Limite de Funções de Duas Variáveis

Priscila Bemm

UEM

22 de agosto de 2025

Objetivo

- Apresentar a importância do limite para o Cálculo;
- Relacionar o conceito de limite de funções de uma variável com limite de funções de duas variáveis;
- Mostrar a noção intuitiva e formal de limite de funções de duas variáveis.

Bibliografia

- Cálculo III e IV, Marcos Henrique Santos Martins, Rosimary Pereira. Florianópolis: UFSC/EAD/CED/CFM, 2010.
- Cálculo Volume 2, James Stewart; tradução EZ2 Translate. São Paulo: Cengage Learning, 2013.

A Importância do Limite no Cálculo

O conceito de limite é de grande importância para o Cálculo, pois é por meio dele que se define continuidade, derivada e integral.

É com o conceito de limite que podemos estimar o comportamento de uma função em torno de um ponto que ela não está definido.

Por exemplo, observe o limite fundamental

$$\lim_{\alpha \to 0} \frac{sen(\alpha)}{\alpha} = 1.$$

Isso significa que perto de zero, a função $\frac{sen(\alpha)}{\alpha}$ tem valor próximo de 1, ou seja, $sen(\alpha)=\alpha$.

Por isso, podemos dizer que:

para ângulos bem pequenos, podemos substituir o seno do ângulo pelo próprio ângulo, sempre que for necessário.

Noção Intuitiva de Limite

E para funções de duas ou mais variáveis, o que significa limite?

Noção Intuitiva de Limite

E para funções de duas ou mais variáveis, o que significa limite? Vamos analisar o comportamento de duas funções em torno da origem (0,0). Considere as funções

$$f(x,y) = \frac{sen(x^2 + y^2)}{x^2 + y^2}$$
 e $g(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$.

Noção Intuitiva de Limite

E para funções de duas ou mais variáveis, o que significa limite? Vamos analisar o comportamento de duas funções em torno da origem (0,0). Considere as funções

$$f(x,y) = \frac{sen(x^2 + y^2)}{x^2 + y^2}$$
 e $g(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$.

Note que nenhuma das duas funções está definida na origem (0,0). Mesmo assim, podemos estimar os valores de f(x,y) e g(x,y) em torno da origem, mostrados nas duas tabelas a seguir, com precisão de três casas decimais.

TABELA 1 Valores de f(x, y)

x y	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,455	0,759	0,829	0,841	0,829	0,759	0,455
-0,5	0,759	0,959	0,986	0,990	0,986	0,959	0,759
-0,2	0,829	0,986	0,999	1,000	0,999	0,986	0,829
0	0,841	0,990	1,000		1,000	0,990	0,841
0,2	0,829	0,986	0,999	1,000	0,999	0,986	0,829
0,5	0,759	0,959	0,986	0,990	0,986	0,959	0,759
1,0	0,455	0,759	0,829	0,841	0,829	0,759	0,455

TABELA 1 Valores de f(x, y)

x y	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,455	0,759	0,829	0,841	0,829	0,759	0,455
-0,5	0,759	0,959	0,986	0,990	0,986	0,959	0,759
-0,2	0,829	0,986	0,999	1,000	0,999	0,986	0,829
0	0,841	0,990	1,000		1,000	0,990	0,841
0,2	0,829	0,986	0,999	1,000	0,999	0,986	0,829
0,5	0,759	0,959	0,986	0,990	0,986	0,959	0,759
1,0	0,455	0,759	0,829	0,841	0,829	0,759	0,455

Parece que, quando (x, y) se aproxima de (0, 0), os valores da função

$$f(x,y) = \frac{sen(x^2 + y^2)}{x^2 + y^2}$$
 se aproximam de 1

TABELA 1 Valores de f(x, y)

x y	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,455	0,759	0,829	0,841	0,829	0,759	0,455
-0,5	0,759	0,959	0,986	0,990	0,986	0,959	0,759
-0,2	0,829	0,986	0,999	1,000	0,999	0,986	0,829
0	0,841	0,990	1,000		1,000	0,990	0,841
0,2	0,829	0,986	0,999	1,000	0,999	0,986	0,829
0,5	0,759	0,959	0,986	0,990	0,986	0,959	0,759
1,0	0,455	0,759	0,829	0,841	0,829	0,759	0,455

Quando (x,y) se aproxima de (0,0), os valores da função

$$f(x,y) = \frac{sen(x^2 + y^2)}{x^2 + y^2}$$

se aproximam de 1.

Isso tem sentido, pois quando x e y se aproxima de zero, temos que x^2+y^2 se aproxima a zero.

Portanto, podemos lembrar do limite fundamental

$$\lim_{\alpha \to 0} \frac{sen(\alpha)}{\alpha} = 1$$

e deduzir que

$$\frac{sen(x^2+y^2)}{x^2+y^2}$$

se aproxima de 1.

TABELA 2 Valores de g(x, y)

x y	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000
-0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
-0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0	-1,000	-1,000	-1,000		-1,000	-1,000	-1,000
0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000

TABELA 2 Valores de q(x, y)

x y	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000
-0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
-0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0	-1,000	-1,000	-1,000		-1,000	-1,000	-1,000
0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000

Parece que, quando (x,y) se aproxima de (0,0), os valores da função $g(x,y)=\frac{x^2-y^2}{x^2+y^2}$ NÃO se aproximam de número algum.

TABELA 2 Valores de g(x, y)

x	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000
-0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
-0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0	-1,000	-1,000	-1,000		-1,000	-1,000	-1,000
0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000

Observe que f vale 1 quando calculada nos pontos da forma (x,0), com $x \neq 0$ (veja coluna do meio).

TABELA 2 Valores de g(x, y)

x	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000
-0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
-0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0	-1,000	-1,000	-1,000		-1,000	-1,000	-1,000
0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000

Observe que f vale -1 quando calculada nos pontos da forma (0,y), com $y \neq 0$ (veja linha do meio).

TABELA 2 Valores de q(x, y)

x	-1,0	-0,5	-0,2	0	0,2	0,5	1,0
-1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000
-0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
-0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0	-1,000	-1,000	-1,000		-1,000	-1,000	-1,000
0,2	-0,923	-0,724	0,000	1,000	0,000	-0,724	-0,923
0,5	-0,600	0,000	0,724	1,000	0,724	0,000	-0,600
1,0	0,000	0,600	0,923	1,000	0,923	0,600	0,000

Isso significa que quando nos aproximamos de (0,0) de diferentes maneiras (primeiro pelo eixo x e depois pelo eixo y), temos que f se aproxima de valores diferentes.

Essa nossa observação baseada em evidências numéricas está correta, e podemos escrever

$$\lim_{(x,y)\to(0,0)}\frac{\sin(x^2+y^2)}{x^2+y^2}=1 \quad \text{ e } \quad \lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2} \text{ n\~ao existe}.$$

Em outras palavras, podemos fazer os valores de f(x,y) tão próximos de L quanto quisermos tornando o ponto (x,y) suficientemente próximo do ponto (a,b), mas não igual a (a,b). Uma definição mais precisa é a seguinte:

Definição Formal de Limite

Definição

Seja f uma função de duas variáveis cujo domínio D contém pontos arbitrariamente próximos de (a,b). Dizemos que o **limite de** f(x,y) **quando** (x,y) **tende a** (a,b) é L e escrevemos

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

se para todo número $\varepsilon>0$ houver um número correspondente de $\delta>0$ tal que, se $(x,y)\in D$ e $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$, então

$$|f(x,y) - L| < \varepsilon.$$

① Observe que |f(x,y)-L| corresponde à distância entre os números f(x,y) e L, enquanto que $\sqrt{(x-a)^2+(y-b)^2}$ é a distância entre o ponto (x,y) e o ponto (a,b).

- ① Observe que |f(x,y)-L| corresponde à distância entre os números f(x,y) e L, enquanto que $\sqrt{(x-a)^2+(y-b)^2}$ é a distância entre o ponto (x,y) e o ponto (a,b).
- ② Assim, a Definição 1 diz que a distância entre f(x,y) e L pode ser feita tão pequena quanto quisermos.

- ① Observe que |f(x,y)-L| corresponde à distância entre os números f(x,y) e L, enquanto que $\sqrt{(x-a)^2+(y-b)^2}$ é a distância entre o ponto (x,y) e o ponto (a,b).
- ② Assim, a Definição 1 diz que a distância entre f(x,y) e L pode ser feita tão pequena quanto quisermos.
- ullet Para isso, basta tomarmos a distância entre (x,y) a (a,b) suficientemente pequena (mas não nula).

- A definição de limite pode ser melhor entendida por meio de um diagrama de setas.
- Observe que para qualquer intervalo pequeno $(L-\epsilon,L+\epsilon)$ dado em volta de L, poderemos encontrar um disco aberto D_δ com o centro em (a,b) e raio $\delta>0$ tal que f mapeia todos os pontos em D_δ [exceto, possivelmente, o ponto (a,b)] no intervalo $(L-\epsilon,L+\epsilon)$.

FIGURA 2

Observação

Para as funções de uma única variável, quando fazemos x tender a a, só existem duas direções possíveis de aproximação: pela esquerda $x \to a^-$ ou pela direita $x \to a^+$. Lembremos que se

$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$

então $\lim_{x\to a} f(x)$ não existe.

Observação

Para as funções de duas variáveis essa situação não é tão simples porque existem infinitas maneiras de (x,y) se aproximar de (a,b) por uma quantidade infinita de direções.

Podemos fazer essa aproximação, (veja a Figura 3), bastando que (x,y) se mantenha no domínio de f.

FIGURA 3

A Definição 1 diz que a distância entre f(x,y) e L pode ser feita arbitrariamente pequena se tomarmos a distância de (x,y) para (a,b) suficientemente pequena (mas não nula).

A definição refere-se somente à distância entre (x,y) e (a,b), ela não se refere à direção da abordagem.

Portanto, se o limite existe, f(x,y) deve se aproximar do mesmo valor-limite, independentemente do modo como (x,y) se aproxima de (a,b).

Assim, se acharmos dois caminhos diferentes de aproximação ao longo dos quais f(x,y) tenha limites diferentes, segue então que

$$\lim_{(x,y)\to(a,b)} f(x,y)$$

não existe.

Conclusão

Se $f(x,y) \to L_1$ quando $(x,y) \to (a,b)$ ao longo de um caminho C_1 e $f(x,y) \to L_2$ quando $(x,y) \to (a,b)$ ao longo de um caminho C_2 , com $L_1 \neq L_2$, então

$$\lim_{(x,y)\to(a,b)} f(x,y)$$

não existe.

Exemplo

Mostre que

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

não existe.

Exemplo

Mostre que

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

não existe.

Seja
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
.

O grande desafio é encontrar dois caminhos distintos C_1 e C_2 adequados de modo que f(x,y) se aproxime de valores distintos quando (x,y) se aproxima de (0,0) ao longo dos caminhos C_1 e C_2 .

Vamos escolher C_1 como sendo o eixo x e C_2 o eixo y.

Os pontos de C_1 são da forma (x,0) e de C_2 são da forma (0,y).

Solução

Para os pontos de C_1 , temos

$$f(x,y) = f(x,0) = \frac{x^2 - 0^2}{x^2 + 0^2} = \frac{x^2}{x^2} = 1$$
, sempre que $x \neq 0$.

Para os pontos de C_2 , temos

$$f(x,y) = f(0,y) = \frac{0^2 - y^2}{0^2 + y^2} = \frac{-y^2}{y^2} = -1$$
, sempre que $y \neq 0$.

Logo, $f(x,y) \to 1$ quando $(x,y) \to (0,0)$ ao longo de um caminho C_1 e $f(x,y) \to -1$ quando $(x,y) \to (0,0)$ ao longo de um caminho C_2 .

Como f tem dois limites diferentes ao longo de duas retas diferentes, o limite não existe. Isso confirma a conjectura que fizemos com base na evidência numérica no início do vídeo anterior.

Exemplo

Se
$$f(x,y)=rac{xy}{x^2+y^2}$$
, será que $\lim_{(x,y) o(0,0)}f(x,y)$ existe?

Exemplo

Se
$$f(x,y)=rac{xy}{x^2+y^2}$$
, será que $\lim_{(x,y) o(0,0)}f(x,y)$ existe?

Solução

Vamos utilizar os mesmo caminhos do exemplo anterior e analisar o que obteremos.

Escolhendo C_1 como sendo o eixo x e C_2 o eixo y. Os pontos de C_1 são da forma (x,0) e de C_2 são da forma (0,y).

Solução

• Para os pontos de C_1 , temos

$$f(x,y) = f(x,0) = \frac{x \cdot 0}{x^2 + 0^2} = \frac{0}{x^2} = 0$$
, sempre que $x \neq 0$.

• Para os pontos de C_2 , temos

$$f(x,y) = f(0,y) = \frac{0 \cdot y}{0^2 + y^2} = \frac{0}{y^2} = 0$$
, sempre que $y \neq 0$.

Apesar de termos encontrado valores idênticos ao longo dos eixos, não podemos afirmar que o limite exista e seja 0.

Vamos agora nos aproximar de (0,0) ao longo de outro caminho C_3 ; por exemplo, a reta y = x.

• Para os pontos de C_3 , temos

$$f(x,y) = f(x,x) = \frac{x \cdot x}{x^2 + x^2} = \frac{x^2}{2x^2} = \frac{1}{2}$$
, sempre que $x \neq 0$.

Logo, $f(x,y) o rac{1}{2}$ quando (x,y) o (0,0) ao longo de um caminho C_3 e podemos afirmar que o limite dado não existe.

A cumeeira que ocorre acima da reta y=x corresponde ao fato de que $f(x,y)=\frac{1}{2}$ para todos os pontos (x,y) dessa reta, exceto na origem.

Exemplo 3

Se $f(x,y)=rac{xy^2}{x^2+y^4}$, será que $\lim_{(x,y) o(0,0)}f(x,y)$ existe?

Exemplo 3

Se
$$f(x,y) = \frac{xy^2}{x^2 + y^4}$$
, será que $\lim_{(x,y)\to(0,0)} f(x,y)$ existe?

Solução: Com a solução do Exemplo 2 em mente, vamos tentar economizar tempo deixando $(x,y) \to (0,0)$ ao longo de qualquer reta não vertical através da origem.

Tomemos y = mx, onde m é a inclinação da reta, e

$$f(x,y) = f(x,mx) = \frac{x(mx)^2}{x^2 + (mx)^4} = \frac{m^2x^3}{x^2 + m^4x^4} = \frac{m^2x}{1 + m^4x^2}.$$

Portanto

$$f(x,y) \to 0$$
 quando $(x,y) \to (0,0)$ ao longo de $y=mx$.

Logo, f tem o mesmo limite ao longo de qualquer reta não vertical que passe pela origem. Mas isso ainda não garante que o limite seja 0, pois, se tomarmos agora $(x,y) \to (0,0)$ ao longo da parábola $x=y^2$, teremos

$$f(x,y) = f(y^2, y) = \frac{y^2 \cdot y^2}{(y^2)^2 + y^4} = \frac{y^4}{2y^4} = \frac{1}{2}.$$

Portanto

$$f(x,y) o \frac{1}{2}$$
 quando $(x,y) o (0,0)$ ao longo de $x=y^2$.

Vamos agora olhar o caso em que o limite existe.

Assim como para a função de uma única variável, o cálculo do limite de funções com duas variáveis pode ser muito simplificado usando-se as propriedades dos limites.

As propriedades básica de limites vistas no Cálculo I podem ser estendidas para as funções de duas variáveis:

- O limite da soma é a soma (diferença) dos limites;
- O limite do produto é o produto dos limites;
- Teorema do Confronto

Em particular, os seguintes limites são verdadeiros:

$$\lim_{(x,y)\to(a,b)} x = a \qquad \lim_{(x,y)\to(a,b)} y = b \qquad \lim_{(x,y)\to(a,b)} c = c$$

Exemplo

Determine

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$$

caso ele exista.

Exemplo

Determine

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2 + y^2}$$

caso ele exista.

Solução:

Observação Como no Exemplo 3, podemos mostrar que o limite, ao longo de qualquer reta que passe pela origem, é 0, mas isso não prova que o limite seja 0.

Ao longo das parábolas $y=x^2$ e $x=y^2$, o limite também é 0.

Assim, há indícios de que o limite existe e é igual a 0.

Seja $\varepsilon > 0$. Queremos encontrar $\delta > 0$ tal que

se
$$0<\sqrt{x^2+y^2}<\delta$$
 então $\left|\frac{3x^2y}{x^2+y^2}-0\right|$

ou seja,

$$\text{se } 0<\sqrt{x^2+y^2}<\delta \quad \text{então} \quad \frac{3x^2|y|}{x^2+y^2}<\varepsilon.$$

Mas $x^2 \le x^2 + y^2$ uma vez que $y^2 \ge 0$, portanto $x^2/(x^2 + y^2) \le 1$ e, assim,

$$\frac{3x^2|y|}{x^2+y^2} \le 3|y| = 3\sqrt{y^2} \le 3\sqrt{x^2+y^2}.$$

Dessa forma, se escolhermos $\delta = \varepsilon/3$ e fizermos $0 < \sqrt{x^2 + y^2} < \delta$, teremos

$$\left| \frac{3x^2y}{x^2 + y^2} - 0 \right| \le 3\sqrt{x^2 + y^2} < 3\delta = 3\left(\frac{\varepsilon}{3}\right) = \varepsilon.$$

Outra Resolução: Teorema do Confronto

No slide anterior, nós mostramos que

$$\frac{3x^2|y|}{x^2 + y^2} \le 3|y|.$$

Disso segue que

$$0 \le \frac{3x^2|y|}{x^2 + y^2} \le 3|y|.$$

Aplicando limite temos

$$\lim_{(x,y)\to(0,0)} 0 \le \lim_{(x,y)\to(0,0)} \frac{3x^2|y|}{x^2+y^2} \le \lim_{(x,y)\to(0,0)} 3|y| = 3|0| = 0.$$

Pelo Teorema do Confronto,

$$\lim_{(x,y)\to(0,0)} \frac{3x^2|y|}{x^2+y^2} = 0.$$

Eu tentando entender limite de funções de várias variáveis

ifunny.ce

Exercícios: Calcule os limites a seguir:

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

$$\lim_{(x,y)\to(0,0)} \frac{3\sin(x^4+y^3)}{x^4+y^3}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2 + y^4}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

