

TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

FUNDAMENTOS DE INFORMÁTICA

Prof. Me. Matheus Raffael Simon

Sistema numeral

- Desde os primórdios da civilização o Homem vem adotando formas e métodos específicos para representar números, tornando possível, com eles, contar objetos e efetuar operações aritméticas (+, -, *, /).
- A forma mais empregada de representação numérica é a chamada **notação posicional**.

 Nela os algarismos componentes de um número assumem valores diferentes, dependendo de sua posição relativa no número. O valor total do número é a soma dos valores relativos de cada algarismo. Assim é a sua posição ou digito que determina seu valor.

- A cultura ocidental adotou um sistema contendo 10 dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Assim foi chamado de sistema decimal.
- O seu avanço se dá no acumulo de números e é "infinito".

 Já o sistema de Numeração Grego tinha 27 letras para representar os valores.

UNIDADES					DEZENAS			CENTENAS					
	A	α	alfa	1	Ш	I	ι	iota	10	P	ρ	rô	100
	В	β	beta	2	Ш	K	K	kapa	20	Σ	o	sigma	200
	Г	γ	gama	3	Ш	Λ	λ	lambda	30	T	τ	tau	300
	Δ	δ	delta	4	Ш	M	μ	mu	40	Y	υ	upsilon	400
	E	ϵ	epsilon	5		N	ν	nu	50	Φ	φ	phi	500
	E	5	digama	6		Ξ	ξ	ksi	60	X	χ	khi	600
	Z	Z	zeta	7		0	0	ômicron	70	Ψ	ψ	psi	700
	Н	η	eta	8		П	π	pi	80	Ω	ω	ômega	800
1	Θ	θ	teta	9		G	9	kopa	90	\mathcal{M}	3	san	900
- 1					1 1								

 O sistema babilônico tinha valores diferentes de 1 a 10 e ia até o 59, quando chegava ao 60

```
7 1
     ₹7 11
          ₹7 21
                447 31
                       W 9 41
                             WY 51
         HP 22 HP 32 HP 42 HP 52
     499 12
YYY 3
     477 13 477 23 4477 33 45 77 43 45 77 53
               ## 34 15 87 44 15 87 54
     14
          ₩ 24
    16
          ₹ 26
                ₩₩ 36 ₩₩ 46 ₩₩ 56
                ₩₩ 37 ₩₩ 47 ₩₩ 57
     任 17
          ₩ 27
                ₩₩ 38 松₩ 48 松₩ 58
     ₹ 18
          ₩ 28
                州 39
                     ₩# 49
                             松舞 59
     (## 19
          代舞 29
                40
     44 20
         ₩ 30
€ 10
```

O sistema romano era mais enxuto havendo apenas
 7 letras para representar os números.

	2.11	
I = 1	XX = 20	CCC = 300
$\Pi = 2$	XXX = 30	CD = 400
III = 3	XL = 40	D = 500
IV = 4	L = 50	DC = 600
V = 5	LX = 60	DCC = 700
VI = 6	LXX = 70	DCCC = 800
VII = 7	LXXX = 80	CM = 900
VIII = 8	XC = 90	M = 1000
IX = 9	C = 100	MM = 2000
X = 10	CC = 200	MMM=3000

- O sistema numeral dos egípcios é um dos mais antigos, datado de 6000 ac. Era representado por símbolos especiais para 1, 10, 100, 1000 e de forma adtiva.
- 1 era representado por um bastão |
- 2 por dois bastões || ...

 O sistema numeral dos maias era do tipo vigesimal, ou seja, na base 20. Possuia como base a soma dos dedos das mãos e dos pés.

- O sistema numeral chinês é formado pela adição e multiplicação dos símbolos.
- Curiosidade: os primeiros números encontrados por arqueólogos no começo dos anos 1900 estavam escritos em ossos e cascos de tartarugas.

 O sistema numeral Indoarábico, veio dos hindus, e devidos os árabes, foram transmitidos para a Europa ocidental. Ele sofreu atualizações com o decorrer dos anos e se transformou no nosso sistema.

HINDU 300 a.C	-	=	Ξ	¥	7	6	7	5	?	
HINDU 500 d.C	7	7	Z	8	¥	(7	^	9	0
ÁRABE 900 d.C	1	٢	۳	٤	0	7	٧	٨	9	0
ÁRABE (ESPANHA) 1000 d.C	1	ሪ	નુ	Z	4	لم	7	8	9	0
ITALIANO 1400 d.C	1	2	3	4	4	6	7	8	9	0
ATUAL	1	2	3	4	5	6	7	8	9	0

• A quantidade de algarismos disponíveis em um dado sistema de numeração é chamada de **base**. A base serve para contarmos grandezas maiores, indicando a noção de grupamento. O sistema de dez algarismos tem base 10. Outro sistema que possua apenas dois algarismo diferentes (0,1) é de base 2 (binário).

