Overview

We have seen that Neural Networks are capable of performing many tasks very well.

One surprising aspect of this

- we have not *directed* the Neural Network on how to achieve the task
- the task is achieved by minimization of a Loss Function

We have seen that it the *potential* to be a Universal Function approximatator

- implementing the function defined implicitly
- by the empirical distribution of input/output pairs
- represented by the labeled training dataset

But is there any way to gain insight into what is happening within the layers of a Neural Network?

That is

- given the many synthetic features created by the Neural Network
- can we discover/interpret what is the meaning of a particular feature?

That is the topic of this module.

Interpretation: The first layer

It is relatively easy to understand the features created by the first layer

- they involve the dot product of an input and some weights
- ullet matches inputs ${f x}$ against weights (pattern) ${f w}$

So we can understand the feature

• if we understand the pattern

Inputs with only a feature dimension

For examples that have only feature dimensions

- the pattern is just a vector of feature values
- of length equal to the length of the input example

A Dense Layer has a pattern

that exactly identifies the "ideal" input (highest dot product)

Recall the $10\,\mathrm{patterns}$ from our simple Logistic Regression Classifier for the $10\,\mathrm{MNIST}$ digits

• these are the "idealized" digits

Patterns for each of the 10 MNIST digits

Class 6

Inputs with non-feature dimensions as well as a feature dimension

But we also allow examples to have a "shape"

• *non-feature* dimensions

For example

- ullet an image has 2 non-feature dimensions: row and column
- in addition to a feature dimensions: e.g., 3 features: Red, Green, Blue

Recall our terminology when dealing with examples having $N \geq 1$ non-feature dimensions

- an element is a vector with only a feature dimension
- ullet we can index an element by a vector of length N in

$$[1:d_1] imes[1:d_2] imes\dots[1:d_N]$$

• an index identifies a specific *location* in the non-feature dimensions

The patterns are (N+1) dimensional

- one feature dimensions of length n, which is also the number of input features
- \bullet N feature dimensions
 - each of length f
 - which is smaller than the length of the corresponding non-feature dimension of the input example

The output of the match with a single pattern is a feature map

- ullet N-dimensional: matches the lengths of the input non-feature dimensions
- a measure of the strength of the pattern's match with the sub-region centered at each location

So the pattern

• identifies an "ideal" sub-region in the input example

To illustrate

- we show the patterns a CNN layer appearing in layer 1 of a NN
- ullet there are $n_{(1)}=96$ patterns
- ullet each pattern is $(7 imes 7 imes n_{(0)})$
 - $lacksquare n_{(0)}=3$ are the number of input channels

Each square is a kernel.

Layer 1 kernels

Attribution: https://arxiv.org/pdf/1311.2901.pdf (https://arxiv.org/pdf/1311.2901.pdf (https://arxiv.org/pdf/1311.2901.pdf (https://arxiv.org/pdf/1311.2901.pdf (https://arxiv.org/pdf/1311.2901.pdf)

The "patterns" being recognized by these kernels seem to represent

- Lines, in various orientations
- Colors
- Shading

We interpret Layer ${\bf 1}$ as trying to construct synthetic features representing these simple concepts.

Beyond the first layer

Examining weights beyond the first layer presents difficulties

- the patterns are matched against outputs of layer l>0
- ullet we only know what the features are for layer 0
 - visually recognizable

So we can identify a pattern but can't assign a meaning to the inputs that are being matched.

We will have to come up with ways of interpreting synthetic features

that do no involve interpreting the patterns

Probing

One way to gain insight is by probing

- choose one feature somewhere in the Neural Network
- try to discover Layer 0 inputs
- that causes this feature to assume high (positive or negative) values

We call the values produced at a feature in response to inputs the feature's activations.

