Lecture 06:

Learning-based Character Animation

Libin Liu

School of Intelligence Science and Technology Peking University

VCL @ PKU

Outline

- Recap: interactive character animation
 - Motion Graphs
 - Motion Matching
- Statistical Models of Human Motion
 - Principal Component Analysis
 - Gaussian Models
- Learning-based Models
 -

Recap: Interactive Animation

How to make a character respond to user command?

How to create interactive animation?

[Heck and Gleicher 2007, Parametric Motion Graphs]

[Heck and Gleicher 2007, Parametric Motion Graphs]

[Heck and Gleicher 2007, Parametric Motion Graphs]

at the end of the current clip:
check user input
find a nice animation clip
play it

Motion Planning with Motion Graph and A* https://www.youtube.com/watch?v=ekx0bXz25Pw

[Heck and Gleicher 2007, Parametric Motion Graphs]

Need a Faster Response?

Motion Graphs / State Machines

at the end of the current clip:
check user input
find a nice animation clip
play it

Need a Faster Response?

Motion Graphs / State Machines

at the end of the current clip:

check user input find a nice animation clip play it

Motion Fields / Motion Matching

at every frame:

check user input find a nice next pose

update the character

Motion Fields for Interactive Character Locomotion

Yongjoon Lee^{1,2*} Kevin Wampler^{1†} Gilbert Bernstein¹ Jovan Popović^{1,3} Zoran Popović¹

¹University of Washington ²Bungie ³Adobe Systems

* SIGGRAPH 2010

Motion Fields for Interactive Character Locomotion

Yongjoon Lee^{1,2*}

Kevin Wampler^{1†}
¹University of Washington

Gilbert Bernstein¹ on ²Bungie

Jovan Popović^{1,3}
³Adobe Systems

Zoran Popović¹

* SIGGRAPH 2010

Motion Fields for Interactive Character Locomotion

Yongjoon Lee^{1,2*}

Kevin Wampler^{1†}
¹University of Washington

Gilbert Bernstein¹ on ²Bungie

Jovan Popović^{1,3}
³Adobe Systems

Zoran Popović¹

* SIGGRAPH 2010

Motion Fields for Interactive Character Locomotion

Yongjoon Lee^{1,2}*

Kevin Wampler^{1†}
¹University of Washington

Gilbert Bernstein¹
n ²Bungie

Jovan Popović^{1,3}
³Adobe Systems

Zoran Popović¹

* SIGGRAPH 2010

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Lee et al. 2010. Motion Fields

Motion Fields

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Lee et al. 2010. Motion Fields

Motion Fields

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Lee et al. 2010. Motion Fields

Motion Fields

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Motion Fields

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Motion Fields

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

How?

Motion Fields

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

How? Reinforcement learning...

Motion Fields

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Motion Matching

- check user input
- find the nearest neighbors of the current state
 according to user input
- smoothly blend current pose to the nearest neighbor pose

We need a distance function / metric to define the nearest neighbor

We need a distance function / metric to define the nearest neighbor

$$next_pose = \min_{i \in Dataset} ||x_{curr} - x_i||$$

x: feature vector

We need a distance function / metric to define the nearest neighbor

$$next_pose = \min_{i \in Dataset} ||x_{curr} - x_i||$$

x: feature vector

A possible set of feature vectors:

- root linear/angular velocity
- position of end effectors w.r.t. root joint
- linear/angular velocity of end effectors w.r.t. root joint
- future heading position/orientation (e.g. in 0.5s, 1.0s, 1.5s, etc.)
- foot contacts
-

- We need a smooth motion
 - Only do the search every few frames
 - Smoothly blend current pose to the target pose
 - Inertialized blending (ref. https://www.theorangeduck.com/page/spring-roll-call by Daniel Holden)

- We need a smooth motion
 - Only do the search every few frames
 - Smoothly blend current pose to the target pose
 - Inertialized blending (ref. https://www.theorangeduck.com/page/spring-roll-call by Daniel Holden)
- We need a good performance
 - An efficient data structure for searching
 - e.g. KD-tree
 - A efficient dataset
 - "Dance card"

Motion Matching

Motion Matching

Statistical Models of Human Motion

What is a natural-looking motion?

