

अध्याय 14

अर्धचालक इलेक्ट्रॉनिको-पदार्थ, युक्तियाँ तथा सरल परिपथ

14.1 भूमिका

ऐसी युक्तियाँ जिनमें इलेक्ट्रॉनों का नियंत्रित प्रवाह प्राप्त किया जा सके, सभी इलेक्ट्रॉनिक परिपथों की मुलभुत रचना खंड होती हैं। सन् 1948 में ट्रांजिस्टर की खोज से पहले ऐसी युक्तियाँ अधिकांशत: निर्वात निलकाएँ (या वाल्व) थीं, जैसे निर्वात डायोड जिसमें दो इलेक्ट्रोड: एनोड (प्लेट) तथा कैथोड होते हैं; ट्रायोड जिसमें तीन इलेक्ट्रोड–कैथोड, प्लेट तथा ग्रिड होते हैं; टेट्रोड तथा पेंटोड (क्रमश: 4 तथा 5 इलेक्टोडों के साथ)। किसी निर्वात निलंका में इलेक्टॉनों की आपर्ति एक तप्त कैथोड द्वारा की जाती है तथा इसके विभिन्न इलेक्ट्रोडों के बीच वोल्टता को परिवर्तित करके निर्वात में इन इलेक्टॉनों का नियंत्रित प्रवाह प्राप्त किया जाता है। अंतरा-इलेक्टोडी स्थान (inter-electrode space) में इलेक्ट्रॉनों के प्रवाह के लिए निर्वात आवश्यक होता है, अन्यथा गतिमान इलेक्ट्रॉन अपने पथ में वायु के अणुओं से टकराकर अपनी ऊर्जा खो सकते हैं। इन युक्तियों में इलेक्ट्रॉन केवल कैथोड से एनोड की ओर प्रवाहित कर सकते हैं (अर्थात इलेक्ट्रॉन केवल एक ही दिशा में प्रवाहित हो सकते हैं)। यही कारण है कि ऐसी युक्तियों को साधारणतया वाल्व कहते हैं। निर्वात निलकाओं से बनी युक्तियाँ आकार में बडी होती हैं, अधिक शक्ति का उपभोग करती हैं तथा प्रचालन में सामान्यत: उच्च वोल्टता (~100 V) की आवश्यकता होती है। इसके साथ ही इनका जीवनकाल अपेक्षाकृत कम तथा विश्वसनीयता भी कम होती है। आधुनिक *ठोस-अवस्था* अर्धचालक इलेक्ट्रॉनिकी (Solid State semi-conductor electronics) का प्रादुर्भाव सन् 1930 में इस आभास से किया गया कि कुछ ठोस अवस्था अर्धचालक तथा उनकी संधियों में यह संभावना होती है कि उनमें आवेश वाहकों की संख्या तथा उनके प्रवाह की दिशा को नियंत्रित किया जा सकता है। प्रकाश, ऊष्मा तथा अल्प अनुप्रयुक्त वोल्टता जैसे उत्तेजक किसी अर्धचालक

में गितमान आवेशों की संख्या पिरविर्तित कर सकते हैं। ध्यान देने योग्य बात यह है कि अर्धचालक युक्तियों में आवेश वाहकों की आपूर्ति तथा प्रवाह स्वयं ठोस के भीतर ही होता है, जबिक पहले प्रयोग होने वाली निर्वात निर्लाकाओं/वाल्वों में गितमान इलेक्ट्रॉनों को तप्त कैथोड से प्राप्त किया जाता था तथा निर्वातित स्थानों अथवा निर्वात में प्रवाहित कराया जाता था। अर्धचालक युक्तियों में बाहरी तापन अथवा अधिक निर्वातित स्थान की आवश्यकता नहीं होती है। यह आकार में छोटी होती हैं, कम शिक्त का उपभोग करती हैं, कम वोल्टता पर काम करती हैं, इनका जीवन लंबा होता है और इनकी विश्वसनीयता अच्छी होती है। आधुनिक युक्तियों में तो निर्वातित निर्काओं के सिद्धांत पर कार्य करने वाली कैथोड किरण ट्यूबों (CRT) जिनका उपयोग टेलीविजन सेटों तथा कंप्यूटर मॉनीटरों में किया जाता है, ठोसावस्था इलेक्ट्रॉनिकी (Solid State electrons) परिपथों के साथ संलग्न लिक्वड क्रिस्टल डिसप्ले (LCD, द्रव क्रिस्टल प्रदर्श) मॉनीटरों द्वारा प्रतिस्थापित की जा रही हैं। अर्धचालक युक्तियों को औपचारिक रूप से समझे जाने से भी बहुत पहले प्रकृति में पाए जाने वाले गैलेना (लैड सल्फाइड PbS) के एक क्रिस्टल जिसके साथ धातु का एक संपर्क बिंदु संयोजित था, का उपयोग रेडियो तरंगों के संसचक के रूप में किया जा चुका था।

निम्नलिखित अनुभागों में हम अर्धचालक भौतिकी की कुछ मूल अवधारणाओं से परिचय कराएँगे तथा संधि डायोड (Junction diode) (2-इलेक्ट्रोडों की युक्ति) तथा द्विध्रुवीय संधि (Bipolar junction) ट्रांजिस्टर (3-इलेक्ट्रोडों की युक्ति) जैसी कुछ अर्धचालक युक्तियों की चर्चा करेंगे। इन युक्तियों के अनुप्रयोगों को दर्शाने वाले कुछ परिपथों का वर्णन भी करेंगे।

14.2 धातुओं, चालकों तथा अर्धचालकों का वर्गीकरण

चालकता के आधार पर

विद्युत चालकता (σ) अथवा प्रतिरोधकता ($\rho = 1/\sigma$) के सापेक्ष मान के आधार पर ठोस पदार्थों का निम्न प्रकार से वर्गीकरण किया जाता है :

- (i) *धातु* : इनकी प्रतिरोधकता बहुत कम (अथवा चालकता बहुत अधिक) होती है। $ho \sim 10^{-2} 10^{-8}~\Omega~\mathrm{m}$ $\sigma \sim 10^2 10^8~\mathrm{S}~\mathrm{m}^{-1}$
- (ii) अर्धचालक : इनकी प्रतिरोधकता या चालकता धातुओं तथा विद्युतरोधी पदार्थों के बीच की होती है।

$$\rho \sim 10^{-5} - 10^{6} \Omega \text{ m}$$

 $\sigma \sim 10^{5} - 10^{-6} \text{ S m}^{-1}$

(iii) विद्युतरोधी: इनकी प्रतिरोधकता बहुत अधिक (अथवा चालकता बहुत कम) होती है।

$$\rho \sim 10^{11} - 10^{19} \Omega \text{ m}$$

 $\sigma \sim 10^{-11} - 10^{-19} \text{ S m}^{-1}$

ऊपर दिए गए ρ तथा σ के मान केवल कोटि मान के सूचक हैं और दिए गए पिरसर के बाहर भी जा सकते हैं। धातु, विद्युतरोधी पदार्थ तथा अर्धचालकों के बीच भेद करने के लिए प्रतिरोधकता का सापेक्ष मान ही मात्र एक मापदंड नहीं है। कुछ दूसरे अंतर भी हैं, जो जैसे–जैसे हम इस अध्याय में आगे बढेंगे, स्पष्ट होते जाएँगे।

इस अध्याय में हमारी रुचि अर्धचालकों के अध्ययन में है जो कई प्रकार के हो सकते हैं।

- (i) तात्विक अर्धचालक (Elemental semiconductors) Si और Ge
- (ii) यौगिक अर्धचालक उदाहरण हैं :
 - अकार्बनिक CdS, GaAs, CdSe, InP, आदि।
 - कार्बनिक एंथ्रासीन, मादित (Doped) थैलोस्यानीस, आदि।
 - कार्बनिक बहुलक (Organic polymers)– पॉलीपाइरोल, पॉलीऐनिलीन, पॉलीथायोफ़ीन आदि।

आजकल उपलब्ध अधिकांश अर्धचालक युक्तियाँ तात्विक अर्धचालक Si या Ge और यौगिक अकार्बिनिक अर्धचालकों पर ही आधारित हैं। परंतु सन् 1990 के बाद कार्बिनिक अर्धचालक और अर्धचालकी बहुलकों का उपयोग करके कुछ अर्धचालकी युक्तियों का विकास हुआ जिससे भविष्य के लिए बहुलक इलेक्ट्रॉनिकी तथा आण्विक इलेक्ट्रॉनिकी की प्रौद्योगिकी के प्रादुर्भाव के संकेत मिलते हैं। इस अध्याय में हम केवल अकार्बिनिक अर्धचालक, विशेषकर तात्विक अर्धचालकों Si तथा Ge के अध्ययन तक ही सीमित रहेंगे। तात्विक अर्धचालकों की विवेचना के लिए यहाँ जिन सामान्य अवधारणाओं को प्रस्तावित किया गया है वे किसी-न-किसी रूप में अधिकांश यौगिक अर्धचालकों पर लागू होती हैं।

ऊर्जा बैंड के आधार पर

बोर परमाणु मॉडल के अनुसार किसी वियुक्त परमाणु में उसके किसी इलेक्ट्रॉन की ऊर्जा उस इलेक्ट्रॉन की परिभ्रमण कक्षा पर निर्भर करती है। परंतु जब परमाणु एक-दूसरे के निकट आकर कोई ठोस बना लेते हैं तो वे एक-दूसरे के अत्यधिक निकट हो जाते हैं। अत: निकटस्थ परमाणुओं के इलेक्ट्रॉनों की बाह्य कक्षाएँ अत्यधिक पास-पास आ जाती हैं और यहाँ तक कि एक-दूसरे को ढक लेती हैं। इसके परिणामस्वरूप किसी ठोस में इलेक्ट्रॉन की गित की प्रकृति किसी वियुक्त परमाणु के इलेक्ट्रॉन की गित से अत्यधिक भिन्न हो जाती है।

किसी क्रिस्टल के भीतर प्रत्येक इलेक्ट्रॉन की अपनी अद्वितीय स्थित होती है तथा किन्हीं दो इलेक्ट्रॉनों के चारों ओर के आवेशों का पैटर्न यथार्थ रूप में एक जैसा नहीं होता। यही कारण है कि प्रत्येक इलेक्ट्रॉन के ऊर्जा स्तर भिन्न होते हैं। ये भिन्न ऊर्जा स्तर जिनमें ऊर्जा का संतत परिवर्तन होता रहता है ऊर्जा बैंडों का निर्माण करते हैं। वह ऊर्जा स्तर जिसमें संयोजकता इलेक्ट्रॉनों के ऊर्जा स्तर समाविष्ट हैं, संयोजकता बैंड (Valance band) कहलाता है। संयोजकता बैंड के ऊपर स्थित बैंड को चालन बैंड (Conduction band) कहते हैं। बिना किसी अतिरिक्त ऊर्जा के, सभी संयोजकता इलेक्ट्रॉन संयोजकता बैंड में रहते हैं। यदि चालन बैंड में निम्नतम स्तर चालन बैंड के उच्चतम स्तर से भी नीचे है तो संयोजकता बैंड के इलेक्ट्रॉन आसानी से चालन बैंड में गमन कर सकते हैं। सामान्यत: चालन बैंड रिक्त होता है। परंतु जब यह बैंड संयोजकता बैंड को अतिव्यापित (ढकता) करता है तो इलेक्ट्रॉन स्वतंत्रतापूर्वक इसके भीतर जा सकते हैं। ऐसा धात्विक चालकों में होता है।

