Statistical Machine Learning Problem set 5

Alan Joseph Bekker

K-means

- In the clustering problem, we are given a training set $x_1,...,x_n$, and want to group the data into a few cohesive "clusters." Here, we are given feature vectors for each data point $x_i \in R^d$ as usual, but no labels l_i (making this an unsupervised learning problem). Our goal is to predict k centroids and a label l_i for each datapoint. The k-means clustering algorithm is as follows:
 - 1. Initialize $c_1,...c_k$ different centroids, were $c_i \in \mathbb{R}^d$.
 - 2. for each data point t set $l_t = \min_j |x_t c_j|^2$.
 - 3. For each j set: $c_j = \frac{\sum_{i=1}^m \{1|l_i=j\}x_i}{\sum_{i=1}^m \{1|l_i=j\}}$
 - 4. repeat until converge.
- In this assignment you are requested to use the MNIST data set and apply the K=10 algorithm to the data.
- Verify at each iteration the cost function decreases and plot it at the end.
- Remember the cost function is $J = \sum_{i=1}^k \sum_{x \in c_i} |x c_i|^2$
- What is the success rate achieved by this algorithm?