# Минобрнауки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

Кафедра информационной безопасности

Теория систем и системный анализ

Практическая работа № 5

ГЕНЕРАТОРЫ СЛУЧАЙНЫХ ЧИСЕЛ

Цель работы: знакомство с принципами генерации случайных чисел.

## Краткие теоретические положения

В основе метода Монте-Карло лежит генерация случайных чисел, которые должны быть равномерно распределены в интервале (0; 1).

Если генератор выдает числа, смещенные в какую-то часть интервала (одни числа выпадают чаще других), то результат решения задачи, решаемой статистическим методом, может оказаться неверным. Поэтому проблема использования хорошего генератора действительно случайных и действительно равномерно распределенных чисел стоит очень остро.

Математическое ожидание  $m_r$  и дисперсия  $D_r$  такой последовательности, состоящей из n случайных чисел  $r_i$ , должны быть следующими (если это действительно равномерно распределенные случайные числа в интервале от 0 до 1):

$$m_r = \frac{\sum_{i=1}^{n} r_i}{\sum_{i=1}^{n} (r_i - m_r)^2} = 0.5$$

$$D_r = \frac{\sum_{i=1}^{n} (r_i - m_r)^2}{n} = \frac{1}{12}$$

Если пользователю потребуется, чтобы случайное число x находилось в интервале (a;b), отличном от (0;1), нужно воспользоваться формулой  $x=a+(b-a)\cdot r$ , где r— случайное число из интервала (0;1). Законность данного преобразования демонстрируется на **рис. 1**.



Рис. 1. Схема перевода числа из интервала (0; 1) в интервал (a; b)

Теперь x — случайное число, равномерно распределенное в диапазоне от a до b.

За эталон генератора случайных чисел (ГСЧ) принят такой генератор, который порождает последовательность случайных чисел с равномерным законом распределения в интервале (0; 1). За одно обращение данный генератор возвращает одно случайное число. Если наблюдать такой ГСЧ достаточно длительное время, то окажется, что, например, в каждый из десяти интервалов (0; 0.1), (0.1; 0.2), (0.2; 0.3), ..., (0.9; 1) попадет практически одинаковое количество случайных чисел — то есть они будут распределены равномерно по всему интервалу (0; 1). Если изобразить на графике k = 10 интервалов и частоты  $N_i$  попаданий в них, то получится экспериментальная кривая плотности распределения случайных чисел (см. рис. 2).



Рис. 2. Частотная диаграмма выпадения случайных чисел, порождаемых реальным генератором

Заметим, что в идеале кривая плотности распределения случайных чисел выглядела бы так, как показано на **рис. 3**. То есть в идеальном случае в каждый интервал попадает одинаковое число точек:  $N_i = N/k$ , где N — общее число точек, k — количество интервалов, i = 1, ..., k.



Рис. 3. Частотная диаграмма выпадения случайных чисел, порождаемых идеальным генератором теоретически

Следует помнить, что генерация произвольного случайного числа состоит из двух этапов:

- генерация нормализованного случайного числа (то есть равномерно распределенного от 0 до 1);
- преобразование нормализованных случайных чисел  $r_i$  в случайные числа  $x_i$ , которые распределены по необходимому пользователю (произвольному) закону распределения или в необходимом интервале.

Генераторы случайных чисел по способу получения чисел делятся на:

- физические;
- табличные;
- алгоритмические.

#### Физические ГСЧ

Примером физических ГСЧ могут служить: монета («орел» — 1, «решка» — 0); игральные кости; поделенный на секторы с цифрами барабан со стрелкой; аппаратурный генератор шума (ГШ), в качестве которого используют шумящее

тепловое устройство, например, транзистор (рис. 4-5).



