Линейная регрессия. Задача 1

Ильичёв А.С., 693

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

1. Считаем данные и проведем их предобработку.

```
df = pd.read_csv('forestfires.csv')

df.head()
```

	X	Υ	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rair
0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0
1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0
2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0
3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2
4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0
1)

Нам нужно работать с числовыми признаками, а в датасете есть категориальные. Заменим день недели на индикатор выходного дня и создадим индикаторный признак для лета, а также добавим константный признак.

```
df.head()
```

FFMC	DMC	DC	ISI	temp	RH	wind	rain	area	weekend	summe
86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.0	0	0
90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.0	0	0
90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.0	1	0
91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.0	0	0
89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.0	1	0

Удалим категориальные признаки из датасета.

```
df.drop(['month', 'day'], axis=1, inplace=True)

df.head()
```

омс	DC	ISI	temp	RH	wind	rain	area	weekend	summer	const		
26.2	94.3	5.1	8.2	51	6.7	0.0	0.0	0	0	1		
35.4	669.1	6.7	18.0	33	0.9	0.0	0.0	0	0	1		
13.7	686.9	6.7	14.6	33	1.3	0.0	0.0	1	0	1		
33.3	77.5	9.0	8.3	97	4.0	0.2	0.0	0	0	1		
51.3	102.2	9.6	11.4	99	1.8	0.0	0.0	1	0	1		
4	I											

2. Разбьем выборку на две части в соотношении 7:3 и построим по первой части регрессионную модель.

Для перемешивания выборки и разделения на две части будем использовать встроенную функцию. Но сначала отделим вектор ответов от выборки (здесь используются обозначения из лекций).

Используем модель

$$\hat{ heta} = \operatorname*{argmin}_{ heta} \lVert X - Z heta
Vert,$$

для которой мы знаем решение в явном виде:

$$\hat{\theta} = (Z^T Z)^{-1} Z^T X.$$

Обучение модели:

```
def fit(Z, X):
    return np.dot((np.linalg.inv(Z.T @ Z) @ Z.T), X)
t = fit(Z_train, X_train)
```

Посмотрим на коэффициенты модели.

```
names = Z.columns
for coef, name in zip (t, names):
   print(name, '\t', coef)
    2.4143170162201373
Χ
    0.2908634350490309
FFMC -0.06568235057873384
DMC 0.14511106012501335
DC -0.014321172978250581
ISI
     -0.4159246855425932
temp 1.6234803701667118
RH -0.14702333886197266
wind 2.0265023951426158
rain -22.87685213363296
weekend 8.642720664215004
summer -15.855251101706322
const -24.766018935399835
```

3. Применим модель ко второй части выборки и посчитаем по ней среднеквадратичную ошибку.

Нашим предсказанием будет $Z\hat{ heta}$.

```
def predict(coefs, Z_test, X_true):
    X_pred = np.dot(Z_test, coefs)
    mse = np.mean((X_pred - X_true.values)**2)
    return X_pred, mse

X_pred, mse = predict(t, Z_test, X_test)

X_pred[:5]

array([13.53565042, 32.23499864, 16.93017647, 0.78568682, 19.70053325])
```

```
1039.7151114821354
```

4. Сделаем для area преобразование $f(x) = \ln(x+c)$ и построим для нее новую регрессионную модель. Сравним ошибки для разных c.

```
cs = np.arange(1, 1000, 0.1)
```

Построим график логарифма ошибки.

```
plt.semilogy(cs, mses)
plt.xlabel('c')
plt.ylabel('log(error)')
plt.show()
```


Ошибка уменьшается с ростом c. Но посмотрим на вектора весов и ответов:

```
names = Z.columns
for coef, name in zip (t, names):
    print(name, '\t', coef)
```

```
0.0015623092751705257
Χ
    -0.0002018990312792103
FFMC 0.00011244227873508528
DMC
     8.753825285181718e-05
    -9.898304605997183e-06
DC
ISI
      -0.00042643840737602474
temp 0.0009510961277310048
RH -0.00010535840958131619
wind 0.0012699688494148577
rain -0.0011007491933284763
          0.009329008250641507
weekend
summer -0.01149881743219696
       6.884240477979073
const
```

```
plt.hist(X_pred);
```



```
np.log(cs[-1])
```

```
6.9076552739818045
```

Видно, что модель просто выдает значения, близкие к $\log(c)$. А чем больше константа c, тем меньше ответы зависят от значений в датасете, то есть мы приближаемся к предсказыванию константы. Это подтверждается и тем, что веса всех признаков, кроме константного, становятся очень маленькими, а коэффициент при константе тоже примерно равен $\log(c)$.

5. При выбранном c сделаем разбиение выборки разными способами.

При перемешивании выборки в столбце rain в тренировочной части могут оказаться все нули, и мы не сможем обратить матрицу. Поэтому такие случаи будем пропускать.

```
t = fit(Z_train, X_train)
except np.linalg.LinAlgError:
    print('Bad shuffle')
X_pred, mse = predict(t, Z_test, X_test)
mses_c.append(mse)
```

Посмотрим на распределение ошибок на по-разному перемешанных выборках.

```
plt.hist(mses_c, bins=20);
```


Видим, что качество зависит от способа перемешивания, однако ошибка все равно остается маленькой, ее порядок не меняется. Причины этого были объяснены выше.

6. Вывод.

Ошибка предсказания площади пожара нашей моделью очень велика. Преобразование целевой переменной не улучшает ситуацию, и к тому же лишает предсказанные значения всякого смысла. Скорее всего, это происходит потому, что зависимость площади пожара от предоставленных данных не описывается линейной моделью. Нужно применять другие методы.