Kinetic Theory

The kinetic hypothesis identifies heat energy with the random mechanical energy of molecules

 $\underline{http://physics.weber.edu/schroeder/software/MDApplet.html}$

The simplest thermal system is one with no molecular interaction at all — an ideal gas $\,$

$$E = \frac{1}{2}kT$$

$$U=\tfrac{3}{2}NkT$$

$$PV = NkT$$

$$k = R/N_A$$

The Maxwell-Boltzman distribution depicts the molecular speeds in an ideal gas

Entropy measures the distribution of internal energy in a system

E_1	E_2	Ω_1	Ω_2	Ω	
0	5	0	25	0	
1	4	1	16	16	
2	3	8	9	72	
3	2	27	4	108	
4	1	64	1	64	
5	0	125	0	0	

$$\Omega \propto E^{d/2}$$

$$S = k \ln \Omega$$

Fick's law of diffusion and Brownian motion also follows from the kinetic hypothesis

$$\frac{M}{t} = DA \frac{\Delta C}{\Delta x}$$

$$D=kT/6\pi\eta r$$

Statistical mechanics based on Newton's laws is not as successful as it should be

The root cause of this failure appears to be "frozen" degrees of freedom

These considerations paved the way to a new theory of quantum mechanics

