Monte Carlo Simulation: Assignment 1

Yash Vanjani Roll No:140123046

22/01/2016

Question 1

$$x_{i+1} = (ax_i + b) \mod m$$

 $u_{i+1} = x_{i+1}/m$

Generate the sequence of numbers x_i for a = 6, b = 0,

m=11 and x_0 ranging from 0 to 10. Also, generate the sequence of numbers x_i for a=3, b=0, m=11, and x_0 ranging from 0 to 10. Observe the sequence of numbers generated and observe the repetition of values. Tabulate these for each group of values. How many distinct values are appearing before repetitions? Which in your view are the best choices and why?

Solution

C++ Code:

```
#include <iostream>
#include <fstream>

using namespace std;

int main()
{
   ofstream myfile;
   myfile.open("output.txt", ios::app);
   int i,j;
   int a,b,m;
   float x;
```

```
14
       float u;
15
       a=6;
16
       b=0;
17
      m = 11;
18
       cout << "For a=6, b=0, m=11:\n";
19
       myfile \ll "For a=6, b=0, m=11:\n";
20
21
       for (i=0; i<11; i++)
22
           cout << "\nRandom x[i] for x[0]="<<i<"\n";
23
           myfile << "\nRandom x[i] for x[0] = "<< i << "\n";
24
25
26
           for (j=0; j<15; j++)
27
28
              cout << x<< " ";
              \label{eq:myfile} \verb|myfile| << x << " ";
29
30
              x = ((a*int(x))+b)\%m;
31
32
33
       for (i = 0; i < 11; i++)
34
35
           cout << " \ n";
           cout << "Random u[i] for x[0] = "<< i << "\setminus n";
36
37
           myfile << " \ n";
38
           myfile \ll Random u[i] for x[0] = " \ll i \ll n";
39
           x=i;
40
           u=float(x/m);
41
           for (j=0; j<15; j++)
42
              cout << u<< " ";
43
              myfile << u<<"";
44
45
              x = ((a * int(x)) + b)\%m;
46
              u=float(x/m);
47
           }
           cout << " \ n";
48
49
       }
50
       a=3;
51
       b=0:
52
      m = 11;
53
       cout \ll n n  or a=3, b=0, m=11: n;
54
       myfile \ll n nFor a=3, b=0, m=11:n;
55
       for (i=0; i<11; i++)
56
           cout << " \nRandom x[i] for x[0] = " << i << " \n";
57
58
           myfile << "\nRandom x[i] for x[0] = "<< i << "\n";
59
           x=i;
60
           for (j=0; j<15; j++)
61
              cout << x<<" ";
62
              myfile << x<< " "
63
64
              x = ((a * int (x)) + b)\%m;
65
           }
66
67
       for (i=0; i<11; i++)
68
           cout << " \ n";
69
           cout << "Random u[i] for x[0] = "<< i << "\setminus n";
70
71
           myfile << "\n";
72
           myfile \ll "Random u[i] for x[0] = " \ll i \ll " n";
```

```
73
          x=i;
74
          u = float(x/m);
75
           for (j=0; j<15; j++)
76
77
               cout << u<< " ";
              myfile << u << " ";
78
79
              x = ((a * int(x)) + b)\%m;
80
              u=float(x/m);
81
82
           cout << " \ n";
83
           myfile << " \ n";
84
85
       myfile.close();
86 }
```

