

Nonparametric Bayesian Methods: Models, Algorithms, and Applications (Day 4)

Tamara Broderick

ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

- Bayes Foundations
- Unsupervised Learning
 - Example problem: clustering
 - Example BNP model: Dirichlet process (DP)
 - Chinese restaurant process
- Supervised Learning
 - Example problem: regression
 - Example BNP model: Gaussian process (GP)
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why BNP?
 - What does an infinite/growing number of parameters really mean (in BNP)?
 - Why is BNP challenging but practical?

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

• Integrate out the frequencies $\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$
$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

mitegrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

$$\frac{\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)}{p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

mitegrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

$$\lim_{n \to \infty} \frac{\# \text{ orange}}{\# \text{ total}} = \rho_{\text{orange}}$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)
p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

$$\sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$= 1|z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum \mathbf{1}\{z_m = 2\}$$

m=1

Choose any ball with equal probability

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$= a_2 + \sum \mathbf{1}\{z_m = 2\}$$

$$a_{1,n} := a_1 + \sum_{m=1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$= a_2 + \sum_{n=1}^{2} \mathbf{1}\{z_m = 2\}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

m=1

- Choose any ball with equal probability
- Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$= a_2 + \sum_{n=1}^{2} \mathbf{1}\{z_m = 2\}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$= a_2 + \sum_{n=1}^{2} \mathbf{1}\{z_m = 2\}$$

$$a_{1,n} := a_1 + \sum_{m=1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with equal probability
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

- Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

 $PolyaUrn(a_{orange}, a_{green})$

Integrate out the frequencies

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \overset{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum \mathbf{1}\{z_m = k\}$$

Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

multivariate Pólya urn

• Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum_{1} \mathbf{1} \{ z_m = k \}$$

multivariate Pólya urn

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$
$$a_{k,n} := a_k + \sum \mathbf{1} \{ z_m = k \}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$
$$a_{k,n} := a_k + \sum \mathbf{1} \{ z_m = k \}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$z_{n} = \kappa | z_{1}, \dots, z_{n-1}) = \frac{1}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_{k} + \sum_{j=1}^{K} \mathbf{1} \{ z_{m} = k \}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum \mathbf{1} \{ z_m = k \}$$

- Choose any ball with prob proportional to its mass
- Replace and add ball of same color

$$\lim_{n \to \infty} \frac{(\text{\# orange, \# green, \# red, \# yellow})}{\text{\# total}}$$
$$\to (\rho_{\text{orange}}, \rho_{\text{green}}, \rho_{\text{red}}, \rho_{\text{yellow}})$$

• Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum_{j=1}^{K} \mathbf{1}\{z_m = k\}$$

- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$$\lim_{n \to \infty} \frac{(\text{\# orange, \# green, \# red, \# yellow})}{\text{\# total}}$$

$$\to (\rho_{\text{orange}}, \rho_{\text{green}}, \rho_{\text{red}}, \rho_{\text{yellow}})$$

$$\stackrel{d}{=} \text{Dirichlet}(a_{\text{orange}}, a_{\text{green}}, a_{\text{red}}, a_{\text{yellow}})$$

Hoppe urn / Blackwell-MacQueen urn

Choose ball with prob proportional to its mass

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

• not orange: (#green, #other) = PolyaUrn(1, α)

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

• not orange: (#green, #other) = PolyaUrn(1, α)

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\text{\#orange}, \text{\#other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\text{\#orange}, \text{\#other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

```
Step 0 | Step 1 | Step 2 | Step 3 | Step 4 | V_k \stackrel{iid}{\sim} \text{Beta}(1, \alpha)
```

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0 | Step 1 | Step 2 | Step 3 | Step 4 |
$$V_k \stackrel{iid}{\sim} \operatorname{Beta}(1, \alpha)$$

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\text{\#orange}, \text{\#other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

• Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Same thing we just did

- Same thing we just did
- Each customer walks into the restaurant

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior

So far: Dirichlet process, Chinese restaurant process

Infinity of parameters, growing number of parameters

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior $z_1=z_2=z_7=z_8=1, z_3=z_5=z_6=2, z_4=3$

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior $z_1=z_2=z_7=z_8=1, z_3=z_5=z_6=2, z_4=3$

$$\Rightarrow \Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}\$$

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior $z_1=z_2=z_7=z_8=1, z_3=z_5=z_6=2, z_4=3$ $\Rightarrow \Pi_8=\{\{1,2,7,8\},\{3,5,6\},\{4\}\}$
- Partition of [8]: set of mutually exclusive & exhaustive sets of $[8] := \{1, \dots, 8\}$

Probability of this seating:

 $\frac{\alpha}{\alpha}$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

Probability of this seating:

α	1	α	α	1	2	2	3
$\frac{-}{\alpha}$.	$\alpha+1$	$\overline{\alpha+2}$	$\alpha + 3$	$\alpha + 4$	$\alpha+5$	$\overline{\alpha+6}$.	$\overline{\alpha+7}$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\alpha \cdots (\alpha + N - 1)$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)}$$

- Probability of this seating:
 - $\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$
- Probability of N customers (K_N tables, n_k at table k): α^{K_N}

$$\frac{\alpha}{\alpha\cdots(\alpha+N-1)}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N} \prod_{k=1}^{K_N} (n_k - 1)!}{\alpha \cdots (\alpha + N - 1)}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)}$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• Prob doesn't depend on customer order: exchangeable

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• Prob doesn't depend on customer order: *exchangeable* $\mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- Prob doesn't depend on customer order: *exchangeable* $\mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})$
- Can always pretend n is the last customer and calculate $p(\Pi_N|\Pi_{N,-n})$

Probability of this seating:

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}$$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- Prob doesn't depend on customer order: *exchangeable* $\mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})$
- Can always pretend n is the last customer and calculate $p(\Pi_N|\Pi_{N,-n})$
 - e.g. $\Pi_{8,-5} = \{\{1,2,7,8\},\{3,6\},\{4\}\}$

$$\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)}=\mathbb{P}(\Pi_N=\pi_N)$$
 So:
$$p(\Pi_N|\Pi_{N,-n})=$$

$$p(\Pi_N | \Pi_{N,-n}) =$$

$$\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)}=\mathbb{P}(\Pi_N=\pi_N)$$
• So:
$$p(\Pi_N|\Pi_{N,-n})=\left\{\right.$$

Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)}=\mathbb{P}(\Pi_N=\pi_N)$$
• So:
$$p(\Pi_N|\Pi_{N,-n})=\left\{\begin{array}{c} \text{if } n \text{ if } n \text{$$

if *n* joins cluster *C* if *n* starts a new cluster

• Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{l} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \text{if n starts a new cluster} \end{array}\right.$

• Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review:

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$
 - t^{th} step: $v_1^{(t)} \sim p(v_1|v_2^{(t-1)}, v_3^{(t-1)})$

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$

- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$ $v_2^{(t)} \sim p(v_2|v_1^{(t)}, v_3^{(t-1)})$ t^{th} step: $v_1^{(t)} \sim p(v_1|v_2^{(t-1)}, v_3^{(t-1)})$

• Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$

- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - $\begin{array}{lll} \bullet & \text{Start: } v_1^{(0)}, v_2^{(0)}, v_3^{(0)} & v_2^{(t)} \sim p(v_2|v_1^{(t)}, v_3^{(t-1)}) \\ \bullet & t \text{ th step: } v_1^{(t)} \sim p(v_1|v_2^{(t-1)}, v_3^{(t-1)}) & v_3^{(t)} \sim p(v_3|v_1^{(t)}, v_2^{(t)}) \end{array}$

 $\begin{array}{c} \bullet \quad \text{Data} \ x_{1:N} & \bullet \ \text{Generative model} \\ \\ \end{array}$

• Data $x_{1:N}$

Data $x_{1:N}$ • Generative model $\Pi_N \sim \mathrm{CRP}(N,\alpha)$

• Generative model $\Pi_N \sim \operatorname{CRP}(N, \alpha)$

Want: posterior

• Want: posterior $p(\Pi_N|x_{1:N})$

- Data $x_{1:N}$ Generative model $\Pi_N \sim \mathrm{CRP}(N,\alpha)$ μ_2 μ_3 $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

- Data $x_{1:N}$ Generative model $\Pi_N \sim \mathrm{CRP}(N,\alpha)$ $\frac{1}{8}$ $\frac{1}{\mu_2}$ $\frac{1}{\mu_3}$ $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x)$$

$$\Pi_N \sim \mathrm{CRP}(N, \alpha)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N | \Pi_{N,-n}, x) = \left\{ \right.$$

$$\Pi_N \sim \mathrm{CRP}(N, \alpha)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iia}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N | \Pi_{N,-n}, x) = \left\{ \right.$$

if *n* joins cluster *C*

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N | \Pi_{N,-n}, x) = \left\{ \right.$$

if *n* joins cluster *C* if *n* starts a new cluster

- Data $x_{1:N}$ Generative model $\Pi_N \sim \operatorname{CRP}(N,\alpha) \qquad 2 \qquad 1 \qquad 7 \qquad 6 \\ \Pi_N \sim \operatorname{CRP}(N,\alpha) \qquad \qquad \forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0,\Sigma_0) \qquad \qquad \forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C,\Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \begin{cases} \frac{\#C}{\alpha+N-1}p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C\\ & \text{if } n \text{ starts a new cluster} \end{cases}$$

- Data $x_{1:N}$ Generative model $\Pi_N \sim \operatorname{CRP}(N,\alpha)$ $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

- Data $x_{1:N}$ Generative model $\Pi_N \sim \operatorname{CRP}(N,\alpha)$ $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) =$

- Data $x_{1:N}$ Generative model $\Pi_N \sim \operatorname{CRP}(N,\alpha)$ $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iia}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$$

Data $x_{1:N}$ • Generative model

$$\Pi_N \sim \operatorname{CRP}(N, \alpha)$$
 $\forall C \in \Pi_N, \phi_C \stackrel{iid}{\sim} G_0$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{index}{\sim}$$

Generative model
$$\Pi_N \sim \operatorname{CRP}(N,\alpha) \qquad 2 \qquad \mu_1 \qquad \mu_2 \qquad 3 \qquad \mu_3 \qquad 4$$

$$\forall C \in \Pi_N, \phi_C \overset{iid}{\sim} G_0 \qquad \forall C \in \Pi_N, \forall n \in C, x_n \overset{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$ $\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$ $\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$

$$\Pi_N \sim \text{CRP}(N, \alpha)$$

$$\forall C \in \Pi_N, \phi_C \stackrel{iid}{\sim} G_0$$

$$\forall C \in \Pi_N, \forall n \in C, x_n$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$$

$$\Pi_N \sim \operatorname{CRP}(N, \alpha)$$
 $\forall C \in \Pi_N, \phi_C \stackrel{iid}{\sim} G_0$

$$\forall C \in \Pi_N, \forall n \in C, x_n$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

$$\Pi_N \sim \mathrm{CRP}(N, \alpha)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$$

$$\Pi_N \sim \mathrm{CRP}(N, \alpha)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right) \qquad [demo]$$