

Instituto de Ciências Exatas Departamento de Ciência da Computação

UnB-CIC: Uma classe em LaTeX para textos do Departamento de Ciência da Computação

José Marcos Leite

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Orientadora Prof.a Dr.a Claudia Nalon

> Brasília 2020

Instituto de Ciências Exatas Departamento de Ciência da Computação

UnB-CIC: Uma classe em LaTeX para textos do Departamento de Ciência da Computação

José Marcos Leite

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Prof.a Dr.a Claudia Nalon (Orientadora) CIC/UnB

Prof. Dr. Donald Knuth Dr. Leslie Lamport Stanford University Microsoft Research

Prof. Dr. Edison Ishikawa Coordenador do Bacharelado em Ciência da Computação

Brasília, 24 de dezembro de 2020

Dedicatória

Eu dedico essa música a primeira garota que tá sentada ali na fila. Brigado!

Agradecimentos

Nos agradecimentos

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periódicos.

Resumo

O resumo

Palavras-chave: LaTeX, metodologia científica, trabalho de conclusão de curso

Abstract

O abstract é o resumo

Keywords: LaTeX, scientific method, thesis

Sumário

1	Introdução	1
2	Definições	2
	2.1 Linguagem	2
	2.2 Forma Normal em Camadas	4
	2.3 Regras de inferência	5
	2.4 Algoritmo	6
	2.5 Grafo	8
	2.6 Matroide	8
3	Proposta de Solução	10
	3.1 Trabalhos anteriores	10
	3.2 Primeira proposta	11
	3.3 Segunda proposta	11
\mathbf{R}	eferências	12

Lista de Figuras

2.1 Regras de inferência		6
--------------------------	--	---

Lista de Tabelas

2.1	Fórmul	as reso	lvidas	em até	10	seg	e tempo	médio	em	segundos					•	9
-----	--------	---------	--------	--------	----	-----	---------	-------	----	----------	--	--	--	--	---	---

Capítulo 1

Introdução

Em computação, estudamos classes de problemas que ajudam a expressar quão dificil resolver um problema é. P é a classe de problemas que podem ser resolvidos em tempo polinomial em uma máquina determinística. NP é a classe de problemas que podem ser resolvidos em tempo polinomial em uma máquina não deterministica. P-SPACE é a classe de problemas que podem ser resolvidos em espaço polinomial. Logica Modal proposicional K_n pode expressar qualquer problema da classe P-Space.

Expressar problemas formalmente nos permite usar ferramentas para garantidamente formular ou reconhecer uma resposta. A grande espressividade de K_n permite até representar modelos de outras lógicas [3] o que permite seu uso desde geração contos de fadas [2] a engenharia de requisitos [1].

Assim é desejavel ter ferramentar para resolver problemas em K_n e que estas sejam eficientes. Por isso, muitos provadores de teoremas foram construídos para tal lógica. KgP é um provador automático baseado em resolução descrito em [6]. Provadores automáticos são interessantes por diminuir o risto de erro humano na prova. Um dos passos de todo provador baseado em resolução é a seleção de cláusula. Muitas heurísticas de seleção de cláusula já foram estudadas mas ainda ainda há muito a ser melhorarado mesmo ao que é considerado estado da arte [4].

Neste trabalho queremos resolver eficientemente o problema de selecao de clausula no KgP.

No Capítulo 2 apresentamos toda a teoria necessária para o trabalho. O Capítulo 3 descreve os experimentos feitos.

Capítulo 2

Definições

Nesta seção apresentamos as definições básicas para o resto do texto.

2.1 Linguagem

Trabalharemos com a linguagem lógica modal K_n .

Definição 1 Seja $P = \{p, q, r, \dots\}$ um conjunto enumerável de símbolos proposicionais, $\mathcal{A} = \{1, 2, 3, \dots, n\}, n \in \mathbb{N}$. Definimos o conjunto de fórmulas \mathcal{FBF} indutivamente.

