PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/54, 9/10, 15/81, 15/82, 1/16, 5/10, A01N 27/067, C12P 7/64

(11) International Publication Number:

WO 00/60095

(43) International Publication Date:

12 October 2000 (12.10.00)

(21) International Application Number:

PCT/EP00/02701

A₂

(22) International Filing Date:

28 March 2000 (28.03.00)

(30) Priority Data:

99 106656.4 1 April 1999 (01.04.99) EP 99111321.8 10 June 1999 (10.06.99) EP 60/180,687 7 February 2000 (07.02.00) US

(71) Applicant (for all designated States except US): BASF PLANT SCIENCE GMBH [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DAHLQVIST, Anders [SE/SE]; Hemmansvägen 2, S-244 66 Furulund (SE). STAHL, Ulf [SE/SE]; Liljegatan 7b, S-753 24 Uppsala (SE). LENMAN, Marit [SE/SE]; Revingegatan 13a, S-223 59 Lund (SE). BANAS, Antoni [SE/PL]; Wiolinowa 14, PL-08110 Siedlce (PL). RONNE, Hans [SE/SE]; Dirigentvägen 169, S-756 54 Uppsala (SE). STYMNE, Sten [SE/SE]; Torriösa 1380, S-269 90 Svalöv (SE).
- (74) Agent: FITZNER, Uwe; Lintorfer Str. 10, D-40878 Ratingen (DE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CP, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

(57) Abstract

The present invention relates to the isolation, identification and characterization of nucleotide sequences encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, to the said enzymes and a process for the production of triacylglycerols.

20

25

 \cdot)

A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

- The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding enzymes catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.
 - Triacylglycerol (TAG) is the most common lipid-based energy reserve in nature. The main pathway for synthesis of TAG is believed to involve three sequential acyl-transfers from acyl-CoA to a glycerol backbone (1, 2). For many years, acyl-CoA: diacylglycerol acyltransferase (DAGAT), which catalyzes the third acyl transfer reaction, was thought to be the only unique enzyme involved in TAG synthesis. It acts by diverting diacylglycerol (DAG) from membrane lipid synthesis into TAG (2). Genes encoding this enzyme were recently identified both in the mouse (3) and in plants (4, 5), and the encoded proteins were shown to be homologous to acyl-CoA: cholesterol acyltransferase (ACAT). It was also recently reported that another DAGAT exists in the oleaginous fungus Mortierella ramanniana, which is unrelated to the mouse DAGAT, the ACAT gene family or to any other known gene (6).

The instant invention relates to novel type of enzymes and their encoding genes for transformation. More specifically, the invention relates to use of a type of genes encoding a not previously described type of enzymes hereinafter designated phospholipid:diacylglycerol acyltransferases (PDAT), whereby this enzyme catalyses an acyl-CoA-independent reaction. The said type of genes expressed alone in transgenic organisms will enhance the total amount of oil (triacylglycerols) produced in the cells. The PDAT genes, in combination with a gene for the synthesis of an uncommon fatty acid will, when expressed in transgenic organisms, enhance the levels of the uncommon fatty acids in the triacylglycerols.

There is considerable interest world-wide in producing chemical feedstock, such as fatty acids, for industrial use from renewable plant resources rather than non-renewable petrochemicals. This concept has broad appeal to manufacturers and consumers on the basis of resource conservation and provides significant opportunity to develop new industrial crops for agriculture.

There is a diverse array of unusual fatty acids in oils from wild plant species and these have been well characterised. Many of these acids have industrial potential and this has led to interest in domesticating relevant plant species to enable agricultural production of particular fatty acids.

Development in genetic engineering technologies combined with greater understanding of the biosynthesis of unusual fatty acids now makes it possible to transfer genes coding for key enzymes involved in the synthesis of a particular fatty acid from a wild species into domesticated oilseed crops. In this way individual fatty acids can be produced in high purity and quantities at moderate costs.

In all crops like rape, sunflower, oilpalm etc., the oil (i.e. triacylglycerols) is the most valuable product of the seeds or fruits and other compounds like starch, protein, and fibre is regarded as by-products with less value. Enhancing the quantity of oil per weight basis at the expense of other compounds in oil crops would therefore increase the value of crop. If genes, regulating the allocation of reduced carbon into the production of oil can be up-regulated, the cells will accumulate more oil on the expense of other products. Such genes might not only be used in already high oil producing cells, such as oil crops, but could also induce significant oil production in moderate or low oil containing crops such as e.g. soy, oat, maize, potato, sugarbeats, and turnips as well as in micro-organisms.

10

15

Summary of the invention

Many of the unusual fatty acids of interest, e.g. medium chain fatty acids, hydroxy fatty acids, epoxy fatty acids and acetylenic fatty acids, have physical properties that are distinctly different from the common plant fatty acids. The present inventors have found that, in plant species naturally accumulating these uncommon fatty acids in their seed oil (i.e. triacylglycerol), these acids are absent, or present in very low amounts in the membrane (phospho)lipids of the seed. The low concentration of these acids in the membrane lipids is most likely a prerequisite for proper membrane function and thereby for proper cell functions. One aspect of the invention is that seeds of transgenic crops can be made to accumulate high amounts of uncommon fatty acids if these fatty acids are efficiently removed from the membrane lipids and channelled into seed triacylglycerols.

15

25

30

10

The inventors have identified a novel class of enzymes in plants catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the production of triacylglycerol through an acyl-CoA-independent reaction and that these enzymes (phospholipid:diacylglycerol acyltransferases, abbreviated as PDAT) are involved in the removal of hydroxylated, epoxygenated fatty acids, and probably also other uncommon fatty acids such as medium chain fatty acids, from phospholipids in plants.

This enzyme reaction was shown to be present in microsomal preparations from baker's yeast (*Saccharomyces cerevisiae*). The instant invention further pertains to an enzyme comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof. A so called ,knock out' yeast mutant, disrupted in the respective gene was obtained and microsomal membranes from the mutant was shown to totally lack PDAT activity. Thus, it was proved that the disrupted gene encodes a PDAT enzyme (SEQ ID NO. 1 and 2). Furtherm, this PDAT enzyme is

10.

15

20

25

30

characterized through the amino acid sequence as set forth in SEQ ID NO 2 containing a lipase motif of the conserved sequence string FXKWVEA.

The instant invention pertains further to an enzyme comprising an amino acid sequence as set forth in SEQ ID NO. 1a, 2b or 5a or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

Further genes and/or proteins of so far unknown function were identified and are contemplated within the scope of the instant invention. A gene from Schizosaccharomyces pombe, SPBC776.14 (SEQ ID. NO. 3), a putative open reading frame CAA22887 of the SPBC776.14 (SEQ ID NO. 13) were identified.

Further Arabidopsis thaliana genomic sequences (SEQ ID NO. 4, 10 and 11) coding for putative proteins were identified, as well as a putative open reading frame AAC80628 from the A. thaliana locus AC 004557 (SEQ ID NO. 14) and a putative open reading frame AAD10668 from the A. thaliana locus AC 003027 (SEQ ID NO. 15) were identified.

Also, a partially sequenced cDNA clone from Neurospora crassa (SEQ ID NO. 9) and a Zea mays EST (Extended Sequence Tac) clone (SEQ ID NO. 7) and corresponding putative amino acid sequence (SEQ ID NO. 8) were identified. Finally, two cDNA clones were identified, one Arabidopsis thaliana EST (SEQ ID NO. 5 and corresponding predicted amino acid sequence SEQ ID NO. 6) and a Lycopersicon esculentum EST clone (SEQ ID NO. 12) were identified. Further, enzymes designated as PDAT comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO 2a, 3a, 5b, 6 or 7b containing a lipase motif FXKWVEA are contemplated within the scope of the invention. Moreover, an enzyme comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence are included within the scope of the invention.

WO 00/60095 5 PCT/EP00/02701

A functional fragment of the instant enzyme is understood to be any polypeptide sequence which shows specific enzyme activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the functional fragment can for example vary in a range from about 660 ± 10 amino acids to 660 ± 250 amino acids, preferably from about 660 ± 50 to 660 ± 100 amino acids, whereby the "basic number" of 660 amino acids corresponds in this case to the polypeptide chain of the PDAT enzyme of SEQ ID NO. 2 encoded by a nucleotide sequence according to SEQ ID NO. 1. Consequently, the "basic number" of functional fullength enzyme can vary in correspondance to the encoding nucleotide sequence.

A portion of the instant nucleotide sequence is meant to be any nucleotide sequence encoding a polypeptid which shows specific activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the nucleotide portion can vary in a wide range of about several hundreds of nucleotides based upon the coding region of the gene or a highly conserved sequence. For example the length varies in a range form about 1900 \pm 10 to 1900 \pm 1000 nucleotides, preferably form about 1900 \pm 50 to 1900 \pm 700 and more preferably form about 1900 \pm 100 to 1900 \pm 500 nucleotides, whereby the "basic number" of 1900 nucleotides corresponds in this case to the encoding nucleotide sequence of the PDAT enzyme of SEQ ID NO. 1. Consequently, the "basic number" of functional fullength gene can vary.

An allelic variant of the instant nucleotide sequence is understood to be any different nucleotide sequence which encodes a polypeptide with a functionally equivalent function. The alleles pertain naturally occuring variants of the instant nucleotide sequences as well as synthetic nucleotide sequences produced by methods known in the art. Contemplated are even altered nucleotide sequences which result in an enzyme with altered activity and/or regulation or which is resistant against specific inhibitors. The instant invention further includes natural or synthetic mutations of the originally isolated nucleotide

10

15

20

sequences. These mutations can be substitution, addition, deletion, inversion or insertion of one or more nucleotides.

A homologous nucleotide sequence is understood to be a complementary sequence and/or a sequence which specifically hybridizes with the instant nucleotide sequence. Hybridizing sequences include similar sequences selected from the group of DNA or RNA which specifically interact to the instant nucleotide sequences under at least moderate stringency conditions which are known in the art. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. This further includes short nucleotide sequences of e.g. 10 to 30 nucleotides, preferably 12 to 15 nucleotides. Included are also primer or hybridization probes.

15

25

10

A homologous nucleotide sequence included within the scope of the instant invention is a sequence which is at least about 40%, preferably at least about 50 % or 60%, and more preferably at least about 70%, 80% or 90% and most preferably at least about 95%, 96%, 97%, 98% or 99% or more homologous to a nucleotide sequence of SEQ ID NO. 1.

All of the aforementioned definitions are true for amino acid sequences and functional enzymes and can easily transferred by a person skilled in the art.

Isoenzymes are understood to be enzymes which have the same or a similar substrate specifity and/or catalytic activity but a different primary structure.

In a first embodiment, this invention is directed to nucleic acid sequences that encode a PDAT. This includes sequences that encode biologically active PDATs as well as sequences that are to be used as probes, vectors for transformation or cloning intermediates. The PDAT encoding sequence may

encode a complete or partial sequence depending upon the intended use. All or a portion of the genomic sequence, cDNA sequence, precursor PDAT or mature PDAT is intended.

Further included is a nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 9b, 10, 10b or 11 or a portion, derivate, allele or homolog thereof. The invention pertains a partial nucleotide sequence corresponding to a fullength nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 5, 5b, 6b, 7, 8b, 9, 11b or 12 or a portion, derivate, allele or homolog thereof. Moreover, a nucleotide sequence comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 is contemplated within the scope of the invention.

15

20

25

10

The instant invention pertains to a gene construct comprising a said nucleotide sequences of the instant invention which is operably linked to a heterologous nucleic acid.

The term operably linked means a serial organisation e.g. of a promotor, coding sequence, terminator and/or further regulatory elements whereby each element can fulfill its original function during expression of the nucleotide sequence.

Further, a vector comprising of a said nucleotide sequence of the instant invention is contemplated in the instant invention. This includes also an expression vector as well as a vector further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell and/or the integration into the genome of the host cell.

In a different aspect, this invention relates to a method for producing a PDAT in a host cell or progeny thereof, including genetically engineered oil seeds, yeast and moulds or any other oil accumulating organism, via the expression of a

construct in the cell. Cells containing a PDAT as a result of the production of the PDAT encoding sequence are also contemplated within the scope of the invention.

Further, the invention pertains a transgenic cell or organism containing a said nucleotide sequence and/or a said gene construct and/or a said vector. The object of the instant invention is further a transgenic cell or organism which is an eucaryotic cell or organism. Preferably, the transgenic cell or organism is a yeast cell or a plant cell or a plant. The instant invention further pertains said transgenic cell or organism having an altered biosynthetic pathway for the production of triacylglycerol. A transgenic cell or organism having an altered oil content is also contemplated within the scope of this invention.

Further, the invention pertains a transgenic cell or organism wherein the activity of PDAT is altered in said cell or organism. This altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme. Moreover, a transgenic cell or organism is included in the instant invention, wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.

In a different embodiment, this invention also relates to methods of using a DNA sequence encoding a PDAT for increasing the oil-content within a cell.

Another aspect of the invention relates to the accommodation of high amounts of uncomman fatty acids in the triacylglycerol produced within a cell, by introducing a DNA sequence producing a PDAT that specifically removes these fatty acids from the membrane lipids of the cell and channel them into triacylglycerol. Plant cells having such a modification are also contemplated herein.

Further, the invention pertains a process for the production of triacylglycerol, comprising growing a said transgenic cell or organism under conditions whereby the said nucleotide sequence is expressed and whereby the said transgenic cells comprising a said enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol forming triacylglycerol.

Moreover, triacylglycerols produced by the aforementioned process are included in scope of the instant invention.

Object of the instant invention is further the use of an instant nucleotide sequence and/or a said enzyme for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids. The use of a said instant nucleotide sequence and/or a said enzyme of the instant invention for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism is also contemplated within the scope of the instant invention.

A PDAT of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide fragment obtainable from a microorganism, animal or plant source that demonstrates the ability to catalyse the production of triacylglycerol from a phospholipid and diacylglycerol under enzyme reactive conditions. By "enzyme reactive conditions" is meant that any necessary conditions are available in an environment (e.g., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

25

30

10

15

20

Other PDATs are obtainable from the specific sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic PDATs, including modified amino acid sequences and starting materials for synthetic-protein modelling from the examplified PDATs and from PDATs which are obtained through the use of such examplified sequences. Modified amino acid sequences include sequences that have been mutated, truncated,

increased and the like, whether such sequences were partially or wholly synthesised. Sequences that are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

Further, the nucleic acid probes (DNA and RNA) of the present invention can be used to screen and recover "homologous" or "related" PDATs from a variety of plant and microbial sources.

10

Further, it is also apparent that a person skilled in the art can, with the information provided in this application, in any organism identify a PDAT activity, purify an enzyme with this activity and thereby identify a "non-homologous" nucleic acid sequence encoding such an enzyme.

15

The present invention can be essentially characterized by the following aspects:

- 1. Use of a PDAT gene (genomic clone or cDNA) for transformation.
- 2. Use of a DNA molecule according to item 1 wherein said DNA is used for transformation of any organism in order to be expressed in this organism and result in an active recombinant PDAT enzyme in order to increase oil content of the organism.
- 3. Use of a DNA molecule of item 1 wherein said DNA is used for transformation of any organism in order to prevent the accumulation of undesirable fatty acids in the membrane lipids.
 - 4. Use according to item 1, wherein said PDAT gene is used for transforming transgenic oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, such as medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.

- 5. Use according to item 1, wherein said PDAT gene is used for transforming organisms, and wherein said organisms are crossed with other oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
- 6. Use according to item 1, wherein the enzyme encoded by said PDAT gene or cDNA is coding for a PDAT with distinct acyl specificity.
- Use according to item 1 wherein said PDAT encoding gene or cDNA, is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 30% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 8. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 40% or more *Identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 60% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 10. Use according to item 1 wherein sald PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 80% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 25 11. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from plants or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence of PDAT from *Arabidopsis thaliana* or to the protein encoded by the fullength counterpart of the partial Zea mays, Lycopericon esculentum, or Neurospora crassa cDNA clones.

10

15

- 12. Transgenic oil accumulating organisms comprising, in their genome, a PDAT gene transferred by recombinant DNA technology or somatic hybridization.
- 13. Transgenic oil accumulating organisms according to item 12 comprising, in their genome, a PDAT gene having specificity for substrates with a particular uncommon fatty acid and the gene for said uncommon fatty acid.
- 14. Transgenic organisms according to item 12 or 13 which are selected from the group consisting of fungi, plants and animals.
- 15. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants.
- 16. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a storage organ specific promotor.
- 17. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a seed promotor.
 - 18. Oils from organisms according to item 12 17.
 - 19. A method for altering acyl specificity of a PDAT by alteration of the nucleotide sequence of a naturally occurring encoding gene and as a consequence of this alternation creating a gene encoding for an enzyme with novel acyl specifity.
 - 20. A protein encoded by a DNA molecule according to item 1 or a functional fragment thereof.
 - 21. A protein of item 20 designated phospholipid:diacylglycerol acyltransferase.
- 22. A protein of item 21 which has a distinct acyl specificity.
 - 23. A protein of item 13 having the amino acid sequence as set forth in SEQ, ID NO. 2, 13, 14 or 15 (and the proteins encoded by the fullength or partial genes set forth in SEQ. ID. NO. 1, 3, 4, 5, 7, 9, 10, 11 or 12) or an amino acid sequence with at least 30 % homology to said amino acid sequence.
- 24. A protein of item 23 isolated from Saccharomyces cereviseae.

WO 00/60095 13 PCT/EP00/02701

General methods:

5

10

15

20

25

Yeast strains and plasmids. The wild type yeast strains used were either FY1679 (MATα his3-Δ200 leu2-Δ1 trp1-Δ6 ura3-52) or W303-1A (MATa ADE2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1) (7). The YNR008w::KanMX2 disruption strain FVKT004-04C(AL), which is congenic to FY1679, was obtained from the Euroscarf collection (8). A 2751 bp fragment containing the YNR008w gene with 583 bp of 5' and 183 bp of 3' flanking DNA was amplified genomic DNA using Tag polymerase from TCTCCATCTTCTGCAAAACCT-3' and 5'-CCTGTCAAAAACCTTCTCCTC-3' as primers. The resulting PCR product was purified by agarose gel electrophoresis and cloned into the EcoRV site of pBluescript (pbluescript-pdat). For complementation experiments, the cloned fragment was released from pBluescript by HindIII-SacI digestion and then cloned between the HindIII and SacI sites of pFL39 (9), thus generating pUS1. For overexpression of the PDAT gene, a 2202 bp EcoRI fragment from the pBluscript plasmid which contains only 24 bp of 5' flanking DNA was cloned into the BamHI site of the GAL1-TPK2 expression vector pJN92 (12), thus generating pUS4.

Microsomal preparations. Microsomes from developing seeds of sunflower (Helianthus annuus), Ricinus communis and Crepis palaestina were prepared using the procedure of Stobart and Stymne (11). To obtain yeast microsomes, 1g of yeast cells (fresh weight) was re-suspended in 8 ml of ice-cold buffer (20 mM Tris-Cl, pH 7.9, 10 mM MgCl₂, 1 mM EDTA, 5 % (v/v) glycerol, 1 mM DTT, 0.3 M ammonium sulfate) in a 12 ml glass tube. To this tube, 4 ml of glass beads (diameter 0.45-0.5 mm) were added, and the tube was then heavily shaken (3 x 60 s) in an MSK cell homogenizer (B. Braun Melsungen AG, Germany). The homogenized suspension was centrifuged at 20,000 x g for 15 min at 6°C and the resulting supernatant was again centrifuged at 100,000 x g for 2 h at 6°C. The 100,000 x g pellet was resuspended in 0.1 M potassium

phosphate (pH 7.2), and stored at -80°C. It is subsequently referred to as the crude yeast microsomal fraction.

14

Lipid substrates. Radio-labeled ricinoleic (12-hydroxy-9-octadecenoic) and vernolic (12,13-epoxy-9-octadecenoic) acids were synthesized enzymatically from [1-14Cloleic acid and [1-14C]linoleic acid, respectively, by incubation with microsomal preparations from seeds of Ricinus communis and Crepis palaestina, respectively (12). The synthesis of phosphatidylcholines (PC) or phosphatidylethanolamines (PE) with ¹⁴C-labeled acyl groups in the sn-2 position was performed using either enzymatic (13), or synthetic (14) acylation of [14Cloleic, [14Clricinoleic, or [14C]vernolle acid. Dioleoyl-PC that was labeled in the sn-1 position was synthesized from sn-1-[14C]oleoyl-lyso-PC and unlabeled oleic acid as described in (14). Sn-1-oleoyl-sn-2-[14C]ricinoleoyl-DAG was synthesized from PC by the action of phospholipase C type XI from B. Cereus (Sigma Chemical Co.) as described in (15). Monovernoloyl- and divernoleoyl-DAG were synthesized from TAG extracted from seeds of Euphorbia lagascae, using the TAG-lipase (Rizhopus arrhizus, Sigma Chemical Co.) as previously described (16). Monoricinoleoyl-TAG was synthesized according to the same method using TAG extracted from Castor bean.

20

25

15

10

Lipid analysis. Total lipid composition of yeast were determined from cells harvested from a 40 ml liquid culture, broken in a glass-bead shaker and extracted into chloroform as described by Bligh and Dyer (17), and then separated by thin layer chromatography in hexane/diethylether/acetic acid (80:20:1) using pre-coated silica gel 60 plates (Merck). The lipid areas were located by brief exposure to I₂ vapors and identified by means of appropriate standards. Polar lipids, sterol-esters and triacylglycerols, as well as the remaining minor lipid classes, referred to as other lipids, were excised from the plates. Fatty acid methylesters were prepared by heating the dry excised material at 85 °C for 60 min in 2% (v/v) sulfuric acid in dry methanol. The methyl esters were extracted with hexane and analyzed by GLC through a 50 m

x 0.32 mm CP-Wax58-CB fused-silica column (Chrompack), with methylheptadecanoic acid as an internal standard. The fatty acid content of each fraction was quantified and used to calculate the relative amount of each lipid class. In order to determine the total lipid content, 3 ml aliquots from yeast cultures were harvested by centrifugation and the resulting pellets were washed with distilled water and lyophilized. The weight of the dried cells was determined and the fatty acid content was quantified by GLC-analyses after conversion to methylesters as described above. The lipid content was then calculated as nmol fatty acid (FA) per mg dry weight yeast.

