训练

- (1) 数据集摆放:
 - VOC_Devkit
 - o V0C2007
 - Annotations
 - o xxx.xml
 - ImageSets
 - ∘ train_new_aug.txt
 - o test.txt
 - JPEGImages
 - ∘ xxx.jpg
- (2) 使用 voc_annotation.py文件生成训练所需的两个文件 直接运行,生成两个文件(文件名可修改):

```
2007_train_new_aug_open.txt
2007_test.txt
```

这里按照 一类或两类开集, 需要修改:

```
classes_path = 'model_data/open_classes.txt'
```

比如是一类开集,则 open_classes.txt 中的内容为:

ore-oil Container Fishing cell-container LawEnforce 即不包含 "unknown", 但是训练完测试的时候, 需要加上"unknown", 即变为:

```
ore-oil
Container
Fishing
cell-container
LawEnforce
unknown
```

(3) 运行 train_open.py开始训练

这里按照 一类或两类开集,需要修改:

```
classes_path = 'model_data/open_classes.txt'
```

内容同(2)

(4) 模型权重存储路径修改:

train_open.py:

推理

测试图和标签在test_code/test_imgs 文件夹中

(1) 调用 predict.py 进行推理, 检测结果保存在 result3 文件夹

可对 一类、两类开集 以及 闭集三种情况下进行推理:

- 对于一类开集,使用 yolo.py
- 两类开集, 使用 yolo_2.py
- 闭集, 使用 yolo_close.py

在 predict.py 中的 16-18行 注释或取消注释

(2) 调用 read_annotation_open.py 或 read_annotation_close.py 获取 混淆矩阵和统计结果。

检测结果图保存在 img_out文件夹

这里需要修改 161-167 行的路径。 如果是两类开集,则 把139的注释去掉,并注释掉140行