STATISTICĂ INFERENȚIALĂ

- •Statistica inferențială trage concluzii valabile pentru populație din datele unuia sau mai multor eșantioane, folosind calcule probabiliste. Fapte cunoscute > generalizare la populație.
- •Fără suportul probabilităților, e posibil ca un efect să fie considerat sistematic, când de fapt el este aleator (de exemplu, k succese consecutive). Alteori, dimpotrivă, efecte sistematice pot trece neobservate.
- •Exemple de inferență statistică: interval de încredere pentru estimarea valorii unui parametru; teste de semnificație pentru evaluarea unei aserțiuni (ipoteze). Aceste paradigme arată *ce s-ar întâmpla dacă metoda de inferență s-ar aplica de multe ori*.
- •Metodele de inferență se bazează pe *distribuții de sondaj* (experimente: respectarea caracterului aleator!).
 - datele sunt privite ca provenind din eşantionare aleatoare.

ESTIMAREA PARAMETRILOR

- Estimarea parametrilor se face folosind statistici calculate din eşantioane.
- Estimare punctuală: parametrul este aproximat printr-o valoare.
- Estimare prin interval: o valoare inferioară și una superioară, între care se află valoarea parametrului, cu o probabilitate dată.

REPARTIŢIA DE SONDAJ

- Fie o populație C formată din N obiecte, descrise de valorile unei caracteristici X: $a_1, a_2, ..., a_N$.
- În C, media și dispersia caracteristicii X sunt:

$$\begin{split} M[X] &= (1/N) \cdot \sum_i a_i = \mu; \\ D^2(X) &= (1/N) \cdot \sum_i (a_i \text{-} \mu)^2 = M[(X \text{-} \mu)^2] = \sigma^2 \end{split}$$

- Estimarea de parametri (μ , σ^2 etc.) ai populației se face folosind eșantioane aleatoare de volum n.
- Pentru X_i = {x_i¹, ..., x_iⁿ}, fie x_i(n) = (x_i¹ + ... + x_iⁿ)/n
 Fiecare x_i^j este o valoare a unei v.a. cu aceeași repartiție ca și X.
- $\{x_1(n), x_2(n), ...\}$ sunt valori succesive ale v.a. a mediilor de sondaj pentru e.a. de volum n.
- Repartiția unei astfel de v.a. se numește <u>repartiție de</u> <u>sondaj</u>.

REZULTATE PRIVIND ESTIMAREA

- Teoremă. Media și dispersia mediei de sondaj sunt μ , respectiv σ^2/n .
- Nu este util să exprimăm media și dispersia mediei de sondaj prin μ și σ^2 , care sunt necunoscute.
- **Dispersie**: pentru eșantioane de dimensiune n, o aproximare a lui σ^2 este s^2 dată de

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X_{n}})^{2}}{n-1}$$

ESTIMAREA MEDIEI

Cu aproximarea anterioară • Medie. dispersie, din inegalitatea lui Cebâșev obținem:

$$P\{\left|\overline{x_n} - \mu\right| < k \cdot D^2(\overline{x_n})\} \ge 1 - \frac{1}{k^2} \quad sau$$

$$P\{\overline{x_n} - k \cdot \frac{s}{\sqrt{n}} < \mu < \overline{x_n} + k \cdot \frac{s}{\sqrt{n}}\} \ge 1 - \frac{1}{k^2}$$

- Cu cât k este mai mare, cu atât probabilitatea este mai aproape de 1. Aşadar, o aproximare a lui μ este intervalul: $(\overline{x_n} - k \cdot \frac{s}{\sqrt{n}}, \overline{x_n} + k \cdot \frac{s}{\sqrt{n}})$ • Teorema lui Leapunov. $\overline{x_n} = N(\mu, \frac{\sigma^2}{n})$

CARACTERISTICI ALE ESTIMATORILOR (1)

- Media populației poate fi estimată prin media eșantionului (sau mediana, mòdul, media de ordin k, media geometrică, media armonică a acestuia).
- Cum alegem un estimator?
- Acuratețe: statistica trebuie să indice valoarea corectă a parametrului.
- Încredere: valorile statisticii trebuie să fie cel mai frecvent aproape de valoarea parametrului.

