

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

Marco Aurélio Lunardi

Matrícula: 2221101054

Email: marcolunardi10@gmail.com

Disciplina: Sistemas Digitais

Controle de máquina de refrigerante

Introdução

Este trabalho tem como objetivo projetar uma máquina de estados finitos capaz de controlar uma máquina de refrigerante, a qual aceita moedas de 50 centavos e 1 real, e libera a lata de refrigerante ao atingir o valor de R\$1,50. Foram utilizados diagramas e tabelas para mostrar os estados e as transições possíveis, além do sistema descrito em VHDL e simulado utilizando o digital.

Solução

Primeiramente, foi pensado em quantos estados seriam necessários para representar a máquina de estados, a quantidade de entradas e a quantidade de saídas. Nesse caso, 4 estados, uma entrada e uma saída são suficientes para a resolução do problema:

Entrada: w. Se w = 0, então foi inserido 50 centavos na máquina. Se w = 1, então foi inserido 1 real na máquina.

Saída: z. Quando for 1, significa que atingiu o valor necessário e libera a lata de refrigerante.

Estado A(00): Estado inicial, nenhuma moeda foi inserida, ou seja, o total é igual a 0. Pode ser acessado por um reset assíncrono.

Estado B(01): É acessado quando o total de valor inserido é 50 centavos, ou seja, quando a máquina está no estado A e w=0.

Estado C(10): É acessado quando o total de valor inserido é 1 real. Pode ser acessado tanto do estado A(quando w = 1), quanto do estado B(quando w = 0).

Estado D(11): É acessado quando o total de valor inserido é 1,50 reais(ou 2 reais). É o único estado onde a saída z é igual a 1, ou seja, o estado onde a lata de refrigerante é liberada. Pode ser acessada tanto do estado B(quando w = 1), quanto do estado C, nesse último caso independentemente de w valer 0 ou 1. Como no estado C o total de moedas é 1 real, qualquer valor inserido alcançará o valor necessário para liberar a lata de refrigerante. Caso w for igual a 1, o refrigerante acabará custando 2 reais.

Diagrama de estados:

Tabelas de estados e saídas:

Estado atual	w	reset	Z	Próximo estado
А	1	0	0	С
А	1	1	0	A
А	0	0	0	В
А	0	1	0	A
В	1	0	1	D
В	1	1	0	A
В	0	0	0	С
В	0	1	0	A
С	1	0	1	D
С	1	1	0	A
С	0	0	1	D
С	0	1	0	A
D	Х	Х	Х	Х
D	Х	1	0	A
D	Х	Х	Х	Х
D	Х	1	0	А

Codificando os estados:

estado A(y0 = 0 e y1 = 0), estado B(y0 = 0 e y1 = 1), estado C(y0 = 1 e y1 = 0), estado D(y0 = 1 e y1 = 1). Y0 e Y1 representam o próximo estado. A tabela abaixo mostra essas codificações e o próximo estado de acordo com a entrada w.

y0y1	W	Y0Y1
00	0	01
00	1	10
01	0	10
01	1	11
10	0	11
10	1	11
11	0	00
11	1	00

Para encontrar as equações que representam a lógica de próximo estado e saída, foram utilizados mapas de karnaugh com as codificações y0y1 e a entrada w. As imagens abaixo mostram os mapas e as equações para Y0, Y1 e a saída z.

Y0 = y0'.y1 + y0.y1' + w.y0'

Y1 = w'.y1' + w.y0'.y1 + y0.y1'

Para um primeiro teste de funcionamento, foi construído um circuito no logisim com as equações de lógica de próximo estado e saída, representado na imagem abaixo.

Posteriormente, o sistema digital foi descrito utilizando VHDL.

```
library ieee;
use ieee.std_logic_1164.all;

--w = key2
--clock = key1
--reset = key0
--z = sw0

entity maqRefri is
    port(
        key: in std_logic_vector(3 downto 0);
ledr: out std_logic_vector(9 downto 0)
    );
    end maqRefri;

architecture Behavior of maqRefri is
    type Tipo_estado is (A,B,C,D);
    signal y_atual, y_prox : Tipo_estado;
begin
    process (key(2), y_atual)
    begin
    case y_atual is
```

```
when A =>
                 if key(2) = '1' then
                     y_prox <= B;
                     y_prox <= C;</pre>
                 if key(2) = '1' then
                     y_prox <= C;</pre>
                      y_prox <= D;</pre>
                 if key(2) = '1' then
                    y_prox <= D;</pre>
                      y_prox <= D;</pre>
                     y_prox <= A;</pre>
                      y_prox <= A;</pre>
   process (key(1), key(0))
        if key(0) = '0' then
            y_atual <= A;
        elsif (key(1) \cdot event and key(1) = '0') then
            y_atual <= y_prox;</pre>
   ledr(0) <= '1' when y_atual = D else '0';</pre>
end Behavior;
```

O código foi compilado utilizando o programa Digital, gerando a máquina de estados capaz de realizar o controle de uma máquina de refrigerante, que foi posteriormente simulada também utilizando o Digital.

Conclusão

Este projeto foi de extrema importância para uma melhor fixação dos conteúdos estudados na disciplina, principalmente flip-flops e descrição do sistema em VHDL, podendo assim ter mais repertório para projetos futuros.