Moduli Spaces

D. Zack Garza

$March\ 15,\ 2020$

Contents

1	Thursday January 9th 1.1 Representability	1 2 6
2	Tuesday January 14th	8
3		14 14 16
Li	ist of Definitions	
	2.0.4 Definition – Subfunctors, Open/Closed Functors	2 3 9 9 11 11 12 16 16
Li	ist of Theorems	
	1.1 Theorem - Yoneda 1.3 Proposition 2.1 Proposition 3.1 Proposition	6

1 Thursday January 9th

Some references:

1.1 Representability

- Course Notes
- Hilbert schemes/functors of points: Notes by Stromme
 - Slightly more detailed: Nitsure, ... Hilbert schemes, Fundamentals of Algebraic Geometry
 - Mumford, Curves on Surfaces
- Harris-Harrison, Moduli of Curves (chatty and less rigorous)

1.1 Representability

Last time: Fix an S-scheme, i.e. a scheme over S.

Then there is a map

$$\operatorname{Sch}/S \longrightarrow \operatorname{Fun}(\operatorname{Sch}/S^{\operatorname{op}},\operatorname{Set})$$

 $x \mapsto h_x(T) = \operatorname{hom}_{\operatorname{Sch}/S}(T,x).$

where $T' \xrightarrow{f} T$ is given by

$$h_x(f): h_x(T) \longrightarrow h_x(T')$$

 $(T \mapsto x) \mapsto \text{triangles of the form}$

Theorem 1.1(Yoneda).

$$\hom_{\operatorname{Fun}}(h_x,F) = F(x).$$

Corollary 1.2.

$$hom_{Sch/S}(x, y) \cong hom_{Fun}(h_x, h_y).$$

Definition 1.2.1 (Moduli Functor). A **moduli functor** is a map

$$F: (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set}$$

$$F(x) = \text{ "Families of something over } x"$$

$$F(f) = \text{"Pullback"}.$$

Definition 1.2.2 (Moduli Space).

A moduli space for that "something" appearing above is an $M \in \text{Obj}(\mathrm{Sch}/S)$ such that $F \cong h_M$.

Now fix S = Spec (k).

 h_m is the functor of points over M.

Remark (1) $h_m(\operatorname{Spec}(k)) = M(\operatorname{Spec}(k)) \cong \text{"families over Spec } k" = F(\operatorname{Spec}(k)).$

Remark (2) $h_M(M) \cong F(M)$ are families over M, and $\mathrm{id}_M \in \mathrm{Mor}_{\mathrm{Sch}/S}(M,M) = \xi_{Univ}$ is the universal family.

Every family is uniquely the pullback of ξ_{Univ} . This makes it much like a classifying space.

For $T \in Sch/S$,

$$h_M \xrightarrow{\cong} F$$

$$f \in h_M(T) \xrightarrow{\cong} F(T) \ni \xi = F(f)(\xi_{\text{Univ}}).$$

where $T \xrightarrow{f} M$ and $f = h_M(f)(\mathrm{id}_M)$.

Remark (3) If M and M' both represent F then $M \cong M'$ up to unique isomorphism.

$$\xi_M$$
 $\xi_{M'}$
 $M \xrightarrow{f} M'$
 $M' \xrightarrow{g} M$
 $\xi_{M'}$ ξ_M

which shows that f, g must be mutually inverse by using universal properties.

Example 1.1.

A length 2 subscheme of \mathbb{A}^1_k (??) then

$$F(S) = \left\{ V(x^2 + bx + c) \right\} \subset \mathbb{A}_5'$$

where $b, c \in \mathcal{O}_s(s)$, which is functorially bijective with $\{b, c \in \mathcal{O}_s(s)\}$ and F(f) is pullback.

Then F is representable by $\mathbb{A}^2_k(b,c)$ and the universal object is given by

$$V(x^2 + bx + c) \subset \mathbb{A}^1(?) \times \mathbb{A}^2(b, c)$$

where $b, c \in k[b, c]$.

Moreover, F'(S) is the set of effective Cartier divisors in \mathbb{A}'_5 which are length 2 for every geometric fiber. F''(S) is the set of subschemes of \mathbb{A}'_5 which are length 2 on all geometric fibers. In both cases, F(f) is always given by pullback.

