ABC coverage vignette

Dennis Prangle

April 16, 2013

This document illustrates the use of coverage diagnostics from the *abctools* package in an analysis of the *human* dataset provided with the *abc* package. Parameter inference and model choice analyses are presented. These are similar to the analyses done in the Prangle et al. (2013) paper on other datasets, but with less demands on time and computational resources. One of the aims of this document is to illustrate how to produce plots from package output, so the full details of R commands are included.

1 Background

There follow some excerpts from the abc package help files describing the human dataset. The full abc package help files and vignettes contain more details, such as of the summary statistics used.

"Data is provided to estimate the posterior probabilities of classical demographic scenarios in three human populations: Hausa, Italian, and Chinese. These three populations represent the three continents: Africa, Europe, Asia, respectively. par.italy.sim may then [be] used to estimate the ancestral population size of the European population assuming a bottleneck model."

"The observed statistics were taken from Voight et al. (2005) (Table 1.). Also, the same input parameters were used as in Voight et al. (2005) to simulate data under the three demographic models. Simulations were performed using the software ms and the summary statistics were calculated using sample_stats" [n.b. ms is described in Hudson (2002) and sample_stats is provided with ms and described in its manual]

"data(human) loads in four R objects: stat.voight is a data frame with 3 rows and 3 columns and contains the observed summary statistics for three human populations, stat.3pops.sim is also a data frame with 150,000 rows and 3 columns and contains the simulated summary statistics, models is a vector of character strings of length 150,000 and contains the model indices, par.italy.sim is a data frame with 50,000 rows and 4 columns and contains the parameter values that were used to simulate data under a population bottleneck model. The corresponding summary statistics can be subsetted from the stat.3pops.sim object as subset(stat.3pops.sim, subset=models=="bott")."

2 Parameter inference

We focus on parameter inference under the bottleneck model using the stat.voight["italian",] observations. First we create a dataframe containing the summary statistics simulated under this model.

```
> library(abctools)
> data(human)
> stat.italy.sim <- subset(stat.3pops.sim, subset=models=="bott")</pre>
```

Next we perform an initial ABC rejection sampling analysis.

```
> abc.out <- abc(target = stat.voight["italian", ], param = par.italy.sim,
+ sumstat = stat.italy.sim, tol = 0.05, method = "rejection")</pre>
```

Amongst other information, the abc function returns details of the distance between each simulated dataset and the observations. This information is important to the coverage diagnostic analysis. Firstly it allows calculation of the ABC threshold ϵ equivalent to the 5% tolerance level used above:

```
> nacc <- nrow(par.italy.sim)*0.05
> sort(abc.out$dist, partial=nacc)[nacc]
```

[1] 0.7074183

Secondly, distance information can be used to find an interesting range of ϵ values. Here, the ϵ values to be investigated cover the full range of distances which can be achieved from these simulations (Equally spaced values on a log scale are used). This is in order to illustrate some properties of the coverage diagnostics. In practice the lower end of this range would usually be of most interest, as these produce the most accurate ABC analyses.

```
> summary(abc.out$dist)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06088 1.31100 1.84900 1.99800 2.48600 10.07000 > epsvec <- seq(log(0.06), log(10), length.out=15) > epsvec <- exp(epsvec)
```

The coverage diagnostics are calculated by performing ABC analyses on many test sets i.e. datasets simulated from known parameter values (also sometimes referred to as pseudo-observed datasets.) These are selected from amongst those already simulated in stat.italy.sim. Prangle et al. (2013) recommend using the rows with minimal distance to the observed data as test data sets. Our initial ABC analysis output can be used to determine these. As a comparison we will also look at the performance of choosing test data sets by a simple random sample.

```
> set.seed(1)
> testsets.anywhere <- sample(1:50000, 200)
> testsets.neardata <- order(abc.out$dist)[1:200]</pre>
```

Now the *abctools* package code is used. The cov.pi command performs ABC analyses using each of the test sets as the observerations and several choices of ϵ . Each analysis uses the same simulated parameter values and data sets (after removing the row currently being used as observations). The results are used to compute diagnostic statistics. The required ABC analyses are run in parallel using the *parallel* package (This can be disabled by setting multicore=FALSE.)

```
> cabc.out.anywhere <- cov.pi(param=par.italy.sim, sumstat=stat.italy.sim,
+ testsets=testsets.anywhere, eps=epsvec,
+ diagnostics=c("KS", "CGR"), multicore=TRUE, cores=4)
> cabc.out.neardata <- cov.pi(param=par.italy.sim, sumstat=stat.italy.sim,
+ testsets=testsets.neardata, eps=epsvec,
+ diagnostics=c("KS", "CGR"), multicore=TRUE, cores=4)</pre>
```

The coverage property is a desirable property of a method producing approximations to a Bayesian posterior. It focuses on the case of a scalar parameter. For multivariate parameters, each can be examined separately. Roughly speaking, the coverage property asserts that credible intervals have the claimed coverage levels. For example 95% of 95% credible intervals should contain the true parameters values. An equivalent condition is that the cdf values of the true parameter values under the approximate posteriors (refered to p_0 values) are uniformly distributed on [0,1]. This is what the cov.pi command tests.