10

15

20

25

30

Enzyme assays. Aliquots of crude microsomal fractions (corresponding to 10 nmol of microsomal PC) from developing plant seeds or yeast cells were lyophilized over night. ¹⁴C-Labeled substrate lipids dissolved in benzene were then added to the dried microsomes. The benzene was evaporated under a stream of N₂, leaving the lipids in direct contact with the membranes, and 0.1 ml of 50 mM potassium phosphate (pH 7.2) was added. The suspension was thoroughly mixed and incubated at 30°C for the time period indicated, up to 90 min. Lipids were extracted from the reaction mixture using chloroform and separated by thin layer chromatography in hexane/diethylether/acetic acid (35:70:1.5) using silica gel 60 plates (Merck). The radioactive lipids were visualized and quantified on the plates by electronic autoradiography (Instant Imager, Packard, US).

<u>Yeast cultivation.</u> Yeast cells were grown at 28°C on a rotatory shaker in liquid YPD medium (1% yeast extract, 2% peptone, 2% glucose), synthetic medium (18) containing 2% (v/v) glycerol and 2% (v/v) ethanol, or minimal medium (19) containing 16 g/l of glycerol.

The instant invention is further characterized by the following examples which are not limiting:

15

.20

25

30

Acyl-CoA-independent synthesis of TAG by oil seed microsomes. A large number of unusual fatty acids can be found in oil seeds (20). Many of these fatty acids, such as ricinoleic (21) and vernolic acids (22), are synthesized using phosphatidylcholin (PC) with oleoyl or linoleoyl groups esterified to the sn-2 position, respectively, as the immediate precursor. However, even though PC can be a substrate for unusual fatty acid synthesis and is the major membrane lipids in seeds, unusual fatty acids are rarely found in the membranes. Instead, they are mainly incorporated into the TAG. A mechanism for efficient and selective transfer of these unusual acyl groups from PC into TAG must therefore exist in oil seeds that accumulate such unusual fatty acids. This transfer reaction was biochemically characterized in seeds from castor bean (Ricinus communis) and Crepis palaestina, plants which accumulate high levels of ricinoleic and vernolic acid, respectively, and sunflower (Helianthus annuus), a plant which has only common fatty acids in its seed oil. Crude microsomal fractions from developing seeds were incubated with PC having ¹⁴C-labeled oleoyl, ricinoleoyl or vernoloyl groups at the *sn*-2 position. After the incubation, lipids were extracted and analyzed by thin layer chromatography. We found that the amount of radioactivity that was incorporated into the neutral lipid fraction increased linearly over a period of 4 hours (data not shown). The distribution of [14C]acyl groups within the neutral lipid fraction was analyzed after 80 min (Fig. 1). Interestingly the amount and distribution of radioactivity between diffferent neutral lipids were strongly dependent both on the plant species and on the type of [14C]acyl chain. Thus, sunflower microsomes incorporated most of the label into DAG, regardless of the type of [14Clacvl group. In contrast, R. communis microsomes preferentially incorporated [14C]ricinoleoyl and [14C]vernoloyl groups into TAG, while [14C]oleyl groups mostly were found in DAG. C. palaestina microsomes, finally, incorporated only [14C]vernolyol groups into TAG, with [14C]ricinoleyl groups being found mostly as free fatty acids, and [14C]oleyl groups in DAG. This shows that the high in vivo levels of ricinoleic acid and vernolic acid in the TAG pool of R. communis

and *C. palaestina*, respectively, can be explained by an efficient and selective transfer of the corresponding acyl groups from PC to TAG in these organisms.

The in-vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean is summarized in table 1.

PDAT: a novel enzyme that catalyzes acyl-CoA independent synthesis of TAG. It was investigated if DAG could serve both as an acyl donor as well as an acyl acceptor in the reactions catalyzed by the oil seed microsomes. Thererfore, unlabeled divernoloyl-DAG was incubated with either sn-1-oleoyl-sn-2-[14C]ricinoleoyl-DAG or sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC in the presence of R. communis microsomes. The synthesis of TAG molecules containing both [14C]ricinoleoyl and vernoloyl groups was 5 fold higher when [14C]ricinoleoyl-PC served as acyl donor as compared to [14C]ricinoleoyl-DAG (fig.1B). These data strongly suggests that PC is the immediate acyl donor and DAG the acyl acceptor in the acyl-CoA-independent formation of TAG by oil seed microsomes. Therefore, this reaction is catalyzed by a new enzyme which we call phospholipid: diacylglycerol acyltransferase (PDAT).

<u>PDAT activity in yeast microsomes.</u> Wild type yeast cells were cultivated under conditions where TAG synthesis is induced. Microsomal membranes were prepared from these cells and incubated with *sn*-2-[¹⁴C]-ricinoleoyl-PC and DAG and the ¹⁴C-labeled products formed were analyzed. The PC-derived [¹⁴C]ricinoleoyl groups within the neutral lipid fraction mainly were found in free fatty acids or TAG, and also that the amount of TAG synthesized was dependent on the amount of DAG that was added to the reaction (Fig.2). The *in vitro* synthesis of TAG containing both ricinoleoyl and vernoloyl groups, a TAG species not present *in vivo*, from exogenous added *sn*-2-[¹⁴C]ricinoleoyl-PC and unlabelled vernoloyl-DAG (Fig. 2, lane 3) clearly demonstrates the existence of an acyl-CoA-independent synthesis of TAG involving PC and DAG as

10

15

20

substrates in yeast microsomal membranes. Consequently, TAG synthesis in yeast can be catalyzed by an enzyme similar to the PDAT found in plants.

The PDAT encoding gene in yeast.

5

10

15

25

A gene in the yeast genome (YNR008w) is known, but nothing is known about the function of YNR008w, except that the gene is not essential for growth under normal circumstances. Microsomal membranes were prepared from the yeast strain FVKT004-04C(AL) (8) in which this gene with unknown function had been disrupted. PDAT activity in the microsomes were assayed using PC with radiolabelled fatty acids at the sn-2 position. The activity was found to be completely absent in the disruption strain (Fig. 2 lane 4). Significantly, the activity could be partially restored by the presence of YNR008w on the single Moreover, acyl groups of 2 lane 5). (Fig. plasmid pUS1 phosphatidylethanolamine (PE) were efficiently incorporated into TAG by microsomes from the wild type strain whereas no incorporation occured from this substrate in the mutant strain (data not shown). This shows that YNR008w encodes a yeast PDAT which catalyzes the transfer of an acyl group from the sn-2 position of phospholipids to DAG, thus forming TAG. It should be noted that no cholesterol esters were formed from radioactive PC even in incubations with added ergosterols, nor were the amount of radioactive free fatty acids formed from PC affected by disruption of the YNR008w gene (data not shown). This demonstrates that yeast PDAT do not have cholesterol ester synthesising or phospholipase activities.

Increased TAG content in yeast cells that overexpress PDAT. The effect of overexpressing the PDAT-encoding gene was studied by transforming a wild type yeast strain with the pUS4 plasmid in which the gene is expressed from the galactose-induced GAL1:TPK2 promoter. Cells containing the empty expression vector were used as a control. The cells were grown in synthetic glycerol-ethanol medium, and expression of the gene was induced after either 2 hours (early log phase) or 25 hours (stationary phase) by the addition of

15

20

25

30

galactose. The cells were then incubated for another 21 hours, after which they were harvested and assays were performed. We found that overexpression of PDAT had no significant effect on the growth rate as determined by the optical density. However, the total lipid content, measured as µmol fatty acids per ma yeast dry weight, was 47% (log phase) or 29% (stationary phase) higher in the PDAT overexpressing strain than in the control. Furthermore, the polar lipid and sterolester content was unaffected by overexpression of PDAT. Instead, the elevated lipid content in these cells is entirely due to an increased TAG content (Fig. 3A,B). Thus, the amount of TAG was increased by 2-fold in PDAT overexpressing early log phase cells and by 40% in stationary phase cells. It is interesting to note that a significant increase in the TAG content was achieved by overexpressing PDAT even under conditions (i.e. in stationary phase) where DAGAT is induced and thus contributes significantly to TAG synthesis. In vitro PDAT activity assayed in microsomes from the PDAT overexpressing strain was 7-fold higher than in the control strain, a finding which is consistent with the increased levels of TAG that we observed in vivo (Fig. 3C). These results clearly demonstrate the potential use of the PDAT gene in increasing the oil content in transgenic organisms.

19

Substrate specificity of yeast PDAT. The substrate specificity of yeast PDAT was analyzed using microsomes prepared from the PDAT overexpressing strain (see Fig. 4). The rate of TAG synthesis, under conditions given in figure 4 with di-oleoyl-PC as the acyl-donor, was 0.15 nmol per min and mg protein. With both oleoyl groups of PC labeled it was possible, under the given assay conditions, to detect the transfer of 11 pmol/min of [14C]oleoyl chain into TAG and the formation of 15 pmol/min of lyso-PC. In microsomes from the PDAT-deficient strain, no TAG at all and only trace amounts of lyso-PC was detected, strongly suggesting that yeast PDAT catalyses the formation of equimolar amounts of TAG and lyso-PC when supplied with PC and DAG as substrates. The fact that somewhat more lyso-PC than TAG is formed can be

explained by the presence of a phospholipase in yeast microsomes, which produces lyso-PC and unesterified fatty acids from PC.

PCT/EP00/02701

The specificity of yeast PDAT for different acyl group positions was investigated by incubating the microsomes with di-oleoyl-PC carrying a [14Clacyl group either at the sn-1 position (Fig. 4A bar 2) or the sn-2 position (Fig. 4A bar 3). We found that the major ¹⁴C-labeled product formed in the former case was lyso-PC, and in the latter case TAG. We conclude that yeast PDAT has a specificity for the transfer of acyl groups from the sn-2 position of the phospholipid to DAG, thus forming sn-1-lyso-PC and TAG. Under the given assay conditions, trace amounts of 14C-labelled DAG is formed from the sn-1 by the reversible action of a CDP-choline : choline phosphotransferase. This labeled DAG can then be further converted into TAG by the PDAT activity. It is therefore not possible to distinguish whether the minor amounts of labeled TAG that is formed in the presence of di-oleoyl-PC carrying a [14C]acyl group in the sn-1 position, is synthesized directly from the sn-1-labeled PC by a PDAT that also can act on the sn-1 postion, or if it is first converted to sn-1-labeled DAG and then acylated by a PDAT with strict selectivity for the transfer of acyl groups at the sn-2 position of PC. Taken together, this shows that the PDAT encoded by YNR008w catalyses an acyl transfer from the sn-2 position of PC to DAG, thus causing the formation of TAG and lyso-PC.

The substrate specificity of yeast PDAT was further analyzed with respect to the headgroup of the acyl donor, the acyl group transferred and the acyl chains of the acceptor DAG molecule. The two major membrane lipids of *S. cerevisiae* are PC and PE, and as shown in Fig. 4B (bars 1 and 2), dioleoyl-PE is nearly 4-fold more efficient than dioleoyl-PC as acyl donor in the PDAT-catalyzed reaction. Moreover, the rate of acyl transfer is strongly dependent on the type of acyl group that is transferred. Thus, a ricinoleoyl group at the *sn*-2 position of PC is 2.5 times more efficiently transferred into TAG than an oleoyl

10

15

25

WO 00/60095 21 PCT/EP00/02701

group in the same position (Fig. 4B bars 1 and 3). In contrast, yeast PDAT has no preference for the transfer of vernoloyl groups over oleoyl groups (Fig. 4B bars 1 and 4). The acyl chain of the acceptor DAG molecule also affects the efficiency of the reaction. Thus, DAG with a ricinoleoyl or a vernoloyl group is a more efficient acyl acceptor than dioleoyl-DAG (Fig. 4B bars 1, 5 and 6). Taken together, these results clearly show that the efficiency of the PDAT-catalyzed acyl transfer is strongly dependent on the properties of the substrate lipids.

<u>PDAT genes.</u> Nucleotide and amino acid sequences of several PDAT genes are given as SEQ ID No. 1 through 15. Futher provisional and/or partial sequences are given as SEQ ID NO 1a through 5a and 1b through 11b, respectively. One of the Arabidopsis genomic sequences (SEQ ID NO. 4) identified an Arabidopsis EST cDNA clone; T04806. This cDNA clone was fully characterised and the nucleotide sequence is given as SEQ ID NO. 5. Based on the sequence homology of the T04806 cDNA and the Arabidopsis thaliana genomic DNA sequence (SEQ ID NO 4) it is apparent that an additional A is present at position 417 in the cDNA clone (data not shown). Excluding this nucleotide would give the amino acid sequence depicted in SEQ ID NO. 12.

<u>Increased TAG content in seeds of Arabidopsis thaliana that express the yeast PDAT.</u> For the expression of the yeast PDAT gene in *Arabidopsis thaliana* an EcoRI fragment from the pBluescript-PDAT was cloned together with napin promotor (25) into the vector pGPTV-KAN (26). A plasmid (pGNapPDAT) having the yeast PDAT gene in the correct orientation was identified and transformed into *Agrobacterium tumefaciens*. These bacteria were used to transform *Arabidopsis thaliana* columbia (C-24) plants using the root transformation method (27). Plants transformed with an empty vector were used as controls.

First generation seeds (T1) were harvested and germinated on kanamycin containing medium. Second generation seeds (T2) were pooled from individual plants and their fatty acid contents analysed by quantification of their methyl

30

10

15

WO 00/60095 22 PCT/EP00/02701

esthers by gas liquid chromatography after methylation of the seeds with 2% sulphuric acid in methanol at 85 °C for 1,5 hours. Quantification was done with heptadecanoic acid methyl esters as internal standard.

From the transformation with pGNapPDAT one T1 plant (26-14) gave raise to seven T2 plants of which 3 plants yielded seeds with statistically (in a mean difference two-sided test) higher oil content than seeds from T2 plants generated from T1 plant 32-4 transformed with an empty vector (table 2).

10

20

30

References cited in the description:

- 1. Bell, R. M. & Coleman, R. A. (1980) Annu. Rev. Biochem. 49, 459-487.
- 2. Stymne, S. & Stobart, K. (1987) in *The biochemistry of plants: a comprehensive treatsie, Vol. 9*, ed. Stumpf, P. K. (Academic Press, New York), pp. 175-214.
 - 3. Cases, S. et al. (1998) Proc. Natl. Acad. Sci. U S A 95, 13018-13023.
 - 4. Hobbs, D. H., Lu, C. & Hills, M. J. (1999) FEBS Lett. 452, 145-9
 - 5. Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. & Taylor, D. C. (1999) Plant J. 19, 645-653.
 - Lardizabal, K., Hawkins, D., Mai, J., & Wagner, N. (1999) Abstract presented at the Biochem. Mol. Plant Fatty Acids Glycerolipids Symposium, South Lake Tahoe, USA.
 - 7. Thomas, B. J. & Rothstein, R. (1989) Cell 56, 619-630.
- 15 8. Entian, K.-D. & Kötter, P. (1998) Meth. Microbiol. 26, 431-449.
 - 9. Kern, L., de Montigny, J., Jund, R. & Lacroute, F. (1990) Gene 88, 149-157.
 - 10. Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) *Mol. Cell. Biol.* 11, 4876-4884.
 - 11. Stobart, K. & Stymne, S. (1990) in *Method in Plant Biochemistry, vol 4,* eds. Harwood, J. L. & Bowyer, J. R. (Academic press, London), pp. 19-46.
 - 12.Bafor, M., Smith, M. A., Jonsson, L., Stobrt, A. K. & Stymne, S. (1991) Biochem. J. 280, 507-514.
 - 13. Banas, A., Johansson, I. & Stymne, S. (1992) Plant Science 84, 137-144.
 - 14. Kanda, P. & Wells, M. A. (1981) J. Lipid. Res. 22, 877-879.
- 25 15. Ståhl, U., Ek, B. & Stymne, S. (1998) Plant Physiol. 117, 197-205.
 - 16. Stobart, K., Mancha, M. & Lenman M, Dahlqvist, A. & Stymne, S. (1997) Planta 203, 58-66.
 - 17. Bligh, E. G. & Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911-917.
 - 18. Sherman, F., Fink, G. R. & Hicks, J. B. (1986) in *Laboratory Course Manual for Methods in Yeast Genentics* (Cold Spring Harbor Laboratory)
 - 19. Meesters, P. A. E. P., Huijberts, G. N. M. and Eggink, G. (1996) Appl. Microbiol. Biotechnol. 45, 575-579.
 - 20. van de Loo, F. J., Fox, B. G. & Sommerville, C. (1993), in *Lipid metabolism in plants*, ed. Moore, T. S. (CRC Press, Inc.), pp. 91-126.
- 21. van de Loo, F. J., Broun, P., Turner, S. & Sommerville, S. (1995) Proc. Natl.

- Acad. Sci. U S A 95, 6743-6747.
- 22. Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P-O., Sjödahl, S., Green, A., and Stymne, S. (1998) *Science* **280**, 915-918.
- 23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D.
 G. (1997) Nucl. Acids Res. 24, 4876-4882.
 - 24. Saitou, N. & Nei, M. (1987) Mol. Biol. Evol. 4, 406-425.
 - 25. Stålberg, K., Ellerström, M., Josefsson, L., & Rask, L. (1993) Plant Mol. Biol. 23, 671
- 26. Becker, D., Kemper, E., Schell, J., Masterson, R. (1992) Plant Mol. Biol. 20, 1195
 - 27.D. Valvekens, M. Van Montagu, and Van Lusbettens (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5536

Description of Figures

FIG. 1:

Metabolism of 14C-labeled PC into the neutral lipid fraction by plant microsomes. (A) Microsomes from developing seeds of sunflower, R. communis and C. palaestina were incubated for 80 min at 30°C with PC (8 nmol) having oleic acid in its sn-1 position, and either 14C-labeled oleic, ricinoleic or vernolic acid in its sn-2 position. Radioactivity incorporated in TAG (open bars), DAG (solid bars), and unsterified fatty acids (hatched bars) was quantified using thin layer chromatography followed by electronic autoradiography, and is shown as percentage of added labeled substrate. (B) Synthesis in vitro of TAG carrying two vernoloyl and one [14C]ricinoleoyl group by microsomes from R. communis. The substrates added were unlabeled divernoloyI-DAG (5 nmol), together with either sn-1-oleoyI-sn-2-[14C]ricinoleoyI-DAG (0.4 nmol, 7700 dpm/nmol) or sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC (0.4 nmol, 7700 dpm/nmol). The microsomes were incubated with the substrates for 30 min at 30°C, after which samples were removed for lipid analysis as described in the section "general methods". The data shown are the average of two experiments.

20

25

30

10

FIG. 2.

PDAT activity in yeast microsomes, as visualized by autoradiogram of neutral lipid products separated on TLC. Microsomal membranes (10 nmol of PC) from the wild type yeast strain FY1679 (lanes 1-3), a congenic yeast strain (FVKT004-04C(AL)) that is disrupted for YNR008w (lane 4) or the same disruption strain transformed with the plasmid pUS1, containing the YNR008w gene behind its native promotor (lane 5), were assayed for PDAT activity. As substrates, we used 2 nmol sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC together with either 5 nmol of dioleoyl-DAG (lanes 2, 4 and 5) or rac-oleoyl-vernoleoyl-DAG (lane 3). The enzymatic assay and lipid analysis was performed as described in Materials and Methods. The cells were precultured for 20 h in liquid YPD

medium, harvested and re-suspended in an equal volume of minimal medium (19) containing 16 g/l glycerol. The cells were then grown for an additional 24 h prior to being harvested. Selection for the plasmid was maintained by growing the transformed cells in synthetic medium lacking uracil (18). Abbreviations: 1-OH-TAG, monoricinoleoyl-TAG; 1-OH-1-ep-TAG, monoricinoleoyl-monovernoloyl-TAG; OH-FA, unesterified ricinoleic acid.

Fig. 3.

5

10

15

20

25

30

Lipid content (A.B) and PDAT activity (C) in PDAT overexpressing yeast cells. The PDAT gene in the plasmid pUS4 was overexpressed from the galactoseinduced GAL1-TPK2 promotor in the wild type strain W303-1A (7). Its expression was induced after (A) 2 hours or (B) 25 hours of growth by the addition of 2% final concentration (w/v) of galactose. The cells were then incubated for another 22 hours before being harvested. The amount of lipids of the harvested cells was determined by GLC-analysis of its fatty acid contents and is presented as µmol fatty acids per mg dry weight in either TAG (open bar), polar lipids (hatched bar), sterol esters (solid bar) and other lipids (striped bar). The data shown are the mean values of results with three independent yeast cultures. (C) In vitro synthesis of TAG by microsomes prepared from yeast cells containing either the empty vector (vector) or the PDAT plasmid (+ PDAT). The cells were grown as in Fig. 3A. The substrate lipids dioleoyl-DAG (2.5 nmol) and sn-1-oleoyl-sn-2-[14C]-oleoyl-PC (2 nmol) were added to aliquots of microsomes (10 nmol PC), which were then incubated for 10 min at 28 °C. The amount of label incorporated into TAG was quantified by electronic autoradiography. The results shown are the mean values of two experiments.

FIG. 4.

Substrate specificity of yeast PDAT. The PDAT activity was assayed by incubating aliquots of lyophilized microsomes (10 nmol PC) with substrate lipids at 30°C for 10 min (panel A) or 90 min (panel B). Unlabeled DAG (2.5 nmol) was used as substrates together with different labeled phospholipids, as shown

in the figure. (A) Sn-position specificity of yeast PDAT regarding the acyl donor substrate. Dioleoyl-DAG together with either sn-1-[14C]oleoyl-sn-2-[14C]oleoyl-PC (di-[14C]-PC), sn-1-[14C]oleoyl-sn-2-oleoyl-PC (sn1-[14C]-PC) or sn-1-oleoylsn-2-[14C]oleoyl-PC (sn2-[14C]-PC). (B) Specificity of yeast PDAT regarding phospholipid headgroup and of the acyl composition of the phospholipid as wellas of the diacylglycerol. Dioleoyl-DAG together with either sn-1-oleoyl-sn-2-[14C]oleoyl-PC (oleoyl-PC), sn-1-oleoyl-sn-2-[14C]oleoyl-PE (oleoyl-PE), sn-1oleoyl-sn-2-[14C]ricinoleoyl-PC (ricinoleoyl-PC) sn-1-oleovl-sn-2-[14C]vernoloyI-PC (vernoloyI-PC). In the experiments presented in the 2 bars to the far right, monoricinoleoyl-DAG (ricinoleoyl-DAG or mono-vernoloyl-DAG (vernoloyi-DAG) were used together with sn-1-oleoyi-sn-2-[14C]-oleoyi-PC. The label that was incorporated into TAG (solid bars) and lyso-PC (LPC, open bars) was quantified by electronic autoradiography. The results shown are the mean values of two experiments. The microsomes used were from W303-1A_cells overexpressing the PDAT gene from the GAL1-TPK2 promotor, as described in Fig. 3. The expression was induced at early stationary phase and the cells were harvested after an additional 24 h.

