Unit 5 Linear Classification & Logistic Regression

Prof. Phil Schniter

ECE 5300: Introduction to Machine Learning, Sp21

Learning objectives

- Understand classification problems in machine learning:
 - Identify features, labels; binary vs multiclass; linear vs nonlinear
 - visualize scatterplots and decision regions
- For binary classification problems, understand . . .
 - linear classifiers, separating hyperplanes, linearly separable data
 - effect of feature transformations
 - why LS linear regression doesn't work well
 - logistic regression: logistic function, cross-entropy loss, ML fitting, regularization
 - common error metrics: accuracy, precision, recall, F1
 - the effect of the decision threshold, ROC, AUC
- For multiclass classification problems, understand . . .
 - solutions that use multiple binary classifiers
 - multinomial logistic regression: softmax function, cross-entropy loss, ML fitting
- How to implement and assess classification using sklearn

Outline

- Motivating Example: Diagnosing Breast Cancer
- Binary Classification
- Binary Logistic Regression
- Multiclass Classification
- Multinomial Logistic Regression
- Measuring Accuracy in Classification

Diagnosing Breast Cancer

- Fine-needle aspiration of suspicious breast lumps:
 - Tissue is stained & viewed under microscope
 - Cytopathologist visually inspects cells
 - Tries to classify as benign or malignant
 - If malignant, also provides grading
- Would like to improve accuracy
- Can machine-learning help?

Grades of carcinoma cells http://breast-cancer.ca/5a-types/

The Wisconsin Breast Cancer Data Set

Univ. of Wisconsin study:

- 683 samples
- 9 features (on right)
- target: malignant or benign
 - ground-truth was assessed using a biopsy

#	Attribute	Domain
1.	Sample code number	id number
2.	Clump Thickness	1 - 10
3.	Uniformity of Cell Size	1 - 10
4.	Uniformity of Cell Shape	1 - 10
5.	Marginal Adhesion	1 - 10
6.	Single Epithelial Cell Size	1 - 10
7.	Bare Nuclei	1 - 10
8.	Bland Chromatin	1 - 10
9.	Normal Nucleoli	1 - 10
10.	Mitoses	1 - 10
11.	Class:	(2 for benign, 4 for malignant)

Data:

https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

Explanation:

https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names

Original paper:

O.L. Mangasarian, W.N. Street, and W.H. Wolberg, "Breast cancer diagnosis and prognosis via linear programming," *Operations Research*, 1995.

Visualizing the data

- Choose two features to visualize
- Plot target count vs. features using variable-radius dots (all are discrete)

• How would we classify a test feature $x = [x_1, x_2]$?

```
# Compute the bin edges for the 2d histogram
x1val = np.array(list(set(X[:,0]))).astype(float)
x2val = np.array(list(set(X[:,1]))).astype(float)
x1, x2 = np.meshgrid(x1val,x2val)
x1e= np.hstack((x1val,np.max(x1val)+1))
x2e= np.hstack((x2val,np.max(x2val)+1))
# Make a plot for each class
yval = list(set(y))
color = ['g','r']
for i in range(len(yval)):
    I = np.where(y==yval[i])[0]
    cnt, x1e, x2e = np.histogram2d(X[I,0],X[I,1],[x1e,x2e])
    x1, x2 = np.meshgrid(x1val,x2val)
    plt.scatter(x1.ravel(), x2.ravel(), s=2*cnt.ravel(),alpha=0.5,
                c=color[i],edgecolors='none')
plt.ylim([0,14])
plt.legend(['benign','malign'], loc='upper right')
plt.xlabel(xnames[0], fontsize=16)
plt.ylabel(xnames[1], fontsize=16)
```

Outline

- Motivating Example: Diagnosing Breast Cancer
- Binary Classification
- Binary Logistic Regression
- Multiclass Classification
- Multinomial Logistic Regression
- Measuring Accuracy in Classification

