In [17]: import sys !{sys.executable} -m pip install wordcloud Collecting wordcloud Using cached wordcloud-1.8.1.tar.gz (220 kB) Requirement already satisfied: numpy>=1.6.1 in /usr/local/lib/python3.8/site-packages (from wordcloud) (1.19.4)Requirement already satisfied: pillow in /usr/local/lib/python3.8/site-packages (from wordcloud) (8.0. Requirement already satisfied: matplotlib in /usr/local/lib/python3.8/site-packages (from wordcloud) (3.3.3)Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/site-packages (from matplotlib ->wordcloud) (0.10.0) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.8/site-packages (from ma tplotlib->wordcloud) (2.8.1) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/site-packages (from matpl otlib->wordcloud) (1.3.1) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.8/si te-packages (from matplotlib->wordcloud) (2.4.7) Requirement already satisfied: six in /usr/local/lib/python3.8/site-packages (from cycler>=0.10->matpl otlib->wordcloud) (1.15.0) Building wheels for collected packages: wordcloud Building wheel for wordcloud (setup.py) ... done Created wheel for wordcloud: filename=wordcloud-1.8.1-cp38-cp38-macosx 10 15 x86 64.whl size=160316 sha256=5f994285342d96d548d6c0f70e5f5a922d0c888fd301e182365ab2bf39e9a6e3 Stored in directory: /Users/binayprasannajena/Library/Caches/pip/wheels/4d/3f/0d/a2ba9b7895c9f1be890 18b3141c3df3d4f9c786c882ccfbc3b Successfully built wordcloud Installing collected packages: wordcloud

Successfully installed wordcloud-1.8.1

```
In [18]: import numpy as np
         import pandas as pd
         # data structures and operations for manipulating numerical tables and time series
         import matplotlib.pyplot as plt
         # plotting
         import plotly.express as px
         # graph
         import plotly.graph_objects as go
         # graph
         import seaborn as sns
         # t-test
         from scipy import stats
         # regression
         from sklearn import datasets, linear model
         from sklearn.linear model import LinearRegression
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
         # Word Cloud
         from wordcloud import WordCloud
```

In [19]: data=pd.read_csv('DataAnalyst.csv')

In [20]: data.head(2)

Out[20]:

	Unnamed: 0	Job Title	Salary Estimate	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership
0	0	Data Analyst, Center on Immigration and Justic	37 <i>K</i> -66K (Glassdoor est.)	Are you eager to roll up your sleeves and harn	3.2	Vera Institute of Justice\n3.2	New York, NY	New York, NY	201 to 500 employees	1961	Nonprofit Organization
1	1	Quality Data Analyst	37 <i>K</i> -66K (Glassdoor est.)	Overview\n\nProvides analytical and technical	3.8	Visiting Nurse Service of New York\n3.8	New York, NY	New York, NY	10000+ employees	1893	Nonprofit Organization

In [21]: data.describe(include='all')

Out[21]:

	Unnamed: 0	Job Title	Salary Estimate	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	I
count	2253.0000	2253	2253	2253	2253.000000	2252	2253	2253	2253	2253.000000	2253	
unique	NaN	1272	90	2253	NaN	1513	253	483	9	NaN	15	
top	NaN	Data Analyst	42 <i>K</i> – 76 <i>K</i> (Glassdoor est.)	Square builds common business tools in unconve	NaN	Staffigo Technical Services, LLC\n5.0	New York, NY	New York, NY	51 to 200 employees	NaN	Company - Private	
freq	NaN	405	57	1	NaN	58	310	206	421	NaN	1273	
mean	1126.0000	NaN	NaN	NaN	3.160630	NaN	NaN	NaN	NaN	1398.522858	NaN	
std	650.5294	NaN	NaN	NaN	1.665228	NaN	NaN	NaN	NaN	901.929251	NaN	
min	0.0000	NaN	NaN	NaN	-1.000000	NaN	NaN	NaN	NaN	-1.000000	NaN	
25%	563.0000	NaN	NaN	NaN	3.100000	NaN	NaN	NaN	NaN	-1.000000	NaN	
50%	1126.0000	NaN	NaN	NaN	3.600000	NaN	NaN	NaN	NaN	1979.000000	NaN	
75%	1689.0000	NaN	NaN	NaN	4.000000	NaN	NaN	NaN	NaN	2002.000000	NaN	
max	2252.0000	NaN	NaN	NaN	5.000000	NaN	NaN	NaN	NaN	2019.000000	NaN	

Data Cleansing

```
In [22]: # Check for missing values
         def missing values table(df):
             # number of missing values
             mis val = df.isnull().sum()
             # % of missing values
             mis val percent = 100 * mis val / len(df)
             # make table # axis '0' concat along index, '1' column
             mis val table = pd.concat([mis val,mis val percent],axis=1)
             # rename columns
             mis val table ren columns = mis val table.rename(
                 columns = {0:'Missing Values',1:'% of Total Values'})
             # sort by column
             mis val table ren columns = mis val table ren columns[mis val table ren columns.iloc[:,1]!=0].sort v
                 '% of Total Values', ascending=False).round(1) #Review
             print("Your selected datset has "+str(df.shape[1])+" columns and "+str(len(df))+" observations.\n"
                  "There are "+str(mis val table ren columns.shape[0])+" columns that have missing values.")
             # return the dataframe with missing info
             return mis val table ren columns
         missing values table(data)
```

Your selected datset has 16 columns and 2253 observations. There are 1 columns that have missing values.

Out[22]:

Missing Values % of Total Values

Company Name 1 0.0

```
In [23]: data['Easy Apply'].value_counts()
```

Out[23]: -1 2173 True 80

Name: Easy Apply, dtype: int64

```
In [24]: data['Competitors'].value_counts()
Out[24]: -1
                                                                   1732
                                                                     14
         Robert Half, Insight Global
                                                                     14
         Adecco, Manpower
                                                                     10
         TEKsystems, Insight Global, Accenture
         Artech Information Systems, Mindlance, Tech Mahindra
                                                                     10
         Attain, Deloitte, Booz Allen Hamilton
                                                                      1
         TEKsystems, CGI, SDLC Partners
                                                                      1
         Fiserv, First Data, Jack Henry & Associates
                                                                      1
                                                                      1
         Bloomreach
         Intercontinental Exchange, Euronext, Nasdag
                                                                      1
         Name: Competitors, Length: 291, dtype: int64
```

we see values -1, '-1.0', '-1'. these are garbage /null kind of values. we need to clean these up too

```
In [27]: # Replace -1 or -1.0 or '-1' to NaN
    data=data.replace(-1,np.nan)
    data=data.replace(-1.0,np.nan)
    data=data.replace('-1',np.nan)
```

let's now check missing values again

```
In [28]: missing values table(data)
```

Your selected datset has 16 columns and 2253 observations. There are 12 columns that have missing values.

Out[28]:

	Missing Values	% of Total Values
Easy Apply	2173	96.4
Competitors	1732	76.9
Founded	660	29.3
Industry	353	15.7
Sector	353	15.7
Rating	272	12.1
Headquarters	172	7.6
Size	163	7.2
Type of ownership	163	7.2
Revenue	163	7.2
Salary Estimate	1	0.0
Company Name	1	0.0

we see now there are more missing value columns than before. most positoons don't suport "Easy Apply" function. competitor info is missing for many.. and so on...

```
In [30]: #Remove '\n' from Company Name.
data['Company Name'].str.split('\n', 1).str=data['Company Name'].str.split('\n', 1).str
# 1st column after split, 2nd column after split (delete when '_')
# string.split(separator, maxsplit) maxsplit default -1, which means all occurrances
```

```
In [36]: # Split salary into two columns min salary and max salary.
data['Salary Estimate'].str.split('(', 1).str=data['Salary Estimate'].str.split('(', 1).str
```

```
In [44]: # Split salary into two columns min salary and max salary.
         data['Min Salary'],data['Max Salary']=data['Salary Estimate'].str.split('-').str
         #data['Min Salary']=data['Min Salary'].str.strip(' ').str.lstrip('$').str.rstrip('K').fillna(0).astype(
         #data['Max Salary']=data['Max Salary'].str.strip(' ').str.lstrip('$').str.rstrip('K').fillna(0).astype(
         # 1strip is for removing leading characters
         # rstrip is for removing rear characters
         <ipython-input-44-30d2d575599d>:2: FutureWarning: Columnar iteration over characters will be deprecate
         d in future releases.
           data['Min Salary'],data['Max Salary']=data['Salary Estimate'].str.split('-').str
In [46]: data['Min Salary']=data['Min Salary'].str.strip(' ').str.lstrip('$').str.rstrip('K').fillna(0).astype(
In [47]: data['Max_Salary']=data['Max_Salary'].str.strip(' ').str.lstrip('$').str.rstrip('K').fillna(0).astype(
In [48]: data['Min_Salary']
Out[48]: 0
                 37
                 37
         2
                 37
         3
                 37
                 37
                  . .
         2248
                 78
         2249
                 78
         2250
                 78
         2251
                 78
         2252
                 78
         Name: Min Salary, Length: 2253, dtype: int64
```

```
In [49]: data['Max_Salary']
Out[49]: 0
                  66
         1
                  66
         2
                  66
         3
                  66
                  66
         2248
                 104
         2249
                 104
         2250
                 104
         2251
                 104
         2252
                 104
         Name: Max_Salary, Length: 2253, dtype: int64
In [50]: #Drop the original Salary Estimate column
         data.drop(['Salary Estimate'],axis=1,inplace=True)
In [51]: # To estimate the salary with regression and other analysis, better come up with one number: Est Salary
         data['Est_Salary']=(data['Min_Salary']+data['Max_Salary'])/2
In [52]: # Create a variable for how many years a firm has been founded
         data['Years Founded'] = 2020 - data['Founded']
```

In [53]: # let's take final look at data before analysis
 data.head(2)

Out[53]:

	Unnamed: 0	Job Title	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industry	8
0	0	Data Analyst, Center on Immigration and Justic	Are you eager to roll up your sleeves and harn	3.2	Vera Institute of Justice	New York, NY	New York, NY	201 to 500 employees	1961.0	Nonprofit Organization	Social Assistance	
1	1	Quality Data Analyst	Overview\n\nProvides analytical and technical	3.8	Visiting Nurse Service of New York	New York, NY	New York, NY	10000+ employees	1893.0	Nonprofit Organization	Health Care Services & Hospitals	I

Exploratory Analysis

Salary Distribution of All Data Analysts

```
In [55]: plt.figure(figsize=(13,5))
    sns.set() #style==background
    sns.displot(data['Min_Salary'], color="b")
    sns.displot(data['Max_Salary'], color="r")

plt.xlabel("Salary ($'000)")
    plt.legend({'Min_Salary':data['Min_Salary'],'Max_Salary':data['Max_Salary']})
    plt.title("Distribution of Min & Max Salary",fontsize=19)
    plt.xlim(0,210)
    plt.xticks(np.arange(0, 210, step=10))
    plt.tight_layout()
    plt.show()
```

<Figure size 936x360 with 0 Axes>


```
In [56]: plt.figure(figsize=(13,5))
    sns.set() #style==background
    sns.histplot(data['Min_Salary'], color="b")
    sns.histplot(data['Max_Salary'], color="r")

plt.xlabel("Salary ($'000)")
    plt.legend({'Min_Salary':data['Min_Salary'],'Max_Salary':data['Max_Salary']})
    plt.title("Distribution of Min & Max Salary",fontsize=19)
    plt.xlim(0,210)
    plt.xticks(np.arange(0, 210, step=10))
    plt.tight_layout()
    plt.show()
```


