

Universidad Nacional Autónoma de México

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas

ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Modelos de Ecuaciones Estructurales

Adicción juvenil y padres alcohólicos

Jesus Alberto Urrutia Camacho (urcajeal@gmail.com)

Ciudad de México

10 de junio de 2021

A continuación se muestra una tabla con el *nombre de variables*, sus *siglas*, a manera de codificación, y las variables que representan.

Dado que se cuenta con la base de datos se procede a hacer estadística descriptiva. Todas las variables son numéricas, pero coa y gen son variables dicotómias, donde $P(X|x_{coa}=0:Padresnoalcoholicos)$, y $P(X|x_{gen}=0:Mujer)$, respectivamente. Además, las variables, Stress, emotion, negaff y peer son variables continuas, que parecen ser tasas o índices, ya que tienen valores positivos y menores de 6. Cabe destacar que no se cuenta con un diccionario de datos.

```
## tibble[,7] [316 x 7] (S3: tbl_df/tbl/data.frame)
##
             : num [1:316] 1 1 1 1 1 1 1 1 1 1 ...
##
    $ age
             : num [1:316] 14 12 14 15 12 13 13 10 11 11 ...
##
               num [1:316] 0 0 1 1 1 0 0 0 1 0 ...
##
    $ stress: num [1:316] 2.35 0.55 2.37 1.14 1.37 0.55 0.53 1.53 1.36 1.34 ...
##
    $ emotion: num [1:316] 1.37 1.46 2.12 2.83 2.11 1.57 1.38 3.13 1.71 2.48 ...
    $ negaff : num [1:316] 4.4 2.34 2.11 2.6 2.04 2.93 3.15 4.22 2.85 2.33 ...
##
##
             : num [1:316] 0.49 0 1.73 1.86 0.36 0.21 0 0.21 0 0.21 ...
##
         coa
                                                            stress
                           age
##
    Min.
           :0.0000
                      Min.
                             :10.00
                                       Min.
                                              :0.000
                                                        Min.
                                                               :0.0000
    1st Qu.:0.0000
                      1st Qu.:12.00
                                       1st Qu.:0.000
                                                        1st Qu.:0.4325
##
##
    Median :1.0000
                      Median :13.00
                                       Median :1.000
                                                        Median :0.7800
##
    Mean
           :0.5253
                      Mean
                             :12.72
                                       Mean
                                              :0.538
                                                        Mean
                                                               :0.9407
    3rd Qu.:1.0000
                      3rd Qu.:14.00
                                       3rd Qu.:1.000
                                                        3rd Qu.:1.3100
##
##
    Max.
           :1.0000
                      Max.
                             :16.00
                                       Max.
                                              :1.000
                                                        Max.
                                                               :3.7400
##
                         negaff
       emotion
                                           peer
##
    Min.
           :1.070
                     Min.
                            :1.420
                                      Min.
                                             :0.0000
    1st Qu.:1.627
                     1st Qu.:2.185
                                      1st Qu.:0.0000
##
##
    Median :2.040
                     Median :2.605
                                      Median :0.1400
           :2.034
                                             :0.3903
##
    Mean
                     Mean
                            :2.883
                                      Mean
    3rd Qu.:2.370
                     3rd Qu.:3.413
                                      3rd Qu.:0.5075
           :3.450
##
    Max.
                     Max.
                            :5.760
                                             :2.5700
                                      Max.
```


A continuación se muestran dos correlogramas. Cabe señalar que no hay ninguna correlación significativa. El primer correlograma integra a las correlaciones biserial, tetracórica y de pearson. Mientras que el segundo sólamente usa la última correlación. Se evidencia, que las correlaciones para variables dicotómicas aumentaron (es decir, se intensificó su color).

1. Diagramar modelo

```
CorMid <- '
1.0
-0.09456621 1.0
0.01400000 0.12159467
                     1.0
0.41430068 -0.01973430 -0.01121133 1.0
0.14398422 -0.08074436 -0.04854675
                                 0.36647960 1.0
0.10279496 \quad 0.15121667 \quad -0.12520711 \quad 0.28079050 \quad 0.35387788 \ 1.0
comp.cor1 <- getCov(CorMid, sds = NULL, names = c("coa", "age", "gen", "stress", "emotion", "negaff", "]</pre>
#Modelo teórico
mod1 <- '
stress ~ a*coa + b*gen + c*age
emotion ~ e*coa + f*gen + g*age
negaff ~ x*stress + y*emotion
peer ~ z*negaff
emotion ~~ stress
coa ~~ gen
gen ~~ age
coa ~~ age
```



```
# ###Efectos indirectos
# ###Efectos totales

n <- length(bd$coa)
sem1 <- sem(mod1, data = bd, sample.cov = comp.cor1, sample.nobs = n, se="bootstrap")
sem2 <- sem(mod1, data = bd, sample.cov = personc, sample.nobs = n, se="bootstrap")

# 
# summary(modelo, fit.measures = TRUE, standardized=T)
# #resumen <- summary(modelo, fit.measures = TRUE, standardized=T)
# fitmeasures(modelo)

semPaths(sem1, "mod", "par", col=rainbow(7), style="lisrel", layout = "tree2", curve=1.5, curvePivot = TRUI
legend("topleft", legend=c("Modelo de trayectoria: Bulimia"), col="blue", cex=1.5)</pre>
```


