# **Group Analysis**

Alexa Morcom Edinburgh SPM course, 2017

Thanks to Jesper Anderson, Tom Nichols, Jean Daunizeau, Stephan Kiebel & other SPM authors for slides





### Overview

Making the group-level inferences we want

- Optimising the GLM
- The two-stage GLM
- Two methods of RFX inference

# 2-stage GLM

Single subject

Each subject's scans are modelled separately Single subject parameter estimates 1<sup>st</sup> level

Single subject **contrasts of parameter estimates** represent different hypothesis tests



Group/s of subjects A group model is made using the contrasts Parameter estimates apply to group effect/s

2<sup>nd</sup> level

Group level contrasts of 2<sup>nd</sup> level parameter estimates are used to form statistics

- Hierarchical models
- Mixed-effects models
- Random effects (RFX) models
- Variance components

#### ... All the same

Refer to dealing with multiple sources of variance to make the inferences we want, i.e. generalising to a population

# Why isn't this easy?



- Multiple levels of model
- Multiple components of error in each
- To estimate a model's parameters we need to know about the error

### The GLM revisited



N: number of scans

**p**: number of regressors

#### Model is specified by

- Design matrix X
- 2. Assumptions about  $\varepsilon$

# Ordinary Least Squares revisited

Find 
$$\hat{\beta}$$
 that minimises  $\left\| y - X\beta \right\|^2 = \varepsilon^T \varepsilon$ 

The Ordinary Least Squares parameter estimates are:

$$\left| \hat{\beta} = (X^T X)^{-1} X^T y \right|$$

Estimation is direct – multiply data by the (pseudo) inverse of X

This is only valid (and is optimal) if errors are i.i.d. — if there is a single error covariance component, i.e., the variance s<sup>2</sup>.

$$\varepsilon \sim N(0, \sigma^2 I)$$

This matters because covariance affects the statistics...

### Error covariance and statistics

### Classical inference is about what is surprising

- A statistic tests an effect's size relative to its expected behaviour under the null hypothesis
- The degrees of freedom must reflect how related (correlated) different observations are
- If observations covary, there are fewer independent observations than we think, so significance of statistics can be overrated

### Variance

#### Length of men



 $\mu$ =180cm,  $\sigma$ =14cm ( $\sigma$ <sup>2</sup>=200)

### Weight of men



 $\mu$ =80kg,  $\sigma$ =14kg ( $\sigma$ <sup>2</sup>=200)

Each 1-dimensional variable is completely characterised by  $\mu$  (mean) and  $\sigma^2$  (variance)

i.e. can calculate  $p(I|\mu,\sigma^2)$  for any I and  $p(w|\mu,\sigma^2)$  for any w

### Variance-covariance matrix

Can also view length and weight as a
 2-dimensional random variable (p(I,w)).



$$\mu = \begin{bmatrix} 180 \\ 80 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 200 & 100 \\ 100 & 200 \end{bmatrix}$$



$$p(I, w | \mu, \Sigma)$$

Length and weight are related – i.e., covary

# Covariance and statistics again

$$T = \frac{c^T \hat{\beta}}{\sqrt{\text{var}(c^T \hat{\beta})}} = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c}} \sim t_{N-p}$$
 = contrast of estimated parameters covariance estimate

- How good (i.e., precise) is the contrast of betas  $c^T\beta$  as an estimator of our effect?
- If it is precise (low covariance) this maximises T
- The df are also important...

## Covariance and degrees of freedom

- Measure departure from sphericity (episilon)
- Evaluate significance of sum of squares ratios using
   F with fewer df (approx); Greenhouse-Geisser

#### Heights & weights

$$\Sigma = \begin{bmatrix} 200 & 100 \\ 100 & 200 \end{bmatrix} \quad \epsilon = 0.8$$

= Satterthwaite correction (SPSS) (in theory sl. liberal – but see Mumford & Nichols, 2009)

# The rain in Bergen

How much do the following observations tell us?

Rain on 4 consecutive days in June

Rain on the same day in May, June, July and August

...which is more likely to indicate a wet summer?

Can we determine the patterns of temporal autocorrelation?



