Control Systems Terminologies Plant Input and System Responses PID PID Control of SBR PID tuning Procedure

Introduction to PID control scheme

e-Yantra Team

Indian Institute of Technology, Bombay

February 15, 2024

Agenda for Discussion

- 1 Control Systems Terminologies
- 2 Plant Input and System Responses
 - Type of Inputs
 - System response
- 3 PID
 - What is PID?
 - Proportional Controller P
 - Proportional Controller PI
 - Proportional Integral Derivative controller PID
- 4 PID Control of SBR
- 5 PID tuning Procedure

Outline

1 Control Systems Terminologies

- 2 Plant Input and System Responses
 - Type of Inputs
 - System response
- 3 PID
 - What is PID?
 - Proportional Controller P
 - Proportional Controller P
 - Proportional Integral Derivative controller PID
- 4 PID Control of SBR
- 5 PID tuning Procedure

Terminology

Plant : The part or component of a system that is required to be controlled.

Controller: The part or component of a system that controls the plant.

Feedback: A measure of the output of the system used for feedback to control

control

Error: Error is the difference between desired value and measured process value

Terminology (Contd.)

- Systems can be classified as open-loop systems and closed-loop systems
- Open loop systems can be termed as uncontrolled systems. No feedback involved
- Closed loop system has a feedback and can be termed as control system

Outline

- 1 Control Systems Terminologies
- 2 Plant Input and System Responses
 - Type of Inputs
 - System response
- 3 PID
 - What is PID?
 - Proportional Controller P
 - Proportional Controller P
 - Proportional Integral Derivative controller PID
- 4 PID Control of SBR
- 5 PID tuning Procedure

Type of Inputs

Figure: Impulse Input

Figure: Step Input

System response

Step Response: It is how a system responds to step input.

System response

Referred a video on MATLAB Tech Talk by Brain Douglas: Step Response

Outline

- 1 Control Systems Terminologies
- 2 Plant Input and System Responses
 - Type of Inputs
 - System response
- 3 PID
 - What is PID?
 - Proportional Controller P
 - Proportional Controller PI
 - Proportional Integral Derivative controller PID
- 4 PID Control of SBR
- 5 PID tuning Procedure

What is PID?

- PID stands for Proportional Integral Derivative controller.
- Error based controller.
- Output of controller is the a linear function of constants and errors
- Advantages: Easy to implement, no information about dynamic model of the system required, robust, widely used in industry.
- Disadvantages: Tuning of parameters, sometimes cannot work for all conditions in complex non linear systems

Proportional Controller

Output is proportional to the error

Output =
$$K_p \cdot \text{error}$$

Proportional Controller -P

- 1 Increase in K_p decreases rise time.
- 2 Adds oscillations in the system.
- 3 Decreases steady state error.

Proportional Controller - PI

Output is the sum of the proportional and integral term:

Output =
$$K_p \cdot \text{error} + K_i \cdot \int \text{error } dt$$

Proportional Controller - PI

- 1 Addition of I term reduces steady state error
- 2 Also increases oscillations
- 3 Can lead to integral windup problems

Proportional Integral Derivative controller - PID

Output is the sum of proportional, integral, and derivative terms:

Output =
$$K_p \cdot \text{error} + K_i \cdot \int \text{error } dt + K_d \cdot \frac{d(\text{error})}{dt}$$

Proportional Integral Derivative controller - PID

Combines features of P, I and D

Faster rise time, minimal oscillations, zero steady state error

Outline

- 1 Control Systems Terminologies
- 2 Plant Input and System Responses
 - Type of Inputs
 - System response
- 3 PID
 - What is PID?
 - Proportional Controller P
 - Proportional Controller P
 - Proportional Integral Derivative controller PID
- 4 PID Control of SBR
- 5 PID tuning Procedure

PID Control of SBR

- **Objective**: To balance the SBR.
- Steps:
 - **1** Step 1: Calculate the error: $error = desired_angle current_angle$.
 - 2 Step 2: Calculate the differential of the error: difference_error = error - prev_error.
 - 3 Step 3: Calculate the sum of the error: sum error = sum_error + error.
 - 4 Step 4: Calculate the PWM output:

$$PWM_output = K_p \times error + K_d \times difference_error + K_i \times sum_error$$

Outline

- 1 Control Systems Terminologies
- 2 Plant Input and System Responses
 - Type of Inputs
 - System response
- 3 PID
 - What is PID?
 - Proportional Controller P
 - Proportional Controller P
 - Proportional Integral Derivative controller PID
- 4 PID Control of SBR
- 5 PID tuning Procedure

PID tuning Procedure

Objective: To balance the SBR.

- Start with K_p , K_d , $K_i = 0$.
- Increase K_p until sustained oscillations are achieved.
- Increase K_d to dampen oscillations.
- Add K_i to remove steady-state error.
- Fine-tune K_p , K_d , K_i to achieve desired performance.

Let's tune through Simulation

Control Systems Terminologies
Plant Input and System Responses
PID
PID Control of SBR
PID tuning Procedure

Thank You!

Post your queries on: support@e-yantra.org Contents available on: e-yantra Resources For more details, please visit: e-yantra website

