Greedily Increasing Subsequence

Problem ID: greedilyincreasii
CPU Time limit: 5 seconds
Memory limit: 1024 MB

Difficulty: 2.0

Author: Johan Sannemo **Source:** HiQ Challenge 2017

License: (cc) BY-SA

Given a permutation $A=(a_1,a_2,\ldots,a_N)$ of the integers $1,2,\ldots,N$, we define the *greedily increasing subsequence* (GIS) in the following way.

Let $g_1 = a_1$. For every i > 1, let g_i be the leftmost integer in A that is strictly larger than g_{i-1} . If there for a given i is no such integer, we say that the GIS of the sequence is the sequence $(g_1, g_2, \dots, g_{i-1})$.

Your task is to, given a permutation A, compute the GIS of A.

Input

The first line of input contains an integer $1 \le N \le 10^6$, the number of elements of the permutation A. The next line contains N distinct integers between 1 and N, the elements a_1, \ldots, a_N of the permutation A.

Output

First, output a line containing the length l of the GIS of A. Then, output l integers, containing (in order) the elements of the GIS.

Explanation of sample 1

In this case, we have the permutation 2, 3, 1, 5, 4, 7, 6. First, we have $g_1 = 2$. The leftmost integer larger than 2 is 3, so $g_2 = 3$. The leftmost integer larger than 3 is 5 (1 is too small), so $g_3 = 5$. The leftmost integer larger than 5 is 7, so $g_4 = 7$. Finally, there is no integer larger than 7. Thus, the GIS of 2, 3, 1, 5, 4, 7, 6 is 2, 3, 5, 7.

Sample Input 1

Sample Output 1

7	
2 3 1 5 4 7 6	

Sample Input 2

Sample Output 2

5	
1 2 3 4 5	

Sample Input 3

Sample Output 3

5
5 4 3 2 1