FLIP01 Final Assessment

Cong Ma

QingDao Technological University

2021-01-07

Overview

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

Problem Definition

Problem Description

Data Visualization

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Synthetic Dataset

NBA Dataset

Problem Definition

Problem Description

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

Problem Definition

Problem Description

Problem Definition

Problem Description

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

With all of the tweets circulating every second it is hard to tell whether the sentiment behind a specific tweet will impact a company, or a person's, brand for being viral (positive), or devastate profit because it strikes a negative tone.

- What's the Sentiment of this tweet.
- What's the part of the tweet (word or phrase) that reflects the sentiment.

ID	text	selected_text	sentiment
cb774db0d1	Uh oh, I am sunburned	I am sunburned	negative
549e992a42	We saw that the baddie's the best	best	positive
f84b89a828	Sounds like me	Sounds like me	neutral

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

Data Visualization

Problem Definition Data Visualization Data Visualization

GOAM Algorithm

Evaluation Results

- First, check the data. The training set contains 27482 data.
 - Take a look at the proportion of different types of text in the training set
 - It can be seen that the number of three kinds of data is relatively average. In addition, there are more neutral texts.

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

- Let's take a look at the proportion of each category of text in another visualization method.
 - ◆ Most of them are neutral emotions, has 40.5 present. Positive are 31.2 persent. Negetive are 28.3 persent.

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

■ Count the distribution interval of the length of the given text and the selected text.

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

■ Statistics of positive emotions were selected in the text of the highest frequency of the first few words.

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

■ The statistical results will be generated word cloud to more intuitive look at the frequency of words.

WordCloud of Postive Tweets

```
friends Story
Ta NameLength

really
Wow morning
night Online
fun new
Ghost free
Yay goodbecame
break
Playing coolers Th Sfillin
feelhehe feedingsinteresting
```


Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

■ Statistics of neutral emotions were selected in the text of the highest frequency of the first few words.

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

■ The statistical results will be generated word cloud to more intuitive look at the frequency of words.

WordCloud of Neutral Tweets

```
SOOOO
respond, didnt
going
hopeful
grilled
till much
back olives
yesterday
back olives
yesterday
high BH spoke
smf high BH spoke
smf all text love
defying shameles days
reckon responded mushroomsLength gravity cheese
```


Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

■ Statistics of negative emotions were selected in the text of the highest frequency of the first few words.

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

■ The statistical results will be generated word cloud to more intuitive look at the frequency of words.

WordCloud of negative Tweets

```
Tall

Solution

Will

Sons boss

Lower Dangerously

Sons boss

Diego Dangerously

Same Dangerously

Sa
```


Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

- It can be seen that our previous statistical text contains some words without emotional tendency.
- After we delete these words, we count the frequency of each word.

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

DoNut Plot Of Unique Positive Words

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

DoNut Plot Of Unique Neutral Words

Problem Definition

Data Visualization

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

DoNut Plot Of Unique Negative Words

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

GOAM Algorithm

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

Framework of GOAM algorithm:

Figure 1: Framework of GOAM Algorithm

Step One - Group Feature Extraction

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Suppose f_1 , f_2 , f_3 are three features of G_q .

$$f_1$$
: { $x_1, x_2, x_3, x_4, x_5, x_2, x_3, x_4, x_1, x_2$ }

$$f_2$$
: { $y_2, y_2, y_1, y_2, y_3, y_3, y_5, y_4, y_4, y_2$ }

$$f_3$$
: { $z_1, z_4, z_2, z_4, z_5, z_3, z_1, z_2, z_4, z_2$ }

Figure 2: Histogram of G_q on three features

Step Two - Outlying Degree Scoring

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Calculate Earth Mover Distance
 - ◆ Represent one feature among different groups
 - Purpose: calculate the minimum mean distance

Figure 3: EMD of one feature

Step Two - Outlying Degree Scoring

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Calculate the outlying degree

$$OD(G_q) = \sum_{1}^{n} EDM(h_{q_s}, h_{k_s})$$

- \bullet n \Leftrightarrow the number of contrast groups.
- $h_{k_s} \Leftrightarrow$ the histogram representation of G_k in the subspace s.

Step Three - Outlying Aspects Identification

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Identify group outlying aspects mining based on the value of outlying degree.
- The greater the outlying degree is, the more likely it is group outlying aspect.

Pseudo code

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Pseudo code of GOAM algorithm

Illustration

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Evaluation Results

Table 1: Original Dataset

G_1	F_1	F_2	F_3	F_4	G_2	F_1	F_2	F_3	F_4
	10	8	9	8		7	7	6	6
	9	9	7	9		8	9	9	8
	8	10	8	8		6	7	8	9
	8	8	6	7		7	7	7	8
	9	9	9	8		8	6	6	7
G_3	F_1	F_2	F_3	F_4	$ig G_4$	F_1	F_2	F_3	F_4
	8	10	8	8		9	8	8	8
	9	9	7	9		7	7	7	9
	10	9	10	7		8	6	6	8
	9	10	8	6		9	8	8	7
	9	9	7	9		8	7	9	8

Illustration

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Table 2: outlying degree of each possible subspaces

Feature	Outlying Degree	Feature	Outlying Degree
$\{\pmb{F}_1\}$	4.351	$\{\pmb{F}_2,\pmb{F}_3\}$	4.023
$\{\pmb{F}_2\}$	2.012	$\{\pmb{F}_3,\pmb{F}_4\}$	4.324
$\{\pmb{F}_3\}$	1.392	$\{\pmb{F}_2,\pmb{F}_4\}$	2.018
$\{\pmb{F}_4\}$	2.207	$\{F_2,F_3,F_4\}$	2.012

Search process:

$$OD({F_1}) > \alpha$$
, save to T_1 .

$$OD({F_2}) < \alpha$$
, save to C_1 .

$$OD({F_3}) < \alpha$$
, save to C_2 .

$$OD({F_4}) < \alpha$$
, save to C_3 .

$$OD(\{F_2, F_3\}) > \alpha$$
, save to N_1 .

$$OD(\{F_3, F_4\}) > \alpha$$
, save to N_2 .

$$OD(\{F_2, F_4\}) < \alpha$$
, remove.

$$OD(\{F_2, F_3, F_4\}) < \alpha$$
, remove.

Strengths of GOAM Algorithm

Problem Definition

Data Visualization

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

- Reduction of Complexity
 - ◆ Bottom-up search strategy.
 - Reduce the size of candidate subspaces.

FLIP01 Final Assessment

- Efficiency
 - Before: $O(2^d)$

Now: $O(d * n^2)$

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Evaluation Results

Evaluation

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

- $Accuracy = \frac{P}{T}$
 - P: Identified outlying aspects
 - T: Real outlying aspects

Synthetic Dataset

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Synthetic Dataset and Ground Truth

Table 3: Synthetic Dataset and Ground Truth

Query group	\mathbf{F}_1	$\mathbf{F_2}$	F_3	\mathbf{F}_4	F_5	F_6	F_7	F_8
i_1	10	8	9	7	7	6	6	8
i_2	9	9	7	8	9	9	8	9
i_3	8	10	8	9	6	8	7	8
i_4	8	8	6	7	8	8	6	7
i_5	9	9	9	7	7	7	8	8
i_6	8	10	8	8	6	6	8	7
i_7	9	9	7	9	8	8	8	7
i_8	10	9	10	7	7	7	7	7
i_9	9	10	8	8	7	6	7	7
i_{10}	9	9	7	7	7	8	8	8

Synthetic Dataset Results

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Table 4: The experiment result on synthetic dataset

Method	Truth Outlying Aspects	Identified Aspects	Accuracy
GOAM	$\{F_1\},\ \{F_2F_4\}$	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	100%
Arithmetic Mean based OAM	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	$\{m{F}_4\},\ \{m{F}_2\}$	0%
Median based OAM	$\{m{F}_1\},\ \{m{F}_2m{F}_4\}$	$\{m{F}_2\},\ \{m{F}_4\}$	0%

NBA Dataset

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Data Collection

Source

Yahoo Sports website (http://sports.yahoo.com.cn/nba)

Data

- Extract NBA teams' data until March 30, 2018;
- 6 divisions;
- 12 features (eg: *Point Scored*).