Рис. 4. Схема аппаратного метода генерации случайных чисел



**Рис. 5.** Диаграмма получения случайных чисел аппаратным методом

Задача «Генерация случайных чисел при помощи монеты»

Сгенерируйте случайное трехразрядное число, распределенное по равномерному закону в интервале от 0 до 1, с помощью монеты. Точность — три знака после запятой.

**Первый способ решения задачи** Подбросьте монету 9 раз, и если монета упала решкой, то запишите «0», если орлом, то «1». Итак, допустим, что в результате эксперимента получили случайную последовательность 100110100.

Начертите интервал от 0 ло 1. Считывая числа в послеловательности

слева направо, разбивайте интервал пополам и выбирайте каждый раз одну из частей очередного интервала (если выпал 0, то левую, если выпала 1, то правую). Таким образом, можно добраться до любой точки интервала, сколь угодно точно.

Итак, **1**: интервал [0; 1] делится пополам — [0; 0.5] и [0.5; 1], — выбирается правая половина, интервал сужается: [0.5; 1]. Следующее число, **0**: интервал [0.5; 1] делится пополам — [0.5; 0.75] и [0.75; 1], — выбирается левая половина [0.5; 0.75], интервал сужается: [0.5; 0.75]. Следующее число, **0**: интервал [0.5; 0.75] делится пополам — [0.5; 0.625] и [0.625; 0.75], — выбирается левая половина [0.5; 0.625], интервал сужается: [0.5; 0.625]. Следующее число, **1**: интервал [0.5; 0.625] делится пополам — [0.5; 0.5625] и [0.5625; 0.625], — выбирается правая половина [0.5625; 0.6250], интервал сужается: [0.5625; 0.6250].

По условию точности задачи решение найдено: им является любое число из интервала [0.5625; 0.6250], например, 0.625.

В принципе, если подходить строго, то деление интервалов нужно продолжить до тех пор, пока левая и правая границы найденного интервала не СОВПАДУТ между собой с точностью до третьего знака после запятой. То есть с позиций точности сгенерированное число уже не будет отличимо от любого числа из интервала, в котором оно находится.

Второй способ решения задачи Разобьем полученную двоичную последовательность 100110100 на триады: 100, 110, 100. После перевода этих двоичных чисел в десятичные получаем: 4, 6, 4. Подставив спереди «0.», получим: 0.464. Таким методом могут получаться только числа от 0.000 до 0.777 (так как максимум, что можно «выжать» из трех двоичных разрядов — это  $111_2 = 7_8$ ) — то есть, по сути, эти представлены восьмеричной В системе счисления. перевода восьмеричного числа в десятичное представление выполним:  $0.464_8 = 4 \cdot 8^{-1} + 6 \cdot 8^{-2} + 4 \cdot 8^{-3} = 0.6015625_{10} = 0.602_{10}.$ 

Итак, искомое число равно: 0.602.

#### Табличные ГСЧ

Табличные ГСЧ в качестве источника случайных чисел используют специальным образом составленные таблицы, содержащие проверенные некоррелированные, то есть никак не зависящие друг от друга, цифры. В табл. 1 приведен небольшой фрагмент такой таблицы. Обходя таблицу слева направо сверху вниз, можно получать равномерно распределенные от 0 до 1 случайные числа с нужным числом знаков после запятой (в нашем примере мы используем для каждого числа по три знака). Так как цифры в таблице не зависят друг от друга, то таблицу можно обходить разными способами, например, сверху вниз, или справа налево, или, скажем, можно выбирать цифры, находящиеся на четных позициях.

