Finance Quantitative

Exercice: Modèle de Treynor-Black

Patrick Hénaff

Version: 19 févr. 2023

Dans cet exercice, on considère la première étape du modèle de Treynor-Black, c'est à dire l'estimation du terme α du modèle à un facteur de Sharpe.

Données

Séries de rendement mensuel pour 11 valeurs:

```
monthly.ret.file <- file.path(get.data.folder(), "monthly.ret.rda")
load(monthly.ret.file)</pre>
```

On considère divers indices de marché:

- le S&P 500
- l'indice NASDAQ QQQQ
- un ETF "World Market"

```
VT.series.file <- file.path(get.data.folder(), "ret.VT.rda")
load(VT.series.file)</pre>
```

Rendement moyen:

```
monthly.ret <- merge.xts(monthly.ret, world.index.ret, join="inner")
kable(colMeans(monthly.ret), "latex", escape=FALSE, col.names=c("$r$"), booktabs=TRUE, caption="</pre>
```

Table 1: Rendement moyen mensuel

	r
AAPL	0.0220532
AMZN	0.0271364
MSFT	0.0169185
F	0.0139604
SPY	0.0086184
QQQ	0.0126927
XOM	0.0012265
MMM	0.0090297
HD	0.0191698
PG	0.0080793
КО	0.0096675
Market	0.0063881

Questions

Modèle à un facteur de Sharpe

Choisir un titre et un indice de marché. Estimer le modèle de Sharpe sur une période de 48 mois.

```
dt.First <- as.Date("2009-01-01")
dt.Last <- as.Date("2012-12-31")
idx <- index(monthly.ret)
good_idx <- (idx >= dt.First) & (idx <= dt.Last)
good.data <- monthly.ret[good_idx,]
mod = lm(AAPL ~ SPY, data=good.data)
summary(mod)</pre>
```

```
##
## Call:
## lm(formula = AAPL ~ SPY, data = good.data)
##
## Residuals:
##
        \mathtt{Min}
                    1 Q
                          Median
                                        ЗQ
                                                 Max
## -0.129120 -0.048314 0.003847 0.042111 0.151171
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.030269 0.008962 3.377
                                             0.0015 **
              0.907511 0.177330 5.118 5.92e-06 ***
## SPY
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06015 on 46 degrees of freedom
## Multiple R-squared: 0.3628, Adjusted R-squared: 0.3489
## F-statistic: 26.19 on 1 and 46 DF, p-value: 5.917e-06
```

Effectuer le même calcul sur l'ensemble des actions continues dans le jeu de données.

```
titres <- c("AAPL", "AMZN", "MSFT", "F", "XOM", "MMM", "HD", "PG", "KO")

n <- length(titres)
df <- data.frame(alpha=rep(0,n), beta=rep(0,n), t.alpha=rep(0,n), t.beta=rep(0,n))
row.names(df) <- titres
i <- 1
for(t in titres) {
   mod <- lm(pasteO(t, " ~ SPY"), data=good.data)
   df$alpha[i] = mod$coefficients[1]
   df$beta[i] = mod$coefficients[2]
   t.vals <- coef(summary(mod))[, "t value"]
   df$t.alpha[i] <- t.vals[1]
   df$t.beta[i] <- t.vals[2]
   i <- i+1
}</pre>
```

	α	β	t_{α}	t_{eta}
AAPL	0.0302689	0.9075113	3.3774701	5.117646
AMZN	0.0318655	0.4477896	2.4002944	1.704673
MSFT	-0.0016531	1.0171141	-0.2246401	6.985414
F	0.0229315	2.3770910	0.8375339	4.387726
XOM	-0.0031774	0.6488662	-0.5538005	5.715593
MMM	0.0005013	1.1054388	0.0995251	11.091163
HD	0.0144227	0.8946309	1.8303970	5.738097
PG	-0.0006524	0.4979075	-0.1155424	4.456295
KO	0.0096859	0.4895758	1.5373795	3.927216

Faire le même calcul sur une fenêtre glissante de 48 mois et aficher une série de α . Utiliser la fonction rollapply de la librarie zoo.

