ic mann

Math 541 A - Spring 2025 Midterm 2 April 9, 2025 11:00-11:50 AM

Name: SP	amppo.	B. MOHONTY	
Student ID Numb	oer:	5679528317.	

- There are 3 problems in total. Make sure your exam contains all these questions.
- You are allowed to use one page of double-sided hand-written 8.5 by 11 inch notes.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.

Problem 1	20
Problem 2	20
Problem 3	20
Total	60

Name:

ID:

1. (20 pts) Let $X_1, \ldots, X_n \sim N(\mu, 1)$ be i.i.d. samples. Recall the PDF for $N(\mu, 1)$ is

$$f(x|\mu) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2}}.$$

(a) (7 pts) For one random variable $X \sim N(\mu, 1)$, compute its Fisher information

$$I_X(\mu) = \mathbb{E}\left(\frac{d}{d\mu}\log f(X|\mu)\right)^2.$$

- (b) (6 pts) Find the the Cramé-Rao lower bound for any unbiased estimator (as a function of X_1, \ldots, X_n) of μ .
- (c) (7 pts) Assume $X_1, \ldots, X_n \sim N(0,1)$ be i.i.d. random variables. Show the following convergence in distribution holds:

$$\frac{\sum_{i=1}^{n} (X_i^2 - 1)}{\sqrt{2n}} \xrightarrow{d} N(0, 1).$$

a) $\frac{d}{dr} \log f(x|\mu) = \frac{d}{dr} \left[\log \frac{1}{2r} + \frac{(x-\mu)^2}{2r} \right] = \frac{f(x-\mu)}{2r} \cdot f(x-\mu)$

C. R lower bound =
$$\frac{1}{n \cdot I_X(\mu)} = \frac{1}{n \cdot 2} = \frac{1}{n}$$

c) By CLT

√ame:

ID:

Name: ID:

- 2. (20 pts) Let X_1, \ldots, X_n be i.i.d. Ber(p).
 - (a) (5 pts) Show that the following convergence in probability holds:

$$\frac{1}{n^2}(X_1+\cdots+X_n)^2 \xrightarrow{p} p^2.$$

(b) (5 pts) Consider a risk function for any estimator $\delta(\mathbf{X})$ of p given by

$$R(p, \delta(\mathbf{X})) = \mathbb{E}_p |\delta(\mathbf{X}) - p|.$$

Let $\delta(\mathbf{X}) = X_1$ be the estimator, and $\pi(p) = \text{Uniform}(0,1)$ be the prior distribution on p. Find the Bayes risk

 $\int_0^1 R(p, \delta(\mathbf{X})) \pi(p) dp.$

(c) (10 pts) Show that $\phi(\mathbf{X}) = X_1 X_2$ is an unbiased estimator of p^2 . Based on $\phi(\mathbf{X})$ and the Lehmann-Scheffé Theorem, find the best unbiased estimator $W = W(X_1, \dots, X_n)$ of p^2 with an explicit form.

a) $E[\frac{1}{n^2}(x_1+...x_n)^2] = Von(\frac{1}{n^2}(x_1+...x_n)) + E(\frac{1}{n^2}(x_1+...x_n))^2$ = $\frac{1}{n^2}p(1-p) + \frac{1}{n^2}p^2 = p^2 + \frac{p(1-p)}{n^2}$.

Mso var (1 (1 (x17 - xn)2) (00 ... by WLL, 12 (x17 - xn)2 + p2.

ACELES TO THE TOTAL TOTA

Bayes now for absolute person loss is rediced of posterior; is all

b) $\pi(p|x) = L(p, x) . \pi(p) = f(x, |p) \pi(p) = x + (1-x)^{1-p} . 1 [pape [q_1]]$

The minimore is the median of posterior.

