



| Thema / Inhalt                                                                                                                                                                                                                                                                                                                                                                                | Methode                                                                                                                    | Zeit-<br>bedarf | Hausaufgaben |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|
| <ul> <li>1.Abend</li> <li>Sie können grundlegende UNIX-Befehle erklären und deren Bedeutung für die Python-Entwicklung beschreiben (K2).</li> <li>Sie können den Aufbau einer Entwicklungsumgebung für Python auf einem BYOD-Gerät erklären (K2).</li> </ul>                                                                                                                                  |                                                                                                                            |                 |              |  |  |
| Vorstellung (Wer bin ich? Problem-Based Learning)                                                                                                                                                                                                                                                                                                                                             | Vortrag                                                                                                                    | 20'             |              |  |  |
| EVA – Prinzip (Sensoren – Verarbeitung – Aktoren)                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            | 15'             |              |  |  |
| Installieren der Entwicklungsumgebung  Aufgabe 1 (GoAndReturn)  2 s gerade aus  Sound abspielen  Pixelgrafik anzeigen (Bild- 180° kehren  zs zurück  Verwendetes Material:  Sequenz von Objekten, statische Properties  Die 4 verschiedenen Motorklassen und ihre Properties  Bildschirm-Klasse (Bild-Bearbeiten, Pixelgrafik)  Sound-Klasse (Ton-Bearbeiten, MP3 konvertieren)  Timer-Klasse | Probieren, Vormachen,<br>Nachmachen mit theoreti-<br>schen kurzen Einschüben<br>Verschiedene Varianten<br>selber austesten | 15'<br>120'     |              |  |  |





| Thema / Inhalt                                                                                                                                                                                                                                                                                                                                                                                                                         | Methode                                                                      | Zeit-<br>bedarf | Hausaufgaben |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|--------------|--|
| <ul> <li>2.Abend</li> <li>Sie können einfache Python-Skripte schreiben, um Daten zu verarbeiten und Funktionen effizient einzusetzen (K3).</li> <li>Sie können API-Dokumentationen analysieren und daraus ableiten, wie externe Pakete in eigene Anwendungen integriert werden können (K4).</li> </ul>                                                                                                                                 |                                                                              |                 |              |  |
| <ul> <li>Aufgabe 2 (Sirene)</li> <li>Wechsel zwischen C# and G# (0.5s Intervall)</li> <li>Synchrones Blinken (rot) mit dem Tonwechsel</li> <li>Solange Taster gedrückt ON sonst OFF</li> </ul> Verwendetes Material: <ul> <li>Sound-Klasse (Ton abspeilen)</li> </ul>                                                                                                                                                                  | Probieren, Vormachen,<br>Nachmachen mit theoreti-<br>schen kurzen Einschüben | 60'             |              |  |
| <ul> <li>LED-Klasse</li> <li>Timer-Klasse mit Taster Event</li> <li>Loop Block</li> <li>Multithreading</li> </ul> Aufgabe 3 (Staubsauger Roboter) <ul> <li>Fahrzeug so programmieren, dass es Hindernissen ausweicht</li> </ul>                                                                                                                                                                                                        | Probieren, Vormachen,<br>Nachmachen mit theoreti-<br>schen kurzen Einschüben | 140'            |              |  |
| <ol> <li>Smiley traurig, wenn Taster gedrückt sonst lachend</li> <li>Wenn Smiley traurig, Fz gerade aus, sonst Motoren stopp</li> <li>Anstelle Taster, Distanz-Sensor verwenden</li> <li>Anstelle stoppen, ausweichen</li> <li>⇒ Wettkampf in Arena</li> </ol> Verwendetes Material: <ul> <li>Verzweigung innerhalb Infinit-Loop (Grundstruktur für Steuerung)</li> <li>Verzweigung durch Touch- und Distanz-Sensor steuern</li> </ul> |                                                                              |                 |              |  |





| Thema / Inhalt                                                                                                                                                                                                                                                                                                                                         | Methode                                                                      | Zeit-<br>bedarf | Hausaufgaben             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|--------------------------|--|--|
| <ul> <li>3.Abend</li> <li>Sie können verschiedenen Containers für Python kritisch vergleichen und Empfehlungen aussprechen (K5).</li> <li>Sie können JSON- und XML-Daten verarbeiten (K3).</li> </ul>                                                                                                                                                  |                                                                              |                 |                          |  |  |
| Aufgabe 4 (Bremskurve) Fahrzeug so programmieren, dass es mit 100% Leistung gerade aus fährt bis ein Hindernis näher als 50cm auftaucht. Dann abbremsen, so dass das Fz 30cm vor dem Hindernis stehen bleibt.  1. Lösungsversuch mit verschachtelten if-then-else                                                                                      | Probieren, Vormachen,<br>Nachmachen mit theoreti-<br>schen kurzen Einschüben | 60'             |                          |  |  |
| <ul> <li>2. Lösung mit linearer Bremskurve <ul> <li>a. Mathematische Herleitung der Distanz-Leistungskurve</li> <li>b. Implementation des mathematischen Modell</li> <li>c. Testen der Lösung</li> </ul> </li> <li>Verwendetes Material: <ul> <li>Mathe-Klasse</li> </ul> </li> <li>Datentypes</li> <li>Lineare Funktion (Math. Herleitung)</li> </ul> |                                                                              | 140'            | Übungen lineare Funktion |  |  |





