Architecture de réseau de neurones

Le Transformer

Guillaume Bourmaud

PLAN

- I. Histoire du "Transformer"
- II. Couche d'attention à softmax
- III. Équivariance par permutation et encodage de la position
- IV. Application à des images
- V. Limites et tendances actuelles

I) Histoire du "Transformer"

"Attention is All You Need", NIPS 2017

I)

Sequence-to-sequence

"the cat sat on the mat" -> [Seq2Seq model] -> "le chat etait assis sur le tapis"

Architecture encodeur-décodeur

- ou Transformer

I)

Exemple avec un RNN

Apprentissage (en "Teacher-Forcing")

Exemple avec un RNN (suite)

Inférence

Exemple avec un RNN (suite)

Calcul séquentiel Apprentissage lent Comment paralléliser ? Limites Encoder LIMITES Apprentissage lent LISTM L

Difficile d'apprendre de longues dépendances avec un RNN.

Coronavirus pandemic is spread across 175 countries, it is a serious problem especially in Italy, Spain and US as of March 2020.

I)

Transformer vs RNN

I)

Transformer: vue globale

Transformer: encodeur

ENCODER #2 ENCODER #1 r1 dépend de z1 **Feed Forward** Feed Forward **Neural Network Neural Network** Self-Attention

Machines

Thinking

r2 dépend de z2

z1 dépend de x1 et x2

z2 dépend de x1 et x2

II) Couche d'attention à softmax

Attention utilisant la fonction softmax

: vecteur de dimension

Entrées	\mathbf{X}	: vecteur de dimension	$1 \times D_x$
	$\{\mathbf y_i\}_{i=1.}$	N_y : ensemble de vecteurs de dimer	nsion $1 imes D_y$

Sortie

Paramètres

Fonction

: matrice "query" de taille

: matrice "key" de taille : matrice "value" de taille

$$\frac{D_y \times L}{D_y \times D}$$

15

$D_x \times L$

 $1 \times D_x$

Attention utilisant la fonction softmax (suite)

$$\mathbf{x}' = \mathbf{x} + \left(\sum_{j=1}^{N_y} s_j \mathbf{y}_j\right) \mathbf{V}$$
 où $s_j = \frac{\exp(\mathbf{x} \mathbf{Q}(\mathbf{y}_j \mathbf{K})^{ op})}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q}(\mathbf{y}_k \mathbf{K})^{ op})}$

Transfert d'information depuis $\{\mathbf y_i\}_{i=1\dots N_n}$ vers $\mathbf x$ le tout stocké dans $\mathbf x'$

Q K

permettent d'apprendre à transférer l'information pertinente pour la tâche concernée

V

Inter-attention ("Cross-attention")

Sorties $\{\mathbf{x}_i'\}_{i=1...N_x}$: vecteurs de dimension $D_x \longrightarrow \mathbf{X}'$: matrice de taille $N_x imes D_x$ $M = XQ(YK)^{\top}$ Softmax S Produit matricie! X' = X + SYV**►** matriciel ▲ Produit Transfert d'information depuis Y 17 vers X le tout stocké dans X'

II)

Inter-attention ("Cross-attention") (suite)

$$\mathtt{X}:N_x imes D_x$$
 $\mathtt{Y}:N_y imes D_y$ $\mathtt{X}':N_x imes D_x$

$$\mathtt{M} = \mathtt{XQ}(\mathtt{YK})^{ op} \,:\, N_x imes N_y$$

 $S = softmax(M,dim=1) : N_x \times N_y$

Calcul

- Nombre d'opérations potentiellement très élevé
- + Parallélisable

Stockage

- Mémoire requise pour stocker M et S potentiellement très élevée

Cas particulier: Auto-attention ("Self-attention")

Entrées $\{\mathbf x_i\}_{i=1...N_x}$: vecteurs de dimension D_x — f X : matrice de taille $N_x imes D_x$

Sorties
$$\{\mathbf{x}_i'\}_{i=1...N_x}$$
 : vecteurs de dimension $D_x \longrightarrow \mathbf{X}'$: matrice de taille $N_x \times D_x$

$$\begin{aligned} \mathbf{M} &= \mathbf{XQ}(\mathbf{XK})^\top : N_x \times N_x \\ \mathbf{S} &= \mathrm{softmax}(\mathbf{M}, \dim = 1) : N_x \times N_x \\ \mathbf{X}' &= \mathbf{X} + \mathbf{SXV} : N_x \times D_x \end{aligned}$$

