Lecture 9 - Discrete Mafematiks

Kori Vernon

July 28, 2020

1 Proofs By Smallest Counterexample

Template

- 1. Let x be a smallest counterexample to the result to which we need to prove. We need to show or indicate that such x exists there
- 2. Rule out x being in the very smallest possibility (Basis Step)
- 3. Consider an instance x* (usually x* = x 1) of the result that is "just" smaller than x. Where x* = x 1 is NOT a counterexample, so statement for x* is true, we show that it leads us to a contradiction about x. $\Rightarrow \Leftarrow$ Thus, conclude that the statement is true.

1.1 Examples:

1. Let n be a positive integer. The sum of the first n odd numbers is n^2 .

Proof: Consider some $n \in \mathbb{N}$, then $1+3+5+...+(2n-1)=n^2$

- Suppose this claim is false, then $\exists x \in \mathbb{N} : 1+3+5+...+(2x-1) \neq x^2$, where x is the smallest natural number.
- Note that $x \neq 1$, since $1 = 1^2$, so x > 1. Then for x 1, the statement is true.
- Thus, $1+3+5+...+(2x-1)=(x-1)^2$. We add 2x-1 to both sides, so:

$$1+3+5+...+(2x-1)+(2x-1)=(x-1)^2+(2x-1)$$
$$1+3+5+...+(2x-1)+(2x-1)=x^2-2x+1+2x-1 \implies \Leftarrow$$

2 Well-Ordering Principle

Every nonempty set of natural numbers contains a least element.

Consider $P = \{x \in \mathbb{N} : n \text{ is } prime\}$, so the smallest element of P is x = 2.

Proof by the Well-Ordering Principle:

To prove a statement about natural numbers:

- For the sake of contradiction, assume that the statement is false. Let $X \subseteq \mathbb{N}$ be the set of counterexamples to the statement, so $X \neq \emptyset$
- Since $X \subseteq \mathbb{N}$, then X contains the least element $x \in X$.
 - 1. Show that $x \neq 0$
 - 2. Consider x-1. Since x>0, then $x-1\in\mathbb{N}$, and the statement is true for x-1, because x-1< x
 - 3. Carry out the argument and show that the statement is true for x as well, so we reached a contradiction. $\Rightarrow \Leftarrow$.

Rk: We need to define X = the set of all counterexamples and $x \in X$ is the smallest counterexample.

2.1 Examples:

1. Let $n \in \mathbb{N}$. If $a \neq 0$ and $a \neq 1$, then $a^0 + a^1 + a^2 + \dots + a^n = \frac{a^{n+1}-1}{a-1}$

Proof: Let X be the set of all counterexamples, so

$$X = \{ n \in \mathbb{N} : \sum_{k=0}^{n} a^k \neq a^{n+1} - 1a - 1 \}$$

- For the sake of contradiction, assume that the statement is false. So $X \neq \emptyset$ and $x \subseteq \mathbb{N}$, so $\exists x \in X$: by the **WOP**, x is the smallest element in X.
- Then for n=0, $1=\frac{a^{0+1}-1}{a-1}=1$. THIS IS TRUE, SO $x\neq 0$, so x>0.
- Now, consider $x-1 \in \mathbb{N}$, and $x-1 \not\in X$, so for "x-1" the statement is true.
- Now add $a^0 + a^1 + ... + a^{(x-1)} = \frac{a^(x-1)+1}{a-1} = \frac{a^x-1}{a-1}$.
- Now, add a^x to both sides.

$$a^{0} + a^{1} + a^{2} + \dots + a^{x-1} + a^{x} = \frac{a^{x} - 1}{a - 1} + a^{x} = \frac{a^{x} - 1 + a^{x} \cdot (a - 1)}{a - 1} = \frac{-1 + a^{x+1}}{a - 1}$$

- x satisfies the proposition, so x is NOT a counterexample.
- 2. $\forall n \geq 5, 2^n > n^2, \text{ for } n \exists \mathbb{Z}.$
 - For the sake of contradiction, assume the statement is false.

