Exercises

Logic Gates and Boolean Functions

When signal invert symbols appear in figures below, do not draw an inverter; treat an inverted signal as it is.

- 1-1 (a) Draw the logic gate implementation for the Boolean function $G = A(B+C)(D\overline{E}F)$.
 - (b) Draw the logic gate implementation for the Boolean function $G = (A + B)(C + D\overline{E}F)$.
- 1-2 (a) Draw the logic gate implementation for the Boolean function $F = (W \overline{X})(Y + Z)$.
 - (b) Write the DeMorgan equivalent Boolean statement in Part (a) and draw its logic gate schematic.
- 1-3 Write the DeMorgan equivalent Boolean statement and draw its logic gate schematic for

(a)
$$F = A(B + D) + EF$$

(b)
$$F = (A + BC)D$$

1-4 Draw the DeMorgan equivalent logic gate circuit for

Boolean and Logic Gate Reduction

1-5 Minimize the function $F = X + \overline{X + Y} + XY$

- 1-6 Minimize the function $F = \overline{\overline{XY} + \overline{ZY}}$
- 1-7 Minimize the function $F = \overline{XY} + \overline{ZY}$ putting it in a logical inverter form.
- 1-8 Reduce to the logic circuit to its minimum function

1-9 Reduce this logic gate circuit to its minimum function using Boolean reduction.

Terminal Resistance by Inspection

1-10 Write the short hand expression for $R_{\it eq}$ between the terminals.

1-11 Write the short hand expression for R_{eq} between the terminals.

Voltage Dividers by Inspection

- 1-12(a) Write the V_o expression by inspection and solve for V_o using a voltage divider.
 - (b) Write the V_o expression by inspection and solve for V_o using a current divider.

1-13 Calculate V_o by first writing a voltage divider expression and then numerically solving for V_o for both circuits.

- 1-14 (a) Write the V_{ol} expression by inspection and solve for V_{ol} using a voltage divider.
 - (b) Write the V_{o2} expression by inspection and solve for V_{o2} using a voltage divider.

Current Dividers by Inspection

1-15 Repeat Problem 1-14 above, but solve by including a current divider.

1-16 Write the general expressions and solve for all resistor currents.

1-17 Given the circuit

- (a) Write the expression for I_{450} and solve.
- (b) Write the expression for V_{800} and solve.
- (c) Show that $I_{800} + I_{400} = 2$ mA.
- 1-18 (a) Calculate V_o using a voltage divider written by inspection
 - (b) Calculate I_{2M} using a current divider written by inspection.

- 1-19 For the circuit
 - (a) Solve for V_o using a voltage divider expression
 - (b) Solve for I_{2k} .
 - (c) Solve for I_{900} .

1-20 Calculate I_{2k} using the circuit analysis technique by

1-21 Using analysis by inspection, write the expression for the voltage across the 2 $k\Omega$ resistor and solve for its value.

Mixing Voltage and Current Divider Analysis

1-22 Find I_{6k} .

Hint: when we have two power supplies and a linear (resistive) network, we solve in three steps.

- (1) Set one power supply to 0 V and calculate current in the 6 $k\Omega$ resistor from the non-zero power supply.
- (2) Reverse the power supply roles and recalculate I_{6k} .
- (3) The final answer is the sum of the two currents

This is known as the superposition theorem and can be applied only for linear elements.

1-23 Solve for V_O using a method of inspection (current divider, voltage-divider, or both).

Capacitors

1-24 Find the equivalent capacitance at the input nodes and calculate the charge-discharge energy *W* for the parallel capacitors.

- 1-25 (a) What is the energy W needed to charge the circuit?
 - (b) Write the capacitance voltage divider expression for V_o and solve for the value.

1-26 Find C_1 and the energy to charge C_1 .

1-27 The 2 nF capacitors are precharged to 3 V, and the 5 nF capacitor is precharged to 1.2 V.

