PHẦN ĐỀ BÀI

Ngày làm đề:/...../

ÔN THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 1 **LỚP LTĐH THÂY PHÁT**

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho số phức z = a + bi $(a, b \in \mathbb{R})$ thỏa mãn |z| = 1. Tìm giá tri lớn nhất của biểu thức A = |z + 2| + 2|z - 2|.

- **A.** $10\sqrt{2}$.
- **C.** 10.
- **D.** $5\sqrt{2}$.

CÂU 2. Cho hàm số f(x) xác định và có đạo hàm f'(x) liên tục trên đoạn [1;3] và $f(x) \neq 0$ với mọi $x \in [1; 3]$, đồng thời $f'(x) + [1 + f(x)]^2 = [f^2(x)(x-1)]^2$ và f(1) = -1. Biết rằng $\int f(x) dx = a \ln 3 + b$ trong đó $a, b \in \mathbb{Z}$. Tính tổng $S = a + b^2.$

- **A.** S = -1. **B.** S = 2.
- **C.** S = 0.
- **D.** S = -4.

CÂU 3. Có bao nhiêu bộ (x;y)? Với x, y nguyên và $1 \le x, y \le 2020$ thỏa mãn

$$(xy + 2x + 4y + 8)\log_3\left(\frac{2y}{y+2}\right) \le (2x + 3y - xy - 6)\log_2\left(\frac{2x+1}{x-3}\right).$$

- **A.** 4 034.
- **B.** 2.
- **C.** 2017.
- **D.** $2017 \cdot 2020$.

CÂU 4. Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng nhau và bằng 2a (minh họa như hình vẽ). Cô-sin của góc hợp bởi (A'BC) và (ABC) bằng

- **A.** $\frac{\sqrt{21}}{3}$. **B.** $\frac{\sqrt{21}}{7}$. **C.** $\frac{2}{\sqrt{3}}$. **D.** $\frac{2}{\sqrt{7}}$.

CÂU 5. Cho hình chóp S.ABC có đáy ABC là tam giác đều, $SA \perp (ABC)$. Mặt phẳng (SBC) cách A một khoảng bằng a và hợp với mặt phẳng (ABC) góc 30° . Thể tích của khối chóp S.ABC bằng

- **B.** $\frac{\sqrt{3}a^3}{12}$. **C.** $\frac{4a^3}{9}$.
- **D.** $\frac{8a^3}{2}$.

ĐIỂM:

Giữ tâm thế thoải mái Luôn vững lái tay chèo.

QUICK NOTE

QUICK NOTE

CÂU 6. Cho hàm số f(x) liên tục trên \mathbb{R} , có đồ thị như hình vẽ. Có tất cả bao nhiêu giá trị nguyên của tham số a để hàm số +a-1 có giá trị lớn nhất

không vượt quá 20? **B.** 31.

A. 41.

D. 29.

C. 35.

CÂU 7. Cho f(x) là hàm đa thức bâc 3 có đồ thị như hình vẽ. Tiếp tuyến của đồ thị hàm số tai điểm M có hoành đô bằng -2cắt đồ thị tại điểm thứ hai N(1;1) và cắt Oxtai điểm có hoành đô bằng 4. Biết diên tích

phần gạch chéo là $\frac{9}{16}.$ Tích phân $\int f(x)\,\mathrm{d}x$

A.
$$\frac{31}{18}$$
.

B.
$$\frac{13}{6}$$

A.
$$\frac{31}{18}$$
. **B.** $\frac{13}{6}$. **C.** $\frac{19}{9}$. **D.** $\frac{7}{3}$.

D.
$$\frac{7}{3}$$

CÂU 8. Tổng tất cả các giá trị của tham số m để phương trình

$$3^{x^2 - 2x + 1 - 2|x - m|} = \log_{x^2 - 2x + 3}(2|x - m| + 2)$$

có đúng ba nghiệm phân biệt là

CÂU 9. Cho các số phức $z_1 = 1 + 3i, z_2 = -5 - 3i$. Tìm điểm M(x;y) biểu diễn số phức z_3 , biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x-2y+1=0và mô-đun số phức w = $3z_3 - z_2 - 2z_1$ đạt giá trị nhỏ nhất.

A.
$$M\left(\frac{3}{5}; \frac{1}{5}\right)$$
.

B.
$$M\left(-\frac{3}{5}; -\frac{1}{5}\right)$$
.

c.
$$M\left(\frac{3}{5}; -\frac{1}{5}\right)$$
.

D.
$$M\left(-\frac{3}{5}; \frac{1}{5}\right)$$
.

CÂU 10. Trong không gian Oxyz, cho ba điểm A(2; -2; 4), B(-3; 3; -1), C(-1; -1; -1)và mặt phẳng (P): 2x - y + 2z + 8 = 0. Xét điểm M thay đổi thuộc (P), tìm giá trị nhỏ nhất của biểu thức $T = 2MA^2 + MB^2 - MC^2$.

Ngày làm đề:/...../

ÔN THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 2 **LỚP LTĐH THÂY PHÁT**

Thời gian làm bài: 90 phút, không kể thời gian phát đề

$$I = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x \, dx + 3 \int_{0}^{1} f(3 - 2x) \, dx.$$

A.
$$I = \frac{71}{6}$$
.

B.
$$I = 31$$
.

C.
$$I = 32$$

A.
$$I = \frac{71}{6}$$
. **B.** $I = 31$. **C.** $I = 32$. **D.** $I = \frac{32}{3}$.

CÂU 2. Có bao nhiêu số phức z thỏa mãn $(1+i)z + \overline{z}$ là số thuần ảo và |z-2i| =1?

CÂU 3. Cho hình chóp S.ABCD có đáy là hình vuông canh $a, SA \perp (ABCD)$, cạnh bên SC tạo với mặt đáy góc 45° . Tính thể tích V của khối chóp S.ABCD theo

A.
$$V = a^3 \sqrt{2}$$
.

B.
$$V = \frac{a^3\sqrt{3}}{3}$$
.

c.
$$V = \frac{a^3\sqrt{2}}{3}$$

A.
$$V = a^3 \sqrt{2}$$
. **B.** $V = \frac{a^3 \sqrt{3}}{3}$. **C.** $V = \frac{a^3 \sqrt{2}}{3}$. **D.** $V = \frac{a^3 \sqrt{2}}{6}$.

CÂU 4. Một cái cổng hình parabol như hình vẽ. Chiều cao GH = 4 m, chiều rông AB = 4 m, AC = BD =0,9 m. Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật CDEF tô đậm giá là 1200000 đồng/m², còn các phần để trắng làm xiên hoa có giá là 900000 đồng/m². Hỏi tổng chi phí để là hai phần nói trên gần nhất với số tiền nào dưới đây?

B. 7368000 (đồng).

D. 11370000 (đồng).

CÂU 5. Trong không gian Oxyz, cho hai đường thẳng d_1 : $\frac{x-3}{-1} = \frac{y-3}{-2} = \frac{z+2}{1}$; $d_2\colon \frac{x-5}{-3}=\frac{y+1}{2}=\frac{z-2}{1}$ và mặt phẳng $(P)\colon x+2y+3z-5=0.$ Đường thẳng vuông góc với (P), cắt d_1 và d_2 có phương trình là

A.
$$\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-1}{3}$$
.
C. $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$.

B.
$$\frac{x-3}{1} = \frac{y-3}{2} = \frac{z+2}{3}$$
.
D. $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z}{1}$.

c.
$$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$$
.

D.
$$\frac{x-1}{3} = \frac{y+1}{2} = \frac{z}{1}$$
.

ĐIỂM:

Giữ tâm thế thoải mái Luôn vững lái tay chèo.

QUICK NOTE

QUICK NOTE

CÂU 6. Cho hàm số y = f(x) có đồ thị y = f'(x)như hình vẽ bên. Đồ thị hàm số g(x) = |2f(x)| $(x-1)^2$ có tối đa bao nhiều điểm cực trị?

A. 3.

B. 5.

CÂU 7. Tập giá trị của x thỏa mãn $\frac{2\cdot 9^x-3\cdot 6^x}{6^x-4^x}\leq 2(x\in\mathbb{R})$ là $(-\infty;a]\cup(b;c]$. Khi đó (a+b+c)! bằng

A. 2.

C. 1.

D. 6.

CÂU 8. Cho hàm số $y = x^4 - 3x^2 + m$ có đồ thị (C_m) , với m là tham số thực. Giả sử (C_m) cắt trực Ox tại bốn điểm phân biệt như hình vẽ. Gọi $S_1,\,S_2,\,S_3$ là diện tích các miền gạch chéo được cho trên hình vẽ. Giá trị của m để $S_1+\dot{S}_3=S_2$ là **A.** $-\frac{5}{2}$. **B.** $\frac{5}{4}$. **C.** $-\frac{5}{4}$. **D.** $\frac{5}{2}$.

CÂU 9. Cho số phức z thỏa mãn $|z-1-i|+|z-3-2i|=\sqrt{5}$. Giá trị lớn nhất của |z+2i| bằng

A. 10.

B. 5.

C. $\sqrt{10}$.

D. $2\sqrt{10}$.

CÂU 10. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu $(S): (x-2)^2 + (y-1)^2$ $(1)^2 + (z-1)^2 = 9$ và $M(x_0; y_0; z_0) \in (S)$ sao cho $A = x_0 + 2y_0 + 2z_0$ đạt giá trị nhỏ nhất. Khi đó $x_0 + y_0 + z_0$ bằng

A. 2.

 \mathbf{C}_{\bullet} -2.

D. 1.

Ngày làm đề:/...../

ÔN THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 3 **LỚP LTĐH THÂY PHÁT**

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho hàm số f(x) nhận giá trị dương và thỏa mãn $f(0)=1, (f'(x))^3=\mathrm{e}^x\left(f(x)\right)^2, \, \forall x\in\mathbb{R}.$ Tính f(3)

- **A.** $f(3) = e^2$.

- **C.** f(3) = e. **D.** f(3) = 1.

CÂU 2. Bạn An cần mua một chiếc gương có đường viền là đường Parabol bâc 2. Biết rằng khoảng cách đoạn $AB = 60 \,\mathrm{cm}$, $OH = 30 \,\mathrm{cm}$. Diện tích của chiếc gương bạn An mua là

- **A.** $1200 \ (cm^2)$.
- **B.** $1400 \ (cm^2)$.
- **C.** $900 \ (cm^2)$.
- **D.** $1000 \ (cm^2)$.

CÂU 3. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng d_1 : $\frac{x-4}{1} = \frac{y+2}{4} = \frac{z-1}{-2}$; d_2 : $\frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-1}{1}$. Phương trình đường thẳng qua A vuông góc với d_1 và cắt d_2 là **A.** $\frac{x-1}{4} = \frac{y+1}{1} = \frac{z-3}{4}$. **B.** $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{-1}$. **C.** $\frac{x-1}{-1} = \frac{y+1}{2} = \frac{z-3}{3}$. **D.** $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{3}$.

CÂU 4. Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại $A,~\widehat{ACB}=30^{\circ},$ biết góc giữa B'C và mặt phẳng (ACC'A') bằng α thỏa mãn $\sin \alpha = \frac{1}{2\sqrt{5}}$. Cho khoảng cách giữa hai đường thẳng A'B và CC' bằng $a\sqrt{3}$. Tính thể tích V của khối lăng trụ ABC.A'B'C'.

- **A.** $V = 2a^3\sqrt{3}$. **B.** $V = \frac{3a^3\sqrt{6}}{2}$. **C.** $V = a^3\sqrt{3}$.

