Programação dinâmica

CLRS 15.2-15.3

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Multiplicação iterada de matrizes

Se $A \in p \times q$ e $B \in q \times r$ então $AB \in p \times r$.

Multiplicação iterada de matrizes

Se $A \in p \times q$ e $B \in q \times r$ então $AB \in p \times r$. $(AB)[i,j] = \sum_{k} A[i,k] B[k,j]$

Multiplicação iterada de matrizes

```
Se A \in p \times q e B \in q \times r então AB \in p \times r.

(AB)[i,j] = \sum_k A[i,k] B[k,j]

MULT-MAT (p,A,q,B,r)

1 para i \leftarrow 1 até p faça

2 para j \leftarrow 1 até r faça

3 AB[i,j] \leftarrow 0

4 para k \leftarrow 1 até q faça

5 AB[i,j] \leftarrow AB[i,j] + A[i,k] \cdot B[k,j]
```

Número de multiplicações escalares = $p \cdot q \cdot r$

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

$$p[0] \times p[1]$$
 $p[2] \dots p[n-1]$ $p[n]$ $A_1 \quad A_2 \quad \dots \quad A_n$

cada $A_i \in p[i-1] \times p[i]$, ou seja, $A_i[1 ... p[i-1], 1 ... p[i]]$

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

$$p[0]$$
 A_1 $P[1]$ $p[2]$ \dots $p[n-1]$ $p[n]$ A_n

cada
$$A_i$$
 é $p[i-1] \times p[i]$, ou seja, $A_i[1 ... p[i-1], 1 ... p[i]]$

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

$$p[0]$$
 $p[1]$ $p[2]$... $p[n-1] \times p[n]$ A_n

cada
$$A_i \in p[i-1] \times p[i]$$
, ou seja, $A_i[1 ... p[i-1], 1 ... p[i]]$

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

$$p[0]$$
 $p[1]$ $p[2]$... $p[n-1]$ $p[n]$ A_1 A_2 ... A_n

cada
$$A_i \in p[i-1] \times p[i]$$
, ou seja, $A_i[1 ... p[i-1], 1 ... p[i]]$

$$p[0]=10$$
 A_1 $p[1]=100$ A_2 $p[2]=5$ A_3 $p[3]=50$

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n p_n p_n

cada
$$A_i$$
 é $p_{i-1} \times p_i$, ou seja, $A_i[1 \dots p_{i-1}, 1 \dots p_i]$

$$p_0=10$$
 A_1 $p_1=100$ A_2 $p_2=5$ A_3 $p_3=50$

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n p_n p_n

cada
$$A_i$$
 é $p_{i-1} \times p_i$, ou seja, $A_i[1 \dots p_{i-1}, 1 \dots p_i]$

Problema: Encontrar número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n p_n p_n

cada
$$A_i$$
 é $p_{i-1} \times p_i$, ou seja, $A_i[1 \dots p_{i-1}, 1 \dots p_i]$

$$p_0=10$$
 A_1 $p_1=100$ A_2 $p_2=5$ $p_3=50$ $((A_1 A_2) A_3)$ $((A_1 A_2 A_3))$ multiplicações escalares $p_1=100$ multiplicações escalares $p_2=100$ multiplicações escalares

também são ordens ótimas.

Se
$$((A_1A_2)A_3)(A_4((A_5A_6)A_7))$$
 é ordem ótima de multiplicação, então
$$((A_1A_2)A_3) \quad \text{e} \quad (A_4((A_5A_6)A_7))$$

Se
$$((A_1A_2)A_3)(A_4((A_5A_6)A_7))$$

é ordem ótima de multiplicação, então

$$((A_1A_2)A_3)$$
 e $(A_4((A_5A_6)A_7))$

também são ordens ótimas.

Argumento informal: Suponha por contradição que exista uma ordem melhor para $A_1 \cdot A_2 \cdot A_3$, digamos, $(A_1(A_2A_3))$.

Então $(A_1(A_2A_3))(A_4((A_5A_6)A_7))$ seria uma ordem para $A_1A_2\cdots A_7$ "melhor que a ótima".

Se
$$((A_1A_2)A_3)(A_4((A_5A_6)A_7))$$

é ordem ótima de multiplicação, então

$$((A_1A_2)A_3)$$
 e $(A_4((A_5A_6)A_7))$

também são ordens ótimas.

Argumento "menos" informal: Suponha que

- $ightharpoonup ((A_1A_2)A_3)$ requer $m_{1,3}$ multiplicações,
- $ightharpoonup (A_4((A_5A_6)A_7))$ requer $m_{4,7}$ multiplicações;

assim, a ordem ótima requer $m_{1,3} + p_0 p_3 p_7 + m_{4,7}$ multiplicações.

