Sigma Protocols

September 3, 2024

Distributed Lab

Plan

Introduction

Schnorr IP

 Σ -Protocols

Examples

Coding Time!

Introduction

INTRODUCTION

Recap on Interactive Proofs

- **Interactive proofs** allows practically prover \mathcal{P} to convince the verifier \mathcal{V} that some statement is true.
- **Soundness** ensures that the prover cannot cheat the verifier, while **zero-knowledge** that the verifier learns nothing about the witness.
- **Argument of knowledge** ensures that the prover also "knows" the witness (that is, exists some extractor \mathcal{E} that, acting as an admin, can extract the witness).
- If verifier's messages are random values, the protocol is **public-coin**.
- Any public-coin protocol can be transformed into a non-interactive proof using Fiat-Shamir heuristic.

Announcement

Today, we will build and code our first non-interactive proof system using the Fiat-Shamir heuristic based on **Sigma protocols**!

Motivation

In many cases, we need to prove relatively trivial statements without revealing the witness:

- "I know the discrete log of a point $P \in E(\mathbb{F}_p)$ ".
- "I know the representation of a point $P \in E(\mathbb{F}_p)$, that is $(\alpha, \beta) \in \mathbb{Z}_q^2$ such that $P = [\alpha]G + [\beta]H$ ".
- "I know the *e*th modular root w of $x \in \mathbb{Z}_N^{\times}$ (that is, $w^e = x$)". For e = 2, see previous lecture.
- "I know that $(P, Q, R) \in E(\mathbb{F}_p)^3$ is a Diffie-Hellman triplet".

 Σ -protocols are also fundamentally similar to Bulletproofs!

Note

Everything that has a natural "homomorphic"/discrete-log-like structure can be proven using Sigma (Σ) protocols!

Schnorr IP

Problem Statement

Suppose G is a cyclic group of order q with a generator g. Then, the relation and language being considered are:

$$\mathcal{R} = \{(u, \alpha) \in \mathbb{G} \times \mathbb{Z}_q : u = g^{\alpha}\}, \ \mathcal{L}_{\mathcal{R}} = \{u \in \mathbb{G} : \exists \alpha \in \mathbb{Z}_q : u = g^{\alpha}\}$$

Problem #1

 \mathcal{P} wants to convince \mathcal{V} that it knows the discrete log of $u \in \mathcal{L}_{\mathcal{R}}$. That is, he knows α such that $(u, \alpha) \in \mathcal{R}$.

Problem #2

Why cannot we simply send α ? Because we do not want to reveal the witness! That is why we need a zero-knowledge non-interactive argument of knowledge (zk-NARK).

Protocol Flow

Protocol Flow

Definition

The Schnorr interactive identification protocol $\Pi_{Sch} = (Gen, \mathcal{P}, \mathcal{V})$ with a generation function Gen and prover \mathcal{P} and verifier \mathcal{V} is defined as:

- Gen(I^{λ}): Take $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and $u \leftarrow g^{\alpha}$. **Output:** verification key vk := u, and secret key $sk := \alpha$.
- The protocol between $(\mathcal{P}, \mathcal{V})$ is run as follows:
 - ∘ \mathcal{P} computes $r \leftarrow \mathbb{Z}_q^{\times}$, $a \leftarrow g^r$ and sends a to \mathcal{V} .
 - o V sends a random challenge $e \stackrel{R}{\leftarrow} \mathbb{Z}_q$ to \mathcal{P} .
 - ∘ P computes $\sigma \leftarrow r + \alpha e \in \mathbb{Z}_q$ and sends σ to V.
 - V accepts if $g^{\sigma} = a \cdot u^{e}$, otherwise it rejects.

Question

V only sends a random scalar to P. How to turn this into a non-interactive proof?

Applying Fiat-Shamir Transformation

Reminder

Suppose prover had messages $(m_1, m_2, ..., m_n)$ before verifier sends a challenge c. If x is a public statement, it suffices to choose $c \leftarrow H(x, m_1, \dots, m_n)$ without any interaction.

