

Convolutional Neural Network (CNN) and Generative Adversarial Networks (GAN)

Debashis Sen

Department of Electronics & Electrical Communication Engineering Indian Institute of Technology – Kharagpur

dsen@ece.iitkgp.ac.in
http://www.facweb.iitkgp.ac.in/~debashis

Content:

- NN to CNN
- CNN:
 - Operations & Activation
 - Architectures
- Adversarial Attack
- GAN Framework
- Deep Convolutional GAN
- GAN Variants
 - Conditional GAN
 - Patch GAN
 - Cycle GAN
 - InfoGAN
 - Bidirectional GAN
 - RealnessGAN

Neural Network to Convolutional Neural Network

- 1. Local Connections
- 2. Weight Sharing

Image source: https://numpydl.readthedocs.io/en/latest/tutorials/CNN/

Convolutional Neural Network

Strides:

N Output size:
(N - F) / stride + 1

Usually after zero padding

Pooling (Max-pooling):

- Makes representations "manageable"
- Introduces 0 parameters
- No zero padding

max pool with 2x2 filters and stride 2

Leaky ReLU

ReLU f(x) = max(0,x)
(Rectified Linear Unit)

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into \alpha (parameter)

MAXout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

Some popular CNN architectures

Image source: http://cs231n.stanf ord.edu/2017/

GoogLeNet

ResNet

Densely Connected Convolutional Networks

U-Net:

EfficientNet:

EfficientNet-B0 baseline network

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7 imes 7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

mobile inverted bottleneck MBConv

Adversarial Attack:

Easily fooling NNs!

Reason: Boundaries in very High Dimensional Real Space!

Image Sources:

- http://cs231n.stanford.edu/ [Top]
- Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow and Rob Fergus, Intriguing properties of neural networks. ICLR (Poster) 2014. [Bottom Left]
- Anh Mai Nguyen, Jason Yosinski and Jeff Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, CVPR 2015: 427-436. [Bottom Right]

GAN:

Two players competing against each other!

Tries to fool the discriminator by Tries to detect the mischief of the generating real-like data generator differentiating fake from real. Real or Fake Discriminator Network Fake Images Real Images (from generator (from training set) Generator Network Random noise

Image Source:

• http://cs231n.stanford.edu/

Minimax optimization:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right]$$

Discriminator output for real data

Discriminator output for fake data

Fake data by generator

$$D_{\theta_d}(x) \to 1$$

Maximization by discriminator

$$D_{\theta_d}\left(G_{\theta_g}(z)\right) \to 0 \quad D_{\theta_d}\left(G_{\theta_g}(z)\right) \to 1$$

Minimization by discriminator

$$D_{\theta_d}\left(G_{\theta_g}(z)\right) \rightarrow$$
Maximization

by generator

Alternate between:

$$\begin{split} \max_{\theta_d} \left[\mathbf{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + & \mathbf{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right] \\ \max_{\theta_g} \left[\mathbf{E}_{x \sim p(z)} \log D_{\theta_d} \left(G_{\theta_g}(z) \right) \right] \end{split}$$

GAN article:

For optimal discriminator:

Generator Objective function: $-\log(4) + 2JSD(p_{data}||p_{fakedata})$

DC-GAN:

Jensen-Shannon divergence

Generator Network:

Discriminator Network

Image Generation

DCGAN article & Image source:

Conditional GAN:

$$\begin{aligned} \min_{\theta_g} \max_{\theta_d} \left[\mathbf{E}_{(x,y) \sim p_{data}} \log D_{\theta_d}(x|y) + \mathbf{E}_{z \sim p(z), y \sim p_{data}} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z|y) | y \right) \right) \right] \end{aligned}$$

Patch GAN:

Discriminator Network

Image 2 Image Translation

PatchGAN article & Image Source [Bottom]:

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou and Alexei A. Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017: 5967-5976.

Image Source [Top]:

Ugur Demir and Gözde B. Ünal, Patch-Based Image Inpainting with Generative Adversarial Networks, CoRR abs/1803.07422 (2018).

Cycle GAN:

Only unpaired real images are available in both domains

GAN losses:

$$\min_{G} \max_{D_Y} \left[\mathbb{E}_{y \sim p(y)} \log D_Y(y) + \mathbb{E}_{x \sim p(x)} \log \left(1 - D_Y(G(x)) \right) \right]$$

$$\min_{F} \max_{D_Y} \left[\mathbb{E}_{x \sim p(x)} \log D_X(x) + \mathbb{E}_{y \sim p(y)} \log \left(1 - D_X(F(y)) \right) \right]$$

Cyclic consistency loss

$$\min_{G,F} \left[\mathbb{E}_{x \sim p(x)} (\|F(G(x)) - x\|) + \mathbb{E}_{y \sim p(y)} (\|G(F(y)) - y\|) \right]$$

Identity loss:
$$\min_{G,F} \left[E_{x \sim p(x)}(\|F(x) - x\|) + E_{y \sim p(y)}(\|G(y) - y\|) \right]$$

Weighted sum of the losses!

Info GAN:

$$\begin{aligned} \min_{G,Q} \max_{D} V(D,G,Q) &= \left[\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim noise} \log \left(1 - D \big(G(z) \big) \right) \right] - \lambda \left[E_{c \sim p(c), y \sim p \big(G(z,c) \big)} \log Q(c|y) \right] \end{aligned}$$

InfoGAN article:

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever and Pieter Abbeel, InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, NIPS 2016: 2172-2180.

Image Source:

Wei Chen and Mark Fuge, Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks, J. 21 Mech. Des., 2019, 141(11).

BiGAN:

Standard GAN:

$$\min_{G} \max_{D} V(D, G) = \left[\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim noise} \log \left(1 - D(G(z)) \right) \right]$$

BiGAN:

$$\min_{G, E} \max_{D} V(D, E, G) = \left[\mathbb{E}_{x \sim p_x} \log D(x, E(x)) + \mathbb{E}_{z \sim P_z} \log (1 - D(G(z), z)) \right]$$

RealnessGAN:

Standard GAN:

$$\min_{G} \max_{D} V(D, G) = \left[\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim p_{z}} \log \left(1 - D(G(z)) \right) \right]$$

During training:

$$\min_{G} \max_{D} V(D, G) = \left[\mathbb{E}_{x \sim p_{data}} \log(D(x) - 0) + \mathbb{E}_{x \sim p_g} \log(1 - D(x)) \right]$$

$$\min_{G} \max_{D} V(D,G) = \left[\mathbf{E}_{x \sim p_{data}} \mathcal{D}_{KL}(\mathcal{A}_1 || D(x)) \right] \\ + \mathbf{E}_{x \sim p_g} \mathcal{D}_{KL}(\mathcal{A}_0 || D(x)) \right]$$
 Real's distribution
$$\text{KL-divergence}$$
 Fake's distribution

Discrete output

distribution:

RealnessGAN article:

 $\exp(\theta_i(x))$

 $\sum_{i} \exp(\theta_{i}(x))$

Thank you very much!

Queries?