Problem Statement

Linear Regression ¶

Import Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
a=pd.read_csv("iris.csv")
a
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

To display top 10 rows

```
In [3]:
```

```
c=a.head(15)
c
```

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa
10	11	5.4	3.7	1.5	0.2	Iris-setosa
11	12	4.8	3.4	1.6	0.2	Iris-setosa
12	13	4.8	3.0	1.4	0.1	Iris-setosa
13	14	4.3	3.0	1.1	0.1	Iris-setosa
14	15	5.8	4.0	1.2	0.2	Iris-setosa

To find Missing values

<class 'pandas.core.frame.DataFrame'>

In [4]:

```
c.info()
```

object

```
RangeIndex: 15 entries, 0 to 14
Data columns (total 6 columns):
    Column
                   Non-Null Count
 #
                                   Dtype
 0
    Ιd
                    15 non-null
                                    int64
    SepalLengthCm 15 non-null
                                   float64
 1
 2
    SepalWidthCm 15 non-null
                                    float64
    PetalLengthCm 15 non-null
 3
                                    float64
    PetalWidthCm
                   15 non-null
                                   float64
```

dtypes: float64(4), int64(1), object(1)

memory usage: 848.0+ bytes

Species

To display summary of statistics

15 non-null

```
In [5]:
```

a.describe()

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

To display column heading

```
In [6]:
```

```
a.columns
```

Out[6]:

Pairplot

In [7]:

```
s=a.dropna(axis=1)
s
```

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [8]:

s.columns

Out[8]:

In [9]:

sns.pairplot(a)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x2a3c35118e0>

Distribution Plot

In [10]:

sns.displot(c['SepalLengthCm'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x2a3c5f2e490>

Correlation

In [11]:

Out[11]:

<AxesSubplot:>

Train the model - Model Building

In [12]:

```
g=c[['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm']]
h=c['PetalWidthCm']
```

To split dataset into training end test

In [13]:

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

In [14]:

```
from sklearn.linear_model import LinearRegression
```

```
In [15]:
```

```
lr=LinearRegression()
lr.fit(g_train,h_train)
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

0.1833778219508733

Coeffecient

In [17]:

```
coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

Out[17]:

	Co-effecient
ld	-0.000711
SepalLengthCm	-0.253628
SepalWidthCm	0.362232
PetalLengthCm	0.040537

Best Fit line

In [18]:

```
prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[18]:

<matplotlib.collections.PathCollection at 0x2a3c6525bb0>

To find score

In [19]:

```
print(lr.score(g_test,h_test))
```

0.19424709760593906

Import Lasso and ridge

In [20]:

```
from sklearn.linear_model import Ridge,Lasso
```

Ridge

```
In [21]:
```

```
ri=Ridge(alpha=5)
ri.fit(g_train,h_train)
```

Out[21]:

Ridge(alpha=5)

```
In [22]:
ri.score(g_test,h_test)
Out[22]:
0.20250017655628405
In [23]:
ri.score(g_train,h_train)
Out[23]:
0.22971353364589864
Lasso
In [24]:
l=Lasso(alpha=6)
1.fit(g_train,h_train)
Out[24]:
Lasso(alpha=6)
In [25]:
1.score(g_test,h_test)
Out[25]:
1.1102230246251565e-16
In [26]:
ri.score(g_train,h_train)
Out[26]:
0.22971353364589864
```

ElasticNet

ElasticNet()

```
In [27]:

from sklearn.linear_model import ElasticNet
e=ElasticNet()
e.fit(g_train,h_train)

Out[27]:
```

Coeffecient, intercept

```
In [28]:
print(e.coef_)

[-0. -0. 0. -0.]

In [29]:
print(e.intercept_)
0.199999999999999
```

Prediction

```
In [30]:

d=e.predict(g_test)
d

Out[30]:
array([0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2])

In [32]:
print(e.score(g_test,h_test))
1.1102230246251565e-16
```

Evaluation