

Domain Universe of VDM-SL

Peter Gorm Larsen

IFAD

March 1995

Basic Notation

Definition 1 (Partial Ordering) A binary relation \sqsubseteq on D is called a partial ordering on D iff it is:

- 1. Reflexive: for all $a \in D$, $a \sqsubseteq a$.
- 2. Antisymmetric: for all $a, b \in D, a \sqsubseteq b$ and $b \sqsubseteq a$ imply a = b.
- 3. Transitive: for all $a, b, c \in D, a \sqsubseteq b$ and $b \sqsubseteq c$ imply $a \sqsubseteq c$.

Definition 2 (Partially ordered set) A partially ordered set A is a pair $(|A|, \sqsubseteq_A)$ where |A| is a set and \sqsubseteq_A is a partial ordering on |A|.

Complete Partial Order Operators

Definition 3 (Lifting) For any set S, the result of *lifting* S is a cpo S_{\perp} defined by:

- $\bullet |S_{\perp}| = S \cup \{\bot\}$
- for $a_1, a_2 \in |S_{\perp}|$, $a_1 \sqsubseteq_{S_{\perp}} a_2$ iff $a_1 = \bot$ or $a_1 = a_2$.

Definition 4 (Union-compatible cpo's) Let \mathcal{A} be a family of cpo's. The family \mathcal{A} is union-compatible if:

$$\bigcup \mathcal{A} = (\bigcup \{|A||A \in \mathcal{A}\}, \bigcup \{\sqsubseteq_A | A \in \mathcal{A}\})$$

is a cpo.

Finite Subsets and Sequences

Definition 5 (Finite subsets) Let A be a flat cpo with $\bot = \bot_A$. Then the cpo of its *finite* subsets, $\mathcal{S}_{CPO}(A)$, is defined as follows:

- $|S_{CPO}(A)| = \mathbb{F}(|A| \setminus \{\bot\}) \cup \{\bot\},$
- for $s_1, s_2 \in |\mathcal{S}_{CPO}(A)|$, $s_1 \sqsubseteq_{\mathcal{S}_{CPO}(A)} s_2$ iff $s_1 = \bot$ or $s_1 = s_2$.

Definition 6 (Finite Sequences) Let A be a cpo with $\bot = \bot_A$. The cpo of finite sequences of elements of A, $\mathcal{L}_{CPO}(A)$, is defined by

- $|\mathcal{L}_{CPO}(A)| = \mathbb{L}(|A| \setminus \{\bot\}) \cup \{\bot\}$
- $\bot \sqsubseteq_{\mathcal{L}_{CPO}(A)} l$ for all $l \in |\mathcal{L}_{CPO}(A)|$, and for $l_1, l_2 \in |\mathcal{L}_{CPO}(A)| \setminus \{\bot\}, l_1 \sqsubseteq_{\mathcal{L}_{CPO}(A)} l_2$ iff $\underline{\operatorname{len}}(l_1) = \underline{\operatorname{len}}(l_2)$ and for $i \in \{1, \ldots, \underline{\operatorname{len}}(l_1)\}, l_1(i) \sqsubseteq_A l_2(i)$.

Cartesian Product

Definition 7 (Cartesian product) Let

 A_1, \ldots, A_n be cpo's with $\bot = \bot_{A_1} = \ldots = \bot_{A_n}$. Then their *smashed Cartesian product*, $\mathcal{P}_{CPO}(A_1, \ldots, A_n)$, is defined by:

- $|\mathcal{P}_{CPO}(A_1,\ldots,A_n)| = \underset{i=1}{\overset{n}{\times}} (|A_i| \setminus \{\bot\}) \cup \{\bot\}$
- $\bot \sqsubseteq_{\mathcal{P}_{CPO}(A_1,...,A_n)} p$ for all $p \in |\mathcal{P}_{CPO}(A_1,...,A_n)|$, and for $(a_1,...,a_n), (a'_1,...,a'_n) \in |\mathcal{P}_{CPO}(A_1,...,A_n)|$, $(a_1,...,a_n) \sqsubseteq_{\mathcal{P}_{CPO}(A_1,...,A_n)} (a'_1,...,a'_n)$ iff $a_1 \sqsubseteq_{A_1} a'_1$ and ... and $a_n \sqsubseteq_{A_n} a'_n$.

Record space

Definition 8 (Record space) Let $id \in Id$ be a VDM-SL identifier, and let A_1, \ldots, A_n be cpo's with $\bot = \bot_{A_1} = \ldots = \bot_{A_n}$. Then the *smashed* record $cpo, \mathcal{R}^{id}_{CPO}(A_1, \ldots, A_n)$, is defined by:

- $|\mathcal{R}^{id}_{CPO}(A_1, \dots, A_n)| =$ $(\{id\} \times \underset{i=1}{\overset{n}{\times}} (|A_i| \setminus \{\bot\})) \cup \{\bot\}$
- $\bot \sqsubseteq_{\mathcal{R}_{CPO}^{id}(A_1,...,A_n)} r$ for all $r \in |\mathcal{R}_{CPO}^{id}(A_1,...,A_n)|$, and for $(id, a_1, ..., a_n), (id, a'_1, ..., a'_n) \in |\mathcal{R}_{CPO}^{id}(A_1,...,A_n)|$, $(id, a_1, ..., a_n) \sqsubseteq_{\mathcal{R}_{CPO}^{id}(A_1,...,A_n)} (id, a'_1, ..., a'_n)$ iff $a_1 \sqsubseteq_{A_1} a'_1$ and ... and $a_n \sqsubseteq_{A_n} a'_n$.

