Lista 2 - MAT0317/MAT5741 Topologia 2023

Instruções para a entrega:

- Dois dos exercícios 21, 25, 28 e 29 devem ser entregues em grupos de 3 a 5 pessoas até o dia 24 de abril.
- A entrega deve ser feita pelo edisciplinas.
- Basta que uma pessoa do grupo publique as soluções. O documento publicado deve conter o nome e o número usp dos componentes do grupo.

Exercício 21. Sejam X e Y espaços topológicos, $f: X \to Y$ uma função e $A \subseteq X$ munido com sua topologia de subespaço. Prove ou dê um contraexemplo:

- a. Se a restrição $f|_A:A\to Y$ é contínua, então $f:X\to Y$ é contínua em todo ponto de A.
- b. Se $f: X \to Y$ é contínua em todo ponto de A, então a restrição $f|_A: A \to Y$ é uma função contínua.

Exercício 22. Sejam X e Y espaços topológicos e $f: X \to Y$ uma função.

- a. Seja \mathcal{C} uma coleção de abertos em X tal que $\bigcup \mathcal{C} = X$. Prove que se a restrição $f|_U : U \to Y$ é contínua para todo $U \in \mathcal{C}$, então f é contínua.
- b. Seja \mathcal{F} uma conjunto finito de fechados em X tal que $X = \bigcup \mathcal{F}$. Prove que se a restrição $f|_F$ é contínua para todo $F \in \mathcal{F}$, então f é contínua.
 - Sugestão: Prove o caso em que $|\mathcal{F}| = 2$ e aplique indução.
- c. Exiba um contraexemplo para o caso em que \mathcal{F} não é finito.

Exercício 23. Seja X um espaço topológico que satisfaz o primeiro axioma de enumerabilidade. Prove que X é um espaço sequencial.

Exercício 24. Seja X o conjunto de todas as funções de \mathbb{R} em \mathbb{R} . Para cada $f \in X$, $F \subseteq \mathbb{R}$ e r > 0, considere

$$U(f,F,r) := \{g \in X : |g(x) - f(x)| < r \text{ para todo } x \in F\}.$$

- a. Mostre que $\mathcal{B} := \{U(f, F, r) : f \in X, F \subseteq \mathbb{R} \text{ finito}, r > 0\}$ é uma base de abertos para uma topologia em X.
- b. Mostre que X, quando munido com a topologia gerada por \mathcal{B} , não é um espaço sequencial. Sugestão: Para cada $A \subseteq \mathbb{R}$, o indicador de A é a função $1_A \in X$ dada por $1_A(x) = 1$, se $x \in A$, e $1_A(x) = 0$ caso contrário. Considere

$$N := \{1_A : A \subseteq \mathbb{R}, \ \mathbb{R} \setminus A \ \acute{e} \ enumer\acute{a}vel\}$$

e observe que a função nula pertence a $\overline{N} \setminus N$.

Exercício 25. O teorema de Cantor-Bernstein garante que, dados conjuntos A e B, se existem funções injetivas $f:A\to B$ e $g:B\to A$, então existe uma bijeção entre A e B. Um resultado análogo para espaços topológicos seria: dados espaços topológicos X e Y, se existem injeções contínuas $f:X\to Y$ e $g:Y\to X$, então X e Y são homeomorfos. Exiba um contraexemplo.

Sugestão: Use que a compacidade é uma propriedade topológica. Apesar de compacidade não ter sido definida ainda no curso, lembre da compacidade na reta.

Exercício 26. Sejam τ_1 e τ_2 topologias sobre um conjunto X tais que $\tau_1 \subseteq \tau_2$. Para cada j = 1, 2, 3, prove que se (X, τ_1) é T_j , então (X, τ_2) também é.

Exercício 27.

- a. Sejam X um conjunto infinito e τ a topologia cofinita sobre X. Mostre que τ é a menor (no sentido da inclusão) topologia T_1 sobre X. Ou seja, mostre que (X,τ) é um espaço T_1 e que se τ' é uma topologia sobre X tal que (X,τ') é um espaço T_1 , então $\tau \subseteq \tau'$.
- b. Mostre que não existe uma menor (no sentindo da inclusão) topologia T_2 sobre X.

Sugestão: Fixe $x \in X$ e considere a topologia τ_x sobre X que tem

$$\mathcal{B}_x = \{\{y\} : y \in X \setminus \{x\}\} \cup \{X \setminus F : F \subseteq X \text{ \'e finito}\}$$

como base de abertos. Prove que (X, τ_x) é T_2 mas $(X, \tau_x \cap \tau_y)$ não é T_2 se $x \neq y$. Use o Exercício 26.

Exercício 28. Seja X um espaço topológico. Mostre que X é T_1 se, e somente se, para todo $A \subseteq X$ e todo x ponto de acumulação de A em X, tem-se que $V \cap A$ é um conjunto infinito sempre que V é uma vizinhança de x.

Exercício 29. Sejam X um conjunto não enumerável, $x_0 \in X$ fixado, τ a topologia sobre X gerada por

$$\mathcal{B} = \{\{x\} : x \in X \setminus \{x_0\}\} \cup \{A \subseteq X : x_0 \in A \in X \setminus A \text{ \'e enumer\'avel}\}$$

e Y um espaço topológico T_1 e primeiro enumerável. Prove que uma função $f: X \to Y$ é contínua se, e somente se, o conjunto $\{x \in X : f(x) \neq f(x_0)\}$ é enumerável.

Sugestão: Use a Proposição 5.16 da apostila.

Exercício 30. Seja X um espaço topológico. Considere as seguintes afirmações:

- a. $X \in T_2$.
- b. Toda sequência em X tem um único limite.
- c. $X \notin T_1$.

Prove que (a) \Rightarrow (b) \Rightarrow (c), que (c) não necessariamente implica (b) e que (b) não necessariamente implica (a). Prove também que se X é primeiro enumerável, então (b) \Rightarrow (a).