# Lecture 2: Basic Artificial Neural Networks

Xuming He SIST, ShanghaiTech Fall, 2019

9/12/2019



# Logistics

- Course project
  - □ Each team is up to 3 members
  - You should form the team right after the National holiday week
- Homework
  - Programming: not the same as CS231n
  - □ Write-up: problem set
  - ☐ HW1 out next Tuesday
- Quiz
  - □ ~20 mins
  - □ Q1 next Tuesday ~30 mins

# м

#### **Outline**

- Review: Supervised learning
  - □ Linear regression
- Artificial neuron
  - Neuron models
  - □ Perceptron algorithm
- Single layer neural networks
  - Network models

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes



# Learning problem

#### Problem setup

- Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
- Find  $y = f(x) \in \mathcal{H}$  that minimizes  $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$



#### Formulation

- Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
- Find  $f_{w}(x) = w^{T}x$  that minimizes  $\hat{L}(f_{w}) = \frac{1}{n}\sum_{i=1}^{n}(w^{T}x_{i} y_{i})^{2}$

l<sub>2</sub> loss; also called mean square error

Hypothesis class  ${m {\mathcal H}}$ 



#### Optimization

- Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
- Find  $f_w(x) = w^T x$  that minimizes  $\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i y_i)^2$
- Let X be a matrix whose i-th row is  $x_i^T$ , y be the vector  $(y_1, ..., y_n)^T$

$$\widehat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \frac{1}{n} ||Xw - y||_2^2$$





#### Optimization

Set the gradient to 0 to get the minimizer

$$\nabla_{w} \hat{L}(f_{w}) = \nabla_{w} \frac{1}{n} ||Xw - y||_{2}^{2} = 0$$

$$\nabla_{w} [(Xw - y)^{T} (Xw - y)] = 0$$

$$\nabla_{w} [w^{T} X^{T} X w - 2w^{T} X^{T} y + y^{T} y] = 0$$

$$2X^{T} X w - 2X^{T} y = 0$$

$$w = (X^{T} X)^{-1} X^{T} y$$



#### Optimization

- Algebraic view of the minimizer
  - If X is invertible, just solve Xw = y and get  $w = X^{-1}y$
  - But typically X is a tall matrix



□ What if not invertible?



#### With bias term

Bias term

- Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
- Find  $f_{w,b}(x) = w^T x + b$  to minimize the loss
- Reduce to the case without bias:
  - Let w' = [w; b], x' = [x; 1]
  - Then  $f_{w,b}(x) = w^T x + b = (w')^T (x')$



#### ■ Why l<sub>2</sub> loss?

- Why not choose another loss
  - $l_1$  loss, hinge loss, exponential loss, ...
- Empirical: easy to optimize
  - For linear case:  $w = (X^T X)^{-1} X^T y$
- Theoretical: a way to encode prior knowledge

#### Questions:

- What kind of prior knowledge?
- Principal way to derive loss?



- Maximum likelihood estimation (MLE)
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Let  $\{P_{\theta}(x,y): \theta \in \Theta\}$  be a family of distributions indexed by  $\theta$
  - Would like to pick  $\theta$  so that  $P_{\theta}(x, y)$  fits the data well



- Maximum likelihood estimation (MLE)
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Let  $\{P_{\theta}(x,y): \theta \in \Theta\}$  be a family of distributions indexed by  $\theta$
  - "fitness" of  $\theta$  to one data point  $(x_i, y_i)$ likelihood $(\theta; x_i, y_i) := P_{\theta}(x_i, y_i)$



- Maximum likelihood estimation (MLE)
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Let  $\{P_{\theta}(x,y): \theta \in \Theta\}$  be a family of distributions indexed by  $\theta$
  - "fitness" of  $\theta$  to i.i.d. data points  $\{(x_i, y_i)\}$ likelihood $(\theta; \{x_i, y_i\}) := P_{\theta}(\{x_i, y_i\}) = \prod_i P_{\theta}(x_i, y_i)$



