FEM for the Poisson Problem in ${ m I\!R}^2$

April 14 & 16, 2003

Model Problem

Formulations

Strong Formulation

Find **u** such that

$$-
abla^2 u = f$$
 in Ω

$$u=0$$
 on Γ

for Ω a polygonal domain.

N1

Model Problem

Formulations

Minimization/Weak Formulations...

Find
$$oldsymbol{u} = rg\min_{w \in X} rac{1}{2} oldsymbol{a}(w,w) - \ell(w)}{J(w)}$$
 ;

or find $u \in X$ such that

$$a(u,v) = \ell(v), \forall v \in X;$$

Formulations

Model Problem

...Minimization/Weak Formulations

where

Regularity

Model Problem

In general,
$$\|\boldsymbol{u}\|_{H^1(\Omega)} \leq C\|\boldsymbol{\ell}\|_{H^{-1}(\Omega)}$$
.

If $f \in L^2(\Omega)$ and Ω is convex,

$$||u||_{H^2(\Omega)} \le C||f||_{L^2(\Omega)};$$

N2

important for convergence rate.

Triangulation

 $i=n+1,\ldots,\tilde{n}$ boundary

$$\overline{\Omega} = igcup_{T_h \in \mathcal{T}_h} \overline{T}_h$$

N3

Approximation

Space (Linear Elements)

$$egin{aligned} X_h = \{ egin{aligned} oldsymbol{v} \in oldsymbol{X} & | \ oldsymbol{v}|_{T_h} \in \mathrm{I\!P}_1(T_h), \ orall \ T_h \in \mathcal{T}_h \} \ & v \in C^0(\Omega) \end{aligned}$$

$$\mathbb{P}_1(T_h)\colon v|_{T_h}=c_0+\underbrace{c_x}_{v_x}x+\underbrace{c_y}_{v_y}y,\quad c,c_x,c_y\in\mathbb{R}$$

Approximation

Basis (Nodal)...

$$egin{aligned} X_h &= \mathrm{span} \left\{ arphi_1, \ldots, arphi_n
ight\} : \ &arphi_i \in X_h, \;\;\; arphi_i \left(x_j
ight) = \delta_{ij}, \;\;\; 1 \leq i,j \leq n. \end{aligned}$$

Support of φ_i :

Approximation

...Basis (Nodal)

Nodal interpretation: $\mathbf{v} \in X_h$,

$$v = \sum_{i=1}^n v_i \, arphi_i(oldsymbol{x}) \; ;$$

$$v(x_j) = \sum_{i=1}^n v_i \, arphi_i \, (x_j) = \sum_{i=1}^n v_i \, \delta_{ij} \Rightarrow iggl[v_j = v(x_j) iggr].$$

"Projection"

Rayleigh-Ritz or Galerkin

Rayleigh-Ritz:

$$u_h = rg\min_{w \in X_h} rac{1}{2} a(w,w) - \ell(w) \ J(w)$$

Galerkin: $u_h \in X_h$ satisfies

$$a(u_h,v)=\ell(v), \quad \forall \ v\in X_h$$
.

Discrete Equations

General Case

Let
$$u_h(x) = \sum_{j=1}^n u_{hj}\, arphi_j(x); \ v = arphi_i(x), \ i=1,\dots,n$$
:

$$\underline{A}_h \, \underline{u}_h = \underline{F}_h$$

$$\underline{u}_h \in {\rm I\!R}^n$$

$$A_{h\,ij}=a(arphi_i,arphi_j),\,1\leq i,j\leq n,$$

$$F_{h\,i}=\ell(\varphi_i),\,1\leq i\leq n.$$

Discrete Equations

Particular Illustrative Case...

Uniform Mesh:

$$egin{aligned} K &= 2n_1^2 \ & ilde{n} &= (n_1+1)^2 \ & n &= (n_1-1)^2 \ & h &= 1/n_1 \end{aligned}$$

Discrete Equations

...Particular Illustrative Case...

Expression for \underline{A}_h :

$$oldsymbol{a}(oldsymbol{w},oldsymbol{v}) = \int_{\Omega}
abla oldsymbol{w} \cdot
abla oldsymbol{v} \, dA = \int_{\Omega} oldsymbol{w}_x oldsymbol{v}_x + oldsymbol{w}_y oldsymbol{v}_y \, dA$$

$$A_{h\,ij} = a(arphi_i,arphi_j) = \int_{\Omega} rac{\partial arphi_i}{\partial x} rac{\partial arphi_j}{\partial x} + rac{\partial arphi_i}{\partial y} rac{\partial arphi_j}{\partial y} \, dA$$

$$1 \leq i, j \leq n$$
.

Discrete Equations

...Particular Illustrative Case..

Derivatives of φ_i :

 $ullet x_i$

 $\frac{\partial \varphi_i}{\partial x}$ (piecewise constant)

 $\frac{\partial \varphi_i}{\partial y}$ (piecewise constant)

Discrete Equations

...Particular Illustrative Case..

Evaluation of $\int_{\Omega} (\partial \varphi_i/\partial x) (\partial \varphi_j/\partial x) dA$

$$\int_{\Omega} rac{\partial arphi_{N}}{\partial x} egin{cases} \partial arphi_{N} / \partial x \ \partial arphi_{E} / \partial x \ \partial arphi_{S} / \partial x \ \partial arphi_{S} / \partial x \ \partial arphi_{S} / \partial x \ \partial arphi_{W} / \partial x \ \partial arphi_{N} / \partial x \ \partial arphi_{N} / \partial x \end{cases}$$

$$dA = egin{cases} 0 \ 0 \ -2/h^2 \ 0 \ 0 \ -2/h^2 \ 0 \ 4/h^2 \ \end{pmatrix} rac{h^2}{2}$$

Discrete Equations

...Particular Illustrative Case..

Evaluation of $\int_{\Omega} (\partial \varphi_i/\partial y) (\partial \varphi_j/\partial y) dA$

 $\bullet x_i$

$$\int_{\Omega} rac{\partial arphi_{N}}{\partial y} egin{cases} \partial arphi_{N}/\partial y \ \partial arphi_{E}/\partial y \ \partial arphi_{S}/\partial y \ \partial arphi_{S}/\partial y \ \partial arphi_{W}/\partial y \ \partial arphi_{N}/\partial y \ \partial arphi_{N}/\partial y \end{cases}$$

$$dA = egin{cases} -2/h^2 \ 0 \ 0 \ -2/h^2 \ 0 \ 0 \ 0 \ 0 \ 4/h^2 \ \end{pmatrix} rac{h^2}{2}$$

Discrete Equations

...Particular Illustrative Case

Summary

 $\bullet x_i$

Nonzero entries of row i of A_h :

identical to finite differences.

General Results

Energy Norm

Recall
$$|||v|||^2\equiv a(v,v)=|v|^2_{H^1(\Omega)}=\int_\Omega |
abla v|^2\,dA$$
 .

Then

$$|||e|||=\inf_{w_h\in X_h}|||u-w_h|||$$

$$(e=u-u_h)$$
;

 u_h is the *projection* of u on X_h

in the energy norm.

General Results

 H^1 Norm

Recall
$$\|v\|_{H^1(\Omega)}^2=\int_{\Omega}|
abla v|^2+v^2\,dA$$
 .

Then

$$\|e\|_{H^1(\Omega)} \leq \left(1+rac{eta}{lpha}
ight) \inf_{w_h \in X_h} \|u-w_h\|_{H^1(\Omega)} \; ;$$

 α : coercivity constant (> 0);

 β : continuity constant (= 1).

Particular Results

 H^1 and L^2 Norms

For $f \in L^2(\Omega)$ and Ω convex,

$$|||e||| \leq C h ||u||_{H^{2}(\Omega)};$$

$$\|e\|_{H^1(\Omega)} \leq C \ h \ \|u\|_{H^2(\Omega)} \ ;$$

and

$$\|e\|_{L^2(\Omega)} \leq C \ h^2 \ \|u\|_{H^2(\Omega)}$$
 .

N4

Particular Results

Output Functionals

Recall
$$s = \ell^{O}(u) + c^{O}$$
, $s_h = \ell^{O}(u_h) + c^{O}$.

