Sarwar Alam

1. Initial Exploration of data(Checking data types of columns,time period of the data,and cities and states)

Data types:

Table:products

select column_name,data_type from TargetEcommerce.INFORMATION_SCHEMA.COLUMNS where
table_name = 'products';

Table:payments

select column_name, data_type from TargetEcommerce.INFORMATION_SCHEMA.COLUMNS where
table_name = 'payments';

Table:orders

select column_name, data_type from TargetEcommerce.INFORMATION_SCHEMA.COLUMNS where
table_name = 'orders';

Table:order reviews

select column_name,data_type from TargetEcommerce.INFORMATION_SCHEMA.COLUMNS where
table_name = 'order_reviews';

Table:order_items

select column_name, data_type from TargetEcommerce.INFORMATION_SCHEMA.COLUMNS where
table_name = 'order_items';

Table:customers

select column_name,data_type from TargetEcommerce.INFORMATION_SCHEMA.COLUMNS where
table_name = 'customers';

Time period for which the data is given:

We need to find when the first purchase and the last purchase in the given data took place. This would be the time period of the whole data.

```
min(order_purchase_timestamp) as start_date,
max(order_purchase_timestamp) as end_date
from `TargetEcommerce.orders`
```

Time period: From 2016-09-04 21:15:19 UTC to 2018-10-17 17:30:18 UTC

Cities and States covered in the dataset:

States:

```
select
    distinct *
from (select
        customer_state as state

from `TargetEcommerce.customers`
UNION ALL
select
    seller_state as state
from `TargetEcommerce.sellers`)
```


Cities:

```
select
  distinct *
from (select
```

```
customer_city as city
from `TargetEcommerce.customers`
UNION ALL
select
     seller_city as city
from `TargetEcommerce.sellers`)
   JOB INFORMATION
                    RESULTS
                               JSON
                                       EXECUTION DETAILS
 Row city
    1 rio branco
    2 manaus
    3 bahia
    4 ipira
       ilheus
    7 guanambi
    8
       salvador
```

2.In-depth Exploration:

9 eunapolis
10 barro alto
11 porto seguro
12 feira de santana

1. Trend on e-commerce in Brazil:

a.To find trend ,we can have the total sales for each month(from year 2016 to 2018):

Total purchase has been sorted in descending order.

```
WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
    THEN 'Feb'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
    THEN 'March'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
    THEN 'April'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
    THEN 'May'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
    THEN 'June'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
    THEN 'July'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
    THEN 'Aug'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
    THEN 'Sep'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
    THEN 'Oct'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
    THEN 'Nov'
   ELSE 'Dec'
 END) month,
oi.price
```

```
from `TargetEcommerce.orders` o left join `TargetEcommerce.order_items` oi
on o.order_id=oi.order_id),

total_purchases AS (select month, sum(price) as total_sales from price_month
group by month)

select * from total purchases order by total sales desc:
```

Select	•••	I I OIII	total_purchases	oruei	DУ	total_sales	uesc,

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	month	//	total_sales	
1	May		1502588.81	
2	Aug		1428658.00	
3	July		1393538.69	
4	March		1357557.73	
5	April		1356574.97	
6	June		1298162.90	
7	Feb		1091481.73	
8	Jan		1070343.23	
9	Nov		1010271.37	
10	Dec		743925.070	
11	Oct		713727.090	
12	Sep		624814.050	

Sales in May is more than double of sales in Sep

Surely there is a trend of purchases. There is a trend(upward) from January to March but suddenly in April the purchases go down. From April to May upward trend but in June the purchase go down. For some time there is a upward trend but there is also downward trend. Like a random walk.

b. Also we will have a trend for each year (2017,2018) with respect to each month, the year 2016 has been excluded as the dataset has data only from Sep,Oct,Nov,and Dec.