- Maximum likelihood estimation (MLE)
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Let  $\{P_{\theta}(x,y): \theta \in \Theta\}$  be a family of distributions indexed by  $\theta$
  - MLE: maximize "fitness" of  $\theta$  to i.i.d. data points  $\{(x_i, y_i)\}$  $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \prod_i P_{\theta}(x_i, y_i)$



- Maximum likelihood estimation (MLE)
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Let  $\{P_{\theta}(x,y): \theta \in \Theta\}$  be a family of distributions indexed by  $\theta$
  - MLE: maximize "fitness" of  $\theta$  to i.i.d. data points  $\{(x_i, y_i)\}$

```
\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \log[\prod_i P_{\theta}(x_i, y_i)]
```

 $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log[P_{\theta}(x_i, y_i)]$ 



- Maximum likelihood estimation (MLE)
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Let  $\{P_{\theta}(x,y): \theta \in \Theta\}$  be a family of distributions indexed by  $\theta$
  - MLE: negative log-likelihood loss

$$\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log(P_{\theta}(x_{i}, y_{i}))$$
$$l(P_{\theta}, x_{i}, y_{i}) = -\log(P_{\theta}(x_{i}, y_{i}))$$
$$\hat{L}(P_{\theta}) = -\sum_{i} \log(P_{\theta}(x_{i}, y_{i}))$$



- MLE: conditional log-likelihood
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Let  $\{P_{\theta}(y|x): \theta \in \Theta\}$  be a family of distributions indexed by  $\theta$
  - MLE: negative conditional log-likelihood loss

$$\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log(P_{\theta}(y_i|x_i))$$

$$l(P_{\theta}, x_i, y_i) = -\log(P_{\theta}(y_i|x_i))$$
  
$$\hat{L}(P_{\theta}) = -\sum_i \log(P_{\theta}(y_i|x_i))$$

Only care about predicting y from x; do not care about p(x)



# MLE example: Regression

#### Regression with I2 Loss

- Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
- Find  $f_{\theta}(x)$  that minimizes  $\hat{L}(f_{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) y_i)^2$

 $l_2$  loss: Normal + MLE

- Define  $P_{\theta}(y|x) = \text{Normal}(y; f_{\theta}(x), \sigma^2)$
- $\log(P_{\theta}(y_i|x_i)) = \frac{-1}{2\sigma^2}(f_{\theta}(x_i) y_i)^2 \log(\sigma) \frac{1}{2}\log(2\pi)$
- $\theta_{ML} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) y_i)^2$





#### **Outliers**

- L2 loss = Gaussian distribution
- What if we have outliers?
  - Some data points lie far away from the linear structure
- Robust estimation
  - □ L1 loss: Laplace distribution

$$\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n |w^{\mathsf{T}} x_i - y_i|$$







#### Generalization

- Overfitting or under-determined?
  - □ Ridge regression

$$\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n \|w^{\mathsf{T}} x_i - y_i\|^2 + \lambda \sum_{j=1}^d w_j^2$$

- The optimal weights  $w^* = (X^\intercal X + \lambda I)^{-1} X^\intercal Y$
- □ Lasso regression

$$\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n \|w^{\mathsf{T}} x_i - y_i\|^2 + \lambda \sum_{j=1}^d |w_j|$$

- Convex optimization: proximal gradient descent
- oxdot The hyper-parameter  $\lambda$  controls the model complexity



#### Outline

- Review: Supervised learning
  - □ Linear regression
- Artificial neuron
  - Neuron models
  - □ Perceptron algorithm
- Single layer neural networks
  - Network models
  - Optimization by (sub-)gradient descent

# Artificial Neuron

#### Biological inspiration

 $\bullet$  Our brain has  $\sim 10^{11}$  neurons, each of which communicates (is connected) to  $\sim 10^4$  other neurons



