МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный

электротехнический университет

«ЛЭТИ» им. В.И. Ульянова (Ленина)

Кафедра ИС

отчет

по практической работе №2 по дисциплине «инфокоммуникационные системы и сети»

Тема: Множественный доступ: Основы моделирования процессов функционирования ИКСиС

Вариант 97

Студент гр. 0374	Лях Г.С.
Преподаватель	Воробьев А.И.

Санкт-Петербург

02_2 ПОТОКИ ЗАЯВОК И ОСВОБОЖДЕНИЙ

1.

2.1. Среднее время интервалов между заявками примерно 3.67 минут.

2.2.

- Занятость 1 прибора в среднем 11.75 минут на заявку.
- Занятость 2 прибора в среднем 10 минут на заявку.
- Занятость 3 прибора в среднем 11.5 минут на заявку.

3.

5.

- 5.1. Для второй диаграммы.
 - Занятость 1 прибора в среднем 58 минут на заявку.
 - Занятость 2 прибора в среднем 26 минут на заявку.
 - Занятость 3 прибора в среднем 22.5 минуты на заявку.

5.2. Для третьей диаграммы.

- Занятость 1 прибора в среднем 58 минут на заявку.
- Занятость 2 прибора в среднем 19.34 минут на заявку.
- Занятость 3 прибора в среднем 19 минут на заявку.
- Среднее время пребывания заявки в очереди составило 20.25 минут.

02_3 ВРЕМЯ ОБСЛУЖИВАНИЯ

6. Графики функций экспоненциального распределения с параметрами $\mu_1^2 = 97$ (синий), $\mu_2^2 = 194$ (зеленый), $\mu_3^2 = 291$ (черный).

Графики их плотности распределения

По этим графикам можно сделать вывод, что при больших значения интенсивности больше вероятность малых значений случайной величины.

7. Графики плотности гиперэкспоненциальных распределений, полученных как аддитивная смесь из 3х экспоненциальных распределений.

где синий график - график с весовыми коэффициентами $\alpha_{\ 1}^3=0.5, \alpha_{\ 2}^3=0.353, \ \alpha_{\ 3}^3=0.147, \quad a \quad красный \quad график - c$ коэффициентами $\beta_{\ 1}^3=0.147, \beta_{\ 2}^3=0.353, \ \beta_{\ 3}^3=0.5 \ .$

8. Построить график плотности экспоненциального распределения в тех же осях, что и 7 п. с параметром $\mu_1^{\ 4} = \frac{1}{M[X]} = 133.7$, где $M[X] = \frac{\alpha_1^3}{\mu_1^2} + \frac{\alpha_2^3}{\mu_2^2} + \frac{\alpha_3^3}{\mu_3^2} = 0.00748$.

На основании этого графика можно сделать вывод, что при гиперэкспоненциальном распределении с большими интенсивностями меньше вероятность больших значений случайных величин.

9. Построить графики плотности распределения трех нормированных эрланговских распределений с рангами 3, 9 и 15.

На основании этих графиков, при увеличении ранга г плотность распределения все больше и больше становится похожа на плотность нормального распределения.

Выводы

В этой работе были изучены потоки заявок и освобождений и было наглядно показано преимущество использования систем с буфером.

Кроме того были рассмотрены функции распределения обслуживания. Мы узнали, что при больших значения интенсивности значений больше вероятность малых случайной величины экспоненциального распределения, a также, что при гиперэкспоненциальном распределении с большими интенсивностями меньше вероятность больших значений случайных величин.

Помимо этого также увидели, что действительно, при увеличении ранга плотность эрланговского распределения приближается к плотности нормального распределения.