BCB 5200 Introduction to Bioinformatics

Multiple Sequence Alignment

Bioinformatics and Computational Biology
Saint Louis University

Outline

- Multiple sequence alignment (MSA)
- Scoring MSA
- MSA algorithms
 - Exact approach Dynamic programming
 - Progressive alignments ClustalW
 - Iterative approach -MUSCLE
 - Profile-based approach Promals
- Warning

 One of the most important contributions of biological sequences to biology and evolution is the discovery that sequences of different organisms are often related.

They are called homologies

Multiple sequence alignment: definition

- A collection of three or more protein (or nucleic acid) sequences that are partially or completely aligned
- A model
- Indicates relationship between residues of different sequences (similarity/dissimilarity)

Multiple sequence alignment

BSUB00	RMAHYDSLTDLPNRRHAISHLTKVLNREHSLHYNTVVFFLDLNRFKVINDAL
ECU738	VMSTRDGMTGVYNRRHWETMLRNEFDNCRRHNRDATLLIIDIDHFKSINDTW
D90790	HEVGMDVLTKLLNRRFLPTIFKREIAHANRTGTPLSVLIIDVDKFKEINDTW
SYCSLL	QISSLDALTQVGNRYLFDSTLEREWQRLQRIREPLALLLCDVDFFKGFNDNY
ECAE00	NIAHRDPLTNIFNRNYFFNELTVQSASAQKTPYCVMIMDIDHFKKVNDTW
AF0348	QAANVDSLTGLANRAAYNAHM-ERLTAADAPSIGLLLIDVDRLKQVNDIL
D90796	IRSNMDVLTGLPGRRVLDESFDHQLRNAEPLNLYLMLLDIDRFKLVNDTY
Y4LL_R	HMARHDALTGLPNRQFLREEF-ERLSDHIAPSTRLAILCLDLDGFKAINDAY
Y07I_M	YLADHDDLTGLHNRRALLQHLDQRLAPGQPGPVAALFLDLDRLKAINDYL

Multiple sequence alignment

```
BSUB00
        RMAHYDSLTDLPNRRHAISHLTKVLNREHSLHYNTVVFFLDLNRFKVINDAL
ECU738
        VMSTRDGMTGVYNRRHWETMLRNEFDNCRRHNRDATLLIIDIDHFKSINDTW
D90790
        HEVGMDVI.TKI.I.NRRFI.PTTFKRETAHANRTGTPI.SVI.TTDVDKFKETNDTW
SYCSLL
        QISSLDALTQVGNRYLFDSTLEREWQRLQRIREPLALLLCDVDFFKGFNDNY
        NIAHRDPLTNIFNRNYFFNEL--TVQSASAQKTPYCVMIMDIDHFKKVNDTW
ECAE00
AF0348
        QAANVDSLTGLANRAAYNAHM-ERLTAADAPS--IGLLLIDVDRLKQVNDIL
D90796
        IRSNMDVLTGLPGRRVLDESFDHQLRNAEPLN--LYLMLLDIDRFKLVNDTY
Y4LL R
        HMARHDALTGLPNROFLREEF-ERLSDHIAPSTRLAILCLDLDGFKAINDAY
Y07I M
        YLADHDDLTGLHNRRALLOHLDORLAPGOPGP--VAALFLDLDRLKAINDYL
```

Protein similarity search and family identification/classification (conserved motif)

Structure modeling (Protein,RNA)

Active site prediction experimental design

Phylogenetic analysis

Meaning of alignments

SKVIGWRPGE
KVIGWTGD
KICGWGVK
ARIVAYPGGT
RLISYPRTGK
Unaligned sequences

SKVIGWR-PGE
-KVIGWT--GD
-KICGWG--VK
ARIVAYP-GGT
-RLISYPRTGK

- Homologous
- Structurally equivalent
- Similar function

Outline

- Multiple sequence alignment (MSA)
- Scoring MSA
- MSA algorithms
 - Exact approach Dynamic programming
 - Progressive alignments ClustalW
 - Iterative approach -MUSCLE
 - Profile-based approach Promals
- Warning

Scoring a multiple sequence alignment

- Score: more conserved columns, better alignment
- To find alignment that maximizes a score function

