

Daniele Calandriello

DeepMind Paris, France

Collaborators: Achraf Azize,

Michal Valko

Partially based on material by Michal Valko

March 20, 2022 MVA 2022/2023

This lecture

- Multi-Armed Bandits
- ► Spectral Bandits
- ► Influence Maximization

Bandits

learning with real-time interactions

Multi-Armed Bandits

- \triangleright At each time t, the learner chooses an action A_t
- ▶ Then, it receives a reward $r_t = f(A_t) + \varepsilon_t$

Some applications: movie recommendation, clinical trials, ads etc.

Multi-Armed Bandits

- \triangleright At each time t, the learner chooses an action A_t
- ▶ Then, it receives a reward $r_t = f(A_t) + \varepsilon_t$

Some applications: movie recommendation, clinical trials, ads etc.

maximize sum of rewards
$$\sum_{t=1}^{T} f(A_t)$$
 \iff minimize the regret
$$R_T = \sum_{t=1}^{T} \max_{a} f(a) - f(A_t)$$

We care about the performance during learning!

Multi-Armed Bandits

- ▶ Set of arms $a \in \{1, ..., N\}$
- $f(a) = \mu_a$ mean reward of arm a
- $ightharpoonup r_t = \mu_{A_t} + \varepsilon_t$ observed reward when choosing the arm A_t
- ho $\mu^* = \max_a f(a) = f(a^*)$ mean reward of the optimal arm a^*

The regret after T rounds is

$$R_T = T\mu^* - \sum_{t=1}^T \mu_{A_t}$$

where (A_1, \ldots, A_T) are the actions chosen by the algorithm.

We want an algorithm that gives $R_T/T \to 0$ as $T \to \infty$!

Naive Algorithms

 $ightharpoonup A_t = random action$

$$\implies \mathbb{E}[R_T] = \Omega(T)$$

▶ A_t = random action with prob. ε , action with highest empirical mean with prob. $1 - \varepsilon$

$$\implies \mathbb{E}[R_T] = \Omega(\varepsilon T)$$

Linear regret, we don't want that!

- Build confidence intervals for the mean of each arm.
- ▶ Act *optimistically* to balance exploration and exploitation.

Let $\widehat{\mu}_a(t)$ be the empirical mean of the arm a at round t:

$$\widehat{\mu}_a(t) = \frac{1}{N_a(t)} \sum_{s=1}^{t-1} \mathbb{1}\{A_t = a\} r_t , \text{ where } N_a(t) = \sum_{s=1}^{t-1} \mathbb{1}\{A_t = a\}.$$

- ▶ Build confidence intervals for the mean of each arm.
- ▶ Act *optimistically* to balance exploration and exploitation.

Let $\widehat{\mu}_a(t)$ be the empirical mean of the arm a at round t:

$$\widehat{\mu}_a(t) = \frac{1}{N_a(t)} \sum_{s=1}^{t-1} \mathbb{1}\{A_t = a\} r_t$$
, where $N_a(t) = \sum_{s=1}^{t-1} \mathbb{1}\{A_t = a\}$.

If the noise satisfies $\mathbb{E}[\exp(\lambda \varepsilon_t)|\mathcal{F}_t] \leq \exp(\sigma^2 \lambda^2/2)$ for all $\lambda \in \mathbb{R}$, then, with prob. at least $1 - \delta$, $\forall t, \forall a$,

$$|\widehat{\mu}_{a}(t) - \mu_{a}| \leq \sqrt{\frac{2\sigma^{2}}{N_{a}(t)}\log\left(\frac{N_{a}(t)(N_{a}(t) + 1)N}{\delta}\right)}$$

Proof: Use Hoeffding's inequality.

UCB Strategy: Play, in each round t, the action A_t such that

$$A_t \in \argmax_{a} \Biggl(\widehat{\mu}_{a}(t) + \sqrt{\frac{2\sigma^2}{N_a(t)} \log \biggl(\frac{N_a(t)(N_a(t)+1)N}{\delta} \biggr)} \Biggr)$$

UCB Strategy: Play, in each round t, the action A_t such that

$$A_t \in \argmax_{a} \Biggl(\widehat{\mu}_{a}(t) + \sqrt{\frac{2\sigma^2}{N_a(t)} \log \biggl(\frac{N_a(t)(N_a(t)+1)N}{\delta} \biggr)} \Biggr)$$

Theorem (UCB regret bound)

With probability at least $1-\delta$, the regret of UCB is bounded as

$$R_T \le c\sqrt{\sigma^2 N T \log(NT/\delta)}$$

where c is a constant and N is the number of actions.

