

ITC 502 Computer Network Security M6L3

- 7. Security in Networks
 - 7.3. Networks Security Controls

- Access controls g)
 - ACLs on routers
 - **Firewalls**
- Intrusion Detection Systems: alarms and alerts
- Honeypots
- Traffic flow security
- Review of network security controls

g) Access controls (1)

- Before user is allowed access to network resources, must know:
 - Who needs access => authentication
 - What and how will be accessed => access controls
- Access controls include:
 - 1) ACLs (Access Control Lists) on router
 - 2) Firewalls

h) Intrusion Detection Systems: alarms & alerts

- Example of 2-layer network protection
 - Provided by router (Layer 1) AND firewall (Layer 2)
 - Fig. 7-33, p. 452
- We can add one more layer of protection: intrusion detection systems (IDS) = device placed within protected network for monitoring for illegitimate actions in order to detect attacks in progress (beginning, advanced) or after they have occurred
 - E.g.: Can detect reconaissance & alert sysadmin or secadmin, raise alarm, thus preventing "real" attack

 OR
 - Can detect that attack has already occurred & raise alarm, starting system recovery actions
 - IDS is a.k.a. IPS = intrusion protection system
 - A marketing gimmick?
 - IDS can be Layer 3 of layered network protection
 - To be discussed in detail soon

i) Honeypots

- Honeypot system built as a bait attracting attackers
 - Once attackers take the bait:
 - They are observed to learn how they behave/operate
 - New attacks / Prefered targets / ...
 - They are traced to catch them or scare them off
 - Or at least trace enough to be able to threaten them with identifying them if they don't stop
 - They are diverted from really valuable attack targets
 - E.g., diverted to *phony* credit card database while *real* credit card database remains obscure to them
- User lessons learned (thanks to honeypots) to build better countermeasures

j) Traffic flow security (1)

- Threat: attacker infering occurrence/location of some event / structure from intensity of encrypted network traffic (If not encrypted, no need to infer – attacker can simply read all)
 - Example 1: Inference that traffic between Thinges Corp. and bankruptcy lawyer precedes declaration of bankruptcy by Thinges
 - Example 2 (old): Battlefield network: Busiest network node is at enemy's HQs
- Solution 1: Masking by steady traffic volume
 - X and Y always send the same volume of encrypted traffic between them
 - If X has nothing to communicate to Y, X sends meaningless padding packets to Y (Y behaves analogously)

k) Review of network security controls

- Table 7-4, p. 426 provided classification of network vulnerabilities (during our earlier discussion of threats)
- <u>Table 7-7, p. 454</u> lists controls for each of these classes of network vulnerabilities — it shows that:
 - There are many great network security controls
 - Most are used also in environments other than networks (including applications and OSs)
 - Three of these controls are specific to networks:
 - Firewalls / IDSs / encrypted e-mail
 We shall discuss them in some detail next
- Table 7-7 is a great reference for network security controls!
 - Use it often
 - If you can get copyright permission from publisher, I'd advise you to copy it and post above your desk
 - Otherwise, make your own notes based on it

End of Class

- 7. Security in Networks
 - 7.3. Networks Security Controls
 - d) Encryption
 - e) Message content integrity controls
 - f) Strong authentication
 - g) Access controls
 - ACLs on routers
 - i. Firewalls
 - h) Intrusion Detection Systems: alarms and alerts
 - i) Honeypots
 - j) Traffic flow security
 - k) Review of network security controls

7.4. Network Security Tools

- 7.4.1. Firewalls
 - a) Introduction
 - b) What is a firewall
 - c) Firewall design
 - d) Types of firewalls
 - e) Comparison of firewall types
 - f) Example firewall configurations
 - g) What firewalls can—and can't—block

7.4. Network Security Tools

[Fig: B. Endicott-Popovsky]

- Network security tools
 - 7.4.1. Firewalls
 - 7.4.2. Intrusion Detection Systems
 - 7.4.3. Secure E-Mail

6.2.1. Firewalls

- Outline
 - a) Introduction
 - b) What is a firewall
 - c) Firewall design
 - d) Types of firewalls
 - Packet filters
 - (i-1) Simple packet filters
 - (i-2) Stateful packet filters
 - ii. Application proxies
 - (ii-1) Guards ("top model" subcategory)
 - iii. Personal firewalls
 - e) Comparison of firewall types
 - f) Example firewall configurations
 - g) What firewalls can—and can't—block

