(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-15451

(43)公開日 平成11年(1999)1月22日

(51) Int. Cl. 6

識別記号

FΙ

G09G 3/36

G02F 1/133

575

G09G 3/36

G02F 1/133

575

審査請求 有 請求項の数7 FD (全20頁)

(21)出願番号

(22)出願日

特願平9-179169

平成9年(1997)6月20日

(71)出願人 000232036

日本電気アイシーマイコンシステム株式会

神奈川県川崎市中原区小杉町1丁目403番5

(72) 発明者 幸 信行

神奈川県川崎市中原区小杉町一丁目403番5

3 日本電気アイシーマイコンシステム株

式会社内

(74)代理人 弁理士 高橋 友二

(54) 【発明の名称】液晶駆動回路及びその制御方法

(57)【要約】

【課題】 マスタとスレーブ液晶駆動回路の階調レベル 信号の値を同期させる際に表示オフを無くし、液晶ディ スプレイのブラックアウトを防ぐ。

【解決手段】 同期ズレを起こしたスレーブモード自身 でマスタモードの階調レベル信号を同期を取るためにパ ルス補正回路にて生成された信号を階調レベル信号発生 器に送信し自己補正を行う。また同期ズレを起こしたス レーブモードが自身及び他の階調レベル信号発生器およ びタイミング発生器を初期化して同期化する。

【特許請求の範囲】

【請求項1】 それぞれが階調レベル信号発生器を内蔵 するコントロール回路を備えたカラム側液晶駆動回路で マスタモード液晶駆動回路と単数または複数のスレーブ モード液晶駆動回路とが構成され、

前記マスタモード液晶駆動回路は、

発振器13およびタイミング発生器12により液晶駆動 タイミング信号STBおよびフレーム信号FRMBを生 成して自己のコントロール回路14に入力して液晶駆動 TBおよびフレーム信号FRMBを前記スレーブモード 液晶駆動回路へ送出し、自己のコントロール回路14か ら階調レベル信号 L1, L2を出力して前記スレーブモ ード液晶駆動回路へ送出し、

前記スレーブモード液晶駆動回路は、

前記液晶駆動タイミング信号STBおよびフレーム信号 FRMBを自己のコントロール回路24に入力して液晶 駆動出力を出力すると共に、自己のコントロール回路2 4から階調レベル信号L1', L2'を出力して自己診 断回路28に入力し、この自己診断回路28に入力され 20 る前記階調レベル信号L1,L2と、L1=L1',L 2=L2'であるか否かを比較し、これらが一致しない 場合同期ズレが生じているとして前記自己診断回路28 からの信号REFRHBの論理を不一致の間反転し、こ の信号REFRHBの論理の反転によって同期ズレを解 消する液晶駆動回路の制御方法において、

前記信号REFRHBの論理が反転している間、前記マ スタモード液晶駆動回路から前記コントロール回路24 へ入力されるフレーム信号FRMBの「L」期間の間に 「H」パルスを挿入していって同期ズレを解消すること 30 を特徴とする液晶駆動回路の制御方法。

【請求項2】 それぞれが階調レベル信号発生器を内蔵 するコントロール回路を備えたカラム側液晶駆動回路で マスタモード液晶駆動回路と単数又は複数のスレーブモ ード液晶駆動回路とが構成され、

前記マスタモード液晶駆動回路は、

発振器13およびタイミング発生器12により液晶駆動 タイミング信号STBおよびフレーム信号FRMBを生 成して自己のコントロール回路14に入力して液晶駆動 出力を出力すると共に、この液晶駆動タイミング信号S 40 TBおよびフレーム信号FRMBを前記スレーブモード 液晶駆動回路へ送出し、自己のコントロール回路14か ら階調レベル信号 L1, L2を出力して前記スレープモ ード液晶駆動回路へ送出し、

前記スレーブモード液晶駆動回路は、

前記液晶駆動タイミング信号STBおよびフレーム信号 FRMBを自己のコントロール回路24に入力して液晶 駆動出力を出力すると共に、自己のコントロール回路2 4から階調レベル信号L1', L2'を出力して自己診

る前記階調レベル信号L1,L2と、L1=L1',L 2=L2'であるか否かを比較し、これらが一致しない 場合同期ズレが生じているとして不一致の間前記自己診 断回路28からの信号REFRHBの論理を反転し、こ の信号REFRHBの論理の反転によって同期ズレを解 消する液晶駆動回路の制御方法において、

前記信号REFRHBの論理が反転している間、前記マ スタモード液晶駆動回路から前記コントロール回路24 へ入力される前記フレーム信号FRMB及び液前記晶駆 出力を出力すると共に、この液晶駆動タイミング信号S 10 動タイミング信号STBの入力を停止させて同期ズレを 解消することを特徴とする液晶駆動回路の制御方法。

> 【請求項3】 それぞれが階調レベル信号発生器を内蔵 するコントロール回路を備えたカラム側液晶駆動回路で マスタモード液晶駆動回路と単数または複数のスレーブ モード液晶駆動回路とが構成され、

前記マスタモード液晶駆動回路は、

発振器13およびタイミング発生器12により液晶駆動 タイミング信号STBおよびフレーム信号FRMBを生 成して自己のコントロール回路14に入力して液晶駆動 出力を出力すると共に、この液晶駆動タイミング信号S TBおよびフレーム信号FRMBを前記スレーブモード 液晶駆動回路へ送出し、自己のコントロール回路14か ら階調レベル信号L1, L2を出力して前記スレープモ ード液晶駆動回路へ送出し、

前記スレーブモード液晶駆動回路は、

前記液晶駆動タイミング信号STBおよびフレーム信号 FRMBを自己のコントロール回路24に入力して液晶 駆動出力を出力すると共に、自己のコントロール回路 2 4から階調レベル信号L1', L2'を出力して自己診 断回路28に入力し、この自己診断回路28に入力され る前記階調レベル信号L1,L2と、L1=L1',L 2=L2'であるか否かを比較し、これらが一致しない 場合同期ズレが生じているとして不一致の間前記自己診 断回路28からの信号REFRHBの論理を反転し、こ の信号REFRHBの論理の反転によって同期ズレを解 消する液晶駆動回路の制御方法において、

