Diode

Tommaso Bertelli

CO-526-B - Electronics Lab

Instructor Uwe Pagel 24/11/2024

1 Introduction - Prelab

1.1 Simulation of a Differential Amplifier

Measured voltages and currents:

 $V_{BE} = -47.09 - (-720.71) = 767.8 \text{mV}, \ V_C = 5.382 \text{V}, \ I_C = 2.099 \text{mA}, \ I_E = 2.109 \text{mA}, \ I_{RE} = 4.219 \text{mA}.$

By changing one transistor the V_{BE} , V_C , I_C , I_E values are not symmetric anymore (ex.: $V_C(Q1) = 5.911V$, $V_C(Q2) = 4.837V$), therefore the circuit cannot work properly.

2. Single ended input analysis

Green line: $V_C(Q1)$, blue line: $V_C(Q2)$. (peak to peak: 2.923V)

To calculate A_{Vdiff} I need V_{od} and $V_{id}.$

Top pane: V_{o1} , bottom pane: V_{i1} $V_{id} = V_{i1} - V_{i2} = 100 \text{mV}$ peak to peak $V_{od} = V_{o1} = 3 \text{V}$ peak to peak $A_{Vdiff} = 20 log(\frac{V_{od}}{V_{id}}) = 29.5 \text{ dB}.$

3. Common mode input analysis

 $V_C({\rm Q1})$ and $V_C({\rm Q2})$ are overlapping. (peak to peak: 49.17mV). To calculate A_{Vcm} I need V_{oc} and $V_{ic}.$

Top pane: V_{o1} , bottom pane: V_{i1}

$$\begin{split} V_{ic} &= (V_{i1} + V_{i2})/2 = 100 \text{mV peak to peak} \\ V_{oc} &= V_{o1} = 49.18 \text{mV peak to peak} \\ A_{Vcm} &= 20 log(\frac{V_{oc}}{V_{ic}}) = \text{-}6.16 \text{ dB}. \end{split}$$

4. Common mode rejection

 $CMRR = 20log(\frac{A_{Vdiff}}{A_{V}cm}) = 35.7 \mathrm{dB}.$ current source: 4.219 from top to bottom

5. Replacing R4 by equivalent current source

6. Analyses using the current source

(a) DC operation point analysis

$$V_{BE} =$$
 -47.11 - (-720.74) = 767.85mV, $V_C =$ 5.381V, $I_C =$ 2.099mA, $I_E =$ 2.109mA, $I_{RE} =$ 4.219mA. (current source)

By changing one transistor the V_{BE} , V_C , I_C , I_E values are not symmetric anymore (ex.: $V_C(Q1) = 5.913V$, $V_C(Q2) = 4.841V$), therefore the circuit cannot work properly.

(b) Single ended input analysis

Green line: $V_C(Q1)$, blue line: $V_C(Q2)$. (peak to peak: 2.95V)

To calculate A_{Vdiff} I need V_{od} and $V_{id}.$

Top pane: V_{o1} , bottom pane: V_{i1} $V_{id} = V_{i1} - V_{i2} = 100 \text{mV}$ peak to peak $V_{od} = V_{o1} = 2.95 \text{V}$ peak to peak $A_{Vdiff} = 20 log(\frac{V_{od}}{V_{id}}) = 29.4 \text{ dB}.$

c

(c) Common mode input analysis

 $V_C(\mathrm{Q1})$ and $V_C(\mathrm{Q2})$ are overlapping. (peak to peak: $21.93\mu\mathrm{V}$).

To calculate A_{Vcm} I need V_{oc} and V_{ic} .

Top pane: V_{o1} , bottom pane: V_{i1}

$$\begin{split} V_{ic} &= (V_{i1} + V_{i2})/2 = 100 \text{mV peak to peak} \\ V_{oc} &= V_{o1} = 21.93 \mu\text{V peak to peak} \\ A_{Vcm} &= 20 log(\frac{V_{oc}}{V_{ic}}) = \text{-}73.28 \text{ dB}. \end{split}$$

(d) Common mode rejection

$$CMRR = 20log(\frac{A_{Vdiff}}{A_{V}cm}) = 102.6 \text{dB}.$$

,