

Nat 5 Nat 5 Nat 5 Nysics 2019 Marking Scheme

Grade	Mark Required		% and dates askinging and
Awarded	/125	%	% candidates achieving grade
Α	86+	68.8%	31.8%
В	72+	57.6%	22.5%
С	58+	46.4%	20.3%
D	44+	35.2%	14.7%
No award	<44	<35.2%	10.7%

Section:	Multiple Choice		Extended Answer		Assignment	
Average Mark:	15.5	/25	40.3	/75	17.3	/25

2019 Nat5 Physics Marking Scheme

Question	Anguar	%									
	Answer	Correct	Physics Covered								
1	Λ		Vector Quantity	force	velocity	displacement	acceleration	weight			
Т	Α	62	Scalar Quantity	energy	speed	distance	time	mass			
			a = 2.0 m s ⁻²	ν=	?	u = 6.0 m	s ⁻¹	t = 4.0 s			
					a = -\	<u>/ – u</u>					
						•					
2	В	79			2.0 = -	<i>y</i> − 6.0 4.0					
_		, 0				v – 6.0					
					·	8.0 + 6.0					
						14.0 m s ⁻¹					
			The greatest acce	leration on t			epest gradient	on the graph			
3	E	69	∴ Section ST is th		-		op	on and Braker			
			d = ?			.0 m s ⁻¹		t =2.0 s			
				d =	ν	t					
4	С	60		d =	8.0	x 2.	0				
				d =	16.0 m						
			Distance from r	iver bank = dis	stance ball kick	ed – width of ri	ver = 16.0m – 3.	.0m = 13.0m			
			Statement I - Ir	ncorrect	Statement I			III - Correct			
5	С	79	Sirius A is the close	est to Farth	There is no between age	•		relationship e of star and			
5		73	but is the olde		approxima		_	ate surface			
					tempe		tempe				
			☑A Geostationary s		•		•	•			
6	В		☑B Geostationary s ☑C Geostationary s				•				
U	Б		☑D Geostationary s		•		•	point on Earth			
			⊠ E Geostationary sa								
			W = 240N	1	$g_{earth} = 9.8N k$	g ⁻¹	m = ?				
				m =	$=\frac{W}{\bar{x}}=\frac{22}{200}$	$\frac{40 \text{ N}}{\text{N kg}^{-1}} = 24.5$	kg				
7	С	73			g 9.8	in kg -					
			W = ?	{	$g_{mars} = 3.7N k_{\xi}$	g ⁻¹	m = 24.5	kg			
				W = m x	g = 24.5kg	g x 3.7 N kg ⁻¹	= 91 N				
			Q = ?		I = 2.0	A	t = 5 min	utes = 5x60 s			
8	С	77									
			Erom granh: 'f+	nnoratura - I			O = 2000 O				
				-							
_			in Question. Il tel	iipciatule – :	JO C LITER CUI	1011 - 0.004 A					
9	D	54			V = I	R					
					V = 0.004						
					V = 8 V						
8	С	77	Q = ? From graph: if ter In Question: if ter	-	Q = I Q = 2.0 Q = 600 50°C then <i>Res</i>	t x 5x60 C sistance = 2.0 k	Ω = 2000 Ω	utes = 5x60 s			

