

GERMAN CREDIT CASE: A CLASSIFICATION SOLUTION

BACKGROUND

With the high costs that banks bear due to delinquency and default rates, accuracy on the predictions are needed. This is the best solution based on the accuracy of the model and the economic benefits derived.

PROBLEM FORMULATION

- Credit risk evaluation using German Credit dataset results in net loss for the bank.
- Dataset Credit Rating
 - 300 client records with GOOD CREDIT
 - 700 client records with BAD CREDIT
- Sample of 1000 clients awarded loans at a net loss of (\$80,000)
- Credit approval cost of false positives (\$500)
 outweighs benefit of true positives \$100

OBJECTIVE

Develop a model that will minimize the cost of lending.

Classifying credit applicants as:

Good Credit

or

Bad Credit

THE DATASET EXPLORATION

RECORDS

Total 1000 RECORD

With 30 numeric Predictor VARIABLES

A binary RESPONSE variable rating

Good credit (300 Clients)

Bad Credit (700 Clients)

VARIABLES

DATA TYPE - All NUMERIC

Categorical

Ordinal

Binary

MODEL PREPARATION

Data was CLEANED

Data was EXPLORED

ACCESSED FOR

MISSING values

UNIQUE values

MODEL DEVELOPMENT

Logistic Regression Model 1 Confusion Matrix	Logistic Regression Model 2 Confusion Matrix	Logistic Regression Model 3 Confusion Matrix		
Confusion Matrix (Accuracy 0.7917) Prediction Actual 0 1 0 99 86 1 39 376 Confusion Matrix (Accuracy 0.7500) Prediction Actual 0 1 0 51 64 1 36 249	Prediction Actual 0 1 0 107 78 1 43 372 Confusion Matrix (Accuracy 0.7975) Prediction Actual 0 1 0 53 62 1 35 250	Confusion Matrix (Accuracy 0.7983) Prediction Actual 0 1 0 105 80 1 41 374 Confusion Matrix (Accuracy 0.7650) Prediction Actual 0 1 0 53 62 1 32 253		
26 out of 30 Predictors used	All predictors used except RENT	Backward Elimination reduced to 28 (AMOUNT and RADIO_TV are eliminated)		

MODEL SELECTION

Logistic Model has higher accuracy, i.e., better ability to make true predictions

Classification Tree Model has more false predictions but lower number of False Positive

Which Model to roll out?

	5 5	rssion Model 3 ry 76.5%)	Classification (Accuracy	
	Predicted		Predicted	
	Bad Credit	Good Credit	Bad Credit	Good Credit
al Bad Credit	True Negative 53	False Positive 62	True Negative 65	False Positive 50
Actual Good Credit	False Negative	True Positive	False Negative	True Positive

MODEL SELECTION

	True Positive	False Positive		
	Profit	Cost	Net	Reduction
			Profit/Loss	in Loss
No Model	700 x 100 =	300 x 500 =		
	70,000	150,000	-80,000	-
Logistic Regression Model	627 x 100 =	142 x 500 =		
	62,700	71,000	-8,300	71,700
Classification Tree Model	583 x 100 =	133 x 500 =		
	58,300	66,500	-8,200	71,800

Best Economic Value

RECOMMENDED MODEL

Classification Rules:

Amount in Checking Account
Duration of Credit in Months
Credit History
Purpose of Credit is New Car
Purpose of Credit is Used Car

CHK_ACCT <= 1.5 gini = 0.427 samples = 600 value = [185, 415] class = GoodCredit

CONCLUSIONS

The old mantra "No deal it's better than a bad deal" can prove to be wrong in our case.

Even if we cannot predict entirely if a new client will be a good or a bad client, we can implement a set of tools to reduce the incorporation of clients that will become delinquent on their loans or probably, default on.

Our decision tree model has a positive lift and might save the bank DM \$71.800.

RECOMMENDATIONS

- Should be a joint effort from al the bank's areas.
- Include more categories in the USE OF CREDIT. If this line of credit should be used in one of the present variables (NEW_CAR, USED_CAR, FURNITURE, RADIO/TV, EDUCATION, RETRAINING), the sum of those values should be 1. We observed 29 cases where no choice was made and 30% of those clients were part of the BAD_CREDIT statistic.
- We recommend identifying if other controls can be made with clients with INSTALL_RATE = 4. One in every three clients has been in default with the bank.
- There are three (3) variables related to gender and it's not considering females. It's important to include this in the model because certainly they will approach the bank as well and the model won't fit properly if they are not contemplated in the algorithm.