Clase 15 Introducción a Modelos Lineales Generales

DBT 845 - Investigación reproducible y análisis de datos biotecnológicos con R.

Dr. José Gallardo Matus y Dra. María Angélica Rueda

Pontificia Universidad Católica de Valparaíso

06 June 2022

PLAN DE LA CLASE

1.- Introducción

- ▶ Modelos lineales generales ¿Qué son y para que sirven?
- Ejemplos de modelos lineales generales.
- Interpretación de MLG con R.

2.- Práctica con R y Rstudio cloud

- Ajustar modelos lineales generales.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato html.

INTRODUCCIÓN

Durante años, los modelos lineales clásicos (normales) han sido usados como la metodología de análisis a la hora de intentar describir la mayoría de los fenómenos que ocurren en el entorno.

¿Qué podemos hacer cuando los datos no se ajustan a un modelo lineal?

- ▶ Muchas veces se recurre a transformar la variable respuesta.
- Pero al aplicar la transformación a la variable respuesta, NO necesariamente se cumplirían todos los supuestos.
- Las interpretaciones deben hacerse en términos de la variable transformada.

¿QUÉ SON LOS MODELOS LINEALES GENERALES?

Los modelos lineales generales extienden a los modelos lineales clásicos admitiendo distribuciones no normales para la variable respuesta y modelando funciones de la media.

Los MLG incluyen como casos particulares a los siguientes modelos:

- Modelos Lineales Clásicos: Modelo de regresión lineal simple, modelo de regresión lineal múltiple, ANOVA, ANCOVA.
- Modelos no lineales (con variables predictoras elevadas a alguna potencia (cuadráticas, cúbicas, etc).
- Modelo de regresión logística.

¿POR QUÉ USAR MODELOS LINEALES GENERALES?

- Modelos que reflejan mejor la naturaleza de los datos.
- ► Hay variables respuestas que son resistentes a ser transformadas (por ej. Variables discretas, o variables con gran cantidad de ceros).
- Las relaciones lineales generalmente fuerzan las predicciones del espacio de la variable respuesta (**por ej.** Predicción de valores negativos cuando la variable respuesta es un conteo).

REGRESIÓN NO LINEAL CUADRÁTICA

En este ejemplo vamos a comparar el modelo lineal vs. el modelo no lineal con término cuadrático.

MODELO LINEAL

Modelo 1:

log_microparticle_concentration = $\beta_0 + \beta_1 time + \epsilon$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.567087	0.0333508	76.97221	0
time	-0.014116	0.0009433	-14.96447	0

$$R^2 = 0.78$$
, $p\text{-val} = 2.0490325 \times 10^{-22}$

MODELO NO LINEAL (INCLUYE TÉRMINO CUADRÁTICO)

Modelo 2:

 $\textbf{log_microparticle_concentration} = \beta_0 + \beta_1 \textit{time} + \beta_2 \textit{time}^2 + \epsilon$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.1436057	0.0163730	130.923107	0.0000000
poly(time, 2)1	-2.1291367	0.1320034	-16.129403	0.0000000
poly(time, 2)2	0.4415801	0.1320034	3.345217	0.0013997

$$R^2 = 0.81$$
, p-val = $2.2610223 \times 10^{-23}$

COMPARACIÓN DE MODELOS

► Modelo 1:

 $\textbf{log_microparticle_concentration} = \beta_0 + \beta_1 \textit{time} + \epsilon$

► Modelo 2:

log_microparticle_concentration = $\beta_0 + \beta_1 time + \beta_2 time^2 + \epsilon$

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
63	1.275337	NA	NA	NA	NA
62	1.080344	1	0.194993	11.19047	0.0013997

REGRESIÓN LOGÍSTICA

- ► La regresión logística es útil para predecir variables respuesta de naturaleza binaria: Presencia o ausencia, sano o enfermo, maduro o no maduro, macho o hembra.
- Las principales supuestos del modelo de regresión logística son:
- a) Respuesta binaria: La variable respuesta debe ser binaria.
- b) Independencia: las observaciones deben ser independientes.
- c) Multicolinealidad: se requiere de muy poca a ninguna multicolinealidad entre los predictores (para regresión logística múltiple).
- **d)** Linealidad: entre la variable independiente y el logaritmo natural de la variable respuesta.

REGRESIÓN LOGÍSTICA SIMPLE

Modelo de regresión logística simple:

$$ho(Y=1) = rac{e^{eta_0 + eta_1 X_1}}{1 + e^{eta_0 + eta_1 X_1}}$$

p(Y = 1) = Probabilidad de que la variable respuesta dicotómica tome un valor de 1 (exito).

