Iterative Solvers of Ax = b The Jacobi Method

CS 111: Introduction to Computational Science

Spring 2019 Lecture #7 Ziad Matni, Ph.D.

Administrative

Homework #4 due next Monday

- Midterm #1 is NEXT week Thursday (May 2nd)
 - Will put up review questions this Thursday

Lecture Outline

Iteration to solve Ax = b: Jacobi Method

Intro to the Conjugate Gradient Method

Ax = b Solvers We've Learned So Far

- Pivoting
- LU Factorization
- Cholesky
- QR Factorization

Jacobi Method

An **iterative** algorithm for determining the solutions of a *diagonally dominant* system of linear equations.

Diagonally dominant:

for every row of the matrix,
 magnitude of the diagonal entry in a row
 ≥ the sum of the magnitudes of all
 the other (non-diagonal) entries in that row.

Diagonally Dominant Example

For example,

A =
$$\begin{bmatrix} -4 & 2 & 1 \\ 1 & 6 & 2 \\ 1 & -2 & 5 \end{bmatrix}$$
 is strictly a diagonally dominant matrix

$$|a_{11}| > |a_{12}| + |a_{13}|$$
, that is $4 > 3$
 $|a_{22}| > |a_{21}| + |a_{23}|$, that is $6 > 3$
 $|a_{33}| > |a_{31}| + |a_{32}|$, that is $5 > 3$

Jacobi's Method

- Simple, but not the most efficient algorithm
- Given a system: Ax = b
 - Where we know A and b and want to find x
- We can start with a guess for x
 - Good starting point is the zero vector
 - We'll call it the 0^{th} approximation, or $\mathbf{x}^{(0)}$
- We will use the first equation and the current values of $x_2^{(k)}$, $x_3^{(k)}$, ..., $x_n^{(k)}$ to find a new value $x_1^{(k+1)}$.
 - See examples on the blackboard and Jupyter

Jacobi Method

- Strict row diagonal dominance is a sufficient but not necessary condition for Jacobi's Method to converge
 - It sometimes converges even if this condition is not satisfied
- The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1
 - Written as: ρ (**D**⁻¹.**C**) < 1
 - It means that the max. eigenvalue of D⁻¹.C should be < 1
- A nice write-up to read (optional) on Wikipedia: https://en.wikipedia.org/wiki/Jacobi_method

Conjugate Gradient Iteration

- Another (more efficient) iterative algorithm to solve Ax = b.
- Start with a guess $x^{(0)}$, then compute $x^{(1)}$, $x^{(2)}$,
- Stop when you think you're close enough.
- In theory, CG can be used to solve any system Ax = b, provided only that A is SPD.
- In practice, how well CG works depends on specifics of A in subtle ways, involving eigenvalues and condition number.

Your To-Dos

Homework #4 – due Monday, April 29th

