Podstawy Elektrotechniki i Elektroniki część 1

dr hab. inż. Stanisław Hałgas, prof. PŁ

O mnie

O mnie

dr hab. inż. Stanisław Hałgas, prof. PŁ

- p.103 al. Politechniki 11
- tel. 631-25-22
- stanislaw.halgas@p.lodz.pl
- WIKAMP

Cel przedmiotu

Celem przedmiotu jest:

- zapoznanie z podstawowymi pojęciami z zakresu obwodów elektrycznych,
- wyjaśnienie zjawisk zachodzących w obwodach elektrycznych,
- zapoznanie z podstawami elektroniki: materiałami i przyrządami półprzewodnikowymi oraz sposobem realizacji bramek logicznych,
- poznanie podstawowych zasad funkcjonowania elementów sprzętu komputerowego,
- pozyskanie wiedzy z zakresu współczesnych technik pomiarowych.

Efekty kształcenia

Efekty kształcenia

- znajomość elementarnych pojęć oraz podstaw teoretycznych z zakresu obwodów elektrycznych i teorii sygnałów,
- umiejętność wyjaśnienia wybranych zjawisk zachodzących w obwodach i systemach,
- rozumienie zasady działania elementarnych przyrządów półprzewodnikowych oraz podstawowych bramek logicznych wykonanych w technologii CMOS,
- umiejętność wyjaśnienia zasady działania podstawowych urządzeń do zapisu, odczytu i wizualizacji informacji,
- umiejętność interpretacji i prezentacji wyników pomiarów,
- znajomość zasad konstruowania i funkcjonowania komputerowych systemów pomiarowych.

Metody weryfikacji efektów kształcenia

Metody weryfikacji – forma tradycyjna (kontakt bezpośredni)

- sprawdzian pisemny 2 pytania teoretyczne po 5 p. (wykład), aktualna lista zagadnień będzie podana na platformie WIKAMP – 10 p.,
- sprawdzian pisemny elementarne zadania obliczeniowe z zakresu obwodów: formułowanie praw Kirchhoffa, wyznaczanie rezystancji zastępczej, umiejętność obliczania napięcia, prądu, impedancji, admitancji oraz mocy w układach prądu sinusoidalnie zmiennego, określenie parametrów przebiegu sinusoidalnego (wykład) – 10p.,
- test wielokrotnego wyboru (wykład) 10 p.,

Program wykładów 1

Program

- Pojęcia wstępne: pole elektrostatyczne, magnetostatyczne, elektromagnetyczne, sygnał, napięcie, prąd, moc, energia, oznaczenia wielkości elektrycznych, jednostki, typowe wartości.
- Podstawowe informacje o elementach obwodów elektrycznych: opornik, cewka, kondensator, źródło napięcia i prądu, dioda, tranzystor MOS.
- Fundamentalne prawa i metody analizy układów: prawo Ohma, prawa Kirchhoffa.
- Wybrane zastosowania praktyczne elementów oraz ich wpływ na działanie układów: tranzystor MOS jako klucz, ładowanie i rozładowanie kondensatora, stała czasowa, magazynowanie energii, wpływ kondensatorów na kształt sygnałów taktujących, zjawisko rezonansu

Program wykładów 2

Program

- Zakresy fal wykorzystywanych w komunikacji bezprzewodowej, technologie komunikacji bezprzewodowej.
- Elementarne informacje o modulacji.
- Wstęp do elektroniki: przewodniki, izolatory, półprzewodniki samoistne i domieszkowane, złącze p-n i jego charakterystyka.
- Podstawowe przyrządy półprzewodnikowe: dioda, tranzystor MOS.
- Wybrane bramki logiczne.