CARACTERISTICI ALE ESTIMATORILOR (2)

- Def.1: Statistica \mathbf{t}_n (n cardinalul eşantionului) este un estimator nedeplasat al parametrului θ dacă $M[\mathbf{t}_n] = \theta$.
- Def.2: Statistica \mathbf{t}_n este un <u>estimator consistent</u> pentru parametrul θ dacă
 - $\lim_{n\to\infty} P\{ |\mathbf{t}_n \theta| < \epsilon \} = 1$ (împrăștierea în jurul valorii parametrului să fie oricât de mică, prin n).
- Def.3: Statistica \mathbf{t}_n este un <u>estimator eficient</u> pentru parametrul θ dacă \mathbf{t}_n dă valori concentrate mai aproape de valoarea lui θ decât valorile oricărei alte statistici.
- Media de sondaj este un estimator nedeplasat al mediei μ.
- Pentru populații normale, media aritmetică este estimator eficient.

ESTIMAŢII ALE DISPERSIEI

- 1.- Abaterea medie pătratică. $s_n^2 = \frac{\sum_{i=1}^n (x_i \overline{x_n})^2}{n}$
- <u>Temă</u>. $M[s_n^2] = ((n-1)/n) \cdot \sigma^2$
- <u>Indicație</u>. Se calculează media v.a. care este pătratul mediei de sondaj.
- Deci, $M[s_n^2] \neq \sigma^2$, adică s_n^2 nu este un estimator nedeplasat al lui σ^2 .
- 2.- Estimatorul s² de mai sus este un estimator nedeplasat al dispersiei populației:
- $M[s^2] = M[(n/(n-1)) \cdot s_n^2] = \sigma^2$.
- 3.- <u>Amplitudinea</u> estimează dispersia pentru eșantioane mici. Este un estimator *instabil (nerobust)*: valorile aberante produc distorsiuni.

INTERVALE DE ÎNCREDERE

- Intervalul de încredere constă dintr-<u>un interval</u> rezultat din eşantion și <u>un nivel de încredere</u> (probabilitatea ca intervalul să acopere valoarea parametrului).
- Nivelul de încredere se specifică (de regulă, 0,90 sau mai mult). Se dă de obicei α , unde nivelul de încredere este 1- α (0,95 corespunde la α =0,05).
- **Definiție**. Un interval de încredere de nivel 1-α pentru parametrul θ este dat de două statistici U şi L astfel încât: P { L $\leq \theta \leq U$ } = 1 α.
- L și U sunt variabile aleatoare, construite din statistici ale eșantionului: la eșantioane diferite, iau valori diferite.

INTERVAL DE ÎNCREDERE PENTRU MEDIE (1)

- Se dau: un e.a. de dimensiune n și nivelul 1- α .
- Se cere: un interval de încredere pentru μ .
- Baza: cunoaștem distribuția mediei eșantionului, anume $N(\mu, \sigma^2/n)$.
- Căutăm numărul z* pentru care distribuția normală acoperă probabilitatea (aria) 1-α pe o distanță de z* deviații standard de la medie spre stânga şi spre dreapta.
- z^* se găsește în tabelele distribuției normale standard. $x=z^*$ delimitează, la dreapta sa, aria $\alpha/2$.

