Nerve
Regeneration
and
Concussion
recovery

By: Omar Mobasher

Traumatic Brain Injuries

Stroke (39%)

RTA's (14%)

Falls (14%)

Tumour (7%)

Assault (5%)

Effects of Traumatic Brain Injury

HEALTHY

- Frontal: Concentration, Problem Solving, Speech
- Parietal:
 Sense of Touch, Pain, Temperature
- Occipital: Healthy Vision
- Temporal:
 Memory, Organization
- Cerebellum:
 Balance & Coordination
- Brainstem:
 Breathing, Steady Heart

TBI

- Frontal:
 Lack of Focus, Irritability, Language Difficulty
- Parietal:
 Difficulty with Reading, Spatial Misperception
- Occipital:
 Blind Spots, Blurred Vision
- Temporal:
 Problems with Short- & Long-Term Memory
- Cerebellum: Difficulty Walking, Slurred Speech
- Brainstem:
 Changes in Breath, Difficulty Swallowing

Concussion

Prolonged Swelling Can Also Kill Off Neurons In The Brain.

Nerve Regeneration

Healing Neurons Is Healing Concussions

Impact of Flavonoids

Regulate autophagy

Antioxidant stress

Antiinflammatory

The p53 pathway and LC3 deacetylated by SIRT1 Increases fatty acid beta oxidation and mitochondrial bioenergetics

Christensenellaceae 1

Clear damaged mitochondria FXR1/TGR5 pathway, Nrf2/HO-1 pathway SOD, CAT, GSH † / ROS ↓

Inhibit fat accumulation

IL-1β、IL-6、TNF-α In liver
Inhibits the expression of nitric oxide synthase,
NO I
NF-kB pathway

Comparison

Flavonoids and antioxidants that help reduce inflammation in Somatic Cells

- Flavones (e.g., Apigenin, Chrysin, and Luteolin)
- Flavonols (e.g., Quercetin, Kaempferol, Myricetin, and Fisetin)
- Isoflavones (e.g., Genistin, Daidzin)
- Anthocyanidin (e.g., Apigenidin, Cyanidin)
- Flavanonol (e.g., Taxifolin, Silibinin)

Flavonoids and antixodants that help nerve cells regenerate.

- Flavonoid polyphenols (e.g., epigallocatechin 3-gallate (EGCG) and quercetin)
- Non-flavonoid polyphenols (e.g., curcumin and resveratrol)
- Phenolic diterpenes (e.g., rosmarinic acid or carnosic acid)
- Organosulfur compounds, (e.g.,isothiocyanate and Lsulforaphane)

Research Questions

#1 What are the flavonoids and antioxidants that fight inflammation or help nerve regeneration, if so, do they help heal concussion symptoms?

#2 <u>Do sunflowers</u> have flavonoids and antioxidants that fight inflammation or help nerve regeneration, if so, do they help heal concussion symptoms

Approach and Methods

- Qualitative Systematic Review
- Boolean language
- 286 papers (since 1965)
- 5 papers
 - ✓ Concussions
 - ✓ Nerve-regeneration
 - ✓ Antioxidants
 - ✓ Flavionds
 - ✓ metablomics of Nerve cells/ Neurons

Web of science

Inclusion & Exclusion Criteria

Excluded

- × cancer studies as fighting tumor inflammation
- × involve a mixture of pharmaceutical medicines

Included

- ✓ manipulative experiment or in natural edible plants
- ✓ direct ingestion of plants, fruits or vegetables.
- ✓ empirical evidence of reduction in inflammation and nerve regeneration.
- ✓ peer-reviewed journal indexed

Selected Studies

Nerve Regeneration through Antioxidants	Concussions and neuron metabolomics
Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice	The role of mitochondrial bioenergetics and oxidative stress in depressive behavior in recurrent concussion model in mice
Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury	BRAIN HYDROXYL RADICAL GENERATION IN ACUTE EXPERIMENTAL HEAD-INJURY
Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress	

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Improves Muscle Strength And Extends Lifespan Of SOD1G93A Mice

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Prevents Metabolic Alterations In SOD1G93A Mice

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Restores The Glycolytic Phenotype And Reduces Atrophic/Fibrotic Markers In The Tibialis Anterior (TA) Muscle

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Preserves The Integrity Of Neuromuscular Junctions (NMJs)

xpression (fold)

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Preserves Sciatic Nerve Integrity

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Protects From Motor Neuron Loss And Neuroinflammation

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Improves Mitochondrial Coupling State

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Trimetazidine (TMZ) Improves Electron Transport Chain Complex Activity

Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1(G93A) mice

Take away:

- Trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration.
- Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1
- Therapeutic effect of Trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.

Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury

MitoQ Promotes The Secretion Of VEGFA And Angiogenesis In BV2 Cells After TBHP Treatment

Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury

MitoQ promotes mitochondrial function, functional recovery and neural repair, and angiogenesis after SCI

Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury

Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury

Take away:

- The angiogenic promotion of MitoQ-treated BV2 cells was evaluated by tube formation and immunofluorescence assays (CD31) in a coculture system of BV2 cells and HUVECs.
- Immunofluorescence and fluorescence assays indicated that MitoQ could promote angiogenesis and inhibit macrophage/microglia activation in lesion-site after SCI.
- The mitochondrial-specific antioxidant MitoQ promotes functional recovery and tissue preservation through the enhancement of angiogenesis with the modification of mitochondrial function after SCI.

