7 FORMULARIUM

7.1 GASLAWS, WATER VAPOUR AND THERMODYNAMICS (APPENDIX B)

(*T* in Kelvin, unless otherwise stated)

(<i>T</i> in Kelvin, unless otherw	ise stated)					7
Equation of state	$p = \rho \frac{R}{M} T$	$= \rho R$	T			
Hydrostatic equilibrium	$dp = -g\rho a$ $g = 9.8 \text{ m s}$	2				
Thermodynamics	$dQ = c_v dT$	+ pd	ά			1
	$dQ = c_v dT$ $dQ = c_p dT$	$-\frac{dp}{dp}$) -			
	$c_p - c_v = F$?				
Dry air	14 201	1 1	-1			=
Dry-adiabatic	dT R dp					1
	$T = \frac{1}{c_p} \frac{1}{\rho}$					
	$\theta = T\left(\frac{p_o}{n}\right)$	$\frac{R}{c_p}$				
Relative humidity RH	$RH = \frac{e}{e}$					
Specific humidity q	$\rho_v R$	de				
, , ,	$q = \frac{1}{\rho} \approx \frac{1}{R}$	$\frac{\overline{p}}{p}$				
	$q = \frac{w}{1+w}$					
Mixing ratio w	$M_{d} = 29 \text{ kg}$ $\frac{dT}{T} = \frac{R}{c_{p}} \frac{dp}{\rho}$ $\theta = T\left(\frac{p_{o}}{p}\right)$ $RH = \frac{e}{e_{\text{sat}}}$ $q = \frac{\rho_{v}}{\rho} \approx \frac{R}{R}$ $q = \frac{w}{1 + w}$ $w = \frac{\rho_{v}}{\rho_{d}}$					
Dew point T_d	0=0 (T.)					=
Virtual temperature T_{ν}	т _	T	_	~ T(1	± 0.61a)	
	$I_v = \frac{1}{1 - \left(1\right)}$	$1-\frac{R_c}{R_c}$	$\frac{\overline{d}}{p}$	≈ <i>1</i> (1	+ 0.01q)	
Wet bulb temperature	e = e .(T	$-\frac{R}{}$	$\frac{c_v c_p}{c_p}$	n(T —	$T = \rho \cdot (T) - \gamma (T - T)$	
T_w and psychrometerequation	with	$T_{v} = \frac{T}{1 - \left(1 - \frac{R_{d}}{R_{v}}\right) \frac{e}{p}} \approx T(1 + 0.61q)$ $e = e_{\text{sat}}(T_{w}) - \frac{R_{v}}{R_{d}} \frac{c_{p}}{L_{v}} p(T - T_{w}) = e_{\text{sat}}(T_{w}) - \gamma(T - T_{w})$				
equation	$R_n c_n$					
	$\gamma = \frac{R_v}{R_d} \frac{c_p}{L_v} \gamma$)				
Thermodynamic	u /	Der	endo	ent		
properties of dry and		on .				
moist air	Constant	T	q	р	Value	Unit
	R*				8314	J kmol ⁻¹ K ⁻¹
	$R_{ m v}$				462	J kg ⁻¹ K ⁻¹
	$R_{\rm d}$				287	J kg ⁻¹ K ⁻¹
	R		•		287(1+0.61q)	J kg ⁻¹ K ⁻¹
	$c_{ m pd}$				1004	J kg ⁻¹ K ⁻¹
	$c_{ m vd}$				717	J kg ⁻¹ K ⁻¹
	$c_{ m p}$		•		1004(1+0.84q)	J kg ⁻¹ K ⁻¹
	Cv		•		717(1+0.37q)	J kg ⁻¹ K ⁻¹
	$L_{\rm v}$	•			2501000(1-0.00095(T-273.15))	J kg ⁻¹
	γ	•	•	•	$65.5 \frac{1 + 0.84q}{1 - 0.00095(T - 273.15)} \frac{p}{101300}$ $611.2 ern \left[17.62(T - 273.15) \right]$	Pa K ⁻¹
	e _{sat} (over water)	•			$611.2 \exp \left[\frac{17.62(T - 273.15)}{-30.03 + T} \right]$	Pa
	S (over water)	•			$e_{\rm sat}(T) = \frac{4284}{(-30.03+T)^2}$ (with $e_{\rm sat}$ over water)	Pa K ⁻¹
	e _{sat}	•			[22.46(T-273.15)]	Pa
		•			$611.2 \exp \left[\frac{22.46(T - 273.15)}{-0.53 + T} \right]$	Pa

7.2 RADIATION (PARTLY FROM APPENDIX A) AND SOIL HEAT FLUX

	· · · · · · · · · · · · · · · · · · ·		
Planck curve	$M_{b\lambda} = rac{C_1}{\lambda^5 \left[exp\left(rac{C_2}{2\pi} ight) - 1 ight]} W \; m^{-2} \; \mu m^{-1}$		
	$C_1 = 3.74 10^8 \text{W m}^{-2} \mu \text{m}^4, C_2 = 1.439 10^4 \mu \text{m K}$		
Stefan-Boltzmann	$M_{\rm b} = \sigma T^4 \text{W m}^{-2} \text{with } \sigma = 5.67 10^{-8} \text{W m}^{-2} \text{K}^{-4}$		
Wien	$\lambda_{\rm m} T$ = 2897.8 µm K		
Lambert-Beer	$dI_{\lambda} = -k_{\lambda} \rho I_{\lambda} ds$		
Radiation at top of atmosphere	$K_0^{\downarrow} = \overline{I_0} \left(\frac{a_{\text{Sun}}}{d_{\text{Sun}}} \right) \cos(\theta_z)$		
	$\overline{I_0}$ = 1365 W m ⁻²		
	$\cos(\theta_z) = \sin(\delta)\sin(\phi) + \cos(\delta)\cos(\phi)\cos(\omega)$		
	$\overline{K_0^{1/24}} = \frac{\overline{I_0}}{\pi} \left(\frac{\overline{d}_{Sun}}{d_{Sun}} \right)^2 \left[\omega_S \sin(\delta) \sin(\phi) + \cos(\delta) \cos(\phi) \sin(\omega_S) \right]$		
	$(heta_z: ext{zenit angle}, \delta: ext{declination angle}, \phi: ext{latitude}, \omega: ext{hour angle},$		
	ω_s : daylength (radians))		
Global radiation (empirical estimate	$\overline{K^{\downarrow}} = \overline{K_o^{\downarrow}} \left(0.2 + 0.55 \frac{n}{N_d} \right)$		
daily sum)	$(N_d: \text{daylength (hours}) = 2\frac{24}{2\pi}\omega_s)$		
Extinction of radiation	$I_{\lambda} = I_{\lambda 0} \exp \left[-m_r \int_0^{\infty} k_{\lambda,i} q_i \rho dz \right] = I_{\lambda 0} \tau_{\lambda \theta,i}$		
Global radiation as sum			
of direct and diffuse	$K^{\downarrow} = S + D = I\cos(\theta_Z) + D$		
Optical thickness	$\delta_{\lambda,i} \equiv \int_0^\infty k_{\lambda,i} q_i \rho dz$		
Optical mass (vertical, relative)	$K^{\downarrow} = S + D = I \cos(\theta_z) + D$ $\delta_{\lambda,i} \equiv \int_0^{\infty} k_{\lambda,i} q_i \rho dz$ $m_a = \int_{\infty}^0 \rho ds$ $m_v = \int_0^0 \rho dz$		
	$m_r \approx [\cos(\theta_z)]^{-1}$		
Transmissivities	$m_{a} = m_{v}m_{r}$ $m_{r} \approx [\cos(\theta_{z})]^{-1}$ $\tau_{b,\theta} = \frac{I}{I_{0}}$ $\tau_{b} = \frac{K^{\downarrow}}{K_{0}^{\downarrow}}$		
	$\tau_b = \frac{K^*}{K_0^{\downarrow}}$		
Models for broadband transmissivities	$\left[\tau_{b,\theta} = \left[\left(\tau_{bv,cda} \right)^{m_r} \right]^{tL} = \exp(\delta_{b,cda} m_r T_L) \right]$		
	$\left \frac{K^{\downarrow}}{K_0^{\downarrow}} \right = \tau_b = 0.868 \ e^{-0.0387 \ m_r T_{L,2}}$		
	(with $\mathcal{T}_{\it L}$ the Linke turbidity and $\delta_{ m b,cda}$ the broadband optical thickness of a		
	clean, dry atmosphere).		
Brunt	$arepsilon_{ m a,clear}=c_1+c_2\sqrt{e_a}$ with $e_{ m a}$ in mbar and c_1 = 0.52 and c_2 = 0.065 hPa $^{-0.5}$ $L^{\downarrow}=arepsilon_a\sigma T_a^4$ W m $^{-2}$,		
Incoming longwave radiation (empirical			
estimate)	with $\varepsilon_a = f_{\text{cloud}} + (1 - f_{\text{cloud}})\varepsilon_{\text{a,clear}}$ $L^{\uparrow} = L_e^{\uparrow} + (1 - \varepsilon_s)L^{\downarrow}$		
Upwelling longwave	$L^{\uparrow} = L_e^{\uparrow} + (1 - \varepsilon_s)L^{\downarrow}$		
radiation	with $L_e^{\uparrow} \approx \varepsilon_s \sigma T_s^4$		

