Advanced Microeconomics II Finitely Repeated Games

Brett Graham

Wang Yanan Institute for Studies in Economics Xiamen University, China

April 1, 2015

Repeated Games

Modeling repeated games examines the potential implications of long-term interactions.

- current actions influence future behaviour.
- allows for cooperation, revenge, threats.
- to sustain cooperation player's need to be
 - rewarded for cooperation;
 - punished for cheating (defecting);
- If we use SPE, punishments must be credible. Players must be sufficiently compensated for punishing cheaters.

Finitely Repeated Games

Definition

For any positive integer T, a T-period finitely repeated game of the strategic game $\{N, (A_i), (u_i)\}$ is an extensive game with perfect information and simultaneous moves $\{N, H, P, (\succeq_i^*)\}$ in which

- $H = \{\varnothing\} \cup (\cup_{t=1}^T A^t)$ where A^t is the set of possible sequences of outcomes in A of length t.
- P(h) = N for each nonterminal history $h \in H$.
- the preference relation \succeq_i^* of player i on each terminal history $h \in Z$ is represented by the function $\sum_{t=1}^T u_i(a^t)/T$.

Prisoner's Dilemma Example

$$\begin{array}{c|cc} & C & D \\ C & 3,3 & 1,4 \\ D & 4,1 & 2,2 \end{array}$$

- Players play the Prisoner's dilemma for T periods.
- For each $h \in Z$, $u_i(h) = \sum_{t=1}^T u_i(a^t)/T$.

Consider the following symmetric strategies.

- Always cooperate: after any history play C.
- Never cooperate: after any history play D.
- Tit-for- tat: start with *C*, then play whatever my opponent played last period.
- Grim trigger: start with C, play C in period t if h is (C, C) in every previous period, otherwise play D.
- Which of these are Nash equilibrium strategies?
- Which of these are SPE strategies?

Enforceable Outcomes

For every $a \in A$ denote by u(a) the vector $(u_i(a))_{i \in N}$.

Definition

Player i's minmax payoff in G (denoted v_i) is

$$v_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} u_i(a_i, a_{-i}).$$

Definition

A payoff profile w is enforceable if $w_i \ge v_i$ for all $i \in N$. A payoff profile w is strictly enforceable if $w_i > v_i$ for all $i \in N$. An outcome $a \in A$ is a (strictly) enforceable outcome of G if u(a) is (strictly) enforceable.

Denote by $p_{-i}(i)$ the solution to player i's minmax problem.

Enforceable Outcomes - Examples

$$\begin{array}{c|cc} & C & D \\ C & 3,3 & 1,4 \\ D & 4,1 & 2,2 \end{array}$$

	С	D	Ε
C	3,3	1,4	0,0
D	4, 1	2, 2	0.5, 0
Ε	0,0	0, 0.5	0,0

	С	D	Ε
C	3, 3	1,4	0,0
D	4, 1	2,2	0,0
Ε	0,0	0,0	0.5, 0.5

In each game

- what is the set of pure strategy Nash equilibria?
- what is player 1's minmax payoff?
- what is player 2's minmax payoff?
- what are the set of enforceable outcomes?

Nash Equilibria

Proposition

If the payoff profile in every Nash equilibrium of the strategic game G is the profile (v_i) of minmax payoffs in G then for any value of T the outcome (a^1,\ldots,a^T) of every Nash equilibrium of the T-period repeated game of G has the property that a^t is a Nash equilibrium of G for all $t=1\ldots,T$.

- Suppose t is the latest period for which a^t is not a Nash equilibrium of G.
- There exists some player who can do better in period t. Thus, he has a profitable deviation.
 - Play his best strategy in period t.
 - After t play a strategy that gives him at least his minmax payoff (depends on $s_{-i}(h)$).

$$\begin{array}{c|ccccc}
 & C & D & E \\
C & 3,3 & 1,4 & 0,0 \\
D & 4,1 & 2,2 & 0.5,0 \\
E & 0,0 & 0,0.5 & 0,0
\end{array}$$

	С	D	Ε
C	3, 3	1,4	0,0
D	4, 1	2,2	0,0
Ε	0,0	0,0	0.5, 0.5

For which of these examples do the conditions of the proposition apply?

	С	D	Ε
C	3,3	1,4	0,0
D	4, 1	2, 2	0.5, 0
Ε	0,0	0, 0.5	0,0

Are there other Nash equilibria?

- Can we sustain an average payoff for player 2 above 2?
 - \triangleright $s_i(\varnothing) = C$
 - For t = 1, ..., T 1, $s_i(h^{t-1}) = C$ if h contains only (C, C), otherwise play E.
 - ▶ For t = T, $s_i(h^{t-1}) = D$ if h contains only (C, C), otherwise play E.
 - What is the average payoff as T gets large.

	С	D	Ε
C	3,3	1,4	0,0
D	4,1	2, 2	0.5, 0
Ε	0,0	0, 0.5	0,0

Are there other Nash equilibria?

- Can we sustain an average payoff for player 2 below 2?
 - $s_1(\varnothing) = D$, $s_2(\varnothing) = C$
 - For t = 1, ..., T 1, $s_1(h^{t-1}) = D$ if h contains only (D, C), otherwise play E.
 - For t = 1, ..., T 1, $s_2(h^{t-1}) = C$ if h contains only (D, C), otherwise play E.
 - ▶ For t = T, $s_1(h^{t-1}) = D$ if h contains only (D, C), otherwise play E.
 - ▶ For t = T, $s_2(h^{t-1}) = D$ if h contains only (D, C), otherwise play E.
 - ▶ What is the average payoff as *T* gets large.

Nash Folk Theorem for Finitely Repeated Games

Proposition

If $G = \{N, (A_i), (u_i)\}$ has a Nash equilibrium \hat{a} in which the payoff of every player i exceeds his minmax payoff v_i then for any strictly enforceable outcome a^* of G and any $\epsilon > 0$ there exists an integer T^* such that if $T > T^*$ the T-period repeated game of G has a Nash equilibrium in which the payoff of each player i is within ϵ of $u_i(a^*)$.

Denote p(j) as the profile of strategies that gives player j his minmax payoff.

- Each player starts by playing a_i^* .
- At time $t \leq T L$ play a_i^* if nobody has deviated. If one player (say j) deviated at t-1 play $p(j)_i$ forever after.
- From $T-L < t \le T$ if nobody has deviated for each t < T-L play \hat{a}_i .

Nash Folk Theorem for Finitely Repeated Games

Need to ensure no profitable deviation. Requires that L is large enough so that

$$\max_{a_i \in A_i} u_i(a_i, a_{-i}^*) - u_i(a^*) \le L(u_i(\hat{a}) - v_i) \text{ for all } i \in N.$$

Need payoffs to be within ϵ of $u_i(a^*)$. Choose T^* such that

$$\left|\frac{(T^*-L)u_i(a^*)+Lu_i(\hat{a})}{T^*}-u_i(a^*)\right|<\epsilon \text{ for all } i\in N.$$

Are these SPE strategies?

	С	D	Ε
C	3,3	1,4	0,0
D	4, 1	2, 2	0.5, 0
Ε	0,0	0, 0.5	0,0

- For the outcome (C, C), what is L, what is T^* ?
- For the outcome (D, C), what is L, what is T^* ?

Subgame Perfect Equilibrium

Proposition

If the strategic game G has a unique Nash equilibrium payoff profile then for any value of T the action profile chosen after any history in any subgame perfect equilibrium of the T-period repeated game of G is a Nash equilibrium of G.

- ullet In any subgame that starts in period ${\mathcal T}$ the outcome must be a Nash equilibrium of ${\mathcal G}$
- Since player payoffs in period T are independent of history, the outcome in T-1 must be a Nash equilibrium.
- And so on...

	С	D	Ε
C	3,3	1,4	0,0
D	4,1	2, 2	0,0
Ε	0,0	0,0	0.5, 0.5

What if there are multiple equilibria?

- Can we sustain average payoffs above (2,2)?
 - $ightharpoonup s_i(\varnothing) = C$
 - For t = 1, ..., T 1, $s_i(h^{t-1}) = C$ if h contains only (C, C), otherwise play E.
 - ▶ For t = T, $s_i(h^{t-1}) = D$ if h contains only (C, C), otherwise play E.
 - What is the average payoff as T gets large.
- Is this an SPE?