Laboratory: Reasoning about Programs I

Objectives

1. Write program specification, invariants, termination terms and prove them with RISC ProofNavigator.

Example 1

Consider the following algorithm finding the smallest index r of an occurrence of value x in array a (r = -1, if x does not occur in a).

```
i := 0; r := -1; n = len(a);
while i < n && r = -1 do
    if a[i] = x
        then r := i
    else i := i + 1
return r</pre>
```

Write for the algorithm a suitable specification, derive a loop invariant and termination term and prove the total correctness of the algorithm with RISC ProofNavigator.

Solution. The precondition is $P:\iff \top$ and the postcondition is

$$Q: \iff ((r = -1 \land \bigvee_{\substack{i \\ 0 \leq i < len(a)}} a[i] \neq x) \lor (0 \leq r < len(a) \land a[r] = x \land \bigvee_{\substack{i \\ 0 \leq i < r}} a[i] \neq x))$$

The invariant is

A termination term is t(i) = n - i.

Check the file linsearch.pn (it can be found on the virtual machine on the directory examples-ProofNavigatorCVC3)

Example 2

Consider the following algorithm computing the natural power a^p of a non-zero real number $a \in \mathbb{R}^*, p \in \mathbb{N}$.

```
int power (int a, int p)
  rez := 1; i := 0;
  while i
```

Write for the algorithm a suitable specification, derive a loop invariant and prove the partial correctness of the algorithm with RISC ProofNavigator.

Solution. The precondition is $P:\iff a\in\mathbb{R}^*\ \land\ p\in\mathbb{N}$ and the postcondition is $Q:\iff rez=\prod_{i=1}^p a$. We synthesize a suitable invariant I for the loop above. We have the following:

#iter	i	rez
0	0	1
1	1	1*a=a
2	2	$a*a=a^2$
$\mid k \mid$	$\mid k \mid$	$\mid a^{k-1} * a = a^k \mid$
k+1	k+1	$a^k * a = a^{k+1}$
p	p	$a^{p-1} * a = a^p$

We conjecture that the loop invariant is $rez = \prod_{j=1}^{i} a$. We formalize the problem and prove it with RISC ProofNavigator.

Example 3

Write an algorithm computing the sum of the first n natural numbers and prove its partial correctness with RISC ProofNavigator.

Hint. A suitable invariant for the loop invariant is:

$$I:\iff s=\sum_{j=1}^{i-1}j\land 1\leq i\leq n+1$$

.