RESÚMEN DE FÓRMULAS

Medidas de Posición

Modo

Para variable cuantitativa continua.

$$\mathbf{M}_{0} \! = \! \mathbf{L}_{i} + \! \! \left[\frac{\mathbf{f}_{\mathbf{M}_{0}} \! - \! \mathbf{f}_{\mathbf{M}_{0}-1}}{\left(\mathbf{f}_{\mathbf{M}_{0}} \! - \! \mathbf{f}_{\mathbf{M}_{0}-1} \right) \! + \! \left(\mathbf{f}_{\mathbf{M}_{0}} \! - \! \mathbf{f}_{\mathbf{M}_{0}+1} \right)} \right] \! \cdot \! \mathbf{C}$$

 L_i = Límite inferior del intervalo modal.

 f_{Mo} = Frecuencia absoluta del intervalo modal.

 f_{Mo-1} = Frecuencia absoluta del intervalo anterior al modal.

 f_{Mo+1} = Frecuencia absoluta del intervalo posterior al modal.

Media Aritmética

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

para datos ponderados

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i}$$

<u>Mediana</u>

Para variable cuantitativa discreta Mediana de orden:

$$Mna^0 = \frac{n+1}{2}$$

Para variable cuantitativa continua.

Mna = L_i +
$$\left[\frac{\binom{n+1}{2} - F_{i-1}}{(F_i - F_{i-1})}\right] \cdot c$$

L_i = Límite inferior del intervalo mediana.

F_i = Frecuencia acumulada hasta el intervalo mediana.

 F_{i} = Frecuencia acumulada hasta el intervalo anterior a la mediana.

c = amplitud del intervalo.

Medidas de dispersión

Rango

$$R = x_{M} - x_{m}$$

X_M = Valor máximo observado

X_m = Valor mínimo observado <u>Varianza</u>

Poblacional
$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{N}$$

$$\underline{\text{Muestral}} \quad S^2 = \underbrace{\sum_{i=1}^{n} (x_i - \overline{x})^2}_{n-1}$$

$$S^{2} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - \overline{x})^{2}}{n-1} \quad o \quad S^{2} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} f_{i} - 1}$$

Fórmula de trabajo:

Partiendo de S²= $\frac{1}{n-1}\sum (x_i - \bar{x})^2$ se puede llegar a:

$$S^{2} = \frac{1}{n-1} \left(\sum x_{i}^{2} f_{i} - \frac{\left(\sum x_{i} f_{i} \right)^{2}}{n} \right)$$

ó a ésta otra expresión $S^2 = \frac{1}{n-1} (\sum x_i^2 - n\overline{x}^2)$

Desvio Estándar

Poblacional

$$\sigma = \sqrt{\sigma^2}$$

Muestral

$$S = \sqrt{s^2}$$

Coeficiente de variación (C.V.)

Si se conoce la varianza poblacional

C.V.=
$$\frac{\sigma}{\overline{X}}$$
. 100

Si no se conoce la varianza poblacional

C.V. =
$$\frac{s}{\bar{x}}$$
.100