# Machine Learning Perceptron

Edgar F. Roman-Rangel. edgar.roman@itam.mx

Digital Systems Department. Instituto Tecnológico Autónomo de México, ITAM.

May 7<sup>th</sup>, 2021.

## Outline

Perceptron

Gradient descent

## Linear regression

Regression model that approximates y from input data  $\mathbf{x}$ , using the set of weights  $\mathbf{w} = \{\omega_i\}$ ,

$$y = Xw$$
.

We could learn w using the normal equation (least squares):

$$\mathbf{w} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}.$$

# Logistic regression

Similarly, we could fit a logistic function to perform binary classification: true vs false (0 vs 1).

$$z = \mathbf{w}^T \mathbf{x},$$
$$y = \sigma(z),$$

where,

$$\sigma(z) = \frac{1}{1 + \exp^{-z}},$$

is the sigmoid function.



It actually, gives the probability of y = 1.

## Linear perceptron

Another formulation for regression problems.

$$y = \mathbf{w}^T \mathbf{x},$$

$$= \sum_{n=0}^{N} \omega_n x_n,$$

$$= \sum_{n=1}^{N} \omega_n x_n + \omega_0 x_0,$$

where,  $\omega_0 = b$  and  $x_0 = 1$ .



## Perceptron

Let's use the sigmoid activation function.

$$s = \mathbf{w}^T \mathbf{x},$$
$$a = \sigma(s).$$



#### Artificial neuron



#### Outline

Perceptron

Gradient descent

# Weights estimation

To estimate values for  $\{w_i\}$  we use an iterative minization approach termed *Gradient Descent* (GD).

- Most complex problems have no closed-form solution.
- Iterative approaches reach fairly good approximations.
- Risk of getting trapped in local minima.

# Gradient descent (GD)

We require a *loss function*. e.g.,  $E = (y - \hat{y})^2$ .

Remember: relation between derivative, tangent, and direction.



$$\frac{\partial E}{\partial \omega_i} = \lim_{h \to \infty} \frac{f(\omega_i + h) - f(\omega_i)}{h}.$$

And we move in the opposite direction of the derivative,

$$\omega_i = \omega_i - \eta \frac{\partial E}{\partial \omega_i}.$$



## GD example, I

Consider first only a linear perceptron:

$$\hat{y} = \mathbf{w}^T \mathbf{x} = \sum_{n=0}^N \omega_n x_n$$
,

$$E = 0.5(y - \hat{y})^2$$
.

Then,

$$\begin{split} \frac{\partial E}{\partial \omega_n} &= 0.5 \frac{\partial (y - \hat{y})^2}{\partial \omega_n}, \\ &= 0.5(2)(y - \hat{y}) \frac{\partial (y - \hat{y})}{\partial \omega_n}, \\ &= (y - \hat{y}) \left[ 0 - \frac{\partial \sum_{n=0}^{N} \omega_n x_n}{\partial \omega_n} \right], \\ &= -(y - \hat{y}) x_n. \end{split}$$

Therefore,

$$\omega_n = \omega_n + \eta(y - \hat{y})x_n$$

# GD example, II

Consider now a non-linar perceptron:

- $\hat{y} = \sigma(s),$
- $ightharpoonup s = \mathbf{w}^T \mathbf{x} = \sum_{n=0}^N \omega_n x_n$
- $E = 0.5(y \hat{y})^2$ .

The derivative of the sigmoid function is:  $\sigma'(s) = \sigma(s)(1 - \sigma(s))$ .

Then,

$$\frac{\partial E}{\partial \omega_n} = \frac{\partial (y - \hat{y})^2}{\partial \omega_n},$$
  
=  $-(y - \hat{y})\sigma(s)(1 - \sigma(s))x_n.$ 

Therefore,

$$\omega_n = \omega_n + \eta(y - \hat{y})\sigma(s)(1 - \sigma(s))x_n.$$

#### GD multivariado

We can use it for multiple parameters.

We always must move in the direction of the stepest descent, so first compute the all partial derivatives and then update.





# GD procedure

- 1. Random initialization.
- 2. Forward pass.
- 3. Error estimation.
- 4. Gradient computation.
- 5. Backward pass (weight adjustment).

Q&A

Thank you!

edgar.roman@itam.mx