Bibliografia

Rys. 1: Wybrane pozycje literatury

Wprowadzenie

Wiadomości wstępne

- Podstawy elektrotechniki i elektroniki mają ścisły związek z teorią pola elektromagnetycznego.
- Wiele zależności oraz fundamentalnych praw wykorzystywanych w analizie obwodów elektrycznych i elektronicznych ma swoje źródło w tym dziale fizyki, np.: prawa Kirchhoffa, prawo Ohma, podstawowe zależności dla rezystorów, cewek i kondensatorów, pojęcie mocy i energii.
- Pole elektromagnetyczne opisuje się za pomocą skalarnych i wektorowych wielkości fizycznych. Niezbędne informacje o tych wielkościach, układach współrzędnych, operacjach wektorowych i innych stosowanych narzędziach matematycznych można znaleźć w podręcznikach z zakresu teorii pola.

Wprowadzenie

Wiadomości wstępne

 Związki między rozkładem ładunków i prądów, będących źródłami oddziaływania elektromagnetycznego, a wielkością tego oddziaływania określaną wektorami natężenia pola elektrycznego oraz indukcji magnetycznej, przedstawiają równania Maxwella (James Clerk Maxwell 1864 r).

James Clerk Maxwell 1831-1879

Wprowadzenie

Wiadomości wstępne

- Zwykle rozpatruje się najpierw przypadki szczególne oddziaływania pola na materię, takie jak pola stacjonarne elektryczne w dielektryku (pole elektrostatyczne), w przewodniku (pole przepływowe) oraz magnetyczne (pole magnetostatyczne) – ich analiza jest łatwiejsza.
- W celu dokładniejszego uwzględnienia wszystkich zjawisk rozpatruje się bardziej złożone zagadnienia np. pole zmienne w czasie z pominięciem zjawisk falowych oraz pole elektrodynamiczne harmoniczne i o dowolnej zmienności.

Wiadomości wstępne

- Elektrostatyka badanie zjawisk zachodzących pod wpływem niezmiennych w czasie pól elektrycznych oraz nieruchomych, w wybranym układzie współrzędnych, wywołujących je ładunków elektrycznych.
- Konsekwencją nieruchomości ładunków jest brak prądu, brak pola magnetycznego oraz niezmienność pola w czasie. Prowadzi to do istotnych uproszczeń w prawach Maxwella oraz wyznaczaniu rozkładu pola.
- Przedmiot badań elektrostatyki m.in.:
 - 1 oddziaływania ładunków elektrycznych
 - zagadnienie polaryzacji
 - obliczanie pojemności kondensatorów
 - problem wytrzymałości elektrycznej.

Ładunki elektryczne

- Ładunek elektryczny cecha cząstek elementarnych, która powoduje, że podlegają one oddziaływaniom elektromagnetycznym.
- dwa rodzaje ładunków elektrycznych umownie przyjęto jako dodatnie oraz ujemne. Rodzaj ładunku jaki posiada elektron nazywany jest ujemnym (-e), natomiast ładunek jaki niesie proton dodatnim (+e).
- Jednostką ładunku elektrycznego w układzie SI jest kulomb (1 C = 1 As).

Ładunki elektryczne

Cechy ładunków ustalone doświadczalnie:

- Ładunek elektryczny jest skwantowany, tzn. ładunek elektryczny każdego ciała składa się z całkowitej liczby elementarnych ładunków (kwantów)¹.
- Ładunki elektryczne nie mogą ani powstawać, ani znikać, a jedynie mogą
 przechodzić z jednego ciała na inne lub przemieszczać się wewnątrz danego ciała.
- Wypadkowy ładunek układu odosobnionego jest niezmienny. Jest to prawo zachowania ładunku elektrycznego. Prawo zachowania ładunku ma charakter lokalny, co oznacza, że przeniesienie porcji ładunku z jednego miejsca do drugiego wymaga pewnego czasu, w którym transportowany ładunek zajmuje położenia pośrednie.
- Ładunek elektryczny cząstek nie zmienia swej wartości podczas ruchu, czyli nie zależy od prędkości.

