T-61.5130 Machine Learning and Neural Networks (5 cr)

Lecture 9: Independent Component

Analysis

Prof. Juha Karhunen

https://mycourses.aalto.fi/

Introduction

- Independent Component Analysis (ICA) is an important unsupervised (blind) technique for non-Gaussian data.
- It has many applications and extensions.
- Our discussion is based on the tutorial article Aapo Hyvärinen and Erkki Oja, "Independent Component Analysis: Algorithms and Applications," Neural Networks, vol. 13, 2000, pp. 411-430.
- It is still a good introduction to basic ICA.
- This article is available also from the www page http://research.ics.aalto.fi/ica/.
- A comprehensive textbook: A. Hyvärinen, J. Karhunen, and E. Oja: Independent Component Analysis, J. Wiley, 2001.

- See the home page of this book:
 http//research.ics.aalto.fi/ica/book/.
- In Du's and Swamy's book, independent component analysis is discussed in Chapter 14.
- Later on in this chapter some extensions of ICA are presented but mostly only literally with no mathematics.
- An important technique related with ICA is nonnegative matrix factorization (NMF).
- It is discussed briefly Chapter 13 in Du's and Swamy's book.
- This is a long lecture with a lot of stuff and new matters.

Motivation for independent component analysis (ICA)

- Let us start with an example: three people are speaking simultaneously in a room that has three microphones.
- Denote the microphone signals by $x_1(t), x_2(t)$, and $x_3(t)$.
- Each is a weighted sum of the speech signals which we denote by $s_1(t), s_2(t)$, and $s_3(t)$:

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) + a_{13}s_3(t)$$

$$x_2(t) = a_{21}s_1(t) + a_{22}s_2(t) + a_{23}s_3(t)$$

$$x_3(t) = a_{31}s_1(t) + a_{32}s_2(t) + a_{33}s_3(t)$$
(1)

• Cocktail-party problem: estimate the original speech signals $s_i(t)$ (Figure 1) using only the recorded signals in Figure 2.

Figure 1: The original speech waveforms.

Figure 2: The observed microphone signals.

- As the weights a_{ij} are different, we may assume that the matrix $\mathbf{A} = (a_{ij})$ (although unknown) is invertible.
- ullet Thus there exist another set of weights w_{ij} such that

$$s_{1}(t) = w_{11}x_{1}(t) + w_{12}x_{2}(t) + w_{13}x_{3}(t)$$

$$s_{2}(t) = w_{21}x_{1}(t) + w_{22}x_{2}(t) + w_{23}x_{3}(t)$$

$$s_{3}(t) = w_{31}x_{1}(t) + w_{32}x_{2}(t) + w_{33}x_{3}(t)$$

$$(2)$$

- It turns out that this blind source separation (BSS) problem can be solved using independent component analysis (ICA).
- In ICA, it suffices to assume that the sources $s_j(t)$ are non-Gaussian and statistically independent.
- An ICA solution to the speech separation example is shown in Figure 3.

Figure 3: The estimates of the speech waveforms obtained by ICA.

•

Definition of Independent Component Analysis

- Assume that we observe n linear mixtures x_i of n latent variables, the independent components s_k .
- ICA model is a linear generative statistical latent variable model

$$x_i = a_{i1}s_1 + a_{i2}s_2 + \ldots + a_{in}s_n$$
, for all $i = 1, \ldots, n$ (3)

where the a_{ij} , $i, j = 1, \ldots, n$ are some real coefficients.

- This is the basic linear ICA model, which can be extended in many ways.
- In the basic ICA model, we assume that each mixture x_i as well as each independent component s_j is a random variable.
- Using vector-matrix formulation: let

$$\mathbf{x} = (x_1, ..., x_n)^T, \quad \mathbf{s} = (s_1, ..., s_n)^T, \quad \mathbf{A} = (a_{ij})$$
 (4)

Then the basic ICA model is

$$\mathbf{x} = \mathbf{A}\mathbf{s} \tag{5}$$

• If the columns of the $n \times n$ mixing matrix \mathbf{A} are denoted \mathbf{a}_j , the model can also be written as

$$\mathbf{x} = \sum_{i=1}^{n} \mathbf{a}_i s_i \tag{6}$$

- The ICA problem: Estimate both $\bf A$ and $\bf s$ when only $\bf x$ is observed and the distribution of $\bf s$ is unknown.
- Denote the solution formally by

$$\mathbf{s} = \mathbf{W}\mathbf{x} \tag{7}$$

• There $\mathbf{W} = \mathbf{A}^{-1}$ is an $n \times n$ separating matrix which should be determined from the data \mathbf{x} only.

Assumptions made in the basic ICA model

- 1. The independent components s_i are statistically independent.
 - Mathematically, the joint probability density $p(s_i, s_j)$ of s_i and s_j must factorize to the product of the pdf's of s_i and s_j :

$$p(s_i, s_j) = p(s_i)p(s_j) \tag{8}$$

- Intuitively: knowing the value of random variable s_i does not give information about the value of s_2 .
- 2. The independent components must have non-Gaussian distributions.
 - However, one of the independent components can be Gaussian.
 - We need not know these non-Gaussian distributions.
- 3. The unknown mixing matrix A is square.
 - That is, the number of independent components is equal to the number of observed mixtures.

- 4. There is no noise in the ICA model (5).
- Most of these assumptions can be relaxed in various extensions of basic ICA.
- But the problems and methods needed for solving them become more complicated.

Indeterminacies in the basic ICA model

- Due to the blind nature of the ICA problem, there are several ambiguities in solving it.
 - 1. Scaling: The independent components (source signals) can be found only up to a multiplicative constant:

$$\mathbf{x} = \mathbf{A}\mathbf{s} = (c\mathbf{A})(\frac{1}{c}\mathbf{s}) \tag{9}$$

- Usually the variance of each source is normalized to unity to fix the scale.

- 2. Sign: The sign of found independent components can be chosen freely.
- 3. Order: The order of the independent components cannot be determined
 - Unless some extra criterion is used to that end.
- This is why only the waveforms of the independent components can be recovered without extra prior information.
- But this is sufficient and quite useful in many applications of ICA.
- If there are more than one Gaussian sources (independent components), they can only be estimated up to an orthogonal transformation.
- This is because orthogonal transformation of a multivariate Gaussian distribution is still Gaussian.
- Another way of realizing this is that uncorrelated Gaussian random

variables are also statistically independent.

- This property does not hold in general for any other probability distribution
- Random variables can be made mutually uncorrelated in infinitely many ways.
- From uncorrelated random variables one can easily generate other sets of uncorrelated random variables by rotating them using an orthogonal transformation matrix.

Comparing PCA with ICA

Before proceeding, let us compare principal component analysis
 (PCA) and independent component analysis (ICA).

• Both use a similar simple linear data model

$$\mathbf{x} = \mathbf{A}\mathbf{s} = \sum_{i=1}^{n} \mathbf{a}_{i} s_{i} \tag{10}$$

- ullet Furthermore, in both methods only the data vectors ${f x}$ are known.
- But PCA and ICA differ in assumptions made on the model (10).
- In PCA, the basis vectors \mathbf{a}_i are required to be mutually orthogonal: $\mathbf{a}_i^T \mathbf{a}_j = 0$ for $i \neq j$.
- The variances $E(s_i^2)$ of the principal components s_i (assuming zero mean $E(\mathbf{x}) = \mathbf{0}$) have maximal values.
- While in ICA the components s_i are required to be statistically independent (or as independent as possible).
- This is a strong but often natural condition that determines the ICA expansion.

- Without imposing any other constraints onto the basis vectors \mathbf{a}_i of ICA that they are linearly independent.
- The basis vectors of ICA are in general non-orthogonal.
- The PCA expansion has without any extra conditions exactly the same scaling, ordering, and sign ambiguities as the ICA expansion.
- However, usually the scaling indeterminacy is fixed in PCA by requiring that the basis vectors \mathbf{a}_i have unit norm.
- Furthermore, the basis vectors of PCA are ordered according to lowering variances (eigenvalues of the data covariance matrix).
- The sign ambiguity still remains in PCA after these conventions.
- PCA is based on second-order statistics (covariances) of the data.
- Generally speaking, PCA is optimal for Gaussian data.

- Multivariate Gaussian data is determined completely by its:
 - First-order statistics, the mean vector $\mathbf{m} = \mathsf{E}(\mathbf{x})$.
 - Second-order statistics, the covariance matrix $\mathbf{C} = \mathsf{E}\{(\mathbf{x} \mathbf{m})(\mathbf{x} \mathbf{m})^T\}.$
- While ICA is based on higher-order statistics.
- Especially after mean centering and whitening which normalize the data with respect to its first-order and second-order statistics.
- ICA is in its own sense optimal for non-Gaussian data.
- Most practical data sets are non-Gaussian, carrying a lot of information in their higher-order statistics.
- Standard linear methods based on at most second-order statistics neglect this extra information.

Example: Uniformly distributed data

- Figure 4 shows a data set (green dots) that is uniformly distributed inside the parallelogram.
- ullet The basis vectors ${f e}_1$ and ${f e}_2$ of PCA are shown in red.
- The first basis vector e_1 happens to point out to the corner of the parallelogram.
- Into the direction in which the components of the data would be maximally dependent.
- But the other basis vector e_2 of PCA does not have any natural interpretation; it is just orthogonal to e_1 .
- While the basis vectors \mathbf{a}_1 and \mathbf{a}_2 of ICA (in blue) describe well the underlying uniform distribution.
- Their directions are along the sides of the parallelogram.

Figure 4: Uniformly distributed data (green) together with the basis vectors of PCA (red) and ICA (blue).

.

Maximization of non-Gaussianity

- An important principle leading to ICA is maximization of non-Gaussianity.
- That is, one tries to find components s_i that are as non-Gaussian as possible.
- It turns out that this principle yields the independent components.
- We justify this criterion heuristically in the following, but it can be shown to hold rigorously.
- Consider estimation of one independent component by

$$\mathbf{w}^T \mathbf{x} = \sum_{j=1}^n w_j x_j \tag{11}$$

• There \mathbf{w}^T is some row vector of the separating matrix \mathbf{W} .

- Recall that s = Wx, where $W = A^{-1}$, and x = As.
- Let us now change the variables: $z = A^T w$. Then

$$\mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{A} \mathbf{s} = \mathbf{z}^T \mathbf{s} , \qquad (12)$$

which is a linear combination of the sources.

- Assume now for simplicity that all the components s_i have identical distribution, and apply the
- Central limit theorem: Sum of independent and identically distributed (i.i.d.) random variables tends toward Gaussian distribution.
- Since $\mathbf{z}^T \mathbf{s}$ is such a sum, it is more Gaussian than any of the s_i .
- If its non-Gaussianity is maximized, it must tend toward one of the independent components s_i .
- Therefore, if we choose the vector w so that the non-Gaussianity of

 $\mathbf{w}^T\mathbf{x}$ is maximized, we get an estimate of some independent component s_i .

- In practice, weighted sum of random variables tends toward Gaussianity rapidly when the number of terms in the sum grows.
- This holds even if the distributions of the random variables are quite different, far from being i.i.d.
- Thus one approach to ICA is:
 - 1. Construct a measure of the non-Gaussianity of the estimates of the components s_i ;
 - 2. Maximize that measure.
- We shall consider in more detail two measures of non-Gaussianity which have rather different properties.
- Namely kurtosis and negentropy.

Kurtosis

- Kurtosis is a classical measure of non-Gaussianity.
- ullet For a scalar random variable y it is defined by

$$kurt(y) = E\{y^4\} - 3(E\{y^2\})^2$$
(13)

- Assuming that y has unit variance (and mean zero), $\mathsf{E}\{y^2\}=1$.
- The kurtosis is then simply the fourth moment

$$kurt(y) = E\{y^4\} - 3$$
 (14)

- It can be shown that the kurtosis is zero for Gaussian y.
- Two types of non-Gaussianity are distinguished based on the value of kurtosis.
- ullet Super-Gaussian signals or random variables y have positive kurtosis.

- Their probability density functions (pdf's) have typically a sharper peak and longer tail than the Gaussian pdf.
- Sub-Gaussian random signals have negative kurtosis.
- Their pdf's are flatter than the Gaussian pdf or multimodal.
- Figure 5 shows an example of the super-Gaussian Laplacian pdf and Figure 6 the sub-Gaussian uniform density.
- Non-Gaussianity can be measured by the absolute value of kurtosis.
- Properties of kurtosis:
 - + Computationally and theoretically simple
 - Sensitive to outliers (not robust), depending on the fourth moment of the data.
 - Non-symmetric: the degree of non-Gaussianity of super-Gaussian and sub-Gaussian signals cannot be compared directly.

Figure 5: Super-Gaussian Laplacian probability density (solid line) compared with the Gaussian probability density (dashed line)

.

Figure 6: Sub-Gaussian uniform probability density (solid line) compared with the Gaussian probability density (dashed line)

26

Information-theoretic criteria

Entropy and differential entropy

- The entropy H is a well-known information-theoretic measure of the information contents and randomness of a random variable.
- Consider first a discrete random variable Y with possible values y_1, y_2, \ldots, y_n .
- ullet The entropy of Y is then defined as

$$H(Y) = -\sum_{i=1}^{n} p(y_i) \log p(y_i)$$
 (15)

- There $p(y_i)$ is the probability of the value y_i .
- The base of the logarithm is arbitrary.
- The values of entropy satisfy $0 \le H(Y) \le \log(n)$.

- The discrete entropy H attains its maximum value for the uniform distribution $p(y_i) = 1/n, i = 1, 2, ..., n$.
- Interpretations of discrete entropy:
 - Average amount of information ("surprise") or
 - Average reduction of uncertainty obtained by observing the value of Y, or
 - Optimal average code-length required for transmitting the values of Y.
- ullet Assume now that \mathbf{Y} is a continuous valued random vector, with values \mathbf{y} .
- Then the quantity corresponding to the entropy is the differential entropy, defined by

$$h(\mathbf{Y}) = -\int p(\mathbf{y}) \log p(\mathbf{y}) d\mathbf{y}$$
 (16)

- ullet The maximum of the differential entropy is achieved when ${f Y}$ is Gaussian.
- ullet Under the constraint that the random vectors ${f Y}$ compared have equal covariance matrices.
- Uniform distribution is the "least interesting" one (most random) among the discrete distributions.
- And the Gaussian distribution among the continuous distributions.
- Small entropy means that the random variable is not so random.
- It then contains a lot of deterministic information having some structure.
- We are often interested to find such structural information from the data studied.
- This gives another justification for maximizing the non-Gaussianity.

Negentropy

• Negentropy $J(\mathbf{Y})$ is defined for a continuous random vector \mathbf{Y} as

$$J(\mathbf{Y}) = h(\mathbf{Y}_{\text{Gauss}}) - h(\mathbf{Y}) \tag{17}$$

- There $\mathbf{Y}_{\mathrm{Gauss}}$ is Gaussian random vector having the same covariance matrix as \mathbf{Y} .
- Negentropy measures the deviation from the maximum of the differential entropy $h(\mathbf{Y})$ attained when \mathbf{Y} is Gaussian.
- Properties of negentropy:
 - + Well justified, takes into account all higher-order statistics;
 - + Invariant to invertible linear transformations;
 - Computationally difficult: requires the estimation of the probability density of \mathbf{Y} .

