What is claimed is:

1. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

A, B, D, E, W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈ or N;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L_a-R_a;

R₂ is selected from nitro, cyano, -NHOH, and groups of the formula L_a-R_a; with the proviso that R₂ is not hydrogen;

R₃ and R₄ are:

- (a) each independently selected from (i) hydrogen and halogen; and (ii) C₁-C₈alkyl, C₂-C₈alkyl ether and -(SO₂)C₁-C₆alkyl, each of which is substituted with from 0 to 5 substituents independently chosen from halogen, hydroxy, amino, cyano and nitro; with the proviso that at least one of R₃ and R₄ is not hydrogen; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings; and dioxane, wherein each fused ring is substituted with from 0 to 3 substituents independently chosen from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl and C₁-C₆haloalkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- L_a is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, S(O)_m, N(R_x), N(R_x)C(=O), N(R_x)S(O)_m, S(O)_mN(R_x) and N[S(O)_mR_x]S(O)_m; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C₁-C₈alkyl; and

R_a is independently selected at each occurrence from:

- (a) hydrogen; and
- (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl, and mono- and di-(C₁-C₆alkyl)amino.
 - 2. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein A is N.
- 3. A compound or pharmaceutically acceptable form thereof according to claim 1 or claim 2, wherein R₂ is selected from cyano, nitro, NHOH, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄hydroxyalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkanoyl, aminoC₀-C₄alkyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), (C₅-C₆cycloalkyl)amino, (5- or 6-membered heterocycloalkyl)C₀-C₄alkyl, -N(R_x)SO₂C₁-C₄alkyl and -N(SO₂C₁-C₄alkyl)₂.
- 4. A compound or pharmaceutically acceptable form thereof according to claim 3, wherein R₂ is cyano, CHO, amino, nitro, methyl, ethyl, propyl, hydroxymethyl, trifluoromethyl, methoxy, ethoxy, propoxy, methylthio, ethylthio, (C₁-C₄alkyl)amino, (C₁-C₄alkyl)aminomethyl, cyclopentylamino, oxadiazolyl, -N(H)SO₂C₁-C₄alkyl, -N(CH₃)SO₂C₁-C₄alkyl or -N(SO₂CH₃)₂.
- 5. A compound or pharmaceutically acceptable form thereof according to claim 4, wherein R₂ is cyano, CHO, amino, nitro, methyl, trifluoromethyl, methoxy, ethoxy, propoxy, (C₁-C₄alkyl)amino, cyclopentylamino, -N(H)SO₂C₁-C₄alkyl, -N(CH₃)SO₂CH₃ or -N(SO₂CH₃)₂.
- 6. A compound or pharmaceutically acceptable form thereof according to any one of claims 1-5, wherein B and D are CR₁, and wherein each R₁ at B and D is independently selected from hydrogen, halogen, cyano, C₁-C₄alkyl, C₁-C₄haloalkyl and C₁-C₄alkoxy.
- 7. A compound or pharmaceutically acceptable form thereof according to any one of claims 1-6, wherein E is N or CR₁, wherein R₁ at E is hydrogen, C₁-C₄alkyl or C₁-C₂alkoxy.
- 8. A compound or pharmaceutically acceptable form thereof according to any one of claims 1-7, wherein W, Y and Z are CR_1 , and wherein each R_1 at W, Y and Z is independently chosen from hydrogen, halogen, hydroxy, amino, cyano, nitro, C_1 - C_4 alkyl, C_1 -

 C_4 haloalkyl, C_1 - C_4 alkoxy, -N(H)SO₂ C_1 - C_4 alkyl, -N(C_1 - C_4 alkyl)SO₂ C_1 - C_4 alkyl and -N(SO₂ C_1 - C_4 alkyl)₂.

- 9. A compound or pharmaceutically acceptable form thereof according to claim 8, wherein X is N.
- 10. A compound or pharmaceutically acceptable form thereof according to claim 8, wherein each R₁ at W, Y and Z is independently chosen from hydrogen, halogen, hydroxy, amino, nitro and C₁-C₄alkyl.
- 11. A compound or pharmaceutically acceptable form thereof according to claim 8, wherein each R₁ at W, Y and Z is hydrogen.
- 12. A compound or pharmaceutically acceptable form thereof according to claim 10, wherein X is N or CH.
- 13. A compound or pharmaceutically acceptable form thereof according to any one of claims 1-12, wherein R₃ and R₄ are independently selected from hydrogen, halogen, C₁-C₄alkyl, C₂-C₄alkyl ether, C₁-C₄haloalkyl, C₁-C₄hydroxyalkyl and -SO₂CF₃; or wherein R₃ and R₄ are taken together to form a fused ring chosen from 5-membered carbocyclic and heterocyclic rings, phenyl, dioxane and dioxepane.
- 14. A compound or pharmaceutically acceptable form thereof according to claim 1, having the formula:

$$R_1$$
 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_2 R_1 R_2 R_3

15. A compound or pharmaceutically acceptable form thereof according to claim 14, wherein:

A, T, U and X are independently N or CH; D is CH;

- each R₁ is independently chosen from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -N(H)SO₂C₁-C₄alkyl, -N(C₁-C₄alkyl)SO₂C₁-C₄alkyl and -N(SO₂C₁-C₄alkyl)₂;
- R₂ is cyano, CHO, amino, nitro, methyl, ethyl, propyl, trifluoromethyl, methoxy, ethoxy, propoxy, methylthio, ethylthio, -N(H)SO₂C₁-C₄alkyl, -N(CH₃)SO₂C₁-C₄alkyl or -N(SO₂CH₃)₂; and
- R₃ and R₄ are independently selected from hydrogen, halogen, C₁-C₄alkyl, C₂-C₄alkyl ether, C₁-C₄haloalkyl, C₁-C₄hydroxyalkyl and -SO₂CF₃; or R₃ and R₄ are taken together to form a fused ring chosen from 5-membered carbocyclic and heterocyclic rings, phenyl, dioxane and dioxepane.
- 16. A compound or pharmaceutically acceptable form thereof according to claim 1, wherein the compound is:
- 2-Amino-N-(4-tert-butyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Amino-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Amino-N-(6-trifluoromethyl-pyridin-3-yl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Hydroxy-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Methanesulfonylamino-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Nitro-N-(4-trifluoromethanesulfonyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Nitro-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 3-Hydroxy-2'-trifluoromethyl-biphenyl-4-carboxylic acid (4-tert-butyl-phenyl)-amide;
- 4-(3-Amino-pyridin-2-yl)-N-(4-tert-butyl-phenyl)-benzamide;
- 4-(3-Amino-pyridin-4-yl)-N-(4-tert-butyl-phenyl)-benzamide;
- 4-(3-Nitro-pyridin-2-yl)-N-(4-trifluoromethyl-phenyl)-benzamide;
- 4-[3-(Butane-1-sulfonylamino)-pyridin-2-yl]-N-(4-tert-butyl-phenyl)-benzamide;
- 6-(2,4-Dimethoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(2,4-Dimethoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(2,4-Dimethoxy-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(2,5-Dimethoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(2,5-Dimethoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(2,5-Dimethyl-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(2,5-Dimethyl-phenyl)-N-(4-ethyl-phenyl)-nicotinamide;
- 6-(2,5-Dimethyl-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;

