Accident Severity Classification

Outline

- 1. Introduction
- 2. Data preparation
 - · 2.1 Load data
 - · 2.2 Sample the data
 - 2.3 Check for missing values (NaN)
 - · 2.4 Exploratory Visualization
 - · 2.5 Create a new dataframe
 - · 2.6 Split features and targets from the data
- 3. Training/Predicting Pipeline
- 4. Prediction and submission
 - 4.1 Logistic Regression
 - 4.2 Random Forest Classifier
 - · 4.3 Using the Full Estimator

1. Introduction

The UK government collects and publishes (usually on an annual basis) detailed information about traffic accidents across the country. This information includes, but is not limited to, geographical locations, weather conditions, type of vehicles, number of casualties and vehicle manoeuvres, making this a very interesting and comprehensive dataset for analysis and research.

The data come from the Open Data website of the UK government, where they have been published by the Department of Transport.

The dataset comprises of two csv files:

- Accident_Information.csv: every line in the file represents a unique traffic accident (identified by the Accident_Index column), featuring various properties related to the accident as columns. Date range: 2005-2017
- Vehicle_Information.csv: every line in the file represents the involvement of a unique vehicle in a unique traffic accident, featuring various vehicle and passenger properties as columns. Date range: 2004-2016

Our target is to predict the accident severity. The severity is devided to two catagories; severe and slight.

We had more than 2 million observations and close to 60 features. So, we sampled the data into about 600K observations and 23 features.

Two models were selected - Logistic Regression and the Random Forest Classifier.

In [2]:

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
from datetime import datetime as dt
import time
import matplotlib.pyplot as plt
from sklearn.model selection import train test split as split
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.linear model import LogisticRegression
#from pandas.tools.plotting import scatter matrix
import warnings
from sklearn.metrics import roc auc score
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import MinMaxScaler, FunctionTransformer, OneHotEncoder, KBinsD
iscretizer, MaxAbsScaler
from sklearn.feature_selection import VarianceThreshold
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
import seaborn as sns
sns.set()
import math
warnings.filterwarnings('ignore')
%matplotlib inline
import os
print(os.listdir(r"C:\Users\157088\Desktop\Coding and projects\Coursera\Coursera Capstone
\Data"))
```

['Accident Information.csv', 'Vehicle Information.csv']

2. Data Preparation

2.1 Load Data

In [3]:

```
#Load Data and encode to latin
acc = pd.read_csv(r'C:\Users\157088\Desktop\Coding and projects\Coursera\Coursera_Capstone
\Data\Accident_Information.csv', encoding = 'latin')
veh = pd.read_csv(r'C:\Users\157088\Desktop\Coding and projects\Coursera\Coursera_Capstone
\Data\Vehicle_Information.csv', encoding = 'latin')

# Merging two data sets into one with inner join by index
df = pd.merge(veh, acc, how = 'inner', on = 'Accident_Index')

#Check data sample
print(df.shape)
df.head()
```

(2058408, 57)

Out[3]:

	Accident_Index	Age_Band_of_Driver	Age_of_Vehicle	Driver_Home_Area_Type	Driver_IMD_Dec		
0	200501BS00002	36 - 45	3.0	Data missing or out of range	N:		
1	200501BS00003	26 - 35	5.0	Urban area	;		
2	200501BS00004	46 - 55	4.0	Urban area	•		
3	200501BS00005	46 - 55	10.0	Data missing or out of range	N		
4	200501BS00006	46 - 55	1.0	Urban area	2		
5 rows × 57 columns							
4					•		

2.2 Sample the data

by reducing rows with Slight Accident Severity

In [4]:

```
#Distribution of original data by targets

ax = sns.countplot(x = df.Accident_Severity ,palette="Set2")
sns.set(font_scale=1)
ax.set_xlabel(' ')
ax.set_ylabel(' ')
fig = plt.gcf()
fig.set_size_inches(8,4)
for p in ax.patches:
    ax.annotate('{:.2f}%'.format(100*p.get_height()/len(df.Accident_Severity)), (p.get_x() + 0.3, p.get_height()+10000))

plt.title('Distribution of 2 Million Targets',)
plt.xlabel('Accident Severity')
plt.ylabel('Frequency [%]')
plt.show()
```


In [5]:

