EXPT NO.6:

STUDY OF HALF SUBTRACTOR AND FULL SUBTRACTOR

Objective:

To study the half subtractor and full subtractor.

Equipments:

Logic Circuit Simulator Pro.

Theory:

Half Subtractor:

The half subtractor is constructed using X-OR and AND. The half subtractor has two inputs and outputs. The outputs are borrow and difference. The difference can be applied using X-OR gate, borrow out can be implemented using AND gate and an inverter.

Here D = Difference and Bo = Borrow Difference (D) = $\overline{AB} + A\overline{B}$, Borrow (B) = A.B

Full Subtractor:

The full subtractor is a combination of X-OR, AND, OR, NOT gates. In a full subtractor the logic circuit has three inputs and two outputs. The two half subtractors put together gives a full subtractor.

TRUTH TABLE:

Input			Output		
Α	В	С	Difference	Borrow	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Full Adder using two Half Subtractor:

The difference in case of full adder is: $A \oplus B \oplus B_{in}$ And the carry can be " $AB+BB_{in}+AB_{in}$ " or " $(A \oplus B)B_{in}+AB$

Procedure:

1. Half Subtractor:

- Connect A and B input of half subtractor to switches from the input switches section.
- Connect difference output of half subtractor to L1 and borrow output of half subtractor to L2 in output section
- Switch on the power supply of the kit and provide proper inputs to half subtractor using switches as per truth table shown above.
- Observe the output of half subtractor and verify the functionality of half subtractor as per the truth table.

TRUTH TABLE:

Inp	uts	Outputs		
Α	В	Diff	Borrow	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

FULL Subtractor:

- Connect A, B and C input of full subtractor to switches from the input switches section.
- Connect the sum output of full subtractor to L1 and borrow output of full subtractor to L2 in the output section.
- Switch on power supply of the kit and provide proper inputs to full subtractor using switches as per truth table shown above.
- Observe the output of full adder and verify the functionality of full subtractor as per truth table.

CASE 1: When B-out = \overline{AB} +BB_{in}+ \overline{AB} _{in}

CASE 2: When C-out = $(A \oplus B)B_{in} + \overline{AB}$:

TRUTH TABLE:

А	В	Bin	Difference(D)	Borrow(Bout) AB+BB _{in} +AB _{in}	Borrow(Bout) (A⊕B)B _{in} +AB
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	1	1

Conclusion: Hence the functionality of half subtractor and full subtractor are verified.