Foglio 4

30 marzo 2023

- E4.1 Mostra che, per a e b costanti, e X variabile aleatoria continua: E[aX + b] = aE[X] + b, $Var(aX + b) = a^2Var(X)$.
- E4.2 Un autobus passa ogni 15 minuti dalle 8 in poi. Calcola la probabilità di aspettarlo meno di 5 minuti e più di 10 minuti arrivando tra le 8 e le 8:30, considerando il tempo di arrivo alla fermata come una distribuzione uniforme tra le 8 e le 8.30.
- E4.3 Data una v.a. continua X con pdf $f_X(x)$, si determini la pdf $f_Y(y)$ della v.a. continua Y, definita come Y = g(X) = |X|, lasciandola espressa in funzione di $f_X(x)$ (tramite il metodo del passaggio per la cdf).
- E4.4 Sia X una variabile casuale distribuita uniformemente sull'intervallo [0,2]. Calcola:
 - a) la pdf di e^X ;
 - b) $E[e^X]$ e $Var[e^X]$.
- E4.5 Se X e Y sono due variabili casuali discrete con P(X = 2, Y = 3) = 1/3, P(X = 3, Y = 3) = 1/4, P(X = 3, Y = 4) = 1/4 e P(X = 2, Y = 1) = 1/6, calcola:
 - a) le probabilità marginali;
 - b) le medie di $X \in Y$;
 - c) E[XY];
 - d) la covarianza Cov(X, Y).
 - e) le variabili X e Y sono indipendenti? f) calcolare $P(X \le 3, Y \le 3)$.
- E4.6 Sia X una variabile aleatoria casuale continua con densità di probabilità (pdf) uniforme nell'intervallo [0,1] e si consideri la variabile aleatoria Y ottenuta come funzione di X secondo la seguente legge: Y = g(X) = X2 + 1. Si determini la pdf di Y.