- Se $\varphi \in \mathcal{P}$ então $\varphi \in \mathcal{FBF}$
- Se $\varphi \in \mathcal{FBF}$, $\psi \in \mathcal{FBF}$ e $a \in \mathcal{A}$, então $(\varphi \wedge \psi) \in \mathcal{FBF}$, $(\varphi \vee \psi) \in \mathcal{FBF}$, $(\varphi \rightarrow \psi) \in \mathcal{FBF}$, $a \varphi \in \mathcal{FBF}$, $a \varphi \in \mathcal{FBF}$ e $a \varphi \in \mathcal{FBF}$

Definição 2 Denotamos por \mathcal{LP} o conjunto de literais proposicionais e por \mathcal{LM} o conjunto de literais modais. $\forall p \in \mathcal{P}, \forall a \in \mathcal{A}, \text{ então } p \in \mathcal{LP}, \neg p \in \mathcal{LP}, \boxed{a}p \in \mathcal{LM}, \boxed{a} \neg p \in \mathcal{LM}, \textcircled{\phi} \neg p \in \mathcal{LM}$

Definição 3 Uma cláusula proposicional é uma disjunção de literais proposicionais.

Seja $\Sigma = \{0, 1\}$, Σ^* é o conjunto de todas as cadeias formadas com elementos de Σ . Em particular, ϵ representa a cadeia vazia. Construiremos cadeias em Σ^* para codificar a posi-

ção de ocorrência de uma subfórmula em uma fórmula. Seja inv: {positiva, negativa} \mapsto {positiva, negativa} tal que inv(positiva) = negativa e inv(negativa) = positiva.

Definição 4 Definimos a polaridade de uma subfórmula pela função $pol: \mathcal{FBF} \times \mathcal{FBF} \times \Sigma^* \mapsto \{\text{positiva, negativa}\}.$ Para $\varphi, \chi_1, \chi_2 \in \mathcal{FBF}, s \in \Sigma^*, a \in \mathcal{A}, val \in \{\text{positiva, negativa}\}.$

- $pol(\varphi, \varphi, \epsilon) = positiva.$
- Se $pol(\varphi, \chi_1 \vee \chi_2, s) = val$, então $pol(\varphi, \chi_1, s0) = pol(\varphi, \chi_2, s1) = val$
- Se $pol(\varphi, \chi_1 \land \chi_2, s) = val$, então $pol(\varphi, \chi_1, s0) = pol(\varphi, \chi_2, s1) = val$
- Se $pol(\varphi, \chi_1 \to \chi_2, s) = val$, então $pol(\varphi, \chi_1, s0) = inv(val)$ e $pol(\varphi, \chi_2, s1) = val$
- Se $pol(\varphi, \diamondsuit \chi_1, s) = val$, então $pol(\varphi, \chi_1, s0) = val$
- Se $pol(\varphi, \overline{a}\chi_1, s) = val$, então $pol(\varphi, \chi_1, s0) = val$
- Se $pol(\varphi, \neg \chi_1, s) = val$, então $pol(\varphi, \chi_1, s0) = inv(val)$

Dizemos que a polaridade de χ_1 em φ na posição s é $pol(\varphi, \chi_1, s)$.

Definição 5 Definimos o nível modal de uma subfórmula pela função $mlevel: \mathcal{FBF} \times \mathcal{FBF} \times \Sigma^* \mapsto \mathbb{N}$. Para $\varphi, \chi_1, \chi_2 \in \mathcal{FBF}, s \in \Sigma^*, a \in \mathcal{A}, val \in \mathbb{N}$.

- $mlevel(\varphi, \varphi, \epsilon) = 0.$
- Se $mlevel(\varphi, \chi_1 \lor \chi_2, s) = val$ ou $mlevel(\varphi, \chi_1 \land \chi_2, s) = val$ ou $mlevel(\varphi, \chi_1 \rightarrow \chi_2, s) = val$, então $mlevel(\varphi, \chi_1, s0) = mlevel(\varphi, \chi_2, s1) = val$
- Se $mlevel(\varphi, \diamondsuit\chi_1, s) = val$ ou $mlevel(\varphi, \bar{a}\chi_1, s) = val$, então $mlevel(\varphi, \chi_1, s0) = val + 1$
- Se $mlevel(\varphi, \neg \chi_1, s) = val$, então $mlevel(\varphi, \chi_1, s0) = val$

Dizemos que o nível modal de χ_1 em φ na posição s é $mlevel(\varphi, \psi, s)$.

