In the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

- 1. (Original) A photosensitive resin precursor composition comprising:
- (a) a heat resistant resin precursor polymer;
- (b) a radiation sensitive compound; and
- (c) a solvent expressed by formula (1):

wherein R^1 represents an alkyl group having a carbon number in the range of 1 to 3, R^2 , R^3 , R^4 , and R^5 are each selected from among hydrogen and alkyl groups having carbon numbers in the range of 1 to 3, and 1 represents an integer in the range of 0 to 3.

- 2. (Currently Amended) A photosensitive resin precursor composition according to Claim 1, wherein the solvent is comprising:
 - (a) a heat resistant resin precursor polymer;
 - (b) a radiation sensitive compound; and
 - (c) a solvent expressed by formula (2):

$$O = C \begin{pmatrix} C & C & C \\ C & C & C \end{pmatrix} \begin{pmatrix} C & C &$$

wherein R^6 to R^{10} are each selected from among hydrogen and alkyl groups having carbon numbers in the range of 1 to 3, and j and k are each an integer in the range of 0 to 3 and satisfy the relationship $j+k\geq 2$.

3. (Currently Amended) A photosensitive resin precursor composition according to Claim 1 or 2, wherein the heat resistant resin precursor polymer comprises a structural unit expressed by formula (3):

wherein R^{11} and R^{12} are each an organic group having a carbon number of at least 2 and a valence in the range of 2 to 8, R^{13} and R^{14} are each selected from among hydrogen and organic groups having a carbon number in the range of 1 to 20, n is in the range of 10 to 100000, m and f are each an integer in the range of 0 to 2, and p and q are each an integer in the range of 0 to 4 and satisfy the relationship p + q > 0.

4. (Currently Amended) A photosensitive resin precursor composition according to Claims 1 or 2, wherein the radiation sensitive compound is a quinone diazide.

5. (Currently Amended) A photosensitive resin precursor composition according to Claims 1 or 2, wherein the heat resistant resin precursor polymer comprises a structural unit expressed by formula (3) and wherein the radiation sensitive compound is a quinone diazide.

wherein R^{11} and R^{12} are each an organic group having a carbon number of at least 2 and a valence in the range of 2 to 8, R^{13} and R^{14} are each selected from among hydrogen and organic groups having a carbon number in the range of 1 to 20, n is in the range of 10 to 100000, m and f are each an integer in the range of 0 to 2, and p and q are each an integer in the range of 0 to 4 and satisfy the relationship p + q > 0.

6. (Original) A photosensitive resin precursor composition according to Claim 1, wherein the heat resistant resin precursor polymer comprises a structural unit expressed by formula (4):

wherein R¹⁵ represents an organic group having a carbon number of at least 2 and a valence in the range of 2 to 8, R¹⁶ represents an organic group having a carbon number of at least 2 and a valence in the range of 2 to 6, R¹⁷ represents an organic group having a carbon-carbon unsaturated double bond capable of dimerization or polymerization by actinic radiation and having a carbon number in the range of 1 to 30, and h is in the range of 10 to 100000.

7. (Original) A photosensitive resin precursor composition according to Claim 3, wherein R¹¹(COOR¹³)_m(OH)_p in formula (3) is expressed by formula (5):

$$-R^{18}$$
-CO-NH- R^{19} -NH-CO- R^{20} - (5)
(COOR²¹)_o (OH)_r (COOR²²)_s

wherein R¹⁸ and R²⁰ each represent an organic group having a carbon number in the range of 2 to 20 and a valence in the range of 2 to 4, R¹⁹ represents an organic group having a carbon number in the range of 3 to 20 and a valence in the range of 3 to 6 and having a hydroxy group, R²¹ and R²² are each selected from among hydrogen and organic groups having carbon numbers in the range of 1 to 20, o and s each represent an integer in the range of 0 to 2, and r represents an integer in the range of 1 to 4.

8. (Original) A photosensitive resin precursor composition according to Claim 3, wherein R¹²(COOR¹⁴)_f(OH)_q in formula (3) is expressed by formula (6):

$$---R^{23}$$
-NH-CO- R^{24} -CO-NH- R^{25} - (6) (OH)_t (OH)_u

wherein R²³ and R²⁵ each represent an organic group having a carbon number in the range of 2 to 20 and a valence in the range of 3 to 4 and having a hydroxy group, R²⁴ represents a

divalent organic group having a carbon number in the range of 2 to 30, and t and u each represent an integer of 1 or 2.

9. (Original) A photosensitive resin precursor composition according to Claim 3, wherein $R^{12}(COOR^{14})_f(OH)_q$ in formula (3) is expressed by formula (7):

$$---R^{26}$$
-CO-NH- R^{27} -NH-CO- R^{28} - (7) (OH)_v

wherein R²⁶ and R²⁸ each represent a divalent organic group having a carbon number in the range of 2 to 20, R²⁷ represents an organic group having a carbon number in the range of 3 to 20 and a valence in the range of 3 to 6 and having a hydroxy group, and v represents an integer in the range of 1 to 4.

10. (Original) A photosensitive resin precursor composition according to Claim 3, wherein R¹²(COOR¹⁴)_f(OH)_q in formula (3) is expressed by formula (8):

$$-R^{29}$$
-CO-NH- R^{30} - (8) (OH)_w

wherein R²⁹ represents a divalent organic group having a carbon number in the range of 2 to 20, R³⁰ represents an organic group having a carbon number in the range of 3 to 20 and a valence in the range of 3 to 6 and having a hydroxy group, and w represents an integer in the range of 1 to 4.

- 11. (Original) A photosensitive resin precursor composition according to Claim 3, wherein m, f, and p in formula (3) are 0.
- 12. (Original) A photosensitive resin precursor composition according to Claim 3, wherein, in formula (3), m is 2 and f is 1 or 2.