第五章历年期末试题

- (C) $x \ln x$ (D) $x(2 \ln x + 1)$
- **2.** (2019 年) 设 f(x) 是连续函数, F(x) 是 f(x) 的原函数 ().
 - (A) 当 f(x) 是奇函数时, F(x) 必为偶函数
 - (B) 当 f(x) 是偶函数时, F(x) 必为奇函数
 - (C) 当 f(x) 是周期函数时, F(x) 必为周期函数
 - (D) 当 f(x) 是单调增函数时, F(x) 必为单调增函数
- 3. (2018年) 已知 $f'(\cos x) = \sin x$, 则 $f(\cos x) = ($).
 - (A) $-\cos x + C$

- **(B)** $\cos x + C$
- (C) $\frac{1}{2}(\sin x \cos x x) + C$ (D) $\frac{1}{2}(x \sin x \cos x) + C$
- **4.** (2017年) 若 $\int f(x)e^{x^2}dx = e^{x^2} + C$, 则 f(x) = ().
 - (A) 1
- **(B)** e^{x^2} **(C)** x^2
- **(D)** 2x
- **5**. (**2016**年) 下列各式中,与 $\int \sin 2x \, dx$ 不相等的是 (). (2016年) 卜列各式中,与 $\int \sin 2x \, dx$ 个相等的是 () . (A) $-\frac{1}{2}\cos 2x + C$ (B) $\sin^2 x + C$ (C) $-\cos^2 x + C$ (D) $\frac{1}{2}\cos 2x + C$

- **6.** (2015 年) 在区间 $(-\infty, +\infty)$ 内, 如果 f'(x) = g'(x), 则下列各式中一定成立的 是().
 - (A) f(x) = g(x)
- **(B)** f(x) = g(x) + 1
- $(\mathbf{C}) \int f'(x) dx = \int g'(x) dx$ $(\mathbf{D}) \left(\int f(x) dx \right)' = \left(\int g(x) dx \right)'$
- **7.** (**2014**年) 函数 $2(e^{2x}-e^{-2x})$ 的原函数有 ()

- **(A)** $(e^x + e^{-x})^2$ **(B)** $2(e^x e^{-x})^2$ **(C)** $e^x + e^{-x}$ **(D)** $4(e^{2x} + e^{-2x})$

- 8. (2013年) 若 $\int f(x)dx = e^x \sin x + C$,则 f(x)等于 ().
 - (A) $e^x \sin(x + \frac{\pi}{4})$

(B) $\sqrt{2}e^{x} \sin(x + \frac{\pi}{4})$

(C) $\sqrt{2}e^x \cos(x + \frac{\pi}{4})$

- **(D)** $e^x \cos(x \frac{\pi}{4})$
- 9. (2012年) 设 e^{-x} 是 f(x) 的一个原函数,则 $\int x f(x) dx = ($)

- (A) $e^{-x}(1-x)+C$ (B) $e^{-x}(1+x)+C$ (C) $e^{-x}(x-1)+C$ (D) $-e^{-x}(x+1)+C$
- **10.** (2011年) 若 $\int f(x)dx = x^2e^{2x} + C$, 则 f(x)等于 ().
 - (A) $2xe^{2x}$
- **(B)** $2x^2e^{2x}$ **(C)** xe^{2x}
- **(D)** $2x(1+x)e^{2x}$
- 11. (2019年) 不定积分 $\int \frac{3x^4 + 3x^2 + 2}{1 + x^2} dx = \underline{\qquad}.$
- 12. (2017年) 不定积分 $\int \frac{1+xe^{5x}}{x} dx =$.
- **13.** (2015年) 不定积分 $\int \frac{1}{x^2} \sin \frac{1}{x} dx = \underline{\qquad}$
- **14.** (2014年) 不定积分 $\int 5^x e^x dx =$.
- **15.** (2013年) 不定积分 $\int x \ln x dx =$ ______
- **16.** (2012年) 不定积分 $\int \frac{1}{x^2(1+x^2)} dx =$
- 17. (2011年) 不定积分 ∫ 5^xe^x dx 等于_____.
- **18.** (2020 年) 计算不定积分 $\int \frac{\sqrt{1-x^2}}{x^4} dx$.
- **19.** (**2020** 年) 计算不定积分 $\int \frac{x^2}{1+x^2} \arctan x \, dx$.
- **20.** (2019年) 计算不定积分 $\int \frac{x^2}{\sqrt{4-x^2}} dx$

21. (**2019**年) 设
$$f(\ln x) = \frac{\ln(1+x)}{x}$$
, 求不定积分 $\int f(x)dx$.

22. (2018年) 求不定积分
$$\int \frac{1+\ln x}{2+(x\ln x)^2} dx$$
.

23. (2018年) 已知
$$f(x)$$
 的一个原函数是 e^{-x^2} , 求 $\int x f'(x) dx$.

24. (2017年)(本题 10分) 求不定积分
$$\int \frac{\sqrt{1-x^2}}{x^4} dx$$
.

- **25.** (2017年)(本题 10分)设 f(x)的一个原函数为 $x^2 \sin x$, 计算不定积分 $\int x f'(x) dx$.
- **26**. (**2016**年) 求曲线 $y^3 = (x^2 + 1)^{\sin x}$ 上 x = 0 处的切线方程.

27. (2016 年) 求
$$\int \frac{\arctan \sqrt{x}}{\sqrt{x}(1+x)} dx$$
.

28. (2016年) 设
$$e^{-x}$$
 是 $f(x)$ 的一个原函数,求 $\int x f(x) dx$ (A 班) 求 $\int x f''(2x) dx$

29. (**2015**年) 求不定积分
$$\int \frac{x^3}{\sqrt{x^2-1}} dx$$

30. (2015年) 已知
$$\frac{\sin x}{x}$$
 是 $f(x)$ 的一个原函数, 求不定积分 $\int x f'(x) dx$.

31. (**2014**年) 求不定积分
$$\int \frac{2}{x(3+2\ln x)} dx$$

32. (**2013** 年) 求不定积分
$$\int (\sqrt[3]{x} - \frac{1}{\sqrt{x}})(\sqrt{x} + \frac{1}{\sqrt[3]{x}}) dx$$
.

33. (2013年)设
$$f(\ln x) = \frac{\ln(1+x)}{x}$$
,试求 $\int f(x) dx$.

- **34.** (**2012**年) 求不定积分 $\int \frac{1}{\sqrt{4x-x^2}} dx$
- **35.** (**2012**年) 求不定积分 $\int \frac{x+1}{\sqrt[3]{3x+1}} dx$
- **36.** (**2012**年) 求不定积分 $\int x^2 \arctan x dx$
- **37**. (**2011**年) 求 $\int \frac{x^3}{1+x^2} dx$.
- 38. (2011 年) 设函数 f(x) 的一个原函数是 $\frac{\sin x}{x}$, 试求 $\int x f'(x) dx$