前記信号REFRHBを全てのカラム側液晶駆動回路の 前記タイミング発生器及びコントロール回路へ入力し、 前記タイミング発生器と前記コントロール回路に内蔵さ れる前記階調レベル信号発生器をリセットすることによ って同期ズレを解消することを特徴とする液晶駆動回路 の制御方法。

【請求項4】 それぞれが階調レベル信号発生器を内蔵 するコントロール回路を備えたカラム側液晶駆動回路で マスタモード液晶駆動回路と単数又は複数のスレーブモ ード液晶駆動回路とが構成され、

前記マスタモード液晶駆動回路は、

発振器13およびタイミング発生器12により液晶駆動 タイミング信号STBおよびフレーム信号FRMBを生 断回路28に入力し、この自己診断回路28に入力され 50 成して自己のコントロール回路14に入力して液晶駆動

出力を出力すると共に、この液晶駆動タイミング信号S TBおよびフレーム信号FRMBを前記スレープモード 液晶駆動回路へ送出し、自己のコントロール回路14か ら階調レベル信号L1, L2を出力して前記スレープモ ード液晶駆動回路へ送出する手段を備え、

前記スレーブモード液晶駆動回路は、

前記液晶駆動タイミング信号STBおよびフレーム信号 FRMBを自己のコントロール回路24に入力して液晶 駆動出力を出力すると共に、自己のコントロール回路 2 4 から階調レベル信号 L 1', L 2'を出力して自己診 10 断回路28に入力し、この自己診断回路28に入力され る前記階調レベル信号L1, L2と、L1=L1', L 2=L2'であるか否かを比較し、これらが一致しない 場合同期ズレが生じているとして前記自己診断回路28 からの信号REFRHBの論理を不一致の間反転し、こ の信号REFRHBの論理の反転によって同期ズレを解 消する手段を備えた液晶駆動回路において、

前記スレーブモード液晶駆動回路に、

前記信号REFRHBの論理が反転している間、前記マ スタモード液晶駆動回路から前記コントロール回路 24 20 へ入力されるフレーム信号FRMBの「L」期間の間に 「H」パルスを挿入していって同期ズレを解消する補正 回路を備えたことを特徴とする液晶駆動回路。

【請求項5】 それぞれが階調レベル信号発生器を内蔵 するコントロール回路を備えたカラム側液晶駆動回路で マスタモード液晶駆動回路と単数又は複数のスレーブモ ード液晶駆動回路とが構成され、

前記マスタモード液晶駆動回路は、

発振器13およびタイミング発生器12により液晶駆動 タイミング信号STBおよびフレーム信号FRMBを生 30 成して自己のコントロール回路14に入力して液晶駆動 出力を出力すると共に、この液晶駆動タイミング信号S TBおよびフレーム信号FRMBを前記スレープモード 液晶駆動回路へ送出し、自己のコントロール回路 14か ら階調レベル信号L1, L2を出力して前記スレープモ ード液晶駆動回路へ送出する手段を備え、

前記スレーブモード液晶駆動回路は、

前記液晶駆動タイミング信号STBおよびフレーム信号 FRMBを自己のコントロール回路24に入力して液晶 駆動出力を出力すると共に、自己のコントロール回路 2 40 4から階調レベル信号L1', L2'を出力して自己診 断回路28に入力し、この自己診断回路28に入力され る前記階調レベル信号L1, L2と、L1=L1', L 2=L2'であるか否かを比較し、これらが一致しない 場合同期ズレが生じているとして前記自己診断回路28 からの信号REFRHBの論理を不一致の間反転し、こ の信号REFRHBの論理の反転によって同期ズレを解 消する手段を備えた液晶駆動回路において、

前記スレーブモード液晶駆動回路に、

スタモード液晶駆動回路から前記コントロール回路24 へ入力される前記フレーム信号FRMB及び液前記晶駆 動タイミング信号STBの入力を停止させて同期ズレを 解消する補正回路を備えたことを特徴とする液晶駆動回 路。

【請求項6】 前記自己診断回路28は、その最終段に インバータを備えたことを特徴とする請求項4乃至請求 項5の何れかに記載の液晶駆動回路。

【請求項7】 それぞれが階調レベル信号発生器を内蔵 するコントロール回路を備えたカラム側液晶駆動回路で マスタモード液晶駆動回路と単数又は複数のスレーブモ ード液晶駆動回路とが構成され、

前記マスタモード液晶駆動回路は、

発振器13およびタイミング発生器12により液晶駆動 タイミング信号STBおよびフレーム信号FRMBを生 成して自己のコントロール回路14に入力して液晶駆動 出力を出力すると共に、この液晶駆動タイミング信号S TBおよびフレーム信号FRMBを前記スレーブモード 液晶駆動回路へ送出し、自己のコントロール回路14か ら階調レベル信号 L1, L2を出力して前記スレーブモ ード液晶駆動回路へ送出する手段を備え、

前記スレーブモード液晶駆動回路は、

前記液晶駆動タイミング信号STBおよびフレーム信号 FRMBを自己のコントロール回路24に入力して液晶 駆動出力を出力すると共に、自己のコントロール回路 2 4から階調レベル信号L1′, L2′を出力して自己診 断回路28に入力し、この自己診断回路28に入力され る前記階調レベル信号L1, L2と、L1=L1', L 2=L2'であるか否かを比較し、これらが一致しない 場合同期ズレが生じているとして前記自己診断回路28 からの信号REFRHBの論理を不一致の間反転し、こ の信号REFRHBの論理の反転によって同期ズレを解 消する手段を備えた液晶駆動回路において、

