\mathbf{Q} : Ιακώβου Πολυλά 24 - Πεζόδρομος \mathbf{L} : 26610 20144 \mathbf{L} : 6932327283 - 6955058444

7 Μαρτίου 2025

Αλγεβρα Α΄ Λυκείου

ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΒΑΣΙΚΩΝ ΑΣΚΗΣΕΩΝ

Τυπολόγιο

1ο Κεφάλαιο Σύνολα

Η έννοια του συνόλου

- 1.1 Σύνολο: Ομάδα όμοιων αντικειμένων.
- 1.2 Το x ανήκει στο σύνολο A: $x \in A$.
- 1.3 Κενό σύνολο: Το σύνολο χωρίς στοιχεία: Ø.
- 1.4 Βασικά σύνολα αριθμών
 - α. Φυσικοί αριθμοί : $\mathbb{N} = \{0, 1, 2, ...\}$
 - β. Ακέραιοι αριθμοί : $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
 - γ. Ρητοί Αριθμοί : $\mathbb{Q} = \left\{ \frac{a}{\beta} \middle| a, \beta \in \mathbb{Z}, \beta \neq 0 \right\}$.
 - δ. Άρρητοι Αριθμοί: Κάθε αριθμός που δεν είναι ρητός.
 - ε. Πραγματικοί Αριθμοί : $\mathbb{R} = \{ \text{όλοι οι αριθμοί} \}$.
- 1.5 Ίσα σύνολα : A = B αν έχουν τα ίδια στοιχεία.
- 1.6 Υποσύνολο : A ⊆ B.

Πράξεις συνόλων

- 1.7 Πράξεις μεταξύ συνόλων
 - α. Ένωση: $A \cup B = \{x \in \Omega \mid x \in A \text{ ή } x \in B\}$ γ. Συμπλήρωμα: $A' = \{x \in \Omega \mid x \notin A\}$
 - β. Τομή: $A \cap B = \{x \in \Omega \mid x \in A \text{ και } x \in B\}$ δ. Διαφορά: $A B = \{x \in \Omega \mid x \in A \text{ και } x \notin B\}$

Πραγματικοί αριθμοί 2ο Κεφάλαιο

Πράξεις πραγματικών αριθμών

- 2.1 Δύναμη πραγματικού αριθμού: $a \cdot a \cdot ... \cdot a = a^{\nu}$. Ο a λέγεται **βάση** και ο ν εκθέτης.
- 2.2 Ιδιότητες δυνάμεων:

$$\alpha$$
. $a^1 = a$

$$\epsilon. \ a^{\nu}: a^{\mu} = a^{\nu-\mu}$$

$$\eta. \ (a^{\nu})^{\mu} = a^{\nu \cdot \mu}$$

$$\beta. \ a^0 = 1, \ a \neq 0$$

στ.
$$(a \cdot \beta)^{\nu} = a^{\nu} \cdot \beta^{\nu}$$

$$\theta. \left(\frac{a}{\beta}\right)^{-\nu} = \left(\frac{\beta}{a}\right)^{\nu}$$

$$\gamma. \ a^{-\nu} = \frac{1}{a^{\nu}}$$

$$\delta. \ a^{\nu} \cdot a^{\mu} = a^{\nu + \mu}$$

$$\zeta. \left(\frac{a}{\beta}\right)^{\nu} = \frac{a^{\nu}}{\beta^{\nu}}$$

- 2.3 Ταυτότητα: Μια ισότητα που περιέχει μεταβλητές και επαληθεύεται για κάθε τιμή των μεταβλητών.
 - 1. 'Αθροισμα στο τετράγωνο
 - $(a+\beta)^2 = a^2 + 2a\beta + \beta^2$ 2. Διαφορά στο τετράγωνο

 $(a-\beta)^2 = a^2 - 2a\beta + \beta^2$

- 3. Άθροισμα στον κύβο $(a + \beta)^3 = a^3 + 3a^2\beta + 3a\beta^2 + \beta^3$
- 4. Διαφορά στον κύβο $(a-\beta)^3 = a^3 - 3a^2\beta + 3a\beta^2 - \beta^3$
- 5. Γινόμενο αθροίσματος επί διαφορά $(a + \beta)(a - \beta) = a^2 - \beta^2$

6. ΄Αθροισμα κύβων
$$(a+\beta)\left(a^2-a\beta+\beta^2\right)=a^3+\beta^3$$

7. Διαφορά κύβων
$$(a-\beta)\left(a^2+a\beta+\beta^2\right)=a^3-\beta^3$$

Διάταξη

2.4 Είδη διαστημάτων

Διάστημα	Ανισότητα	Σχήμα	Περιγραφή
$[a,\beta]$	$a \le x \le \beta$	a β x	Κλειστό a, eta
(a,β)	$a < x < \beta$	$a \qquad \beta \qquad x$	Ανοιχτό a, β
$[a,\beta)$	$a \le x < \beta$	$a \qquad \beta \qquad x$	Κλειστό a ανοιχτό eta
$(a,\beta]$	$a < x \le \beta$	$a \beta x$	Ανοιχτό a κλειστό eta
$[a, +\infty)$	$x \ge a$	$a \rightarrow x$	Κλειστό <i>a</i> συν άπειρο
$(a, +\infty)$	x > a	x	Ανοιχτό <i>a</i> συν άπειρο
$(-\infty,a]$	$x \le a$	$a \rightarrow x$	Μείον άπειρο <i>a</i> κλειστό
$(-\infty,a)$	x < a	$a \rightarrow x$	Μείον άπειρο <i>a</i> ανοιχτό