```
# Creating weights that are opposite to the weights of target
weights = np.where(df['Accident_Severity'] == 'Slight', .2, .8)

#Sampling only 30% of the data with new weights
df = df.sample(frac=0.3, replace=True, weights=weights)
print(df.shape)
#df.Accident_Severity.value_counts(normalize=True)
```

(617522, 57)

In [6]:

```
#Distribution of sample data by targets
ax = sns.countplot(x = df.Accident_Severity ,palette="Set2")
sns.set(font_scale=1.5)
ax.set_xlabel(' ')
ax.set_ylabel(' ')
fig = plt.gcf()
fig.set_size_inches(8,4)
for p in ax.patches:
    ax.annotate('{:.2f}%'.format(100*p.get_height()/len(df.Accident_Severity)), (p.get_x() + 0.3, p.get_height()+10000))
plt.title('Distribution of 600K Targets',)
plt.xlabel('Accident Severity')
plt.ylabel('Frequency [%]')
plt.show()
```


2.3 Checking for missing values

some will be filled, some will get omitted

8/27/2020 3. Modelling - Final

In [7]:

```
#Missing values for each column
null_count = df.isnull().sum()
null_count[null_count>0]#.plot('bar', figsize=(30,10))
```

Out[7]:

Age_of_Vehicle	102484
Driver_IMD_Decile	206133
<pre>Engine_CapacityCC.</pre>	75462
make	34054
model	96183
Propulsion_Code	70376
Vehicle_Location.Restricted_Lane	281
2nd_Road_Class	263537
2nd_Road_Number	5824
<pre>Did_Police_Officer_Attend_Scene_of_Accident</pre>	49
Latitude	37
Location_Easting_OSGR	37
Location_Northing_OSGR	37
Longitude	37
LSOA_of_Accident_Location	44185
Pedestrian_Crossing-Human_Control	217
Pedestrian_Crossing-Physical_Facilities	378
Speed_limit	16
Time	43
InScotland	15
dtype: int64	

2.4 Exploratory Visualization

Age of Vehicle

In [8]:

Min: 1.0 Max: 111.0 Median: 7.0

In [9]:

```
df.head()
```

Out[9]:

_		Accident_Index	Age_Band_of_Driver	Age_of_Vehicle	Driver_Home_Area_Type	Driver_I
	733987	2010950007644	36 - 45	2.0	Data missing or out of range	
	759849	201001WW50033	26 - 35	6.0	Urban area	
	784511	2010070204645	36 - 45	14.0	Urban area	
	1885554	20161332I0887	56 - 65	2.0	Urban area	
	2032889	2016551601476	Data missing or out of range	4.0	Data missing or out of range	

5 rows × 57 columns

2.5 Create a new dataframe

with only the features we need and want, 25 features overall

In [10]:

8/27/2020 3. Modelling - Final

In [11]:

df2.head()

Out[11]:

	Accident_Index	1st_Road_Class	Day_of_Week	Junction_Detail	Light_Conditions	Nun
733987	2010950007644	Unclassified	Monday	Roundabout	Daylight	
759849	201001WW50033	А	Wednesday	T or staggered junction	Daylight	
784511	2010070204645	А	Thursday	T or staggered junction	Daylight	
1885554	2016133210887	А	Thursday	Roundabout	Daylight	
2032889	2016551601476	А	Tuesday	Not at junction or within 20 metres	Daylight	
5 rows ×	25 columns					
4						•

Correlation matrix

In [12]:

```
plt.figure(figsize=(9,5))
sns.heatmap(df2.corr(),linewidths=.5,cmap="YlGnBu")
plt.show()
```


Number of Vehicles Distribution

In [13]:

Min: 1 Max: 67 Median: 2.0

Number of casualties distribution

In [14]:

Min: 1 Max: 93 Median: 1.0

localhost:8888/lab 11/22

From multiclass to two-classes

In [15]:

```
df2['Accident_Severity'] = df2['Accident_Severity'].replace(['Serious', 'Fatal'], 'Serious
or Fatal')
df2 = pd.get_dummies(df2, columns=['Accident_Severity'])
df2 = df2.drop('Accident_Severity_Serious or Fatal', axis=1)
df2.Accident_Severity_Slight.value_counts(normalize=True)
```

Out[15]:

0.6008850.399115

Name: Accident_Severity_Slight, dtype: float64

In [16]:

```
acc_slight = df2.Accident_Severity_Slight == 1
acc_severe = df2.Accident_Severity_Slight == 0

sns.kdeplot(df2.Number_of_Casualties[acc_slight],shade=True,color='Blue', label='Slight').
set_xlim(0,20)
sns.kdeplot(df2.Number_of_Casualties[acc_severe],shade=True,color='Red', label='Severe').s
et_xlim(0,20)

plt.title('Number of Casualties dist by accident severity')
plt.show()

#print("we can see distribution between failed (under 2000), and successful (bigger the 2000)")
```

Number of Casualties dist by accident severity

localhost:8888/lab 12/22

In [17]:

```
plt.figure(figsize=(14,5))
sns.kdeplot(df2.Number_of_Vehicles[acc_slight],shade=True,color='Blue', label='Slight').se
t_xlim(0,20)
sns.kdeplot(df2.Number_of_Vehicles[acc_severe],shade=True,color='Red', label='Severe').set
_xlim(0,20)

plt.title('Number of vehicles dist by accident severity')
plt.show()

#print("we can see distribution between failed (under 2000), and successful (bigger the 2000)")
```


localhost:8888/lab 13/22

In [18]:

```
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(20,10))
plt.subplots adjust(hspace=1.4)
(df2.groupby(['Age Band of Driver'])
 .mean()
 ['Accident_Severity_Slight']
 .sort_index()
 .plot
 .bar(title = "Mean Age Band of Driver vs. Accident Severity",
      ax = axes[0,0])
(df2.groupby(['Speed_limit'])
 .mean()
 ['Accident Severity Slight']
 .sort index()
 .plot
 .bar(title = "Mean Speed limit vs. Accident Severity",
      ax = axes[0,1])
(df2.groupby(['Urban or Rural Area'])
 .mean()
 ['Accident_Severity_Slight']
 .sort index()
 .plot
 .bar(title = "Mean Urban or Rural Area vs. Accident Severity",
      ax = axes[1,0])
(df2.groupby(['Vehicle Manoeuvre'])
 .mean()
 ['Accident Severity Slight']
 .sort_values()
 .plot
 .bar(title = "Mean Vehicle Manoeuvre vs. Accident Severity",
      ax = axes[1,1])
plt.show()
```

localhost:8888/lab 14/22

3. Modelling - Final

2.6 Split features and targets from the data

In [19]:

(617522, 23) (617522,)

3. Training/Predicting Pipeline

Transform Speed Limit

In [20]:

Transform Time

In [21]:

```
def get Time(df):
    return pd.to_datetime(df['Time'], format='%H:%M').dt.time
def find time group(time object):
    if time object<pd.datetime.time(pd.datetime(2000,1,1,5,0)):</pre>
        return 'Night'
    elif time object<pd.datetime.time(pd.datetime(2000,1,1,7,0)):</pre>
        return 'Early Morning'
    elif time object<pd.datetime.time(pd.datetime(2000,1,1,10,0)):</pre>
        return 'Morning'
    elif time object<pd.datetime.time(pd.datetime(2000,1,1,15,0)):</pre>
        return 'Midday'
    elif time object<pd.datetime.time(pd.datetime(2000,1,1,18,0)):</pre>
        return 'Afternoon'
    elif time object<pd.datetime.time(pd.datetime(2000,1,1,20,0)):</pre>
        return 'Evening'
    elif time object<=pd.datetime.time(pd.datetime(2000,1,1,23,59)):</pre>
        return 'Late Evening'
    return np.nan
FullTransformerOnTime = Pipeline([("Select Time",
                                                         FunctionTransformer(func=get Time, v
alidate=False)),
                                                         FunctionTransformer(func=lambda x: x
                                    ("Group_Time",
.apply(find_time_group).to_frame(), validate=False)),
                                    ("Fill_Null",
                                                         SimpleImputer(missing_values=np.nan,
strategy='most frequent')),
                                    ("One Hot Encoder", OneHotEncoder(sparse = False, handle
_unknown='ignore'))
                                   1)
#FullTransformerOnTime.fit_transform(X[:5000], y[:5000])
```

Transform Age of Vehicle

localhost:8888/lab 16/22

In [22]:

Transform Make

In [23]:

Transform Engine Capacity

In [24]:

```
def get Engine Capacity(df):
    return df[['Engine_Capacity_.CC.']]
FullTransformerOnEngineCapacity = Pipeline([("Select Engine Capacity",
                                                                              FunctionTrans
former(func=get Engine Capacity, validate=False)),
                                             ("Fill Null",
                                                                              SimpleImputer
(missing values=np.nan, strategy='most frequent')),
                                             ("Car_Types_by_Engine_Capacity", KBinsDiscreti
zer(n_bins=7, encode='ordinal', strategy='quantile')),
                                             ("One Hot Encoder",
                                                                              OneHotEncoder
(sparse = False, handle unknown='ignore'))
                                            ])
#FullTransformerOnEngineCapacity.fit transform(X[:5000], y[:5000])
#FullTransformerOnEngineCapacity.named_steps["Car_Types_by_Engine_Capacity"].bin_edges_[0]
```

localhost:8888/lab 17/22

Data To OneHot Transformer On Columns

```
In [25]:
```

Feature Union

In [26]:

In [27]:

4. Prediction and submission

localhost:8888/lab 18/22

8/27/2020 3. Modelling - Final

In [28]:

```
X_train, X_test, y_train, y_test = split(X, y)
```

4.1 Logistic Regression

In [29]:

```
%%time

clf = LogisticRegression(class_weight = "balanced")

Full_Transformer.fit(X_train)
X_train_transformed = Full_Transformer.transform(X_train)
clf.fit(X_train_transformed, y_train)

X_test_transformed = Full_Transformer.transform(X_test)

y_pred = clf.predict(X_test_transformed)

print('Classification Report:',classification_report(y_test, y_pred))

print('Score:',roc_auc_score(y_test.values, clf.predict_proba(X_test_transformed)[:, 1]))
```

Classification Report:			precision	recall	†1-score	support
0	0.56	0.65	0.60	61646		
1	0.74	0.66	0.70	92735		
accuracy			0.65	154381		
macro avg	0.65	0.65	0.65	154381		
weighted avg	0.67	0.65	0.66	154381		

Score: 0.7094754539036983

Wall time: 4min 53s

4.2 Random Forest Classifier

localhost:8888/lab 19/22

In [30]:

```
%%time

clf = RandomForestClassifier(n_estimators=100, n_jobs=3)

Full_Transformer.fit(X_train)
X_train_transformed = Full_Transformer.transform(X_train)
clf.fit(X_train_transformed, y_train)

X_test_transformed = Full_Transformer.transform(X_test)

y_pred = clf.predict(X_test_transformed)

print('Classification Report:',classification_report(y_test, y_pred))

print('Score:',roc_auc_score(y_test.values, clf.predict_proba(X_test_transformed)[:, 1]))
```

Classification Report:			precision	recall	f1-score	support	
	0	0.79	0.67	0.73	61646		
	1	0.80	0.88	0.84	92735		
accu	racy			0.80	154381		
macro	avg	0.79	0.78	0.78	154381		
weighted	avg	0.80	0.80	0.79	154381		

Score: 0.8612115000344926

Wall time: 6min 24s

4.3 Using the Full Estimator

Logistic Regression

In [31]:

In [32]:

Classification Report:

	precision	recall	f1-score	support
0	0.56	0.65	0.60	61646
1	0.74	0.66	0.70	92735
accuracy			0.65	154381
macro avg	0.65	0.65	0.65	154381
weighted avg	0.67	0.65	0.66	154381

Score: 0.7094754539036983

Wall time: 5min 7s

Random Forest Classifier

In [33]:

In [34]:

Classification Report:

precision	recall	f1-score	support
0.79	0.67	0.73	61646
0.80	0.88	0.84	92735
		0.80	154381
0.79 0.80	0.78 0.80	0.78 0.79	154381 154381
	0.79 0.80 0.79	0.79	0.79 0.67 0.73 0.80 0.88 0.84 0.80 0.79 0.78

Score: 0.860662337048942

Wall time: 7min 6s

In []:

localhost:8888/lab 22/22