Block Cipher Modes of Operation

February 1, 2022

Homework 1 & Today

- Homework 1
 - will be available on Blackboard this week
 - · based on cryptography lectures, requires Python or Java programming
 - · due February 20th (Sunday) at 11:59pm
- Today:
 How to use block ciphers in practice?
 - multiple encryption
 - block cipher modes of operation: ECB, CBC, CFB, OFB, CTR

Feedback: https://forms.gle/JGbNCmCsU69iWaTv8

Reminder:

Encryption

Multiple Encryption

Motivation for Multiple Encryption

Why we do not like DES (anymore):

key size is only 56 bits $\rightarrow 2^{56}$ step brute-force attacks are feasible

Why we still like DES:

- relatively secure against cryptanalytic attacks
 (best attack: linear cryptanalysis in 2⁴³ steps)
- thoroughly studied and widely supported

Multiple encryption

- use the same encryption algorithm multiple times, each time with a different key
- · widely used with DES, but the principle can be applied to any block cipher

Double DES

$$C = E(K_2, E(K_1, P))$$

$$P \longrightarrow E$$

$$K_1 \qquad K_2 \qquad \downarrow$$

$$E \qquad K_2 \qquad \downarrow$$

$$E \qquad E \qquad E$$

$$P = D(K_1, D(K_2, C))$$

$$C \longrightarrow D \xrightarrow{K_2} \xrightarrow{K_1} \xrightarrow{K_1} \xrightarrow{K_2} \xrightarrow{K_1} \xrightarrow{K_2} \xrightarrow{K_2} \xrightarrow{K_2} \xrightarrow{K_3} \xrightarrow{K_4} \xrightarrow{K_4} \xrightarrow{K_5} \xrightarrow{K_5$$

key size = $2 \times 56 = 112$ bits

Meet-in-the-Middle Attack

Known-plaintext attack: suppose that attacker has a pair P, C

sort the resulting X^I values and store them in a table

for each K₂, try to find the resulting X' value in the table

Meet-in-the-Middle Attack Requirements

- Meet-in-the-middle attack: trading off time for storage
 - simple brute-force attack → 2¹¹² steps

possible values for K₁

- storing 2^{56} values (see previous slide) $\rightarrow \sim 2^{56}$ steps
- · generally: storing 2^{56-M} values → ~ 2^{56+M} steps

8

Triple DES (3DES)

Triple DES (3DES)

- Three keys $(3 \times 56 = 168$ -bit key)
 - more complex meet-in-the-middle attack → effective security is only 112 bits
 - 3DES can be viewed as a combination of two ciphers:
 one with a 56-bit key and one with a 112-bit key

encryption with 112-bit key (K_1 and K_2)

encryption with 56-bit key (K_3)

Triple DES (3DES) with Two Keys

Triple DES (3DES)

- Three keys $(3 \times 56 = 168$ -bit key)
 - more complex meet-in-the-middle attack → effective security is only 112 bits
 - 3DES can be viewed as a combination of two ciphers:
 one with a 56-bit key and one with a 112-bit key
- Two keys $(2 \times 56 = 112$ -bit key)
 - prevents the simple meet-in-the-middle attack presented earlier
 - however, there are other known-plaintext attacks
 - → according to NIST, this approach provides around 80 bits of security
- EDE (Encryption-Decryption-Encryption) configuration
 - if $K_1 = K_2$, then 3DES is equivalent to DES \rightarrow compatibility with older systems
- Unfortunately, 3DES is very slow and has a small block size

Block Cipher Modes of Operation

How to use block ciphers in practice?

Key Reuse

- We may have to use the same key to encrypt multiple blocks
 - multiple plaintexts (e.g., sending multiple messages over an insecure channel)

long plaintext → break up into fixed-size blocks

P = "The quick brown fox jumps" $P_1 = "The quick bro"$ $P_2 = "wn fox jumps"$

- Reminder: key reuse issue with stream ciphers (and one-time pad)
 - same key \rightarrow same pseudorandom sequence \rightarrow C₁ \oplus C₂ = P₁ \oplus P₂

Encrypting Multiple Blocks

Simplest approach: encrypt each block independently

- secure encryption is indistinguishable from random permutation to the attacker
 → if P₁ ≠ P₂, then C₁ and C₂ look like unrelated random blocks
- encryption is invertible

$$\rightarrow$$
 if $P_1 = P_2$, then $C_1 = C_2$

Repeating Blocks

Plaintext (bitmap)

Ciphertext

 In practice, many protocols / file formats have predefined headers and elements → repeating blocks

Block Cipher Modes of Operation

- Mode of operation:

 a technique for enhancing the effect of a cryptographic algorithm or adapting the algorithm for an application (e.g., applying a block cipher to a sequence of blocks)
- Five standard modes of operation (NIST Special Publication 800-38A)
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Output Feedback (OFB)
 - Cipher Feedback (CFB)
 - Counter Mode (CTR)
- These modes can be used with any block cipher (e.g., DES, AES)
- Criteria: security, efficiency, integrity (error recovery/propagation)

Electronic Code Book (ECB)

Electronic Code Book (ECB) Details

- Identical plaintext blocks result in identical ciphertext blocks
- Blocks can be encrypted or decrypted in parallel
 - we can start decryption with any block
- Bit error in the ciphertext
 - → corresponding plaintext block becomes random
- Attacker can rearrange or remove blocks from the ciphertext
 - additional integrity protection is necessary

Electronic Code Book (ECB) Reordering Blocks

Plaintext

Transfer one

million USD to

John Smith's

account from

John Doe's

account.

Ciphertext

dgyACJVKcERN1

z9iIcfkeBEYE2

sp1uELybLi3wm

fq6aSDNIa6wn6

5YRnb75iDRSFx

wFR0yVk1UrIx0

Modified ciphertext

dgyACJVKcERN1

z9iIcfkeBEYE2

5YRnb75iDRSFx

fq6aSDNIa6wn6

sp1uELybLi3wm

wFR0yVk1UrIx0

Modified plaintext

Transfer one

million USD to

John Doe's

account from

John Smith's

account.

Electronic Code Book (ECB) Summary

Advantages

 blocks can be encrypted or decrypted in parallel (i.e., multiple blocks can be encrypted or decrypted at the same time)

Disadvantages

 identical plaintext blocks result in identical ciphertext blocks

 attacker can rearrange or remove blocks from the ciphertext

Application: secure transmission of a single block

Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC) Repetitive Plaintext

CBC

Plaintext

ECB

Ciphertext

Cipher Block Chaining (CBC) Details

- Blocks can be decrypted in parallel, but cannot be encrypted in parallel
- Bit error in the ciphertext → corresponding plaintext block becomes random, bit error in the next plaintext block
 - attacker may flip some bits in a plaintext block (but preceding block becomes random)
- Initialization vector (IV) does not have to be secret, but it must be protected
 - → if the attacker can change some bits in the IV, then the corresponding bits in the first plaintext block change
- Rearranging or removing blocks from the ciphertext may still work

Cipher Block Chaining (CBC) Cutting and Pasting

Plaintext https://www.e xample.com/i ndex.html?pa ssword=secret Ciphertext fq6aSDNIa6wn6 dgyACJVKcERN1 z9iIcfkeBEYE2 sp1uELybLi3wm Modified ciphertext sp1uELybLi3wm fq6aSDNIa6wn6 dgyACJVKcERN1 z9iIcfkeBEYE2 dgyACJVKcERN1 sp1uELybLi3wm Modified plaintext https://www.e wFR0yVk1UrIx0 xample.com/i ssword=secret 5YRnb75iDRSFx ndex.htm?pa C_N K Decrypt Decrypt Decrypt

 C_{N-1}

Cipher Block Chaining (CBC) Summary

Advantages

- hides patterns in the plaintext
- blocks can be decrypted in parallel

Disadvantages

- blocks cannot be encrypted in parallel
- attacker might be able to rearrange or remove blocks from the ciphertext
- IV needs integrity protection
- attacker might be able to tamper with the bits of the plaintext

Application: general-purpose block-oriented transmission

Using Block Ciphers as Stream Ciphers

- Short plaintext (e.g., one bit)
 - if we use the previous two modes (ECB or CBC), we need to send an entire block (64 bits for DES and 128 for AES)
 - with stream ciphers, the ciphertext is only as long as the plaintext (e.g., one bit)
- Converting a block cipher into a stream cipher
 - Output Feedback (OFB)
 - Cipher Feedback (CFB)
 - Counter Mode (CTR)
- Stream ciphers always need integrity protection to detect tampering

Stream Ciphers Changing Bits

	Original plaintext: binary representation:	Y 01011001	E 01000101	S 01010011
	Pseudorandom sequence: (example)	11010010	00100000	11110101
	Original ciphertext:	10001011	01100101	10100110
	Modified ciphertext:	10011100	0110 1 111	1 101 01 0 0
	Pseudorandom sequence:	11010010	00100000	11110101
		01001110	01001111	00100001
	Modified plaintext:	N	0	!

Stream Ciphers Changing Bits

Plaintext

Transfer one million dollars to Mr. John Smith's account.

Ciphertext (example)

llDE8aAs7gzUovteKIy6G7yttaacP5pFcGPW3m54Nr4Hepdl7kAjr4kfs

Modified ciphertext

llDE8aAs7gzUovteKIy6G7yttaacP5pFcGPW3m54Nypj9xhJ7kAjr4kfs

Modified plaintext

Transfer one million dollars to Mr. John Doe's account.

Output Feedback (OFB)

Output Feedback (OFB) Details

- Blocks can be neither encrypted nor decrypted in parallel
 - however, the sequence can be pre-computed
- No "seeking" to arbitrary position in the sequence
- Bit error in the ciphertext → bit error in the corresponding plaintext block
 - attacker can flip bits in a plaintext by flipping the corresponding bits in the ciphertext (without introducing any unwanted changes)

Output Feedback (OFB) Summary

Advantages

- bit errors do not propagate
- pre-computation is possible

Disadvantages

- blocks cannot be encrypted or decrypted in parallel (unless the sequence is precomputed)
- attacker can tamper with the bits of the plaintext

Application: stream-oriented transmission over noisy channel

(Simplified) Cipher Feedback (CFB)

For comparison, CBC was: $C_i = E(K, (P_i \oplus C_{i-1})), P_i = D(K, C_i) \oplus C_{i-1}$

Cipher Feedback (CFB) Details

- Blocks can be decrypted in parallel, but cannot be encrypted in parallel
- Bit error in the ciphertext
 - → bit error in the corresponding plaintext block, next plaintext block becomes random
 - · attacker may flip some bits in a plaintext block (but the next block becomes random)
- Self-synchronizing: decryption requires only the value of the previous ciphertext block, but not its position in the ciphertext

Cipher Feedback (CFB) Summary

Advantages

- blocks can be decrypted in parallel
- self-synchronizing stream cipher

Disadvantages

- blocks cannot be encrypted in parallel
- attacker might be able to tamper with the bits of the plaintext
- attacker might be able to rearrange or remove blocks

Application: general-purpose stream-oriented transmission

Counter (CTR)

Counter (CTR) Details

- Counter value must be increased after each block
 - otherwise, we run into the key-reuse problem for stream ciphers
- Blocks can be both encrypted and decrypted in parallel
 - further, the sequence can be precomputed
- Bit error in the ciphertext → bit error in the corresponding plaintext block
 - attacker can flip bits in a plaintext by flipping the corresponding bits in the ciphertext (without introducing any unwanted changes)

Counter (CTR) Summary

Advantages

- blocks can be encrypted and decrypted in parallel
- bit errors do not propagate
- pre-computation is possible

Disadvantages

 attacker can tamper with the bits of the plaintext

Application: general-purpose transmission

Summary of Standard Block Cipher Modes

Block-oriented

- · Electronic Code Book (ECB): simplest, use only for transmitting a single block
- Cipher Block Chaining (CBC): commonly used
- Stream-oriented
 - Output Feedback (OFB): no random access
 - Cipher Feedback (CFB): self-synchronizing stream cipher
 - Counter (CTR): very efficient, very commonly used
- None of these modes provide full integrity protection
 - authenticated encryption modes: providing confidentiality and integrity protection simultaneously

Next lecture:

Public-Key Encryption