Math 71: Algebra Fall 2022

PSET 2 — September 27, 2022

Prof. Voight Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) Abstract Algebra by David S. Dummit & Richard M. Foote.
- (b) Algebra by Jacob K. Goldhaber & Gertrude Ehrlich

Problems

1. (DF 0.1.7) Let $f: A \to B$ be a surjective map of sets. For $y \in B$, let

$$f^{-1}(y) := \{ x \in A : f(x) = y \}$$

be the *preimage* or *fiber* of f over y. (The map f is bijective if and only if $f^{-1}(y) = \{x\}$ consists of a single element $x \in A$, in which case we can define f^{-1} as a function, removing the set brackets. But we always have fibers.) Define a relation by $a \sim b$ if f(a) = f(b). Show that this relation is an equivalence relation whose equivalence classes are the fibers of f.

- 2. (sorta-not-really DF 0.3.15(b))
 - (a) For a=69 and n=372, determine the greatest common divisor $g:=\gcd(a,n)$, the least common multiple $\operatorname{\mathbf{lcm}}((,a),b)$, and write g=ax+by with x,y $in\mathbb{Z}$. Is $\overline{a}\in(\mathbb{Z}/n\mathbb{Z})^{\times}$? If so, what is \overline{a}^{-1} ?
 - (b) Taking n = 89, what is the order of $\overline{2}$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$?
 - (c) How many elements are there in $(\mathbb{Z}/360\mathbb{Z})^{\times}$?

- **3.** (DF 1.3.1, sorta 1.3.7)
 - (a) Let σ be the permutation

$$1 \mapsto 3, \ 2 \mapsto 4, \ 3 \mapsto 5, \ 4 \mapsto 2, \ 5 \mapsto 1$$

and au be the permutation

$$1 \mapsto 5, 2 \mapsto 3, 3 \mapsto 2, 4 \mapsto 4, 5 \mapsto 1.$$

Find the cycle decompositions of each of the following: σ, τ, σ^2 , $sigma^{-1}, \sigma\tau, \tau\sigma, \tau^2\sigma$. Do σ and τ commute?

- (b) Write out the cycle decomposition of each element of order 2 in the symmetric group S_4 . How many such elements are there of each cycle type?
- (c) How many elements are in the set $\{\sigma \in S_5 : \sigma(2) = 5\}$?

4. (some of DF 1.6.6)

(a) Let $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ be the set of nonzero real numbers. Then \mathbb{R}^{\times} is a group under multiplication. Define a second binary operation on \mathbb{R}^{\times} by x * y = xy/2 for $x, y \in \mathbb{R}^{\times}$. Show that $(\mathbb{R}^{\times}, *)$ is a group, and find an isomorphism $\phi \colon (\mathbb{R}^{\times}, \cdot) \xrightarrow{\sim} (\mathbb{R}^{\times}, *)$. [Hint: if it helps, write $G = \mathbb{R}^{\times}$ in the second case with the nonstandard operation.]

(b) Prove that the groups \mathbb{Z} (under +) is not isomorphic to \mathbb{Q} (under +). [Remark: there is a bijection from \mathbb{Z} to \mathbb{Q} that is not a homomorphism, and a homomorphism that is not a bijection!]

5. Let $\phi \colon G \to H$ be a bijective homomorphism, with inverse $\phi^{-1} \colon H \to G$. Show that ϕ^{-1} is also a homomorphism.