MTE 408 ROBOTICS

TRAJECTORY GENERATION

PROF. FARID TOLBA (رحمه الله)
WALEED ELBADRY

MAY 2022

Concepts

The difference between **motion planning** and **trajectory planning** (generation)

Motion Planning

- intended to build a collision-free path with respect to cost function (minimum travel time or minimum power consumption).
- The scene or horizon is analyzed for minimizing the cost function to achieve the final goal

Motion Planning

Trajectory Planning (Generation)

- Once path is identified, motion dynamics (speed, acceleration and jerk) profile is identified using polynomial function.
- Polynomial coefficients are computed from problem boundary conditions (initial and final states of position, velocity and acceleration).

Trajectory Planning (Generation)

Trajectory Planning

Minimum distance

To allow controller
To reach target speed
at specific time

Initial point

Final point x

Trajectory Planning (Multiple Axes)

Trajectory Planning (Multiple Axes)

General form

$$s(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

$$\dot{s}(t) = \frac{ds}{dt}$$

Boundary conditions

for finding coefficients

$$\ddot{s}(t) = \frac{d^2s}{dt^2}$$

 $\ddot{s}(t)$... acceleration

 t_f ... $final\ time$

 t_0 ... initial time

 $a_0 \dots a_n$

Boundary Conditions

Linear Trajectory

$$s(t) = a_0 + a_1(t_f - t_0)$$

$$\dot{s}(t) = \frac{ds}{dt} = a_1$$

$$\ddot{s}(t) = 0$$

To find the two coefficients, a_0 and a_1 , we need **two boundary** conditions $s(t_0)$ and $s(t_f)$ (initial and final displacement)

$$\begin{aligned}
s(t_0) &= a_0 \to \{1\} \\
s(t_f) &= a_0 + a_1(t_f - t_0) \to \{2\}
\end{aligned} \Rightarrow
\begin{bmatrix}
s(t_0) \\
s(t_f)
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
1 & T
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1
\end{bmatrix}, \qquad T = t_f - t_0$$

Linear Trajectory

$$\begin{bmatrix} s(t_0) \\ s(t_f) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & T \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}, \qquad T = t_f - t_0$$

To find a_0 and a_1 , it is easy to find it using the inverse method

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & T \end{bmatrix}^{-1} \begin{bmatrix} s(t_0) \\ s(t_f) \end{bmatrix}, \quad s(t_0) \text{ and } s(t_f) \text{ are known values}$$

$$\begin{bmatrix} 1 & 0 \\ 1 & T \end{bmatrix}^{-1} = \frac{1}{(1)(T) - (0)(1)} \begin{bmatrix} T & -0 \\ -1 & 1 \end{bmatrix} = \frac{1}{T} \begin{bmatrix} T & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{T} & \frac{1}{T} \end{bmatrix}$$

Linear Trajectory

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & T \end{bmatrix}^{-1} \begin{bmatrix} s(t_0) \\ s(t_f) \end{bmatrix}, \quad s(t_0) \text{ and } s(t_f) \text{ are known values}$$

$$\begin{bmatrix} 1 & 0 \\ 1 & T \end{bmatrix}^{-1} = \frac{1}{(1)(T) - (0)(1)} \begin{bmatrix} T & -0 \\ -1 & 1 \end{bmatrix} = \frac{1}{T} \begin{bmatrix} T & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{T} & \frac{1}{T} \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{T} & \frac{1}{T} \end{bmatrix} \begin{bmatrix} s(t_0) \\ s(t_f) \end{bmatrix} = \begin{bmatrix} s(t_0) \\ -\frac{s(t_0)}{T} + -\frac{s(t_f)}{T} \end{bmatrix}$$

Linear Trajectory

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{T} & \frac{1}{T} \end{bmatrix} \begin{bmatrix} s(t_0) \\ s(t_f) \end{bmatrix} = \begin{bmatrix} s(t_0) \\ -\frac{s(t_0)}{T} + -\frac{s(t_f)}{T} \end{bmatrix}$$

$$a_0 = s(t_0)$$

$$a_1 = -\frac{s(t_0)}{T} + \frac{s(t_f)}{T} = \frac{s(t_f) - s(t_0)}{t_f - t_0} = \frac{h}{T}$$

$$h = s(t_f) - s(t_0) = q_f - q_0$$

Example

Determine the linear trajectory equations given $s(t_0)=q_0=0$, $s(t_f)=q_f=10$, $t_0=0$, $t_f=8$

Solution

$$a_0 = s(t_0) = 0$$

$$a_1 = \frac{s(t_f) - s(t_0)}{t_f - t_0} = \frac{10 - 0}{8 - 0} = \frac{10}{8}$$

$$s(t) = a_0 + a_1 t = \frac{10}{8} t \quad and \quad s(t) = a_1 = \frac{10}{8}$$

Linear Trajectory

Linear Trajectory

Major disadvantage of linear trajectory is the infinite acceleration at start and stop

Cubic Trajectory

$$s(t) = a_0 + a_1 T + a_2 (T)^2 + a_3 (T)^3$$

$$\dot{s}(t) = a_1 + 2a_2(T) + 3a_3(T)^2$$

$$\ddot{s}(t) = 2a_2 + 6a_3(T)$$

To find the four coefficients, a_0 , a_1 , a_2 and a_3 we need **four boundary** conditions $s(t_0)$, $s(t_f)$, $\dot{s}(t_0)$ and $\dot{s}(t_f)$

