【实验目的】

- 1.研究音叉振动系统的受迫振动;
- 2.研究阻尼对音叉共振曲线的影响;
- 3.研究音叉双臂负载物的质量与位置对音叉固有频率的影响;

【实验原理】

本实验利用音叉研究阻尼振动和受迫振动。音叉是一个典型的振动系统,其二臂对称、振动相反,中心杆处于振动的节点位置,净受力为零而不振动。因此外界对音叉振动的影响很小,音叉保持振动的能力很强,其品质因数(Q值)很容易达到10³的数量级。音叉的固有频率由其材质和几何形状决定。生活中音叉常用于乐器调音或测试听力。在石英钟出现之前,曾出现过一种利用金属音叉振动计时的音叉(音片)钟。

1、音叉的阻尼振动和受迫振动

为了方便驱动和测量音叉振动,本实验使用钢质音叉。我们通过驱动线圈,探测线圈和阻尼磁铁影响和观察音叉的振动。驱动线圈和探测线圈的结构相同,都是以圆柱形永磁铁为中心绕多匝铜线构成。当驱动线圈接近音叉振动臂时音叉靠近永磁铁的部分被磁化、我们拖被磁化的部分理解为一个小磁铁。在线圈中通以交变电流,产生一个交变磁场,则小磁铁会到一个交变的力。忽略音叉振动对磁力的影响,则音叉受力与交变磁场(或者驱动线圈中的电流)成正比。如果忽略小磁铁随音叉振动在线圈中产生的感应电压,而且驱动频率变化范围小,则可以认为驱动力的振幅与驱动线圈的电压的振幅成正比(二者波形会有一个相位差八探测线圈与驱动线圈的工作方式相似,只是线圈不外加电压,因而只有音叉磁化部分在振动时产生的感应电压。根据电磁感应定律,感应电压正比于磁通量的变化率。因此探测电压与音振动的速度成正比,也就是说,本实验测量的是速度共振。此外,当磁铁靠近音叉时,音又作为导体在磁场中快速运动会产生涡流,消耗其动能如果振幅足够小,可以认为磁阻尼与音叉振动的速度成正比。

基于上面的分析,如果在驱动线圈上通以正弦信号,音叉振动的动力学方程可以写成:

$$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \omega_0^2 x = A\cos\omega t \tag{1}$$

其中 x 为音叉上某固定点的位移, ω 为音叉的固有圆频率, δ > 0表征阻尼强度($Q \equiv \omega_0/2\delta$), ω 为驱动电压的圆频率, A正比于驱动电压的振幅。(1)式是标准的受迫振动方程, 我们在实验中已多次遇到(比如 RLC 串联谐振电路),这里我们只写出其主要结论:

(1) 阻尼振动(A = 0)

阻尼振动方程的解为:

$$x(t) = a_0 e^{-\delta t} \cos(\omega' t + \varphi)$$
 (2)

其中 $\omega' = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \sqrt{1 - 1/4Q^2}$ 。测量阻尼震荡周期、可以得到 ω' 。因为音又的 Q 值远大于 1, ω' 与 ω_0 非常接近。如果定义振幅衰减到 e^{-1} 经历的时间为衰减时间常数,记作 τ ,则有

$$\delta = \frac{1}{\tau}, \qquad Q = 2\omega_0 \tau \tag{3}$$

(2) 受迫振动(A≠0)

加入驱动力并保持一段时间后(远大于阻尼振动的衰减时间常数 τ), 受迫振动达到稳态:振

动波形与驱动力波形的频率相同并保持固定的相位差, 音又振幅与驱动力幅度成正比, 此时探测线圈的输出波形正比于

$$x(t) = v\cos(\omega t + \varphi) \tag{4}$$

其中

$$v = \frac{A}{\omega_0 \sqrt{1 + Q^2 (\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})^2}}, \qquad \varphi = tan^{-1} [Q(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})]$$
 (5)

