§

[1] (17)(:
$$zp(z)$$

$$\int_{-\infty}^{\infty} zp(z)dz = 0$$

)

[2]
$$IV RV_0 V = RI + V_0I_iV_i (i = 1, 2, \dots, n)RV_0$$

[3] $400.0 \text{ [mm]} 500.0 \text{ [mm]} 10.0 \text{ [mm]} \pm 0.5 \text{ [mm]} \pm 0.6 \text{ [mm]} \pm 0.1 \text{ [mm]}$

[4] *DLIV*

$$\rho_{\rm r} = \frac{\pi V D^2}{4IL}$$

 $ho_{
m r}$

[5]
$$x_1 = 200.01x_2 = 1000x_3 = 0.19994 \ Y = x_1 - x_2x_3x_1x_3 \ x_2$$

- (1)
- (2) 4
- $(3) \ 3$

[6]

$$(1) 152.3 + 6.478$$

- (2) 58.36×8.254 (3) $8.472 \div 22.63$

[**7**] **5**(33) (18)

1.

[mm]	1.014	1.016	1.011	1.017	1.022

[8] 5 (**6.3** [])(21)(22)

2.

-	
$L [\mathrm{mm}]$	T [s]
1041	2.070
1042	2.040
1040	2.055
1041	2.045
1043	2.035

[9] $2R V_0$

3.

I [mA]	V [mV]
99.40	33.82
198.12	67.56
301.50	102.72
473.50	161.72

[10] $(T)C \ y = C/Tx = T^2yx \ C = \gamma T + AT^3 \ xy \ \gamma A$

4.

T[K]	C [mJ/mol·K]	T [K]	$C [\mathrm{mJ/mol \cdot K}]$
4.12	6.017	3.01	3.391
3.88	5.702	2.85	3.083
3.80	5.148	2.45	2.479
3.67	4.914	2.24	2.106
3.52	4.710	2.01	1.760
3.33	4.021	1.73	1.396
3.16	3.820	1.36	1.042

[11] $1 \sim 200 \ 1 \sim 1010 \sim 100 \ 100 \ [mm] 10 \sim 10010$

[12] 11 $xy \ y = \cdots \log y = \cdots$

5.

x [V]	y [A]	x [V]	y [A]
0.45	3.02	2.95	30.2
1.00	5.02	3.50	50.2
1.50	7.96	4.00	79.6
1.75	10.0	5.00	200
2.50	20.0		

[13] $12xy \ y = \cdots$

6.

x [s]	y [m]	x [s]	y [m]
1.0	4.90	4.0	78.4
2.0	19.6	5.0	122.5
3.0	44.1	10.0	490