HONGTAO ZHONG

hongtaoz@stanford.edu https://hongtaozhong.github.io/ Department of Mechanical Engineering, Stanford University Stanford, CA, US

RESEARCH INTERESTS

My research focuses on **understanding**, **modeling**, **and controlling** novel chemical and energy conversions which are powered by renewable electricity and sustained by plasmas, lasers, and catalysts. **Currently**, **I** am **especially excited about** research that can efficiently convert renewable electricity into value-added chemicals such as hydrogen and fertilizers. **My goal** is to enable transformative non-equilibrium technologies for chemical manufacturing and advanced propulsion. **Technical contribution areas** include low-temperature plasma sources, plasma chemistry for energy and sustainability, laser diagnostics, gas-phase kinetics, and new concepts in combustion.

ACADEMIC EXPERIENCE

Stanford University, California, US

Postdoctoral Researcher in Mechanical Engineering Nov 2022 - Present

Supervisor: Prof. Mark Cappelli at Stanford Plasma Physics Lab

Research project: Electrification of carbon capture, hydrogen generation, and nitrogen fixation

EDUCATION

Princeton University, New Jersey, US

PhD in Mechanical & Aerospace Engineering

Oct 2022

Advisor: Prof. Yiguang Ju at Princeton Combustion & Low Carbon Energy Conversion Lab Dr. Mikhail Shneider at Princeton Applied Physics Lab

Dissertation title: Chemical kinetics and instability in non-equilibrium reactive plasmas

Tsinghua University, Beijing, CN

Bachelor of Engineering in Energy & Power Engineering	Jun 2017
Bachelor of Economics	Jun 2017

HONORS AND AWARDS

• Finalist, Stanford Energy Fellowship	2023
• Recipient, Student Presentation Award, 2 nd Energy and Informatics International Forum	2022
• Finalist, Princeton Honorific Fellowship	2022
• Recipient, Distinguished Paper Award, 38 th International Symposium on Combustion	2021
• Recipient, Graduate School Teaching Award, Princeton University	2021
• Recipient, School of Engineering and Applied Science (SEAS) Award for Excellence	2020
• Recipient, Britt and Eli Harari Fellowship, Princeton University	2020
• Recipient, Gaseous Electronics Conference Student Travel Grant	2019
• Recipient, Sayre Award, Princeton University	2018
• Recipient, King Peh Kwoh Fellowship, Princeton University	2017

BOOK CHAPTERS

B1. Y. Ju, X. Mao, J. K. Lefkowitz, and **H. Zhong**. Plasma-assisted hydrogen combustion. In *Hydrogen for Future Thermal Engines*, pages 429–458. Springer, 2023 link

PEER-REVIEWED JOURNAL PUBLICATIONS

Complete list of publications: Google Scholar

J16. H. Zhong, X. Mao, N. Liu, Z. Wang, T. Ombrello, and Y. Ju. Understanding non-equilibrium N₂O/NOx chemistry in plasma-assisted low-temperature NH₃ oxidation. Combustion and Flame, 256:112948, 2023 link

- **J15**. **H. Zhong**, X. Yang, X. Mao, M. N. Shneider, I. V. Adamovich, and Y. Ju. Plasma thermal-chemical instability of low-temperature dimethyl ether oxidation in a nanosecond-pulsed dielectric barrier discharge. *Plasma Sources Science and Technology*, 31(11):114003, 2022 link
- **J14**. **H. Zhong**, M. N. Shneider, X. Mao, and Y. Ju. Dynamics and chemical mode analysis of plasma thermal-chemical instability. *Plasma Sources Science and Technology*, 30(3):035002, 2021 link
- J13. H. Zhong, X. Mao, A. C. Rousso, C. L. Patrick, C. Yan, W. Xu, Q. Chen, G. Wysocki, and Y. Ju. Kinetic study of plasma-assisted n-dodecane/O₂/N₂ pyrolysis and oxidation in a nanosecond-pulsed discharge. *Proceedings of the Combustion Institute*, 38(4):6521–6531, 2021 link
- J12. H. Zhong, C. Yan, C. C. Teng, G. Ma, G. Wysocki, and Y. Ju. Kinetic study of reaction C₂H₅ + HO₂ in a photolysis reactor with time-resolved Faraday rotation spectroscopy. *Proceedings of the Combustion Institute*, 38(1):871–880, 2021 link
- **J11**. **H. Zhong**, C. Yan, C. C. Teng, T. Y. Chen, G. Wysocki, and Y. Ju. Kinetic studies of excited singlet oxygen atom O(¹D) reactions with ethanol. *International Journal of Chemical Kinetics*, 53(6):688–701, 2021 link
- **J10**. **H. Zhong**, M. N. Shneider, M. S. Mokrov, and Y. Ju. Thermal-chemical instability of weakly ionized plasma in a reactive flow. *Journal of Physics D: Applied Physics*, 52(48):484001, 2019 link
 - **J9**. X. Mao, **H. Zhong**, Z. Wang, T. Ombrello, and Y. Ju. Effects of inter-pulse coupling on nanosecond pulsed high frequency discharge ignition in a flowing mixture. *Proceedings of the Combustion Institute*, 39(4):5457–5464, 2023 link
- J8. X. Mao, H. Zhong, T. Zhang, A. Starikovskiy, and Y. Ju. Modeling of the effects of non-equilibrium excitation and electrode geometry on H₂/air ignition in a nanosecond plasma discharge. Combustion and Flame, 240:112046, 2022 link
- J7. N. Liu, H. Zhong, T. Y. Chen, Y. Lin, Z. Wang, and Y. Ju. Sensitive and single-shot OH and temperature measurements by femtosecond cavity-enhanced absorption spectroscopy. *Optics Letters*, 47(13):3171–3174, 2022 link
- J6. T. Y. Chen, X. Mao, H. Zhong, Y. Lin, N. Liu, B. M. Goldberg, Y. Ju, and E. Kolemen. Impact of CH₄ addition on the electron properties and electric field dynamics in a Ar nanosecond-pulsed dielectric barrier discharge. *Plasma Sources Science and Technology*, 31(12):125013, 2023 link
- J5. N. Liu, T. Y. Chen, H. Zhong, Y. Lin, Z. Wang, and Y. Ju. Femtosecond ultraviolet laser absorption spectroscopy for simultaneous measurements of temperature and OH concentration. Applied Physics Letters, 120(20):201103, 2022 link
- J4. C. C. Teng, C. Yan, A. Rousso, H. Zhong, T. Chen, E. J. Zhang, Y. Ju, and G. Wysocki. Time-resolved HO₂ detection with Faraday rotation spectroscopy in a photolysis reactor. *Optics Express*, 29(2):2769–2779, 2021 link
- **J3**. C. Yan, X. Yang, H. Zhao, **H. Zhong**, G. Ma, Y. Qi, B. E. Koel, and Y. Ju. Controlled dy-doping to nickel-rich cathode materials in high temperature aerosol synthesis. *Proceedings of the Combustion Institute*, 38(4):6623–6630, 2021 link
- **J2**. C. Yan, C. C. Teng, T. Chen, **H. Zhong**, A. Rousso, H. Zhao, G. Ma, G. Wysocki, and Y. Ju. The kinetic study of excited singlet oxygen atom O(¹D) reactions with acetylene. *Combustion and Flame*, 212:135–141, 2020 link
- **J1**. K. Huang, D. M. Valiev, **H. Zhong**, and W. Han. Numerical study of the influence of the thermal gas expansion on the boundary layer flame flashback in channels with different wall thermal conditions. *Energies*, 16(4):1844, 2023 link

- **O7**. H. Xie, N. Liu, Q. Zhang, **H. Zhong**, ..., Y. Ju, and L. Hu. A stable atmospheric pressure plasma for extreme-temperature synthesis. *Nature*, Accepted, 2023
- O6. X. Mao*, H. Zhong*, N. Liu, Z. Wang, T. Ombrello, and Y. Ju. Ignition enhancement and NO_x formation of NH₃/air mixtures by non-equilibrium plasma discharge. *Combustion and Flame*, Accepted, 2023 (* Equal contribution)
- O5. T. Yong*, H. Zhong*, E. Pannier, C. Laux, and M. A. Cappelli. High-pressure CO₂ dissociation with nanosecond pulsed discharges. *Plasma Sources Science and Technology*, Accepted, 2023 (* Equal contribution) link
- **O4**. **H. Zhong**, D. Piriaei, J. Kang, G. Liccardo, B. Wang, M. Cargnello, and M. A. Cappelli. Non-equilibrium regeneration of sorbent materials for carbon capture. In preparation
- **O3**. **H. Zhong**, C. Yan, G. Wysocki, and Y. Ju. Kinetic studies of excited singlet oxygen atom $O(^1D)$ reactions with dimethyl ether. In preparation
- **O2**. N. Liu, **H. Zhong**, T. Akiba, X. Mao, and Y. Ju. Effect of water addition on plasma thermal-chemical instability of low temperature methane oxidation. In preparation
- O1. T. Chen, N. Liu, H. Zhong, X. Mao, B. Goldberg, C. Kliewer, E. Kolemen, and Y. Ju. Quantitative electric field dynamics of individual plasma breakdown events measured at 500 million frames per second. In preparation

