PG / INTEGRATED (CBCS) ODD SEMESTER EXAMINATION, 2021 Held in April 2022

COMPUTER SCIENCE
9th Semester / 3rd Semester

COURSE NO. MCSCC - 904 / MS - 304 (Natural Language Processing)

Full Marks: 70 Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

(Answer any five questions, taking one from each unit)

<u>UNIT-I</u>

1. a) What is corpus? Give some examples of corpus.

2+1=3

3

- b) Why do we study NLP? What are the goals of NLP? 2+2=4
- c) Explain document similarity measure.
- d) An aeroplane is flying above with a probability of 5%. There is a radar which registers a blip if the plane is above with 99% accuracy. The radar also registers a blip with a 10% probability when there is no plane flying above. What is the probability that a plane is flying above given that the radar registers a blip?

- 2. a) Explain a spell checker in the light of Bayes rule.
 - Explain argmax computation with a suitable example.
 - c) What is total probability the theorem? Explain. 3
 - d) A patient gets tested for a disease which affects 1% of the population. Suppose the test is advertised as 95% accurate. What is the probability that the patient has the disease?

UNIT - II

- 3. a) What is an N-gram language model?
 - b) What is a top down chart para? What are its disadvantages?
 - c) For the CFG shown below, show the complete trace of a top down bottom up chart panser for the following sentence7"The large can hold water"

 $S \rightarrow NP \ VP$ Laxicon $NP \rightarrow ART \ ADJ \ N$ the : ART $NP \rightarrow ART \ N$ large : ADJ $NP \rightarrow ADJ \ N$ can : N, AUX, V $VP \rightarrow AUX \ VP$ hold : N, Y

water: N, V

 $VP \rightarrow VNP$

- 4. a) Give the formal definition of a PCFG. What are the consumption of a PCFG model? 2+3=5
 - b) Explain probability of parse tree and how it can be determined?
 - For the PCFG shown below calculate the probability
 of the parse trees for the sentence "The painter sprayed the building with blue colour"

$S \rightarrow NP VP 1.0$	$DT \rightarrow the 1.0$
$NP \rightarrow DT NN 0.5$	$NN \rightarrow pain for 0.33$
$NP \rightarrow ADJ NN 0.4$	$NN \rightarrow building 0.34$
$NP \rightarrow NP PP 0.2$	$NN \rightarrow colour 0.33$
$PP \rightarrow P NP 1.0$	VBD → sprayed 1.0
$VP \rightarrow VP PP 0.6$	$P \rightarrow \text{with } 1.0$
$VP \rightarrow VBD NP 0.4$	$ADI \rightarrow blue 1.0$

UNIT - III

- 5. a) Explain the HMM model. What is a trigram Markov assumption? How is a trigram Markov assumption represented? 3+2+2=7
 - b) How can we interpret POS tagging as a sequence labelling problem through argmax based computation?
 - c) Explain lexical probability assumption with an example. 4

- 6. a) Explain Forward and Backward probability. Why are they needed? 4+2=6
 - b) What is Bayesian Decision theory principle? What are some of the issues in Bayesian Decision theory? 1+3=4
 - c) Elucidate the challenges of POS Tagging in the context of some Indian languages. 4

UNIT - IV

- 7. a) Explain perception learning process. 4
 - b) Explain the difference between perceptron activation & sigmoid activation functions. What is max and min sigmoid function? 2+1=3
 - c) Explain Gradient descent with a suitable example. Why is the movement in gradient descent always opposite to the gradient? 5+2=7
- 8. a) What are contour plots? Why are they needed? 2+1=3
 - b) What is a partial derivative of a function? Find the partial derivatives of the function $f(x, y) = x^2 e^{xy}$. 2
 - d) Explain the process of back propagation with a suitable example. 5

<u>UNIT - V</u>

9.	a)	What is machine translation?	2
	b)	Discuss sentiment analysis.	6
	c)	Define the following:	6
		i) Word embedding	
		ii) Word 2 Vec	
		iii) Glove	
10). a)	Explain the encoder and decoder model of mach translation.	nine 7

Discuss RNN in the context of NLP.

7