# The rain in Bergen



Estimate based on 10 years



Estimate based on 50 years



Estimate based on 100 years



True  $\Sigma$  – as if there were not 100\*365=36500 data points, but 2516!

$$e_t = ae_{t-1} + \varepsilon_t \text{ with } \varepsilon_t \sim N(0, \sigma^2)$$

1<sup>st</sup> order autoregressive process: AR(1)



pass filtering



### **Pre-whitening**

- Use an enhanced noise model with multiple error covariance components
- Estimate components AR (1) + white noise
- Specify a filter matrix W to whiten the data 'undoing' the serial correlations

$$Wy = WX\beta + We$$

$$Wy = WX\beta + We \qquad We \sim N(0, \sigma^2 W^2 V)$$

SPM12 prewhitening model: AR(1) + white noise\*

- AR(1) cannot be estimated precisely at each voxel
- But precision is critical, or estimates are worse than
   OLS biased AND imprecise
- Use spatial regularisation: pool estimation over 'active voxels' (1st pass OLS estimate at p < .001)</li>
- + White noise voxel-specific variance s<sup>2</sup>

\*Bayesian estimation option: AR(3) with spatial priors

$$e_t = ae_{t-1} + \varepsilon_t$$
 with  $\varepsilon_t \sim N(0, \sigma^2)$ 

Once data are 'pre-whitened', estimation can proceed using Ordinary Least Squares

- The parameter estimates are again optimal unbiased and minimum variance
- The df are also correct, if we want to do our statistical inference at the first level

### Take-home message (1)

 If 'error structure' is complex with multiple components of covariance – not just i.i.d. – our inference depends on modelling the error structure

What does this have to do with 2-level models?

# Why isn't this easy?



- Multiple levels of model
- Multiple components of error in each

## Fixed vs. random effects

**Fixed effects:** 

Intra-subjects variation

suggests all these subjects

different from zero

**Random effects:** 

Inter-subjects variation

suggests population

not different from zero



### Fixed effect



- ☐ The only source of variation (over sessions)
  - is measurement error
- ☐ The true response magnitude is *fixed*

## Fixed effect modelling in SPM

- Grand GLM (single level) approach (model all subjects at once, pool estimates over subjects)
- Good:
  - maximise df
  - simple model
- Bad:
  - assumes common variance
  - over subjects at each voxel



### Fixed vs. random effects

### Summary

- Fixed effect inference: "I can see this effect in this cohort"
- Random effect inference: "If I were to sample a new cohort from the same population I would get the same result"

Fixed isn't 'wrong', but is not usually of interest

### Random effects



- Two sources of variation
  - measurement errors
  - response magnitude (over subjects)

### Random effects



- Two sources of variation
  - measurement errors
  - response magnitude (over subjects)
- Response magnitude is random
  - each subject/session has random magnitude
  - but note, population mean magnitude is fixed

# Why bother with two stages?

- We want to make an inference to the population, not a single subject, so why do we care?
- Why can't we just do group stats on data for each voxel, like a standard t-test?
- We could, if data Y were simple values per voxel precisely known.
- Instead, we have estimates of individual subjects' effects – so more than 1 covariance component

## Hierarchical models



Does hair length differ by gender?

2 sources of variability

Within-subject:  $|\sigma^2 \underline{\mathrm{w}}|$ 

Between-subjects:  $\sigma^2$ <sub>B</sub>

To generalise across this sample, combine data from hairs measured in all subjects, get  $\sigma^2$ FFX

To generalise to population, use estimates of hair length for each subject, get  $\sigma^2_{\rm MFX}$ 

MIX of between/ within subject variability

## Hierarchical models



# Why bother with two stages?

Why can't we just do group stats on the data from each voxel?

- ...that could be valid but would not be optimal
- Hierarchical models deal with the mixed sources of variance, not just between-subject variance
- Better to model both scan-to-scan and subjectto-subject variability
- There is therefore more than 1 variance component (nonsphericity) at the group level

### Hierarchical models

### Two\* approaches in SPM

- 1. Simple summary statistic Holmes & Friston
- 2. Non-sphericity modelling at group level

- Pros and cons assumptions vs. flexibility
  - Subject variances equivalent
  - Subject design matrices equivalent
  - (2) enables a wide range of 2<sup>nd</sup> level models

<sup>\*</sup>Actually 3, but we talk about 2 here; see Friston et al., 2005 re. 'full MFX'

## Simple summary statistic approach ('HF')

1<sup>st</sup> level (within subjects)

2<sup>nd</sup> level (between-subjects)



estimated mean activation image...



