Math 341 - Linear Algebra §2.1 - 2.4

Fall 2019

Seek ye diligently and teach one another words of wisdom; yea, seek ye out of the best books words of wisdom; seek learning, even by study and also by faith.

- D&C 88:118

If A is an $m \times n$ matrix, then we let a_{ij} denote the element in the *i*th row and *j*th column. In other words

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

If A is an $m \times n$ matrix, then we let a_{ij} denote the element in the *i*th row and *j*th column. In other words

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

We let \mathbf{a}_j denote the jth column of A, so that

$$A = \left[\begin{array}{cccc} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{array} \right]$$

An $n \times n$ matrix of the form

$$\begin{bmatrix}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{bmatrix}$$

is called a diagonal matrix,

An $n \times n$ matrix of the form

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

is called a **diagonal matrix**, while the $m \times n$ matrix

$$\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

is called the zero matrix.

If A and B are $m \times n$ matrices (of the same size!) and $c \in \mathbb{R}$, then matrix addition and scalar multiplication are given by

If A and B are $m \times n$ matrices (of the same size!) and $c \in \mathbb{R}$, then matrix addition and scalar multiplication are given by

$$A + B = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

If A and B are $m \times n$ matrices (of the same size!) and $c \in \mathbb{R}$, then matrix addition and scalar multiplication are given by

$$A + B = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

and

$$cA = c \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} ca_{11} & \cdots & ca_{1n} \\ \vdots & \ddots & \vdots \\ ca_{m1} & \cdots & ca_{mn} \end{bmatrix}.$$

THEOREM

If A, B and C are matrices of the same size, and $r, s \in \mathbb{R}$, then

THEOREM

If A, B and C are matrices of the same size, and $r, s \in \mathbb{R}$, then

- 1. A + B = B + A
- 2. (A+B)+C = A + (B+C)
- 3. A + 0 = A
- $4. \ r(A+B) = rA + rB$
- 5. (r+s)A = rA + sA
- 6. r(sA) = (rs)A

If A is an $m \times p$ matrix, and $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$ is a $p \times n$ matrix, then the **matrix product** of A and B, denoted AB, is the $m \times n$ matrix defined by

If A is an $m \times p$ matrix, and $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$ is a $p \times n$ matrix, then the **matrix product** of A and B, denoted AB, is the $m \times n$ matrix defined by

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$$

= $\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_n \end{bmatrix}$

If A is an $m \times p$ matrix, and $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$ is a $p \times n$ matrix, then the **matrix product** of A and B, denoted AB, is the $m \times n$ matrix defined by

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$$

= $\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_n \end{bmatrix}$

i.e. the jth column of AB is A times the jth column of B.

Example: Compute the products AB, BA, AC, and CA for the matrices

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 5 & -3 \\ 2 & -1 \\ 1 & 1 \end{bmatrix},$$
and
$$C = \begin{bmatrix} 5 & 1 & 1 \\ 3 & -1 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

$\S 2.1 \text{ Matrix Operations}$ - Matrix Multiplication

Let A be $m \times p$ and B be $p \times n$.

The linear transformation defined by $T(\mathbf{x}) = (AB)\mathbf{x}$ is the same as the linear transformation obtained my first mapping $\mathbf{x} \mapsto B\mathbf{x}$, followed by mapping $B\mathbf{x} \mapsto A(B\mathbf{x})$.

In terms of matrix elements, the ijth element of AB is given by the product of the ith row of A with the jth column of B.

In terms of matrix elements, the ijth element of AB is given by the product of the ith row of A with the jth column of B.

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots a_{ip}b_{pj}$$

In terms of matrix elements, the ijth element of AB is given by the product of the ith row of A with the jth column of B.

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

THEOREM

THEOREM

1.
$$A(BC) = (AB)C$$

THEOREM

Let A be an $m \times n$ matrix, and let B and C be matrices which have sizes so that the following sums and products are defined.