Proof: Let X be the set of all counterexamples, so $X = \{n \in \mathbb{Z} : n \geq 5, 2^n \not > n^2\}$, so $X = \emptyset$.

- By the **WOP**, X contains the least element.
- Let $x \in X$, so that x is the least element. $x \neq 5$, because $2^5 = 32 > 5^2 = 25$, so 5 is not a counterexample, so x > 5, so $x \geq 6$. Now consider x 1, so $x 1 \geq 5$ for which proposition is true, so

$$2^{x-1} > (x-1)^2$$
$$2^x \cdot \frac{1}{2} > (x^2 - 2x + 1) \cdot 2$$
$$2^x > 2^{x^2} - 4x + 2 > 2x^2 > x^2$$

• Thus,
$$2x^2 - 4x + 2 \ge x^2$$

$$x^{2} - 4x + 2 > 0$$

$$2^{2} - 4x + 4 > 2$$

$$(x - 1)^{2} > 2$$

$$x - 2 > 2$$

$$x > 4$$

Thus,
$$2^x > 2x^2 - 4x + 2 > x^2$$

Fibonacci Sequence is a recursive sequence, so that the terms of a sequence depend on the previous two terms.

3. For all $n \in \mathbb{N}$, for Fibonacci sequence, $a_n \leq 1.7^n$

Proof: For the sake of contradiction, suppose this proposition is false.

Let X be the set of all counterexamples, so $X = \{n \in \mathbb{N} : a_n \not leq 1.7^n\}$, so $X \neq \emptyset$

- Then, by **WOP**, X contains the least element.
- If $x \neq 0$, then $a_0 = 1 = 1.7^0 \checkmark$
- If $x \neq 1$, then $x \neq 1 = 1.7^1 \ge 1$
- Therefore, $x \ge 2$. Then for x-1 and x-2 proposition is true, so $a_{x-1} \le 1.7^{x-1}$ and $a_{x-1} \le 1.7^{x-2}$.

2

• Since $a_x = a_{x-2} + a_{x-1} \le 1.7^{x-2} + 1.7^{x-1}$

$$\leq 1.7^{x-2}(1.7+1)$$

$$\leq 1.7^{x-2}(2.7)$$

$$\leq 1.7^{x-2}(2.89)$$

$$< 1.7^{x-2}(1.7)^2 = 1.7^x \Rightarrow \Leftarrow$$

- Thus, the statement is true for x.
- 21.2 For all positive integers n, we have $1+2+3+..+n=\frac{1}{2}n(n+1)$

Proof: Suppose for the sake contradiction, that the statement is false. Let X be the set of counterexamples. So $X = \{n \in \mathbb{N} : 1+2+...+n \neq \frac{1}{2}n(n+1), \text{ so } X \neq \emptyset.$

- By **WOP**, X contains the least element.
- $x \neq 1$ because 1 is the same as $1 = \frac{1}{2}(1)(1+1) = 1$, so x > 1
- Then for x-1, the proposition is true, so:

$$1 + 2 + \dots + (x - 1) = \frac{1}{2}(x - 1)(x - 1 + 1) = \frac{(x - 1) \cdot x}{2}$$

Now add x to both sides, so

$$1 + 2 + \dots + (x - 1) + x = \frac{(x - 1) \cdot x}{2} + x = \frac{x^2 - x + 2x}{2} = \frac{x(x + 1)}{2} \Rightarrow \Leftarrow$$

Thus, the proposition holds for x, which contradicts the fact that $x \in X$

- 21.3 Prove that For all $n \in \mathbb{N}$, $n < 2^n$.
 - Suppose for the sake of contradiction, the statement is false. Let X be the set of counterexamples. So $X = \{n \in \mathbb{N} : n / (2^n)\}$. Since the statement is false, $X \neq \emptyset$. By the **WOP**, X contains the smallest element.
 - $x \neq 0$ because $0 < 2^0 = 1$, which is true \checkmark
 - $x \neq 1$ because $1 < 2^1 = 2$, which is also true. So $x \geq 2$.
 - Consider $x-1 \in \mathbb{N}$, for which the statement is true.

