

M/2 first modules generating M/2 first laser beams, wherein each of said M/2 first laser beams has a corresponding single wavelength;

(M/2)-1 dichroic first filters, wherein each of said (M/2)-1 dichroic first filters transmits a corresponding one of said M/2 first laser beams and reflects all other of said M/2 first laser beams;

M/2 second modules generating M/2 second laser beams, wherein each of said M/2 second laser beams has a corresponding single wavelength;

(M/2)-1 dichroic second filters, wherein each of said (M/2)-1 dichroic second filters transmits a corresponding one of said M/2 second laser beams and reflects all other of said M/2 second laser beams;

a polarizer coupling first and second M/2 laser beams to thereby produce M polarization coupled laser beams; and

a fiber coupling device collecting said M polarization coupled laser beams to produce a respective one of said N output beams.

8. The diode laser system as set forth in claim 1, wherein said each of said M-2 dichroic filters band pass filters said corresponding one of said M laser beams and reflects all other of said M laser beams.

9. A diode laser system, comprising:

N laser head assemblies (LHAs) generating N output beams, wherein each of said N LHAs includes:

M first modules generating M first laser beams, wherein each of said M first laser beams has a different single wavelength;

M-1 first dichroic filters defining a first optical waveguide for directing all of said M first laser beams into a first optical path, wherein each of said M-1 first dichroic filters transmits a corresponding one of said M first laser beams and reflects all other said M first laser beams;

a fiber coupling device disposed adjacent to said first optical path collecting said M first laser beams to produce a respective one of said N output beams;

N optical fibers receiving respective ones of said N output beams and generating N received output beams; and an optical assembly recollimating and focusing the N received output beams onto a single spot,

where N and M are both integers ≥ 2 .

10. The diode laser system as set forth in claim 9, wherein said optical assembly comprises:

N collimating lenses for recollimating said N output beams; and

a single transform lens for focusing said recollimated N output beams onto said single spot.

11. The diode laser system as set forth in claim 10, wherein said single spot corresponds to one end of a laser amplifying medium.

12. The diode laser system as set forth in claim 9, wherein each of said LHAs further comprises:

M second modules generating M second laser beams, wherein each of said M second laser beams has a different single wavelength;

M-1 second dichroic filters defining a second optical waveguide for directing all of said M second laser beams into a second optical path, wherein each of said M-1 second dichroic filters transmits a corresponding one of said M second laser beams and reflects all other said M second laser beams;

00000000000000000000000000000000

12

- a rotating element for rotating the polarizations of said M second laser beams; and
- 5 a polarizer disposed at the intersection of said first and second optical paths coupling said M first and M second laser beams into the second optical path to thereby produce 2M polarization coupled laser beams; wherein said fiber coupling device collects said 2M polarization coupled laser beams to produce a respective one of said N output beams.
- 10 13. The diode laser system as set forth in claim 9, wherein said fiber coupling device comprises a transform lens receiving and coupling said M first laser beams to one of said N optical fibers to thereby produce a respective one of said N output beams.
- 15 14. A diode laser system, comprising:
- means for generating N laser beams, wherein each of said N laser beams includes multiple wavelengths of light and wherein said generating means comprises:
- 20 M first means for generating M first laser beams, wherein each of said M first laser beams has a different single wavelength;
- 25 M-1 first filter means defining a first optical waveguide for directing all of said M first laser beams into a first optical path, wherein each of said M-1 first filter means transmits a corresponding one of said M first laser beams and reflects all other said M first laser beams;
- 30 fiber coupling means disposed adjacent to said first optical path for collecting said M first laser beams and for producing a respective one of said N output laser beams;
- N optical fiber means receiving respective one of said N output laser beams for generating N received output beams; and
- 35 output means for recollimating and for focusing said N received output beams on a single spot.
- where N and M are both integers ≥ 2 .
15. The diode laser system as set forth in claim 14, wherein said output means comprises:
- 40 N collimating lenses for recollimating said $N \times M$ laser beams; and
- 45 a single transform lens focusing said recollimated $N \times M$ laser beams onto said single spot.
16. The diode laser system as set forth in claim 14, wherein said single spot corresponds to one end of a solid state laser.
17. The diode laser system as set forth in claim 14, wherein said single spot corresponds to one end of a rare-earth doped optical fiber.
18. The diode laser system as set forth in claim 14, wherein said single spot corresponds to one end of a dye laser.
19. The diode laser system as set forth in claim 14, wherein said generating means further comprises:
- 55 second means for generating M second laser beams, wherein each of said M second laser beams has a different single wavelength;
- 60 M-1 second filter means defining a second optical waveguide for directing all of said M second laser beams into a second optical path, wherein each of said M-1 second filter means transmits a corresponding one of said M second laser beams and reflects all other said M second laser beams;
- 65 rotating means for rotating the polarizations of said M second laser beams; and
- polarization means disposed at the intersection of said first and second optical paths for coupling said M first

002333445566778899

13

and M second laser beams into said second optical path to thereby produce 2M polarization coupled laser beams.

wherein said fiber coupling means collects said 2M polarization coupled laser beams to produce a respective one of said N laser beams. 5

20. The diode laser system as set forth in claim 19, wherein said fiber coupling device comprises a transform lens for receiving and for coupling said 2M polarization coupled laser beams to one of said N optical fiber means to thereby produce a respective one of said N output beams. 10

21. A method for generating a high energy laser beam, comprising:

- (a) generating P collimated laser beams having an Mth wavelength; 15
- (b) repeating step (a) M times so as to produce M×P collimated laser beams having M different wavelengths;
- (c) coupling said M×P collimated laser beams into an optical path;

14

- (d) coupling said $M \times P$ collimated laser beams into an i th optical fiber to thereby produce a corresponding i th output laser beam, where $i=1$ to N ;
- 5 (e) repeating steps (a) through (d) N times to thereby generate N output laser beams;
- (f) recollimating said N output laser beams to produce N recollimated laser beams; and
- (g) focusing said N recollimated laser beams onto a single spot.
- 10 where M , N and P are integers ≥ 2 .
- 22 The method as set forth in claim 21, wherein step (c) comprises dichroically coupling said $M \times P$ collimated laser beams into said optical path.
- 15 23. The method as set forth in claim 21, wherein step (c) comprises dichroically and polarization coupling said $M \times P$ collimated laser beams into said optical path.
24. The method as set forth in claim 21, wherein step (c) comprises polarization coupling said $M \times P$ collimated laser beams into said optical path.

* * * * *

1 25. A diode laser system, comprising:

2 a laser head assembly generating an output beam, the laser head assembly including:
3 M modules which generate M laser beams, wherein each of said M laser beams has
4 a different single wavelength; and
5 M-2 dichroic filters, wherein each of said M-2 dichroic filters transmits a
6 corresponding one of said M laser beams and reflects all other of said M laser beams
7 into a predetermined optical path to produce said output beam,
8 where M is an integer ≥ 2 .

1 26. A diode laser system, comprising:

2 a laser head assembly which generates an output beam, the laser head assembly including:
3 M modules which generate M laser beams, wherein each of said M laser beams
4 occupies a different wavelength band;
5 M-R dichroic filters, wherein each of said M-R dichroic filters transmits at least a
6 respective one of said M laser beams occupying a given wavelength band and reflects
7 all other of said M laser beams not occupying the given wavelength band; and
8 an optical device which combines said M laser beams to thereby produce said output
9 beam,

10 wherein:

11 M and R are positive integers; and

12 M is an integer ≥ 2 .

13 27. The diode laser system as recited in claim 26, wherein the optical device comprises
14 means for collecting said M laser beams to thereby produce said output beam.

15 28. The diode laser system as recited in claim 26, wherein the optical device comprises a
16 fiber coupling device which collects said M laser beams to thereby produce said output beam.

17 29. The diode laser system as recited in claim 26, wherein the optical device comprises a
18 polarization combiner which combines first selected ones of said M laser beams with second selected
19 ones of said M laser beams to thereby produce said output beam.

20 30. The diode laser system as recited in claim 29, wherein the first selected ones of said M
21 laser beams are equal in number to the second selected ones of said M laser beams.

22 31. A laser head assembly which generates an output beam including M laser beams,
23 comprising:
24 M modules generating M laser beams, wherein each of said M laser beams has a different
25 single wavelength; and
26 M-2 dichroic filters, wherein each of said M-2 dichroic filters transmits a corresponding one
27 of said M laser beams and reflects all other of said M laser beams;
28 wherein M is an integer ≥ 2 .

Column 16

1 32. The laser head assembly as recited in claim 31, further comprising a fiber coupling device
2 collecting said M laser beams to produce an output beam;

1 33. A method for generating a high energy laser beam, comprising:

2 (a) generating P collimated laser beams having an Mth wavelength;

3 (b) repeating step (a) M times so as to produce MxP collimated laser beams having M
4 different wavelengths; and

5 (c) coupling said MxP collimated laser beams into an optical path to produce a high energy
6 laser beam,

7 wherein M and P are integers ≥ 2.

1 34. The method as recited in claim 33, wherein the step (c) comprises dichroically coupling
2 said MxP collimated laser beams into said optical path.

1 35. The method as recited in claim 33, wherein the step (c) comprises dichroically and
2 polarization coupling said MxP collimated laser beams into said optical path.

3 36. A diode laser system, comprising:

4 laser head assembly (LHA) which generates an output beam, the LHA including:

5 M modules generating M laser beams, wherein each of said M laser beams has a different
6 single wavelength;

7 M-1 dichroic filters defining an optical waveguide for directing all of said M laser beams into
8 the optical path, wherein each of said M-1 first dichroic filters transmits a corresponding one of said
9 M laser beams and reflects all other said M laser beams; and

10 a fiber coupling device disposed adjacent to the optical path for collecting said M laser beams
11 to thereby produce an output beam;

12 where M is an integer ≥ 2.

13 37. A diode laser system, comprising:

14 laser head assembly (LHA) which generates an output beam, the LHA including:

1 M first modules generating M first laser beams, wherein each of said M first laser beams has
2 a different single wavelength;

3 M-1 first dichroic filters defining a first optical waveguide for directing all of said M first
4 laser beams into a first optical path, wherein each of said M-1 first dichroic filters transmits a
5 corresponding one of said M first laser beams and reflects all other said M first laser beams;

6 M second modules generating M second laser beams, wherein each of said M second laser
7 beams has a different single wavelength;

8 M-1 second dichroic filters defining a second optical waveguide for directing all of said M
9 second laser beams into a second optical path, wherein each of said M-1 second dichroic filters
10 transmits a corresponding one of said M second laser beams and reflects all other said M second
11 laser beams;

12 a polarization combiner disposed at the intersection of said first and second optical paths

Column 17

15 which coupling said M first and M second laser beams into the second optical path to thereby
16 produce 2M polarization coupled laser beams; and

17 a fiber coupling device disposed adjacent to said first and second optical paths for coupling
18 said 2M polarization coupled laser beams to thereby produce the output beam,
19 where M is an integer ≥ 2 .

1 38. A laser head assembly (LHA) which generates an output beam, comprising:
2 M modules generating M laser beams, wherein each of said M laser beams has a different
3 single wavelength;

4 M-R dichroic filters defining a first optical waveguide for directing all of said M laser beams
5 into a first optical path, wherein each of said M-R dichroic filters transmits at least one of said M
6 laser beams;

7 S second modules generating S laser beams, wherein each of said S laser beams has a
8 different single wavelength;

9 S-T dichroic filters defining a second optical waveguide for directing all of said S laser
10 beams into a second optical path, wherein each of said S-T dichroic filters transmits at least one of
□ said S laser beams;

12 a polarization combiner disposed at the intersection of said first and second optical paths
13 which couple said M and said S laser beams into a common optical path to thereby produce M + S
14 polarization coupled laser beams; and

15 a fiber coupling device disposed adjacent to said first and second optical paths for coupling
16 said M + S polarization coupled laser beams to thereby produce the output beam,
17 wherein:

18 M, R, S and T are positive integers; and
19 at least one of M and S is ≥ 2 .

39. A diode laser system, comprising:

means for generating M laser beams, each of said M laser beams having a different
wavelength;

M-R filter means defining a first optical waveguide for directing all of said M first laser
beams into an optical path, wherein each of said M-R filter means transmits at least one of said M
first laser beams; and

fiber coupling means disposed adjacent to said optical path for collecting said M laser beams
to thereby produce an output laser beam,

wherein M and R are both positive integers, and
wherein M ≥ 2 .

40. A diode laser system, comprising:

first means for generating M first laser beams, wherein each of said M first laser beams has
a different single wavelength;

M-1 first filter means defining a first optical waveguide for directing all of said M first laser
beams into an optical path, wherein each of said M-1 filter means transmits a corresponding one of
said M first laser beams and reflects all other said M first laser beams;

Column 18

7 second means for generating M second laser beams, wherein each of said M second laser
8 beams has a different single wavelength;

9 M-1 second filter means defining a second optical waveguide for directing all of said M
10 second laser beams into a second optical path, wherein each of said M-1 second filter means
11 transmits a corresponding one of said M second laser beams and reflects all other said M second
12 laser beams;

13 polarization combining means disposed at the intersection of said first and second optical
14 paths for coupling said M first and said M second laser beams into said second optical path to
15 thereby produce 2M polarization coupled laser beams; and

16 fiber coupling means disposed adjacent to said second optical path for collecting said 2M
17 polarization coupled laser beams to thereby produce an output laser beam,

18 wherein M is a integer ≥ 2 .

1 41. A method for generating a high energy laser beam, comprising:

2 (a) generating P collimated laser beams having an Mth wavelength;

3 (b) repeating step (a) M times so as to produce $M \times P$ collimated laser beams having M
different wavelengths;

4 (c) coupling said $M \times P$ collimated laser beams into an optical path; and

5 (d) coupling said $M \times P$ collimated laser beams into an ith optical fiber to thereby produce a
corresponding ith output laser beam, where $i=1$ to N;

6 where M, N and P are positive integers and both M and P ≥ 2 .

JULY 14 - 2020 3000