- 2.5 Μήκος διαστήματος $[a, \beta]$: $\mu = \beta a$
- 2.6 Κέντρο διαστήματος $[a, β] : x_0 = \frac{a + β}{2}$
- 2.7 Ακτίνα διαστήματος $[a, \beta]$: $\rho = \frac{\beta a}{2}$

2.3 Απόλυτη τιμή

- 2.8 Απόλυτη τιμή πραγματικού αριθμού a:|a|:η απόστασή του από το 0.
- 2.9 Ιδιότητες απόλυτων τιμών

α.
$$|a| \ge 0$$
 για κάθε $a \in \mathbb{R}$

$$\beta. \ -|a| \le a \le |a|$$

$$|a|^2 = a^2$$

δ.
$$|a \cdot \beta| = |a| \cdot |\beta|$$

$$\varepsilon. \ \left| \frac{a}{\beta} \right| = \frac{|a|}{|\beta|}$$

2

στ.
$$||a| - |\beta|| \le |a + \beta| \le |a| + |\beta|$$

$$\zeta. |x| + |y| = 0 \Leftrightarrow x = y = 0$$

2.10 Απόσταση δύο αριθμών $a, \beta: d(a, \beta) = |a - \beta|$

2.11 Τετραγωνική ρίζα : \sqrt{x} με $x \ge 0$ και $a \ge 0$

2.12 Ν-οστή ρίζα : $\sqrt[\nu]{x}$ με $x \ge 0$, $\nu \in \mathbb{N}^*$ και $a \ge 0$

• Ο αριθμός x ονομάζεται υπόριζο.

• Δεν ορίζεται ρίζα αρνητικού αριθμού.

2.13 Ιδιότητες ριζών

$$\alpha. \left(\sqrt{x}\right)^2 = x \ , \ x \ge 0$$

$$\beta. \sqrt{x^2} = |x|, x \in \mathbb{R}$$

$$\gamma. \ \sqrt{x \cdot y} = \sqrt{x} \cdot \sqrt{y} \ , \ x, y \ge 0$$

δ.
$$\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$$
, $x \ge 0$ και $y > 0$

$$\epsilon. \ \sqrt{x \pm y} \neq \sqrt{x} \pm \sqrt{y} \ , \ x, y \ge 0$$

$$\sigma\tau. \left(\sqrt[\nu]{x}\right)^{\nu} = x , x \ge 0$$

ζ.
$$\sqrt[\nu]{x^{\nu}} = \begin{cases} |x| & , x \in \mathbb{R} \text{ an } \nu \text{ άρτιος} \\ x & , x \geq 0 \text{ an } \nu \text{ περιττός} \end{cases}$$

$$\eta. \quad \sqrt[\nu]{x \cdot y} = \sqrt[\nu]{x} \cdot \sqrt[\nu]{y} , \quad x, y \ge 0$$

$$\theta. \quad \sqrt[\nu]{\frac{x}{y}} \ = \frac{\sqrt[\nu]{x}}{\sqrt[\nu]{y}} \ , \quad x \ge 0 \text{ kai } y > 0$$

1.
$$\sqrt[y]{x \pm y} \neq \sqrt[y]{x} \pm \sqrt[y]{y}$$
 , $x, y \ge 0$

$$1\alpha. \ \sqrt[\nu]{x^{\nu} \cdot y} = x \sqrt[\nu]{y} \ , \ x, y \ge 0$$

$$ιβ. ν√x1 · x2 · ... · xν = ν√x1 · ν√x2 · ... · ν√xν$$

$$όπου x1, x2, ... xν > 0 και ν ∈ \mathbb{N}.$$

3ο Κεφάλαιο Εξισώσεις

3.1 Εξισώσεις 1ου βαθμού

3.1 Εξίσωση 1ου βαθμού : $ax + \beta = 0$

3.2 Εξισώσεις με απόλυτες τιμές.

$$\alpha$$
. $|A(x)| = \theta \Leftrightarrow A(x) = \pm \theta$

$$\beta$$
. $|A(x)| = |B(x)| \Leftrightarrow A(x) = \pm B(x)$

y.
$$|A(x)| = B(x) \Leftrightarrow A(x) = \pm B(x)$$
 µE $B(x) > 0$

3.2 Εξισώσεις της μορφής $x^{\nu} = a$

	<i>a</i> > 0	a < 0
ν : άρτιος	$x = \pm \sqrt[\nu]{a}$	Αδύνατη
ν : περιττός	$x = \sqrt[\nu]{a}$	$x = -\sqrt[\nu]{ a }$

3.3 Εξισώσεις 2ου βαθμού

3.1 Εξίσωση 2ου βαθμού : $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$

3.2 Τύποι Vieta : $S = x_1 + x_2 = \frac{\beta}{a}$ και $P = x_1 \cdot x_2 = \frac{\gamma}{a}$ όπου x_1, x_2 οι ρίζες της εξίσωσης.

