Willingness-to-pay for Warnings: Main Tables

A. Gaduh, P. McGee and A. Ugarov

January 10, 2022

Research Question

- How much do people value alerts (signals) about potential preventable threats?
- How do signal's probabilistic characteristics affect the willingness-to-pay for it and the welfare gains from using it?
- Applications:
 - Natural disaster warnings (tornados, floods, earthquakes)
 - Medical tests for treatable conditions
 - Investing in research on likelihood of catastrophic events (rogue AI, global warming, pandemics)
- Note: most real-life applications provide little practice with using the signal

Overview of the Experiment

- An insurance experiment:
 - ullet Two states of the world: bad ($\omega=1$) and good ($\omega=0$)
 - Probability of a bad state is $P(\omega = 1) = \pi$
 - Bad state \implies loss of \$L
 - ullet A perfectly protective insurance can be purchased for $\$
- ullet Subject can purchase a signal s before purchasing the insurance:
 - A signal is characterized by its true-positive ($P(s=1|\omega=1)$) and true-negative rates ($P(s=0|\omega=0)$)

Research objective

How do signal characteristics affect the WTP?

WTP for Signals

If losses are rare $(\pi L << c)$

- Theoretically, what should be the WTP for a signal?
- If bad states are a priori rare ($\pi L << c$) \implies never protect without a signal
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(s=0|\omega=1)u(Y_0 - b^* - L) +$$
$$+(1-\pi)P(s=0|\omega=0)u(Y_0 - b^*) = (1-\pi)u(Y_0) + \pi u(Y_0 - L)$$

A risk-neutral agent then pays:

$$b^* = \pi(1 - P(s = 0|\omega = 1))L - P(s = 1)c$$

- The formulas become more complicated if subjects can protect without a signal (bad state are not rare enough)
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(0|1)u(Y_0 - b^* - L) + (1 - \pi)P(0|0)u(Y_0 - b^*) =$$

$$= \min[(1 - \pi)u(Y_0) + \pi u(Y_0 - L), u(Y_0 - c)]$$

A risk-neutral agent then pays:

$$b^* = \min[\pi L, c] - \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

Hypotheses

- Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates reduce the perceived value of the signal (WTP)
 - The opposite is true: subjects underreact to false positive and false negative rates and overpay for bad signals
- 2 Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates increase expected costs
 - No: FP and FN rates have no significant effects on costs besides their predicted theoretical effect
- Extra: how much of these disrepancies result from belief updating issues or risk aversion?

Risk Aversion Measurement

- Measure risk aversion based on blind protection choices:
 - Exclude obs from subjects switching back and forth
 - ullet The lowest probability for which a subject chooses to protect is π^*
 - \bullet Calculate their coefficient of relative risk aversion θ as the solution to the following equation:

$$\pi^* u(Y_0 - L; \theta) + (1 - \pi^*) u(Y_0; \theta) = u(Y_0 - c; \theta)$$

• Where u() is the CRRA utility function:

$$u(x;\theta) = \frac{x^{1-\theta} - 1}{1 - \theta}$$

• Note: risk lovers have $\theta < 0$

Abnormal Protection Responses

- Roughly one third of subjects (33 in the sample) switch from protection to no protection at least once
- But only 6% (6 subjects) switch more than once!
- If a switcher becomes non-switcher after a single change, calculate the risk aversion based on the total number of switches
- Left with only 7 subjects where this approach doesn't work and no risk aversion measurement is possible

CRRA Estimates

• Most subjects are moderately risk averse:

Probability (π^*)	θ	\overline{N}
Always protect	>2	1
0.1	2	10
0.15	1.216	13
0.2	0.573	29
0.25	0	16
0.3	-0.539	15
Never protect	<-0.539	14

WTP for the Signal

Theoretical value of the signal for risk-neutral subject:

$$b^* = \underbrace{\min[\pi L, c]}_{\text{BP costs}} - \underbrace{\pi(1 - P(s = 0 | \omega = 1))L}_{\text{False neg. costs}} - \underbrace{P(s = 1)c}_{\text{Protection costs}}$$

- Two potential approaches:
 - **①** Regress the discrepancy between WTP V and theoretical value b^* :

$$V-b^*=\alpha_0+\alpha_1 {\rm FN} \; {\rm costs}+\alpha_2 {\rm Prot.} \; {\rm costs}+\epsilon$$

Regress WTP directly on its components and account for censoring at 0:

$$V = \min[0, \beta_0 + \beta_1 \mathsf{FN} \; \mathsf{costs} + \beta_2 \mathsf{Prot}. \; \mathsf{costs} - \beta_3 \mathsf{BP} \; \mathsf{costs} + \gamma]$$

Note: protection costs include costs due to false positive signals

WTP Discrepancy Regressions

- Regressing the difference between WTP and theoretical value for a risk-neutral subject
- Coefficients should be zero

WTP Discrepancy 1

Table: WTP for Information (Discrepancy)

	(1)	(2)	(3)	(4)	(5)
False neg. rate	.877**	.879**	1.14*	1.14**	1.21**
	(2.2)	(2.5)	(1.9)	(2.1)	(2.1)
False pos. rate	.659	.648*	.183	.189	1.46**
	(1.6)	(1.8)	(0.3)	(0.3)	(2.5)
risk_averse=1			00341	173	
			(-0.0)	(-0.7)	
risk_averse $=1 imes$ False neg. rate			425	411	
			(-0.5)	(-0.6)	
risk_averse $=1 imes$ False pos. rate			.836	.692	
			(1.0)	(0.9)	
(first) $accur_bel=1$.186
					(0.9)
(first) accur_bel $=1 imes$ False neg. rate					709
					(-0.9)
(first) accur_bel $=1 imes$ False pos. rate					-1.75**
					(-2.2)
Constant	0283	.404***	0655	.417**	115
	(-0.3)	(3.1)	-(-0.4)	= (2.2)	£-0.8) ~

WTP Discrepancy 5 (by Risk Aversion)

Explaining the discrepancy between WTP and value with risk aversion:
 Table: WTP for Information (different risk aversion)

$\theta = 1.5$ $\theta = 2.5$ 0.201^{**} 0.0858 0.80 0.80	Heterogeneous (.162 (1.3)
(2.1) (0.8)	(1.3)
() ()	()
FFC*** 607***	
550 .087	.234***
(8.8) (10.2)	(3.2)
1.16*** -1.66***	0609
(-9.5) (-12.8)	(-0.4)
Yes Yes	Yes
744 744	594
0.30 0.35	0.12
1 (16*** -1.66*** (-9.5) (-12.8) Yes Yes 744 744

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Tobit Regressions

- Regressing the WTP on its theoretical components
- Censoring at 0 and at 5 USD
- Coefficients should be one in absolute value
- No constant in regressions

Actual Costs vs Theoretical Costs

- Calculate actual costs based on decisions made in the Informed Protection treatment and actual posterior probabilities of losses.
- ullet Each reported participant's strategy s is a tuple of numbers (r_w, r_b) representing protection responses correspondingly to white and black hints
- Then the expected cost of each decision are:

$$EC(s) = \pi(P(0|1)(1 - r_w) + P(1|1)(1 - r_b))L + P(s = 1)c$$
$$+ (P(s = 0)r_w + P(s = 1)r_b)c$$

 Regress expected costs on minimal theoretical costs and other signal characteristics

Actual Costs vs Theoretical Costs

 Prior prob and false negative rates disproportionally affect expected costs:

Table:	Actual Exp.	Costs vs	Theoretic	al Costs	
	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	FE	FE	FE
Optimal exp. costs	.979***	.549***	.987***	.733***	1.06***
	(13.1)	(2.9)	(11.5)	(6.0)	(10.2)
Prior prob.	689	-3.3**	607	-2.15**	18
	(-0.9)	(-2.5)	(-0.8)	(-2.5)	(-0.2)
False neg. rate		-2.48***		-1.88***	
		(-3.4)		(-3.1)	
False pos. rate		-1.04			.71
		(-1.4)			(1.0)
Constant	707***	542***	711***	637***	754***
	(-6.2)	(-4.5)	(-7.4)	(-6.6)	(-6.8)
Observations	743	743	743	743	743
Adjusted R^2	0.38	0.39	0.43	0.44	0.43

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Actual Costs - Theoretical Costs Discrepancy

Prior prob and false negative rates disproportionally affect expected costs:

lable: Discrepancy: actual-theoretical Costs					
(1)	(2)	(3)	(4)		
OLS	OLS	FE	FE		
.0438	.0142	.0336	.00252		
(0.4)	(0.1)	(0.3)	(0.0)		
0137	.0227	00554	.0221		
(-0.2)	(0.3)	(-0.1)	(0.3)		
857***	706***	858***	823***		
(-8.9)	(-6.4)	(-11.2)	(-8.9)		
No	Yes	No	Yes		
743	743	743	743		
-0.00	-0.00	-0.00	-0.00		
	(1) OLS .0438 (0.4) 0137 (-0.2) 857*** (-8.9) No	(1) (2) OLS OLS .0438 .0142 (0.4) (0.1)0137 .0227 (-0.2) (0.3)857***706*** (-8.9) (-6.4) No Yes 743 743	(1) (2) (3) OLS OLS FE .0438 .0142 .0336 (0.4) (0.1) (0.3)0137 .022700554 (-0.2) (0.3) (-0.1)857***706***858*** (-8.9) (-6.4) (-11.2) No Yes No 743 743 743		

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Actual Costs - Theoretical Costs Discrepancy 2

 Prior prob and false negative rates disproportionally affect expected costs:

Table: Discrepancy 2: actual-theoretical Costs				
	(1)	(2)	(3)	(4)
	OLS	OLS	FE	FE
False pos. rate	.443	.447	.657	.659
	(1.1)	(1.1)	(1.1)	(1.1)
False neg. rate	812**	814**	862*	864*
	(-2.0)	(-2.0)	(-1.9)	(-1.9)
Constant	803***	649***	823***	783***
	(-8.1)	(-6.3)	(-9.9)	(-8.1)
Prior prob dummies	No	Yes	No	Yes
Observations	743	743	743	743
Adjusted \mathbb{R}^2	0.00	0.00	0.01	0.01

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Value Formation

- What drives the difference between theoretical value and actual willingness-to-pay? Potential elements affecting the WTP:
 - Beliefs
 - Strategies
 - Preferences
- We recalculate the value after incorporating these elements one-by-one

Theoretical value Theoretical value for Theoretical value Reported for a risk-neutral reported beliefs and for actual value: optimal strategies: subject: strategies: **Beliefs** Strategy Preferences $V(a^*(\mu_R))$ V(a*(p*)) $V(a_R)$

Value Formation

- Accounting for reported beliefs or strategies does not make the theoretical value closer to the WTP
- WTP is still more correlated with the (completely) theoretical value rather than with values accounting for beliefs μ_R or strategies a_R
- My hypothesis: subjects approach the tasks independently and/or do not report beliefs truthfully

	$V(a^*(p^*))$	$V(a^*(\mu_R))$	$V(a_R)$	V_R
$V(a^*(p^*))$	1	0.52	0.54	0.34
$V(a^*(\mu_R))$	0.52	1	0.63	0.29
$V(a_R)$	0.54	0.63	1	0.33
V_R	0.34	0.29	0.33	1

Additional Complementary Tables

- Belief updating (slides are not updated)
- ② Determinants of informed protection responses
- Olassifying informed protection strategies
- Extra WTP tables

Belief Updating: Correlation

Table: Belief Elicitation: Belief vs Posterior					
	(1)	(2)	(3)		
	All	Not_honest	Good quiz		
Posterior prob.	.644***	.693***	.524***		
	(37.5)	(39.2)	(21.8)		
Constant	.175***	.15***	.236***		
	(21.7)	(19.8)	(23.4)		
Observations	1488	1260	992		
Adjusted R^2	0.53	0.60	0.38		

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Belief Updating: Decomposition

• Posterior probability $\mu = P(B|S=x)$ that the ball is black conditional on a hint S=x can be written as:

$$\ln\left(\frac{\mu}{1-\mu}\right) = \lambda_0 + S_B + S_W$$

- With $\lambda_0 \equiv \ln(p/(1-p))$ representing (transformed) prior beliefs
- And S_B , S_W describing the effect of new evidence:

$$S_B \equiv I(S = B) \ln(P(s = B|B)/P(s = B|W))$$

 $S_W \equiv I(S = W) \ln((1 - P(s = B|B))/(1 - P(s = B|W))$

Belief Updating: Decomposition

Table: Belief Elicitation: Decomposition					
	(1)	(2)	(3)		
	OLS	FE	Good quiz, FE		
lt_prior	.237***	.182***	.187***		
	(3.9)	(4.0)	(4.0)		
signalB	.426***	.865***	.992***		
	(5.1)	(6.4)	(6.7)		
signalW	.439***	0	0		
	(5.7)	(.)	(.)		
Constant		54***	632***		
		(-6.0)	(-6.6)		
Observations	332	332	288		
Adjusted ${\mathbb R}^2$	0.29	0.29	0.34		

