EDHEC 2017

Exercice 1

On considère la fonction f qui à tout couple (x,y) de \mathbb{R}^2 associe le réel :

$$f(x,y) = x^4 + y^4 - 2(x-y)^2$$

- 1. Justifier que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- 2. a) Calculer les dérivées partielles d'ordre 1 de f.
 - b) Montrer que le gradient de f est nul si, et seulement si, on a : $\begin{cases} x^3 x + y = 0 \\ y^3 + x y = 0 \end{cases}$.
 - c) En déduire que f possède trois points critiques : (0,0), $(\sqrt{2},-\sqrt{2})$, $(-\sqrt{2},\sqrt{2})$.
- 3. a) Calculer les dérivées partielles d'ordre 2 de f.
 - b) Écrire la matrice hessienne de f en chaque point critique.
 - c) Déterminer les valeurs propres de chacune de ces trois matrices puis montrer que f admet un minimum local en deux de ses points critiques. Donner la valeur de ce minimum.
 - d) Déterminer les signes de f(x,x) et f(x,-x) au voisinage de x=0. Conclure quant à l'existence d'un extremum en le troisième point critique de f.
- **4.** a) Pour tout (x,y) de \mathbb{R}^2 , calculer $f(x,y) (x^2 2)^2 (y^2 2)^2 2(x + y)^2$.
 - b) Que peut-on déduire de ce calcul quant au minimum de f?
- 5. a) Compléter la deuxième ligne du script suivant afin de définir la fonction f.

```
function z = \underline{f}(x,y)

z = ---

endfunction

x = linspace(-2,2,101)

y = x

fplotd3d(x,y,f)
```

b) Le script précédent, une fois complété, renvoie l'une des trois nappes suivantes. Laquelle ? Justifier la réponse.

Exercice 2

On note E l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 2 et on rappelle que la famille (e_0, e_1, e_2) est une base de E, les fonctions e_0 , e_1 e_2 étant définies par :

$$\forall t \in \mathbb{R} \ e_0(t) = 1, \ e_1(t) = t, \ e_2(t) = t^2$$

On considère l'application φ qui, à toute fonction P de E, associe la fonction, notée $\varphi(P)$, définie par :

$$\forall x \in \mathbb{R}, \ (\varphi(P))(x) = \int_0^1 P(x+t) \ dt$$

- 1. a) Montrer que φ est linéaire.
 - b) Déterminer $(\varphi(e_0))(x)$, $(\varphi(e_1))(x)$ et $(\varphi(e_2))(x)$ en fonction de x, puis écrire $\varphi(e_0)$, $\varphi(e_1)$ et $\varphi(e_2)$ comme combinaison linéaire de e_0 , e_1 et e_2 .
 - c) Déduire des questions précédentes que φ est un endomorphisme de E.
- 2. a) Écrire la matrice A de φ dans la base (e_0, e_1, e_2) . On vérifiera que la première ligne de A est :

$$\left(1 \quad \frac{1}{2} \quad \frac{1}{3}\right)$$

- b) Justifier que φ est un automorphisme de E.
- c) L'endomorphisme φ est-il diagonalisable?
- 3. Compléter les commandes Scilab suivantes pour que soit affichée la matrice A^n pour une valeur de n entrée par l'utilisateur :

```
n = input('entrez une valeur pour n : ')
 A = [---] 
 disp(---)
```

4. a) Montrer par récurrence que, pour tout entier naturel n, il existe un réel u_n tel que l'on ait :

$$A^n = \begin{pmatrix} 1 & \frac{n}{2} & u_n \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

Donner u_0 et établir que : $\forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{6} (3n+2).$

- \boldsymbol{b}) En déduire, par sommation, l'expression de u_n pour tout entier n.
- c) Écrire A^n sous forme de tableau matriciel.

Exercice 3

Soit V une variable aléatoire suivant la loi exponentielle de paramètre 1, dont la fonction de répartition est la fonction F_V définie par : $F_V(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ 1 - \mathrm{e}^{-x} & \text{si } x > 0 \end{cases}$.

On pose $W = -\ln(V)$ et on admet que W est aussi une variable aléatoire dont le fonction de répartition est notée F_W . On dit que W suit une loi de Gumbel.

- 1. a) Montrer que : $\forall x \in \mathbb{R}, F_W(x) = e^{-e^{-x}}$.
 - b) En déduire que W est une variable à densité.
- On désigne par n un entier naturel non nul et par X_1, \ldots, X_n des variables aléatoires définies sur le même espace probabilisé, indépendantes et suivant la même loi que V, c'est à dire la loi $\mathcal{E}(1)$.
- On considère la variable aléatoire Y_n définie par $Y_n = \max(X_1, X_2, \dots, X_n)$, c'est à dire que pour tout ω de Ω , on a : $Y_n(\omega) = \max(X_1(\omega), X_2(\omega), \dots, X_n(\omega))$. On admet que Y_n est une variable aléatoire à densité.
- 2. a) Montrer que la fonction de répartition F_{Y_n} de Y_n est définie par :

$$F_{Y_n}(x) = \begin{cases} 0 & \text{si } x < 0\\ (1 - e^{-x})^n & \text{si } x \ge 0 \end{cases}$$

