

GC-MVSNet: Multi-View, Multi-Scale, Geometrically-Consistent Multi-View Stereo

Vibhas K. Vats¹ Sripad Joshi¹ David J. Crandall¹ Md. Alimoor Reza² Soon-Heung Jung³

l Johnsveiten Die eneigentens Joseffens — 2 Duelse Highneyeiten Dee Meinese Januar — 3 Tie etweniese and Telese penengaisetiene Deese wele Jo

¹Indiana University, Bloomington, Indiana ²Drake University, Des Moines, Iowa ³Electronics and Telecommunications Research Institute, Korea

Multi-View Stereo Problems

- Depth map-based MVS algorithms estimate the reference view depth maps using multiple RGB inputs (Reference + Source views)
- A consistent scene requires geometric consistency of depth estimates across multiple views

Two broader approaches are undertaken to ensure geometric consistency in estimated depth maps:

- \blacksquare Repeated application of geometric constraints during the depth estimation process \to Traditional MVS Algorithms
- \bullet Geometric constraints applied as a post-processing step \to Learning-based MVS Algorithms

GC-MVSNet is a learning-based algorithm with geometric constraints applied during the learning process.

Learning-Based MVS Algorithms

A learning-based MVS method:

- Extract multi-level features using CNNs
- Creates a matching 3D cost volume using features
- Regularize cost volume using 3D-CNN
- Filter geometrically consistent points to generate 3D point-cloud

They only use Geometric Constraints as a post-processing step for filtering multi-view consistent points. It leads to:

- Limited geometric cues during the learning process
- Require more training iterations to learn to reason about geometry

Hypothesis

GC-MVSNet:

- Explicitly models cross-view geometric constraints during learning
- It penalizes geometrically inconsistent estimates during learning

With such explicit geometric constraint modeling, GC-MVSNet should:

- \bullet Develop a better understanding of multi-view geometry \to Improved quantitative results
- Learn quickly to reason about scene geometry → Require less training iterations

Forward-Backward-Reprojection

 $\begin{array}{l} \textbf{Inputs:} \ D_0, c_0, D_i^{gt}, c_i^{gt} \\ \textbf{Output:} \ D_{P_0''}'', P_0'' \\ K_R, E_R \leftarrow c_0; K_S, E_S \leftarrow c_i^{gt} \\ D_{(R \rightarrow S)} \leftarrow K_S \cdot E_S \cdot E_R^{-1} \cdot K_R^{-1} \cdot D_0 \\ X_{D_{(R \rightarrow S)}}, Y_{D_{(R \rightarrow S)}} \leftarrow D_{(R \rightarrow S)} \\ D_{S_{remap}} \leftarrow REMAP(D_i^{gt}, X_{D_{(R \rightarrow S)}}, Y_{D_{(R \rightarrow S)}}) \\ D_{P_0''} \leftarrow K_R \cdot E_R \cdot E_S^{-1} \cdot K_S^{-1} \cdot D_{S_{remap}} \\ P_0''' \leftarrow (X_{D_{P_0''}''}, Y_{D_{P_0''}'}) \\ \end{array} \Rightarrow \text{Back project}$

Other Modifications

Two additional modifications were to stabilize the model's performance.

- Keeping the feature-extraction-network as Feature Pyramid Network, replaced the regular conv-layers with deformable conv-layers
- Replaced BatchNorm-layers with GroupNorm-layers as BatchNorm is not well suited for small batch-size

Method

Geometric-Consistency (GC) Module:

- Applied at the end of each stage to check cross-view consistency of the reference view depth maps
- Generates penalty for geometrically inconsistent estimates for each stage

Geometric-Consistency Module

Complete GC-Algorithm

Initialize Mask-Sum $\rightarrow 0$

For each Src. depth map:

- 1. forward-backward-reprojection to get PDE and RDD
- $\bullet \text{ PDE} \leftarrow ||P_0 P_0''||_2$
- RDD $\leftarrow 1/D_0||D''_{P''_0} D_0||_1$
- 2. Select geometrically inconsistent pixels
 - $PDE_{mask} > D_{pixel}$
- $RDD_{mask} > D_{depth}$
- 3. Combine inconsistent pixels from both masks
- Logical-OR (PDE_{mask}, RDD_{mask})
- 4. Current-Mask ← Assign penalty to each pixel
- Inconsistent pixels → 1
 All other pixels → 0
- 5. Add Current-Mask to initial Mask-Sum

Geometric penalty (ξ_p) \leftarrow average Mask-Sum Apply reference view binary mask to generate final ξ_p

GC-MVSNet Architecture

Quantitative Result on DTU Dataset

	Method	Acc↓	Comp ↓	Overall ↓
Traditional	Furu [9]	0.613	0.941	0.777
	Tola [36]	0.342	1.190	0.766
	Gipuma [10]	0.283	0.873	0.578
	COLMAP [33]	0.400	0.664	0.532
Learning-based	SurfaceNet [16]	0.450	1.040	0.745
	MVSNet [48]	0.396	0.527	0.462
	P-MVSNet [25]	0.406	0.434	0.420
	R-MVSNet [49]	0.383	0.452	0.417
	Point-MVSNet [2]	0.342	0.411	0.376
	CasMVSNet [12]	0.325	0.385	0.355
	CVP-MVSNet [47]	0.296	0.406	0.351
	UCS-Net [3]	0.338	0.349	0.344
	AA-RMVSNet [41]	0.376	0.339	0.357
	UniMVSNet [30]	0.352	0.278	0.315
	TransMVSNet [6]	0.321	0.289	0.305
	GBi-Net* [28]	0.312	0.293	0.303
	MVSTER [39]	0.350	0.276	0.313
	GC-MVSNet (ours)	0.330	0.260	0.295
	GBi-Net [28]	0.315	0.262	0.289
	GC-MVSNet (ours)	0.323	0.255	0.289

Our method achieve State-of-the-art result on two datasets:

DTU and BlendedMVS

GC: A Plug-in Module

GC module is designed as a plug-in module

- Plug into any depth map-based MVS method
- Retraining the network with GC-module provides:
 Improved quantitative results to its previous performance
- Require less training iterations to achieve optimal performance

We demonstrate this on two different methods:

CasMVSNet and TransMVSNet

Methods	Loss	Other	GC	Overall↓	Epoch
CasMVSNet [2]	$egin{array}{c} L_1 \ L_1 \ L_1 \end{array}$	× √ ×	×	0.355 0.357 0.335	16 16 11
TransMVSNet [1]	FL FL FL	×	× × √	0.305 0.322 0.303	16 16 8

Table 1. GC-module as a plug-in module in TransMVSNet and CasMVSNet

References

- [1] Yikang Ding, Wentao Yuan, Qingtian Zhu, Haotian Zhang, Xiangyue Liu, Yuanjiang Wang, and Xiao Liu. Transmysnet: Global context-aware multi-view stereo network with transformers.

 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8585–8594, 2022.
- [2] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan.
 Cascade cost volume for high-resolution multi-view stereo and stereo matching.
 In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2495–2504,

Connect with us