To eliminate ambiguity, we will write

$$\left.\mathbf{y}_{(l),k}
ight|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}$$

to denote the activation when the Layer 0 input is $\mathbf{x}^{(i)}$

lf

- ullet we identify a property ${\cal P}$ common to all the inputs resulting in High values
- ullet we can interpret the feature as being a detector for ${\cal P}$

The common property may not be easy to discern

- semantics: meaning
- rather than surface: appearance

For example

- there may be a neuron in some layer
- that acts as a "smile detector"
 - triggering only on inputs containing humans that are smiling

To be more precise:

Given a multi-layer Sequential Neural Network

• choose one feature at some layer to probe: $\mathbf{y}_{(l),k}$

We are interested in the output values (called *activations*) of this feature.

When the layer l output has only feature-dimensions

• the selected feature is a scalar

for instance, a Dense layer:

Dense layer: $\mathbf{y}_{(l)}$: selecting a neuron to probe

Dense layer: $\mathbf{y}_{(l)}$

Dense layer, one neuron selected: $\mathbf{y}_{(l),j}$

But when layer l has $N \geq 1$ non-feature dimensions

- the selected feature is really a *feature map*
- ullet with dimensions matching the non-feature dimensions of the layer input $(d_1 imes d_2 imes \ldots d_N)$

So there are $\prod_{i=1}^N d_i$ values (one per location) in the feature map

- rather than a single scalar value
- as in the case of layer outputs with only a feature dimension

Convolutional layer: $\mathbf{y}_{(l)}$: selecting a feature map to probe

Layer w/non-feature dimensions: $\mathbf{y}_{(l)}$

Layer w/non-feature dimensions, one element selected: $\mathbf{y}_{(l),j}$

In such a case

- we reduce each feature map (with non-feature dimensions)
- to a scalar
- using a Pooling operation to eliminate the non-feature dimensions
 - for example: Global Max Pooling

Convolutional layer: $\mathbf{y}_{(l)}$: selecting a feature map to probe Global Pooling

Layer w/non-feature dimensions: $\mathbf{y}_{(l)}$

Layer w/non-feature dimensions, pooled, one element selected: $\mathbf{y}_{(l),j}$

Thus, Probing

- examines the activation of a feature
- where the activation is represented
- by a single scalar value

Maximally Activating Examples

This method identifies

ullet a subset S of the training examples

$$S\subset \mathbf{X}$$

ullet that produces high activations for the selected feature $\mathbf{y}_{(l),k}$

Hence, this method is called *Maximally Activating Examples*

The method is quite simple

- pass each input example $\mathbf{x^{(i)}}$ to the network
- measure the resulting activation of the selected feature

$$\left.\mathbf{y}_{(l),k}
ight|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}$$

ullet rank the m resulting activations

$$\{i_1,\ldots,i_m\}$$

- Classify
 - lacktriangledown the K highest (positive) magnitude activations as High
 - lacktriangle the K highest (negative) magnitude activations as Low

i	$\mathbf{y}_{(l),k}$	class
1	7.1	
2	-100.2	Low
3	- 6.3	

: 234 | 1000.4 | High : m | 45.6 |

Then the K Maximally Activating examples for $\mathbf{y}_{(l),k}$ are defined as

ullet the K examples with highest rank (classified as High)

$$\operatorname{MaxAct}_{(l),k,K} = \{\mathbf{x}^{(i_1)}, \dots, \mathbf{x}^{(i_N)}\}$$

We then try

- via Intuition, Experiment
- ullet to identify the property ${\cal P}$
- ullet that is unique among old X to the examples in $\mathrm{MaxAct}_{(l),k,K} = \{ old x^{(i_1)}, \dots, old x^{(i_N)} \}$

Probing the Classifier Head

Applying the Maximally Activating Examples technique to the head layer ${\cal L}$ is particularly useful

For a Classifier Head:

$$\left.\mathbf{y}_{(L),k}
ight|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}$$

- is the probability (or pre-probability "logit")
- that example $\mathbf{x^{(i)}}$ is in Class k

We can use Maximally Activation examples on a Head feature

- to identify inputs
- ullet that are most/least confidently classified as being in Class k

Here we apply the technique to a restricted subset $\mathbf{X}'\subset\mathbf{X}$ of input images of digits that have label "8"

$$\mathbf{X}' = {\mathbf{x^{(i)}} | \mathbf{y^{(i)}} = 8 \text{ where } 1 \leq i \leq m}$$

MNIST CNN maximally activating 8's

Interesting! Do we have a problem with certain 8's?

Much lower probability when

- 8 is thin versus thick
- tilted left versus right

So although our goal was interpretation, this technique may be useful for Error Analysis as well.

Occlusion

Maximally activating inputs are very coarse: they identify concepts at the level of entire input.

- when the inputs have non-feature dimensions
- Global Pooling compresses all the locations to a single scalar
- losing information about the sub-region having the property

There is a simple technique called *Occlusion*

- ullet that enables us to find a sub-region of a particular input $\mathbf{x}^{(i)}$
- that is responsible for the activation

$$\left.\mathbf{y}_{(L),k}
ight|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}$$

It is similar in concept to Convolution applied to Layer 0 (the example)

In Convolution, we take a filter

- ullet with N non-feature dimensions
- each of length f
- and $n_{(0)}$ features

and compute the dot product of the filter with the sub-region of $\mathbf{x^{(i)}}$ centered at each location.

- ullet resulting in a feature map with identical non-feature dimensions as the input $d_1 imes d_2 imes \dots d_N$
- measuring the strength of the match of the filter and sub-region at each location
 - for each filter/kernel in the Convolutional layer

In Occlusion

- the sub-region of $\mathbf{x^{(i)}}$ centered at each location
- has all its values changed to an extreme value
 - equivalent to "hiding" the sub-region

Rather than computing the dot product at each location, Occlusion produces

- a feature map (Occlusion Sensitivity map) with identical non-feature dimensions as the input
- ullet measuring the change in the probability $\mathbf{y}_{(L),k}$
 - lacksquare from un-occluded $\mathbf{y}_{(L),k}|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}$
 - lacktriangledown to the value of $\mathbf{y}_{(L),k}$ when the location is the center of the occluded region

It is the sensitivity of $\mathbf{y}_{(L),k}|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}$ to being occluded at each location.

For inputs with non-feature dimensions

$$d_1 imes d_2 imes \ldots d_N$$

the Occlusion sensitivity Map has the same non-feature dimensions

• just like Convolution with a single kernel/filter

Thus the non-feature dimensions of the input and the sensitivity map are identical.

Below is an example for an image with label: Afghan Hound.

It would seem that this feature recognizes faces.

activation drops (blue = cold) when the faces are occluded

Attribution: https://arxiv.org/pdf/1311.2901.pdf#page=7 (https://arxiv.org/pdf/1311.2901.pdf#page=7)

Occlusion Experiment 1: Head Layer logit on MNIST digit Classification

The following figure shows

- some of the occluded locations in the feature map
- of a particular example $\mathbf{x^{(i)}}$ representing digit "8"
- ullet with the proportional change in $\mathbf{y}_{(L),8}$ indicated at the top of the occluded input
- for a NN performing MNIST digit classification

Occlusion: Relative decrease in probability of being "8"

Not what we expected!

The mere presence of the square changes the classification probability greatly

- even when we are not occluding what we believed to be the most important subregions of $\mathbf{x^{(i)}}$
 - the "pinched waist" of the 8.

This suggest that the NN performs Classification

- in a way different than what we might have directed to using a Procedural Program
- perhaps extreme locations
 - are used to recognize other digits
 - so the "bright" occlusion mask confuses the Classifier

We might want to use Data Augmentation to correct the Classifier

- adding noise to inputs, preserving the label
- to immunize the Classifier from bright spots at extreme locations

Occlusion Experiment 2: How does an ImageNet Classifier work

ImageNet was a competition (important historically in the evolution of Neural Networks)

- classification of images
- from among 1000 different classes
 - 200 different types of dogs and cats!

<u>Zieler and Fergus (https://arxiv.org/pdf/1311.2901.pdf)</u> have some interesting Occlusion results.

