MATH 138 Theorems

Sachin Kumar* University of Waterloo

Winter 2023^{\dagger}

^{*}skmuthuk@uwaterloo.ca † Last updated: February 26, 2023

Contents

1	1 Intgeration	Intgeration										3		
	1.1 Riemann Sums and Definite In	ntegral												3
	1.2 Properties of the Definite Integ	gral												3
	1.3 The Average Value of a Functi	ion												4
	1.4 The Fundamental Theorem of	Calculus												4
	1.5 Change of Variables													5
2	Techniques of Integration						6							
	2.1 Partial Fractions													6
	2.2 Improper Integrals													6
3	Applications of Integration							9						
	3.1 Area Between Curves													9
	3.2 Volumes of Revolution: Disk M	Method												9
	3.3 Arc Length													9
4	Differential Equations							10						
	4.1 First-Order Linear Differential	Equations .												10
	4.2 Initial Value Problems													10
5	5 Numerical Series	Numerical Series						11						
6	6 Power Series							12						

1 Intgeration

1.1 Riemann Sums and Definite Integral

Theorem 1.1.1 (Integrability Theorem for Continuous Functions)

Let f be continuous on [a, b]. Then f is integrable on [a, b]. Moreover,

$$\int_{a}^{b} f(t)dt = \lim_{n \to \infty} S_n$$

where,

$$S_n = \sum_{i=1}^n f(c_i) \Delta t_i$$

is any Riemann sum associated with the regular n-partitions. In particular,

$$\int_{a}^{b} f(t)dt = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i) \frac{b-a}{n}$$

and

$$\int_{a}^{b} f(t)dt = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i-1}) \frac{b-a}{n}$$

1.2 Properties of the Definite Integral

Theorem 1.2.1 (Properties of Integrals Theorem)

Assume that f and g are integrable on the interval [a,b]. Then:

- 1. For any $c \in \mathbb{R}$, $\int_a^b cf(t)dt = c \int_a^b f(t)dt$
- 2. $\int_{a}^{b} (f+g)(t)dt = \int_{a}^{b} f(t)dt + \int_{a}^{b} g(t)dt$
- 3. If $m \le f(t) \le M$ for all $t \in [a, b]$, then $m(b a) \le \int_a^b f(t) dt \le M(b a)$
- 4. If $0 \le f(t)$ for all $t \in [a, b]$, then $0 \le \int_a^b f(t) dt$
- 5. If $g(t) \leq f(t)$ for all $t \in [a, b]$, then $\int_a^b g(t)dt \leq \int_a^b f(t)dt$
- 6. The function |f| is integrable on [a,b] and $\left|\int_a^b f(t)dt\right| \leq \int_a^b |f(t)|dt$

Theorem 1.2.2 (Integrals over Subintervals Theorem)

Assume that f is integrable on an interval I containing a, b and c. Then

$$\int_{a}^{a} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

3

1.3 The Average Value of a Function

Theorem 1.3.1 (Average Value Theorem (Mean Value Theorem for Integrals))

Assume that f is continuous on [a, b]. Then there exists $a \le c \le b$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$

1.4 The Fundamental Theorem of Calculus

Theorem 1.4.1 (Fundamental Theorem of Calculus (Part 1))

Assume that f is continuous on an open interval I containing a point a. Let

$$G(x) = \int_{a}^{x} f(t)dt$$

Then G(x) is differentiable at each $x \in I$ and

$$G'(x) = f(x)$$

Equivalently,

$$G'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Theorem 1.4.2 (Extended Version of the Fundamental Theorem of Calculus)

Assume that f is continuous and that g and h are differentiable. Let,

$$H(x) = \int_{a(x)}^{h(x)} f(t)dt$$

Then H(x) is differentiable and

$$H'(x) = f(h(x))h'(x) - f(g(hx))g'(x)$$

Theorem 1.4.3 (Power Rule for Antiderivatives)

If $\alpha \neq -1$, then

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$$

Theorem 1.4.4 (Fundamental Theorem of Calculus (Part 2))

Assume that f is continuous and that F is any antiderivative of f, then

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

4

1.5 Change of Variables

Theorem 1.5.1 (Change of Variables Theorem)

Assume that g'(x) is continuous on [a,b] and f(u) is continuous on g([a,b]), then

$$\int_{x=a}^{x=b} f(g(x))g'(x)dx = \int_{u=g(a)}^{u=g(b)} f(u)du$$

$\mathbf{2}$ **Techniques of Integration**

2.1 **Partial Fractions**

Theorem 2.1.1 (Integration by Parts Theorem)

Assume that f and g are such that both f' and g' are continuous on an interval containing a and b.

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Theorem 2.1.2 (Integration of Partial Fractions) Assume that $f(x) = \frac{p(x)}{q(x)}$ admits a Type I Partial Fraction Decomposition of the form

$$f(x) = \frac{1}{a} \left[\frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \dots + \frac{A_k}{x - a_k} \right]$$

Then

$$\int f(x)dx = \frac{1}{a} \left[\int \frac{A_1}{x - a_1} dx + \int \frac{A_2}{x - a_2} dx + \dots + \int \frac{A_k}{x - a_k} dx \right]$$
$$= \frac{1}{a} [A_1 \ln(|x - a_1|) + A_2 \ln(|x - a_2|) + \dots + A_k \ln(|x - a_k|)] + C$$

2.2**Improper Integrals**

Theorem 2.2.1 (p-Test for Type I Improper Integrals)

