Happy Friday!

Number Systems (in Binary)

Lab 1 part 2 due Sunday

CATME survey due Sunday

No lab or discussion section next week

lab 2 part 1 is due Thursday

Office hours during scheduled section times

Stored state bits can be interpreted with many different encoding schemes

Computer can do 2 things

- 1) Store state (How do we interpret stored bits?)
- 2) Manipulate state

233 in one slide!

Today we introduce how to interpret state as data

- The class consists roughly of 4 quarters: (Bolded words are the big ideas of the course, pay attention when you hear these words)
 - 1. You will build a simple computer processor.
 Build and create **state** machines with **data**, **control**, and **indirection**
 - 2. You will learn how high-level language code executes on a processor Time limitations create **dependencies** in the **state** of the processor
 - You will learn why computers perform the way they do Physical limitations require locality and indirection in how we access state
 - You will learn about hardware mechanisms for parallelism Locality, dependencies, and indirection on performance enhancing drugs
- We will have a SPIMbot contest!

Today's lecture

- Representing things with bits
 - *N* bits gets you 2^{*N*} representations
- Unsigned binary number representation
 - Converting between binary and decimal
 - Hexadecimal notation
- Binary Addition & Bitwise Logical Operations
 - Every operation has a width
- Two's complement signed binary representation

A code maps each fixed-width string of bits to a meaning

Bit pattern	Marine Mammal
0100101	Humpback Whale
0100110	Leopard Seal
0100111	Sea Otter
0101000	West Indian Manatee
0101001	Bottlenose Dolphin

(like a secret decoder ring...)

- This mapping however is rarely stored explicitly
 - Rather it is used when we interpret the bits.

How many bits to encode N possible things?

1 bit can encode 2 possibilities (0, 1)

Bits = 1
$$\mathbb{Z}$$
 \mathbb{Z} \mathbb{Z}

N 2 2

iclicker.

What is the minimum # of bits to encode?

• One of the U.S.'s 50 states?

a)
$$3 = 2^3 = 8$$

How many bits to encode?

The list of Justin Bieber's good songs?

- a) 0
- b) 0
- c) 0
- d) 0
- e) 0

Unsigned numbers are the set of non-negative numbers

- **0**, 1, 2, 3, 4, 5, ...
- N bits → store 2^N unsigned numbers → what range should the bits encode?
 - 3 bits → 8 representations → 0 to 7? 1 to 8? 32-40?
 - 8 bits → 256 representations → 0 to 255? 1 to 256? 1024 to 1280?

How does decimal representation work? Consider 162.375

• Numbers consist of a bunch of digits, each with a weight:

1	6	2	3	7	5	Digits
100	10	1	1/10	1/100	1/1000	Weights

• All weights are powers of the base, which is 10:

weight and sum the products.

$$(1 \times 10^{2}) + (6 \times 10^{1}) + (2 \times 10^{0}) + (3 \times 10^{-1}) + (7 \times 10^{-2}) + (5 \times 10^{-3}) = 162.375$$

Unsigned binary number representation uses a position-weighted encoding scheme

- The weights are powers of 2.
- For example, here is 1101 in binary:

$$(1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) =$$

8 + 4 + 0 + 1 = 13

Powers of	f 2:	
2° = 1	2 ⁴ = 16	2 ⁸ = 256
$2^1 = 2$	$2^5 = 32$	2 ⁹ = 512
$2^2 = 4$	2 ⁶ = 64	$2^{\frac{10}{2}} = 1024$
$2^3 = 8$	$2^7 = 128$	—

Binary to Decimal

• What is the 5-bit unsigned number 01010 in decimal?

a) 2

8+2=10

- b) 5
- c) 10
- d) 12
- e) 18

Powers of	f 2:	
2° = 1	2 ⁴ = 16	2 ⁸ = 256
$2^1 = 2$	$2^5 = 32$	2 ⁹ = 512
$2^2 = 4$	$2^6 = 64$	$2^{10} = 1024$
$2^3 = 8$	$2^7 = 128$	

Fractional binary numbers use the same pattern as integer binary numbers

■ For example, here is 1101.01 in binary:

1 1 0 1 . 0 1 Binary digits, or bits
$$2^3$$
 2^2 2^1 2^0 2^{-1} 2^{-2} Weights (in base 10)

The decimal value is:

$$(1 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0}) + (0 \times 2^{-1}) + (1 \times 2^{-2}) =$$

$$8 + 4 + 0 + 1 + 0 + 0.25 = 13.25$$

An algorithm for converting decimal to binary

- Decimal integer → binary: Keep dividing by 2 until the quotient is 0.
 Collect the remainders in reverse order.
- **Example: 162:**

Converting decimal to binary

- Decimal integer → binary: Keep dividing by 2 until the quotient is 0. Collect the remainders in reverse order.
- Example: 162.375:

```
162 / 2 = 81 rem 0

81 / 2 = 40 rem 1

40 / 2 = 20 rem 0

20 / 2 = 10 rem 0

10 / 2 = 5 rem 0

5 / 2 = 2 rem 1

2 / 2 = 1 rem 0

1 / 2 = 0 rem 1
```

To convert a fraction, keep multiplying the fractional part by 2 until it becomes 0. Collect the integer parts in forward order.

• So, $162.375_{10} = 10100010.011_2$

Converting Decimal to Binary iclicker.

• How do you represent 49 in 8-bit unsigned binary?

- a) 110001
- b) 100011
- c) 00110001
- d) 10001100

					1		- 1
00	1	1	0	U	0	1	$\int_{-\infty}^{\infty}$

Powers of 2:

	-	
2 ⁰ = 1	2 ⁴ = 16	2 ⁸ = 256
$2^1 = 2$	$2^5 = 32$	2 ⁹ = 512
$2^2 = 4$	$2^6 = 64$	$2^{10} = 1024$
$2^3 = 8$	$2^7 = 128$	

Why does this work?

