Planche d'exercices nº 1

Exercice 1.1. — Marche aléatoire sur \mathbb{Z} .

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires indépendantes définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$. Soit $p \in [0, 1]$. On suppose que, pour tout $k \geqslant 1$, on a

$$P(X_k = 1) = p$$
 et $P(X_k = -1) = 1 - p$.

Enfin, pour $n \ge 1$, on note $S_n = X_1 + \cdots + X_n$.

- 1. Pour tout $n \ge 1$, calculer l'espérance et la variance de S_n .
- 2. (a) Rappeler la définition de la convergence presque sûre.
 - (b) En utilisant un résultat célèbre, montrer que $\frac{1}{n}S_n$ converge presque sûrement vers 2p-1.
- 3. (a) Démontrer que si $p > \frac{1}{2}$, alors S_n tend presque sûrement vers $+\infty$. De même, démontrer que si $p < \frac{1}{2}$, alors S_n tend presque sûrement vers $-\infty$.
 - (b) Le même argument permet-il de dire quelque chose lorsque p vaut $\frac{1}{2}$?
- 4. Supposons $p \neq \frac{1}{2}$. On pose

$$A := \{ \omega \in \Omega : \forall x \in \mathbb{Z}, \exists n \geqslant 1, \forall m \geqslant n, S_m(\omega) \neq x \}.$$

Montrer que A est bien un événement, c'est-à-dire qu'il appartient à \mathscr{F} . Le décrire par une phrase en français et établir que sa probabilité vaut 1.

Exercice 1.2. — Passages en zéro.

Conservons les notations de l'exercice 1.1. On introduit Z la variable aléatoire à valeurs dans $\mathbb{N} \cup \{\infty\}$ qui compte combien de fois la suite $(S_n)_{n\geqslant 1}$ passe en zéro :

$$Z(\omega) := \operatorname{Card} (\{n \geqslant 1 : S_n(\omega) = 0\}).$$

Pour tout $i \ge 1$, on introduit l'événement $A_i := \{S_i = 0\} := \{\omega \in \Omega : S_i(\omega) = 0\}$.

- 1. Pour tout $i \ge 1$, calculer $\mathbf{P}(A_i)$.
- 2. Expliquer pourquoi $Z = \sum_{i=1}^{\infty} \mathbf{1}_{A_i}$.
- 3. Déterminer, pour chaque valeur de p, si l'espérance de Z est finie ou infinie.
- 4. (a) Si $p \neq \frac{1}{2}$, peut-on en déduire que $\mathbf{P}(Z \neq \infty) = 1$? Que $\mathbf{P}(Z \neq \infty) > 0$?
 - (b) Si $p = \frac{1}{2}$, peut-on en déduire que $\mathbf{P}(Z = \infty) = 1$? Que $\mathbf{P}(Z = \infty) > 0$?

Exercice 1.3. — Produits aléatoires.

Soient X_1, X_2, \ldots des variables aléatoire réelles indépendantes identiquement distribuées, de loi exponentielle de paramètre 1. Soit $n \ge 1$. On pose $Y_n := \prod_{i=1}^n X_i$.

- 1. Que vaut $\mathbf{E}[Y_n]$?
- 2. Montrer que $\mathbf{E}[\sqrt{X_1}] = \sqrt{\pi}/2$. En déduire la valeur de $\mathbf{E}[\sqrt{Y_n}]$.
- 3. Montrer que, pour tout t > 0, on a $\mathbf{P}(Y_n \ge t) \le \frac{1}{\sqrt{t}} (\sqrt{\pi}/2)^n$.

Exercice 1.4. — Le quantificateur "pour presque tout".

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité. Soit $(A_i)_{i \in I}$ une famille d'événements. Pensons chaque A_i comme défini par une certaine condition dépendant de ω , qu'on note $\mathcal{P}_i(\omega)$ et qui peut être tantôt vraie tantôt fausse. On a ainsi $A_i = \{\omega \in \Omega : \mathcal{P}_i(\omega)\}$.

Étant donné une propriété $\mathcal{P}(\omega)$ telle que $\{\omega \in \Omega : \mathcal{P}(\omega)\}$ soit mesurable, on définit "pour presque tout ω , on a $\mathcal{P}(\omega)$ " comme signifiant $\mathbf{P}(\{\omega \in \Omega : \mathcal{P}(\omega)\}) = 1$. Cela est raisonnable. En effet, "pour tout ω , on a $\mathcal{P}(\omega)$ " est équivalent à $\{\omega \in \Omega : \mathcal{P}(\omega)\} = \Omega$.

- 1. On suppose que $\bigcup_{i\in I} A_i \in \mathscr{F}$ et que pour presque tout ω , pour tout $i\in I$, on a $\mathcal{P}_i(\omega)$. Montrer que pour tout $i\in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$.
- 2. On suppose que I est dénombrable et que pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$. Démontrer que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$.
- 3. Soit X une variable aléatoire réelle à densité, par exemple de loi uniforme sur [0,1]. Prenons dans cette question $I = \mathbb{R}$ et, pour $i \in I$, posons $\mathcal{P}_i(\omega) = "X(\omega) \neq i$ ". Est-il vrai que, pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$? Que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$? Quelle leçon tirer de tout cela?