Случайное число в заданном интервале (например, от 0 до 1) формируется из случайных цифр, записанных в таблице. Например,

| таблица | число |
|---------|-------|
| 3 5 2   | 0.352 |
| 7 4 1   | 0.741 |

Таблица 1. Случайные цифры. Равномерно распределенные от 0 до 1 случайные числа

| Случайные цифры |   |   |   | е ци | іфрі | Ы | Равномерно распределенные от 0 до 1 случайные числа |       |
|-----------------|---|---|---|------|------|---|-----------------------------------------------------|-------|
| 9               | 2 | 9 | 2 | 0    | 4    | 2 | 6                                                   | 0.929 |
| 9               | 5 | 7 | 3 | 4    | 9    | 0 | 3                                                   | 0.204 |
| 5               | 9 | 1 | 6 | 6    | 5    | 7 | 6                                                   | 0.269 |
|                 |   |   |   |      | •    |   |                                                     |       |

Достоинство данного метода в том, что он дает действительно случайные числа, так как таблица содержит проверенные некоррелированные цифры. Недостатки метода: для хранения большого количества цифр требуется много памяти; большие трудности порождения и проверки такого рода таблиц, повторы при использовании таблицы уже не гарантируют случайности числовой последовательности, а значит, и надежности результата.

## Алгоритмические ГСЧ

Числа, генерируемые с помощью этих ГСЧ, всегда являются псевдослучайными (или квазислучайными), то есть каждое последующее сгенерированное число зависит от предыдущего:

$$r_{i+1} = f(r_i)$$
.

Последовательности, составленные из таких чисел, образуют петли, то есть обязательно существует цикл, повторяющийся бесконечное число раз. Повторяющиеся циклы называются **периодами**.

Достоинством данных ГСЧ является быстродействие; генераторы практически не требуют ресурсов памяти, компактны. Недостатки: числа нельзя в полной мере назвать случайными, поскольку между ними имеется зависимость, а также наличие периодов в последовательности квазислучайных чисел.

Рассмотрим несколько алгоритмических методов получения ГСЧ:

- метод серединных квадратов;
- метод серединных произведений;
- метод перемешивания;
- линейный конгруэнтный метод.

## Метод серединных квадратов

Имеется некоторое четырехзначное число R0. Это число возводится в квадрат и заносится в R1. Далее из R1 берется середина (четыре средних цифры) — новое случайное число — и записывается в R0. Затем процедура повторяется (см. рис. 6). Отметим, что на самом деле в качестве случайного числа необходимо брать не ghij, а 0-ghij — с приписанным слева нулем и десятичной точкой. Этот факт отражен как

на рис. 6, так и на последующих подобных рисунках.



Рис. 6. Схема метода серединных квадратов

Недостатки метода: 1) если на некоторой итерации число R0 станет равным нулю, то генератор вырождается, поэтому важен правильный выбор начального значения R0; 2) генератор будет повторять последовательность через  $M^n$  шагов (в лучшем случае), где n — разрядность числа R0, M — основание системы счисления.

Для примера на **рис. 6**: если число R0 будет представлено в двоичной системе счисления, то последовательность псевдослучайных чисел повторится через  $2^4 = 16$  шагов. Заметим, что повторение последовательности может произойти и раньше, если начальное число будет выбрано неудачно.

Описанный выше способ был предложен Джоном фон Нейманом и относится к 1946 году. Поскольку этот способ оказался ненадежным, от него очень быстро отказались.

#### Метод серединных произведений

Число R0 умножается на R1, из полученного результата R2 извлекается середина  $R2^*$  (это очередное случайное число) и умножается на R1. По этой схеме вычисляются все последующие случайные числа (см. **рис. 7**).



**Рис. 7. Схема метода серединных** произведений

#### Метод перемешивания

В методе перемешивания используются операции циклического сдвига содержимого ячейки влево и вправо. Идея метода состоит в следующем. Пусть в ячейке хранится начальное число R0. Циклически сдвигая содержимое ячейки влево на 1/4 длины ячейки, получаем новое число  $R0^*$ . Точно так же, циклически

сдвигая содержимое ячейки R0 вправо на 1/4 длины ячейки, получаем второе число  $R0^{**}$ . Сумма чисел  $R0^{*}$  и  $R0^{**}$  дает новое случайное число R1. Далее R1 заносится в R0, и вся последовательность операций повторяется (см. **рис. 8**).



Рис. 8. Схема метода перемешивания

Обратите внимание, что число, полученное в результате суммирования  $R0^*$  и  $R0^{**}$ , может не уместиться полностью в ячейке R1. В этом случае от полученного числа должны быть отброшены лишние разряды. Поясним это для **рис. 8**, где все ячейки представлены восемью двоичными разрядами. Пусть  $R0^* = 10010001_2 = 145_{10}$ ,  $R0^{**} = 10100001_2 = 161_{10}$ , тогла  $R0^* + R0^{**} = 100110010_2 = 306_{10}$ . Как выдим, нисло 306 занимает 9 разрядов (в

тогда  $R0^* + R0^{**} = 100110010_2 = 306_{10}$ . Как видим, число 306 занимает 9 разрядов (в двоичной системе счисления), а ячейка R1 (как и R0) может вместить в себя максимум 8 разрядов. Поэтому перед занесением значения в R1 необходимо убрать один «лишний», крайний левый бит из числа 306, в результате чего в R1 пойдет уже не 306, а  $00110010_2 = 50_{10}$ . Также заметим, что в таких языках, как Паскаль, «урезание» лишних битов при переполнении ячейки производится автоматически в соответствии с заданным типом переменной.

#### Линейный конгруэнтный метод

Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x, y), возвращающая остаток от деления первого аргумента на второй. Каждое последующее случайное число рассчитывается на основе предыдущего случайного числа по следующей формуле:

$$r_{i+1} = \operatorname{mod}(k \cdot r_i + b, M).$$
 $M \longrightarrow \operatorname{модуль}(0 < M);$ 
 $k \longrightarrow \operatorname{множитель}(0 \le k < M);$ 
 $b \longrightarrow \operatorname{приращениe}(0 \le b < M);$ 
 $r_0 \longrightarrow \operatorname{начальноe}$  значение
 $(0 \le r_0 < M).$ 

Последовательность случайных чисел, полученных с помощью данной формулы, называется линейной конгруэнтной последовательностью. Многие авторы называют линейную конгруэнтную последовательность при b=0 мультипликативным конгруэнтным методом, а при  $b\neq 0$  — смешанным конгруэнтным методом.

требуется Для генератора подобрать качественного подходящие коэффициенты. Необходимо, чтобы число M было довольно большим, так как период не может иметь больше M элементов. С другой стороны, деление, использующееся в этом методе, является довольно медленной операцией, поэтому для двоичной вычислительной машины логичным будет выбор  $M=2^N$ , поскольку в этом случае нахождение остатка от деления сводится внутри ЭВМ к двоичной логической операции «AND». Также широко распространен выбор наибольшего простого числа M, меньшего, чем  $2^N$ : в специальной литературе доказывается, что в этом случае младшие разряды получаемого случайного числа  $r_{i+1}$  ведут себя так же случайно, старшие, что положительно сказывается как последовательности случайных чисел в целом. В качестве примера можно привести одно из *чисел Мерсенна*, равное  $2^{31} - 1$ , и таким образом,  $M = 2^{31} - 1$ .

Одним из требований к линейным конгруэнтным последовательностям является как можно большая длина периода. Длина периода зависит от значений M, k и b. Теорема, которую мы приведем ниже, позволяет определить, возможно ли достижение периода максимальной длины для конкретных значений M, k и b.

**Теорема**. Линейная конгруэнтная последовательность, определенная числами M, k, b и  $r_0$ , имеет период длиной M тогда и только тогда, когда:

- числа b и M взаимно простые;
- k-1 кратно p для каждого простого p, являющегося делителем M;
- k-1 кратно 4, если M кратно 4.

Наконец, в заключение рассмотрим пару примеров использования линейного конгруэнтного метода для генерации случайных чисел.

