BCC S2L2 PIANI DI TRATTAMENTO DI RISCHIO

EPICODE

Risk manageme

Eserc

Un'azienda subisce 6 data breach ogni 2 anni, in cui l'80% del contenuto viene esfiltrato per una valore complessivo del dataset di 100.000€. L'attaccante riesce a portare a termine il data breach nel 90% dei casi.

Calcolare: Per ogni soluzione, valutare:

SLE

mALE

• ARO • (

ALEGL

• CBA

ROSI (con rapporto di mitigazione)

mv (probabilità di riuscita dopo la mitigazione)

Utilizzare:

λ = ALE

t = EF

Valutare se il costo delle contromisure rientra nell'investimento consigliato da Gordon-Loeb

Soluzione	1	2	3	4	5
Mitigation ratio	50%	65%	43%	62%	80%
ACS	63000	70000	60000	69000	100000

SOLUZIONE 1 MITIGATION RATIO 50% ACS 63000

- SLE (Valore complessivo del dataset * Percentuale del contenuto esfiltrato) * Probabilità di successo dell'attacco
- = (100.000 * 0.8) * 0.9= 80.000* 0.9 = 72.000 questo è il SLE
- ARO si calcola = Numero medio di eventi di data breach all'anno = Numero totale di eventi di data breach / Periodo di tempo (in anni) Dato che ci sono 6 data breach ogni 2 anni, possiamo considerare 3 data breach all'anno.
- **ALE** =SLE*ARO= 72000*3=216000
- male = ALE*(1-Riduzione del Rischio) = 216000*(1-50%) = 216000*0.5 = 108000 male
- Il Cost-Benefit Analysis (CBA) = CBA = ALE-mALE-ACS=216000-108000-63000=45000>0 | benefici sono maggiori dei costi
- **ROSI** Return on Security Investment = (ALE * mitigation ratio)-ACS)/ACS = (216000*0,5)-63000)/63000=0.714*100% = 71,4% il costo della salvaguardia è minore della Perdita annuale, l'investimento è conveniente.
- mV(Probabilità di uscita dopo mitigazione)=probabilità originale *(1-Mitigation Ratio)=0,90*(1-0,5)=45%
- **GL**=Per calcolare il General Loss (GL), dobbiamo moltiplicare l'Annualized Loss Expectancy (ALE) per la percentuale del contenuto esfiltrato. =216000*0.90*0.80=155520*0,37=57542,4

SOLUZIONE 2 MITIGATION RATIO 65% ACS 70000

- mALE = ALE*(1-Riduzione del Rischio) = 216000*(1-65%) = 216000*0.65=75600 mALE
- Il Cost-Benefit Analysis (CBA) = CBA = ALE-mALE-ACS = 216000-75600-70000=70400>0 | benefici sono maggiori dei costi
- **ROSI** Return on Security Investment = (ALE * mitigation ratio)-ACS)/ACS = (216000*0,65)-70000)/70000= 100,6% il costo della salvaguardia è minore della Perdita annuale, l'investimento è conveniente.
- mV(Probabilità di uscita dopo mitigazione)=probabilità originale *(1-Mitigation Ratio)=0,90*(1-0,65)=31,5%

- mALE=ALE*(1-Riduzione del Rischio)=216000*(1-0.43)= 216.000 * 0,57 = 123120 mALE
- II Cost-Benefit Analysis (CBA) = CBA = ALE-mALE-ACS = 216000-123120-60000=32880>0 | benefici sono maggiori dei costi
- **ROSI** Return on Security Investment = (ALE * mitigation ratio)-ACS)/ACS=(216000*0,43)-60000)/60000=54,8% il costo della salvaguardia è minore della Perdita annuale, l'investimento è conveniente.
- mV(Probabilità di uscita dopo mitigazione)=probabilità originale *(1-Mitigation Ratio)=0,90*(1-0,43)=51,3%

- mALE = ALE*(1-Riduzione del Rischio)=216.000*(1-0,62)=216000*0,38=82080 mALE
- II Cost-Benefit Analysis (CBA) = CBA = ALE-mALE-ACS=216000-82080-69000=64920>0 | benefici sono maggiori dei costi
- **ROSI** Return on Security Investment = (ALE * mitigation ratio)-ACS)/ACS=(216000*0,62)-69000)/69000=94,08% il costo della salvaguardia è minore della Perdita annuale, l'investimento è conveniente.
- **mV**(Probabilità di uscita dopo mitigazione)=probabilità originale *(1-Mitigation Ratio)=0,90*(1-0,62)=34,2%

- mALE = ALE*(1-Riduzione del Rischio)=216000*(1-0,8)=43200 mALE
- II Cost-Benefit Analysis (CBA) = CBA = ALE-mALE-ACS=216000-43200-100000=72800>0 | benefici sono maggiori dei costi
- **ROSI** Return on Security Investment = (ALE * mitigation ratio)-ACS)/ACS=(216000*0,8)-100000)/100000=72,8% il costo della salvaguardia è minore della Perdita annuale, l'investimento è conveniente.
- mV(Probabilità di uscita dopo mitigazione)=probabilità originale *(1-Mitigation Ratio)=0,90*(1-0,8)=18%