Graph Throey (Reinhard Diestel) exercises

2020年6月17日

1 グラフ

 \mathbf{A}

В

 \mathbf{C}

 \mathbf{D}

 \mathbf{E}

 \mathbf{F}

 \mathbf{G}

 \mathbf{H}

Ι

 \mathbf{J}

- 2 ラベル付き木と数え上げ
- \mathbf{A}
- В
- \mathbf{C}
- D
- ${f E}$
- \mathbf{F}
- \mathbf{G}
- \mathbf{H}

3 グラフの彩色と Ramsey 理論

 \mathbf{A}

В

 \mathbf{C}

D

 \mathbf{E}

(i) 不等式は $2^k \le n$ と書き換えられる.

k についての帰納法で示す. k=0 はよい. $k\geq 1$ として k-1 での成立を仮定. $v_0\in K_n$ を任意にとる.

 $V_1 = \{w \mid v \text{ から } w \text{ へ向き付けられている }\},$ $V_2 = \{w \mid w \text{ から } v \text{ へ向き付けられている }\}$

とすると, $|V_1|+|V_2|=n-1\geq 2^k-1$ であるから, V_1 または V_2 の どちらかは 2^{k-1} 個以上の頂点を含む.その部分集合に帰納法の仮定を 用いて k-1 個の頂点からなる推移的トーナメントをとり,v を合わせれば k 個の頂点からなる推移的トーナメントが得られる.

(ii) 不等式は $n^k < 2^{kC_2}$ と言い換えられる. $n^k \ge {}_n \mathbf{C}_k \cdot k!$ であるから, ${}_n \mathbf{C}_k \cdot \frac{k!}{2kC_2} < 1$ が成り立つ.

 K_n の各辺を,乱択で向き付けることを考える。k 個の頂点集合に対して,それが推移的トーナメントになる確率は, $\frac{k!}{2kC_2}$ である(強い順に並べる方法が k! 通りあり,向き付けの方法が 2^{kC_2} 通りある).したがって, ${}_nC_k \cdot \frac{k!}{2kC_2}$ は,k 個の頂点からなる推移的トーナメントの個数の期待値に等しい.この値が 1 未満であることから,ある向き付けに対して k 個の頂点からなる推移的トーナメントの非存在が従う.

 \mathbf{F}

 \mathbf{G}

 \mathbf{H}

Ι

 \mathbf{J}

 \mathbf{K}

- 4 Turánの定理と極値グラフ
- \mathbf{A}
- \mathbf{B}
- \mathbf{C}
- \mathbf{D}
- \mathbf{E}
- \mathbf{F}
- \mathbf{G}
- \mathbf{H}

5 個別代表系

 \mathbf{A}

В

 \mathbf{C}

D

 \mathbf{E}

 \mathbf{F}

 \mathbf{G}

6 Dilworth の定理と極値集合論

 \mathbf{A}

 \mathbf{B}

 \mathbf{C}

 \mathbf{D}

 \mathbf{E}