			×Α	⊠ B	⋉ C	×)	₫E
10	E	48						
			II -	s should be connected to the connected to the facetory.	on the cell. This sho		d to the	LEDs circled are connected the wrong way in circuits above
11	А	46	 ☑A As light decreases, resistance in LDR increases. The voltage in the variable resistor decreases and the transistor switches ☑B Increasing the light level will lower the resistance of LDR. This will increase the voltage over the variable resistor and keep the lamp ☑C Increasing the resistance of R will increase the voltage of the variable res The lamp will stay off when the voltage over the variable resistor increase ☑D Reducing the supply voltage does not alter the ratio of voltages between variable resistor. ☑E Temperature will affect all parts of the circuit but the lamp will remain of					
12	D	28	Statement I - II V_1 would only if the combined in parallel of R_2 ar the resistance	ncorrect equal V_2 vc resistance and R_3 equals	Statement II - Corr Itage V ₂ always equ as voltage in branc of a parallel circu are always equa	rect uals V ₃ The hes over it V ₃ pa	Statemer V_s equals $^{r}V_1$ and the arallel bra	the total voltages the combined V_2 & inches. As $V_2 = V_3$: and $V_s = V_1 + V_3$
13	В	43	☑A PQ: Solid risi ☑B QR: Change o ☑C RS: Liquid risi ☑D ST: Change o ☑E TU: Gas rising	of State as it is ho ng in temperatu f State as it is ho	orizontal: Melting re until it reache rizontal: Evapora	s melting po g from solid t s boiling poi	int o liquid nt	
14	В	74	p = 1470 Pa	$ \rho = 990 $ $ \rho = 1470 = 9 $			n n	h = ?
15	E	71	☑D Expansion of particles with the ☑E Increase in pr	s not shrink so the average spacing iency of collision the tyre is not not the tyre with greaters where is caused	e force does not g between partic of air particles v ecessarily linked er frequency or g	act over a soles does not with the tyre to an increader force. kinetic energines	maller and the control of the contro	rea arily increase ase pressure. lisions by air

16	D	30	Pressure: Constant $V_1 = 0.3 \text{ m}^3$ $T_1 = 20^{\circ}\text{C} = 293 \text{ K}$ $V_2 = ?$ $T_2 = 50^{\circ}\text{C} = 323 \text{ K}$ $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{0.3}{293} = \frac{V_2}{323}$ $V_2 = \frac{0.3 \times 323}{293}$ $V_2 = 0.33 \text{ m}^3$
17	В	84	Amplitude Wavelength Amplitude = $\frac{6m}{2}$ = $3m$ 3 wavelengths = $24m$ 1 wavelength = $8m$
18	С	34	The to work out the frequency of a wave, both the wavelength and the speed of the wave are required. The question does not give an indication of the speed of the wave. Frequency can also be worked out from the period of the wave where T = 8ms = 0.08s $T = \frac{1}{f}$ $0.08 = \frac{1}{f}$ $f = 12.5 \text{ Hz}$
19	D	69	☑A No curvature on the ends of the waves after the wall ☑B Curvature starts too early. Should only start in the areas where wall blocked wave ☑C Wavelength should be same before and after the wall ☑D Wavelength the same and curvature in the areas where the wall blocked wave ☑E Wavelength should be same before and after the wall
20	Α	53	Angle of incidence = angle between normal and ray inside glass block = $90^{\circ}-55^{\circ} = 35^{\circ}$ Angle of Refraction = angle between normal and ray before glass block = $90^{\circ}-30^{\circ} = 60^{\circ}$
21	В	65	 ☑A alpha particles deflect towards the negative plate and gamma rays go straight ☑B alpha particles deflect towards the negative plate and gamma rays go straight ☑C alpha particles deflect towards the negative plate ☑D alpha particles deflect towards the negative plate and gamma rays go straight ☑E gamma rays do not deflect in an electric field
22	Α	77	$A = \frac{N}{t} = \frac{1800}{3x60} = 10 \text{ Bq}$
23	E	61	$\dot{H} = 5.0 \text{ mSv h}^{-1}$ $H = ?$ $t = 8 \text{ h x } 6 \text{ x } 12 = 576 \text{h}$ $\dot{H} = \frac{H}{T}$ $5 = \frac{H}{576}$ $H = 5 \text{ x } 576 = 2880 \text{ mSv}$
24	D	55	☑A alpha particle tracers inside body would not be detectable outside the body ☑B beta particle tracers inside body would not be detectable outside the body ☑C The tracer half-life is too long to be used safely in the patient ☑D A short half life and a gamma emitter are the ost suitable to be used as a tracer ☑E The tracer half-life is too long to be used safely in the patient
25	В	73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Question	Answer	Physics Covered					
		Displacement East = 16.	.0m - 4.0m =12	.0m. Di	splacement So	uth = 11.0m - 6	.0m = 5.0m
		$\frac{1}{\theta}$	2.0m	<i>x</i> =	$=\sqrt{(12.0)^2+(}$	$(5.0)^2$	
1 a(i)	13m	0	5.0	m x =	$=\sqrt{\frac{144+25}{144+25}}$		
		,		x =	= √ 169		
				<i>x</i> =	= 13 m		
4 - (11)	442	tar	$\theta = \frac{\text{opp}}{\text{adj}} =$	5.0	= 0.417 ∴ θ) = 23°	
1a(ii)	113		,		+ 23° = 113		
		s = 13m	Dearin	$\frac{g-30}{\bar{0}} =$			t = 32.5s
		S = 15111	= <u>v</u>	0 -	t	(1 mark)	(- 32.33
1b	0.40m s ⁻¹ at bearing 113	13	= <u></u> <u></u> <u></u> <u></u>		x 32.5	(1 mark)	
		\bar{v}	= 0.40 m		. J2.3	(1 mark)	
		Distance travelled = 16.			7 0m	(1 mark)	
		d = 37.0 m		$\bar{\upsilon} = 1.25$			t = ?
		d d	= <u></u> <u></u> <u></u> <u></u>	0 - 1.25	t	(1 mark)	.
1c	2.9 s	37.0	= 1.25	5	x t	(1 mark)	
		†	= 29.6			(=,	
		Difference in time			s = 2.9 s	(1 mark)	
1d	Answer to include:	(The forces are) equal (i				(I IIIaik)	
10	Answer to include.		: 20 m s ⁻¹	Josite (II	u = 0 m s ⁻¹		= 8 s
	2 5 -2			20			- 0 3
2a(i)	2.5 m s ⁻²	a =	<u>ν – u</u> t	- =	8 =	2.5 m s ⁻²	
		(1 m	ark)		(1 mark)	(1 mark)	
		F = 925 N	_	m = ?			2.5 m s ⁻²
22(::)	270 kg		F = r	n	a (1 m	nark)	
2a(ii)	370 kg		925 = r	n x	a (1 m	nark)	
			m = 3	70 kg	(1 m	nark)	
2a(iii)A	275 N	F = 1200 – 925 = 275 N					
2a(iii)B	One answer from:	streamlined (shape)	has wheels	ae	rodynamic	Or other suita	able answer
		ν _h (m s ⁻¹) 25					
	80 m	20					
		15-				rea under gr	aph
2b		10-			$=\frac{1}{2}$	x 8 x 20	
		0			= 8	0 m	
		0 5	10 15	20 t (s)			
		1 mark	2 marl	<s< td=""><td></td><td>3 marks</td><td></td></s<>		3 marks	
	Open Ended	Candidate has demonstrated a limited	Candidate has demo			strated a good understanding good comprehension of the	
3	Question:	understanding of the physics involved. The make some statement(s) that are relevan to the situation, showing that they have	physics involved. The	y make some	situation and provide a lo	ogically correct answer to the might include a statement of the might include a statement of the might include a statement of the might be set	ne question posed.
	Q#-00110111	understood at least a little of the physics within the problem.		at they have	respond to the problem.	or an equation, and the app The answer does not need	to be 'excellent' or
			1		'complete' fo	or the candidate to gain full	
		hydrogen				All hydrogen	lines in star
		helium				All Helium lii	nes in star
_	Hydrogen Helium	mercury				All Mercury	ines in star
4a	Mercury	calcium				Some calciui	m lines missing
	(all three required for 1 mark)	sodium				sodium line	missing
		star				_	
	<u> </u>						

