Experimental Data Analysis in ©MATLAB

Lecture 8:

Introduction to models, regression analysis

Jan Rusz Czech Technical University in Prague

Motivation

Association

Question: Can be increased blood pressure associated with stress?

Answer: Correlation analysis.

Connection

- Correlation indicates a relationship not causality.
- We need to find a connection to say that relationship is causal (i.e. examine that hormonal response to stress can elevate blood pressure).

Prediction

Question: We interrogate the chief suspect (healthy) and measure his blood pressure. How much was the suspect stressed by our key question?

Answer: Regression analysis.

Linear model

Model specification y = ax + b

Fitted model y = 2x + 3

Supervised learning

Input variables

Linear model

Linearized model

Parametric nonlinear model

Nonparametric linear model

Nonparametric nonlinear model

Model characteristics

	Linear	Parametric Linear in parameters	
Linear models			
Linearized models	*		
Parametric nonlinear models	*		
Nonparametric linear models		*	
Nonparametric nonlinear models	*	*	

Matrix representation of linear model

Matrix representation of linear model

Squared error

- Data
- Model
- Residuals

squared error =
$$\sum_{i=1}^{n} (d_i - m_i)^2$$

$$y = w_1x + w_2$$

 $w_1 = 0$
 $w_2 = mean(x) = 2.8$
 $y = 2.8$
squared error = 8.8

$$y = w_1x + w_2$$

 $w_1 = 0.47$
 $w_2 = 1.76$
 $y = 0.47x + 1.76$
squared error = 7.29

Ordinary least squares solution

regressors \cdot residuals = 0

$$X^{T}e = 0$$

regressors \cdot (data – modelfit) = 0

$$X^{T}(y - Xw) = 0$$

$$X^{T}y - X^{T}Xw = 0$$

$$\mathbf{w} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{\mathsf{-1}} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Fitting nonlinear model based on local, iterative optimization

Quantifying model accuracy

Squared error = 66.4 (dependent on units, hard to interpret)

 R^2 = 44.6% (independent on units, easy to interpret)

$$variance = \frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n-1}$$

Coefficient of determination (R^2)

$$R^{2} = 100 \times \left(1 - \frac{unexplained\ variance}{total\ variance}\right)$$

$$R^{2} = 100 \times \left(1 - \frac{\frac{\sum_{i=1}^{n} (d_{i} - m_{i})^{2}}{n-1}}{\frac{\sum_{i=1}^{n} (d_{i} - \overline{d})^{2}}{n-1}}\right)$$

$$R^{2} = 100 \times \left(1 - \frac{SE \ model \ fit}{SE \ model \ mean}\right)$$

$$R^{2} = 100 \times \left(1 - \frac{\sum_{i=1}^{n} (d_{i} - m_{i})^{2}}{\sum_{i=1}^{n} (d_{i} - \overline{d})^{2}}\right)$$

Simple linear regression

Multiple linear regression

Research project: Parkinson's disease (PD), stuttering & L-dopa

Background:

- Excess dopamine theory of stuttering suggests that stuttering may be related to an excess amount of dopamine within the brain
- Some patients with PD develop stuttering in the course of their illness
- Levodopa is precursor of dopamine used to treat motor manifestations of patients with PD

Hypothesis:

- Stuttering is related to extent of L-dopa doses
- Stuttering is not related to motor speech manifestations in PD

Research project: Parkinson's disease (PD), stuttering & L-dopa

Research project: Parkinson's disease (PD), stuttering & L-dopa

Linear regression model:

$$v \sim 1 + x1 + x2$$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
stuttering (Intercept)	1.1987	2.4258	0.49413	0.63093
L-dopa x1	0.0043749	0.0015763	2.7755	0.018049
UPDRS x2	-0.0097572	0.071821	-0.13586	0.89439

Number of observations: 14, Error degrees of freedom: 11

Root Mean Squared Error: 2.46

R-squared: 0.447, Adjusted R-Squared 0.346

F-statistic vs. constant model: 4.44, p-value = 0.0386

How to report results of regression?

Our case: $[F(2,11) = 4.4, p = 0.04, R^2 = 0.45]$

Some conclusions? :-)

ANOVA and linear regression analysis are the "same thing"

- Intercept is the mean of the reference group
- The coefficients for the other two groups are the differences in the mean between the reference group and the other groups