 $^{^1}$ Umownie za ujemny ładunek elementarny przyjęto uważać ładunek elektronu $-1.602\cdot 10^{-19}~{\rm C}$

Podział ciał fizycznych

Ciała fizyczne umownie dzieli się na trzy grupy:

- przewodniki ładunki elektryczne mogą swobodnie przemieszczać się w całej ich objętości (np. metale, w których ładunkami swobodnymi są elektrony; roztwory kwasów, soli i zasad, w których ładunkami swobodnymi są jony),
- dielektryki, zwane też izolatorami ładunki elektryczne pozostają praktycznie w tych miejscach, w których zostały początkowo umieszczone (np. bursztyn, szkło, papier, mika, ebonit),
- półprzewodniki, które pod względem właściwości elektrycznych zajmują miejsce pośrednie między przewodnikami a dielektrykami.

https://www.esus-it.pl/product-pol-22872-Pamiec-RAM-1x-32GB-Intel-HNS2600KPF-DDR4-2400MHz-ECC-REGISTERED-DIMM.html

- B_C pasmo przewodnictwa (conduction band)
- B_a przerwa zabroniona (band gap)
- By pasmo walencyjne (valence band)

Natężenie pola elektrycznego

 Ładunki o jednakowych znakach (jednoimienne) odpychają się, a ładunki o znakach przeciwnych (różnoimienne) przyciągają się, a siłę wzajemnego oddziaływania elektrostatycznego między dwoma nieruchomymi ładunkami punktowymi określa prawo Coulomba.

Charles Augustin de Coulomb francuski fizyk 1736-1806

 $|F_{12}| = |F_{21}| = k_e \frac{|q_1 \times q_2|}{r^2}$

- Oddziaływanie tłumaczy się istnieniem pola elektrycznego, które wytwarzane jest przez każdy ładunek elektryczny.
- Pole wytwarzane przez nieruchome ładunki nazywamy polem elektrostatycznym.
- wektor natężenia pola elektrycznego
 E do ilościowego opisu pola

Kierunek wektora $\overrightarrow{\mathbf{E}}$ w przestrzeni przedstawia się za pomocą linii pola. Linie te są styczne do wektora natężenia pola w każdym punkcie obszaru działania pola. Gęstość linii związana jest z wartością $\overrightarrow{\mathbf{E}}$.

Potencjał i napięcie elektryczne

Pole elektrostatyczne jest **bezwirowe** (**potencjalne**). Można więc określić w nim **potencjał** skalarny V.

- Potencjał pola elektrostatycznego określony jest z dokładnością do stałej i w związku
 z tym nie może być interpretowany fizycznie.
- Przy założeniu, że w dostatecznej odległości od źródła pola potencjał dąży do zera obowiązuje następująca interpretacja fizyczna: "potencjałem elektrycznym pola elektrostatycznego w punkcie A nazywamy podzieloną przez ładunek q pracę, jaką wykonałyby siły tego pola przy przemieszczeniu tego ładunku z punktu A do nieskończoności."
- Miejsce geometryczne punktów o jednakowym potencjale nazywa się powierzchnią ekwipotencjalną.
- ullet Powierzchnie ekwipotencjalne pola skalarnego V są w każdym punkcie prostopadłe do kierunku wektorów natężenia pola elektrycznego.

Potencjał i napięcie elektryczne

- Napięcie elektryczne między dwoma punktami A i B podzielona przez ładunek q praca, jaką wykonałyby siły pola elektrostatycznego przy przemieszczaniu ładunku q z punktu A do punktu B.
- Jednostką napięcia elektrycznego jest wolt (1 V = 1 J \cdot C⁻¹).
- Napięcie elektryczne między punktami A i B (U_{AB}) równa się różnicy potencjałów w tych punktach, czyli $U_{AB} = V(A) V(B)$, gdzie V(A), V(B) potencjały odpowiednio w punktach A oraz B.

$$U_{AB} = \frac{W_{AB}}{q} \qquad [U] = \frac{J}{C} = \frac{V \cdot A \cdot s}{A \cdot s} = V$$

$$Q (+) \qquad A \qquad B(\alpha)$$

Dielektryki

- Dielektryki stosuje się między innymi w celu izolowania elementów urządzeń elektrycznych względem siebie lub względem ziemi.
- Wytrzymałość elektryczna jest jedną z najistotniejszych właściwości materiałów izolacyjnych i określana jest jako największa wartość natężenia pola elektrycznego E_d, która nie wywołuje jeszcze przebicia (w cieczy albo w dielektryku stałym) lub przeskoku iskry (w gazie).
- W standardowych warunkach atmosferycznych wytrzymałość elektryczna powietrza wynosi 3 MV · m⁻¹, oleju transformatorowego 4 MV · m⁻¹, a porcelany elektrotechnicznej 20 – 30 MV · m⁻¹.

