- Quel est le format de chacune des matrices suivantes?
 - $\bullet \ A = \begin{pmatrix} 0 & 2 & 5 & 4 \end{pmatrix};$
 - $\bullet \ B = \begin{pmatrix} -3 & 6 & -5 \\ 2 & 5 & -4 \\ 7 & -4 & 9 \\ 6 & 7 & 9 \end{pmatrix};$
 - $\bullet \ C = \begin{pmatrix} -3 & 5 & 1 \\ 2 & -4 & 0 \end{pmatrix};$
 - $\bullet D = \begin{pmatrix} 1 & 4 \\ 2 & -5 \\ -3 & 2 \end{pmatrix}.$
- On pose $A = (a_{ij})$ la matrice $A = \begin{pmatrix} 2 & 0 & 4 \\ -1 & 3 & 5 \end{pmatrix}$.
 - 1. Quelles valeurs peuvent prendre i et j?
 - 2. Préciser la valeur de a_{23} .
 - 3. Écrire chacun des autres coefficients sous la forme a_{ij} .
- La matrice $B = (b_{ij})$ est telle que $b_{ij} = i + 3j$ pour $1 \le i \le 4$ et $1 \le j \le 2$.
 - 1. Quel est le format de cette matrice?
 - 2. Écrire la matrice B avec tous ses coefficients.
- 9 1. Calculer A + B et 5A 4B avec :

$$A = \begin{pmatrix} 3 & 2 \\ 6 & -9 \end{pmatrix} \text{ et } B = \begin{pmatrix} 4 & 9 \\ -1 & 7 \end{pmatrix}.$$

2. Reprendre la question précédente avec les matrices :

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 1 & 3 & 2 \\ -1 & -4 & 2 \end{pmatrix}$$
 et
$$B = \begin{pmatrix} 4 & 7 & -3 \\ 10 & -3 & 4 \\ 1 & -1 & -5 \end{pmatrix}.$$

On considère les matrices :

$$A = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 5 \end{pmatrix}, C = \begin{pmatrix} 5 & -3 \end{pmatrix}$$
 et
$$D = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Parmi les opérations suivantes, effectuer celles qu'il est possible d'effectuer :

$$A + B$$
, $3D$, $A + 3D$, $B - 2C$.

- Effectuer les multiplications suivantes :
 - 1. $\begin{pmatrix} 2 & 3 \end{pmatrix} \times \begin{pmatrix} -1 \\ 5 \end{pmatrix}$
 - 2. $\begin{pmatrix} -2 & 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 0 \end{pmatrix}$
 - 3. $(2 \quad 3 \quad -4) \times \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$

4.
$$\begin{pmatrix} 7 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}$$

- Effectuer les multiplications suivantes :
 - 1. $\begin{pmatrix} 1 & 5 \\ 3 & -2 \end{pmatrix} \times \begin{pmatrix} 5 \\ -4 \end{pmatrix}$
 - 2. $\begin{pmatrix} -4 & 1 \\ 3 & -2 \end{pmatrix} \times \begin{pmatrix} 3 \\ -5 \end{pmatrix}$
 - 3. $\begin{pmatrix} 4 & 1 \\ -1 & -2 \end{pmatrix} \times \begin{pmatrix} -2 \\ 3 \end{pmatrix}$
 - 4. $\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix}$
- Trouver les coefficients manquants :
 - 1. $\begin{pmatrix} -3 & -1 \\ 2 & a \end{pmatrix} \times \begin{pmatrix} 3 \\ -3 \end{pmatrix} = \begin{pmatrix} b \\ -3 \end{pmatrix}$.
 - $2. \ \begin{pmatrix} -3 & 0 \\ 2 & -2 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -6 \\ 6 \end{pmatrix}.$
- Effectuer les multiplications suivantes :
 - 1. $\begin{pmatrix} 1 & -2 & 24 \\ 2 & 4 & -5 \\ 3 & 1 & -1 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$
 - 2. $\begin{pmatrix} 3 & -1 & -2 \\ 7 & 0 & -3 \\ -2 & 2 & -2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$
- Effectuer les multiplications suivantes :
 - 1. $(1 \quad -3) \times \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$
 - $2. \ \left(x \quad y\right) \times \left(\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\right)$
- Effectuer les multiplications suivantes :
 - 1. $(4 \quad -1 \quad 3) \times \begin{pmatrix} 1 & -1 & 3 \\ 4 & 2 & -2 \\ -3 & 0 & -1 \end{pmatrix}$
 - 2. $(a \ b \ c) \times \begin{pmatrix} 4 & 1 & 2 \\ 3 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix}$
- Trouver les coefficients manquants :
 - 1. $(3 \quad -3 \quad 3) \times \begin{pmatrix} a & 1 & 1 \\ 0 & b & 3 \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} -3 & -9 & 0 \end{pmatrix}.$
 - 2. $(a \quad 0 \quad 0) \times \begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 8 & b & c \end{pmatrix}.$

Effectuer, à la main, les multiplications suivantes puis vérifier les résultats à la calculatrice :

1.
$$\begin{pmatrix} 2 & 3 \\ -1 & -10 \end{pmatrix} \times \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$

$$2. \begin{pmatrix} 4 & -1 \\ 2 & -2 \end{pmatrix} \times \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$$

Effectuer les multiplications suivantes puis vérifier les résultats à la calculatrice :

1.
$$\begin{pmatrix} 1 & 2 & -2 \\ 3 & 0 & 1 \\ -2 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 4 & 0 & -1 \\ -1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & -3 & 2 \\ -3 & 2 & -1 \\ 4 & 0 & 2 \end{pmatrix}$$

3.
$$\begin{pmatrix} 2 & -1 & -2 \\ -1 & -1 & 1 \\ 4 & 3 & 4 \end{pmatrix} \times \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}$$

Soient $A = \begin{pmatrix} 0 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix}$ et $C = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Déterminer, parmi les calculs suivants, ceux qu'il est possible d'effectuer et indiquer la taille de la matrice résultat :

- 1. $A \times B$, A C, A^2 , B^2 et C^2 .
- 2. Effectuer alors les calculs jugés « possibles ».
- Soit $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & -6 \\ -1 & 3 \end{pmatrix}$.
 - 1. Calculer AB et BA.
 - 2. Commenter.
- On considère la fonction Python ci-dessous :

- 1. Que renvoie cette fonction si on entre en arguments 1, -2 et 4?
- 2. Quel est le rôle de cette fonction?
- 3. Modifier le programme de la fonction pour qu'elle renvoie le produit de la matrice $\begin{pmatrix} 3 & 5 & -1 \\ 4 & 2 & 1 \\ -3 & -1 & 7 \end{pmatrix}$ par la matrice ligne $\begin{pmatrix} x & y & z \end{pmatrix}$.
- On considère les matrices $A = \begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix}$ et

$$B = \begin{pmatrix} \frac{5}{6} & -\frac{2}{3} \\ -\frac{1}{6} & \frac{1}{3} \end{pmatrix}.$$

Montrer que A est l'inverse de B.

- On considère la matrice $M = \begin{pmatrix} 2 & -1 & -2 \\ -3 & 4 & 6 \\ 2 & -2 & -3 \end{pmatrix}$.
 - 1. Déterminer la matrice P telle que $M = P + I_3$.
 - 2. Calculer P^2 . En déduire M^2 .
- On considère la matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$.

 On note I la matrice identité : $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - 1. Montrer que $A^2 3A + 2I = O$ où O désigne O
 - la matrice nulle $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 - 2. En déduire, sans calculatrice, que la matrice A est inversible et déterminer son inverse.
- Soit la matrice $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.

 Démontrer que pour tout entier naturel n non nul,

$$A^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$$

- On considère la matrice $A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$.
 - 1. Calculer A^2 , A^3 et A^4 avec la calculatrice.
 - 2. Émettre une conjecture sur A^n pour $n \in \mathbb{N}^*$.
 - 3. (a) Montrer que $A = I_2 + B$ avec $B = \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}$.
 - (b) Calculer B^2 . En déduire A^2 puis A^3 en fonction de I_2 et B.
 - 4. (a) Démontrer par récurrence que pour tout entier naturel n non nul, $A^n = I_2 + nB$.
 - (b) Écrire A^n avec tous ses coefficients.
- On considère les matrices P et Q définies par :

$$P = \begin{pmatrix} 1 & -1 \\ 5 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 1 & 1 \\ -5 & 1 \end{pmatrix}.$$

- 1. Calculer le produit $P \times Q$.
- 2. En déduire que P est inversible et écrire son inverse.
- Soit la matrice A définie par $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
 - 1. Calculer A^2 , A^3 et A^4 .
 - 2. En déduire A^{-1} .
- Soit $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ et $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - 1. Vérifier que $A^2 = 2A + I_2$.
 - 2. En déduire que A est inversible et donner A^{-1} .

