CS534 - Machine Learning

Implementation Assignment 2

Fall 2019

Praveen Ilango (933597560) - 33.3% Fransiskus Derian (933296975) - 33.3% You-Jen Lin (933663373) - 33.3%

Oregon State University
Oct 31, 2019

Introduction

The primary purpose of this report is to perform binary classification prediction based on input datasets that contain various handwritten digits features that is suitable for Optical Character Recognition. This report captures different behavior of various Perceptron algorithms such as Online, Average and Kernel Perceptron. The description of each part is described per section in the report below.

Part 1 (20 pts): Online Perceptron. In the online perceptron algorithm we train a linear classifier with parameter w to predict the label of a sample with equation:

$$\hat{y} = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x}) \tag{1}$$

Where $\hat{y} \in \{-1,1\}$. Algorithm 1 describes the online perceptron.

```
Algorithm 1 Online Perceptron
```

```
1: procedure OnlinePerceptron
2: w \leftarrow 0
3: while iter < iters:
4: for all sample x_t in train set: // no shuffling
5: if y_t w^T x_t \leq 0:
6: w \leftarrow w + y_t x_t
7: return w
```

In this part we are interested in the following experiments for the online perceptron algorithm:

(a) Implement online perceptron as described in Algorithm 1. Set the iters = 15. During the training, at the end of each iteration use the current \mathbf{w} to make prediction on the validation samples. Record the accuracies for the train and validation at the end of each iteration. Plot the recorded train and validation accuracies versus the iteration number. Does the train accuracy reach to 100%? Why?

Iteration	Training Accuracy	Validation Accuracy
1	94.7422259	93.3701657
2	95.7651391	94.5365255
3	94.987725	93.4929405
4	96.4811784	94.8434622
5	95.6833061	93.6771025
6	95.7651391	94.3523634
7	95.8878887	93.7998772

8	95.6628478	93.8612646
9	95.908347	94.7820749
10	96.2152209	93.9226519
11	96.2152209	94.0454266
12	95.908347	94.2909761
13	96.4607201	94.2295887
14	96.6243863	95.2731737
15	95.6423895	94.5979128

No, the train accuracy does not reach 100%. This could because we stopped after 15 iterations and the algorithms might need more iterations to converge. Another possibility is that the data is not linearly separable.

(b) Use the validation accuracy to decide the best value for *iters*. Apply the corresponding learned model to make predictions for the samples in the test set. Generate the prediction file <u>oplabel.csv</u>. Please note that your file should only contain +1 (for 3) and -1 (for 5) and the number of rows should be the same as pa2_test.csv.

Output is generated as "oplabel.csv"

Part 2 (20 pts): Average Perceptron. In this part you will implement and experiment with average perceptron, which is described in Algorithm 2.

Algorithm 2 Average Perceptron

```
1: procedure AveragePerceptron
             \boldsymbol{w} \leftarrow \boldsymbol{0} //initialize weight vector
 2:
             \bar{\boldsymbol{w}} \leftarrow \boldsymbol{0} // initialize average weight vector
 3:
             s \leftarrow 1 //initialize the example counter to 1
 4:
             while iter < iters:
 5:
                         for all sample x_t in the train set: // no shuffling
 6:
                                     if y_t \boldsymbol{w}^T \boldsymbol{x_t} \leq 0:
 7:
                                                 \boldsymbol{w} \leftarrow \boldsymbol{w} + y_t \boldsymbol{x_t}
 8:
                                     \bar{\pmb{w}} \leftarrow \frac{s\bar{\pmb{w}}+\pmb{w}}{s+1} // update \bar{\pmb{w}} regardless of \pmb{w} udpate s \leftarrow s+1
 9:
10:
             return \bar{\boldsymbol{w}}
11:
```

Note that in Algorithm 2, the running average \bar{w} always gets updated every time an example is process, regardless whether the current w correctly classify it or not ¹.

Perform the following experiments:

(a) Apply your implemented average perceptron to learn from the training data. Plot the train and validation accuracies versus the iteration number for iters = 1, ..., 15.

Iteration	Training Accuracy	Validation Accuracy
1	95.6219313	94.4751381
2	96.1538462	94.966237
3	96.3175123	95.0890117
4	96.6243863	95.0890117
5	96.7675941	95.0276243
6	96.7266776	95.0890117
7	96.8289689	95.150399
8	96.8494272	95.2117864

9	96.8903437	95.2117864
10	96.8494272	95.2731737
11	96.992635	95.3345611
12	96.992635	95.2731737
13	97.0744681	95.2731737
14	97.0540098	95.2731737
15	97.0949264	95.3959484

(b) What are your observations when comparing the training accuracy and validation accuracy curves of the average perceptron with those of the online perceptron? What are your explanation for the observations?

We observe that the accuracy curve of average perceptron is smoother with less oscillations in comparison to the online perceptron. The maximum validation accuracy achieved for average perceptron(95.3959484) is slightly greater than that of online perceptron(95.2731737). The graph is smoother for average perceptron as we take all possible weight vectors encountered during training into consideration and make predictions using the average of all the encountered weights.

