5 Exerciții rezolvate

Exercițiul 3.3

Este posibilă utilizarea MCMMP pentru a determina parametrii necunoscuți ai modelului OE[1,1]? Dacă nu, argumentați răspunsul. Dacă da, determinați ecuațiile de estimare a parametrilor necunoscuți (coeficienți & dispersie zgomot alb). Tot în acest caz, studiați consistența estimațiilor.

Indicație

Se recomandă exprimarea formei de regresie liniară grupînd termenii după coeficienții necunoscuți. Se va observa cum zgomotul afectează direct datele de ieşire.

Soluție

* Forma de regrene limiara:

y[n] = Q[n] + e[n]

[Q[n] = [e[n-1]-y[n-1] | u[n-1]]

* MCMITT LE poste aplica dacă se poste mărura
reporat zgomotul alb. Le asemenea dacă
se poste estima zgomotul alb.

* Tom considera carul în care zgomotul alb

este estimat printi-o metodă oarecare si vom
nota prin {2 [n]?n=1,11} valorile sale estimate.

5 <u>Exerciții rezolvate</u>

Soluție (Exercițiul 3.3) = CMMP:

On - [The Genzer Tru] [The Genzy Genz]

* Leowice $n_{ey}[k] = E \{e[n]y[n-k]\} = E \{e[n](\frac{3(g^1)}{A(g^1)}u[n+k]\} + e[n-k]\} = E \{e[n](\frac{3(g^1)}{A(g^1)}u[n+k]\} = E[n-k]$

= B(g') rentk] + 2 ott], + keZ, intravea este recordata ou zgomotul allo daca intravea este recordata ou zgomotul allo.

· Cu notativle din [Ex 3.1], se pot exporima RN si EN articl:

 $R_{N} = \begin{bmatrix} 912^{-1} & 101 \\ + 12u & 101 \\ + 12u & 101 \end{bmatrix} + 12u & 101 \\ + 12u & 101 \end{bmatrix} + 12u & 101 \\ + 12u & 101 \end{bmatrix}$ $R_{N} = \begin{bmatrix} 912^{-1} & 101 \\ 912^{-1} & 101 \\ \hline & 101 \end{bmatrix}$ $R_{N} = \begin{bmatrix} 912^{-1} & 101 \\ 912^{-1} & 101 \\ \hline & 101 \end{bmatrix}$ $R_{N} = \begin{bmatrix} 912^{-1} & 101 \\ 912^{-1} & 101 \\ \hline & 101 \end{bmatrix}$ $R_{N} = \begin{bmatrix} 912^{-1} & 101 \\ 912^{-1} & 101 \\ \hline & 101 \end{bmatrix}$ $R_{N} = \begin{bmatrix} 912^{-1} & 101 \\ 912^{-1} & 101 \\ \hline & 101 \end{bmatrix}$ $R_{N} = \begin{bmatrix} 912^{-1} & 101 \\ 912^{-1} & 101 \\ \hline & 101 \end{bmatrix}$

5 Exerciții rezolvate

Soluție (Exercițiul 3.3) 🥃

· Resultà:

$$\Delta_{N} = \frac{92^{-1}}{2} [0] \frac{1}{2} [0] - (\frac{92}{2} [0] - \frac{1}{2} [0])^{2}$$

$$\Delta_{N} = \frac{92^{-1}}{2} [0] (\frac{1}{2} [0] - \frac{1}{2} [0]) + \frac{1}{2} [0] (\frac{1}{2} [0] - \frac{1}{2} [0])^{2}$$

$$\Delta_{N} = \frac{92^{-1}}{2} [0] (\frac{1}{2} [0] - \frac{1}{2} [0]) + \frac{1}{2} [0] (\frac{1}{2} [0] - \frac{1}{2} [0])^{2}$$

$$\hat{a}_{N} = \frac{2n^{-1}}{2n} \left[\frac{n}{2} \right]$$

$$a_{\mu} = \frac{a_{\mu} + a_{\mu}}{a_{\mu}}$$

= /2 yu [0] /2 yu [1] - 2 2 [0] 2 2 [0] + 2 2 [0] 2 2 [0] - 2 2 [0] 2 [0]

5 <u>Exerciții rezolvate</u>

· Limite pt. 4>0:

· Evaluari auxiliare:

an - ryu[] - ru[] ry[] + ru[] ry[] - ry[] reu[]

rye[1] = \frac{8(97)}{4(97)} rue[1]

ne-yto] nto]-(rento]- ryuto])=

by - re-y [0] ryu[1] - ry[1] ryu[0] + ryu[0] rye[1] - ren[0] rye[1] + ren[0] ry[0]

re-y[0] ru[0] - (ren[0] - ryu[0])

ryeth] = Etytujetu-E] = Et (B(g1) util) + etu] etu-E] = Et

= B(gT) rue[k] + 22 dock], the Z

Soluție (Exercițiul 3.3) 🧧

S Exerciții rezolvate

Soluție (Exercițiul 3.3)

$$n_{ey}[0] = E_1(e_{IM}-y_{IM})^2 = \chi^2 \delta_0[0] - 2 r_{ye}[0] + r_{y}[0] =$$

$$= n_y[0] - \chi^2 - 2 \frac{B(g^y)}{A(g^y)} r_{me}[0]$$

$$\operatorname{Psyth} = E \left\{ y \operatorname{En} \left[y \operatorname{$$

· Limite terretice:

$$\theta = \begin{bmatrix} 9 \\ 5 \end{bmatrix} = \begin{bmatrix} E \{e \text{cm} \} e^{\text{T} \text{cm}} \} \end{bmatrix}^{-1} \begin{bmatrix} E \{e \text{cm} \} y \text{cm} \} \end{bmatrix} - \begin{bmatrix} E \{e \text{cm} \} e^{\text{T} \text{cm}} \} \end{bmatrix}^{-1} \begin{bmatrix} E \{e \text{cm} \} e^{\text{T} \text{cm}} \} \end{bmatrix}$$