A semântica para lógica modal proposicional é dada por estruturas de Kripke. Uma estrutura de Kripke M é da forma $M = (\mathcal{W}, w_0, \mathcal{R}_1, \dots, \mathcal{R}_{|\mathcal{A}|}, \pi)$, onde \mathcal{W} é um conjunto de mundos possíveis, $w_0 \in \mathcal{W}$, $\pi : \mathcal{W} \times \mathcal{P} \to \{true, false\}$, $\mathcal{R}_a \subseteq \mathcal{W} \times \mathcal{W}$ para todo $a \in \mathcal{A}$. Dizemos que uma fórmula φ é satisfeita na lógica modal K no modelo M no mundo w se,

e somente se, $\langle M, w \rangle \models \varphi$, conforme segue:

- $\langle M, w \rangle \models \varphi$, se e somente se $\varphi \in \mathcal{P}$ e $\pi(w, \varphi) = true$
- $\langle M, w \rangle \models \neg \varphi$, se e somente se $\langle M, w \rangle \not\models \varphi$
- $\langle M, w \rangle \models (\varphi \land \psi)$, se e somente se $\langle M, w \rangle \models \varphi$ e $\langle M, w \rangle \models \psi$
- $\langle M, w \rangle \models (\varphi \lor \psi)$, se e somente se $\langle M, w \rangle \models \varphi$ ou $\langle M, w \rangle \models \psi$
- $\langle M, w \rangle \models (\varphi \rightarrow \psi)$, se e somente se $\langle M, w \rangle \not\models \varphi$ ou $\langle M, w \rangle \models \psi$
- $\langle M, w \rangle \models \Diamond \varphi$, se e somente se $\exists w', (w, w') \in \mathcal{R}_a, \langle M, w' \rangle \models \varphi$
- $\langle M, w \rangle \models \Box \varphi$, se e somente se $\forall w', (w, w') \in \mathcal{R}_a, \langle M, w' \rangle \models \varphi$

Uma fórmula φ é localmente satisfatível se existe um modelo M tal que $\langle M, w_0 \rangle \models \varphi$. Uma formula φ é globalmente satisfatível se existe um modelo M tal que para todo $w \in \mathcal{W}$ temos que $\langle M, w \rangle \models \varphi$. Escrevemos $M \models \varphi$ se, e somente se, $\langle M, w_0 \rangle \models \varphi$

Podemos reduzir o problema de satisfatibilidade global ao problema de satisfatibilidade local com a extensão da linguagem K pelo operador universal *. Seja $M = (\mathcal{W}, w_0, \mathcal{R}_1, \dots, \mathcal{R}_{|\mathcal{A}|}, \pi), \langle M, w \rangle \models * \varphi$ se, e somente se, para todo $w' \in \mathcal{W}, \langle M, w \rangle \models \varphi$.

Definição 6 Uma fórmula está na forma normal negada caso seja formada somente por símbolos proposicionais, \neg , \land , \lor , \boxed{a} e \diamondsuit para $a \in \mathcal{A}$, e a negação só é aplicada a símbolos proposicionais.

É importante ressaltar se $\varphi \in \mathcal{FBF}$ que não está na forma normal negada pode ser reescrita como $\psi \in \mathcal{FBF}$ na forma normal negada com semântica equivalente. Isto é, para todo $\langle M, w \rangle$, $\langle M, w \rangle \models \varphi$ se, e somente se, $\langle M, w \rangle \models \psi$.

2.2 Forma Normal em Camadas

O cálculo a ser apresentado utiliza uma outra linguagem chamada de Forma Normal Separada em Níveis Modais (SNF_{ml}) .

Definição 7 Uma fórmula em SNF_{ml} é uma conjunção de cláusulas. Para $ml \in \mathbb{N} \cup \{*\}$ e $l_1, l_2 \in \mathcal{LP}$, cada cláusula está em um dos três formatos:

• ml: c, onde c é uma cláusula proposicional

- $ml: l_1 \rightarrow \boxed{a} l_2$
- $ml: l_1 \rightarrow \diamondsuit l_2$

A satisfatibilidade de uma fórmula em SNF_{ml} é definida a partir da satisfatibilidade de K_n . Sejam $ml: \varphi \in ml: \psi$ cláusulas $SNF_{ml} \in M$ um modelo na lógica K_n .

