Позиционные системы счисления

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «дискретная математика» (8 февраля 2017 г.)

Содержание

- Символьное представление чисел
 - Римская система счисления
 - Позиционная система счисления
- Перевод чисел из одной системы счисления в другую
 - Перевод целой части
 - Перевод дробной части
- Двоичная система счисления и пр.
 - Двоичная система счисления
 - Восьмиричная и шестнадцатиричная СС
 - Биты, байты, тетрады,...

Римская система счисления

1	I	лат. unus	
5	V	лат. quinque	
10	Χ	лат. decem	
50	L	лат. quinquaginta	
100	C	лат. centum	
500	D	лат quingenti	
1000	М	лат. mille	

- II 2;
- IV 4;
- VI 6;
- XCIX 99;
- МММСМХСІХ 3999...и это предел!

Натуральное число

В позиционной системе счисления с основанием K

Представление числа в K-ичной системе счисления:

$$(a_{n-1}\cdots a_1a_0)_K$$

Число, соответствующее представлению 1 :

$$\sum_{i=0}^{n-1} a_i \cdot K^i.$$

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \ldots + x_n$$

¹Замкнутая запись суммы:

Вклад разряда

Каким бы большим не было натуральное число, рано или поздно все цифры в разрядах старше некоторого (n-1)-го будут нулевыми:

$$(\cdots 0000000a_{n-1}\cdots a_1a_0)_K,$$

где $a_{n-1} \neq 0$. Поэтому бесконечный ряд нулей слева в записи числа опускают.

Вклад *п*-го разряда

Вклад n-го разряда при $a_n \neq 0$ больше вклада младших 2 :

$$a_n \cdot K^n \ge 1 + \sum_{i=0}^{n-1} a_i \cdot K^i$$
.

Рано или поздно для сколь угодно большого числа:

$$(\cdots 0000000a_{n-1}\cdots a_1a_0)_K,$$

где $a_{n-1} \neq 0$.

 $^{^{2}100 &}gt; 99, 1000 > 999, \dots$

Example (Число в десятичной СС)

Записи $(78642)_{10}$ (большинство запишет просто **78642**) соответствует число

$$7 \cdot 10^4 + 8 \cdot 10^3 + 6 \cdot 10^2 + 4 \cdot 10^1 + 2 \cdot 10^0 = 78642.$$

Example (Число в двоичной СС)

Записи $(10101)_2$ соответствует число

$$1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 =$$

$$= 1 \cdot 16 + 0 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 =$$

$$= 21.$$

Example (Число в троичной СС)

Записи $(10221)_3$ соответствует число

$$1 \cdot 3^4 + 0 \cdot 3^3 + 2 \cdot 3^2 + 2 \cdot 3^1 + 1 \cdot 3^0 =$$

$$= 1 \cdot 81 + 0 \cdot 27 + 2 \cdot 9 + 2 \cdot 3 + 1 \cdot 1 =$$

$$= 106.$$

Example (Символ цифры)

В ручной записи *числа* каждой *цифре* соответствует *символ* определенного начертания. Поэтому, если оговорено, например, что K=3 и цифре α соответствует ноль, β — один, γ — два, то записи

$$(\beta\alpha\gamma\gamma\beta)_3$$

соответствует число 106.

Вещественное число Дробная часть Y, $0 \le Y < 1$

В позиционной системе счисления с основанием K представляется так:

$$Y\equiv (.a_{-1}a_{-2}\cdots a_{-m}\cdots)_K,$$

где m>0 — натуральное число.

Дробная на основе своего представления формируется так:

$$Y = \sum_{i=-m}^{-1} a_i \cdot K^i = \sum_{i=1}^{m} \frac{a_{-i}}{K^i}.$$

Иррациональные числа

Для записи иррациональных чисел, например таких, как число

 $\pi = 3.141592653589793238462643\cdots$

понадобится *бесконечное* количество цифр для представления дробной части в позиционной системе счисления с *любым* целым основанием.

