e} & sen \alpha_e & -cos \alpha_e \\ 0 & l_\beta & l_p & l_r \\ 0 & n_\beta & n_p & n_r \end{bmatrix} \begin{cases} \phi \\ \beta \\ p \\ r \end{cases} + \begin{bmatrix} 0 & 0 \\ \frac{y_{\delta_a}}{V_e} & \frac{y_{\delta_r}}{V_e} \\ l_{\delta_a} & l_{\delta_r} \\ n_{\delta_a} & n_{\delta_r} \end{bmatrix} \begin{cases} \delta_a \\ \delta_r \end{cases}$$

$$\dot{X} = A X + B U$$

RESPOSTA A PERTURBAÇÃO EXTERNA:

$$\dot{X} = A X$$

EQUAÇÃO CARACTERISTICA DE 4º ORDEM:

$$D = \begin{vmatrix} q_e t g \; \theta_e - s & 0 & 1 & t g \; \theta_e \\ \frac{g \cos \theta_e}{V_e} & \frac{y_\beta}{V_e} - s & sen \alpha_e & -cos \alpha_e \\ 0 & l_\beta & l_p - s & l_r \\ 0 & n_\beta & n_p & n_r - s \end{vmatrix} = 0$$

RESPOSTA A PERTURBAÇÃO EXTERNA:

$$\dot{X} = A X$$

EQUAÇÃO CARACTERISTICA DE 4ª ORDEM:

$$A_0 s^4 + A_1 s^3 + A_2 s^2 + A_3 s + A_4 = 0$$

CUJAS RAÍZES:

- uma raiz real negativa grande em valor absoluto: tal raiz corresponde ao movimento de rolamento puro;
- uma raiz real próxima de zero: tal raiz corresponde ao movimento espiral se ela for negativa, o movimento é amortecido;
- um par de raízes imaginárias conjugadas que correspondem à oscilação de derrapagem, também conhecida como oscilação lateral ou dutch roll.

EQUAÇÃO CARACTERISTICA DE 4º ORDEM:

$$A_0 s^4 + A_1 s^3 + A_2 s^2 + A_3 s + A_4 = 0$$

Sendo os coeficientes das equações característica:

$$A_{0} = 1$$

$$A_{1} = -\left(\frac{y_{\beta}}{V_{e}} + n_{r} + \ell_{p}\right) - q_{e} \operatorname{tg} \theta_{e}$$

$$A_{2} = -B_{\alpha} + Q_{pr} + \frac{y_{\beta}}{V_{e}} (\ell_{p} + n_{r}) + q_{e} \operatorname{tg} \theta_{e} \left| \ell_{p} + n_{r} + \frac{y_{\beta}}{V_{e}} \right|$$

$$A_{3} = -A_{\beta} - \frac{y_{\beta}}{V_{e}} Q_{pr} - \frac{q}{V_{e}} B_{\theta} + q_{e} \operatorname{tg} \theta_{e} \left| B_{\alpha} - Q_{pr} - \frac{y_{\beta}}{V_{e}} (\ell_{p} + n_{r}) \right|$$

$$A_{4} = -\frac{q}{V_{e}} T_{\beta} + q_{e} \operatorname{tg} \theta_{e} \left| A_{\beta} + \frac{y_{\beta}}{V_{e}} Q_{pr} \right|$$

onde:

$$B_{\alpha} = \ell_{\beta} \sin \alpha_{e} - n_{\beta} \cos \alpha_{e}$$

$$Q_{pr} = \ell_{p} n_{r} - \ell_{r} n_{p}$$

$$B_{\theta} = \ell_{\beta} \cos \theta_{e} + n_{\beta} \sin \theta_{e}$$

$$A_{\beta} = Q_{p\beta} \cos \alpha_{e} + Q_{r\beta} \sin \alpha_{e}$$

$$Q_{p\beta} = \ell_{p} n_{\beta} - \ell_{\beta} n_{p}$$

$$Q_{r\beta} = \ell_{r} n_{\beta} - \ell_{\beta} n_{r}$$

$$Q_{r\beta} = \ell_{r} n_{\beta} - \ell_{\beta} n_{r}$$

$$Q_{r\beta} = \ell_{r} n_{\beta} - \ell_{\beta} n_{r}$$

RESPOSTA A PERTURBAÇÃO EXTERNA:

SOLUÇÕES DO TIPO EXPONENCIAL E SENOIDAL.

