

## **Stochastic Processes**

Convergence Notions: Pointwise Convergence, Almost-Sure Convergence, Borel-Cantelli Lemma, Mean-Squared Convergence, Convergence in Probability, Convergence in Distribution, Examples

Karthik P. N.

**Assistant Professor, Department of AI** 

Email: pnkarthik@ai.iith.ac.in

24 January 2025



# **Dedication**



Figure: Prof. Vivek Shripad Borkar, IIT Bombay (1954-).

## Recap

Fix a probability space  $(\Omega, \mathscr{F}, \mathbb{P})$ .

#### **Definition (Pointwise Convergence)**

Given a sequence of random variables  $\{X_n\}_{n=1}^{\infty}$  and a random variable X, all defined w.r.t.  $\mathscr{F}$ , we say that the sequence converges pointwise to X if

$$\lim_{n\to\infty} X_n(\omega) = X(\omega) \qquad \forall \omega \in \Omega.$$

Notation:

$$X_n \stackrel{\text{pointwise}}{\longrightarrow} X$$

#### **Uniqueness of Pointwise Limit**

The pointwise limit RV, whenever it exists, is always unique.

# Recap

Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $\{X_n\}_{n=1}^{\infty}$  and X be defined w.r.t.  $\mathscr{F}$ .

#### Lemma

$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

Thus, we may assign probability to  $A_{\rm lim}$ .

$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\omega \in A_{\lim} \implies \lim_{n \to \infty} X_n(\omega) = X(\omega)$$

$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\omega \in A_{\lim} \implies \lim_{n \to \infty} X_n(\omega) = X(\omega)$$

$$\implies \forall \varepsilon > 0, \ \exists N_{\varepsilon}(\omega) \ \text{ such that } \ |X_n(\omega) - X(\omega)| < \varepsilon \ \forall n \ge N_{\varepsilon}(\omega)$$

$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\omega \in A_{\lim} \implies \lim_{n \to \infty} X_n(\omega) = X(\omega)$$

$$\implies \forall \varepsilon > 0, \ \exists N_{\varepsilon}(\omega) \ \text{ such that } \ |X_n(\omega) - X(\omega)| < \varepsilon \ \forall n \ge N_{\varepsilon}(\omega)$$

$$\implies \forall q \in \mathbb{Q}_+, \ \exists N_q(\omega) \ \text{ such that } \ |X_n(\omega) - X(\omega)| < q \ \forall n \ge N_q(\omega)$$

$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\begin{array}{ll} \omega \in A_{\lim} & \Longrightarrow \lim_{n \to \infty} X_n(\omega) = X(\omega) \\ & \Longrightarrow \ \forall \varepsilon > 0, \ \exists N_\varepsilon(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < \varepsilon \ \ \forall n \geq N_\varepsilon(\omega) \\ & \Longrightarrow \ \forall q \in \mathbb{Q}_+, \ \exists N_q(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < q \ \ \forall n \geq N_q(\omega) \\ & \Longrightarrow \ \omega \in \bigcap_{q \in \mathbb{Q}_+} \end{array}$$



$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\begin{array}{ll} \omega \in A_{\lim} & \Longrightarrow \lim_{n \to \infty} X_n(\omega) = X(\omega) \\ & \Longrightarrow \ \forall \varepsilon > 0, \ \exists N_\varepsilon(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < \varepsilon \ \ \forall n \geq N_\varepsilon(\omega) \\ & \Longrightarrow \ \forall q \in \mathbb{Q}_+, \ \exists N_q(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < q \ \ \forall n \geq N_q(\omega) \\ & \Longrightarrow \ \omega \in \bigcap_{q \in \mathbb{Q}_+} \bigcup_{N \in \mathbb{N}} \end{array}$$



$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\begin{array}{ll} \omega \in A_{\lim} & \Longrightarrow \lim_{n \to \infty} X_n(\omega) = X(\omega) \\ & \Longrightarrow \forall \varepsilon > 0, \ \exists N_\varepsilon(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < \varepsilon \ \forall n \geq N_\varepsilon(\omega) \\ & \Longrightarrow \forall q \in \mathbb{Q}_+, \ \exists N_q(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < q \ \ \forall n \geq N_q(\omega) \\ & \Longrightarrow \omega \in \bigcap_{q \in \mathbb{Q}_+} \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq N} \end{array}$$



