Assignment 4

Due Date: 2019/05/16, 1:30 PM

1. Prove that the following functions $f: X \to \mathbb{R}$ are continuous. Determine whether each function is uniformly continuous or not, and verify your answer.

(1)
$$f(x) = \frac{1}{(x+1)^3}$$
 with $X = (-1, 1)$

(2)
$$f(x) = \frac{1}{x+3}$$
 with $X = (0, \infty)$

(3)
$$f(x) = \frac{1}{x^2+1}$$
 with $X = \mathbb{R}$.

(4)
$$f(x) = \sqrt{x^2 + 1}$$
 with $X = (0, \infty)$.

- 2. Answer the following questions.
- (1) Suppose that $f: X \to Y$ is a continuous function on X, and that the set X is bounded (in some Euclidean space). Then, prove that f is uniformly continuous on X if and only if f has a continuous extension to \overline{X} .
- (2) Use part (1), show that

$$f(x, y) = \sqrt{x^{2020} + y^{2020} + x^2 + 1}$$

is a uniformly continuous function on $X = \{(x, y) : x^2 + y^2 < 3\}.$

(3) For a < b, suppose that $f:(a,b) \to \mathbb{R}$ is a continuous function. Then, prove that f is uniformly continuous on (a,b) if and only if $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exist.

1

3. Compute the following values and verify your answer rigorously.

(1)
$$\lim_{x\to 0^-} \frac{\max\{x,0\}}{x} - \lim_{x\to 0^+} \frac{\max\{x,0\}}{x}$$

(2)
$$\lim_{x\to 0^+} \frac{x^3}{|x|}$$

- **4.** For uniformly continuous functions $f, g: X \to \mathbb{R}$, prove or disprove the following statements:
- (1) f + g is uniformly continuous on X.
- (2) fg is uniformly continuous on X.
- (3) $\max\{f, g\}$ is uniformly continuous on X.
- **5.** Let $f:[0, 1] \to \mathbb{R}$ be a continuous function on [0, 1] and suppose that $f(x) \in [0, 1]$ for all $x \in [0, 1]$. Prove that there exists $x_0 \in [0, 1]$ such that $f(x_0) = x_0^{2016}$.
- **6.** A function $f: X \to Y$ is called a Hölder continuous function on X if there exists $\alpha > 0$ and M > 0 such that

$$||f(x) - f(y)|| \le M||x - y||^{\alpha}$$
 for all $x, y \in X$.

- (1) Prove that a Hölder continuous f on X is uniformly continuous (and hence continuous) on X.
- (2) Suppose that $X = \mathbb{R}^d$ for some $d \in \mathbb{N}$, and that f is Hölder continuous on \mathbb{R}^d with some $\alpha > 1$. Prove that f is merely a constant function.
- 7. Suppose that $f: \mathbb{R}^m \to \mathbb{R}^n$ is a continuous function.
- (1) Prove that $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset \mathbb{R}^m$.
- (2) Prove or disprove that $f(\overline{A}) = \overline{f(A)}$ for all $A \subset \mathbb{R}^m$.
- **8.** Suppose that A, B are disjoint closed subsets of \mathbb{R}^d , i.e., $A \cap B = \emptyset$. Prove that there exists a continuous function $f: \mathbb{R}^d \to [0, 1]$ such that f(x) = 1 for all $x \in A$ and f(x) = 0 for all $x \in B$. (Hint. Use $g(x) = \text{dist}(\{x\}, A)$)

- **9.** Suppose that $X \subset \mathbb{R}^m$ is a compact set and that $f: X \to Y$ is a function for some $Y \subset \mathbb{R}^n$. Define a set $E \subset \mathbb{R}^{m+n}$ by $E = \{(x, f(x)) : x \in X\}$. Prove that f is continuous on X if and only if E is a compact set in \mathbb{R}^{m+n} .
- **10.** A function $f:(a, b) \to \mathbb{R}$ is called convex on (a, b) if and only if $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y) \text{ for all } x, y \in (a, b) \text{ and } \lambda \in [0, 1].$

Prove that, all convex function f on (a, b) is continuous on (a, b).

11. Suppose that $f:[a,b]\to\mathbb{R}$ is a continuous function on [a,b]. Prove that

$$f^*(x) = \sup\{f(y) : y \in [a, x]\}$$

is an increasing continuous function on [a, b].

12. Does there exists a continuous function on (0, 1], which does not have maximum and minimum? Prove your answer.