CÂU 5. Cho Parabol (P): $y = x^2$ và đường tròn (C) có tâm A(0;3), bán kính $\sqrt{5}$ như hình vẽ. Diện tích phần được tô đậm giữa (C) và (P) gần nhất với số nào dưới đây?

- **A.** 1,77.
- **B.** 3, 44.
- **C.** 1, 51.
- **D.** 3, 54.

CÂU 6. Cho hàm số f(x) liên tục trên $\mathbb R$ và thỏa $\int_{-2}^2 f\left(\sqrt{x^2+5}-x\right)\mathrm{d}x = 1,$

$$\int_{1}^{5} \frac{f(x)}{x^{2}} dx = 3. \text{ Tính } \int_{1}^{5} f(x) dx.$$
A. 0. **B.** -15.

- **D.** 13.

ĐIỂM:

Giữ tâm thế thoải mái Luôn vững lái tay chèo.

QUICK NOTE

₱ Địa chỉ: KDC Mỹ Điền, TT. T	uy l
QUICK NOTE	
MOICK NOTE	

CÂU 7. Cho $z,w\in\mathbb{C}$ thỏa $|z+2|=|\overline{z}|,\,|z+i|=|z-i|,\,|w-2-3i|\leq 2\sqrt{2},$ $|\overline{w} - 5 + 6i| \le 2\sqrt{2}$. Giá trị lớn nhất |z - w| bằng

A. $5\sqrt{2}$.

B. $4\sqrt{2}$.

D. $6\sqrt{2}$.

CÂU 8. Cho phương trình $3^x (3^{2x} + 1) - (3^x + m + 2) \sqrt{3^x + m + 3} = 2\sqrt{3^x + m + 3}$, với m là tham số. Có bao nhiều giá trị nguyên âm của m để phương trình có nghiệm thực?

A. 3.

B. 6.

C. 4.

D. 5.

CÂU 9. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3) và mặt phẳng (P): x + my + (2m + 1)z - m - 2 = 0, m là tham số thực. Gọi H(a;b;c) là hình chiếu vuông góc của điểm A trên (P). Khi khoảng cách từ điểm A đến (P) lớn nhất, tinh a + b.

A. 2.

D. 0.

CÂU 10. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x+1)^2(x+3)(x^2+2mx+5)$ với mọi $x \in \mathbb{R}$. Có bao nhiều giá trị nguyên âm của tham số m để hàm số g(x) = f(|x|)có đúng một điểm cực trị.

A. 3.

B. 5.

C. 4.

D. 2.

Ngày làm đề:/...../

ÔN THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 4 **LỚP LTĐH THÂY PHÁT**

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} . Biết f(3)=1 và $\int x f\left(3x\right) \,\mathrm{d}x=$

- **B.** $\frac{25}{2}$.
- **D.** 7.

CÂU 2. Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} . Biết hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số g(x) = f(x) + x đạt cực tiểu tại điểm

B.
$$x = 2$$
.

C. Không có điểm cực tiểu.

D.
$$x = 1$$
.

CÂU 3. Thể tích V của khối hộp chữ nhật ABCD.A'B'C'D' biết AB = a, AD =2a, $AC' = a\sqrt{14}$ là

A.
$$V = 2a^3$$

B.
$$V = a^3 \sqrt{5}$$
.

C.
$$V = 6a^3$$

A.
$$V = 2a^3$$
. **B.** $V = a^3\sqrt{5}$. **C.** $V = 6a^3$. **D.** $V = \frac{a^3\sqrt{14}}{3}$.

CÂU 4. Trong không gian với hệ trục Oxyz, đường vuông góc chung của hai đường thẳng chéo nhau d_1 : $\frac{x-2}{2} = \frac{y-3}{3} = \frac{z+4}{-5}$ và d_2 : $\frac{x+1}{3} = \frac{y-4}{-2} = \frac{z-4}{-1}$ có phương trình là

A.
$$\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
.
C. $\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-3}{2}$.

B.
$$\frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$$
.

c.
$$\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-3}{2}$$

B.
$$\frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$$
.
D. $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{-1}$.

CÂU 5. Số giá trị nguyên dương của tham số m để bất phương trình

$$9^{\sqrt{x^2-3x+m}} + 2 \cdot 3^{\sqrt{x^2-3x+m}-2+x} < 3^{2x-3}$$

có nghiệm là

- A. 8.
- **B.** 1.
- **C.** 6.
- **D.** 4.

ĐIỂM:

Giữ tâm thế thoải mái Luôn vững lái tay chèo.

QUICK NOTE

٠	•	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•
	•		•	•	•											•	•	•	•	•	•											•	

QUICK NOTE

CÂU 6. Bồn hoa của một trường X có dạng hình tròn bán kính bằng 8m. Người ta chia bồn hoa thành các phần như hình vẽ dưới đây và có ý định trồng hoa như sau: Phần diện tích bên trong hình vuông ABCD để trồng hoa. Phần diên tích kéo dài từ 4 canh của hình vuông đến đường tròn dùng để trồng cỏ. Ở 4 góc còn lại mỗi góc trồng một cây cọ. Biết AB = 4m, giá trồng hoa là 200.000 đồng/ m^2 , giá trồng cỏ là 100.000 đồng $/m^2$, mỗi cây cọ giá 150.000đồng. hỏi cần bao nhiêu tiền để thực hiện việc trang trí bồn hoa đó.

A. 14.465.000 đồng.

B. 14.865.000 đồng.

C. 13.265.000 đồng.

D. 12.218.000 đồng.

CÂU 7. Cho z_1, z_2 là hai trong các số phức thỏa mãn $\left|z-3+\sqrt{3}i\right|=2$ và $\left|z_1-z_2\right|=$

4. Giá trị lớn nhất của $|z_1| + |z_2|$ bằng

A.
$$2 + 2\sqrt{3}$$
.

B.
$$4\sqrt{3}$$
.

D. 8.

CÂU 8. Trong không gian Oxyz, cho hình nón có đỉnh I thuộc mặt phẳng (P): 2xy-2z-7=0 và hình tròn đáy nằm trên mặt phẳng (R): 2x-y-2z+8=0. Mặt phẳng (Q) đi qua điểm A(0; -2; 0) và vuông góc với trục của hình nón chia hình nón thành hai phần có thể tích lần lượt là V_1 và V_2 (V_1 là thể tích của hình nón chứa đỉnh I). Biết bằng biểu thức $S=V_2+\frac{78}{V_1^3}$ đạt giá trị nhỏ nhất khi $V_1=a,$

 $V_2 = b$. Khi đó tổng $a^2 + b^2$ bằng

A.
$$52\sqrt{3}\pi^2$$
.

B.
$$377\sqrt{3}$$
.

D.
$$2031\pi^2$$
.

CÂU 9. Cho đồ thị hàm số y = f(x) như hình vẽ bên Số điểm cực đại, cực tiểu của hàm số $g(x) = [f(x)]^2$ là

- A. 1 điểm cực đại, 3 điểm cực tiểu.
- B. 3 điểm cực đại, 2 điểm cực tiểu.
- C. 2 điểm cực đại, 2 điểm cực tiểu.
- D. 2 điểm cực đại, 3 điểm cực tiểu.

Từ bảng biến thiên trên suy ra hàm số $g(x) = [f(x)]^2$ có 2 điểm cực đại, 3 điểm cực tiểu.

CÂU 10. Có bao nhiêu giá trị nguyên của tham số $m \in [-2019; 2019]$ để phương

 $2019^{x} + \frac{2x-1}{x+1} + \frac{mx-2m-1}{x-2} = 0$ có đúng 3 nghiệm thực phân biệt?

	2010
U.	2019.

D. 2017.

-Lời giải chi tiết

LỜI GIẢI CHI TIẾT

Ngày làm đề:/..../.....

ON THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 1 LỚP LTĐH THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho số phức z=a+bi $(a,b\in\mathbb{R})$ thỏa mãn |z|=1. Tìm giá trị lớn nhất của biểu thức A=|z+2|+12|z-2|.

A. $10\sqrt{2}$.

C. 10.

D. $5\sqrt{2}$.

🗭 Lời giải.

Ta có
$$\begin{cases} |z+2|^2 = (a+2)^2 + b^2 \\ |z-2|^2 = (a-2)^2 + b^2 \end{cases} \Rightarrow |z+2|^2 + |z-2|^2 = 2(a^2+b^2) + 8 = 2|z|^2 + 8 = 10.$$

Mà
$$A^2 = (|z+2|+2|z-2|)^2 \le (1^2+2^2)(|z+2|^2+|z-2|^2) = 50.$$

Vì $A \ge 0$ nên từ đó suy ra $A \le \sqrt{50} = 5\sqrt{2}.$

Với
$$a = -\frac{3}{4}$$
; $b = \frac{\sqrt{7}}{4}$ ta có $A = 5\sqrt{2}$.

Vây giá tri lớn nhất của A là $5\sqrt{2}$

Chọn đáp án (D)

CÂU 2. Cho hàm số f(x) xác định và có đạo hàm f'(x) liên tục trên đoạn [1;3] và $f(x) \neq 0$ với mọi $x \in [1;3]$, đồng thời $f'(x) + [1 + f(x)]^2 = [f^2(x)(x-1)]^2$ và f(1) = -1. Biết rằng $\int f(x) dx = a \ln 3 + b$ trong đó $a, b \in \mathbb{Z}$.

Tính tổng $S = a + b^2$.

A. S = -1.

C. S = 0.

D. S = -4.

🗭 Lời giải.

Ta có
$$f'(x)[1+f(x)]^2 = [f^2(x)(x-1)]^2 \Leftrightarrow \frac{f'(x)[1+f(x)]^2}{f^4(x)} = (x-1)^2.$$

Lấy nguyên hàm hai vế ta được

$$\int \frac{f'(x)[1+f(x)]^2}{f^4(x)} dx = \int (x-1)^2 dx \Leftrightarrow \int \frac{[1+2f(x)+f^2(x)]f'(x)}{f^4(x)} dx = \int (x-1)^2 dx$$

$$\Leftrightarrow \int \left[\frac{1}{f^4(x)} + \frac{2}{f^3(x)} + \frac{1}{f^2(x)}\right] d[f(x)] = \frac{(x-1)^3}{3} + C$$

$$\Leftrightarrow -\frac{1}{3f^3(x)} - \frac{1}{f^2(x)} - \frac{1}{f(x)} = \frac{(x-1)^3}{3} + C$$

$$\Leftrightarrow -\frac{1+3f(x)+3f^2(x)}{3f^3(x)} = \frac{(x-1)^3}{3} + C$$

Mà
$$f(1) = -1 \Leftrightarrow -\frac{1-3+3}{-3} = C \Leftrightarrow C = \frac{1}{3}$$
.

Do đó $-\frac{1+3f(x)+3f^2(x)}{3f^3(x)} = \frac{(x-1)^3}{3} + \frac{1}{3} \Leftrightarrow \frac{1+3f(x)+3f^2(x)}{3f^3(x)} + \frac{1}{3} = -\frac{(x-1)^3}{3}$

$$\Leftrightarrow \frac{[1+f(x)]^3}{f^3(x)} = -(x-1)^3$$

$$\Leftrightarrow \left[1 + \frac{1}{f(x)}\right]^3 = (1-x)^3$$

$$\Leftrightarrow f(x) = -\frac{1}{x}$$

Vậy
$$\int_{1}^{3} f(x) dx = \int_{1}^{3} -\frac{1}{x} dx = -\ln|x| \Big|_{1}^{3} = -\ln 3.$$

Suy ra $a=-1,\,b=0 \Rightarrow S=a+b^2=-1.$ Chọn đáp án $\stackrel{\frown}{\mathbb{A}}$

CÂU 3. Có bao nhiêu bộ (x;y)? Với x, y nguyên và $1 \le x, y \le 2020$ thỏa mãn

$$(xy + 2x + 4y + 8) \log_3 \left(\frac{2y}{y+2}\right) \le (2x + 3y - xy - 6) \log_2 \left(\frac{2x+1}{x-3}\right).$$

A. 4034.

C. 2017.

D. $2017 \cdot 2020$.

Lời giải.

