Step-1

Consider the subspace V + W. Obviously, it is spanned by the vectors v_1 , v_2 , w_1 , and w_2 .

Note the following:

$$v_2 - v_1 + w_1 = (1,0,1,0) - (1,1,0,0) + (0,1,0,1)$$
$$= (0,-1,1,0) + (0,1,0,1)$$
$$= (0,0,1,1)$$
$$= w_2$$

Step-2

Thus, w_2 is a linear combination of v_1 , v_2 , and w_1 . Also, these three vectors are linearly independent.

The space V + W is spanned by v_1, v_2, w_1 , and w_2 . Out of these four vectors, w_2 is dependent on the remaining three vectors.

Therefore, one of the bases of $\mathbf{V} + \mathbf{W}$ is $[v_1, v_2, w_1]$.

Step-3

The space $V \cap W$ is the space of all vectors, which are common to V and W.

Note the following:

$$v_1 - v_2 = (1,1,0,0) - (1,0,1,0)$$

= $(0,1,-1,0)$

Also, note the following:

$$w_1 - w_2 = (0,1,0,1) - (0,0,1,1)$$
$$= (0,1,-1,0)$$

Step-4

Thus, any vector, which is a multiple of (0,1,-1,0) lies in the space $V \cap W$.

Thus, a basis of $V \cap W$ is (0,1,-1,0) and dimension of $V \cap W = 1$.