For each ABC analysis it performs, cov.pi records a vector of estimated p_0 values of the correct parameters. A Bayesian estimator is used which is similar to the empirical cdf, but avoids the extreme values of 0 and 1, as some later calculations cannot cope with these. These estimators are recorded in one component of cov.pi output, raw.

> head(cabc.out.anywhere\$raw)

```
Ne
  testset
           eps nacc
                                          duration
                                                        start
                  1 0.6666667 0.6666667 0.3333333 0.3333333
1
    13276 0.06
2
    18606 0.06
                  3 0.8000000 0.4000000 0.8000000 0.2000000
3
    28642 0.06
                  1 0.6666667 0.3333333 0.6666667 0.6666667
    45408 0.06
                  2 0.5000000 0.5000000 0.2500000 0.7500000
4
                  0 0.5000000 0.5000000 0.5000000 0.5000000
5
    10084 0.06
                  3 0.2000000 0.4000000 0.6000000 0.6000000
    44915 0.06
6
```

Each row corresponds to one combination of test set and ϵ . These values are recorded as the first two columns. The third column gives the number of acceptances in the ABC analysis, and the remaining columns give p_0 estimates for each parameter (column titles giving the parameter names).

The cov.pi commands above have also computed several diagnostic statistics to test whether the p_0 estimates are roughly uniform on [0,1]. For each combination of parameter, ϵ and test statistic, a p-value of the statistic is given under the assumption that the coverage property holds. These are recorded in another component of the output, diag.

> tail(cabc.out.anywhere\$diag)

```
pvalue test
          eps parameter
     6.938994
               duration 0.55279077
115
                                      CGR
116
     6.938994
                   start 0.90431836
                                      CGR
117 10.000000
                      Ne 0.03070583
                                      CGR
118 10.000000
                       a 0.49117877
                                      CGR
119 10.000000
               duration 0.54812453
                                      CGR.
120 10.000000
                   start 0.90639422
                                      CGR
```

The purpose of the diagnostics statistics is that they can easily be plotted to judge when there is evidence to reject the hypothesis that the coverage property holds, as follows.

This figure illustrates several points of interest. Firstly, using a random sample of test sets does not reject the coverage hypothesis for large ϵ . In fact it can be proved (Prangle et al., 2013) that for this choice of test sets the coverage property holds under the prior distribution, which is the ABC target distribution for sufficiently large ϵ . Secondly, using a random sample of test sets cannot assess as wide a range of ϵ values as the alternative choice (i.e. fewer points are plotted in the left column.) This is because for the smallest ϵ value some of the test data sets produce too small an ABC sample to produce trustworthy estimates of p_0 values and so these diagnostics are reported as NA (The threshold of acceptances below which this happens can be set by the cov.pi argument nacc.min. Its default is 20.) These are the main reasons that we recommend using test sets chosen near the data.

Another point is that there is some disagreement between the diagnostics. For example, the bottom right panel shows that for $\epsilon = 10$ the coverage property for the *start* parameter is rejected by one diagnostic only. We argue in Prangle et al. (2013) that no test statistic can be expected to detect all types of deviation from uniformity so the raw results should be investigated for interesting values of ϵ . Here, for test sets near the

observed data, we investigate $\epsilon = 0.26$ (the smallest value that produced enough acceptances), 0.77 (the closest value to that used in the analysis of the real data), and 10 (to investigate the disagreement just mentioned).

As ϵ is reduced, the histograms become closer to the uniform pdf, in line with the behaviour of the KS diagnostic in the previous figure. However even the choice of $\epsilon = 0.26$ appears too large for coverage to hold for all parameters. Note that for $\epsilon = 10$, the histogram for the *start* parameter shows a deviation from uniformity: the estimated p_0 values are biased toward smaller values. The KS diagnostic has detected this deviation while the CGR diagnostic has not.

