Directed Graphs

Outline

Introduction

One Way Road

An Efficient Computer Drum

Tournament Winner

Directed Graph

A directed graph is an ordered triple $(V(D),A(D),\phi_D)$ consisting of a nonempty set V(D) of vertices, a set A(D) disjoint from V(D) of arcs and an incidence function ϕ_D that associates each arc of D an ordered pair of vertices of D.

One Way Road

 G_1

 G_2

 D_2

THEOREM

If G is 2-edge-connected, then G has a diconnected orientation.

PROOF

- Let G be 2 edge-connected. Then G contains a cycle G.
- Induce a sequence of G_1, G_2, \ldots of connected subgraphs of G.
- If G_i(i=1,2,...) is not a spanning subgraph of G, let vi be a vertex of G not in G_i. Then there exist edge-disjoint paths P_i and Q_i from v_i to G_i.

Define,
$$G_{i+1} = G_i U P_i U Q_i$$

- Since v(G_{i+1})>v(G_i), this sequence must terminate in a spanning subgraph G_n of G
- Now orient G_n by orienting G_1 as a directed cycle, each path P_i as a directed path with origin v_i , and each path Q_i as a directed path with terminus v_i
- Q_i as a directed path with terminus v_i.
 Clearly every G_i and hence in particular G_n, is thereby given a disconnected orientation
- Since G_n is a spanning subgraph of G it follows that, G too has a disconnected orientation

AN EFFICIENT COMPUTER DRUM

OBJECTIVE

Design the drum surface in such a way that 2ⁿ different positions of the drum can be distinguished by k contacts placed consecutively around part of the drum. K to be as small as possible.

- The vertices of D_n are the (n-1)-digit binary numbers $p_{1}p_{2}...p_{n-1}$ with $p_{i}=0$ or 1
- There is an arc with tail p1p2...pn-1 and head $q_1q_2...q_{n-1}$ if and only if p_{i+1}=qi for 1≤i ≤n-2(all arcs of the form

p₁p₂...p_{n-1},p₂p₃...p_n) Each arc of D_n is assigned the label p₁p₂...p_n

- D_n is connected and each vertex of D_n has indegree two
- •Therefore D_n has a directed Euler tour
- The directed Euler tour, regarded as sequence of arcs of D_n, yields a binary sequence of length 2ⁿ suitable for the design of drum surface

The digraph D4 in the above example has a directed Euler tour giving the 16-digit binary sequence 0000111100101101

Tournament Winner

Ranking the Participants in a Tournament

- 1) Finding Directed Hamiltonian Paths
- 2) Computing the scores of each player

Score Vector
$$s_1 = (4,3,3,2,2,1)$$

Sum of score vectors,
$$s_2 = (8,5,9,3,4,3)$$

Further vectors obtained are,

$$s_3 = (15,10,16,7,12,9)$$

$$S_4 = (38,28,32,21,25,16)$$

$$S_5 = (90,62,87,41,48,32)$$

$$S_6 = (183,121,193,80,119,87)$$

References

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications