

Universidad Tecnológica de la Mixteca

Clave DGP: 557524

Maestría en Ciencias de Materiales

NOMBRE DE LA ASIGNATURA

Cerámica Electrónica

Optativa	300508	85
		TOTAL DE MOND
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante el conocimiento para fortalecer su preparación en el área de cerámica semiconductora avanzada para aplicaciones en ingeniería.

TEMAS Y SUBTEMAS

1. Semiconductores desordenados

- 1.1. Semiconductores policristalinos, amorfos y vidrios
- 1.2. Estados localizados y expandidos en semiconductores
- 1.3. Semiconductores óxidos con barreras potenciales en los límites de granos

2. Mecanismos de conducción eléctrica en campos eléctricos bajos

- 2.1. Conducción eléctrica en estados expandidos
- 2.2. Conducción eléctrica con participación de los estados localizados
- 2.3. Conducción por saltos
- 2.4. Conducción eléctrica controlada por las barreras potenciales en los límites de granos
- 2.5. Conducción iónica

3. Mecanismos de desviación de la ley de Ohm

- 3.1. Efecto Pool y mecanismo Frenkel
- 3.2. Efecto Schottky
- 3.3. Efecto Fauler-Nordheim
- 3.4. Corriente limitada por carga espacial
- 3.5. Comportamiento sublineal de la corriente contra voltaje
- 3.6. Efecto Zener e ionizacion por impacto

4. Límites de granos eléctricamente activos en óxidos semiconductores cerámicos

- 4.1. Morfología de los límites de grano
- 4.2. Métodos experimentales que comprueban las barreras potenciales en los límites de granos
- 4.3. Estimación de los parámetros de granos y de barreras potenciales en límites de granos
- 4.4. Estructuras con un solo límite de granos

5. Cerámica electrónica y sus aplicaciones

- 5.1. Cerámica a base de óxido de zinc para varistores
- 5.2. Cerámica a base de dióxido de estaño con desviaciones de la ley de Ohm
- 5.3. Comportamiento de varistores bajo de pulsos de alta corriente
- 5.4. Semiconductores óxidos con el coeficiente térmico de resistencia positivo y negativo
- 5.5. Sensores cerámicos de gas y de humedad relativa

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como la computadora y los proyectores. Revisión bibliográfica del tema en libros y artículos científicos por los alumnos. Discusión de los diferentes temas en seminarios. Prácticas de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales que tendrán una equivalencia del 50% y una calificación final que corresponderá al 50% restante. Para cada calificación parcial se deberá considerar un examen escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen escrito y un proyecto final de aplicación o de investigación, con temas estrictamente afines a la materia. Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer días de clases, con la participación de los alumnos.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Electroceramics: Materials, Properties, Applications, A. J. Moulson, J. M. Herbert, Wiley, (2003)
- 2. Principles of Electronic Ceramics, Larry L. Hench and J.K. West, Wiley-Interscience (1990)
- 3. Semiconductor Physics And Devices , Donald Neamen, McGraw Hill, (2011)
- 4. The Materials Science of Semiconductors, A. Rockett, Sprimger (2010)
- 5. Fundamentals of Semiconductors: Physics and Materials Properties, Peter Y. Yu and Manuel Cardona, Sprimger (2010)

Consulta:

- 1. Modern Ceramic Engineering: Properties, Processing, and Use in Design, D. W. Richerson, CRC Press, (2005).
- Dispositivos Semiconductores. Jasprit Singh. Mc Graw Hill. 1997; Semiconductor Devices: Basic Principles, Jasprit Singh, Mc Graw Hill (2000).
- 3. Fenómenos de transporte en semiconductores. Yuri G. Gurevich, Felipe Pérez Rodríguez, FCE, México, (2007).
- 4. Semiconductor Devices: Physics and Technology, Simon M. Sze, Ming-Kwei Lee, Wiley, (2013).

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Física con experiencia en Ciencias de Materiales y Maestría o Doctorado en Ciencia de Materiales.

DIVISION DE ESTUDIOS

DE POSGRADO Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO