Lecture 9: Scaling Latency

https://web3.princeton.edu/principles-of-blockchains/

Professor Pramod Viswanath Princeton University

This lecture: Improving latency of Bitcoin

Three Modules

- Bitcoin (lectures 2-7)
- Scaling Bitcoin (lectures 8-14)
- Beyond Bitcoin (lectures 15-20)

Scaling Bitcoin

- Scaling Bitcoin (lecture 8-14)
- L1 Scaling: Improve Bitcoin performance while still retain basic structure of the longest chain protocol
 - Throughput (#8)
 - Latency (#9)
 - Storage & compute (#10) Sharding
 - Energy (#11) Proof of Stake
- L2 Scaling: Improve performance via an "overlay" on Bitcoin
 - Payment Channels (#12)
 - Data Availability (#13)
 - Rollups: Optimistic and Cryptographic proofs of compressed ledgers (#14)

Bitcoin latency

Time from when a transaction was broadcast until the transaction is confirmed in the ledger

- au_1 : Time from when a transaction was broadcast until the transaction is put into a mined block B
- au_2 : Time from when the transaction was put into a mined block B until block B is k-deep in the longest chain

$$\tau = \tau_1 + \tau_2$$

 au_2 is the real bottleneck, depends on how large k is.

Bitcoin latency

Assume low forking ($\lambda\Delta\ll1$),

Depth of blocks

$$\tau = \frac{k}{(1-\beta)\lambda}$$

From Lecture 6, error probability

Block arrival rate

$$\epsilon = e^{-ck}$$

$$\tau = \frac{\frac{1}{c}\log(\frac{1}{\epsilon})}{(1-\beta)\lambda} = O(\frac{1}{\lambda}\log(\frac{1}{\epsilon}))$$

Latency and security are coupled

Bitcoin latency

$$\tau = O(\frac{1}{\lambda}\log(\frac{1}{\epsilon}))$$

Bitcoin: $\frac{1}{\lambda} = 10$ minutes

Improve Bitcoin latency

Only way to improve latency is to

- reduce k; but this reduces security
- Increase λ ; but this also reduces security

Ethereum:
$$\frac{1}{\lambda} = 15s$$
; $k = 100$

- latency = 25 minutes
- Way better than Bitcoin performance; improvement simply by picking better parameters.

Improve Bitcoin latency

Question: can we make relatively small changes to the longest chain protocol and PoW mining while scaling latency?

Key Requirement:

- Do not want latency to depend on security level
- Decouple security from latency

Prism

Prism achieves optimal latency

Decoupling principle: separate performance from security

Prism 1.0 achieves optimal throughput; last lecture

Decoupling voting

k-deep confirmation rule is a form of voting

Satoshi's Table

q = 0.3	
z=0	P=1.0000000
z=5	P=0.1773523
z=10	P=0.0416605
z=15	P=0.0101008
z = 20	P=0.0024804
z=25	P=0.0006132

$$\frac{1 \text{ deep}}{1 \text{ deep}} = > .45$$

25 deep = > 0.0006

Can think of one block = one vote underneath B

k-deep = k votes in sequence

Really need k large to sample the miners

Bitcoin \rightarrow Deconstruct

Ledger construction

- 1. Select votes along longest voter chain
- 2. Order the proposer blocks by votes

Bitcoin → Deconstruct → Prism

Fast Confirmation Voting Proposing votes Many voter chains

Ledger Construction: For each level choose the proposer block with maximum votes

Prism

- Proposal rule: longest chain
- Voting rule:
 - a) each voter chain votes for one and only one proposer block at each level
 - b) each voter block votes for all the proposer levels that have not been voted by its parent.

Mining rule: honest miner picks to be proposer/voter/transaction block at

random

Cryptographic sortition

How do you prevent adversary from m focusing its mining power on a specific type of blocks or on a specific voter chain?

Superblock

header

Proposer block content

> Tx block content

Voter block 1 content

...

Voter block m content

 $h < T_{prop}$

 $T_{prop} \leq h < T_{prop} + T_{tx}$

header Proposer block Proposer block content

header

Voter block i content

h = Hash(nonce, superblock)

Fast confirmation

Bitcoin

Ledger Construction: For each level choose the proposer block with maximum votes