Algebra Qualifying Exam September 26, 1996

Instructions: You are given 10 problems from which you are to do 8. Note: All rings are assumed to have a multiplicative identity, denoted 1. The fields \mathbb{Q}, \mathbb{R} and \mathbb{C} are the fields of *rational*, *real* and *complex* numbers, respectively.

- 1. Suppose that G/Z(G) is cyclic. Show that, in fact, G is abelian.
- 2. Let G be a group.
 - (i) State what it means for G to be a solvable group.
 - (ii) Let G be a group, $K \triangleleft G$ be a normal subgroup of G. Show that G is solvable if and only if both K and G/K are solvable groups.
- 3. Let R be a commutative ring. Recall that an ideal $I \subseteq R$ is finitely generated if there exist elements $x_1, x_2, \ldots, x_k \in I$ such that $I = (x_1, x_2, \ldots, x_k)$ (= $\{\sum r_i x_i | r_1, r_2, \ldots, r_k \in R\}$). Recall next that R satisfies the ascending chain condition, or is Noetherian if any sequence $I_0 \subseteq I_1 \subseteq \cdots \subseteq I_n \subseteq \cdots$ of ideals eventually stabilizes, i.e., there exists an integer M such that $m \geq M$ implies that $I_m = I_M$. Now prove that the following are equivalent for the commutative ring R:
 - (i) Every ideal $I \subseteq R$ is finitely generated.
 - (ii) R satisfies the ascending chain condition.
- 4. Let $R = \{\frac{a}{b} \in \mathbb{Q} | 2 \not | b\}$, a subring of the rational number field \mathbb{Q} . Prove that R has a unique proper maximal ideal, viz., the one generated by the element $2 \in R$.
- 5. Let R be a ring and let M be an irreducible R-module. Prove that $M \cong R/\mathcal{M}$, where $\mathcal{M} \subseteq R$ is a maximal left ideal.
- 6. Let V be a finite dimensional vector space with dual space V^* . If $W \subseteq V$ is a subspace, set $\text{Ann}(W) = \{ f \in V^* | f(w) = 0 \text{ for all } w \in V \}$

- W}, the annihilator of W in V^* . If W_1, W_2 are subspaces of V, show that $\operatorname{Ann}(W_1 + W_2) = \operatorname{Ann}(W_1) \cap \operatorname{Ann}(W_2)$.
- 7. Let $T: V \to V$ be a linear transformation on the vector space V, over the field \mathbb{F} . Assume that T has the following property: whenever $W \subseteq V$ is a T-invariant subspace of V then there exists another T-invariant subspace $W' \subseteq V$ with the property that $V = W \oplus W'$. Must T be diagonalizable? Prove, or give a counterexample.
- 8. Let $\mathbb{F} \subseteq \mathbb{K}$ be an algebraic extension of fields. If $\alpha \in \mathbb{K}$, prove that the minimal polynomial $m_{\alpha,\mathbb{F}}(x)$ of α over \mathbb{F} is an *irreducible* polynomial.
- 9. Let $\mathbb{K} = \mathbb{Q}(\sqrt{2+\sqrt{2}})$. Prove that \mathbb{K} is a Galois extension of \mathbb{Q} . (Hint: show that if m(x) is the minimal polynomial of $\sqrt{2+\sqrt{2}}$ over \mathbb{Q} , then m(x) splits completely in $\mathbb{K}[x]$.
- 10. Let p be a prime and let $\mathbb{F} = \mathbb{F}_p$ be the finite field of order p. Let $f(x) = x^2 + x + 1 \in \mathbb{F}[x]$ and let $\mathbb{K} \supseteq \mathbb{F}$ be the splitting field of f(x) over \mathbb{F} . Compute $[\mathbb{K} : \mathbb{F}]$ in the cases:
 - (i) p = 2,
 - (ii) p = 3.