Exercice 1.5. — Toute loi se réalise.

- 1. Soit (E, \mathcal{E}) un espace mesurable. Soit μ une mesure de probabilité sur (E, \mathcal{E}) . Démontrer qu'il existe une variable aléatoire X à valeurs dans E et de loi μ .
- 2. Soit $n \ge 1$. Pour tout $i \in \{1, ..., n\}$, on se donne un espace mesurable (E_i, \mathcal{E}_i) et une mesure de probabilité μ_i sur cet espace mesurable. Construire des variables aléatoires indépendantes $X_1, ..., X_n$ telles que, pour tout $i \in \{1, ..., n\}$, la variable aléatoire X_i soit de loi μ_i .

Exercice 1.6. — Lemmes de Borel-Cantelli.

Soit $(A_n)_{n\geqslant 0}$ une suite d'événements. On s'intéresse à quatre conditions :

- (I) presque sûrement, il existe un rang à partir duquel les A_n n'ont pas lieu,
- (II) il existe un rang tel que presque sûrement, après ce rang, les A_n n'aient pas lieu,
- (III) il existe un rang tel qu'après ce rang, presque sûrement les A_n n'aient pas lieu.
 - 1. (a) Réécrire ces conditions sans utiliser "presque sûrement", en écrivant plutôt que certaines probabilités sont égales à 1.
 - (b) Montrer que (I) implique (II).
 - (c) Montrer que (II) équivaut à (III).
 - (d) Montrer que (I) équivaut à : $\mathbf{P}(\forall n \geq k, A_n \text{ n'a pas lieu}) \xrightarrow[k \to \infty]{} 1.$
 - (e) On se donne X une variable aléatoire à valeurs dans \mathbb{N} telle que, pour tout $n \in \mathbb{N}$, on ait $\mathbf{P}(X \ge n) > 0$ (pourquoi un tel X existe-t-il?). On pose $A_n := \{X \ge n\}$. Montrer que cette construction fournit un contre-exemple à (II) \Longrightarrow (I).
 - (f) (bonus) On pose T le rang aléatoire à partir duquel aucun des A_n n'a lieu, en posant $T(\omega) = \infty$ lorsque ce rang n'est pas défini. Autrement dit, pour tout $\omega \in \Omega$, on pose

$$T(\omega) := \inf\{k \in \mathbb{N} : \forall n \geqslant k, \, \omega \notin A_n\}.$$

Montrer que (I) équivaut à "T est fini presque sûrement" et que (II) équivaut à $||T||_{\infty} < \infty$.

- 2. Démontrer le lemme de Borel-Cantelli. $Indication : \mathbb{P}(\bigcup_{k \geqslant n} A_k) \leqslant \sum_{k \geqslant n} \mathbb{P}(A_k).$
- 3. Pour chaque $n \ge 1$, on lance un dé équilibré à n faces, numérotées de 1 à n, et on pose A_n l'événement "le $n^{\text{ème}}$ dé tombe sur la face 1". Montrer que cette situation vérifie (I) mais pas (II).
- 4. Rappeler l'énoncé du lemme de Borel–Cantelli indépendant. Montrer que cet énoncé devient faux si on enlève l'hypothèse d'indépendance.

Indication: On pourra s'inspirer de la question 1e.

Exercice 1.7. — Une condition suffisante pour la convergence presque sûre. Soient $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles et X une variable aléatoire réelle.

1. Montrer que, si pour tout $\varepsilon > 0$, on a

$$\sum_{n=1}^{\infty} \mathbf{P}(|X_n - X| > \varepsilon) < \infty,$$

alors $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$.

- 2. Appliquer la question 1 pour démontrer que, dans le contexte de l'exercice 1.3, on a la convergence $Y_n \xrightarrow[n \to \infty]{\text{p.s.}} 0$.
- 3. On suppose désormais que les variables aléatoires X_n sont indépendantes et on s'intéresse à la réciproque du résultat précédent.
 - (a) On suppose, pour cette sous-question uniquement, que $X_n \xrightarrow[n \to \infty]{\text{p.s.}} c$, où c est une constante. Démontrer que, pour tout $\varepsilon > 0$, on a

$$\sum_{n\geqslant 1} \mathbf{P}(|X_n - c| > \varepsilon) < \infty.$$

- (b) On suppose que $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, pour une certaine variable aléatoire X. Démontrer qu'il existe une constante c à laquelle X est égale presque sûrement.
- (c) En déduire que si $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, alors on a

$$\sum_{n\geqslant 1} \mathbf{P}(|X_n - X| > \varepsilon) < \infty.$$

Exercice 1.8. — Convergences de variables aléatoires.

Dans les cas suivants, quels sont les différents modes de convergence que la suite de variables aléatoires réelles $(X_n)_{n\geqslant 1}$ est susceptible de réaliser?

