α	700	1
\ \ \	~70	

Name(s):		
Alpha(s):		

Assignment Type:	Lab	Collaboration Policy:	Default
Assignment Title:	Lab 7	Submit Project Name:	lab7

Electronic submission due:

Paper submission due: NO PAPER SUBMISSION

Submission instructions: http://courses.cyber.usna.edu/SY201/calendar.php?load=policy

1. <u>Assignment Overview</u>

In this assignment you will build a program that performs encryption and decryption

2. Background Research

- a. The Caesar cipher is one of the most well-known encryption techniques. Also known as the shift cipher, it is a substitution cipher in which each letter in the original message (plaintext) is replaced by a different letter which is a fixed number of places down/up the alphabet. Review the Caesar shift that you learned about last year (https://www.usna.edu/CyberDept/sy110/calendar.php?type=class&event=24)
- b. Consider the plaintext alphabet being a single string consisting of uppercase English letters as below, shown with each letter's associated index, e.g., M's index is 13.

A	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	13	13	14	15	16	17	18	19	20	21	22	23	24	25

c. Then, using a shift of 23, the cipher alphabet is

X	Y	Z	A	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	О	P	Q	R	S	T	U	V	W
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- d. Using the cipher alphabet, the string "LAZY" is encrypted as:
 - The "L" is found at index 11 in the plaintext alphabet. The letter in the shifted alphabet is I
 - The "A" is found at index 0 in the plaintext alphabet. The letter in the shifted alphabet is X
 - The "Z" is found at index 25 in the plaintext alphabet. The letter in the shifted alphabet is W
 - The "Y" is found at index 24 in the plaintext alphabet. The letter in the shifted alphabet is V

Thus, the string "LAZY" becomes the string "IXWV"

e. You will also need to understand the Vigenere cipher as well (https://www.usna.edu/CyberDept/sy110/calendar.php?type=class&event=24). The demo is

SY201	Name(s):	_
	Alpha(s):	_

extremely helpful in understanding how the encryption process works (https://www.usna.edu/CyberDept/sy110/calendar.php?key=c4a8a41190f468461a1c06317bf2701f23afcbb8&type=resources&event=27).

- 3. Specification modify the file lab7.py to add the following functions and includes comments adjacent to each function that describe the function's purpose and use:
 - a. Write your alpha and section number in a comment at the top of your program
 - b. Write any sources of discussion/collaboration in a comment at the top of your program
 - c. Write a function encrypt caesar that:
 - i. Takes two arguments: (1) a string to encrypt and (2) an integer (key)
 - ii. Assume: the string is all uppercase
 - iii. Assume: the key is between 0-25
 - iv. Note: only letters should be encrypted, all other characters should be unmodified
 - v. Returns the result of encrypting the first argument using the Caesar cipher with the second argument as the key
 - d. Write a function decrypt caesar that:
 - i. Takes two arguments: (1) a string to decrypt and (2) an integer (key)
 - ii. Follows the same rules as encrypt caesar
 - iii. Returns the result of decrypting the first argument using the Caesar cipher with the second argument as the key
 - e. Write a function count freq that:
 - i. Takes one argument: (1) a string
 - ii. Returns a dictionary where the keys are the strings 'A' through 'Z' and the values are the number of occurrences of those letters in the argument
 - f. Write a function encrypt vigenere that:
 - i. Takes two arguments: (1) a string to encrypt and (2) a string (key)
 - ii. Assume: the string is all uppercase
 - iii. Note: only letters should be encrypted, all other characters should be unmodified
 - iv. Returns the result of encrypting the first argument using the Vigenere cipher with the second argument as the key
 - g. Write a function decrypt vigenere that:
 - i. Takes two arguments: (1) a string to encrypt and (2) a string (key)
 - ii. Follows the same rules as encrypt vigenere
 - iii. Returns the result of decrypting the first argument using the Vigenere cipher with the second argument as the key

		Name(s):
		Alpha(s):
h. Write a f	inction named	main that (in this order):
	Takes no argun	
	_	hould run FOREVER unless the user takes advantage of the below "(3)
		r the program is forcibly quit)
		out the following:
Options		-
(1) Caesar Cipher	r	
(2) Vigenere Cipl	her	
(3) Quit		
iv. F	Prompts the use	er for a numerical selection using "Selection: "
		ses option three (user input: 3), your program should ask for no additional
		rate no additional output
vi. I		ses option one (user input: 1), your program should:
0. 1:	1.	Precisely print out the following:
Options (1) Engaget		
(1) Encrypt(2) Decrypt		
(3) Frequency Ar	nalveie	
(3) I requeriey 711	2.	Prompt the user for a numerical selection using "Selection: "
	3.	If the user chooses option one (user input: 1), your program should:
		a. Prompt the user for some plaintext using "Plaintext: "
		b. Prompt the user for a key using "Key:"
		c. Encrypt the plaintext
		d. Print out the result as "Ciphertext: [CIPHERTEXT]"
	4.	If the user chooses option two (user input: 2), your program should:
		a. Prompt the user for some ciphertext using "Ciphertext: "
		b. Prompt the user for a key using "Key: "
		c. Decrypt the ciphertext
		d. Print out the result as "Plaintext: [PLAINTEXT]"
	5.	If the user chooses option three (user input: 3), your program should:
		a. Prompt the user for some ciphertext using "Ciphertext: "
		b. Print out "The most likely key is [KEY] which yields
		[PLAINTEXT]" where plaintext is the result of decrypting the ciphertext with the most likely key

- vii. If the user chooses an option two (user input: 2), your program should:
 - 1. Precisely print out the following:

Options

- (1) Encrypt
- (2) Decrypt
- 2. Prompt the user for a numerical selection using "Selection: "
- 3. If the user chooses option one (user input: 1), your program should:
 - a. Prompt the user for some plaintext using "Plaintext: "
 - b. Prompt the user for a key using "Key: "

SY201	Name(s):
	Alpha(s):

- c. Encrypt the plaintext
- d. Print out the result as "Ciphertext: [CIPHERTEXT]"
- 4. If the user chooses option two (user input: 2), your program should:
 - a. Prompt the user for some plaintext using "Ciphertext: "
 - b. Prompt the user for a key using "Key: "
 - c. Decrypt the ciphertext
 - d. Print out the result as "Plaintext: [PLAINTEXT]"