- Based on the modes of distribution, minimum salary is 45k and maximum is 75k
- however the spread is more incase of max_salary (it has a longer tail)

```
In [57]: min_max_view = data.sort_values(['Min_Salary','Max_Salary'],ascending=True).reset_index(drop=True).reset
         min_max_view = min_max_view.drop([0])
In [58]: f, (ax_box, ax_line) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios": (0.05,1)},figsiz
         mean=min max view['Est Salary'].mean()
         median=min max view['Est Salary'].median()
         bpv = sns.boxplot(y='Est_Salary',data=min_max_view, ax=ax_box).set(ylabel="Est. Salary ($'000)")
         ax box.axhline(mean, color='k', linestyle='--')
         ax box.axhline(median, color='y', linestyle='-')
         lp1 = sns.lineplot(x='index',y='Min Salary',data=min max view, color='b')
         lp2 = sns.lineplot(x='index',y='Max Salary',ax=ax line,data=min max view, color='r')
         ax line.axhline(mean, color='k', linestyle='--')
         ax_line.axhline(median, color='y', linestyle='-')
         plt.legend({'Min Salary':data['Min Salary'],'Max Salary':data['Max Salary'],'Mean':mean,'Median':median]
         plt.title("Salary Estimates of Each Analyst", fontsize=19)
         plt.xlabel("Observations")
         plt.tight_layout()
         plt.show()
```


if we see anther view of dalasry distribution min, max and median

- x-axis: id (index) of all observations sorted by ascending salary min
- the min-max range estimates are more stable (flatter gradient) when min_salary ranges from 37K-50K
- salary estimates beyond 112K are outliers

```
In [59]: sns.set(style='white')

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw= {"height_ratios": (0.2, 1)},figsize=(13mean=data['Est_Salary'].mean()
    median=data['Est_Salary'].median()

bph = sns.boxplot(data['Est_Salary'], ax=ax_box).set(xlabel="")
    ax_box.axvline(mean, color='k', linestyle='--')
    ax_box.axvline(median, color='y', linestyle='--')

dp = sns.distplot(data['Est_Salary'],ax=ax_hist, color="g").set(xlabel="Est. Salary ($'000)")
    ax_hist.axvline(mean, color='k', linestyle='--')
    ax_hist.axvline(median, color='y', linestyle='--')

plt.legend({'Mean':mean, 'Median':median})
    plt.xlim(0,210)
    plt.xticks(np.arange(0,210,step=10))
    plt.tight_layout() #Adjust the padding between and around subplots
    plt.show()
```

/usr/local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/usr/local/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a d eprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hist ograms).

warnings.warn(msg, FutureWarning)


```
In [60]: sns.set(style='white')

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw= {"height_ratios": (0.2, 1)},figsize=(13mean=data['Est_Salary'].mean()
    median=data['Est_Salary'].median()

bph = sns.boxplot(data['Est_Salary'], ax=ax_box).set(xlabel="")
    ax_box.axvline(mean, color='k', linestyle='--')
    ax_box.axvline(median, color='y', linestyle='-')

dp = sns.histplot(data['Est_Salary'],ax=ax_hist, color="g").set(xlabel="Est. Salary ($'000)")
    ax_hist.axvline(mean, color='k', linestyle='--')
    ax_hist.axvline(median, color='y', linestyle='--')

plt.legend({'Mean':mean, 'Median':median})
    plt.xlim(0,210)
    plt.xticks(np.arange(0,210,step=10))
    plt.tight_layout() #Adjust the padding between and around subplots
    plt.show()
```

/usr/local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

disregarding min and max, focus on Est Salary. both mean and median are ~70K

Distribution of Company Maturity / Ages

```
In [62]: sns.set(style='white')

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw= {"height_ratios": (0.2, 1)},figsize=(13)
mean=data['Years_Founded'].mean()
median=data['Years_Founded'].median()

bph = sns.boxplot(data['Years_Founded'], ax=ax_box).set(xlabel="")
ax_box.axvline(mean, color='k', linestyle='--')
ax_box.axvline(median, color='y', linestyle='-')

dp = sns.histplot(data['Years_Founded'],ax=ax_hist, color="g").set(xlabel="Years_Founded")
ax_hist.axvline(mean, color='k', linestyle='--')
ax_hist.axvline(median, color='y', linestyle='--')
plt.legend({'Mean':mean, 'Median':median})
plt.xlim(0,240)
plt.xticks(np.arange(0,240,step=10))
plt.tight_layout() #Adjust the padding between and around subplots
plt.show()
```

/usr/local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Distribution of Company Ratings

```
In [64]: sns.set(style='white')

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw= {"height_ratios": (0.2, 1)},figsize=(13mean=data['Rating'].mean()
    median=data['Rating'].median()

bph = sns.boxplot(data['Rating'], ax=ax_box).set(xlabel="")
    ax_box.axvline(mean, color='k', linestyle='--')
    ax_box.axvline(median, color='y', linestyle='-')

dp = sns.histplot(data['Rating'],ax=ax_hist, color="g").set(xlabel="Ratings")
    ax_hist.axvline(mean, color='k', linestyle='--')
    ax_hist.axvline(median, color='y', linestyle='--')

plt.legend({'Mean':mean, 'Median':median})
    plt.xlim(0,6)
    plt.xticks(np.arange(0,6,step=1))
    plt.tight_layout() #Adjust the padding between and around subplots
    plt.show()
```

/usr/local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(


```
In [65]: sns.set(style='white')

f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw= {"height_ratios": (0.2, 1)},figsize=(13mean=data['Rating'].mean()
    median=data['Rating'].median()

bph = sns.boxplot(data['Rating'], ax=ax_box).set(xlabel="")
    ax_box.axvline(mean, color='k', linestyle='--')
    ax_box.axvline(median, color='y', linestyle='--')

dp = sns.distplot(data['Rating'],ax=ax_hist, color="g").set(xlabel="Ratings")
    ax_hist.axvline(mean, color='k', linestyle='--')
    ax_hist.axvline(median, color='y', linestyle='--')

plt.legend({'Mean':mean, 'Median':median})
    plt.xlim(0,6)
    plt.xticks(np.arange(0,6,step=1))
    plt.tight_layout() #Adjust the padding between and around subplots
    plt.show()
```

/usr/local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/usr/local/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a d eprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hist ograms).

warnings.warn(msg, FutureWarning)

Top 20 Hiring and Salary Estimates by Firms

First step is knowing the companies that are actively hiring Data Analysts and the salry estimates being offered

```
In [68]: sns.set(style="white")
    f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)}, figsize
    sns.barplot(x='Hires',y='Company Name',data=Sal_by_firm,ax=ax_bar, palette='Set2').set(ylabel="")
    sns.pointplot(x='Est_Salary',y='Company Name',data=Sal_by_firm, join=False,ax=ax_point).set(
        ylabel="",xlabel="Salary ($'000)")

plt.tight_layout()
```


- staffigo was hiring the most number of analysts but with 4th lowest est. salary
- apple has the highest est salary but the variance is large
- most sample sizes are smaller than 30, we we can assume sampling bias (and be conservative) about salary est. by firms

Top 20 Hires and Salary Estimates by Job Location Cities

```
In [70]: sns.set(style="white")
f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)},figsize(sns.barplot(x='Hires',y='Location',data=Sal_by_city,ax=ax_bar, palette='Set2').set(ylabel="")
sns.pointplot(x='Est_Salary',y='Location',data=Sal_by_city, join=False,ax=ax_point).set(
    ylabel="",xlabel="Salary ($'000)")
plt.tight_layout()
```


- New York was hiring the most analysts with est salary at 70K
- · San Jose, CA has the highest est salary and the largest variance

Hires and Salary Estimates by Job Location States

```
In [72]: data['City']
Out[72]: 0
                    New York
                    New York
         1
         2
                    New York
                    New York
                    New York
         2248
                      Denver
         2249
                  Centennial
         2250
                      Denver
         2251
                  Centennial
         2252
                  Broomfield
         Name: City, Length: 2253, dtype: object
In [73]: data['State']
Out[73]: 0
                  NY
                  NY
                  NY
         3
                  NY
                  NY
                  . .
         2248
                  CO
         2249
                  CO
         2250
                  CO
         2251
                  CO
         2252
                  CO
         Name: State, Length: 2253, dtype: object
In [74]: data['State']=data['State'].replace('Arapahoe, CO', 'CO')
In [75]: stateCount = data.groupby('State')[['Job Title']].count().reset index().rename(columns={'Job Title':'Hin
              'Hires', ascending=False).reset index(drop=True)
         stateCount = stateCount.merge(data, on='State',how='left')
```


• when viewing by states, positive correlation is more evident between demand and analysts' salaries. CA companies seem to have highest demand and are most generous with analyst hires

Top 20 Hires and Salary Estimates by Headquarters Location

```
In [80]: sns.set(style="whitegrid")
    f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)},figsize
    sns.barplot(x='Hires',y='HQState',data=HQCount,ax=ax_bar)
    sns.pointplot(x='Est_Salary',y='HQState',data=HQCount, join=False,ax=ax_point).set(ylabel="",xlabel="Sal
    plt.tight_layout()
```


• salary variance is higher in headquarter locations thyan job locations, this possibly refers to additional factors contributing to these variations. we will dig in the regression model

Est Salary and Hires by Revenue

```
In [81]: RevCount = data.groupby('Revenue')[['Job Title']].count().reset_index().rename(columns={'Job Title':'Hin 'Hires', ascending=False).reset_index(drop=True)
In [82]: #Make the Revenue column clean
RevCount["Revenue_USD"]=['Unknown','100-500 million','50-100 million','10+ billion','10-25 million','2-5
#Merge the new Revenue back to data
RevCount2 = RevCount[['Revenue','Revenue_USD']]
RevCount = RevCount.merge(data, on='Revenue',how='left')
In [83]: data=data.merge(RevCount2,on='Revenue',how='left')
```

```
In [84]: sns.set(style="whitegrid")
f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)},figsizestanders.barplot(x='Hires',y='Revenue_USD',data=RevCount,ax=ax_bar)
sns.pointplot(x='Est_Salary',y='Revenue_USD',data=RevCount, join=False,ax=ax_point).set(ylabel="",xlabel")
plt.tight_layout()
```


for small and medium businesses for analysts

Hires and Salary Estimates by Size

```
In [86]: sns.set(style="whitegrid")
f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)}, figsize
sns.barplot(x='Hires',y='Size',data=SizeCount,ax=ax_bar)
sns.pointplot(x='Est_Salary',y='Size',data=SizeCount, join=False,ax=ax_point).set(ylabel="",xlabel="Sala
plt.tight_layout()
```


bigger firms don't necessarily pay higher salaries

Top 12 Salary Estimates and Hiring Sectoral Trends

```
In [87]: SecCount = data.groupby('Sector')[['Job Title']].count().reset index().rename(columns={'Job Title':'Hire
               'Hires', ascending=False).reset index(drop=True)
          SecCount = SecCount.merge(data, on='Sector',how='left')
          SecCount = SecCount[SecCount['Hires']>29]
In [88]: sns.set(style="whitegrid")
          f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)},figsize
          sns.barplot(x='Hires',y='Sector',data=SecCount,ax=ax_bar)
          sns.pointplot(x='Est_Salary',y='Sector',data=SecCount, join=False,ax=ax_point).set(ylabel="",xlabel="Sal
          plt.tight_layout()
               Information Technology
                  Business Services
                         Finance
                      Health Care
                        Education
                        Insurance
           Sector
                  Accounting & Legal
                          Media
                     Manufacturing
                          Retail
                      Government
             Biotech & Pharmaceuticals
                              0
                                    100
                                          200
                                               300
                                                     400
                                                           500
                                                                         60
                                                                                 65
                                                                                                  75
                                                                                                           80
                                                                                                                   85
                                                                                                                            90
```