- In general, reliable estimation of the probability density and entropy is very difficult for multivariate densities having long tails.
- In practical ICA algorithms, negentropy is usually approximated with either high-order moments or other contrast functions.

Mutual information

- Consider first two discrete scalar random variables X and Y.
- Their relation can be measured by the mutual information

$$I(X;Y) = H(X) - H(X|Y)$$
 (18)

There the conditional entropy

$$H(X|Y) = H(X,Y) - H(Y)$$
 (19)

is the amount of uncertainty remaining about X after Y has been observed.

• In (19), the joint entropy H(X,Y) of X and Y is defined as

$$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y)$$
 (20)

- There p(x,y) is the joint probability density of the discrete random variables X and Y.
- The summations in (20) are taken over all possible values x_i and y_j of X and Y.
- The conditional entropy H(X|Y) is nonnegative and at most equal to the entropy H(X) of X (if X and Y are statistically independent):

$$0 \le H(X|Y) \le H(X) \tag{21}$$

- The mutual information I is
 - Symmetric: I(X;Y) = I(Y;X)

- Nonnegative: $I(X;Y) \ge 0$
- Equal to zero only if X and Y are statistically independent
- The equations are the same for differential entropy h.
- All expressions can be generalized to more than two variables, e.g.

$$I(Y_1; \dots; Y_n) = \sum_{i=1}^n H(Y_i) - H(Y_1, \dots, Y_n)$$
 (22)

ullet For two continuous random vectors ${f X}$ and ${f Y}$

$$I(\mathbf{X}; \mathbf{Y}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{\mathbf{X}, \mathbf{Y}}(\mathbf{x}, \mathbf{y}) \log(\frac{p_{\mathbf{x}}(\mathbf{x} \mid \mathbf{y})}{p_{\mathbf{x}}(\mathbf{x})}) d\mathbf{x} d\mathbf{y}$$
(23)

- The subscripts show the random variable of the pdf.
- Applying the Bayes formula to (23), it is easy to see that

$$I(\mathbf{X}; \mathbf{Y}) = h(\mathbf{X}) + h(\mathbf{Y}) - h(\mathbf{X}, \mathbf{Y}) \tag{24}$$

- The relationships of the quantities defined are illustrated in Figure 7.
- They hold for discrete and continuous random variables and vectors as well with appropriate changes in notations.

Kullback-Leibler divergence

- Consider first two probability densities p(y) and q(y) defined at n values y_1, y_2, \ldots, y_n of the discrete scalar random variable y.
- The Kullback-Leibler (KL) divergence is defined for these pdf's as

$$D(p,q) = \sum_{i=1}^{n} p(y_i) \log \frac{p(y_i)}{q(y_i)}$$
 (25)

- KL divergence is a measure of the dissimilarity ("distance") of the two probability distributions with pdf's p and q.
- For two pdf's $p(\mathbf{x})$ and $q(\mathbf{x})$ of the continuous random vector \mathbf{X} ,

the Kullback-Leibler divergence is defined as

$$D(p,q) = \int_{-\infty}^{\infty} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x}$$
 (26)

- In both cases, the KL divergence has the following properties:
 - $D(p,q) \ge 0.$
 - D(p,q) = 0 only if the two pdf's are the same: p = q.
 - But D(p,q) is not symmetric, and hence it is not a proper distance measure.
- KL divergence measures the average amount of additional information contained in p, given that the distribution of q is known.
- KL divergence is a sensible measure of the similarity of two probability distributions, although it is not symmetric.

Figure 7: A schematic diagram describing the relations among the mutual information I(X;Y) and the entropies H(X) and H(Y).

•

Relationships between various criteria in ICA

It is easy to show that

$$I(\mathbf{X}; \mathbf{Y}) = D(p_{\mathbf{X}, \mathbf{Y}}, p_{\mathbf{X}} p_{\mathbf{Y}}) \tag{27}$$

- \Rightarrow Mutual information measures the difference of the joint distribution $p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$ from the factored distribution $p_{\mathbf{X}}(\mathbf{x})p_{\mathbf{Y}}(\mathbf{y})$.
- For independent random variables the joint distribution is equal to the factored distribution.
- Therefore mutual information is a natural measure of the deviation from independence.
- It takes into account all kinds of dependencies between the random variables.
- Assume now that the values of the random vector \mathbf{Y} are obtained from linear transformation $\mathbf{y} = \mathbf{W}\mathbf{x}$ like in ICA.

- Assume further that the components y_i , i = 1, 2, ..., n, of the vector \mathbf{y} are constrained to be uncorrelated and have unit variance.
- Then it can be shown that

$$I(Y_1, \dots, Y_n) = C - \sum_{i=1}^n J(y_i)$$
 (28)

where J is the negentropy, and C is a constant independent of the matrix \mathbf{W} .

 Therefore, we can conclude that Maximization of negentropy

Minimization of mutual information

Finding as independent components as possible.