Year 2017:Total purchase has been sorted in descending order

```
WHEN extract(MONTH FROM o.order_purchase_timestamp)=1
THEN 'Jan'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
THEN 'Feb'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
THEN 'March'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
THEN 'April'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
THEN 'May'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
THEN 'June'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
THEN 'July'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
THEN 'Aug'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
THEN 'Sep'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
THEN 'Oct'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
THEN 'Nov'
ELSE 'Dec'
```

```
END) month,

EXTRACT(YEAR FROM o.order_purchase_timestamp) as year,

oi.price

from `TargetEcommerce.orders` o left join `TargetEcommerce.order_items` oi

on o.order_id=oi.order_id),

total_purchases AS (select month, sum(price) as total_sales from price_month
where year=2017 group by month)

select * from total_purchases order by total_sales desc;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	month	//	total_sales	
1	Nov		1010271.37	
2	Dec		743914.170	
3	Oct		664219.430	
4	Sep		624401.690	
5	Aug		573971.680	
6	May		506071.140	
7	July		498031.480	
8	June		433038.600	
9	March		374344.300	
10	April		359927.230	
11	Feb		247303.019	
12	Jan		120312.869	

In the year 2017, it's surprising that from January to Dec there is an upward trend.

Year 2018:Total purchase has been sorted in descending order

```
with price_month AS (select

(CASE

WHEN extract(MONTH FROM o.order_purchase_timestamp)=1

THEN 'Jan'

WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
```

```
THEN 'Feb'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
    THEN 'March'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
    THEN 'April'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
    THEN 'May'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
    THEN 'June'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
    THEN 'July'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
    THEN 'Aug'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
    THEN 'Sep'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
    THEN 'Oct'
    WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
    THEN 'Nov'
    ELSE 'Dec'
 END) month,
 EXTRACT(YEAR FROM o.order_purchase_timestamp) as year,
oi.price
```

```
from `TargetEcommerce.orders` o left join `TargetEcommerce.order_items` oi
on o.order_id=oi.order_id),

total_purchases AS (select month, sum(price) as total_sales from price_month
where year=2018 group by month)

select * from total_purchases order by total_sales desc;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	month		total_sales	
1	April		996647.750	
2	May		996517.680	
3	March		983213.440	
4	Jan		950030.360	
5	July		895507.220	
6	June		865124.310	
7	Aug		854686.330	
8	Feb		844178.710	
9	Sep		145.0	
10	Oct		null	

It's strange that there is no order in October 2018. September has the lowest total purchases. For other months the purchases are like random walks.

select * from total_purchases order by total_sales desc;

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	
Row	week	total_sales			
1	18	293045.259			
2	31	283949.139			
3	30	272424.219			
4	19	270870.759			
5	8	256555.439			
6	32	251646.449			
7	16	245048.419			
8	29	238482.489			
9	15	237699.369			
10	17	237350.979			
11	1	236013.659			
12	11	235756.839			

Highest week sale is in week 18 and lowest week sale is in week 36.

select * from total_purchases order by total_sales desc;

```
Week sales:2017
with price_week AS (select
    EXTRACT(WEEK FROM o.order_purchase_timestamp) as week,
    EXTRACT(YEAR FROM o.order_purchase_timestamp) as year,
    oi.price
from `TargetEcommerce.orders` o right join `TargetEcommerce.order_items` oi
on o.order_id=oi.order_id),

total_purchases AS (select week,sum(price) as total_sales from price_week where
year=2017 group by week)
```


Highest week is in week 47 and lowest week sale is in week 3.

The year 2017 has a trend of purchases based on weeks.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
with hour_count AS (select oi.product_id,EXTRACT(HOUR FROM o.order_purchase_timestamp)
as hour from `TargetEcommerce.orders` o join `TargetEcommerce.order_items` oi on
o.order_id=oi.order_id),

hour_named AS (select

product_id,

case

when hour between 4 and 6

THEN 'Dawn'

when hour>6 and hour<=12

then 'Morning'

when hour>12 and hour<=18

then 'afternoon'</pre>
```

```
else 'Night'
END as hour_label
from hour_count),

total_count as (select hour_label,count(product_id) as total_purchase from hour_named
group by hour_label)

select * from total_count order by total_purchase;
```

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DE
Row	hour_label	//	total_purcha	
1	Dawn		1018	
2	Morning		31488	
3	Night		36593	
4	afternoon		43551	

Brazilians prefer Afternoon as the ideal time to make a purchase ,Dawn is the least, followed by morning.

3. Evolution of E-commerce orders in the Brazil region:

a. month on month orders by region, states:

```
THEN 'Jan'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
  THEN 'Feb'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
  THEN 'March'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
  THEN 'April'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
  THEN 'May'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
  THEN 'June'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
  THEN 'July'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
  THEN 'Aug'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
  THEN 'Sep'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
  THEN 'Oct'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
  THEN 'Nov'
  ELSE 'Dec'
END) month,
```

```
from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o
on o.customer_id=c.customer_id left join `TargetEcommerce.order_items` oi
on oi.order_id=o.order_id ),
total_orders_city AS (select customer_city as city,month,count(order_item_id) as
total_orders from city_orders group by customer_city,month )
select * from total_orders_city;
```

JOB IN	NFORMATION RESULTS	JSON EXECUTION DE	TAILS
Row	city	month	total_orders
1	itu	Aug	16
2	itu	July	16
3	itu	March	16
4	itu	April	18
5	itu	Feb	17
6	poa	May	15
7	poa	July	16
8	anta	July	0
9	lapa	Nov	0
10	mage	July	16
11	mage	May	16
12	mage	Aug	16

City wise month on month total number of orders placed by customers.

```
WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
  THEN 'Feb'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
  THEN 'March'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
  THEN 'April'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
  THEN 'May'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
  THEN 'June'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
  THEN 'July'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
  THEN 'Aug'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
  THEN 'Sep'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
  THEN 'Oct'
  WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
  THEN 'Nov'
  ELSE 'Dec'
END) month,
oi.order_item_id
```

```
from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o
on o.customer_id=c.customer_id left join `TargetEcommerce.order_items` oi
on oi.order_id=o.order_id ),
total_orders_state AS (select customer_state as state,month,count(order_item_id) as
total_orders from state_orders group by customer_state,month )
select * from total_orders_state;
  JOB INFORMATION
                  RESULTS
                            JSON
                                     EXECUTION DETAILS
 Row
      state
                           month
                                               total_orders
   1 RN
                           Jan
                                                      54
   2 RN
                                                      33
                           Dec
                                                      45
   3
                           May
   4 CE
                           Feb
                                                     117
   5 CE
```

144

140

151

600

419

205

5271

State wise month on month total numbers placed by customers.

March

May

April

March

June

Aug

Dec

May

b. How are customers distributed in Brazil

City-wise:

6 CE

7 CE

8

9 RS

11

12 SP

10 SC

SC

```
select customer_city,count(*) as number_customers from
`TargetEcommerce.customers`group by customer_city order by count(*) desc;
```


City-wise number of customers. Sao Paulo has the highest number of customers.

State-wise:

select customer_state,count(*) as number_customers from
`TargetEcommerce.customers`group by customer_state order by count(*) desc;

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	//	number_cus	
1	SP		41746	
2	RJ		12852	
3	MG		11635	
4	RS		5466	
5	PR		5045	
6	SC		3637	
7	BA		3380	
8	DF		2140	
9	ES		2033	
10	GO		2020	
11	PE		1652	
12	CE		1336	

State of São Paulo is the state with the highest number of customers.

4.Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

a.Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

Percentage change from 2017 to 2018 based on the freight values from month Jan to Aug

```
with price_percentage_change AS (select
 (CASE
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=1
      THEN 'Jan'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
      THEN 'Feb'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
      THEN 'March'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
      THEN 'April'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
      THEN 'May'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
      THEN 'June'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
      THEN 'July'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
      THEN 'Aug'
```

