SEMINAR

AI AND DUPLICATE DETECTION TO LEVERAGE EXTERNAL DATA SOURCE

April 21st

ABOUT MYSELF

DAVID BEAUCHEMINPh. D. candidate in ML
Laval University

- B. Sc. in actuarial science
- M. Sc. in computer science, ML and NLP
- 5 years in academic ML and NLP researc project
- +6 years of various applied business projects

MENU

- 1. What is our problem?
- 2. How can we develop a solution for that?
- 3. How can we compute the similarity between two entities?
- 4. Why develop our own solutions?

WHAT IS OUR PROBLEM?

Data is not cheap

WHAT IS OUR PROBLEM?

A lot of open data now (data.gouv ♂*)

WHAT IS OUR PROBLEM?

Mapping between datasets

AN EXAMPLE

Only using the name and the address of a business client is it possible to match these with external sources to leverage their content?

AN EXAMPLE

AN EXAMPLE

How can we match our information with external data sources if we do not control it and our information is not unique?

How can we develop a solution for that?

WHAT OUR SOLUTION NEEDS TO DO?

WHAT DO WE NEED TO ACHIEVE THAT?

- Natural language processing (NLP)
- A duplicate detection mechanism

WHAT IS NLP?

WHAT IS AI?

A cat or not?

WHAT IS AI?

WHAT IS AI?

DUPLICATE DETECTION MECHANISM

DUPLICATE DETECTION MECHANISM

- Rules-based
- Probabilistic
- ML

ML DUPLICATE DETECTION MECHANISM

ML DUPLICATE DETECTION MECHANISM

How can we compute the similarity between two entities?

SIMILARITY ALGORITHM

SIMILARITY ALGORITHM

NLP ML ALGORITHM

ONE-HOT ENCODING

 $\{\mathsf{CHOAM}, 4, \mathsf{Privet}, \mathsf{Drive}, \mathsf{Little}, \mathsf{Whinging}, \mathsf{Surrey}, \mathsf{cat}, \mathsf{dog}, \mathsf{street}, \mathsf{blvd}, \mathsf{street}, \cdots\}$

 $[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 \cdots, 0]$

ONE-HOT ENCODING

Advantages

- · Easy to implement
- Not complex
- Easy to encode

Disadvantages

- Sparse
- Out-of-vocabulary

SIMILARITY ALGORITHM

JACCARD

JACCARD

$$\frac{\{\text{CHOAM}, \text{Privet}, \text{Surrey}\}}{\{\text{CHOAM}, 4, 12, \text{Privet}, \text{Drive}, \text{Drive}, \text{Little}, \text{little}, \text{Whinging}, \text{whinging}, \text{Surrey}\}} = \frac{3}{11} = 0.2727$$

JACCARD

$$\frac{\{\text{choam, privet, little, whinging, surrey}\}}{\{\text{choam}, 4, 12, \text{privet, drive, drve, little, whinging, surrey}\}} = \frac{5}{9} = 0.5556$$

SIMILARITY ALGORITHM

- Jaro
- Jaro-Winkler
- Levenshtein
- Longest common subsequence
- Cosinus
- MASI
- Monge Elkan
- Overlap

SIMILARITY ALGORITHM

FINAL APPROACH

ML ALGORITHM

NAME-ADDRESS INFORMATION VECTOR GENERATOR

Example of an information vector StoS Levenshtein Jaro-Winkler LCSP Jaccard Cosinus 0.00 0.15 0.25 0.35 0.15 0.15 CSS StoS Levenshtein Jaro LCSP Jaccard Cosinus 0.00 0.16 0.55 0.15 0.45 0.37 0.48

RESULTS

	Logistic Regression	Random Forest	Multilayer perceptron	Jaccard
Recall (%)	66.67	73.54	79.73	72.51
Precision	89.77	81.06	87.55	81.78

Detection of Duplicates Among Non-structured Data From Different Data Sources ♂*

INFERENCE TIMES

(second)	Logistic Regression	Random Forest	Multilayer Perceptron	Jaccard
Time	1,32	1,74	1,34	0,25

IMPROVING THE RESULTS - N MOST SIMILAR

We consider a matching is good when the pair (Our database entity, external data source entity) is included in the N most similar rather than the top-1.

IMPROVING THE RESULTS - N MOST SIMILAR

Why develop our own solutions?

WHY DEVELOP OUR OWN SOLUTIONS?

There is commercial solutions out there, why not buying it?

WHY DEVELOP OUR OWN SOLUTIONS?

- Help empower your teams on important NLP steps,
- It is a straightforward classification problem.

CONCLUSION

- NLP can help you bring value to your business.
- I have presented a solution that one can develop to detect duplicates using NLP and ML.
- Without deep learning, you can achieve interesting results in duplicate detection with external data sources.

SEMINAR

THANK YOU FOR LISTENING!