《通信原理》期末考试参考答案

一. 选择填空

1. 在 2PSK 系统中,导致"0、π相位模糊"的环节是下列中的(A)。解决此问题的方法之一是采用(D)。

(1)	(A) 载波恢复	(B) 匹配滤波	(C) 差分编码	(D) 判决
(2)	(A) OQPSK	(B) 部分响应	(C) 超前滞后门	(D) DPSK

2. 在本课中,下列图形中的(A)是眼图 (eye diagram)、(B)是星座图 (constellation)。

3. 已知下图中的收发总体特性X(f)不满足奈奎斯特无码间干扰传输准则,为了使输出的错误率尽量小,图中的装置 1 应为(A),装置 2 应为(B)。

4. 已知 PAM 信号的数学期望为零,带宽大于奈奎斯特极限带宽。下图是用线谱法从接收到的 PAM 信号中提取时钟的框图,图中的装置 1 应为(B),装置 2 应为(C)。

5. 某二进制调制系统在[0, Tb]内发送

$$s(t) = \begin{cases} s_1(t) = \cos 2\pi f_c t \\ s_2(t) \end{cases} \quad 0 \le t \le T_b$$

其中 $s_1(t)$, $s_2(t)$ 等概出现, $f_c \gg 1/T_b$ 。s(t)经过信道传输后叠加了白高斯噪声,接收端采用能使误码率最小的最佳接收方案。考虑 $s_2(t)$ 的如下四种设计,其中(D)的误比特率最小,(A)的误比特率最大。

(0) (10)	(A) $s_2(t) = 0$	(B) $s_2(t) = \cos[2\pi t (f_c + \frac{1}{T_b})]$
(9) (10)	(C) $s_2(t) = -\cos[2\pi t (f_c + \frac{1}{T_b})]$	$(D) s_2(t) = -\cos 2\pi f_c t$

6. 下列解调框图中, (A)可用于 OOK 的非相干解调, (B)可用于 2PSK 的相干解调, (C)可用来解调 DPSK。

7. 设正交 16FSK 的数据速率是 24b/s,则其符号速率是(A)Baud。16 个频率中的最低频率 f_1 与最高频率 f_{16} 的差最小是(D)Hz。

(14) (15)	(A) 6	(B) 12	(C) 24	(D) 45
(17)(13)	(11) 0	(D) 12	(C) 24	(D) 43

8. 给定量化电平数 M、给定样值 X 的概率密度函数 p(x),若分层电平 x_1, x_2, \dots, x_{M-1} 和量化电平 y_1, y_2, \dots, y_M $(x_{k-1} \le y_k \le x_k)$ 的设计能使量化噪声平均功率最小,则 x_k 应位于 (C), y_k 应位于(B)。

(16) (17)	(A) 区间[y_k, y_{k+1}]的概率质心	(B) 区间[x_{k-1}, x_k]的概率质心
(10) (17)	(C) 区间 $[y_k, y_{k+1}]$ 的中点	(D) 区间[x_{k-1}, x_k]的中点

9. 设 M 个信号 $s_1(t)$, \cdots , $s_M(t)$ 的先验概率分别是 q_1 , \cdots , q_M , 在完备归一化正交基下的矢量表示分别是 s_1 , s_2 , \cdots , s_M 。 发送某个 $s(t) \in \{s_1(t), \cdots, s_M(t)\}$,接收端收到 $r(t) = s(t) + n_w(t)$,其中 $n_w(t)$ 是加性白高斯噪声。将r(t)投影到信号空间得到矢量表示r,则r是(B)。已知发送 s_i 条件下的信道转移概率为 $p(r|s_i) \triangleq p_i(r)$,用r进行判决时,MAP 准则是(C)。ML 准则是(B)。