Problem: F'' is not a good moduli functor, as it is not representable. Consider Spec $k[\varepsilon]$.

We think of $T_p F'^{,"}$ as the tangent space at p.

If F is representable, then it is actually the Zariski tangent space.

Moreover, $T_pM=(\mathfrak{m}_p/\mathfrak{m}_p^2)^\vee$, and in particular this is a k-vector space. To see the scaling structure, take $\lambda\in k$.

$$\lambda: k[\varepsilon] \longrightarrow k[\varepsilon]$$

$$\varepsilon \mapsto \lambda \varepsilon$$

$$\lambda^*: \operatorname{Spec} (k[\varepsilon]) \longrightarrow \operatorname{Spec} (k[\varepsilon])$$

$$\lambda: M(\operatorname{Spec} (k[\varepsilon])) \longrightarrow M(\operatorname{Spec} (k[\varepsilon]))$$

$$\cup \qquad \cup$$

$$T_pM \longrightarrow T_pM.$$

Conclusion: If F is representable, for each $p \in F(\operatorname{Spec} k)$ there exists a unique point of T_pF that are invariant under scaling.

1. If $F, F', G \in \text{Fun}((\text{Sch}/S)^{\text{op}}, \text{Set})$, there exists a fiber product

where

$$(F \times_G F')(T) = F(T) \times_{G(T)} F'(T).$$

2. This works with the functor of points over a fiber product of schemes $X \times_T Y$ for $X, Y \longrightarrow T$, where

$$h_{X\times_T Y} = h_X \times_{h_t} h_Y.$$

- 3. If F, F', G are representable, then so is the fiber product $F \times_G F'$.
- 4. For any functor

$$F: (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set},$$

for any $T \xrightarrow{f} S$ there is an induced functor

$$F_T: (\operatorname{Sch}/T) \longrightarrow \operatorname{Set}$$

 $x \mapsto F(x)$

5. F is representable by M/S implies that F_T is representable by $M_T = M \times_S T/T$.

1.2 Projective Space

Consider $\mathbb{P}_{\mathbb{Z}}^n$, i.e. "rank 1 quotient of an n+1 dimensional free module".

Proposition 1.3.

 $\mathbb{P}^n_{\mathbb{Z}}$ represents the following functor

$$\begin{split} F: \mathrm{Sch}^{\mathrm{op}} &\longrightarrow \mathrm{Set} \\ F(S) &= \mathcal{O}_s^{n+1} &\longrightarrow L \longrightarrow 0/\sim. \end{split}$$

where \sim identifies diagrams of the following form:

and F(f) is given by pullbacks.

Remark \mathbb{P}^n_S represents the following functor:

$$F_S: (\mathrm{Sch}/S)^{\mathrm{op}} \longrightarrow \mathrm{Set}$$

 $T \mapsto F_S(T) = \left\{ \mathcal{O}_T^{n+1} \longrightarrow L \longrightarrow 0 \right\} / \sim.$

This gives us a cleaner way of gluing affine data into a scheme.

Proof (of Proposition).

Note: $\mathcal{O}^{n+1} \longrightarrow L \longrightarrow 0$ is the same as giving n+1 sections $s_1, \dots s_n$ of L, where surjectivity ensures that they are not the zero section.

$$F_i(S) = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0 \right\} / \sim,$$

with the additional condition that $s_i \neq 0$ at any point.

There is a natural transformation $F_i \longrightarrow F$ by forgetting the latter condition, and is in fact a subfunctor.

$$F \leq G$$
 is a subfunctor iff $F(s) \hookrightarrow G(s)$.

Claim: It is enough to show that each F_i and each F_{ij} are representable, since we have natural transformations:

and each $F_{ij} \longrightarrow F_i$ is an open embedding (on the level of their representing schemes).

Example.

For n = 1, we can glue along open subschemes

For n=2, we get overlaps of the following form:

This claim implies that we can glue together F_i to get a scheme M. We want to show that M represents F. F(s) (LHS) is equivalent to an open cover U_i of S and sections of $F_i(U_i)$ satisfying the gluing (RHS).

Going from LHS to RHS isn't difficult, since for $\mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0$, U_i is the locus where $s_i \neq 0$ and by surjectivity, this gives a cover of S.

RHS to LHS comes from gluing.

