Discrete Computational Structures – directed graph

อ. ภูริวัจน์ วรวิชัยพัฒน์

ทบทวน (Recap) คาบที่แล้ว

ต้นไม้, Tree

- เป็นการเก็บข้อมูลที่ไม่เป็นเส้นตรง, Non-linear structure, ใช้ในการเก็บข้อมูล, แสดงผล, หรือ เรียบเรียงแนวคิด
- เส้นเชื่อมเดียวต่อ 2 จุดยอด, เส้นเชื่อม = สะพาน, จำนวนเส้นเชื่อม = จำนวนจุดยอด-1
- ต้นไม้ราก rooted tree, มีจุดยอด 1 จุดเป็นราก นิยมเขียนรากอยู่ด้านบน
- คำศัพท์: ปม (node), ลูก, พ่อแม่, พี่น้อง, ราก, ใบ, ปมภายใน, ระดับ, และ ความสูง
- ต้นไม้ทวิภาค: node จะมีลูกมากสุดได้แค่ 2 nodes เท่านั้นเรียก ลูกปมซ้าย และ ลูกปมขวา
- ท่องต้นไม้ทวิภาค: ก่อนลำดับ, ตามลำดับ, และ หลังลำดับ
- Search: Breath-First Search (BFS) และ Depth-First-Search (DFS)

เนื้อหาปลายภาค - Overview

- ต้นไม้, Tree
- กราฟทิศทาง, Directed graph

TODAY

- ข่ายงาน และการประยุกต์ใช้ข่ายงาน, Network
- การหาเส้นที่สั้นที่สุด Shortest path, Dijkstra's algorithm
- การหาต้นไม้ทอดข้ามที่น้อยที่สุด Kruskal's algorithm & Prim's algorithm

กราฟทิศทาง หรือ Directed graph

นิยาม D (V, A) เป็นกราฟทิศทางก็ต่อเมื่อ

- ประกอบด้วยเซตของจุดยอดที่เรียกว่า V ซึ่งต้องไม่เป็นเซตว่าง
- ° กำหนดให้เซตของเส้นเชื่อมทิศทาง (arc) ใช้สัญลักษณ์ว่า A
- A ประกอบด้วยคู่ลำดับของจุดยอดสองจุด น และ v เขียนแทน ด้วย (u, v) ซึ่งมีลักษณะเป็นคู่ลำดับ โดยที่เส้นเชื่อมทิศทาง จะเริ่มต้นที่จุด น ซึ่งเรียกว่าจุดเริ่มต้น (initial vertex) หรือ หางลูกศร (tail) เดินทางไปยังจุดยอด v ที่เป็นจุดปลายอีกชุด สามารถเรียกได้ว่าเป็นจุดสิ้นสุด (terminal vertex) หรือ หัวลูกศร (head)

เส้นเชื่อมทิศทาง - arc

เส้นเชื่อมทิศทาง e = (u, v) ในที่นี้ใช้ตัวแปร e ย่อมาจาก edge สามารถกล่าวได้ว่า

การประชิด:

- 1. จุดยอด u ประชิด<u>ไป</u> ∨
- 2. จุดยอด ∨ ประชิด<u>จาก</u> น

การตกกระทบ:

- เส้นเชื่อมทิศทาง e ตกกระทบ<u>ไป</u>จุดยอด v
- 2. เส้นเชื่อมทิศทาง e ตกกระทบ<u>จาก</u>จุดยอด u

เส้นเชื่อมทิศทาง - arc

เส้นเชื่อมทิศทาง e_1 ตกกระทบกับจุดยอด a และ b เขียนแทนด้วยคู่ลำดับ (a, b) เส้นเชื่อมทิศทาง e_2 ตกกระทบกับจุดยอด b และ f เขียนแทนด้วยคู่ลำดับ (b, f) เส้นเชื่อมทิศทาง e_3 ตกกระทบกับจุดยอด b และ e เขียนแทนด้วยคู่ลำดับ (b, e) เส้นเชื่อมทิศทาง e_4 ตกกระทบกับจุดยอด c และ f เขียนแทนด้วยคู่ลำดับ (c, f) เส้นเชื่อมทิศทาง e_5 ตกกระทบกับจุดยอด d และ c เขียนแทนด้วยคู่ลำดับ (d, c)

...

