POTENZA DI MATRICE

Per calcolare A^t è conveniente anche in questo caso passare dall'operatore di trasformata, ottenendo:

$$\mathcal{Z}\{A^t\} = (zI-A)^{-1} \ z = rac{1}{arphi(z)}Adj(zI-A) \ z$$

Così come: $\mathcal{L}\{e^{At}\}=(sI-A)^{-1}$

Analogamente al caso dei sistemi TC:

 \bullet $(zI-A)^{-1}$ matrice di funzioni razionali aventi come poli gli autovalori di A con la loro molteplicità nel polinomo minimo m(z)

Per calcolare la potenza di matrice A^t

- Si calcola l'inversa $(zI A)^{-1}$
- ② Si scompongono in fratti semplici gli elementi di $(zI-A)^{-1}$
- Si calcola l'antitrasformata Zeta

$$A^t = \mathcal{Z}^{-1} \left\{ (zI - A)^{-1} z \right\}$$

Quindi gli autovalori del polinomio caratteristico sono ancora i poli dell'inversa, ovvero $(zI-A)^{-1}$

CONFRONTO LAPLACE - Z (TC-TD)

- Il polo del gradino in TD è 1
- Al posto del modo evoluzione esponenziale, nel TD abbiamo modo evoluzione potenza (con i relativi sviluppi (moltiplica per *t*) quando aumenta la molteplicità)

MODI NATURALI

Quindi nella potenza A^t abbiamo i modi di evoluzioni, con molteplicità associata ai poli di $\varphi(z)$:

- La matrice inversa $(zI-A)^{-1}$ ha come poli gli autovalori del sistema $\lambda_1,\dots,\lambda_k \qquad \qquad \qquad \\ \text{con le molteplicità} \qquad \qquad m(z)=\left(z-\lambda_1\right)^{m_1}\dots\left(z-\lambda_k\right)^{m_k}$
- Ricordiamo che per per l'evoluzione libera vale

$$x_{\ell}(t) = A^{t}x(0) = \mathcal{Z}^{-1}\left\{ (zI - A)^{-1}z \right\} x(0)$$

Teorema 2.7 A^t è una matrice avente come elementi opportune **combinazioni lineari** di

$$\lambda_i^t, \ t \, \lambda_i^t, \ \dots, \ t^{m_i-1} \, \lambda_i^t$$

 $per i = 1, \dots, k$.

Tale segnali sono detti modi naturali del sistema.

- Di conseguenza $x_{\ell}(t) = A^t x(0)$ e $y_{\ell}(t) = C \, A^t x(0)$ evolvono secondo una opportuna **combinazione dei modi naturali** del sistema (al variare delle **condizioni iniziali**)
- I modi in Laplace erano esponenziali: $e^{\lambda_1 t}, t e^{\lambda_1 t}, \dots$

MODULO E FASE (ARGOMENTO)

Invece di guardare parte reale e immaginaria per stabilire rispettivamente convergenza oppure oscillazioni, si va a guardare il modulo e la fase di un certo polo λ_i

• Utile perché posso riscrivere la potenza di matrice λ_i^t in modo più semplice Infatti un certo λ_i lo si può riscrivere come:

$$oxed{\lambda_i =
ho_i e^{j heta_i}} \;\;\; , \;\;\; ext{avente} \;
ho_i = |\lambda_i| \;\; , \;\; heta_i = ngle \lambda_i$$

La relativa potenza è data da:

$$\lambda_i^t = (
ho_i e^{j heta_i})^t =
ho_i^t e^{j heta_i t} = oldsymbol{
ho_i^t} \left\{\cos(heta_i t) + j\sin(heta_i t)
ight\}$$

La convergenza o meno dipende dal modulo ho_i^t (ovvero il termine di esponenziale reale)

• In generale quindi dipende dal modo di ciascun autovalore, ovvero: $ho_i = |\lambda_i|$

• Scomponento gli autovalori in termini di modulo e fase

$$\lambda_i = \rho_i e^{j\theta_i}$$

con

$$\rho_i = |\lambda_i| \qquad \theta_i = \angle \lambda_i$$

Modo naturale

$$\begin{array}{lcl} t^{\ell} \, \lambda_i^t & = & t^{\ell} \, \rho_i^t e^{j\theta_i \, t} \\ & = & t^{\ell} \, \rho_i^t \left[\cos(\theta_i \, t) + j \sin(\theta_i \, t) \right] \end{array}$$

