

Quick administrative stuff

Office hours:

Boning's OH are now Fridays 14:00-18:00. Dr. DiTursi's Thursday OH are now 8:30-9:45 and 13:00-14:45. (Tuesdays are unchanged at 9:00-12:00.)

Textbook:

Discrete Mathematics & Computing Malik Magdon-Ismail ISBN 978-0-578-56787-7

Homework submissions

- File size has been an issue.
- I've asked tech support if we can get the cap raised.
- In the meantime, I understand that there are PDF compressors that will do the trick.
- Due 8:59pm tonight.

Recitations and lab activities

- First recitation is tomorrow; attendance is (indirectly) graded.
- TA will introduce themselves and present solutions (or at least solution sketches) for the homework problems. (~20 minutes)
- Then lab activity will be distributed. You may work in groups of up to five.
- When complete, enter the Office Hours queue in Submitty. Someone will come check your work and mark it as complete.

Building blocks of discrete math:

- * Sets
- * Sequences
- * Graphs

Mathematical / logical statements

Intro to propositional logic

The Building Blocks of Discrete Math

Sets – the fundamental unit of mathematics

Simply a collection of things – any objects you like: numbers, people, shapes, variables, other sets, etc.

The things in the set are <u>elements</u> or <u>members</u>. The number of elements may be zero, finite, or infinite.

The order within a set does not matter, and there are no duplicates - objects are either in the set or not.

Set notation

- Sets => capital letters: A, B, WF, Q_3 , ... Certain special sets have other notation: \mathbb{Z}
- Generic elements => lowercase letters: a, p, x_1 , ... If we have <u>specific</u> elements (names, numbers), we can just use those directly.
- Curly braces are used as set containers:

 \in is used for membership: $m \in S$, Eve $\in N$

Special sets – everything and nothing

We generally reserve U (often u or u in texts) to indicate the <u>universe of discourse</u> – the set of every object we could be talking about in this context.

The set containing **no** elements is called the <u>empty</u> <u>set</u>, and is often of great importance. We represent the empty set with either $\{ \}$ or \emptyset

NOT {Ø} - that would be the set <u>containing</u> the empty set, which is not empty!

Special sets – types of numbers

- **N** natural numbers: {1, 2, 3...}
- N_0 whole numbers: $\{0, 1, 2, 3, ...\}$
- \mathbb{Z} integers: $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- **Q** rational numbers: anything that can be written as a fraction of two integers
- \mathbb{R} real numbers: the full (continuous) number line, rationals + irrationals (e, π , sqrt(2), etc.)

Infinite sets

We (obviously) can't list every element in an infinite set. If we are being quick (sloppy), we can use an ellipsis and **hope** everyone gets the idea:

$$E = \{2, 4, 6, ...\}$$

If this is the set of even positive integers, we're probably fine. If not...

Set descriptions and set builder notation

It would be more precise to just go ahead and describe the set we intend:

E = {all even positive integers}

We can also use variables in a form called <u>set builder</u> <u>notation</u> – this often still includes some English description as well:

$$E = \{ n \mid n = 2k, \text{ where } k \in \mathbb{N} \}$$

We would read this as "the set of n such that n = 2k, where k is a positive integer."

Set relations (i.e. T/F statements)

Subset: Is the first set fully contained in the second set? $A \subseteq B$, $D \subseteq A$, $D \subseteq B$, $C \not\subseteq B$ Superset: Does the first set fully contain the second set? $B \supseteq A$, $A \supseteq D$, $B \supseteq D$, $B \not\supseteq C$

Proper Subset / Superset: Does the larger set have any elements outside the smaller set? $F \subseteq G, F \not\subset G, F \subset B$ Set Equivalence: Do the sets contain precisely the same members? F = G

Set operations (new sets from known sets)

 <u>Union</u>: All elements in <u>either</u> set - A ∪ B

- Intersection: Only elements that are in both sets A ∩ B
- <u>Negation</u>: All elements from U not in a set - A
- <u>Set Difference</u>: All elements in one set and not in the other - A – B

Draw diagrams for the following:

 \bullet A \cap B \cap C

• A ∪ B ∩ C

 $\bullet \overline{A} \cap \overline{B}$

- Draw diagrams for the following:
 - \bullet A \cap B \cap C

Draw diagrams for the following:

• A ∩ B ∩ C

• A∪B∩C

Draw diagrams for the following:

 \bullet A \cap B \cap C

• A∪B∩C A∪(B∩C)

order of operations - negation*, intersection, union

• A U B

Draw diagrams for the following:

· An Bn C

 \bullet A \cup B \cap C

Draw diagrams for the following:

· An Bn C

 \bullet A \cup B \cap C

DeMorgan's Laws

 To "distribute" a negation into an intersection or union, negate all of the individual pieces, then swap intersection for union and vice versa.

•
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

•
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Power set

• The <u>power set</u> operation (written 2^S) creates the set of all subsets.

•
$$A = \{x, y, z\}$$

•
$$2^A = \{ \{\}, \{x\}, \{y\}, \{z\}, \{x,y\}, \{x,z\}, \{y,z\}, \{x,y,z\} \}$$

Sequences

- A structure where you care about the order.
- This also implies that repetition matters.
- If we are talking about a sequence of symbols, we will also call that a <u>string</u>
 - Strings of letters: focs, abbabaabaaa
 - Binary (or bit) strings: 010, 1111010
 - The length-zero string is the <u>empty string</u> or the <u>null string</u> and is written ϵ or λ . (We'll use ϵ .)

Well-known sequences

- $P = \{2, 3, 5, 7, 11, 13, 17, ...\}$
- $F = \{0, 1, 1, 2, 3, 5, 8, 13, ...\}$
 - What's F_{10} ? (Note: $F_0 = 0$)

• H = {7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, ...}

Graphs – modeling <u>connections</u>

- Sets do not model relationships between the elements, and sequences only have one type of relationship: precedes / follows
- If we want to be able to model relationships between arbitrary elements, we need a richer structure: a <u>graph</u>
- Note this is not a graph as the term is usually used in say, algebra or calculus. . .

Components of a graph

- Graphs are defined as two sets:
 - <u>Vertices</u> (or <u>nodes</u>) are the objects we want to model. Often we'll use lowercase letters for these.
 - <u>Edges</u> (or <u>links</u>) are the connections between the nodes.
 An edge is written like this: (a,b)
- When drawn, the positions of the vertices DOES NOT MATTER!

Types of edges

- Often, connection between vertices is transitive: that is, if a is connected to b, then b is automatically connected to a. This produces an <u>undirected graph</u>.
- If connections are <u>not</u> transitive, then the edge (a,b) is not the same is (b,a), and we have a <u>directed graph</u>.
- Edges are sometimes labeled. Often these labels are numbers (indicating capacity, distance, what have you); these numbers are called <u>weights</u>.

Some types of graph models

- Social networks (note: social media not required!)
- Affiliation graphs (e.g. students & courses)
- Conflict graphs (edges = problem!)
- Similarity graphs (DNA / RNA analysis)
- Literal maps!

The Elements of Proof

Statements in English

- Consider the sentence:
 "She said she didn't take his money."
- How you say it matters a lot!

Statements in English

- Consider the sentence:
 "She said she didn't take his money."
- How you say it matters a lot!

 "She said she didn't take his money."

 "She said she didn't take his money."

Ambiguity

- Even without emphasis, common language can leave meaning unclear. What does "another" mean here?
 - "What drink are you having? I'll get another."
 "What shirt are you wearing? I'll wear another."
- "Everything that glitters is not gold."
 - Do we mean that nothing that glitters is gold?
 Or that there are some things that glitter that are not gold?

Avoiding ambiguity

- When talking to a computer, it is necessary to be <u>very</u> precise about what you mean. There is no such thing as ambiguity to a computer it'll just decide what an instruction means based upon its own rules.
- When working in mathematics, we insist upon the same precision – even if it makes our statements much more complicated, it must be absolutely clear what we mean.

Propositions

- The most basic type of logical statement is a <u>proposition</u>. This is a sentence that can be assigned a <u>truth value</u>: True or False.
 - Note: We might not <u>know</u> whether or not it's true. But it must be one or the other; there is no third option. This is known as the Law of the Excluded Middle.

What, precisely, is a proof?

- A proof generally starts with a <u>claim</u> the logical statement you wish to demonstrate.
- Every proof relies on one or more <u>axioms</u> statements that we accept as true without proof. Sometimes these are given in the problem statement; sometimes these are just fundamental ideas in math. (1 + 1 = 2)
- We then give a sequence of <u>true</u> statements that are designed to <u>convince</u> the reader that our claim is true. Ultimately, this is the point: To ensure that "everyone" (in whatever context) agrees on the truth of our claim. It then becomes a <u>theorem</u> we can use in other proofs.