- $M \models * : \varphi$ se, e somente se, $M \models * \varphi$.
- $M \models (ml : \varphi) \land (ml : \psi)$ se, e somente se, $M \models ml : \varphi \in M \models ml : \psi$.
- $M \models ml : \varphi$ se, e somente se, para todo w tal que depth(w) = ml, temos $\langle M, w \rangle \models ml : \varphi$.

Uma função de tradução de K_n para SNF_{ml} bem como prova de que a tradução de uma fórmula preserva satisfatibilidade podem ser encontradas em [5].

Seja \geq uma ordem total sobre os símbolos proposicionais. Estendemos esta ordem para os literais da seguinte forma: Se $p \in \mathcal{P}$, então $\neg p \geq p$; Se $p, q \in \mathcal{P}, p \neq q$ e $p \geq q$, então $\neg p \geq q$.

Definição 8 O literal l é máximo em $\varphi \in SNF_{ml}$ se e somente se l ocorre em φ e não há $l_2 \neq l$ em φ tal que $l_2 \geq l$.

Note que podemos escolher qualquer ordem sobre os símbolos proposicionais, assim l pode ser máximo numa ordem e não ser máximo em outra ordem.

Definição 9 O tamanho de uma cláusula em SNF_{ml} é a cardinalidade do conjunto contendo somente os literais na cláusula.

2.3 Regras de inferência

O cálculo dedutivo baseado em resolução RES_{ml} para lógica K_n foi descrito em [5]. Para simplificar a descrição das regras de inferência faremos uso de uma função parcial de unificação $\sigma: P(\mathbb{N} \cup \{*\}) \mapsto \mathbb{N} \cup \{*\}$, tal que $\sigma(\{ml, *\}) = ml$, $\sigma(\{ml\}) = ml$, e indefinida caso contrário. As regras de inferência de RES_{ml} são apresentadas na Figura 2.1, onde *-1 = * e m pode ser 0. Essas regras só valem se o resultado da unificação for definido. Demostrações de correção e corretude podem ser encotradas em [5].

[LRES] [MRES] [GEN2]
$$\frac{ml : (D \lor l)}{ml' : (D' \lor \neg l)} \frac{ml : (l_1 \to \boxed{a}l)}{ml' : (l_2 \to \diamondsuit \neg l)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{\sigma(\{ml, ml'\}) : D \lor D'} \frac{ml' : (l_2 \to \diamondsuit \neg l)}{\sigma(\{ml, ml'\}) : \neg l_1 \lor \neg l_2} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_2 : (l'_2 \to \boxed{a} \neg l_1)} \frac{ml_2 : (l'_2 \to \boxed{a} \neg l_1)}{ml_3 : (l'_3 \to \diamondsuit l_2)}$$
[GEN1] [GEN3]
$$\frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)} \frac{ml_1 : (l'_1 \to \boxed{a}l_1)}{ml_1 : (l'_1 \to \boxed{a}l_1)$$

Figura 2.1: Regras de inferência

2.4 Algoritmo

Neste trabalho usaremos o KSP [6], um provador baseado no cálculo visto na Seção 2.3 e determina a satisfatibilidade de fórmulas em K_n . Caso insatisfatível, uma prova é fornecida. Embora o KSP tome fórmulas em K_n como entrada, este faz a tradução para SNF_{ml} e todo o processamento é feito nessa linguagem.

KSP utiliza uma variação de conjunto de suporte, técnica que restringe os candidatos possíveis para resolução. A demostração da correção e completude dessa extensão para SNF_{ml} pode ser encontrada em [5].

Na versão para lógica clássica de conjunto de suporte, o conjunto de cláusulas Δ é particionado em dois conjuntos Γ , o conjunto de suporte ou não processado, e Λ , o conjunto usable ou processado. Cláusulas são selecionadas de Γ e resolvidas com cláusulas em Λ . A cláusula selecionada é removida de Γ e acrescentada a Λ . Os resolventes produzidos são inseridos em Γ .

