

WHAT IS CLAIMED IS:

1. A light receiving element for blue rays comprising:
 - a substrate;
 - 5 a p⁺ barrier layer (PBL) buried in the substrate by a designated depth for serving as an anode for receiving a power provided from the exterior;
 - 10 a p-type epitaxial layer formed on the p⁺ barrier layer (PBL) by epitaxial growth, and provided with a depletion layer area for generating pairs of electrons-holes (EHP) corresponding to energy of incident light from the exterior;
 - 15 a p⁺ well layer formed on designated areas of the p-type epitaxial layer, formed by masking, by injecting a designated impurity in an ion state into the designated areas, and electrically connected to the p⁺ barrier layer (PBL);
 - 20 a polysilicon layer formed by depositing polysilicon on window areas formed by window-etching an oxide layer obtained by oxidizing the p-type epitaxial layer; and
 - an n⁺ shallow junction layer diffused into a designated depth of the p-type epitaxial layer by implanting a designated impurity ion into the polysilicon layer and then heating the polysilicon layer for serving as a cathode for transmitting an electrical signal obtained by photoelectric conversion to the exterior.

2. A light receiving element for blue rays comprising:
a substrate;
a p⁺ barrier layer (PBL) buried in the substrate by a
designated depth for serving as an anode for receiving a power
5 provided from the exterior;
a p-type epitaxial layer formed on the p⁺ barrier layer
(PBL) by epitaxial growth, and provided with a depletion layer
area for generating pairs of electrons-holes (EHP)
corresponding to energy of incident light from the exterior;
10 a p⁺ well layer formed on designated areas of the p-type
epitaxial layer, formed by masking, by injecting a designated
impurity in an ion state into the designated areas, and
electrically connected to the p⁺ barrier layer (PBL);
a polysilicon layer formed by depositing polysilicon,
15 doped with an impurity ion, on window areas formed by window-
etching an oxide layer obtained by oxidizing the p-type
epitaxial layer; and
an n⁺ shallow junction layer diffused into a designated
depth of the p-type epitaxial layer by heating the polysilicon
20 layer for serving as a cathode for transmitting an electrical
signal obtained by photoelectric conversion to the exterior.

3. The light receiving element as set forth in claim 1
or 2, wherein:
25 the polysilicon layer is overlapped with the oxide layer

by a designated distance; and

parts of the polysilicon layer formed on the window areas and the oxide layer are removed by etching after the formation of the n⁺ shallow junction layer.

5

4. The light receiving element as set forth in claim 1 or 2,

wherein non-removed portions of the polysilicon layer formed on the window areas and the oxide layer serve as 10 external electrodes for receiving a power provided from the exterior.

5. The light receiving element as set forth in claim 1 or 2,

15 wherein the impurity ion-injected into the p⁺ well layer is one selected from the group consisting of boron (B) and BF₂.

6. The light receiving element as set forth in claim 1 or 2,

20 wherein the n⁺ shallow junction layer has a junction depth of 0.1μm to 0.2μm.

7. The light receiving element as set forth in claim 1 or 2,

25 wherein the impurity ion forming the n⁺ shallow junction

layer is one selected from the group consisting of phosphorous (P) and arsenic (As).

8. A method for manufacturing a light receiving element
5 for blue rays comprising the steps of:

(a) forming a p⁺ barrier layer (PBL) for serving as an anode for receiving a power provided from the exterior on a substrate;

10 (b) growing a p-type epitaxial layer, provided with a depletion layer area for generating pairs of electrons-holes (EHP) corresponding to energy of incident light from the exterior, on the p⁺ barrier layer (PBL);

(c) forming a p⁺ well layer, electrically connected to the p⁺ barrier layer (PBL), on the p-type epitaxial layer;

15 (d) forming an oxide layer by oxidizing the p-type epitaxial layer;

20 (e) forming a polysilicon layer by depositing polysilicon on overlapped areas between window areas formed by window-etching the oxide layer and the oxide layer by a designated distance;

(f) implanting a designated impurity ion into the polysilicon layer;

25 (g) forming an n⁺ shallow junction layer into a designated depth of the p-type epitaxial layer by heating the polysilicon layer provided with the implanted impurity ion;

and

(h) etching the polysilicon layer formed on the overlapped areas between window areas and the oxide layer by the designated distance.

5

9. A method for manufacturing a light receiving element for blue rays comprising the steps of:

(a) forming a p⁺ barrier layer (PBL) for serving as an anode for receiving a power provided from the exterior on a substrate;

(b) growing a p-type epitaxial layer, provided with a depletion layer area for generating pairs of electrons-holes (EHP) corresponding to energy of incident light from the exterior, on the p⁺ barrier layer (PBL);

(c) forming a p⁺ well layer, electrically connected to the p⁺ barrier layer (PBL), on the p-type epitaxial layer;

(d) forming an oxide layer by oxidizing the p-type epitaxial layer;

(e) forming a polysilicon layer by depositing polysilicon, doped with an impurity ion, on overlapped areas between window areas formed by window-etching the oxide layer and the oxide layer by a designated distance;

(f) forming an n⁺ shallow junction layer into a designated depth of the p-type epitaxial layer by heating the polysilicon layer doped with the impurity ion; and

25

(g) etching the polysilicon layer formed on the overlapped areas between window areas and the oxide layer by the designated distance

5 10. The method as set forth in claim 8 or 9,
 wherein the n⁺ shallow junction layer has a junction
 depth of 0.1 μ m to 0.2 μ m.