

HUMAN MACHINE TEACHERS

JESSE, JOANNE, ERIC, MARTTI, SEFA & AYRTON

VOORTGANG CONTAINER PROJECT

Recap: Onderzoeksvragen

Hoofdvraag

Met welke methode(s) kunnen we het uitladingsdeel van het container stacking probleem optimaal oplossen?

Deelvragen

- 1. Welke methoden (heuristieken) zijn mogelijk bij het container stacking probleem?
- 2. Wat is een move en wat zijn de restricties?
- 3. Welke containers zijn er en welke gaan we gebruiken?
- 4. Hoe is de haven ingericht en wat zijn de restricties?
- 5. Hoe kunnen we de container data simuleren?

Simulation Environments: Eerste prototype

- PyGame (GUI)
- Niet in Jupyter Notebook
- Meerdere lots
- Complex

Simulation Environments: Tweede prototype

- In Jupyter Notebook
- Makkelijker concept

Reinforcement Agent: DeepQLearning

DeepQLearning classes:

- DeepQNetwork
- Agent

Key Agent Functions:

- choose_action(observation)
- store_transition(old observation, action, new_observation)
- learn()

Observation = Huidige status van het speelveld Action = De zet die het neuraal netwerk maakt op het speelveld

Results

Positief = beter Negatief = slechter Feedback?

Vragen?