

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» $(ДВ\Phi Y)$

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования

ОТЧЕТ к лабораторной работе № 1

по дисциплине «Математическое и компьютерное моделирование (Mathematical and Computer Modeling)»

Направление подготовки **01.03.02** «Прикладная математика и информатика»

Выполнила студентка группы Б9119-01.03.02

Пахомова Д.Е. (ΦHO) (nodnucb)

Проверил д.ф.-м.н.

Пермяков М.С. (ΦUO) $(no\partial nucb)$

«<u>17</u>» _ января 20_{22} г.

Содержание

Введение	3
Задание 1: Подъём в гору	3
1.1 Формулировка задачи	3
1.2 Постановка физической модели	3
1.3 Постановка математической модели процесса	3
1.4 Численная реализация метода	4
1.5 Изменение мощности в зависимости от изменения исход-	
ных параметров	5
1.6 Вывод задачи	6
Задание 2: Разгон по прямой	6
2.1 Формулировка задачи	6
2.2 Постановка физической модели	7
2.3 Постановка математической модели процесса	7
2.4 Численная реализация метода	8
2.5 Изменение мощности в зависимости от изменения исход-	
ных параметров	8
2.6 Вывод задачи	10
Заключение	11
ПРИЛОЖЕНИЕ	12

Введение

В данной лабораторной работе требуется решить и оформить задачи для выбора транспортного средства для поставленных задач.

Задание 1: Подъём в гору

1.1 Формулировка задачи

Найти минимальную мощность автомобиля, которая позволит с определенной скоростью равномерно подниматься под уклоном. Силой трения пренебречь.

1.2 Постановка физической модели

Для решения задачи используем следующие параметры:

Macca тела: $m[\kappa \Gamma]$;

Скорость тела: V[м/c];

Нижняя точка A высоты: $h_1[M]$;

Верхняя точка В высоты: $h_2[M]$;

Угол наклона поверхности: α [градусы];

Длина: S(M);

Сила, под воздействием которой происходит движение: F[H];

Мощность: $N[B_T]$;

Гравитационная постоянная: $g \approx 9, 8 \left[\frac{\text{H} \cdot \text{M}^2}{\text{K} \Gamma^2} \right]$.

1.3 Постановка математической модели процесса

Для построения математической модели рассмотрим:

1. Проекцию силы F на ось координат, поскольку мы рассматриваем движение под наклоном:

$$F = m \cdot g \cdot \sin \alpha;$$

2. Формулу расчета синуса угла наклона по осям координат:

$$\sin \alpha = \frac{h_2 - h_1}{S};$$

3. Формулу расчета мощности:

$$N = F \cdot V;$$

4. Получим нашу математическую модель:

$$N_1 = m \cdot g \cdot V \cdot \frac{h_2 - h_1}{S};$$

5. Формулу перевода мощности из ватт в лошадиные силы:

$$N = \frac{N_1}{735}$$
, где N - мощность, рассчитанная по формуле (4).

1.4 Численная реализация метода

Используем следующие параметры для реализации:

Масса машины: m = 1тонна = 1000кг;

Скорость машины: V = const = 60км/ч = $\frac{50}{3}$ м/с;

Нижняя точка A высоты ул. Володарского: $h_1 = 69$ м;

Верхняя точка В высоты ул. Володарского: $h_2 = 100$ м;

Длина ул. Володарского: S = 400м.

1. Рассчитаем необходимую мощность по полученной математической модели:

$$N_1 = 1000 \text{ kg} \cdot 9, 8 \ \frac{\text{H} \cdot \text{m}^2}{\text{kg}^2} \cdot \frac{50}{3} \text{ m/c} \cdot \frac{100 - 69}{400} = \frac{37975}{3} \text{ Bt};$$

2. Переведем мощность из системы СИ в лошадиные силы

$$N = \frac{37975}{3 \cdot 735} \text{ л/c} \approx 17 \text{ л/c}.$$

1.5 Изменение мощности в зависимости от изменения исходных параметров

Изменим скорость и массу машины и проанализируем модель. Визуализируем изменения при помощи графиков:

Из приведенных графиков можем увидеть закономерность - при увеличении массы и скорости автомобиля увеличивается и необходимая минимальная мощность.

1.6 Вывод задачи

Таким образом, при заданных условиях необходимая минимальная мощность автомобиля равна 17 лошадиным силам.

