TUTORATO LOGICA MATEMATICA A.A. 2022/2023

ESERCIZI 2022.11.03

Esercizio 1. Sia X un insieme infinito. Sia \mathcal{B} l'insieme dei sottoinsiemi A di $X \cup \{\infty\}$ tali che $(A \in \mathbb{R})$ finito e non contiene ∞) oppure $(A \in \mathbb{R})$ cofinito e contiene ∞). Mostrare che \mathcal{B} è un'algebra di Boole isomorfa all'algebra dei finiti e cofiniti di X.

Soluzione. È un'algebra di Boole perché è una sottalgebra di $\mathcal{P}(X \cup \infty)$, che è un'algebra di Boole. Definiamo un isomorfismo da $\mathcal{P}(X \cup \infty)$ a $\mathcal{P}(X)$: $A \mapsto A \setminus \{\infty\}$.

Esercizio 2. Per ogni $k \in \mathbb{N}$, si definisca

$$I_k := \{ n \in \mathbb{N} \mid n \ge k \}.$$

L'insieme

$$\mathcal{A} = \{I_k \mid k \in \mathbb{N}\}$$

è un filtro di $\mathcal{P}(\mathbb{N})$?

Se sì, dimostrarlo, se no, descrivere il filtro generato.

Soluzione. No, perché non è chiuso verso l'alto. Per esempio, $I_3 \subseteq I_3 \cup \{1\}$, $I_3 \in \mathcal{A}$, $I_3 \cup \{1\} \notin \mathcal{A}$. Il filtro generato è il filtro dei finiti e cofiniti. Usando Proposizione 3.69, otteniamo che il filtro generato da \mathcal{A} è

$$\{X \in \mathcal{P}(\mathbb{N}) \mid \exists n \in \mathbb{N}, \exists Y_1, \dots, Y_n \in \mathcal{A} : X \supseteq Y_1 \cap \dots \cap Y_n\},\$$

il quale, poiché A è chiuso per intersezioni finite, è uguale a

$${X \in \mathcal{P}(\mathbb{N}) \mid \exists Y \in \mathcal{A} : X \supseteq Y},$$

il quale è l'insieme dei sottoinsiemi cofiniti di $\mathcal{P}(\mathbb{N})$.

Esercizio 3. Sia A un'algebra di Boole finita. Si mostri che gli ultrafiltri sono esattamente i filtri principali \mathcal{F}_a generati da un elemento $a \in A$ che è minimale tra gli elementi non nulli di A.

Soluzione. Poiché A è finita, ogni filtro di A è principale. Per $a, b \in A$ abbiamo $\mathcal{F}_a \subseteq \mathcal{F}_b$ se e solo se $a \leq b$. Inoltre, \mathcal{F}_a è proprio se e solo se a = 0. Perciò, \mathcal{F}_a è massimale tra i filtri propri se e solo se a è minimale tra gli elementi non nulli.

Esercizio 4. Sia X un insieme finito, e sia n la cardinalità di X. Quanti sono gli ultrafiltri di $\mathcal{P}(X)$?

Soluzione. Sono n. Dimostriamolo. Poiché $\mathcal{P}(X)$ è finita, gli ultrafiltri di $\mathcal{P}(X)$ sono esattamente i filtri principali generati da un elemento $A \in \mathcal{P}(X)$ che è minimale tra gli elementi di $\mathcal{P}(X)$ non nulli, cioè i singoletti.

Date: 3 novembre 2022.

¹Un elemento minimale tra gli elementi non nulli è detto atomo.

Esercizio 5. Sia X un insieme e U un ultrafiltro dell'algebra di Boole $\mathcal{P}(X)$. Mostrare che le seguenti condizioni sono equivalenti.

- (1) U è principale, cioè esiste $Y \in \mathcal{P}(X)$ tale che U è il filtro generato da Y (cioè $U = \{Z \subseteq X \mid Y \subseteq Z\}$).
- (2) Esiste un elemento $x \in X$ tale che $U = \{Y \subseteq X \mid x \in Y\}.$

Soluzione. (2) \Rightarrow (1). U è il filtro generato da $\{x\}$.

 $(1) \Rightarrow (2)$. Supponiamo (1). Allora esiste $Y \in \mathcal{P}(X)$ tale che Y è minimo di U. $Y \neq \emptyset$ perché U è proprio. Esiste $x \in Y$. Allora $\{x\} \in U$ (cioè $Y \subseteq \{x\}$) oppure $X \setminus \{x\} \in U$ (cioè $Y \subseteq X \setminus \{x\}$). Quest'ultimo caso non è possibile; perciò $Y \subseteq \{x\}$, che implica $Y = \{x\}$. (Soluzione alternativa: Il filtro $\uparrow \{x\}$ generato da x è filtro proprio. $U = \uparrow Y \subseteq \uparrow \{x\}$. Dato che U è massimale tra i filtri propri rispetto all'inclusione, $Y = \uparrow \{x\}$.)

Esercizio 6. Sia X un insieme, sia \mathcal{A} una sottalgebra di Boole di $\mathcal{P}(X)$ e sia $x \in X$. Mostrare che $F := \{Y \in \mathcal{A} \mid x \in Y\}$ è un ultrafiltro di \mathcal{A} . È corretto asserire che è principale?

Soluzione. È chiaramente un filtro, ed è proprio perché $\emptyset \notin F$. Per ogni $Y \in \mathcal{A}$ abbiamo $A \in F$ (cioè $x \in A$) oppure $\neg A \in F$ (cioè $x \in X \setminus A$). Perciò, per il Lemma 3.79, è un ultrafiltro. (Soluzione alternativa: si consideri la funzione $\mathcal{A} \to \{0,1\}$ che manda $Y \in I$ se e solo se $x \in Y$. È un omomorfismo suriettivo il cui kernel è F; perciò, per il Lemma 3.79, F è un ultrafiltro.)

Non è corretto asserire che è principale. Infatti, si consideri il seguente controesempio. Sia X un insieme infinito, e sia \mathcal{A} l'insieme dei sottoinsiemi A di $X \cup \{\infty\}$ tali che (A è finito e non contiene ∞) oppure (A è cofinito e contiene ∞). Si prenda $x = \infty$.