Network Layer - Contents

- □ Introduction
- Virtual circuit and datagram networks
- □ What's inside a router
- □ IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- Routing in the Internet
 - O RIP, OSPF
 - BGP
- Broadcast and multicast routing
- Software Defined Networks

University College Cork CS3506

Interplay between routing, forwarding

Graph abstraction

Graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

University College Cork CS3506

Graph abstraction: costs

- \cdot c(x,x') = cost of link (x,x')
 - -e.g., c(w,z) = 5
- cost could always be 1, or inversely related to bandwidth, or related to congestion

Cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

Question: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

University College Cork CS3506

Routing Algorithm classification

Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- "link state" algorithms

Decentralized:

- router knows physicallyconnected neighbours, link costs to neighbours
- iterative process of computation, exchange of info with neighbours
- "distance vector" algorithms
 University College Cork C53506

Static or dynamic?

Static:

routes change slowly over time

Dynamic:

- routes change more quickly
 - o periodic update
 - in response to link cost changes

5

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - o all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k
 iterations, know least cost
 path to k destinations

Notation:

- C(x,y): link cost from node x to y; = ∞ if not direct neighbours
- D(v): current value of cost of path from source to destination v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

University College Cork CS3506

Dijsktra's Algorithm

```
1 Initialization:
2 N' = \{u\}
3 for all nodes v
   if v adjacent to u
5
       then D(v) = c(u,v)
6
    else D(v) = ∞
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

University College Cork CS3506

Dijkstra's algorithm: example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>←</mark>	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw ←					——— 4,y
5	uxyvwz ←					

Dijkstra's algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

destination	link
V	(u,v)
×	(u,x)
У	(u,x)
w	(u,x)
z	(u,x)

University College Cork CS3506

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes

- ach iteration: need to check all nodes, w, not in N'
- \square n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

Oscillations possible:

□ e.g., link cost = amount of carried traffic

University College Cork C53506

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$$

where min is taken over all neighbours v of x

University College Cork CS3506

11

Bellman-Ford example

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path → forwarding table

University College Cork CS3506

Distance Vector Algorithm

- $\square D_{x}(y)$ = estimate of least cost from x to y
- □ Node x knows cost to each neighbour v: c(x,v)
- □ Node x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbb{N}]$
- Node x also maintains its neighbours' distance vectors
 - For each neighbour v, x maintains $D_v = [D_v(y): y \in N]$

University College Cork CS3506

13

Distance vector algorithm (4)

Basic idea:

- From time-to-time, each node sends its own distance vector estimate to neighbours
- Asynchronous
- When a node x receives new DV estimate from neighbour, it updates its own DV using B-F equation:

 $D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$ for each node $y \in N$

Under minor, natural conditions, the estimate $D_{y}(y)$ converge to the actual least cost $d_{x}(y)$

Distance Vector Algorithm (5)

Iterative, asynchronous: each local iteration caused

by:

- local link cost change
- DV update message from neighbour

Distributed:

- each node notifies neighbours only when its DV changes
 - neighbours then notify their neighbours if necessary

Each node:

wait for (change in local link cost or msg from neighbour)

recompute estimates

if DV to any dest has changed, notify neighbours

15

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbours

"good news travels fast" At time t_0 , y detects the link-cost change, updates its DV, and informs its neighbours.

At time t_1 , z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbours its DV.

At time t_2 , y receives z's update and updates its distance table. y's least costs do not change and hence y does not send any message to z.

University College Cork CS3506

Distance Vector: link cost changes

Link cost changes:

- good news travels fast
- bad news travels slowly -"count to infinity" problem!
- 44 iterations before algorithm stabilizes: see example in textbook

- If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

University College Cork CS3506

19

Comparison of LS and DV algorithms

Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- <u>DV:</u> exchange between neighbours only
 - convergence time varies

Speed of Convergence

- LS: O(n²) algorithm requires
 O(nE) msqs
 - o may have oscillations
- DV: convergence time varies
 - may be routing loops
 - o count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

University College Cork CS3506

Hierarchical Routing

Our routing study thus far - idealization

- all routers identical
- network "flat"
- ... not true in practice

scale: with 200 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

University College Cork CS3506

Hierarchical Routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - routers in different AS can run different intra-AS routing protocol

Gateway router

Direct link to router in another AS

Interconnected ASes

University College Cork CS3506

23

Inter-AS tasks

- suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

AS1 must:

- learn which dests are reachable through AS2, which through AS3
- propagate this reachability info to all routers in AS1

Job of inter-AS routing!

University College Cork CS3506

Example: Setting forwarding table in router 1d

- □ suppose AS1 learns (via inter-AS protocol) that subnet × reachable via AS3 (gateway 1c) but not via AS2.
- inter-AS protocol propagates reachability info to all internal routers.
- \Box router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c.
 - \circ installs forwarding table entry (x,I)

University College Cork C53506

25

Example: Choosing among multiple ASes

- □ now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
 - this is also job of inter-AS routing protocol!

University College Cork CS3506

Example: Choosing among multiple ASes

- now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
 - o this is also job of inter-AS routing protocol!
- hot potato routing: send packet towards closest of two routers.

University College Cork CS3506

27

Network Layer - Contents

- Introduction
- Virtual circuit and datagram networks
- What's inside a router
- □ IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- Routing in the Internet
 - O RIP, OSPF
 - BGP
- Broadcast and multicast routing
- □ Software Defined Networks

University College Cork CS3506

Intra-AS Routing

- also known as Interior Gateway Protocols (IGP)
- most common Intra-AS routing protocols:
 - O RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

University College Cork C53506

RIP (Routing Information Protocol)

- distance vector algorithm
- included in BSD-UNIX Distribution in 1982
- □ distance metric: # of hops (max = 15 hops)

From router A to subnets:

destination	<u>hops</u>
u	Ì
V	2
w	2
×	3
У	3
z	2

University College Cork CS3506

RIP advertisements

- <u>distance vectors</u>: exchanged among neighbours every 30 sec via Response Message (also called <u>advertisement</u>)
- □ each advertisement: list of up to 25 destination subnets within AS

University College Cork CS3506

Destination Network	Next Router	Num. of hops to dest.
W	A	2
y	В	2
Z	В	7
×		1
	••••	••••

Routing/Forwarding table in D

University College Cork CS3506

 ${\ \ }_{University\ College\ Cork\ CS3506} \qquad \qquad Routing/Forwarding\ table\ in\ D$

RIP: Link Failure and Recovery

If no advertisement heard after 180 sec --> neighbour/ link declared dead

- o routes via neighbour invalidated
- o new advertisements sent to neighbours
- neighbours in turn send out new advertisements (if tables changed)
- o link failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP Table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

University College Cork CS3506

35

OSPF (Open Shortest Path First)

- "open": publicly available
- uses Link State algorithm
 - LS packet dissemination
 - o topology map at each node
 - o route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbour router
- advertisements disseminated to entire AS (via flooding)
 - carried in OSPF messages directly over IP (rather than TCP or UDP

University College Cork CS3506

OSPF "advanced" features (not in RIP)

- security: all OSPF messages authenticated (to prevent malicious intrusion)
- multiple same-cost paths allowed (only one path in RIP)
- □ For each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort; high for real time)
- □ integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

University College Cork CS3506

Hierarchical OSPF

University College Cork C53506

Hierarchical OSPF

- two-level hierarchy: local area, backbone.
 - Link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- □ <u>area border routers:</u> "summarize" distances to nets in own area, advertise to other Area Border routers.
- <u>backbone routers</u>: run OSPF routing limited to backbone.
- boundary routers: connect to other AS's.

University College Cork C53506

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto standard
- BGP provides each AS a means to:
 - Obtain subnet reachability information from neighbouring ASs.
 - 2. Propagate reachability information to all ASinternal routers.
 - 3. Determine "good" routes to subnets based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: "I am here"

BGP basics

- pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions
 - BGP sessions need not correspond to physical links.
- when AS2 advertises a prefix to AS1:
 - AS2 promises it will forward datagrams towards that prefix.
 - AS2 can aggregate prefixes in its advertisement

41

Distributing reachability info

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

Path attributes & BGP routes

- advertised prefix includes BGP attributes.
 - o prefix + attributes = "route"
- two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g, AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- when gateway router receives route advertisement, uses import policy to accept/ decline.

University College Cork CS3506

BGP route selection

- router may learn about more than 1 route to some prefix. Router must select route.
- elimination rules:
 - local preference value attribute: policy decision
 - shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria

University College Cork C53506

BGP messages

- □ BGP messages exchanged using TCP.
- □ BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKS OPEN request
 - NOTIFICATION: reports errors in previous msg;
 also used to close connection

University College Cork CS3506

BGP routing policy

- □ A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- □ X is dual-homed: attached to two networks
 - O X does not want to route from B via X to C
 - o .. so X will not advertise to B a route to C

University College Cork CS3506

BGP routing policy (2)

- A advertises path AW to B
- □ B advertises path BAW to X
- □ Should B advertise path BAW to C?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - O B wants to force C to route to w via A
- B wants to route only to/from its customers!

University College Cork CS3506

