

AZURE COSMOS DB-CONSISTENCY LEVELS

Vishwanath Uppala vishwanath.uppala@valuemomentum.com

Pooja Banchode pooja.banchode@valuemomentum.com

OUR DIGITAL & CLOUD SERVICES

Customers trust Value Momentum to rapidly deliver new experiences and stay competitive in today's digital-centric market.*

^{*}To learn more, please log on to ValueMomentum - Digital & Cloud Services

Azure Cosmos DB

A globally distributed, massively scalable, multi-model database service

CONSISTENCY MODELS

Replication and Consistency

Why replication?

Performance

- Within a region, ensures SLA on RUs purchased
- Across regions, brings data closer to the consumer

Business Continuity

• In the event of major failure or natural disaster

Global replication

It takes hundreds of milliseconds to move data across continents

How do you ensure consistent reads across replicas?

Define a consistency level

Cosmos DB Global Distribution

CAP THEOREM

Consistency-Availability-Partition Tolerance Theorem

Consistency: Every read receives the most recent write or an error

Availability: Every request receives a (non-error) response – without the guarantee that it contains the most recent write

Partition tolerance: The system continues to operate despite an arbitrary number of messages being dropped (or delayed) by the network between nodes

The CAP theorem implies that in the presence of a network partition, one has to choose between consistency and availability

Setting the Consistency Level

- Set default for entire account:
 Can be changed at any time
- Override at the request level:
 Any request can weaken the default consistency level

Semantics of the five consistency levels

Consistency levels Explained Through Baseball

		1	2	3	4	5	6	7	8	9	RUNS
Score Board	Team A	0	0	1	0	1	0	0			2
	Team B	1	0	1	1	0	2				5

The Table below lists the complete set of scores that could be returned by reading the Team A and Team B scores

Consistency level	Scores (Team A, Team B)
Strong	2-5
Bounded staleness	Scores that are at most one inning out of date: 2-3, 2-4, 2-5
Session	•For the writer: 2-5 •For anyone other than the writer: 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5 •After reading 1-3: 1-3, 1-4, 1-5, 2-3, 2-4, 2-5
Consistent prefix	0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5
Eventual	0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5

Consistency levels Explained Through Baseball

Consistency, Availability, Performance Tradeoffs

Property	Lat	tency	Throughpu	Data Durability			
Consistency level	Read	Write	Read (for same RUs)	Write	Durability		
Strong			Y (50)		D		
Bounded Staleness		than 10	X (say)		E C		
Session	milliseconds at 99 th percentile			Identical for all levels	R E		
Consistent Prefix			2X		A		
Eventual					S E		
					S		

Demo

© 2016 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.