Laboratorium Podstaw Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I	11	
Temat Laboratorium				Numer lab.
Twierdzenie Thevenina			2	
Skład grupy ćwiczeniowej oraz numery indek	sów			
Ewa Fengler(132219), Sebastian Maciejewski(132275), Jan Techner(132332)				
Uwagi			Ocena	

Cel

Celem przeprowadzanych doświadczeń jest zaznajomienie się z twierdzeniem Thevenina oraz jego zastosowaniem do pomiaru prądów w gałęziach.

1 Zadanie 1.

Rozpatrywany obwód wraz z wybranymi wartościami elementów.

2 Zadanie 2.

Wartości rezystorów użytych do zbudowania obwodu.

Lp.	R	Kod paskowy(KP)	Wartość odczytana z KP	Wartość zmierzona
1.	R_1	pomarańczowy, niebieski, brązowy, złoty	$360\Omega \pm 5\%$	$354,9\Omega$
2.	R_2	czerwony, czerwony, czarny, złoty	$220\Omega\pm5\%$	218Ω
3.	R_3	zielony, brązowy, brązowy, złoty	$510\Omega\pm5\%$	$499,9\Omega$
4.	R_4	brązowy, czarny, brązowy, złoty	$100\Omega \pm 5\%$	$97,5\Omega$

3 Zadanie 3.

Wyniki pomiarów dla twierdzenia Thevenina.

Lp.	U_{th}	R_{th}
1.	1,35V	$159,99\Omega$
2.	1,88V	$222,91\Omega$

4 Zadanie 4.

Obliczenie prądów dla badanego obwodu w gałęzi z rezystorem R_x w oparciu o twierdzenie Thevenina.

$$I_{R1} = \frac{U_{th1}}{R_{th1} + R_1} = \frac{1,35V}{159,99\Omega + 354,9\Omega} = 2,62mA$$

$$I_{R2} = \frac{U_{th2}}{R_{th2} + R_2} = \frac{1,88V}{222,91\Omega + 218\Omega} = 4,26mA$$

5 Zadanie 5.

Zestawienie wyników z poprzednich zadań.

Lp.	U_{th}	R_{th}	I_{Rx}
1.	1,35V	$159,99\Omega$	2,62mA
2.	1,88V	$222,91\Omega$	4,26mA

6 Zadanie 6.

Analityczne obliczenie wartości szukanych prądów.

Korzystając z I i II prawa Kirchoffa otrzymujemy dla danego obwodu następujący układ równań:

$$\begin{cases} V_1 &= IR_4 + I_2R_2 + JR_3 \\ V_1 &= IR_4 + I_1R_1 + IR_3 \\ I_1 + I_2 &= I \end{cases}$$

$$\begin{cases} 0 &= I_2R_2 - I_1R_1 \\ I_1 + I_2 &= I \\ 5V &= IR_4 + I_1R_1 + IR_3 \end{cases}$$

$$\begin{cases} I_1 R_1 &= (I - I_1) R_2 \\ I_1 + I_2 &= I \\ 5V &= I R_4 + (I - I_1) R_2 + I R_3 \end{cases}$$

$$R_Z = R_4 + \frac{R_2 R_1}{R_1 + R_2} + R_3 = 610 = \frac{220*360}{220=360} = 747\Omega$$

$$R = \frac{U}{I}$$
 \Rightarrow $I = \frac{U}{RZ} = \frac{5V}{747\Omega} = 6,69mA = \mathbf{0},00669\mathbf{A}$

$$5V = IR_4 + I_2R_2 + IR_3$$

$$5V = IR_4 + I_1R_1 + IR_3$$

$$\frac{5V - I(R_4 + R_3)}{R_2} = I_2 = 4,177 mA$$

$$\frac{5V - I(R_4 + R_3)}{R_1} = I_1 = 2,55mA$$

7 Zadanie 7.

Zestawienie danych otrzymanych w wyniku obliczeń z danymi pomiarowymi.

Lp.	$I_{Rx}(\mathbf{z} \mathbf{tw. Thevenina})$	$I_{Rx}(\mathbf{z} \ \mathbf{oblicze\acute{n}})$
1.	2,62 <i>mA</i>	2,55mA
2.	4,26mA	4,177 <i>mA</i>

8 Wnioski

Bibliografia

W trakcie przeprowadzania doświadczeń i pisania sprawozdania zespół korzystał głównie z materiałów ze strony http://mariusznaumowicz.ddns.net/materialy.html oraz z wiedzy własnej.