

Lernziele des heutigen Workshop-Tages

(Fortsetzung) Erweiterte Python-Kenntnisse:

- Verständnis der Grundkonzepte der Data-Mining-Bibliothek Pandas
- Fähigkeit, einfache Datenmanipulationen und Explorationen mit Pandas umzusetzen
- Fähigkeit, einfache Visualisierungen zur Kommunikation und Veranschaulichung von Daten zu erstellen

Ggf. Verständnis dafür, was reguläre Ausdrücke sind und wofür sie verwendet werden

- Überblick über die wichtigsten Metazeichen und Ihre Bedeutung
- Überblick über zentrale Funktionen zur Arbeit mit Reg. Ausdrücken

Wichtiger Hinweis!

Binder Usage Guidelines

Laden Sie <u>regelmäßig</u> die von Ihnen bearbeiteten Notebooks (und Dateien) aus der Binder-Umgebung herunter! Diese werden nicht dauerhaft gespeichert.

Wenn Ihre Binderinstanz längere Zeit inaktiv war (mehr als **10 Minuten**!), dann wird ihre Session terminiert, alle <u>nicht gesicherten Daten</u> und Notebooks sind dann verloren.

Heruntergeladene Notebooks können hochgeladen und weiter bearbeitet werden.

9:00		Übungen zur Wiederholung der Inhalte von Tag 4
10:00		Datenvisualisierung I
10:45		PAUSE
11:00		Datenvisualisierung II
12:00		MITTAGSPAUSE
13:00		Ggf. Einstieg: Reguläre Ausdrücke
14:15		PAUSE
14:30		Ggf. Einstieg: Reguläre Ausdrücke
15:30	_	Abschlussrunde

Tag 4 revisited

Notebook: tag-5/U0_rep-day-4_lite.ipynb

Zeit: 30 Minuten

Reguläre Ausdrücke (aka. RegEx)

- Mit regulären Ausdrücken können komplexe Muster in Zeichenketten identifiziert und dadurch gezieltere Operationen als mit den nativen String-Funktionen ausgeführt werden.
 - Reguläre Ausdrücke sind Sequenzen von Zeichen, die ein Suchmuster definieren.
 - o Anwendung bspw. Suchen und Ersetzen
- Reguläre Ausdrücke sind programmiersprachenunabhängig!
- Beispiel: So könnte ein regulärer Ausdruck für E-Mail-Adressen aussehen:

Hauptfunktionen

- re.search(): Sucht nach einem Muster in einem String
- re.match(): Überprüft, ob der Anfang eines Strings auf das Muster passt
- re.findall(): Findet alle Vorkommen eines Musters im String
- re.sub(): Ersetzt die Teile des Strings, die auf das Muster passen
- re.compile(): Kompiliert ein Regex-Muster in ein Regex-Objekt, das für die Suche verwendet werden kann

Häufig verwendete Metazeichen

• • (Punkt): Steht für jedes Zeichen außer einem neuen

Zeilenzeichen

Beginn eines Strings

\$: Ende eines Strings

Null oder mehr Vorkommen des vorangegangenen Zeichens

• +: Ein oder mehr Vorkommen des vorangegangenen Zeichens

• 1: Null oder ein Vorkommen des vorangegangenen Zeichens

• **\C**: Ein Ziffernzeichen, äquivalent zu [0-9]

• W: Ein Wortzeichen (Buchstabe, Ziffer oder Unterstrich)

• **\S**: Ein Leerzeichen (inklusive Tab und neue Zeile)

Weitere nützliche Funktionalitäten

Gruppierung und Alternativen:

- Runde Klammern (): Werden verwendet, um Gruppen zu erstellen
- Pipe : Steht für "oder" und erlaubt die Alternation zwischen Mustern

Flags:

- re.IGNORECASE (re.I): ignoriert Groß- und Kleinschreibung
- re.MULTILINE (re.M): Lässt ^ und \$ den Anfang bzw. das Ende jeder Zeile (nach jedem neuen Zeilenzeichen) sowie den Anfang bzw. das Ende des gesamten Strings matchen
- re.DOTALL (re.S): Lässt den Punkt (.) auch neue Zeilenzeichen matchen

Weiterführende Bibliotheken

Datenvisualisierung

- Neben Matplotlib und Seaborn:
 - Bokeh (interaktive Visualisierungen)
 - Plotly (insbesondere f
 ür webbasierte und interaktive Visualisierungen, auch Karten und 3D-Diagramme)
 - WordCloud (Wortwolken)

Arbeit mit XML-Daten:

- ElementTree
- o lxml
- BeautifulSoup (auch für HTML und damit zum Web Scraping geeignet)

Natural Language Processing und Text Mining

- NLTK (Natural Language Toolkit) eine der ältesten Bibliotheken
 - o Klassifizierung, Tokenisierung, Stemming, Tagging, Parsing, ...

• spaCy

- Moderne Sprachmodelle f
 ür Tasks wie in NLTK
- O Zusätzlich: NER, spezifisches Training von Sprachmodellen etc.

Gensim

Klassifikation von Textkorpora u.a. mit Topic Modeling

Scikit-learn

- Nicht speziell für NLP, aber viele Algorithmen für Textvektorisierung, Clustering und Klassifikation
- weitere Bibliotheken: <u>TextBlob</u> (u.a. Sentimentanalyse), <u>Tomotopy</u>
 und <u>BERTopic</u> (Topic Modeling), <u>flair</u> (u.a. Named Entity Recognition),

Weiterführende Bibliotheken

. . .

Weiterführende Bibliotheken

Geoinformationssysteme (GIS)

- Shapely zur Arbeit mit planaren, geometrischen Objekten
- GeoPandas Kombination von Pandas und Shapely, ersetzt PostGIS-Datenbanken in Python
- Pyproj Python-Implementierung für Proj
- <u>Cartopy</u> Python-Bibliothek zur Verarbeitung von Geodaten zur Erstellung von Karten und räumlichen Analysen

Abschlussrunde

- Was haben Sie vom Workshop mitgenommen?
- Worüber denken Sie jetzt anders als vor dem Workshop?
- Was h\u00e4tte Ihr Lernerlebnis noch optimieren k\u00f6nnen?

Herzlichen Dank für den schönen Workshop!