LATEX for beginners

Stéphane Péchard

September 22, 2009

Outline

- Introduction (or Why using LATEX?)
- First document
 - Document structure
 - Form-content separation
 - Basic commands
- Mathematics and code
- Playing with content
- Going further
- Resources

Some terminology

T_EX...

- is a low-level markup and programming language
- was created by Donald Knuth between 1977 and 1989!
- is very stable and powerful but time-consuming and difficult to learn

LATEX...

- is a package of macros based on TEX to make a document preparation system
- created by Leslie Lamport and still actively maintained
- easier to code and extendable (classes, packages, styles)

but $T_EX \neq LAT_EX$

Pros and cons of a non-WYSIWYG approach

Pros

- style is consistent (layout, fonts, tables, maths, etc.)
- mathematics are easily typeset
- indexes, footnotes and references are easily generated
- the author is forced to correctly structure your documents

Cons

- the final result is not visible straight away
- the necessary LATEX commands have to be learned
- customization can sometimes be difficult

LATEX uses a WYSIWYM-approach: What You See Is What You Mean

Simplified overview of the TEX/ETEX system

Mittelbach Frank & Goossens Michel, *The LATEX Companion, Second Edition*. 2004.

Outline

- 1 Introduction (or Why using LATEX?)
- First document
 - Document structure
 - Form-content separation
 - Basic commands
- Mathematics and code
- Playing with content
- Going further
- 6 Resources

Document structure

```
\documentclass{report} % or article, book, etc.

% this part is the preamble
% it contains commands that affect the entire document.

\begin{document}

% this part is the body of your document
% this is where you write your text

\end{document}
```

Comments start with % and ends at the end of the line.

Preamble – document class

```
\documentclass[11pt,a4paper,oneside]{report}
% global options class
```

First line of code, it defines the type of document and some global options. Common classes are:

- article for articles, presentations, short reports, documentation...
- report for reports containing several chapters, small books, thesis...
- book for real books...
- letter for writing letters.

For more classes and options: http://en.wikibooks.org/wiki/LaTeX/Basics

Preamble – package inclusion, with options

```
\usepackage[utf8]{inputenc}
```

A lot of packages exist, the most important are:

- amsmath, amssymb and amsthm for mathematical symbols
- babel for the internationalization of LaTeX, mandatory
- fontenc to choose the font encoding of the output text
- geometry for easy management of document margins
- graphicx to manage external pictures
- inputenc to choose the encoding of the input text, mandatory

For more packages: http://en.wikibooks.org/wiki/LaTeX/Packages

Once the form is fixed for the whole document...

A simple document: exemple.tex

```
\documentclass[a4paper,12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern} % font
\usepackage{amsmath, amssymb, amsfonts} % maths
\usepackage[english]{babel} % babel

% content begins here
\title{Some explanations about stuff} % the title
\author{Philip J. Fry} % your name
\date{\today} % quite explicit!
```

... the author may concentrate on the content!

```
\begin { document }
\maketitle % generates the title
\begin{abstract} % to sum things up
This document is destined to help you understand things.
\end{abstract}
\section{Introduction} % to create a new section
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Maecenas pretium urna ut nisl semper sed mattis erat interdum.
Vestibulum eget massa nisi.
Donec feugiat consequat leo, a vehicula est imperdiet at.
\section {Do you know I can do that?}
I like maths: \frac{x^2}{x} = x
\end{document}
```

Compiling the source

pdflatex exemple.tex

and voilà!

Some explanations about stuff

Philip J. Fry September 17, 2009

Abstract

This document is destined to help you understand things.

1 Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas pretium urna ut nisl semper sed mattis erat interdum. Vestibulum eget massa nisi. Donec fengiat consequat leo, a vehicula est imperdiet at.