20 TAB.1:

15

In vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean. Aliquots of microsomes (20 nmol PC) were lyophilised and substrate lipids were added in benzene solution: (A) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and where indicated 1.6 nmol unlabelled DAG; (B) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and 5 nmol unlabelled di-ricinoleoyl-PC and (C) 0.25 nmol [14C]-PC (4000 dpm/nmol) and 5 nmol unlabelled DAG. The benzene was evaporated by N₂ and 0.1 ml of 50 mM potassium phosphate was added, thoroughly mixed and incubated at 30 °C for (A) 20 min.; (B) and (C) 30 min.. Assays were terminated by extraction of the lipids in chloroform. The lipids were then separated by thin layer chromatography on silica gel 60 plates

(Merck; Darmstadt, Germany) in hexan/diethylether/acetic 35:70:1.5. The radioactive lipids were visualised and the radioactivity quantified on the plate by electronic autoradiography (Instant Imager, Packard, US). Results are presented as mean values of two experiments.

5

10

Radioactivity in different triacylglycerols (TAG) species formed. Abbreviations used: 1-OH-, mono-ricinoleoyl-; 2-OH, di-ricinoleoyl-; 3-OH-, triricinoleoyl; 1-OH-1-ver-, mono-ricinoleoly-monovernoleoyl-; 1-OH-2-ver-, mono-ricinoleoyl-divernoleoyl-. Radiolabelled DAG and PC were prepared enzymatically. The radiolabelled ricinoleoyl group is attached at the sn-2-position of the lipid and unlabelled oleoyl group at the sn-1-position. Unlabelled DAG with vernoleoyl- or ricinoleoyl chains were prepared by the action of TAG lipase (6) on oil of Euphorbia lagascae or Castor bean, respectively. Synthetic di-ricinoleoyl-PC was kindly provided from Metapontum Agribios (Italy).

15

20

TAB.2:

Total fatty acids per mg of T2 seeds pooled from individual *Arabidopsis thaliana* plants transformed with yeast PDAT gene under the control of napin promotor (26-14) or transformed with empty vector (32-4).

* = stastistical difference between control plants and PDAT transformed plants in a mean difference two-sided test at $\alpha = 5$.

Description of the SEQ ID:

SEQ ID NO. 1: Genomic DNA sequence and suggested amino acid sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, with GenBank accession number Z71623 and Y13139, and with nucleotide ID number 1302481.

SEQ ID NO. 2: The amino acid sequence of the suggested open reading frame YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 3: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 4: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AB006704.

15

20

SEQ ID NO. 5: Nucleotide sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806, and nucleotide ID number 315966.

SEQ ID NO. 6: Predicted amino acid sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806.

SEQ ID NO. 7: Nucleotide and amino acid sequence of the Zea mays EST clone with GenBank accession number Al491339, and nucleotide ID number 4388167.

25 SEQ ID NO. 8: Predicted amino acid sequence of the Zea mays EST clone with GenBank accession number Al491339, and nucleotide ID number 4388167.

SEQ ID NO. 9: DNA sequence of part of the Neurospora crassa EST clone W07G1, with GenBank accession number Al398644, and nucleotide ID number 4241729.

SEQ ID NO. 10: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AC004557.

SEQ ID NO. 11: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AC003027.

SEQ ID NO. 12: DNA sequence of part of the Lycopersicon esculentum cDNA clone with GenBank accession number Al486635.

SEQ ID NO. 13: Amino acid sequence of the Schizosaccharomyces pombe putative open reading frame CAA22887 of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 14: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAC80628 derived from the Arabidopsis thaliana locus with GenBank accession number AC004557.

SEQ ID NO 15: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAD10668 derived from the Arabidopsis thaliana locus with GenBank accession number AC003027.

Further provisional and/or partial sequences are defined through the following SEO IDs:

25 SEQ ID NO. 1a: The amino acid sequence of the yeast ORF YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 2a: Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AC004557).

SEQ ID NO. 3a: Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AB006704).

SEQ ID NO. 4a: The corresponding genomic DNA sequence and amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae.

SEQ ID NO. 5a: The amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae derived form the corresponding genomic DNA sequence.

10

SEQ ID NO. 1b: Genomic DNA sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, genebank nucleotide ID number 1302481, and the suggested YNR008w amino acid sequence.

15

20

SEQ ID NO. 2b: The suggested amino acid sequence of the yeast gene YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 3b: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 4b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AB006704.

SEQ ID NO. 5b: Nucleotide sequence and the corresponding amino acid sequence of the Arabidopsis thaliana EST-clone with genebank accession number T04806, and ID number 315966.

SEQ ID NO. 6b: Nucleotide and amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 7b: Amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 8b: DNA sequence of part of the Neurospora crassa cDNA clone WO7G1, ID number 4241729.

SEQ ID NO. 9b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC004557.

SEQ ID NO. 10b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC003027.

SEQ ID NO. 11b: DNA sequence of part of the Lycopersicon esculentum cDNA clone with genebank accession number Al486635.

15

20

25

30 -

Claims

- 1. An enzyme catalysing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.
- 2. An enzyme according to claim 1, comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

10

20

25

- An enzyme according to claims 1 or 2 designated as phospholipid:diacylglycerol acyltransferase (PDAT).
- 4. An enzyme according to claims 1 to 3, comprising an amino acid sequence as set forth in SEQ ID No. 1a, 2b or 5a or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
 - 5. An enzyme according to claims 1 to 4, comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID No. 2a, 3a, 5b, 6, 7b, 8, 13, 14 or 15 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
 - 6. An enzyme according to claims 1 to 5, comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence.
- 30 7. A nucleotide sequence encoding an enzyme catalysing in an acyl-CoAindependent reaction the transfer of fatty acids from phospholipids to

10

15

20

diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

- 8. A nucleotide sequence according to claim 7 encoding an enzyme designated as phospholipid:diacylglycerol acyltransferase (PDAT).
 - 9. A nucleotide sequence according to claims 7 or 8, selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 9b, 10, 10b or 11 or a portion, derivate, allele or homolog thereof.

10. A partial nucleotide sequence corresponding to a fullength nucleotide sequence according to claims 7 to 9, selected from the group consisting of sequences as set forth in SEQ ID No. 5, 5b, 6b, 7, 8b, 9, 11b or 12 or a portion, derivate, allele or homolog thereof.

11. A nucleotide sequence according to claims 7 to 10, comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12.

- 12. A gene construct comprising a nucleotide sequence according to claims 7 to 11 operably linked to a heterologous nucleic acid.
- 13. A vector comprising a nucleotide sequence according to claims 7 to 11 or a
 gene construct according to claim 12.
 - 14. A vector according to claim 13, which is an expression vector.
- 15. A vector according to claims 13 or 14, further comprising a selectable
 marker gene and/or nucleotide sequences for the replication in a host cell
 or the integration into the genome of the host cell.

16. A transgenic cell or organism containing a nucleotide sequence according to claims 7 to 11 and/or a gene construct according to claim 12 and/or a vector according to claims 13 to 15.

. 5

17. A transgenic cell or organism according to claim 16 which is an eucaryotic cell or organism.

,,

18. A transgenic cell or organism according to claims 16 or 17 which is a yeast cell or a plant cell or a plant.

10

19. A transgenic cell or organism according to claims 16 to 18 having an altered biosynthetic pathway for the production of triacylglycerol.

15 2

20. A transgenic cell or organism according to claims 16 to 19 having an altered oil content.

_

21. A transgenic cell or organism according to claims 16 to 20 wherein the activity of PDAT is altered.

. 20

22. A transgenic cell or organism according to claims 16 to 21 wherein the altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme.

25

23. A transgenic cell or organism according to claims 16 to 22 wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.

30 2

24. A process for the production of triacylglycerol, comprising growing a transgenic cell or organism according to claims 16 to 23 under conditions

whereby the said nucleotide sequence according to claims 7 to 11 is expressed.

- 25. Triacylglycerols produced by a process according to claim 24.
- 26. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids.
- 27. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism.

15

5

Figurs

Fig. 1:

Radioactivity in ricinoleoyl-vernoloyl-TAG (% of added)

).

Fig 2

2/6

Relative TAG-synthesis

Tab. 2:

T1 plant deviation	T2 plant number	nmol fatty acids per mg seed	standard
32-4	1	1277	±11 (n=2)
	4	1261	±63 (n=3)
	5	1369	$\pm 17 \text{ (n=3)}$
	6	1312	±53 (n=4)
	7	1197	<u>+</u> 54 (n=5)
	8	1240	$\pm 78 \text{ (n=4)}$
•	9	1283	$\pm 54 (n=5)$
•	. 10	1381	<u>+</u> 35 (n=5)
26-14	1	1444	±110 (n=4)
20 14	$\overline{\hat{2}}$	1617*	±109 (n=4)
	3	1374	±37 (n=2)
	3 5	1562*	±70 (n=4)
	6	1393	±77 (n=4)
	7	1433	±98 (n=4)
	8	1581*	±82 (n=4)

1 / 53

Sequence Listing

<210><211><211><212><213> 221 222	- 198 - ges - Sac - CD	nomic ccha:	romy	ces	cere	visia	ae					. •				
<400 atg (Met (ggc	aca Thr	ctg Leu	ttt Phe 5	cga Arg	aga Arg	aat Asn	gtc. Val	cag Gln 10	aac Asn	caa Gln	aag Lys	agt Ser	gat Asp 15	tct Ser	48
gat (gaa Glu	aac Asn	aat Asn 20	aaa Lys	GJA āāā	ggt Gly	tct Ser	gtt Val 25	cat His	aac Asn	aag Lys	cg <u>a</u>	gag Glu 30	agc Ser	aga Arg	96
					caa Gln											144
					aaa Lys											192
aaa Lys 65	aga Arg	gac Asp	GJĀ GĀĀ	aac	ggt Gly 70	Arg	aaa Lys	cgt	tgg Trp	aga Arg 75	Asp	tcc Ser	aga Arg	aga Arg	ctg Leu 80	240
att Ile	ttc Phe	att Ile	ctt	ggt Gly 85		ttc Phe	tta Leu	ggt Gly	gta Val 90	Leu	ttg Leu	ccg Pro	ttt Phe	agc Ser 95	Phe	288
ggc Gly	gct Ala	tat Tyr	cat His	Va]	cat His	aat Asn	ago Ser	gat Asp 105	Ser	gac Asp	ttg Lev	ttt Phe	gac Asp	Asr	ttt Phe	336
gta Val	aat	trt Phe	Asp	tca Sei	a ctt	aaa Lys	gtg Val	Tyr	ttg Lev	gat Asp	gat Asr	tgg Trp 125	Lys	a gat s Asr	gtt Val	384
ctc	cca Pro	Glr	ı ggt	ata	a agt	tcg Ser 135	Phe	att	gat Asp	gat Ası	: att	Glr	g gct	ggt Gly	aac Asn	432

													·			
tac	tcc	aca	tct	tct	tta	gat	gat	ctc	agt	gaa	aa't	ttt	gcc.	gtt	ggt	480
						Asp										
	aer	1111	261	261		بردم	uap	100								
145					150					155					160	
											•					
222	C 2 2	c= c	tra	cat	aat	tat	aat	atc	αaα	acc	ааа	cat	cct	att	gta	528
Lys	Gln	Leu	Leu	Arg	Asp	Tyr	Asn	Ile	Glu	Ala	гĀг	HIS	Pro	vai	vai	
				165					170					175		
													~~~		~	576
						tct										570
Met	Val	Pro	Gly	Val	Ile	Ser	Thr	Gly	Ile	Glu	Ser	Trp	Gly	Val	Ile	
			180					185					190			
																604
gga	gac	gat	gag	tgc	gat	agt	tct	gcg	cat	ttt	cgt	aaa	cgg	ctg	tgg	624
Glv	Asp	aeA	Glu	Cvs	Asp	Ser	Ser	Ala	His	Phe	Arg	Lys	Arg	Leu	Trp	
					-		200					205				
		195					200					203				
								•								
gga	agt	ttt	tac	atg	ctg	aga	aca	atg	gtt	atg	gat	aaa	gtt	tgt	tgg	672
Glv	Sar	Pho	ጥረታት	Met	T.eu	Arg	Thr	Met	Val	Met	Asp	Lvs	Val	Cys	Tro	
011			+1-											_	-	
	210					.215					220					
						•										
tta	222	cat	σta	ato	tta	gat	cct	gaa	aca	gat	ctg	gac	cca	ccg	aac	720
_																
ren	. цуѕ	HIS	val	met			PIO	Gru	1111			. nop	, 110	, ,,,	Asn	
225					230	ı				235	•				240	**
	700		cat	772			aac	. ttc	raa.	tra	act	gat	tat	: Etc	atc	768
Phe	Thr	Leu	ιArg	Ala	Ala	GID	GIY	Phe	Gin	Ser	unr	AST	туг		lle	
				245	<b>.</b>				250					255	5	
						•										·
				٠									. ~~	· ~+:		816
															a att	810 .
Ala	Gly	Tyr	TTE	Ile	Tr	) Asn	Lys	: Val	. Phe	Glr	ı Asr	ı Lev	ı Gl	y Va.	llle	
			260	)				265					270	) .		
				•												•
										-					g ctt	864
G1 _V	Tyr	Gl	ı Pro	Ası	ı Lys	s Met	Thr	Ser	Ala	Ala	а Туз	: Ası	o Tr	o Ar	J Leu	
	•	275			_		280					289				
		21.	,				200	•				20.				
gca	a tat	tta	a gat	cta	a gaa	a aga	cgo	gat	agg	, ta	c ttt	ac	g aaq	g cta	a aag	912
															u Lys	
****	_		- 1707	ا عاد د				, -•~· F		- <b>-</b>						
	290	J				295	•			•	300	J				
	•												•			
gaa	a caa	a ato	c daa	a ctr	r tti	t cat	: caa	a tto	a a o	. aa	t da	a aaa	a gti	t ta	t tta	960
								•					•			
GIL	ı GII	1 TT6	e GTI	т гел			, GII	rret	, ae			τ πλ:	o va.	L CY	s Leu	
. 305	5				31	0				31!	5 .				320	
	· 								. <u>.</u> .		r ra	- ++·	- 2-	בב ד	a too	1008
															a tgg	1000
$11\epsilon$	∋ G1,	/ His	s Se	r Met	Gl;	y Sei	Gl	n Ile	e Ile	Pho	е Ту	r Ph	e Me	с гу	s Trp	
				325	5				330	<u>ר</u>				33	5	
		-								-						

									<i>J</i> , .								
				Glu		cct Pro		-	Gly					Gly			1056
	aac	даа	cac	340 ata	gat	tca	ttc	att	345	gca	gca	. aga	acg	350 ctt	ctg	ggc	1104
						Ser			Asn								
						cca Pro											1152
		370					375					380					****
		•				Leu 390						Glu				tca Ser 400	1200
	_		_			Lys					Trp					tca Ser	1248
					Gly					Trp					Ser	tct Ser	1296
•				Ala					Thr					/ Asr		att Ile	1344
			e Glu					Asp					Ası			a atg	1392
		Ası	_			_	Thr		-			r Pro				caa 1 Gln 480	1440
						ı Glr					Ty					a gaa ı Glu	1488
					s Ası	_			•	s Ly:					ı Pro	a atg o Met	1536
		-		o Lei		-			His					r Cys		a tac e Tyr	1584
		•															

GJA GBB	gtg Val 530	aac Asn	aac Asn	cca Pro	act	gaa Glu 535	agg Arg	gca Ala	tat (	gta Val	tat Tyr 540	aag Lys	gaa Glu	gag Glu	gat Asp	1632`
gac Asp 545	tcc Ser	tct Ser	gct Ala	ctg Leu	aat Asn 550	ttg Leu	acc Thr	atc	gac Asp	tac Tyr 555	gaa Glu	agc Ser	aag Lys	caa Gln	Pro 560	1680
gta Val	ttc Phe	ctc Leu	acc Thr	gag Glu 565	Gly	gac Asp	gga Gly	acc Thr	gtt Val 570	ccg Pro	ctc Leu	gtg Val	gcg Ala	cat His 575	tca Ser	1728
atg Met	tgt Cys	cac	aaa Lys 580	Trp	gcc Ala	cag Gln	ggt Gly	gct Ala 585	tca Ser	ccg Pro	tac	aac Asn	cct Pro 590	Ala	gga Gly	1776
att	aac Asr	gtt Val	. Thr	att	gtg Val	gaa Glu	atg Met	Lys	cac	cag	CCZ Pro	gat Asp 605	Arc	ttt Phe	gat Asp	1824
ata Ile	cgt Arg	Gly	gga Gly	a gca y Ala	a aaa	ago Ser 615	Ala	gaa Glu	cac His	gta Val	a gad L As <u>i</u> 620	, Ile	cto	ggc	agc Ser	1872
gc Al:	a Gl	g·tt: u Le:	g aa u As	c ga n As	t tac p Tyr	r Ile	c tto	g aaa	a att	gca Ala 63	a Se	c ggt	t aat y As:	t ggd n Gly	gat y Asp 640	1920
ct Le	c gt u Va	c ga 1 G1	g cc u Pr	a cg o Ar 64	g Gl	a tt: n Le	g tc u Se	t aat	t ttg n Len 650	ı Se	c ca r Gl	g tg n Tr	g gt p Va	t tc 1 Se 65	t cag r Gln 5	1968
	-			a at	g ta	a								٠		1986

```
<210> 2
<211> 661
<212> PRT
<213> Saccharomyces cerevisiae
<400> 2
Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
                                 25
Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
                             40
Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
                        - 55
Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
                                          75
                     70
Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
                                 105
Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
                            120
        115
Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn
                                             140
                         135
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
                                         155
                     150
 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val
                 165
                                     170
 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
             180
                                 185
 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
                             200
 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp
                        215
 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
                     230
                                          235
 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
                                     250
 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
                                 265
             260
 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu
         275
                           .280
 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
                         295
                                             300
 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu
                                          315
                     310
 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp
                 325
                                      330
```

			340					345					350		
Asn	Glu	His 355	Ile	Asp	Ser	Phe	11e 360	Asn	Ala	Ala		Thr 365	Leu	Leu	Gly
Ala	Pro 370	Lys	Alá	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Ģlu	Lys	Phe	Phe	Ser 400
	Ile	Glu	Arg`	Val 405	Lys	Met	Leu	Gln	Thr 410	Trp	Gly	Gly	Ile	Pro 415	Ser
Met	Leu	Pro	Lys 420	Gly	Glu	Glu	Val	Ile 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
Ser	Glu	Asp 435		Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
Arg	Phe 450		Arg	Asn	Thr	Ser 455	Asp	Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met
Lys 465		Ala	Ile	Asn	Met 470	Thr	Leu	Ser	Ile	Ser 475	Pro	Glu	Trp	Leu	Gln 480
Arg	Arg	Val	His	Glu 485		Tyr	Ser	Phe	Gly 490		Ser	Lys	Asn	Glu 495	
Glu	Leu	Arg	Lys 500		Glu	Leu	His	His 505			Trp	Ser	Asn 510		Met
		515	;				Pro 520					525			
Gly	Val 530		ı Asn	Pro	Thr	•	Arg	Ala	Tyr	Val	Tyr 540		G1u	. Ģlu	Asp
Asp 545		Ser	Ala	Leu	Asn 550		t Thr	·Ile		Tyr . 555		Ser	· Lys	Gln	9ro 560
				565	5				570	)				575	
			580	)				585	5		•		590	)	Gly
		599	5				600	)				605	<b>;</b>		a Asp
	610	)				61	5				620				y Ser
625	5				630	)	•			635	5				Asp 640
Let	ı Va	l Gl	ı Pro	649		ı Lev	ı Ser	. Asr	1 Let 65(		Glr	Tr	val	655	Gln
Met	: Pro	o Ph	e Pro		=										

2250

2300

<210> 3 <211> 2312 <212> genomic DNA <213> Schizosaccharomyces pombe ATGGCGTCTT CCAAGAAGAG CAAAACTCAT AAGAAAAAGA AAGAAGTCAA ATCTCCTATC GACTTACCAA ATTCAAAGAA ACCAACTCGC GCTTTGAGTG AGCAACCTTC AGCGTCCGAA ACACAATCTG TTTCAAATAA ATCAAGAAAA TCTAAATTTG GAAAAAGATT GAATTTTATA TTGGGCGCTA TTTTGGGAAT ATGCGGTGCT TTTTTTTCG CTGTTGGAGA CGACAATGCT GTTTTCGACC CTGCTACGTT AGATAAATTT GGGAATATGC TAGGCTCTTC AGACTTGTTT
GATGACATTA AAGGATATTT ATCTTATAAT GTGTTTAAGG ATGCACCTTT TACTACGGAC AAGCCTTCGC AGTCTCCTAG CGGAAATGAA GTTCAAGTTG GTCTTGATAT GTACAATGAG GGATATCGAA GTGACCATCC TGTTATTATG 450 GTTCCTGGTG TTATCAGCTC AGGATTAGAA AGTTGGTCGT TTAATAATTG 500 CTCGATTCCT TACTTTAGGA AACGTCTTTG GGGTAGCTGG TCTATGCTGA 550 AGGCAATGTT CCTTGACAAG CAATGCTGGC TTGAACATTT AATGCTTGAT 600 AAAAAAACCG GCTTGGATCC GAAGGGAATT AAGCTGCGAG CAGCTCAGGG 650 GTTTGAAGCA GCTGATTTTT TTATCACGGG CTATTGGATT TGGAGTAAAG 700 TAATTGAAAA CCTTGCTGCA ATTGGTTATG AGCCTAATAA CATGTTAAGT 750 GCTTCTTACG ATTGGCGGTT ATCATATGCA AATTTAGAGG AACGTGATAA 800 ATATTTTTCA AAGTTAAAAA TGTTCATTGA GTACAGCAAC ATTGTACATA AGAAAAAGGT AGTGTTGATT TCTCACTCCA TGGGTTCACA GGTTACGTAC 850 900 TATTTTTTA AGTGGGTTGA AGCTGAGGGC TACGGAAATG GTGGACCGAC 950 TTGGGTTAAT GATCATATTG AAGCATTAT AAATGTGAGT CTCGATGGTT 1000
GTTTGACTAC GTTTCTAACT TTTGAATAGA TATCGGGATC TTTGATTGGA 1050 1000 TATTGTAATT ACATTAAACA TGTTAATATT TAATTTTTGC TAACCGTTTT 1150
AAGCTCAATT GAATCAGTTT TCCCTCTATC CONTACT TAACCGTTTT 1150 AAGCTCAATT GAATCAGTTT TCGGTCTATG GGTAAGCAAT AAATTGTTGA GATTTGTTAC TAATTTACTG TTTAGTTTGG AAAAATTTTT TTCCCGTTCT 1250 GAGGTATATT CAAAAATACA AATGTGCTCT ACTTTTCTA ACTTTTAATA 1300 GAGAGCCATG ATGGTTCGCA CTATGGGAGG AGTTAGTTCT ATGCTTCCTA AAGGAGGCGA TGTTGTATGG GGAAATGCCA GTTGGGTAAG AAATATGTGC 1350 1400 TGTTAATTTT TTATTAATAT TTAGGCTCCA GATGATCTTA ATCAAACAAA 1450 1500 TTTTTCCAAT GGTGCAATTA TTCGATATAG AGAAGACATT GATAAGGACC ACGATGAATT TGACATAGAT GATGCATTAC AATTTTTAAA AAATGTTACA
GATGACGATT TTAAAGTCAT GCTAGCGAAA AATTATTCCC ACGGTCTTGC
TTGGACTGAA AAAGAAGTGT TAAAAAAATAA CGAAATGCCG TCTAAATGGA
TAAATCCGCT AGAAGTAAGA ACATTAAAGT TACTAAACCCA 1550 1600 1700 AATAGACTAG TCTTCCTTAT GCTCCTGATA TGAAAATTTA TTGCGTTCAC 1750 GGGGTCGGAA AACCAACTGA GAGAGGTTAT TATTATACTA ATAATCCTGA
GGGGCAACCT GTCATTGATT CCTCGGTTAA TGATGGAACA AAAGTTGAAA
ATGTGAGAGA ATTTATGTTT CAAACATTCT ATTAACTGTT TTATTAGGGT
ATTGTTATGG ATGATGGTGA TGGAACTTTA CCAATATTAG CCCTTGGTTT
GGTGTGCAAT AAAGTTTGGC AAACAAAAAG GTTTAATCCT GCTAATACAA 1800 . 1850 1900 1950 2000 GTATCACAAA TTATGAAATC AAGCATGAAC CTGCTGCGTT TGATCTGAGA
GGAGGACCTC GCTCGGCAGA ACACGTCGAT ATACTTGGAC ATTCAGAGCT
AAATGTATGT TCATTTTACC TTACAAATTT CTATTACTAA CTCTTGAAAT
AAGGAAATTA TTTTAAAAGT TTCATCAGGC CATGGTGACT CGGTACCAAA 220 2050 2100 2150

CCGTTATATA TCAGATATCC AGTACGGACA TAAGTTTTGT AGATTGCAAT.