Output:

```
For a=6, b=0, m=11:
   3 Random x[i] for x[0]=0
           5 Random x[i] for x[0]=1
   6 1 6 3 7 9 10 5 8 4 2 1 6 3 7 9
   7 Random x[i] for x[0]=2
   8 2 1 6 3 7 9 10 5 8 4 2 1 6 3 7
   9 Random x[i] for x[0]=3
10 3 7 9 10 5 8 4 2 1 6 3 7 9 10 5
11 Random x[i] for x[0]=4
12 4 2 1 6 3 7 9 10 5 8 4 2 1 6 3
13 Random x[i] for x[0]=5
14 5 8 4 2 1 6 3 7 9 10 5 8 4 2 1
15 Random x[i] for x[0]=6
16 6 3 7 9 10 5 8 4 2 1 6 3 7 9 10
17 Random x[i] for x[0]=7
18 7 9 10 5 8 4 2 1 6 3 7 9 10 5 8
19 Random x[i] for x[0]=8
20 8 4 2 1 6 3 7 9 10 5 8 4 2 1 6
21 Random x[i] for x[0]=9
22 9 10 5 8 4 2 1 6 3 7 9 10 5 8 4
23 Random x[i] for x[0]=10
24 10 5 8 4 2 1 6 3 7 9 10 5 8 4 2
25 Random u[i] for x[0]=0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27
28 Random u[i] for x[0]=1
0.181818 \ \ 0.0909091 \ \ 0.545455 \ \ 0.272727 \ \ 0.636364 \ \ 0.818182
30
31 Random u[i] for x[0]=2
32 \mid 0.181818 \mid 0.0909091 \mid 0.545455 \mid 0.272727 \mid 0.636364 \mid 0.818182 \mid 0.909091 \mid 0.454545 \mid 0.727273 \mid 0.636364 \mid 0.818182 \mid 0.909091 \mid 0.454545 \mid 0.727273 \mid 0.636364 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818181 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818181 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818181 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818181 \mid 0.909091 \mid 0.4545451 \mid 0.727273 \mid 0.6363641 \mid 0.818181 \mid 0.909091 \mid 0.4545451 \mid 0.909091 \mid 0.454541 \mid 0.909091 \mid 0.9090
                             0.363636 \ \ 0.181818 \ \ 0.0909091 \ \ 0.545455 \ \ 0.272727 \ \ 0.636364
33
34 Random u[i] for x[0]=3
35 \mid 0.272727 \quad 0.636364 \quad 0.818182 \quad 0.909091 \quad 0.454545 \quad 0.727273 \quad 0.363636 \quad 0.181818 \quad 0.0909091
                             0.545455 \ 0.272727 \ 0.636364 \ 0.818182 \ 0.909091 \ 0.454545
36
37 Random u[i] for x[0]=4
38 \mid 0.363636 \mid 0.181818 \mid 0.0909091 \mid 0.545455 \mid 0.272727 \mid 0.636364 \mid 0.818182 \mid 0.909091 \mid 0.454545 \mid 0.3636364 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.3636364 \mid 0.818182 \mid 0.909091 \mid 0.4545451 \mid 0.3636364 \mid 0.818182 \mid 0.9090991 \mid 0.4545451 \mid 0.36363641 \mid 0.818182 \mid 0.9090991 \mid 0.4545451 \mid 0.9090991 \mid 0.909091 \mid
                            0.727273 \ \ 0.363636 \ \ 0.181818 \ \ 0.0909091 \ \ 0.545455 \ \ 0.272727
```

```
39
40 Random u[i] for x[0]=5
41 \mid 0.454545 \mid 0.727273 \mid 0.363636 \mid 0.181818 \mid 0.0909091 \mid 0.545455 \mid 0.272727 \mid 0.636364 \mid 0.818182
             0.909091 0.454545 0.727273 0.363636 0.181818 0.0909091
42
43 Random u[i] for x[0]=6
0.0909091 \ \ 0.545455 \ \ 0.272727 \ \ 0.636364 \ \ 0.818182 \ \ 0.909091
45
46 Random u[i] for x[0]=7
47 \begin{vmatrix} 0.636364 & 0.818182 & 0.909091 & 0.454545 & 0.727273 & 0.363636 & 0.181818 & 0.0909091 & 0.545455 \end{vmatrix}
             0.272727 \ \ 0.636364 \ \ 0.818182 \ \ 0.909091 \ \ 0.454545 \ \ 0.727273
48
49 Random u[i] for x[0]=8
50 \mid 0.727273 \quad 0.363636 \quad 0.181818 \quad 0.0909091 \quad 0.545455 \quad 0.272727 \quad 0.636364 \quad 0.818182 \quad 0.909091
             0.454545 \ \ 0.727273 \ \ 0.363636 \ \ 0.181818 \ \ 0.0909091 \ \ 0.545455
51
52 Random u[i] for x[0]=9
53 \begin{vmatrix} 0.818182 & 0.909091 & 0.454545 & 0.727273 & 0.363636 & 0.181818 & 0.0909091 & 0.545455 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.545455 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.545455 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.545455 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.545455 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.0909091 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.09090991 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.090909991 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.09099999 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.09099999 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.09099999 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.09099999 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.09099999 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.0909999 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.0909999 & 0.5454545 & 0.2727273 & 0.363636 & 0.181818 & 0.0909999 & 0.5454545 & 0.27272727 & 0.363636 & 0.181818 & 0.0909999 & 0.5454545 & 0.27272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.272727 & 0.