यदि चालन बैंड तथा संयोजकता बैंड के बीच कोई रिक्ति (अंतराल) है, तो संयोजकता बैंड के सभी इलेक्ट्रॉन परिबद्ध होते हैं तथा चालन बैंड में कोई मुक्त इलेक्ट्रॉन उपलब्ध नहीं होता। यह पदार्थ को विद्युतरोधी बना देता है। परंतु संयोजकता बैंड के कुछ इलेक्ट्रॉन बाह्य ऊर्जा प्राप्त करके संयोजकता बैंड तथा चालन बैंड के बीच की रिक्ति को पार कर सकते हैं। तब ये इलेक्ट्रॉन चालन बैंड में पहुँच जाते हैं तथा संयोजकता बैंड में रिक्त ऊर्जा स्तर उत्पन्न कर देते हैं जिनमें अन्य इलेक्ट्रॉन जा सकते हैं। इस प्रकार यह प्रक्रिया चालन बैंड में इलेक्ट्रॉनों तथा संयोजकता बैंड में रिक्तिकाएँ होने के कारण चालन की संभावना उत्पन्न करती है।

आइए, अब हम यह विचार करें कि N परमाणुओं वाले Si अथवा Ge क्रिस्टल के प्रकरण में क्या होता है। Si में बाह्यतम कक्षा, तीसरी कक्षा (n=3) होती है, जबिक Ge में बाह्यतम कक्षा चौथी कक्षा (n=4) होती है। इनकी बाह्यतम कक्षा में 4 इलेक्ट्रॉन (2s और 2p इलेक्ट्रॉन) होते हैं। अतः इस क्रिस्टल में बाह्य इलेक्ट्रॉनों की कुल संख्या 4N हुई। किसी बाह्यतम कक्षा में अधिकतम इलेक्ट्रॉनों की संख्या 8 (2s+6p इलेक्ट्रॉन) होती है। अतः 4N संयोजकता इलेक्ट्रॉनों के लिए उपलब्ध ऊर्जा स्तर 8N है। ये 8N विविक्त ऊर्जा स्तर या तो कोई संतत बैंड बना सकते हैं अथवा इनका भिन्न बैंडों में समूहन हो सकता है, जो क्रिस्टल में परमाणुओं के बीच दूरियों पर निर्भर करता है।

 ${
m Si}$ तथा ${
m Ge}$ के क्रिस्टल जालकों में परमाणुओं के बीच की दूरियों पर, इन 8N स्तरों का ऊर्जा बैंड दो भागों में टूट जाता है, जिनके बीच ${
m Sim}$ अंतराल $E_{_{
m E}}$ (चित्र 14.1) का पृथकन होता है।

🖣 भौतिकी

चित्र 14.1 0 K पर किसी अर्धचालक में ऊर्जा बैंड की स्थितियाँ, ऊपरी बैंड जिसे चालन बैंड कहते हैं, में अनंतत: विशाल संख्या में, अत्यधिक निकट ऊर्जा अवस्थाएँ होती हैं। निचला बैंड जिसे संयोजकता बैंड कहते हैं, में अत्यधिक निकट पूर्णत: भरी ऊर्जा अवस्थाएँ होती हैं।

तापक्रम के परम शून्य पर 4N संयोजकता इलेक्ट्रॉनों से पूर्णत: घिरा निम्न बैंड संयोजकता बैंड होता है। अन्य बैंड जिनमें 4N ऊर्जा स्तर होते हैं उन्हें चालन बैंड कहते हैं, तथा यह परम शून्य पर पूर्णत: रिक्त होता है।

चित्र 14.1 देखिए। इसमें चालन बैंड में निम्नतम ऊर्जा स्तर को E_C के रूप में तथा संयोजकता बैंड में उच्चतम ऊर्जा स्तर को E_V के रूप में दर्शाया गया है। E_C के ऊपर तथा E_V के नीचे इसमें एक-दूसरे के अत्यिधक निकट बहुत से ऊर्जा स्तर दर्शाए गए हैं।

संयोजकता बैंड के शीर्ष तथा चालन बैंड की तली के बीच के अंतराल को ऊर्जा बैंड अंतराल (अथवा ऊर्जा अंतराल, E_g) कहते हैं। यह अंतराल पदार्थ की प्रकृति पर निर्भर करता है। यह अधिक, कम अथवा शून्य हो सकता है। इन विभिन्न स्थितियों को चित्र 14.2 में दर्शाया गया है तथा नीचे इनकी विवेचना की गई है। प्रकरण I: यह चित्र 14.2(a) में दर्शायी गई

स्थिति के संदर्भ में है। यह एक धातु की स्थिति है जिसमें चालन बैंड आंशिक रूप से भरा है तथा संयोजकता बैंड आंशिक रूप से रिक्त है अथवा चालन बैंड तथा संयोजकता बैंड अतिव्याप्त हैं। जब अतिव्याप्न होता है तो संयोजकता बैंड से इलेक्ट्रॉन सरलता से चालन बैंड में जा सकते हैं। यह स्थिति विद्युत चालन के लिए अत्यधिक संख्या में इलेक्ट्रॉन उपलब्ध करा देती है। जब संयोजकता बैंड आंशिक रूप से रिक्त होता है तो इलेक्ट्रॉन इसके निम्न स्तर से उच्च स्तर तक गित करके विद्युत चालन को संभव बना देते हैं। इसीलिए इस प्रकार के पदार्थों का प्रतिरोध कम अथवा

चालकता उच्च होती है।

(b) विद्युतरोधी तथा (c) अर्धचालकों के ऊर्जा बैंडों के बीच अंतर।

प्रकरण II: इस प्रकरण में जैसा कि चित्र 14.2(b) में दर्शाया गया है, इस स्थिति में बैंड अंतराल E_g अधिक होता है ($E_g > 3 \, \mathrm{eV}$) । चालन बैंड में कोई इलेक्ट्रॉन नहीं होते। अत: कोई विद्युत चालन संभव नहीं होता। ध्यान देने योग्य बात यह है कि ऊर्जा अंतराल इतना अधिक होता है कि किसी भी तापीय उत्तेजन से इलेक्ट्रॉनों को संयोजकता बैंड से चालन बैंड की ओर उत्तेजित नहीं किया जा सकता। यह विद्युतरोधी पदार्थों का उदाहरण है।

प्रकरण III: यह स्थिति 14.2(c) में दर्शायी गई है। इसमें एक परिमित परंतु लघु बैंड अंतराल ($E_g < 3 \; \mathrm{eV}$) होता है। लघु बैंड अंतराल होने के कारण, कमरे के ताप पर, कुछ इलेक्ट्रॉन संयोजकता बैंड में इतनी ऊर्जा अर्जित कर लेते हैं कि ऊर्जा अंतराल को पार करके *चालन बैंड* में पहुँच सकते हैं। ये इलेक्ट्रॉन (यद्यपि संख्या में कम होते हैं) चालन बैंड में गित कर सकते हैं। अत: अर्धचालकों का प्रतिरोध उतना अधिक नहीं होता जितना विद्युतरोधी पदार्थों का होता है।

इस अनुभाग में हमने धातुओं, चालकों तथा अर्धचालकों का व्यापक वर्गीकरण किया है। अगले अनुभाग में हम अर्धचालकों में चालन प्रक्रिया के विषय में सीखेंगे।

14.3 नैज अर्धचालक

हम Ge और Si का सबसे साधारण उदाहरण लेंगे जिनकी जालक (Lattice) रचना चित्र 14.3 में दिखाई गई है। इन रचनाओं को हीरे जैसी रचना कहते हैं। प्रत्येक परमाणु चार अन्य निकटतम परमाणुओं द्वारा घिरा होता है। हम जानते हैं िक Si और Ge में चार संयोजकता इलेक्ट्रॉन होते हैं। इसकी क्रिस्टलीय रचना में प्रत्येक Si या Ge परमाणु अपने चार संयोजकता इलेक्ट्रॉनों में से एक-एक इलेक्ट्रॉन को अपने चार निकटतम परमाणुओं के साथ सहभागिता कराने की प्रवृत्ति रखता है तथा ऐसे प्रत्येक निकटवर्ती परमाणु के एक इलेक्ट्रॉन का सहभाग भी करता है। यही सहभागी इलेक्ट्रॉन युगल सहसंयोजी बंध (Covalent bond) या संयोजकता आबंध (Valence bond) कहलाते हैं। ऐसा माना जा सकता है िक दोनों सहभाजित इलेक्ट्रॉन उन संबंधित परमाणुओं

के बीच आगे-पीछे गित करते रहते हैं, जिससे वे दृढ़ता से बँधे होते हैं। चित्र 14.3 में दिखाई गई Si या Ge की संरचना का 2-विमीय निरूपण चित्र 14.4 में व्यवस्थात्मक रूप से दिखाया गया है, जो सहसंयोजी बंध पर अत्यिधक बल देता है। चित्र 14.4 एक आदर्श चित्रण है जिसमें बँध टूटे नहीं हैं (सभी बँध बने हुए हैं)। ऐसी स्थिति निम्न ताप पर ही बनती है। जैसे-जैसे ताप बढ़ता है, इन इलेक्ट्रॉनों को और ऊष्मीय ऊर्जा प्राप्त होने लगती है जिससे इनमें से कुछ इलेक्ट्रॉन टूट कर अलग हो सकते हैं (मुक्त इलेक्ट्रॉन बनकर चालन में योगदान करते हैं)। ऊष्मीय ऊर्जा क्रिस्टलीय जालक के कुछ परमाणुओं को प्रभावी रूप से आयनीकृत कर देती है तथा बँध में एक रिक्त स्थान बना देती है, जैसा चित्र 14.5 (a) में दिखाया गया है। मुक्त इलेक्ट्रॉन (आवेश – q) जहाँ से निकलकर आया है, वहाँ वह प्रभावी आवेश (+ q) का एक रिक्त स्थान छोड़ देता है। प्रभावी धनात्मक आवेश वाला यह रिक्त स्थान एक होल (hole) कहलाता है। होल प्रभावी धनात्मक आवेश वाले एक आभासी मुक्त कण की तरह व्यवहार करता है।

नैज अर्धचालकों (Intrinsic semiconductor) में मुक्त इलेक्ट्रॉनों की संख्या n_e होलों की संख्या, n_h के बराबर होती है, अर्थात

 n_e = n_h = n_i यहाँ n_i को नैज वाहक सांद्रता कहते हैं।

अर्धचालकों में यह अद्वितीय गुण होता है कि उनमें इलेक्ट्रॉनों के साथ-साथ होल भी गित करते हैं। मान लें कि स्थान 1 पर एक होल है जैसा चित्र 14.5 (a) में दिखाया गया है। होलों की गित को चित्र 14.5 (b) में दिखाए ढंग से दृष्टित किया जा सकता है। नीचे वाले बाईं ओर के सहसंयोजी बंध

चित्र 14.3 कार्बन, सिलिकॉन या जरमेनियम के लिए तीन-विमीय हीरे जैसी क्रिस्टल संरचना जिसमें जालक अंतराल a क्रमश: 3.56, 5.43 और 5.66 Å है।

(14.1)

चित्र 14.4 Si या Ge की संरचना का दो-विमीय व्यवस्थात्मक निरूपण जिसमें निम्न ताप पर सहसंयोजी आबंध दिखाए गए हैं (सभी बंध बने हुए, कोई टूटा बंध नहीं)। +4 चिह्न Si या Ge की भीतरी क्रोड़ को इंगित करता है।

स्थान 2 से एक इलेक्ट्रॉन रिक्त स्थान 1 (होल) में कूद कर जा सकता है। इस प्रकार, ऐसी एक कूद के बाद, होल स्थान 2 पर हो गया तथा स्थान 1 में एक इलेक्ट्रॉन आ गया। इसलिए आभासी रूप में तो होल स्थान 1 से स्थान 2 पर चला गया। ध्यान दीजिए कि जो इलेक्ट्रॉन प्रारंभ में मुक्त हुआ था [चित्र 14.5 (a) देखिए], वह होल की गित की इस क्रिया में सिम्मिलित नहीं है। मुक्त इलेक्ट्रॉन पूर्णत: स्वतंत्रतापूर्वक चालन इलेक्ट्रॉन के रूप में गित करता है और एक विद्युत क्षेत्र लगाने पर एक इलेक्ट्रॉन धारा ($I_{\rm e}$) देता है। स्मरण रहे कि जब कभी क्रिस्टल में कहीं भी एक अपूरित बंध होगा तब बंधित इलेक्ट्रॉनों की वास्तविक गित होगी और इसका वर्णन करने के लिए होलों की गित केवल एक सहज उपाय है। किसी वास्तविक क्रिस्टल में विद्युत क्षेत्र की क्रिया के फलस्वरूप यह होल ऋणात्मक विभव की ओर गित करते हैं। इस प्रकार एक होल धारा $I_{\rm e}$ मिलती है। ऊष्मा से उत्पन्न चालन इलेक्ट्रॉनों के

कारण इलेक्ट्रॉन धारा $I_{\rm e}$ तथा होल धारा $I_{\rm h}$ का योग संपूर्ण धारा I होगी -

$$I = I_e + I_h \tag{14.2}$$

यहाँ ध्यान देने योग्य बात यह है कि चालन इलेक्ट्रॉनों तथा होलों के उत्पन्न होने के साथ-साथ पुन:संयोजन का प्रक्रम होता है जिसमें इलेक्ट्रॉन होल के साथ पुन:संयोजित होते हैं। साम्यावस्था में आवेश वाहकों के उत्पन्न होने की दर उनके पुन:संयोजन की दर के बराबर होती है। इस पुन:संयोजन का कारण इलेक्ट्रॉनों का होलों से संघट्ट करना है।

चित्र 14.5 (a) मध्यम ताप पर ऊष्मीय ऊर्जा के कारण स्थान 1 पर होल तथा चालन इलेक्ट्रॉन के उत्पन्न होने का व्यवस्थापक प्रारूप। (b) किसी होल की संभावित ऊष्मीय गित का सरलीकृत निरूपण। नीचे वाले बाएँ हाथ के सहसंयोजी बंध (स्थान 2) से एक इलेक्ट्रॉन प्रारंभिक होल स्थान 1 पर चला जाता है और अपने स्थान पर एक होल छोड़ता है। इस प्रकार स्थान 1 से स्थान 2 तक होल का आभासी स्थानांतरण इंगित होता है।

चित्र 14.6(a) में दर्शाए अनुसार $T=0~\mathrm{K}$ पर कोई नैज अर्धचालक किसी विद्युतरोधी की भाँति व्यवहार करता है। यह तापीय ऊर्जा ही है जिसके कारण उच्च तापीं $(T>0~\mathrm{K})$ पर कुछ इलेक्ट्रॉन उत्तेजित होकर संयोजी बैंड से चालन बैंड में पहुँचते हैं। $T>0~\mathrm{K}$ पर तापीय उत्तेजित इलेक्ट्रॉन चालन बैंड में आंशिक रूप से स्थान ग्रहण कर लेते हैं। इसीलिए किसी नैज अर्धचालक का ऊर्जा बैंड आरेख चित्र 14.6(b) में दर्शाए अनुसार होता है। इसमें कुछ इलेक्ट्रॉन चालन बैंड में दर्शाए गए हैं। ये यहाँ पर संयोजी बैंड से आए हैं तथा समान संख्या में वहाँ होल छोड़ आए हैं।

चित्र 14.6 (a) T = 0 K पर कोई नैज अर्धचालक विद्युतरोधी की भाँति व्यवहार करता है। (b) T > 0 K पर चार तापीय उत्पन्न इलेक्ट्रॉन-होल युगल भरे वृत्त (•) इलेक्ट्रॉनों को निरूपित करते हैं तथा रिक्त वृत (\circ) होलों को निरूपित करते हैं।

उदाहरण 14.1 C, Si तथा Ge की जालक (Lattice) संरचना समान होती है। फिर भी क्यों C विद्युतरोधी है जबकि Si व Ge नैज अर्धचालक (intrinsic semiconductor) हैं?

हल C, Si तथा Ge के परमाणुओं के चार बंधित इलेक्ट्रॉन क्रमश: द्वितीय, तृतीय तथा चतुर्थ कक्षा में होते हैं। अत: इन परमाणुओं से एक इलेक्ट्रॉन को बाहर निकालने के लिए आवश्यक ऊर्जा (आयनिक ऊर्जा E_g) सबसे कम Ge के लिए, इससे अधिक Si के लिए और सबसे अधिक C के लिए होगी। इस प्रकार Ge व Si में विद्युत चालन के लिए स्वतंत्र इलेक्ट्रॉनों की संख्या सार्थक होती है जबिक C में यह नगण्य होती है।

उदाहरण 14.1

14.4 अपदच्यी अर्धचालक

किसी नैज अर्धचालक की चालकता उसके ताप पर निर्भर करती है, परंतु कक्ष-ताप पर इसकी चालकता बहुत कम होती है। इसी रूप में, कोई भी महत्वपूर्ण इलेक्ट्रॉनिक युक्ति उन अर्धचालकों द्वारा विकसित नहीं की जा सकती है। अत: इनकी चालकता में सुधार करना आवश्यक होता है। यह उन अर्धचालकों में अशुद्धियों का उपयोग करके किया जाता है।

जब किसी शुद्ध अर्धचालक में कोई उपयुक्त अशुद्धि अत्यल्प मात्रा में जैसे कुछ भाग प्रति मिलियन (ppm) में मिलाई जाती है तो उसकी चालकता में कई गुना वृद्धि हो जाती है। इस प्रकार के पदार्थों को अपद्रव्यी अर्धचालक (Extrinsic semiconductor) अथवा अशुद्धि अर्धचालक (Impurity semiconductor) कहते हैं। वांछित अशुद्धि को सावधानीपूर्वक मिश्रित करना मादन (Doping) या अपिमश्रण कहलाता है तथा अशुद्धि परमाणु अपिमश्रक (Dopants) कहलाते हैं। इस प्रकार के पदार्थ को मादित (Doped) अर्धचालक कहते हैं। अपिमश्रक ऐसा होना चाहिए जो मूल अर्धचालक पदार्थ के जालक को विकृत न करे। उसे केवल क्रिस्टल में बहुत कम मूल अर्धचालक परमाणु स्थितियों को ही घेरना चाहिए। इसे प्राप्त करने के लिए एक आवश्यक शर्त यह है कि अपिमश्रक के अणु तथा अर्धचालक पदार्थ के अणुओं का साइज लगभग समान हो।

चतु: संयोजक Si अथवा Ge के मादन के लिए दो प्रकार के अपमिश्रक उपयोग किए जाते हैं।

- (i) पंच संयोजक (संयोजकता 5); जैसे आर्सेनिक (As), ऐंटीमनी (Sb), फ़ॉस्फोरस (P), आदि।
- (ii) त्रि संयोजक (संयोजकता 3); जैसे इंडियम (In), बोरॉन (B), ऐलुमिनियम (Al), आदि।

मोतिकी

चित्र 14.7 (a) चतुर्थ संयोजी Si या Ge में पंचसंयोजी दाता परमाणु (As, Sb, P, आदि) के अपिमश्रण से बना n-अर्धचालक। (b) n-प्रकार के पदार्थ का साधारणतया प्रयुक्त व्यवस्थात्मक निरूपण जिसमें प्रतिस्थापी दाता के स्थिर क्रोड़ को केवल एक अतिरिक्त प्रभावी धनात्मक आवेश और इससे संबद्ध इलेक्ट्रॉन के साथ दिखाया गया है।

अब हम यह विवेचना करेंगे कि अपिमश्रण द्वारा किस प्रकार अर्धचालकों में आवेश वाहकों की संख्या में परिवर्तन होता है जिसके कारण उस अर्धचालक की चालकता परिवर्तित हो जाती है। Si अथवा Ge आवर्त सारणी के चतुर्थ समूह (वर्ग) के सदस्य हैं इसीलिए हम अपिमश्रण के लिए निकट के तीसरे अथवा पाँचवें वर्ग के तत्व का चयन यह अपेक्षा करते हुए तथा सावधानी बरतते हुए करते हैं कि अपिमश्रण किए जाने वाले तत्व के परमाणु का साइज Si अथवा Ge के परमाणु के साइज के लगभग बराबर है। रोचक तथ्य यह है कि मादन के लिए उपयोग होने वाले त्रिसंयोजक तथा पंचसंयोजक तत्व अपिमश्रण के पश्चात एक-दूसरे से पूर्णत: भिन्न प्रकार के दो अर्धचालक पदार्थों का निर्माण करते हैं जिनका वर्णन नीचे दिया गया है।