TAACTAACTA ACCGAACAGG GAAATAATAA ATGAGATAAA TCTCGATAAA

CCTAGAAATT AA

e design on the



<210>⁻⁻⁻4 ---

<211> 3685

<212> genomic DNA

<213> Arabidopsis thaliana

-100- 1					
<400> 4	ATCGGAA AAAGCCGAC	~ CACAAACCAT	CCACCCCCCC		50
					100
	GTGCACG ATGAGGATT				150
CTTCCAAATC CCAC			CCTGGTGGTT		200
	STTGGTT CATTGGGTG				250
	TACAACG CAATGCCTG		CAGTATGTAA		300
	GGTCCT TTGCCTGAC		TAAGCTCAAA		350
	AGGCGAA ACATCCTGT		CTGGGATTGT		
CACCGGTGGG CTCG			GATGGTTTAT		400
	GTGGGGT GGAACTTTT		CAAAAGGTGA		450
GCTCAACAAT TCTC			TTGGATCTGA		500
	TTGTTGC TTCTTCAAC		TTTAATTCCA		550
TGTTTGTCTG TCT			GTGAAACGCT		600
ATTTTCTTAA GAGA			TTCCAAGGAC		650
	ACTATTT CTGTTTGAT			•	700
	ATTTCAA GTCATCTTA		GTTGCTAGAC		750
ATGCCCTAGA GTC			GTCGTTGCGT		800
	TGTGTAG CGTATAATG		TATGTTTTGT		850
	GTTCTAA CTACATCTO		TTCAGGCTGT		900
	TGCTTTA TTATTCAAC		GTAATTAAAG		950
	GATCTTT CAGCTCAAT		AATTTTTTC	1000	4000
	TTCACAT CGAGTTTAT		GAATTTCGTC		1050
	TTATCCA GCTTTGAAC		CTGCTATGGA		1100
	AAGTGTT TTGTGGGTT	•	•		1150
	GCTCAGT GTTCATGT		AGAGATGGGC		1200
	ATGGTAA CAGTGGTAT	i i	,		1250
	TGATTCA GGCCTCTAT		•	. 1300	
	TGGGTTG GATCCAGC			1350	
	CTGCTGA CTACTTTG			1400	
AGTGCTGATT GCT.	AACCTTG CACATATT			1450	
ACATGGCTGC ATA	TGACTGG CGGCTTTC			1500	
TTCTCATCGT TCT	TTCTATT ATTCTGTT			1550	
TTACTTAAGG CTT.	AAATATG TTTCATGT	rg aattaatagg	TACGTGATCA		1600
GACTCTTAGC CGT	'ATGAAAA GTAATATA	BA GTTGATGGTT	TCTACCAACG	1650	
GTGGAAAAAA AGC	AGTTATA GTTCCGCA	TT CCATGGGGGT	CTTGTATTTT	1700	
CTACATTTTA TGA	AGTGGGT TGAGGCAC	LA GCTCCTCTGG	GTGGCGGGG	1750	
	TGTGCAA AGTATATT		AACATTGGTG	1800	
GACCATTTCT TGG	TGTTCCA AAAGCTGT	rg cagggctttt	CTCTGCTGAA	1850	
GCAAAGGATG TTG	CAGTTGC CAGGTATT	BA ATATCTGCTT	ATACTTTTGA	1900	
TGATCAGAAC CTT	GGCTCTG GAACTCAA	G TTATTCTACT	AAATATCAAT	1950	
TCTAATAACA TTG	CTATATT ATCGCTGC	AA CTGACATTGG	TTGATTATTT	2000	
	AACTGAA ACTCTCTT			2050	
GATAATTCTT ACG	CATTGCT CTGTGATG	AC CAGTTTCTTA	GCTTCGACGA	2100	
TAACATTTGT CAT	ACTGTCT TTTGGAGG	C ATTGAATTTI	GCTATGGAAA		2150
GCGCTGGAGC TTC	CATGCTT GCATTCTT	TA CCAATTAGCG	TTATTCTGCT		2200
	TTGTATA TGCATCTA				2250
	GATTAGT TGCTCTAT				2300
	CTTCGAA AATTGCAG				2350
	TTAGACT TCAGACCT				2400
	TCAACAA TGTCTATG				2450
	TGATTGG TCACCGGA				2500
	ACAACGA AACTTGTG				2550
	CCTGTTA ACTATGGA			•	2600
	TGCGCCA TCTGAGAT				2650
	CATAATA AACCTTGT.				2700
	TTATCTG GTGAAGGG				2750
	GTCGTGA CGTGTGGA			•	2800
	GCTATCG CTGAGTAT				2850
TOCIGOGUIC HAM	GCIAICG CIGAGIAI	T GGICINCACI	COLUCIONNO		2030

CTATAGATCT ACTACATTAT	GTTGCTCCTA	AGATGATGGC	GCGTGGTGUC		2300
GCTCATTTCT CTTATGGAAT		TTGGATGACA	CCAAGTATCA		2950
AGATCCCAAA TACTGGTCAA	ATCCGTTAGA	GACAAAGTAA	GTGATTTCTT		3000
GATTCCAACT GTATCCTTCC	TCCTGATGCA	TTATCAGTCT	TTTTGTTTTC		3050
GGTCTTGTTG GATATGGTT	TCAGCTCAAA	GCTTACAAAG	CTGTTTCTGA		3100
GCCTTTCTCA AAAAGGCTTC	·	TTGAGGTGCT	AAAGTTGATA		3150
CATGTGACTC TTGCTTATA		TGGTTTGTTC	TGCTTTTTCA		3200
GATTACCGAA TGCTCCTGAC		ACTCATTATA	CGGAGTGGGG		3250
ATACCAACGG AACGAGCAT		CTTAACCAGT	CTCCCGACAG	3300	
TTGCATCCCC TTTCAGATA		TCACGAGGAG	GACGAAGATA		3350
GCTGTCTGAA AGCAGGAGT		ATGGGGATGA	AACAGTACCC		3400
GTCCTAAGTG CCGGGTACA		GCGTGGCGTG	GCAAGACAAG		3450
ATTCAACCCT TCCGGAATC			AATCACTCTC		3500
CGCCGGCTAA CCTGTTGGA	· · · · · · · · · · · · · · · · · · ·	CGCAGAGTGG	TGCCCATGTT	•	3550
GATATCATGG GAAACTTTG			GGGTTGCCGC		3600
CGGAGGTAAC GGGTCTGAT			TCTGGCATAT		3650
TTGAATGGTC GGAGCGTAT			3685		

<210> 5 <211> 2427 <212> cDNA <213> Arabidopsis thaliana

<400> 5		•				<b>.</b> .
AGAAACAGCT CTTT	GTCTCT CI	CGACTGAT	CTAACAATCC	CTAATCTGTG		50
ጥጥርጥል አልጥጥር ርጥርር	RACGAGA TI	rtgacaaag '	TCCGTATAGC	TTAACCTGGT		100
TTAATTTCAA GTG	ACAGATA TO	GCCCCTTAT	TCATCGGAAA	AAGCCGACGG		150
AGAAACCATC GACC	CCCCCA TO	CTGAAGAGG	TGGTGCACGA	TGAGGATTCG		200
CAAAAGAAAC CAC	ACGAATC TI	CCAAATCC	CACCATAAGA	AATCGAACGG		250
ACCACCCAAC TGG	rcgtgca to	CGATTCTTG	TTGTTGGTTC	ATTGGGTGTG		300
TOTOTOTAL CTG	GTGGTTT · CT	TTCTCTTCC	TTTACAACGC	AATGCCTGCG		350
ACCTTCCCTC AGT	ATGTAAC GO	GAGCGAATC	ACGGGTCCTT	TGCCTGACCC		400
CCCCCCTCTT AAG	CTCAAAA A	AAGAAGGTC	TTAAGGCGAA	ACATCCTGTT	450	
ርጥርጥጥር <u>አጥጥር</u> ርጥር(	GGATTGT C	ACCGGTGGG	CTCGAGCTTT	GGGAAGGCAA		500
ACAATCCCCT CAT	CCTTTAT T	TAGAAAACG	TTTGTGGGGT	GGAACTTTTG		550
CTCAACTCTA CAA	AAGGCCT C'	TATGTTGGG	TGGAACACAT	GTCACTTGAC		600
AATCAAACTC CCT	TGGATCC A	GCTGGTATT	AGAGTTCGAG	CTGTATCAGG		650
<b>እርጥርርጥርርርጥ ርርጥ</b>	GACTACT T	TGCTCCTGG	CTACTTTGTC	TGGGCAGTGC		700
TO THE THE THE THE TENT OF THE	TGCACAT A	TTGGATATG	AAGAGAAAAA	TATGTACATG		750
COTOCATATO ACT	CCCCCCT T	TCGTTTCAG	AACACAGAGG	TACGTGATCA		008
GACTCTTAGC CGT	атсалал С	TAATATAGA	GTTGATGGTT	TCTACCAACG		850
GTGGAAAAAA AGC	асттата с	TTCCGCATT	CCATGGGGGT	CTTGTATTTT		900
CTACATTTTA TGA	AGTGGGT T	GAGGCACCA	GCTCCTCTGG	GTGGCGGGG		950
TGGGCCAGAT TGG	TOTOCOL A	GTATATTAA	GGCGGTGATG	AACATTGGTG	1000	
GACCATTTCT TGG	TOTOCIZE I	AAGCTGTTG	CAGGGCTTTT	CTCTGCTGAA		1050
CONTRACTOR TO	בר אבייייבר כ	TACACCGATT	GCCCCAGGAT	TCTTAGACAC		1100
CGATATATTT AGA	CTTCAGA C	CTTGCAGCA	TGTAATGAGA	ATGACACGCA		1150
CAMCCCACTC AAC	ላ አጥርጥርጥ እ	TOTTACCGA	AGGGAGGTGA	CACGATATGG		1200
GCGGGGCTTG ATT	PECTENCY C	CAGAAAGGC	CACACCTGTT	GTGGGAAAAA		1250
CCXXXXCXXC XXC	TONNACTO C	TOTAL AGE	AGGTGAAAAC	GGAGTTTCCA		1300
AGAAAAGAAC AAC	DOMESTIC C	CA ACCATCA	TATCTTTTGG	GAAAGAAGTA		1350
GCAGAGGCTG CGC	TARCIAI (	ጥል ልጥል ልጥጥልድ	ATTGATTTTC	GAGGTGCTGT		1400
CAAAGGTCAG AG	TONICION C	ልጥር <u>ልር ልርርጥ</u> ር	TCGTGACGTG	TGGACAGAGT		T#20
				ሮው እሞ እአርርጥር		1500
ACCATGACAT GGG TACACTGCTG GTG	SWALLGCI (	AC ATOTACTA	CATTATGTTG	CTCCTAAGAT		1550
GATGGCGCGT GG	PARGCIAI A	℧ℋℋ℈℡℄ℒℒ℄ ℷ	TGGAATTGCT	GATGATTTGG		1600
ATGACACCAA GT	1GCCGC1C 4	CCC & & & TACT	GGTCAAATCC	GTTAGAGACA		1650
AAATTACCGA AT	WICWWGWI /	CÀTICA DATIC	י מידים ביטים פי	ACGGAGTGGG		1700
GATACCAACG GA	3003003M	y Comy wy Cy y	CCTTAACCAC	TCTCCCGACA		1750
GATACCAACG GAL GTTGCATCCC CT	MUCAGUAI A	ውሙር ያ ርውጥር ውር ያርርያ ተጽተማርጭ	CTCACGAGG	GGACGAAGAT		1800
AGCTGTCTGA AA	TTCAGATA	TICACTICIC	CATEGEGATO	AAACAGTACC		1850
CGTCCTAAGT GC	GCAGGAGI	11WCWW1G1G	ACCGTGGCG	GGCAAGACAA		1900
GATTCAACCC TT	CGGGTACA	TGTGTGCTGC	TAACACAAT!	CAATCACTCT		1950
CCGCCGGCTA AC	CCGGAATC .	MAGACITATA	i acceacaem	GTGCCCATGT		2000
TGATATCATG GG	CIGITGGA .	AGGGGGGGGGG	ACACACACATO	2 AGGGTTGCCG	•	2050
TGATATCATG GG CCGGAGGTAA CG	AAACTTTG	A MA CO A CATO	ACCACCTCC	CTCTGGCATA		2100
CCGGAGGTAA CG	GGTCTGAT	MCACCHCA AC	, WCCWGGICC	r Carcarerer		2150
TTTGAATGGT CG	GAGCGTAT	TGACCTGAAC	2	A ARRIGATOR		2200
TTAAGCTGTC CT	GTCAGCTT	ATGTGAATC	MATACITIES	A CTCACAAACA		2250
ATCATCAATT CA	TCATCATC	GTCATCATCA	P COURSONSON	TOTOGONAGA		2300
AGCCTGAGAA TG	ATACTTTG	GIGUGAAA'I''	T. CICHMINCC	Y VCCVMYVCVC		2350
CTTATTGAAT GT	AAATTATA	CAATCCTATC	TAATGTTIG	y wegytwwewe		2400
AAAACTTGCT GC	NGCCATGT	TIGITITGIC.	I TGTCHMAAG	2427		
GGGTTAAAAA AA	AAAAAAA	AAAAAA		4341		

<210> 6				***		
<211> 671						
<212> PRT		•				
<213> Arabid	lopsis thal	iana				
			•			
<400> 6					50	
MPLIHRKKPT E	EKPSTPPSEE	VVHDEDSQKK	PHESSKSHHK	KSNGGGKWSC	= =	
IDSCCWFIGC \		LYNAMPASFP			100	•
KEGLKAKHPV V	VFIPGIVTGG	LELWEGKQCA	DGLFRKRLWG	GTFGEVYKRP	150	
LCWVEHMSLD 1	NETGLDPAGI	RVRAVSGLVA	ADYFAPGYFV	WAVLIANLAH	200	
IGYEEKNMYM A				STNGGKKAVI	250	
VPHSMGVLYF I		APLGGGGGPD	WCAKYIKAVM	NIGGPFLGVP	300	
	AKDVAVARAI		RLOTLOHVMR	MTRTWDSTMS	350	
		HTCCGKKQKN			400	
GRMISFGKEV .				WTEYHDMGIA	450	
~	YTAGEAIDLL			DDLDDTKYQD	500	
<b>U</b>				SPDSCIPFQI	550	
	KLPNAPEMEI				600	
	SCLKAGVYNV	DGDETVPVLS	AGYMCAKAWR		650 650	
	PPANLLEGRG			RVAAGGNGSD	050	
IGHDQVHSGI	FEWSERIDLK	L .	671	•		

<210> 7 <211> 643 <212> cDNA <213> Zea mays <221> CDS <222> (1)..(402)

GAT GAA ACT GTT CCA GTT CTT AGT GCG GGC TAC ATG TGT GCG AAA GGA 96. Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 30

TGG CGT GGC AAA ACT CGT TTC AGC CCT GCC GGC AGC AAG ACT TAC GTG 144
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45

AGA GAA TAC AGC CAT TCG CCA CCC TCT ACT CTC CTG GAA GGC AGG GGC 192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60

ACC CAG AGC GGT GCA CAT GTT GAT ATA ATG GGG AAC TTT GCT CTA ATT 240 Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80

GAG GAC GTC ATC AGA ATA GCT GCT GGG GCA ACC GGT GAG GAA ATT GGT 288 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

GGC GAT CAG GTT TAT TCA GAT ATA TTC AAG TGG TCA GAG AAA ATC AAA 336 Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110

TTG AAA TTG TAA CCTATGGGAA GTTAAAGAAG TGCCGACCCG TTTATTGCGTTCC 391 Leu Lys Leu 115

AAAGTGTCCT GCCTGAGTGC AACTCTGGAT TTTGCTTAAA TATTGTAATT TTTCACGC 449
TTCATTCGTC CCTTTGTCAA ATTTACATTT GACAGGACGC CAATGCGATA CGATGTTG 507
TACCGCTATT TTCAGCATTG TATATTAAAC TGTACAGGTG TAAGTTGCAT TTGCCAGC 565
TGAAATTGTG TAGTCGTTTT CTTTACGATT TAATANCAAG TGGCGGAGCA GTGCCCCA 623
AGCNAAAAAA AAAAAAAAAA AAAAAAAAAA 643

<210> 8 <211> 115 <212> PRT

<213> Zea mays

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val 35 40 45

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110

Leu Lys Leu 115

<210> 9		
<211> 616		
<212> cDNA		
<213> Neurospora crassa		
<400> 9		
ggtggcgaag acganggcgg aagttggag	g ctaacgagaa tgacnctcgg	50
agatggatct accetetaga gacacgact	a centigeace cageeteaag	100
gtntacngtt tntatgggta ggaagccga	c ggagcgagcc tacatctatc	150
tggcgcccga tcccgggacg acaacgcat		200
actitigactn aggggcacat tgaccacgg	r gtgattttgg gcgaaggcga	250
tggcacagtg aaccttatga gtttggggt	a cototocaat aaggggtgga	300
aaatgaagag atacaatcct gcgggctca	a aaataaccut quicqaqatu	350
aaatgaagag atacaatett gegggetta	a adatadeege ggeegagaeg	400.
ccgcatgaac cagaacggtt caatccgag	a gyayyyccya atacygogya	450
tcacgtggat attctaggaa ggcagaatc	t addressed acceptant	500
tggcggcagg tcgaggcgat acaattgag	g attitute tagradul	
cttaaatatg tagaaaaggt tgaaattta	at gaagagtaat taaatacggc	550
acataggtta ctcaatagta tgactaatt	ta aaaaaaaatt ttttttctaa	. 600
aaaaaaaaa aaaaaa	616	

<210> 10								
<211> 1562								
<212> genomic DNA								
<213> Arabidopsis thaliana								
-								
<400> 10	•							
ATGAAAAAA TATCTTCACA TTATTCGGTA GTO	CATAGCGA TACTCGTTGT 50							
GGTGACGATG ACCTCGATGT GTCAAGCTGT GGC								
TGATTCTGGT TCCAGGAAAC GGAGGTAACC AGG								
AGAGAATACA AGCCAAGTAG TGTCTGGTGT AG	CAGCTGGT TATATCCGAT 200							
TCATAAGAAG AGTGGTGGAT GGTTTAGGCT AT	GGTTCGAT GCAGCAGTGT 250							
TATTGTCTCC CTTCACCAGG TGCTTCAGCG AT	CGAATGAT GTTGTACTAT 300							
GACCCTGATT TGGATGATTA CCAAAATGCT CC	TGGTGTCC AAACCCGGGT 350							
TCCTCATTTC GGTTCGACCA AATCACTTCT AT	ACCTCGAC CCTCGTCTCC 400							
GGTTAGTACT TTCCAAGATA TATCATTTTG GG	ACATTTGC ATAATGAACA 450							
AAATAGACAT AAATTTGGGG GATTATTGTT AT	ATCAATAT CCATTTATAT 500							
GCTAGTCGGT AATGTGAGTG TTATGTTAGT AT								
GTGATTTTCC ATTTTAAATG AAGCTAGAAA GT								
CTATGTCATG AGAATTATAA GGACACTATG TA								
GGTTTGATTT GCAGAGATGC CACATCTTAC AT								
TCTAGAGAAA AAATGCGGGT ATGTTAACGA CC								
CATATGATTT CAGGTACGGC CTGGCTGCTT CG	GGCCACCC GTCCCGTGTA 800							
GCCTCACAGT TCCTACAAGA CCTCAAACAA TT	GGTGGAAA AAACTAGCAG 850							
CGAGAACGAA GGAAAGCCAG TGATACTCCT CT	CCCATAGC CTAGGAGGAC 900							
- TTTTCGTCCT CCATTCCCTC AACCGTACCA CC	CCTTCATG GCGCCGCAAG							
TACATCAAAC ACTTTGTTGC ACTCGCTGCG CC	ATGGGGTG GGACGATCTC 1000							
TCAGATGAAG ACATTTGCTT CTGGCAACAC AC	TCGGTGTC CCTTTAGTTA 1050							
ACCCTTTGCT GGTCAGACGG CATCAGAGGA CC	TCCGAGAG TAACCAATGG 1100							
CTACTTCCAT CTACCAAAGT GTTTCACGAC AG	SAACTAAAC CGCTTGTCGT 1150							
AACTCCCCAG GTTAACTACA CAGCTTACGA GA	ATGGATCGG TTTTTTGCAG 1200							
ACATTGGATT CTCACAAGGA GTTGTGCCTT AC	AAGACAAG AGTGTTGCCT 1250							
TTAACAGAGG AGCTGATGAC TCCGGGAGTG CC								
GAGAGGAGTT GATACACCGG AGGTTTTGAT GT								
ATAAGCAACC AGAGATTAAG TATGGAGATG GA								
GCGAGCTTAG CAGCTTTGAA AGTCGATAGC TT								
TGGAGTTTCG CATACATCTA TACTTAAAGA CO								
TTATGAAGCA GATTTCAATT ATTAATTATG AA								
GTCAATGAAT GA	1562							

<211> 3896

<210>-11

<212> genomic DNA <213> Arabidopsis thaliana <400> 11 ATGGGAGCGA ATTCGAAATC AGTAACGGCT TCCTTCACCG TCATCGCCGT TTTTTTCTTG ATTTGCGGTG GCCGAACTGC GGTGGAGGAT GAGACCGAGT 150 TTCACGGCGA CTACTCGAAG CTATCGGGTA TAATCATTCC GGGATTTGCG TCGACGCAGC TACGAGCGTG GTCGATCCTT GACTGTCCAT.

