동적 프로그래밍 Part 2

한국기술교육대학교 컴퓨터공학부 김상진

교육목표

- 염기 서열 문제
- 최적 이진 검색 트리
- Floyd 최단 경로 문제
- 외판원 문제

Sequence Alignment (1/7)

- Computational Genomics
- $lacksymbol{0}$ 입력. $\{A,\,C,\,G,\,T\}$ 로 구성된 2개의 문자열 X와 Y,불일치 패널티 점수 $lpha_{xy}\geq 0$, gap 패널티 점수 $lpha_{qap}\geq 0$
- 출력. 전체 패널티 점수가 최소화되는 배치
 - 참고. Needleman-Worsch score
- **의** (中) AGGGCT, AGGCA

3/38

Sequence Alignment (2/7)

- 이 문제는 두 문자열에 gap을 추가하여 두 문자열의 길이를 같도록 만드는 문제임
- 유전자 염기서열의 길이가 500일 때 전수조사해야 하는 수는?
 - ullet 길이가 n인 염기서열과 그보다 작은 길이의 염기서열을 비교하는 경우 g개의 gap이 필요하면 약 $inom{n}{g}pprox n^g$ 정도 정렬하는 경우의 수가 존재함

Α	G	С	С	Т	Α
	Α	С	G	С	Т

Α	G	С	С	Т	Α
Α		С	G	С	Т

● 다음과 같은 정렬은 미포함

Α	G	С		С	Т	Α
Α		С	G	С	Т	

A	\		G	С	С	T	Α
A	\	С	G	С		Т	

Sequence Alignment (3/7)

- 소문제를 찾자???
- 최적해의 구조
 - \bigcirc X에 gap 추가한 X^* , Y에 gap 추가한 Y^* : len(X^*) = len(Y^*)
 - 참고. 불필요한 gap의 추가는 무의미함 (gap과 gap 정렬)
- 마지막 위치에 대한 가능한 경우의 수: 3
 - 경우 1. x_m, y_n 정렬
 - \odot 경우 2. x_m 과 gap 정렬
 - $lacksymbol{\circ}$ 경우 3. gap과 y_n 정렬
 - 참고. gap과 gap의 정렬은 무의미함

5/38

Sequence Alignment (4/7)

- 최적해의 특성을 살펴보면...
- $lacksymbol{lack}$ 경우 1. 최적해에서 $x_m,\,y_n$ 이 정렬된 경우
 - X'과 Y'의 배치는 최적
 - 증명) 모순에 의한 증명
 - X'과 Y'의 배치의 패널티가 P라 하자.
 - igo X'과 Y'의 배치가 최적이 아니면 $P^* < P$ 인 배치가 존재
 - 이 경우 P*해에 마지막 두 문자를 정렬한 배치를 추가하면
 기존 X*와 Y*의 배치가 최적이라는 것에 모순
- $lacksymbol{eta}$ 경우 2. 최적해에서 x_m 과 gap 정렬
 - X'과 Y의 배치는 최적
- \bigcirc 경우 3. 최적해에서 gap과 y_n 정렬
 - X와 Y'의 배치는 최적

Sequence Alignment (5/7)

● 점화식

•
$$P_{ij} = min(\alpha_{x_iy_j} + P_{i-1,j-1}, \alpha_{gap} + P_{i-1,j}, \alpha_{gap} + P_{i,j-1})$$

• $i = 1, ..., m, j = 1, ..., n$

- base case
 - \bullet P_{i0} : $i \times \alpha_{gap}$
 - $\bigcirc P_{0j}: j \times \alpha_{\text{gap}}$
 - igoplus igoplus

 $P_{33} = min(lpha_{x_3y_3} + P_{22}, lpha_{
m gap} + P_{23}, lpha_{
m gap} + P_{32})$ P_{33} 은 X[3]과 Y[3]을 일치시킨 경우만을 나타내는 것이 아님 X[3]과 Y[3]과 일치시킨 경우 X[3]과 공백을 일치시킨 경우 Y[3]과 공백을 일치시킨 경우 중 최소 패널티를 나타냄

7/38

Sequence Alignment (6/7)