2. Escribirlo matricialmente

$$\begin{split} Y_{stres} &= 0Y_{stres} + 0Y_{emo} + 0Y_{neg} + 0Y_{peer} + \gamma_{1,1}X_{coa} + \gamma_{1,2}X_{gen} + \gamma_{1,3}X_{age} + \varsigma_{1} \\ Y_{emo} &= 0Y_{stres} + 0Y_{emo} + 0Y_{neg} + 0Y_{peer} + \gamma_{2,1}X_{coa} + \gamma_{2,2}X_{gen} + \gamma_{2,3}X_{age} + \varsigma_{2} \end{split}$$

$$Y_{neg} = \beta_{1,1}Y_{stres} + \beta_{1,2}Y_{emo} + 0Y_{neg} + 0Y_{peer} + 0X_{coa} + 0X_{gen} + 0X_{age} + \varsigma_3$$

$$Y_{emo} = 0Y_{stres} + 0Y_{emo} + \beta_{2,1}Y_{neg} + +0Y_{peer} + 0X_{coa} + 0X_{gen} + 0X_{age} + \varsigma_4$$

$$\begin{bmatrix} Y_{stre} \\ Y_{emo} \\ Y_{neg} \\ Y_{peer} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \beta_{1,1} & \beta_{1,2} & 0 & 0 \\ 0 & 0 & \beta_{2,1} & 0 \end{bmatrix} \begin{bmatrix} Y_{stre} \\ Y_{emo} \\ Y_{neg} \\ Y_{peer} \end{bmatrix} + \begin{bmatrix} \gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} \\ \gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_{coa} \\ X_{gen} \\ X_{age} \end{bmatrix} + \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \\ \zeta_4 \end{bmatrix}$$

3. Escribir matrices involucradas en modelo

Además, respéctivamente, cada matriz presentada con anterioridad puede se expresada como: $Y = BY + \Gamma x + \zeta \setminus$

$$\mathbf{\Psi} = \begin{bmatrix} \psi_{1,1} & 0 & 0 & 0 \\ \psi_{2,1} & \psi_{2,2} & 0 & 0 \\ 0 & 0 & \psi_{3,1} & 0 \\ 0 & 0 & 0 & \psi_{4,1} \end{bmatrix} \mathbf{\Phi} = \begin{bmatrix} \phi_{1,1} & 0 & 0 \\ \phi_{2,1} & \phi_{2,2} & 0 \\ \phi_{3,1} & \phi_{3,2} & \phi_{3,3} \end{bmatrix}$$

Cabe destacar que Ψ representa la matriz de correlación entre variables endógenas (Y_i) . Mientras que la matriz de Φ presenta a la correlación entre variables exógenas (X_i) .

4. Ajuste del modelo

La estimación del modelo emplea el método bootstrap, como alternativa a las restricciones del supuesto de normalidad por el método delta. Lo anterior requiere que la muestra esté disponible para realizar el remuestreo (Hallquist, 2019). Además, se emplean la paquetería *lavaan* como principal instrumento de ajuste computaciones. A continuación se muestra el código empleado.

```
# CorMid
# comp.cor1 <- getCov(CorMid, sds = NULL, names = c("coa", "age", "gen", "stress", "emotion", "negaff",
# mod1
# sem1 <- sem(mod1, data = bd, sample.cov = comp.cor1, sample.nobs = n, se="bootstrap")
summary(sem1, fit.measures = TRUE, standardized=T)</pre>
```

```
## lavaan 0.6-8 ended normally after 31 iterations
##
##
     Estimator
                                                          ML
##
     Optimization method
                                                      NLMINB
##
     Number of model parameters
                                                          20
##
##
     Number of observations
                                                         316
##
## Model Test User Model:
##
##
     Test statistic
                                                      81.173
##
     Degrees of freedom
##
     P-value (Chi-square)
                                                       0.000
##
```


