Pattern Recognition

Lecture 1: Introduction

Ahmed Hamdy

Computer Engineering Department

Cairo University

Spring 2017

What is PR?

 Pattern recognition is a branch of machine learning that focuses on the recognition of patterns and regularities in data.

 Sometimes synonymous with machine learning.

PR applications

Problem Domain	Application	Input Pattern	Pattern Classes
Bioinformatics	Sequence Analysis	DNA/Protein sequence	Known types of genes/
			patterns
Data mining	Searching for	Points in multi-	Compact and well-
	meaningful patterns	dimensional space	separated clusters
Document	Internet search	Text document	Semantic categories
classification			(e.g., business, sports,
			etc.)
Document image	Reading machine for	Document image	Alphanumeric
analysis	the blind		characters, words
Industrial automation	Printed circuit board	Intensity or range	Defective / non-defective
	inspection	image	nature of product
Multimedia database	Internet search	Video clip	Video genres (e.g.,
retrieval			action, dialogue, etc.)
Biometric recognition	Personal identification	Face, iris,	Authorized users for
		fingerprint	access control
Remote sensing	Forecasting crop yield	Multispectral image	Land use categories,
			growth pattern of crops
Speech recognition	Telephone directory	Speech waveform	Spoken words
	enquiry without		
	operator assistance		

Courtesy of Anil Jain et al.

Topics in PR

- Supervised Learning
 - Regression
 - Classification (Logistic Regression, SVM, KNN, GP,...)
- Regularization and Model Selection
- Unsupervised Learning (K-means clustering)
- Reinforcement Learning

Textbooks

Pattern Recognition and Machine Learning,
 Christopher Bishop

 Lecture notes of Andrew Ng, Stanford CS229

Regression

Similar to curve fitting

Classification

- 2 classes
- Labeled data

Courtesy of Anil Jain

License Plate Reading System

Detect and read the license plates

Modules:

- acquisition,
- enhancement,
- segmentation,
- character recognition
- Accuracy, robustness & real-time

Processing steps

- Plate localization: Isolate the plate in image
- Preprocessing: Plate orientation and sizing
- Normalization: Adjust image brightness & contrast
- Segmentation: Find individual characters
- Character recognition: OCR
- Post-processing: Rules for character placement

Challenges

- Poor image resolution: plate too far; low-res. image
- Motion blur
- Low contrast: overexposure, reflection/shadows
- Viewpoint variation and occlusion
- Different fonts, background

Can Stock Photo - csp5051780

Classification

Representation

Desirable properties

- Invariance
- Account for intra-class variations
- Ability to discriminate classes of interest; low inter-class similarity
- Robustness to noise, occlusion,...
- Provide simple decision making strategies
- Low measurement cost; real-time

Invariant representation

- Invariant to
 - Translation
 - Rotation
 - Scale
 - Skew
 - Deformation
 - Color

Not all invariant properties are needed for a given application

Fish sorting

FIGURE 1.2. Histograms for the length feature for the two categories. No single threshold value of the length will serve to unambiguously discriminate between the two categories; using length alone, we will have some errors. The value marked I* will lead to the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Fish sorting

FIGURE 1.3. Histograms for the lightness feature for the two categories. No single threshold value x* (decision boundary) will serve to unambiguously discriminate between the two categories; using lightness alone, we will have some errors. The value x* marked will lead to the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright ⊙ 2001 by John Wiley & Sons, Inc.

Overlap of these histograms is small compared to length feature

Two-dimensional Feature Space

Linear decision boundary; linear classifier

FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark line could serve as a decision boundary of our classifier. Overall classification error on the data shown is lower than if we use only one feature as in Fig. 1.3, but there will still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Joint distribution of two features leads to better separation

Complex decision boundary

Polynomial classifier

FIGURE 1.5. Overly complex models for the fish will lead to decision boundaries that are complicated. While such a decision may lead to perfect classification of our training samples, it would lead to poor performance on future patterns. The novel test point marked? is evidently most likely a salmon, whereas the complex decision boundary shown leads it to be classified as a sea bass. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

What is the generalization ability of the classifier?

Good Generalization & Good Accuracy

FIGURE 1.6. The decision boundary shown might represent the optimal tradeoff between performance on the training set and simplicity of classifier, thereby giving the highest accuracy on new patterns. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Simple decision boundaries are preferred

Occam's Razor (William of Ockham (c. 1287–1347)

"If you have two equally likely solutions to a problem, choose the simplest"

Fruit sorter

Reject option

 What if the system encounters a previously unseen class?

ABCDEFG
HIJKLMNO
PQRSTUV
WXYZ

abcdefghij
klmnopqrst
uvwxyz

Feature Selection & Extraction

Feature selection: which subset to use?
 Some features may be redundant

 Feature extraction: which combination of given features to use?

 Curse of dimensionality: Error rate may in fact increase with too many features in the case of small number of training samples

Statistical Pattern Recognition

Clustering

- Unlabeled data
- How many clusters??

K-means Clustering

Reinforcement Learning

RL demo 1: https://youtu.be/fiQsmdwEGT8

RL demo 2: https://youtu.be/bPkWMlCq2tc

Grade distribution

- Coursework (HWs/assignments) 20 points
- Final 80 points