MS121: IT Mathematics

LIMITS & CONTINUITY

LIMITS AT INFINITY

John Carroll School of Mathematical Sciences

Dublin City University

Overview

Outline

- Overview
- 2 Rules for Limits
- Rational Functions: Illustration
- 4 Limits at Infinity: Worked Examples
- 5 Limits at Infinity: A Special Case

Outline

- Overview
- 2 Rules for Limits
- Rational Functions: Illustration
- 4 Limits at Infinity: Worked Examples
- **5** Limits at Infinity: A Special Case

→□▶ →□▶ →□▶ →□▶ □ ♥9<</p>

Overview

Using Simple Examples

Limits as $x \to \infty$

Introduction

- So far, we have only considered limits as $x \to c$ where c is some finite value.
- We now examine what happens to functions as x becomes infinitely large, i.e. as $x \to \infty$.

Limits as $x \to \infty$

Simple Illustration

One example to consider first is $f(x) = \frac{1}{x}$.

x-value	f(x)-value
10	0.1
100	0.01
1000	0.001
1000000	0.000001

As x becomes infinitely large, then $\frac{1}{x}$ becomes smaller and smaller, and we write:

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

MS121: IT Mathematics Limits (3/4)

Using Simple Examples

Limits as $x \to \infty$

A Second (Comparative) Illustration

- Consider the evaluation of $\lim_{x\to\infty} \frac{1}{x^2}$.
- As x becomes large, then $\frac{1}{x}$ becomes small but x^2 is even larger than x and so $\frac{1}{x^2}$ is even smaller than $\frac{1}{x}$.
- Hence, we conclude that

$$\lim_{x\to\infty}\frac{1}{x^2}=0$$

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

Using Simple Examples $\lim_{x \to -\infty} \frac{1}{x^2} = 0$

Limits as $x \to \infty$

More Generally

• The more general result

$$\lim_{x\to\infty}\frac{1}{x^n}=0$$

holds for any n > 0.

• Note that *n* can be less than 1, for example $n = \frac{1}{2}$ when we may write

$$\lim_{x\to\infty}\frac{1}{\sqrt{x}}=0$$

Limits (3/4)

MS121: IT Mathematics

Rules for Limits

Outline

- Overview
- Rules for Limits
- Rational Functions: Illustration
- 4 Limits at Infinity: Worked Examples
- Limits at Infinity: A Special Case

Limits as $x \to \infty$

Making Comparisons

- If, instead, we require $\lim_{x\to\infty}\frac{1}{x-1}$, we can reason as follows:
- If x is infinitely large, then x-1 is also infinitely large, and dividing by an infinitely large number produces an infinitely small number, and so that the limit must be zero.
- We could also proceed as follows: divide above and below by x:

$$\frac{1}{x-1} = \frac{\frac{1}{x}}{1 - \frac{1}{x}}$$

• Now, take the limit as $x \to \infty$:

$$\lim_{x \to \infty} \frac{1}{x - 1} = \frac{\lim_{x \to \infty} \frac{1}{x}}{\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{1}{x}} = \frac{0}{1 - 0} = 0$$

MS121: IT Mathematics

Rules for Limits

John Carroll

The General Case

Finite Limits as $x \to +\infty$

Limits (3/4)

• The function f has a real limit L as x tends to ∞ if, however small a distance we choose, f(x) gets closer than this distance to L and stays closer, no matter how large x becomes and we write

$$\lim_{x \to \infty} f(x) = L \text{ or } f(x) \to L, \text{ as } x \to \infty$$

• The function f has a real limit L as x tends to $-\infty$ if, however small a distance we choose, f(x) gets closer than this distance to L and stays closer, no matter how large x and negative becomes and we write

$$\lim_{x \to -\infty} f(x) = L \text{ or } f(x) \to L, \text{ as } x \to -\infty$$

Rules for Limits The General Case

Limits (3/4)

MS121: IT Mathematics

John Carroll 13

13 / 33

1

Rational Functions: Illustration

Outline

- Overview
- 2 Rules for Limits
- Rational Functions: Illustration
- 4 Limits at Infinity: Worked Examples
- 5 Limits at Infinity: A Special Case

