

描述

MP2451 是一款集成了内部高端高压 MOSFET 的高频(2MHz)降压开关调节器。采用电流控制模式,为快速环路响应提供单一的 0.6A(或更少)高效输出。

3.3V 至 36V 的宽输入范围适用于汽车输入环境中的各种降压应用。3μA 关断模式静态电流允许其使用在电池供电应用中。

通过在轻载条件下按比例缩小开关频率,以减少 开关和栅极驱动损耗,实现了在宽负载范围内的 高功率转换效率。

频率折返有助于防止启动过程中电感电流失控。 过温保护确保了工作的稳定性和可靠性。

MP2541 采用高性价比 SOT23-6 和 TSOT23-6 封装。

特性

- 130µA 工作静态电流
- 3.3V 至 36V 宽工作输入电压范围
- 500mΩ 内部功率 MOSFET
- 2MHz 固定开关频率
- 内部补偿
- 稳定的陶瓷输出电容器
- 内部软启动
- 无电流检测电阻器的精密电流限
- 效率 > 90%
- 输出调节范围为 +0.8V 至 0.8xV_{IN}
- 3µA 低关断供电电流
- SOT23-6 和 TSOT23-6 封装

应用

- 高压功率转换应用
- 汽车系统
- 工业电源系统
- 分布式电源系统
- 电池供电系统

所有MPS 芯片都保证无铅,无卤素,并且遵守RoHS 规范。如需要查询具体芯片环保等级,请访问MPS官网之质量保证。"MPS"和"The Future of Analog IC Technology"是MPS的注册商标。

典型应用

订购信息

产品型号*	号* 封装 顶标	
MP2451DT	SOT23-6	V7
MP2451DJ	TSOT23-6	AML

*对于编带和卷盘,请添加后缀-Z(例如 MP2451DT-Z) 对于符合 RoHS 标准的封装,请添加后缀-LF (例如 MP2451DT-LF-Z)

参考封装

绝对最大额定值(1)

输入电源电压(V _{IN})	0.3V 至 40V
开关电压 (V _{SW})0.3V 至	$E V_{IN (MAX)} + 0.3V$
BST 至 SW	0.3 至 6.0V
使能电压(V _{EN})	8V
使能吸收电流(I _{EN})	100µA
所有其他引脚	0.3V 至 5.0V
连续功耗 (T _A =+25°C) ⁽²⁾	0.57W
结温	150°C
焊接温度	260°C
存储温度	-65℃ 至 150°C

推荐工作条件(3)

输入电源电压 V _{IN}	3.3V t 至 36V
输出电压 Vout	+0.8V 至 0.8*V _{IN}
工作结温 (T.)	

<i>热阻</i> ⁽⁴⁾	$oldsymbol{ heta}_{JA}$	$\boldsymbol{\theta}$ JC
<i>XXPI</i> L ` '	UJA	OJC

SOT23-6	. 220	110	°C/W
TSOT23-6	220	110	$^{\circ}\text{C/W}$

注:

- 1) 超过这些限定值可能会损坏芯片。
- 2) 最大允许功耗是最大结温 T_J (MAX)、结温-环境热阻 θ_{JA} 和环境温度 T_A 的函数。任何环境温度下允许的最大连续功耗由 P_D (MAX) = $(T_J$ (MAX)- T_A)/ θ_{JA} 计算。超过最大允许功耗会使芯片温度过高,导致稳压器进入热关机状态。内部热关断电路保护芯片免受永久性损坏。
- 3) 设备不能保证在其工作条件之外运行。
- 4) 上述数据是在 JESD51-7(4 层板)上测量所得。

电气特性

除非另有说明,以下皆在 V_{IN} = 12V, V_{EN} = 2V, T_A= 25°C 条件下测试得出。

参数	条件	最小值	典型值	最大值	单位
反馈电压	4.0V < V _{IN} < 36V	0.778	0.794	0.810	V
	$3.3V < V_{IN} < 4.0V$	0.770	0.794	0.818	V
高端开关管内阻	V _{BST} -V _{SW} =5V		500		mΩ
高端开关漏电流	$V_{EN} = 0V$, $V_{SW} = 0V$		0.1	1	μA
电源限值			1.0		Α
COMP 到电流检测跨导	Gcs		3		A/V
最小工作输入电压		3.3			V
输入欠压保护上升阈值		2.7		3.2	V
输入欠压保护阈值			0.4		V
软启动时间	反馈从 0 升至 1.8V		0.5		msec
振荡器频率		1600	2000	2400	kHz
最小开启时间			100		ns
关断供电电流	V _{EN} = 0V		3	15	μA
平均静态供电电流	空载, V _{FB} =0.9		130		uA
过温保护			150		°C
使能上升阈值		1.4	1.55	1.7	V
使能阈值迟滞			0.3		V
使能钳位电压			7.5		V