Sum-of-pairs (SP) scoring

- Standard MSA scoring method
- Assumes column independence
- SP is a column-by-column cost/weight function
- SP scored using a **substitution matrix** (e.g PAM or BLOSUM)
- MSAs maximize total alignment score by maximizing each column SP score

Scoring a multiple sequence alignment: sumof-pairs (SP) scoring

	Column A	Column B	Column C	
S_1	N	N	N	
S_2	N	N	N	
\mathbf{S}_{2}^{2}	N	N	N	
$\mathbf{S}_{\mathbf{A}}^{3}$	N	N	C	
S_{5}^{4}	N N	C	C	

		Column		
Alignmt	Score	Α	В	С
N – N	6	10	6	3
N – C	-3	0	4	6
C – C	9	0	0	1
		60	24	9

History of MSA

1975 Sankoff

Formulated multiple alignment problem and gave DP solution

1988 Carrillo-Lipman

Branch and Bound approach for MSA

1990 Feng-Doolittle

Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW

Most popular multiple alignment program

1998 DIALIGN (Segment-based multiple alignment)

2000 T-coffee (consensus-based)

2004 MUSCLE

2005 Kalign

2005 ProbCons (uses Bayesian consistency)

2006 M-Coffee (consensus meta-approach)

2006 Expresso (3D-Coffee; use structural template)

2007 PROMALS (profile-profile alignment)

2009 FastTree

Outline

- Multiple sequence alignment (MSA)
- Scoring MSA
- MSA algorithms
 - Exact approach Dynamic programming
 - Progressive alignments ClustalW
 - Iterative approach -MUSCLE
 - Profile-based approach Promals
- Recommendations

Exact approach

- Exact methods of multiple alignment use dynamic programming (Generalization of Needleman-Wunsch)
- Guaranteed to find optimal solutions
- Computationally expensive and so impractical
 - Time grows as product of sequence lengths

From pairwise to multiple alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix (or a 3-D "Manhattan Cube", with each axis representing a sequence to align)

 For global alignments, go from source to sink

2D vs 3D alignment cells

$$(0,0,0)->(1,1,1)->(2,1,2)->(2,2,3)->(3,3,4)->(4,4,5)->(5,4,5)->(6,5,6)$$

2D vs 3D alignment cell: 3 paths vs 7 paths

Pairwise: 3 possible paths (match/mismatch, insertion, and deletion)

In 3-D, 7 edges in each unit cube

There are seven cases when aligning three sequences

 2^3 -1 to choose the maximum similarity

Architecture of 3D alignment cell

Multiple alignment: dynamic programming

•
$$\mathbf{S}_{i,j,k} = \mathbf{max}$$
 $\left\{ \begin{array}{l} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, _) \\ s_{i-1,j,k-1} + \delta(v_i, w_j, u_k) \\ s_{i,j-1,k-1} + \delta(_, w_j, u_k) \end{array} \right.$ cube diagonal: no gaps face diagonal: one gap $s_{i-1,j,k} + \delta(v_i, _, _) \\ s_{i-1,j,k} + \delta(v_i, _, _) \\ s_{i,j-1,k} + \delta(_, w_j, _) \\ s_{i,j-1,k} + \delta(_, w_j, _) \end{array}$ edge diagonal: two gaps

• $\delta(x, y, z)$ is an entry in the 3D scoring matrix

MSA: running time

- For 3 sequences of length n, operation time is $7n^3$; $O(n^3)$
- For k sequences, build a k-dimensional Manhattan, with operation time $(2^k-1)(n^k)$; $O(2^kn^k)$
 - 32 thousand years for 10 seqs of 100 residues!
- Conclusion: although dynamic programming approach for alignment between two sequences is easily extended to *k* sequences (simultaneous approach), it is impractical due to exponential running time.
- Heuristic sequence alignment algorithm is needed, which doesn't guarantee to find the optimal solution

Outline

- Multiple sequence alignment (MSA)
- Scoring MSA
- MSA algorithms
 - Exact approach Dynamic programming
 - Progressive alignments ClustalW
 - Iterative approach -MUSCLE
 - Profile-based approach Promals
- Recommendations

Progressive alignment

• Feng & Doolittle 1987, Higgins and Sharp 1988

 Concept: to build the alignment of larger number of sequences from partial alignments of subsets of sequences

 A guide tree (related to a phylogenetic tree) is used to determine how to combine pairwise alignments one by one to create a multiple alignment.