$$X = A e^{s1t} + B e^{s2t} + K e^{ut} sen (vt + C)$$

APLICAÇÃO: AIRBUS

CONDIÇÕES DE VOO: V = 242,8 m/s H = 9120m

$$F_e=85057\,N$$
 ; $\alpha_e=3.838^\circ$ $\theta_e=\alpha_e=3.838^\circ$ e $q_e=0$

$L_{\beta} = -3.0111 \times 10^7$	$N_{\beta} = 4,0843 \times 10^7$	
$L_p = -8,2079 \times 10^6$	$N_p = -9,4707 \times 10^6$	
$L_r = 1.831 \times 10^6$	$N_r = -4,7383 \times 10^6$	
$y_{\beta} = -43,811$	$l_{\beta} = -5.4927$	$n_{\beta} = 2,8085$
$l_p = -1,492$	$n_p = -6,192 \times 10^{-2}$	
$l_r = 3,3487$	$n_r = -3,2734 \times 10^{-1}$	$y_{\beta}/V_e = -1,8063 \times 10^{-1}$

A equação característica torna-se então:

$$s^4 + 2.0 s^3 + 4.0076 s^2 + 4.8836 s + 2.2331 \times 10^{-2} = 0$$

raízes são:

$$a=-4,59 \times 10^{-3} \Rightarrow \text{ m\'odulo espiral}$$

 $b=-1,50 \Rightarrow \text{rolamento puro}$
 $u \pm i \ v = -2,50 \times 10^{-1} \pm i \ 1,79 \Rightarrow \text{dutch roll}$

módulo espiral fracamente amortecido (
$$T_{1/2} = \frac{0.693}{a} = 151s$$
)

rolamento puro bastante amortecido (
$$T_{1/2} = \frac{0.693}{b} = 0.46s$$
)

dutch roll amortecido após três períodos amplitude reduzida a 7% do valor inicial ($T=\frac{2\pi}{\omega}=2,52s$)

RESPOSTA AOS CONTROLES DE AILERON E LEME:

Aplicação da transformada de Laplace, construção das funções de transferência e aplicação de transformada inversa.

Deve se conhecer o tipo de atuação nos comandos de controle.

$$\Delta_{i}(s) = \frac{a}{s} + \frac{b-a}{s} e^{-sT_{1}} - \frac{b}{s} e^{-sT_{2}}$$

Mecânica do Voo: Estudo Simplificado do Movimento Látero-Direcional

Equação do movimento látero-direcional:

$$\begin{cases} \dot{\phi} \\ \dot{\beta} \\ \dot{p} \\ \dot{r} \end{cases} = \begin{bmatrix} q_e t g \ \theta_e & 0 & 1 & t g \ \theta_e \\ \frac{g \cos \theta_e}{V_e} & \frac{y_\beta}{V_e} & sen \alpha_e & -cos \alpha_e \\ 0 & l_\beta & l_p & l_r \\ 0 & n_\beta & n_p & n_r \end{bmatrix} \begin{cases} \phi \\ \beta \\ p \\ r \end{cases} + \begin{bmatrix} 0 & 0 \\ \frac{y_{\delta_a}}{V_e} & \frac{y_{\delta_r}}{V_e} \\ l_{\delta_a} & l_{\delta_r} \\ n_{\delta_a} & n_{\delta_r} \end{bmatrix} \begin{cases} \delta_a \\ \delta_r \end{cases}$$

Aplicando a transformada de Laplace

$$\begin{bmatrix} q_e t g \ \theta_e - s & 0 & 1 & t g \ \theta_e \\ \frac{g \cos \theta_e}{V_e} & \frac{y_\beta}{V_e} - s & sen \alpha_e & -cos \alpha_e \\ 0 & l_\beta & l_p - s & l_r \\ 0 & n_\beta & n_p & n_r - s \end{bmatrix} \begin{pmatrix} \phi \\ \beta \\ p \\ r \end{pmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{y_{\delta_a}}{V_e} & \frac{y_{\delta_r}}{V_e} \\ l_{\delta_a} & l_{\delta_r} \\ n_{\delta_a} & n_{\delta_r} \end{bmatrix} \begin{pmatrix} \delta_a \\ \delta_r \end{pmatrix} = 0$$

