Wide-range METAPOST tutorial

Luís Nobre Gonçalves (L. Nobre G.)

4. september 2014

Sammendrag

Sort of workshop about TEX-things, focusing on the METAPOST language.

The Church of Free Software

Pope: Richard Stallman.

Evil

WYSIWYG

Evil

WYSIWYG

What you get is what you don't see

Freedom

You choose what you get

Freedom

You choose what you get but you only get it at the end of a long path.

1 Introduction

A bit of history
What is METAPOST?
Main reason to use METAPOST

2 For Almost Absolute Beginners

Availability
Mathematically oriented
Programmability/Scriptability
Forced Simplicity
Consistency

3 Workflow

Workflow example

A bit of history

Donald Knuth - The Art of Computer Programming

- Volume1, 1969, hot metal
- Volume2, 2nd ed., 1977, photographic
- TEX, v1, 1978, $v \longrightarrow \pi$
- METAFONT, v1, 1979, $v \longrightarrow e affine$
- AMS, 1983
- APS, AIP, OSA, AAS, Springer-Verlag
- METAPOST, 1994, John Hobby

A bit of history

Donald Knuth - The Art of Computer Programming

- Volume1, 1969, hot metal
- Volume2, 2nd ed., 1977, photographic
- TEX, v1, 1978, $v \longrightarrow \pi$
- METAFONT, v1, 1979, $v \longrightarrow e affine$
- AMS, 1983
- APS, AIP, OSA, AAS, Springer-Verlag
- METAPOST, 1994, John Hobby

METAPOST is the realm of graphic parameterization.

Main features of METAPOST

- It is easy to express geometry as METAPOST code
- METAPOST outputs postscript, SVG or PNG outputformat := "svg";
- Very good control of 2D Bézier splines
- Special 2D operators
- Many operators work the same way in 1, 2, 3 or 4D
- Linear equations
- May include LATEX
- May be included in LATEX

Use METAPOST because

METAPOST helps the user to experiment different diagram layouts without changing specified geometric relationships among diagram elements.

For Almost Absolute Beginners

- Availability
- Mathematically oriented
- Programmability/Scriptability
- Forced simplicity
- Consistency

Availability

- Development site
- CTAN
 - /graphics/metapost/contrib/macros

Availability

- Development site
- CTAN
 - /graphics/metapost/contrib/macros
- TFX Users Group
 - texlive
- Debian
 - texlive-metapost
 - texlive-publishers includes RevTeX
 - latex-beamer
 - tex4ht
- "The LATEX Companions"

Linear equations

• Constraints may be expressed as linear equations

No need to explicitly assign calculations to unknowns

pair doublets

- pair $(x,y) \longrightarrow (X,Y)$ origin (0,0)
- Coordinates

$$z[i] = (x[i], y[i]);$$

color triplets

```
\begin{array}{cccc} \bullet \ \text{color} & (\textit{red},\textit{green},\textit{blue}) \longrightarrow & (\texttt{X},\texttt{Y},\texttt{Z}) \\ & \text{black} & (0,0,0) \\ & \text{red} & (1,0,0) \\ & \text{green} & (0,1,0) \\ & \text{blue} & (0,0,1) \\ & \text{white} & (1,1,1) \end{array}
```

cmykcolor tetraplets

cmykcolor
 (cyan, magenta, yellow, black) → (X,Y,Z,W)
 (quaternions, homogeneous coordinates, 4D splines, animation frames, straight line segments, etc.)

Special operators

• Pythagorean addition and subtraction

$$h = a + b + - c; (h = \sqrt{a^2 + b^2 - c^2})$$

Special operators

Pythagorean addition and subtraction

$$h = a + b + - c$$
; $(h = \sqrt{a^2 + b^2 - c^2})$

• Interval 0—1 ND operator s[,]

$$egin{array}{llll} 0.5[(1,1),(3,5)] & \longrightarrow & (2,3) \ -0.5[(1,1,1),(3,5,7)] & \longrightarrow & (0,-1,-2) \ 1.5[(1,1,1,1),(3,5,7,9)] & \longrightarrow & (4,7,10,13) \end{array}$$

Special operators

Pythagorean addition and subtraction

$$h = a + b + - c; (h = \sqrt{a^2 + b^2 - c^2})$$

• Interval 0—1 ND operator s[,]

N-dimensional scalar arithmetic

Other features

• Throw-in-the-garbage unknowns whatever

Other features

- Throw-in-the-garbage unknowns whatever
- Special functions

```
dir() abs() angle() unitvector()
sind() cosd()
```


Other features

- Throw-in-the-garbage unknowns whatever
- Special functions

```
dir() abs() angle() unitvector()
sind() cosd()
```

- Affine transforms (linear)
- Totally parameterized 2D cubic Bézier splines

Programmability

øæåì \S üç@£æß«» ""... 3.14159e-2 = 3,1416 \cdot 10 $^{-2}$

Scriptability

- scantokens "string of commands";
- MPlib

Forced Simplicity

- (8×)4096
- 1/65536
- 2000 points in a path
- Memory
- Number of variables

Since METAPOST version 1.803, the command line switch --numbersystem provides other over- and underflows

Consistency

- emacs+auctex/texmacs
- latexmp
- emp/LuaTEX
- graphicx
- beamer+xmpmulti
- GNUPLOT
- xfig
- dia/expressg
- gs+potrace+pstoedit+PstoeditMpostPreeditor
- siunitx

emacs+auctex

```
Edit Options Buffers Tools Preview LaTeX Command Help
 \documentclass{beamer}
  \usepackage[norsk]{babel}
  \usepackage[utf8]{inputenx}
  \usepackage[stickyper,obevall,locale=DE,dp=4]{siunitx}
  \usetheme{Pittsburgh}
  \setbeamercolor{normal text}{bg=red!7}
  \setbeamertemplate{footline}{\insertpagenumber}
  \usepackage{xmpmulti,amsmath,amssymb,graphicx,mflogo}
  \DeclareGraphicsRule{*}{mps}{*}{}
  \graphicspath{{./metapostpropagandafiles/}}
  \newcommand{\mvem}[1]{\texttt{#1}}
  \title{Wide--range \MP\ tutorial}
  \author{
    Luís Nobre Gonçalves \\
    (\href{mailto:lnobreg@gmail.com}{\underline{L. Nobre G.}})
  \date{\today}

√ \begin{document}

-U:--- metapostpropaganda.tex
                              Top L18
                                         (LaTeX)-----
```

See code

latexmp

See code.

graphicx

beamer+xmpmulti

```
\label{eq:continuity} $$ \_$ \multiinclude[<+>][graphics={width=8cm},end=10] $$ \{feksmulti\}$
```

GNUPLOT

set term mp color solid latex set output "feksgnuplot.mp"

fig2ps

dia

epspdf+gs

epspdf minimal-1.mps

gs -q -sDEVICE=jpeggray -r100 -dNOPAUSE -sOutputFile=minimal.jpg minimal-1.pdf < /dev/null

◆□ > ◆圖 > ◆量 > ◆量 > ■ め < ○</p>

potrace + pstoedit + Pstoedit M post Preeditor

Example

PstoeditMpostPreeditor

Example

Basic workflow

Workflow

- 1 Draw scheme by hand
- 2 Identify parameters

Workflow

- 1 Draw scheme by hand
- 2 Identify parameters
- 3 Express constraints
- 4 Determine valid ranges
- 6 Program
- 6 Test

- ◆□ → ◆部 → ◆ き → ・ き → りへ(

(□) (□) (□) (□)

