Математический анализ 1. Лекция 8. Монотонность и экстремумы функций

27 сентября 2023 г.

Свойства дифференцируемых функций

- Монотонность
- Теорема об условиях монотонности функций на промежутке Экстремумы
- Теорема Ферма о необходимом условии экстремума
- Теорема Ролля о нуле производной
- Теорема Лагранжа о конечных приращениях и ее следствие
- Доказательство теоремы об условиях монотонности функций на промежутке
- Теорема Коши о конечных приращениях

Определения. Промежутком называют сегмент [a,b], полусегменты (a,b] и [a,b) и интервал (a,b); все они, кроме [a,b], могут быть бесконечными. Пусть функция f определена на некотором промежутке Δ . Она называется:

возрастающей на Δ , если

$$f(x_1) < f(x_2)$$
 при всех $x_1, x_2 \in \Delta, x_1 < x_2$.

Примеры. $f(x) = \ln x$ на $(0, +\infty)$, $f(x) = \operatorname{arctg} x$ на \mathbb{R} .

неубывающей на Δ , если

$$f(x_1) \leqslant f(x_2)$$
 при всех $x_1, x_2 \in \Delta, \ x_1 < x_2.$

Пример. $f(x) = \max\{x, 0\}$ на \mathbb{R} .

убывающей на ∆, если

$$f(x_1) > f(x_2)$$
 при всех $x_1, x_2 \in \Delta, x_1 < x_2$.

Пример. $f(x) = \frac{1}{x}$ на $(-\infty,0)$ или $(0,+\infty)$ (но не на всей области определения $(-\infty,0) \cup (0,+\infty)$ (!)).

невозрастающей на Δ , если

$$f(x_1) \geqslant f(x_2)$$
 при всех $x_1, x_2 \in \Delta, x_1 < x_2$.

Пример. $f(x) = \max\{-x, 0\}$ на \mathbb{R} .

Теорема. Пусть функция f определена и непрерывна на промежутке $\Delta=[a,b],\,(a,b],\,[a,b)$ или (a,b) (непрерывность в точке a означает ее непрерывность справа, а в точке b – слева). Пусть существует f'(x) при всех $x\in(a,b).$ Тогда:

- $1. \ f'(x) > 0$ при всех $x \in (a,b) \ \Rightarrow \$ функция f возрастающая на Δ
- 2. $f'(x)\geqslant 0$ при всех $x\in (a,b) \Leftrightarrow$ функция f неубывающая на Δ
- 3. f'(x) < 0 при всех $x \in (a,b) \; \Rightarrow \;$ функция f убывающая на Δ
- 4. $f'(x) \leqslant 0$ при всех $x \in (a,b) \Leftrightarrow$ функция f невозрастающая на Δ

Важные обобщения — теорема сохраняет силу, если f'(x) существует при всех $x \in (a,b)$, за исключением конечного числа точек, и удовлетворяет указанным неравенствам при всех $x \in (a,b)$, где она существует. Также в пп. 1 и 3 допустимо, чтобы f'(x) = 0 в конечном числе точек (!).

Примеры. 1. $f'(x)=\frac{1}{2\sqrt{x}}>0$ при всех x>0 \Rightarrow функция $f(x)=\sqrt{x}$ – возрастающая на $[0,+\infty)$.

Контрпример для теоремы без обобщения: $f(x)=x^3$ возрастает на \mathbb{R} , но для $f'(x)=3x^2$ имеем f'(0)=0.

- 2. $f'(x) = \max\{2x,0\} \geqslant 0$ при всех $x \in \mathbb{R} \iff$
- функция $f(x) = (\max\{x,0\})^2 \geqslant 0$ неубывающая на \mathbb{R} .
- 3. $f'(x) = -\frac{1}{x^2} < 0$ при всех $x \in (0, +\infty) \Rightarrow функция <math>f(x) = \frac{1}{x}$ убывающая на $(0, +\infty)$.
- $f(x)=\min\{2x,0\}\leqslant 0$ при всех $x\in(a,b)\Leftrightarrow$ функция $f(x)=(\min\{x,0\})^2\leqslant 0$ неубывающая на $\mathbb R$.