For $f \in L^2(\Omega)$ and Ω convex,

if
$$\ell^O \in H^{-1}(\Omega), \ |s-s_h|=|\ell^O(e)| \leq C \ h \ \|u\|_{H^2(\Omega)}$$
 ;

if
$$\ell^O \in L^2(\Omega), \quad |s-s_h| = |\ell^O(e)| \leq C \ h^2 \ \|u\|_{H^2(\Omega)}$$
 .

Overview

Implementation

Four steps:

A Proto-Problem;

Elemental Quantities;

Assembly;

Boundary Conditions;

and Numerical Quadrature.

A Proto-Problem

Space and Basis

$$\text{Let } \tilde{X}_h = \{v \in H^1(\Omega) \ | \ v|_{T_h} \in {\rm I\!P}_1(T_h), \ \forall \ T_h \in \mathcal{T}_h \}$$

$$= \text{span} \ \{\varphi_1, \dots, \varphi_n, \ \varphi_{n+1}, \dots, \varphi_{\tilde{n}} \}$$

A Proto-Problem

Statement

"Find"
$$ilde{oldsymbol{u}}_h \in ilde{oldsymbol{X}}_h$$
 such that

$$a(ilde{u}_h,v)=\ell(v), \qquad orall v \in ilde{X}_h$$
 .

We never actually solve this problem; it serves only as a convenient pre-processing step.

A Proto-Problem

Discrete Equations

$$\underline{ ilde{A}}_h\, \underline{ ilde{u}}_h = \underline{ ilde{F}}_h$$

$$ilde{u}_h(x) = \sum_{i=1}^n ilde{u}_{h\,i}\, arphi_i(x)$$

$$egin{aligned} ilde{A}_{h\,ij} &= a(arphi_i,arphi_j) = \int_{\Omega} rac{\partial arphi_i}{\partial x} rac{\partial arphi_j}{\partial x} + rac{\partial arphi_i}{\partial y} rac{\partial arphi_j}{\partial y} \, dA \ &1 \leq i, \ j \leq ilde{n} \ ; \end{aligned}$$

$$ilde{F}_{h\,i} = \ell(arphi_i) \left(= \int_\Omega f arphi_i
ight), \ 1 \leq i \leq ilde{n} \;.$$

Elemental Quantities

Local Definitions...

Local Nodes

 $Area^k$: area of T_h^k .

 x_1^k, x_2^k, x_3^k : local nodes in element T_h^k , corresponding to global nodes x_9, x_{11}, x_{24} (say).

Elemental Quantities

...Local Definitions...

Local Basis Functions $\mathcal{H}_{\alpha}^{k}, \alpha = 1, 2, 3$:

$$egin{aligned} \mathcal{H}^k_lpha &\in \mathbb{P}_1(T^k_h) \ \mathcal{H}^k_lpha(oldsymbol{x}^k_eta) &= oldsymbol{\delta}_{lphaeta} \end{aligned}$$

$$\mathcal{H}_1^7 = arphi_9|_{T_h^7}; \ \mathcal{H}_2^7 = arphi_{11}|_{T_h^7}; \ \mathcal{H}_3^7 = arphi_{24}|_{T_h^7}.$$

Elemental Quantities

Implementation

...Local Definitions

Expression for \mathcal{H}_{α}^{k} , $\alpha = 1, 2, 3$:

$$\mathcal{H}^k_\alpha = c^k_\alpha + c^k_{x\,\alpha}\,x + c^k_{y\,\alpha}\,y,$$

$$egin{pmatrix} 1 & x_1^k & y_1^k \ 1 & x_2^k & y_2^k \ 1 & x_3^k & y_3^k \end{pmatrix} egin{pmatrix} c_{lpha}^k \ c_{y\,lpha}^k \end{pmatrix} = egin{pmatrix} lpha=1 \ 1 \ 0 \ 0 \end{pmatrix} ext{or} egin{pmatrix} lpha=2 \ 0 \ 1 \ 0 \end{pmatrix} ext{or} egin{pmatrix} lpha=3 \ 0 \ 0 \end{pmatrix}$$

$$\Rightarrow \quad c_{lpha}^k,\; c_{x\,lpha}^k,\; c_{y\,lpha}^k\;,\quad lpha=1,2,3\;.$$

