Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине "Традиционные и интеллектуальные информационные технологии" на тему

Задача поиска точек сочленения в неориентированном графе

Выполнил: В.Д. Хорошавин

Студент группы 021704

Проверил: В.С. Витязь

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей

Задача: Поиск точек сочленения в неориентированном графе

1 СПИСОК ПОНЯТИЙ

- 1. Графовая структура (абсолютное понятие) это такая одноуровневая реляционная структура, объекты которой могут играть роль либо вершины, либо связки:
 - (а) Вершина (относительное понятие, ролевое отношение);
 - (b) Связка (относительное понятие, ролевое отношение).

Рис. 1: Графовая структура

- 2. Графовая структура с ориентированными связками (абсолютное понятие)
 - (а) Ориентированная связка (относительное понятие, ролевое отношение) связка, которая задается ориентированным множеством.

Рис. 2: Графовая структура с ориентированными связками

- 3. Графовая структура с неориентированными связками (абсолютное понятие)
 - (а) Неориентированная связка (относительное понятие, ролевое отношение) связка, которая задается неориентированным множеством.

Рис. 3: Графовая структура с неориентированными связками

- 4. Гиперграф (абсолютное понятие) это такая графовая структура, в которой связки могут связывать только вершины:
 - (а) Гиперсвязка (относительное понятие, ролевое отношение);
 - (b) Гипердуга (относительное понятие, ролевое отношение) ориентированнаягиперсвязка;
 - (с) Гиперребро (относительное понятие, ролевое отношение) неориентированная гиперсвязка.

Рис. 4: Гиперграф

- 5. Псевдограф (абсолютное понятие) это такой гиперграф, в котором все связки должны быть бинарными:
 - (а) Бинарная связка (относительное понятие, ролевое отношение) гиперсвязка арности 2;
 - (b) Ребро (относительное понятие, ролевое отношение) неориентированная гиперсвязка;
 - (с) Дуга (относительное понятие, ролевое отношение) ориентированная гиперсвязка;
 - (d) Петля (относительное понятие, ролевое отношение) бинарная связка, у которой первый и второй компоненты совпадают.

Рис. 5: Псевдограф

6. Мультиграф (абсолютное понятие) – это такой псевдограф, в котором не может быть петель:

Рис. 6: Мультиграф

7. Граф (абсолютное понятие) – это такой мультиграф, в котором не может быть кратных связок, т.е. связок у которых первый и второй компоненты совпадают:

Рис. 7: Граф

8. Неориентированный граф (абсолютное понятие) –это такой граф, в котором все связки являются ребрами:

Рис. 8: Неориентированный граф

9. Связанный граф (абсолютное понятие) - граф, в котором между любой парой вершин есть путь:

Рис. 9: Связанный граф

10. Точка сочленения (абсолютное понятие) - вершина при удалении которой из графа, он становится несвязанным:

Рис. 10: Точка сочленения

2 ТЕСТОВЫЕ ПРИМЕРЫ

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

Во всех тестах решается задача поиска всех точек сочленения.

2.1 Tect 1

Вход:

Рис. 11: Вход теста 1

Выход:

Будут найдены вершины 2 и 5:

Рис. 12: Выход теста 1

2.2 Tect 2

Вход:

Рис. 13: Вход теста 2

Выход:

Будет найдена вершина 3:

Рис. 14: Выход теста 2

2.3 Тест 3

Вход:

Рис. 15: Вход теста 3

Выход:

Будут найдены вершины 1, 2, 3, 4, 8:

Рис. 16: Выход теста 3

2.4 Tect 4

Вход:

Рис. 17: Вход теста 4

Выход:

Будут найдены вершины 1, 4, 5, 6:

Рис. 18: Выход теста 4

2.5 Tect 5

Вход:

Рис. 19: Вход теста 5

Выход:

Будут найдены вершины 2, 4:

Рис. 20: Выход теста 5

3 ПРИМЕР РАБОТЫ АЛГОРИТМА В СЕМАН-ТИЧЕСКОЙ ПАМЯТИ

Создание графа с начальными переменными (Шаг 1)