$$(x-1) < 2^{x-1}$$

$$2 \cdot (x-1) < 2^x$$

Since $x \ge 2$, $x + x \ge x + 2$, then $x \le 2(x - 1)$

$$\frac{x}{x-1} \le 2$$

Since $x - 1 < 2^{x-1}$ and $\frac{x}{x-1} \le 2$

$$\Rightarrow (x-1) \cdot \frac{x}{x-1} < 2 \cdot 2^{x-1} \Rightarrow x < 2^x$$

But $x \in X \implies \Leftarrow$

- 4. Prove that $n! < n^n, \forall$ positive n.
 - Suppose for sake of contradiction, the statement is false. Let X be the set of counterexamples. So $X = \{n \in \mathbb{Z}^+ : n! \not \leq n^n\}$. Since this statement is false, $X \neq \emptyset$. By the **WOP**, X contains the smallest element.

3

- $x \neq 0$, because $0! = 1 \leq 0^0 = 1$.
- $x \neq 1$, because $1! = 1 < 1^1 = 1$, so x > 1 and x 1 > 0.

• Consider $x-1 \in \mathbb{Z}^+$, for which the statement is true. Multiply each side by x.

$$(x-1)! < (x-1)^{x-1}$$
$$x \cdot (x-1)! < x \cdot (x-1)^{x-1}$$
$$x! < x \cdot (x-1)^{x-1}$$

Since we know that x - 1 < x

$$x! < x \cdot x^{x-1}$$

$$x! < x \cdot x^{x-1} = x^{1+x-1} = x^x \Rightarrow \Leftarrow$$

But this is a contradiction, thus because our supposition of the false statement is false, then the proposition holds true. \Box

- 5. Prove that for all positive integers n, we have $1 \cdot 1! + 2 \cdot 2! + ... + n \cdot n! = (n+1)! 1$
 - Suppose for sake of contradiction that the statement is false. Let X be the set of counterexamples. So $X = \{n \in \mathbb{Z}^+ : 1 \cdot 1! + 2 \cdot 2! + ... + n \cdot n! \neq (n+1)! 1\}$ Since this statement is false, $X \neq \emptyset$. By the **WOP**, X contains the smallest element.
 - $x \neq 0$, because:

$$0 \cdot 0! = (0+0)! - 1 \checkmark$$

• $x \neq 1$, because:

$$1 \cdot 1! = (1+1)! - 1 \checkmark$$

Therefore, x > 1 and x - 1 > 0.

• Consider $x-1 \in \mathbb{Z}^+$, for which the statement is true.

$$1 \cdot 1! + 2 \cdot 2! + \dots + (x - 1) \cdot (x - 1)! = ((x - 1) + 1)! - 1$$
$$1 \cdot 1! + 2 \cdot 2! + \dots + (x - 1) \cdot (x - 1)! = x! - 1$$

Let's add $x \cdot x!$ to both sides

$$1 \cdot 1! + 2 \cdot 2! + \dots + (x-1) \cdot (x-1)! + (x \cdot x!) = (1+x) \cdot x! - 1$$

Since $n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$ and 1 + x = x + 1

$$1 \cdot 1! + 2 \cdot 2! + \dots + (x-1) \cdot (x-1)! + (x \cdot x!) = (x+1) \cdot x! - 1 \Rightarrow \Leftarrow$$

ullet Thus, because our supposition that "the statement is false" is false, then the proposition holds true.