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress

Curcumin Has Beneficial Effects On Behavioral Recovery & Nerve Sensitive Function

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress

Total number of	Sham	SNC + Saline	SNC + Vehicle	SNC + Curcumin
Axonal clusters of regeneration	0.0 (± 0.0)	18.3 (± 3.1)***	19.5 (± 2.9)***	10.1 (± 2.3) *,†
Macrophages	5.7 (± 0.8)	47.5 (± 6.8)***	45.4 (± 5.5)***	44.3 (± 4.8)***
Blood vessels	14.7 (± 0.9)	16.2 (± 0.9)	17.2 (± 1.4)	14.0 (± 1.4)

Curcumin Decreased Clusters of Regeneration in Crushed Sciatic Nerves

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress

Curcumin had Beneficial Effects on Myelin Regeneration

MBP

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress

Curcumin has Beneficial Effects on Tissue Integrity

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress

Curcumin Reduced Oxidative Stress in Sciatic Nerves

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress

Curcumin decreased mitochondrial superoxide production

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress

Take away:

- The curcumin treatment increased expression of compact myelin proteins, myelin sheath thickness and, correspondingly, increased motor and sensitive nerve conduction velocity.
- Curcumin treatment reduced the production of reactive oxygen species lipid peroxidation and increased expression of transcription factor Nrf2.
- Low doses of curcumin represent a promising therapy for peripheral nerve regeneration

The role of mitochondrial bioenergetics and oxidative stress in depressive behavior in recurrent concussion model in mice

Concussions Reduced Mit. Oxygen Flux & Increased Expression Of Antioxidant Enzymes

The role of mitochondrial bioenergetics and oxidative stress in depressive behavior in recurrent concussion model in mice

Take away:

- Most of the research of this injury has been focused on oxidative stress and functional deficits
- recurrent concussion protocols alter depressive-like phenotype behavior, and whether mitochondria play an indispensable role in this behavior.
- protocol of recurrent concussions decreased hippocampal mitochondrial respiration and increased expression of proteins such as nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide (SOD2).

BRAIN HYDROXYL RADICAL GENERATION IN ACUTE EXPERIMENTAL HEAD-INJURY

TABLE 1. Mouse brain salicylate levels as a function of time after a severe concussive head injury

Time after injury (min)	Salicylate (µg/g wet wt)	
0 (Uninjured)	4.0 ± 0.6	
15	2.9 ± 0.6	
30	2.8 ± 0.5	
60	2.5 ± 0.3	
120	2.2 ± 0.3^a	

In each group, a 300 mg/kg i.p. dose of salicylate was administered 15 min before killing. Values are the mean ± SEM for five mice.

Concussions were Associated with OH-Radical in Brain Injury

 $^{^{}a}$ p < 0.05 vs. uninjured group via one-way analysis of variance.

BRAIN HYDROXYL RADICAL GENERATION IN ACUTE EXPERIMENTAL HEAD-INJURY

Take away:

- In mice injured with a concussion of moderate severity as defined by the 1-h posttraumatic neurologic recovery (grip score), a 60% increase in 2,5-DHBA formation was observed by 1 min after injury compared with that observed in uninjured mice.
- The administration of the 21-aminosteroid lipid antioxidant, tirilazad mesylate. which possesses .OH scavenging properties
- further supporting that it reflects an increase in .OH radical formation. These results are the first direct demonstration of the occurrence and time course of increased .OH production in injured brain.

Conclusion

Antioxidants help reduce oxidative stress on the mitochondria which can help regenerate and heal Nerve cells.

Flavonoids in Sunflower have not yet been identified to be directly involved in Nerve Regeneration or Concussion Healing

References

- Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel). 2019 Feb 5;8(2):35. doi: 10.3390/antiox8020035. PMID: 30764536; PMCID: PMC6407021.
- Ataie A, Shadifar M, Ataee R. Polyphenolic Antioxidants and Neuronal Regeneration. Basic Clin Neurosci. 2016 Apr;7(2):81-90. doi: 10.15412/J.BCN.03070201. PMID: 27303602; PMCID: PMC4892323.
- Huang, T., Shen, J., Bao, B., Hu, W., Sun, Y., Zhu, T., ... & Zheng, X. (2022). Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury. Brain Research, 1786, 147902.
- Severo, L., Godinho, D., Machado, F., Hartmann, D., Fighera, M. R., Soares, F. A., ... & Royes, L. F. (2020). The role of mitochondrial bioenergetics and oxidative stress in depressive behavior in recurrent concussion model in mice. Life Sciences, 257, 117991.
- Scaricamazza, S., Salvatori, I., Amadio, S., Nesci, V., Torcinaro, A., Giacovazzo, G., ... & Ferri, A. (2022). Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1G93A mice. British Journal of Pharmacology, 179(8), 1732-1752.
- Hall, E. D., Andrus, P. K., & Yonkers, P. A. (1993). Brain hydroxyl radical generation in acute experimental head injury. Journal of neurochemistry, 60(2), 588-594.
- Caillaud, M., Chantemargue, B., Richard, L., Vignaud, L., Favreau, F., Faye, P. A., ... & Billet, F. (2018). Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology, 139, 98-116.

