Selección única. (total de la sección: 5 puntos) I.

A continuación se presentan 5 ítems de selección única con cuatro opciones de respuesta cada uno. Marque una equis (X) sobre la letra que antecede a la opción que usted considere como correcta en cada uno. Traslade la respuesta seleccionada a tabla de respuesta que se encuentra en la primera página.

1. [1 punto] Considere la sucesión recursiva $\{a_n\}_{n\geq 0}$ la cual es lineal, homogénea, de orden 3 y de coeficientes constantes definida por:

$$a_n = 5a_{n-1} - 7a_{n-2} + 3a_{n-3}$$
 donde, $a_0 = 1$, $a_1 = 2$ y $a_2 = 1$

Considere además una ecuación característica asociada a la sucesión recursiva anterior. Al determinar las soluciones de esta ecuación y sus multiplicidades se obtiene que: an-5an-1 + 7an-2 -3an-3=0

- x = 3 es solución simple y s = 1 es solución con multiplicidad 2.
- $x^3 5x^2 + 7x 3 = 0$ B) s = -3 es solución simple y s = -1 es solución con multiplicidad 2. \times an-1 = x2
- X1=3 / X2=1 C) s = 3 y s = 1 son ambas soluciones simples. X
- an-3 = K D) s = 1 es solución simple y s = 3 es solución con multiplicidad 2. \varkappa $(x-1)^{2}(x-3)$ 2. [1 punto] Considere las siguientes afirmaciones:
 - I. Sobre $\mathbb{Z}-\{0\}$, la definición de \circledast por $a\circledast b=\frac{a+b}{a}$ corresponde a una Ley de Composición Interna.
- II. Sea $\mathcal{U} = \{1, 2\}$. Sobre $\mathcal{P}(\mathcal{U})$, la definición de * por: $A * B = \overline{A \cup B}$ corresponde a una Ley de Composición Interna. ¿Cuál o cuáles son con certeza verdaderas?
- $\frac{2+-2}{2} = \boxed{0} \times$ P(u) = {Ø, {1}, {2}, {1,2}} A) Ninguna.
- B) Solo la I. (1,2) U (1,2) = 0 C) Ambas.
- Solo la II.
- 3. [1 punto] Sea (G, \perp) un grupo de orden 21, tal que e corresponde a su elemento neutro. Considere la siguientes proposiciones.
 - I. Si (W_1, \perp) es un subgrupo de (G, \perp) , entonces el orden de este NO puede ser 14. \checkmark
- II. Si W_2 es un subconjunto de G tal que $e \in W_2$, entonces W_2 con \bot es un subgrupo de (G, \bot) .

¿Cuál o cuáles son con certeza verdaderas?

- A) Ninguna.
- B) Solo la II.
- C) Ambas.

Solo la I.

Para ser subgrupo debe de estar el neutro y todos los inversos de los elementos que lo componen.

4. [1 punto] Sobre $\mathbb{Q} - \{2\}$ se define la ley de composición interna \circledast por: $a \circledast b = \frac{2a + 2b - ab}{2}$, de manera que se sabe que $(\mathbb{Q} - \{2\}, \circledast)$ corresponde a un grupo abeliano, con neutro e = 0 y tal que el inverso de un elemento a esta dado por $a^{-1} = \frac{2a}{a-2}$, para todo $a \in \mathbb{Q} - \{2\}$.

El resultado que se obtiene al efectuar la operación $\left(-3 * \frac{3}{2}\right)^{-1}$, corresponde a:

A)
$$\frac{4}{3}$$

B)
$$\frac{4}{5}$$

$$\sqrt{-\frac{6}{5}}$$

D)
$$-\frac{4}{7}$$

$$\left(\frac{3}{4}\right)^{-1}$$
 $a^{-1} = \frac{2 \cdot \frac{3}{4}}{\frac{3}{4} \cdot 2} = \boxed{\frac{-6}{5}}$

5. [1 punto] Sobre el conjunto $A = \{4, 5, 6, c, i, x\}$ se define la operación * de acuerdo con la siguiente tabla de operaciones:

	*	(4)	(5)	(6)	(C)	ì	X
Ī	4	4	5	6	C	i	\boldsymbol{x}
	5	5	6	4	\boldsymbol{x}	C	i
	6	6	4	5	i	x	c
	C	C	i	\boldsymbol{x}	4	5	6
	i	i	\boldsymbol{x}	c	6	4	5
0	x	, x	C	i	5	6	4

Neutro=1

$$5^{-1}=6$$
 $X^{-1}=X$
 $6^{-1}=6$ $Y^{-1}=1$

Se sabe que * es asociativa en A. Considere las siguientes afirmaciones:

- II. (A,*) cumple que todo elemento de A tiene inverso en A. \checkmark

¿Cuál o cuáles de las afirmaciones anteriores son con certeza verdaderas?

