MATH 135: Extra Practice Set 5

January 11th 2017 Jay Ching Lim

Question 1. (a) Use the Extended Euclidean Algorithm to find three integers x, y and $d = \gcd(1112, 768)$ such that 1112x + 768y = d. (b) Determine integers s and t such that $768s - 1112t = \gcd(768, -1112)$.

(a) We have $1112x + 768y = \gcd(1112, 768) = d$. By EEA,

X	у	r	q
1	0	1112	0
0	1	768	0
1	-1	344	1
-2	3	80	2
9	-13	24	4
-29	42	8	3
96	-139	0	3

From the second last row, we have

$$1112(-29) + 768(42) = \gcd(1112, 768) = 8.$$

Thus, x = -29, y = 42, and d = 8.

(b) Observe that $\gcd(768, -1112) = \gcd(-1112, 768) = \gcd(1112, 768)$. Let s = y and t = -x. Then we need to determine integers s and t such that $768y + 1112x = \gcd(1112, 768)$, which is the same equation as before. Since we have $1112(-29) + 768(42) = \gcd(1112, 768) = 8$, we can deduce that s = 42 and t = -(-29) = 29.

Question 2. Prove that for all $a \in \mathbb{Z}$, gcd(9a + 4, 2a + 1) = 1.

Proof. Let $a \in \mathbb{Z}$. We will apply GCD WR repeatedly.

Since
$$9a + 4 = 4(2a + 1) + a$$
, $gcd(9a + 4, 2a + 1) = gcd(2a + 1, a)$.
Since $2a + 1 = 2(a) + 1$, $gcd(2a + 1, a) = gcd(a, 1)$.
Since $a = a(1) + 0$, $gcd(a, 1) = gcd(1, 0) = |1| = 1$.

By the chain of equalities, we get

$$\gcd(9a + 4, 2a + 1) = \gcd(2a + 1, a)$$

= $\gcd(a, 1)$
= $\gcd(1, 0)$
= $|1|$
= 1, as required.

Question 3. Let gcd(x,y) = d. Express gcd(18x + 3y, 3x) in terms of d and prove that you are correct.

We know that 18x + 3y = 6(3x) + 3y. So by GCD WR, $gcd(18x + 3y, 3x) = gcd(3x, 3y) = 3 \cdot gcd(x, y) = 3d$.

Proof. Since d = gcd(x, y), d|x and d|y by the definition of gcd. By the definition of divisibility, $\exists k \in \mathbb{Z}$ such that dk = x. Multiplying this by 3, we get (3d)k = 3x. Since $k \in \mathbb{Z}$, 3d|3k. Also, $\exists h \in \mathbb{Z}$ such that dh = y and a similar argument shows that 3d|3y.

By BL, $\exists x_1, y_1 \in \mathbb{Z}$ such that

$$xx_1 + yy_1 = d.$$

Multiplying the equation by 3 yields

$$(3x)x_1 + (3y)y_1 = 3d.$$

Using our previous results, i.e. 3d|3x and 3d|3y together with the fact that $\exists x_1, y_1 \in \mathbb{Z}$ such that $(3x)x_1+(3y)y_1=3d$, we can apply GCD CT to deduce that $\gcd(18x+3y,3x)=3d$, as required.

Question 4. Prove that if gcd(a,b) = 1, then $gcd(2a + b, a + 2b) \in \{1,3\}$.

Proof. Assume that gcd(a,b) = 1. Let d = gcd(2a + b, a + 2b). By the definition of gcd, d|(2a + b) and d|(a + 2b). By DIC,

$$d|[2(2a+b)+(-1)(a+2b)] \implies d|3a.$$

Again, by DIC,

$$d|[(-1)(2a+b) + 2(a+2b)] \implies d|3b.$$

By GCD OO, $\exists x, y \in \mathbb{Z}$ such that ax + by = 1. Multiplying this equation by 3, we get (3a)x + (3b)y = 3. By the definition of divisibility, $\exists k \in \mathbb{Z}$ such that dk = 3a and $\exists h \in \mathbb{Z}$ such that dh = 3b. Substituting 3a = dk and 3b = dh into the previous equation, we get $(dk)x + (dh)y = 3 \iff d(kx + hy) = 3$. Since $k, x, h, y \in \mathbb{Z}$, $kx + hy \in \mathbb{Z}$. So by definition of divisibility, d|3. The only possible values of d are 1 and 3, i.e. $d = gcd(2a + b, a + 2b) \in \{1, 3\}$, as required.

Question 5. Prove that for every integer k, $gcd(a,b) \leq gcd(ak,b)$.

Proof. Let $k \in \mathbb{Z}$, $d_1 = gcd(a, b)$ and $d_2 = gcd(ak, b)$. By definition of gcd, $d_1|a$ and $d_1|b$. Clearly, a|ak. By TD, since $d_1|a$ and a|ak, $d_1|ak$. Applying the definition of gcd on d_2 , we know that $\forall c \in \mathbb{Z}$, if c|ak and c|b, then $c \leq gcd(ak, b) = d_2$. Since $d_1|ak$ and $d_1|b$, we can let $c = d_1$ to deduce that $d_1 \leq d_2$. Thus, $gcd(a, b) \leq gcd(ak, b)$, as required.

Question 6. Given a rational number r, prove that there exist coprime integers p and q, with $q \neq 0$, so that $r = \frac{p}{q}$.

Question 7. Prove that: if $a \mid c$ and $b \mid c$ and gcd(a,b) = 1, then $ab \mid c$.

Question 8. Let $a, b, c \in \mathbb{Z}$. Prove that if gcd(a, b) = 1 and $c \mid a$, then gcd(b, c) = 1.

Question 9. Prove that if gcd(a,b) = 1, then $gcd(a^m,b^n) = 1$ for all $m,n \in \mathbb{N}$. You may use the result of an example in the notes.

Question 10. Suppose a, b and n are integers. Prove that $n \mid gcd(a, n) \cdot gcd(b, n)$ if and only if $n \mid ab$.