## Пример 1

$$M = 2^{N}$$
 $k = 3 + 8 \cdot q$  (или  $k = 5 + 8 \cdot q$ )
 $b = 0$ 
 $r_{0}$  — нечетно

Было установлено, что ряд псевдослучайных чисел, генерируемых на основе данных из примера 1, будет повторяться через каждые M/4 чисел. Число q задается произвольно перед началом вычислений, однако при этом следует иметь в виду, что ряд производит впечатление случайного при больших k (а значит, и q). Результат можно несколько улучшить, если b нечетно и  $k = 1 + 4 \cdot q$  — в этом случае ряд будет повторяться через каждые M чисел. После долгих поисков k исследователи остановились на значениях 69069 и 71365.

#### Пример 2

$$\begin{array}{cccc} M = 2^{31} - 1 \\ k = 1 \ 220 \ 703 \ 125 \\ b & = & 7 \\ r_0 = 7 \end{array}$$

Генератор случайных чисел, использующий данные из примера 2, будет выдавать случайные неповторяющиеся числа с периодом, равным 7 миллионам.

Мультипликативный метод генерации псевдослучайных чисел был предложен Д. Г. Лехмером (D. H. Lehmer) в 1949 году.

## Проверка качества работы генератора

От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.

Осуществляемые проверки бывают двух типов:

- проверки на равномерность распределения;
- проверки на статистическую независимость.

#### Проверки на равномерность распределения

1) ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона:

$$m_r = \frac{\sum\limits_{i=1}^n r_i}{n} \approx 0.5$$
 — математическое ожидание;  $D_r = \frac{\sum\limits_{i=1}^n (r_i - m_r)^2}{n} \approx$  — дисперсия;  $\sigma_r = \sqrt{D_r} \approx 0.2887$  — среднеквадратичное отклонение.

#### 2) Частотный тест

Частотный тест позволяет выяснить, сколько чисел попало в интервал  $(m_r - \sigma_r; m_r + \sigma_r)$ , то есть (0.5 - 0.2887; 0.5 + 0.2887) или, в конечном итоге, (0.2113; 0.7887). Так как 0.7887 - 0.2113 = 0.5774, заключаем, что в хорошем ГСЧ в этот интервал должно попадать около 57.7% из всех выпавших случайных чисел (см. **рис. 9**).



Рис. 9. Частотная диаграмма идеального ГСЧ в случае проверки его на частотный тест

Также необходимо учитывать, что количество чисел, попавших в интервал (0; 0.5), должно быть примерно равно количеству чисел, попавших в интервал (0.5; 1).

### 3) Проверка по критерию «хи-квадрат»

Критерий «хи-квадрат» ( $\chi^2$ -критерий) — это один из самых известных статистических критериев; он является основным методом, используемым в сочетании с другими критериями. Критерий «хи-квадрат» был предложен в 1900

году Карлом Пирсоном. Его замечательная работа рассматривается как фундамент современной математической статистики.

Для нашего случая проверка по критерию «хи-квадрат» позволит узнать, насколько созданный нами *реальный* ГСЧ близок к эталону ГСЧ, то есть удовлетворяет ли он требованию равномерного распределения или нет.

Частотная диаграмма эталонного ГСЧ представлена на рис. 10. Так как закон равномерный, распределения эталонного ГСЧ TO (теоретическая) в i-ый интервал (всего этих интервалов k) вероятность  $p_i$  попадания чисел образом, равна  $p_i = 1/k$ . И, каждый из k интервалов таким В попадет *ровно* по  $p_i \cdot N$  чисел (N — общее количество сгенерированных чисел).



Рис. 10. Частотная диаграмма эталонного ГСЧ

Реальный ГСЧ будет выдавать числа, распределенные (причем, не обязательно равномерно!) по k интервалам и в каждый интервал попадет по  $n_i$  чисел (в сумме  $n_1 + n_2 + \ldots + n_k = N$ ). Как же нам определить, насколько испытываемый ГСЧ хорош и близок к эталонному? Вполне логично рассмотреть квадраты разностей между полученным количеством чисел  $n_i$  и «эталонным»  $p_i \cdot N$ . Сложим их, и в результате получим:

$$\chi^2_{\text{эксп.}} = (n_1 - p_1 \cdot N)^2 + (n_2 - p_2 \cdot N)^2 + \dots + (n_k - p_k \cdot N)^2.$$

Из этой формулы следует, что чем меньше разность в каждом из слагаемых (а значит, и чем меньше значение  $\chi^2_{_{3 \text{КСП.}}}$ ), тем сильнее закон распределения случайных чисел, генерируемых реальным ГСЧ, тяготеет к равномерному.

В предыдущем выражении каждому из слагаемых приписывается одинаковый вес (равный 1), что на самом деле может не соответствовать действительности; поэтому для статистики «хи-квадрат» необходимо провести нормировку каждого i-го слагаемого, поделив его на  $p_i \cdot N$ :

го слагаемого, поделив его на 
$$p_i \cdot N$$
: 
$$\chi^2_{\text{эксп.}} = \frac{(n_1 - p_1 \cdot N)^2}{p_1 \cdot N} + \frac{(n_2 - p_2 \cdot N)^2}{p_2 \cdot N} + \ldots + \frac{(n_k - p_k \cdot N)^2}{p_k \cdot N}$$

Наконец, запишем полученное выражение более компактно и упростим его:

$$\chi^{2}_{\text{swert.}} = \sum_{i=1}^{k} \frac{(n_{i} - p_{i} \cdot N)^{2}}{p_{i} \cdot N} = \frac{1}{N} \sum_{i=1}^{k} \left(\frac{n_{i}^{2}}{p_{i}}\right) - N$$

Мы получили значение критерия «хи-квадрат» для экспериментальных данных.

табл. 22.2 приведены теоретические значения  $(\chi^2_{\text{teop.}}),$ «хи-квадрат» где v = N - 1 — это число степеней свободы, **р** — это доверительная вероятность, который насколько задаваемая пользователем, указывает, должен требованиям равномерного распределения, удовлетворять или **р** — э*то* значение  $\chi^2_{\mathfrak{s}\kappa cn}$ . будет вероятность того, экспериментальное что меньше табулированного (теоретического)  $\chi^2_{meop.}$  или равно ему.

Таблица 2. Некоторые процентные точки  $\chi^2$ -распределения

|         | p = 1%                                                                                        | p = 5%  | p = 25% | p = 50% | p = 75% | p = 95% | p = 99% |  |  |
|---------|-----------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|--|--|
| v = 1   | 0.00016                                                                                       | 0.00393 | 0.1015  | 0.4549  | 1.323   | 3.841   | 6.635   |  |  |
| v = 2   | 0.02010                                                                                       | 0.1026  | 0.5754  | 1.386   | 2.773   | 5.991   | 9.210   |  |  |
| v = 3   | 0.1148                                                                                        | 0.3518  | 1.213   | 2.366   | 4.108   | 7.815   | 11.34   |  |  |
| v = 4   | 0.2971                                                                                        | 0.7107  | 1.923   | 3.357   | 5.385   | 9.488   | 13.28   |  |  |
| v = 5   | 0.5543                                                                                        | 1.1455  | 2.675   | 4.351   | 6.626   | 11.07   | 15.09   |  |  |
| v = 6   | 0.8721                                                                                        | 1.635   | 3.455   | 5.348   | 7.841   | 12.59   | 16.81   |  |  |
| v = 7   | 1.239                                                                                         | 2.167   | 4.255   | 6.346   | 9.037   | 14.07   | 18.48   |  |  |
| v = 8   | 1.646                                                                                         | 2.733   | 5.071   | 7.344   | 10.22   | 15.51   | 20.09   |  |  |
| v = 9   | 2.088                                                                                         | 3.325   | 5.899   | 8.343   | 11.39   | 16.92   | 21.67   |  |  |
| v = 10  | 2.558                                                                                         | 3.940   | 6.737   | 9.342   | 12.55   | 18.31   | 23.21   |  |  |
| v = 11  | 3.053                                                                                         | 4.575   | 7.584   | 10.34   | 13.70   | 19.68   | 24.72   |  |  |
| v = 12  | 3.571                                                                                         | 5.226   | 8.438   | 11.34   | 14.85   | 21.03   | 26.22   |  |  |
| v = 15  | 5.229                                                                                         | 7.261   | 11.04   | 14.34   | 18.25   | 25.00   | 30.58   |  |  |
| v = 20  | 8.260                                                                                         | 10.85   | 15.45   | 19.34   | 23.83   | 31.41   | 37.57   |  |  |
| v = 30  | 14.95                                                                                         | 18.49   | 24.48   | 29.34   | 34.80   | 43.77   | 50.89   |  |  |
| v = 50  | 29.71                                                                                         | 34.76   | 42.94   | 49.33   | 56.33   | 67.50   | 76.15   |  |  |
| v > 30  | $v + \operatorname{sqrt}(2v) \cdot x_p + 2/3 \cdot x_p^2 - 2/3 + O(1/\operatorname{sqrt}(v))$ |         |         |         |         |         |         |  |  |
| $x_p =$ | -2.33                                                                                         | -1.64   | -0.674  | 0.00    | 0.674   | 1.64    | 2.33    |  |  |

Приемлемым считают р от 10% до 90%.

Еще Д. Кнут в своей книге «Искусство программирования» заметил, что иметь  $\chi^2_{_{9 \text{ксп.}}}$  маленьким тоже, в общем-то, нехорошо, хотя это и кажется, на первый взгляд, замечательно с точки зрения равномерности. Действительно, возьмите ряд чисел 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, ... — они

идеальны с точки зрения равномерности, и  $\chi^2_{_{9 \text{ксп.}}}$  будет практически нулевым, но вряд ли вы их признаете случайными.

При этом дополнительно надо иметь в виду, что все значения  $p_i \cdot N$  должны быть достаточно большими, например больше 5 (выяснено эмпирическим путем). Только тогда (при достаточно большой статистической выборке) условия проведения эксперимента можно считать удовлетворительными.

Итак, процедура проверки имеет следующий вид.

- 1. Диапазон от 0 до 1 разбивается на k равных интервалов.
- 2. Запускается ГСЧ N раз (N должно быть велико, например, N/k > 5).
- 3. Определяется количество случайных чисел, попавших в каждый интервал:  $n_i$ ,  $i=1,\ldots,k$ .
- 4. Вычисляется экспериментальное значение  $\chi^2_{_{3 \text{ксп.}}}$  по следующей формуле:

$$\chi_{\text{swern.}}^2 = \sum_{i=1}^k \frac{(n_i - p_i \cdot N)^2}{p_i \cdot N} = \frac{1}{N} \sum_{i=1}^k \left( \frac{n_i^2}{p_i} \right) - N$$

где  $p_i = 1/k$  — теоретическая вероятность попадания чисел в k-ый интервал.

5. Путем сравнения экспериментально полученного значения  $\chi^2_{_{ эксп.}}$  с теоретическим  $\chi^2_{_{ теор.}}$  (из табл. 2) делается вывод о пригодности генератора для использования. Для этого: а) входим в табл. 2 (**строка = количество экспериментов – 1**); б) сравниваем вычисленное  $\chi^2_{_{ эксп.}}$  с  $\chi^2_{_{ теор.}}$ , встречающимися в строке. При этом возможно три случая.

Первый случай:  $\chi^2_{_{_{^{2} \text{КСП.}}}}$  много больше любого  $\chi^2_{_{\text{теор.}}}$  в строке — гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком велик, чтобы быть случайным).