The Occlusion Sensitivity map we used as illustration above comes from this paper

• Interpretation of Layer 5 feature: face detector

Attribution: https://arxiv.org/pdf/1311.2901.pdf#page=7 (https://arxiv.org/pdf/1311.2901.pdf#page=7)

The fact that we have discovered a "face detector" is interesting.

- Faces *are not* one of the 1000 possible labels
- Perhaps this non-label feature is necessary
 - to assist in creating features that *do identify* labels

For example

- there is evidence that many Classifiers have features that recognize Letter Characters (e.g., A-Z)
 - not one of the 1000 classes
- which may, in turn
 - help to identify "Book", which is of the 1000 classes

The results of probing

- the logit of the class "Afghan Hound"
 - the correct label for the input image
- is very interesting

Occluding the dog causes a big drop (blue: cold) in probability of correct classification

as expected

But occluding each face increases the probability (red: hot) of correct classification!

- Perhaps the presence of a face is suggestive of an alternative class
 - removing the input signal for the alternative class results in a more confident prediction for the correct clas
- Even though "face" is not itself a class

Occlusion has helped us learn something unexpected about the workings of the Neural Network.

Saliency maps

Each location in the Occlusion Sensitivity map reflects

- ullet a change in $\mathbf{y}_{(l),k}$
- give a fairly big change
 - occlusion replaces pixels with an extreme value
- in a region of $\mathbf{y}_{(0)}$

We can compute a more traditional sensitivity via the derivative

$$\left.rac{\partial \mathbf{y}_{(l),k}}{\partial \mathbf{y}_{(0)}}\left|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}
ight.$$

Each location in this derivative (same non-feature dimensions as $\mathbf{y}_{(0)}$) reflects

- ullet a change in $\mathbf{y}_{(l),k}$
- for an infinitesimal change
- ullet in a single location in $\mathbf{y}_{(0)}$

This is called a Saliency Map

- when input has non-feature dimensions
- the Saliency Map has the same non-feature dimensions

$$d_1 imes d_2 imes \ldots d_N$$

Saliency Maps, when applied to a Head Layer logit k

- ullet explains the influence of each location in the input $\mathbf{y}_{(0)}$
- ullet on the classification of the input as being in class k

Hence, they are useful for explaining the output of a NN.

Understanding a non-head layer via Saliency Maps

Saliency Maps are also useful for explaining features in non-head layers.

Recall that the Saliency Map and Input have the same non-feature dimensions.

Saliency map for a shallow layer

Below are a collection of Saliency Maps for some feature in Layer 2 of an ImageNet Classifier.

- maps for 9 different input examples
 - the examples with largest activation in the feature map

All 9 examples appear to be eye-balls.

It would seem this Layer 2 feature is recognizing eye balls.

The diagram can be confusing

- they are for 9 different input examples
- the non-feature dimensions seem to be for a sub-region (a *patch*) of the input, rather than the entire input
 - just the eye, not the rest of the image

We will explain after presenting the diagram.

As a first pass

- \bullet these are the 9 examples that stimulated the feature most strongly
 - hence, may be useful for interpreting what the feature is
- on the left is a saliency map for a sub-region (patch) of the input
- on the right is the corresponding patch

Saliency Maps and Corresponding Patches Single Layer 2 Feature Map On multiple input images

Layer 2 Feature Map (Row 10, col 3).

Attribution: https://arxiv.org/abs/1311.2901#page=4 (https://arxiv.org/abs/1311.2901#page=4)

Explaining why the diagram has "small" maps and patches

Why are the Saliency Maps and corresponding patches restricted to sub-regions of the input?