Proof (of Claim).

$$F_i(S) = \left\{ \mathcal{O}_S^{n+1} \longrightarrow L \cong \mathcal{O}_s \longrightarrow 0, s_i \neq 0 \right\},$$

but there are no conditions on the sections other than s_i .

So specifying $F_i(S)$ is equivalent to specifying n-1 functions $f_1 \cdots \widehat{f_i} \cdots f_n \in \mathcal{O}_S(s)$ with $f_k \neq 0$. We know this is representable by \mathbb{A}^n .

We also know F_{ij} is obviously the same set of sequences, where now $s_j \neq 0$ as well, so we need to specify $f_0 \cdots \widehat{f_i} \cdots f_j \cdots f_n$ with $f_j \neq 0$. This is representable by $\mathbb{A}^{n-1} \times \mathbb{G}_m$, i.e. Spec $k[x_1, \cdots, \widehat{x_i}, \cdots, x_n, x_j^{-1}]$. Moreover, $F_{ij} \hookrightarrow F_i$ is open.

What is the compatibility we are using to glue? For any subset $I \subset \{0, \dots, n\}$, we can define

$$F_I = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0, s_i \neq 0 \text{ for } i \in I \right\} = \underset{i \in I}{\times} F_i,$$

and $F_I \longrightarrow F_J$ when $I \supset J$.

2 Tuesday January 14th

Last time: Representability of functors, and specifically projective space $\mathbb{P}^n_{\mathbb{Z}}$ constructed via a functor of points, i.e.

$$h_{\mathbb{P}^n_{\mathbb{Z}}}: \mathbb{P}^n_{\mathbb{Z}} \mathrm{Sch}^{\mathrm{op}} \longrightarrow \mathrm{Set}$$

$$s \mapsto \mathbb{P}^n_{\mathbb{Z}}(s) = \left\{ \mathcal{O}^{n+1}_s \longrightarrow L \longrightarrow 0 \right\}.$$

for L a line bundle, up to isomorphisms of diagrams:

That is, line bundles with n+1 sections that globally generate it, up to isomorphism.

The point was that for $F_i \subset \mathbb{P}^n_{\mathbb{Z}}$ where

$$F_i(s) = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0 \mid s_i \text{ is invertible} \right\}$$

are representable and can be glued together, and projective space represents this functor.

Remark Because projective space represents this functor, there is a universal object:

and other functors are pullbacks of the universal one. (Moduli Space)

Exercise Show that $\mathbb{P}^n_{\mathbb{Z}}$ is proper over Spec \mathbb{Z} . Use the evaluative criterion, i.e. there is a unique lift

Definition 2.0.1 (Equalizer).

For a category C, we say a diagram $X \longrightarrow Y \rightrightarrows Z$ is an *equalizer* iff it is universal with respect to the property:

Note that X is the universal object here.

Example 2.1.

For sets,
$$X = \{y \mid f(y) = g(y)\}$$
 for $Y \xrightarrow{f,g} Z$.

Definition 2.0.2 (Coequalizer).

A **coequalizer** is the dual notion,

Example 2.2.

Take $C = \operatorname{Sch}/S$, X/S a scheme, and $X_{\alpha} \subset X$ an open cover. We can take two fiber products, $X_{\alpha\beta}, X_{\beta,\alpha}$:

These are canonically isomorphic.

In Sch/S, we have

$$\coprod_{\alpha\beta} X_{\alpha\beta} \xrightarrow{f_{\alpha\beta}} \coprod_{\alpha} X_{\alpha} \longrightarrow X$$

where

$$f_{\alpha\beta}: X_{\alpha\beta} \longrightarrow X_{\alpha}$$

 $g_{\alpha\beta}: X_{\alpha\beta} \longrightarrow X_{\beta};$

this is a coequalizer.

Conversely, we can glue schemes. Given $X_{\alpha} \longrightarrow X_{\alpha\beta}$ (schemes over open subschemes), we need to check triple intersections:

Then $\varphi_{\alpha\beta}: X_{\alpha\beta} \xrightarrow{\cong} X_{\beta\alpha}$ must satisfy the **cocycle condition**:

1.

$$\varphi_{\alpha\beta}^{-1}(X_{\beta\alpha} \cap X_{\beta\gamma}) = X_{\alpha\beta} \cap X_{\alpha\gamma},$$

noting that the intersection is exactly the fiber product $X_{\beta\alpha} \times_{X_{\beta}} X_{\beta\gamma}$.