Funções de transferências

a) Ângulo de rolamento ϕ

$$G_{\varphi\delta_i} = \frac{\varphi}{\delta_i} = \frac{\begin{vmatrix} 0 & 0 & 1 & tg \theta_e \\ -\frac{y_{\delta_i}}{V_e} & \frac{y_{\beta}}{V_e} - s & sen\alpha_e & -cos\alpha_e \\ -l_{\delta_i} & l_{\beta} & l_p - s & l_r \\ -n_{\delta_i} & n_{\beta} & n_p & n_r - s \end{vmatrix}}{D}$$

Que pode ser escrita como:

$$\mathbf{D.G_{\phi\delta i}} = \frac{1}{\cos\theta_e} \left| \Delta_{\theta i} s^2 + (\frac{\mathbf{Y_{\delta i}}}{\mathbf{V_e}} B_{\theta} - \frac{\mathbf{Y_{\beta}}}{\mathbf{V_e}} \Delta\theta_i + \mathbf{T_{\delta i}}) \right| s +$$

$$+\frac{Y_{\delta i}}{V_{e}}T_{\beta} - \frac{Y_{\beta}}{V_{e}}T_{\delta i} - Q_{\beta \delta i} \cos (\theta_{e} - \alpha_{e})$$

Onde:

$$\delta\theta_a = \ell_{\delta a} \cdot \cos\theta_e + n_{\delta a} \cdot \sin\theta_e$$

$$\Delta\theta_r = \ell_{\delta r} \cos\theta_e + n_{\delta r} \sin\theta_e$$

$$T_{\delta a} = Q_{r_{\delta a}} \cos \theta_{e} - Q_{p_{\delta a}} \sin \theta_{e}$$

$$T_{\delta r} = Q_{r_{\delta r}} \cos \theta_{e} - Q_{p_{\delta a}} \sin \theta_{e}$$

$$Q_{r_{\delta a}} = \ell_r \cdot n_{\delta a} - \ell_{\delta a} \cdot n_r$$

$$Q_{p_{\delta a}} = \ell_p \cdot n_{\delta a} - \ell_{\delta a} \cdot n_p$$

$$Q_{p_{\delta r}} = \ell_p \cdot n_{\delta r} - \ell_{\delta r} \cdot n_p$$

No caso de δ_a :

$$D.G_{\phi \delta a} = K | s^2 + .2\xi_{\dot{\rho}} \omega_{\rho} s + \omega_{\dot{\rho}}^2 |$$

com

$$\omega_{\rho}^{2} = \frac{\frac{Y_{\delta a}}{V_{e}} T_{\beta} - \frac{Y_{\beta}}{V_{e}} T_{\delta a} - Q_{\beta \delta a} - \cos (\theta_{e} - \alpha_{e})}{\Delta \theta_{a}}$$

e

$$2\xi_{\rho} \omega_{\rho} = \frac{\frac{Y_{\delta a}}{V_{e}} B_{\theta} - \frac{Y_{\beta}}{V_{e}} \Delta \theta_{a} + T_{\delta a}}{\Delta \theta_{a}}$$

O denominador D:

$$D = (s-a)(s-b)(s^2 + 2\omega_D \cdot \xi_D s + \omega_D^2)$$

sendo:

a ≜ é a raiz correspondente ao modo espiral,

b ≜ é a raiz correspondente ao modo de rolamento,

ξ_D ≜ ë o amortecimento reduzido da oscilação de derrapagem (dutch roll ⇒ índice D!)

 $\omega_{D} \stackrel{\triangle}{=} = a$ frequência natural de tal modo.

E a função de transferência:

$$G_{\phi \delta a} = k \frac{s^2 + 2\xi_p \omega_p s + \omega_p^2}{(s-a)(s-b)(s^2+2\xi_p \omega_p s + \omega_p^2)}$$

Supondo as condições de voo e os coeficientes aerodinâmicos sejam tais que:

$$\frac{\omega_{\rho}}{\omega_{D}} = 1 \qquad e \qquad \frac{\xi_{\rho}}{\xi_{D}} = 1$$

Então, a função de transferência ficaria da forma:

$$G_{\phi\delta a} = \frac{k}{(s-a)(s-b)}$$

A resposta oscilatório a uma ação dos ailerons é suprimida, ou seja, ailerons não excitam mais o modo de vibração dutch roll, a medida que a relação $\frac{\omega_\rho}{\omega_D}$ e $\frac{\xi_\rho}{\xi_D}$ se aproxima da unidade a pilotagem se torna mais apreciável.