Na extensão para SNF_{ml} , onde as clásulas são rotuladas pelo nível modal, as clásulas de todo nível modal ml é particionado em três conjuntos Γ^{lit}_{ml} , Λ^{lit}_{ml} e Λ^{mod}_{ml} . Cláusulas proposicionais são particionadas em Γ^{lit}_{ml} e Λ^{lit}_{ml} como no caso em lógica clássica. Cláusulas modais são armazenadas em Λ^{mod}_{ml} . Note que nenhuma regra de inferência descrita na Seção 2.3 produz novas cláusulas modais.

Algorithm 1: KSP-Proof-Search

```
Result: Satisfatibilidade da fórmula
 1 preprocessamento-da-entrada;
 2 tradução-para-SNF;
 3 preprocessamento-de-clausulas;
 4 \Gamma^{lit} \leftarrow \bigcup \Gamma^{lit}_{ml};
 5 while \Gamma^{lit} \neq \emptyset do
         for todo nível modal ml do
              clausula \leftarrow given(ml);
 7
              if não redundante(clausula) then
 8
                   GEN1(clausula, ml, ml - 1);
 9
                   GEN3(clausula, ml, ml - 1);
10
                   LRES(clausula, ml, ml);
11
                   \Lambda_{ml}^{lit} \leftarrow \Lambda_{ml}^{lit} \cup \{clausula\};
              end
13
              \Gamma_{ml}^{lit} \leftarrow \Gamma_{ml}^{lit} \setminus \{clausula\};
14
              if 0: false \in \Gamma_0^{lit} then
15
                   return insatisfatível;
16
              end
17
              \Gamma^{lit} \leftarrow \bigcup \Gamma^{lit}_{ml};
18
19
         return satisfatível;
20
21 end
```

As Linhas 1-3 aplicam algumas regras de simplificação, traduzem a fórmula para linguagem SNF_{ml} e constroem os conjuntos usable e de suporte. As Linhas 9-11 aplicam regras de inferências descritas na Seção 2.3.

A função given, Linha 7, é responsável por escolher uma cláusula dentre todas as candidatas possíveis do conjunto de suporte. Cada nível modal é independente. Naturalmente, a função given só considera as cláusulas do nível modal pedido. KSP implementa cinco variações dessa função: menor, mais antiga, mais nova, mínima e máxima; e o usuário pode escolher qual deseja utilizar.

Na variação menor, é selecionada uma cláusula com o menor tamanho de Γ_{ml}^{lit} .

Na variação mais antiga, é salvo a ordem nas quais as cláusulas foram adicionadas ao conjunto de cláusulas e é selecionada a que foi adicionada antes de todas em Γ_{ml}^{lit} .

Mais nova é análoga a mais antiga, mas é selecionada a que foi adicionada depois de todas as outras.

Em minima, é escolhida uma cláusula com o menor tamanho dentre as cláusulas com o menor literal máximo em Γ_{ml}^{lit} .

Em $m\'{a}xima$, é feita escolha análoga a $m\'{i}nima$ mas dentre cláusulas com o maior literal m\'{a}ximo em Γ^{lit}_{ml} .

Neste trabalho propomos novos métodos para seleção de cláusulas e comparamos com os métodos previamente utilizados no KSP. Para comparação usaremos o LWB [7], que descreve geradores de *benchmark* de tamanho arbitrário para 9 famílias de fórmulas.

Fizemos um experimento inicial para averiguar o desempenho do KSP sobre o LWB com os algoritmos de seleção de cláusula já implementados. O sistema utilizado tem processador AMD FX-6300 com clock base de 3.5 GHz, 6 Gigabyte de memória RAM no Sistema Operacional Ubuntu 18.04. Escolhemos a versão 0.1.2 do KSP, a versão pública mais recente na data do experimento. Nesse experimento usamos 21 fórmulas satisfatíveis e 21 insatisfatíveis para cada família. Para cada fórmula foram dados 10 segundos de tempo limite.

A Tabela 2.1 abaixo mostra o resultado desse experimento. Para cada família de fórmulas temos uma linha na tabela para as satisfatíveis, representada pelo sufixo _ n, e uma linha para as insatisfatíveis, representada pelo sufixo _p. Cada coluna representa uma heurística de seleção de cláusula. Cada célula da tabela informa a quantidade de fórmulas que o provador proveu solução dentro do tempo limite e a média de tempo entre essas.

