Reactions of Substituted Benzenes

* In substituted benzene rings, each substituent affects the electron density in the benzene ring.

Ring is electron rich; Ring reacts faster than benzene with E⁺ Ring is electron poor; Ring reacts slower than benzene with E⁺

*Rate of the reaction

Y = EDG (electron-donating group) or EWG (electron-withdrawing group) * Regiochemistry (course of electrophilic aromatic substitution)

Rate-determining-step: aromatic ring π -electrons attacking the E^+

reaction coordinate -----

- *Ortho/para directing and meta directing ability and activating and deactivating ability can be explained with two electronic effects
 - 1. Inductive effect
 - 2. Resonance effect/Mesomeric Effect
- *Inductive Effect (I): Attracting or pushing of bonding electrons along the sigma bonds of the molecules.

Inductive e⁻ donation (+I) effect

Inductive e withdrawing (-I) effect

* Resonance/Mesomeric Effect (M):

Movement of electrons through the pi bonds. When non bonding electrons and pi electron are present resonance effect is observed

*An electron donating (+M) resonance effect is observed whenever an atom Z having a lone pair of electrons which is directly bound to the benzene ring.

Eg: -OH, -NH₂, -OCH₃

*An electron withdrawing (-M) resonance effect is observed in substituted benzene having general structure C_6H_5 -Y=Z where, Z is more electronegative than Y.

Eg: -NO₂, -COOH, -SO₃H

*To predict whether a substituted benzene is more or less electron rich then benzene itself, net balance of both the inductive and resonance effect should be considered.

* When considering -NH₂, -OH:

Both (+M) effect and (-I) effect are present

But
$$(+M) > (-I)$$

Therefore act as Electron donating O/P directors (Activators)

* When considering Halogens –X:

Both (+M) effect and (-I) effect are present

But
$$(-I) > (+M)$$

Therefore act as Electron withdrawing O/P directors

(Deactivators)

Effect of Electron Donating and Electron Withdrawing Groups

If G is **electron-donating** group then reaction is **faster** than with benzene

Transition state is stabilized

If G is an electron-withdrawing group,

then reaction is slower than with benzene

Transition state is destabilized

Reaction coordinate

Classification of Substituents

Y (EDG)	reactivity	regiochemistry
-NH ₂ , -NR ₂ -OH, -O	Strongly activating	o-, p-directing
-NHCOR -OR	Moderately activating	o-, p-directing
–R (alkyl) –Ph	Weakly activating	o-, p-directing
Y (EWG)	reactivity	regiochemistry
–Halides (F, Cl, Br, I)	Weakly deactivating	o-, p-directing
-COOR, -COR, -CHO, -COOH, -SO ₃ H, -CN	Moderately deactivating	<i>m</i> -directing
$-CF_3, -CCl_3, -NO_2, -^{\oplus}NR_3$	Strongly deactivating	<i>m</i> -directing

Ortho – Para Directing Groups (Activators)

★ Eg: Nitration of toluene

* Toluene reacts 25 times faster than benzene. The methyl group is an activator.

* The rate of the reaction can be explained considering the stability of sigma intermediate formed at each attack.

*****Ortho attack

- * Intermediate is more stable if nitration occurs at the ortho or para position than meta position.
- * Write down the mechanism for the following reaction?

$$H_3C$$
 Cl_2
 $FeCl_3$

Meta Directing Groups (Deactivators)

-COOR, -COR, -CHO, -CF₃, -NO₂, -CN etc

Write down the electron withdrawing effect by resonance on benzene by –NO₂ group

- *Electrophilic substitution reactions for nitrobenzene are 100,000 times <u>slower</u> than for benzene.
- *Formation of meta product can be further explained considering the stability opf intertmediate cation in eac state

* Para attack

* Meta attack

halogens, two opposing effects

negative inductive effect

positive resonance effect

halogens - weak deactivating negative inductive effect > positive resonance *But they are O/P directors

Para attack

Meta attack

$$CI$$
 E^+
 $E^ E^ E^-$

No Extra Stabilization, Higher energy reaction pathway

Third Substitution of Aromatic Compounds

*Activating O/P directors are stronger than the m directing deactivators.

$$\frac{\mathsf{OMe}\,\mathsf{O}}{\mathsf{FeBr}_3(\mathsf{cat})}\,\mathsf{Br} \qquad \qquad + \qquad \frac{\mathsf{OMe}\,\mathsf{O}}{\mathsf{Br}}$$

*When two EDGs are present directing controls by stronger groups

* The alkyl groups and halides show intermediate effects on 3rd substitution.

* No substitution occurs between two meta substituents due to the steric effects.