Rules for Limits as $x \to \pm \infty$

If L, M and k are real numbers and

$$\lim_{x \to \pm \infty} f(x) = L, \qquad \lim_{x \to \pm \infty} g(x) = M$$

- (i) Sum Rule: $\lim_{x \to \pm \infty} f(x) + g(x) = L + M$.
- (ii) Difference Rule: $\lim_{x \to \pm \infty} f(x) g(x) = L M$.
- (iii) Product Rule: $\lim_{x \to \pm \infty} f(x)g(x) = LM$.
- (iv) Constant Multiple Rule: $\lim_{x \to \pm \infty} kf(x) = kL$.
- (v) Quotient Rule: If $M \neq 0$, then $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}$.
- (vi) Power Rule: If r and s are integers with no common factors and $s \neq 0$, then $\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$, provided that $L^{r/s}$ is a real number.

Limits (3/4)

MS121: IT Mathematics

John Carroll

14 / 33

then

Rational Functions: Illustration

Illustrations

Rational Functions:Limits as $x \to \pm \infty$

Simple Rational Function

- Let $f(x) = x^2 1$ and $g(x) = x^2 + 1$.
- Therefore,

$$\lim_{x \to \infty} f(x) = \infty = \lim_{x \to \infty} g(x)$$

Set

$$h(x) = \frac{f(x)}{g(x)} = \frac{x^2 - 1}{x^2 + 1}$$

What is

$$\lim_{x\to\infty}h(x)?$$

Limits (3/4)

MS121: IT Mathematics

Rational Functions: Illustration

Illustrations

 $\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1}$

Rational Functions

 \bullet As we are assuming x is large (and hence non-zero), we can divide through by x^2 (the highest power of x occurring in the denominator) to get:

$$h(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x^2}}$$

- As $x \to \infty$, $\frac{1}{x^2} \to 0$ and $1 \to 1$.
- Therefore

$$\lim_{x \to \infty} h(x) = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x^2}} = \frac{1}{1} = 1$$

MS121: IT Mathematics

Limits at Infinity: Worked Examples

Outline

- Overview
- 2 Rules for Limits
- Rational Functions: Illustration
- 4 Limits at Infinity: Worked Examples
- **(5)** Limits at Infinity: A Special Case

Limits at Infinity: Worked Examples

Rational Functions

Problem Solving

General Approach

Limits (3/4)

We will evaluate some limits at infinity in the following examples by dividing above and below by the highest power of x in the original expression.

Example 1

To evaluate

$$\lim_{x\to\infty}\frac{1}{x^2-4}$$

we divide above and below by x^2 and take limits as follows:

$$\lim_{x \to \infty} \frac{1}{x^2 - 4} = \lim_{x \to \infty} \frac{\frac{1}{x^2}}{1 - \frac{4}{x^2}} = \frac{0}{1 - 0} = 0$$

◆□ → ◆□ → ◆ = → へ = → へ Q へ ○

Limits (3/4)

MS121: IT Mathematics

MS121: IT Mathematics

Limits at Infinity: Worked Examples

Rational Functions

Example 3

Consider

$$\lim_{x \to \infty} \frac{x^3 + 27x^2 + 1}{x^4 + 6}$$

Solution

We divide above and below by the highest power which, in this case, is x^4 :

$$\lim_{x \to \infty} \frac{x^3 + 27x^2 + 1}{x^4 + 6} = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{27}{x^2} + \frac{1}{x^4}}{1 + \frac{6}{x^4}}$$
$$= \frac{0 + 0 + 0}{1 + 0}$$
$$= 0$$

Example 2

To evaluate

$$\lim_{x \to \infty} \frac{x}{x^2 - 4}$$

we again divide above and below by x^2 and take limits as follows:

$$\lim_{x \to \infty} \frac{x}{x^2 - 4} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1 - \frac{4}{x^2}} = \frac{0}{1 - 0} = 0$$

Note

Although the numerator x becomes infinitely large, the denominator $x^2 - 4$ was still infinitely larger than the numerator and so the overall ratio was zero in the limit.

Limits at Infinity: Worked Examples Rational Functions

Example 4

Consider

$$\lim_{x \to \infty} \frac{2x^3 + 1}{3x^3 + 4x^2 + 2}$$

Solution

We divide above and below by the highest power which, in this case, is x^3 , to obtain:

$$\lim_{x \to \infty} \frac{2x^3 + 1}{3x^3 + 4x^2 + 2} = \lim_{x \to \infty} \frac{2 + \frac{1}{x^3}}{3 + \frac{4}{x} + \frac{2}{x^3}}$$
$$= \frac{2 + 0}{3 + 0 + 0}$$
$$= \frac{2}{3}$$

Limits (3/4)

Example 5

To evaluate

$$\lim_{x \to \infty} \frac{2x + 4x^2 + x^5}{1 + x^4}$$

note that the highest power is x^5 and so we obtain:

$$\lim_{x \to \infty} \frac{2x + 4x^2 + x^5}{1 + x^4} = \lim_{x \to \infty} \frac{\frac{2}{x^4} + \frac{4}{x^3} + 1}{\frac{1}{x^5} + \frac{1}{x}}$$
$$= \frac{0 + 0 + 1}{0 + 0}$$
$$= \frac{1}{0} = \infty$$

Limits (3/4)

MS121: IT Mathematics

Example 6

Consider

$$\lim_{x \to \infty} \frac{\sqrt{x} + 1}{x}$$

Solution

We divide above and below by the highest power, namely x, to obtain:

$$\lim_{x \to \infty} \frac{\sqrt{x} + 1}{x} = \lim_{x \to \infty} \frac{\frac{1}{x^{\frac{1}{2}}} + \frac{1}{x}}{1} = \frac{0 + 0}{1} = 0$$

Note that

$$\frac{\sqrt{x}}{x} = \frac{x^{\frac{1}{2}}}{x} = \frac{1}{x^{\frac{1}{2}}}$$

MS121: IT Mathematics

Limits at Infinity: Worked Examples

Rational Functions

Limits at Infinity: Worked Examples

Example 7

Consider

$$\lim_{x \to \infty} \frac{x^{\frac{5}{2}} + x}{3x^{\frac{5}{2}} + 2x^2 + 1}$$

Solution

Limits (3/4)

We divide above and below by the highest power, $x^{\frac{5}{2}}$, to obtain:

$$\lim_{x \to \infty} \frac{x^{\frac{5}{2}} + x}{3x^{\frac{5}{2}} + 2x^{2} + 1} = \lim_{x \to \infty} \frac{1 + \frac{1}{\frac{3}{2}}}{3 + \frac{2}{x^{\frac{1}{2}}} + \frac{1}{\frac{5}{2}}}$$
$$= \frac{1 + 0}{3 + 0 + 0} = \frac{1}{3}$$

Example 8

Consider

$$\lim_{x \to \infty} \frac{|x|}{x}$$

Solution

As $x \to +\infty$, then certainly x > 0 and, when x > 0, we have

$$\frac{|x|}{x} = 1$$

Hence, the limit which we require must be the limit of the constant value 1, i.e.

$$\lim_{x \to \infty} \frac{|x|}{x} = \lim_{x \to \infty} 1 = 1$$

Limits at Infinity: Worked Examples Rational Functions

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \frac{3}{5}$$

Limits at Infinity: A Special Case

Outline

- Overview
- 2 Rules for Limits
- 3 Rational Functions: Illustration
- 4 Limits at Infinity: Worked Examples
- **5** Limits at Infinity: A Special Case

Limits at Infinity: Worked Examples Rational Functions

$$\lim_{x\to\infty}\frac{\sqrt{2x^2+1}}{3x-5}=\frac{\sqrt{2}}{3}$$

Limits at Infinity: A Special Case Rationalize the Numerator

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) = 0$$

Limits (3/4)

Limits (3/4)

MS121: IT Mathematics

John Carroll

Limits at Infinity: A Special Case Rationalize the Numerator

Show that
$$\lim_{x\to\infty} \left(\sqrt{x^2+1}-x\right)=0$$

Rationalize the Numerator

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \star \left[\frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x} \right]$$

$$= \lim_{x \to \infty} \frac{\left(x^2 + 1 \right) - x^2}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

$$= 0$$

Limits (3/4) MS121: IT Mathematics John Carroll 33 / 3