Examples: ClustalW

ClustalW – the most widely used program

Thompson et al. (1994). http://www.ch.embnet.org/software/ClustalW.html

ClustalW algorithm

Dynamic Programming Using A Substitution Matrix

ClustalW

The three basic steps in the CLUSTAL W approach are shared by all progressive alignment algorithms:

- A. Calculate a matrix of pairwise distances based on pairwise alignments between the sequences
- B. Use the result of A to build a guide tree, which is an inferred phylogeny for the sequences
- C. Use the tree from B to guide the progressive alignment of the sequences

Step 1: Pairwise alignment

- Aligns each sequence against each other using dynamic programming
- a similarity or distance measure for the pair is calculated using the aligned portion (gaps excluded) for example, percent identity.
- Similarity = exact matches / sequence length (percent identity)

(.17 means 17 % identical)

Step 2: Guide tree by clustering

- To build guide tree
 - Neighbour-Joining (NJ)
 - Unweighted pair group method using arithmetic averages (UPGMA)
- Guide tree roughly reflects evolutionary relations

Step 3: progressive alignment of the sequences

- Partial alignment was generated (profile)
- In the past we were aligning a sequence against a sequence
- Can we align a sequence against a profile?

Scoring an alignment of two partial alignments

Sequence weights w_1, \dots, w_6

'W' stands for 'weighted' (sequences are weighted differently).

Score:
$$\frac{1}{8}[M(t,v)w_1w_5 + M(t,i)w_1w_6 + ... + M(k,i)w_4w_6]$$

Potential problems with ClustalW

- ClustalW is a "greedy" algorithm
 - makes the best immediate solution (local choice) in hopes of finding the best overall (global) solution
 - choices are made regardless of later consequences
 - early mistakes get propagated throughout the rest of the alignment

		Alignment	
	1	2	3
Inital Alignment	ACTTA AGT-A	ACTTA AG-TA	ACTTA A-GTA

Potential problems with ClustalW

- ClustalW is a "greedy" algorithm
 - makes the best immediate solution (local choice) in hopes of finding the best overall (global) solution
 - choices are made regardless of later consequences
 - early mistakes get propagated throughout the rest of the alignment

	1	Alignment 2	3
Inital Alignment	ACTTA AGT-A	ACTTA AG-TA	ACTTA A-GTA
Later Alignment	ACTTA AGT-A ACGTA	ACTTA AG-TA ACGTA	ACTTA A-GTA ACGTA

Clustal Omega

 Profile HMMs to model groups of sequences whereas Clustal W uses sequence profiles to store information about groups of sequences

http://www.clustal.org/

Iterative alignment

- Progressive alignment:
 - The order of selection of sequences can influence the alignment
 - Once there is a gap, always a gap
- How to avoid committing to a non-optimal pairwise decision?
 - Revisit alignments
 - This is the focus of iterative alignments

Iterative alignment

- Basic iterative refinement algorithm
 - Remove a sequence from the current multiple alignment
 - Realign the removed sequence back to the multiple alignment
 - Repeat until removal and realignment of any sequence does not improve the alignment score
- MUSCLE (multiple sequence alignment by log-expectation)

Profile-HMM method: Promals

http://prodata.swmed.edu/promals

History of MSA

1975 Sankoff

Formulated multiple alignment problem and gave DP solution

1988 Carrillo-Lipman

Branch and Bound approach for MSA

1990 Feng-Doolittle

Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW

Most popular multiple alignment program

1998 DIALIGN (Segment-based multiple alignment)

2000 T-coffee (consensus-based)

Acceptable result

2004 MUSCLE

2005 Kalign

Fast and acceptable result, gappy

2005 ProbCons (uses Bayesian consistency)

2006 M-Coffee (consensus meta-approach)

2006 Expresso (3D-Coffee; use structural template)

2007 PROMALS (profile-profile alignment)

Slow but most accurate

2009 FastTree

Fast and working with large datasets; ok

Recommendations

- Many dozens of MSA programs have been introduced in recent years. None is optimal. Each offers unique strengths and weaknesses.
- MSA algorithms assume that sequences are homologous
 - MSA programs will align anything and all sequences, even if they are not homologous.
- Ideally sequences with one domain or sequences with same domain architecture
- Proteins are easier to align than DNA
- If it looks wrong it probably is wrong!
- Manual alignment is needed

