DATOS MASIVOS I

UNIDAD II MODELO DE MAPEO Y REDUCCIÓN

SISTEMA DE ALMACENAMIENTO DISTRIBUIDO

6 de Febrero de 2023

Cómputo con un Solo Procesador

Total de páginas web ≈ 20 millones Tamaño promedio (por página) ≈ 20 KB

Conteo básico: 20 millones * 20 *KB* = 400 *TB*

Ancho de banda (lectura): 30-35 MB/sec desde disco

Flujo de Datos: Ejemplo

Distribución de Almacenamiento

Acceso a los datos.

En cualquier momento

Desde cualquier lugar

Y solo a aquellas personas que queramos que accedan.

Gestiona volúmenes lógicos diseñados para procesar el escalado y el acceso a los datos en un entorno de alta disponibilidad.

Distribución de Almacenamiento

Se compone de datos almacenados en clústeres de nodos de almacenamiento distribuidos geográficamente.

El sistema de almacenamiento incluye funcionalidades que sincronizan y coordinan los datos en los nodos del clúster.

Distribución de Almacenamiento

Replicación: los datos se copian en varios nodos y se actualizan consistentemente cada vez que se modifican.

Escalado: Se puede aumentar o disminuir la capacidad de almacenamiento según sea necesario, agregando o quitando nodos en el clúster.

Distribución de Almacenamiento: Ventajas

Superficie de ataque descentralizada.

Menor riesgo de fallo de red: como los datos se almacenan en clústeres locales o regionales, lo cual aumenta la tolerancia a fallos.

Privacidad mejorada: los archivos de datos se dividen, se cifran y se almacenan en una red de servidores.

Distribución de Almacenamiento: Retos

Ancho de banda: distintos modelos de conectividad, lo cual puede sobrecargar las conexiones de internet ubicadas en el perímetro.

Seguridad: garantizar la seguridad de los datos repartidos por todo el mundo puede resultar difícil.

Cada rack tiene de 16 - 64 nodos

1 Gbps entre cualquier par de nodos en un rack

Cada rack tiene de 16 - 64 nodos

Imagen tomada de J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

China Telecomunicaciones Information Park

- 1 millón de m²
- El costo en 2013, fue \$3,000,000,000 USD

Nevada citadel

650 mega watts

Google tiene aproximadamente 30 data centers

Retos Generales del Cómputo en Clúster

Fallo en los nodos.

Cuellos de botella en la red.

La programación distribuida es difícil.

Contexto.

- Un nodo generalmente puede estar activo hasta por 3 años (1,000 días).
- 1,000 nodos en un clúster >> 1 fallo por día.
- 1 Millón de nodos en un clúster >> 1000 fallas por día.

Contexto.

- Un nodo puede estar activo hasta por 3 años (1,000 días).
- 1,000 nodos en un clúster >> 1 fallo por día.
- 1 Millón de nodos en un clúster >> 1000 fallas por día.

¿Cómo almacenar los datos persistentemente y mantenerlos disponibles si los nodos fallan?

Objetivos.

Almacenar los datos persistentemente y mantenerlos disponibles aún si los nodos fallan.

Lidiar con fallas de nodos en cómputo de larga duración.

Contexto.

- Transferir demasiado datos a través de la red puede ser muy lento.
- Con un ancho de banda de 1
 Gbps, tomaría aproximadamente
 1 día transferir 10 TB de datos de
 un nodo a otro.
- Cuellos de botella en la red

Retos: Tránsito Lento

Objetivo.

• Minimizar transferencia de datos a través de la red.

Contexto.

La programación distribuida requiere considerar sincronización, carga de trabajo, comunicación, etcétera. Retos: Programación Distribuida es difícil

Objetivo.

 Es necesario un modelo que oculte la complejidad posible de la programación distribuida.

Recapitulando

Fallo en los nodos.

Cuellos de botella en la red.

La programación distribuida es difícil.

Retos Generales del Cómputo en Clúster

SOLUCIÓN

MAP – REDUCE

Map – Reduce es un sistema de programación que permite atender los tres retos del cómputo en clúster.

- Almacenamiento redundante en múltiples nodos para garantizar persistencia y disponibilidad.
- Minimiza los problemas de cuello de botella.

Map – Reduce

Proporciona un modelo simple de programación

Y ocultando las cuestiones complejas inherentes.

Infraestructura de Almacenamiento Redundante

Sistema de archivo distribuido.

Proporciona un archivo global, persistencia y disponibilidad.

Ejemplos.

Google GFS.

Hadoop HDFS.

Infraestructura de Almacenamiento Redundante

Patrones de uso típico.

Archivos grandes (*Cientos* de *GB* o *TB*).

Los datos raramente son actualizados en su lugar.

Los datos se almacenan en fragmentos o chunks que se distribuyen entre los nodos.

Cada fragmento se replica en diferentes nodos.

Se garantiza la persistencia y la disponibilidad.

Los servidores de fragmentos actúan como servidores de cómputo.

Servidores de

Archivos se dividen en fragmentos fragmentos. contínuos (16 - 64 MB).

> Cada fragmento se replica (2 o 3 veces).

Sistema trata de mantener réplicas en diferentes racks.

Nodo maestro.

- Almacena metadatos.
- También se replica.

Biblioteca cliente.

Se comunica con nodo maestro para encontrar los servidores de fragmentos.

Conecta directamente hacia los servidores de fragmentos para acceder a los datos.

Hadoop: Componentes del Ecosistema

Imagen tomada de https://www.cloudera.com/products/open-source/apache-hadoop.html

Apache HIVE

Es un sistema de almacenamiento de datos de código abierto para consultar y analizar grandes conjuntos de datos almacenados en archivos Hadoop.

Infraestructura de Almacenamiento Redundante

Hadoop: Ventajas

Imagen tomada de https://www.sas.com/es_pe/insights/big-data/hadoop.html