```
WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
      THEN 'Sep'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
      THEN 'Oct'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
      THEN 'Nov'
      ELSE 'Dec'
  END) month,
  oi.freight_value,
  oi.price,
  EXTRACT(YEAR FROM o.order_purchase_timestamp) as year
   from `TargetEcommerce.orders` o left join `TargetEcommerce.order_items` oi
  on o.order_id=oi.order_id),
  freight as (select year, sum(freight_value) as total_freight_value from
price_percentage_change where month in
('Jan','Feb','March','April','May','June','July','Aug') and year in (2017,2018) group
by year)
 select
100*(curr.total_freight_value-prev.total_freight_value)/prev.total_freight_value as
percent_change
 from freight as curr
 join freight as prev
 on curr.year=2018 and prev.year=2017;
```

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	
Row	percent_cha				<i>1</i> ,
1	152.906020				

There is 152% increase of freight value from 2017 to 2018

Percentage change from 2017 to 2018 based on the price from month Jan to Aug

```
with price_percentage_change AS (select
 (CASE
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=1
      THEN 'Jan'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
      THEN 'Feb'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
      THEN 'March'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
      THEN 'April'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
      THEN 'May'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
      THEN 'June'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
      THEN 'July'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
      THEN 'Aug'
```

```
WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
      THEN 'Sep'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
      THEN 'Oct'
      WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
      THEN 'Nov'
      ELSE 'Dec'
  END) month,
  oi.freight_value,
  oi.price,
  EXTRACT(YEAR FROM o.order_purchase_timestamp) as year
   from `TargetEcommerce.orders` o left join `TargetEcommerce.order_items` oi
  on o.order_id=oi.order_id),
  prices as (select year,sum(price) as total_price_value from price_percentage_change
where month in ('Jan','Feb','March','April','May','June','July','Aug') and year in
(2017,2018) group by year)
 select 100*(curr.total_price_value-prev.total_price_value)/prev.total_price_value as
percent_change
 from prices as curr
 join prices as prev
 on curr.year=2018 and prev.year=2017;
```


There is a 137% increase in price of the products from 2017 to 2018 based on the months from Jan to Aug .

b.Mean & Sum of price and freight value by customer state

```
with state_order as (select c.customer_state,
oi.price,
oi.freight_value
from `TargetEcommerce.customers` c left join `TargetEcommerce.orders`o
on c.customer_id=o.customer_id
left join `TargetEcommerce.order_items` oi
on oi.order_id=o.order_id)

select customer_state, sum(price) as total_price, avg(price) as
average_price, sum(freight_value) as total_freight,
avg(freight_value) as average_freight_value from state_order group by customer_state
order by sum(price) desc, sum(freight_value) desc;
```

JOB IN	IFORMATION R	ESULTS	JSON	EXECUTION DET	TAILS	
Row	customer_state	/	total_price	average_price	total_freight	average_freight_value
1	SP		5202955.05	109.653629	718723.069	15.147275390419265
2	RJ		1824092.66	125.117818	305589.310	20.960923931682579
3	MG		1585308.02	120.748574	270853.460	20.63016680630664
4	RS		750304.020	120.337453	135522.740	21.735804330392845
5	PR		683083.760	119.004139	117851.680	20.531651567944319
6	SC		520553.340	124.653577	89660.2600	21.470368773946355
7	BA		511349.990	134.601208	100156.679	26.363958936562188
8	DF		302603.939	125.770548	50625.4999	21.041354945968457
9	GO		294591.949	126.271731	53114.9799	22.766815259322811
10	ES		275037.309	121.913701	49764.5999	22.058776595744643
11	PE		262788.029	145.508322	59449.6599	32.917862679955654
12	CE		227254.709	153.758261	48351.5899	32.714201623816017

The state of Sao Paulo has the highest total price whereas the state of Roraima has the lowest total price.

5. Analysis on sales, freight and delivery time

```
a & b.Days between purchasing, delivering and estimated delivery.
```

```
-- days between purchasing, delivering and estimated delivery
with delivery_days AS (select
-- delivery time between purchase and delivery date

DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) as
time_to_deliver,
-- difference between actual delivery date and estimated delivery date

DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY) as
diff_estimated_delivery

from `TargetEcommerce.orders`)
select time_to_deliver AS days_between_purchase_and_deliver,
diff_estimated_delivery AS days_difference_between_actual_estimated_delivery
```

from delivery_days;

JOB IN	IFORMATION RESULTS .	JSON EXECUTION DETAILS
Row	days_between_purchase_and_deliver	days_difference_between_actual_estimated_delivery
1	30	-12
2	30	28
3	35	16
4	30	1
5	32	0
6	29	1
7	43	-4
8	40	-4
9	37	-1
10	33	-5
11	38	-6
12	36	-2

There are some values in the $third\ column\ that$ are negative which indicates that the actual delivery took x number of more days than the estimated delivery time.

c.Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
c.customer_state,

DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY) as
time_to_deliver,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) as
diff_estimated_delivery,
    oi.freight_value

from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o
    on c.customer_id=o.customer_id left join `TargetEcommerce.order_items` oi
    on oi.order_id=o.order_id
)
select customer_state as state,avg(freight_value) as
average_freight_value,avg(time_to_deliver) as average_days_between_purchase_delivery,
```

avg(diff_estimated_delivery) as average_days_diff_between_actual_estimated_delivery
from price_days_freight group by customer_state;

JOB II	NFORMATI	ON RESULTS	JSON	EXECUTION DETAILS	
Row	state	average_freight_value	average_days	_between_purchase_delivery	average_days_diff_between_actual_estimated_delivery
1	RN	35.652362948960317		18.87332053742804	13.055662188099813
2	CE	32.714201623816017		20.537166900420736	10.256661991584842
3	RS	21.735804330392845		14.708299364095891	13.203000163052321
4	SC	21.470368773946355		14.520985846754499	10.668862859931671
5	SP	15.147275390419265		8.2596085524191469	10.265594384514326
6	MG	20.63016680630664		11.515522180072715	12.39715104126347
7	BA	26.363958936562188		18.774640238935589	10.119467825142518
8	RJ	20.960923931682579		14.689382157500361	11.144493142937973
9	GO	22.766815259322811		14.948177426438296	11.372859025032952
10	MA	38.257002427184418		21.203749999999978	9.109999999999941
11	PE	32.917862679955654		17.792096219931281	12.552119129438712
12	PB	42.723803986710926		20.119453924914669	12.150170648464169

The state of RN took on average 18 days to delivery a product to the customer

d. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
with price_days_freight AS (select
c.customer_state,

DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY) as
time_to_deliver,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) as
diff_estimated_delivery,
oi.freight_value

from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o
on c.customer_id=o.customer_id left join `TargetEcommerce.order_items` oi
on oi.order_id=o.order_id
),
states_with_avg_freight as (select customer_state as state,avg(freight_value) as
average_freight_value,avg(time_to_deliver) as average_days_between_purchase_delivery,
```

```
avg(diff_estimated_delivery) as average_days_diff_between_actual_estimated_delivery
from price_days_freight group by customer_state)
-- top 5 states with heighest average freight value
select state,average_freight_value from states_with_avg_freight order by
average_freight_value desc limit 5;
```

Quer	y results				≛ SAVE RESULTS ▼	\$
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	state		average_frei			/
1	RR		42.9844230			
2	PB		42.7238039			
3	RO		41.0697122			
4	AC		40.0733695			
5	PI		39.1479704			

Top 5 states with highest average freight value

```
with price_days_freight AS (select
c.customer_state,

DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY) as
time_to_deliver,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) as
diff_estimated_delivery,
    oi.freight_value

from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o
    on c.customer_id=o.customer_id left join `TargetEcommerce.order_items` oi
    on oi.order_id=o.order_id
),
```