INVITED TALKS

T5. Understanding non-equilibrium chemistry for carbon capture and utilization International Online Plasma Seminar (IOPS)	Dec 2023
T4. Chemical kinetics and instability in non-equilibrium reactive plasmas Stanford University Plasma Science and Technology Seminar	Feb 2023
T3. Electrified non-equilibrium chemical and energy conversion Peking University College of Engineering	Jan 2023
T2 . Kinetic studies of excited singlet oxygen atoms $O(^{1}D)$ reactions with ethanol 6^{th} International Flame Chemistry Workshop	Aug 2022
T1. Non-equilibrium chemical conversion for sustainable energy University of Michigan - Shanghai Jiao Tong University Joint Institute	Mar 2022

CONFERENCE PRESENTATIONS

- C17. Hydrogen production from water vapor in atmospheric DBD plasmas. In APS Annual Gaseous Electronics Meeting, 2023 link
- C16. Kinetics of high-pressure CO_2 splitting in nanosecond pulsed discharges. In APS Annual Gaseous Electronics Meeting, 2023 link
- C15. Non-equilibrium CO_2 regeneration from sorbent materials. In APS Annual Gaseous Electronics Meeting, 2023 link
- C14. Kinetic studies of low-temperature ammonia oxidation in a nanosecond repetitively-pulsed discharge. In AIAA Scitech 2023 Forum, page 1694, 2023 link
- C13. Effects of inter-pulse coupling on nanosecond pulsed high frequency discharge ignition in a flowing mixture. In 39th International Symposium on Combustion, 2022
- C12. Two-dimensional modeling of plasma dynamic contraction in the positive column of glow discharge. In AIAA Scitech 2022 Forum, page 1109, 2022 link
- C11. Two-dimensional modeling of dynamic contraction in chemically reactive non-equilibrium plasma flow. In APS Annual Gaseous Electronics Meeting, 2021 link

- C10. Kinetic studies of excited singlet oxygen atom O(¹D) reactions with ethanol. In *DOE Low Temperature Plasma Centers and User Facilities Annual Meeting*, 2021
 - C9. Stability analysis of thermal-chemical instability in a weakly ionized plasma. In AIAA Scitech 2021 Forum, page 1702, 2021 link
 - C8. Kinetic study of reaction $C_2H_5 + HO_2$ in a photolysis reactor with time-resolved Faraday rotation spectroscopy. In 38^{th} International Symposium on Combustion, 2021
- C7. Chemical mode analysis of plasma thermal-chemical instability. In 12th US National Combustion Meeting, 2021
- **C6**. Contraction and stability of the positive column of a self-sustained glow discharge in a reactive mixture. In *APS Annual Gaseous Electronics Meeting*, pages UR1–004, 2020 link
- C5. Thermal-chemical plasma instability in a reacting flow. In AIAA Scitech 2020 Forum, page 1661, 2020 link
- C4. Dynamic contraction of the positive column of a self-sustained glow discharge in a reacting flow. In APS Annual Gaseous Electronics Meeting, pages UF2–004, 2019 link
- C3. An analysis of a new thermal-chemical mechanism for plasma combustion instability in plasma assisted ignition. In 11th US National Combustion Meeting, 2019
- C2. Kinetic studies of excited singlet oxygen atoms O(¹D) reactions with fuels in plasma assisted combustion. In AIAA Scitech 2019 Forum, page 2065, 2019 link
- C1. Direct measurements of branching ratios of O(¹D) reactions with alcohols. In 15th International Conference on Fluid Dynamics, 2018

TEACHING ASSISTANT EXPERIENCE

MAE 335 Fluid Dynamics

Fall 2020, Virtual

• Graded problem sets, and held online Q&A sessions

MAE 426 Rocket and Air-Breathing Propulsion Technology

Spring 2020, Hybrid

- Designed and graded problem sets, held Q&A sessions and guided final design project
- Honored with Graduate School Teaching Award

MAE 221 Thermodynamics

Fall 2019, In-Person

• Designed and graded problem sets, led weekly precepts and Q&A sessions

MAE 340 Junior Independent Work

Spring 2019, In-Person

• Supervised students to develop a semester-long design project.