NBA Dataset

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

The detail features are as follows:

Table 5: Collected data of Brooklyn Nets Team

Pts	FGA	FG%	3FA	3PT%	6FTA	FT%	Reb	Ass	To	Stl	Blk
18	12	42	2.00	50	7.00	100	0	4	3	0	0
15.7	14.07	41	5.45	32	3.05	75	3.98	5.1	2.98	0.69	0.36
14.5	11.1	47	0.82	26	4.87	78	6.82	2.4	1.74	0.92	0.66
13.5	10.8	42	5.37	37	3.38	77	6.66	2	1.38	0.83	0.42
12.7	10.59	39	5.36	33	3.37	82	3.24	6.6	1.56	0.89	0.31
12.6	10.93	40	6.94	37	1.70	84	4.27	1.5	1.06	0.61	0.44
12.2	10.39	44	3.42	35	2.70	72	3.79	4.1	2.15	1.12	0.32
10.6	7.85	49	4.51	41	1.35	83	3.34	1.6	1.15	0.45	0.24

NBA Dataset

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Conclusion

Data Preprocess

Table 6: The bins that used to discrete data of each feature

Labels	Pts	FGA	FG%	3FA	3PT%	FTA
low	[0,5]	[0,4]	[0,0.35]	[0,1.0]	[0,0.2]	[0,1.0]
medium	(5,10]	(4,7]	(0.35, 0.45]	(1.0,2.5]	(0.2, 0.3]	(1.0, 1.5]
high	(10,15]	(7,10]	(0.45, 0.5]	(2.5, 3.5]	(0.3, 0.35]	(1.5, 2.5]
very high	$(15,+\infty]$	$(10,+\infty]$	(0.5,1]	$(3.5,+\infty]$	(0.35,1]	$(2.5,+\infty]$
Labels	FT%	Reb	Ass	To	Stl	Blk
low	[0,0.6]	[0,2.0]	[0,1.0]	[0,0.6]	[0,0.2]	[0,0.25]
medium	(0.6, 0.65]	(2,5]	(1,2]	(0.6, 0.9]	(0.2, 0.5]	(0.25, 0.5]
high	(0.65, 0.75)	[5,6]	(2,4]	(0.9, 1.7]	(0.6, 0.75]	(0.5, 0.7]
very high	(0.75,1]	$(6,+\infty]$	$(4,+\infty]$	$(1.7,+\infty]$	$(0.75,+\infty]$	$[(0.7,+\infty]]$

NBA Dataset Results

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Synthetic Dataset

NBA Dataset

Table 7: The identified outlying aspects of groups

Teams	Trivial Outlying Aspects	NonTrivial Outlying Aspects		
Cleveland Cavaliers	{3FA}	{FGA, FT%}, {FGA, FG%}		
Orlando Magic	{Stl}	None		
Milwaukee Bucks	{To}, {FTA}	{FGA, FTA}, {3FA, FTA}		
Golden State Warriors	$\{FG\%\}$	{FT%, Blk}, {FGA, 3PT%, FTA}		
Utah Jazz	${Blk}$	{3FA, 3PT%}		
New Orleans Pelicans	{FT%}, {FTA}	{FTA, Stl}, {FTA, To}		

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

Conclusion

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

- Formalize the problem of *Group Outlying Aspects Mining* by extending outlying aspects mining;
- Propose a novel method GOAM algorithm to solve the *Group Outlying Aspects Mining* problem;
- Utilize the pruning strategies to reduce time complexity.

Questions?

Problem Definition

Data Visualization

GOAM Algorithm

Evaluation Results

Conclusion

Contact Information

Associate Professor Gang Li School of Information Technology Deakin University, Australia

GANGLI@TULIP.ORG.AU

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING