Syntaks og semantik

Lektion 15

24 april 2007

Forord

Eksamen

Semantikopgaven

Eksamen

EksamenSemantikopgaven

)

Eksamen Semantikopgaven

- mundtlig
- 10 eksamensspørgsmål, kendt på forhånd:

http://www.cs.aau.dk/~uli/Teaching/07/Spring/SandS/Eksamen/Foreloebig/

- 20 minutters forberedelse
- 20 minutters eksamen
- hjælpemidler: ingen slides, ingen computer, ingen mobiltelefon
- Ekstern censor: Anders Møller, Århus

http://www.brics.dk/~amoeller/

- syntaks- og semantikopgaven plus 8 andre
- de andre: prøveopgave
- prøveopgaven dækker kun en del af opgavens pensum
- prøveopgavens besvarelse indgår som en del af en samlet præsentation

Semantikopgaven

3/19

 $S ::= \cdots \mid \text{begin } D_V \mid D_F \mid S \mid \text{end}$ $a ::= \cdots \mid f(a)$ $D_F ::= \text{function } f(x) \text{ is } S \Rightarrow \alpha; D_F \mid \varepsilon$

 sideeffekter i aritmetiske udtryk ⇒ evaluering af et aritmetisk udtryk kan ændre store ⇒ transitioner på formen

$$env_V, env_F \vdash \langle a, sto \rangle \rightarrow_a \langle v, sto' \rangle$$

- samme for boolske udtryk
- transitionsregler for Aud, Bud, ErkV og Kom skal laves om, de fleste kun lidt (!)
- ullet nye regler til funktionserklæringer (transitionssystem $ightarrow_{DF}$)
- ny regel til funktionskald (i Aud!)

Eksamen Semantikopgaven

Eksempel: gammel regel til variabelerklæringer:

[var-erkl-bip_{bss} $\langle D_V, \textit{env}_V[x \mapsto \ell][\mathsf{next} \mapsto \mathsf{new}(\ell)], \textit{sto}[\ell \mapsto v] \rangle \rightarrow_{DV} \langle \textit{env}_V, \textit{sto}' \rangle$ $\langle \text{var } x := a; D_V, env_V, sto \rangle \rightarrow_{DV} \langle env_V, sto' \rangle$ hvor $\ell = env_V(\text{next})$ env_V , $sto \vdash a \rightarrow_a v$

ny regel:

[var-erkl-bof_{bss.}] $env_F \vdash \langle D_V, env_V[x \mapsto \ell][\mathsf{next} \mapsto \mathsf{new}(\ell)], \mathit{sto''}[\ell \mapsto v]$ $\mathit{env}_{\mathit{F}} \vdash \langle \mathit{var} \ x := a; D_{\mathit{V}}, \mathit{env}_{\mathit{V}}, \mathit{sto} \rangle \rightarrow_{\mathit{DV}} \langle \mathit{env}_{\mathit{V}}, \mathit{sto}' \rangle$ hvor $\ell = env_V(\text{next})$ env_V , $env_F \vdash \langle a, sto \rangle \rightarrow_a \langle v, sto'' \rangle$

Overblik \(\lambda\)-notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

Denotationel semantik for **Bims**

- Overblik
- Aritmetiske udtryk λ -notation
- Boolske udtryk
- Kommandoer
- Denotationel semantik af while-løkker
- Funktionsrums-domænet
- Denotationel semantik af while-løkker, 2

Overblik \(\text{\text{\$\lambda\$--notation}}\) Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

- operationel semantik:
- oversæt et program til et transitionssystem:
- konfigurationer: kodestump plus programtilstand
- slutkonfigurationer: mulige resultater af programudførelser
- transitioner: programskridt (small-step vs. big-step)
- beskrivelse af en faktisk programudførsel
- abstrakt maskine
- denotationel semantik:
- oversæt et program til en funktion fra input til output:
- λ-notation for at kunne beskrive funktioner på en effektiv måde
- funktioner mellem funktionsrum (højere-ordens-funktioner)
- beskrivelse af et programs effekt