● 알고리즘:

```
SequenceAlignment(X,Y)
A\coloneqq [[0]\times(m+1)]\times(n+1) \quad \text{#0}
for i\coloneqq 0 to m do
A[i][0]\coloneqq i\times\alpha_{gap}
for j\coloneqq 0 to n do
A[0][j]\coloneqq j\times\alpha_{gap}
\text{for } i\coloneqq 1 \text{ to } m \text{ do}
for <math>j\coloneqq 1 \text{ to } m \text{ do}
A[i][x]\coloneqq min(A[i-1][j-1]+\alpha_{x_iy_j},A[i-1][j]+\alpha_{gap},A[i][j-1]+\alpha_{gap})
return A[m][n]
```

시간 복잡도: O(mn)

Sequence Alignment (7/7)

- igoplus 해결책은 A[m][n]에서 거꾸로

 - \bullet A[i][j]:
 - $\alpha_{x_iy_j} + A[i-1][j-1], \alpha_{\text{gap}} + A[i-1][j], \alpha_{\text{gap}} + A[i][j-1]$ 3개의 값을 구해 셋 중 가장 작은 값에 따라 이동하면서 답을 재구성
 - 경우 1. A[i-1][j-1]로 이동
 - 경우 2. A[i 1][j]로 이동
 - 경우 3. A[i][j 1]로 이동
 - 0 i = 0 또는 i = 0이 되면 남은 것을 i = 0 일치시킴

9/38

이진 검색 트리

- 이진 검색 트리
 - $\forall key \in T_L < x < \forall key \in T_R$
- 주어진 값들이 있을 때, 이 값들을 이용하여 만들 수 있는 유효한 이진 트리는 여러 개 존재함

(4) [1, 5, 7]

- 이진 검색 트리는 균형 트리일 때 가장 효과적???
 - $lacksymbol{lack}$ 균형 트리이면 검색 시간 복잡도는 $oldsymbol{O}(\log n)$
 - 검색키마다 검색하는 빈도가 다른 경우에는?

검색 빈도의 비균일성

- 예) x < y < z를 만족하는 3개의 키로 구성된 이진 검색 트리가 있을 때, x의 검색 빈도는 80%이고, y와 z의 검색 빈도는 각각 10%일 경우, 다음 두 이진 검색 트리에서 평균 검색 비용은?
 - 비용: 이진 검색 트리에서 방문한 노드 수

- $0 1.9 = 2 \times 0.8 + 1 \times 0.1 + 2 \times 0.1$
- $0 1.3 = 1 \times 0.8 + 2 \times 0.1 + 3 \times 0.1$

11/38

최적 이진 검색 트리 (1/9)

- igotimes 입력. 정렬된 검색키 $k_1, k_2, ..., k_n$ 과 각 키의 검색 빈도 $p_1, p_2, ..., p_n$
- 출력. 평균 검색 비용이 최소화되는 이진 검색 트리
 - 검색 비용 s(i): $s(i) = \text{depth}(k_i) + 1$
 - $lacksymbol{lack}$ 평균 검색 비용: $C(T) = \sum_{i=1}^n p_i \cdot s(i)$
- $lacksymbol{ullet}$ 균형 트리이면 평균 검색 비용은 $oldsymbol{O}(\log n)$ 임
- 문제 특징
 - ullet k_i 의 실제 값은 중요하지 않음. 그냥 키 값을 1, 2, ..., n으로 가정하여도 문제의 성격이 변하지 않음

 - 트리에 없는 키의 검색은 고려하지 않음

탐욕적 기법이 가능하지 않을까?

- 동기, 가장 빈도가 높은 키들은 루트와 가까워야 함
 - 가장 빈도가 낮은 키들은 루트에서 멀리

13/38

루트의 선택

- top-down 방식에서는 루트의 선택은 매우 힘듦
- What if we knew the root?
 - 동적 프로그래밍을 이용하여 모든 경우를 다 고려???
- 검색키 1, 2, ..., n으로 구성된 최적 BST의 루트 노드의 키 값이 r이고, 이것의 왼쪽, 오른쪽 부분트리가 각각 T_r 과 T_p 이라 하자.
 - $lacksymbol{lack}$ 이 경우 T_L 과 T_R 은 각각 $\{1,\ldots,r-1\}$ 과 $\{r+1,\ldots,n\}$ 으로 구성하는 값들의 최적의 BST이어야 함
 - ◎ 이것이 실제 참일까?
 - 증명해야 함