```
states_with_avg_freight as (select customer_state as state,avg(freight_value) as average_freight_value,avg(time_to_deliver) as average_days_between_purchase_delivery, avg(diff_estimated_delivery) as average_days_diff_between_actual_estimated_delivery from price_days_freight group by customer_state)
-- top 5 states with heighest average freight value
select state,average_freight_value from states_with_avg_freight order by average_freight_value asc limit 5;
```

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	state	//	average_frei	
1	SP		15.1472753	
2	PR		20.5316515	
3	MG		20.6301668	
4	RJ		20.9609239	
5	DF		21.0413549	

Top 5 states with lowest average freight value

e.Top 5 states with highest/lowest average time to delivery

```
with price_days_freight AS (select
c.customer_state,

DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY) as
time_to_deliver,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) as
diff_estimated_delivery,
    oi.freight_value
from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o
on c.customer_id=o.customer_id left join `TargetEcommerce.order_items` oi
on oi.order_id=o.order_id
```

```
),
states_with_avg_freight as (select customer_state as state,avg(freight_value) as
average_freight_value,avg(time_to_deliver) as average_days_between_purchase_delivery,
avg(diff_estimated_delivery) as average_days_diff_between_actual_estimated_delivery
from price_days_freight group by customer_state)
-- top 5 states with heighest average time to delivery
select state,average_days_between_purchase_delivery as average_time_to_delivery from
states_with_avg_freight order by average_days_between_purchase_delivery desc limit 5;
```

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	state		average_tim	
1	RR		27.8260869	
2	AP		27.7530864	
3	AM		25.9631901	
4	AL		23.9929742	
5	PA		23.3017077	

Top 5 states with highest average time to delivery.

```
with price_days_freight AS (select
c.customer_state,

DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY) as
time_to_deliver,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) as
diff_estimated_delivery,
    oi.freight_value

from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o

on c.customer_id=o.customer_id left join `TargetEcommerce.order_items` oi
on oi.order_id=o.order_id
),
```

```
states_with_avg_freight as (select customer_state as state,avg(freight_value) as
average_freight_value,avg(time_to_deliver) as average_days_between_purchase_delivery,
avg(diff_estimated_delivery) as average_days_diff_between_actual_estimated_delivery
from price_days_freight group by customer_state)
-- top 5 states with heighest average time to delivery
select state,average_days_between_purchase_delivery as average_time_to_delivery from
states_with_avg_freight order by average_days_between_purchase_delivery asc limit 5;
```

Que	ry results				Å SAVE RESULTS ▼	\$
JOB I	NFORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	state		average_tim			//
1	SP	~	8.25960855			
2	PR		11.4807930			
3	MG		11.5155221			
4	DF		12.5014861			
5	SC		14.5209858			

Top 5 states with lowest average time to delivery.

f.Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
with price_days_freight AS (select

c.customer_state,

DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY) as
time_to_deliver,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) as
diff_estimated_delivery,
    oi.freight_value

from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o

on c.customer_id=o.customer_id left join `TargetEcommerce.order_items` oi
```

```
on oi.order_id=o.order_id
),
states_with_avg_freight as (select customer_state as state,avg(freight_value) as
average_freight_value,avg(time_to_deliver) as average_days_between_purchase_delivery,
avg(diff_estimated_delivery) as average_days_diff_between_actual_estimated_delivery
from price_days_freight group by customer_state)

-- top 5 states where delivery is really fast compared to estimated date
-- to get this we need to sort the
"average_days_diff_between_actual_estimated_delivery" in ascending order
select state,average_days_diff_between_actual_estimated_delivery from
states_with_avg_freight order by average_days_diff_between_actual_estimated_delivery
asc limit 5;
```

	JOB IN	NFORMATION RESULTS	JSON	EXECUTION DETAILS Expa
	Row	state	average_day	
	1	AL	7.97658079	
	2	MA	9.10999999	
	3	SE	9.16533333	
	4	ES	9.76853932	
1	5	BA	10.1194678	