Overblik λ -notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

 λ -notation: en praktisk måde at skrive funktioner på

- før: Lad f være funktionen givet ved f(z) = 3 + z
- nu: $\lambda z.3 + z$
- før: Lad f_2 være funktionen givet ved $f_2(x) = \begin{cases} x & \text{hvis } x > 0 \\ 0 & \text{ellers} \end{cases}$ nu: $\lambda x. hvis \ x > 0$ så x ellers
- nu: $\lambda x \cdot \underline{hvis} x > 0$ <u>så</u> x <u>ellers</u> 0
- før: Lad g være funktionen der, givet en funktion h som input, returnerer funktionen der er givet ved foreskriften h(h(x+3))
- nu: $\lambda h.\lambda x.h(h(x+3))$
- λx.f(x) betegner funktionen f med variabel x
- "kroppen" f(x) har scope så langt til højre som muligt
- at anvende en funktion på en værdi: $(\lambda x.x + 3)4 = 7$
- udefineret output: $\lambda x \cdot \underline{hvis} \ x \ge 0 \ \underline{sa} \ \sqrt{x} \ \underline{ellers} \ \underline{udef}$

8/19

Aritmetiske udtryk uden variable:

Aud:
$$a := n \mid a_1 + a_2 \mid a_1 * a_2 \mid a_1 - a_2 \mid (a_1)$$

betydning af et aritmetisk udtryk: dens værdi

$$\mathcal{A}^-: extsf{Aud}
ightarrow \mathbb{Z}$$

givet ved

$$A^{-}[[n]] = \mathcal{N}[[n]]$$
 $A^{-}[[a_1 + a_2]] = A^{-}[[a_1]] + A^{-}[[a_2]]$
 $A^{-}[[a_1 * a_2]] = A^{-}[[a_1]] \cdot A^{-}[[a_2]]$
 $A^{-}[[a_1 - a_2]] = A^{-}[[a_1]] - A^{-}[[a_2]]$
 $A^{-}[[(a)]] = A^{-}[[a]]$

Overblik λ -notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

Aritmetiske udtryk med variable:

Aud:
$$a := x \mid n \mid a_1 + a_2 \mid a_1 * a_2 \mid a_1 - a_2 \mid (a_1)$$

betydning af et aritmetisk udtryk: en funktion fra tilstande til værdien

$$\mathcal{A}: \mathsf{Aud} o (\mathsf{Tilstande} o \mathbb{Z})$$

givet ved

$$\mathcal{A}[\![x]\!] = \lambda s.s(x)$$
 $\mathcal{A}[\![n]\!] = \lambda s.\mathcal{N}[\![n]\!]$
 $\mathcal{A}[\![a_1\!+\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s + \mathcal{A}[\![a_2\!]\!] s$
 $\mathcal{A}[\![a_1\!+\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s \cdot \mathcal{A}[\![a_2\!]\!] s$
 $\mathcal{A}[\![a_1\!-\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s - \mathcal{A}[\![a_2\!]\!] s$
 $\mathcal{A}[\![a_1\!-\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s - \mathcal{A}[\![a_2\!]\!] s$

Overblik λ -notation **Aritmetiske udtryk** Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

$$\mathcal{A}[\![x]\!] = \lambda s.s(x)$$
 $\mathcal{A}[\![n]\!] = \lambda s.\mathcal{N}[\![n]\!]$
 $\mathcal{A}[\![a_1\!+\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s + \mathcal{A}[\![a_2\!]\!] s$
 $\mathcal{A}[\![a_1\!+\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s \cdot \mathcal{A}[\![a_2\!]\!] s$
 $\mathcal{A}[\![a_1\!-\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s - \mathcal{A}[\![a_2\!]\!] s$
 $\mathcal{A}[\![a_1\!-\!a_2\!]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s - \mathcal{A}[\![a_2\!]\!] s$
 $\mathcal{A}[\![a]\!] = \lambda s.\mathcal{A}[\![a_1\!]\!] s$

Eksempel: Lad s være tilstanden givet ved s(x) = 4 og s(y) = 6.