             0.636364 0.818182 0.909091 0.454545 0.727273 0.363636
54
55 Random u[i] for x[0]=10
56 \mid 0.909091 \mid 0.454545 \mid 0.727273 \mid 0.363636 \mid 0.181818 \mid 0.0909091 \mid 0.545455 \mid 0.272727 \mid 0.636364
             0.818182 \ 0.909091 \ 0.454545 \ 0.727273 \ 0.363636 \ 0.181818
57
58
59 For a=3, b=0, m=11:
60
61 Random x[i] for x[0]=0
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 Random x[i] for x[0]=1
64 1 3 9 5 4 1 3 9 5 4 1 3 9 5 4
65 Random x[i] for x[0]=2
66 2 6 7 10 8 2 6 7 10 8 2 6 7 10 8
67 Random x[i] for x[0]=3
68 3 9 5 4 1 3 9 5 4 1 3 9 5 4 1
69 Random x[i] for x[0]=4
70 4 1 3 9 5 4 1 3 9 5 4 1 3 9 5
71 Random x[i] for x[0]=5
72 5 4 1 3 9 5 4 1 3 9 5 4 1 3 9
73 Random x[i] for x[0]=6
74 6 7 10 8 2 6 7 10 8 2 6 7 10 8 2
75 Random x[i] for x[0]=7
76 7 10 8 2 6 7 10 8 2 6 7 10 8 2 6
77 Random x[i] for x[0]=8
78 8 2 6 7 10 8 2 6 7 10 8 2 6 7 10
79 Random x[i] for x[0]=9
80 9 5 4 1 3 9 5 4 1 3 9 5 4 1 3
81 Random x[i] for x[0]=10
82 10 8 2 6 7 10 8 2 6 7 10 8 2 6 7
83 Random u[i] for x[0]=0
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85
86 Random u[i] for x[0]=1
     0.0909091 \ \ 0.272727 \ \ 0.818182 \ \ 0.454545 \ \ 0.363636 \ \ 0.0909091 \ \ 0.272727 \ \ 0.818182 \ \ 0.454545
87
             0.363636 \ \ 0.0909091 \ \ 0.272727 \ \ 0.818182 \ \ 0.454545 \ \ 0.363636
88
89 Random u[i] for x[0]=2
90 \mid 0.181818 \quad 0.545455 \quad 0.636364 \quad 0.909091 \quad 0.727273 \quad 0.181818 \quad 0.545455 \quad 0.636364 \quad 0.909091
```

```
0.727273 \ \ 0.181818 \ \ 0.545455 \ \ 0.636364 \ \ 0.909091 \ \ 0.727273
    91
    92 Random u[i] for x[0]=3
    93 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.0909091 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.454545 \\ \mid 0.363636 \\ \mid 0.272727 \\ \mid 0.818182 \\ \mid 0.8182 \\ \mid 0.8182 \\ \mid 0.818182 
                                              0.0909091 \ 0.272727 \ 0.818182 \ 0.454545 \ 0.363636 \ 0.0909091
    94
                     Random u[i] for x[0]=4
    95
                      0.363636 \ \ 0.0909091 \ \ 0.272727 \ \ 0.818182 \ \ 0.454545 \ \ 0.363636 \ \ 0.0909091 \ \ 0.272727 \ \ 0.818182
    96
                                              0.454545 \ \ 0.363636 \ \ 0.0909091 \ \ 0.272727 \ \ 0.818182 \ \ 0.454545
    97
    98
                     Random u[i] for x[0]=5
                      0.454545 \ \ 0.363636 \ \ 0.0909091 \ \ 0.272727 \ \ 0.818182 \ \ 0.454545 \ \ 0.363636 \ \ 0.0909091 \ \ 0.272727 
                                              0.818182 0.454545 0.363636 0.0909091 0.272727 0.818182
100
                     Random u[i] for x[0]=6
101
102 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545451 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545451 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.909091 \mid 0.727273 \mid 0.909091 \mid 0.909091 \mid 0.909091 \mid 0.9
                                              0.181818 \ \ 0.545455 \ \ 0.636364 \ \ 0.909091 \ \ 0.727273 \ \ 0.181818
                     Random u[i] for x[0]=7
104
105
                     0.636364 \ 0.909091 \ 0.727273 \ 0.181818 \ 0.545455 \ 0.636364 \ 0.909091 \ 0.727273 \ 0.181818
                                              0.545455 0.636364 0.909091 0.727273 0.181818 0.545455
106
                     Random u[i] for x[0]=8
107
                     0.727273 \ \ 0.181818 \ \ 0.545455 \ \ 0.636364 \ \ 0.909091 \ \ 0.727273 \ \ 0.181818 \ \ 0.545455 \ \ 0.636364
108
                                               0.909091 \ 0.727273 \ 0.181818 \ 0.545455 \ 0.636364 \ 0.909091
109
110 Random u[i] for x[0]=9
                     0.818182 \ \ 0.454545 \ \ 0.363636 \ \ 0.0909091 \ \ 0.272727 \ \ 0.818182 \ \ 0.454545 \ \ 0.363636 \ \ 0.0909091
111
                                              0.272727 \ \ 0.818182 \ \ 0.454545 \ \ 0.363636 \ \ 0.0909091 \ \ 0.272727
112
113 Random u[i] for x[0]=10
114 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545454 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545455 \mid 0.636364 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545454 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.545454 \mid 0.909091 \mid 0.727273 \mid 0.181818 \mid 0.909091 \mid 0.727273 \mid 0.909091 \mid 0.727273 \mid 0.909091 \mid 0.727273 \mid 0.909091 \mid 0.727273 \mid 0.909091 \mid 0.9
                                               0.636364 \ 0.909091 \ 0.727273 \ 0.181818 \ 0.545455 \ 0.636364
```

For a = 6, b = 0, m = 11:

Sequence of numbers generated for seed = 0:0,0,0,...Sequence of numbers generated for seed > 0:1,6,3,7,9,10,5,8,4,2,...

Seeds	0	1	2	3	4	5	6	7	8	9	10
Period	1	10	10	10	10	10	10	10	10	10	10

For a = 3, b = 0, m = 11:

Sequence of numbers generated for seed = 0: 0, 0, 0, ...Sequence of numbers generated for seed > 0: 1, 3, 9, 5, 4, ...

Seeds	0	1	2	3	4	5	6	7	8	9	10
Period	1	5	5	5	5	5	5	5	5	5	5

Observations:

Number of distinct values appearing before repetition for a = 6(seed > 0) = 10

Number of distinct values appearing before repetition for a=3(seed>0)=5

Best Choice: a = 6 and $m \neq 0$, because the random numbers generated have more period(=10) than generated by a=3 (period = 5).

Question 2

Generate a sequence u_i with m = 244944, a = 1597 (take x_0 as per your choice). Try to group the values in the ranges 0-0.05, 0.05-0.10, 0.10-0.15, ... and see their frequencies (i.e. the number of values falling in a group). For at least 5 different values of the number of values generated, tabulate the frequencies in each case, draw bar diagrams of these data and put in your observations.