VALOARE CRITICĂ

- Exemplu. Dacă nivelul de încredere cerut este 90%, rezultă $\alpha = 0.1$; $\alpha / 2 = 0.05$. Pentru N(0,1), $x = z^*$ trebuie să lase la dreapta sa aria 0,05 iar la stânga 0,95.
 - Din tabel rezultă că z^* aparține intervalului [1,64; 1,65]. Se interpolează $z^* = 1,645$ (deviații standard de la medie).
- <u>Definiție</u>. *Valoarea critică* pentru nivelul de încredere 1- α este numărul z^* pentru care dreapta $x = z^*$ delimitează sub curba de densitate normală standard aria $\alpha / 2$.

$$P\{-z^* \le \frac{\overline{x} - \mu}{\sigma} \le +z^*\} = 1 - \alpha \qquad sau$$

$$P\{\overline{x} - z^* \le \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z^* \le \frac{\sigma}{\sqrt{n}}\} = 1 - \alpha$$

INTERVAL DE ÎNCREDERE PENTRU MEDIE (2)

- Se selectează un e.a. de dimensiune n dintr-o populație de medie necunoscută μ și deviație standard cunoscută σ .
- Un interval de încredere de nivel 1- α pentru μ este:

 $(\overline{x} - z^* \cdot \frac{\sigma}{\sqrt{n}}, \overline{x} + z^* \cdot \frac{\sigma}{\sqrt{n}})$

unde z^* este valoarea critică "superioară $\alpha/2$ " pentru N(0,1).

• Acest interval este exact pentru populații cu distribuție normală și aproximativ (n>>) pentru alte populații.

INTERVAL DE ÎNCREDERE PENTRU MEDIE (3)

Nivel încredere	p=α/2	\mathbf{z}^*
90%	0,05	1,645
95%	0,025	1,960
99%	0,005	2,576

- Lungimea intervalului de încredere este $2z^*$. $\frac{\sigma}{\sqrt{z}}$
- Dacă se cere de la început o anumită lungime $\hat{\mathbf{w}}$ a intervalului, atunci se alege $\mathbf{n} = (2\mathbf{z}^* \, \boldsymbol{\sigma}/\mathbf{w})^2$.
- Ceea ce uneori este practic imposibil.

UN EXEMPLU

• Se analizează mostre dintr-un produs farmaceutic pentru a stabili concentrația de substanță activă. Rezultatele măsurătorilor repetate ale aceleiași mostre urmează o distribuție normală; media μ a distribuției este chiar concentrația reală a mostrei. Deviația standard a procesului de măsurare este σ = 0,0068 grame pe litru. Se fac trei măsurători ale unei mostre și se raportează media lor. Dacă cele trei măsurători ale unei mostre au fost 0,8403; 0,8363; 0,8447, să se construiască un interval de încredere la nivelul 99% pentru concentrația reală μ.

$$\bar{x}_3 = 0.8404$$
; $\alpha = 0.01$; $\alpha/2 = 0.005$.

- Rezultă din tabelul N(0,1): $z^*=2,576$. $z^* \cdot \sigma/\sqrt{n} = 0,0101$ Intervalul de încredere este (0,8404-0,0101; 0,8404+0,0101).
- 0,0101 este *eroarea marginală*. $\mu \in (0,8303; 0,8505)$

DEPENDENȚA DE n

- În exemplul anterior, dacă n ar fi fost 1, pentru același nivel de încredere 99% și cu măsurătoarea unică egală cu 0,8404, atunci intervalul de încredere ar fi devenit (0,8229; 0,8579) adică (0,8404-0,1750; 0,8404+0,1750).
- Pentru n mai mic se obține un interval mai mare, adică o precizie mai mică: eroarea marginală scade când n crește.
- Intervalul de încredere poate fi văzut ca:

estimarea_mediei +- $z^* \cdot \sigma$ _estimării

TESTE DE SEMNIFICAȚIE

- •Evaluarea statistică a valorii de adevăr a unei aserțiuni (ipoteze), pe baza doar a datelor existente.
- •Studiu descriptiv și studiu inferențial.

EXEMPLU

- O companie producătoare de brânzeturi ia lapte de la mai mulți producători. Există bănuiala că unii producători adaugă apă în lapte pentru a-și crește profiturile. Temperatura de înghețare a laptelui variază **normal** cu media μ = -0,545°C și deviația standard σ =0,008°C. Apa în lapte afectează această variație normală, crescând temperatura de înghețare. Se măsoară temperatura de îngheț la cinci loturi succesive de lapte de la același producător, media obținută fiind x_5 = -0,538 . Este aceasta o dovadă că producătorul respectiv adaugă apă în lapte?
- <u>Ipoteza de lucru</u>.Media producătorului este $\mu_p = \mu = -0.545$ °C
- Care este probabilitatea ca pe un eșantion de $5, x_5 = -0.538$?
- Soluție. Cu lapte natural, probabilitatea este 0,025.
- Concluzie. 1/40: există dovezi că producătorul adaugă apă.

