Conectando pueblos

En una región con pueblos dispersos, tras una gran nevada, todas sus carreteras han quedado bloqueadas. Cada una de estas carreteras conecta dos pueblos (en ambos sentidos), y se ha estimado el tiempo en horas que se va a tardar en limpiar y volver a abrir cada una de las carreteras. Estos tiempos son independientes entre sí, ya que se trabaja en todas las carreteras a la vez.

¿Cuál es el mínimo número de horas que tienen que pasar para que todos los pueblos vuelvan a estar conectados? Es decir, para que para cualquier pareja de pueblos exista una ruta entre los dos pueblos que pase por una o más carreteras que ya han sido abiertas.

Entrada

La entrada comienza con el número de casos de prueba que aparecerán a continuación.

La primera línea de cada caso contiene dos números enteros: el número de pueblos N (entre 1 y 10.000) y el número de carreteras M (entre 0 y 100.000). A continuación aparecen M líneas, cada una describiendo una carretera: primero aparecen los números de los pueblos que la carretera conecta (los pueblos están numerados de 1 a N) y a continuación el número de horas estimadas que requerirá la limpieza de esa carretera (números entre 1 y 10.000).

Salida

Para cada caso de prueba se escribirá una línea con el número de horas que tienen que pasar para que los pueblos vuelvan a estar conectados. Si no es posible conectar todos los pueblos, se mostrará una línea con la palabra Imposible.

Entrada de ejemplo

3	
3 3	
1 2 10	
2 3 20	
3 1 30	
4 2	
1 3 10	
4 2 10	
4 3	
1 2 20	
1 3 30	
1 4 10	

Salida de ejemplo

20			
Imposible			
30			

Autor: Alberto Verdejo.