What is a natural-looking motion?

What is a natural-looking motion?

The Low-dimensionality of Human Motions

- Coordinated arm/leg movement
- Musculoskeletal structure
- Laws of physics
- •

The Low-dimensionality of Human Motions

Where a natural motion locates

The entire "pose" space

- A technique for
 - finding out the correlations among dimensions
 - dimensionality reduction

- A technique for
 - finding out the correlations among dimensions
 - dimensionality reduction

- A technique for
 - finding out the correlations among dimensions
 - dimensionality reduction

Projection of x_i on $u: w_i = x_i \cdot u$

Find a direction \boldsymbol{u} such that $\|\boldsymbol{u}\|=1$, and the projections of $\{\boldsymbol{x}_i\}$ on $\boldsymbol{u}:w_i=\boldsymbol{x}_i\cdot\boldsymbol{u}$ have the maximal variance:

$$\frac{1}{N} \sum_{i} (w_i - \overline{w})^2$$

Find a direction u such that ||u|| = 1, and the projections of $\{x_i\}$ on $u: w_i = x_i \cdot u$ have the maximal variance:

$$\det X = \begin{bmatrix} (\boldsymbol{x}_0 - \overline{\boldsymbol{x}})^T \\ (\boldsymbol{x}_1 - \overline{\boldsymbol{x}})^T \\ \dots \\ (\boldsymbol{x}_N - \overline{\boldsymbol{x}})^T \end{bmatrix}$$

$$\frac{1}{N}\sum_{i}(w_{i}-\overline{w})^{2}$$

Find a direction \boldsymbol{u} such that $\|\boldsymbol{u}\|=1$, and the projections of $\{x_i\}$ on $u: w_i = x_i \cdot u$ have the maximal variance:

$$\det X = \begin{bmatrix} (\boldsymbol{x}_0 - \overline{\boldsymbol{x}})^T \\ (\boldsymbol{x}_1 - \overline{\boldsymbol{x}})^T \\ \dots \\ (\boldsymbol{x}_N - \overline{\boldsymbol{x}})^T \end{bmatrix}$$

$$\frac{1}{N}\sum_{i}(w_{i}-\overline{w})^{2}$$

It can be proved that $oldsymbol{u}$ is an eigenvector of X^TX corresponds to the largest eigenvalue

Find a direction \boldsymbol{u} such that $\|\boldsymbol{u}\|=1$, and the projections of $\{x_i\}$ on $u: w_i = x_i \cdot u$ have the maximal variance:

$$\det X = \begin{bmatrix} (\boldsymbol{x}_0 - \overline{\boldsymbol{x}})^T \\ (\boldsymbol{x}_1 - \overline{\boldsymbol{x}})^T \\ \dots \\ (\boldsymbol{x}_N - \overline{\boldsymbol{x}})^T \end{bmatrix}$$

$$\frac{1}{N}\sum_{i}(w_{i}-\overline{w})^{2}$$

It can be proved that $oldsymbol{u}$ is an eigenvector of X^TX corresponds to the largest eigenvalue

Note: we can approximate $x_i \approx \overline{x} + w_i u$

• Given a dataset $\{x_i\}$, $x_i \in \mathbb{R}^N$, then PCA gives

$$x_i = \overline{x} + \sum_{k=1}^n w_{i,k} u_k$$

- $oldsymbol{u_k}$ is the k-th principal component
 - A direction in \mathbb{R}^N along which the projection of $\{x_i\}$ has the k-th maximal variance
- $w_{i,k} = (x_i \overline{x}) \cdot u_k$ is the score of x_i on u_k

• Given a dataset $\{x_i\}, x_i \in \mathbb{R}^N$, the PCA can be computed by apply eigen decomposition on the covariance matrix

$$\Sigma = X^T X = U \begin{bmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \ddots & \\ & & & \sigma_N^2 \end{bmatrix} U^T$$

- $X = [x_0 \overline{x}, x_1 \overline{x}, ..., x_N \overline{x}]^T$
- $\sigma_i \ge \sigma_i \ge 0$ when i < j, corresponds to the Explained Variance
- $U = [u_1, u_2, ..., u_N]$

X

PCA of Walking

 x_i : joint rotations

• Given a dataset $\{x_i\}$, $x_i \in \mathbb{R}^N$, then PCA gives

$$x_i = \overline{x} + \sum_{k=1}^n w_{i,k} u_k$$

- $oldsymbol{u_k}$ is the k-th principal component
 - A direction in \mathbb{R}^N along which the projection of $\{x_i\}$ has the k-th maximal variance
- $w_{i,k} = (x_i \overline{x}) \cdot u_k$ is the score of x_i on u_k

$$x_i = \overline{x} + \sum_{k=1}^n w_{i,k} u_k$$

PCA of Walking

explains enough (e.g. 95%) of the variance

$$x_i = \overline{x} + \sum_{k=1}^n w_{i,k} u_k$$

$$x_i = \overline{x} + \sum_{k=1}^n w_{i,k} u_k$$

a pose x_i with smaller $\sum_{k} \left(\frac{w_{i,k}}{\sigma_k}\right)^2$ is more likely to be a good pose

$$x = \overline{x} + \sum_{k=1}^{n} w_k u_k$$

a pose x with smaller $\sum_{k} \frac{\left((x-\overline{x})\cdot u_{k}\right)^{2}}{\sigma_{k}^{2}}$

is more likely to be a good pose

Character IK

$$F(\theta) = \frac{1}{2} \sum_{i} ||f_i(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}}_i||_2^2 + \frac{\lambda}{2} ||\boldsymbol{\theta}||_2^2$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

Character IK with a Reference Pose

$$F(\theta) = \frac{1}{2} \sum_{i} \|f_i(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}}_i\|_2^2$$

$$+\frac{\lambda}{2}\|\boldsymbol{\theta}-\boldsymbol{\theta_0}\|_2^2$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

Character IK with a Motion Prior

$$F(\theta) = \frac{1}{2} \sum_{i} ||f_i(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}}_i||_2^2$$

$$+\frac{w}{2}\sum_{k}\left(\frac{(\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})\cdot\boldsymbol{u}_{k}}{\sigma_{k}}\right)^{2}$$

$$\boldsymbol{\theta} = (t_0, R_0, R_1, R_2, \dots)$$

p(x): probability that x is a natural pose

p(x): probability that x is a natural pose

p(x): probability that x is a natural pose a set of data points $\{x_i\} \sim p(x)$

Given a dataset of mocap poses $\{x_i\}$

Data Distribution

Given a dataset of mocap poses $\{x_i\}$

How to find p(x)?

Gaussian Distribution

Dataset $\{x_i\}$

$$p(\mathbf{x}) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \Sigma^{-1} (\mathbf{x} - \overline{\mathbf{x}})}$$

Gaussian Distribution

Dataset $\{x_i\}$

$$p(\mathbf{x}) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \Sigma^{-1} (\mathbf{x} - \overline{\mathbf{x}})}$$

Maximum Likelihood Estimators (MLE):

$$\overline{x} = \frac{1}{N} \sum_{i} x_{i}$$

$$\Sigma = \frac{1}{N} X^T X$$

PCA and Gaussian Distribution

Dataset $\{x_i\}$

$$p(\mathbf{x}) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \Sigma^{-1} (\mathbf{x} - \overline{\mathbf{x}})}$$

$$\Sigma = X^T X = U \begin{bmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \ddots & \\ & & & \sigma_N^2 \end{bmatrix} U^T$$

$$x - \overline{x} = \sum_{k=1}^{n} w_k u_k$$

PCA and Gaussian Distribution

Dataset $\{x_i\}$

$$p(\mathbf{x}) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \Sigma^{-1} (\mathbf{x} - \overline{\mathbf{x}})}$$

$$p(\mathbf{x}) = \prod_{k} \frac{1}{\sigma_k \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{w_k}{\sigma_k}\right)^2}$$

$$w_k = (x - \overline{x}) \cdot u_k$$

Character IK with a Motion Prior

$$F(\theta) = \frac{1}{2} \sum_{i} ||f_{i}(\theta) - \widetilde{x}_{i}||_{2}^{2}$$
$$+ \frac{w}{2} \sum_{i} \left(\frac{(\theta - \overline{\theta}) \cdot u_{k}}{\sigma_{k}} \right)^{2}$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