$$\mathcal{A}[\![\![\![x * y + \underline{1} \underline{8}]\!]\!] = \lambda s. \mathcal{A}[\![\![\![\![} x * y]\!]\!] s + \mathcal{A}[\![\![\![\![\![\!]\!]\!]\!]\!] s$$

$$= \lambda s. \mathcal{A}[\![\![\![\![} x * y]\!]\!] s + 18$$

$$= \lambda s. \mathcal{A}[\![\![\![\![\![\![\![\![\!]\!]\!]\!]\!]\!] s + 18$$

$$= \lambda s. \mathcal{A}[\![\![\![\![\![\![\![\!]\!]\!]\!]\!]\!] s + 18$$

$$= \lambda s. s(x) \cdot s(y) + 18$$

$$= 24 + 18 = 42 \qquad \text{(igen! } \overset{\square}{} \text{.} \text{)}$$

Overblik λ -notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

Boolske udtryk:

Bud:
$$b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid (b_1)$$

betydning af et boolsk udtryk: en funktion fra tilstande til

$$\mathcal{B}:\mathsf{Bud} o ig(\mathsf{Tilstande} o \{\mathit{t\!t},\mathit{f\!f}\}ig)$$

givet ved

$$\mathcal{B}[\![a_1 = \! a_2]\!] = \lambda s.\underline{hvis}\ \mathcal{A}[\![a_1]\!]s = \mathcal{A}[\![a_2]\!]s\ \underline{s}\underline{a}\ t\ \underline{ellers}\ ff$$

$$\mathcal{B}[\![a_1 < \! a_2]\!] = \lambda s.\underline{hvis}\ \mathcal{A}[\![a_1]\!]s < \mathcal{A}[\![a_2]\!]s\ \underline{s}\underline{a}\ t\ \underline{ellers}\ ff$$

$$\mathcal{B}[\![\neg b]\!] = \lambda s.\underline{hvis}\ \mathcal{B}[\![b]\!]s = t\ \underline{s}\underline{a}\ ff\ \underline{ellers}\ tf$$

$$\mathcal{B}[\![b_1 \land b_2]\!] = \lambda s.\underline{hvis}\ \mathcal{B}[\![b_1]\!]s = t\ \text{og}\ \mathcal{B}[\![b_2]\!]s = t\ \underline{s}\underline{a}\ tt\ \underline{ellers}\ ff$$

$$\mathcal{B}[\![(b)\]] = \lambda s.\mathcal{B}[\![b]\!]s$$

12/19

Kom: S :: || $x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1$ while b do Selse Ş

tilstande betydningen af en kommando: partiel funktion fra tilstande til

$$\mathcal{S}$$
 : Kom $ightarrow$ (Tilstande $ightarrow$ Tilstande)

givet ved

$$\begin{split} \mathcal{S}[\![\mathtt{skip}]\!] &= \lambda s.s \\ \mathcal{S}[\![x\!:=\!a]\!] &= \lambda s.s [x \mapsto \mathcal{A}[\![a]\!] s] \\ \mathcal{S}[\![S_1;S_2]\!] &= \mathcal{S}[\![S_2]\!] \circ \mathcal{S}[\![S_1]\!] \\ \mathcal{S}[\![\mathtt{if}\ b\ \mathtt{then}\ S_1\ \mathtt{else}\ S_2]\!] \\ &= \lambda s. \underline{hvis}\ \mathcal{B}[\![b]\!] s = \text{tt}\ \underline{så}\ \mathcal{S}[\![S_1]\!] s\ \underline{ellers}\ \mathcal{S}[\![S_2]\!] s \\ \mathcal{S}[\![\mathtt{while}\ b\ \mathtt{do}\ S]\!] \end{split}$$

 $\underline{s}\underline{a}$ ($S[[\text{while }b\ \text{do }S]]\circ S[[S]]$)s <u>ellers</u> s

 $=\lambda s.\underline{hvis}\,\mathcal{B}[\![b]\!]s=tt$

(partiel funktion – fordi nogle kommandoer ikke terminerer) 13/19

Overblik λ -notation Aritmetiske udtryk Boolske udtryk Kommandoer **while-løkker** Funktionsrum while-løkker 2

Ligningen

$$\mathcal{S}[[\text{while }b \text{ do }S]] = \lambda s.\underline{hvis}\,\mathcal{B}[[b]]s = tt$$

$$\underline{så}\,(\mathcal{S}[[\text{while }b \text{ do }S]] \circ \mathcal{S}[[S]])s\,\underline{ellers}\,s$$

er rekursiv.

