

Summer Internship 2025

Machine Learning Internship – Week 3 Tasks

Objective: Understand how semi-supervised models use limited labeled data efficiently and how this is useful when data labeling is expensive (e.g., emails, medical reports, etc.).

Week 3 Task 1: Semi-Supervised Learning — Email Spam Detection

Task Description:

In this task, you'll explore **semi-supervised learning**, where only a small portion of the data is labeled and the rest is unlabeled — a common real-world scenario.

You will use the **SMS Spam Collection Dataset** (or a similar text classification dataset) to build a spam detection model.

What you need to do:

1. **Download Dataset**:

Use the SMS Spam Collection Dataset from Kaggle.

OR

Use this method to load dataset:

url = "https://raw.githubusercontent.com/justmarkham/pycon-2016-tutorial/master/data/sms.tsv" df = pd.read_csv(url, sep='\t', header=None, names=['label', 'message'])

2. Preprocess Text:

- o Clean messages (lowercase, remove stop words, etc.)
- o Convert to numerical format using TfidfVectorizer.

3. Simulate Semi-Supervised Setup:

- o Use only 20% of labels for training.
- o Keep 80% as **unlabeled**.
- o Use LabelSpreading or LabelPropagation (from sklearn.semi_supervised).

4. Train the Model:

- o Fit the semi-supervised model on the mix of labeled + unlabeled data.
- o Predict labels for the unlabeled set.

5. Evaluate:

• Use accuracy, precision, recall, and F1-score.

Task 2: Song Genre Classification using Audio Features

Objective:

Predict the **genre of a song** using its audio features (like tempo, energy, loudness, etc.). You'll use a labeled dataset and train a classification model to learn how musical characteristics relate to different genres.

Task Details:

Dataset:

Use the **GTZAN Music Genre Dataset** or the <u>Spotify Tracks Dataset</u> (available on Kaggle: Spotify Audio Features)

It includes features like:

- Acousticness
- Danceability
- Energy
- Instrumentalness
- Tempo
- Loudness
- Genre (target label)

Steps to Follow:

1. Load and Explore the Dataset

o Check for nulls, data types, and balance across genres.

2. Perform EDA (Exploratory Data Analysis)

 Use visualizations (pairplots, heatmaps, boxplots) to understand feature relationships.

3. Preprocessing

- Normalize or scale features
- o Encode genre labels (if they're in text form)

4. Train a Classification Model

- o Use one of the following:
 - Logistic Regression
 - Random Forest
 - KNN
 - Gradient Boosting
- o Evaluate using Accuracy, Confusion Matrix, and F1-Score

Learning Outcomes:

- Learn how to work with real-world audio data (structured features)
- Practice preprocessing and data exploration techniques
- Build and evaluate multi-class classification models
- Understand how ML can be applied in music tech and entertainment