Pojemność elektryczna. Kondensatory

- Kondensator układ dwóch przewodników (okładzin, okładek) rozdzielonych dielektrykiem.
- Jeżeli kondensator naładowano ładunkiem Q, to na jednej z okładzin znajduje się ładunek Q, a na drugiej -Q (indukcja elektryczna całkowita).
- Pomiędzy okładkami naładowanego kondensatora napięcie elektryczne $U = V_1 V_2$, gdzie V_1 i V_2 są potencjałami okładki dodatniej i ujemnej.
- Pojemność elektryczna kondensatora iloraz bezwzględnej wartości ładunku kondensatora do napięcia panującego między jego okładzinami $C = \frac{Q}{U}$.
- Jednostką pojemności jest **farad** (1 F = 1 A · s · V⁻¹).
- Pojemność elektryczna kondensatora liniowego zależy tylko od jego cech konstrukcyjnych (geometrii okładek i przenikalności elektrycznej dielektryka).

Kondensator

Kondensator

 $https://www.123rf.com/photo_139751504_extreme-detail-on-the-electronic-components-of-a-modern-pc-motherboard-capacitors-resistor-and-other.html$

Kondensator

Wiadomości wstępne

- Pole przepływowe stałe w czasie pole elektryczne w środowiskach przewodzących.
- Opis zjawisk związanych z przepływem stałego (w czasie) prądu elektrycznego bez uwzględniania związanego z tym pola magnetycznego.
- Prad elektryczny ruch ładunków elektrycznych.
- Zwrot prądu kierunek, w jakim przemieszczają się ładunki dodatnie.
- Natężenie prądu elektrycznego granica ilorazu ładunku Δq i czasu Δt , w którym ten ładunek przemieści się przez rozważaną powierzchnię $i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$.
- Natężenie prądu elektrycznego wielość skalarna, **jednostka amper** (1 A).
- Wielkość wektorowa \overrightarrow{J} **gęstość prądu** zawiera informacje o kierunku ruchu ładunków oraz o ich sposobie rozłożenia w przestrzeni.

Prąd elektryczny – rodzaje:

- prąd przewodzenia występuje w przewodnikach, wynika z istnienia ładunków (elektronów lub jonów), które mogą swobodnie przemieszczać się w obrębie przewodnika.
- prąd konwekcyjny (prąd unoszenia) ruch naładowanych ciał (np. naładowanych elektrycznie drobin kurzu unoszonych przez powietrze).
- prąd polaryzacji ruch ładunków w dielektrykach (wychylanie ładunków z położenia równowagi w obrębie molekuł lub obracanie molekuł obdarzonych elektrycznym momentem dipolowym).
- prąd elektryczny w próżni wiązki elektronów występujące w promieniowaniu katodowym, emisji fotoelektrycznej lub termojonowej oraz wiązki jonów dodatnich przy promieniowaniu kanalikowym lub wiązki protonów.
- **prąd przesunięcia w próżni** poprawność równań pola elektromagnetycznego wymaga istnienia jeszcze tego prądu, który jednak nie jest ruchem ładunków.

Prąd przewodzenia. Prawo Ohma

Analiza pola przepływowego pozwala na obliczanie m.in. rezystancji oraz gęstości mocy zamienianej na ciepło.

