Edge Detection

Nilanjan Ray

Source: www.imagingbook.com

What are edges?

- Are image positions where local image intensity changes significantly along a particular orientation
- Human visual system extracts sensitive information from edges
- An entire image can be decently "reconstructed" from edges so in that sense edges are the "information packets" in an image
 - Take a look at: http://www.stanford.edu/class/ee368b/Projects/cnetzer/index.html

A picture is worth....

(a) An image and (b) some of its edges

Edge detection

- A dominant approach in edge detection is gradient-based
- What is a gradient? $f'(x) = \frac{df}{dx}(x)$

$$f'(x) = \frac{df}{dx}(x)$$

(a) A simple image and (b) its gradient along a cross section The peaks (valleys) in the gradient are edges here

Derivatives on functions

Approximate derivative of a function can be computed as:

$$\frac{df}{du}(u) \approx \frac{f(u+1) - f(u-1)}{2} = 0.5 \cdot (f(u+1) - f(u-1))$$

Derivatives of images

An image I is a two dimensional function, so we need partial derivatives

$$\frac{\partial I}{\partial u}(u,v)$$
 and $\frac{\partial I}{\partial v}(u,v)$

Gradient of an image is defined as

$$\nabla I(u,v) = \begin{bmatrix} \frac{\partial I}{\partial u}(u,v) \\ \frac{\partial I}{\partial v}(u,v) \end{bmatrix}$$

Magnitude of image gradient is a good "edge indicator"

$$|\nabla I|(u,v) = \sqrt{\left(\frac{\partial I}{\partial u}(u,v)\right)^2 + \left(\frac{\partial I}{\partial v}(u,v)\right)^2}$$

Image derivatives by linear filter

 Image derivatives can be computed by linear filtering with masks as:

$$H_x^D = egin{bmatrix} -0.5 & \mathbf{0} & 0.5 \end{bmatrix} = 0.5 \cdot egin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$$
 and $\begin{bmatrix} -0.5 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$

$$H_y^D = \begin{bmatrix} -0.5 \\ \mathbf{0} \\ 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 \\ \mathbf{0} \\ 1 \end{bmatrix}$$

 Once, x and y derivatives are computed, compute gradient magnitude by point operations

Edge detection by image gradient

(a) A simple image I, (b) x-derivative of I by linear filter, (c) y-derivative of I by linear filter, (d) gradient magnitude

Prewitt edge operator

Linear derivative filter:

$$H_x^P = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Image gradient computation:

$$\nabla I(u,v) \approx \frac{1}{6} \cdot \left[\frac{\left(I * H_x^P\right)(u,v)}{\left(I * H_y^P\right)(u,v)} \right]$$

Sobel edge operator

Linear edge operators:

$$H_x^S = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^S = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Gradient computation:

$$\nabla I(u,v) \approx \frac{1}{8} \cdot \left[\frac{\left(I * H_x^S\right)(u,v)}{\left(I * H_y^S\right)(u,v)} \right]$$

Edge strength and orientation

- Edge strength is given by: $E(u,v) = \sqrt{(D_x(u,v))^2 + (D_y(u,v))^2}$
- Edge orientation is given by:

$$\Phi(u,v) = \tan^{-1}\left(\frac{D_y(u,v)}{D_x(u,v)}\right) = \operatorname{ArcTan}\left(D_x(u,v), D_y(u,v)\right)$$

where $D_x(u,v) = H_x * I$ and $D_y(u,v) = H_y * I$

More linear edge operators

Improved Sobel operator- estimates direction and magnitude better:

$$H_x^{S'} = \frac{1}{32} \begin{bmatrix} -3 & 0 & 3 \\ -10 & \mathbf{0} & 10 \\ -3 & 0 & 3 \end{bmatrix} \quad \text{and} \quad H_y^{S'} = \frac{1}{32} \begin{bmatrix} -3 - 10 - 3 \\ 0 & \mathbf{0} & 0 \\ 3 & 10 & 3 \end{bmatrix}$$

A simple edge operator, called Robert's operator:

$$H_1^R = \begin{bmatrix} 0 & \mathbf{1} \\ -1 & 0 \end{bmatrix}$$
 and $H_2^R = \begin{bmatrix} -1 & 0 \\ 0 & \mathbf{1} \end{bmatrix}$

Compass operator

Why stop at two directions?

Compass operators compute edges in 8 discrete directions 45° apart:

$$H_3^K = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$$

$$H_3^K = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix} \qquad H_7^K = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

$$H_0^K = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad H_4^K = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$H_4^K = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{vmatrix}$$

$$H_2^K = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad H_6^K = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$H_6^K = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$H_1^K = \begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$H_1^K = \begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \qquad H_5^K = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{bmatrix}$$

Compass operator...

We don't need to compute all the filtering results:

Next compute the edge strength,

$$E^{K}(u,v) \triangleq \max(D_{0}(u,v), D_{1}(u,v), \dots D_{7}(u,v))$$
$$= \max(|D_{0}(u,v)|, |D_{1}(u,v)|, |D_{2}(u,v)|, |D_{3}(u,v)|)$$

and the orientation:

$$\Phi^{K}(u,v) \triangleq \frac{\pi}{4} \quad \text{with } j = \underset{0 \le i \le 7}{\operatorname{argmax}} D_{i}(u,v)$$

Second order edge operator

Some linear edge detection methods are based on "zero crossings" of the image second derivative, such as , Laplacian-of-Gaussian edge detector.

From edges to contour

 OK, we can got the edge strength and the orientation; how do we get a thin edge from this information?

 Let's study Canny edge detection to see one answer to the above question

Canny edge detection

- Step 1: Smooth image with Gaussian filtering.
- Step 2: Find out edge strength and orientation of the smoothed image.
- Step 3 (non-maximum suppression): At each pixel, determine if it has maximum edge strength along the edge orientation. Mark such pixels as edge pixels.
- Step 4 (hysteresis)
 - Apply a high threshold to the edge strength magnitude to detect a set of edges.
 - Follow the edges perpendicular to the edge orientation. If the pixels survive a low threshold, keep it as an edge pixel.

Canny method: Step 1

Original image

Smoothed image

Smoothing with Gaussian filter: sigma =1

Canny method: Step 2

$$H = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{bmatrix}$$
 Sobel edge filter matrices $\begin{bmatrix} 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

$$D_x = I*H$$

$$D_y = I*V$$

Canny method: Step 2...

Edge orientation (shown as arrows instead of angles)

Edge strength image (E)

Canny method: Step 3

Edge strength E (Cropped for better visualization)

Non-maximum suppression (aka thinning of edges)

Let's call this image: S

Edge orientation (Cropped for better visualization)

Canny method: Step 4

Step 4a: A low threshold on S

Step 4b: apply a high threshold on S

Step 4c: Starting from 4b link/track edges

Canny edges

Canny edges at different smoothing levels. A single therhold value is used here.

Edge detection: visual comparisons

Comparisons of different edge operators

Edge sharpening

$$\check{f}(x) = f(x) - w \cdot f''(x)$$

w is a positive tuning parameter

Edge sharpening with Laplacian

Laplacian of a function:
$$\left(\nabla^2 f\right)(x,y) = \frac{\partial^2 f}{\partial^2 x}(x,y) + \frac{\partial^2 f}{\partial^2 y}(x,y)$$

Discrete linear second derivative operators:

$$rac{\partial^2 f}{\partial^2 x} \equiv H_x^L = \begin{bmatrix} 1 - \mathbf{2} & 1 \end{bmatrix}$$
 and $\frac{\partial^2 f}{\partial^2 y} \equiv H_y^L = \begin{bmatrix} 1 \\ -\mathbf{2} \\ 1 \end{bmatrix}$

Discrete Laplacian operator:
$$H^L = H_x^L + H_y^L = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Other discrete approximations
$$H_8^L = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $H_{12}^L = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

Edge sharpening with Laplace filter

Original image

Laplacian of original image

Edge sharpened image

Unsharp masking

Another edge sharpening method. Works better than Laplacian edge sharpening on noisy images. Why?

Computed in two steps:

Step 1:
$$M \leftarrow I - (I * \tilde{H}) = I - \tilde{I}$$

Step 2:
$$\check{I} \leftarrow I + a \cdot M$$

A slightly modified step 2 often works better:

$$\check{I}(u,v) \leftarrow \begin{cases}
I(u,v) + a \cdot M(u,v) & \text{for } |\nabla I|(u,v) \ge t_c \\
I(u,v) & \text{otherwise.}
\end{cases}$$

Unsharp masking: example

Edges: scales

- Back to basics: edges can only be detected at a scale
- Multi-scale edge detection
 - Elder-Zucker edge detection (Local scale control for edge detection and blur estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 20, no. 7, 699-716, 1998.)
 - Lindeberg edge detection (Tony Lindeberg: Edge Detection and Ridge Detection with Automatic Scale Selection. International Journal of Computer Vision 30(2): 117-156,1998)

– ...