PDEs

Pranav Tikkawar

September 5, 2024

Introduction

What is a PDE?

Start with ODE: u = u(x), equation involving indepednant variable x and dependent variable u as well as its derivatives.

Example: $u'' - xu = 0, x \in I$ (Airy Functions). Second order Linear ODE. Lu = u'' - xu Where L is an operator.

Linearity means 2 things: $L(u_1 + u_2) = Lu_1 + Lu_2$ and L(cu) = cLu $\forall u_1, u_2 \in \mathcal{F}, \forall c \in \mathbb{F}$

PDE: u = u(x, y, ...) equation involving independent variables x, y, ... and Function u as well as its partial derivatives $u_x, u_y, u_{xx}, u_{yy}, u_{xy}$

Example: $x^2u - sin(xy)u_{xxyy} + 3u_x = 0$ 4th order linear PDE of 2 vars.

Remark: Importance of linearity: say u_1, u_2 are solutions of a Linear PDE:

 $Lu_1 = 0, Lu_2 = 0$ then $c_1u_1 + c_2u_2, (\forall c_1, c_2 \in \mathbb{R})$ is also a solution of Lu = 0 More generally, if $u_1, ..., u_n$ are solutions, then $\sum_{j=1}^n c_j u_j$ is also a solution. **Example:** u = u(x, y), solve $u_{xx} = 0$. $u_x = f(y), u = f(y)x + g(y)$ where f, gare arbitrary functions. $(\forall f, g \in \mathcal{F})$

Lu = 0 is homogenous, Lu = f is non-homogenous.

1.2 First Order PDE of x,y

$$x, y, u_x, u_y, u$$

Generally: $a(x,y)u_x + b(x,y)u_y + c(x,y)u = 0$

Example 1: $u_x = 0$: u = f(y) No change in the x direction, hence the function stays constant on all horizontal lines.

Example 2: Geometric Method $au_x + bu_y = 0, (a, b \in \mathbb{R})$

 $\vec{v} = (a, b); \nabla u = \langle u_x, u_y \rangle; \nabla u \cdot \vec{v} = 0 \rightarrow D_{\vec{v}} u = 0$

No change in the "v" direction (say $|\vec{v}| = 1$)

 $x = ta, y = tb \rightarrow ay - bx = 0$ On the lines ay - bx = c where c is a constant, the function u is constant. Lets call its value f(c)

u(x,y) = f(ay - bx) where f is a function of a single variable

The lines where these are solutions/constant are called **characteristic lines**

Check: $u_x = -bf'(ay - bx)$, $u_y = af'(ay - bx)$

Change of variable Change our plane such that \vec{v} is our "x" axis.

View (x,y) = x + iy, (x',y') = x' + iy'. Multiplying by $e^{i\alpha}$ rotates the plane ccw by α

 $x' + iy' = (x + iy)e^{i\alpha}$ where $\vec{v} = (a, b) = (\cos(\alpha), \sin(\alpha))$

 $x' = x\cos(\alpha) + y\sin(\alpha), y' = -x\sin(\alpha) + y\cos(\alpha)$

Rewrite PDE in our new system: u = u(x', y') = u(x'(x, y), y'(x, y))

$$u_x = u_{x'} \frac{\partial x'}{\partial x} + u_{y'} \frac{\partial y'}{\partial x}$$

$$u_x = au_{x'} - bu_{y'}$$

$$u_y = u_{x'} \frac{\partial x'}{\partial y} + u_{y'} \frac{\partial y'}{\partial y}$$

$$u_y = au_{y'} + bu_{x'}$$

$$au_x + bu_y = 0$$

$$a^2 u_{x'} + b^2 u_{y'} = 0$$

$$u_{x'} = 0$$

$$u = f(y') = f(ay - bx)$$

Example 3: $u_x + yu_y = 0$

u doesn't change in the direction of $\vec{v} = (1, y)$ at the point (x, y)

Lets call C the characteristic curve: $\left\{x=x(t),y=y(t)\right\}$ tangent to \vec{v} at any (x,y)

$$\frac{d}{dt}u(x(t), y(t)) = 0$$

$$\frac{dy}{dx} = y \to y(x) = ce^x, (\forall c \in \mathbb{R})$$
$$u(x, ce^x) = f(c)$$
$$u(x, y) = f(ye^{-x})$$

Remark: More generally $a(x,y)u_x + b(x,y)u_y = 0$

$$\frac{dy}{dx} = \frac{b(x,y)}{a(x,y)}$$
: ODE for characteristic curves

1.3.1 Mass flow/Transport Equation/Continuity Equation

Substance that flows in space. (eg. fluid)

 $\rho = \rho(x, y, z, t)$ density of the substance at point (x, y, z) at time t

 $\vec{v} = \vec{v}(x, y, z, t)$ velocity of the substance at point (x, y, z) at time t

Consider R as an arbitrary region in space.