- ullet Fase $heta_i = ot \lambda_i$ dell'autovalore determina la presenza o meno di **oscillazioni**
- **Attenzione:** se λ_i autovalore complesso allora anche il suo complesso coniugato $\overline{\lambda}_i = \rho_i e^{-j\theta_i}$ è autovalore con la stessa molteplicità \Rightarrow i modi $t^\ell \, \lambda_i^t$ e $t^\ell \, \overline{\lambda_i^t}$ sono presenti sempre in coppia e si combinano per dare luogo ai modi reali

$$t^{\ell} \rho_i^t \cos(\theta_i t)$$
 $t^{\ell} \rho_i^t \sin(\theta_i t)$

POLO Λ_I REALE POSITIVO

• Quanto $\theta_i = 0$ (no parte immaginaria, il polo sta sull'asse orizzontale reale)

POLO λ_i REALE NEGATIVO

- il seno va a 0
- il coseno vale ± 1

componente oscillatoria (seni alterni)

• Rispettivamente oscillante convergente, oscillante limitato, oscillante divergente

$AUTOVALORI\ COMPLESSI\ CONIUGATI$

• Quando $heta_i
eq 0$ e $heta_i
eq \pi$

RIASSUMENDO

	$ \lambda_i < 1$	$ \lambda_i =1$	$ \lambda_i > 1$
$\ell = 0$	convergente	limitato	divergente
$\ell > 0$	convergente	divergente	divergente

Quindi la molteplicità diventa importante quando abbiamo autovalori con modulo 1, ovvero il caso $|\lambda_i|=1$

- ullet Modulo $|\lambda_i|$ e molteplicità m_i (nel caso $|\lambda_i|=1$) determinano la convergenza/divergenza
- Fase $\angle \lambda_i$ determina la presenza o meno di **oscillazioni**

Nota: Per conoscere l'andamento qualitativo di $A^t=\mathcal{Z}^{-1}\{(zI-A)^{-1}z\}$ è sufficiente guardare la **posizione degli autovalori** nel piano z e la loro **molteplicità** nel polinomio minimo

CONFRONTO MODI TC-TD

• da una parte abbiamo come "confine" il semipiano sinistro, dall'altra la circonferenza unitaria

i modi del TC sono esponenziali $e^{\lambda_i t}$ mentre in TD sono potenze λ_i^t

STABILITA' DEI SISTEMI TD

INTERNA

Stabilità interna: proprietà intrinseca del sistema (non dipende dalla traiettoria) In generale, in maniera simmetrica rispetto al caso TC:

Teorema 2.8 Un sistema LTI TD è

- asintoticamente stabile <=> tulti modi noturoli conergenti ⇔ tutti gli autovalori del sistema hanno modulo < 1
- ullet marginalmente stabile \bullet tutti gli autovalori del sistema hanno modulo ≤ 1 AND quelli con modulo = 1 hanno molteplicità = 1 come radici del polinomio minimo
- internamente instabile negli altri casi \iff demens un molo neturale di respecte \Leftrightarrow esiste almeno un autovalore con modulo >1OR con modulo =1 e molteplicità >1 nel polinomio minimo
- La regione di stabilità asintotica nel piano z corrisponde al cerchio $\overline{\mathsf{u}}$ nitario

$$\mathbb{C}_z = \{ z \in \mathbb{C} : |z| < 1 \}$$

ESTERNA

Necessita del calcolo della funzione di trasferimento $G(z) = C(zI - A)^{-1}B + D$

- Si fanno eventuali semplificazioni
- Si studia il denominatore a(z) e i suoi poli (che sono un sottoinsieme di tutti i poli del sistema come del caso TC)
 - Abbiamo (bibo)stabilità esterna se i poli di a(z) hanno tutti modulo < 1

Stabilità asintotica implica stabilità esterna (ma non vale il contrario)

