

Feature Review

August 2025

Rami Ibrahimi

Current State: Manual Chaos → Intelligent Automation

PAIN POINTS

Lost sales & customer satisfaction

Tied-up working capital

4+ Hours Weekly
Manual Excel planning

Reactive Ordering
No demand visibility

SOLUTION

AI-Powered Planning

Real-time recommendations

Exception Management

Focus on what matters

Multi-Location Optimization
Unified global view

Predictive Intelligence

ML-driven forecasts & Periodic review system

TARGET USER: Supply Chain Analysts & Inventory Managers

BUSINESS IMPACT: 50% \(\) Stockouts \(\) 20% \(\) Inventory \(\) 80% \(\) Time

Key Concepts

Core Components

Intelligent Forecast Engine

- ML ensemble: Prophet, LightGBM, N-HiTS
- · Dynamic model weighting
- External signals integration

Multi-Echelon Optimization

- Unified planning: US, UK, Germany
- Currency-aware calculations
- Network transfer opportunities

Exception-Driven Workflow

- Proactive alerts for issues
- Prioritized action queue
- One-click resolution

Conversational Al Assistant

- Natural language queries
- Transparent calculations
- In-context actions

Guiding Principles

Automation First
Minimize manual intervention

Flexibility
Support planner overrides

Transparency
Show calculation logic

Scalability
Handle 1000+ SKUs efficiently

Business Scenario: Premium Laptop Stand

SKU: PLS-001 | Lead Time: 21 days | MOQ: 500

lnventory	📊 Weekly Demand	🧿 Days
US: 850 🔘	US: 180 (σ=35)	4.7 🛕
UK: 120 🛑	UK: 45 (σ=12)	2.7 🦲
DE: 75 🛑	DE: 30 (σ=8)	2.5 🚨
Transit: 500	Total: 255/week	_

Business Scenario: Premium Laptop Stand-cont.

SKU: PLS-001 | Lead Time: 21 days | MOQ: 500

© RECOMMENDED ACTIONS

- ✓ US: Order 1,000 units
 - Prevents stockout in 15 days
 - Order value: \$25.00

- - Immediate availability
 - Utilizes US excess capacity

- ✓ DE: No action required
 - Coverage sufficient after UK transfer

TOTAL CALCULATION DETAILS

US Safety Stock = 1.65 × 35 × √4 = 115 units Target Level = $(180 \times 4) + 115 = 835$ units Current Position = 850 + 500 = 1,350 units Days to Reorder = (1,350-835)/25.7 = 20 days

- Prevented Revenue Loss: \$45,000
- Working Capital Saved: \$20,000
 - Weekly Time Saved: 2 hours
 - ROI: 180% immediate return

Data Model Architecture

Data Model Architecture

lacktriangle Data Flow: Real-time inventory \rightarrow ML forecasts \rightarrow Smart recommendations

Implementation Approach & Timeline

Week 1-4 Week 5-8 Week 9-12 FOUNDATION \rightarrow INTELLIGENCE \rightarrow OPTIMIZATION

1 FOUNDATION	INTELLIGENCE	OPTIMIZATION
Activities:Deploy calculation engineConnect data sourcesBasic dashboard launchTrain core users	Activities:Activate ML forecastingEnable exception detectionMulti-location optimizationExpand user base	Activities:Launch Al assistantAdvanced analyticsMobile deploymentFull rollout
Deliverables: ✓ Automated calculations ✓ Real-time inventory view ✓ Manual override capability	Deliverables: ✓ Al-powered predictions ✓ Proactive alerts ✓ Network visibility	Deliverables: √ Natural language interface √ Transfer recommendations √ Complete automation
Outcome: 3 hours/week saved	Outcome: 50% stockout reduction	Outcome: 5 Full ROI realization

Implementation Approach & Timeline-cont.