Điều kiện
$$\begin{cases} x, y \in \mathbb{N}^* \colon x, y \leq 2020 \\ \frac{2x+1}{x-3} > 0, \frac{2y}{y+2} > 0 \end{cases} \Leftrightarrow \begin{cases} x, y \in \mathbb{N}^* \colon x, y \leq 2020 \\ x > 3, y > 0. \end{cases}$$

Bất phương trình đã cho được viết lại

$$(x-3)(y-2)\log_2\left(\frac{x+4}{x-3}+1\right) + (x+4)(y+2)\log_3\left(\frac{y-2}{y+2}+1\right) \le 0. \ (*)$$

- \bigcirc Với y=1 thì (*) trở thành $-(x-3)\log_2\left(\frac{x+4}{x-3}+1\right)+3(x+4)\log_3\frac{2}{3}\leq 0$, rõ ràng bất phương trình này nghiệm đúng với mọi x > 3 vì -(x-3) < 0, $\log_2\left(\frac{x+4}{x-3}+1\right) > \log_2(0+1) = 0$, 3(x+4) > 0, $\log_3\frac{2}{3} < 0$. Như vậy trường hợp này cho ta đúng 2017 bộ (x;y)=(x;1) với $4 \le x \le 2020, x \in \mathbb{N}$.
- \odot Với y=2 thì (*) thành $4(x+4)\log_3 1 \le 0$, bất phương trình này cũng luôn đúng với mọi x mà $4 \le x \le 2020$, $x \in \mathbb{N}$. Trường hợp này cho ta thêm 2017 cặp (x; y).
- \odot Với y>2, x>3 thì vế trái của bất phương trình (*) luôn dương nên (*) không xảy ra.

Vậy có đúng $4\,034$ bộ số (x;y) thỏa mãn yêu cầu bài toán.

Chon đáp án (A)

CÂU 4. Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng nhau và bằng 2a(minh họa như hình vẽ). Cô-sin của góc hợp bởi (A'BC) và (ABC) bằng

Lời giải.

Gọi I là trung điểm của BC.

Khi đó,
$$\begin{cases} BC \perp AI \\ BC \perp AA' \end{cases}$$
 nên $BC \perp (AA'I) \Rightarrow BC \perp A'I.$

Vậy góc hợp bởi (A'BC) và (ABC) bằng $\widehat{AIA'}$

Ta có
$$AI = \frac{2a\sqrt{3}}{2} = a\sqrt{3}$$
, $AA' = 2a \Rightarrow \tan \widehat{AIA'} = \frac{AA'}{AI} = \frac{2a}{a\sqrt{3}} = \frac{2}{\sqrt{3}}$

Mặt khác
$$1 + \tan^2 \widehat{AIA'} = \frac{1}{\cos^2 \widehat{AIA'}} \Rightarrow \cos^2 \widehat{AIA'} = \frac{1}{1 + \tan^2 \widehat{AIA'}} = \frac{1}{1 + \frac{4}{3}} = \frac{3}{7}$$
.

Vây $\cos \widehat{AIA'} = \frac{\sqrt{21}}{7}$

Chọn đáp án (B)

CÂU 5. Cho hình chóp S.ABC có đáy ABC là tam giác đều, $SA \perp (ABC)$. Mặt phẳng (SBC) cách A một khoảng bằng a và hợp với mặt phẳng (ABC) góc 30° . Thể tích của khối chóp S.ABC bằng

A.
$$\frac{8a^3}{9}$$

B.
$$\frac{\sqrt{3}a^3}{12}$$
.

c.
$$\frac{4a^3}{9}$$

D.
$$\frac{8a^3}{3}$$

🗭 Lời giải.

Gọi I là trung điểm BC suy ra góc giữa (SBC) và (ABC) là $\widehat{SIA} = 30^{\circ}$.

Gọi H là hình chiếu của A trên $SI \Rightarrow AH \perp (SBC)$ suy ra d(A, (SBC)) = AH = a.

Xét tam giác AHI vuông tại H, ta có $AI = \frac{AH}{\sin 30^{\circ}} = 2a$.

Giả sử tam giác đều ABC có cạnh bằng x, mà AI là đường cao suy ra $2a = x \cdot \frac{\sqrt{3}}{2} \Rightarrow x = \frac{4a}{\sqrt{3}}$.

Diện tích tam giác đều ABC là $S_{ABC} = \left(\frac{4a}{\sqrt{3}}\right)^2 \cdot \frac{\sqrt{3}}{4} = \frac{4a^2\sqrt{3}}{3}$

Xét tam giác SAI vuông tại A suy ra $SA = AI \cdot \tan 30^\circ = \frac{2a}{\sqrt{3}}$

Vây
$$V_{S.ABC} = \frac{1}{3} \cdot S_{ABC} \cdot SA = \frac{1}{3} \cdot \frac{4a^2\sqrt{3}}{3} \cdot \frac{2a}{\sqrt{3}} = \frac{8a^3}{9}$$

Chọn đáp án (A)

CÂU 6. Cho hàm số f(x) liên tục trên \mathbb{R} , có đồ thị như hình vẽ. Có tất cả bao nhiêu giá trị nguyên của tham số a để hàm số $y = \left| f\left(\frac{8x}{x^2+1}\right) + a - 1 \right|$ có giá trị lớn nhất không vượt quá 20?

🗭 Lời giải.

Đặt
$$t = \frac{8x}{x^2 + 1}$$
.
Ta có $t' = \frac{-8x^2 + 8}{(x^2 + 1)^2}$; $t' = 0 \Leftrightarrow x = \pm 1$.

Bảng biến thiên của t(x)

x	$-\infty$		-1		1		$+\infty$
t'		_	0	+	0	_	
t	0		-4		x 4 \		0

Dựa vào bảng biến thiên, suy ra $t \in [-4; 4]$. Xét hàm số $h(t) = f(t) + a - 1, t \in [-4; 4]$, ta có

$$h'(t) = f'(t), h'(t) = 0 \Leftrightarrow f'(t) = 0 \Leftrightarrow \begin{cases} t = -4 \in [-4; 4] \\ t = -2 \in [-4; 4] \\ t = 2 \in [-4; 4]. \end{cases}$$

Suy ra $\max_{[-4;4]} |h(t)| = \max\{|a+5|; |a-5|\}.$

Yêu cầu bài toán \Leftrightarrow $\begin{cases} |a+5| \le 20 \\ |a-5| \le 20 \end{cases} \Leftrightarrow \begin{cases} -20 \le a+5 \le 20 \\ -20 \le a-5 \le 20 \end{cases} \Leftrightarrow \begin{cases} -25 \le a \le 15 \\ -15 \le a \le 25 \end{cases} \Leftrightarrow -15 \le a \le 15.$

Vậy có tất cả 31 giá trị nguyên của tham số a thỏa Chọn đáp án (B)

CÂU 7. Cho f(x) là hàm đa thức bâc 3 có đồ thi như hình vẽ. Tiếp tuyến của đồ thị hàm số tại điểm M có hoành độ bằng -2 cắt đồ thị tại điểm thứ hai N(1;1) và cắt Ox tại điểm có hoành độ bằng 4. Biết diện tích

phần gạch chéo là $\frac{9}{16}$. Tích phân $\int\limits_{-1}^{\cdot} f(x) \, \mathrm{d}x$ bằng **A.** $\frac{31}{18}$. **B.** $\frac{13}{6}$. **C.** $\frac{19}{9}$. **D.** $\frac{7}{3}$.

A.
$$\frac{31}{18}$$

B.
$$\frac{13}{6}$$
.

c.
$$\frac{19}{9}$$
.

D.
$$\frac{7}{3}$$
.

Dựa vào giả thiết đường thẳng d đi qua hai điểm M(-2;2) và P(4;0).

Suy ra $d: x + 3y - 4 = 0 \Rightarrow y = -\frac{1}{3}x + \frac{4}{3}$

Từ giả thiết, ta có hàm số $f(x) = ax^3 + bx^2 + cx + 1 \Rightarrow f'(x) = 3ax^2 + 2bx + c$.

Đồ thị hàm số lần lượt qua điểm (-2;2); qua điểm (1;1) và tiếp xúc đường thẳng d tại $x=-2 \Leftrightarrow \begin{cases} 1--8a+4b-2c\\0=a+b+c\\12a-4b+c=-\frac{1}{3} \end{cases}$

$$\Leftrightarrow \begin{cases} 0 = a + b + c \\ 12a - 4b + c = -\frac{1}{3} \end{cases}$$

$$\Rightarrow \begin{cases} a = \frac{1}{12} \\ b = \frac{1}{4} \Rightarrow y = \frac{1}{12}x^3 + c = -\frac{1}{3} \end{cases}$$

Từ đó $\int_{0}^{1} f(x) dx = \frac{13}{6}$.

Chon đáp án (B)

CÂU 8. Tổng tất cả các giá trị của tham số m để phương trình

$$3^{x^2 - 2x + 1 - 2|x - m|} = \log_{x^2 - 2x + 3}(2|x - m| + 2)$$

có đúng ba nghiệm phân biệt là

Lời giải.

 $3^{x^2 - 2x + 1 - 2|x - m|} = \log_{x^2 - 2x + 3}(2|x - m| + 2)$ Ta có

$$\Leftrightarrow 3^{x^2 - 2x + 3 - (2|x - m| + 2)} = \frac{\ln(2|x - m| + 2)}{\ln(x^2 - 2x + 3)}$$

$$\Leftrightarrow 3^{x^2-2x+3} \cdot \ln(x^2-2x+3) = 3^{2|x-m|+2} \cdot \ln(2|x-m|+2).$$
 (*)

Xét hàm đặc trung $f(t) = 3^t \cdot \ln t$, $t \ge 2$ là hàm số đồng biến.

Suy ra (*)
$$\Leftrightarrow x^2 - 2x + 3 = 2|x - m| + 2 \Leftrightarrow x^2 - 2x - 2|x - m| + 1 = 0.$$

$$\text{Dặt } g(x) = x^2 - 2x - 2|x - m| + 1 = 0.$$

$$\text{Dặt } g(x) = x^2 - 2x - 2|x - m| + 1, \text{ ta có } g(x) = \begin{cases} x^2 - 4x + 2m + 2 & \text{khi } x \ge m \\ x^2 - 2m + 1 & \text{khi } x \le m \end{cases}$$

$$g'(x) = \begin{cases} 2x - 4 & \text{khi } x > m \\ 2x & \text{khi } x < m \end{cases}; \ g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 2 & \text{khi } x > m \\ x = 0 & \text{khi } x < m. \end{cases}$$

 \odot Trường hợp 1. $m \le 0$ ta có bảng biến thiên của g(x) như sau

Phương trình chỉ có tối đa 2 nghiệm nên không có m thỏa mãn.

