Operációs rendszerek BSc

3. Gyak. 2022. 04. 29.

> Készítette: Nagy Gergely Bsc Mérnökinformatikus G13RFP

Miskolc, 2022

Operációs rendszerek – 3. Gyakorlat

UNIX processz ütemezés, szignálkezelés, holtpont

Töltse fel az aktuális mappába: Neptunkod_....

Jegyzőkönyv neve: Neptunkod Gyak3.pdf és a forrás file-k.

Határidő: 2022.04.27.

Irodalom:

Tanulmányozzák a Vadász Dénes: Operációs rendszerek, 2006. ME, jegyzet, ill.

Vincze Dávid: Operációs rendszerek - diasort.

Benyó Balázs, Fék Márk, Kiss István, Kóczy Annamária, Kondorosi Károly, Mészáros Tamás, Román Gyula, Szeberényi Imre, és Sziray, József: Operációs rendszerek mérnöki megközelítésben, Panem Kiadó, 2000, jegyzet/diák.

Szintén tanulmányozzák az előadáson bemutatott/kivetített mintapéldát és az URL linkhez tartozó irodalmat, majd oldják meg a feladatot.

Feladatok

"1. Adott négy processz a rendszerbe, melynek beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész.

Kezdetben mindegyik processz p uspri = 60.

$$Az A, B, C processz p nice = 0, a D processz p nice = 5.$$

Mindegyik processz p cpu = 0, az óraütés 1 indul, a befejezés legyen 201. óraütés-ig.

- a.) Határozza meg az ütemezést RR nélkül és az ütemezést RR-nal külön-külön táblázatba.
- b.) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.
- c.) Igazolja a számítással a tanultak alapján.

A táblázat javasolt formája RR/RR nélkül a következő:

	A pro	cess	B pro	ocess	C pro	ocess	D pro	cess	Resch	edule
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_uspri	p_uspri	p_cpu	running before	running after
Starting point	60	0	60	0	60	0	60	0		
1	:	:	:	:	:	:	:	:		:
:	:	i	:	:	1	:	:	i i	:	:

Starting point	A pro	cess	B pro	cess	C pro	cess	D pro	ocess	running	process after
Starting point	P_usipii	p_cpu	p_usrpri	p_cpu	p_usrpri	p_cpu	p_usrpri	p_cpu	before	after
1	60	0 1 2 60	60	0	60	0	60	0		А
2	75	30	60	0 1 2 60	60	0	60	0	Α	В
3	67	15		30		0 1 2 60 30	60	0	В	С
4	63	7		15				0 1 2 60	С	D
5	61	3 4 5 63	63	7	67	15		40	D	A
6	75	31		3 4 5 63	63	7	70	20	D	В
7	67	15		31		3 4 5 63 31	65	10	В	С
8	63	7	67	15	75	31	62	5 6 7 65	С	D

A process p_nice = 0
B process p_nice = 0
C process p_nice = 0
D process p_nice = 5

p_cpu = p_cpu/2
p_pri = P_USER + p_cpu/2 +2*p_nice

	Δnr	ocess	I B ni	ocess	I Cnr	ocess	D pr	ocess	Running	processes
	p usrpri	p_cpu	p usrpri		p_usrpri		p_usrpri		before	after
Starting poin			0 60			р_сри 0	60		Deloie	A
3 carcing point	ľ		1	, ,	00	·	00	·		
2			2							
			1							
10	6	50 1	0 60) 0	60	0	60	0	Α	В
20	6	50 1	0 60	10	60	0	60	0	В	С
	_					4.0				_
30	6	50 1	0 60) 10	60	10	60	0	С	D
 40	6	50 1	0 60) 10	60	10	60	10	D	Α
	ľ	00 1	0	, 10	00	10	00	10	D	^
50	6	50 2	0 60) 10	60	10	60	10	Α	В
	Ĭ		•				-			
60	6	0 2	0 60	20	60	10	60	10	В	С
70	6	0 2	0 60) 20	60	20	60	10	С	D
80	6	50 2	0 60) 20	60	20	60	20	D	Α
 90		50 3	0 60		60	20	60	20		
90		50 3				20 20	60 60	20 20	Α	В
100		i6 2				17	74	17	В	С
101		6 2				18	74	17	ь	
110		6 2				27	74	17	С	Α
	Ĭ		1		1				ŭ	, ,
120	6	6 3	5 66	5 25	64	27	74	17	Α	В
130	6	6 3	5 66	35	64	27	74	17	В	D
									_	_
140	6	6 3	5 66	5 35	64	27	74	27	D	С
 150	,					22	74	27	С	
150	٥	6 3	5 66	5 35	64	37	74	27	C	Α
160		6 4	5 66	5 35	64	37	74	27	Α	В
100	۱ °	. Т		, 55	1	37	/ -	21		"
170	6	6 4	5 66	45	64	37	74	27	В	D
-, -	ľ		1		1				_	
180	6	6 4	5 66	5 45	64	37	74	37	D	С
										l
190		6 4			64		74	37	С	Α
199		6 5				47	74	37		l _
200		78 4				39	91	31	Α	В
201	7	'8 4	7 76	39	74	41	91	31		