Definition (The Schnorr non-interactive identification protocol)

Define $\Gamma_{Sch} := (Gen, Prove, Verify)$:

- Gen(1 $^{\lambda}$): **Output** $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and $u \leftarrow g^{\alpha}$.
- Prove: on input (u, α) do:
 - Compute $r \leftarrow \mathbb{Z}_a^{\times}$, $a \leftarrow g^r$.
 - Compute challenge $e \leftarrow H(u, a)$.
 - Computes $\sigma \leftarrow r + \alpha e$. Output (a, σ) .
- Verify: accept iff $g^{\sigma} = a \cdot u^{e}$.

Schnorr's Signature Scheme

It easy to turn the non-interactive identification protocol into a signature scheme! Simply regard (u, m) as a public statement with a message m!

Definition

The Schnorr Signature Scheme is $\Sigma_{Sch} = (Gen, Sign, Verify)$, where:

- Gen(1^{λ}): **Output** $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and $u \leftarrow g^{\alpha}$.
- Sign(m, sk): The signer computes $r \leftarrow \mathbb{Z}_q^{\times}$, $a \leftarrow g^r$, $e \leftarrow H(u, m, a)$, $\sigma \leftarrow r + \alpha e$ and outputs (a, σ) .
- Verify((a, σ) , m, pk): The verifier checks if $g^{\sigma} = a \cdot u^{e}$ for $e \leftarrow H(u, m, a)$.

Note: In **green** we marked the only difference between the identification and signature protocols.

Σ -Protocols

Generalization

Now, can we generalize the Schnorr protocol to any relation \Re ?

Well, not for any, but for a large class of relations called **Sigma protocols**!

Definition

Let $\mathcal{R} \subset \mathcal{X} \times \mathcal{W}$ be an effective relation. A **Sigma protocol** for \mathcal{R} is an interactive protocol $(\mathcal{P}, \mathcal{V})$ that satisfies the following properties:

- In the beginning, \mathcal{P} computes a **commitment** a and sends it to \mathcal{V} .
- V chooses a random **challenge** $c \in \mathbb{C}$ from the challenge space \mathbb{C} and sends it to \mathbb{P} .
- Upon receiving c, \mathcal{P} computes the response z and sends it to \mathcal{V} .
- \mathcal{V} outputs either accept or reject based on the **conversation** (a, c, z).

Definition

(a, c, z) is an **accepting conversation** if \mathcal{V} outputs accept on this tuple.

Why Σ ?

Figure: Why Σ -protocols are called so.

Special Soundness

Definition (Special Soundness)

Let $(\mathcal{P}, \mathcal{V})$ be a Σ -protocol for $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$. We that that $(\mathcal{P}, \mathcal{V})$ is **special sound** if there exists a witness extractor \mathcal{E} such that, given statement $x \in \mathcal{X}$ and two accepting conversations (a, c, z) and (a, c', z') (where $c \neq c'$)^a, the extractor can always efficiently compute the witness w such that $(x, w) \in \mathcal{R}$.

^aNotice that initial commitments in both conversations are the same!

Example

The Schnorr protocol is special sound because, given two accepting conversations (a, e, σ) and (a, e', σ') , we can compute the witness α . You can verify that $\alpha = \Delta \sigma/\Delta e$ for $\Delta \sigma = \sigma' - \sigma$ and $\Delta e = e' - e$ suffices.

Okamoto's Protocol

Again, let \mathbb{G} be a cyclic group of prime order q with a generator $g \in \mathbb{G}$ and let $h \in \mathbb{G}$ an arbitrary group element.

Definition

For $u \in \mathbb{G}$, a **representation** relative to g and h is a pair $(\alpha, \beta) \in \mathbb{Z}_q \times \mathbb{Z}_q$ such that $u = g^{\alpha}h^{\beta}$.