- X Solo la II.
- B) Ambas.
- C) Ninguna.
- D) Solo la I.

II. Respuesta corta. (total de la sección: 5 puntos)

A continuación, se presentan 4 ítems de respuesta corta. Resuelva cada uno de ellos y anote el resultado en la línea indicada. Debe reportar su respueta en la tabla de respuesta de la primera página del examen.

6. [1 punto] Considere la sucesión $\{a_n\}$ definida en forma recursiva por:

$$\left\{ \begin{array}{ll} a_n = 5a_{n-2} + 8a_{n-3}, & \forall n \ge 3 \\ a_0 = -3, & a_1 = 4, & a_2 = -1 \end{array} \right.$$

El valor de a₅ corresponde a: -28

7. [1 punto] En una estructura algebraica (G, *) con neutro e, se dice que x en G es involutivo, si y solo si, x * x = e. Sobre el conjunto $A = \{4, 5, 6, 9, m, p\}$ se define la operación \bot de acuerdo con la siguiente tabla de operaciones:

					_	
1	4	5	6	9	m	p
4	(4)	5	6	9	m	p
5	5	6	4	p	9	m
6	6	4	5	m	p	9
9	9	m	p	4	5	6
m	m	p	9	6	4	5
p	p	9	m	5	6	4

elemento neutro = 4

Si se sabe que (A, \bot) es un grupo, escriba todos sus elementos involutivos: $\{4, 9, m, p\}$

8. [2 puntos] Sobre el conjunto $A = \{6, c, m, p, w\}$ se define la operación \downarrow por la siguiente tabla de operaciones:

n	1	6	C	m	p	w
1	6	C	6	P	w	m
	c	6	C	C	p	w
	m	w	m	6	p	C
	p	p	p	m	6	w
	w	6	w	C	m	p

Con base en la estructura algebraica (A,\downarrow) :

a) ¿Cuál es el resultado de la operación $(w\downarrow p)^2$?

$$(w \downarrow p) \downarrow (w \downarrow p)$$
 $m \downarrow m = 6$
 $(x \downarrow x) \downarrow m = p$
 $(m \downarrow m) \downarrow m$
 $6 \downarrow m = p$

0=3

9. [1 punto] Sobre el conjunto $\mathcal{G} = \{3, 5, 7, a, b, m\}$ considere el grupo $(\mathcal{G}, *)$, donde * está definido por:

*	3	5	7	a	b	m.	Neutro
3	3	5	7	a	b	m	140000
3 5 7	5	a	m	(3)	7	b	
7	7	m	5	b	3	a	
a	a	3	b	5	m	7	
a b	6	7	3	m	a	5	
m	m	b	a	7	5	3	

De manera que el inverso de cada elemento está dado a continuación: $3^{-1} = 3$, $5^{-1} = a$, $7^{-1} = b$, $a^{-1} = 5$, $b^{-1} = 7$ y $m^{-1} = m$. Un subgrupo de orden 3 de $(\mathcal{G}, *)$ corresponde a: $\{3, 5, 3\}$

III. Desarrollo. (total de la sección: 17 puntos)

A continuación, se presentan 4 preguntas. Para cada una de ellas resuelva en el espacio en blanco lo solicitado. Justifique cada uno de los pasos que lo llevaron a obtener su respuesta.

10. [3 puntos] Considere la sucesión $\{b_n\}$ definida en forma recursiva por:

$$\begin{cases} b_n = -\frac{4}{3}b_{n-1} + \frac{4}{3}b_{n-2}, & \forall n \ge 2. \\ b_0 = -3, & b_1 = 5 \end{cases}$$

Use la teoría estudiada sobre el polinomio característico para determinar una fórmula explícita para $\{b_n\}$.

$$bn + \frac{4}{3}bn - 1 - \frac{4}{3}bn - 2 = 0$$

$$bn = x^{2}$$

$$bn - 1 = x$$

$$bn - 2 = k$$

$$\Rightarrow x^{2} + \frac{4}{3}x - \frac{4}{3} = 0$$

$$\Rightarrow x = \frac{2}{3} \quad \lambda \quad x_{2} = -2$$

$$\Rightarrow A \left(\frac{2}{3}\right)^{n} + C\left(-2\right)^{n}$$

$$Cuando \quad n = 0 \qquad Cuando \quad \eta = 1$$

$$A + C = -3 \qquad A\left(\frac{2}{3}\right) + \left(\frac{(-2)}{3}\right) = 5$$

$$Seguin \quad 1a \quad calculadora:$$

$$A = -\frac{3}{8} \left(\frac{2}{3}\right)^{n} + \frac{-21}{8} \left(-2\right)^{n}$$

$$R = -\frac{3}{8} \left(\frac{2}{3}\right)^{n} + \frac{-21}{8} \left(-2\right)^{n}$$

Scanned with CamScanner

11. [4 puntos] Use el método de inducción matemática para demostrar que:

$$5+7+9+\cdots+(2n+1)=(n+1)^2-4$$
, para todo $n \in \mathbb{N}, n \ge 2$.