(18)	(A) 不充分统计量	(B) 充分统计量
(16)	(C) 高斯随机量	(D) 标量
	(A) $\hat{s} = \operatorname{argmin}\{p_i(\boldsymbol{r})\}$	(B) $\hat{s} = \operatorname{argmax}\{p_i(\boldsymbol{r})\}$
(10) (20)	$oldsymbol{s}_i$	$oldsymbol{s}_i$
(19) (20)	(C) $\hat{s} = \operatorname{argmax}\{p_i(\boldsymbol{r})q_i\}$	(D) $\hat{s} = \operatorname{argmin}\{p_i(\boldsymbol{r})q_i\}$
	$oldsymbol{s}_i$	$oldsymbol{s}_i$

10. 下图中, $\{f_1(t), f_2(t), f_3(t)\}$ 是一组归一化正交基。将图中的 $s_1(t)$ 和 $s_2(t)$ 用这组基展开后的矢量表达为 $s_1 = (B)$, $s_2 = (C)$ 。 $s_1(t)$ 和 $s_2(t)$ 的归一化相关系数是 $\rho_{12} = (A)$,欧氏距离是 $d_{12} = (D)$ 。

(21) (22)	(A) (1,1,1)	(B) (1,1,2)	(C) $(-1, -1, 1)$	(D) $(-1, -1, 0)$
(23) (24)	(A) 0	(B) 1	(C) 2	(D) 3

11.当发端发送的数据"1""0"等概时, 2PSK 常用的载波提取方法有平方环、科斯塔斯环等。 下列框图中的(B)是平方环, (C)是科斯塔斯环。

12. 假设调制器输入的数据独立等概,比特间隔是 T_b ,调制器载波频率是 $f_c = 1/T_b$ 。下列已调信号波形中,(C)是 4ASK、(B)是 2PSK、(D)是 OQPSK、(A)是 QPSK。

二. 图 1 是加有预编码的第一类部分响应系统框图。图中 b_0, b_1, \cdots 是独立等概取值于 0、1 的比特序列,比特间隔为 $T_b = 1$ s; $a_n = (-1)^{d_n}$; $s(t) = \sum_{n=-\infty}^{\infty} c_n g_T(t-n)$; $G_T(f)$ 和 LPF 都是增益为 1、带宽为 $\frac{1}{2T_b} = \frac{1}{2}$ Hz 的理想低通滤波器; $n_w(t)$ 是双边功率谱密度为 $N_0/2$ 的加性白高斯噪声; $r_n = r(nT_b) = r(n)$ 。

图 1

- (1) 若 b_0, b_1, \cdots 为 1100101,写出相应的序列 d_0, d_1, \cdots (假设 $d_{-1} = 0$)、 a_0, a_1, \cdots 、 c_0, c_1, \cdots 。
- (2) 写出此系统的频带利用率。
- (3) 求 $n_{\rm w}(t)$ 通过 LPF 之后的平均功率。
- (4) 写出发送 $b_n = 1$ 条件下 r_n 的均值、方差以及条件概率密度函数。
- (5) 求发送 $b_n = 0$ 条件下 r_n 的均值、方差、条件概率密度函数。(n > 0)
- **解** $(1)b_n, d_n, a_n, c_n$ 之间的关系是

$$d_{n} = b_{n} \oplus d_{n-1}$$

$$a_{n} = (-1)^{d_{n}} = (-1)^{b_{n} \oplus d_{n-1}}$$

$$= (-1)^{b_{n}} \cdot (-1)^{d_{n-1}}$$

$$c_{n} = a_{n} + a_{n-1} = (-1)^{b_{n}} \cdot (-1)^{d_{n-1}} + (-1)^{d_{n-1}}$$

$$= (-1)^{d_{n-1}} \left[(-1)^{b_{n}} + 1 \right]$$

$$= \begin{cases} 0, & b_{n} = 1 \\ 2 \cdot (-1)^{d_{n-1}}, & b_{n} = 0 \end{cases}$$

据此可以得到

n	-1	0	1	2	3	4	5	6
b_n		1	1	0	0	1	0	1
d_n	0	1	0	0	0	1	1	0
a_n	1	-1	1	1	1	-1	-1	1
c_n		0	0	2	2	0	-2	0