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10, ** p < 0.05, *** p < 0.01

Informed Protection: Determinants

Table: Informed Protection						
	(1) (2) (3) (4)					
	All	All	Good quiz	Good quiz		
Informed protection						
Posterior prob.	2.15***	.662***	2.26***	.638***		
	(19.1)	(3.3)	(17.7)	(3.0)		
Prior prob.		1.13***		1.17***		
		(4.1)		(3.8)		
Gremlin says Black		1.34***		1.46***		
		(8.8)		(8.8)		
Constant	662***	-1.03***	717***	-1.1***		
	(-14.2)	(-11.2)	(-14.2)	(-10.9)		
Observations	1487	1487	1259	1259		
AIC	1467.25	1394.01	1211.48	1137.59		

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01

Informed Protection: Reacting to Own Beliefs or Posterior Probabilties?

Table: Informed Protection: Response to Reported Beliefs							
	(1)	(2)	(3)				
	All	All	Good quiz				
Informed protection							
Belief	2.18***	1.1***	1.39***				
	(18.5)	(7.3)	(7.9)				
Posterior prob.		1.52***	1.41***				
		(11.5)	(9.3)				
Constant	762***	881***	963***				
	(-14.3)	(-15.7)	(-15.9)				
Observations	1487	1487	1259				
AIC	1566.82	1413.23	1146.78				

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Do Subject's Beliefs Matter?

Table: Informed Protection: Response to Reported Beliefs					
	(1)	(2)	(3)		
	All	Accurate beliefs	Inaccurate beliefs		
Informed protection					
Belief	1.1^{***}	2.18***	.728***		
	(7.3)	(6.9)	(3.8)		
Posterior prob.	1.52***	.69**	1.55***		
	(11.5)	(2.1)	(10.6)		
Constant	881***	953***	807***		
	(-15.7)	(-12.8)	(-9.4)		
Observations	1487	744	743		
AIC	1413.23	603.49	798.79		

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Responding to Beliefs or Posterior Probabilities

- Calculate the subject-specific correlation between beliefs, posterior probabilities and protection responses
- Mann-Whitney U-test as a correlation measure with two "groups": signals answered with either protection or no protection responses
- No obvious clustering, but ∃ three groups:
 - Sophisticated: protection decisions closely follow their accurate beliefs
 - Clueless: protection decisions follow neither posteriors nor reported beliefs
 - Amenders: have inaccurate beliefs, but behave consistently with posterior probabilities (small group)

Informed Protection: Responding to Beliefs or Posterior Probabilities

WTP Discrepancy 6

• Adding blind protection costs

Table: WTP for Information (Discrepancy)							
	(1)	(2)	(3)	(4)			
	All	Risk-averse	Risk-loving	Switchers			
BP costs	519***	484***	534***	622**			
	(-9.3)	(-6.2)	(-6.6)	(-2.5)			
Pos. signal costs	.671***	.759***	.596***	.482			
	(8.0)	(6.8)	(4.5)	(1.4)			
False neg. costs	.475***	.423***	.542***	.371*			
	(7.3)	(4.6)	(5.2)	(1.7)			
Constant	.818***	.526**	.917***	2.06**			
	(4.6)	(2.1)	(3.6)	(2.5)			
N obs.	744	336	354	54			
AIC	2738	1206	1326	210			
p(coeffs=0)	3.83e-22***	2.00e-12***	8.46e-10***	.0958*			

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01

WTP Discrepancy 7

• Controlling for the prior probability of a black ball with dummies

Tuble: Will for information (Discrepancy)						
	(1)	(2)	(3)	(4)		
	All	Risk-averse	Risk-loving	Switchers		
False-neg. prob. x Loss	.044**	.0366	.0572**	.0162		
	(2.5)	(1.5)	(2.1)	(0.2)		
False-neg. prob. x Prot. cost	.13*	.176*	.0378	0058		
	(1.8)	(1.8)	(0.3)	(-0.0)		
Constant	.404***	.244	.417**	1.63**		
	(3.1)	(1.3)	(2.2)	(2.5)		
N obs.	744	336	354	54		
AIC	2686	1174	1303	213		
p(coeffs=0)	.00982***	.0542***	.109***	.969		

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01