```
In [1]: from urllib.request import urlopen
        from bs4 import BeautifulSoup
        import pandas as pd
        pd.options.mode.chained assignment = None # default='warn'
        from datetime import datetime,date,timedelta
        import pickle
        from time import sleep
In [2]: station = 'KCAWATSO86'
        staname = 'watsonvil'
        now = datetime.now().date()
        sdate = datetime(now.year-2,now.month-5,now.day-5).date()
        daterange = (now-sdate).days
        print(f"# days between start date ({sdate}) and now ({now}): {daterange}")
        # days between start date (2020-05-21) and now (2022-10-26): 888
In [3]: def dailywind(d):
            wdate = d
            url = f"https://www.wunderground.com/dashboard/pws/{station}/table/{wda
            html = urlopen(url)
            soup = BeautifulSoup(html)
            headers = [th.getText() for th in soup.findAll('thead')[3].findAll('th'
            rows = soup.findAll('tbody')[3].findAll('tr')
            hourly data = [[td.getText() for td in rows[i].findAll('td')] for i in
            df weather = pd.DataFrame(hourly data,columns=headers)
            df wind = df weather[['Time','Temperature','Wind','Speed','Gust']]
            df_wind['Date'] = wdate
            df wind['Azimuth'] = df wind['Wind'].map(ordir)
            df wind = df wind[['Date','Time','Temperature','Wind','Azimuth','Speed'
            df_wind.columns = ['Date', 'Time', 'Temp', 'Wind', 'Azimuth', 'Speed', 'Gu
            return df wind
```

```
In [4]: def ploop(nsdate):
            print(f'function called from new start date: {nsdate}')
            nddiff=(now-nsdate).days
            for i in range(nddiff):
                weatherdate = nsdate + timedelta(days = i)
                print(f'pulling {weatherdate}')
                    daysdata = dailywind(weatherdate)
                except:
                    new_sdate = weatherdate
                    new ddiff = (now-new sdate).days
                    print(f"\nerror thrown attempting to pull: {new_sdate}")
                    print(f"current function call progress: {i} ({round(100*i/dater
                    print(f"cumulative progress: {len(ndf)} ({round(100*len(ndf)/da
                    print(f"days remaining: {new ddiff} ({round(100*new ddiff/dater
                    print("giving the server a 20 second break...")
                    sleep(20)
                    print("restarting pull loop!\n\n")
                    ploop(new sdate)
                    break
                else:
                    if len(daysdata) == 0:
                        print(f'skipping null date: {weatherdate}')
                    else:
                        ndf.append(daysdata)
```

```
In [6]: ndf=[]
        ploop(sdate)
        pulling ZUZU-U/-15
        pulling 2020-07-16
        pulling 2020-07-17
        pulling 2020-07-18
        pulling 2020-07-19
        pulling 2020-07-20
        pulling 2020-07-21
        pulling 2020-07-22
        pulling 2020-07-23
        pulling 2020-07-24
        pulling 2020-07-25
        pulling 2020-07-26
        pulling 2020-07-27
        pulling 2020-07-28
        pulling 2020-07-29
        pulling 2020-07-30
        pulling 2020-07-31
        pulling 2020-08-01
        pulling 2020-08-02
        pulling 2020-08-03
```

```
In [13]: allwind = ndf[0]
         for i in range(1,len(ndf)):
             allwind = pd.concat([allwind,ndf[i]],axis=0)
         allwind['Speed'] = allwind['Speed'].str[:-5].astype(float)
         allwind['Gust'][allwind['Gust']=='--'] = '0.0 omph'
         allwind['Gust'] = allwind['Gust'].str[:-5].astype(float)
         allwind['Temp'] = allwind['Temp'].str[:-3].astype(float)
         allwind['Month'] = pd.DatetimeIndex(allwind['Date']).month name().str[:3]
         #Mapping Datetimes to Different Periods Of The Day
         allwind.loc[(allwind.Time.str.startswith(("10:","11:")) & allwind.Time.str.
                     (allwind.Time.str.startswith(("12:","1:","2:","3:","4:","5:"))
                     "Daypart"] = "Overnight"
         allwind.loc[allwind.Time.str.startswith(("6:","7:","8:","9:")) & \
                     allwind.Time.str.endswith("AM"), \
                     "Daypart"] = "Morning"
         allwind.loc[(allwind.Time.str.startswith(("10:","11:")) & allwind.Time.str.
                     (allwind.Time.str.startswith(("12:","1:")) & allwind.Time.str.e
                     "Daypart"] = "Midday"
         allwind.loc[allwind.Time.str.startswith(("2:","3:","4:","5:")) & \
                     allwind.Time.str.endswith("PM"), \
                     "Daypart"] = "Afternoon"
         allwind.loc[allwind.Time.str.startswith(("6:","7:","8:","9:")) & \
                     allwind.Time.str.endswith("PM"), \
                     "Daypart"] = "Evening"
         #Mapping Datetimes to Seasons
         allwind.loc[allwind.Month.isin(['Dec', 'Jan', 'Feb']) ,\
                     "Season"] = "Winter"
         allwind.loc[allwind.Month.isin(['Mar','Apr','May']) ,\
                     "Season"] = "Spring"
         allwind.loc[allwind.Month.isin(['Jun','Jul','Aug']) ,\
                     "Season"] = "Summer"
         allwind.loc[allwind.Month.isin(['Sep','Oct','Nov']) ,\
                     "Season"] = "Fall"
         #Rearranging Column Order
         allwind = allwind[['Date','Time','Season','Month','Daypart','Temp','Wind',
```

for days missing wind direction records, sort by % available records, the n % with wind direction:

date	pctrows	pctwind
2022-02-01	13.9	97.5
2021-05-20	84.4	99.6
2021-02-25	85.1	99.2

