Arbeitsblatt : Das Pascalsche Dreieck

Ziel: Sie sollen nach Bearbeitung dieses Blattes Terme (Binome) der Form $(a+b)^n$ (n=2;3;4;...)zügig als Summe schreiben können und wissen, wie diese Summe aufgebaut ist.

Aufgabe 1 Die Potenz $(a+b)^2$ ergibt als Summe geschrieben: $(a+b)^2 = (a+b) \cdot (a+b) = a^2 + 2ab + b^2$

Die Potenz
$$(a + b)^3$$
 kann man so als Summe schreiben: $(a + b)^3 + (a + b)^3 = (a + b)^2 \cdot (a + b) = (a^2 + 2ab + b^2) \cdot (a$

Schreiben Sie die Summanden geordnet, beginnend mit der höchsten Potenz von a, nach absteigenden Potenzen von a; also: $a^3 + 3a^2 + b + 3a + b^2 + a^2 + b^3$

 $(\mathbf{a}+\mathbf{b})^3 = \mathbf{a}^3 + \frac{3}{2} \mathbf{a}^2 \mathbf{b}^1 + \frac{3}{2} \mathbf{a}^1 \mathbf{b}^2 + \mathbf{b}^3$ (Ergänzen Sie die Zahlen an den Stellen).

Aufgabe 2a) Wie könnte das unten stehende Pascalsche Dreieck aufgebaut sein? Füllen Sie die Kästchen im Dreieck bis zur 10-ten Zeile aus.

											1										
0																					
1										1		1									
2									1		2		1								
3								1		3		3		1							
4							1		4		6		4		1						
5						1		5		10		10		5		1					
6					1		6		15		20		15		6		1				
7				1		7		21		35		35		21		ア		1			
8			1		8		28		56		70		56		28		8		1		
9		1		9		36		84		116		126		84		36		3		1	
10	1		10		45		120		210		252		210		120		45		10		1

b) Wie hätten Sie die Terme (a+b)² und (a+b)³ aus Aufgabe 1 mit Hilfe dieser Tabelle schnell als

Summe hinschreiben können? Bei den Zeile (Pokenz ; 20 der 3) und die Jewiligen Fahlen alls beneutschen Sie die folgenden Terme mithilfe des Pascal'schen Dreiecks direkt als Summe, das heißt addiesen. ohne Schritt für Schritt auszumultiplizieren.

$$(a+b)^4 = a^4 + 4a^3b^1 + 6a^2b^2 + 4a^1b^3 + b^4$$

$$(a+b)^{5} = 6^{5} + 56^{4}b + 106^{2}b^{2} + 106^{2}b^{3} + 56b^{4} + 6^{5}$$

$$(a+b)^{5} = 6^{5} + 56^{4}b + 106^{2}b^{2} + 106^{2}b^{3} + 56b^{4} + 6^{5}$$

$$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$

$$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$

$$(x+h)^7 = x^7 + 7x^6h + 21x^5h^2 + 35x^4h^3 + 35x^3h^4 + 21x^5h^5 + 7xh^6 + h^7$$

Aufgabe 3 Beantworten Sie diese Fragen ohne Rechnung, nur durch Nachdenken.

Der Term $(x + h)^{100}$ soll als Summe geschrieben werden.

- a) Wie viele Summanden enthalten keinen Faktor h? Wie lauten diese Summanden?
- b) Wie viele Summanden enthalten genau den Faktor h¹? Wie lauten diese Summanden? 1: 100 x 35 h

Aufgabe 4 Dieses Rechenschema funktioniert noch bei weiteren Termen. Schreiben Sie als Summe: