Ingeniería de Software

 Diseño, construcción y mantenimiento de sistemas de software grandes.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Objetivos

- Definir la Ingeniería de Software y explicar su importancia.
- Discutir los conceptos de producto de software y proceso de software
- Explicar la importancia de la visibilidad delos procesos.
- Introducir la noción de responsabilidad profesional.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Tópicos

- Productos de Software.
- ◆ El proceso de Software.
- El modelo de Espiral de Boehm.
- ◆ La visibilidad de los procesos.
- Responsabilidad profesional.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Ingeniería de Software

- Las economías de los países desarrollados dependen en gran parte del software.
- Mas y más sistemas son actualmente controlados por software.
- La Ingeniería de Software concierne a teorías, métodos y herramientas para el desarrollo profesional de software.
- El gasto en La Ingeniería de Software, representa un alto porcentaje del PIB de los países desarrollados.

Ingeniería de Software, Capitulo

Diapositiva 1

Costos del Software

- ◆ Los costos del software a menudo dominan al costo del sistema. El costo del software en un PC es a menudo mas caro que la PC.
- ◆ Cuesta mas mantener el software que desarrollarlo. Para sistemas con una larga vida, este costo se multiplica.
- La Ingeniería de Software concierne a un desarrollo efectivo en cuanto a costes del software.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Productos de Software

- Productos genéricos.
 - Productos que son producidos por una organización para ser vendidos al mercado.
- Productos hechos a medida.
 - Sistemas que son desarrollados bajo pedido a un desarrollador específico.
- La mayor parte del gasto del software es en productos genéricos, pero hay más esfuerzo en el desarrollo de los sistemas hechos a medida.

Ingeniería de Software, Capitulo 1

Características de los Productos de Software

- Mantenibles.
 - Debe ser posible que el software evolucione y que siga cumpliendo con sus especificaciones.
- ◆ Confiabilidad.
 - El software no debe causar danos físicos o económicos en el caso de fallos
- ◆ Eficiencia.
 - El software no debe desperdiciar los recursos del sistema.
- Utilización adecuada.
 - El software debe contar con una interfaz de usuario adecuada y su documentación.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Importancia de las características del producto

- La importancia relativa de las características depende en el tipo de producto y en el ambiente en el que será utilizado.
- En algunos casos, algunos atributos pueden dominar.
 - En sistemas de seguridad críticos de tiempo real, los atributos clave pueden ser la confiabilidad y la eficiencia.
- Los costos tienden a crecer exponencialmente si son requeridos altos niveles de alguna característica.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Costes de Eficiencia.

El Proceso de Software

- Conjunto estructurado de actividades requeridas para desarrollar un sistema de software.
 - Especificación.
 - Diseño.
 - Validación.
 - Evolución.
- ◆ Las actividades varían dependiendo de la organización y del tipo de sistema a desarrollarse.
- Debe estar explícitamente modelado si va a ser bien administrado.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Características del proceso

- ◆ Entendible
- Se encuentra el proceso bien definido y es entendible ?.
- Visible
 - El proceso es visible al exterior ?.
- ullet Soportable
 - Puede el proceso ser soportado por herramientas CASE ?.
- ◆ Aceptable
 - El proceso es aceptado por aquellos involucrados en el ?.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Características del proceso

- ◆ Confiable
 - Los errores del proceso son descubiertos antes de que se conviertan en errores del producto?.
- ◆ Robusto
 - Puede continuar el proceso a pesar de problemas inesperados ?.
- Mantenible
 - Puede el proceso evolucionar para cumplir con los objetivos organizacionales ?.
- ◆ Rapidez
 - Que tan rápido puede producirse el sistema ?.

ngeniería de Software, Capitulo I

Modelo de Ingeniería del Proceso

- Especificación establecer los requerimientos y restricciones del sistema
- ◆ Diseño Producir un modelo en papel del sistema
- ◆ Manufactura construir el sistema
- Prueba verificar que el sistema cumpla con las especificaciones requeridas
- Instalación entregar el sistema al usuario y asegurar su operacionalidad
- Mantenimiento reparar fallos en el sistema cundo sea descubiertos