- \odot Trường hợp 2. $m \ge 2$ tương tự không có m thỏa mãn.
- **O Trường hợp 3.** 0 < m < 2, bảng biến thiên g(x) như sau

x	$-\infty$		0		m		2		$+\infty$
g'(x)		_	0	+		_	0	+	
g(x)	$+\infty$		-2m +		$(m-1)^{\frac{1}{2}}$		2m - 3		$+\infty$

Phương trình có 3 nghiệm khi $\begin{bmatrix} (m-1)^2=0\\ -2m+1=0>2m-3\\ -2m+1<0=2m-3 \end{bmatrix} \stackrel{m=1}{=} m=\frac{1}{2}$

Chọn đáp án (A)

CÂU 9. Cho các số phức $z_1 = 1 + 3i$, $z_2 = -5 - 3i$. Tìm điểm M(x; y) biểu diễn số phức z_3 , biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x-2y+1=0 và mô-đun số phức w $=3z_3-z_2-2z_1$ đạt giá trị nhỏ nhất.

A.
$$M\left(\frac{3}{5}; \frac{1}{5}\right)$$
.

B.
$$M\left(-\frac{3}{5}; -\frac{1}{5}\right)$$
. **C.** $M\left(\frac{3}{5}; -\frac{1}{5}\right)$. **D.** $M\left(-\frac{3}{5}; \frac{1}{5}\right)$.

c.
$$M\left(\frac{3}{5}; -\frac{1}{5}\right)$$

$$\mathbf{D.} \ M\left(-\frac{3}{5}; \frac{1}{5}\right).$$

Trắc nghiệm. Thay tọa độ điểm $M\left(-\frac{3}{5};\frac{1}{5}\right)$ vào về trái phương trình đường thẳng kết quả bằng 0 thỏa ta chọn $M\left(-\frac{3}{5};\frac{1}{5}\right).$

Tự luận. Ta có $w = 3z_3 - z_2 - 2z_1 = 3z_3 + 3 - 3i = 3(z_3 + 1 - i)$, suy ra $|w| = 3|z_3 + 1 - i| = 3AM$ với A(-1; 1). Điểm M(x;y) biểu diễn số phức z_3 nằm trên đường thẳng d: x-2y+1=0 và $A(-1;1) \notin d$. Khi đó $|w| = 3|z_3 + 1 - i| = 3AM$ đạt giá trị nhỏ nhất khi AM ngắn nhất $\Leftrightarrow AM \perp d$.

Vì $AM \perp d$ nên AM: 2x + y + 1 = 0. Khi đó $M = AM \cap d$ nên $M\left(-\frac{3}{5}; \frac{1}{5}\right)$.

Chọn đáp án (D)

CÂU 10. Trong không gian Oxyz, cho ba điểm A(2; -2; 4), B(-3; 3; -1), C(-1; -1; -1) và mặt phẳng (P): 2x - 1y+2z+8=0. Xét điểm M thay đổi thuộc (P), tìm giá trị nhỏ nhất của biểu thức $T=2MA^2+MB^2-MC^2$.

A. 102.

B. 35.

C. 105.

D. 30.

🗭 Lời giải.

Gọi I là điểm thỏa mãn

$$2\overrightarrow{IA} + \overrightarrow{IB} - \overrightarrow{IC} = \overrightarrow{0} \Leftrightarrow 2(\overrightarrow{OA} - \overrightarrow{OI}) + (\overrightarrow{OB} - \overrightarrow{OI}) - (\overrightarrow{OC} - \overrightarrow{OI}) = \overrightarrow{0}$$
$$\Leftrightarrow \overrightarrow{OI} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{OB} - \frac{1}{2}\overrightarrow{OC} = (1;0;4)$$
$$\Leftrightarrow I(1;0;4).$$

Khi đó, với mọi điểm $M(x; y; z) \in (P)$, ta luôn có

$$T = 2(\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2 - (\overrightarrow{MI} + \overrightarrow{IC})^2$$

= $2\overrightarrow{MI}^2 + 2\overrightarrow{MI} \cdot (2\overrightarrow{IA} + \overrightarrow{IB} - \overrightarrow{IC}) + 2\overrightarrow{IA}^2 + \overrightarrow{IB}^2 - \overrightarrow{IC}^2$
= $2MI^2 + 2IA^2 + IB^2 - IC^2$.

Ta tính được $2IA^2 + IB^2 - IC^2 = 30$.

Do đó, T đạt giá trị nhỏ nhất $\Leftrightarrow MI$ đạt giá trị nhỏ nhất $\Leftrightarrow MI \perp (P)$.

Chọn đáp án (A)

Ngày làm đề:/...../

ÔN THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 2 LỚP LTĐH THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho hàm số
$$y = f(x) = \begin{cases} x^2 + 3 & \text{khi } x \ge 1 \\ 5 - x & \text{khi } x < 1 \end{cases}$$
. Tính

$$I = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x \, dx + 3 \int_{0}^{1} f(3 - 2x) \, dx.$$

A.
$$I = \frac{71}{6}$$
.

B. I = 31.

C. I = 32.

D. $I = \frac{32}{3}$.

🗭 Lời giải.

Ta có

$$I = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x \, dx + 3 \int_{0}^{1} f(3 - 2x) \, dx$$

$$= 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, d(\sin x) - \frac{3}{2} \int_{0}^{1} f(3 - 2x) \, d(3 - 2x)$$

$$= 2 \int_{0}^{1} f(x) \, dx + \frac{3}{2} \int_{1}^{3} f(x) \, dx$$

$$= 2 \int_{0}^{1} (5 - x) \, dx + \frac{3}{2} \int_{1}^{3} (x^{2} + 3) \, dx$$

$$= 9 + 22 = 31.$$

Chọn đáp án (B)

CÂU 2. Có bao nhiêu số phức z thỏa mãn $(1+i)z + \overline{z}$ là số thuần ảo và |z-2i|=1?

A. 2.

D. Vô số.

П

Lời giải.

Đặt z = a + bi với $a, b \in \mathbb{R}$ ta có $(1+i)z + \overline{z} = (1+i)(a+bi) + a - bi = 2a - b + ai$. Mà $(1+i)z + \overline{z}$ là số thuần ảo nên $2a - b = 0 \Leftrightarrow b = 2a$.

Mặt khác |z - 2i| = 1 nên $a^2 + (b - 2)^2 = 1$.

Từ đó ta có $a^2 + (2a - 2)^2 = 1 \Leftrightarrow 5a^2 - 8a + 3 = 0 \Leftrightarrow \begin{bmatrix} a = 1 \Rightarrow b = 2 \\ a = \frac{3}{7} \Rightarrow b = \frac{6}{7} \end{bmatrix}$

Vậy có 2 số phức thỏa yêu cầu bài toán.

Chọn đáp án (A)

CÂU 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh $a, SA \perp (ABCD)$, cạnh bên SC tạo với mặt đáy góc 45° . Tính thể tích V của khối chóp S.ABCD theo a.

A. $V = a^3 \sqrt{2}$.

B. $V = \frac{a^3\sqrt{3}}{2}$. **C.** $V = \frac{a^3\sqrt{2}}{2}$.

D. $V = \frac{a^3\sqrt{2}}{c}$.

Lời giải.

Ta có góc giữa đường thẳng SC và (ABCD) là góc $\widehat{SCA} = 45^{\circ}$.

Do đó $\triangle SAC$ cân tại A nên $SA = AC = a\sqrt{2}$.

Vây
$$V_{S.ABCD} = \frac{1}{3} \cdot a^2 \cdot a\sqrt{2} = \frac{a^3\sqrt{2}}{3}.$$

Chọn đáp án (C)

CÂU 4. Một cái cổng hình parabol như hình vẽ. Chiều cao GH = 4 m, chiều rộng AB = 4 m, AC = BD = 0.9 m. Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật CDEF tô đậm giá là 1200000 đồng/ m^2 , còn các phần để trắng làm xiên hoa có giá là 900000 đồng/m². Hỏi tổng chi phí để là hai phần nói trên gần nhất với số tiền nào dưới đây?

A. 11445000 (đồng).

B. 7368000 (đồng).

C. 4077000 (đồng).

D. 11370000 (đồng).

🗩 Lời giải.

Gắn hệ trục tọa độ Oxy sao cho AB trùng Ox, A trùng O khi đó parabol có đỉnh G(2;4) và đi qua gốc tọa độ.

Gọi phương trình của parabol là $y = ax^2 + bx + c$.

Do đó ta có
$$\begin{cases} c = 0 \\ \frac{-b}{2a} = 2 \\ 2^2a + 2b + c = 4 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = 4 \\ c = 0. \end{cases}$$

Nên phương trình parabol là $y = f(x) = -x^2 + 4x$.

Diên tích của cả cổng là

$$S = \int_{0}^{4} (-x^{2} + 4x) dx = \left(-\frac{x^{3}}{3} + 2x^{2}\right) \Big|_{0}^{4} = \frac{32}{3} \approx 10,67 \text{ (m}^{2}).$$

Do vây chiều cao CF = DE = f(0.9) = 2.79 (m),

$$CD = 4 - 2 \cdot 0.9 = 2.2$$
 (m).

Diện tích hai cánh cổng là $S_{CDEF} = CD \cdot CF = 6{,}138 \approx 6{,}14 \text{ (m}^2).$

Diện tích phần xiên hoa là $S_{xh} = S - S_{CDEF} = 10,67 - 6,14 = 4,53 \text{ (m}^2).$

Nên tiền là hai cánh cổng là $6.14 \cdot 1200000 = 7368000$ (đồng) và tiền làm phần xiên hoa

 $1 \text{à } 4.53 \cdot 900000 = 4077000 \text{ (đồng)}.$

Vậy tổng chi phí là 11445000 đồng.

Chon đáp án (A)

CÂU 5. Trong không gian Oxyz, cho hai đường thẳng $d_1: \frac{x-3}{-1} = \frac{y-3}{-2} = \frac{z+2}{1}$; $d_2: \frac{x-5}{-3} = \frac{y+1}{2} = \frac{z-2}{1}$ và mặt phẳng (P): x + 2y + 3z - 5 = 0. Đường thẳng vuông góc với (P), cắt d_1 và d_2 có phương trình là **A.** $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-1}{3}$. **B.** $\frac{x-3}{1} = \frac{y-3}{2} = \frac{z+2}{3}$. **C.** $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$. **D.** $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z}{1}$.

A.
$$\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-1}{3}$$

B.
$$\frac{x-3}{1} = \frac{y-3}{2} = \frac{z+2}{2}$$
.

c.
$$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$$
.

D.
$$\frac{x-1}{3} = \frac{y+1}{2} = \frac{z}{1}$$
.

Gọi Δ là đường thẳng cần tìm. Gọi $M = \Delta \cap d_1$; $N = \Delta \cap d_2$.

Vì $M \in d_1$ nên M(3-t;3-2t;-2+t), $N \in d_2$ nên N(5-3s;-1+2s;2+s). Ta có $\overrightarrow{MN} = (2+t-3s;-4+2t+2s;4-t+s)$, (P) có một vec tơ pháp tuyến là $\overrightarrow{n} = (1;2;3)$. Vì $\Delta \perp (P)$ nên \overrightarrow{n} , \overrightarrow{MN} cùng phương, do đó:

$$\begin{cases} \frac{2+t-3s}{1} = \frac{-4+2t+2s}{2} \\ \frac{-4+2t+2s}{2} = \frac{4-t+s}{3} \end{cases} \Leftrightarrow \begin{cases} s=1 \\ t=2 \end{cases} \Leftrightarrow \begin{cases} M(1;-1;0) \\ N(2;1;3). \end{cases}$$

Khi đó Δ đi qua M và có một vecto chỉ phương là $\overrightarrow{MN} = (1;2;3)$.

Do đó Δ có phương trình chính tắc là $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$.

Chọn đáp án (C)

CÂU 6. Cho hàm số y=f(x) có đồ thị y=f'(x) như hình vẽ bên. Đồ thị hàm số $g(x)=|2f(x)-(x-1)^2|$ có tối đa bao nhiêu điểm cực trị?

A. 3.

B. 5

C. 6

D. 7

🗩 Lời giải.

Xét hàm số $h(x)=2f(x)-(x-1)^2$, ta có h'(x)=2f'(x)-2(x-1). $h'(x)=0 \Leftrightarrow f'(x)=x-1 \Leftrightarrow x=0 \lor x=1 \lor x=2 \lor x=3$. Bảng biến thiên

Từ bảng biến thiên suy ra đồ thị hàm y = h(x) có 2 điểm cực trị. Đồ thị hàm số g(x) = |h(x)| nhận có tối đa 5 điểm cực trị.

Chọn đáp án B

CÂU 7. Tập giá trị của x thỏa mãn $\frac{2 \cdot 9^x - 3 \cdot 6^x}{6^x - 4^x} \le 2(x \in \mathbb{R})$ là $(-\infty; a] \cup (b; c]$. Khi đó (a + b + c)! bằng **A.** 2. **B.** 0. **C.** 1. **D.** 6.

Dài giải.

Diều kiện $6^x - 4^x \neq 0 \Leftrightarrow \left(\frac{3}{2}\right)^x \neq 1 \Leftrightarrow x \neq 0.$

Khi đó $\frac{2.9^x - 3.6^x}{6^x - 4^x} \le 2 \Leftrightarrow \frac{2.\left(\frac{3}{2}\right)^{2x} - 3.\left(\frac{3}{2}\right)^x}{\left(\frac{3}{2}\right)^x - 1} \le 2.$

Đặt $t = \left(\frac{3}{2}\right)^x,\, t>0$ ta được bất phương trình

$$\frac{2t^2 - 3t}{t - 1} \le 2 \Leftrightarrow \frac{2t^2 - 5t + 2}{t - 1} \le 0 \Leftrightarrow \begin{bmatrix} t \le \frac{1}{2} \\ 1 < t \le 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \left(\frac{3}{2}\right)^x \le \frac{1}{2} \\ 1 < \left(\frac{3}{2}\right)^x \le 2 \end{cases} \Leftrightarrow \begin{bmatrix} x \le \log_{\frac{3}{2}} \frac{1}{2} \\ 0 < x \le \log_{\frac{3}{2}} 2. \end{bmatrix}$$

Vậy tập nghiệm của bất phương trình là $\left(-\infty; \log_{\frac{3}{2}} \frac{1}{2}\right] \cup \left(0; \log_{\frac{3}{2}} 2\right]$.

Suy ra $a+b+c=\log_{\frac{3}{2}}\frac{1}{2}+\log_{\frac{3}{2}}2=0$. Do đó (a+b+ct)!=1

Chọn đáp án (C)

CÂU 8. Cho hàm số $y = x^4 - 3x^2 + m$ có đồ thị (C_m) , với m là tham số thực. Giả sử (C_m) cắt trực Ox tại bốn điểm phân biệt như hình vẽ. Gọi S_1, S_2, S_3 là diện tích các miền gạch chéo được cho trên hình vẽ. Giá trị của m để $S_1+S_3=S_2$ là **A.** $-\frac{5}{2}$. **B.** $\frac{5}{4}$. **C.** $-\frac{5}{4}$.

B.
$$\frac{5}{4}$$
.

C.
$$-\frac{5}{4}$$
.

D.
$$\frac{5}{2}$$
.

Lời giải.

Gọi x_1 là nghiệm dương lớn nhất của phương trình $x^4 - 3x^2 + m = 0$, ta có $m = -x_1^4 + 3x_1^2$. (1)

Vì
$$S_1 + S_3 = S_2$$
 và $S_1 = S_3$ nên $S_2 = 2S_3$ hay $\int_0^{x_1} f(x) dx = 0$.

$$\operatorname{Ma} \int_{0}^{x_{1}} f(x) \, dx = \int_{0}^{x_{1}} (x^{4} - 3x^{2} + m) \, dx = \left(\frac{x^{5}}{5} - x^{3} + mx\right) \Big|_{0}^{x_{1}} = \frac{x_{1}^{5}}{5} - x_{1}^{3} + mx_{1} = x_{1} \left(\frac{x_{1}^{4}}{5} - x_{1}^{2} + m\right).$$

Do đó,
$$x_1 \left(\frac{x_1^4}{5} - x_1^2 + m \right) = 0 \Leftrightarrow \frac{x_1^4}{5} - x_1^2 + m = 0.$$
 (2)

Từ (1) và (2), ta có phương trình
$$\frac{x_1^4}{5} - x_1^2 - x_1^4 + 3x_1^2 = 0 \Leftrightarrow -4x_1^4 + 10x_1^2 = 0 \Leftrightarrow x_1^2 = \frac{5}{2}$$
.

Vậy
$$m = -x_1^4 + 3x_1^2 = \frac{5}{4}$$
.

Chọn đáp án (B)

CÂU 9. Cho số phức z thỏa mãn $|z - 1 - i| + |z - 3 - 2i| = \sqrt{5}$. Giá trị lớn nhất của |z + 2i| bằng **A.** 10. **B.** 5. **C.** $\sqrt{10}$. **D.** $2\sqrt{10}$. **A.** 10.

Lời giải.

Gọi $z = x + yi, (x, y \in \mathbb{R}).$

Khi đó
$$|z-1-i|+|z-3-2i|=\sqrt{5} \Leftrightarrow |(x-1)+(y-1)i|+|(x-3)+(y-2)i|=\sqrt{5}$$
. (1)

Trong mặt phẳng Oxy, đặt A(1;1); B(3;2); M(a;b).

Khi đó số phức z thỏa mãn (1) là tập hợp điểm M(a;b) trên mặt phẳng hệ tọa độ Oxy thỏa mãn $MA+MB=\sqrt{5}$. Mặt khác $AB = \sqrt{(3-1)^2 + (2-1)^2} = \sqrt{5}$ nên quỹ tích điểm M là đoạn thẳng AB.

Ta có |z + 2i| = |a + (b + 2)i|. Đặt N(0; -2) thì |z + 2i| = MN.

Gọi H là hình chiếu vuông góc của N trên đường thẳng AB. Phương trình AB: x - 2y + 1 = 0.

Ta có H(-1;0) nên hai điểm A, B nằm cùng phía đối với H.

Ta có
$$\begin{cases} AN = \sqrt{1^2 + 3^2} = \sqrt{10} \\ BN = \sqrt{3^2 + (2+2)^2} = 5 \end{cases}$$

Vì M thuộc đoạn thẳng AB nên áp dụng tính chất đường xiên và hình chiếu ta có

$$AN \le MN \le BN = 5.$$

Vậy giá trị lớn nhất của |z+2it| bằng 5 đạt được khi $M \equiv B(3;2)$, tức là z=3+2i. Chọn đáp án (B)

CÂU 10. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu $(S): (x-2)^2 + (y-1)^2 + (z-1)^2 = 9$ và $M(x_0; y_0; z_0) \in$ (S) sao cho $A=x_0+2y_0+2z_0$ đạt giá trị nhỏ nhất. Khi đó $x_0+y_0+z_0$ bằng **C.** -2. **A.** 2. **B.** -1. **D.** 1.

Lời giải.

Ta có $A = x_0 + 2y_0 + 2z_0 \Leftrightarrow x_0 + 2y_0 + 2z_0 - A = 0$ nên $M \in (P)$: x + 2y + 2z - A = 0.

Do đó điểm M là điểm chung của mặt cầu (S) với mặt phẳng (P).

Mặt cầu (S) có tâm I(2;1;1) và bán kính R=3.

Tồn tại điểm M khi và chỉ khi $\operatorname{d}(I,(P)) \leq R \Leftrightarrow \frac{|6-A|}{3} \leq 3 \Leftrightarrow -3 \leq A \leq 15.$

Do đó, với M thuộc mặt cầu (S) thì $A = x_0 + 2y_0 + 2z_0 \ge -3$.

Dấu đẳng thức xảy ra khi M là tiếp điểm của (P): x + 2y + 2z + 3 = 0 với (S) hay M là hình chiếu của I lên (P).

Suy ra
$$M(x_0; y_0; z_0)$$
 thỏa:
$$\begin{cases} x_0 + 2y_0 + 2z_0 + 3 = 0 \\ x_0 = 2 + t \\ y_0 = 1 + 2t \\ z_0 = 1 + 2t \end{cases} \Leftrightarrow \begin{cases} t = -1 \\ x_0 = 1 \\ y_0 = -1 \\ z_0 = -1. \end{cases}$$

Vậy $x_0 + y_0 + z_0 = -1$.

Chọn đáp án B

Ngày làm đề:/...../

ÔN THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 3 LỚP LTĐH THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho hàm số f(x) nhận giá trị dương và thỏa mãn f(0) = 1, $(f'(x))^3 = e^x (f(x))^2$, $\forall x \in \mathbb{R}$. Tính f(3)

A.
$$f(3) = e^2$$
.

B.
$$f(3) = e^3$$
.

C.
$$f(3) = e$$
.

D.
$$f(3) = 1$$
.

Lời giải.

Ta có

$$(f'(x))^{3} = e^{x} (f(x))^{2}, \forall x \in \mathbb{R} \Leftrightarrow f'(x) = \sqrt[3]{e^{x}} \cdot \sqrt[3]{(f(x))^{2}}$$

$$\Leftrightarrow \frac{f'(x)}{\sqrt[3]{(f(x))^{2}}} = \sqrt[3]{e^{x}}.$$

$$\Rightarrow \int_{0}^{3} \frac{f'(x)}{\sqrt[3]{(f(x))^{2}}} dx = \int_{0}^{3} \sqrt[3]{e^{x}} dx$$

$$\Leftrightarrow \int_{0}^{3} \frac{1}{\sqrt[3]{(f(x))^{2}}} df(x) = \int_{0}^{3} e^{\frac{x}{3}} dx$$

$$\Leftrightarrow 3\sqrt[3]{f(x)} \Big|_{0}^{3} = 3e^{\frac{x}{3}} \Big|_{0}^{3}$$

$$\Leftrightarrow \sqrt[3]{f(3)} - \sqrt[3]{f(0)} = e - 1$$

$$\Leftrightarrow \sqrt[3]{f(3)} - 1 = e - 1 \Leftrightarrow f(3) = e^{3}.$$

Chon đáp án (B)

CÂU 2. Ban An cần mua một chiếc gương có đường viền là đường Parabol bậc 2. Biết rằng khoảng cách đoạn $AB=60\,\mathrm{cm},\,OH=30\,\mathrm{cm}.$ Diện tích của chiếc gương ban An mua là

A.
$$1200 \ (cm^2)$$
.

B.
$$1400 \ (cm^2)$$
. **C.** $900 \ (cm^2)$.

C.
$$900 \ (cm^2)$$

D.
$$1000 \ (cm^2)$$
.

30 cm

Lời giải.

Chọn hệ trục tọa độ như hình vẽ. Đường viền chiếc gương là đường Parabol $y = ax^2 + bx + c (a \neq 0)$ có đỉnh H(0;30) và đi qua điểm B(30;0).

Ta có:
$$\begin{cases} c = 30 \\ -\frac{b}{2a} = 0 \\ 900a + 30b + c = 0 \end{cases} \Leftrightarrow \begin{cases} c = 30 \\ b = 0 \\ a = -\frac{1}{30} \end{cases}$$

Diện tích chiếc gương là diện tích hình phẳng giới hạn bởi Parabol $y = -\frac{1}{30}x^2 + 30$ và trực hoành.

