数B(ベクトルの成分の) ① ベクトル $\vec{\alpha}$ =(χ ,-1)、 \vec{b} =(2,-3)に対して、 $\vec{\alpha}$ +3 \vec{b} と \vec{b} - $\vec{\alpha}$ が平行になるように

実数次の値を定めよう。 ② $\overrightarrow{\alpha}$ =(2,1)、 \overrightarrow{b} =(-4,3)がある。実数 tを変化 させるとき、 \overrightarrow{C} = $\overrightarrow{\alpha}$ + t \overrightarrow{b} の 大きさの最小値と、 そのときのもの値を求めよう。

① ベクトレ $\vec{\alpha}$ =(χ ,-1)、 \vec{b} =(2,-3)に対して、 $\vec{\alpha}$ +3 \vec{b} と \vec{b} - $\vec{\alpha}$ が平行になるように 実数次の値を定めよう。 ② $\vec{\alpha}$ =(2,1)、 \vec{b} =(-4,3)がある。実数tを変化させるとき、 \vec{c} = $\vec{\alpha}$ +t \vec{b} の大きさの最小値と、 $2\vec{c}=(2,1)+t(-4,3)=(2-4t,1+3t)$ そのときのもの値を求めよう。 ① $\overrightarrow{K} + 3\overrightarrow{k} = (\chi, -1) + 3(2, -3) = (\chi + 6, -10)$ $|\overrightarrow{C}|^2 = (2 - 4t)^2 + (1 + 3t)^2$ $\vec{b} - \vec{\alpha} = (2, -3) - (\chi, -1) = (2 - \chi, -2)$ $(\chi+6,-10)=k(2-\chi,-2)$ 125(t-15)+4 J4 \(\chi + 6 = 2 k - k \chi \)
\(- 10 = -2 k \rightarrow k = 5 \)

た=一つとき最小値2

数B(ベクトルの成分の)

 $\chi + 6 = 10 - 5\chi$ $6\chi = 4 \rightarrow \chi = \frac{2}{3}$