省选模拟试题

_noname

2018年1月12日

announcement

题目名称	Discrete Mathematics	Advanced Mathematics	Mathematical Analysis
源程序文件名	discrete.c/cpp/pas	advanced.c/cpp/pas	analysis.c/cpp/pas
输入文件名	discrete.in	advanced.in	analysis.in
输出文件名	discrete.out	advanced.out	analysis.out
时间限制	1s	1s	4s
内存限制	512MB	512MB	512MB
测试点数目	10	20	20
每个测试点分值	10	5	5
是否有部分分	否	否	否
题目类型	传统题	传统题	传统题
是否有附加文件	无	无	无

1 hint

本套试题使用lemon评测, C/C++的long long使用%lld输出。

C++的编译命令为g++ %s.cpp -o %s -m32 -Wl,-stack=800000000 -O2 -std=c++11

C的编译命令为gcc %s.c -o %s -m32 -Wl,-stack=800000000 -O2

欢迎大家虐场。欢迎大家暴力AC。

请不要在考试时间内走来走去。

题目顺序与难度无关。

希望大家心存梦想。

祝大家WC和省选顺利。

2 backgrounds

LYC是中关村文理学院一名普通的大一新生,他希望拿到4.00的GPA,他决定好好学习天天向上。

为了达成这一目标,他在每门课上认真听讲以赚取平时分,认真复习,争取考试拿满分,如果拿不到,他会找老师和助教求情看能不能给自己一个满分。他甚至因为在ACM区域赛中被队友们拖累,没有拿到第一,只有3.99的GPA,而放弃了这4个学分。

因为两次ACM而导致一门体育课的公假,从而导致了他体育课被扣了2分,他很愤怒的选择了中期退课来保证自己的GPA。

学习的过程不总是一帆风顺,为了他所修的总学分要达到他的预期(200分),他不能退掉太多的课,所以他还是遇到了一些小小的困难。

3 Discrete Mathematics

3.1 backgrounds

离散数学课上老师正在讲平面图染色问题,LYC作为expert student需要出一道课后习题,此时他想到了一个绝妙的idea。

可是因为LYC需要认真听讲,没有办法想这道题怎么做,只好把题目丢给了你,并请你帮忙。

3.2 content

二维平面上有n条直线,每条直线用两个坐标均为整数的点 $(x_1,y_1),(x_2,y_2)$ 给出。

保证没有三条直线交于一个点。保证没有两条直线重合。保证这些直线至少存在一个交点。

对于两个不同的交点,如果它们在同一条直线上,且它们之间没有其他交点,那么我们称这两个 交点**相邻**。

现在要求对所有交点染色,要求任意两个相邻的交点的颜色都不同,问最少要用多少种颜色来染色。

多组数据。

3.3 input format

从discrete.in中读入

第一行一个整数T,表示有T组数据,接下来依次给出每组数据。

对于每组数据,第一行一个整数n。接下来n行,每行四个整数 x_1,y_1,x_2,y_2 ,表示一条直线。

3.4 output format

输出到discrete.out

对于每组数据输出一行,表示最少需要使用的颜色的数量。

3.5 sample input

2

2

0001

0011

3

 $0\ 0\ 0\ 1$

 $0\ 0\ 1\ 0$

-1 0 0 1

3.6 sample output

1

3

3.7 sample explanation

对于第二组数据,以下是一种染色方法,可以证明不能使用更少的颜色

3.8 constraints

对于所有测试点, $T \le 10$ 。

对于每条直线, $x_1=x_2$ 和 $y_1=y_2$ 不会同时满足,即 $(x_1,y_1),(x_2,y_2)$ 不是同一个点。

测试点编号	$\mid n \mid$	$ x_1 , y_1 , x_2 , y_2 $
1	≤ 2	≤ 1000
2	≤ 3	≤ 1000
3	≤ 4	≤ 1000
4	≤ 10	≤ 1000
5	≤ 100	≤ 1000
6	≤ 300	≤ 1000
7	≤ 10000	$\leq 10^9$
8	≤ 10000	$\leq 10^9$
9	≤ 100000	$\leq 10^9$
10	≤ 100000	$\leq 10^9$

4 Advanced Mathematics

4.1 backgrounds

LYC在复习高等代数的时候,在老师的讲课PPT上看到了一道思考题。令他惊讶的是,这道题他居然不会做!

当时距离老师的下一次答疑时间还有两天,他不希望自己过这么久才知道这道题怎么做,只好把 这道题截图发给你,希望你能尽快帮他做出这道题。

4.2 content

某班 50 名同学作游戏.每人给班里其他一些同学发短信.若A,B,C三人之间,A 只给B 发过短信,B 只给 C 发过,C 只给 A 发过,则称 A B C 构成一个 3-循环.问 50 名同学发短信,最多能产生多少个 3-循环?

作为一名志向高远的大学生,LYC还对题目做出了改动,他认为游戏不应该局限于50个人,而应该在n个人中进行。同时,LYC还要求你写出解题过程,也就是说,你需要给出一组具体的方案。

4.3 input format

从advanced.in中读入 共一行,一个正整数n,表示参与游戏的人数

4.4 output format

输出到advanced.out

第2行到第n+1行,每行n个数,若第i+1行第j个数为1,则表示第i个人给第j个人发过短信,若为0,则表示没发过。

注意请保证你的输出中第i+1行第i个整数为0

4.5 sample input

3

4.6 sample output

1

0 1 0

0 0 1

 $1 \ 0 \ 0$

4.7 sample explanation

4.8 constraints

对于前10%的数据, $n \leq 5$

对于前20%的数据, $n \leq 7$

对于前40%的数据, $n \leq 200$

对于100%的数据, $n \le 2000$

当你的答案和方案全部正确时,你才能得到全部分数,本题有special judge。

5 Mathematical Analysis

5.1 backgrounds

为了保证自己4.0的GPA, LYC会在认为自己会被扣分的时候去找老师和助教求情。然而不巧的是,数学分析的老师在课堂上说,如果想要求情,必须在考前去找他。

理科一号楼是中关村文理学院著名的迷宫,为了防止迷路,LYC决定了解好老师办公室之间的路。但是他忙于复习,只好找到你来帮忙。

5.2 content

理科一号楼有若干条南北向和东西向的走廊,相同走向且相邻的走廊间隔相同,且编号相邻(如 走廊1和2相邻),走廊宽度忽略不计。

任意两条不同走向的走廊相交处都有一间办公室、自习室或实验室,数学分析这门课有n名老师和助教,每人都有办公室,**可能有多个老师(助教)共用一个办公室**,第i个老师(助教)的办公室位于东西向走廊编号 x_i 和南北向走廊编号 y_i 的相交处。第i个老师(助教)的办公室和第j个老师(助教)的办公室之间需要了解的路长度为 $|x_i-x_j|+|y_i-y_j|$ 。

LYC需要了解一些办公室之间的路,使得通过这些路可以从任意办公室走到任意其他办公室。

考虑到可能会有老师或助教A让LYC帮忙送东西给老师或助教B,但LYC不方便带着A的东西去其他办公室求情,所以他必须了解A和B的办公室之间的路。

但是他事先不知道A和B是哪位,所以给了你m种可能,需要你给出对于每种可能,LYC完成全部求情需要了解的路的长度。

注意,如果有些走廊在不同路中都要经过,需要计算多次而不是一次。

5.3 input format

从analysis.in中输入

第一行一个整数n,表示老师和助教的人数

第 $2 \sim n + 1$ 行,第i + 1行两个整数 x_i 和 y_i ,表示第i个老师或助教的办公室的坐标(东西向走廊编号 x_i 与南北向走廊编号 y_i 的相交处)

第n+2行一个整数m,表示送东西需求的可能数

第 $n+3\sim n+m+2$ 行,第n+i+2行两个整数 A_i 和 B_i ,表示第i种可能是老师或助教 A_i 要送东西给 B_i

5.4 output format

输出到analysis.out

共m行,第i行一个整数 ans_i ,表示在老师或助教 A_i 要送东西给 B_i 的情况下,LYC完成求情需要了解的路总长 ans_i 米。

5.5 sample input

4

1 1

1 2

2 1

2 2

1

1 4

5.6 sample output

4

5.7 sample explanation

上图是一个可行解:实线表示必须了解的路,虚线表示其他需要了解的路。

5.8 constraints

数据编号	n	m	特殊条件
1	≤ 4	= 1	无
2	≤ 10	≤ 10	无
3	≤ 1000	≤ 1000	无
4	≤ 1000	≤ 1000	无
5	≤ 5000	≤ 1000	无
6	≤ 5000	≤ 1000	无
7	≤ 5000	$\leq 10^{5}$	无
8	≤ 5000	$\leq 10^5$	无
9	$\leq 2 * 10^4$	$\leq 10^{5}$	$ x_i , y_i \le 10$
10	$\leq 2 * 10^4$	$\leq 10^5$	$ x_i , y_i \le 10$
11	$\leq 5 * 10^4$	≤ 10	无
12	$\leq 5 * 10^4$	≤ 10	无
13	$\leq 5 * 10^4$	$\leq 10^{5}$	无
14	$\leq 5 * 10^4$	$\leq 10^5$	无
15	$\leq 10^{5}$	$\leq 10^{5}$	无
16	$\leq 10^5$	$\leq 10^5$	无
17	$\leq 1.5 * 10^5$	$\leq 10^5$	无
18	$\leq 1.5 * 10^5$	$\leq 10^5$	无
19	$\leq 2*10^5$	$\leq 2 * 10^5$	无
20	$\leq 2 * 10^5$	$\leq 2 * 10^5$	无

对于100%的数据,有 $|x_i|,\ |y_i| \le 10^9$, $1 \le A_i,\ B_i \le n$, $A_i \ne B_i$