EE 2000 Logic Circuit Design Semester A 2024/25

Tutorial 3

1. Design a combinational circuit for a 4-bit BCD-2421-to-Gray code converter.

Decimal numbers		Inputs				Outputs				
	Minterm	(2421)					(Gray)			
		A	В	C	D	W	X	Y	Z	
0	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	1	0	0	0	1	
2	2	0	0	1	0	0	0	1	1	
3	3	0	0	1	1	0	0	1	0	
4	4	0	1	0	0	0	1	1	0	
5	11	1	0	1	1	0	1	1	1	
6	12	1	1	0	0	0	1	0	1	
7	13	1	1	0	1	0	1	0	0	
8	14	1	1	1	0	1	1	0	0	
9	15	1	1	1	1	1	1	0	1	
Unused	5	х	х	х	х	Х	Х	х	х	
Unused	6	х	х	х	Х	Х	Х	х	х	
Unused	7	х	х	х	х	Х	Х	х	х	
Unused	8	х	х	х	х	Х	Х	х	х	
Unused	9	х	х	х	х	Х	Х	х	х	
Unused	10	х	х	х	х	Х	Х	х	х	

$$W(A, B, C, D)$$

$$= \sum m(14,15)$$

$$+ \sum d(5,6,7,8,9,10)$$

$$X(A, B, C, D)$$

$$= \sum m(4,11,12,13,14,15)$$

$$+ \sum d(5,6,7,8,9,10)$$

$$Y(A, B, C, D)$$

$$= \sum m(2,3,4,11)$$

$$+ \sum d(5,6,7,8,9,10)$$

$$Z(A, B, C, D)$$

$$= \sum m(1,2,11,12,15)$$

$$+ \sum d(5,6,7,8,9,10)$$

$$W(A, B, C, D) = BC$$

 $X(A, B, C, D) = A + B$
 $Y(A, B, C, D) = A'B + B'C$
 $Z(A, B, C, D) = AC'D' + A'C'D + ACD + A'CD'$

2. Jack, Jen, Joe, and Jim get together once a week to either go to a movie or go bowling. To decide what to do, they vote and a simple majority wins. They will go to a movie if a TIE (2 votes each) occurs. Assuming a vote for the movie is represented as a 0, design a NAND gate circuit that automatically computes the decision.

Jack/a	Jen/b	Joe/c	Jim/d	Decision/f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

f(a,b,c,d) = abc + abd + acd + bcd

3. (a) Given the following combinational circuit, work out the timing diagram to identify the presence of any timing hazard when the input condition changes from (w, x, y, z) = (0,0,1,1) to (0,1,1,1). Assume that the propagation delay for NOT gate is $\Delta \tau$, and other gates is $2\Delta \tau$.

Static-1 hazard!!!

(b) Redesign the circuit to eliminate the hazard.

w	х	у	z	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

$$f(w, x, y, z) = x'z + xy + wx' + yz$$

4. (a) Determine the Hamming code using both odd and even parity bit for a data code of 11001.

Calculate extra bit (k) needed for a n bit of code.

$$2^k \ge n + k + 1$$

For a 5-bit data
$$d_5 d_4 d_3 d_2 d_1$$
, $n = 5$

$$2^k \ge 6 + k$$

Therefore, k = 4 (4 parity bits).

Hamming	H_9	H_8	H_7	H_6	H_5	H_4	H_3	H_2	H_1
Code	d ₅	p_4	d_4	d_3	d_2	p_3	d_1	p_2	p_1
Bit	9	8	7	6	5	4	3	2	1
Binary Code	1001	1000	0111	0110	0101	0100	0011	0010	0001
p_1	1		1		0		1		
p_2			1	0			1		
p ₃			1	0	0				
p ₄	1								
Even parity	1	1	1	0	0	1	1	0	1
Odd Parity	1	0	1	0	0	0	1	1	0

- (b) Check for error should we receive the following codes, consider odd parity, and determine the original data code.
 - (i) 100000110
 - (ii) 101100110

(i)
$$c_{1} = (H_{9} \oplus H_{7} \oplus H_{5} \oplus H_{3} \oplus H_{1})' = (1 \oplus 0 \oplus 0 \oplus 1 \oplus 0)' = 1$$

$$c_{2} = (H_{7} \oplus H_{6} \oplus H_{3} \oplus H_{2})' = (0 \oplus 0 \oplus 1 \oplus 1)' = 1$$

$$c_{3} = (H_{7} \oplus H_{6} \oplus H_{5} \oplus H_{4})' = (0 \oplus 0 \oplus 0 \oplus 0)' = 1$$

$$c_{4} = (H_{9} \oplus H_{8})' = (1 \oplus 0)' = 0$$

$$c_{4}c_{3}c_{2}c_{1} = (0111)_{2} = 7$$

Error on bit 7

Correct hamming code: 101000110

Original data code: 11001

(ii)
$$c_{1} = (H_{9} \oplus H_{7} \oplus H_{5} \oplus H_{3} \oplus H_{1})' = (1 \oplus 1 \oplus 0 \oplus 1 \oplus 0)' = 0$$

$$c_{2} = (H_{7} \oplus H_{6} \oplus H_{3} \oplus H_{2})' = (1 \oplus 1 \oplus 1 \oplus 1)' = 1$$

$$c_{3} = (H_{7} \oplus H_{6} \oplus H_{5} \oplus H_{4})' = (1 \oplus 1 \oplus 0 \oplus 0)' = 1$$

$$c_{4} = (H_{9} \oplus H_{8})' = (1 \oplus 0)' = 0$$

$$c_{4}c_{3}c_{2}c_{1} = (0110)_{2} = 6$$

Error on bit 6

Correct hamming code: 101000110

Original data code: 11001