- b) En déduire une densité f_{Y_n} de Y_n .
- 3. a) Donner un équivalent de $1-F_{Y_n}(t)$ lorsque t est au voisinage de $+\infty$, puis montrer que l'intégrale $\int_0^{+\infty} (1-F_{Y_n}(t)) \ dt \ \text{est convergente}.$
 - b) Établir l'égalité suivante :

$$\forall x \in \mathbb{R}^+, \int_0^x (1 - F_{Y_n}(t)) dt = x (1 - F_{Y_n}(x)) + \int_0^x t f_{Y_n}(t) dt$$

- c) Montrer que : $\lim_{x \to +\infty} x (1 F_{Y_n}(x)) = 0.$
- $\boldsymbol{d})$ En déduire que Y_n possè de une espérance et prouver l'égalité :

$$\mathbb{E}(Y_n) = \int_0^{+\infty} (1 - F_{Y_n}(t)) dt$$

4. a) Montrer, grâce au changement de variable $u = 1 - e^{-t}$, que l'on a :

$$\forall x \in \mathbb{R}^+, \int_0^x (1 - F_{Y_n}(t)) dt = \int_0^{1 - e^{-x}} \frac{1 - u^n}{1 - u} du$$

- **b**) En déduire que : $\int_0^x (1 F_{Y_n}(t)) dt = \sum_{k=1}^n \frac{(1 e^{-x})^k}{k}$ puis donner $\mathbb{E}(Y_n)$ sous forme de somme.
- **5.** On pose $Z_n = Y_n \ln(n)$.
 - a) On rappelle que grand(1,n,'exp',1) simule n variables aléatoires indépendantes et suivant toutes la loi exponentielle de paramètre 1. Compléter la déclaration de fonction Scilab suivante afin qu'elle simule la variable aléatoire Z_n .

```
function \mathbf{Z} = \underline{\mathbf{f}}(\mathbf{n})
\mathbf{x} = \operatorname{grand}(1, \mathbf{n}, '\exp', 1)
\mathbf{Z} = ---
\mathbf{d} = \operatorname{endfunction}
```

b) Voici deux scripts:

```
V = grand(1,10000, 'exp', 1)
W = -\log(V)
s = linspace(0,10,11)
histplot(s,W)
```

Script (1)

```
n = input('entrez la valeur de n : ')
   Z = [] // la matrice-ligne Z est vide
   for k = 1 : 10000
       Z = [Z,f(n)]
<u>5</u>
  s = linspace(0,10,11)
6
  histplot(s,Z)
```

Script (2)

Chacun des scripts simule 10000 variables indépendantes, regroupe les valeurs renvoyées en 10 classes qui sont les intervalles $[0,1], [1,2], [2,3], \ldots, [9,10]$ et trace l'histogramme correspondant (la largeur de chaque rectangle est égale à 1 et leur hauteur est proportionnelle à l'effectif de chaque classe).

Le script (1) dans lequel les variables aléatoires suivent la loi de Gumbel (loi suivie par W), renvoie l'histogramme (1) ci-dessous, alors que le script (2) dans lequel les variables aléatoires suivent la même loi que Z_n , renvoie l'histogramme (2) ci-dessous, pour lequel on a choisi n = 1000.

Histogramme (2) pour n = 1000

Quelle conjecture peut-on émettre quant au comportement de la suite des v.a.r. (Z_n) ?

- 6. On note F_{Z_n} la fonction de répartition de Z_n .
 - a) Justifier que, pour tout réel x, on a : $F_{Z_n}(x) = F_{Y_n}(x + \ln(n))$.
 - b) Déterminer explicitement $F_{Z_n}(x)$.
 - c) Montrer que, pour tout réel x, on a : $\lim_{n \to +\infty} n \ln \left(1 \frac{e^{-x}}{n} \right) = -e^{-x}$.
 - d) Démontrer le résultat conjecturé à la question 5.b).

Problème

Partie 1 : étude d'une variable aléatoire

Les sommets d'un carré sont numérotés 1, 2, 3, et 4 de telle façon que les côtés du carré relient le sommet 1 au sommet 2, le sommet 2 au sommet 3, le sommet 3 au sommet 4 et le sommet 4 au sommet 1.

Un mobile se déplace aléatoirement sur les sommets de ce carré selon le protocole suivant :

- Au départ, c'est à dire à l'instant 0, le mobile est sur le sommet 1.
- Lorsque le mobile est à un instant donné sur un sommet, il se déplace à l'instant suivant sur l'un quelconque des trois autres sommets, et ceci de façon équiprobable.

Pour tout $n \in \mathbb{N}$, on note X_n la variable aléatoire égale au numéro du sommet sur lequel se situe le mobile à l'instant n. D'après le premier des deux points précédents, on a donc $X_0 = 1$.

1. Donner la loi de X_1 , ainsi que l'espérance $\mathbb{E}(X_1)$ de la variable X_1 . On admet pour la suite que la loi de X_2 est donnée par :

$$\mathbb{P}([X_2 = 1]) = \frac{1}{3}, \quad \mathbb{P}([X_2 = 2]) = \mathbb{P}([X_2 = 3]) = \mathbb{P}([X_2 = 4]) = \frac{2}{9}$$

- 2. Pour tout entier n supérieur ou égal à 2, donner, en justifiant, l'ensemble des valeurs prises par X_n .
- 3. a) Utiliser la formule des probabilités totales pour établir que, pour tout entier naturel n supérieur ou égal à 2, on a :

$$\mathbb{P}([X_{n+1} = 1]) = \frac{1}{3} (\mathbb{P}([X_n = 2]) + \mathbb{P}([X_n = 3]) + \mathbb{P}([X_n = 4]))$$

- b) Vérifier que cette relation reste valable pour n = 0 et n = 1.
- c) Justifier que, pour tout n de \mathbb{N} , on a $\mathbb{P}([X_n=1]) + \mathbb{P}([X_n=2]) + \mathbb{P}([X_n=3]) + \mathbb{P}([X_n=4]) = 1$ et en déduire l'égalité :

$$\forall n \in \mathbb{N}, \ \mathbb{P}([X_{n+1} = 1]) = -\frac{1}{3} \ \mathbb{P}([X_n = 1]) + \frac{1}{3}$$

- **d)** Établir alors que : $\forall n \in \mathbb{N}, \ \mathbb{P}([X_n = 1]) = \frac{1}{4} + \frac{3}{4} \left(-\frac{1}{3}\right)^n$.
- 4. a) En procédant de la même façon qu'à la question précédente, montrer que l'on a :

$$\forall n \in \mathbb{N}, \ \mathbb{P}([X_{n+1} = 2]) = \frac{1}{3} \ (\mathbb{P}([X_n = 1]) + \mathbb{P}([X_n = 3]) + \mathbb{P}([X_n = 4]))$$

- b) En déduire une relation entre $\mathbb{P}([X_{n+1}=2])$ et $\mathbb{P}([X_n=2])$.
- c) Montrer enfin que : $\forall n \in \mathbb{N}, \mathbb{P}([X_n = 2]) = \frac{1}{4} \frac{1}{4} \left(-\frac{1}{3}\right)^n$.
- 5. On admet que, pour tout entier naturel n, on a :

$$\mathbb{P}([X_{n+1}=3]) = -\frac{1}{3} \mathbb{P}([X_n=3]) + \frac{1}{3} \quad \text{et} \quad \mathbb{P}([X_{n+1}=4]) = -\frac{1}{3} \mathbb{P}([X_n=4]) + \frac{1}{3}$$

En déduire sans calcul que :

$$\forall n \in \mathbb{N}, \ \mathbb{P}([X_n = 3]) = \mathbb{P}([X_n = 4]) = \frac{1}{4} - \frac{1}{4} \left(-\frac{1}{3}\right)^n$$

6. Déterminer, pour tout entier naturel n, l'espérance $\mathbb{E}(X_n)$ de la variable aléatoire X_n .

Partie 2: calcul des puissances d'une matrice A

Pour tout n de \mathbb{N} , on considère la matrice-ligne de $\mathcal{M}_{1,4}(\mathbb{R})$:

$$U_n = (\mathbb{P}([X_n = 1]) \mathbb{P}([X_n = 2]) \mathbb{P}([X_n = 3]) \mathbb{P}([X_n = 4]))$$

7. a) Montrer (grâce à certains résultats de la partie 1) que, si l'on pose $A = \frac{1}{3} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$, on a :

$$\forall n \in \mathbb{N}, \ U_{n+1} = U_n \ A$$

- b) Établir par récurrence que : $\forall n \in \mathbb{N}, \ U_n = U_0 \ A^n$.
- c) En déduire la première ligne de A^n .
- 8. Expliquer comment choisir la position du mobile au départ pour trouver les trois autres lignes de la matrice A^n , puis écrire ces trois lignes.

Partie 3 : une deuxième méthode de calcul des puissances de A

- 9. Déterminer les réels a et b tels que A = aI + bJ.
- 10. a) Calculer J^2 puis établir que, pour tout entier naturel k non nul, on a : $J^k = 4^{k-1}J$.
 - b) À l'aide de la formule du binôme de Newton, en déduire, pour tout entier n non nul, l'expression de A^n comme combinaison linéaire de I et J.
 - c) Vérifier que l'expression trouvée reste valable pour n=0.

Partie 4: informatique

11. a) Compléter le script **Scilab** suivant pour qu'il affiche les 100 premières positions autres que celle d'origine, du mobile dont le voyage est étudié dans ce problème, ainsi que le nombre n de fois où il est revenu sur le sommet numéroté 1 au cours de ses 100 premiers déplacements (on pourra utiliser la commande sum).

```
1  A = [---] / 3
2  x = grand(100, 'markov', A, 1)
3  n = ---
4  disp(x)
5  disp(n)
```

b) Après avoir exécuté cinq fois ce script, les réponses concernant le nombre de fois où le mobile est revenu sur le sommet 1 sont : n=23, n=28, n=23, n=25, n=26. En quoi est-ce normal?