Glucose dehydrogenase

Patent number:

CN1353759

Publication date:

2002-06-12

Inventor:

KOJI SODE (JP)

Applicant:

KOJI SODE (JP)

Classification:

- international:

C12N15/53; C12N15/63; C12N9/04; C12N1/

19; C12Q1/32; C12M1/34

- european:

Application number: CN20000808352 20000501

Priority number(s):

JP19990124285 19990430; <u>JP20000009137</u>

20000118

Abstract not available for CN1353759

Abstract of corresponding document: EP1176202

Modified water-soluble glucose dehydrogenases having pyrrolo-quinoline quinone as a coenzyme are provided wherein at least one amino acid residue is replaced by another amino acid residue in a specific region. Modified water-soluble PQQGDHs of the present invention have improved affinity for glucose.

Data supplied from the esp@cenet database - Worldwide

Also published as:

WO0066744 (A1)

図 CA2372741 (A1)

(19) 日本国特許庁 (JP)

(12)公開特許公報 (A)

(11) 特許出願公開番号

特開2001-197888

(P2001-197888A)

(43) 公開日 平成13年7月24日 (2001. 7. 24)

(51) Int. Cl. 7	識別記号	FI	テーマコード (参考)
C12N 15/09	ZNA	C12M 1/40 B	4B024
C12M 1/40		C12N 1/15	4B029
C12N 1/15		1/19	4B050
1/19		1/21	4B063
1/21			4B065
	審査請		2頁) 最終頁に続く
(21) 出願番号	特願2000-9137 (P2000-9137)	(71) 出願人 596153357	
		早出 広司	
(22) 出願日	平成12年1月18日(2000.1.18)	東京都目黒区南1-13	-16
		(72) 発明者 早出 広司	
		東京都目黒区南1-13	-16
		(74) 代理人 100089705	
		弁理士 社本 一夫	(外5名)
			最終頁に続く

(54) 【発明の名称】基質特異性に優れたグルコース脱水素酵素

(57) 【要約】

【課題】 グルコースに対する改良された選択性を有する改変型水溶性PQQGDHを提供する。

【解決手段】 ビロロキノリンキノンを補酵素とするPQQグルコース脱水素酵素において、Acinetobacter calcoaceticus 由来水溶性PQQGDHの第449残基から第468残基に相当する領域において1またはそれ以上のアミノ酸残基が他のアミノ酸残基で置換されていることを特徴とする改変型グルコース脱水素酵素。

【特許請求の範囲】

【請求項1】 ピロロキノリンキノンを補酵素とするP QQグルコース脱水素酵素において、Acinetobacter ca Icoaceticus 由来水溶性PQQGDHの462番目のア スパラギン残基に相当するアミノ酸残基が他のアミノ酸 残基で置換されている改変型グルコース脱水素酵素。

【請求項2】 ビロロキノリンキノンを補酵素とするP QQグルコース脱水素酵素において、Acinetobacter ca Icoaceticus 由来水溶性PQQGDHの452番目のア スパラギン残基に相当するアミノ酸残基が他のアミノ酸 残基で置換されている改変型グルコース脱水素酵素。

ピロロキノリンキノンを補酵素とするP 【請求項3】 QQグルコース脱水素酵素において、Acinetobacter ca lcoaceticus 由来水溶性PQQGDHの455番目のリ ジン残基に相当するアミノ酸残基が他のアミノ酸残基で 置換されている改変型グルコース脱水素酵素。

【請求項4】 ピロロキノリンキノンを補酵素とするP QQグルコース脱水素酵素において、Acinetobacter ca lcoaceticus 由来水溶性PQQGDHの456番目のア スパラギン酸残基に相当するアミノ酸残基が他のアミノ 酸残基で置換されている改変型グルコース脱水素酵素。

【請求項5】 ピロロキノリンキノンを補酵素とするP QQグルコース脱水素酵素において、Acinetobacter ca lcoaceticus 由来水溶性PQQGDHの457番目のア スパラギン酸残基に相当するアミノ酸残基が他のアミノ 酸残基で置換されている改変型グルコース脱水素酵素。

【請求項6】 ビロロキノリンキノンを補酵素とするP QQグルコース脱水素酵素において、Acinetobacter ca lcoaceticus 由来水溶性PQQGDHの第449残基か ら第468残基に相当する領域において1またはそれ以 上のアミノ酸残基が他のアミノ酸残基で置換されている ことを特徴とする改変型グルコース脱水素酵素。

【請求項7】 配列

Thr Ala Gly Xaal Val Gln Xaa2 Xaa3 Xaa4 Gly Ser Va 1 Thr Xaa5 Thr Leu GluAsn Pro Gly

(式中、Xaa1、Xaa2、Xaa3、Xaa4、Xaa5は任意の天然ア ミノ酸残基である、ただし、 XaalがAsnであり、 Xaa2がL ysであり、Xaa3がAspであり、かつXaa4がAspであると き、Xaa5はAsnではない)を含む、PQQグルコース脱水 素酵素。

【請求項8】 ピロロキノリンキノンを補酵素とするグ ルコース脱水素酵素において、βプロペラ蛋白質構造に おける6番目のWーモチーフにおけるBストランドとC ストランドをつなぐループ領域 (W6BC)中の1または それ以上のアミノ酸残基が、他のアミノ酸残基で置換さ れていることを特徴とする、改変型グルコース脱水素酵