The improper integral

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

converges if and only if p > 1. If p > 1, then

$$\int_{1}^{\infty} \frac{1}{x^p} dx = \frac{1}{p-1}$$

Theorem 2.2.2 (Properties of Type I Improper Integrals) Assume that $\int_a^\infty f(x)dx$ and $\int_a^\infty g(x)dx$ both converge

1. $\int_a^\infty cf(x)dx$ converges for each $c\in\mathbb{R}$ and

$$\int_{a}^{\infty} cf(x)dx = c \int_{a}^{\infty} f(x)dx$$

2. $\int_a^{\infty} (f(x) + g(x)) dx$ converges and

$$\int_{a}^{\infty} (f(x) + g(x))dx = \int_{a}^{\infty} f(x)dx + \int_{a}^{\infty} g(x)dx$$

3. If $f(x) \leq g(x)$ for all $a \leq x$, then

$$\int_{a}^{\infty} f(x)dx \le \int_{a}^{\infty} g(x)dx$$

4. If $a < c < \infty$, then $\int_{c}^{\infty} f(x) dx$ converges and

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

Theorem 2.2.3 (The Monotone Convergence Theorem for Functions)

Assume that f is non-decreasing on $[a, \infty]$.

1. If $\{f(x)|x\in[a,\infty]\}$ is bounded above, then $\lim_{x\to\infty}f(x)$ exists and

$$\lim_{x \to \infty} f(x) = L = lub(\{f(x)|x \in [a,\infty)\})$$

2. If $\{f(x)|x\in[a,\infty]\}$ is not bounded above, then $\lim_{x\to\infty}f(x)=\infty$

Theorem 2.2.4 (Comparison Test for Type I Improper Integrals)

Assume that $0 \le g(x) \le f(x)$ for all $x \ge a$ and that both f and g are continuous on $[a, \infty)$.

- 1. If $\int_a^\infty f(x)dx$ converges, then so does $\int_a^\infty g(x)dx$
- 2. If $\int_a^\infty g(x)dx$ diverges, then so does $\int_a^\infty f(x)dx$

Theorem 2.2.5 (Absolute Convergence Theorem for Improper Integrals)

Let f be integrable on [a, b] for all b > a. Then |f| is also integrable on [a, b] for all b > a. Moreover, if we assume that

$$\int_{a}^{\infty} |f(x)| dx$$

converges, then so does

$$\int_{a}^{\infty} f(x)dx$$

In particular, if $0 \le |f(x)| \le g(x)$ for all $x \ge a$, both f and g are integrable on [a,b] for all $b \ge a$, and if $\int_a^\infty g(x)dx$ converges, then so does

$$\int_{a}^{\infty} f(x)dx$$

Theorem 2.2.6 (p-Test for Type II Improper Integrals)

The improper integral

$$\int_0^1 \frac{1}{x^p} dx$$

converges if and only if p < 1.

If p < 1, then

$$\int_0^1 \frac{1}{x^p} dx = \frac{1}{1 - p}$$

3 Applications of Integration

3.1 Area Between Curves

Theorem 3.1.1 (Area Between Curves)

Let f and g be continuous on [a, b]. Let A be the region bounded by the graphs of f and g, the line t = a and the line t = b. Then the area of region A is given by

$$A = \int_{a}^{b} |g(t) - f(t)| dt$$

3.2 Volumes of Revolution: Disk Method

Theorem 3.2.1 (Volumes of Revolution: Disk Method I)

Let f be continuous on [a,b] with $f(x) \ge 0$ for all $x \in [a,b]$. Let W be the region bounded by the graphs of f, the x-axis and the lines x=a and x=b. Then the volume V of the solid of revolution obtained by rotating the region W around the x-axis is given by

$$V = \int_{a}^{b} \pi f(x)^{2} dx$$

Theorem 3.2.2 (Volumes of Revolution: Disk Method II)

Let f and g be continuous on [a,b] with $0 \le f(x) \le g(x)$ for all $x \in [a,b]$. Let W be the region bounded by the graphs of f and g, and the lines x=a and x=b. Then the volume V of the solid of revolution obtained by rotating the region W around the x-axis is given by

$$V = \int_{a}^{b} \pi (g(x)^{2} - f(x)^{2}) dx$$

Theorem 3.2.3 (Volumes of Revolution: The Shell Method)

Let $a \ge 0$. Let f and g be continuous on [a, b] with $f(x) \le g(x)$ for all $x \in [a, b]$. Let W be the region bounded by the graphs of f and g, and the lines x = a and x = b. Then the volume V of the solid of revolution obtained by rotating the region W around the y-axis is given by

$$V = \int_a^b 2\pi x (g(x) - f(x)) dx$$

3.3 Arc Length

Theorem 3.3.1 (Arc Length)

Let f be continuously differentiable on [a, b]. Then the arc length S of the graph of f over the interval [a, b] is given by

$$S = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

4 Differential Equations

4.1 First-Order Linear Differential Equations

Theorem 4.1.1 (Solving First-order Linear Differential Equations)

Let f and g be continuous and let

$$y' = f(x)y + g(x)$$

be a first-order linear differential equation. Then the solutions to this equation are of the form

$$y = \frac{\int g(x)I(x)dx}{I(x)}$$

where $I(x) = e^{-\int f(x)dx}$

4.2 Initial Value Problems

Theorem 4.2.1 (Existence and Uniqueness Theorem for FOLDE)

Assume that f and g are continuous functions on an interval I. Then for each $x_0 \in I$ and for all $y_0 \in \mathbb{R}$, the initial value problem

$$y' = f(x)y + g(x)$$
$$y(x_0) = y_0$$

has exactly one solution $y = \phi(x)$ on the interval I.

5 Numerical Series

6 Power Series