ML2 – the basics

Machine Learning – Tools and applications for policy – Lecture 3

Iman van Lelyveld – Michiel Nijhuis DNB Data Science Hub

ML2 – the basics

- 1. How do I assess success?
 - Confusion matrix, Receiver Operator Characteristic (ROC)
- 2. What are overfitting, bias and variance?
 - L2-regularisation
- 3. Support Vector Machines (SVM) and *k* nearest neighbours (KNN)

ML2 – the basics

Measuring success

Overfitting, bias and variance

Fixing overfitting

Classification: Support Vector Machines (SVM)

- Evaluation: Simple Measures for Classification (CompStat Munich) (link)
 Focus on 3.12-6.10 for the explanation on using a cost function. The remainder of the clip talks about other cost functions (Brier etc.) advanced topic.
- Evaluation: Measures for Binary Classification: ROC Measures (CompStat Munich) (link)

Focus on imbalanced classes at the start (e.g. defaults) and confusing naming (11.39-13.00)

- Evaluation: Measures for Binary Classification: ROC visualization (CompStat Munich) (link)
 - If you are interested in deriving ROC/AUC from first principles $\,$
- How do Support Vector Machines work? (Brandon Rohrer) (link)
- Decision Boundary (Andrew Ng) (link)
- To discuss in class: Decision tree animation
- To discuss in class: Bias Variance

ML2 – the basics

Measuring success

Overfitting, bias and variance

Fixing overfitting

Classification: Support Vector Machines (SVM)

- So far we've mainly been focussed on accuracy
- Accuracy can be misleading for imbalanced datasets
 - If 99.9% of all days it does not rain, then it will be difficult to beat the very simple predictor: it will be dry tomorrow
- We need to compute the performance for the off-diagonal
 - Is it bad if I predict sunshine but it rains? Is it bad if I predict rain but it is sunny?
 - Is it bad if you test positive for Covid but you are healthy? Is it bad if I say you are healthy but you have Covid?
- Confusion matrix helps visualize different types of errors a classifier can make by reporting the counts of these errors
 - true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions

Accuracy	
,	TP + TN
	$\overline{TP + FP + FN + TN}$
Error	FD . FM
	FP+FN
	$\overline{TP + FP + FN + TN}$
Precision	
	TP
	$Prec = rac{TP}{TP + FP}$
Recall	
	$_{Pas}$ — TP
	$Rec = \frac{TP}{TP + FN}$
F1 score	
	$F1 = 2 \times \frac{Prec \times Rec}{Prec + Rec}$
	Prec + Rec

Accuracy

$$\frac{TP + TN}{TP + FP + FN + TN}$$

$$\frac{FP + FN}{TP + FP + FN + TN}$$

Precision

$$Prec = \frac{TP}{TP + FP}$$

$$Rec = \frac{TP}{TP + FN}$$

F1 score

$$F1 = 2 \times \frac{\textit{Prec} \times \textit{Rec}}{\textit{Prec} + \textit{Rec}}$$

Accuracy	TP + TN
	$\frac{TP + TN}{TP + FP + FN + TN}$
Error	FP + FN
	$\overline{TP + FP + FN + TN}$
Precision	$Prec = \frac{TP}{TP + FP}$
Recall	$Rec = \frac{TP}{TP + FN}$
F1 score	$F1 = 2 \times \frac{Prec \times Rec}{Prec + Rec}$

Performance – precision

Accuracy

$$\frac{TP + TN}{TP + FP + FN + TN}$$

Error

$$\frac{FP + FN}{TP + FP + FN + TN}$$

Precision

$$Prec = \frac{TP}{TP + FP}$$

Recall

$$Rec = \frac{TP}{TP + FN}$$

F1 score

$$F1 = 2 \times \frac{\textit{Prec} \times \textit{Rec}}{\textit{Prec} + \textit{Rec}}$$

Accuracy	TP + TN
	$\overline{TP + FP + FN + TN}$
Error	$\Gamma D + \Gamma M$
	$\frac{FP + FN}{TP + FP + FN + TN}$
Precision	$Prec = \frac{TP}{TP + FP}$
Recall	$Rec = \frac{TP}{TP + FN}$
	TP + FN
F1 score	$F1 = 2 \times \frac{Prec \times Rec}{Prec + Rec}$

Accuracy
$$\frac{TP + TN}{TP + FP + FN + TN}$$
 Error
$$\frac{FP + FN}{TP + FP + FN + TN}$$
 Precision
$$Prec = \frac{TP}{TP + FP}$$
 Recall
$$Rec = \frac{TP}{TP + FN}$$
 F1 score

 $F1 = 2 \times \frac{\textit{Prec} \times \textit{Rec}}{\textit{Prec} + \textit{Rec}}$

- The costs for the 'boxes' / categories might differ
- What if the cost of missing a sick person are much higher than missing a healthy person?
 - If 0=Healthy, 1=sick \rightarrow missing sick = 2x healthy \rightarrow FN == 2x FP
- precision is for the scared bureaucrat, embarrassed to get a wrong prediction
- recall is the superhero that needs to defuse all the bombs and not miss one
- See CompStat Munich clip (link). Focus on 3.12-6.10 for the explanation on using a cost function. The remainder of the clip talks about other cost functions (Brier etc.) – advanced topic
- Also be mindful of imbalanced classes (See the start of the CompStat Munich link)

Question: 0.1% of the population has a disease, and a test detects it 99% of the time but falsely identifies 5% of healthy people as sick. What is the likelihood of a positive test result being accurate? Each format below convex the same fundamental information about risk structure.

A Single-event probability format

Bayes' theorem is necessary (and difficult) when using single-event probabilities to calculate the probability of a hypothesis (having the disease) given the evidence for it (a positive test result).

P(disease) = 0.1% prevalence of disease P(positive test|disease) = 99% true positive rate P(positive test|no disease) = 5% false positive rate

P(disease|positive test) =
$$\frac{0.1\% \times 99\%}{(0.1\% \times 99\%) + (99.9\% \times 5\%)}$$
 = 1.94% = **Answer: 2%**

B Nested set format

This view facilitates accurate judgment because it represents base rates (prevalence) and reference class size (1 of 1000) without having to multiply a conditional probability by the base rate.

Source: Operskalski and Barbey (2016)

- Choosing the right threshold can lead to any level of precision
- we can see the trade-off if we plot recall against precision
- More common Receiver Operating Curve or ROC
 - True Positive Rate == Recall
 False Positive Rate ==
 FP/(FP+TN) == 1 Specificity

ML2 – the basics

Measuring success

Overfitting, bias and variance

Fixing overfitting

Classification: Support Vector Machines (SVM)

Overfitting 17

- Overfitting: sometimes model performs well on training data \rightarrow low bias . . .
 - ... but does not generalize well to unseen data (test data)
 - If a model suffers from overfitting, the model has a high variance
 - This is often caused by a model that's too complex
- Underfitting can also occur (high bias)
 - Underfitting is caused by a model's not being complex enough
- Both suffer from low performance on unseen data

Seen as classification

Seen as regression

- Root Node: the entire population which gets divided into two or more homogeneous sets
- Splitting: It is a process of dividing a node into two or more sub-nodes
- Decision Node: When a sub-node splits into further sub-nodes
- Leaf/Terminal Node: Nodes that do not split
- Pruning: When we remove sub-nodes of a decision node. The opposite process of splitting
- Branch/Sub-Tree: Subsection of the entire tree
- Parent/Child Node: A node, which is divided into sub-nodes is a parent node of sub-nodes.
 Sub-nodes are the children

Decision tree

ML2 – the basics

Measuring success

Overfitting, bias and variance

Fixing overfitting

Classification: Support Vector Machines (SVM)

- Regularization is a way to tune the complexity of the model
- Regularization helps to filter out noise from training data
- As a result, regularization prevents overfitting
- There are two main forms of regularization
 - 1. L1 regularization: covered in Lecture ML3 dimensionality and assessment
 - 2. L2 regularization: weight decay

The most common form of regularization is the so-called L2 regularization (sometimes also called L2 shrinkage or weight decay):

$$\frac{\lambda}{2} \|\mathbf{w}\|^2 = \frac{\lambda}{2} \sum_{i=1}^m w_i^2$$

Where λ is the so-called regularization parameter. To apply regularization, we add the regularization term to the cost function, which shrinks the weights:

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left[-y^{(i)} \log \left(\phi(z^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - \phi(z^{(i)}) \right) \right] + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

- We control how well we fit the training data via the regularization parameter λ
- By increasing λ , we increase the strength of regularization
- Sometimes (e.g. in scikit-learn), Support Vector Machine (SVM) terminology is used

$$C = \frac{1}{\lambda}$$

• I.e. we rewrite the regularized cost function of logistic regression as:

$$C\left[\sum_{i=1}^{n} \left(-y^{(i)} \log \left(\phi(z^{(i)}) - \left(1 - y^{(i)}\right)\right) \log \left(1 - \phi(z^{(i)})\right)\right] + \frac{1}{2} \|\mathbf{w}\|^{2}\right]$$

