

2. 化学反应的热效应、方向及限度

天津大学 曲建强

天津大学

曲建强

$$2CO(g) + O_{2}(g) \xrightarrow{\Delta_{r}H_{m}} 2CO_{2}(g)$$

$$\Delta_{r}H_{m1} \xrightarrow{\Box} \Delta_{r}H_{m2} \xrightarrow{\Box} \Delta_{r}H_{m3} \xrightarrow{\Box}$$

$$2C(\overline{\Box},s) + 2O_{2}(g)$$

$$\Delta_{r}H_{m3} = \Delta_{r}H_{m1} = \Delta_{r}H_{m2} + \Delta_{r}H_{m2} = \Delta_{r}H_{m} = \Delta_{r}H$$

$$2CO(g) + O_2(g) \xrightarrow{\Delta_r H_m} 2CO_2(g)$$

$$\Delta_{\rm r} H_{\rm m}^{\ominus} = 2\Delta_{\rm f} H_{\rm m}^{\ominus}({\rm CO}_2, {\rm g}) - \Delta_{\rm f} H_{\rm m}^{\ominus}({\rm O}_2, {\rm g}) - 2\Delta_{\rm f} H_{\rm m}^{\ominus}({\rm CO}, {\rm g})$$

在一定温度下,化学反应的标准摩尔焓变等于同温度下反应前后各物质的标准摩尔生成焓与其化学计量数的乘积之和。

$$\Delta_{\rm r} H_{\rm m}^{\ominus} = \sum \nu_{\rm B} \Delta_{\rm f} H_{\rm m}^{\ominus}({\rm B})$$

例: 计算 $N_2H_4(1) + O_2(g) \rightarrow N_2(g) + 2H_2O(1), \Delta_rH_m^{\ominus} = ?$

解:
$$N_2H_4(1) + O_2(g) \rightarrow N_2(g) + 2H_2O(1)$$

$$\Delta_{\rm f} H_{\rm m}^{\ominus}$$
 53.63 0 0 -285.83

$$\Delta_{\rm r} H_{\rm m}^{\odot} = 2 \times (-285.83) - 53.63 = -622.29 \text{ kJ} \cdot \text{mol}^{-1}$$

例: 已知4Fe₂O₃(s) + Fe(s) \rightarrow 3Fe₃O₄(s), $\Delta_r H_m^{\ominus} = -58.4 \text{ kJ·mol·l}$,

解:

$$\Delta_{\rm r} H_{\rm m}^{\ominus} = 3\Delta_{\rm f} H_{\rm m}^{\ominus} ({\rm Fe_3O_4, s}) - 4\Delta_{\rm f} H_{\rm m}^{\ominus} ({\rm Fe_2O_3, s})$$

$$\Delta_{\rm f} H_{\rm m}^{\ominus}({\rm Fe_3O_4, s}) = [4\Delta_{\rm f} H_{\rm m}^{\ominus}({\rm Fe_2O_3, s}) + \Delta_{\rm r} H_{\rm m}^{\ominus}]/3$$

=
$$[4 \times (-824.2 \text{kJ} \cdot \text{mol}^{-1}) - 58.4 \text{kJ} \cdot \text{mol}^{-1}]/3 = -1118.4 \text{kJ} \cdot \text{mol}^{-1}$$

思考题

火箭发射中高能燃料 $N_2H_4(1)$ 的化学反应式为 $2N_2H_4(1)+N_2O_4(g)\to 3N_2(g)+4H_2O(1)$, 计算燃烧 $10 \text{ kg } N_2H_4(1)$ 放出的热量。