Se existe uma ordem $(A_4 \cdots A_7)$ com $m'_{4,7} < m_{4,7}$ multiplicações, então $((A_1 A_2) A_3) (A_4 \cdots A_7)$

requer $m_{1,3} + p_0 p_3 p_7 + m'_{4,7} < m_{1,3} + p_0 p_3 p_7 + m_{4,7}$ multiplicações, uma contradição.

Se

$$((A_1A_2)A_3)(A_4((A_5A_6)A_7))$$

é ordem ótima de multiplicação então

$$((A_1A_2)A_3)$$
 e $(A_4((A_5A_6)A_7))$

também são ordens ótimas.

Se

$$((A_1A_2)A_3)(A_4((A_5A_6)A_7))$$

é ordem ótima de multiplicação então

$$((A_1A_2)A_3)$$
 e $(A_4((A_5A_6)A_7))$

também são ordens ótimas.

Decomposição: $(A_i \cdots A_k) (A_{k+1} \cdots A_j)$

 $m[i,j] = n^{Q} \min$ de multiplicações escalares p/ calcular $A_i \cdots A_j$

Recorrência

 $m[i,j]=\mathsf{n}^{\mathsf{Q}}$ mín. de multiplicações escalares p/ calcular $A_i\cdots A_j$ se i=j então m[i,j]=0

Recorrência

corrência
$$(A_{i} \cdots A_{k})(A_{k+1} \cdots A_{j})$$

$$m[i,j] = n^{Q} \text{ mín. de multiplicações escalares p/ calcular } A_{i} \cdots A_{j}$$
 se $i = j$ então $m[i,j] = 0$
$$A_{i} \cdots A_{k}$$

$$m[i,k] + p_{i-1}p_{k}p_{j} + m[k+1,j]$$
 se $i < j$ então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_{k}p_{j} + m[k+1,j] \}$

Decomposição:
$$p_{i-1}$$
 ... p_k ... p_j $(A_{k+1}$... $A_j)$

Recorrência

$$m[i,j] = n^Q \min$$
 de multiplicações escalares p/ calcular $A_i \cdots A_j$ se $i = j$ então $m[i,j] = 0$ se $i < j$ então $m[i,j] = \min_{i < k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

Exemplo:

$$m[3,7] = \min_{3 \le k \le 7} \{ m[3,k] + p_2 p_k p_7 + m[k+1,7] \}$$

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n A_1 A_2 \dots A_n

 $m[i,j] = n^{Q}$ mín. de multiplicações escalares p/ calcular $A_{i} \cdots A_{j}$ se i = j então m[i,j] = 0

Trivialmente, se i = j, a expressão $A_i \cdots A_j$ é o produto formado por uma única matriz, A_i , que requer 0 multiplicações escalares.

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n A_1 A_2 \dots A_n

 $m[i,j] = n^{Q} m$ ín. de multiplicações escalares p/ calcular $A_i \cdots A_j$

Se
$$i < j$$
 então $m[i,j] \le \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$:

Suponha que $k \in [i, j)$ atinge o 'min'.

Existe uma ordem para $(A_i \cdots A_k)$, que é uma matriz $p_{i-1} \times p_k$, com m[i, k] multiplicações escalares.

Existe uma ordem para $(A_{k+1} \cdots A_j)$, que é uma matriz $p_k \times p_j$, com m[k+1,j] multiplicações escalares.

Logo, a ordem $(A_i \cdots A_k) (A_{k+1} \cdots A_j)$ utiliza $m[i, k] + p_{i-1}p_kp_i + m[k+1, j]$ multiplicações escalares.

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n A_1 A_2 \dots A_n

 $m[i,j] = n^{Q}$ mín. de multiplicações escalares p/ calcular $A_{i} \cdots A_{j}$ Se i < j então $m[i,j] \geq \min_{i \leq k < j} \{ m[i,k] + p_{i-1}p_{k}p_{j} + m[k+1,j] \}$:

Suponha que uma ordem ótima separe $A_i \cdots A_j$ em $(A_i \cdots A_k)$ e $(A_{k+1} \cdots A_j)$ para algum $k \in [i, j)$, usando $x \geq m[i, k]$ mults para $(A_i \cdots A_k)$ e $y \geq m[k+1, j]$ mults para $(A_{k+1} \cdots A_j)$. Total: $x + p_{i-1}p_kp_i + y$ mults.

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n A_1 A_2 \dots A_n

 $m[i,j] = n^{Q}$ mín. de multiplicações escalares p/ calcular $A_{i} \cdots A_{j}$ Se i < j então $m[i,j] \geq \min_{i \leq k < j} \{ m[i,k] + p_{i-1}p_{k}p_{j} + m[k+1,j] \}$:

Suponha que uma ordem ótima separe $A_i \cdots A_j$ em $(A_i \cdots A_k)$ e $(A_{k+1} \cdots A_j)$ para algum $k \in [i,j)$, usando $x \geq m[i,k]$ mults para $(A_i \cdots A_k)$ e $y \geq m[k+1,j]$ mults para $(A_{k+1} \cdots A_j)$. Total: $x + p_{i-1}p_kp_i + y$ mults.

Existe uma ordem $(A_i \cdots A_j)$ que usa m[i, k] mults.

Se x > m[i, k], separar $A_i \cdots A_j$ em $(A_i \cdots A_k)$ e $(A_{k+1} \cdots A_j)$ usa $m[i, k] + p_{i-1}p_kp_j + y < x + p_{i-1}p_kp_j + y$, menos que o ótimo.

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n A_1 A_2 \dots A_n

 $m[i,j] = n^{Q}$ mín. de multiplicações escalares p/ calcular $A_{i} \cdots A_{j}$ Se i < j então $m[i,j] \geq \min_{i < k < j} \{ m[i,k] + p_{i-1}p_{k}p_{j} + m[k+1,j] \}$:

Suponha que uma ordem ótima separe $A_i \cdots A_j$ em $(A_i \cdots A_k)$ e $(A_{k+1} \cdots A_j)$ para algum $k \in [i, j)$, usando $x \geq m[i, k]$ mults para $(A_i \cdots A_k)$ e $y \geq m[k+1, j]$ mults para $(A_{k+1} \cdots A_j)$. Total: $x + p_{i-1}p_kp_i + y$ mults.

Existe uma ordem $(A_i \cdots A_j)$ que usa m[i, k] mults.

Se x > m[i, k], separar $A_i \cdots A_j$ em $(A_i \cdots A_k)$ e $(A_{k+1} \cdots A_j)$ usa $m[i, k] + p_{i-1}p_kp_j + y < x + p_{i-1}p_kp_j + y$, menos que o ótimo.

Similarmente, prova-se que y = m[k+1, j].

$$p_0$$
 p_1 p_2 \dots p_{n-1} p_n A_1 A_2 \dots A_n

 $m[i,j] = n^{Q}$ mín. de multiplicações escalares p/ calcular $A_{i} \cdots A_{j}$ Se i < j então $m[i,j] \geq \min_{\substack{i \leq k < j}} \{ m[i,k] + p_{i-1}p_{k}p_{j} + m[k+1,j] \}$:

Suponha que uma ordem ótima separe $A_i \cdots A_j$ em $(A_i \cdots A_k)$ e $(A_{k+1} \cdots A_j)$ para algum $k \in [i, j)$, usando $x \geq m[i, k]$ mults para $(A_i \cdots A_k)$ e $y \geq m[k+1, j]$ mults para $(A_{k+1} \cdots A_j)$. Total: $x + p_{i-1}p_kp_i + y$ mults.

Logo, x = m[i, k] e y = m[k+1, j]. Portanto,

$$m[i,j] = m[i,k] + p_{i-1}p_kp_j + m[k+1,j]$$

$$\geq \min_{i \leq k' < j} \{ m[i,k'] + p_{i-1}p_{k'}p_j + m[k'+1,j] \}$$

Algoritmo recursivo

```
m[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \} & \text{se } i < j \end{cases}
```

Recebe p[i-1..j] e devolve m[i,j]

```
REC-MAT-CHAIN (p, i, j)
 1 se i = j
           então devolva 0
 3 \quad m[i,j] \leftarrow \infty
       para k \leftarrow i até j-1 faça
 5
           q_1 \leftarrow \mathsf{REC}\text{-}\mathsf{MAT}\text{-}\mathsf{CHAIN}\left(p,i,k\right)
           q_2 \leftarrow \mathsf{REC}\text{-}\mathsf{MAT}\text{-}\mathsf{CHAIN}\left(p,k+1,j\right)
           q \leftarrow q_1 + p[i-1]p[k]p[j] + q_2
 8
           se q < m[i, j]
 9
                então m[i,j] \leftarrow q
10
       devolva m[i, j]
```

Algoritmo recursivo

Recebe p[i-1..j] e devolve m[i,j]

```
REC-MAT-CHAIN (p, i, j)
 1 se i = j
          então devolva 0
 3 \quad m[i,j] \leftarrow \infty
      para k \leftarrow i até j-1 faça
 5
           q_1 \leftarrow \mathsf{REC}\text{-}\mathsf{MAT}\text{-}\mathsf{CHAIN}\left(p,i,k\right)
        q_2 \leftarrow \mathsf{REC}\text{-}\mathsf{MAT}\text{-}\mathsf{CHAIN}\left(p, k+1, j\right)
         q \leftarrow q_1 + p[i-1]p[k]p[j] + q_2
           se q < m[i, j]
                então m[i,j] \leftarrow q
       devolva m[i, j]
10
```

Corretude: imediata da corretude da recorrência

A plataforma utilizada nos experimentos é um PC rodando Linux Debian ?.? com um processador Pentium II de 233 MHz e 128MB de memória RAM.