Essa é uma característica desejável na qualidade de voo látero-direcional

b) Ângulo de derrapagem β

Função de transferência

$$\text{D.G}_{\beta\delta\mathbf{i}} = \frac{y_{\delta\mathbf{i}}}{V_{\mathbf{e}}} \, \, \text{s}^{3} + \left[\Delta_{\alpha_{\mathbf{i}}} - (n_{\mathbf{r}} + \, \ell_{\mathbf{p}}) \frac{y_{\delta\mathbf{i}}}{V_{\mathbf{e}}} \, - \, q_{\mathbf{e}} \, \, \text{tg} \, \, \theta_{\mathbf{e}} \, \, \frac{y_{\delta\mathbf{i}}}{V_{\mathbf{e}}} \, \right] \, \, \mathbf{s}^{2}$$

$$+ \left\{ A_{\delta_{\dot{1}}} + \frac{Y_{\delta\dot{1}}}{V_{e}} Q_{pr} + \frac{g}{V_{e}} \Delta_{\theta\dot{1}} + q_{e} \text{ tg } \theta_{e} \left[\frac{Y_{\delta\dot{1}}}{V_{e}} (n_{r} + \ell_{p}) - \frac{1}{2} (n_{r} + \ell_{p}) \right] \right\}$$

$$-\Delta_{\alpha_{i}} \right] s + \frac{g}{V_{e}} T_{\delta i} - q_{e} tg \theta_{e} (A_{\delta i} + \frac{Y_{\delta i}}{V_{e}} Q_{pr})$$

c) Velocidade de rolamento p

Função de transferência

$$D.G_{p\delta_{\dot{\mathbf{i}}}} = \ell_{\delta\dot{\mathbf{i}}}. s^{3} + \left[Q_{r\delta\dot{\mathbf{i}}} + \frac{Y_{\delta\dot{\mathbf{i}}}}{V_{e}} \ell_{\beta} - \frac{Y_{\beta}}{V_{e}} \ell_{\delta\dot{\mathbf{i}}} - q_{e} tg \theta_{e} \ell_{\delta\dot{\mathbf{i}}}\right] s^{2} +$$

$$-\frac{Y_{\delta i}}{V_{e}} \ell_{\beta} - Q_{r\delta i}) \right] s + \frac{g}{V_{e}} sen \theta_{e} Q_{\beta \delta i} +$$

+
$$q_e tg \theta_e (\frac{y_\beta}{v_e} Q_{r\delta i} - \frac{y_{\delta i}}{v_e} Q_{r\beta} + cos \theta_e Q_{\beta \delta i})$$

d) Velocidade de guinada r

Função de transferência

$$D.G_{r\delta i} = n_{\delta i} s^{3} + \left[\frac{Y_{\delta i}}{V_{e}} n_{\beta} - \frac{Y_{\beta}}{V_{e}} n_{\delta i} - Q_{p\delta i} - q_{e} tg\theta_{e} n_{\delta i} \right] s^{2} +$$

$$\times \left(\frac{Y_{\beta}}{V_{e}} \dot{n}_{\delta i} + Q_{p\delta i} - \frac{Y_{\delta i}}{V_{e}} n_{\beta}\right) s - \frac{g}{V_{e}} \cos \theta_{e} Q_{\beta \delta i} +$$

+
$$q_e$$
 tg $\theta_e (\frac{y_{\delta i}}{v_e} Q_{p_{\beta}} + \text{sen } \theta_e Q_{\beta \delta i} - \frac{y_{\beta}}{v_e} Q_{p \delta i})$

Onde:

$$\begin{aligned} & Q_{r\delta i} = \ell_{r}.n_{\delta i} - \ell_{\delta i}.n_{r}; \quad A_{\delta i} = Q_{p\delta i}\cos\alpha_{e} + Q_{r\delta i}\sin\alpha_{e} \\ & Q_{p\delta i} = \ell_{p}.n_{\delta i} - \ell_{\delta i}.n_{p} \\ & Q_{g\delta i} = \ell_{g}.n_{\delta i} - \ell_{\delta i}.n_{g} \\ & \Delta\alpha_{i} = \ell_{\delta i}\sin\alpha_{e} - n_{\delta i}\cos\alpha_{e} \end{aligned}$$

Pode-se calcular a resposta da aeronaves através de uma variação nos controles látero-direcionais:

$$\Delta_{i}(s) = \int_{0}^{\infty} e^{-st} \delta_{i}(t) dt = F | \delta(t) |$$

Se a função de transferência de um dos quatro parâmetros φ,β,p e r é descrita por:

$$G_{x\delta} = \frac{N(s)}{D(s)}$$

x(t) é a transformada de Laplace inversa de $\frac{N(s)}{D(s)}\Delta_i(s)$:

$$x(t) = F^{-1} \left| \frac{N(s)}{D(s)} \Delta_{i}(s) \right|$$

Deve se conhecer o tipo de atuação nos comandos de controle.