4b(i)	The distance light travels in one year	A light year is the distance electromagnetic radiation like light travels in one year. A light year has a distance: $d = 3.0x10^8 \text{ m s}^{-1} \text{ x } 1x365.25x24x60x60 \text{ s} = 9.5x10^{15} \text{ m}$
		d = v x t (1 mark)
4b(ii)	9.2x10 ¹⁷ m	$d = 3x10^8 x 97 x 365.25 x 24 x 60 x 60 (1 mark)$
		$d = 9.2x10^{17} \text{m}$ (1 mark)
4c(i)	One answer from:	No atmosphere full range of EM waves can be used in no light to absorb light can be observed daytime or cloudy weather pollution
4c(ii)	One answer from:	GPS weather forecasting communications scientific discovery
_		<u>1 mark</u> <u>1 mark</u> <u>1 mark</u>
5a(i)	Graph showing:	suitable all points plotted accurately scales, labels and units to ± half a division best fit curve
5a(ii)	Answer to include:	1 mark (Resistance of wire) increases (as the length of wire increases) 1 mark (Current decreases (as the length of wire increases).
5a(iii)	0.55 A	
5a(iv)	Repeat (and average)	Repeating an experiment allows and average to be worked out. This reduces the chance of a rogue result changing the results to a different conclusion.
Гh	Anguar ta ingluda	1 mark Resistance will be less (than 5.2Ω)
5b	Answer to include:	1 mark The wire now has shorter length (between X and Y) or Two wires are connected in parallel
6a(i)	0.025 A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6a(ii)	0.075 W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6b(i)	480 Ω	Combining Parallel Resistors: Combining Series Resistors: $\frac{720\Omega}{\frac{720\Omega}{R_T}} = \frac{1}{R_1} + \frac{1}{R_2} \qquad (1 \text{mark})$ $\frac{1}{R_T} = \frac{1}{720} + \frac{1}{720} \qquad (1 \text{mark})$ $R_T = 360 \Omega$ $R_T = 360 \Omega$
6b(ii)	Answer to include:	1 mark (Power will be) the same 1 mark Current will be the same (in the 120 Ω resistor)

		P = 3.5 kW = 3500 W		E = ?		t = 26s
			$P = \frac{E}{t}$		(1 mark)	
7a	Working showing: 91000 J		$3500 = \frac{E}{26}$		(1 mark)	
			E = 91000) J		
		E _h = ? c = 41	80 m =	0.25 kg	ΔT= 1	$1.00^{\circ}\text{C} - 20^{\circ}\text{C} = 80^{\circ}\text{C}$
7h(:)	83600 J	E =	c x	m	Х	ΔT (1 mark)
7b(i)	83000 1	E =	4180 x	0.25	x	80 (1 mark)
		•	3600 J			(1 mark)
			$E_h = 91000$ $E_h = 7400 J$	- 83600	(1 mark)	
		E = 7400 J		n = ?		$l = 22.6 \times 10^5 \text{ J kg}^{-1}$
7b(ii)	0.0033 kg	E 74	= m	Х	ι	
		74	= m	X	22.6x10 ⁵	
		m	= 0.0033 k	κg		
7b(iii)	One answer from:	Heat ene lost to the surre		<u>or</u>		the heat (energy) heat the dispenser.
		lost to the surre	Juliuliigs.	Т	hrust	neat the dispenser.
			1 mark (including arrow)		A	
			(including arrow)		\perp	
8a	Diagram showing:			Į		
					7	
			1 mark		\psi	
			for arrow	_	/eight	
			and one from:		of Gravity of gravity	
				Gravita	ational Pull	
		P = 1.74x10 ⁵ Pa	F =			$A = 4.50 \times 10^{-3} \text{ m}^2$
			$P = \frac{F}{A}$	_	(1 mark)	
8b	783 N		4.74.405	F		
			$1.74 \times 10^5 = {4.}$	50x10 ⁻³	(1 mark)	
			F = 3	783 N	(1 mark)	
		$p_1 = 1.74 \times 10^5 \text{ Pa}$				
		$p_2 = ?$	$V_2 = 7.5 \times 10^{-4} \text{ n}$	1.2x1 1.2x1	$.0^{-4} \text{ m}^3 = 8.$	7x10 ⁻⁴ m ³ (1mark)
		(1 mark)	$p_1 V_1$		= μ	o_2V_2
8c(i)	1.5x10 ⁵ Pa	(1 mark)	1.74x10 ⁵ x 7	'.5x10 ⁻⁴	$= p_2 \times 8$	3.7 x10 ⁻⁴
			1 7/0105 - 7	7 Ev10-4		
			1.74x10 ⁵ x 7 8.7 x10		=	p_2
			J. / AIC	•		
		(1 mark)	1.5x10 ⁵	Pa	=	p_2