Proteins are easier to align than DNA

 Therefore, if your DNA sequences are too divergent try aligning their amino acid translation, and then translating the sequence back to DNA

Multiple sequence alignment editors

- BioEdit MS-Windows
- Genedoc MS-Windows
- EditSeq/MegAlign Lasergene Mac or MS-Windows
- DNA Strider Macintosh
- Seq-Al Macintosh
- ASAD Excel Macintosh or MS-Windows
- SeqPup Mac. MS-Windows, X-Windows

MSA-Visualization and improvement

- GeneDoc (Windows)
- Download: http://genedoc.software.informer.com/download/
 - Arranging and Editing
 - GeneDoc's Grab and Drag arrangement mode allows you to move residues around like beads on a string
 - Shading Alignments
 - Reports: Stats, Score, Composition
 - Exporting and Copying Figures

GeneDoc: Conservation Mode

• GeneDoc (Windows)

GeneDoc: Property Mode

ClustalW

CLUSTAL W (1.83) multiple sequence alignment

```
beta globin
            -----MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTORFFESFG- 47
myoglobin
                -----MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFK- 48
neuroglobin
                 -----MERPEPELIROSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR 47
soybean
             -----MVAFTEKODALVSSSFEAFKANIPOYSVVFYTSILEKAPAAKDLFSFLA- 49
rice
            MALVEDNNAVAVSFSEEGEALVLKSWAILKKDSANIALRFFLKIFEVAPSASOMFSFLR- 59
                            \nabla
beta globin DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLS----ELHCDKLHVDPE 102
myoglobin
             HLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLA----OSHATKHKIPVK 103
neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEYLAS---LGRKHRAVGVKLS 104
soybean
             --NGVDPT--NPKLTGHAEKLFALVRDSAGQLKASGTVVADAA----LGSVHAQKAVTDP 101
rice
             --NSDVPLEKNPKLKTHAMSVFVMTCEAAAOLRKAGKVTVRDTTLKRLGATHLKYGVGDA 117
beta globin
            NFRLLGNVLVCVLAHHF-GKEFTPPVQAAYQKVVAGVANALAHKYH----- 147
myoglobin
             YLEFISECIIOVLOSKH-PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154
neuroglobin SFSTVGESLLYMLEKCL-GPAFTPATRAAWSQLYGAVVQAMSRGWDGE---- 151
soybean
rice
             HFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKOEMKPAE--- 166
```

Note how the region of a conserved histidine (∇) varies depending on which of five prominent algorithms is used

Praline

(a) Praline multiple sequence alignment

	under transfer in der transfer
beta globin	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFES.FG
myoglobin	MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK.FK
neuroglobin	MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
soybean	MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFL
rice	MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSFL
Consistency	00000000014265438257934573463364343624453686433*35344*50063
	lacktriangledown
beta globin	DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDP
myoglobin	HLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPV
neuroglobin	QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEYLASLGRKHRAVGVKL
soybean	A.NGVDPTNPKLTGHAEKLFALVRDSAGQL.KASGTVVADAALGSVHAQKAVTD
rice	R.NSDVPLEKNPKLKTHAMSVFVMTCEAAAQL.RKAGKVTVRDTTLKRLGATHLKYGVGD
Consistency	3166354224776653*43686354244 <mark>5445133563433354200333544</mark> 0000922
beta globin	ENFRLLGNVLVCVLAHHF.GKEFTPPVQAAYQKVVAGVANALAHKYH
myoglobin	KYLEFISECIIQVLQSKH.PGDFGADAQGAMNKALELFRKDMASNYKELGFQG
neuroglobin	SSFSTVGESLLYMLEKCL.GPAFTPATRAAWSQLYGAVVQAMSRGWDGE
soybean	PQFVVVKEALLKTIKAAV.GDKWSDELSRAWEVAYDELAAAIKKA
rice	AHFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQEMKPAE
Consistency	43744844498258542305336554454*55465426446754322001000

Note also the changing pattern of gaps within the boxed region in these five different alignments.