- This works for converting from decimal to any base
- Why? Think about converting 162.375 from decimal to decimal.
 162 / 10= 16 rem 2

16 / 10= 1 rem 6

1/10=0 rem 1

- Each division strips off the rightmost digit (the remainder). The quotient represents the remaining digits in the number.
- Similarly, to convert fractions, each multiplication strips off the leftmost digit (the integer part). The fraction represents the remaining digits.

 $0.375 \times 10 = 3.750$

 $0.750 \times 10 = 7.500$

 $0.500 \times 10 = 5.000$

Writing binary numbers is tedious and error prone Char - 8415 in - 32-54

Consider

10011010111001101011000111111101

32

Use Hexadecimal (base-16) as a shorthand for

binary numbers

■ The hexadecimal system uses 16 digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F

We can write our 32-bit number:

Fun fact: Hex is frequently used to specify things like 32-bit IP addresses and 24-bit colors.

Decimal	Binary	Hex	
0	0000) 0	
1	0001 <	·> 1	
2	0010	? 2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110	6	
7	0111	7	
8	1000	8	
9	1001	9	
10	1010	A =	10
11	1011	B =	ij
12	1100	С	
13	1101	D	
14	1110	Ε	
15	1111	F	

Hexadecimal to Binary

- What is B4₁₆ in binary?
 - A: 10110100
 - B: 1010100
 - C: 1011100
 - D: 11000100

Binary and hexadecimal conversions

 Converting from hexadecimal to binary is easy: just replace each hex digit with its equivalent 4-bit binary sequence.

$$261.35_{16} = 2$$
 6 1 . 3 5_{16} = 0010 0110 0001 . 0011 0101₂

 To convert from binary to hex, make groups of 4 bits, starting from the binary point. Add Os to the ends of the number if needed. Then, just convert each bit group to its corresponding hex digit.

$$10110100.001011_2 = 1011 0100 . 0010 1100_2$$

= B 4 . 2 C₁₆

Hex	Binary
0	0000
1	0001
2	0010
3	0011

Hex	Binary
4	0100
5	0101
6	0110
7	0111

Hex	Binary
8	1000
9	1001
Α	1010
В	1011

Hex	Binary
С	1100
D	1101
Е	1110
F	1111

Add binary numbers just like how you do with decimal numbers

• But remember that it's binary! For example, 1 + 1 = 10 and you have to carry!

```
0 1 0 1 1 Augend (11)

+ 0 1 1 1 0 Addend (14)

1 0 0 1 Sum 25 YAY

16 + 8 + 1 = 25
```

Add binary numbers just like how you do with decimal numbers

• But remember that it's binary! For example, 1 + 1 = 10 and you have to carry!

Computers restrict all binary numbers to use the same number of bits (i.e., fixed-width)

What if we do that same addition, using only 4-bit numbers

• (and where the result can only be 4 bits long...)

The number wheel (4-bit unsigned #'s)

"Carry-out" is a procedure, "Overflow" is an interpretation

Carry-out

- Occurs at every bit-position
- The process of moving larger numbers to higher bit positions
- Focuses on bit-wise operations

Overflow

- Can only be seen after completing an entire mathematical operation
- When the interpretation of a set of bits does not match the expected value after a mathematical operation
- Focuses on representational range (i.e., 4 bits represent 0-15)

Bitwise Logical operations support logical operations on multi-bit words

To apply a logical operation to two words X and Y, apply the operation on each pair of bits X_i and Y_i:

Languages like C, C++ and Java provide bitwise logical operations: $\times_{\mathbb{Z}_7}$

& (AND) | (OR) \wedge (XOR) \sim (NOT)

These operations treat each integer as a bunch of individual bits:

13 & 25 = 9 because 01101
$$\frac{811001}{01001}$$
 $\frac{13 \times 25}{01001}$ $\frac{1001}{01001}$ $\frac{1001}{01001}$

- Bitwise operators are often used in programs to set a bunch of Boolean options, or flags, with one argument.
- They are not the same as the operators &&, || and! which treat each integer as a single logical value (0 is false, everything else is true):

```
13 && 25 = 1 because true && true = true

//

true true true
```

Bit-wise XOR

001011 XOR 110011

• A: 111001

B: 111011

• C: 111000

D: 000110

Bitwise operations are used to find network information

- IP addresses are actually 32-bit (or 128-bit) binary numbers
- For example, you can bitwise-AND an address 192.168.10.43 with a "subnet mask" to find the "network address," or which network the machine is connected to.

```
192.168. 10. 43 = 11000000.10101000.00001010.00101011
& 255.255.255.224 = 111111111.11111111.1111111.11100000

192.168. 10. 32 = 11000000.10101000.00001010.00100000
```

You can use bitwise-OR to generate a "broadcast address," for sending data to all machines on the local network.

```
192.168. 10. 43 = 11000000.10101000.00001010.00101111

| 0. 0. 31 = 00000000.0000000.00000000.00011111

192.168. 10. 63 = 11000000.10101000.00001010.00111111
```

Preview for next time: How do we represent negative numbers

- It is useful to be able to represent negative numbers.
- What would be ideal is:
 - If we could use the same algorithm to add signed numbers as we use for unsigned numbers
 - Then our computers wouldn't need 2 kinds of adders, just 1.
- This is achieved using the 2's complement representation.

The number wheel (4-bit unsigned #'s)

The number wheel (4-bit 2's complement)

