

Figure 1a

Figure 1b

Figure 2

Figure 4a

Figure 4b

Figure 5

Figure 6a

Figure 6b

Figure 6c

Figure 6d

Figure 7a

Figure 7b

Figure 7c

Figure 7d

Figure 8

Figure 9a

Figure 9b

Figure 10

Figure 11a

Figure 11b

Figure 11c

Figure 12a

Figure 12b

Figure 13a

Figure 13b

Figure 13c

Figure 13d

Figure 14a

Figure 14b

Figure 15a

Figure 15b

Figure 15c

Figure 16a

Figure 16b

Figure 16c

Figure 16d

Figure 17a

Figure 17b

Figure 17c

Figure 17d

Figure 17e

Figure 18a

Figure 18b

Figure 18c

Figure 18d

← track direction →

0°

360°

Figure 19a

Figure 19b

Figure 19c

Figure 19d

Figure 19e

Figure 19f

Figure 20

Figure 21 a

Figure 21 b

Figure 21 c

Figure 21 d

Figure 21 e

Figure 21 f

Figure 22a

Figure 22b

Figure 22c

Figure 22d

Figure 22e

Figure 22f

Figure 23a

Figure 23b

Figure 24

Figure 25a

Figure 25b

Figure 25c

Figure 25d

Figure 25e

Figure 25f

Figure 25g

Figure 25h

track direction relative to primary array

Figure 25i

Figure 25j

A basic Flow Chart for the Additive Composite Hough Transform

Figure 26

174
Figure 26

allocate memory for :
1) primary correlogram
2) secondary correlogram
3) hough space
4) temporary buffers
5) display buffers

176

compute the mean and
standard deviation of
individual correlogram
(the means are used for
peeling the detected
correlation traces)

178

segment number index = 1

182

183

274
Figure 32

read in segment of
primary and secondary
correlograms

184

onion layer index=1

186

187

268
Figure 32

speed index = its lower limit

188

189

262
Figure 31

compute the target
speed (V) based on
speed index

202

204
Figure 28

Figure 27

202
Figure 27

CPA range index = its lower limit

204

205

250
Figure 31

compute the target
CPA range (R_1) relative
to the primary array
based on CPA range index

206

compute the ratio
 V/R_1

208

target track direction index =
its lower limit

212

213

252
Figure 31

compute the target
track direction (θ) and the
corresponding mirror track
direction (θ_m) relative to
the primary array based on
target track direction index

214

compute the geometric properties of the target track:
1) the intersecting point of the target track and the
base line of the primary sensor array.
2) the slope (m) and y-intercept (b) of the track

216

218
Figure 29

Figure 28

216
Figure 28

using the geometric constraints,
compute the following corresponding
parameters for the same target relative
to secondary array:

- 1) CPA range (R_{2r}) and ratio (V/R_{2r})
- 2) CPA time offset (for t_{02r})
- 3) target track direction (θ_{2r})

218

perform the same computation for the
corresponding mirror track: get the
values of $(R_{2m}, V/R_{2m}, t_{02m}$ offset, θ_{2m})

222

CPA time (primary array) index
= lower limit

224

compute the CPA time (t_{01}) based on
the CPA time index and the CPA time
offsets

225

246
Figure 30

based on the values of :
1) CPA time (t_{01}, t_{02r}, t_{02m})
2) CPA range (R_1, R_2, R_{2m})
3) speed (V)
4) track direction ($\theta, \theta_{2r}, \theta_{2m}$)
5) max_tau
compute the delay curves: one in
the primary and two in the
secondary correlogram

228

232
Figure 30

Figure 29

228
Figure 29

Note: For the Multiplicative Composite Hough Transform the pixels values will be multiplied instead of added in this stage.

244
Figure 30

target track direction index =
target track direction index + 1

248

213
Figure 28

target track direction index
< its upper limit ?

252

no

CPA range index =
CPA range index + 1

254

205
Figure 28

CPA range index
< its upper limit ?

256

no

speed index =
speed index + 1

258

189
Figure 27

speed index
< its upper limit ?

262

264
Figure 32

Figure 31

262
Figure 31

peel out the strongest delay curve in both correlograms by replacing their pixels values with the mean value of individual correlogram

264

onion layer index =
onion layer index + 1

266

187
Figure 27

onion layer index
< its upper limit ?

268

yes

segment number index =
segment number index + 1

272

no

183
Figure 27

segment number index
< its upper limit ?

274

yes

1) write out the results
2) Free all the allocated memory

276

278
STOP

Figure 32