Figure: The basic computational unit of the brain: Neuron

# v

#### Mathematical model of a neuron







#### **Activation functions**

Most commonly used activation functions:

• Sigmoid: 
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• Tanh: 
$$\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$

• ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)







# Capacity of single neuron

Sigmoid activation function



# What a single neuron does?

- A neuron (perceptron) fires if its input is within a specific angle of its weight
  - If the input pattern matches the weight pattern closely enough



# Single neuron as a linear classifier

Binary classification





# How do we determine the weights?

#### Learning problem

- Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
- Hypothesis  $f_w(x) = w^T x$ 
  - $y = 1 \text{ if } w^T x > 0$
  - y = 0 if  $w^T x < 0$
- Prediction:  $y = \text{step}(f_w(x)) = \text{step}(w^T x)$

Linear model  ${\cal H}$ 



#### Linear classification

- Learning problem: simple approach
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Find  $f_w(x) = w^T x$  that minimizes  $\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i y_i)^2$
  - Drawback: Sensitive to "outliers"

Reduce to linear regression; ignore the fact  $y \in \{0,1\}$ 



# 1D Example

Compare two predictors





#### Outline

- Review: Supervised learning
  - □ Linear regression
- Artificial neuron
  - □ Neuron models
  - □ Perceptron algorithm
- Single layer neural networks
  - Network models
  - Optimization by (sub-)gradient descent



# Perceptron algorithm

- Learn a single neuron for binary classification
- Task formulation
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Hypothesis  $f_w(x) = w^T x$ 
    - $y = +1 \text{ if } w^T x > 0$
    - y = -1 if  $w^T x < 0$
  - Prediction:  $y = \text{sign}(f_w(x)) = \text{sign}(w^T x)$
  - Goal: minimize classification error

# .

# Perceptron algorithm

- Algorithm outline
- Assume for simplicity: all  $x_i$  has length 1
  - 1. Start with the all-zeroes weight vector  $\mathbf{w}_1 = \mathbf{0}$ , and initialize t to 1.
  - 2. Given example  $\mathbf{x}$ , predict positive iff  $\mathbf{w}_t \cdot \mathbf{x} > 0$ .
  - 3. On a mistake, update as follows:
    - Mistake on positive:  $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \mathbf{x}$ .
    - Mistake on negative:  $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{x}$ .

$$t \leftarrow t + 1$$
.

Perceptron: figure from the lecture note of Nina Balcan



# Perceptron algorithm

- Intuition: correct the current mistake
  - If mistake on a positive example

$$w_{t+1}^T x = (w_t + x)^T x = w_t^T x + x^T x = w_t^T x + 1$$

If mistake on a negative example

$$w_{t+1}^T x = (w_t - x)^T x = w_t^T x - x^T x = w_t^T x - 1$$

# М

# Hyperplane Distance

- Line is a 1D, Plane is 2D
- Hyperplane is many D
  - Includes Line and Plane
- Defined by (w,b)
- Distance:  $\frac{|w'x w'|}{\|w\|}$
- Signed Distance:  $\frac{w^T x b}{\|w\|}$





# Perceptron algorithm

#### The Perceptron theorem

- Suppose there exists  $w^*$  that correctly classifies  $\{(x_i, y_i)\}$
- W.L.O.G., all  $x_i$  and  $w^*$  have length 1, so the minimum distance of any example to the decision boundary is

$$\gamma = \min_{i} |(w^*)^T x_i|$$

• Then Perceptron makes at most  $\left(\frac{1}{\gamma}\right)^2$  mistakes



#### The Perceptron theorem

- Suppose there exists  $w^*$  that correctly classifies  $\{(x_i, y_i)\}$
- W.L.O.G., all  $x_i$  and  $w^*$  have length 1, so the minimum distance of any example to the decision boundary is

$$\gamma = \min_{i} |(w^*)^T x_i|$$

Need not be i.i.d.!

