Franklin Hu, Sunil Pedapudi SID: 20157715 CS 194-10 2011-09-19 Assignment 2

$1. \ \, \mathbf{Kernels}$

(a) Original input

Input mapped onto space consisting of x_1 and x_1x_2 :

The maximum margin separator is the line $x_1x_2 = 0$.

The separating line on the original input space is a plane that rests at $x_1x_2 = 0$.

(b)
$$(x_1 - a)^2 + (x_2 - b)^2 - r^2 = 0$$

$$x_1^2 - 2ax_1 + a^2 + x_2^2 - 2bx_2 + b^2 - r^2 = 0$$

If we let
$$x=\begin{pmatrix}x_1\\x_2\\x_1^2\\x_2^2\end{pmatrix}$$
:
$$\begin{pmatrix}-2a&-2b&1&1\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_1^2\\x_1^2\\x_2^2\end{pmatrix}+(a^2+b^2-r^2)=0$$

If we would like to classify points inside the circle with -1 and points outside the circle with +1,

we can adjust this to be:

$$\hat{y} = sign(\begin{pmatrix} -2a & -2b & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{pmatrix} + (a^2 + b^2 - r^2))$$
(c)
$$c(x_1 - a)^2 + d(x_2 - b)^2 - 1 = 0$$

$$cx_1^2 - 2acx_1 + ca^2 + dx_2^2 - 2bdx_2 + db^2 - 1 = 0$$

$$\begin{pmatrix} ca^2 + db^2 - 1 & -2ac & -2bd & c & d & 0 \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1x_2 \end{pmatrix} = 0$$

2. Logistic Regression Given:

$$L(w) = -\sum_{i=1}^{N} log(\frac{1}{1 + e^{y_i(w^T x_i + b)}}) + \lambda ||w||_2^2$$

(a)
$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^{N} (1 + e^{y_i(w^T x_i + b)}) \cdot -1 \cdot (1 + e^{y_i(w^T x_i + b)})^{-2} (e^{y_i(w^T x_i + b)}) \cdot x_j y_j + \frac{\partial}{\partial w_j} (\lambda ||w||_2^2)$$

$$= -\sum_{i=1}^{N} \frac{-e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_j y_j + 2\lambda w_j$$

$$= x_j y_j \sum_{i=1}^{N} \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} + 2\lambda w_j$$

$$\begin{split} &(b) \\ &\frac{\partial^{2}L}{\partial w_{j}\partial w_{k}} = \frac{\partial L}{\partial w_{k}}(x_{j}y_{j}\sum_{i=1}^{N}\frac{e^{y_{i}(w^{T}x_{i}+b)}}{(1+e^{y_{i}(w^{T}x_{i}+b)})} + 2\lambda w_{j}) \\ &= x_{j}y_{j}\sum_{i=1}^{N}\frac{(1+e^{y_{i}(w^{T}x_{i}+b)})\cdot\frac{\partial L}{\partial w_{k}}(e^{y_{i}(w^{T}x_{i}+b)}) - e^{y_{i}(w^{T}x_{i}+b)}\cdot\frac{\partial L}{\partial w_{k}}(1+e^{y_{i}(w^{T}x_{i}+b)})}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= x_{j}y_{j}\sum_{i=1}^{N}\frac{(1+e^{y_{i}(w^{T}x_{i}+b)})\cdot\frac{\partial L}{\partial w_{k}}(e^{y_{i}(w^{T}x_{i}+b)}) - e^{y_{i}(w^{T}x_{i}+b)}\cdot\frac{\partial L}{\partial w_{k}}(e^{y_{i}(w^{T}x_{i}+b)})}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= x_{j}y_{j}\sum_{i=1}^{N}\frac{\partial L}{\partial w_{k}}(e^{y_{i}(w^{T}x_{i}+b)})}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= x_{j}y_{j}\sum_{i=1}^{N}\frac{e^{y_{i}(w^{T}x_{i}+b)}x_{k}y_{k}}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= x_{j}y_{j}\sum_{i=1}^{N}\frac{e^{y_{i}(w^{T}x_{i}+b)}x_{k}y_{k}}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= x_{j}y_{j}y_{k}\sum_{i=1}^{N}\frac{e^{y_{i}(w^{T}x_{i}+b)}}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \end{split}$$

3. Training data

(a) Yes the classes {+,-} are linearly separable. The - class is represented by circles in the graph below.

