Package 'errint'

January 18, 2016

Type Package
Title Build Error Intervals
Version 0.1
Date 2016-01-15
Author Jesus Prada [aut,cre]
Maintainer Jesus Prada < jesus.prada@estudiante.uam.es>
Description Build and analyze error intervals for a particular model predictions assuming different distributions for noise in the data.
Depends VGAM, rootSolve
License GPL-2
LazyData TRUE
BuildVignettes TRUE
RoxygenNote 5.0.1
<pre>URL http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-18 22:25:08
2010 01 10 2212000
R topics documented:
acc_intervals 2 best_distribution 3 df_intervals 4 df_intervals.default 6 error_interval 5 error_interval.default 6 int_lap 9 measure 12 measure.default 13 print.df_intervals 14

2 acc_intervals

	print.error_interval
	print.measure
	print.summary.error_interval
	print.summary.measure
	p_laplace
	sort_distributions
	summary.error_interval
	summary.measure
T	2
Index	2^2

acc_intervals

Accuracy of Error intervals

Description

int_intervals computes the real accuracy of a given error intervals for a particular set of errors and a particular error function.

Usage

```
acc_intervals(interv, errors, f = function(x, y) \{ abs(x - y) \}, tol = 10^-8)
```

Arguments

interv	error interval.
errors	set of errors.
f	error function to be used to compute error between real x (interv) and predicted y (errors) values. See also 'Details'.
tol	used to normalize residual values to $(0,1)$ when beta is the assumed distribution. See also 'Details'.

Details

f must be a function that takes two arguments, x and y, and return a numeric value.

The formula used to normalize residual values to (0,1) when a Beta distribution is assumed is $\frac{|\phi|}{max|\phi|+tol}$.

Value

Returns an object of class c("measure", "list") with information of the interval accuracy.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

best_distribution 3

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

measure error_interval

Examples

```
interv<-int_gau(rnorm(1000),0.1)
acc_intervals(interv,rnorm(1000))
acc_intervals(interv,rnorm(1000),function(x,y){x-y})</pre>
```

best_distribution

Distribution with Best Error Intervals

Description

best_distribution computes the distribution assumption that gives error intervals with the lower accuracy error for a given set of residuals.

Usage

```
best_distribution(phi, errors, dists = c("n", "nm", "1", "lm", "w", "b"), ...)
```

Arguments

phi	residual values used to compute the error interval.
errors	set of real errors corresponding to the predictions of a particular model.
dists	character vector with the distribution assumptions to test. See also 'Details'.
	additional arguments to be passed to functions error_interval and acc_intervals.

Details

Allowed distribution assumptions are:

- "n": Zero-mu Gaussian
- "nm": General Gaussian
- "1": Zero-mu Laplace
- "lm": General Laplace
- "b": Beta
- "w": Weibull

df_intervals

Value

Returns an object of class c("df_intervals", "data.frame") with information of the distribution assumption with lower accuracy error.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577.

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

df_intervals error_interval acc_intervals

Examples

```
best_distribution(rnorm(10000),rnorm(10000),dists=c("n","b"))
best_distribution(rnorm(10000),rnorm(10000))
```

df_intervals

Data Frames of Intervals

Description

```
df_intervals creates an object of class c("df_intervals", "data.frame").
```

as.df_intervals attempts to coerce its argument x into an object of class c("df_intervals", class(x)). If this is not possible x is returned unchanged.

is.df_intervals returns TRUE if x is an R object with "df_intervals" as one of its classes. It returns FALSE otherwise.

Usage

```
df_intervals(distributions, errs)
as.df_intervals(x)
is.df_intervals(x)
```

df_intervals 5

Arguments

distributions vector containing the names of the distribution correspondind to each error.

vector of errors associated to intervals built under a particular distribution assumption indicated by 'distributions'.

x an R object.