• Then Perceptron makes at most  $\left(\frac{1}{\nu}\right)^2$  mistakes

Do not depend on n, the length of the data sequence!



- The Perceptron theorem: proof
  - First look at the quantity  $w_t^T w^*$
  - Claim 1:  $w_{t+1}^T w^* \ge w_t^T w^* + \gamma$
  - Proof: If mistake on a positive example x

$$w_{t+1}^T w^* = (w_t + x)^T w^* = w_t^T w^* + x^T w^* \ge w_t^T w^* + \gamma$$

If mistake on a negative example

$$w_{t+1}^T w^* = (w_t - x)^T w^* = w_t^T w^* - x^T w^* \ge w_t^T w^* + \gamma$$



- The Perceptron theorem: proof
  - Next look at the quantity  $||w_t||$

Negative since we made a mistake on x

- Claim 2:  $||w_{t+1}||^2 \le ||w_t||^2 + 1$
- ullet Proof: If mistake on a positive example x

$$||w_{t+1}||^2 = ||w_t + x||^2 = ||w_t||^2 + ||x||^2 + 2w_t^T x$$



■ The Perceptron theorem: proof intuition

- Claim 1:  $w_{t+1}^T w^* \ge w_t^T w^* + \gamma$
- Claim 2:  $\left|\left|w_{t+1}\right|\right|^2 \leq \left|\left|w_{t}\right|\right|^2 + 1$

The correlation gets larger. Could be:

- 1.  $W_{t+1}$  gets closer to  $W^*$
- 2.  $w_{t+1}$  gets much longer

Rules out the bad case "2.  $w_{t+1}$  gets much longer"



The Perceptron theorem: proof

- Claim 1:  $w_{t+1}^T w^* \ge w_t^T w^* + \gamma$
- Claim 2:  $||w_{t+1}||^2 \le ||w_t||^2 + 1$

After M mistakes:

- $w_{M+1}^T w^* \ge \gamma M$
- $||w_{M+1}|| \leq \sqrt{M}$
- $w_{M+1}^T w^* \le ||w_{M+1}||$

So  $\gamma M \leq \sqrt{M}$ , and thus  $M \leq \left(\frac{1}{\gamma}\right)^2$ 



#### Perceptron Learning problem

- What loss function is minimized?
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Find  $y = f(x) \in \mathcal{H}$  that minimizes  $\widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
  - s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

## Learning as iterative optimization

#### Gradient descent

• choose initial  $w^{(0)}$ , repeat

$$w^{(t+1)} = w^{(t)} - \eta_t \cdot \nabla L(w^{(t)})$$

until stop

 $\triangleright$   $\eta_t$  is the learning rate, and

$$\nabla L(w^{(t)}) = \frac{1}{n} \sum_{i} \nabla_{w} L_{i}(w^{(t)}; y_{i}, x_{i})$$

► How to stop?  $||w^{(t+1)} - w^{(t)}|| \le \epsilon$  or  $||\nabla L(w^{(t)})|| \le \epsilon$ 

Two dimensional example:





- Stochastic gradient descent (SGD)
  - Suppose data points arrive one by one
  - $\hat{L}(\mathbf{w}) = \frac{1}{n} \sum_{t=1}^n l(\mathbf{w}, x_t, y_t)$ , but we only know  $l(\mathbf{w}, x_t, y_t)$  at time t
  - Idea: simply do what you can based on local information
    - Initialize W<sub>0</sub>
    - $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \nabla l(\mathbf{w}_t, x_t, y_t)$





- What loss function is minimized?
  - Hypothesis:  $y = \text{sign}(w^T x)$
  - Define hinge loss

$$l(w, x_t, y_t) = -y_t w^T x_t \mathbb{I}[\text{mistake on } x_t]$$

$$\widehat{L}(w) = -\sum_{t} y_{t} w^{T} x_{t} \mathbb{I}[\text{mistake on } x_{t}]$$

$$w_{t+1} = w_t - \eta_t \nabla l(w_t, x_t, y_t) = w_t + \eta_t y_t x_t \mathbb{I}[\text{mistake on } x_t]$$



