Projeto 1

- Não utilizar funções prontas para implementar o principal conceito associado ao tema. Na dúvida, pergunte que funções/bibliotecas podem ser utilizadas no projeto.
- Entregáveis:
 - Código produzido (a organização do código também será avaliada!)
 - Um artigo escrito em Latex (~6 páginas em coluna dupla ou ~10 em coluna única) contendo:
 - Resumo
 - Introdução
 - Motivação do uso do método (porque usar? Em que situações ele é importante?)
 - Objetivos
 - O que será analisado sobre o método?
 - Metodologia
 - Explicação sobre a teoria do método
 - Explicação sobre a parte mais importante do código
 - Resultados
 - Conclusões
- Data de entrega: 13/01

Projeto 1

Para escrever o artigo em Latex, recomendo o uso do Overleaf e do seguinte template:

https://www.overleaf.com/latex/templates/chi2020-proceedings/qtdvrwbtqxww

Implementar os filtros de média geométrica e mediana

Filtro média geométrica

$$\hat{f}(x,y) = \left[\prod_{(s,t) \in S_{xy}} f(s,t) \right]^{\frac{1}{mn}}$$

Filtro mediana

$$\hat{f}(x,y) = \underset{(s,t) \in S_{xy}}{\text{mediana}}[f(s,t)]$$

Identificar situações nas quais esses dois filtros dão resultados diferentes do filtro Gaussiano

- 1. Implementar o filtro de suavização gaussiana em imagens coloridas.
 - Cada canal de cor é suavizado separadamente, formando uma nova imagem colorida.
 - Verificar o que acontece se níveis de suavização diferentes forem utilizados em cada canal.
- 2. Implementar o filtro de derivada de Sobel em imagens coloridas
 - Cada canal de cor é derivado separadamente, formando três novas imagens em nível de cinza. Não precisa retornar uma imagem colorida.

 Implementar as duas técnicas abaixo de preenchimento de borda em imagens

Original

2	3	1	4
1	5	3	7
2	9	2	0
8	7	2	4

Mais próximo

2					4		
2	2	2	3	1	4	4	4
2	2	2	3	1	4 7 0 4	4	4
1	1	1	5	3	7	7	7
2	2	2	9	2	0	0	0
8	8	8	7	2	4	4	4
8	8	8	7	2	4	4	4
8	8	8	7	2	4	4	4

Espelhado

2	9	2	9	2	0	2	9
3	5						
1	3	2	3	1	4	1	3
3	5	1	5	3	7	3	5
2	9	2	9	2	0	2	9
2	7	8	7	2	4	2	7
2	9			2	0	2	9
3	5	1	5	3	7	3	5

Apresentar imagens nas quais cada metodologia é mais adequada

- Implementar o filtro laplaciano utilizando diferença de gaussianas
- Cada valor do filtro é dado pela diferença entre as duas funções abaixo

$$f_1(x,y) = \frac{1}{2\pi\sigma_1^2}e^{-\frac{x^2+y^2}{2\sigma_1^2}}$$

$$f_2(x,y) = \frac{1}{2\pi\sigma_2^2}e^{-\frac{x^2+y^2}{2\sigma_2^2}}$$

onde
$$\sigma_1 = c * \sigma_2$$

- Após criar o filtro, subtraia a média para que a soma do mesmo seja 0: w = w np. mean(w)
- Identificar a influência do parâmetro c no resultado

- Implementar a técnica de equalização local de histograma
- A imagem é dividida em sub-regiões, e a técnica de equalização de histograma é aplicada a cada sub-região separadamente.

• Esse método não funcionará muito bem! Compare com o resultado da função *skimage.exposure.equalize_adapthist* da biblioteca scikit-image

- Implementar a técnica de alargamento de contraste com dois pontos
- Dados dois pontos, é definida uma função de transformação composta por três retas

$$y_0(x) = \frac{s_1}{r_1}x$$

$$y_1(x) = s_1 + \frac{s_2 - s_1}{r_2 - r_1}(x - r_1)$$

$$y_2(x) = s_2 + \frac{L - 1 - s_2}{L - 1 - r_2}(x - r_2)$$

Projetos

- 1. Filtros não-lineares
- 2. Suavização e derivada em imagens coloridas
- 3. Preenchimento de borda
- 4. Filtro laplaciano utilizando diferença de gaussianas
- 5. Equalização local de histograma
- 6. Alargamento de contraste