- (2)此系统的带宽是 1/2Hz, 传输速率是 1b/s, 因此频带利用率是 2bps/Hz。
- (3)接收滤波器的带宽是 B=1/2,故输出噪声功率是 $\sigma_2=N_0B=\frac{N_0}{2}$
- (4)发送b。时接收端的采样值为

$$r_n = c_n + z_n$$

其中 z_0 是均值为零,方差为 $\sigma_2=\frac{N_0}{2}$ 的高斯随机变量。在 $b_n=1$ 条件下, $c_n=0$, $r_n=z_n$,其均值是 0,方差是 $N_0/2$,条件概率密度函数是

$$p_1(r_n) = \frac{1}{\sqrt{\pi N_0}} e^{-\frac{r_n^2}{N_0}}$$

(5) 发送 $b_n=0$ 的条件下, c_n 等概取值于 ± 2 。此条件下, c_n 的均值为零,方差为 4,因此 r_n 的均值是 0,方差是 $4+\frac{N_0}{2}$ 。

在条件 " $b_n=0, c_n=2$ "下, r_n 是均值为 2,方差为 $\frac{N_0}{2}$ 的高斯随机变量,条件概率密度函数 是

$$p(r_n|b_n = 0, c_n = 2) = \frac{1}{\sqrt{\pi N_0}} e^{-\frac{(r_n - 2)^2}{N_0}}$$

在条件 " $b_n=0, c_n=-2$ " 下, r_n 是均值为-2,方差为 $\frac{N_0}{2}$ 的高斯随机变量,条件概率密度函数是

$$p(r_n|b_n = 0, c_n = -2) = \frac{1}{\sqrt{\pi N_0}} e^{-\frac{(r_n+2)^2}{N_0}}$$

因此,在条件 $b_n = 0$ 下, r_n 的条件概率密度函数为

$$p_0(r_n) = \Pr\{c_n = 2\} p(r_n | b_n = 0, c_n = 2) + \Pr\{c_n = -2\} p(r_n | b_n = 0, c_n = -2)$$
$$= \frac{1}{2\sqrt{\pi N_0}} e^{-\frac{(r_n - 2)^2}{N_0}} + \frac{1}{2\sqrt{\pi N_0}} e^{-\frac{(r_n + 2)^2}{N_0}}$$

三. 某 OOK 系统在 $[0, T_b]$ 内发送

$$s(t) = \begin{cases} s_1(t) = \sqrt{\frac{2E_1}{T_b}} \cos 2\pi f_c t \\ s_2(t) = 0 \end{cases} \quad 0 \le t \le T_b$$

其中 f_c 是 $1/T_b$ 的整倍数。s(t)在信道传输中叠加了双边功率谱密度为 1(N_0 =2)的白高斯噪声,然后按图 2 解调,其中带通滤波器H(f)的傅氏反变换正好是 $s_1(T_b-t)$,判决门限为 $V_{\rm th}=E_1/2$ 。

图 2

- (1) 求 $s_1(t)$, $s_2(t)$ 的能量以及H(f)输出端噪声的功率 σ^2 。
- (2) 求发送 $s_1(t)$ 及 $s_2(t)$ 条件下y的均值。
- (3) 求发送 $s_1(t)$ 条件下 $y < V_{\text{th}}$ 的概率,发送 $s_2(t)$ 条件下 $y > V_{\text{th}}$ 的概率。

(4) 若发送 $s_1(t)$ 的概率为p,求平均比特能量 E_b 以及平均误比特率与 E_b 的关系式。

解: $(1)s_2(t) = 0$ 的能量为 0. $s_1(t)$ 在 $[0, T_b]$ 内的平均功率为 $\frac{1}{2}\left(\sqrt{\frac{2E_1}{T_b}}\right) = \frac{E_1}{T_b}$,其能量为 $\frac{E_1}{T_b}$ 、 $T_b = E_1$.