1. A(BC) = (AB)C (associative law of multiplication)

THEOREM

- 1. A(BC) = (AB)C (associative law of multiplication)
- $2. \ A(B+C) = AB + AC$

THEOREM

- 1. A(BC) = (AB)C (associative law of multiplication)
- 2. A(B+C) = AB + AC (left distributive law)

THEOREM

- 1. A(BC) = (AB)C (associative law of multiplication)
- 2. A(B+C) = AB + AC (left distributive law)
- 3. (B+C)A = BA + CA

THEOREM

- 1. A(BC) = (AB)C (associative law of multiplication)
- 2. A(B+C) = AB + AC (left distributive law)
- 3. (B+C)A = BA + CA (right distributive law)

THEOREM

- 1. A(BC) = (AB)C (associative law of multiplication)
- 2. A(B+C) = AB + AC (left distributive law)
- 3. (B+C)A = BA + CA (right distributive law)
- 4. r(AB) = (rA)B = A(rB) for any scalar r

THEOREM

- 1. A(BC) = (AB)C (associative law of multiplication)
- 2. A(B+C) = AB + AC (left distributive law)
- 3. (B+C)A = BA + CA (right distributive law)
- 4. r(AB) = (rA)B = A(rB) for any scalar r
- 5. $I_m A = A = A I_n$

$\S 2.1 \text{ Matrix Operations}$ - Matrix Properties

Warning!

$\S 2.1 \text{ Matrix Operations}$ - Matrix Properties

WARNING! WARNING!

WARNING! WARNING! WARNING!

WARNING! WARNING!

1. $AB \neq BA$ in general

WARNING! WARNING! WARNING!

1. $AB \neq BA$ in general (depending on the sizes of A and B, either AB or BA might not even be defined).

WARNING! WARNING! WARNING!

1. $AB \neq BA$ in general (depending on the sizes of A and B, either AB or BA might not even be defined).

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 1 & 5 \end{bmatrix} \neq \begin{bmatrix} 3 & 0 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

WARNING! WARNING! WARNING!

1. $AB \neq BA$ in general (depending on the sizes of A and B, either AB or BA might not even be defined).

$$\left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right] \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \neq \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right]$$

(when AB = BA we say that A and B commute)

WARNING! WARNING! WARNING!

1. $AB \neq BA$ in general (depending on the sizes of A and B, either AB or BA might not even be defined).

$$\left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right] \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \neq \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right]$$

(when AB = BA we say that A and B commute)

2. AB = AC does not imply B = C

WARNING! WARNING! WARNING!

1. $AB \neq BA$ in general (depending on the sizes of A and B, either AB or BA might not even be defined).

$$\left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right] \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \neq \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right]$$

(when AB = BA we say that A and B commute)

2. AB = AC does not imply B = C

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right]$$

WARNING! WARNING! WARNING!

1. $AB \neq BA$ in general (depending on the sizes of A and B, either AB or BA might not even be defined).

$$\left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right] \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \neq \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right]$$

(when AB = BA we say that A and B commute)

2. AB = AC does not imply B = C

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right]$$

3. $AB = \mathbf{0}$ does not imply that either $A = \mathbf{0}$ or $B = \mathbf{0}$

WARNING! WARNING! WARNING!

1. $AB \neq BA$ in general (depending on the sizes of A and B, either AB or BA might not even be defined).

$$\left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right] \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \neq \left[\begin{array}{cc} 3 & 0 \\ 1 & 5 \end{array}\right] \left[\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right]$$

(when AB = BA we say that A and B commute)

2. AB = AC does not imply B = C

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right]$$

3. $AB = \mathbf{0}$ does not imply that either $A = \mathbf{0}$ or $B = \mathbf{0}$

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} 2 & -6 \\ -1 & 3 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Examples: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & -2 \end{bmatrix}$$

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Examples: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & -2 \end{bmatrix}$$

$$A^T =$$

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Examples: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & -2 \end{bmatrix}$$

$$A^T = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right],$$

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Examples: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & -2 \end{bmatrix}$$

$$A^T = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right], \quad B^T =$$

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Examples: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & -2 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, \quad B^{T} = \begin{bmatrix} 2 & 0 & 1 \\ -3 & 1 & 2 \end{bmatrix},$$

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Examples: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & -2 \end{bmatrix}$$

$$A^T = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right], \quad B^T = \left[\begin{array}{ccc} 2 & 0 & 1 \\ -3 & 1 & 2 \end{array} \right], \quad C^T =$$

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Examples: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & 2 & -2 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, \quad B^{T} = \begin{bmatrix} 2 & 0 & 1 \\ -3 & 1 & 2 \end{bmatrix}, \quad C^{T} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 1 & 2 \\ 4 & -2 \end{bmatrix}$$

THEOREM

THEOREM

1.
$$(A^T)^T = A$$

$\S 2.1 \text{ Matrix Operations}$ - Transpose

THEOREM

- $1. \ (A^T)^T = A$
- 2. $(A+B)^T = A^T + B^T$

THEOREM

- 1. $(A^T)^T = A$
- 2. $(A+B)^T = A^T + B^T$
- 3. For any scalar r, $(rA)^T = rA^T$

THEOREM

- 1. $(A^T)^T = A$
- 2. $(A+B)^T = A^T + B^T$
- 3. For any scalar r, $(rA)^T = rA^T$
- $4. \ (AB)^T = B^T A^T$

An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C such that

$$AC = I$$
 and $CA = I$

where $I = I_n$, the $n \times n$ identity matrix.

An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C such that

$$AC = I$$
 and $CA = I$

where $I = I_n$, the $n \times n$ identity matrix.

Such a matrix is called the **inverse** of A.

An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C such that

$$AC = I$$
 and $CA = I$

where $I = I_n$, the $n \times n$ identity matrix.

Such a matrix is called the **inverse** of A.

A matrix that is not invertible is called a **singular** matrix, and an invertible matrix is sometimes called a **nonsingular** matrix.

An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C such that

$$AC = I$$
 and $CA = I$

where $I = I_n$, the $n \times n$ identity matrix.

Such a matrix is called the **inverse** of A.

A matrix that is not invertible is called a **singular** matrix, and an invertible matrix is sometimes called a **nonsingular** matrix.

Note: Only $n \times n$ (square) matrices can be invertible.

PROPOSITION

If A is invertible, then the inverse of A is unique.

PROPOSITION

If A is invertible, then the inverse of A is unique.

Proof.

PROPOSITION

If A is invertible, then the inverse of A is unique.

PROOF.

$$B = BI$$

PROPOSITION

If A is invertible, then the inverse of A is unique.

Proof.

$$B = BI = B(AC)$$

PROPOSITION

If A is invertible, then the inverse of A is unique.

Proof.

$$B = BI = B(AC) = (BA)C$$

PROPOSITION

If A is invertible, then the inverse of A is unique.

Proof.

$$B = BI = B(AC) = (BA)C = IC$$

PROPOSITION

If A is invertible, then the inverse of A is unique.

Proof.

$$B = BI = B(AC) = (BA)C = IC = C.$$

Proposition

If A is invertible, then the inverse of A is unique.

PROOF.

If B and C are two inverse matrices for A then

$$B = BI = B(AC) = (BA)C = IC = C.$$

Since the inverse of a matrix A (if it exists) is unique, we denote it by A^{-1} .

PROPOSITION

If A is invertible, then the inverse of A is unique.

PROOF.

If B and C are two inverse matrices for A then

$$B = BI = B(AC) = (BA)C = IC = C.$$

Since the inverse of a matrix A (if it exists) is unique, we denote it by A^{-1} .

In other words, A^{-1} is the unique matrix satisfying

$$AA^{-1} = A^{-1}A = I$$

THEOREM

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible

THEOREM

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

THEOREM

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

If ad - bc = 0, then A is not invertible.

THEOREM

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

If ad - bc = 0, then A is not invertible.

The quantity ad - bc is called the **determinant** of A, and we use the notation

$$\det A = ad - bc.$$

$$A = \left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array} \right]$$

$$A = \left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array} \right]$$

$$B = \left[\begin{array}{cc} 2 & -3 \\ -8 & 12 \end{array} \right]$$

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & -3 \\ -8 & 12 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix}.$$

$\S 2.2$ The Inverse of a Matrix - Solving Eqns

THEOREM

If A is an invertible matrix, then the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^n$,

$\S 2.2$ The Inverse of a Matrix - Solving Eqns

THEOREM

If A is an invertible matrix, then the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^n$, given by

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

$\S 2.2$ The Inverse of a Matrix - Solving Eqns

THEOREM

If A is an invertible matrix, then the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^n$, given by

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

Example: Find the solutions of

§2.2 The Inverse of a Matrix - Properties

THEOREM

1. If A is an invertible matrix, then A^{-1} is invertible, and

$$\left(A^{-1}\right)^{-1} = A.$$

§2.2 The Inverse of a Matrix - Properties

THEOREM

1. If A is an invertible matrix, then A^{-1} is invertible, and

$$\left(A^{-1}\right)^{-1} = A.$$

2. If A and B are invertible $n \times n$ matrices, then so is AB, and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

$\S 2.2$ The Inverse of a Matrix - Properties

THEOREM

1. If A is an invertible matrix, then A^{-1} is invertible, and

$$(A^{-1})^{-1} = A.$$

2. If A and B are invertible $n \times n$ matrices, then so is AB, and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

3. If A is an invertible matrix, then so is A^T , and

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}.$$

An **elementary matrix** is a matrix obtained by performing a single row operation on the identity matrix I.

An **elementary matrix** is a matrix obtained by performing a single row operation on the identity matrix I.

Examples:

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{array} \right],$$

An **elementary matrix** is a matrix obtained by performing a single row operation on the identity matrix I.

Examples:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

An **elementary matrix** is a matrix obtained by performing a single row operation on the identity matrix I.

Examples:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

An **elementary matrix** is a matrix obtained by performing a single row operation on the identity matrix I.

Examples:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

If E is an elementary matrix obtained by some row operation on I, then the matrix EA is the same as the matrix we'd get by performing the same row operation on A.

An **elementary matrix** is a matrix obtained by performing a single row operation on the identity matrix I.

Examples:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

If E is an elementary matrix obtained by some row operation on I, then the matrix EA is the same as the matrix we'd get by performing the same row operation on A.

Example:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$$

THEOREM

An $n \times n$ matrix A is invertible if and only if it can be row reduced to the identity matrix I_n .

THEOREM

An $n \times n$ matrix A is invertible if and only if it can be row reduced to the identity matrix I_n . In this case, the sequence of row operations reducing A to I_n also transforms I_n to A^{-1} .

THEOREM

An $n \times n$ matrix A is invertible if and only if it can be row reduced to the identity matrix I_n . In this case, the sequence of row operations reducing A to I_n also transforms I_n to A^{-1} .

Algorithm for Inverting a Matrix: Row reduce the augmented matrix

 $[A \mid I]$

THEOREM

An $n \times n$ matrix A is invertible if and only if it can be row reduced to the identity matrix I_n . In this case, the sequence of row operations reducing A to I_n also transforms I_n to A^{-1} .

Algorithm for Inverting a Matrix: Row reduce the augmented matrix

$$[A \mid I]$$

▶ If A is row equivalent to I, then you obtain $[I \mid A^{-1}]$

THEOREM

An $n \times n$ matrix A is invertible if and only if it can be row reduced to the identity matrix I_n . In this case, the sequence of row operations reducing A to I_n also transforms I_n to A^{-1} .

Algorithm for Inverting a Matrix: Row reduce the augmented matrix

$$[A \mid I]$$

- ▶ If A is row equivalent to I, then you obtain $[I \mid A^{-1}]$
- ightharpoonup If A is not row equivalent to I, then A is not invertible.

THEOREM (INVERTIBLE MATRIX THEOREM)

THEOREM (INVERTIBLE MATRIX THEOREM)

Let A be a square $n \times n$ matrix. Then TFAE:

A) A is invertible.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.
- F) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.
- F) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- G) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.
- F) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- G) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- H) The columns of A span \mathbb{R}^n .

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.
- F) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- G) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- H) The columns of A span \mathbb{R}^n .
- I) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.
- F) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- G) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- H) The columns of A span \mathbb{R}^n .
- I) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- J) There is an $n \times n$ matrix C such that CA = I.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.
- F) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- G) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- H) The columns of A span \mathbb{R}^n .
 - I) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- J) There is an $n \times n$ matrix C such that CA = I.
- K) There is an $n \times n$ matrix D such that AD = I.

THEOREM (INVERTIBLE MATRIX THEOREM)

- A) A is invertible.
- B) A is row equivalent to the $n \times n$ identity matrix.
- C) A has n pivot positions.
- D) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- E) The columns of A form a linearly independent set.
- F) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- G) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- H) The columns of A span \mathbb{R}^n .
 - I) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- J) There is an $n \times n$ matrix C such that CA = I.
- K) There is an $n \times n$ matrix D such that AD = I.
- L) A^T is an invertible matrix.

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$

and

$$S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n.$$

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$

and

$$S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n.$$

If such an S exists, it is unique. We say, then, that the S is the **inverse** of T and write it as T^{-1} .

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$

and

$$S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n.$$

If such an S exists, it is unique. We say, then, that the S is the **inverse** of T and write it as T^{-1} .

THEOREM

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T.

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$

and

$$S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n.$$

If such an S exists, it is unique. We say, then, that the S is the **inverse** of T and write it as T^{-1} .

THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix.

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$

and

$$S(T(\mathbf{x})) = \mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n.$$

If such an S exists, it is unique. We say, then, that the S is the **inverse** of T and write it as T^{-1} .

THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the inverse of T is given by $T^{-1}(\mathbf{x}) = A^{-1}\mathbf{x}$.

Consider the matrices

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} r & s \\ p & q \\ t & v \end{bmatrix}.$$

Consider the matrices

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} r & s \\ p & q \\ t & v \end{bmatrix}.$$

By dividing them up by some set of vertical and horizontal lines, we can think of them as matrices made up of smaller matrices:

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ \hline g & h & i \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} r & s \\ p & q \\ \hline t & v \end{bmatrix}$$

§2.4 PARTITIONED (BLOCK) MATRICES

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ \hline g & h & i \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} r & s \\ p & q \\ \hline t & v \end{bmatrix}$$

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ \hline g & h & i \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} r & s \\ p & q \\ \hline t & v \end{bmatrix}$$

Then if

$$A = \begin{bmatrix} a & b \\ d & e \end{bmatrix}, \qquad B = \begin{bmatrix} c \\ f \end{bmatrix}, \qquad C = \begin{bmatrix} g & h \end{bmatrix}, \qquad D = \begin{bmatrix} i \end{bmatrix}$$

and

$$E = \begin{bmatrix} r & s \\ p & q \end{bmatrix}, \qquad F = \begin{bmatrix} t & v \end{bmatrix},$$

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ \hline g & h & i \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} r & s \\ p & q \\ \hline t & v \end{bmatrix}$$

Then if

$$A = \begin{bmatrix} a & b \\ d & e \end{bmatrix}, \qquad B = \begin{bmatrix} c \\ f \end{bmatrix}, \qquad C = \begin{bmatrix} g & h \end{bmatrix}, \qquad D = \begin{bmatrix} i \end{bmatrix}$$

and

$$E = \begin{bmatrix} r & s \\ p & q \end{bmatrix}, \qquad F = \begin{bmatrix} t & v \end{bmatrix},$$

then we write

$$Q = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 and $P = \begin{bmatrix} E \\ F \end{bmatrix}$.

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ \hline g & h & i \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} r & s \\ p & q \\ \hline t & v \end{bmatrix}$$

Then if

$$A = \begin{bmatrix} a & b \\ d & e \end{bmatrix}, \qquad B = \begin{bmatrix} c \\ f \end{bmatrix}, \qquad C = \begin{bmatrix} g & h \end{bmatrix}, \qquad D = \begin{bmatrix} i \end{bmatrix}$$

and

$$E = \begin{bmatrix} r & s \\ p & q \end{bmatrix}, \qquad F = \begin{bmatrix} t & v \end{bmatrix},$$

then we write

$$Q = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 and $P = \begin{bmatrix} E \\ F \end{bmatrix}$.

(notice that the way we partitioned the columns of Q is the same way we partitioned the rows of P).

Now if A,B,C,D,E, and F were all real numbers, then the product of the matrices Q and P would be given by

$$QP = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} AE + BF \\ CE + DF \end{bmatrix}.$$

Now if A, B, C, D, E, and F were all real numbers, then the product of the matrices Q and P would be given by

$$QP = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} AE + BF \\ CE + DF \end{bmatrix}.$$

It turns out the above formula is still correct when we view A, B, C, D, E, and F as matrices, and the above sums and products as matrix sums and matrix multiplication.

Now if A, B, C, D, E, and F were all real numbers, then the product of the matrices Q and P would be given by

$$QP = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} AE + BF \\ CE + DF \end{bmatrix}.$$

It turns out the above formula is still correct when we view A, B, C, D, E, and F as matrices, and the above sums and products as matrix sums and matrix multiplication.

This is called matrix multiplication of block matrices.

Now if A, B, C, D, E, and F were all real numbers, then the product of the matrices Q and P would be given by

$$QP = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} AE + BF \\ CE + DF \end{bmatrix}.$$

It turns out the above formula is still correct when we view A, B, C, D, E, and F as matrices, and the above sums and products as matrix sums and matrix multiplication.

This is called matrix multiplication of block matrices.

Note: To do this we must have the column partition of Q matching the row partition of P.

Now if A, B, C, D, E, and F were all real numbers, then the product of the matrices Q and P would be given by

$$QP = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} AE + BF \\ CE + DF \end{bmatrix}.$$

It turns out the above formula is still correct when we view A, B, C, D, E, and F as matrices, and the above sums and products as matrix sums and matrix multiplication.

This is called matrix multiplication of block matrices.

Note: To do this we must have the column partition of Q matching the row partition of P.

We can also add two block matrices of the same size, though in this situation the partitions must be exactly the same.