Mapping Space

Definition 9 (Mapping space) Let A be a flat cpo and B be a cpo with $\bot = \bot_A = \bot_B$. Then the *cpo of smashed mappings* from A to B, $\mathcal{M}_{CPO}(A, B)$, is defined as follows:

- $|\mathcal{M}_{CPO}(A, B)| = \mathbb{M}(|A| \setminus \{\bot\}, |B| \setminus \{\bot\}) \cup \{\bot\}$
- $\bot \sqsubseteq_{\mathcal{M}_{CPO}(A,B)} m$ for all $m \in |\mathcal{M}_{CPO}(A,B)|$, and

for
$$m_1, m_2 \in |\mathcal{M}_{CPO}(A, B)| \setminus \{\bot\}$$
,
 $m_1 \sqsubseteq_{\mathcal{M}_{CPO}(A, B)} m_2$ iff
 $\delta_0(m_1) = \delta_0(m_2)$ and for all
 $a \in \delta_0(m_1), m_1(a) \sqsubseteq_B m_2(a)$.

Function space

Definition 10 (Function space) Let A and B be cpo's with $\bot = \bot_A = \bot_B$. Then the *cpo of functions* from A to B, $\mathcal{F}_{CPO}(A, B)$, is defined by:

- $|\mathcal{F}_{CPO}(A,B)| = (|A| \rightarrow |B|) \cup \{\bot\}$
- $\bot \sqsubseteq_{\mathcal{F}_{CPO}(A,B)} f$ for all $f \in |\mathcal{F}_{CPO}(A,B)|$, and for $f, g \in |\mathcal{F}_{CPO}(A,B)| \setminus \{\bot\}, f \sqsubseteq_{\mathcal{F}_{CPO}(A,B)} g$ iff for all $a \in A, f(a) \sqsubseteq_B g(a)$.

Tagging Operator

Definition 11 (Tagging) Let A be a cpo with $\bot = \bot_A$. For any $t \in TAG$, tagging A with t yields a cpo $\mathcal{T}_{CPO}^t(A)$ defined as follows:

- $|\mathcal{T}_{CPO}^t(A)| = \{(t, a) | a \in (|A| \setminus \{\bot\})\} \cup \{\bot\}$
- $\bot \sqsubseteq_{\mathcal{T}_{CPO}^t(A)} e$ for all $e \in |\mathcal{T}_{CPO}^t(A)|$, and for $(t, a_1), (t, a_2) \in |\mathcal{T}_{CPO}^t(A)|$, $(t, a_1) \sqsubseteq_{\mathcal{T}_{CPO}^t(A)} (t, a_2)$ iff $a_1 \sqsubseteq_A a_2$.

Basic cpo's

Bool-cpo

char-cpo

nil-cpo

 $\mathcal{T}^{bool'}_{CPO}({
m I\!B}_\perp)$

 $\mathcal{T}^{char'}_{CPO}(CHAR_{\perp})$

 $\mathcal{T}_{CPO}^{'nil'}(\{\overline{ ext{nil}}\}_{\perp})$

 $\mathcal{T}^{token'}_{CPO}(QUOTE_{\perp})$

 $\{\mathcal{T}^{'num'}_{CPO}(\mathbb{N}_{\perp}), \mathcal{T}^{'num'}_{CPO}(\mathbb{N}_{1\perp}), \mathcal{T}^{'num'}_{CPO}(\mathbb{Z}_{\perp}),$

NUM-CPOS

token-cpo

 $\mathcal{T}^{'num'}_{CPO}(\mathbb{Q}_{\perp}), \mathcal{T}^{'num'}_{CPO}(\mathbb{R}_{\perp}) \}$

 $\{\mathcal{T}^{'quot'}_{CPO}(\{q\}_{\perp})|q\in QUOTE\}$

QUOTE-CPOS

$$U_{\alpha+1} = U$$

$$\cup \quad \{\mathcal{U}_{CPO}(\{D_1,\ldots,D_n\})|D_1,\ldots,D_n\in U_\alpha \ \land \$$

 D_1, \ldots, D_n is a union compatible family $\}$

$$\{ \mathcal{T}^{set'}_{CPO}(\mathcal{S}_{CPO}(D)) | D \in U_{\alpha} \land D \text{ is flat} \}$$

$$\{\mathcal{T}_{CPO}^{'tuple'}(\mathcal{P}_{CPO}(D_1,\ldots,D_n))|D_1,\ldots,D_n\in U_\alpha\}$$

)
$$\{\mathcal{T}^{'seq'}_{CPO}(\mathcal{L}_{CPO}(D))|D\in U_{lpha}\}$$

$$|id \in Id \land D_1, \ldots, D_n \in U_{\alpha}\}$$

$$\cup \quad \{\mathcal{T}_{CPO}^{'map'}(\mathcal{M}_{CPO}(D_1,D_2))|D_1,D_2 \in U_\alpha \wedge D_1 \text{ is flat}\}$$

$$\cup \quad \{\mathcal{T}_{CPO}^{'fun'}(\mathcal{F}_{CPO}(D_1,D_2))|D_1,D_2 \in U_{\alpha}\}$$

$$\cup \quad \{\mathcal{T}^q_{CPO}(D)|D \in U_\alpha, q \in QUOTE\}.$$

VDM Domains

$$CPO = \bigcup_{\alpha < \omega_1} U_{\alpha}.$$

Construction 12 (Domain universe) The universe of domains for VDM, DOM, is defined by:

$$DOM = \{((|A|, \sqsubseteq_A), ||A||) | (|A|, \sqsubseteq_A) \in CPO \land ||A|| \subseteq |A| \setminus \{\bot_A\} \}.$$

Definition 13 (VDM domain operators) For each of the operators on CPO, its extension to a $domain\ operator$ on DOM is defined.

Further Information

A Naive Domain Universe for VDM (VDM'90)