GEL19962: Analyse des signaux

Examen partiel

Mardi le 24 octobre 1995; Durée: 13h30 à 15h20 Aucune documentation permise.

Problème 1 (8 points sur 35)

Soit f(t) la fonction suivante:

$$f(t) = \begin{cases} 0 & \text{si } t < -2\\ 2+t & \text{si } -2 \le t < -a\\ 2-a & \text{si } -a \le t < a\\ 2-t & \text{si } a \le t < 2\\ 0 & \text{si } t \ge 2 \end{cases}$$

avec
$$0 \le a \le 2$$

Trouver la transformée de Fourier $F(\omega)$

de la fontion f(t) en utilisant <u>une</u> des deux méthodes proposées. Vous devez faire la question A <u>ou</u> la question B, mais pas les deux.

A- Considérer la fonction f(t) comme la différence de deux fonctions triangles bien choisies et trouver $F(\omega)$.

B- Calculer la dérivée seconde de f(t) au sens des distributions et trouver $F(\omega)$.

Problème 2 (9 points sur 35)

a- Trouver la transformée de Fourier de la fonction: $f(t) = te^{-\beta t}U(t)$ avec $\beta > 0$.

b- Quel est l'énergie totale de f(t)?

c- Quel est le pourcentage d'énergie contenue dans la bande de fréquence $-2\beta \le \omega \le 2\beta$?

Voici quelques informations qui peuvent être utile pour ce problème:

$$\int_{0}^{+\infty} t^2 e^{-at} dt = \frac{2}{a^3} \quad \text{avec } a > 0$$

$$\int_{-a}^{a} \frac{du}{(1+u^2)^2} = \arctan(a) + \frac{a}{1+a^2}$$

 $\arctan(2) \cong 1.1 \text{ et } 3/3.14 \cong 0.995$

GEL19962: Analyse des signaux

Examen partiel

Problème 3 (10 points sur 35)

Soit $f_p(t)$ la fonction périodique définie par $f_p(t) = t^2$ pour $-1 \le t < 1$

Le but de cet exercice est de trouver la transformée de Fourier de cette fonction périodique sans calculer les coefficients de la série de Fourier qui y est associée.

a- Donner la période et la pulsation propre de cette fonction.

b- En calculant la dérivée seconde de $f_p(t)$ au sens des distributions, montrer que:

$$f_p''(t) = 2 - 4 \sum_{n=-\infty}^{+\infty} \delta(t - 1 - 2n).$$

On note $F(\omega)$ la transformée de Fourier de $f_p(t)$.

- c- Calculer la transformée de Fourier de l'équation trouvée en b-.
- d- Trouver une solution particulière de l'équation c- et donner la solution générale.
- e- En utilisant le fait que $f_p(t)$ est une fonction périodique et en calculant $F_{s\acute{e}rie}(0)$, donner l'expression de la transformée de Fourier de $f_p(t)$.

GEL19962: Analyse des signaux

Examen partiel

Problème 4 (8 points sur 35): Modulation d'amplitude

a- Calculer la tranformée de Fourier $F(\omega)$ du signal $f(t) = m(t)\cos(\omega_0 t)$ en fonction de la transformée de Fourier $M(\omega)$ de m(t).

On suppose que le spectre d'amplitude de $M(\omega)$ est à support borné (c'est à dire que $|M(\omega)| = 0$ pour $|\omega| \ge b$). Sa représentation est donnée ci -dessous.

On suppose que $\omega_0 > b$

b-Représenter le spectre d'amplitude de $F(\omega)$.

c- Donner la transformée de Fourier $G(\omega)$ de $g(t) = f(t)\cos(\omega_0 t)$. <u>Indication:</u> on pourra se servir du fait que $\cos^2(\omega_0 t) = \frac{\cos(2\omega_0 t) + 1}{2}$

d-Représenter le spectre d'amplitude de $G(\omega)$. Comment faudrait-il faire pour retrouver le spectre d'amplitude de $M(\omega)$?

e- **Question bonus** (2pts):

Que se passe-t-il lorsque $\omega_0 < b$?