【請求項9】 野生型のPQQGDHと比較してグルコ ースに対する高い選択性を有する、請求項1-8のいず れかに記載の改変型グルコース脱水素酵素。

【請求項10】 請求項1-8のいずれかに記載の改変 型グルコース脱水素酵素をコードする遺伝子。

【請求項11】 請求項10に記載の遺伝子を含むベク ター。

【請求項12】 請求項10に記載の遺伝子を含む形質 転換体。

【請求項13】 請求項10に記載の遺伝子が主染色体 に組み込まれている、請求項12記載の形質転換体。

【請求項14】 請求項1-8のいずれかに記載の改変 型グルコース脱水素酵素を含むグルコースアッセイキッ 10

【請求項15】 請求項1-8のいずれかに記載の改変 型グルコース脱水素酵素を含むグルコースセンサー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はピロロキノリンキノ ン(PQQ)を補酵素とするグルコース脱水素酵素(G DH)の特定のアミノ酸残基が他のアミノ酸残基で置換 されている改変型PQQGDHに関する。本発明の改変 型酵素は、臨床検査や食品分析などにおけるグルコース の定量に有用である。

[0002]

20

【従来の技術】PQQGDHは、ピロロキノリンキノン を補酵素とするグルコース脱水素酵素であり、グルコー スを酸化してグルコノラクトンを生成する反応を触媒す

【0003】PQQGDHには、膜結合性酵素と水溶性 酵素があることが知られている。膜結合性PQQGDH は、分子量約87kDaのシングルペプチド蛋白質であ り、種々のグラム陰性菌において広く見いだされてい Cleton-Jansen e る。例えば、AM. Bacteriol. tal., J. (199)172, 6308-6315を参照されたい。 一方、水溶性PQQGDHはAcinetobacte r calcoaceticusのいくつかの株におい てその存在が確認されており(Biosci. Biot ech. Biochem. (1995), 59 (8), 1548-1555)、その構造遺伝子がクローニング されアミノ酸配列が明らかにされている(Mol. Ge n. Genet. (1989), 217:430-43 6)。A. calcoaceticus由来水溶性PQ QGDHは、分子量約50kDaのホモダイマーであ る。他のPQQ酵素とは蛋白質の一次構造上でのホモロ ジーがほとんどない。

【0004】最近、本酵素のX線結晶構造解析の結果が 報告され、活性中心をはじめとした本酵素の高次構造が 明らかとなった。 (J. Mol. Biol., 289, 319-333 (1999), Theorystal structure of the apo form of the soulb le quinoprotein glucose dehydrogenase from Acineto bacter calcoaceticus revelas a novel internal cons

4

erved sequence repeat; A. Oubrie et al., The EMBO Journal, 18 (19) 5187-5194 (1999), Structure and mec hanism of soluble quinoprotein glucose dehydrogena se. A. Oubrie et al., PNAS, 96 (21), 11787-11791 (1999), Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylh ydrazine: A covalent cofactor-inhibitor complex, A. Oubrie et al.)。これらの論文によれば、水溶性PQQGDHは6つのWーモチーフから構成されるβプロペラ蛋白質であることが明かとなった。

【0005】血中グルコース濃度は、糖尿病の重要なマ ーカーとして臨床診断上極めて重要な指標である。ま た、微生物を用いる発酵生産におけるグルコース濃度の 定量がプロセスモニタリングにおいて重要な項目となっ ている。従来、グルコースはグルコースオキシダーゼ (GOD) あるいはグルコース6リン酸脱水素酵素(G 6 PDH)を用いる酵素法により定量されていた。しか し、GODを用いる方法ではグルコース酸化反応にとも ない発生する過酸化水素を定量するため、カタラーゼあ るいはパーオキシダーゼをアッセイ系に添加する必要が あった。またGODを用いるバイオセンサーの開発も進 められてきたが、反応が水溶液中の溶存酸素濃度に依存 することから高濃度のグルコース試料には適さないこ と、あるいは溶存酸素濃度によって測定値に誤差が生じ る可能性があった。一方、G6PDHは分光学的手法に 基づくグルコース定量に用いられてきたが、反応系に補 酵素であるNAD(P)を添加しなければならないとい う煩雑性があった。そこで、これまでのグルコース酵素 定量方法に用いられてきた酵素にかわる新たな酵素とし てPQQGDHの応用が注目されている。PQQGDH はグルコースに対して高い酸化活性を有していること、 およびPQQGDHは補酵素結合型の酵素であるため電 子受容体として酸素を必要としないことから、グルコー スセンサーの認識素子をはじめとして、アッセイ分野へ の応用が期待されている。しかしながらPQQGDHは グルコースに対する選択性が低いことが問題であった。 [0006]

【発明が解決しようとする課題】したがって本発明はグルコースに対する改良された選択性を有する改変型水溶性PQQGDHを提供することを目的とする。本発明は特に、血中グルコース濃度測定の感度を増加させるために、グルコースに対する反応性と比較してラクトースあるいはマルトースに対する反応性が低い改変型水溶性PQQGDHを提供することを目的とする。

[0007]

【課題を解決するための手段】本発明者は従来の水溶性 PQQGDHを改良してそのグルコースに対する選択性 を高め、臨床検査や食品分析などに応用できる改変型P QQGDHを開発すべく鋭意研究を行なった結果、水溶 性PQQGDHの特定の領域においてアミノ酸変異を導 入することにより、グルコースに対する選択性がきわめ て高い酵素を得ることに成功した。

【0008】すなわち、本発明は、ピロロキノリンキノンを補酵素とする水溶性グルコース脱水素酵素において、天然の水溶性グルコース脱水素酵素の1またはそれ以上のアミノ酸残基が他のアミノ酸残基で置換されており、かつ前記天然の水溶性グルコース脱水素酵素と比較してグルコースに対して選択性が向上していることを特徴とする改変型グルコース脱水素酵素を提供する。好ましくは本発明の改変型グルコース脱水素酵素は、グルコースに対する反応性と比べて、ラクトースあるいはマルトースに対する反応性が野生型より低下している。好ましくは、グルコースに対する反応性を100%とした場合、ラクトースあるいはマルトースに対する活性が60%以下であり、より好ましくは50%以下であり、さらに好ましくは40%以下である。