The analysis can be repeated for ABC followed by regression post-processing. The plots below show $\epsilon = 0.77$ is a roughly acceptable choice in this case.

```
> cabc.out.corr<- cov.pi(param=par.italy.sim, sumstat=stat.italy.sim,
+ testsets=testsets.neardata, eps=epsvec,</pre>
```

```
# method="loclinear", diagnostics=c("KS", "CGR"),
# multicore=TRUE, cores=4)
> diag.all <- rbind(cbind(cabc.out.neardata$diag, method="Rejection"),
# cbind(cabc.out.corr$diag, method="Local linear"))
> qplot(x=eps, y=pvalue, colour=test, facets=parameter~method, data=diag.all,
# log="y") + geom_line()
```


3 Model choice

The *abctools* package can be used similarly for model choice. Here we consider model choice between three candidate models using the same observed data as before. Again we start by performing an ABC rejection sampling analysis (This is done with the abc command rather than postpr so that distances from simulated to observed data are available as a byproduct.)

As before, the computed distances are used to find an interesting range of ϵ values and choose test data sets.

```
> set.seed(2)
> testsets.anywhere <- sample(1:1.5E5, 200)
> testsets.neardata <- order(abc.mod$dist)[1:200]
> ##Which value of epsilon was used in analysis?
> nacc <- 1.5E5*0.05
> sort(abc.mod$dist, partial=nacc)[nacc]
[1] 1.011973
```

```
> ##Find interesting range of epsilon values
> summary(abc.mod$dist)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05862 1.95100 2.79100 2.76200 3.50800 11.50000
> epsvec <- seq(log(0.06), log(12), length.out=15)
> epsvec <- exp(epsvec)</pre>
```

Similar syntax to the parameter inference case is used to perform the ABC analyses and the calculation and plotting of diagnostics. A rough definition of the coverage property for model choice is given below: see Prangle et al. (2013) for more discussion.

```
> cabc.mod.anywhere <- cov.mc(index=models, sumstat=stat.3pops.sim,</pre>
+
                               testsets=testsets.anywhere, eps=epsvec,
                               diagnostics=c("freq", "loglik.binary",
+
                               "loglik.multi"),
                               multicore=TRUE, cores=4)
> cabc.mod.neardata <- cov.mc(index=models, sumstat=stat.3pops.sim,
                               testsets=testsets.neardata, eps=epsvec,
                               diagnostics=c("freq", "loglik.binary",
+
+
                               "loglik.multi"),
                               multicore=TRUE, cores=4)
> diag.all <- rbind(cbind(cabc.mod.anywhere$diag, V="Anywhere"),</pre>
                    cbind(cabc.mod.neardata$diag, V="Near data"))
> qplot(x=eps, y=pvalue, colour=test, facets=parameter~V, data=diag.all,
        log="y") + geom_line()
```


The freq, loglik.binary and loglik.multi diagnostics correspond to the test statistics U, V and W in Prangle et al. (2013). The first two of these test coverage for one model in particular, so we show three rows considering each model in turn. On the other hand, loglik.multi tests coverage for all models, so it is shown in a separate row. As for the parameter inference case, using test sets sampled from the prior does not reject coverage for large ϵ values, and choosing test sets close to the data is recommended. The plots suggest $\epsilon = 0.40$ is sufficient for coverage to approximately hold.

The raw data now take a different form. For each combination of test data set and ϵ value, the estimated probability of each model is given (as well as number of acceptances):

> tail(cabc.mod.anywhere\$raw)

	testset	eps	nacc	bott	const	exp
2995	75360	12	149993	0.3333333	0.3333200	0.3333467
2996	30194	12	149999	0.3333333	0.3333333	0.3333333
2997	29920	12	149993	0.3333333	0.3333200	0.3333467
2998	26686	12	149993	0.3333333	0.3333200	0.3333467
2999	41026	12	149998	0.3333289	0.3333356	0.3333356
3000	19568	12	149999	0.3333333	0.3333333	0.3333333

Under the coverage property, the true probability that a model occurs conditional on an estimated probability z_0 should equal z_0 , and the diagnostics test this. Testing this property is harder than the continuous parameter case, and the diagnostics are intended