噪声 $n_{\rm w}(t)$ 的双边功率谱密度是 1,通过H(f)之后的功率谱密度是 $|H(f)|^2$ 。噪声的功率是功率谱密度的面积,为 $\sigma^2=\int_{-\infty}^{\infty}|H(f)|^2{\rm d}f$ 。此积分是H(f)所对应的冲激响应h(t)的能量。由 $h(t)=s_1(T_{\rm b}-t)$ 可知h(t)的能量等于 $s_1(t)$ 的能量 E_1 ,因此 $\sigma^2=E_1$ 。

(2)采样值为

$$y = \int_{0}^{T_{b}} h(\tau)[s_{i}(T_{b} - \tau) + n_{w}(\tau)]d\tau$$

$$= \int_{0}^{T_{b}} h(\tau)s_{i}(T_{b} - \tau)d\tau + \int_{0}^{T_{b}} h(\tau)n_{w}(\tau)]d\tau$$

$$= \int_{0}^{T_{b}} s_{1}(T_{b} - \tau)s_{i}(T_{b} - \tau)d\tau + Z$$

其中前一项是信号s(t)在H(f)输出端的采样值,后一项 Z 是噪声 $n_{\rm w}(t)$ 在H(f)输出端的采样值。由于 Z 的均值为零,故发送 $s_i(t)$ 时的条件均值就是第一项的值。发送 $s_1(t)$ 时,第一项是 $s_1(t)$ 的能量,因此条件均值是 E_1 。发送 $s_2(t)$ 时的条件均值为零。

(3)随机事件"发送 $s_1(t)$ 条件下 $y < V_{\text{th}}$ "等价于随机事件" $Z < -\frac{E_1}{2}$ ", 其概率是

$$\Pr\left\{Z < -\frac{E_1}{2}\right\} = \Pr\left\{Z > \frac{E_1}{2}\right\} = \frac{1}{2}\operatorname{erfc}\left(\frac{E_1/2}{\sqrt{2\sigma^2}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_1}{8}}\right)$$

"发送 $s_2(t)$ 条件下 $y>V_{\rm th}$ "等价于" $Z>\frac{E_1}{2}$ ",其概率也是 $\frac{1}{2}{\rm erfc}\left(\sqrt{\frac{E_1}{8}}\right)$ 。

 $(4)E_{\rm b} = pE_{1}$ °

第(3)小题的结果与p无关。由于门限是固定的,所以无论p是多少,发 $s_1(t),s_2(t)$ 的错误率都是 $\frac{1}{2}\mathrm{erfc}\left(\sqrt{\frac{E_1}{8}}\right)$,所以平均误比特率仍然是 $\frac{1}{2}\mathrm{erfc}\left(\sqrt{\frac{E_1}{8}}\right)$ 。将 $E_1=\frac{E_1}{p}$ 代入得到

$$P_{\rm b} = \frac{1}{2} {\rm erfc} \left(\sqrt{\frac{E_1}{8}} \right) = \frac{1}{2} {\rm erfc} \left(\sqrt{\frac{E_{\rm b}}{8p}} \right)$$

四. 图 3 是归一化正交基下 8PSK 的星座图,第 i 个星座点 $s_i = e^{j(\frac{\pi}{8} + \frac{i\pi}{4})}$ 。等概发送某个 s_i ,到接收端成为 $y = s_i + n$,其中 $n = n_c + jn_s$ 是噪声,已知 n_c , n_s 是两个独立同分布的零均值高斯随机变量,方差均为 1/2。

- (1) 将三个比特 $b_1b_2b_3$ 映射到星座图,要求: $b_1 = 0$ 的星座点虚部为正, $b_2 = 0$ 的星座点实部为正; b_3 能使星座图满足格雷码关系。
- (2) 求平均符号能量 E_s 、平均比特能量 E_h 、星座图上的最小星座点距离 d_{min} 。
- (3) 若接收信号是 $y = 1 + j\sqrt{2}$, 给出三个比特 $b_1b_2b_3$ 最可能的取值。
- (4) 若另有先验信息"已知b₁和b₂相反", 重做(3)。
- (5) 若接收机事先已知 $b_3 = 0$,求此时最佳接收机判决输出的 b_1 和 b_2 的错误概率。