前記信号REFRHBを全てのカラム側液晶駆動回路の 前記タイミング発生器及びコントロール回路へ入力し、 前記タイミング発生器と前記コントロール回路に内蔵さ れる前記階調レベル信号発生器をリセットして同期ズレ を解消する手段を備えたことを特徴とする液晶駆動回

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液晶駆動回路に関 し、特に表示RAMや表示RAMアドレス,階調演算回 路等のコントロール回路を内蔵する液晶駆動回路及びそ の制御方法に関する。

[0002]

【従来の技術】近年、PDA(Personal Digital Assist ants 携帯用情報端末)等では、低消費電力化が重要視 されることから、液晶表示装置のカラム側液晶駆動回路 前記信号REFRHBの論理が反転している間、前記マ 50 に表示RAMや表示RAMアドレス回路,階調演算回路

等のコントロール回路を内蔵させ、この液晶表示装置を 使用する装置の低消費電力化を図る技術の開発が進めら れている。このような液晶表示装置の駆動回路は、カラ ム側液晶駆動回路である階調表示用液晶駆動回路の出力 と、ロウ側液晶駆動回路であるライン選択液晶駆動回路 の出力とを組み合わせて液晶ディスプレイ表示が行われ る。

【0003】カラム側液晶駆動回路には、マスタモー ド,スレープモードの2モードがあり、マスタモードで は内蔵発振器を動作させ、スレーブモード液晶駆動回路 10 及びロウ側液晶駆動回路へ同期信号を送信する。それぞ れのカラム側液晶駆動回路は、表示RAMやコントロー ル回路等を内蔵しているため、マスタ液晶駆動回路から の同期信号を基に、各スレーブ液晶駆動回路のコントロ ール回路が、マスタ液晶駆動回路のコントロール回路と 同期を取る構成となっている。然しながらマスタ液晶駆 動回路からの供給信号線に外来ノイズ等が乗り、スレー ブ液晶駆動回路が誤ってこのノイズを信号と判断する と、マスタとスレーブ間のコントロール回路の階調演算 回路等の動作に同期ズレが生じ、階調演算回路より生成 20 されたカラム側液晶駆動出力値と、液晶階調レベル信号 を基に出力されるロウ側液晶駆動出力値との差で現され る液晶ディスプレイ表示が、マスタ駆動回路と同期がズ レたスレーブ駆動回路によって、その出力分の縦ライン の液晶表示パネルの表示異常が継続する。

【0004】このような同期ズレは、マスタ側のコントロール回路で生成され、ロウ側液晶駆動回路に送信される階調レベル信号と、スレーブ液晶駆動回路の各々コントロール回路で生成された階調レベル信号との比較で判断できることから、従来の液晶駆動回路では、スレーブ液晶駆動回路内の自己診断回路で同期ズレを判断し、判断したスレーブ液晶駆動回路から全スレーブ液晶駆動回路のででは、カラム側の全液をはシステムリセット信号を供給し、カラム側の全液を開動回路の初期化を行い同期ズレを解消することとしている。然しながらこの初期化を行うために、液晶ディスプレイ表示が一瞬ブラックアウトするという問題が生じる。以下、これについて詳述する。

【0005】図12は従来の液晶表示装置の一例を示すプロック図である。480×240サイズの液晶ディスプレイ1にカラム側液晶駆動回路IC2~4が3個設けられ、ロウ側液晶駆動回路IC5が1個設けられた構成において、カラム側液晶駆動回路2~4のうち、液晶駆動回路2はマスタモードに設定され、マスタモードの設定され、マスタモードに設定され、東京の流温駆動回路2は、発振用外付け抵抗R1を接続し、内部発振器を動作して、液晶駆動タイミング信号STB, カラム側スレーブモード液晶駆動の路3~4と、ロウ側スレーズモード液晶駆動の路3~4と、また自己診晶駆動回路5に供給する構成となった側流点取動回路5に供給する構成とカラム側流点取動回路2~50

4 を互いに接続している。またCPUインタフェース信号7及びシステムリセット信号6は、外部から入力される。

【0006】次に図13を参照し、カラム側液晶駆動回路のうちのマスタモード2とスレーブモード3との構成および接続関係について説明する。マスタモード2及びスレーブモード3共に、発振器13,23、タイミング発生器12,22、自己診断回路18,28、コントロール回路14,24、表示RAM15,25、出力回路16,26を備えている。

【0007】なお実際には、マスタモードに指定された カラム側液晶駆動回路では、自己診断回路18は不要と なり、スレーブモードに指定されたカラム側液晶駆動回 路では、発振器23及びタイミング発生器22は不要と なるが、同一の液晶駆動回路を使用しているためスイッ チSW1~SW8でこれらの切換を行っている。マスタ モード 2 では、スイッチ S W 1 ~ 4 がオンすると、発振 器用外付け抵抗R1が取り付けられた発振器13が動作 して、タイミング発生器12より液晶駆動タイミング信 号STBおよびフレーム信号FRMBが出力され、これ らの信号が自己のコントロール回路14へ入力されて表 示RAM15および出力回路16が動作し、液晶駆動出 力が行われる。また、これらの信号はスレープモード3 及び図12に示すロウ側液晶駆動回路5へも供給され る。またコントロール回路14より、階調レベル信号L 1とL2とが出力され、これらの信号がスレープモード 3 およびロウ側液晶駆動回路5へ供給される。

【0008】スレーブモード液晶駆動回路3は、スイッ チSW5~8がオフし、発振器23及びタイミング発生 器22が停止しているため、コントロール回路24への 信号STB, FRMB及び自己診断回路28への信号F RMBは、マスタモード2からこれらの信号を入力し、 表示RAM25及び出力回路26を動作させ液晶駆動出 力を行い、またコントロール回路24から階調レベル信 号L1とL2とを出力して、自己診断回路28に信号L 1', L2'として入力している。上述のように自己診 断回路28への信号L1,L2は、マスタモード2のコ ントロール回路14から入力されており、信号L1,L 2とL1', L2'とが比較され、その結果、自己診断 回路出力REFRHBが生成され、自己のAND回路2 7の一方に入力され、他方に入力されるシステムリセッ ト信号とANDされると共に、この自己診断回路出力R EFRHBがマスタモード2や他のスレーブモード4へ も供給される構成となっている。

