# 5ELEN018W Robotic Principles - Other Sample In-Class Test Questions

Only one correct answer per question. No negative marking. Formatting of this document is not important as the actual test will take place in Blackboard.

### Question 1

The position and orientation of one coordinate frame with respect to another reference coordinate frame is called:

A: Configuration

B: Kinematics

C: Pose

D: Inverse Kinematics

(5 marks)

Correct answer: C

### Question 2

What is true about the following homogeneous transformation matrix in the 3D space?

$$\begin{pmatrix}
\cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & v_1 \\
\sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & v_2 \\
0 & 0 & 1 & v_3 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
(1)

A: This is a transformation of a rotation of 90° about the x-axis with translation afterwards

B: This is a transformation of a rotation of 180° about the y-axis with translation afterwards

C: This is a transformation of a rotation of 90° about the z-axis with translation afterwards

D: This is a transformation of a translation followed by a rotation about some axis afterwards

(8 marks)

Correct answer: C

Consider the following robot manipulator. How many degrees of freedom has?



- A: 1
- B: 2
- C: 3
- D: 4
- E: 5

(8 marks)

Correct answer: B

# Question 4

A solid body which cannot change shape whatever we do to it, is called:

- A: A Rigid Body
- B: A Robot
- C: A Stationary Body
- D: A Stochastic Dynamic System

(5 marks)

Correct answer: A

The Denavit-Hartenberg convention reduces the number of independent parameters necessary to specify a coordinate frame attached to a rigid body:

A: from 4 to 3

B: from 5 to 3

C: from 6 to 3

D: from 6 to 4

(5 marks)

Correct answer: D

# Question 6

Consider the following homogeneous transformation matrix:

$$\left( \begin{array}{cccc} 0.0000 & -1.0000 & 0 & 1.0000 \\ -1.0000 & 0.0000 & 0 & 3.0000 \\ 0 & 0 & 1.0000 & 2.0000 \\ 0 & 0 & 0 & 1.0000 \end{array} \right)$$

Calculate the inverse transformation:

A:

$$\begin{pmatrix} -0.0000 & -1.0000 & 0 & 3.0000 \\ -1.0000 & -0.0000 & 0 & 1.0000 \\ 0 & 0 & 1.0000 & -2.0000 \\ 0 & 0 & 0 & 1.0000 \end{pmatrix}$$

В:

$$\begin{pmatrix} 0.0000 & -1.0000 & 0 & 1.0000 \\ -1.0000 & 0.0000 & 0 & 3.0000 \\ 0 & 0 & 1.0000 & 2.0000 \\ 0 & 0 & 0 & 1.0000 \end{pmatrix}$$

C:

$$\begin{pmatrix} -1.6331 & -0.0000 & 0 & 0.0000 \\ 0.0000 & -1.6331 & 0 & 0.0000 \\ 0 & 0 & 1.0000 & 1.0000 \\ 0 & 0 & 0 & 0.5 \end{pmatrix}$$

D:

$$\begin{pmatrix}
-0.0000 & -1.0000 & 0 & 1.5 \\
-1.0000 & -0.0000 & 0 & 0.5 \\
0 & 0 & 1.0000 & -1.0 \\
0 & 0 & 0 & 0.5
\end{pmatrix}$$

(8 marks)

Correct answer: A

Which joint provides a linear freedom to a rigid body?

A: Revolute

B: Prismatic

C: Universal

D: Spherical

(5 marks)

Correct answer: B

# Question 8

What is true regarding the properties of a rotation matrix?

A: Its inverse matrix is equal to its transpose

B: Its inverse matrix is equal to its determinant

C: Its inverse matrix is 1

D: Its inverse matrix is equal to itself

(5 marks)

Correct answer: A

# Question 9

A rigid body in 3D-space can be specified with:

A: 2 coordinates

B: 3 coordinates

C: 4 coordinates

D: 6 coordinates

(5 marks)

Correct answer: D

The following DH matrices correspond to the joints of a robot, from robot base to end-effector. Find the pose of the end-effector relative to the robot base.

$$A_1 = \left[ \begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$A_2 = \left[ \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$A_3 = \left[ \begin{array}{rrrr} -1 & 0 & 0 & -2 \\ 0 & -0 & 1 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Choose the answer from one of the following:

A:

$$\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 24 \\
0 & 0 & 0 & 1
\end{array}\right]$$

В:

$$\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]$$

C:

$$\left[\begin{array}{ccccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & -1 \\
0 & 0 & -1 & 5 \\
0 & 0 & 0 & 1
\end{array}\right]$$

D:

$$\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]$$

(8 marks)

Correct answer: D

Consider the following DH table:

| Joint | $\theta$ | r | d | $\alpha$        |
|-------|----------|---|---|-----------------|
| 1     | 0        | 3 | 4 | $\frac{\pi}{2}$ |

What is the DH matrix which corresponds to the above table?

A:

$$\left[\begin{array}{cccc}
0 & 0 & 0 & 3 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]$$

В:

$$\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]$$

C:

$$\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]$$

D:

$$\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 4 \\
1 & 0 & 0 & 1
\end{array}\right]$$

(8 marks)

Correct answer: C

## Question 12

Grübler's formula refers to the:

A: Transformation of a reference frame fixed to a robot to the world reference frame

B: Calculation of the inverse of a rotational transformation matrix

C: Calculation of the position of the end-effector of a robot manipulator, given the joints angles.

D: Calculation of degrees of freedom

(5 marks)

Correct answer: D

Consider a reference frame A fixed to the robot's body and a reference frame B which is the world frame. Given that we know the matrix for the pose of B relative to A, how can we determine the pose of A relative to B?

A: Calculate the transpose of the matrix

B: Calculate the inverse of the matrix

C: Calculate a transformation of the matrix

D: Calculate the homogeneous form of the matrix

(5 marks)

Correct answer: B

### Question 14

Which of the following situations poses an ethical issue relevant to robotics?

A: Unemployment

B: Financial gains due to robot traders

C: Robots performing a surgical operation successfully.

D: Robots creating works of art.

(5 marks)

Correct answer: A

## Question 15

Consider the following robot manipulator. Using Grübler's formula calculate how many degrees of freedom the manipulator has. Show all the steps of the calculation.

7



Sample answer

• m = 3 (planar)

- J = 4
- N = 4 (including the ground)
- $f_i = 1$

$$dof = 3(4 - 1 - 4) + 4 = 1 \tag{2}$$

Consider the following robot manipulator. Using Grübler's formula calculate how many degrees of freedom the manipulator has. Show all the steps of the calculation.



#### Sample answer

3 revolute joints and 1 prismatic joint.

- m = 3 (planar)
- J = 4
- N = 4 (including the ground)
- $f_i = 1$

$$dof = 3(4 - 1 - 4) + 4 = 1 \tag{3}$$

## Question 17

Write a Matlab function which accepts 4 arguments corresponding to the DH parameters and returns the DH matrix.

(10 marks)

#### Sample answer

You have to do this on your own in Matlab.

### Question 18

Describe briefy what is the DH notation.

(5 marks)

#### Sample answer

A notation which reduced from 6 to 4 the parameters required to describe the relationship between 2 coordinate frames.

### Question 19

Describe briefly what is homogeneous transformation matrix.

(5 marks)

#### Sample answer

A matrix which combines a rotation followed by a translation. It is a 3x3 for the 2D space and a 4x4 in the 3D space.

## Question 20

Write a Matlab function which accepts 2 matrices as arguments corresponding to two consecutive rotations in the 2D space. The function returns matrix corresponding to the overall transformation, i.e. the combination of both rotations together.

(10 marks)

### Sample answer

Implement this on your own and in Matlab as a <u>function</u>. You just need to multiply the 2 arguments passed to the function and return it as the result of the function.