GGACTTCAAT CCGCTCGACC TCGTATGGCT AGACACCACT AAGGTCCGTG.

GGTCGAGTCA CTTGTTGATG TCGACGCAGC TACGAGCGTG GTCGATCCTT GACTGTCCAT ACACTCCGTT 250 1050 1100 TCAGGCTAAT GTCTTTTATC TTCTCTTTTT ATGTAAGATA AGCTAAGAGC TCTGGTCGTC TTCCTTTTTG CAGGTTGACC TTTGAAACTG CTTTAAAACT TCTGGTCGTC TTCCTTTTG CAGGTTGACC TTTGAAACTG CTTTAAAACT 1100
CCGTGGCGCC CCTTCTATAG TATTTGCCCA TTCAATGGGT AATAATGTCT 1150
TCAGATACTT TCTGGAATGG CTGAGGCTAG AAATTGCACC AAAACATTAT 1200
TTGAAGTGCC TTGATCAGCA TATCCATGCT TATTTCACCG 1250
CCTACTATCC TTAAGTTACC ATTTATTTT TCTCTAATT GGGGGAGTTA 1300
TGTTGTGACT TACTGGATG AGCTCGATAC CTGATTTGTT GTTGATTTAG 1350
GAGCTCCTCT TCTTGGTTCT GTTGAGGCAA TCAAATCTAC TCTCTCTGGT 1400
GTAACGTTTG CCCTTCTGT TCTGAGGGC ACCTCTGACT TCTCTCTGT 1400
GTAACGTTTG CCCTTCTGT TTCTGAGGTG ACCTCTGACT TCTCTTTAGT 1450
TTTAAGTAGT TGATATCAAC CAGGTCTTAT AACTCACGG ATTTTCCTTT 1500
TGAAAGTATT ACTTTTGTTA ATTGAACTGC TGTACGCGAT ATTGTTCTT 1500
TGAAAGTATT ACTTTTGTTA ATTGAACACA ATATTCTGGG TAGTATCTG 1550
TTCAGAGTATT TATGGTAGAC TTAAACACAAACC ACATGTACCA TGATTTACTT 1650
TTCAGATTAT TATGGTAGAC TTAAACTTCA ACATGTACCT TGACTGAAAT 1700
CTTTTTATTT TAATAGGCTA TGATTTGTT ATTGAAAACCA TCAATGTACAC TGATTTAGTT 1650
TGCAAAGAAA GATACACAAACC ACATCTGG GAACACAAAC TGATTTAGTT 1650
GGTTGTTGC CAATTCTTTT GCGTCGTCAT TGGAGCAAAT 1700
CTTTTTATTT TAATAGGCTA TGATTTGTT ATTGAAAACCA TGGAACACAA TGGAACATAT 1750
GGTTGTTGC CAATTCTTTT GCGTCGTCAT TGGCGTTAT GGCATTTCA 1850
AGAATTGCA AGGGTGATAA CACATTCTGG ACGCTTCAG GGAACTGCT 1800
GGTTGTTGC CAATTCTTTT GCGTCGCCA TGATGAAGA GAATATTAT TAACACTAAC AAAACTTTCC 1800
TGCAAAGAAA GATAAGCGCG TATACCACTG TGATGAAGAG GAATATCAAT 1950
CCAACAAATATTC TGGCTGGCCG ACAAATATTA TAACACTAAC AAAACTTCC 2000
ACTAGCGGTT AGACTCTGA ATTCCTTCC TTTGATGTGT ATTCCATCAC 2000
ACTAGCGGTT TCACTCTCAT ATTTCCTTCC TTTGATGTGT ATCCATCAC 2100
TCCAACAAACA GCTCTAGTC AAATGCTCC TTTGATGGAC TAACCACTAC AAAAGTTTCA 2250
CCCCTTTTGTC TTTCACAGCC AGATAGCAAA AGAGTTACC CAATGAACA ACAGTTCAA 2250
GAACTGCTT CTTTCTTTG TGATAACAAA AAATGCTTCA ACCACTTAAA 2250
GAATGAACA ACTTTCTTTT CTTACTATAA AATTCCTTTC CTTTTCAATAA 2250
GAATGAACA CTTTTCTTTT CTTACTATAA AATTCCTTCC TATATCAAT ACCACTTAAA A CCGTGGCGC CCTTCTATAG TATTTGCCCA TTCAATGGGT AATAATGTCT 1150 CCTTATTATT GATTATCAGT TCTCTCCTTA TATTATGGAA TGTCTTTTTC GTTTACAGTT ATGAATGCAA AAGGGGGTAT TTTAGTTGAT TGATTCTCTC
ATTCTCTAGT TTGTTTTGAC TAATAGCGTC AATTTTGTT TTCTAGCAAA
TCTTTGTGAA TTATATATAA CATGCTAACT ATACTTTTCA GGTTGTATCA
TGATGACCCT GTTTTTAATC CTCTGACTCC TTGGGAGAGA CCACCTATAA
AAAATGTATT TTGCATATAT GGTGCTCATC TAAAGACAGA GGTATGATGC
ATTCTCAATA TCACATTATG CGTTGACTTT GTTATTATAT TCCCCATTTG 2650 GTTTGCAATA TCTTTTTGAA TTATGATTTA TCTTCTCCCT TGCATCTTAT GCTATTAAGC GTTAAAGGTA CTAAATGTAT GAAGCTGTCT GTCATAGGTT

GGTTÄTTÄCT	MMCCCCCC A AC	TCCCAAACCT	TATCCTGATA	ATTGGATCAT		2900
	ATTTATGAAA	CTGAAGGTTC	CCTCGTGTCA	AGGTAATTTT		2950
0000	AGAAGTAAAA	CAGGAAGGCA	AAGTCTTCTG	TATCAGTCTA		3000
CCGCAATGGC	**	CAGGAAGCAAA		ACTAAAATTT		3050
GTGGCATGTT	ATCTCAGTTG		AGTGGATGAT	CAGTGGCTTA		3100
AAGTACTTTT		TTTTGAGCTT	CACTTGTATC	AAAGATAACT		3150
AAGTGGGAAG	AGGTGTTGCA	TGAAACATGA	<del></del>			3200
AGCAAAACAA	AACTAACCCA	TTTCTGAATT	TCATATTATT	AGGAGTAGTC		
GTGCTTTTAA	AAAATTTGTT	TTAAGAAACC	GAAAAACTAG	TTCATATCTT		3250
GATTGTGCAA	TATCTGCAGG	TCTGGAACTG	TGGTTGATGG	GAACGCTGGA	3300	
CCTATAACTG	GGGATGAGAC	GGTAAGCTCA	GAAGTTGGTT	TTGAAATTAT		3350
CTTCTTGCAA	ACTACTGAAG	ACTAAGATAA	TACTTGCTTC	TGGAACACTG		3400
CTTGCTATGT	TCTCTAGTAC	ACTGCAATAT	TGACTCTCCG	CTACTTTTAT		3450
TGATTATGAA	ATTGATCTCT	TATAGGTACC	CTATCATTCA	CTCTCTTGGT		3500
	GCTCGGACCT	AAAGTTAACA		TCCCCAGGTA		3550
GCAAGAATTG				GTGTACTTTT	•	3600
CTCTTTTTTA						3650
CTGGTTATGT						3700
TCTCTGTACT						3750
GAAAATAAAA	CAACAGCCAG					3800
TAAATGTTGA	TCATGAGCAT	GGGTCAGACA				
GCACCAAGGG	TTAAGTACAT	AACCTTTTAT			2226	3850
GGGGAAGAGA	ACCGCAGTCT	GGGAGCTTGA	. TAAAAGTGGG	TATTAA	3896	

	<210> 12						
	<211> 709						
	<212> cDNA						
	<213> Lycope	rsicon escul	entum				
	<400> 12					50	
	CTGGGGCCAA	AAGTGAACAT	AACAAGGACA	CCACAGTCAG	AGCATGATGT	. 50	
	TCAGATGTAC	AAGTGCATCT	AAATATAGAG			100	
	CATTCCCAAT	ATGACAAAGT	TACCTACAAT	GAAGTACATA	ACCTATTATG	150	
	AGGATTCTGA	AAGTTTTCCA	GGGACAAGAA	CAGCAGTTTG	GGAGCTTGAT	200	
	AAAGCAAATC		TGTCAGATCT	CCAGCTTTGA	TGCGGGAGCT	250	
	GTGGCTTGAG			TGATAAAAAG	TCCAAGTTTG	300	
		TGGTGTCTGA		TTTCTTCTAT		350	
	GTTTGTATTG	•••		AAAAGCAAAG	CGTGGGCCTC	400	
		GGACTGCTAT			ATGTGCATGG	450	
•	GCTGAACATT	GTGAATACAG		TCAAATTATA	TTTTGCAAAA	500	
	TATTCTCTTT			TCCCCGGTCA	CAACGATGCA	550	
	GATATGTATT		CACCTGGGAC	AGAGTTGCAG	ATTGAAGAGT	600	
	0	ACATCCTGTC	ACACTATGTG	TGATATTTAA	GAAACTTTGT	650	
		AACAAGTTTG		TGAAGAAGAA	AGCGAAATGA	700	
	TTCAGAGAG			709	)		
	トナイセのひのひつ						

<210> 13

<211> 623 <212> PRT

<213> Schizosaccharomyces pombe

<400> 13

MASSKKSKTHKKKKEVKSPIDLPNSKKPTRALSEQPSASETQSVSNKSRKSKFGKRLNFILGAILGICGA70 FFFAVGDDNAVFDPATLDKFGNMLGSSDLFDDIKGYLSYNVFKDAPFTTDKPSQSPSGNEVQVGLDMYNE140 GYRSDHPVIMVPGVISSGLESWSFNNCSIPYFRKRLWGSWSMLKAMFLDKQCWLEHLMLDKKTGLDPKGI210 KLRAAQGFEAADFFITGYWIWSKVIENLAAIGYEPNNMLSASYDWRLSYANLEERDKYFSKLKMFIEYSN280 IVHKKKVVLISHSMGSQVTYYFFKWVEAEGYGNGGPTWVNDHIEAFINISGSLIGAPKTVAALLSGEMKD350 TGIVITLNILEKFFSRSERAMMVRTMGGVSSMLPKGGDVAPDDLNQTNFSNGAIIRYREDIDKDHDEFDI420 DDALQFLKNVTDDDFKVMLAKNYSHGLAWTEKEVLKNNEMPSKWINPLETSLPYAPDMKIYCVHGVGKPT490 ERGYYYTNNPEGQPVIDSSVNDGTKVENGIVMDDGDGTLPILALGLVCNKVWQTKRFNPANTSITNYEIK560 HEPAAFDLRGGPRSAEHVDILGHSELNEIILKVSSGHGDSVPNRYISDIQEIINEINLDKPRN 623 <210> 14

<211> 432

<212> PRT

<213> Arabidopsis thaliana

<400> 14
MKKISSHYSVVIAILVVVTMTSMCQAVGSNVYPLILVPGNGGNQLEVRLDREYKPSSVWCSSWLYPIHKK70
SGGWFRLWFDAAVLLSPFTRCFSDRMMLYYDPDLDDYQNAPGVQTRVPHFGSTKSLLYLDPRLRDATSYM140
EHLVKALEKKCGYVNDQTILGAPYDFRYGLAASGHPSRVASQFLQDLKQLVEKTSSENEGKPVILLSHSL210
GGLFVLHFLNRTTPSWRRKYIKHFVALAAPWGGTISQMKTFASGNTLGVPLVNPLLVRRHQRTSESNQWL280
LPSTKVFHDRTKPLVVTPQVNYTAYEMDRFFADIGFSQGVVPYKTRVLPLTEELMTPGVPVTCIYGRGVD350
TPEVLMYGKGGFDKQPEIKYGDGDGTVNLASLAALKVDSLNTVEIDGVSHTSILKDEIALKEIMKQISII420
NYELANVNAVNE
432

<210> 15

<211> 552

<212> PRT

<213> Arabidopsis thaliana

<400> 15

MGANSKSVTASFTVIAVFFLICGGRTAVEDETEFHGDYSKLSGIIIPGFASTQLRAWSILDCPYTPLDFN70
PLDLVWLDTTKLLSAVNCWFKCMVLDPYNQTDHPECKSRPDSGLSAITELDPGYITGPLSTVWKEWLKWC140
VEFGIEANAIVAVPYDWRLSPTKLEERDLYFHKLKLTFETALKLRGGPSIVFAHSMGNNVFRYFLEWLRL210
EIAPKHYLKWLDQHIHAYFAVGAPLLGSVEAIKSTLSGVTFGLPVSEGTARLLSNSFASSLWLMPFSKNC280
KGDNTFWTHFSGGAAKKDKRVYHCDEEEYQSKYSGWPTNIINIEIPSTSARELADGTLFKAIEDYDPDSK350
RMLHQLKKYVPFFVIRNIAHRSSLAGFLLYHDDPVFNPLTPWERPPIKNVFCIYGAHLKTEVGYYFAPSG420
KPYPDNWIITDIIYETEGSLVSRSGTVVDGNAGPITGDETVPYHSLSWCKNWLGPKVNITMAPQILIGKI490
KQQPEHDGSDVHVELNVDHEHGSDIIANMTKAPRVKYITFYEDSESIPGKRTAVWELDKSGY
552

10

15 <170> PatentIn Ver. 2.0 <210> 10 <211> 661 <212> PRT <213> Saccharomyces cerevisiae Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 25 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly 45 30 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 35 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 40 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val . 45 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ale Gly Asn 50 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 150 Lys Glm Leu Leu Arg Asp Tyr Asm Ile Glu Ale Lys His Pro Val Val 55 Met Val Pro Gly Val Ile Sar Thr Gly Ile Glu Ser Trp Gly Val Ile Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 60 _ 20G

Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215	,
5 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Ash 240	
Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 255 245	
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265	
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 285	
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 300 290 295	
20 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys 325	
Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Tr 335	
Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Va 340	
Asn Glu His Tie Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gl 365 30 355	
Ala Pro Lys Ala Vel Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Ti 380 370	
35 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe S 395 385 390 390 395	
Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro S 415	
Met Leu Pro Lys Gly Glu Glu Val Tie Trp Gly Asp Met Lys Ser 3	
Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe : 445	
Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr 450 450	
50 Lys Asp Ala Ile Ash Met Thr Leu Ser Ile Ser Pro Glu Trp Leu 475 455	
Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu 495 485	
Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro 500	
Glu Val Pro Leu Pro Glu Ala Pro Eis Met Lys Ile Tyr Cys Ile 60 515	.īĀΞ

	Gly	Val	Asn	Asn	Pro	The	Glu 535	Arg	Ala	īAī	Val	Ty= 540	Lýs	Glu	Glu	ASŢ	•	
5	545		Ser	Ala		220	Leu							•				
				ı Thr	200													
10				5 Lys	J	•												
15			59	l Th: S				0.0	•									
		61	.0	an Ye			0 1	_										
20	62	5				. 63	U											
	Le	u V	al G	Lu Pr	0 AI 64	g Gl 5	n Le	u Se	er As	sn Le	eu 56 50	er G	Lii La	- <u>-</u> - • ·	5	55		
25	Мє	t P	ro P	ne Pa	ro Me 60	et												
30	<:	211>	2 <i>Q</i> 387															
	<: <:	212> 213>	PRT Ara	bido	psis	the	lian	a .							•			
35	< < V	213> 400> al (	Ara 2 Sly S	bido Ser A	Asn V	'al T 5	yr P	ro L										
	< < V	213> 400> al (	Ara 2 Sly S	bido	Len V	'al T 5	yr P	ro L										
	< V 	213> 400> al ( 1 sn (	Ara 2 31y 5 31n 1	Dido Ser P Leu ( Ser	isn V 21u V 20 Ser '	'al T '5 'al A Trp I	yr F Eg I	ro I Leu ! Tyr !	Asp A	arg ( 25	Glu T His I	Lys :	rās Tās	ero Ser 45	Ser 30 Gly	Ser Gly	Val T=p	
4(	< V 	213> 400> al ( 1 sn (	- Ara - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	Dido Ser A Leu ( Ser : 35	Asn V Slu V 20 Ser 1	al T 5 /al A frp I	yr F Ig I Ieu !	ro I Lau ! Tyr ! Ala :	Asp A	Arg ( 25 Ile :	Glu T His I Leu T	ren Tan I	eo Pra Pra	ero Ser 45	Ser 30 Gly Phe	Ser Gly Thr	Val Trp Arg	
4(	V V	213> 400> al ( 1 sn (	- Ara - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	Dido Ser P Leu ( Ser	Asn V Slu V 20 Ser 1	al T 5 /al A frp I	yr F Ig I Ieu !	ro I Lau ! Tyr ! Ala :	Asp A	Arg ( 25 Ile :	Glu T His I Leu T	ren Tan I	eo Pra Pra	ero Ser 45	Ser 30 Gly Phe	Ser Gly Thr	Val Trp Arg	
40	V V V V V V V V V V V V V V V V V V V	213> 400: al ( al ( asa ( exp) Prop Prop Tyr	Ara 2 Sly Sln Cys Arg 50 Phe	Dido Ser A Ser Ser Leu Ser	Isn V 20 Ser  Trp Asp	ral Try I Phe Arg	yr F Fg I Leu ! Asp : Met 70 Gly	Pro L Lyr ! Ala : 55 Met	Asp A 40 Ala Leu Glm	Arg (25) Ile: Val Tyr	Glu T His I Leu : Tyr Arg	Lys : Leu Asp 75	Pro Pro Pro	Ser 45 Pro Asp	Ser 30 Gly Phe Leu	Gly Thr Asp Gly 95	Val Trp Arg Asp 80 Ser	
40	V V V V V V V V V V V V V V V V V V V	213> 400: al ( al ( asa ( exp) Prop Prop Tyr	Ara 2 Sly Sln Cys Arg 50 Phe	Leu (Ser Asn Ser Ser	Len V 20 Ser  Trp Asp Ala Leu 100	Phe Arg	yr F Eg I Jeu S Asp Met 70 Gly	ro L Leu F Ala 55 Met Val	Asp Asp	Arg (25) Tle : Val Tyr Thr	Glu T His I Leu : TY= Arg 90	Lys Leu Asp 75 Val	bro bro FAs	Ser 45 Pro Asp Kis	Ser 30 Gly Phe Leu Phe	Gly Thr Asp Gly 95	Val Trp Arg Asp 80 Ser	
40	V V V V V V V V V V V V V V V V V V V	213> 400: al ( al ( asa ( exp) Prop Prop Tyr	Ara 2 Sly Sln Cys Arg 50 Phe	Leu (Ser Asn Ser Ser	Len V 20 Ser  Trp Asp Ala Leu 100	Phe Arg	yr F Eg I Jeu S Asp Met 70 Gly	ro L Leu F Ala 55 Met Val	Asp Asp	Arg (25) Tle : Val Tyr Thr	Glu T His I Leu : TY= Arg 90	Lys Leu Asp 75 Val	FA2 PLO BLO PLO FA2 FA2	Ser 45 Pro Asp His Asp	Ser 30 Gly Phe Leu Phe Ala 110	Ser Gly Thr Asp Gly Thr	Val Trp Arg Asp 80 Ser	