| Thema / Inhalt                                                                                                                                   | Methode                                             | Zeit-<br>bedarf | Hausaufgaben |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|--------------|--|--|
| <ul> <li>4.Abend</li> <li>Sie können die Funktionen des Moduls Sense_Hat anhand der API Dokumentation richtig anwenden (K4).</li> </ul>          |                                                     |                 |              |  |  |
| Aufgabe 4a (Bremskurve, CHIP-tuning)                                                                                                             | Probieren, Vormachen,                               | 90'             |              |  |  |
| Das Programm so erweitern, dass die Parameter (Steigung, y-Achsenabschnitt) aus den beiden Stützpunkten vom Steuerungsprogramm berechnet werden. | Nachmachen mit theoreti-<br>schen kurzen Einschüben |                 |              |  |  |
| Eigener Block <b>LineareFunktion</b> kreieren und in Applikation verwenden und testen                                                            |                                                     | 110'            |              |  |  |
| Verwendetes Material:  Variablen definieren / schreiben / lesen  Datentypes  Eigeneblocks  Interface design  Implementation                      |                                                     |                 |              |  |  |





| Thema / Inhalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methode                                                                      | Zeit-<br>bedarf | Hausaufgaben   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|----------------|
| 5.Abend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                 |                |
| Sie können die Architektur einer Python-Anwendung analysie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ren, um Verbesserungspote                                                    | nziale zu       | erkennen (K4). |
| Sie können verschiedene Programmieransätze bewerten und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | deren Effizienz vergleichen                                                  | (K5).           |                |
| Sie können JSON Responses von REST-Calls für eine Steue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rung auswerten. (K4).                                                        |                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                 |                |
| Aufgabe 5 (Gaspedal und Lenkrad)  Das Fahrzeug über eine kabelgebundene RC steuern. Dabei werden zwei Drehregler verwendet. Die jeweiligen Drehwinkel werden mit LinearenFunktion-Objekten in Steuerung und Leistung umgerechnet. Mit Mittlerer-Taste kann Not-Stop (Leistung und Steuerung 0%) gemacht werden. Weiter sollen die Parameter auf der Anzeige angezeigt werden. Falls Rückwärts gefahren wird, Warnhupe und Warnblinker ON  Verwendetes Material:  Motoren als Drehregler  Stein-Tasten Klasse  Text-Ausgabe  String-Conncationation | Probieren, Vormachen,<br>Nachmachen mit theoreti-<br>schen kurzen Einschüben | 200'            |                |





| Thema / Inhalt                                                                                                                                                                                                                      | Methode                                                                      | Zeit-<br>bedarf | Hausaufgaben |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|--------------|--|--|
| <ul> <li>6.Abend</li> <li>Sie können REST-Services in Python aufrufen und deren Respons-Daten (JSON, XML,) in einer Anwendung verarbeiten (K3).</li> <li>Sie können Filehandling-Mechanismen anwenden und bewerten (K5).</li> </ul> |                                                                              |                 |              |  |  |
| Aufgabe 6 (BT Connection)  Pairen Sie zwei EV3 und senden die verschiedenen Stein-Tasten als String zum Empfänger. Der Empfänger zeigt die Strings an.                                                                              | Probieren, Vormachen,<br>Nachmachen mit theoreti-<br>schen kurzen Einschüben | 60'             |              |  |  |
| Erweitern Sie das Programm, so dass auch UP, DOWN, vom Empfänger gesagt wird.                                                                                                                                                       |                                                                              | 40'             |              |  |  |
| Senden Sie einen Zahlenwert (vom Drehregler, Lagesensor,) und zeigen Sie diesen Wert auf der Empfangsseite an.                                                                                                                      |                                                                              | 40'             |              |  |  |
| Erweitern Sie das Programm so, dass 2 Zahlenwerte und die Steintaste gesendet werden können und auf der Empfängerseite angezeigt werden.                                                                                            |                                                                              | 60'             |              |  |  |
| Verwendetes Material:  Bluetooth Meldungen senden und empfangen  Case-Switch Statement                                                                                                                                              |                                                                              |                 |              |  |  |





