

Université Libre de Bruxelles

Synthèse

Théorie des signaux ELEC-H-302

Auteur:

Nicolas Englebert

Professeur:

Antoine Nonclercq

Année 2015 - 2016

Appel à contribution

Synthèse Open Source

Ce document est grandement inspiré de l'excellent cours donné par Antoine Nonclercq à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de

l'améliorer surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 1

Signaux et systèmes

Un signal représente une information concernant le comportement ou l'état d'un phénomène. Ce signal est représenté mathématiquement par une fonctions. Un système agit sur des signaux d'entrée et produit, à sa sortie, des signaux sous une forme plus appropriée pour l'utilisation envisagée.

FIGURE 1.1 – Exemple de système

1.1 Signaux

Il existe deux types de signaux

- 1. A temps continu; fonction f(t) est définie pour toute valeur de la variable indépendante t.
- 2. A temps $discret^1$; fonction définie seulement pour des valeurs discrète de la variable indépendante. Il s'agit par exemple d'une suite de valeurs $\mathbb R$ ou $\mathbb C$

FIGURE 1.2

 $x(n), \qquad n \in \mathbb{N}$ (1.1)

Souvent, on procède à un échantillonnage d'un signal à temps continu (TC) pour obtenir un signal à temps discret (TD)

$$x(n) = f(nT) \tag{1.2}$$

où x est discret, f continu et T est la période d'échantillonnage.

Le signal à TD se distingue du signal à TC par la quantification de sa variable indépendante (t). On pourrait également envisager la quantification de l'amplitude : un signal est dit num'erique lorsque t et l'amplitude sont quantifiées et analogique lorsque ces deux valeurs évoluent de façon continues.

1.1.1 Signaux déterministes ou aléatoires

Dans un signal *déterministe*, l'évolution en fonction du temps (ou de la variable indépendantes) est à priori connue. Par contre, l'évolution temporelle ² d'un signal *aléatoire*.

^{1.} ou signal échantillonné

^{2.} Je considère que la variable indépendante sera le temps dans ce chapitre.

1.1.2 Signaux à énergie finie et signaux à puissance moyenne finie

Signaux à énergie finie

L'énergie et la puissance d'un signal x(t) sur $t \in [t_1; t_2]$ est donnée par (le module permet la généralisation aux fonction complexes)

$$E(t_1, t_2) = \int_{t_1}^{t_2} |x(t)|^2 dt, \qquad P(t_1, t_2) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt$$
 (1.3)

L'énergie du signal à TC sera dite finie si

$$E \int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty \tag{1.4}$$

Pour le signal TD, il suffit de remplacer $\int_{-\infty}^{+\infty}$ par $\sum_{n=-\infty}^{+\infty}$.

La puissance moyenne totale de tels signaux est nulle : ils sont de types transitoires et les seuls physiquement accessibles.

Signaux à puissance moyenne finie

La puissance moyenne finie (TC et TD) pour un signal x

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt, \qquad P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{-T}^{+N} |x(n)|^2$$
 (1.5)

est bornée et non nulle $(0 < P < \infty)$. Dès lors, l'énergie de ces signaux est infinie (signaux périodiques et aléatoires stationnaires). Les signaux à énergie et puissance infinie n'appartiennent à aucune des deux catégories précédentes.

1.2 Systèmes

Ceux-ci réalisent la transformations de signaux, on utilise dès lors la même terminologie (TC, TD, numérique, analogique). Notons qu'il existe également des structures hybrides. On représente un système par un opérateur fonctionnel établissant une règle de correspondance entre deux ensembles de fonctions.

1.2.1 Caractéristiques de systèmes

Linéarité

Un TC/TD est linéaire s'il satisfait au principe de superposition

$$S[ax_1(t) + bx_2(t)] = aS[x_1(t)] + bS[x_2(t)], T[ax_1(n) + bx_2(n)] = aT[x_1(n)] + bT[x_2(n)]$$
(1.6)

où $a, b \in \mathbb{C}$. Une entrée nulle $(\forall t \text{ ou } n)$ suscite une réponse nulle : y(n) = 2x(n) + 3 n'est ainsi pas linéaire (waw).

Permanence (invariance dans le temps)

Un système est permanent si un décalage temporel du signal d'entrée produit le même décalage du signal de sortie.