--[OPTIONAL]-- a. Introduction

- Firewalls
 - Invented in the early 1990's
 - But idea related to reference monitors from 1970's
 - What is reference monitor?
 - OS includes kernel / core / nucleous responsible for lowestlevel functions
 - Incl. synchronization, inter-process communication, msg passing, interrupt handling
 - Security kernel provides security mechanisms for entire OS
 - Incl. security interfaces among h/w, OS, other parts of computing system
 - Typically, security kernel is a part of OS kernel
 - Reference monitor is portion of security kernel that controls access to objects (controls "references" to objects)

b. What is a firewall (1)

 Firewall = device (h/w), or software, or combination of both designed to prevent unauthorized users from accessing network and/or single workstation

Wall between protected local (sub)net & outside global net

- Inspect each individual inbound or outbound packet of data sent to / from protected system
- Check if it should be blocked or allowed to enter
- Firewalls keep "bad things" out, keep sensitive info in
 - Security policy specifies what are "bad things"
 - E.g., requires that <u>traceroute</u> & <u>ping -o</u> can't see internal hosts
 - F. protect against security threats from external network
 - F. are effective in protecting local subnet incl. its sensitive info

What is a firewall (2)

- Examples of security policy requirements w.r.t. firewalls:
 - Block any access from the outside, allow all accesses to the outside
 - Allow "from" accesses only for certain activities OR only to/from certain subnets/hosts/apps/users
 - E.g., prevent outside access to subnet hosts except for mail server accesses
- Choice of default firewall behavior
 - 1) Default permit
 - "That which is not expressly forbidden is allowed"
 - 2) Default deny
 - "That which is not expressly allowed is forbidden"
 - Users prefer default permit, security experts prefer default deny
 - Sysadmin must make the choice

c. Firewall design (1)

- Firewall design principles:
 - Small / simple enough for rigorous analysis
 - KISS principle (= "Keep It Simple, Stupid")
 - Simple firewall functionality
 - Tamperproof
 - Typically well isolated (=> highly immune to modifications)
 - On a separate computer
 - With direct connections only to the outside networks and to the inside network
 - Designed to be always invoked
 - Efficient enough not too be a bottleneck
 - Placed strategically
 - All network accesses that we want to control pass through it

--[OPTIONAL]-- Firewall design (2)

- General firewall techniques:
 - 1) Service control
 - Type of service: inbound or outbound
 - 2) Traffic filtering based on IP address & TCP port nr
 - Provide proxy software to receive or interpret service request before passing it on
 - Could also host server software (e.g. Web or mail service)
 - Not recommended
 - Complicates it (more code => more vulnerabilities)
 - 3) User Control
 - Control access to service using ACLs
 - 4) Behavior Control
 - E.g. filter e-mail for spam

--[OPTIONAL]-- Firewall design (3)

- Basic firewall characteristics
 - All traffic (incoming / outgoing) must pass thru firewall
 - Only authorized traffic allowed to pass
 - Firewall itself must be immune to penetration
 - I.e. must use trusted system w/ secure OS (min. size/complexity)
 - Usually implemented on dedicated device
 - Dedicated = only firewall functions performed on this device
 - Firewall code must be very well protected
- Basic kinds of firewalls:
 - Hardware firewalls
 - More common
 - Implemented on router level
 - More expensive / more difficult to configure
 - Software firewalls
 - Used in single workstations
 - Less expensive / Easier to configure

d. Types of firewalls (1)

- Types of firewalls
 - i. *Packet filters* / packet filtering firewalls
 - (i-1) Simple packet filters / (simple) packet filtering gateways / screening routers
 - (i-2) Stateful packet filters / stateful inspection firewalls
 - ii. Application proxies / proxy firewalls / application-level gateways
 - (ii-1) Guards (a special case of app proxies)
 - iii. Personal firewalls

Types of firewalls (2)

- Firewall properties:
 - Packet filter properties:
 - Transparent
 - Does not change traffic, only passes it
 - Proxy properties:
 - Active
 - Intercepts traffic & acts as an intermediary
- Different firewall types needed for different needs

"Different strokes for different floks" — e.g.:

- Simple packet filters / screening routers implement simplistic security policies
 - Simple is best if sufficient to counter exisiting threats well
- App proxies much richer capabilities

--[OPTIONAL]-- Types of firewalls (3)

Firewall is a type of host

Even some routers are host-based

To have better tools available (editors, programming tools)

- Programmable
- Minimal functionality
 - Reduces vulnerabilities
 - Small = > less complex => fewer vulnerabilities
 - Reduces motivation for attacks
 - No password files to steal, etc.