2 Do you know I can do that?

I like maths: $\forall x \neq 0, \frac{x^2}{x} = x$

see it: http://spechard.dgplug.org/LaTeXForBeginners/exemple.pdf

Sectioning commands

Code is organized depending on the logical structure of the content:

Command	Level
\part{this is a part}	-1
$\c \c \$	0
$\setminus \mathtt{section} \{ \mathtt{this} \ \mathtt{is} \ \mathtt{a} \ \mathtt{section} \}$	1
$\setminus {\tt subsection} \{ {\tt this \ is \ a \ subsection} \}$	2
\subsubsection{this is a subsubsection}	3
$\operatorname{paragraph}\{ ext{this is a paragraph}\}$	4
$\verb \subparagraph \{ \texttt{this is a subparagraph} \}$	5

Note: \chapter{} only exists for book and report classes.

Font size

Ten local environment are available by default to change font size:

Command	Size
$\begin{tiny}tiny\end{tiny}$	tiny
$\label{lem:begin} $$ \end{scriptsize} \end{scriptsize} $$ \end{scriptsize} $$$	scriptsize
\begin{footnotesize}footnotesize\end{footnotesize}	footnotesize
$\begin{small} small \end{small}$	small
$\verb \begin{normalsize} normalsize end{normalsize} $	normalsize
\begin{large}large\end{large}	large
\begin{Large}Large\end{Large}	Large
\begin{LARGE}LARGE\end{LARGE}	LARGE
\begin{huge}huge\end{huge}	huge
\begin{Huge}Huge\end{Huge}	Huge

You can also use it with like this: \tiny{tiny test}.

Font styles

As styles are not all available for this this presentation font, examples here are shown in classic Computer Modern.

Command	Style
\ textit {italic}	italic
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	slanted
$\ensuremath{\mbox{\sf emph}}\{\ensuremath{\mbox{\sf emphasize}}\}$	emphasize
$\texttt{textbf}\{\texttt{boldface}\}$	boldface
$\setminus texttt \{ typewriter \}$	typewriter
\textsc{small caps}	SMALL CAPS

Positioning

```
\begin{center}
This text is centered.
\end{center}
```

```
\begin{flushright}
This text is flushright.
\end{flushright}
```

```
\begin{flushleft}
This text is flushleft.
\end{flushleft}
```

This text is centered.

This text is flushright.

This text is flushleft.

Outline

- 1 Introduction (or Why using LATEX?)
- 2 First document
 - Document structure
 - Form-content separation
 - Basic commands
- Mathematics and code
- 4 Playing with content
- Going further
- 6 Resources

Do the maths!

We need: \usepackage{amsmath}

Inline with $\operatorname{begin}\{\operatorname{math}\}...\operatorname{end}\{\operatorname{math}\}\$, or $\operatorname{(...)}$ or $\operatorname{s...}$ like:

\$\forall x \neq 0, \frac{x^2}{x} = x\$
$$\forall x \neq 0, \frac{x^2}{x} = x$$

This is an exemple of equation separate from the text:

$$f_{h,\varepsilon}(x,y) = \varepsilon \mathbf{E}_{x,y} \int_{0}^{t_{\varepsilon}} L_{x,y_{\varphi}(\varepsilon u)} \varphi(x) du$$
 (1)

A lot of symbols...and as many commands!

```
<> <> <</p>
\cdot : \dots \neg \infty \sharp \varnothing \emptyset \sqrt{\diagup \lor b} \sharp \angle \Diamond \angle \Box \Box \triangle \Delta
αβγδεεζηθθικλμνπωρρσςτυφφχψω
```

Maths are easy to type

Powers and indices:

$$k_{n+1} = n^2 + k_n^2 - k_{n-1}$$

Fractions and binomials:

$$\begin{array}{c} \ \, \left[\\ \ \, \left\{ \text{frac}\left\{ \text{n!}\right\} \left\{ \text{k!}\left(\text{n-k}\right) !\right\} \right. \\ \left. \left. \right\} \end{array} \right] \end{array}$$

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Roots:

$$\boxed{\sqrt[n]{1+x+x^2+x^3+\dots}}$$

You can do almost anything you want!

Sums:

Integrals:

Automatic bracket sizing:

And sometimes more...

Matrices and arrays:

```
\[ A_{m,n} = \\ begin \{ pmatrix \} \\ a_{1,1} & a_{1,2} & \\ cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \\ cdots & a_{2,n} \\ \\ vdots & \\ vdots & \\ dots & \\ a_{m,1} & a_{m,2} & \\ cdots & a_{m,n} \\ \\ end \{ pmatrix \} \\ \]
```

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

Print the code!

We need: \usepackage{listings}

```
begin{lstlisting}
  [language=[GNU]C++]
#include <iostream>
using namespace std;

int main () {
   int N = 42;
   for(int i=0; i < N; ++i)
        cout << i << endl;

  return 0;
}
\end{lstlisting}</pre>
```

```
Here is my code:

\begin \left\{ \text{lsting} \} \left[ \text{language=C++} \right] \\
\pinclude < \text{iostream} > \text{using namespace std}; \\
\text{int main () } \{ \text{int N = 42;} \\
\text{for (int i = 0; i < N; ++i)} \\
\text{cout << i << endl;} \\
\text{return 0;} \\
\} \\
\end{\left\{ \text{lstlisting } \}
```

Many languages: Ada, Assembler, bash, C, C++, Caml, Cobol, Delphi, Fortran, HTML, Java, Logo, Matlab, Perl, Pascal, PHP, Prolog, Python, R, Ruby, SQL, TeX, VHDL, XML, XSLT, etc.

http://www.ctan.org/tex-archive/macros/latex/contrib/listings/

Outline

- 1 Introduction (or Why using LATEX?)
- 2 First document
 - Document structure
 - Form-content separation
 - Basic commands
- Mathematics and code
- Playing with content
- **Going further**
- 6 Resources

Lists and enumeration

Three environments:

```
\begin{itemize}
  \item first stuff
  \item second thing
  \end{itemize}
```

```
\begin{enumerate}
  \item first stuff
  \item second thing
  \end{enumerate}
```

- first stuff
- second thing

- first stuff
- second thing

```
\begin{description}
\item[itemize]
    list with bullet points
\item[enumerate]
    numbered list
\item[description]
    list with definitions
\end{description}
```

itemize list with bullet pointsenumerate numbered listdescription list with definitions

Labels and cross-referencing

Three commands:

- \label{marker} to make an object reference a marker, mostly like a name
- \ref{marker} to reference the object marked before, it prints the number assigned to the object
- \pageref{marker} will print the number of the page where the object is

Important!

This is a two-step process: first the compiler stores the labels, then it replaces the $\ensuremath{\backslash} \text{ref}$ with the right number. Then, several compilation are necessary to see the proper output.

If LATEX uses deprecated labels information, you get a warning:

LaTeX Warning: There were undefined references.

Tables: a tough one!

 $The \ {\tt tabular} \ environment: \ {\tt begin\{tabular\}[pos]...\{table} \ spec\} \setminus end\{tabular\}:$

pos: vertical position

h	here
b	bottom
С	center
t	top

...: content management

&	column separator	
\\	start new row	
\ hline	horizontal line	
\ cline	partial line	

table spec: column alignment and vertical lines

spec. co	numm angimment and vertical in
1	left-justified column
С	centered column
r	right-justified column
$\{ exttt{width}\}$	paragraph column with text
	vertically aligned at the top
	vertical line
П	double vertical line
	l c r

One of the most difficult part of LATEX!

Tables: exemples, please!

```
\begin{tabular}{ 1 c r }
1 & 2 & 3 \\hline
4 & 5 & 6 \\hline
7 & 8 & 9 \\
end{tabular}
```

```
1 2 3
4 5 6
7 8 9
```

```
\begin{tabular}{|r|1|}
\hline
7C0 & hexadecimal \\
3700 & octal \\ \cline{2-2}
11111000000 & binary \\
hline \hline
1984 & decimal \\
hline
end{tabular}
```

hexadecimal
octal
binary
decimal

http://en.wikibooks.org/wiki/LaTeX/Tables

Floats

A float is an unbreakable box containing text, images, etc.