Solution

C++ Code:

```
#include <iostream>
             #include <fstream>
              using namespace std;
   6 int main()
   7
   8
                               ofstream myfile;
   9
                               myfile.open("output.txt", ios::app);
10
11
                               int i, j, k, l;
12
                               int a[2],b,m;
13
                               float x[500000];
14
                               int n[5];
15
                               char filename [6];
                               n[0] = 1000;
16
17
                               n[1] = 500;
                               n[2] = 5000;
18
19
                               n[3] = 50000;
                               n[4] = 500000;
20
21
                               float u[250000];
22
                               int f [20];
                               a[0] = 1597;
23
24
                               a[1] = 51749;
25
                               b=0;
26
                             m=244944;
                               \mathbf{char} \ \text{freq} \ [20] \ [100] = \{ \text{"0.00} - 0.05 \text{"}, \text{"0.05} - 0.10 \text{"}, \text{"0.10} - 0.15 \text{"}, \text{"0.15} - 0.20 \text{"}, \text{"0.20} - 0.25 \text{"}, \text{"0.10} - 0.10 \text{"}, \text{"0.
27
                                                  \begin{array}{c} 0.25 - 0.30\text{"} \text{ ," } 0.30 - 0.35\text{"} \text{ ," } 0.35 - 0.40\text{"} \text{ ," } 0.40 - 0.45\text{"} \text{ ," } 0.45 - 0.50\text{"} \text{ ," } 0.50 - 0.55\text{"} \text{ ," } 0.55 - 0.60\text{"} \text{ ," } 0.60 - 0.65\text{"} \text{ ," } 0.65 - 0.70\text{"} \text{ ," } 0.70 - 0.75\text{"} \text{ ," } 0.75 - 0.80\text{"} \text{ ," } 0.80 - 0.85\text{"} \text{ ," } \end{array}
                                                   0.85 - 0.90", "0.90 - 0.95", "0.95 - 1.00"};
28
                                                 myfile <<"For a="<< a[0] <<", b="<< b<<", m="<< m<<": \n";
29
                                                 for (k=0;k<5;k++)
30
31
32
33
34
                                                                x[0]=12345;
35
                                                                 myfile << "\nFor n=" << n[k];
36
                                                                u[0] = \mathbf{float}(x[0]/m);
```

```
37
               for (j=0; j < n[k]-1; j++)
38
39
                  x[j+1]=((a[0]*int(x[j]))+b)\%m;
40
                  u[j+1] = float(x[j+1]/m);
41
              }
42
              myfile << "\n";
43
44
              for (i=0; i<20; i++)
45
46
                  f[i] = 0;
47
48
49
              for (i = 0; i < n [k]; i++)
50
51
                  if(u[i] >= 0 \&\& u[i] < 0.05)
52
                      f[0]++;
53
                  if(u[i] > = 0.05 \&\& u[i] < 0.10)
54
                      f[1]++;
                  if(u[i] >= 0.10 \&\& u[i] < 0.15)
55
56
                      f[2]++;
57
                  if(u[i] > = 0.15 \&\& u[i] < 0.20)
                      f[3]++;
58
59
                  if(u[i] > = 0.20 \&\& u[i] < 0.25)
60
                      f[4]++;
61
                  if(u[i] > = 0.25 \&\& u[i] < 0.30)
62
                      f[5]++;
63
                  if(u[i] >= 0.30 \&\& u[i] < 0.35)
64
                      f[6]++;
65
                  if(u[i] > = 0.35 \&\& u[i] < 0.40)
66
                      f[7]++;
67
                  if(u[i] > = 0.40 \&\& u[i] < 0.45)
68
                      f[8]++;
69
                  if(u[i] >= 0.45 \&\& u[i] < 0.50)
70
                      f[9]++;
71
                  if(u[i] > = 0.50 \&\& u[i] < 0.55)
72
                      f[10]++;
73
                  if(u[i] > = 0.55 \&\& u[i] < 0.60)
74
                      f[11]++;
75
                  if(u[i] > = 0.60 \&\& u[i] < 0.65)
76
                      f[12]++;
77
                  if(u[i] > = 0.65 \&\& u[i] < 0.70)
78
                      f[13]++;
79
                  if(u[i] > = 0.70 \&\& u[i] < 0.75)
80
                      f[14]++;
81
                  if(u[i] > = 0.75 \&\& u[i] < 0.80)
82
                      f[15]++;
83
                  if(u[i] >= 0.80 \&\& u[i] < 0.85)
84
                      f[16]++;
85
                  if(u[i] > = 0.85 \&\& u[i] < 0.90)
86
                      f[17]++;
87
                  if(u[i] > = 0.90 \&\& u[i] < 0.95)
88
                      f[18]++;
89
                  if(u[i] >= 0.95 \&\& u[i] <= 1)
90
                      f[19]++;
91
              }
92
93
              for (i = 0; i < 20; i++)
94
95
                  myfile << i<" << freq[i]<<" << f[i]<<" \n";
```