O programa foi compilado com o gcc versão ?? e opção de compilação "-O2".

n	3	6	10	20	25
tempo	0.0 <i>s</i>	0.0 <i>s</i>	0.01 <i>s</i>	201 <i>s</i>	567 <i>m</i>

$$T(n) =$$
 número de comparações entre q e $m[\star, \star]$ na linha 8 quando $n := j - i + 1$

$$T(1) = 0$$

$$T(n) = \sum_{h=1}^{n-1} (T(h) + T(n-h) + 1) = 2 \sum_{h=2}^{n-1} T(h) + (n-1)$$
$$= 2(T(2) + \dots + T(n-1)) + (n-1) \text{ para } n \ge 2$$

T(n) = número de comparações entre q e $m[\star, \star]$ na linha 8 quando n := j - i + 1

$$T(1) = 0$$

$$T(n) = \sum_{h=1}^{n-1} (T(h) + T(n-h) + 1) = 2 \sum_{h=2}^{n-1} T(h) + (n-1)$$
$$= 2(T(2) + \dots + T(n-1)) + (n-1) \text{ para } n \ge 2$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda.

T(n) = número comparações entre q e $m[\star, \star]$ na linha 8 quando n := j - i + 1

$$T(n) = 2(T(2) + \cdots + T(n-1)) + (n-1)$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda:

T(n) = número comparações entre q e $m[\star, \star]$ na linha 8 quando n := j - i + 1

$$T(n) = 2(T(2) + \cdots + T(n-1)) + (n-1)$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda:

$$T(n) - T(n-1) = 2 T(n-1) + 1.$$

Logo
$$T(n) = 3 T(n-1) + 1$$
.

T(n) = número comparações entre q e $m[\star, \star]$ na linha 8 quando n := j - i + 1

$$T(n) = 2(T(2) + \cdots + T(n-1)) + (n-1)$$

Considere a mesma fórmula para n-1:

$$T(n-1) = 2(T(2) + \cdots + T(n-2)) + (n-2)$$

e subtraia a primeira da segunda:

$$T(n) - T(n-1) = 2 T(n-1) + 1.$$

Logo
$$T(n) = 3 T(n-1) + 1$$
.

Exercício: prove que $T(n) = \frac{3^{n-1}-1}{2}$ para $n \ge 1$.

Conclusão

O consumo de tempo do algoritmo REC-MAT-CHAIN é $\Omega(3^n)$.

Resolve subproblemas muitas vezes

$$p[0] = 10$$
 $p[1] = 100$ $p[2] = 5$ $p[3] = 50$

```
REC-MAT-CHAIN(p, 1, 3)

REC-MAT-CHAIN(p, 1, 1)

REC-MAT-CHAIN(p, 2, 3)

REC-MAT-CHAIN(p, 2, 2)

REC-MAT-CHAIN(p, 3, 3)

REC-MAT-CHAIN(p, 1, 2)

REC-MAT-CHAIN(p, 1, 1)

REC-MAT-CHAIN(p, 2, 2)

REC-MAT-CHAIN(p, 3, 3)
```

