Comment réaliser physiquement un ordinateur quantique

Yves LEROYER

Enjeu: réaliser physiquement

un système quantique à deux états| 0 > ou | 1 >

- une porte à un qubit conduisant à l'état générique $\alpha \mid 0>+\beta \mid 1>$

- une porte C-NOT, à deux qubits

Les candidats (les plus crédibles)

Systèmes physiques	Etats quantiques
Les photons	États de polarisation
Les atomes ou les ions	États internes d'énergie
Les noyaux atomiques	États de spin du noyau
Les nano circuits supraconducteurs	États de charge ou états de phase

1 – LE PHOTON

Photon = « grain » de lumière (Planck, Einstein,...)

c'est une particule qui :

- se déplace à la vitesse de la lumière
- possède deux états quantiques de polarisation | x > et | y >

1 - LE PHOTON (suite)

On associe: état de polarisation | x > → qubit | 0 > état de polarisation | y > → qubit | 1 >

On construit l'état $\alpha \mid 0 > + \beta \mid 1 >$ par simple rotation du polariseur

« Photons jumeaux » : paire de photons engendrés dans un cristal non linéaire (β borate de baryum, BBO) dans un état de Bell $\alpha |00>+\beta |11>$

Les photons sont utilisés en communication quantique :

- cryptographie
- téléportation

Cryptographie

Alléaume et al (Orsay), NJP 2004

Téléportation

- Alice possède un qubit dans un état $|\phi\rangle$; elle veut transmettre à Bob *l'état du qubit* sans envoyer le qubit.
- Alice et Bob possèdent chacun un qubit d'une paire dans un état de Bell (|00>+|11>)/ $\sqrt{2}$
- Alice agit sur les deux qubits qu'elle détient : cNOT, puis H sur le premier et enfin elle mesure l'état de la paire et transmet le résultat à Bob
- Bob agit sur le qubit qu'il détient en fonction du résultat que lui a transmis Alice (rien, ou X ou Z ou XZ) à la suite de quoi il a la certitude que son qubit se trouve dans l'état | ♦>

Téléportation

R. Ursin et al (Univ. Vienne), Nature 2004

2 – Les atomes et les ions

Impulsions laser « écriture/lecture »

2 – Les atomes et les ions (suite)

Exemple : les ions piégés

Des ions sont piègés dans un potentiel électromagnétique

- ion ⁴⁰Ca⁺, ion ⁹Be⁺
- basse température (100mK)
- transitions excitables par laser

Quantum optics and spectroscopy – University of Innsbrück

Etats internes:

 deux niveaux atomiques ; le niveau excité doit être de grande durée de vie

Etats de vibration

- les ions vibrent dans le piége électromagnétique
- leurs vibrations sont quantifiées et engendrent les état |n>.

Les vibrations et les transitions électromagnétiques sont couplées :

• cela permet d'engendrer des états à deux qubits

Comment calculer?

- Préparation de l'ion dans l'état |n=0> → refroidissement ~ mK
- Impulsion ω_0 : état interne $|0> \rightarrow |1>$
- Impulsion rouge $\omega = \omega_0 \omega_z : |01\rangle \rightarrow |10\rangle$

Porte SWAP =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Impulsion bleu $\omega = \omega_0 + \omega_z : |00\rangle \rightarrow |11\rangle$
- Porte c-Z : $|11> \rightarrow -|11> \rightarrow$ Impulsion 2π à partir d'un état auxiliaire

Réalisation d'une porte C-NOT

ion 2

ion 1

(lire J. Cirac & P. Zoller, « New frontiers in quantum information with atoms and ions » *Physics Today* **57**, p. 38 (2004))

• modes de vibrations couplés entre ions voisins

collectif

• modes de vibrations couplés entre ions voisins

Etat initial
$$(a|00>+b|01>+c|10>+d|11>)|0>$$

= $a|00>|0>+b|01>|0>+c|10>|0>+d|11>|0>$
Swap (j,m) $a|00>|0>+b|00>|1>+c|10>|0>+d|10>|1>$
cZ (j,m) $a|00>|0>+b|00>|1>+c|10>|0>-d|10>|1>$
Swap (j,m) $a|00>|0>+b|01>|0>+c|10>|0>-d|11>|0>$
= $(a|00>+b|01>+c|10>-d|11>)|0>$

Le mode vibrationnel sert à transférer l'information : « qubit bus vibrationnel»

Pour obtenir le c-NOT : $H_j \otimes c\text{-}Z_{ij} \otimes H_j$

Comment lire le résultat ?

- On éclaire l'ion (radiation résonante) |0> → |2>
 → on observe la fluorescence
- Si $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ la fluorescence est proportionnelle à $|\alpha|^2$

70 µm

Perspectives:

- Savoir faire en physique atomique
- « Grand » nombre d'ions (qques dizaines !)
- Inconvénient : cooling.

3 – La Résonance Magnétique Nucléaire

- Technique parfaitement maîtrisée (IRM)
- états quantiques = état de spin $\frac{1}{2}$ \rightarrow espace des états intrinsèquement bidimensionnel
- (relative) facilité de mise en œuvre ; équipement de petite taille

MAIS

limitée à un petit nombre de qubits

3 – La Résonance Magnétique Nucléaire (suite)

- Système quantiques : noyaux atomiques (de spin ½) des atomes d'une molécule
- Etats quantiques : les deux états de spin (±½h) de chaque noyau
- Chaque noyau est un qubit; l'ensemble des noyaux d'une molécule constitue un registre de qubits

Exemple de molécules à 7 qubits (complexe ferreux de perfluorobutanenyl)

3 – La Résonance Magnétique Nucléaire

(suite)

Les deux états de spin dans un champ magnétique $B_0 \leftrightarrow$ système à deux niveaux

La différence d'énergie est $h\omega_0$ avec

Comment transiter d'un niveau à l'autre ?

 \rightarrow On fait agir un deuxième champ magnétique tournant à la fréquence $\omega = \omega_0$, d'intensité B_1 et perpendiculaire à B_0

$$|\phi\rangle = \cos(\omega_1 t/2) |0\rangle + \sin(\omega_1 t/2) e^{i\theta} |1\rangle$$

avec $\omega_1 = \gamma B_1$

3 – La Résonance Magnétique Nucléaire (suite)

Comment agir sur un qubit donné / sur un noyau donné dans la molécule ?

 \rightarrow Chaque noyau à ses propres fréquences ω_0 et ω_1 .

Comment coupler deux qubits / deux noyaux de la molécule ?

→ interaction (naturelle) entre les spins de deux noyaux voisins qui tend à « aligner » les spins.

En combinant cette interaction avec des actions sur les spins individuels → porte c-NOT

Inconvénient : l'interaction entre spins voisins s'applique en permanence : il faut donc la corriger quand elle est indésirable (technique de l'écho de spin)

3 – La Résonance Magnétique Nucléaire (suite)

En 2001 Isaac CHUANG et son équipe (MIT) mettent en œuvre l'algorithme de Shor sur un ordinateur à 7 qubits

Limitation de la méthode à un petit nombre de qubits

- les molécules utilisables ont au plus une 20ne de noyaux de spin ½
- les qubits ne sont pas adressés individuellement : ensemble statistiques

4 – Perspectives

Une DIFFICULTE : la décohérence

Le qubit se couple à son environnement : autres états quantiques, instabilité du laser ...

→ temps de décohérence

Des remèdes

- → codes correcteurs d'erreur
- → « retarder » la décohérence

D'autres systèmes

- → nanocircuits supraconducteurs
- → cavités quantiques électromagnétiques