Suguru Sai Akshita - EE24BTECH11054 Sai Akhila Reddy Turpu - EE24BTECH11055

$January\ 24,\ 2025$

Contents

1	Objective	2
2	Apparatus and procedure	2
	2.1 Materials	2
	2.2 Procedure	2
3	Results	2
4	Theory	9
	4.1 Case 1:	9
	4.2 Case 2:	9
	4.3 Case 3:	9
	4.4 Case 4:	9
	4.5 Case 5:	9
	4.6 Case 6:	10
5	Capturing One time event Using CRO	10
	5.1 Procedure	10
	5.2 Plots	10

1 Objective

- 1. Observing and analyzing Lissajous figures on a Cathode Ray Oscilloscope (CRO)
- 2. Capturing a one-time event using a CRO

2 Apparatus and procedure

2.1 Materials

- Cathode ray Oscilloscope
- Function Generator (2 channels)
- Probes
- Connecting wires

2.2 Procedure

- 1. Connect the probe to function generator and turn it off.
- 2. Press Mode/Coupling button and then change sweep mode from auto to normal.
- 3. In the Trigger menu, press Mode until "Edge" is selected.
- 4. Then select Single mode. Wait until mode will initiate.
- 5. Turn on the signal and get a captured one-time event.

3 Results

The functions plotted on X and Y axis respectively, are:

$$V_1(t) = A_x \sin(2\pi f_x t),$$

$$V_2(t) = A_y \sin(2\pi f_y t + \phi),$$

Where:

 A_x and A_y = Amplitudes of the signals.

 f_x and f_y = Frequencies.

 $\phi = \text{Phase Difference}.$

(a) Plot

Figure 1: Case 1

Parameter	Value
$V_1(t)$	5 V
$V_2(t)$	5 V
f_x	$1000\mathrm{Hz}$
f_y	$1000\mathrm{Hz}$
ϕ	0°

Table 1: Data Table

(a) Plot

Figure 2: Case 2

Parameter	Value
$V_1(t)$	5 V
$V_2(t)$	5 V
f_x	$1000\mathrm{Hz}$
f_y	$1000\mathrm{Hz}$
ϕ	90°

Table 2: Data Table

Figure 3: Case 3

Parameter	Value
$V_1(t)$	5 V
$V_2(t)$	5 V
f_x	$1000\mathrm{Hz}$
f_y	$1000\mathrm{Hz}$
$\dot{\phi}$	45°

Table 3: Data Table

(a) Plot (b) Parameters used

Figure 4: Case 4

Parameter	Value
$V_1(t)$	5 V
$V_2(t)$	5 V
f_x	$100\mathrm{Hz}$
f_y	$200\mathrm{Hz}$
$\dot{\phi}$	0°

Table 4: Data Table

Figure 5: Case 5

Parameter	Value
$V_1(t)$	5 V
$V_2(t)$	$5\mathrm{V}$
f_x	$100\mathrm{Hz}$
f_y	$100\mathrm{Hz}$
ϕ	180°

Table 5: Data Table

Figure 6: Case 6

Parameter	Value
$V_1(t)$	10 V
$V_2(t)$	5 V
f_x	$100\mathrm{Hz}$
f_y	$100\mathrm{Hz}$
ϕ	90°

Table 6: Data Table

4 Theory

4.1 Case 1:

$$V_1 = 5\sin(2\pi 1000t)V$$

 $V_2 = 5\sin(2\pi 1000t)V$
 $V_1 = V_2$

4.2 Case 2:

$$V_1 = \sqrt{2}\sin(2\pi 5000t)V$$

$$V_2 = \sqrt{2}\cos(2\pi 5000t)V$$

$$V_1^2 + V_2^2 = 25$$

4.3 Case 3:

$$V_1 = 5\sin(2\pi 1000t)V$$

$$V_2 = 5\sin(2\pi 1000t + \frac{\pi}{4})V$$

$$2V_1^2 + 2V_2^2 - \sqrt{2}V_1V_2 = 25$$

4.4 Case 4:

$$V_1 = 5\sin(2\pi 100t)V$$

$$V_2 = 5\sin(2\pi 200t)V$$

$$V_2 = 2V_1(\sqrt{1 - \frac{V_1^2}{25}})$$

4.5 Case 5:

$$V_1 = 5\sin(2\pi 100t)V$$

$$V_2 = 5\sin(2\pi 100t + \pi)V$$

$$V_1 = -V_2$$

4.6 Case 6:

$$V_1 = 10\sin(2\pi 100t)V$$

$$V_2 = 5\sin(2\pi 100t + \frac{\pi}{2})V$$

$$\frac{V_1^2}{100} + \frac{V_2^2}{25} = 1$$

5 Capturing One time event Using CRO

5.1 Procedure

- 1. Connect probe to signal generator and then turn it off.
- 2. Press Mode/Coupling and change sweep mode from Auto to Normal.
- 3. In the Trigger menu, press Mode until "Edge" is selected.
- 4. Now press Single mode. After that wait mode will initiate.
- 5. Next, Turn on the signal and get a captured one-time event.

5.2 Plots

(a) Plot

Figure 7: Plot for One time event