Binary classification

- -> or {0, 1}
- Given training data $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$ with $\boldsymbol{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1,1\}$, our goal is to classify a test vector \boldsymbol{x} as $y \in \{-1,1\}$ (one of two "classes")
 - Unlike regression, the target y is now binary
 - Using $\{-1,1\}$ leads to cleaner notation later
- Many applications:
 - Face detection: is a face present here or not?
 - Are these cells cancerous or not?
- Mathematically, want to design a classifier

$$f(\boldsymbol{x}) = \widehat{y} \in \{-1, 1\}$$

such that $\widehat{y} = y$ with high probability

■ Note: $f(\cdot)$ is defined by its decision regions:

$$\mathcal{R}_{-1} \triangleq \{ \boldsymbol{x} : f(\boldsymbol{x}) = -1 \}$$
 and $\mathcal{R}_1 \triangleq \{ \boldsymbol{x} : f(\boldsymbol{x}) = 1 \}$

Binary linear classification

- One option is binary linear classification:
 - 1) define the "score" or "discriminant", $z = b + \sum_{j=1}^{d} x_j w_j$
 - lacksquare z is linear in the parameters b and w_j
 - lacksquare z is linear in the weights x_j
 - 2) threshold the score to obtain $\widehat{y} = \begin{cases} 1 & \text{if } z \geq 0 \\ -1 & \text{if } z < 0 \end{cases}$
 - 3) use weights $\mathbf{w} \triangleq [w_1, \dots, w_d]^\mathsf{T}$ and intercept b that are learned from the training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Thus, the hyperplane

$$\left\{ \boldsymbol{x} : \boldsymbol{b} + \boldsymbol{x}^\mathsf{T} \boldsymbol{w} = 0 \right\}$$

 $0 = z = b + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{w}$

separates the decision regions

lacktriangle This decision boundary is linear in x (see figures). When does this perform well?

Linear separability

- Linear classification performs well when the data $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$ is "linearly separable"
- Linearly separable means that there exists a hyperplane

$$\left\{ \boldsymbol{x} : \boldsymbol{b} + \boldsymbol{x}^\mathsf{T} \boldsymbol{w} = 0 \right\}$$

(for some b and w) that separates the samples x_i according to their class $y_i \in \{-1,1\}$

- On one side of hyperplane lies all x_i for which $y_i=1$, while on other other side lies all x_i for which $y_i=-1$
- Note: When such a separating hyperplane exists, it is usually not unique.

linear separability:

Linear versus nonlinear classification

- Most datasets are *not* linearly separable!
 - There are many possible reasons why
 - See examples on right (except Fig. A)
- Still, linear classification is worth considering
 - It is relatively easy to understand
 - It facilitates feature selection (i.e., shows which features matter)
 - It can incorporate nonlinear feature transformations
 - Fig. A: boundary is linear in (x_1, x_2)
 - Fig. B: boundary is nonlinear in (x_1, x_2) but linear in a new feature $x' \triangleq \sqrt{x_1^2 + x_2^2}$
 - It can be used as a building block (e.g., for neural networks, decision trees, etc.)

Linear classification vs. LS linear regression

- Suppose we want to do *linear* classification. How exactly do we fit (b, \boldsymbol{w}) ?
- Can we just use LS, as we have been doing?
 - In other words, choose (b, \boldsymbol{w}) to minimize $RSS = \|\boldsymbol{y} \boldsymbol{A} \begin{bmatrix} b \\ \boldsymbol{w} \end{bmatrix} \|^2$ and then output $\widehat{y} = \begin{cases} 1 & \text{if } z \geq 0 \\ -1 & \text{if } z < 0 \end{cases}$, where $z = \begin{bmatrix} 1 & \boldsymbol{x} \end{bmatrix}^\mathsf{T} \begin{bmatrix} b_\mathsf{ls} \\ \boldsymbol{w}_\mathsf{ls} \end{bmatrix}$

- Consider simple case of d=1 feature
- When $\{x_i\}$ is "balanced" (see figure), works okay
- But when $\{x_i\}$ is "imbalanced," the least-squares regression line gets pulled to one side, and the threshold at z=0 will make errors
- What's the problem?
 - RSS is not the right loss function for classification!
 (More details soon)

LS linear regression fails on breast-cancer classification!