최적 이진 검색 트리 (4/9)

- 최적해 구조를 증명하자
 - T가 최적해이면 그것의 부분 트리도 최적해임
 - 모순 증명
 - T_L 이 최적이 아니라고 가정하자.
 - $lacksymbol{lack}$ 그러면 최적인 BST가 존재해야 함 $\Longrightarrow T_L^*$
 - $igo C(T^*) < C(T)$ 이면 T가 최적해라는 것이 모순
 - $C(T) = \sum_{i=1}^{n} p_{i} s(i) = p_{r} + \sum_{i=1}^{r-1} p_{i} s(i) + \sum_{i=r+1}^{n} p_{i} s(i)$ $= \sum_{i=1}^{n} p_{i} + \sum_{i=1}^{r-1} p_{i} (s(i) \text{ in } T_{L}) + \sum_{i=r+1}^{n} p_{i} (s(i) \text{ in } T_{R})$ $= \sum_{i=1}^{n} p_{i} + C(T_{L}) + C(T_{R}) = 1 + C(T_{L}) + C(T_{R})$

r

 T_R

 T_L^*

- $C(T^*) = 1 + C(T_L^*) + C(T_R)$
- igo 따라서 $C(T_L^*) < C(T_L)$ 이므로 $C(T^*) < C(T)$ 이므로 모순

15/38

최적 이진 검색 트리 (5/9)

- 최적해 구조
 - 소문제는 몇 개? 아니면 어떤 소문제를 해결해야 하나?
 - 검색키 집합이 {1, 2, ..., n}이면 이 키들이 모두 루트가 될 수 있음
 - 따라서 우리가 구해야 하는 것은
 - 모든 i에 대해 $\{1, ..., i-1\}$ 와 $\{i+1, ..., n\}$ 를 구해야 하는 것으로 생각할 수 있지만...
 - 실제 구해야 하는 것은 모든 $i \le j$ 에 대해 $\{i, ..., j\}$ 로 구성된 BST의 최적해를 구해야 함
 - Why? 가능한 모든 형태의 트리를 조사해야 함

최적 이진 검색 트리 (6/9)

● 예) [1,2,3,4,5]로 가능한 이진 검색 트리

최적 이진 검색 트리 (7/9)

● 점화식

한국기술교육대학교

 $igoplus C_{ij}\colon 1\leq i\leq j\leq n$ 에 대해 $\{i,i+1,...,j-1,j\}$ 로 구성된 최적 BST의 평균 검색 비용

크기가 5인 것: 1~5

 $lacksymbol{lack}$ 모든 $1 \leq i \leq j \leq n$ 에 대해 점화식은 다음과 같음

$$C_{ij} = \min_{r=i,...,j} \left\{ \sum_{k=i}^{j} p_k + C_{i,r-1} + C_{r+1,j} \right\}$$
$$= \sum_{k=i}^{j} p_k + \min_{r=i,...,j} \left\{ C_{i,r-1} + C_{r+1,j} \right\}$$

- 총 경우의 수: j − i + 1 (가능한 루트)
 - 이들에 대해 전수조사 방법으로 최솟값을 구함
- Edge case: 첫 번째 요소가 루트 또는 마지막 요소가 루트인 경우
 - i > j이면 $C_{ij} = 0$

17/38

최적 이진 검색 트리 (8/9)

19/38

최적 이진 검색 트리 (9/9)

알고리즘 $\frac{\text{optimalBST()}}{\text{optimalBST()}}$ 외 n+2? 왼쪽 부분트리가 없는 경우 오른쪽 부분트리가 없는 경우 오른쪽 부분트리가 없는 경우 이 s:=0 to n-1 do //작은 크기의 문제 먼저 $(1\sim n)$ for i:=1 to n-s do $C[i][i+s]:=\sum_{k=i}^{i+s}p_k+\min_{r=i,\dots,i+s}\{C[i][r-1]+C[r+1][i+s]\}$ return C[1][n]

