SUPPLEMENTARY MATERIALS II-B-2A: SIGNALS AND SYSTEMS COURSE SCHEDULE, SPRING 2019

Course Schedule

WEEK		Assignments		Assignments
/DATE	TUESDAY	DUE TUESDAY	FRIDAY	DUE FRIDAY
WEEK 0			COURSE OVERVIEW	
JAN 25			WHY COMPLEX? FACTS OF COMPLEX LIFE	
WEEK 1				
JAN 29-	CHAPTER 1	CONCEPT	CLASSIFYING SIGNALS; OPERATIONS	CONCEPT QUIZ 0;
FEB 1	INTRODUCING SIGNALS	BUILD 0 (APX E)		APPLICATION
	SAMPLE APPLICATION PRESENTATION			PRESENTATIONS
WEEK 2				
FEB 5-8	CHAPTER 2	CONCEPT	CLASSIFYING SYSTEMS; CONNECTING SYSTEMS	CONCEPT QUIZ 1; APP. PRES.
	INTRODUCING SYSTEMS	Build 1 (ch 1)	STSTEMS	AFF. FRES.
WEEK 3				
FEB 12-15	CHAPTER 3	CONCEPT	IMPULSE RESPONSE; CONVOLUTION	CONCEPT QUIZ 2;
	TIME-DOMAIN ANALYSIS OF LTI CT SYSTEMS	Build 2 (CH 2)		AFF. FRES.
WEEK 4				
FEB 19-22	CONVOLUTION METHODS	CONCEPT	CHAPTER 4	CONCEPT QUIZ3;
		Build 3 (ch 3)	SIGNAL REPRESENTATION USING	APP. PRES.
			FOURIER SERIES	
WEEK 5				
FEB 26-	ORTHOGONAL SIGNAL SPACE; FOURIER BASIS	NONE	CT FOURIER SERIES	CONCEPT QUIZ 4;
MAR 1	FUNCTIONS			APP. PRES.
WEEK 6				
MAR 5-8	CHAPTER 5	CONCEPT	CT FOURIER TRANSFORM OF PERIODIC	CONCEPT QUIZ 5;
	CT FOURIER TRANSFORM	Build 4 (ch 4)	FUNCTIONS; CT FOURIER SERIES	APP. PRES.
	INVERSE FOURIER TRANSFORM		COEFFICIENTS AS SAMPLES OF THE CT FOURIER TRANSFORM	

SIGNALS AND SYSTEMS ENGR 2410

	IND STSTEMS	A		Assistants
WEEK		Assignments		Assignments
/DATE	TUESDAY	DUE TUESDAY	FRIDAY	DUE FRIDAY
WEEK 7 Mar 12-15	PROPERTIES OF THE CT FOURIER TRANSFORM; FOURIER TRANSFORM OF REAL, EVEN, AND ODD FUNCTIONS.	CONCEPT BUILD 5 (CH 5)	EXAM I COVERS MATERIAL UP THROUGH LAST FRIDAY, MARCH 9	NONE
MAR 18-22	SPRING BREAK!			
WEEK 8				
MAR 26-29	CHAPTER 9 DT SIGNALS AND SYSTEMS TEAM FORMATION	SUBMIT TEAM MEMBERS' NAMES	SAMPLING AND QUANTIZATION	PROJECT PROPOSAL
WEEK 9				
APR 2-5	CHAPTER 10 TIME-DOMAIN ANALYSIS OF DT SYSTEMS DIFFERENCE EQUATIONS; IMPULSE RESPONSE	CONCEPT BUILD 6 (CH 9)	OLIN MONDAY—NO CLASS	NONE
WEEK 10				
APR 9-12	CONVOLUTION; CONVOLUTION PROPERTIES	REVISED PROJ. PROPOSALS	CHAPTER 11 DISCRETE-TIME FOURIER SERIES AND TRANSFORM	CONCEPT QUIZ 6 CONCEPT BUILD 7 (CH 10)
WEEK 11				, ,
APR 16-19	PROPERTIES OF THE DTFT; FREQUENCY	WORK ON FINAL	CHAPTER 13	CONCEPT QUIZ 7
	RESPONSE OF LTI DT SYSTEMS; MAGNITUDE AND PHASE SPECTRA	PROJECTS	THE Z-TRANSFORM AND INVERSE Z- TRANSFORM; UNILATERAL/BILATERAL	CONCEPT BUILD 8 (CH 11)
WEEK 12				
APR 23-26	PROPERTIES OF THE Z-TRANSFORM; SOLUTION OF DIFFERENCE EQUATIONS; STABILITY ANALYSIS; FREQUENCY RESPONSE DIGITAL FILTERS	WORK ON FINAL PROJECTS	CONNECTIONS: DT TO CT VIA THE Z TRANSFORM AND THE LAPLACE TRANSFORM; LTI SYSTEM ANALYSIS USING THE Z AND LAPLACE TRANSFORMS	CONCEPT QUIZ 8 CONCEPT BUILD 9 (CH 13)
WEEK 13			FINAL PROJECT PRESENTATIONS AND	
APR 30 -	FINAL PROJECT PRESENTATIONS AND	FINAL PROJECT	DEMONSTRATIONS	FINAL PROJECT
May 3	DEMONSTRATIONS	REPORTS	EXAM II WILL OCCUR DURING FINALS PERIOD, DATE/TIME TBD BY THE REGISTRAR	REPORTS

ENGR 2410 SPRING 2019 2

SUPPLEMENTARY MATERIALS II-B-2B: SIGNALS AND SYSTEMS EXAMPLE OF DEVELOPED COURSE MATERIAL, SPRING 2019

The following developed course material example, "2019-04-30 Transient vs. Steady-state response; Connecting pole-zero plots, the system function H(z) and frequency response H(Ω); 3-dB width; Sinusoidal steady state response; Matlab verification", explains how to discern the transient response from the steady-state response, starting with the input/output difference equation, then finding its z domain equivalent, and finally using the inverse Z-transform to deduce the output in the discrete-time domain, at which point the transient and steady-state components become evident. Spaces are left in the handout so students can figure out the answers to questions posed.

The handout goes on to connect pole-zero plots, system functions, and frequency response. It concludes with a discussion of the 3-dB bandwidth and sinusoidal steady state response. A follow-up handout provides the Matlab verification for the calculations done by the students.