

## Green Wave Speed Guidance on Signalized Road Networks

#### Md Fuad Hasan

Al Engineering of Autonomous Systems (M. Eng.) Technische Hochschule Ingolstadt

June 1, 2024

### Contents

- Introduction
- 2 Related Work
- Methodology
- 4 Results
- Comparison
- 6 Conclusion
- Acknowledgement



Figure: Green wave traffic phase diagram

### **Urban Traffic Challenges:**

- Arterial roadways handle most urban traffic.
- Intersections act as bottlenecks, causing congestion and accidents due to insufficient traffic capacity.

#### Solution:

Intelligent traffic control for urban arterial routes.



#### Overview:

- Optimize Flow: Coordinate traffic signals to create a "green wave" for continuous movement.
- **Speed Guidance:** Provide optimal speed recommendations to match green light timings.
- Reduce Stops: Minimize stops, lowering travel time, fuel consumption, and emissions.
- Enhance Traffic Efficiency: Improve overall traffic flow and reduce congestion, especially during peak hours.

### **Green Wave Strategy**

Goal: Maximize green wave bandwidth.

Method: Coordinate signal timing across intersections.

#### Limitations:

- Requires synchronized signals.
- Needs bidirectional symmetry.

### **Intelligent Vehicle Infrastructure Cooperation Systems**

- Provides real-time traffic flow information.
- Examples: eSafety (EU), Smartway (Japan), IntellidriveSM (US).
- Benefits: Enhanced safety and situational awareness.

### Variable Speed Limit (VSL) Control for Urban Traffic

Inspiration: Highway VSL systems.

**Method:** Regulates average vehicle speed using real-time data.

#### Benefits:

- Optimizes road capacity.
- Reduces travel time.
- Enhances overall traffic flow

### Overview of Variable Speed Algorithms for Urban Roads

Researchers have developed various speed guidance strategies to improve traffic flow, safety, and fuel efficiency.

#### **Key Contributions:**

- Marchau and Jiménez: Optimal speeds considering weather and road conditions.
- **Abu-Lebdeh:** Dynamic speed control to prevent congestion.
- Yang and Mandava: Speed advice to catch green lights.
- Barth: Minimize fuel consumption and emissions.
- Rakha: Compared fuel efficiency at signalized intersections.
- **Sun**: Speed guidance to reduce fuel consumption and emissions.

### Green Wave-based Speed Guidance Strategy (GWSGS):

- Helps vehicles pass through intersections without stopping.
- Calculates optimal speeds for high speed, acceleration, deceleration, and no guidance.

# Emission-driven Speed Guidance Strategy (EDSGS) Modules:

- Optimization Module: Minimizes fuel consumption and CO2 emissions.
- Ecological Index Calculation Module: Adjusts speeds dynamically.

#### **Process:**

 Real-time speed recommendations based on vehicle's current speed, signal phase, and distance to intersection.

### Deep Q-Network (DQN) based Speed Guidance Algorithm

- Uses Reinforcement Learning (RL) to optimize driving decisions.
- Trains in SUMO traffic simulator.
- Agent learns from environment interactions to maximize rewards (minimize travel time).

**Objective:** Reduce travel time on main roads.

**Approach:** Control car movements, not traffic light timings.

**Key Components:** 

• Reduced Travel Time: Efficient traffic flow.

• Improved Traffic Flow: Less congestion.

• **Enhanced Safety:** Smoother traffic movement.

#### Flowchart:



Figure: Flow chart of the distributed control strategy

#### The optimization model and parameter explanations are as follows:

Max v<sub>min</sub>

s.t.

$$x \le L \tag{2}$$

$$x \le \frac{v_{\text{max}}v}{v_{\text{max}} - v}R\tag{3}$$

$$v \ge v_{\min}$$
 (4)

$$G \ge \frac{x}{v_{\text{max}}}$$

$$(5)$$

$$(x, v, v_{\text{max}}, v_{\text{min}}, R, G, a \ge 0)$$

$$x, v, v_{max}, v_{min}, R, G, a \ge 0$$

| Variable             | Definition                                                                                      |
|----------------------|-------------------------------------------------------------------------------------------------|
| $oldsymbol{V}_{min}$ | he minimal velocity that the vehicle is required to decelerate, which is also the optimize goal |
| X                    | length from the control point to the intersections                                              |

Table: Definition of the Variables

- ullet Among these variables, Vmin and x are not fixed.
- The optimization solution can be easily found using software like LINGO

| Parameter | Definition                                           |
|-----------|------------------------------------------------------|
| $V_{max}$ | the maximal velocity that a vehicle can attain       |
|           | under the legal speed limits                         |
| V         | the desire velocity the vehicle is willing to attain |
|           | without control                                      |
| R         | the red light time of the timing model of current    |
|           | link                                                 |
| G         | the green light time of the timing model of cur-     |
|           | rent link                                            |
| а         | the equivalent deceleration of the vehicle           |

Table: Table: Definition of the parameters

# Optimization Model Constraints Constraint (1):

- Based on Newton's laws of motion.
- Vehicle must slow down to avoid red light.

### Constraint (2):

- Geographical limitation.
- Control distance must not exceed road length between intersections.

### Constraints (3) and (4):

- Ensure vehicles slow down to avoid red lights.
- Controlled vehicles must be slower than their previous speed.

### Timing Constraint:

Controlled time should not exceed one signal cycle duration.

-Simulates urban traffic and public transit operations.



Figure: Map of the simulation network

-Static Timing Plan: Fixed intervals for traffic light changes at four intersections.

| Intersection Red- |           | Green-     | Yellow-    |
|-------------------|-----------|------------|------------|
| No                | time(Sec) | light(Sec) | light(Sec) |
| 1                 | 30        | 27         | 3          |
| 2                 | 40        | 22         | 2          |
| 3                 | 65        | 22         | 3          |
| 4                 | 20        | 42         | 3          |

#### **Analysis:**

- Compare controlled vs. uncontrolled traffic.
- Analyze data from the last 100 vehicles.
- Plot vehicle paths and measure travel time reduction.



Figure: Distribution of TTR under different flow rates

- Traffic control algorithm optimizes flow rates and reduces travel times.
- Controlling all vehicles from the start maximizes time savings.
- Even during heavy traffic, the algorithm prevents queues.

| Traffic flow    | Average  |  |
|-----------------|----------|--|
| rate(Vehicle/h) | TTR(Sec) |  |
| 1000            | 7.310    |  |
| 1200            | 6.778    |  |
| 1800            | 5.506    |  |
| 2700            | 10.216   |  |
| 3000            | 10.194   |  |
| 3600            | 18.942   |  |

Table: The TTR different traffic flow rate

- More vehicles lead to congestion without control, causing longer stays in the link.
- The algorithm adjusts vehicle trajectories to avoid red light time, as shown in the plotted signal time plan and vehicle trajectories.



Figure: Trajectories of two specified vehicles

# Comparison

### Comparison

- **DQN-based:** Uses RL (DQN) to optimize travel time by training vehicles to make optimal speed decisions.
- **EDSGS:** Minimizes emissions by adjusting speeds based on real-time data and predefined constraints
- GWSGS: Coordinates vehicle speeds to match green waves, ensuring continuous flow through intersections.
- Each approach offers unique advantages for optimizing signalized road networks.

### **Conclusion**

### Conclusion

- Greatly reduces travel time according to simulation results.
- Minimizes braking and acceleration, potentially extending vehicle lifespan and benefiting the environment.
- Cost-effective option for road maintenance as it doesn't require major infrastructure investment.
- Shows promise in reducing queues and congestion, particularly during peak traffic.
- Alternative to traditional green wave strategies.
- Can optimize signal timing plans in real-time when combined with actuated controllers.

# Acknowledgement

## Acknowledgement

- Appreciation extended to Yang Bowen and Hu Jianming for their significant contributions.
- Inspired by their pioneering research, my study builds upon their foundation.
- Their insightful findings and innovative approaches shaped my research direction and methodology.

# Any Questions?

# Thank you!



Figure: Full paper link