A transformada inversa de $\frac{1}{s} \frac{N(s)}{D(s)}$, onde N(s) é um polinômio de terceiro grau e D(s) é um polinômio de quarto grau que têm duas raízes reais a e b (modo espiral e de rolamento, respectivamente) e duas raízes complexas conjugadas $u \pm iv$ (dutch roll), assim:

$$\frac{1}{s} F(s) = \frac{N_0 s^3 + N_1 s^2 + N_2 s + N_3}{s(s-a)(s-b)[(s+u)^2 + v^2]}$$

A decomposição em frações parciais é dada por.

$$\frac{1}{s}$$
 F(s) = $\frac{P}{s}$ + $\frac{A}{s-a}$ + $\frac{B}{s-b}$ + $\frac{Qs + R}{(s+u)^2 + v^2}$

A transformada de Laplace inversa resulta em.

$$f(t) = P + Ae^{at} + Be^{bt} + Ke^{ut} sen (vt + \psi)$$

Faculdade UnB Gama 💜

$$f(t) = P + Ae^{at} + Be^{bt} + Ke^{ut} sen (vt + \psi)$$

onde:

$$P = \frac{N_3}{ab (u^2 + v^2)}$$

$$A = \frac{N_0 a^3 + N_1 a^2 + N_2 a + N_3}{a(a-b) |(a-u)^2 + v^2|}$$

$$B = \frac{N_0b^3 + N_1b^2 + N_2b + N_3}{b(b-a)|(b-u)^2 + v^2|}$$

K e ψ são dados por:

K (cos
$$\psi$$
 + i sen ψ) = $\frac{1}{v} \frac{N_0 Z^3 + N_1 Z^2 + N_2 Z + N_3}{Z(z-a) (z-b)}$

onde:

$$z = u + iv$$

Para f(0) = 0:

$$f(t) = A(e^{at}-1) + B(e^{bt}-1) + K e^{ut} | sen(vt+\psi) - sen \psi |$$

APLICAÇÃO AO MIRAGE

Condições de Voo:

$$H = 9120m$$
, $Ve = 242, 5 m/s$, $\rho = 0.4583 kg/m^3$, $\alpha_e = 3.838^\circ$

As raízes da equação características são então:

$$a = -2,5028 \times 10^{-2}$$
 (movimento espiral)

b = -1,4559 (movimento de rolamento)

$$u \pm i v = -0.424226 \pm i \ 2.5853$$
 (dutch roll) $\rightarrow \xi_D = 0.16194$, $\omega_D = 2.6198$, $T = 2.43s$

Os coeficientes que intervêm no cálculo das raízes e das funções de transferência:

$l_{eta}=-12,988$	$n_{eta}=5,9807$	$\frac{y_\beta}{V_e} = -0,16223$
$l_p = -1,531$	$n_p = 4,6235 \times 10^3$	
$l_r=0,24042$	$n_r=0,6362$	
$l_{\delta_a}=-85,438$	$n_{\delta_a}=-2,5631$	$\frac{y_{\delta_a}}{V_e} = 2,7039 \times 10^{-3}$
$l_{\delta_r}=4,4001$	$n_{\delta_r}=-3,4773$	$\frac{y_{\delta_r}}{V_e}=2,0279\times 10^{-2}$

Mecânica do Voo: Estudo Simplificado do Movimento Látero-Direcional

Numeradores das oito funções de transferência:

٠.		, ф	β	р	r	
δa	No	0	2,7039.10 ⁻³	-8,5438.10 ¹	-2,5631	
	N ₁	-8,5610.10 ¹	-3,1362	-6,8867:10 ¹	-4,7188	
	N ₂	-6,9182.10 ¹	-2,8087	-5,5192.10 ²	-3,6979.101	
	N ₃	-5,5439.10 ²	-2,2294	1,4678	-2,1954.10 ¹	
⁶ r	N ₀	.0.	2,0279.10-2	4,4001	-3,4773	
	N ₁	4,1676	3,8071	2,4143	-5,7463	
	N ₂	2,0301	5,6104	-1,8522.10 ¹	-1,9263	
	N ₃	- 1,8651.10¹	6,4899.10-2	5,0559.10-2	-7,5621.10	