$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\begin{array}{ll} \omega \in A_{\lim} & \Longrightarrow \lim_{n \to \infty} X_n(\omega) = X(\omega) \\ & \Longrightarrow \ \forall \varepsilon > 0, \ \exists N_\varepsilon(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < \varepsilon \ \ \forall n \geq N_\varepsilon(\omega) \\ & \Longrightarrow \ \forall q \in \mathbb{Q}_+, \ \exists N_q(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < q \ \ \forall n \geq N_q(\omega) \\ & \Longrightarrow \ \omega \in \bigcap_{q \in \mathbb{Q}_+} \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq N} \left\{ |X_n - X| < q \right\} \end{array}$$



$$A_{\lim} := \left\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \in \mathscr{F}.$$

$$\begin{split} \omega \in A_{\lim} &\iff \lim_{n \to \infty} X_n(\omega) = X(\omega) \\ &\iff \forall \varepsilon > 0, \ \exists N_\varepsilon(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < \varepsilon \ \ \forall n \geq N_\varepsilon(\omega) \\ &\iff \forall q \in \mathbb{Q}_+, \ \exists N_q(\omega) \ \ \text{such that} \ \ |X_n(\omega) - X(\omega)| < q \ \ \forall n \geq N_q(\omega) \\ &\iff \omega \in \bigcap_{q \in \mathbb{Q}_+} \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq N} \left\{ |X_n - X| < q \right\} \end{split}$$



$$A_{\lim} = \bigcap_{q \in \mathbb{Q}_+} \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq N} \{|X_n - X| < q\}.$$

# **Almost-Sure Convergence**

Fix a probability space  $(\Omega, \mathscr{F}, \mathbb{P})$ . Let  $\{X_n\}_{n=1}^{\infty}$  and X be defined w.r.t.  $\mathscr{F}$ .

## **Definition (Almost-Sure Convergence)**

We say that the sequence  $\{X_n\}_{n=1}^{\infty}$  converges to X almost surely (a.s.) if

$$\mathbb{P}\left(A_{\lim}\right)=1.$$

Notation:

$$X_n \xrightarrow{\text{a.s.}} X$$
.

# **Revisiting Examples**

Suppose that  $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Unif}).$ 

• For each  $n \in \mathbb{N}$ , let

$$X_n(\omega) = \begin{cases} 1, & \omega \in \left[0, \frac{1}{n}\right), \\ 0, & \text{otherwise}, \end{cases} \quad \omega \in [0, 1].$$

Identify the pointwise limit and an almost-sure limit.



# **Revisiting Examples**

Suppose that  $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Unif}).$ 

• For each  $n \in \mathbb{N}$ , let

$$X_n(\omega) = \begin{cases} 1, & \omega \in \left[0, \frac{1}{n}\right), \\ 0, & \text{otherwise}, \end{cases} \quad \omega \in [0, 1].$$

Identify the pointwise limit and an almost-sure limit. Is the almost-sure limit unique?

# **Revisiting Examples**

Suppose that  $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Unif}).$ 

• For each  $n \in \mathbb{N}$ , let

$$X_n(\omega) = \begin{cases} 1, & \omega \in \left[0, \frac{1}{n}\right), \\ 0, & \text{otherwise}, \end{cases} \quad \omega \in [0, 1].$$

Identify the pointwise limit and an almost-sure limit.

Is the almost-sure limit unique?

#### Note

The almost-sure limit is only specified up to sets of zero probability. That is,

$$X_n \xrightarrow{\text{a.s.}} X$$
,  $X_n \xrightarrow{\text{a.s.}} Y \implies \mathbb{P}(X = Y) = 1$ .



# Borel-Cantelli Lemma and Almost-Sure Convergence



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .

# **Definition (The** $\liminf$ **Event)**

The limit infimum of the sequence  $\{A_n\}_{n=1}^{\infty}$  is defined as the set

$$A_{\star} \coloneqq \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Clearly,  $A_{\star} \in \mathscr{F}$ .



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .

# **Definition (The** $\liminf$ **Event)**

The limit infimum of the sequence  $\{A_n\}_{n=1}^{\infty}$  is defined as the set

$$A_\star\coloneqqigcup_{n=1}^\inftyigcap_{k=n}^\infty A_k.$$

Clearly,  $A_{\star} \in \mathscr{F}$ .

