HOJAS TECNICAS PUERTOS GPIO

GPIO (General Purpose Input/Output)

Pin genérico en un chip, cuyo comportamiento puede ser programado por el usuario en tiempo de ejecución.

Características Principales de los GPIO

- Estados de salida: Push-Pull, Open Drain + resistencia de Pull o Down, analógico.
- Estados de entrada: flotante, Pull-Up, Pull-Down, analógica.
- Velocidad de lectura/escritura seleccionable.
- Bloqueo de GPIO.
- Selección de funciones alternativas.
- Tolerantes a 5v.
- Casi todos los GPIO de la serie STM32 pueden ser configurados como fuente de interrupción externa.

Estructura básica de un GPIO en un microcontrolador SMT32F4

Figura 1. Estructura básica de un GPIO

En la imagen anterior se muestra la estructura interna de un GPIO. En el recuadro Azul se muestran las posibles configuraciones de entrada, en el rojo las posibles configuraciones de salida y el recuadro verde muestra las configuraciones disponibles para las resistencias de Pull.

Configuración de entrada digital

Figura 2. Entrada digital, Pull-Down, Pull-Up, o Flotante

El buffer de salida es deshabilitado cuando el GPIO es configurado como entrada:

- La entrada Schmitt Trigger es activada.
- Las resistencias de Pull-Up o Pull-Down están disponibles para ser activadas.
- El dato presente en el puerto puede ser leído y es muestreado tan rápido como la velocidad del puerto sea configurada.

Configuración de salida digital

Figura 3. Salida digital

Cuando el GPIO es configurado como salida:

• El buffer de salida es habilitado.

- Modo Open-Drain:
 - Un "0" en el registro de salida activa el N-MOS
 - Un "1"En el registro de salida deja el puerto en alta impedancia (el P-MOS nunca se activa).
- Modo Push-Pull:
 - Un "0" en el registro de salida activa el N-MOS mientras
 - Un "1" en el registro de salida activa el P-MOS
- La entrada Schmitt Trigger es activada.
- Las resistencias de Pull-Up o Pull-Down están disponibles para ser activadas.
- Se puede leer el valor presente en el GPIO.
- Se puede leer el último valor escrito en el GPIO.
- El dato presente en el puerto puede ser leído y es muestreado tan rápido como la velocidad del puerto sea configurada.

Configuración de función alternativa

Figura 4. Configuración como función alternativa

Cuando el GPIO es configurado como una función alternativa:

- El buffer de salida puede ser configurado como Open-Drain o como Push-Pull.
- El buffer de salida es controlado por la señal proveniente del periférico seleccionado.
- La entrada Schmitt Trigger es activada.
- Las resistencias de Pull-Up o Pull-Down están disponibles para ser activadas.

- Se puede leer el valor presente en el GPIO.
- El dato presente en el puerto puede ser leído y es muestreado tan rápido como la velocidad del puerto sea configurada.

Configuración analógica

Figura 5. Configuración analógica con alta impedancia de entrada Cuando el GPIO es configurado como analógico:

• El buffer de salida es deshabilitado.

- La entrada Schmitt Trigger es desactivada, y se fuerza un valor de "0" a la salida.
- Las resistencias de Pull-Up o Pull-Down están deshabilitadas.
- Si se intenta leer el registro de entrada siempre se obtendrá un valor de "0".
- Además de leer valores analógicos algunos GPIO permiten escribir valores analógicos a la salida del pin.

Nota: En configuración analógica el GPIO no es tolerante a 5v, el máximo voltaje soportado es de 3.3v.

Selección de velocidad de un GPIO

La arquitectura interna de los GPIO de los microcontroladores de la serie STM32F4 permite configurar la velocidad de lectura o escritura, con la finalidad de tomar mayor control sobre el ruido eléctrico generado por dicho dispositivo.

Las configuraciones de velocidades se enlistan a continuación:

- Low Speed.
- Medium Speed.
- High Speed. Very High Speed.

Dependiendo de la aplicación de cada dispositivo debe ser seleccionada dicha velocidad.