- 시간 복잡도
 - 소문제의 수
 - 각 소문제를 해결하는 비용
 - 전체: O(n³)
- $lacksymbol{lack}$ 참고. 최적화하면 $O(n^2)$ 에 할 수 있음

$$r = i$$
: $C[i][i-1] + C[i+1][i+s]$
 $r = i + s$: $C[i][i+s-1] + C[i+s+1][i+s]$

$$C_{i,i-1} + C_{i+1,j}$$
 ... $C_{i,j-1} + C_{j+1,j}$

때문에 (n+2)×(n+2) 배열

최적화 문제

- 최적화 문제(optimization problem)
 - 가능한 모든 해로부터 가장 최적의 해를 찾는 문제
 - 최적 원칙(principle of optimality)을 만족하는 최적화 문제는 동적 프로그래밍으로 해결할 수 있음
- 최적 원칙: 어떤 문제의 사례에 대한 최적해가 그 사례의 부분 사례의 최적해를 항상 포함하고 있으면 이 원칙을 만족하는 문제임
 - 예) 최단 경로 문제: 최적 원칙 적용 가능 문제
 - 예) 최장 경로 문제: 최적 원칙 적용이 가능하지 않은 문제
 - 노드 1에서 4까지의 최장 경로
 - [1, 3, 2, 4] = 7
 - 노드 1에서 3까지의 최장 경로
 - **1** [1, 2, 3] = 4

21/38

최단 경로 찾기 문제 (1/3)

- 최단 경로 찾기 문제
 - 가중치 방향 그래프에서 한 노드에서 다른 노드로 가는 최단 경로 찾기
 - 경로가 여러 개 존재할 수 있음
 - 어떻게 최단 경로를 찾나?
 - 가능한 모든 경로를 찾은 후 그 중에서 최단 경로를 찾음
 - lacksquare 완전 그래프이면 한 노드에서 다른 모든 노드를 한번 지나 목적 노드로 가는 경로만 총 (n-2)!개 존재함
 - 지수 시간보다 더 많은 경우임
- 모든 가중치가 양수이면 다익스트라 알고리즘으로 찾을 수 있음
 - 많은 경우가 여기에 해당함
- 음수 가중치가 존재하면 Bellman-Ford 또는 Floyd-Warshall 알고리즘으로 찾을 수 있음
 - 단, 음의 주기가 없어야 함

최단 경로 찾기 문제 (2/3)

- $lacksymbol{0}$ 입력. 가중치 방향 그래프 G=(V,E), 출발 노드 $S\in V$
 - 가중치 e에 대한 제한 없음 (음수가 가능하다는 것)
- 출력.
 - \bigcirc 선택 1. 모든 $v \in V$ 에 대해 s에서 v까지 최단 경로 dist(s, v)
 - 선택 2. G는 음의 주기 존재
- 참고.
 - 음의 주기를 허용하면 최단 경로를 구할 수 없음 (알고리즘이 종료하지 않음)
 - 음의 주기를 포함하지 않는 경로만 고려하는 것은 더 어려운 문제임

23/38

최단 경로 찾기 문제 (3/3)

- $lacksymbol{lack}$ 어떻게? 경로의 간선 수가 최대 n-1인 것 까지만 고려함
 - $lacksymbol{lack}$ 경로의 간선 수가 n-1보다 큰 경로는 길이가 더 짧고 간선 수도 n-1이하인 경로로 바꿀 수 있음
 - ullet 경로의 간선 수가 n-1보다 크다는 것은 한 노드를 두 번 이상 방문한다는 것을 의미함
 - 경로에 주기(음의 주기가 아님)가 존재한다는 것임
 - 이 주기를 제거하면 더 짧은 경로를 확보할 수 있음
- Bellman-Ford 알고리즘
 - R. Bellman 1958, L. R. Ford 1956년
 - 음의 주기가 없는 음의 가중치 방향 그래프에서 특정 출발노드부터 다른 모든 노드까지의 최단 경로를 찾아 줌
 - 시간 복잡도: *O(mn)*

Bellman-Ford 알고리즘 (1/2)

- 최단 경로: 최적 원리 적용
 - P'의 특성
 - P보다 길이가 짧음 (NO)
 - P보다 간선 수가 적음 (YES)
 - 경로를 구성하는 간선의 수를 늘리면서 최적 경로를 찾음

