Assignment 2; MA353; S19

Leo Livshits

Last modified at 10:10 on February 22, 2019

1 Preliminaries

Definition 1.1

When V is a vector space, we write $\mathfrak{L}(V)$ for the linear space of all linear functions $\mathcal{L}:V\longrightarrow V$.

For any subspace W of V, and any such \mathcal{L} , we write

$$\mathcal{L}[\boldsymbol{W}] \coloneqq \{ \mathcal{L}(w) \mid w \in \boldsymbol{W} \} = Range(\mathcal{L}_{|_{\boldsymbol{W}}}),$$

where $\mathcal{L}_{|_W}: W \longrightarrow V$ is the restriction of the function \mathcal{L} to a (new) domain W.

Since it is easy to see that $\mathcal{L}_{|_{W}}$ is a linear function, $\mathcal{L}[W]$ is a subspace of V. We refer to $\mathcal{L}[W]$ as the image of W under \mathcal{L} .

We will write $\mathcal{L}^2[oldsymbol{W}]$ for

$$\mathcal{L}[\mathcal{L}[oldsymbol{W}]]$$
 , etc.

As usual we set $\mathcal{L}^{^{0}}$ to be the identity function on $oldsymbol{V}$, so that

$$\mathcal{L}^{^{0}}[\boldsymbol{W}] = \boldsymbol{W}$$
.

In a similar fashion we define

$$\mathcal{L}^{\dashv}[\boldsymbol{W}] \coloneqq \{ \ v \in \boldsymbol{V} \mid \mathcal{L}(v) \in \boldsymbol{W} \ \} \ .$$

The student is encouraged to check that $\mathcal{L}^{\dashv}[oldsymbol{W}]$ is a subspace of $oldsymbol{V}.$

We refer to $\mathcal{L}^{\dashv}[W]$ as the pre-image of W under \mathcal{L} .

We write $\mathcal{L}^{^{-2}}[oldsymbol{W}]$ for

$$\mathcal{L}^{^{ ext{--1}}}[\mathcal{L}^{^{ ext{--1}}}[oldsymbol{W}]]$$
 , etc.

 $\mathcal{L}^{^{-2}}[m{W}]$ is another way of referring to $\mathcal{L}^{^{-2}}[m{W}]$, and the same goes for other powers.

Note that \mathcal{L} may not be invertible and so* $\mathcal{L}^{-2}[\boldsymbol{W}]$ should NOT be interpreted as $\left(\mathcal{L}^{-1}\right)^2[\boldsymbol{W}]$, etc. This explains my use of a (non-standard) notation $\mathcal{L}^{-2}[\boldsymbol{W}]$ here.

$$\mathcal{L}^{2}[\boldsymbol{W}] = \mathcal{L}[\mathcal{L}[\boldsymbol{W}]] = (\mathcal{L})^{2}[\boldsymbol{W}].$$

Definition 1.2

A subspace W of V is said to be **invariant** under $\mathcal L$ whenever $\mathcal L_{|_W}:W\longrightarrow W$; in other words, when

$$\mathcal{L}[W] \subseteq W$$
.

The collection of all invariant subspaces for \mathcal{L} is denoted by $\mathfrak{Lat}(\mathcal{L})$.

Test Your Comprehension 1.3

Argue that for any $\mathcal{L} \in \mathfrak{L}(V)$, the subspaces V, $\{0_{_{\boldsymbol{V}}}\}$, $Range(\mathcal{L})$ and $Nullspace(\mathcal{L})$ are invariant under \mathcal{L} .

^{*} In contrast to a valid formula

^{*}We will improve on this in the problems below.

3 2 Problems

2 **Problems**

Problem 1 Prinite unions of subspaces are rarely a subspace

Suppose that W_1, W_2, \ldots, W_n are subspaces of a vector space V. Prove that the following are equivalent:

- 1. $W_1 \cup W_2 \cup \cdots \cup W_n$ is a subspace of V;
- 2. One of the W_i 's contains all the others.

Problem 2 Problem 2 Images of pre-images and pre-images of images

Is there a 3×3 matrix \mathcal{A} such that

$$\boldsymbol{W} \coloneqq \left\{ \left(\begin{smallmatrix} x \\ y \\ 0 \end{smallmatrix} \right) \mid x, y \in \mathbb{C} \right\}$$

is an invariant subspace for A, and

$$\mathcal{A}[\mathcal{A}^{\neg 1}[\mathbf{W}]] \subsetneq \mathbf{W} \subsetneq \mathcal{A}^{\neg 1}[\mathcal{A}[\mathbf{W}]]$$
?

Justify your answer.

Problem 3 Problem 3 Invariant subspaces form a "lattice"

- 1. Argue that $\mathfrak{Lat}(\mathcal{L})$ is closed under intersection; i.e. that the intersection of any two invariant subspaces for $\mathcal L$ is also an invariant subspace for \mathcal{L} .
- 2. Argue that $\mathfrak{Lat}(\mathcal{L})$ is closed under subspace sums; i.e. that a subspace sum of two invariant subspaces for $\mathcal L$ is again an invariant subspace for \mathcal{L} .
- 3. Show that an image under $\mathcal L$ of an invariant subspace for $\mathcal L$ is again an invariant subspace for \mathcal{L} .
- 4. Show that a pre-image under \mathcal{L} of an invariant subspace for \mathcal{L} is again an invariant subspace for \mathcal{L} .

<u>Hint</u>: $[1. \Rightarrow 2.]$: Suppose this implication is not always true. Then there must be a smallest n for which it fails; let us to a singular n of which it falls, let us call it n_0 . Since the implication is trivially true for n=1, such an n_0 must be at least 2, and the implication does

be at least 2, and the implication does hold true for all smaller n. Let $W_1, W_2, \ldots, W_{n_0}$ be a collection of subspaces of a vector space V such that $W_1 \cup W_2 \cup \cdots \cup W_{n_0}$ is a subspace of V, but none of the W_i 's contains all the others. Arous that $n_0 W_i$ is contained in the

Argue that no W_i is contained in the union of the other W_i 's.

Then argue that each W_i contains an element w_i that does not belong to any other W_i 's.

Argue that $w_1 + w_2$ belongs to $\boldsymbol{W}_1 \cup \boldsymbol{W}_2 \cup \cdots \cup \boldsymbol{W}_n$.

Argue that $w_1 + w_2$ belongs to $\boldsymbol{W}_2 \cup \cdots \cup \boldsymbol{W}_n$.

Repeat with $2w_1 + w_2$. Repeat with $2w_1 + w_2$, $3w_1 + w_2$, $4w_1 + w_2$, m_0 with $m_1 + m_2$. Argue that one of m_2, \dots, m_n contains $kw_1 + w_2$ for two distinct values of k.

Infer a contradiction.

Mathematical lattice is a partially ordered set such that every pair of elements A and B has a "join" and a "meet" within the lattice. The join is the smallest of the elements that dominate both A and B (with respect to the order), and the meet is the largest of the elements dominated by both A and B.

A collection of all subspaces of a vector space $oldsymbol{V}$ is partially ordered by the operation of inclusion, and is a lattice with respect to this operation, with the meet of two subspaces being their intersec-tion, and the join being their subspace

In this problem you are verifying that $\mathfrak{Lat}(\mathcal{L})$ is a sub-lattice of the lattice of all subspaces of V. It is common to refer to $\mathfrak{Lat}(\mathcal{L})$ as "the lattice of the invariant subspaces of \mathcal{L} ".

Problem 4 Cyclic invariant subspaces

For a given $\mathcal{L} \in \mathfrak{L}(V)$ and a fixed $v_0 \in V$, define

$$P(\mathcal{L}, v_o) := \left\{ \left. \left(a_o \mathcal{L}^0 + a_1 \mathcal{L} + a_2 \mathcal{L}^2 + \cdots + a_k \mathcal{L}^k \right) (v_o) \, \right| \, k \geq 0, \, a_i \in \mathbb{C} \, \right\} .$$

- 1. Argue that $P(\mathcal{L}, v_0)$ is a subspace of V.
- 2. Argue that $P(\mathcal{L}, v_0)$ is invariant under \mathcal{L} .
- 3. Argue that $P(\mathcal{L}, v_{\circ})$ is the smallest invariant subspace for \mathcal{L} that contains v_{\circ} . We refer to $P(\mathcal{L}, v_{\circ})$ as the cyclic invariant subspace for \mathcal{L} generated by v_{\circ} .
- 4. Argue that $P(\mathcal{L}, v_{\circ})$ is 1-dimensional exactly when v_{\circ} is an eigenvector of \mathcal{L} .
- 5. Argue a subspace W of V is invariant under $\mathcal L$ exactly when it is a union of cyclic invariant subspaces for $\mathcal L$.

Problem 5 🖒 Invariant subspaces of commuting operators

Suppose that linear functions \mathcal{L} , $\mathcal{M} \in \mathfrak{L}(V)$ commute; i.e.

$$\mathcal{L} \circ \mathcal{M} = \mathcal{M} \circ \mathcal{L} .$$

- 1. Argue that for any non-negative integer k, $Range\left(\mathcal{M}^{k}\right)$ and $Nullspace\left(\mathcal{M}^{k}\right)$ are invariant subspaces for \mathcal{L} .
- 2. Argue that every eigenspace of ${\mathcal M}$ is an invariant subspace for ${\mathcal L}$.
- 3. By giving a general example (with justification, of course!) show that for each n > 1 there are commuting matrices \mathcal{A} and \mathcal{B} in \mathbb{M}_n such that

$$\mathfrak{Lat}(\mathcal{A}) \neq \mathfrak{Lat}(\mathcal{B})$$
.

2 Problems 5

Problem 6 Problem 6 Invariant subspace chains

Suppose that $\mathcal{L} \in \mathfrak{L}(V)$ and W is an invariant subspace of \mathcal{L} .

1. Argue that the following inclusions hold:

$$\cdots \subseteq \mathcal{L}^{3}[\boldsymbol{W}] \subseteq \mathcal{L}^{2}[\boldsymbol{W}] \subseteq \mathcal{L}[\boldsymbol{W}] \subseteq \boldsymbol{W} \subseteq \mathcal{L}^{-1}[\boldsymbol{W}] \subseteq \mathcal{L}^{-2}[\boldsymbol{W}] \subseteq \mathcal{L}^{-3}[\boldsymbol{W}] \subseteq \cdots$$

Note that by Problem 3, all of the subspaces listed in the chain are invariant under \mathcal{L} .

2. Argue that the following implications hold:

$$\mathcal{L}^{^{k+1}}[oldsymbol{W}] = \mathcal{L}^{^k}[oldsymbol{W}] \Longrightarrow \mathcal{L}^{^m}[oldsymbol{W}] = \mathcal{L}^{^k}[oldsymbol{W}]$$
 for any $m \geq k$,

and

$$\mathcal{L}^{^{-k}}[m{W}] = \mathcal{L}^{^{^{-(k+1)}}}[m{W}] \Longrightarrow \mathcal{L}^{^{-k}}[m{W}] = \mathcal{L}^{^{-m}}[m{W}]$$
 for any $m \geq k$,

and then explain why the chain in part 1 stabilizes in both directions, and has at most $\dim(V)$ proper inclusions.

3. Argue that any subspace M that falls between two consecutive subspaces in the chain shown in part 1,* is also invariant under \mathcal{L} .

^{*}for example, if $\mathcal{L}^{^{-3}}[oldsymbol{W}]\subseteq oldsymbol{M}\subseteq \mathcal{L}^{^{-2}}[oldsymbol{W}]$, etc.