保持驱动振幅不变,扫描驱动频率,速度振幅在 $\omega=\omega_0$ 达到极大值 v_{max} ,即发生共振。在共振峰的两侧 $\omega=\omega_1,\omega_2$ 处,速度振幅降到 $v_{max}/\sqrt{2}$,则由(5)式可得

$$|\omega_2 - \omega_1| = \frac{\omega_0}{O} \tag{6}$$

所以 Q 值越大, 共振峰越尖锐。如果测出共振曲线, 也可以根据上式计算 Q 值。

2、音又的振动周期与质量的关系

将两个质量为 m_x /2的质量块对称地固定在音又两臂上,由于质量增加而弹性基本不变,音又的固有频率会变小。我们将音又简化成一个弹簧振子,则振动周期

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{7}$$

这里m和k分别称为等效质量和等效劲度系数。假定k不随 m_x 改变,则从上式可知:

$$T^2 = \frac{4\pi^2}{k}(m_0 + m_x) \tag{8}$$

我们称 m_0 为音叉的等效质量。改变附加质量,测量对应的振动周期,可以得到音叉的等效质量与等效劲度系数需要指出的是,这两个量与固定质量块的位置是有关的。由此原理可制作测量质量和密度的传感器。

【实验内容】

- 1. 测量音叉的阻尼振动,根据阻尼振动波形计算音叉的固有频率与品质因数。
- 2. 测量音叉共振的幅频特性曲线,根据共振曲线计算音叉的固有频率与品质因数。
- 3. 分别测量音叉双臂对称负载不同质量时的共振频率, 计算音叉的等效振子质量; 并利用音叉振动频率与负载质量块 m 之间的关系, 测定未知质量块的质量。
- 4. 对音叉臂施加阻尼,测量阻尼变化的情况下音叉的共振频率和品质因数。
- 5. 测量音叉共振的相频特性曲线(选做)。

【注意事项】

实验中以及分析实验数据时请注意下面的问题:

1. 固有频率 制测

音叉的品质因数很大,共振峰很窄,如果不事先确定固有频率的大致范围,将很难在有限的时间内测到有效的共振数据。可以用下面的方法粗测共振频率:将探测线圈靠近音叉臂1-2mm,并用示波器观察输出信号。用小木棍(或其它软的物体轻敲音叉,激发音叉振动,可以在示波器上看到衰减振荡信号。测量信号的频率可得粗略得到音叉的固有频率,误差很容易达到1Hz以内

2. 阻尼振动测量

用驱动线圈激发音叉振动, 在粗测的固有频率附近细调驱动频率, 使得音叉振动最大(探测线圈输出最大, 可以听到音叉发出的声音并看到音叉臂明显的振动)。然后撤去驱动信号, 用示波器滚动(Roll)模式记录阻尼振动信号。

3. 驱动线圈与探测线圈之间的干扰

如果探测线圈和驱动线圈比较接近,驱动线圈产生的交变磁场可以进入探测线圈,产生一个与音叉振动无关信号,要注意甄别这种干扰信号,并在实验中尽量减小其影响。

4. 阻尼

阻尼磁铁与音叉的距离越近,阻尼效果越大。阻尼磁铁的位置越靠近音叉的开口端,阻尼效果也越大。由于驱动线圈和探测线圈都有永磁体芯,它们也会引起一定的阻尼。此外磁铁靠近音叉也会轻微改变音叉的固有频率,甚至引入一些非线性效应为减轻这些非理想效应,磁铁(包括驱动和探测线圈)不要与音叉臂太近。

【实验数据处理】

1. 阻尼振动测音叉参数

15T = 57.40ms
T =
$$3.827 \times 10^{-3} s$$

 $\omega' = \frac{2\pi}{T} = 1641.95 rad/s$

t/ms	A/V
-4.84	0.616
-2.84	0.396
-0.86	0.272
0.84	0.196
2.78	0.144
4.82	0.1

$$x(t) = a_0 e^{-\delta t} \cos(\omega' t + \varphi)$$

$$\delta = 0.186$$

$$\tau = \frac{1}{\delta} = 5.376$$

$$\omega_0 = \sqrt{{\omega'}^2 + \delta^2} = 1641.96 rad/s$$

$$Q = \frac{1}{2} \omega_0 \tau = 4413.59$$

2. 音叉共振幅频特性测参

f/Hz	A/V
250	0.036
260	0.048
260.1	0.056
260.2	0.067
260.3	0.081
260.4	0.099
260.5	0.123
260.6	0.159
260.7	0.215
260.8	0.312
260.9	0.546
260.94	0.799
260.97	1.089
260.98	1.244
261	1.403
261.01	1.434
261.02	1.433
261.03	1.407
261.05	1.324
261.07	1.224
261.1	1.057
261.13	0.897
261.16	0.775
261.2	0.63
261.3	0.423
261.4	0.32
261.6	0.218
262	0.143
263	0.091
265	0.066
270	0.053

由图可知:

固有频率 $f_0=261.01Hz$,固有角频率 $\omega_0=1639.97rad/s$

振幅为 $\frac{\sqrt{2}}{2}$ 最大振幅的频率分别为 $f_1 = 260.968 Hz$, $f_2 = 261.109 Hz$

故 $\omega_1 = 1639.71 rad/s$, $\omega_2 = 1640.60 rad/s$, $|\omega_1 - \omega_2| = 0.88 rad/s$

$$Q = \frac{\omega_0}{|\omega_1 - \omega_2|} = 1863.60$$

3. 分别测量音叉双臂对称负载不同质量时的共振频率,计算音叉的等效振子质量;并利用音叉振动频率与负载质量块 m 之间的关系,测定未知质量块的质量

砝码	f/Hz	T/s	T^2
5g*2	248	0.004032	1.62591E-05
10g*2	234.65	0.004262	1.81618E-05
15g*2	225.84	0.004428	1.96064E-05
?	235.36	0.004249	1.80524E-05

根据 $T^2=rac{4\pi^2}{k}(m_0+m_\chi)$ 和拟合直线,可知 $rac{4\pi^2}{k}=1.67 imes10^{-7}$, $rac{4\pi^2}{k}m_0=1.47 imes10^{-5}$ 得 $m_0=88g$,而未知质量块的质量和为 20.26g。

4. 对音叉臂施加阻尼,测量阻尼变化的情况下音叉的共振频率和品质因数。

f/Hz	A/V
260	0.047
260.5	0.129
260.6	0.171
260.7	0.24
260.8	0.381
260.85	0.516
260.9	0.829
260.91	0.9
260.92	1.02
260.93	1.119
260.95	1.318
260.97	1.394
260.98	1.388
261	1.315
261.05	1.047
261.1	0.786
261.2	0.483
261.4	0.268
262	0.13
265	0.064

由图可知: 固有频率 $f_0=260.97Hz$,固有角频率 $\omega_0=1639.72rad/s$ 振幅为 $\frac{\sqrt{2}}{2}$ 最大振幅的频率分别为 $f_1=260.918Hz$, $f_2=261.06Hz$

故 $\omega_1 = 1639.40 rad/s$, $\omega_2 = 1640.29 rad/s$, $|\omega_1 - \omega_2| = 0.89 rad/s$

$$Q = \frac{\omega_0}{|\omega_1 - \omega_2|} = 1842.38$$

f/Hz	A/V
259	0.028
260	0.237
260.1	0.38
260.15	0.531
260.2	0.8
260.23	0.997
260.25	1.067
260.26	1.078
260.27	1.074
260.3	0.999
260.35	0.804
260.4	0.628
260.5	0.417
260.6	0.307
260.8	0.205
261	0.16
265	0.06

由图可知: 固有频率 $f_0=260.26Hz$,固有角频率 $\omega_0=1635.26rad/s$

振幅为 $\frac{\sqrt{2}}{2}$ 最大振幅的频率分别为 $f_1 = 260.19Hz$, $f_2 = 260.37Hz$

故 $\omega_1=1634.82ad/s,\ \omega_2=1635.95rad/s,\ |\omega_1-\omega_2|=1.13rad/s$

$$Q = \frac{\omega_0}{|\omega_1 - \omega_2|} = 1447.13$$

思考题:

1. 驱动线圈和探测线圈都有永磁体芯, 其作用是什么?

驱动线圈的永磁体芯是用来磁化靠近永磁铁的音叉的,进而通过驱动线圈的交变磁场来驱动音叉振动;而探测线圈的永磁体芯则用来产生磁场,磁场因音叉的振动而变化,在绕的线圈中产生了感应电动势,从而探测到振动信号。

- 2. 我们用标准的受迫振动模型描述音叉的受迫振动,主要做了哪些近似? 忽略音叉振动对驱动线圈的磁力的影响,忽略小磁铁随音叉振动在线圈中产生的感应电压, 而且认为驱动频率的变化范围很小,认为音叉的振幅足够小。
- 3. 品质因数的大小如何影响音叉的振动特性? 估算则音叉阻尼振荡的衰减时间常数, 假设 固有频率为 200Hz, 品质因数 Q = 3000。

受迫振动中,Q 值越大,音叉的共振峰越尖锐。阻尼振动中,因为 Q 值远远大于 1,所以 ω' 与 ω_0 非常接近。

$$\omega_0 = 2\pi \times 200 = 400\pi \ (rad/s)$$
$$\tau = \frac{Q}{2\omega_0} \sim 1.194 \ s$$

4. 实验中音叉的有效质量是怎么定义和测量的? 它与音叉的质量有关吗?

有效质量的定义: $T^2 = \frac{4\pi^2}{k}(m_0 + m_x)$, $m_{f_{X}} = m_0 + m_x$ 。有关,因为 m_0 即为音叉的等效质量(质量)。

5. 如何判断探测线圈测中的信号是否直接来自驱动线圈?

在其他条件不变的情况下,挪开音叉,观察探测信号中是否还有一个恒稳的信号存在。若存在,则再把探测和驱动线圈离远一点。

附录:

```
一到图图就就
      15 DT = 57.40ms
      € T = 3.8267mS = 93.827× 1035
        W= 1641.995 rad/s ====
                                         8=0.186
                        ×3= 2.785- T$= € 376
      X_1 = -4.845

Y_1 = 616mV
                     Y2= 144mV
                      X4=0.84005. P$ 09/27.
Y4=196mV.
       X2 = 4.825.
       Yz = 100 mV.
                         \chi_{5} = -0.865.
\chi_{5} = 272 \text{ mV}.
                           X6 = -2.845
                           Y6= 396mV.
2. 帽贩特性曲线.
                                      260.)
                                               0.056.
                    Al.V.
                                      260.2
                                               0067.
                                      260.3
                                               0.08)
                                       260.4
                                               0.099
                                      260.5
                     0.048
                                               0.123
          250
                                      260.6
                                               0.159
          260
                                      260.7
                                               0.215.
                                      260.8 0.312
                                      260.9
                                               0.546-
                                      760.94
                      0.022
                                                  1.403.
```

1-434 261.01 B 09/27 261.02, 1.433. 261.03 1.407. 261.05 1.324. 261.07 1.224. W. = 260.96 2 26[.] 1.054. W2=261.109. 26/.13. 0.897. 261-16 0.775 261.2 0.630 26[.3 0.423. 261.4. 0.320. 261.06. 0.218. 典 262 0.143. 263 0.091. 265 0066 270 0.053

4.明尼 260 A/V 0.047. 19 .9/27 260.5. 0.129 260.6. 0.171. 260.7. 0.240 0.240. 260.8 0.381 260.85 0.516. 260.9 0.829. 260.91. 0.900 260.92 1.070. 260.93. 1.119 260.95 1-318. 260.95 1-394 262 0.130. 265 0.064 260.98 1.388 261 1.315. 261-DS 1.047. 26 | . | . 0.786. 261.4 0.483

南。 Pg 8/27 A 0.028.. 259. 0.997. 260.23 0.2837 260 260.25 1.067. 260.26. 1.078. 260.27 1.074. 80.38D. 260. 0.531. 260.15 260.2. 0.999 260.3 0.804. 260.035 0.6\$28. 260.4 0.417 260.5 260.6 0.307 0.20 260.8. 0.160 261 0.060. 265