Value

df_intervals returns an object of class c("df_intervals", "data.frame") with information regarding the error of intervals built under different distribution assumptions.

as. $df_{intervals}$ returns an object of class $c("df_{intervals}", class(x))$ with information contained in x if possible. Returns x otherwise.

is.df_intervals returns TRUE if x is an R object with "df_intervals" as one of its classes. FALSE otherwise.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

```
df_intervals("l",0.1)

df_intervals(c("l","lm","n","nm","b","w"),rep(0.1,6))

df<-data.frame(distribution=rnorm(1000),error=rnorm(1000))
as.df_intervals(df)

v<-c("a","b")
as.df_intervals(v)

df<-data.frame(distribution=rnorm(1000),error=rnorm(1000))
is.df_intervals(df)
res<-as.df_intervals(df)
is.df_intervals(res)</pre>
```

6 df_intervals.default

```
df_intervals.default Data Frames of Intervals
```

Description

```
df_intervals creates an object of class c("df_intervals", "data.frame").
```

Usage

```
## Default S3 method:
df_intervals(distributions, errs)
```

Arguments

distributions vector containing the names of the distribution correspondind to each error.

errs vector of errors associated to intervals built under a particular distribution as-

sumption indicated by 'distributions'.

Value

Returns an object of class c("df_intervals", "data.frame") with information regarding the error of intervals built under different distribution assumptions.

Author(s)

```
Jesus Prada, <jesus.prada@estudiante.uam.es>
```

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

```
df_intervals("l",0.1)
df_intervals(c("l","lm","n","nm","b","w"),rep(0.1,6))
```

error_interval 7

Description

```
error_interval creates an object of class c("error_interval", "list").
```

as $.error_interval$ attempts to coerce its argument x into an object of class $c("error_interval", class(x))$. If this is not possible x is returned unchanged.

is.error_interval returns TRUE if x is an R object with "error_interval" as one of its classes. It returns FALSE otherwise.

Usage

```
error_interval(phi, s = 0.05, dist = "n", tol = 10^-6, ...)
as.error_interval(x)
is.error_interval(x)
```

Arguments

phi	a vector with residual values used to compute the error interval.
S	confidence level, e,g. s=0.05 for the standard 95 percent confidence interval.
dist	assumed distribution for the noise in the data.
tol	used to normalize residual values to $(0,1)$ when beta is the assumed distribution. The formula used is $abs(phi)/(max(abs(phi))+tol)$.
•••	additional arguments to be passed to the low level error_interval building functions (see below).
x	an R object.

Value

error_interval returns an object of class c("error_interval","list") with information regarding the error intervals built.

as $.error_interval$ returns an object of class $c("error_interval", class(x))$ with information contained in x if possible. Returns x otherwise.

is.error_intervalreturns TRUE if x is an R object with "error_interval" as one of its classes. FALSE otherwise.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

8 error_interval.default

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

Examples

```
error_interval(rnorm(100))
error_interval(rnorm(100), s=0.1, dist="lm")

l<-list(min=-1, max=1, err=0.05, s=0.1, dist="n", phi=rnorm(1000))
as.error_interval(l)

v<-c("a","b")
as.error_interval(v)

l<-list(min=-1, max=1, err=0.05, s=0.1, dist="n", phi=rnorm(1000))
is.error_interval(l)
res<-as.error_interval(l)
is.error_interval(res)</pre>
```

```
error_interval.default
```

Error Intervals

Description

```
error_interval.default creates an object of class c("error_interval", "list").
```

Usage

```
## Default S3 method:
error_interval(phi, s = 0.05, dist = "n", tol = 10^-6,
...)
```

Arguments

phi a vector with residual values used to compute the error interval.

s confidence level, e,g. s=0.05 for the standard 95 percent confidence interval.

dist assumed distribution for the noise in the data.

int_lap 9

tol used to normalize residual values to (0,1) when beta is the assumed distribution.

The formula used is abs(phi)/(max(abs(phi))+tol).

... additional arguments to be passed to the low level error_interval building func-

tions (see below).

Value

Returns an object of class c("error_interval", "list") with information regarding the error intervals built.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

Examples

```
error_interval(rnorm(100))
error_interval(rnorm(100),s=0.1,dist="lm")
```

int_lap

Building Error Intervals

Description

int_lap computes the error interval of a set of residuals assuming a Laplace distribution with zero location for the noise.

int_gau computes the error interval of a set of residuals assuming a Gaussian distribution with zero mean for the noise.

int_lap_mu computes the error interval of a set of residuals assuming a Laplace distribution.

int_gau_mu computes the error interval of a set of residuals assuming a Gaussian distribution.

int_beta computes the error interval of a set of residuals assuming a Beta distribution.

int_weibull computes the error interval of a set of residuals assuming a Weibull distribution.

See also 'Details'.

int_lap

Usage

```
int_lap(phi, s)
int_gau(phi, s, ps = 0, threshold = 10^-2, upper = 10^6)
int_lap_mu(phi, s, ps = median(phi, na.rm = T), threshold = 10^-2,
    upper = 10^6)
int_gau_mu(phi, s, ps = mean(phi, na.rm = T), threshold = 10^-2,
    upper = 10^6)
int_beta(phi, s, ps = 10^-4, threshold = 10^-4, upper = 1,
    m1 = mean(phi, na.rm = T), m2 = mean(phi^2, na.rm = T), alpha_0 = (m1 * (m1 - m2))/(m2 - m1^2), beta_0 = (alpha_0 * (1 - m1)/m1))
int_weibull(phi, s, ps = 10^-4, threshold = 10^-2, upper = 10^6,
    k_0 = 1)
```

Arguments

phi	residual values used to compute the error interval.
S	confidence level, e,g. s=0.05 for the standard 95 percent confidence interval.
ps	minimum value to search for solution of the integral equation to solve. See also 'Details'.
threshold	step size to increase ps after each iterarion. See also 'Details'.
upper	maximum value to search for solution of the integral equation to solve. See also 'Details'.
m1	first moment of the residuals. Used to compute alpha_0.
m2	second moment of the residuals. Used to compute beta_0.
alpha_0	initial value for Newton-Raphson method for the parameter $\alpha.$ See also 'Details' and multiroot.
beta_0	initial value for Newton-Raphson method for the parameter $\beta.$ See also 'Details' and multiroot.
k_0	initial value for Newton-Raphson method for the parameter $\kappa.$ See also 'Details' and multiroot.

Details

For the Zero- μ Laplace distribution the value of the corresponding integral equation has a closed solution of the form $ps=-\sigma\log 2s$.

For the other distributions, starting with the initial value of ps passed as argument, the value, integral, of the corresponding integral expression is computed (see also 'References' for an indepth explanation of this integral expression). If integral is smaller than 1-s then ps is increased by a step size of threshold value and integral is recomputed. If integral is greater or equal than 0 or if ps gets bigger than upper, the loop stops and the last value of ps will be its final value.

int_lap 11

In addition, for the Beta distribution values of parameters α and β are estimated using Newton-Raphson method, and for the Weibull distribution value of parameter κ is estimated using Newton-Raphson method and then estimated value of λ is computed using a closed form that depends on κ .

See also 'References'.

Value

Returns an object of class c("error_interval", "list") with information of the corresponding error interval.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

```
error_interval
p_laplace
p_gaussian
p_beta
p_weibull
multiroot
```

```
int_lap(rnorm(100),0.1)
int_lap(rbeta(100,0.1,0.2),0.6)

int_gau(rnorm(100),0.1)
int_gau(rnorm(100),0.1,0.1,10^-3,10^2)

int_lap_mu(rnorm(100),0.1)
int_lap_mu(rnorm(100),0.1,0.1,10^-3,10^2)

int_gau_mu(rnorm(100),0.1)
```

12 measure

```
int_gau_mu(rnorm(100),0.1,0.1,10^-3,10^2)
int_beta(runif(100,0,0.99),0.1)
int_beta(runif(100,0,0.99),0.1,alpha_0=1,beta_0=1)
int_weibull(abs(rnorm(100)),0.1)
int_weibull(abs(rnorm(100)),0.1,k_0=2)
```

measure

Measures

Description

measure creates an object of class c("measure", "list").

as .measure attempts to coerce its argument x into an object of class c("measure", class(x)). If this is not possible x is returned unchanged.

is measure returns TRUE if x is an R object with "measure" as one of its classes. It returns FALSE otherwise.

Usage

```
measure(s, acc, f = function(x, y) { abs(x - y) })
as.measure(x)
is.measure(x)
```

Arguments

s confidence level, e,g. s=0.05 for the standard 95 percent confidence interval.

acc accuracy achieved by error intervals.

f function used to compute error of intervals. See also 'Details'.

x an R object.

Value

measure returns an object of class c("measure", "list") with information regarding the error of a set of intervals.

as.measure returns an object of class c("measure", class(x)) with information contained in x if possible. Returns x otherwise.

is .measure returns TRUE if x is an R object with "measure" as one of its classes. FALSE otherwise.

measure.default 13

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577.