Потеря точности

Example

$$0.5 = (.1)_2$$

 $0.3 = (.0[1001])_2 \approx (.010011001 \cdots)_2$

Число, представимое в одной позиционной СС точно, в ПСС с другим основанием может быть представлено только периодической дробью, а на практике лишь приближённо...

Вклад m-го разряда $a_{-m} \neq 0$

Вклад m-го разряда дробной части при $a_{-m} \neq 0$ больше вклада младших 3 :

$$a_{-m}\cdot K^{-m} > \sum_{i=m+1}^{\infty} \frac{a_{-i}}{k^i}.$$

Example (Дробная часть в двоичной СС)

Записи дробной части $(.10111)_2$ соответствует число Y:

$$Y = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4} + 1 \cdot 2^{-5} =$$

$$= 1 \cdot 0.5 + 0 \cdot 0.25 + 1 \cdot 0.125 + 1 \cdot 0.0625 + 1 \cdot 0.03125 =$$

$$= 0.71875$$

Представление вещественного числа

Число

$$X = \sum_{i=-m}^{-1} a_i \cdot K^i + \sum_{j=0}^{n-1} a_j \cdot K^j = \sum_{i=-m}^{n-1} a_i \cdot K^i.$$

можно представить как

$$X \equiv (a_{n-1} \cdots a_1 a_0 \underline{\quad} a_{-1} a_{-2} \cdots a_{-m+1} a_{-m})_K.$$

Записи отрицательного числа будет предшествовать знак минус:

$$X \equiv (-a_{n-1} \cdots a_2 a_1 a_0 . a_{-1} a_{-2} \cdots a_{-m+1} a_{-m})_K.$$

Обсуждение

Как представить число в физической среде?

Перевод чисел

Необходимо число, представленное в L-ичной СС, представить в K-ичной СС:

•
$$A \equiv (\pm \cdots a_1 a_0 . a_{-1} a_{-2} \cdots)_L$$
;

$$\bullet$$
 $A \rightarrow B$;

$$\bullet B \equiv (\pm \cdots b_1 b_0 . b_{-1} b_{-2} \cdots)_K;$$

• Вычислитель считает в М-ичной СС.

Перевод числа в систему счисления вычислителя Люди привыкли считать в десятичной

Исходное число

$$A \equiv (\pm a_n \cdots a_0.a_{-1} \cdots a_{-m})_L$$

достаточно пересчитать в СС вычислителя

$$A = \pm \sum_{i=-m}^{n} a_i \cdot L^i,$$

представив 4 в ней же L и a_i .

⁴Не представляет сложности

Число в 16-ичной СС

Данный слайд создан вычислителем, которому удобно считать в десятичной системе

Пусть дано число $Z \equiv (-7AFC.4)_{16}$.

В шестнадцатиричной системе счисления цифры обозначены следующим образом: цифрам от нуля до девяти соответствуют цифры десятичной системы, а далее используются латинские буквы от A до F в алфавитном порядке, которым соответствуют числа от 10 до 15 соответственно:

$$Z = -(7 \cdot 16^{3} + A \cdot 16^{2} + F \cdot 16^{1} + C \cdot 16^{0} + 4 \cdot 16^{-1}) =$$

$$= -(7 \cdot 16^{3} + 10 \cdot 16^{2} + 15 \cdot 16^{1} + 12 \cdot 16^{0} + 4 \cdot 16^{-1}) =$$

$$= -(7 \cdot 4096 + 10 \cdot 256 + 15 \cdot 16 + 12 \cdot 1 + 4 \cdot 0.0625) =$$

$$= -31484.25$$

Перевод в K-ичную СС $_{\mathsf{Целая}}$ часть

Допустим, что целая часть (X) уже представлена в K-ичной системе: $X \equiv (b_n \cdots b_0)_K$. X делится нацело на основание K:

$$X = K \cdot \left(\sum_{i=1}^{n} b_i \cdot K^{i-1}\right) + b_0,$$

получая в остатке $b_0 \in [0, K-1]$.

$$X=K\cdot X^{(1)}+b_0.$$

Перевод в K-ичную СС $_{\mathsf{Целая}}$ часть

$$X^{(1)} = K \cdot \left(\sum_{i=2}^{n} b_i \cdot K^{i-2}\right) + b_1 = K \cdot X^{(2)} + b_1,$$

$$X^{(2)} = K \cdot X^{(3)} + b_2,$$

$$X^{(3)} = K \cdot X^{(4)} + b_3,$$
...
$$X^{(n)} = K \cdot 0 + b_n.$$

Перевод в K-ичную СС Дробная часть Y, $0 \le Y < 1$

Представим, что дробная часть (Y) числа уже представлена в K-ичной системе: $(.b_{-1}\cdots b_{-m})_K$. Умножая дробную часть на K.

$$Y \cdot K = K \cdot \left(\sum_{i=-m}^{-1} b_i \cdot K^i\right) = b_{-1} + \sum_{i=-m}^{-2} b_i \cdot K^{i+1},$$

находим $b_{-1} = \lfloor Y \cdot K
floor$ и справедливо $b_{-1} \in [0, K-1].$

$$Y \cdot K = b_{-1} + Y^{(1)}$$
.

Перевод в K-ичную СС Дробная часть

$$Y^{(1)} \cdot K = \left(\sum_{i=-m}^{-2} b_i \cdot K^{i+1}\right) \cdot K = b_{-2} + Y^{(2)},$$

$$Y^{(2)} \cdot K = b_{-3} + Y^{(3)},$$

$$Y^{(3)} \cdot K = b_{-4} + Y^{(4)},$$
...
$$Y^{(m-1)} \cdot K = \left(\sum_{i=-m}^{-m} b_i \cdot K^{i+m-1}\right) \cdot K = b_{-m} + 0.$$

Перевод чисел

Tочность представления дробной части $(Y)_L o (Y)_K.$

$$(.a_{-1}\cdots a_{-m_L})_L\approx (.b_{-1}\cdots b_{-m_K})_K.$$

Сколько разрядов m_K необходимо?

$$\begin{array}{cccc} \Delta_K & \leq & \Delta_L, \\ K^{-m_K} & \leq & L^{-m_L}, \\ \log_K K^{-m_K} & \leq & \log_K L^{-m_L}, \\ -m_K & \leq & -m_L \cdot \log_K L, \end{array}$$

 $m_k \geq m_L \cdot \log_K L$

$X \equiv -31484.25$ в 3-ичную СС Целая часть

$$\begin{array}{lll} 31484 = 10494 \cdot 3 + 2, & \Rightarrow b_0 = 2, \\ 10494 = 3498 \cdot 3 + 0, & \Rightarrow b_1 = 0, \\ 3498 = 1166 \cdot 3 + 0, & \Rightarrow b_2 = 0, \\ 1166 = 388 \cdot 3 + 2, & \Rightarrow b_3 = 2, \\ 388 = 129 \cdot 3 + 1, & \Rightarrow b_4 = 1, \\ 129 = 43 \cdot 3 + 0, & \Rightarrow b_5 = 0, \\ 43 = 14 \cdot 3 + 1, & \Rightarrow b_6 = 1, \\ 14 = 4 \cdot 3 + 2, & \Rightarrow b_7 = 2, \\ 4 = 1 \cdot 3 + 1, & \Rightarrow b_8 = 1, \\ 1 = 0 \cdot 3 + 1, & \Rightarrow b_9 = 1 \end{array}$$

 $31484 \equiv (1121012002)_3.$

$$X \equiv -31484.25$$
 в 3-ичную СС Дробная часть

$$0.25 \cdot 3 = 0.75, \Rightarrow b_{-1} = 0,$$

 $0.75 \cdot 3 = 2.25, \Rightarrow b_{-2} = 2,$
 $0.25 \cdot 3 = 0.75, \Rightarrow b_{-3} = 0,$
 $0.75 \cdot 3 = 2.25, \Rightarrow b_{-4} = 2,$
...

 $0.25 \equiv (0.[02])_3$.

$$X \equiv (-7AFC.4)_{16} \equiv -31484.25$$
 в 3-ичную СС

$$X \equiv (-7AFC.4)_{16} \equiv -31484.25 \equiv (-1121012002.[02])_3$$

Двоичная система счисления

- Система счисления с основанием 2.
- Цифры всего две: 0 и 1.
- ullet Разряд \equiv бит 5 .

10-я СС	2-я СС	10-я СС	2-я СС
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
_7	0111	15	1111

⁵bit — <mark>b</mark>inary dig<mark>it</mark>. Двоичная цифра.

Двоичная система счисления Таблица сложения

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & \stackrel{0}{\leftarrow} 0 & \stackrel{0}{\leftarrow} 1 \\ \hline 1 & \stackrel{0}{\leftarrow} 1 & \stackrel{1}{\leftarrow} 0 \\ \end{array}$$

Например,
$$1 + 1 = 2 \equiv (10)_2 \equiv \stackrel{1}{\leftarrow} 0$$
.

Двоичная система счисления Сложение чисел

Example (Задача)

Сложить двоичные числа: $A \equiv (101.1101)_2$ и $B \equiv (11.010111)_2$.

Решение.

Двоичная система счисления Закономерности

• В *п* двоичных разрядах можно представить

$$2^n$$

чисел.
$$[0, 2^n - 1] \equiv [(\underbrace{0 \cdots 0}_n)_2, (\underbrace{1 \cdots 1}_n)_2]$$

ullet Чтобы пронумеровать m объектов, требуется

$$\lceil \log_2 m \rceil$$

разрядное 2-ичное число.

Вспомогательные системы счисления 8, 16 CC

Системы счисления, основание которых есть степень двух:

•
$$8 = 2^3$$
;

•
$$8 = 2^3$$
;
• $16 = 2^4$.

Восьмиричная СС

$$X = (\pm \cdots a_{8}a_{7}a_{6} a_{5}a_{4}a_{3} a_{2}a_{1}a_{0}) a_{-1}a_{-2}a_{-3} a_{-4}a_{-5}a_{-6} a_{-7}a_{-8}a_{-9} \cdots)_{2}$$

$$X = \begin{cases} +a_8 \cdot 2^8 + a_7 \cdot 2^7 + a_6 \cdot 2^6 + \\ +a_5 \cdot 2^5 + a_4 \cdot 2^4 + a_3 \cdot 2^3 + \\ +a_2 \cdot 2^2 + a_1 \cdot 2^1 + a_0 \cdot 2^0 + \\ +\frac{a_{-1}}{2^1} + \frac{a_{-2}}{2^2} + \frac{a_{-3}}{2^3} + \\ +\frac{a_{-4}}{2^4} + \frac{a_{-5}}{2^5} + \frac{a_{-6}}{2^6} + \\ +\frac{a_{-7}}{2^7} + \frac{a_{-8}}{2^8} + \frac{a_{-9}}{2^9} + \\ + \dots \end{cases}$$

