# MKSE312 Final Project

Susan Greenberg and Ayaka Nonaka September 19, 2012

#### 1 Introduction

In this report, we analyze the Facebook New Orleans dataset using different community detection techniques: modularity maximization using KL algorithm, spectral bipartition, and the Louvain-Twitter algorithm.

We extracted 5 disjoint subgraphs of 2,500 nodes from the dataset to make the computation more feasible.

#### 2 Modularity maximization using KL algorithm

### 3 Spectral bipartition

Figures 1 - 5 show the results for spectral bipartition on the 5 subgraphs. The values for  $\lambda_2$  for each subgraph respectively are: 0.8992, 0.5614, 0.9856, 0.9116, 0.9352. The  $\lambda_2$  values tell us how easily the network can be split into two groups.

Subgraph 2 has the smallest  $\lambda_2$  (0.5614), suggesting that it is the easiest to split, which seems to make sense since we can identify the two groups in the Figure 2.

On the other hand, subgraph 5 has the largest  $\lambda_2$  (0.9352), suggesting that it is the most difficult to split, which also seems to make sense because Figure 5 shows a cloud of plots that don't seem to have much grouping.

## 4 Louvain-Twitter algorithm



Figure 1: Spectral Bipartition for Subgraph 1



Figure 2: Spectral Bipartition for Subgraph 2



Figure 3: Spectral Bipartition for Subgraph 3  $\,$ 



Figure 4: Spectral Bipartition for Subgraph 4



Figure 5: Spectral Bipartition for Subgraph 5  $\,$