Progress presentation

A parallel algorithm for all-pairs shortest paths that minimises data movement

Marcus A. K. September

February 8, 2022

Introduction

What is the project about?

- Develop a parallel algorithm for solving all-pairs shortest paths (APSP)
- ► A 2D grid of processing elements and message passing
- Multiprocessor simulation
- ▶ Parallelise a matrix multiplication, Minimise data movement with FoxOtto

Current state of progress

Timetable

... ...

16 – 17	20 Jan – 2 Feb	Evaluation · · ·
18 – 20	3 Feb – 23 Feb	Extensions · · ·
21 – · · ·	24 Feb – · · ·	Dissertation writing

Current state

- Work items left on evaluation:
 - Generate more input graphs, using random graph library
 - ► (Allow independent processing element (PE) execution in timing class)
- Extensions done:
 - Finished generalising simulation and FoxOtto
 - Halfway done with graph compression

Moving forward

Key work items left

- Finish evaluation
 - Generate random graphs of various sizes
 - Allow independent processing element execution in timing wrapper
 - ▶ Do execution time measurements for various problem sizes
- Finish graph compression optimisation (extension)
- (Parallelise Floyd-Warshall (extension))
- ▶ Start writing dissertation? Or more extensions?
 - 24 February in timetable

What has been accomplished?

Main work items

- Data preparation script and class
- Multiprocessor simulation
 - Can pass Worker description for PE(i, j)
 - Manager and MemoryController handles execution of Workers and their communication
- FoxOtto min-plus matrix multiplication
- Main APSP algorithm

Extra

- Correctness tests
- Some evaluation done

Questions?