#### **REPORT LAB-1**

## Submitted by Deepesh Sahoo(ASU ID: 1230089330) and Debanjalee Roy (ASU ID: 1225660787)

Table 1: Implementation results for the 3 different implementations of the studied circuit.

|                   | Baseline           | Pipelined Circuit               | Shared HW Circuit  |
|-------------------|--------------------|---------------------------------|--------------------|
|                   | Circuit            |                                 |                    |
| Resources for one | 36 ALMs + 6 DSPs   | 92 ALMs + 4 DSPs                | 30 ALMs + 1 DSPs   |
| circuit           |                    |                                 |                    |
| Operating         | 45.45 MHz          | 215.05 MHz                      | 1GHz               |
| frequency         |                    |                                 |                    |
| Critical path     | ALM-based          | mult2+addr2+mult3+              | Getting Error      |
|                   | multiplier and     | addr2_pipelined                 |                    |
|                   | adder + 2x DSP     |                                 |                    |
|                   | mult + ALM-based   |                                 |                    |
|                   | adder + 6x DSP     |                                 |                    |
|                   | mult + ALM-based   |                                 |                    |
|                   | adder              |                                 |                    |
| Cycles per valid  | 1                  | 1                               | 5                  |
| output            |                    |                                 |                    |
| Max. # of         | 1518 DSPs/6 DSPs = | 1518 DSPs /4 DSPs = 380         | 1518 DSPs/1 DSP    |
| copies/device     | 253 copies per     |                                 | =1518              |
|                   | device             |                                 | copies/device      |
| Max. Throughput   | 45.45 * 10^6 *253  | 215.05 *10^6 * 380 = 81.7 *10^9 | 1GHz * 1518        |
| for a full device | = 11.5 *10^9       | computations/s                  | computations/s     |
| (computations/s)  | computations/s     |                                 |                    |
| Dynamic power of  | 0.98 mW            | 4.02mW                          | Getting vcd error, |
| one circuit       |                    |                                 | unable to change   |
|                   |                    |                                 | settings.          |
| Max.              | 3.55 *10^9         | 18*10^9 computations/watt       | Getting vcd error, |
| throughput/Watt   | computations/watt  |                                 | unable to change   |
| for a full device |                    |                                 | settings.          |

## **Baseline Implementation:**

At frequency 45.45MHz (22ns)

**Dynamic power of one circuit:** 0.98 mW from the picture provided below at frequency of 45.45 MHz

**Max. throughput/Watt for a full device:** Power used = 0.98 \* 253 + 2992.23 = 3240.17 mW

Therefore, max throughput/watt =  $11.5 *10^9 /3240.17*10^{-3} = 3.55 *10^9$  computations/watt







Here, ALMs used i.e logic utilization is 63 - 27 = 36 ALMs.



The total power for these block types, including the routing between them is 0.78 + 0.17 + 0.03 = 0.98 mW @ 45.45 MHz



'Total On-Chip Power Dissipation' = 2995mW or about 3W.

'Core Dynamic On-Chip Power Dissipation'= 3.42mW

'Device Static On-Chip Power Dissipation' = 2992.23

## PIPELINE IMPLEMENTATION



# **Basic Operation of Pipeline Implementation:**



Fig: Basic Operation



Fig: X pipeline (8 Stages)



Fig: Valid\_pipeline (9 stages: 5 Mult + 4 Adders)



Fig: Critical Path Delay

## **Explanation:**

# **Baseline error**

ECE1756 Lab1: Exact vs. Approximated Exponential Function



**Pipelined Error** 



ECE1756 Lab1: Exact vs. Approximated Exponential Function

(a) What are the different sources of error (i.e. difference between exp(x) and Hardware Output in the graph you plotted for the testbench output)? Include the graph in the report. What changes could you make to the circuit to reduce this error?

The errors of pipeline and baseline are similar as there are no major changes in the design. The only changes that are taking place are in additions to pipelining stages using flip flops. However, as the shared operator is using mult32 and add32 for all the 5 alu (mult + add) operations, the error rates of the shared operator are higher. [Baseline and pipelining using a 16-bit Multiplier for their first input]. In our case, we have truncated the precision to match the data size between the inputs and outputs. A 32-bit Multiplier will truncate more bits than the 16-bit multiplier, which might lead to higher error rates.