Metric	Current	Phase 2	Phase 3
Planning	4 hrs/wk	2 hrs/wk	45 min/wk
Stockouts	15%	10%	7.5%
Inventory	\$8M	\$7.2M	\$6.4M
Accuracy	70%	80%	85%

P Low-Risk Approach: Each phase delivers immediate value while building toward full automation

Technical Architecture

♣ INBOUND	PROCESSING	♣ OUTBOUND		
Data Sources: - ERP Systems Lem master, costs - WMS Real-time Lem Inventory positions - Sales CRM Lem Pipeline, forecasts - External APIs Lem Weather, trends	Core Components: - ML Engine - Prophet, LightGBM - Rules Engine - Business logic - Optimizer - Network balancing - Al Assistant - GPT-3.5 powered	Integrations: - PO Generation - Direct to procurement - Notifications - Email, Slack alerts - BI/Analytics - Tableau, PowerBI - Finance Systems - Inventory projections		
Update Frequency: Real-time & Batch	Performance: <100ms response time	Actions:Automated & tracked		
Frontend: React + Embedded Chat Backend: Python ML + Kafka Streaming Deploy: Kubernetes + Auto-scaling				

Modern, scalable architecture integrates with your existing systems

Business Value & ROI

INVESTMENT

One-Time Cost

- Development & Implementation \$120,000
- Training & Change Management \$20,000
- ML Model Training \$10,000

Total Investment: \$150,000

ANNUAL RETURNS

Recurring Benefits

- Stockout Reduction (50%) \$300,000
- Inventory Reduction (20%) \$200,000
- Labor Savings (3+ hrs/week) \$100,000

Total Annual Benefit: \$600,000

NOI SUMMARY

Payback Period: 3 months

5-Year NPV: \$2.1M

IRR: 400%

Y Competitive Advantage

Planning Speed	Forecast Accuracy	Exception Response	Scalability
80% faster 4hr → 45min	+15-20% improvement	Proactive vs Reactive	10K+ SKUs supported

Open Questions

1. ML Model Strategy

Should we include external signals (weather, events) from day one, or phase them in after establishing baseline accuracy?

2. User Experience

How aggressive should auto-approval thresholds be initially? Start conservative or trust the Al?

3. Rollout Approach

Pilot with one geography or all three simultaneously? High-value SKUs first or full catalog?

4. Integration Priorities

Which downstream systems need real-time vs batch updates? Build APIs for third-party tools immediately?

5. Change Management

How long should we run Excel processes in parallel? What KPIs trigger full automation?

Appendix 1 – News Vendor Model

Basic Cost Equations:

Expected cost of overstocking = $Prob(Demand < Q*) \times Co = F(Q*) \times Co$

Expected cost of understocking = $Prob(Demand > Q *) \times Cu = [1 - F(Q *)] \times Cu$

Newsyendor Critical Ratio:

$$F(Q*) = Cu/(Cu + Co)$$

Where:

 $F(Q*) = Cumulative \ probability \ function \ (probability \ that \ demand < Q*)Cu = Understocking \ cost \ (loss \ of \ mathematical \ probability \ function \ (probability \ function \ probability \ function \ (probability \ function \ fu$

Appendix 2 – Periodic Review System and Safety Stock

Inventory Position:

IP = On - hand inventory + On - order quantities - Backorders

Target Level:

 $T = Forecast \ of \ demand \ (during \ P + L \ time \ periods) + Safety \ Stock$

Order Quantity:

$$Q = T - IP$$

Demand Statistics for Planning Interval:

Average demand over P+L periods: $DAVG=(P+L)\times \mu d$ Standard Deviation over P+L periods: $\sigma P+L=\sqrt{(P+L)\times \sigma d}$

Safety Stock:

$$Safety Stock (SS) = z \times \sigma P + L$$

Annual Cost Equation:

$$Annual Cost = (52/P)S + CR + KC(Qavg/2) + KC(SS)$$

Variable Definitions:

- •IP = Inventory position
- •T = Target inventory level
- •Q = Order quantity
- •P = Review period (in weeks)
- •L = Lead time
- •µd = Mean demand per period
- $\bullet \sigma d$ = Standard deviation of demand per period
- $\sigma P + L = Standard deviation over planning interval$
- •z = Service factor constant (based on desired service level)
- •S = Cost of ordering (fixed)
- •C = Cost per unit
- •R = Annual demand
- •K = Fraction of unit cost for carrying inventory annually
- •Qavg = Average order size = $(R/52) \times P$
- •SS = Safety stock

Appendix 2 – Cont.

Figure 1. Periodic review system.

