Target: Project Using SQL(BigQuery)

Context

Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allow viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

Dataset: https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1b WgVd238gJCnb

Q 1: Usual exploratory analysis steps like checking the structure & characteristics of the dataset

I. Data type of columns in a table

SELECT column_name, data_type FROM `target-brazil.Target_My_SQL_Project`.INFORMATION_SCHEMA.COLUMNS where table_name = 'customers'

Quer	y results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE	TAILS	EXECUTION GRAPH PREVIEW
Row	column_name	//	data_type	//		
1	customer_id		STRING			
2	customer_unique	e_id	STRING			
3	customer_zip_co	de_prefix	INT64			
4	customer_city		STRING			
5	customer_state		STRING			

SELECT column_name, data_type

FROM `target-brazil.Target_My_SQL_Project`.INFORMATION_SCHEMA.COLUMNS where table_name = 'geolocation'

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXECUTION GRAPH	PREVIEW
Row /	column_name	11	data_type	h		
1	geolocation_zip_c	code_prefix	INT64			
2	geolocation_lat		FLOAT64			
3	geolocation_lng		FLOAT64			
4	geolocation_city		STRING			
5	geolocation_state	2	STRING			

SELECT column_name, data_type FROM `target-brazil.Target_My_SQL_Project`.INFORMATION_SCHEMA.COLUMNS where table_name = 'order_items'

Quer	y results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	ΓAILS	EXECUTION GRAPH PREVIEW
Row	column_name	//	data_type	//		
1	order_id		STRING			
2	order_item_id		INT64			
3	product_id		STRING			
4	seller_id		STRING			
5	shipping_limit_da	te	TIMESTAMP			
6	price		FLOAT64			
7	freight_value		FLOAT64			

Etc.....

II. Time period for which the data is given

SELECT MIN(order_purchase_timestamp) AS frist_order, MAX(order_purchase_timestamp) AS last_order FROM target-brazil.Target_My_SQL_Project.orders;

III. Cities and States of customers ordered during the given period

SELECT COUNT(DISTINCT geolocation_city) AS cities, COUNT(DISTINCT geolocation_state) AS states FROM target-brazil.Target_My_SQL_Project.geolocation;

Q 2: In-depth Exploration:

I. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
SELECT EXTRACT(year FROM order_purchase_timestamp) AS year, EXTRACT(month from order_purchase_timestamp) AS month, count(*) AS Total_order FROM `target-brazil.Target_My_SQL_Project`.orders GROUP BY year, month ORDER BY total_order desc;
```

Quer	y results				
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	year //	month //	Total_order		
1	2017	11	7544		
2	2018	1	7269		
3	2018	3	7211		
4	2018	4	6939		
5	2018	5	6873		
6	2018	2	6728		
7	2018	8	6512		
8	2018	7	6292		
9	2018	6	6167		
10	2017	12	5673		
11	2017	10	4631		

Remark: There is no specific month in which the order value is very high compared to the other months. Hence, we do not see a trend here.

II. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT sum(total_order) AS Order_value,
CASE WHEN hour BETWEEN 5 and 8 THEN 'dawn'
WHEN hour BETWEEN 8 and 12 THEN 'morning'
WHEN hour BETWEEN 13 and 17 THEN 'afternoon'
ELSE 'night'
END AS time_of_buy
FROM (
SELECT EXTRACT(hour FROM order_purchase_timestamp) AS hour,
COUNT(*) AS Total_order
FROM `target-brazil.Target_My_SQL_Project`.orders
GROUP BY hour
ORDER BY hour) x
GROUP BY time_of_buy
ORDER BY Order_value;
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row /	Order_value	time_of_buy	li		
1	4888	dawn			
2	23535	morning			
3	32366	afternoon			
4	38652	night			

Remark: We clearly see that there is a trend. Order value is the highest in night, followed by afternoon and then morning.

Q 3: Evolution of E-commerce orders in the Brazil region:

I. Getting month on month orders by states

SELECT EXTRACT(month FROM order_purchase_timestamp) AS Month, EXTRACT(year FROM order_purchase_timestamp) AS Year, customer_state, COUNT(*) AS num_order FROM `target-brazil.Target_My_SQL_Project`.orders o INNER JOIN `target-brazil.Target_My_SQL_Project`.customers c ON o.customer_id = c.customer_id GROUP BY customer_state, Year, Month ORDER BY num_order DESC;

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE	TAILS EXE	ECUTION GRAPH PREVIEW
Row	Month	Year //	customer_state	1.	num_order //	
1	8	2018	SP		3253	
2	5	2018	SP		3207	
3	4	2018	SP		3059	
4	1	2018	SP		3052	
5	3	2018	SP		3037	
6	11	2017	SP		3012	
7	7	2018	SP		2777	
8	6	2018	SP		2773	
9	2	2018	SP		2703	
10	12	2017	SP		2357	

Remark: State 'SP' has the highest number of orders among all the states in almost every single month.

II. Distribution of customers across the states in Brazil

SELECT customer_state,
COUNT(customer_id) AS cx_every_state
FROM `target-brazil.Target_My_SQL_Project`.customers
GROUP BY customer_state
ORDER BY cx_every_state DESC;

			•		
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREV
Row	customer_state	le	cx_every_state		
1	SP		41746		
2	RJ		12852		
3	MG		11635		
4	RS		5466		
5	PR		5045		
6	SC		3637		
7	BA		3380		
8	DF		2140		
9	ES		2033		
10	GO		2020		

Remark: State 'SP' has the highest number of customers followed by 'RJ' and 'MG'.

Q 4: Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

I. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
WITH cte1 AS (
SELECT
EXTRACT(year FROM order_purchase_timestamp) AS year,
SUM(payment_value) AS cost
```

```
FROM `target-brazil.Target_My_SQL_Project`.orders o
    JOIN `target-brazil.Target_My_SQL_Project`.payments p
    ON o.order id = p.order id
    WHERE EXTRACT(month FROM order_purchase_timestamp) BETWEEN
   1 AND 8
    AND EXTRACT(year FROM order_purchase_timestamp) BETWEEN 2017
   AND 2018
    GROUP BY year
    ORDER BY year),
   cte2 AS (
    SELECT *
    LAG(cost, 1) OVER(ORDER BY year) AS last_year_cost
    FROM cte1)
   SELECT *, (cost -
   COALESCE(last_year_cost, 0))/ COALESCE(cost, 1)*100 AS difference
   FROM cte2
   ORDER BY year;
Query results
                                                      EXECUTION GRAPH PREVIEW
JOB INFORMATION
                 RESULTS
                           JSON
                                    EXECUTION DETAILS
```

Remark: From 2017 to 2018, there has been an increase of 57% in order value.

last_year_cost

3669022.11...

null

3669022.11...

8694733.83...

2017

2018

1

2

II. Mean & Sum of price and freight value by customer state

difference

57.8017891...

100.0

```
SELECT customer_state, AVG(price) AS Mean_price, AVG(freight_value) AS Mean_frei ght,
SUM(price) AS Total_price, SUM(freight_value) AS Total_freight
FROM `target-brazil.Target_My_SQL_Project`.order_items oi
JOIN `target-brazil.Target_My_SQL_Project`.orders o
ON o.order_id = oi.order_id
JOIN `target-brazil.Target_My_SQL_Project`.customers c
ON o.customer_id=c.customer_id
GROUP BY customer_state
```

JOB IN	FORMATION RESUL	rs J	SON	EXECUTION DET	TAILS EXE	ECUTION GRAPH PREVIE
Row	customer_state	Mea	n_price	Mean_freight //	Total_price	Total_freight
1	SP	109.	653629	15.1472753	5202955.05	718723.069
2	RJ	125.	117818	20.9609239	1824092.66	305589.310
3	PR	119.	004139	20.5316515	683083.760	117851.680
4	SC	124.	653577	21.4703687	520553.340	89660.2600
5	DF	125.	770548	21.0413549	302603.939	50625.4999
6	MG	120.	748574	20.6301668	1585308.02	270853.460
7	PA	165.	692416	35.8326851	178947.809	38699.3000
8	BA	134.	601208	26.3639589	511349.990	100156.679
9	GO	126.	271731	22.7668152	294591.949	53114.9799
10	RS	120.	337453	21.7358043	750304.020	135522.740
11	TO	157.	529333	37.2466031	49621.7400	11732.6799

Remark: Averge price & avg freight value; Total Price & total Freight value for all 27 states.