- Przemieszczanie się ładunków w przewodniku (metalu, elektrolicie) umieszczonym w polu elektrycznym przebiega w sposób bardzo złożony.
- W ujęciu makroskopowym nie popełnia się błędu zastępując skomplikowany ruch wielu ładunków ruchem uśrednionym.
- Umieszczenie przewodnika o konduktywności γ z dwoma wyróżnionymi rozłącznymi, ekwipotencjalnymi fragmentami, zwanymi elektrodami, o potencjałach odpowiednio V_1 i $V_2 < V_1$ w obszarze przewodzącym sprawia, że popłynie prąd o natężeniu I, skierowany od elektrody 1 do elektrody 2.
- Rezystancja R iloraz różnicy potencjałów $V_1 V_2$ i natężenia wywołanego przez nią prądu $I R = \frac{V_1 V_2}{I} = \frac{U}{I}$.
- Jednostka rezystancji om (1 Ω = 1 V · A⁻¹).
- Otrzymana zależność prawo Ohma.

http://automatykairobotyka.pl/podstawy-elektroniki/

Uziomy

- Uziom metalowa elektroda umieszczona w ziemi, do której może być doprowadzony prąd.
- Zadaniem uziemienia jest odprowadzenie do gruntu przez tzw. uziom niebezpiecznego napięcia, jakie może się pojawiać np. na metalowej obudowie urządzeń elektrycznych, takich jak lodówka czy pralka.
- Dodatkowo uziom zapewnia ochronę przeciwporażeniową w razie uszkodzeń instalacji.
- Ponadto uziom fundamentowy wykorzystuje się w celu ochrony odgromowej.

Uziomy

- W ziemi powstaje pole przepływowe o liniach pola prostopadłych do powierzchni elektrody. Teoretycznie rozpływa on się do nieskończoności.
- Prąd doprowadzony do uziomu i płynący w ziemi sprawia, że jej powierzchnia nie jest
 ekwipotencjalna, czyli między dwoma punktami znajdującymi się na powierzchni
 ziemi na ogół występuje różnica potencjałów.
- Napięcie krokowe U_d różnica potencjałów pomiędzy punktami oddalonymi od siebie o długość kroku d (przyjmuje się, że długość kroku człowieka wynosi d = 0,8 m, a bezpieczne dla człowieka napięcie krokowe wynosi 50 V).
- Wartość napięcia krokowego zależy od:
 - odległości od uziomu
 - wartości prądu doprowadzonego do uziomu
 - rezystancji uziomu.

http://gwawrety.cba.pl/index.php/elektroenergetyka/zjawiska-podstawowe?start=10

https://www.fachowyelektryk.pl/technologie/instalacje-elektryczne/1189-polaczenia-wyrownawcze-i-uziomy.html#

Prawa Kirchhoffa

Pierwsze prawo Kirchhoffa w postaci różniczkowej

$$\operatorname{div} \overrightarrow{\mathbf{J}} = 0 \tag{1}$$

- Wynika z niego, że pole przepływowe jest polem bezźródłowym, a linie pola przepływowego są liniami zamknietymi.
- Drugie prawo Kirchhoffa w postaci różniczkowej

$$\operatorname{rot} \overrightarrow{\mathbf{E}} = 0 \tag{2}$$

• Wynika z niego, że pole przepływowe jest polem potencjalnym.

Pole magnetostatyczne

Wiadomości wstępne

- Magnetostatyka dział fizyki zajmujący się badaniem stałego w czasie pola
 magnetycznego, a w szczególności działania pola magnetycznego na ładunki i przewody
 z prądem stałym oraz opisu pola magnetycznego wytworzonego przez prądy stałe lub
 magnesy.
- Analiza pola magnetostatycznego pozwala m.in. na obliczenie indukcyjności własnej i wzajemnej.
- Linie pola magnetycznego krzywe, do których wektor indukcji $\overrightarrow{\mathbf{B}}$ jest styczny. Zbiór tych linii tworzy obraz pola magnetycznego.

Pole magnetostatyczne

- Pole magnetyczne jest bezźródłowe.
- Nie istnieją ładunki magnetyczne (odpowiedniki ładunków elektrycznych).
- Linie pola magnetycznego nie mają początku ani końca, lecz tworzą kontury zamknięte.
- Pole magnetyczne oddziałuje na każdą materię w nim umieszczoną, gdyż materia zawiera prądy molekularne (w atomach znajdują się poruszające się elektrony, a cząstki elementarne obdarzone są tzw. spinem).
- Materiały dzieli się zasadniczo na trzy grupy: diamagnetyki, paramagnetyki i ferromagnetyki.