解: (1)根据题意 b_1b_2 的四种不同取值体现图中的四个象限,然后再根据格雷码规则确定 b_3 ,结果如图 4 所示。

- (2)星座点到原点的距离平方代表该信号波形的能量。图中所有星座点到原点的距离都是 1,因此该 8PSK 的每个波形能量都是 1,因此 E_s =1。
- 一个 8PSK 符号携带 3 个比特,因此符号能量 E_s 平均到每个比特之后是 $E_b=1/3$ 。

据图可以算出 $d_{\min} = 2\sin\frac{\pi}{8}$

- (3)数据先验等概,因此 MAP 准则等价于 ML 准则,此时最佳判决器将把 $y = 1 + j\sqrt{2}$ 判为离其最近的星座点,即 001。
- (4)此时 001 被排除,离 $y = 1 + j\sqrt{2}$ 最近的是 011。

(5)若已知 $b_3 = 0$,则对接收机来说,星座图中只剩 4 个点,如图 5 所示。上下判错是 b_1 错,左右判错是 b_2 错。由于对称性,考虑 $b_1 = 1$ 错判为 $b_1 = 0$ 的概率。此错误发生在 $n_s > \sin \frac{\pi}{8}$ 时,其概率为 $\Pr\{n_s > \sin \frac{\pi}{8}\} = \frac{1}{2} \operatorname{erfc}(\sin \frac{\pi}{8})$,这就是 b_1 的误比特率。同理可知 b_2 的错误率是 $\frac{1}{2} \operatorname{erfc}(\cos \frac{\pi}{8})$ 。

五.图 6中两个量化器的设计输入范围都是(-16,+16),都采用折叠码编码(第1位是极性,后面7位按二进制自然码顺序表示绝对值的大小)。

- (1) A 律十三折线编码是非均匀量化,其量化区间(每个段落中的小段)大小不一。试写出最大和最小量化区间的区间长度。
- (2) 求均匀量化的量化区间长度。
- (3) 若X = +12.1,分别求 A 律十三折线编码器和均匀量化编码器的输出码组。
- (4) 若X在区间(-16, +16)内均匀分布,求量化前的信号功率 $S = \mathbb{E}[X^2]$ 。
- (5) 若 X 在区间(-16, +16)内均匀分布,求量化噪声功率 $N_{q2} = \mathbb{E}[(Y_2 X)^2]$ 。
- (6) 若 X 在区间(-16, +16)内均匀分布,求量化噪声功率 $N_{q1} = \mathbb{E}[(Y_1 X)^2]$ 的近似值(要求近似误差不超过 10%)。
- 解: (1)最大的是第8段的小段,段落长度是8,一个段落分为16小段,小段长度是0.5

最小的是第1段的小段,段落长度是1/8,小段长度是1/28

- (2)量化级数是 $2^8 = 256$,均匀量化的区间长度是 $\frac{32}{256} = \frac{1}{8}$
- (3)极性码是 1,段落码是 111, $\frac{12.1-8}{0.5}$ = 8.2,8=1000。输出码组是 11111000