Character IK with a Motion Prior

$$F(\theta) = \frac{1}{2} \sum_{i} \|f_i(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}}_i\|_2^2$$

$$-w\log\prod_{k}e^{-\frac{1}{2}\left(\frac{(\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})\cdot\boldsymbol{u}_{k}}{\sigma_{k}}\right)^{2}}$$

$$\boldsymbol{\theta} = (t_0, R_0, R_1, R_2, \dots)$$

Character IK with a Motion Prior

$$F(\theta) = \frac{1}{2} \sum_{i} ||f_i(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}_i}||_2^2$$

$$-w\log p(\theta)^{2} - \frac{1}{2} \left(\frac{(\theta - \overline{\theta}) \cdot u_{k}}{\sigma_{k}}\right)^{2}$$

$$\boldsymbol{\theta} = (t_0, R_0, R_1, R_2, \dots)$$

Given a motion prior p(x) learned from a set of data points $D = \{x_i\}$, Synthesize a motion x that minimize the objective

$$F(x) = f(x) - w \log p(x)$$

Note: x can represent a pose θ or a motion clip \rightarrow a sequence of poses $\{\theta_t\}$ or any features of a motion \rightarrow e.g. w_k in PCA

Given a motion prior p(x) learned from a set of data points $D = \{x_i\}$, Synthesize a motion x that minimize the objective

$$F(x) = f(x) - w \log p(x)$$

IK f(x) Keyframes
User control **Environment constraints**

Synthesizing Physically Realistic Human Motion in Low-Dimensional, Behavior-Specific Spaces

Alla Safonova

Jessica K. Hodgins

Nancy S. Pollard

School of Computer Science Carnegie Mellon University *

*SIGGRAPH 2004

p(x): motion prior

p(x): motion prior

p(x): motion prior

Interactive Generation of Human Animation with Deformable Motion Models

Jianyuan Min Texas A&M University Yen-Lin Chen Texas A&M University Jinxiang Chai Texas A&M University

* SIGGRAPH 2009

Gaussian Mixture Models (GMM)

$$p(\mathbf{x}) = \sum_{i} \phi_{i} \mathcal{N}(\mu_{i}, \Sigma_{i})$$

Interactive Generation of Human Animation with Deformable Motion Models

> Jianyuan Min Yen-Lin Chen Jinxiang Chai Texas A&M University

> > Min et al. 2009

p(x): motion prior

Continuous Character Control with Low-Dimensional Embeddings

Zoran Popović² Sergey Levine¹ Jack M. Wang¹ Alexis Haraux¹ Vladlen Koltun¹ ¹Stanford University ² University of Washington

Figure 1: Character controllers created using our approach: animals, karate punching and kicking, and directional walking.

* SIGGRAPH 2012

Gaussian Process Latent Variable Model (GPLVM)

Continuous Character Control with Low-Dimensional Embeddings

Sergey Levine¹ Jack M. Wang¹ Alexis Haraux¹ Zoran Popović² Vladlen Koltun¹

¹Stanford University ²University of Washington

Levine et al. 2012

p(x): motion prior

Neural networks...

[Starke et al 2020, Local Motion Phases for Learning Multi-Contact Character Movements]

[Lee et al 2019, Interactive Character Animation by Learning Multi-Objective Control]

[Henter et al. 2020, MoGlow: Probabilistic and Controllable Motion Synthesis Using Normalising Flows]

[Holden et al 2020, Learned Motion Matching]

Questions?

