Pratique de l'apprentissage statistique

1. Apprentissage statistique

V. Lefieux

Plan

Introduction

Formalisation du problème

Pertes et risques

Biais et variance

Validation croisée

Plan

Introduction

Formalisation du problème

Pertes et risques

Biais et variance

Validation croisée

Apprentissages supervisé et non-supervisé

- Apprentissage supervisé: Inférer (prédire) une fonction ou une relation à partir de données d'apprentissage labellisées (ex : classification supervisée, régression).
- Apprentissage non-supervisé :
 Trouver une « structure » dans des données non-labellisées (ex : clustering).

Même s'il est plus « subjectif » que l'apprentissage supervisé, il peut être utile comme étape de pré-traitement pour l'apprentissage supervisé.

Quelques méthodes d'apprentissage supervisé

- Statistique « classique » : régression linéaire, régression paramétrique non-linéaire, régression logistique, méthodes de régularisation (Ridge, Lasso, Lars), PLS.
- Méthodes bayésiennes.
- Méthodes de moyennage local : plus proches voisins, noyau de lissage, CART.
- ▶ Méthodes à bases de splines : régression spline, GAM.
- Méthodes à directions révélatrices : SIM, SIR, etc.
- Agrégation : bagging, boosting.
- Méthodes à noyau : SVM.
- Réseaux de neurones.

Exemples d'apprentissage supervisé

Régression :

- Pollution.
- Vente de produits.
- Prix de marché.

Classification supervisée :

- Médecine.
- Credit scoring.
- Reconnaissance de texte.
- Reconnaissance d'images.

Modélisation et/ou prévision

- ► On peut distinguer modélisation et prévision, par exemple compression d'image vs reconnaissance d'images.
- ► Un modèle s'appuie sur la régularité des phénomènes sous-jacents.
- La prévision consiste à généraliser un modèle.

Un exemple

► Source: http://yann.lecun.com/exdb/mnist/.

► Modéliser :

1111111111111 2224222222222222222 **53333333333**3333333333333 4444**4444444444444444** フフつファスアフォ**フ**リコ**フ**キノネコア 248784888888P12888 9999999999999999999999

Prévoir :

Quelques enjeux en prévision

- Compromis entre la qualité de la prévision et l'interprétabilité (notion de « boîte noire »).
- ► Privilégier des modèles parcimonieux (« sparse ») qui éviteront le sur-apprentissage : less is more.

Plan

Introduction

Formalisation du problème

Pertes et risques

Biais et variance

Validation croisée

Données

▶ On dispose d'un échantillon de (X, Y):

$$\mathcal{D}_n = (X_i, Y_i)_{i \in \{1, \dots, n\}}$$

où
$$X \in \mathcal{X}$$
 et $Y \in \mathcal{Y}$.

On note:

$$d_n = (x_i, y_i)_{i \in \{1, ..., n\}}$$
.

Objectif

On se placera dans le cadre de la prévision : on souhaite prévoir y pour une nouvelle valeur x.

Covariables

On considèrera très souvent dans la suite que :

$$X \in \mathbb{R}^p$$
.

Par défaut les covariables seront considérées comme quantitatives mais on indiquera régulièrement comme traiter les variables qualitatives.

Régression et classification supervisée

- Régression : la variable Y est quantitative.
 Dans la suite on considèrera que Y ∈ ℝ.
 Mais il est possible de considérer plus généralement Y ∈ ℝ^d.
- Classification supervisée : la variable Y est qualitative. Dans la suite on considèrera que Y ∈ {-1,1}. Par défaut la classification supervisée sera considérée binaire mais on indiquera régulièrement comme traiter plus de 2 modalités.

Prévision

- ► On suppose que (x_i, y_i) est la réalisation d'une v.a.r (X_i, Y_i) de loi de probabilité inconnue P_{X,Y} (modèle statistique non-paramétrique).
- ▶ La fonction de prévision de Y est une fonction $f: \mathcal{X} \to \mathcal{Y}$.
- ▶ On suppose que $f \in \mathcal{F}$.
- ▶ Dans la suite, de manière plus spécifique que f, on désignera la fonction de lien par :
 - Cas de la classification supervisée : g .
 - ► Cas de la régression : *m* .
- On cherche à estimer f par \hat{f} .

Plan

Introduction

Formalisation du problème

Pertes et risques

Biais et variance

Validation croisée

Qualité d'un prédicteur

- La qualité d'un prédicteur \hat{f} est évaluée par le risque R (ou encore erreur de généralisation) qui :
 - permet de sélectionner un modèle,
 - fournit un indice de la confiance qu'on peut avoir en une prévision.
- Le risque est définie à partir d'une fonction de coût (ou encore fonction de perte).

Fonctions de perte

- ▶ On appelle fonction de perte une fonction $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ telle que :
 - $\ell(y,y) = 0 ,$
 - $\forall y \neq y' : \ell(y, y') > 0 .$
- ► Exemples de fonctions de perte :
 - ► Cas de la classification supervisée binaire :

$$\ell(y,y') = \mathbb{1}_{y\neq y'} = \frac{|y-y'|}{2} = \frac{(y-y')^2}{4}$$
.

Cas de la régression :

$$\ell(y, y') = |y - y'|^q$$

avec $q \in \mathbb{R}^+$.

Risque (erreur de généralisation)

Le risque (ou erreur de généralisation) d'un predicteur \widehat{f} est défini par :

$$R\left(\widehat{f}\right) = \mathbb{E}\left[\ell\left(\widehat{f}(X), Y\right)\right].$$

Oracle

Si on connaissait $P_{X,Y}$, on pourrait déterminer le prédicteur optimal, appelé oracle :

$$f^{\star} = \arg\min_{f \in \mathcal{F}} R(f)$$
.

Exemples d'oracles

► Cas de la classification supervisée binaire : Si $\ell(y, y') = \mathbb{1}_{\{y \neq y'\}}$ alors :

$$g^{\star}(x) = \begin{cases} 1 & \text{si } \mathbb{P}(Y = 1/X = x) \ge \mathbb{P}(Y = -1/X = x) \\ -1 & \text{sinon} \end{cases}$$

- ► Cas de la régression :
 - Si $\ell(y, y') = |y y'|$ alors :

$$m^{\star}(x) = \operatorname{Med}(Y/X = x)$$
.

► Si $\ell(y, y') = (y - y')^2$ alors :

$$m^{\star}(x) = \mathbb{E}(Y/X = x)$$
.

Enjeu

L'objectif du data scientist est de déterminer une estimation \widehat{f} de f, à partir de l'échantillon, telle que :

$$R\left(\widehat{f}\right)\approx R\left(f^{\star}\right)$$
.

- ▶ En pratique, pour estimer $f \in \mathcal{F}$:
 - 1. On restreint \mathcal{F} à \mathcal{S} .
 - 2. On considère le risque empirique R_n (et non le risque).

D'où:

$$\widehat{f} = \arg\min_{f \in \mathcal{S}} R_n(f)$$
.

Risque empirique

Le risque empirique est défini par :

$$R_n\left(\widehat{f}\right) = \frac{1}{n} \sum_{i=1}^n \ell\left(\widehat{f}\left(X_i\right), Y_i\right).$$

C'est un estimateur de $R(\widehat{f})$.

Plan

Introduction

Formalisation du problème

Pertes et risques

Biais et variance

Validation croisée

Biais et variance d'un estimateur I

▶ Dans le cas général (\mathcal{F}) , on cherche :

$$f^{\star} = \arg\min_{f \in \mathcal{F}} R(f)$$
.

▶ Dans le cas restreint $(S \subset \mathcal{F})$, on cherche :

$$f_{\mathcal{S}}^{\star} = \arg\min_{f \in \mathcal{S}} R(f)$$
.

La décomposition biais (erreur d'approximation)-variance (erreur d'estimation) s'écrit :

$$R\left(\widehat{f}_{\mathcal{S}}\right) - R\left(f^{\star}\right) = \underbrace{R\left(f_{\mathcal{S}}^{\star}\right) - R\left(f^{\star}\right)}_{\text{erreur d'approximation}} + \underbrace{R\left(\widehat{f}_{\mathcal{S}}\right) - R\left(f_{\mathcal{S}}^{\star}\right)}_{\text{erreur d'estimation}}.$$

Biais et variance d'un estimateur II

Biais et variance d'un estimateur III

Biais et variance d'un estimateur IV

En orange : $\widehat{y}^{(1)}, \dots, \widehat{y}^{(k)}$

Echantillons d'apprentissage et de test I

Echantillons d'apprentissage et de test II

Complexité I

Complexité II

Complexité III

Erreurs de prévision & complexité

Plan

Introduction

Formalisation du problème

Pertes et risques

Biais et variance

Validation croisée

Retour sur le risque empirique

- Le risque empirique sous-estime le risque.
- Cela peut conduire à du sur-apprentissage.
- Il existe plusieurs parades pour obtenir un estimateur non-biaisé du risque :
 - ▶ Utilisation de critères tels que l'AIC, le BIC, le C_p de Mallows.
 - Méthodes de rééchantillonage : validation croisée ou bootstrap.

Principe

- 1. Diviser aléatoirement les données en K blocs (égaux ou équivalents).
 - Le bloc k contient n_k observations : $n_k = \frac{n}{K}$ si n est un multiple de K.
- 2. Pour $k \in \{1, ..., K\}$:
 - 2.1 Retirer le bloc k de la base d'apprentissage.
 - 2.2 Estimer la fonction de prévision sur la base d'apprentissage.
 - 2.3 Calculer un critère d'erreur de prévision sur le bloc $k : CV_k$ (ex : MSE pour la régression).
- 3. Calculer le critère de validation croisée :

$$\mathsf{CV} = \sum_{k=1}^K \frac{n_k}{n} \, \mathsf{CV}_k \; .$$

Illustration I

Illustration II

Remarques

- ▶ Usuellement : K = 5 ou K = 10.
- ▶ Lorsque K = n : on parle d'estimateur « leave one out » (LOO)

Références

Hastie, T., R. Tibshirani et J. H. Friedman. 2009, *The elements of statistical learning. Data Mining, inference, and prediction*, 2^e éd., Springer Series in Statistics, Springer.

James, G., D. Witten, T. Hastie et R. Tibshirani. 2015, *An introduction to statistical learning with applications in R*, Springer Texts in Statistics, Springer.