Mere præcist: Lad $b \in \mathbf{Bud}$ og $S \in \mathbf{Kom}$

En løsning $f = \mathcal{S}[[\text{while } b \text{ do } S]]$ må opfylde ligningen

$$f = \lambda s.\underline{hvis} \ \mathcal{B}[\![b]\!]s = tt \ \underline{sa} \ (f \circ \mathcal{S}[\![S]\!])s \ \underline{ellers} \ s$$

Endnu mere præcist: Lad

 $F: (\mathsf{Tilstande}
ightharpoonup \mathsf{Tilstande})
ightharpoonup (\mathsf{Tilstande}
ightharpoonup \mathsf{Tilstande})$

være funktionen givet ved

$$F(f) = \lambda s.\underline{hvis} \ \mathcal{B}[\![b]\!] s = tt \ \underline{sa} \ (f \circ \mathcal{S}[\![S]\!]) s \ \underline{ellers}$$

Vi leder efter et mindste fikspunkt for F

Overblik λ -notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

Eksempel: Lad $b = \neg (x=0)$ og S = x := x-1. Find

$$S$$
[while $\neg (x=0)$ do $x:=x-1$]

Fikspunktligningen:

$$f = F(f) = \lambda s.\underline{hvis} \mathcal{B}[\neg (x=0)]s = t \underline{så} (f \circ \mathcal{S}[x:=x-1])s \underline{ellers} s$$

Et par fikspunkter:

$$f_1 = \lambda s.\underline{hvis} \ s(x) \ge 0 \ \underline{sa} \ s[x \mapsto 0] \ \underline{ellers} \ \underline{udef}$$

$$f_2 = \lambda s.\underline{hvis} \ s(x) \ge 0 \ \underline{sa} \ s[x \mapsto 0] \ \underline{ellers} \ s[x \mapsto 42]$$

$$f_3 = \lambda s.s[x \mapsto 0]$$

Mål: Domænestruktur på mængden Tilstande -- Tilstande så

- fikspunktsætningen kan anvendes på F, og
- f₁ bliver mindste fikspunkt for F

Overblik λ-notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

15/19

Definition 14.10(200): Givet mængder A, B og en partiel funktion $f: A \longrightarrow B$, da er grafen af f defineret som

$$graf(f) = \{(a, b) \mid f(a) = b\}$$

(dén kendte vi vist allerede ...)

funktionsrummet $extit{A}
ightharpoonup extit{B}$ ved Definition 14.11(200): For mængder A, B defineres ordningen \sqsubseteq på

$$f_1 \sqsubseteq f_2 \Leftrightarrow \operatorname{graf}(f_1) \subseteq \operatorname{graf}(f_2)$$

- dvs. $f_1 \subseteq f_2$ hvis $f_1(a) = f_2(a)$ for alle a for hvilke f_1 er defineret
- men f_1 må godt være <u>udef</u> for nogle værdier for hvilke f_2 er defineret

Eksempel: For A = B = Tilstande og

$$f_1 = \lambda s.\underline{hvis} \ s(x) \ge 0 \ \underline{sa} \ s[x \mapsto 0] \ \underline{ellers} \ \underline{udef}$$
$$f_2 = \lambda s.\underline{hvis} \ s(x) \ge 0 \ \underline{sa} \ s[x \mapsto 0] \ \underline{ellers} \ s[x \mapsto 42]$$

er $f_1 \sqsubseteq f_2$.

16/19

Overblik λ -notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker **Funktionsrum** while-løkker 2

$$f_1 \sqsubseteq f_2 \quad \Leftrightarrow \quad \operatorname{graf}(f_1) \subseteq \operatorname{graf}(f_2)$$

Lemma 14.14(200): Med ordningen \sqsubseteq er $A \rightarrow B$ et domæne.

Bevis

- **2** Bundelementet er $\perp = \lambda a.$ udef.
- ② Lad $Y = \{f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \cdots\}$ være en voksende mængde. Vi skal finde lim Y.
- Grafer af funktioner A → B er delmængder af A × B, og
 mellem svarer til ⊆ mellem grafer
 ⇒ forsøg med "lim Y = l l, graf(f)" ligesom for
- \Rightarrow forsøg med "lim $Y = \bigcup_i \operatorname{graf}(f_i)$ " ligesom for potensmængde-domænet!