 $X_1 = Variable predictora.$

 $B_0 = Intercepto.$

 B_1 = Pendiente.

ESTUDIO DE CASO 2: MADURACIÓN EN SALMÓN DEL ATLÁNTICO

En este estudio de caso trabajaremos con un subconjunto de la base de datos relacionada a la maduración en salmones machos (n=90).

variable	Descripción
Fish	Identificador del salmón
Genotype	Genotipo
Gonad	Peso de gónada
Maturation	estado de maduración (1: maduro) o (0: inmaduro)

RELACIÓN ENTRE MADURACIÓN VS PESO DE GÓNADA

REGRESIÓN LINEAL ENTRE MADURACIÓN VS PESO DE GÓNADA

¿Qué supuestos no se cumplen de la regresión lineal?

MODELO LINEAL

 ${f Maduraci\'on}=eta_0+eta_1$ Peso de gónada + ϵ

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.0280808	0.0306710	-0.9155493	0.3624054
Gonad	0.0984246	0.0042997	22.8908036	0.0000000

$$R^2 = 0.86$$
, p -val = 7.977942×10^{-39}

PREDICCIÓN LOGÍSTICA

REGRESIÓN LOGÍSTICA SIMPLE

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-8.089844	2.6425566	-3.06137	0.0022033
Gonad	1.381678	0.4255612	3.24672	0.0011674

EJEMPLO PREDICCIÓN DE AMBOS MODELOS

Probabilidad de estar maduro para un peso de gónada de 4 gramos.

REGRESIÓN LINEAL

Probabilidad de maduración

0.3656176

REGRESIÓN LOGÍSTICA

Probabilidad de maduración

0.0715492

RELACIÓN ENTRE MADURACIÓN VS GENOTIPO

Genotipo $\mathsf{E} = \mathsf{Madurac}$ ión temprana o Early.

Genotipo L = Maduración tardía o Late.

¿Qué genotipo tiene mayor probabilidad de maduración?

table(maduracion\$Maturation, maduracion\$Genotype) %>%
 kable()

	EE	EL	LL
0	4	22	19
1	44	1	0

REGRESIÓN LOGÍSTICA MÚLTIPLE

Modelo de regresión logística múltiple:

$$p(Y = 1) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

p(Y = 1) = Probabilidad de que la variable respuesta dicotómica tome un valor de 1 (exito).

 $X_1 = Variable$ predictora 1. $X_p = Variable$ predictora p. $B_0 = Intercepto$.

 $B_1 = \text{Pendiente variable } X_1. \ B_p = \text{Pendiente variable } X_p.$

REGRESIÓN LOGÍSTICA MÚLTIPLE

Estimate	Std. Error	z value	Pr(> z)
-5.951859	3.1608767	-1.8829772	0.0597035
1.135307	0.4546516	2.4970928	0.0125216
-1.296134	1.6538041	-0.7837292	0.4331990
-16.852220	3447.6185502	-0.0048881	0.9960999
	-5.951859 1.135307 -1.296134	-5.951859 3.1608767 1.135307 0.4546516 -1.296134 1.6538041	-5.951859 3.1608767 -1.8829772 1.135307 0.4546516 2.4970928 -1.296134 1.6538041 -0.7837292

REGRESIÓN LOGÍSTICA (MODELO NULO)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0	0.2108185	0	1

COMPARACIÓN DE MODELOS AIC

AIC(mod_nulo,mod_logit,mod_logit_mult)%>% kable()

	df	AIC
mod_nulo	1	126.76649
mod_logit	2	18.30228
mod_logit_mult	4	21.25087

ANOVA PARA CADA MODELO

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)
NULL	NA	NA	89	124.7665	NA

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)
NULL	NA	NA	89	124.76649	NA
Gonad	1	110.4642	88	14.30228	0

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)
NULL	NA	NA	89	124.76649	NA
Gonad	1	110.464210	88	14.30228	0.0000000
Genotype	2	1.051411	86	13.25087	0.5911383

COMPARACIÓN DE MODELOS (ANOVA)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
89	124.76649	NA	NA	NA
88	14.30228	1	110.464210	0.0000000
86	13.25087	2	1.051411	0.5911383

RESUMEN DE LA CLASE

- 1). Revisión de conceptos: modelos lineales generales.
- 2). Construir y ajustar modelos lineales generales.