Output:

```
For a=1597, b=0, m=244944:
 2
    For n=1000
 3
 4 0 0.00 - 0.05
                             48
 5 \mid 1 \quad 0.05 - 0.10
 6 2
       0.10 - 0.15
                             49
 7 \mid 3
        0.15 - 0.20
                             50
        0.20 - 0.25
 8
    4
                             50
 9
    5
        0.25 - 0.30
                             48
10 \mid 6
        0.30 - 0.35
                             50
11
    7
        0.35 - 0.40
                             48
12
        0.40 - 0.45
    8
                             50
13 \mid 9 \quad 0.45 - 0.50
                             53
14 \mid 10 \quad 0.50 - 0.55
                             48
15 \mid 11 \quad 0.55 - 0.60
                             50
16 \mid 12 \mid 0.60 - 0.65
                             49
17 \mid 13 \quad 0.65 - 0.70
                             51
18 \mid 14 \mid 0.70 - 0.75
                             51
19 15 0.75 - 0.80
20 \mid 16 \quad 0.80 - 0.85
                             49
21 \mid 17 \quad 0.85 - 0.90
                             49
22 \mid 18 \quad 0.90 - 0.95
                             51
23 \mid 19 \mid 0.95 - 1.00
                             52
24
25
26
    For n=500
27
    0 \quad 0.00 - 0.05
                             26
28 \mid 1 \quad 0.05 - 0.10
                             25
29 2 0.10 - 0.15
                             26
30 \mid 3 \quad 0.15 - 0.20
                             28
31 \mid 4 \quad 0.20 - 0.25
                             18
32 | 5 \quad 0.25 - 0.30
                             24
33 \mid 6 \quad 0.30 - 0.35
                             29
34 \mid 7 \quad 0.35 - 0.40
                             22
                             24
35 \mid 8 \quad 0.40 - 0.45
36 9 0.45 - 0.50
                             25
37 \mid 10 \quad 0.50 - 0.55
                             22
38 \mid 11 \quad 0.55 - 0.60
                             28
39 \mid 12 \quad 0.60 - 0.65
                             24
40 \mid 13 \mid 0.65 - 0.70
                             21
41 \begin{vmatrix} 14 & 0.70 - 0.75 \end{vmatrix}
                             32
42 \begin{vmatrix} 15 & 0.75 - 0.80 \end{vmatrix}
                             27
                             20
43 \mid 16 \quad 0.80 - 0.85
44 \begin{vmatrix} 17 & 0.85 - 0.90 \end{vmatrix}
                             26
45 \mid 18 \mid 0.90 - 0.95
                             26
46 \mid 19 \quad 0.95 - 1.00
47
48
49 For n=5000
50 \mid 0 \quad 0.00 - 0.05
                             248
```

```
51 \mid 1 \quad 0.05 - 0.10
                         254
52 2
        0.10 - 0.15
                         247
53 3
        0.15 - 0.20
                         251
 54 4
        0.20 - 0.25
                         250
 55 5
       0.25 - 0.30
                         246
 56 6
       0.30 - 0.35
                         252
57 7
        0.35 - 0.40
                         247
58 8
       0.40 - 0.45
                         251
59 \mid 9 \quad 0.45 - 0.50
                         256
60 \mid 10 \quad 0.50 - 0.55
                         245
61
    11 \ 0.55 - 0.60
                         248
62
    12 \ 0.60 - 0.65
                         246
63 13 0.65 - 0.70
                         252
64
    14 \ 0.70 - 0.75
                         253
65 \mid 15 \quad 0.75 - 0.80
                         247
66 16 0.80 - 0.85
                         250
 67 \mid 17 \quad 0.85 - 0.90
                         251
 68 \mid 18 \mid 0.90 - 0.95
                         256
 69 \mid 19 \quad 0.95 - 1.00
                         250
70
71
 72 For n=50000
 73 0 0.00-0.05
                         2469
 74 1
        0.05 - 0.10
                         2521
 75 | 2
        0.10 - 0.15
                         2471
        0.15 - 0.20
 76 3
                         2525
 77
    4
        0.20 - 0.25
                         2515
 78 \mid 5 \quad 0.25 - 0.30
                         2467
 79 \mid 6 \quad 0.30 - 0.35
                         2525
 80 | 7 \quad 0.35 - 0.40
                         2468
 81 \mid 8 \quad 0.40 - 0.45
                         2520
 82 \mid 9 \quad 0.45 - 0.50
                         2518
 83 10 \quad 0.50 - 0.55
                         2468
 84 11 0.55 - 0.60
                         2522
85 \mid 12 \quad 0.60 - 0.65
                         2468
86 13 0.65 - 0.70
                         2517
87
    14 \quad 0.70 - 0.75
                         2530
 88
    15 \ 0.75 - 0.80
                         2470
89
    16 \ 0.80 - 0.85
                         2516
90
    17 \ 0.85 - 0.90
                         2471
91
    18 \ 0.90 - 0.95
                         2523
92 \mid 19 \quad 0.95 - 1.00
                         2516
93
94
 95 For n=500000
96 0 0.00-0.05
                         24690
97 1
        0.05 - 0.10
                         25205
        0.10 - 0.15
98 2
                         24693
        0.15 - 0.20
99 3
                         25208
100
        0.20 - 0.25
                         25201
    4
101
    5
        0.25 - 0.30
                         24691
102 6
        0.30 - 0.35
                         25212
        0.35 - 0.40
103 | 7
                         24692
104 8
        0.40 - 0.45
                         25204
105 9
        0.45 - 0.50
                         25205
106 \mid 10 \quad 0.50 - 0.55
                         24691
107 \mid 11 \quad 0.55 - 0.60
                         25204
108 \mid 12 \quad 0.60 - 0.65
                         24690
109 \ 13 \ 0.65 - 0.70
                         25201
```