均匀量化编码器:极性码是 1。 $\frac{12.1}{1/8}$ = 96.8,96=64+32=1100000,输出码组为 11100000

- (4)若随机变量在长度为 D 的连续区间上均匀分布,则其方差= $\frac{(D)^2}{12}$ 。今X在长度为 32 的区间 (-16,+16)内均匀分布,由于 X均值为零,故 $S=\mathbb{E}[X^2]=\frac{(2\times 16)^2}{12}=\frac{256}{3}$
- (5)量化误差在每个量化区间内均匀分布,其二阶矩为 $N_q=\frac{\Delta^2}{12}=\frac{1}{64\times 12}$ 。
- (6)由于对称,只考虑样值为正条件下的情形。令 p_i 表示落入第i段的概率, N_i 表示落入该段条件下的量化噪声功率,则

$$N_{q_1} = \sum_{i=1}^8 p_i N_i$$

由于X均匀分布,所以一个段内的 16 个小段有相同的量化噪声功率,因此第i 段的平均量化噪声功率N,等于该段中某一个小段内的量化噪声功率。

量化误差最大的是第 8 段,其段落长度是 8,样值为正条件下落入第 8 段的概率是 $\frac{1}{2}$ 。量化区间长度是 $\frac{1}{2}$,量化噪声功率是 $\frac{1}{12\times 4}$ 。 $p_8N_8=\frac{1}{96}$ 。

第 7 段的落入概率减半,区间长度减半,因此 $p_7N_7=\frac{1}{8}p_8N_8$ 。同理, p_6N_6 又是 p_7N_7 的 1/8,以后更小。按 10%的近似误差要求,可取前两项,量化噪声功率近似为 $p_8N_8+p_7N_7=\frac{9}{8}p_8N_8=\frac{3}{256}$

六.图 7中N路模拟信号 $m_1(t), \dots, m_N(t)$ 有相同的频带范围,采样速率 f_s 是能保证频谱不发生混叠的最小速率。

- 图 7
- (1) 写出 QAM 调制的符号速率 R_s 以及以 Baud/Hz 为单位的频带利用率。
- (2) 画出 QAM 已调信号的功率谱密度图示意图。
- (3) 若每个 $m_i(t)$ 的频谱范围是 0~3750Hz,L = M,求 f_s 、N。
- (4) 若每个 $m_i(t)$ 的频谱范围是 2560~3000Hz,L=256,M=64,求 f_s 、N。

解 (1)信道带宽B与滚降系数 α 、符号速率 R_s 的关系是 $B=R_s(1+\alpha)$ 。代入B=2MHz, $\alpha=\frac{1}{3}$: $R_s(1+1/3)=2$ MHz,因此 $R_s=1.5$ MBaud。

频带利用率为 R_s/B=0.75Baud/Hz

(2)假设 MQAM 调制器输入端的数据独立等概,则 QAM 的功率谱形状是 $|G_{\rm T}(f)|^2$,其中 $G_{\rm T}(f)$ 是 发送脉冲成形。对于升余弦滚降系统,发送脉冲的傅氏变换的模平方是升余弦滚降频谱特性,因此 QAM 的发送功率谱的形状就是升余弦滚降频谱,如图 8 所示。

(3) f_s 是能保证频谱不发生混叠的最小速率,当每个 $m_i(t)$ 是频谱范围为 0~3750Hz 的基带信号时,最小的采样率是 $_s = 2 \times 3750 = 7500$ Hz。

量化级数为 L,则量化编码后每个样值编码为 $\log_2 L$ 比特。每秒钟有 f_s 个样值,因此量化编码输出端每秒中有 $f_s\log_2 L$ 个比特,N 路复用后的比特率是 $R_b=Nf_s\log_2 L$ 。MQAM 调制的符号速率为 $R_s=\frac{R_b}{\log_2 M}=\frac{Nf_s\log_2 L}{\log_2 L}=Nf_s$ 。 $N=\frac{R_s}{f_s}=\frac{1500 \text{kHz}}{7.5 \text{kHz}}=200$ 。

(4)此时的采样率满足 $f_{\rm s} \geq 2B = 880$ 并且 $2f_{\rm h} = 7500$ 必须是 $f_{\rm s}$ 的整倍数,据此条件可以得出 $f_{\rm s} = \frac{2f_{\rm h}}{6} = 1000$ Hz。再根据 $\frac{Nf_{\rm s} \cdot \log_2 256}{\log_2 64} = R_{\rm s}$ 得到N=1125