- $lacksymbol{lack}$ P: 최대 i개 간선을 이용하는 s에서 v로 가는 최단 경로
- $igoplus \#e(P) \leq i-1$: P는 최대 i-1개 간선을 이용할 수 있는 문제의 최적해
- - (w, v): P의 최종 간선, P': s에서 w로 가는 P의 부분 경로
 - $lacksymbol{lack}$ P'은 간선 i-1개로 구성된 s에서 w로 가는 최단 경로 r
- 모순으로 증명 가능
- ullet 점화식: 간선 i개 이하로 구성된 s에서 v로 가는 최단 경로

$$L_{i,v} = \min \left\{ L_{i-1,v}, \min_{(w,v) \in E} (L_{i-1,w} + e_{w,v}) \right\}$$

25/38

Bellman-Ford 알고리즘 (2/2)

	Α	В	С	D	Е
Α	0	5	3	-2	∞
В	8	0	8	-1	8
С	8	-2	0	8	-1
D	8	8	8	0	3
Е	8	8	8	8	0

Dist1

$$L_{i,v} = \min \left\{ L_{i-1,v}, \min_{(w,v) \in E} (L_{i-1,w} + e_{w,v}) \right\}$$

P = shortest s - v path

Α	В	C	D	Е
0	5	3	-2	8

Dist²

Α	В	С	D	Е
0	1	3	-2	1

Dist³

Α	В	С	D	E
0	1	3	-2	1

Dist²[B]

$$A \rightarrow A \rightarrow B = 5$$
$$A \rightarrow C \rightarrow B = 1$$

- 존재하지 않는 것도 고려하고 있음
- 진입 간선만 고려함. 0(m)
- 이처럼 모든 v에 대해 $L_{i,v} = L_{i-1,v}$ 이면 더 이상 변하지 않으므로 반복을 여기서 중단할 수 있음
- 모든 v에 대해 $L_{n,v} = L_{n-1,v}$ 가 성립하지 않으면 음의 주기가 존재함

Floyd-Warshall 알고리즘 (1/7)

- Floyd-Warshall 알고리즘
 - 보통 그냥 Floyd 알고리즘이라 함 (1962년)
 - B. Roy 1959년, S. Warshall 1962년
 - 음의 주기가 없는 음의 가중치 방향 그래프에서 모든 쌍 간의 최단 경로를 찾아 줌
 - \bigcirc 시간 복잡도: $O(n^3)$
 - igoplus Bellman-Ford 알고리즘을 n번 호출하는 것보다 효율적임. $O(mn^2)$
- Bellman-Form 알고리즘과 차이점
 - 모든 노드 쌍 간의 최단 경로를 구해 줌
 - 간선 수가 소문제의 기준이 아니라 경로를 구성하는 노드가 소문제의 기준

27/38

Floyd-Warshall 알고리즘 (2/7)

- ullet $D^{(k)}[i][j]$: 노드 1부터 k까지만 중간 노드로 사용하는 i에서 j까지 주기가 없는 최단 경로
 - $lacksymbol{\circ}$ 총 문제의 수: $oldsymbol{o}(n^3)$
- Optimal substructure
 - $lacksymbol{lack}$ P는 1부터 k까지 노드만 사용하는 i에서 j까지 최단 경로
 - 경우 1. k가 P에 포함되지 않은 경우
 - ullet P는 1부터 k-1까지 노드만 사용하는 i에서 j까지 최단 경로와 같음
 - 경우 2. k가 P에 포함된 경우
 - \bigcirc P를 i에서 k까지 최단 경로 P_1 과 k에서 j까지 최단 경로 P_2 로 나눌 수 있고, 이들은 모두 1부터 k-1까지 노드만 사용

1부터 k-1까지 노드만 사용하는 i에서 j까지 최단 경로 i k p_2 j

1부터 k-1까지 노드만 사용하는 i에서 k까지 최단 경로 1부터 k-1까지 노드만 사용하는 k에서 j까지 최단 경로

Floyd-Warshall 알고리즘 (3/7)