Para o caso da função de transferência $G_{\varphi\delta_a}$, nota-se que:

$$\omega_{
ho} = 2,5448$$

$$\xi_{\rho} = 0.15878$$

$$\frac{\omega_{\rho}}{\omega_{D}} = 0.97136$$

$$\frac{\xi_{\rho}}{\xi_{D}} = 0.98047$$

A) Deflexão dos ailerons do tipo degrau $\delta_a=-0$, 1° .

B) Deflexão dos aileron do tipo PULSO $\delta_a=-0,1^\circ,e~T=1,25s$

C) deflexão do tipo

$$\delta_a=-0,1^\circ, \qquad com \quad \Delta T_1=1,25s, \ \delta_a=0 \ com \Delta T_2=0,1s$$
 Seguida de função degrau $\delta_a=0,1$

D) deflexão do tipo:

$$egin{aligned} \delta_a = -0, 1^\circ, & com & \Delta T_1 = 1, 25s, \ \delta_a = 0 & com \, \Delta T_2 = 0, 1s \end{aligned}$$
 Seguida de pulso $\delta_a = 0, 1 & com \, \Delta T_3 = 1, 25s,$

Reposta a uma deflexão do tipo A dos ailerons ($\delta_a = -0, 1^\circ$):

$$f(t) = A(e^{at}-1) + B(e^{bt}-1) + K e^{ut} | sen(vt+\psi) - sen \psi |$$

	A	В	ĸ	ψ(rad) _.
φ ο	2,2555 10 ³	-3,9354.10 ¹	6,6802.10	1,9095
β °	8,8189	-2,9717.10-1	3,9312.10-1	1,6127
p °/s	-6,2191.10	5,7170.101	1,8065	-2,6525
r °/s	.8,5828.10 ¹	1,8458	9,0502.10-1	1,2691.10-1

ii. Reposta a uma deflexão do tipo A do leme $(\delta_r=1^\circ)$:

$$f(t) = A(e^{at}-1) + B(e^{bt}-1) + K e^{ut} | sen(vt+\psi) - sen \psi |$$

G.	A	В .	. к	ψ
¢ °	7,6309.10 ¹	-7,9146.10 ⁻¹	9,4861.10-1	-1,4237
β °	2,9846.10-1	-5,9779.10 ⁻³	5,5823.10-1	-1,7204
p °/s	-2,1040	1,1498	2,5653	2,9755.10 ⁻¹
r °/s	2,9037	3,7120.10-2	1,2851	3,0770

Faculdade UnB Gama 🌇

Influência da velocidade de arfagem q_e :

Supondo que o Mirage III efetue uma manobra com um fator de carga igual

a
$$n = 4$$
:

$$\alpha_{e} = 15.3^{\circ}$$

E a velocidade de arfagem

$$q_e = \frac{g}{V}(n-1) = 0,1213 \ rad/s$$

O ângulo de arfagem θ_e , no momento onde a aeronave está no ponto mais baixo da manobra ($\gamma=0$). Consequentemente:

$$q_e \tan \theta_e = 3.3184 \times 10^{-2} \ rad/s$$

Nessa condição temos os coeficiente L e N

Faculdade UnB Gama 😗

$$L_{\beta} = -1,2739 \cdot 10^{5}$$
 $N_{\beta} = 3,8217 \cdot 10^{5}$ $L_{p} = -1,3569 \cdot 10^{4}$ $N_{p} = -2,4253 \cdot 10^{3}$ $N_{r} = -3,4822 \cdot 10^{4}$

E os coeficientes ℓ e n:

$$\ell_{\beta} = -1,2958 \cdot 10^{-1}$$
 $n_{\beta} = 5,9807$
 $\ell_{p} = -1,5249$
 $n_{p} = -8,6168 \cdot 10^{-2}$
 $\ell_{r} = 1,5833 \cdot 10^{-1}$
 $n_{r} = -6,4229 \cdot 10^{-1}$

$$y_{B}/v_{e} = -1,6223 \cdot 10^{-1}$$

A equação característica se torna:

$$s^4 + 2.2962 s^3 + 10.455 s^2 + 12.073 s - 0.2191 = 0$$

Cujas raízes são:

$$a = 0,017873$$
 (a' = -2,50 . 10^{-2})
 $b = -1,3343$ (b' = -1,46)
 $u \pm iv = -0,48993 \pm i \ 2,9915$ (T = 2,1 s;)
(u'± iv' = -0,424 ± i 2,59) (T' = 2,43 s !)

