EAIiIB	Aleksander Lisiecki		Rok	Grupa	Zespół
Informatyka	Natalia Materek		II	2	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA					
WFiIS AGH	Fale podłużne	29			
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
04.01.2017	11.01.2017				

Ćwiczenie nr 29: Fale podłużne w ciałach stałych

1 Cel ćwiczenia

Wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali dźwiękowej w pręcie.

2 Wstęp teoretyczny

Fala podłużna to fala, w której drgania odbywają się w kierunku zgodnym z kierunkiem jej rozchodzenia się. Opisuje ją równanie:

$$y = A\cos(\omega t \pm kx) \tag{1}$$

gdzie

A amplituda drgań [m]

 ω prędkość kątowa $\left[\frac{1}{s}\right]$

 $t \operatorname{czas}[s]$

k współczynnik sprężystości [jednostka]

2.1 Prawa Hooke'a

Prawo: odkształcenie jest wprost proporcjonalne do wywołującej je siły.

$$\Delta l = \frac{Fl}{ES} \tag{2}$$

gdzie

 Δl zmiana długości pręta [m]

F siła odkształcająca [N]

l długość pręta [m]

S pole przekroju pręta $[m^2]$

 $E \mod 4$ Younga $\left[\frac{N}{m^2}\right]$

2.2 Moduł Younga

Wychodząc od ogólnego wzoru na prawo Hooke'a:

$$\sigma = \varepsilon E \tag{3}$$

gdzie

 σ naprężenie $\left[\frac{N}{m^2}\right]$

 ε odkształcenie względne [bezwymiarowe]

$$\varepsilon = \frac{\delta \Psi}{\delta x} \tag{4}$$

Otrzymujemy wzór na prędkość rozchodzenia się fali w pręcie:

$$v = \sqrt{\frac{E}{\rho}} \tag{5}$$

gdzie

v prędkość rozchodzenia się fali w pręcie $\left[\frac{m}{s}\right]$

 $E \mod V$ ounga $\left[\frac{N}{m^2}\right]$

 $\rho~$ gęstość substancji z której został wykonany pręt $\left[\frac{kg}{m^3}\right]$

czyli

$$E = v^2 \rho \tag{6}$$

2.3 Długość fali

W pręcie powstaje fala stojąca, odległość między węzłami fali stojące wynosi $l=\frac{1}{2}\lambda$. Zależność między n- ta długością fali a długością pręta L wyraża wzór:

$$\lambda_n = -\frac{2}{n}L\tag{7}$$

gdzie

 λ_n długość n -tej fali [m]

L długość pręta [m]

Mając długość fali i jej częstotliwość dla n -tej składowej harmonicznej można policzyć prędkość fali v_n

$$v_n = \lambda_n \cdot f_n \tag{8}$$

gdzie

n n- ta składowa harmoniczna

 v_n prędkość fali $\left[\frac{m}{s}\right]$

 f_n częstotliwość dla n -tej składowej [Hz]

Pozostawiając do wzoru 6 ostatecznie otrzymujemy:

$$E = 4\rho f^2 l^2$$

3 Układ pomiarowy

- Komputer stacjonarny z oprogramowaniem Zelscope i mikrofonem
- Zestaw pięciu prętów, o różnych kształtach (stalowe, aluminiowy, miedziany i mosiężny)
- Suwmiarka, miarka w rolce, waga elektroniczna, młotek

4 Wykonanie ćwiczenia

- 1. Ustawienie mikrofonu przy pręcie.
- 2. Uderzenie młotkiem w pręt i wciśnięcie stop w programie aby zaobserwować obraz powstały na oscyloskopie.
- 3. Zapisanie częstotliwości dla sześciu składowych harmonicznych w tabeli na podstawie obrazu powstałego w programie.
- 4. Wyliczenie n długości fali na podstawie wzoru 7, nastepnie n prędkości fali na podstawie wzoru 8.
- 5. Wyliczenie wartości prędkości średniej

$$v_{\text{\'sr}} = \frac{\sum_{i=1}^{n} v_n}{n}$$

6. Wyliczenie modułu Younga na podstawie wzoru 6

5 Opracowanie wyników pomiarów

PRĘT 1 (MIEDŹ)						
Długość l [m]	1.811	Masa próbki m [kg]	0.066			
Długość próbki [m]	0.375	Promień próbki [m]	0.0025			
		Gęstość ro $\left\lceil \frac{kg}{m^3} \right\rceil$	8963.61			
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $\left[\frac{m}{s}\right]$			
1	1024.40	3.622	3721.24			
2	2054.79	1.811	3721.22			
3	3068.49	1.207	3703.67			
4	4123.29	0.907	3737.76			
5	5150.68	0.724	3731.15			
6	6178.08	0.604	3729.71			
		ŚREDNIA PRĘDKOŚĆ v $\left[\frac{m}{s}\right]$	3724.13			
		MODUŁ YOUNGA [GPa]				

PRET 2 (STAL)						
Długość l [m]	1.802	Masa próbki m [kg]	0.031			
Długość próbki [m]	0.020	Szerokość próbki [m]	0.014			
Wysokość próbki [m]	0.012	Gęstość ro $\left\lceil \frac{kg}{m^3} \right\rceil$	7635.47			
NR HARMONICZNEJ	CZĘSTOTLIWOŚĆ f $[Hz]$	DŁUGOŚĆ FALI λ [m]	PRĘDKOŚĆ FALI v $\left[\frac{m}{s}\right]$			
1	1024.40	3.622	3721.24			
2	2054.79	1.811	3721.22			
3	3068.49	1.207	3703.67			
4	4123.29	0.907	3737.76			
5	5150.68	0.724	3731.15			
6	6178.08	0.604	3729.71			
		ŚREDNIA PRĘDKOŚĆ v $\left\lceil \frac{m}{s} \right\rceil$	3724.13			
		MODUŁ YOUNGA [GPa]				

6 Wnioski

•

•

•