Mathematical Analysis. Assignment 3. Derivatives

- 1. Find the derivatives of the following functions:
 - (a) $f(x) = \arctan^3 x$;
 - (b) $f(x) = \frac{\arcsin x}{e^{3x}}$;
 - (c) $f(x) = \ln \sin x$;
 - (d) $f(x) = \ln(x^2 + \sqrt{x^4 + 1});$
 - (e) $f(x) = \cos(3\arccos x)$;
 - (f) $f(x) = \frac{1}{2\sqrt{6}} \ln \left(\frac{\sqrt{2} + x\sqrt{3}}{\sqrt{2} x\sqrt{3}} \right)^2$;
 - (g) $f(x) = \arctan(e^{x/2}) \ln\sqrt{\frac{e^x}{e^x + 1}};$
 - $(h) f(x) = \log_x 7;$
 - (i) $f(x) = (\cosh x)^{\tanh x}$.
- 2. Find the derivative of a function at a given point:
 - (a) $f(x) = \prod_{k=0}^{2019} (x-k)$ at $x_0 = 0$;
 - (b) $f(x) = (1+x)\sqrt{2+x^2}\sqrt[3]{3+x^3}$ at $x_0 = 0$.
- 3. Find all values of α such that function $f(x) = \begin{cases} |x|^{\alpha} \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0 \end{cases}$
 - (a) is continuous at $x_0 = 0$;
 - (b) has a derivative at point $x_0 = 0$;
 - (c) has a continuous derivative at $x_0 = 0$.
- 4. Find such values of α and β such that function $f(x) = \begin{cases} (x+\alpha)e^{-\beta x}, & \text{if } x < 0, \\ \alpha x^2 + \beta x + 1, & \text{if } x \geqslant 0 \end{cases}$ is differentiable for all $x \in \mathbb{R}$.
- 5. Prove or refute the following statements:
 - (a) for a differentiable function to have an even derivative it is sufficient that the function is odd;
 - (b) for a differentiable function to have an even derivative it is necessary that the function is odd.
- 6. Find the derivative of the inverse function at a given point:
 - (a) $y = 2x \cos \frac{x}{2}$, $y_0 = -\frac{1}{2}$;
 - (b) $y = x + \frac{x^5}{5}$, $y_0 = \frac{6}{5}$.
- 7. Find the derivative y'_x of a function y(x) given parametrically by $x = t^2 + 6t + 5$, $y = \frac{t^3 54}{t}$, t > 0.
- 8. Find the derivative y'_x of a function x(y) given parametrically by $x = \cot 2t$, $y = \frac{2\cos 2t 1}{2\cos t}$, $0 < t < \frac{\pi}{2}$.
- 9. Find the differential of a function y = y(x) given implicitly by an equation
 - (a) $x^4 + y^4 8x^2 10y^2 + 16 = 0$ at point (1;3);
 - (b) $xe^{\frac{x}{y^2}-1} 2y = 0$ at point (4; 2).

- 10. Express the differentials of the following functions through u, v, du and dv:
 - (a) $y = u^3 v$;
 - (b) $y = \frac{u^2}{v u^3}$;
 - (c) $y = e^{uv}$.
- 11. Replacing the increment of a function $\sqrt[3]{x}$ by its differential find the approximate value of $\sqrt[3]{65}$.
- 12. Find the second differential of $f(x) = \arctan \frac{2+x^2}{2-x^2}$ at x = 0.
- 13. Find the second differential d^2y considering du, d^2u , dv, d^2v to be known:
 - (a) y = u(2+v);
 - (b) $y = u^v$.
- 14. Find the second derivative $\frac{d^2y}{dx^2}$ of a function given parametrically by
 - (a) $x = \frac{t^2}{1+t^3}$, $y = \frac{t^3}{1+t^3}$;
 - (b) $x = t \cosh t \sinh t$, $y = t \sinh t \cosh t$.
- 15. Function y(x) is given implicitly by an equation $x^3y + \arcsin(y-x) = 1$. Find d^2y at point (1,1).
- 16. Find $y^{(n)}(x)$ for the following functions:
 - (a) $y = \ln(ax + b)$;
 - (b) $y = \sin \alpha x \sin \beta x$;
 - (c) $y = \cosh \alpha x \cosh \beta x$;
 - (d) $y = \frac{1}{\sqrt{1-2x}};$
 - (e) $y = \frac{x}{x^2 4x 12}$;
 - (f) $y = \frac{3-2x^2}{2x^2+3x-2}$;
 - (g) $y = (2x 1) \cdot 2^{4x} \cdot 3^{2x}$;
 - (h) $y = x \ln \frac{3+x}{3-x}$;
 - (i) $y = (x^2 + x)\cos^2 2x$.