Восьмиричная СС

$$X = (\pm \cdots a_{8}a_{7}a_{6} a_{5}a_{4}a_{3} a_{2}a_{1}a_{0}) a_{-1}a_{-2}a_{-3} a_{-4}a_{-5}a_{-6} a_{-7}a_{-8}a_{-9} \cdots)_{2}$$

$$X = \begin{cases} & \dots + \\ & + \left(a_8 \cdot 2^2 + a_7 \cdot 2^1 + a_6 \cdot 2^0\right) \cdot 8^2 + \\ & + \left(a_5 \cdot 2^2 + a_4 \cdot 2^1 + a_3 \cdot 2^0\right) \cdot 8^1 + \\ & + \left(a_2 \cdot 2^2 + a_1 \cdot 2^1 + a_0 \cdot 2^0\right) \cdot 8^0 + \\ X = & + \frac{\left(a_{-1} \cdot 2^2 + a_{-2} \cdot 2^1 + a_{-3} \cdot 2^0\right)}{8^1} + \\ & + \frac{\left(a_{-4} \cdot 2^2 + a_{-5} \cdot 2^1 + a_{-6} \cdot 2^0\right)}{8^2} + \\ & + \frac{\left(a_{-7} \cdot 2^1 + a_{-8} \cdot 2^2 + a_{-9} \cdot 2^3\right)}{8^3} + \\ & + \dots \end{cases}$$

Восьмиричная СС

Получили запись числа:

$$X = \sum_{i=-m'}^{n'} b_i \cdot 8^i,$$

где

$$b_i = \sum_{j=0}^2 a_{3\cdot i+j} \cdot 2^j$$

и $b_i \in [0,2^3-1]$, те $b_i \in [0,7]$. b_i — восмиричная цифра.

Восьмиричные числа в языках программирования

- С++, јаva, С# и т.д.: если справа перед числом записан ноль, то число в восьмиричной системе. 015720 - восьмиричное число (равное 7120). 0189 - ошибка: недопустимы цифры 8 и 9. Без ведущего нуля число считается десятичным;
- В ассемблере после цифр восьмиричного числа пишется латинская буква «о» (octal). 15720о. Ну, а 189о...

Шестнадцатиричная система

$$X = (\pm \cdots \boxed{a_7 a_6 a_5 a_4 \mid a_3 a_2 a_1 a_0}, \boxed{a_{-1} a_{-2} a_{-3} a_{-4} \mid a_{-5} a_{-6} a_{-7} a_{-8}}, \cdots)_2$$

16-я СС	10-я СС	2-я СС	16-я СС	10-я СС	2-я СС
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	Α	10	1010
3	3	0011	В	11	1011
4	4	0100	C	12	1100
5	5	0101	D	13	1101
6	6	0110	E	14	1110
7	7	0111	F	15	1111

Шестнадцатиричные числа в языках программирования

- C++, j ava, C# и т.д.: если слева от цифр цисла есть префикс «Ох», то число в шестнадцатеричной системе. ОхАF шестнадцатеричное число (равное 175). Ох1h ошибка: недопустима цифра h.
- pascal: если слева от цифр цисла есть префикс «\$», то число в шестнадцатеричной системе. \$AF шестнадцатеричное число (равное 175). \$1h ошибка: недопустима цифра h.
- В некоторых ассемблерах после цифр шестнадцатиричного числа пишется латинская буква «h» (hexadecimal): 1beh, Oafh, OAFh, OAFH.

Вспомогательные системы счисления 8,16 сс

Example (Задача)

Дано двоичное число $(1110011.0101101)_2$. Перевести его в системы счисления с основанием 8 и 16.

Вспомогательные системы счисления 8.16 СС

Example (Задача)

Дано двоичное число $(1110011.0101101)_2$. Перевести его в системы счисления с основанием 8 и 16.

Решение.

$$\underbrace{(001 \underbrace{110}_{1} \underbrace{011}_{6}, \underbrace{010}_{3}, \underbrace{010}_{2} \underbrace{110}_{6} \underbrace{100}_{4})_{2} \equiv (163.264)_{8} \equiv}_{7} = \underbrace{(0111 \underbrace{0011}_{7}, \underbrace{0101}_{3}, \underbrace{0101}_{5} \underbrace{1010}_{4})_{2} \equiv (73.5A)_{16}$$

Example (Задача)

Дано восьмиричное число $(673245.471)_8$. Перевести его в систему счисления с основанием 16.