UCB - Proof of the Regret Bound (sketch)

Recall that
$$R_T = T\mu^* - \sum_{t=1}^T \mu_{A_t} = \sum_{t=1}^T (\mu^* - \mu_{A_t}).$$

Let $g(n) \stackrel{\text{def}}{=} \frac{1}{n} \log \left(\frac{n(n+1)}{\delta} N \right)$. Then, with prob. at least $1 - \delta$,

$$\mu^{*} - \mu_{A_{t}} \leq \widehat{\mu}_{s^{*}}(t) + \sqrt{2\sigma^{2}g(N_{s^{*}}(t))} - \widehat{\mu}_{A_{t}}(t) + \sqrt{2\sigma^{2}g(N_{A_{t}}(t))} \quad (1)$$

$$\leq \widehat{\mu}_{A_{t}}(t) + \sqrt{2\sigma^{2}g(N_{A_{t}}(t))} - \widehat{\mu}_{A_{t}}(t) + \sqrt{2\sigma^{2}g(N_{A_{t}}(t))} \quad (2)$$

$$= 2\sqrt{2\sigma^{2}g(N_{A_{t}}(t))} = 2\sqrt{\frac{2\sigma^{2}}{N_{A_{t}}(t)}\log\left(\frac{N_{A_{t}}(t)(N_{A_{t}}(t)+1)}{\delta}N\right)}$$

where (1) comes from the confidence intervals and (2) comes from the definition of the UCB algorithm.

UCB - Proof of the Regret Bound (sketch)

Consequently, with probability at least $1 - \delta$ (\lesssim omits constants)

$$R_T \lesssim \left| \sigma \sqrt{\log \left(\frac{NT}{\delta} \right)} \sum_{t=1}^T \sqrt{\frac{1}{N_{A_t}(t)}} \right| = \sigma \sqrt{\log \left(\frac{NT}{\delta} \right)} \sum_{a=1}^N \sum_{t=1}^T \mathbb{1}_{A_t = a} \sqrt{\frac{1}{N_a(t)}}$$

UCB - Proof of the Regret Bound (sketch)

Consequently, with probability at least $1 - \delta$ (\lesssim omits constants)

$$R_T \lesssim \left| \sigma \sqrt{\log \left(\frac{NT}{\delta} \right)} \sum_{t=1}^T \sqrt{\frac{1}{N_{A_t}(t)}} \right| = \sigma \sqrt{\log \left(\frac{NT}{\delta} \right)} \sum_{a=1}^N \sum_{t=1}^T \mathbb{1}_{A_t = a} \sqrt{\frac{1}{N_a(t)}}$$

$$\begin{split} &=\sigma\sqrt{\log(NT/\delta)}\sum_{a=1}^{N}\sum_{t=1}^{T}(N_{a}(t+1)-N_{a}(t))\sqrt{\frac{1}{N_{a}(t)}}\\ &=\sigma\sqrt{\log(NT/\delta)}\sum_{a=1}^{N}\sum_{t=1}^{T}\int_{N_{a}(t)}^{N_{a}(t+1)}\sqrt{\frac{1}{N_{a}(t)}}\mathrm{d}x\\ &\lesssim\sigma\sqrt{\log(NT/\delta)}\sum_{a=1}^{N}\sqrt{N_{a}(T+1)}\leq\sqrt{\log(NT/\delta)}\sqrt{N}\sqrt{\sum_{a=1}^{N}N_{a}(T+1)}\\ &=\sqrt{NT\log(NT/\delta)}\;. \end{split}$$

Lower Bound

In a worst-case scenario, what is the best regret we can achieve?

Theorem ([Aue+02])

For any number of actions $N \ge 2$, there exists a bandit such that

$$\mathbb{E}[R_T] \ge \frac{1}{20} \min \left(\sqrt{NT}, T \right)$$

 \implies UCB matches the lower bound, up to constants and logarithmic terms!