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. Montrer qu'il existe une matrice N, carrée d'ordre 3, telle que A = I + N.
- 2. Montrer que $N^3 = 0$, en utilisant la calcula-
- 3. Montrer par récurrence que pour tout entier naturel $n \ge 1$,

$$A^n = I + nN + \frac{n(n-1)}{2}N^2.$$

Soit (S): $\begin{cases} 3x + 4y = -6 \\ 2x + 5y = 10 \end{cases}$ le système d'in-

connues réelles x et y et on pose $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et

$$B = \begin{pmatrix} -6\\10 \end{pmatrix}.$$

- 1. Écrire (S) sous forme matricielle AX = B en précisant la matrice carrée A d'ordre 2.
- 2. Montrer que A est inversible et déterminer A^{-1} .
- 3. En déduire X puis la solution du système (S).
- 4. Vérifier le résultat obtenu à la calculatrice.
- Résoudre les systèmes 3×3 suivants en les écrivant au préalable sous forme matricielle :

1.
$$\begin{cases} x+y-z &= 2\\ -x+y+z &= 4\\ 2x-y+z &= -5 \end{cases}$$
2.
$$\begin{cases} 4x+2y+9z &= 22\\ 2x+8y+7z &= 44\\ 5x+6y+3z &= 85 \end{cases}$$

2.
$$\begin{cases} 4x + 2y + 9z &= 22 \\ 2x + 8y + 7z &= 44 \\ 5x + 6y + 3z &= 85 \end{cases}$$

Dans le plan muni d'un repère, on considère les points A(5; 2), B(4; 3) et C(1; 0).

On cherche une parabole \mathscr{P} : $y = ax^2 + bx + c$ passant par les points A, B et C.

- 1. Écrire sous forme matricielle un système vérifié par a, b et c puis répondre à la question posée.
- 2. Compléter les instructions ci-dessous écrites dans un éditeur Python pour qu'elles permettent de retrouver les valeurs de a, b et c:

On considère la matrice $A = \begin{pmatrix} -4 & 6 \\ -3 & 5 \end{pmatrix}$

35

- 1. On appelle I la matrice identité d'ordre 2. Vérifier que $A^2 = A + 2I$.
- 2. En déduire une expression de A^3 et une expression de A^4 sous la forme $\alpha A + \beta I$ où α et β sont des réels.
- 3. On considère les suites (r_n) et (s_n) définies par $r_0 = 0$ et $s_0 = 1$ et, pour tout entier naturel

$$\begin{cases} r_{n+1} &= r_n + s_n \\ s_{n+1} &= 2r_n \end{cases}$$

Démontrer que, pour tout entier naturel n,

$$A^n = r_n A + s_n I.$$

4. Démontrer que la suite (k_n) définie pour tout entier naturel n par $k_n = r_n - s_n$ est géométrique de raison -1.

En déduire, pour tout entier naturel n, une expression explicite de k_n en fonction de n.

5. On admet que la suite (t_n) définie pour tout entier naturel n par

 $t_n = r_n + \frac{(-1)^n}{3}$ est géométrique de raison 2. En déduire, pour tout entier naturel n, une expression explicite de t_n en fonction de n.

- 6. Déduire des questions précédentes, pour tout entier naturel n, une expression explicite de r_n et s_n en fonction de n.
- 7. En déduire alors, pour tout entier naturel n, une expression des coefficients de la matrice A^n .
- On considère la matrice $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, la ma-36

trice identité d'ordre $3:I=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$ et la ma-

trice nulle d'ordre 3 notée $0_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Pour tout réel x, on définit la matrice

(*)
$$M(x) = I + xA + \frac{x^2}{2}A^2$$
.

- 1. Calculer A^2 et A^3 et en déduire A^n pour tout entier naturel n > 3.
- 2. Soit x et y deux nombres réels. Montrer en utilisant (*) que :

$$M(x)M(y) = M(x+y).$$

3. Montrer que pour tout entier naturel n:

$$(M(x))^n = M(nx).$$

- 4. Calculer M(0) et M(1).
- 5. Calculer $(M(1))^n$ pour tout entier naturel n.