Problem 1

From Note:

1. Classical Brownian Motion

$$P_{t} = P_{t-1} + r_{t}$$

2. Arithmetic Return System

$$P_t = P_{t-1} (1 + r_t)$$

3. Log Return or Geometric Brownian Motion

$$P_t = P_{t-1}e^{r_t}$$

Here is the calculation of the three types of price returns

	Classical bountan Motion: Pt = Pt-1 + rt	Sd (ln(Pt)) = Sd (ln(Pt-1ett)) Sd (ln(Pt))= Sd (ln(Pt-1)) + Sd(rt)
C	E (Pt) = E (Pt-1)+E(rt)	Sd (hure) = o
	$E(\rho_t) = \rho_{t-1}$	Loy Return or Geometing brownian Motion
	sd (Pt) = sd (Pt., +rt)	Pt=Pt-Pre
	sd(Pt)= sd(Pt-1)+ sd(rt)	E(Inclt) = E(Inclt-ery)
	Sh (Pt) = € 7	E(In(fe)) = E(In(fe)) + E(re)
	Arithmetic Return System	E(In(It))= In(It.1)
C		sd(In(Per) = Sd (In(Pt-Pert)) Sd (In(le) = Sd (In(Pt-1)) + sd (rt) Sd(In(Per) =)

Problem 2

For this problem, I first modified the return calculate() code which allow

the user to choose whether to use discrete or log method for the

calculation. Then I calculate the arithmetic returns for all prices.

Following the instruction, I picked the stock META and calculated the

mean value of it. I subtract each value by the mean of META so that the

mean of META is 0, and I check it in my code. Here are the results of

Var using different methods.

Normal distribution: 0.06560156967533284

Normal distribution with an Exponentially Weighted variance ($\lambda = 0$.

94): 0.09184203076434297

MLE fitted T distribution: 0.0843785689437

Fitted AR(1) model: 0.06560235464639878

Historic Simulation: 0.05462007908237871

Result: Normal distribution with an Exponentially Weighted variance >

MLE fitted T distribution > Fitted AR(1) model > Normal distribution >

Historic Simulation

Problem 3

For this problem, I use an exponentially weighted covariance with

lambda = 0.94, and here are the VaR of each portfolio

	Portfolio A	Portfolio B	Portfolio C	Total
Delta Normal VaR	\$5670.7075	\$4494.9984	\$3786.9260	\$13952.6319
Monte Carlo Method	\$8032.5840	\$6732.9929	\$5638.2563	\$20403.8332