• Consideriamo un sistema LTI tempo discreto SISO con funzione di trasferimento
$$G(z) = C(z) + \int_{-\infty}^{\infty} D dz$$

$$C(z) = \frac{b(z)}{a(z)}$$

$$C(z) = \frac{b(z)}{a(z)}$$

$$Con b(z) e a(z) polinomi coprimi (senza radici comuni)$$
• Poli di $G(z)$ = radici di $a(z)$

Teorema 2.4 Sistema LTI TD SISO stabile esternamente \Leftrightarrow tutti i poli di $G(z)$ hanno modulo < 1

• Anche per sistemi TD, stabilità asintotica \Rightarrow stabilità esterna
• L'implicazione inversa in generale non vale (conoscere $G(z)$ non è sufficiente per concludere sulla stabilità interna)

STABILITÀ	Quantità di interesse	Condizione
Asintotica	Polinomio caratteristico $\varphi(z)$	$ \lambda_i < 1$ per ogni λ_i tale che $arphi(\lambda_i) = 0$
Marginale	Polinomio minimo $m(z)$	$ \lambda_i \leq 1$ per ogni λ_i tale che $\varphi(\lambda_i) = 0$ & $m_i = 1 \text{ nel caso in cui } \lambda_i = 1$
Esterna	Funzione di trasferimento $G(z) = \frac{b(z)}{a(z)}$	$ \lambda_i < 1$ per ogni λ_i tale che $a(\lambda_i) = 0$

STABILITA' SISTEMI NON LINEARI

PUNTI DI EQUILIBRIO

Coppia stato ingresso tale per cui se partiamo dallo stato della coppia e applichiamo tale ingresso, allora rimaniamo nello stesso stato (analoga definizione)

$$x(0)=x_e, \;\; u(t)=u_e \;\; \Longrightarrow \; x(t)=x_e \;\; orall t \geq 0$$

Il punto di equilibrio rappresenta dunque una traiettoria costante del sistema

Cambia solo il modo con cui calcolo i punti di equilibrio

- nel caso TC si annulla la derivata
- nel caso TD si deve garantire che lo stato successivo x(t+1) coincida con quello corrente x(t).

 Ovvero il punto x_e deve essere un *punto fisso* dell'equazione transizione di stato cioè $x_e = f(x_e, u_e)$ (caso non autonomo)
 - Da cui si derivano tutte le considerazioni fatte per la stabilità asintotica (Lyapunov, attrattività

locale...)

l punti di equilibrio di un sistema TD sono tutte e sole le coppie (x_e, u_e) tali che

$$f(x_e, u_e) = x_e$$

- Questo risultato è una conseguenza immediata della definizione
- La definizione di punti di equilibrio non cambia, rispetto al caso TC, ma cambia la condizione da verificare
- Per sistemi autonomi: x_e equilibrio $\Leftrightarrow f(x_e) = x_e$ In questo caso, uno stato di equilibrio è un **punto fisso** della funzione f

sterilité elle Ryepunor } sterilité esintitie bob

STABILITA': METODO INDIRETTO DI LINEARIZZAZIONE

La stabilità di un punto di equilibrio (dato un sistema non lineare) si studia anche in questo caso con il metodo della linearizzazione

- Si studia quindi il comportamento del sistema linearizzato
 - Calcolando la matrice A_e Jacobiana delle derivate parziali

$$A_e = rac{\partial f}{\partial x} \quad , \quad ext{calcolata in } (x,u) = (x_e,u_e)$$

• Dove cambia solo la ROC, quindi bisogna guardare il modulo degli elementi della matrice A_e In particolare:

Teorema 2.10 (Metodo della linearizzazione di Lyapunov TD) Consideriamo un sistema TI TD. Sia A_e la matrice del sistema linearizzato nell'intorno di un equilibrio (x_e,u_e) .