Примеры. 1. Найдите промежутки монотонности кубического многочлена $f(x)=2x^3+3x^2-12x+1$. Находим $f'(x)=6x^2+6x-12=6(x^2+x-2)=6(x+2)(x-1)$. Поэтому f'(x)>0 на $(-\infty,-2)$ и $(1,+\infty)$, f'(x)<0 на (-2,1). Тем самым f(x) возрастает на $(-\infty,-2]$, убывает на [-2,1] и снова

2. Найдите промежутки монотонности тригонометрической функции $f(x) = \sin^4 x + \cos^4 x.$

Находим

 $f'(x)=4(\sin^3 x)\cos x-4(\cos^3 x)\sin x=4(\sin x)(\cos x)(\sin^2 x-\cos^2 x)$ и далее $f'(x)=2\sin(2x)(2\sin^2 x-1)=-2\sin(2x)\cdot\cos(2x)=-\sin(4x).$ Поэтому f'(x)>0 на интервалах, где $-\pi+2\pi k<4x<2\pi k,\ k\in\mathbb{Z}$, и f'(x)<0 на интервалах, где $2\pi k<4x<\pi+2\pi k,\ k\in\mathbb{Z}.$ Тем самым f(x) возрастает на сегментах

$$-\frac{\pi}{4} + \frac{\pi k}{2} \leqslant x \leqslant \frac{\pi k}{2}, \ k \in \mathbb{Z},$$

и убывает на сегментах

возрастает на $[1, +\infty)$.

$$\frac{\pi k}{2} \leqslant x \leqslant \frac{\pi}{4} + \frac{\pi k}{2}, \ k \in \mathbb{Z}.$$

Определения. Пусть функция f определена в некоторой окрестности $\mathcal O$ точки x_0 . Тогда

lacktriangledown x_0 — точка строгого локального максимума функции f, если найдется такая окрестность $\mathcal{O}_1\subset\mathcal{O}$ точки x_0 , что

$$f(x_0) > f(x)$$
 при всех $x \in \mathcal{O}_1, x \neq x_0$.

Пример.
$$f(x) = \sin x$$
, $\mathcal{O} = \mathbb{R}$, $x_0 = \frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$.

lacktriangledown x_0 — точка локального максимума функции f, если найдется такая окрестность $\mathcal{O}_1\subset\mathcal{O}$ точки x_0 , что

$$f(x_0) \geqslant f(x)$$
 при всех $x \in \mathcal{O}_1$.

Пример.
$$f(x) = \min\{x^2 - 1, 0\}, \ \mathcal{O} = \mathbb{R}, \ |x_0| \geqslant 1. \ \bigstar$$

 x_0 — точка строгого локального минимума функции f, если найдется такая окрестность $\mathcal{O}_1 \subset \mathcal{O}$ точки x_0 , что

$$f(x_0) < f(x)$$
 при всех $x \in \mathcal{O}_1, x \neq x_0$.

Пример.
$$f(x) = \sin x$$
, $\mathcal{O} = \mathbb{R}$, $x_0 = -\frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$.

 $ightharpoonup x_0$ – точка локального минимума функции f, если найдется такая окрестность $\mathcal{O}_1 \subset \mathcal{O}$ точки x_0 , что

$$f(x_0) \leqslant f(x)$$
 при всех $x \in \mathcal{O}_1$.

Пример.
$$f(x) = \max\{x^2 - 1, 0\}$$
, $\mathcal{O} = \mathbb{R}$, $x_0 \in [-1, 1]$.

Определение. Вместе возрастающие и убывающие функции называют **монотонными** (иногда – строго монотонными).

Неубывающие и невозрастающие функции называют **нестрого монотонными**.

Определение. Вместе точки строгого локального максимума и строгого локального минимума функции f называют ее точками строгого локального экстремума. Точки локального максимума и локального минимума функции f называют ее точками локального экстремума.

Пример. $f(x)=\sin x$, $x_0=-\frac{\pi}{2}+\pi k$, $k\in\mathbb{Z}$ – точки строгого локального экстремума.

Значение функции f в точке ее локального максимума (минимума) называется ее локальным максимумом (минимумом).

Непосредственно из определений следуют простые свойства.

- 1. Функция f возрастающая на $\Delta \Leftrightarrow (-f)$ убывающая на Δ .
- 2. Функция f неубывающая на $\Delta \Leftrightarrow (-f)$ невозрастающая на $\Delta.$
- 3. Точка x_0 точка строгого локального максимума функции f и $M = \max_{x \in \mathcal{O}_1} f(x) \Leftrightarrow x_0$ точка строгого локального минимума функции (-f) и $m = \min_{x \in \mathcal{O}_1} (-f(x)) = -M$. Пример. $\sin \frac{\pi}{2} = \max_{x \in (0,\pi)} \sin x = -\min_{x \in (0,\pi)} (-\sin x) = -\left(-\sin \frac{\pi}{2}\right)$. \bigstar
- 4. Точка x_0 точка локального максимума функции $f\Leftrightarrow x_0$ точка локального минимума функции (-f).