_graph получит в качестве значения sc-узел неориентированного графа

_used - множество, не содержащее элементов

Начинаем поиск в глубину из вершины 1 (Шаг 2)

- B used добавляем вершину 1
- _tin время входа поиска в глубину в некоторую вершину
- _up время выхода поиска в глубину из некоторой вершины
- _to вершина, в которую двигается поиск в глубину
- _stack список вершин, просмотренных поиском в глубину для какой-либо вершины
 - В _stack добавляем вершину 1

Начинаем поиск в глубину из вершины 2 (Шаг 3)

- В _used добавляем вершину 2
- _to получает вершину 3
- В _stack добавляем вершину 2

Начинаем поиск в глубину из вершины 3 (Шаг 4)

В _used добавляем вершину 3

_to получает вершину 2

В _stack добавляем вершину 3

Поскольку вершина 2 уже была просмотрена и вершина 3 не имеет других смежных вершин, пересчитываем время выхода из неё.

T.к. выход из вершины 3 произошёл после входа в вершину 2, то вершина 2 является точкой сочленения.

Добавляем вершину 2 в множество точек сочленения (Шаг 5)

Создаём переменную _result, которая в качестве значения получит безымянную связку

Возвращаемся к вершине 2 и начинаем поиск в глубину из вершины 4 (Шаг 6)

В _stack переопределяем отношение между вершинами 2 и 3 (cnedyouuuй* заменяем на noceweno*)

Добавляем вершину 4 в _stack

В _used добавляем вершину 4

_to получает вершину 1

Поскольку вершина 1 уже была просмотрена, то пересчитываем время выхода из вершины 4

Отмечаем вершину 1 просмотренной при поиске в глубину из вершины 4

Начинаем поиск в глубину из вершины 5 (Шаг 7)

Добавляем вершину 5 в _stack

В _used добавляем вершину 5

_to получает вершину 6

Начинаем поиск в глубину из вершины 6 (Шаг 8)

- В _stack добавляем вершину 6
- В _used добавляем вершину 6
- _to получает вершину 4

Поскольку вершина 4 уже была просмотрена, то пересчитываем время выхода из вершины 6

Возвращаемся к вершине 5 (Шаг 9)

Поскольку все вершины смежные с вершиной 6 уже просмотрены, пересчитываем время выхода из вершины 5

Т.к. выход из вершины 6 произошёл раньше входа в вершину 5, вершина 5 не является точкой сочленения

Т.к. выход из вершины 5 произошёл одновременно с входом в вершину 4, вершина 4 является точкой сочленения

В _stack переопределяем отношение между вершинами 5 и 6 (cnedyouyuй* заменяем на noceweno*)

Добавляем вершину 4 в множество точек сочленения (Шаг 10)

Возвращаемся к вершине 4 (Шаг 11)

В _stack переопределяем отношение между вершинами 4 и 5 ($cnedyouuu\ddot{u}^*$ заменяем на $noceuueno^*$)

Поскольку вершина 6 уже была просмотрена, пересчитываем время выхода из вершины 4

Т.к.

Возвращаемся к вершине 2 (Шаг 12)

В _stack переопределяем отношение между вершинами 2 и 4 ($cnedyouyu\ddot{u}^*$ заменяем на $noceweno^*$)

Поскольку все вершины смежные с вершиной 2 уже просмотрены, пересчитываем время выхода из вершины 2

Возвращаемся к вершине 1 (Шаг 13)

Поскольку вершина 4 уже была просмотрена, пересчитываем время выхода из вершины 1

Удаление ненужных связей (Шаг 14)

Результат работы алгоритма

На данном этапе продемонстрирован результат работы алгоритма, значение переменной _result будет возвращено в вызывающий контекст.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Кормен, Д. Алгоритмы. Построение и анализ / Д. Кормен. Вильямс, 2015. Р. 1328.
- [2] Кузнецов, О. П. Дискретная математика для инженера / О. П. Кузнецов, Г. М. Адельсон-Вельский. Энергоатомиздат, 1988. Р. 480.
 - [3] Оре, О. Теория графов / О. Оре. Наука, 1980. Р. 336.
- [4] Харарри, Ф. Теория графов / Ф. Харарри. Эдиториал УРСС, 2018. Р. 304.