Remark

Notice that for the given u there are exactly q representations relative to g and h. Indeed, $\forall \beta \in \mathbb{Z}_q \ \exists ! \alpha \in \mathbb{Z}_q : g^{\alpha} = uh^{-\beta}$.

Question

How do we actually prove that \mathcal{P} knows the representation of u?

$$\mathcal{R} = \left\{ (u, (\alpha, \beta)) \in \mathbb{G} \times \mathbb{Z}_q^2 : u = g^{\alpha} h^{\beta} \right\}$$

Okamoto's Protocol Flow

Definition (Okamoto's Identification Protocol)

Okamoto's Protocol consists of two algorithms: $(\mathcal{P}, \mathcal{V})$, where the prover is assumed to know $(u, (\alpha, \beta)) \in \mathcal{R}$ defined above. The protocol is defined as follows:

- 1. \mathcal{P} computes $\alpha_r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $\beta_r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $u_r \leftarrow g^{\alpha_r} h^{\beta_r}$ and sends commitment u_r to \mathcal{V} .
- 2. V samples the challenge $c \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and sends c to \mathcal{P} .
- 3. \mathcal{P} computes $\alpha_z \leftarrow \alpha_r + \alpha c$, $\beta_z \leftarrow \beta_r + \beta c$ and sends $\mathbf{z} = (\alpha_z, \beta_z)$.
- 4. V checks whether $g^{\alpha_z}h^{\beta_z}=u_ru^c$ and accepts or rejects the proof.

Announcement

We will code the non-interactive Okamoto's protocol in the next section! Stay tuned!

Okamoto's Protocol Correctness

Theorem

Okamoto's Protocol is a Σ -protocol for the relation $\mathbb R$ which is Honest-Verifier Zero-Knowledge (HVZK).

Part of the proof. Again, let us show *correctness* and *special soundness* without honest-verifier zero-knowledge properties.

Completeness. Suppose indeed that $(u, (\alpha, \beta)) \in \mathbb{R}$. Then, the verification condition can be written as follows:

$$g^{\alpha_z}h^{\beta_z} = g^{\alpha_r + \alpha_c}h^{\beta_r + \beta_c} = g^{\alpha_r}g^{\alpha_c}h^{\beta_r}h^{\beta_c} = \underbrace{(g^{\alpha_r}h^{\beta_r})}_{=u_x} \cdot \underbrace{(g^{\alpha}h^{\beta})}_{=u}^c = u_ru^c$$

Okamoto's Protocol Special Soundness

Special Soundness. Suppose we are given two accepting conversations: $(u_r, c, (\alpha_z, \beta_z))$ and $(u_r, c', (\alpha'_z, \beta'_z))$ and we want to construct an extractor \mathcal{E} which would give us a witness (α, β) . In this case, we have the following holding:

$$g^{\alpha_z}h^{\beta_z}=u_ru^c$$
, $g^{\alpha'_z}h^{\beta'_z}=u_ru^{c'}$

We can divide the former by the latter to obtain:

$$g^{\alpha_z-\alpha'_z}h^{\beta_z-\beta'_z}=u^{c-c'}=g^{\alpha(c-c')}h^{\beta(c-c')},$$

from which the extractor \mathcal{E} can efficiently compute witness as follows: $\alpha \leftarrow (\alpha_z - \alpha_z')/(c - c')$ and $\beta \leftarrow (\beta_z - \beta_z')/(c - c')$.

Diffie-Hellman Triplets

Suppose we are given the cyclic group $\mathbb G$ or prime order q and generator $g \in \mathbb G$.

Definition

A triplet $(u, v, w) \in \mathbb{G}^3$ is a **Diffie-Hellman triplet** if $\exists \alpha, \beta \in \mathbb{Z}_q : u = g^{\alpha}, v = g^{\beta}, w = g^{\alpha\beta}$.

Alternative DH-triple Definition

$$(u, v, w)$$
 is a DH-triplet iff $\exists \beta \in \mathbb{Z}_q : v = g^{\beta}$, $w = u^{\beta}$.

