

Stability of Tunnel Diode based Negative Impedance Circuit

Qi Tang, Hao Xin

Dept. of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA Email: hxin@ece.arizona.edu

2014 APS/URSI meeting
July-11-2014, Memphis, TN, USA

Outline

- Introduction
- Circuit configurations
- Stability analysis methods
- NDF and stable region
- Performance evaluation
- Summary

Negative C and Negative L

Foster's reactance theorem:

NIC for broadband matching purpose

Non-Foster antennas

Surpass Chu limit:

$$Q \approx \frac{1}{(ka)^3}$$
, for $ka \ll 1$

Bode-Fano limit:

Return loss ⇔ bandwidth

dispersionless metamaterial

$$\mu_{\text{eff}} = 1 - \frac{F}{1 - 1/(\omega^2 LC) + i(R/\omega L)},$$

$$\Rightarrow \mu_{\text{eff}} = 1 - \frac{F}{1 - L_N / L + i(R / \omega L)} \stackrel{R \to 0}{\approx} 1 - \frac{F}{1 - L_N / L}$$

Types of NIC

Transistor based [1]

- Mainstream
- Linvill, 1953
- Parasitic resistance

Op-amp based

- Relatively robust
- Low operation frequency
- Large parasitic negative resistance [2]

Neg. resist. based

- Origin:
- A. C. Bartlett, 1927
- Van der Pol, 1930
- Verman, 1931
- Simple
- Not well studied

Tunnel diode and negative resistance

- 1. Compensating loss → Telephony line repeaters, active MTM
- 2. Nonlinearity → Oscillators, mixer, multiplier
- 3. Broadband matching ightarrow Negative impedance converter

Negative-resistance based NIC

$$Z_{in} = \frac{-R^2}{Z_{int}}$$

$$Z_{in} = \frac{-R^2}{j\omega L} = \frac{1}{j\omega(-L/R^2)}$$

Sensitivity analysis of Z_{in}

- Inductor: +/- 10% deviation
- Resistor and capacitor: +/- 5% deviation

Benefits and difficulties

A constant resistance as an assumption

Benefits:

- Broadband matching
- Efficiency improvement

Difficulties:

- Stability
- Parasitic effect

Verman's circuit

Parametric study w/o Cp

Verman's circuit without parasitic capacitance [4]

Parameter	Value	Parameter	Value
Rm1	Rm	-Rneg	-300
Rm2	Rm	C_L	3.4pF
Cint	L _L /Rm^2	L	84nH
Lint	C _L /Rm^2		

Different ways to analyze stability

Time domain (Transient simulation)

- Inefficient for parametric study
- not being able to predict degrees of stability
- inaccurate if time interval is not long enough

Frequency domain:

- Return difference, Normalized Determinant Factor (NDF) method
- loop gain
- impedance/admittance method (single-negativeresistor case)

NDF analysis and parasitic effect in stability

NDF procedure:

- 1. Separate out negative resistors
- Perform a mesh or nodal analysis of the network and get matrix H
- 3. Calculate the determinant of the matrix as Z
- 4. Deactivate the negative resistors in mesh analysis is by setting $R_N=0$ (or inf. in nodal analysis) and calculate the determinant as Z_0 .
- 5. $NDF=Z/Z_0$
- 6. NDF has no RHP zeros.

$$Z = \frac{N}{D} = \frac{a_0 + a_1 s + a_2 s^2 + \cdots}{b_0 + b_1 s + b_2 s^2 + \cdots}$$

$$N - DR = 0$$

$$(1 - sC_p R)N - DR = 0$$

Root locus by sweeping R_m

Parametric study w/ Cp

Verman's circuit with parasitic capacitance

Parameter	Value	Parameter	Value
Rm1	Rm	-Rneg	-300
Rm2	Rm	C_L	3.4pF
Cint	L _L /Rm^2	L	84nH
Lint	C _L /Rm^2	C_p	0.65pF

Root locus by sweeping R_m

Performance evaluation

Find stable region using NDF and sweep Rm in stable region

- Given the bandwidth in design spec (30 -300MHz)
- Quantify matching performance:
 - Return loss → Min{mean(S_{11})}
 - Efficiency \rightarrow Max{mean(S₂₁)}
 - Inband fluctuation of $S_{21} \rightarrow Min\{var(S_{21})\}$

Verman circuit example

• Dashed straight lines are without NIC matching case for mean(S_{21})=0.51 and var(S_{21})=0.095

Stearns' circuit

Stearns circuit example

Summary

- Propose an analysis flow for negative resistor based NIC.
 Stability region can be analyzed using NDF methods and performance can be optimized within stable region.
- For S11>1 problem
 - Use a quadrature coupler/ isolator to avoid power reflected back to the device before matching (e.g. PA).
 - Imaging, sensing applications, or active metamaterial applications may still be available.
- Negative resistance based NIC circuits still remains in theory.
 Practical implementations require resolving several main problems, including stability, parasitics, biasing networks, loading effect and sensitivity of circuit elements.
- Potential methods to resolve the problem is to use unilateral gain devices instead of bilateral negative resistors.

Thank you for your attention! Questions?