Constata-se que a aeronave tornou-se ligeiramente instável no modo espiral, o amortecimento do rolamento diminui em valor absoluto e a oscilação de derrapagem (dutch roll) é mais amortecida embora o seu período tenha diminuído ligeiramente

Considere agora um avião fictício com uma massa $m=8000\ kg$ que voa a H=

$$65000\,ft\,\left(\rho=0.0907\frac{kg}{m^3}\right)$$
, $M=2\,(V=590.14\,m/s)$ e que possui os seguintes momento de

inércias no sistema do avião e características aerodinâmicas.

$$I_{x} = 0.45 \cdot 10^{4} \text{ kgm}^{2}$$
; $I_{y} = 6.5 \cdot 10^{4} \text{ kgm}^{2}$;

$$I_z = 6.95 \cdot 10^4 \text{ kgm}^2$$
 e $I_{xz} = 5.75 \cdot 10^3 \text{ kgm}^2$.

$$C_D = 0.0175 + 0.4 C_L^2$$
; $S = 25 m^2$ e $\ell = 5 m$, $\alpha_F = 2^0$

$$c_{y_{\beta}} = -0.6$$
; $c_{\ell_{\beta}} = -0.03$; $c_{n_{\beta}} = 0.08$

$$c_{L} = \frac{\alpha}{30}$$
 ; $c_{\ell_{p}} = -0.12$; $c_{n_{p}} = 0.055$ $c_{n_{r}} = 0.055$

$$|\alpha| = 0$$
; $C_{\ell_r} = 0.06$ $C_{n_r} = -0.7$

i. Voo horizontal permanente

$$F_e = 12988 \text{ N}$$
 ; $\ell_{\beta} = -1,1468.10^{+1}$; $n_{\beta} = 1,3233$
 $\alpha = 5^{\circ},827$; $\ell_{p} = -4,7978.10^{-1}$; $n_{p} = -2,6459.10^{-2}$
 $\frac{Y_{\beta}}{V_{e}} = -5,0171.10^{-2}$; $\ell_{r} = 8,6702.10^{-3}$; $n_{r} = -1,6772.10^{-1}$

Equação característica do movimento látero direcional:

$$s^{4} + 0,69767 s^{3} + 2,5939 s^{2} + 1,3190s + 3,0026.10^{-2} = 0$$

Cujas raízes são:

$$a = -0.02388$$
 . $u = -0.08465$ $v = 1.5765$ $T = 3.99 s!$

$$a = -0,02388$$
 . $u = -0,08465$ $v = 1,5765$ $(T = 3,99 s!)$

Constata-se que o movimento de dutch roll é pouco amortecido de modo que o amortecimento do modo de rolamento é igualmente fraco.

i. Voo a n = -1

$$F_e = 13035 \text{ N}$$
 $\ell_{\beta} = -1,1468.10^1$; $n = 1,3233$
 $\alpha = -5^{\circ},895$ $\ell_{p} = -4,8593.10^{-1}$; $n_{p} = 1,9634.10^{-3}$
 $\frac{Y_{\beta}}{V_e} = -5,0171.10^{-}$ $\ell_{r} = 4,9763.10^{-2}$; $n_{r} = -1,6157.10^{-1}$

Equação característica do movimento látero direcional a n=-1:

$$s^4 + 0.70282 s^3 + 0.2529 s^2 + 0.6307 s + 3.2852.10^{-2} = 0$$

Cujas raízes a n = -1 são:

$$a = -0,05306$$
 $u = 0,1879$ $b = -1,0255$ $v = 0,784$ $(T = 8,33 s!)$

$$a = -0.05306$$
 $u = 0.1879$ $v = 0.784$ $(T = 8.33 s!)$

O dutch roll se tornou claramente divergente a n=-1, a velocidade de arfagem a

$$M=2$$
, na altitude dada é $q_e=-0.033235\frac{rad}{s}$.

Contata-se que o modo de oscilação dutch roll torna-se dinamicamente instável para um fator de carga ligeiramente negativo.