(i) Packet filters (1)

- Packet filters a.k.a. packet filtering firewalls
 - (i-1) *Simple* packet filters ("memoryless")
 - (i-2) *Stateful* packet filters (with "memory")
- Basis for packet filtering
 - 1) Packet IP addresses
 - Filtering based on both source/destination addresses
 - 2) Port number determines TCP transport protocol type
 - Recall "port \rightarrow protocol" mapping in TCP: 21 \rightarrow FTP, 23 \rightarrow Telnet, 25 \rightarrow SMTP, 80 \rightarrow HTTP, 110 \rightarrow POP, 161 \rightarrow SNMP, etc.
 - Filtering based on port nr
- Packet filtering firewalls do not "see" other packet fields
 - See only IP address ' transport protocol type
 - E.g., can not allow only some Telnet commands OR exclude only some other Telnet commands

--[OPTIONAL]-- (i) Packet filters (2)

- Examples of packet filtering see text
 - 1a) Packet address filtering (cf. Fig. 7-35, p. 459)
 Can block traffic from specific subnets and/or allow traffic from specific subnets
 - 1b) Packet address filtering (cf. Fig. 7-36, p. 460) Can block traffic from specific IP addresses and/or allow traffic from specific IP addresses
 - 2) Filtering based on transport protocol (cf. Fig. 7-35, p. 459)
 Can block traffic using Telnet protocol (port 23) but allow HTTP traffic (port 80)
- To avoid overburdening router, firewall can run on device behind router (on subnet side)

(i-1) Simple packet filters (1)

- Simple packet filters | (simple) packet filtering gateways |
 screening routers simplest firewall type
- Simple packet filters (PFs) are memoryless
 => can not perform attack detections that require remembering state (history/context) of ≥ N last pkts
 - E.g., can *not* see that prev. & curr. pkt indicate attack
 - "Attack signature" (i.e., attack pattern) would be clearly visible if both pkts were put together
 - Example: Certain attack script known to use Telnet (port 23) and then SNMP (port 161)
 The same source address in previous pkt, using port 23, and in
 - The same source address in previous pkt, using port 23, and in current packet, using port 161, constitutes attack signature
 - Why need to remember ≥ N last pkts?
 - TCP pkts arrive in order different than sending order
 => remembering ≤ N last pkts is not enough

--[OPTIONAL]-- (i-1) Simple packet filters (2)

- Cheating simple (memoryless) PF:
 - Attacker divides pkt (including attack signature) into many v. short pkts
 - Attack signature (pattern) would be visible in original long pkt
 - Even memoryless simple PF would detect it
 - Pattern of attack is completely invisible in any single short pkt
 - => memoryless simple PF is unable to detect attack
 - Additionally, TCP pkts arrive in order different than their sending order
 - => remembering just last packet would not be enough must remember N last packets

--[OPTIONAL]-- (i-1) Simple packet filters (3)

- One very important task for simple packet filtering gateways: Validating inside IP addresses
 - Inside hosts trust more other inside host
 - Simple filtering assures that no external source can masquerade as internal source
 - Blocks any packet coming from outside network that claims to be sent by internal host
 - Cf. Fig. 7-37, p. 460

- --[OPTIONAL]-- (i-1) Simple packet filters (4)
- Simplicity of inspection is both disadvantage & advantage
 - Disadvantage because of high granularity
 - E.g., can block all Telnet coomands, but can *not* block only selected telnet commands
 - Advantage beacuse reduces complexity
 - Filtering rules to block, e.g., only selected Telnet traffic would have to be much more detailed
 - => more complex
 - => more vulnerable

(i-2) Stateful packet filters

- Stateful packet filters a.k.a. stateful inspection firewalls
 - Keep state/history/context of ≥ N previously seen pkts
 => stateful packet filters have memory
 - This allows detection of some attacks that simple PFs can *not* detect
 - Still limited to detection based on IP address & TCP transport protocol type (port nr)

(ii) Application proxies (1)

 Application proxies | proxy firewalls | application-level gateways | application proxy gateways

Note: The term *bastion host* (used in text) should *not* be used as a synonym. Bastion host is a host that serves as a *platform* for app proxy or circuit-level proxy [Stallings, Crypto&Net.Sec, p.625].

