МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені І. І. МЕЧНИКОВА

СЕМЕНОВ АНДРІЙ КОСТЯНТИНОВИЧ

УДК 538.956; 537.9; 544.72.05; 544.77

ЕЛЕКТРОФІЗИЧНІ ВЛАСТИВОСТІ БАГАТОФАЗНИХ ДИСПЕРСНИХ СИСТЕМ

01.04.02 — теоретична фізика

ΑΒΤΟΡΕΦΕΡΑΤ

дисертації на здобуття наукового ступеня кандидата фізико-математичних наук

Дисертацією є рукопис.

Робота виконана на кафедрі теоретичної фізики і астрономії Одеського національного університету імені І. І. Мечникова.

Науковий керівник: кандидат фізико-математичних наук, доцент

Сушко Мирослав Ярославович, доцент кафедри теоретичної фізики та

астрономії, Одеський національний університет

імені І. І. Мечникова.

Офіційні опоненти: доктор фізико-математичних наук, професор

Лебовка Микола Іванович,

завідувач відділу фізичної хімії дисперсних мінералів, Інститут біоколоїдної хімії імені

Ф. Д. Овчаренка НАН України;

доктор фізико-математичних наук, старший науковий співробітник Лисенков Едуард Анатолійович, доцент кафедри фізики та математики,

Миколаївський національний університет імені

В. О. Сухомлинського.

Захист дисертації відбудеться «»	2020 р. о годи-
ні на засіданні спеціалізованої вченої ради Д 4	41.051.04 Одеського націо-
нального університету імені І.І.Мечникова за	адресою: 65082 м. Одеса,
вул. Пастера, 27, ОНУ імені І.І.Мечникова, Ве	елика фізична аудиторія.

3 дисертацією можна ознайомитись у бібліотеці Одеського національного університету імені І. І. Мечникова за адресою: 65026 м. Одеса, вул. Преображенська, 24 та на сайті: http://theorphys.onu.edu.ua/thesises.

Автореферат розісланий «___» _____ 2020 р.

Вчений секретар спеціалізованої вченої ради Д 41.051.04 кандидат фізико-математичних наук

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Актуальність роботи визначається як нагальними практичними задачами створення та застосування нових композитних матеріалів з бажаними та контрольованими електрофізичними властивостями (наприклад, тверді композитні та полімерні композитні електроліти), суттєво відмінними від властивостей природних речовин, так і необхідністю побудови і вдосконалення надійних теоретичних моделей для кількісного опису та діагностики їх характеристик.

Робота присвячена побудові та аналізу теоретичної моделі для опису найменш дослідженого, але найбільш поширеного типу тривимірних невпорядкованих систем, утворених диспергуванням частинок наповнювача в несучу матрицю. Ключовими проблемами, далекими до свого розв'язання, при створенні послідовної теорії таких систем є врахування різного роду міжфазних ефектів (нерегулярність форми частинок; контактний опір; утворення оксидних шарів; формування високопровідних областей з підвищеною концентрацією дефектів чи іонів; аморфізація полімерної матриці тощо), змін властивостей самої матриці (внаслідок неконтрольованого легування, забруднення, змін внутрішньої структури тощо) та послідовний розрахунок багаточастинкових поляризаційних та кореляційних ефектів.

Побудована в дисертаційній роботі аналітична теорія ефективного квазістатичного електричного відгуку невпорядкованих систем частинок з морфологією тверде ядро-проникна оболонка є багаточастинковою та дозволяє враховувати вплив міжфазних та матричних ефектів через моделювання одночастинкового електричного профілю комплексної діелектричної проникності оболонок. Здобуті основні теоретичні співвідношення між ефективною статичною електричною провідністю системи та електричними і геометричними параметрами компонентів підтверджуються результатами їх порівняння з існуючими даними симуляцій методом Random Resistor Network (RRN) та спроможністю адекватно описувати широкі масиви експериментальних даних для ефективної квазістатичної провідності твердих композитних і полімерних композитних електролітів, ефективних електричної провідності та діелектричної проникності в околі порогу електричної перколяції в системі діелектрик-провідник із міжфазним шаром. Теорія також дозволяє показати непослідовність та обмеженість поширеної диференціальної схеми для обчислення ефективних електричних параметрів гетерогенних систем.

Зв'язок з науковими програмами, планами, темами. Дисертаційна робота виконувалась на кафедрі теоретичної фізики і астроно-

мії Одеського національного університету імені І. І. Мечникова, а також є складовою частиною досліджень, які проводились за держбюджетною темою "Дослідження термодинамічних, критичних та кінетичних властивостей рідких металів та їх сплавів" No 0118U000202, а також за держбюджетною темою "Рівняння стану, термодинамічні та кінетичні властивості нанофлюїдів. Дослідження структурування нанофлюїдів на основі кореляційної спектроскопії та спектроскопії діелектричної проникності" No 113U000374.

Мета, задачі, об'єкт, предмет та методи досліджень. *Метою* роботи є побудова теорії ефективних електричних властивостей невпорядкованих дисперсних систем частинок з морфологією тверде ядро-проникна оболонка. У зв'язку з цим були поставлені sadavi:

- 1. Розробити теорію електродинамічної гомогенізації невпорядкованих систем провідних частинок у рамках методу компактних груп $(MK\Gamma)$ [1–4], для чого узагальнити та замкнути $MK\Gamma$ на випадок провідних частинок.
- 2. Проаналізувати в рамках цієї теорії ефективні електричні властивості невпорядкованих систем частинок з морфологією тверде ядро-проникна оболонка та протестувати теорію шляхом порівняння отриманих результатів з даними числових симуляцій.
- 3. Дослідити застосовність теорії до опису електричних властивостей твердих та полімерних композитних електролітів.
- 4. Дослідити застосовність теорії до опису електричної перколяції в дисперсноподібних композитах.
- 5. Виконати критичний аналіз диференціальної схеми обчислення ефективних електрофізичних параметрів гетерогенних систем

Об'ект дослідження: невпорядковані дисперсні системи частинок з морфологією тверде ядро—проникна оболонка.

 $\it Предмет дослідження:$ ефективні електрична провідність та ді
електрична проникність.

Методи дослідження. У роботі був використаний метод компактних груп неоднорідностей [1–4], який дозволяє врахувати багаточастинкові поляризаційні і кореляційні ефекти в довгохвильовому наближенні без їх надмірної модельної деталізації.

Наукова новизна отриманих результатів. В роботі отримано наступні результати:

— В рамках методу компактних груп неоднорідностей побудовано внутрішньо замкнену статистичну модель квазістатичного електричного відгуку макроскопічно однорідних та ізотропних дисперсних

систем частинок з морфологією типу тверде ядро-проникна оболонка.

- Показано адекватність моделі для опису концентраційних залежностей статичної провідності, отриманих методом числових симуляцій RRN для модельних систем з електрично однорідними та неоднорідними оболонками, та її суттєві переваги над моделям Максвелла-Гарнетта, Бруггемана та Накамури-Нана-Вєчорика.
- Показано застосовність теорії до кількісного опису експериментальних даних з ефективної провідності твердих композитних та полімерних композитних електролітів та аналізу ролі різних фізикохімічних механізмів у її формуванні. Внески останніх можна ефективно врахувати через профіль комплексної діелектричної проникності проникних оболонок.
- Показано застосовність теорії до кількісного опису ефективних електричної провідності та діелектричної проникності твердих невпорядкованих композитів в околі порогу електричної перколяції. Встановлено залежність положення порогу перколяції від геометричних параметрів оболонки. Продемонстровано залежність ефективних критичних індексів для таких систем від геометричних та електричних параметрів компонентів та способу обробки експериментальних даних.
- Показано внутрішню непослідовність та загальну обмеженість диференціальної схеми для аналізу ефективних квазістатичних електричних параметрів диспесних систем.

Практичне значення отриманих результатів. Розвинута теорія може розглядатися як новий гнучкий інструмент для аналізу та діагностики ефективних електрофізичних параметрів невпорядкованих композитних систем таких як тверді композитні та полімерні композитні електроліти, системи типу ізолятор—провідник з міжфазним шаром, колоїди тощо. Методи, використані при побудові теорії, можуть бути застосовані до аналізу інших теоретичних моделей макроскопічно однорідних та ізотропних дисперсних систем.

Особистий внесок здобувача. Три статті $[1^*, 3^*, 4^*]$ виконані у співавторстві з науковим керівником. Загальна постановка задач статей $[1^*, 3^*, 4^*]$ та метод компактних груп неоднорідностей належать доц. Сушку М.Я.. При роботі над цими статтями здобувач брав участь в пошуку та аналізі пов'язаних з ними теоретичних матеріалів та експериментальних даних, виконував з науковим керівником паралельні взаємоконтролюючі теоретичні розрахунки та обробки даних симуляцій та експери-

менту, брав участь в інтерпретації, аналізі результатів та підготовці їх до опублікування. Також здобувачем було виказано ідею про використання крайових умов для замикання процедури гомогенізації, проаналізовано проблему відображення результатів досліджуваної моделі на результати існуючих комп'ютерних симуляцій, розв'язано задачу відновлення провідності реальної матриці через параметри дальньої частини модельного профілю провідності оболонки.

Постановка задачі статті $[2^*]$ та її повне розв'язання належать здобувачеві.

Апробація результатів дисертації. Результати дисертації доповідалися на семінарах кафедри теоретичної фізики, а також були представлені автором на наукових конференціях/школах/семінарах, з яких дванадцять міжнародних:

- 1. 4-th International Conference on Statistical Physics: Modern Trends and Applications, Lviv, Ukraine, 2012.
- 2. 25-th International Conference: Disperse Systems, Odesa, Ukraine, 2012.
- 3. 5-th International Symposium: Methods and Applications of Computational Chemistry, Kharkiv, Ukraine, 2013.
- 4. 6-th International Conference Physics of Liquid Matter: Modern Problems, Kyiv, Ukraine, 2014.
- 5. 26-th International Conference: Disperse Systems, Odesa, Ukraine, 2014.
- 6. 2015 International Young Scientists Forum on Applied Physics, Dnipropetrovsk, Ukraine, 2015.
- 7. 27-th International Conference: Disperse Systems, Odesa, Ukraine, 2016.
- 8. International conference: The development of innovation in Engineering, Physical and Mathematical Sciences, Mykolayiv, Ukraine, 2016.
- 9. 8-th International Conference Physics of Liquid Matter: Modern Problems, Kyiv, Ukraine, 2018.
- 10. 5-th International Conference on Statistical Physics: Modern Trends and Applications, Lviv, Ukraine, 2019.
- 11. 7-th International Conference: Nanotechnologies and Nanomaterials, Lviv, Ukraine, 2019.
- 12. 28-th International Conference: Disperse Systems, Odesa, Ukraine, 2019.

Структура та обсяг роботи. Дисертація складається зі вступу, п'яти розділів, висновків і списку використаних джерел, що містить ?? посилання. Загальний обсяг дисертації — ??? сторінок друкованого тексту.

основний зміст роботи

У **Вступі** обґрунтовано актуальність теми дисертації, визначені мета, завдання, об'єкт, предмет та методи дослідження. Обговорені наукова новизна і практичне значення отриманих результатів.

В першому розділі наведено критичний аналіз основних теорій, що використовуються для опису електрофізичних властивостей макроскопічно однорідних та ізотропних дисперсних систем: класичні підходи Максвелла-Гарнетта та Бруггемана; теорія Накамури Нана Вєчорека для опису композитних електролітів; межі Хашина-Штрікмана для ефективної електричної провідності (діелектричної проникності) невпорядкованих дисперсних систем; теорія сильних флуктуацій властивостей (strong-property-fluctuation theory) та метод компактних груп неоднорідностей (МКГ), який кладеться за основу подальших досліджень; теорія перколяції для квазістатичної провідності й проникності.

Другий розділ дисертації присвячений узагальненню МКГ [1-4] на провідні системи з комплексною діелектричною проникністю та його застосуванню до моделі частинок з морфологією тверде ядро-проникна оболонка (див. рис. 1). Ця модель відома в літературі [5], однак, у порівнянні з моделлю частинок тверде ядро-тверда оболонка, набагато менше досліджена аналітично оскільки, по-перше, унаслідок перекривання оболонок поняття поляризованості окремої частинки стає невизначеним та, по-друге, вже для помірних товщин оболонок теорія стає суттєво багаточастинковою навіть при малих концентраціях. Ми очікуємо, що за допомогою такої моделі можна краще відобразити прояви різноманітних фізико-хімічних процесів в системі, зокрема міжфазні ефекти (формування оксидних оболонок, областей з високою концентрацією дефектів, подвійних електричних шарів, областей аморфізованого полімеру тощо) та матричні ефекти (зміни властивості самої матриці внаслідок неконтрольованого легування, забруднення, змін внутрішньої структури тощо). Ефективний аналіз моделі можливий в рамках МКГ, який дозволяє уникнути надлишкової деталізації процесів в системі.

В підрозділі 2.1 формалізм МКГ [1–4] узагальнюється на провідні системи з комплексною діелектричною проникністю. Частоти зондуючого поля ω вважаються достатньо малими, щоб внесками діелектричних втрат можна було знехтувати (квазістатичне наближення). Комплексні діелектричні проникності компонентів моделюються у вигляді:

$$\hat{\varepsilon} = \varepsilon + i \, \frac{4\pi\sigma}{\omega},\tag{1}$$

де $\varepsilon,\ \sigma$ – відповідно, квазістатичні дійсна частина ді
електричної прони-

Рис. 1: Модель макроскопічно однорідної та ізотропної системи \mathcal{D} частинок з морфологією тверде ядро-проникна оболонка, диспергованих в однорідній матриці з проникністю $\hat{\varepsilon}_0$ (біла область). Кожна частинка складається з твердого ядра радіусом $R_1 = d/2$ та проникністю $\hat{\varepsilon}_1$ (чорні області) та концентричної проникної оболонки товщиною δ_M з радіальним розподілом проникності $\hat{\varepsilon}_2 = \hat{\varepsilon}_2(r)$ (сірі області). Всі проникності комплексні та мають структуру (1). Локальне значення проникності визначається відстанню від даної точки до центра найближчої частинки.

кності та електрична провідність. Ефективна комплексна проникність системи $\hat{\varepsilon}_{\text{eff}}$ визначається як коефіцієнт пропорційності між статистичними середніми комплексного струму $\langle \mathbf{J}(\mathbf{r}) \rangle$ та напруженістю електричного поля $\langle \mathbf{E}(\mathbf{r}) \rangle$:

$$\langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \langle \hat{\varepsilon}(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \hat{\varepsilon}_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle.$$
 (2)

Знаходження $\langle \mathbf{J} \rangle$ та $\langle \mathbf{E} \rangle$ в рамках МКГ здійснюється наступним чином [4]. Вважається, що відгук $\mathcal D$ еквівалентний відгуку допоміжної системи $\mathcal S$, утвореної диспергуванням компонентів системи $\mathcal D$ в однорідну матрицю $\mathcal M$ з поки що невідомою проникністю $\hat \varepsilon_{\mathrm f}$. Система $\mathcal S$ розглядається як сукупність макроскопічних областей (компактних груп) з лінійними розмірами L набагато меншими за довжину хвилі зондуючого поля в $\mathcal M$, але достатньо великими, щоб мати властивості всієї $\mathcal S$. Локальне значення комплексної проникності записується у вигляді:

$$\hat{\varepsilon}(\mathbf{r}) = \hat{\varepsilon}_{f} + \delta \hat{\varepsilon}(\mathbf{r}), \tag{3}$$

де $\delta \hat{\varepsilon}(\mathbf{r})$ – внесок компактної групи в точці \mathbf{r} . Його явний вигляд залежить від розглядуваної системи.

Середні поля в рамках МКГ знаходяться таким чином [1–4]: розглядається рівняння поширення електромагнітного поля в S в інтегральному представленні; використовуючи спеціальний розклад пропагатора [6], по-казуємо що в квазістатичному наближенні ці середні формуються дельтавидної частиною пропагатора. В результаті отримуємо:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \left[1 + \langle \hat{Q}(\mathbf{r}) \rangle \right] \mathbf{E}_0; \qquad \langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega \hat{\varepsilon}_{\mathrm{f}}}{4\pi} \left[1 - 2 \langle \hat{Q}(\mathbf{r}) \rangle \right] \mathbf{E}_0$$
 (4)

де

$$\hat{Q}(\mathbf{r}) = \sum_{s=1}^{\infty} \left(-\frac{1}{3\hat{\varepsilon}_{f}} \right)^{s} (\delta \hat{\varepsilon}(\mathbf{r}))^{s}.$$
 (5)

В підрозділі **2.2** показується, що значення $\hat{\varepsilon}_f$ можна знайти з вимоги, щоб на межі \mathcal{M} та \mathcal{D} справджувалися стандартні граничні умови для нормальних компонент комплексного струму:

$$\hat{\varepsilon}_{\mathbf{f}} \mathbf{E}_{0n} = \hat{\varepsilon}_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle_{n}. \tag{6}$$

Разом з (4) вони дають $\hat{\varepsilon}_{\rm f} = \hat{\varepsilon}_{\rm eff}$. Цей результат робить теорію замкненою, та разом з (2) дає рівняння для $\varepsilon_{\rm eff}$:

$$\langle \hat{Q}(\mathbf{r}) \rangle = 0. \tag{7}$$

В підрозділі 2.3 рівняння (7) застосовується для аналізу модельної дисперсної системи частинок з морфологією тверде ядро–проникна оболонка. $\delta \hat{\varepsilon}(\mathbf{r})$ для цієї системи моделюється в рамках формалізму характеристичних функцій [7]. У випадку електрично однорідних оболонок із зовнішнім радіусом R_2

$$\delta \hat{\varepsilon}(\mathbf{r}) = (1 - \tilde{\chi}_2(\mathbf{r}))[\hat{\varepsilon}_0 - \hat{\varepsilon}_f] + \tilde{\chi}_1(\mathbf{r})[\hat{\varepsilon}_1 - \hat{\varepsilon}_f] + (\tilde{\chi}_2(\mathbf{r}) - \tilde{\chi}_1(\mathbf{r}))[\hat{\varepsilon}_2 - \hat{\varepsilon}_f], \quad (8)$$

де $\tilde{\chi}_1$, $\tilde{\chi}_2$ - характеристичні функції областей, зайнятих відповідно всіма ядрами (усіх чорних областей) та всіма ядрами разом з оболонками (усіх чорних та сірих областей). Підставляючи цей вираз в (7), отримаємо рівняння для $\hat{\varepsilon}_{\text{eff}}$:

$$[1 - \phi(c, \delta)] \frac{\hat{\varepsilon}_0 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_0} + c \frac{\hat{\varepsilon}_1 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_1} + [\phi(c, \delta) - c] \frac{\hat{\varepsilon}_2 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_2} = 0, \quad (9)$$

де $c=\langle \tilde{\chi}_1({\bf r}) \rangle$ — об'ємна концентрація ядер; $\phi(c,\delta_M)=\langle \tilde{\chi}_2({\bf r}) \rangle$ — об'ємна концентрація всіх частинок разом з їх оболонками товщиною $\delta=(R_2$ —

 $R_1)/R_1$. Статистичні оцінки ϕ для рівноважної системи розглядуваних частинок відомі в літературі [8]:

$$\phi(c,\delta) = 1 - (1 - c) \exp\left[-\frac{(1 - \psi)\phi_t}{1 - c}\right] \times \exp\left[-\frac{3c\phi_t}{2(1 - c)^3} \left(2 - 3\psi^{1/3} + \psi - c\left(3\psi^{1/3} - 6\psi^{2/3} + 3\psi\right)\right)\right],$$
(10)

де $\psi=(1+\delta)^{-3};\ \phi_t=c/\psi.$ Цей результат дуже добре підтвержується розрахунками методами Монте-Карло [9] і використовується нами для подальших оцінок.

Для квазістатичних провідності та діелектричної проникності за умови $|\sigma_i - \sigma_{\rm eff}| \gg \epsilon_0 \omega(\varepsilon_i + 2\varepsilon_{\rm eff})$ отримано рівняння:

$$(1 - \phi)\frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + c\frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + (\phi - c)\frac{\sigma_2 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_2} = 0, \tag{11a}$$

$$(1 - \phi) \frac{\varepsilon_0 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_0}{(2\sigma_{\text{eff}} + \sigma_0)^2} + c \frac{\varepsilon_1 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_1}{(2\sigma_{\text{eff}} + \sigma_1)^2} + (\phi - c) \frac{\varepsilon_2 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_2}{(2\sigma_{\text{eff}} + \sigma_2)^2} = 0.$$
 (116)

У рамках запропонованої схеми рівняння (11а) стає строгим при переході до статичної межі.

Далі ця модель узагальнюється на випадок електрично неоднорідних оболонок. Оболонки спершу розглядаються як сукупності великої кількості концентричних однорідних шарів, при перекриванні яких виконується правило домінування ближчих до ядра шарів над більш далекими, а потім здійснюється граничний перехід до кусково-неперервних оболонок. Зокрема, для статичної провідності отримуємо строге співвідношення:

$$(1 - \phi)\frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + c\frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\sigma_2(u) - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_2(u)} du = 0, \quad (12)$$

де $\sigma_2(u)$ – провідність оболонки, як функція змінної $u=(r-R_1)/R_1$, а δ_M відповідає зовнішній границі оболонки.

Формули (11) та (12) складають базу для подальшого аналізу в розділах 3 і 4.

В **третьому розділі** увага зосереджується на тестуванні та практичних застосувань рівнянь (11a) та (12) у випадку, коли $\sigma_0, \sigma_1 \ll \sigma_2$, який є характерним для твердих композитних (ТКЕ) та полімерних композитних (ПКЕ) електролітів.

Тестування моделі виконується в **підрозділі 3.1** шляхом порівняння її результатів з широким масивом даних числових симуляцій [10–12] для

концентраційної залежності об'ємної концентрації оболонок та статичної провідності розглядуваної модельної системи для різних діаметрів ядер та товщин оболонок двох типів: електрично однорідних [10,12] та електрично неоднорідних з гаусовим радіальним профілем провідності [11].

В рамках симуляцій [10–12] система сферично симетричних частинок із заданою товщиною оболонок замінювалася системою уявних кубічних комірок, яка потім використовувалися для побудови тривимірної ґратки резисторів. Виконаний нами аналіз показує, що якщо вимагати, щоб об'ємні концентрації твердих сферичних ядер c та кубічних комірок, що їм відповідають в симуляціях, були рівними, то відносна товщина сферично симетричних оболонок δ буде меншою ніж δ' , заданої в симуляціях:

$$\delta = K\delta' \qquad K \leqslant 1. \tag{13}$$

Якщо, наприклад, радіус ядра дорівнює половині довжини ребра куба, то $K=(\pi/6)^{1/3}\equiv k$; чим більша кількість комірок припадає на ядро, тим ближче K до одиниці. В симуляціях [10–12], довжини ребер комірок a' були 0.5 мкм, а діаметри ядер варіювалися від 3 до 11 мкм, тож відхилення K від одиниці повинні бути помітними.

В роботі показується, що відповідним вибором значення лише одного параметра K для кожної серії симуляцій можна, по-перше, добре узгодити результати симуляцій для об'ємної концентрації з надійно перевіреним результатом (10) (див. рис. 2a) та, по-друге, відновити результати симуляцій для провідності за формулами (10), (11a) (рис. 2б). Значення K, використані для відтворення результатів симуляцій для об'ємної концентрації та для ефективної провідності кожної окремої системи, незначно відрізняються, що пояснюється додатковими похибками, спричиненими більшим обсягом машинних обчислень у другому випадку.

Для відтворення даних симуляцій [11] за допомогою формули (12) треба ввести ше один підгінний параметр, який враховує ефективну зміну висоти гаусового профілю провідності сферично-симетричних оболонок при переході до системи кубічних комірок. Це дозволяє відновити всю сукупність даних симуляцій [11] для неоднорідних оболонок.

В підрозділі 3.2 описується загальний алгоритм використання розробленої моделі для аналізу експериментальних даних, наводяться результати її застосування до даних [13] для квазістатичної провідності ТКЕ, утвореного диспергуванням частинок Al_2O_3 в полікристалічну матрицю LiI, та аналізується питання фізичної інтерпретації цих результатів.

Обробка експериментальних даних здійснювалася за формулами (11а) і (12) з функціями $\sigma_2(u)$, форма яких поступово ускладнювалася від схо-

Рис. 2: Залежність об'ємної концентрації оболонок $\phi-c$ (a) та ефективної провідності системи (б) від об'ємної концентрації ядер c для випадку однорідних оболонок з фіксованою товщиною t=5 мкм та різних діаметрів ядер; $\sigma_0=1\times 10^{-8}$ См/см, $\sigma_1=1\times 10^{-12}$ См/см, $\sigma_2=1\times 10^{-4}$ См/см. Маркери – дані симуляцій [10,12], суцільні лінії – результати обробки за формулами (10), (11a) та (13).

динки зі сталою висотою до суперпозиції сигмоїд

$$\frac{\sigma_2(u)}{\sigma_0} = X_{2,1} + \frac{X_{2,2} - X_{2,1}}{1 + \exp\left[-\frac{u - \Delta_1}{\alpha}\right]} + \frac{X_{2,3} - X_{2,2}}{1 + \exp\left[-\frac{u - \Delta_2}{\alpha}\right]} + \frac{1 - X_{2,3}}{1 + \exp\left[-\frac{u - \Delta_3}{\alpha}\right]},\tag{14}$$

поки не досягалося достатнього узгодження теорії з експериментом. Тут $X_{2,m},\,\Delta_m\,\,(m=1,2,3),\,\,\alpha$ та, в загальному випадку, відносна провідність ядра $x_1=\sigma_1/\sigma_0$ – підгінні параметри. При $\alpha\to 0$ (14) має вигляд трьох сходинок, що відповідає моделі тришарових оболонок, при цьому $X_{2,m}$ та Δ_m набувають змісту відносних провідностей шарів $x_{2,m}=\sigma_{2,m}/\sigma_0$ та відносного положення їх країв $\delta_m=(R_{2,m}-R_1)/R_1$.

Аналіз показує, що вже модель двошарової оболонки з параметрами шарів $x_{2,1}=185,\ \delta_2=0.40$ та $x_{2,2}=14,\ \delta_2=1.40$ є достатньою для опису даних [13] (див рис. 3). "Розмивання" профілю $\sigma_2(u)$ шляхом збільшення значення α від 0 до 0.03 (при незначній зміні решти параметрів) практично не поліпшує результати. Для цієї моделі рівняння (14) еквівалентне системі двох рівнянь

$$[1 - \phi(c, \delta_1)] \frac{\sigma_0^* - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0^*} + c \frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + [\phi(c, \delta_1) - c] \frac{\sigma_{2,1} - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_{2,1}} = 0, (15a)$$

Рис. 3: (а) Залежність $\sigma_{\rm eff}$ ТКЕ LiI — ${\rm Al_2O_3}$ від концентрації: \circ — експериментальні дані [13]; лінії — результати їх обробки за (12) з профілями провідності оболонки (б)зверху; (б)знизу — залежність провідності матриці від c (штрихована лінія — поріг перколяції в системі зовнішніх шарів $c_c \approx 0.126$).

$$(1 - \phi(c, \delta_1)) \frac{\sigma_0^* - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0^*} = (1 - \phi(c, \delta_2)) \frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + (\phi(c, \delta_2) - \phi(c, \delta_1)) \frac{\sigma_{2,2} - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_{2,2}}.$$
(156)

Рівняння (15а) описує ефективну провідність системи, утворену диспергуванням твердих частинок, оточених приповерхневими проникними шарами товщиною δ_1 та провідністю $x_{2,1}$, в матрицю, провідність якої σ_0^* змінюється з концентрацію ядер згідно з рівнянням (15б) (нижній рис. 3б).

На основі цього робиться висновок, що параметри модельного профілю $\sigma_2(u)$, отримуваного з обробки експериментальних даних за допомогою моделі дисперсної системи як сукупності частинок типу тверде ядро-проникна оболонка, ефективно описують вплив різних фізичних механізмів на формування ефективної провідності системи. Наявність кількох добре виражених ділянок на цьому профілі вказує на зміну відносної ролі цих механізмів зі зміною концентрації диспергованих частинок – із зростанням концентрації ядер домінуюча роль переходить до більш внутрішніх шарів. Зокрема, для системи LiI — Al_2O_3 зовнішня ділянка профілю $\sigma_2(u)$ враховує внесок матричних процесів у формуванні σ_{eff} .

Рис. 4: (а) Залежності ефективних провідностей ПКЕ PEO–NaI–NASICON [19] (\circ) та OMPEO–LiClO₄–PAAM (з молярною концентрацією LiClO₄ 10 %, після відпалу) [20] (\bullet) від c та результати їх обробки за (12) для модельних одночастинкових профілів провідності (δ).