Q 5: Analysis on sales, freight and delivery time

- I. Calculate days between purchasing, delivering and estimated delivery
- II. Find time_to_delivery & diff_estimated_delivery.

```
with base1 as
(select customer_state, freight_value,
datediff(order_delivered_customer_date, order_purchase_timestamp) AS time_to
delivery,
datediff(order_estimated_delivery_date, order_delivered_customer_date) AS diff
_estimated_delivery
from order_items oi
join orders o
ON o.order_id = oi.order_id
JOIN customers c
on o.customer_id = c.customer_id
)
select customer_state, avg(time_to_delivery) as avg_time_delivery,
avg(diff_estimated_delivery) as avg_estimated_delivery,
avg(freight_value) as avg_freight_value
from base1
group by customer_state;
```

Re	sult Grid 📙 Filt	er Rows:	Export: W	rap Cell Content: 🔣
	customer_state	avg_time_delivery	avg_estimated_delivery	avg_freight_value
•	MG	12.3793	15.0345	17.59033333333333
	SP	7.5868	11.1983	14.509512195121944
	RJ	16.2500	8.7857	23.268571428571427
	PR	14.2727	11.7273	17.17681818181818
	SC	12.3333	15.8333	17.982307692307693
	PB	24.5000	14.5000	25.119999999999997
	RN	11.0000	14.5000	25.11
	RS	9.0000	16.7222	21.69899999999998
	BA	13.4545	21.7273	40.16727272727273
	PE	18.0000	23.6667	38.2575
	RO	14.0000	22.0000	24.84

III. Sort the data to get the following:

Top 5 states with highest/lowest average freight value -

```
with base1 as
(select customer_state, freight_value,
datediff(order delivered customer date, order purchase timestamp) AS time to
_delivery,
datediff(order estimated delivery date, order delivered customer date) AS diff
_estimated_delivery
from order_items oi
join orders o
ON o.order_id = oi.order_id
JOIN customers c
on o.customer_id = c.customer_id)
select customer_state, avg(time_to_delivery) as avg_time_delivery,
avg(diff_estimated_delivery) as avg_estimated_delivery,
avg(freight_value) as avg_freight_value
from base1
group by customer_state
order by avg_freight_value DESC
limit 5;
```

	customer_state	avg_time_delivery	avg_estimated_delivery	avg_freight_value
•	BA	13.4545	21.7273	40.16727272727273
	PE	18.0000	23.6667	38.2575
	RR	30.0000	17.0000	33.24
	CE	17.0000	13.0000	32.12999999999995
	ES	12.5000	14.0000	29.55

with base1 as

(select customer_state, freight_value,

datediff(order_delivered_customer_date, order_purchase_timestamp) as time_to _delivery,

datediff(order_estimated_delivery_date, order_delivered_customer_date) as diff_estimated_delivery

from order_items oi

join orders o

on o.order_id = oi.order_id

join customers c

on o.customer_id = c.customer_id)

select customer_state, avg(time_to_delivery) as avg_time_delivery,

avg(diff_estimated_delivery) as avg_estimated_delivery,

avg(freight_value) as avg_freight_value

from base1

group by customer_state

order by avg_freight_value

limit 5;

	customer_state	avg_time_delivery	avg_estimated_delivery	avg_freight_value
•	SP	7.5868	11.1983	14.509512195121944
	PR	14.2727	11.7273	17.17681818181818
	DF	9.5000	11.5000	17.385
	MG	12.3793	15.0345	17.59033333333333
	SC	12.3333	15.8333	17.982307692307693

IV. Top 5 states with highest/lowest average time to delivery

Lowest:

	customer_state	avg_time_delivery	avg_estimated_delivery	avg_freight_value
•	SP	7.5868	11.1983	14.509512195121944
	RS	9.0000	16.7222	21.698999999999998
	DF	9.5000	11.5000	17.385
	GO	10.6000	16.6000	27.248
	RN	11.0000	14.5000	25.11

Highest:

	customer_state	avg_time_delivery	avg_estimated_delivery	avg_freight_value
•	TO	31.0000	0.0000	28.95
	RR	30.0000	17.0000	33.24
	AP	26.0000	28.0000	26.36
	SE	25.0000	-1.0000	22.85
	PB	24.5000	14.5000	25.119999999999997

V. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Fast delivery, compared to estimated date:

```
select customer_state, freight_value,
datediff(order_estimated_delivery_date, order_delivered_customer_date) as diff_
estimated_delivery
from order_items oi
join orders o
on o.order_id = oi.order_id
join customers c
on o.customer_id = c.customer_id
group by customer_state
order by diff_estimated_delivery desc
limit 5;
```

	customer_state	freight_value	diff_estimated_delivery
•	AP	26.36	28
	RO	24.84	22
	GO	19.22	18
	PA	24.84	17
	RR	33.24	17

'Not so Fast' delivery, compared to estimated date:

```
with base1 as(
select customer_state, freight_value,
datediff(order_estimated_delivery_date, order_delivered_customer_date) AS diff_estim
ated_delivery
from order_items oi
join orders o
ON o.order_id = oi.order_id
join customers c
on o.customer_id = c.customer_id
)
select *, coalesce(diff_estimated_delivery, 0) as non_null_estimated_delivery
from base1
group by customer_state
order by diff_estimated_delivery
limit 5;
```

	customer_state	freight_value		non_null_estimated_delivery
•	SC	15.35	NULL	0
	SE	22.85	-1	-1
	TO	28.95	0	0
	ES	25.14	6	6
	SP	8.27	7	7

6. Payment type analysis:

I. Month over Month count of orders for different payment types

SELECT

```
payment_type as payment_methods,
count(o.order_id) as num_orders,
extract(month from o.order_purchase_timestamp) as month,
extract(year from o.order_purchase_timestamp) as year
from `target-brazil.Target_My_SQL_Project.payments` as p
join `target-brazil.Target_My_SQL_Project.orders` as o
on p.order_id = o.order_id
group by payment_methods, year, month
order by year, month;
```

JOB IN	FORMATION RESULTS	JSON	EXECUTION DET	AILS EXECU	JTION GRAPH PREVIEW
Row	payment_methods	num_orders //	month //	year //	
1	credit_card	3	9	2016	
2	credit_card	254	10	2016	
3	voucher	23	10	2016	
4	debit_card	2	10	2016	
5	UPI	63	10	2016	
6	credit_card	1	12	2016	
7	voucher	61	1	2017	
8	UPI	197	1	2017	
9	credit_card	583	1	2017	
10	debit_card	9	1	2017	

II. Count of orders based on the no. of payment installments

SELECT

distinct(payment_installments) as num_installment, count(order_id) as num_orders from `target-brazil.Target_My_SQL_Project.payments` where payment_installments > 1 group by num_installment order by num_orders DESC

JOB INFORMATION

RESULTS

JS0

Row /	num_installment	num_orders
1	2	12413
2	3	10461
3	4	7098
4	10	5328
5	5	5239
6	8	4268
7	6	3920
8	7	1626
9	9	644
10	12	133

Actionable Insights:

- a) Brazilian customers tend to buy more at night after 6 p.m. it is time to be at home after finishing the professional life
- b) It is witnessed that there is huge orders in particular months such as August
- c) 'SP' state has the highest number of customers in Brazil followed by 'RJ', 'MG' and 'RS' with 1746, 12852, 1635 and 5466 customers respectively
- **d)** From 2017 to 2018, the number of orders has increased highly in almost entire region of Brazil
- e) There are a few states which has been generating higher than others Total Order Value and Total Freight Value even when they do not have the higher number of customers
- f) Target's logistics department has been able to maintain fast/before estimated delivery in a few states whereas failed to do so in few other states comparatively
- g) Payment method Credit Card is opted by the customers of Brazil for most of the orders and other prominent payment method is UPI
- h) Less number of payment instalments has more number of orders associated

Recommendations:

- a) The company should focus on showcasing more offers and discounts plus combo products suggestion in the night time when traffic on website is the highest
- **b)** First recommendation should be applied to particular months as well based on the number of orders and order value
- c) 'SP' has the highest number of customers which means easy access for delivery and it gives an opportunity to be cost effective. Hence reducing the price and giving more offers
- **d)** Start looking for all the factors which re thankfully the reason of such huge increase in orders. It should be continue with more lucrative additions
- e) Those states with higher order value have the potential to give more customers and revenue. They are to be targeted with extra focus
- f) The company should provide more offers on credit card payment since most of the customers are using Credit Card. Same goes for payment instalments. There needs to be more enticements on less number of instalments such as no cost emi.

S.K. Singh