Complejidad de Edmonds-Karp

¿Cuál es la complejidad del algoritmo de Edmonds-Karp? Probarlo.

Nota: en la prueba se definen unas distancias, y se prueba que esas distancias no disminuyen en pasos sucesivos de EK. Ud. puede usar esto sin necesidad de probarlo

Enunciado

La complejidad del algoritmo de Edmonds-Karp es $O(nm^2)$

Demostración

- Se considera que [3.2.1] significa "se define esta propiedad o definición bajo este número o tag (para ser usado después)", mientras que (3.2.1) hace referencia a que se usa tal propiedad o definición.
- Además, se considera que $(3.2, \{1, 4\})$ es lo mismo que decir (3.2.1), (3.2.4)

0. Estructura

- 1 Suposiciones
 - $ullet \overrightarrow{xy} \in E \Rightarrow \overrightarrow{yx}
 otin E$
- 2 $O(EK) = O(\#cntFlujosAumentantes) \times O(m)$
 - Cada incremento de flujo se hace con BFS \Rightarrow son O(m)
- 3 Hay O(nm) flujos aumentantes
 - 3.1. Definición de lado crítico
 - 3.2. Un lado se vuelve crítico O(n) veces
 - 3.2.1. Definición de las distancias d_k, b_k
 - 3.2.2. Dado el f_k -camino aumentante usado por EK de la forma $s \dots xy \dots t$, entonces $d_k(y) = d_k(x) + 1$
 - Dado que EK usa BFS y ese camino es de longitud menor
 - 3.2.3. $d_k(x) \leq d_{k+1}(x) \wedge b_k(x) \leq b_{k+1}(x)$ (por Nota)
 - 3.2.4. Acotación de cuántas veces se puede volver crítico un lado
 - Consideramos que se hace crítico en k y r
 - Vemos casos donde se satura o vacía en k

- Llegamos a que $\exists k < l \leq r : d_r(t) \geq d_l(t) \geq d_k(t) + 2$
- Se acota a que un lado puede ser crítico O(n) veces
- 3.3. Acotación de #cntFlujosAumentantes
 - Dado que EK genera al menos un lado crítico en cada paso y cada lado puede ser crítico a lo sumo O(n) veces, entonces O(#cntFlujosAumentantes) = O(nm)
- 4 Por (2) y (3), $O(EK) = O(nm^2)$

1. Suposiciones

- $\overrightarrow{xy} \in E \Rightarrow \overrightarrow{yx} \notin E$
 - No se restrictiva ya que si se tienen los dos lados, se considera el Network equivalente (en problema MFMC) obtenido al agregar
 - Nodo z
 - Lados $\overrightarrow{xz}, \overrightarrow{zy}, \overrightarrow{yx}$, los dos primeros con la capacidad de \overrightarrow{xy} , mientras que el último con la de \overrightarrow{yx}

2. $O(EK) = O(\#cntFlujosAumentantes) \times O(m)$

- Si f_0, f_1, f_2, \ldots son los flujos parciales producidos al correr EK, entonces queremos ver que hay una cantidad finita de ellos, y dar una cota para ese número
- Como la búsqueda y construcción de cada camino aumentante se hace con BFS en EK, cada incremento del flujo tiene complejidad O(m)
- Luego, queda probar que sólo puede haber O(nm) flujos aumentantes

3. Hay O(nm) flujos aumentantes

3.1. Definición de lado crítico

- Diremos que un lado \overrightarrow{xy} se vuelve crítico durante la construcción de uno de los flujos intermedios (digamos f_{k+1}) si para la construcción de f_{k+1} pasa una de las dos cosas siguientes:
 - Se usa el lado en forma *forward*, saturándolo (i.e., $f_k(\overrightarrow{xy}) < c(\overrightarrow{xy})$ pero luego $f_{k+1}(\overrightarrow{xy}) = c(\overrightarrow{xy})$)
 - O se usa el lado en forma backward, vaciándolo (i.e., $f_k(\overrightarrow{xy}) > 0$ pero luego $f_{k+1}(\overrightarrow{xy}) = 0$)

3.2. Un lado se vuelve crítico O(n) veces

3.2.1. Definición de las distancias

Dado un vértice x, definimos las siguientes distancias:

- $d_k(x) = ext{longitud del menor } f_k ext{-camino aumentante entre } s ext{ y } x ext{ (o } \infty ext{ si no hay)}$
- $b_k(x) = \text{longitud del menor } f_k$ -camino aumentante entre $x \neq t$ (o ∞ si no hay)

3.2.2. Dado un f_k -camino aumentante usado por EK de la forma $s_{-}xy_{-}t$ (o $s_{-}xy_{-}t$), entonces $d_k(y)=d_k(x)+1$

 Se cumple ya que estamos usando EK y, por ende, al crear el camino con BFS, este es de longitud mínima

3.2.3. Las distancias no disminuyen en pasos sucesivos de EK (i.e., $d_k(x) \leq d_{k+1}(x) \wedge b_k(x) \leq b_{k+1}(x)$)

• Por la Nota del principio, consideramos esto ya demostrado.

3.2.4. Acotación de cuántas veces se puede volver crítico un lado

- ullet Supongamos que \overrightarrow{xy} se vuelve crítico en el paso k y luego en el paso r con r>k
- · Luego, tenemos dos casos principales:
 - Se vuelve crítico en el paso k porque se saturó (i.e., se usa de forma forward)
 - Para construir f_{k+1}, se usa el f_k-camino aumentante de la forma s..xy..t
 Por (3.2.2), d_k(y) = d_k(x) + 1 [3.2.4.1]
 - Luego, para que vuelva a ser crítico en el paso r, debe vaciarse o saturarse $\Rightarrow \exists k < l \leq r : \overrightarrow{xy}$ se vacía completamente o un poco en el paso l de EK
 - i.e., el flujo de \overrightarrow{xy} disminuye al pasar de f_l a f_{l+1}
 - Luego, para construir f_{l+1} se usa el f_l -camino aumentante de la forma s. $\stackrel{\longleftarrow}{yx}$. t \Rightarrow Por (3.2.2), $d_l(x)=d_l(y)+1$ [3.2.4.2]
 - Por ello, si juntamos todo:

$$egin{aligned} d_l(t) &= d_l(x) + b_l(x) ext{ por } (3.2.1) \ &= d_l(y) + 1 + b_l(x) ext{ por } (3.2.4.2) \ &\geq d_k(y) + 1 + b_k(x) ext{ por } (3.2.3) \ &= d_k(x) + 1 + 1 + b_k(x) ext{ por } (3.2.4.1) \ &= d_k(t) + 2 ext{ por } (3.2.1) \end{aligned}$$

- Se vuelve crítico en el paso k porque se vació (i.e., se usa de forma backward)
 - Para construir f_{k+1} , se usa el f_k -camino aumentante de la forma s. $\stackrel{\longleftarrow}{yx}$. t Por $(3.2.2),\ d_k(x)=d_k(y)+1\ [3.2.4.4]$
 - Luego, para que vuelva a ser crítico en el paso r, debe vaciarse o saturarse $\Rightarrow \exists k < l \leq r : \overrightarrow{xy}$ se satura o llena un poco en el paso l de EK
 - ullet i.e., el flujo de \overrightarrow{xy} aumenta al pasar de f_l a f_{l+1}

- Luego, para construir f_{l+1} se usa el f_l -camino aumentante de la forma $s ext{...} xy ext{...} t \Rightarrow ext{Por } (3.2.2), \ d_l(y) = d_l(x) + 1 \ [3.2.4.5]$
- Por ello, si juntamos todo:

$$egin{aligned} d_l(t) &= d_l(y) + b_l(y) ext{ por } (3.2.1) \ &= d_l(x) + 1 + b_l(y) ext{ por } (3.2.4.5) \ &\geq d_k(x) + 1 + b_k(y) ext{ por } (3.2.3) \ &= d_k(y) + 1 + 1 + b_k(y) ext{ por } (3.2.4.4) \ &= d_k(t) + 2 ext{ por } (3.2.1) \end{aligned}$$

- Luego, en ambos casos, tenemos por $(3.2.4.\,\{3,6\})$ que $d_l(t) \geq d_k(t) + 2$
 - Por (3.2.3), y dado que $r \geq l$, $d_r(t) \geq d_l(t) \geq d_k(t) + 2$
 - Se concluye que, luego de que un lado se vuelve crítico, para que pueda volverse crítico otra vez, la distancia entre s y t debe aumentar en al menos 2
 - Como la distancia entre s y t puede ir desde un mínimo de 1 a un máximo de n-1, tenemos que un lado puede volverse crítico un máximo de $O(\frac{n}{2}) = O(n)$ veces.

3.3. Acotación de #cntFlujosAumentantes

• Como cada camino aumentante que se usa en EK tiene al menos un lado que se vuelve crítico, y por (3.2) sabemos que un lado puede ser crítico O(n) veces, entonces el total de flujos intermedios está acotado por O(mn) donde m es la cantidad de lados.

4.
$$O(EK) = O(nm^2)$$

- Obtenemos esto como consecuencia de (2) y (3)
 - $O(EK) = O(mn) \times O(m) = O(nm^2)$