Elemental Quantities

Elemental Matrices...

$$ilde{A}_{h\,ij} = a(arphi_i,arphi_j) = \int_{\Omega} rac{\partial arphi_i}{\partial x} rac{\partial arphi_j}{\partial x} + rac{\partial arphi_i}{\partial y} rac{\partial arphi_j}{\partial y} \, dA_i$$

Element T_h^7 (say) contributes

$$\int_{T_h^7} rac{\partial arphi_{9,11,\, ext{or}\,24}}{\partial x} \, rac{\partial arphi_{9,11,\, ext{or}\,24}}{\partial x} + rac{\partial arphi_{9,11,\, ext{or}\,24}}{\partial y} \, rac{\partial arphi_{9,11,\, ext{or}\,24}}{\partial y} \, dA \; .$$

Elemental Quantities

...Elemental Matrices...

But

$$\int_{T_h^7} \frac{\partial \varphi_{9,11,\,\text{or}\,24}}{\partial x} \frac{\partial \varphi_{9,11,\,\text{or}\,24}}{\partial x} + \frac{\partial \varphi_{9,11,\,\text{or}\,24}}{\partial y} \frac{\partial \varphi_{9,11,\,\text{or}\,24}}{\partial y} dA$$

$$=\int_{T_h^7} \underbrace{\frac{\partial \mathcal{H}_{1,2,\,\text{or}\,3}^7}{\partial x}}_{\text{constant}} \underbrace{\frac{\partial \mathcal{H}_{1,2,\,\text{or}\,3}^7}{\partial x}}_{\text{constant}} + \underbrace{\frac{\partial \mathcal{H}_{1,2,\,\text{or}\,3}^7}{\partial y}}_{\text{constant}} \underbrace{\frac{\partial \mathcal{H}_{1,2,\,\text{or}\,3}^7}{\partial y}}_{\text{constant}} \underbrace{\frac{\partial \mathcal{H}_{1,2,\,\text{or}\,3}^7}{\partial y}}_{\text{constant}} dA.$$

Elemental Quantities

Implementation

...Elemental Matrices

Define elemental matrices $\underline{A}^k \in \mathbb{R}^{3 \times 3}$:

$$A_{lphaeta}^k = \int_{T_h^k} rac{\partial \mathcal{H}_lpha^k}{\partial x} rac{\partial \mathcal{H}_eta^k}{\partial x} + rac{\partial \mathcal{H}_lpha^k}{\partial y} rac{\partial \mathcal{H}_eta^k}{\partial y} \, dA$$

$$=\operatorname{Area}^k(c_{x\,lpha}^k\,c_{x\,eta}^k+c_{y\,lpha}^k\,c_{y\,eta}^k),$$

$$1 \leq lpha, eta \leq 3$$

since derivatives are all constant over T_h^k .

Elemental Quantities

Implementation

Elemental Loads...

$$ilde{F}_{h\,i} = \ell(arphi_i) = \int_\Omega f\,arphi_i\,dA$$

Element T_h^7 (say) contributes

$$egin{aligned} \int_{T_h^7} f \, arphi_{9,11, \, ext{or} \, 24} \, dA \ &= \int_{T_h^7} f \, \mathcal{H}_{1,2, \, ext{or} \, 3}^7 \, dA \; . \end{aligned}$$

Elemental Quantities

...Elemental Loads

Define elemental load vectors $\underline{F}^k \in \mathbb{R}^3$:

$$F_lpha^k = \int_{T_h^k} f \; \mathcal{H}_lpha^k \, dA, \qquad lpha = 1,2,3 \; ;$$

evaluation — approximation — of integral typically by numerical quadrature techniques.

Assembly

The $\theta(k,\alpha)$ Array

Introduce local-to-global mapping

$$heta(k,lpha)\colon\{1,\ldots,K\} imes\{1,2,3\} o\{1,\ldots, ilde{n}\}$$
 element local node global node

such that

 x_{α}^{k} (local node α in element k) =

 $x_{\theta(k,\alpha)}$ (global node $\theta(k,\alpha)$).