- 6-(2,5-Dimethyl-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(2,5-Dimethyl-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(2,5-Dimethyl-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(2,6-Dimethoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(2,6-Dimethoxy-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(2-Acetyl-phenyl)-N-(4-tert-butyl-phenyl)-nicotinamide;
- 6-(2-Amino-phenyl)-N-(4-tert-butyl-phenyl)-nicotinamide;
- 6-(2-Methoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(2-Methoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(2-Methoxy-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(2-Methylsulfanyl-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(2-Methylsulfanyl-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(3,4-dimethyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-chloro-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-ethyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(5-Isopropyl-2-methoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-Methyl-3'-trifluoromethyl-[2,2']bipyridinyl-5-carboxylic acid (4-trifluoromethyl-phenyl)-amide;
- 6-o-Tolyl-N-(2,3,4-trifluoro-phenyl)-nicotinamide;
- 6-o-Tolyl-N-(3-trifluoromethyl-phenyl)-nicotinamide;
- 6-o-Tolyl-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-o-Tolyl-N-p-tolyl-nicotinamide;

- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(2,5-dimethoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-o-tolyl-nicotinamide;
- N-(3,4-Dichloro-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dichloro-phenyl)-6-o-tolyl-nicotinamide;
- N-(3,4-Difluoro-phenyl)-6-o-tolyl-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-o-tolyl-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-o-tolyl-nicotinamide;
- N-(3,5-Bis-trifluoromethyl-phenyl)-6-o-tolyl-nicotinamide;
- N-(3,5-Dichloro-phenyl)-6-o-tolyl-nicotinamide;
- N-(3-Chloro-phenyl)-6-o-tolyl-nicotinamide;
- N-(3-Fluoro-4-methyl-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(3-Fluoro-4-methyl-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;
- N-(3-Fluoro-4-methyl-phenyl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(3-Fluoro-4-methyl-phenyl)-6-o-tolyl-nicotinamide;
- N-(3-Fluoro-phenyl)-6-o-tolyl-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(5-chloro-2-methoxy-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;

- N-(4-Bromo-2-fluoro-phenyl)-6-o-tolyl-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2,4-dimethoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2,5-dimethoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2,6-dimethoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(5-chloro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-o-tolyl-nicotinamide;
- N-(4-Bromo-3-trifluoromethyl-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(2,4-dimethoxy-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(2,6-dimethoxy-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(5-chloro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-o-tolyl-nicotinamide;
- N-(4-Chloro-phenyl)-6-(2,4-dimethoxy-phenyl)-nicotinamide;
- N-(4-Chloro-phenyl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(4-Chloro-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(4-Chloro-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;
- N-(4-Chloro-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Chloro-phenyl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(4-Chloro-phenyl)-6-o-tolyl-nicotinamide;
- N-(4-Ethyl-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(4-Ethyl-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;
- N-(4-Ethyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Ethyl-phenyl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(4-Ethyl-phenyl)-6-o-tolyl-nicotinamide;
- N-(4-Fluoro-phenyl)-6-o-tolyl-nicotinamide;
- N-(4-Isopropyl-phenyl)-6-(2-methoxy-phenyl)-nicotinamide;

```
N-(4-Isopropyl-phenyl)-6-o-tolyl-nicotinamide;
N-(4-Propyl-phenyl)-6-o-tolyl-nicotinamide;
N-(4-tert-Butyl-2-chloro-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
N-(4-tert-Butyl-phenyl)-2-hydroxy-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-2-nitro-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-[1,3,4]oxadiazol-2-yl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-cyano-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-cyclopentylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-dimethylaminomethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-ethanesulfonylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-formyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-hydroxyamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-hydroxymethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-methanesulfonylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-methyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-nitro-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-nitro-pyridin-4-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-propoxy-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-propylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-pyrrolidin-1-ylmethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(5-methyl-[1,3,4]oxadiazol-2-yl)-pyridin-2-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(methanesulfonyl-methyl-amino)-pyridin-2-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(N,N-dimethanesulfonyl)amino-pyridin-2-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(N,N-dimethanesulfonyl)amino-pyridin-4-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-6-(2,6-dimethyl-phenyl)-nicotinamide;
N-(4-tert-Butyl-phenyl)-6-(2-hydroxymethyl-phenyl)-nicotinamide;
N-(4-tert-Butyl-phenyl)-6-(2-methanesulfonylamino-phenyl)-nicotinamide;
N-(4-tert-Butyl-phenyl)-6-(2-nitro-phenyl)-nicotinamide;
N-(4-tert-Butyl-phenyl)-6-(2-trifluoromethyl-phenyl)-nicotinamide;
N-(4-tert-Butyl-phenyl)-6-[2-(N,N-dimethanesulfonyl)amino-phenyl]-nicotinamide;
N-(4-tert-Butyl-phenyl)-6-o-tolyl-nicotinamide;
```

N-(4-Isopropyl-phenyl)-6-(2-methylsulfanyl-phenyl)-nicotinamide;

N-(4-Trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

N-(4-Trifluoromethyl-phenyl)-4-[3-(N,N-dimethanesulfonyl)amino-pyridin-2-yl]-benzamide;

N-(5-Trifluoromethyl-pyridin-2-yl)-4-[3-(N,N-dimethanesulfonyl)amino-pyridin-2-yl]-benzamide;

N-Indan-5-yl-6-(2-methoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide; or

N-Indan-5-yl-6-o-tolyl-nicotinamide.

17. A compound of the formula:

$$R_2$$
 R_2
 R_3
 R_2
 R_1

wherein:

D, G, W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈ or N;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

R₂ is halogen, cyano, nitro or a group of the formula L-M; with the proviso that R₂ is not hydrogen;

R₃ and R₄ are:

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;

R₈ is independently chosen at each occurrence from:

- (a) hydrogen, halogen, hydroxy, amino, cyano and nitro; and
- (b) C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, -SO₂CF₃, 5- to 7-membered heterocycloalkyl, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl; each of

which is substituted with from 0 to 3 substituents independently selected from hydroxy, halogen, cyano, oxo, C₁-C₄alkyl and C₁-C₄haloalkyl;

- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, S(O)m, N(R_x), C(=O)N(R_x), N(R_x)C(=O), N(R_x)S(O)m, S(O)mN(R_x) and N[S(O)mR_x]S(O)m; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C₁-C₈alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino.
- 18. A compound or pharmaceutically acceptable form thereof according to claim 17, wherein R₃ is selected from:
 - (a) halogen; and
 - (b) C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, -SO₂CF₃, C₂-C₆alkyl ether and 5- to 7-membered heterocycloalkyl, each of which is substituted with from 0 to 3 substituents independently selected from hydroxy, halogen, cyano, oxo, C₁-C₄alkyl and C₁-C₄haloalkyl.
- 19. A compound or pharmaceutically acceptable form thereof according to claim 18, wherein R₃ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl or C₁-C₆cyanoalkyl.
- 20. A compound or pharmaceutically acceptable form thereof according to any one of claims 17-19, wherein W, Y and Z are CR₁, and wherein each R₁ at W, Y and Z is independently selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, -N(C₁-C₄alkyl)SO₂C₁-C₄alkyl and -N(SO₂C₁-C₄alkyl)₂.
- 21. A compound or pharmaceutically acceptable form thereof according to claim 20, wherein X is N.
- 22. A compound or pharmaceutically acceptable form thereof according to claim 20, wherein each R₁ at W, Y and Z is independently chosen from hydrogen, halogen, amino, hydroxy, nitro, C₁-C₄alkyl and -NH(SO₂)CH₃.

- 23. A compound or pharmaceutically acceptable form thereof according to claim 21, wherein each R_1 at W, Y and Z is hydrogen.
- 24. A compound or pharmaceutically acceptable form thereof according to claim 23, wherein X is N or CH.
- 25. A compound or pharmaceutically acceptable form thereof according to any one of claims 17-24, wherein R₂ is selected from:
 - (i) halogen, nitro, cyano and -NOH; and
 - (ii) C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, C₁-C₆haloalkyl, C₁-C₆hydroxyalkyl, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, aminoC₀-C₆alkyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₆alkyl, oxadiazolyl, pyrazolyl, (5- or 6-membered heterocycloalkyl)C₀-C₆alkyl, -N(H)SO₂C₁-C₆alkyl, -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(H)SO₂-(C₀-C₂alkyl)-phenyl; each of which is substituted with from 0 to 4 substituents independently chosen from halogen, hydroxy, cyano, C₁-C₄alkyl and C₁-C₄haloalkyl.
- 26. A compound or pharmaceutically acceptable form thereof according to claim 25, wherein R₂ is selected from fluoro, chloro, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄hydroxyalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkanoyl, aminoC₀-C₄alkyl, mono- and di-(C₁-C₄alkyl)aminoC₀-C₄alkyl, (C₅-C₆cycloalkyl)amino, (5- or 6-membered heterocycloalkyl)C₀-C₄alkyl, -N(H)SO₂C₁-C₄alkyl, -N(C₁-C₄alkyl)SO₂C₁-C₄alkyl and -N(SO₂C₁-C₄alkyl)₂.
- 27. A compound or pharmaceutically acceptable form thereof according to claim 26, wherein R₂ is cyano, CHO, amino, nitro, NHOH, methyl, ethyl, propyl, trifluoromethyl, methoxy, ethoxy, propoxy, methylthio, ethylthio, -N(H)SO₂C₁-C₄alkyl, -N(H)SO₂-phenyl, -N(CH₃)SO₂C₁-C₄alkyl or -N(SO₂CH₃)₂.
- 28. A compound or pharmaceutically acceptable form thereof according to claim 26, wherein R₂ is chloro, fluoro, cyano, nitro, amino, CHO, methyl, trifluoromethyl, C₁-C₄alkoxy, cyclopentylamino, pyrrolidin-1-ylmethyl, hydroxymethyl, oxadiazolyl, C₁-C₄alkylamino, dimethylaminomethyl, -N(CH₃)SO₂CH₃ or -N(SO₂CH₃)₂.
- 29. A compound or pharmaceutically acceptable form thereof according to claim 17, wherein the compound is:
- 2-Amino-N-(4-tert-butyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Amino-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

- 2-Amino-N-(6-trifluoromethyl-pyridin-3-yl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Hydroxy-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Methanesulfonylamino-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Nitro-N-(4-trifluoromethanesulfonyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Nitro-N-(4-trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 2-Nitro-N-(6-trifluoromethyl-pyridin-3-yl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- 4-(3-Amino-pyridin-2-yl)-N-(4-tert-butyl-phenyl)-benzamide;
- 4-(3-Benzenesulfonylamino-pyridin-2-yl)-N-(4-tert-butyl-phenyl)-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-(4-isopropyl-3-methyl-phenyl)-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-(4-isopropyl-phenyl)-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-(5-trifluoromethyl-pyridin-2-yl)-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-[4-(1-hydroxy-1-methyl-ethyl)-phenyl]-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-[4-(2,2,2-trifluoro-1-methyl-ethyl)-phenyl]-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-[4-(2-methoxy-1,1-dimethyl-ethyl)-phenyl]-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-[4-(cyano-dimethyl-methyl)-phenyl]-benzamide;
- 4-(3-Fluoro-pyridin-2-yl)-N-(4-isopropyl-3-methyl-phenyl)-benzamide;
- 4-(3-Fluoro-pyridin-2-yl)-N-(4-isopropyl-phenyl)-benzamide;
- 4-(3-Fluoro-pyridin-2-yl)-N-(4-trifluoromethyl-phenyl)-benzamide;
- 4-(3-Nitro-pyridin-2-yl)-N-(4-trifluoromethyl-phenyl)-benzamide;
- 4-[3-(Butane-1-sulfonylamino)-pyridin-2-yl]-N-(4-tert-butyl-phenyl)-benzamide;
- 6-Methyl-3'-trifluoromethyl-[2,2']bipyridinyl-5-carboxylic acid (4-trifluoromethyl-phenyl)-amide;
- N-(3,4-Difluoro-phenyl)-4-(3-fluoro-pyridin-2-yl)-benzamide;
- N-(4-Butyl-phenyl)-4-(3-chloro-pyridin-2-yl)-benzamide;
- N-(4-Cyclopentyl-phenyl)-4-(3-fluoro-pyridin-2-yl)-benzamide;
- N-(4-Fluoro-phenyl)-4-(3-fluoro-pyridin-2-yl)-benzamide;
- N-(4-sec-Butyl-phenyl)-4-(3-fluoro-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-2-hydroxy-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-2-nitro-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-4-(3,5-dichloro-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-4-(3-[1,3,4]oxadiazol-2-yl-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-4-(3-chloro-5-trifluoromethyl-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-4-(3-chloro-pyrazin-2-yl)-benzamide;

```
N-(4-tert-Butyl-phenyl)-4-(3-chloro-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-cyano-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-cyclopentylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-dimethylaminomethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-ethanesulfonylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-fluoro-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-formyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-hydroxyamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-hydroxymethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-methanesulfonylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-methyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-nitro-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-phenylmethanesulfonylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-propoxy-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-propylamino-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-pyrrolidin-1-ylmethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(4-fluoro-benzenesulfonylamino)-pyridin-2-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(5-methyl-[1,3,4]oxadiazol-2-yl)-pyridin-2-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(methanesulfonyl-methyl-amino)-pyridin-2-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(N,N-dimethanesulfonyl)amino-pyridin-2-yl]-benzamide;
N-(4-tert-Butyl-phenyl)-4-[3-(toluene-4-sulfonylamino)-pyridin-2-yl]-benzamide;
N-(4-Trifluoromethyl-phenyl)-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;
N-(4-Trifluoromethyl-phenyl)-4-[3-(N,N-dimethanesulfonyl)amino-pyridin-2-yl]-benzamide;
N-(5-Trifluoromethyl-pyridin-2-yl)-4-[3-(N,N-dimethanesulfonyl)amino-pyridin-2-yl]-
   benzamide: or
```