引脚功能

引脚#	名称	描述
1	BST	自举。给内部上管 MOSFET 驱动供电。连接一个电容在 BST 和 SW 之间。
2	GND	接地。为避免大的高频电流环路,接地引脚应尽可能靠近输出电容器。
3	FB	反馈。误差放大器的输入。将一个接在输出和接地之间的外部电阻分压器与内部+0.8V参考电压相比较,设置调节电压。
4	EN	启动输入。将 EN 引脚拉低至指定阈值下,关断芯片。将 EN 拉高至指定阈值以上启动芯片。悬空 EN 引脚关断芯片。
5	VIN	输入电源。输入电源给内部所有指定电路供电,包括 BS 调节器和上管开关驱动。为降低开关电压尖峰,接地去耦电容器必须放在输入引脚附近。
6	SW	开关节点。内部上管的源极输出。为降低开关尖峰电压,需要靠近 SW 引脚放置一个 V _F 肖特基二极管接地。

典型性能特性

除非另外说明,以下皆在 $V_{IN} = 12V$, $C1 = 4.7\mu F$, $C2 = 10\mu F$, $L = 3.3\mu H$ 和 $T_A = +25^{\circ}C$ 条件下测试得出。

典型性能特性 (续表)

除非另外说明,以下皆在 V_{IN} = 12V, C1 = 4.7 μ F, C2 = 10 μ F, L = 3.3 μ H and T_A = +25°C 条件下测试得出。

功能框图

运行原理

MP2451是一款2MHz非同步降压开关稳压器,集成了内部高端高压MOSFET。该芯片采用电流控制模式,提供内部补偿的单一0.6A高效输出。它具备宽输入电压范围、内部软启动控制和精确的电流限制。其极低的工作静态电流适用于电池供电应用。

PWM 控制

在中高输出电流条件下,MP2451通过固定频率、峰值电流控制模式来调节输出电压。PWM周期由内部时钟开启。功率MOSFET开启并保持直至其电流达到COMP电压设定值。当电源开关关闭时,在下一个周期开始之前,MOSFET至少保持关闭100ns。

如果,在一个PWM周期内,功率MOSFET中的电流值未达到COMP设定值,则功率MOSFET继续保持开启状态,省略关闭操作。

脉冲跳跃模式

在轻载条件下,MP2451进入脉冲跳跃模式,以提高轻载效率。是否进入脉冲跳跃基于其内部COMP电压。如果COMP电压低于内部睡眠阈值,则生成暂停(PAUSE)命令,阻止开启时钟脉冲,故功率MOSFET不会随后发出开启(ON)命令,从而降低栅极驱动和开关损耗。暂停(PAUSE)命令将整个芯片带入睡眠模式,消耗非常低的静态电流,进一步提高轻载效率。

当COMP电压高于睡眠阈值时,暂停(PAUSE)信号重置,芯片回到正常PWM运行模式。每当暂停(PAUSE)从低到高改变状态时,会马上生成开启信号,并导通功率MOSFET。

误差放大器

误差放大器由一个内部OP-AMP和一个R-C反馈网络组成,R-C反馈网络连接在其输出节点(内部COMP节点)和负端输入节点(FB)之间。当FB低于内部参考电压(REF)时,COMP输出随之被OP-AMP驱动的更高,从而导致更高的开关峰值电流输出,因此更多的能量被传递到输出。反之亦然。

当连接到FB引脚时,通常存在一个由R_{UP}和R_{DN}组成的分压器,其中R_{DN}位于FB和GND之间,而R_{UP}位于电压输出节点和FB之间。R_{UP}还用于控制误差放大器的增益以及内部补偿R-C网络。

内部调节器

大多数内部电路由2.6V内部调节器供电。该调节器采用V_{IN}输入,并在全V_{IN}范围内工作。当V_{IN}大于3.0V时,调节器的输出处于完全调节状态。当V_{IN}较低时,输出降级。

