Decision Trees

Decision Trees

- DNF learning algorithm is a bit cumbersome and inefficient. Also, the exact effect of the heuristic is unclear.
- Still assume binary inputs and output, but much more broadly applicable.

Hypothesis Class

- · One child for each value of the feature
- Leaf nodes: output

Hypothesis Class

Hypothesis Class

$$h = (\neg f_3 \land f_2) \lor (f_3 \land f_1 \land \neg f_2)$$

Tree Bias

- Both decision trees and DNF with negation can represent any Boolean function. So why bother with trees?
- Because we have a nice algorithm for growing trees that is consistent with a bias for simple trees (few nodes)

Tree Bias

- Both decision trees and DNF with negation can represent any Boolean function. So why bother with trees?
- Because we have a nice algorithm for growing trees that is consistent with a bias for simple trees (few nodes)
- Too hard to find the smallest good tree, so we'll be greedy again
- Have to watch out for overfitting

Trees vs DNF

$$(\neg F \land \neg H) \lor (\neg F \land H \land J) \lor (F \land \neg G \land K) \lor (F \land G)$$

Trees vs DNF

 Developed in parallel in AI by Quinlan and in statistics by Breiman, Friedman, Olsen and Stone

 Developed in parallel in AI by Quinlan and in statistics by Breiman, Friedman, Olsen and Stone

BuildTree (Data)

 Developed in parallel in AI by Quinlan and in statistics by Breiman, Friedman, Olsen and Stone

```
BuildTree (Data)

if all elements of Data have the same y value, then

MakeLeafNode(y)
```

 Developed in parallel in AI by Quinlan and in statistics by Breiman, Friedman, Olsen and Stone

Let's Split

Let's Split

Entropy

p: proportion of positive examples in a data set

$$H = -p \log_2 p - (1-p) \log_2 (1-p)$$

Entropy

p: proportion of positive examples in a data set

$$H = -p \log_2 p - (1-p) \log_2 (1-p)$$

$$0\log_2 0 = 0$$

Let's Split

Let's Split

Let's Split

$$AE = (6/19)*0+(13/19)*.78$$

= .53

 Developed in parallel in AI by Quinlan and in statistics by Breiman, Friedman, Olshen and Stone

 Best feature minimizes average entropy of data in the children

 Stop recursion if data contains only multiple instances of the same x with different y values

- Stop recursion if data contains only multiple instances of the same x with different y values
 - Make leaf node with output equal to the y value that occurs in the majority of the cases in the data

- Stop recursion if data contains only multiple instances of the same x with different y values
 - Make leaf node with output equal to the y value that occurs in the majority of the cases in the data
- Consider stopping to avoid overfitting when:

- Stop recursion if data contains only multiple instances of the same x with different y values
 - Make leaf node with output equal to the y value that occurs in the majority of the cases in the data
- Consider stopping to avoid overfitting when:
 - entropy of a data set is below some threshold

- Stop recursion if data contains only multiple instances of the same x with different y values
 - Make leaf node with output equal to the y value that occurs in the majority of the cases in the data
- Consider stopping to avoid overfitting when:
 - entropy of a data set is below some threshold
 - number elements in a data set is below threshold

- Stop recursion if data contains only multiple instances of the same x with different y values
 - Make leaf node with output equal to the y value that occurs in the majority of the cases in the data
- Consider stopping to avoid overfitting when:
 - entropy of a data set is below some threshold
 - number elements in a data set is below threshold
 - best next split doesn't decrease average entropy (but this can get us into trouble)

Н	1	D	١	=	d	9	2
	X	_	1			-	-

f_1	f ₂	f ₃	f ₄	у
0	1	1	0	0
1	0	1	1	1
1	1	1	0	1
0	0	1	1	1
1	0	0	1	0
0	1	1	1	0

$$(A \wedge \neg B) \vee (\neg A \wedge B)$$

$$(A \wedge \neg B) \vee (\neg A \wedge B)$$

f_1	f ₂	f ₃	f4	У
0	1	1	0	0
1	0	1	0	0
1	1	1	0	1
0	0	0	1	1
1	0	0	1	0
0	1	0	1	0

$$\bullet H(D) = .92$$

Pruning

- Best way to avoid overfitting and not get tricked by short-term lack of progress
 - Grow tree as far as possible
 - leaves are uniform or contain a single X
 - Prune the tree until it performs well on held-out data
 - Amount of pruning is like epsilon in the DNF algorithm

Congressional Voting

Data Mining

- Making useful predictions in (usually corporate) applications
- Decision trees very popular because
 - easy to implement
 - efficient (even on huge data sets)
 - easy for humans to understand resulting hypotheses

Naive Bayes Algorithm

Naïve Bayes

- Founded on Bayes' rule for probabilistic inference
- Update probability of hypotheses based on evidence
- Choose hypothesis with the maximum probability after the evidence has been incorporated

Rev. Thomas Bayes

Naïve Bayes

- Founded on Bayes' rule for probabilistic inference
- Update probability of hypotheses based on evidence
- Choose hypothesis with the maximum probability after the evidence has been incorporated

Rev. Thomas Bayes

f_1	f ₂	f ₃	f ₄	У
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

Example

- R₁(1,1)=1/5: fraction of all positive examples that have feature 1 on
- R₁(0,1)=4/5: fraction of all positive examples that have feature 1 off

f_1	f ₂	f ₃	f ₄	У
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

Example

- R₁(1,1)=1/5: fraction of all positive examples that have feature 1 on
- R₁(0,1)=4/5: fraction of all positive examples that have feature 1 off
- R₁(1,0)=5/5: fraction of all negative examples that have feature 1 on
- R₁(0,0)=0/5: fraction of all negative examples that have feature 1 off

Example

f_1	f_2	f ₃	f4	у
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

$$R_1(1,1)=1/5$$
 $R_1(0,1)=4/5$
 $R_1(1,0)=5/5$ $R_1(0,0)=0/5$

$$R_2(1,1)=1/5$$
 $R_2(0,1)=4/5$ $R_2(1,0)=2/5$ $R_2(0,0)=3/5$

$$R_3(1,1)=4/5$$
 $R_3(0,1)=1/5$ $R_3(1,0)=1/5$ $R_3(0,0)=4/5$

$$R_4(1,1)=2/5$$
 $R_4(0,1)=3/5$ $R_4(1,0)=4/5$ $R_4(0,0)=1/5$

$$R_1(1,1)=1/5$$
 $R_1(0,1)=4/5$
 $R_1(1,0)=5/5$ $R_1(0,0)=0/5$
 $R_2(1,1)=1/5$ $R_2(0,1)=4/5$
 $R_2(1,0)=2/5$ $R_2(0,0)=3/5$
 $R_3(1,1)=4/5$ $R_3(0,1)=1/5$
 $R_3(1,0)=1/5$ $R_3(0,0)=4/5$
 $R_4(1,1)=2/5$ $R_4(0,1)=3/5$
 $R_4(1,0)=4/5$ $R_4(0,0)=1/5$

$$R_1(1,1)=1/5$$
 $R_1(0,1)=4/5$
 $R_1(1,0)=5/5$ $R_1(0,0)=0/5$
 $R_2(1,1)=1/5$ $R_2(0,1)=4/5$
 $R_2(1,0)=2/5$ $R_2(0,0)=3/5$
 $R_3(1,1)=4/5$ $R_3(0,1)=1/5$
 $R_3(1,0)=1/5$ $R_3(0,0)=4/5$
 $R_4(1,1)=2/5$ $R_4(0,1)=3/5$
 $R_4(1,0)=4/5$ $R_4(0,0)=1/5$

- New x = <0,0,1,1>
- $S(1) = R_1(0,1)*R_2(0,1)*R_3(1,1)*R_4(1,1) = .205$

$$R_1(1,1)=1/5$$
 $R_1(0,1)=4/5$
 $R_1(1,0)=5/5$ $R_1(0,0)=0/5$
 $R_2(1,1)=1/5$ $R_2(0,1)=4/5$
 $R_2(1,0)=2/5$ $R_2(0,0)=3/5$
 $R_3(1,1)=4/5$ $R_3(0,1)=1/5$
 $R_3(1,0)=1/5$ $R_3(0,0)=4/5$
 $R_4(1,1)=2/5$ $R_4(0,1)=3/5$
 $R_4(1,0)=4/5$ $R_4(0,0)=1/5$