GRANT/PROPOSAL EXPERIENCE

 ${\bf NSF}$ ${\bf CBET}$ "Highly Sensitive ${\rm HO_2}$ Diagnostics and Oxidation Kinetics of Oxygenated Fuels at High Pressure"

PI: Yiguang Ju, Gerard Wysocki, \$350,000

2017-2018

• Provided experimental data for annual progress reports.

NSF CBET "Control of Volumetric Ignition and Thermal-Chemical Instability in Weakly Ionized Plasma for High Pressure Ultra-lean Combustion"

PI: Yiguang Ju, Mikhail Shneider, \$360,000

2019-2023

- Provided preliminary data and helped write grant proposal
- Helped plan and execute project

NSF EFRI DCheM "Engineering Interfaces between Plasma, Catalysts, and Reactor Design for Natural Gas Conversion to Liquid Products"

PI: Michele Sarazen, Xiaolin Zheng, Yiguang Ju, Lang Yuan, Tanvir Farouk \$2,000,000 2020-2024

- Provided preliminary data for preparing grant proposal
- Helped plan and execute project

DOE Collaborative Research Center for "Studies of Plasma-Assisted Combustion and Plasma Catalysis"

PI: Igor Adamovich, Yiguang Ju, Bruce Koel, \$3,000,000

2019-2024

- Provided preliminary data for preparing grant proposal
- Helped plan and execute project. Presented poster to funding agency at DOE annual meeting

MENTORING EXPERIENCE

Research Mentor, Combustion and Low Carbon Energy Conversion Lab at Princeton

- Vivian S Cheng (Stevens Institute of Technology, ChemE BS), "Kinetic mechanism of excited oxygen atom with methanol" Summer 2018
- Thomas McBride, Yousuf Tariq-Shuaib (Princeton, ME BS), "Development of a non-equilibrium plasma assisted rotating detonation engine" Summer 2022
- Zijian Sun (Princeton, ME PhD), "HO₂ measurements in a photolysis flow reactor" 2022-2023
- Takaki Akiba (Tohuku University, ME PhD), "Kinetics of water addition on low temperature plasma-assisted methane oxidation" 2022-2023

Research Mentor, Stanford Plasma Physics Lab

- \bullet Jieun Kang (Korea University, ME MS), "UV-Vis absorption spectroscopy for NO $_{x}$ quantification in a plasma reactor" Summer 2023
- Qiyang Jerry Hu (Stanford, ME MS), "Design and testing of a novel multi-phase atmospheric plasma reactor" Summer 2023

PEDAGOGICAL TRAINING

• Princeton Mechanical & Aerospace Engineering Climate and Inclusion Open Forum	2021-2022
• Stanford Mechanical Engineering Academic Jobs Workshop	2022
• Stanford Graduate Summer Institute: Preparing for Faculty Careers	2023
• Stanford Postdoc Teaching Workshop	2023

SERVICE AND PROFESSIONAL MEMBERSHIP

Professional Membership

Active

- American Physical Society
- American Institute of Aeronautics and Astronautics
- Combustion Institute

Peer Review Activity

Reviewer for following journals:

Since 2022

- ASME Turbo Expo Proceedings
- Combustion and Flame
- AIAA Journal
- Journal of Physics D: Applied Physics
- Plasma Chemistry and Plasma Processing
- High Voltage

Session moderator

DOE Low Temperature Plasma Centers and User Facilities Annual Meeting

• Coordinate speakers and host meetings.

Sept 2021

ACSSPU Chinese Lunch Event

Student-life minister of ACSSPU (Term 2018 - 2019)

May 2018 - May 2019

- Organized weekly Chinese Lunch Event (1, 600 person-times participation).
- Participate in other events (Mid-Autumn gala, airport picking up) organized by Association of Chinese Students and Scholars at Princeton University (ACSSPU).

Summer Service and Learning Program (SSLP) in Rural China

Vice Captain for the SSLP team in Inner Mongolia & Hebei, CN

Jul 2014

- Offered lectures and tutorials in maths, English and science in middle schools and primary schools.
- Assisted volunteers from other overseas universities in teaching students.