	0x4004 0000 - 0x4007 FFFF	USB OTG HS				
	0x4002 9400 - 0x4003 FFFF	Reserved				
	0x4002 9000 - 0x4002 93FF					
	0x4002 8C00 - 0x4002 8FFF					
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC				
	0x4002 8400 - 0x4002 87FF	7				
	0x4002 8000 - 0x4002 83FF	7				
	0x4002 6800 - 0x4002 7FFF	Reserved				
	0x4002 6400 - 0x4002 67FF	DMA2				
	0x4002 6000 - 0x4002 63FF	DMA1				
	0x4002 5000 - 0x4002 5FFF	Reserved				
	0x4002 4000 - 0x4002 4FFF	BKPSRAM				
AUD4	0x4002 3C00 - 0x4002 3FFF	Flash interface register				
AHB1	0x4002 3800 - 0x4002 3BFF	RCC Reserved CRC				
	0x4002 3400 - 0x4002 37FF					
	0x4002 3000 - 0x4002 33FF					
	0x4002 2400 - 0x4002 2FFF	Reserved				
	0x4002 2000 - 0x4002 23FF	GPIOI				
	0x4002 1C00 - 0x4002 1FFF	GPIOH				
	0x4002 1800 - 0x4002 1BFF	GPIOG				
	0x4002 1400 - 0x4002 17FF	GPIOF				
	0x4002 1000 - 0x4002 13FF	GPIOE				
	0x4002 0C00 - 0x4002 0FFF	GPIOD				
	0x4002 0800 - 0x4002 0BFF	GPIOC GPIOB				
	0x4002 0400 - 0x4002 07FF					
	0x4002 0000 - 0x4002 03FF	GPIOA				
	0x4001 5800- 0x4001 FFFF	Reserved				

Figura 6. Tabla de periféricos pertenecientes al bus AHB1

Como se puede observar en la ilustración anterior, los puertos GPIO pertenecen al bus de datos AHB1, que alcanza una frecuencia superior a 84 Mhz, pero si el puerto está configurado con una función alternativa que se encuentre en el bus APB1, alcanzara una frecuencia de 48 Mhz.

Funciones alternativas de un GPIO

Cada GPIO tiene multiplexadas hasta 16 funciones alternativas como se muestra a continuación.

Figura 7. Multiplexor de salida de GPIO

En la siguiente tabla, se muestran las funciones alternativas disponibles para el puerto A del microcontrolador STM32F407VG, dichas funciones pueden ser módulos de: UART, I2C, SPI, USB, interrupciones, salidas de Timers, CAN entre otras. Al elegirr una función se debe tomar en cuenta que esta puede estar multiplexada diferentes GPIO con la finalidad de flexibilizar su u

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port		sys	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
Port A	PA0	-	TIM2_CH1_ ETR	TIM 5_CH1	TIM8_ETR	-	-	-	USART2_CTS	UART4_TX	-	-	ETH_MII_CRS	-	-	-	EVENTOUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_RTS	UART4_RX	-	-	ETH_MII _RX_CLK ETH_RMIIREF _CLK	-	-	-	EVENTOUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-	-	USART2_TX	-	-	-	ETH_MDIO	-	-	-	EVENTOUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-	-	USART2_RX	-	-	OTG_HS_ULPI_ D0	ETH_MII_COL	-	-	-	EVENTOUT
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK	-	-	-	-	OTG_HS_SOF	DCMI_ HSYNC	-	EVENTOUT
	PA5	-	TIM2_CH1_ ETR	-	TIM8_CH1N	-	SPI1_SCK	-	-	-	-	OTG_HS_ULPI_ CK	-	-	-	-	EVENTOUT
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	-	-	-	TIM13_CH1	-	-	-	DCMI_PIXCK	-	EVENTOUT
	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI	-	-	-	TIM14_CH1	-	ETH_MII_RX_DV ETH_RMII _CRS_DV	-	-	-	EVENTOUT
	PA8	MCO1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_CK	-	-	OTG_FS_SOF	-	-	-	-	EVENTOUT
	PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	-	-	USART1_TX	-	-	-	-	-	DCMI_D0	-	EVENTOUT
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_RX	-	-	OTG_FS_ID	-	-	DCMI_D1	-	EVENTOUT
	PA11	-	TIM1_CH4	-	-	•	-	-	USART1_CTS	-	CAN1_RX	OTG_FS_DM	-	-	-	-	EVENTOUT
	PA12	-	TIM1_ETR	-	-	-	-	-	USART1_RTS	-	CAN1_TX	OTG_FS_DP	-	-	-	-	EVENTOUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA15	JTDI	TIM 2_CH1 TIM 2_ETR	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	-	-	-	-	-	-	-	-	EVENTOUT