as a starting point for analysis that should be treated with caution. Raw plots of results for a particular ϵ value and target model can be plotted using the mc.ci command. This splits the range of estimated model probabilities [0,1] into intervals and estimates the conditional true probability of the model for each interval. When coverage holds, the 95% credible intervals shown should usually contain the 45 degree line. Colours are used in the plot to distinguish results for adjoining intervals.

```
> par(mfcol=c(3,3))
  for (i in c(6,8,15)) {
     mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="bott",
+
              modtrue=models)
+
      title(main=paste("eps=", signif(epsvec[i],2)))
+
      if (i==15) mtext("Bottleneck", side=4, line=1)
+
     mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="const",
              modtrue=models)
+
      if (i==15) mtext("Constant", side=4, line=1)
+
     mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="exp",
              modtrue=models)
+
      if (i==15) mtext("Exponential", side=4, line=1)
                      eps= 0.4
                                                                               eps= 12
                                                  eps = 0.85
                                                                                            Bottleneck
                                          0.8
                                                                      0.8
              0.8
          Observed
                                       Observed
                                                                   Observed
              0.4
                                          0.4
                                                                      0.4
              0.0
                                          0.0
                                                                      0.0
                 0.0
                       0.4
                             8.0
                                             0.0
                                                    0.4
                                                          0.8
                                                                         0.0
                                                                                0.4
                                                                                      0.8
                       Predicted
                                                   Predicted
                                                                               Predicted
                                                                                            Constant
                                          0.8
                                                                      0.8
              0.8
           Observed
                                       Observed
                                                                   Observed
              0.4
                                          9.4
                                                                      0.4
              0.0
                                          0.0
                       0.4
                             8.0
                                                    0.4
                                                          0.8
                                                                                0.4
                                                                                      8.0
                       Predicted
                                                   Predicted
                                                                               Predicted
                                                                                            Exponential
              0.8
                                          0.8
                                                                      0.8
          Observed
                                       Observed
                                                                   Observed
              0.4
                                                                      0.4
                                          0.4
              0.0
                       0.4
                             8.0
                                             0.0
                                                    0.4
                                                          8.0
                                                                         0.0
                                                                                0.4
                                                                                      0.8
                       Predicted
                                                   Predicted
                                                                               Predicted
```

The plots illustrate that coverage fails to hold for $\epsilon = 12$. Here all predicted probabilities roughly equal 1/3, the prior weight, which is incorrect. The plots are not conclusive here

for smaller ϵ and serve only as a starting point for application specific further investigation. One way to do so is to use a different partition of [0,1]. mc.ci also supports intervals based on quantiles of predicted probabilities, which in this case are harder to interpret visually but do reveal some possible deviations from coverage for $\epsilon = 0.85$:

```
> par(mfcol=c(3,3))
  for (i in c(6,8,15)) {
     mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="bott",
              modtrue=models, bintype="quantile")
     title(main=paste("eps=", signif(epsvec[i],2)))
     if (i==15) mtext("Bottleneck", side=4, line=1)
     mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="const",
              modtrue=models, bintype="quantile")
+
     if (i==15) mtext("Constant", side=4, line=1)
+
     mc.ci(cabc.mod.neardata$raw, eps=epsvec[i], modname="exp",
              modtrue=models, bintype="quantile")
         (i==15) mtext("Exponential", side=4, line=1)
+ }
                      eps= 0.4
                                                eps = 0.85
                                                                            eps= 12
                                                                                         Bottleneck
              0.8
                                         0.8
                                                                    0.8
          Observed
                                     Observed
                                                                 Observed
             0.4
                                         0.4
                                                                    0.4
              0.0
                                         0.0
                                                                    0.0
                     0.90
                          0.95
                               1.00
                                              0.80
                                                     0.90
                                                                       0.330
                                                                             0.333
                                                                                    0.336
                 0.85
                      Predicted
                                                 Predicted
                                                                             Predicted
                                         0.8
                                                                    0.8
                                                                                          Constant
              0.8
                                     Observed
                                                                 Observed
          Observed
              0.4
                                                                    4.0
                                         0.4
                  0.02 0.06 0.10 0.14
                                             0.05
                                                                                    0.336
                                                    0.15
                                                                       0.330
                                                                             0.333
                      Predicted
                                                                             Predicted
                                                 Predicted
                                                                                          Exponential
                                         0.8
                                                                    0.8
              0.8
                                     Observed
          Observed
                                                                 Observed
              9.0
                                         9.4
                                                                    0.4
              0.0
                            0.5
                               1.0
                                                 4e-04 8e-04
                                                                                    0.336
                 -1.0
                        0.0
                                           0e+00
                                                                       0.330
                                                                             0.333
                                                 Predicted
                                                                             Predicted
                      Predicted
```

References

Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral model of genetic variation. *Bioinformatics*, 18:337–338.

- Prangle, D., Blum, M. G. B., Popovic, G., and Sisson, S. A. (2013). Diagnostic tools for approximate Bayesian computation using the coverage property. *Preprint*. arxiv.org/abs/1301.3166.
- Voight, B. F., Adams, A. M., Frisse, L. A., Qian, Y., Hudson, R. R., and Di Rienzo, A. (2005). Interrogating multiple aspects of variation in a full resequencing data set to infer human population size changes. *PNAS*, 102:18508–18513.