- Let's try the same LS approach on the breast-cancer data (after converting targets to $y \in \pm 1$)
- Again, visualize decision boundary

$$\{\boldsymbol{x}: b + \boldsymbol{x}^\mathsf{T} \boldsymbol{w} = 0\}$$

which, in this d=2 case, becomes

$$\left\{ (x_1, x_2) : x_2 = -\frac{b}{w_2} - \frac{w_1}{w_2} x_1 \right\}$$

- Because the $\{x_i\}$ are imbalanced, the decision boundary is pulled north-east, and many red x_i are misclassified!
- Again we see that designing (b, \boldsymbol{w}) to minimize RSS does not work well for linear classification!

blue line shows decision boundary


```
yhat = regr.predict(X)
yhati = (yhat >=0.5).astype(int)
acc = np.mean(yhati == y)
print("Accuracy on training data using two features = %f" % acc)
```

Accuracy on training data using two features = 0.922401

Outline

- Motivating Example: Diagnosing Breast Cancer
- Binary Classification
- Binary Logistic Regression
- Multiclass Classification
- Multinomial Logistic Regression
- Measuring Accuracy in Classification

Binary logistic regression

- Linear classification computes $z = b + x^\mathsf{T} w$ and sets $\widehat{y} = \begin{cases} 1 & z \ge 0 \\ -1 & z < 0 \end{cases}$
- How do we design the parameters (b, w)?
 - We saw that minimizing RSS does not work well
- Idea: Given the score z, model the true label $y \in \pm 1$ as a random variable
- The most popular version of this uses

$$\Pr\{y=1 \mid z\} = \frac{e^z}{1+e^z}, \quad \Pr\{y=-1 \mid z\} = \frac{1}{1+e^z}.$$

Note $\Pr\{y=-1 \mid z\} + \Pr\{y=1 \mid z\} = 1 \ \forall z$, as required for a valid pmf.

- The larger that z is, the more likely that y = 1
- When z = 0, it's equally likely that y = 1 or y = -1

Understanding the logistic model

- Previously considered $Pr\{y=1 \mid z\}$. What about $Pr\{y=1 \mid x\}$?
- Consider the simple case of a single scalar feature x and no intercept b:

$$\Pr\{y=1 \mid x\} = \frac{1}{1+e^{-z}} \text{ for } z = w_1 x$$

- As the weight w_1 increases, the x-domain transition sharpens
- Equivalently, as w_1 increases, there is less randomness in y (for a given x)
- If we add the intercept term b, then

$$z = b + w_1 x = w_1 \Big(\frac{b}{w_1} + x\Big)$$
 and the transition occurs at $x = -\frac{b}{w_1}$

curve: $\Pr\{y=1 \mid x\}$ versus x dots: random $\{(x_i, y_i)\}_{i=1}^n$

Maximum likelihood estimation

■ Given training data $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$, we can fit the model parameters (b, \boldsymbol{w}) using maximum likelihood (ML) estimation:

ML Estimation

- 1) Define a likelihood function p(y|b, w) with model parameters (b, w)
 - As usual, $\boldsymbol{y} \triangleq [y_1, \dots, y_n]^\mathsf{T}$. Also, $\boldsymbol{X} \triangleq [\boldsymbol{x}_1, \dots, \boldsymbol{x}_n]^\mathsf{T}$ is embedded in p
- 2) The ML model parameters are $(b_{\mathsf{ml}}, \boldsymbol{w}_{\mathsf{ml}}) \triangleq \arg \max_{b, \boldsymbol{w}} p(\boldsymbol{y}|b, \boldsymbol{w})$ = $\arg \max_{b, \boldsymbol{w}} \ln p(\boldsymbol{y}|b, \boldsymbol{w})$ = $\arg \min_{b, \boldsymbol{w}} \left\{ -\ln p(\boldsymbol{y}|b, \boldsymbol{w}) \right\}$
- Recall that we previously applied ML estimation to linear regression:
 - There, the likelihood was $p(\boldsymbol{y}|\boldsymbol{\beta}) = \mathcal{N}(\boldsymbol{y}; \boldsymbol{A}\boldsymbol{\beta}, \sigma_{\epsilon}^2 \boldsymbol{I})$ with $\boldsymbol{A} = [\boldsymbol{1} \ \boldsymbol{X}]$
 - thus $-\ln p(\boldsymbol{y}|\boldsymbol{\beta}) = \frac{1}{2\sigma^2} \|\boldsymbol{y} \boldsymbol{A}\boldsymbol{\beta}\|^2 + \text{constant}$
 - lacksquare and so $m{eta}_{\sf ml} = rg \min_{m{eta}} \|m{y} m{A}m{eta}\|^2 = rg \min_{m{eta}} {
 m RSS}(m{eta}) = m{eta}_{\sf ls}$
- Both logistic regression, we use ML estimation with an appropriate likelihood!

