Math 239 Lecture 33

Graham Cooper

July 28th, 2015

Hall's Theorem

<u>Hall's Theorem</u>: G bipartite (A,B). There is a matching that saturates A if and only if $\forall x \subseteq A, |N(x)| \ge |x|$ Hall's Condition

Proof:

 \implies (Done last class, whoops!)

 \iff (contrapositive if no matchign saturates A, then $\exists x \subseteq A$ where |N(X) < |X|)

Let M be a maximum matching. By assumption, |M| < |A|Let C be a minumum cover. By Konig's theorem |C| = |M| < |A|

Note that no edge joins A/C to B/C since none of these vertices are in the cover. So M(A/C) $\subseteq B \cap C$ So

$$|N(A/C)| \le |B \cap C|$$
$$= |C| - |A \cap C|$$
$$< |A| - |A \cap C|$$

(since |C| < |A|)

$$= |A/C|$$

So |N(A/C)| < |A/C| meaning A/C violates Hall's Condition

Corollary: If G is a k-regular bipartite graph with $k \ge 1$ then G has a perfect matching

Proof: Suppose G has bipartition (A,B). We claim that |A| = |B|: from assignment,

$$\sum_{v \in A} deg(v) = \sum_{v \in B} deg(v)$$
$$\sum_{v \in A} k \in \sum_{v \in B} k$$

So k|A| = k|B| since $k \neq 0$, |A| = |B|

Let $x \subseteq A$. Any edge with one end in X must have the other end in N(x). So $\sum_{v \in N(x)} deg(v) \ge \sum_{v \in X} deg(v)$ Since G is k-regular, $k|N(x)| \ge k|x|$

Since k >= 1, $|N(x)| \ge |X|$ so Hall's condition holds for all $X \le A$ by Hall's Theorem, there is a matching. Since |A| = |B|, this matching is a perfect matching.

Final Exam

Aug 5, 12:30 PAC Covers everything Look at assignment 12 Practice final Posted theorems