Assembly

Procedure for $ilde{\underline{A}}_h$

```
To form \widehat{\underline{A}}_h:
                 zero \widetilde{A}_h;
                  \{\text{for } k=1,\ldots,K\}
                              \{\text{for } \alpha=1,2,3\}
                                        i = \theta(k, \alpha);
                              {for \beta = 1, 2, 3
                                        j = \theta(k,\beta);
                                \{\widetilde{A}_{h\,i\,j} = \widetilde{A}_{h\,i\,j} + A^k_{lphaeta}\,;\}\,\}\,\}
```

E2

Assembly

Procedure for $ilde{\underline{F}}_h$

To form $\underline{\widetilde{F}}_h$:

```
zero \widetilde{F}_h; \{	ext{for } k=1,\ldots,K \} \{	ext{for } lpha=1,2,3 \} i=	heta(k,lpha); \widetilde{F}_{h\,i}=\widetilde{F}_{h\,i}+F_lpha^k;\}\}
```

Boundary Conditions

Homogeneous Dirichlet...

Recall:

$$u_h \in X_h$$

$$|u_h|_{\Gamma}=0$$

$$a(u_h,v)=\ell(v), \quad orall \, v \in X_h$$

$$|v|_{\Gamma}=0$$
 ;

$$X_h = \operatorname{span} \{\varphi_1, \ldots, \varphi_n\}$$
 versus

$$ilde{X}_h = \mathrm{span} \left\{ arphi_1, \ldots, arphi_n, \ arphi_{n+1}, \ldots, arphi_{ ilde{n}}
ight\}.$$

Boundary Conditions

...Homogeneous Dirichlet...

Explicit Elimination

$$X_h \Rightarrow arphi_{n+1}, \ldots, arphi_{ ilde{n}}$$
 not admissible variations, so REMOVE $Rn+1,\ldots,R ilde{n}$ from $ilde{A}_h$;

$$ilde{u}_{h\,n+1},\ldots, ilde{u}_{h\, ilde{n}}=0,$$
 so

REMOVE $Cn + 1, \ldots, C\tilde{n}$ from $\tilde{\underline{A}}_h$.

Boundary Conditions

...Homogeneous Dirichlet

Big Number Approach

Place $\frac{1}{\varepsilon}$ ($\varepsilon \ll 1$) on entries $\tilde{A}_{h\,ii},\; i=n+1,\ldots,\tilde{n}.$

Place 0 on entries \tilde{F}_{hi} , $i = n + 1, \ldots, \tilde{n}$.

This replaces $Rn + 1, \ldots, R\tilde{n}$ with $u_{h\,n+1} \cong \cdots \cong u_{h\,\tilde{n}} \cong 0$ in an easy, symmetric way.

Quadrature

Implementation

How do we evaluate

$$F_{lpha}^k = \int_{T_h^k} f(x) \ \mathcal{H}_{lpha}^k(x) \ dA$$

for general f?

Quadrature

Gauss Quadrature...

Approximate

$$F_{lpha}^k = \int_{T_h^k} f(oldsymbol{x}) \, \mathcal{H}_{lpha}^k \, dA$$

$$pprox \sum_{q=1}^{N_q}
ho_q^k \, f(oldsymbol{z}_q^k) \, \mathcal{H}_lpha^k(oldsymbol{z}_q^k) \; ;$$

 ρ_q^k : quadrature weights,

 z_{q}^{k} : quadrature points.

Quadrature

...Gauss Quadrature

For example:

$$N_q=1,\;
ho_1^k= ext{Area}^k,\; z_1^k=rac{1}{3}(x_1^k+x_2^k+x_3^k)$$
 integrates exactly $\int_{T_h^k}g(x)\,dA$ for all $g\in ext{IP}_1(T_h^k);$

higher order formulas tabulated.

Overview

Solution Methods for $\underline{A}_h \, \underline{u}_h = \underline{F}_h$

Topics

Direct Methods — Banded LU.

