Algebraic Topology

Ikhan Choi

November 5, 2022

Contents

I	Homology	2
1	Homology groups 1.1 Singular homology	3 3 3
2	Cohomology groups 2.1 Poincaré duality	4
3		5
II	Homotopy	6
4	Fundamental groups 4.1 Path lifting proerty	7 7 7
5	Higher homotopy groups	8
6		9
III	I Fiber bundles	10
7	Principal bundles 7.1 Category of bundles	11 11 11 11 12
8	Characteristic classes	13
9		14
IV	V K-theory	15

Part I Homology

Homology groups

- 1.1 Singular homology
- 1.2 Simplicial homology
- 1.3 Cellular homology
- 1.4 Eilenberg-Steenrod axioms

Cohomology groups

cup product Universal coefficient theorem

2.1 Poincaré duality

Part II

Homotopy

Fundamental groups

- 4.1 Path lifting proerty
- 4.2 Van Kampen theorem
- 4.3 Covering spaces

Higher homotopy groups

Part III Fiber bundles

Principal bundles

7.1 Category of bundles

- 7.1 (Pullback and restricted bundles).
- 7.2 (Product of bundles). the Fiber product or the Whitney sum

7.2 Classifying spaces

7.3 Čech cohomology

7.3. Let $\{U_{\alpha}\}_{\alpha}$ be an open cover of a topological space X. We say a presheaf \mathcal{F} on X is sheaf if the sequence

$$\mathcal{F}(U) \longrightarrow \prod_{\alpha} \mathcal{F}(U_{\alpha}) \xrightarrow{\alpha \atop \beta} \prod_{\alpha,\beta} \mathcal{F}(U_{\alpha} \cap U_{\beta})$$

is an equalizer.

7.4. Let \mathcal{F} be a preseah of groups and let $\mathcal{U} = \{U_{\alpha}\}_{\alpha}$ be an ordered open cover of a toplogical space X.

$$\prod_{\alpha} \mathcal{F}(U_{\alpha}) \xrightarrow{\operatorname{res}_{\alpha}} \prod_{\alpha < \beta} \mathcal{F}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\operatorname{res}_{\alpha}} \prod_{\alpha < \beta < \gamma} \mathcal{F}(U_{\alpha} \cap U_{\beta} \cap U_{\gamma})$$

$$C^{0}(\mathcal{U}, \mathcal{F}) \xrightarrow{\delta} C^{1}(\mathcal{U}, \mathcal{F}) \xrightarrow{\delta} C^{2}(\mathcal{U}, \mathcal{F}) \xrightarrow{\delta} \cdots$$

$$f = \{f_{\alpha} : U_{\alpha} \to \operatorname{GL}(k, \mathbb{R})\}_{\alpha} \in \prod_{\alpha} \mathcal{F}(U_{\alpha}) = C^{0}(\mathcal{U}, \mathcal{F})$$

7.5. Let *G* be a sheaf of groups. Then, we have a natural one-to-one correspondence

$$\left\{\begin{array}{c} \text{isomorphism classes of} \\ \text{principal } G\text{-bundles} \end{array}\right\} \xrightarrow{\sim} H^1(B,G).$$

Proof. (Injectivity) We show the correspondence is left invertible. Let $p: E \to B$ be a principal G-bundle. Define $p': E' \to B$ by

$$E' := \left(\bigsqcup_{\alpha} \{\alpha\} \times U_{\alpha} \times \mathbb{R}^{k} \right) / \sim,$$

where the equivalence relation \sim denotes $(\alpha, b, g_{\alpha\beta}(\nu)) \sim (\beta, b, \nu)$ with $b \in U_{\alpha} \cap U_{\beta}$ for some α, β , and define $p' : E' \to B$, which is well-defined bundle.

We first check that p' is a principal G-bundle. (Surjectivity)

7.4 Vector bundles

- 7.6 (Vector space structure on total spaces).
- **7.7** (Vector bundle maps). Let $p_1: E_1 \to B$ and $p_2: E_2 \to B$ be vector bundles.
 - (a) A vector bundle map u over B is vector bundle isomorphism if and only if it is a fiberwise linear isomorphism.
- 7.8 (Tautological bundles).
- **7.9** (Homotopy properteis). Let $p: E \to B$ be a vector bundle If $p_1: E_1 \to B \times [0, \frac{1}{2}]$ and $p_2: E_2 \to B \times [\frac{1}{2}, 1]$ are trivial, then (a)
- 7.10 (Principal bundle over the general linear group).

Characteristic classes

Spectral sequences Serre, Lyndon-Hochschild-Serre, Adams Stable homotopy theory Part IV

K-theory