ЛИНЕЙНЫЕ ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ЛОДУ) С ПОСТОЯННЫМИ КОЭФФИЦИ-ЕНТАМИ ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Найти общее решение ЛОДУ y'' + y' - 2y = 0. Решение. Составим характеристическое уравнение

$$\lambda^2 + \lambda - 2 = 0$$

и найдем его корни: $\lambda_1 = 1$; $\lambda_2 = -2$ (действительные и различные). Тогда $y_1(x) = e^x$ и $y_2(x) = e^{-2x}$ — фундаментальная система решений и $y = C_1 e^x + C_2 e^{-2x}$ — общее решение рассматриваемого ЛОДУ.

Пример 2. Найти общее решение ЛОДУ y'' + 3y' - 10y = 0. Решение. Составим характеристическое уравнение

$$\lambda^2 + 3\lambda - 10 = 0$$

и найдем его корни: $\lambda_1 = 2$; $\lambda_2 = -5$ (действительные и различные). Тогда $y_{oo} = C_1 e^{2x} + C_2 e^{-5x}$ — общее решение рассматриваемого ЛОДУ.

Пример 3. Найти общее решение уравнения y'' - 4y' = 0. Решение. Характеристическое уравнение имеет вид:

$$\lambda^2 - 4\lambda = 0.$$

Его корни $\lambda_1=0$ и $\lambda_2=4$ — действительны и различны. Тогда общим решением будет $y=C_1+C_2e^{4x}$.

Пример 4. Найти решение задачи Коши

$$\begin{cases} y'' - y' - 2y = 0, \\ y(0) = 1, \\ y'(0) = 3. \end{cases}$$

Решение. Характеристическое уравнение будет:

$$\lambda^2 - \lambda - 2 = 0$$
.

Его корни $\lambda_1 = 2$ и $\lambda_2 = -1$. Общее решение имеет вид:

$$y(x) = C_1 e^{2x} + C_2 e^{-x}$$
.

Для определения частного решения найдем y'(x):

$$y'(x) = 2C_1e^{2x} - C_2e^{-x}$$
.

Тогда для вычисления постоянных C_1 и C_2 нужно решить систему уравнений:

$$\begin{cases} y(0) = 1 = C_1 + C_2, \\ y'(0) = 3 = 2C_1 - C_2. \end{cases}$$

Решая систему, получим: $C_1 = 4/3$, $C_2 = -1/3$. Следовательно, частное решение имеет вид: $y(x) = \frac{4}{3}e^{2x} - \frac{1}{3}e^{-x}$.

Пример 5. Найти общее решение ЛОДУ y''-2y'+y=0. Решение. Составим характеристическое уравнение:

$$\lambda^2 - 2\lambda + 1 = 0$$
.

Его корни: $\lambda_1 = \lambda_2 = 1$ (действительные и совпадают). Тогда $y_1(x) \equiv e^x$, $y_2(x) = x e^x$ фундаментальная система решений и $y = (C_1 + C_2 x) e^x$ общее решение рассматриваемого ЛОДУ.

Пример 6. Найти общее решение ЛОДУ y'' - 4y' + 4y = 0. Решение. Составим характеристическое уравнение:

$$\lambda^2 - 4\lambda + 4 = 0.$$

Найдем его корни: $\lambda_1 = \lambda_2 = 2$ (действительные и совпадают). Тогда $y_1 = e^{2x}$, $y_2(x) = xe^{2x}$ — фундаментальная система решений и $y = C_1 e^{2x} + C_2 x e^{2x}$ — общее решение рассматриваемого ЛОДУ.

Пример 7. Найти общее решение ЛОДУ y'' + 2y' + 5y = 0. Решение. Составим характеристическое уравнение:

$$\lambda^2 + 2\lambda + 5 = 0.$$

Применяя формулы для корней квадратного уравнения, найдем его корни: $\lambda_{1,2} = -1 \pm 2i \qquad \text{(комплексные)}. \qquad \text{Тогда}$ $y_{oo} = e^{-x} \left(C_1 \cos 2x + C_2 \sin 2x \right) - \text{общее решение данного ЛОДУ}.$

Пример 8. Найти общее решение уравнения y'' - 4y' + 13y = 0. Решение. Характеристическое уравнение имеет вид:

$$\lambda^2 - 4\lambda + 13 = 0$$

Его корни $\lambda=2\pm 3i$ - комплексные, им соответствуют частные решения $y_1(x)=e^{2x}\cos 3x$ и $y_2(x)=e^{2x}\sin 3x$. Тогда общее решение будет:

$$y = e^{2x} (C_1 \cos 3x + C_2 \sin 3x)$$
.

Пример 9. Найти общее решение ЛОДУ y'' + y' + y = 0. Решение. Составим характеристическое уравнение:

$$\lambda^2 + \lambda + 1 = 0$$
.

Найдем его корни: $\lambda_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$ (комплексные). Тогда $y_1(x) = e^{\frac{-1}{2}x} \cos \frac{\sqrt{3}}{2} x$ и $y_2(x) = y = e^{\frac{-1}{2}x} \sin \frac{\sqrt{3}}{2} x$ — фундаментальная система решений и $y = e^{\frac{-1}{2}x} \left(C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x \right)$ — общее решение данного ЛОДУ.

Пример 10. Найти общее решение ЛОДУ $y^{(4)} - 5y'' + 4y = 0$. Решение. Данное ДУ –ЛОДУ с постоянными коэффициентами. Для его решения составляем характеристическое уравнение

$$\lambda^4 - 5\lambda + 4 = 0.$$

Это биквадратное уравнение, решаем его:

$$\lambda^4 - 5\lambda + 4 = (\lambda^2 - 1)(\lambda^2 - 4) = (\lambda + 1)(\lambda - 1)(\lambda + 2)(\lambda - 2) = 0,$$

откуда получаем четыре корня характеристического уравнения:

$$\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = -2, \lambda_4 = 2$$
.

Все корни характеристического уравнения являются действительными и различными. Тогда общее решение этого ЛОДУ имеет вид:

$$y = C_1 e^{-x} + C_2 e^{x} + C_3 e^{-2x} + C_4 e^{2x}$$
.