Задание 2: Разгон по прямой

2.1 Формулировка задачи

Найти минимальную мощность автомобиля, которая позволит разогнать транспортное средство до определенной скорости при движении по прямой.

2.2 Постановка физической модели

Для решения задачи используем следующие параметры:

Macca тела: $m[\kappa \Gamma]$;

Начальная скорость: $V_0[\text{м/c}];$ Достигаемая скорость: V[м/c];

Время разгона: t[c];

Кинетическая энергия: $E_{\kappa}[Дж]$; Средняя мощность: $N_{c}p[B_{T}]$;

Мощность: N[Дж].

2.3 Постановка математической модели процесса

Для построения математической модели рассмотрим:

1. Формулу кинетической энергии:

$$E_k = \frac{m \cdot V}{2};$$

2. Формулу средней мощности, так как в данной задаче работа двигателя идет на приобретение автомобилем кинетической энергии:

$$N_{cp} = \frac{m \cdot V^2}{2t};$$

3. Формулу мощности:

$$N = 2 \cdot N_{cp};$$

4. Получим нашу математическую модель:

$$N_1 = 2 \cdot \frac{m \cdot V^2}{2t}$$

5. Формулу перевода мощности из ватт в лошадиные силы:

$$N = \frac{N_1}{735}$$
, где N_1 - мощность, рассчитаная по формуле (4).

2.4 Численная реализация метода

Используем следующие параметры для реализации:

Масса автомобиля: m=1тонна =1000кг; Начальная скорость: $V_0=0$ км/ч =0м/с; Достигаемая скорость: V=100км/ч =27,7м/с; Время разгона: t=5с.

1. Рассчитаем необходимую мощность по полученной математической модели:

$$N_1 = 2 \cdot \frac{1000 \mathrm{kg} \cdot (27,7)^2 \mathrm{m}^2 / \mathrm{c}^2}{10 \mathrm{c}} = 154358 \; \mathrm{Bp}$$

2. Рассчитаем мгновенную мощность в лошадиных силах

$$N = \frac{154358}{735} \text{ n/c} = 208 \text{ n/c}.$$

2.5 Изменение мощности в зависимости от изменения исходных параметров

Изменим скорость и массу машины и проанализируем модель. Визуализируем изменения при помощи графиков:

Из приведенных графиков можем увидеть закономерность - при увеличении массы и скорости автомобиля увеличивается и необходимая минимальная мощность.

2.6 Вывод задачи

Таким образом, при заданных условиях необходимая минимальная мощность автомобиля равна 208 лошадиным силам.

Заключение

В данной лабораторной работе мною были решены и оформлены в среде компьютерной верстки « T_EX » поставленные задачи. В результате было вычислено, что минимальная необходимая мощность для подъема по ул. Володарского равна $17~\mathrm{n/c}$, а для разгона по прямой минимальная необходимая мощность составляет $208~\mathrm{n/c}$

ПРИЛОЖЕНИЕ

1.

Рис. 1: Задание 1

2.

Рис. 2: Задание 2

3. Код для построения графиков к задаче 1:

```
import math
from matplotlib import pyplot as plt
def power(v):
return (1000*9.8*v*((100-69)/400))/735
powers = []
v = [i \text{ for } i \text{ in range}(0, 50)]
for i in range(len(v)):
powers.append(power(v[i]))
plt.plot(v, powers)
plt.show()
def power_2(m):
return (m*9.8*(50/3)*((100-69)/400))/735
powers_2 = []
m = [i for i in range(1000, 4000)]
for i in range(len(m)):
powers_2.append(power_2(m[i]))
plt.plot(m, powers_2)
plt.show()
```

4. Код для построения графиков к задаче 2:

```
import math
from matplotlib import pyplot as plt
def power(v):
return (2*(1000*pow(v,2))/10)/735
powers = []
v = [i for i in range(0, 50)]
for i in range(len(v)):
powers.append(power(v[i]))
plt.plot(v, powers)
plt.xlabel('Скорость, мс/')
plt.ylabel('Мощность, лс..')
plt.show()
def power_2(m):
return (2*(m*pow(27.7,2))/10)/735
powers_2 = []
m = [i for i in range(1000, 4000)]
for i in range(len(m)):
powers_2.append(power_2(m[i]))
plt.plot(m, powers_2)
plt.xlabel('Macca, kr')
plt.ylabel('Мощность, лс..')
plt.show()
```