ALGORITMOS Y ESTRUCTURAS DE DATOS Grafos

Guillermo Román Díez groman@fi.upm.es

Lars-Åke Fredlund Ifredlund@fi.upm.es

Universidad Politécnica de Madrid

Curso 2021/2022

Motivación

 Un grafo es una forma de representar las relaciones que existen entre pares de objetos

Grafo

" Un grafo es un conjunto de objetos, llamados vértices (vertices), y una colección de aristas (edges), donde cada arista conecta dos vértices"

- Podemos verlo como un conjunto de vértices $V = \{u, v, w, x ...\}$ y una colección de aristas E = [(u, v), (u, x), ...]
- Los grafos son de aplicación en mútiples dominios: mapas, transporte, instalaciones eléctricas, redes de computadores, conexiones en redes sociales, . . .

Tipos de Grafos

- Las aristas que conectan los vértices (o nodos) de un grafo pueden ser de dos tipos
- Aristas no dirigidas: Decimos que una arista es no dirigida cuando el par (u, v) no está ordenado
 - ▶ La arista te lleva de u a v y de v a u
 - ▶ El par (u, v) sería lo mismo que el par (v, u)
- Aristas dirigidas: Decimos que una arista es dirigida cuando el par (u, v) está ordenado
 - ▶ La arista únicamente te lleva de u a v, pero no de v a u
- Si todas las arista de un grafo son aristas no dirigidas, decimos que el grafo es no dirigido
- Si hay alguna arista dirigida, el grafo es un grafo dirigido

Grafo no dirigido

Grafo dirigido

Definiciones

- Dos vértices son adyacentes (adjacent) si hay una arista que los conecta
- El origen y destino son los vértices inicial y final de una arista dirigida
- Un nodo puede tener aristas salientes (outgoing edges) que tienen como origen el nodo y aristas entrantes (incoming edges), que tienen el nodo como destino
- El grado de un nodo es el número de aristas que entran y salen del nodo
 - ▶ Podemos distinguir entre el grado entrante y el grado saliente
- Un camino (path) es una sencuencia de vértices y aristas que empieza en y acaba en un vértice, de forma que cada arista del camino es adyacente con su vértice anterior y su vértice siguiente del camino
- Un ciclo (cycle) es un camino cuyo primer y último nodo son el mismo
- Un camino simple es un camino que no repite vértices (no contiene ciclos)
- Un **bosque** es un grafo sin ciclos

Los vértices E y F son adyacentes

E es el vértice origen y F el vértice destino

El grado F es 4, el grado entrante 3 y el grado saliente 1

[A, (A,B), B, (B,C), C, (C,G), G, (G,J), J] es un camino (simple)

Este grafo es un bosque ya que NO tiene ciclos

Modificando ligeramente el grafo hacemos un ciclo

Modificando ligeramente el grafo hacemos un ciclo

[G, (G,J), J, (J,K), K, (K,G), G] es un ciclo

Jerarquía de clases e interfaces en aedlib

Jerarquía de clases e interfaces en aedlib

Interfaz Graph<V,E>

```
public interface Graph < V , E > {
  public int size();
  public boolean isEmpty();
  public int numVertices();
  public int numEdges();
  public int degree(Vertex < V > v) throws IAE;
  public Iterable < Vertex < V >> vertices();
  public Iterable < Edge < E >> edges();
  public V set(Vertex < V > p, V o) throws IAE<sup>1</sup>;
  public E set(Edge < E > p, E o) throws IAE;
  public Vertex < V > insertVertex(V o);
  public V removeVertex(Vertex < V > v) throws IAE;
  public E removeEdge(Edge < E > e) throws IAE;
```

¹IllegalArgumentException

Interfaz Graph<V,E>

- Un grafo dispone de dos genéricos <V,E> para almacenar información en los vértices (V) y en las aristas (E)
- Los métodos size, isEmpty, numVertices y numEdges permiten consultar el número elementos del grafo
- degree devuelve el número de aristas incidentes en un vértice
- vertices y edges permiten recorrer los vértices y las aristas que componen el grafo mediante un Iterable
- insertVertex permite insertar un vértice. La inserción de las aristas se deja para las clases especializadas para grafos dirigidos y no dirigidos
- removeVertex borran un vértice y las aristas que llegan y salen de él
- removeEdge borra una arista, pero no los vértices que la formaban
- Todos los métodos que reciben un vértice o una arista como parámetro pueden lanzar IllegalArgumentException

Interfaz UndirectedGraph<V,E>

```
public interface UndirectedGraph < V, E > extends Graph < V, E > {
  public Iterable < Vertex < V >> end Vertices (Edge < E > e) throws
      IAE^2:
  public Edge < E > insertUndirectedEdge (Vertex < V > u,
                                           Vertex < V > v , E o)
          throws IAE;
  public Vertex < V > opposite(Vertex < V > v, Edge < E > e)
          throws IAE:
  public boolean areAdjacent(Vertex<V> u, Vertex<V> v)
          throws IAE:
  public Iterable < Edge < E >> edges (Vertex < V > v) throws IAE;
```

²IllegalArgumentException

Interfaz UndirectedGraph<V,E>

- UndirectedGraph<V,E> define el interfaz de un grafo no dirigido
- insertUndirectedEdge permite crear aristas conectando los nodos u y v y asociar a la arista un objeto
- Dado un nodo y una arista, el método opposite devuelve el nodo que está "al otro lado de la arista"
- El método areAdjacent permite saber si dos nodos están conectados mediante alguna arista (son adyacentes)
- edges (sobrecargado) recibe un vértice y devuelve todas las aristas incidentes en él
- Todos los métodos que reciben un vértice o una arista como parámetro pueden lanzar IllegalArgumentException

Minimum spanning tree

Considera un grafo no dirigido con "pesos" (weights) en las aristas:

Un "minimum spanning tree" para este grafo es un arbol que contenga todos los vertices y un subconjunto de aristas, y donde la suma de los pesos de las aristas es minimo.

Minimum spanning tree: ejemplo

• "Minimal spanning trees" no son necesariamente unicos

El algoritmo de Prim para construir un "spanning tree"

- $oldsymbol{0}$ G es un grafo con pesos, y T es el arbol que vamos a construir
- ② Elige cualquier vertice $v \in G$ como la raiz del arbol
- **3** Considera todos las aristas e_0, \ldots, e_n que conecta un vertices dentro el arbol con un vertice que todavia no esta incluido en el arbol. Elige la arista e_i con el peso *minimo*. Añade la artista e_i y sus vertices al arbol.
- Repite paso 3 hasta que todos los vertices estan dentro el arbol.

Elige un vertice arbitrario – estocolmo, y añadelo al arbol

Elige una arista con peso minimo que conecta estocolmo a un vertice todavia no dentro el arbol (estocolmo – zurich), y añade la arista y sus vertices al arbol

Elige una arista con peso minimo que conecta un vertice dentro el arbol (estocolmo,zurich) a un vertice todavia no dentro el arbol (zurich – amsterdam), y añade la arista y sus vertices al arbol

Elige una arista con peso minimo que conecta un vertice dentro el arbol (estocolmo, zurich, amsterdam) a un vertice todavia no dentro el arbol (amsterdam – munich), y añade la arista y sus vertices al arbol

Elige una arista con peso minimo que conecta un vertice dentro el arbol (estocolmo, zurich, amsterdam, munich) a un vertice todavia no dentro el arbol (munich - madrid), y añade la arista y sus vertices al arbol

Continuando elegiendo...

Continuando elegiendo...

Todos los vertices añadidos, el algoritmo ha terminado.

Como un arbol.

El algoritmo de Prim: propiedades

- El algoritmo es optimo logra construir un arbol donde la suma de los pesos de las aristas es minimo
- ¿Es eficiente?
- Vamos a consider como lograr una implementacion eficiente del algoritmo

El algoritmo de Prim para construir un "spanning tree"

- $oldsymbol{0}$ G es un grafo con pesos, y T es el arbol que vamos a construir
- 2 Elige cualquier vertice $v \in G$ como la raiz del arbol
- **3** Considera todos las aristas e_0, \ldots, e_n que conecta un vertices dentro el arbol con un vertice que todavia no esta incluido en el arbol. Elige la arista e_i con el peso *minimo*. Añade la artista e_i y sus vertices al arbol.
- Repite paso 3 hasta que todos los vertices estan dentro el arbol.

El algoritmo de Prim para construir un "spanning tree"

- lacksquare G es un grafo con pesos, y T es el arbol que vamos a construir
- 2 Elige cualquier vertice $v \in G$ como la raiz del arbol
- **3** Considera todos las aristas e_0, \ldots, e_n que conecta un vertices dentro el arbol con un vertice que todavia no esta incluido en el arbol. Elige la arista e_i con el peso *minimo*. Añade la artista e_i y sus vertices al arbol.
- Repite paso 3 hasta que todos los vertices estan dentro el arbol.

