SUSY in QM 1

Definition 1.1 (最小超対称関係)

3 種類の Hermitian operator H: Hamiltonian, Q: Supercharge, $(-1)^F$: ???があって

$$H = Q^2 \tag{1}$$

$$Q(-1)^F = -(-1)^F Q$$
, or $\{Q, (-1)^F\} = 0$ (2)

$$\left((-1)^F\right)^2 = 1\tag{3}$$

を満たす関係を最小超対称関係という.

超対称性がある系には,必ずこの関係がある.

実は、簡単な量子力学系にもこの構造が隠れている.

円周上の自由粒子 1.1

半径 R の円周上の自由粒子を考える.定義域を $-\pi R \le x \le \pi R$ とし,周期的境界条件 $\psi(x+2\pi R)=\psi(x)$ を入れる. Hamiltonian は H=-1/(2m) d/dx であるので、Schrödinger 方程式を解くと、固有関数として、次の固有関数を得る.

$$\phi_{n,+}(x) = N_{n,+} \cos\left(\frac{n}{R}x\right) \tag{4}$$

$$\phi_{n,-}(x) = N_{n,-} \sin\left(\frac{n}{R}x\right). \tag{5}$$

これらの固有エネルギーは,

$$E = \frac{1}{2mR^2}n^2\tag{6}$$

で,各固有空間は2次元あることがわかる. Hamiltonian を "因数分解" して supercharge を得る. $H=(-\mathrm{i}/(\sqrt{2m})\,\mathrm{d}/\mathrm{d}x)^2$ より、 $Q := -i/(\sqrt{2m}) d/dx = p/\sqrt{2m}$ とする.

また, parity \mathcal{P} は $(-1)^F$ の働きをする.

よって、この系には、最小超対称関係を満たす演算子たちが存在することがわかる. これらは Hermitian であることも確

今,周期的境界条件で考えたが,ひねった境界条件 $\psi(x+2\pi R)=\mathrm{e}^{\mathrm{i}\theta}\psi(x)$ を入れると面白い *2 . θ の連続変形でスペク トラムの構造は連続的に変化し *3 , $\theta=n\pi$ のところでは SUSY の構造が現れるが、その他のところでは現れない、実際計 算すると, 固有エネルギーと固有状態は

$$\psi_n = N_n e^{i(n+\theta/(2\pi))x/R} \tag{7}$$

$$E_n = \frac{1}{2mR^2} \left(n + \frac{\theta}{2\pi} \right)^2 \tag{8}$$

となる.

 $\theta \neq n\pi$ で SUSY が壊れているのは、parity が上手くいっていないからである。境界条件を考えると、 $\psi(x+2\pi R)=$ $\mathrm{e}^{\mathrm{i} heta} \psi(x)$ だが, $x' = -x - 2\pi R$ とおくと, $\psi(x' + 2\pi R) = \mathrm{e}^{-\mathrm{i} heta} \psi(x')$ となってしまい, $\theta \neq n\pi$ では parity で境界条件が不 変でないので,同じ系の中で対応が作れない.

1.2 超対称性の基本性質

SUSY がある系は最小超対称関係

- $H = Q^2$
- ${Q, (-1)^F} = 0$ $((-1)^F) = 1$

この関係から, [H,Q]=0, $[H,(-1)^F]$ がなりたつので, H と $(-1)^F$ の同時固有状態 $|E,\lambda\rangle$ をとることができる. $((-1)^F)^2 = 1$ なので, $\lambda = \pm 1$ である.

以下の4つの性質が成り立つ.

Property 1

エネルギー固有値が非負. $E \geq 0$.

 $^{^{*1}}$ A が Hermitian とは,今定まっている内積 $\langle \psi, \phi \rangle = \int \mathrm{d}x \, (\psi(x))^* \phi(x)$ に対して, $\langle A\psi, \phi \rangle = \langle \psi, A\phi \rangle$ が成り立つことである.

^{*2} Aharanov-Bohm のように、磁場を使うと、実際に作ることができる.

 $^{^{*3}}$ spectral flow という.

次の式変形からわかる*4.

$$E = \langle E, \lambda | H | E, \lambda \rangle \tag{9}$$

$$= \langle E, \lambda | Q^2 | E, \lambda \rangle \tag{10}$$

$$= \|Q|E,\lambda\rangle\| \tag{11}$$

$$\geq 0. \tag{12}$$

Property 2

正エネルギー状態は、 $(-1)^F$ の固有値が ± 1 の固有状態 $|E,\pm\rangle$ で対を成し、エネルギー固有値は縮退する.

まず, E>0 として, $|E,+\rangle$ を考える. $(-1)^FQ|E,+\rangle = -Q(-1)^F|E,+\rangle = -Q|E,+\rangle$ なので, $Q|E,+\rangle \propto |E,-\rangle$. $|E,-\rangle$ についても同様にして、 $Q|E,-\rangle \propto |E,+\rangle$ である.

また, 比例定数は

$$||Q|E, +\rangle||^2 = \langle E, +|Q^{\dagger}Q|E, +\rangle \tag{13}$$

$$= \langle E, +|H|E, +\rangle \tag{14}$$

$$=E\tag{15}$$

となるので*5,

$$Q|E,\pm\rangle = \sqrt{E}|E,\mp\rangle \tag{16}$$

と決まる*6.

このとき, $|E,\pm\rangle$ は Q を通じて対を成しており,supermultiplet を成すという.この状況を模式的に $|E,+\rangle \stackrel{Q}{\longleftrightarrow} |E,-\rangle$ と書く.

Property 3

ゼロエネルギー状態* 7 は必ずしも縮退しない. ゼロエネルギー状態が存在するならば, $Q|E=0\rangle=0$ を満たす.

Eq. (16) に E=0 を代入すると直ちにわかる. $E\neq 0$ のときとは異なり、Q を通じた supermultiplet をなさない. この 状況を $|E=0,+\rangle \xrightarrow{Q} 0 \xleftarrow{Q} |E=0,-\rangle$ と書く. ゼロエネルギー状態が $Q|E=0,\pm\rangle$ を満たすことは,ゼロエネルギー状態は 1 階の微分方程式の解であることを意味

する.

Property 4

Witten index $\Delta_{\mathrm{W}} \coloneqq \mathcal{N}_{E=0}^+ - \mathcal{N}_{E=0}^-$ は topological invariant. ここで、 $\mathcal{N}_{E=0}^\pm$ は $(-1)^F$ の固有値が ±1 の固有状態の数である.

topological invariant とは、理論のパラメータの連続変形で不変な量という意味で用いる。 S^1 上の自由粒子の例では mや R を大きくとると, $n \neq 0$ に置いても $E_n \rightarrow 0$ となるが、もともと non zero であるものは対で存在するので、ゼロエネ ルギー状態の数の差は変わらない.

 $^{^{*4}}$ Q が Hermitian であることは本質的である.

^{*&}lt;sup>5</sup> phase は実にとると

 $^{^{*6}}$ Q は H を "因数分解" して作ったことを思い出すと、大きさは \sqrt{E} になると思える.

 $^{^{*7}}$ SUSY の文脈でこのような状態を BPS state という.