(c) Use the validation accuracy to decide the best value for *iter* and apply the corresponding learned model to make predictions for the test data. Please name the predicted file as aplabel.csv.

Output is generated as "aplabel.csv"

Part 3 (40 pts). Polynomial Kernel Perceptron. The online/average perceptron in Algorithm (1 and 2) are linear models. In this part we will consider kernelized perceptron, as described in Algorithm 3, with a polynomial kernel k_p of degree p:

$$k_p(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^T \mathbf{x}_2)^p$$
 (2)

```
Algorithm 3 Kernel (polynomial) Perceptron
```

```
1: procedure KernelPerceptron

2: \alpha_i \leftarrow 0 for i=1,...,N

3: compute the gram matrix K(i,j) = k_p(\boldsymbol{x}_i,\boldsymbol{x}_j)

4: while iter < iters:

5: for all sample \boldsymbol{x}_t in training set: // no shuffling

6: u = \sum_i \alpha_i K(i,t) y_i

7: if y_t u \leq 0:

8: \alpha_t \leftarrow \alpha_t + 1
```

Implement the kernelized perceptron with polynomial kernel and perform the following experiments:

- (a) Apply the kernelized perceptron with different p values in [1, 2, 3, 4, 5]:
 - 1) For each p value, run your algorithm with iter=15. At the end of each iteration use the current model (aka α 's) to make prediction for the validation set. Record the train and validation accuracy for each iteration and plot the train and validation accuracies versus the iteration number.
 - 2) Record the best validation accuracy achieved for each p over all iterations. Plot the recorded best validation accuracies versus p. How do you think p is affecting the train and validation performance?

P = 1

Iteration	Training Accuracy	Validation Accuracy
1	94.7422259	93.3701657
2	95.7651391	94.5365255
3	94.987725	93.4929405

4	96.4811784	94.8434622
5	95.6833061	93.6771025
6	95.7651391	94.3523634
7	95.8878887	93.7998772
8	95.6628478	93.8612646
9	95.908347	94.7820749
10	96.2152209	93.9226519
11	96.2152209	94.0454266
12	95.908347	94.2909761
13	96.4607201	94.2295887
14	96.5630115	94.5979128
15	95.4582651	94.0454266

P = 2

Iteration	Training Accuracy	Validation Accuracy
1	96.4402619	94.5979128
2	98.2405892	97.3603438
3	99.2635025	97.91283
4	98.9157119	97.6058932
5	99.6726678	98.096992
6	99.6726678	97.9742173
7	99.8363339	97.9742173
8	99.9590835	98.3425414
9	99.7749591	98.1583794
10	99.9590835	98.1583794
11	99.8772504	97.8514426
12	99.8772504	97.91283
13	99.9590835	97.9742173
14	99.8363339	98.0356047
15	99.3248773	97.2375691

P = 3

Iteration	Training Accuracy	Validation Accuracy
1	98.0769231	96.9920196
2	99.2839607	98.096992
3	99.8363339	98.1583794
4	99.8977087	98.4653161
5	99.9795417	98.4039288
6	99.9590835	98.4039288
7	100	98.2811541
8	100	98.2811541
9	100	98.2811541
10	100	98.2811541
11	100	98.2811541
12	100	98.2811541
13	100	98.2811541
14	100	98.2811541
15	100	98.2811541

P = 4

Iteration	Training Accuracy	Validation Accuracy
1	98.6702128	97.1147944
2	99.611293	97.91283
3	99.0384615	97.7286679
4	99.8363339	98.2811541
5	99.9795417	98.3425414
6	99.9795417	98.3425414
7	100	98.4039288
8	100	98.4039288
9	100	98.4039288
10	100	98.4039288
11	100	98.4039288
12	100	98.4039288
13	100	98.4039288
14	100	98.4039288
15	100	98.4039288

P = 5

Iteration	Training Accuracy	Validation Accuracy
1	98.4247136	97.1761817
2	99.5294599	97.7286679
3	99.611293	97.6672805
4	99.9386252	98.3425414
5	99.9795417	98.1583794
6	99.9386252	98.4039288
7	99.9386252	98.3425414
8	100	98.3425414
9	100	98.3425414
10	100	98.3425414
11	100	98.3425414
12	100	98.3425414
13	100	98.3425414
14	100	98.3425414
15	100	98.3425414

р	Accuracy
1	94.8434622
2	98.3425414
3	98.4653161
4	98.4039288
5	98.4039288

As p increases from 1 to 2, the validation accuracy increases significantly. But further increase in p causes the validation accuracy to diminish. This could be because the model is overfitting to the training data.

(b) Use your best model (the best one you found over all p values and all iterations above) to make prediction for the test set. Please name the predicted file as kplabel.csv.

Output is generated as "kplabel.csv"