Exercises for K-means

(i) How would you assign K=2 clusters to minimize error? (ii) How would you assign K=3 clusters to minimize error? (iii) Find an initial assignment of K=3 initial seed centers that shows that the iterative K-means algor: thm might converge to a local min that is not global, that is, to clusters that don't minimize energy.

2. (i) How many clusters do you see?

3,	(i) How many clusters would you say that the following dataset has?								
	* *								
	**								
	•••••								
(ii)	Explain why as K increases, the error of the best clustering (with K clusters) never decreases.								
	Dest clustering (with K clusters) never decreases.								
	Error of the								
	best clustering								
	01234567891011								
	# of clusters K								
(::;)	Given a new dataset, what strategies might								
(uu)	you propose for choosing the # of clusters K?								

4.	What that K-me	are you cans	various can cluste	pros think ering 1	and of method	Variou For L ?	s cons the	
Pr	<u> </u>			(0)	10:			
	<u>/ </u>			<u>U/</u>	<u>D.</u>			

Coding exercises for K-means

- (i) From the course Git Hub page,
 download and run the jupyter notebook
 05.11 K Means. ipynb.

 (ii) In the "two moons" example,
- (ii) In the "two moons" example,
 how many clusters are needed until
 no cluster contains points from both moons?
- (iii) In the digits example (#15 0-9), which cluster center looks the least like a number?

 Why do you think this is?
- (iv) In the color reduction application, change the # of colors in the simplified image. What does the K-means error represent in this application?