2. The following diagram commutes:

Then there exists a scheme X/S such that $\coprod_{\alpha\beta} X_{\alpha\beta} \rightrightarrows \coprod_{\alpha\beta} X_{\alpha} \longrightarrow X$ is a coequalizer; this is the gluing.

Subfunctors satisfy a patching property because morphisms to schemes are locally determined. Thus representable functors (e.g. functors of points) have to be (Zariski) sheaves.

Definition 2.0.3 (Zariski Sheaf).

A functor $F: (\mathrm{Sch}/S)^{\mathrm{op}} \longrightarrow \mathrm{Set}$ is a Zariski sheaf iff for any scheme T/S and any open cover T_{α} , the following is an equalizer:

$$F(T) \longrightarrow \prod F(T_{\alpha}) \Longrightarrow \prod_{\alpha\beta} F(T_{\alpha\beta})$$

where the maps are given by restrictions.

Example 2.3.

Any representable functor is a Zariski sheaf precisely because the gluing is a coequalizer. Thus if you take the cover

$$\coprod_{\alpha\beta} T_{\alpha\beta} \longrightarrow \coprod_{\alpha} T_{\alpha} \longrightarrow T,$$

since giving a local map to X that agrees on intersections if enough to specify a map from $T \longrightarrow X$.

Thus any functor represented by a scheme automatically satisfies the sheaf axioms.

Definition 2.0.4 (Subfunctors, Open/Closed Functors).

Suppose we have a morphism $F' \longrightarrow F$ in the category Fun(Sch/S, Set).

- This is a **subfunctor** if $\iota(T)$ is injective for all T/S.
- ι is **open/closed/locally closed** iff for any scheme T/S and any section $\xi \in F(T)$ over T, then there is an open/closed/locally closed set $U \subset T$ such that for all maps of schemes $T' \xrightarrow{f} T$, we can take the pullback $f^*\xi$ and $f^*\xi \in F'(T')$ iff f factors through U.

I.e. we can test if pullbacks are contained in a subfunctors by checking factorization.

Note This is the same as asking if the subfunctor F', which maps to F (noting a section is the same as a map to the functor of points), and since $T \longrightarrow F$ and $F' \longrightarrow F$, we can form the fiber product $F' \times_F T$:

and $F' \times_F T \cong U$.

Note: this is almost tautological!

Thus $F' \longrightarrow F$ is open/closed/locally closed iff $F' \times_F T$ is representable and g is open/closed/locally closed.

I.e. base change is representable, and (?).

Exercise (Tautologous)

- 1. If $F' \longrightarrow F$ is open/closed/locally closed and F is representable, then F' is representable as an open/closed/locally closed subscheme
- 2. If F is representable, then open/etc subschemes yield open/etc subfunctors

Mantra: Treat functors as spaces. We have a definition of open, so now we'll define coverings.

Definition 2.0.5 (Open Covers).

A collection of open subfunctors $F_{\alpha} \subset F$ is an **open cover** iff for any T/S and any section $\xi \in F(T)$, i.e. $\xi : T \longrightarrow F$, the T_{α} in the following diagram are an open cover of T:

Example 2.4.

Given

$$F(s) = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0 \right\}$$

and $F_i(s)$ given by those where $s_i \neq 0$ everywhere, the $F_i \longrightarrow F$ are an open cover. Because the sections generate everything, taking the T_i yields an open cover.

Proposition 2.1.

A Zariski sheaf $F: (Sch/S)^{op} \longrightarrow Set$ with a representable open cover is representable.

Proof

Let $F_{\alpha} \subset F$ be an open cover, say each F_{α} is representable by x_{α} . Form the fiber product $F_{\alpha\beta} = F_{\alpha} \times_F F_{\beta}$. Then x_{β} yields a section (plus some openness condition?), so $F_{\alpha\beta} = x_{\alpha\beta}$

representable. Because $F_{\alpha} \subset F$, the $F_{\alpha\beta} \longrightarrow F_{\alpha}$ have the correct gluing maps.

