### RISULTATI E COMMENTI

### La frontiera dei portafogli

La Frontiera dei Portafogli è un concetto centrale nelle moderne teorie di gestione del portafoglio e di rischio degli investimenti.

Si tratta dell'insieme dei portafogli che offrono il minimo rischio possibile per un dato livello di rendimento atteso, o viceversa, che massimizzano il rendimento atteso per un determinato livello di rischio.

I portafogli di frontiera  $w^p$ , dunque, sono quelli che risolvono il seguente problema:  $\min_{\omega \in R^N} \frac{1}{2} \omega^T V \omega$  sotto i vincoli  $\omega^T e = E[\tilde{r}] = \omega^T \bar{1} = 1$ , dove  $e \in I$  vettore dei rendimenti attesi degli N titoli e V è la matrice di varianza e covarianza.

Essenzialmente, si tratta di una rappresentazione grafica delle combinazioni ottimali di asset in un portafoglio che, se si considera lo spazio rendimento atteso-deviazione standard, si traduce in un'iperbole. La frontiera dei portafogli mostra visivamente le combinazioni di asset che offrono il miglior trade-off tra rischio e rendimento; infatti,



alla sua destra si incontrano tutti quei portafogli raggiungibili a partire dagli N≥2 titoli rischiosi, mentre alla sua sinistra si trovano le combinazioni rendimento atteso-deviazione standard che non sono raggiungibili.

#### **Procedimento Homework:**

Ciò che, in primo luogo, ci è stato richiesto di svolgere nell'homework consiste nel, dati i prezzi giornalieri di tre titoli (Apple, Amazon e Facebook), costruire la frontiera di tre portafogli composti da tutti o alcuni di questi titoli e determinarne il portafoglio a varianza minima.

Per fare ciò abbiamo prima ricavato il rendimento logaritmico giornaliero e il rispettivo valore atteso per ogni titolo per poi concentrarci sulla costruzione dei portafogli.

Abbiamo quindi costruito per ogni portafoglio la matrice varianza-covarianza, che poi è stata invertita con il comando Excel "MATR.INVERSA", e finalmente abbiamo calcolato i coefficienti A, B, C, D attraverso le seguenti formule:  $A = 1^T V^{-1} e$ ,  $B = e^T V^{-1} e$ ,  $C = 1^T V^{-1} 1$ ,  $D = BC - A^2$ ,

e i vettori g e h: 
$$g = \frac{B(V^{-1}1) - A(V^{-1}e)}{D}$$
,  $h = \frac{C(V^{-1}e) - A(V^{-1}1)}{D}$ , fondamentali sia per l'analisi dei

singoli portafogli sia per la determinazione del portafoglio a varianza minima globale:  $w^{MVP} = \frac{V^{-1}1}{C}$ .

Per rispondere al quarto punto è necessario mettere in evidenza le ipotesi di partenza: i rendimenti sono distribuiti come un vettore gaussiano  $\tilde{r} \sim N(\mu, V)$  con vettore delle medie e matrice di varianza noti e funzione di utilità quadratica ( $u(x) = x - \frac{b}{2}x^2$ , con b=0.001).

La ricchezza del portafoglio al tempo t=1 sarà quindi una variabile aleatoria scalare con la seguente distribuzione gaussiana:  $\widetilde{W} = x rf + \omega^{T} (\widetilde{r} - rf) \sim N(x rf + \omega^{T} (\mu - rf), \omega^{T} V \omega)$ .

La formalizzazione e la soluzione del problema consiste nel risolvere un sistema di 3 equazione nelle 3 incognite  $w_1 w_2 w_3$ , ossia nel risolvere la seguente espressione semi esplicita  $\omega^* = \frac{1-bxE[\widetilde{W}]}{b}V^{-1}(\mu-\overline{rf})$ , da cui ricaviamo i pesi del portafoglio ottimo in forma esplicita:

$$\omega_{i} = \frac{1 - bx(x * rf + \omega_{1}(\mu_{1} - rf) + \omega_{2}(\mu_{2} - rf) + \omega_{3}(\mu_{3} - rf))}{b} (V^{-1}(\bar{\mu} - \bar{rf}))_{i} \quad \forall i = 1, ..., 3$$