 $G = -\lambda_s \frac{\partial T}{\partial z_d}$ $\frac{\partial G}{\partial z_d} = -\rho_s c_s \frac{\partial T}{\partial t}$ $\frac{\partial T}{\partial t} = \kappa_s \frac{\partial^2 T}{\partial z_d^2}$ Sine-wave forcing of at surface $T(z_d, t) = \overline{T} + A(0)e^{-z_d/D}\sin\left(\omega t - \frac{z_d}{D}\right)$ Damping depth (penetration depth): $D = \sqrt{\frac{2\lambda}{\omega \rho_s c_s}} = \sqrt{\frac{2\kappa_s}{\omega}}$ Amplitude at depth z_d : $A(z_d) = A(0)e^{-z_d/D}$ Flux density at depth z_d and time t: $G(z_d, t) = A(0)e^{-z_d/D}\sqrt{\omega \rho_s c_s \lambda_s} \sin\left[\omega t - \frac{z_d}{D} + \frac{\pi}{4}\right]$ Frost penetration depth $z_f = a\sqrt{-I_n}$

7.3 TURBULENT FLUXES

flux densities	$F = \overline{a} \frac{\overline{a}}{a}$		
Hax delisities	$E = \overline{\rho} \frac{\overline{w'q'}}{\overline{m'q'}}$		
	$H = \overline{\rho} c_p \overline{w'T'}$		
	$\tau = -\overline{\rho} \ \overline{u'w'}$		
K-theory	$E = -\overline{\rho} K_e \frac{\partial \overline{q}}{\partial z}$		
	$H = -\overline{\rho}c_p K_h \frac{\partial \theta}{\partial z}$		
	$\tau = \overline{\rho} K_m \frac{\partial u}{\partial z}$		
Turbulent scales	$H = \rho c_p W T$ $\tau = -\overline{\rho} \ \overline{u'w'}$ $E = -\overline{\rho} K_e \frac{\partial \overline{q}}{\partial z}$ $H = -\overline{\rho} c_p K_h \frac{\partial \overline{\theta}}{\partial z}$ $\tau = \overline{\rho} K_m \frac{\partial \overline{u}}{\partial z}$ $q_* = -\frac{E}{\overline{\rho} u_*}$ $\theta_* = -\frac{H}{\overline{\rho} c_p u_*}$ $u_* = \sqrt{\frac{\tau}{\overline{\rho}}}$		
	$ heta_* = -rac{\pi}{ar ho c_p u_*}$		
	$u_* = \sqrt{\frac{\tau}{\bar{ ho}}}$		
	$\theta_{v*} = -\frac{H_v}{\bar{\rho}c_p u_*}$		
Obukhov length	$L = \frac{\bar{\theta}_v}{\kappa a} \frac{u_*^2}{\theta_{v*}} = -\frac{\bar{\rho}c_p\bar{\theta}_v u_*^3}{\kappa a H_v}$		
Aerodynamische resisistance	$\theta_{v*} = -\frac{H_v}{\bar{\rho}c_p u_*}$ $L = \frac{\bar{\theta}_v}{\kappa g} \frac{u_*^2}{\theta_{v*}} = -\frac{\bar{\rho}c_p \bar{\theta}_v u_*^3}{\kappa g H_v}$ $r_{ax} = \int_{z_1}^{z_2} \frac{dz}{K_x}$		
	with visheorm:		
	$H = -\overline{\rho}c_{p}\frac{\overline{\theta}(z_{2}) - \overline{\theta}(z_{1})}{r_{ah}}$ $E = -\overline{\rho}\frac{\overline{q}(z_{2}) - \overline{q}(z_{1})}{r}$		
	$E = -\overline{\rho} \frac{\overline{q}(z_2) - \overline{q}(z_1)}{r_{ae}}$		
	for neutral conditions:		
	$r_{ m ae}=r_{ m ah}=r_{ m am}=rac{ln\left[rac{z_2}{z_1} ight]}{\kappa u_*} ext{ and } r_{ m ah}=rac{ln\left[rac{z_{ m e2}}{z_{ m e1}} ight] ln\left[rac{z_{ m u2}}{z_{ m u1}} ight]}{\kappa^2\left[\overline{u}(z_2)-\overline{u}(z_1) ight]}$		
	(κ =0.4, von Karman constant)		