• TC;
$$y(t) = S[x(t)] \quad \Rightarrow \quad y(t - t_0) = S[x(t - t_0)] \qquad \forall t_0 \in \mathbb{R}$$

• TD;
$$y(t) = T[x(n)] \Rightarrow y(t-k) = T[x(n-k)] \quad \forall k \in \mathbb{Z}$$

Causalité

Un système est dit *causal* si le signal de sortie à tout instant ne dépend que des valeurs passées et présente du signal d'entrée. On l'exprime

- TC;
 - * $x_1(t) = x_2(t)$ pour $t \le t_0 \implies y_1(t) = y_2(t)$ pour $t \le t_0$.
 - * x(t) = 0 pour $t \le t_0$ \Rightarrow y(t) = 0 pour $t \le t_0$.
- TD;
 - * $x_1(n) = x_2(n)$ pour $n \le n_0$ \Rightarrow $y_1(n) = y_2(n)$ pour $n \le n_0$.
 - * x(n) = 0 pour $n \le n_0$ \Rightarrow y(n) = 0 pour $n \le n_0$.

Notons qu'un système est toujours causal si t (ou n) est le temps réel.

Stabilité

Un système est dit stable (au sens strict) si tout signal d'entrée bornée produit une sortie également bornée (stabilité BIBO (bounded input bounded output) :

- TC; $|x(t)| \le B_x < \infty \quad \forall t \quad \Rightarrow \quad |y(t)| \le B_y < \infty \quad \forall t$
- TD; $|x(n)| \le B_x < \infty \quad \forall n \quad \Rightarrow \quad |y(n)| \le B_y < \infty \quad \forall n$

Chapitre 2

Signaux et systèmes discrets

2.1 Signaux discrets

2.1.1 Signaux particuliers

Passant en revue certains signaux particuliers

Échelon unité

$$u(n) = 0 \quad n < 0 = 1 \quad n \ge 0$$
 (2.1)

Impulsion unité

$$\delta(n) = 0 \quad n \neq 0
= 1 \quad n = 0$$
(2.2)

Ceux deux signons sont liés par les deux relations suivantes

$$u(n) = \sum_{k=-\infty}^{n} \delta(k)$$

$$\delta(n) = u(n) - u(n-1)$$
(2.3)

Exponentielle

$$x(n) = a^{n}$$

$$x(n) = e^{\sigma + j\omega_{0}} = e^{\sigma n} (\cos \omega_{0} n + j \sin \omega_{0} n)$$
(2.4)

Sinusoïdal

$$x(n) = A\sin(\omega_0 n + \Phi) \tag{2.5}$$

Périodique

$$x(n) = x(x+N) \qquad \forall n \tag{2.6}$$

Intéressons nous à l'exponentielle complexe

$$x(n) = e^{j\omega_0 n} (2.7)$$

On peut remarquer que si on considère $\omega_0' = \omega_0 + 2k\pi$, on retrouve le même signal

$$e^{j(\omega_0 + 2k\pi)n} = e^{j\omega_0 n} e^{j2k\pi n} = e^{j\omega_0 n} \tag{2.8}$$

Il est alors possible de restreindre la pulsation $\omega_0 \in [0; 2\pi[$. Cependant, contrairement aux signaux continus, l'exponentielle complexe n'est pas toujours périodique dans le cas discret.

$$x(n) = x(n+N)$$

$$\Leftrightarrow e^{j\omega_0 n} = e^{j\omega_0(n+N)} = e^{j\omega_0 n} e^{j\omega_0 N}$$

$$\Leftrightarrow e^{j\omega_0 N} = 1$$

$$\Leftrightarrow \omega_0 N = 2m\pi \Longrightarrow \omega_0 = m\frac{2\pi}{N}$$

$$(2.9)$$

Il faut forcément que ω_0 soit un multiple entier de $2\pi/N$. Or, nous avons limité le domaine de ω_0 : il n'existe que N exponentielles distinctes de période N:

$$\Phi_k(n) = e^{jk\frac{2\pi}{N}n}$$
 $k = 0, 1, \dots N - 1$ (2.10)

Représentation d'un signal au moyen d'impulsions

FIGURE 2.1

Il est toujours possible un signal x(n) sous la forme

$$x(n) = \sum_{-\infty}^{\infty} x(k)\delta(n-k)$$
 (2.11)

