Shusen Wang

Complete Binary Trees

Complete Binary Tree

Complete Binary Tree

Complete Binary Tree

Is this a complete binary tree

This is not complete binary tree

Is this a complete binary tree

This is not complete binary tree

Indices:

Keys:

	1		

Indices: 0

Keys:

В

Indices: 0 1 2 3

Keys: B C N E

Indices: 0 1 2 3 4

Indices: 0 1 2 3 4 5

Find children

- A vertex's index is *i*.
- Its children's indices are

$$2i + 1$$
 and $2i + 2$.

Indices: 0 1 2 3 4 5

Find children

- A vertex's index is i.
- Its children's indices are

$$2i + 1$$
 and $2i + 2$.

Indices: 0 1 2 3 4 5

Find children

- A vertex's index is i.
- Its children's indices are

$$2i + 1$$
 and $2i + 2$.

Find children

- A vertex's index is i.
- Its children's indices are

$$2i + 1$$
 and $2i + 2$.

Find parent

- A vertex's index is *j*.
- Its parent's index is $\left| \frac{j}{2} 1 \right|$.

Indices: 0 1 2 3 4 5

Find parent

- A vertex's index is *j*.
- Its parent's index is $\left| \frac{j}{2} 1 \right|$.

Indices: 0 1 2 3 4 5

Find parent

- A vertex's index is *j*.
- Its parent's index is $\left| \frac{j}{2} 1 \right|$.

Find parent

- A vertex's index is *j*.
- Its parent's index is $\left| \frac{j}{2} 1 \right|$.

Properties

• Binary heaps are complete binary trees.

Min-heap

Properties

- Binary heaps are complete binary trees.
- Min-heap: parent's key ≤ children's keys.

Properties

- Binary heaps are complete binary trees.
- Max-heap: parent's key ≥ children's keys.

Max-heap

- No!
- The parent's key shouldn't be greater than the child's key.

Insert Nodes into Min-heaps

Current State

Insert(9)

Insert(9)

Procedure

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

Current State

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

Insert(50)

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

Insert(50)

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

Insert(50)

- 1. Insert the key at the end.
- 2. Percolate up.
 - Is the key is smaller than its parent?
 - If yes, then swap it and its parent.
 - If no, then stop.

Delete Min from Min-heaps

Current State

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

Current State

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

- 1. Return and delete the root.
- 2. Move the last key to the root.
- 3. Percolate down.
 - Is the key bigger than a child?
 - If yes, swap it with the smaller child.
 - If no, then stop.

Summary

Summary

- Binary heaps are complete binary trees.
- Thus, heap can be implemented using an array.
- Min-heap is a kind of priority queue.
- Time complexities:
 - insert(i): $O(\log n)$ time.
 - deleteMin(): $O(\log n)$ time.
 - It is because the depth of tree is $\log n$.

Questions

Q1: Are these complete binary trees min-heaps?

Tree 1: 15 | 18 | 19 | 20 | 31 | 72 | 21 | 40 |

Tree 2: 9 60 14 72 66 22 56 92 88 88 69 24

Tree 3: 7 | 19 | 26 | 36 | 22 | 23 | 42 | 42 | 55 | 23 |

Q2: After insert(20), what will the min-heaps be?

Tree 1: **Tree 2:**

Tree 3:

Q3: After deleteMin(), what will the min-heaps be?

Tree 1: **Tree 2:** Tree 3:

Q4: decreaseKey()

Q4: decreaseKey()

Thank You!