Oddziaływanie pola magnetycznego na ładunki

- Na ładunek poruszający się w pobliżu przewodów z prądem lub w pobliżu magnesu
 działa siła, której nie można wyjaśnić na gruncie samej tylko elektrostatyki (tzn.
 korzystając z prawa Coulomba).
- Ponieważ siła ta jest prostopadła do wektora prędkości, więc nie wykonuje żadnej pracy i ma charakter siły odśrodkowej, która może jedynie **zmienić tor ruchu ładunku**.

Diamagnetyki i paramagnetyki

- Diamagnetyki i paramagnetyki pod wpływem zewnętrznego pola magnetycznego wykazują bardzo nieznaczną magnetyzację, przy czym w paramagnetykach wektor magnetyzacji jest skierowany zgodnie z wymuszającym polem magnetycznym, a w diamagnetykach przeciwnie.
- Względna przenikalność magnetyczna μ_r paramagnetyków (np. aluminium, tlen, powietrze) jest nieco większa od 1, a diamagnetyków nieco mniejsza od 1 (miedź, srebro, woda).
- Wartości μ_r paramagnetyków i diamagnetyków są tak bliskie 1, że w większości obliczeń przyjmuje się $\mu_r=1$, a wartość nie zależy praktycznie od pola magnetycznego, więc zależność między $\overrightarrow{\bf B}$ i $\overrightarrow{\bf H}$ jest liniowa.

Ferromagnetyki

- Magnetyzacja ferromagnetyków jest zjawiskiem bardzo złożonym zależność pomiędzy indukcją a natężeniem pola odbiega od zależności liniowej i prezentowana jest w postaci charakterystyki magnesowania posiadającej pętlę histerezy.
- Ze względu na kształt pętli histerezy rozróżnia się materiały (ferro)magnetyczne: miękkie i twarde.
- Materiały magnetycznie miękkie (np. stal elektrotechniczna, żeliwo, permaloj) charakteryzują się wąską pętlą histerezy. Łatwość przemagnesowywania decyduje o tym, że stosuje się je przede wszystkim w obwodach prądu przemiennego, na przykład w silnikach i prądnicach prądu zmiennego, transformatorach, elektromagnesach itp.
- Materiały magnetyczne twarde (np. stale chromowolframowe, chromomolibdenowe, stopy ALNICO) charakteryzują się szeroką pętlą histerezy i są stosowane do wyrobu magnesów trwałych.
- Oprócz tradycyjnych materiałów ferromagnetycznych o budowie krystaliczno-domenowej istnieją materiały o budowie amorficznej (np. taśmy amorficzne), które otrzymuje się poprzez bardzo szybkie schładzanie roztopionego metalu.

Indukcyjność własna i wzajemna obwodów

- Prąd elektryczny I wytwarza pole magnetyczne o indukcji $\overrightarrow{\mathbf{B}}$.
- W efekcie powstaje strumień magnetyczny, którego wartość zależy od prądu I oraz od geometrii obwodu i środowiska w jakim istnieje ten strumień.
- Współczynnik indukcyjności własnej (indukcyjność własna obwodu) iloraz skojarzonego z obwodem strumienia Ψ i prądu I płynącego w obwodzie $L=\frac{\Psi}{I}$.
- Jednostką indukcyjności jest **henr** (1 H = 1 Wb · A⁻¹).

Indukcyjność wzajemna obwodów

- Sprzężenie magnetyczne jeżeli w polu magnetycznym wytworzonym przez prąd
 płynący w pewnym obwodzie znajduje się drugi obwód, to strumień pola
 magnetycznego wytworzony przez pierwszy obwód może całkowicie lub częściowo
 przenikać przez obwód drugi.
- Jeżeli rozpatrywane elementy cechują się liniową charakterystyką magnesowania to sprzężenie magnetyczne zależy tylko od geometrii własnej i wzajemnej elementów oraz od środowiska.
- Współczynnik sprzężenia magnetycznego stosunek części strumienia całkowitego, która przenika element sąsiedni, do strumienia całkowitego.
- **Obwody sprzężonymi magnetycznie** obwody, których współczynnik indukcyjności wzajemnej (indukcyjność wzajemna) $M = k\sqrt{L_1L_2}$ jest różny od zera.
- Strumień własny może być wzmacniany lub osłabiany przez strumień elementu sąsiedniego. sprzężenie odpowiednio dodatnie i ujemne. Znak sprzężenia zależy od tzw. kierunku nawinięcia zwojów i zwrotu prądów płynących w elementach.

