K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 29. April 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 3

Stichworte: Tangentialräume und Vektorbündel

Aufgabe 1 Äquivalente Definitionen des Tangentialraums (1+2+1 Punkte)

a) Bezeichne (wie in der VL) K_pM die Menge der Karten um p und V_pM die Menge der Abbildungen $v:K_pM\to\mathbb{R}^n$ mit

$$v(V,\psi) = J_{\varphi(p)}(\psi \circ \phi^{-1}) \cdot v(U,\varphi) \qquad \forall (U,\varphi), (V,\psi) \in K_pM$$
.

Vervollständigen Sie den Beweis aus der VL, dass der (geometrische) Tangentialraum T_pM isomorph ist zu V_pM . (D.h. geben Sie die Umkehrabbildung zu der in der VL angegebenen Abbildung an und überprüfen Sie Linearität.)

b) Finden Sie eine sinnvolle Definition für das Differential einer glatten Abbildung $f: M \to N$ zwischen den zugehörigen algebraischen Tangentialräumen. Überprüfen Sie Linearität und die Kettenregel. Bezeichne $T_p f: T_p M \to T_{f(p)} N$ das gewöhnliche (geometrische) Differential und $\mathcal{D}_p f: \mathcal{D}_p M \to \mathcal{D}_p N$ das algebraische Differential. Ferner seien $\Phi_p^M: T_p M \xrightarrow{\sim} \mathcal{D}_p M$ und $\Phi_{f(p)}^N: T_{f(p)} N \xrightarrow{\sim} \mathcal{D}_{f(p)} N$ die Isomorphismen aus Satz 2.8 in der VL. Zeigen Sie, dass das folgendende Diagramm kommutiert¹:

$$T_{p}M \xrightarrow{T_{p}f} T_{f(p)}N$$

$$\Phi_{p}^{M} \downarrow \qquad \qquad \downarrow \Phi_{f(p)}^{N}$$

$$\mathcal{D}_{p}M \xrightarrow{\mathcal{D}_{p}f} \mathcal{D}_{f(p)}N$$

c) Rechnen Sie Bemerkung iv) aus VL 5 nach: Sei $f: M \to N$ eine glatte Abbildung. In entsprechenden Koordinaten/Karten um $p \in M$ und $q = f(p) \in N$ gilt

$$\mathcal{D}_p f\left(\frac{\partial}{\partial x_i}\Big|_p\right) = \sum_{j=1}^{\dim(N)} \frac{\partial f_j}{\partial x_i}(p) \left. \frac{\partial}{\partial y_j} \right|_q .$$

Hinweis: Die Rechnung ist analog zu Bemerkung iii) aus VL 5.

¹In der Sprache der Kategorientheorie zeigt dies das Folgende: Seien T und \mathcal{D} die zugehörigen Funktoren von der Kategorie der punktierten Mannigfaltigkeiten in die Kategorie der ℝ-Vektorräume. Dann ist $(M,p) \mapsto \Phi_p^M$ ein natürlicher Isomorphismus von T nach \mathcal{D} .

Aufgabe 2 Spezielle Tangentialräume (1+1+1+1+1 Punkte)

- a) Seien M, N glatte Mannigfaltigkeiten und $M \times N$ die Produktmannigfaltigkeit (siehe UB 1). Zeigen Sie, dass $T_{(p,q)}(M \times N) \cong T_pM \oplus T_qN$ für $p \in M$ $q \in N$.
- b) Sei M eine Mannigfaltigkeit und $N \subseteq M$ eine Untermannigfaltigkeit. Sei $i: N \hookrightarrow M$ die Inklusion und $p \in N$. Zeigen Sie, dass das Differential $D_p i: T_p N \to T_p M$ injektiv ist.

Gemäß Teil b) identifizieren wir deshalb von nun an den Tangentialraum T_pN einer Untermannigfaltigkeit $N\subseteq M$ mittels des Differentials der Inklusion $i:N\hookrightarrow M$ mit dem Unterraum $Di_p(T_pN)\subseteq T_pM$.

- c) Sei $f: M \to N$ eine glatte Abbildung mit regulärem Wert $q \in N$. Sei $S := f^{-1}(q) \subseteq M$ die zugehörige Untermannigfaltigkeit. Zeigen Sie $T_pS = \ker(D_pf)$, wobei wir T_pS als Unterraum von T_pM auffassen, siehe Teil b).
- d) Sei $f: \mathbb{R}^n \to \mathbb{R}$ glatt mit regulärem Wert $c \in \mathbb{R}$ und $S:=f^{-1}(c)$ die zugehörige Untermannigfaltigkeit. Zeigen Sie, dass T_pS gerade das orthogonale Komplement (bzgl. des Standard-Skalarproduktes) des Gradienten $\nabla f(p) \in \mathbb{R}^n$ ist, wobei wir T_pS als Unterraum von $T_p\mathbb{R}^n \cong \mathbb{R}^n$ auffassen.
- e) Sei $f: M \to N$ eine glatte Abbildung und

$$Gr(f) := \{(p, f(p)) \mid p \in M\} \subseteq M \times N$$

der zugehörige Graph. Zeigen Sie, dass Gr(f) eine Untermannigfaltigkeit von $M \times N$ ist und bestimmen Sie den Tangentialraum.

Aufgabe 3 Vektorbündel (2+2 Punkte)

Im Folgenden sei $\pi: E \to B$ eine surjektive glatte Abbildung und auf jeder Faser $E_p := \pi^{-1}(p)$ sei eine Vektorraum-Struktur fixiert. Ferner sei $n = \dim(E_p)$ unabhängig von $p \in B$. Eine Familie $\mathbf{e} = (e_1, \dots, e_n)$ von n faserweise linear unabhängigen Schnitten

$$e_j: U \to E|_U := \pi^{-1}(U)$$
 , $j = 1, ..., n$.

heißt (lokaler) Rahmen über U.

a) Zeigen Sie, dass es eine natürliche Bijektion zwischen Rahmen e über U und Trivialisierungen $\Phi: E|_U \to U \times \mathbb{R}^n$ über U gibt. Folgern Sie, dass (E, π) (mit der gegebenen Familie an Vektorraum-Strukturen) genau dann ein Vektorbündel ist, wenn es eine offene Überdeckung $(U_i)_{i \in I}$ von B gibt, sodass für jedes $i \in I$ ein Rahmen von E über U_i existiert.

Nun sei $\pi: E \to B$ eine Surjektive Abbildung auf eine glatte Mannigfaltigkeit B. Ferner sei für jedes $p \in B$ eine Vektorraum-Struktur auf $E_p := \pi^{-1}(p)$ gegeben, die E_p zu einem n-dimensionalen Vektorraum macht, sowie folgende weitere Daten:

- (i) Eine offene Überdeckung $(U_i)_{i\in I}$ von B.
- (ii) Eine Familie $(\Phi_i)_{i\in I}$ von bijektiven Abbildungen $\Phi_i: E|_{U_i} := \pi^{-1}(U_i) \to U_i \times \mathbb{R}^n$ mit $\operatorname{pr}_1 \circ \Phi_i = \pi|_{U_i}$, die faserweise lineare Isomorphismen $E_p \to \{p\} \times \mathbb{R}^n \ p \in U_i$, sind.
- (iii) Eine Familie $(g_{ij})_{i,j}$ (mit Indexmenge den Tupeln $(i,j) \in I \times I$ mit $U_i \cap U_j \neq \emptyset$) von Abbildungen $g_{ij}: U_i \cap U_j \to \operatorname{GL}(n,\mathbb{R})$, sodass

$$\Phi_i \circ \Phi_j^{-1}(p, v) = (p, g_{ij}(p) \cdot v) \qquad \forall p \in U_i \cap U_j, v \in \mathbb{R}^n.$$

b) Zeigen Sie, dass es eine eindeutige Topologie und glatte Struktur auf E gibt, sodass (π, E) (mit der gegebenen Vektorraumstruktur) ein Vektorbündel mit Trivialisierungen $(U_i, \Phi_i)_{i \in I}$ ist.

Zusatzaufgabe 4 Vektorbündel II (2+2 Bonuspunkte)

Benutzen Sie das Vektorbündel-Konstruktions-Lemma (Aufgabe 3 b)), um Folgendes nachzuweisen:

- a) Gegeben seien Vektorbündel $\pi_1: E_1 \to B$ und $\pi_2: E_2 \to B$. Die Whitney-Summe $E_1 \oplus E_2 := \coprod_{p \in B} (E_1)_p \oplus (E_2)_p$ ist in natürlicher Weise ein Vektorbündel über B (mit Faser $(E_1)_p \oplus (E_2)_p$ über $p \in B$).
- b) Sei \sim die Äquivalenz
relation auf \mathbb{R}^2 definiert über

$$(x,y) \sim (x',y') \iff x' = x+n \text{ und } y' = (-1)^n y \text{ für ein } n \in \mathbb{Z}$$
.

Sei $M := \mathbb{R}^2/\sim$ der Quotientenraum. Die Projektion auf die erste Komponente induziert eine Surjektion $\pi: M \to \mathbb{R}/\mathbb{Z} \cong \mathbb{S}^1$. Zeigen Sie, dass (π, M) ein Vektorbündel über dem Kreis \mathbb{S}^1 ist, das sogenannte $M\ddot{o}biusb\ddot{u}ndel$.

Zusatzaufgabe 5 Tangentialbündel der Sphären (2+2 Bonuspunkte)

Zeigen Sie, dass \mathbb{S}^1 ein triviales Tangentialbündel hat. Zeigen Sie, dass \mathbb{S}^2 kein triviales Tangentialbündel hat. (Für Letzteres recherchieren Sie zum "Satz vom Igel", den Sie unbewiesen zitieren dürfen.)

Abgabe bis Dienstag, 6. Mai 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.