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

Examples

```
measure(0.1,0.7)
measure(0.1,0.7,function(x,y){y-x})

l<-list(s=0.1,acc=0.78,f=function(x,y){abs(x-y)},err=0.02)
as.measure(1)

v<-c("a","b")
as.measure(v)

l<-list(s=0.1,acc=0.78,f=function(x,y){abs(x-y)},err=0.02)
is.measure(1)
res<-as.measure(1)
is.measure(res)</pre>
```

measure.default

Measure

Description

```
measure creates an object of class c("measure", "list").
```

Usage

```
## Default S3 method:
measure(s, acc, f = function(x, y) { abs(x - y) })
```

Arguments

s confidence level, e,g. s=0.05 for the standard 95 percent confidence interval.

acc accuracy achieved by error intervals.

f function used to compute error of intervals. See also 'Details'.

print.df_intervals

Value

Returns an object of class c("measure", "list") with information regarding the error of a set of intervals.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

Examples

```
measure(0.1,0.7) measure(0.1,0.7,function(x,y)\{y-x\})
```

print.df_intervals

Printing Data Frames of Intervals

Description

```
print objects of class df_interval.
```

Usage

```
## S3 method for class 'df_intervals'
print(x, ...)
```

Arguments

```
x object of class df_interval to be printed.
```

... optional arguments.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

print.error_interval 15

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

```
df intervals
```

Examples

```
res<-df_intervals(c("l","lm","n","nm","b","w"),rep(0.1,6))
print(res)</pre>
```

```
print.error_interval Printing Error Intervals
```

Description

```
print objects of class error_interval.
```

Usage

```
## S3 method for class 'error_interval'
print(x, ...)
```

Arguments

x object of class error_interval to be printed.

... optional arguments.

Author(s)

```
Jesus Prada, <jesus.prada@estudiante.uam.es>
```

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577.

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

print.measure

See Also

```
error_interval
```

Examples

```
res<-error_interval(rnorm(100))
print(res)</pre>
```

print.measure

Printing Measures

Description

print objects of class measure.

Usage

```
## S3 method for class 'measure'
print(x, ...)
```

Arguments

x object of class measure to be printed.

... optional arguments.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

measure

```
res<-measure(0.1,0.7)
print(res)</pre>
```

```
print.summary.error_interval
```

Printing Error Intervals Summaries

Description

print objects of class summary.error_interval.

Usage

```
## S3 method for class 'summary.error_interval' print(x, ...)
```

Arguments

- x object of class summary.error_interval to be printed.
- ... optional arguments.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577.

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

```
summary error_interval
```

```
res<-error_interval(rnorm(100))
summary(res)</pre>
```

print.summary.measure

print.summary.measure Printing Measures Summaries

Description

print objects of class summary.measure.

Usage

```
## S3 method for class 'summary.measure' print(x, ...)
```

Arguments

x object of class summary.measure to be printed.

... optional arguments.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

summary measure

```
res<-measure(0.1,0.7)
summary(res)</pre>
```

p_laplace 19

Probability Density Functions

Description

p_laplace computes the probability density function of a random variable that has a Laplace distribution with parameters μ and σ .

p_gaussian computes the probability density function of a random variable that has a Gaussian distribution with parameters μ and σ^2 .

p_beta computes the probability density function of a random variable that has a Beta distribution with parameters α and β .

p_weibull computes the probability density function of a random variable that has a Weibull distribution with parameters κ and λ .

Usage

```
p_laplace(x, mu = 0, sigma = 1)
p_gaussian(x, mu = 0, sigma_cuad = 1)
p_beta(x, alpha = 1, beta = 1)
p_weibull(x, k = 1, lambda = 1)
```

Arguments

X	vector of points which values we want to compute.
mu	location or mean parameter of the Laplace or Gaussian distribution, respectively.
sigma	scale parameter of the Laplace distribution.
sigma_cuad	variance parameter of the Gaussian distribution.
alpha	shape1 parameter of the Beta distribution.
beta	shape2 parameter of the Beta distribution.
k	shape parameter of the Weibull distribution.
lambda	scale parameter of the Weibull distribution.

Value

Returns a numeric object corresponding to the value of the probability density function for the given x and distribution parameters.