Hiring and Salary Estimates by Ownership Type

Hires

Salary (\$'000)

```
In [89]: OwnCount = data.groupby('Type of ownership')[['Job Title']].count().reset_index().rename(columns={'Job Title'}]
                'Hires', ascending=False).reset_index(drop=True)
           OwnCount = OwnCount.merge(data, on='Type of ownership',how='left')
In [90]: |sns.set(style="whitegrid")
           f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)},figsize
           sns.barplot(x='Hires',y='Type of ownership',data=OwnCount,ax=ax bar)
           sns.pointplot(x='Est_Salary',y='Type of ownership',data=OwnCount, join=False,ax=ax point).set(ylabel=""
           plt.tight_layout()
                       Company - Private
                        Company - Public
                     Nonprofit Organization
              Subsidiary or Business Segment
                           Government
                       College / University
            Type of ownership
                              Hospital
                             Unknown
                       Other Organization
                              Contract
                     Private Practice / Firm
                    School / School District
                             Franchise
                          Self-employed
                                                                                  40
                                    0
                                         200
                                              400
                                                    600
                                                         800
                                                              1000
                                                                   1200
                                                                                            50
                                                                                                    60
                                                                                                              70
                                                                                                                      80
                                                                                                                               90
                                                     Hires
                                                                                                    Salary ($'000)
```

· demand is higher in private firms and salries are comparable with public firms

Hiring and Salary Estimates by Job Titles

need to do bit of data cleansing/rearranging to get this done

```
In [92]: # create a new dataset from original data
        text Analysis = data[['Job Title','Job Description','Est Salary','Max Salary','Min Salary','State','Eas
In [93]: # remove special characters and unify some word use
        text Analysis['Job title 2']= text Analysis['Job Title'].str.upper().replace(
            [',','Â','/','\t','\n','-','AND ','&','\(','\)','WITH ','SYSTEMS','OPERATIONS','ANALYTICS','SERVICES
            # later found out replace('[^A-Za-z0-9]+', ' ',regex=True) is a simpler way to remove non-text character
         <ipython-input-93-6ced5ed5643e>:2: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         q.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         g.html#returning-a-view-versus-a-copy)
          text Analysis['Job title 2']= text Analysis['Job Title'].str.upper().replace(
In [94]: text Analysis['Job title 2'] = text Analysis['Job title 2'].str.upper().replace(
            [' ',' ',' '],
[' ',' ',' '],regex=True)
        # later found out replace('[^A-Za-z0-9]+', ' ',reqex=True) is a simpler way to remove non-text character
         <ipython-input-94-59775f7874f7>:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         q.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         g.html#returning-a-view-versus-a-copy)
          text Analysis['Job title 2']= text_Analysis['Job_title_2'].str.upper().replace(
```

```
In [95]:
         ,'DATA ANALYST','DATA BASE','DATA QUALITY','DATA GOVERNANCE','BUSINESS ANALYST','DATA MANAGEMENT','REPOR'
         DATA MANAGEMENT', 'REPORTING ANALYST', 'BUSINESS DATA', 'SYSTEM ANALYST', 'DATA REPORTING', 'QUALITY ANALYST'
         <ipython-input-95-af2ddcbef9f9>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         g.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         g.html#returning-a-view-versus-a-copy)
           text Analysis['Job title 2']= text Analysis['Job title 2'].str.upper().replace(
In [96]: # unify some word use
         text Analysis['Job title 2']= text Analysis['Job title 2'].str.upper().replace(
             ['DATA ANALYST JUNIOR', 'DATA ANALYST SENIOR', 'DATA REPORTING ANALYST'],
             ['JUNIOR DATA_ANALYST', 'SENIOR DATA_ANALYST', 'DATA_REPORTING_ANALYST'], regex=True)
         <ipython-input-96-e978a2cab774>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         g.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
         g.html#returning-a-view-versus-a-copy)
           text Analysis['Job title 2']= text Analysis['Job title 2'].str.upper().replace(
In [97]: |jobCount=text Analysis.groupby('Job title 2')[['Job Title']].count().reset index().rename(
             columns={'Job Title':'Count'}).sort values('Count',ascending=False)
         jobSalary = text_Analysis.groupby('Job_title_2')[['Max_Salary', 'Est_Salary', 'Min_Salary']].mean().sort_v
             ['Max_Salary', 'Est_Salary', 'Min_Salary'], ascending=False)
         jobSalary['Spread']=jobSalary['Max Salary']-jobSalary['Est Salary']
         jobSalary=jobSalary.merge(jobCount,on='Job title 2',how='left').sort values('Count',ascending=False).hea
```

```
In [98]: f, axs = plt.subplots(2, sharex=True, gridspec_kw= {"height_ratios":(1,0.5)},figsize=(13,8))
    ax = axs[0]
    ax.errorbar(x='Job_title_2',y='Est_Salary',data=jobSalary,yerr=jobSalary['Spread'],fmt='o')
    ax.set_ylabel('Est. Salary ($\'000)')

ax = axs[1]
    sns.barplot(x=jobSalary['Job_title_2'],y=jobSalary['Count']).set(xlabel="")

plt.xticks(rotation=65,horizontalalignment='right')
    plt.tight_layout()
```


(most sample size is below 30) this doesn't seem any better conclusive -- since we have standarized role titles

Regression model maybe a better approach, some titles/role desc maybe correlated with salary

Regression Analysis

Correlation: Job Title Keywords vs Salary

Out[99]:

	KW	Count
0	DATA_ANALYST	1596
1	DATA	444
2	ANALYST	422
3	SENIOR	415
4	ANALYTIC	81
5	BUSINESS_ANALYST	75
6	JUNIOR	71
7	BUSINESS_DATA_ANALYST	71
8	FINANCIAL	61
9	LEAD	60
10	HEALTHCARE	55
11	ВІ	49
12	II	47
13	DATA_MANAGEMENT	45
14	OPERATION	45
15	DATA_REPORTING_ANALYST	44
16	DATA_GOVERNANCE	43
17	SQL	42
18	III	39
19	ENGINEER	39
20	SECURITY	39

```
KW Count
                           PRODUCT
                                      37
           21
                         MARKETING
                                      35
           22
                DATA_QUALITY_ANALYST
                                      33
           23
                                      32
           24
                    DATA WAREHOUSE
                     SYSTEM ANALYST
                                      31
           25
                          TECHNICAL
           26
                                      30
In [100]: # write get keyword method
          def get keyword(x):
             x = x.split("")
             keywords = []
             try:
                for word in x :
                   if word in np.asarray(S['KW']):
                       keywords.append(word)
             except:
                return -1
             return keywords
In [101]: # get keywords from each row
          text Analysis['KW'] = text Analysis['Job title 2'].apply(lambda x: get keyword(x))
          <ipython-input-101-3c511b91d267>:2: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
          g.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexin
          g.html#returning-a-view-versus-a-copy)
            text Analysis['KW'] = text Analysis['Job title 2'].apply(lambda x: get keyword(x))
In [102]: # create dummy columns by keywords
          kwdummy = pd.get dummies(text Analysis['KW'].apply(pd.Series).stack()).sum(level=0).replace(2,1)
          text Analysis = text Analysis.merge(kwdummy,left index=True,right index=True).replace(np.nan,0)
```

```
In [103]: # drop 2149 because unpaid analyst is not usual
text_Analysis = text_Analysis.drop([2149])
```

<ipython-input-104-f8f7376ad899>:12: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests['Statistic'],ttests['P-value']=ttests['R'].str.split(', ',1).str

Out[104]:

	KW	Statistic	P-value
17	JUNIOR	-3.16113963777975	0.0015924799011453933
23	SENIOR	2.566621092906869	0.010333747177703521
15	II	-2.1641385068743015	0.03055880685141866
3	BUSINESS_ANALYST	-2.1143597122716233	0.03459447375320005
7	DATA_GOVERNANCE	-1.8975635628304668	0.05788172852566256
19	MARKETING	1.8774876846011315	0.06058078348826275
13	FINANCIAL	1.835680174229379	0.0665371085981364
1	ANALYTIC	1.245309555431649	0.21314788797933895
12	ENGINEER	1.157710993595735	0.24710509321020943
11	DATA_WAREHOUSE	1.0833330747872112	0.27877689285686663
24	SQL	-1.0483759488135824	0.2945782288955317
20	OPERATION	1.0351679126277473	0.30070194151819885
4	BUSINESS_DATA_ANALYST	1.015768026552328	0.309849271946996

	KW	Statistic	P-value
9	DATA_QUALITY_ANALYST	-0.9949822464900087	0.31985207929367593
5	DATA	-0.9332817097097893	0.35077489814890705
18	LEAD	0.8492663921783803	0.3958235875094457
6	DATA_ANALYST	0.7817472687608902	0.43444551526084385
21	PRODUCT	0.7615516876396424	0.4464075726642809
26	TECHNICAL	0.6299365175356518	0.5288001969160389
2	ВІ	-0.5900233001467271	0.5552343816068435
25	SYSTEM_ANALYST	0.5230526446856699	0.6009892132133554
22	SECURITY	0.5116348202290237	0.6089569076363668
14	HEALTHCARE	-0.4626090256907169	0.6436894511293966
0	ANALYST	-0.3629695713272434	0.7166617700129941
16	III	-0.24348098561520456	0.8076550488640784
8	DATA_MANAGEMENT	-0.07057099376465448	0.9437454791887261
10	DATA_REPORTING_ANALYST	-0.038420912849882964	0.9693555018008357

```
In [105]: # Selecting keywords with p-value <0.1 into multiple regression model.
ttest_pass = list(ttests[ttests['P-value'].astype(float)<0.1]['KW'])
print(*ttest_pass,sep=' + ')</pre>
```

JUNIOR + SENIOR + II + BUSINESS_ANALYST + DATA_GOVERNANCE + MARKETING + FINANCIAL

	C	LS Regress	ion Results			
Dep. Variable:	 Est Salary		R-squared:		0.	015
Model:		OLS	Adj. R-squar	ed:	0.	012
Method:	Least	Squares	F-statistic:		4.	814
Date:			Prob (F-stat		2.15e	-05
Time:		20:27:16	Log-Likeliho	od:	-102	80.
No. Observations:		2248	AIC:		2.058e	+04
Df Residuals:		2240	BIC:		2.062e+04	
Df Model:		7				
Covariance Type:						
===========			t	P> t	[0.025	0.975
Intercept	72.0942	0.588	122.666	0.000	70.942	73.24
JUNIOR	-8.7228	2.867	-3.043	0.002	-14.344	-3.10
SENIOR	2.8186	1.283	2.196	0.028	0.302	5.33
			-2.095		-14.062	-0.46
BUSINESS_ANALYST	-5.5569	2.797	-1.986	0.047	-11.043	-0.07
DATA_GOVERNANCE	-5.9782	3.643	-1.641	0.101	-13.122	1.16
			1.724			
			1.655		-0.935	11.03
Omnibus:			 Durbin-Watso		0.	080
Prob(Omnibus):		0.000	Jarque-Bera		405.	048
Skew:		0.907	Prob(JB):	,	1.11e	
Kurtosis:		4.016	Cond. No.			.40

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

	0	LS Regress 	sion Results			
Dep. Variable: Model: Method:	Est_Salary OLS Least Squares		R-squared: Adj. R-squared: F-statistic:		0.011 0.009 6.286	
Date: Time:	Thu, 19	Nov 2020 20:27:36	Prob (F-stat	istic):	5.00e -102	e-05
No. Observations: Df Residuals:		2248 2243	AIC: BIC:		2.058e 2.061e	-
Df Model: Covariance Type:	n	4 onrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept JUNIOR SENIOR II BUSINESS_ANALYST	72.2511 -8.8796 2.8541 -7.5333 -6.2954	0.574 2.867 1.285 3.470 2.780	125.882 -3.097 2.221 -2.171 -2.265	0.000 0.002 0.026 0.030 0.024	71.126 -14.502 0.334 -14.338 -11.747	73.377 -3.257 5.374 -0.729 -0.844