3 Induction

Principle of mathematical induction:

Let A be a set of natural numbers. If:

- 1. $0 \in A$ (Basis Step)
- 2. $\forall k \in \mathbb{N}, k \in A \Rightarrow k+1 \in A$ (Inductive Hypothesis), then $A = \mathbb{N}$
- Start by saying what the statement is that you want to prove: "Let P(n) be the statement..." To prove that P(n) is true for all $n \leq 0$, show the following:
 - Prove (or show) that P(n=0) is true. Just plug in n=0.
 - Inductive Case: Assume that the statement is true for n = k, so P(n = k) is true. Show that: $\Rightarrow P(n = k + 1)$ is true for all k < 0.
 - Once both sides are shown to be true, you can conclude, "Therefore, by the principle of mathematical induction, the statement is true for all $n \le 0$."

3.1 Examples:

1. Prove that for $n \ge 1, 1+2+3+...+n = \frac{n(n+1)}{2}$

Proof: Let P(n) be the statement $1+2+3+...+n=\frac{n(n+1)}{2}$. We will show that P(n) is true for all $n \ge 1$.

- For n = 1, $1 = \frac{1(1+1)}{2} = 1$, so $P(1)\checkmark$.
- Assume P(k) (or for n = k), the statement is true, $k \ge 1$. Then, we need to show it is true for P(k+1).

$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

is true, then

$$1+2+3+\ldots+k+k+1=\frac{k(k+1)}{2}+k+1$$

$$\frac{k(k+2)}{2}+k+1=\frac{k(k+1)+2\cdot(k+1)}{2}=\frac{(k+1)(k+2)}{2}$$

The right hand side is true for n = k + 1.

- Therefore P(k+1) is true, so by induction, P(n) is true $\forall n \geq 1$.
- 2. Prove that for all $n \in \mathbb{N}$, $6^n 1$ is a multiple of 5.
 - Let P(n) be the statement that " $6^n 1$ is a multiple of 5." We show that P(n) is true for all $n \in \mathbb{N}$.
 - (a) For n = 0, P(0) is true: $6^0 1 = 0$, which is a multiple of 5.
 - (b) Assume P(k) is true for n = k, so $6^k 1$ is a multiple of 5. Then $\exists a \in \mathbb{Z} : 6^k 1 = 5a$, so $6^k = 5a + 1$. Now we multiply both sides by 6. Then $6 \cdot 6^k = 6 \cdot (5a + 1)$

$$6^{k+1} = 30a + 5 = 6(6a + 1) = 5w$$

where $w = 6a + 1 \in \mathbb{Z}$, so

$$5|6^{k+1}-1$$

so P(k+1) is true. Thus, by induction, P(n) is true for all $n \in \mathbb{N}$

3. Prove $10^0 + 10^1 + ... + 10^n < 10^{n+1} \forall n \in \mathbb{N}$

Proof: Assume P(n) is the above statement, so we prove that P(n) is true for all $n \ge 0$. Let n = 0, $10^0 = 1 < 10^{0+1} = 10\checkmark$

- (a) Assume it is true for P(k), so it $10^0 + \dots + 10^k < 10^{k+1}$.
- (b) We need to show it is true for n = k + 1.
- (c) Then, consider $10^0 + ... + 10^k + 10^{k+1} < 10^{k+1} + 10^{k+1}$ by adding 10^{k+1} to both sides.

$$10^{k+1} + 10^{k+1} = 2 \cdot 10^{k+1} < 10 \cdot 10^{k+1} = 10^{k+2}$$

Therefore, it is true for n = k + 1, thus by induction, P(n) is true for all $n \ge 0$

- 4. Prove that $n! \leq n^n, \forall$ positive n.
 - (a) Assume P(n) is the above statement, so we prove that P(n) is true for all positive n $n! \le n^n$. Let $n = 1, 1! \le 1^1 \checkmark$.
 - (b) Assume it is true for P(k), so $k! \leq k^k$. If it is true for k, then it must be true for k+1, so $(k+1)! \leq (k+1)^{k+1}$.
 - (c) Then consider adding $(k+1)^{k+1}$ on both sides.