Now, this makes it easier to define the relation $\ensuremath{\mathcal{R}}$ for the Chaum-Pedersen protocol:

$$\mathcal{R} = \left\{ ((u, v, w), \beta) \in \mathbb{G}^3 \times \mathbb{Z}_q : v = g^{\beta} \wedge w = u^{\beta} \right\}$$

Chaum-Pedersen Protocol

Definition (Chaum-Pedersen Protocol)

Chaum-Pedersen Protocol consists of two algorithms: $(\mathcal{P}, \mathcal{V})$, where the prover is assumed to know $(\beta, (u, v, w)) \in \mathcal{R}$ defined above. The protocol is defined as follows:

- 1. \mathcal{P} computes $\beta_r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $\nu_r \stackrel{R}{\leftarrow} g^{\beta_r}$, $w_r \leftarrow u^{\beta_r}$ and sends (u_r, w_r) to \mathcal{V} .
- 2. V samples the challenge $c \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and sends c to \mathcal{P} .
- 3. \mathcal{P} computes $\beta_z \leftarrow \beta_r + \beta c$ and sends β_z to \mathcal{V} .
- 4. V checks whether two conditions hold: $g^{\beta_z} = v_r v^c$ and $u^{\beta_z} = w_r w^c$, and accepts or rejects the proof accordingly.

Theorem

Chaum-Pedersen Protocol is a Σ -protocol for the relation $\mathbb R$ which is Honest-Verifier Zero-Knowledge (HVZK).

Homomorphism

Let us formulate the core objects that we will use in this section:

- $(\mathbb{H}, +)$ is a finite abelian input group.
- (\mathbb{T}, \times) is a finite abelian output group.
- $\psi: \mathbb{H} \to \mathbb{T}$ is a hard-to-invert homomorphism.
- $\mathfrak{F} = \operatorname{Hom}(\mathbb{H}, \mathbb{T})$ is a set of all homomorphisms from \mathbb{H} to \mathbb{T} .

Reminder

Homomorphism $\psi:\mathbb{H}\to\mathbb{T}$ is a function, satisfying the following property:

$$orall h_{\scriptscriptstyle 1}$$
 , $h_{\scriptscriptstyle 2} \in \mathbb{H}: \psi(h_{\scriptscriptstyle 1}+h_{\scriptscriptstyle 2}) = \psi(h_{\scriptscriptstyle 1}) \psi(h_{\scriptscriptstyle 2})$

Note

If between input and output we have an easy-to-compute and hard-to-invert homomorphism, we can use Sigma protocols to prove pre-images of this homomorphism!

Problem Statement

Define the following relation:

$$\mathcal{R} = \{((t, \psi), h) \in (\mathbb{T} \times \mathcal{F}) \times \mathbb{H} : \psi(h) = t\}$$

 \mathcal{P} wants to convince \mathcal{V} that he knows witness h to the statement (t, ψ) .

Example

Now, why does this generalize the previous protocols? Well, let us consider all previous examples:

- **Schnorr Protocol:** Here we have $\mathbb{H} = \mathbb{Z}_q$, $\mathbb{T} = \mathbb{G}$, and $\psi : \mathbb{Z}_q \to \mathbb{G}$ is defined as $\psi(\alpha) = g^{\alpha}$. Moreover, here ψ is an isomorphism!
- **Okamoto Protocol:** Here we have $\mathbb{H} = \mathbb{Z}_q^2$, $\mathbb{T} = \mathbb{G}$, and $\psi : \mathbb{Z}_q^2 \to \mathbb{G}$ is defined as $\psi(\alpha, \beta) = g^{\alpha} h^{\beta}$.
- Chaum-Pedersen Protocol: Here we have $\mathbb{H} = \mathbb{Z}_q$, $\mathbb{T} = \mathbb{G}^2$, and $\psi : \mathbb{Z}_q \to \mathbb{G}^2$ is defined as $\psi(\beta) = (g^{\beta}, u^{\beta})$.

Sigma Protocol

Definition (Sigma Protocol for the pre-image of a homomorphism)

The protocol consists of two algorithms: $(\mathcal{P}, \mathcal{V})$, where the prover is assumed to know the witness $h \in \mathbb{H}$ defined above. The protocol is defined as follows:

- 1. \mathcal{P} computes $h_r \stackrel{R}{\leftarrow} \mathbb{H}$, $t_r \leftarrow \psi(h_r) \in \mathbb{T}$ and sends t_r to the verifier \mathcal{V} .
- 2. V samples the challenge $c \stackrel{R}{\leftarrow} \mathbb{C} \subset \mathbb{Z}$ from the challenge space and sends c to \mathbb{P} .
- 3. \mathcal{P} computes $h_z \leftarrow h_r + h \cdot c$ and sends h_z to \mathcal{V} .
- 4. V checks whether $\psi(h_z) = t_r t^c$, and accepts or rejects the proof.

Theorem

Such protocol is a Σ -protocol for the relation $\mathbb R$ which is Honest-Verifier Zero-Knowledge (HVZK).

Combining Σ -Protocols

One of the features (which we are not going to delve into) is the ability to combine Σ -protocols to prove more complex statements. Namely,

- Given two relations \mathcal{R}_0 and \mathcal{R}_1 , we can prove that the prover knows witnesses for both relations.
- Given two relations \mathcal{R}_0 and \mathcal{R}_1 , we can prove that the prover knows a witness for at least one of the relations.

Example

 \mathcal{P} can prove that he either knows the discrete log of u or the representation of u relative to g and h. Moreover, \mathcal{V} does not know which of the two statements \mathcal{P} is proving.

Coding Time!

Methodology

Reminder

Suppose prover had messages $(m_1, m_2, ..., m_n)$ before verifier sends a challenge c. If x is a public statement, it suffices to choose $c \leftarrow H(x, m_1, ..., m_n)$ without any interaction.

Let us turn **Okamoto's Protocol** into a non-interactive proof using the Fiat-Shamir heuristic!

Reminder: Okamoto's Identification Protocol

- 1. \mathcal{P} computes $\alpha_r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $\beta_r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $u_r \leftarrow g^{\alpha_r} h^{\beta_r}$ and sends commitment u_r to \mathcal{V} .
- 2. V samples the challenge $c \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and sends c to \mathcal{P} .
- 3. \mathcal{P} computes $\alpha_z \leftarrow \alpha_r + \alpha c$, $\beta_z \leftarrow \beta_r + \beta c$ and sends $\mathbf{z} = (\alpha_z, \beta_z)$.
- 4. V checks whether $g^{\alpha_z}h^{\beta_z}=u_ru^c$ and accepts or rejects the proof.

Non-Interactive Okamoto Protocol

Okamoto's Non-Interactive Identification Protocol

Now, we apply the Fiat-Shamir Transformation.

- $\operatorname{\mathsf{Gen}}(\mathtt{I}^\lambda)$: On input $(u,(\alpha,\beta))\in \mathbb{G}\times \mathbb{Z}_q^2$,
 - 1. Sample α_r , $\beta_r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and compute $u_r \leftarrow g^{\alpha_r} h^{\beta_r}$.
 - 2. Using the hash function $H : \mathbb{G} \times \mathbb{G} \to \mathcal{C}$, compute $c \leftarrow H(u, u_r)$.
 - 3. Compute $\alpha_z \leftarrow \alpha_r + \alpha c$, $\beta_z \leftarrow \beta_r + \beta c$ and publish (u_r, α_z, β_z) as a proof π .
- Verify: Upon receiving statement u and a proof $\pi = (u_r, \alpha_z, \beta_z)$, the verifier:
 - 1. Recomputes the challenge *c* using the hash function.
 - 2. Accepts if and only if $g^{\alpha_z}h^{\beta_z}=u_ru^c$.

https://github.com/ZKDL-Camp/lecture-7-sigma

Thank you for your attention!