Ingeniería de Software, Capitulo 1

Diapositiva 1

Problemas en el Modelo del Proceso

- Normalmente, las especificaciones son incompletas o anómalas
- No existe una distinción precisa entre la especificación, el diseño y la manufactura
- ◆ Solo hasta que el sistema se ha producido se puede probar
- El software no se puede remplazar siempre durante el mantenimiento

Ingeniería de Software, Capitulo 1

Diapositiva 1

Modelos Genéricos de Desarrollo de Software

- ◆ Modelo de Cascada
 - ◆ Separar en distintas fases de especificación y desarrollo.
- ◆ Desarrollo Evolutivo
 - La especificación y el desarrollo están intercalados.
- ◆ Prototipado
 - Un modelo sirve de prototipo para la construcción del sistema final.
- ◆ Transformación Formal
 - Un modelo matemático del sistema se transforma formalmente en la implementación.
- Desarrollo basado en Reutilización
 - El sistema es ensamblado a partir de componentes existentes.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Fases del Modelo de Cascada

- Análisis de requerimientos y definición.
- ◆ Diseño del sistema y del software.
- Implementación y prueba de unidades
- Integración y prueba del sistema.
- Operación y mantenimiento.
- La dificultad en esta modelo reside, en la dificultad de hacer cambios entre etapas.

Ingeniería de Software, Capitulo 1

Desarrollo Evolutivo

- Problemas
 - Poca visibilidad en el proceso
 - Los sistemas están pobremente especificados
 - Se requieren habilidades especiales.
- ◆ Aplicabilidad
 - Para sistemas interactivos pequeños o medianos.
 - Para partes de sistemas grandes (p.ej. la interfaz de usuario).
 - Para sistemas de corta vida.

Ingeniería de Software. Capitulo 1

Diapositiva 1

Prototipado

- ◆ Prototipado exploratorio
 - El objetivo es trabajar con clientes hasta evolucionar a un sistema final, a partir de una especificación inicial. Se debe comenzar con unas especificaciones bien entendidas.
- Prototipado de "throw-away".
 - El objetivo es entender los requerimientos del sistema. Se puede comenzar con especificaciones poco entendidas.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Problemas y Riesgos con los Modelos.

- ◆ Cascada.
 - Alto riesgo en sistemas nuevos debido a problemas en las especificaciones y en el diseño.
 - Bajo riesgo para desarrollos bien comprendidos utilizando tecnología conocida.
- Prototipado.
 - Bajo riesgo para nuevas aplicaciones debido a que las especificaciones y el diseño se llevan a cabo paso a paso.
 - Alto riesgo debido a falta de visibilidad
- ◆ Evolutivo.
 - Alto riesgo debido a la necesidad de tecnología avanzada y habilidades del grupo desarrollador.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Manejo de Riesgos

- La tarea principal del administrador consiste en minimizar riesgos.
- El "riesgo" inherente en una actividad es se mide en base a la incertidumbre que presenta el resultado de esa actividad.
- Las actividades con alto riesgo causan sobre-costes en cuanto a planeación y costos
- El riesgo es proporcional al monto de la calidad de la información disponible. Cuanto menos información, mayor el riesgo.

Ingeniería de Software, Capitulo

Diapositiva

Modelos de Procesos Híbridos

- Los sistemas grandes están hechos usualmente de varios subsistemas.
- No es necesario utilizar el mismo modelo de proceso para todos los subsistemas.
- El prototipado es recomendado cuando existen especificaciones de alto riesgo.
- El modelo de cascada es utilizado en desarrollos bien comprendidos.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Determine objetivos alternativas, identifique y resuelva riesgos Analisis de Prototipo Prototipo Prototipo Operacional de Operacional de Prototipo Operacional de Operaciona

Fases del Modelo de Espiral

- Planteamiento de Objetivos
 - Se identifican los objetivos específicos para cada fase del proyecto.
- Identificación y reducción de riesgos.
 - Los riesgos clave se identifican y analizan, y la información sirve para minimizar los riesgos.
- ◆ Desarrollo y Validación.
- Se elige un modelo apropiado para la siguiente fase del desarrollo.
- Planeación.
 - Se revisa el proyecto y se trazan planes para la siguiente ronda del espiral.

