Analyzing Massive Data Sets Summer Semester 2019

Prof. Dr. Peter Fischer
Institut für Informatik
Lehrstuhl für Datenbanken und Informationssysteme

Chapter 9: Data Streams

Data Streams

- In many data analysis situations,
 we do not know the entire data set in advance
- Instead, we get continuous sequences of data elements that are typically:
 - Push-based (data flow controlled by sources)
 - Ordered (e.g., by arrival time, or by explicit timestamps)
 - Rapid (e.g., ~ 100K messages/second in market data)
 - Potentially unbounded (may have no end)
 - Time-sensitive (usually representing real-time events)
 - Time-varying/non stationary (in content and speed)
 - Unpredictable (autonomous data sources)

Example Applications

Financial Services

Example:

Trades(time, symbol, price, volume)

Typical Applications:

- Algorithmic Trading
- Foreign Exchange
- Fraud Detection
- Compliance Checking

Financial Services: Skyrocketing Data Rates

OPRA Message Traffic Projections

Date

[Source: Options Price Reporting Authority, http://www.opradata.com]

Some more up-to-date rates:

- 19.8M msg/s (Q4/2018)
- 4.2M msg/ 100msec (May 2019)

Low response time critical (think high frequency trading)!

150 us avg end-to-end latency

Example Applications

System and Network Monitoring

Example:

Connections(time, srcIP, destIP, destPort, status)

Typical Applications:

- Server load monitoring
- Network traffic monitoring
- Detecting security attacks
 - Denial of Service
 - Intrusion

Network Monitoring: Bursty Data Rates

[Source: Internet Traffic Archive, http://ita.ee.lbl.gov/]

Example Applications

Sensor-based Monitoring

Example:

CarPositions(time, id, speed, position)

Typical Applications:

- Monitoring congested roads
- Route planning
- Rule violations
- Tolling

Example Applications: User-Centric Web

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter,
 Facebook

Germany trends · Change

#Sommerhaus

6.682 Tweets

#Brexit

160K Tweets

#Tatort

1,735 Tweets

#FENS2018

2,432 Tweets

#MondayMotivation

229K Tweets

Start in die Woche

1,702 Tweets

tschiller

schweiger

Theresa May

251K Tweets

Antworten

1,859 Tweets

A Paradigm Shift in Data Processing Models

Traditional Data Management

Data Stream Management

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model

Impact of Operation Semantics

- How much effort is a filter (a.price > 50)?
 - Only current element
 - Also applies to projections, "map" function applications, ...
 - Grouping/Splitting can often also be expressed this way
- What about a simple aggregate (max(price))?
 - Need storage for one number, if we report every time
- What about average?
 - Two number, might overflow
- What about
 - median, percentiles,
 - Joins, Set operations, Duplicate elimination, ...

Dealing with stateful processing

Precise answers over **infinite input** not possible for **generic expressions**:

- Infinite State
- Blocking Operations

Two commons design directions:

- 1. Exact answers within bounded periods:
 - Window Processing
 - Allows all operations for finite data (e.g., SQL)
- 2. Approximate anwers over arbitrary periods
 - Summary-based Processing
 - Limited to commonly useful operations

Window-Based Processing

Window-based Processing

- Windows are <u>finite excerpts</u> of a potentially unbounded stream.
- Most streaming applications are interested in the readings of the <u>recent past</u>.
- Windows help us unblock operators such as aggregates.
- Windows help us bound the memory usage for operators such as joins.

Window Example

- Two basic parameters: size and slide
- Example: Trades (time, symbol, price, volume)

```
size = 10 min 

{ (10:00, "INTC", 15, 200) (10:00, "MSFT", 22, 100) (10:05, "IBM", 18, 300) (10:05, "MSFT", 21, 100) (10:10, "IBM", 18, 200) (10:10, "MSFT", 20, 100) (10:15, "IBM", 20, 100) (10:15, "INTC", 20, 200) (10:15, "MSFT", 20, 200)
```

•

Windows: Unblocking Aggregate Operation

Windows: Bounding (Join) State

Common Window Types

Sliding window

• A window that slides (i.e., both of its end-points move) as new stream tuples arrive.

Tumbling window

• A sliding window for which window size = window slide (i.e., consecutive windows do not overlap).

Landmark window

 A window which is moving only on one of its endpoints (usually the forward end-point).

Common Window Types

- Tuple-based window (a.k.a., count-based window)
 - A window whose size and content is determined by the number of tuples arrived.
 - Note: The actual size is always fixed.
- Time-based window
 - A window whose size and content is determined by tuples that arrived within a "time period".
 - Note: The actual size of such a window may depend on the stream arrival rate.
- Semantic window (a.k.a., predicate-based window)
 - A window whose size and content is determined by the tuple contents.
 - Note: Time-based window is a very simple form of semantic window when the time field carried in the tuple is used for windowing.