Ними можуть бути неконтрольоване легування матриці при підготовці експериментальних зразків, накопичення дислокацій та формування високопровідних шляхів для транспорту іонів тощо [14]. Ближній шар може вказувати на існування високопровідного шару просторового заряду навколо частинок $\mathrm{Al_2O_3}$ [15, 16]. Отримані нами оцінки добре узгоджуються з результатами $\delta_1=0.4$ та $x_{2,1}=185$ [17, 18] для кубічної ґратки з ідеальним розподілом кубічних частинок, отриманими поєднанням перколяційної теорії та моделі шару просторового заряду.

В підрозділі 3.3 наводяться результати застосування аналогічної процедури до опису експериментальних даних [19, 20] з концентраційних залежностей електричної провідності полімерних композитних електролітів на основі поліетилен-оксиду (PEO) та PEO з приєднаним оксіметиленом (ОМРЕО) з додаванням солей NaI або LiClO4. В якості наповнювачів виступали провідні (Na_{3.2}Zr₂P_{0.8}Si_{2.2}O₁₂ (NASICON)) чи непровідні (θ — Al₂O₃) частинки, або полімер іншого сорту (поліакриламінід (PAAM)), що не змішувався з полімером матриці. Результати (див. рис. 4) показують наявність двох-трьох чітко виражених ділянок на отриманих профілях провідності.

Центральна ділянка $\sigma_2(u)$ (рис. 46) характеризується провідністю, що на кілька порядків перевищує провідність матриці. Цей результат узго-

джується з експериментально перевіреним фактом [21] про формування навколо частинок в ПКЕ аморфізованих областей з відносно високою провідністю, яка є результатом підвищеної сегментарної гнучкості полімерних ланцюгів та, відповідно, підвищеної рухливості іонів розчиненої солі в цих областях.

Найближча до частинок ділянка $\sigma_2(u)$ описує сумарний ефект кількох можливих процесів: затруднення, під впливом твердих частинок, руху сегментів полімерних ланцюгів в безпосередньому їх околі (так званий "stiffening effect" — ефект затвердіння [20]), що веде до зниження локальної провідності; залежність цього значення від провідних властивостей частинок, а отже і природи міжфазної поверхні; нерегулярність форми частинок. Крім того, отримуване на основі наших обробок значення провідності $\sigma_1 \approx 0.690$ мкСм/см для частинок NASICON в ПКЕ суттєво відрізняється від провідності $\sigma_1 \approx 138$ мкСм/см до їх диспергування в ПКЕ. Цей результат (рис. 4а, лінії 1) вказує на формування на поверхні частинок тонкої слабкопровідної оболонки [22].

Найвіддаленіша ділянка $\sigma_2(u)$ ефективно відображає залежність провідності матриці від c. Зокрема, з наших результатів випливає, що провідність матриці в ПКЕ ОМРЕО — LiClO₄ — PAAM знижується в порівнянні з провідністю чистого аморфного ОМРЕО. Це пояснюється зв'язуванням іонів солі окремими ланцюжками PAAM, що залишилися поза межами практично непровідних глобул PAAM [20].

У силу різної фізичної природи задіяних механізмів параметри різних ділянок $\sigma_2(u)$ повинні по-різному залежати від температури. Це припущення відкриває додаткові можливості для подальшого тестування та розширення теорії та досліджується на прикладі температурної залежності $\sigma_{\rm eff}$ ПКЕ ОМРЕО — LiClO₄ — PAAM [20]. Оскільки три ділянки профілю $\sigma_2(u)$ для нього формуються процесами в областях з різним ступенем аморфності, температурна залежність параметрів $x_{2,m}$ моделюється за допомогою трипараметричного емпіричного закону Фогеля-Таммана-Фульхера (VTF). Відповідні параметри VTF для цих ділянок та матриці знаходяться шляхом обробки трьох ізотерм $\sigma_{\rm eff}(c,T)$ в рамках тришарової моделі (рис. 5а) при фіксованих значеннях інших параметрів моделі. Отриманих значень виявляється достатньо, щоб відновити температурні залежності $\sigma_{\rm eff}$ з різними фіксованими концентраціями РААМ в усьому дослідженому температурному інтервалі (рис. 5б).

В **четвертому розділі** аналізуються властивості системи рівнянь (11) для випадку $\sigma_0 \ll \sigma_2 \leqslant \sigma_1$ та результати застосування цих рівнянь до опису явища електричної перколяції в реальних системах типу провідникізолятор з міжфазним шаром.

Рис. 5: Залежності $\sigma_{\rm eff}$ ПКЕ ОМРЕО–LіСІО₄–РААМ від (а) концентрації РААМ при фіксованих температурах та (б) температури при фіксованих значеннях концентрації РААМ. Неперервні лінії: результати розрахунків за (12) з використанням закону VTF для шарів та матриці в рамках тришарової моделі.

В підрозділах 4.1 та 4.2 показується, що поведінка $\sigma_{\rm eff}$ та $\varepsilon_{\rm eff}$ має перколяційний характер. Поріг перколяції c_c , який відповідає утворенню перколяційного кластера в системі проникних оболонок, визначається як значення концентрації, коли з'являється нетривіальний розв'язок рівняння (11a) в системі з непровідною матрицею (при $\sigma_0 = 0$):

$$\phi(c_c, \delta) = \frac{1}{3}.\tag{16}$$

Поведінку ефективної провідності в околі c_c можна подати у вигляді

$$\sigma_{\text{eff}} \sim \begin{cases} (c_c - c)^{-s_{\text{eff}}}, & c < c_c, \\ (c - c_c)^{t_{\text{eff}}}, & c > c_c, \end{cases}$$
 (17)

при цьому показники $s_{\rm eff}$ та $t_{\rm eff}$ для розвинутої моделі не є універсальними, а залежать від концентраційного інтервалу $[c_1,c_2]$, на якому вони вимірюються, та значень відносної провідність матриці $x_0=\sigma_0/\sigma_1$ (див. рис. 6). Для аналогічних двовимірних моделей цей результат підтверджується симуляціями [23]. Він дозволяє пояснити широкий спектр експериментальних значень ($s\approx 0.7\div 1.0$; $t\approx 1.5\div 4$) цих індексів.

Перколяційний перехід в системі ядер в рамках моделі відбувається при фіксованій концентрації $c_c=1/3$. За умови $\sigma_2\ll\sigma_2$ провідність

Рис. 6: Залежності ефективних критичних індексів (а) $t_{\rm eff}$ від c_2 при фіксованому c_1 та (б) $s_{\rm eff}$ від $x_0 = \sigma_0/\sigma_1$ з фіксованими c_1 та c_2 при $\delta = 0.1$ ($c_c \approx 0.251$); $\sigma_2/\sigma_1 = 5 \times 10^{-5}$.

демонструє явище "подвійної перколяції", яке спостерігається, наприклад, в системах утворених диспергуванням нанотрубок в рідко-кристалічну матрицю [24].

Діелектрична проникність в околі кожного з перелічених порогів перколяції має максимум.