【0009】本発明はまた、ピロロキノリンキノンを補酵素とするグルコース脱水素酵素において、βプロペラ蛋白質構造における6番目のWーモチーフにおけるBストランドとCストランドをつなぐループ領域(W6BC)中の1またはそれ以上のアミノ酸残基が、天然に存在するPQQグルコース脱水素酵素中の対応するアミノ酸残基と異なるアミノ酸残基で置換されていることを特徴とする、改変型グルコース脱水素酵素を提供する。

【0010】本発明の1つの態様においては、本発明のPQQグルコース脱水素酵素において、Acinetobacter calcoaceticus 由来水溶性PQQGDHの第449残基から第468残基に相当する領域において1またはそれ以上のアミノ酸残基が他のアミノ酸残基、すなわち天然に存在するPQQグルコース脱水素酵素中の対応するアミノ酸残基とは異なるアミノ酸残基で置換されている。なお、本明細書においては、アミノ酸の位置は、開始メチオニンを1として番号付けする。

【0011】好ましくは、本発明の改変型PQQGDHは、配列番号1で表されるアミノ酸配列の462番目のアスパラギン残基、452番目のアスパラギン残基、455番目のリジン残基、456番目のアスパラギン酸残基および457番目のアスパラギン酸残基に相当するアミノ酸残基の1またはそれ以上が他のアミノ酸残基で置換されている。

【0012】また別の観点においては、本発明の改変型 PQQGDHは、配列:

Thr Ala Gly Xaal Val Gln Xaa2 Xaa3 Xaa4 Gly Ser Va l Thr Xaa5 Thr Leu GluAsn Pro Gly

(式中、Xaa1、Xaa2、Xaa3、Xaa4、Xaa5は任意の天然アミノ酸残基である、ただし、Xaa1がAsnであり、Xaa2がLysであり、Xaa3がAspであり、かつXaa4がAspであるとき、Xaa5はAsnではない)を含む。

【0013】本発明はまた、上述の改変型グルコース脱水素酵素をコードする遺伝子、該遺伝子を含むベクター

および該遺伝子を含む形質転換体、ならびに本発明の改変型グルコース脱水素酵素を含むグルコースアッセイキットおよびグルコースセンサーを提供する。

【0014】本発明の改変型PQQGDHの酵素蛋白質はグルコースに対して高い選択性を示し、かつグルコースに対して高い酸化活性を有していることから、グルコースの高感度かつ高選択的な測定に応用できる。

[0015]

【発明の実施の形態】改変型PQQGDHの構造本発明者は、水溶性PQQGDHをコードする遺伝子のコーディング領域中にエラープローンPCR法によりランダムに変異を導入し、アミノ酸残基の変異が導入された水溶性PQQGDHのライブラリーを構築した。これを大腸菌に形質転換し、グルコースに対するPQQGDHの活性についてスクリーニングして、これを大腸菌に形質転換し、PQQGDHの活性についてスクリーニングして、20mM濃度のグルコースに対する活性が野生型PQQGDHと同等であるが、20mMのラクトースに対する活性が野生型PQQGDHより低下したPQQGDHを発現する多数のクローンを得た。

【0016】これらのクローンの一つについて遺伝子配列を解析したところ、第452番目のAsnがAspに置換されていることが判明した。さらにこの残基をトレオニン、リジン、イソロイシン、ヒスチジンあるいはアスパラギン酸残基に置換したところ、いずれの残基に置換しても野生型水溶性PQQGDHよりもグルコースに対する選択性が向上した優れた変異酵素が得られた。次に、これらの結果に基づいて、他のアミノ酸残基の変異によるグルコース選択性の向上の可能性について検討した。

【0017】水溶性PQQGDHのX線結晶構造解析に 基づく高次構造の報告 (J. Mol. Biol., 289, 319-333(19 99), The EMBO Journal, 18 (19) 5187-5194 (1999), PN AS, 96 (21)、11787-11791 (1999)) によれば、水溶性P QQGDHは6つのW-モチーフから構成されるβプロ ペラ蛋白質であり、第452番目のアミノ酸残基は、第 6番目のW-モチーフのB-ストランドとC-ストラン ドを結ぶループ領域に存在する。すなわち、水溶性PQ QGDHのW6BCと予測されるループ領域が基質特異 性を支配していることが示唆される。そこで、このルー プ領域中の他のアミノ酸残基に対しても同様に変異を導 入した。すなわち、第455番目のリジン残基をイソロ イシン残基に、第456番目のアスパラギン酸残基をア スパラギン残基に、第457番目のアスパラギン酸残基 をアスパラギン残基に、第462番目のアスパラギン残 基をヒスチジン残基に置換した変異酵素をそれぞれ構築 した。その結果、表3に示すように、いずれの変異酵素 においてもグルコースに対する選択性が向上したことが わかった。

【0018】このことはこれらの活性部位を構成する特

定のループ領域に変異を導入することによりグルコースに対する選択性を向上させうることを意味する。上記で示したAsn452残基、Lys455、Asp456、Asp457およびAsn462残基は単なる例であり、本発明を限定するものではない。すなわち本発明は水溶性グルコース脱水素酵素の第6番目のWーモチーフ、のBストランドとCストランドを結ぶループ領域(W6BC)中のアミノ酸残基の構造遺伝子の特定の部位に変異を導入することによりグルコースに対する選択性を改良しうることを当該技術分野において初めて明らかにしたものであり、PQQGDHの基質特異性を改良する方法論がここで提供される。

