By block multiplication we get

$$TC + UW = I_n$$

 $TV + \beta U = 0_{n,1}$
 $\alpha W = 0_{1,n}$
 $\alpha \beta = 1$.

From the above equations we deduce that $\alpha, \beta \neq 0$ and $\beta = \alpha^{-1}$. Since $\alpha \neq 0$, the equation $\alpha W = 0_{1,n}$ yields $W = 0_{1,n}$, and so

$$TC = I_n$$
, $TV + \beta U = 0_{n,1}$.

It follows that T is invertible and C is its inverse, and since T is upper triangular, by the induction hypothesis, C is also upper triangular.

The above argument can be easily modified to prove that if A is invertible, then its diagonal entries are nonzero.

We are now ready to prove a very crucial result relating the rank and the dimension of the kernel of a linear map.

6.3 The Rank-Nullity Theorem; Grassmann's Relation

We begin with the following fundamental proposition.

Proposition 6.15. Let E, F and G, be three vector spaces, $f: E \to F$ an injective linear map, $g: F \to G$ a surjective linear map, and assume that $\operatorname{Im} f = \operatorname{Ker} g$. Then, the following properties hold. (a) For any section $s: G \to F$ of g, we have $F = \operatorname{Ker} g \oplus \operatorname{Im} s$, and the linear map $f + s: E \oplus G \to F$ is an isomorphism.¹

(b) For any retraction $r: F \to E$ of f, we have $F = \operatorname{Im} f \oplus \operatorname{Ker} r^2$.

$$E \xrightarrow{f} F \xrightarrow{g} G$$

Proof. (a) Since $s: G \to F$ is a section of g, we have $g \circ s = \mathrm{id}_G$, and for every $u \in F$,

$$g(u - s(g(u))) = g(u) - g(s(g(u))) = g(u) - g(u) = 0.$$

Thus, $u - s(g(u)) \in \text{Ker } g$, and we have F = Ker g + Im s. On the other hand, if $u \in \text{Ker } g \cap \text{Im } s$, then u = s(v) for some $v \in G$ because $u \in \text{Im } s$, g(u) = 0 because $u \in \text{Ker } g$, and so,

$$g(u) = g(s(v)) = v = 0,$$

The existence of a section $s: G \to F$ of g follows from Proposition 6.11.

²The existence of a retraction $r: F \to E$ of f follows from Proposition 6.11.