Chapitre 2 : Dérivation

1 Nombre dérivé et tangente

On considère f une fonction définie sur un intervalle I de \mathbb{R} et on note \mathscr{C}_f sa courbe représentative dans un repère du plan. Soit a un réel appartenant à I et A le point de \mathscr{C}_f d'abscisse a.

1.1 Nombre dérivé et taux de variation

Soient $h \in \mathbb{R}$ un réel non nul tel que $a+h \in I$ et H le point de \mathscr{C}_f d'abscisse a+h. En particulier : $a \neq a+h$.

Définition 1 (Taux de variation)

Le nombre $\tau(h) = \frac{f(a+h)-f(a)}{h}$ est appelé **taux de variation** de f entre a et a+h. Sur la figure ci-contre, le point A a pour coordonnées (a; f(a)) et le point H a pour coordonnées (a+h).

Le coefficient directeur de la droite (AH) est

$$\frac{f(a+h)-f(a)}{a+h-a};$$

autrement dit, le coefficient directeur est $\tau(h)$. Le nombre $\tau(h)$ dépend de a.

Remarque

Le taux de variation est aussi appelé taux d'accroissement entre a et a + h.

Définition 2 (Nombre dérivée et dérivabilité)

On dit que f est **dérivable** en a lorsque $\tau(h)$ tend vers un nombre réel quand h prend des valeurs proches de 0. Ce réel est appelé **nombre dérivée** de f en a et est noté f'(a). On écrit alors

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Exemple 1

Soit $f: x \mapsto 2x + 1$. Soit $a \in \mathbb{R}$ un réel quelconque. Alors f(a) = 2a + 1 et f(a+h) = 2(a+h) + 1 = 2a + 2h + 1. Ainsi, pour tout $h \neq 0$ et tout $a \in I$, on a

$$\tau(h) = \frac{f(a+h) - f(a)}{h} = \frac{2a + 2h + 1 - (2a+1)}{h} = \frac{2h}{h} = 2.$$

On a ainsi $\lim_{h\to 0} \tau(h)=2$. On dit que la fonction f est dérivable au point a et que son nombre dérivé en a vaut f'(a)=2.

Exemple 2

Soit $f: x \mapsto x^2$. Pour $h \neq 0$ et a = 0, $\tau(h) = \frac{f(0+h)-f(0)}{h} = \frac{h^2}{h} = h$. On a $\lim_{h \to 0} \tau(h) = 0$ donc f est dérivable en 0 et f'(0) = 0.

Exemple 3

Soit g la fonction définie sur \mathbb{R} par g(x) = |x|. Pour $h \neq 0$ et a = 0,

$$\tau(h) = \frac{g(0+h) - g(0)}{h} = \frac{|h| - |0|}{h} = \frac{|h| - |0|}{h} = \frac{|h|}{h}.$$

Pour h > 0, $\tau(h) = \frac{h}{h} = 1$, et pour h < 0, $\tau(h) = \frac{-h}{h} = -1$. On obtient deux nombres différents quand h prend des valeurs proches de 0, donc g n'est pas dérivable en 0.

Application 4

On considère la fonction f définie sur \mathbb{R} par $f(x) = -\frac{1}{3}x + 1$.

- 1. Soit h un réel non nul. Calculer f(3+h) et f(3).
- 2. Montrer que f est dérivable en 3 et déterminer le nombre dérivé de f en 3.

1.2 Tangente à une courbe

Définition 3 (Tangente)

Lorsque f est dérivable en a, on appelle **tangente** à la courbe \mathcal{C}_f au point d'abscisse a la droite T passant par A(a; f(a)) dont le coefficient directeur est le nombre dérivé f'(a).

Exemple 5

On donne la courbe d'une fonction f dérivable en 3, dont on a tracé la tangente T_A au point d'abscisse 3. Par lecture graphique, on a f'(3) = 2.

Application 6

On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x}$ dont on a tracé la courbe représentative \mathscr{C}_f . La doite (AB) est la tangente à \mathscr{C}_f au point A d'abscisse 2. Déterminer graphiquement f'(2).

2 Équation de tangente

Propriété 1

Soit f une fonction dérivable en a. L'équation réduite de la tangente T_A à la courbe de f au point d'abscisse a est

$$y = f'(a)(x - a) + f(a).$$

Démonstration. Soit T_A la tangente au point A d'abscisse a de \mathscr{C}_f . Par définition, le nombre dérivé f'(a) est le coefficient directeur de cette tangente, et elle a donc pour équation

$$y = f'(a)x + p,$$

où le nombre p est l'ordonnée à l'origine et reste à déterminer. Comme le point A(a; f(a)) appartient à T_A , ses coordonnées vérifient l'équation réduite de T_A . On a donc

$$f(a) = f'(a) \times a + p \iff p = f(a) - f'(a) \times a.$$

En remplaçant cette valeur dans l'équation réduite de T_A et en factorisant par f'(a), on a bien

$$y = f'(a)(x - a) + f(a).$$

Exemple 7

Soit f une fonction telle que f(1)2 et $f'(1) = \frac{1}{3}$. La tangente T à la courbe de f au point d'abscisse 1 a donc pour équation réduite

$$y = f'(1)(x - 1) + f(1).$$

Cela donne

$$y = \frac{1}{3}(x-1) + 2$$

$$\Leftrightarrow y = \frac{1}{3}x - \frac{1}{3} + 2$$

$$\Leftrightarrow y = \frac{1}{3}x + \frac{5}{3}.$$

Application 8

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - x^2 + x - 1$. En remarquant que, pour tout $x \in \mathbb{R}$, $f(x) = (x-1)(x^2+1)$:

- 1. déterminer la tangente T à la courbe représentative de f au point d'abscisse 1;
- 2. en déduire les coordonnées du point d'intersection de T avec l'axe des ordonnées.

3 Fonctions dérivées

Définition 4 (Fonction dérivée)

On dit que f est dérivable sur un intervalle I lorsque f est dérivable en tout réel a de I. On appelle fonction dérivée de f la fonction qui, à tout réel x de I, associe le réel f'(x). On la note f'.

3.1 Fonctions dérivées des fonctions usuelles

Propriété 2

Fonction f définie par :	Ensemble de définition D_f	Fonction dérivée f' définie par :	Ensemble de dérivabilité $D_{f'}$
$f(x) = k$, avec $k \in \mathbb{R}$	\mathbb{R}	f'(x) = 0	\mathbb{R}
$f(x) = mx + p$ $avec \ m, p \in \mathbb{R}$	\mathbb{R}	f'(x) = m	\mathbb{R}
$f(x) = x^2$	\mathbb{R}	f'(x) = 2x	\mathbb{R}
$f(x) = x^n$, avec $n \in \mathbb{N}^*$	\mathbb{R}	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$\mathbb{R}\setminus\{0\}$	$f'(x) = -\frac{1}{x^2}$	$\mathbb{R}\setminus\{0\}$
$f(x) = \frac{1}{x^n}$	$\mathbb{R}\setminus\{0\}$	$f'(x) = -\frac{n}{x^{n+1}}$	$\mathbb{R}\setminus\{0\}$
$f(x) = \sqrt{x}$	$[0;+\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$	$]0;+\infty[$

Exemple 9

La fonction g est définie sur $\mathbb{R} \setminus \{0\}$ par $g(x) = \frac{1}{x^2}$. La fonction g est dérivable sur \mathbb{R}^* et pour tout $x \neq 0$, on a

$$g'(x) = -\frac{2}{x^{2+1}} = -\frac{2}{x^3}.$$

Exemple 10

Soit f la fonction définie sur \mathbb{R} par f(x) = 4x + 5. Alors

$$f'(x) = 4.$$

Exemple 11

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3$. Alors

$$f'(x) = 3x^2.$$

Exemple 12

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^5$. Alors

$$f'(x) = 5x^4.$$

Remarque

Attention, la fonction racine carrée n'est pas dérivable sur tout son ensemble de définition! Elle est définie sur $[0; +\infty[$ mais elle est dérivable sur $]0; +\infty[$. Autrement dit, elle n'est pas dérivable en 0.

3.2 Opérations sur les fonctions dérivées

Propriété 3

Soient u, v et g des fonctions définies et dérivables sur un intervalle I. Soient k, a et b des réels.

Type d'opération	Fonction à dériver	Fonction dérivée
Dérivée d'une somme	u + v	(u+v)' = u' + v'
Dérivée d'un produit par une constante	$k \times u$	$(k \times u)' = k \times u'$
Dérivée d'un produit	$u \times v$	$(u \times v)' = u' \times v + u \times v'$
Dérivée d'un inverse	$\frac{1}{v} \text{ avec } v(x) \neq 0$ $\text{pour tout } x \in I$	$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$
Dérivée d'un quotient	$\frac{u}{v} \text{ avec } v(x) \neq 0$ pour tout $x \in I$	$\left(\frac{u}{v}\right)' = \frac{u' \times v - u \times v'}{v^2}$

Dérivée de f(x) = g(ax + b): soit J l'intervalle tel que pour tout $x \in J$, $ax + b \in I$. La fonction f est définie et dérivable sur J et $f'(x) = a \times g'(ax + b)$.

Exemple 13

Soit f la fonction définie sur \mathbb{R} par $f(x) = 4x^3 - 5x^2 + 2x - 1$. En tant que fonction polynôme, f est dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$, on a

$$f'(x) = 12x^2 - 10x + 2.$$

Exemple 14

Soit g la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $g(x) = \frac{4+x^2}{x+1}$. La fonction g est dérivable sur $\mathbb{R} \setminus \{1\}$ en tant que fonction rationnelle, et pour tout $x \in \mathbb{R} \setminus \{1\}$, on a

$$g'(x) = \frac{2x(x+1) - (4+x^2) \times 1}{(x+1)^2} = \frac{x^2 + 2x - 4}{(x+1)^2}.$$

Application 15

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = x\sqrt{x}$.

Donner l'ensemble de dérivabilité et la fonction dérivée de la fonction f.

Application 16

Soit f la fonction définie sur I par $f(x) = \frac{\sqrt{x}}{x+1}$.

- 1. Déterminer l'ensemble I.
- 2. Justifier que f est dérivable en précisant l'ensemble de dérivabilité et déterminer sa fonction dérivée.