TKE and TKE equation	$\overline{e} = \frac{1}{2} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right)$
	$\frac{d\overline{e}}{dt} = -\overline{u'w'}\frac{\partial\overline{u}}{\partial z} + g\frac{\overline{w'\theta_{v'}}}{\overline{\Omega}} - \varepsilon + \cdots$
Richardson numbers	$g = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$
	$Ri_f = \frac{g}{\overline{\theta_v}} \frac{\overline{w'\theta_v'}}{\overline{u'w'}} \frac{\partial \overline{u}}{\partial z}$
	$a \frac{\partial \overline{\theta_v}}{\partial x}$
	$Ri_{g} = \frac{g}{\overline{\theta_{v}}} \frac{\partial \overline{\theta_{v}}}{\partial z} \frac{\partial \overline{\theta_{v}}}{\left[\frac{\partial u}{\partial z}\right]^{2}} K_{h}$
	$\begin{bmatrix} \overline{\partial z} \end{bmatrix}$
	$Ri_f = \frac{K_h}{K_m} Ri_g$
Buoyancy flux	Turbulent flux (kinematic): $\overline{w'\theta_v'} = \overline{w'\theta'}(1+0.61\overline{q}) + 0.61\overline{\theta} \ \overline{w'q'}$ Surface flux (energy): $H_v = H(1+0.61\overline{q}) + 0.61c_p\overline{\theta}E$
Flux-gradient relationships	$\frac{\partial \overline{\theta}}{\partial z} \frac{\kappa z}{\theta_*} = \phi_h \left(\frac{z}{L}\right)$
relationships	4
	$\frac{\partial \overline{q} \kappa z}{\partial z q_*} = \phi_e \left(\frac{z}{L}\right)$
	$\frac{\partial \overline{u}}{\partial z} \frac{\kappa z}{u_*} = \phi_m \left(\frac{z}{L}\right)$
	$Ri_g = \frac{\phi_h}{\phi_m^2} \frac{Z}{L}$
	One can use:
	$\phi_h = \phi_e = \phi_m^2 = \left(1 - 16\frac{z}{L}\right)^{-1/2} (L < 0),$
	$\phi_h = \phi_e = \phi_m = \left(1 + 5\frac{z}{L}\right) (L > 0),$
	Then: $\frac{z}{L} = Ri_g$ (when $L < 0$), $\frac{z}{L} = \frac{Ri_g}{1 - 5Ri_g}$ (when $L > 0$)
	Neutral: $\frac{\partial \overline{\theta}}{\partial z} \frac{\kappa z}{\theta_*} = 1$, $\frac{\partial \overline{q}}{\partial z} \frac{\kappa z}{q_*} = 1$, $\frac{\partial \overline{u}}{\partial z} \frac{\kappa z}{u_*} = 1$