	=========		=========
Omnibus:	280.615	Durbin-Watson:	0.073
Prob(Omnibus):	0.000	Jarque-Bera (JB):	411.585
Skew:	0.914	Prob(JB):	4.22e-90
Kurtosis:	4.026	Cond. No.	7.16
=======================================	:=========	-======================================	=========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 - seniorities seem to have more relevance than fucntional keywords like marketing, finance
 - "business analyst" paid less than "data analyst" or other forms or "analyst". Only thing to note is such jobs are less based in CA (and probably that is reason)

• cannot exactly explain variation in salaries or this model explains less than 1% salary variations

I didnt find anything new when checking for interaction terms between business_analyst and seniorities

```
In [108]: # Plot with scatterplots
    fig = plt.figure(figsize=(13, 13))
    fig = sm.graphics.plot_partregress_grid(titleMod_final,fig=fig)
    fig.tight_layout(pad=1.0)
    # Sorry somebody tell me how to remove that "Partial Regression Plot"
```


Correlation: Job Description vs Salary

<ipython-input-112-d2f3213f649d>:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin
g.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin
g.html#returning-a-view-versus-a-copy)
S2_TOP_JD['KW'] = S2_TOP_JD['KW'] +'_JD'

```
In [113]: wordCloud = WordCloud(width=450,height= 300).generate(' '.join(S2['KW']))
    plt.figure(figsize=(19,9))
    plt.axis('off')
    plt.title("Keywords in Data Analyst Job Descriptions",fontsize=20)
    plt.imshow(wordCloud)
    plt.show()
```

Keywords in Data Analyst Job Descriptions


```
In [115]: # get keywords from each row
text_Analysis['JDKW'] = text_Analysis['Job_Desc2'].apply(lambda x: get_keyword(x))
```

<ipython-input-119-c3367abeb7fb>:12: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests_JD['Statistic'],ttests_JD['P-value']=ttests_JD['R'].str.split(', ',1).str

Out[119]:

	KW	Statistic	P-value
22	PYTHON_JD	3.1454855202979366	0.0016798148989789698
16	MYSQL_JD	3.073582279739166	0.0021404726691396977
18	PHD_JD	2.8709801722675983	0.004130334861569249
26	SAS_JD	-2.5328088192719864	0.01138282238652457
17	ORACLE_JD	2.1291517828797053	0.033350204531353816
13	MASTER_JD	-2.0530455554133247	0.040183761597212785
9	ETL_JD	-1.9599639883423432	0.05012348235884792
14	MATHEMATICS_JD	-1.5597368064751596	0.1189629754350605
10	EXCEL_JD	-1.521605446498184	0.12824873859143365
19	PLSQL_JD	1.3807487956234472	0.16749359079126214
0	ALGORITHM_JD	1.3326785131639587	0.18277250666211392
27	SPARK_JD	1.2968609421931672	0.19481224787698476
4	AZURE_JD	-1.2830068757025375	0.19962204281024332

P-value

24 R_JD 1.2814987470266699 0.20015082203688633 21 POWER_BI_JD -1.2476710486543665 0.21228161448930424 11 HADOOP_JD 1.0803386076631785 0.28010741471430767 28 SQL_JD -1.0694749311801401 0.2849706407566319
11 HADOOP_JD 1.0803386076631785 0.28010741471430767 28 SQL_JD -1.0694749311801401 0.2849706407566319
28 SQL_JD -1.0694749311801401 0.2849706407566319
12 MAQUINE LEADNING ID 4 050005070000051 0 00000400447000570
12 MACHINE_LEARNING_JD 1.0533258789399351 0.29230496417236573
25 SAP_JD 0.8917578915225491 0.372618239934996
20 POSTGRESQL_JD 0.8829626972510034 0.3773509202869031
7 COMPUTER_SCIENCE_JD -0.7265696999473008 0.4675653088683164
15 MBA_JD 0.7103859042186884 0.47753861480581816
2 ARTIFICIAL_INTELLIGENCE_JD 0.5265208269355457 0.5985783757995188
5 BUSINESS_ANALYTICS_JD 0.4605549114369525 0.6451625534545673
3 AWS_JD -0.38510341807958015 0.7001972604713105
23 REGRESSION_JD 0.26887987849240846 0.7880468171509017
6 CLUSTER_JD -0.19727511747866192 0.8436301004915217
1 API_JD 0.17467062503652428 0.8613541938978051
8 ECONOMICS_JD -0.018685437504887364 0.985093705098944
29 STATISTICS_JD 0.009878405231348503 0.9921191784794305

Statistic

```
In [120]: #Selecting keywords with p-value <0.1 into multiple regression model.
ttest_JD_pass1 = list(ttests_JD[ttests_JD['P-value'].astype(float)<0.1]['KW'])
print(*ttest_JD_pass1,sep=' + ')</pre>
```

PYTHON_JD + MYSQL_JD + PHD_JD + SAS_JD + ORACLE_JD + MASTER_JD + ETL_JD

KW

OLS Regression Results ______ Est Salary R-squared: Dep. Variable: 0.015 Model: Adj. R-squared: 0.013 OLS Method: F-statistic: Least Squares 8.371 Thu, 19 Nov 2020 Prob (F-statistic): 1.06e-06 Date: Log-Likelihood: Time: 20:36:51 -10280. No. Observations: 2248 AIC: 2.057e+04 Df Residuals: 2243 BIC: 2.060e+04 Df Model: 4

Covariance	Type:	nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept PYTHON_JD MYSQL_JD PHD_JD SAS_JD	71.3701 3.1417 7.8541 9.8404 -3.9797	0.617 1.112 2.659 3.583 1.389	115.606 2.824 2.954 2.747 -2.865	0.000 0.005 0.003 0.006 0.004	70.159 0.960 2.640 2.815 -6.704	72.581 5.323 13.068 16.866 -1.256
Omnibus: Prob(Omnibus Skew: Kurtosis:	======= 5):	0.		•	======	0.078 392.985 4.62e-86 7.69

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

this shows SAS analysts get paid lower.. this seems weird given niche nature of skill. If we look closer, its likely that these are for junior/entry level positions and/or at older (avg company age 38) firms in TX, one of the low-paying states. This didnt make to the final models where job location is controlled.

```
In [122]: fig = plt.figure(figsize=(13, 13))
    fig = sm.graphics.plot_partregress_grid(JDMod,fig=fig)
    fig.tight_layout(pad=1.0)
```


Correlation: Job Location (State) vs Salary

```
In [123]: # create dummy columns by State
kwdummy = pd.get_dummies(text_Analysis['State'].apply(pd.Series).stack()).sum(level=0)
text_Analysis = text_Analysis.merge(kwdummy,left_index=True,right_index=True,how='left').replace(np.nan,
```

Out[124]:

	State	Count
0	CA	625
1	TX	394
2	NY	345
3	IL	164
4	PA	113
5	AZ	97
6	CO	95
7	NC	90
8	NJ	86
9	WA	53
10	VA	47
11	ОН	35
12	UT	33

<ipython-input-125-1ba7e1b4cc50>:12: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests state['Statistic'], ttests state['P-value']=ttests state['R'].str.split(', ',1).str

Out[125]:

	State	Statistic	P-value
3	IL	3.4871871764328914	0.0004975101658536639
12	WA	-2.3050985706606353	0.021251815764471424
11	VA	-1.982611386890212	0.047532516056225486
4	NC	-1.6508583728758894	0.09890730468575766
2	CO	0.6287405461537323	0.5295828637528285
6	NY	-0.6187817134630991	0.5361229211801275
0	AZ	-0.5741887677034088	0.5658975673027001
5	NJ	0.34616025876923495	0.7292547023228556
10	UT	-8.618507231442898	1.2572853439437861e-17
9	TX	-12.83231537576241	1.9913053850662446e-36
7	ОН	-6.8713354197122065	8.207987823191773e-12
8	PA	-4.942682557049725	8.274789191649686e-07
1	CA	22.56089617442046	9.325868389127702e-102

```
In [126]: #Selecting states with p-value <0.1 into multiple regression model.
ttest_state_pass = list(ttests_state[ttests_state['P-value'].astype(float)<0.1]['State'])
print(*ttest_state_pass,sep=' + ')</pre>
IL + WA + VA + NC + UT + TX + OH + PA + CA
```


Dep. Variable: Est Salary R-squared: 0.263 Adj. R-squared: Model: OLS 0.261 Method: F-statistic: 133.4 Least Squares Prob (F-statistic): Thu, 19 Nov 2020 1.03e-144 Date: Time: 20:51:56 Log-Likelihood: -9953.7 No. Observations: 1.992e+04 2248 AIC: Df Residuals: 2241 BIC: 1.996e+04 Df Model: 6

Covariance Type: nonrobust

========	 ==========	========	:=======	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	69.1131	0.683	101.247	0.000	67.774	70.452
IL	9.1979	1.726	5.330	0.000	5.814	12.582
UT	-31.5828	3.598	-8.777	0.000	-38.639	-24.526
TX	-10.3619	1.229	-8.428	0.000	-12.773	-7.951
ОН	-23.9131	3.498	-6.837	0.000	-30.772	-17.054
PA	-7.6220	2.028	-3.759	0.000	-11.598	-3.646
CA	19.3741	1.061	18.266	0.000	17.294	21.454
Omnibus: 117.9		917 Durbi	======== n-Watson:	:=======	0.065	
Prob(Omnibu	ıs):	0.	000 Jarqu	e-Bera (JB):		139.853
Skew:	•	0.	550 Prob(JB):		4.28e-31
Kurtosis:		3.	530 Cond.	No.		9.09

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

job location is the most crucial factor to the salary variation - as we see from these results

```
In [128]: fig = plt.figure(figsize=(13, 13))
    fig = sm.graphics.plot_partregress_grid(StateMod,fig=fig)
    fig.tight_layout(pad=1.0)
```


Correlation: HQ Location (State) vs Salary

<ipython-input-131-ddfc8274281b>:11: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests_HQstate['Statistic'],ttests_HQstate['P-value']=ttests_HQstate['R'].str.split(', ',1).str

Out[131]:

	HQState_HQ	Statistic	P-value
11	PA_HQ	-3.6037640030833424	0.0003204636663066424
10	OH_HQ	-2.9445101765893065	0.003267880764802911
8	NJ_HQ	2.8476438387769254	0.004444462296475872
9	NY_HQ	-2.803084277181425	0.005105106171003899
2	FL_HQ	-2.5318978889016837	0.011412349249393593
14	VA_HQ	-1.6758265887843584	0.09391134990189316
7	NC_HQ	-1.5133419727523838	0.13033351230166712
6	MI_HQ	1.4159906541479472	0.15691689954508944
4	IL_HQ	-1.003654468297828	0.3156533057185176
15	WA_HQ	-0.3794687224420757	0.7043757000332287
0	AZ_HQ	-0.2417531879742219	0.8089934832140739
5	MD_HQ	-0.10379942916209027	0.9173377868348767
3	GA_HQ	0.040143815982733824	0.967982037746448
1	CA_HQ	11.45806752715845	1.3973500107699286e-29

