CSE 322: Computer Networks Sessional (NS3)

Using Minimum Spanning Tree in Dynamic Routing

1705066 Ataf Fazledin Ahamed

Motivation

To find the shortest path

- Link State Routing
 - Uses "Dijkstra's Algorithm"
- Distance Vector Routing
 - Uses "Bellman Ford Algorithm"

Motivation

Shortest Path Algorithms

- Dijkstra's 0(V+ElogV)
- Bellman Ford 0(V.E)

Floyd Warshall's - 0 (V^3)

Motivation

End Goal

Connect nodes to each other w/ minimal cost

Proposal

- Use Minimum Spanning Tree to build the routing table
- Edge weight: Packet Delivery Time/Hop Count

Algorithms

- Prim's: 0(V^2) or 0(ElogV)
- Kruskal: **0(ElogV)**

Network

- Nodes: 11

Network

- Nodes: 11

 $A \rightarrow L$

Network

- Nodes: 11

 $C \rightarrow \Gamma$

Network

- Nodes: 11

$$J \rightarrow L$$

Network

- Nodes: 11

 $F \rightarrow L$

Connect all paths

- A Minimum Spanning
 Tree is created.
- Minimal path, unless edge weight changes.

Experimental

Share the MST among other nodes

(for saving computation resources)