0,85 Kf 2*3/(2*3+1] 0,85714

p_usrori 66,25

- 2. Készítse el a következő feladatot, melyben egy szignálkezelő több szignált is tud kezelni:
- **a.)** Készítsen egy szignál kezelőt (handleSignals), amely a SIGINT (CTRL + C) vagy SIGQUIT (CTRL + \) jelek fogására vagy kezelésére képes.
- b.) Ha a felhasználó SIGQUIT jelet generál (akár kill paranccsal, akár billentyűzetről a CTRL
- +\) a kezelő egyszerűen kiírja az üzenetet visszatérési értékét a konzolra.
- **c.)** Ha a felhasználó először generálja a SIGINT jelet (akár kill paranccsal, akár billentyűzetről a CTRL + C), akkor a jelet úgy módosítja, hogy a következő alkalommal alapértelmezett műveletet hajtson végre (a SIG DFL) kiírás a konzolra.
- **d.**) Ha a felhasználó másodszor generálja a SIGINT jelet, akkor végrehajt egy alapértelmezett műveletet, amely a program befejezése kiírás a konzolra.

```
Mentés: neptunkod tobbszignal.c
```

```
gl3rfp@gl3rfp-VirtualBox:~/Letöltések$ ./Gl3RFP tobbszignal
^CFirst SIGINT.
^C
g13rfp@g13rfp-VirtualBox:~/Letöltések$
#include<stdio.h>
#include<signal.h>
#include <stdlib.h>
int sigint counter = 0;
void handle signals(int sig) {
    if (sig == 3) {
        printf("Quit signal caught.\n");
        exit(0);
    } else if (sig == 2) {
        if (sigint counter == 0) {
            printf("First SIGINT.\n");
             sigint counter++;
             signal(SIGINT, SIG DFL);
        }
    }
}
int main()
{
    signal(SIGINT, handle signals);
    signal(SIGQUIT, handle signals);
    while (1);
    return 0;
}
```

3. Készítsen C nyelvű programot, ahol egy szülő processz létrehoz egy csővezetéket, a gyerek processz beleír egy szöveget a csővezetékbe (A kiírt szöveg: XY neptunkod), a szülő processz ezt kiolvassa, és kiírja a standard kimenetre.

Mentés: neptunkod unnamed.c

```
g13rfp@g13rfp-VirtualBox: ~/Letöltések
                                                                    8
Fájl Szerkesztés Nézet Keresés Terminál Súgó
g13rfp@g13rfp-VirtualBox:~$ cd Letöltések
gl3rfp@gl3rfp-VirtualBox:~/Letöltések$ ./Gl3RFP unnamed
Szülő processz vár
Gyerek process.
Szülő process olvas.
pipelineról olvasva: Nagy Gergely G13RFP
gl3rfp@gl3rfp-VirtualBox:~/Letöltések$
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
    int pipe1[2];
    pid t p;
    if (pipe(pipe1) == -1) {
         fprintf(stderr, "pipe1 hiba");
         return 1;
    }
    p = fork();
    if (p < 0) {
         fprintf(stderr, "fork hiba");
         return 1;
    }
                                /*Szulo processz*/
    else if (p > 0) {
         char str[100];
         printf("Szülő processz vár\n");
         wait(NULL);
         printf("Szülő process olvas.\n");
         read(pipe1[0], str, 100);
         printf("pipelineról olvasva: %s\n", str);
         close(pipe1[0]);
    }
```

```
else {
    printf("Gyerek process.\n");
    char output_string[100];
    strcpy(output_string, "Nagy Gergely G13RFP");
    write(pipe1[1], output_string, strlen(output_string) +
1);
    close(pipe1[1]);
    exit(0);
}
```

4. Készítsen C nyelvű programot, ahol egy szülő processz létrehoz egy nevesített csővezetéket (neve: neptunkod), a gyerek processz beleír egy szöveget a csővezetékbe (A hallgató neve:pl. Keserű Ottó), a szülő processz ezt kiolvassa, és kiírja a standard kimenetre.

