

幾何学2第6回

距離空間における連続写像の定義

講義のページ

野本 慶一郎 明星大学 教育学部 教育学科

2024年10月23日

スライド

今日の数学パズル

- 新幹線には「2 席シート」と 「3 席シート」が用意されている。
- 団体の乗客が新幹線に乗車するとき, ひとりぼっちが出ないように座ること はできるか?

keywords: チキンマックナゲットの定理

前回の復習

関数の連続性

定義 (ε - δ 論法)

関数 $f: \mathbb{R} \to \mathbb{R}$ が点 $a \in \mathbb{R}$ で連続であるとは

任意の $\varepsilon > 0$ に対して ある $\delta_{\varepsilon} > 0$ が存在して $|x-a| < \delta_{\varepsilon}$ ならば $|f(x)-f(a)| < \varepsilon$ が成り立つことをいる。また f が全ての $x \in \mathbb{R}$ で連続であるとき連続関数であるといる

が成り立つことをいう. また, f が全ての $x \in \mathbb{R}$ で連続であるとき連続関数であるという.

■ 噛み砕いて述べれば

どのような近さの基準 $\varepsilon > 0$ を取っても

 $\lceil x\ begin{aligned} egin{aligned} & \Gamma_x\ begin{aligned} \Gamma_x\ begin{aligned} & E\ a \end{aligned} & E$

となる.

連続関数のイメージ

今日の内容

今日の目的

- 今日は, ε - δ 論法を用いて定義した関数 $f: \mathbb{R} \to \mathbb{R}$ の連続性の定義を拡張して, 距離空間の間の連続写像 $f: (X, d_X) \to (Y, d_Y)$ を定義する.
- このような拡張を経ることで距離空間 (X, d_X) 自体をより詳しく調べることができたり、例えば f(x) = (x の多項式) $(x \in \mathbb{R})$ の連続性を容易に示せるようになったりできる. (この辺りの内容に関しては次回以降に説明する.)

近傍

- 関数 $f: \mathbb{R} \to \mathbb{R}$ の点 $x_0 \in \mathbb{R}$ での連続性では $|x x_0| < r$ のような, 点 x_0 からの距離が r 未満となる点 $x \in \mathbb{R}$ を考えることが大事であった.
- このような要素全体の集合は

$$U(x_0, r) = \{x \in \mathbb{R} \mid |x - x_0| < r\} = \{x \in \mathbb{E}^1 \mid d(x, x_0) < r\}$$

と表され, $\mathbf{\underline{h}} x_0$ **の** r **近傍**と呼ばれる. ただし, d は 1 次元ユークリッド距離関数である.

■ つまり以下が成り立つ.

$$x \in U(x_0, r) \iff d(x, x_0) < r \iff |x - x_0| < r.$$

ただし $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ は 1 次元ユークリッド距離関数である.

ε 近傍を用いた関数の連続性の言い換え

■ 関数 $f: \mathbb{R} \to \mathbb{R}$ が点 $x_0 \in \mathbb{R}$ で連続であるとは, 以下が成り立つことをいうのであった. 任意の $\varepsilon > 0$ に対して ある $\delta_{\varepsilon} > 0$ が存在して $|x - x_0| < \delta_{\varepsilon}$ ならば $|f(x) - f(x_0)| < \varepsilon$

命題

$$f:\mathbb{R} \to \mathbb{R}$$
 が点 $x_0 \in \mathbb{R}$ で連続であることと,1 次元ユークリッド距離関数 d に対して任意の $\varepsilon>0$ に対して ある $\delta_{\varepsilon}>0$ が存在して $d(x,x_0)<\delta_{\varepsilon}$ ならば $d(f(x),f(x_0))<\varepsilon$ が成り立つことは同値.

命題

$$f: \mathbb{R} \to \mathbb{R}$$
 が点 $x_0 \in \mathbb{R}$ で連続であることと

任意の $\varepsilon>0$ に対して ある $\delta_{\varepsilon}>0$ が存在して $x\in U(x_0,\delta_{\varepsilon})$ ならば $f(x)\in U(f(x_0),\varepsilon)$

が成り立つことは同値.

距離空間における連続写像

距離空間における ε 近傍

定義 (教科書 p.113 定義 9.1)

距離空間 (X,d) の点 x と $\varepsilon > 0$ に対して, 集合

$$U(x,\varepsilon) = \{ y \in X \, | \, d(x,y) < \varepsilon \}$$

を点xの ε **近傍**という.

■ 距離空間 (X,d) または X における ε 近傍であることを強調するときには, $U(X,d,x,\varepsilon)$ または $U(X,x,\varepsilon)$ と書くことがある.

様々なε近傍

- $\blacksquare \varepsilon$ 近傍は距離関数 d に依存する. すなわち. 同じ集合でも距離関数が変われば ε 近傍の形状も変わることに注意
- 以下は、 \mathbb{R}^2 上の 3 種類の距離関数に対する原点 O の ε 近傍 $U(O,\varepsilon)$ の図を示す。 $(\varepsilon=1)$

ユークリッド距離関数

$$d(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^{2} (x_i - y_i)^2}$$

マンハッタン距離関数 $d(\boldsymbol{x}, \boldsymbol{y}) = \sum |x_i - y_i|$

マックス距離関数 $d(\boldsymbol{x}, \boldsymbol{y}) = \max_{1 \le i \le 2} \{|x_i - y_i|\}$

距離空間における連続写像のイメージ図

■ 距離空間においても ε 近傍を用いて連続写像が定義される. 以下はそのイメージ図である.

ε近傍を用いた連続写像の定義

■ 以降, 距離空間 $(X, d_X), (Y, d_Y)$ に対してその間の写像 $f: X \to Y$ を

$$f:(X,d_X)\to (Y,d_Y)$$

と書くことがある.

定義

 $(X,d_X),(Y,d_Y)$ を距離空間とする. **写像** $f:X\to Y$ が点 $x_0\in X$ で連続であるとは, 以下を満たすことをいう.

満たすことをいう. 任意の arepsilon>0 に対して ある $\delta_arepsilon>0$ が存在して $d_X(x,x_0)<\delta_arepsilon$ ならば $d_Y(f(x),f(x_0))<arepsilon$

特に全ての $x_0 \in X$ で連続のとき, f は連続写像であるという.

■ もちろん

「
$$d_X(x,x_0) < \delta_{\varepsilon}$$
」 \to 「 $x \in U(x_0,\delta_{\varepsilon})$ 」, 「 $d_Y(f(x),f(x_0)) < \varepsilon$ 」 \to 「 $f(x) \in U(f(x_0),\varepsilon)$ 」 と置き換えてもよい.

連続写像の例

例

写像 $f: \mathbb{E}^2 \to \mathbb{E}^2$, $(x,y) \mapsto (2x,3y)$ は連続写像である.

(証明の概要) 示すべきことは全ての点 $(x_0, y_0) \in \mathbb{E}^2$ で連続であること, すなわち

任意の
$$\varepsilon > 0$$
 に対してある $\delta_{\varepsilon} > 0$ が存在して

$$(x,y) \in U((x_0,y_0),\delta_{\varepsilon})$$
 ならば $f(x,y) \in U(f(x_0,y_0),\varepsilon)$

が成り立つことである. 近傍の定義を書き下せば

任意の
$$\varepsilon>0$$
 に対して ある $\delta_{\varepsilon}>0$ が存在して
$$\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta_{\varepsilon}$$
 ならば $\sqrt{(2x-2x_0)^2+(3y-3y_0)^2}<\varepsilon$

である. そしてそのような δ_{ε} は, $0 < \delta_{\varepsilon} < \varepsilon/3$ を満たすように取ればよい.

f(x,y)=(2x,3y) の図

演習目標: 距離空間における連続関数の定義を理解する