Top 5 states where delivery really fast compared to estimated date. For example the state AL is the state with fastest delivery.

```
with price_days_freight AS (select

c.customer_state,

DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,DAY) as 
time_to_deliver,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) as 
diff_estimated_delivery,
```

```
oi.freight_value
 from `TargetEcommerce.customers` c left join `TargetEcommerce.orders` o
 on c.customer_id=o.customer_id left join `TargetEcommerce.order_items` oi
 on oi.order_id=o.order_id
).
states_with_avg_freight as (select customer_state as state,avg(freight_value) as
average_freight_value,avg(time_to_deliver) as average_days_between_purchase_delivery,
avg(diff_estimated_delivery) as average_days_diff_between_actual_estimated_delivery
from price_days_freight group by customer_state)
-- top 5 states where delivery is really slow compared to estimated date
-- to get this we need to sort the
"average_days_diff_between_actual_estimated_delivery" in ascending order
select state,average_days_diff_between_actual_estimated_delivery from
states_with_avg_freight order by average_days_diff_between_actual_estimated_delivery
desc limit 5;
 JOB INFORMATION
                 RESULTS
                          JSON
                                  EXECUTION DETAILS
      state
           average_days_diff_between_actual_estimated_delivery
                             20.010989010989011
   1
     AC
   2 RO
                              19.080586080586091
   3 AM
                             18.975460122699378
   4 AP
                             17.4444444444446
                             17.434782608695649
   5 RR
```

Top 5 states where delivery is really slow compared to estimated date. For example the state AC is the slowest state in terms of delivery.

6. Payment type analysis:

a. Month over Month count of orders for different payment types

```
with month_orders AS (select
   (CASE
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=1
       THEN 'Jan'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
       THEN 'Feb'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
       THEN 'March'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
       THEN 'April'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
       THEN 'May'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
       THEN 'June'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
       THEN 'July'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
       THEN 'Aug'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
       THEN 'Sep'
       WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
       THEN 'Oct'
```

WHEN extract(MONTH FROM o.order_purchase_timestamp)=11

```
THEN 'Nov'

ELSE 'Dec'

END) month,

p.payment_type,

oi.order_item_id

from `TargetEcommerce.orders` o join `TargetEcommerce.payments` p

on o.order_id=p.order_id left join `TargetEcommerce.order_items` oi

on o.order_id=oi.order_id)

select payment_type,month,count(order_item_id) as number_of_orders from
month_orders group by payment_type,month;
```

JOB II	NFORMATION	RESULTS JSON	EXECUTION DETAILS		
Row	payment_type	month	numb	per_of_orders	
1	credit_card	May		9492	
2	credit_card	April		8282	
3	voucher	Jan		541	
4	voucher	April		600	
5	voucher	Oct		328	
6	not_defined	Sep		0	
7	not_defined	Aug		0	
8	voucher	June		633	
9	voucher	May		665	
10	voucher	March		653	
11	credit_card	Feb		7443	
12	credit_card	Aug		9330	

Month over month number of orders for each different payment type.

b.Distribution of payment installments and count of orders

```
with month_orders AS (select (CASE
```

```
WHEN extract(MONTH FROM o.order_purchase_timestamp)=1
THEN 'Jan'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=2
THEN 'Feb'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=3
THEN 'March'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=4
THEN 'April'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=5
THEN 'May'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=6
THEN 'June'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=7
THEN 'July'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=8
THEN 'Aug'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=9
THEN 'Sep'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=10
THEN 'Oct'
WHEN extract(MONTH FROM o.order_purchase_timestamp)=11
THEN 'Nov'
ELSE 'Dec'
```

```
END) month,
p.payment_installments
from `TargetEcommerce.orders` o join `TargetEcommerce.payments` p
on o.order_id=p.order_id)
```

select payment_installments,count(*) as number_of_orders from month_orders group by
payment_installments order by count(*) desc;

JOB IN	IFORMATION RESU	LTS JSON	EXECUTION DETAILS
w	payment_installments	number_of_orders	
1	1	52546	
2	2	12413	
3	3	10461	
4	4	7098	
5	10	5328	
6	5	5239	
7	8	4268	
8	6	3920	
9	7	1626	
10	9	644	
11	12	133	
12	15	74	

1 installment has highest number of orders