Cubic Trajectory

To find the four coefficients, a_0 , a_1 , a_2 and a_3 we need **four boundary** conditions $s(t_0)$, $s(t_f)$, $\dot{s}(t_0)$ and $\dot{s}(t_f)$

$$s(t_0) = a_0$$

$$s(t_f) = a_0 + a_1 T + a_2 (T)^2 + a_3 (T)^3$$

$$\dot{s}(t_0) = a_1$$

$$\dot{s}(t_f) = a_1 + 2a_2 (T) + 3a_3 (T)^2$$

$$\Rightarrow \begin{bmatrix} s(t_0) \\ s(t_f) \\ \dot{s}(t_0) \\ \dot{s}(t_f) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & T & T^2 & T^3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2T & 3T^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

 $s(t_0)$, $sig(t_fig)$, $\dot{s}(t_0)$ and $\dot{s}ig(t_fig)$ are known

Cubic Trajectory

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & T & T^2 & T^3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2T & 3T^2 \end{bmatrix}^{-1} \begin{bmatrix} s(t_0) \\ s(t_f) \\ \dot{s}(t_0) \\ \dot{s}(t_f) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\frac{3}{T^2} & \frac{3}{T^2} & -\frac{2}{T} & -\frac{1}{T} \\ \frac{2}{T^3} & -\frac{2}{T^3} & \frac{1}{T^2} & \frac{1}{T^2} \end{bmatrix} \begin{bmatrix} q_0 \\ q_f \\ \dot{q}_0 \\ \dot{q}_f \end{bmatrix}$$

 $s(t_0)$, $s(t_f)$, $\dot{s}(t_0)$ and $\dot{s}(t_f)$ are known

Cubic Trajectory

$$a_0 = q_0 = s(t_0)$$
 $a_1 = \dot{q}_0 = \dot{s}(t_0)$
 $a_2 = \frac{3h - (2\dot{q}_0 + \dot{q}_f)T}{T^2}$
 $a_3 = \frac{-2h - (\dot{q}_0 + \dot{q}_f)T}{T^3}$

Rewrite q, q and q

$$q = a_0 + a_1 T + a_2 (T)^2 + a_3 (T)^3$$
$$\dot{q} = a_1 + 2a_2 (T) + 3a_3 (T)^2$$
$$\ddot{q} = 2a_2 + 6a_3 (T)$$

Parameter	Value
q_0	0
q_f	10
\dot{q}_0	0
\dot{q}_f	0
t_0	0
t_f	8

q_0	0
q_f	10
\dot{q}_0	0
\dot{q}_f	0
t_0	0
t_f	8

q_0	0
q_f	10
\dot{q}_0	0
\dot{q}_f	0
t_0	0
t_f	8

q_0	0
q_f	10
\dot{q}_0	0
\dot{q}_f	0
t_0	0
t_f	8

Quintic Trajectory

$$s(t) = a_0 + a_1 T + a_2 (T)^2 + a_3 (T)^3 + a_4 (T)^4 + a_5 (T)^5$$

$$\dot{s}(t) = a_1 + 2a_2T + 3a_3(T)^2 + 4a_4(T)^3 + 5a_5(T)^4$$

$$\ddot{s}(t) = 2a_2 + 6a_3T + 12a_4(T)^2 + 20a_5(T)^3$$

To find the six coefficients, a_0 , a_1 , a_2 , a_3 , a_4 and a_5 we need **six boundary conditions** $s(t_0)$, $s(t_f)$, $\dot{s}(t_0)$, $\dot{s}(t_f)$, $\ddot{s}(t_0)$ and $\ddot{s}(t_f)$

Quintic Trajectory

$$s(t) = a_0 + a_1 T + a_2 (T)^2 + a_3 (T)^3 + a_4 (T)^4 + a_5 (T)^5$$

$$\dot{s}(t) = a_1 + 2a_2T + 3a_3(T)^2 + 4a_4(T)^3 + 5a_5(T)^4$$

$$\ddot{s}(t) = 2a_2 + 6a_3T + 12a_4(T)^2 + 20a_5(T)^3$$

To find the six coefficients, a_0 , a_1 , a_2 , a_3 , a_4 and a_5 we need **six boundary conditions** $s(t_0)$, $s(t_f)$, $\dot{s}(t_0)$, $\dot{s}(t_f)$, $\ddot{s}(t_0)$ and $\ddot{s}(t_f)$

Exercise: Write it down into matrix form and find the inverse using MATLAB

$$a_{0} = q_{0}$$

$$a_{1} = \dot{q}_{0}$$

$$a_{2} = \frac{1}{2}a_{0}$$

$$a_{3} = \frac{1}{2T^{3}}[20h - (8\dot{q}_{f} + 12\dot{q}_{0})T - (3a_{0} - a_{1})T^{2}]$$

$$a_{4} = \frac{1}{2T^{4}}[-30h - (14\dot{q}_{f} + 16\dot{q}_{0})T - (3a_{0} - 2a_{1})T^{2}]$$

$$a_{5} = \frac{1}{2T^{5}}[12h - 6(\dot{q}_{f} + \dot{q}_{0})T - (a_{1} - a_{0})T^{2}]$$

End of Lecture

Inquiries:

Prof. Farid Tolbah

Eng. Waleed El-Badry

ftolbah2@yahoo.com waleed.elbadry@must.edu.eg