(b) The best hyperplane by inspection is:

$$x_{2} = -x_{1} + 1.5$$

$$x_{1} + x_{2} - 1.5 = 0$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} - 1.5 = 0$$

So therefore $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and b = -1.5. The support vectors are (1,0), (0,1), (2,0), (1,1).

- (c) If we remove a support vector, then the optimal margin will increase since there are fewer constraints.
- (d) The answer for (c) is not always true. Consider if we have a class + with points (0,0), (0,1), (0,2) and a class with points (1,0), (1,1), (1,2). If we remove either (0,1) or (1,1), the best hyperplane does not change and thus the optimal margin remains the same.

4

- 4. 3 point dataset
- 5. Seismic waves
 - (a) phase, iphase frequencies
 - phase

	phase	absolute frequency	relative frequency
	Lg	1594	0.017811
	P	61779	0.690322
	PKP	5974	0.066754
	Pg	403	0.004503
	Pn	10762	0.120255
	Rg	11	0.000123
	S	4685	0.052350
	Sn	4285	0.047881

 \bullet iphase

iphase	absolute frequency	relative frequency
Lg	2171	0.024259
N	10683	0.119372
P	50815	0.567810
Pg	5291	0.059122
Pn	12610	0.140905
Px	365	0.004079
Rg	444	0.004961
Sn	318	0.003553
Sx	4179	0.046696
tx	2617	0.029243
	Lg N P Pg Pn Px Rg Sn Sx	Lg 2171 N 10683 P 50815 Pg 5291 Pn 12610 Px 365 Rg 444 Sn 318 Sx 4179

(b) Confusion matrix (empty cells are zero)

		phase											
			Lg	PKP	P	S	Rg	Sn	Pn	Pg	Te	otal	Accuracy (%)
		Lg	293	2	114	860	5	859	34	4	2	171	13.496
		Sx	297	61	971	1257	3	1191	393	6	4	179	58.579
		tx	17	383	2039	26		18	111	23	20	617	0
•	iphase	Px	30	13	101	46		68	61	46	3	365	60.548
		N	431	564	6097	1278	1	1133	1149	30	10)683	0
		Ρ	105	4586	42600	336		153	2993	42	50)815	83.834
		Rg	83		8	182	2	169			4	144	0.450
		Pg	218	120	2716	318		303	1509	107	55	291	2.022
		Pn	95	244	7123	243	256		4504	145	12	2610	35.717
		Sn	25	1	10	139		135	8		3	318	42.453

(c) Top stations

i. 7: 8751 detections

ii. 24: 5794 detections

iii. 3: 2677 detections

iv. 80: 2528 detections

v. 19: 2478 detections

vi. 38: 2429 detections

vii. 63: 2411 detections

viii. 12: 2343 detections

ix. 74: 2265 detections

x. 65: 2227 detections

(d) Data munging

	station	classifier accuracy (%)	
	7	88.08	
	24	92.15	
	3	92.02	
i.	80	88.10	
	19	88.87	
	38	90.69	
	63	88.18	
	12	88.77	
	74	89.56	
	65	92.51	

(e) Optimal c

6

	$\operatorname{station}$	c	accuracy
	7	0.42	93.23
	24	0.5	86.64
		0.1	87.43
		0.2	87.03
•		0.05	87.98
		0.01	89.79
		0.001	92.04
		0.0001	92.20
		0	92.15