ML estimation for logistic regression

■ Logistic regression assumes that y_i depends on (b, \boldsymbol{w}) as follows:

$$\Pr\{y_i = 1 \mid b, \boldsymbol{w}\} = \frac{e^{z_i}}{1 + e^{z_i}}, \quad \Pr\{y_i = -1 \mid b, \boldsymbol{w}\} = \frac{1}{1 + e^{z_i}}, \quad z_i = b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}$$

Thus we have

$$\begin{split} p(\pmb{y}|b,\pmb{w}) &= \prod_{i=1}^n p(y_i|b,\pmb{w}) \qquad \text{via independence assumption} \\ -\ln p(\pmb{y}|b,\pmb{w}) &= -\sum_{i=1}^n \ln p(y_i|b,\pmb{w}) \qquad \text{since } \ln(ab) = \ln a + \ln b \\ &= -\sum_{i=1}^n \frac{y_i+1}{2} \ln \Pr\{y_i=1 \mid \pmb{x}_i;b,\pmb{w}\} + (1-\frac{y_i+1}{2}) \ln \Pr\{y_i=-1 \mid \pmb{x}_i;b,\pmb{w}\} \\ & \text{since } \frac{y_i+1}{2} &= \left\{ \begin{array}{cc} 1 & y_i=1 \\ 0 & y_i=-1 \end{array} \right. \\ &= -\sum_{i=1}^n \frac{y_i+1}{2} \left(z_i - \ln[1+e^{z_i}]\right) + (1-\frac{y_i+1}{2}) \left(0 - \ln[1+e^{z_i}]\right) \\ &= -\sum_{i=1}^n \left(\frac{y_i+1}{2}z_i - \frac{y_i+1}{2} \ln[1+e^{z_i}] - \ln[1+e^{z_i}] + \frac{y_i+1}{2} \ln[1+e^{z_i}] \right) \\ &= -\sum_{i=1}^n \left(\frac{y_i+1}{2}z_i - \ln[1+e^{z_i}]\right) \qquad \text{where } z_i = b + \pmb{x}_i^\mathsf{T} \pmb{w} \end{split}$$

lacktriangle The ML estimates of $(b,oldsymbol{w})$ are the ones minimizing this negative log likelihood

Binary cross-entropy loss

In summary...

■ When $y_i \in \{-1,1\}$, the ML weights for binary logistic regression are

$$(b_{\mathsf{ml}}, \boldsymbol{w}_{\mathsf{ml}}) \triangleq \arg\min_{b, \boldsymbol{w}} \sum_{i=1}^{n} \left(\ln[1 + e^{z_i}] - \frac{y_i + 1}{2} z_i \right) \text{ for } z_i = b + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}$$

which must be solved numerically

■ When $y_i \in \{0,1\}$, the ML weights for binary logistic regression are

$$\left| (b_{\mathsf{ml}}, \boldsymbol{w}_{\mathsf{ml}}) \triangleq \arg\min_{b, \boldsymbol{w}} \sum_{i=1}^{n} \left(\ln[1 + e^{z_i}] - y_i z_i \right) \text{ for } z_i = b + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} \right|$$

which is a common alternative expression

The summation is known as the "logistic loss" or "binary cross-entropy loss"

Adding regularization

Assuming $y_i \in \{0,1\}$ for the following expressions . . .

