Policygenius

VOICE OF THE POLICYGENIUS CUSTOMER

Lexin Lu
Michelle Van
Godwin Anguzu
Deekshita Saikia

BACKGROUND

Surveys sent out to customers periodically to collect feedback

--- Customers who withdrew

Customer Satisfaction (CSAT) Survey

How would you rate your overall satisfaction with the insurance application process?

1: Extremely Unsatisfied

5: Extremely Satisfied

BACKGROUND

Surveys sent out to customers periodically to collect feedback

--- Customers who withdrew

--- Customers who applied successfully

Customer Satisfaction (CSAT) Survey

How would you rate your overall satisfaction with the insurance application process?

1: Extremely Unsatisfied

5: Extremely Satisfied

Net Promoter Score® (NPS) Survey

How likely would you be to recommend our company to a friend?"

- 0-6: Detractors
- 7-8: Passive
- 9-10: Promoters

CURRENT PROCESS

Analyzing customer feedback manually to extract topics

Comment	Overcontact	High Quote	Slow Process
Stop emailing me after I asked over and over again.			
The price was high.			
Costs were too much for my budget			
I have been waiting since May 2021!			
Harassing calls, texts, and emails.			
Long horrible experience & still didn't offer a policy.			

Problems: • Challenging • Labor-Intensive • Time-Consuming

Built text analysis models to identify key topics and explore historical trends

1

Built text analysis models to identify key topics and explore historical trends

2

Developed an automated computational topic extraction pipeline

1

Built text analysis models to identify key topics and explore historical trends

2

Developed an automated computational topic extraction pipeline

3

Designed an analytics dashboard

1

Built text analysis models to identify key topics and explore historical trends

2

Developed an automated computational topic extraction pipeline

3

Designed an analytics dashboard

METHODS

Unsupervised and automated ML technique to identify semantic structures and conduct thematic analysis

Performs clustering on textual data in depth

Identifies key issues and topics present in a large corpus

Latent Dirichlet Analysis (LDA)

Non-negative Matrix Factorization (NNMF)

Structured Topic Modeling (STM)

BERTopic

COMPARISON OF METHODS

COHERENCE SCORE: DEGREE OF SEMANTIC SIMILARITY AMONG WORDS IN A TOPIC

METHODS

Unsupervised and automated ML technique to identify semantic structures and conduct thematic analysis

Performs clustering on textual data in depth

Identifies key issues and topics present in a large corpus

BERTopic - Density-based clustering algorithm

Semantic embeddings from pre-trained models (developed by Google) to account for a word's context

Flexible, good for noisy data

APPROACH

Prepare Data

Subsetted data to 4 segments:

- Promoters
- Passives

NPS

- Detractors
- CSAT

APPROACH

Prepare Data

Subsetted data to 4 segments:

NPS

- Promoters
- Passives
- Detractors
- CSAT

Model Building & Fine-tuning

- Build BERTopic models individually for the 4 segments
- Fine-tune each model to determine the number of topics by coherence score

APPROACH

Prepare Data

Subsetted data to 4 segments:

NPS

- Promoters
- Passives
- Detractors
- CSAT

Model Building & Fine-tuning

- Build BERTopic models individually for the 4 segments
- Fine-tune each model to determine the number of topics by coherence score

Interpret Results

Employed combination of human interpretation and BERTopic results to identify key themes

TRENDS OF TOPIC PROPORTIONS- DETRACTORS

TRENDS OF TOPIC PROPORTIONS- CSAT

People compain that they are often being miseld, for example, they see a cheaper quote when they start the process but the final quote is higher, or, they are told initially that they would not require a medical exam but eventually have to undertake one. This seems to be a growing problem.

DASHBOARD

Demo

Sampling Bias

All customers may not be equally likely to receive a survey

Sampling Bias

All customers may not be equally likely to receive a survey

Non-response Bias

Customers responding to surveys were different from those who didn't

Sampling Bias

All customers may not be equally likely to receive a survey

Non-response Bias

Customers responding to surveys were different from those who didn't

Limited Data

Only ~13000 records in NPS and ~3000 in CSAT with feedback

Sampling Bias

All customers may not be equally likely to receive a survey

Non-response Bias

Customers responding to surveys were different from those who didn't

Limited Data

Only ~13000 records in NPS and ~3000 in CSAT with feedback

Effect of Noise

Difficult to isolate the effect of noise in trends

CONCLUSION

What do we have?

- An automated pipeline to process raw text and extract key topics and trends
- Positive outcome: Our findings correlate with those of Pg

CONCLUSION

What do we have?

- An automated pipeline to process raw text and extract key topics and trends
- Positive outcome: Our findings correlate with those of Pg

Where do we go from here?

- Deliver an end-to-end production ready visualization tool using our pipeline
- Possible future work around applying this pipeline to ingest data from social media

That's a wrap!

Questions?

Special Thanks

Brenna Hayes, Policygenius Emily Nightingale, Policygenius Dustin Tucker, Policygenius

Greg Herschlag, Duke Jason Byers, Duke Ryan Huang, Duke

Appendix

BERTOPIC

BERTopic

Features:

- Density-based clustering algorithm
- More flexible & interpretable
- Semantic embeddings to account for a word's context
- Better at handling short texts
- Good for noisy datasets

PROMOTERS

PASSIVES

DETRACTORS

CSAT

PROMOTERS

PASSIVES

DETRACTORS

CSAT