0 (11)		1 mark (individual) particles collide with container/walls less frequently (than before)					
8c(ii)	Answer to include:	1 mark (overall) fo					
		1 mark pressure de	ecreases				
		$v = 3x10^8 \text{m s}^{-1}$		f = 153MHz = 1			$\lambda = ?$
0 -	2.0		ν	= f	χ λ (1r	nark)	
9a	2.0 m		3x10	$0^8 = 153 \times 10^6$	⁵ χ λ (1r	nark)	
			λ	= 2.0m	(1r	nark)	
_		1 mark Th		of light is (much	n) greater than	the speed of	sound
9b	Answer to include:		-	takes more time		•	Souria
		$E_k = 4.5 \times 10^5 \text{ J}$		m = 250		-	v = ?
		$E_k = \frac{1}{2}$	_	m	V^2	(1	. mark)
		2			·		,
9c(i)	6.0 m s ⁻¹	$4.5 \times 10^5 = \frac{1}{2}$	<u> </u>	25000	x v ²	(1	mark)
		$v^2 = v$	36				
		v =	6.0 m s ⁻¹			(1	. mark)
0()	0				fri	ction	-
9c(ii)	One answer from:	<u>Ener</u>	gy lost (a	as heat and sour	nd) due to [ai	r resistance	
10a	Electromagnetic radiation	Also accepted: electromagnetic waves or electromagnetic spectrum					
		EM Type Gamma	X-Ra	y Ultra-violet	Visible Infr	a-Red Microw	ave Radio & TV
	Frequency is less/lower	Energy High	•				→ Low
10b		Frequency High	-				→ Low
		Wavelength LOW	-				→ High
10c(i)A	(Black bulb) Thermometer	Black bulb thermom absorbed by the the			se in temperati	ure as infra-re	ed radiation is
10c(i)B	radioactive waste	Radiation released b	y radioa	ctive waste is a	source of radia	tion in the en	vironment
,,		Treating skin		Produces		Disinfection c	of
10c(ii)	One answer from:	conditions/jaundi	ce	vitamin D		pital instrum	
100(11)	One answer from.	Checking security	-	Tanning		•	osite material
		markings on bankno	otes	Sun-beds		ngs or nail ge	l/polish
11a(i)	Line as shown		Angle	Th			
. ,	in diagram:	_	incide	nce			
11a(ii)	(the) normal	_		—	/ \		
	(4.10) 1.101	re	ed light		Q.		
11a(iii)	Angle if incidence						
110(III)	as shown in diagram:						
		1	mark w	avelength is the	e same		
11b	Answer to include:	1	mark th	ne blocks are ma	nde of the same	e material.	
		1 mark		1 m	ark	1	mark
12a	Answer to include:	Measure the co	ount	Repe	at at	Measure	and subtract
		in a set time	9	regular i		backgro	ound count
	Commission	The initial corrected			•	•	
126	Carry out	first halving at 125					
12b	experiment over	top 125 counts per Leaving for even lo					
	longer time period	which would confir					in the values
<u> </u>	1			-, -, -, -, -, -, -, -, -, -, -, -, -, -			

		D = ? E =	1.2 μJ = 1.2x10 ⁻⁶ J	m = 80.0kg		
	1.5 x10 ⁻⁸ Gy		$D = \frac{E}{m}$	(1 mark)		
12c(i)			$D = \frac{1.2 \times 10^{-6}}{85}$	- (1 mark)		
			$D = 1.5 \times 10^{-8}$	Gy (1 mark)		
		$H = 4.5 \times 10^{-8} \text{ SV}$	$D = 1.5 \times 10^{-8}$	Gy $w_R = ?$		
40			H = D	X W _R (1 mark)		
12c(ii)	3	4.	$.5 \times 10^{-8} = 1.5 \times 10^{-8}$	$x - W_R$ (1 mark)		
			$W_R = 3$	(1 mark)		
12d	Answer to include:	1 mark Photographic fil	m blackened/darkene	d/fogged		
120	Answer to include.	1 mark Film behind diff	erent windows affecte	ed by different types of radiation		
		1 mark	2 marks	3 marks		
13	Open Ended Question:	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	statement(s) that are relevant to the			