Name:

ID:

 Name:

ID:

- 3. (20 pts) Let X_1, \ldots, X_n be i.i.d. $\operatorname{Exp}(\lambda)$ with pdf $f(x; \lambda) = \lambda e^{-\lambda x}$ for x > 0. For each $i = 1, \ldots, n$, define the indicator $Y_i = 1\{X_i > 1\}$.
 - (a) (7 pts) Compute the log-likelihood function

$$\log L(\lambda) = \log f(X_1, \ldots, X_n | \lambda).$$

(b) (7 pts) Consider the t-th iteration of an EM algorithm for approximating the MLE of λ . For the E-step, expected log-likelihood satisfies

$$Q(\lambda|\lambda^{(t)}) = n\log\lambda - \lambda\sum_{i=1}^{n} \mathbb{E}[X_i|Y_i,\lambda^{(t)}]. \quad \in \mathcal{P}^{\text{ver}}$$
 (1)

Given Equation (1), find the explicit solution for $\lambda^{(t+1)}$ in the M-step:

$$\lambda^{(t+1)} = rg \max_{\lambda} Q(\lambda | \lambda^{(t)}).$$

Your answer should be a function of $\mathbb{E}[X_i|Y_i,\lambda^{(t)}]$.

(c) (6 pts) Compute $\mathbb{P}(Y_1 = 1|\lambda)$ and $\mathbb{E}[X_1|Y_1 = 1,\lambda]$.

(c) (6 pts) Compute
$$\mathbb{P}(Y_1 = 1 | \lambda)$$
 and $\mathbb{E}[X_1 | Y_1 = 1, \lambda]$.

a) $\log L(\lambda) = \log f(X_1 - - X_n | \lambda)$ odg $\lambda \in \mathbb{R}$ by $\log L(\lambda) = \log \lambda \in \mathbb{R}$ and $\log L(\lambda) = \log \lambda \in \mathbb{R}$ by $\log L(\lambda) = \log \lambda \in \mathbb{R}$

$$\frac{d}{d} Q(\lambda | \lambda^{(4)}) = \frac{1}{\lambda} - \sum E[x_i | Y_i, \lambda^{(4)}]$$

c)
$$P(Y_1 = 1 \mid \lambda) = P(X_1 \neq 1 \mid \lambda) = \int_{\infty}^{\infty} e^{-\lambda x} dx = \lambda \int_{0}^{e^{-\lambda x}} dx$$

$$= \lambda e^{-\lambda x} \int_{0}^{\infty} = e^{-\lambda x} \int_{0}^{\infty} = e^{-\lambda x} dx$$

$$E[X_1|Y_1=1,\lambda] = \int x f_{\mathbf{x}}(x|Y_1=1,\lambda) dx = \int x f_{\mathbf{x}}(x|x_1,\lambda) dx$$

$$\int_{\mathbf{x}} (x|x_1) = \frac{\lambda e^{-\lambda x}}{e^{-\lambda}} = \lambda e^{-\lambda(x-1)}$$

$$\int_{\mathbf{x}} (x|x_1) = \frac{\lambda e^{-\lambda x}}{e^{-\lambda}} = \lambda e^{-\lambda(x-1)} dx$$

.√ame:

ID:

$$= \lambda \int_{-\lambda}^{\infty} x e^{-\lambda(x-1)} dx = \lambda \left[x \int_{-\lambda}^{\infty} e^{-\lambda(x-1)} dx - \int_{-\lambda}^{\infty} e^{-\lambda(x-1)} dx \right]$$

$$= \lambda \left[x \frac{e^{-\lambda(x-1)}}{\lambda} \int_{-\lambda}^{\infty} e^{-\lambda(x-1)} dx \right]$$

$$= \left[1 + \int_{-\lambda}^{\infty} e^{-\lambda(x-1)} dx \right]$$

$$= \left[1 + \left[e^{-\lambda(x-1)} \right]_{-\lambda}^{\infty} - \left[1 + \left[e^{-\lambda(x-1)} \right]_{-\lambda}^{\infty} \right]$$

$$= \left[1 - \left(0 - \frac{1}{\lambda} \right) = 1 + \frac{1}{\lambda} \right]$$

