Bin 1 Problems

December 17, 2023

This document holds problems that fit into the Bin 4 according to the prelim syllabus. Or are approached in a way most compatible with Bin 4

Contents

L	Prelim Problems	J
2	Axler Problems	1
3	Other Problems	2

1 Prelim Problems

- 1. Let V be a vector space over a field \mathbb{F} . Suppose $T \in \mathcal{L}(V)$ has minimal polynomial $p(z) = 3 + 2z z^2 + 5z^3 + z^4$
 - (a) (5 points) Prove T is invertible

Solution: asdf

- (b) (15 points) Find the minimal polynomial of T.
- 2. Answer the following
 - (a) Is there an $n \times n$ matrix A with $A^{n-1} \neq 0$ and $A^n = 0$? Give an example to show such a matrix exists (and explain why it satisfies both conditions), or disprove it.
 - (b) Show that an $n \times n$ upper triangular matrix with $A^n \neq 0$ and $A^{n+1} = 0$ does not exist.
- 3. Let T be a linear map on a vector space V and $\dim V = n$
 - (a) If for some vector v, the vectors v, Tv, ..., $T^{n-1}v$ are linearly independent, show that every eigenvalue of T has only one corresponding eigenvector up to a scalar multiplication
 - (b) If T has n distinct eigenvalues and vector u is a sum of n eigenvectors, corresponding to the distinct eigenvalues, show that $u, Tu, \ldots, T^{n-1}u$ are linearly independent (and thus form a basis of V).
- 4. Let $A \in \mathcal{M}_n(\mathbb{C})$ and λ be an eigenvalue of A.
 - (a) Show that λ^r is an eigenvalue of A^r for $r \in \mathbb{N}$.
 - (b) Provide an example showing that the multiplicity of λ^r as an eigenvalue of A^r may be strictly higher than the multiplicity of λ as an eigenvalue of A
 - (c) Show that A^{\top} has the same eigenvalues as A.
 - (d) Show that if A is orthogonal, then $\frac{1}{\lambda}$ is an eigenvalue of A.

2 Axler Problems

1. Suppose V is an inner product space and $T \in \mathcal{L}(V)$ is normal. Prove that the minimal polynomial of T has no repeated zeros

3 Other Problems

These are from the Berkely Problems pdf.

1. (7.5.16) Let A and B denote real $n \times n$ symmetric matrices such that AB = BA. Prove that A and B share a common eigenvector in \mathbb{R}^n .