TESTAREA IPOTEZELOR, CA TIP DE RAȚIONAMENT

- Teste de semnificație (Laplace 1820; Edgeworth 1885).
- "Semnificativ": "pare a corespunde unei diferențe reale".
- "Datele sunt departe de ce s-ar întâmpla dacă H_0 ar fi adevărată" este tipul de argument ce duce la respingerea ipotezei H_0 .
- Se caută în date prezența unui anumit efect (corelația "mare" din cazul loteriei, creșterea temperaturii de îngheț în cazul laptelui).
- 1.- Se presupune că efectul nu este prezent;
- 2.- Se verifică în date tăria dovezilor că <u>ipoteza de la</u> pasul 1.- este falsă;
- 3.- Dacă se găsesc dovezi puternice la pasul 2.-, atunci se acceptă ipoteza că <u>efectul există</u>.
- 4.- În caz contrar, se afirmă că "dovezile nu sunt suficient de puternice pentru a respinge ipoteza absenței efectului".

IPOTEZA NULĂ

- Ipoteza care se verifică (că efectul nu este prezent, că nu există nici o diferență, nici o corelație etc.) este <u>ipoteza nulă</u> H₀ (status quo-ul, "prezumția de nevinovăție").
- H_0 este o afirmație referitoare la o populație, exprimată prin unul sau mai mulți parametri (în exemplul al doilea, H_0 a fost " $\mu_p = -0.545$ °C").
- Un test de semnificație evaluează cât de puternice sunt, în date, dovezile împotriva ipotezei nule.
- De fapt, când se aplică un test de semnificație, se crede sau se speră că o altă afirmație și nu H₀ este adevărată. Aceasta este ...

IPOTEZA ALTERNATIVĂ

- H_a este <u>ipoteza alternativă (ipoteza de cercetare)</u>.
- În exemplul cu laptele, H_a a fost " $\mu_p > -0.545$ °C".
- În exemplul cu loteria, H_a a fost " $\rho \neq 0$ ", H_0 fiind " $\rho = 0$ ".
- Ca şi H₀, H_a se referă tot la populație în ansamblu și, deci, se exprimă tot prin parametri ai acesteia.
- Dificultate: H_a să se exprime simetric sau nu?
- Primul exemplu are H_a simetrică, al doilea are H_a asimetrică.
- Dacă nu e evident altceva, H_a se alege simetrică.

STATISTICA UTILIZATĂ

- •Orice test de semnificație folosește valoarea unei *statistici* calculată din date (eșantion). Prin comparație, această valoare dă argumentul pentru respingerea sau nu a ipotezei nule.
- •De obicei, statistica folosită estimează parametrul ce apare în ipotezele nulă și alternativă.
- •E de așteptat ca valori ale statisticii apropiate de cea din H_0 să ducă la ne-respingerea lui H_0 .
- •Valori ale statisticii depărtate de cea din H_0 oferă dovezile împotriva ipotezei nule (H_a arată ce sens trebuie să aibă abaterea de la H_0).
- •În exemple: $r(H_0: \rho=0; H_a \text{ simetrică} \text{contează} |r| >>0),$ respectiv $\overline{x_3}(H_0: \mu_p=\mu=-0.545^{\circ}C; H_a \text{ asimetrică} \text{numai} >)$

VALORI P

- Ipoteza alternativă este cu atât mai probabilă cu cât faptul dedus din date este mai puţin probabil în condiţiile ipotezei nule.
- $P\{\mu_p \ge -0.538 \text{ °C / } H_0\}$
- Definiție. Probabilitatea calculată considerând $H_0^{x_5}$ adevărată ca statistica din test să ia o valoare *cel puțin la fel de extremă* ("de depărtată de H_0 ") ca aceea din date se numește <u>valoarea P</u> (probabilitatea critică) a testului.
- Cu cât valoarea P este mai mică, cu atât mai puternică este dovada că H₀ este falsă.