•••

เส้นเชื่อมทิศทาง e_{g} ตกกระทบกับจุดยอด e และ c เขียนแทนด้วยคู่ลำดับ (e, c)

ทั้งนี้ทั้งนั้น ถ้าเรามองในจากมุมมองของจุดยอด จากเส้นเชื่อมทิศทาง e_1 จะพบว่า จุดยอด a นั้น<u>ประชิด</u>จุดยอด b ในทำนองเดียวกัน จุดยอด b นั้น<u>ประชิด</u>จุดยอด a เช่นกัน กล่าวคือ "การประชิดสามารถมองได้สองฝั่งไม่คำนึงทิศทางลูกศร" * เส้นเชื่อมทิศทางอื่นๆก็สามารถอธิบายได้แบบนี้เช่นกัน

กราฟโครงสร้าง – underlying graph

ให้ D(V, A) เป็นกราฟทิศทางจะเรียกว่ากราฟ G(V, A) ว่าเป็นกราฟโครงสร้าง(underlying graph) ของ D(V, A) ถ้า กราฟ G(V, A) เกิดจากกราฟทิศทาง D(V, A) โดยเส้นเชื่อมทิศทางถูกพิจารณาว่าเป็นเส้นเชื่อม (ไม่คำนึงทิศทาง)

กราฟโครงสร้าง – underlying graph

นิยามแบบไม่เป็นทางการ

ทุกๆกราฟทิศทาง จะมีกราฟโครงสร้าง(underlying graph) อยู่ภายใต้เสมอ

ถ้ามี D(V, A) เป็นกราฟทิศทาง จงมองทุกๆ<u>เส้นเชื่อมทิศทาง</u> เป็น <u>เส้นเชื่อม</u> จะได้กราฟโครงสร้าง G(V, A)

กราฟโครงสร้าง

กราฟโครงสร้าง – underlying graph (orientation)

G(V, A) เป็นกราฟ และ D(V, A) เป็นกราฟทิศทางที่เกิดจาก G(V, E) โดยเพิ่มทิศทางให้กับเส้นเชื่อม ซึ่งจะ เรียกกระบวนการนี้ว่า การกำหนดทิศทาง (orientation)

กราฟโครงสร้าง

ดีกรีเข้า และ ดีกรื่ออก - indegree and outdegree

ดีกรีเข้า (indegree) ของจุด v คือจำนวนเส้นเชื่อมที่มีจุด v เป็นจุด<u>สิ้นสุด</u> ใช้สัญลักษณ์ว่า indeg(v) และ ดีกรีออก (outdegree) ของจุด v คือจำนวนเส้นเชื่อมที่มีจุด v เป็นจุด<u>เริ่มต้น</u> ใช้สัญลักษณ์ว่า outdeg(v)

ทฤษฎี: ผลบวกของดีกรีเข้าของทุกจุดเท่ากับผลบวกดีกรีออกของทุกจุด และเท่ากับจำนวนของเส้นเชื่อม

$$\sum_{i=0}^{n} indeg(v_i) = \sum_{i=0}^{n} outdeg(v_i) = k$$

ชนิดของกราฟทิศทาง - digraph types

1. กราฟเชิงเดี่ยวทิศทาง (directed <u>simple</u> graph) แต่ละคู่ น และ v มีเพียงเส้นเชื่อมแค่เส้นเดียวจาก น ไป v และ ไม่มีเส้นเชื่อมที่เริ่มจากจุดยอด น แล้ววนกลับมาหาตัวเอง

โดยสรุปแล้วคือ <mark>ไม่มี</mark> เส้นเชื่อมทิศทาง<u>ขนาน</u> และ เส้นเชื่อมทิศทางบ่วง

2. กราฟหลายเชิงทิศทาง (directed <u>multigraph</u>) กราฟทิศทางที่มี เส้นเชื่อมทิศทาง<u>ขนาน</u>

3. กราฟเทียมทิศทาง (directed <u>pseudograph</u>) กราฟทิศทางที่มี เส้นเชื่อมทิศทาง<u>ขนาน</u> และ เส้นเชื่อมทิศทาง<u>บ่วง</u>

*เส้นเชื่อมทิศทางขนาน = คู่เส้นเชื่อมระหว่าง u และ v ที่มีทิศทางเดียวกัน

แบบฝึกหัด - ชนิดของกราฟทิศทาง

จงบอกว่ากราฟด้านล่างเป็นกราฟทิศทางชนิดใด พร้อมคำอธิบายสั้นๆ

ทางเดินทิศทาง – directed walk

ทางเดินทิศทาง (directed walk) ในกราฟทิศทาง D(V,A) คือลำดับ W ดังต่อไปนี้

$$W = V_1 a_1 V_2 a_2 \dots V_n a_n V_{n+1}$$

โดยที่ v_1 เป็นจุดเริ่มต้นและ v_{n+1} เป็นจุดยอดปลายทางเมื่อเส้นเชื่อม a_i ที่มีจุดปลายเป็นจุดยอด v_i และ v_{i+1} ส่วนจำนวนเส้นเชื่อม n นั้น จะถูกเรียกว่าความยาวของทางเดิน W

ยกตัวอย่างเช่นจากกราฟด้านขวา ทางเดินจาก x ไป z คือ

$$W_1 = x a_1 y a_2 z$$
 (แบบเต็ม)

$$W_1 = xyz$$
 (แบบย่อ)

**แบบย่อจะเขียนได้ก็ต่อเมื่อไม่มีความสับสนเรื่องเส้นเชื่อม

ทางเดินทิศทาง – directed walk

ทางเดินทิศทาง จากจุดยอดหนึ่ง ไป อีกจุดยอดหนึ่ง สามารถมีได้หลายทางเดิน

ยกตัวอย่างเช่น ทางเดินจาก w ไป x คือ

$$W_1 = wa_3 ya_7 za_6 ya_7 za_5 x$$

$$W_2 = wa_4 za_6 ya_2 x$$

ทางเดินจาก x ไป x คือ

$$W_3 = xa_1ya_7za_5x$$

$$W_4 = xa_1ya_7za_6ya_7za_5x$$

แบบฝึกหัด - ทางเดินทิศทาง

จงเขียนทางเดินทิศทางจำนวน 2 ทิศทางถ้าเป็นไปได้ของทางเดินทิศทางต่อไปนี้

1. ทางเดินทิศทาง x ไป z

2. ทางเดินทิศทาง z ไป y

3. ทางเดินทิศทาง y ไป w

การเชื่อมโยงของกราฟทิศทาง

การเชื่อมโยงของกราฟทิศทางจะมีอยู่ 2 ประเภท

- 1. การเชื่อมโยงแบบอ่อน (weakly connected digraph)
 จุดยอดในกราฟทิศทางนั้นมีการเข้าถึงกันอยู่แบบหลวมๆ สามารถเข้าถึงกันได้แต่ไม่แน่น มาก
- 2. การเชื่อมโยงแบบแข็งแรง (strongly connected digraph)
 จุดยอดในกราฟทิศทางนั้นมีการเข้าถึงกันอยู่แบบหนาแน่น สามารถจุดยอดหนึ่งเข้าถึงจุดยอดใดก็ได้

การเข้าถึงคืออะไร?

จุดยอด v จะเรียกว่า จุดยอดที่เข้าถึงได้ (reachable vertex) จากจุด ยอด u ซึ่งเป็นจุดยอดอีกจุดหนึ่ง ถ้ามีทางเดินทิศจากจุดยอด u ถึง v

ตัวอย่าง:

จุดยอด x เข้าถึงได้จาก w, y, z จุดยอด z เข้าถึงได้จาก x, y, w

การเชื่อมโยงแบบอ่อน – weakly connected digraph

กราฟทิศทาง D จะถูกเรียกว่าการเชื่อมโยงแบบอ่อน (weakly connected digraph) หรือเชื่อมต่อ

ถ้า กราฟโครงสร้าง (underlying graph) ของ D นั้นเป็นกราฟเชื่อมโยง

การเชื่อมโยงแบบอ่อน – weakly connected digraph

กราฟทิศทาง D จะถูกเรียกว่าการเชื่อมโยงแบบอ่อน (weakly connected digraph) หรือเชื่อมต่อ ถ้า กราฟโครงสร้าง (underlying graph) ของ D นั้นเป็นกราฟเชื่อมโยง

การเชื่อมโยงแบบแข็งแรง – strongly connected digraph

กราทิศทาง D จะถูกเรียกว่า การเชื่อมโยงแบบแข็งแรง (strongly connected digraph) ถ้าจุดยอดสองจุดใดๆ น และ v ใน D มีทางเดินทิศทางจาก น ไป v

กล่าวคือ กราฟทิศทาง D เป็นการเชื่อมโยงแบบแข็งแรง "ถ้าทุกจุดยอดใน D สามารถเข้าถึงได้จากจุดยอดอื่นๆทุก จุดใน D"

สรุปได้ว่ากราฟ D นั้นเป็นกราฟทิศทางที่.....

การเชื่อมโยงแบบแข็งแรง – strongly connected digraph

ตัวอย่างวิธีตรวจสอบ:

- ° จุดยอด x เข้าถึงได้จาก w, y, z
- จุดยอด y เข้าถึงได้จาก
- ° จุดยอด z เข้าถึงได้จาก
- แล้วจุดยอด w หละ?

สรุปได้ว่ากราฟ D นั้นเป็นกราฟทิศทางที่.....

การเชื่อมโยงแบบแข็งแรง – strongly connected digraph

วิธีทำ

จุดยอด w เข้าถึงได้จาก

จุดยอด x เข้าถึงได้จาก

จุดยอด y เข้าถึงได้จาก

จุดยอด z เข้าถึงได้จาก

สรุปได้ว่ากราฟ D นั้นเป็นกราฟทิศทางที่.....

แบบฝึกหัด - การเชื่อมโยงของกราฟทิศทาง

กราฟต่อไปนี้คือกราฟทิศทางที่มีการเชื่อมโยงแบบอ่อนหรือการเชื่อมโยงแบบแข็งแรง หรือไม่มีคุณสมบัติเชื่อมโยง

การทิศทางพ้องรูป – isomorphism

กราฟทิศทาง $D_1(V_1,A_1)$ และ $D_2(V_2,A_2)$ จะเรียกว่ากราฟทิศทาง D_1 เป็นกราฟทิศทางพ้องรูป (isomorphism) กับ D_2 ถ้ามีฟังก์ชัน f ที่เป็นหนึ่งต่อหนึ่งจาก V_1 ไป V_2 และให้เส้นเชื่อม e_1 ใน D_1 ที่เริ่มจาก u_1 ไป v_1 ก็จะสอดคล้องกับเส้นเชื่อมทิศทาง e_2 ใน D_2 ที่เชื่อมจาก $f(u_1)$ ไป $f(u_2)$ ด้วย

การทิศทางพ้องรูป – isomorphism

ฟังก์ชันหนึ่งต่อหนึ่ง

$$f(v_1) = u_4$$
, $f(v_2) = u_2$, $f(v_3) = u_6$, $f(v_4) = u_3$, $f(v_5) = u_5$, $f(v_6) = u_1$