	Ala 145	Ala	a S	ier	Gly	His	Pro 150	Ser	Arg	V.	al A	Ala	Ser 155	Gln	Phe	Leu	Gln	Asp 160	) 
5	Leu	Ly	s C	iln	Leu	Val 165	Glu	Ŀys	Thr	: S	er :	Ser 170	G1u	Asn	Glu	Gly	Lys 175	Pro	•
	Val	Il	e I	Leu	Leu 180	Ser	His	Ser	Lev	ı G 1	1y 85	Gly	Leu	Phe	Val	Leu 190	His	Phe	<b>2</b>
1Ò	Leu	As	n i	Arg 195	Thr	Thr	Pro	Ser	T:1	A q O	zā	Arg	Lys	Tyr	11e 205	Lys	His	Pho	е
	Val	Al 21	a. 0	Leu	Ala	Ala	Pro	7rp 215	Gl	Ϋ́	ŢY	Thr	Ile	Ser 220	Gln	Met	Lys	Th	r
15	Phe 225	Al	La	Ser	G1y	Asr	Thr 230	Leu	Gl:	v. t	/a1	Pro	Leu 235	. Val	Asn	Pro	Leu	Le 24	น .0
) 20						24:	•					230		Gln					
	Ser	T	hr	Ļys	Va. 260	Phe	e His	a As	A.	g '	rhr 265	· Lys	520	Leu	Val	. Val 270	Thi	Pr	.0
25	Glr	ı V	al	Asn 275	Ty	r Thi	r Ala	a Ty	r G1 28	Lu 1 30	Met	Asg	Arg	Phe	285	a Ala	a Asj	o Il	le.
	G1 <u>3</u>	? P 2	he 90	Ser	: Gl	a Gl	y Và	l Va 29	1 P: 5	ro	TYX	Lys	Thi	200 300	y Val	Le	ı Pr	o Le	eu
30	<u>Th:</u>		lu	Glu	ı Le	u Me	t Th 31	r Pr O	o G	ly	Val	Pro	7 Va.	l Thi	c CA	s Il	е Ту	r G:	1 <u>v</u> 20
35	A=	<b>⊊</b> 0	ĮУ	Va.	l As	р Тh 32	≃ 9x 5	o Gl	u V	al	Leu	. Ма 33	: Ту 0	r Gl	Y LY	s Gl	33 Y Gl	y P 5	he
	As	⊋ I	īÀ2	Gl	n Pr 34	o G1	u Il	e Ly	rs T	λ=	Gly 345	AS	p Gl	y As	o Gl	y Th 35	r Va O	1 A	.sn
)40	La	eu 1	Ala	Se 35	r Le S	eu Al	.a Al	la Le	eu L 3	ys 60	Va.	l As	p Se	r Le	u As 36	n Th	≖ Vē	al G	lu
- د	=1		As:		y Va	al S	er H	Ls T:	nr 5 75	er	Il:	e Le	u Ly	s As 38	p G1	u Il	e A	la I	'ęπ
45	<u> 1</u> 2		Glı	ı Il	e			· ·											
50	<: <:	211 212	> : > :	3 () 3 8 9 PRT Prair	oido	psis	<u> </u>	<u>lian</u>	e.							•			
55	2	400 eu 1	> Ly	i S Ly	rs G	lu G	ly L	eu L	λa :	<u> Li</u> a	Ly	s H	Ls P: LO	ro Va	il Va	al Pi	ne I	le : 15	Pro
60		ly.	Il	e Va	ll m	h= G 20	ly G	ly L	eu (	Glu	. Le	n T: 5	⊋ G	lu Gi	ly Ly	ys G	<u>ln</u> C 30	vs .	Ala

	Asp	Gly	Le:	u P 5	he l	A <u>≍</u> g	īуs	Arg	Leu 40	T:	rp (	GŢĀ	Gly	Thr	Phe 45	Leu	C2	rs T	,zō
5	Val	Glu 50	Hi	s M	let :	Ser	Leu	Asp 55	Ası	ı G	lu '	Thr	Gly	<u>Беи</u> 60	qsA	bro	A_	la (	ly
	65						Val 70												
10						85	متتک					70							
1.2					100		Asn			_									
15			.1.	15			G1u		12	0									
20		13	0				Val	133	)						•				
	145						Gly 150	l						,					
25						165						. 11	•						
30					180	)	Ala				# 0 D	•							
30			1	195			l Ala		2	UU						_			
35		2:	10					21							_				GlÀ
	22	5					23	U						_					Asr. 240
40						24	.5					2.3							
45					26	Q					20.	J				_			: Ile
40				275	•				4										: Cys
50		2	90					2:	# 3					•	••				· Val
	Le 30	eu S	er	Ala	e Gl	y Ti	/= M¢ 3∶3	et Ci LO	ys 1	<u>lla</u>	Ly	s Al	La To	rp A1 L5	rg G	ly L	ΥS		320
55						3:	2=					•	-						s Ser
4-		ro B	Pro	Al:	a As 34	n L	eu L	eu G	lu (	Sly	- <u>A-r</u> 34	च G: .5	ly m	ır G	ln s	er G	17 50	Al	a His
60	Va	al A	,eb	Ξl	e Ma	at G	ly A	en P	ne :	<u>l</u> e	La	n I	le G	la A	sp I	ie M	et	<u> </u>	g Val

	355 360 365	
	Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val His Ser 370 375	
5	Gly Ile Phe Glu Trp 385	. <b>'</b>
10	<210> 4Q. <211> 1986 <212> DNA <213> Saccharomyces cerevisiae	
15	<220> <221> CDS <222> (1)(1983)	
20	<400> 4 atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48 atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 15 10	1.
25	gat gaa aac aat aaa ggg ggt tot get cat aac aag cga gag agc aga 96 gat gaa aac aat aaa ggg ggt tot get cat aac aag cga gag agc aga 96 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg Asp Glu Asn 20	·.
30	aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt. 144 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly 45	
30	att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat tic gac agg 132 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 60	
3.5	aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg 240  aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg 240  Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu  70  75  80	
)4	O art the att out ggt gea the tha ggt graint the cong the age the 200 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 95	
. 4	ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336  [5] Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe  100  105	
	gta eat tit get toe oit eas gtg tet tig get get tigg eas get git 384  Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val  120  120	
. *	ctc cca caa ggt ata agt tog tot att gat gat att cag got ggt aac 432 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn	•
	tac tot aca tot tot tra gat gat occ agt gas aat tit got git ggt 480 tac tot aca tot tot tra gat gat occ agt gas aat tit got git ggt 480 Tyr Ser Tar Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Alæ Vai Gly Tyr Ser Tar Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Alæ Vai Gly 150	
	60 aaz caa cic tiz cgt gat tat aat atc gag gcc aaa cat cct gtt gta 528 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val	

					165					17	70					17	5		
5	atg g Met V	tt (	Pro	ggt Gly 180	gtc Val	att Ile	tct Ser	acg Thr	gg= Gl ₂ 185	•	tt g le C	raa Slu	agc Ser	tgg T <u>r</u> p	gga Gly 190	gt Va	t a 1 I	tt le	576
	gga g	gp	gat Asp 195	Gl <i>n</i> àsà	tgc Cys	gat Asp	agt Ser	tct Ser 200	gc	J C	at t is l	tt Phe	cgt Arg	aaa Lys 205	Arg	Le Le	g t u T	,tb aa	624
10	gga a	egt Ser 210	ttt Phe	tac Tyr	atg Met	ctg	aga Arg 215	1111	at Me	g g	tt a	atg Met	gat Asp 220	aaa Lys	gt: Val	: tg . C <u>\</u>	rt t	Lrp egg	67:2
15	ttg a Leu l 225	aaa Lys	cat His	gta Val	arg Met	tta Leu 230	ASD	Pro	ga Gl	a a u I	ca	ggt Gly 235	ctg Leu	gac	Pro	1 C	g (	aac Asn 240	720
20	ttt : Phe	Thr	Leu	Arg	245	Ala	. G11	נים י	, #±	3	250					2	55		768
25	gca Ala	Gly	TYI	260	) . TTE	i uzb	) AS	I TĀ	26	55					27	0			815
	GJ⊼ āāc	tat Tyr	gaa Glu 275	Pro	aat Ast	aaa a Lys	at Me	g ac t Th 28	, D	gt ( er .	gct Ala	gcg Ala	tat Tyi	ga: As: 28	_	g a	rg .ag	Leu	864
30	gca Ala	tat Tyz 290	Let	a ga 1 As	t ct	a ga u Gl	a ag u Ař 29	g Ai	g A	at sp	egg Arg	tac Ty:	Pho 30		g æē	g c rs I	en :cs	aag Lys	912
35	gaa Glu 305	cas Gli	e ato	c ga e Gi	a ct u Le	g tt u Ph 31	e ni	t ca s Gl	at rL	tg eu	agt Ser	ggt Gly 31:		a aa u Ly	e gr	et (	gt Cys	tta Leu 320	960
40	att Ile	gg:	a ca y Hi	t to s Se	t ater Me	g gg t Gl	t to y Se	et ca	ra s	ile	ato Ile 330		t ta e Ty	c to	t a E M	et :	aaa Lys 335	tgg	1008
45	gtc Val	ga Gl	g gc	.a Gi	ia gg iu Gl	'A Br	t c	et to	Y = 0	192 31 <u>y</u> 345	، تعدد	gg Gl	t gg y Gl	t co	rs s rs G . 3	gc ly 50	Trp	gtt Val	1056
:	aec Asn	ga LG1	e ce u Ki 33	ic at		at to sp Se	ia t er P	ne r	tt a le 1 60	let Lsn	gcs Ala	e gc e Al	a gg a Gl		eg c er L 65	tt eu	ctç Le:	: Gly	1104
50		c cc 1 Pr 37	e as		ca go la Vo	tt C: al P:	ro A	ct c la L 75	ta a eu :	lie Lie	agt Se:	c Gl	·	ea a Lu M	tg a et L	ys	gat Ast	acc Thr	1152
55	a:: 11:	ca a Gl		a a eu A	at a sn T	og t hr L 3	ta g eu A 90	cc a la M	tig et	Iy=	GT.	t tt y Le 39		aa a Lu L	ÀR E	ne	tt: Ph	2 5c3 2 Se2 400	1200
60			:t ga .e G:	ag a lu A	rg V	ta a al î 05	aa a ys M	cg T	22 eu	caa Gln	20 min		තු <b>ල</b> ්	rā e	gt a	12	227 41	e tca Sec S	1248

	atg cta cca aag gga gaa gag gtc att tgg ggg gat 209 tag ser Ser Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 430	1296
5	tca gag gat gca ttg aat aac act gac aca tac ggc act. The ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 435	1344
10	cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455	1392
15	aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 480	1440
) 20	aga aga gta cat gag cag tac tog tto ggo tat too aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 495	1488
	gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505	1536
25	gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	1584
30	ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 535	1632
35	545 550	1680
)40	gta ttc ctc acc gag ggg gac gga acc gtt ccg ctc gtg gcg cat tca Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 575	1728
	atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585	1776
45	att aac git act att gig gaa atg aaa cac cag cca gat cga tit gat Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600	.1824
50	) ata cgt ggt gga gca aaa agc gcc gaa cac gta gac atc ctc ggc agc Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser 610 620	1872
5ŝ	gog gag tig aac gat tac atc tig aas att goa ago ggt aat ggc gat	1920
. 60	cto goo gag com ogo cam tog tot amt tog ago cag tgg got tot cag hav Val Glu Pro Arg Gln Lew Ser Asn Lew Ser Gln Try Val Ser Gln 655	1968

atg ccc ttc cca atg taa Met Pro Phe Pro Met 660

	•		,	990												
5	<210><211><211><212><213>	> 66 > PS	1 T	romy	ces (	cere/	risi	ee								
10	<400: Met (				כ							•				
15				Asn 20												
··	Asn	His	11e 35	His	His	Gln	Gln	Gly 40	Leu	Gly	His	Lys	Arg 45	Arg	Arg	Gly 
. 20	Ile	Ser 50	Gly	Ser	Ala	Lys	Arg 55	Asn	Glu	Arg	Gly	Lys 60	Asp	Phe	qaA	Arg
25	Lys 65	Arg	Asp	Gly	Asn	G1y 70	Arg	Lys	Arg	Trp	Arg 75	Asp	Ser	Arg	Arg	Leu 80
	Ile	Phe	Ile	Leu	Gly 85	Ala	Phe	Leu	Gly	Val 90	Leu	Leu	Pro	Phe	Ser 95	Phe
30	GŢĀ	Ala	Tyz	His	Val	His	Asn	Ser	: Asp 105	Ser	'Asp	Leu	Phe	Asp 110	Asn	Phe
	Val	Asī	Phe 115	Asp	Se≕	. Ten	Lys	Val 120	TYI	Lev	ı Asp	Asp	125	FĀ2	Asp	Val
35	Leu	Pro 130	Glr	; GJŽ	, Ile	e Ser	Ser 135	Phe	e Ile	a Asi	jek o	140	Glr )	: Ala	. Gly	Asn.
40	Tyr 145	Se:	r Thi	r .Se:	: Se:	Leu 150	. As <u>:</u>	) As	p Le	ı Se:	r Glu 15	: As:	a Phe	e Ala	val	160
			a Le	u Lei	ı Arq 16	g Asi	Ty	r As	n Il	e G1	u Al: O	e Ly	s His	s Pro	17	l Val 5
45	Met	. Va	l Pr	o Gl; 18	y Va. O	1 Ile	e Se	r Th	= Gl	y Il 5	e Gl	u Se	r Tr	p G1; 19	y Va 0	i Ile
	Gly	/ As	D As 19		u Cy	s As	o Se	≖ S∈ 20	r Al 0	a Hi	s Ph	e Ar	g Ly 20	s Ar	g Le	u Trp
50	Gl:	y Sa 21	r Ph .C	e Ty	- Me	t.Le	u Ar 21	g irk	.≃ Me	et Va	l Me	t As 22	D LY	s Va	1 Cy	s Tir
55	Бе ¹ 22:	u Ly S	's Hi	s Va	<u>1 Me</u>	t Le 23	· As	בע מ	ro Ġ1	u Tì	ır Gl 23	y Le 5	et As	E Br	o Pi	co Asr 240
_ ,			I Le	eu Ar	;⊊ <u>A1</u> 24	a Al	a Gi	n Gl	Ly: Pi	1e Gi . 2:	Lu S∈ 50	er Ti	ir As	TY	2:	ne Il: 55
60	LA	z Gl	y Ty	/= T: 26	Il	.e T≃	y As	in Li	ys Va 25	al Pi 55	ne Gl	in As	sr. Le	eu Gl 27	.y Va 0	21 Il:

•																
	Gly	Tyr	Glu 275	Pro	Asn	Lys	Met '	Thr 280	Ser	Ala	Ala	Tyr	Asp 285	Trp	Arg	Leu
5	Ala	Tyr 290	Leu	qzA	Leu	Gľu	Arg 295	Arg	qeA	Arg	Tyr	Phe 300	Thr	Lys	Leu	Lys
10	Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	G1n	Leu	Ser	Gly 315	Glu	Lys	Val	Cys	Leu 320
10	Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	Ile 330	Phe	Tyr	Phe	Met	Lys 335	qıT
15	Val	Glu	Ala	Glu 340	Gly	Pro	Leu	TYT	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
)	Asn	Glu	His 355	Ile	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Lėu	Leu	GJĀ
20	Ala	Pro 370	Lys	Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	G1u 380	Met	Lys	Asp.	Thr
25	Ile 385		Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
4.3	Arg	Ile	Glu	Arg	Val 405	Lys	Met	Leu	Gln	Thr 410	Tro	Gly	Gly	Ile	Pro 415	Ser
30	Met	Leu	Pro	Lys 420		Glu	Glu	Val	11e 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
	Ser	Glu	Asp 435		Leu	Asn	Asn	Asn 440		Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
35	Yzg	9he		. Arg	Asn	Thr	Ser 455	Asp	Ala	Phe	Asn	Lys 460	Asi	. Leu	Thr	Met
)40	Ly≅ 465		Ala	lle	. Asn	Me: 470		Leu	Ser	' Ile	8e= 475	Pro	Glu	י תֵבב	Leu	Gln 480
/ <b>T</b> V	Arg	Arc	Val	. His	Glu 485		Tyr	: Ser	Phe	Gly 490	, TYZ )	Ser	Lys	a Asn	Glu 495	Glu
45	Glu	Leu	Arg	; Lys 500		Glu	Leu	. His	His 505		His	TIL	Se	510	Pro	Met
	Glu	. Val	. Pro	Leu G	Pro	Glu	Ala	Pro 520	His	Met	Lys	Ile	Ty: 525	Cys	: Ile	Tyr
<b>5</b> 0	Gly	7 Val		a Asn	. Pro	The	Glu 535		· Ala	Tyr	. Val	. Ty: 540	Lys	s Glu	Glu	. Asp
**	Asp 545		: Sez	: Ala	Leu	. Ass 550		Th=	· Iļa	e Ast	Ty:	Glu	Sei	. rva	Glr	920 560
55	Val	. Phe	e Leu	ı The	Glu 565		Asp	Gly	· Th:	Val 570	. Pro	Lau	. Val	Ala	His 575	Ser
60	Met	: Cys	His	580		Al=	Glo	Gly	Ala 585	Sez	?	Tyz	: Asi	9 PTC 590	Ala	. Gly

			595	Thr		•		900								
5	Ile	Arg 610	Gly	Gly	Ala	Lys	Ser 615	Ala	Glu	His	Val	Asp 620	Ile	Leu	GLY	Ser
	Ala 625	Glu	Leu	Asn	Asp	TYT 630	Ile	Leu	Lys	Ile	Ala 635	Ser	Gly	Asn	Gly	Asp 640
10	Leu	Va1	Glu	Pro	ATG 645	Gln	Leu	Ser	Asn	Leu 650	Ser	Gln	Trp	Val	Ser 655	Gln
15	Met	. Pro	) Phe	Pro 660												

```
SÉQUENCE LISTING
<110> Stymne Dr., Sten
<120>
<110>
 < 14U>
 <141>
 <150>
 <210> 1 by
 <211> 1986
 <212> genomic DNA
 <213> Saccharomyces cerevisiae
 <220>
) <221> CDS
 <2225 (1) .. (1983)
 atg ggo aca ong the oga aga aat gho ong aso cas sag agh gar not
  <4000 I
  Met Gly Thr Lou Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Sor
                                        10
  gat gan and ant ann ggg ggt tot get ont and ang ogn gag age agn
  App Glu Ann Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
                                    25
               20
  acc cat att cat cat cas cag ggs tte ggc cat asg aga aga agg ggt
  Asn His Ile Ris His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
                                40
            35 .
   att agt ggc agt gca att aga aat gag cgt ggc aza gat ttc gac agg
                                                                      192
   The Ser Gly Ser Ala Dys Arg Asn Glu Arg Gly Lys Asp Pho Asp Arg
                            55
        50
   sat aga gad ggg asd ggt aga aaa ogt ogg aga gat too aga aga otg
                                                                       240
   Ly: Arg Asp Gly Asn Gly Arg Dys Arg Trp Arg Asp Ser Arg Arg Deu
                                             75
                         70
    ES
   att the att out ggt ges the the ggt ges the the ore the ago the
    lie Pho Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe
                                          90
                     25
    SET GOT THE CAR GOT CAR AND AGO GAT AGO GRE TOG THE GAO ARE THE
    Gly Ala Tyr His Val His Ash Ser Asp Ser Asp Leu Phe Asp Ash Phe
                                                         110
                                    108
                100
```

gta ast tit gat toa ott sae gig tat tig gat gat tig ase gat git Val Asn Phe Asp Sor Leu Lys Val Tyr Leu Asp Asp Trp Lye Asp Val 115	364
Lou Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 130	432
tac ter aca tet ter ter gat gat ere agt gar aat tet ger get ggt Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145	430
ann can one the ogt get the est are geg got and out out yet year by: Gin Leu Leu Arg Asp Tyr Asn Ile Giu Alt Lys Ris Pro Val Val Lys Gin Leu Leu Arg Asp Tyr Asn Ile Giu Alt Lys Ris Pro Val Val Lys Gin Leu Leu Arg Asp Tyr Asn Ile Giu Alt Lys Ris Pro Val Val Lys Gin Leu Leu Arg Asp Tyr Asn Ile Giu Alt Lys Ris Pro Val Val Lys Gin Leu Leu Arg Asp Tyr Asn Ile Giu Alt Lys Ris Pro Val Val	520
ate got cat egt got att too ace egt att gos ago tes est tot Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180	<b>376</b>
Gly Veb Yeb Gln Che yeb eer eer Yru nie bye yed Tha yed ren iib Ber eus die die see Dre wat hur dud opr ens ode ees rud ofd fâd	624
ggs agt tit the stg etg aga aca atg gtt atg gat aas get tgt tgg Gly ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215	672
tig aas cat gos atg tim gat cot gos ace got etg gad cos cog bad Nov Lys His Val Net Lev Asp Pro Glu Thr Gly Lev Asp Pro Pro Aun 225 230 235	720
tot acg ota ogt goa goz cag ggo the gas tos act gat tat the ato Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 255	: 765 B
got ggg the tag att tag alo has gtt too cal hat one ggd gea att and cal had be ggd gea att and all gly Tyr Top Ile Top Ash Lys Val The Gln Ash Leu Gly Val Ile 255	t 515
ggo that gam doc and han dug and ago got got that gat the age of Gly Tym Glu Pro Asn Lys Met Thr Ser Ale Ale Tym Asp Tup Ang Le 275 280	t 864 u

Sea tat the gat che gas aga ego gat agg the tht beg and che mag 91  Ala Tyr Leu Asp Leu Clu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys  290 295 100	2
gas cas are gas etg the cat cas teg age ggs gas ass get tegt the 96 Glu Gln Ile Glu Leu Phe Ris Gln Leu Ser Gly Glu Lys Val Cys Leu . 305 310 315 320	
att ggs cat tot atg ggt tot dag att atc ttt tac tot by Trp Lie Gly Mis Ser Met Gly Ser Gla Ile Ile Phe Tyr Phe Met Lys Trp 335	
gtc gag gcu gas ggc cet ctt tac ggt sat ggt ggc cgc gag Val Val Glu Als Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val 345	.104
Asc gas car ata gat tea tto att ast ged ged ggg ang tot bes in Asc Glu His Ile Asp Ser Phe Ile Asc Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asp Ser Phe Ile Asc Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asp Ser Phe Ile Asc Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asp Ser Phe Ile Asc Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Ile Asc Asc Ala Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Asc Asc Ala Ala Ala Ala Gly Thr Low Deu Gly Asc Glu His Asc Asc Asc Asc Asc Asc Asc Asc Asc As	LISZ
got one may gon got one got oth att agt got gan day for the Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370	1200
Att cas the ser acg the god and that ggt the gas mag the the ton  Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser  395 400  385 390 395 cost cas ton	1248
AGE ART GREETE STE SAR RES TER CAR RES TES SET SET SET COR TOR  AND THE Glu Are Val Lys Mer Leu Gln Thr Trp Gly Gly Tle Pro Ser  415	1296
atg cth ccs and ggs gas gag gtc att tgg ggs gat atg and tch tct  Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser  430	1344
tea gag gat goa teg ant ame and mot gad mon the Ggc amt ted met Ser Glu Asp Alm Leu Asm Asm The Asp The Tyr Gly Asm Phe Ile 445	
ogs tit gas agg sat acg ago gat got too asc mas ast tog sos atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450	1392
EAR GEC GCC BIT ARC REG REA TER TOT REE THE SET PRO CHU TEP Lou Gln Lys Asp Ala Ile Asm Met The Lou Ser Ile Set Pro Chu Tep Lou Gln 480	1440

