Categorical shadows lurking behind integral formulas for genera (sorry for this) Mattia Gloma and Based on joint work with Eugenis Landi (arXiv: 1911, 12035) St. = complex cobordism ring Sid = cobordism classes of d-dim dosed (stably) complex manifolds By definition a games with values in a comm. ring R is 2 ring has no mo uphism $f: \Omega, \longrightarrow R$ We'll be interested in gours $1: \Omega^{\circ} \rightarrow Q$ This will be equivalent to viry morphisms $\sqrt{}: \Omega \otimes \Omega \longrightarrow \Omega$ Q[t1,t1,t1 ...] deg ti = zi t: = [p'C] To is equivalent to the datum of a sequere et retional numbers, 2: = 70 (ti)

Example: The Toold genus is the genus corresponding to a: = 1 \fi If X is a compact complex manifold $y_{td}([x]) = \int td(x)$ Told years

Class Hirzebruch genus formite: for my genus &, there exist a universal cohomology class toly (for any manifold X, any earplex rector bundle V -> X tog(V) which is natural with respect to nonphisms of manifolds/pullbacks. | burdles: $td_{\gamma}(I^*V) = I^*td_{\gamma}(V); td_{\gamma}(x) := td_{\gamma}(T\times)$ s.d that $Y[X] = \int_X dy(X)$.

i) The category of spectra as a setting for cohomology theories.

Top - Sp

The noths is: Spectra are to spaces as real numbers are to rational numbers.

(Top, X)
$$\frac{()_{*}}{manufal}$$
 (Top x, N) $\frac{\sum_{manufal}}{\sum_{spaces}}$ (Sp, \otimes)

pointed topological spaces

If X 16 2 space $\sum_{spaces} \times$ retains the stable in formation on X.

If will be convenient to use the source symbol X both for X 25 3 space and for X 26 a spectrum.

I) Spaces are special inside spacers

X \rightarrow \times \

We will call this a ring spectrum (if it is commutative up to given coherent homotopies, we call il Ex - ring spectrum) X space, E vinz spentrum
7
canonoid monoid [X,E] is a monoid

R How set: To Sp(X,4) [x, E) x [x, E) = [x xx, E & E] (x, E) iii) Sp is an a-stable category: ve have honotopies let ween norphisms, honotopies between honotopies, and so on; 3 0 object Every pullback diagram is a pushout and X -10 $X(-1) = Z \times \longrightarrow \int_{0}^{1}$ o - XTI $S_{p}(X, \Omega Y) = \Omega S_{p}(X, Y)$ Y = Y[2][-2] $\Rightarrow Sp(X,Y) = Sp(X,Y[z][-z])$ = Sp(X, 522 Y[2])

Vector bindles and their Thom spectra.

V -> X 2 red rector bundle over 2

space X

It is naturally a pointed space, so its Zo is a spectrum. This is the Thorn spectrum, we'll denote it by X.

 \times space \longrightarrow \times conomoid in Sp $V \to \times$ vodor \longrightarrow (\times, \times^{\vee}) buille \bigwedge \bigwedge comodule over \times

E & ring spectrum -> [XTM], E] is a module over the ring [X, E], Ym & Z.

All this exiteds from veitor bundles to virtual vedor bundles $V = V_1 \oplus V_2$

Not only spaces are special iside spectra but closed (compact without boundary) smooth manifolds are special within spaces such as spectra!

Sp is nomidally closed:

 $S_{p}(Y_{\otimes}X, Z) = S_{p}(Y, T(X, Z))$

Do]: The Alexander-Spanier dual of X is DX:=F(X,G)

 $S_{p}(Y_{\otimes}X,S) = S_{p}(Y,DX)$

X I DX is a contravariant fundam

Smooth manifolds are special:

We say that X is E-orientable

il [X-TX[dinx], E] is a rank 1

[Y, E] - module. An E-orientation is a

mdule isonorphism

[X-TX[din X], E] ~ [X, E].

Two orient ations will "differ" by multiplication by an invertible element in [X, E].

Back to integral formulas.

t-Orientations ______ = E-integration.

 $[X,E] \xrightarrow{\sigma} [X^{-1}X[dix],E]$ $[DX[dlix],E] \xrightarrow{\psi^{*}} [S[dlix],E]$

Fact: an E-orientation for (stably) Complex vedor bundles is equivalent to a morphism of boundary ving Spedra MU + E. One calls Va complex orientation of E. Examples: i) MU in MU ii) HQph has a standard complex orientation MJ 4st HQpro The corresponding integration is the usual integration on closed complex manifolds let now 4: MU -> Hape be any complex orientation. This will differ by Yst by multiplication by an invertible element. let us call this element toly. Then we have a commutative disgram, for any complex manifold X,

$$\begin{bmatrix} X, M \cup J & & & \\ &$$