2.2 Systèmes à temps discret, linéaires et permanents

On appelle réponse impulsionnelle h(n) le signal de sortie lorsque le signal d'entrée est un delta de Dirac $\delta(n)$

$$h(n) = T[\delta(n)] \tag{2.12}$$

Comme vu à la sous-section ci-dessus, écrivons un signal d'entrée sous la forme d'impulsion

$$x(n) = \sum_{-\infty}^{\infty} x(k)\delta n - k \tag{2.13}$$

Les "bornes" de la somme sont telles que l'on sélectionne tout. La sortie devient

$$y(n) = T\left[\sum_{-\infty}^{\infty} x(k)\delta(n-k)\right]$$
 (2.14)

Par linéarité, le système ne s'applique qu'à l'impulsion

$$y(n) = \sum_{-\infty}^{\infty} x(k)T\left[\delta(n-k)\right]$$
 (2.15)

Appliquons la propriété de permanence : rien ne change si on effectue cette opération à cet instant, ou plus tard :

$$y(n) = \sum_{-\infty}^{\infty} x(k)h(n-k)$$
(2.16)

Il s'agit de la formule de convolution (discrète) qui exprime la sortie en fonction de la réponse d'entrée pour tout signal

$$y(n) = x(n) * h(n) \tag{2.17}$$

Le système est donc entièrement caractérisé par sa réponse impulsionnelle, x(n) étant déjà connu. La convolution est commutative, on peut dès lors écrire

$$y(n) = h(n) * x(n) = \sum_{k = -\infty}^{\infty} h(k)x(n - k)$$
 (2.18)

2.2.1 Association de systèmes

Cascade

Figure 2.2

$$w(n) = x(n) * h_1(n) y(n) = w(n) * h_2(n) = [x(n) * h_1(n)] * h_2(n)$$
(2.19)

Convolution associative

FIGURE 2.3

$$y(n) = x(n) * [h_1(n) * h_2(n)] = x(n) * h(n)$$
(2.20)

En parallèle

FIGURE 2.4

$$y_1(n) = x(n) * h_1(n)$$

$$y_2(n) = x(n) * h_2(n)$$

$$y_n(n) = y_1(n) + y_2(n) = x(n) * h_1(n) + x(n) * h_2(n)$$
(2.21)

Distributive pour l'addition

FIGURE 2.5

$$y(n) = x(n) * [h_1(n) + h_2(n)] = x(n) * h(n)$$
(2.22)

2.2.2 Stabilité

Nous avions précédemment vu la définition de la stabilité. La CNS de stabilité pour un SLP est

$$\sum_{k=-\infty}^{\infty} |h(k)| < \infty \tag{2.23}$$

Démonstration.

▶ La condition est suffisante.

Hypothèses:

- 1. $\sum_{k=-\infty}^{\infty} |h(k)| < \infty$
- 2. Le signal d'entrée x(n) est borné : $|x(n)| < A \quad \forall n$

Calculons le signal de sortie

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
(2.24)

Majorons

$$y(n) \le \sum_{k=-\infty}^{\infty} |h(k)||x(n-k)| \le A \sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

$$(2.25)$$

Le signal de sortie est borné, le système est donc stable.

▶ La condition est nécessaire.

Nous pouvons choisir n'importe quel signal d'entrée, considérons ce signal particulier :

$$x(n) = 1 \qquad \text{si } h(-n) \ge 0$$

$$= -1 \qquad \text{si } h(-n) < 0$$

$$x(n) = \text{sign } h(-n)$$

$$(2.26)$$

Ce signal d'entrée est construit tel que le produit entre h(n) * x(n) donne la valeur absolue de h: si h est positif il ne se passe rien, si le signe est négatif le signal multiplie par (-1) de sorte à avoir un signe positif. Ce signal est bien borné

$$|x(n)| = 1 \tag{2.27}$$

Calculons l'échantillon de sortie y(0):

$$y(0) = \sum_{k = -\infty}^{\infty} h(k)x(-k) = \sum_{k = -\infty}^{\infty} |h(k)|$$
 (2.28)

La sortie y(0) ne sera borné que si la réponse impulsionnelle est absolument sommable, la condition est bien nécessaire.

2.2.3 Causalité

Par définition y(n) n'est causal que s'il dépend de x(n) mais pas de $x(n+1), \ldots$ Pour que y(n) ne dépende pas de x(k) pour k > n, il faut que h(n) = 0 pour n < 0, soit la CNS de causalité. La réponse impulsionnelle doit être causale, il faut alors stopper la somme à n

$$y(n) = \sum_{k=-\infty}^{n} x(k)h(n-k) = \sum_{k=0}^{\infty} h(k)x(n-k)$$
 (2.29)

2.3 Systèmes décrits par une récurrence linéaire

La récurrence linéaire est définie par

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$
(2.30)

Il en résultera une ED donnant lieu à une infinité de solution : on impose des CI pour garantir l'existence et l'unicité de la solution (cf. $Analyse\ I$, II et III).

Exemple : Considérons la récurrence du premier ordre

$$y(n) - ay(n-1) = x(n) \implies y(n) = x(n) + ay(n-1)$$
 (2.31)

Considérons initialement une condition de repos et le signal d'entrée suivant :

$$x(n) = b\delta(n) \tag{2.32}$$

On a alors

$$y(-1) = x(-1) = 0$$

$$y(0) = x(0) + ay(-1) = x(0) = b$$

$$y(1) = x(1) + ay(0) = ab$$

$$y(2) = x(2) + ay(1) = a^{b}$$

$$y(n) = x(n) + ay(n-1) = a^{n}b$$

$$(2.33)$$

La solution particulière vaut alors

$$y(n) = a^n b u(n) \tag{2.34}$$

Vérifions que ceci est bien solution de x(n) = y(n) - ay(n-1) avec

$$\begin{cases} y(n) &= a^n b u(n) \\ y(n-1) &= a^{n-1} b u(n-1) \end{cases}$$
 (2.35)

Après substitution dans l'équation de récurrence, on trouve

$$a^{n}b(u(n) - u(n-1)) = b\delta(n)$$
(2.36)

En effet, (u(n) - u(n-1)) n'est rien d'autre que l'impulsion. Cependant, nous avons un facteur a^n en trop. Est-ce une erreur? Discutions en fonction de n

$$a^{n}b\delta(n) = b\delta(n)$$

 Si $n = 0$ $a^{0}b\delta(0) = b\delta(0) = b$
Si $n \neq 0$ $a^{n}b0 = b0 = 0$ (2.37)

Notre solution particulière est bien solution! Il reste à calculer la solution générale de la récurrence homogène

$$y(n) - ay(n-1) = 0 (2.38)$$

La solution sera $y(n) = ka^n$ (on peut vérifier que c'est bien le cas). En imposant y(-1) = c, on trouve comme S.G. (SGEH + SPEnH):

$$y(n) = ca^{n+1} + ba^n u(n) (2.39)$$

La solution au système linéaire étant causal, on dit ciao-ciao au terme en n+1:

$$y(n) = a^n b u(n) (2.40)$$

Si le signal d'entrée est une impulsion de Dirac $\delta(n)$, le signal de sortie sera la réponse impulsionnelle. Posons b=1

$$h(n) = a^n u(n) \tag{2.41}$$

a. Choix arbitraire donnant un résultat propre, mais ici non linéaire! Pour avoir une solution linéaire, il aurait fallu poser y(-1) = 0. L'avantage de considérer en (-1) est que l'échelon u s'annule.

EXEMPLE:

Nous avons ainsi entièrement caractérisé notre SLP. Voyons ce que vaut le signal de sortie pour un échelon unitaire

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$= \sum_{k=-\infty}^{\infty} u(k)a^{n}u(n-k)$$

$$= \sum_{k=-\infty}^{\infty} a^{n}u(n-k)$$

$$= \sum_{k=-\infty}^{\infty} a^{n}u(n-k)$$

$$= \sum_{k=-\infty}^{\infty} a^{n}$$
(2.42)

Il est possible de retrouver cette réponse en partant directement de la relation de récurrence, comme l'illustre le slide T22.

Chapitre 3

Analyse de Fourier des systèmes à temps discret

Dans le cas d'un signal périodique, la série de Fourier était utilisée

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t}$$
(3.1)

où l'on peut voir a_k comme le coefficient de pondération de chaque exponentielle complexe. Dans le cas ou les signaux n'étaient pas périodiques, la transformée de Fourier (et inverse) a (ont) été définie(s)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt, \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$$
 (3.2)

Le théorème de convolution peut permettre un traitement plus aisé de la convolution

$$y(t) = x(t) * h(t) \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad Y(j\omega) = X(j\omega)H(j\omega)$$
 (3.3)

3.1 Réponse à une exponentielle complexe

Considérons l'entrée suivante

$$x(n) = z^n, \quad z = e^{j\omega_0} \qquad \Rightarrow \qquad x(n) = e^{j\omega_0 n}$$
 (3.4)

où $-\infty < n < \infty$. Le signal de sortie est donnée en effectuant la convolution

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} h(k)z^{n-k} = z^n \underbrace{\sum_{k=-\infty}^{\infty} h(k)z^{-k}}_{H(z) \in \mathbb{C}}$$
 (3.5)

En effet, la dernière somme peut être vue comme une constante complexe (dépendant de z et du SLP). Cette sortie n'est que la fonction d'entrée multipliée par quelque chose : $z^n, z \in \mathbb{C}$ est une fonction propre de tout SLP discret.

Si par hasard le signal d'entrée peut se mettre tous la forme d'une somme d'exponentielle complexe (fonction propre) multipliée par un scalaire

$$x(n) = \sum_{p} a_p z_p^n \tag{3.6}$$

La réponse s'obtient par simple application de la linéarité

$$y(n) = \sum_{p} a_p H(z_p) z_p^n \tag{3.7}$$

Ceci justifie l'analyse de Fourier pour les systèmes discrets.

3.2 Série de Fourier discrète

Il est possible de développer en série de Fourier un signal périodique (période T_0) à TC x(t)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{T_0}t}$$

$$\tag{3.8}$$

Il est dès lors tentant de vouloir faire de même pour un signal à **TD** périodique, de période N (x(n) = x(n+N)) comme une combili d'exponentielle discrète de période N.

Nous avions vu qu'il n'existe que N exponentielles discrètes distinctes de période N. C'est le cas ssi

$$\omega_0 = m \frac{2\pi}{N} \qquad m \in \mathbb{Z} \tag{3.9}$$

La sommation est ainsi limitée à ces N termes

$$x(n) = \sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N}n} \qquad n = 0, 1, \dots, N-1$$
(3.10)

Il faut ainsi résoudre un système de N équations à N inconnues pour déterminer les a_k d'une série x(n) donnée :

$$\begin{cases} x(0) &= \sum_{k=0}^{N-1} a_k \\ x(1) &= \sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N}} \\ \dots \\ x(N-1) &= \sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N}(N-1)} \end{cases}$$
(3.11)

Exemple : Déterminons la série de Fourier $x(n) = \sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N}n}$ $n = 0, 1, \dots, N-1$ du signal ci-dessous $(1, 0, 2, -1, \dots)$.

Figure 3.1

La série doit vérifier les points donnés, c'est-à-dire que le système ci-dessous doit être satisfait.

$$\begin{cases} x(0) &= 1 = \sum_{k=0}^{4-1} a_k e^{j2\pi k0/4} = a_0 + a_1 + a_2 + a_3 \\ x(1) &= 0 = \sum_{k=0}^{4-1} a_k e^{j2\pi k1/4} = a_0 + ja_1 - a_2 - ja_3 \\ x(0) &= 1 = \sum_{k=0}^{4-1} a_k e^{j2\pi k2/4} = a_0 - a_1 + a_2 - a_3 \\ x(0) &= 1 = \sum_{k=0}^{4-1} a_k e^{j2\pi k3/4} = a_0 - ja_1 - a_2 + ja_3 \end{cases} \Leftrightarrow \begin{cases} a_0 &= 1/2 \\ a_1 &= -\frac{1+j}{4} \\ a_2 &= -1 \\ a_2 &= -1 \end{cases}$$
(3.12)

Cette représentation n'est valable que si l'on peut exprimer les a_k à partir de x(n): il faut résoudre le système de N équations à N inconnues (3.10). Il faut pour cela calculer

$$\sum_{n=0}^{N-1} x(n)e^{-jm\frac{2\pi}{N}n} = \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} a_k e^{j(k-m)\frac{2\pi}{N}n}
= \sum_{k=0}^{N-1} a_k \sum_{n=0}^{N-1} e^{j(k-m)\frac{2\pi}{N}n}$$
(3.13)

La dernière somme peut être écrite

$$S = \sum_{n=0}^{N-1} x(n)e^{-j(k-m)\frac{2\pi}{N}n} = \sum_{n=0}^{N-1} \alpha^n$$
(3.14)

où $\alpha = e^{-j(k-m)\frac{2\pi}{N}}$. Il s'agit de la série géométrique

$$S = \begin{cases} N & \text{si } \alpha = 1 \quad \text{c-\`a-d si } k - m = 0, \pm N, \pm 2N, \dots \\ \frac{1 - \alpha^N}{1 - \alpha} & \text{si } \alpha \neq 1 \quad \text{car } \alpha^N = 1 \end{cases}$$
(3.15)

ou encore

$$S = \begin{cases} N & \text{si } k - m = 0, \pm N, \pm 2N, \dots \\ 0 & \text{sinon} \end{cases}$$
 (3.16)

Si $m \in [0; N-1]$, S ne sera non nulle que pour k=m et donc, en isolant

$$a_m = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-jm\frac{2\pi}{N}n} \qquad m = 0, \dots, N-1$$
 (3.17)

soit l'expression des coefficients de la série de Fourier discrète.