- New x = <0,0,1,1>
- $S(1) = R_1(0,1)*R_2(0,1)*R_3(1,1)*R_4(1,1) = .205$
- $\bullet S(0) = R_1(0,0)*R_2(0,0)*R_3(1,0)*R_4(1,0) = 0$

• New
$$x = <0,0,1,1>$$

•
$$S(1) = R_1(0,1)*R_2(0,1)*R_3(1,1)*R_4(1,1) = .205$$

$$\bullet S(0) = R_1(0,0)*R_2(0,0)*R_3(1,0)*R_4(1,0) = 0$$

Learning Algorithm

Estimate from the data, for all j:

$$R_{j}(1,1) = \frac{\#(x_{j}^{i} = 1 \land y^{i} = 1)}{\#(y^{i} = 1)}$$

Learning Algorithm

Estimate from the data, for all j:

$$R_{j}(1,1) = \frac{\#(x_{j}^{i} = 1 \land y^{i} = 1)}{\#(y^{i} = 1)}$$

$$R_{i}(0,1) = 1 - R_{i}(1,1)$$

Learning Algorithm

Estimate from the data, for all j:

$$R_{j}(1,1) = \frac{\#(x_{j}' = 1 \land y' = 1)}{\#(y' = 1)}$$

$$R_{j}(0,1) = 1 - R_{j}(1,1)$$

$$R_{j}(1,0) = \frac{\#(x'_{j} = 1 \land y' = 0)}{\#(y' = 0)}$$

$$R_j(0,0) = 1 - R_j(1,0)$$

Given a new x,

$$S(1) = \prod_{j} \begin{cases} R_{j}(1,1) & \text{if } x_{j} = 1 \\ R_{j}(0,1) & \text{otherwise} \end{cases}$$

Given a new x,

$$S(1) = \prod_{j} \begin{cases} R_{j}(1,1) & \text{if } x_{j} = 1 \\ R_{j}(0,1) & \text{otherwise} \end{cases}$$

$$S(0) = \prod_{j} \begin{cases} R_{j}(1,0) & \text{if } x_{j} = 1 \\ R_{j}(0,0) & \text{otherwise} \end{cases}$$

Given a new x,

$$S(1) = \prod_{j} \begin{cases} R_{j}(1,1) & \text{if } x_{j} = 1 \\ R_{j}(0,1) & \text{otherwise} \end{cases}$$

$$S(0) = \prod_{j} \begin{cases} R_{j}(1,0) & \text{if } x_{j} = 1 \\ R_{j}(0,0) & \text{otherwise} \end{cases}$$

Output 1 if S(1) > S(0)

Given a new x,

$$\log S(1) = \sum_{j} \begin{cases} \log R_{j}(1,1) & \text{if } x_{j} = 1\\ \log R_{j}(0,1) & \text{otherwise} \end{cases}$$

$$\log S(0) = \sum_{j} \begin{cases} \log R_{j}(1,0) & \text{if } x_{j} = 1\\ \log R_{j}(0,0) & \text{otherwise} \end{cases}$$

Output 1 if log S(1) > log S(0)

Better to add logs than to multiply small probabilities

Laplace Correction

Avoid getting 0 or 1 as an answer:

$$R_{j}(1,1) = \frac{\#(x'_{j} = 1 \land y' = 1) + 1}{\#(y' = 1) + 2}$$

$$R_{j}(0,1) = 1 - R_{j}(1,1)$$

$$R_{j}(1,0) = \frac{\#(x_{j}^{i} = 1 \land y^{i} = 0) + 1}{\#(y^{i} = 0) + 2}$$

$$R_{j}(0,0) = 1 - R_{j}(1,0)$$

Example with Correction

f_1	f ₂	f_3	f_4	У
0	1	1	0	1
0	0	1	1	1
1	0	1	0	1
0	0	1	1	1
0	0	0	0	1
1	0	0	1	0
1	1	0	1	0
1	0	0	0	0
1	1	0	1	0
1	0	1	1	0