Теорема (Ферма о необходимом условии экстремума)

Пусть функция f дифференцируема в точке c и имеет в ней локальный экстремум. Тогда f'(c)=0.

Доказательство. Пусть для определенности функция f имеет локальный максимум в точке c. Тогда $f(c)\geqslant f(x)$ для всех $x\in(c-\varepsilon,c+\varepsilon)$ при некотором $\varepsilon>0$. Это свойство можно переписать в виде двух неравенств

$$\frac{f(x)-f(c)}{x-c}\geqslant 0$$
 при всех $x\in (c-arepsilon,c),$ (1)

$$rac{f(x)-f(c)}{x-c}\leqslant 0$$
 при всех $x\in (c,c+arepsilon).$ (2)

Поскольку функция f дифференцируема в точке c, то существует

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c),$$

значит, существуют и соответствующие односторонние пределы и они равны

$$\lim_{x \to c-0} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c+0} \frac{f(x) - f(c)}{x - c} = f'(c).$$

В силу теоремы о предельном переходе (одностороннем) в неравенствах из неравенств (1) и (2) получаем: $f'(c) \ge 0$ и $f'(c) \le 0$. Значит, f'(c) = 0.

Примеры. 1. $f(x)=x^2$, f'(x)=2x, $x_0=0$ – точка строгого локального (и глобального) минимума и в ней f'(0)=0.

2. $f(x)=\sin x,\ f'(x)=\cos x,\ x_k=\frac{\pi}{2}+\pi k,\ k\in\mathbb{Z}$ – точки строгого локального экстремума, в них $\sin x_k=(-1)^k$, а также $f'(x_k)=0$.

Контрпримеры. 1. $f(x) = x^3$, $f'(x) = 3x^2$, f'(0) = 0, но $x_0 = 0$ не является точкой локального экстремума.

Следовательно, теорема обратная теореме Ферма, неверна.

2. f(x) = |x|, $x_0 = 0$ – точка строгого локального (и глобального) минимума, но f'(0) не существует.

Схема исследования функции на локальные экстремумы на интервале

- 1. Находим все точки b, в которых f'(b) = 0 или функция f не дифференцируема (такие точки часто называют критическими).
- 2. Анализируем $\operatorname{sgn} f'(x)$ в проколотой окрестности каждой такой точки b.
- **2а.** Если f'(x) меняет знак с на + при переходе через точку b, т.е.
- f'(x)<0 при всех $x\in (b-arepsilon,b)$ и f'(x)>0 при всех $x\in (b,b+arepsilon)$ при некотором достаточно малом arepsilon>0, то b точка строгого локального минимума.

Примеры. 1. $f(x)=|x|,\ f'(x)=\operatorname{sgn} x$ при $x\neq 0 \Rightarrow b=0$ – точка строгого локального (и глобального) минимума.

- 2. $f(x) = x^2$, f'(x) = 2x при $x \neq 0 \Rightarrow b = 0$ точка строгого локального (и глобального) минимума.
- **2b.** Если f'(x) меняет знак с + на при переходе через точку b, т.е. f'(x)>0 при всех $x\in (b-\varepsilon,b)$ и f'(x)<0 при всех $x\in (b,b+\varepsilon)$ при некотором достаточно малом $\varepsilon>0$, то b точка строгого локального максимума.

Примеры. Можно рассмотреть функции -f(x) для примеров пункта 2b. 2c. Если f'(x) не меняет знак в некоторой проколотой окрестности $O_{\varepsilon}^{\circ}(b)$ точки b, т.е. f'(x)>0 при всех $x\in O_{\varepsilon}^{\circ}(b)$ или f'(x)<0 при всех $x\in O_{\varepsilon}^{\circ}(b)$ при некотором достаточно малом $\varepsilon>0$, то b не является точкой экстремума.

Пример. $f(x)=x^3$, $f'(x)=3x^2 \ \Rightarrow b=0$ не является точкой экстремума.

2d. Если ни одно из этих трех свойств не выполняется, требуется дополнительное исследование.

Пример. Исследуйте на локальные экстремумы функцию-многочлен

$$f(x) = x^4 - 6x^2 + 8x + 1.$$

- 1. Находим критические точки.
 - 1.1 Находим производную: $f'(x) = 4x^3 12x + 8$.
 - 1.2 f'(x) определена всюду, поэтому критические точки это все решения уравнения $4x^3-12x+8=0$. Один из корней легко подбирается: $x_1=1$, далее многочлен делим $4x^3-12x+8$ на x-1, получим $4x^3-12x+8=4(x^2+x-2)(x-1)$ и находим остальные корни: $x_2=1$, $x_3=-2$.