启动(EN)控制

MP2451含有一个专用使能引脚(EN)。V_{IN}足够高时,EN引脚可以启用和禁用芯片。这是一种高效逻辑。其上升阈值通常为1.55 V,其后继阈值约为300mV低值。当浮空时,内部电流源将使能引脚(EN)下拉至GND,芯片被禁用。

当EN被拉低至0V时,芯片进入最低关断电流模式。当EN高于0V却低于上升阈值时,芯片仍然处于关断模式,但关断电流略有增加。

在 EN 引脚和 GND 引脚之间连接一个内部齐纳二极管。齐纳二极管的典型钳位电压为 7.5V。因此,如果系统没有另一个逻辑输入作为使能信号, V_{IN} 可以通过高欧姆电阻连接到 EN。该电阻器需要将 EN 引脚吸收电流限制在低于 $100\mu A$ 范围内。

欠压锁定(UVLO)

欠压锁定(UVLO)在芯片电源工作电压不足时,用来保护芯片。UVLO上升阈值大约为2.9V,而其后继阈值大约为400mV低值。

内部软启动

参考型软启动是为了阻止启动时转换器输出电压过冲。当芯片启动时,内部电路生成的软启动电压(SS)根据软启动时间设置从0V缓慢上升。当SS低于内部参考值REF时,SS将覆盖REF,此时误差放大器使用SS而不是REF作为参考。当SS高于REF时,REF重新作为参考值。

SS也与FB相关。虽然SS可以远远低于FB,但它只能略高于FB。如果FB莫名下降,SS会追踪FB。该功能设计用于短路恢复。一旦短路排除,SS就像一个新的软启动过程一样缓慢上升。这样可以防止输出电压过冲。

过温保护

过温保护在工作温度过高时,用来保护芯片。当 硅晶体温度高于温度保护上限阈值时,整个芯片关断。当温度低于温度保护下限阈值时,芯片重新启动。

自举驱动电路

高端悬浮功率MOSFET的驱动需要一个外部自举电容充电。此驱动电路自带欠压锁定功能(UVLO)。UVLO上升阈值约为2.4V,迟滞约为300mV。UVLO期间,控制器的SS电压置零。当UVLO排除后,控制器遵循软启动过程。

自举电容由内部自举调节器供电并调节至大约 5V。当 BST 和 SW 节点之间的电压低于其调节值时,接通 V_{IN} 到 BST 之间的 PMOS 晶体管。充电电流环路是从 V_{IN} 到 BST 再到 SW。外部电路应提供足够的电压净空,以便于充电。

只要V_{IN}足够高于SW,自举电容器就可以充电。当功率MOSFET导通时,V_{IN}大约等于SW,所以自举电容器无法充电。当外部续流二极管导通时,V_{IN}与SW差值最大,此时为最佳充电时期。当电感器中没有电流时,SW等于输出电压V_{OUT},因此V_{IN}和V_{OUT}之间的差值可以用来给自举电容器充电。

当占空比较高时,自举充电可用的时间段较少, 因此自举电容器不能被充分充电。

如果外部电路没有足够的电压和时间给自举电容器充电,可以使用额外的外部电路来保证正常工作区域中的自举电压。

浮空驱动的UVLO不与控制器通信。

浮动驱动的直流静态电流大约为20μA。确保SW 节点上的漏电流至少高于20μA。

电流比较器和电流限值

功率MOSFET电流通过一个电流检测MOSFET被精确检测。然后将此电流供给高速电流比较器用于电流模式控制。电流比较器视检测电流为其输入电流的一支。当功率MOSFET导通时,比较器首先被消隐,直到导通转换结束,以避开噪声。随后,比较器将功率开关电流与COMP电压进行比较。当检测电流高于COMP电压时,比较器输出低电平,关断功率MOSFET。内部功率MOSFET的最大电流在周期上受到内部限制。

启动和关断

如果V_{IN}和EN都高于各自的阈值,则芯片启动。参 考块首先启动,产生稳定的参考电压和电流,然 后启用内部调节器。调节器为其余电路提供稳定 的电源。

当内部电源上升时,内部定时器保持功率 MOSFET关闭约50usec,消隐启动故障。当启用 内部软启动块时,首先保持其SS为低输出,以确 保其余电路准备就绪,然后缓慢上升。

三种情况会关断芯片: EN低, V_{IN}低, 过温保护。 在关断过程中, 首先阻断信号环路以避免触发故 障。然后下拉COMP电压和内部电源。浮空驱动 不受此关断命令的影响, 但其充电回路被禁用。

应用信息

部件选择

设置输出电压

使用一个位于输出电压与FB引脚之间的电阻分压器来设置输出电压。分压器按比例将输出电压 降低至反馈电压值:

$$V_{FB} = V_{OUT} \, \frac{R2}{R1 + R2}$$

因此输出电压为:

$$V_{OUT} = V_{FB} \, \frac{\left(R1 + R2\right)}{R2}$$

反馈电阻器R1还可以使用内部补偿电容设置反馈环路带宽。

R1选在124kΩ左右,以便获得最佳瞬态响应。然后通过以下公式计算出**R2**值:

$$R2 = \frac{R1}{\frac{V_{\text{OUT}}}{0.8V} - 1}$$

表1-电阻选项 vs. 输出电压设置

V _{out}	R1	R2
0.8V	124kΩ (1%)	NS
1.2V	124kΩ (1%)	249kΩ (1%)
3.3V	124kΩ (1%)	40.2kΩ (1%)
5V	124kΩ (1%)	23.7kΩ (1%)

电感

电感需要在开关输入电压驱动的情况下向输出负载提供恒定电流。电感值较大会降低纹波电流,从而降低输出纹波电压。然而,较大的电感值也具有更大的物理尺寸、更高的串联电阻和/或更低的饱和电流。

总之,好的电感器峰间纹波电流约为最大负载电流的30%,同时峰值电感电流低于最大开关电流限。电感可以根据以下公式计算得出:

$$L1 = \frac{V_{OUT}}{f_S \times \Delta I_L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

其中,Vout为输出电压,Vin为输入电压,fs为开 关频率, Δ lL为峰间电感纹波电流。

选择一款在最大电感峰值电流下不会饱和的电感器。峰值电感电流根据以下公式计算得出:

$$I_{LP} = I_{LOAD} + \frac{V_{OUT}}{2 \times f_S \times L1} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

其中ILOAD为负载电流。

表2列出了一些来自不同制造商的适用电感器。 选择哪种类型的电感器主要取决于其价格尺寸比 要求和电磁干扰要求。

© 2018 MPS 版权所有。

产品型号	电感(μH)	最大 DCR (Ω)	额定电流(A)	尺寸 L x W x H (mm³)
Wurth Electronics				
7440430022	2.2	0.028	2.5	4.8x4.8x2.8
744043003	3.3	0.035	2.15	4.8x4.8x2.8
7447785004	4.7	0.078	2.4	5.9x6.2x3.2
ТОКО		·		
D63CB-#A916CY-2R0M	2.0	0.019	2.36	6.2x6.3x3.0
D62CB-#A916CY-3R3M	3.3	0.026	2.17	6.2x6.3x3.0
D62CB-#A916CY-4R7M	4.7	0.032	2.1	6.2x6.3x3.0
TDK		·		
LTF5022T-2R2N3R2	2.2	0.04	3.2	5.2x5.0x2.2
LTF5022T-3R3N2R5	3.3	0.06	2.5	5.2x5.0x2.2
LTF5022T-4R7N2R0	4.7	0.081	2.0	5.2x5.0x2.2
COOPER BUSSMANN				
SD25-2R2	2.2	0.031	2.8	5.2x5.2x2.5
SD25-3R3	3.3	0.038	2.21	5.2x5.2x2.5
SD25-4R7	4.7	0.047	1.83	5.2x5.2x2.5

表 2--- 电感器选择指南

输入电容器(C1)可采用电解、钽或陶瓷电容。 当采用电解或钽电容器时,尽量靠近IC放置一颗 品质优良的小陶瓷电容器,例如0.1μF。当采用陶 瓷电容器时,确保其具有足够的电容以提供足够 的电荷,以防止输入时产生过多的电压纹波。由 电容引起的输入电压纹波可以根据以下公式估算 出:

$$\Delta V_{IN} = \frac{I_{LOAD}}{f_S \times C1} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

输出电容器

输出电容器(C2)需要维持直流输出电压。推荐使用陶瓷、钽或低ESR电解电容器。低ESR电容器能更好地保持低输出电压纹波。输出电压纹波可以根据以下公式来估算:

$$\Delta V_{OUT} \ = \frac{V_{OUT}}{f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times \left(R_{ESR} + \frac{1}{8 \times f_S \times C2}\right)$$

其中L为电感值,RESR为输出电容的等效串联电阻 (ESR) 值。

如果是陶瓷电容器,开关频率的阻抗主要由电容 来控制。输出电压纹波主要由电容引起。为简化 操作,可以通过以下公式估算出输出电压纹波:

$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times f_S^2 \times L \times C2} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

如果是钽或电解电容器,ESR控制开关频率的阻抗。为简化操作,输出纹波大约为:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times R_{ESR}$$

输出电容器的特性也会影响调节系统的稳定性。

补偿元件

补偿设计的目的是塑造转换器转换功能,以获得理想的环路增益。较低的交叉频率会带来较慢的线性和负载瞬态响应,而较高的交叉频率可能会引起系统不稳定。一个好的经验法则是将交叉频率设置大约为开关频率的十分之一。如果使用电解电容器,环路带宽不高于ESR零频率(fesr)的1/4。fesr由以下公式计算得出:

$$f_{ESR} = \frac{1}{2\pi \times C2 \times R_{ESR}}$$

表3列出了具有不同输出电容器(陶瓷)和电感器中某些标准输出电压补偿元件的典型值。在给定的条件下,补偿元件的值会被优化以获得快速瞬态响应和良好的稳定性。

表3 — 典型输出电压/电容器组合的补偿值

V _{OUT} (V)	L(µH)	C2(µF)	R2(kΩ)	C3(pF)
1.2	2.2	10	249	22
2.5	2.2	10	57.6	22
3.3	2.2	10	40.2	33
5	3.3	10	23.7	33
12	6.2	10	8.87	47

Note·注意

通过补偿,控制环路具有约1/10开关频率的带宽,且相补角大于45度。

外部自举二极管

外部自举二极管可以提高调节器的效率。以下情况中,建议在5V电源与BST引脚之间加入一个外部BST二极管。

- 系统中使用了一个5V电源:
- V_{IN}(输入电压)不大于5V;
- VOUT (输出电压) 为3.3V到5V之间;

此二极管还被推荐使用在高占空比应用中(V_{OUT} / $V_{IN} > 65\%$)。

自举二级管可使用低成本的二极管,如 IN4148 或 BAT54。

图2--外部自举二极管

空载或轻载时,转换器可以在脉冲跳跃模式下工作,以维持输出电压的调节。因此,刷新BS电压的时间较少。为了在此工作条件下有足够的栅极电压,V_{IN} -V_{OUT}的差值应该大于3V。例如,如果V_{OUT} 设为3.3V,V_{IN}应高于3.3V+3V=6.3V,以保证空载或轻载时有足够的BS电压。为满足此要求,可以使用EN引脚将输入UVLO电压编写至V_{OUT}+3V。

典型应用电路

图3-3.3V输出典型应用原理图

图4—12V输出典型应用原理图

PCB 布局指南

高效的 PCB 布局对于 IC 工作的稳定性至关重要。强烈建议复制 EVB 布局以获得最佳性能。

如果需要变更布局,请遵循以下指南,并参考图 5。

- 1) 保持开关电流走线尽量的短,回路面积控制在 最小范围内,其组成包括输入电容器、高端 MOSFET、外部开关二极管。
- **3)** 确保所有反馈连接线短而直。反馈电阻和补偿 元件尽可能靠近芯片。
- 4) SW 的走线尽量远离检测仿真区域,如 FB。
- 5) 分别将 IN、SW、尤其是 GND 连接到大面积 铺铜位置,以利于冷却芯片,提高散热性能和 长期稳定性。
- 2) 旁路陶瓷电容器建议靠近 V_{IN} 引脚放置。

MP2451 典型应用电路

图 5—MP2451 典型应用电路和 PCB 布局指南

封装信息

SOT23-6

TOP VIEW

RECOMMENDED LAND PATTERN

0.09 0.20 SEE DETAIL "A"

SIDE VIEW

FRONT VIEW

DETAIL "A"

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING CONFORMS TO JEDEC MO-178, VARIATION AB.
- 6) DRAWING IS NOT TO SCALE.
- 7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM **LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)**

TSOT23-6

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH PROTRUSION OR GATE BURR
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY(BOTTOM OF LEADS AFTER FORMING SHALL BE0.10 MILLIMETERS MAX
- 5) DRAWING CONFORMS TO JEDEC MO193, VARIATION AB.
- 6) DRAWING IS NOT TO SCALE
- 7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)

注:本文中信息如有变更,不另通知。用户应确保其对 MPS 产品的具体应用不侵犯他人知识产权,MPS 不对此类应用承担任何法律责任。