	HQState_HQ	Statistic	P-value
12	TX_HQ	-5.377454789131364	8.337413418129029e-08
13	Unknown_State_HQ	nan	nan

```
In [132]: ttest_HQstate_pass = list(ttests_HQstate[ttests_HQstate['P-value'].astype(float)<0.1]['HQState_HQ'])
print(*ttest_HQstate_pass,sep=' + ')

PA_HQ + OH_HQ + NJ_HQ + NY_HQ + FL_HQ + VA_HQ + CA_HQ + TX_HQ</pre>
```

		OLS Re	egressio 	n Re	sults		
Dep. Variab	 le:	Est Sal	 lary R	 -squ	 ared:		0.074
Model:		_			R-squared:		0.072
Method:		Least Squa	ares F	-sta	tistic:		35.81
Date:		Thu, 19 Nov 2	2020 P	rob	(F-statistic)	:	2.29e-35
Time:		20:54	4:04 L	og-L	ikelihood:		-10211.
No. Observat	tions:	2	2248 A	IC:			2.043e+04
Df Residuals	S:	2	2242 B	IC:			2.047e+04
Df Model:			5				
Covariance '	Type:	nonrol	oust				
	coef	std err		t	P> t	[0.025	0.975]
Intercept	69.7920	0.626	111.5	 51	0.000	68.565	71.019
PA_HQ	-6.6861	2.545	-2.6	27	0.009	-11.678	-1.694
OH_HQ	-9.8389	4.070	-2.4	18	0.016	-17.820	-1.858
NJ_HQ	7.3909	1.883	3.9	24	0.000	3.698	11.084
CA_HQ	13.2069	1.226	10.7	68	0.000	10.802	15.612
TX_HQ	-6.6781	1.807		95 	0.000		-3.134
Omnibus:				 urbi	n-Watson:		0.165
Prob(Omnibus	s):	0 .	.000 J	arqu	e-Bera (JB):		320.219
Skew:		0 .	.820 P	rob(JB):		2.92e-70
Kurtosis:		3.	.856 C	ond.	No.		8.76

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

CA, and NJ headquartered companies pay more

Addnl Variables: Revenue, Size, Sector, Industry and Type of Ownership

text Analysis = text Analysis.rename(columns={"Easy Apply":"Easy Apply"})

To run multiple regression, will create revenue variables

```
In [136]: # create dummy columns by Revenue
kwdummy = pd.get_dummies(text_Analysis['Revenue_USD'].apply(pd.Series).stack()).sum(level=0)
text_Analysis = text_Analysis.merge(kwdummy,left_index=True,right_index=True,how='left').replace(np.nan,
```

Out[137]:

	Revenue_USD	Count
0	RevUnknown	614
1	100_500_million	218
2	50_100_million	199
3	10_billion	189
4	0	163
5	10_25_million	131
6	2_5_billion	128
7	Small_Business	110
8	25_50_million	109
9	_1_million	93
10	1_2_billion	87
11	0_5_1_billion	79
12	5_10_million	72
13	5_10_billion	56

we will ignore Revenue '0' (these are NaN replaced values)

<ipython-input-138-f2c00b869e91>:12: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests_rev['Statistic'],ttests_rev['P-value']=ttests_rev['R'].str.split(', ',1).str

Out[138]:

	Revenue_USD	Statistic	P-value
8	50_100_million	-2.067317153187129	0.03881858844357256
12	Small_Business	1.7920605706297863	0.07325782185970323
11	RevUnknown	1.7153964943524806	0.08641048104727897
6	25_50_million	1.1404777581168355	0.25420891071519525
4	10_billion	-1.0206924598208893	0.307510095279054
1	0_5_1_billion	-0.8837686030458463	0.3769157267568668
0	0	0.7487984635216214	0.4540570941766361
3	10_25_million	-0.7348420252780572	0.4625124256896209
5	1_2_billion	-0.7282929831891864	0.46651017904869185
10	5_10_million	-0.615018504932283	0.5386048038973348
13	_1_million	-0.5139139677166249	0.6073626965182952
9	5_10_billion	0.5123603181347793	0.6084492364095251
7	2_5_billion	-0.23253042729886442	0.8161472434253468

Revenue_USD		Statistic	P-value
2	100_500_million	-0.20076780574360448	0.8408983157364056

this seems weird, that medium businesses (50-100 million) pays 2K less than average as small business pays more. this is to be analysed for validity in multiple regression later

```
In [139]: #Selecting revenues with p-value <0.1 into multiple regression model.
ttest_rev_pass = list(ttests_rev[ttests_rev['P-value'].astype(float)<0.1]['Revenue_USD'])
print(*ttest_rev_pass,sep=' + ')

50_100_million + Small_Business + RevUnknown</pre>
```

To run multiple regression, will create size variables

Out[141]:

	Size	Count
0	51_to_200_employees	419
1	Large_Firm	374
2	1001_to_5000_employees	348
3	1_to_50_employees	346
4	201_to_500_employees	248
5	501_to_1000_employees	211
6	0	163
7	5001_to_10000_employees	97
8	SizeUnknown	42

'0' are NaN values replaced for making dummy columns, to be ignored

<ipython-input-142-9a4ae35ab2cf>:11: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests_size['Statistic'],ttests_size['P-value']=ttests_size['R'].str.split(', ',1).str

Out[142]:

	Size	Statistic	P-value
6	Large_Firm	-1.9996311944650396	0.04566035288352724
3	5001_to_10000_employees	0.8807204375971571	0.37856338271610757
0	1001_to_5000_employees	0.630499072016383	0.5284322542135438
2	201_to_500_employees	-0.6231434207771377	0.5332535472070133
1	1_to_50_employees	0.5398365152487532	0.589363298961973
5	51_to_200_employees	0.39500587582528507	0.6928760604548097
7	SizeUnknown	0.12736017744573036	0.898666734369518
4	501_to_1000_employees	-0.09517249730174987	0.9241863047596062

p-value indicates that it is statistically significant that larger firms seem to pay 2K less than average sized companies

```
In [143]: ttest_size_pass = list(ttests_size[ttests_size['P-value'].astype(float)<0.1]['Size'])
print(*ttest_size_pass,sep=' + ')</pre>
```

Large_Firm

To run multiple regression, will create sector variables

Out[145]:

	Sector	Count
0	Information_Technology	570
1	Business_Services	521
2	0	352
3	Finance	169
4	Health_Care	151
5	Education	52
6	Insurance	51
7	Accounting_Legal	43
8	Media	42
9	Manufacturing	40
10	Retail	38
11	GovSec	36
12	Biotech_Pharmaceuticals	32

<ipython-input-146-b8d294e055ea>:11: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests_sec['Statistic'],ttests_sec['P-value']=ttests_sec['R'].str.split(', ',1).str

Out[146]:

	Sector	Statistic	P-value
2	Biotech_Pharmaceuticals	2.609814640539972	0.009119299299076195
5	Finance	-2.5739778621517253	0.010117235084272815
8	Information_Technology	2.474371774473128	0.013420443361020702
6	GovSec	-2.003491440722664	0.04524449027957346
12	Retail	-1.4356428089942357	0.15124325511231285
11	Media	-1.013843460043587	0.31076665658090963
1	Accounting_Legal	0.8651283135577105	0.3870607584609026
4	Education	-0.7934546030374406	0.4275968223954776
9	Insurance	-0.5752324092567795	0.5651917466545469
0	0	0.5340640495804618	0.5933500751606593
7	Health_Care	0.3622812866735705	0.7171759245445649
3	Business_Services	0.20831305604019493	0.8350034260690025
10	Manufacturing	-0.016334642726151673	0.9869688711457016

Biotech, Pharma and IT are the highest paying sectors; Fiance and Govts pay less

```
In [147]: ttest_sec_pass = list(ttests_sec[ttests_sec['P-value'].astype(float)<0.1]['Sector'])
print(*ttest_sec_pass,sep=' + ')</pre>
```

Biotech_Pharmaceuticals + Finance + Information_Technology + GovSec

To run multiple regression, will create IT Industries variables

i found out later that only IT is statistically significant in the final regression model, so dig deeper into the subcategory "industry" under the IT sector

Out[149]:

	industry	Count
0	IT_Services	325
1	Computer_Hardware_Software	111
2	Enterprise_Software_Network_Solutions	69
3	Internet	65

<ipython-input-150-502f5f69eabb>:11: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests ind['Statistic'], ttests ind['P-value']=ttests ind['R'].str.split(', ',1).str

Out[150]:

	Industry	Statistic	P-value
3	Internet	2.6110371303049753	0.009086864742848826
0	Computer_Hardware_Software	2.5260073048249203	0.011604934226911195
1	Enterprise_Software_Network_Solutions	1.8556879665956705	0.06362895900206361
2	IT_Services	-0.6489249573131813	0.5164532282392558

most industries in IT sector pay more

```
In [151]: ttest_ind_pass = list(ttests_ind[ttests_ind['P-value'].astype(float)<0.1]['Industry'])
print(*ttest_ind_pass,sep=' + ')</pre>
```

Internet + Computer_Hardware_Software + Enterprise_Software_Network_Solutions

To run multiple regression, will create Ownership variables

```
In [152]: kwdummy = pd.get_dummies(text_Analysis['Type of ownership'].apply(pd.Series).stack()).sum(level=0)
text_Analysis = text_Analysis.merge(kwdummy,left_index=True,right_index=True,how='left').replace(np.nan,
```

Out[153]:

	Type_of_ownership	Count
0	Company_Private	1268
1	Company_Public	452
2	0	163
3	Nonprofit_Organization	124
4	Subsidiary_or_Business_Segment	89
5	Government	37
6	College_University	34

<ipython-input-154-0dd02120d9ba>:11: FutureWarning: Columnar iteration over characters will be depreca
ted in future releases.

ttests own['Statistic'], ttests own['P-value']=ttests own['R'].str.split(', ',1).str

Out[154]:

	Type_of_ownership	Statistic	P-value
3	Government	-3.0701964982979657	0.0021647848363638695
4	Nonprofit_Organization	-1.703857781949545	0.0885459857780986
1	Company_Private	0.8848239369765997	0.37634630926402446
5	Subsidiary_or_Business_Segment	-0.7078924103974973	0.47908552437246077
2	Company_Public	0.5699318976535838	0.5687808905981325
0	College_University	0.2992278900437682	0.7647938555194423

NGOs look like paying less

```
In [155]: ttest_own_pass = list(ttests_own[ttests_own['P-value'].astype(float)<0.1]['Type_of_ownership'])
    print(*ttest_own_pass,sep=' + ')</pre>
```

Government + Nonprofit Organization

Final Regression Model

In []: before considering interaction terms , combined regression model

```
In [156]: ModC = ols("Est_Salary ~ JUNIOR + IL + UT + TX + OH + PA + CA + Small_Business + Information_Technology
                         data=text Analysis).fit()
          # Rating, Years Founded, Easy Apply, PHD, Sector, Size, Type of ownership not significant
          print(ModC.summary())
```

