Shortest Paths, and Dijkstra's Algorithm: Overview

- Graphs with lengths/weights/costs on edges.
- Shortest paths in edge-weighted graphs
- Dijksta's classic algorithm for computing single-source shortest paths.

Graphs with edge "length" (or "weight/cost")

An edge-weighted directed graph, G = (V, E, w), has a length/weight/cost function, $w : E \to \mathbb{N}$, which maps each edge $(u, v) \in E$ to a non-negative integer "length" (or "weight", or "cost"): $w(u, v) \in \mathbb{N}$.

We can **extend** the "length" function w to a function $w: V \times V \to \mathbb{N} \cup \{\infty\}$, by letting w(u, u) = 0, for all $u \in V$, and letting $w(u, v) = \infty$ for all $(u, v) \notin E$.

Consider a directed path:

$$X_0 e_1 X_1 e_2 \dots e_n X_n$$

from $u = x_0 \in V$ to $v = x_n \in V$, in graph G = (V, E, w). The **length** of this path is defined to be: $\sum_{i=1}^{n} w(x_{i-1}, x_i)$.

Graphs with edge "length" (or "weight/cost")

An edge-weighted directed graph, G = (V, E, w), has a length/weight/cost function, $w : E \to \mathbb{N}$, which maps each edge $(u, v) \in E$ to a non-negative integer "length" (or "weight", or "cost"): $w(u, v) \in \mathbb{N}$.

We can **extend** the "length" function w to a function $w: V \times V \to \mathbb{N} \cup \{\infty\}$, by letting w(u, u) = 0, for all $u \in V$, and letting $w(u, v) = \infty$ for all $(u, v) \notin E$.

Consider a directed path:

$$X_0 e_1 X_1 e_2 \dots e_n X_n$$

from $u = x_0 \in V$ to $v = x_n \in V$, in graph G = (V, E, w). The **length** of this path is defined to be: $\sum_{i=1}^{n} w(x_{i-1}, x_i)$.

Question: Given G and a pair of vertices $u, v \in V$, how do we compute the length of the **shortest path** from u to v?

Dijkstra's single-source shortest-path algorithm

Input: Edge-weighted graph, G = (V, E, w), with (*extended*) weight function $w : V \times V \to \mathbb{N}$, and a source vertex $s \in V$. **Output:** Function $L : V \to \mathbb{N} \cup \{\infty\}$, such that for all $v \in V$, L(v) is the length of the shortest path from s to v in G.

Algorithm:

```
Initialize: S := \{s\}; L(s) := 0;
Initialize: L(v) := w(s, v), for all v \in V - \{s\};
while (S \neq V) do
    u := \operatorname{arg\,min}_{z \in V - S} \{L(z)\}
    S := S \cup \{u\}
    for all v \in V - S such that (u, v) \in E do
        L(v) := \min\{L(v), L(u) + w(u, v)\}
    end for
end while
Output function L(\cdot).
```

Why does Dijkstra's algorithm work?

Claim: The While loop of Dijkstra's algorithm maintains the following **invariant** properties of the function *L* and the set *S*:

- 1. $\forall v \in S$, L(v) is the shortest path length from s to v in G.
- 2. $\forall v \in V S$, L(v) is the length of the shortest path from s to v which uses only vertices in $S \cup \{v\}$.
- 3. For all $u \in S$ and $v \in V S$, $L(u) \leq L(v)$.

Note that the three invariants hold after initialization, just prior to the first iteration of the while loop.

The claim follows once we prove (on board) that **if** the invariants hold just prior to a while loop iteration **then** they hold just after.

Since each iteration adds one vertex to S, it follows that the algorithm halts, at which point S = V, and thus, by invariant (1.), the function $L: V \to \mathbb{N} \cup \{\infty\}$ is the correct answer.

Remarks on Dijkstra's Algorithm

- If Dijkstra's algorithm is implemented naively, it has running time $O(n^2)$, where n = |V|.
- With clever data structures (e.g., so called "Fibbonacci Heaps") Dijkstra's algorithm can be implemented much more efficiently: essentially in time $O(m + n \log n)$ where, n = |V| and m = |E|.
 - This increased efficiency can make a **big difference** on huge "sparse" graphs, where m is much smaller than n^2 (e.g., when out-degree is a fixed constant, $m \in O(n)$).
- Dijkstra's algorithm can be augmented to also output a description of a shortest path from the source vertex s to every other vertex v.

We will not describe these extensions, and we will certainly not assume that you know them.

Graph Colouring

Graph Colouring

Suppose we have k distinct colours with which to colour the vertices of a graph. Let $[k] = \{1, \ldots, k\}$. For an undirected graph, G = (V, E), an admissible vertex k-colouring of G is a function $c : V \to [k]$, such that for all $u, v \in V$, if $\{u, v\} \in E$ then $c(u) \neq c(v)$.

For an integer $k \ge 1$, we say an undirected graph G = (V, E) is k-colourable if there exists a k-colouring of G.

The **chromatic number** of G, denoted $\chi(G)$, is the *smallest* positive integer k, such that G is k-colourable.

Some observations about Graph colouring

- Note that any graph G with n vertices in n-colourable.
- The *n*-Clique, K_n , i.e., the complete graph on *n* vertices, has chromatic number $\chi(K_n) = n$. All its vertices must get assigned different colours in any admissible colouring.
- The clique number, $\omega(G)$, of a graph G is the maximum positive integer $r \geq 1$, such that K_r is a subgraph of G.
- Note that for all graphs G, $\omega(G) \leq \chi(G)$: if G has an r-clique then it is not (r-1)-colorable.
- However, in general, $\omega(G) \neq \chi(G)$. For instance, The 5-cycle, C_5 , has $\omega(C_5) = 2 < \chi(C_5) = 3$.

More observations about colouring

- As already mentioned, any bipartite graph is 2-colourable.
 Indeed, that is an equivalent definition of being bipartite.
- More generally, a graph G is k-colourable precisely if it is k-partite, meaning its vertices can be partitioned into k disjoint sets such that all edges of the graph are between nodes in different parts.

0) 4 /

Algorithms/complexity of colouring graphs

To determine whether a n-vertex graph G = (V, E) is k-colourable by "brute force", we could try all possible colourings of n nodes with k colours.

Difficulty: There are k^n such k-colouring functions $c: V \to [k]$.

Question: Is there an efficient (polynomial time) algorithm for determining whether a given graph G is k-colourable?

Algorithms/complexity of colouring graphs

To determine whether a n-vertex graph G = (V, E) is k-colourable by "brute force", we could try all possible colourings of n nodes with k colours.

Difficulty: There are k^n such k-colouring functions $c: V \to [k]$.

Question: Is there an efficient (polynomial time) algorithm for determining whether a given graph *G* is *k*-colourable?

Answer: No, no generally efficient (polynomial time) algorithm is known, and even the problem of determining whether a given graph is 3-colourable is **NP-complete**. (Even approximating the chromatic number of a given graph is NP-hard.)

In practice, there are hueristic algorithms that do obtain good colourings for many classes of graphs.

Applications of Graph Colouring (many)

Final Exam Scheduling

- There are n courses, $\{1, \ldots, n\}$.
- Some courses have the same students registered for both, so their exams can't be scheduled at the same time.
- Let $G = (\{1, ..., n\}, E)$ be a graph such that $\{i, j\} \in E$ if and only if $i \neq j$ and courses i and j have a student in common.
- Question: What is the minimum number of exam time slots needed to schedule all n exams?
- **Answer:** This is precisely the chromatic number $\chi(G)$ of G.

Furthermore, a *k*-colouring of *G* yields an *admissible* schedule of exams into *k* time slots, allowing all students to attend all their exams, as long as different "colors" are scheduled in disjoint time slots.