Divide-and-Conquer

Heejin Park

Hanyang University

Asymptotic notation review

$$\Theta(n) = 3n - 1$$

•
$$O(n) = 3n - 1$$

$$O(n^2) = 3n - 1$$

$$o(n^2) = 3n - 1$$

•
$$o(n) \neq 3n - 1$$

$$\Omega(n) = 3n - 1$$

$$\omega$$
 $\omega(n) \neq 3n-1$

•
$$\omega(n) = 3n^2 - 1$$

Recurrences

When an algorithm contains a recursive call to itself, its running time can often be described by a recurrence.

A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.

| Description | Table | A | Contact | Table

inputs. Running time of notine sort
$$(n) = \theta(n \log n)$$
??

of recurrence form

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1, \end{cases}$$

The proof of time of notine sort $(n) = \theta(n \log n)$??

Recurrences

- Solving recurrences
 - Obtaining asymptotic " Θ ", "O" bounds on the solution.

- Three methods for solving recurrences

- Substitution method
 Recursion-tree method
 - Master method

The substitution method consists of two steps

- 1. Guess the solution.
- Use mathematical induction to prove the guess is right.

Determining an upper bound on the recurrence

Guess:
$$T(n) = 2T(\lfloor n/2 \rfloor) + n \qquad \text{ lecumence form the content of the content of$$

(for an appropriate choice of the constant c>0)

- Mathematical induction (prove)
 - Basis or boundary conditions
 - Inductive step

• Assume that this bound holds for $\lfloor n/2 \rfloor$, that is,

$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$$
. \rightarrow \wedge ਪੁਰੰਦਮਣ ਮੈਂਫ

$$T(n) = 2T(\lfloor n/2 \rfloor) + n \le 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$

$$\le cn \lg(n/2) + n$$

$$= cn \lg n - cn \lg 2 + n$$

$$= cn \lg n - cn + n = cn \log_{n-n}(c-1)$$

$$\le cn \lg n$$
(as long as $c \ge 1$)

Boundary conditions

```
• T(n) \le cn \lg n for n = 1 (?)
```

• It is impossible because T(1) = 1 but $c1\lg 1 = 0$.

- Note that we don't have to prove $T(n) = \operatorname{cn} \lg n$ for all n.
 - We only have to prove $T(n) = cn \lg n$ for $n \ge n_0$ for n_0 .
 - Thus, let $n_0 = 2$. has ster
 - T(2) = 2T(1) + 2 = 4
 - $T(2) = 4 \le c2 \lg 2$
 - $c \ge 2$ satisfies the inequality. = 7 $C \ge 2$, $n \ge 2$

- Observe T(3) depends directly on T(1).
- ; + c=2

- T(3) = 2T(1) + 3
- T(3) = 5.
- To show $T(3) = 5 \le c3 \lg 3$.

• Any choice of $c \ge 2$ satisfies the inequality. inductive step is small

- How to guess a good solution?
- We can guess the solution using the recursion-tree method.
 - Later, the solution is proved by the substitution method.

Consider solving the following recurrence.

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2).$$

- Show $T(n) = \Theta(n^2)$.
 - Show $T(n) = \Omega(n^2)$.
 - Obvious by ての)=3T(生)+日(n2) (:Tに記)との)
 - Show $T(n) = O(n^2)$.
 - Guess by the recursion-tree method
 - Prove by the substitution method

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

$$T(n) = 3T(n/4) + Cn^2$$

$$C(\frac{n}{4})^2 + C(\frac{n}{4})^2 + C(\frac{n}{4})$$

- Cost computation
 - Subproblem size for a node at depth i: $n/4^i$
 - The number of nodes at depth $i: 3^i$
 - The number of levels: $\log_4 n + 1$.
 - Because the subproblem size hits n = 1 when $n/4^i = 1$ or, equivalently, when $i = \log_4 n$.

- Cost of each depth
 - The total cost of all nodes at depth i
 - Except the last level: $3^{i} c(n/4^{i})^{2} = (3/16)^{i} cn^{2}$
 - The last level: $\Theta(3^{\log_4 n}) = \Theta(n^{\log_4 3})$

Cost of all depths

- We have derived a guess of $T(n) = O(n^2)$ for the recurrence $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$.
- We prove $T(n) = O(n^2)$ by the substitution method.

$$T(n) \leq Cn^2 \quad C70$$

$$120$$

Bosis her The recursion-tree method

Show that $T(n) \leq dn^2$ (for some d > 0 and for the same c > 0) $T(n) = 3T(\lfloor n/4 \rfloor) + cn^2$ $\leq 3d\lfloor n/4 \rfloor^2 + cn^2$ $\leq 3d(n/4)^2 + cn^2$ $= 3/16 dn^2 + cn^2 \leq dn^2 \Rightarrow 0$ When k < n, $T(n) \leq dn^2$ is qualified? $\leq dn^2$ where the last step holds as long as d > (16/13)c. The integer d > 0 integer d > 0.

where the last step holds as long as $d \ge (16/13)c$.

• Since $T(n) = \Omega(n^2)$ and $T(n) = O(n^2)$, $T(n) = \Theta(n^2)$.

- Merse Sort reanson ナタ(hiogn)

 Another example T(n)= T(言)+T(当)+()(n) ナタ(hiogn)
 - Given T(n) = T(n/3) + T(2n/3) + O(n), to show $T(n) = O(n \lg n)$.

- the cost of each level: cn
- height
 - $n \to (2/3)n \to (2/3)^2n \to \cdots \to 1$ => $(2/3)^k n = 1$ when $k = \log_{3/2} n$, => $\log_{3/2} n$.
- Total: each level cost x height $=> O(cn\log_{3/2}n) = O(n \lg n)$

• Prove the upper bound $O(n \lg n)$

• Show that $T(n) \leq dn \lg n$ for some constant d.

$$T(n) = T(n/3) + T(2n/3) + cn$$

$$\leq d(n/3)\lg(n/3) + d(2n/3)\lg(2n/3) + cn$$

$$= (d(n/3)\lg n - d(n/3)\lg 3) + (d(2n/3)\lg n + d(2n/3)\lg(2/3)) + cn$$

$$= dn\lg n + d(-(n/3)\lg 3 + (2n/3)\lg(2/3)) + cn$$

=
$$dn \lg n + d(-(n/3) \lg 3 + (2n/3) \lg (2/3)) + cn$$

= $dn \lg n + d(-(n/3) \lg 3 + (2n/3) \lg 2 - (2n/3) \lg 3) + cn$
= $dn \lg n + dn(-\lg 3 + 2/3) + cn$
 $\leq dn \lg n$, as $\log as d \geq c/(\lg 3 - (2/3))$

:.
$$dn(-1093+\frac{2}{3}) + Cn \le 0$$

$$d \ge \frac{c}{(093-\frac{2}{3})}$$

Self-study

Use only recursion tree method.

- Exercise 4.4-1 (4.2-1 in the 2nd ed.)
- Exercise 4.4-6 (4.2-2 in the 2nd ed.)