

Final project by Konstantin Leube

TABLE OF CONTENTS

01

INTRODUCTION

Brief overview of the dataset

02

DATA

TRANSFORMATION

03

HYPOTHESIS TESTS

Part of feature engineering for ML-model

04

ML-APPLICATION

Choice of model and performance

05

APPLICATION TO THE BUSINESS MODEL

Usage in a real world context

DATA

19 feature and 1 target column

Categorical and numerical columns

Information on student demographics and their surrounding

>6000 rows

DATA TRANSFORMATION

OVERVIEW

Checking for NaN-values and for categorical and numerical columns

CLEANING

Minority of NaN-values

Able to drop them

WRANGLING

Transformation of categorical columns to numeric columns

HYPOTHESIS TESTS

TESTING

Ran **Hypothesis test** on **transformed columns**

T-test for binomial columns **Anova** for the rest

EVALUATION

Out of the 13 transformed columns 11 proved to be statistically significant

2 non-significant ones were dropped

COMPARISON BEFORE

	Lin. Reg.	Rndm. For.	Grad. Boost.
R2	0.69	0.60	0.36
MAE	0.70	1.21	1.61
RMSE	2.21	2.49	3.13

PROBLEMS I FACED

CORRELATION

Indicated that lin. Reg. might not be optimal

HYPERPARAMETER AND CROSS

Helperhale Portional performance but still did not outperform lin. reg.

SKEW IN DATA

Data normally distributed with a slight right-skew due to outliers

POWER TRANSFORMER

Wasn't able to outperform previous R2 score

COMPARISON AFTER

	Lin. Reg.	Rndm. For.	Grad. Boost.
R2	0.69	0.64	0.68
MAE	0.70	1.07	0.65
RMSE	2.21	2.36	2.20

Able to confidently predict student grades in approx. 70% of cases

DATA

In order to increase R2-value think about additional data columns

MODEL

Lin. Reg. proved to be the best performing model Hyperparameter tuning improved others as well

APPLICATION TO THE BUSINESS MODEL

Distinction between "At Risk" and "Not At Risk" students

Usage of ML-model to categorize students into categories

Able to provide tailored to help to each student in every situation early on

Still a regression problem not a classification problem in order to assess gravity of situation

CATEGORIZATION