Transfert d'information depuis X vers lui-même le tout stocké dans X'

Couche d'attention softmax à têtes multiples "Multi-head dot-product attention"

$$\mathtt{X}:N_x imes D_x$$
 $\mathtt{Y}:N_y imes D_y$ $\mathtt{X}':N_x imes D_x$

Pour
$$k=1$$
 à H 1) H couches d'attention indépendantes (têtes)
$$\begin{split} \mathbf{M}_k &= \mathbf{X} \mathbf{Q}_k (\mathbf{Y} \mathbf{K}_k)^\top : N_x \times N_y \\ \mathbf{S}_k &= \mathrm{softmax} (\mathbf{M}_k, \dim = 1) : N_x \times N_y \\ \mathbf{Z}_k &= \mathbf{S}_k \mathbf{Y} \mathbf{V}_k : N_x \times D_v \end{split}$$

 ${\bf Z}=[{\bf Z}_1\,{\bf Z}_1\dots{\bf Z}_H]:N_x\times (H\times D_v)$ 2) "mélange" des résultats des H têtes ${\bf X}'={\bf X}+{\bf Z}{\bf W}:N_x\times D_x$

20

II)

Bloc d'attention "classique"

"Mélange" les colonnes mais pas les lignes

Vue détaillée du Transformer

22

III) Équivariance par permutation et encodage de la position

III)

Équivariance par permutation

CNN adapté aux ensembles ordonnés (phrase, signal, image, etc.)

→ ses filtres s'appliquent sur un voisinage

III)

Équivariance par permutation (suite)

Pour un ensemble ordonné (phrase, signal, image, etc.)

→ necessité d'encoder la position

III)

Encodage de la position

26

IV) Application à des images

IV)

"An image is worth 16x16 words", ICLR 2021

IV)

"Segmenter: Transformer for Semantic Segmentation", ICCV 2021

IV)

"DETR: End-to-End Object Detection With Transformers", ECCV 2020

En pratique, il y a 100 "object queries", donc 100 boîtes englobantes prédites.

31

"LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

V) Limites et tendances actuelles

V)

Limites des couches d'attention à softmax

$$\mathbf{M} = \mathbf{XQ}(\mathbf{YK})^{\top} : N_x \times N_y \qquad \mathbf{S} = \mathbf{softmax}(\mathbf{M}, \mathbf{dim} = 1) : N_x \times N_y$$

Problème : Inapplicable pour des ensembles de grandes tailles.

Solutions:

- Appliquer des couches d'attention à softmax en cherchant à réduire Nx et/ou Ny
- Modifier la couche d'attention softmax

Exemple de modification de la couche d'attention softmax : couche d'attention linéaire

"Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention", ICML 2020

$$\mathbf{x}' = \mathbf{x} + \left(\sum_{j=1}^{N_y} \frac{\phi(\mathbf{x}\mathbf{Q})\phi(\mathbf{y}_j\mathbf{K})^\top}{\sum_{k=1}^{N_y} \phi(\mathbf{x}\mathbf{Q})\phi(\mathbf{y}_k\mathbf{K})^\top} \mathbf{y}_j\right) \mathbf{V} \qquad \text{Remplacement du noyau exponentiel par un noyau linéaire}$$

 $\mathbf{x}' = \mathbf{x} + \phi(\mathbf{x}\mathbf{Q}) \frac{\sum_{j=1}^{N_y} \phi(\mathbf{y}_j\mathbf{K})^\top \mathbf{y}_j\mathbf{V}}{\phi(\mathbf{x}\mathbf{Q}) \sum_{k=1}^{N_y} \phi(\mathbf{y}_k\mathbf{K})^\top} \qquad \begin{array}{c} \text{Indépendant de x, plus besoin de calculer ni stocker explicitement les matrices M et S} \\ \end{array}$

Se simplifie en

Indépendant de x, plus

Exemple de réduction de Nx et/ou Ny : PerceiverIO

"Perceiver IO: A General Architecture for Structured Inputs & Outputs." arXiv, 2021

