LECTURE 4: SMALL-WORLD PHENOMENA COMPACT Social Information Neurosit Analysis and Engineering Trially Palacony 19th 2015

Small world: a simplistic argument

How many people would you recognize by name?
 67 M. Gurevitch (MIT): about 500

□ Roughly, how many are socially related to you?

		Compares to	%. US pop.
500	direct acquaintance	C.S. dept	0.00017%
250,000	share an acquaintance with you	Harlem district	0.083%
125m	share an acquaintance with a friend of yours	Northeast + Midwest	42%

Six Degrees of Kevin Bacon

Origins of a small-world idea:

- ☐ The Bacon number:
 - □ Create a network of Hollywood actors
 - □ Connect two actors if they co-appeared in the movie
 - Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite)
 Bacon number reported is 8
- □ Only approx. 12% of all actors cannot be linked to Bacon

The Small-World Experiment

- What is the typical shortest path length between any two people?
 - Experiment on the global friendship network
 - Can't measure, need to probe explicitly
 - □ Small-world experiment [Milgram '67]
 - Picked 300 people in Omaha, Nebraska and Wichita, Kansas
 - Ask them to get a letter to a stock-broker in Boston by passing it through friends
 - ☐ How many steps did it take?

The Small-World Experiment

□ 64 chains completed:

(i.e., 64 letters reached the target)

- It took 6.2 steps on the average, thus
 - "6 degrees of separation"

□ Further observations:

- People what owned stock had shortest paths to the stockbroker than random people: 5.4 vs. 5.7
- People from the Boston area have even closer paths: 4.4

Milgram: Further Observations

- Boston vs. occupation network
 - □ Criticism:
 - Funneling:
 - 31 of 64 chains passed through 1 of 3 people ass their final step → Not all links/nodes are e
 - Starting points and the target were non-random
 - People refused to participate (25% for Milgram)
 - Some sort of social search: People in the experiment follow some strategy (e.g., geographic routing) instead of forwarding the letter to everyone. They are not finding the shortest path!
 - □ There are not many samples (only 64)
 - People might have used extra information resources

Columbia Small-World Study

- □ In 2003 Dodds, Muhamad and Watts performed the experiment using e-mail:
 - 18 targets of various backgrounds
 - 24,000 first steps (~1,500 per target)
 - □ 65% dropout per step
 - 384 chains completed (1.5%)

Avg. chain length = 4.01**Problem:** People stop participating Correction factor: $n^*(h) = \frac{1}{h}$

 $\prod_{i=1}^{n} (1-r_i)$

Small-World in Email Study

- ☐ After the correction:
 - □ Typical path length h = 7
 - □ Some not well understood phenomena in social networks:
 - Funneling effect: Some target's friends are more likely to be the final step.

Path length, h

- Conjecture: High reputation/authority
- Effects of target's characteristics: Structurally why are high-status target easier to find
 - Conjecture: Core-periphery net structure

The MSN Messenger

MSN Messenger activity in June 2006:

- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages

Messaging as a Network

Messaging as a Network

MSN Network: Connectivity

MSN: Degree Distribution

MSN: Log-Log Degree Distribution

MSN: Clustering

Two Questions

(Today) What is the structure of a social network?
 (Later) Which mechanisms do people use to route and find the target?

6-Degrees: Should We Be Surprised?

Assume each human is connected to 100 other people.

- □ Step 1: reach 100 people
- Step 2: reach 100*100 = 10,000 people □ Step 3: reach 100*100*100 = 1,000,000 people
- □ Step 4: reach 100*100*100*100 = 100M people
- □ In 5 steps we can reach 10 billion people
- What's wrong here?
 - □ 92% of new FB friendships are to a friend-of-a-friend

Scientific Collaborations

Clustering Implies Edge Locality

- □ MSN network has 7 orders of magnitud clustering than the corresponding Gnp!