- to deal with objects that won't fit on the current page
- to help when you really don't want the object here just now
- not part of the normal stream of text, they're separate entities
- may disturb beginners because it breaks they're WYSIWYG mind!

The author specifies placement with:

h	here (in fact as soon as possible in the text flow)
t	at the top of the page (the current or the following)
b	at the bottom of the page (the current or the following)
p	on a special page for floats only (far away)
Н	precisely here (requires the float package, to be used wisely)

Figures and tables may be floats

```
\begin{figure}[placement specifier]
... figure contents ...
\end{figure}
```

This way, you can specify a \caption{} for your table:

Table: simple showcase.

7C0	hexadecimal
3700	octal
11111000000	binary
1984	decimal

Remember labels?

Floats are always numbered, so they can be referred to

- use \label{} to create a marker
- always put the label after the caption, inside the float environment!
- again, (at least) two compilations are needed!

```
begin{table}[h]
begin{tabular}{|r|1|}
hline
700 & hexadecimal \\
3700 & octal \\ cline{2-2}
11111000000 & binary \\
hline \hline
1984 & decimal \\
hline
end{tabular}
caption{simple showcase.}
label{tab:1984representations}
end{table}
```

2.3 Referencing a table

Here, I make a reference and the table 1 of the following section.

3 Tables

7C0 3700	hexadecimal octal
11111000000	binary
1984	decimal

Table 1: simple showcase.

Graphics

We need: \usepackage{graphicx}

The magical command

- use \includegraphics[options]{name} to insert a extern graphic document
- there is a lot of options (height, width, trim, page, etc.): read the doc!
- you can insert png, jpg and pdf format images
- make it a float!

```
begin{figure}[t]
  \caption{Saint-Nazaire's bridge.}
  \label{fig:SaintNazaireBridge}
  \centering
  \includegraphics[width=\textwidth,
  trim=400px 100px 0px 400px, clip]
  {Pont_de_Saint-Nazaire}
  \end{figure}
```


Page Layout

Everything is under control!

- default page size: US letter format
- A4 format (21x29.7cm): \documentclass[a4paper]{article}
- everything is a parameter (header, footer, margins, body sizes)

Package geometry to define margins, orientation, etc.

- landscape (portrait is default): \usepackage[landscape]{geometry}
- margins: \usepackage[hmargin=3cm, vmargin=2cm]{geometry}

http://en.wikibooks.org/wiki/LaTeX/Page_Layout

Headers and footers content

We need: \usepackage{fancyhdr}

```
% page headers/footers for a twoside document
\pagestyle{fancy} % mandatory
\fancyhf{} % clear defaults
\fancyhead[R0]{\nouppercase{\emph{\rightmark}}} % RO=right-odd
\fancyhead[LE]{\nouppercase{\emph{\leftmark}}} % LE=left-even
\fancypagestyle{plain}{ % for chapter pages
\fancyhf{} % clear defaults
\renewcommand{\headrulewidth}{0pt}} % remove the line
```

using:

- thepage the current page number
- \leftmark the current chapter name
- \rightmark the current section name
- \thesection current section number

Useful things

http://en.wikibooks.org/wiki/LaTeX/Useful_Measurement_Macros

Measurement units and macros

- LATEX knows a lot of measurement units (pt, bp, mm, cm, in, ex, em)
- and a lot of macros: \baselineskip, \baselinestretch, \columnsep, \columnwidth, \evensidemargin, \linewidth, \oddsidemargin, \paperwidth \paperheight, \parindent, \parskip \tabcolsep, \textheight, \te
- you can change their values: \setlength{\textwidth}{0.5\paperwidth}
- or make a slight change: \addtolength{\itemsep}{0.5\ baselineskip}

Tables of interest:

\tableofcontents \listoffigures \listoftables

Co	ontents
1	Mathematics
	Labels and cross-reference 2.1 Example
-	2.2 Referencing
3 ′	Tables
4 (Graphics

Outline

- 1 Introduction (or Why using LATEX?)
- 2 First document
 - Document structure
 - Form-content separation
 - Basic commands
- Mathematics and code
- Playing with content
- Going further
- 6 Resources

Guidelines to make LATEX coding easier

Split the document into multiple files

- to avoid writing in one giant document;
- \input{file} inserts content as it in file;
- \include{file} is more flexible thanks to \includeonly{file1, file2};

Create and recreating new commands

• using \newcommand{name}[num]{definition} with name the name of the new command, num number of arguments taken, up to 9 (default=0), definition the command itself

A bit of debugging: DON'T PANIC!