ICA by minimization of mutual information

- From the previous considerations, we get an alternative definition of independent component analysis (ICA):
- ICA is a linear transformation s = Wx, such that the mutual information of the components s_i of the vector s is minimized.
- This is a natural definition since mutual information is a well justified measure of deviation from independence.
- Note that now we need not assume that the source signals s come from the data model x = As.
- The goal may simply be to find as independent components as possible.
- Note that the found components may still have some dependencies remaining.

- These considerations give a justification for the more heuristic maximization of nongaussianity (negentropy).
- This ICA finds directions in which the negentropy is maximized.
- More specifically, projections of the data vectors x onto these directions have maximum negentropy.
- Usually the projections are constrained to be uncorrelated which simplifies computation.
- ICA can be derived also using the maximum likelihood and Infomax principles but we shall not consider them here.

Relation to projection pursuit

- There are many methods for vizualizing and exploring multidimensional data.
- One can see at most in three dimensions, so some mapping methods

to two (or three) dimensions are needed.

- Projection pursuit is a method for finding "interesting" projections of multidimensional data:
 - 1. First a suitable measure of interestingness (called an "index") must be chosen and defined.
 - 2. The interesting projections are then found by maximizing that measure.
- Projection pursuit is especially useful for interactive exploratory data analysis.
- The commonly used indices measure the deviation from Gaussian distribution.
- One tries to find projections which are as non-Gaussian as possible.
- They contain interesting structural information on the data studied.

- Most projections of high-dimensional data sets are usually almost Gaussian.
- They don't contain any interesting information about the structure of the data.
- Relation to ICA:
 - Measures of non-Gaussianity
 ⇔ Measures of interestingness
 - Independent components ⇔ Interesting directions (projections)
- Note that no assumptions about independence or data models are made in projection pursuit.
- Therefore, the solution obtained by the ICA algorithms reveals:
 - The "real" independent components (source signals) if the ICA model holds;
 - The projection pursuit directions if the ICA model does not hold.

An example: Oil pipeline data

- Taken from the book M. Girolami, "Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation", Springer 1999, pp. 249-252.
- Oil pipeline data consists of 12-component data vectors.
- They measure the quantity of oil in a multi-phase pipeline carrying oil, water, and gas.
- Three flow regimes can occur within the pipeline: laminar, annular, and homogenous.
- These three distinct physical sources describe the data.
- The oil flow data is described in more detail on pp. 678-681 in the book C. Bishop, "Pattern Recognition and Machine Learning", Springer 2006.

- The data was projected to two dimensions for analyzing it and for finding clusters using different methods:
 - Generative Topographic Mapping (GTM), Figure 8
 - Independent Component Analysis (ICA), Figure 9
 - Principal Component Analysis (PCA), Figure 10
- GTM is a nonlinear mapping method based on a generative model, learned using the maximum likelihood method.
- It tries to realize self-organizing map (SOM) in a theoretically justified way.
- We shall discuss self-organizing map on the next lecture.
- The GTM method spreads the data fairly evenly in Figure 8
- However, in this projection pursuit application GTM performs clearly worse than standard linear ICA in Figure 9

Figure 8: Plot of the oil flow data in the two-dimensional latent space of the GTM method.

•

Figure 9: Plot of the oil flow data projected onto a two-dimensional ICA subspace.

.

Figure 10: Plot of the oil flow data projected onto a two-dimensional PCA subspace.

٠

- The ICA basis vectors for the mapping are chosen so that they correspond to maximally subgaussian (providing useful clusters) or nongaussian independent components.
- The linear mapping provided by the two first principal components corresponding to the largest eigenvalues in Figure 10 is also worse than the ICA mapping.

Preprocessing

- ullet In most ICA methods, the data ${\bf x}$ is normalized with respect to its first and second-order statistics.
- This makes practical computation of ICA simpler.
- After that, ICA methods can concentrate on the higher-order statistics of the data studied.
- Utilizing higher-order statistics is a fundamental characteristics of ICA.

- The first-order statistics of the data is its mean vector $\mathbf{m}_x = \mathsf{E}(\mathbf{x})$.
- In practice, \mathbf{m}_x is estimated from the available samples and subtracted from \mathbf{x} .
- ullet The mean can be added back to the estimated source or independent component vector ${f s}$ after computing the separating matrix ${f W}$.
- Simply add Wm to the estimated s.
- As discussed earlier, whitening normalizes the data with respect to its the second-order statistics.
- Which corresponds to the "Gaussian" structure in the data.
- ullet In whitening, the data ${f x}$ is transformed linearly as

$$\tilde{\mathbf{x}} = \mathbf{V}\mathbf{x} \tag{29}$$

so that the covariance matrix of the zero-mean whitened data $\tilde{\mathbf{x}}$

$$\mathsf{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T] = \mathbf{I} \tag{30}$$

- The components of the whitened data vectors $\tilde{\mathbf{x}}$ are uncorrelated and have unit variance.
- The whitening transformation can be computed in many ways.
- A standard method is to use PCA, which is based on the eigendecomposition of the covariance matrix $\mathbf{C}_{xx} = \mathsf{E}[\mathbf{x}\mathbf{x}^T]$ of the original data vectors \mathbf{x} .
- Let the eigenvalues of C_{xx} be $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0$.
- They are usually arranged in descending order into the diagonal matrix