Заметим, что чем ближе получается р к значению 50%, тем лучше.

## Проверки на статистическую независимость

# 1) Проверка на частоту появления цифры в последовательности

Рассмотрим пример. Случайное число 0.2463389991 состоит из цифр 2463389991, а число 0.5467766618 состоит из цифр 5467766618. Соединяя последовательности цифр, имеем: 24633899915467766618.

Понятно, что теоретическая вероятность  $p_i$  выпадения i-ой цифры (от 0 до 9)

#### равна 0.1.

Далее следует вычислить частоту появления каждой цифры в выпавшей экспериментальной последовательности. Например, цифра 1 выпала 2 раза из 20, а цифра 6 выпала 5 раз из 20.

Далее считают оценку и принимают решение по критерию «хи-квадрат».

# 2) Проверка появления серий из одинаковых цифр

Обозначим через  $n_L$  число серий одинаковых подряд цифр длины L. Проверять надо все L от 1 до m, где m — это заданное пользователем число: максимально встречающееся число одинаковых цифр в серии.

В примере «24633899915467766618» обнаружены 2 серии длиной в 2 (33 и 77), то есть  $n_2 = 2$  и 2 серии длиной в 3 (999 и 666), то есть  $n_3 = 2$ .

Вероятность появления серии длиной в L равна:  $p_L = 9 \cdot 10^{-L}$  (теоретическая). То есть вероятность появления серии длиной в один символ равна:  $p_1 = 0.9$  (теоретическая). Вероятность появления серии длиной в два символа равна:  $p_2 = 0.09$  (теоретическая). Вероятность появления серии длиной в три символа равна:  $p_3 = 0.009$  (теоретическая).

Например, вероятность появления серии длиной в один символ равна  $p_L = 0.9$ , так как всего может встретиться один символ из 10, а всего символов 9 (ноль не считается). А вероятность того, что подряд встретится два одинаковых символа «XX» равна  $0.1 \cdot 0.1 \cdot 9$ , то есть вероятность 0.1 того, что в первой позиции появится символ «X», умножается на вероятность 0.1 того, что во второй позиции появится такой же символ «X» и умножается на количество таких комбинаций 9.

Частость появления серий подсчитывается по ранее разобранной нами формуле «хи-квадрат» с использованием значений  $p_L$ .

# Порядок выполнения работы

1. Используя вид генератора случайных чисел согласно варианту, сформировать последовательность 10 случайных чисел с 5-ю знаками после запятой в интервале [0,1]. Варианты

| 1 | Физический метод                  | 13 | Физический метод                  |  |
|---|-----------------------------------|----|-----------------------------------|--|
| 2 | Табличный метод                   | 14 | Табличный метод                   |  |
| 3 | метод серединных квадратов        | 15 | метод серединных<br>квадратов     |  |
| 4 | метод серединных<br>произведений  | 16 | метод серединных<br>произведений  |  |
| 5 | метод<br>перемешивания            | 17 | метод<br>перемешивания            |  |
| 6 | линейный<br>конгруэнтный<br>метод | 18 | линейный<br>конгруэнтный<br>метод |  |
| 7 | Физический метод                  | 19 | Физический метод                  |  |

| 8  | Табличный метод                   | 20 | Табличный метод                   |  |
|----|-----------------------------------|----|-----------------------------------|--|
| 9  | метод серединных квадратов        | 21 | метод серединных<br>квадратов     |  |
| 10 | метод серединных<br>произведений  | 22 | метод серединных произведений     |  |
| 11 | метод<br>перемешивания            | 23 | метод<br>перемешивания            |  |
| 12 | линейный<br>конгруэнтный<br>метод | 24 | линейный<br>конгруэнтный<br>метод |  |

<sup>2.</sup> Проверить качество работы генератора всеми представленными в данных методических указаниях методами.