https://www.analogictips.com/mutual-inductance-transformers-emf-becomes-emi/

Indukcja elektromagnetyczna

Wiadomości wstępne

- Zmienne w czasie pola elektryczne i magnetyczne są ze sobą powiązane.
- Powiązanie to objawia się przede wszystkim zjawiskiem indukcji elektromagnetycznej, które w 1831 roku odkrył Michael Faraday.
- Stwierdził on, że zmiany pola magnetycznego względem obwodu elektrycznego wytwarzaja w obwodzie siłę elektromotoryczna (SEM).

Zmiany te moga być zrealizowane na trzy sposoby:

- poprzez ruch obwodu elektrycznego względem obszaru stałego w czasie pola magnetycznego
- 2 poprzez ruch źródła pola magnetycznego względem obwodu
- 3 poprzez zmianę w czasie wektora indukcji magnetycznej.

Indukcja elektromagnetyczna

Michael Faraday 1791 - 1867

https://www.findagrave.com/memorial/325/michael-faraday http://indukcja.cba.pl/pfaradaya.php

Wiadomości wstępne

- Pole elektromagnetyczne (EM) składa się z dwóch nierozerwalnie powiązanych ze sobą składników: pola elektrycznego i pola magnetycznego.
- Powiązanie między tymi polami wyraża się tym, że zmiana jednego pola w czasie indukuje drugie.
- W zapisie matematycznym powiązanie to opisane jest **równaniami Maxwella**, gdzie gęstość prądu \overrightarrow{J} należy rozumieć dowolny rodzaj prądu elektrycznego oprócz prądu przesunięcia (ten jest uwzględniony w składniku z pochodną indukcji elektrycznej) oraz prądów molekularnych.

Równania Maxwella

$$\operatorname{rot} \overrightarrow{\mathbf{H}} = \overrightarrow{\mathbf{J}} + \frac{\partial \overrightarrow{\mathbf{D}}}{\partial t}, \tag{3}$$

$$\operatorname{rot} \overrightarrow{\mathbf{E}} = -\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}, \tag{4}$$

$$\operatorname{div} \overrightarrow{\mathbf{B}} = 0, \tag{5}$$

$$\operatorname{div} \overrightarrow{\mathbf{D}} = \rho, \tag{6}$$

związki konstytutywne

$$\overrightarrow{\mathbf{D}} = \varepsilon \overrightarrow{\mathbf{E}},\tag{7}$$

$$\overrightarrow{\mathbf{B}} = \mu \overrightarrow{\mathbf{H}}.\tag{8}$$

Sens poszczególnych równań (3)–(5):

- Prąd elektryczny i zmienne w czasie pole elektryczne wytwarzają wirowe pole magnetyczne.
- (4) Zmienne w czasie pole magnetyczne wytwarza wirowe pole elektryczne.
- (5) Pole magnetyczne jest bezźródłowe.Nie istnieją ładunki magnetyczne.
- (6) Źródłem pola elektrycznego są ładunki elektryczne.

Wyznaczanie pola elektromagnetycznego

 W przypadku ogólnym obliczenie pola polega na rozwiązaniu (numerycznym) równań różniczkowych lub całkowych, przy czym te pierwsze stosowane są znacznie częściej – COMSOL, ANSYS, itp.