- Other examples: Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree $\overline{k} = 61$ Electrical power grid: N = 4,941 nodes, $\overline{k} = 2.67$ Network of neurons: N = 282 nodes, $\overline{k} = 14$

Network	h_{actual}	h_{random}	Cactual	Crandom
Film actors	3.65	2.99	0.79	0.00027
Power Grid	18.70	12.40	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

- h ... Average shortest path length
- C ... Average clustering coefficient

Back to the Small-World

□ Consequence of expansion:

- \square Short paths: $O(\log n)$
 - This is "best" we can do if the have a constant degree
 - \blacksquare and there are n nodes
- □ But networks have local structure:
 - **□ Triadic closure:**
 - Friend of a friend is my friend
- □ How can we have both?

Clustering vs. Randomness

Where should we place social networks? Random? Clustered?

Simplest Model of Graphs

- Erdös-Renyi Random Graphs [Erdös-Renyi, '60]
- Two variants:
 - \Box $G_{n,p}$: undirected graph on n nodes and each edge (u,v) appears i.i.d. with probability p
- $lue{}$ $G_{n,m}$: undirected graph with n nodes, and m uniformly at random picked edges

What kinds of networks does such model produce?

Random Graph Model

\square n and p do not uniquely determine the graph!

- □ The graph is a result of a random process
- We can have many different realizations

Random Graph Model: Edges

- □ How likely is a graph on E edges?
- $\ \square\ P(E)$: the probability that a given G_{np} generates a

graph on exactly
$$E$$
 edges:
$$P(E) = \begin{pmatrix} E^{\text{max}} \\ E \end{pmatrix} p^{E} (1-p)^{E_{\text{max}}-E}$$

where $E_{\max} = n(n\text{-}1)/2$ is the maximum possible number of edges in an undirected graph of n nodes $_{p_{\rm ode}(11)}$

Binomial distribution >>>

P(k)

Node Degrees in a Random Graph

What is expected degree of a node?

- lacksquare Let $X_{\!\scriptscriptstyle \mathcal{V}}$ be a rnd. var. measuring the degree of node \mathcal{V}
- We want to know: $E[X_v] = \sum_{j=0}^{n-1} j \ P(X_v = j)$ For the calculation we will need: Linearity of expectation

 For any random variables $Y_p Y_2 Y_k$
 - - $\blacksquare \text{ If } Y = Y_1 + Y_2 + \dots Y_k \text{, then } E[Y] = \sum_i E[Y_i]$
- □ Easier way:
 - \square Decompose X_v to $X_v = X_{v,1} + X_{v,2} + ... + X_{v,n-1}$
 - where $X_{v,u}$ is a $\{0,I\}$ -random variable which tells if edge (v,u) exists or not

$$E[X_v] = \sum_{u=1}^{n-1} E[X_{vu}] = (n-1)p \\ \text{How to think about this?} \\ \text{Prob. of node u linking to node v is p} \\ \text{--} u can link (flips a coin) to all other $(n-1)$ nodes v is p} \\ \text{--} thus, the expected degree of node u is p_0-1}$$

Properties of G_{nn}

Degree distribution:

Path length: h

Clustering coefficient: C

> What are values of these properties for G_{np}?

Degree Distribution

\Box Fact: Degree distribution of G_{np} is <u>Binomial</u>.

□ Let P(k) denote a fraction of nodes with degree k:

$$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$
Select k nodes

Probability of missing the rest of the n-1-k edges

having kedges

 $\overline{k} = p(n-1)$

$$\sigma^2 = p(1-p)(n-1)$$

Clustering Coefficient of G_{np}

Remember: $C_i = \frac{2e_i}{k_i(k_i-1)}$

 $\hfill\Box$ Edges in $G_{\!\it np}$ appear i.i.d with prob. p

 $C = \frac{p \cdot k_i (k_i - 1)}{k_i (k_i - 1)} = p = \frac{\bar{k}}{N}$ □ Then:

Clustering coefficient of a random graph is small. For a fixed avg. degree, C decreases with the graph size N.

Real Networks vs. G_{no}

- Are real networks like random graphs?
 - □ Giant connected component: ◎
 - □ Average path length: [©]
 - □ Clustering Coefficient: 8
 - Degree Distribution: 8
 - □ Problems with the random network model:
 - Degreed distribution differs from that of real networks
 - Giant component in most real network does NOT emerge through a phase transition
 - □ No local structure clustering coefficient is too low
 - □ Most important: Are real networks random?
 - □ The answer is simply: NO!