Questions:

- ▶ What happens if N > T?
- ightharpoonup Can you think of problems where N > T?

f is **smooth** on a graph

Can we learn when N > T by using *similarity graphs*?

Assumptions:

- ▶ Each action $a \in \{1, ..., N\}$ is a node in a graph \mathcal{G} .
- If two actions a, b are similar, their mean rewards f(a), f(b) are close.

Notation:

- \triangleright \mathcal{V} : set of nodes (actions) = $\{1, \ldots, N\}$.
- \blacktriangleright \mathcal{W} : $N \times N$ similarity matrix, \mathcal{D} : $N \times N$ degree matrix.
- $ightharpoonup \mathcal{L} = \mathcal{D} \mathcal{W}$: graph Laplacian.
- ▶ $\{\lambda_k^{\mathcal{L}}, q_k\}_{k=1}^{N}$: eigenvalues and eigenvectors of \mathcal{L} .
- $\triangleright \mathcal{L} = Q \Lambda_{\mathcal{L}} Q^{\mathsf{T}}$: eigendecomposition of \mathcal{L} .

Let $f_{\alpha}: \mathcal{V} \to \mathbb{R}$ be the mean reward function. At each round t:

- ▶ The learner chooses an action (node) A_t ;
- ▶ It receives a reward $r_t = f_{\alpha}(A_t) + \varepsilon_t$

Let $\Lambda = \Lambda_{\mathcal{L}} + \lambda I$. We make the smoothness assumption:

$$f_{\alpha}(a) = \sum_{k=1}^{N} \alpha_k (q_k)_a = x_a^{\mathsf{T}} \alpha$$
 such that $\|\alpha\|_{\Lambda}^2 = \sum_{k=1}^{N} \lambda_i \alpha_i^2 \leq C$

Let $f_{\alpha}: \mathcal{V} \to \mathbb{R}$ be the mean reward function. At each round t:

- ▶ The learner chooses an action (node) A_t ;
- ▶ It receives a reward $r_t = f_{\alpha}(A_t) + \varepsilon_t$

Let $\Lambda = \Lambda_{\mathcal{L}} + \lambda I$. We make the smoothness assumption:

$$f_{\alpha}(a) = \sum_{k=1}^{N} \alpha_k(q_k)_a = x_a^{\mathsf{T}} \alpha$$
 such that $\|\alpha\|_{\Lambda}^2 = \sum_{k=1}^{N} \lambda_i \alpha_i^2 \leq C$

Question:

 \blacktriangleright Why does it mean that f_{α} is smooth on the graph?

UCB strategy: estimate mean reward (α) and add confidence bound.

How to estimate α ? Linear regression with graph regularization!

$$\widehat{\alpha}_t = \underset{\omega \in \mathbb{R}^N}{\arg\min} \left(\sum_{s=1}^{t-1} (x_{A_s}^\mathsf{T} \omega - r_s)^2 + \|\omega\|_{\Lambda}^2 \right) = V_t^{-1} X_t^\mathsf{T} r$$

UCB strategy: estimate mean reward (α) and add confidence bound.

How to estimate α **?** Linear regression with graph regularization!

$$\widehat{\alpha}_t = \underset{\omega \in \mathbb{R}^N}{\arg\min} \Biggl(\sum_{s=1}^{t-1} \bigl(x_{\mathcal{A}_s}^\mathsf{T} \omega - r_s \bigr)^2 + \|\omega\|_{\Lambda}^2 \Biggr) = V_t^{-1} X_t^\mathsf{T} r$$

where

$$ightharpoonup r = [r_1, \dots, r_{t-1}]^{\mathsf{T}}$$

$$ightharpoonup V_t = X_t X_t^{\mathsf{T}} + \Lambda \text{ (recall that } \Lambda = \Lambda_{\mathcal{L}} + \lambda I \text{)}$$

How to obtain an upper confidence bound?

Lemma ([kocak2020spectral])

With probability at least $1 - \delta$, for any $x \in \mathbb{R}^N$ and $t \ge 1$,

$$|x^{\mathsf{T}}\widehat{\alpha}_t - x^{\mathsf{T}}\alpha| \leq \|x\|_{V_t^{-1}} \left(\sqrt{2\sigma^2 \log \left(\frac{|V_t|^{1/2}}{\delta |\Lambda|^{1/2}}\right) + C} \right)$$

How to obtain an upper confidence bound?

