Attorney Docket No. 02521.000176.3

United States Patent Application

of

Peter S. Dragovich, Thomas J. Prins, and Ru Zhou

for

ANTIPICORNAVIRAL COMPOUNDS, COMPOSITIONS CONTAINING THEM, AND METHODS FOR THEIR USE

-1-

TITLE

ANTIPICORNAVIRAL COMPOUNDS, COMPOSITIONS CONTAINING THEM, AND METHODS FOR THEIR USE

RELATED APPLICATIONS

This application is a division of U.S. Patent Application No. 09/947,381, filed on September 7, 2001, which was a division of U.S. Patent Application No. 09/421,560, filed on October 20, 1999, now U.S. Patent No. 6,331,554, which is a division of U.S. Patent Application No. 08/991,282, filed December 16, 1997, now U.S. Patent No. 6,030,371, which is a continuation-in-part of U.S. Patent Application No. 08/825,331, filed March 28, 1997, now abandoned.

Additionally, this application relates to U.S. Patent Application No. 08/850,398, filed May 2, 1997, now U.S. Patent No. 5,856,530; to U.S. Patent Application No. 08/991,739, filed December 16, 1997, now U.S. Patent No. 5,962,487; and to U.S. Provisional Application No. 60/046,204, filed May 12, 1997. Each of these applications are entirely incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0001] The invention pertains to the discovery and use of new compounds that inhibit the enzymatic activity of picornaviral 3C proteases, specifically rhinovirus proteases (RVPs), as well as retard viral growth in cell culture.

[0002] The picornaviruses are a family of tiny non-enveloped positive stranded RNA containing viruses that infect humans and other animals. These viruses include the human rhinoviruses, human polioviruses, human coxsackieviruses, human echoviruses, human and bovine enteroviruses, encephalomyocarditis viruses, menigovirus, foot and mouth viruses, hepatitis A virus and others. The human rhinoviruses are a major cause of the common cold. To date, there are no effective therapies to cure the common cold, only treatments that relieve the symptoms.

[0003] Picornaviral infections may be treated by inhibiting the proteolytic 3C enzymes. These enzymes are required for the natural maturation of the picornaviruses. They are responsible for the autocatalytic cleavage of the genomic, large polyprotein into the essential viral proteins. Members of the 3C protease family are cysteine proteases, where the sulfhydryl group most often cleaves the glutamine-glycine amide bond. Inhibition of 3C proteases is believed to block proteolytic cleavage of the polyprotein, which in turn can retard the maturation and replication of the viruses by interfering with viral particle production. Therefore, inhibiting the processing of this cysteine protease with selective, small molecules that are specifically recognized should represent an important and useful approach to treat and cure viral infections of this nature and, in particular, the common cold.

SUMMARY OF THE INVENTION

[0004] The present invention is directed to compounds that function as picornaviral 3C protease inhibitors, particularly those that have antiviral activity. It is further directed to the use of such 3C protease inhibitors. The Inventors demonstrate that the compounds of the present invention bind to rhinovirus 3C proteases and preferably have antiviral cell culture activity. The enzymatic

inhibition assays used reveal that these compounds can bind irreversibly, and the cell culture assays demonstrate that these compounds can possess antiviral activity.

[0005] The present invention is directed to compounds of the formula (I):

$$R_{20} \xrightarrow{R_6} \xrightarrow{M} \xrightarrow{R_2} \xrightarrow{Z} Z_1$$

$$Q \xrightarrow{R_3} \xrightarrow{R_7} \xrightarrow{R_5} \xrightarrow{R_1} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{Z} Z_1$$

$$Q \xrightarrow{R_3} \xrightarrow{R_7} \xrightarrow{R_5} \xrightarrow{R_1} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_3} \xrightarrow{R_7} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_3} \xrightarrow{R_1} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_3} \xrightarrow{R_1} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_1} Z_1$$

$$Q \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_1} Z_1$$

$$Q \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} Z_1$$

$$Q \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} Z_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} X_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} X_2$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} X_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} X_2$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} X_1$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} X_2$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} X_1$$

$$Q \xrightarrow{R_2} \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} X_2$$

$$Q \xrightarrow{R_1} \xrightarrow{R_2} \xrightarrow{R_2} \xrightarrow{R_2} X_2$$

wherein

M is O or S;

R₁ is H, F, an alkyl group, OH, SH, or an O-alkyl group;

R₂ and R₅ are independently selected from H,

or an alkyl group, wherein the alkyl group is different from

$$X^{Y_1}$$
 A_1 B_1 A_2 B_2 A_2 B_2 A_2 A_3 A_3

with the proviso that at least one of R₂ or R₅ must be

and wherein, when R₂ or R₅ is

$$X$$
 Y_{l}
 A_{l}
 D_{l}

X is =CH or =CF and Y_1 is =CH or =CF,

or X and Y₁ together with Q' form a three-membered ring in which

Q' is $-C(R_{10})(R_{11})$ - or -O-, X is -CH- or -CF-, and Y₁ is -CH-, -CF-, or -C(alkyl)-, where R_{10} and R_{11} independently are H, a halogen, or an alkyl group, or, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group,

or $X \text{ is -CH}_2\text{-, -CF}_2\text{-, -CHF-, or -S-, and }Y_1 \text{ is -O-, -S-, -NR}_{12}\text{-, -}$ $C(R_{13})(R_{14})\text{-, -C(O)-, -C(S)-, or -C(CR}_{13}R_{14})\text{-,}$

wherein R₁₂ is H or alkyl, and R₁₃ and R₁₄ independently are H, F, or an alkyl group, or, together with the atoms to which they are bonded, form a cycloalkyl group or a heterocycloalkyl group;

A₁ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆, wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the atom to which they are bonded, form a heterocycloalkyl group;

 D_1 is a moiety with a lone pair of electrons capable of forming a hydrogen bond; and

 B_1 is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-OR_{17}$, $-SR_{17}$, $-NR_{17}R_{18}$, $-NR_{19}NR_{17}R_{18}$, or $-NR_{17}OR_{18}$,

wherein R_{17} , R_{18} , and R_{19} independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

and with the provisos that when D_1 is the moiety $\equiv N$ with a lone pair of electrons capable of forming a hydrogen bond, B_1 does not exist; and when A_1 is an sp^3 carbon, B_1 is not $-NR_{17}R_{18}$ when D_1 is the moiety $-NR_{25}R_{26}$ with a lone pair of electrons capable of forming a hydrogen bond, wherein R_{25} and R_{26} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group;

and wherein D_1 - A_1 - B_1 optionally forms a nitro group where A_1 is N; and further wherein, when R_2 or R_5 is

$$X$$
 Y_2
 A_2
 B_2
 D_2

X is =CH or =CF and Y_2 is =C, =CH, or =CF,

or X and Y_2 together with Q' form a three-membered ring in which Q' is $-C(R_{10})(R_{11})$ - or -O-, X is -CH- or -CF-, and Y_2 is -CH-, -CF-, or -C(alkyl)-, where R_{10} and R_{11} independently are H, a halogen, or an alkyl group, or, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group,

or X is -CH₂-, -CF₂-, -CHF-, or -S-, and Y₂ is -O-, -S-, -N(R'₁₂)-, -C(O)-, -C(R'₁₃)(R'₁₄)-, -C(S)-, or -C(CR'₁₃R'₁₄)-, wherein R'₁₂ is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR'₁₃, -NR'₁₃R'₁₄, -C(O)-R'₁₃, -SO₂R'₁₃, or -C(S)R'₁₃, and R'₁₃ and R'₁₄, independently are H, F, or an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or

a heteroaryl group, or, together with the atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

A₂ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆, wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group or, together with the atom to which they are bonded, form a heterocycloalkyl group;

D₂ is a moiety with a lone pair of electrons capable of forming a hydrogen bond; and

 B_2 is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-OR_{17}$, $-SR_{17}$, $-NR_{17}R_{18}$, $-NR_{19}NR_{17}R_{18}$, or $-NR_{17}OR_{18}$,

wherein R_{17} , R_{18} , and R_{19} independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

and further wherein any combination of Y_2 , A_2 , B_2 , and D_2 forms a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group;

 R_3 and R_6 are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-C(O)R_{17}$, $-OR_{17}$, $-SR_{17}$, $-NR_{17}R_{18}$, $-NR_{19}NR_{17}R_{18}$, or $-NR_{17}OR_{18}$,

wherein R_{17} , R_{18} , and R_{19} independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an

acyl group;

or, R₃ and R₆, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

 R_7 is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-OR_{17}$, $-SR_{17}$, $-NR_{17}R_{18}$, $-NR_{19}NR_{17}R_{18}$, or $-NR_{17}OR_{18}$, wherein R_{17} , R_{18} , and R_{19} independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

or R₇, together with R₃ or R₆ and the atoms to which they are attached, form a heterocycloalkyl group;

R₂₀ is H, OH, or any suitable organic moiety; and

Z and Z_1 are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-C(O)R_{21}$, $-CO_2R_{21}$, $-CO_2R$

wherein R_{21} , R_{22} , R_{23} , and R_{24} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, an acyl group, or a thioacyl group, or wherein any two of R_{21} , R_{22} , R_{23} , and R_{24} , together with the atom(s) to which they are bonded, form a heterocycloalkyl group;

or Z_1 , as defined above, together with R_1 , as defined above, and the atoms to which Z_1 and R_1 are bonded, form a cycloalkyl or heterocycloalkyl

group,

or Z and Z_1 , both as defined above, together with the atoms to which they are bonded, form a cycloalkyl or heterocycloalkyl group;

and pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates thereof,

and wherein these compounds, pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates preferably have antipicornaviral activity with an EC₅₀ less than or equal to 10 μ M in the HI-HeLa cell culture assay, and more preferably antirhinoviral activity with an EC₅₀ less than or equal to 10 μ M in the HI-HeLa cell culture assay and/or anticoxsachieviral activity with an EC₅₀ less than or equal to 10 μ M in the HI-HeLa cell culture assay.

DETAILED DESCRIPTION OF THE INVENTION

[0006] The present invention relates to compounds of the formula I:

$$R_{20} \xrightarrow{R_6} \xrightarrow{R_7} \xrightarrow{R_5} \xrightarrow{R_1} Z_1$$
 (I)

wherein R_1 , R_2 , R_3 , R_5 , R_6 , R_7 , R_{20} , M, Z, and Z_1 are as defined above, and to the pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates thereof, where these compounds, pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates preferably have antipicornaviral activity with an EC_{50} less than or equal to 10 μ M in the HI-HeLa cell culture assay, and more preferably antirhinoviral activity with an EC_{50} less than or equal to 10 μ M in the

HI-HeLa cell culture assay and/or anticoxsachieviral activity with an EC $_{50}$ less than or equal to 10 μ M in the HI-HeLa cell culture assay.

[0007] The present invention preferably relates to compounds of the formula X:

$$R_{66}$$
 R_{64}
 R_{63}
 R_{67}
 R_{61}
 R_{61}
 R_{62}
 R_{63}
 R_{67}
 R_{61}
 R_{61}
 R_{62}
 R_{63}
 R_{64}
 R_{64}
 R_{64}
 R_{65}
 R_{65}

wherein

R₆₁ is H, F or an alkyl group;

 R_{62} is selected from one of the following moieties:

wherein

 R_{35} is H, an alkyl group, an aryl group, -OR₃₈, or -NR₃₈R₃₉,
wherein R_{38} and R_{39} independently are H, an alkyl group, a
cycloalkyl group, a heterocycloalkyl
group, an aryl group, a heteroaryl group,

or an acyl group; and

R₃₆ is H or an alkyl group,

or R₃₅ and R₃₆, together with the nitrogen atom to which they are attached, form a heterocycloalkyl group or a heteroaryl group;

 R_{37} is an alkyl group, an aryl group, or -NR₃₈R₃₉, wherein R₃₈ and R₃₉ are as defined above;

 R_{50} is H, an alkyl group, an aryl group, -OR₃₈, -SR₃₉, -NR₃₈R₃₉, -NR₄₀NR₃₈R₃₉, or

-NR₃₈OR₃₉, or R₅₀ and R₃₆, together with the atoms to which they are attached, form a heterocycloalkyl group;

wherein R_{38} and R_{39} are as defined above and R_{40} is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group; and

n is 0, 1, or 2;

R₆₃ is H or an alkyl group;

R₆₄ is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group;

R₆₅ is H or an alkyl group;

R₆₆ is H, an acyl group, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a sulfonyl group, or a heteroaryl group;

R₆₇ is H or an alkyl group;

and

Z and Z_1 are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-C(O)R_{21}$, $-CO_2R_{21}$, -

 $CN, -C(O)NR_{21}R_{22},$

 $-C(O)NR_{21}OR_{22}, -C(S)R_{21}, -C(S)NR_{21}R_{22}, -NO_2, -SOR_{21}, -SO_2R_{21}, -SO_2NR_{21}R_{22}, -SO(NR_{21})(OR_{22}), -SONR_{21}, -SO_3R_{21}, -PO(OR_{21})_2, -PO(R_{21})(R_{22}), -PO(NR_{21}R_{22})(OR_{23}), -PO(NR_{21}R_{22})(NR_{23}R_{24}), -C(O)NR_{21}NR_{22}R_{23}, or -C(S)NR_{21}NR_{22}R_{23},$

wherein R_{21} , R_{22} , R_{23} , and R_{24} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, an acyl group, or a thioacyl group, or wherein any two of R_{21} , R_{22} , R_{23} , and R_{24} , together with the atom(s) to which they are bonded, form a heterocycloalkyl group,

or Z and Z_1 , both as defined above, together with the atoms to which they are attached, form a heterocycloalkyl group;

and pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates thereof.

[0008] As used in the present application, the following definitions apply:

[0009] An "alkyl group" is intended to mean a straight or branched chain monovalent radical of saturated and/or unsaturated carbon atoms and hydrogen atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, ethenyl, pentenyl, butenyl, propenyl, ethynyl, butynyl, propynyl, pentynl, hexynyl, and the like, which may be unsubstituted (i.e., containing only carbon and hydrogen) or substituted by one or more suitable substituents as defined below.

[0010] A "cycloalkyl group" is intended to mean a non-aromatic, monovalent monocyclic, bicyclic, or tricyclic radical containing 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 carbon ring atoms, each of which may be saturated or unsaturated, and which may be unsubstituted or substituted by one or more suitable substituents as defined below, and to which may be fused one or more heterocycloalkyl groups,

aryl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents.

[0011] Illustrative examples of cycloalkyl groups include, but are not limited to, the following moieties:

[0012] A "heterocycloalkyl group" is intended to mean a non-aromatic, monovalent monocyclic, bicyclic, or tricyclic radical, which is saturated or unsaturated, containing 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms, and which includes 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen, and sulfur, wherein the radical is unsubstituted or substituted by one or more suitable substituents as defined below, and to which may be fused one or more cycloalkyl groups, aryl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents. Illustrative examples of heterocycloalkyl groups include, but are not limited to the following moieties:

[0013] An "aryl group" is intended to mean an aromatic, monovalent monocyclic, bicyclic, or tricyclic radical containing 6, 10, 14, 18 carbon ring atoms, which may be unsubstituted or substituted by one or more suitable substituents as defined below, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents. Illustrative examples of aryl groups include, but are not limited to, the following moieties:

[0014] A "heteroaryl group" is intended to mean an aromatic monovalent monocyclic, bicyclic, or tricyclic radical containing 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms, including 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen, and sulfur, which may be unsubstituted or substituted by one or more suitable substituents as defined below, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or aryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents. Illustrative examples of heteroaryl groups include, but are not limited to, the following moieties:

[0015] An "acyl group" is intended to mean a -C(O)-R radical, wherein R is any suitable substituent as defined below.

[0016] A "thioacyl group" is intended to mean a -C(S)-R radical, wherein R is any suitable substituent as defined below.

[0017] A "sulfonyl group" is intended to mean a -SO₂R radical, wherein R is any suitable substituent as defined below.

[0018] The term "suitable substituent" is intended to mean any of the substituents recognizable, such as by routine testing, to those skilled in the art as not adversely affecting the inhibitory activity of the inventive compounds. Illustrative examples of suitable substituents include, but are not limited to, hydroxy groups, oxo groups, alkyl groups, acyl groups, sulfonyl groups, mercapto groups, alkylthio groups, alkoxy groups, cycloalkyl groups, heterocycloalkyl groups, aryl groups, heteroaryl groups, carboxy groups, amino groups, alkylamino groups, dialkylamino groups, carbamoyl groups, aryloxy groups, heteroarlyoxy groups, arylthio groups, heteroarylthio groups, and the like.

[0019] The term "suitable organic moiety" is intended to mean any organic moiety recognizable, such as by routine testing, to those skilled in the art as not adversely affecting the inhibitory activity of the inventive compounds. Illustrative examples of suitable organic moieties include, but are not limited to, hydroxy groups, alkyl groups, oxo groups, cycloalkyl groups, heterocycloalkyl groups, aryl groups, heteroaryl groups, acyl groups, sulfonyl groups, mercapto groups, alkylthio groups, alkoxy groups, carboxy groups, amino groups, alkylamino groups, dialkylamino groups, carbamoyl groups, arylthio groups, heteroarylthio groups, and the like.