Esses resultados indicam que o KSP é muito eficiente para a maioria das famílias independente da estratégia utilizada, mas muito pode ser melhorado em k_branch e k_ph.

2.5 Grafo

Um grafo é um par um ordenado (V, E), onde $E \subseteq V \times V$, chamamos V o conjunto de vértices e E o conjunto de arestas.

2.6 Matroide

Seja X um conjunto de objetos e $I \subseteq 2^X$ o conjunto de conjuntos independentes tal que:

- 1. $\emptyset \in I$
- $2. A \in I, B \subseteq A \implies B \in I$
- 3. Axioma do troco, $A \in I, B \in I, |B| > |A| \implies \exists x \in B \setminus A : A \cup \{x\} \in I$

_	mais antiga	mais nova	mínima	máxima	menor
k_branch_n	1(0.01)	1(0.02)	2(4.91)	1(0.00)	2(4.28)
k_branch_p	2(1.54)	1(0.00)	3(1.38)	1(0.00)	3(1.38)
k_d4_n	7(1.32)	4(1.17)	7(0.79)	6(1.69)	7(2.03)
k_d4_p	21(0.14)	21(0.16)	21(0.04)	21(0.18)	21(0.04)
k_dum_n	21(0.02)	21(0.14)	21(0.05)	21(0.03)	21(0.05)
k_dum_p	21(0.09)	21(0.36)	21(0.04)	21(0.10)	21(0.04)
k_grz_n	17(1.60)	13(0.45)	21(0.48)	13(2.58)	21(0.48)
k_grz_p	21(0.00)	21(0.00)	21(0.00)	21(0.00)	21(0.00)
k_lin_n	21(0.00)	21(0.00)	21(0.00)	21(0.00)	21(0.00)
k_lin_p	21(0.00)	21(0.00)	21(0.00)	21(0.00)	21(0.00)
k_path_n	21(0.01)	21(0.02)	21(0.03)	21(0.01)	21(0.03)
k_path_p	21(0.01)	21(0.04)	21(0.04)	21(0.01)	21(0.04)
k_ph_n	2(0.00)	2(0.00)	3(1.54)	2(0.00)	3(1.67)
k_ph_p	2(0.00)	2(0.00)	3(0.01)	2(0.00)	3(0.02)
k_poly_n	8(1.16)	5(1.29)	8(1.58)	8(0.86)	8(1.12)
k_poly_p	8(2.21)	6(1.12)	9(1.18)	8(1.76)	9(1.26)
k_t4p_n	21(0.05)	21(0.14)	21(0.10)	21(0.05)	21(0.03)
k_t4p_p	21(0.03)	21(0.09)	21(0.04)	21(0.03)	21(0.01)

Tabela 2.1: Fórmulas resolvidas em até 10 seg e tempo médio em segundos.

4. Se $A\subseteq X$ e Ie I'são conjuntos independentes maximais de A então |I|=|I'|

Então (X,I) é um matroide. O problema combinatório associado a ele é: Dada um função de peso $w(e) \geq 0 \ \forall e \in X$, encontre um subconjunto independente com maior soma de pesos possível.

Capítulo 3

Proposta de Solução

Neste capítulo propomos novos métodos de seleção de cláusula para o KSP.

3.1 Trabalhos anteriores

Uma análise de heurísticas de seleção de cláusula para provadores baseados em saturação, assim como KSP, foi feita por [4]. O experimento foi feito no provador E sobre 13774 fórmulas do benchmark TPTP [8] com 300 segundos de tempo limite.

As heurísticas avaliadas foram: *Mais antiga*, Contagem de Símbolos e Ordenada. Em Contagem de Símbolos, é atribuído um peso a cada símbolo e é selecionada uma cláusula com a menor soma de pesos. No caso em que todos os símbolos têm peso um esta variação é idêntica a *menor* usada no KSP. Ordenada é uma variação de Contagem de Símbolos onde é preferida cláusulas com o menor número de literais máximais.