Lemma ([kocak2020spectral])

With probability at least $1 - \delta$, for any $x \in \mathbb{R}^N$ and $t \ge 1$,

$$|x^{\mathsf{T}}\widehat{\alpha}_t - x^{\mathsf{T}}\alpha| \leq \|x\|_{V_t^{-1}} \left(\sqrt{2\sigma^2 \log \left(\frac{|V_t|^{1/2}}{\delta |\Lambda|^{1/2}}\right) + C} \right)$$

Questions:

- When does it make sense to take $x_a = [0, \dots, 1, \dots, 0]$ (non-zero at a-th coordinate)? Hint: think of when $\Lambda_{\mathcal{L}} = 0$.
- In this case, interpret the inequality above for $x = x_a$. Can you relate it to Hoeffding's inequality?

How to obtain an upper confidence bound?

Lemma ([kocak2020spectral])

Let d be **the effective dimension** and $t \leq T + 1$. Then,

$$\log \left(\frac{|V_t|}{|\Lambda|}\right) \leq d \log \left(1 + \frac{T}{K\lambda}\right)$$

where K is the number of non-zero eigenvalues of the Laplacian $\Lambda_{\mathcal{L}}$.

SpectralUCB Strategy: Play, in each round t, the action A_t :

$$A_t \in \arg\max_{a} \left(x_a^\mathsf{T} \widehat{\alpha}_t + c \|x_a\|_{V_t^{-1}} \right)$$

where
$$c = \sigma \sqrt{2d \log \left(1 + \frac{T}{K\lambda}\right) + 8 \log \left(\frac{1}{\delta}\right)} + C$$
.

Theorem (SpectralUCB regret bound)

Let d be the **effective dimension** and λ be the minimum eigenvalue of Λ . If $\|\alpha\|_{\Lambda} \leq C$, and for all a, $|x_a^{\mathsf{T}}\alpha| \leq 1$, then, with probability at least $1-\delta$,

$$R_T = T \max_{a} (x_a^{\mathsf{T}} \alpha) - \sum_{t=1}^{I} x_{A_t}^{\mathsf{T}} \alpha \leq \widetilde{\mathcal{O}} \Big(d \sqrt{T} \Big),$$

where $\widetilde{\mathcal{O}}(\cdot)$ omits logarithmic factors.

Question:

Under which condition on d is SpectralUCB better than UCB?

SpectralUCB - **Effective Dimension** *d*

Definition 1: Take d as

$$d = \left\lceil rac{\mathsf{max}_{t_1, \dots, t_N: \sum_{t_i} = \mathcal{T}} \log \prod_{i=1}^N \left(1 + rac{t_i}{\lambda_i}
ight)}{\log \left(1 + rac{\mathcal{T}}{K\lambda}
ight)}
ight
ceil$$

Definition 2: Take \widetilde{d} as the largest integer in $\{1, \dots, N\}$ such that

$$(\widetilde{d}-1)\lambda_{\widetilde{d}} \leq \frac{T}{\log(1+T/\lambda)}$$

We can show that $d \leq 2\widetilde{d}$ [kocak2020spectral].

SpectralUCB - **Effective Dimension** *d*

Definition 1: Take d as

$$d = \left\lceil \frac{\max_{t_1, \dots, t_N: \sum_{t_i} = T} \log \prod_{i=1}^N \left(1 + \frac{t_i}{\lambda_i}\right)}{\log \left(1 + \frac{T}{K\lambda}\right)} \right\rceil$$

Definition 2: Take \widetilde{d} as the largest integer in $\{1, \dots, N\}$ such that

$$(\widetilde{d}-1)\lambda_{\widetilde{d}} \leq \frac{T}{\log(1+T/\lambda)}$$

We can show that $d \leq 2\widetilde{d}$ [kocak2020spectral].

Questions: Find examples of graphs where

- $ightharpoonup \widetilde{d} \approx N;$
- $ightharpoonup \widetilde{d} \ll N$.

Lower Bound for Spectral Bandits

$\mathsf{Theorem}\;([\mathsf{kocak2020spectral}])$

For any T and d, there exists a problem with effective dimension d and time horizon T such that $\mathbb{E}[R_T] = \Omega(\sqrt{dT})$.

Proof idea: Build a graph with *d* blocks (or clusters), such that each block behaves as a single action.

Then, the problem behaves as a "classic" d-armed bandit, whose lower bound is $\Omega(\sqrt{dT})$.

Regret of SpectralUCB - Proof Idea

Let $a^* = \arg\max_a (x_a^\mathsf{T} \alpha)$ and recall that $R_T = \sum_{t=1}^T (x_{a^*}^\mathsf{T} \alpha - x_{A_t}^\mathsf{T} \alpha)$.

We have, with probability at least $1 - \delta$,

$$\begin{aligned} |x_{a^*}^{\mathsf{T}} \alpha| - |x_{A_t}^{\mathsf{T}} \alpha| &\leq |x_{a^*}^{\mathsf{T}} \widehat{\alpha}_t + c \|x_{a^*}\|_{V_t^{-1}} - |x_{A_t}^{\mathsf{T}} \widehat{\alpha}_t + c \|x_{A_t}\|_{V_t^{-1}} \\ &\leq |x_{A_t}^{\mathsf{T}} \widehat{\alpha}_t + c \|x_{A_t}\|_{V_t^{-1}} - |x_{A_t}^{\mathsf{T}} \widehat{\alpha}_t + c \|x_{A_t}\|_{V_t^{-1}} \\ &= 2c \|x_{A_t}\|_{V_t^{-1}} \end{aligned}$$

Also, by assumption, we have $|x_a^T \alpha| \leq 1$ for all a, which gives us

$$x_{a^*}^{\mathsf{T}} \alpha - x_{A_t}^{\mathsf{T}} \alpha \leq 2.$$

Regret of SpectralUCB - Proof Idea

Consequently,

$$\begin{split} R_T & \leq \sum_{t=1}^{T} \min \Big(2, 2c \| x_{A_t} \|_{V_t^{-1}} \Big) \\ & \leq (2+2c) \sqrt{T} \sqrt{\sum_{t=1}^{T} \min \Big(1, c \| x_{A_t} \|_{V_t^{-1}}^2 \Big)} \\ & \cdots \\ & \leq (2+2c) \sqrt{2T \log \Big(\frac{|V_{T+1}|}{|\Lambda|} \Big)} \\ & \leq (2+2c) \sqrt{2dT \log \Big(1 + \frac{T}{K\lambda} \Big)}. \end{split}$$

The result follows from the definition of c, which is $\widetilde{\mathcal{O}}(\sqrt{d})$.

Influence Maximization

looking for the influential nodes while exploring the graph

Influence Maximization

Now, the reward is the number of **influenced neighbors**

- ▶ **Unknown** p_{ij} : probability that i influences j
- At each time t:
 - ightharpoonup Choose a node A_t ;
 - ▶ Observe a set of influenced nodes $S_{A_t,t}$

Select influential nodes = **Find the strategy maximizing**

$$L_T = \sum_{t=1}^T |S_{A_t,t}|$$

Influence Maximization

Now, the reward is the number of **influenced neighbors**

- ▶ **Unknown** p_{ij} : probability that i influences j
- At each time t:
 - ightharpoonup Choose a node A_t ;
 - ▶ Observe a set of influenced nodes $S_{A_t,t}$

Select influential nodes = Find the strategy maximizing

$$L_T = \sum_{t=1}^{T} |S_{A_t,t}|$$

Questions:

- ▶ Why is this a bandit problem?
- ► Can we simply apply UCB?

Performance Criterion

▶ Number of expected influences of node *k*:

$$\mu_k = \mathbb{E}[|S_{k,t}|] = \sum_{j=1}^{N} \rho_{k,j}$$

An optimal strategy would always select the best node:

$$k^* = \arg\max_{k} \mathbb{E}\left[\sum_{t=1}^{T} |S_{k,t}|\right] = \arg\max_{k} \mu_k$$

 \triangleright Expected regret of an adaptive strategy **unaware** of p_{ij} :

$$\mathbb{E}[R_T] = \mathbb{E}[L_T^*] - \mathbb{E}[L_T]$$

where $L_T^* = T\mu^* = T\mu_{k^*}$.

Baseline: GraphMOSS

- ▶ Only $|S_{A_t,t}|$ is observed (not the set $S_{A_t,t}$).
- ► MOSS = Minimax Optimal Strategy in the Stochastic case
 - Strategy is similar to UCB.
 - ► Improved regret (minimax) when compared to UCB (no log factor).

Baseline: GraphMOSS

- ▶ Only $|S_{A_t,t}|$ is observed (not the set $S_{A_t,t}$).
- ► MOSS = Minimax Optimal Strategy in the Stochastic case
 - Strategy is similar to UCB.
 - Improved regret (minimax) when compared to UCB (no log factor).

GraphMOSS Strategy: Play each arm twice, then

$$A_t \in rg \max_a \Bigl(\widehat{\mu}_a(t) + 2\widehat{\sigma}_a(t) \sqrt{g(\mathcal{N}_a(t))} + 2g(\mathcal{N}_a(t)) \Bigr), \quad ext{for } t > 2\mathcal{N}_a(t)$$

where $g(n) = \frac{1}{n} \max(\log(\frac{T}{nN}), 0)$.

► The expected regret of GraphMOSS satisfies:

$$\mathbb{E}[R_T] \le c \min \left(\mu^* T, \mu^* N + \sqrt{\mu^* N T} \right)$$

ightharpoonup Again, what if N > T?

Back to the real setting

- ▶ Can we do better by observing the set $S_{A_t,t}$?
 - Not in a worst-case scenario!
 - ▶ The minimax optimal rate is still the same (\sqrt{NT}) .
- ► Hard cases:
 - When there are many isolated nodes.
 - When being influenced is not correlated to being influential.

Back to the real setting

- ▶ Can we do better by observing the set $S_{A_t,t}$?
 - ▶ Not in a worst-case scenario!
 - ▶ The minimax optimal rate is still the same (\sqrt{NT}) .
- ► Hard cases:
 - When there are many isolated nodes.
 - When being influenced is not correlated to being influential.
- How to measure the difficulty of the problem?
 - Can we find a quantity D* that replaces N in the regret bound?

Let the *dual influence* of a node *k* be defined as

$$\mu_k^\circ = \sum_{j=1}^N p_{j,k}$$

and $\mu_*^{\circ} = \max_k \mu_k^{\circ}$.

The function D gives the number of nodes corresponding to a gap Δ :

$$D(\Delta) = |\{i : \mu_*^{\circ} - \mu_i^{\circ} \leq \Delta\}|$$

Let the *dual influence* of a node *k* be defined as

$$\mu_k^\circ = \sum_{j=1}^N p_{j,k}$$

and $\mu_*^{\circ} = \max_k \mu_k^{\circ}$.

The function D gives the number of nodes corresponding to a gap Δ :

$$D(\Delta) = |\{i : \mu_*^{\circ} - \mu_i^{\circ} \leq \Delta\}|$$

- \triangleright $D(\Delta) = N$ if $\Delta \ge \mu_*^{\circ}$.
- \triangleright D(0) = number of most influenced nodes.

Let $T_* > 1$ be the smallest integer such that

$$T_*\mu_*^{\circ} \geq \sqrt{D\left(16\sqrt{\frac{\mu_*^{\circ}N\log(NT)}{T_*}} + \frac{144N\log(NT)}{T_*}\right)T\mu_*^{\circ}}$$

Then, D^* is defined as:

$$D^* = D \left(16 \sqrt{rac{\mu_*^\circ N \log(NT)}{T_*}} + rac{144 N \log(NT)}{T_*}
ight)$$

Questions:

- \triangleright What is D^* for a star graph?
- \triangleright What is D^* for an empty graph?

$$D^* = D \Biggl(16 \sqrt{rac{\mu_*^\circ N \log(NT)}{T_*}} + rac{144 N \log(NT)}{T_*} \Biggr)$$

- ▶ As $T \to \infty$, D^* converges to the number of most influenced nodes.
- ▶ The graph structure is helpful when *D* decreases quickly with *T*.

Algorithm: BARE

We have D^* , a measure of difficulty. But what's the algorithm?

BARE: Bandit Revelator, a two-phase algorithm [CV16]

- global exploration phase
 - ► Efficient exploration: sample random nodes
 - ► Linear regret ⇒ needs to be short
 - Extracts *D** nodes
- bandit phase
 - Uses a minimax-optimal bandit algorithm: GraphMOSS

Algorithm: BARE

We have D^* , a measure of difficulty. But what's the algorithm?

BARE: Bandit Revelator, a two-phase algorithm [CV16]

- global exploration phase
 - ▶ Efficient exploration: sample random nodes
 - ► Linear regret ⇒ needs to be short
 - Extracts D* nodes
- bandit phase
 - Uses a minimax-optimal bandit algorithm: GraphMOSS

Intuition:

- First, learn the set of most influenced nodes;
- ▶ Then, run a bandit algorithm on these nodes.

The regret is small if the set of <u>most influenced</u> nodes contains the most influential nodes!

Algorithm: BARE

- ▶ **Input:** N (number of nodes), T (time horizon)
- Initialization:

$$lacksquare$$
 $t \leftarrow 1$, $\widehat{\mu_k^{\circ}}(t) \leftarrow 0$, $\widehat{\sigma_*}(t) \leftarrow N$, $\widehat{D}_*(t) \leftarrow N$

► Global exploration: while

$$t\Big(\widehat{\sigma_*}(t) - 4\sqrt{N\log(NT)/t}\Big) \leq \sqrt{\widehat{D}_*(t)T}$$

▶ Influence a note A_t at random and observe $S_{A_t,t}$;

$$\widehat{\sigma_*}(t+1) \leftarrow \mathsf{max}_{k'} \, \sqrt{\widehat{r_{k'}^\circ}(t+1)} + 8N \log(NT)/(t+1)$$

$$ightharpoonup w_*(t+1) \leftarrow \widehat{\sigma_*}(t+1) \sqrt{\frac{N \log(NT)}{t+1}} + \frac{40N \log(NT)}{t+1}$$

$$\widehat{D}_*(t+1) \leftarrow \left| \left\{ k : \mathsf{max}_{k'} \, \widehat{\mu_{k'}^\circ}(t+1) - \widehat{\mu_k^\circ}(t+1) \leq w_*(t+1) \right\} \right|$$

- $t \leftarrow t+1$
- **Bandit phase:** run GraphMOSS on the $\widehat{D}_*(t)$ chosen nodes.

BARE: Regret Bound

Let $\mathcal{D}^{\circ} = \{i : \mu_i^{\circ} = \max_k \mu_k^{\circ}\}$ be the set of most influenced nodes.

The influential-influenced gap is defined as:

$$\varepsilon^* = \mu^* - \max_{k \in \mathcal{D}^\circ} \mu_k$$

Theorem ([CV16])

The expected regret of BARE satisfies

$$\mathbb{E}[R_T] \le c \min \left(\mu^* T, D^* \mu^* + \sqrt{\mu^* D^* T} + \frac{T \varepsilon^*}{T} \right)$$

BARE: Regret Bound

Let $\mathcal{D}^{\circ} = \{i : \mu_i^{\circ} = \max_k \mu_k^{\circ}\}$ be the set of most influenced nodes.

The influential-influenced gap is defined as:

$$\varepsilon^* = \mu^* - \max_{k \in \mathcal{D}^\circ} \mu_k$$

Theorem ([CV16])

The expected regret of BARE satisfies

$$\mathbb{E}[R_T] \le c \min \left(\mu^* T, D^* \mu^* + \sqrt{\mu^* D^* T} + \frac{T \varepsilon^*}{T} \right)$$

Question:

▶ For which types of graphs is $\varepsilon^* = 0$?

Conclusion

Conclusion

Multi-armed bandits

- Model several interactive learning scenarios.
- Regret bounds depend on the number of possible actions N.
- If N > T, we can't learn anything, unless we have more structure!

Spectral bandits

- The reward function is smooth on a graph;
- ► The problem complexity depends on **an effective dimension** *d*.

Influence maximization

- ▶ The observations are richer: set of influenced nodes.
- ightharpoonup The complexity becomes a function of a **detectable dimension** D^* .
- We still need correlation between being influential and being influenced.

Daniele Calandriello dcalandriello@google.com

ENS Paris-Saclay, MVA 2022/2023

https://sites.google.com/view/daniele-calandriello/