$\boxed{\mathbf{1}}$ 図中のベクトル (有向線分) \vec{a} , \vec{b} に対して、次の各ベクトルを有向線分として図示しなさい。ただし、始点は原点とすること。(各 2 点)

 $(1) \ \vec{a} + 3\vec{b}$

2 ある直交座標系で $\vec{a}=(1,-3)$, $\vec{b}=(-2,1)$ と成分表示されるベクトルに対し,以下の間に答えなさい.

- (1) ベクトル $\vec{u} = \vec{a} + \vec{b}$, $\vec{v} = \vec{a} 2\vec{b}$ を成分表示しなさい. (各 2 点)
- (2) ノルム $\|\vec{u}\|$, $\|\vec{v}\|$ を求めなさい. (各 2 点)
- (3) 内積 (\vec{u}, \vec{v}) を求めなさい。(2 点)
- (4) ベクトル \vec{u} , \vec{v} のなす角 θ の余弦 $\cos \theta$ を求めなさい。(2点)

3 直交座標系における 3 点 A (3,3,3) ,B (-3,1,3) ,C (4,0,2) に対し, $\triangle ABC$ は直角三角形になる. このとき, $\angle ABC$ 、 $\angle CABC$ の中で直角になる角がどれか調べなさい. (3 点)

4 ある直交座標系で $\vec{a}=(1,2,3), \vec{b}=(2,-1,1), \vec{c}=(3,1,-2)$ と表されるベクトルに対し、次の問に答えなさい。(各 3 点)

- (2) $\vec{a} \times \vec{b}$ が \vec{a} と直交することを示しなさい。また, $\vec{a} \times \vec{b}$ が \vec{b} と直交することを示しなさい.
- (3) (1) の結果を利用して $(\vec{a} \times \vec{b}) \times \vec{c}$ を計算しなさい.
- (4) $\vec{b} \times \vec{c}$ を計算しなさい. さらに $\vec{a} \times (\vec{b} \times \vec{c})$ を計算しなさい.

 $[\mathbf{5}]$ $\{\vec{a},\vec{b}\}$ を線形独立な 2 つのベクトルとし, $\vec{a}=\overrightarrow{OA},\vec{b}=\overrightarrow{OB}$ とする.このとき次の問に答えなさい.(各 3 点)

(1) ベクトル \vec{a}, \vec{b} のなす角を θ とするとき,三角形 OAB の面積が $\frac{1}{2} ||\vec{a}|| \, ||\vec{b}|| \sin \theta$ に等しいことを説明しなさい.

(2) 三角関数の性質と内積の定義を用いて, $\|\vec{a}\| \|\vec{b}\| \sin \theta = \sqrt{\|\vec{a}\|^2 \|\vec{b}\|^2 - (\vec{a}, \vec{b})^2}$ であることを示しなさい.

・ (3) ある直交座標系で $\vec{a}=(a_1,a_2), \vec{b}=(b_1,b_2)$ と表されるとき, $\|\vec{a}\|^2 \|\vec{b}\|^2 - (\vec{a},\vec{b})^2 = \left(\det\left(\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right)\right)^2$ が成り立つことを計算して 確かめなさい. ただし, $\det M$ は行列 M の行列式とする.