Também foram analisadas várias intercalações de duas dessas heurísticas em distribuições diferentes. Por exemplo, a cada 11 seleções de cláusulas, 10 são feitas pela heurística Contagem de Símbolo e 1 é feita pela heurística *Mais antiga*.

São apresentados vários resultados como número de fórmulas resolvidas, tamanho da prova, número de inferências na prova, etc para todas as estratégias utilizadas. Vemos que a maioria das fórmulas resolvidas foram resolvidas em poucos segundos mesmo com 300 segundos disponíveis. Os experimentos apontam não haver melhora em performance ao usar diferentes funções de peso para os literais. Todas as estratégias de contagem de símbolos tiveram ganho significativo de desempenho quando intercaladas com *Mais antiga*. Selecionar sempre cláusulas dadas na entrada primeiro melhorou performance no geral, mas não tanto com estratégias utilizando *Mais antiga*.

3.2 Primeira proposta

Baseado no trabalho de [4], nossa primeira proposta de seleção de cláusula será intercalação de menor e mais antiga, já implementadas no KSP, numa razão p:q informada pelo usuário. Dessa forma, as primeiras p execuções da função given serão conforme menor, as próximas q serão conforme mais antiga, as próximas p conforme menor e assim por diante.

A implementação dessa proposta não é muito complexa por ser intercalação de métodos já implementados e nos permite comparar os resultados do KSP com os encontrados por [4] no provador E.

3.3 Segunda proposta

Como a seleção de cláusula em cada nível é feita de forma independente, podemos também usar algoritmos distintos em níveis distintos.

Com base nos resultados dos experimentos descritos na Seção 3.2, propomos intercalação de *menor* e *mais antiga* com razão dinâmica para todo nível.

Cada nível terá um escalonador responsável por escolher uma razão eficiente. Como não conhemos a melhor solução a priori, está razão mudará ao longo da execução do provador. Neste experimento usamos somente o número de inferências feitas para determinar a troca de proporção na intercalação dos algoritmos.

Avaliaremos também o desempenho por nível.

Referências

- [1] Castaneda, Veronica, Luciana Ballejos, Ma. Laura Caliusco e Ma. Rosa Galli: *The use of ontologies in requirements engineering*. Global Journal of Research In Engineering, 10(6), 2010, ISSN 2249-4596. https://www.engineeringresearch.org/index.php/GJRE/article/view/76. 1
- [2] Peinado, Federico e Belen iaz Agudo: A description logic ontology for fairy tale generation. janeiro 2004. 1
- [3] Schild, Klaus: A correspondence theory for terminological logics: Preliminary report. Em Proceedings of the 12th International Joint Conference on Artificial Intelligence Volume 1, IJCAI'91, página 466–471, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc., ISBN 1558601600. 1
- [4] Schulz, Stephan e Martin Möhrmann: Performance of clause selection heuristics for saturation-based theorem proving. Em Olivetti, Nicola e Ashish Tiwari (editores): Automated Reasoning, páginas 330–345, Cham, 2016. Springer International Publishing, ISBN 978-3-319-40229-1. 1, 10, 11
- [5] Nalon, Cláudia, Clare Dixon e Ullrich Hustadt: Modal resolution: Proofs, layers, and refinements. ACM Transactions on Computational Logic, 20(4), agosto 2019, ISSN 1529-3785. https://doi.org/10.1145/3331448. 5, 6
- [6] Nalon, Cláudia, Ullrich Hustadt e Clare Dixon: KgP a resolution-based theorem prover for K_n: Architecture, refinements, strategies and experiments. Journal of Automated Reasoning, 64(3):461–484, Mar 2020, ISSN 1573-0670. https://doi.org/10.1007/ s10817-018-09503-x. 1, 6
- [7] Balsiger, Peter, Alain Heuerding e Stefan Schwendimann: A benchmark method for the propositional modal logics k, kt, s4. J. Autom. Reason., 24(3):297–317, abril 2000, ISSN 0168-7433. https://doi.org/10.1023/A:1006249507577. 8
- [8] Sutcliffe, Geoff: The tptp problem library and associated infrastructure: ttthe fof and cnf parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, janeiro 2009, ISSN 0168-7433. 10