- What loss function is minimized?
  - Hypothesis:  $y = \text{sign}(w^T x)$  $w_{t+1} = w_t - \eta_t \nabla l(w_t, x_t, y_t) = w_t + \eta_t y_t x_t \mathbb{I}[\text{mistake on } x_t]$
  - Set  $\eta_t = 1$ . If mistake on a positive example

$$w_{t+1} = w_t + y_t x_t = w_t + x$$

If mistake on a negative example

$$w_{t+1} = w_t + y_t x_t = w_t - x$$



#### Outline

- Review: Supervised learning
  - ☐ Linear regression
- Artificial neuron
  - □ Neuron models
  - □ Perceptron algorithm
- Single layer neural networks
  - Network models
  - Optimization by (sub-)gradient descent

# w

#### Mathematical model of a neuron







## Single layer neural network



9/12/2019 **49** 



## Single layer neural network

input



layer: parallelized weighted sum and non-linearity

one sum per weight vector 
$$s_j = \mathbf{w}_j^\intercal \mathbf{x}$$
  $\longrightarrow$   $\mathbf{s} = \mathbf{W}^\intercal \mathbf{x}$  rom weight matrix

$$\mathbf{h} = \sigma(\mathbf{s})$$

## Single layer neural network





9/12/2019 **51** 



### What is the output?

- Element-wise nonlinear functions
  - □ Independent feature/attribute detectors





#### What is the output?

- Nonlinear functions with vector input
  - Competition between neurons



$$\mathbf{h} = [h_j]$$

$$h_j = g(\mathbf{s}) = g(\mathbf{w}_1^\mathsf{T} \mathbf{x}, \cdots, \mathbf{w}_m^\mathsf{T} \mathbf{x})$$



### What is the output?

- Nonlinear functions with vector input
  - □ Example: Winner-Take-All (WTA)



$$\mathbf{h} = [h_j]$$

$$h_j = g(\mathbf{s}) = \begin{cases} 1 & \text{if } j = \arg\max_i \mathbf{w}_i^\mathsf{T} \mathbf{x} \\ 0 & \text{if otherwise} \end{cases}$$



### A probabilistic perspective

Change the output nonlinearity



□ From WTA to Softmax function

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $egin{aligned} oldsymbol{s} = f(x_i;W) \end{aligned}$ 

### Example: Multiclass classification

CIFAR10 as an example



The output/prediction: WTA

#### Multiclass linear classifiers

Extending linear classifier in binary case



#### Multiclass linear classifiers

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



The WTA prediction: one-hot encoding of its predicted label

$$y = 1 \Leftrightarrow y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad y = 2 \Leftrightarrow y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad y = 3 \Leftrightarrow y = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



### Probabilistic outputs

#### scores = unnormalized log probabilities of the classes.



$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where 
$$s=f(x_i;W)$$

#### unnormalized probabilities

### Interpreting network weights

What are those weights?



$$f(x,W) = Wx + b$$



Array of **32x32x3** numbers (3072 numbers total)



#### How to learn a multiclass classifier?

- Define a loss function and do minimization
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Find  $y = f(x) \in \mathcal{H}$  that minimizes  $\widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
  - s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

**Empirical loss** 

## Learning a multiclass linear classifier

- Design a loss function for multiclass classifiers
  - □ Perceptron?
    - Yes, see homework
  - ☐ Hinge loss
    - The SVM and max-margin
  - □ Probabilistic formulation
    - Log loss and logistic regression
- Generalization issue
  - Avoid overfitting by regularization
- To be covered next time



### Summary

- Supervised learning
  - □ Linear models
- Artificial neurons
- Single-layer network
  - Multi-class predictions
- Next time ...
  - □ Learning single-layer network
  - ☐ Multi-layer neural networks