Número mínimo de mults = 7500

Resolve subproblemas muitas vezes

```
REC-MAT-CHAIN(p, 1, 1)
REC-MAT-CHAIN(p, 1, 5)
                                        REC-MAT-CHAIN(p, 4, 4)
  REC-MAT-CHAIN(p, 1, 1)
                                      REC-MAT-CHAIN(p, 5, 5)
                                                                        REC-MAT-CHAIN(p, 2, 4)
  REC-MAT-CHAIN(p, 2, 5)
                                    REC-MAT-CHAIN(p, 1, 2)
                                                                          REC-MAT-CHAIN(p, 2, 2)
    REC-MAT-CHAIN(p, 2, 2)
                                      REC-MAT-CHAIN(p, 1, 1)
                                                                          REC-MAT-CHAIN(p, 3, 4)
    REC-MAT-CHAIN(p, 3, 5)
                                      REC-MAT-CHAIN(p, 2, 2)
                                                                            REC-MAT-CHAIN(p, 3, 3)
      REC-MAT-CHAIN(p, 3, 3)
                                    REC-MAT-CHAIN(p, 3, 5)
                                                                            REC-MAT-CHAIN(p, 4, 4)
      REC-MAT-CHAIN(p, 4, 5)
                                      REC-MAT-CHAIN(p, 3, 3)
                                                                          REC-MAT-CHAIN(p, 2, 3)
        REC-MAT-CHAIN(p, 4, 4)
                                      REC-MAT-CHAIN(p, 4, 5)
                                                                            REC-MAT-CHAIN(p, 2, 2)
        REC-MAT-CHAIN(p, 5, 5)
                                                                            REC-MAT-CHAIN(p, 3, 3)
                                        REC-MAT-CHAIN(p, 4, 4)
      REC-MAT-CHAIN(p, 3, 4)
                                        REC-MAT-CHAIN(p, 5, 5)
                                                                          REC-MAT-CHAIN(p, 4, 4)
        REC-MAT-CHAIN(p, 3, 3)
                                      REC-MAT-CHAIN(p, 3, 4)
                                                                        REC-MAT-CHAIN(p, 1, 2)
        REC-MAT-CHAIN(p, 4, 4)
                                        REC-MAT-CHAIN(p, 3, 3)
                                                                          REC-MAT-CHAIN(p, 1, 1)
                                                                          REC-MAT-CHAIN(p, 2, 2)
      REC-MAT-CHAIN(p, 5, 5)
                                        REC-MAT-CHAIN(p, 4, 4)
    REC-MAT-CHAIN(p, 2, 3)
                                      REC-MAT-CHAIN(p, 5, 5)
                                                                        REC-MAT-CHAIN(p, 3, 4)
      REC-MAT-CHAIN(p, 2, 2)
                                    REC-MAT-CHAIN(p, 1, 3)
                                                                          REC-MAT-CHAIN(p, 3, 3)
      REC-MAT-CHAIN(p, 3, 3)
                                      REC-MAT-CHAIN(p, 1, 1)
                                                                          REC-MAT-CHAIN(p, 4, 4)
    REC-MAT-CHAIN(p, 4, 5)
                                      REC-MAT-CHAIN(p, 2, 3)
                                                                        REC-MAT-CHAIN(p, 1, 3)
      REC-MAT-CHAIN(p, 4, 4)
                                        REC-MAT-CHAIN(p, 2, 2)
                                                                          REC-MAT-CHAIN(p, 1, 1)
      REC-MAT-CHAIN(p, 5, 5)
                                                                          REC-MAT-CHAIN(p, 2, 3)
                                        REC-MAT-CHAIN(p, 3, 3)
                                      REC-MAT-CHAIN(p, 1, 2)
    REC-MAT-CHAIN(p, 2, 4)
                                                                            REC-MAT-CHAIN(p, 2, 2)
      REC-MAT-CHAIN(p, 2, 2)
                                        REC-MAT-CHAIN(p, 1, 1)
                                                                            REC-MAT-CHAIN(p, 3, 3)
                                        REC-MAT-CHAIN(p, 2, 2)
      REC-MAT-CHAIN(p, 3, 4)
                                                                          REC-MAT-CHAIN(p, 1, 2)
                                                                            REC-MAT-CHAIN(p, 1, 1)
        REC-MAT-CHAIN(p, 3, 3)
                                      REC-MAT-CHAIN(p, 3, 3)
        REC-MAT-CHAIN(p, 4, 4)
                                    REC-MAT-CHAIN(p, 4, 5)
                                                                            REC-MAT-CHAIN(p, 2, 2)
                                      REC-MAT-CHAIN(p, 4, 4)
                                                                          REC-MAT-CHAIN(p, 3, 3)
      REC-MAT-CHAIN(p, 2, 3)
        REC-MAT-CHAIN(p, 2, 2)
                                      REC-MAT-CHAIN(p, 5, 5)
                                                                        REC-MAT-CHAIN(p, 4, 4)
        REC-MAT-CHAIN(p, 3, 3)
                                    REC-MAT-CHAIN(p, 1, 4)
                                                                      REC-MAT-CHAIN(p, 5, 5)
```

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de . . .

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de . . .

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de . . .

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de . . .

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de ...

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de . . .

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de ...

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

Cada subproblema

$$A_i \cdots A_j$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de . . .

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

Cada subproblema

$$A_i \cdots A_i$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela m?

Para calcular m[2, 6] preciso de ...

$$m[2,2], m[2,3], m[2,4], m[2,5]$$
 e de $m[3,6], m[4,6], m[5,6], m[6,6]$.

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 A_5 A_6

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	??					
2		0					
3			0				
4				0			
5					0		
6						0	
;							

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000					
2		0					
3			0				
4				0			
5					0		
6						0	

$$m[1,1] + p[1-1]p[1]p[2] + m[1+1,2] = 0 + 2000 + 0 = 2000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 $(A_2$ $A_3)$ A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000					
2		0	??				
3			0				
4				0			
5					0		
6						0	
i							•

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 $(A_2$ $A_3)$ A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0				
4				0			
5					0		
6						0	

$$m[2,2] + p[2-1]p[2]p[3] + m[2+1,3] = 0 + 6000 + 0 = 6000$$

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 $(A_3$ $A_4)$ A_5 A_6

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	??			
4				0			
5					0		
6						0	
i							

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0			
5					0		
6						0	

$$m[3,3] + p[3-1]p[3]p[4] + m[3+1,4] = 0 + 6000 + 0 = 6000$$

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 $(A_4$ $A_5)$ A_6

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0	??		
5					0		
6						0	
;							

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 $(A_4$ $A_5)$ A_6

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0	4500		
5					0		
6						0	

$$m[4,4] + p[4-1]p[4]p[5] + m[4+1,5] = 0+4500+0=4500$$

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 $(A_5$ $A_6)$

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0	4500		
5					0	??	
6						0	
							•

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 $(A_5$ $A_6)$

	1	2	3	4	5	6	j
1	0	2000					
2		0	6000				
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$m[5,5] + p[5-1]p[5]p[6] + m[5+1,6] = 0+4500+0=4500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ (A_1 A_2 A_3) A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	??				
2		0	6000				
3			0	6000			
4				0	4500		
5					0	4500	
6						0	
٠.							_

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	9000				
2		0	6000				
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$m[1,1] + p[1-1]p[1]p[3] + m[1+1,3] = 0 + 3000 + 6000 = 9000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2)$ A_3 A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000				
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$m[1,2] + p[1-1]p[2]p[3] + m[2+1,3] = 2000 + 6000 + 0 = 8000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 (A_2 A_3 A_4) A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	??			
3			0	6000			
4				0	4500		
5					0	4500	
6						0	
							•

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $p_4=10$ $p_5=15$ $p_6=30$ $p_6=15$ $p_6=15$ $p_6=30$ $p_6=15$ p

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$m[2,2] + p[2-1]p[2]p[4] + m[2+1,4] = 0 + 2000 + 6000 = 8000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 $(A_2$ $A_3)$ A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000			
4				0	4500		
5					0	4500	
6						0	

$$m[2,3] + p[2-1]p[3]p[4] + m[3+1,4] = 6000 + 3000 + 0 = 9000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 (A_3 A_4 A_5) A_6

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	??		
4				0	4500		
5					0	4500	
6						0	
							-

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 A_5 A_6

	1	2	3	4	5	6
1	0	2000	8000			
2		0	6000	8000		
3			0	6000	13500	
4				0	4500	
5					0	4500
6						0

$$m[3,3] + p[3-1]p[3]p[5] + m[3+1,5] = 0 + 9000 + 4500 = 13500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 ((A_3 A_4) A_5) A_6

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500		
5					0	4500	
6						0	

$$m[3,4] + p[3-1]p[4]p[5] + m[4+1,5] = 6000 + 3000 + 0 = 9000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 $(A_4$ A_5 $A_6)$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	??	
5					0	4500	
6						0	
					-		•

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 $(A_4$ $(A_5$ $A_6))$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[4,4] + p[4-1]p[4]p[6] + \underline{m[4+1,6]} = 0 + 9000 + 4500 = 13500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 $(A_4$ $A_5)$ $A_6)$

	1	2	3	4	5	6	j
1	0	2000	8000				
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[4,5] + p[4-1]p[5]p[6] + m[5+1,6] = 4500 + 13500 + 0 = 18000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ (A_1 A_2 A_3 A_4) A_5 A_6

	1	2	3	4	5	6
1	0	2000	8000	??		
2		0	6000	8000		
3			0	6000	9000	
4				0	4500	13500
5					0	4500
6						0

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 $A_4)$ A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,1] + p[1-1]p[1]p[4] + m[1+1,4] = 0 + 1000 + 8000 = 9000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,2] + p[1-1]p[2]p[4] + m[2+1,4] = 2000 + 2000 + 6000 = 10000$$

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2 A_3)$ A_4 A_5 A_6

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000			
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,3] + p[1-1]p[3]p[4] + m[3+1,4] = 8000 + 3000 + 0 = 11000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 (A_2 A_3 A_4 A_5) A_6

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	??		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	
							•

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 (A_2 (A_3 A_4 A_5)) A_6

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	12000		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,2] + p[2-1]p[2]p[5] + m[2+1,5] = 0+3000+9000=12000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 $(A_2$ $A_3)$ $(A_4$ $A_5)$

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	12000		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,3] + p[2-1]p[3]p[5] + m[3+1,5] = 6000 + 4500 + 4500 = 15000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 ((A_2 A_3 A_4) A_5) A_6

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000		
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,4] + p[2-1]p[4]p[5] + m[4+1,5] = 8000 + 1500 + 0 = 9500$$

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 (A_3 A_4 A_5 A_6)

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	??	
4				0	4500	13500	
5					0	4500	
6						0	
							•

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 $(A_3$ $(A_4$ A_5 (A_6))

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	31500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[3,3] + p[3-1]p[3]p[6] + m[3+1,6] = 0 + 18000 + 13500 = 31500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 ((A_3 A_4) (A_5 A_6))

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[3,4] + p[3-1]p[4]p[6] + m[4+1,6] = 6000 + 6000 + 4500 = 16500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 ((A_3 A_4 A_5) A_6)

