Worksheet Real functions

- Not each relation from X to Y is a function but all functions from X to Y are relations satisfy that:
- Each element in X appears once as a first projection in one of the ordered pairs of the relation.

Each element in X has only one arrow going out to an element of Y in the arrow diagram which represents the relation.

- 1. The relation y = 4 (represented by a horizontal straight line parallel to X-axis) is a function from X to Y because each element in X is related with only one element in Y
- 2. The relation X = 4 (represented by a vertical straight line parallel to y-axis is not a function from X to Y because the element X = 4 is related with infinite number of elements in Y
- * The unshaded circle at point (-2, -1) shows that the point $\not\equiv$ the function and so $-2 \not\equiv$ the domain of the function and $-1 \not\equiv$ the range of the function.
- * The shaded circle at point (2, 3) shows that the point ∈ the function and so 2 ∈ the domain of the function and 3 ∈ the range of the function.

The function

f is said to be increasing on

an interval]a , b[if:

$$X_2 > X_1 \Longrightarrow f(X_2) > f(X_1)$$
 for every

$$x_1, x_2 \in]a,b[$$

Definition (2)) (Decreasing function):

The function

f is said to be decreasing on

an interval]a, b[if:

$$X_2 > X_1 \Longrightarrow f(X_2) < f(X_1)$$
 for every

$$x_1, x_2 \in]a,b[$$

Definition (3) (Constant function):

The function

f is said to be constant on an interval]a , b[if:

$$X_2 > X_1 \Rightarrow f(X_2) = f(X_1)$$
 for every

$$x_1, x_2 \in]a,b[$$

If
$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
 where $f(x) = 2x^2 - 7x + 5$

and
$$g:]-\infty, 4] \longrightarrow \mathbb{R}$$
 where $g(x) = 2x - 5$

Find: (1)
$$(f + g)(X)$$
 (2) $(f - g)(X)$

$$(2) (f-g) (X)$$

Show with reasons, which of the following relations (represented by the shown arrow diagrams) represents a function, if so, mention each of the domain and the range for every function:

State the domain of each of the rational functions defined by the following rules