- Application proxies include as a special case
 (ii-1) Guards
- App proxy firewalls fix basic problem with packet filtering firewalls because they:
 - See all pkt data (not just IP adresses and port #s)
 - (In addition, they are stateful => can analyze multiple pkts)
 - => can detect/derail more sophisticated attacks
 - Can filter out harmful commands in pkt stream

- --[OPTIONAL]-- (ii) Application proxies (2)
- For example, app proxies can prevent:
 - Use of back door open to pkts inbound to SMTP port (Port 25)
 - Flawed application run by user U (e.g., an e-mail agent) has all U's privileges => can cause damage

(ii) Application proxies (3)

- Act as mediators/censors (!) of app-level traffic like benevolent "woman-in-the middle" © (not an official term!)
 - They "censor" insecure actions
 - Maybe a rare case of a truly benevolent censor
- Ex. scenario of using app proxy gateway G: [cf. ibid, p.624]
 - Extern. user U tries to Telnet to host H protected by G
 - G intercepts U's packets
 - G acts as H would: asks U for id+pwd
 - U replies w/ id+pwd
 - G logs in into H on behalf of U
 - G relays H's msgs to U

- --[OPTIONAL]-- (ii) Application proxies (4)
- Examples of app proxy activities
 - Preventing outsiders from modifying company's online price list
 - More see bulleted list on p. 462
- App proxy must implement code for given app (e.g., for Telnet) to be able to perform service to this app
- Netadmin can configure app proxy to support only selected features of an app
 - Unsupported features are considered too risky=> not available

- App proxies provide higher level of security than packet filters (PFs)
 - PFs try to deal with all potentially deployable applications that could use TCP/IP (default permit philosophy)
 - App proxy considers only few allowable apps among ones actually deployed in a given system (default deny philosophy)
 - App proxy can easily log/audit traffic at app level (vs. transport level for PFs)
- Prime disadvantage of app proxies: Processing overhead for each app-level connection
 - 1 connection split into 2 logical connections
 - With "woman-in-the-middle"
 - Circuit-level gateways (another proxy subcategory) splits
 1 TCP connection into 2 TCP connections

- (ii) Application proxies (6)
- (ii-1) Guards = most sophisticated category of app proxies ("top model")
 - Limited only by what is computable (& by human creativity)
 - No sharp boundary between app proxies and guards
 - At some point of upgrading app proxy, it becomes a guard

----->

- Examples of guard activities
 - Limiting nr of msgs (or nr of msg characters) that a student may e-mail per week
 - Easiest if done by gurad monitoring mail transfer protocol
 - More see bulleted list on p. 464

(iii) Personal firewalls

- Regular firewalls protects subnetworks
 Personal firewalls protect single hosts
 - For small business / home office / home
 - Can be used to complement conventional firewall
 - Next line of defense
 - Customized to user(s) of particular host
 - Firewall capabilities at a lower price
- Personal firewall is application program
 - Products include: Norton Personal Firewall (Symantec), McAfee
 Personal Firewall, Zone Alarm (Zone Labs)
- Personal firewall also enforces certain security policy
 - E.g., if you're using default personal firewall's policy on your computer, see its rules
 - Combine it with antivirus software for more effective protection & with automatic (or very frequent manual)
 OS and antivirus s/w updates

--[OPTIONAL]-- e. Comparison of firewall types

- Comparison of firewall types
 - See Table 7-8, p. 465
 - Criteria:
 - Complexity
 - Part of packets visible to firewall
 - Diffculty of auditing
 - Basis for screening
 - Difficulty of configuring

f. Example firewall configurations

- Example firewall configurations
 - Subnet with screening router (simple packet filtering)
 Fig. 7-39, p. 466
 - Subnet with proxy gateway (app proxy)
 Fig. 7-40, p. 467
 - Subnet with simple PF & app proxy
 Fig. 7-41, p. 467
 - Note:

The LAN between outer firewall ("screening router" in the fig) and the inner firewall ("proxy firewall" in the fig) constitutes *DMZ* (*demilitarized zone*)

g. What firewalls can—and can't—block

- Firewalls are not a panacea only a perimeter protection
- Points 2 remember about firewalls see text, p.466-467
 - Can protect environment only if control its whole perimeter
 - Do not protect data outside the perimeter
 - Are most visible subnet component attractive attack targets
 - Must be correctly configured, & config must be periodically updated
 - Firewall platforms should not havye any s/w that could help attacker who penetrates firewall in subsequent exploits
 - Firewalls exercise very limited control over content they let in
 - Other means of verifying/enforcing accuracy/correctness must be used inside perimeter

End