■ Usually, L2 regularization is used with the cross-entropy loss:

$$(b_{\mathsf{lr}}, \boldsymbol{w}_{\mathsf{lr}}) = \arg\min_{b, \boldsymbol{w}} \left\{ \sum_{i=1}^{n} \left(\ln[1 + e^{z_i}] - y_i z_i \right) + \alpha \|\boldsymbol{w}\|^2 \right\} \text{ for } z_i = b + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}$$

- Why? When the training data is linearly separable, the cross-entropy loss decreases as $|w_j|$ increases, and so $||w_{\sf ml}|| = \infty$. L2 regularization keeps $w_{\sf lr}$ finite
- Could instead use L1 regularization, and thus perform feature selection:

$$(b_{\mathsf{lr}}, \boldsymbol{w}_{\mathsf{lr}}) = \arg\min_{b, \boldsymbol{w}} \left\{ \sum_{i=1}^{n} \left(\ln[1 + e^{z_i}] - y_i z_i \right) + \alpha \|\boldsymbol{w}\|_1 \right\} \text{ for } z_i = b + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}$$

- With L2 regularization, could use small (but positive) α to avoid bias
- \blacksquare Or, with L1 or L2 regularization, could tune α using K-fold cross-validation

Logistic regression in sklearn

In sklearn, there is a nice LogisticRegression method:

- Note: L2 regularization is used by default
 - Don't forget to standardize X!
- The *inverse* regularization strength is controlled by the parameter C > 0
 - So use *large* C to avoid regularization-induced bias

....,

Feature transformations

- Can we implement curved boundaries with linear classification methods like logistic regression?
- Yes! Through feature transformation . . .
 - Example: given raw features (x_1, x_2) , we could transform to $\boldsymbol{x} \triangleq [x_1, x_2, x_1^2, x_2^2]^\mathsf{T}$
 - Then the "linear" score $z = b + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{w}$ would be quadratic in the raw features (x_1, x_2)
- One-hot coding is another important feature transformation. We saw how it can be used for categorical features like $x_j \in \{\text{Ford}, \text{BMW}, \text{GM}\}$

Outline

- Motivating Example: Diagnosing Breast Cancer
- Binary Classification
- Binary Logistic Regression
- Multiclass Classification
- Multinomial Logistic Regression
- Measuring Accuracy in Classification

Multiclass classification

- What if there are K > 2 classes?
 - Binary classification is the special case K=2
- Goal: Given training data $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$ with $\boldsymbol{x}_i \in \mathbb{R}^d$ and $y_i \in \{1,\ldots,K\}$, we want to classify a test vector \boldsymbol{x} as $y \in \{1,\ldots,K\}$
 - Unlike regression, the target y is categorical
- Mathematically, we want to design a classifier

$$f(\boldsymbol{x}) = \widehat{y} \in \{1, \dots, K\}$$

such that $\hat{y} = y$ with high probability

■ Again, $f(\cdot)$ is defined by its decision regions:

$$\mathcal{R}_k \triangleq \{ \boldsymbol{x} : f(\boldsymbol{x}) = k \} \text{ for } k = 1, \dots, K$$

- Important: Classification problems have categorical targets, while regression problems have ordinal targets
 - If the target is discrete, but ordinal, it's probably a regression problem

Multiclass classification using binary classifiers

Multiclass classification is difficult. Can we tackle it using binary methods? Yes!

Two main approaches:

- Voting on binary outcomes
 - 1-vs-rest: For each class k, decide if x is in-k vs not-in-k, then choose the k with most votes
 - 1-vs-1: For each pair (k, l), decide if x is in-k vs in-l, then choose k with most votes

Problem: Tied votes lead to ambiguities! (see right)

- Choosing the highest confidence value
 - 1-vs-rest: For each class k, compute confidence that x is in-k vs not-in-k, then choose the k with highest confidence

Ambiguities avoided by continuous-valued confidence! We'll study one example (MLR) in more detail . . .

(b) 1-vs-All

(a) 1-vs-1

Outline

- Motivating Example: Diagnosing Breast Cancer
- Binary Classification
- Binary Logistic Regression
- Multiclass Classification
- Multinomial Logistic Regression
- Measuring Accuracy in Classification

Multinomial logistic regression (MLR)

Suppose we combine multiple binary classifiers using the "1-vs-rest confidence-value" approach (p. 25). With binary linear classifiers, we would do:

- For each class k = 1, ..., K,
 - lacksquare given b_k and $oldsymbol{w}_k = [w_{k1}, \dots, w_{kd}]^\mathsf{T}$ that classify in-k or not-in-k
 - compute a linear score on k from \boldsymbol{x} , i.e., $z_k = b_k + \sum_{j=1}^d x_j w_{kj}$

then choose the winner via: $\widehat{y} = \arg\max_{k} \underbrace{\Pr\{y = k \mid z\}}_{\text{confidence value}}$

■ In multinomial logistic regression, we adopt the "softmax" likelihood function:

$$\Pr\{y = k \mid \mathbf{z}\} = \frac{e^{z_k}}{\sum_{l=1}^{K} e^{z_l}} \quad \text{(noting that } \sum_{k=1}^{K} \Pr\{y = k \mid \mathbf{z}\} = 1 \ \forall \mathbf{z}\text{)}$$
probability mass function

lacksquare The softmax has the property that, if $z_{k_{
m max}}\gg z_k$ for all $k
eq k_{
m max}$, then

$$\frac{e^{z_k}}{\sum_{l=1}^K e^{z_l}} \approx \begin{cases} 1 & \text{if } k = k_{\max} \\ 0 & \text{if } k \neq k_{\max} \end{cases} \text{ so it's a "soft" version of "} \delta_{k-k_{\max}}$$

27 / 37

One-hot label-coding for MLR

■ We design $\boldsymbol{b} = [b_1, \dots, b_K]^\mathsf{T} \& \boldsymbol{W} \triangleq [\boldsymbol{w}_1, \dots, \boldsymbol{w}_K]$ using ML estimation, i.e.,

$$(m{b}_{\mathsf{ml}}, m{W}_{\mathsf{ml}}) riangledength{arg\max_{m{b}, m{W}}} p(m{y}|m{b}, m{W}) = rg\min_{m{b}, m{W}} igg\{ -\sum_{i=1}^n \boxed{\ln p(y_i|m{b}, m{W})} igg\}$$

■ To help formulate this, we turn the categorical label $y_i \in \{1, ..., K\}$ into a binary vector $\boldsymbol{y}_i \triangleq [y_{i1}, ..., y_{iK}]^\mathsf{T}$ using one-hot-coding, i.e.,

$$y_{ik} = \begin{cases} 1 & \text{if } y_i = k \\ 0 & \text{if } y_i \neq k \end{cases} \quad \text{for all } i = 1, \dots, n \qquad \underbrace{\underbrace{y_i}_{i} = (0 \text{ o } j \text{ o o } j)}_{\uparrow}$$

lacktriangle Then, similar to the binary $y_i \in \{0,1\}$ case, we can write

$$\begin{aligned} -\ln p(y_{i}|\boldsymbol{b},\boldsymbol{W}) &= -\sum_{k=1}^{K} y_{ik} \ln \Pr\{y_{i} = k \mid \boldsymbol{b}, \boldsymbol{W}\} \\ &= -\sum_{k=1}^{K} y_{ik} \ln \frac{e^{z_{ik}}}{\sum_{l} e^{z_{il}}} \text{ with } z_{ik} = b_{k} + \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w}_{k} \\ &= -\sum_{k=1}^{K} y_{ik} (z_{ik} - \ln \left[\sum_{l=1}^{K} e^{z_{il}} \right]) \\ &= \ln \left[\sum_{l=1}^{K} e^{z_{il}} \right] - \sum_{k=1}^{K} y_{ik} z_{ik}, \text{ since } \sum_{k=1}^{K} y_{ik} = 1 \ \forall i \end{aligned}$$