電影動四路 2 は、発振用外付け抵抗 R 1 を接続し、内部 発振器を動作して、液晶駆動タイミング信号 S T B , フ レーム信号 F R M B , 階調レベル信号 L 1 , L 2 を、カ ラム側スレーブモード液晶駆動回路 3 ~ 4 と、ロウ側液 晶駆動回路 5 に供給する構成となっており、また自己診 断回路出力 R E F R H B は各カラム側液晶駆動回路 2 ~ 50

「L」レベルが入力され、その状態でフレーム信号RR MBが立ち上がると、FF1の出力Qが「H」から 「L」になり、この出力が遅延回路D1, インバータ回 路INV1, NOR回路NOR2、N型MOSトランジ スタNch、プルアップ抵抗RUで構成される回路によ り、自己診断回路出力REFRHBは遅延回路D1の遅 延時間分の「L」となるように構成されている。

【0010】次に図15を参照し、従来の液晶駆動回路 で同期ズレが発生し、このズレが復帰されるまでの動作 について説明する。まずマスタモード2で出力される階 10 調レベル信号L1,L2の動作サイクルについて、図1 5 (B) を用いて説明する。1サイクルはフレーム信号 FRMBが、F1~F4の4回のロウパルス信号の入力 で1サイクルとなっており、液晶駆動タイミング信号S TBはフレーム信号FRMBの「L」パルスと、次の 「L」パルスとの間に、121回の立上り信号が入力さ れる。

【0011】最初のフレーム信号FRMBのF1のタイ ミングで「L」パルスが入力されたときに、液晶駆動タ イミング信号STBの1回目の立上り信号で、L1= [H], L2 = [H]が出力され、次にF2の [L]パ ルスが入力されるまでのSTB信号の立上り信号で、L 2のレベルが反転する。以降、F2の時はL1= [H], L2 = [L]、F3の時はL1 = [L], L2 $= \lceil L \rfloor$, $F40284L1 = \lceil L \rfloor$, $L2 = \lceil H \rfloor$ 言うように、STBの1回目の立上りでL2のレベルが 反転する。

【0012】次に図15(A)において、フレーム信号 FRMBにノイズ (N1) が乗った場合について説明す る。最初にシステムリセット信号RESETBが入り、 L1, L2の1サイクル分S1の間は、液晶駆動回路の 初期化時間になっており、液晶ディスプレイ表示のちら つき防止のために、Y出力がオフ(ブラックアウト)と なっており、次のサイクルS2以降はY出力が表示オン 出力となる。そしてS2のオン出力の中で、ノイズN1 がフレーム信号FRMBに1パルス乗った場合、次の液 晶駆動タイミング信号STBの3の立上りで同期ズレが 発生し、自己診断回路28の検出タイミングK1~K1 1のK6で同期ズレが検出され、自己診断回路出力RE FRHBが所定期間「L」となり、自身も含め全てのカ 40 ラム側液晶駆動回路 I C 2 ~ 4 が A N D 回路 2 7 等によ ってリセットされ初期化される。従って階調レベル信号 L1, L2は同期化されるが、次のサイクルS3ではY 出力がオフとなり、次のサイクルS4以降にオンとな る。

[0013]

【発明が解決しようとする課題】従来の液晶駆動回路は 以上のように例えばフレーム信号にノイズが乗ってマス タとスレーブの階調レベル信号に同期ズレが生じた場 合、同期ズレを検出した自己診断回路出力REFRHB 50 ントロール回路24へ入力される前記フレーム信号FR

を他の全てのカラム側液晶駆動回路へ送信して、全ての カラム側液晶駆動回路をリセットして初期化を行い同期 ズレを解消することとしている。全てのカラム側液晶駆 動回路が初期化されると、表示RAM及びコントロール 回路の初期化時間の間の液晶ディスプレイ表示のちらつ きを防止するため、表示オフ出力が働き、液晶ディスプ レイ表示は正規のシステムリセット入力がないのに一瞬 ブラックアウトされてしまい、目障りになると共に、表 示故障と誤判断される恐れがある等の問題点があった。

【0014】本発明はかかる問題点を解決するためにな されたものであり、マスタとスレーブの階調レベル信号 に同期ズレが生じ、この同期ズレを解消する間も液晶デ ィスプレイ表示がブラックアウトすることのない液晶駆 動回路及びその制御方法を提供することを目的としてい

[0015]

30

【課題を解決するための手段】本発明の液晶駆動回路の 制御方法は、それぞれが階調レベル信号発生器を内蔵す るコントロール回路を備えたカラム側液晶駆動回路でマ スタモード液晶駆動回路と単数または複数のスレープモ ード液晶駆動回路とが構成され、前記マスタモード液晶 駆動回路は、発振器13およびタイミング発生器12に より液晶駆動タイミング信号STBおよびフレーム信号 FRMBを生成して自己のコントロール回路14に入力 して液晶駆動出力を出力すると共に、この液晶駆動タイ ミング信号STBおよびフレーム信号FRMBを前記ス レーブモード液晶駆動回路へ送出し、自己のコントロー ル回路14から階調レベル信号L1, L2を出力して前 記スレーブモード液晶駆動回路へ送出し、前記スレーブ モード液晶駆動回路は、前記液晶駆動タイミング信号S TBおよびフレーム信号FRMBを自己のコントロール 回路24に入力して液晶駆動出力を出力すると共に、自 己のコントロール回路24から階調レベル信号L1', L2'を出力して自己診断回路28に入力し、この自己 診断回路28に入力される前記階調レベル信号し1, し 2と、L1=L1', L2=L2'であるか否かを比較 し、これらが一致しない場合同期ズレが生じているとし て前記自己診断回路28からの信号REFRHBの論理 を不一致の間反転し、この信号REFRHBの論理の反 転によって同期ズレを解消する液晶駆動回路の制御方法 において、前記信号REFRHBの論理が反転している 間、前記マスタモード液晶駆動回路から前記コントロー ル回路24へ入力されるフレーム信号FRMBの「L」 期間の間に「H」パルスを挿入していって同期ズレを解 消することを特徴とする。従ってシステム全体をリセッ トする必要なく同期ズレを解消でき、液晶ディスプレイ 表示がブラックアウトされることがなくなる。

