Discrete Optimization

The Knapsack Problem: Dynamic Programming

Goals of the Lecture

- ► How to find the **BEST** knapsack solutions
- Using dynamic programming

- Widely used optimization technique
 - for certain classes of problems
 - heavily used in computational biology
- Basic principle
 - divide and conquer
 - bottom up computation

- Basic conventions and notations
 - assume that $I = \{1, 2, ..., n\}$
 - O(k,j) denotes the optimal solution to the knapsack problem with capacity k and items [1..j]

maximize
$$\sum_{i \in 1...j} v_i x_i$$
 subject to

$$\sum_{i \in 1...j} w_i x_i \le k$$
$$x_i \in \{0, 1\} \ (i \in 1...j)$$

We are interested in finding out the best value O(K,n)

Recurrence Relations (Bellman Equations)

- Assume that we know how to solve
 - O(k,j-1) for all k in 0..K
- ► We want to solve O(k,j)
 - We are just considering one more item, i.e., item j.
- ▶ If $w_j \le k$, there are two cases
 - Either we do not select item j, then the best solution we can obtain is O(k,j-1)
 - Or we select item j and the best solution is $v_j + O(k-w_j, j-1)$
- ► In summary
 - $O(k,j) = max(O(k,j-1), v_j + O(k-w_j,j-1))$ if $w_j \le k$
 - O(k,j) = O(k,j-1) otherwise
- ► Of course
 - O(k,0) = 0 for all k

Recurrence Relations

We can write a simple program

```
int O(int k,int j) {
   if (j == 0)
     return 0;
   else if (w<sub>j</sub> <= k)
     return max(O(k,j-1),v<sub>j</sub> + O(k-w<sub>j</sub>,j-1));
   else
     return O(k,j-1)
}
```

► How efficient is this approach?

Recurrence Relations - Fibonacci Numbers

We can write a simple program for finding fibonacci numbers

```
int fib(int n) {
   if (n == 0 || n == 1)
     return 1;
   else
     return fib(n-2) + fib(n-1);
}
```

- ► How efficient is this approach?
 - we are solving many times the same subproblem
 - fib(n-1) requires fib(n-2) which we have already solved
 - fib(n-3) requires fib(n-4) which we have already solved

- Compute the recursive equations bottom up
 - start with zero items
 - continue with one item
 - then two items
 - ...
 - then all items

maximize
$$5x_1 + 4x_2 + 3x_3$$

subject to $4x_1 + 5x_2 + 2x_3 \le 9$
 $x_i \in \{0, 1\} \ (i \in 1...3)$

Dynamic Programming - Example

How to find which items to select?

Capacity	0	
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Take ite	ms 1 aı	nd 2 Trace back

Dynamic Programming - Example

maximize
$$16x_1 + 19x_2 + 23x_3 + 28x_4$$

subject to $2x_1 + 3x_2 + 4x_3 + 5x_4 \le 7$
 $x_i \in \{0, 1\} \ (i \in 1..4)$

$x_1 =$	$1, x_2 =$	$= 0, x_3 =$	$=0,x_4$	=1
—) 4		—	

Capacity	0	1	2	3	4
0					
1					
2		+	- ←		
3					
4					
5					
6					
7					

- What is the complexity of this algorithm?
 - time to fill the table
 - -i.e., O(K n)
- ► Is this polynomial?
 - How many bits does K need to be represented on a computer?
 - log(K) bits
 - Hence the algorithm is in fact
 exponential in terms of the input size
 - pseudo-polynomial algorithm
 - "efficient" when K is small

Until Next Time