3.3 Τύπος εξίσωσης 2ου βαθμού με λύσεις $x_1, x_2 : x^2 - Sx + P = 0$.

4ο Κεφάλαιο Ανισώσεις

4.1 Ανισώσεις 1ου βαθμού

4.1 Ανίσωση 1ου βαθμού : $ax + \beta \ge 0$.

4.2 Ανισώσεις με απόλυτες τιμές

• $|A(x)| < \theta \Leftrightarrow -\theta < A(x) < \theta$.

• $|A(x)| > \theta \Leftrightarrow A(x) < -\theta \ \eta \ A(x) > \theta$.

Ανισώσεις 2ου βαθμού

- 4.1 Ανίσωση 2ου βαθμού : $ax^2 + \beta x + \gamma \ge 0$ με $a \ne 0$.
- 4.2 Παραγοντοποίηση τριωνύμου
 - Αν $\Delta > 0$ τότε $ax^2 + \beta x + \gamma = a(x x_1)(x x_2)$ όπου x_1, x_2 είναι οι ρίζες του τριωνύμου.
 - Αν $\Delta = 0$ τότε $ax^2 + \beta x + \gamma = a(x x_0)^2 = a\left(x + \frac{\beta}{2a}\right)^2$ όπου x_0 είναι η διπλή ρίζα του
 - Αν $\Delta < 0$ τότε δεν παραγοντοποιείται.
- 4.3 Πίνακες προσήμων τριωνύμου $ax^2 + \beta x + \gamma$

$$\Delta > 0 \rightarrow x_1, x_2$$
: ρίζες

х	$-\infty$	x_1	x_2	$+\infty$
$ax^2 + \beta x + \gamma$		V	όσημο Ομο	
	του	a τ 01	$va \mid \tau c$	ov a

$$\Delta = 0 o x_0$$
: διπλή ρίζα

$$\Delta < 0 \rightarrow$$
 Καμία ρίζα

х	$-\infty$	$x_0 + \infty$
$ax^2 + \beta x + \gamma$	Ομόσημο του <i>α</i>	Ομόσημο του <i>a</i>

X	$-\infty$ $+\infty$		
$ax^2 + \beta x + \gamma$	Ομόσημο		
	του <i>a</i>		

5ο Κεφάλαιο Ακολουθίες

Η έννοια της ακολουθίας

Αριθμητική πρόοδος

- 5.1 Αριθμητική πρόοδος : $a_{\nu+1} = a_{\nu} + \omega$, $\nu \in \mathbb{N}^*$.
- 5.2 Γενικός τύπος αριθμητικής προόδου : $a_{\nu} = a_1 + (\nu 1) \cdot \omega$
- 5.3 Διαφορά αριθμητικής προόδου : $\omega = a_{\nu+1} a_{\nu}$.
- 5.4 Οι a, β, γ είναι διαδοχικοί όροι αριθμητικής προόδου $\Leftrightarrow \beta = \frac{a + \gamma}{2}$. Ο β λέγεται αριθμητικός μέσος των a, γ .
- 5.5 ΄Αθροισμα ν πρώτων όρων αριθμητικής προόδου : $S_{\nu}=\frac{\nu}{2}\left(a_{1}+a_{\nu}\right)$ ή $S_{\nu}=\frac{\nu}{2}\left[a_{1}+(\nu-1)\omega\right]$

4

Γεωμετρική πρόοδος

- 5.6 Γεωμετρική πρόοδος : $a_{\nu+1} = \lambda \cdot a_{\nu}$, $\nu \in \mathbb{N}^*$.
- 5.7 Γενικός τύπος γεωμετρικής προόδου : $a_{\nu} = a_1 \cdot \lambda^{\nu+1}$
- 5.8 Λόγος γεωμετρικής προόδου : $\lambda = \frac{a_{\nu+1}}{a_{\nu}} \neq 0$.
- 5.9 Οι a, β, γ είναι διαδοχικοί όροι γεωμετρικής προόδου $\Leftrightarrow \beta^2 = a\gamma$. Aν $a, \gamma > 0$ ο $\beta = \sqrt{a\gamma}$ λέγεται γεωμετρικός μέσος των a, γ .
- 5.10 ΄Αθροισμα ν πρώτων όρων αριθμητικής προόδου : $S_{\nu} = a_1 \frac{\lambda^{\nu} 1}{\lambda 1}$

6ο Κεφάλαιο Συναρτήσεις

- 6.1 Η έννοια της συνάρτησης
- 6.2 Γραφική παράσταση
- 6.3 Η συνάρτηση f(x) = ax + β