- Exemplificando: seja o № 1303, na base 10, escrito da seguinte forma: 1303₁₀
- Em base decimal, por ser mais usual, costuma-se dispensar o indicador da base: 1303.
- Neste exemplo o número tem 4 algarismos: 1, 3, 0 e
 3. E cada algarismo possui um valor correspondente à sua posição no número.

 Assim, o número 3, mais a direita, representa 3 unidades. Neste caso o valor absoluto do algarismo, que é 3, é igual ao seu valor relativo, o 3, pois está na primeira posição. Considerando-se 3 vezes a potência 0 na base 10:

•
$$3 * 10^0 = 3$$

- Enquanto o segundo 3 vale três vezes a potencia 2 da base 10, ou:
- $3 * 10^2 = 300$
- E o ultimo à esquerda, vale uma vez a potência 3 da base 10, ou 1 * 10³ = 1000
- O número total seria 1000+300+0+3=1303

- Generalizando, num sistema qualquer de numeração posicional, um número N é expresso da senuginte forma:
- $N=(d_{n-1}d_{n-2}d_{n-3}...d_1d_0)_b$
- Onde:
- **d** indica cada algarismo do número.
- **n-1, n-2, 1, 0** (índice) indicam a posição de cada algarismo.
- **b** indica a base da numeração.
- n indica o número de dígitos inteiros.

- O valor de número pode ser obtido do seguinte somatório:
- $N = d_{n-1} * b^{n-1} + d_{n-2} * b^{n-2} + ... + d_1 * b^{n-1} + d_0 * b^0$
- Deste modo, na base 10, podemos representar um número: N=3748
- Onde:
- N=4 (quatro dígitos inteiros)

- Utilizando a formula anterior temos:
- $N=3*10^3+7*10^2+4*10^1+8*10^0=$
- $3000+700+40+8 = 1748_{10}$
- OBS números fracionários são representados de outra forma.

Outras bases de numeração

 Além da base decimal, temos outras bases muito utilizadas, que são a base 2 (binário), a base 8 (octal) e a base 16 (hexadecimal)

Base 2	Base 8	Base 10	Base 16
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	2 3
100	4	4	4
101	5	5	4 5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	C
1101	15	13	D
1110	16	14	E
1111	17	15	F
10000	20	16	10
10001	21	17	11

Base binária

- O sistema binário ou base 2, é um sistema de numeração posicional em que todas as quantidades se representam com base em dois números.
- Símbolos da base binária: 0 e 1.

Base binária

 Os computadores digitais trabalham internamente com dois níveis de tensão, pelo que o seu sistema de numeração natural é o sistema binário (aceso, apagado). Com efeito, num sistema simples como este é possível simplificar o cálculo, com o auxílio da lógica booleana. Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. Um agrupamento de 8 bits corresponde a um byte (Binary Term).

Base binária

• O sistema binário é base para a Álgebra booleana (de George Boole - matemático inglês), que permite fazer operações lógicas e aritméticas usando-se apenas dois dígitos ou dois estados (sim e não, falso e verdadeiro, tudo ou nada, 1 ou 0, ligado e desligado). Toda a eletrônica digital e computação está baseada nesse sistema binário e na lógica de Boole, que permite representar por circuitos eletrônicos digitais (portas lógicas) os números, caracteres, realizar operações lógicas e aritméticas. Os programas de computadores são codificados sob forma binária e armazenados nas mídias (memórias, discos, etc) sob esse formato.

Conversão de Decimal para Binário

- Divide-se sucessivamente por 2. Depois o número binário é formado pelo quociente da última divisão seguido dos restos de todas as divisões na sequência em que foram realizadas.
- Exemplo 8 (D) = ? (B)
- 8/2=4 resto 0
- 4/2=2 resto 0
- 2/2=1 resto 0
- 8(D)=1000(B)

Conversão de Decimal para Binário

- Exercite-se: Converta os valores decimais em binários:
- 51
- 24
- 101
- 63
- 15963
- 15688954

Conversão de Binário para Decimal

 Deve-se escrever cada número que o compõe (bit), multiplicado pela base do sistema (base=2), elevado à posição que ocupa. A soma de cada multiplicação de cada dígito binário pelo valor das potências resulta no número real representado.

Conversão de Binário para Decimal

- Exemplo: 1011(B)=?(D)
- $1 \times 2^3 + 0 \times 2^2 + 1 \times 21 + 1 \times 20 =$
- 8 + 0 + 2 + 1 =
- 11
- 1011(B) = 11(D)

Conversão de Binário para Decimal

- Exercite-se: Converta os valores decimais em binários:
- 110000
- 1000000000
- 1000000000
- 10000000001
- 10011110010011110001011100

Soma de Binários

- 0+0=0
- 0+1=1
- 1+0=1
- 1+1= 10
- 1+1+1=11

Soma de Binários

- Para somar dois números binários, o procedimento é o seguinte:
- Exemplo 1:
- 1100
- + 111
- 10011
- Explicando: Na soma de 0 com 1 o total é 1. Quando se soma 1 com 1, o resultado é 2, mas como 2 em binário é 10, o resultado é 0 (zero) e passa-se o outro 1 para a "frente", ou seja, para ser somado com o próximo elemento, conforme assinalado pelo asterisco, como no exemplo acima.

Soma de Binários

- Exemplo 2: **
- 1100
- + 1111
- 11011
- Explicando: Nesse caso acima, na quarta coluna/casa da direita para a esquerda, nos deparamos com uma soma de 1 com 1 mais a soma do 1 (*) que veio da soma anterior. Quando temos esse caso (1 + 1 + 1), o resultado é 1 e passa-se o outro 1 para frente.

Exercício

- Some os seguintes valores em binário:
- 100111+11101
- 1111+1000
- 1+11111
- 19+18

Subtração de Binários

- 0-1=1 e vai 1* para ser subtraído no dígito seguinte
- 1-1=0
- 1-0=1
- 0-0=0
- Para subtrair dois números binários, o procedimento é o seguinte:
- * ***
- 1101110
- 10111
- 1010111

Subtração de Binários

• Explicando: Quando temos 0 menos 1, precisamos "pedir emprestado" do elemento vizinho. Esse empréstimo vem valendo 2 (dois), pelo fato de ser um número binário. Então, no caso da coluna 0 - 1 = 1, porque na verdade a operação feita foi 2 - 1 = 1. Esse processo se repete e o elemento que cedeu o "empréstimo" e valia 1 passa a valer 0. Os asteriscos marcam os elementos que "emprestaram" para seus vizinhos. Perceba, que, logicamente, quando o valor for zero, ele não pode "emprestar" para ninguém, então o "pedido" passa para o próximo elemento e esse zero recebe o valor de 1.

Exercício

- Subtraia os seguintes valores em binário:
- 100101-11101
- 1111-1000
- 1-11111
- 17-16

Sistema Hexadecimal

- O sistema hexadecimal é um sistema de numeração posicional que representa os números em base 16, portanto empregando 16 símbolos.
- Símbolos da base Hexadecimal: 0 1 2 3 4 5 6 7 8 9 A B
 C D E F

Sistema Hexadecimal

 O sistema hexadecimal está vinculado à informática, pois os computadores costumam utilizar o byte como unidade básica da memória. 1 byte = 8 bits e então um byte pode ser representado por 8 algarismos do sistema binário ou por 2 algarismos do sistema hexadecimal. Ex: Bin = 10011100, Hexa= 9C.

 Separe o número binário em grupos de 4 dígitos da direita para a esquerda e então faça a conversão de cada grupo de acordo com a tabela de conversão direta abaixo. Caso a quantidade de dígitos a ser convertida não for um número múltiplo de 4, complete com 0´s a esquerda até torná-lo múltiplo de 4.

.100
.101
110
111
.1

• Ex: (1010111001010)B para hexadecimal:

0001	0101	1100	1010
1	5	С	Α

 Note que os 3 primeiros zeros foram preenchidos apenas para formar um grupo. Desta forma o número correspondente em hexadecimal é 15CA.

- Execute o processo inverso ao da conversão de binário para hexadecimal, convertendo cada dígito hexadecimal em um grupo de 4 dígitos binários.
- Ex: (1F7)_H para binário:

1	F	7
0001	1111	0111

 Podemos excluir os zeros à esquerda que sobraram no grupo mais a esquerda, assim o resultado em binário será: 111110111.

- Converta o número para binário ou hexadecimal:
- 10010111101
- 11111000
- 11111011011111
- 8B1C
- F5
- A4

Conversão de Decimal para Hexadecimal

- Para esta conversão, dividiremos o número decimal por 16 sucessivas vezes, separando sempre o seu resto e continuando a dividir o seu quociente até que ele seja menor que 16. Por fim, a seqüência inversa dos restos (começando pelo quociente da última divisão) formará o resultado.
- Ex: (438)D para hexadecimal:
- 438/ 16 = 27 resto = 6
- 27 / 16 = 1 resto = 11
- Resultado = 1B6_H
- Note que o resto da segunda divisão foi o número 11, que corresponde ao número B em Hexadecimal.

- Converta o número decimal para hexadecimal:
- 488
- 1024
- 269
- 300

Conversão de Hexadecimal para decimal

 Para realizarmos essa conversão, primeiro transformamos cada dígito hexadecimal em decimal. Assim o C, por exemplo, será convertido para 12. Agora multiplicamos cada número decimal convertido por 16ⁿ, onde n é casa decimal onde ele se encontra, sendo que o dígito mais a direita é 0. No final somamos todas as multiplicações obtidas.

Conversão de Hexadecimal para decimal

• Ex: (7C12)H para decimal:

• $7 \times 16^3 + 12 \times 16^2 + 1 \times 16^1 + 2 \times 16^0 = (31762)D$

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

- Converta o número decimal para hexadecimal:
- 4F1
- 1D9
- 95E3
- 11A1

Sistema Octal

 Sistema Octal é um sistema de numeração cuja base é 8, ou seja, utiliza oito símbolos para a representação de quantidade. No ocidente, estes símbolos são os algarismos arábicos. O octal foi muito utilizado na informática como uma alternativa mais compacta ao sistema binário na programação e em linguagem de máquina. Hoje, o sistema hexadecimal é mais utilizado como alternativa ao binário.

Conversão de octal para decimal

 Para converter um número octal para decimal, basta multiplicar cada digito pelo seu valor de posição e somar os resultados.

Conversão de octal para decimal

• Ex: Converter o número 0723

Octal	0	7	2	3
Valor de Posição	8³	8²	8 ¹	80
Calculo	$0 \times 8^3 = 0$	7 x 8 ² = 448	2 x 8¹ = 16	3 x 8º = 3
Valor Final	0 + 448 + 16 + 3 = 467 (Decimal)			

- Converta o número octal para decimal:
- 7230
- 6741
- 56163
- 321654351

Conversão de decimal para octal

 Para converter um número decimal para octal, basta realizar divisões sucessivas do número decimal por 8 (base do sistema octal). O número octal é formado pelo quociente da ultima divisão e os restos das divisões sucessivas da direita para a esquerda.

• Ex= 59 de decimal para octal

* 1000 D para O:

- Converta o número octal para decimal:
- 1024
- 8888
- 789789
- 3369

Conversão de octal para binário

 A conversão de octal para binário é feita convertendo dígito a dígito de octal em binário, da direita para a esquerda. Cada digito é convertido para um grupo de 3 bits, conforme tabela a seguir:

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Conversão de octal para binário

- Ex: vamos converter o número 1754₈:
- 1 | 7 | 5 | 4
- 001|111|101|100
- 001111101100₂
- Ou 001111101100₂

Conversão de binário para octal

- Para conversão de binário em octal, faz-se o processo inverso, ou seja, separa-se o número em grupo de 3 bits (a partir da direita) e converte cada grupo no octal correspondente.
- Ex: vamos converter o número 11001000₂:
- 011|001|000
- 3|1 |0
- 310₈

- Converta o número octal para decimal ou decimal para octal:
- 111011001
- 100001
- 1111111
- 644
- 123
- 351

Conversão de octal para hexadecimal

- Neste caso, tanto para converter octal para hexadecimal ou vice e versa, utiliza-se num primeiro momento a conversão para binário e posteriormente para o sistema que se quer converter.
- Ex: de octal para hexadecimal:
- 154₈
- Transforma-se o valor para binário
- Posteriormente de binário para hexadecimal

Conversão de octal para hexadecimal

- Neste caso, tanto para converter octal para hexadecimal ou vice e versa, utiliza-se num primeiro momento a conversão para binário e posteriormente para o sistema que se quer converter.
- Ex: de octal para hexadecimal:
- 154₈
- Transforma-se o valor para binário
- Posteriormente de binário para hexadecimal

- Converta o número octal para hexadecimal ou hexadecimal para octal:
- 1277
- 133
- 1024
- 7F
- 12C
- 99F

Trabalho

- 1) Faça a conversão para os seguintes sistemas numéricos: binário, decimal, hexadecimal e octal: Obs as contas devem ser descritas e descreva os resultados em uma tabela 4x13.
- a. 100101
- b. 1000101101
- c. 1111010110110
- d. 297
- e. 4021
- f. 9135
- g. 7CD
- h. 9873
- i. 2F5AB
- J. 156
- K. 761
- L. 444