1.
$$\mathbf{P}\left(X_n = 1 - \frac{1}{n}\right) = \mathbf{P}\left(X_n = 1 + \frac{1}{n}\right) = \frac{1}{2}$$
;

2.
$$\mathbf{P}(X_n = n) = \frac{1}{2^n}, \ \mathbf{P}(X_n = \frac{1}{n}) = 1 - \frac{1}{2^n};$$

- 3. $\mathbf{P}(X_n=0)=1-\frac{1}{n^2}, \mathbf{P}(X_n=n^2)=\frac{1}{n^2};$
- 4. $\mathbf{P}(X_n = 0) = 1 \frac{1}{n}, \ \mathbf{P}(X_n = 1) = \frac{1}{n};$
- 5. $\mathbf{P}(X_n = 0) = 1 n^{-3/2}, \ \mathbf{P}(X_n = n) = n^{-3/2}.$

Exercice 1.9. — En extrayant, on peut rendre presque sûre la convergence en probabilité. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles convergeant en probabilité vers une variable aléatoire X. Montrer qu'il existe une extractrice déterministe φ telle que, pour tout $n\geqslant 1$, on ait $\mathbf{P}(|X_{\varphi(n)}-X|>\frac{1}{n})\leqslant \frac{1}{n^2}$. Étant donnée une telle extractrice, montrer que la sous-suite $(X_{\varphi(n)})_{n\geqslant 1}$ converge presque sûrement.

Exercice 1.10. — Ratatiner X_n en le multipliant par un petit réel déterministe a_n .

- 1. Soit X une variable aléatoire réelle. Montrer que $\mathbf{P}(|X| \geqslant k) \xrightarrow[k \to \infty]{} 0$.
 - 2. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles. Montrer qu'il existe une suite $(a_n)_{n\geqslant 1}$ de réels strictement positifs telle que $a_nX_n\xrightarrow[n\to\infty]{\text{p.s.}} 0$.

Exercice 1.11. — Récurrence de la marche aléatoire symétrique sur \mathbb{Z} .

On reprend les hypothèses et notations de l'exercice 1.1. On suppose en outre que $p = \frac{1}{2}$, et on cherche à montrer que presque sûrement, on a lim inf $S_n = -\infty$ et lim sup $S_n = +\infty$.

- 1. Pour $K \ge 1$ fixé et $n \ge 1$, on pose $A_n := \{X_{nK+1} = \cdots = X_{nK+n} = +1\}$. Montrer que pour tout K, presque sûrement, une infinité de A_n est réalisée.
- 2. En déduire que pour tout K, on a $\mathbf{P}(\forall n \ge 1, -K/2 < S_n < K/2) = 0$, puis que $\mathbf{P}(\{\limsup S_n = +\infty\} \cup \{\liminf S_n = -\infty\}) = 1$.
- 3. Expliquer pourquoi $\mathbf{P}(\liminf S_n = -\infty) = \mathbf{P}(\limsup S_n = +\infty)$. En déduire que $\mathbf{P}(\liminf S_n = -\infty) = \mathbf{P}(\limsup S_n = +\infty) \geqslant \frac{1}{2}$.
- 4. Montrer que l'événement { $\limsup S_n = +\infty$ } appartient à la tribu queue de la suite (X_n) . On rappelle que cette tribu est par définition $\bigcap_{k \in \mathbb{N}} \sigma(X_i : i \geq k)$.
- 5. Utiliser la loi du 0-1 de Kolmogorov pour conclure que $\mathbf{P}(\limsup S_n = +\infty) = 1$ et $\mathbf{P}(\liminf S_n = -\infty) = 1$.
- 6. En déduire que pour presque tout ω , pour tout $x \in \mathbb{Z}$, la trajectoire $(S_n(\omega))_{n \ge 1}$ passe une infinité de fois par la valeur x.

Exercice 1.12. — Démonstration de la loi forte des grands nombres dans le cas L⁴. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles indépendantes identiquement distribuées vérifiant $\mathbf{E}(X_1^4) < \infty$. Pour tout $n \geqslant 1$, on pose $Z_n = \frac{1}{n}(X_1 + \cdots + X_n)$.

- 1. On suppose pour l'instant que $\mathbf{E}[X_1] = 0$.
 - (a) Montrer que les espérances $\mathbf{E}[X_1^3X_2]$, $\mathbf{E}[X_1^2X_2X_3]$ et $\mathbf{E}[X_1X_2X_3X_4]$ sont bien définies et donner leur valeur.
 - (b) Calculer $\mathbf{E}[Z_n^4]$.
 - (c) Montrer que la variable $\sum_{n=1}^{\infty} Z_n^4$ est intégrable et en déduire que Z_n converge presque sûrement vers 0.
- 2. En retirant l'hypothèse $\mathbf{E}[X_1] = 0$, déduire de la question précédente que Z_n converge presque sûrement vers $\mathbf{E}[X_1]$.