В підрозділі 4.3 показується, що вже модель однорідної оболонки достатньо добре описує експериментальні дані [25] для проникності та [26] для провідності спеціально підготовленої системи на основі КСІ з наночастинками Ag, покритими проникним оксидним шаром. Зокрема, формула (116) описує експериментальні дані краще ніж скейлінгові закони. Отримані оцінки для $\delta \approx 0.14 \div 0.18$ близькі до прогнозованих експериментаторами $\delta \approx 0.1$.

В п'ятому розділі МКГ застосовується до критичного аналізу диференціальних схем обчислення ефективних проникності (провідності) невпорядкованих дисперсних систем та на прикладі системи твердих діелектричних куль в діелектричній матриці демонструється їх внутрішня непослідовність. Для цього в підрозділі 5.1 рівняння (7) записується у вигляді

$$\left\langle \frac{\delta \varepsilon(\mathbf{r})}{3\varepsilon_{\text{eff}} + \delta \varepsilon(\mathbf{r})} \right\rangle = 0,$$
 (18)

який використовується для побудови диференціальних рівнянь для ефективної проникності. Показується, що при додаванні до системи інфінітезимальної порції частинок Δc її ефективна діелектрична проникність стає $\varepsilon + \Delta \varepsilon$, а проникність компактної групи в точці ${\bf r}$ у тому ж порядку

Рис. 7: Залежності ефективних (а) проникності [25] та (б) провідності [26] нанокомпозитів KCl—Ag від концентрації частинок Ag. Неперервні лінії — обробки за (11); точкові лінії — скейлінгові підгонки запропоновані в [25] для даних при c>0.11. Параметри оброк: $\sigma_0\approx 3.15\times 10^{-10}~{\rm Cm/cm},$ $\sigma_1\approx 6.3\times 10^5~{\rm Cm/cm},$ $\sigma_2\approx 3~{\rm Cm/cm}.$

малості дається трьома доданками:

$$\widetilde{\delta\varepsilon}(\mathbf{r}) \approx \delta\varepsilon(\mathbf{r}) + \delta\varepsilon_{ABM}^{(l)}(\mathbf{r}) + \delta\varepsilon_{ABM}^{(h)}(\mathbf{r}),$$
(19)

де $\delta \varepsilon$ – внесок в локальну проникність заданої компактної групи до додавання частинок, а внески $\delta \varepsilon_{\mathrm{ABM}}^{(l)}, \delta \varepsilon_{\mathrm{ABM}}^{(h)}$ враховують вплив на проникність цієї компактної групи, відповідно, нових частинок та зміни матриці внаслідок їх додавання. Класичні закони асиметричної моделі Бруггемана (АМБ) можна отримати у результаті інтегрування відповідного диференціального рівняння, яке отримуємо, якщо знехтувати внесками $\delta \varepsilon$ та $\delta \varepsilon_{\mathrm{ABM}}^{(h)}$ (або $\delta \varepsilon$ та $\delta \varepsilon_{\mathrm{ABM}}^{(l)}$), що можливо лише за наступних умов: а) концентрація компоненту, що додається, мала; б) різниці між діелектричними проникностями компонентів малі. Перша умова відповідає класичній АМБ, але якщо виконується тільки вона, наприклад, для концентрації ядер, тобто вважаючи, що c та $(\varepsilon_0 - \varepsilon)$ того ж порядку малості що й Δc та $\Delta \varepsilon$, то тільки вклад $\delta \varepsilon_{\mathrm{ABM}}^{(h)}$ містить внески другого порядку малості. Нехтуючи цим вкладом та інтегруючи отримане диференціальне рівняння ми отримаємо нове узагальнене співвідношення АМБ. Аналогічна процедура виконується вважаючи малою концентрацію матриці. В підрозділі 5.2 показується, що отримані нові співвідношення не задовольняють межі Хашина-Штрікмана, що свідчить про їх непослідовність. Класичні

АМБ задовольняють ці межі, але вони застосовні лише до дуже вузького класу систем, що визначається зазначеними умовами а) та б).

висновки

Основні висновки з результатів роботи наступні.

- Адекватний опис макроскопічних електричних властивостей дисперсних систем вимагає виходу за межі двофазних моделей. Зокрема, він може ефективно здійснюватися в рамках статистичної моделі ефективного електричного відгуку невпорядкованих систем частинок з морфологією тверде ядро-проникна оболонка, побудованої в роботі шляхом узагальнення методу компактних груп на системи провідних частинок.
- Отримані рівняння для ефективної статичної провідності розглянутих модельних систем підтверджуються результатами порівняння їх розв'язків з даними симуляцій, отриманих методом Random Resistor Network як для електрично однорідних, так і неоднорідних проникних оболонок.
- При відповідному виборі одночастинкових профілів провідності оболонок модель кількісно описує експериментальні дані для квазістатичної провідності різних типів твердих композитних та полімерних композитних електролітів. Ці профілі ефективно враховують вплив основних фізико-хімічних механізмів в системі та можуть бути використані для їх аналізу.
- Також модель кількісно описує поведінку ефективних провідності та діелектричної проникності твердих невпорядкованих композитів типу діелектрик—провідник з міжфазним шаром. Положення порогу електричної перколяції в моделі визначається відносною товщиною оболонки, а значення ефективних критичних індексів для цих систем залежать як від геометричних та електричних параметрів компонентів, так і способу обробки експериментальних даних, а тому демонструють широкий спектр значень.
- Диференціальна схема аналізу ефективних квазістатичних електричних параметрів дисперсних систем є внутрішньо непослідовною та застосовною лише для систем з малими різницями діелектричних проникностей компонентів та вузьких концентраційних інтервалів диспергованих частинок.

Таким чином, розроблена модель ε новим гнучким інструментом для електроспектроскопічного аналізу невпорядкованих дисперсних систем різного типу.

СПИСОК ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

Публікації в наукових журналах:

- [1*] Sushko M. Ya. Conductivity and permittivity of dispersed systems with penetrable particle-host interphase / M. Ya. Sushko, A. K. Semenov // Cond. Matter Phys. — 2013 — Vol. 16 — No. 1 — 13401 — P. 1-10. (SJR Q3)
 [1. 10.5400/CMD 16.13401]
 - doi: 10.5488/CMP.16.13401
- [2*] Semenov A. K. On applicability of differential mixing rules for statistically homogeneous and isotropic dispersions / A. K. Semenov // J. Phys. Commun. -2018. Vol. 2. No. 3-035045. P. 1-8. doi: 10.1088/2399-6528/aab060
- [3*] Sushko M. Ya. A mesoscopic model for the effective electrical conductivity of composite polymeric electrolytes. / M. Ya. Sushko, A. K. Semenov // J. Mol. Liq. 2019. Vol. 279 P. 677-686. (SJR Q1) doi: 10.1016/j.molliq.2019.02.009
- [4*] Sushko M. Ya. Rigorously solvable model for the electrical conductivity of dispersions of hard-core–penetrable-shell particles and its applications / M. Ya. Sushko, A. K. Semenov // Phys. Rev. E 2019. Vol. 100. 052601. P. 1-14. (SJR Q1) doi: 10.1103/PhysRevE.100.052601

Тези доповідей на наукових конференціях:

- Semenov A. Complex permittivity of disperse systems with penetrable particle-host interphase / A. Semenov, M. Sushko // 4-th International Conference on Statistical Physics: Modern Trends and Applications, abstract – Lviv (Ukraine), 2012. – P. 175.
- 2. Семенов А.К. Роль межфазной границы в формировании проводимости и диэлектрической проницаемости мелкодисперсных систем / А.К. Семенов, М.Я. Сушко // 25-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2012. P. 221.
- 3. Sushko M. Ya. Finding the parameters of the interphase layers in fine dispersions with dielectric spectroscopy studies near the electrical percolation threshold / M.Ya. Sushko, A.K. Semenov // 5-th International Symposium: Methods and Applications of Computational Chemistry, abstract Kharkiv (Ukraine), 2013. P. 44.
- 4. Sushko M. Ya. Effect of interphase on the effective electrophysical parameters of fine dispersions and nanofluids / M.Ya. Sushko, A.K. Semenov // 6-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2014. P. 177.