Итак, критические точки: 1 и -2.

2. Проверяем для критических точек условие смены знака. Для удобства представим f'(x) в виде произведения

$$f'(x) = 4x^3 - 12x + 8 = 4(x-1)^2(x+2).$$

- 2.1 В точке x = -2 знак меняется с на +, это точка минимума.
- 2.2 В точке x=1 знак не меняется, это не точка экстремума.

Схема нахождения глобальных экстремумов и области значений функции f, непрерывной на сегменте [a,b] и дифференцируемой на (a,b), за исключением быть может, конечного числа точек

- 1. Находим все критические точки $c \in (a,b)$ функции f. Пусть \mathcal{C} множество всех таких точек.
- 2. Для нахождения глобального максимума M функции f на сегменте [a,b] используем то, что

$$M = \max_{x \in [a,b]} f(x) = \max_{x \in \mathcal{C} \cup \{a,b\}} f(x).$$

Для нахождения точек глобального максимума функции f на сегменте [a,b] выбираем все точки $\xi\in\mathcal{C}\cup\{a,b\}$, для которых $f(\xi)=M.$

3. Аналогично, для нахождения глобального минимума m функции f на сегменте [a,b] используем то, что

$$m = \min_{x \in [a,b]} f(x) = \min_{x \in \mathcal{C} \cup \{a,b\}} f(x).$$

Для нахождения точек глобального минимума функции f на сегменте [a,b] выбираем все точки $\eta \in \mathcal{C} \cup \{a,b\}$, для которых $f(\eta)=m$.

4. Область значений функции f на сегменте [a,b] – это сегмент [m,M].

Пример

Найдите
$$\max_{[-1,2]} f(x)$$
 и $\min_{[-1,2]} f(x)$ для $f(x) = x^4 - 6x^2 + 8x + 1$.

Решение.

- 1. Находим критические точки из интервала (-1,2).
 - 1.1 Находим производную: $f'(x) = 4x^3 12x + 8$.
 - $1.2\;$ Критические точки уже найдены: это точки $-2\;$ и $1.\;$
 - 1.3 Отбираем те критические точки, которые принадлежат интервалу (-1,2). Это только точка 1.
- 2. Вычисляем $f(-1)=-12,\ f(1)=4,\ f(2)=9.$ Из них выбираем максимальное и минимальное значения:

$$\max_{[-1,2]} f(x) = 9, \quad \min_{[-1,2]} f(x) = -12,$$

они достигаются в точках 2 и -1 соответственно.

Замечание. При нахождении точек глобального максимума (минимума) можно отбрасывать критические точки, не являющиеся точками локального максимума (соответственно, минимума). Например, в данном примере точку 1, как мы знаем, можно было не рассматривать. Но обычно исследование критических точек на максимум/минимум более трудоемко, чем просто вычисление значения функции в них.

Теорема (Ролля о нуле производной)

Пусть функция f определена и непрерывна на сегменте [a,b], дифференцируема на интервале (a,b) и f(a)=f(b). Тогда существует такая точка $x_0\in(a,b)$, что

$$f'(x_0) = 0.$$

Доказательство. По 2-й теореме Вейерштрасса существуют такие точки $c,d\in [a,b]$, что

$$f(c) = \max_{x \in [a,b]} f(x) = M, \quad f(d) = \min_{x \in [a,b]} f(x) = m.$$

При m < M в силу условия f(a) = f(b) хотя бы одна из точек c,d принадлежит интервалу (a,b). Возьмем ее в качестве x_0 . По определению она является точкой экстремума, и утверждение теоремы немедленно следует из теоремы Ферма о необходимом условии экстремума. Если же M=m, то функция f постоянна на сегменте [a,b], и в качестве x_0 можно взять любую точку $x_0 \in (a,b)$.

Теоремы о конечных приращениях

Теорема (Лагранжа о конечных приращениях). Пусть функция f непрерывна на сегменте [a,b] и дифференцируема на интервале (a,b). Тогда существует такая точка $\xi \in (a,b)$, что

$$f(b) - f(a) = f'(\xi)(b - a)$$
.

Замечание. Теорема Лагранжа следует из теоремы Ролля и обобщает ее. Доказательство. Введем вспомогательную функцию

$$u(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Она дифференцируема на (a,b) и построена так, что u(a)=f(a) и u(b)=f(a). Поэтому u удовлетворяет условиям теоремы Ролля, и в некоторой точке $c\in(a,b)$ имеем

$$0 = u'(c) = f'(c) - \frac{f(b) - f(a)}{b - a},$$

откуда f(b) - f(a) = f'(c)(b - a).