OLS Regression Results						
Dep. Variable:					0.275	
Model:	OLS	Adj. R	Adj. R-squared:		0.271	
Method:	Least Squares	F-stat	istic:		77.05	
	Thu, 19 Nov 2020				2.72e-147	
Time:	21:18:06	Log-Li	kelihood:		-9935.7	
No. Observations:	2248	AIC:			1.990e+04	
Df Residuals:	2236	BIC:			1.996e+04	
Df Model:	11					
Covariance Type:						
	coef	std err	t		-	0.975]
Intercept	68.0896		91.720			69.545
JUNIOR	-8.2066	2.484	-3.304	0.001	-13.078	-3.335
IL	9.7640	1.719	5.681	0.000	6.393	13.135
UT	-31.2224	3.579	-8.724	0.000	-38.240	-24.204
TX	-10.2908	1.223	-8.414	0.000	-12.689	-7.892
ОН	-23.2337	3.477	-6.683	0.000	-30.052	-16.416
PA	-7.4972	2.016	-3.718	0.000	-11.451	-3.543
CA	19.2809	1.060	18.182	0.000	17.201	21.360
Small_Business	4.5334	1.981	2.288	0.022	0.648	8.419
Information_Technolog	y 1.7674	1.003	1.762	0.078	-0.199	3.734
NJ_HQ	5.2514	1.661	3.161	0.002	1.994	8.509
MYSQL_JD	4.8251		2.116	0.034	0.353	9.297
Omnibus:	121.099		======== -Watson:		0.092	
<pre>Prob(Omnibus):</pre>	0.000	Jarque	-Bera (JB):		143.994	
Skew:	0.560	Prob(J	B):		5.40e-32	
Kurtosis:	3.532	Cond.	No.		9.46	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [157]: # Trying different interaction terms.
    text_Analysis['CA_SB']=text_Analysis['CA']*text_Analysis['Small_Business']
    text_Analysis['CA_IT']=text_Analysis['CA']*text_Analysis['Information_Technology']
    text_Analysis['IT_SB']=text_Analysis['Information_Technology']*text_Analysis['Small_Business']
    text_Analysis['CA_IT_SB']=text_Analysis['Information_Technology']*text_Analysis['Small_Business']*text_Analysis['CA_NJ_HQ']
    text_Analysis['SB_NJ_HQ']=text_Analysis['Small_Business']*text_Analysis['NJ_HQ']
    text_Analysis['IT_NJ_HQ']=text_Analysis['Information_Technology']*text_Analysis['NJ_HQ']
    text_Analysis['CA_PHD']=text_Analysis['CA']*text_Analysis['PHD_JD']
    text_Analysis['CA_CA_HQ']=text_Analysis['CA']*text_Analysis['CA_HQ']
```

OLS Regression Results Dep. Variable: Est Salary R-squared: 0.186 Adj. R-squared: Model: OLS 0.185 Method: F-statistic: Least Squares 171.1 Thu, 19 Nov 2020 6.66e-100 Date: Prob (F-statistic): Time: 21:18:29 Log-Likelihood: -10065. No. Observations: AIC: 2.014e+04 2248 Df Residuals: 2244 BIC: 2.016e+04 Df Model: Covariance Type: nonrobust P>|t| [0.025 0.9751 coef std err 65.8195 0.533 123.553 0.000 64.775 66.864 Intercept CA 22.3480 21.943 1.018 0.000 20.351 24.345 7.6747 6.507 CA PHD 1.179 0.238 -5.086 20.435 PHD JD 1.4078 4.576 0.308 0.758 -7.56510.381 ______ Omnibus: 83.449 Durbin-Watson: 0.063 92.315 Prob(Omnibus): 0.000 Jarque-Bera (JB): 9.00e-21 Skew: 0.476 Prob(JB): 17.3 Kurtosis: 3.284 Cond. No.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLD REGIESSION RESULTS									
==============	:==========	=======================================	=========						
Dep. Variable:	Est_Salary	R-squared:	0.281						
Model:	OLS	Adj. R-squared:	0.277						
Method:	Least Squares	F-statistic:	72.68						
Date:	Thu, 19 Nov 2020	Prob (F-statistic):	3.32e-150						
Time:	21:18:39	Log-Likelihood:	-9926.7						
No. Observations:	2248	AIC:	1.988e+04						
Df Residuals:	2235	BIC:	1.995e+04						
Df Model:	12								

	coef s	std err	t	P> t	[0.025	0.975]
Intercept	68.7600	0.756	90.934	0.000	67.277	70.243
JUNIOR	-7.6660	2.478	-3.094	0.002	-12.525	-2.807
MYSQL_JD	4.5965	2.272	2.023	0.043	0.140	9.053
IL	9.5193	1.713	5.556	0.000	6.160	12.879
UT	-31.1279	3.565	-8.731	0.000	-38.119	-24.136
TX	-10.2760	1.218	-8.434	0.000	-12.665	-7.887
ОН	-23.3006	3.464	-6.727	0.000	-30.093	-16.508
PA	-7.6452	2.009	-3.806	0.000	-11.585	-3.706
CA	16.7653	1.211	13.848	0.000	14.391	19.139
Small_Business	4.6644	1.974	2.363	0.018	0.793	8.536
Information_Technology	-1.0613	1.200	-0.884	0.377	-3.415	1.292
CA_IT	9.0154	2.120	4.253	0.000	4.859	13.172
NJ_HQ	5.4123	1.655	3.270	0.001	2.166	8.658
Omnibus:	120.840	Durbin	 Watson:		0.108	
Prob(Omnibus):	0.000	Jarque	-Bera (JB):		143.196	
Skew:	0.562	Prob(J	B):		8.04e-32	
Kurtosis:	3.517	Cond.	No.		9.51	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Covariance Type: nonrobust

- job location is the most important factor behind salary variations
- IT companies don't seem to be paying more always, but CA IT firms definitely do.
- business with 1 to 5 million revenue USD tend to pay more
- · higher pay for NJ headquartered companies
- MYSQL experience analysts have higher pay
- PHD didn't make it to the final model, nor did the interaction term "CA_PHD"

```
In [160]: fig = plt.figure(figsize=(13, 26))
    fig = sm.graphics.plot_partregress_grid(ModC,fig=fig)
    fig.tight_layout(pad=1.0)
```


-40

0.0

California Salary Distribution

-0.6

-0.8

-0.4

-0.2

```
In [161]: # create a separate dataset for CA
data_CA = data[data['State']=='CA']
```

In [162]: pd.set_option('display.max_columns', None)
data_CA.describe(include='all')

Out[162]:

	Unnamed: 0	Job Title	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industr
count	626.000000	626	626	547.000000	626	626	579	582	448.000000	582	51
unique	NaN	373	626	NaN	474	74	179	8	NaN	12	5
top	NaN	Data Analyst	Job Description\nThe Data Analyst will need to	NaN	Staffigo Technical Services, LLC	San Francisco, CA	San Francisco, CA	51 to 200 employees	NaN	Company - Private	l Servic€
freq	NaN	121	1	NaN	12	119	56	129	NaN	361	8
mean	1335.696486	NaN	NaN	3.849909	NaN	NaN	NaN	NaN	1988.792411	NaN	Na
std	559.938274	NaN	NaN	0.601810	NaN	NaN	NaN	NaN	34.319713	NaN	Na
min	454.000000	NaN	NaN	1.000000	NaN	NaN	NaN	NaN	1682.000000	NaN	Na
25%	666.250000	NaN	NaN	3.450000	NaN	NaN	NaN	NaN	1982.000000	NaN	Na
50%	1506.500000	NaN	NaN	3.900000	NaN	NaN	NaN	NaN	2000.000000	NaN	Na
75%	1915.750000	NaN	NaN	4.100000	NaN	NaN	NaN	NaN	2009.000000	NaN	Na
max	2072.000000	NaN	NaN	5.000000	NaN	NaN	NaN	NaN	2019.000000	NaN	Na

```
In [163]: sns.set(style='white')
          f, (ax box, ax hist) = plt.subplots(2, sharex=True, gridspec kw= {"height ratios": (0.2, 1)}, figsize=(13)
          mean=data['Est Salary'].mean()
          median=data['Est Salary'].median()
          bph = sns.boxplot(data['Est Salary'], ax=ax box).set(xlabel="")
          ax box.axvline(mean, color='k', linestyle='--')
          ax box.axvline(median, color='y', linestyle='-')
          dp1 = sns.distplot(data CA['Est Salary'],ax=ax hist, color="r").set(xlabel="Est. Salary ($'000)")
          dp2 = sns.distplot(data['Est Salary'],ax=ax hist, color="g").set(xlabel="Est. Salary ($'000)")
          ax hist.axvline(mean, color='k', linestyle='--')
          ax_hist.axvline(median, color='y', linestyle='-')
          plt.legend({'Mean (All)':mean,'Median (All)':median,'CA':data_CA['Est_Salary'],'All':data['Est_Salary']]
          plt.xlim(0,210)
          plt.xticks(np.arange(0,210,step=10))
          plt.tight layout() #Adjust the padding between and around subplots
          plt.show()
```

/usr/local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

/usr/local/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a d eprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hist ograms).

warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a d eprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hist ograms).

warnings.warn(msg, FutureWarning)

when compared to US entirely, salary distribution for CA shifts to right, indicating higher salary levels for CA

[Heatmap] California vs ALL - Number, Size and Salary of Hiring Firms

```
In [164]: # Create a table for heatmap of number of companies with different sizes and revenues
          Firm Size = data.pivot table(columns="Size",index="Revenue USD",values="Company Name",aggfunc=pd.Series.
          Firm Size = Firm Size[['Revenue USD','1 to 50 employees','51 to 200 employees','201 to 500 employees','5
          Firm Size = Firm Size.reindex([11,2,9,4,7,10,5,0,1,6,8,3,12])
          Firm Size = Firm Size.set index('Revenue USD').replace(np.nan,0)
          # Create a table for heatmap of number of companies with different sizes and revenues in CA
          Firm Size CA = data CA.pivot table(columns="Size",index="Revenue USD",values="Company Name",aggfunc=pd.
          Firm Size CA = Firm Size CA[['Revenue USD','1 to 50 employees','51 to 200 employees','201 to 500 employees
          Firm Size CA = Firm Size CA.reindex([11,2,9,4,7,10,5,0,1,6,8,3,12])
          Firm Size CA = Firm Size CA.set index('Revenue USD').replace(np.nan,0)
          # Create table for heatmap of salaries by companies with different sizes and revenues
          Firm Size Sal = data.pivot table(columns="Size",index="Revenue USD",values="Est Salary",aggfunc=np.mean)
          Firm Size Sal = Firm Size Sal[['Revenue USD','1 to 50 employees','51 to 200 employees','201 to 500 employees'
          Firm Size Sal = Firm Size Sal.reindex([11,2,9,4,7,10,5,0,1,6,8,3,12])
          Firm Size Sal = Firm Size Sal.set index('Revenue USD').replace(np.nan,0)
          # Create table for heatmap of salaries by companies with different sizes and revenues in CA
          Firm Size CA Sal = data CA.pivot table(columns="Size",index="Revenue USD",values="Est Salary",aggfunc=ng
          Firm Size CA Sal = Firm Size CA Sal[['Revenue USD','1 to 50 employees','51 to 200 employees','201 to 500
          Firm Size CA Sal = Firm Size CA Sal.reindex([11,2,9,4,7,10,5,0,1,6,8,3,12])
          Firm Size CA Sal = Firm Size CA Sal.set index('Revenue USD').replace(np.nan,0)
```