Conservation of mass: $m(t) = \int_{R} \rho(x, y, z, t) dV$ mass in R at time t

Consider $[t, t + \Delta t]$, $m(t + \Delta t) = \int_{R} \rho(x, y, z, t + \Delta t) dV$

Substance leaves/enters in R through the boundary ∂R

Consider a small part of the boundary call it ∂S and see how much mass has left through this boundary patch over time period $[t, t + \Delta t]$

We want to introduce the "normal" \vec{n} over the boundary ∂S

height = $\vec{v}\Delta t \cdot \vec{n}$ and area of base = $dS \rightarrow \text{volume} = \Delta t \vec{v} \cdot \vec{n} dS$

$$\rho = \text{mass/vol} \rightarrow \Delta t \rho \vec{v} \cdot \vec{n} dS$$

$$\Delta m = \Delta t \int_{\partial B} \rho \vec{v} \cdot \vec{n} dS$$

Mass Conservation: $m(t + \Delta t) = m(t) - \Delta m$

$$\frac{1}{\Delta t} \int_{R} \rho(x, y, z, t + \Delta t) - \rho(x, y, z, t) dV = \int_{\partial R} \rho \vec{v} \cdot \vec{n} dS$$
$$= \int_{R} div(\rho \vec{v}) dV$$

Where $div(\vec{F}) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$ Let $\Delta t \to 0$

$$\frac{\partial \rho}{\partial t} + div(\rho \vec{v}) = 0$$

This is the Transport Equation.

Example: $\vec{v} = c(1,0)$ and $\rho = \rho(x,t)$

$$\frac{\partial \rho}{\partial t} + c \frac{\partial \rho}{\partial x} = 0$$

$$\rho(t, x) = f(x - ct)$$

 $\rho_t + c\rho_x = 0, t > 0, x \in \mathbb{R}, \rho(0, x) = \rho_0(x), x \in \mathbb{R}$ Initial condition

$$\rho(t, x) = \rho_0(x - ct)$$

1.3.2 Heat Equation/Diffusion/Energy Flux

Flow of energy: $\vec{q}(x,y,z,t)$ energy flux at point (x,y,z) at time t During the time interval $[t,t+\Delta t]$ the energy $\Delta E = \Delta t \int_{\partial R} \vec{q} \cdot \vec{n} dS$ has left the test volume R through the boundary ∂R

Consider the patch ∂S of the boundary ∂R and the normal \vec{n}

$$\Delta t \vec{q} \cdot \vec{n} dS \rightarrow e(\vec{n}) \Delta t dS$$

Cauchy tensor deformation.

To measure the energy inside R we need the specific heat c(x, y, z) and it measure the energy containing in 1 degree of temperature in 1 unit mass.

$$c = \frac{e}{T \cdot \text{mass}} = \frac{e}{T \cdot \rho \text{vol}}$$

$$Tc\rho = \frac{e}{\text{vol}}$$

$$E(t) = \int_{R} T(\vec{x}, t) \rho(\vec{x}) c(\vec{x}) dV$$

This is the energy inside R at time t.

$$E(t + \Delta t) = E(t) - \Delta E$$

$$\int_{R} T_{t}(\vec{x}, t) \rho(\vec{x}) c(\vec{x}) + div\vec{q}dV = 0$$

$$T_{t}c\rho + div\vec{q} = 0$$

Incomplete: we need to know how \vec{q} depends on T Forier's law of heat conduction: $\vec{q} = -k\nabla T$ $k(\vec{x}) = \text{heat conductivity of the material}$ Heat flows from hot to cold.

is the direction of the greatest increase of T

$$c\rho T_t - div(k\nabla T) = 0$$

Specific case: Assume c, ρ, k are constants.

$$\nabla T = \begin{pmatrix} T_x \\ T_y \\ T_z \end{pmatrix} \cdot \left(d_x, d_y, d_z\right)$$

$$div \nabla T = \nabla \cdot \nabla T = \nabla^2 T = T_{xx} + T_{yy} + T_{zz}$$

This is the laplacian of T

$$T_t = \mathbf{D}\nabla^2 T, \mathbf{D} = \frac{k}{c\rho}$$

Fick's law of Diffusion. High density to low density.

Wave Equation

Consider a string

We have x and u(x,t)

Consider a small part of the string $[x, x + \Delta x]$ called $d\ell$

There is a tangent force $T(x + \Delta x, t)$

The mass of the string is m(x) from origin to x

Newton's law: F = ma

$$T(x + \Delta x, t) - T(x, t) = (m(x + \Delta x) - m(x))\vec{r_t}t(x, t)$$

Divide by Δx and let $\Delta x \to 0$

$$\vec{T}_x(x,t) = \rho(x)\vec{r}_t t(x,t)$$

Where ρ is the linear density of the string T is tangent to the string: T is parallel to \vec{r}_x introduce $\vec{\tau} = \frac{\vec{r}_x}{|\vec{r}_x|}$

$$T = T(x, t)\vec{\tau}$$

Where T is constant along the string. Assume small vibration so that $|u_x|$ is small.

$$\vec{r} = (1, u_x) = (1, 0)$$