Домашки ФКН

Арсений

2021 - 2022

Содержание	
Семинар первый	 2

Семинар первый

Задача 1 (Задача о сумасшедшей старушке). Задача на условные вероятности (про старушку, которая заходит в автобус и рандомно садится), по индукции доказывается, что последний садится на своё место с вероятностью $\frac{1}{2}$, предпоследний $-\frac{2}{3}$, а оба -frac16. Вообще, похоже, что события независимы (но это ещё надо доказать).

Утверждение 2 (Формула Байеса). Пусть D_1, D_2, \ldots, D_n — разбиение Ω, A — некоторое событие с вероятностью больше нуля, тогда

$$P(D_j|A) = \frac{P(A|D_j)P(D_j)}{\sum_{t=0}^{n} P(A|D_t)P(D_t)}.$$

Доказывается через подсчёт по определению (через формулы условной и полной вероятности). Работают и для счётного разбиения.

Определение 3 (Независимость). События события А и В независимы тогда и только тогда

$$P(A \cap B) = P(A) \cdot P(B).$$

события A_i попарно незывисимы, если дял любых разлинчых i, j события независимы.

Определение 4 (Совокупная независимость). Для любого подмножества A_i верно, что вероятность пересечения равна пересечению вероятностей.

Замечание 5. Считаем, что независимость == совокупная независимость.

Определение 6 (Случайные величины в дискретных вероятностных пространствах). Пусть (Ω, P) — дискретное вероятностное пространство. Случайной величиной (с.в.) на (Ω, P) называется отображение $\xi: \Omega - > \mathbb{R}$. С.в. — числовая характеристика случайного эксперимента.

Определение 7. Пусть с.в. ξ принимает значения $\{x_1, x_2, \dots, x_n\}$, обозначим

$$A_i = \{\omega : \xi(\omega) = x_1\} := P(\xi).$$