Integrated flux-gradient relationships	Neutral: $\frac{\partial \overline{\theta}}{\partial z} \frac{\kappa z}{\theta_*} = 1$, $\frac{\partial \overline{q}}{\partial z} \frac{\kappa z}{q_*} = 1$, $\frac{\partial \overline{u}}{\partial z} \frac{\kappa z}{u_*} = 1$ $\overline{u}(z_{u2}) - \overline{u}(z_{u1}) = \frac{u_*}{\kappa} \left[ln \left(\frac{z_{u2}}{z_{u1}} \right) - \Psi_m \left(\frac{z_{u2}}{L} \right) + \Psi_m \left(\frac{z_{u1}}{L} \right) \right]$
relationships	$\bar{\theta}(z_{\theta 2}) - \bar{\theta}(z_{\theta 1}) = \frac{\theta_*}{\theta_*} \left[ln \left(\frac{z_{\theta 2}}{z_{\theta 2}} \right) - \Psi_k \left(\frac{z_{\theta 2}}{z_{\theta 2}} \right) + \Psi_k \left(\frac{z_{\theta 1}}{z_{\theta 1}} \right) \right]$
	$\Psi_{m}\left(\frac{z}{L}\right) = 2\ln\left(\frac{1+x}{2}\right) + \ln\left(\frac{1+x^{2}}{2}\right) - 2\arctan(x) + \frac{\pi}{2}, \text{ with } x = \left(1 - 16\frac{z}{L}\right)^{\frac{1}{4}}$ for $\frac{z}{L} < 0$
	$\Psi_h\left(\frac{z}{L}\right) = 2\ln\left(\frac{1+x^2}{2}\right) \text{, with } x = \left(1-16\frac{z}{L}\right)^{\frac{1}{4}}$
	$\Psi_m\left(\frac{z}{L}\right) = \Psi_h\left(\frac{z}{L}\right) = -5\frac{z}{L} \text{ for } \frac{z}{L} > 0$
	Neutral: $u_* = \langle Z_{1/2} \rangle$
	$\overline{u}(z_{u2}) - \overline{u}(z_{u1}) = \frac{u_*}{\kappa} ln \left(\frac{z_{u2}}{z_{u1}}\right)$
	$\bar{\theta}(z_{\theta 2}) - \bar{\theta}(z_{\theta 1}) = \frac{\theta_*}{\kappa} ln\left(\frac{z_{\theta 2}}{z_{\theta 1}}\right)$
General equations for H and u^*	$H = \frac{-\overline{\rho}c_{p}\kappa^{2}\Delta\overline{\theta}\Delta\overline{u}}{\left[\ln\left(\frac{Z_{\theta2}}{Z_{\theta1}}\right) - \Psi_{h}\left(\frac{Z_{\theta2}}{L}\right) + \Psi_{h}\left(\frac{Z_{\theta1}}{L}\right)\right]\left[\ln\left(\frac{Z_{u2}}{Z_{u1}}\right) - \Psi_{m}\left(\frac{Z_{u2}}{L}\right) + \Psi_{m}\left(\frac{Z_{u1}}{L}\right)\right]}$
	$\left[\ln\left(\frac{z_{\theta 2}}{z_{\theta 1}}\right) - \Psi_h\left(\frac{z_{\theta 2}}{L}\right) + \Psi_h\left(\frac{z_{\theta 1}}{L}\right)\right] \left[\ln\left(\frac{z_{u2}}{z_{u1}}\right) - \Psi_m\left(\frac{z_{u2}}{L}\right) + \Psi_m\left(\frac{z_{u1}}{L}\right)\right]$
	$\kappa \Delta \overline{u}$
	$u_* = \frac{\kappa \Delta u}{\left[\ln\left(\frac{Z_{u2}}{Z_{u1}}\right) - \Psi_m\left(\frac{Z_{u2}}{L}\right) + \Psi_m\left(\frac{Z_{u1}}{L}\right)\right]}$

7.4 SOIL WATER FLOW

AA7	d0 1		
Warrilow model	$\frac{d\theta}{dt} = \frac{1}{D_r} [P - E(\theta) - D(\theta)]$		
	$E(\theta) = \beta_w(\theta)E_p \text{with} \beta_w = \begin{bmatrix} \frac{1}{\theta - \theta_w} & \text{for} & \theta_c < \theta < \theta_s \\ \frac{\theta_c - \theta_w}{\theta_c} & \text{for} & \theta_w < \theta < \theta_c \\ 0 & \text{for} & \theta < \theta_w \end{bmatrix}$		
	$D = k(\theta) = k_s \left(\frac{\theta - \theta_w}{\theta_s - \theta_w}\right)^n$		
Vapour pressure	$\ln\left(\frac{e}{e_{\text{sat}}}\right) = 7.5 \times 10^{-7} \text{ cm}^{-1}(h+\pi)$		
Effective conductivity	$\ln\left(\frac{e}{e_{\text{sat}}}\right) = 7.5 \times 10^{-7} \text{ cm}^{-1}(h+\pi)$ $k_{\text{eff}} = \frac{\sum_{j=1}^{N} L_j}{\sum_{j=1}^{N} \frac{L_j}{k_j}}$ $\frac{\partial \theta}{\partial t} = -\frac{\partial q}{\partial z} - S$		
Continuity eq.	$\frac{\partial \theta}{\partial t} = -\frac{\partial q}{\partial z} - S$		
Richards' equation	$\frac{\partial \theta}{\partial t} = C(h) \frac{\partial h}{\partial t} = \frac{\partial \left[k(h) \left(\frac{\partial h}{\partial z} + 1 \right) \right]}{\partial z} - S(z)$ $\theta(h) = \theta_r + \frac{\theta_s - \theta_r}{\left(1 + \log h \right)^n \frac{n-1}{n}}$		
Soil hydraulic functions	$\theta(h) = \theta_r + \frac{\theta_s - \theta_r}{\left(1 + \alpha h ^n\right)^{\frac{n-1}{n}}}$ $k(\theta) = k_s S_e^{\lambda} \left[1 - \left(1 - S_e^{\frac{n}{n-1}}\right)^{\frac{n-1}{n}} \right]^2$		
	$\begin{bmatrix} R(\theta) = R_s S_e^x \\ 1 - (1 - S_e^x) \end{bmatrix}$ with $S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}$		
Infiltration	Horton: $I = I_f + (I_0 - I_f)e^{-\beta t};$ $I_{\text{cum}} = I_f t + \frac{I_0 - I_f}{\beta} [1 - e^{-\beta t}]$		
	Green Ampt horizontal: $I_{\text{cum}} = \left[-2k_t h_f(\theta_t - \theta_i)\right]^{\frac{1}{2}} t^{\frac{1}{2}} = St^{\frac{1}{2}}$		
	Green Ampt vertical: $t = \frac{\theta_t - \theta_i}{k_t} \left[s_f + h_f \ln \left(\frac{s_f - h_f}{-h_f} \right) \right]$		
Capillary rise	$z_{c} = \frac{2\sigma\cos\varphi}{\rho gr}$ $Z = \int_{0}^{z} dz = -\int_{0}^{h} \frac{k(h)}{q + k(h)} dh$		
	$\int_0^{\infty} \int_0^{\infty} dz = \int_0^{\infty} q + k(h)^{ah}$		

7.5 SOLUTE TRANSPORT

Solute flux	$J = J_{dif} + J_{con} + J_{dis} = qC_l - \theta(D_{dif} + D_{dis}) \frac{\partial C_l}{\partial z}$
Mass balance	$\frac{\partial C_T}{\partial t} = -\frac{\partial J}{\partial z} - S_S$ $\frac{\partial}{\partial t} (\rho_b C_a + \theta C_l) = \frac{\partial}{\partial z} \left(\theta D_e \frac{\partial C_l}{\partial z} \right) - \frac{\partial}{\partial z} (q C_l) - S_S$
General transport equation	$\frac{\partial}{\partial t}(\rho_b C_a + \theta C_l) = \frac{\partial}{\partial z} \left(\theta D_e \frac{\partial C_l}{\partial z}\right) - \frac{\partial}{\partial z} (q C_l) - S_s$
Pulse breakthrough	$C(z,t) = \frac{-zC_0}{2\sqrt{\pi D_e t^3}} \exp\left(-\frac{(z-vt)^2}{4D_e t}\right)$
Retardation factor	$R = 1 + \rho_b S_d / \theta$
First order decay	$M(t) = M_0 e^{-\mu t}$
Salinization root zones	$C_l(z) = \frac{C_0}{1 + (L_f - 1)\frac{ z }{D_r}}$ $\frac{\bar{C}}{C_0} = \frac{1}{1 - L_f} \ln\left(\frac{1}{L_f}\right)$
Residence time in groundwater	177 7

7.6 PLANT TRANSPORT PROCESSES

Root water uptake (macroscopic)	$S_p(z) = \frac{L_{\text{root}}(z)}{\int_{-D_r}^{0} L_{\text{root}}(z) \partial z} T_p$		
	$S(z) = \alpha_{\text{rw}}(z) \ \alpha_{\text{rs}}(z) \ S_p(z) \ \text{ with } \ T_a = \int_{-D_T}^0 S(z) \partial z$		
Flow in vessels	$v = -\frac{r^2}{8\eta} \frac{\partial H_p}{\partial x}$		
Fluxes at stomate level	Transpiration: $E = -\rho \frac{q_e - q_i}{r_s}$ Photosynthesis: $A_n = -F_c = \rho \frac{q_{\rm ce} - q_{\rm ci}}{r_{\rm s,c}} = \rho \frac{q_{\rm ce} - q_{\rm ci}}{1.6r_s} = \frac{g_s}{1.6} \rho (q_{\rm ce} - q_{\rm ci})$ $DM_a = 10 \mu \frac{T_a}{D_a}$ $T_{\rm leaf} = T_a + \frac{r_b}{\rho c_p} (Q *_{\rm leaf} - L_v E_{\rm leaf})$		
Crop yield	$DM_a = 10\mu \frac{T_a}{D_a}$		
Leaf temperature	$T_{\text{leaf}} = T_a + \frac{r_b}{\rho c_p} (Q *_{\text{leaf}} - L_v E_{\text{leaf}})$		

7.7 COMBINATION METHODS

Energy balance method	$\beta \equiv \frac{H}{L_v E} = \frac{c_p}{L_v} \frac{\Delta \overline{\theta}}{\Delta \overline{q}} = \gamma \frac{\Delta \overline{\theta}}{\Delta \overline{e}}$ $H = \beta \frac{Q * - G}{1 + \beta}$ $Q * - G$
	$L_v E = \frac{1}{1+\beta}$

Penman or Penman- Monteith	$L_{v}E = \frac{s(Q^* - G) + \frac{\rho c_{p}}{r_{a}} \left[e_{\text{sat}}(\overline{T}_{a}) - \overline{e}_{a} \right]}{s + \gamma}$ $L_{v}E = \frac{s(Q^* - G) + \frac{\rho c_{p}}{r_{a}} \left[e_{\text{sat}}(\overline{T}_{a}) - \overline{e}_{a} \right]}{s + \gamma \left(1 + \frac{r_{c}}{r_{a}} \right)}$
Priestley-Taylor	$L_v E = \alpha_{\text{PT}} \frac{s}{s + \gamma} (Q^* - G)$ with $\alpha_{\text{PT}} \approx 1.26$
Makkink	$L_{\nu}E = 0.65 \frac{s}{s + \gamma} K^{\downarrow}$