- 5. Семенов А. К. Диэлектрическая проницаемость и проводимость дисперсных систем с неоднородной межфазной границей / А.К. Семенов, М.Я. Сушко // 26-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2014. Р. 163.
- Semenov A. K. A model for conductivity and permittivity of heterogeneous systems with complex microstructures / A.K. Semenov, M.Ya. Sushko // 2015 International Young Scientists Forum on Applied Physics, abstract Dnipropetrovsk (Ukraine), 2015. P. 1. doi: 10.1109/YSF.2015.7333251
- 7. Бабий К. А Особенности электрической проводимости дисперсных систем на основе полимерных матриц / К.А. Бабий, А.К. Семенов, М.Я. Сушко // 27-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2016. P. 28.
- 8. Семенов А. К. Роль міжфазних шарів у формуванні провідних та діелектричних властивостей дісперсноподібних систем: модель та застосування / А.К. Семенов, М.Я. Сушко // International conference: The development of innovation in Engineering, Physical and Mathematical Sciences, abstract Mykolayiv (Ukraine), 2016. P. 21.
- 9. Sushko M. Ya. Effective electrical conductivity of composite polymer electrolytes / M.Ya. Sushko, A.K. Semenov // 8-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2018. P. 81.
- 10. Sushko M. Ya. Recent developments in the theory of electrodynamic homogenization of random particulate systems / M.Ya. Sushko, A.K. Semenov // 5-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2019. P. 160.
- Semenov A. K. Hard-core-penetrable-shell model for effective electric parameters of random particulate systems / A.K. Semenov, M.Ya. Sushko // 7-th International Conference: Nanotechnologies and Nanomaterials, abstract – Lviv (Ukraine), 2019. – P. 257.
- 12. Семенов А. К. Моделювання електрофізичного відгуку дисперсних систем з твердим дисперсійним середовищем / А.К. Семенов, М.Я. Сушко // 28-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2019. P. 90.

СПИСОК ЦИТОВАНИХ РОБІТ

[1] Сушко, М.Я. О диэлектрической проницаемости суспензий / М.Я. Сушко // ЖЭТФ. — 2007. — Т. 132. — С. 478–484.

- [2] Сушко, М.Я. Метод компактных групп в теории диэлектрической проницаемости гетерогенных систем / М.Я. Сушко, С.К. Криськив // ЖТФ. -2009. Т. 79. С. 97-101.
- [3] Sushko, M.Ya. Effective permittivity of mixtures of anisotropic particles / M.Ya. Sushko // J. Phys. D: Appl. Phys. – 2009. – Vol. 42. – P. 155410.
- [4] Sushko, M.Ya. Effective dielectric response of dispersions of graded particles / M.Ya. Sushko // Phys. Rev. E. -2017. Vol. 96. P. 062121, 8 p.
- [5] Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Propertie / S. Torquato. Springer, New York, 2002.
- [6] Weiglhofer, W. Delta function identities and electromagnetic field singularities / W. Weiglhofer // Am. J. Phys. 1989. Vol. 57. P. 455.
- [7] Torquato, S. Bulk properties of two phase disordered media. I. Cluster expansion for the effective dielectric constant of dispersions of penetrable spheres / S. Torquato // J. Chem. Phys. — 1984. — Vol. 81. — P. 5079.
- [8] Rikvold, P. D-dimensional interpenetrable-sphere models of random twophase media: Microstructure and an application to chromatography / P. Rikvold, G. Stell // J. Coll. and Int. Sci. — 1985. — Vol. 108. — P. 158.
- [9] Rottereau, M. 3d Monte Carlo simulation of site-bond continuum percolation of spheres / M. Rottereau, J. Gimel, T. Nicolai, D. Durand // Eur. Phys. J. E. – 2003. — Vol. 11. — P. 61–64.
- [10] Siekierski, M. Modeling of conductivity in composites with random resistor networks / M. Siekierski, K. Nadara // Electrochimica Acta. 2005. Vol. 50. P. 3796.
- [11] Siekierski, M. Conductivity simulation in composite polymeric electrolytes / M. Siekierski, K. Nadara, P. Rzeszotarski // J. New Mat. Electrochem. Systems. 2006. Vol. 9. P. 375.
- [12] Siekierski, M. Mesoscale models of ac conductivity in composite polymeric electrolytes / M. Siekierski, K. Nadara // J. Pow. Sour. 2007. Vol. 173. P. 748.
- [13] Liang, C. C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes / C. C. Liang // J. Electrochem. Soc. -1973. Vol. 120. P. 1289.
- [14] Dudney, N. Composite electrolytes / N. Dudney // Annu. Rev. Mater. Sci. 1989. Vol. 19. P. 103.
- [15] Maier, J. Surface Induced Defects in the Space Charge Region and the Enhancement of Ionic Conductivity in Two-Phase Systems / J. Maier // Phys. Stat. Sol. (b). 1984. Vol. 123. P. K89. 124, K187 (1984).

- [16] Maier, J. Space charge regions in solid two-phase systems and their conduction contribution I. Conductance enhancement in the system ionic conductor-"inert" phase and application on AgC1:Al2O3 and AgC1:SiO2 / J. Maier // J. Phys. Chem. Solids. 1985. Vol. 46. P. 309.
- [17] Jiang, Sh. A theoretical model for composite electrolytes I. Space charge layer as a cause for charge-carrier enhancement / Sh. Jiang, B. Jr. Wagner // J. Phys. Chem. Solids. 1995. Vol. 56. P. 1101.
- [18] Jiang, Sh. A theoretical model for composite electrolytes II. Percolation model for ionic conductivity enhancement / Sh. Jiang, B. Jr. Wagner // J. Phys. Chem. Solids. -1995. Vol. 56. P. 1113.
- [19] Przyluski, J. Effective medium theory in studies of conductivity of composite polymeric electrolytes / J. Przyluski, M. Siekierski, W. Wieczorek // Electrichimica A. 1995. Vol. 40. P. 2101.
- [20] Wieczorek, W. Polyether, Polyacrylamide, LiClO4 Composite Electrolytes with Enhanced Conductivity / W. Wieczorek, K. Such, Z. Florjanczyk, J.R. Stevens // J. Phys. Chem. 1994. Vol. 98. P. 6840.
- [21] Wieczorek, W. Nanocomposites: Ionic Conducting Materials and Structural Spectroscopies / W. Wieczorek, M. Siekierski; Ed. by Ph. Knauth, J. Schoonman. Springer Science+Business Media, 2008.
- [22] Plocharski, J. PEO Based Composite Solid Electrolyte Containing NA-SICON / J. Plocharski, W. Wieczorek // Solid State Ionics. 1988. Vol. 28-30. P. 979—982.
- [23] Myroshnychenko, V. Possible manifestation of nonuniversality in some continuum percolation systems / V. Myroshnychenko, C. Brosseau // J. Phys. D: Appl. Phys. – 2008. – Vol. 41. – P. 095401.
- [24] Tomylko, S. Two-step electrical percolation in nematic liquid crystal filled by multiwalled carbon nanotubes / S. Tomylko, O. Yaroshchuk, N. Lebovka // Phys. Rev. E. 2015. Vol. 92. P. 012502.
- [25] Grannan, D. Critical Behavior of the Dielectric Constant of a Random Composite near the Percolation Threshold / D. Grannan, J. Garland, D. Tanner // Phys. Rev. Lett. — 1981. — Vol. 46. — P. 375.
- [26] Chen, L. Materials for solid state batteries / L. Chen. World Scientific, Singapore, 1986.

