CS-200 - INTRODUCTION TO HUMAN-COMPUTER INTERACTION

Lecture 14 Evaluation

HYPOTHESIS TESTING

HYPOTHESISTESTING

- Make a prediction about the way users will perform with your design (a hypothesis)
- Test that prediction
- Helps design
 experiments and helps
 you answer research
 questions

HYPOTHESISTESTING

The use of statistical procedures to answer research questions

Typical research question (RQ):

Are tasks quicker to complete using System A or System B?

Typical Hypothesis (H):

System A is faster to complete a task than System B

HYPOTHESISTESTING

Null hypothesis:

There is no difference in the mean time to complete a task using System A vs. System B

Statistical tests seek to accept (sort of) or reject the null hypothesis i.e., a significant result means the null hypothesis is highly unlikely (see later in course)

ONEVSTWOTAILED

ONETAILED

Makes a one sided prediction

System A is faster to complete a task than System B

TWOTAILED

Makes a prediction but leaves it open as to which side it will fall on

One of the systems will be faster than the other

Independent variable (IV): what you are changing between iterations (e.g., interface, device, button layout etc.)

Dependent variable (DV): what you are measuring (e.g., task completion time, number of key presses, accuracy etc.)

We want to evaluate the effect of independent variable(s) on the dependent variable

INDEPENDENT

variable

In our example:

- System A is on a phone and System B is on a tablet. The app is identical on both systems.
- Independent variable: the screen size (i.e., phone or tablet)
- Dependent variable: time taken to complete a task

Control variable: a circumstance (not being tested) that is kept constant throughout (e.g., background colour etc)

Random variable: a circumstance that is allowed to vary randomly (e.g., experience using a particular system, sunlight in the room, etc.)

TASKS AND MEASURES

TASKS AND MEASURES

Tasks: What participants will do during the study

- Access a representative set of functions in your design
- Make sure this is enough to allow you to measure

Measures: How you will measure performance

- Data capture methods
- What is success? (linked to hypotheses)

MEASURING PERFORMANCE

- Quantitative performance methods
 - Time to complete a task
 - Time to complete a task after a specified time away from the product
 - Number and type of errors per task
 - Number of errors per unit of time
 - Number of users making a particular error
 - Number of users completing a task successfully
 - Number of navigations to online help or manuals

EXPERIMENTAL DESIGN

EXPERIMENTAL DESIGN

- Which participants for which conditions in the experiment?
 - The experience of participating in one condition will affect the performance of those participants in other conditions
 - · Can avoid training effects by careful experimental design:
 - Between-groups design
 - Within-groups design
 - Pairwise design

BETWEEN-GROUPS DESIGN

- Also known as between-subjects, or different-participant design
- A single group of participants is allocated randomly to each of the experimental conditions
- · So, different participants perform in different conditions

BETWEEN-GROUPS DESIGN

Condition I

Condition 2

- · Also known as within-subjects, or same-participant design
- All participants perform in all conditions
- · So, only half the number of participants are needed

Condition I

Condition 2

- Need to think about bias (i.e., everyone using the designs in the same order could lead to learning effects.)
- So, split the participants into groups and rotate the order of designs for each group
- Counterbalance if possible. For example:
 - 2 designs == 2 possible order combinations
 - 3 designs == 6 possible order combinations

Two designs (2x1 combinations)

Group I

Group 2

Three designs (3x2x1 combinations)

Group I

Group 2

Group 3

Group 4

Group 5

Group 6

Four designs (4x3x2x1 combinations)

Group I	A	В	C	D
Group 2	А	В	D	С
Group 3	Α	C	В	D
Group 4	А	C	D	В
Group 5	А	D	В	C
Group 6	A	D	C	В
Group 7	В	A	С	D
Group 8	В	A	D	С
Group 9	В	C	A	D
Group 10	В	C	D	A
Group II	В	D	Α	С
Group 12	В	D	С	A

```
Group 13
                         В
Group 14
Group 15
Group 16
                         A
Group 17
                         В
Group 18
                         Α
Group 19
Group 20
                         В
Group 21
Group 22
               В
                         Α
Group 23
Group 24
```

DATA GATHERING

DATA GATHERING TECHNIQUES

Covered this in previous lectures:

- Diary studies
- Interviews
- Questionnaires
- Observations
- Etc...

LOGGING

- Automatic logging of actions
- Easy to analyse (via scripts)
- But... watch out for privacy issues in longitudinal studies (later)

PERSONAL LOGGING

ETHICS AND CONSENT

INFORMED CONSENT

- Participants need to be informed about what they are letting themselves in for (i.e., what the study entails)
- They also need to sign a consent form stating they are happy to proceed
- Two copies: one for you and one for them

ETHICS

- Ethical approval required by the University when engaging with human participants
 - Bill of rights
 - Written or verbal instructions
 - Consent form
- Evaluated by the department's Ethics and Risk Assessment Committee:
 - Does the study protect participants' safety and personal data?
 - Are there any ethical or safety issues in its design?

INCENTIVES

It is common to provide participants with incentives to participate in a study

- Typically around £10 (gift voucher) per half hour
- Not a bribe we still want honest answers!

OBSERVATION EFFECTS

- Hard to observe without skewing results
 - Hawthorne effect
- Withdraw to be inconspicuous
- · Or build a relationship so presence is natural
 - Halo effect
- · Be explicit in what you are studying
 - Ethics

NEXTTIME

Evaluation

Data Analysis and Statistics