Multinomial cross-entropy loss

Combining the results from the previous page, we get

$$(\boldsymbol{b}_{\mathsf{ml}}, \boldsymbol{W}_{\mathsf{ml}}) = \arg\min_{\boldsymbol{b}, \boldsymbol{W}} \left\{ \underbrace{\sum_{i=1}^{n} \left(\ln \left[\sum_{k=1}^{K} e^{z_{ik}} \right] - \sum_{k=1}^{K} y_{ik} z_{ik} \right)}_{\triangleq J_{\mathsf{lr}}(\boldsymbol{b}, \boldsymbol{W})} \right\}, \quad z_{ik} = b_k + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}_k$$

where $J_{\rm lr}(\boldsymbol{b},\boldsymbol{W})$ is known as the cross-entropy loss

- In practice, we add $\alpha \| \mathbf{W} \|_F^2$ (L2 regularization) or $\alpha \| \mathbf{W} \|_1$ (L1 regularization), and tune α via cross-validation
- With or without regularization, there is no closed-form expression for the optimal (b, W), but the optimization problems are convex and can be solved numerically

Logistic Regression: Multinomial vs. Binary-OVR

■ The LogisticRegression method in sklearn handles both binary and multiclass classification. It has many options:

```
LogisticRegression(C=100000.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='12', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm start=False)
```

- With multiple classes, it is important to understand the multi_class option:
 - lacktriangleright multi_class = multinomial: This jointly designs $(m{b}, m{W})$ according to the MLR approach described in the last few pages
 - multi_class = ovr: For each k = 1...K, this separately designs a one-vs-rest binary classifier (b_k, \boldsymbol{w}_k)

The MLR version usually has slightly better performance but at the cost of significantly higher complexity

Outline

- Motivating Example: Diagnosing Breast Cancer
- Binary Classification
- Binary Logistic Regression
- Multiclass Classification
- Multinomial Logistic Regression
- Measuring Accuracy in Classification

Performance metrics for binary classification

- In binary classification, there are 2 types of error:
 - False Positive (or false alarm)
 - False Negative (or missed detection)

contingency table or confusion matrix

	y=1	y=0
$\widehat{y} = 1$	TP	FP
$\widehat{y} = 0$	FN	TN

- The implications of these errors can be very different!
 - e.g., consider breast cancer diagnosis
- Common machine-learning performance metrics:
 - precision: $\Pr\{y=1 \mid \widehat{y}=1\} = \frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FP}}$
 - recall: $\Pr{\{\widehat{y}=1 \mid y=1\}} = \frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FN}}$
 - F1-score: $\left[\frac{1}{2}\left(\frac{1}{\text{precision}} + \frac{1}{\text{recall}}\right)\right]^{-1}$
 - accuracy: $\Pr{\{\widehat{y} = y\}} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{FN} + \mathsf{TN} + \mathsf{FP}}$

given a positive test, how often is the patient cancerous?

given that the patient has cancer, how often is it detected?

harmonic mean of precision & recall

how often is the test correct?

- Common metrics in medicine:
 - sensitivity: $\Pr{\{\widehat{y}=1 \mid y=1\}} = \frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FN}}$
 - specificity: $\Pr{\{\widehat{y}=0 \mid y=0\}} = \frac{\mathsf{TN}}{\mathsf{TN}+\mathsf{FP}}$

given that the patient has cancer, how often is it detected?

given a healthy patient, how often is diagnosis correct?

https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

Breast cancer demo

- We now assess classification performance on the breast cancer demo
- Use 10-fold cross-validation
- sklearn includes support for computing precision, recall, F1 score, and accuracy (as defined on previous page)

```
from sklearn.model selection import KFold
from sklearn.metrics import precision recall fscore support
nfold = 10
kf = KFold(n splits=nfold,shuffle=True)
prec = []
rec = []
f1 = []
acc = []
for train, test in kf.split(Xs):
    # Get training and test data
    Xtr = Xs[train,:]
    vtr = v[train]
    Xts = Xs[test,:]
    yts = y[test]
    # Fit a model
    logreg.fit(Xtr, vtr)
    yhat = logreg.predict(Xts)
    # Measure performance
    preci, reci, fli, = precision recall fscore support(yts, yhat, average='binary')
    prec.append(preci)
    rec.append(reci)
    fl.append(fli)
    acci = np.mean(yhat == yts)
    acc.append(acci)
# Take average values of the metrics
precm = np.mean(prec)
recm = np.mean(rec)
flm = np.mean(fl)
accm= np.mean(acc)
# Compute the standard errors
prec_se = np.std(prec)/np.sqrt(nfold-1)
rec se = np.std(rec)/np.sqrt(nfold-1)
f1 se = np.std(f1)/np.sqrt(nfold-1)
acc se = np.std(acc)/np.sqrt(nfold-1)
Precision = 0.9554, SE=0.0095
Recall =
             0.9513, SE=0.0095
f1 =
             0.9527, SE=0.0051
Accuracy = 0.9678, SE=0.0037
```