EXEMPLUL II (2)

- Din populația normală de măsurători, de medie μ_p și $\sigma = 0.008$ °C, se "extrage" un eșantion de 5 măsurători, rezultând $\overline{x_5}$ =-0.538°C
- $H_0: \mu_p = -0.545$ °C; $H_a: \mu_p > -0.545$ °C.
- $P\{\overline{x_5} \ge -0.538^{\circ}C / \mu_p = -0.545^{\circ}C\} = ?$
- Cum $\overline{X_5}$ are distribuție $N(\mu_p, \sigma/sqrt(5))$:

$$P\{\overline{x_5} \ge -0.545\} = P\{\overline{\frac{x_5}{0.008/\sqrt{5}}} \ge \frac{-0.538 - (-0.545)}{0.008/\sqrt{5}}\} = P\{Z \ge 1.96\} = 1 - 0.9750 = 0.025$$

SEMNIFICAȚIE STATISTICĂ

- •Se poate decide *a priori* ce prag pentru valoarea P va separa acceptarea ipotezei nule de respingerea acesteia.
- •Această valoare-limită se numește <u>nivel de</u> <u>semnificație</u> și se notează cu α.
- •Exemplu. α =0,05 înseamnă: se acceptă H_0 dacă, presupunând-o adevărată, datele existente nu ar apărea mai rar decât în 1 din 20 selecții (P \geq 0,05)
- •<u>Definiție</u>. Datele sunt statistic semnificative la nivel α dacă se obține o valoare P mai mică sau egală decât α . Atunci se respinge H_0 .

SCHEMA UNUI TEST DE SEMNIFICAȚIE

- I.- Se formulează H_0 și H_a . H_a este ceea ce se acceptă dacă se respinge H_0 .
- II.- (opțional) Se stabilește nivelul de semnificație α cât de tari să fie dovezile pentru a fi acceptate?
- III.- Se calculează, printr-o statistică <u>pe care se bazează</u> <u>testul</u>, cât de mult se potrivesc datele cu ipoteza H_0 .
- IV.- Se calculează probabilitatea P ca, H_0 fiind adevărată, valoarea statisticii să fie totuși atât de împotriva lui H_0 pe cât a rezultat din date.
- V.- Dacă $P \le \alpha$, atunci rezultatul testului este semnificativ la nivel α și ipoteza nulă se respinge.
- Dacă $P > \alpha$, atunci testul nu este semnificativ și ipoteza nulă nu se poate respinge.
 - Ceea ce nu dovedește că ipoteza H₀ este adevărată.

TIPURI DE ERORI

STAREA REALĂ A H _a necunoscută	H _a ADEVĂRATĂ	H _a FALSĂ
CONCLUZIE TEST	ADLVARATA	TALOA
RESPINGEREA IPOTEZEI NULE ("rezultat semnificativ")	DECIZIE CORECTĂ	EROARE DE TIP I
NU SE RESPINGE IPOTEZA NULĂ ("rezultat nesemnificativ")	EROARE DE TIP II	DECIZIE CORECTĂ

PUTEREA STATISTICĂ A UNUI TEST

- La stabilirea nivelului de semnificație, tendința de a evita un tip de eroare duce la creșterea șansei de a face celălalt tip de eroare (0,05 și 0,01 echilibrează).
- <u>Puterea statistică a unui test</u> este probabilitatea ca testul să dea rezultat semnificativ dacă ipoteza alternativă este adevărată (cu alte cuvinte: probabilitatea de a nu face erori de tip II).
- Nivelul de semnificație α este probabilitatea de a face erori de tip I.
- Stabilirea puterii statistice poate ajuta la determinarea dimensiunii eşantioanelor.