Comparing differential abundance (DA) analysis methods for microbiome count data

true

Compiled: 27 July, 2023

Contents

Load libraries and functions
Set working directory
Load libraries
Load simulation functions
Simulations
Simulation parameters
Calculate performance measures of DA methods
Summarize the various measures of performance by averaging over the simulations
Plot FDR and power(sensitivity) across effect and sample sizes
Load libraries and functions
Set working directory

Load libraries

workingDirectory <- getwd()</pre>

```
library(pacman)
library(devtools)
library(SparseDOSSA2)
library(pkgmaker)
library(optparse)
library(parallel)
library(stringi)
library(doParallel)
library(edgeR)
library(zinbwave)
library(SummarizedExperiment)
library(dplyr)
library(readr)
library(tibble)
library(BiocParallel)
library(DESeq2)
library(phyloseq)
library(ROCR)
```

```
library(plyr)
library(applot2)
library(miceadds) #source.all
library(ggpubr)
library(grid)
```

Load simulation functions

```
These .R functions are included in the folders "\simulation_performance" and "\sim_fun".
```

```
Rsfolder pathPerf <- "..\\simulation performance"</pre>
source.all(Rsfolder_pathPerf, grepstring="\\.R", print.source=TRUE )
## *** source run performance simulations.R
## *** source summarizing_performance.R
Rsfolder_pathSim <- ".\\sim_func"</pre>
source.all(Rsfolder_pathSim, grepstring="\\.R", print.source=TRUE )
## *** source clean_data_sim.R
## *** source generateMetadata.R
## *** source newsparseDOSSA_Wrapper.R
## *** source newtrigger_sparseDOSSA_Simulator.R
## *** source run_DESeq2.R
## *** source run_DESeq2Zinbwave.R
## *** source run_edgeR.R
## *** source run_edgeRZinbwave.R
## *** source run limmaVOOM.R
## *** source run_limmaVOOMZinbwave.R
## *** source run MaAsLin2.R
## *** source run_simulator_SparseDOSSA2.R
## *** source utilityFunctions.fa_230322_new.R
```

Simulations

Simulation parameters

Collect the values set for simulation senarios. The number of microbes (nMicrobes) and read deapth are set from the template dataset. A range of total sample sizes from (ns) in the two groups or experimental conditions and effect sizes or log-fold changes.

```
nMicrobes <- 303
readDepth<- 1883

es=c(0.5,1,2) #effect sizes
ns=c(10,20,50,100,200) #total samlple sizes
nIterations = 100 #number of simulations</pre>
```

Calculate performance measures of DA methods

This includes calculating false discovery rates (FDR), power (sensitivity), specificity, AUC, MCC and F1-scores for several differential abundance methods: Deseq2, edgeR and limma-voom, and their ZINBWaVE weighted counterparts Deseq2-ZINBWaVE, edgeR-ZINBWaVE, limma-voom-ZINBWaVE. We also included MaAsLin2. Because many of these techniques treat taxa with group-wise structured zeros differently in differential

abundance testing and to ensure a fair comparison of these techniques, taxa without group-wise structured zeros are considered in our simulation-based comparisons. The following function reads the simulated data from the folder 'Input' and save the resulting simulation performance measures in the folder "Output".

```
output_performance <- run_performance_simulations(es, ns, nIterations, nMicrobes,readDepth)
#simulation results saved in the folder "output"
```

Summarize the various measures of performance by averaging over the simulations

Plot FDR and power(sensitivity) across effect and sample sizes.

```
#FDR
rResults1All2=subset(rResults1All,effectSize==0.5)
e1=ggplot(rResults1All2, aes(methodName, FDR, color=Samples)) +
  geom_point(position = position_jitterdodge()) +
  geom_boxplot(alpha=0.6)+
  theme bw()+
  theme(text = element_text(size = 12), axis.text = element_text(face="bold")) +
  xlab("Methods") + ylab("FDR") +
  ggtitle("Effect size = 0.5")
rResults1All5=subset(rResults1All,effectSize==1)
e2=ggplot(rResults1All5, aes(methodName, FDR, color=Samples)) +
  geom_point(position = position_jitterdodge()) +
  geom_boxplot(alpha=0.6)+
  theme bw()+
  theme(text = element_text(size = 12), axis.text = element_text(face="bold")) +
  xlab("Methods") + ylab("FDR") +
  ggtitle("Effect size = 1")
rResults1All10=subset(rResults1All,effectSize==2)
e5=ggplot(rResults1All10, aes(methodName, FDR, color=Samples)) +
  geom_point(position = position_jitterdodge()) +
```

```
geom_boxplot(alpha=0.6)+
  theme bw()+
  theme(text = element_text(size = 12), axis.text = element_text(face="bold")) +
  xlab("Methods") + ylab("FDR") +
  ggtitle("Effect size = 2")
#Sensitivity
rResults1All2=subset(rResults1All,effectSize==0.5)
s1=ggplot(rResults1All2, aes(methodName, Sensitivity, color=Samples)) +
  geom_point(position = position_jitterdodge()) +
  geom_boxplot(alpha=0.6)+
 theme bw()+
  theme(text = element_text(size = 12), axis.text = element_text(face="bold")) +
  xlab("Methods") + ylab("Sensitivity")+
  ggtitle("Effect size = 0.5")
rResults1All5=subset(rResults1All,effectSize==1)
s2=ggplot(rResults1All5, aes(methodName, Sensitivity, color=Samples)) +
  geom_point(position = position_jitterdodge()) +
  geom_boxplot(alpha=0.6)+
 theme bw()+
  theme(text = element_text(size = 12), axis.text = element_text(face="bold")) +
  xlab("Methods") + ylab("Sensitivity")+
  ggtitle("Effect size = 1")
rResults1All10=subset(rResults1All,effectSize==2)
s5=ggplot(rResults1All10, aes(methodName, Sensitivity, color=Samples)) +
  geom_point(position = position_jitterdodge()) +
  geom_boxplot(alpha=0.6)+
  theme_bw()+
  theme(text = element_text(size = 12), axis.text = element_text(face="bold")) +
  xlab("Methods") + ylab("Sensitivity")+
  ggtitle("Effect size = 2")
performanceSim=ggarrange( e1 + rremove("xlab"), s1 + rremove("xlab"),
                          e2 + rremove("xlab"), s2 + rremove("xlab"),
                          e5 + rremove("xlab"), s5 + rremove("xlab"),
                          common.legend = TRUE,
                          labels = c("A", "D", "B", "E", "C", "F"), #NULL
                          ncol = 2, nrow = 3,
                          align = "hv",
                          font.label = list(size = 10,
                                            color = "black", face = "bold",
                                            family = NULL, position = "top")
#annotate_fiqure(fredSim1, bottom = textGrob("Methods", qp = qpar(cex = 1.3)))
```

performanceSim

Session info

#sessionInfo()