Iterative Methods — Conjugate Gradients: algorithm and interpretation; convergence rate and conditioning; action of A_h .

Direct Methods — Banded LU

Uniform Mesh...

$$egin{aligned} K &= 2n_1^2 \ & ilde{n} &= (n_1+1)^2 \ & n &= (n_1-1)^2 \ & h &= 1/n_1 \end{aligned}$$

Direct Methods — Banded LU

...Uniform Mesh

Stencil

Nonzero entries of row i of A_h :

Direct Methods — Banded LU

Operation Count and Storage

For " \mathbf{x} —then— \mathbf{y} " node numbering,

bandwidth $b = O(n_1)$.

LU: $O(n_1^2 n_1^2)$ operations; $O(n_1^2 n_1)$ storage.

Forward/Back Solves: $O(n_1^2 n_1)$ operations.

Conjugate Gradient Iteration

Algorithm

$$egin{aligned} & \underline{u}_h = 0 \text{ (say)}; \, \underline{r}^0 = \underline{F}_h; \ & ext{For } k = 1, \ldots; \ & eta^k = (\underline{r}^{k-1})^T \, \underline{r}^{k-1} / (\underline{r}^{k-2})^T \, \underline{r}^{k-2} \ & \underline{p}^k = \underline{r}^{k-1} + eta^k \, \underline{p}^{k-1} \ & & ext{} & e$$

N7

Conjugate Gradient Iteration

Convergence Rate...

In general,

$$rac{(\underline{u}_h - \underline{u}_h^k)^T \underline{A}_h (\underline{u}_h - \underline{u}_h^k)}{(\underline{u}_h)^T \underline{A}_h \underline{u}_h} \leq 2 \left(rac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}
ight)^k,$$

$$\kappa(\underline{A}_h) = rac{oldsymbol{\lambda}_{ ext{min}}(\underline{A}_h)}{oldsymbol{\lambda}_{ ext{min}}(\underline{A}_h)}\,.$$

Conjugate Gradient Iteration

...Convergence Rate

For FEM \underline{A}_h :

$$\kappa(\underline{A}_h) \leq Ch^{-2}$$

for quasi-uniform, regular meshes \mathcal{T}_h ;

thus $n_{ ext{iter}} \sim O(rac{1}{h})$.

Conjugate Gradient Iteration

Computational Effort

For uniform FEM mesh:

$$rac{1}{h}=n_1$$

$$n_{ ext{iter}} \sim O(n_1)$$
 ;

work/iteration
$$\sim O(n_1^2)$$
; (Slide 44)

 $\Rightarrow O(n_1^3)$ total operations, $O(n_1^2)$ storage.

Conjugate Gradient Iteration

General Evaluation of $\underline{y} = \underline{A}_h\,\underline{p}\,...$

Given
$$\underline{ ilde{p}} \in {
m I\!R}^{ ilde{n}}, \; ilde{p}_i = p_i, \; i = 1, \ldots, n$$

$$ilde{p}_i=0,\ i=n+1,\ldots, ilde{n}$$
:

Evaluate $\underline{\tilde{y}} = \underline{\tilde{A}}_h \, \underline{\tilde{p}}$;

Set
$$y_i = \tilde{y}_i, \ i = 1, \ldots, n,$$
; $\tilde{y}_i = 0, \ i = n+1, \ldots, \tilde{n}$.

N8

Conjugate Gradient Iteration

...General Evaluation of $\underline{y} = \underline{A}_h\, \underline{p}$

Evaluation of
$$\underline{\tilde{A}}_h \underline{\tilde{p}}$$
:

O(K) operations

zero
$$ar{y}; \{ ext{for } k=1,\ldots,K ext{ (elements)} \}$$
 $\{ ext{for } lpha=1,2,3 \ i= heta(k,lpha) \ ; \}$ $\{ ext{for } eta=1,2,3 \ j= heta(k,eta) \ ; \}$ $\{ ext{$\widetilde{y}_i=\widetilde{y}_i+\left|A_{lphaeta}^k\left|\widetilde{p}_j
ight.;\}\ \}$ }$