【0016】また、前記信号REFRHBの論理が反転 している間、前記マスタモード液晶駆動回路から前記コ

10

MB及び液前記晶駆動タイミング信号STBの入力を停 止させて同期ズレを解消することを特徴とする。従って システム全体をリセットする必要なく同期ズレを解消で き、液晶ディスプレイ表示がブラックアウトされること がなくなる。

【0017】さらに、前記信号REFRHBを全てのカ ラム側液晶駆動回路の前記タイミング発生器及びコント ロール回路へ入力し、前記タイミング発生器と前記コン トロール回路に内蔵される前記階調レベル信号発生器を リセットすることによって同期ズレを解消することを特 10 徴とする。従ってシステム全体をリセットする必要なく 同期ズレを解消でき、液晶ディスプレイ表示がブラック アウトされることがなくなる。

【0018】また本発明の液晶駆動回路は、それぞれが 階調レベル信号発生器を内蔵するコントロール回路を備 えたカラム側液晶駆動回路でマスタモード液晶駆動回路 と単数又は複数のスレーブモード液晶駆動回路とが構成 され、前記マスタモード液晶駆動回路は、発振器13お よびタイミング発生器12により液晶駆動タイミング信 号STBおよびフレーム信号FRMBを生成して自己の 20 コントロール回路14に入力して液晶駆動出力を出力す ると共に、この液晶駆動タイミング信号STBおよびフ レーム信号FRMBを前記スレーブモード液晶駆動回路 へ送出し、自己のコントロール回路14から階調レベル 信号L1,L2を出力して前記スレーブモード液晶駆動 回路へ送出する手段を備え、前記スレーブモード液晶駆 動回路は、前記液晶駆動タイミング信号STBおよびフ レーム信号FRMBを自己のコントロール回路 2 4 に入 力して液晶駆動出力を出力すると共に、自己のコントロ ール回路24から階調レベル信号L1',L2'を出力 して自己診断回路28に入力し、この自己診断回路28 に入力される前記階調レベル信号L1,L2と、L1= L 1', L 2 = L 2'であるか否かを比較し、これらが 一致しない場合同期ズレが生じているとして前記自己診 断回路28からの信号REFRHBの論理を不一致の間 反転し、この信号REFRHBの論理の反転によって同 期ズレを解消する手段を備えた液晶駆動回路において、 前記スレーブモード液晶駆動回路に、前記信号REFR HBの論理が反転している間、前記マスタモード液晶駆 動回路から前記コントロール回路24へ入力されるフレ 40 ーム信号FRMBの「L」期間の間に「H」パルスを挿 入していって同期ズレを解消する補正回路を備えたこと を特徴とする。従ってシステム全体をリセットする必要 なく同期ズレを解消でき、液晶ディスプレイ表示がブラ ックアウトされることがなくなる。

【0019】また、前記スレーブモード液晶駆動回路 に、前記信号REFRHBの論理が反転している間、前 記マスタモード液晶駆動回路から前記コントロール回路 24へ入力される前記フレーム信号FRMB及び液前記

レを解消する補正回路を備えたことを特徴とする。従っ てシステム全体をリセットする必要なく同期ズレを解消 でき、液晶ディスプレイ表示がブラックアウトされるこ とがなくなる。

【0020】また前記自己診断回路28は、その最終段 にインバータを備えたことを特徴とする。従って更に低 消費電流化が可能となる。

【0021】さらに、前記信号REFRHBを全てのカ ラム側液晶駆動回路の前記タイミング発生器及びコント ロール回路へ入力し、前記タイミング発生器と前記コン トロール回路に内蔵される前記階調レベル信号発生器を リセットして同期ズレを解消する手段を備えたことを特 徴とする。従って簡単な回路構成で、システム全体をリ セットする必要なく同期ズレを解消でき、液晶ディスプ レイ表示がブラックアウトされることがなくなる。

[0022]

【発明の実施の形態】以下、本発明の第1の実施形態を 図面を参照して説明する。図1は、本発明の第1の実施 形態が適用される液晶表示装置の装置構成の一例を示す 図である。図1において、1は液晶ディスプレイ、2は カラム側液晶駆動回路IC(マスターモード)、3およ び4はカラム側液晶駆動回路IC(スレープモード)、 5はロウ側液晶駆動回路IC、6はシステムリセット信 号、7はСРUインタフェース信号である。

【0023】480×240サイズの液晶ディスプレイ 1にカラム側液晶駆動回路IC2~4が3個設けられ、 ロウ側液晶駆動回路 I C 5 が 1 個設けられた構成におい て、カラム側液晶駆動回路2~4のうち、液晶駆動回路 2はマスタモードに、他のカラム側液晶駆動回路3~4 はスレープモードに設定され、マスタモードの液晶駆動 回路2は、発振用外付け抵抗R1を接続し、内部発振器 を動作して、液晶駆動タイミング信号STB, フレーム 信号FRMB,階調レベル信号L1,L2を、カラム側 スレープモード液晶駆動回路3~4と、ロウ側液晶駆動 回路5に供給する構成となっており、またCPUインタ フェース信号 7 及びシステムリセット信号 6 が外部から 入力される構成となっている。