【0019】本発明の好ましいPQQグルコース脱水素酵素においては、Acinetobacter calcoaceticus 由来水溶性PQQGDHの第449残基から第468残基に相当する領域において1またはそれ以上のアミノ酸残基が他のアミノ酸残基で置換されている。好ましくは、本発明の改変型PQQGDHは、配列番号1で表されるアミノ酸配列の462番目のアスパラギン残基、452番目のアスパラギン残基、456番目のリジン残基、456番目のアスパラギン酸残基に相当するアミノ酸残基の1またはそれ以上が他のアミノ酸残基で置換されている。

【0020】また別の観点においては、本発明の改変型 PQQGDHは、配列:

Thr Ala Gly Xaal Val Gln Xaa2 Xaa3 Xaa4 Gly Ser Val Thr Xaa5 Thr Leu GluAsn Pro Gly (式中、Xaa1、Xaa2、Xaa3、Xaa4、Xaa5は任意の天然ア

(式中、Aaa1、Aaa2、Aaa3、Aaa4、Aaa5は任息の大然アミノ酸残基である、ただし、Xaa1がAsnであり、Xaa2がLysであり、Xaa3がAspであり、かつXaa4がAspであるとき、Xaa5はAsnではない)を含む。

【0021】本発明の改変型グルコース脱水素酵素においては、グルコースデヒドロゲナーゼ活性を有する限り、さらに他のアミノ酸残基の一部が欠失または置換されていてもよく、また他のアミノ酸残基が付加されていてもよい。

【0022】さらに、当業者は、他の細菌に由来する水溶性PQQGDHについても、本発明の教示にしたがってW6BCループ領域内でアミノ酸残基を置換することにより、グルコースに対する選択性が向上した改変型グ40 ルコース脱水素酵素を得ることができる。特に、蛋白質の一次構造をもとに予測された二次構造を比較することにより、Acinetobacter calcoaceticus由来の水溶性PQQGDHのW6BCループ領域に相当する領域を容易に認識することができ、本発明にしたがって、かかるループ領域中において1またはそれ以上のアミノ酸残基を他のアミノ酸残基で置換することにより、基質に対する選択性が改良された改変型グルコース脱水素酵素を得ることができる。これらの改変型グルコース脱水素酵素も本発明の範囲内である。

改変型PQQGDHの製造方法

Acinetobacter calcoacetic us由来の天然の水溶性PQQGDHをコードする遺伝子の配列は配列番号2で規定される。

【0023】本発明の改変型PQQGDHをコードする遺伝子は、天然の水溶性PQQGDHをコードする遺伝子において、上述のループ領域中に存在するアミノ酸残基をコードする塩基配列を、変異すべきアミノ酸残基をコードする塩基配列に置換することにより構築することができる。このような部位特異的塩基配列置換のための種々の方法が当該技術分野において知られており、例えば、Sambrookら、"Molecular Cloning; A Laboratory Manual",第2版、1989、Cold Spring Harbor Laboratory Press、New Yorkに記載されている。

【0024】このようにして得た変異遺伝子を遺伝子発現用のベクター(例えばプラスミド)に挿入し、これを適当な宿主(例えば大腸菌)に形質転換する。外来性蛋白質を発現させるための多くのベクター・宿主系が当該技術分野において知られており、宿主としては例えば、細菌、酵母、培養細胞などの種々のものを用いることができる。

【0025】ランダム変異を導入する場合には、標的とするループ領域においてエラープローンPCR法によりランダムに変異を導入し、ループ領域に変異が導入された変異水溶性PQQGDH遺伝子ライブラリーを構築する

【0026】これを大腸菌に形質転換し、PQQGDHのグルコースに対する選択性について各クローンをスクリーニングする。水溶性PQQGDHは大腸菌において発現させたときにペリプラズム空間に分泌されるため、菌体そのものを用いて容易に酵素活性の検定を行うことができる。このライブラリーを色素としてPMS-DCIPを加え、PQQGDHの活性を目視により判定して、20mM濃度のグルコースに対する活性が野生型PQQGDHと同等であるが、20mMのラクトースに対する活性が野生型PQQGDHより低下したPQQGDHを発現するクローンを選択し、遺伝子配列を解析してその変異を確認する。

【0027】上述のようにして得られた、改変型PQQGDHを発現する形質転換体を培養し、培養液から遠心分離などで菌体を回収した後、菌体をフレンチプレスなどで破砕するか、またはオスモティックショックによりペリプラズム酵素を培地中に放出させる。これを超遠心分離し、PQQGDHを含む水溶性画分を得ることができる。あるいは、適当な宿主ベクター系を用いることにより、発現したPQQGDHを培養液中に分泌させることもできる。得られた水溶性画分を、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、HPLCなどにより精製することにより、本発明の改変型PQQGDHを調製する。

酵素活性の測定方法

本発明のPQQGDHは、PQQを補酵素として、グルコースを酸化してグルコノラクトンを生成する反応を触媒する作用を有する。

【0028】酵素活性の測定は、PQQGDHによるグルコースの酸化にともなって還元されるPQQの量を酸化還元色素の呈色反応により定量することができる。呈色試薬としては、例えば、PMS(フェナジンメトサルフェート)-DCIP(2、6-ジクロロフェノールインドフェノール)、フェリシアン化カリウム、フェロセンなどを用いることができる。

選択性の評価方法

本発明のPQQGDHのグルコースに対する選択性は、 基質として、2ーデオキシーDーグルコース、マンノー ス、アロース、3ーoーメチルーDーグルコース、ガラ クトース、キシロース、ラクトースおよびマルトース等 の各種の糖を用いて上述のように酵素活性を測定し、グ ルコースを基質としたときの活性に対する相対活性を調 べることにより評価することができる。

20 グルコースアッセイキット

本発明はまた、本発明に従う改変型PQQGDHを含むグルコースアッセイキットを特徴とする。本発明のグルコースアッセイキットは、本発明に従う改変型PQQGDHを少なくとも1回のアッセイに十分な量で含む。典型的には、キットは、本発明の改変型PQQGDHに加えて、アッセイに必要な緩衝液、メディエーター、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明に従う改変型PQQGDHは種々の形態で、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。好ましくは本発明の改変型PQQGDHはホロ化した形態で提供されるが、アポ酵素の形態で提供し、使用時にホロ化することもできる。

<u>グルコースセンサー</u>

本発明はまた、本発明に従う改変型PQQGDHを用い るグルコースセンサーを特徴とする。電極としては、カ ーポン電極、金電極、白金電極などを用い、この電極上 に本発明の酵素を固定化する。固定化方法としては、架 橋試薬を用いる方法、高分子マトリックス中に封入する 方法、透析膜で被覆する方法、光架橋性ポリマー、導電 性ポリマー、酸化還元ポリマーなどがあり、あるいはフ ェロセンあるいはその誘導体に代表される電子メディエ ーターとともにポリマー中に固定あるいは電極上に吸着 固定してもよく、またこれらを組み合わせて用いてもよ い。好ましくは本発明の改変型PQQGDHはホロ化し た形態で電極上に固定化するが、アポ酵素の形態で固定 化し、PQQを別の層としてまたは溶液中で提供するこ ともできる。典型的には、グルタルアルデヒドを用いて 本発明の改変型PQQGDHをカーボン電極上に固定化 50 した後、アミン基を有する試薬で処理してグルタルアル

デヒドをブロッキングする。

【0029】グルコース濃度の測定は、以下のようにし て行うことができる。恒温セルに緩衝液を入れ、PQQ およびСаС1:、およびメディエーターを加えて一定 温度に維持する。メディエーターとしては、フェリシア ン化カリウム、フェナジンメトサルフェートなどを用い ることができる。作用電極として本発明の改変型PQQ GDHを固定化した電極を用い、対極(例えば白金電 極)および参照電極(例えばAg/AgC1電極)を用 いる。カーボン電極に一定の電圧を印加して、電流が定 常になった後、グルコースを含む試料を加えて電流の増 加を測定する。標準濃度のグルコース溶液により作製し たキャリブレーションカーブに従い、試料中のグルコー ス濃度を計算することができる。

[0030]

【実施例】以下、実施例に基づいて本発明を詳細に説明 するが、本発明はこれらの実施例に限定されるものでは

TaqDNAポリメラーゼ(5U/μ1)	0. $5 \mu 1$	
テンプレートDNA	$1.0 \mu l$	
フォワードプライマーABF	4. 0 μ l	
リバースプライマーABR	4. $0 \mu 1$	
10× Tagポリメラーゼバッファー	10.0μ l	
1Μ β-メルカプトエタノール	$1.0 \mu 1$	
DMSO	$1~0.~0~\mu~1$	
5 mM MnCl:	$1 \ 0. \ 0 \ \mu \ 1$	
10mM dGTP	$2.0 \mu 1$	
2 mM dATP	$2.0 \mu 1$	
10mM dCTP	$2.0 \mu 1$	
10mM dTTP	$2.0 \mu 1$	
H: O	51.5μ1	
	100 041	

40

得られた変異水溶性PQQGDHのライブラリーを大腸 菌に形質転換し、形成された各コロニーをマイクロタイ タープレートに移した。コロニーを別のプレートにレプ リカし、片方のプレートにはグルコース濃度20mMお よびPMS-DCIPを加え、他方のプレートには20 mMラクトースおよびPMS-DCIPを加え、双方の PQQGDHの活性を目視で判定した。2枚のプレート でグルコースの示す活性よりもラクトースに対する活性 が大幅に低下したクローンが多数得られた。

【0032】このうち1つのクローンを任意に選び、遺 伝子配列を解析したところ、452番目のアスパラギン がアスパラギン酸に変異していたことがわかった。

改変型酵素PQQGDH遺伝子の構築

配列番号2に示されるAcinetobacter calcoaceticus 由 来PQQGDHの構造遺伝子をもとに、配列:

5'-C ATC TTT TTG GAC ATG TCC GGC AGT AT-3' のオリゴヌクレオチドターゲットプライマーを合成し、 452番目のアスパラギンをヒスチジンに置換した。部 ない。

実施例1

変異PQQGDH遺伝子ライブラリの構築およびスクリ ーニング

10

プラスミドゥGB2は、ベクターゥTrc99A(ファ ルマシア社製)のマルチクローニング部位に、Acinetob acter calcoaceticus由来PQQGDHをコードする構 造遺伝子を挿入したものである(図1)。このプラスミ ドをテンプレートとして、エラープローンPCR法によ 10 り種々の領域中にランダムに変異を導入した。PCR反 応は、表1に示す組成の溶液中で、94℃3分間、次 に、94℃3分間、50℃2分間、および72℃2分間 を30サイクル、最後に72℃で10分間の条件で行っ た。

[0031]

【表1】

位特異的変異はプラスミドpGB2を用いて、図2に示 す方法により行った。

【0033】ベクタープラスミドpKF18k(宝酒造 (株)) にAcinetobacter calcoaceticus 由来PQQG DHをコードする遺伝子の一部を含む Kpn I-Hind III 断 片を組み込み、これをテンプレートとした。このテンプ レート50fmolと宝酒造(株)製Mutan(登録 商標)- Express Kmキットに付属のセレクシ ョンプライマー5pmol、リン酸化したターゲットプ ライマー50pmolを全体(20μl)の1/10量 の同キットのアニーリングバッファーとともに混合し、 100℃、3分間の熱処理でプラスミドを変性させ、1 本鎖にした。セレクションプライマーはpKF18kの カナマイシン耐性遺伝子上にある二重のアンバー変異を 復帰させるためのものである。これを5分間氷上に置 き、プライマーをアニーリングさせた。これに 3 μ 1 の 同キットエクステンションパッファー、1μ1のΥ4 $DNAリガーゼ、1<math>\mu$ IのT4 DNAポリメラーゼお50 よび5μ1の滅菌水を加えて相補鎖を合成した。

【0034】これをDNAのミスマッチ修復能欠損株であるE.coli BMH71-18 mutSに形質転換し、一晩振とう培養を行ってプラスミドを増幅させた。次に、ここから抽出したプラスミドをE.coli MV1184に形質転換し、そのコロニーからプラスミドを抽出した。そしてこれらのプラスミドについてシークエンスを行い、目的とした変異の導入を確認した。この断片を、プラスミドpGB2上の野生型PQQGDHをコードする遺伝子のKpn I-Hind III断片と入れ替え、改変型PQQGDHの遺伝子を構築した。

11

【0035】同様にして、ループ6BCに相当する領域において、Asp448Asn、Asn452Thr、Asn452Lys、Asn452Ile、Val453Asp、Val453Phe、Asp456Asn、Asp457Asn、Asn462His、Asn462Asp、Asn462Tyr、Asn462Lys、Asn462Pheの各変異を有する改変型PQQGDHの遺伝子を構築した。

実施例3

改変型酵素の調製

野生型または改変型PQQGDHをコードする遺伝子 を、E. coli用の発現ベクターであるpTrc99 A(ファルマシア社)のマルチクローニングサイトに挿 入し、構築されたプラスミドをE.coli DH5α株に形 質転換した。これを450mlのL培地(アンビシリン $50 \mu g/ml$, $\rho D = \Delta D$ 含有)で坂口フラスコを用いて37℃で一晩振とう培養 し、1mMCaCl₁、500μMPQQを含む71の L培地に植菌した。培養開始後約3時間でイソプロビル チオガラクトシドを終濃度0.3mMになるように添加 し、その後1.5時間培養した。培養液から遠心分離 (5000×g、10分、4℃)で菌体を回収し、この菌体 を0.85%NaCl溶液で2回洗浄した。集菌した菌 体をフレンチプレスで破砕し、遠心分離(10000×g、 15分、4℃)で未破砕の菌体を除去した。上清を超遠 心分離 (160500×g (40000r.p.m.)、90分、4℃) し、水溶性画分を得た。これを粗精製酵素標品として以 下の実施例において用いた。

【0036】さらに、こうして得た水溶性画分を10mMリン酸緩衝液pH7.0で一晩透析した。透析したサンプルを10mMリン酸緩衝液pH7.0で平衡化した陽イオン交換クロマトグラフィー用充填カラムTSKg

el CM-TOYOPEARL 650M(東ソ一株式会社)に吸着させた。このカラムを10mMリン酸緩衝液pH7.0、750mlで洗浄した後、0-0.2 M NaClを含む10mMリン酸緩衝液pH7.0を用い、酵素を溶出させた。流速は5ml/minで行った。GDH活性を有する画分を回収し、10mM MOPS-NaOH緩衝液(pH7.0)で一晩透析した。このようにして電気泳動的に均一な改変型PQQGDH蛋白質を得た。これを精製酵素標品として以下の実施例10において用いた。

実施例4

酵素活性の測定

酵素活性の測定は、室温において、 $10\,\mathrm{mM}$ MOPS $-\mathrm{NaOH}$ 緩衝液($\mathrm{pH7}$. 0)中においてPMS(フェナジンメトサルフェート) $-\mathrm{DCIP}$ (2、6-ジクロロフェノールインドフェノール)を用い、DCIPの $600\,\mathrm{nm}$ の吸光度変化を分光光度計を用いて追跡し、その吸光度の減少速度を酵素の反応速度とした。このとき、1分間に $1\mu\mathrm{moloDCIP}$ が還元される酵素活性を1ユニットとした。また、DCIPの $\mathrm{pH7}$. 0におけるモル吸光係数は $16.3\,\mathrm{mM}^{-1}$ とした。

実施例5

基質特異性の評価

各改変型酵素の粗精製酵素標品について基質特異性を調べた。実施例3で得られた野生型および各改変型PQQGDHの粗精製酵素標品をそれぞれ1μMPQQ、1mMCaCl:存在下で1時間以上ホロ化した。これを187μ1ずつ分注し、3μ1の活性試薬(6mMDCIP,600mMPMS,10mMリン酸緩衝液p30H7.0を含む)および基質を加えた。基質として、それぞれ終濃度20mMとなるように400mMのグルコース、ラクトースおよびマルトースを10μ1加え、室温で30分間インキュベートして、実施例4と同様に酵素活性を測定した。値はグルコースを基質としたときの活性を100とし、これれに対する相対活性で表した。表2に示されるように、本発明の改変型酵素はいずれも野生型酵素と比較してグルコースに対する高い選択性を示した。

【0037】 【表2】

グルコース	ラクトース	マルトース
100%	61%	61%
100%	56%	50%
100%	39%	39%
100%	55%	42%
100%	42%	30%
100%	36%	28%
100%	49%	37%
100%	59%	41%
100%	43%	32%
	100% 100% 100% 100% 100% 100% 100%	100% 61% 100% 56% 100% 39% 100% 55% 100% 42% 100% 36% 100% 49% 100% 59%

Asn462His

100%

31%

25%

実施例7

グルコースのアッセイ

改変型PQQGDHを用いてグルコースをアッセイした。N452D改変型酵素を、 1μ MPQQ、1mMCaCl:存在下で1時間以上ホロ化し、各種濃度のグルコースおよび 5μ MPQQ、10mMCaCl:存在下で酵素活性を測定した。方法は実施例4に記載の酵素活性の測定法に準じ、DCIPの600nmの吸光度の変化を指標とした。図3に示されるように、N452D改変型PQQGDHを用いて、0.1-20mMの範囲でグルコースの定量を行うことができた。

実施例8

酵素センサーの作製および評価

5ユニットのN452D改変型酵素にカーボンペースト20mgを加えて凍結乾燥させた。これをよく混合した後、既にカーボンペーストが約40mg充填されたカーボンペースト電極の表面だけに充填し、濾紙上で研磨した。この電極を1%のグルタルアルデヒドを含む10m

Sequence Listing

<110> Sode, Koji

<120> Glucose Dehydrogenase

<130> 990387

<160> 4

<210> 1

<211> 454

<212> PRT

<213> Acinetobacter calcoaceticus

<400> 1

Asp Val Pro Leu Thr Pro Ser Gln Phe Ala Lys Ala Lys Ser Glu Asn 1 5 10 15

Phe Asp Lys Val Ile Leu Ser Asn Leu Asn Lys Pro His Ala Leu 20 25 30

Leu Trp Gly Pro Asp Asn Gln Ile Trp Leu Thr Glu Arg Ala Thr Gly
35 40 45

Lys Ile Leu Arg Val Asn Pro Glu Ser Gly Ser Val Lys Thr Val Phe
50 55 60

Gln Val Pro Glu Ile Val Asn Asp Ala Asp Gly Gln Asn Gly Leu Leu 65 70 75 80

Gly Phe Ala Phe His Pro Asp Phe Lys Asn Asn Pro Tyr Ile Tyr Ile

Ser Gly Thr Phe Lys Asn Pro Lys Ser Thr Asp Lys Glu Leu Pro Asn 100 105 110

Gln Thr Ile Ile Arg Arg Tyr Thr Tyr Asn Lys Ser Thr Asp Thr Leu

I15 120 125
Glu Lys Pro Val Asp Leu Leu Ala Gly Leu Pro Ser Ser Lys Asp His
130 135 140

Gln Ser Gly Arg Leu Val Ile Gly Pro Asp Gln Lys Ile Tyr Tyr Thr 145 150 155 160

M MOPS緩衝液 (pH7.0) 中で室温で30分間 処理した後、20mMリジンを含む10mM MOPS 緩衝液 (pH7.0) 中で室温で20分間処理してグルタルアルデヒドをブロッキングした。この電極を10m M MOPS緩衝液 (pH7.0) 中で室温で1時間以上平衡化させた。電極は4℃で保存した。

14

【0038】作製した酵素センサーを用いてグルコース 濃度の測定を行った。本発明の改変型PQQGDHを固定化した酵素センサーを用いて、0.1mM-5mMの 範囲でグルコースの定量を行うことができる。

[0039]

【発明の効果】改変型PQQGDHはグルコースに対する選択性が高いことから、本酵素を用いてアッセイキットあるいは酵素センサーを作成すると、従来の天然型のPQQGDHを用いた場合に比べ、より高い選択性を得ることができる。

[0040]

【配列表】

```
lle Gly Asp Gln Gly Arg Asn Gln Leu Ala Tyr Leu Phe Leu Pro Asn
                                    170
                165
Gln Ala Gln His Thr Pro Thr Gln Gln Glu Leu Asn Gly Lys Asp Tyr
                                185
His Thr Tyr Met Gly Lys Val Leu Arg Leu Asn Leu Asp Gly Ser Ile
                            200
Pro Lys Asp Asn Pro Ser Phe Asn Gly Val Val Ser His Ile Tyr Thr
                        215
                                            220
Leu Gly His Arg Asn Pro Gln Gly Leu Ala Phe Thr Pro Asn Gly Lys
                    230
                                        235
Leu Leu Gln Ser Glu Gln Gly Pro Asn Ser Asp Asp Glu Ile Asn Leu
                245
                                    250
lle Val Lys Gly Gly Asn Tyr Gly Trp Pro Asn Val Ala Gly Tyr Lys
                                265
Asp Asp Ser Gly Tyr Ala Tyr Ala Asn Tyr Ser Ala Ala Ala Asn Lys
                            280
Ser Ile Lys Asp Leu Ala Gln Asn Gly Val Lys Val Ala Ala Gly Val
                        295
                                            300
Pro Val Thr Lys Glu Ser Glu Trp Thr Gly Lys Asn Phe Val Pro Pro
                    310
                                        315
Leu Lys Thr Leu Tyr Thr Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro
                                    330
Thr Cys Gly Glu Met Thr Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser
                                345
Ser Ala Tyr Val Tyr Lys Gly Gly Lys Lys Ala Ile Thr Gly Trp Glu
                            360
Asn Thr Leu Leu Val Pro Ser Leu Lys Arg Gly Val IIe Phe Arg IIe
                        375
                                            380
Lys Leu Asp Pro Thr Tyr Ser Thr Thr Tyr Asp Asp Ala Val Pro Met
                    390
                                         395
Phe Lys Ser Asn Asn Arg Tyr Arg Asp Val Ile Ala Ser Pro Asp Gly
                405
                                    410
Asn Val Leu Tyr Val Leu Thr Asp Thr Ala Gly Asn Val Gln Lys Asp
            420
                                425
Asp Gly Ser Val Thr Asn Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys
                            440
Phe Thr Tyr Lys Ala Lys
    450
<210> 2
<211> 1612
<212> DNA
<213> Acinetobacter calcoaceticus
<400> 2
agctactitt atgcaacaga gcctttcaga aatttagatt ttaatagatt cgttattcat 60
cataatacaa atcatataga gaactegtae aaaceettta ttagaggttt aaaaattete 120
ggaaaatttt gacaatttat aaggtggaca catgaataaa catttattgg ctaaaattgc 180
tttattaagc gctgttcagc tagttacact ctcagcattt gctgatgttc ctctaactcc 240
atotoaatti gotaaagoga aatoagagaa ottigacaag aaagitatto tatotaatoi 300
aaataagccg catgctttgt tatggggacc agataatcaa atttggttaa ctgagcgagc 360
```

aacaggtaag attctaagag ttaatccaga gtcgggtagt gtaaaaacag tttttcaggt 420

```
accagagatt gtcaatgatg ctgatgggca gaatggttta ttaggttttg ccttccatcc 480
tgattttaaa aataateett atatetatat tteaggtaea tttaaaaate egaaatetae 540
agataaagaa ttaccgaacc aaacgattat tcgtcgttat acctataata aatcaacaga 600
tacgctcgag aagccagtcg atttattagc aggattacct tcatcaaaag accatcagtc 660
aggicgicit gicatiggge cagateaaaa gattiattat acgatiggig accaagggeg 720
taaccagett gettattigt tettgeeaaa teaageacaa cataegeeaa eteaacaaga 780
actgaatggt aaagactatc acacctatat gggtaaagta ctacgcttaa atcttgatgg 840
aagtattcca aaggataatc caagttttaa cggggtggtt agccatattt atacacttgg 900
acategtaat eegeagget tageatteae teeaaatggt aaattattge agtetgaaca 960
aggeceaaac tetgaegatg aaattaacet eattgteaaa ggtggeaatt atggttggee 1020
gaatgtagca ggttataaag atgatagtgg ctatgcttat gcaaattatt cagcagcagc 1080
caataagtca attaaggatt tagctcaaaa tggagtaaaa gtagccgcag gggtccctgt 1140
gacgaaagaa tetgaatgga etggtaaaaa etttgteeca eeattaaaaa etttatatae 1200
cgttcaagat acctacaact ataacgatcc aacttgtgga gagatgacct acatttgctg 1260
gccaacagtt gcaccgtcat ctgcctatgt ctataagggc ggtaaaaaag caattactgg 1320
ttgggaaaat acattattgg ttccatcttt aaaacgtggt gtcattttcc gtattaagtt 1380
agatecaact tatageacta ettatgatga egetgtaceg atgtttaaga geaacaaceg 1440
ttatcgtgat gtgattgcaa gtccagatgg gaatgtctta tatgtattaa ctgatactgc 1500
cggaaatgtc caaaaagatg atggctcagt aacaaataca ttagaaaacc caggatctct 1560
cattaagtte acctataagg ctaagtaata cagtegeatt aaaaaacega te
<210> 3
<211> 20
<212> PRT
<213> Acinetobacter calcoaceticus
<220>
<222> 4
<223> Xaa is any amino acid residue
<222> 7
<223> Xaa is any amino acid residue
<222> 8
<223> Xaa is any amino acid residue
<222> 9
<223> Xaa is anv amino acid residue
<222> 14
<223> Xaa is any amino acid residue
Thr Ala Gly Xaa Val Gln Xaa Xaa Xaa Gly Ser Val Thr Xaa Thr Leu
                                     10
                                                          15
Glu Asn Pro Gly
             20
<210> 4
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> primer for point mutation
<400> 4
catcttttg gacatgtccg gcagtat
                                  17
```

【図面の簡単な説明】

GB2の構造を示す。

図1】 図1は、本発明において用いたプラスミドp 50 【図2】 図2は、本発明の改変型酵素をコードする突

特開2001-197888

20

然変異遺伝子を作成する方法を示す。

【図3】 図3は、本発明の改変型PQQGDHを用い

19

るグルコースのアッセイを示す。

[図1]

ゲルコース国産(mbil)

【図2】

フロントページの続き

					~
(51) Int. Cl. ⁷		識別記号	FΙ		テーマコード(参考)
C 1 2 N	5/10		C 1 2 Q	1/32	
	9/04		C 1 2 R	1:01)	
C 1 2 Q	1/32		(C 1 2 N	9/04	D
G 0 1 N	27/327		C 1 2 R	1:19)	
//(C 1 2 N	15/09	ZNA	C 1 2 N	15/00	ZNAA
C 1 2 R	1:01)			5/00	Α
(C 1 2 N	9/04		G 0 1 N	27/30	353Ј
C 1 2 R	1:19)		C 1 2 R	1:01)	

Fターム(参考) 4B024 AA11 BA08 CA04 DA06 EA04

GA11 HA11

4B029 AA08 BB02 CC03 FA12

4B050 CC03 DD02 FF05E FF11E

LL02 LL03

4B063 QA01 QA18 QQ68 QR04 QR50

QR82 QX05

4B065 AA04Y AA26X AA62X AA80X

AA90X AA91X AB01 AC14

BA02 CA28 CA46