¿Como podemos elegir la arista con el peso minimo, empezando en un vertice dentro el arbol y terminando en un vertice todavia no en el arbol?

Una eficiente implemnetacion del algoritmo de Prim

¿Como podemos elegir la arista con el peso minimo, empezando en un vertice dentro el arbol y terminando en un vertice todavia no en el arbol?

Idea:

- Usamos una estructura de datos para guardar las aristas que empiezan en un vertice dentro el arbol, y terminando fuera.
- Ordenamos estas aristas segun sus pesos.
- Eligimos la arista con el peso minimo, y lo borramos. Despues, quizas, añadimos mas aristas a la estructura de datos (si terminan fuera del arbol).

Una eficiente implemnetacion del algoritmo de Prim

- Pregunta: que es una estructura de datos buena para:
 - tener aristas ordenadas
 - siempre borrando la arista con el peso minimo
 - insertando nuevas aristas

Una eficiente implemnetacion del algoritmo de Prim

- Pregunta: que es una estructura de datos buena para:
 - tener aristas ordenadas
 - siempre borrando la arista con el peso minimo
 - insertando nuevas aristas
- Una cola de prioridad: borrando el elemento minimo tiene el coste O(log n), y tambien es insertar una arista nueva.

Interfaz DirectedGraph<V,E>

```
public interface DirectedGraph < V, E > extends Graph < V, E > {
  public Vertex<V> startVertex(Edge<E> e) throws IAE;
  public Vertex < V > end Vertex (Edge < E > e) throws IAE;
  public Edge <E> insertDirectedEdge (Vertex <V> from,
                               Vertex < V > to, E o) throws IAE;
  public Iterable < Edge < E >> outgoing Edges (Vertex < V > v)
       throws IAE;
  public Iterable < Edge < E >> incoming Edges (Vertex < V > v)
       throws IAE;
  public int inDegree(Vertex < V > v) throws IAE;
  public int outDegree(Vertex < V > v) throws IAE;
```

Interfaz DirectedGraph<V,E>

- DirectedGraph<V,E> define el interfaz de un grafo dirigido
- insertDirectedEdge permite crear aristas dirigidas conectando los nodos from y to y asociar a la arista un objeto
- Dada una arista, los métodos startVertex y endVertex permiten obtener los nodos participantes en una arista
- Los métodos outgoingEdges y incomingEdges permiten obtener las aristas entrantes y salientes de un vértice
- inDegree, outDegree devuelven el número de entrantes o salientes de un vértice
- Todos los métodos que reciben un vértice o una arista como parámetro pueden lanzar IllegalArgumentException

Problemas para que se usa grafos

Hay muchas problemas conocidas para que se usa grafos en la informatica, por ejemplo: "travelling salesman":

 "Dado un mapa (un grafo) con ciudades, y las distancias entre ellos, y una ciudad inicial, devuelve la ruta mas corta que visita todas las ciudades y vuelve al ciudad inicial.

Ejemplo Travelling Salesman

• Rutas para visitar los capitales de España:

Ejemplo Travelling Salesman

• Una ruta posible:

Frecuentamente queremos encontrar un camino "optimo" entros dos puntos en un mapa (grafo) – por ejemplo en videojuegos

- El color indica la altitura
- Dimensiones (numero de puntos): 722x1288 = 929 936 puntos

Frecuentamente queremos encontrar un camino "optimo" entros dos puntos en un mapa (grafo) – por ejemplo en videojuegos

- El color indica la altitura
- Dimensiones (numero de puntos): 722x1288 = 929 936 puntos
- ¿Como podemos encontrar el camino "optimo, con menos variaciones en altitura y menos distancia?

• ¿Podemos enumerar todos los caminos?

- ¿Podemos enumerar todos los caminos?
- No. Son demasiados. Necesitamos un algoritmo mejor.

- ¿Podemos enumerar todos los caminos?
- No. Son demasiados. Necesitamos un algoritmo mejor.
- Podemos usar "Dijkstra's shortest path algorithm"

- ¿Podemos enumerar todos los caminos?
- No. Son demasiados. Necesitamos un algoritmo mejor.
- Podemos usar "Dijkstra's shortest path algorithm"
- El algoritmo encuentra el camino optimo desde un punto inicial (x, y) a **cualquier** otro punto del mapa

27 / 31