

ARJUNA NEET BATCH

Classification of Elements & Periodicity in Properties

LECTURE-06

By:- Ashima Gupta

Objective of today's class

Periodic Trends: Electron Gain Enthalpy

Electron Gain Enthalp

It is the amount of energy released

when an e- is added to the outermost shell in an isolated neutral gaseous atom.

E.A. = -ve (Dexothermic)

Inter e reproductivelighs the stability of mobile gas con Example: (g) Stegu) = -141 KJmsl (exothermic) 0^{2} (g) $\Delta Heg(a) = +744$ 02- (endothermic)

Heg (overall) = +603 D: size: vory small Add of and Je increases inter-electronic repulsion.

Important Points

ARJUN

Electron affinity of a neutral atom is equal to ionisation energy of its anion.

❖ I.E. of neutral atom is equal to electron affinity of its čation.

Factors affecting the Electron gain enthalpy:

(ii) Effective Nuclear charge: Higher the effective nuclear charge, higher will be negative electron gain enthalpy.

E.A X Zeff.

(iii) Screening Effect: Higher the screening effect, lower will be effective nuclear charge and hence lower will be negative electron gain enthalpy.

(iv) Electronic configuration: Half filled and fully filled electronic configuration is extra stable, so addition of an electron to that system is difficult and electron gain enthalpy is zero or positive.

ARJUN

Trend of electron affinity in group & period:

as size I ses & Zeff 1 ses, In a period, Ne < Be < N < B < Li < C <

ARJUN

E. A. generally Ises In a group, (Steg = - 141 KJ/mol) S (D Heg = -200ks) - ve sign Group ---Drocer is exothermile He + 48 (1.e. energy is Ne N Li Be -141+ 31 -60-328+66 -122+ 116 S Na Ar Values of Δ_{eq} H in kJ/mol - 349 +96 -53-200Se K Br Kr -195-325+96 -48Rb Te Xe

-190

Po

-174

-295

At

-270

+77

Rn

+ 68

-47

Cs

-46

Q2. Explain why?

O+e- → O-+ Energy;

O+e- → O-2;

ΔH = +ve (endothermic)

Due to Small size of O', when 2nd e- is added inter e-repulsion 1 ses & the process becomes

Ordothermicl.

Exceptions:

C: 15225263236

Note: N&P have low E.A. due to stable half-filled E.C.

Questions

Q3. Which of the following element has highest electron affinity?

(1)0

(2) S

(3) Se

(4) Te

- (1) Low electron affinity
 - (2) Only small atomic number X
 - (3) Small atomic radius in the period
 - (4) Low ionisation potential in the period X

(1) Na

(3) K

(Z) Li

(4) Rb

(endo)

Q6. Electron gain enthalpy will be positive, when

 $0 - + e - \longrightarrow 0$

(1) 0⁻² is formed from 0⁻¹

- (2) 0⁻¹ is formed from 0
 - (3) S^{-1} is formed from S
 - (4) Na- is formed from Na

Q7. Element of which atomic number has highest electron affinity:-

- (1) 35 : Br
- (2) 17 : CL
 - $(3) 9 : \mp$
 - (4) 53 : 1

Thank You