АНОТАЦІЯ

Семенов А.К. Електрофізичні властивості багатофазних дисперсних систем. – Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.04.02 — теоретична фізика. Одеський національний університет імені І.І. Мечникова, МОН України, Одеса, 2020.

В роботі побудовано модель квазістатичного електричного відгуку невпорядкованих тривимірних систем частинок з морфологією тверде ядропроникна оболонка. Розрахунки базуються на методі компактних груп, що дозволяє врахувати багаточастинкові поляризаційні і кореляційні ефекти без їх деталізації. Теорія замикалась доповненням її вимогою виконання граничних умов для нормальних компонент струму.

Результати успішно протестовані на даних численних симуляцій, отриманих методом Random Resistor Network, та застосовані до обробки та аналізу експериментальних даних з ефективної провідності твердих композитних і полімерних композитних електролітів та ефективної провідності і діелектричної проникності в околі порогу перколяції в системах типу діелектрик-провідник з міжфазним шаром. Показано, що модель дуже гнучка та може ефективно враховувати вклади як міжфазних ефектів, так і змін властивостей самої матриці за рахунок оболонок. Показано непослідовність і обмеженість поширеною диференціальної схеми дослідження гетерогенних систем.

Ключові слова: метод компактних груп, модель ядро-оболонка, електрична провідність, діелектрична проникність, дисперсна система, перколяція, композитні електроліти, нанокомпозити, диференціальний метод

АННОТАЦИЯ

Семенов А.К. Электрофизические свойства многофазных дисперсных систем. – Квалификационная научная работа на правах рукописи.

Диссертация на соискание ученой степени кандидата физико-математических наук по специальности 01.04.02 — теоретическая физика. Одесский национальный университет имени И.И. Мечникова, МОН Украины, Одесса, 2020.

В работе исследуются эффективные квазистатические электрическая проводимость и диэлектрическая проницаемость неупорядоченных трехмерных систем частиц с морфологией твердое ядро-проницаемая оболоч-

ка в рамках модели, построенной на основе метода компактных групп. Последний позволяет учесть многочастичные поляризационные и корреляционные эффекты без их детализации. Оболочки, в общем случае, электрически неоднородные, при этом их разные части эффективно могут отображать вклады как межфазных эффектов, так и изменений свойств самой матрицы. Теория замыкается, если требовать выполнение граничных условий для нормальных компонент тока.

Результаты протестированы на данных численных симуляций, полученных методом Random Resistor Network. Показано, что полученные соотношения могут адекватно описывать широкие массивы данных для эффективной квазистатической проводимости твердых композитных и полимерных композитных электролитов и эффективные проводимость и диэлектрическую проницаемость в окрестности порога перколяции в системах типа диэлектрик—проводник с межфазным слоем. Так же, показано непоследовательность и ограниченность распространенной дифференциальной схемы исследования гетерогенных систем.

Ключевые слова: метод компактных групп, модель ядро-оболочка, электрическая проводимость, диэлектрическая проницаемость, дисперсная система, перколяция, композитные электролиты, нанокомпозиты, дифференциальный метод

ABSTRACT

Semenov A.K. Electrophysical properties of multiphase disperse systems. – Qualification scientific paper, manuscript.

Candidate degree (PhD) thesis in Physics and Mathematics Sciences. Speciality 01.04.02 – theoretical physics. Odesa I.I. Mechnikov National University, the MES of Ukraine, Odesa, 2020.

Practical application of composite materials becomes more widespread due to their unique physical properties, which natural substances can not demonstrate. As a result, both the need to solve the problems of creating composite materials with desired and controlled electrophysical properties (e.g. solid composite and polymer composite electrolytes), and the need to build and improve reliable theoretical models for quantitative description and analysis of their characteristics are increasing.

The most sparing and widespread, but the least theoretically researched type of such systems are three-dimensional disordered systems formed by dispersion of filler particles into a carrier matrix. Theoretical study of electro-

physical properties of such systems is not a trivial and far from its accurate solution task, since their characteristics are usually the result of various structural and physico-chemical factors and mechanisms, the key of which are: various interphase effects (form irregularities of dispersed particles; contact resistance; oxide layers; formation of highly conductive regions with increased concentration of defects or ions; amorphization of a polymer matrix, etc.), and changes in properties of the matrix itself (as the result of uncontrolled doping, pollution, changes in internal structure, etc.). Moving towards the homogenization problem is further complicated by the need to take into account many-particle polarizations and correlations.

In this thesis a closed theoretical approach to description of the effective quasi-static electrical response of disordered systems of particles with a hardcore-penetrable-shell morphology, dispersed in a homogeneous matrix, was built. The shells are in general electrically inhomogeneous and obey certain overlapping rules. The properties of different parts of the shells are manifested in different concentration intervals, which allows to effectively reflect through them the contribution of corresponding mechanisms. The electrodynamic homogenization of the model was carried out using the boundary conditions for normal components of the electric field in terms of the compact groups of inhomogeneities approach, which was generalized to the case of conducting systems. The compact groups approach allows one to take into account many-particle polarization and correlation processes without their detailing, using the field propagator expansion into a singular and principal parts together with the symmetry properties of the considered model. This in fact suggests that the obtained theoretical relationships between the effective static electrical conductivity of the system and the electrical and geometric parameters of its components are rigorous, as evidenced by the results of their comparison with existing simulation data for the studied model systems obtained within a Random Resistor Network algorithm. It is also shown that these relationships are capable of adequately describing the broad arrays of experimental data for the effective quasi-static conductivity of solid composite and polymer composite electrolytes, effective electrical conductivity and dielectric constant around the percolation threshold in a dielectric-conductor system with interphase layer. The theory also allowed us to show the inconsistency and limitations of a widespread differential scheme for calculation the effective electrical parameters of heterogeneous systems.

The developed theory can be considered as a new flexible tool for analysis and diagnostics of both effective electrophysical parameters of disordered composite systems and existing methods of their study.

Key words: compact group approach, core-shell model, electric conductivity, dielectric permittivity, disperse system, percolation, composite electrolytes, nanocomposites, differential scheme

Підп. до друку ??..??.??. Формат $60 \times 84/16$. Гарн. Таймс. Умов.-друк. арк. ??. Тираж 100 прим. Зам. № ???.

Видавець і виготовлювач: Одеський національний університет імені І. І. Мечникова

Україна, 65082, м. Одеса, вул. Єлісаветинська, 12 Тел.: (048) 723 28 39. E-mail: druk@onu.edu.ua Свідоцтво ДК № 4215 від 22.11.2011 р.