Важные следствия.

Следствие 1. Если функция f определена на интервале (a,b) и имеет f'(x)=0 при всех $x\in(a,b)$, то f постоянна на (a,b). Доказательство. Фиксируем любую точку $x_0\in(a,b)$. При $a< x< x_0$ применим теорему Лагранжа к f на сегменте $[x,x_0]$ и получим $f(x_0)-f(x)=0$.

При $x_0 < x < b$ применим теорему Лагранжа к f на сегменте $[x_0,x]$ и получим $f(x)-f(x_0)=0.$ Тем самым $f(x)\equiv f(x_0)$ на (a,b).

Следствие 2. Пусть функции f и g непрерывны на сегменте [a,b] и дифференцируемы на интервале (a,b), причем $f(a)\geqslant g(a)$ и f'(x)>g'(x) при всех $x\in (a,b)$. Тогда f(x)>g(x) при всех $x\in (a,b]$. Доказательство. Следует применить теорему Лагранжа к h=f-g на [a,x].

Пример. $x>\arctan x$ при x>0, т.к. $x|_{x=0}=\arctan x|_{x=0}=0$ и $x'=1>(\arctan x)'=\frac{1}{1+x^2}$ при x>0.

Следствие 3. В условиях теоремы Лагранжа при $\sup_{a < x < b} |f'(x)| \leqslant L$ верно неравенство Липшица

$$|f(x_1) - f(x_2)| \leqslant L|x_1 - x_2|$$
 при всех $x_1, x_2 \in [a, b]$.

Пример. $|\sin x_1 - \sin x_2| \leq |x_1 - x_2|$ при всех x_1, x_2 .

Теорема. Пусть функция f определена и непрерывна на промежутке $\Delta=[a,b]$, (a,b], [a,b) или (a,b). Пусть существует f'(x) при всех $x\in(a,b)$. Тогда:

- $1. \ f'(x) > 0$ при всех $x \in (a,b) \ \Rightarrow \ функция <math>f$ возрастающая на Δ
- 2. $f'(x)\geqslant 0$ при всех $x\in (a,b) \Leftrightarrow$ функция f неубывающая на Δ
- 3. f'(x) < 0 при всех $x \in (a,b) \; \Rightarrow \;$ функция f убывающая на Δ
- 4. $f'(x) \leqslant 0$ при всех $x \in (a,b) \Leftrightarrow$ функция f невозрастающая на Δ

Важные обобщения — теорема сохраняет силу, если f'(x) существует при всех $x\in(a,b)$, за исключением конечного числа точек, и удовлетворяет указанным неравенствам при всех $x\in(a,b)$, где она существует. Также в пп. 1 и 3 допустимо, чтобы f'(x)=0 в конечном числе точек (!). Доказательство. Оно несложное. По теореме Лагранжа, примененной к любому сегменту $[x_1,x_2]\subset \Delta$, имеем $f(x_2)-f(x_1)=f'(c)(x_2-x_1)$ для некоторой точки $c=c(x_1,x_2)\in(x_1,x_2)$. Поэтому верны все следования \Rightarrow

Обратно, если в п. 2 функция f – неубывающая на Δ , то

$$\frac{f(x+h) - f(x)}{h} \geqslant 0$$
 при всех $x \in (a,b), \ 0 < h < b - x.$

Поэтому

в пп. 1-4.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to +0} \frac{f(x+h) - f(x)}{h} \geqslant 0.$$

Обратное утверждение в п. 4 выводится аналогично

Теорема (Коши о конечных приращениях). Пусть функции f и g непрерывны на сегменте [a,b] и дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$ при всех $x \in (a,b)$. Тогда существует такая точка $\xi \in (a,b)$, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Указанная формула корректна – в ней $g(b) \neq g(a)$ в силу теоремы Ролля (от противного).

Замечание. Теорема Коши следует из теоремы Ролля, обобщает теорему Лагранжа и имеет очень важные для нас приложения для вывода нового способа раскрытия неопределенностей в пределах функций-дробей. Доказательство. Введем обобщенную вспомогательную функцию

$$u(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

Она дифференцируема на (a,b) и построена так, что u(a)=f(a) и u(b)=f(a). Поэтому u удовлетворяет условиям теоремы Ролля, и в некоторой точке $c\in(a,b)$ имеем

$$0 = u'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c),$$

откуда
$$\frac{f(b) - f(a)}{q(b) - q(a)} = \frac{f'(c)}{q'(c)}$$
.