February 2, 2018

- 1. (a) i. $\exists x (D(x) \land R(x))$
 - ii. $\forall x (\neg D(x) \lor \neg R(x))$
 - iii. Everything isn't in the state of Denmark or isn't rotten.
 - (b) i. $\forall \epsilon \in \mathbb{R}_{>0}[\exists N \in \mathbb{R}_{>0}(B(x,N) \Rightarrow B(\epsilon,|f(x)-L|)]$
 - ii. $\exists \epsilon \in \mathbb{R}_{>0} [\forall N \in \mathbb{R}_{>0} (B(x,N) \land \neg B(\epsilon, |f(x) L|)]$
 - iii. There exists a positive real ϵ such that for all positive real N, x > N and $|f(x) L| \ge \epsilon$.
- 2. (a) The table below shows for all truth value combinations of P, Q, R, $(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$ is true, i.e. the latter is a tautology.

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$P \Rightarrow R$	$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$
T	Т	Τ	Т	Т	Т	Τ
T	Τ	\mathbf{F}	T	F	F	${ m T}$
T	F	Τ	F	${ m T}$	T	T
T	\mathbf{F}	\mathbf{F}	F	${ m T}$	F	T
F	${ m T}$	${ m T}$	T	${ m T}$	T	T
F	${ m T}$	\mathbf{F}	T	\mathbf{F}	T	T
F	\mathbf{F}	${ m T}$	T	T	Γ	T
F	F	F	Т	Т	Т	T

(b)
$$(P \Rightarrow Q) \land \neg Q \Rightarrow \neg P \quad \equiv (\neg P \lor Q) \land \neg Q \Rightarrow \neg P \qquad conditional \\ \equiv (\neg P \land \neg Q) \lor (Q \land \neg Q) \Rightarrow \neg P \qquad distribution \\ \equiv (\neg P \land \neg Q) \lor \mathbb{F} \Rightarrow \neg P \qquad complement \\ \equiv (\neg P \land \neg Q) \Rightarrow \neg P \qquad identity \\ \equiv P \lor Q \lor \neg P \qquad conditional, DeMorgan's \\ \equiv Q \lor \mathbb{T} \qquad complement \\ \equiv \mathbb{T} \qquad domination$$

(c) S: study, P: pass, M: watch a movie.

$$(S\Rightarrow P) \land (\neg M\Rightarrow S) \land \neg P\Rightarrow M \quad \equiv (S \land \neg P) \lor (\neg M \land \neg S) \lor P \lor M \qquad conditional, \\ DeMorgan's \\ \equiv [(S \lor P) \land (\neg P \lor P)] \lor \qquad association, \\ [(\neg M \lor M) \land (\neg S \lor M)] \qquad distribution \\ \equiv [(S \lor P) \land \mathbb{T}] \lor [\mathbb{T} \land (\neg S \lor M)] \qquad complement \\ \equiv \mathbb{T} \land [(S \lor P) \lor (\neg S \lor M)] \qquad distribution \\ \equiv (S \lor P) \lor (\neg S \lor M) \qquad identity \\ \equiv \mathbb{T} \lor P \lor M \qquad association, \\ complement \\ \equiv \mathbb{T} \qquad domination$$

The argument's thus valid.

- 3. (a) $A \oplus C = \{-1, 0, 2, 3, 4, 5, 6\}$
 - (b) $A \cap D = \{1, 2\}$
 - (c) $C \cup D = \{-1, 0, 1, 2, \{1, 2\}\}$
 - (d) $\{1, \{2\}\} \cup D = \{1, 2, \{2\}, \{1, 2\}\}\$
 - (e) $B \setminus (A \oplus C) = \{ q \in \mathbb{Q} | q \in (1,2) \cup (2,3) \}$
 - (f) $\{\emptyset\}\setminus\wp(A) = \emptyset$
 - (g) $(A \backslash B) \backslash (C \backslash \overline{D}) = \{1,3,4,5,6\} \backslash \{1\} = \{3,4,5,6\}$
 - (h) $\wp(D) \cap D = \{\{1, 2\}\}$