Plots:

Figure 1: Histograms for (a) n=500, (b) n=1000 and (c) n=5000 (d) n=50000 (e) n=500000

Observations:

- As number of random numbers generated increases, the graph becomes more uniform.
- \bullet Odd seed (= 12345) is taken to get more uniformly generated random numbers.
- Overflow of x[i] is observed for a = 51749.

Question 3

Generate a sequence u_i with a = 1229, b = 1, m = 2048. Plot a two-dimensional graphthe points (u_{i-1}, u_i) , i.e. the points $(u_1, u_2), (u_2, u_3), (u_3, u_4), ...$ What are your observations?

Solution

C++ Code:

```
1 #include <iostream>
  #include <fstream>
  using namespace std;
6 int main()
7
8
      ofstream myfile;
9
      myfile.open("output.txt", ios::app);
10
11
      int i,j;
12
      int a, b, m;
13
      float x[1000];
      float u[1000];
14
15
      a = 1229;
      b=1;
16
17
      m=2048;
      x[0] = 157;
18
19
      for (i=0; i<1000; i++)
20
         x[i+1]=(int((a*x[i])+b))%m;
21
22
         u[i+1]=x[i+1]/m;
23
24
      u[0] = x[0]/m;
25
      for (i = 0; i < 1000; ++i)
         myfile <<u[i]<<"
26
                                 << u [i+1] << `` \ n";
27
      myfile.close();
28 }
```

Output:

```
1 \mid 0.0766602
                     0.21582
2 \mid 0.21582
                 0.243652
3 \mid 0.243652
                 0.449219
4 \mid 0.449219
                 0.090332
5 \mid 0.090332
                 0.0185547
6 \mid 0.0185547
                     0.804199
7 \mid 0.804199
                 0.361328
8 0.361328
                 0.0727539
9
  0.0727539
                     0.415039
10 0.415039
                 0.0834961
11 0.0834961
                     0.617188
12 0.617188
                 0.523926
13 \mid 0.523926
                 0.905273
```

```
14 \mid 0.905273
                0.581543
15
  0.581543
                0.716797
  0.716797
                0.943848
17
  0.943848
  0.989258
19 0.79834
                0.160156
20 0.160156
                0.83252
21
22
23
```

Graph:

Figure 2: 2D-plot of (u_{i-1}, u_i) for 1000 random numbers

Observations:

- Plotted observations are observed to lie on a line.
- As the number of random numbers generated is increased, the lines get darker.
- Distance between two lines is very high which implies the random numbers generated are not that uniform for given values of a and b. This distance can be decreased by taking better values of a and b.