Nome e cognome	N. di matricola (10 cifre num.)

UNIVERSITA' DEGLI STUDI DI BOLOGNA - CORSO DI LAUREA IN INFORMATICA CORSO DI SISTEMI OPERATIVI - ANNO ACCADEMICO 2002/2003 GESTIONE RISORSE - 22 settembre 2003

Esercizio -1: essersi iscritti correttamente per svolgere questa prova.

Esercizio 0: Scrivere correttamente nome, cognome e n. di matricola prima di svolgere ogni altro esercizio seguente.

Esercizio 1:

- a) Disegnare, se possibile, un grafo di Holt *multirisorse* e *riducibile* in cui esistano almeno tre cicli distinti (ovvero, che coinvolgano risorse diverse). Se tale grafo non esiste, spiegare perchè. Altrimenti, cercate di disegnare il grafo con il minor numero di processi.
- b) Disegnare, se possibile, un grafo di Holt *monorisorsa* e *riducibile* in cui esistano almeno tre cicli distinti (ovvero, che coinvolgano risorse diverse). Se tale grafo non esiste, spiegare perchè. Altrimenti, cercate di disegnare il grafo con il minor numero di processi.

Esercizio 2:

- Si consideri un meccanismo di aging che funziona nel modo seguente: esistono k classi di priorità. Tutte le volte che un processo p rilascia il processore, tutti i processi *q* diversi da *p* ricevono un incremento di priorità.
- a) Discutere vantaggi e svantaggi di tale approccio
- b) Sia dato un sistema con due processi p e q, dove p ha priorità iniziale massima e q ha priorità iniziale minima. Supponiamo che tali processi siano cpu-bound e debbano eseguire entrambi per T quanti di tempo totali (ovvero: durante ognuno di questi T quanti di tempo utilizzano unicamente la CPU). Calcolare il rapporto tra il tempo di turnaround di p e il tempo di turnaround di p0, utilizzando tale algoritmo di aging.

Esercizio 3

Alice vuole mandare un messaggio a Bob e a Charlie in modo che sia leggibile solo se sia Bob sia Charlie desiderano leggerlo (forniscono entrambi la loro chiave privata allo stesso server). Alice pensa di mandare un messaggio Encrypt(P_C, Encrypt(P_B,msg)), dove P_C e P_B sono le chiavi pubbliche di C e B. In questo modo pero' C deve (o può) decodificare il messaggio per primo e poi B. Indicare quale messaggio A deve spedire perche' le chiavi segrete di B e C debbano essere usate insieme (non deve essere possibile per B o C fare una decodifica parziale che puo' essere completata dall'altro a meno di non **spedirsi** l'un l'altro la chiave segreta).

Hint: metodi di crittografia a chiave simmetrica e asimmetrica possono essere usati insieme se necessario.

Esercizio 4

Fissato il numero di frame, mostrare o discutere perchè non esiste:

- a) una stringa di riferimenti tale per cui il numero di page-fault generati da LFU sia almeno il doppio di quelli generati da LRU
- b) una stringa di riferimenti tale per cui il numero di page-fault generati da LFU sia uguale a quelli generati da LRU c) una stringa di riferimenti tale per cui il numero di page-fault generati da LRU sia almeno il doppio di quelli generati da LFU.