Understanding Neural Networks through Deep Visualization

Team 25: Pixel Ninjas

Neural Networks

01

seen as
"black boxes":
lack
interpretability

02

difficult to understand how they arrive at decisions

03

limits ability to diagnose and correct errors

Proposed solutions

Visualizing activations produced on each layer of a trained convnet

Visualizing features at each layer of a DNN via regularized optimization in image space

Implementation Details

Visualisation of feature maps of intermediate layers of standard models like VGG

Visualisation of activations of a given layer using Regularisation methods

Novel Implementations:

- 1. Visualisation of activations of a given layer using gradient ascent and comparison with the regularised outputs
- 2. Visualisation using inverted representation of an input image
- 3. Visualizing problems caused by simple gradient-based methods

Visualizing Activations

01

Retrive activation values for neurons in each layer of a convnet in response to an input image

02

Arrange plots spatially

Results: Gradient Ascent

Gradient-based Approaches

High frequency patterns

Extreme pixel vaues

Copies of common motifs without global structure

Adversarial Attacks: Fast Gradient Sign Method

Computes the gradients of a loss function with respect to an input image

02

Uses the sign of the gradients to create a new image that maximizes the loss


```
No. of Iters: 0 Real Label: 366 Predicted Label: 109 Probability: 0.49386105
No. of Iters: 1 Real Label: 366 Predicted Label: 109 Probability: 0.62703884
No. of Iters: 2 Real Label: 366 Predicted Label: 109 Probability: 0.6902871
No. of Iters: 3 Real Label: 366 Predicted Label: 109 Probability: 0.8680306
No. of Iters: 4 Real Label: 366 Predicted Label: 109 Probability: 0.9437923
No. of Iters: 5 Real Label: 366 Predicted Label: 109 Probability: 0.98842514
No. of Iters: 6 Real Label: 366 Predicted Label: 109 Probability: 0.997454
No. of Iters: 7 Real Label: 366 Predicted Label: 109 Probability: 0.9999893
No. of Iters: 9 Real Label: 366 Predicted Label: 109 Probability: 0.9999893
```

Visualizing via Regularized Optimization

O1
Generate random image

O2 Get Activation

Gradient ascent

+

Regularization
in image space

$$\mathbf{x} \leftarrow r_{\theta} \left(\mathbf{x} + \eta \frac{\partial a_i}{\partial \mathbf{x}} \right)$$

Regularization Methods

L2 Decay: penalizes large values

$$r_{\theta}(x) = (1 - \theta_{decay}) \cdot x$$

Gaussian Blur: penalizes high frequency information

$$r_{\theta}(x) = Blur(x, \theta_{b \text{ width}})$$

- Clipping small norm: sets pixels with small norm (over RGB channels) to zero
- Clipping small contribution: computes $| x \cdot \nabla_x a_i(x) |$ (over RGB channels)

Results: VGG16-11

Results: Paper

Visualizing Inverted Image Representations

O1 Generate random image

O2 Get Image Representation from target layer

O3
Gradient descent

Regularization in image space

$$\|\Phi(\sigma\mathbf{x}) - \Phi_0\|_2^2 / \|\Phi_0\|_2^2 + \lambda_\alpha \mathcal{R}_\alpha(\mathbf{x}) + \lambda_{V^\beta} \mathcal{R}_{V^\beta}(\mathbf{x})$$

Layer 10

Layer 15

Layer 20

Main References

Understanding Neural Networks Through Deep Visualization

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, Hod Lipson

Understanding Deep Image Representations by Inverting Them Aravindh Mahendran, Andrea Vedaldi

Explaining and Harnessing Adversarial Examples

Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy

THANK YOU!