- Bellman-Ford(간선의 수가 기준)와 달리 주기가 없어야 하는 조건이 추가됨
 - \bigcirc P_1 과 P_2 에 주기가 없지만 그것을 결합하면 주기가 나타날 수 있음
 - $lacksymbol{lack}$ 음의 주기가 있으면 P_1 과 P_2 가 최적이 아닐 때, 이들의 결합이 최적이 될 수 있음, 음의 주기가 있으면 최적 원칙이 만족하지 않음
- 이 논리(경로를 구성하는 내부 노드 기준)는 왜 Bellman-Ford(특정 노드에서 출발하는 경로만 고려)에 적용하지 못할까?
 - P₂는 문제에서 고려하는 출발노드에서 시작하는 경로가 아님
- 점화식

$$D^{(k)}[i][j] = min(D^{(k-1)}[i][j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j])$$

P = v - w path (cycle-free, length \dot{L} , all internal vertices in $\{1, 2, ..., k\}$)

29/38

Floyd-Warshall 알고리즘 (4/7)

가중치 그래프를 인접 행렬로 표현

	Α	В	O	D	Е
Α	0	1	8	1	5
В	9	0	3	2	8
С	8	×	0	4	8
D	8	8	2	0	3
Е	3	8	8	8	0

- $D^{(0)}[2][5] = \infty$

- $D^{(3)}[2][5] = min(14, D^{(2)}[2][3] + D^{(2)}[3][5])$

$D^{(0)}$	1	2	3	4	5	$D^{(1)}$	1	2	3	4	5	$D^{(2)}$	1	2	3	4	5
1	0	1	œ	1	5	1	0	1	8	1	5	1	0	1	4	1	5
2	9	0	3	2	8	2	9	0	3	2	14	2	9	0	3	2	14
3	σ	8	0	4	8	3	∞	8	0	4	8	3	8	8	0	4	∞
4	8	8	2	0	3	4	8	∞	2	0	3	4	8	8	2	0	3
5	3	œ	œ	∞	0	5	3	4	∞	4	0	5	3	4	7	4	0
$D^{(3)}$	1	2	3	4	5	$D^{(4)}$	1	2	3	4	5	$D^{(5)}$	1	2	3	4	5
$\frac{D^{(3)}}{1}$	0	2	3	4	5 5	<i>D</i> ⁽⁴⁾	0	2	3	4	5	<i>D</i> ⁽⁵⁾	1 0	2 1	3	4 1	5 4
						<u> </u>	-										
1	0	1	4	1	5	1	0	1	3	1	4	1	0	1	3	1	4
1 2	9	0	4 3	1 2	5 14	1 2	9	0	3	1 2	5	1 2	0 8	1 0	3	1 2	4 5

 $D^{(4)}[i][j] = min(D^{(3)}[i][j], D^{(3)}[i][4] + D^{(3)}[4][j])$

- 현재 셀 계산을 위해 이전 셀 값 필요 ⇒ 조회 후 수정하기 때문에 문제 없음
- $m{O}^{(k)}$ 계산에서는 $m{D}^{(k-1)}[i][k]$ 와 $m{D}^{(k-1)}[k][j]$ 필요, 하지만 $m{D}^{(k)}[i][k] = m{D}^{(k-1)}[i][k]$ 이고 $m{D}^{(k)}[k][j] = m{D}^{(k-1)}[k][j]$ 임 (회색 부분은 변하지 않음)
- 따라서 이전 2차원 배열을 이용하여 그대로 다음 2차원 배열을 계산할 수 있음


```
\begin{array}{l} D^{(4)}[i][4] = min \big(D^{(3)}[i][4], D^{(3)}[i][4] + D^{(3)}[4][4] = 0 \ \big) \\ D^{(4)}[4][i] = min \big(D^{(3)}[4][i], D^{(3)}[4][i] + D^{(3)}[i][i] = 0 \ \big) \end{array}
```

Floyd-Warshall 알고리즘 (6/7)

● 알고리즘

```
\begin{aligned} floyd(W) \\ D &\coloneqq W \\ &\text{for } k \coloneqq 1 \text{ to } n \text{ do} \\ &\text{ for } i \coloneqq 1 \text{ to } n \text{ do} \\ &\text{ for } j \coloneqq 1 \text{ to } n \text{ do} \\ &D[i][j] \coloneqq \min(D[i][j], D[i][k] + D[k][j]) \\ &\text{for } i \coloneqq 1 \text{ to } n \text{ do} \\ &\text{ if } D[i][j] < 0 \text{ then return negative cycle} \\ &\text{return } D \end{aligned}
```

- $lacksymbol{\circ}$ 시간 복잡도: $oldsymbol{o}(n^3)$
- 음의 주기?
 - $lacksymbol{0}$ 어떤 i와 j에 대해 D[i][j] + D[j][i] < 0이면 음의 주기 존재

31/38

Floyd-Warshall 알고리즘 (7/7)

● 경로 찾기

D ⁽⁵⁾	1	2	3	4	5
1	0	1	3	1	4
2	8	0	3	2	5
3	10	11	0	4	7
4	6	7	2	0	3
5	3	4	6	4	0

$D^{(1)}[2][5] = min(D^{(0)}[2][5], D^{(0)}[2][1] + D^{(0)}[1][5])$)
$D^{(2)}[2][5] = min(D^{(1)}[2][5], D^{(1)}[2][2] + D^{(1)}[2][5])$)
$D^{(3)}[2][5] = min(D^{(2)}[2][5], D^{(2)}[2][3] + D^{(2)}[3][5])$)
$D^{(4)}[2][5] = min(D^{(3)}[2][5], D^{(3)}[2][4] + D^{(3)}[4][5])$)
$D^{(5)}[2][5] = min(D^{(4)}[2][5], D^{(4)}[2][5] + D^{(4)}[5][5])$)

$$D[2][5] = min(D^{(k)}[2][5], D[2][k] + D[k][5])$$

- **▶** k를 찾아 재귀적으로 재구성 가능
- 위 테이블을 구축하면서 같은 배열에
 k값을 기록하는 방법도 가능

I		1	2	3	4	5
	1	0	0	4	0	4
	2	5	0	0	0	4
	3	5	5	0	0	4
	4	5	5	0	0	0
	5	0	1	4	1	0

33/38

외판원 문제 (1/5)

완전 그래프일 때 일주여행경로 수: (n-1)!/2

- 외판원 문제(traveling salesperson problem): 출발노드에서 다른 모든 노드를 한 번씩 방문하고 다시 출발 노드로 돌아오는 최단 경로를 찾는 문제
 - 최적 해밀톤 경로(hamiltonian circuit), 최적 일주여행경로(tour, 투어)
 - 보통 완전 그래프를 가정함. 시작 노드가 중요하지 않음
- 최적화 문제인가?
 - ullet v_1 을 출발점으로 하는 최적 투어를 고려하여 보자.
 - ullet v_k 가 최적 투어에서 v_1 다음에 오는 첫 번째 노드이면 v_k 에서 v_1 로 가는 투어의 부분 경로는 다른 노드를 정확하게 한 번씩만 거치며 v_k 에서 v_1 로 가는 최단 경로임

외판원 문제 (2/5)

- v₁을 출발 노드로 가능한 모든 투어를 고려함
 - $lacksymbol{lack}$ 다음 노드는 v_2 부터 v_n 까지 가능함
 - ullet v_2 부터 v_1 까지 최단 경로, v_3 부터 v_1 까지, ..., v_n 부터 v_1 까지 최단 경로를 구하여 $d[1][j]+D[v_i][V-\{v_1,v_i\}]$ 중 최소가 되는 것이 해
 - ullet $D[v_k][A]$: A에 속한 노드를 한번씩 거치며 v_k 에서 v_1 로 가는 최단 경로의 길이
 - v₂부터 v₁까지 최단 경로:

$$\min_{j=V-\{v_1,v_2\}} d[2][j] + D[v_j][V-\{v_1,v_2,v_j\}]$$

- 다음 단계에서는 지나가는 노드 수가 하나씩 줄어듬
- 동적 프로그래밍이므로 하향식이 아니라 상향식. 예) 노드 4개
 - $(v_2 \rightarrow v_1), (v_3 \rightarrow v_1), (v_4 \rightarrow v_1)$
 - $(v_2 \rightarrow v_3 \rightarrow v_1), (v_2 \rightarrow v_4 \rightarrow v_1), \dots, (v_4 \rightarrow v_3 \rightarrow v_1)$
 - $\bigcirc (v_2 \longrightarrow v_3, v_4 \longrightarrow v_1), (v_3 \longrightarrow v_2, v_4 \longrightarrow v_1), (v_4 \longrightarrow v_2, v_3 \longrightarrow v_1)$

$$(v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_1), (v_2 \rightarrow v_4 \rightarrow v_3 \rightarrow v_1),$$