Why different Intra- and Inter-AS routing?

Policy:

- □ Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- □ Intra-AS: single admin, so no policy decisions needed

Scale:

 hierarchical routing saves table size, reduced update traffic

Performance:

- □ Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

University College Cork C53506

Network Layer - Contents

- Introduction
- Virtual circuit and datagram networks
- What's inside a router
- □ IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- Routing in the Internet
 - RIP, OSPF
 - BGP
- Broadcast and multicast routing
- Software Defined Networks

duplication

49

University College Cork CS3506

Broadcast Routing

deliver packets from source to all other nodes (contrast with unicast routing)

Could use source duplication, but it's inefficient:
duplicate

duplication

Another problem for source duplication: how does source determine recipient addresses?

University College Cork CS3506

In-network duplication

- flooding: when node receives brdcst pckt, sends copy to all neighbours
 - O Problems: cycles & broadcast storm
- controlled flooding: node only brdcsts pkt if it hasn't brdcst same packet before
 - O Node keeps track of pckt ids already brdcsted
 - Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source
- Or use a spanning tree
 - No redundant packets received by any node

University College Cork CS3506

Spanning Tree

- □ First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A

(b) Broadcast initiated at D

Spanning Tree: Creation

- ☐ Center node
- Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to spanning tree

(a) Stepwise construction of spanning tree

(b) Constructed spanning tree

University College Cork CS3506

53

Multicast Routing

- Unlike broadcast routing, the goal of multicast is to deliver a packet to a defined subset of the network hosts
- Ideal for live events such as concerts, live
 TV, etc
 - A subset of network hosts are interested
 - Sending a unicast to each interested host doesn't scale
 - Each packet must be sent once for each interested host
 - · Same content traverses a link multiple times

Multicast Routing: Problem Statement

- Goal: find a tree (or trees) connecting routers having local mcast group members
 - o tree: not all paths between routers used
 - o source-based: different tree from each sender to rcvrs
 - o shared-tree: same tree used by all group members

Approaches for building mcast trees

- source-based tree: one tree per source
 - o shortest path trees
 - o reverse path forwarding
- group-shared tree: group uses one tree
 - o minimal spanning tree (known as a Steiner tree)
 - o tree based at center node (i.e. router)
- A variety of protocols in use including
 - DVMRP distance vector multicast
 - O PIM Protocol Independent Multicast

Network Layer - Contents

- □ Introduction
- Virtual circuit and datagram networks
- What's inside a router
- □ IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- □ Routing in the Internet
 - RIP, OSPF
 - BGP
- Broadcast and multicast routing
- Software Defined Networks

University College Cork CS3506

57

Software-Defined Networks

- □ Distributed implementation of network control (eg. Routing, NAT, firewalls)
- □ Difficult to make changes to network behaviour
 - Features implemented in software provided by router/switch vendors
 - Long delays waiting for protocol standardisation
 - Stifles innovation
- Difficult to manage large networks with many routers/switches

Today's Internet: Data Plane

Forward, filter, buffer, mark, rate-limit, and measure packets

SDN slides based on originals by Jennifer Rexford @ Princeton

University College Cork CS3506

59

Today's Internet: Control Plane

Today's Internet: Management

Software-Defined Networking

Data-Plane: Simple Packet Handling

☐ Simple packet-handling rules

- O Pattern: match packet header bits
- O Actions: drop, forward, modify, send to controller
- O Priority: disambiguate overlapping patterns
- Counters: #bytes and #packets

- 1. $src=1.2.*.*, dest=3.4.5.* \rightarrow drop$
- 2. $src = *.*.*.*, dest=3.4.*.* \rightarrow forward(2)$
- 3. src=10.1.2.3, $dest=*.*.*.* \rightarrow send to controller$

University College Cork CS3506

63

Unifies Different Core Devices

- □ Router
 - Match: longest destination IP prefix
 - Action: forward out a link
- Switch
 - Match: destinationMAC address
 - Action: forward or flood

University College Cork CS3506

- ☐ Firewall
 - Match: IP addresses and TCP/UDP port numbers
 - Action: permit or deny
- **□** NAT
 - Match: IP address and port
 - Action: rewrite address and port

Programmable Net. Controllers

University College Cork CS3506

65

Example Applications

- Dynamic access control
- ☐ Seamless mobility/migration
- Server load balancing
- Network virtualization
- Using multiple wireless access points
- Energy-efficient networking
- Adaptive traffic monitoring
- Denial-of-Service attack detection

Dynamic Access Control

Server Load Balancing

Controller Delays

- Controller is much slower the the switch
- Processing packets leads to delay and overhead
- ☐ Need to keep most packets in the "fast path"

University College Cork CS3506

69

Programming

- SDN makes programming possible
 - Network-wide view at controller
 - Direct control over data plane
 - Need for high-level abstractions
- Plenty of room for bugs
 - Still a complex, distributed system, concurrency issues
- Need for testing techniques
 - Controller applications
 SDN has significant
 - Controller and switches industry momentum
 - Rules installed in the switches

70

Summary

- □ Introduction
- Virtual circuit and datagram networks
- What's inside a router
- □ IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- Routing in the Internet
 - O RIP, OSPF
 - BGP
- Broadcast and multicast routing
- □ Software Defined Networks

71