Diện tích chiếc gương là

$$S = \int_{-30}^{30} \left| -\frac{1}{30} x^2 + 30 \right| dx = 2 \left| \int_{0}^{30} \left(-\frac{1}{30} x^2 + 30 \right) dx \right| = 2 \left| \left(-\frac{1}{90} x^3 + 30 x \right) \right|_{0}^{30} = 1200 (cm^2).$$

Chọn đáp án (A)

CÂU 3. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng $d_1: \frac{x-4}{1} = \frac{y+2}{4} = \frac{y+2}{4}$ $\frac{z-1}{-2}; d_2: \frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-1}{1}. \text{ Phương trình đường thẳng qua A vuông góc với d_1 và cắt d_2 là <math display="block"> \textbf{A.} \ \frac{x-1}{4} = \frac{y+1}{1} = \frac{z-3}{4}.$ $\textbf{B.} \ \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{-1}.$ $\textbf{D.} \ \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{3}.$

A.
$$\frac{x-1}{4} = \frac{y+1}{1} = \frac{z-3}{4}$$

B.
$$\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{-1}$$
.

c.
$$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-3}{2}$$

D.
$$\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{3}$$

Phương trình tham số của đường thẳng d_1 : $\begin{cases} x = 4 + t \\ y = -2 + 4t \\ z = 1 - 2t \end{cases}$ và d_2 : $\begin{cases} x = 2 + t \\ y = -1 - t \\ z = 1 + t. \end{cases}$

Phương trình mặt phẳng (P) qua A vuông góc với d_1 là x + 4y - 2z + 9 = 0.

Gọi H là giao điểm của (P) và đường thẳng d_2 . $H \in d_2 \Rightarrow H(2+t;-1-t;1+t)$.

 $H \in (P) \Rightarrow 2 + t + 4(-1 - t) - 2(1 + t) + 9 = 0 \Leftrightarrow t = 1$. Vây giao điểm H(3; -2; 2).

Phương trình đường thẳng qua A vuông góc với d_1 và cắt d_2 là phương trình đường thẳng AH qua A(1;-1;3) và nhận AH = (-2; 1; 1) làm véctơ chỉ phương.

Chon đáp án (B)

CÂU 4. Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại $A, \widehat{ACB} = 30^{\circ}$, biết góc giữa B'C và mặt phẳng (ACC'A') bằng α thỏa mãn $\sin \alpha = \frac{1}{2\sqrt{5}}$. Cho khoảng cách giữa hai đường thẳng A'B và CC'bằng $a\sqrt{3}$. Tính thể tích V của khối lăng trụ ABC.A'B'C'.

A.
$$V = 2a^3\sqrt{3}$$
.

B.
$$V = \frac{3a^3\sqrt{6}}{2}$$
.

C.
$$V = a^3 \sqrt{3}$$
.

D.
$$V = a^3 \sqrt{6}$$
.

🗭 Lời giải.

Ta có: $CC' \parallel AA' \Rightarrow CC' \parallel (AA'B'B)$. Mà $A'B \subset (AA'B'B)$,

Nên $d(CC', A'B) = d(CC', (AA'B'B)) = C'A' = a\sqrt{3}$.

Ta có $AC = A'C' = a\sqrt{3}$, AB = A'B' = a.

Diện tích đáy là $S_{ABC} = \frac{a^2\sqrt{3}}{2}$.

Để thấy $A'B' \perp (ACC'A')$. Góc giữa B'C và mặt phẳng (ACC'A') là $\widehat{B'CA'}$ =

$$\sin \alpha = \frac{A'B'}{B'C} = \frac{1}{2\sqrt{5}} \Leftrightarrow B'C = 2a\sqrt{5}.$$

$$CC' = \sqrt{B'C^2} - B'C'^2 = \sqrt{20a^2 - 4a^2} = 4a.$$

Thể tích lăng trụ là $V = B \cdot h$ với h = CC'.

Vậy
$$V = \frac{a^2\sqrt{3}}{2} \cdot 4a = 2a^3\sqrt{3}$$
.

Chon đáp án (A)

CÂU 5. Cho Parabol (P): $y = x^2$ và đường tròn (C) có tâm A(0;3), bán kính $\sqrt{5}$ như hình vẽ. Diện tích phần được tô đậm giữa (C) và (P) gần nhất với số nào dưới đây?

- **A.** 1,77.
- **B.** 3, 44.
- **C.** 1,51.
- **D.** 3, 54.

🗭 Lời giải.

Phương trình (C): $x^2 + (y-3)^2 = 5$.

Tọa độ giao điểm của (P) và (C) là nghiệm của hệ phương trình

$$\begin{cases} x^2 + (y-3)^2 = 5 \\ y = x^2 \end{cases} \Leftrightarrow \begin{cases} y + (y-3)^2 = 5 \\ y = x \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} y = 1 \\ y = 4 \\ y = x^2 \end{cases} \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases} \text{ hay } \begin{cases} x = -1 \\ y = 1 \end{cases} \text{ hay } \begin{cases} x = -2 \\ y = 4 \end{cases} \text{ hay } \begin{cases} x = -2 \\ y = 4 \end{cases}$$

Vậy tọa độ các giao điểm là (1;1), (-1;1), (-2;4), (2;4). Ta có: S=2 (S_1+S_2) .

Tính
$$S_1: x^2 + (y-3)^2 = 5 \Rightarrow y = 3 - \sqrt{5 - x^2} \Rightarrow S_1 = \int_0^1 \left[\left(3 - \sqrt{5 - x^2} \right) - x^2 \right] dx \approx 0,5075.$$
Tính $S_2: \begin{cases} x^2 + (y-3)^2 = 5 \\ y = x^2 \end{cases} \Rightarrow \begin{cases} x = \sqrt{5 - (y-3)^2} \\ x = \sqrt{y} \end{cases} \Rightarrow \int_1^4 \left[\sqrt{5 - (y-3)^2} - \sqrt{y} \right] dy \approx 1,26.$

Vậy $S = 2(S_1 + S_2) \approx 3,54$

Chọn đáp án (D)

CÂU 6. Cho hàm số
$$f(x)$$
 liên tục trên $\mathbb R$ và thỏa $\int_{-2}^2 f\left(\sqrt{x^2+5}-x\right)\mathrm dx=1, \int_1^5 \frac{f(x)}{x^2}\mathrm dx=3.$ Tính $\int_1^5 f(x)\mathrm dx$.

A. 0.

 $B_{\bullet} = -15$

C. -2.

D. - 13.

🗩 Lời giải.

$$\begin{split} &\text{Dặt } t = \sqrt{x^2 + 5} - x \Rightarrow x = \frac{5 - t^2}{2t} \Rightarrow \mathrm{d}x = -\left(\frac{1}{2} + \frac{5}{2t^2}\right) \mathrm{d}t. \\ &\text{Ta có } 1 = \int_1^5 f(t) \left(\frac{1}{2} + \frac{5}{2t^2}\right) \mathrm{d}t = \frac{1}{2} \int_1^5 f(t) \mathrm{d}t + \frac{5}{2} \int_1^5 \frac{f(t)}{t^2} \mathrm{d}t. \\ &\Rightarrow \frac{1}{2} \int_1^5 f(t) \mathrm{d}t = 1 - \frac{5}{2} \int_1^5 \frac{f(t)}{t^2} \mathrm{d}t = 1 - \frac{5}{2} \cdot 3 = -\frac{13}{2} \Rightarrow \int_1^5 f(t) \mathrm{d}t = -13. \\ &\text{Chọn đáp án } \boxed{\mathbf{D}} \end{split}$$

CÂU 7. Cho $z,w\in\mathbb{C}$ thỏa $|z+2|=|\overline{z}|,\,|z+i|=|z-i|,\,|w-2-3i|\leq 2\sqrt{2},\,|\overline{w}-5+6i|\leq 2\sqrt{2}.$ Giá trị lớn nhất |z-w| bằng

A. $5\sqrt{2}$.

B. $4\sqrt{2}$.

 $3\sqrt{2}$.

D. $6\sqrt{2}$.

🗩 Lời giải.

Giả sử $z=x+yi, \ (x,\,y\in\mathbb{R})$. Gọi M(x;y) là điểm biểu diễn của z trên Oxy). Ta có

- $|z+2| = |\overline{z}| \Leftrightarrow (x+2)^2 + y^2 = x^2 + y^2 \Leftrightarrow x+1 = 0 \ (d_1).$
- $|z+i| = |z-i| \Leftrightarrow x^2 + (y+1)^2 = x^2 + (y-1)^2 \Leftrightarrow y = 0 \ (d_2).$

Khi đó $M = d_1 \cap d_2 \Rightarrow M(-1; 0)$.

Giả sử w = a + bi $(a, b \in \mathbb{R})$. Gọi N(a; b) là điểm biểu diễn của w trên (Oxy). Ta có

- $|w-2-3i| \le 2\sqrt{2} \Leftrightarrow (a-2)^2 + (b-3)^2 \le 8 (C_1)$.
- $|\overline{w} 5 + 6i| \le 2\sqrt{2} \Leftrightarrow (a 5)^2 + (b 6)^2 \le 8 (C_2)$.

Với (C_1) là hình tròn tâm I(2;3), bán kính $R_1 = 2\sqrt{2}$, (C_2) là hình tròn tâm J(5;6), bán kính $R_2 = 2\sqrt{2}$. Khi đó N thuộc miền chung của hai hình tròn (C_1) và (C_2) (hình vẽ).

Ta có |z - w| = MN.

Lại có $\overrightarrow{MI} = (3;3)$, $\overrightarrow{IJ} = (3;3) \Rightarrow \overrightarrow{MI} = \overrightarrow{IJ}$. Do đó ba điểm M, I, J thẳng hàng.

Suy ra MN lớn nhất khi và chỉ khi $N=MJ\cap (C_1)\Rightarrow MN_{\max}=MI+IN=3\sqrt{2}+2\sqrt{2}=5\sqrt{2}.$

Chọn đáp án (A)

CÂU 8. Cho phương trình $3^x (3^{2x} + 1) - (3^x + m + 2) \sqrt{3^x + m + 3} = 2\sqrt{3^x + m + 3}$, với m là tham số. Có bao nhiều giá trị nguyên âm của m để phương trình có nghiệm thực?

A. 3.

B. 6

C. 4

D. 5.

🗭 Lời giải.

Ta có

$$3^{x}(3^{2x}+1) - (3^{x}+m+2)\sqrt{3^{x}+m+3} = 2\sqrt{3^{x}+m+3}$$

$$\Leftrightarrow 3^{x}(3^{2x}+1) = (3^{x}+m+2)\sqrt{3^{x}+m+3} + 2\sqrt{3^{x}+m+3}$$

$$\Leftrightarrow 3^{3x}+3^{x} = (3^{x}+m+3)\sqrt{3^{x}+m+3} + \sqrt{3^{x}+m+3}$$

$$\Leftrightarrow 3^{3x}+3^{x} = (\sqrt{3^{x}+m+3})^{3} + \sqrt{3^{x}+m+3}.$$

Xét hàm đặc trưng $f(t) = t^3 + t$ có $f'(t) = 3t^2 + 1 > 0, \forall t \in \mathbb{R}$.

$$V_{\text{av}} 3^{3x} + 3^x = \left(\sqrt{3^x + m + 3}\right)^3 + \sqrt{3^x + m + 3} \Leftrightarrow f(3^x) = f(\sqrt{3^x + m + 3})$$

 $\Leftrightarrow 3^x = \sqrt{3^x + m + 3} \Leftrightarrow 3^{2x} - 3^x - 3 = m. (*)$

Đặt $u=3^x$, với điều kiện u>0 và đặt $g(u)=u^2-u-3$.