Author(s)

```
Jesus Prada, <jesus.prada@estudiante.uam.es>
```

20 sort_distributions

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

dlaplace dnorm dbeta dweibull

Examples

```
p_laplace(0.3)
p_laplace(0.3,mu=0.35,sigma=0.2)

p_gaussian(0.3)
p_gaussian(0.3,mu=0.35,sigma_cuad=0.2)

p_beta(0.3)
p_beta(0.3,alpha=0.35,beta=0.2)

p_weibull(0.3)
p_weibull(0.3,k=0.35,lambda=0.2)
```

 $\verb"sort_distributions"$

Sort Distributions by Better Error Intervals

Description

sort_distributions orders a given set of distribution assumptions in order of intervals accuracy error in ascending or descending order.

Usage

```
sort_distributions(phi, errors, dists = c("n", "nm", "l", "lm", "w", "b"), decreasing = FALSE, ...)
```

sort_distributions 21

Arguments

phi	residual values used to compute the error interval.
errors	set of real errors corresponding to the predictions of a particular model.
dists	character vector with the distribution assumptions to test. See also 'Details'.
decreasing	logical, indicating whether or not distributions should be ordered by decreasing accuracy error.
	additional arguments to be passed to functions error_interval and acc_intervals.

Details

Allowed distribution assumptions are:

"n": Zero-mu Gaussian
"nm": General Gaussian
"l": Zero-mu Laplace
"lm": General Laplace

"b": Beta "w": Weibull

Value

Returns an object of class c("df_intervals", "data.frame") with information of the distribution assumptions ordered by accuracy error.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

df_intervals error_interval acc_intervals order

```
sort_distributions(rnorm(10000),rnorm(10000),dists=c("n","b"))
sort_distributions(rnorm(10000),rnorm(10000),decreasing=TRUE)
```

```
summary.error_interval
```

Error Intervals Summaries

Description

summary produces summaries for objects of class error_interval.

Usage

```
## S3 method for class 'error_interval'
summary(object, ...)
```

Arguments

```
object of class error_interval to be printed.
... optional arguments.
```

Value

Object of class $c("summary.error_interval","list")$ corresponding to the summary of x.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

```
error_interval
```

```
res<-error_interval(rnorm(100))
summary(res)</pre>
```

summary.measure 23

summary.measure

Measures Summaries

Description

summary produces summaries for objects of class measure.

Usage

```
## S3 method for class 'measure'
summary(object, ...)
```

Arguments

object of class measure to be printed.
... optional arguments.

Value

Object of class c("summary.measure", "list") corresponding to the summary of x.

Author(s)

Jesus Prada, <jesus.prada@estudiante.uam.es>

References

Link to the scientific paper

Prada, Jesus, and Jose Ramon Dorronsoro. "SVRs and Uncertainty Estimates in Wind Energy Prediction." Advances in Computational Intelligence. Springer International Publishing, 2015. 564-577,

with theoretical background for this package is provided below.

```
http://link.springer.com/chapter/10.1007/978-3-319-19222-2_47
```

See Also

measure

```
res<-measure(0.1,0.7)
summary(res)</pre>
```

Index

```
acc_intervals, 2, 4, 21
as.df_intervals(df_intervals),4
as.error_interval (error_interval), 7
as.measure (measure), 12
best_distribution, 3
                                                 summary, 17, 18
dbeta, 20
df_intervals, 4, 4, 15, 21
df_intervals.default,6
dlaplace, 20
dnorm, 20
dweibull, 20
error_interval, 3, 4, 7, 11, 16, 17, 21, 22
error_interval.default,8
int_beta(int_lap), 9
int_gau (int_lap), 9
int_gau_mu (int_lap), 9
int_lap, 9
int_lap_mu (int_lap), 9
int_weibull(int_lap), 9
is.df_intervals(df_intervals), 4
is.error_interval (error_interval), 7
is.measure (measure), 12
measure, 3, 12, 16, 18, 23
measure.default, 13
multiroot, 10, 11
order, 21
p_beta, 11
p_beta (p_laplace), 19
p_gaussian, 11
p_gaussian (p_laplace), 19
p_laplace, 11, 19
p_weibull, 11
p_weibull (p_laplace), 19
print.df_intervals, 14
```

```
print.error_interval, 15
print.measure, 16
print.summary.error_interval, 17
print.summary.measure, 18
sort_distributions, 20
summary, 17, 18
summary.error_interval, 22
summary.measure, 23
```