	Model Test Ba	seline	Model:					
## ##	Test statis	+ic				255.823		
##	Degrees of		m			255.625		
##	P-value	11 eeuoi	ш			0.000		
##	1 value					0.000		
	User Model ve	relie R	acalina M	iode] ·				
##	OBCI HOUCI VC	IBUB D	abeline i	louci.				
##	Comparative	Fit I	ndex (CFI	.)		0.688		
##	Tucker-Lewi			. /		0.182		
##	1401101 10111		(/			0.102		
##	Loglikelihood	and I	nformatio	n Criteri	.a:			
##	O							
##								
##	Loglikeliho				[1] -	2138.547		
##	· ·							
##	Akaike (AIC)				4398.267		
##	Bayesian (B	IC)				4473.382		
##	Sample-size	adjust	ted Bayes	sian (BIC)		4409.947		
##								
##	Root Mean Squ	are Er	ror of Ap	proximati	on:			
##								
##	RMSEA					0.170		
##								
##	11							
##	P-value RMS	EA <= (0.05			0.000		
##								
##	Standardized Root Mean Square Residual:							
##	SRMR					0.095		
##	Ditilit					0.000		
	Parameter Est	imates	:					
##								
##								
##	·				1000			
##								
##								
##	Regressions:							
##]	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	stress ~							
##	coa	(a)	0.451	0.071	6.346	0.000	0.451	0.331
##	gen	(b)	-0.016	0.071	-0.221	0.825	-0.016	-0.011
##	age	(c)	0.002	0.027	0.073	0.942	0.002	0.004
##	emotion ~	(e)	0.110	0.057	1 020	0.054	0.110	0.110
## ##	coa	(f)	-0.048	0.057	1.930 -0.809	0.034	-0.048	-0.047
##	gen age	(g)	-0.027	0.039	-1.199	0.231	-0.027	-0.047
##	age negaff ~	(8)	0.021	0.022	1.133	0.201	0.021	0.011
##	stress	(x)	0.246	0.094	2.606	0.009	0.246	0.175
##	emotion	(y)	0.553	0.114	4.858	0.000	0.553	0.290
##	peer ~	- J /						•
##	negaff	(z)	0.176	0.032	5.446	0.000	0.176	0.315
##	-							
шш	a ·							

Covariances:

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.stress ~~						
##	.emotion	0.112	0.018	6.284	0.000	0.112	0.352
##	coa ~~						
##	gen	0.002	0.014	0.163	0.871	0.002	0.009
##	gen ~~						
##	age	-0.070	0.040	-1.763	0.078	-0.070	-0.097
##	coa ~~						
##	age	-0.055	0.041	-1.323	0.186	-0.055	-0.076
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.stress	0.412	0.039	10.489	0.000	0.412	0.890
##	.emotion	0.247	0.017	14.794	0.000	0.247	0.979
##	$.{\tt negaff}$	0.778	0.069	11.331	0.000	0.778	0.848
##	.peer	0.260	0.033	7.792	0.000	0.260	0.901
##	coa	0.249	0.002	137.150	0.000	0.249	1.000
##	gen	0.249	0.002	102.652	0.000	0.249	1.000
##	age	2.095	0.119	17.592	0.000	2.095	1.000

#resumen <- summary(modelo, fit.measures = TRUE, standardized=T)
fitmeasures(sem1)</pre>

##	npar	fmin	chisq	df
##	20.000	0.128	81.173	8.000
##	pvalue	baseline.chisq	baseline.df	baseline.pvalue
##	0.000	255.823	21.000	0.000
##	cfi	tli	nnfi	rfi
##	0.688	0.182	0.182	0.167
##	nfi	pnfi	ifi	rni
##	0.683	0.260	0.705	0.688
##	logl	unrestricted.logl	aic	bic
##	-2179.133	-2138.547	4398.267	4473.382
##	ntotal	bic2	rmsea	rmsea.ci.lower
##	316.000	4409.947	0.170	0.138
##	rmsea.ci.upper	rmsea.pvalue	rmr	rmr_nomean
##	0.205	0.000	0.077	0.077
##	srmr	srmr_bentler	srmr_bentler_nomean	crmr
##	0.095	0.095	0.095	0.109
##	crmr_nomean	srmr_mplus	srmr_mplus_nomean	cn_05
##	0.109	0.095	0.095	61.369
##	cn_01	gfi	agfi	pgfi
##	79.210	0.940	0.790	0.269
##	mfi	ecvi		
##	0.891	0.383		

- 5. Verifique lo adecuado del ajuste
- 6. Interpretar efectos directos, indirectos, totales y concluir