1/250

228

450

220

STUDENT REPORT

ANE

DETAILS

Rohit Sagar

Roll Number 🦯

22B124ME501-T

EXPERIMENT

Title

SIGNATURE FOR LCM

Description

Given two numbers a and b. Find the GCD and LCM of and b.

Input:

• Two positive integers a and b (1 <=a, b <=1000)

Output:

For GCD function, an integer representing the GCD of a 'and b

For LCM function, an integer representing the LCM of a and b

Sample Input:

12 18

Output:

36

Explanation:

The GCD of 12 and 18 is 6. The LCM of 12 and 18 is 36.

Source Code:

```
import math
a,b=list(map(int,input().split()))
def lcm(a,b):
    return (a*b)//math.gcd(a,b)
print(math.gcd(a,b))
print(lcm(a,b))
```

RESULT

5 / 5 Test Cases Passed | 100 %

1850. 50 M. 1807. 1813.