ML2 – the basics

Measuring success

Overfitting, bias and variance

Fixing overfitting

Classification: Support Vector Machines (SVM)

Recap:

- Predict categorical class labels based on past observations
- Class labels are discrete unordered values which cannot be ordered.
- That is, each element of *Y* represents a class label and output *Y* consists of a discrete set of outcomes
- Examples
 - Binary: Email spam classification example or unemployment status
 - Multi-class: Handwritten digit classification example

- In a p-dimensional space, it's a flat affine subspace of dimension p-1.
 - Example: in a 2-dimensional space, it's a 1-dimensional line.
 - Example: in a 3-dimensional space, it's a 2-dimensional plane.
- Formal definition:
 - For a 2-dimensional hyperplane: $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$
 - For a *p*-dimensional hyperplane: $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_P X_P = 0$
 - Any point that satisfies the equation lies on the hyperplane.
- Suppose that *X* instead satisfies

$$eta_0 + eta_1 X_1 + eta_2 X_2 + \ldots + eta_P X_P > 0 \rightarrow \text{lies "above" the hyperplane}$$

 $eta_0 + eta_1 X_1 + eta_2 X_2 + \ldots + eta_P X_P < 0 \rightarrow \text{lies "below" the hyperplane}$

• A separating hyperplane then has the properties:

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} > 0$$
, if $y_i = 1$
 $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} < 0$, if $y_i = -1$

• Or, put differently:

$$y_i (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip})) > 0 \text{ for all } i$$

- This gives an infinite number of planes
- But which plane is the optimal one?
 - \rightarrow maximum margin classification

- In SVMs, the optimization objective is to maximize the margin
- The margin is defined as the distance between the separating hyperplane and the training samples that are closest to this hyperplane (support vectors)
- Intuitively, the larger the margin, the lower generalization error (variance)
- Models with small margin are prone to overfitting

See "How do Support Vector Machines work?" (Brandon Rohrer) in Knowledge clips).

- 1. It is very sensitive to small changes in the training set, especially the supports
 - What if the blue dot is removed?
- 2. It assumes that a separating hyperplane exists

Solution: introduce a slack variable ξ_i that allows some instances to 'cross' the margin but then penalize this

slack variable:

Allow some instances to fall off the margin, but penalize them

- To ensure convergence in presence of misclassifications we need to relax the linear constraints
- Introduce slack variables ξ

$$\mathbf{w}^{T}\mathbf{x}^{(i)} \ge 1 - \xi^{(i)} \text{ if } y^{(i)} = 1$$

 $\mathbf{w}^{T}\mathbf{x}^{(i)} < -1 + \xi^{(i)} \text{ if } y^{(i)} = -1$

- New objective to be minimized: $\frac{1}{2} ||\mathbf{w}||^2 + C(\sum_i \xi^{(i)})$
- *C* controls width of the margin with large values of $C \equiv$ large error penalties
- *C* is a way to do regularization in SVMs

- All observations are support vectors
- High bias, low variance

 Most observations are support vectors here

- Few support vectors
- Low bias, high variance

DataScience Hub

- With non-linear relationships, a support vector classifier is problematic
- One way to add non-linearity is to add higher order terms $(x_i^2, x_i^3, ...)$ into the separating hyperplane, but this is often computationally impractical.
- A popular alternative is using a kernel

- linear kernel
$$K(x_i, x_{i'}) = \sum_{i=1}^{p} x_{ij} x_{i'j}$$
- polynomial kernel
$$K(x_i, x_{i'}) = \left(1 + \sum_{j=1}^{p} x_{ij} x_{i'j}\right)^d$$
- radial kernel
$$K(x_i, x_{i'}) = \exp\left(-\gamma \sum_{j=1}^{p} \left(x_{ij} - x_{i'j}\right)^2\right)$$

- General blueprint:
 - Transform training data into a higher dimensional space via a mapping function $\phi(\cdot)$
 - Train a linear SVM to classify the data in the new feature space
 - Use the same mapping function $\phi(\cdot)$ to transform new (unseen) data
 - Classify unseen data using the linear SVM model

A separating hyperplane approach does not work for multiple classes

Workarounds:

