Total 1	No.	of Questions : 8] SEAT No. :
P54	6	
		[6004]-481 P.E. (Computer Engineering)
		B.E. (Computer Engineering) MACHINE LEARNING
		(2019 Pattern) (Semester - VII) (410242)
Time ·	21/3	[Max. Marks: 70
		ons to the candidates:
1,		Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 and Q.7 or Q.8.
2, 3,		Figures to the right indicate full marks. Neat diagrams must be drawn wherever necessary.
4,		Assume suitable data, if necessary.
		CA To.
<i>Q1</i>) a	ι)	Explain the following terms with suitable examples [6]
2 /		i) Bias
		ii) Variance
		iii) Under fitting and Over fitting
1	- \	
	b)	Differentiate between Lasso Regression and Ridge Regression. [6]
(2)	Explain gradient descent algorithm with example. [6]
		OR
Q2) a	a)	What do you mean by regression? Explain with suitable example. [6]
ł	b)	Write a short note on [6]
		i) MAE ii) RMSE
		ii) RMSE
		iii) R ²
C	2)	What is gradient descent? Compare batch gradient and stochastic gradient
`	- ,	descent. [6]

Q3) a) Explain with example the variant of SVM, the support vector regression.

b) What do you mean by ensemble learning? Differentiate between bagging & boosting. [6]

c) What are different variants of multi-class classification? Explain them with suitable example. [6]

OR

Q4) a) Calculate macro average precision, macro average recall and macro average F-score for the following given confusion matrix of multi-class classification. [6] Predictions \rightarrow D A В \mathbf{C} 100 80 10 10 9 0 0 1 Actual values 0 1 8 1 0 0 9 b) Write a short note on: [6] Random forest. ii) Adaboost. Discuss K-nearest neighbour algorithm with suitable example. [5] c) **Q5)** a) With reference to Clustering explain the issue of "Optimization of Clusters". [6] Compare Hierarchical clustering and K-means clustering. b) [6] Explain how a cluster is formed in the density based clustering algorithm. c) [6] How would you choose the number of clusters when designing a K-**Q6)** a) Medoid clustering algorithm? [6] Write a short note on out lier analysis with respect to clustering. b) [6] Differentiate between K-means and Spectral clustering. $\{6\}$ c) What are building blocks of neural network, elaborate? **Q7**) a) [5] Describe characteristics of back propagation algorithm. b) [6] Write a short note on Recurrent neural n/w & convolutional neural n/w. c) [6]

OR

Q8) a) Explain artificial neural n/w based on perception concept with diagram.

[6]

b) Describe multi-layer neural n/w. Explain why back propagation algorithm is required. [6]

c) Discuss any two activation functions with example.

[5]