EXEMPLE : Reconsidérons le précédent exemple. Nous devrions retrouver les mêmes coefficients à partir de (3.17). Nous avons ici

$$a_m = \frac{1}{4} \sum_{n=0}^{4-1} x(n) e^{-jm\frac{2\pi}{N}n} = \frac{1}{4} \left(1 + 2e^{-jm\pi} - e^{-jm3\pi/2} \right)$$
 (3.18)

On retrouve bien les mêmes coefficients.

$$\begin{cases}
 a_0 = 1/2 \\
 a_1 = -\frac{1+j}{4} \\
 a_2 = -1 \\
 a_n = -\frac{1-j}{4}
\end{cases}$$
(3.19)

Exemple : Pour le fun, calculons les coefficients de la série de Fourier de $x(n) = \sin\left(\frac{2\pi}{N}n\right)$. On peut également écrire

$$x(n) = \frac{e^{j\frac{2\pi}{N}n} - e^{-j\frac{2\pi}{N}n}}{2j}$$
 (3.20)

La série de Fourier ayant la forme $x(n) = \sum_{k=0}^{N-1} a_k e^{j\pi kn/N}$, en en déduit directement les coefficients par identification

$$a_1 = \frac{1}{2j}, \qquad a_{-1} = -\frac{1}{2j}, \qquad a_x = 0 \text{ sinon.}$$
 (3.21)

Ceci montre que x(n) est intégralement (pfpfpf) défini par N paramètres 1 ; la série de Fourier discrète transforme ces N paramètres en N paramètres a_k . Nous utiliserons les notations suivantes (déplacement du facteur 1/N):

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk}, \qquad x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi}{N}kn}$$
(3.22)

où X(k) (= X(k+N)) est la transformée de Fourier discrète (DFT) de x(n). La linéarité appliquée en début de chapitre pour la sortie d'un SLP s'applique également ici de sorte que la sortie sera donnée par

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) H\left(e^{j\frac{2\pi}{N}k}\right) e^{j\frac{2\pi}{N}kn} \qquad \text{où} \quad H\left(e^{j\frac{2\pi}{N}k}\right) = \sum_{k=-\infty}^{\infty} h(n) e^{-j\frac{2\pi}{N}kn}$$
(3.23)

3.3 Réponse en fréquence d'un système discret

En considérant comme signal d'entrée discret $x(n) = e^{j\omega n}$, celle-ci étant fonction propre notre sortie sera

$$y(n) = H\left(e^{j\omega}\right)e^{j\omega n} \tag{3.24}$$

où $H\left(e^{j\omega}\right)=\sum_{k=-\infty}^{\infty}h(k)e^{-j\omega k}$ est la réponse en fréquence du système. Il s'agit d'une constante complexe pour ω fixé

$$H\left(e^{j\omega}\right) = \left|H\left(e^{j\omega}\right)\right| e^{j\arg H\left(e^{j\omega}\right)} \tag{3.25}$$

Dès lors, pour un signal d'entrée réel du type $x(n) = A\cos(\omega_0 n + \varphi)$, la sortie vaut (superposition)

$$y(n) = A \left| H\left(e^{j\omega_0}\right) \right| \cos\left(\omega_0 n + \varphi + \arg H\left(e^{j\omega n}\right)\right)$$
(3.26)

On peut considérer $H(e^{j\omega})$ comme le développement de la fonction périodique H en série de Fourier. Dès lors, on peut exprimer les échantillons h(k) par la formule classique de calcul des coefficients d'une série de Fourier

$$h(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H\left(e^{j\omega}\right) e^{j\omega k} d\omega \tag{3.27}$$

exprimant la réponse impulsionnelle en fonction de la réponse fréquentielle.

Exemple: Slide T32/34

^{1.} es N valeurs du signal sur une période.