1) The following DH matrices correspond to the joints of a robot, from robot base to end-effector. Find the pose of the end-effector relative to the robot base.

$$A_1 = egin{bmatrix} -1 & 0 & 0 & -1 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = egin{bmatrix} 0 & 0.99 & 0.1411 & 0 \ 1 & 0 & 0 & 3 \ 0 & 1 & 0 & 4 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = egin{bmatrix} 0.5000 & -0.2457 & -0.8305 & 2.5000 \ 0.8660 & 0.3536 & -0.3536 & 4.3301 \ 0 & 0.7071 & 0.7071 & 3 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Choose the correct answer from the below:

$$\begin{bmatrix} -0.8574 & -0.4498 & 0.2502 & -5.7102 \\ -0.5 & 0.2457 & 0.8305 & -5.5000 \\ 0.866 & 0.3536 & -0.3536 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -0.8574 & -0.4498 & 0.2502 & -5.7102 \\ -0.5 & 0.2457 & 0.8305 & -5.5000 \\ 0.866 & 0.3536 & -0.3536 & 10.3301 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
B. 
$$\begin{bmatrix} -0.8574 & -0.4498 & 0.2502 & -5.7102 \\ -0.5 & 0.2457 & 0.8305 & -5.5000 \\ 0.866 & 0.3536 & -0.3536 & 10.3301 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
C. 
$$\begin{bmatrix} -0.8574 & -0.4498 & 0.2502 & -5.7102 \\ -0.5 & 0.2457 & 0.8305 & -5.5000 \\ 0.866 & 0.3536 & -0.3536 & 10.3301 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
D. 
$$\begin{bmatrix} -0.8574 & -0.5 & 0.8660 & 0 \\ -0.4498 & 0.2457 & 0.3536 & 0 \\ 0.2502 & 0.8305 & -0.3536 & 0 \\ -5.7102 & -5.5000 & 10.3301 & 1 \end{bmatrix}$$

2) Consider the following DH table:

Joint 
$$\theta$$
 r d  $\alpha$ 
1  $\frac{\pi}{4}$  2 4  $\frac{\pi}{2}$ 

What is the DH matrix which corresponds to the above table?

$$\begin{bmatrix} 0.7071 & 0.2943 & 0.6430 & 1.4142 \\ 0.7071 & 0.0000 & -0.7071 & 4 \\ 0 & 1 & 0 & 1.4142 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 
$$\begin{bmatrix} 0 & 0.2943 & 0.6430 & 1.4142 \\ 0.7071 & 0.0000 & -0.7071 & 1.4142 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 
$$\begin{bmatrix} 0.7071 & 0.2943 & 0.6430 & 1.4142 \\ 0.7071 & 0.2943 & 0.6430 & 1.4142 \\ 0.7071 & 0.0000 & -0.7071 & 1.4142 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 
$$\begin{bmatrix} 0.7071 & 0.2943 & 0.6430 & 1.4142 \\ 0 & 1 & 0 & 4 \\ 0.7071 & 0.2943 & 0.6430 & 1.4142 \\ 0.7071 & 0.0000 & -0.7071 & 1.4142 \\ 0 & 1 & 0 & 4 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
 D. 
$$\begin{bmatrix} 0.7071 & 0.2943 & 0.6430 & 1.4142 \\ 0.7071 & 0.0000 & -0.7071 & 1.4142 \\ 0 & 1 & 0 & 4 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

3) What is the industry which robots have currently the most widely usage?

- A. Health
- B. Manufacturing
- C. Army
- D. Package delivery

- 4) How many degrees of freedom revolute and prismatic joints have ?
  - A. 1
  - B. 2
  - C. 3
  - D. 6
  - E. It depends on their type.
- 5) Consider the following robot. How many degrees of freedom has? Use the Grubler's formula.



- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5
- 6) What is the most common form of a modern robot?

- A. Dog
- B. Humanoid
- C. Manipulator
- D. Drone

| 7) | Α | robotic | mani | pulator | consists | of? |
|----|---|---------|------|---------|----------|-----|
|----|---|---------|------|---------|----------|-----|

| Choose | all | that | ap | pΙ | <b>/</b> : |
|--------|-----|------|----|----|------------|
|--------|-----|------|----|----|------------|

- A. Joints and Links
- B. Joints and Rigid Bodies
- C. Sensors and Joints and Links and Actuators
- D. Little robots
- E. A human who manipulates the robot remotely

#### 8) A rigid body is:

- A. A robot which has a fixed operation that cannot be altered
- B. A robot performing its task perfectly
- C. A solid body which cannot change shape whatever we do to it
- D. A body of a robot
- 9) What is the configuration space of a robot?
  - A. The set of all possible ways to assemble a robot
  - B. The configuration file that we save the software settings of a programmable robot
  - C. The combination of all possible positions of all of the points of a robot
  - D. This question is tough out of my reach
- 10) How many DOF a planar rigid body has?
  - A. 1
  - B. 2
  - C. 3
  - D. 6
  - E. What is DOF what are you talking about?