I) Se verifica para n=2.

$$(2-2)+1=5$$
 $(2+1)^2-4=5$

II) Se toma como verdadero para todo n.

5+7+9+...+
$$(2n+1)$$
= $(n+1)^2-4$

H.I

 $(n+1)^2-4$

Se prueba con n+1:

Se process con n+1:

$$5+7+9+...+(2n+1)+(2n+3)=[(n+2)^2-4]=(n+2)(n+2)-4$$

 $= n^2+2n+2n+4-4$
 $= n^2+4n$
 $= n^2+4n$

$$\Rightarrow$$
 (n+1)(n+1)-4 + 2n+3

12. [5 puntos] Use el método de inducción matemática para demostrar que $10^{n+1} + 12 \cdot 4^{n+2} + 5$ es divisible por 9, para todo $n \in \mathbb{N}$, $n \ge 0$. Sugerencia: Durante el proceso de solución, se sugiere usar como Hipótesis de Inducción el despeje $10^{n+1} = 9k - 12 \cdot 4^{n+2} - 5$, con $k \in \mathbb{Z}$.

I) Se verifica con
$$n=0$$
.

10°+1 + 12.4°+2 + 5 = 207 $\exists m \in M$ tq $m \cdot q = 207$
 $m = 23$

Se prueba con nt1
$$10^{n+2} + 12 \cdot 4^{n+3} + 5 = 9 \cdot u \quad \forall u \in \mathbb{N}$$

$$\Rightarrow 10^{n+1} \cdot 10 + 12 \cdot 4^{n+2} \cdot 4 + 5$$

13. [5 puntos] Sobre el conjunto Q × Q* se define la ley de composición interna ⊥ por:

 $(a,b) \perp (c,d) = (a+c,2bd)$

Si se sabe que \bot es asociativa en $\mathbb{Q} \times \mathbb{Q}^*$. Demuestre que $(\mathbb{Q} \times \mathbb{Q}^*, \bot)$ es un grupo abeliano. \bigcirc

1+ Conmutativo:

V (a,b), (c,d) ∈
$$\mathbb{Q} \times \mathbb{Q}^{*}$$
.
Hqd ⇒ (a,b) + (c,d) = (c,d) + (a,b)
⇒ (a,b) + (c,d) = (a+c, 2bd) (A)
⇒ (c,d) + (a,b) = (c+a, 2db)

>(a+c, 2bd) (por conmutividad de suma y multiplicación) ($\Delta \Delta$)

:. De (A) y (AA) se concluye que es conmutativa.

2- Neutro:

$$\forall (a,b), (e_1,e_2) \in \mathbb{Q} \times \mathbb{Q}^*$$

$$\forall (a,b), (e_1,e_2) \in \mathbb{Q} \times \mathbb{Q}^*$$

$$\Rightarrow (a,b) \perp (e_1,e_2) = (a+e_1,2b\cdot e_2)$$

$$\Rightarrow a+e_1 = a$$

$$\therefore e_1 = 0 \quad (*)$$

$$\Rightarrow 2 \cdot b \cdot e_2 = b$$

$$\therefore e_2 = \frac{1}{2} \quad (**)$$

.. De (A) y (AA) se concluye que el neutro es (0, 1/2).

3- Inverso: EOXO' 7 60

$$\forall (a,b), (c,d) \in \mathbb{Q} \times \mathbb{Q}^*$$

 $\forall (a,b), (c,d) \in \mathbb{Q} \times \mathbb{Q}^*$
 $\forall (a,b), (c,d) \in \mathbb{Q} \times \mathbb{Q}^*$
 $\forall (a,b), (c,d) \in \mathbb{Q} \times \mathbb{Q}^*$
 $\forall (a,b), (c,d) \in \mathbb{Q} \times \mathbb{Q}^*$

$$\Rightarrow$$
 (a,b) \perp (c,d) = ℓ a+c, 2bd)

$$2bd = \frac{1/2}{2b}$$

 $\frac{d}{d} = \frac{1/2}{2} - 1(\frac{11}{2})$ $\therefore De (\frac{11}{2}) \quad \text{se concluye que el inverso es } (-\frac{3}{2}, \frac{1/2}{2D})$

R/Como ya se sabe que es cerrado y asociativo, no hace falta demostrario, por lo que de 1-, 2- y 3- se concluye que se trata de un grupo abeliano.

Scanned with CamScanner