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \tag{31}$$

ullet The corresponding eigenvectors of ${f e}_i$ of ${f C}_{xx}$ are the column vectors

of the matrix

$$\mathbf{E} = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n] \tag{32}$$

• The whitening transformation is then

$$\tilde{\mathbf{x}} = \mathbf{\Lambda}^{-1/2} \mathbf{E}^T \mathbf{x} \tag{33}$$

• It transforms the mixing matrix to $\tilde{\mathbf{A}}$:

$$\tilde{\mathbf{x}} = \mathbf{\Lambda}^{-1/2} \mathbf{E}^T \mathbf{A} \mathbf{s} = \tilde{\mathbf{A}} \mathbf{s} \tag{34}$$

ullet The new mixing matrix $ilde{\mathbf{A}}$ becomes orthogonal:

$$\mathsf{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T] = \tilde{\mathbf{A}}E[\mathbf{s}\mathbf{s}^T]\tilde{\mathbf{A}}^T = \tilde{\mathbf{A}}\tilde{\mathbf{A}}^T = \mathbf{I}$$
 (35)

• The separating matrix $\tilde{\mathbf{W}}$ for the whitened data $\tilde{\mathbf{x}}$ becomes orthogonal, too:

$$\mathbf{s} = \tilde{\mathbf{W}}\tilde{\mathbf{x}} = \tilde{\mathbf{W}}\tilde{\mathbf{A}}\mathbf{s} \tag{36}$$

$$\Rightarrow \tilde{\mathbf{W}} = \tilde{\mathbf{A}}^{-1} = \tilde{\mathbf{A}}^T \tag{37}$$

- Orthogonality after whitening simplifies the computation of ICA.
- Instead of the original n^2 entries in \mathbf{W} , only the n(n-1)/2 different elements in the orthogonal separating matrix $\tilde{\mathbf{W}}$ needs to be estimated.
- A problem with PCA whitening is that it may amplify noise.
- For small eigenvalues λ_i , the corresponding element $\lambda_i^{-1/2}$ in the matrix $\mathbf{\Lambda}^{-1/2}$ becomes large.
- This problem can be handled by compressing the dimensionality of the data in context with PCA whitening.
- The principal components $\mathbf{e}_i^T \mathbf{x}$ corresponding to small eigenvalues λ_i are discarded.

Algorithms for computing ICA

- For computing the independent components s = Wx, many algorithms and approaches have been proposed.
- They usually estimate the separating matrix $\mathbf{W} = \mathbf{A}^{-1}$ for the mixing model $\mathbf{x} = \mathbf{A}\mathbf{s}$.
- In the following, we discuss two most popular algorithms:
 - The natural gradient algorithm.
 - The fixed point algorithm(s).

The natural gradient algorithm

- The natural gradient algorithm is a simple neural (adaptive) ICA algorithm.
- It can be derived from several starting points:

- Maximum likelihood principle;
- The Infomax principle;
- Minimization of the mutual information.
- We have skipped the maximum likelihood and Infomax criteria in this lecture.
- But they are discussed a little in the tutorial paper by Hyvärinen and Oja.
- We skip the somewhat involved derivations here, too.
- Denote by \mathbf{w}_i^T the *i*:th row vector of the $n \times n$ separating matrix \mathbf{W} .
- Then $y_i = \mathbf{w}_i^T \mathbf{x}$ is an estimate of an independent component s_j .
- Denote by $p_i(s_i)$, $i=1,\ldots,n$, the probability densities of the n independent components (source signals) $\mathbf{s}=[s_1,s_2,\ldots,s_n]^T$.

The natural gradient algorithm is

$$\mathbf{W}(k+1) = \mathbf{W}(k) + \eta(k)[\mathbf{I} - \mathbf{g}(\mathbf{y}(k))\mathbf{y}^{T}(k)]\mathbf{W}(k)$$
(38)

- There $\mathbf{y}(k) = \mathbf{W}(k)\mathbf{x}(k)$, and $\eta(k)$ is a small learning parameter on iteration k.
- The *i*:th component $g_i(y_i)$ of the vector $\mathbf{g}(\mathbf{y}) = \mathbf{g}(\mathbf{W}\mathbf{x})$ is

$$g_i(y_i) = -\frac{d\log p_i(y_i)}{dy_i} = -\frac{dp_i(y_i)/dy_i}{p_i(y_i)}$$
(39)

- Hence the nonlinearities g_i depend on the densities p_i of the true independent components (sources) s_i .
- These densities are usually unknown.
- Fortunately it suffices in practice to know whether the independent component is sub-Gaussian or super-Gaussian.
- This can also be estimated directly from the data.