| Thema / Inhalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Methode                                                                      | Zeit-<br>bedarf | Hausaufgaben |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|--------------|--|--|
| <ul> <li>7.Abend</li> <li>Sie können die Vor- und Nachteile objektorientierter Programmierung in Python bewerten (K5).</li> <li>Sie können eine eigene Klasse designen und diese modular in einer Anwendung nutzen (K3).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                 |              |  |  |
| Aufgabe 7 (RC-Car)  Splitten Sie das Programm von Aufgabe 5 in zwei Teile:  a) Fz empfängt Lenkung und Leistung über BT b) Eine Remote-Conrol (RC) sendet die Leistung und Lenkungsdaten via BT an Fz. Die Parameter werden über zwei Drehregler an der RC berechnet (mit lin. Funktion für die Empfindlichkeit). Die Lekung und Leistungsdaten werden auf dem Display der RC angezeigt.  Erweitern Sie beide Teile wie folgt:  a) Fz verhindert selbst, dass es irgendwo nach vorne einschiessen kann. b) RC kann die Parameter ebenfalls über Lagesensoren berechnen und senden. Die Schnittstelle darf nicht ändern (Das Fz merkt nicht, von welchen Sensoren die Lenkung und Leistung kommen)  Verwendetes Material: • Test-Driven approach • Cleancode Regeln • Schnittstellenvertrag • SW Entwicklung im Team | Probieren, Vormachen,<br>Nachmachen mit theoreti-<br>schen kurzen Einschüben | 100'            |              |  |  |





| Thema / Inhalt |  | Zeit-<br>bedarf | Hausaufgaben |
|----------------|--|-----------------|--------------|
|----------------|--|-----------------|--------------|

## 8.Abend

- Sie können ein Konzept für die Arbeitsteilung in einem Python-Projekt entwickeln und umsetzen (K4).
- Sie können die Effizienz und Sicherheit verschiedener Methoden für den Zugriff auf Raspberry Pi-Systeme beurteilen (K5).





| Onterricitispian                                                                                                                                   | 1                                                                              |                 | waiter Nothini |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|----------------|
| Thema / Inhalt                                                                                                                                     | Methode                                                                        | Zeit-<br>bedarf | Hausaufgaben   |
| Leistungsnachweis (Modullernzielkontrolle MILZ): Eine Aufgabe unter Zeitdruck gemäss Spezifikationen nach dem Test-Driven Approach implementieren. | Selbstständiges program-<br>mieren und individuellen<br>Review durch Dozenten. | 200'            |                |
|                                                                                                                                                    |                                                                                |                 |                |
|                                                                                                                                                    |                                                                                |                 |                |





| Thema / Inhalt                                                                                                                                                                                                                                             | Methode                            | Zeit-<br>bedarf | Hausaufgaben   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|----------------|--|--|
| 9.Abend                                                                                                                                                                                                                                                    | 9.Abend                            |                 |                |  |  |
| Sie können Bilder und PDFs entwickeln (K4).                                                                                                                                                                                                                |                                    |                 |                |  |  |
| Sie können unterschiedliche Automatisierungsansätze bewert                                                                                                                                                                                                 | ten und für spezifische Szer       | arien ada       | aptieren (K5). |  |  |
| Fachgespräche über MLZ                                                                                                                                                                                                                                     | Einzelgespräche gemäss<br>Zeitplan |                 |                |  |  |
| Aufgabe 8 (Linienfolger digital)                                                                                                                                                                                                                           | Selbstorganisiertes Ler-           | 200'            |                |  |  |
| Programmieren Sie das Fz so, dass es einer <b>zweifarbigen</b> Linie (F1-Strecke Monza) folgen kann. Sobald das Fz die Startlinie überfährt, beginnt die Zeit zu laufen (wird angezeigt auf dem Display) und stoppet sobald die Ziellinie überfahren wird. | nen (SOL)                          |                 |                |  |  |
| Verwendetes Material:  • Farb-Sensor Timer-Block (Stop-Uhr)                                                                                                                                                                                                |                                    |                 |                |  |  |
| Aufgabe 9 (Linienfolger analog)                                                                                                                                                                                                                            |                                    |                 |                |  |  |
| Programmieren Sie das Fz so, dass es einer <b>einfarbigen</b> Linie (F1-Strecke Monza) folgen kann. Sobald das Fz die Startlinie überfährt, beginnt die Zeit zu laufen (wird angezeigt auf dem Display) und stoppet sobald die Ziellinie überfahren wird.  |                                    |                 |                |  |  |
| Verwendetes Material:<br>Helligkeits-Sensor                                                                                                                                                                                                                |                                    |                 |                |  |  |

## **Objektorientiertes Programmieren mit Lego-Mindstorm**



## Unterrichtsplan Walter Rothlin

Bemerkungen:

- Jeder Abend dauert 4 Lektionen.
- Der Unterrichtsplan kann bei Bedarf dem vorhandenen Wissen der Klasse angepasst werden.
- Die Studierenden lösen die Übungen auf ihren privaten Notebooks.
- Der Leistungsnachweis (MLZ) am 8. Abend ist in Einzelarbeit in der vorgegebenen Zeit zu erstellen