$T_S = constant$, $Nu = \frac{hD}{L} = 3.66$

NU = 3.66 + 0.065 (D/L) Re Po 1 + 0.04 (D/L)-PrRe) 2/3

Enterance region

NU = 1.86 (PE PT D) 1/3 (MD) 0.19

If Re 710,000 (Turbulent flow)

f = (0.79 un Re - 1'64)-2

Nu = 0.125 f Re Pr 1/2

In fully developed turbulent smooth pipe, $f = 0.184 \text{ Re}^{-0.2}$

NU = 0.023 Re 0.8 Pr 1/8 - 0.7 < Pr < 160

Re > 1000

Colburn Egn:

So as to correct the error in the above,

Nu = 0.023 Re^{0.6} Prⁿ n = 0.4 for neating $\int_{0.04}^{0.04} 00 \, \text{Hz} = \frac{8}{1000} \, \text{GeV}$ n = 0.3 for cooling

Liquid Hetaly (0.004 < Pr < 0.01) $T_S = constant \rightarrow Nu = 4.8 + 0.0156 Re^{0.085} Pr.^{0.93}$ $Q_S'' = constant \rightarrow Nu = 6.3 + 0.016 \neq Re^{0.85} Pr$

Free Convection CNatural Convection)

Fret = (Pb. - Pf) g Vbody

Vol. expansion

coeff (
$$\beta$$
) = - 1 ($\frac{\partial P}{\partial T}$) $\frac{1}{R}$

For ideal gas

$$\rho = \frac{\rho}{RT}$$
 $\Rightarrow \beta = \frac{1}{T}$

$$\beta = -\frac{1}{e} \frac{e_{\infty} - e}{T_{\infty} - T}$$
 (At const-P)

Buyoncy force & DP or DT (At const.P)

larger At => larger Fb => Stronger Free conv

Higher HT Rate

$$= \frac{4 d^2 u}{\partial \varphi} - \frac{\partial \varrho}{\partial z} - \frac{\varrho g}{\partial z}$$

The combined are
The combined New number
Nuc = (Nun + Nun) 4n Transverse
(mat i Nam) in
Opposing
Prosing
98000 hAs (Ts-To)
Jun. Pub
Boiled Convection
0000
9
© Soiling
formation of the boubbles is dependent on latent heat of vap, surface tension.
Evaporation Liq. Totalogo
Interface vapour
Boiling 60% RH, 20°c, water
Boiling evaporate 17
Boiling evaporatu /2 2-3 RPa - post
V.P = 124 14 kPa
golid liq. interface
Tg >> Tsat
lb = h L Ts - Tsat) = h DT excess (W/m2)
Pool boiling - No bulk motion of flow
Flow boiling - Forced convection induced
- Political Contraction
boiling.

hig g(ec-eg) const-depends on fluid and surface const. 2max = cor hig [19 Pr (PL-Pr)] 14 grad = E or (Tot- Toat) gran + 3 grad Cor - Depends on shape | material of the Internal Flow boiling External Internal Annular = 9, + 9, + 93