Se tutti gli autovalori di A_e hanno modulo <1 (interna linearizzato nell'intorno di un equilibrio (localmente) asintoticamente stabile

Se almeno un autovalore di A_e ha modulo >1 (interna linearizzato exprontialmente interior) \Rightarrow equilibrio internamente instabile

(caso critico) Se invece tutti gli autovalori di A_e hanno modulo ≤ 1 AND almeno un autovalore con modulo =1 \Rightarrow non si può concludere nulla

NOTA: ALL'ESAME NON CI SONO ESERCIZI DI ANALISI DEI SISTEMI NON LINEARI, MA BISOGNA SAPERE LA TEORIA PER L'ORALE

SISTEMI DI CONTROLLO

- Far comportare un sistema in un modo desiderato
- Lo vediamo solo per il tempo continuo e per sistemi lineari (ma vale anche lo stesso per il tempo continuo e per i sistemi non lineari nell'intorno dei punti di equilibrio)

Il sistema da controllare si chiama impianto o processo (P)

$$\mathcal{P}: egin{cases} \dot{x}(t) = Ax(t) + Bu(t) \ y(t) = Cx(t) + Du(t) \end{cases}^0$$

- Ipotizzando D=0 (perché il controllo non può influenzare l'uscita y istantaneamente, ma andremo ad agire sull'ingresso e poi dopo un certo ritardo l'uscita viene influenzata anche con quello che abbiamo dato in ingresso)
- Lo scopo del controllo è quello di agire sul sistema mediante il segnale di controllo/ingresso u, in modo tale che l'andamento in uscita del sistema (valore delle variabili che vogliamo controllare) sia il più vicino possibile al segnale y^0 detto di riferimento
 - $y-y^0$ viene detto errore d'inseguimento. L'obiettivo è renderlo il più piccolo possibile
- La classe di problemi che auspica a una uscita di riferimento pari a zero, ovvero $y^0=0 \ \forall t$ viene chiamata problema di regolazione a zero. Si raggiunge uno stato di quiete
- Gli altri problemi sono invece problemi d'inseguimento, in cui si cerca di controllare il sistema per ottenere un riferimento $y^0(t)$ generico, non nullo. Esso rappresenta la traiettoria desiderata del sistema
 - Ci occuperemo di questi solo parlando dei problemi d'inseguimento con riferimento costante, ovvero tali che

$$y^0(t) = Y_0 \cdot 1(t)$$

- che è un riferimento a gradino (costante). Vogliamo cioè portare l'uscita a un valore costante (esempio: cruise control/termostato...)
- Y_0 è detto **set-point**, e rappresenta il valore/valori a cui vogliamo portare l'uscita (velocità macchina, temperatura della stanza...)

CONTROLLO IN ANELLO APERTO: (

Si predetermina un segnale di ingresso u sulla base delle esigenze y^0 e lo si applica al sistema.

 Non si controlla più: si suppone che non ci siano disturbi anche imprevisti che potrebbero interferire con l'ingresso scelto. Modello per questo in un certo senso ideale

- Sarebbe un po' come impostare a priori il miscelatore della doccia in una certa posizione "sperando" che poi l'acqua sia alla temperatura desiderata.
 - Con il controllo in retroazione invece avremmo la possibilità di regolare la manopola sulla base di com'è la temperatura in un certo istante (la porto verso destra se l'acqua e calda e viceversa in tal caso w sono i sensi sulla pelle che misurano la temperatura)

CONTROLLO IN RETROAZIONE:)

Feedback control

Tengo conto in tempo reale del comportamento del sistema.

- Suppongo di conoscere le variabili w che danno informazioni sulla configurazione del sistema in un certo istante t.
- Quindi l'azione del controllo u non è predeterminata, ma è generata in ogni istante di tempo sulla base dei dati forniti da \mathcal{P} con il vettore informativo w

detto anche controllo in catena aperta (ad anello)

Se il vettore informativo coincide con l'intero stato, allora si parla di *controllo in retroazione sullo stato*. Abbiamo una informazione completa dello stato (conosco tutto quello che sta succedendo in \mathcal{P})

$$\boxed{w(t) = x(t)} \quad o \quad ext{controllo in retroazione sullo stato}$$

Se invece abbiamo a disposizione solo una parte delle variabili, guardiamo il caso in cui conosciamo solo l'uscita di \mathcal{P} . Si parla perciò di *controllo in retroazione sull'uscita*. Abbiamo quindi solo una informazione parziale di quello che sta succedendo

$$\boxed{w(t) = y(t)} \quad o \quad ext{controllo in retroazione sull'uscita}$$

• Non posso guardare cosa succede dentro \mathcal{P} , ma guardo solo cosa esce ovvero y.