```
In [165]: f, axs = plt.subplots(nrows=2,ncols=2, sharey=True,sharex=True, figsize=(13,9))

fs = sns.heatmap(Firm_Size,annot=True,fmt='.0f',annot_kws={"size": 12},cmap="YlGnBu", ax=axs[0,0]).set(tfsc = sns.heatmap(Firm_Size_CA,annot=True,fmt='.0f',annot_kws={"size": 12},cmap="YlGnBu", ax=axs[0,1]).set(tfsc = sns.heatmap(Firm_Size_Sal,annot=True,fmt='.0f',annot_kws={"size": 12},cmap="Oranges",ax=axs[1,0]).set(tfsc = sns.heatmap(Firm_Size_CA_sal,annot=True,fmt='.0f',annot_kws={"size": 12},cmap="oranges",ax=axs[1,0]).set(tfsc = sns.heatmap(Firm_Size_CA_sal,annot=True,fmt='.0f',annot
```


- Big firms (10k+ employess and USD10B+ revenues) do the bulk of analyst hiring, but don't necessarily pay more
- Revenue "Unknown" firms have high demand amongst non-public fiannce firms. these firms pay similar or higher salaries than big firms

- medium-large firms (1k-5k employees and USD100M-USD500M revenues), small businesses (<50 employees and <USD5M revenues) and small-medium businesses (51-200 employees, unknown revenues) tend to pay more
- · CA firms pay more

Who are those high-paying medium-large businesses in CA?

Out[168]:

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
0	ICONMA	3	122.500000	3.6	Troy, MI	Company - Private	Staffing & Outsourcing	Business Services	20.0	Experis
1	Ascent	3	82.333333	4.6	Concord, CA	Company - Private	Staffing & Outsourcing	Business Services	20.0	NaN
2	The Ascent Services Group	2	60.500000	4.6	Concord, CA	Company - Private	Staffing & Outsourcing	Business Services	20.0	NaN
3	Stamps.com	1	79.000000	3.1	El Segundo, CA	Company - Public	Computer Hardware & Software	Information Technology	24.0	Pitney Bowes, US Postal Service, Envelope Mana
4	Exact Sciences Corporation	1	120.000000	4.0	Madison, WI	Company - Public	Health Care Services & Hospitals	Health Care	25.0	NaN
5	Alteryx	1	150.000000	3.3	Irvine, CA	Company - Public	Enterprise Software & Network Solutions	Information Technology	23.0	NaN
6	U.S. Auto Parts Network, Inc.	1	54.000000	3.4	Carson, CA	Company - Public	Automotive Parts & Accessories Stores	Retail	25.0	AutoZone, eBay, Advance Auto Parts
7	Rose International	1	99.000000	4.5	Chesterfield, MO	Company - Private	Staffing & Outsourcing	Business Services	27.0	NaN
8	Sycuan Casino	1	92.000000	3.3	El Cajon, CA	Company - Private	Gambling	Arts, Entertainment & Recreation	37.0	Viejas Casino, Barona Casino, Pechanga Resort
9	Technosoft Corporation	1	98.000000	3.8	Southfield, MI	Company - Private	IT Services	Information Technology	24.0	NaN

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
10	eHealth	1	75.500000	3.7	Santa Clara, CA	Company - Public	Insurance Agencies & Brokerages	Insurance	23.0	InsWeb, Insure.com, Answer Financial
11	Net2Source	1	126.000000	3.2	Somerset, NJ	Company - Private	Staffing & Outsourcing	Business Services	13.0	NaN
12	US Tech Solutions, Inc	1	98.000000	3.7	Edison, NJ	Company - Private	Staffing & Outsourcing	Business Services	20.0	TEKsystems, Artech Information Systems, PDS Tech
13	Risk Management Solutions (RMS)	1	150.000000	3.9	Newark, CA	Company - Private	Enterprise Software & Network Solutions	Information Technology	31.0	AIR Worldwide, EQECAT, Verisk Analytics
14	Milestone Technologies Inc.	1	98.000000	3.2	Fremont, CA	Company - Private	IT Services	Information Technology	23.0	World Wide Technology, Astreya Partners, Taos
15	Iconma, L.L.C.	1	150.000000	3.6	Troy, MI	Company - Private	Staffing & Outsourcing	Business Services	20.0	Experis
16	ICONMA, LLC	1	75.500000	3.6	Troy, MI	Company - Private	Staffing & Outsourcing	Business Services	20.0	Experis
17	Incedo Inc	1	60.500000	3.4	Iselin, NJ	Company - Private	IT Services	Information Technology	8.0	Mu Sigma, ZS Associates, Fractal
18	Ajilon	1	54.000000	3.6	Jacksonville, FL	Company - Public	Staffing & Outsourcing	Business Services	26.0	NaN

In [169]: MLHighPay.describe(include='all')

Out[169]:

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
count	19	19.000000	19.000000	19.000000	19	19	19	19	19.000000	11
unique	19	NaN	NaN	NaN	16	2	8	6	NaN	9
top	Rose International	NaN	NaN	NaN	Troy, MI	Company - Private	Staffing & Outsourcing	Business Services	NaN	Experis
freq	1	NaN	NaN	NaN	3	13	9	9	NaN	3
mean	NaN	1.263158	97.096491	3.689474	NaN	NaN	NaN	NaN	22.578947	NaN
std	NaN	0.653376	31.889727	0.459341	NaN	NaN	NaN	NaN	6.103877	NaN
min	NaN	1.000000	54.000000	3.100000	NaN	NaN	NaN	NaN	8.000000	NaN
25%	NaN	1.000000	75.500000	3.350000	NaN	NaN	NaN	NaN	20.000000	NaN
50%	NaN	1.000000	98.000000	3.600000	NaN	NaN	NaN	NaN	23.000000	NaN
75%	NaN	1.000000	121.250000	3.850000	NaN	NaN	NaN	NaN	25.000000	NaN
max	NaN	3.000000	150.000000	4.600000	NaN	NaN	NaN	NaN	37.000000	NaN

characteristics of these high-paying medium-large companies in CA?

- most are private firms (1k-5k employees & USD100M-500M revenues)
- 50% of these are staffing firms or in outsourcing business
- avg hires 1.3; avg rating 3.7 (ttl avg 3.1); avg company age 22.6 (ttl avg 40)

Who are those high-paying small businesses in CA?