## Interpretation

$$\omega \in A_{\star} \implies$$



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .

## **Definition (The** $\liminf$ **Event)**

The limit infimum of the sequence  $\{A_n\}_{n=1}^{\infty}$  is defined as the set

$$A_{\star} \coloneqq \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Clearly,  $A_{\star} \in \mathscr{F}$ .

#### Interpretation

$$\omega \in A_{\star} \implies \exists n \in \mathbb{N} \text{ such that } \omega \in A_k \text{ for all } k \geq n$$

$$\implies \omega$$
 belongs to all but finitely many of the  $A'_n s$ 



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .

# **Definition (The** $\limsup$ **Event)**

The limit supremum of the sequence  $\{A_n\}_{n=1}^{\infty}$  is defined as the set

$$A^{\star} := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Clearly,  $A^* \in \mathscr{F}$ .



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .

# **Definition (The** $\limsup$ **Event)**

The limit supremum of the sequence  $\{A_n\}_{n=1}^{\infty}$  is defined as the set

$$A^{\star} \coloneqq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Clearly,  $A^* \in \mathscr{F}$ .

## Interpretation

$$\omega \in A^{\star} \implies$$



Fix  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Let  $A_1, A_2, \ldots$  be events in  $\mathscr{F}$ .

## **Definition (The** $\limsup$ **Event)**

The limit supremum of the sequence  $\{A_n\}_{n=1}^{\infty}$  is defined as the set

$$A^{\star}\coloneqq \bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_{k}.$$

Clearly,  $A^* \in \mathscr{F}$ .

#### Interpretation

$$\omega \in A^{\star} \implies \forall n \in \mathbb{N}, \ \exists \ k \geq n \ \text{such that} \ \omega \in A_k$$

$$\implies \omega$$
 belongs to infinitely many of the  $A'_n s$ 

# **Remarks on** lim inf **and** lim sup **Events**

We have

$$\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n \qquad (A_\star \subseteq A^\star).$$

• Some texts use the phrase " $A_n$  infinitely often" or " $A_n$  i.o." to refer to  $\limsup_{n\to\infty}A_n$ 

## **Borel-Cantelli Lemma**

Fix a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ .

#### Lemma (Borel-Cantelli Lemma)

1. Suppose  $A_1,A_2,\ldots\in\mathscr{F}$  are such that  $\sum_{i=1}^\infty\mathbb{P}(A_i)<+\infty$ . Then,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=0.$$

2. Suppose  $A_1, A_2, \ldots \in \mathscr{F}$  are independent and satisfy  $\sum_{i=1}^{\infty} \mathbb{P}(A_i) = +\infty$ . Then,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=1.$$

#### **Borel-Cantelli Lemma**

Fix a probability space  $(\Omega, \mathscr{F}, \mathbb{P})$ .

#### Lemma (Borel-Cantelli Lemma)

1. Suppose  $A_1,A_2,\ldots\in\mathscr{F}$  are such that  $\sum_{i=1}^\infty\mathbb{P}(A_i)<+\infty$ . Then,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=0.$$

2. Suppose  $A_1, A_2, \ldots \in \mathscr{F}$  are independent and satisfy  $\sum_{i=1}^{\infty} \mathbb{P}(A_i) = +\infty$ . Then,

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=1.$$

The above lemma can be used to verify almost-sure convergence property in some scenarios

# **Borel-Cantelli Lemma and Almost-Sure Convergence**

• For each  $n \in \mathbb{N}$ , let

$$\mathbb{P}(X_n = 1) = \frac{1}{n^2} = 1 - \mathbb{P}(X_n = 0).$$

Identify an almost-sure limit.

# **Borel-Cantelli Lemma and Almost-Sure Convergence**

• For each  $n \in \mathbb{N}$ , let

$$\mathbb{P}(X_n = 1) = \frac{1}{n^2} = 1 - \mathbb{P}(X_n = 0).$$

Identify an almost-sure limit.

• For each  $n \in \mathbb{N}$ , let

$$\mathbb{P}(X_n = 1) = \frac{1}{n} = 1 - \mathbb{P}(X_n = 0).$$

Furthermore, suppose that  $X_1, X_2, \ldots$  are mutually independent. What can we say about the convergence of the above sequence?