Mentés: neptunkod named.c

```
g13rfp@g13rfp-VirtualBox: ~/Letöltések - © ©

Fájl Szerkesztés Nézet Keresés Terminál Súgó

g13rfp@g13rfp-VirtualBox:~$ cd Letöltések
g13rfp@g13rfp-VirtualBox:~/Letöltések$ ./G13RFP_named

Szülő processz vár
Gyerek process.
```

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
    char* fifoname = "./G13RFP";
    mkfifo(fifoname, 0666);
    int pipe;
    pid t p;
   p = fork();
    if (p < 0) {
        fprintf(stderr, "fork hiba");
        return 1;
    } else if (p > 0) {
        char str[80];
        printf("Szülő processz vár\n");
        wait(NULL);
        printf("Szülő process olvas.\n");
        pipe = open(fifoname, O RDONLY);
        read(pipe, str, 80);
        close (pipe);
        printf("A %s nevű piperól olvasva: %s\n", fifoname,
```

```
str);

} else {

    printf("Gyerek process.\n");

    char output_string[80];
    strcpy(output_string, "Nagy Gergely G13RFP\n");

    pipe = open(fifoname, O_WRONLY);
    write(pipe, output_string, strlen(output_string));
    close(pipe);

    printf("Gyerek process vége.\n");

    exit(0);
}
```

5. Adott egy rendszerbe az összes **osztály-erőforrások száma**: R (R1: 10; R2: 9; R3: 12)

A rendszerbe 4 processz van: P1, P2, P3, P4.

Biztonságos-e holtpontmentesség szempontjából a rendszer – a következő *kiinduló állapot* alapján?

- a) Határozza meg a folyamatok által igényelt erőforrások mátrixát?
- b) Határozza meg pillanatnyilag szabad erőforrások számát?
- c) Igazolja az egyes processzek végrehajtásának lehetséges sorrendjét számolással?"

	Maxi	mális igén	ıy		Fogl	alási igény	у
	R1	R2	R3		R1	R2	R3
P1	4	4	5	P1	2	2	3
P2	1	4	3	P2	1	2	2
P3	6	7	7	Р3	0	1	3
P4	3	7	10	P4	2	1	2

szabad	5	3	2								
P4	2	1	2	P4	3	7	10	P4	1	6	8
P3	0	1	3	P3	6	7	7	P3	6	6	4
P2	1	2	2	P2	1	4	3	P2	0	2	1
P1	2	2	3	P1	4	4	5	P1	2	2	2
	R1	R2	R3		R1	R2	R3		R1	R2	R3
Foglalási igé	ny			Maximá	lis igény			Várható	igény		
erőforráso	10	9	13	2							

induló készlet: {5,3,2} ez P1 vagy P2 igényére elég

Válasszuk mondjuk P1-et,akkor:

{5,3,2}-{2,2,2}+{2,2,2}+{2,2,3}={5,3,2}+{2,2,3}={7,5,5}

új készlet:{7,5,5}

	10	9	1	2								
Foglalási ig	gény			Maximá	lis igény			Várható	Várható igény			
	R1	R2	R3		R1	R2	R3		R1	R2	R3	
P2	1	2	2	P2	1	4	3	P2	0	2	1	
P3	0	1	3	P3	6	7	7	P3	6	6	4	
P4	2	1	2	P4	3	7	10	P4	1	6	8	
szabad	7	5	5									

válasszuk P2-t

 $\{7,5,5\}-\{0,2,1\}+\{0,2,1\}+\{1,2,2\}=\{7,5,5\}+\{1,2,2\}=\{8,7,7\}$

új készlet:{8,7,7}

	10		9 1	2								
Foglalási i	gény			Maximá	lis igény			Várható	Várható igény			
_	R1	R2	R3		R1	R2	R3		R1	R2	R3	
P3	0	1	3	P3	6	7	7	P3	6	6	4	
P4	2	1	2	P4	3	7	10	P4	1	6	8	
szabad	8	7	7									

	10	9	1	2							
Foglalási i	gény			Maximá	lis igény			Várható	igény		
	R1	R2	R3		R1	R2	R3		R1	R2	R3
P4	2	1	2	P4	3	7	10	P4	1	6	8
szahad	8	Я	10								

	10		12						
Foglalási ige	ény			Maximális igény			Várható igény		
	R1	R2	R3	R1	R2	R3	R1	R2	R3
	0	0	0	0	0	0	0	0	0
szabad	10	9	12						