#### 11) How many DOF a spatial rigid body has?

- A. 1
- B. 2
- C. 3
- D. 6
- E. What are you talking about?

#### 12) What is a revolute joint in a robot?

- A. A joint that can rotate
- B. A joint that can move in a linear direction
- C. A joint that can both move linearly and rotate
- D. A joint that moves like a human shoulder

### 13) What is a prismatic joint in a robot?

- A. A joint that can rotate
- B. A joint that can move in a linear direction
- C. A joint that can both move linearly and rotate
- D. A joint that moves like a human shoulder

#### 14) What is *pose* in Robotics?

- A. The position and orientation of a robot
- B. The position and orientation of one coordinate frame with respect to another reference coordinate frame
- C. The angles of the joints of a robot
- D. The "looks" of a robot when demonstrating it in a robot fashion show
- E. The performance of a robot in a specific task as measured by the corresponding error

#### 15) The rotation matrix:

- A. transforms the coordinates of a vector from a new frame to an old frame
- B. transforms the coordinates of a vector from an old frame to a new frame
- C. transforms the coordinates of a vector from a frame rotated by an angle with respect to another frame with the same origin.
- D. transforms the coordinates of a vector from a frame rotated by an angle with respect to another frame with the a different origin.
- 16) What is true regarding the properties of a rotation matrix?
  - A. Its inverse matrix is 1
  - B. Its inverse matrix is equal to itself
  - C. Its inverse matrix is equal to its transpose
  - D. Its inverse matrix is equal to its determinant
  - E. Its inverse matrix is equal to its eigenvectors
- 17) What is true about the following matrix?

$$egin{pmatrix} cos heta & -sin heta \ sin heta & cos heta \end{pmatrix}$$

- A. This is the rotation matrix of a new coordinate frame with an angle  $\theta$  rotated counter-clockwise with respect to an original frame
- B. This is the rotation matrix of a new coordinate frame with an angle  $\theta$  rotated clockwise with respect to an original frame
- C. This is the translation matrix of a new coordinate frame with respect to an original frame
- D. I don't have a clue

18) The homogeneous transform:

$$egin{pmatrix} cos heta & -sin heta & V_x \ sin heta & cos heta & V_y \ 0 & 0 & 1 \end{pmatrix}$$

represents:

- A. Translation only
- B. Rotation only
- C. Translation followed by rotation
- D. Rotation followed by translation
- E. Rotation followed by translation and translation followed by rotation. The order of transformations does not matter.

19) What is true about the following homogeneous transformation matrix in the 3D space?

$$egin{pmatrix} 1 & 0 & 0 & v_x \ 0 & cos heta & -sin heta & v_y \ 0 & sin heta & cos heta & v_z \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- A. This is a transformation of a rotation about the y-axis with translation afterwards
- B. This is a transformation of a rotation about the z-axis with translation afterwards
- C. This is a transformation of a rotation about the x-axis with translation afterwards
- D. This is a transformation of a translation about the x-axis with rotation afterwards

### 20) A differential equation is an equation which:

- A. Involves speed and acceleration and position
- B. Involves time-series
- C. Involves integrals of a function
- D. Involves derivatives of a function

21) Consider the following homogeneous transformation matrix:

$$\begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Calculate the inverse transformation:

22) Which of the following situations poses an ethical issue relevant to robotics?

- A. A human harming another human
- B. A human harming an animal
- C. A human harming a robot
- D. Robots creating works of art

Key:

- 1. B
- 2. C
- 3. B
- 4. A
- 5. C
- 6. C
- 7. B, A, C
- 8. C
- 9. C
- 10. C
- 11. D
- 12. A
- 13. B
- 14. B
- 15. A, C
- 16. C
- 17. A
- 18. D
- 19. C
- 20. D
- 21. A
- 22. C