Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

1. A través de un análisis similar al desarrollado en la página 53 del Cengel Cimbala, determine cuál es la presión dentro de una burbuja "cilíndrica" que tiene la geometría observada en la figura 1 (cilindro con casquetes esféricos en sus extremos). A partir del resultado, responda las siguientes preguntas: ¿Es este estado estable?, es decir, ¿es un caso de estática? ¿Cómo evoluciona el sistema? En caso de que no sea estable, ¿cuál sería la geometría final de la gota? Las variables relevantes del problema serían las siguientes:

Figure 1: Gota cilíndrica

2. Dos tubos de altura H, diámetro interno d_i se encuentran conectados a un tanque pequeño. Los tubos y el tanque contienen agua. El sistema se encuentra unido a una plataforma, como se muestra en la figura 2. A qué velocidad angular ω debe girar la plataforma, de manera que la configuración de estado permanente del agua haga que ésta alcance la parte superior del tubo exterior? No tenga en cuenta los efectos de capilaridad. Exprese la solución en términos de las siquientes variables:

 d_i

D

h

H

Figure 2: Tubo en U descentrado

Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

3. Considere el generador eólico de la figura 3. Utilizando balances integrales de momento lineal, calcule la velocidad mínima de incidencia del viento para que comience a generar potencia cuando el salto de presión es de Δp . El diámetro del círculo de los alabes es de D_{al} . La eficiencia de la turbo máquina es del n. Suponga la densidad del aire de ρ_a .

$$\Delta p = 0,04 \mathrm{psi}$$
 $D_{al} = 27 \mathrm{ft}$ $n = 30\%$ $\rho_a = 0,076 \, \mathrm{lb/ft}^3$

Figure 3: Generador eólico