				•															
aga	aga	ទ	ta .	cat	SZS	CAG	tac	tcg	ttc	99	;= =	ac	CEC	225	aac	Ξa	2 5	aa	1456
Are	λro	V	a.1	His	Glu	Gln	Tyr	ser	Phe	G)	y ī	ΥZ	Ser	ГÀа	z.sr.	C.T	12 (	slu	•
					485					4.5						49	5		
						<b>5</b> 45	~ <del>-</del> ≃	cac	cac	. 2:	<b>.</b>	25	tgg	tcg	zzt	C	:a :	atg	1536
Sag	CC:	. 2.	<u>=</u> =		nac.	525	~	774	771.	T.3	-= ·	21 e	اللتانية. ما التانية	502	Asn	9:	:0	Mez	
Glu	Lei	ı A	re		Asn.	Glu	neu	L.I.E.			٠. ۵				510				
				500				•	203										
																			1584
222	st	2 C	==	22,2	CCA	gaz	202	ccc	CES	: a	tg ?	222	ECC.						7264
Glu	Va.	1 5	LO.	Leu	Pro	Glu	Ala	Pro	Hi:	s M	et 1	Γλε	Ile	TY	Cys	1.	TE	172	
			15					520						\$25					
					•														
~		<u>.</u> ,	12.5	885	cca	act	gaa	. agg	; <u>c</u> c	= =	22	gta	tat	225	. G3:	2 Ç.	25	gat	1632
1 ·	. 1/2	= - 1 :		7	270	The	. Gl	Arc	- Al	a T	v= '	val	TY	Lys	Gl	ı G	14	Asp	
				~~,			53!		•		•		540						
	53	G						•											
									_ ^-			rac	cas	age	- <b>.</b> a	= c	22	cst	1680
ದೆ ಶಾ	e te	<b>C</b>	EEC	500	cts	s aa	ב ביב פ	ac.	_ = 1	- 5		200	G Da	. 52.	- In-	s S	ln	est Pro	
A.s.	p 50	<b>.</b>	Ser	<i>V</i> ]:	: Le:	. As	ນ ກະເ	ı Th	¥	2 ,-	·2 =	-7-	6.4.0		:			550	•
54	S					55	٥					555	•						
													•						1500
gt	a tt	:c	ctc	2.5	c ga	9 99	g ga	c 55	a ac	:= :	gtt	csg	ct	: gt	5 59	gc		tca	1728
Va	1 9	ıe.	Lau	Th	r Gl	u Gl	y As	p Gl	y Th	ır 1	Val	Pro	Le'	ı Va	l Al	2 7	iis	Ser	
					56		•			:	570					5	575		
						_													
- 4-					_ F.		~ ~=	c: c:c	: = =:	::	CCa	C 2 2	ta	c az		:	gcc	eas eas	1776
EL C	5 5	=	Caro			1		= ==	40 2	1 7	S==	PEC	3 TY	= As	n 7:	:5 2	Ala	Gly	
Me	t C	75	Fl			لمدح	. 4.4		., e:	25				•	5	90			
				55	٥					= =								•	
															. ــ ـــ	72 '	<u></u>	- cat	1824
at	it a	ac	524	2.5	t at	:t 51	:	ia at	ig a	ā.ā.	Cas	CZS	- CC	a <u>5</u> -	;	==		gat Non	
I.	ic A	sn	Va.	l Th	r Il	e Va	il G	u Me	at L	Ϋ́Ε	His	Gli	n Pr	O A	ep A	==	Pne	Asp	•
			59						) O					€ 0	35				
		•																	
-						-a #:	aa 2:	=c ==	a= =	22	cac	gt	a. ga	c a		25	550	: ago	1872
-			= 5	~		1 n T	ve 5	A	la G	112	His	Va	1 As	p I	le L	eu	Gly	y Sez	•
1.				y G.	cy A.	La	75 C	15					€:	20					
	Ė	20	•				. •										•		
														-	ء بي	at	G = :	c cat	1920
5	<b>25</b> 5	152	==	s a	2C 9	at t	ac z	te t	בק 2	LEA	a	- 5-		- · ·	=		23°	5 52; V 24:	3
ች	la c	llu	Įε	يم ي	sn A	sp T	yr I	le L	eu I	ìÀZ	110	e Al	.a. 5:	== G	ع رو د	***	<b></b> ;	y Asi 640	
	2 E			•			30					€3	5				•	5-31	•
		•																	
	20	:t=	<b>~</b> 2	נכ ב	cz c	<b>40</b> 0	az t	tg t	et :	122	tt;	g 25	ic c	eg t	<b>5</b> 5 5	:::	tc	t ca:	1952
T.	יום.	י זאל	ري د ت	11 0	<b></b> 9		ir ī	eu S	er l	÷.s=	Le	u 8s	== G	ln I	== 1	/21	5e	= Gl:	7
	' , خات					45 -					€5	o					Œ E	Ę	
					•	<b>₩</b> ₩ ~													

. 1

1986

ate occ tto oca ate taa Met Pro Phe Pro Met 660 WO 00/60095

```
<210> 2 g
<211> 651
<212> PRT
<213> Saccharomyces cerevisiae
<400> 2
Met Gly Thr Lou Phe Arg Arg Asn Val Gln Asn Gln Lys ser Asp Ser
Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
                                 25
 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Brg Gly
                             40
 Ite ser Gly Ser Ala Lys Arg Ann Glu Arg Gly Lyn Asp Phe Asp Arg
                       . 55
 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Lau Pro Pho Ser Phe
                      70
                                      90
 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe
                  85
                                 105
  Val Asn Pho Asp Ser Lou Lys Val Tyr Leu Asp Asp Trp Lys Asp Val
                      :
                             120
  Leu Pro Glm Gly Ile Ser Ser Phe Ile Asp Asp Ile Glm Ala Gly Asn
  Tyr Ser Thr Ser Ser Leu App Asp Leu Ser Glu Asn Phe Ala Vel Gly
  Lys Glm Leu Leu Arg Asp Tyr Asm Ile Glu Ala Lys His Pro Val Val
  Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile
                                   185
   Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp
                              200
   Gly Set Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Tip
                           215
   Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn
   The Thr Leu Arg Ale Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile
                       230
                                       250
                         .
   Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile
                   245
                                  2 € 5
    Gly Tyr Glu Pro Ash Lys Mee Thr Ser Ala Ala Tyr Asp Trp Arg Leu
                               280 .
    Als Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys
    Glu Gln Ile Glu Leu Phe His Gln beu Ser Gly Glu Lys Val Cys beu
                        310
```

	Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Mcc Lys Trp	
	Ile Gly His Ser Met Gly ser Gin 110 120 130	
	Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val	
	Val Glu Ala Glu Gly Pro Led Tyr Gry Ash Gry 350	
	340 343 Ala Ala Gly The Leu Leu Gly	
	Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Lou Gly	
	Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr	
	Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Pho Phe Ser	
	Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Sar	
	Het Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Mct Lys Ser Ser	
)		
•	Ser Glu Asp Ala Leu Ash Ash Ash Thr Asp Thr Tyr Gly Ash Phe Ile	
	Arg Pho Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Ket	
	We Are Ala Ile Asa Met Thr Leu Ser Ile Ser Pro Gid 119 244 480	
	Af5 A70 Arg Arg Val His Glu Gln Tyr ser Phe Gly Tyr Ser Lys Asn Glu Glu Arg Arg Val His Glu Gln Tyr ser Phe Gly Tyr Ser Lys Asn Glu Glu 495	
	Glu Lou Arg Lys Asn Glu Leu His Mis Lys Mis Trp Ser Asn Pro Mct	
	Glu Val Fro Lou Pro Glu Ala Pro Hic Met Lys Ile Tyr Cys Ile Tyr	
	Gly Val Ann Asn Pro The Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp	
	Amp Ser Ser Ala Leu Ash Leu Thr Ile Amp Tyr Glu Ser Lys Gln Pro	
	Val Phe Leu Thr Glu Gly Amp Gly Thr Val Pro Leu Val Ala Him Ser	
)		
	Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asa Pro Ala Gly	
	Ile Asn Val Thr Ile Val Glu Met Lys His Gln pro Asp Arg Phe Asp	
	Ile Arg Gly Gly Ala Lyr Ser Ala Glu Kie Val Asp Ile Leu Gly Ser	
	110 615 Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 640	
	636 636 Fig. 1 Ser Gln Try Val Ser Gln Leu Ser Gln Try Val Ser Gln Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Try Val Ser Gln Leu Ser Gln Try Val Ser Gln Leu Ser Gln Try Val Ser Gln Try	
	232	
	Met Pro Phe Pro Met	
	€50	
	•	

<210> 3 b

	<210> 30 <211> 2312 <212> genom <213> Schiz <400> 3		ees.pombe			
	ATEGCGTCTT	CCAAGAAGAG	CARARCTCAT	ARGAAAASA	AAGAAGTCAA	50
	ATCTCCTATC	GACTTACCAA	ATTÇAAAGAA	ACCAACTOSC	GCTTTGAGTG	100
	AGCARCCTTC	AGCGTCCGAA.	ACACAATCTG	TTTCAAATAA	ATCAAGAAAA.	150
	TCTAAATTTG	TTKDAAAAAD	GAATTTTATA	TTGGGCGCTA	TTTTGGGAAT	200
	ATGCGGTGCT	TTTTTTTTCG	CTGTTCGAGA	CGACAATGCT	GTTTTCGACC	250
	CTGCTACGTT	AGATAAATTT	GGGAATATGC	arecataite	AGACTTGTTT	300
	GATCACATTA	ARGGRTATTT	ATCTTATAAT	GTGTTTAAGG	ATGCACCTTT	350
	TACTACGGAC	AAGCCTTCGC	AGTCTCCTAG	CGGARATGAA	GTTCAAGTTG	400
	GTCTTGATAT	GTACAATGAĞ	GGATATCGAA	GTGACCATCC	TOTTATTATG	450
	GTTCCTGGTG	TTATCAGCTC	AGGATTAGAA	AGTTGGTCGT	TTAATAATTG	500
	CTCGATTCCT	TACTTTAGGA	AACGTCTTTG	GGGTAGCTGG	TCTATGCTGA	550
	AGGCAATGTT	CCTTGACAAG	CAATGCTGGC	TTGAACATTT	AATGCTTGAT	€00
	AAAAAAACCG	GCTTGGATCC	GAAGGGAATT	AAGCTGCGAG	CAGCTCAGGG	650
	GTTTGARGCA	GCTGATTTTT	TTATCACGGG	CTATTGGATT	TGGAGTAAAG	700
	TAATTGAAAA	CCTTGCTGCA	ATTGGTTATG	AGCCTAATAA	CATGTTAAGT	750
	GCTTCTTACG	ÄTTGGCGGTT	ATCATATGCA	AATTTAGAGG	AACGTGATAA	200
	ATATTTTTCA	AAGTTAAAAA	TGTTCATTGA	GTACAGCAAC	ATTGTACATA	850
	AGAAAAAGGT	AGTGTTGATT	TCTCACTCCA	TGGGTTCACA	CGTTACGTAC	900
	· TATTTTTTTA	AGTGGGTTGA	AGUTGYGGG	TACGGANATG	GTGGACCGAC	950
	TIGGGTTAAT	GATCATATIG	AAGCATTTAT	ARATGTEAGT	CTCGATGGTT	1000
	GTTTGACTAC	GTTTCTAACT	TTTGAATAGA	TATOGGGATO	TTTGATTGGA	1050
	GCYCCGYYYY	CAGTGGCAGC	GCTTTTATCG	GGTGAAATGA	AAGATACAGG	1100
	TATIGTAATT	ACATTAAACA	TGTTAATATT	' TAATTTTTGC	TAACCGTTTT	1150
	ANGCTCARTT	GAATCAGTTT	TEGGTETATG	GGTAAGCARI	AAATTGTTGA	1200
	GATTTGTTAC	TANTITACIG	TITAGUTTEG	: TAAAATTTT	TECCCCTEC	3250
	GACGTATATI	CAAAAATACA	AATGTGCTCT	ACTITITICE)	ACTTTTAATA	1300
-	GAGAGCCATG	ATGGTTCGCA	. CTATGGGAGG	AGTTAGTTCT	ATGCTTCCTA	1350
	ARGRAGGEA	. TGTTGTATGG	GGAAATGCCA	. GTTGGGTAAC	OPTETATAGE	1400

ARDIA ETCALLORAN	1450
TGTTAATITI TTATTAATAT TTAGGCTCCA GATGATCTTA ATCAAACAAA	
TTTTTCCANT GGTGCARTA TTCGATATAG AGAAGACATT GATAAGGACC	1500
TITITE COMM. ACCOUNTS AND	1550
ACGATGARTT TGACATAGAT GATGCATTAC AATTTTTAAA AAATGTTACA	1600
GATGACGATT TTAAAGTCAT GCTAGCGAAA AATTATTCCC ACGGTCTTGC	1830
TTGGACTGRA AAAGAAGTGT TAAAAAATAA CGAAATGCCG TCTAAATGGA	3,650
TIGGACIGRA AANGAAGIGI TAAAAAATTA	1700
TAMATOCGOT AGAAGTAAGA ACATTAAAGT TACTAAATTA TACTAACCCA	
NATAGACTAG TOTTCOTTAT GOTCOTGATA TGANAATTTA TIGOGITCAC	1750
ANTAGACIAG TETTECTIAL TOTAL ATARTECTGA	1900
CGGGTCGGAA ARCCARCIGA GAGAGGTTAT TATTATACTA ATARTCCTGA	1850
GGGGCAACCT GTCATTGATT CCTCGGTTAA TGATGGAACA AAAGTTGAAA	1230
ATGTGAGAGA ATTTATGTTT CAAACATTCT ATTAACTGTT TTATTAGGGT	1900
ATGTGAGAGA ATTTATGTT: CALLESTION	1950
ATTGTTATGG ATGATGGTGA TGGAACTTTA CCAATATTAG CCCTTGGTTT	
GGTGTGCAAT AAAGTTTGGC AAACAAAAAG GTTTAATCCT GCTAATACAA	2000
GGIGIGEANI AFRATTION CONCERNICATION TO ATTOTAGA	2050
GTATCACAAA TTATGAAATC AAGCATGAAC CTGCTGCGTT TGATCTGAGA	2100
GGNGGACCTC GCTCGGCAGA ACACGTCGAT ATACTTGGAC ATTCAGAGCT	2100
AARTGTATGT TCATTTACC TTACAARTTT CTATTACTAA CTCTTGAAAT	2150
AARTGTATGT TCATTTTACC LIACACATA	2200
AAGGAMATTA TITTAAAAGT TICATCAGGC CATGGTGACT CGGTACCAAA	
CCOTTATATA TCAGATATCO AGTACGGACA TARGTTTTGT AGATTGCAAT	2250
CCUITATATA ICAGATAAA	2300
TAACTAACTA ACCEAACAGE GAAATAATAA ATEAGATAAA TCICGATAAA	2312
CCTAGAAATT AA	ط بلد من بند ا

<210> 4 F <211> 3685 <212> genomic DNA <213> Arabidopsis thaliana <400> 4

ATGCCCCTTA TTCATCGGAA AAAGCCGACG GAGAAACCAT CGACGCCGCC 50 ATCTGAAGAG GTGGTGCACG ATGAGGATTC GCAAAAGAAA CCACACGAAT 100 CTTCCARATO COACCATARG ARRICGARCG GROGROGGRA GTGGTCGTGC 150 ATCGATTCTT GTTGTTGGTT CATTGGGTGT GTGTGTAA CCTGGTGGTT 200 TOTTOTOTO CTTTACAACG CAATGCCTGC GAGCTTCCCT CAGTATGTAA 250 CGGAGCGNAT CACGGGTCCT TTGCCTGACC CGCCCGGTGT TAAGCTCAAA. 300 AAAGAAGGTC TTAAGGCOAA ACATCCTGTT GTCTTCATTC CTGGGATTGT 350 CACCGGTGGG CTCGAGCTTT GGGAAGGCAA ACAATGCGCT GATGGTTTAT 400 TTAGAAAACG TITGTGGGGT GGAACTTTTG GTGAAGTCTA CAAAAGGTGA 450 500 CCTCAACAAT TCTCACTCTT CCTTTATATT GGGATTTGGA TTGGATCTGA TGAGATCACG CACTTGTTGC TTCTTCAACA TCACTCAAAC TTTAATTCCA 550 TGTTTGTCTG TCTTACTCTT TACTTTTTTT TTTTTTTGAT GTGAAACGCT 600 ATTITCTTAA GAGACTATTT CTGTATGTGT AAGGTAAGCG TTCCAAGGAC 650 GTRAITGGCT TEGACTATTT CTGTTTGATT GTTAACTTTA GGATATAAAA 700 TAGCTGCCTT GGAATTICAA GTCATCTTAT TGCCAAATCT GTTGCTAGAC 750 ATGCCCTAGA GTCCGTTCAT AACAAGTTAC TTCCTTTACT GTCGTTGCGT 200 GTAGATTTAG CITTGTGTAG CGTATAATGA AGTAGTGTTT TATGTTTTGT 250 TGGGARTAGA GAAGTTCTAA CTACATCTGT GGARAGTGTG TTCAGGCTGT 900 GATAGAGGAC TGTTGCTTTA TTATTCAACT ATGTATATGT GTAATTAAAG 950 CTAGTTCCTT TTTGATCTTT CAGCTCAATG TGCTTTTCTC AATITTTTTC 1000 TONATTICAA AGITTOACAT CGAGTITATT CACATGTCTT GAATTTCGTC 1050 CATCCTCGTT CTGTTATCCA GCTTTGAACT CCTCCCGACC CTGCTATGGA 1100 TATNITARAR ARRAGIGIT TIGTGGGTTG CATCHIGTT ACGATCIGCA 1150 TOTTOTTOTT TOGGCTOAGT GTTCATGTTT TTGCTATGGT AGAGATGGGC 1200 ARTESTATES TEGREGEAR CASTESTATA STEGRESTA TOTTARCTAR 1250 TOANTATOT CITTONITCH GGCCTCTATG TIGGGTGGAA CACATGTCAC 1300 TTGACAATGA AACTGGGTTG GATCCAGCTG GTATTAGAGT TCGAGCTGTA 1350

TCAGGACTCG TGGCTGCTGA CTACTTTGCT CCTGGCTACT TTGTCTGGGC	1400.
AGTGCTGATT CCTAACCTTG CACATATIGG ATATGAAGAG AAAAATATGT	1450
ACATGGCTGC ATATGACTGG CGGCTTTCGT TTCAGAACAC AGAGGTTCTT	1500
TTCTCATCGT TCTTTCTATT ATTCTGTTCC ATGTTACGTT TCTTTCTTCA	1550
TTOTCATCGT TOTTCLATT ATTOTCH ANTINATAGG TACGTGATCA TTACTTAAGG CTIANATATG TTTCATGTTG AATTAATAGG TACGTGATCA	2600
TTACTTAAGG CTTAAATATG TTTCATGTT TCTACCAACG	1,650
GACTOTTAGO CGTATGAAAA GTAATATAGA GTTGATGGTT TCTACCAACG	1700
GTGGAAAAA AGCAGTTATA GTTCCGCATT CCATGGGGGT CTTGTATTTT	1750
CTACATTITA IGAAGIGGGI IGAGGCACCA GCTCCTCIGG GIGGCGGGG	1900
TGGGCCAGAT TGGTGTGCAA AGTATATTAA GGCGGTGATG AACATTGGTG	1850
GACCATITCT TGGTGTTCCA AAAGCTGTTG CAGGGCTTTT CTCTGCTGAA	1900
CONNEGATO TICCAGITGO CAGGIATIGA ATATOIGCIT ATACITICA	
COLTENED CONTEGERACIO GARCICARAG TRATTCTACT REALATORES	1950
TOTALTANCA TIGOTATATE ATOGOTGOAL OTGACATTGG TIGATTATIT	2000
TTGCTGCTTA TGTAACTGAA ACTCTCTTGA GATTAGACAA ATGATGAATT	2050
GATAATTCTT ACGCATTGCT CTGTGATGAC CAGTTTCTTA GCTTCGAAA	2100
GATAATTCTT ACGCATIGCT CIGTOTTCTGC ATTGAATTTT GCTATGGAAA TAACATTTGT CATACTGTCT TITGGAGGGC ATTGAATTTT GCTATGGAAA	2150
TAACATTIGI CATACIGICI 11100AGGG TATTCIGCI	2200
GCGCTGGAGC TTCCATGCTT GCATTCTTTA CCAATTAGCG TTATTCTGCT	2250
TOTTCAATT TICTTGTATA TGCATCTATG GTCTTTTATT TCTTCTTAAT	2300
TARAGACTOG TIGGATTAGT IGCTCTATTA GTCACTIGGT ICCTTAATAT	2350
ACADETTE TETTTOGAN ANTIGENGING CONTINUES	2400
CACACCGATA TATTTAGACT TCAGACCTTG CAGCATGTAA TGAGAATGAC	
ACCORDING GACTORACAN TOTOTATEST ACCORAGINA COLORDAN	2450
TITTOGGGG GCTTGATTGG TCACCGGAGA AAGGCCACAC CIGITGIGIG	2500
MANAGCANA AGANCANCGA NACTIGIGGI GANGCAGGIG ANANCGGAGI	2550
ARRAGONA AGRICATION ACTATGGARG GATGATATOT TITGGGARAG	2600
TTCCARGAAR AGTECIGIIR RETURNOS ATRATATTGA TTTTCGAGTA ARGTAGCAGA GGCTGCGCCA TCTGAGATTA ATRATATTGA TTTTCGAGTA	2550
ARCTAGCAGA GGCTGCGCCA TCTGAGALIA ANTICTGAT TGTRTGATGA	2700
ARGIAGOAN DETENTATA ARCOTTETAC ATTTTEGAT TETATGATGA AGGACATATA AATCATAATA ARCOTTETAC ATTTTGTGAT TETATGATGA	2750
ATATOTOTAC ATTITATOTO GTGAAGGGTG CTGTCAAAGG TCAGAGTATC	2300
CCANATCACA CCTGTCGTGA CGTGTGGACA GAGTACCATG ACATGGGAAT	2850
TGCTGGGATC AAAGCTATCG CTGAGTATAA GGTCTACACT GCTGGTGAAG	

