Introduction: This lab teaches about using Simulink for frequency analysis and sampling of continuous time signals.

2. Pre-Lab

2.2

The frequency is at around 0 Hz.

Changing the frequency to 5*pi rad/s:

The frequency is peak at around 2.5 Hz.

- 3.
- 3.1 When period of square-wave = 2 sec:

The frequency is spiked around 0.5 Hz, and looks slight different than that seen in the class.

When period = 0.25 sec:

When period = 10 sec:

Yes, the results did correspond to the Time-Scaling Property.

Fundamental period and the frequency are inverse of each other.

$$T_0 = 1/f_0$$

1. Triangular pulse duration =1 sec, Period = 2 sec, Modulating Frequency = 10 Hz:

2. Triangular pulse duration =1 sec, Period = 2 sec, Modulating Frequency = 15 Hz

3. Triangular pulse duration =1 sec, Period = 3 sec, Modulating Frequency = 10 Hz

4. Triangular pulse duration =1 sec, Period = 6 sec, Modulating Frequency = 10 Hz

- Changing the modulating frequency increases the density around the center frequency.
- Spectrum have a comb structure due to the modulation property.
- If the period were to increase toward infinity within the limit, then spectral density tends to increase within the limit.

Extra Credit:

	Modulation Property
	$S(t)p(t) \stackrel{F}{\rightleftharpoons} \frac{1}{2\pi} [S(\omega)*p(\omega)].$
	Let our spectrum de cos (217fot) s(t) >
1000	Then by detality & linearity -
-	1 [S(f-6)+ S(f+6)].
101	Multiplying by cos (211 fot) >
	Cos (211fot) Solt) + cos (cliffe) (S/Cos)
	which gres modulation property