Machine learning and physical modelling-2

julien.brajard@nersc.no October 2019

NERSC https://github.com/brajard/MAT330

Table of contents

- 1. Steps of a machine learning process
- 2. A standard Machine learning model: Random Forests
- 3. Neural Networks
- 4. A quick typology of few neural nets

Steps of a machine learning process

Collect data

Design model

In summary

From one dataset, 3 sub-datasets have to be extracted:

- · A training dataset
- A validation dataset

Can be done iteratively in a cross-validation procedure. Some parameters of the model (e.g. polynomial order in a polynomial regression) were determined from the validation dataset.

• A test dataset (independent from the two other) to estimate the final performance of the model.

A standard Machine learning model:

Random Forests

A decision tree

CRIM

NOX

RM DIS

LSTAT

Predict house price (in \$1000's) from 13 features:

per capita crime rate by town
nitric oxides concentration
average number of rooms per dwelling
distance to employment centres
lower status of the population

Uni-variate example

Uni-variate example

Uni-variate example

From tree to forest

Disadvantages of regression tree:

· Can overfit the data

From tree to forest

Disadvantages of regression tree:

· Can overfit the data

One extension of Regression Tree: Random Forest

Results on the univariate experiment

Prediction of Randoms trees

Results on the univariate experiment

Prediction of a Random Forest

Some key parameters

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestRegressor(n_estimators=n, max_features=
    maxf, min_samples_split=min_split,...)
```

• n_estimators: number of trees (generally the larger is the better)

Some key parameters

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestRegressor(n_estimators=n, max_features=
    maxf, min_samples_split=min_split,...)
```

- n_estimators: number of trees (generally the larger is the better)
- max_features: number of features to consider at each split. The default number is the total number of features.
 A larger value makes provides a smaller bias (accuracy) but a bigger variance (risk of overfitting)

Some key parameters

```
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestRegressor(n_estimators=n, max_features=
    maxf, min_samples_split=min_split,...)
```

- n_estimators: number of trees (generally the larger is the better)
- max_features: number of features to consider at each split. The default number is the total number of features.
 A larger value makes provides a smaller bias (accuracy) but a bigger variance (risk of overfitting)
- min_samples_fit: number of features to consider at each split. The minimum value of 2 means that the tree is fully developed (small bias but great variance).

Feature importance

```
rf = RandomForestRegressor(n_estimators=1000,
    max_features=10,random_state=10)
rf.fit(X,y)
importances = rf.feature_importances_
```

Indicates the impact of a feature in predicting the target.

per capita crime rate by town
nitric oxides concentration
average number of rooms per
dwelling
distance to employment centres
lower status of the population

 Parameters that are not optimized during the training are called hyperparameters.

- Parameters that are not optimized during the training are called hyperparameters.
- They can be determined using a score on the validation dataset or using a cross-validation procedure.

- Parameters that are not optimized during the training are called hyperparameters.
- They can be determined using a score on the validation dataset or using a cross-validation procedure.

- Parameters that are not optimized during the training are called hyperparameters.
- They can be determined using a score on the validation dataset or using a cross-validation procedure.

Stir the pile: The gridsearch

- 1. Specify a list of hyperparameters to be tested.
- 2. For each of the parameters, specify a set of values to test
- 3. Train a model for each of the possible combinations of hyperparameters
- 4. Retain the best model (using, e.g., cross-validation)

https://medium.com/ @senapati.dipak97/gridsearch-vs-random-searchd34c92946318

Remarks on the gridsearch procedure

• It make an exhaustive search of the hyperparameters

Remarks on the gridsearch procedure

- It make an exhaustive search of the hyperparameters
- The procedure is easy to parallelized.

Remarks on the gridsearch procedure

- It make an exhaustive search of the hyperparameters
- The procedure is easy to parallelized.
- it is not naturally adapted for quantitative hyperparameters.

Remarks on the gridsearch procedure

- It make an exhaustive search of the hyperparameters
- The procedure is easy to parallelized.
- it is not naturally adapted for quantitative hyperparameters.
- it can become very costly. (e.g. 8 hyperparameters with 8 values each to test = $8^8 = 16,777,216$ trainings.

Random search

- 1. Specify a list of hyperparameters to be tested.
- 2. For each of the parameters, specify a set of values to test or a law to draw a random value.
- 3. Draw n combinations of the hyperparameters.
- 4. Train a model for each of the combinations.
- 5. Retain the best model (using, e.g., cross-validation)

Remarks on the random search procedure

- It does not make an exhaustive search of the hyperparameters
- The procedure is easy to parallelized.
- it is not adapted for quantitative hyperparameters.
- The cost is predictable (number of draw).

Remarks on the random search procedure

- It does not make an exhaustive search of the hyperparameters
- The procedure is easy to parallelized.
- it is not adapted for quantitative hyperparameters.
- The cost is predictable (number of draw).

Both gridsearch and random search are implemented and easy to use in scikit-learn.