Example (Задача)

Дано восьмиричное число $(673245.471)_8$. Перевести его в систему счисления с основанием 16.

Решение.

Переводим в двоичную систему, а из двоичной в шестнадцатеричную:

$$(110\ 111\ 011\ 010\ 100\ 101.100\ 111\ 001)_2 =$$

= $(0011\ 0111\ 0110\ 1010\ 0101.1001\ 1100\ 1000)_2 =$
= $(376A5.9C8)_{16}$

Example (Задача)

Дано число 65045.875. Перевести его в 2 СС.

Example (Задача)

Дано число 65045.875. Перевести его в 2 СС.

Решение.

Переводим в шестнадцатеричную систему целую часть:

$$65045 = 4065 \cdot 16 + 5, \Rightarrow a_0 = 5,$$

 $4065 = 254 \cdot 16 + 1, \Rightarrow a_1 = 1,$
 $254 = 15 \cdot 16 + 14, \Rightarrow a_2 = E,$
 $15 = 0 \cdot 16 + 15, \Rightarrow a_3 = F.$

Дробную часть:

$$0.875 \cdot 16 = 14.0, \Rightarrow a_{-1} = E.$$

В двоичной системе: $(FE15.E)_{16} = (11111111000010101.11110)_2$.

Удобство представления двоичных чисел в 8 и 16 СС

Example (Компактность уменьшает количество ошибок)

$$(1111111101010000000010111111001101)_2 =$$

= $(37650013715)_8 =$
= $(FEA017CD)_{16}$

В менее короткой записи числа ошибиться сложнее.

Информатика и 2 СС

- Бит (bit binary digit).
- Байт (byte).
- Октет.
- Ниббл, тетрада.
- Килобайт?

Война префиксов закончена 19 марта 2005 года! IEEE 1541. 1000 байт — 1 kB (килобайт), 1024 байт — 1KiB (кибибайт)

Префиксы для формирования крупных единиц измерения информации

Множитель	CИ/SI	Множитель	IEEE 1541
$10^3 = 1000^1$	<i>kilo</i> (k) кило	$2^{10} = 1024^1$	<i>kibi</i> (Ki) киби
$10^6 = 1000^2$	<i>mega</i> (М) мега	$2^{20} = 1024^2$	<i>mebi</i> (Мі) меби
$10^9 = 1000^3$	giga (G) гига	$2^{30} = 1024^3$	<i>gibi</i> (Gi) гиби
$10^{12} = 1000^4$	<i>tera</i> (Т) тера	$2^{40} = 1024^4$	<i>tebi</i> (Ті) теби
$10^{15} = 1000^5$	<i>peta</i> (Р) пета	$2^{50} = 1024^5$	<i>pebi</i> (Рі) пеби
$10^{18} = 1000^6$	<i>exa</i> (Е) экса	$2^{60} = 1024^6$	<i>exbi</i> (Еі) эксби
$10^{21} = 1000^7$	<i>zetta</i> (Z) зетта	$2^{70} = 1024^7$	<i>zebi</i> (Zi) зеби
$10^{24} = 1000^8$	<i>yotta</i> (Y) йотта	$2^{80} = 1024^8$	<i>yobi</i> (Yi) йоби

Двоичная система счисления
Восьмиричная и шестнадцатиричная СС
Биты, байты, тетрады,...

Обсуждение

Как представляются числа в современных компьютерах?

В заключение

Подробнее о ситемах счисления см. [1, 2].

Библиография I

В.А.Горбатов. Фундаментальные основы дискретной математики / В.А.Горбатов. — М.: Физматлит, 1999. — 544 с.

С.В.Судоплатов. Дискретная математика: Учебник / С.В.Судоплатов, Е.В.Овчинникова. — М.: ИНФРА-М;Новосибирск;Изд-во НГТУ, 2005. — 256 с.