Phương trình (*) $\Leftrightarrow g(u) = m$. g'(u) = 2u - 1, $g'(u) = 0 \Leftrightarrow u = \frac{1}{2}$, ta có bảng biến thiên của g(u):

u	0		$\frac{1}{2}$		$+\infty$
g'(u)		_	0	+	
g(u)	-3		$-\frac{13}{4}$		+∞

Từ bảng biến thiên ta thấy phương trình đã cho có nghiệm thực khi và chỉ khi $m > -\frac{13}{4}$ Vậy có tất cả 3 giá trị nguyên âm của m để phương trình có nghiệm thực là -3; -2; -1. Chon đáp án (A)

CÂU 9. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3) và mặt phẳng (P): x + my + (2m+1)z m-2=0, m là tham số thực. Gọi H(a;b;c) là hình chiếu vuông góc của điểm A trên (P). Khi khoảng cách từ điểm A đến (P) lớn nhất, tính a + b.

B.
$$\frac{1}{2}$$
.

c.
$$\frac{3}{2}$$

D. 2.

Lời giải.

Ta có d
$$(A,(P)) = \frac{\left|2+m+3(2m+1)-m-2\right|}{\sqrt{1^2+m^2+(2m+1)^2}} = \frac{3\left|2m+1\right|}{\sqrt{1+m^2+(2m+1)^2}}.$$
Vì $1+m^2 \ge \frac{1}{5}(2m+1)^2$, $\forall m \in \mathbb{R}$ nên d $(A,(P)) \le \frac{3\left|2m+1\right|}{\sqrt{\frac{1}{5}(2m+1)^2+(2m+1)^2}} = \frac{\sqrt{30}}{2}.$

Suy ra khoảng cách từ điểm Ađến (P)là lớn nhất khi và chỉ khi m

Khi đó,
$$(P)$$
: $x + 2y + 5z - 4 = 0$, AH :
$$\begin{cases} x = 2 + t \\ y = 1 + 2t \\ z = 3 + 5t. \end{cases}$$

$$H = d \cap (P) \Rightarrow 2 + t + 2(1 + 2t) + 5(3 + 5t) - 4 = 0 \Leftrightarrow t = -\frac{1}{2} \Rightarrow H\left(\frac{3}{2}; 0; \frac{1}{2}\right).$$

Vây
$$a = \frac{3}{2}$$
, $b = 0 \Rightarrow a + b = \frac{3}{2}$.

CÂU 10. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x+1)^2(x+3)(x^2+2mx+5)$ với mọi $x \in \mathbb{R}$. Có bao nhiều giá trị nguyên âm của tham số m để hàm số g(x) = f(|x|) có đúng một điểm cực trị.

A. 3. Lời giải.

Floi giai.
$$f'(x) = (x+1)^2(x+3) \left(x^2 + 2mx + 5\right) = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = -3 \\ x^2 + 2mx + 5 = 0. \end{bmatrix}$$
 Ta có:
$$g(x) = \begin{cases} f(x) & \text{khi } x \ge 0 \\ f(-x) & \text{khi } x < 0. \end{cases}$$
 Hàm số $y = g(x)$ có đúng 1 điểm cực tri \Leftrightarrow Hàm số $y = f(x)$ không có

Ta có:
$$g(x) = \begin{cases} f(x) & \text{khi } x \ge 0 \\ f(-x) & \text{khi } x < 0. \end{cases}$$

Hàm số y = g(x) có đúng 1 điểm cực trị \Leftrightarrow Hàm số y = f(x) không có điểm cực trị nào thuộc khoảng $(0; +\infty)$. Trường hợp 1: Phương trình (1) vô nghiệm hoặc có nghiệm kép

$$\Leftrightarrow m^2 - 5 < 0 \Leftrightarrow -\sqrt{5} < m < \sqrt{5}$$
 (*)

Trường hợp 2: Phương trình (1) có hai nghiệm x_1, x_2 phân biệt thoả mãn $x_1 < x_2 \le 0$

$$\Leftrightarrow \begin{cases} m^2 - 5 > 0 \\ -2m < 0 & \Leftrightarrow m > \sqrt{5} \ (**) \\ 5 > 0 \end{cases}$$

. Từ (*) và (**) suy ra $m \ge -\sqrt{5}$. Vì m là số nguyên âm nên $m = \{-2; -1\}$. Chọn đáp án (D)

Ngày làm đề:/...../

ÔN THI THPTQG 2022

ĐỀ ÔN CUỐI CÙNG — ĐỀ 4 LỚP LTĐH THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} . Biết f(3)=1 và $\int x f(3x) \, \mathrm{d}x=1$, khi đó $\int x^2 f'(x) \, \mathrm{d}x$

bằng

B.
$$\frac{25}{3}$$

Lời giải.

Đặt $t = 3x \Rightarrow dt = 3 dx \Rightarrow dx = \frac{1}{3} dt$.

Suy ra $1 = \int_{0}^{1} x f(3x) dx = \frac{1}{9} \int_{0}^{3} t f(t) dt \Leftrightarrow \int_{0}^{3} t f(t) dt = 9.$

Đặt $\begin{cases} u = f(t) \\ dv = t dt \end{cases} \Rightarrow \begin{cases} du = f'(t) dt \\ v = \frac{t^2}{2} \end{cases}$

 $\Rightarrow \int_{0}^{3} t f(t) dt = \frac{t^{2}}{2} f(t) \Big|_{0}^{3} - \int_{0}^{3} \frac{t^{2}}{2} f'(t) dt = \frac{9}{2} f(3) - \frac{1}{2} \int_{0}^{3} t^{2} f'(t) dt$

 $\Leftrightarrow 9 = \frac{9}{2} - \frac{1}{2} \int_{0}^{3} t^{2} f'(t) dt \Leftrightarrow \int_{0}^{3} t^{2} f'(t) dt = -9.$

 $V_{\text{ay}} \int x^2 f'(x) \, \mathrm{d}x = -9.$

Chọn đáp án (A)

CÂU 2. Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} . Biết hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số g(x) = f(x) + x đạt cực tiểu tại điểm

A.
$$x = 0$$
.

B.
$$x = 2$$
.

D.
$$x = 1$$
.

Lời giải.

Xét hàm số g(x) = f(x) + x có g'(x) = f'(x) + 1.

Dựa vào đồ thị hàm số y=f'(x) có $g'(x)=0 \Leftrightarrow f'(x)=-1 \Leftrightarrow \begin{bmatrix} x=0 \\ x=1 \\ x=2 \end{bmatrix}$

Bảng biến thiên

Từ đó suy ra hàm số y = g(x) đạt cực tiểu tại điểm x = 1.

Chọn đáp án (D)

CÂU 3. Thể tích V của khối hộp chữ nhật ABCD.A'B'C'D' biết $AB=a, AD=2a, AC'=a\sqrt{14}$ là

A.
$$V = 2a^3$$
.

B.
$$V = a^3 \sqrt{5}$$
.

C.
$$V = 6a^3$$
.

D.
$$V = \frac{a^3\sqrt{14}}{3}$$
.

🗭 Lời giải.

Xét hình chữ nhật ABCD, ta có

$$AC^2 = AB^2 + AD^2 = a^2 + 4a^2 = 5a^2.$$

Xét tam giác vuông AA'C, ta có

$$AA'^2 = AC'^2 - AC^2 = 14a^2 - 5a^2 = 9a^2.$$

$$\Rightarrow AA' = 3a.$$

Vây $V_{ABCD,A'B'C'D'} = AB \cdot AD \cdot AA' = a \cdot 2a \cdot 3a = 6a^3$.

Chọn đáp án (C)

CÂU 4. Trong không gian với hệ trục Oxyz, đường vuông góc chung của hai đường thẳng chéo nhau $d_1: \frac{x-2}{2} =$

 $\frac{y-3}{3} = \frac{z+4}{-5} \text{ và } d_2 \colon \frac{x+1}{3} = \frac{y-4}{-2} = \frac{z-4}{-1} \text{ có phương trình là}$ **A.** $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-3}{4}.$ **C.** $\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-3}{2}.$ **D.** $\frac{x}{2}$

A.
$$\frac{x-2}{x-3} = \frac{y-2}{x-3} = \frac{z-3}{x-3}$$

A.
$$\frac{2}{x-2} = \frac{3}{3} = \frac{4}{z-3}$$

c.
$$\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-3}{2}$$
.

B.
$$\frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$$
.

B.
$$\frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$$
.
D. $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{-1}$.

Lời giải.

Giả sử AB là đoạn vuông góc chung của hai đường thẳng d_1 và d_2 với $A \in d_1$ và $B \in d_2$

Ta lại có $A \in d_1 \Rightarrow A(2+2a; 3+3a; -4-5a)$ và $B \in d_2 \Rightarrow B(-1+3b; 4-2b; 4-b)$.

Ta có AB = (-3 + 3b - 2a; 1 - 2b - 3a; 8 - b + 5a).

Đường thẳng d_1 có một véc-tơ chỉ phương $\vec{u}_1 = (2; 3; -5);$

 d_2 có một véc-tơ chỉ phương $\vec{u}_2 = (3; -2; -1)$.

Vì AB là đoạn vuông góc chung của d_1 và d_2 nên ta có $\begin{cases} AB \perp d_1 \\ AB \perp d_2 \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AB} \cdot \overrightarrow{u}_1 = 0 \\ \overrightarrow{AB} \cdot \overrightarrow{u}_2 = 0. \end{cases}$ $\Leftrightarrow \begin{cases} 2\left(-3+3b-2a\right)+3\left(1-2b-3a\right)-5\left(8-b+5a\right)=0 \\ 3\left(-3+3b-2a\right)-2\left(1-2b-3a\right)-1\left(8-b+5a\right)=0 \end{cases} \Leftrightarrow \begin{cases} -38a+5b=43 \\ -5a+14b=19 \end{cases} \Leftrightarrow \begin{cases} a=-1 \\ b=1. \end{cases}$ Do đó $A\left(0;0;1\right)$ và $\overrightarrow{AB}=\left(2;2;2\right)$ là một véc-tơ chỉ phương của AB, suy ra AB cũng có một véc-tơ chỉ phương AB = 1

$$\Leftrightarrow \begin{cases} 2(-3+3b-2a)+3(1-2b-3a)-5(8-b+5a)=0 \\ 3(-3+3b-2a)-2(1-2b-3a)-1(8-b+5a)=0 \end{cases} \Leftrightarrow \begin{cases} -38a+5b=43 \\ -5a+14b=19 \end{cases} \Leftrightarrow \begin{cases} a=-1 \\ b=1 \end{cases}$$

 $\overrightarrow{u} = \frac{1}{2}\overrightarrow{AB} = (1;1;1).$

Đường thẳng AB có phương trình chính tắc là $\frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$.

Chọn đáp án (B)

CÂU 5. Số giá trị nguyên dương của tham số m để bất phương trình

$$9^{\sqrt{x^2 - 3x + m}} + 2.3^{\sqrt{x^2 - 3x + m} - 2 + x} < 3^{2x - 3}$$

có nghiệm là

A. 8.

B. 1.

C. 6.

D. 4.

🗭 Lời giải.

