SET-3G[™] High-Strength Epoxy Adhesive

SIMPSON Strong-Tie

SET-3G Cure Schedule^{1,2}

Concrete To	emperature	Gel Time	Cure Time
(°F)	(°C)	(min.)	(hr.)
40	4	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

For SI: 1°F = (°C x %) + 32.

- 1. For water-saturated concrete and water-filled holes, the cure times shall be doubled.
- For installation of anchors in concrete where the temperature is below 70°F (21°C), the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

SET-3G Typical Properties

	December	Class B	Class C	Test
	Property	(40°-60°F)	(>60°F)	Method
Consistency		Non-sag	Non-sag	ASTM C881
	Hardened to Hardened Concrete, 2-Day Cure ¹	3,700 psi	3,300 psi	
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	3,850 psi	3,350 psi	ASTM C882
	Fresh to Hardened Concrete, 14-Day Cure ²	2,750 psi	2,750 psi	1
Compressive Yield Strength, 7-Day Cure ²		13,000 psi	15,350 psi	ASTM D695
Compressive Modulus, 7-Day	Cure ²	650,000 psi	992,000 psi	ASTM D695
Heat Deflection Temperature,	7-Day Cure ²	147°F	ASTM D648	
Glass Transition Temperature,	7-Day Cure ²	149°F	ASTM E1356	
Decomposition Temperature,	24-Hour Cure ²	500°F	ASTM E2550	
Water Absorption, 24-Hours,	7-Day Cure ²	0.1	13%	ASTM D570
Shore D Hardness, 24-Hour C	Cure ²	3	ASTM D2240	
Linear Coefficient of Shrinkage, 7-Day Cure ²		0.002	ASTM D2566	
Coefficient of Thermal Expans	sion ²	2.3 x 10	ASTM C531	

- 1. Material and curing conditions: Class B at $40^{\circ} \pm 2^{\circ}$ F, Class C at $60^{\circ} \pm 2^{\circ}$ F.
- 2. Material and curing conditions: 73° ± 2°F.

SET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Characteristic	Symbol	Units	Nominal Anchor Diameter d _a (in.) / Rebar Size							
Giididetti isite	Зуньон		3%/#3	1/2 / #4	%/#5	34 / #6	7 ₈ / #7	1/#8	1¼/#10	
		Installa	ation Informa	ation						
Drill Bit Diameter for Threaded Rod	d _{hole}	in.	7/16	9/16	11/16	7/8	1	11/8	1%	
Drill Bit Diameter for Rebar	d _{hole}	in.	1/2	5/8	3/4	7/8	1	11/8	1%	
Maximum Tightening Torque	T _{inst}	ftlb.	15	30	60	100	125	150	200	
Minimum Embedment Depth	h _{ef, min}	in.	2%	23/4	31/8	31/2	3¾	4	5	
Maximum Embedment Depth	h _{ef, max}	in.	71/2	10	121/2	15	17½	20	25	
Minimum Concrete Thickness	h _{min}	in.	h _{ef} -	+ 1¼			h _{ef} + 2d _{hole}			
Critical Edge Distance	Cac	in.	See footnote 2							
Minimum Edge Distance	Cmin	in.	13/4 23/4							
Minimum Anchor Spacing	Smin	in.	1	21/2			3		6	

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $2.c_{ac} = h_{ef}(\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})], \text{ where:}$

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f'_c)^{0.5}/(\pi \times d_a))$

h =the member thickness (inches)

 h_{ef} = the embedment depth (inches)

 d_a = nominal anchor diameter

^{*} See p. 12 for an explanation of the load table icons.

SET-3G Tension Strength Design Data for Threaded Rod^{1,8}

ſ		1
-	100 0000	۱
-	7 4 NAC-	ł
-	LW	ı

				[<u></u>			Nominal Rod Diameter (in.)					
	Charac	cteristic	Symbol	Units	3/8	1/2	5%	3/4	7/8	1	11/4	
		Steel Stren	gth in Tens	ion								
Min	imum Tensile Stress Area		A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Ten	sion Resistance of Steel — ASTM F15	554, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200	
Ten	sion Resistance of Steel — ASTM F15	554, Grade 55			5,850	10,650	16,950	25,050	34,650	45,450	72,675	
	sion Resistance of Steel — ASTM A19	,			9,750	17,750	28,250	41,750	57,750	75,750	121,125	
	sion Resistance of Steel — Stainless St es 304 and 316)	eel ASTM A193, Grade B8 and B8M	N _{sa}	lb.	4,445	8,095	12,880	19,040	26,335	34,540	55,235	
Tens	sion Resistance of Steel — Stainless	Steel ASTM F593 CW (Types 304 and 316)			7,800	14,200	22,600	28,390	39,270	51,510	82,365	
Ten	sion Resistance of Steel — Stainless	Steel ASTM A193, Grade B6 (Type 410)			8,580	15,620	24,860	36,740	50,820	66,660	106,59	
Stre	ngth Reduction Factor for Tension —	Steel Failure	φ	_				0.755				
		Concrete Breakout Strength in T	ension (2,5	00 psi :	≤ f' _c ≤ 8,0)00 psi)						
Effe	ctiveness Factor for Cracked Concrete	9	K _{C,CT}	_				17				
Effe	ctiveness Factor for Uncracked Concr	ete	K _{c,uncr}	_				24				
Stre	ngth Reduction Factor — Concrete B	reakout Failure in Tension	φ	_				0.65 ⁶				
		Bond Strength in Tension ((2,500 psi ≤	≤ f' _C ≤ 8	,000 psi) ⁷							
Min	imum Embedment	h _{ef,min}	in.	2%	23/4	31/8	31/2	3¾	4	5		
Max	rimum Embedment		h _{ef,max}	in.	71/2	10	121/2	15	171/2	20	25	
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128	
on	Tomporature Hange A	Characteristic Bond Strength in Uncracked Concrete ⁹	₹k,uncr	psi	2,357	2,260	2,162	2,064	1,967	1,868	1,672	
Continuous Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹ Characteristic Bond Strength	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936	
sul sn		in Uncracked Concrete ⁹	τ _{k,uncr}	psi	1,957	1,876	1,795	1,713	1,632	1,551	1,388	
ont	Anchor Category	Dry Concrete	-	_				1				
Ē	Strength Reduction Factor	Dry Concrete	Фdry,ci	_				0.6510				
ၓ	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole	_	_	;	3			2			
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	Фwet,ci	_	0.4	15 ¹⁰			0.5510			
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128	
_		Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	2,192	2,102	2,162	2,064	1,967	1,868	1,672	
Periodic Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,117	1,082	1,125	1087	1,050	1,012	936	
lnsp		Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	1,820	1,744	1,795	1,713	1,632	1,551	1,388	
Anchor Category Dry Concrete		,			2			1				
Strength Reduction Factor Dry Concrete		φ _{dry,pi}	<u> </u>	0.5	5 ¹⁰			0.6510				
ъ.	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole	_	_				3				
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	фwet,pi	_	0.4510							
Red	uction Factor for Seismic Tension		CL _{N,Seis} 11	_	1.0	0.9	1.0	1.0	1.0	1.0	1.0	

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.
- Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .
- Bond strength values shown are for normal-weight concrete having a compressive strength of f'_C = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f'_C/2,500)^{0.25} for uncracked concrete and a factor of (f'_C/2,500)^{0.24} for cracked concrete.
- 8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 9. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of φ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of φ.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N.seis}$.

Adhesive Anchors

^{*} See p. 12 for an explanation of the load table icons.

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC

SET-3G™ Design Information — Concrete

SET-3G Tension Strength Design Data for Rebar^{1,8}

					Rebar Size						
		Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Steel Str	rength in Te	nsion							
M	inimum Tensile Stress Area		A_{se}	in.2	0.11	0.20	0.31	0.44	0.60	0.79	1.27
Te	Tension Resistance of Steel — Rebar (ASTM A615 Grade 60)		N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,30
Te	Tension Resistance of Steel — Rebar (ASTM A706 Grade 60)			ID.	8,800	16,000	24,800	35,200	48,000	63,200	101,60
S	rength Reduction Factor for T	ension — Steel Failure	φ	_				0.755			
		Concrete Breakout Strength i	n Tension (2,500 ps	i ≤ f' _C ≤ 8,	,000 psi)					
Ef	fectiveness Factor for Cracke	d Concrete	K _{C,C}	_				17			
Ef	fectiveness Factor for Uncrac	ked Concrete	K _{C,UNCT}	_				24			
St	rength Reduction Factor — (Concrete Breakout Failure in Tension	ϕ					0.656			
		Bond Strength in Tensi	on (2,500 p			ŕ		I	ı	ı	
	inimum Embedment		h _{ef,min}	in.	2%	23/4	31/8	3½	3¾	4	5
M	aximum Embedment		h _{ef,max}	in.	7½	10	121/2	15	17½	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
=	romporataro nango n	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,269	2,145	2,022	1,898	1,774	1,651	1,403
pectic	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
Continuous Inspection	Temperature hange b	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,883	1,781	1,678	1,575	1,473	1,370	1,165
tinuo	Anchor Category	Dry Concrete	<u> </u>	_				1			
S	Strength Reduction Factor	Dry Concrete	ф _{dry,ci}					0.6510			
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole				3			2		
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	φ _{wet,ci}	_	0.4	15 ¹⁰			0.5510		
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	$\tau_{k,cr}$	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
	Temperature Range A	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,110	1,995	2,022	1,898	1,774	1,651	1,403
ection	Temperature Denge P34	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,117	1,082	1,125	1,087	1,050	1,012	936
Periodic Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	1,751	1,656	1,678	1,575	1,473	1,370	1,165
riodi	Anchor Category Dry Concrete		_	_	1	2			1		
Pe	Strength Reduction Factor	Dry Concrete	φ _{dry,pi}	_	0.5	55 ¹⁰			0.6510		
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole	_	_				3			
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	φ _{wet,pi}	_				0.4510			
R	eduction Factor for Seismic Te	ension	α _{N,seis} ¹¹	_	1.0	1.0	1.0	1.0	1.0	1.0	1.0

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.
- 3. Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
 Long-term temperatures are roughly constant over significant periods of time.

The tabulated value of φ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used.

- In the tabulated value of φ applies when the load combinations of ACI 318-14 5.3 of ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ .
- 6. The tabulated value of φ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of φ.
- Bond strength values shown are for normal-weight concrete having a compressive strength of f'_c = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f'_c/2,500)^{0.36} for uncracked concrete and a factor of (f'_c/2,500)^{0.25} for cracked concrete.
- 8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 9. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of φ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of φ.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

Strong-Tie

SET-3G[™] Design Information — Concrete

SET-3G Shear Strength Design Data for Threaded Rod¹

Characteristic	Symbol	Units	Nominal Rod Diameter (in.)							
Characteristic		Units	3/8	1/2	5%	3/4	7/8	1	11/4	
	Steel S	trength in St	near		`					
Minimum Shear Stress Area	Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,715	4,940	7,865	11,625	16,080	21,090	33,720	
Shear Resistance of Steel — ASTM F1554, Grade 55	V _{sa}	lb.	3,510	6,390	10,170	15,030	20,790	27,270	43,605	
Shear Resistance of Steel — ASTM A193, Grade B7			5,850	10,650	16,950	25,050	34,650	45,450	72,675	
Reduction factor for Seismic Shear — Carbon Streel	α _{V,seis} ⁴	-			0.75			1.0		
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)			2,665	4,855	7,730	11,425	15,800	20,725	33,140	
Shear Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)	V _{sa}	lb.	4,680	8,520	13,560	17,035	23,560	30,905	49,420	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410)			5,150	9,370	14,915	22,040	30,490	40,000	63,955	
Reduction factor for Seismic Shear — Stainless Steel	α _{V,seis} ⁴	_	0.	80		0.75		1	.0	
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.652				
C	oncrete Brea	kout Strengt	th in Shear							
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	l _e	in.		Mi	n. of <i>h_{ef}</i> and	d 8 times ar	nchor diame	eter		
Strength Reduction Factor for Shear — Breakout Failure	φ	_	0.703							
	Concrete Pry	out Strength	in Shear/							
Coefficient for Pryout Strength	k _{cp}	in.		1.0 for h_{ef} < 2.50"; 2.0 for h_{ef} ≥ 2.50"						
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.703				

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

^{2.} The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

^{3.} The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .

^{4.} The values of V_{SA} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{SA} must be multiplied by α_{VSeis} for the corresponding anchor steel type.

SET-3G Shear Strength Design Data for Rebar¹

Ob	0	11-11-			Nominal	Rod Diam	eter (in.)		
Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10
Ste	el Strength	in Shea	r						
Minimum Shear Stress Area	A _{se}	in.2	0.110	0.200	0.310	0.440	0.600	0.790	1.270
Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V	3/ 11	5,940	10,800	16,740	23,760	32,400	42,660	68,580
Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	$ V_{sa}$	lb.	5,280	9,600	14,880	21,120	28,800	37,920	60,960
Reduction Factor for Seismic Shear — Rebar (ASTM A615 Grade 60)	4			0.60				0.8	
Reduction Factor for Seismic Shear — Rebar (ASTM A706 Grade 60)	CL _{V,Seis} * -		0.60					0.8	
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.65 ²			
Concrete	Breakout S	trength in	n Shear						
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing Length of Anchor in Shear	I _e	in.		Min	. of <i>h_{ef}</i> and	l 8 times a	nchor diam	neter	
Strength Reduction Factor for Shear — Breakout Failure	φ	_	0.70 ³						
Concrete	Concrete Pryout Strength in Shear								
Coefficient for Pryout Strength	k _{cp}	in.	1.0 for h_{ef} < 2.50"; 2.0 for h_{ef} > 2.50"						
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.703			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 3. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .
- 4. The values of V_{S2} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{S2} must be multiplied by α_{VSalo} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/set3g.

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

Adhesive Anchors

SET-3G is code listed under IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-4057.

In March 2020, the evaluation report was updated for SET-3G to be an equivalent to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

SET-3G Development Length for Rebar Dowel

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC

02,001	E1-30 Development Lengti not nepai bower											
Dahan	Drill Bit	Clear Cover,		Development Length, in. (mm)								
Rebar Size	Diameter (in.)	in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete					
#3	1/2	1.125 (29)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)					
#4	5/8	1.125 (29)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)					
#5	3/4	1.125 (29)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)					
#6	7/8	1.125 (29)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)					
#7	1	2.30 (58)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)					
#8	11/8	2.30 (58)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)					
#9	1%	2.30 (58)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)					
#10	1%	2.30 (58)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)					
#11	13/4	2.30 (58)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)					

^{1.} Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in Seismic Design Category C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

^{2.} Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_y = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by $f_y/60,000$ psi.

^{3.} Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

^{4.} Tabulated values assume bottom cover less that 12" cast below rebars ($\Psi_1 = 1.0$).

Uncoated rebar must be used.

^{6.} The value of Ktr is assumed to be 0. Refer to ACI318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.