Assignment 2

1)Download the dataset: Dataset data set is churn_modeling.csv 2)Load the dataset.

```
import pandas as pd

df = pd.read_csv("Churn_Modelling.csv")
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
4									•

3)Perform Below Visualizations. • Univariate Analysis • Bi - Variate Analysis • Multi - Variate Analysis

import seaborn as sns

#univariate
sns.displot(df['CreditScore'])

<seaborn.axisgrid.FacetGrid at 0x2c627fbdf70>

sns.displot(df['NumOfProducts'])

<seaborn.axisgrid.FacetGrid at 0x2c628069160>

#bi variate
sns.relplot(x="CreditScore",y='Age',data=df)

<seaborn.axisgrid.FacetGrid at 0x2c628846460>

<seaborn.axisgrid.FacetGrid at 0x2c62890e760>

sns.catplot(x="Gender",y='Age',data=df)

<seaborn.axisgrid.FacetGrid at 0x2c6299d7c70>

#multivariate
sns.pairplot(data=df,hue="Exited")

4)Perform descriptive statistics on the dataset.

```
import pandas as pd
import numpy as np
df = pd.read_csv("Churn_Modelling.csv")
df.head(2)
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balanc
0	1	15634602	Hargrave	619	France	Female	42	2	0.00
1	2	15647311	Hill	608	Spain	Female	41	1	83807.80
4									•

df.isnull().any()

8	RowNumber	False
	CustomerId	False
	Surname	False
	CreditScore	False
	Geography	False
	Gender	False
	Age	False
	Tenure	False
	Balance	False
	NumOfProducts	False
	HasCrCard	False
	IsActiveMember	False
	EstimatedSalary	False
	Exited	False
	dtype: bool	

df.describe()

		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance			
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000			
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288			
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202			
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000			
5)Handle the Missing values.										
	JU 70	ວບບບ.ວບບບບ	1.3080 <i>1</i> 4670 <i>1</i>	00∠.000000	37.000000	ა.სსსსსს	37 130.0 4 0000			
df.head()										

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
4									•

df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

The dataset does not contain any missing values. If an dataset has any missing values,we can handle it in following ways 1) missimg values which above 50% of data-remove 2)less missing values -replace function used-fillna()

6) Find the outliers and replace the outliers

df.skew()

C:\Users\HP\AppData\Local\Temp\ipykernel_10472\1665899112.py:1: FutureWarning: Dropping df.skew() 0.000000 RowNumber CustomerId 0.001149 CreditScore -0.071607 Age 1.011320 Tenure 0.010991 Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 Exited 1.471611 dtype: float64

sns.boxplot(df["Age"])

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass 1
 warnings.warn(

<AxesSubplot:xlabel='Age'>

q1= df["Age"].describe()["25%"]
q3= df["Age"].describe()["75%"]

q1

32.0

q3

44.0

```
iqr
     12.0
l_b=q1-(1.5*iqr)
u_b=q3+(1.5*iqr)
1_b
     14.0
l_b=q1-(1.5*iqr)
u_b=q3+(1.5*iqr)
1_b
     14.0
u_b
     62.0
df[df["Age"]<1_b]</pre>
       RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance
df[df["Age"]>u_b].head()
       RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance
    4
df.dtypes
     RowNumber
                          int64
     CustomerId
                          int64
     Surname
                         object
     CreditScore
                          int64
     Geography
                          int32
     Gender
                          int32
     Age
                          int64
     Tenure
                          int64
     Balance
                        float64
     NumOfProducts
                          int64
     HasCrCard
                          int64
     IsActiveMember
                          int64
```

iqr=q3-q1

```
EstimatedSalary float64
Exited int64
dtype: object

outlier_list=list(df[df["Age"]>u_b]["Age"])
outlier_list

[]

outlier_dict={}.fromkeys(outlier_list,u_b)
outlier_dict
{}
```

After removing outliers

```
df["Age"]=df["Age"].replace(outlier_dict)
sns.boxplot(df["Age"])
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t
 warnings.warn(

<AxesSubplot:xlabel='Age'>

7) Check for Categorical columns and perform encoding.

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	int32
Gender	int32