In [121]: print('day with many records missing, as well as no wind direction for some
 allwind[allwind.Date==list(baddates.date)[0]]

day with many records missing, as well as no wind direction for some records:

Out[121]:

	Date	Time	Season	Month	Daypart	Temp	Wind	Azimuth	Speed	Gust
0	2022-02-01	8:44 PM	Winter	Feb	Evening	51.1	ENE	67.5	0.7	1.0
1	2022-02-01	8:49 PM	Winter	Feb	Evening	50.7	NE	45.0	0.6	1.2
2	2022-02-01	8:54 PM	Winter	Feb	Evening	50.5	NE	45.0	0.3	8.0
3	2022-02-01	8:59 PM	Winter	Feb	Evening	49.2	NNE	22.5	0.0	0.1
4	2022-02-01	9:04 PM	Winter	Feb	Evening	47.6	NNE	22.5	0.3	0.6
5	2022-02-01	9:09 PM	Winter	Feb	Evening	46.7	ENE	67.5	0.0	0.0
6	2022-02-01	9:14 PM	Winter	Feb	Evening	47.1	ENE	67.5	0.1	0.2
7	2022-02-01	9:19 PM	Winter	Feb	Evening	46.1	North	0.0	0.3	0.6
8	2022-02-01	9:24 PM	Winter	Feb	Evening	45.0	North	0.0	0.4	0.9
9	2022-02-01	9:29 PM	Winter	Feb	Evening	44.5	ENE	67.5	0.0	0.0
10	2022-02-01	9:34 PM	Winter	Feb	Evening	44.4	NE	45.0	0.4	8.0
11	2022-02-01	9:39 PM	Winter	Feb	Evening	43.7	NE	45.0	0.1	0.3
12	2022-02-01	9:44 PM	Winter	Feb	Evening	44.1	NE	45.0	0.2	0.2
13	2022-02-01	9:49 PM	Winter	Feb	Evening	44.0	East	90.0	0.0	0.0
14	2022-02-01	9:54 PM	Winter	Feb	Evening	44.3	NW	315.0	0.0	0.1
15	2022-02-01	9:59 PM	Winter	Feb	Evening	43.2	ENE	67.5	0.4	8.0
16	2022-02-01	10:04 PM	Winter	Feb	Overnight	41.8		NaN	0.2	0.5
17	2022-02-01	10:09 PM	Winter	Feb	Overnight	41.6	East	90.0	0.0	0.0
18	2022-02-01	10:14 PM	Winter	Feb	Overnight	41.6	NE	45.0	0.0	0.0
19	2022-02-01	10:19 PM	Winter	Feb	Overnight	41.4	NE	45.0	0.7	1.0
20	2022-02-01	10:24 PM	Winter	Feb	Overnight	40.8	SSE	157.5	0.0	0.0
21	2022-02-01	10:29 PM	Winter	Feb	Overnight	40.5	NE	45.0	0.3	0.5
22	2022-02-01	10:34 PM	Winter	Feb	Overnight	40.1	NE	45.0	0.6	0.9
23	2022-02-01	10:39 PM	Winter	Feb	Overnight	39.8	NNE	22.5	0.0	0.1
24	2022-02-01	10:44 PM	Winter	Feb	Overnight	39.8	ENE	67.5	1.3	1.6
25	2022-02-01	10:49 PM	Winter	Feb	Overnight	39.0	ENE	67.5	0.0	0.1
26	2022-02-01	10:54 PM	Winter	Feb	Overnight	39.6	ENE	67.5	0.7	0.9
27	2022-02-01	10:59 PM	Winter	Feb	Overnight	39.4	ENE	67.5	0.0	0.0
28	2022-02-01	11:04 PM	Winter	Feb	Overnight	39.7	NE	45.0	0.8	1.3
29	2022-02-01	11:09 PM	Winter	Feb	Overnight	39.5	ESE	112.5	0.3	0.5

	Date	Time	Season	Month	Daypart	Temp	Wind	Azimuth	Speed	Gust
30	2022-02-01	11:14 PM	Winter	Feb	Overnight	38.4	ENE	67.5	0.5	0.9
31	2022-02-01	11:19 PM	Winter	Feb	Overnight	39.6	ENE	67.5	3.3	4.6
32	2022-02-01	11:24 PM	Winter	Feb	Overnight	41.0	NE	45.0	1.4	2.0
33	2022-02-01	11:29 PM	Winter	Feb	Overnight	39.3	ENE	67.5	1.6	2.1
34	2022-02-01	11:34 PM	Winter	Feb	Overnight	39.2	ENE	67.5	0.4	0.7
35	2022-02-01	11:39 PM	Winter	Feb	Overnight	39.4	NE	45.0	0.3	0.6
36	2022-02-01	11:44 PM	Winter	Feb	Overnight	38.9	NNE	22.5	0.2	0.6
37	2022-02-01	11:49 PM	Winter	Feb	Overnight	39.0	East	90.0	0.3	0.7
38	2022-02-01	11:54 PM	Winter	Feb	Overnight	39.2	NNW	337.5	8.0	1.3
39	2022-02-01	11:59 PM	Winter	Feb	Overnight	38.7	NE	45.0	1.4	2.0

```
In [79]: allwind.to_pickle(f'{staname}_raw_{sdate}_{now-timedelta(days=1)}.pkl')
    allwind.to_csv(f'{staname}_raw_{sdate}_{now-timedelta(days=1)}.csv')
```