第三章 単回帰(続き)1

劉慶豊2

小樽商科大学

July 1, 2010

劉慶豊 (小樽商科大学)

¹第三章の資料は森棟公夫先生著「基礎コース 計量経済学」をもとに作成したものである。

検定の根拠

一定の条件のもとでは

$$z = (\widehat{\beta} - \beta) / \sqrt{V(\widehat{\beta})} = \frac{\widehat{\beta} - \beta}{\sqrt{\sigma^2 / \{(n-1)s_{xx}\}}}$$
(1)

が標準正規分布に従う。

$$V(\widehat{\beta}) = \frac{\sigma^2}{\sum_{i=1,n}(x_i - \overline{x})^2} = \frac{\sigma^2}{(n-1)s_{xx}}$$
(2)

検定の根拠(続き)

 $V(\widehat{eta})$ を計算するために σ^2 の値が必要、しかし、 σ^2 は母集団に関するパラメーターで未知である代わりに以前説明した残差分散 $s^2=rac{1}{n-2}\sum_{i=1}^n \hat{u}_i^2$ を利用する。そうすることで $V\left(\hat{eta}\right)$ が s_{eta}^2 となる。

 s_{eta} は \hat{eta} の標準誤差

$$\mathit{s}_{\beta} = \sqrt{\mathit{s}^2/\{(\mathit{n}-1)\mathit{s}_{\mathsf{xx}}\}}$$

t 値

$$t_{eta} = rac{\widehat{eta} - eta}{s_{eta}}$$

 t_{β} は自由度n-2のt分布に従う。

回帰係数に関するt検定

真の β が β_0 であるかどうかを調べる。ただし、 β_0 が定数である。 β_0 を0にする場合が多い。

片側検定 $H_0: \beta = \beta_0, H_1: \beta > \beta_0$ と $H_0: \beta = \beta_0, H_1: \beta < \beta_0$ 二種類。 両側検定 $H_0: \beta = \beta_0, H_1: \beta \neq \beta_0$ 。

$$t_{\beta} = \frac{\widehat{\beta} - \beta_0}{\sqrt{s^2/\{(n-1)s_{xx}\}}} \tag{3}$$

帰無仮説のもとで t_{β} は自由度 n-2の t 分布に従う。 t_{β} と自由度 n-2の t 分布の有意水準点と比較する。

ジップ(Ziph)の法則 都市人口×都市人口順位=定数 データ

表 2.4 京都12市の人口とその順位

順位	1	2	3	4	5	6	7	8	9	10	11	12
人口(千人)	1390	186	94	94	85	77	73	67	53	53	40	25

モデル cを定数として、

$$P_i \times i = c$$

$$\log(P_i) = c - \log(i)$$

$$\log(P_i) = c + \beta \log(i) + u_i, i = 1, 2, \dots, n$$

推定結果 ()の中は帰無仮説が $\beta = 0$ のt値である。

$$\widehat{\log(P_i)} = 6.53(23.7) - 1.235(-8.1)\log(i)$$

検定 $H_0: \beta = -1, H_1: \beta \neq -1$ (両側検定)。有意水準を10%とする。帰無仮説が $\beta = 0$ のt値の公式から逆算して標準誤差を求めて、そしてt値を求める。

$$s_{\beta} = -1.235 \times \frac{1}{-8.1} = 0.152$$

$$t = \frac{-1.235 - (-1)}{0.152} = -1.55.$$

検定結果 自由度10の右側5%有意水準点(95%分位点) $t_{95}=1.81$ 。 $|t|< t_{95}$ 、 H_0 は棄却できない。 $\beta=-1$ であろうと認識する。

最小2乗推定量の導出(1)

$$\Phi = RSS = \sum_{i=1}^{n} \left(y_i - \widehat{\alpha} - \widehat{\beta} x_i \right)^2$$

最小化の為の1次条件 $\frac{\partial \Phi}{\partial \widehat{\alpha}} = 0$, $\frac{\partial \Phi}{\partial \widehat{\beta}} = 0$.

$$\frac{\partial \Phi}{\partial \widehat{\alpha}} = \sum_{i=1}^{n} \frac{\partial \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)^{2}}{\partial \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)} \frac{\partial \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)}{\partial \widehat{\alpha}}$$

$$= \sum_{i=1}^{n} \left\{ (-2) \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right) \right\} = 0$$
(4)

$$\frac{\partial \Phi}{\partial \widehat{\beta}} = \sum_{i=1}^{n} \frac{\partial \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)^{2}}{\partial \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)} \frac{\partial \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)}{\partial \widehat{\beta}}$$

$$= \sum_{i=1}^{n} \left\{ (-2) \left(y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right) x_{i} \right\} = 0$$
(5)

最小2乗推定量の導出(2)

正規方程式

$$\sum_{i=1}^{n} \left(y_i - \widehat{\alpha} - \widehat{\beta} x_i \right) = 0$$

$$\sum_{i=1}^{n} \left(y_i - \widehat{\alpha} - \widehat{\beta} x_i \right) x_i = 0$$

最小化の為の2次条件

$$\frac{\partial^2 \Phi}{(\partial \widehat{\beta})^2} = 2 \sum_{i=1}^n (x_i)^2$$

最小2乗推定量の導出(3)

正規方程式を解いて最小二乗(OLS)推定量を求める

$$\widehat{\beta} = \frac{s_{xy}}{s_{xx}} = r_{xy} \frac{s_y}{s_x} \tag{6}$$

$$=\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}$$
(7)

$$=\frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}}$$
 (8)

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \tag{9}$$