A Crash Course in Rust 🙀

Let's learn Rust together.

What is Rust?

- Strongly typed systems programming language
- No garbage collector
- Memory safety is checked at compile time
 - Prevents undefined behavior
 - Use after free, data races, etc
- Async/Await for high performance apps
 - Core IPC message broker
- Package management

Installation

Rustup

```
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
rustup default stable # Install and use the latest stable rust toolchain
```

Tooling

- Visual Studio Code
- rust-analyzer extension
 - Language server for rust
 - Provides IDE-like features
 - Intellisense
 - Goto Definition
 - Refactoring support
 - Inlay type hints

Creating a Project

cargo new learn-rust
cd learn-rust
cargo run -r

Data Structures


```
// main.rs
struct Dog;

fn main() {
   let _dog = Dog {};

   println!("Hello, world!");
}
```

Mutability

```
struct Dog {
    age: u8,
impl Dog {
    pub fn celebrate_birthday(&mut self) {
        self.age = self.age + 1;
        println!("Fluffy is {} years old!", self.age);
fn main() {
    let mut dog = Dog { age: 8 };
    dog.celebrate_birthday();
```

Constructors

```
struct Dog { age: u8 }
impl Dog {
    pub fn new(age: u8) -> Self {
        Self { age }
fn main() {
    let mut dog = Dog::new(8);
    dog.celebrate_birthday();
```

Enumerations

```
enum BoneKind {
    Bacon,
    PeanutButter,
    Turkey,
}
```

Option

```
pub enum Option<T> {
   None,
   Some(T),
}
```

Optional Fields

```
struct Dog {
    age: u8,
    pub bone: Option<Bone>,
impl Dog {
    pub fn new(age: u8) -> Self {
        Self { age, bone: None }
    // ...
```

Wait a second...

- What if the dog already has a bone?
- What if the dog doesn't like the flavor?
- What if the dog refuses to take the bone?

Borrowing, Ownership, and Lifetimes

- Data can only have one owner
- T is a type
- &T is an immutable ref to T, referred to as borrowing
 - N number of immutable refs allowed unless a mutable ref exists
- &mut T is a mutable ref to T
 - Limit of only one at a time
- &'static mut T is a mutable ref to T with a 'static lifetime
 - Guaranteed to live for the duration of the program

Results and Errors

How do we represent errors in Rust?

- Scenario 1
 - Take a bone from a dog that is without one
 - None represents the absence of the bone
- Scenario 2
 - Give one and then another bone to a dog
 - We can return Err to represent an error

Result

```
enum Result<T, E> {
    Ok(T),
    Err(E),
}
```

Traits

- What are traits?
 - Similar to interfaces
 - Only specify behavior and not data
 - Not inheritance
 - Allows for dynamic dispatch
 - i.e Vec<Box<dyn Animal>>
- Built-In Rust traits
 - Default
 - Display

Custom Errors

```
struct AnimalError { details: String }
impl AnimalError {
    fn new(msg: &str) -> Self {
        Self { details: msg.to_string() }
impl std::error::Error for AnimalError {
    fn description(&self) -> &str { &self.details }
impl std::fmt::Display for AnimalError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}", self.details)
```

Type Aliases

Declare function aliases to abbreviate types

```
pub type Result<T, E = Box<dyn std::error::Error>> = std::result::Result<T, E>;
```

Smart Pointers in Rust

- What is a Box?
 - Just a smart pointer
 - Used for safe heap allocations

Writing Fallible Methods

```
pub fn receive_bone(&mut self, bone: Bone) -> Result<()> {
    match self.bone.as_ref() {
        Some(bone) => {
            return Err(Box::new(AnimalError::new(&format!()))
                "Dog already has a bone! ({:?})",
                bone
            ))))
        None => {
            println!("Fluffy grabbed the {:?} bone!", bone.kind);
            self.bone = Some(bone);
    0k(())
```

More Error Conditions

Happy Birthday, Fluffy! 👛 🦮

```
fn main() -> Result<()> {
    let mut dog = Dog::new(8);
    dog.celebrate_birthday();
    dog.speak()?; // Now we can invoke dog.speak()

let bone = Bone::new(BoneKind::BaconFlavored);
    dog.receive_bone(bone)?;

Ok(())
}
```

• ? operator propagates error to the caller

Debug Output

```
#[derive(Debug)]
struct AnimalError {
   details: String,
}
```

Final Program

Available on the <u>rust playground</u>

Next Steps

- The official rust website
- The Rust bookshelf
 - Run rustup doc
- Awesome Rust Learning
 - Large list of learning resources