Real Networks vs. G_{np}

If G_{np} is wrong, why did we spend time on it?

- It is the reference model for the rest of the class.
- It will help us calculate many quantities, that can then be compared to the real data
- It will help us understand to what degree is a particular property the result of some random process

So, while G_{np} is WRONG, it will turn out to be extremly USEFUL!

Small-World: How?

- Could a network with high clustering be at the same time a small world?
 - How can we at the same time have high clustering and small diameter?

- Clustering implies edge "locality"
- Randomness enables "shortcuts"

Solution: The Small-World Model

- Small-world Model [Watts-Strogatz '98]:
 - 2 components to the model:
 - □ (1) Start with a low-dimensional regular lattice
 - Has high clustering coefficient
 - □ Now introduce randomness ("shortucts")
 - ☐ (2) Rewire:
 - Add/remove edges to create shortcuts to join remote parts of the lattice
 - $lue{}$ For each edge with prob. p move the other end to a random node

The Small-World Model

Rewiring allows us to "interpolate" between a regular lattice and a random graph

The Small-World Model

Diameter of the Watts-Strogatz

Alternative formulation of the model:

- □ Start with a square grid
- □ Each node has 1 random long-range edge
 - Each node has 1 spoke. Then randomly connect them.

$$C_i = \frac{2 \cdot e_i}{k_i(k_i - 1)} = \frac{2 \cdot 12}{9 \cdot 8} \ge 0.33$$

There are already 12 triangles in the grid and the long-rage edge can only close more

What's the diameter?

It is log(n)Why?

Diameter of the Watts-Strogatz

□ Proof:

- Consider a graph where we contract 2x2 subgraphs into supernodes
- □ Now we have 4 edges sticking out of each supernode
 - 4-regular random graph!
- □ From Thm. we have short paths between super nodes
- We can turn this into a path in a real graph by adding at most 2 steps per hop
- ⇒ Diameter of the model is $O(2 \log n)$

graph

Small-World: Summary

- Could a network with high clustering be at the same time a small world?
 - Yes. You don't need more than a few random links.
 - □ The Watts Strogatz Model:
 - □ Provides insight on the interplay between clustering and the small-world
 - □ Captures the structure of many realistic networks
 - Accounts for the high clustering of real networks
 - □ Does not lead to the correct degree distribution
 - □ Does not enable navigation (next lecture)

How to Navigate the Network?

- □ (1) What is the structure of a social network?
- □ (Next) Which mechanisms do people use to route and find the target?

10 sociological must-reads

- M. Granovetter, "The strength of weak fles: A network theory revisited," Sociological theory, vol. 1, pp. 201–233, 1983.
- M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a Feather: Homophily in Social Networks," Annual review of sociology, vol. 27, pp. 415–444, Jan. 2001.
- M. O. Lorenz, "Methods of measuring the concentration of wealth," Publications of the American Statistica Association, vol. 9, no. 70, pp. 209–219, 1905. + H. Simon, "On a Class of Skew Distribution Functions," Biometrika, vol. 42, no. 3, pp. 425–440, 1955.
- R. I. M. Dunbar, "Coevolution of Neocortical Size, Group-Size and Language in Humans," *Behav Brain Sci*, vi 16, no. 4, pp. 681–694, 1993.
- D. Cartwright and F. Harary, "Structed vol. 63, no. 5, pp. 277–293, 1956.
- M. Granovetter, "Threshold Models of Collective Behavior," The American Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, May 1978.
- B. Ryan and N. C. Gross, "The diffusion of hybrid seed corn in two lowa communities," Rural sociology, vol. 8, no. 1, pp. 15–24, 1943.

 + S. Asch, "Opinions and social pressure," Scientific American, 1955.
- R. S. Burt, Structural Holes: The Social Structure of Competition. Harvard University Press, 1992.
- F. Galton, "Vox Populi," Nature, vol. 75, no. 1949, pp. 450-451, Mar. 1907.