Networks and Random Processes

Problem sheet 1

Sheet counts 40/100 homework marks, [x] indicates weight of the question. Please put solutions in my pigeon hole or give them to me by **Friday**, 13.10.2016, 2pm.

1.1 Simple random walk (SRW)

[14]

- (a) Consider a simple random walk on $\{1,\ldots,L\}$ with probabilities $p\in[0,1]$ and q=1-p to jump right and left, respectively, and consider periodic as well as closed boundary conditions. In each case, sketch the transition matrix P of the process (see lectures), decide whether the process is irreducible, and give all stationary distributions π and state whether they are reversible. (Hint: Use detailed balance.) Discuss the cases p=1 and p=q=1/2 separately from the general case $p\in(0,1)$.
- (b) Consider the same SRW with absorbing boundary conditions, sketch the transition matrix P, decide whether the process is irreducible, and give all stationary distributions π and state whether they are reversible. Let $h_k^L = \mathbb{P}[X_n = L \text{ for some } n \geq 0 | X_0 = k]$ be the absorption probability in site L. Give a recursion formula for h_k^L and solve it for $p \neq q$ and p = q.
- (c) Consider a tree, i.e. an undirected, connected graph (G,E) without loops and double edges. A simple random walk on (G,E) has transition probabilities

$$p(x,y) = e(x,y)/d(x)$$
 for $d(x) > 0$ and $p(x,y) = \delta_{x,y}$ for $d(x) = 0$,

where $e(x,y)=e(y,x)\in\{0,1\}$ denotes the presence of an undirected edge (x,y), and $d(x)=\sum_{y\in G}e(x,y)$ is the degree of vertex x.

Find a formula for the stationary distribution π .

1.2 Geometric random walk

[13]

Let X_1, X_2, \ldots be a sequence of iidrv's with $X_i \sim \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Consider the discrete-time random walk (DTRW) on state space \mathbb{R}

$$(Y_n : n \ge 0)$$
 with $Y_{n+1} = Y_n + X_{n+1}$ and $Y_0 = 0$.

- (a) State the weak law of large numbers and the central limit theorem for this process.
- (b) Using that sums of Gaussian random variables are again Gaussian, what is the distribution of Y_n for arbitrary $n \ge 0$?

Now consider the discrete-time process $(Z_n : n \ge 0)$ on the state space $(0, \infty)$ with $Z_n = \exp(Y_n)$, which is called a **geometric random walk**.

(c) Give a recursive definition of $(Z_n : n \ge 0)$ analogous to the above. What is the distribution of Z_n (look up log-normal on the web)? Give the PDF, its mean, variance and median.

(d) Simulate M=500 realizations of Z_n for $n=0,\ldots,100$ with $\mu=0$ and $\sigma=0.2$. Plot the empirical average

$$\hat{\mu}_n^M := \frac{1}{M} \sum_{i=1}^M Z_n^i$$

as a function of time n, with error bars indicating the standard deviation.

Compare the empirical PDF at times n = 1, 10 and 100 to the theoretical prediction.

- (e) For fixed $\sigma=0.2$ pick μ such that $\mathbb{E}[Z_n]\equiv 1$ for all $n\geq 0$, and repeat the previous simulation.
- (f) In the following consider the choice of parameters from (e).

Is $(Z_n : n \ge 0)$ a stationary process?

As the number of realizations $M \to \infty$, does the empirical average $\hat{\mu}_n^M$ converge for fixed $n \ge 0$, and what is the limit?

For fixed finite M, do you think that $\hat{\mu}_n^M$ converges as $n \to \infty$, and what is the limit?

Do you think the limits commute, i.e. $\lim_{n\to\infty}\lim_{M\to\infty}\hat{\mu}_n^M=\lim_{M\to\infty}\lim_{n\to\infty}\hat{\mu}_n^M$?

1.3 Wright-Fisher model of population genetics

[13]

Consider a fixed population of L individuals. At time t=0 each individuum i has a different type $X_0(i)$, for simplicity we simply put $X_0(i)=i$. Time is counted in discrete generations $t=0,1,\ldots$ In generation t+1 each individuum i picks a parent $j\sim U(\{1,\ldots,L\})$ uniformly at random, and adopts its type, i.e. $X_{t+1}(i)=X_t(j)$. This leads to a discrete-time Markov chain $(X_t:t\in\mathbb{N})$.

(a) Give the state space of the Markov chain $(X_t : t \in \mathbb{N})$. Is it irreducible? What are the stationary distributions?

(Hint: if unclear do (c) first to get an idea.)

- (b) Let N_t be the number of individuals of a given species at generation t, with $N_0=1$. Is $(N_t:t\in\mathbb{N})$ a Markov process? Give the state space and the transition probabilities. Is the process irreducible? What are the stationary distributions? What is the limiting distribution as $t\to\infty$ for the initial condition $N_0=1$?
- (c) Simulate the dynamics of the full process $(X_t:t\in\mathbb{N})$, e.g. using MATLAB, up to generation T. Store the trajectory $(X_t:t=1,\ldots,T)$ in a $T\times L$ matrix, with ordered types such that $X_t(1)\leq\ldots\leq X_t(L)$ for all t.

Visualise the matrix using e.g. the MATLAB function 'image'.

You may use the suggested parameter values $L=100,\,T=500$ or any other that make sense (it is a good idea to vary them to get a feeling for the model). Address the following points, supported by appropriate visualisations:

- Explain the emerging patterns in a couple of sentences, what will happen when you run the simulation long enough?
- How long will it roughly take to reach stationarity (depending on L)? Test your answer using three values for L, e.g. 10, 50 and 100.