Sampling-based processing

Summary-based approaches (1)

- Types of queries one wants on answer on a data stream: (this slide set)
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream

Summary-based approaches (2)

- Types of queries one wants on answer on a data stream: (next slide set)
 - Filtering a data stream
 - Select elements with property **x** from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements

Sampling from a Data Stream: Sampling a fixed proportion

As the stream grows the sample also gets bigger

Sampling from a Data Stream

- •Since we can not store the entire stream, one obvious approach is to store a sample
- •Two different problems:
 - •(1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k we would like a random sample of s elements
 - What is the property of the sample we want to maintain?
 For all time steps k, each of k elements seen so far has equal prob. of being sampled

Problem 1: Sampling fixed proportion

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream

Naïve solution:

- Generate a random integer in [0..9] for each query
- Store the query if the integer is 0, otherwise discard

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only **d/100** pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of *d* "duplicates" *18d/100* appear exactly once
 - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
 - So the sample-based answer is $\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Possible problem: we need to keep track of all users, even those that are not picked
- Solution: Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

Stream of tuples with keys:

- Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

To get a sample of a/b fraction of the stream:

- Hash each tuple's key uniformly into b buckets
- Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Sampling from a Data Stream: Sampling a fixed-size sample

As the stream grows, the sample is of fixed size

Problem 2: Fixed-size sample

- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time *n* we have seen *n* items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Stream: a x c y z k c d e g...

At **n= 5**, each of the first 5 tuples is included in the sample **S** with equal prob.

At n=7, each of the first 7 tuples is included in the sample **S** with equal prob.

Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1
 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

•Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For elements already in *S*, probability that the algorithm keeps it in *S* is:

$$\left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)=\frac{n}{n+1}$$

Element n+1 discarded

Element **n+1** not discarded

Element in the sample not picked

- So, at time n, tuples in S were there with prob. s/n
- Time $n \rightarrow n+1$, tuple stayed in **S** with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Queries over a (long) Sliding Window

Sliding Windows

- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored

Amazon example:

- For every product **X** we keep 0/1 stream of whether that product was sold in the **n**-th transaction
- We want answer queries, how many times have we sold X in the last k sales

Sliding Window: 1 Stream

Sliding window on a single stream:

N = 6

Counting Bits (1)

• Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form How many 1s are in the last k bits? where $k \leq N$

Obvious solution:

Store the most recent **N** bits

• When new bit comes in, discard the **N+1**st bit

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem:What if we cannot afford to store N bits?
 - E.g., we're processing 1 billion streams and
 N = 1 billion
- But we are happy with an approximate answer

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
 - S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{S}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

DGIM Method

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(\log^2 N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

- Solution that doesn't (quite) work:
 - Summarize exponentially increasing regions of the stream, looking backward
 - Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6** 1s are included in the **N**

What's Good?

- Stores only O(log²N) bits
 - $O(\log N)$ counts of $\log_2 N$ bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1s in the "unknown" area

What's Not So Good?

- •As long as the **1s** are fairly evenly distributed, the error due to the unknown region is small
 - no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- •In that case, the error is unbounded!

Fixup: DGIM method

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- •Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginning and end [O(log log N) bits]
- Constraint on buckets:
 Number of 1s must be a power of 2
 - That explains the O(log log N) in (B) above

Representing a Stream by Buckets

- Either one or two buckets with the same power-of 2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their
 end-time is > N time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

 When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time

2 cases: Current bit is 0 or 1

If the current bit is 0:
 no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
 - (4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

001010110001011 010101010101011 010101010111 010101011110101 000 101100101

Two blue buckets get merged into a yellow bucket

Next bit 1 arrives, new blue bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query?

- To estimate the number of 1s in the most recent N bits:
 - 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
 - 2. Add half the size of the last bucket

 Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

Error Bound: Proof

- Why is error 50%? Let's prove it!
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r , the true sum is at least $1 + 2 + 4 + ... + 2^{r-1} = 2^r 1$
- Thus, error at most 50%

At least 16 1s

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket,
 we allow either r-1 or r buckets (r > 2)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- Error is at most O(1/r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

Extensions

- Can we use the same trick to answer queries
 How many 1's in the last k? where k < N?
 - A: Find earliest bucket B that at overlaps with k.
 Number of 1s is the sum of sizes of more recent buckets + ½ size of B

•Can we handle the case where the stream is not bits, but integers, and we want the sum of the last *k* elements?

Extensions

- Stream of positive integers
- We want the sum of the last k elements
 - Amazon: Avg. price of last k sales
- Solution:
 - (1) If you know all have at most *m* bits
 - Treat *m* bits of each integer as a separate stream
 - Use DGIM to count 1s in each integer
 - The sum is $=\sum_{i=0}^{m-1} c_i 2^i$
 - (2) Use buckets to keep partial sums
 - Sum of elements in size b bucket is at most 2b

 c_i ... estimated count for **i-th** bit

Idea: Sum in each bucket is at most 2^b (unless bucket has only 1 integer) Bucket sizes:

Summary

Window-based processing

• Allow exact operations on finite sub-sequences

Sampling a fixed proportion of a stream

Sample size grows as the stream grows

Sampling a fixed-size sample

Reservoir sampling

Counting the number of 1s in the last N elements

- Exponentially increasing windows
- Extensions:
 - Number of 1s in any last k (k < N) elements
 - Sums of integers in the last N elements