MUSCLE

MUSCLE (3.6) multiple sequence alignment beta globin -----MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFES-FG myoglobin -----MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK-FK neuroglobin -----MERPEPELIROSWRAVSRSPLEHGTVLFARLFALEPDLLPLFOYNCR soybean -----MVAFTEKODALVSSSFEAFKANIPOYSVVFYTSILEKAPAKDLFSF-LA rice beta globin DLSTPDAVMGNPKVKAHGKKVLGAF---SDGLAHLDNLKGTFATLSELHCDKLH--VDPE myoglobin HLKSEDEMKASEDLKKHGATVLTAL---GGILKKKGHHEAEIKPLAOSHATKHK--IPVK neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVI---DAAVTNVEDLSSLEEYLASLGRKHRAVGVKLS soybean NGVDP----TNPKLTGHAEKLFALVRDSAGQLKASGTVVAD----AALGSVHAQKAVTDP rice NSDVP--LEKNPKLKTHAMSVFVMTCEAAAOLRKAGKVTVRDTTLKRLGATHLKYGVGDA * .:: beta globin NFRLLGNVLVCVLAHHFGKE-FTPPVOAAYOKVVAGVANALAHKYH----myoglobin YLEFISECIIQVLQSKHPGD-FGADAQGAMNKALELFRKDMASNYKELGFOG neuroglobin SFSTVGESLLYMLEKCLGPA-FTPATRAAWSOLYGAVVOAMSRGWDGE---soybean OFVVVKEALLKTIKAAVGDK-WSDELSRAWEVAYDELAAAIKKA----rice HFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKOEMKPAE---:: :

Probcons

(c) PROBCONS beta globin -----VHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFES-FG myoglobin M-----GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK-FK neuroglobin M-----ERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR soybean M-----VAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAKDLFSF-LA rice MALVEDNNAVAVSFSEEOEALVLKSWAILKKDSANIALRFFLKIFEVAPSASOMFSF-LR beta globin DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD---NLK---GTFATLSELHCDKLHVDP myoglobin HLKSEDEMKASEDLKKHGATVLTALGGI -- LKKKGHHE---AEIKPLAQSHATKHKIPV neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLE---EYLASLGRKHRAV-GVKL soybean NGVDP----TNPKLTGHAEKLFALVRDSAGQLKASGTVV----ADAALGSVHAQK-AVTD rice NSDVP--LEKNPKLKTHAMSVFVMTCEAAAOLRKAGKVTVRDTTLKRLGATHLKY-GVGD * .:: :: beta globin ENFRLLGNVLVCVLAHHF-GKEFTPPVQAAYQKVVAGVANALAHK-----YH myoglobin KYLEFISECIIQVLQSKH-PGDFGADAQGAMNKALELFRKDMASNYKELGFQG neuroglobin SSFSTVGESLLYMLEKCL-GPAFTPATRAAWSQLYGAVVQAMSRG---W-DGE soybean POFVVVKEALLKTIKAAV-GDKWSDELSRAWEVAYDELAAAIK-----KA rice AHFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQE---MKPAE : : :: :

TCoffee

(d) CLUSTAL FORMAT for T-COFFEE Version 5.13 beta globin -----MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFE-SFG myoglobin ----MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFD-KFK neuroglobin -----MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR soybean --MVAFTEKODALVSSSFEAFKANIPOYSVVFYTSILEKAPAAKDLFS-FLA rice beta globin DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNL---KGTF---ATLSELHCDKLHVDP myoglobin HLKSEDEMKASEDLKKHGATVLTAL---GGILKKKGHHEAE---IKPLAQSHATKHKI¶V neuroglobin OFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDL---SSLEEYLASLGRKH-RAVGVML soybean NGVDP----TNPKLTGHAEKLFALVRDSAGQLKASGTVVAD----AALGSVHAQKAVTDP rice NSDVP--LEKNPKLKTHAMSVFVMTCEAAAOLRKAGKVTVRDTTLKRLGATHLKYGVGDA beta globin ENFRLLGNVLVCVLAHHF-GKEFTPPVQAAYQKVVAGVANALAHKYH----myoglobin KYLEFISECIIQVLQSKH-PGDFGADAQGAMNKALELFRKDMASNYKELGFQG neuroglobin SSFSTVGESLLYMLEKCL-GPAFTPATRAAWSQLYGAVVQAMSRGWDG----E soybean Q-FVVVKEALLKTIKAAV-GDKWSDELSRAWEVAYDELAAAIKKArice H-FEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQE---MKPAE :: :