# (b) Which of the 3 hardware circuits (baseline, pipelined, and shared) achieves the highest throughput/device? Explain the reasons for the efficiency differences between them.

We believe that the pipelined stage gives the highest throughput. At maximum pipelining, there's just one combinational block (adder/multiplier) between two flops, leading in a higher frequency. However, in quartus, we observed that the pipelining added after the adder, was a part of the multiplier DSP input flop, and

the pipelining after the multiplier was not realized. In that case, the frequencies of the pipelined design and the shared operator should be similar. But as a shared operator takes more cycles to produce the output, the throughput is lowered.

(c) Look at the average toggle rates (how often the average signal changes) for the 3 circuits (this information is in the messages section of the PowerAnalyzer report). Comment on the relative efficiency of the 3 circuits in terms of computations/J and explain why each style is more or less efficient in computations/J than the others.

In a fully pipelined scenario, a total of 26 flops (8 x, 5 multipliers, 4 adders and 9 valid) were added. This leads to more toggling and a higher dynamic power. However, the static power is constant, high, and similar in all 3 cases. Hence, as pipelined has a higher throughput, it has the best efficiency.

## Pipelined design:



- 1. Adding flops after each intermediate multiplier / adder. Hence each intermediate multiplier needs to have x pushed behind by two cycles. We've added 2 flops per multiplier on the x path.
- 2. The first output is valid after 11 cycles of the i\_x being sent. (2 flops for i\_x and o\_y and 9 flops to match the multiplier + adder pipelined flops)



Fig: Resource Utilization for Pipeline



Fig: DSP Blocks utilization in Resource Utilization





Fig: Questa Testbench Results: Pipeline





Fig: On-chip Power Dissipation by block type



**Fig: Power Analyzer Summary** 

### **Pipeline Implementation Tasks:**

1. Resources for one circuit = Here, ALMs used i.e logic utilization is 119 - 27 = 92 ALMs.

Max. # of copies/device is restricted by the number of DSPs needed = 1518 DSPs/6 DSPs = 253 copies per device.

- 2. Operating frequency: Time in SDC1.sdc is set to 4.65ns corresponding to 215.05 MHz.
- 3. Critical path:
- 4. Cycles per valid output: In the pipeline, after saturation is 1 cycle per valid output.
- **5.** Max. Throughput for a full device (computations/s): 215.05 \*10^6 \* 380 = 81.7 \*10^9 computations/s
- **6. Dynamic power of one circuit:** 2.07+0.92+1.03 mW = 4.02mW
- 7. Max. throughput/Watt for a full device: power consumed = 4.02mW \* 380 + 2993.42 = 4521.02mW

Therefore, throughput/ Watt =  $81.7 *10^9 / 4521.02 *10^{-3} W = 18*10^9 computations/watt$ 

# **Shared Operator**



Frequency: 1 GHz

No of cycles: 5

## **Shared Implementation Tasks:**

1. Resources for one circuit = Here, ALMs used i.e. logic utilization = 30 ALMs.

Max. # of copies/device is restricted by the number of DSPs needed = 1518/1 = 1518 copies per device.

- **2. Operating frequency:** Time in SDC1.sdc is set to 1 ns corresponding to 1GHz.
- 3. Critical path:

- **4. Cycles per valid output:** In the shared, 5 cycles per valid output are designed.
- **5.** Max. Throughput for a full device (computations/s):  $215.05 *10^6 *380 = 81.7 *10^9$  computations/s
- **6. Dynamic power of one circuit:** 2.07+0.92+1.03 mW = 4.02mW
- 7. Max. throughput/Watt for a full device: power consumed = 4.02 mW \* 1518 + 2993.42 = 4521.02 mW

Therefore, throughput/ Watt =  $81.7 *10^9 / 4521.02 *10^{-3} W = 18*10^9 computations/watt$