Everybody makes error like:

- mistype or mis-spell commands
- forget curly braces
- type a forward slash / instead of a backslash \
- use a special character by mistake

But happily:

errors and warning are well defined in LATEX log

```
! Undefined control sequence.
1.6 \tableofcontents
```

- an editor may help you locate or even avoid them
- an erroneous document is not what you want, so don't let them!

A bit of debugging: What can I do?

On the command line, when LATEX finds an error, you have to specify it what to do about it:

Key	Meaning
х	stop and exit LATEX
q	carry on as best as possible and stop showing errors
е	stop and position the editor at error line (if possible)
i	correct here (not in the editor) and carry on
r	non-stop mode, ignore errors (up to 100)
h	try to give me more help

Some editors run in non-stop mode and analyze log to show errors and warnings.

http://en.wikibooks.org/wiki/LaTeX/Errors_and_Warnings

Going local :-)

Want to print pretty bengali?

Use XeT_EX:

- a variation around LATEX (component of TeXLive)
- based on unicode and modern fonts systems
- specific syntax for new features and own binary

xelatex sample.tex

পাগলা দাশু

সুকুমার রায়

আমানের স্কুলের যত ছাত্র তাহার মধ্যে এমন কেইই ছল না, যে পাণলা দাতকে দাতি । যে পোত হার কাহাকেও জানে না, সেও সকলের আগে পাণলা দাতকে চিনিয়া লয়। সেবার একজন নুতন দারোয়ান আগিল, একেবারে জানারোরা পাড়াগোঁর লোক, কিন্তু প্রথম মখন সে পাণলা দাত কর নাম তনিল, তখনই সে আন্দাজে ঠিক ধরিয়া লইল যে, এই বাজিই পাণলা দাত কাবল তার, মুখর স্কেরার, কথাবার্তি, চলনে চালনে বোঝা যাইত যে তাহার মাখার একট ছিটা আছে। তাহার চোখারটি গোল-গোল, কানজী অনাবশ্যক রকমের বড়, মাখার এক বস্তা খাঁকড়া চুল। চেহারটো সেবিশ্বি

বিঃদ্রঃ এই বাংলা পাতাটি লেখার জন্য XeTeX ব্যবহার করা হয়েছে।

http://methopath.wordpress.com/2008/06/26/writing-unicode-bengali-in-latex/

Many (many!) packages

```
    bibtex bibliography management;

    makeidx indexes management;

    pstricks low-level and hitoric graphic package;

    pgf modern, nice and simple graphics (preferred);

    beamer presentation class, like this one;

    hyperref PDF hyperlinks management (use with caution);

    color to make colored text (use wisely);

    pdfpages to insert PDF or PS pages in a PDF;

verbatim to insert LATEX code;
minipage to create a page in a page;
```

Editors

Both ViM and Emacs have a LATEX edition mode.

http://www.gnu.org/software/auctex/

Kile – a LATEX Environment (for KDE)

http://kile.sourceforge.net/

Many resources to learn even more

Books:

- Mittelbach Frank & Goossens Michel, *The LATEX Companion, Second Edition*, 2004.
- Donald E. Knuth, The TeX book, 1986.
- The Comprehensive LaTeX Symbol List (pdf)
- LaTeX Reference Card (pdf)

Websites:

- http://www.latex-project.org/ official website
- http://www.ctan.org/ where you can find everything!
- http://www.tug.org/ The TeX Users Group
- http://www.tex.ac.uk/cgi-bin/texfaq2html The UK TeX FAQ
- http://en.wikibooks.org/wiki/LaTeX/ a book being written online