(NATURAL SCIENCE)

Vol. 61 No. 4 JUCHE104(2015).

합성비석-페로시안화칼리움-질산코발트복합물제조

안철주, 박화철

최근에 ¹³⁷Cs에 대한 선택성이 높은 합성비석에 여러가지 이온들을 침적시켜 ⁹⁰Sr에 대한 분리성능이 높은 복합흡착제를 널리 개발하고있다.[1]

론문에서는 우리가 이미 합성한 비석을 립상화한 다음 폐로시안화칼리움과 질산코발 트를 침적시켜 얻어진 복합흡착제의 조성을 밝혔다.

실 험 방 법

합성비석분말에 점결제로 물유리(SiO₂ 30.4%, Na₂O 8.6%)를 약 20질량% 되게 혼합기에 넣고 잘 섞은 다음 스크류식압출기(노즐직경 3mm)에서 성형하였다. 이것을 2mol/L HCl용액에서 응고시킨 다음 pH 7이 될 때까지 증류수로 세척하고 200메쉬채로 선별하였다.

립상화한 합성비석에 표 1에서와 같이 각이한 량의 페로시안화칼리움과 질산코발트를 침적시켰다.

보충 모리 충	비석함량/g	K ₄ Fe(CN) ₆	Co(NO ₃) ₂	
<u> 국업</u> 물반오 		$C_1/(\mathrm{mol} \cdot \mathrm{L}^{-1})$	$V_1/(\mathrm{mL}\cdot\mathrm{g}^{-1})$	$C_2/(\mathrm{mol} \cdot \mathrm{L}^{-1})$	$V_2/(\mathrm{mL}\cdot\mathrm{g}^{-1})$
$\neg -1$	5	0.5	40	0.5	60
$\neg -2$	5	0.75	15	0.75	23
L-1	10	0.75	20	0.75	40
L-2	8	0.75	10	0.75	15
L-3	6	0.75	8	0.75	12
L -4	3	0.75	5	0.75	8

표 1. 침적때 물질의 농도와 체적

등근밑플라스크에 립상화한 합성비석을 넣고 축축해질 정도로 폐로시안화칼리움용액을 넣어 50℃의 물욕에서 잘 혼합한 다음 30min정도 방치하고 흡인려과하여 물을 제거하였다. 여기에 아세톤에 푼 질산코발트용액을 첨가하였다.

복합물의 콜로이드화를 막기 위하여 질산코발트용액을 충분히 첨가하고 10h동안 50℃의 물욕에서 흔들어주면서 반응시켰다. 이것을 다시 아세톤으로 씻은 다음 110℃, 공기분위기에서 12h동안 건조시켰다. 다음 립상화한 합성비석에 남아있는 미반응폐로시안화칼리움을 증류수로 제거하고 아세톤으로 씻은 다음 110℃에서 12h동안 건조시켰다.

이 과정을 여러번 반복하여 복합물을 제조하였다.

실험결과 및 해석

복합흡착제의 함량 페로시안화칼리움과 질산코발트사이에는 다음과 같은 반응이 일어난 다.[2]

 $K_4Fe(CN)_6 + (1+n/2)Co(NO_3)_2 \rightarrow K_{2n}Co \cdot n/2[CoFe(CN)_6] + (2+n)KNO_3 \quad n \quad 0 \sim 1.42$ 편리상 K₂,Co·n/2[CoFe(CN)₆]을 KCoFC로 표시한다.

질산코발트를 물에 풀면 비석에 침적된 페로시안화칼리움의 일부가 물에 용해되여 기 공밖에서 질산코발트와 반응하여 기공안에서의 KCoFC의 함량을 감소시킬수 있다. 그러나 페로시안화칼리움은 아세톤에 거의 풀리지 않는다. 따라서 질산코발트를 아세톤에 풀어 실 험에 리용하였다.

제조한 복합흡착제를 선행연구[2]와 같은 방법으로 시편을 만들어 원자흡광광도계로 K, Co, Fe를 정량하여 계산한 KCoFC의 경험식과 함량은 표 2와 같다.

ᆸᇵᄆᆌᇂ] 큰 가/(⁻ 1) -	원소함량/%		%	거치시	۱۱ جا جار – 1)
독업물기오	리론값/(g·g ⁻¹)-	K	Co	Fe	경험식	실제값/(g·g ⁻¹)
$\neg -1$	1.396 0	3.20	1.31	3.03	$K_{3.49}Co_{2.19}Fe(CN)_6$	0.092 6
$\neg -2$	0.785 4	5.89	5.32	6.76	$K_{1.58}Co_{1.20}Fe(CN)_6$	0.488 0
L-1	0.523 6	3.92	4.08	5.01	$K_{1.37}Co_{1.16}Fe(CN)_6$	0.322 0
L-2	0.978 6	5.61	5.72	6.38	$K_{1.4}Co_{1.06}Fe(CN)_6$	0.508 0
L-3	1.490 0	8.21	7.63	9.54	$K_{1.54}Co_{1.19}Fe(CN)_6$	0.876 0
<u>L-4</u>	2.082 0	9.3	10.3	10.4	$K_{1.29}Co_{0.96}Fe(CN)_6$	1.410 0

표 2. KCoFC의 경험식과 함량

표 2에서 KCoFC의 리론량은 $C_*^* = 349.08(C+V)/m$ 에 의하여 계산한다. 여기서 C_* V는 K₄Fe(CN)₆의 몰농도와 체적이고 349.08은 K₂CoFe(CN)₆의 화학식량이며 m은 비석의 질 량이다.

표 2에서 보는바와 같이 복합물 ㄱ-1의 제조에서 KCoFC의 실제값 0.092 6은 리론값 1.396 0보다 매우 작지만 페로시안화칼리움의 농도를 증가(ㄱ-2)시켰을 때에는 그 차이가 줄 어든다. L-1~L-4는 비석에 두 시약을 각 각 침적시킨 다음 다시 두가지 시약의 침적을 반복하여 제조한것이다.

복합물의 비걸면적 BET장치로 측정한 복합 물들의 비겉면적은 표 3과 같다.

표 3에서 보는바와 같이 페로시안화칼리 움과 질산코발트량이 많아짐에 따라 비겉면적 값이 작아진다.

표 3. 복합물의 비걸면적

복합물기호	함량/(g·g ⁻¹)	비겉면적/ $(m^2 \cdot g^{-1})$
	0	477.6
$\neg -1$	0.092 6	423.6
$\neg -2$	0.488 0	401.4
L-1	0.322 0	412.0
L-2	0.508 0	389.7
L-3	0.876 0	367.1
L -4	1.410 0	326.8

맺 는 말

점결제로 20%의 물유리를 첨가하여 분말상태의 합성비석을 립상화하고 폐로시안화칼리움과 질산코발트를 침적시켜 1.4g의 KCoFC가 포함된 폐로시안화복합물을 합성하였다.

참 고 문 헌

- [1] A. Nichi et al.; Radiation Physics and Chemistry, 68, 837, 2003.
- [2] A. Mardan et al.; Separation and Purification Technology, 16, 147, 1999.

주체103(2014)년 12월 5일 원고접수

Preparation of Synthetic Zeolite-Potassium Ferrocyanide--Cobalt Nitrate Composite

An Chol Ju, Pak Hwa Chol

We have made the powder synthetic zeolite granulation by adding the 20% water glass as agglomerant and synthesized the ferrocyanide composite with 1.4g of KCoFC by depositing the potassium ferrocyanide and cobalt nitrate.

Key word: synthetic zeolite