Ingeniería de Software, Capitulo 1

Dianositiva 1

Plantilla para una ronda del espiral

- ◆ Objetivos.
- · Restricciones.
- Alternativas.
- · Riesgos.
- · Resolución de riesgos.
- Resultados.
- Planes
- ◆ Garantías (commitments).

Ingeniería de Software, Capitulo 1

Diapositiva 1

Mejoramiento de la Calidad en el Modelo de Espiral

- ◆ Objetivos
- Mejorar significativamente la calidad del software.
- · Restricciones.
 - Dentro de los 3 primeros años.
 - Sin que se produzcan grandes inversiones de capital.
 - Sin que se produzcan grandes inversiones de capital.
 Sin que se lleven a cabo grandes cambios organizacionales.
- ◆ Alternativas
 - Reutilizar software certificado existente.
 - Introducir especificaciones formales y verificación.
 - Invertir en herramientas de prueba y validación.

Ingeniería de Software, Capitulo

Diapositiva 1

Mejoramiento de la Calidad

- ◆ Riesgos.
 - No existen mejoras en el software baratas.
 - Las mejoras en la calidad pueden incrementar los costos excesivamente
 - Los nuevos métodos pueden causar bajas en el personal.
- Solución de riesgos.
 - Estudio de la literatura existente.
 - Proyecto piloto.
 - Búsqueda de todos los componentes reutilizables potenciales.
 - Identificación del soporte disponible de herramientas
 - Entrenamiento al personal y seminarios motivacionales.

Ingeniería de Software, Capitulo

Diapositiva 1

Mejoramiento de la Calidad

- Resultados.
 - La experiencia en métodos formales es limitada es muy difícil cuantificar las mejoras.
 - Limitado el soporte en herramientas para sistemas de desarrollo de la compañía.
 - Existencia de componentes reutilizables, pero poco soporte de herramientas de reuso.
- Planes.
 - Explorar la opción de la reutilización a mas detalle.
 - Desarrollar herramientas prototipo para reutilización.
- Explorar el esquema de certificación de componentes.
- Garantías
 - Explorar los siguientes 18 meses.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Modelo de Espiral para la elaboración de un catálogo

- ◆ Objetivos
 - Desarrollar un catálogo de componentes de software
- · Restricciones.
 - A un ano
 - Debe soportar los tipos de componentes existentes.
 - Costo total menor
- Alternativas.
 - Comprar software de captura de información.
 - Comprar bases de datos y desarrollar el catálogo utilizando la BD.
 - Desarrollar catálogo de propósito especial.

Ingeniería de Software, Capitulo

Mejoramiento de la Calidad

- Riesgos.
 - Puede ser imposible satisfacer las restricciones
 - La funcionalidad del catálogo puede ser inapropiada
- ◆ Solución de riesgos.
 - Desarrolla un prototipo del catálogo (utilizando lenguajes de cuarta generación 4GL y una BD existente) para clarificar los requerimientos.
 - Relaja restricciones de tiempo.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Mejoramiento de la Calidad

- Resultados.
 - Los sistemas de captura de información son inflexibles. Los requerimientos no pueden cumplirse.
 - El prototipo que utiliza la BD puede mejorarse para completar el sistema.
 - El desarrollo de un catálogo de propósito específico no es costeable.
- ▲ Dlange
 - Desarrolla el catálogo utilizando una BD existente mejorando el prototipo y la interfaz de usuario.
- Garantías.
 - Explorar los siguientes 12 meses.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Flexibilidad en el modelo de Espiral

- Para sistemas bien comprendidos utiliza el Modelo de Cascada. La fase de análisis de riesgos es relativamente fácil
- Con requerimientos estables y sistemas de seguridad críticos, utiliza modelos formales.
- Con especificaciones incompletas, utiliza el modelo de prototipado.
- Pueden utilizarse modelos híbridos en distintas partes del desarrollo.

Ingeniería de Software, Capitulo

Diapositiva

Ventajas del Modelo de Espiral

- Centra su atención en la reutilización de componentes y eliminación de errores en información descubierta en fases iniciales
- Los objetivos de calidad son el primer objetivo.
- Integra desarrollo con mantenimiento.
- Provee un marco de desarrollo de hardware/software.

Ingeniería de Software, Capitulo I

Diapositiva I

Problemas con el Modelo de Espiral

- El desarrollo contractual especifica el modelo del proceso y los resultados a entregar por adelantado.
- Requiere de experiencia en la identificación de riesgos.
- Requiere refinamiento para uso generalizado.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Visibilidad de Procesos

- Los sistemas de software son intangibles por lo que los administradores necesitan documentación para identificar el progreso en el desarrollo.
- Esto puede causar problemas..
 - El tiempo planeado para entrega de resultados puede no coincidir con el tiempo necesario para completar una actividad.
 - La necesidad de producir documentos restringe la iteración entre procesos.
 - .El tiempo para revisar y aprobar documentos es significativo.
- El modelo de cascada es aún el modelo basado en resultados mas utilizado.

ngeniería de Software, Capitulo I

Documentos del Modelo de Cascada

Actividad	Documentos Producidos
Análisis de Requerimientos	Documento de Requerimientos
Definición de Requerimientos	Documento de Requerimientos.
Especificación del Sistema.	Especificación Funcional, Plan de Pruebas de Aceptación.
Diseño Arquitectural	Especificación de la Arquitectura, y Plan de Pruebas del Sistema
Diseño de Interfaces	Especificación de la Interfaces y Plan de pruebas de Integración.
Diseño Detallado	Especificación del diseño y Plan de prueba de Unidades.
Codificación	Código de Programa
Prueba de Unidades	Reporte de prueba de unidades
Prueba de Módulos	Reporte de prueba de módulos
Prueba de Integración	Reporte de prueba de integración y Manual de usuario final
Prueba del Sistema	Reporte de prueba del sistema
Prueba de Aceptación	Sistema final mas la documentación.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Visibilidad del Modelo

Modelo de Proceso	Visibilidad del Proceso
Modelo de Cascada	Buena visibilidad, cada actividad produce un
	documento o resultado
Desarrollo Evolutivo	Visibilidad pobre, muy caro al producir
	docuementos en cada iteración.
Modelos Formales	Buena visibilidad, en cada fase deben
	producirse documentos.
Desarrollo orientado a la reutilización	Visibilidad moderada. Importante contar con
	documentación de componentes reutilizables
Modelo de Espiral	Buena visibilidad, cada segmento y cada
	anillo del espiral debe producir un
	documento.

Ingeniería de Software, Capitulo 1

Dianositiva 1

Responsabilidad profesional

- Los Ingenieros de software no solo deben considerar aspectos técnicos. Deben tener una visión mas amplia, en lo ético, social y profesional.
- No existe estatutos para ninguno de estos aspectos.
 - Desarrollo de sistemas militares.
 - Piratería.
 - Que es mejor para la profesión de Ingeniero de Software.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Aspectos Éticos

- Confidencialidad.
- ◆ Competencia.
- Derechos de propiedad intelectual.
- ◆ Mal uso de la computadora.

Ingeniería de Software, Capitulo I

Diapositiva

Resumen

- La Ingeniería de software concierne a las teorías, métodos y herramientas para el desarrollo, administración y evolución de productos de software.
- Los productos de software consisten de programas y documentación. Los atributos de los productos son, mantenabilidad, dependabilidad, eficiencia y usabilidad.
- El proceso de software consiste en aquellas actividades involucradas en el desarrollo de software.

Ingeniería de Software, Capitulo 1

Diapositiva 1

Resumen

- El modelo de cascada considera cada actividad del proceso como una actividad discreta.
- El modelo de desarrollo evolutivo considera actividades del proceso en forma concurrente.
- ◆ El modelo de espiral se basa en análisis de riesgos.
- La visibilidad del proceso involucra la creación de documentos o resultados de las actividades.
- Los Ingenieros de software deben tener responsabilidades éticas, sociales y profesionales.

ngeniería de Software, Capitulo 1