การทิศทางพ้องรูป – isomorphism

ซึ่งจะได้ว่า

เส้นเชื่อม (v_1, v_2) สอดคล้องกับเส้นเชื่อม (u_a, u_2) เส้นเชื่อม (v_3, v_4) สอดคล้องกับเส้นเชื่อม (u_2, u_4) เส้นเชื่อม (v_a, v_a) สอดคล้องกับเส้นเชื่อม (u_a, u_b) เส้นเชื่อม (v_{5}, v_{4}) สอดคล้องกับเส้นเชื่อม (u_{5}, u_{4}) เส้นเชื่อม (v_5 , v_s) สอดคล้องกับเส้นเชื่อม (u_5 , u_1) เส้นเชื่อม (V_{e} , V_{1}) สอดคล้องกับเส้นเชื่อม (u_{1} , u_{n}) เส้นเชื่อม (V_a , V_1) สอดคล้องกับเส้นเชื่อม (U_3 , U_a) เส้นเชื่อม (v_{2}, v_{3}) สอดคล้องกับเส้นเชื่อม (u_{2}, u_{5}) เส้นเชื่อม (V_{\sim} , V_{\sim}) สอดคล้องกับเส้นเชื่อม (u_{1} , u_{2})

สรุปได้ว่า กราฟทิศทาง D_1 และ กราฟทิศทาง D_2 เป็นกราฟพ้องรูปกัน

การเก็บกราฟทิศทางด้วยเมทริกซ์

ในทางคอมพิวเตอร์เพื่อให้คอมพิวเตอร์สามารถเก็บข้อมูลของกราฟและนำไปใช้ต่อได้ กราฟทิศทางจะถูกเก็บ อยู่ในรูปของ

- 1. เมทริกซ์ประชิดสำหรับกราฟทิศทาง (adjacent matrix of directed graph)
- 2. เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง (incident matrix of directed graph)

เมทริกซ์ประชิดสำหรับกราฟทิศทาง

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง

เมทริกซ์ประชิดสำหรับกราฟทิศทาง (adjacent matrix of directed graph)

ถ้าให้ D เป็นกราฟทิศทางที่มี n จุดยอด ให้ Q เป็นเมทริกซ์ขนาด n x n ซึ่งเรียกว่าเมทริกซ์ประชิดของกราฟ ทิศทาง (adjacent matrix of directed graph) D โดยที่ สมาชิก q_{ij} ในเมทริกซ์จะแทนด้วยจำนวนเส้นเชื่อม จาก v_i ไปสิ้นสุด v_i

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง (incidence matrix of directed graph)

ถ้าให้ D เป็นกราฟทิศทางที่มี n จุดแทนด้วย v_1 , ..., v_n และมีจำนวนเส้นเชื่อมเป็น m เส้นแล้ว แล้วให้ R เป็น เมทริกซ์อุบัติการณ์ของกราฟทิศทาง (incidence matrix of directed graph) G ขนาด n x m โดยที่ สมาชิก $r_{_{''}}$ ในเมทริกซ์จะแทนด้วยค่าดังต่อไปนี้

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง G

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง (incidence matrix of directed graph)

ถ้าให้ D เป็นกราฟทิศทางที่มี n จุดแทนด้วย v_1 , ..., v_n และมีจำนวนเส้นเชื่อมเป็น m เส้นแล้ว แล้วให้ R เป็น เมทริกซ์อุบัติการณ์ของกราฟทิศทาง (incidence matrix of directed graph) G ขนาด n x m โดยที่ สมาชิก r_{ij} ในเมทริกซ์จะแทนด้วยค่าดังต่อไปนี้

เมทริกซ์อุบัติการณ์สำหรับกราฟทิศทาง G

แบบฝึกหัด – เมทริกซ์ประชิด/อุบัติการณ์สำหรับกราฟทิศทาง

จงเขียนเมทริกซ์ประชิดและเมทริกซ์อุบัติการณ์ของทางเดินทิศทางต่อไปนี้

