

Started on	Sunday, 11 February 2024, 7:31 PM
State	Finished
Completed on	Sunday, 11 February 2024, 8:36 PM
Time taken	1 hour 4 mins
Marks	20.00/20.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 10.00 out of 10.00

We define super digit of an integer $m{x}$ using the following rules:

Given an integer, we need to find the super digit of the integer.

- If \boldsymbol{x} has only $\boldsymbol{1}$ digit, then its super digit is \boldsymbol{x} .
- Otherwise, the super digit of $m{x}$ is equal to the super digit of the sum of the digits of $m{x}$.

For example, the super digit of 9875 will be calculated as:

Example

```
n = 9875'
k = 4
```

The number p is created by concatenating the string n k times so the initial p = 9875987598759875

All of the digits of p sum to 116. The digits of 116 sum to 8. 8 is only one digit, so it is the super digit.

Function Description

Complete the function superDigit in the editor below. It must return the calculated super digit as an integer.

superDigit has the following parameter(s):

- string n: a string representation of an integer
- int k: the times to concatenate $m{n}$ to make $m{p}$

Returns

• int: the super digit of $m{n}$ repeated $m{k}$ times

Input Format

The first line contains two space separated integers, \boldsymbol{n} and \boldsymbol{k} .

Constraints

- $1 \le n < 10^{100000}$
- $1 \le k \le 10^5$

Sample Input 0

148 3

Sample Output 0

3

Explanation 0

Here n=148 and k=3, so p=148148148.

Sample Input 1

Sample Output 1

8

Sample Input 2

```
123 3
```

Sample Output 2

9

Explanation 2

```
Here n=123 and k=3, so p=123123123.
```

For example:

Input	Result
148 3	3
9875 4	8
123 3	9

Answer: (penalty regime: 0 %)

Reset answer

42 - {

```
1
   #include <bits/stdc++.h>
 2
 3
    using namespace std;
 5
    string ltrim(const string &);
 6
    string rtrim(const string &);
 7
    vector<string> split(const string &);
 8
9 ,
     * Complete the 'superDigit' function below.
10
11
     * The function is expected to return an INTEGER.
12
13
     ^{st} The function accepts following parameters:
14
     * 1. STRING n
     * 2. INTEGER k
15
16
17
    string concatenate(string n, int k)
18 🔻
        string result = "";
19
        for (int i = 0; i < k; i++)
20
21 v
22
            result += n;
23
24
        return result;
25
    }
26
    int superDigit(string n)
27
28 ₹
        if (n.length() == 1)
29
30
        {
            return stoi(n);
31
32
33
        int sum = 0;
34
        for (char digit : n)
35 ,
36
            sum += (digit - '0');
37
38
        return superDigit(to_string(sum));
    }
39
40
41
    int main()
```


	Input	Expected	Got	
~	148 3	3	3	~
~	9875 4	8	8	~
~	123 3	9	9	~

Passed all tests! ✓

Correct

Marks for this submission: 10.00/10.00.

Question 2

Correct

Mark 10.00 out of 10.00

Find the number of ways that a given integer, X, can be expressed as the sum of the N^{th} powers of unique, natural numbers.

For example, if X=13 and N=2, we have to find all combinations of unique squares adding up to 13. The only solution is 2^2+3^2 .

Function Description

Complete the *powerSum* function in the editor below. It should return an integer that represents the number of possible combinations.

powerSum has the following parameter(s):

- X: the integer to sum to
- N: the integer power to raise numbers to

Input Format

The first line contains an integer \boldsymbol{X} .

The second line contains an integer N.

Constraints

- $1 \le X \le 1000$
- $2 \le N \le 10$

Output Format

Output a single integer, the number of possible combinations caclulated.

Sample Input 0

10

Sample Output 0

1

Explanation 0

If X = 10 and N = 2, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers.

$$10 = 1^2 + 3^2$$

This is the only way in which 10 can be expressed as the sum of unique squares.

Sample Input 1

100

Sample Output 1

3

Explanation 1

$$100 = (10^2) = (6^2 + 8^2) = (1^2 + 3^2 + 4^2 + 5^2 + 7^2)$$

Sample Input 2

100

Sample Output 2

1

Explanation 2

100 can be expressed as the sum of the cubes of 1, 2, 3, 4.

(1+8+27+64=100). There is no other way to express 100 as the sum of cubes.

For example:

Input	Result
10	1
100	3
100	1

Answer: (penalty regime: 0 %)

Reset answer

```
1
    #include <bits/stdc++.h>
 3
    using namespace std;
    string ltrim(const string &);
 5
    string rtrim(const string &);
 7
 8 ,
     * Complete the 'powerSum' function below.
9
10
     * The function is expected to return an INTEGER.
11
12
     * The function accepts following parameters:
      * 1. INTEGER X
13
     * 2. INTEGER N
14
15
16
    int powerSumUtil(int X, int N, int num)
17
18 🔻
19
        int value = pow(num, N);
20
        if (value == X)
21
        {
22
            return 1;
23
24
        else if (value > X)
25
        {
26
            return 0;
27
        }
28
        else
29
30
            return powerSumUtil(X - value, N, num + 1) + powerSumUtil(X, N,
31
32
33
34
    int powerSum(int X, int N)
35 🔻
        return powerSumUtil(X, N, 1);
36
37
38
    int main()
39
    {
        ofstream fout(getenv("OUTPUT_PATH"));
40
41
42
        string X_temp;
43
        getline(cin, X_temp);
44
45
        int X = stoi(ltrim(rtrim(X_temp)));
46
47
        string N_temp;
        getline(cin, N_temp);
48
49
        int N = stoi(ltrim(rtrim(N_temp)));
50
51
52
```

	Input	Expected	Got	
~	10	1	1	~

	Input	Expected	Got	
~	100	3	3	~
~	100	1	1	~

Passed all tests! ✓

Marks for this submission: 10.00/10.00.

