ELEC 344 - 201: Applied Electronics and Electromechanics

Instructor: Ignacio Galiano Zurbriggen

TAs: Daniel Hsu, Abbas Arshadi, Matthieu Amyotte, Jorge May

Tutorial 2

- 1) In the circuit shown in Fig. 1, the input voltage is given by: $v_{in} = 110V \sin(\omega t)$, assuming that the frequency is 60 Hz.
 - a) Find the input current i_{in} (amplitude and phase)
 - b) Find the time delay and the phase shift of the current vs. voltage waveform.
 - c) Calculate the power factor. Is this a good power factor? How can we improve it?

Figure 1 – AC circuit

- 2) A $100\mu F$ capacitor is added in parallel with the resistor and inductor:
 - a) Calculate the new current amplitude and phase.
 - b) Find the time delay and the phase shift of the current vs.. voltage waveform.
 - c) Calculate the power factor and compare it with the one obtained in 1)

3) Y-Connected 3-phase load. Prove that for the case of a balanced 3-phase source and a balanced 3-phase load, the load center point $V_N = \mathbf{0}$. HINT: use the superposition theorem.

Figure 2 – 3-Phase AC Circuit

4) Derive the RMS of a periodic, symmetrical square and triangular wave, respectively (given that the amplitude is V_{pk} .)