	1	2	3	4	5	6	j
1	0	2000	8000	9000			
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[3,5] + p[3-1]p[5]p[6] + m[5+1,6] = 9000 + 9000 + 0 = 18000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ (A_1 A_2 A_3 A_4 A_5) A_6

	1	2	3	4	5	6
1	0	2000	8000	9000	??	
2		0	6000	8000	9500	
3			0	6000	9000	16500
4				0	4500	13500
5					0	4500
6						0

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 A_2 A_3 A_4 $A_5)$ A_6

	1	2	3	4	5	6	j
1	0	2000	8000	9000	11000		
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,1] + p[1-1]p[1]p[5] + m[1+1,5] = 0 + 1500 + 9500 = 11000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2)$ $(A_3 A_4 A_5)$ $(A_6$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	11000		
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,2] + p[1-1]p[2]p[5] + m[2+1,5] = 2000 + 3000 + 9000 = 14000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2 A_3)$ $(A_4 A_5)$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	11000		
2		0	6000	8000	9500		
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,3] + p[1-1]p[3]p[5] + m[3+1,5] = 8000 + 4500 + 4500 = 17000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 \quad A_2 \quad A_3 \quad A_4) \quad A_5)$ A_6

	1	2	3	4	5	6
1	0	2000	8000	9000	10500	
2		0	6000	8000	9500	
3			0	6000	9000	16500
4				0	4500	13500
5					0	4500
6						0

$$m[1,4] + p[1-1]p[4]p[5] + m[4+1,5] = 9000 + 1500 + 0 = 10500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 (A_2 A_3 A_4 A_5 A_6)

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	??	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	
					-		•

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 (A_2 (A_3 A_4 A_5 A_6))

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	22500	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,2] + p[2-1]p[2]p[6] + m[2+1,6] = 0 + 6000 + 16500 = 22500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 $(A_2$ $A_3)$ $(A_4$ A_5 $A_6)$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	22500	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,3] + p[2-1]p[3]p[6] + m[3+1,6] = 6000 + 9000 + 13500 = 28500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 ((A_2 A_3 A_4) (A_5 A_6))

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	15500	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,4] + p[2-1]p[4]p[6] + m[4+1,6] = 8000 + 3000 + 4500 = 15500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ A_1 ((A_2 A_3 A_4 A_5) A_6)

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500		
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[2,5] + p[2-1]p[5]p[6] + m[5+1,6] = 9500 + 4500 + 0 = 14000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ (A_1 A_2 A_3 A_4 A_5 A_6)

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	??	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ (A_1 (A_2 A_3 A_4 A_5 A_6))

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	17000	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,1] + p[1-1]p[1]p[6] + m[1+1,6] = 0 + 3000 + 14000 = 17000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2)$ $(A_3 A_4 A_5 A_6)$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	17000	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,2] + p[1-1]p[2]p[6] + m[2+1,6] = 2000 + 6000 + 16500 = 24500$$

se
$$i < j$$
 então $m[i, j] = \min_{i \le k < j} \{ m[i, k] + p_{i-1}p_kp_j + m[k+1, j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2 A_3)$ $(A_4 A_5 A_6)$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	17000	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,3] + p[1-1]p[3]p[6] + m[3+1,6] = 8000 + 9000 + 13500 = 30500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2 A_3 A_4)$ $(A_5 A_6)$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	16500	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,4] + p[1-1]p[4]p[6] + m[4+1,6] = 9000 + 3000 + 4500 = 16500$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ $(A_1 A_2 A_3 A_4 A_5)$ $A_6)$

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	15000	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	

$$m[1,5] + p[1-1]p[5]p[6] + m[5+1,6] = 10500 + 4500 + 0 = 15000$$

se
$$i < j$$
 então $m[i,j] = \min_{i \le k < j} \left\{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \right\}$

$$p_0=10$$
 $p_1=10$ $p_2=20$ $p_3=30$ $p_4=10$ $p_5=15$ $p_6=30$ (((A_1 (A_2 (A_3 (A_4))) A_5) A_6)

	1	2	3	4	5	6	j
1	0	2000	8000	9000	10500	15000	
2		0	6000	8000	9500	14000	
3			0	6000	9000	16500	
4				0	4500	13500	
5					0	4500	
6						0	
_	•	•	•		•	-	•

Algoritmo de programação dinâmica

```
m[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \} & \text{se } i < j \end{cases}
```

Recebe p[0..n] e devolve m[1, n].

```
MATRIX-CHAIN-ORDER (p, n)
     para i \leftarrow 1 até n faça
         m[i,i] \leftarrow 0
     para \ell \leftarrow 2 até n faça \triangleright \ell é comprimento da cadeia A_i \cdots A_j
         para i \leftarrow 1 até n faça \triangleright FIXME
            j \leftarrow i + \ell - 1 \triangleright A_{i+0} \cdots A_{i+\ell-1} tem comprimento \ell
 6
             m[i,j] \leftarrow \infty
             para k \leftarrow i até i-1 faça
                 q \leftarrow m[i, k] + p[i-1]p[k]p[j] + m[k+1, j]
 8
 9
                 se q < m[i,j]
10
                     então m[i,j] \leftarrow q
     devolva m[1, n]
```

