Reinforcement Learning

申思杰

Outline

- Reinforcement Learning Background (model-free methods)
 - Value-based: SARSA, Q-learning, Deep Q Network
 - Policy-based: REINFORCE, Actor-Critic
- Asynchronous RL Framework
 - Asynchronous SARSA, Asynchronous Q-learning
 - Asynchronous Advantage Actor-Critic (A3C)

Markov Decision Process:

Definition

A Markov Decision Process is a tuple $\langle S, A, P, R, \gamma \rangle$

- ullet \mathcal{S} is a finite set of states
- \blacksquare A is a finite set of actions
- \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$
- $lacksquare{\mathbb{R}}$ is a reward function, $\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- γ is a discount factor $\gamma \in [0, 1]$.

• Policy: A policy π is a distribution over actions given states

$$\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$$

- Episode:
 - At state S_t
 - Perform action A_t according to policy π
 - Get reward R_{t+1} and get to state S_{t+1}
 - ullet Loop until terminate or until time-step T

$$S_1, A_1, R_2, S_2, A_2, R_3, S_3, \dots$$

• Return: Total discounted reward from time step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Value function:
 - State-value function: $V_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$
 - Action-value function: $Q_{\pi}(s,a) = \mathbb{E}[G_t | S_t = s, A_t = a]$

 Value function can be decomposed into immediate reward plus discounted value of successor state

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s]$$

$$Q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma Q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Optimal value function:

$$V^*(s) = \max_{\pi} V_{\pi}(s)$$
 $Q^*(s, a) = \max_{\pi} Q_{\pi}(s, a)$

An optimal policy can be found by maximizing over $Q^*(s,a)$

Model-Free Reinforcement Learning Methods

- Directly approximate the optimal action value function $Q^*(s, a)$
 - e.g. Using a table to store the approximation of $Q^*(s, a)$
 - e.g. Using neural network $Q(s, a; \theta)$ with parameters θ to fit $Q^*(s, a)$
- Policy can be derived from the learned $Q(s, a; \theta)$
 - e.g. ε -greedy policy

Monte-Carlo control:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

- On-policy and off-policy learning:
 - On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
 - Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from μ

SARSA for on-policy control:

```
Initialize Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
       S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Q-learning for off-policy control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Repeat (for each step of episode):
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Take action A, observe R, S'
   Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
   S \leftarrow S';
   until S is terminal
```

- SARSA:
 - Policy: ε -greedy

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(R + \gamma Q(s',a')\right)$$

- Q-learning:
 - Target policy: greedy; Behavior policy: ε-greedy

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(R + \gamma \max_{a'} Q(s',a')\right)$$

Deep Q Network (DQN):

DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w⁻
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i) \right)^2 \right]$$

Using variant of stochastic gradient descent

- Directly parameterize the policy $\pi_{\theta}(a \mid s)$, find the best θ
- Measure the quality of policy: policy objective functions
 - Start value (episodic):

$$J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1]$$

Average value (continuing):

$$J_{avV}(\theta) = \sum d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

• Average reward per time-step (continuing): $J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$

 $d^{\pi_{\!\scriptscriptstyle{ heta}}}$ is stationary distribution of Markov chain for $\pi_{\!\scriptscriptstyle{ heta}}$

Policy gradient to update parameters:

$$\Delta\theta = \alpha \nabla_{\theta} J(\theta)$$

 $\nabla_{\theta} J(\theta)$ is called policy gradient

Compute policy gradient: Likelihood ratios:

$$\nabla_{\theta} \pi_{\theta}(s, a) = \pi_{\theta}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}$$
$$= \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)$$
$$= \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)$$

An example: Gradient of one-step MDPs:

$$egin{aligned} J(heta) &= \mathbb{E}_{\pi_{ heta}}\left[r
ight] \ &= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(s,a) \mathcal{R}_{s,a} \
abla_{ heta} J(heta) &= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a)
abla_{s,a} \ &= \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta} \log \pi_{ heta}(s,a) r
ight] \end{aligned}$$

Policy Gradient Theorem:

Theorem

For any differentiable policy $\pi_{\theta}(s,a)$, for any of the policy objective functions $J=J_1,J_{avR},$ or $\frac{1}{1-\gamma}J_{avV}$, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \; Q^{\pi_{\theta}}(s, a) \right]$$

- REINFORCE (Monte-Carlo Policy Gradient):
 - Using return v_t as a sample of $Q^{\pi_{\theta}}(s_t, a_t)$

```
function REINFORCE Initialise \theta arbitrarily for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta end function
```

- Reduce variance using a critic:
 - We use a critic to estimate the action-value function,

$$Q_w(s,a) \approx Q^{\pi_{\theta}}(s,a)$$

- Actor-critic algorithms maintain two sets of parameters
 - Critic Updates action-value function parameters w
 - Actor Updates policy parameters θ , in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$abla_{ heta} J(heta) pprox \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \ Q_w(s, a)
ight]
onumber$$

$$\Delta \theta = \alpha \nabla_{ heta} \log \pi_{ heta}(s, a) \ Q_w(s, a)
onumber$$

- Actor-Critic:
 - Using linear value function to approximate $Q_w(s, a) = \phi(s, a)^T w$

```
function QAC Initialise s, \theta Sample a \sim \pi_{\theta} for each step do Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_{s,\cdot}^a Sample action a' \sim \pi_{\theta}(s', a') \delta = r + \gamma Q_w(s', a') - Q_w(s, a) \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a) \omega \leftarrow \omega + \beta \delta \phi(s, a) \omega \leftarrow \omega', s \leftarrow s' end for end function
```

Reduce variance using a baseline:

$$\mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta}\log\pi_{ heta}(s,a)B(s)
ight] = \sum_{s\in\mathcal{S}}d^{\pi_{ heta}}(s)\sum_{a}
abla_{ heta}\pi_{ heta}(s,a)B(s)$$
 $=\sum_{s\in\mathcal{S}}d^{\pi_{ heta}}B(s)
abla_{ heta}\sum_{a\in\mathcal{A}}\pi_{ heta}(s,a)$
 $=0$

- Advantage Actor-Critic: Using state-value function as a baseline:
 - Advantage function: $A^{\pi_{\theta}}(s, a)$

$$egin{align} A^{\pi_{ heta}}(s,a) &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \
abla_{ heta} J(heta) &= \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s,a) \ A^{\pi_{ heta}}(s,a)
ight]
onumber \end{array}$$

Outline

- Reinforcement Learning Background (model-free methods)
 - Value-based: SARSA, Q-learning, Deep Q Network
 - Policy-based: REINFORCE, Actor-Critic
- Asynchronous RL Framework
 - Asynchronous SARSA, Asynchronous Q-learning
 - Asynchronous Advantage Actor-Critic (A3C)

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih¹
Adrià Puigdomènech Badia¹
Mehdi Mirza^{1,2}
Alex Graves¹
Tim Harley¹
Timothy P. Lillicrap¹
David Silver¹
Koray Kavukcuoglu ¹

VMNIH@GOOGLE.COM
ADRIAP@GOOGLE.COM
MIRZAMOM@IRO.UMONTREAL.CA
GRAVESA@GOOGLE.COM
THARLEY@GOOGLE.COM
COUNTZERO@GOOGLE.COM
DAVIDSILVER@GOOGLE.COM
KORAYK@GOOGLE.COM

¹ Google DeepMind

² Montreal Institute for Learning Algorithms (MILA), University of Montreal