```
Age
                     int64
Tenure
                     int64
Balance
                   float64
NumOfProducts
                     int64
HasCrCard
                     int64
IsActiveMember
                     int64
EstimatedSalary
                   float64
Exited
                     int64
dtype: object
```

from sklearn.preprocessing import LabelEncoder

```
le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
```

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	0	0	42	2	0.0
1	2	15647311	Hill	608	2	0	41	1	83807.
2	3	15619304	Onio	502	0	0	42	8	159660.
3	4	15701354	Boni	699	0	0	39	1	0.0
4	5	15737888	Mitchell	850	2	0	43	2	125510.
4									•

8) Split the data into dependent and independent variables.

```
y=df['Exited']
x=df.drop(columns=['Exited','RowNumber','Surname'],axis=1)
У
     0
             1
     1
             0
     2
             1
     3
             0
     4
             0
     9995
             0
     9996
             0
     9997
             1
     9998
             1
     9999
```

Name: Exited, Length: 10000, dtype: int64

	CustomerId	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts
0	15634602	619	0	0	42	2	0.00	1
1	15647311	608	2	0	41	1	83807.86	1
2	15619304	502	0	0	42	8	159660.80	3
3	15701354	699	0	0	39	1	0.00	2
4	15737888	850	2	0	43	2	125510.82	1
•••						•••		
9995	15606229	771	0	1	39	5	0.00	2
9996	15569892	516	0	1	35	10	57369.61	1
9997	15584532	709	0	0	36	7	0.00	1
9998	15682355	772	1	1	42	3	75075.31	2
9999	15628319	792	0	0	28	4	130142.79	1
10000	10000 rows × 11 columns							
4								•

9)Scale the independent variables

```
col_names=x.columns
from sklearn.preprocessing import scale
x=scale(x)
Χ
    array([[-0.78321342, -0.32622142, -0.90188624, ..., 0.64609167,
              0.97024255, 0.02188649],
            [-0.60653412, -0.44003595, 1.51506738, ..., -1.54776799,
              0.97024255, 0.21653375],
            [-0.99588476, -1.53679418, -0.90188624, ..., 0.64609167,
             -1.03067011, 0.2406869 ],
            [-1.47928179, 0.60498839, -0.90188624, ..., -1.54776799,
              0.97024255, -1.00864308],
            [-0.11935577, 1.25683526, 0.30659057, ..., 0.64609167,
            -1.03067011, -0.12523071],
            [-0.87055909, 1.46377078, -0.90188624, ..., 0.64609167,
             -1.03067011, -1.07636976]])
```

 $x=pd.DataFrame(x,columns=col_names)$ #Convert the array back to the DataFrame x

	CustomerId	CreditScore	Geography	Gender	Age	Tenure	Balance	NumO [.]
0	-0.783213	-0.326221	-0.901886	-1.095988	0.342615	-1.041760	-1.225848	
1	-0.606534	-0.440036	1.515067	-1.095988	0.240011	-1.387538	0.117350	
2	-0.995885	-1.536794	-0.901886	-1.095988	0.342615	1.032908	1.333053	
3	0.144767	0.501521	-0.901886	-1.095988	0.034803	-1.387538	-1.225848	
4	0.652659	2.063884	1.515067	-1.095988	0.445219	-1.041760	0.785728	
9995	-1.177652	1.246488	-0.901886	0.912419	0.034803	-0.004426	-1.225848	
9996	-1.682806	-1.391939	-0.901886	0.912419	-0.375612	1.724464	-0.306379	
9997	-1.479282	0.604988	-0.901886	-1.095988	-0.273008	0.687130	-1.225848	
9998	-0.119356	1.256835	0.306591	0.912419	0.342615	-0.695982	-0.022608	
9999	-0.870559	1.463771	-0.901886	-1.095988	-1.093840	-0.350204	0.859965	
10000 ו	ows × 11 colur	nns						

10)Split the data into training and testing

(2000,)

Colab paid products - Cancel contracts here

×