【0024】次に図2を参照し、カラム側液晶駆動回路 のうちのマスタモード2とスレーブモード3との構成お よび接続関係について説明する。マスタモード2及びス レーブモード3共に、発振器13,23、タイミング発 生器12,22、自己診断回路18,28、コントロー ル回路14,24、表示ラム15,25、パルス補正回 路19, 29、0R回路or11, or12を備えてい

【0025】なお実際には、マスタモードに指定された カラム側液晶駆動回路では、自己診断回路18, パルス 補正回路19,OR回路or11は不要となり、スレー ブモードに指定されたカラム側液晶駆動回路では、発振 晶駆動タイミング信号STBの入力を停止させて同期ズ 50 器23及びタイミング発生器22は不要となるが、同一

る。

の液晶駆動回路を使用しているためスイッチSW1~SW8等でこれらの切換を行っている。マスタモード2では、スイッチSW1~4がオンすると、発振器用外付け抵抗R1が取り付けられた発振器13が動作して、タイミング発生器12より液晶駆動タイミング信号STBおよびフレーム信号FRMBが出力され、これらの信号が自己のコントロール回路14へ入力されて表示RAM15および出力回路16が動作し、液晶駆動出力が行われる。また、これらの信号はスレーブモード3及び図1に示すロウ側液晶駆動回路5へも供給される。またコントロール回路14より、階調レベル信号L1とL2とが出力され、これらの信号がスレーブモード3~4およびロウ側液晶駆動回路5へ供給される。

【0026】スレーブモード液晶駆動回路3は、スイッ チSW5~8がオフし、発振器23及びタイミング発生 器22が停止しているため、コントロール回路24への STB, FRMB信号は、マスタモード2からこれらの 信号を入力し、表示RAM25及び出力回路26を動作 させ液晶駆動出力を行うが、入力されるフレーム信号F RMBは、3つに分岐され、その1つがパルス補正回路 20 29の一方の入力端子に入力され、他の1つは0尺回路 or21の一方の入力端子に入力され、この0R回路o r 2 1 の他の一方の入力端子に入力されるパルス補正回 路29の出力とORが取られてコントロール回路24に 入力され、更に他の1つが自己診断回路28へ入力され る構成となっている。またコントロール回路24から階 調レベル信号L1とL2とを出力して、自己診断回路2 8に信号L1', L2'として入力している。上述のよ うに自己診断回路28へは、マスタモード2のコントロ ール回路 1 4 から信号 L 1, L 2 が入力されており、信 30 号し1, L2とL1', L2'とが比較され、その結 果、自己診断回路出力REFRHBが生成され、パルス 補正回路29の一方の端子へ入力される構成となってい る。

【0027】次に図3を参照して、本実施形態の自己診 断回路28の構成および動作について説明する。セット 信号Sが「H」で、自己診断回路出力REFRHBに 「H」がセットされ、信号L1とL1'およびL2とL 2'の一致を、XOR1~2、NOR1で行い、何れか 不一致が発生すると、フィリップフロップFF1のデー 40 タDに「L」レベルが入力され、その状態でフレーム信 号FRMBが立ち上がると、FF1の出力Qが「H」か. ら「L」になり、その信号が遅延回路D1, インバータ 回路 I N V 1, N O R 回路 N O R 2, インバータ回路 I NV2で構成される回路により、自己診断回路出力RE FRHBは遅延回路D1の遅延時間分「L」となるよう に構成されている。すなわち図14に示す従来の自己診 断回路のNchトランジスタに替えてインバータ回路I NV2を使用している。これは後述するように全てのカ ラム側液晶駆動回路を初期化する必要がないためであ

【0028】次に図4を参照して本実施形態のバルス補正回路29の構成および動作について説明する。リセット信号RBで初期化され補正回路出力FRPWは「L」がセットされ、フレーム信号FRMBの立上り時、図3の自己診断回路出力REFRHBが入力され、次のフレーム信号FRMBの立下りでFF10のQ出力が「L」から「H」になると、遅延回路D20,遅延回路D3

から「H」になると、遅延回路D20,遅延回路D3 0,インバータ回路INV10,AND回路AND10 により、遅延回路D20の遅延時間分Dy1後に、遅延 回路D30の遅延時間分の「H」パルス信号(PW1) が補正出力FRPWより出力される構成となっている。

【0029】次に図5を参照し、本実施形態の液晶駆動 回路で同期ズレが発生し、このズレが復帰されるまでの動作について説明する。まずマスタモード2で出力される階調レベル信号L1, L2の動作サイクルについて、図5(B)を用いて説明する。1サイクルはフレーム信号FRMBが、F1~F4の4回のロウパルス信号の入力で1サイクルとなっており、液晶駆動タイミング信号STBはフレーム信号FRMBの「L」パルスと、次の「L」パルスとの間に、121回の立上り信号が入力される。

【0030】最初のフレーム信号FRMBのF1のタイミングで「L」パルスが入力されたときに、液晶駆動タイミング信号STBの1回目の立上り信号で、L1=「H」,L2=「H」が出力され、次にF2の「L」パルスが入力されるまでのSTB信号の立上り信号で、L2のレベルが反転する。以降、F2の時はL1=「L」,L2=「H」,L2=「L」、F3の時はL1=「L」,L2=「L」、F4の時はL1=「L」,L2=「H」と言うように、STBの1回目の立上りでL2のレベルが反転する。

【0031】次に図5(A)において、フレーム信号F RMBにノイズ(N1)が乗った場合について説明す る。最初にシステムリセット信号RESETBが入り、 L1, L2の1サイクル分S1の間は、液晶駆動回路の 初期化時間になっており、液晶デイスプレイ表示のちら つき防止のために、Y出力がオフ(ブラックアウト)と なっており、次のサイクルS2以降はY出力がオンとな る。そしてS2のオン出力の中で、ノイズN1がフレー ム信号FRMBに1パルス乗った場合、次の液晶駆動タ イミング信号STBの3の立上りで同期ズレが発生し、 自己診断回路28の検出タイミングK1~K10のK6 で、L1≠L1'となり、自己診断回路28の出力RE FRHBに「L」パルス信号が発生し、自身のパルス補 正回路29の一方に入力され、このパルス補正回路29 の他の一方に入力されるフレーム信号FRMBの立下り で、図4(B)の(PW1)に示すように、パルス補正 回路出力FRPWに遅延回路D30の遅延時間分の

「H」パルス信号が発生し、この「H」パルスがフレー

ム信号FRMBとのOR回路or21に入力され、この O R回路 o r 2 l の出力であるコントロール回路 2 4 に 入力されるフレーム信号FRMBに「H」パルスが+1 追加され、自身のコントロール回路24の階調レベル信 号のサイクルの状態がマスタモード2の階調レベル信号 のサイクルの状態より+1進み、信号L1', L2' は、「L」, 「L」となるが、次のK7のタイミングで L1≠L1'、L2≠L2'と未だ同期がズレているた め、フレーム信号FRMBのF4の立下りで、パルス補 正回路 2 9 から再び「H」パルスが + 1 追加され(PW 10 力され、このパルス補正回路 2 9 の出力MSAKが 2)、このようにして K 9 のタイミングで同期が取れる までパルス補正回路29から「H」パルスが+1追加さ れて(PW3)、同期化される。従って何れのカラム側 液晶駆動回路2~4のリセットを行うことなく、同期ズ レを解消でき、同期化されるまでの間もY出力は表示オ ン出力となり、ブラックアウトされることを回避できる ようになっている。

【0032】次に本発明の第2の実施形態について図面 を参照して説明する。この第2の実施形態の液晶駆動回 路が適用される液晶表示装置は、図1に示す液晶表示装 置と同じであり、その説明は省略する。図6はこの第2 の実施形態におけるマスタモード2とスレーブモード3 との構成および接続関係を示す図であり、図7で後述す るようにパルス補正回路29の構成と、OR回路or2 1およびor22により、マスタモード2から入力され る液晶駆動タイミング信号STBとフレーム信号FRM Bとがパルス補正回路29の出力MASKとORされて コントロール回路24に入力される構成となっている点 を除き、図2に示す第1の実施形態の構成と同様であ る。また自己診断回路28の構成及び動作も図3に示す 30 第1の実施形態と同様であり、これらの説明は省略す る。

【0033】次に図7を参照し本実施形態におけるパル ス補正回路の構成及び動作について説明する。リセット 信号RBで初期化され、パルス補正回路出力MASKは 「L」状態となっており、自己診断回路出力REFRH Bの「L」で、パルス補正回路出力MASKが「H」と なり、次のフレーム信号FRMBの立上りでパルス補正 回路出力MASKが「H」から「L」になるように構成 されている。

【0034】次に図8を参照し、この第2の実施形態の 液晶駆動回路で同期ズレが発生し、このズレが復帰され るまでの動作について説明する。なお、図8(B)に示 すマスタモード2で出力される階調レベル信号L1, L 2の動作サイクルについては、図5 (B) に示す第1の 実施形態と同様であるのでその説明は省略する。次に図 8(A)において、フレーム信号FRMBにノイズ(N 1) が乗った場合について説明する。最初にシステムリ セット信号RESETBが入り、L1, L2の1サイク

り、液晶デイスプレイ表示のちらつき防止のために、Y 出力がオフ(ブラックアウト)となっており、次のサイ クルS2以降はY出力がオンとなる。そしてS2のオン 出力の中で、ノイズN1がフレーム信号FRMBに1パ ルス乗った場合、次の液晶駆動タイミング信号STBの 3の立上りで同期ズレが発生し、自己診断回路28の検 出タイミングK1~K10のK6で、L1≠L1'とな り、自己診断回路28の出力REFRHBに「L」パル ス信号が発生し、自身のパルス補正回路29の一方に入 「H」となり、それぞれのOR回路or21, or22 の出力が「H」となり、マスタモード2から入力される 液晶駆動タイミング信号STBとフレーム信号FRMB のクロックはコントロール回路24には入力されない。 以降 K 7 のタイミングで同期が確立し自己診断回路 2 8 の出力REFRHBが「H」となると、パルス補正回路 29の出力MSAKが「L」となり、コントロール回路 24へはマスタモードからの液晶駆動タイミング信号S TBとフレーム信号FRMBのクロックが入力され、通 常の動作に復帰する。従って何れのカラム側液晶駆動回 路2~4のリセットを行うことなく、同期ズレを解消で き、同期化されるまでの間もY出力は表示オン出力とな り、ブラックアウトされることを回避できるようにな る。

【0035】次に本発明の第3の実施形態を図面を参照 して説明する。この第3の実施形態が適用される液晶表 示装置は、従来技術として説明した図12と同様であ り、その説明は省略する。図9はこの第3の実施形態に おけるマスタモード2とスレープモード3との構成およ び接続関係を示す図であり、その構成は自己診断回路出 力REFRHBとシステムリセット信号とがAND回路 を介さずにそのままコントロール回路24に入力されて いる点、および自己診断回路の出力REFRHBがそれ ぞれのタイミング発生器12に入力されている点を除 き、図13に示す従来技術の構成と同様になっている。 【0036】図10は、この第3の実施形態のコントロ ール回路24に内蔵されている階調レベル信号発生器3 1の接続関係を示す図である。階調レベル信号発生器3 1は、図11(B)のL1, L2の動作のサイクルを発 生させる回路であり、システムリセット信号と自己診断 回路の出力REFRHBのAND論理で初期化され、次 の液晶駆動タイミング信号STBの立上りで信号L1= 「H」, L2=「H」の状態になる (図11 (B) のF

【0037】次に図11(A)において、フレーム信号 FRMBにノイズ (N1) が乗った場合について説明す る。最初にシステムリセット信号RESETBが入り、 L1, L2の1サイクル分S1の間は、液晶駆動回路の 初期化時間になっており、液晶デイスプレイ表示のちら ル分S1の間は、液晶駆動回路の初期化時間になってお 50 つき防止のために、Y出力がオフ(ブラックアウト)と

なっており、次のサイクルS2以降はY出力がオンとな る。そしてS2のオン出力の中で、ノイズN1がフレー ム信号FRMBに1パルス乗った場合、次の液晶駆動タ イミング信号STBの3の立上りで同期ズレが発生し、 自己診断回路28の検出タイミングK1~K11のK6 で、L1 ≠ L1'となり、自己診断回路28の出力RE FRHBに「L」パルス信号が発生し、自身のコントロ ール回路24及びタイミング発生器22にこの自己診断 出力REFRHBが入力される他、他の全てのカラム側 液晶駆動回路に入力され、各々のタイミング発生器およ 10 びコントロール回路に内蔵された階調レベル信号発生器 31がリセットされるが、各々のコントロール回路の他 の制御回路へはシステムリセット信号の「H I がそのま ま継続して維持され、従って何れのカラム側液晶駆動回 路2~4の表示動作はリセットされることなく、同期ズ レを解消でき、同期化されるまでの間もY出力は表示オ ン出力となり、ブラックアウトされることを回避できる ようになる。

[0038]

【発明の効果】本発明の液晶駆動回路及びその制御方法 20 は以上説明したように構成され動作することで以下のよ うな効果が生じる。同期ズレが発生し、同期ズレを解消 する際にシステムリセット機能を利用せずに同期化を行 う構成としたので、液晶デイスプレイ表示のブラックア ウトをなくすことができる。また第1の実施形態および 第2の実施形態においては、同期ズレが生じた液晶駆動 回路自身で同期化を行う構成としたため、全てのカラム 液晶駆動回路ICを初期化する必要がなく、各カラム液 晶駆動回路IC間を接続する自己診断回路出力REFR HB線を省略でき、液晶表示装置の簡素化が図れる。さ 30 18,28 自己診断回路 らに全てのカラム液晶駆動回路ICを初期化するための REFRHB端子のNchオープンドレインが不要とな るため、更なる低消費電流化が図れる(例えばVGAサ イズ8個の場合リセット時間中の貫通電流MAX5mA が削減できる)等の効果がある。

【図面の簡単な説明】

【図1】本発明の第1の実施形態が適用される液晶表示 装置の装置構成の一例を示す図である。

【図2】本発明の第1の実施形態を説明するための図で ある。

【図3】本実施形態の自己診断回路28の構成および動 作を説明するための図である。

【図4】図2に示す第1の実施形態のパルス補正回路2 9の構成および動作を説明するための図である。

【図5】第1の実施形態における同期ズレ解消動作を説 明するための図である。

【図6】本発明の第2の実施形態を説明するための図で ある。

【図7】図6に示す第2の実施形態のパルス補正回路2 9の構成および動作を説明するための図である。

【図8】第2の実施形態における同期ズレ解消動作を説 明するための図である。

【図9】本発明の第3の実施形態を説明するための図で ある。

【図10】第3の実施形態における階調レベル信号発生 器の接続関係を示す図である。

【図11】第3の実施形態における同期ズレ解消動作を 説明するための図である。

【図12】従来の液晶駆動回路が適用される液晶表示装 置の一例を示す図である。

【図13】従来の液晶駆動回路を説明するための図であ

【図14】従来の液晶駆動回路の自己診断回路28の構 成および動作を説明するための図である。

【図15】従来の液晶駆動回路における同期ズレ解消動 作を説明するための図である。

【符号の説明】

1 液晶ディスプレイ

2 カラム側液晶駆動回路 I C (マスターモード)

3~4 カラム側液晶駆動回路IC (スレーブモード)

5 ロウ側液晶駆動回路 I C

6 システムリセット信号

7 CPUインタフェース信号

12, 22 タイミング発生器

13,23 発振器

14,24 コントロール回路

15.25 表示ラム

17, 27, AND 10, AND 20, AND 30, A ND40 AND回路

19,29 パルス補正回路

31 階調レベル信号発生器

orll, orl2, or21, or22 OR回路

XOR1, XOR2 XOR回路

NOR1, NOR2 NOR回路

FF1, FF10, FF11, フリップフロップ

INV1, INV2, INV10 インバータ回路

D1, D10, D11, D20, D30 遅延回路

Nch N型MOSトランジスタ

40 DOOFB' 表示フ出力

STB 液晶駆動タイミング信号

FRMB フレーム信号

L1, L2 マスタモード階調レベル信号

L1', L2' スレーブモード階調レベル信号

REFRHB 自己診断回路出力

RESETB システムリセット信号

FRPW, MASK パルス補正回路出力

N1 ノイズ

S1~4 L1, L2の動作サイクル

50 K1~K11 自己診断検出タイミング

Y出力 液晶駆動出力

【図1】

【図2】

【図5】

【図6】

【図7】

(A)

【図14】

B)	算理值表 入力						
			出力				
	s	111	L1'	L2	L2'	FRMB	REFRHB
	Н	x	×	х	×	x	H
	Ł	L1≠L1'		х	х		7.
	L	×	x	L2≠L2' L2=L2'			7
	L	L1=	L1'				н
	L	X.	х	х	х	_•_	Н

【図10】

【図8】

【図9】

【図11】

図12]

【図13】

【図15】

(A)
RESETB
REFRHB
FRMB 0 0 1 F1 F2 F2 F3 F4 F1 F1
STB THE PURILIBIES TO STATE TO STB TO STB TO STB TO STB TO STB
H HO H H
Y出力 表示オフ電力 (ブラックアウト) 表示オン電力 表示オン電力 (ブラックアウト) 表示オン型力
FRAMB (E) (D) (D)
STB 1 2 3 4~1241 2 3 4~1211 2 3 4~1211 1 2 3 4~1211 1 2 3 4~1211 2 3 4~1211
12 BLH L-H OH LH-L OH LH-L OH LH-L OH LH-L