微積分演習 その6

問題 1. $f(\frac{x}{y}),\,g(t),\,h(t)$ を次のように定めたとき , そのとき , $\frac{d}{dt}f\Big(\frac{g(t)}{h(t)}\Big)$ を求めよ .

$$(1)f(\frac{x}{y}) = ye^{\sqrt{x^2+y^2}}, g(t) = \cos t, h(t) = \sin t.$$

(2)
$$f(\frac{x}{y}) = x^2y^2 - 2y^3$$
, $g(t) = t^3 - t^2 + 1$, $h(t) = t^2 - t$.

(3)
$$f(\frac{x}{y}) = \log(x^2 + xy + y^2 + 1), g(t) = e^t + e^{-t}, h(t) = e^t - e^{-t}.$$

(4)
$$f(\frac{x}{y}) = x^y$$
, $g(t) = \sin t$, $h(t) = \cos t$.

(4)
$$f(\frac{x}{y}) = x^y$$
, $g(t) = \sin t$, $h(t) = \cos t$.
(5) $f(\frac{x}{y}) = x \cos \frac{x}{y}$, $g(t) = 2t + 1$, $h(t) = \sqrt{t^2 + 1}$.

(6)
$$f(\frac{x}{y}) = \frac{x-y}{1-y}$$
, $g(t) = 3t+2$, $h(t) = -4t+3$.

(6)
$$f(\frac{x}{y}) = \frac{x-y}{1-y}, g(t) = 3t+2, h(t) = -4t+3.$$

(7) $f(\frac{x}{y}) = \frac{x(x^2-y^2)}{x^2+y^2}, g(t) = t\cos\theta, h(t) = t\sin\theta.$

問題 2. 以下の各問で与えられる関数 $f:R^2 o R$ の各点における偏導関数 $rac{\partial f}{\partial x},rac{\partial f}{\partial u}$ を求めよ.

$$(1) \ f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \frac{xy}{x^4 + y^2} & \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ 0 & \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

$$(2) \ f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \frac{2x^3 - y^3}{4x^2 + y^2} & \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ 0 & \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

$$(3) \ f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \frac{x^3 + y^4}{x^2 + 4y^2} & \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ 0 & \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

$$(4) \ f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \frac{e^{x^2 + y^2} - 1}{x^2 + y^2} & \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ 1 & \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

問題 3. 以下で定められる関数 f の 2 次偏導関数をすべて求め,それぞれの場合に, $\frac{\partial^2 f}{\partial u \partial x}$ と $\frac{\partial^2 f}{\partial x \partial u}$ が一致すること を確かめよ. ただし, a, b, c は定数とする.

$$(1) xy^3(1+x^2-y) \quad (2) e^{x+y} \quad (3) \sin x^2y \quad (4) e^{-(ax^2+2bxy+cy^2)} \quad (5) e^{3x}\cos(x+2y)$$

問題 $oldsymbol{4}$. 以下で定められる関数 f に対し $oldsymbol{(0)}$ においてテイラーの定理を用いた場合に f を近似する x,y の $oldsymbol{()}$ 内で 指定される次数以下の多項式をそれぞれ求めよ.

$$(1) \ f(\frac{x}{y}) = e^{-x} \log(1+2y) \ (3$$
 次近似)
$$(2) \ f(\frac{x}{y}) = \log(1+3x+y^2) \ (3 \ \text{次近似})$$

$$f(x) = x^3 - xy + y^2 + 2$$
 (2 次近似) (4) $\log(\cos(x+y))$ (3 次近似)

$$(5)$$
 $f(\frac{x}{y}) = e^{x-y} \sin x$ $(4 次近似)$

問題 5. 以下の関数の指定された点における接平面の式を求めよ . (2 変数関数の 1 次近似)

$$(1) \ f(\frac{x}{y}) = 3x^2 - 4y, \ (\frac{x}{y}) = (\frac{1}{2})$$

$$(2) \ f(\frac{x}{y}) = \frac{x^2}{a^2} + \frac{y^2}{b^2}, \ (\frac{x}{y}) = (\frac{a}{b})$$

$$(3) \ f(\frac{x}{y}) = e^x \sin y, \ (\frac{x}{y}) = \begin{pmatrix} -\log \pi \\ \frac{\pi}{2} \end{pmatrix}$$

$$(4) \ f(\frac{x}{y}) = \log(e^x + e^{2y}), \ (\frac{x}{y}) = (\frac{0}{0})$$

(3)
$$f(\frac{x}{y}) = e^x \sin y$$
, $(\frac{x}{y}) = \begin{pmatrix} -\log \pi \\ \frac{\pi}{2} \end{pmatrix}$ (4) $f(\frac{x}{y}) = \log(e^x + e^{2y})$, $(\frac{x}{y}) = (\frac{0}{0})$

問題 6. 下記(1),(2)に答えよ.

$$(1)z(x,y)=f\Big(rac{y}{x}\Big)$$
 と記述できるとき , $xrac{\partial z}{\partial x}+yrac{\partial z}{\partial y}=0$ を示せ . ただし , $x
eq 0$ とする .

$$(2)z(x,y)=\sqrt{x^2+y^2}f\Big(rac{y}{x}\Big)$$
 と記述できるとき , $xrac{\partial z}{\partial x}+yrac{\partial z}{\partial y}=z$ を示せ . ただし , $x>0$ とする .

問題 7. 下記(1),(2)に答えよ.

$$(1) \ z = \log \sqrt{x^2 + y^2}$$
 , $z = \frac{x}{x^2 + y^2}$ および $z = \arctan \frac{y}{x}$ は , $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ をみたすことを示せ .

$$(1) z = \log \sqrt{x^2 + y^2}, z = \frac{1}{x^2 + y^2}$$
 のよび $z = \arctan \frac{1}{x}$ は、 $\frac{1}{2}$ が、 $\frac{1}{2}$ がは、 $\frac{1}{2}$ がよび $u = \log(x^2 + y^2 + z^2 - xy - yz - zx)$ は、 $\frac{1}{2}$ は、 $\frac{1}{2}$ がは、 $\frac{1}{2}$ ものない。 これには、 $\frac{1}{2}$ を示せ、

微積分演習 解答 その6

問題 1. (1) $\cos t \sin t e(-\sin t) + e(\sin^2 t + 1) \cos t$

(2)
$$2(t^3 - t^2 + 1)(t^2 - t)^2(3t^2 - 2t) + \{2(t^3 - t^2 + 1)^2(t^2 - t) - 6(t^2 - t)^2\}(2t - 1)$$

(3) $\frac{2x + y}{x^2 + xy + y^2 + 1}(e^t - e^{-t}) + \frac{x + 2y}{x^2 + xy + y^2 + 1}(e^t + e^{-t})$
(4) $yx^{y-1}(\cos t) + x^y \log x(-\sin t)$

(3)
$$\frac{2x+y}{r^2+ry+y^2+1}(e^t-e^{-t})+\frac{x+2y}{r^2+ry+y^2+1}(e^t+e^{-t})$$

(4)
$$yx^{y-1}(\cos t) + x^y \log x(-\sin t)$$

(5)
$$\left\{\cos\frac{x}{y} + \frac{1}{y}(-\sin\frac{x}{y})\right\} + x\frac{-x}{y^2}(-\sin\frac{x}{y})\frac{t}{\sqrt{t^2+1}}$$

(6)
$$\frac{1}{1-y}$$
³ + $\frac{x-1}{(1-y)^2}$ ⁴

(7)
$$\cos\theta(\cos^2\theta - \sin^2\theta)$$

問題 2. (1)
$$\frac{\partial f}{\partial x}(x,y) = \frac{-3x^4y + y^3}{(x^4 + y^2)^2}, \frac{\partial f}{\partial y}(x,y) = \frac{x^5 - xy^2}{(x^4 + y^2)^2}, \frac{\partial f}{\partial x}(0,0) = 0, \frac{\partial f}{\partial y}(0,0) = 0$$