This follows from Yoneda (schemes embed into functors), and we get maps $x_{\alpha\beta} \longrightarrow x_{\alpha}$ satisfying the gluing conditions. Call the gluing scheme x; we'll show that x represents F. First produce a map $x \longrightarrow F$ from the sheaf axioms. We have a map $\xi \in \prod_{\alpha} F(x_{\alpha})$, and because we can pullback, we get a unique element $\xi \in F(X)$ coming from the diagram

$$F(x) \longrightarrow \prod F(x_{\alpha}) \rightrightarrows \prod_{\alpha\beta} F(x_{\alpha\beta}).$$

Lemma 2.2.

If $E \longrightarrow F$ is a map of functors and E, F are zariski sheaves, where there are open covers $E_{\alpha} \longrightarrow E, F_{\alpha} \longrightarrow F$ with commutative diagrams

$$E \longrightarrow F$$

$$\uparrow \qquad \uparrow$$

$$E_{\alpha} \stackrel{\cong}{\longrightarrow} F_{\alpha}$$

(i.e. these are isomorphisms locally) then the map is an isomorphism.

With the following diagram, we're done by the lemma:

$$\begin{array}{ccc} X & \longrightarrow & F \\ \uparrow & & \uparrow \\ \downarrow & & \downarrow \\ X_{\alpha} & \stackrel{\cong}{\longrightarrow} & F_{\alpha} \end{array}$$

Example 2.5.

For S and E a locally free coherent \mathcal{O}_s module,

$$\mathbb{P}E(T) = \{f^*E \longrightarrow L \longrightarrow 0\} / \sim$$

is a generalization of projectivization, then S admits a cover U_i trivializing E.

Then the restriction $F_i \longrightarrow \mathbb{P}E$ were $F_i(T)$ is the above set if f factors through U_i and empty otherwise. On U_i , $E \cong \mathcal{O}_{U_i}^{n_i}$, so F_i is representable by $\mathbb{P}_{U_i}^{n_i-1}$ by the proposition. (Note that this is clearly a sheaf.)

Example 2.6.

For E locally free over S of rank n, take r < n and consider the functor $Gr(k, E)(T) = \{f^*E \longrightarrow Q \longrightarrow 0\} / \sim$ (a Grassmannian) where Q is locally free of rank k.

Exercise

- a. Show that this is representable
- b. For the Plucker embedding

$$Gr(k, E) \longrightarrow \mathbb{P} \wedge^k E$$
,

a section over T is given by $f^*E \longrightarrow Q \longrightarrow 0$ corresponding to

$$\wedge^k f^* E \longrightarrow \wedge^k Q \longrightarrow 0,$$

noting that the left-most term is $f^* \wedge^k E$.

Show that this is a closed subfunctor. (That it's a functor is clear, that it's closed is not.)

Take $S = \operatorname{Spec} k$, then E is a k-vector space V, then sections of the Grassmannian are quotients of $V \otimes \mathcal{O}$ that are free of rank n.

Take the subfunctor $G_w \subset Gr(k, V)$ where

$$G_w(T) = \{ \mathcal{O}_T \otimes V \longrightarrow Q \longrightarrow 0 \} \text{ with } Q \cong \mathcal{O}_t \otimes W \subset \mathcal{O}_t \otimes V.$$

If we have a splitting $V = W \oplus U$, then $G_W = \mathbb{A}(\text{hom}(U, W))$. If you show it's closed, it follows that it's proper by the exercise at the beginning.

Thursday: Define the Hilbert functor, show it's representable. The Hilbert scheme functor gives e.g. for \mathbb{P}^n of all flat families of subschemes.

3 Thursday January 16th

3.1 Subfunctors

A functor $F' \subset F : (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set}$ is **open** iff for all $T \xrightarrow{\xi} F$ where $T = h_T$ and $\xi \in F(T)$.

We can take fiber products:

So we can think of "inclusion in F" as being an *open condition*: for all T/S and $\xi \in F(T)$, there exists an open $U \subset T$ such that for all covers $f: T' \longrightarrow T$, we have

$$F(f)(\xi) = f^*(\xi) \in F'(T')$$

iff f factors through U.

Suppose $U \subset T$ in Sch/T, we then have

$$h_{U/T}(T') = \begin{cases} \emptyset & T' \longrightarrow T \text{ doesn't factor} \\ \{\text{pt}\} & \text{otherwise} \end{cases}$$

which follows because the literal statement is $h_{U/T}(T') = \text{hom}_T(T', U)$.