35/38

외판원 문제 (3/5)

$$D[2][\emptyset] = 1$$

$$D[3][\emptyset] = \infty$$

$$D[4][\emptyset] = 6$$

```
D[2][\{3\}] = \min_{j \in \{3\}} (d[2][3] + D[3][\{3\} - \{3\}]) = \infty
D[2][\{4\}] = \min_{j \in \{4\}} (d[2][4] + D[4][\emptyset]) = 10
D[3][\{2\}] = 8
D[3][\{4\}] = 14 \qquad \min_{v_j \in A} (d[k][j] + D[v_j][A - \{v_j\}])
D[4][\{2\}] = 4 \qquad v_j \in A
```



```
\begin{split} D[2][\{3,4\}] &= \min_{j \in \{3,4\}} (d[2][j] + D[j][\{3,4\} - \{j\}]) \\ &= \min(d[2][3] + D[3][\{4\}], d[2][4] + D[4][\{3\}]) = \min(6 + 14,4 + \infty) = 20 \\ D[3][\{2,4\}] &= \min_{j \in \{2,4\}} (d[3][j] + D[j][\{2,4\} - \{j\}]) \\ &= \min(d[3][2] + D[2][\{4\}], d[3][4] + D[4][\{2\}]) = \min(7 + 10,8 + 4) = 12 \\ D[4][\{2,3\}] &= \min_{j \in \{2,3\}} (d[4][j] + D[j][\{2,3\} - \{j\}]) \\ &= \min(d[4][2] + D[2][\{3\}], d[4][3] + D[3][\{2\}]) = \min(3 + \infty, \infty + 8) = \infty \end{split}
```

```
D[1][\{2,3,4\}] = \min_{j \in \{2,3,4\}} (d[1][j] + D[j][\{2,3,4\} - \{j\}])
= \min(d[1][2] + D[2][\{3,4\}], d[1][3] + D[3][\{2,4\}], d[1][4] + D[4][\{2,3\}])
= \min(2 + 20, 9 + 12, \infty + \infty) = 21
```

외판원 문제 (4/5)

알고리즘

- 가능한 부분집합의 수: 2ⁿ⁻¹
- 1<<(n-1)

```
tsp(G[][])
D \coloneqq [[0] \times n] \times 2^{n-1}
for i = 2 to n do
     D[i][\emptyset] := G[i][1]
                                                                      전수조사 방법을 사용하여
for k = 1 to n - 2 do
                                                                      모든 부분 집합을 만들어도
     for S: \forall S \subset V - \{1\} and |S| = k do
                                                                      색인 작업을 어떻게?
          for i such that i \neq 1 and i \notin S do
               D[i][S] := \min_{i}(G[i][j] + D[j][S - \{j\}])
               P[i][S] := 최솟값 j
D[\mathbf{1}][V-\{\mathbf{1}\}] \coloneqq \min_{j \in V-\{\mathbf{1}\}} (G[\mathbf{1}][j] + D[j][V-\{\mathbf{1},j\}])
P[1][V - \{1\}] := 최솟값 j
return D[1][V - \{1\}]
```

- ullet $v_{\scriptscriptstyle 1}$ 을 출발점으로 하는 최적 일주여행경로 길이는 다음과 같음 $\min_{2 \le k \le n} (d[\mathbf{1}][k] + D[v_k][V - \{v_1, v_k\}])$
- lacksquare base case: $D[v_k][\emptyset] = d[k][1]$

37/38

외판원 문제 (5/5)

- **③** 시간복잡도: $O(n^2 2^n)$
 - 전수조사: Θ(n!)
 - n = 12,13이면 전수 조사도 가능
 - \bigcirc 동적 프로그래밍은 n=30 정도까지도 가능