Neural Networks

The perceptron: an artificial neuron

inputs weights

Computation

$$y = f(w_0 + w_1.x_1 + w_2.x_2 + \dots + w_n.x_n) = f(w_0 + \sum_{i=1}^n w_i.x_i)$$

• Inputs x_i are the different features of the data

- Inputs x_i are the different features of the data
- \cdot Weight w_i are the parameters of the model to optimize

- Inputs x_i are the different features of the data
- Weight w_i are the parameters of the model to optimize
- If the activation function is identity, it is equivalent to a linear regression

- Inputs x_i are the different features of the data
- Weight w_i are the parameters of the model to optimize
- If the activation function is identity, it is equivalent to a linear regression

More complexe models are build by combining several perceptrons

Multi-layer perceptron (Densely connected layers)

Most usual activation functions

New fancy activation functions

Classification and regression loss

Regression

- Last layer: linear or hyperbolic tangent
- Loss function:

$$L(\hat{y}, y) = \sum_{i} (\hat{y}_i - y_i)^2$$

Classification and regression loss

Regression

- Last layer: linear or hyperbolic tangent
- · Loss function:

$$L(\hat{y}, y) = \sum_{i} (\hat{y}_i - y_i)^2$$

Classification

Last layer: Soft-max

$$p_j = f_j(\mathbf{h}) = \frac{e^{h_j}}{\sum_k e^{h_k}}$$

Loss function:
 Negative crossentropy

$$L(p, y) = -\sum_{i} \sum_{j} y_{i,j} \cdot \log p_{i,j}$$

Convolutional neural net

<i>h</i> : first feature			
h_{11}	h_{12}	h_{13}	h_{14}
h_{21}	h_{22}	h_{23}	h_{24}
h_{31}	h_{32}	h_{33}	h_{34}
h_{41}	h_{42}	h_{43}	h_{44}

Perform a standard convolution

$$h_{i,j} = \sum_{k=1}^{3} \sum_{l=1}^{3} x_{i+k-1,j+l-1} \cdot w_{k,l}$$

• Size of the filter *K*

- · Size of the filter K
- Number of filters p
 A convolutional layer is composed of p convolutions (size of layer) extracting p features from the data.

- Size of the filter K
- Number of filters p
- Strides S

 $O = \frac{W - K + 2P}{S} + 1$, where O is the output size and W the input size.

- Size of the filter *K*
- Number of filters p
- Strides S
- Padding P

1. Convolution

2. Addition

Remarks on Convolutional layers

- Convolutional layers are acting locally on the image (But you can still use large scale information by adding more layers)
- Convolutions are invariant by translation (the weights do not depend on the location on the image).
- They can handle images of different sizes.

Max-Pooling

In order to reduce the size of the feature space (en to enhance the gradients), a common operation is to perform a max-pooling.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

A traditionnal CNN architecture

Example of AlexNet

AlexNet is the first Deep architecture used on ImageNet challenge in 2012 and achieved an error of 15.3% (10% better than the previous best classifier). The paper was cited more than 34,000 times.

Alex Krizhevsky and Geoffrey E Hinton, *ImageNet Classification with Deep Convolutional Neural Networks*, Neural Information Processing Systems (2012), 1–9.

Layer		Feature Map	Size	Kernel Size	Stride	Activation	
Input	Image	1	227x227x3	-	-	-	
1	Convolution	96	55 x 55 x 96	11×11	4	relu	
	Max Pooling	96	27 x 27 x 96	3x3	2	relu	
2	Convolution	256	27 x 27 x 256	5x5	1	relu	
	Max Pooling	256	13 x 13 x 256	3x3	2	relu	
3	Convolution	384	13 x 13 x 384	3x3	1	relu	
4	Convolution	384	13 x 13 x 384	3x3	1	relu	
5	Convolution	256	13 x 13 x 256	3x3	1	relu	
	Max Pooling	256	6 x 6 x 256	3x3	2	relu	
6	FC	-	9216		-	relu	
7	FC	-	4096	-	-	relu	
8	FC	-	4096	-	-	relu	
Output	FC		1000			Softmax	

A quick typology of few neural nets

Recurrent Neural Networks

Some popular types of recurrent neural networks:

- · Long short-term memory (LSTM)
- Gated Reccurent Unit (GRU)

Used in machine translation and text processing

Autoencoders

Used in image denoising, compressing, generation,...

Generative adversarial networks

Residual Networks

x: input, y: output

$$y = x + \mathcal{F}(x)$$

Residual Networks

x: input, y: output

$$y = x + \mathcal{F}(x)$$

Questions addressed in this lecture

- · What are the steps of a machine learning process?
- · What is the principle of the Random Forests? [Van16,5.8]
- · How to determine the hyperparamters? [Van16,5.3]
- · What is a artificial neural network? [GBC16,6]
- What is a convolutive layers [GBC16,9]
- What are the main types of neural networks? [GBC16,10, 14, 20]

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Refs

[Van16,n]: Jake VanderPlas, *Python Data Science Handbook*, section n [GBC16,n]: Goodfellow etal., Deep Learning, chapter n