Algoritmo de programação dinâmica

```
m[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} \{ m[i,k] + p_{i-1}p_kp_j + m[k+1,j] \} & \text{se } i < j \end{cases}
```

Recebe p[0..n] e devolve m[1, n].

```
MATRIX-CHAIN-ORDER (p, n)
     para i \leftarrow 1 até n faça
         m[i,i] \leftarrow 0
     para \ell \leftarrow 2 até n faça \triangleright \ell é comprimento da cadeia A_i \cdots A_i
         para i \leftarrow 1 até n - \ell + 1 faça \triangleright FIXED!
            j \leftarrow i + \ell - 1 \triangleright A_{i+0} \cdots A_{i+\ell-1} tem comprimento \ell
 5
 6
             m[i,j] \leftarrow \infty
             para k \leftarrow i até i-1 faça
                 q \leftarrow m[i, k] + p[i-1]p[k]p[j] + m[k+1, j]
 8
 9
                 se q < m[i,j]
10
                     então m[i,j] \leftarrow q
     devolva m[1, n]
```

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ

Consumo de tempo: ???

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ

Consumo de tempo: $O(n^3)$ (três loops encaixados)

Linhas 3–10: tratam subcadeias $A_i \cdots A_j$ de comprimento ℓ

Consumo de tempo: $O(n^3)$ (três loops encaixados)

O consumo de tempo do algoritmo MATRIX-CHAIN-ORDER é $O(n^3)$.

Versão recursiva com memoização

```
MEMOIZED-MATRIX-CHAIN-ORDER (p, n)
   para i \leftarrow 1 até n faça
       para i \leftarrow 1 até n faça
          m[i,j] \leftarrow \infty
  devolva LOOKUP-CHAIN (p, 1, n)
LOOKUP-CHAIN (p, i, j)
 1 se m[i,j] < \infty
        então devolva m[i,j]
 3 se i = j
        então m[i,j] \leftarrow 0
    para k \leftarrow i até j-1 faça
        q \leftarrow \text{LOOKUP-CHAIN}(p, i, k) + p[i-1]p[k]p[j]
 6
                      + LOOKUP-CHAIN (p, k+1, j)
        se q < m[i,j]
9
          então m[i,j] \leftarrow q
     devolva m[i,j]
10
```

Ingredientes de programação dinâmica

- Subestrutura ótima: soluções ótimas contém soluções ótimas de subproblemas.
- Subestrutura: decomponha o problema em subproblemas menores e, com sorte, mais simples.
- Bottom-up: combine as soluções dos problemas menores para obter soluções dos maiores.
- ► Tabela: armazene as soluções dos subproblemas em uma tabela, pois soluções dos subproblemas são consultadas várias vezes.
- Número de subproblemas: para a eficiência do algoritmo é importante que o número de subproblemas resolvidos seja 'pequeno'.
- ► Memoized: versão *top-down*, recursão com tabela.

Exercício

O algoritmo MATRIX-CHAIN-ORDER determina o número mínimo de multiplicações escalares necessário para calcular produto $A_1A_2\cdots A_n$.

Na aula, mencionamos uma maneira de obter uma parentização ótima a partir dos cálculos feitos, usando para isso um dado a mais que podemos guardar no decorrer do algoritmo.

Faça os ajustes sugeridos na aula, de modo a guardar esse dado extra, e devolvê-lo junto com o valor m[1, n].

Faça uma rotina que recebe a informação extra armazenada pelo algoritmo acima e imprime uma parentização ótima das matrizes $A_1A_2\cdots A_n$.

Exercícios

Exercício A [CLRS 15.2-1]

Encontre uma maneira ótima de fazer a multiplicação iterada das matrizes cujas dimensões são (5, 10, 3, 12, 5, 50, 6).

Exercício B [CLRS 15.2-5]

Mostre que são necessários exatamente n-1 pares de parênteses para especificar exatamente a ordem de multiplicação de $A_1 \cdot A_2 \cdots A_n$.

Mais exercícios

Exercício C [CLRS 15.3-5 expandido]

Considere o seguinte algoritmo para determinar a ordem de multiplicação de uma cadeia de matrizes A_1, A_2, \ldots, A_n de dimensões p_0, p_1, \ldots, p_n : primeiro, escolha k que minimize p_k ; depois, determine recursivamente as ordens de multiplicação de A_1, \ldots, A_k e A_{k+1}, \ldots, A_n . Esse algoritmo produz uma ordem que minimiza o número total de multiplicações escalares? E se k for escolhido de modo a maximizar p_k ? E se k for escolhido de modo a minimizar p_k ?