By the definition of the fiber product,

$$(F' \times_F T)(T') = \left\{ (a, b) \in F'(T) \times T(T) \mid \xi(b) = \iota(a) \text{ in } F(T) \right\},\,$$

where $F' \xrightarrow{\iota} F$ and $T \xrightarrow{\xi} F$.

So note that the RHS diagram here is exactly given by pullbacks, since we identify sections of F/T' as sections of F over T/T' (?).

We can thus identify

$$(F' \times_F T)(T') = h_{U/S}(T'),$$

and so for $U \subset T$ in Sch/S we have $h_{U/S} \subset h_{T/S}$ is the functor of maps that factor through U. We just identify $h_{U/S}(T') = hom_S(T', U)$ and $h_{T/S}(T') = hom_S(T', T)$.

Example 3.1.

 \mathbb{G}_m , \mathbb{G}_a . \mathbb{G}_a represents giving a global function, \mathbb{G}_m represents giving an invertible function.

where $T' = \{f \neq 0\}$ and $\mathcal{O}_T(T)$ are global functions.

3.2 Actual Geometry: Hilbert Schemes

The best moduli space!

Want to parameterize families of subschemes over a fixed object. Fix k a field, X/k a scheme; we'll parameterize subschemes of X.

Definition 3.0.1 (Hilbert Functor).

The hilbert functor is given by

$$\operatorname{Hilb}_{X/S}: (\operatorname{Sch}/S)^{op} \longrightarrow \operatorname{Set}$$

which sends T to closed subschemes $Z \subset X \times_S T \longrightarrow T$ which are flat over T.

Here flatness replaces the Cartier condition.

Definition 3.0.2 (Flatness).

For $X \xrightarrow{f} Y$ and \mathbb{F} a coherent sheaf on X, f is flat over Y iff for all $x \in X$ the stalk F_x is a flat $\mathcal{O}_{u,f(x)}$ -module.

Note that f is flat if \mathcal{O}_x is.

Flatness corresponds to varying continuously.

Warning: Unless otherwise stated, assume schemes are Noetherian.

Note that everything works out if we only path with finite covers.

Remark If X/k is projective, so $X \subset \mathbb{P}^n_k$, we have line bundles $\mathcal{O}_x(1) = \mathcal{O}(1)$. For any sheaf F over X, there is a hilbert polynomial $P_F(n) = \chi(F(n)) \in \mathbb{Z}[n]$. (i.e. we twist by $\mathcal{O}(1)$ n times.)

The cohomology of F isn't changed by the pushforward into \mathbb{P}_n since it's a closed embedding, i.e.

$$\chi(X,F) = \chi(\mathbb{P}^n, i_*F) = \sum_{i=1}^n (-1)^i \dim_k H^i(\mathbb{P}^n, i_*F(n)).$$

Fact (First) For $n \gg 0$, $\dim_k H^0 = \dim M_n$, the *n*th graded piece of M, which is a graded module over the homogeneous coordinate ring whose $i_*F = \tilde{M}$.

In general, for L ample of X and F coherent on X, we can define a **Hilbert polynomial**,

$$P_F(n) = \chi(F \otimes L^n).$$

This is an invariant of a polarized projective variety, and in particular subschemes. Over irreducible bases, flatness corresponds to this invariant being constant.

Proposition 3.1.

For $f: X \longrightarrow S$ projective, i.e. there is a factorization:

If S is reduced, irreducible, locally Noetherian, then f is flat iff $P_{\mathcal{O}_{x_s}}$ is constant for all $s \in S$. (To be more precise, look the base change to X_1 , and the pullback of the fiber? $\mathcal{O} \mid_{x_s}$?)

Note: not using the word "integral" here! S is flat iff the hilbert polynomial over the fibers are constant.

Example: The zero-dimensional subschemes $Z \in \mathbb{P}^n_k$, then P_Z is the length of Z, i.e. $\dim_k(\mathcal{O}_Z)$. And $P_Z(n) = \chi(\mathcal{O}_Z \otimes \mathcal{O}(n)) = \chi(\mathcal{O}_Z) = \dim_k H^0(Z; \mathcal{O}_Z) = \dim_k \mathcal{O}_Z(Z)$.

For two closed points in \mathbb{P}^2 , $P_Z = 2$.

Consider the affine chart $\mathbb{A}^2 \subset \mathbb{P}^2$, which is given by Spec $k[x,y]/(y,x^2) \cong k[x]/(x^2)$ and $P_Z = 2$. I.e. in flat families, it has to record how the tangent directions come together.

Example: Consider the flat family xy = 1 (flat because it's an open embedding) over k[x], here we have points running off to infinity.

Modified proposition: A sheaf F is flat iff P_{F_S} is constant.

Proof of proposition: Assume $S = \operatorname{Spec} A$ for A a local Noetherian domain.

Lemma: For F a coherent sheaf on X/A is flat, we can take the cohomology via global sections $H^0(X; F(n))$. This is an A-module, and is a free A-module for $n \gg 0$.

Proof of Lemma: Assumed X was projective, so just take $X = \mathbb{P}^n_A$ and let F be the pushforward. There is a correspondence sending F to its ring of homogeneous sections constructed by taking the sheaf associated to the graded module $\sum_{n\gg 0} H^0(\Pi^m_A; F(n))$ This is equal to $\bigoplus_{n\gg 0} H^0(\mathbb{P}^m_A; F(n))$ and

taking the associated sheaf $(Y \mapsto \tilde{Y})$, as per Hartshorne's notation) which is free, and thus F is free.

See tilde construction in Hartshorne, essentially amounts to localizing free tings.

Conversely, take an affine cover U_i of X. We can compute the cohomology using Čech cohomology, i.e. taking the Čech resolution. We can also assume $H^i(\mathbb{P}^m; F(n)) = 0$ for $n \gg 0$, and the Čech complex vanishes in high enough degree. But then there is an exact sequence

$$0 \longrightarrow H^0(\mathbb{P}^m; F(n)) \longrightarrow \mathcal{C}^0(\underline{U}; F(n)) \longrightarrow \cdots \longrightarrow C^m(\underline{U}; F(n)) \longrightarrow 0.$$

Assuming F is flat, and using the fact that flatness is a 2 out of 3 property, the images of these maps are all flat by induction from the right.

Finally, local Noetherian + finitely generated flat implies free.

By the lemma, we want to show $H^0(\mathbb{P}^m; F(n))$ is free for $n \gg 0$ iff the hilbert polynomials on the fibers P_{F_S} are all constant.

Claim 1: It suffices to show that for each point $s \in \text{Spec } A$, we have $H^0(X_s; F_S(n)) = H^0(X; F(n)) \otimes k(S)$ for k(S) the residue field, for $n \gg 0$.

Note that P_{F_s} measures the rank of the LHS.

 \implies : The dimension of RHS is constant, whereas the LHS equals $P_{F_S}(n)$.

⇐ : If the dimension of the RHS is constant, so the LHS is free.

For a f.g. module over a local ring, testing if localization at closed point and generic point have the same rank.

For M a finitely generated module over A, find $0 \longrightarrow A^n \longrightarrow M \longrightarrow Q$ is surjective after tensoring with Frac(A), and tensoring with k(S) for 4s\$a closed point, if dim $A^n = \dim M$ then Q = 0.

Proof of Claim 1: By localizing, we can assume s is a closed point. Since A is Noetherian, its ideal is f.g. and we have $A^m \longrightarrow A \longrightarrow k(S) \longrightarrow 0$. We can tensor with F (viewed as restricting to fiber) to obtain $F(n)^m \longrightarrow F(n) \longrightarrow F_S(n) \longrightarrow 0$. Because F is flat, this is still exact.

We can take $H^*(x, \cdot)$, and for $n \gg 0$ only H^0 survives. This is the same as tensoring with $H^0(x, F(n))$.

Definition: Given a polynomial $P \in \mathbb{Z}[n]$ for X/S projective, we define a subfunctor by picking only those with hilbert polynomial p fiberwise as $\operatorname{Hilb}_{X/S}^P \subset \operatorname{Hilb}_{X/S}$. This is given by $Z \subset X \times_S T$ with $P_Z = P$.

Theorem (Grothendieck): If S is Noetherian and X/S projective, then $\mathrm{Hilb}_{X/S}^P$ is representable by a projective S-scheme.

See cycle spaces in analytic geometry.