(i) n-प्रकार का अर्धचालक

मान लीजिए कि हम Si या Ge (संयोजकता 4) को एक पंचसंयोजक (संयोजकता 5) तत्व से अपिमिश्रित करें जैसा चित्र 14.7 में दिखाया गया है। जब +5 संयोजकता वाला तत्व Si के एक परमाणु को प्रतिस्थापित करके अपना स्थान ग्रहण करता है तो इसके इलेक्ट्रॉनों में से चार, निकटवर्ती चार सिलिकॉन परमाणुओं से बंध बनाते हैं, जबिक पाँचवाँ इलेक्ट्रॉन जनक परमाणु से दुर्बल बंध द्वारा जुड़ा रहता है। ऐसा इसिलए है कि पाँचवें इलेक्ट्रॉन के लिए बंध में भाग लेने वाले चारों इलेक्ट्रॉन परमाणु के प्रभावी क्रोड़ के भाग हैं। इसके पिरणामस्वरूप इस इलेक्ट्रॉन को मुक्त करने के लिए आवश्यक आयनन ऊर्जा बहुत कम होती है और

सामान्य कक्ष ताप पर यह अर्धचालक के जालक में मुक्त गित करने के लिए मुक्त होता है। उदाहरण के लिए, इस इलेक्ट्रॉन को परमाणु से मुक्त करने के लिए जर्मेनियम में ~ 0.01 eV तथा सिलिकॉन में लगभग 0.05 eV ऊर्जा चाहिए। इसके विपरीत किसी नैज अर्धचालक में कक्ष ताप पर किसी इलेक्ट्रॉन को वर्जित बैंड से स्थानांतरण के लिए (जर्मेनियम में लगभग 0.72 eV तथा सिलिकॉन में लगभग 1.1 eV) ऊर्जा चाहिए। इस प्रकार पंचसंयोजक अपिमश्रक विद्युत चालन के लिए एक अतिरिक्त इलेक्ट्रॉन प्रदान करता है और इसीलिए इसे दाता अशुद्धि (donor impurity) कहते हैं। अपिमश्रक परमाणु द्वारा विद्युत चालन के लिए उपलब्ध कराए गए इलेक्ट्रॉन की संख्या प्रबल रूप से अपिमश्रण पर निर्भर करती है। यह आसपास के ताप पर निर्भर नहीं करती। इसके विपरीत Si परमाणु द्वारा उत्पन्न मुक्त इलेक्ट्रॉनों की संख्या (समान संख्या में होलों के साथ) में ताप के साथ बहुत कम वृद्धि होती है।

किसी अपिमिश्रित अर्धचालक में चालक इलेक्ट्रॉनों की कुल संख्या n_e दाताओं के योगदान तथा निजी कारणों (ऊष्मा द्वारा) से उत्पन्न इलेक्ट्रॉनों के कारण तथा होलों की कुल संख्या n_h केवल निजी म्रोत द्वारा उत्पन्न होलों के कारण होती है। परंतु होलों के पुन:संयोजन की दर में वृद्धि इलेक्ट्रॉनों की संख्या में वृद्धि के कारण हो जाती है। इसके पिरणामस्वरूप होलों की संख्या में और कमी हो जाती है।

इस प्रकार अपिमश्रण के उचित स्तर से चालक इलेक्ट्रॉनों की संख्या में होलों की संख्या की तुलना में वृद्धि की जा सकती है। अत: पंचसंयोजक अपिमश्रक के साथ अपिमश्रण होने पर किसी नैज अर्धचालक में इलेक्ट्रॉन बहुसंख्यक आवेश वाहक तथा होल अल्पांश आवेश वाहक बन जाते हैं। इसीलिए इस प्रकार के अर्धचालकों को n-प्रकार के अर्धचालक कहते हैं। किसी n-प्रकार के अर्धचालक के लिए

$$n_e >> n_h \tag{14.3}$$

(ii) p-प्रकार के अर्धचालक

p-प्रकार का अर्धचालक तब बनता है जब Si या Ge (चतुर्थसंयोजी) में ग्रुप-III की त्रिसंयोजी अशुद्धियाँ; जैसे- Al, B, In आदि अपमिश्रित की जाती हैं. जैसा चित्र 14.8 में दिखाया गया है। अपमिश्रक में Si या Ge की अपेक्षा एक बाहरी इलेक्ट्रॉन कम होता है और इसलिए यह परमाण तीन ओर से Si परमाणओं से बंध बना सकता है. लेकिन चौथी ओर बंध बनाने के लिए आवश्यक इलेक्टॉन उपलब्ध न होने के कारण चौथा बंध बनाने में सफल नहीं हो पाता। अत: त्रिसंयोजक परमाण् तथा चौथे निकटस्थ परमाण के बीच बंध में एक रिक्ति अथवा होल होता है जिसे चित्र 14.8 में दर्शाया गया है। क्योंकि जालक में पडोसी Si परमाण होल के स्थान पर एक इलेक्ट्रॉन चाहता है, निकट के परमाणु के बाह्य कक्ष का कोई इलेक्ट्रॉन इस रिक्ति को भरने के लिए कुदान भर सकता है जिससे उसके अपने स्थान पर एक होल बन जाता है। यही *होल* चालन के लिए उपलब्ध रहता है। ध्यान देने योग्य बात यह है कि. त्रिसंयोजी विजातीय परमाण पडोसी Si परमाण के साथ इलेक्ट्रॉन की साझेदारी करके प्रभावत: ऋणात्मक आवेशित हो जाता है, तथा इसके सभी संयोजी बंध पूरे हो जाते हैं। इसलिए साधारण भाषा में प्राय: p –पदार्थ के अपमिश्रक परमाणु को अपने संबद्ध होल के साथ एक ऋ*णात्मक आवेश का क्रोड* कहा जाता है. जैसा चित्र 14.8(b) में दिखाया गया है। यह स्पष्ट है कि एक *ग्राही* परमाणु (N.) एक *होल* देता है। यह होल नैज जिनत होलों के अतिरिक्त है जबिक चालन इलेक्ट्रॉनों का स्रोत केवल नैज जनन ही है। इस प्रकार, ऐसे पदार्थ के लिए, होल बहसंख्यक वाहक तथा इलेक्टॉन अल्पसंख्यक वाहक हैं। इसीलिए त्रिसंयोजक अशुद्धि से अपिमश्रित नैज अर्धचालक p-प्रकार के अर्धचालक कहलाते हैं। p-प्रकार के अर्धचालकों में पुन:संयोजन प्रक्रिया, नैज जिनत इलेक्ट्रॉनों की संख्या n_i घट कर n_{\wp} हो जाती है। अतः p-प्रकार के अर्धचालकों के लिए

$$n_h >> n_e \tag{14.4}$$

ध्यान देने योग्य बात यह है कि क्रिस्टल एक समग्र ऋणात्मक उदासीनता बनाए रखता है क्योंकि अतिरिक्त आवेश वाहकों पर आवेश की मात्रा जालक में आयनीकृत क्रोड़ों पर आवेश की मात्रा के ही समान एवं विपरीत होती है।

अपद्रव्यी अर्धचालकों में बहुसंख्यक धारा वाहकों की प्रचुरता के कारण तापन द्वारा उत्पन्न अल्पांश वाहकों के लिए बहुसंख्यक वाहकों से मिलने के अधिक अवसर होते हैं और इस प्रकार वे नष्ट हो जाते हैं। इसीलिए अपिमश्रक एक प्रकार के अधिक धारा वाहकों को मिलाने से, जो बहुसंख्यक वाहक बन जाते हैं, अप्रत्यक्ष रूप में अल्पांश वाहकों की नैज सांद्रता को घटाने में सहायता करते हैं।

अपिमश्रण द्वारा अर्धचालकों की ऊर्जा बैंड संरचना प्रभावित होती है। बाह्य अर्धचालकों के प्रकरण में दाता अशुद्धियों के कारण अतिरिक्त ऊर्जा अवस्था (E_D) तथा ग्राही अशुद्धियों के कारण अतिरिक्त ऊर्जा अवस्था (E_A) भी होती है। \mathbf{n} -प्रकार के \mathbf{Si} अर्धचालकों के ऊर्जा बैंड आरेख में दाता ऊर्जा स्तर E_D चालक बैंड की तली E_C से कुछ नीचे होता है तथा इस स्तर से कुछ इलेक्ट्रॉन बहुत कम ऊर्जा की आपूर्ति होने पर चालन बैंड में प्रवेश कर जाते हैं। कक्ष ताप पर अधिकांश दाता परमाण्

(b)

चित्र 14.8 (a) चतुर्थसंयोजी Si या Ge के जालक में त्रिसंयोजी ग्राही परमाणु (In, Al, B आदि) के अपिमश्रण से बना p - प्रकार का अर्धचालक। (b) p - प्रकार के पदार्थ का साधारणतया प्रयुक्त होने वाला व्यवस्थात्मक निरूपण जो एक प्रभावी अतिरिक्त ऋणात्मक आवेश के साथ प्रतिस्थापी ग्राही परमाणु की स्थिर क्रोड़ तथा उससे संबद्ध होल को दिखाता है।

आयनीकृत हो जाते हैं, परंतु Si के अति अल्प ($\sim 10^{12}$) परमाणु ही आयनीकृत होते हैं। अत: चित्र 14.9(a) में दर्शाए अनुसार चालन बैंड में अधिकांश इलेक्ट्रॉन दाता अशुद्धियों से ही आते हैं। इसी प्रकार p-प्रकार के अर्धचालकों में ग्राही ऊर्जा स्तर E_A संयोजी बैंड के शीर्ष से कुछ ऊपर होता है [चित्र 14.9(b) देखिए]। बहुत कम ऊर्जा आपूर्ति होने पर भी संयोजी बैंड से कोई इलेक्ट्रॉन E_A के स्तर पर कूदान भर लेता है और उसे ग्राही को ऋणात्मक आयनित कर देता है। [विकल्प के रूप में हम इस प्रकार भी कह सकते हैं कि बहुत कम ऊर्जा की आपूर्ति से होल ऊर्जा स्तर E_A से संयोजी बैंड में गमन कर सकता है। ऊर्जा प्राप्त करने पर इलेक्ट्रॉन ऊपर की ओर आते हैं जबिक होल नीचे की ओर आते हैं।] सामान्य कक्ष ताप पर अधिकांश ग्राही परमाणु आयनीकृत हो जाते हैं तथा संयोजी बैंड में होल बच जाते हैं। इस प्रकार कक्ष ताप पर संयोजी बैंड में होलों का घनत्व प्रमुख रूप में अपद्रव्यी अर्धचालकों में अशुद्धि के कारण होता है। *तापीय साम्य* में अर्धचालकों में इलेक्ट्रॉनों तथा होलों की सांद्रता इस प्रकार व्यक्त की जाती है

$$n_e n_b = n_i^2 \tag{14.5}$$

यद्यपि उपरोक्त विवरण समग्र रूप से सिन्निकट तथा परिकिल्पत है परंतु यह सरल ढंग से धातुओं, विद्युतरोधियों तथा अर्धचालकों (नैज तथा अपद्रव्यी) में अंतर को समझने में सहायक है। C, Si तथा Ge की प्रतिरोधकताओं में अंतर इनके चालन तथा संयोजी बैंडों के बीच ऊर्जा अंतराल पर निर्भर करता है। कार्बन (डायमंड), Si तथा Ge के लिए ऊर्जा अंतराल क्रमश: 5.4 eV, 1.1 eV तथा 0.7 eV है। Sn भी चौथे ग्रुप का तत्व है परंतु यह धातु है क्योंकि इसके प्रकरण में ऊर्जा अंतराल 0 eV है।