Zasada zachowania energii

- Dla każdego układu fizycznego można sformułować zasadę zachowania energii.
- Zasada zachowania energii dla pola elektromagnetycznego twierdzenie Poyntinga.
- Istnieje wiele procesów, w których energia pola ulega przemianie na energię
 mechaniczną, światło lub ciepło (silniki elektryczne, lampy elektryczne, grzejnik) –
 w bilansie mocy należy dodać odpowiedni składnik.
- W wielu procesach energia mechaniczna, światło lub ciepło ulega przemianie w energię pola elektrycznego (prądnica, ogniwa słoneczne, termopara) co również należy uwzględnić w bilansie mocy.

Falowy charakter pola elektromagnetycznego

- Równania Maxwella, wraz z warunkami brzegowymi, jednoznacznie opisują pole elektromagnetyczne.
- Pole elektryczne i magnetyczne rozchodzi się w przestrzeni w sposób falowy.
- Fala poprzeczna wektory natężenia pola magnetycznego i elektrycznego nie posiadają składowych w kierunku rozchodzenia się fali, co oznacza, że leżą w płaszczyźnie prostopadłej do kierunku rozchodzenia się fali.
- Elektromagnetyczna fala poprzeczna fala typu TEM (ang. Transverse ElectroMagnetic wave).

http://gilmon-bernal.blogspot.com/2011/08/what-is-polarization-of-tem-wave.htm

Harmoniczne pole elektromagnetyczne

- Zależność pola elektromagnetycznego od czasu może być dowolna, jednak w praktyce bardzo czesto jest sinusoidalna (harmoniczna).
- Umożliwia to skrócenie zapisu oraz uproszczenie procesu rozwiązywania równań pola kosztem operacji na wielkościach zespolonych.
- Każdy układ drgających ładunków promieniuje energię w postaci fal elektromagnetycznych.
- Ilość wypromieniowanej energii zależy od konfiguracji obwodu, ale przede wszystkim od czestotliwości.
- Im częstotliwość jest większa, tym silniej promieniuje obwód (dla niewielkich częstotliwości, takich jak 50 Hz, wypromieniowana energia może być pominięta tzw. przybliżenie quasi-statyczne).
- Promieniowanie jest podstawą przesyłania sygnałów w systemach telekomunikacji bezprzewodowej.

Płaska fala elektromagnetyczna

- Pole elektromagnetyczne rozprzestrzenia się w sposób falowy.
- Rozróżnia się fale swobodne oraz fale prowadzone (rozchodzące się wzdłuż linii przesyłowych, falowodów i światłowodów).
- Polaryzacja fali stan wyrażony przez miejsce geometryczne, jakie wraz z upływem czasu zakreśla koniec wektora natężenia pola magnetycznego lub elektrycznego w płaszczyźnie prostopadłej do kierunku rozchodzenia się fali.
- Fala elektromagnetyczna jest w ogólnym przypadku spolaryzowana eliptycznie, a w szczególnych przypadkach liniowo lub kołowo.
- Zjawisko polaryzacji fal kluczowe zagadnienie rozpatrywane w konstrukcji anten nadawczo-odbiorczych.

https://slideplayer.pl/slide/58978/

polaryzacja kołowa

polaryzacja eliptyczna

Linie przesyłowe. Linia długa

- Fale elektromagnetyczne można ukierunkować tak, aby rozchodziły się wzdłuż wybranych torów (prowadnic).
- Do tego celu stosuje się:
 - linie przesyłowe (wymagające przynajmniej dwóch przewodów, przy czym jednym z nich może być ziemia)
 - falowody, czyli pojedyncze tory wykonane z przewodnika lub dielektryka, zależnie od rodzaju falowodu.

Linie przesyłowe. Linia długa

- Wyróżnia się:
 - falowody rurowe o ściankach przewodzących (wypełnione dielektrykiem)
 wykorzystuje się zjawisko odbicia fali od powierzchni przewodzącej
 - 2 falowody drutowe (wykonane z materiału przewodzącego)
 - falowody dielektryczne (wykonane z materiału nieprzewodzącego), w tym światłowody – wykorzystuje się zjawisko całkowitego wewnętrznego odbicia.

Zjawisko naskórkowości

Zjawisko naskórkowości polega na wypieraniu prądu płynącego w przewodniku w kierunku zewnętrznych warstw przewodnika.