•
$$R_1(1,1)=2/7$$
 $R_1(0,1)=5/7$

•
$$R_1(1,0)=6/7$$
 $R_1(0,0)=1/7$

•
$$R_2(1,1)=2/7$$
 $R_2(0,1)=5/7$

$$\bullet R_2(1,0)=3/7 R_2(0,0)=4/7$$

$$\bullet R_3(1,1)=5/7 R_3(0,1)=2/7$$

•
$$R_3(1,0)=2/7$$
 $R_3(0,0)=5/7$

•
$$R_4(1,1)=3/7$$
 $R_4(0,1)=4/7$

$$\bullet R_4(1,0)=5/7 R_4(0,0)=2/7$$

Prediction with Correction

• New
$$x = <0,0,1,1>$$

•
$$S(1) = R_1(0,1)*R_2(0,1)*R_3(1,1)*R_4(1,1) = .156$$

•
$$S(0) = R_1(0,0)*R_2(0,0)*R_3(1,0)*R_4(1,0) = .017$$

Hypothesis Space

Output 1 if

$$\prod_{j} \alpha_{j} x_{j} + (1 - \alpha_{j})(1 - x_{j}) > \prod_{j} \beta_{j} x_{j} + (1 - \beta_{j})(1 - x_{j})$$

• Depends on parameters $\alpha_1 \dots \alpha_n, \beta_1 \dots \beta_n$ (which we set to be the R_j values)

Hypothesis Space

Output 1 if

$$\prod_{j} \alpha_{j} x_{j} + (1 - \alpha_{j})(1 - x_{j}) > \prod_{j} \beta_{j} x_{j} + (1 - \beta_{j})(1 - x_{j})$$

- Depends on parameters $\alpha_1 \dots \alpha_n, \beta_1 \dots \beta_n$ (which we set to be the R_i values)
- Our method of computing parameters doesn't minimize training set error, but it's fast!

Hypothesis Space

Output 1 if

$$\prod_{j} \alpha_{j} x_{j} + (1 - \alpha_{j})(1 - x_{j}) > \prod_{j} \beta_{j} x_{j} + (1 - \beta_{j})(1 - x_{j})$$

- Depends on parameters $\alpha_1 \dots \alpha_n, \beta_1 \dots \beta_n$ (which we set to be the R_i values)
- Our method of computing parameters doesn't minimize training set error, but it's fast!
- Weight of feature j's "vote" in favor of output 1:

$$\log \frac{\alpha_j}{1-\alpha_j} - \log \frac{\beta_j}{1-\beta_j}$$

f_1	f_2	f ₃	f ₄	У
0	1	1	0	0
1	0	1	0	0
1	0	0	1	0
0	1	0	1	0
1	1	1	0	1
0	0	0	1	1

f_1	f_2	f_3	f ₄	У
0	1	1	0	0
1	0	1	0	0
1	0	0	1	0
0	1	0	1	0
1	1	1	0	1
0	0	0	1	1

f_1	f_2	f ₃	f ₄	У
0	1	1	0	0
1	0	1	0	0
1	0	0	1	0
0	1	0	1	0
1	1	1	0	1
0	0	0	1	1

•
$$R_1(1,1)=2/4$$
 $R_1(0,1)=2/4$

For any new x

$$\bullet$$
S(1) = .5 * .5 * .5 * .5 = .0625

$$\bullet S(0) = .5 * .5 * .5 * .5 = .0625$$

We're indifferent between classes

Congressional Voting

Congressional Voting

- Accuracy on the congressional voting domain is about 0.91
- Somewhat worse than decision trees (0.95)
- Decision trees can express more complex hypotheses over combinations of attributes

Congressional Voting

- Accuracy on the congressional voting domain is about 0.91
- Somewhat worse than decision trees (0.95)
- Decision trees can express more complex hypotheses over combinations of attributes
- Domain is small enough so that speed is not an issue
- So, prefer trees or DNF in this domain

Congressional Voting

-6.82	physician-fee-freeze	
-4.20	el-salvador-aid	republican democrat
-4.20	crime	
-3.56	education-spending	
3.36	adoption-of-the-budget-resolution	
3.25	aid-to-nicaraguan-contras	
3.07	mx-missile	
-2.51	superfund-right-to-sue	
2.40	duty-free-exports	
2.14	anti-satellite-test-ban	
-2.07	religious-groups-in-schools	
2.01	export-administration-act-south-africa	
1.66	synfuels-corporation-cutback	
1.63	handicapped-infants	
-0.17	immigration	
-0.08	water-project-cost-sharing	

Probabilistic Inference

Probabilistic Inference

- Think of features and output as random variables
- Learn $Pr(Y = 1|f_1, ..., f_n)$
- Given new example, compute probability it has value 1
- Generate answer 1 if that value is > 0.5, else 0
- Concentrate on estimating this distribution from data

$$\Pr(Y=1|f_1,\ldots,f_n)$$

Generically:

$$Pr(A \mid B) = Pr(B \mid A) \frac{Pr(A)}{Pr(B)}$$

Generically:

$$Pr(A \mid B) = Pr(B \mid A) \frac{Pr(A)}{Pr(B)}$$

Specifically:

$$Pr(Y = 1 | f_1 ... f_n) = Pr(f_1 ... f_n | Y = 1) \frac{Pr(Y = 1)}{Pr(f_1 ... f_n)}$$

Generically:

$$Pr(A \mid B) = Pr(B \mid A) \frac{Pr(A)}{Pr(B)}$$

Specifically:

$$Pr(Y = 1 | f_1 ... f_n) = Pr(f_1 ... f_n | Y = 1) \frac{Pr(Y = 1)}{Pr(f_1 ... f_n)}$$
independent of Y

Generically:

$$Pr(A \mid B) = Pr(B \mid A) \frac{Pr(A)}{Pr(B)}$$

Specifically:

$$Pr(Y = 1 \mid f_1 \dots f_n) = Pr(f_1 \dots f_n \mid Y = 1) \frac{Pr(Y = 1)}{Pr(f_1 \dots f_n)}$$
independent of Y

Generically:

$$Pr(A \mid B) = Pr(B \mid A) \frac{Pr(A)}{Pr(B)}$$

Specifically:

$$Pr(Y = 1 \mid f_1 ... f_n) = Pr(f_1 ... f_n \mid Y = 1) \frac{Pr(Y = 1)}{Pr(f_1 ... f_n)}$$
independent of Y

Concentrate on:

$$Pr(f_1...f_n | Y = 1)$$

Why is Bayes Naïve?

• Make a big independence assumption

$$Pr(f_1...f_n | Y = 1) = \prod_j Pr(f_j | Y = 1)$$

Learning Algorithm

Estimate from the data, for all j:

$$R(f_j = 1 \mid Y = 1) = \frac{\#(x_j^i = 1 \land y^i = 1)}{\#(y^i = 1)}$$

$$R(f_j = 0 | Y = 1) = 1 - R(f_j = 1 | Y = 1)$$

$$R(f_j = 1 \mid Y = 0) = \frac{\#(x'_j = 1 \land y' = 0)}{\#(y' = 0)}$$

$$R(f_j = 0 \mid Y = 0) = 1 - R(f_j = 1 \mid Y = 0)$$

Prediction Algorithm

Given a new x,

$$S(x_1...x_n | Y = 1) = \prod_{j=1}^{n} \begin{cases} R(f_j = 1 | Y = 1) & \text{if } x_j = 1 \\ R(f_j = 0 | Y = 1) & \text{otherwise} \end{cases}$$

 $S(x_1...x_n | Y = 0) = \prod_{j=1}^{n} \begin{cases} R(f_j = 1 | Y = 0) & \text{if } x_j = 1 \\ R(f_j = 0 | Y = 0) & \text{otherwise} \end{cases}$

Output 1 if

$$S(x_1...x_n | Y = 1) > S(x_1...x_n | Y = 0)$$

References

- Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press
- Russell S., & Norvig, P. (2021). Artificial Intelligence A Modern Approach. 4th Edition: Pearson Education https://www.academia.edu/45126798/Artificial_Intelligence_A_Modern_Approach_4th_Edit ion_?auto=download
- Rich E., Knight K. & Nair, S. B. (2011). Artificial Intelligence 3rd Edition: Tata McGraw Hill
- Han, J.., Kamber, M., Pei, J (2012). Data mining: concepts and techniques. Elsevier Inc.
- Nilsson, N.J. (1998). Artificial Intelligence: a new synthesis. Morgan Kaufmann.
- Lucila Ohno-Machado, and Peter Szolovits. HST.947 Medical Artificial Intelligence. Spring 2005. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

Thank You