$$(2) \ \frac{\partial f}{\partial x}(x,y) = \frac{8x^4 + 6x^2y^2 + 8xy^3}{(x^2 + y^2)^2}, \ \frac{\partial f}{\partial y}(x,y) = \frac{-4x^3y - 12x^2y^2 - y^4}{(x^2 + y^2)^2} \ \frac{\partial f}{\partial x}(0,0) = \frac{1}{2}, \ \frac{\partial f}{\partial y}(0,0) = -1$$

$$(3) \ \frac{\partial f}{\partial x}(x,y) = \frac{x^4 + 12x^2y^2 - 2xy^4}{(x^2 + 4y^2)^2}, \ \frac{\partial f}{\partial y}(x,y) = \frac{-8x^3y + 4x^2y^3 + 8y^5}{(x^2 + 4y^2)^2} \ \frac{\partial f}{\partial x}(0,0) = 1, \ \frac{\partial f}{\partial y}(0,0) = 0$$

$$(4) \ \frac{\partial f}{\partial x}(x,y) = \frac{2x\left(1+(x^2+y^2-1)e^{x^2+y^2}\right)}{(x^2+y^2)^2}, \ \frac{\partial f}{\partial y}(x,y) = \frac{2y\left(1+(x^2+y^2-1)e^{x^2+y^2}\right)}{(x^2+y^2)^2},$$

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

問題 3. (1)
$$\frac{\partial^2 f}{\partial x^2} = 6xy^3$$
, $\frac{\partial^2 f}{\partial x \partial y} = 3y^2 + 9x^2y^2 - 4y^3$, $\frac{\partial^2 f}{\partial y^2} = 6xy + 6x^3y - 12xy^2$,

(2)
$$\frac{\partial^2 f}{\partial x^2} = e^{x+y}$$
, $\frac{\partial^2 f}{\partial x \partial y} = e^{x+y}$, $\frac{\partial^2 f}{\partial y^2} = e^{x+y}$

$$(3) \frac{\partial^2 f}{\partial x^2} = 2y \cos x^2 y - 4x^2 y^2 \sin x^2 y, \frac{\partial^2 f}{\partial x \partial y} = 2x \cos x^2 y - 2x^3 y \sin x^2 y, \frac{\partial^2 f}{\partial y^2} = -x^4 \sin x^2 y$$

$$(4) \frac{\partial^2 f}{\partial x^2} = (4(ax+by)^2 - 2a)e^{-(ax^2+2bxy+cy^2)}, \frac{\partial^2 f}{\partial x \partial y} = (4(ax+by)(bx+cy) - 2b)e^{-(ax^2+2bxy+cy^2)}, \frac{\partial^2 f}{\partial y^2} = (4(bx+cy)^2 - 2c)e^{-(ax^2+2bxy+cy^2)}$$

(5)
$$\frac{\partial^2 f}{\partial x^2} = e^{3x} (9\cos(x+2y) - 6\sin(x+2y) - \cos(x+2y))$$

$$\frac{\partial^2 f}{\partial x \partial y} = e^{3x} (-6\sin(x+2y) - 2\cos(x+2y)), \frac{\partial^2 f}{\partial y^2} = -6e^{3x}\cos(x+2y)$$

問題 4. (1)
$$2y - 2xy - 2y^2 + x^2y + 2xy^2 + \frac{8}{3}y^3$$
 (2) $3x - \frac{9}{2}x^2 + y^2 + 9x^3 - 3xy^2$ (3) $-xy + y^2 + 2xy^2 + \frac{1}{2}x^3 - 2xy^2 + \frac{1}{2}xy^2 - \frac{1}{3}x^3y + \frac{1}{2}x^2y^2 - \frac{1}{6}xy^3$

問題 5.
$$(1)$$
 $-5 + 6(x - 1) - 4(y - 2)$ $(2)2 + \frac{2}{a}(x - a) + \frac{2}{b}(y - b)$ (3) $\frac{1}{\pi} + \frac{1}{\pi}(x + \log \pi)$ (4) $\log 2 + \frac{1}{2}x + y$

問題 6. 省略

問題 7. 省略