5 Lad $f = \lambda a.\underline{hvis} f_i(a) = b$ for et $i.\underline{sa} b.\underline{ellers} \underline{ude}$

- Det svarer til graf $(f) = \bigcup_i graf(f_i)$

17/19

Overblik λ -notation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum while-løkker 2

Recap:

- Lad $b \in Bud$, $S \in Kom$. Betragt kommandoen while b do S
- Lad F: (Tilstande → Tilstande) → (Tilstande → Tilstande)
 være funktionen

$$F = \lambda f.\lambda s.\underline{hvis} \ \mathcal{B}[\![b]\!]s = tt \ \underline{sa} \ (f \circ \mathcal{S}[\![S]\!])s \ \underline{ellers} \ s$$

- Vi ønsker at definere S[while b do S] som det mindste fikspunkt for F, og at anvende fikspunktsætningen for at finde det.
- Fikspunktsætningen: Lad D være et domæne og g: D → D en kontinuert funktion. Da har g et mindste fikspunkt x*, som kan beregnes ved

$$x^* = \lim\{g'(\bot) \mid i \in \mathbb{N}\}$$

hvor \perp er bundelementet i D.

- Tilstande → Tilstande er nu et domæne, men er F kontinuert?
- Ja. Bevis: Opgave ...

18/19

Overblik A-natation Aritmetiske udtryk Boolske udtryk Kommandoer while-løkker Funktionsrum **while-løkker 2**

Eksempel: Betragt igen while $\neg (x=0)$ do x:=x-1 $F = \lambda f. \lambda s. \underline{hvis} \ \mathcal{B}[\![\neg (x=0)]\!] s = \underline{tt} \ \underline{sa} \ (f \circ \mathcal{S}[\![x:=x-1]\!]) s \ \underline{ellers}$ $= \lambda f. \lambda s. \underline{hvis} \ s(x) \neq 0 \ \underline{sa} \ f(s[x \mapsto s(x)-1]) \ \underline{ellers} \ s$

at beregne det mindste fikspunkt:

$$F^{0}(\bot) = \bot = \lambda s.\underline{\mathsf{n}\mathsf{v}\mathsf{i}\mathsf{s}} \\ F^{1}(\bot) = F(\bot) = \lambda s.\underline{\mathsf{h}\mathsf{v}\mathsf{i}\mathsf{s}} \\ s(x) \neq 0 \\ \underline{s}\mathring{a} \bot (s[x \mapsto x - 1]) \\ \underline{\mathsf{e}\mathsf{l}\mathsf{l}\mathsf{e}\mathsf{r}\mathsf{s}} \\ s(x) \neq 0 \\ \underline{s}\mathring{a} \\ \underline{\mathsf{u}\mathsf{d}\mathsf{e}\mathsf{f}} \\ \underline{\mathsf{e}\mathsf{l}\mathsf{l}\mathsf{e}\mathsf{r}\mathsf{s}} \\ F^{2}(\bot) = F(F(\bot)) = \lambda s.\underline{\mathsf{h}\mathsf{v}\mathsf{i}\mathsf{s}} \\ \underline{\mathsf{h}\mathsf{v}\mathsf{i}\mathsf{s}} \\ \underline{\mathsf{h}\mathsf{v}\mathsf{i}\mathsf{s}} \\ \underline{\mathsf{s}}[x \mapsto s(x) - 1](x) \neq 0 \\ \underline{s}\mathring{a} \\ \underline{\mathsf{u}\mathsf{d}\mathsf{e}\mathsf{f}} \\ \underline{\mathsf{u}\mathsf{d}\mathsf$$

ellers s

 $\underline{\textit{ellers}}\ s[x \mapsto s(x) - 1]$

$$= \lambda s.\underline{hvis} \ s(x) \neq 0 \ \text{og} \ s(x) \neq 1 \ \underline{sa} \ \underline{udef} \ \underline{ellers} \ s[x \mapsto 0]$$
$$F'(\bot) = \lambda s.\underline{hvis} \ s(x) < 0 \ \underline{eller} \ s(x) > i - 1$$

 $\underline{s}\underline{a} \ \underline{\mathsf{udef}} \ \underline{\mathsf{ellers}} \ \mathbf{s}[\mathrm{x} \mapsto 0]$