• For super-Gaussian independent components, the componentwise nonlinearity is often chosen to be

$$g(y) = 2\tanh(y) \tag{40}$$

For sub-Gaussian independent components, one can use

$$g(y) = y - \tanh(y) \tag{41}$$

- ullet Prewhitening of the data vectors ${f x}$ is theoretically not necessary in the natural gradient algorithm.
- However, it is highly recommendable in practice.
- Note that at convergence, the algorithm satisfies a nonlinear decorrelation condition $\mathsf{E}\{\mathbf{g}(\mathbf{y})\mathbf{y}^T\} = \mathbf{I}$.
- If g(y) = y, the natural gradient algorithm reduces to a neural prewhitening algorithm.

- Pros and cons of the natural gradient algorithm:
 - + Theoretically well justified.
 - + Simple neural adaptive algorithm.
 - Converges still slowly because of stochastic gradient used.
 - Requires different nonlinearities for sub-Gaussian and super-Gaussian independent components.

Fixed-point algorithms

- Aapo Hyvärinen (and Erkki Oja) developed fast ICA algorithms called FastICA in 1996.
- In the former Lab. of Computer and Information Science at HUT belonging now to our Aalto University Dept. of Computer Science.
- They are fixed-point iterations maximizing non-Gaussianity.
- Non-Gaussianity is measured by an approximation of negentropy.

ullet The resulting basic fixed-point iteration for estimating one independent component $\mathbf{w}^T\mathbf{z}$ is

$$\mathbf{w} \leftarrow \mathsf{E}\{\mathbf{z}g(\mathbf{w}^T\mathbf{z})\} - \mathsf{E}\{g'(\mathbf{w}^T\mathbf{z})\}\mathbf{w} \tag{42}$$

- Here g' is the derivate of the nonlinear function g.
- z is whitened data vector x.
- The resulting FastICA algorithm is summarized in Table 1.
- The function g can be chosen from

$$g_1(y) = \tanh(a_1 y) \tag{43}$$

$$g_2(y) = y \exp(-y^2/2)$$
 (44)

$$g_3(y) = y^3 \tag{45}$$

- 1. Center the data x to make its mean zero.
- 2. Whiten the centered data x to give z.
- 3. Choose an initial (e.g., random) vector w of unit norm.
- 4. Let $\mathbf{w}^* \leftarrow \mathsf{E}\{\mathbf{z}g(\mathbf{w}^T\mathbf{z})\} \mathsf{E}\{g'(\mathbf{w}^T\mathbf{z})\}\mathbf{w}$.
- 5. Normalize \mathbf{w}^* : $\mathbf{w} \leftarrow \mathbf{w}^* / \|\mathbf{w}^*\|$.
- 6. If not converged, go back to step 4.

Table 1: The FastICA algorithm for estimating one independent component. The expectations are estimated in practice as an average over the available data sample.

Figure 11: The robust nonlinearities g_1 and g_2 , given by the solid and the dashed line, respectively. The third power used in kurtosis-based methods is given by the dash-dotted line.

- These functions are depicted in Figure 11.
- Using the nonlinearity $g_3(y) = y^3$ corresponds to maximizing the absolute value of kurtosis.
- This leads to the basic fixed-point update rule

$$\mathbf{w}^* \leftarrow \mathsf{E}\{\mathbf{z}(\mathbf{w}^T\mathbf{z})^3\} - 3\mathbf{w}$$

- A particularly simple, but not so robust version.
- Kurtosis may depend on only a few observations in the tails of the distribution or on outliers.
- The above fixed-point algorithm converges to some row vector \mathbf{w}^T of the separating matrix \mathbf{W} .
- Thus it provides an estimate to only one independent component $\mathbf{w}^T \mathbf{z}$.

- For estimating more or all independent components, different weight vectors $\mathbf{w}_1, \dots, \mathbf{w}_n$ must orthonormalized.
- The weight vectors and independent components can be estimated either:
 - Sequentially one-by-one.
 - Or symmetrically in parallel.

Sequential estimation

- Assume that p-1 weight vectors $\mathbf{w}_1, \dots, \mathbf{w}_{p-1}$ have already been estimated.
- The p:th weight vector \mathbf{w}_p is orthogonalized against them using the well-known Gram-Schmidt formula:

$$\mathbf{w}_p \leftarrow \mathbf{w}_p - \sum_{j=1}^{p-1} (\mathbf{w}_p^T \mathbf{w}_j) \mathbf{w}_j$$

• This vector is then used in the one-unit fixed-point rule.

Symmetric estimation

- In symmetric estimation, a fixed-point iteration is first carried out for all the weight vectors $\mathbf{w}_1, \dots, \mathbf{w}_n$.
- Then they are orthonormalized symmetrically:

$$\mathbf{W} \leftarrow (\mathbf{W}\mathbf{W}^T)^{-1/2}\mathbf{W}$$

- Let the eigendecomposition of the symmetric matrix $\mathbf{W}\mathbf{W}^T$ be $\mathbf{E}\mathbf{D}\mathbf{E}^T$.
- The columns of the matrix E contain the eigenvectors.
- The elements of the diagonal matrix **D** contain the respective eigenvalues.
- Then $(\mathbf{W}\mathbf{W}^T)^{-1/2} = \mathbf{E}\mathbf{D}^{-1/2}\mathbf{E}^T$.

- A free Matlab package for FastICA algorithms is available at http://research.ics.aalto.fi/ica/fastica/.
- There are also implementations in Python, R, and C++ software.
- Pros and cons of fixed-point algorithms:
 - + Fast (even cubic) convergence.
 - + Computationally much more efficient than the natural gradient algorithm.
 - + Can be used for quite large problems.
 - + The same nonlinearity can be applied both to sub-Gaussian and super-Gaussian independent components.
 - Non-neural and non-adaptive batch algorithms.
 - Require prewhitening of the data.

Practical applications of ICA

- The two most popular applications areas of ICA are currently:
- Speech and audio applications, especially:
 - The "cocktail party problem": separation of voices or music or sounds.
 - This problem is in practice much more difficult than the standard ICA problem.
 - It is complicated by reverberations, time delays etc.
- Biomedical applications are studied a lot, too.
 - ICA and BSS can be applied to various biomedical signals obtained using EEG, ECG, MEG, and fMRI techniques.
 - The task is to separate interesting signals or remove disturbing artefacts.

- There are many other applications of ICA.
- In the tutorial article A. Hyvärinen and E. Oja, "Independent Component Analysis: Algorithms and Applications," three application of ICA are discussed:
 - 1. Separation of artifacts in magnetoencephalography (MEG) data.
 - 2. Finding hidden factors in financial data.
 - 3. Reducing noise in natural images.
- In the following, we discuss a fourth application of ICA.

Feature extraction from natural images

- A fundamental problem in signal and image processing is to find suitable representations for image, audio etc. data.
- They are useful in tasks like data compression and noise suppression.
- Data representations are often based on discrete linear

transformations.

- Standard linear transformations widely used in image processing are the Fourier, Haar, Walsh-Hadamard, and discrete cosine transforms.
- They can be computed using fast FFT (Fast Fourier Transform) type algorithms.
- But the basis images or vectors of these transforms are fixed and the same for all types of images.
- It would be very useful to estimate the linear transformation from the data itself.
- Allowing the transform to adapt ideally to the kind of data that is being processed.
- ICA was applied in our laboratory to this task for a set of images showing natural scenes.

- Each image was first normalized so that the pixels (picture elements) had zero mean and unit variance.
- A set of 10,000 image pacthes (windows) of the size 16×16 pixels were taken at random locations from these images.
- Furthermore, local mean was subtracted from each image window.
- Then the image windows were scanned to 256-dimensional data vectors row-by-row.
- For removing noise, the dimension of the data vectors was reduced to 160.
- The data set preprocessed in this way was used as an input to the FastICA algorithm, using the tanh nonlinearity.
- Figure 12 shows the 160 ICA basis images obtained.
- These basis images can be considered as the independent features of

images.

- Every image window is a linear sum of these windows.
- The basis images in Figure 12 are clearly localized in space, as well as in frequency and orientation.
- They are sensitive to edges and lines in various orientations.
- There are also a few basis images that correspond to global features.
- These ICA basis images resemble closely Gabor features and wavelets that are used extensively in digital image processing.
- They are much more meaningful than the global features provided by PCA.
- The PCA features corresponding to smaller eigenvalues resemble a checkerboard, and are not regarded useful.

Figure 12: Basis functions in ICA of natural images.

Linear blind source separation (BSS)

- In linear blind source separation (BSS), one tries to separate the original source signals from their linear mixtures.
- Assuming that the sources are independent and the mixing model is linear, x = As, one can apply linear ICA methods directly to BSS.
- Another major group of linear BSS methods utilizes time structure of the sources.
- Second-order temporal statistics are then sufficient for achieving blind separation.
- The sources can be even Gaussian provided that they have different autocorrelation sequences.
- ICA neglects possible temporal structure of the sources or independent components, treating them as random variables.

- On the other hand, it works for temporally uncorrelated sources.
- Ideally, both spatial independence and temporal structure should be taken into account in estimation.
- Still other blind source separation methods are based on time-frequency representations or nonstationarity of signals.
- Each major group of BSS methods has its own strengths and weaknesses.
- They are best applicable in somewhat different situations.

Extensions and modifications of basic linear ICA

- Noisy ICA; requires more sophisticated methods.
- Overcomplete bases: the number of independent components is larger than the number of mixtures.

- Taking into account the temporal structure in the data.
- ICA and BSS for nonlinear mixture models.
- Separation of convolutive mixtures containing time delays.
- Separation of correlated or non-independent sources.
- Nonstationary sources, time dependent mixing matrices.
- Semi-blind problems: some prior information on the source signals and/or mixtures is available.
- Sparse signal representations and sparse component analysis.
- Nonnegative matrix factorizations (NMF), restricting the source signals having nonnegative values only (for example pixels in digital images).

References

- See the homepage http://research.ics.aalto.fi/ica/ of our former ICA group for further information and useful links.
- A comprehensive textbook : A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, Wiley 2001.
- A newer review paper: *S. Choi et al.*, "Blind Source Separation and Independent Component Analysis: A Review", Neural Information Processing Letters and Reviews, Vol. 6, No. 1, January 2005.
- An extensive book on more recent develoments, extensions, and applications: P. Comon and C. Jutten, Handbook of Blind Source Separation - Independent Component Analysis and Applications, Academic Press 2010.