- 1. One-versus-One classification approach
 - Take all possible pairs, compare them one-versus-one, and create several classifiers. e.g., if 3 classes (A,B,C), then compare A with B, A with C, and B with C
 - Then, for a given test observation, run it through all *K* classifiers and tally the number of times it has be assigned to any of the classes
 - Assign it the class to which it was predicted to belong the most often
- 2. One-versus-All classification approach
 - Fit *K* SVMs, each time comparing one of the *K* classes to the remaining *K*-1 classes (treated as if they were one combined class)
 - For a given test observation, run it through all *K* classifiers and assign it to the class for which it was most frequently predicted

Outline 39

ML2 – the basics

Measuring success

Overfitting, bias and variance

Fixing overfitting

Classification: Support Vector Machines (SVM)

K-nearest neighbors (KNN)

- KNN is an example of a non-parametric model
 - Parametric models learn parameters from training data
 - Once training done, the training set not required
- KNN is an instance-based or lazy learner
 - so needs all the data, all the time
- Basic KNN algorithm
 - 1. Choose *k* and a distance metric
 - 2. Find *k* nearest neighbors of the sample to be classified
 - 3. Assign the class label by majority vote

Distance metrics:

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sqrt[p]{\sum_{k} |x_{k}^{(i)} - x_{k}^{(j)}|^{p}}$$

Euclidean distance if we set the parameter p = 2Manhattan distance if we set the parameter p = 1(cf. Hamming distance and Minkowski distance)

- Classifier immediately adapts as we receive new training examples . . .
- ... so computational complexity grows linearly with the number of samples
- Need for efficient data structures such as KD-trees

Source: Maarten Grootendorst on Medium

- As you've seen before, there is no easy way to answer this.
- Increasing *k* will lead to high bias but low variance etc. etc.
- Playing around with *k* will show you the best performance in your model
- Maybe an elbow graph can be of use
 - Pick the point where increasing *k* does not improve the model much
 - See a similar discussion for K-means

Number of neighbors

Visually similar images

- Credit ratings, financial institutes will predict the credit rating of customers
- In loan disbursement, banks predict whether the loan is safe or risky.
- In a regression framework: KNN can be used to predict financial time series
 - stock markets, FX rates, etc., etc.

Summary 46

In this lecture we covered:

- 1. The balance between bias and variance
- 2. Looked at various measures of success in classification
 - Confusion matrix, Accuracy, Precision, Recall
- 3. Discussed how Support Vector Machines and K Nearest Neighbours work

DataScience Hub

$$\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right)^2
= \frac{1}{2} \frac{\partial}{\partial w_j} \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right)^2
= \frac{1}{2} \sum_i 2(y^{(i)} - \phi(z^{(i)})) \frac{\partial}{\partial w_j} \left(y^{(i)} - \phi(z^{(i)}) \right)
= \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right) \frac{\partial}{\partial w_j} \left(y^{(i)} - \sum_i \left(w_j^{(i)} x_j^{(i)} \right) \right)
= \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right) \left(- x_j^{(i)} \right)
= -\sum_i \left(y^{(i)} - \phi(z^{(i)}) \right) x_j^{(i)}$$

Calculate the partial derivative of the log-likelihood function with respect to the *j*th weight:

$$\frac{\partial}{\partial w_j} l(\mathbf{w}) = \left(y \frac{1}{\phi(z)} - (1 - y) \frac{1}{1 - \phi(z)} \right) \frac{\partial}{\partial w_j} \phi(z)$$

Partial derivative of the sigmoid function:

$$\frac{\partial}{\partial z}\phi(z) = \frac{\partial}{\partial z}\frac{1}{1+e^{-z}} = \frac{1}{\left(1+e^{-z}\right)^2}e^{-z} = \frac{1}{1+e^{-z}}\left(1-\frac{1}{1+e^{-z}}\right)$$
$$= \phi(z)(1-\phi(z)).$$

Resubstitute $\frac{\partial}{\partial z}\phi(z) = \phi(z)(1-\phi(z))$ to obtain:

$$\left(y\frac{1}{\phi(z)} - (1-y)\frac{1}{1-\phi(z)}\right)\frac{\partial}{\partial w_j}\phi(z)
= \left(y\frac{1}{\phi(z)} - (1-y)\frac{1}{1-\phi(z)}\right)\phi(z)\left(1-\phi(z)\right)\frac{\partial}{\partial w_j}z
= \left(y(1-\phi(z)) - (1-y)\phi(z)\right)x_j
= \left(y-\phi(z)\right)x_j$$

Operskalski, J. T., & Barbey, A. K. (2016). Risk literacy in medical decision-making. Science, 352(6284), 413–414.