## **ELL 409**

## **Assignment 1**

# **Part 1(a)**

## 20 data points

### 1. Least-square error function

## Moore-Penrose pseudo inverse



By analysing above graph we can conclude that order 7 will be perfect choice for given data set. As, after that, it started over fitting.



**Root mean square error** = 0.0059

### **Underlying guessed polynomial:**

 $2.01315277 + 0.15147253 \ X - 0.11893576 \ X^2 - 1.92457524 \ X^3 + 2.00873072 \ X^4 + 2.06697449 \ X^5 \ - 3.13578898 \ X^6 + 0.95378557 \ X^7$ 

## **Gradient descent**



lr = 0.0005

Batch size selection for small data set has not any extra effect.



With iteration loss is decreasing, it shows SGD cause convergence.



**Root mean square error** = 0.522

## Underlying guessed polynomial:



100 Best estimate for  $\lambda$  is  $10^{\text{-}100}$  , beyond it, model started to under fitting.

## 101 data points

## 1. Least-square error function

## Moore-Penrose pseudo inverse



Here again best estimate for order is 7.



#### **Root mean square error** = 0.00587

### **Underlying guessed polynomial:**

## **Gradient Descent**



For 100 data set also batch size selection doesn't show extra effect but batch size = 1 (SGD) give best result.



With iteration loss is decreasing, it shows SGD cause convergence.



#### **Root mean square error** = 1.015

#### **Underlying guessed polynomial:**



Best estimate for  $\lambda$  is  $10^{-100}$ , beyond it, model started to under fitting.

## Final estimate of underlying polynomial:

 $2.01363553 - 0.16161487X - 0.12645421X^{2} - 1.99733251X^{3} + 2.07061393X^{4} \\ + 2.15673593 \ X^{5} - 3.25234915X^{6} + 0.98762133 \ X^{7}$ 

## **Part 1(b)**

## Moore-Penrose pseudo inverse



By analysing above graph we can conclude that order 10 will be perfect choice for given data set. As, after that, it started over fitting.

#### Variance of noise is 3.527690



# Part 2