Đặt $t=3^{\sqrt{x^2-3x+m}-x}$ với t>0, bất phương trình đã cho trở thành

$$t^2 + \frac{2}{9}t - \frac{1}{27} < 0 \Leftrightarrow -\frac{1}{3} < t < \frac{1}{9}.$$

Do đó
$$0 < t < \frac{1}{9} \Leftrightarrow \sqrt{x^2 - 3x + m} - x < -2 \Leftrightarrow \sqrt{x^2 - 3x + m} < x - 2$$

$$\Leftrightarrow \begin{cases} x > 2 \\ x^2 - 3x + m \ge 0 \\ x^2 - 3x + m < x^2 - 4x + 4 \end{cases} \Leftrightarrow \begin{cases} x > 2 \\ x^2 - 3x + m \ge 0 \end{cases}$$
 (I)

Để bất phương trình đề bài cho có nghiệm thì hệ bất phương trình (I) có nghiệm.

Ta đặt
$$\begin{cases} x > 2 & (1) \\ x^2 - 3x + m \ge 0 & (2) \\ x < 4 - m & (3). \end{cases}$$

Điều kiện cần: Từ (1) và (3) ta có $4 - m > 2 \Leftrightarrow m < 2$.

Do m là số nguyên dương nên m=1.

Điều kiện đủ: Với m=1, hệ bất phương trình (I) trở thành

$$\begin{cases} x > 2 \\ x^2 - 3x + 1 \ge 0 \Leftrightarrow \begin{cases} 2 < x < 3 \\ x < \frac{3 - \sqrt{5}}{2} \lor x > \frac{3 + \sqrt{5}}{2} \end{cases} \Leftrightarrow \frac{3 + \sqrt{5}}{2} < x < 3.$$

Vậy hệ bất phương trình (I) có nghiệm.

Chọn đáp án B

CÂU 6. Bồn hoa của một trường X có dạng hình tròn bán kính bằng 8m. Người ta chia bồn hoa thành các phần như hình vẽ dưới đây và có ý định trồng hoa như sau: Phần diện tích bên trong hình vuông ABCD để trồng hoa. Phần diện tích kéo dài từ 4 cạnh của hình vuông đến đường tròn dùng để trồng cỏ. Ở 4 góc còn lại mỗi góc trồng một cây cọ. Biết AB = 4m, giá trồng hoa là 200.000 đồng/ m^2 , giá trồng cỏ là 100.000 đồng/ m^2 , mỗi cây cọ giá 150.000 đồng. hỏi cần bao nhiêu tiền để thực hiện việc trang trí bồn hoa đó.

A. 14.465.000 đồng.

B. 14.865.000 đồng.

C. 13.265.000 đồng.

D. 12.218.000 đồng.

Chọn hệ trục tọa độ sao cho gốc tọa độ trùng với tâm hình tròn, suy ra phương trình đường tròn là $x^2 + y^2 = 64$.

Diện tích hình vuông ABCD là

$$S_{ABCD} = 4 \times 4 = 16 \, (m^2).$$

 \Rightarrow Số tiền để trồng hoa là

$$T_1 = 16 \times 200.000 = 3.200.000.$$

Diện tích trồng cỏ là

$$S = 4 \int_{-2}^{2} \left(\sqrt{64 - x^2} - 2 \right) dx \approx 94,654 \left(m^2 \right).$$

⇒ Số tiền trồng cỏ là

$$T_2 = 94,654 \times 100.000 = 9.465.000.$$

Số tiền trồng 4 cây cọ là $T_3 = 150.000 \times 4 = 600.000$. Vậy tổng số tiền để thực hiện việc trang trí bồn hoa là

$$T = T_1 + T_2 + T_3 = 13.265.000.$$

Chọn đáp án (C)

CÂU 7. Cho z_1, z_2 là hai trong các số phức thỏa mãn $\left|z-3+\sqrt{3}i\right|=2$ và $|z_1-z_2|=4$. Giá trị lớn nhất của $|z_1| + |z_2|$ bằng

A.
$$2 + 2\sqrt{3}$$
.

B.
$$4\sqrt{3}$$
.

Lời giải.

Gọi
$$M,N$$
 lần lượt là điểm biểu diễn của hai số phức z_1,z_2 . Do
$$\begin{cases} \left|z_1-3+\sqrt{3}i\right|=\left|z_2-3+\sqrt{3}i\right|=2\\ \left|z_1-z_2\right|=4\\ \text{nên } \begin{cases} M,N\in(C)\colon (x-3)^2+\left(y+\sqrt{3}\right)^2=2^2\\ MN=4=2\cdot 2. \end{cases}$$

Như vậy MN là đường kính của đường tròn (C) với tâm $I(3; -\sqrt{3})$, bán kính R=2, do đó I là trung điểm MN, $OI = \sqrt{12}$.

Ta có
$$|z_1| + |z_2| = OM + ON \le \sqrt{(1+1)(OM^2 + ON^2)} = \sqrt{2(2OI^2 + \frac{MN^2}{2})} = 8.$$

Dấu "=" xảy ra khi và chỉ khi $OM = ON \Leftrightarrow MN$ là đường kính của (C) vuông góc với OI.

Chọn đáp án (D)

CÂU 8. Trong không gian Oxyz, cho hình nón có đỉnh I thuộc mặt phẳng (P): 2x - y - 2z - 7 = 0 và hình tròn đáy nằm trên mặt phẳng (R): 2x-y-2z+8=0. Mặt phẳng (Q) đi qua điểm A(0;-2;0) và vuông góc với trục của hình nón chia hình nón thành hai phần có thể tích lần lượt là V_1 và V_2 (V_1 là thể tích của hình nón chứa đỉnh I). Biết bằng biểu thức $S = V_2 + \frac{78}{V_1^3}$ đạt giá trị nhỏ nhất khi $V_1 = a$, $V_2 = b$. Khi đó tổng $a^2 + b^2$ bằng

A.
$$52\sqrt{3}\pi^2$$
.

B.
$$377\sqrt{3}$$
.

D.
$$2031\pi^2$$
.

🗭 Lời giải.

Dễ thấy (P) // (R), gọi O là tâm của đường tròn đáy hình nón, $O' = IO \cap (Q)$, từ giả thiết ta có $IO' = d(A, (P)) = \frac{5}{3}$; $OO'=\operatorname{d}\left(A,(R)\right)=\frac{10}{3}\text{ suy ra }OO'=2IO'.$

Gọi M là điểm thuộc đường tròn (O), $M'=IM\cap(Q)$, do O'M' // OM nên $\frac{IO'}{IO}=\frac{O'M'}{OM}=\frac{1}{3}$.

Do đó $r_2 = 3r_1$, (trong đó r_1 và r_2 lần lượt là bán kính của các đường tròn (O') và (O)).

Đặt
$$IO' = h$$
, khi đó $\frac{V_1}{V} = \frac{\frac{1}{3}\pi r_1^2 h}{\frac{1}{3}\pi (3r_1)^2 \cdot 3h} = \frac{1}{27}$

$$\Rightarrow V = 27V_1 \Rightarrow V_2 = V - V_1 = 26V_1.$$

$$S = V_2 + \frac{78}{V_1^3} = 26V_1 + \frac{78}{V_1^3} = \frac{26}{3}V_1 + \frac{26}{3}V_1 + \frac{26}{3}V_1 + \frac{78}{V_1^3} \ge 4\sqrt[4]{\frac{26}{3}V_1 \cdot \frac{26}{3}V_1 \cdot \frac{26}{3}V_1 \cdot \frac{78}{V_1^3}} = 4\sqrt[4]{\frac{456976}{9}}.$$

Dấu "=" xảy ra khi
$$\frac{26}{3}V_1 = \frac{78}{V_1^3} \Leftrightarrow V_1 = \sqrt{3}$$
.

Suy ra
$$\begin{cases} a = \sqrt{3} \\ b = 26\sqrt{3}. \end{cases}$$

Vậy
$$a^2 + b^2 = 3 + 26^2 \cdot 3 = 2031$$
.

CÂU 9. Cho đồ thị hàm số y = f(x) như hình vẽ bên Số điểm cực đại, cực tiểu của hàm số $g(x) = [f(x)]^2$ là

- A. 1 điểm cực đại, 3 điểm cực tiểu.
- B. 3 điểm cực đại, 2 điểm cực tiểu.
- C. 2 điểm cực đại, 2 điểm cực tiểu.
- D. 2 điểm cực đại, 3 điểm cực tiểu.

Lời giải.

Ta có
$$g'(x) = 2f(x) \cdot f'(x)$$
. Suy ra $g'(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 & (1) \\ f'(x) = 0 & (2) \end{bmatrix}$

Pt (1)
$$\Leftrightarrow$$

$$\begin{cases} x = a \in (-\infty; -1) \\ x = b \in (-1; 0). \end{cases}$$
$$\begin{cases} x = x_1 \in (-1; b) \end{cases}$$

Ta có
$$g'(x) = 2f(x) \cdot f'(x)$$
. Suy ra $g'(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \ (1) \end{bmatrix}$
Pt $(1) \Leftrightarrow \begin{bmatrix} x = a \in (-\infty; -1) \\ x = b \in (-1; 0) \end{bmatrix}$.

Pt $(2) \Leftrightarrow \begin{bmatrix} x = x_1 \in (-1; b) \\ x = x_2 \in (0; 1) \end{bmatrix}$, trong đó x_1, x_3 là các điểm cực đại và x_2 là các điểm cực tiểu. $x = x_3 \in (1; 2)$

Bảng biến thiên

x	$-\infty$		a		x_1		b		x_2		x_3		$+\infty$
f'(x)		+		+	0	_	0	_	0	+	0	_	
f(x)		_	0	+		+	0	_		_		_	
g'(x)		_	0	+	0	_	0	+	0	_	0	+	
g(x)	$+\infty$		* CT ~		"CĐ、		`CT /		ø ^{CĐ} <		CT		$+\infty$

Chọn đáp án D

Từ bảng biến thiên trên suy ra hàm số $g(x) = [f(x)]^2$ có 2 điểm cực đại, 3 điểm cực tiểu.

CÂU 10. Có bao nhiêu giá trị nguyên của tham số $m \in [-2019; 2019]$ để phương trình $2019^x + \frac{2x-1}{x+1} + \frac{mx-2m-1}{x-2} = 0$ có đúng 3 nghiệm thực phân biệt? **A.** 4039. **B.** 4038. **C.** 2019. **D.** 2017.

🗩 Lời giải.

Ta có phương trình

$$2019^{x} + \frac{2x-1}{x+1} + \frac{mx-2m-1}{x-2} = 0 \Leftrightarrow 2019^{x} + \frac{2x-1}{x+1} + \frac{m(x-2)-1}{x-2} = 0$$
$$\Leftrightarrow 2019^{x} + \frac{2x-1}{x+1} + m - \frac{1}{x-2} = 0 \Leftrightarrow m = \frac{1}{x-2} - 2019^{x} - \frac{2x-1}{x+1}.$$

Xét hàm số
$$y = \frac{1}{x-2} - 2019^x - \frac{2x-1}{x+1}; x \in \mathbb{R} \setminus \{-1; 2\}$$

$$\Rightarrow y' = -\frac{1}{(x-2)^2} - 2019^x \ln(2019) - \frac{3}{(x+1)^2} < 0; \forall x \in \mathbb{R} \setminus \{-1; 2\}.$$

Bảng biến thiên

Vậy để phương trình có 3 nghiệm phân biệt thì $m \in (-\infty; -2)$ mà $m \in [-2019; 2019]; m \in \mathbb{Z}$. Vậy ta có 2017 số nguyên m cần tìm.

Chon đáp án (D)

PHẨN ĐỀ BÀI	1
Đề 1: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	1
Đề 2: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	3
Đề 3: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	5
Đề 4: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	7
LỜI GIẢI CHI TIẾT	9
Đề 1: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	g
Đề 2: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	15
Đề 3: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	20
Đề 4: ĐỀ ÔN CUỐI CÙNG — LỚP LTĐH THẦY PHÁT	25