

三维点云处理技术 和深度学习在点云处理中的应用

课程概述

索传哲

课程简介及讲师信息

2 课程规划及内容

3 课程优势及特色

4 学习任务和实践项目

课程简介

- 三维点云在<u>工业界</u>和<u>学术界</u>都是热门研究 方向
- 其最接近物理世界刻画的数据表征能力在机器人、自动驾驶等领域有着非常重要的应用,例如物体识别、物体跟踪、建图定位等,同时三维信息处理带来的多种任务的挑战,也是学术研究的热点问题,特别是基于深度学习的点云研究。
- 本课程以自动驾驶案例来构建完整的点云基础知识体系,并分析深度学习在点云处理中的前沿发展,帮助不同背景基础的研究人员和开发者建立系统化的点云知识体系,全面掌握点云采集、分割、定位、建图、识别等典型任务方法,同时培养掌握技术前沿和把握未来趋势的能力。

▮讲师信息

- FutureX Lab无人驾驶研究负责人
- 东南大学硕士
- 曾工作于香港中文大学天石机器人研究所、杭州 飞步科技自动驾驶公司等,即将就职商汤科技自 动驾驶部门。在基于深度学习的三维点云处理方 面具有多年经验,包括面向自动驾驶的融合感知 三维点云SLAM,基于自主机器人系统控制与规 划等。曾主导香港机场物流自动驾驶拖车项目的 感知系统研发,所提的基于三维点云学习的动态 大场景识别算法取得了当前世界最好精度,在 ICCV、ICRA、IROS、IJCAI等国际顶级会议上 发表多篇论文。

课程简介

Welcome to 3D Point Cloud World

课程简介

Welcome to 3D Point Cloud World

从这个课中, 你将学到什么内容?

帮助学习者建立系统化的点云知识体系,了解三维点云算法在自动驾驶、机器人行业的实际应用案例

面向自动驾驶的激光 点云算法基础 深度学习在三维点云 处理中的进展

系统学习点云处理基础知识,掌握点云表征、滤波、聚类、分割、识别等几大核心问题;学 习认知点云、曲面、体素等不同表征方法,点云描述特征,点云采样方法和外点去除

熟练掌握点云空间索引结构和搜索方法,包括KD-Tree, OC-Tree等,并进行工程实践训练

真实公开数据集,分析应用不同点云聚类方法及优缺点,包括K均值、Mean shift、 DBSCAN、EM Clustering using GMM、HAC、Spectral clustering和Graph clustering

掌握基于点云特征的激光SLAM框架和原理,包括前端配准(ICP、PL-ICP、NDT等)、后端优化(高斯牛顿方法、LM方法)、回环检测等

学习基于特征工程的激光点云识别与跟踪算法,介绍多传感器融合原理和方法;结合理论深入探究自动驾驶点云应用实践,包括激光雷达采集、校准、跟踪、识别和建图等核心任务

全面了解深度学习在点云研究的热点问题,学习利用深度学习解决三维点云处理问题,包括点云分类、分割、注册配准、重识别、重定位、物体识别等方向

深入学习经典点云深度学习模型,利用工程实践复现经典模型深化理解,包括PointNet、PointNet++、DGCNN、PointCNN、PointPillars、PointRCNN、3D Point-Capsule Net、PointNetVLAD、PointNetLK、Deep Closest Point等

面向自动驾驶的激光点云算法基础

深度学习在三维点云处理中的进展

- 激光雷达
- 自动驾驶硬件平台
- 三维点云表征
- 三维点云数据处理
- 激光SLAM基础
- 激光点云跟踪基础

- 深度学习方法基础
- 深度学习点云分类
- 深度学习点云分割
- 深度学习点云注册
- 点云重识别与重定位
- 点云物体识别
- 激光与视觉融合感知
- 深度学习在激光SLAM中应用

第1章 基础知识 04/17-04/26

- 激光雷达原理
- 激光雷达安装、标定与同步
- 激光雷达数据采集
- 常用编程基础

第**2章 三维点云表征概述** 04/17-04/26

- 三维表征的获取方式及原理
- 三维信息的表征形式
- 点云的基本特征和描述

第3章 三维点云数据处理基础 04/27-05/

- 点云滤波方法
- 点云组织形式与最近邻搜索
- 点云聚类与分类方法
- 点云分割方法
- 点云拟合方法
- 激光雷达运动补偿方法
- 点云去地面原理及方法

第4章 点云SLAM方法基础 05/11-05/17

- 传统点云特征描述与点云匹配注册方法
- 局部地图构建方法
- 图优化框架基础与激光SLAM算法
- 激光重定位原理及方法

第5章 激光点云识别与跟踪方法基础 05/18-05/24

- 点云物体识别常用特征描述
- 传统点云物体识别方法
- 多传感器融合原理及方法
- 传统点云跟踪算法基础及应用

第**6章 深度学习方法基础** 05/25-05/31

- 深度学习基础
- 点云处理中常用的深度学习基础

第7章 基于深度学习的点云分类方法 05/25-05/31

- 点云分类基础 (请复习第三章)
- 经典点云分类网络
- 点云分类热点方向

第8章 基于深度学习的点云分割方法 06/01-06/07

- 点云分割基础 (请复习第三章)
- 经典点云分割网络
- 点云语义分割及其他热点方向

第**9章 基于深度学习的点云注册方法** 06/01-06/07

- 点云注册基础 (请复习第三章)
- 经典点云注册网络
- 点云注册网络当前进展

第10章 基于深度学习的点云重识别与重定位 06/08-06/14

- 点云重识别和重定位基础 (请复习第四章)
- 深度学习方法框架和经典网络
- 点云重定位网络当前进展

第11章 基于深度学习的点云物体识别 06/08-06/14

- 点云物体识别基础 (请复习第五章)
- 经典点云物体识别网络
- 点云物体识别热点方向

第12章 基于深度学习的激光与视觉融合物体识别 06/15-06/21

- 视觉物体识别基础
- 点云与图像的同步标定
- 点云与图像的融合物体识别方法

第13章 深度学习在激光SLAM中的应用 06/15-06/21

- 基于深度学习的点云注册、重定位及物体识别网络在传统激光SLAM中的应用
- 基于端到端深度学习方法的激光SLAM
- 课程总结

你将练习的实践项目

练习项目1

点云基础操作与PCL库编程实践

练习项目5

自动驾驶三维点云预处理、识别、跟踪算法实践

练习项目2

点云空间索引与搜索方法编程实践

练习项目6

深度学习分类、回归基础知识计算 与实践

练习项目3

点云经典聚类方法实现及真实数据 集应用实践

练习项目7

经典点云深度学习模型复现、训练 与推理实践

练习项目4

激光SLAM帧间匹配与后端优化计 算实践

练习项目8

开放型真实自动驾驶深度学习应用 任务实践

课程优势及特色

▶ 前期学员建议:

我的想法是,需要给出作业或者project先给 我们做,结合课程做,然后作业讲解的时候, 讲解—下代码,和主要的实践

要是一下子就讲解,我们也不一定听得懂,然 后,很多人会抱怨你们的课不好

嗯呢

那实践, 你希望是什么方式呢, 是独立设计网络, 还是怎么?

每次作业分难度低一点的,兼顾大多数人,也给出给出难度高一些的,让有些人挑战一下

嗯呢, 我也是这样子考虑的

独立设计网络吧,总是填空不太好玩

是啊, 多准备点实战的东西, 别整些花里胡哨 的理论介绍

是啊

前面的铺垫性的知识科普占比太多了

我们自己就提前做过综述性的学习了

对对,把前部分的内容压缩下吧,后边深度学习的东西多讲一些,还有实战,不是说要加课时么,可以增加一些具体的内容吧

老师可以把正在做的项目拿出来讲 一下吗

老师会讲的

公司的东西应该都是涉密的吧

虽然也希望老师讲《

课程优势及特色

> So:

学习任务和实践项目

面向自动驾驶的激光点云算法基础 **实践**:自动驾驶场景激光SLAM 深度学习在三维点云处理中的进展

实践: 自动驾驶场景三维物体识别

+基于深度学习的激光SLAM

Loop closure detection and Reconstruction Application

LPD-AE Experiments on Our own dataset

学习任务和实践项目

> What's More:

机器人操作系统

真实行业硬件平台

深度学习实践