...to be compared with MFX variance:

$$\sigma^2 = \sigma^2_{\alpha} + \sigma^2_{\epsilon} / w$$

no voxels significant at p < 0.05 (corrected)



Models withinsubject variance implicitly

## Simple summary statistic approach ('HF')

### **Assumptions**

- Distribution normal over independent subjects
- Homogeneous variance
  - Subjects' residual errors same
  - Subjects' design matrices same
  - 2 covariance components can be collapsed into
     1 if these elements of the group level
     covariance are homogenous over subjects

# Simple summary statistic approach ('HF')

Use only a single image per subject

- Limited to 1- or 2-sample t-tests at the 2<sup>nd</sup> level
- Balanced designs

- Limitation = strength
  - No 2<sup>nd</sup> level sphericity assumption
  - 'Partitioned' error term @ 2<sup>nd</sup> level

# HF - efficiency

- If assumptions true
  - Optimal, fully efficient
- If  $\sigma^2_{\text{FFX}}$  differs between subjects
  - Reduced efficiency
  - Here, optimal group parameter estimate 

     requires down-weighting the 3 highly variable subjects



## HF - validity

- If assumptions true
  - Exact P-values
- If  $\sigma^2_{\text{FFX}}$  differs btw subj.
  - Standard errors not OK
    - Estimate of <sup>2</sup><sub>RFX</sub> may be biased
  - df not OK
    - Here, 3 subjects dominate
    - df < 5 = 6-1



### HF – robustness

- In practice, validity & efficiency are excellent
  - For the one sample case, HF is very robust



 Potential concern with 2-sample or correlation if outliers/ large imbalance

### A more flexible summary statistic approach

- 1<sup>st</sup> level model is just the same
- At 2<sup>nd</sup> level, linear combination of basis functions to represent different sources of covariance
- i.e., multiple covariance components
- Same estimation using prewhitening approach, and spatial regularisation (cross-voxel pooling)

Errors can be Independent but Non-Identical when...

1) Model includes one contrast but from different groups – 2-sample t-test e.g. patients and control groups



Error can be Non-Independent and Non-Identical when...

- 2) Several contrasts per subject are taken to 2<sup>nd</sup> level i.e., Repeated Measures/ Mixed ANOVA
- 3) Omnibus test is needed across several basis functions characterising the hemodynamic response

e.g. F-test combining HRF, temporal derivative and dispersion regressors

residuals covariance matrix Errors are not independent and not identical (4 conditions)  $Q_k$ 's:



### **Assumptions**

- As at 1<sup>st</sup> level, needed for cross-voxel pooling: homogenous across 'active' voxels
- Within subject covariance still homogenous
- HF plus pooled variance at 2<sup>nd</sup> level

### **Advantages**

- Fast relative to 'full' mixed-effects procedures
- May be more sensitive
- Flexibility of possible 2<sup>nd</sup> level models

## Summary

#### fMRI models need to take account of

- Hierarchical nature of data
- Multiple sources of variability at each level

### Estimation & correction for resulting nonsphericity

- Some assumptions
- If correct, optimise estimation & inference
- SPM enables very flexible 2<sup>nd</sup> level models

## 2-stage GLM

Single subject

Each has an independently acquired set of data
These are modelled separately
Models account for within subjects variability
Parameter estimates apply to individual subjects

1<sup>st</sup> level

Single subject **contrasts of parameter estimates** taken forward to 2<sup>nd</sup> level as (spm con\*.img) **'con images'** 

Group/s of subjects To make population inferences, 2<sup>nd</sup> level models account for **between subjects variability**Parameter estimates apply to group effect/s

2<sup>nd</sup> level

Statistics compare contrasts of 2<sup>nd</sup> level parameter estimates to 2<sup>nd</sup> level error

### References

- Simple group fMRI modeling and inference. Mumford & Nichols, Neuroimage, 2009
- Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
- Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage, 1999.
- Classical and Bayesian inference in neuroimaging: theory. Friston et al., NeuroImage, 2002.
- Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI. Friston et al., NeuroImage, 2002.
- Mixed-effects and fMRI studies. Friston, Stephan, Lund, Morcom, Kiebel Neuroimage, 2005
- Flexible factorial tutorial by Glascher and Gitelman, 2008, copy at: www.sbirc.ed.ac.uk/cyril/cp\_fmri.html