• i.e., smaller than $d_1 imes d_2 imes \dots d_N$

Recall that the multiple locations in the layer are reduced to a single value

- the max, when using Max Pooling for the summarization
- ullet so the Saliency map is the change of a *single location* $\mathbf{y}_{(l),\mathrm{idx},k}$ in $\mathbf{y}_{(l),k}$

$$rac{\partial \mathbf{y}_{(l),\mathrm{idx},k}}{\partial \mathbf{y}_{(0)}}\left|_{\mathbf{y}_{(0)}=\mathbf{x^{(i)}}}
ight.$$

• where idx the location of the max

In a NN with multiple CNN layers,

- the <u>receptive field (CNN_Receptive_Field.ipynb)</u>
- is the input **sub-region** that affects a single location in a layer
- ullet the dimensions of the sub-region grows with the depth (i.e., layer number $\it l$) of the layer

So, in a shallow layer (i.e., Layer 2 in our diagram)

- the receptive field for any location
- is less than the full input
 - ullet very small: only slightly larger than f, the size of a side of the filter/kernel

Thus, the non-feature dimensions of the Saliency Map for a shallow layer (e.g., layer 2 in the diagram)

• is much smaller than

$$d_1 imes d_2 imes \ldots d_N$$

- ullet because the receptive field for $\mathrm{id}\mathbf{x}$, the location of the max in layer l
- is small

Saliency map for a deeper layer

As we go deeper into the network

- the size of the receptive field grows in a NN with successive CNN layers
- the representations become more complex
 - perhaps because of the larger receptive field
 - perhaps just because they are combinations of more complex representations
 - their layer inputs

In Layer 5, the feature whose map we show

- may be recognizing "smiling faces"
 - note the high (red) sensitivity
 - to lips and cheeks

Saliency Maps and Corresponding Patches
Single Layer 5 Feature Map
On 9 Maximally Activating Input images

Computing the Saliency Map

Computing a Saliency Map is easy

• a simple variant of Back Propagation

Recall the definition of the Loss Gradient in Back Propagation

$$\mathcal{L}_{(l)}' = rac{\partial \mathcal{L}}{\partial \mathbf{y}_{(l)}}$$

and it's recursive update

$$egin{array}{lll} \mathcal{L}'_{(l-1)} & = & rac{\partial \mathcal{L}}{\partial \mathbf{y}_{(l-1)}} \ & = & rac{\partial \mathcal{L}}{\partial \mathbf{y}_{(l)}} rac{\partial \mathbf{y}_{(l)}}{\partial \mathbf{y}_{(l-1)}} \ & = & \mathcal{L}'_{(l)} rac{\partial \mathbf{y}_{(l)}}{\partial \mathbf{y}_{(l-1)}} \end{array}$$

To compute Saliency Maps

- ullet replace ${\cal L}$ with ${f y}_{(l),k}$
- so the "loss gradient" is now the "saliency gradient" $\mathcal{L}'_{(l')} = \frac{\partial \mathbf{y}_{(l),k}}{\partial \mathbf{y}_{(l')}}$

$$\mathcal{L}_{(l')}' = rac{\partial \mathbf{y}_{(l),k}}{\partial \mathbf{y}_{(l')}}$$

- lacktriangle we use the index l to denote the layer of the feature map
- thus, we are forced to use l' in the subscript of \mathcal{L}' to avoid conflict

Substituting l'=0:

$$\mathcal{L}_{(0)}' = rac{\partial \mathbf{y}_{(l),k}}{\partial \mathbf{y}_{(0)}}$$

we get the derivative defining the Saliency Map.

Guided Back Propagation

Our ultimate purpose is to try to interpret the meaning of a synthetic feature.

The "true" mathematical derivative of the Saliency Map

- is sometimes sacrificed
- in order to enhance the interpretability

Zeiler and Fergus (https://arxiv.org/abs/1311.2901) (and similar related papers) modify Back propagation

- ullet In an attempt to get better intuition as to which input features most affect $\mathbf{y}_{(l),k}$
- For example: ignore the *sign* of the derivatives as they flow backwards
 - Look for strong positive or negative influences, not caring which

This is called Guided Back propagation.

Video: interactive interpretation of features

There is a nice video by <u>Yosinski (https://youtu.be/AgkflQ4IGaM)</u> which examines the behavior of a Neural Network's layers on video images rather than stills.

• using several of the techniques we describe

```
In [4]: print("Done")
```

Done