चित्र **14.9** T > 0 K पर (a) n-प्रकार के अर्धचालक तथा (b) p-प्रकार के अर्धचालक का ऊर्जा बैंड।

उदाहरण 14.2

उदाहरण 14.2 मान लीजिए किसी शुद्ध Si क्रिस्टल में 5×10^{28} परमाणु m^{-3} है। इसे पंचसंयोजी As से 1 ppm सांद्रता पर अपिमिश्रित किया जाता है। इलेक्ट्रॉनों तथा होलों की संख्या परिकलित कीजिए, दिया है कि $n=1.5\times 10^{16}~\mathrm{m}^{-3}$ ।

हल ध्यान दीजिए, यहाँ तापीय जिनत की ऊष्मा से उत्पन्न इलेक्ट्रॉन ($n_{\rm i} \sim 10^{16} \, {
m m}^{-3}$) अपिमश्रण से उत्पन्न इलेक्ट्रॉनों की तुलना में नगण्य हैं।

इसलिए, $n_e \approx N_D$

चूँकि $n_e n_h = n_i^2$, इसलिए होलों की संख्या $n_h = (2.25 \times 10^{32})/(5 \times 10^{22})$

 $\sim 4.5 \times 10^9 \text{ m}^{-3}$

14.5 p-n संधि

p-n संधि (p-n junction) बहुत सी अर्धचालक युक्तियों जैसे डायोड, ट्रांजिस्टर आदि की मूल इकाई है। अन्य अर्धचालक युक्तियों के विश्लेषण के लिए संधि के व्यवहार को समझना अत्यंत महत्वपूर्ण है। अब हम यह समझने का प्रयास करेंगे कि किसी संधि का निर्माण कैसे होता है तथा बाह्य अनुप्रयुक्त वोल्टताओं (जिन्हें बायस भी कहते हैं) के प्रभाव में कोई संधि किस प्रकार व्यवहार करती है।

14.5.1 p-n संधि का निर्माण

p-प्रकार के सिलिकॉन (p-Si) अर्धचालक की पतली पटिलका (वेफ़र) पर विचार कीजिए। पिरशुद्ध रूप में पंचसंयोजक अशुद्धि की अल्प मात्रा मिलाकर किसी p-Si पटिलका के कुछ भाग को n-Si में पिरविर्तित किया जा सकता है। किसी अर्धचालक का निर्माण करने की बहुत-सी प्रक्रियाएँ हैं। अब पटिलका में p-क्षेत्र एवं n-क्षेत्र तथा p- तथा n- क्षेत्रों के बीच एक धातुकर्मी संधि है।

जब कोई इलेक्ट्रॉन p से n की ओर विसरित होता है तो वह अपने पीछे एक आयिनत दाता n-फलक पर छोड़ देता है। यह आयिनत दाता (धन आवेश) चारों ओर के परमाणुओं द्वारा बँधा होने के कारण निश्चल होता है। जैसे-जैसे इलेक्ट्रॉन $n \to p$ की ओर विसरित होते जाते हैं, संधि के n-फलक पर धनावेश की (या धनात्मक स्पेस-चार्ज क्षेत्र) एक परत विकसित हो जाती है।

इसी प्रकार, जब कोई होल सांद्रता प्रवणता के कारण $\mathbf{p} \to \mathbf{n}$ की ओर विसरित होता है तो वह अपने पीछे एक आयिनत ग्राही (ऋणात्मक आवेश) छोड़ देता है जो निश्चल होता है। जैसे-जैसे होल विसरित होते हैं, ऋणात्मक आवेश (ऋणात्मक स्पेस-चार्ज क्षेत्र) की एक परत संधि के \mathbf{p} -फलक पर विकसित होती जाती है। संधि के दोनों फलकों पर विकसित इस स्पेस-चार्ज क्षेत्र को हासी क्षेत्र (Depletion region) कहते हैं। यह इसलिए है क्योंकि इलेक्ट्रॉन तथा होल जो संधि के आर-पार आरंभिक गित में भाग लेते हैं वे इसके मुक्त आवेशों के क्षेत्र का हास कर देते हैं (चित्र

14.10)। इस हासी क्षेत्र की मोटाई माइक्रोमीटर के दसवें भाग की कोटि की होती है। संधि के n-फलक पर धनात्मक स्पेस-चार्ज क्षेत्र तथा p-फलक पर ऋणात्मक स्पेस-चार्ज क्षेत्र होने के कारण संधि पर धनात्मक आवेश से ऋणात्मक आवेश की ओर एक विद्युत क्षेत्र उत्पन्न हो जाता है। इस क्षेत्र के कारण संधि के p-फलक का इलेक्ट्रॉन n-फलक की ओर तथा संधि के n-फलक का होल p-फलक की ओर गित करता है। इस विद्युत क्षेत्र के कारण आवेश वाहकों की इस गित को अपवाह कहते हैं। इस प्रकार एक अपवाह धारा जो कि विसरण धारा के विपरीत होती है, प्रवाहित होना आरंभ कर देती है (चित्र 14.10)।

चित्र 14.10 p-n संधि बनने की प्रक्रिया

आरंभ में, विसरण धारा उच्च होती है तथा अपवाह धारा निम्न होती है। जैसे-जैसे विसरण प्रक्रिया होती जाती है. संधि के दोनों फलकों पर अंतराकाशी आवेश क्षेत्र विस्तारित

p-n संधि डायोड का निर्माण तथा कार्य http://hyperphysics.phy-astr.gsu.edu/hbase/solids/pnjun.html

333

चित्र **14.11** (a) डायोड साम्य में (V = 0), (b) बिना किसी बायस के संधि का विभव।

होते जाते हैं। इससे विद्युत क्षेत्र की तीव्रता में वृद्धि होती है जिसके फलस्वरूप अपवाह धारा में भी वृद्धि होती है। यह प्रक्रम उस समय तक चलता रहता है जब तक कि ये दोनों धाराएँ (विसरण धारा तथा अपवाह धारा) परिमाण में समान नहीं हो जातीं। इस प्रकार एक p-n संधि बन जाती है। साम्यवास्था में p-n संधि पर कोई नेट विद्युत धारा नहीं होती।

n-क्षेत्र से इलेक्ट्रॉनों की हानि तथा p-क्षेत्र में होलों की प्राप्ति के कारण दोनों क्षेत्रों की संधि के आर-पार एक विभवांतर उत्पन्न हो जाता है। इस विभव की ध्रुवता इस प्रकार होती है कि यह आवेश वाहकों के और प्रवाह का विरोध करता है जिसके फलस्वरूप साम्यावस्था की स्थिति उत्पन्न हो जाती है। चित्र 14.11 में संधि को साम्यावस्था में तथा इसके सिरों के बीच विभवांतर दर्शाया गया है।n-पदार्थ ने इलेक्ट्रॉन खोए हैं तथा p-पदार्थ ने इलेक्ट्रॉन अर्जित किए हैं। इस प्रकार p-पदार्थ के सापेक्ष n-पदार्थ धनात्मक है। चूँिक विभव n-क्षेत्र से p-क्षेत्र की ओर इलेक्ट्रॉनों की गित को रोकने का प्रयास करता है अतः इस विभव को प्रायः रोधिका विभव (Barrier potential) कहते हैं।

उदाहरण 14.3

उदाहरण 14.3 क्या p-n संधि बनाने के लिए हम p-प्रकार के अर्धचालक की एक पट्टी को n-प्रकार के अर्धचालक से भौतिक रूप से संयोजित कर p-n संधि प्राप्त कर सकते हैं? हल नहीं! कोई भी पट्टी, चाहे कितनी ही समतल हो, अंतर-परमाण्वीय क्रिस्टल अंतराल (~2 से 3 Å) से कहीं ज्यादा खुरदरी होगी और इसलिए परमाण्वीय स्तर पर अविच्छिन्न संपर्क (अथवा संतत संपर्क) संभव नहीं होगा। प्रवाहित होने वाले आवेश वाहकों के लिए संधि एक विच्छिन्नता की तरह व्यवहार करेगी।

चित्र **14.12** (a) अर्धचालक डायोड, (b) p-n संधि डायोड का प्रतीक।

14.6 अर्धचालक डायोड

अर्धचालक डायोड [चित्र 14.12(a)] मूल रूप में एक p-n संधि होती है जिसके सिरों पर धात्विक संपर्क जुड़े होते हैं तािक इस संधि पर कोई बाह्य वोल्टता अनुप्रयुक्त की जा सके। इस युक्ति के दो टिर्मिनल होते हैं। अर्धचालक डायोड को प्रतीकात्मक रूप में चित्र 14.12(b) में निरूपित किया गया है।

तीरों की दिशा परिपाटी के अनुसार विद्युत धारा की दिशा साम्या रोधिका (Equilibrium barrier) को दर्शाती है। (जबिक डायोड अग्रदिशिक बायिसत (Forward bias) है) विभव को डायोड के सिरों पर बाह्य वोल्टता V अनुप्रयुक्त करके परिवर्तित किया जा सकता है। p-n संधि डायोड की बिना किसी बायस के साम्यावस्था में स्थिति चित्र 14.11(a) तथा (b) में दर्शायी गई है।

14.6.1 अग्रदिशिक बायस में p-n संधि डायोड

जब किसी अर्धचालक डायोड के दो सिरों के बीच कोई बाह्य वोल्टता V इस प्रकार अनुप्रयुक्त की जाती है कि बैटरी का धन टिर्मिनल p-फलक से तथा ऋण टिमिनल n-फलक से संयोजित करते हैं [चित्र 14.13(a) तथा (b) तो इसे अग्रदिशिक बायिसत कहते हैं।

अनुप्रयुक्त अधिकांश वोल्टता पात अर्धचालक डायोड के ह्रासी क्षेत्र के सिरों पर होता है तथा संधि के p-फलक तथा n-फलक पर विभवपात नगण्य होता है (इसका कारण यह है कि ह्रासी क्षेत्र, वह क्षेत्र जहाँ कोई आवेश नहीं है, का प्रतिरोध n-फलक अथवा p-फलक के प्रतिरोधों की तुलना में अत्यधिक होता है)। अनुप्रयुक्त वोल्टता (V) की दिशा अंत:निर्मित (built-in) विभव V_0

