

YEAR 12 MATHEMATICS METHODS SEMESTER ONE 2018 TEST 3 DIFFERENTIAL CALCULUS APPLICATIONS, DISCRETE RANDOM VARIABLES, BERNOULLI TRIALS AND BINOMIAL DISTRIBUTIONS

Thursday 12 th April	Name: SOLUTIONS

Time: 50 minutes Part A: $\frac{}{20}$ Part B: $\frac{}{30}$ Total: $\frac{}{50}$ %

- Answer all questions neatly in the spaces provided. Show all working.
- You are permitted to use the Formula Sheet for both sections, and an A4 page of notes, plus up to 3 permitted calculators in the Calculator Allowed section.

Topic	Confidence	
Further differentiations and applications		
The second derivative and applications of differentiation	Low Moderate High	
Discrete random variables		
General discrete random variables	← → Noderate High	
Bernoulli distributions	Low Moderate High	
Binomial distributions	<	

Self reflection (eg. comparison to target, content gaps, study and work habits etc)		

1. [8 marks]

The displacement, x cm, of a particle at time t seconds, moving along a horizontal track is described by the function $x = 5\cos(3t)$.

a) Determine the initial position and velocity of the particle.

$$x(0) = 5 \text{ cm}$$

 $x(0) = 5 \text{ cm}$
 $x(0) = 0 \text{ cm/s}$

[3]

b) Determine the exact time when the particle first turns around.

Let
$$\&= 0$$

 $-15\sin(3t) = 0$
 $\sin(3t) = 0$
 $3t = 0, \pi, 2\pi, ...$
 $t = 0, \frac{\pi}{3}, \frac{2\pi}{3}, ...$

First turns around when $t = \frac{\pi}{3}$ s

[2]

c) Determine the exact rate of change of speed of the particle when $t = \frac{\pi}{4}$ seconds.

$$= -45\cos(3t)$$

$$= \frac{\pi}{4} = -45\cos\left(\frac{3\pi}{4}\right)$$

$$= \frac{45\sqrt{2}}{2} \text{ cm/s}^2$$

2. [7 marks]

Jack was investigating the variance of binomial distributions for different probabilities and exploring the connection to calculus.

a) For a random variable Y, where $Y \sim \text{Bin}(5, 0.4)$, calculate the variance, Var(Y).

$$\sigma^2 = np(1-p)$$
$$= 5 \times 0.4 \times 0.6$$
$$= 1.2$$

[2]

- b) For the general random variable X, where $X \sim \text{Bin}(n, p)$,
 - i) Determine a function in terms of the probability p, for the variance, Var(X).

$$\sigma^2 = np(1-p)$$
$$= np - np^2$$

ii) Use calculus techniques to show that the maximum variance is achieved when p = 0.5. Justify that your result is a maximum.

Let
$$V = np - np^2$$
 $0 \le p \le 1$

$$\frac{dV}{dp} = n - 2np$$
Let $0 = n - 2np$

$$p = \frac{1}{2}$$

$$\frac{d^2V}{dp^2} = -2n$$

$$< 0 \ \forall n \in \mathfrak{c}^+$$
Hence max

3. [5 marks]

A discrete random variable X has the following properties:

- the expected value E(X) = 18
- the standard deviation $\sigma = \frac{3\sqrt{5}}{2}$.
- a) If the random variable is binomial, determine the number of trials and probability of success.

$$np = 18...[1]$$

$$np(1-p) = \left(\frac{3\sqrt{5}}{2}\right)^2 = \frac{45}{4}...[2]$$
sub [1] into [2]
$$18(1-p) = \frac{45}{4}$$

$$1-p = \frac{5}{8}$$

$$p = \frac{3}{8}$$

$$n = 48$$

[3]

b) Determine the expected value E(Y) and variance Var(Y) if Y is a random variable such that Y = 5 - 2X.

$$E(Y) = 5 - 2 \times 18$$
$$= -31$$
$$Var(Y) = (-2)^{2} \times \frac{45}{4}$$
$$= 45$$

4. [11 marks]

Consider the function $y = \frac{10 \ln(x)}{x^2}$.

a) Determine $\frac{dy}{dx}$ and its associated domain. Hence determine the exact location and nature

of the stationary point(s).

$$\frac{dy}{dx} = \frac{-(20\ln(x) - 10)}{x^3}, x > 0$$
Let $0 = \frac{-(20\ln(x) - 10)}{x^3}$

$$x = \sqrt{e}$$

$$\frac{d^2y}{dx^2} = \frac{60\ln(x) - 50}{x^4}$$

$$\frac{d^2y}{dx^2}\Big|_{x=\sqrt{e}} < 0 \text{ Hence max TP}$$

$$\left(\sqrt{e}, \frac{5}{e}\right)$$

_

b) Determine the exact location of any inflection points.

$$\frac{d^2y}{dx^2} = \frac{60\ln(x) - 50}{x^4}, \ x > 0$$
Let $0 = \frac{60\ln(x) - 50}{x^4}$

$$x = e^{\frac{5}{6}}$$

$$\left(e^{\frac{5}{6}}, \frac{25e^{-\frac{5}{3}}}{3}\right)$$

[3]

[5]

c) Sketch the graph of the function labelling key features (to 2 decimal places).

5. [9 marks]

Aaron and Brad are playing a tennis match. The match continues until one player wins a total of two (2) sets. Aaron estimates from past experience that his chance of winning any set against Brad, independent from any previous sets, is $\frac{3}{10}$.

Let the random variable X be the number of sets won by Aaron in the match.

a) Give a reason as to why X cannot be modelled by a binomial distribution.

Number of trials is not fixed.

[1]

b) Draw a tree diagram to show the possible outcomes of the match and the associated probabilities. Hence complete the probability density function for X in the table below, stating answers as fractions.

x	0	1	2
P(X=x)	$0.49 = \frac{49}{100}$	$0.294 = \frac{147}{500}$	$0.216 = \frac{27}{125}$

c) Determine the probability that Aaron wins the match, given he wins the first set.

$$\frac{0.09 + 0.063}{0.3} = 0.51$$

[2]

d) Calculate the expected value of $\,X\,$ as a decimal, and explain its meaning in the context of the question.

$$E(X) = 0 \times 0.49 + 1 \times 0.294 + 2 \times 0.216$$
$$= 0.726$$

Aaron can expect to win, on average, ~ 0.73 sets in each match he plays against Brad.

6. [7 marks]

Based on shipments of mobile phones to Australia in the last quarter of 2017, the Apple iPhone has a market share of around 37%ⁱ. Assume that every Australian has exactly one mobile phone.

A random survey of 20 people was conducted on mobile phone type. Showing appropriate probability notation, determine the probability, to three decimal places, that

$$X \sim Bin(20, 0.37)$$

a) Exactly six respondents had an iPhone.

$$P(X = 6) \approx 0.154$$

b) At least six respondents had an iPhone.

$$P(X \ge 6) \approx 0.809$$

c) No more than ten respondents had an iPhone, if it is known at least six had an iPhone.

$$P(X \le 10 \mid X \ge 6) = \frac{P(6 \le X \le 10)}{P(X \ge 6)}$$

\$\approx 0.904\$

7. [3 marks]

How many times should a fair die be rolled so that the probability of rolling exactly one six is the same as the probability of not rolling a six at all?

$$X \sim Bin\left(n, \frac{1}{6}\right)$$

$$P(X = 0) = P(X = 1)$$

$$\binom{n}{0} \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^n = \binom{n}{1} \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^{n-1}$$

$$\left(\frac{5}{6}\right)^n = n \times \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^{n-1}$$

$$\frac{5}{6} = \frac{n}{6}$$

$$n = 5$$

https://www.statista.com/statistics/436033/australia-smartphone-shipments-vendor-market-share/
https://www.statista.com/statistics/436033/australia-smartphone-snipments-vendor-market-snare/