

Amos Korman CNRS

Joint work with Ofer Feinerman and Efrat Greenwald (Weizmann Institute)

Evidences for both direct and indirect (distributed) sensing of environment

Passive communication

Information is received by observing the behavior of others

Active communication

Noise in communication

How do biological ensembles overcome noise in communication?

Information theory seems like to right language

The Distributed Estimation problem

Goal: estimate an environmental value θ

(e.g., a direction away from a predator)

Informally

- Agents have initial unreliable estimates of θ and try to improve their knowledge by communicating
- Agents can have noisy observations of others (passive communication)
- Agents may communicate extra information (active communication)

More precisely

- An ``environmental'' target value \(\theta\)
- Each agent a keeps an opinion x_a(t) at time t (an estimator of \(\theta\)).
 At any time it can change its opinion by "shifting".
- Initially, the opinion $x_a(0)$ is taken from some distribution around Θ

ullet Agents use communication to improve their estimates of $oldsymbol{ heta}$

Goal: Keep estimators $x_a(t)$ unbiased and minimize variance

The communication

Noisy passive communication: When a views b it obtains a relative and noisy distance measurement:

$$d_{ab}(t) = x_b(t) - x_a(t) + \eta$$

(the noise η is taken from a distribution $N(\eta)$ centered at O)

Can add active communication based on history

Independent meeting pattern:

History(A)
$$\cap$$
 History(B) = \emptyset

capture well short time scales in dynamic and well mixed settings, where each agent views only few others

Competitive analysis

We want to identify simple algorithms that perform "well"

We compare algorithms to Algorithm OPT - the best possible algorithm in the most liberal version of the model: OPT communicates all memory and history of agents and may potentially perform complex calculations to find the best estimate for θ

Results

Fisher Channel Capacity

Fisher Channel Capacity is defined as J_N .

Since $J_a(t+1) - J_a(t) \le 1/(1/J_b(t) + 1/J_N) \le J_N$, the increase in Fisher information is always at most the Fisher Channel Capacity.

External state (orientation)	X_{a}, X_{b}	*, *
Agent relative information (large/small)	J_{a}^{Θ}	XX
Maximal Information sent	J_{b}^{Θ}	
Channel Capacity	J_{η}	<u> </u>
Maximal information received	$\frac{1}{\frac{1}{J_{b}^{\Theta}} + \frac{1}{J_{\eta}}}$	→

Lower bounds on performances

An extremely simple and near optimal algorithm

Algorithm CONF is based on maintaining and transmitting a confidence parameter $c_a(t)$ associated with the accuracy of the estimation $x_a(t)$. Updates are made by performing weighted average procedures.

Using lower bounds on the **Fisher information**, we show that such a method can lead to almost optimal performances

In particular, if all distributions are Gaussian then for every agent at any time, Algorithm CONF has the same variance as OPT!

Evidence for confidence storing and sharing in animals

Internal representation of confidence

Experiments were conducted on **fish and bugs**, in which the experimentalists **confused** some of the animals and saw that these animals were **more responsive** to social information

Golden shiners [Couzin et al, Science 2011] Sticklebacks Fish [Bergen et al. Royal Society, 2014]

Cactus bugs [Fletcher & Miller, Biology letters 2008]

Speed = Confidence?

House-hunting in honeybees Apis mellifera

Confidence in recruitment: A correlation between the speed of a bee flying to the prospect site and the responsiveness of other bees.

Recruitment behavior in the desert ant Cataglyphis niger

Speed = Confidence?

- High speed is correlated to high probability of exiting the nest
- Very high speed is correlated to direct contact with the food
- Speed increases after interaction with a fast partner

Merci!