La soluzione si trova quindi risolvendo il seguente sistema lineare:

$$\begin{bmatrix} b \left( \left( V^{-1} \left( \vec{\mu} - r_f \vec{\mathbf{I}} \right) \right)_1^{-1} + \mu_1 - r_f \right) & b \left( \mu_2 - r_f \right) & b \left( \mu_3 - r_f \right) \\ b \left( \mu_1 - r_f \right) & b \left( \left( V^{-1} \left( \vec{\mu} - r_f \vec{\mathbf{I}} \right) \right)_2^{-1} + \mu_2 - r_f \right) & b \left( \mu_3 - r_f \right) \\ b \left( \mu_1 - r_f \right) & b \left( \mu_2 - r_f \right) & b \left( \left( V^{-1} \left( \vec{\mu} - r_f \vec{\mathbf{I}} \right) \right)_3^{-1} + \mu_3 - r_f \right) \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \vec{\mathbf{I}} - b x^2 r_f \vec{\mathbf{I}}$$

Per risolvere l'ultimo punto, invece, abbiamo innanzitutto ricavato i valori del portafoglio ottimo nel caso di portafogli composti da uno solo dei tre titoli e dal titolo rischioso, utilizzando come legge di attualizzazione sia quella semplice che quella composta; abbiamo calcolato il valore atteso e la varianza dei portafogli ottimi trovati per ricavarne infine l'utilità attesa  $E[u(x)] = -\frac{1}{a}e^{-a(\bar{x}-\frac{1}{2}a\sigma^2(x))}$ .

#### Risultati:

❖ Punto 1/2: Costruire la frontiera dei portafogli A e B

| Portafoglio               | A           | В           | С           | D           | g                                      | h                                      |
|---------------------------|-------------|-------------|-------------|-------------|----------------------------------------|----------------------------------------|
| (Apple,Amazon&Facebook)   | 4,26015471  | 0,0058447   | 3816,85552  | 4,15945625  | 0,52431508<br>-1,6819735<br>2,15765846 | -98,550607<br>1837,52783<br>-1738,9772 |
| A (Amazon&Facebook)       | 3,728813775 | 0,005287732 | 3309,962044 | 3,598140806 | -1,40963677<br>2,409636776             | 1786,339235<br>-1786,33923             |
| <b>B</b> (Apple&Facebook) | 3,319378093 | 0,00345697  | 3446,185203 | 0,895086984 | -2,71389656<br>3,713896568             | 3439,141204<br>-3439,14120             |

## ❖ Punto 3: Determina il portafoglio a var minima nei casi A e B e nel portafoglio di tre titoli visto a lezione

| w 10210110                |             |             |             |  |  |
|---------------------------|-------------|-------------|-------------|--|--|
| Portafoglio               | W apple     | W amazon    | W facebook  |  |  |
| (Apple,Amazon&Facebook)   | 0,414318562 | 0,368969384 | 0,216712054 |  |  |
| A (Amazon&Facebook)       |             | 0,602750756 | 0,397249244 |  |  |
| <b>B</b> (Apple&Facebook) | 0,59869672  |             | 0,40130328  |  |  |

# **❖ Punto 4:** (i risultati riportati sono stati calcolati attualizzando *r<sub>f</sub>* con la legge di capitalizzazione composta)

|       | Apple    | Amazon   | Facebook | RF       |
|-------|----------|----------|----------|----------|
| $w^*$ | 1586,473 | 3499,426 | -998,994 | -4085,91 |

# **Punto 5**: (i risultati riportati sono stati calcolati attualizzando $r_f$ con la legge di capitalizzazione composta)

|         | Portafoglio Apple e RF      | Portafoglio Amazon e RF     | Portafoglio Facebook e RF   |
|---------|-----------------------------|-----------------------------|-----------------------------|
| w*      | 20,24535612<br>-19,24535612 | 25,11308801<br>-24,11308801 | 12,28344408<br>-11,28344408 |
| E[u(x)] | -6,655345199                | -6,649255801                | -6,661579537                |

Dal confronto tra i valori delle utilità attese ottenuti si può affermare che, sotto queste condizioni, se si potesse investire soltanto nel titolo privo di rischio e in uno dei tre titoli rischiosi quest'ultimo sarebbe Amazon poiché il portafoglio che lo contiene è quello che produce un'utilità attesa maggiore (minore in valore assoluto).