N-[4-(3-Ethyl-2,6-dioxo-piperidin-3-yl)-phenyl]-4-(3-fluoro-pyridin-2-yl)-benzamide.

30. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

A, B, E, D and G are independently CH, CR₇ or N; with the proviso that at least one of G, D and E is CR₇;

W, X, Y and Z are independently chosen from CR₁ and N;

T, U and V are independently chosen from CR₈ and N;

- represents a fused 5- or 7-membered carbocyclic or heterocyclic ring or a fused dioxane ring, wherein the fused ring is substituted with from 0 to 3 substituents independently selected from oxo, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy and C₁-C₄haloalkoxy;
- R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;
- R₇ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M; with the proviso that R₇ is not hydrogen;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and

M is independently selected at each occurrence from:

- (a) hydrogen, and
- (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents

independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino.

- 31. A compound or pharmaceutically acceptable form thereof according to claim 30, wherein at least two of W, X, Y and Z are CR₁, and at least one of T and U is CR₈.
- 32. A compound or pharmaceutically acceptable form thereof according to claim 30, wherein W, Y and Z are CR₁, and wherein each R₁ is independently chosen from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -N(H)SO₂C₁-C₄alkyl, -N(C₁-C₄alkyl)SO₂C₁-C₄alkyl and -N(SO₂C₁-C₄alkyl)₂.
- 33. A compound or pharmaceutically acceptable form thereof according to claim 32, wherein each R₁ is independently chosen from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl and C₁-C₄alkoxy.
- 34. A compound or pharmaceutically acceptable form thereof according to claim 33, wherein each R₁ is hydrogen, and wherein X is N or CH.
- 35. A compound or pharmaceutically acceptable form thereof according to any one of claims 30-34, wherein X is N.
- 36. A compound or pharmaceutically acceptable form thereof according to any one of claims 30-35, wherein $\stackrel{\frown}{R}$ is selected from cyclopentene, thiazole, dioxolane, dioxane and dioxepane, each of which is substituted with from 0 to 2 substituents independently selected from oxo, halogen, hydroxy, amino, cyano, nitro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkoxy.
- 37. A compound or pharmaceutically acceptable form thereof according to claim 36, wherein is cyclopentene, cyclopentene substituted with oxo, thiazole or methylthiazole.
- 38. A compound or pharmaceutically acceptable form thereof according to claim 36, wherein is dioxolane, dioxane or dioxepane.
- 39. A compound or pharmaceutically acceptable form thereof according to any one of claims 30-38, wherein G is CR₇.

- 40. A compound or pharmaceutically acceptable form thereof according to claim 39, wherein B, D and E are CH or CR₇.
- 41. A compound or pharmaceutically acceptable form thereof according to claim 39 or claim 40, wherein A is N or CH.
- 42. A compound or pharmaceutically acceptable form thereof according to claim 39, wherein R₇ at the G position is cyano, chloro, fluoro, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄hydroxyalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkanoyl, aminoC₀-C₄alkyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), (C₅-C₆cycloalkyl)amino, (5- or 6-membered heterocycloalkyl)C₀-C₄alkyl, -N(H)SO₂C₁-C₄alkyl, -N(H)SO₂-(C₀-C₂alkyl)-phenyl, -N(C₁-C₄alkyl)SO₂C₁-C₄alkyl or -N(SO₂C₁-C₄alkyl)₂.
- 43. A compound or pharmaceutically acceptable form thereof according to claim 30, wherein each R₇ is independently selected from halogen, amino, cyano, nitro, CHO, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkylthio, -N(H)SO₂C₁-C₄alkyl, -N(CH₃)SO₂C₁-C₄alkyl and -N(SO₂CH₃)₂.
- 44. A compound or pharmaceutically acceptable form thereof according to claim 30, wherein the compound is:
- 6-(2,4-Difluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(2,5-Dimethyl-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-(1-oxo-indan-5-yl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(2-Methoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(3,4-Difluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3,4-Dimethyl-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3-Chloro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3-Fluoro-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(3-Fluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3-Isopropyl-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;

- 6-(3-Methoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(4-Butyl-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(4-Chloro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(4-Fluoro-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(4-Fluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(4-Isopropyl-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-indan-5-yl-nicotinamide;
- 6-Biphenyl-3-yl-N-indan-5-yl-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(2,5-dimethoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-ethoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-fluoro-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-isopropyl-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(4-isopropyl-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-m-tolyl-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-o-tolyl-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-p-tolyl-nicotinamide;
- N-(2-Methyl-benzothiazol-5-yl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;
- N-(2-Methyl-benzothiazol-5-yl)-6-m-tolyl-nicotinamide;
- N-(2-Methyl-benzothiazol-5-yl)-6-p-tolyl-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(2,5-dimethyl-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(2-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(3-fluoro-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(3-isopropyl-phenyl)-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(3-methoxy-phenyl)-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(4-fluoro-phenyl)-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(4-isopropyl-phenyl)-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-m-tolyl-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-o-tolyl-nicotinamide;

N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-p-tolyl-nicotinamide;

N-Indan-5-yl-6-(2-methoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(3,4,5-trimethoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(3-isopropyl-phenyl)-nicotinamide;

N-Indan-5-yl-6-(3-methoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(3-trifluoromethoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(3-trifluoromethyl-phenyl)-nicotinamide;

N-Indan-5-yl-6-(4-isopropyl-phenyl)-nicotinamide;

N-Indan-5-yl-6-(4-methoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(5-isopropyl-2-methoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-m-tolyl-nicotinamide;

N-Indan-5-yl-6-o-tolyl-nicotinamide; or

N-Indan-5-yl-6-p-tolyl-nicotinamide.

45. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

J is N, NH, O or S;

A, B, E, D and G are independently CH, CR₇ or N; with the proviso that at least one of G, D and E is CR₇;

- W, X, Y and Z are independently CR₁ or N;
- T, U and V are independently CR₈ or N;
- R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-R_a;
- R₇ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-R_a, with the proviso that R₇ is not hydrogen;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₉ represents from 0 to 2 substituents independently chosen from halogen, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl, C₁-C₄haloalkoxy, mono- and di-(C₁-C₆alkyl)amino, and C₂-C₆alkyl ether;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- R_a is independently selected at each occurrence from:
 - (a) hydrogen; and
 - (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino.
- 46. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein at least two of W, X, Y and Z are CR₁, at least one of T and U is CR₈, and each R₁ and R₈ is independently chosen from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl and C₁-C₄alkoxy.
- 47. A compound or pharmaceutically acceptable form thereof according to claim 46, wherein W, Y and Z are CR₁, and wherein each R₁ is independently chosen from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -N(H)SO₂C₁-C₄alkyl, -N(C₁-C₄alkyl)SO₂C₁-C₄alkyl and -N(SO₂C₁-C₄alkyl)₂.

- 48. A compound or pharmaceutically acceptable form thereof according to claim 47, wherein each R₁ is independently chosen from hydrogen, halogen, hydroxy and C₁-C₄alkyl.
- 49. A compound or pharmaceutically acceptable form thereof according to claim 48, wherein R_1 at W, Y and Z is hydrogen, and wherein X is N or CH.
- 50. A compound or pharmaceutically acceptable form thereof according to claim 46, wherein X is N.
- 51. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein A is N or CH.
- 52. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein G is CR₂.
- 53. A compound or pharmaceutically acceptable form thereof according to claim 52, wherein R₇ at the G position is cyano, chloro, fluoro, nitro, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄hydroxyalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkanoyl, aminoC₀-C₄alkyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), (C₅-C₆cycloalkyl)amino, (5- or 6-membered heterocycloalkyl)C₀-C₄alkyl, -N(H)SO₂C₁-C₄alkyl, -N(C₁-C₄alkyl)SO₂C₁-C₄alkyl or -N(SO₂C₁-C₄alkyl)₂.
- 54. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein each R₇ is independently selected from halogen, amino, cyano, nitro, CHO, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkyl, C₁-C₄alkylthio, -N(H)SO₂C₁-C₄alkyl, -N(CH₃)SO₂C₁-C₄alkyl and -N(SO₂CH₃)₂.
- 55. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein J is O.
- 56. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein R₉ represents from 0 to 2 substituents independently chosen from halogen, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl and C₁-C₄haloalkoxy.
- 57. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein R₉ represents 0 substituents.

58. A compounds or form thereof according to claim 45, wherein:

J is O;

- each R₇ is independently selected from halogen, amino, cyano, nitro, CHO, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, -N(H)SO₂C₁-C₄alkyl, -N(CH₃)SO₂C₁-C₄alkyl and -N(SO₂CH₃)₂;
- R₁ at W, Y and Z is CR₁, wherein each R₁ is independently chosen from hydrogen, halogen, hydroxy and C₁-C₄alkyl;

A is N or CH; and

T and U are independently N or CH.

- 59. A compound or pharmaceutically acceptable form thereof according to claim 45, wherein the compound is:
- 6-(2,5-Dimethyl-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(2-Methoxy-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(3,4-Dimethyl-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(3,5-Dimethyl-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(3-Isopropyl-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(4-Isopropyl-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- 6-(5-Isopropyl-2-methoxy-phenyl)-N-(4-morpholin-4-yl-phenyl)-nicotinamide;
- N-(3-Chloro-4-morpholin-4-yl-phenyl)-6-(2-chloro-phenyl)-nicotinamide;
- N-(3-Chloro-4-morpholin-4-yl-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3-Chloro-4-morpholin-4-yl-phenyl)-6-o-tolyl-nicotinamide;
- N-(4-Morpholin-4-yl-phenyl)-6-m-tolyl-nicotinamide; or
- N-(4-Morpholin-4-yl-phenyl)-6-o-tolyl-nicotinamide.

60. A compound of the formula:

$$R_{8}$$
 R_{8}
 R_{8}

or a pharmaceutically acceptable form thereof, wherein:

A, T, W, X, Y, Z are independently CR₁ or N;

each R₁ and R₈ is independently chosen from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl and C₁-C₄haloalkoxy; either:

- (a) R₂ is a halogen and R₅ is hydrogen; or
- (b) R₂ is hydrogen and R₅ is a halogen; and with regard to R₃ and R₄:
 - (a) R₃ is C₁-C₆alkyl and R₄ is hydrogen, halogen, hydroxy, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl or C₁-C₄haloalkoxy;
 - (b) R₃ is hydrogen, halogen, amino, cyano or C₁-C₄alkoxy; and R₄ is halogen, hydroxy, amino, cyano, C₁-C₄alkyl or C₁-C₄alkoxy; or
 - (c) R₃ and R₄ are taken together to form a 5- or 6-membered partially saturated carbocycle substituted with from 0 to 2 substituents independently chosen from halogen, hydroxy, amino, cyano, nitro, oxo, C₁-C₄alkyl and C₁-C₄alkoxy.
- 61. A compound or pharmaceutically acceptable form thereof according to claim 60, wherein:

W and X are CH;

A and T are independently CH or N;

Each R₈ is hydrogen; and

each R₁ is hydrogen or halogen.

62. A compound of form thereof according to claim 61, wherein R₃ is C₁-C₆alkyl and R₄ is hydrogen, methyl or halogen.

- 63. A compound or pharmaceutically acceptable form thereof according to claim 61, wherein R₃ is hydrogen or halogen and R₄ is halogen.
- 64. A compound or pharmaceutically acceptable form thereof according to claim 60, wherein the compound is:
- 2'-Chloro-biphenyl-4-carboxylic acid (4-tert-butyl-phenyl)-amide;
- 4-(3-Chloro-pyridin-2-yl)-N-(4-isopropyl-3-methyl-phenyl)-benzamide;
- 4-(3-Chloro-pyridin-2-yl)-N-(4-isopropyl-phenyl)-benzamide;
- 4-(3-Fluoro-pyridin-2-yl)-N-(4-isopropyl-3-methyl-phenyl)-benzamide;
- 4-(3-Fluoro-pyridin-2-yl)-N-(4-isopropyl-phenyl)-benzamide;
- 5-(2-Chloro-phenyl)-pyrazine-2-carboxylic acid (4-sec-butyl-phenyl)-amide;
- 5-(2-Chloro-phenyl)-pyrazine-2-carboxylic acid (4-tert-butyl-phenyl)-amide;
- 5-(2-Chloro-phenyl)-pyridine-2-carboxylic acid (4-tert-butyl-phenyl)-amide;
- 6-(2,4-Difluoro-phenyl)-N-(3,4-dimethyl-phenyl)-nicotinamide;
- 6-(2,4-Difluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(2,3,4-trifluoro-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(3,4-dichloro-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(3,4-difluoro-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(3,5-dichloro-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(3-fluoro-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(3-methoxy-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(4-ethyl-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(2-Chloro-phenyl)-N-m-tolyl-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-(1-oxo-indan-5-yl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-(3-methoxy-phenyl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(2-Fluoro-phenyl)-N-m-tolyl-nicotinamide;
- 6-(3,4-Difluoro-phenyl)-N-(3,4-dimethyl-phenyl)-nicotinamide;
- 6-(3,4-Difluoro-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;

- 6-(3,4-Difluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3-Chloro-phenyl)-N-(3,4-dimethyl-phenyl)-nicotinamide;
- 6-(3-Chloro-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(3-Chloro-phenyl)-N-(4-ethyl-phenyl)-nicotinamide;
- 6-(3-Chloro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3-Fluoro-phenyl)-N-(3-methoxy-phenyl)-nicotinamide;
- 6-(3-Fluoro-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(3-Fluoro-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(3-Fluoro-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(3,4-dimethyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(3-methoxy-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-ethyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(5-Chloro-2-methoxy-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(5-Fluoro-2-methoxy-phenyl)-N-indan-5-yl-nicotinamide;
- N-(3,4-Dichloro-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3,4-Difluoro-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3,4-Dimethoxy-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(3-fluoro-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(3,5-Dichloro-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3-Chloro-phenyl)-6-(2-chloro-phenyl)-nicotinamide;
- N-(3-Chloro-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3-Fluoro-4-methyl-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3-Fluoro-4-methyl-phenyl)-6-(3-fluoro-phenyl)-nicotinamide;
- N-(3-Fluoro-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(2,4-difluoro-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(2-chloro-phenyl)-nicotinamide;

- N-(3-tert-Butyl-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(3,4-difluoro-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(3-chloro-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(3-fluoro-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(5-chloro-2-methoxy-phenyl)-nicotinamide;
- N-(3-tert-Butyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2-chloro-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(4-Bromo-3-chloro-phenyl)-6-(3-fluoro-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-4-(3-chloro-pyridin-2-yl)-benzamide;
- N-(4-Butyl-phenyl)-6-(2-chloro-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(5-chloro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Butyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-Ethyl-phenyl)-6-(2-fluoro-phenyl)-nicotinamide;
- N-(4-Ethyl-phenyl)-6-(3-fluoro-phenyl)-nicotinamide;
- N-(4-Ethyl-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-sec-Butyl-phenyl)-4-(3-fluoro-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-2-chloro-phenyl)-6-(5-fluoro-2-methoxy-phenyl)-nicotinamide;
- N-(4-tert-Butyl-phenyl)-4-(3,5-dichloro-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-4-(3-chloro-5-trifluoromethyl-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-4-(3-chloro-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-4-(3-fluoro-pyridin-2-yl)-benzamide;
- N-(4-tert-Butyl-phenyl)-5-chloro-6-(2-chloro-phenyl)-nicotinamide;
- N-(4-tert-Butyl-phenyl)-6-(2,4-difluoro-phenyl)-nicotinamide;
- N-(4-tert-Butyl-phenyl)-6-(2,6-difluoro-phenyl)-nicotinamide;
- N-(4-tert-Butyl-phenyl)-6-(2-chloro-4-ethoxy-phenyl)-nicotinamide;
- N-(4-tert-Butyl-phenyl)-6-(2-chloro-phenyl)-4-hydroxy-nicotinamide;
- N-(4-tert-Butyl-phenyl)-6-(2-chloro-phenyl)-nicotinamide;
- N-(4-tert-Butyl-phenyl)-6-(2-fluoro-phenyl)-nicotinamide; or
- N-(4-tert-Butyl-phenyl)-6-(3-fluoro-phenyl)-nicotinamide.

65. A compound of the formula:

$$R_{5}$$
 R_{6}
 R_{1}
 R_{4}
 R_{3}
 R_{8}
 R_{8}

or a pharmaceutically acceptable form thereof, wherein:

A and T are independently CH or N;

W, X, Y and Z are independently CR₁ or N;

R₁ and R₈ are independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl and C₁-C₄haloalkoxy;

R₃ and R₄ are:

- (a) independently chosen from hydrogen, halogen, hydroxy, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalky and C₁-C₄haloalkoxy; or
- (b) taken together to form a fused ring chosen from 5- to 7-membered partially saturated carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, wherein the fused ring is substituted with from 0 to 2 substituents independently chosen from halogen, hydroxy, amino, cyano, nitro, oxo, C₁-C₄alkyl, and C₁-C₄alkoxy;

R₅ is:

- (a) C₁-C₆alkyl, C₁-C₆haloalkyl C₁-C₆alkenyl or C₁-C₆alkynyl; or
- (b) taken together with R₆ to form a fused 5- to 7-membered partially saturated heterocycle; and

R₆ is:

- (a) hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl or C₁-C₄haloalkoxy; or
- (b) taken together with R₅ to form a fused 5- to 7-membered partially saturated heterocycle.
- 66. A compound or pharmaceutically acceptable form thereof according to claim 65, wherein R₃ and R₄ are taken together to form a fused cyclopentene, thiazole, dioxolane or dioxane ring, each of which is unsubstituted or substituted with a methyl group.

- 67. A compound or pharmaceutically acceptable form thereof according to claim 65, wherein R₃ is C₁-C₆alkyl or halogen and R₄ is hydrogen, C₁-C₆alkyl or halogen.
- 68. A compound or pharmaceutically acceptable form thereof according to claim 65, wherein each R₁ and R₈ is hydrogen.
- 69. A compound or pharmaceutically acceptable form thereof according to claim 65, wherein the compound is:
- 6-(3,4-Dimethoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-(3-fluoro-4-methyl-phenyl)-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-(3-methoxy-phenyl)-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-(4-isopropyl-phenyl)-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-(3-Ethoxy-phenyl)-N-indan-5-yl-nicotinamide;
- 6-(3-Methoxy-phenyl)-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-(3-Methoxy-phenyl)-N-(4-propyl-phenyl)-nicotinamide;
- 6-(3-Trifluoromethoxy-phenyl)-N-(4-trifluoromethyl-phenyl)-nicotinamide;
- 6-Benzo[1,3]dioxol-5-yl-N-(2-methyl-benzothiazol-5-yl)-nicotinamide;
- 6-Benzo[1,3]dioxol-5-yl-N-(3,4-dimethyl-phenyl)-nicotinamide;
- 6-Benzo[1,3]dioxol-5-yl-N-(3-methoxy-phenyl)-nicotinamide;
- 6-Benzo[1,3]dioxol-5-yl-N-(3-tert-butyl-phenyl)-nicotinamide;
- 6-Benzo[1,3]dioxol-5-yl-N-(4-isopropyl-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-ethoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-methoxy-phenyl)-nicotinamide;
- N-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;
- N-(2-Methyl-benzothiazol-5-yl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(3-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(3-ethoxy-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;
- N-(3,4-Dimethyl-phenyl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;
- N-(3-Fluoro-4-methyl-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;
- N-(3-Methoxy-phenyl)-6-(3,4,5-trimethoxy-phenyl)-nicotinamide;

N-(3-Methoxy-phenyl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;

N-(3-tert-Butyl-phenyl)-6-(3,4,5-trimethoxy-phenyl)-nicotinamide;

N-(3-tert-Butyl-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;

N-(3-tert-Butyl-phenyl)-6-(4-trifluoromethoxy-phenyl)-nicotinamide;

N-(4-Bromo-3-chloro-phenyl)-6-(3,4,5-trimethoxy-phenyl)-nicotinamide;

N-(4-Bromo-3-chloro-phenyl)-6-(3,4-dimethoxy-phenyl)-nicotinamide;

N-(4-Bromo-3-chloro-phenyl)-6-(3-ethoxy-phenyl)-nicotinamide;

N-(4-Bromo-3-chloro-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;

N-(4-Butyl-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;

N-(4-Chloro-phenyl)-6-(3-ethoxy-phenyl)-nicotinamide;

N-(4-Chloro-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;

N-(4-Ethyl-phenyl)-6-(3,4,5-trimethoxy-phenyl)-nicotinamide;

N-(4-Ethyl-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;

N-(4-Isopropyl-phenyl)-6-(3,4,5-trimethoxy-phenyl)-nicotinamide;

N-(4-Isopropyl-phenyl)-6-(3-trifluoromethoxy-phenyl)-nicotinamide;

N-(4-tert-Butyl-phenyl)-6-(3-methoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(3,4,5-trimethoxy-phenyl)-nicotinamide;

N-Indan-5-yl-6-(3-methoxy-phenyl)-nicotinamide; or

N-Indan-5-yl-6-(3-trifluoromethoxy-phenyl)-nicotinamide.

70. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

T, U, V, W, X, Y and Z are independently CR₁ or N;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

R₃ and R₄ are:

(a) independently chosen from R₁; or

(b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;

R₂₀ is hydrogen, C₁-C₆alkyl, C₁-C₆alkanoyl or -SO₂C₁-C₆alkyl;

- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl and (5- to 7-membered heterocycle)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino.

71. A compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

A, B, E, D, G, W, X, Y and Z are independently CR₁ or N;

R₃ and R₄ are independently chosen from R₁;

- R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, S(O)_m, N(R_x), C(=O)N(R_x), N(R_x)C(=O), N(R_x)S(O)_m, S(O)_mN(R_x) and N[S(O)_mR_x]S(O)_m; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C₁-C₈alkyl; and

- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl and (5- to 7-membered heterocycle)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino.
- 72. A compound or pharmaceutically acceptable form thereof according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71, wherein the compound has an IC₅₀ value of 100 nanomolar or less in a capsaicin receptor calcium mobilization assay.
- 73. A compound or pharmaceutically acceptable form thereof according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71, wherein the compound has an IC₅₀ value of 10 nanomolar or less in a capsaicin receptor calcium mobilization assay.
- 74. A compound or pharmaceutically acceptable form thereof according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71, wherein the compound has an IC_{50} value of 1 nanomolar or less in a capsaicin receptor calcium mobilization assay.
- 75. A pharmaceutical composition, comprising at least one compound or pharmaceutically acceptable form thereof according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 in combination with a physiologically acceptable carrier or excipient.
- 76. A pharmaceutical composition according to claim 75, wherein the composition is formulated as an injectible fluid, an aerosol, a cream, a gel, a pill, a capsule, a syrup or a transdermal patch.
- 77. A method for reducing calcium conductance of a cellular capsaicin receptor, comprising contacting a cell expressing a capsaicin receptor with at least one compound of the formula:

each --- independently represents a single or double bond;

- either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or
 - (b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR₁, C(R₁)₂, NR₁ or N;

W, X, Y and Z are independently CR_1 or N;

- T, U and V are independently CR₈, C(R₈)₂, N or NH;
- R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkyloutents, mono- and di-(C₁-C₆alkyloutents) aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino; and thereby reducing calcium conductance of the capsaicin receptor.

- 78. A method according to claim 77, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 79. A method according to claim 77, wherein the cell is a neuronal cell that is contacted *in vivo* in an animal.
- 80. A method according to claim 79, wherein during contact the compound is present within a body fluid of the animal.
 - 81. A method according to claim 79, wherein the animal is a human.
 - 82. A method according to claim 79, wherein the compound is administered orally.
- 83. A method for inhibiting binding of vanilloid ligand to a capsaicin receptor *in vitro*, the method comprising contacting capsaicin receptor with at least one compound of the formula:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

R₃ and R₄ are:

(a) independently chosen from R₈; or

- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁—Galkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino;

under conditions and in an amount sufficient to detectably inhibit vanilloid ligand binding to capsaicin receptor.

- 84. A method according to claim 83, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 85. A method for inhibiting binding of vanilloid ligand to capsaicin receptor in a patient, comprising contacting cells expressing capsaicin receptor in the patient with a compound of the formula:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SQ₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino.

in an amount sufficient to detectably inhibit vanilloid ligand binding to cells expressing a cloned capsaicin receptor *in vitro*, and thereby inhibiting binding of vanilloid ligand to the capsaicin receptor in the patient.

- 86. A method according to claim 85, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
 - 87. A method according to claim 85, wherein the patient is a human.
- 88. A method for treating a condition responsive to capsaicin receptor modulation in a patient, comprising administering to the patient a capsaicin receptor modulatory amount of at least one compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-

- C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino. and thereby alleviating the condition in the patient.
- 89. A method according to claim 88, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 90. A method according to claim 88, wherein the patient is suffering from (i) exposure to capsaicin, (ii) burn or irritation due to exposure to heat, (iii) burns or irritation due to exposure to light, (iv) burn, bronchoconstriction or irritation due to exposure to tear gas, air pollutants or pepper spray, or (v) burn or irritation due to exposure to acid.
- 91. A method according to claim 88, wherein the condition is treating asthma or chronic obstructive pulmonary disease.
- 92. A method for treating pain in a patient, comprising administering to a patient suffering from pain a capsaicin receptor modulatory amount of at least one compound of the formula:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkyl, ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, S(O)m, N(R_x), C(=O)N(R_x), N(R_x)C(=O), N(R_x)S(O)m, S(O)mN(R_x) and N[S(O)mR_x]S(O)m; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C₁-C₈alkyl; and

- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino. and thereby alleviating pain in the patient.
- 93. A method according to claim 92, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 94. A method according to claim 92, wherein the patient is suffering from neuropathic pain.
- 95. A method according to claim 92, wherein the patient is suffering from mechanical pain.
- 96. A method according to claim 92, wherein the pain is associated with a condition selected from: postmastectomy pain syndrome, stump pain, phantom limb pain, oral neuropathic pain, toothache, postherpetic neuralgia, diabetic neuropathy, reflex sympathetic dystrophy, trigeminal neuralgia, osteoarthritis, rheumatoid arthritis, fibromyalgia, Guillain-Barre syndrome, meralgia paresthetica, burning-mouth syndrome, bilateral peripheral neuropathy, causalgia, neuritis, neuronitis, neuralgia, AIDS-related neuropathy, MS-related neuropathy, spinal cord injury-related pain, surgery-related pain, musculoskeletal pain, back pain, headache, migraine, angina, labor, hemorrhoids, dyspepsia, Charcot's pains, intestinal gas, menstruation, cancer, venom exposure, irritable bowel syndrome, inflammatory bowel disease, and/or trauma.
 - 97. A method according to claim 92, wherein the patient is a human.

98. A method for treating itch in a patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and

 $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and

- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino. and thereby alleviating itch in the patient.
- 99. A method according to claim 98, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 100. A method for treating cough or hiccup in a patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound of the formula:

or a pharmaceutically acceptable form thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR₁, C(R₁)₂, NR₁ or N;

W, X, Y and Z are independently CR_1 or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

R₃ and R₄ are:

(a) independently chosen from R₈; or

- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkynoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂ and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino. and thereby alleviating cough or hiccup in the patient.
- 101. A method according to claim 100, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 102. A method for treating urinary incontinence in a patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound of the formula:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

R₃ and R₄ are:

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;
- R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)amino, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂,-N(C₁-C₆alkyl)SO₂C₁-C₆alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, S(O)m, N(R_x), C(=O)N(R_x), N(R_x)C(=O), N(R_x)S(O)m, S(O)mN(R_x) and N[S(O)mR_x]S(O)m; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C₁-C₈alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino;

and thereby alleviating urinary incontinence in the patient.

- 103. A method according to claim 102, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 104. A method for promoting weight loss in an obese patient, comprising administering to a patient a capsaicin receptor modulatory amount of a compound of the formula:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR₁, C(R₁)₂, NR₁ or N;

W, X, Y and Z are independently CR_1 or N;

T, U and V are independently CR₈, C(R₈)₂, N or NH;

R₁ is independently chosen at each occurrence from halogen, cyano, nitro and groups of the formula L-M;

R₃ and R₄ are:

- (a) independently chosen from R₈; or
- (b) taken together to form a fused ring selected from 5- to 8-membered carbocyclic rings, 5-membered heterocyclic rings, 7-membered heterocyclic rings and dioxane, each of which fused ring is substituted with from 0 to 3 substituents independently selected from halogen, hydroxy, amino, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-C₆alkyl ether, mono- and di-(C₁-C₆alkyl)aminoC₀-C₄alkyl, -N(H)SO₂C₁-C₆alkyl, -N(SO₂C₁-C₆alkyl)₂, and -N(C₁-C₆alkyl)SO₂C₁-C₆alkyl;

R₈ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkanoyl, C₂-

- C_6 alkyl ether, mono- and di- $(C_1$ - C_6 alkyl)amino, -N(H)SO₂C₁- C_6 alkyl, -N(SO₂C₁- C_6 alkyl)₂, -N(C₁- C_6 alkyl)SO₂C₁- C_6 alkyl, and 5 to 7 membered heteroalicyclic and heteroaryl rings;
- L is independently chosen at each occurrence from a bond, O, C(=O), OC(=O), C(=O)O, O-C(=O)O, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl; and
- M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)amino(C₀-C₄alkyl), phenylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from halogen, hydroxy, cyano, nitro, amino, oxo, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, aminocarbonyl, aminoC₁-C₆alkyl and mono- and di-(C₁-C₆alkyl)amino; and thereby promoting weight loss in the patient.
- 105. A method according to claim 104, wherein the compound is a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71.
- 106. A compound or pharmaceutically acceptable form thereof according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71, wherein the compound or pharmaceutically acceptable form thereof is radiolabeled.
- 107. A method for determining the presence or absence of capsaicin receptor in a sample, comprising the steps of:
 - (a) contacting a sample with a compound or pharmaceutically acceptable form thereof according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 under conditions that permit binding of the compound to capsaicin receptor; and
 - (b) detecting a level of the compound bound to capsaicin receptor, and therefrom determining the presence or absence of capsaicin receptor in the sample.
- 108. A method according to claim 107, wherein the compound is a radiolabeled compound according to claim 106, and wherein the step of detection comprises the steps of:
 - (i) separating unbound compound from bound compound; and
 - (ii) detecting the presence or absence of bound compound in the sample.

- 109. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 75 in a container; and
- (b) instructions for using the composition to treat pain.
 - 110. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 75 in a container; and
- (b) instructions for using the composition to treat cough or hiccup.
 - 111. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 75 in a container; and
- (b) instructions for using the composition to treat urinary incontinence.
 - 112. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 75 in a container; and
- (b) instructions for using the composition to treat obesity.
- 113. Use of a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 as a medicament for the treatment of a patient suffering from a condition responsive to capsaicin receptor modulation.
- 114. Use of a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 as a medicament for the treatment of a patient suffering from a condition responsive to capsaicin receptor modulation selected from (i) exposure to capsaicin, (ii) burn or irritation due to exposure to heat, (iii) burns or irritation due to exposure to light, (iv) burn, bronchoconstriction or irritation due to exposure to tear gas, air pollutants or pepper spray, or (v) burn or irritation due to exposure to acid.
- 115. Use of a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 as a medicament for the treatment of a patient suffering from to pain.
- 116. Use of a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 as a medicament for the treatment of a patient suffering from neuropathic pain associated with a condition selected from: postmastectomy pain syndrome, stump pain, phantom limb pain, oral neuropathic pain, toothache, postherpetic neuralgia, diabetic neuropathy, reflex sympathetic

dystrophy, trigeminal neuralgia, osteoarthritis, rheumatoid arthritis, fibromyalgia, Guillain-Barre syndrome, meralgia paresthetica, burning-mouth syndrome, bilateral peripheral neuropathy, causalgia, neuritis, neuronitis, neuralgia, AIDS-related neuropathy, MS-related neuropathy, spinal cord injury-related pain, surgery-related pain, musculoskeletal pain, back pain, headache, migraine, angina, labor, hemorrhoids, dyspepsia, Charcot's pains, intestinal gas, menstruation, cancer, venom exposure, irritable bowel syndrome, inflammatory bowel disease and trauma.

- 117. Use of a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 as a medicament for the treatment of a patient suffering from or susceptible to an itch.
- 118. Use of a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71as a medicament for the treatment of a patient suffering from or susceptible to urinary incontinence.
- 119. Use of a compound according to any one of claims 1, 17, 30, 45, 60, 65, 70 or 71 as a medicament for promoting weight loss in an obese patient.