You may resubmit the assignment by Sunday, November 3. 20+(50ption Matthew P. Herath JR. Regular Assignment 1 Clean Sunday, September 29, 2024 7:51 PM Claim: Prove le number of edges in every simple Bipartite graph on n = 2 vertices is at Most [11/4] Pf: Assume we have I vertices on I side of Biparilion with N Fold Verhich in our Graph G. Stanishics now how Stanishics with how to paying he The Maximum # or edges is when v E (U) connects to every v E W. This would be equal to R. (n-R) Now, Marinize this expression d/dR (R.(N-R)) -> RN-R2 -> d/JR-> N-2R Mow, we set this equal to 0, and Find the <u>Critical</u> \mathcal{N} -2R=0 \rightarrow \mathcal{N} =2R \rightarrow R= $\frac{\eta}{2}$ How do you know this is a maximum? Sub this back into our original expression $\mathbb{R} \cdot (\mathbb{N} - \mathbb{R}) \rightarrow \mathbb{N}_2 \cdot (\mathbb{N} - \mathbb{N}_2) \rightarrow \mathbb{N}_2 \cdot \mathbb{N}_2 \rightarrow \mathbb{N}_4$ Now, why do we round down? This is the reason. If, say, - edge # Must be a whole Number, so we must Roval L number of edges is at most -> We Round down because it is "at Most," 15.5, then it is also at most 15 thus, $\chi'_{4} \rightarrow \chi'_{4}$

Is this Sharp? Well, lets show on even one odd n that test this upper bound. & Co-Pilot Hint even (2 = 2m) with the Graph G: The # of edges most be M.M = M2 Using the Constraint or $1^{12}/4J$, and with N=2M, which is good for our 6 graph above / Now, check odd > Co-Pilot Hint odd: 2 - (2m+1) verties in Graph G # or edges would be $M \cdot (M+1) \rightarrow M^2 + M$. Using the Constrain 19/41, with N= 2M+1, we get $\begin{bmatrix} (2n+1)^2/2 \\ \vdots \\ 4m^2+4n+2 \end{bmatrix} \rightarrow \begin{bmatrix} (4m^2+4m+2) \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} m^2+M+\frac{1}{4} \end{bmatrix}$ -> Now, this round down Means we can drop

the Fraction 1/4, leaving us with M2+M, which

Matches our above graph GV

Claim: Prove that if G is a simple graph on at least N = 3 vertices s.t. $\deg_{\mathcal{C}}(v) \ge \lceil \frac{1}{2} \rceil$ for every vertex MEV(6), then the Graph G-V is connected for every Vertex V of G.

PF: Using Contradiction

A ssowe. G is simple with $n \ge 3$ vertices, and $\deg_{\mathcal{C}}(r) \ge \lceil \frac{n}{2} \rceil$

W. T.S. FVEV(6) s.t. G-V is Not Corrected. WTS: Contradiction

OUR G-V graph Most have 2 Comparents C, (2 to be not connected, we also know we have -1 verhicus, so lets say 21-1 total vertices.

 $\eta-1 = k+j$ vertices, and $deg(v) \ge \lceil \frac{\eta}{2} \rceil$ in 6

WLOG: Assume $k \ge j$. $\Rightarrow k \ge \lceil \frac{\eta}{2} \rceil$ to remind the about WLOG.

Principle!

N-1=R+j → j=(N-1)-R→ j=(N-1)-[1/2]

IF R = [1/2], then R is at least half or GPT

E. OF N-2

Hin Hint More of M-1

But, 1 = (n-1) - R Means that 1 is strictly

half or nearly half or M-1, So,

R+1= N-1 Compt work if R is sufficiently

large 2

To it Sharp?

Need to Test lower bound, likely with N for odd + even with N s.t. $deg_G(v) \ge \lceil N_a \rceil - 1$.

odd M = 5 verties, our $deg_G(v) = \lceil N_a \rceil = \frac{5}{2} \uparrow = 3 - 1 = 2$

5 vertices and deg 2 -> C5 graph

Even $N=4 \rightarrow \deg (constraint is \lceil \frac{1}{2} \rceil \cdot 1 \rightarrow 2 \cdot 1 = 1$

You need to give a specific counterexample for each n,

(3)	Caim: let $S \ge 2$ be any Integer. Prove that every Simple Graph 6, Salusfying $S_{min}(G) \ge S$ has a Cycle of length at least
0	Graph of Salistring of (6) 2 of has a cycle of length of least
	S+1.
	Account the Manual Manual
	Assume the fath P1 = V, V2, V3, Vx to be the longest
	Path in our Simple Graph G. (on you assure about the restricts
	P ₁ = V, V ₂ J ₃ V ₄ V ₁₂ , V ₁₂ Cuhich helped!
	All of the endpoints (V, Vk) Neighbors Must already reside on
	The given path, otherwise, we could extend his fath from the
	end Point to its neighbor. This new Path would be called Pz, but
	it would have a length longer than P1, so this cont be.
	So, only reighbors of V, Must be on the Par P1.
	, 0
	V, U ₂ U ₃ V _k
	From $J_{\mu\nu}(G) \geq J$, and $J \geq J$, so V_{\perp} Must have at least
	2 reighbors, so, Mere Must be at least A cycle of length 2.
	V, V ₂ V ₃
	But, we know V1 Must have of neighbors from Constraints, and
	it is simple 6 (no Parallel edges) so, V, Must have on edge
	At least of vartices away.
	Thus, At worst, If the largest fath away was I vartees, it would be a cycle of I+1 length
	it would be a cycle of of 1 length

Is it Sharp? Show this lower bound of length, at least S+1 For cycle length.

Well, lets start with some Specific Cores For S.

S=3

A Cycle length =
$$3 = 5+1$$

-> A cycle of length 5 = J+1

of the ped!

Mow, i'n General, and Complete Graph Ky will have a Cycle
OF at least length S+1 The important point is that it cannot
have a longer cycle

have a longer cycle

(f) Claim: Prove that in every converted graph, every two Paths of Maximum length have a common vertex. PF: Contradiction Assure > Connected graph, so there is a path between any 2 vertices. Assume - we have connected graph, and tub Paths of Maximum length Q: Contradiction > They do not shore a Common Vertex LAPF: Two Paths, largest, P1, P2 Fifs a connected graph, so every vertex in P1 most have a Path to every vertex in P2, and vike versa. So, P1 and P2 Must be corrected via Some edge Y From Assumptions) Where do you have that path?
However, now you have a fath that is the length of P1 and P2 (+1), thus P1 and P2 Must Mot have been the

Maximum leggth paths &