## SUBSTITUTE SHEET (RULE 26)

CTATAGATET ACTAGATIAT GTTGCTCCTA AGATGATGGC GCGTGGTGCC	2900
CTATAGATET ACTAGATTAT GITGETECT TTGGATGACA CCAAGTATCA	2950
GCTCATTTCT CTTATGGAAT TGCTGATGAT TTGGATGACA CCAAGTATCA	3000
AGATOCCAAA TACTGGTCAA ATCCGTTAGA GACAAAGTAA GTGATTTCTT	3050
GATTCCAACT GTATCCTTCG TCCTGATGCA TTATCAGTCT TTTTGTTTTC	3100
GGTCTTGTTG GATATGGTTT TCAGCTCAAA GCTTACAAAG CTGTTTCTGA	3150
GCCTTICTCA AAAAGGCTIG CTCAGTAATA TIGAGGIGCT AAAGTIGATA	3200
TOTAL THE TEST TARE ATCCTCCGTT TGGTTTGTTC TGC:::::ca	3250
CASTACOGA TOCTCCTGAG ATGGAAATCT ACTCATTATA CGGAGAGG	3300
STATE ACCORDING TO CONTACT CON	3350
THE TOTAL TITCHGATAT TOACTTOTEC TOACGAGGAG GALGAAGAA	3400
ATTOGGATGA AGCAGGAGTT TACAATGTGG ATGCGGATGA AACAGTAGT	3450
THE CONGRESSION OF THE CONTROL OF TH	
TOGGRATON AGACTTATAT AAGAGAATAC AATCACTOT	3500
PROSECTAR COTGETEGRA GGGCGCGGGA CGCAGAGTGG TGCCCATGT	3550
THE TARGET CARACTITICS TITIGATICAR GATATICATER GOG 1100000	3600
CGGAGGTAAC GGGTCTGATA TAGGACATGA CCAGGTCCAC TCTGGCATAT	3650
TIGAATEGIC GGAGCGTATT GACCTGAAGC TGTGA	3625

<210> 8 \( \text{\sqrt{211}} \) 616
<211> CDNA
<213> Keurospora crassa
<400> 8

GGTGGCGAAG.	ACGANIGGCGG	AAGTTGGAGG	CTARCGAGAA	TGACNCTCGG	.50
	ACCCTCTAGA				ioo
	INTATGGGTA				150
	TCCCGGGACG				200
				GCGAAGGCGA	250
				anggggigga	300
				GGTCGAGATG	350
				ATACGGCGGA	500
CTTARATATG	TAGAAAAGGT	TGAAATTTAT	GAAGAGTAAT	TAARTACGGC	550
				TITTITCIAA	600
MCM11/00227					616

PCT	ÆP00	/02701
-----	------	--------

5	n	1	5.3	
J	v	,	-	******

WO 00/60095

TTANCAGAGG	AGCTGATGAC	TCCGGGAGTG	CCAGTCACTT	GCATATATGG	1300
	GATACACCGG				1350
ATAAGCAACC	AGAGATTAAG	TATGGAGATG	GAGATGGGAC	GGTTAATTTG	1400
GCGAGCTTAG	CAGCTTTGAA	AGTCGATAGC	TTGAACACCG	TAGAGATTGA	1450
TGGAGTTTCG	CATACATCTA	TACTTAAAGA	CGAGATCGCA	CTTAAAGAGA	1500
TTATGAAGCA	GATITCAATT	ATTAATTATG	AATTAGCCAA	TGTTAATGCC.	1550
GTCAATGAAT	GA				1562

A.	2.4.4.4.4.2.1	TATCTTCACA	TTATTCGGTA	GTCATAGCGA	TACTCGTTGT,	50
			GTCAAGCTGT			100
					ACGGCTGGAC	150
					TATATCCGAT	200
			GGTTTAGGCT			250
					GTTGTACTAT	300
					AAACCCGGGT	350
					CCTCGTCTCC	400
		TTCCADGATA	TATCATTTTG	GGACATTTGC	ATAATGAACA	450
					CCATTTATAT	500
					TGAGTGTTAT	550
					· ANTAATGTTG	60.0
					AATAATAA	650
	CTATGTCATC	AGARTIALA		n arggaacari	TGGTGLAAGC	700
)					CTAGGAGCTC	750
						800
					GTCCCGTGTA	850
	GCCTCACAG	r TCCTACAAG	A CCTCAAACA	- amoconio	A AAACTAGCAG	900
	CGAGAACGA	a ggaaagcca	G TGATACTCC	T CICCCAIAG	CTAGGAGGAC	950
					G GCGCCGCAAG	1000
					G GGACGATCTC	
	TCAGATGAA	G ACATTTGCI	T CIGGCAACA	C ACTEGGTGT	C CCTTTAGTTA	1050
	ACCCTTTGC	T GGTCAGACG	G CRICAGAGG	A CCTCCGAGA	G TAACCAATGG	1100
	CINCTICCA	T CTACCAAA	T GTTTCACGA	C AGAACTAAA	C CGCTTGTCGT	1150
					G TTTTTTGCAG	1200
	ACATTGGAT	T CTCACAAGG	sa ettetecti	T ACAAGACAA	G AGTGTTGCCT	1250

<210> 10 \( \mathcal{V} \)

```
<212> genomic DNA
 <211> Arebidopsis thaliana
 c400> 10
 ATGGGAGGGA ATTCGAAATC AGTAACGGCT TCCTTCACCG TCATCGCCGT
 TTTTTTCTTG ATTTGCGGTG GCCGAACTGC GGTGGAGGAT GAGACCGAGT
                                                             100
 TICACGGCGA CTACICGAAG CTATCGGSTA TAATCATTCC CCCAFTTCGS
                                                             150
 TCGACGCAGC TACGAGCGTG GTCGATCCTT GACTGTCCAT ACACTCCGTT
                                                              200
 CGACTTCAAT CCGCTCGACC TCGTATGGCT AGACACCACT AAGGTCCGTG
                                                             250
 ATCTTCATTT CCTTCGCTCC TTATTCTGTC GGTCGAGTCA CTTGTTGATG
 TCGTTCATTA GTCAACAGTG ACGCTTCTGA ATCTGAGTTT AGAGTCATAT
 AAAACAGCTO ACTCGGCGAG TOTTTCCCAT CGCTTTTGGT TCGCTAAATG
                                                              450
 TAGCGCANTG ARTGTGTART TAGTCTGCGC TTTTTATTCR ACTAGATCTG
                                                             500
CANGITTITC AGAGIGCTCA ATAGTAGTTA GARAATGTTA GGTCATTTTA
                                                             550
 CTTGTGCATT GTGATTCTTT TGGTTGTTGC TTACTGATCG ACGTGATGGA
                                                              600
 TGGTTTACAG CTTCTTTCTG CTGTCAACTG CTGGTTTAAG TGTATGGTGC
                                                             650
 TAGATOCTTA TAATCAARCA GACCATOOOG AGTGTAAGTO ACGGCCTGAC
                                                              700
 AGIGGTCITT CAGCCATCAC AGAATTGGAT CCAGGITACA TAACAGGTAG
                                                              750
 TTTCGGATTT TTCTTTCTTT TGAGTTTTCT TCAATTTGAT ATCATCTTGT
                                                             800
 TGTGATATA: TATGGCTANG TTCATTAATT TGGTCAATTT TCAGGTCCTC
 TITCTACTGI CTGGAAAGAG TGGCTTAAGT GGTGTCTTGA GTTTGGTATA
                                                              900
 GARCCANATG CARITGTCGC TGTTCCATAC GATTGGAGAT TGTCACCAAC
                                                             950
 CARATTGGAA GAGCGTGACC TTTACTTTCA CAAGCTCAAG TTAGTCCTTA
 TOAGGCTART GTCTTTTATC TTCTCTTTTT ATGTAAGATA AGCTAAGAGC
                                                             1050
                                                             1100
 TOTGGTCGTC TTCCTTTTTG CAGGTTGACC TTTGAAACTG CTTTAAAACT
 CCGIGGCGGC CCTTCTATAG TATTTGCCCA TTCAATGGGT AATAATGTCT
 'CONGRIACT' TOTGGAATGG CTGAGGCTAG AANTTGCACC NAARCATTAT
                                                             1250
 TTGRROTGGC TTGRTCAGCA TATCCATGCT TATTTCGCTG TTGGTACCGG
 CCTACTATCC TTANGTTACC ATTTTATTTT TTCTCTAATT GGGGGAGTTA
 TGTTGTGACT TACTGGATTG AGCTCGATAC CTGATTTGTT GTTGATTTAG
                                                             1350
 GAGCTECTET TETTGGTTET GTTGAGGCAP. TEAAATCTAE TETETCTGGT
                                                             1400
 GTAACGITIG GCCTTCCTGT TTCTGAGGTG ACCTCTGACT TCTCTTTAGT
                                                            1450
 TITAAGTAGT TGATATCAAC CAGGTCTTAT AACTCACTGG ATTTTCCTTT
                                                             1500
  TGARAGTATT ACTITIGITA ATTGARCTGC TGTACGCGAT ATGGTATCTG
                                                             1550
  TAGATCTIGA AGTGCTAGTT ATCAAAGAAC ATATTGTGGG TAGTATACCT
                                                             1600
 GTCAGCGGCC TTAGCTAATA CAACCAAACC ACATGTACAC TGATTTAGTT
                                                              1650
 TTCAGATTAT TATGGTAGAC TTTAAGTTGA CAAGAAACTT TGACTGAAAT
                                                             1700
  CITTITATTI TARTAGGCTA TGATTIGTTI ATTGARATCA TGTGACATAT
                                                             1750 .
  TGACATGCGC TTCTCATGTT TTTTGTTGGC AAGGCTTCAG GGAACTGCTC
                                                           . 1800
  GGTTGTTGTC CAATTCTTTT GCGTCGTCAT TGTGGCTTAT GCCATTTTCA
                                                             1850
  AAGAATTGCA AGGGTGATAA CNCATTCTGG ACGCATTTTT CTGGGGGTGC
                                                              1900
  TGCMAGAAA GATAAGCGCG TATACCACTG TGATGAAGAG GAATATCAAT
                                                              1950
  CAAAATATTC TGGCTGGCCG ACAAATATTA TTAACATTGA AATTCCTTCC.
                                                              200
  ACTAGOGGTT AGACTOTGTA TATGOAACTG TAACACTAAC AAAAGTTTCA
                                                              2050
  CCAAGARTGT TCACTCTCAT ATTTCGTECC TTTGATGTGT ATCCATCAGT
                                                              2100
                                                              2150
  TACAGARACA GCTCTAGTCA ACATGACCAG CATGGAATGT GGCCTTCCCA
  CCCTTTTGTC TTTCACAGCC CGTGAACTAG CAGATGGGAC TCTTTTCAAA
  GENATAGAAG ACTATGACCC AGATAGCAAG AGGATGTTAC ACCAGTTAAL
  GAAGTACGIN COTTICITIG TGATAAGAAA TATTGCTCAI CGATCATCAC
                                                              2300
  TIGGIGGCIT CIIGTACGIC AAATIGITIT GITTAAATCI CIATAICAAT
                                                              2350
  TGTTCATATG CTTTGTCTTT CTTACTATAA GAAACAAGTA TAATCAGAAA
  CCTTATTATT GATTATCAGT TCTCTCCTTA TATTATGGAA TGTCTTTTTC
                                                              2450
 GUITACAGIT ATGANIGCAN ANGGGGGTAT TITAGITGAT IGATICICIC
                                                              2500
  ATTOTOTAGT TTGTTTTGAC TAATAGCGTC AATTTTGTTT TTCTAGCAAA
                                                              2550.
  TOTTTGTGAN, TTATATATAN CATGOTRACT ATACTTTTCA GGTTGTATCA
  TGATGACCCT GTTTTTAATC CTCTGACTCC TTGGGAGAGA CCACCTATAA .
  ANATOTATT TIGCATATAT GGTGCTCATC TARAGRCAGA GGTATGATGC
  ATTCTCAATA TCACATTATG CGTTGACTTT GTTATTATAT TCCCCATTTG
```

TOTTOTOCOT TOCATOTTAT	2800
	2850
	2900
TTGCCCCAAG TGGCAAACCT TATOGA AGGTAATTTT	2950
TATCAGICTA	3000
ACTARATT	3050
ATCTCAGTTG CATAAGCAAA TIATTATATATATATATATATATATATATATATATA	3100
TIATICATICS TITIGAGGIT AGIOGATAGI	3150
ACCUSTAGE ACCUSTAGE TOWARDS AND ACCUSTAGED	3200
ANGIOCOLA TITCIGNATI TEATMENT TICATATETI	3250
ACCAMACIA FARTITETT TTRAGRAACC GARACTETTE GAACGCTGCA	3300
TATETGCARG TOTGGAACTG TGGTTT TTGAAATTAT	3350
GOGATGAGAC GGTAAGCTCA GAAGTTC TGGAACACTG	3400
CONTROL ACTACTGAAG ACTAAGATAA TACTATCCG CTACTTTTAT	3450
CITCOTATGT TOTOTAGTAC ACTGCAATAT TOTATCA CTCTCTTGGT	3500
TOTATORE ATTOATOTO TATAGGTACO CIRTAGO TOCCOAGGTA	3550
CONTROL GOTCGGACCT RANGITANCA TANGETTERA GIGTACTITI	3500
CTTCCTCACC TTATATAGAT CATATA ARATCATATA	3650
TOTAL TICTURE	3700 3750
CATGRIGAAC TIGIATIAAL CATGTGGAAC	3750
THE CHACAGOORG AACACGATOU ACCOUNTS CATGACAAAA	3830
TARITGTTGA TCATGAGCAL GBAZZATATA GRAGACTCTG AGAGCALLO	3896
delibere TTALGTACAT AANS	34,0
GCACCAAGGG TAAAAGIGGT CGGAGCTTGA TAAAAGIGG	

. <210> 11*b* 

TTTAGAGAG

650

700

709

### 53/53

<211> 709 <212> CDNA <211> tomato <400> 11 CTGGGGCCAA AAGTGAACAT AACAAGGACA CCACAGTCAG AGCATGATGT 50 TCAGATGTAC AAGTGCATCT AAATATAGAG CATCAACATG GTGAAGATAT. 100 CATTCCCAAT ATGACAAAGT TACCTACAAT GAAGTACATA ACCTATTATG 150 AGGATTCTCA AAGTTTTCCA GGGACAAGAA CAGCAGTTTG GGAGCTTGAT 200 MAGCAANTO ACAGGAACAT TGTCAGATCT CCAGCTTTGA TGCGGGAGCT 250 GTGGCTTGAG ATGTGGCATG ATATTCATCC TGATAAAAAG TCCAAGTTTG 300 TTACARAAGG TGGTGTCTGA TCCTCACTAT TTTCTTCTAT AAATGTTTGA 350 GTTTGTATTG ACATTGTAAG TATTGCAACA AAAAGCAAAG CGTGGGCCTC 400 TGAGGGATCA GGACTGCTAT TGGGATTACG GGAAAGCTCG ATGTGCATGG 450 GCTGARCATT GTGARTACAG GTTAGAATAT TCARATTATA TTTTGCAARA 500 TATTCTCTTT TIGTGTATTT AGGCCACCTT TCCCCGGTCA CAACGATGCA 550 GATATGTATT CGGGGATGTT CACCTGGGAC AGAGTTGCAG ATTGAAGAGT 600

TOTACATOTO ACATOCTOTO ACACTATOTO TGATATTTAA GAAACTTTGT.

TTGGCGGAAC AACAAGTTTG CACAAACATT TGAAGAAGAA AGCGAAATGA

### (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

## (19) World Intellectual Property Organization International Bureau



## 

### (43) International Publication Date 12 October 2000 (12.10.2000)

PCT

## (10) International Publication Number WO 00/60095 A3

- (51) International Patent Classification⁷: C12N 15/54, 9/10, 15/81, 15/82, 1/16, 5/10, A01K 67/027, C12P 7/64
- (21) International Application Number: PCT/EP00/02701
- (22) International Filing Date: 28 March 2000 (28.03.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:
99106656.4
1 April 1999 (01.04.1999) EP
99111321.8
10 June 1999 (10.06.1999) EP
60/180,687
7 February 2000 (07.02.2000) US

- (71) Applicant (for all designated States except US): BASF PLANT SCIENCE GMBH [DE/DE]; D-67056 Ludwigshafen (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DAHLQVIST, Anders [SE/SE]; Hemmansvägen 2, S-244 66 Furulund (SE). STAHL, Ulf [SE/SE]; Liljegatan 7b, S-753 24 Uppsala (SE). LENMAN, Marit [SE/SE]; Revingegatan 13a, S-223 59 Lund (SE). BANAS, Antoni [SE/PL];

Wiolinowa 14, PL-08110 Siedlee (PL). RONNE, Huns [SE/SE]; Dirigentvägen 169, S-756 54 Uppsala (SE). STYMNE, Sten [SE/SE]; Torrlösa 1380, S-269 90 Svalöv (SE).

- (74) Agent: FITZNER, Uwe; Lintorfer Str. 10, D-40878 Ratingen (DE).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

With international search report.

[Continued on next page]

(54) Title: ENZYMES OF THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RE-COMBINANT DNA MOLECULES ENCODING THESE ENZYMES



(57) Abstract: The present invention relates to the isolation, identification and characterization of nucleotide sequences encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, to the said enzymes and a process for the production of triacylglycerols.

0/60095 A3

## WO 00/60095 A3



(88) Date of publication of the international search report: 1 February 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

al Application No PCT/EP 00/02701

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/54 C12N9/10

C12N5/10

A01K67/027

C12N15/81 C12P7/64

C12N15/82

C12N1/16

According to International Patent Classification (IPC) or to both national classification and IPC

### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols): IPC 7 C12N A01K C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

STRAND, EPO-Internal, WPI Data, MEDLINE, CHEM ABS Data, BIOSIS, EMBL

Category *	Citation of document, with indication, where appropriate, or	f the relevant passages	Relevant to claim No.
,	Charlet of document, maranassisti, miss appropriately	. 10 10 10 10 10 10 10 10 10 10 10 10 10	
Κ.	PETER VERHASSELT ET AL.: "Tw reading frames revealed in th segent flanking the centromer Saccharomyces cerevisiae chro right arm"	ne 23.6kb ne on the	1-23,27
	YEAST, vol. 10, no. 7, July 1994 (19 1355-1361, XP002112572	94-07), pages	
<b>X</b>	abstract; table 2 -& Swissprot Database Entry Y Accession number P40345; 1 Fe XP002112574 the whole document	n84_Yeast bruary 1995	1-23,27
7		-/	
		•	ļ
V	·	•	·
X Funt	ner documents are listed in the continuation of box C.	Y Patent family members are list	ted in annex.
Special ca	tegories of cited documents:	"T" later document published after the	International filing date
	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict w cited to understand the principle of	rith the application but ritheory underlying the
"E" earlier o	ocument but published on or after the international	invention  "X" document of particular relevance; the	ne claimed invention
filing d L" docume"	ate nt which may throw doubts on priority claim(s) or	cannot be considered novel or can involve an inventive step when the	not be considered to
which:	is cited to establish the publication date of another n or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an	ne claimed invention
cnanor	ent referring to an oral disclosure, use, exhibition or	document is combined with one or ments, such combination being ob	more other such docu-
O' docume			mode to a person states
O" docume other r	ent published prior to the international filing date but	in the art.	ant form!
O' docume other r P' docume later th	ent published prior to the international filing date but an the priority date claimed	*&* document member of the same pate	
O' docume other r P' docume later th	ent published prior to the international filing date but		
O" docume other r P" docume later the a	ent published prior to the international filing date but an the priority date claimed	*&* document member of the same pate	
O' docume other r P' docume later th	ent published prior to the international filing date but lan the priority date claimed actual completion of the international search	"&" document member of the same pate  Date of mailing of the International	

al Application No PCT/EP 00/02701

a. classification of subject matter IPC 7 C12N15/54 C12N9/10

C12N5/10

A01K67/027

C12N15/81 C12P7/64

C12N15/82

C12N1/16

According to International Patent Classification (IPC) or to both national classification and IPC

#### **B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

C12N AO1K C12P IPC 7

Occumentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

STRAND, EPO-Internal, WPI Data, MEDLINE, CHEM ABS Data, BIOSIS, EMBL

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
X	PETER VERHASSELT ET AL.: "Twelve open reading frames revealed in the 23.6kb segent flanking the centromere on the	1-23,27
	Saccharomyces cerevisiae chromosome XIV right arm" YEAST, vol. 10, no. 7, July 1994 (1994-07), pages	
:	1355-1361, XP002112572 abstract; table 2	
X	-& Swissprot Database Entry Yn84_Yeast Accession number P40345; 1 February 1995 XP002112574 the whole document	1-23,27
		•
	- <b>/</b>	

X	Further documents are listed in the continuation of box C.	X	Patent famili
1			

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filling date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled
- "&" document member of the same patent family

Date of mailing of the international search report Date of the actual completion of the international search

30/10/2000 17 October 2000

Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Montero Lopez, B Fax: (+31-70) 340-3016

?

Interna al Application No ...
PCT/EP 00/02701

		TCIZET OU	
C.(Continua Category °	cition) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages	•	Relevant to claim No.
y			
X	DATABASE EMBL 'Online! Database Entry SPBC776, 21 January 1999 (1999-01-21) LYNE M. ET AL.: "S. pombe chromosome II cosmid c776" Database accession no. AL035263 XP002150203 the whole document		1-23,27
<b>X</b>	DATABASE EMBL 'Online! Database Entry AI398644, 10 February 1999 (1999-02-10) XP002150204 the whole document & MARY ANNE NELSON ET AL.: "Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa "FUNGAL GENETICS AND BIOLOGY, vol. 21, 1997, pages 348-363, XP000952173		1-23,27
X ,	KEITH STOBART ET AL.: "Triacylglycerols are synthesized and utilized by transacylation reactions in microsomal preparations of developing safflower (Carthamus tinctorius L.) seeds" PLANTA, vol. 203, no. 1, 1997, pages 58-66, XP002112573 page 58, right-hand column, last paragraph -page 59, left-hand column, paragraph 1 page 63, right-hand column, paragraph 2		25
A	W0 98 55631 A (CALGENE LLC) 10 December 1998 (1998-12-10) page 9, line 36 -page 10, line 7 page 12, line 28 -page 13, line 18 page 14, line 34 -page 15, line 13 page 20, line 5 -page 25, line 4		1–27
P,X	DATABASE SWALL 'Online! Database Entry 094680, 1 May 1999 (1999-05-01) LYNE M. ET AL.: "hypothetical 69.7 kDa protein C776.14 in chromosome II" Database accession no. 094680 XP002150205 the whole document		1-23,27
	the whole document		

## INTERNATIONAL SEARCH REPORT

. Limition on patent family members

Internal 'at Application No PCT/EP 00/02701

Patent document cited in search report	Publication	Patent family	Publication
	date	member(s)	date
WO 9855631 A	10-12-1998	CN 1266460 T EP 1003882 A	13-09-2000 31-05-2000

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.