के विपरीत होती है। इसके परिणामस्वरूप, ह्रासी स्तर की मोटाई घट जाती है तथा रोधिका ऊँचाई कम हो जाती है [चित्र 14.13(b)]। अग्रदिशिक बायस में प्रभावी रोधि का ऊँचाई $(V_0 - V)$ होती है।

यदि अनुप्रयुक्त वोल्टता लघु है तो रोधिका विभव साम्य मान से केवल कुछ कम हो जाएगा, तथा केवल वे ही आवेश वाहक जो उच्चतम ऊर्जा स्तर पर थे, बहुत कम संख्या में संधि को पार करने के लिए आवश्यक ऊर्जा प्राप्त कर पाएँगे, अत: कम विद्युत धारा प्रवाहित होगी। यदि हम अनुप्रयुक्त वोल्टता में काफ़ी वृद्धि कर दें तो रोधिका ऊँचाई काफ़ी घट जाएगी तथा अधिक संख्या में वाहकों को संधि पार करने के लिए आवश्यक ऊर्जा प्राप्त हो जाएगी। इस प्रकार विद्युत धारा में वृद्धि हो जाएगी।

अनुप्रयुक्त वोल्टता के कारण, इलेक्ट्रॉन n-फलक हासी क्षेत्र को पार कर p-फलक पर पहुँचते हैं (जहाँ वे अल्पांश वाहक हैं)। इसी प्रकार p-फलक के होल संधि को पार करके n-फलक पर पहुँचते हैं (जहाँ वे अल्पांश वाहक हैं)। अग्रदिशिक बायस में होने वाले इस प्रक्रम को अल्पांश वाहक अंतःक्षेपण (Minority carrier injection) कहते हैं। संधि की सीमा पर हर फलक पर, संधि से दूर अवस्थित अल्पांश वाहकों की सांद्रता की तुलना में, अल्पांश वाहक सांद्रता में महत्वपूर्ण वृद्धि हो जाती है। इस सांद्रता प्रवणता के कारण p-फलक की संधि के किनारे विसरित होकर p-फलक के दूसरे किनारे पर पहुँच जाते हैं। इसी प्रकार n-फलक की संधि के किनारे से विसरित होकर n-फलक के दूसरे सिरे पर पहुँचते हैं (चित्र 14.14)। दोनों फलकों पर आवेश वाहकों की इस गित के कारण विद्युत धारा प्रवाहित होने लगती है। कुल अग्रदिशिक डायोड धारा का मान होल विसरण धारा तथा इलेक्ट्रॉन विसरण के कारण पारंपरिक धारा का योग होता है। इस धारा का परिमाण प्राय: मिलीऐम्पियर में होता है।

14.6.2 पश्चिदिशिक बायस में p-n संधि डायोड

जब किसी अर्धचालक डायोड के दो सिरों के बीच कोई बाह्य वोल्टता (V) इस प्रकार अनुप्रयुक्त करते हैं कि बैटरी के धन टर्मिनल को n-फलक से तथा ऋण टर्मिनल को p-फलक से जोड़ते हैं [चित्र 14.15(a)], तो डायोड को u परचिरिशक वायसित (Reverse bias) कहते हैं। अनुप्रयुक्त वोल्टता का अधिकांश विभवपात अर्धचालक के हासी क्षेत्र के सिरों पर होता है। यहाँ अनुप्रयुक्त वोल्टता की दिशा रोधिका विभव की दिशा के समान होती है। इसके परिणामस्वरूप रोधिका की

ऊँचाई बढ़ जाती है तथा हासी क्षेत्र की चौड़ाई में विद्युत में परिवर्तन होने के कारण वृद्धि हो जाती है। पश्चिदिशक बायसन् में प्रभावी रोधिका ऊँचाई (V_0+V) होती है [चित्र 14.15(b)]। यह $n\to p$ की ओर इलेक्ट्रॉनों के प्रवाह तथा $p\to n$ की ओर होलों के प्रवाह का दमन करती है। इस प्रकार, डायोड के अग्रदिशिक बायसन् की तुलना में इस स्थिति में विसरण धारा अत्यिध क कम हो जाती है।

संधि के विद्युत क्षेत्र की दिशा ऐसी होती है कि यदि p-फलक पर इलेक्ट्रॉन अथवा n-फलक पर होल अपनी यादृच्छिक गति करते समय संधि के निकट आ जाएँ, तो उन्हें उनके बहुसंख्यक क्षेत्र में भेज दिया जाएगा। आवेश वाहकों के इस अपवाह के कारण विद्युत धारा उत्पन्न होगी। यह अपवाह धारा कुछ μA कोटि की होती है। इसके अत्यल्प मान होने का कारण यह है कि आवेश वाहकों की गति उनके अल्पांश फलक से संधि के दूसरी ओर बहुसंख्यक फलक की ओर होती है। अग्रदिशिक बायसन् में अपवाह धारा (सामान्यत: μA में) भी होती है परंतु यह अंत:क्षिप्त वाहकों के कारण धारा (mA में), की तुलना में नगण्य होती है।

डायोड प्रतीप धारा (Reverse current) अनुप्रयुक्त वोल्टता पर अत्यधिक निर्भर नहीं होती। अल्पांश वाहकों को संधि के एक फलक से दूसरे फलक तक पहुँचाने के लिए लघु वोल्टता ही

चित्र 14.13 (a) अग्रदिशिक बायस में p-n जंक्शन डायोड, (b) रोधक विभव (1) बिना बैटरी में, (2) निम्न बैटरी वोल्टता के लिए, तथा (3) उच्च बैटरी वोल्टता के लिए।

चित्र 14.14 अग्रदिशिक बायस में अल्पांश वाहक अंत:क्षेपण (Minority current injection)।

चित्र 14.15 (a) पश्चिदिशिक बायस में डायोड (b) पश्चिदिशिक बायस में रोधिका विभव।

336

पर्याप्त होती है। धारा अनुप्रयुक्त वोल्टता के परिणाम द्वारा सीमित नहीं होती परंतु यह संधि के दोनों फलकों पर अल्पांश वाहकों की सांद्रता के कारण सीमित होती है।

पश्चिदिशिक बायस में किसी क्रांतिक पश्चिदिशिक (Critical reverse) वोल्टता तक विद्युतधारा सारभूत रूप में वोल्टता पर निर्भर नहीं करती है। इस वोल्टता को $\dot{\nu}$ जन वोल्टता (Breakdown voltage, V_{br}) कहते हैं। जब $V=V_{br}$ तब डायोड पश्चिदिशिक धारा में तेजी से वृद्धि होती है। यहाँ तक कि बायस वोल्टता में अल्प वृद्धि करने पर भी धारा में अत्यधिक परिवर्तन हो जाता है। यदि पश्चिदिशिक धारा को किसी बाह्य परिपथ द्वारा अनुमत मान (जिसे उत्पादक द्वारा निर्दिष्ट किया गया है) से नीचे सीमित न किया जाए तो p-n संधि नष्ट हो जाएगी। यदि एक बार भी यह अनुमत मान से अधिक हो जाए तो अतितप्त होने के कारण डायोड नष्ट हो जाता है। ऐसा तब भी हो सकता है, जब डायोड अग्रदिशिक बायसित होता है तथा अग्रदिशिक धारा अनुमत मान से अधिक हो।

किसी डायोड के V-I अभिलाक्षणिक (अनुप्रयुक्त की गई वोल्टता के फलन के रूप में धारा का विचरण) का अध्ययन करने के लिए परिपथ आरेख चित्र 14.16 (a) तथा (b) में दिखाया गया है। डायोड से वोल्टता को एक पोटेंशियोमीटर (या धारा नियंत्रक) से होकर जोड़ा जाता है जिससे डायोड पर अनुप्रयुक्त की गई वोल्टता को परिवर्तित किया जा सकता है। वोल्टता के विभिन्न मानों के लिए धारा का मान नोट किया जाता है। V और I के बीच एक ग्राफ़, जैसा चित्र 14.16(c) में दिखाया गया है,

प्राप्त होता है। ध्यान दीजिए, अग्रदिशिक बायस मापन के लिए हम मिलीमीटर का उपयोग करते हैं क्योंकि (जैसा पिछले अनुभाग में समझाया गया था) अपेक्षित धारा अधिक है जबिक विपरीत बायस में कम धारा को नापने के लिए एक माइक्रोऐमीटर का उपयोग किया जाता है।

चित्र 14.16 किसी p-n संधि डायोड का (a) अग्रदिशिक बायस, (b) पश्चिदिशिक बायस में V-I अभिलाक्षणिक के अध्ययन के प्रयोगिक परिपथ, (c) किसी सिलिकॉन डायोड के प्रतिरूपी V-I अभिलाक्षणिक।

आप चित्र (14.16) में देख सकते हैं कि अग्रदिशिक बायस में आरंभ में धारा उस समय तक बहुत धीरे-धीरे, लगभग नगण्य, बढ़ती है जब तक कि डायोड पर वोल्टता एक निश्चित मान से अधिक न हो जाए। इस अभिलाक्षणिक वोल्टता के बाद डायोड बायस वोल्टता में बहुत थोड़ी-सी ही वृद्धि करने से डायोड धारा में सार्थक (चरघातांकी) वृद्धि हो जाती है। यह वोल्टता देहली वोल्टता (Threshold voltage) या कट-इन वोल्टता कहलाती है। इस वोल्टता का मान जरमेनियम डायोड के लिए ~ 0.2 वोल्ट तथा सिलिकॉन डायोड के लिए ~ 0.7 वोल्ट है।

पश्चिदिशिक बायस में डायोड के लिए धारा बहुत कम (~µA) होती है तथा बायस में परिवर्तन के साथ लगभग स्थिर बनी रहती है। इसे प्रतीप संतृप्त धारा (Reverse saturation current) कहते है। परंतु कुछ विशेष प्रकरणों में, बहुत अधिक पश्चिदिशिक बायस (भंजन वोल्टता) पर धारा में अचानक वृद्धि हो जाती है। डायोड की इस विशेष क्रिया की विवेचना आगे अनुभाग 14.8 में की गई है। साधारण उद्देश्य वाले डायोड प्रतीप संतृप्त धारा क्षेत्र के आगे उपयोग नहीं किए जाते हैं।

ऊपर दी गई विवेचना यह दिखाती है कि p-n डायोड मूल रूप से धारा के प्रवाह को केवल एक ही दिशा में (अग्रदिशिक बायस) प्रतिबंधित करता है। पश्चिदिशिक बायस प्रतिरोध की तुलना में अग्रदिशिक बायस प्रतिरोध कम होता है। इस गुण का उपयोग प्रत्यावर्ती (ac) वोल्टता के दिष्टकरण के लिए किया गया है, जिसे अगले अनुभाग में समझाया गया है। डायोडों के लिए हम एक अन्य भौतिक राशि जिसे गितक प्रतिरोध कहते हैं, को ''वोल्टता में लघु परिवर्तन ΔV तथा विद्युत धारा में लघु परिवर्तन ΔI के अनुपात'' के रूप में परिभाषित करते हैं:

$$r_d = \frac{\Delta V}{\Delta I} \tag{14.6}$$

उदाहरण 14.4 किसी सिलिकॉन डायोड का $V ext{-}I$ अभिलाक्षणिक चित्र 14.17 में दर्शाया गया है। डायोड का प्रतिरोध (a) $I_D=15~\mathrm{mA}$ तथा (b) $V_D=-10~\mathrm{V}$ पर परिकलित कीजिए।

हल डायोड अभिलाक्षणिक को I = 10 mA से I = 20 mA के बीच सरल रेखा की भाँति मानते हुए जो मूल बिंदु से गुज़रती है, हम ओम के नियम का पालन करते हुए प्रतिरोध का परिकलन कर सकते हैं।

- (a) वक्र से I=20 mA, V=0.8 V; I=10 mA, V=0.7 V पर $r_{tb}=\Delta V/\Delta I=0.1$ V/10 mA = 10 Ω
- (b) वंक्र से V = -10 V, I = -1 μA है अत:

 $r_{rb}=10~\text{V}/1\mu\text{A}{=}~1.0\times10^{7}~\Omega$

📭 भौतिकी

14.7 संधि डायोड का दिष्टकारी के रूप में अनुप्रयोग

किसी संधि डायोड के V-I अभिलाक्षणिक में हम यह देखते हैं कि वह केवल तभी विद्युत धारा प्रवाहित होने देता है जब वह अग्रदिशिक बायिसत होता है। अतः यदि किसी डायोड के सिरों पर कोई प्रत्यावर्ती वोल्टता अनुप्रयुक्त की जाए तो चक्र के केवल उसी भाग में परिपथ में धारा प्रवाहित

होगी जब डायोड अग्रदिशिक बायिसत है। डायोड के इस गुण का उपयोग प्रत्यावर्ती वोल्टता का दिष्टकरण करने में किया जाता है तथा इस कार्य के लिए जिस परिपथ का उपयोग करते हैं उसे दिष्टकारी कहते हैं।

यदि डायोड के सिरों पर कोई प्रत्यावर्ती (ac) वोल्टता श्रेणीक्रम में संयोजित लोड प्रतिरोध $R_{\scriptscriptstyle L}$ के साथ अनुप्रयुक्त की जाए तो लोड के सिरों पर केवल ac निवेश के उस अर्धचक्र में जिसमें डायोड अग्रदिशिक बायसित है, एक स्पंदमान वोल्टता दुष्टिगोचर होगी। इस प्रकार का विद्युत परिपथ चित्र 14.18 के विद्युत परिपथ में दर्शाया गया है जिसे *अर्ध-तरंग दिष्टकारी* परिपथ कहते हैं। टांसफ़ार्मर की द्वितीयक कुंडली टर्मिनल A तथा B पर वांछित ac वोल्टता की आपूर्ति करती है। जब A पर वोल्टता धनात्मक होती है तो डायोड अग्रदिशिक बायसित होता है तथा यह विद्युत धारा का चालन करता है। जब A पर वोल्टता ऋणात्मक होती है तो डायोड पश्चिदिशिक बायसित होता है और वह विद्युत चालन नहीं करता। पश्चिदिशिक बायस में डायोड की संतृप्त प्रतीप धारा नगण्य होती है तथा इसे व्यावहारिक कार्यों के लिए शून्य माना जा सकता है। (डायोड की प्रतीप भंजन वोल्टता का मान ट्रांसफ़ार्मर की द्वितीयक कुंडली पर शिखर ac वोल्टता की तुलना में काफ़ी अधिक होना चाहिए ताकि डायोड प्रतीप भंजन से सुरक्षित रह सके।)

इसलिए ac वोल्टता के धनात्मक अर्धचक्र में लोड प्रतिरोध R_L से विद्युत धारा प्रवाहित होगी और हमें चित्र 14.18(b) में दर्शाए अनुसार निर्गत वोल्टता प्राप्त होगी। परंतु ऋणात्मक अर्धचक्र में विद्युत धारा प्राप्त नहीं होगी। अगले धनात्मक अर्धचक्र में हमें फिर निर्गत वोल्टता प्राप्त होगी। इस प्रकार, निर्गत वोल्टता यद्यपि अभी भी परिवर्तनीय है परंतु यह केवल एक ही दिशा में प्रतिबंधित होने के कारण *दिष्टकारी* कहलाती है। चूँिक हमें ac तरंग के केवल एक ही अर्धचक्र में निर्गत वोल्टता प्राप्त हो रही है, अतः इस परिपथ को अर्ध-axi दिष्टकारी कहते हैं।

चित्र 14.19(a) में दर्शाए गए पिरपथ में दो डायोडों का उपयोग करके एक ऐसी पिरपथ व्यवस्था की गई है जिससे ac चक्र के धनात्मक एवं ऋणात्मक दोनों ही अर्धचक्रों में तदनुरूपी दिष्टकृत निर्गत वोल्टता प्राप्त होती है। इसीलिए इस पिरपथ को पूर्ण तरंग दिष्टकारी कहते हैं। इसमें दोनों डायोडों के n-फलकों को एक साथ संयोजित कर देते हैं तथा निर्गत को डायोडों के इस उभयनिष्ठ बिंदु तथा ट्रांसफ़ार्मर की द्वितीयक कुंडली के मध्य बिंदु के बीच प्राप्त किया जाता है। अत: किसी पूर्ण तरंग दिष्टकारी के लिए ट्रांसफ़्रामर की द्वितीयक कुंडली के मध्य में एक अंशनिष्कासी बिंदु (Tapping point) प्रदान किया जाता है और इसीलिए इस ट्रांसफ़ार्मर को मध्य निष्कासी ट्रांसफ़ार्मर (centre-tap transformer) कहते हैं। जैसा कि चित्र 14.19(c) से स्पष्ट है कि प्रत्येक डायोड द्वारा दिष्टकृत वोल्टता कुल द्वितीयक कुंडली से प्राप्त वोल्टता की केवल आधी ही है। प्रत्येक डायोड केवल आधे चक्र का दिष्टकरण करता है, परंतु दो डायोड प्रत्यावर्ती चक्रों का दिष्टकरण करते हैं। इस प्रकार डायोडों के उभयनिष्ठ बिंदु तथा मध्य निष्कासी ट्रांसफ़ार्मर

चित्र 14.18 (a) अर्धतरंग दिष्टकारी परिपथ, (b) दिष्टकारी परिपथ से निवेशी ac और निर्गत वोल्टता के तरंग रूप।

के अंश निष्कासी बिंदु के बीच प्राप्त निर्गत वोल्टता पूर्ण तरंग दिष्टकारी वोल्टता होती है। (ध्यान दीजिए कि पूर्ण तरंग दिष्टकारी के लिए एक अन्य परिपथ भी होता है जिसके लिए मध्य निष्कासी ट्रांसफ़ार्मर की आवश्यकता नहीं होगी परंतु उसे चार डायोड चाहिए)। मान लीजिए किसी क्षण मध्य निष्कासी के A पर निवेश वोल्टता धनात्मक है। यह स्पष्ट है कि इस क्षण पर कला असंगत होने के कारण B पर वोल्टता ऋणात्मक होती है जैसा कि चित्र 14.19(b) में दर्शाया गया है। अत: डायोड D, अग्रदिशिक बायस होकर विद्युत चालन करता है (जबिक D, पश्चिदिशिक बायस होने के कारण चालन नहीं करता)। अत: इस धनात्मक अर्धचक्र में हमें चित्र 14.19(c) में दर्शाए अनुसार एक निर्गत धारा (तथा लोड प्रतिरोध $R_{\!\scriptscriptstyle L}$ के सिरों पर निर्गत वोल्टता) प्राप्त होती है। इसी प्रकार किसी अन्य क्षण पर, जब A पर वोल्टता ऋणात्मक हो जाती है तब B पर वोल्टता धनात्मक होगी। इसलिए डायोड $\mathbf{D}_{_{1}}$ चालन नहीं करता, लेकिन डायोड D_2 चालन करता है। इस प्रकार निवेशी ac के ऋणात्मक अर्ध चक्र में भी निर्गत धारा (तथा R, पर निर्गत वोल्टता) मिलती है। इस प्रकार, हमें धनात्मक तथा ऋणात्मक दोनों ही अर्ध चक्र में (अर्थात, दूसरे शब्दों में, पूर्ण तरंग के समय में) निर्गत वोल्टता मिलती है। स्पष्टतया, दिष्ट वोल्टता या धारा प्राप्त करने के लिए यह अर्ध तरंग दिष्टकारी से अधिक दक्ष परिपथ है।

इस प्रकार प्राप्त दिष्टकृत वोल्टता अर्ध ज्यावक्रीय (Half sinusoid) आकृति की होती है। यद्यपि यह एकदिशिक होती है परंतु इसका मान स्थायी नहीं होता। स्पंदमान वोल्टता से dc निर्गत प्राप्त करने के लिए निर्गत टर्मिनलों के सिरों पर (R_L के पार्श्व में) सामान्यत: कोई संधारित्र संयोजित कर देते हैं। इसी कार्य को करने के लिए लोड प्रतिरोध R_L के श्रेणीक्रम में कोई प्रेरक भी संयोजित किया जा सकता है। चूँकि ये अतिरिक्त ac उर्मिकाओं को बाहर फिल्टरन करके शुद्ध dc वोल्टता प्रदान करते प्रतित होते हैं. अत: इन्हें फिल्टर कहते हैं।

अब हम फिल्टरन में संधारित्र की भूमिका की विवेचना करेंगे। जब संधारित्र के सिरों पर वोल्टता में वृद्धि हो रही होती है तो वह आवेशित हो जाता है। यदि पिरपथ में कोई बाह्य लोड नहीं है तो यह दिष्टकृत निर्गत की शिखर वोल्टता तक आवेशित रहता है। यदि पिरपथ में कोई लोड है तो यह लोड से होकर विसर्जित होने लगता है तथा इसके सिरों पर वोल्टता कम होने लगती है। दिष्टकृत निर्गत के अगले अर्ध चक्र में यह फिर अपनी शिखर वोल्टता तक आवेशित होता है (चित्र 14.20)। संधारित्र के सिरों पर वोल्टता में कमी होने की दर संधारित्र की धारिता C तथा पिरपथ में लगे प्रभावी प्रतिरोधक R_L के प्रतिरोध गुणनफल जिसे कालांक कहते हैं, पर निर्भर करता है। कालांक का मान अधिक होने के लिए C का मान अधिक होना चाहिए। अत: संधारित्र निवेश फिल्टरों का उपयोग करने पर प्राप्त निर्गत वोल्टता दिष्टकृत वोल्टता के शिखर मान के निकट होती है। विद्युत प्रदायों में व्यापक रूप में इसी प्रकार के फिल्टर उपयोग किए जाते हैं।

चित्र 14.19 (a) पूर्ण तरंग दिष्टकारी परिपथ; (b) A पर डायोड D_1 के और B पर डायोड D_2 के दिए गए निवेश के तरंग रूप; (c) पूर्ण तरंग दिष्टकारी परिपथ में जोड़े गए लोड R_L पर निर्गत वोल्टता का तरंगरूप।

चित्र 14.20 (a) संधारित्र फिल्टर के साथ पूर्ण तंरग दिष्टकारी (b) में दिष्टकारी की निवेश तथा निर्गत वोल्टता।

सारांश

- 1. अर्धचालक वर्तमान ठोस अवस्था अर्धचालक इलेक्ट्रॉनिक युक्तियों; जैसे— डायोड, ट्रांजिस्टर, एकीकृत परिपथ इत्यादि में प्रयुक्त मूल पदार्थ हैं।
- 2. अवयव तत्वों की जालक संरचना एवं परमाणु संरचना सुनिश्चित करती है कि दिया गया विशेष पदार्थ विद्युतरोधी, धातु अथवा अर्धचालक होगा।
- 3. धातुओं की प्रतिरोधकता बहुत कम (10^{-2} से 10^{-8} Ωm) है, विद्युतरोधी पदार्थों की प्रतिरोधकता बहुत अधिक ($>10^{8}$ Ωm^{-1}) है, जबिक अर्धचालकों की प्रतिरोधकता धातुओं और विद्युतरोधी पदार्थों के मध्य होती है।
- 4. अर्धचालक तात्विक (Si, Ge) साथ ही साथ यौगिक (GaAs, CdS इत्यादि) हैं।
- 5. शुद्ध अर्धचालक 'नैज अर्धचालक' कहलाते हैं। आवेश वाहकों (इलेक्ट्रॉन और होल) की उपस्थिति पदार्थ का 'नैज' गुण है और ये ऊष्मीय उत्तेजन के परिणामस्वरूप प्राप्त होते हैं। नैज अर्धचालकों में इलेक्ट्रॉनों की संख्या $(n_{\rm p})$ होलों की संख्या $n_{\rm h}$ समान होती है। होल आवश्यक रूप से प्रभावी धनावेश युक्त इलेक्ट्रॉन रिक्तियाँ हैं।
- 6. शुद्ध अर्धचालकों में उपयुक्त अपद्रव्य के 'अपिमश्रण' से आवेश वाहकों की संख्या परिवर्तित की जा सकती है। ऐसे अर्धचालकों को अपद्रव्यी अर्धचालक कहते हैं। ये दो प्रकार (n- प्रकार और p- प्रकार) के होते हैं।
- 7. n- प्रकार के अर्धचालक में $n_{\rm e} >> n_{\rm h}$ जबिक p- प्रकार के अर्धचालक में $n_{\rm h} >> n_{\rm e}$ होता है।
- 8. n- प्रकार के अर्धचालक में Si अथवा Ge को पंचसंयोजी परमाणु (दाता) जैसे As, Sb, P इत्यादि के साथ अपिमश्रण से प्राप्त किया जाता है, जबिक p- प्रकार का अर्धचालक Si अथवा Ge को त्रिसंयोजी परमाणु (ग्राही) जैसे B, Al, In इत्यादि के अपिमश्रण से प्राप्त किया जाता है।
- 9. सभी दशाओं में $n_{\rm e} n_{\rm n} = n_{\rm i}^2$ । इसके अतिरिक्त पदार्थ पूर्णतया विद्युत उदासीन होता है।
- 10. पदार्थ के दो भिन्न ऊर्जा बैंड (संयोजकता बैंड और चालन बैंड) होते हैं, जिनमें इलेक्ट्रॉन रहते हैं। संयोजकता बैंड की ऊर्जा चालन बैंड की ऊर्जा की अपेक्षा कम है। संयोजकता बैंड

में सभी ऊर्जा स्तर पूर्ण हैं जबिक चालन बैंड पूर्णतया रिक्त अथवा आंशिक रूप से पूरित हो सकते हैं। िकसी ठोस के चालन बैंड में इलेक्ट्रॉन गित करने के लिए मुक्त होते हैं और चालकता के लिए उत्तरदायी होते हैं। चालकता की सीमा संयोजकता बैंड (E_v) के शीर्ष और चालन बैंड (E_v) के तल के मध्य ऊर्जा-अंतराल E_g पर निर्भर करती है। संयोजकता बैंड से इलेक्ट्रॉन ऊष्मा, प्रकाश अथवा विद्युत ऊर्जा द्वारा चालन बैंड में उत्तेजित किए जा सकते हैं, जो अर्धचालक में प्रवाहित धारा में परिवर्तन उत्पन्न करते हैं।

- 11. विद्युत-रोधी हेतु $E_{\rm g}$ > 3 eV , अर्धचालक हेतु $E_{\rm g}$ = 0.2 eV से 3 eV , जबिक धातुओं के लिए $E_{\rm g}$ pprox 0 है।
- 12. p-n संधि सभी अर्धचालक युक्तियों की मूल है। जब ऐसी संधि बनती है तो इलेक्ट्रॉन अथवा होल रहित अचल आयन क्रोड़ की एक 'हासी स्तर' बन जाता है जो 'संधि विभव रोधक' हेतु उत्तरदायी है।
- 13. बाह्य अनुप्रयुक्त वोल्टता को परिवर्तित करके संधि विभव रोधक को परिवर्तित किया जा सकता है। अग्रदिशिक बायस (\mathbf{n} फलक बैटरी के ऋणात्मक सिरे से और \mathbf{p} फलक बैटरी के धनात्मक सिरे से संबद्ध है) में रोधिका कम हो जाती है, जबिक पश्चिदिशिक बायस में वृद्धि हो जाती है। अत: किसी \mathbf{p} - \mathbf{n} संधि डायोड में अग्रदिशिक बायस धारा का मान अधिक (\mathbf{m} A में) होता है जबिक पश्चिदिशिक बायस धारा का मान बहुत कम ($\mathbf{\mu}$ A में) होता है।
- 14. डायोड को प्रत्यावर्ती (ac) वोल्टता के दिष्टकरण (प्रत्यावर्ती धारा को एक दिशा में प्रतिबंधित करने) हेतु प्रयोग में लाया जा सकता है। संधारित्र अथवा उपयुक्त फिल्टर के प्रयोग से दिष्ट धारा dc वोल्टता प्राप्त की जा सकती है।

विचारणीय विषय

- 1. अर्धचालकों में ऊर्जा बैंड ($E_{\rm C}$ अथवा $E_{\rm V}$) दिक्विस्थानित हैं, जिसका तात्पर्य है कि ये ठोस में किसी विशिष्ट स्थान में स्थित नहीं हैं। ऊर्जाएँ समग्र माध्य हैं। जब आप एक चित्र देखते हैं जिसमें $E_{\rm C}$ अथवा $E_{\rm V}$ सरल रेखाएँ खींची गई हैं तब उन्हें क्रमश: चालन बैंड ऊर्जा स्तर के तल पर और संयोजकता बैंड ऊर्जा स्तर के शीर्ष पर लेना चाहिए।
- 2. तात्विक अर्धचालकों (Si अथवा Ge) में और p- अर्धचालकों में अपिमश्रकों को दोष के रूप में सिन्निविष्ट करके प्राप्त करते हैं। यौगिक अर्धचालकों में सापेक्ष रससमीकरणिमतीय अनुपात में पिरवर्तन अर्धचालक के प्रकार में भी पिरवर्तन कर सकता है। उदाहरणार्थ, आदर्श GaAs में Ga और As का अनुपात 1:1 है, परंतु GaAs में Ga-प्रचुर वाला अथवा As-प्रचुर वाला क्रमशः $Ga_{1.1}As_{0.9}$ अथवा $Ga_{0.9}As_{1.1}$ हो सकता है। सामान्यतः दोषों की उपिस्थित अर्धचालकों के गुणों को कई प्रकार से नियंत्रित करती है।

अभ्यास

- **14.1** किसी n- प्रकार के सिलिकॉन में निम्निलिखित में से कौन-सा प्रकथन सत्य है?
 - (a) इलेक्ट्रॉन बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपिमश्रक हैं।
 - (b) इलेक्ट्रॉन अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपिमश्रक हैं।

- (c) होल (विवर) अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपमिश्रक हैं।
- (d) होल (विवर) बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।
- **14.2** अभ्यास 14.1 में दिए गए कथनों में से कौन-सा p-प्रकार के अर्धचालकों के लिए सत्य है?
- **14.3** कार्बन, सिलिकॉन और जर्मेनियम, प्रत्येक में चार संयोजक इलेक्ट्रॉन हैं। इनकी विशेषता ऊर्जा बैंड अंतराल द्वारा पृथक्कृत संयोजकता और चालन बैंड द्वारा दी गई हैं, जो क्रमश: $(E_g)_C$, $(E_g)_S$ । तथा $(E_g)_G$ के बराबर हैं। निम्नलिखित में से कौन-सा प्रकथन सत्य है?
 - (a) $(E_q)_{Si} < (E_q)_{Ge} < (E_q)_{C}$
 - (b) $(E_g)_C < (E_g)_{Ge} > (E_g)_{Si}$
 - (c) $(E_q)_C > (E_q)_{Si} > (E_q)_{Ge}$
 - (d) $(E_q)_C = (E_q)_{Si} = (E_q)_{Ge}$
- **14.4** बिना बायस p-n संधि से, होल p- क्षेत्र में n- क्षेत्र की ओर विसरित होते हैं, क्योंकि
 - (a) n- क्षेत्र में मुक्त इलेक्ट्रॉन उन्हें आकर्षित करते हैं।
 - (b) ये विभवांतर के कारण संधि के पार गति करते हैं।
 - (c) p- क्षेत्र में होल-सांद्रता, n- क्षेत्र में इनकी सांद्रता से अधिक है।
 - (d) उपरोक्त सभी।
 - **14.5** जब p-n संधि पर अग्रदिशिक बायस अनुप्रयुक्त किया जाता है, तब यह
 - (a) विभव रोधक बढ़ाता है।
 - (b) बहुसंख्यक वाहक धारा को शून्य कर देता है।
 - (c) विभव रोधक को कम कर देता है।
 - (d) उपरोक्त में से कोई नहीं।
 - 14.6 अर्ध-तरंगी दिष्टकरण में, यदि निवेश आवृत्ति 50 Hz है तो निर्गम आवृत्ति क्या है? समान निवेश आवृत्ति हेतु पूर्ण तरंग दिष्टकारी की निर्गम आवृत्ति क्या है?