Making hard decisions

- Given test score $z = b + x^T w$, logistic regression outputs a confidence value, $\Pr\{y=1 \mid z\} \in [0,1]$
- Can convert to a hard decision by thresholding:
 - Set $\widehat{y} = 1$ when $\Pr\{y = 1 \mid z\} > t$ for threshold t
- t = 1/2 minimizes the error rate, $\Pr{\{\hat{y} \neq y\}}$
 - i.e., maximizes accuracy
- $t \in [0,1]$ trades precision for recall
 - precision: $\Pr\{y=1 \mid \widehat{y}=1\}$
 - Arr recall: $\Pr{\{\widehat{y}=1 \mid y=1\}}$
- $t \in [0,1]$ trades sensitivity for specificity
 - sensitivity: $Pr\{\widehat{y}=1 \mid y=1\}$
 - specificity: $\Pr{\{\widehat{y}=0 \mid y=0\}}$

The ROC curve and the AUC

- The receiver operating characteristic (ROC) is the plot of TPR versus FPR
 - FPR: $\Pr{\{\hat{y}=1 \mid y=0\}}$
 - TPR: $\Pr{\{\hat{y}=1 | y=1\}}$
- The threshold t controls location on curve
- The area under the curve (AUC) is a threshold-independent performance metric

```
from sklearn import metrics
yprob = logreg.predict_proba(Xs)
fpr, tpr, thresholds = metrics.roc_curve(y,yprob[:,1])
```

```
auc=metrics.roc_auc_score(y,yprob[:,1])
print("AUC=%f" % auc)
```

AUC=0.996344

Performance metrics for multiclass classification

- In multiclass classification, there are many possible error types
- If columns of confusion matrix are normalized to sum-to-one . . .
 - (k, l)th entry becomes $\Pr{\{\widehat{y}=k \mid y=l\}}$
 - diagonal terms show per-class accuracy, $\Pr{\{\widehat{y}=k \mid y=k\}}$
- The overall accuracy can be computed as

$$\Pr{\{\hat{y} = y\}} = \sum_{k=1}^{K} \Pr{\{\hat{y} = k \mid y = k\}} \Pr{\{y = k\}}$$

- Careful with imbalanced labels: $\Pr\{y=k\} \ll \frac{1}{K}$ for one or more k
 - Accuracy may seem good but actually be meaningless!
 - Strategies: use different metric, resample data, modify classifier, . . .
 - Read more here and here and here

contingency table or confusion matrix

9,							
	y=1	y=2		y = K			
$\widehat{y} = 1$	10	3		4			
$\widehat{y}=2$	1	14		3			
•	•			•			
			•				
$\widehat{y} = K$	4	2		7			

Learning objectives

- Understand classification problems in machine learning:
 - Identify features, labels; binary vs multiclass; linear vs nonlinear
 - visualize scatterplots and decision regions
- For binary classification problems, understand . . .
 - linear classifiers, separating hyperplanes, linearly separable data
 - effect of feature transformation
 - why LS linear regression doesn't work well
 - logistic regression: logistic function, cross-entropy loss, ML fitting, regularization
 - common error metrics: accuracy, precision, recall, F1
 - the effect of the decision threshold, ROC, AUC
- For multiclass classification problems, understand . . .
 - solutions that use multiple binary classifiers
 - multinomial logistic regression: softmax function, cross-entropy loss, ML fitting
- How to implement and assess classification using sklearn