```
In [171]: smallHighPay = smallHighPay.merge(ca_sal_by_firm, on='Company Name',how='left')
smallHighPay = smallHighPay.merge(data_CA[['Company Name','Rating','Headquarters','Type of ownership','left')
smallHighPay = smallHighPay.drop_duplicates().reset_index(drop=True)
smallHighPay
```

Out[171]:

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
0	Lorven Technologies Inc	7	93.000000	4.0	Plainsboro, NJ	Company - Private	Accounting	Accounting & Legal	NaN	NaN
1	Kaygen Inc.	3	103.833333	3.9	Irvine, CA	Company - Private	Consulting	Business Services	NaN	NaN
2	Web Shop Manager	2	92.000000	4.2	San Diego, CA	Company - Private	Computer Hardware & Software	Information Technology	20.0	NaN
3	Introlligent Inc.	1	72.000000	3.7	Elk Grove, CA	Company - Private	Advertising & Marketing	Business Services	NaN	NaN
4	DT Professional Services	1	122.500000	NaN	Canoga Park, CA	Company - Public	NaN	NaN	7.0	NaN
5	Georgia IT Inc.	1	73.000000	5.0	Alpharetta, GA	Company - Private	NaN	NaN	NaN	NaN
6	HITRECORD	1	79.000000	3.5	Van Nuys, CA	Company - Private	NaN	NaN	NaN	NaN
7	Anzu Global	1	75.500000	4.8	Acton, MA	Company - Private	Consulting	Business Services	14.0	NaN
8	TCOE	1	64.000000	3.7	Springville, CA	School / School District	Preschool & Child Care	Education	NaN	NaN
9	Prime MSO, LLC.	1	54.000000	4.0	Dayton, OH	Company - Private	Health Care Services & Hospitals	Health Care	NaN	NaN
10	EMINENT, INC.	1	54.000000	3.4	Williamsville, NY	Company - Private	IT Services	Information Technology	NaN	NaN
11	Conflux Systems Inc.	1	99.000000	4.5	Alpharetta, GA	Company - Private	Accounting	Accounting & Legal	NaN	NaN
12	Apollo Medical Holdings, Inc.	1	40.000000	3.4	Sandy, UT	Company - Private	NaN	NaN	NaN	NaN

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
13	Two95 International Inc.	1	92.500000	4.0	Cherry Hill, NJ	Company - Private	Staffing & Outsourcing	Business Services	NaN	NaN
14	Marin City Health and Wellness Center	1	126.000000	4.5	Marin City, CA	Nonprofit Organization	Health Care Services & Hospitals	Health Care	13.0	NaN
15	SGA Inc.	1	138.500000	NaN	Bethesda, MD	Company - Private	Architectural & Engineering Services	Business Services	24.0	NaN
16	Centrillion	1	75.500000	2.2	Palo Alto, CA	Company - Private	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	11.0	NaN
17	Concept Software & Services Inc	1	60.500000	5.0	Alpharetta, GA	Company - Private	Consulting	Business Services	22.0	NaN
18	Softova Inc	1	126.000000	5.0	Piscataway, NJ	Company - Private	IT Services	Information Technology	NaN	NaN
19	United IT Solutions	1	99.000000	3.8	Irving, TX	Company - Private	Consulting	Business Services	10.0	NaN
20	Frontend Arts	1	120.000000	4.5	Irving, TX	Company - Private	Enterprise Software & Network Solutions	Information Technology	7.0	NaN
21	Optima Global Solutions	1	89.500000	3.9	Lawrenceville, NJ	Company - Private	IT Services	Information Technology	19.0	NaN
22	Focal Systems	1	99.000000	3.8	Burlingame, CA	Company - Private	Computer Hardware & Software	Information Technology	5.0	NaN
23	Softcom Systems	1	98.000000	4.4	Princeton, NJ	Company - Private	IT Services	Information Technology	NaN	NaN
24	Redolent, Inc	1	92.500000	3.7	Newark, CA	Company - Private	Health, Beauty, & Fitness	Consumer Services	NaN	NaN
25	Wellth Inc.	1	79.000000	5.0	New York, NY	Company - Private	Enterprise Software & Network Solutions	Information Technology	6.0	NaN

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
26	Priceonomics	1	138.500000	5.0	San Francisco, CA	Company - Private	Internet	Information Technology	NaN	NaN
27	PlushCare	1	138.500000	3.5	San Francisco, CA	Company - Private	Health Care Services & Hospitals	Health Care	NaN	NaN
28	TechNet Inc.	1	120.000000	5.0	Alpharetta, GA	Company - Private	Staffing & Outsourcing	Business Services	NaN	NaN

In [172]: smallHighPay.describe(include='all')

Out[172]:

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
count	29	29.000000	29.000000	27.000000	29	29	25	25	12.000000	0
unique	29	NaN	NaN	NaN	24	4	13	7	NaN	0
top	Web Shop Manager	NaN	NaN	NaN	Alpharetta, GA	Company - Private	Consulting	Information Technology	NaN	NaN
freq	1	NaN	NaN	NaN	4	26	4	9	NaN	NaN
mean	NaN	1.310345	93.614943	4.125926	NaN	NaN	NaN	NaN	13.166667	NaN
std	NaN	1.168132	27.100273	0.679136	NaN	NaN	NaN	NaN	6.644661	NaN
min	NaN	1.000000	40.000000	2.200000	NaN	NaN	NaN	NaN	5.000000	NaN
25%	NaN	1.000000	75.500000	3.700000	NaN	NaN	NaN	NaN	7.000000	NaN
50%	NaN	1.000000	92.500000	4.000000	NaN	NaN	NaN	NaN	12.000000	NaN
75%	NaN	1.000000	120.000000	4.650000	NaN	NaN	NaN	NaN	19.250000	NaN
max	NaN	7.000000	138.500000	5.000000	NaN	NaN	NaN	NaN	24.000000	NaN

characteristics of these high-paying small business in CA?

- private companies (<50 employees and <USD5M revenues)
- IT and related industrys, industry and sector is scattered
- avg hire 1.3, avg rating 4.1 (ttl avg 3.1), avg company age 13.17 (ttl avg 40)

Who are those high-paying small-medium businesses in CA?

In [174]: SMHighPay = SMHighPay.merge(ca_sal_by_firm, on='Company Name',how='left')
SMHighPay = SMHighPay.merge(data_CA[['Company Name','Rating','Headquarters','Type of ownership','Industr
SMHighPay = SMHighPay.drop_duplicates().reset_index(drop=True)
SMHighPay

Out[174]:

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
0	Armada Group, Inc.	2	85.0	4.4	Santa Cruz, CA	Company - Private	IT Services	Information Technology	25.0	TEKsystems, Akraya, Intelliswift
1	Parker Institute for Cancer Immunotherapy	2	76.5	NaN	San Francisco, CA	Nonprofit Organization	Health Fundraising Organizations	Non-Profit	NaN	NaN
2	Adwait Algorithm	2	109.0	4.4	Houston, TX	Company - Private	IT Services	Information Technology	5.0	NaN
3	Potomac Management	2	95.5	3.5	Hagerstown, MD	Nonprofit Organization	NaN	NaN	NaN	NaN
4	PlayQ	2	76.0	4.7	Santa Monica, CA	Company - Private	Video Games	Media	13.0	NaN
5	Quinn Group	1	122.5	5.0	Taipei, Taiwan	Company - Private	NaN	NaN	NaN	NaN
6	LaunchDarkly	1	80.5	5.0	Oakland, CA	Company - Private	Enterprise Software & Network Solutions	Information Technology	6.0	NaN
7	Method360	1	98.0	4.7	San Francisco, CA	Company - Private	IT Services	Information Technology	20.0	Optimal Solutions Integration, Capgemini
8	NRC INC	1	122.5	4.0	Boca Raton, FL	Company - Private	NaN	NaN	NaN	NaN
9	Sayva Solutions	1	99.0	4.8	La Jolla, CA	Company - Private	Staffing & Outsourcing	Business Services	6.0	NaN
10	TutorMe	1	80.0	4.6	Los Angeles, CA	Subsidiary or Business Segment	Colleges & Universities	Education	5.0	Chegg, Tutor.com, Smarthinking
11	Deliverr Inc	1	80.5	4.9	San Francisco, CA	Company - Private	Logistics & Supply Chain	Transportation & Logistics	3.0	NaN

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
12	The Armada Group	1	66.0	4.4	Santa Cruz, CA	Company - Private	IT Services	Information Technology	25.0	TEKsystems, Akraya, Intelliswift
13	LiveGlam	1	53.5	4.1	Los Angeles, CA	Company - Private	Health, Beauty, & Fitness	Consumer Services	4.0	NaN
14	Trifacta	1	138.5	3.6	San Francisco, CA	Company - Private	Computer Hardware & Software	Information Technology	8.0	Paxata, Datameer, Informatica
15	Applicantz	1	99.0	NaN	Houston, TX	Company - Public	NaN	NaN	NaN	NaN
16	PETADATA	1	98.0	NaN	Fremont, CA	Company - Private	NaN	NaN	NaN	NaN
17	LeadStack	1	126.0	4.1	San Francisco, CA	Company - Private	IT Services	Information Technology	4.0	NaN
18	Lean Data	1	98.0	4.0	Hyderabad, India	Company - Private	NaN	NaN	NaN	NaN
19	Moveworks	1	150.0	5.0	Mountain View, CA	Company - Private	Enterprise Software & Network Solutions	Information Technology	4.0	NaN
20	Angaza	1	80.5	4.6	San Francisco, CA	Company - Private	Enterprise Software & Network Solutions	Information Technology	10.0	NaN
21	Mobilityware	1	80.0	4.5	Irvine, CA	Company - Private	Video Games	Media	30.0	NaN
22	Scale Al	1	126.0	3.2	San Francisco, CA	Company - Private	Enterprise Software & Network Solutions	Information Technology	4.0	NaN
23	Cue	1	99.0	4.2	San Diego, CA	Company - Private	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	10.0	NaN
24	Credible	1	138.5	4.3	San Francisco, CA	Company - Public	Lending	Finance	8.0	NaN
25	Housecall Pro	1	92.0	4.6	San Diego, CA	Company - Private	Computer Hardware & Software	Information Technology	7.0	NaN

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
26	IT Avalon	1	99.0	NaN	Brentwood, CA	Unknown	NaN	NaN	NaN	NaN
27	Signal Sciences	1	79.0	4.3	Culver City, CA	Company - Private	Enterprise Software & Network Solutions	Information Technology	6.0	NaN
28	Vida Health	1	99.0	3.3	San Francisco, CA	Company - Private	Health Care Services & Hospitals	Health Care	6.0	NaN
29	Vinsari LLC	1	126.0	2.5	Irving, TX	Other Organization	NaN	NaN	NaN	NaN
30	Gossamer Bio	1	92.0	NaN	San Diego, CA	Company - Public	NaN	NaN	NaN	NaN
31	Life360	1	80.5	3.9	San Francisco, CA	Company - Public	Internet	Information Technology	12.0	NaN
32	Century Group (CA)	1	80.0	4.5	El Segundo, CA	Company - Private	Staffing & Outsourcing	Business Services	31.0	NaN
33	Leo Tech, LLC	1	54.0	3.5	Singapore, Singapore	Company - Private	NaN	NaN	NaN	NaN
34	The Voleon Group	1	138.5	4.6	Berkeley, CA	Company - Private	Investment Banking & Asset Management	Finance	13.0	NaN
35	Tech Firefly	1	98.0	4.5	Santa Clara, CA	Company - Private	IT Services	Information Technology	4.0	NaN
36	Skiltrek	1	89.5	NaN	Jacksonville, FL	Company - Public	NaN	NaN	NaN	NaN
37	PeerStreet	1	79.0	4.7	El Segundo, CA	Company - Private	Real Estate	Real Estate	NaN	NaN
38	Epikso	1	60.5	3.8	Pleasant Hill, CA	Company - Private	Research & Development	Business Services	5.0	NaN
39	Chinese Community Health Plan	1	99.0	3.2	San Francisco, CA	Company - Private	Insurance Carriers	Insurance	NaN	NaN
40	Joomag, Inc.	1	150.0	3.9	Sunnyvale, CA	Company - Private	IT Services	Information Technology	11.0	NaN

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
41	LeadStack, Inc.	1	92.5	4.1	San Francisco, CA	Company - Private	IT Services	Information Technology	4.0	NaN
42	Center For Policing Equity	1	53.5	NaN	New York, NY	Nonprofit Organization	Colleges & Universities	Education	NaN	NaN
43	DISQO	1	73.0	4.7	Glendale, CA	Company - Private	Research & Development	Business Services	6.0	NaN
44	Applicantz, Inc.	1	138.5	NaN	Houston, TX	Company - Public	NaN	NaN	NaN	NaN
45	Cypress HCM	1	40.0	4.9	Walnut Creek, CA	Company - Private	Staffing & Outsourcing	Business Services	15.0	NaN
46	Allakos	1	72.0	NaN	Redwood City, CA	Company - Public	NaN	NaN	NaN	NaN
47	Epikso Inc	1	60.5	3.8	Pleasant Hill, CA	Company - Private	Research & Development	Business Services	5.0	NaN
48	Mindstrong	1	80.5	3.6	Mountain View, CA	Company - Private	IT Services	Information Technology	6.0	NaN
49	Perfect Day	1	99.0	4.4	Emeryville, CA	Company - Private	Biotech & Pharmaceuticals	Biotech & Pharmaceuticals	6.0	NaN

In [175]: SMHighPay.describe(include='all')

Out[175]:

	Company Name	Hires	Est_Salary	Rating	Headquarters	Type of ownership	Industry	Sector	Years_Founded	Competitors
count	50	50.000000	50.000000	41.000000	50	50	37	37	33.000000	5
unique	50	NaN	NaN	NaN	30	6	17	12	NaN	4
top	IT Avalon	NaN	NaN	NaN	San Francisco, CA	Company - Private	IT Services	Information Technology	NaN	TEKsystems, Akraya, Intelliswift
freq	1	NaN	NaN	NaN	12	37	9	17	NaN	2
mean	NaN	1.100000	94.070000	4.214634	NaN	NaN	NaN	NaN	9.909091	NaN
std	NaN	0.303046	26.262608	0.577737	NaN	NaN	NaN	NaN	7.771597	NaN
min	NaN	1.000000	40.000000	2.500000	NaN	NaN	NaN	NaN	3.000000	NaN
25%	NaN	1.000000	79.250000	3.900000	NaN	NaN	NaN	NaN	5.000000	NaN
50%	NaN	1.000000	92.250000	4.400000	NaN	NaN	NaN	NaN	6.000000	NaN
75%	NaN	1.000000	99.000000	4.600000	NaN	NaN	NaN	NaN	12.000000	NaN
max	NaN	2.000000	150.000000	5.000000	NaN	NaN	NaN	NaN	31.000000	NaN

characteristics of these high-paying small business in CA?

- private compaies (51-200 employees with unknown revenues)
- 50% are IT related
- avg hires 1.1; avg rating 4.2 (hiugher than ttl avg 3.1); avg compamy age 9.9 (ttl avg 40)

CA - Hires and Salary Estimates by Revenues

```
In [176]: RevCountCA = data_CA.groupby('Revenue_USD')[['Job_Title']].count().reset_index().rename(columns={'Job_Title'}]
                'Count', ascending=False).reset index(drop=True)
           RevCountCA = RevCountCA.merge(data CA, on='Revenue USD',how='left')
In [177]: sns.set(style="whitegrid")
           f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)},figsize
           sns.barplot(x='Count',y='Revenue_USD',data=RevCountCA,ax=ax_bar)
           sns.pointplot(x='Est Salary',y='Revenue USD',data=RevCountCA, join=False,ax=ax point).set(ylabel="",xlak
           plt.tight_layout()
                  Unknown
              100-500 million
                 10+ billion
                  2-5 billion
               50-100 million
                10-25 million
            Revenue_USD
                25-50 million
                 1-5 million
                  1-2 billion
                 5-10 million
                  <1 million
                0.5-1 billion
                 5-10 billion
```

• in CA, majority of the analyst hirings are with firms with unknown revenues

150

200

90

100

Salary (\$'000)

110

100

Count

0

50

120

CA - Hires and Salary Estimates by Sizes

```
In [179]: | SizeCountCA = data_CA.groupby('Size')[['Job Title']].count().reset_index().rename(columns={'Job Title':
                'Count', ascending=False).reset_index(drop=True)
           SizeCountCA = SizeCountCA.merge(data_CA, on='Size',how='left')
In [180]: sns.set(style="whitegrid")
           f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)},figsize
           sns.barplot(x='Count',y='Size',data=SizeCountCA,ax=ax_bar)
           sns.pointplot(x='Est_Salary',y='Size',data=SizeCountCA, join=False,ax=ax_point).set(ylabel="",xlabel="Sa
           plt.tight_layout()
                 51 to 200 employees
                  1 to 50 employees
              1001 to 5000 employees
                  10000+ employees
            Size
                201 to 500 employees
               501 to 1000 employees
              5001 to 10000 employees
```

40

60

Count

80

100

120

70

75

85

Salary (\$'000)

90

95

20

Unknown

CA - Hires and Salary Estimates by Sectors

```
In [182]: sns.set(style="whitegrid")
    f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)}, figsize
    sns.barplot(x='Count', y='Sector', data=SecCountCA, ax=ax_bar)
    sns.pointplot(x='Est_Salary', y='Sector', join=False, data=SecCountCA, ax=ax_point).set(ylabel="",xlabel="")
    plt.tight_layout()
```



```
In [184]: sns.set(style="whitegrid")
    f, (ax_bar, ax_point) = plt.subplots(ncols=2, sharey=True, gridspec_kw= {"width_ratios":(0.6,1)}, figsize
    sns.barplot(x='Count', y='Type of ownership', data=OwnCountCA, ax=ax_bar)
    sns.pointplot(x='Est_Salary', y='Type of ownership', data=OwnCountCA, join=False, ax=ax_point).set(ylabel='
    plt.tight_layout()
```


In []: