Introduction to Hidden Markov Models (HMMs) UNIVERSITY^{OF} BIRMINGHAM EE4R Automatic Spoken Language Processing Objectives • To understand the basics ideas behind Hidden Markov Models • Notes: pp 32 - 38 UNIVERSITY^{OF} BIRMINGHAM Mathematical Modelling • Mathematical modelling for speech recognition • Two conflicting requirements: - Faithful model of human speech production/perception - Mathematically tractable & Computationally Useful HMMs are the best compromise at the moment HMMs **Mathematics & Computing** Speech Science UNIVERSITY OF BIRMINGHAM

'Divide and Conquer'

- One possible approach to ASR is sequential 'divide and conquer', e.g.
 - classify speech vectors as 'acoustic features'
 - classify sequences of acoustic features as phonemes
 - classify sequences of phonemes as words
 - classify sequences of words ...

DISASTER!!

EE4R Automatic Spoken Language Processing

Delayed Decision Making

- Another name for this might be non-recoverable error propagation!
- Better to avoid all classification decisions until all sources of information are available. Then perform classification as a single, integrated process delayed decision making
- Delayed Decision Making underlies HMM success

Multimodal Interaction Lab

EE4R Automatic Spoken Language Processing

The 'HMM Compromise'

Assume that:

- A spoken utterance is a time-varying sequence which moves through a sequence of 'segments' - (ves)
- Underlying structure of the segments is constant w.r.t time – (no!)
- Durations of segments vary (yes)
- All variations between different realizations of the segments are random – (no!)

Markov Model

Formally, a Markov model consists of:

- A set of states $S = \{s_1, ..., s_N\}$
- A state transition probability matrix

$$A=[a_{ij}]_{i,j=1,\dots N,},$$

where $a_{ij} = \text{Prob}(x_t = s_j | x_{t-1} = s_i)$

 The Markov property states that the state of the process at time t+1 depends on the state at time t (but is independent of the history of the process before time t)

EE4R Automatic Spoken Language Processing

Hidden Markov Model In a hidden Markov model, the relationship between the observation sequence and the state sequence is ambiguous. $a_{11} \quad a_{22} \quad a_{33} \quad a_{44}$ a_{24} X={x_t} Y=(y_t) Multimodal Interaction Lab EE4R Automatic Spoken Language Processing

Multimodal Interaction Lab EE4R Automatic Spoken Language Processing

Hidden Markov Models A HMM consists of A set of states S = {s₁,...,s_N} A state transition probability matrix A = {a_{ij}J_{i,j=1,...N}, where a_{ij} = Prob(s_j at time t | s_i at time t-I) For each state s_i, a PDF b_i defined on the set of possible observations O s.t. b_i(o) = Prob(y_t=o | x_t=s_i) b_i is called the state output PDF for state i (or the ith state output PDF)

Multimodal Interaction Lab

UNIVERSITY^{OF} BIRMINGHAM

HMM Assumptions

- **Temporal Independence** the observation y_t depends on the state x_t but is otherwise independent of the rest of the observation sequence $Y = \{y_t\}!$
 - ... so, the position of the vocal tract at time t is independent of its position at time t-1!
- Piecewise stationarity the underlying structure of speech is a sequence of stationary segments
- Random variability variations from this underlying structure are random

EE4R Automatic Spoken Language Processing

HMM State Duration Model

• Constant segments correspond to the HMM states

• Probability of state duration *D* is given by $P_i(D) = (i - a_{ii})a_{ii}^{(D-1)}$

EE4R Automatic Spoken Language Processing

Summary

- Introduction to HMMs
- Markov Models
- Hidden Markov Models
- Formal definition of HMM
- HMM assumptions

Multimodal Interaction La