[0020] A "hydroxy group" is intended to mean the radical -OH.

[0021] An "amino group" is intended to mean the radical -NH₂.

[0022] An "alkylamino group" is intended to mean the radical -NHR where R is an alkyl group as defined above.

[0023] A "dialkylamino group" is intended to mean the radical -NR_aR_b where R_a and R_b are each independently an alkyl group as defined above.

[0024] An "alkoxy group" is intended to mean the radical -OR where R is an alkyl group as defined above, for example, methoxy, ethoxy, propoxy, and the like.

[0025] An "alkoxycarbonyl group" is intended to mean the radical -C(O)OR where R is an alkyl group as defined above.

[0026] An "alkylsulfonyl group" is intended to mean the radical -SO₂R where R is an alkyl group as defined above.

[0027] An "alkylaminocarbonyl group" is intended to mean the radical -C(O)NHR where R is an alkyl group as defined above.

[0028] A "dialkylaminocarbonyl group" is intended to mean the radical - $C(O)NR_aR_b$ where R_a and R_b are each independently an alkyl group as defined above.

[0029] A "mercapto group" is intended to mean the radical -SH.

[0030] An "alkylthio group" is intended to mean the radical -SR where R is an alkyl group as defined above.

[0031] A "carboxy group" is intended to mean the radical -C(O)OH.

[0032] A "carbamoyl group" is intended to mean the radical -C(O)NH₂.

[0033] An "aryloxy group" is intended to mean the radical -OR_c where R_c is an aryl group as defined above.

[0034] A "heteroaryloxy group" is intended to mean the radical -OR_d where R_d is a heteroaryl group as defined above.

[0035] An "arylthio group" is intended to mean the radical $-SR_c$ where R_c is an aryl group as defined above.

[0036] A "heteroarylthio group" is intended to mean the radical - SR_d where R_d is a heteroaryl group as defined above.

[0037] A "pharmaceutically acceptable prodrug" is intended to mean a compound that may be converted under physiological conditions or by solvolysis to a compound of formula I or formula X.

[0038] A "pharmaceutically acceptable active metabolite" is intended to mean a pharmacologically active product produced through metabolism in the body of a compound of formula I or formula X.

[0039] A "pharmaceutically acceptable solvate" is intended to mean a solvate that retains the biological effectiveness and properties of the biologically active components of compounds of formulas I and X. Examples of pharmaceutically acceptable solvates include, but are not limited to, compounds of formula I or X in combination with water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, or ethanolamine.

[0040] A "pharmaceutically acceptable salt" is intended to mean a salt that retains the biological effectiveness and properties of the free acids and bases of compounds of formulas I and X and that is not biologically or otherwise undesirable. Examples of pharmaceutically acceptable salts include, but are not limited to, sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxyenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenylpropionates, phenylbutyrates, citrates, lactates, γ -hydroxybutyrates, glycollates, tartrates, methane-sulfonates, propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates.

[0041] If the inventive compound is a base, the desired salt may be prepared by any suitable method known to the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid; hydrobromic acid; sulfuric acid; nitric acid; phosphoric acid; and the like, or with an organic acid, such as acetic acid; maleic acid; succinic acid; mandelic acid; fumaric acid; malonic acid; pyruvic acid; oxalic acid; glycolic acid; salicylic acid; pyranosidyl acids such as glucuronic acid

and galacturonic acid; alpha-hydroxy acids such as citric acid and tartaric acid; amino acids such as aspartic acid and glutamic acid; aromatic acids such as benzoic acid and cinnamic acid; sulfonic acids such as p-toluenesulfonic acid or ethanesulfonic acid; or the like.

[0042] As generally understood by those skilled in the art, an optically pure compound is one that is enantiomerically pure. As used herein, the term "optically pure" is intended to mean a compound which comprises at least a sufficient amount of a single enantiomer to yield a compound having the desired pharmacological activity. Preferably, "optically pure" is intended to mean a compound that comprises at least 90% of a single isomer (80% enantiomeric excess), preferably at least 95% (90% e.e.), more preferably at least 97.5% (95% e.e.), and most preferably at least 99% (98% e.e.).

[0043] Preferably in the above formulas I and X, R_1 and R_{61} are H or F. In the compounds of formula I, preferably M is O.

[0044] Preferably R₂₀ in formula I is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, $-NR_{19}NR_{17}R_{18}$, or $-NR_{17}OR_{18}$, wherein R_{17} , R_{18} , and R_{19} independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group. More preferably R₂₀ is the alkyl group - $C(R_{41})(R_{42})NR_{43}R_{44}$, wherein R_{41} and R_{42} independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group; and R₄₃ and R₄₄ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -NR₄₅R₄₆, -C(O)R₄₅, - $C(S)R_{45}$, $-C(O)NR_{45}R_{46}$, $-C(S)NR_{45}R_{46}$, $-C(O)NR_{45}OR_{46}$, $-C(S)NR_{45}OR_{46}$, $-C(S)NR_{45}OR_{46}$, $-C(S)NR_{45}OR_{46}$ $C(O)SR_{45}$, $-C(O)OR_{45}$, $-C(S)OR_{45}$, $-C(S)SR_{45}$, $-OR_{45}$, $-SR_{45}$, $-C(O)NR_{45}NR_{46}R_{47}$ $C(S)NR_{45}NR_{46}R_{47}$, $-SOR_{45}$, $-SO_{2}R_{45}$, $-S(O)NR_{45}R_{46}$, $-S(O)NR_{45}(OR_{46})$, -SO₂NR₄₅R₄₆, -SO₂NR₄₅(OR₄₆), or -SO₃R₄₅, wherein R₄₅, R₄₆, and R₄₇ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or wherein any combination of R₄₁, R₄₂, R₄₃, and R₄₄, together with the atoms to which they are attached, form a cycloalkyl group or a heterocycloalkyl group. Preferably at least one of R_{43} and R_{44} is -C(O)SR₄₅ or -C(O)OR₄₅. Preferably R_{45} is an alkyl group, a cycloalkyl group, an aryl group, a heterocycloalkyl group, or a heteroaryl group, and more preferably a C_1 - C_{10} alkyl group.

[0045] In the compounds of formula I, preferably D_1 and D_2 are $-OR_{25}$, =O, =S, =N, $=NR_{25}$, or $-NR_{25}R_{26}$, wherein R_{25} and R_{26} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the nitrogen atom to which they are bonded, form a heterocycloalkyl group, and more preferably D_1 and D_2 are =O. Preferably, in the compounds of formula I, A_1 and A_2 are C, CH, S, or S(O), and more preferably A_1 and A_2 are C.

[0046] Preferably, in the compounds of formula I, B_1 and B_2 are $NR_{17}R_{18}$, wherein R_{17} and R_{18} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group.

[0047] In the compounds of formula I and X, preferably Z and Z_1 are independently H, an aryl group, or a heteroaryl group, $-C(O)R_{21}$, $-CO_2R_{21}$, -CN, $-C(O)NR_{21}R_{22}$, $-C(O)NR_{21}OR_{22}$, $-C(S)R_{21}$, $-C(S)NR_{21}R_{22}$, $-NO_2$, $-SOR_{21}$, $-SO_2R_{21}$, $-SO_2NR_{21}R_{22}$, $-SO(NR_{21})(OR_{22})$, $-SONR_{21}$, $-SO_3R_{21}$, $-C(O)NR_{21}NR_{22}R_{23}$, or $-C(S)NR_{21}NR_{22}R_{23}$, wherein R_{21} , R_{22} , and R_{23} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, an acyl group, or a thioacyl group, or wherein any two of R_{21} , R_{22} , and R_{23} , together with the atom(s) to which they are bonded, form a heterocycloalkyl group, or Z and Z_1 , both as defined above, together with the atoms to which they are attached, form a heterocycloalkyl group.

[0048] In the compounds of formula X, preferably R_{66} is -C(O)OR₆₈ or -C(O)SR₆₈, wherein R_{68} is an alkyl group, a cycloalkyl group, an aryl group, a heterocycloalkyl group, or a heteroaryl group

[0049] Particularly preferred embodiments of the present invention include the following compounds (1-8, 10, and 11) of formula II:

wherein R₁, R₅, R₆, R₇, R₄₂, R₄₃, and Z are H, R₂ is CH₂CH₂C(O)NH₂, and

- R₃ is CH₂Ph, R₄₁ is CH₂CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is **(1)**
- R₃ is CH₂Ph, R₄₁ is CH₂CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is CH₆CH₂S **(2)**
- R₃ is CH₂Ph, R₄₁ is CH₂CH(CH₃)₂, Z₁ is **(3)**
- R₃ is CH₂Ph, R₄₁ is CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is Obote S
- R₃ is CH₂Ph, R₄₁ is CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is **(5)**
- **(6)** R₃ is CH₂Ph, R₄₁ is CH₂CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is

(4)

- R₃ is CH₂Ph, R₄₁ is CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is **(7)**
- R₃ is CH₂Ph, R₄₁ is CH₂CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is **(8)**
- R₃ is CH₂(p-CH₃)Ph, R₄₁ is CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is (10)atates I

(11) R_3 is $CH_2(p-CH_3)Ph$, R_{41} is $CH(CH_3)_2$, Z_1 is $CO_2CH_2CH_3$, and R_{44} is

and a compound (9) of formula III:

wherein R_1 , R_5 , R_6 , R_7 , R_{42} , R_{43} , and Z are H, R_3 is CH_2Ph , R_2 is $CH_2CH_2C(O)NH_2$,

 R_{41} is $CH_2CH(CH_3)_2$, Z_1 is $CO_2CH_2CH_3$, and R_{44} is

and pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates thereof.

[0050] The present invention is still further directed to compositions comprising at least one compound of formula II:

wherein R_1 , R_5 , R_6 , R_7 , R_{42} , R_{43} , and Z are H, R_3 is CH_2Ph , R_2 is $CH_2CH_2C(O)NH_2$,

R₄₁ is CH₂CH(CH₃)₂, Z₁ is CO₂CH₂CH₃, and R₄₄ is or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof,

and at least one compound of formula III:

$$R_{44}$$
 R_{43}
 R_{43}
 R_{6}
 R_{6}
 R_{7}
 R_{7}
 R_{1}
 R_{1}

wherein R_1 , R_5 , R_6 , R_7 , R_{42} , R_{43} , and Z are H, R_3 is CH_2Ph , R_2 is $CH_2CH_2C(O)NH_2$,

$$R_{41}$$
 is $CH_2CH(CH_3)_2$, Z_1 is $CO_2CH_2CH_3$, and R_{44} is

or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof.

[0051] Additional preferred compounds according to the present invention include the following compounds (12 through 25) of formula IV:

wherein R₁, R₅, R₆, R₇, and R₄₂ are H, R₂ is CH₂CH₂C(O)NH₂, and

- (12) R_3 is $CH_2(p-CH_3)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is CH_2Ph , and R_{44} is
- (13) R_3 is $CH_2(p-F)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH(CH_3)_2$, and R_{44} is CH_3
- (14) R_3 is $CH_2(p-F)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH(CH_3)_2$, and R_{44} is

- (15) R_3 is $CH_2(p-CF_3)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH(CH_3)_2$, and R_{44} is
- (16) R_3 is $CH_2(p\text{-}CF_3)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH(CH_3)_2$, and R_{44} is
- (17) R_3 is $CH_2(p-CH_3)Ph$, Z and Z_1 together form (where * indicates the point of attachment and the carbonyl group is cis to the R_1 group), R_{41} is

CH(CH₃)₂, and R₄₄ is

- (18) R_3 is $CH_2(p-F)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is CH_2Ph , and R_{44} is
- (19) R_3 is $CH_2(p-F)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH_2CH(CH_3)_2$, and R_{44} is
- (20) R_3 is $CH_2(p-CH_3)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH(CH_3)_2$, and R_{44} is
- (21) R_3 is $CH_2(p-CH_3)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH_2CH(CH_3)_2$, and R_{44} is
- (22) R_3 is CH_2Ph , Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $C(CH_3)_3$, and R_{44} is

(23) R_3 is $CH_2(p-CH_3)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH(CH_3)_2$, and R_{44}

(24) R_3 is $CH_2(p-F)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is cyclohexyl, and R_{44} is

(25) R_3 is $CH_2(p-F)Ph$, Z is H, Z_1 is $CO_2CH_2CH_3$, R_{41} is $CH(CH_3)_2$, and R_{44} is

and pharmaceutically acceptable prodrugs, salts, active metabolites, or solvates thereof.

[0052] The present invention is even further directed to methods of inhibiting picornaviral 3C protease activity, comprising contacting the protease with an effective amount of a compound of formula I or X or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof. For example, one can inhibit picornaviral 3C protease activity in mammalian tissue by administering a compound of formula I or X or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof. More particularly, the present invention is directed to methods of inhibiting rhinoviral protease activity.

[0053] The activity of the inventive compounds as inhibitors of picornaviral 3C protease activity may be measured by any of the methods available to those skilled in the art, including in vivo and in vitro assays. An example of a suitable assay for activity measurements is the Antiviral HI-HeLa Cell Culture Assay, described herein.

[0054] Administration of the compounds of the formula I or X, or their pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates, may be performed according to any of the accepted modes of administration available to those skilled in the art. Illustrative examples of suitable modes of administration include, but are not limited to, oral, nasal, parenteral, topical, transdermal, and rectal.

[0055] The inventive compounds of formulas I and X, and their pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates, may be administered as a pharmaceutical composition in any suitable pharmaceutical form recognizable to the skilled artisan. Suitable pharmaceutical forms include, but are not limited to, solid, semisolid, liquid, or lyopholized formulations, such as tablets, powders, capsules, suppositories, suspensions, and aerosols. The pharmaceutical composition may also include suitable excipients, diluents, vehicles, and carriers, as well as other pharmaceutically active agents, depending upon the intended use.

[0056] Acceptable methods of preparing suitable pharmaceutical forms of the pharmaceutical compositions are known to those skilled in the art. For example, pharmaceutical preparations may be prepared following conventional techniques of the pharmaceutical chemist involving steps such as mixing, granulating, and compressing when necessary for tablet forms, or mixing, filling, and dissolving the ingredients as appropriate, to give the desired products for oral, parenteral, topical, intravaginal, intranasal, intrabronchial, intraocular, intraaural, and/or rectal administration.

[0057] Solid or liquid pharmaceutically acceptable carriers, diluents, vehicles, or excipients may be employed in the pharmaceutical compositions. Illustrative solid carriers include starch, lactose, calcium sulphate dihydrate, terra alba, sucrose, talc, gelatin, pectin, acacia, magnesium stearate, and stearic acid. Illustrative liquid carriers may include syrup, peanut oil, olive oil, saline solution, and water. The carrier or diluent may include a suitable prolonged-release material, such as glyceryl monostearate or glyceryl distearate, alone or with a wax. When a liquid carrier is used, the preparation may be in the form of a syrup, elixir, emulsion, soft

gelatin capsule, sterile injectable liquid (e.g. solution), or a nonaqueous or aqueous liquid suspension.

[0058] A dose of the pharmaceutical composition contains at least a therapeutically effective amount of the active compound (i.e., a compound of formula I or X or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof) and preferably is made up of one or more pharmaceutical dosage units. The selected dose may be administered to a mammal, for example, a human patient, in need of treatment mediated by inhibition of 3C protease activity, by any known method of administering the dose including topical, for example, as an ointment or cream; orally; rectally, for example, as a suppository; parenterally by injection; or continuously by intravaginal, intranasal, intrabronchial, intraaural, or intraocular infusion.

[0059] A "therapeutically effective amount" is intended to mean that amount of a compound of formula I or X that, when administered to a mammal in need thereof, is sufficient to effect treatment for disease conditions alleviated by the inhibition of the activity of one or more picornaviral 3C proteases, such as human rhinoviruses, human poliovirus, human coxsackieviruses, encephalomyocarditis viruses, menigovirus, and hepatitis A virus. The amount of a given compound of formula I or X that will correspond to a "therapeutically effective amount" will vary depending upon factors such as the particular compound, the disease condition and the severity thereof, the identity of the mammal in need thereof, but it can nevertheless be readily determined by one of skill in the art.

[0060] "Treating" or "treatment" is intended to mean at least the mitigation of a disease condition in a mammal, such as a human, that is alleviated by the inhibition of the activity of one or more picornaviral 3C proteases, such as human rhinoviruses, human poliovirus, human coxsackieviruses, encephalomyocarditis viruses, menigovirus, and hepatitis A virus, and includes:

(a) prophylactic treatment in a mammal, particularly when the mammal is found to be predisposed to having the disease condition but not yet diagnosed as

having it;

- (b) inhibiting the disease condition; and/or
- (c) alleviating, in whole or in part, the disease condition.

[0061] The inventive compounds, and their salts, solvates, active metabolites, and prodrugs, may be prepared by employing the techniques available in the art using starting materials that are readily available. Certain novel and exemplary methods of preparing the inventive compounds are described below.

[0062] Preferably, the inventive compounds of formula I are prepared by the methods of the present invention, including the general methods shown below. In each of these general methods, R1, R2, R3, R5, R6, R7, R20, R41, R42, Z, and Z1 are as defined above (for formulae I, II, III, IV, and X).

General Method I

$$P_{1} \xrightarrow{R_{7}} OH \longrightarrow P_{1} \xrightarrow{R_{7}} CO \longrightarrow P_{1$$

$$\begin{array}{c} R_{20} & \longrightarrow & R_{6} & \longrightarrow & R_{7} & R_{1} & \longrightarrow & Z \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

[0063] In General Method I, amino acid A, where P1 is an appropriate protecting group for nitrogen, is converted to carbonyl derivative B, where "Lv" is a leaving group. Compound B is subjected to a reaction where "Lv" is replaced by R1 to give derivative C. Derivative C is then transformed into unsaturated product D. Unsaturated compound D is deprotected to give free amine (or salt thereof) E, or modified one or more times at R2, R5, Z, and/or Z1 to give one or more modified D compounds. Modified D is then deprotected to give amine (or salt thereof) E.

[0064] Amine E is subsequently subjected to an amide-forming reaction with carboxylic acid \mathbf{F} (for which the preparation of representative examples is described below) to give final product \mathbf{G} . If protecting groups were used on any R groups (R₁, R₂, R₃, R₅, R₆, R₇, and/or R₂₀), on Z and/or on Z₁, product \mathbf{G} is deprotected and/or further modified to yield "deprotected or modified \mathbf{G} ."

General Method II

deprotected or modified I
$$P_{2} = \bigvee_{H}^{R_{41}} \bigvee_{R_{6}}^{R_{6}} \bigvee_{R_{3}}^{R_{6}} \bigvee_{R_{41}}^{R_{5}} \bigvee_{R_{2}}^{R_{1}} \bigvee_{R_{2}}^{R_{2}} \bigvee_{R_{1}}^{R_{1}} \bigvee_{R_{5}}^{R_{1}} \bigvee_{R_{5}}^{R_{1}} \bigvee_{R_{5}}^{R_{2}} \bigvee_{R_{1}}^{Z_{1}} \bigvee_{R_{5}}^{R_{1}} \bigvee_{R_{5}}^{R_{2}} \bigvee_{R_{1}}^{Z_{1}} \bigvee_{R_{1}}^{R_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{1}}^{R_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{1}}^{R_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{1}}^{R_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{R_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{R_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{Z_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{Z_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{Z_{2}} \bigvee_{R_{2}}^{Z_{1}} \bigvee_{R_{2}}^{Z_{2}} \bigvee_{R_{2}}^{Z_{$$

[0065] In General Method II, amine E, which can be prepared as described in General Method I, is subjected to an amide-forming reaction with carboxylic acid H, where P₂ is an appropriate protecting group for nitrogen, and where at least one of R₃ and R₆ is H, to give final product I. Carboxylic acid H can be prepared as a mixture of diastereomers as described in Harbeson, S.L., Rich, D.H., J. Med. Chem. 1989, 32, 1378, the disclosure of which is incorporated herein by reference. The P₂ protecting group, along with any additional protecting groups that were used on any R groups (R₁, R₂, R₃, R₅, R₆, R₇, and/or R₄₁), on Z and/or on Z₁, is subsequently deprotected and/or further modified to yield "deprotected or modified I."

General Method III

$$R_{41} \longrightarrow R_{3} \longrightarrow R_{41} \longrightarrow R_{7} \longrightarrow R_{1} \longrightarrow R_{2} \longrightarrow R_{41} \longrightarrow R_{2} \longrightarrow R_{2} \longrightarrow R_{2} \longrightarrow R_{2} \longrightarrow R_{3} \longrightarrow R_{41} \longrightarrow R_{2} \longrightarrow$$

[0066] In General Method III, optically active lactone J, where P_2 is an appropriate protecting group for nitrogen, is transformed by a two-step procedure (basic hydrolysis and subsequent oxidation) into carboxylic acid K. Lactone J can be prepared by the method described in General Method IV below and by many literature methods including, but not limited to, those described in the following: (a) Herold, P.; Duthaler, R.; Rihs, G.; Angst, C., J. Org. Chem. 1989, 54, 1178; (b) Bradbury, R. H.; Revill, J. M.; Rivett, J. E.; Waterson, D., Tetrahedron Lett. 1989, 30, 3845; (c) Bradbury, R. H.; Major, J. S.; Oldham, A. A.; Rivett, J. E.; Roberts, D. A.; Slater, A. M.; Timms, D.; Waterson, D., J. Med. Chem. 1990, 33, 2335; (d) Wuts, P. G.; Ritter, A. R.; Pruitt, L. E., J. Org. Chem. 1992, 57, 6696; (e) Jones, D. M.; Nilsson, B.; Szelke, M., J. Org. Chem. 1993, 58, 2286; (f) Pégorier, L.; Larchevéque, M., Tetrahedron Lett. 1995, 36, 2753; (g) Dondoni, A.; Perrone, D.; Semola, M. T., J. Org. Chem. 1995, 60, 7927, all of which are incorporated herein by reference. Carboxylic acid K is not isolated in pure form, but is subjected to an amide-forming reaction with amine E, which can be prepared as described in General Method I, to provide final product L. The P₂ protecting group, along with any additional protecting groups that were used on any R groups (R₁, R₂, R₃, R₅, R_7 , and/or R_{41}), on Z and/or on Z_1 , is subsequently deprotected and/or further modified to yield "deprotected or modified L."

General Method IV

[0067] Lactone J may be prepared in optically active form by General Method IV (see: (a) Herold, P.; Duthaler, R.; Rihs, G.; Angst, C., J. Org. Chem. 1989, 54, 1178; (b) Bradbury, R. H.; Revill, J. M.; Rivett, J. E.; Waterson, D., Tetrahedron Lett. 1989, 30, 3845; (c) Bradbury, R. H.; Major, J. S.; Oldham, A. A.; Rivett, J. E.; Roberts, D. A.; Slater, A. M.; Timms, D.; Waterson, D., J. Med. Chem. 1990, 33, 2335). A γ , δ -unsaturated carboxylic acid M, which incorporates R₄₁, is transformed into the corresponding acid chloride (not shown). This acid chloride is subjected to an amide-forming reaction with a chiral amine or a chiral oxazolidone to provide derivative N (in which X₁ is a chiral amine or a chiral oxazolidone). Compound N is subsequently deprotonated, and the resulting enolate is diastereoselectively alkylated with an electrophile corresponding to R₃ to provide compound O. This material is then subjected to a halolactonization reaction to provide halo-lactone P, in which H₁ is Br or I. Halo-lactone P is subsequently transformed into azide Q, and this material is then converted into lactone J, where P₂ is an appropriate protecting group for nitrogen.

General Method V

[0068] γ , δ -Unsaturated carboxylic acid **M** may be prepared by General Method V (see: Herold, P.; Duthaler, R.; Rihs, G.; Angst, C., *J. Org. Chem.* 1989, 54, 1178). An aldehyde **R**, which incorporates R₄₁, is coupled with vinylmagnesium bromide to give alcohol **S**. Alcohol **S** is then transformed into γ , δ -unsaturated carboxylic acid **M** by a three step procedure as follows: (I) treatment with diethyl malonate and catalytic Ti(OEt)₄ at 160 °C for 1 hour, (ii) heating at 190 °C for 4 hours, and (iii) hydrolysis with ethanolic KOH at reflux.

General Method VI

$$P_{2}$$
 P_{2}
 P_{2}
 P_{3}
 P_{41}
 P_{2}
 P_{41}
 P_{41}

[0069] Carboxylic acid K also may be prepared by General Method VI (see: Hoffman, R. V., Tao, J., *Tetrahedron*, 1997, 53, 7119, which document is entirely incorporated herein by reference). An amino acid T, which incorporates R_{41} and where P_2 is an appropriate protecting group for nitrogen, is transformed into β -ketoester U. Compound U is deprotonated, and the resulting anion is condensed with triflate V, which incorporates R_3 . The coupling product thus obtained is

treated with trifluoroacetic acid to provide ketoester **W**, and this material is subsequently hydrolyzed to afford carboxylic acid **K**. Triflate **V**, in turn, may be prepared from the corresponding alcohol by treatment with trifluoromethanesulfonic anhydride and 2,6-lutidine.

General Method VII

$$P_2$$
 P_2
 P_3
 P_4
 P_4

[0070] Lactone J also may be prepared by General Method VII (see: (a) Askin, D., Wallace, M. A., Vacca, J. P., Reamer, R. A., Volante, R. P., Shinkai, I. J. Org. Chem. 1992, 57, 2771 (b) McWilliams, J. C., Armstrong, J. D., Zheng, N., Bhupathy, M., Volante, R. P., Reider, P. J., J. Am. Chem. Soc. 1996, 118, 11970; each of these documents is entirely incorporated herein by reference). An amino acid T, which incorporates R₄₁ and where P₂ is an appropriate protecting group for nitrogen, is transformed into epoxide X (single diastereomer) by the method described in: Luly, J. R., Dellaria, J. F., Plattner, J. J., Soderquist, J. L., Yi, N., J. Org. Chem. 1987, 52, 1487, the disclosure of which is entirely incorporated herein by reference. Alternatively, X may be prepared from T as a mixture of

diastereomers as described in the "Examples" section of this document. Epoxide X is condensed with the anion derived from compound Y, which incorporates R₃ and in which X₂ is a chiral auxiliary [including (1*S*,2*R*)-1-aminoindan-2-ol acetonide] to afford coupling product Z. If X was utilized as a mixture of diastereomers, the diastereomer of Z depicted below is purified from other Z isomers (if any) produced in the coupling reaction. This material is subsequently cyclized under acidic conditions to provide lactone J. Compound Y may be prepared from the corresponding carboxylic acid (not shown) by the method outlined in: Askin, D., Wallace, M. A., Vacca, J. P., Reamer, R. A., Volante, R. P., Shinkai, I., J. Org. Chem. 1992, 57, 2771.

[0071] Suitable protecting groups for nitrogen are recognizable to those skilled in the art and include, but are not limited to benzyloxycarbonyl, t-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, p-methoxybenxyloxycarbonyl, trifluoroacetamide, and p-toluenesulfonyl. Suitable protecting groups for oxygen are recognizable to those skilled in the art and include, but are not limited to -CH₃, -CH₂CH₃, tBu, -CH₂Ph, -CH₂CH=CH₂, -CH₂OCH₂CH₂Si(CH₃)₃, and -CH₂CCl₃. Other examples of suitable protecting groups for nitrogen or oxygen can be found in T. Green & P. Wuts, <u>Protective Groups in Organic Synthesis</u> (2nd ed. 1991), the disclosure of which is incorporated herein by reference.

[0072] Suitable leaving groups also are recognizable to those skilled in the art and include, but are not limited to, Cl, Br, I, sulfonates, O-alkyl groups,

[0073] Other examples of suitable leaving groups are described in J. March, Advanced Organic Chemistry, Reactions, Mechanisms, and Structure (4th ed. 1992) at pages 205, 351-56, 642-43, 647, 652-53, 666, 501, 520-21, 569, 579-80, 992-94, 999-1000, 1005, and 1008, the disclosure of which is incorporated herein by reference.

EXAMPLES

[0074] Examples of the processes used to make several of the compounds of formula I are set forth below. These Examples are intended to illustrate the present invention without limiting it. The structures of the compounds of the following examples were confirmed by one or more of the following: proton magnetic resonance spectroscopy, infrared spectroscopy, elemental microanalysis, mass spectrometry, thin layer chromatography, melting point, and boiling point.

[0075] Proton magnetic resonance (1H NGR) spectra were determined using a Varian UNITYplus 300 spectrometer operating at a field strength of 300 megahertz (MHZ). Chemical shifts are reported in parts per million (ppm, □) downfield from an internal tetramethylsilane standard. Alternatively, 1H NGR spectra were referenced to residual protic solvent signals as follows: CHCl3 = 7.26 ppm; DMSO = 2.49 ppm, C6HD5 = 7.15 ppm. Peak multiplicities are designated as follows: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet; br, broad resonance; m, multiplet. Coupling constants (J) are given in hertz (Hz). Infrared absorption (IR) spectra were obtained using a Perkin-Elmer 1600 series FTIR spectrometer. Elemental microanalyses were performed by Atlantic Microlab Inc., Norcross, GA and gave results for the elements stated within ±0.4% of the theoretical values.

[0076] Flash column chromatography was performed using Silica gel 60 (Merck Art 9385). Analytical thin layer chromatography (TLC) was performed using precoated sheets of Silica 60 F254 (Merck Art 5719). Melting points were determined on a Mel-Temp apparatus and are uncorrected. All reactions were performed in septum-sealed flasks under a slight positive pressure of argon unless otherwise noted. All commercial reagents were used as received from their respective suppliers with the following exceptions. Tetrahydrofuran (THF) was distilled from sodium-benzophenone ketyl prior to use. Dichloromethane (CH2Cl2) was distilled from calcium hydride prior to use. Anhydrous lithium chloride was prepared by heating at 110 □C under vacuum overnight. Et2O refers to diethyl ether. DMF refers to N,N-dimethylformamide. DMSO refers to dimethylsulfoxide. Other abbreviations include: CH3OH (methanol), EtOH

(ethanol), EtOAc (ethyl acetate), DME (ethylene glycol dimethyl ether), Ac (acetyl), Me (methyl), Et (ethyl), Ph (phenyl), Bn (benzyl), CyPentyl (cyclopentyl), Tr (triphenylmethyl), CBZ (benzyloxycarbonyl), BOC (tert-butoxycarbonyl), Gln (glutamine), Leu (leucine), Phe (phenylalanine), Val (valine). Additionally, "L" represents naturally occurring amino acids, "D" represents unnatural amino acids, and "DL" represents a racemic mixture of the two.

[0077] A simplified naming system employing amino acid abbreviations is used to identify some intermediates and final products. When naming compounds, italicized amino acid abbreviations represent modifications at the C-terminus of that residue where the following apply:

- 1. acrylic acid esters are reported as "E" (trans) propenoates;
- 2. acrylamides are reported as "E" (trans) propenamides; and
- 3. N-acetyl-pyrrolidin-2-ones are reported as "E" (trans) 1-acetyl-3-methylene-pyrrolidin-2-ones.

[0078] In addition, the terminology " $AA_1\Psi[COCH_2]$ - AA_2 " indicates that, for any peptide sequence, two amino acids (AA_1 and AA_2) linked by an amide bond are replaced by a ketomethlyene dipeptide isostere moiety.

Example 1 - Preparation of a Mixture of Compound 1 and Compound 9 (~1:1): Ethyl-3-(CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate [BOC-L-(Tr-Gln)]-N(OMe)Me.

[0079] Isobutyl chloroformate (4.77 mL, 36.8 mmol, 1.0 equiv) was added to a solution of [BOC-L-(Tr-Gln)]-OH (18.7 g, 36.7 mmol, 1 equiv) and 4-methylmorpholine (8.08 mL, 73.5 mmol, 2.0 equiv) in CH₂Cl₂ (250 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 20 minutes, then *N,O*-dimethylhydroxylamine hydrochloride (3.60 g, 36.7 mmol, 1.0 equiv) was added. The resulting solution was stirred at 0 °C for 20 minutes and at 23 °C for 2 hours, and then was partitioned between water (150 mL) and CH₂Cl₂ (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, and were concentrated.

Purification of the residue by flash column chromatography (gradient elution, 40% \rightarrow 20% hexanes in EtOAc) provided [BOC-L-(Tr-Gln)]-N(OMe)Me (16.1 g, 82%) as a white foam: $R_f = 0.22$ (50% EtOAc in hexanes); IR (cm⁻¹) 3411, 3329, 3062, 1701, 1659; ¹H NGR (CDCl₃) δ 1.42 (s, 9H), 1.63-1.77 (m, 1H), 2.06-2.17 (m, 1H), 2.29-2.43 (m, 2H), 3.17 (s, 3H), 3.64 (s, 3H), 4.73 (s, br, 1H), 5.38-5.41 (m, 1H), 7.20-7.31 (m, 15H); Anal. (C₃₁H₃₇N₃O₅) C, H, N.

Preparation of Intermediate [BOC-L-(Tr-Gln)]-H.

[0080] Diisobutylaluminum hydride (50.5 mL of a 1.5 M solution in toluene, 75.8 mmol, 2.5 equiv) was added to a solution of [BOC-L-(Tr-Gln)]-N(OMe)Me (16.1 g, 30.3 mmol, 1 equiv) in THF at -78 °C, and the reaction mixture was stirred at -78 °C for 4 hours. Methanol (4 mL) and 1.0 M HCl (10 mL) were added sequentially, and the mixture was warmed to 23 °C. The resulting suspension was diluted with Et₂O (150 mL) and was washed with 1.0 M HCl (3 x 100 mL), half-saturated NaHCO₃ (100 mL), and water (100 mL). The organic layer was dried over MgSO₄, filtered, and concentrated to give crude [BOC-L-(Tr-Gln)]-H (13.8 g, 97%) as a white solid: mp = 114-116 °C; R_f = 0.42 (50% EtOAc in hexanes); IR (cm⁻¹) 3313, 1697, 1494; ¹H NGR (CDCl₃) δ 1.44 (s, 9H), 1.65-1.75 (m, 1H), 2.17-2.23 (m, 1H), 2.31-2.54 (m, 2H), 4.11 (s, br, 1H), 5.38-5.40 (m, 1H), 7.11 (s, 1H), 7.16-7.36 (m, 15H), 9.45 (s, 1H).

Preparation of Intermediate Ethyl-3-[BOC-L-(Tr-Gln)]-E-Propenoate.

[0081] Sodium bis(trimethylsilyl)amide (22.9 mL of a 1.0 M solution in THF, 22.9 mmol, 1.0 equiv) was added to a solution of triethyl phosphonoacetate (5.59 g, 22.9 mmol, 1.0 equiv) in THF (200 mL) at -78 °C, and the resulting solution was stirred for 20 minutes at that temperature. Crude [BOC-L-(Tr-Gln)]-H (10.8 g, 22.9 mmol, 1 equiv) in THF (50 mL) was added via cannula, and the reaction mixture was stirred for 2 hours at -78 °C, warmed to 0 °C for 10 minutes, and partitioned between 0.5 M HCl (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (40%

EtOAc in hexanes) provided ethyl-3-[BOC-L-(Tr-Gln)]-E- propenoate (10.9 g, 88%) as a white foam: $R_f = 0.60$ (50% EtOAc in hexanes); IR (cm⁻¹) 3321, 1710; ¹H NGR (CDCl₃) δ 1.27 (t, 3H, J = 7.2), 1.42 (s, 9H), 1.70-1.78 (m, 1H), 1.80-1.96 (m, 1H), 2.35 (t, 2H, J = 7.0), 4.18 (q, 2H, J = 7.2), 4.29 (s, br, 1H), 4.82-4.84 (m, 1H), 5.88 (dd, 1H, J = 15.7, 1.6), 6.79 (dd, 1H, J = 15.7, 5.3), 6.92 (s, 1H), 7.19-7.34 (m, 15H); Anal. (C₃₃H₃₈N₂O₅) C, H, N.

Preparation of Intermediate Ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E-Propenoate.

[0082] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-(Tr-Gln)]-E-propenoate (0.091 g, 0.17 mmol, 1 equiv) in 1,4-dioxane (3 mL) at 23 °C. The reaction mixture was stirred at 23 °C for 1.5 hours, then was concentrated under reduced pressure to afford crude ethyl-3-[H₂N-L-(Tr-Gln)]- E-propenoate•HCl as a viscous oil. This material was dissolved in CH₂Cl₂ (6 mL) and CBZ-L-LeuΨ[COCH₂]-D/L-Phe-OH (0.068 g, 0.17 mmol, 1.0 equiv) [prepared as described in: Harbeson, S. L., Rich, D. H., J. Med. Chem. 1989, 32, 1378], 1-hydroxybenzotriazole hydrate (0.030 g, 0.22) mmol, 1.3 equiv), 4-methylmorpholine (0.055 mL, 0.50 mmol, 3.0 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.042 g, 0.22 mmol, 1.3 equiv) were added sequentially. The reaction mixture was stirred for 21 hours at 23 °C and then partitioned between water (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄ and were concentrated. Purification of the residue by flash column chromatography (50% EtOAc in hexanes) provided ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E-propenoate (0.040 g, 28%) as a white foam: $R_f = 0.44$ (50% EtOAc in hexanes); IR (cm⁻¹) 3317, 1712, 1667; ¹H NGR (CDCl₃, approximately 1:1 mixture of diastereomers) δ 0.84-0.91 (m), 1.20-1.31 (m), 1.51-1.58 (m), 1.73-1.96 (m), 2.29-2.39 (m), 2.51-2.72 (m), 2.94-3.07 (m), 4.11-4.30 (m), 4.47-4.50 (m), 4.84 (d, J = 7.8 Hz), 4.94-5.08 (m), 5.09 (s), 5.30 (d, J = 7.2 Hz), 5.48 (d, J = 14.3 Hz), 5.72-5.95 (m), 6.55-7.01 (m), 7.14-7.61 (m), 8.02-8.05 (m); Anal. $(C_{52}H_{57}N_3O_7 \cdot 0.75H_2O) C, H, N.$

Preparation of Product Ethyl-3-(CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-Gln)-E-Propenoate.

[0083] Triisopropylsilane (0.10 mL) and trifluoroacetic acid (3 mL) were added sequentially to a solution of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E- propenoate (0.035 g, 0.042 mmol) in CH₂Cl₂ (4 mL) producing a bright yellow solution. The reaction mixture was stirred for 30 minutes at 23 °C, then carbon tetrachloride (4 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-Gln)-E-propenoate (0.014 g, 56%) as a white foam: R_f = 0.39 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3306, 1712, 1661; ¹H NGR (CDCl₃, approximately 1:1 mixture of diastereomers) δ 0.87-0.93 (m), 1.24-1.33 (m), 1.39-1.96 (m), 2.17-2.21 (m), 2.58-2.79 (m), 2.87-3.09 (m), 4.10-4.27 (m), 4.44 (s, br), 4.55 (s, br), 5.01-5.10 (m), 5.14-5.69 (m), 5.79 (s), 5.82-5.91 (m), 6.13 (d, J = 7.5 Hz), 6.42 (s, br), 6.59 (dd, J = 16.0, 7.5 Hz), 6.74 (dd, J = 15.6, 4.7 Hz), 7.16-7.39 (m); Anal. (C₃₃H₄₃N₃O₇) C, H, N.

Example 2 - Preparation of Compound 1: Ethyl-3-(CBZ-L-LeuΨ[COCH₂]-L-Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate trans-7-Methyl-oct-4-enoic Acid.

[0084] A solution of isovaleraldehyde (8.61 g, 100 mmol, 1 equiv) in THF (30 mL) was added dropwise via addition funnel to a solution of vinylmagnesium bromide (100 mL of a 1.0 M solution in THF, 100 mmol, 1.0 equiv) in THF (150 mL) at 0 °C. After the addition was completed, the reaction mixture was stirred for 30 minutes at 0 °C, and then was partitioned between saturated NH₄Cl (150 mL) and Et₂O (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to afford a yellow oil. This material was combined (neat) with diethyl malonate (16.7 mL, 110 mmol, 1.1 equiv) and Ti(OEt)₄ (2.10 mL, 10.0 mmol, 0.10 equiv), and the combination was heated to 160 °C for 1 hour (distilling out EtOH as it was formed). The reaction mixture was then maintained at 190 °C for 4 hours and then cooled to 60 °C. EtOH (50 mL) and 6.0 M KOH (50 mL)

were added sequentially, and the brown reaction mixture was refluxed for 4 hours. After cooling to 23 °C, the reaction mixture was filtered through a medium frit, and the filtrate was partitioned between water (150 mL) and Et₂O (2 x 150 mL). The aqueous layer was then acidified to pH = 2 (as indicated by pH paper) with concentrated HCl and extracted with a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was distilled at reduced pressure to afford trans-7-methyl-oct-4-enoic acid (4.62 g, 30%) as a colorless liquid: bp: 115-120 °C (1 torr); 1 H NGR (CDCl₃) δ 0.86 (d, 6H, J = 5.5), 1.51-1.65 (m, 1H), 1.87 (t, 2H, J = 6.5), 2.22-2.38 (m, 2H), 2.40-2.45 (m, 2H), 5.34-5.52 (m, 2H); Anal. (C₉H₁₆O₂) C, H.

Preparation of Intermediate trans-7-Methyl-oct-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0085] Oxalyl chloride (2.71 mL, 31.1 mmol, 1.05 equiv) was added to a solution of trans-7-methyl-oct-4-enoic acid (4.62 g, 29.6 mmol, 1 equiv) and N,N-dimethylformamide (0.03 mL, 0.39 mmol, 0.012 equiv) in benzene (100 mL) at 23 °C. The reaction mixture was stirred at 23 °C for 2 hours and then concentrated under reduced pressure. The resulting oil was dissolved in THF (20 mL) and added via cannula to a solution of (1R,2R)-(-)-pseudoephedrine (4.45 g, 26.9 mmol, 0.91 equiv) and triethylamine (4.50 mL, 32.3 mmol, 1.1 equiv) in THF (200 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 30 minutes and then partitioned between half-saturated NH₄Cl (150 mL) and EtOAc (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (gradient elution $40 \rightarrow 50\%$ EtOAc in hexanes) to afford trans-7-methyl-oct-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl- ethyl)-methyl amide (7.55 g, 93%) as a viscous oil: $R_f = 0.27$ (50% EtOAc in hexanes); IR (cm⁻¹) 3382, 1622; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.87 (d, J = 6.5), 0.99 (d, J = 6.8), 1.11 (d, J = 7.2), 1.53-1.66 (m), 1.86 (t, J = 6.1), 2.26-2.54 (m), 2.82 (s), 2.92 (s), 3.99-4.04 (m), 4.29 (s, br), 4.42-4.47 (m), 4.56-4.62 (m), 5.37-5.51 (m), 7.26-7.36 (m); Anal. $(C_{19}H_{29}NO_2)$ C, H, N.

Preparation of Intermediate trans-2S-Benzyl-7-methyl-oct-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0086] n-Butyllithium (52.6 mL of a 1.6 M solution in hexanes, 84.2 mmol, 2.1 equiv) was added to a suspension of anhydrous lithium chloride (11.9 g, 282 mmol, 7.0 equiv) and disopropylamine (12.7 mL, 90.3 mmol, 2.25 equiv) in THF (300 mL) at -78 °C. The reaction mixture was stirred for 20 minutes at -78 °C and then maintained at 0 °C for 5 minutes and subsequently cooled again to -78 °C. trans-7-Methyl-oct-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (12.2 g, 40.1 mmol, 1 equiv) in THF (40 mL) was added via cannula, and the resulting solution was stirred at -78 °C for 1 hour, maintained at 0 °C for 15 minutes, stirred at 23 °C for 5 minutes, and then cooled again to 0 °C. Benzyl bromide (7.15 mL, 60.1 mmol, 1.5 equiv) was added, and the reaction mixture was stirred at 0 °C for 30 minutes and then partitioned between half-saturated NH₄Cl (200 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution 20 \rightarrow 40% EtOAc in hexanes) provided trans-2S-benzyl-7-methyl-oct-4-enoic acid (2R-hydroxy-1R-methyl- 2-phenyl-ethyl)-methyl amide (12.0 g, 76%) as a viscous oil: $R_f = 0.54$ (50% EtOAc in hexanes); IR (cm⁻¹) 3382, 1617; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.81-0.90 (m), 1.42-1.61 (m), 1.80-1.95 (m), 2.17-2.25 (m), 2.33-2.54 (m), 2.55 (s), 2.73-2.99 (m), 3.05-3.16 (m), 3.93-4.00 (m), 4.31-4.51 (m), 5.25-5.56 (m), 7.14-7.37 (m); Anal. ($C_{26}H_{35}NO_2$) C, H, N.

Preparation of Intermediate 3*R*-Benzyl-5*S*-(1*R*-bromo-3-methyl-butyl)-dihydrofuran-2-one.

[0087] N-Bromosuccinimide (5.97 g, 33.5 mmol, 1.1 equiv) was added in small portions over 5 minutes to a solution of trans-2S-benzyl-7-methyl-oct-4-enoic acid (2R-hydroxy- 1R-methyl-2-phenyl-ethyl)-methyl amide (12.0 g, 30.5 mmol, 1 equiv) and glacial acetic acid (8.73 mL, 152 mmol, 5.0 equiv) in a 4:1 mixture of THF and H₂O (250 mL) at 0 °C. The resulting yellow solution was stirred for 15 minutes at 0 °C, then warmed to 23 °C, and subsequently refluxed for 1 hour.

After cooling to 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (300 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (5% EtOAc in hexanes) gave 3R-benzyl-5S-(1R-bromo-3-methyl-butyl)-dihydrofuran-2-one (7.09 g, 65%) as a pale yellow oil: R_f = 0.79 (30% EtOAc in hexanes); IR (cm⁻¹) 1777; ¹H NGR (CDCl₃) δ 0.87 (d, 3H, J = 6.5), 0.94 (d, 3H, J = 6.9), 1.53-1.72 (m, 2H), 1.82-1.93 (m, 1H), 2.10-2.20 (m, 1H), 2.23-2.33 (m, 1H), 2.83 (dd, 1H, J = 13.5, 8.9), 3.04-3.12 (m, 1H), 3.14-3.22 (m, 1H), 4.05-4.12 (m, 1H), 4.23-4.29 (m, 1H), 7.20-7.36 (m, 5H); Anal. (C₁₆H₂₁BrO₂) C, H, N.

Preparation of Intermediate 5S-(1S-Azido-3-methyl-butyl)-3R-benzyl-dihydrofuran-2-one.

[0088] A suspension of sodium azide (2.83 g, 43.5 mmol, 2.0 equiv) and 3R-benzyl-5S-(1R-bromo-3-methyl-butyl)-dihydrofuran-2-one (7.09 g, 21.8 mmol, 1 equiv) in N, N-dimethylformamide (50 mL) was heated at 50 °C for 20 hours. The reaction mixture was cooled to 23 °C and partitioned between water (200 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (10% EtOAc in hexanes) to give 5S-(1S-azido-3-methyl-butyl)-3R-benzyl- dihydrofuran-2-one (3.26 g, 52%) as a colorless oil: R_f = 0.47 (20% EtOAc in hexanes); IR (cm⁻¹) 2109, 1775; 1 H NGR (CDCl₃) δ 0.93 (d, 3H, J = 6.5), 0.94 (d, 3H, J = 6.5), 1.32-1.41 (m, 1H), 1.55-1.65 (m, 1H), 1.70-1.85 (m, 1H), 2.03-2.18 (m, 2H), 2.80 (dd, 1H, J = 13.5, 8.9), 3.05-3.22 (m, 2H), 3.27-3.33 (m, 1H), 4.22-4.27 (m, 1H), 7.18-7.36 (m, 5H); Anal. (C₁₆H₂₁N₃O₂) C, H, N.

Preparation of Intermediate [1S-(4R-Benzyl-5-oxo-tetrahydrofuran-2S-yl)-3-methyl-butyl]-carbamic Acid *tert*-Butyl Ester.

[0089] A suspension of 5S-(1S-azido-3-methyl-butyl)-3R-benzyl-dihydrofuran-2-one (3.26 g, 11.3 mmol, 1 equiv) and Pd/C (10%, 0.40 g) in CH₃OH (60 mL) was stirred under a hydrogen atmosphere (balloon) for 2 hours. The reaction mixture

was filtered through celite, concentrated, and the residue dissolved in 1,4-dioxane (80 mL). *N*,*N*-diisopropylethylamine (3.94 mL, 22.6 mmol, 2.0 equiv) and di-*tert*-butyl dicarbonate (3.70 g, 17.0 mmol, 1.5 equiv) were added sequentially, and the resulting solution was stirred at 23 °C for 2 hours. The reaction mixture was then partitioned between water (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution, $10 \rightarrow 15\%$ EtOAc in hexanes) provided [1*S*-(4*R*-benzyl-5-oxo-tetrahydrofuran-2*S*-yl)-3-methyl-butyl]-carbamic acid *tert*-butyl ester (2.53 g, 62%) as a white solid: mp = 84-86 °C; R_f = 0.66 (30% EtOAc in hexanes); IR (cm⁻¹) 3338, 1767, 1704; ¹H NGR (CDCl₃) δ 0.89 (d, 3H, J = 6.5), 0.90 (d, 3H, J = 6.5), 1.18-1.32 (m, 1H), 1.40 (s, 9H), 1.43-1.56 (m, 1H), 1.98-2.07 (m, 1H), 2.20-2.29 (m, 1H), 2.78 (dd, 1H, J = 13.7, 9.0), 2.91-3.01 (m, 1H), 3.15 (dd, 1H, J = 13.7, 4.4), 3.71-3.81 (m, 1H), 4.23-4.28 (m, 1H), 4.34 (d, 1H, J = 9.7), 7.16-7.33 (m, 6H); Anal. (C₂₁H₃₁NO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]- E-Propenoate.

[0090] Lithium hydroxide (7.2 mL of a 1 M aqueous solution, 7.2 mmol, 5.0 equiv) was added to a solution of [1S-(4R-benzyl-5-oxo-tetrahydrofuran-2S-yl)-3-methyl-butyl]-carbamic acid *tert*-butyl ester (0.521 g, 1.44 mmol, 1 equiv) in DME (7 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 30 minutes and then partitioned between 0.5 M HCl (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in CH₂Cl₂ (30 mL). 4-Methylmorpholine *N*-oxide (0.337 g, 2.88 mmol, 2.0 equiv), powdered 4Å molecular sieves (0.55 g), and tetrapropylammonium perruthenate (0.050 g, 0.142 mmol, 0.10 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 2.5 hours at 23 °C, and then it was filtered through celite. The filtrate was concentrated under reduced pressure to provide a brown oil which was dissolved in CH₂Cl₂ (30 mL). Crude ethyl-3-[H₂N-L-(Tr-*Gln*)]-E-propenoate•HCl (2.87 mmol, 2.0 equiv, prepared as described in Example 1 for the preparation of

ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]- E-propenoate), 1-hydroxybenzotriazole hydrate (0.409 g, 3.03 mmol, 2.1 equiv), 4-methylmorpholine (0.633 mL, 5.76 mmol, 4.0 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.58 g, 3.03 mmol, 2.1 equiv) were added sequentially, and the reaction mixture was stirred for 15 hours at 23 °C and then partitioned between water (150 mL) and EtOAc (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution 30 → 40% EtOAc in hexanes) provided ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.502 g, 44%) as a white foam: $R_f = 0.49$ (50%) EtOAc in hexanes); IR (cm⁻¹) 3314, 1707, 1667; ¹H NGR (CDCl₃) δ 0.84-0.91 (m, 6H), 1.29 (t, 3H, J = 7.2); 1.39 (s, 9H), 1.42-1.61 (m, 4H), 1.98-2.05 (m, 1H), 2.35 (t, 2H, J = 7.2), 2.54 (d, 1H, J = 16.2), 2.70 (dd, 1H, J = 11.5, 5.6), 2.78-2.99 (m, 1.5, 1.5)3H), 4.07-4.10 (m, 1H), 4.17 (q, 2H, J=7.2), 4.47 (s, br, 1H), 4.58 (d, 1H, J=7.5), 5.46 (d, 1H, J = 15.8), 5.87 (d, 1H, J = 8.7), 6.58 (dd, 1H, J = 15.8, 5.1), 7.12-7.31 (m, 21H); Anal. $(C_{49}H_{59}N_3O_7)$ C, H, N.

Preparation of Intermediate Ethyl-3-[CBZ-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenoate.

[0091] HCl (5 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenoate (0.096 g, 0.120 mmol, 1 equiv) in 1,4-dioxane (5 mL). The reaction mixture was stirred at 23 °C for 30 minutes and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (10 mL), and 4-methylmorpholine (0.033 mL, 0.300 mmol, 2.5 equiv) and benzyl chloroformate (0.025 mL, 0.175 mmol, 1.4 equiv) were added sequentially. The reaction mixture was stirred for 30 minutes at 23 °C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[CBZ-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.050 g, 50%) as a white foam: R_f = 0.38 (50% EtOAc in hexanes); IR (cm⁻¹) 3318, 1712, 1664;

¹H NGR (CDCl₃) δ 0.85-0.87 (m, 6H), 1.05-1.13 (m, 1H), 1.29 (t, 3H, J = 7.2); 1.35-1.42 (m, 2H), 1.97 (s, br, 1H), 2.29-2.31 (m, 2H), 2.54 (d, 1H, J = 16.5), 2.69-3.03 (m, 5H), 4.17 (q, 2H, J = 7.2), 4.47 (s, br, 1H), 4.81 (d, 1H, J = 7.5), 4.94-5.06 (m, 3H), 5.48 (d, 1H, J = 15.6), 5.87 (d, 1H, J = 8.1), 6.58 (dd, 1H, J = 15.6, 5.0), 7.12-7.32 (m, 26H); Anal. (C₅₂H₅₇N₃O₇•0.25 H₂O) C, H, N.

Preparation of Product Ethyl-3-(CBZ-L-LeuΨ[COCH₂]-L-Phe-L-Gln)-E-Propenoate.

[0092] Triisopropylsilane (0.10 mL) and trifluoroacetic acid (5 mL) were added sequentially to a solution of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.050 g, 0.060 mmol) in CH₂Cl₂ (6 mL) producing a bright yellow solution. The reaction mixture was stirred for 30 minutes at 23 °C, then carbon tetrachloride (4 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(CBZ-L-LeuΨ[COCH₂]-L-Phe-L-Gln)-E-propenoate (0.026 g, 73%) as a white solid: mp = 162-164 °C; R_f = 0.66 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3412, 3292, 1718, 1689, 1650; ¹H NGR (CDCl₃) δ 0.92 (d, 6H, J = 6.5), 1.30 (t, 3H, J = 7.2), 1.45-1.59 (m, 3H), 1.97-2.05 (m, 1H), 2.07 (d, 1H, J = 15.9), 2.17 (s, br, 2H), 2.70-2.79 (m, 1H), 2.91-3.09 (m, 3H), 4.18 (q, 2H, J = 7.2), 4.23-4.27 (m, 1H), 4.54 (s, br, 1H), 5.03 (d, 1H, J = 12.1), 5.08 (d, 1H, J = 12.1), 5.23 (d, 1H, J = 6.9), 5.38 (s, br, 1H), 5.47 (d, 1H, J = 15.6), 5.92 (d, 1H, J = 8.7), 6.43 (s, br, 1H), 6.60 (dd, 1H, J = 15.6, 4.8), 7.16-7.39 (m, 11H); Anal. (C₃₃H₄₃N₃O₇) C, H, N.

Example 3 - Preparation of Compound 2: Ethyl-3-(EtSCO-L-LeuΨ[COCH₂]-L-Phe- L-*Gln*)-E-Propenoate.

Preparation of Intermediate Ethyl-3-[EtSCO-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]- E-Propenoate.

[0093] HCl (4 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.216 g, 0.269 mmol, 1 equiv) in 1,4-dioxane (6 mL). The reaction mixture was stirred at 23 °C for 1.5 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (6

mL), cooled to 0 °C, and *N*,*N*-diisopropylethylamine (0.094 mL, 0.540 mmol, 2.0 equiv) and ethyl chlorothiolformate (0.034 mL, 0.326 mmol, 1.2 equiv) were added sequentially. The reaction mixture was stirred for 1 hour at 0 °C, and it then was partitioned between water (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was purified by flash column chromatography (40% EtOAc in hexanes) to afford ethyl-3-[EtSCO-L-Leu Ψ [COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.130 g, 61%) as a white foam: R_f = 0.45 (50% EtOAc in hexanes); IR (cm⁻¹) 3307, 1713, 1656; ¹H NGR (CDCl₃) δ 0.86 (d, 6H, J = 6.5), 1.05-1.19 (m, 1H), 1.21-1.39 (m, 8H), 1.41-1.58 (m, 2H), 1.96-2.05 (m, 1H), 2.28-2.35 (m, 2H), 2.54 (d, 1H, J = 14.6), 2.70 (dd, 1H, J = 11.7, 5.8), 2.79-3.00 (m, 4H), 4.17 (q, 2H, J = 7.2), 4.41-4.45 (m, 2H), 5.40 (d, 1H, J = 7.5), 5.49 (dd, 1H, J = 15.8, 1.6), 5.93 (d, 1H, J = 8.4), 6.59 (dd, 1H, J = 15.8, 5.1), 7.10-7.31 (m, 21H); Anal. (C₄₇H₅₅N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(EtSCO-L-LeuΨ[COCH₂]-L-Phe-L-*Gln*)-E-Propenoate

[0094] Ethyl-3-[EtSCO-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.120 g, 0.152 mmol) was dissolved in CH₂Cl₂ (5 mL), and triisopropylsilane (0.10 mL) and trifluoroacetic acid (5 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 30 minutes at 23 °C, then carbon tetrachloride (6 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(EtSCO-L-LeuΨ[COCH₂]-L-Phe-L-*Gln*)-E-propenoate (0.056 g, 68%) as a beige foam: R_f = 0.55 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3385, 2293, 3199, 1717, 1653; ¹H NGR (CDCl₃) δ 0.91 (d, 3H, J = 6.2), 0.92 (d, 3H, J = 6.5), 1.21-1.38 (m, 8H), 1.46-1.65 (m, 2H), 1.83-2.05 (m, 1H), 2.61 (d, 1H, J = 14.9), 2.74-3.09 (m, 7H), 4.18 (q, 2H, J = 7.2), 4.49-4.56 (m, 2H), 5.49 (d, 1H, J = 15.6), 5.59 (s, br, 1H), 6.05 (d, 1H, J = 8.7), 6.20 (d, 1H, J = 6.9), 6.49 (s, br, 1H), 6.62 (dd, 1H, J = 15.6, 4.8), 7.16-7.32 (m, 6H); Anal. (C₂₈H₄₁N₃O₆S) C, H, N.

Example 4 - Preparation of Compound 6: Ethyl-3-(BnSCO-L-Leu Ψ [COCH₂]-L-Phe- L-Gln)-E-Propenoate.

Preparation of Intermediate Benzyl Chlorothiolformate

[0095] Triethylamine (7.12 mL, 51.1 mmol, 1.0 equiv) was added to a 0 °C solution of benzyl mercaptan (6.0 mL, 51.1 mmol, 1 equiv) and triphosgene (5.76 g, 19.4 mmol, 0.38 equiv) in CH₂Cl₂ (100 mL). The reaction mixture was warmed to 23 °C, stirred for 2 hours, and then concentrated under reduced pressure. The resulting white suspension was slurried with Et₂O (100 mL) and filtered through a medium frit. The filtrate was concentrated under reduced pressure, and the resulting liquid was distilled under vacuum to provide benzyl chlorothiolformate (6.95 g, 73%) as a colorless liquid: bp = 95-100 °C (8 torr); IR (cm⁻¹) 1755; ¹H NGR (CDCl₃) δ 4.19 (s, 2H), 7.30-7.34 (m, 5H).

Preparation of Intermediate Ethyl-3-[BnSCO-L-Leu [COCH2]-L-Phe-L-(Tr-Gln)]- E-Propenoate.

[0096] HCl (5 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-Leu \Box [COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.190 g, 0.237 mmol, 1 equiv) in 1,4-dioxane (5 mL). The reaction mixture was stirred at 23 \Box C for 1.5 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (6 mL), and 4-methylmorpholine (0.078 mL, 0.709 mmol, 3.0 equiv) and benzyl chlorothiolformate (0.050 mL, 0.331 mmol, 1.4 equiv) were added sequentially. The reaction mixture was stirred for 1.5 hours at 23 °C, and it then was partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[BnSCO-L-Leu Ψ [COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.117 g, 58%) as a white foam: R_f = 0.44 (50% EtOAc in hexanes); IR (cm⁻¹) 3312, 1714, 1656; ¹H NGR (CDCl₃) δ 0.82-0.89 (m, 6H), 1.28 (t, 3H, J = 7.2), 1.43-1.57 (m, 2H), 1.95-2.05 (m, 1H), 2.31-2.36 (m, 2H), 2.53 (d, 1H, J = 14.6), 2.56-2.70 (m, 1H), 2.72-3.04 (m, 5H), 4.02-4.21 (m, 4H), 4.44 (s, br, 2H), 5.41 (d, 1H, J = 7.5),

5.48 (dd, 1H, J = 15.8, 1.6), 5.88 (d, 1H, J = 8.1), 6.58 (dd, 1H, J = 15.8, 5.1), 7.08-7.31 (m, 26H); Anal. ($C_{52}H_{57}N_3O_6S$) C, H, N.

Preparation of Product Ethyl-3-(BnSCO-L-LeuΨ[COCH₂]-L-Phe-L-Gln)-E-Propenoate

[0097] Ethyl-3-[BnSCO-L-Leu Ψ [COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.117 g, 0.137 mmol) was dissolved in CH₂Cl₂ (5 mL), and triisopropylsilane (0.10 mL) and trifluoroacetic acid (5 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 20 minutes at 23 °C, then carbon tetrachloride (5 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(BnSCO-L-Leu Ψ [COCH₂]-L-Phe-L-Gln)-E-propenoate (0.068 g, 81%) as a white foam: R_f = 0.52 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3299, 1717, 1650; ¹H NGR (CDCl₃) δ 0.91 (d, δ H, J = 6.2), 1.29 (t, δ H, δ H,

Example 5 - Preparation of Compound 8: Ethyl-3-(CyPentylSCO-L-LeuΨ[COCH₂]- L-Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate Cyclopentyl Chlorothiolformate.

[0098] Triethylamine (10.4 mL, 74.6 mmol, 1.0 equiv) was added to a 0 °C solution of cyclopentyl mercaptan (8.0 mL, 74.8 mmol, 1 equiv) and triphosgene (8.43 g, 28.4 mmol, 0.38 equiv) in CH_2Cl_2 . The reaction mixture was warmed to 23 °C, stirred for 2 hours, and then concentrated under reduced pressure. The resulting white suspension was slurried with Et_2O (100 mL) and filtered through a medium frit. The filtrate was concentrated under reduced pressure, and the resulting liquid was distilled under vacuum to provide cyclopentyl chlorothiolformate (10.4 g, 85%) as a colorless liquid: bp = 70-74 °C (1 torr); IR

(cm⁻¹) 1756, 830; 1 H NGR (C₆D₆) δ 1.01-1.23 (m, 6H), 1.49-1.60 (m, 2H), 3.20-3.29 (m, 1H).

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenoate

[0099] HCl (5 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.205 g, 0.256 mmol, 1 equiv) in 1,4-dioxane (6 mL). The reaction mixture was stirred at 23 °C for 1.5 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (8 mL), cooled to 0 °C, and 4-methylmorpholine (0.070 mL, 0.637 mmol, 2.5 equiv) and cyclopentyl chlorothiolformate (0.063 mL, 0.383 mmol, 1.5 equiv) were added sequentially. The reaction mixture was stirred for 30 minutes at 0 °C, and it then was partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to provide ethyl-3-[CyPentylSCO-L-LeuY[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.113 g, 53%) as a white foam: $R_f = 0.44$ (50%) EtOAc in hexanes); IR (cm⁻¹) 3310, 1713, 1654; ¹H NGR (CDCl₃) δ 0.85 (d, 6H, J = 6.5), 1.02-1.12 (m, 1H), 1.29 (t, 3H, J = 7.2), 1.42-1.68 (m, 7H), 1.98-2.08 (m, 4H), 2.31-2.35 (m, 2H), 2.55 (d, 1H, J = 14.3), 2.70 (dd, 1H, J = 11.8, 5.9), 2.79-3.09 (m, 4H), 3.55-3.66 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.38 (s, br, 1H), 4.48-4.49 (m, 1H), 5.33 (d, 1H, J = 7.5), 5.50 (dd, 1H, J = 15.9, 1.6), 5.94 (d, 1H, J= 8.4), 6.60 (dd, 1H, J = 15.9, 5.0), 7.10-7.31 (m, 21H); Anal. ($C_{50}H_{59}N_3O_6S$) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-LeuΨ[COCH₂]-L-Phe-L-Gln)- E-Propenoate

[0100] Ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.090 g, 0.108 mmol) was dissolved in CH₂Cl₂ (6 mL), and triisopropylsilane (0.10 mL) and trifluoroacetic acid (5 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 20 minutes at 23 °C, then carbon tetrachloride (4 mL) was added, and the mixture was concentrated

under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to provide ethyl-3-(CyPentylSCO-L-Leu Ψ [COCH₂]-L-Phe-L-Gln)-E-propenoate (0.050 g, 79%) as a white foam: $R_f = 0.58$ (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3385, 3298, 3199, 1717, 1652; ¹H NGR (CDCl₃) δ 0.89-0.93 (m, 6H), 1.31 (t, 3H, J = 7.2), 1.40-1.69 (m, 8H), 1.86 (s, br, 1H), 2.04-2.09 (m, 4H), 2.21 (s, br, 2H), 2.58 (d, 1H, J = 9.3), 2.64-2.79 (m, 1H), 2.89-3.07 (m, 3H), 3.07-3.69 (m, 1H), 4.18 (q, 2H, J = 7.2), 4.47 (s, br, 1H), 4.56 (s, br, 1H), 5.49 (d, 1H, J = 15.2), 5.57 (s, br, 1H), 6.07 (d, 1H, J = 8.7), 6.15 (d, 1H, J = 6.9), 6.54 (s, br, 1H), 6.62 (dd, 1H, J = 15.2, 4.8), 7.16-7.33 (m, 5H); Anal. (C₃₁H₄₅N₃O₆S) C, H, N.

Example 6 - Preparation of Compound 4: Ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-Phe- L-*Gln*)-E-Propenoate.

Preparation of Intermediate trans-6-Methyl-hept-4-enoic Acid

[0101] A solution of isobutyraldehyde (9.59 g, 133 mmol, 1 equiv) in THF (50 mL) was added dropwise via addition funnel to a solution of vinylmagnesium bromide (133 mL of a 1.0 M solution in THF, 133 mmol, 1.0 equiv) in THF (300 mL) at 0 °C. Upon completion of the addition, the reaction mixture was stirred for 30 minutes at 0 °C, then ethyl malonyl chloride (17.0 mL, 133 mmol, 1.0 equiv) was added. After stirring for 1 hour at 0°C, the reaction mixture was partitioned between saturated NH₄Cl (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by filtration through silica gel (eluting with 5% EtOAc in hexanes) afforded the intermediate malonate ester (11.5 g, 40% yield). This material was not characterized, but was combined (neat) with Ti(OEt)4 (1.13 mL, 5.39 mmol, 0.10 equiv), heated to 190 °C for 4 hours, and then cooled to 60 °C. EtOH (50 mL) and 6.0 M KOH (50 mL) were added sequentially, and the brown reaction mixture was refluxed for 4 hours. After cooling to 23 °C, the reaction mixture was filtered through a medium frit, and the filtrate was partitioned between water (150 mL) and Et₂O (2 x 150 mL). The aqueous layer was then acidified to pH = 2 (as indicated by pH paper) with concentrated HCl and extracted with a 1:1

mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was distilled at reduced pressure to afford trans-6-methyl-hept-4-enoic acid (3.58 g, 47%) as a colorless liquid: bp: 107-112 °C (1 torr); IR (cm⁻¹) 2960, 1711; ¹H NGR (CDCl₃) δ 0.96 (d, 6H, J = 6.5) 2,18-2.45 (m, 5H), 5.31-5.50 (m, 2H); Anal. (C₈H₁₄O₂) C, H.

Preparation of Intermediate trans-6-Methyl-hept-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0102] Oxalyl chloride (2.25 mL, 25.8 mmol, 1.05 equiv) was added to a solution of trans-6-methyl-hept-4-enoic acid (3.50 g, 24.6 mmol, 1 equiv) and N, N-dimethylformamide (0.03 mL, 0.39 mmol, 0.016 equiv) in benzene (60 mL) at 23 °C. The reaction mixture was stirred at 23 °C for 2 hours and then concentrated under reduced pressure. The resulting oil was dissolved in THF (20 mL) and added via cannula to a solution of 1R, 2R-(-)-pseudoephedrine (3.87 g, 23.4 mmol, 1.0 equiv) and triethylamine (3.92 mL, 28.1 mmol, 1.2 equiv) in THF (150 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 30 minutes and then partitioned between half-saturated NH₄Cl (150 mL) and EtOAc (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (gradient elution $40 \rightarrow 50\%$ EtOAc in hexanes) to afford trans-6-methyl-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (6.31 g, 93%) as a viscous oil: R = 0.35 (50% EtOAc in hexanes): R = 0.35 (50% EtOAc in

(2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (6.31 g, 93%) as a viscous oil: $R_f = 0.35$ (50% EtOAc in hexanes); IR (cm⁻¹) 3382, 1622; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.96 (d, J = 6.8), 0.97 (d, J = 6.5), 1.11 (d, J = 6.9), 2.18-2.59 (m), 2.82 (s), 2.92 (s), 3.99-4.04 (m), 4.32-4.42 (m), 4.44-4.49 (m), 4.55-4.62 (m), 5.32-5.49 (m), 7.24-7.42 (m); Anal. ($C_{18}H_{27}NO_2$) C, H, N.

Preparation of Intermediate trans-2S-Benzyl-6-methyl-hept-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0103] *n*-Butyllithium (28.6 mL of a 1.6 M solution in hexanes, 45.8 mmol, 2.1 equiv) was added to a suspension of anhydrous lithium chloride (6.47 g, 153 mmol, 7.0 equiv) and disopropylamine (6.88 mL, 49.1 mmol, 2.25 equiv) in THF

(250 mL) at -78 °C. The reaction mixture was stirred for 20 minutes at -78 °C, and it then was maintained at 0 °C for 5 minutes and subsequently cooled again to -78 °C. trans-6-Methyl-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (6.31 g, 21.8 mmol, 1 equiv) in THF (40 mL) was added via cannula, and the resulting solution was stirred at -78 °C for 1 hour, maintained at 0 °C for 15 minutes, stirred at 23 °C for 5 minutes, and then cooled again to 0 °C. Benzyl bromide (3.89 mL, 32.7 mmol, 1.5 equiv) was added, the reaction mixture was stirred at 0 °C for 30 minutes, and it then was partitioned between half-saturated NH₄Cl (200 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution 20 → 40% EtOAc in hexanes) provided trans-2S-benzyl-6-methyl-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (7.91 g, 96%) as a viscous oil: $R_f = 0.52$ (50%) EtOAc in hexanes); IR (cm⁻¹) 3383, 1616; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.82 - 0.91 (m), 0.96 (d, J = 6.5), 1.24 - 1.27 (m), 2.14 - 2.47 (m), 2.56 (s), 2.72 - 2.99(m), 3.04-3.15 (m), 3.93-4.00 (m), 4.31-4.51 (m), 5.21-5.39 (m), 5.42-5.55 (m),

Preparation of Intermediate 3R-Benzyl-5S-(1R-bromo-2-methyl-propyl)-dihydrofuran-2-one.

7.14-7.37 (m); Anal. (C₂₅H₃₃NO₂) C, H, N.

[0104] N-Bromosuccinimide (3.89 g, 21.9 mmol, 1.05 equiv) was added in small portions over 5 minutes to a solution of trans-2S-benzyl-6-methyl-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (7.90 g, 20.8 mmol, 1 equiv) and glacial acetic acid (5.96 mL, 104 mmol, 5.0 equiv) in a 4:1 mixture of THF and H₂O (250 mL) at 0 °C. The resulting yellow solution was stirred for 15 minutes at 0 °C, then was warmed to 23 °C, and subsequently was refluxed for 1 hour. After cooling to 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (300 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (5% EtOAc in hexanes) gave

3*R*-benzyl-5*S*-(1*R*-bromo-2-methyl-propyl)- dihydrofuran-2-one (5.09 g, 79%) as a white solid. Minor impurities were removed by recrystallization from hexanes (2.51 g recovery): mp = 75-76 °C; R_f = 0.64 (30% EtOAc in hexanes); IR (cm⁻¹) 1774; ¹H NGR (CDCl₃) δ 0.93 (d, 3H, J = 6.6), 0.99 (d, 3H, J = 6.9), 2.05-2.18 (m, 1H), 2.20-2.33 (m, 2H), 2.83 (dd, 1H, J = 13.6, 8.7), 2.95-3.05 (m, 1H), 3.17 (dd, 1H, J = 13.6, 4.5), 3.89 (dd, 1H, J = 9.0, 3.4), 4.32-4.39 (m, 1H), 7.20-7.36 (m, 5H); Anal. (C₁₅H₁₉BrO₂) C, H.

Preparation of Intermediate 5S-(1S-Azido-2-methyl-propyl)-3R-benzyl-dihydrofuran-2-one.

[0105] A solution of Aliquat-336 (0.163 g, 0.403 mmol, 0.05 equiv) and 3R-benzyl-5S-(1R-bromo-2-methyl-propyl)-dihydrofuran-2-one (2.51 g, 8.06 mmol, 1 equiv) in toluene (60 mL) was treated with a solution of sodium azide (2.10 g, 32.3 mmol, 4.0 equiv) in H₂O (10 mL). The resulting biphasic mixture was heated to 70 °C and maintained at that temperature for 48 hours. The reaction mixture was cooled to 23 °C and partitioned between water (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (gradient elution, 5 \rightarrow 10% EtOAc in hexanes) to give 5S-(1S-azido-2-methyl-propyl)- 3R-benzyl-dihydrofuran-2-one (1.0 g, 45%) as a viscous oil: R_f = 0.41 (20% EtOAc in hexanes); IR (cm⁻¹) 2105, 1772; ¹H NGR (CDCl₃) δ 0.86-1.04 (m, 7H), 1.95-2.17 (m, 2H), 2.83 (dd, 1H, J = 13.2, 8.3), 2.92 (dd, 1H, J = 6.4, 4.5), 3.05-3.21 (m, 2H), 4.33-4.38 (m, 1H), 7.19-7.35 (m, 5H); Anal. (C₁₅H₁₉N₃O₂) C, H, N.

Preparation of Intermediate [1S-(4R-Benzyl-5-oxo-tetrahydrofuran-2S-yl)-2-methyl-propyl]-carbamic Acid *tert*-Butyl Ester.

[0106] A suspension of 5S-(1S-azido-2-methyl-propyl)-3R-benzyl-dihydrofuran-2-one (1.00 g, 3.66 mmol, 1 equiv) and Pd/C (10%, 0.090 g) in CH₃OH (60 mL) was stirred under a hydrogen atmosphere (balloon) for 1 hour. The reaction mixture was filtered through celite, concentrated, and the residue

dissolved in 1,4-dioxane (50 mL). *N,N*-diisopropylethylamine (1.28 mL, 7.35 mmol, 2.0 equiv) and di-*tert*-butyl dicarbonate (1.20 g, 5.50 mmol, 1.5 equiv) were added sequentially, and the resulting solution was stirred at 23 °C for 18 hours. The reaction mixture was then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution, $10 \rightarrow 15\%$ EtOAc in hexanes) provided [1*S*-(4*R*-benzyl-5-oxo-tetrahydrofuran-2*S*-yl)-2-methyl-propyl]- carbamic acid *tert*-butyl ester (0.496 g, 39%) as a colorless oil: $R_f = 0.44$ (20% EtOAc in hexanes); IR (cm⁻¹) 3340, 1768, 1708; ¹H NGR (CDCl₃) δ 0.92 (d, 6H, J = 6.9), 1.41 (s, 9H), 1.70-1.80 (m, 1H), 1.98-2.07 (m, 1H), 2.14-2.24 (m, 1H), 2.81 (dd, 1H, J = 13.6, 8.9), 2.92-3.01 (m, 1H), 3.13 (dd, 1H, J = 13.6, 4.4), 3.31-3.38 (m, 1H), 4.39-4.47 (m, 2H), 7.17-7.33 (m, 5H); Anal. (C₂₀H₂₉NO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-ValΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]- E-Propenoate.

[0107] Lithium hydroxide (7.14 mL of a 1 M aqueous solution, 7.14 mmol, 5.0 equiv) was added to a solution of [1S-(4R-benzyl-5-oxo-tetrahydrofuran-2S-yl)-2-methyl-propyl]- carbamic acid tert-butyl ester (0.496 g, 1.43 mmol, 1 equiv) in DME (7 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 30 minutes and then partitioned between 0.5 M HCl (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in CH₂Cl₂ (20 mL). 4-Methylmorpholine N-oxide (0.334 g, 2.85 mmol, 2.0 equiv), powdered 4Å molecular sieves (0.51 g), and tetrapropylammonium perruthenate (0.050 g, 0.142 mmol, 0.10 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 2.5 hours at 23 °C and then filtered through celite. The filtrate was concentrated under reduced pressure to provide a brown oil which was dissolved in CH₂Cl₂ (30 mL). Crude ethyl-3-[H₂N-L-(Tr-Gln)]-E-propenoate•HCl, prepared as described in Example 1 for the preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E-propenoate (1.86 mmol,

1.3 equiv), 1-hydroxybenzotriazole hydrate (0.289 g, 2.14 mmol, 1.5 equiv), 4-methylmorpholine (0.629 mL, 5.72 mmol, 4.0 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.411 g, 2.14 mmol, 1.5 equiv) were added sequentially, and the reaction mixture was stirred for 8 hours at 23 °C then partitioned between water (150 mL) and EtOAc (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (40% EtOAc in hexanes) provided ethyl-3-[BOC-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.497 g, 44%) as an off-white foam: $R_f = 0.40 (50\% \text{ EtOAc in hexanes})$; IR (cm⁻¹) 3314, 1709, 1663; ¹H NGR (CDCl₃) δ 0.65 (d, 3H, J = 6.9), 0.91 (d, 1H, J = 6.9), 1.29 (t, 3H, J= 7.2), 1.40 (s, 9H), 1.94-2.20 (m, 2H), 2.30-2.35 (m, 2H), 2.51 (d, 1H, J = 17.1), 2.68 (dd, 1H, J = 11.7, 5.8), 2.74-2.90 (m, 3H), 3.04 (dd, 1H, J = 17.3, 9.8), 4.05-4.09 (m, 1H), 4.17 (q, 2H, J=7.2), 4.38-4.45 (m, 1H), 4.83 (d, 1H, J=8.1), 5.45 (d, 1H, J = 15.7), 5.87 (d, 1H, J = 8.1), 6.57 (dd, 1H, J = 15.7, 5.0), 7.10-7.31 (m, 21H); Anal. (C₄₈H₅₇N₃O₇) C, H, N.

Preparation of Intermediate Ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]- E-Propenoate.

[0108] HCl (5 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.225 g, 0.286 mmol, 1 equiv) in 1,4-dioxane (6 mL). The reaction mixture was stirred at 23 °C for 1.5 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (10 mL), and *N*,*N*-diisopropylethylamine (0.125 mL, 0.718 mmol, 2.5 equiv) and ethyl chlorothiolformate (0.040 mL, 0.384 mmol, 1.3 equiv) were added sequentially. The reaction mixture was stirred for 1 hour at 23 °C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]- E-propenoate (0.148 g, 66%) as a white foam: $R_f = 0.37$ (50% EtOAc in hexanes); IR (cm⁻¹) 3314, 1714,

1653; 1 H NGR (CDCl₃) δ 0.68 (d, 3H, J = 6.9), 0.92 (d, 3H, J = 6.5), 1.21-1.32 (m, 7H), 1.92-2.03 (m, 2H), 2.32-2.36 (m, 2H), 2.51 (dd, 1H, J = 17.4, 2.2), 2.67 (dd, 1H, J = 11.8, 5.9), 2.73-2.90 (m, 4H), 3.05 (dd, 1H, J = 17.6, 9.8), 4.17 (q, 2H, J = 7.2), 4.39-4.44 (m, 2H), 5.46 (dd, 1H, J = 15.7, 1.7), 5.62 (d, 1H, J = 8.1), 5.96 (d, 1H, J = 8.4), 6.57 (dd, 1H, J = 15.7, 5.1), 7.10-7.12 (m, 2H), 7.15-7.31 (m, 19H); Anal. (C₄₆H₅₃N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-Phe-L-Gln)-E-Propenoate.

[0109] Ethyl-3-[EtSCO-L-Val Ψ [COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.148 g, 0.191 mmol) was dissolved in CH₂Cl₂ (5 mL), and triisopropylsilane (0.10 mL) and trifluoroacetic acid (5 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 20 minutes at 23 °C, then carbon tetrachloride (6 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(EtSCO-L-Val Ψ [COCH₂]-

L-Phe-L-Gln)-E-propenoate (0.078 g, 77%) as a white solid: mp = 205 °C (dec); R_f = 0.45 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3424, 3304, 1715, 1658, 1640, 1624; ¹H NGR (DMSO- d_6) δ 0.75 (d, 3H, J = 6.5), 0.82 (d, 3H, J = 6.9), 1.14 (t, 3H, J = 7.2), 1.21 (t, 3H, J = 7.2), 1.56-1.71 (m, 2H), 1.99-2.11 (m, 2H), 2.44-2.59 (m, 4H), 2.70-2.85 (m, 3H), 2.93-2.95 (m, 1H), 4.06-4.18 (m, 3H), 4.31 (s, br, 1H), 5.53 (d, 1H, J = 15.6), 6.63 (dd, 1H, J = 15.6, 5.1), 6.75 (s, 1H), 7.14-7.26 (m, 6H), 8.06 (d, 1H, J = 8.1), 8.33 (d, 1H, J = 8.1); Anal. (C₂₇H₃₉N₃O₆S) C, H, N.

Example 7 - Preparation of Compound 5: Ethyl-3-(BnSCO-L-ValΨ[COCH₂]-L-Phe- L-*Gln*)-E-Propenoate

Preparation of Intermediate Ethyl-3-[BnSCO-L-Val Ψ [COCH₂]-L-Phe-L-(Tr-*Gln*)]- E-Propenoate.

[0110] HCl (8 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.272 g, 0.345 mmol, 1 equiv) in 1,4-dioxane (10 mL). The reaction mixture was stirred at 23 °C for 1.5 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (10

mL), and 4-methylmorpholine (0.095 mL, 0.864 mmol, 2.5 equiv) and benzyl chlorothiolformate (0.068 mL, 0.450 mmol, 1.3 equiv) were added sequentially. The reaction mixture was stirred for 1 hour at 23 °C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[BnSCO-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.160 g, 55%) as a white foam: $R_f = 0.41$ (50% EtOAc in hexanes); IR (cm⁻¹) 3316, 1716, 1658; ¹H NGR (CDCl₃) δ 0.66 (d, 3H, J = 6.9), 0.92 (d, 3H, J = 6.5), 1.29 (t, 3H, J = 7.2), 1.93-2.03 (m, 2H), 2.32-2.36 (m, 2H), 2.50 (dd, 1H, J = 17.7, 2.5), 2.67 (dd, 1H, J = 11.5, 6.2), 2.73-2.89 (m, 3H), 3.07 (dd, 1H, J = 17.7, 10.0), 4.09 (s, 2H), 4.16 (q, 2H, J = 7.2), 4.38-4.42 (m, 2H), 5.46 (dd, 1H, J = 15.8, 1.6), 5.65 (d, 1H, J = 8.4), 5.95 (d, 1H, J = 8.1), 6.57 (dd, 1H, J = 15.8, 5.1), 7.03 (s, 1H), 7.09-7.12 (m, 2H), 7.15-7.31 (m, 23H); Anal. (C₅₁H₅₅N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(BnSCO-L-ValΨ[COCH₂]-L-Phe-L-*Gln*)-E-Propenoate.

[0111] Ethyl-3-[BnSCO-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.160 g, 0.191 mmol) was dissolved in CH₂Cl₂ (5 mL), and triisopropylsilane (0.10 mL) and trifluoroacetic acid (5 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 20 minutes at 23 °C, then carbon tetrachloride (5 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to provide ethyl-3-(BnSCO-L-ValΨ[COCH₂]-L-Phe-L-Gln)-E-propenoate (0.097 g, 85%) as a white solid: mp = 185-189 °C; R_f = 0.55 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3392, 3287, 1710, 1643; ¹H NGR (DMSO- d_6) δ 0.74 (d, 3H, J = 6.9), 0.82 (d, 3H, J = 6.5), 1.21 (t, 3H, J = 7.2), 1.62-1.70 (m, 2H), 1.98-2.12 (m, 3H), 2.44-2.59 (m, 2H), 2.71-2.96 (m, 3H), 4.03 (s, 2H), 4.10 (q, 2H, J = 7.2), 4.19-4.23 (m, 1H), 4.32 (s, br, 1H), 5.54 (d, 1H, J = 15.6), 6.64 (dd, 1H, J = 15.6, 5.3), 6.75 (s, 1H), 7.14-7.28 (m, 11H), 8.06 (d, 1H, J = 8.1), 8.42 (d, 1H, J = 7.8); Anal. (C₃₂H₄₁N₃O₆S) C, H, N.

Example 8 - Preparation of Compound 7: Ethyl-3-(CyPentylSCO-L-Val Ψ [COCH₂]- L-Phe-L-*Gln*)-E-Propenoate.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenoate

[0112] HCl (6 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.248 g, 0.315 mmol, 1 equiv) in 1,4-dioxane (6 mL). The reaction mixture was stirred at 23 °C for 1.5 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (15 mL), cooled to 0 °C, and 4-methylmorpholine (0.086 mL, 0.782 mmol, 2.5 equiv) and cyclopentyl chlorothiolformate (0.067 mL, 0.407 mmol, 1.3 equiv) were added sequentially. The reaction mixture was stirred for 30 minutes at 0 °C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to provide ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.126 g, 49%) as a white foam: $R_f = 0.42$ (50% EtOAc in hexanes); IR (cm⁻¹) 3314, 1711. 1654; ¹H NGR (CDCl₃) δ 0.67 (d, 3H, J = 6.9), 0.92 (d, 3H, J = 6.9), 1.29 (t, 3H, J= 7.2), 1.45-1.68 (m, 6H), 1.91-2.05 (m, 4H), 2.31-2.34 (m, 2H), 2.51 (d, 1H, J =17.4), 2.67 (dd, 1H, J = 11.5, 6.2), 2.75-2.90 (m, 3H), 3.03 (dd, 1H, J = 17.3, 9.8), 3.60-3.64 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.36-4.44 (m, 2H), 5.46 (dd, 1H, J = 15.8, 1.7), 5.57 (d, 1H, J = 8.1), 5.95 (d, 1H, J = 8.4), 6.58 (dd, 1H, J = 15.8, 5.0), 7.10-7.12 (m, 2H), 7.19-7.31 (m, 19H); Anal. (C₄₉H₅₇N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-Phe-L-Gln)- E-Propenoate

[0113] Ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.126 g, 0.154 mmol) was dissolved in CH₂Cl₂ (6 mL), and triisopropylsilane (0.10 mL) and trifluoroacetic acid (6 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 20 minutes at 23 °C, then carbon tetrachloride (6 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column

chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-Phe-L-Gln)-E-propenoate (0.046 g, 52%) as a white solid: mp = 200-204 °C; R_f = 0.38 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3431, 3261, 1717, 1642; ¹H NGR (DMSO- d_6) δ 0.75 (d, 3H, J = 6.5), 0.82 (d, 3H, J = 6.5), 1.22 (t, 3H, J = 7.2), 1.40-1.74 (m, 7H), 1.95-2.10 (m, 6H), 2.43-2.59 (m, 2H), 2.71-2.84 (m, 2H), 2.93-2.95 (m, 1H), 3.47-3.56 (m, 1H), 4.06-4.16 (m, 3H), 4.32 (s, br, 1H), 5.54 (d, 1H, J = 15.9), 6.64 (dd, 1H, J = 15.9, 5.3), 6.75 (s, 1H), 7.15-7.27 (m, 6H), 8.06 (d, 1H, J = 7.8), 8.27 (d, 1H, J = 8.1); Anal. (C₃₀H₄₃N₃O₆S) C, H, N.

Example 9 - Preparation of Compound 3: (2,3-Dihydroindole)-3-(BnSCO-L-LeuΨ[COCH₂]-L-Phe-L-*Gln*)-E-Propenamide.

Preparation of Intermediate [2-(2,3-Dihydro-indol-1-yl)-2-oxo-ethyl]-phosphonic Acid Diethyl Ester.

[0114] Oxalyl chloride (5.96 mL, 68.3 mmol, 1.05 equiv) was added to a solution of diethylphosphonoacetic acid (12.8 g, 65.0 mmol, 1 equiv) and N,N-dimethylformamide (0.03 mL, 0.39 mmol, 0.006 equiv) in benzene (150 mL) at 23 °C. The reaction mixture was stirred at 23 °C for 1 hour and then concentrated under reduced pressure. The resulting oil was dissolved in THF (30 mL) and added via cannula to a solution of indoline (7.38 g, 61.9 mmol, 0.95 equiv) and triethylamine (10.9 mL, 78.0 mmol, 1.2 equiv) in THF (200 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 15 minutes, and it then was partitioned between 0.5 M HCl (150 mL) and EtOAc (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to afford a tan solid. Recrystallization from Et₂O provided [2-(2,3-dihydro-indol-1-yl)-2-oxo-ethyl]phosphonic acid diethyl ester (12.2 g, 63%) as a light brown solid: mp: 97-99 °C; $R_f = 0.06$ (50% EtOAc in hexanes); IR (cm⁻¹) 3460, 1657, 1597, 1482; ¹H NGR $(CDCl_3) \delta 1.35 (t, 6H, J = 7.2), 3.14 (d, 2H, J = 22.4), 3.22 (d, 2H, J = 8.4),$ 4.15-4.30 (m, 6H), 7.04 (t, 1H, J = 7.0), 7.17-7.28 (m, 2H), 8.21 (d, 1H, J = 9.0); Anal. $(C_{14}H_{20}NO_4P)$ C, H, N.

Preparation of Intermediate (2,3-Dihydroindole)-3-[BOC-L-(Tr-*Gln*)]-E-Propenamide.

[0115] Sodium bis(trimethylsilyl)amide (11.9 mL of a 1.0 M solution in THF, 11.9 mmol, 1.0 equiv) was added to a solution of [2-(2,3-dihydro-indol-1-yl)-2-oxo-ethyl]-phosphonic acid diethyl ester (3.54 g, 11.9 mmol, 1.0 equiv) in THF (150 mL) at -78°C, and the resulting solution was stirred for 20 minutes at that temperature. Crude [BOC-L-(Tr-Gln)]-H (5.63 g, 11.9 mmol, 1 equiv), prepared as described in Example 1, in THF (40 mL) was added via cannula, and the reaction mixture was stirred for 1 hour at -78°C, warmed to 0 °C for 10 minutes, and partitioned between 0.5 M HCl (150 mL) and EtOAc (2 x 150 mL). The organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (50% EtOAc in hexanes) provided (2,3-dihydroindole)-3-[BOC-L-(Tr-Gln)]-E-propenamide (6.35 g, 87%) as an off-white foam: R_f = 0.28 (50% EtOAc in hexanes); IR (cm⁻¹) 3401, 3307, 1690, 1665; ¹H NGR (CDCl₃) δ 1.44 (s, 9H), 1.76-2.05 (m, 2H), 2.37-4.06 (m, 2H), 3.11-3.22 (m, 2H), 4.02-4.16 (m, 2H), 4.27-4.40 (m, 1H), 4.91-4.97 (m, 1H), 6.29 (d, 1H, J=14.9), 6.77-6.96 (m, 2H), 6.98-7.05 (m, 1H), 7.14-7.37 (m, 17H), 8.25 (d, 1H, J = 7.5); Anal. (C₃₉H₄₁N₃O₄) C, H, N.

Preparation of Intermediate (2,3-Dihydroindole)-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenamide.

[0116] Lithium hydroxide (8.0 mL of a 1 M aqueous solution, 8.0 mmol, 5.0 equiv) was added to a solution of [1S-(4R-benzyl-5-oxo-tetrahydrofuran-2S-yl)-3-methyl-butyl]- carbamic acid *tert*-butyl ester (0.576 g, 1.59 mmol, 1 equiv), prepared as described in Example 1, in DME (8 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 45 minutes, and it then was partitioned between 0.5 M HCl (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in CH₂Cl₂ (30 mL). 4-Methylmorpholine *N*-oxide (0.373 g, 3.18 mmol, 2.0 equiv), powdered 4Å molecular sieves (0.60 g), and tetrapropylammonium perruthenate (0.056 g, 0.159

mmol, 0.10 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 1 hour at 23°C and then filtered through celite. The filtrate was concentrated under reduced pressure to provide a brown oil which was dissolved in CH₂Cl₂ (20 mL). Crude (2,3-dihydroindole)-3-(H₂N-L-Tr-Gln)-Epropenamide • HCl (prepared from (2,3-dihydroindole)-3-[BOC-L-(Tr-Gln)]-Epropenamide in a manner analogous to the method described in Example 1 for the preparation of ethyl-3-[H₂N-L-(Tr-Gln)]- E-propenoate•HCl (2.39 mmol, 1.5 equiv), 1-hydroxybenzotriazole hydrate (0.322 g, 2.38 mmol, 1.5 equiv), 4-methylmorpholine (0.699 mL, 6.36 mmol, 4.0 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.322 g, 2.38 mmol, 1.5 equiv) were added sequentially, and the reaction mixture was stirred for 16 hours at 23°C and then partitioned between water (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (40% hexanes in EtOAc) provided (2,3-dihydroindole)-3 -[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)-E-propenamide (0.568 g, 40%) as tan foam: $R_f = 0.64$ (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3304, 1700, 1665; ¹H NGR (CDCl₃) δ 0.86 (d, 6H, J = 6.5), 0.97-1.12 (m, 1H), 1.39 (s, 9H), 1.45-1.64 (m, 2H), 2.39-2.43 (m, 2H), 2.51 (d, 1H, J = 15.6), 2.67 (dd, 1H, J = 12.3, 7.0), 2.79-2.96 (m, 3H), 3.16 (s, br, 2H), 4.01-4.20 (m, 5H), 4.52 (s, br, 1H), 4.63 (d, 1H, J=7.8), 6.09 (d, 1H, J=14.7), 6.17 (d, 1H, J = 8.1), 6.65 (dd, 1H, J = 14.7, 5.8), 6.99-7.04 (m, 1H), 7.11-7.39 (m, 23H), 8.26 (d, 1H, J = 7.5).

Preparation of Product (2,3-Dihydroindole)-3-[BnSCO-L-Leu Ψ [COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenamide

[0117] HCl (6 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of (2,3-dihydroindole)-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenamide (0.204 g, 0.233 mmol, 1 equiv) in 1,4-dioxane (8 mL). The reaction mixture was stirred at 23 °C for 2.5 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (8 mL), and *N,N*-diisopropylethylamine (0.081 mL, 0.465 mmol, 2.0 equiv) and benzyl chlorothiolformate (0.042 mL, 0.279 mmol, 1.2 equiv) were added sequentially. The reaction mixture was stirred for 2 hours at

23°C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to provide crude (2,3-dihydroindole)-3- [BnSCO-

L-LeuΨ[COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenamide as an off-white foam. This material was dissolved in CH₂Cl₂ (5 mL), and triisopropylsilane (0.075 mL), and trifluoroacetic acid (5 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 30 minutes at 23 °C, then carbon tetrachloride (4 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford (2,3-dihydroindole)-3- (BnSCO-

L-LeuΨ[COCH₂]-L-Phe-L-*Gln*)-E-propenamide (0.016 g, 10%) as a white foam: $R_f = 0.51$ (10% CH₃OH in CH₂Cl₂); ¹H NGR (CDCl₃) δ 0.92 (d, 6H, J = 6.2), 1.11-1.25 (m, 1H), 1.33-1.36 (m, 1H), 1.49-2.17 (m, 4H), 2.25 (s, br, 2H), 2.58 (d, 1H, J = 17.1), 2.70-2.72 (m, 1H), 2.94-3.17 (m, 4H), 4.01-4.04 (m, 2H), 4.11 (s, 2H), 4.52-4.58 (m, 2H), 5.47 (s, br, 1H), 6.13 (d, 1H, J = 13.4), 6.29 (s, br, 1H), 6.41 (s, br, 1H), 6.66 (s, br, 1H), 7.00-7.05 (m, 1H), 7.17-7.29 (m, 13H), 8.25 (d, 1H, J = 7.2).

Example 10 - Preparation of Compound 10: Ethyl-3-(EtSCO-L-Val\(\mathbb{I}\)[COCH_2]- L-(p-CH_3)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate trans-6-Methyl-2S-(4-methyl-benzyl)-hept-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0118] *n*-Butyllithium (33.7 mL of a 1.6 M solution in hexanes, 53.9 mmol, 2.15 equiv) was added to a suspension of anhydrous lithium chloride (7.47 g, 176 mmol, 7.0 equiv) and diisopropylamine (8.09 mL, 57.7 mmol, 2.3 equiv) in THF (260 mL) at -78 °C. The reaction mixture was stirred for 30 minutes at -78 °C, maintained at 0 °C for 5 minutes, and subsequently cooled again to -78 °C. trans-6-Methyl-hept-4-enoic acid (2*R*-hydroxy-1*R*- methyl-2-phenyl-ethyl)-methyl amide (7.26 g, 25.1 mmol, 1 equiv) in THF (50 mL) was added via cannula, and the resulting solution was stirred at -78 °C for 1.75 hours, maintained at 0 °C for 20 minutes, stirred at 23 °C for 5 minutes, and then cooled again to 0 °C. A

solution of 4-methylbenzyl bromide (6.96 g, 37.6 mmol, 1.5 equiv) in THF (15 mL) was added, and the reaction mixture was stirred at 0 °C for 30 minutes and then partitioned between half-saturated NH₄Cl (230 mL) and a 1:1 mixture of EtOAc and hexanes (200 mL, 2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution $20 \rightarrow 40\%$ EtOAc in hexanes) provided trans-6-methyl-2*S*-(4-methyl-benzyl)- hept-4-enoic acid (2*R*-hydroxy-1*R*-methyl-2- phenyl-ethyl)-methyl amide (9.33 g, 95%) as a viscous oil: $R_f = 0.44$ (40% EtOAc in hexanes); IR (cm⁻¹) 3378, 1619; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.84-0.97 (m), 2.12-2.27 (m), 2.29 (s), 2.35-2.46 (m), 2.58 (s), 2.66-2.84 (m), 2.86-3.05 (m), 3.91-4.13 (m), 4.30-4.44 (m), 4.45-4.53 (m), 5.17-5.54 (m), 7.04 (s), 7.12-7.33 (m); Anal. (C₂₆H₃₅NO₂) C, H, N.

Preparation of Intermediate 5S-(1R-Bromo-2-methyl-propyl)-3R-(4-methyl-benzyl)-dihydrofuran-2-one

[0119] N-Bromosuccinimide (4.37 g, 24.6 mmol, 1.05 equiv) was added in small portions over 10 minutes to a solution of trans-6-methyl-2S-(4-methyl-benzyl)hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (9.21 g, 23.4 mmol, 1 equiv) and glacial acetic acid (6.70 mL, 117 mmol, 5.0 equiv) in a 4:1 mixture of THF and H₂O (250 mL) at 0 °C. The resulting yellow solution was stirred for 15 minutes at 0 °C, then warmed to 23°C, and subsequently refluxed for 45 minutes. After cooling to 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (200 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL, 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (gradient elution 4 \rightarrow 6% EtOAc in hexanes) gave 5S-(1R-bromo-2-methyl-propyl)-3R-(4-methyl-benzyl)-dihydrofuran-2-one (6.45 g, 85%) as a white solid (containing approximately 5-10% unidentified impurities by ¹H NGR): mp = 94-100 °C; R_f = 0.64 (25% EtOAc in hexanes); IR (cm⁻¹) 1772; ¹H NGR (CDCl₃, major isomer) δ 0.93 (d, 3H, J = 6.5), 0.99 (d, 3H, J = 6.5), 2.05-2.18 (m, 1H), 2.21-2.28 (m, 2H), 2.33 (s, 3H), 2.79 (dd, 1H, J = 13.5, 9.0), 2.92-3.03 (m, 1H), 3.12 (dd, 1H, J = 13.5)

13.5, 4.5), 3.89 (dd, 1H, J = 9.0, 3.4), 4.32-4.41 (m, 1H), 7.06-7.16 (m, 4H); Anal. (C₁₆H₂₁BrO₂) C, H.

Preparation of Intermediate 5S-(1S-Azido-2-methyl-propyl)-3R-(4-methyl-benzyl)- dihydrofuran-2-one

[0120] A suspension of sodium azide (2.55 g, 39.2 mmol, 2.0 equiv) and 5S-(1R-bromo-2-methyl-propyl)-3R-(4-methyl-benzyl)-dihydrofuran-2-one (6.37 g, 19.6 mmol, 1 equiv) in N,N-dimethylformamide (63 mL) was heated at 50 °C for 48 hours. The reaction mixture was cooled to 23 °C and partitioned between water (370 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 370 mL, 200 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (gradient elution 8 \rightarrow 12% EtOAc in hexanes) to give 5S-(1S-azido-2- methyl-propyl)-3R-(4-methyl-benzyl)-dihydrofuran-2-one (3.33 g, 59%) as a colorless oil (containing approximately 5-10% unidentified impurities by 1 H NGR): R_f = 0.52 (25% EtOAc in hexanes); IR (cm⁻¹) 2097, 1772; 1 H NGR (CDCl₃, major isomer) δ 0.97 (d, 3H, J = 6.5), 1.01 (d, 3H, J = 6.8), 1.94-2.06 (m, 1H), 2.07-2.13 (m, 2H), 2.33 (s, 3H), 2.79 (dd, 1H, J = 13.2, 8.2), 2.92 (dd, 1H, J = 6.8, 4.4), 3.02-3.17 (m, 2H), 4.32-4.40 (m, 1H), 7.07-7.15 (m, 4H); Anal. (C₁₆H₂₁N₃O₂) C, H, N.

Preparation of Intermediate $\{2\text{-Methyl-}1S\text{-}[4R\text{-}(4\text{-methyl-benzyl})\text{-}5\text{-}oxo\text{-tetrahydrofuran-}2S\text{-}yl]\text{-propyl}\$ -carbamic Acid tert-Butyl Ester

[0121] A suspension of 5S-(1S-azido-2-methyl-propyl)-3R-(4-methyl-benzyl)-dihydrofuran-2-one (3.24 g, 11.3 mmol, 1 equiv) and Pd/C (10%, 0.25 g) in CH₃OH (190 mL) was stirred under a hydrogen atmosphere (balloon) for 1 hour. The reaction mixture was vacuum filtered through Whatman #3 paper, concentrated, and the residue dissolved in 1,4-dioxane (100 mL). N,N-diisopropylethylamine (3.93 mL, 22.6 mmol, 2.0 equiv) and di-tert-butyl dicarbonate (3.69 g, 16.9 mmol, 1.5 equiv) were added sequentially, and the resulting solution was stirred at 23 °C for 16 hours. The reaction mixture was then partitioned between water (200 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 300 mL, 200 mL). The combined organic layers were dried over Na₂SO₄ and

concentrated. Purification of the residue by flash column chromatography (gradient elution, $11 \rightarrow 17\%$ EtOAc in hexanes) provided {2-methyl-1*S*-[4*R*-(4-methyl-benzyl)- 5-oxo-tetrahydrofuran-2*S*-yl]-propyl}-carbamic acid *tert*-butyl ester (1.71 g, 42%) as a viscous oil: $R_f = 0.54$ (25% EtOAc in hexanes); IR (cm⁻¹) 3331, 1766, 1696; ¹H NGR (CDCl₃) δ 0.92 (d, 3H, J = 6.5), 0.93 (d, 3H, J = 6.5), 1.41 (s, 9H), 1.72-1.83 (m, 1H), 1.96-2.06 (m, 1H), 2.11-2.22 (m, 1H), 2.31 (s, 3H), 2.77 (dd, 1H, J = 13.5, 8.7), 2.88-2.99 (m, 1H), 3.08 (dd, 1H, J = 13.5, 4.5), 3.30-3.38 (m, 1H), 4.38-4.44 (m, 1H), 4.49 (d, 1H, J = 10.0), 7.04-7.13 (m, 4H); Anal. ($C_{21}H_{31}NO_4$) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-Val Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-Propenoate

[0122] Lithium hydroxide (7.9 mL of a 1 M aqueous solution, 7.9 mmol, 5.0 equiv) was added to a solution of {2-methyl-1*S*-[4*R*-(4-methyl-benzyl)-5-oxo-tetrahydrofuran-2*S*-yl]propyl}-carbamic acid tert-butyl ester (0.570 g, 1.58 mmol, 1 equiv) in DME (15 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 30 minutes and then partitioned between 10% KHSO₄ (35 mL) and CH₂Cl₂ (100 mL, 2 x 70 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in CH₂Cl₂ (25 mL). Powdered 4Å molecular sieves (0.56 g), 4-methylmorpholine N-oxide (0.369 g, 3.15 mmol, 2.0 equiv), and tetrapropylammonium perruthenate (0.055 g, 0.16 mmol, 0.10 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 1.33 hours at 23 °C, and the mixture then was vacuum filtered through Whatman #3 paper and then through Whatman #5 paper. The filtrate was concentrated under reduced pressure to provide a dark residue which was dissolved in CH₂Cl₂ (25 mL). Crude ethyl-3-[H₂N-L- (Tr-Gln)]-E-propenoate•HCl (see preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L- Phe-L-(Tr-Gln)]-E-propenoate, 1.90 mmol, 1.2 equiv), 4-methylmorpholine (0.693 mL, 6.30 mmol, 4.0 equiv), 1-hydroxybenzotriazole hydrate (0.320 g, 2.37 mmol, 1.5 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.453 g, 2.36 mmol, 1.5 equiv) were added sequentially, and the reaction mixture was stirred for 20 hours at 23°C and then partitioned between water (70 mL) and EtOAc (2 x 100 mL, 50 mL). The combined organic layers were dried over Na₂SO₄ and were concentrated. Purification of the residue by flash column chromatography (38% EtOAc in hexanes) provided ethyl-3- [BOC-L-ValΨ[COCH₂]-L-(p-CH₃) Phe-L-(Tr-Gln)]-E-propenoate (0.677 g, 54%) as an off-white foam: R_f = 0.44 (50% EtOAc in hexanes); IR (cm⁻¹) 3307, 1708, 1666; ¹H NGR (CDCl₃) δ 0.64 (d, 3H, J = 6.8), 0.91 (d, 3H, J = 6.5), 1.28 (t, 3H, J = 7.2), 1.40 (s, 9H), 1.55-1.67 (m, 1H), 1.92-2.04 (m, 2H), 2.31 (s, 3H), 2.32-2.40 (m, 2H), 2.45-2.54 (m, 1H), 2.63 (dd, 1H, J = 11.5, 5.9), 2.68-2.87 (m, 2H), 3.03 (dd, 1H, J = 17.4, 10.0), 4.04-4.51 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.41-4.52 (m, 1H), 4.83 (d, 1H, J = 8.4), 5.49 (d, 1H, J = 15.7), 5.86 (d, 1H, J = 8.4), 6.60 (dd, 1H, J = 15.7, 5.0), 7.00 (d, 2H, J = 8.0), 7.09 (d, 2H, J = 8.0); Anal. (C₄₉H₅₉N₃O₇) C, H, N.

Preparation of Intermediate Ethyl-3-[EtSCO-L-Val Ψ [COCH₂]-L-(p-CH₃) Phe- L-(Tr-Gln)]-E-Propenoate

[0123] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.315 g, 0.393 mmol, 1 equiv) in 1,4-dioxane (3 mL). The reaction mixture was stirred at 23 °C for 2 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (5 mL), and N,N-diisopropylethylamine (0.205 mL, 1.18 mmol, 3.0 equiv) and ethyl chlorothiolformate (0.061 mL, 0.59 mmol, 1.5 equiv) were added sequentially. The reaction mixture was stirred for 2 hours at 23 °C and then partitioned between brine (30 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.220 g, 71%) as a white foam: $R_f = 0.29$ (40% EtOAc in hexanes); IR (cm⁻¹) 3307, 1713, 1655; ¹H NGR (CDCl₃) δ 0.67 (d, 3H, J = 6.8), 0.92 (d, 3H, J = 6.8), 1.25 (t, 3H, J= 7.4), 1.28 (t, 3H, J = 7.4), 1.55-1.67 (m, 1H), 1.91-2.03 (m, 2H), 2.31 (s, 3H), 2.32-2.37 (m, 2H), 2.49 (dd, 1H, J = 17.7, 2.2), 2.62 (dd, 1H, J = 11.7, 6.1), 2.69-2.83 (m, 2H), 2.84 (q, 2H, J = 7.4), 3.04 (dd, 1H, J = 17.7, 10.0), 4.17 (q, 2H,

J = 7.4), 4.35-4.51 (m, 2H), 5.50 (dd, 1H, J = 15.6, 1.6), 5.62 (d, 1H, J = 8.1), 5.95 (d, 1H, J = 8.1), 6.60 (dd, 1H, J = 15.6, 5.1), 6.99 (d, 2H, J = 8.1), 7.09 (d, 2H, J = 8.1), 7.18-7.31 (m, 16H); Anal. (C₄₇H₅₅N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)- E-Propenoate

[0124] Ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-GIn)]-E-propenoat e (0.169 g, 0.214 mmol) was dissolved in CH₂Cl₂ (6 mL), and triisopropylsilane (0.13 mL) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 30 minutes at 23 °C and then concentrated under reduced pressure. The residue was purified by flash column chromatography (6% CH₃OH in CH₂Cl₂) to afford ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-GIn)-E-propenoate (0.072 g, 63%) as a white solid: mp = 220 °C (dec); R_f = 0.11 (5% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3425, 3307, 1713, 1655; ¹H NGR (DMSO- d_6) δ 0.74 (d, 3H, J = 6.8), 0.82 (d, 3H, J = 6.8), 1.14 (t, 3H, J = 7.3), 1.20 (t, 3H, J = 7.2), 1.54-1.76 (m, 2H), 1.98-2.13 (m, 3H), 2.23 (s, 3H), 2.40-2.54 (m, 2H), 2.65-2.84 (m, 2H), 2.73 (q, 2H, J = 7.3), 2.86-2.96 (m, 1H), 4.04-4.19 (m, 3H), 4.26-4.37 (m, 1H), 5.55 (dd, 1H, J = 15.7, 1.6), 6.65 (dd, 1H, J = 15.7, 5.3), 6.73 (s, 1H), 7.03 (s, 4H), 7.14 (s, 1H), 8.03 (d, 1H, J = 8.1), 8.31 (d, 1H, J = 7.8); Anal. (C₂₈H₄₁N₃O₆S) C, H, N.

Example 11 - Preparation of Compound 11: Ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂] -L-(p-CH₃)Phe-L-Gln)-E-Propenoate

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-ValY [COCH₂]-L-(p-CH₃)Phe- L-(Tr-Gln)]-E-Propenoate

[0125] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(*p*-CH₃)Phe-L-(Tr-*Gln*)]-E-propenoate (0.304 g, 0.379 mmol, 1 equiv) in 1,4-dioxane (3 mL). The reaction mixture was stirred at 23 °C for 2.3 hours and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (5 mL), and *N*,*N*-diisopropylethylamine (0.198 mL, 1.14 mmol, 3.0 equiv) and cyclopentyl chlorothiolformate (0.094 mL, 0.571 mmol, 1.5 equiv) were added sequentially. The reaction mixture was stirred for 3 hours at 23 °C and then

partitioned between brine (30 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to provide ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]- E-propenoate (0.198 g, 63%) as a white foam: R_f = 0.29 (40% EtOAc in hexanes); IR (cm⁻¹) 3307, 1713, 1655; ¹H NGR (CDCl₃) δ 0.67 (d, 3H, J = 6.8), 0.92 (d, 3H, J = 6.8), 1.28 (t, 3H, J = 7.2), 1.45-1.74 (m, 7H), 1.90-2.11 (m, 4H), 2.31 (s, 3H), 2.32-2.38 (m, 2H), 2.50 (dd, 1H, J = 17.7, 2.5), 2.62 (dd, 1H, J = 11.7, 5.8), 2.70-2.87 (m, 2H), 3.02 (dd, 1H, J = 17.7, 9.8), 3.57-3.67 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.22-4.31 (m, 2H), 5.50 (dd, 1H, J = 15.8, 1.6), 5.58 (d, 1H, J = 8.4), 5.93 (d, 1H, J = 8.1), 6.60 (dd, 1H, J = 15.8, 5.1), 6.99 (d, 2H, J = 7.9), 7.18-7.31 (m, 16H); Anal. (C₅₀H₅₉N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-ValY[COCH₂]-L-(p-CH₃)Phe- L-Gln)-E-Propenoate

[0126] Ethyl-3-[CyPentylSCO-L-Val\P[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-pro penoate (0.156 g, 0.188 mmol) was dissolved in CH₂Cl₂ (6 mL), and triisopropylsilane (0.12 mL) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. The reaction mixture was stirred for 30 minutes at 23 °C and then concentrated under reduced pressure. Et₂O (5 mL) was added to the residue producing a white precipitate. The precipitate was filtered, washed with Et₂O (3 x 3mL), and dried to provide ethyl-3-(CyPentylSCO-L-Val\P[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-propenoate (0.096 g, 87%) as a white solid: mp = 208-210 °C (dec); R_f = 0.43 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3425, 3295, 1713, 1649; ¹H NGR (DMSO- d_6) δ 0.74 (d, 3H, J = 6.5), 0.81 (d, 3H, J = 6.5), 1.20 (t, 3H, J = 7.2), 1.37-1.76 (m, 8H), 1.91-2.12 (m, 5H), 2.23 (s, 3H), 2.39-2.54 (m, 2H), 2.65-2.83 (m, 2H), 2.86-2.96 (m, 1H), 3.46-3.57 (m, 1H), 4.04-4.17 (m, 3H), 4.26-4.37 (m, 1H), 5.55 (dd, 1H, J = 15.7, 1.4), 6.65 (dd, 1H, J = 15.7, 5.4), 6.74 (s, 1H), 7.03 (s, 4H), 7.15 (s, 1H), 8.03 (d, 1H, J = 8.4), 8.25 (d, 1H, J = 8.1); Anal. (C₃₁H₄₅N₃O₆S) C, H, N.

Example 12 - Preparation of Compound 12: Ethyl-3-(CyPentylSCO-L-PheΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate (1R/S-Oxiranyl-2S-phenyl-ethyl)-carbamic Acid tert-Butyl Ester (1:1 mixture of isomers).

[0127] DMSO (30 mL) was added to sodium hydride (0.900 g of a 60% dispersion in mineral oil, 22.5 mmol, 2.1 equiv), and the resulting suspension was heated to 70 °C for 20 min. The clear solution thus obtained was cooled to 23 °C, and THF (40 mL) was added. The reaction mixture was then cooled to 0 °C, and a solution of trimethylsulfonium iodide (4.59 g, 22.5 mmol, 2.1 equiv) in DMSO (30 mL) was added via cannula over 2 min. After stirring for 1 min at 0 °C, a solution of BOC-L-Phe-H (prepared according to Luly, J. R.; Dellaria, J. F.; Plattner, J. J.; Soderquist, J, L.; Yi, N. J. Org. Chem. 1987, 52, 1487) (2.5 g, 10.7 mmol, 1 equiv) in THF (20 mL) was added via cannula over 5 min. The reaction mixture was stirred at 0 °C for 2 h and then partitioned between 0.5 M HCl (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution, 15→20% EtOAc in hexanes) afforded (1R/Soxiranyl-2S-phenyl-ethyl)-carbamic acid tert-butyl ester (1:1 mixture of isomers, 1.71 g, 60%) as a colorless oil: $R_f = 0.29$ (isomer #1), 0.35 (isomer #2) (20% EtOAc in hexanes); IR (cm⁻¹) 3347, 2977, 1700; ¹H NGR (CDCl₃) δ 1.38 (s), 1.43 (s), 2.57-3.03 (m), 3.76 (s, br), 3.98 (s, br), 4.11 (s, br), 4.48 (s, br), 4.88 (s, br), 7.18-7.38 (m); Anal. (C₁₅H₂₁NO₃) C, H, N.

Preparation of Intermediate 3-p-Tolyl-propionic Acid cis-1S-Amino-2R-indanol-acetonide Amide.

[0128] Oxalyl chloride (3.07 mL, 35.2 mmol, 1.05 equiv) was added to a solution of 3-p-tolyl-propionic acid (5.50 g, 33.5 mmol, 1 equiv) and N,N-dimethylformamide (0.03 mL, 0.39 mmol, 0.012 equiv) in benzene (150 mL) at 23 °C. The reaction mixture was stirred at 23 °C for 3 h and then concentrated. The resulting oil was dissolved in THF (30 mL) and added to a 0 °C solution of

(1S,2R)-cis-1-amino-2-indanol (5.0 g, 33.5 mmol, 1.0 equiv) and Et₃N (5.14 mL, 36.9 mmol, 1.1 equiv) in THF (250 mL). After stirring for 30 min at 0 °C, the reaction mixture was partitioned between half-saturated NH₄Cl (150 mL) and EtOAc (2 x 150 mL). The organic layers were dried over Na₂SO₄ and concentrated to afford a white solid. This material was dissolved in a 2:1 mixture of CH₂Cl₂ and 2-methoxypropene (150 mL), and the resulting solution was treated with methanesulfonic acid (1.0 mL). After stirring 1 h at 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (150 mL), and CH₂Cl₂ (2 x 100 mL). The combined organic layers were washed with H₂O (100 mL), dried over MgSO₄, and gravity filtered. The filtrate was concentrated, and the residue was purified by flash column chromatography (20% EtOAc in hexanes) to provide 3-p-tolyl-propionic acid cis-1S-amino-2R-indanol-acetonide amide (5.67 g, 51%) as a pale orange oil: $R_f = 0.63$ (50% EtOAc in hexanes); IR (cm⁻¹) 2931, 1646; ¹H NGR (CDCl₃) δ 1.35 (s, 3H), 1.61 (s, 3H), 2.33 (s, 3H), 2.90-2.95 (m, 2H), 3.05-3.09 (m, 4H), 4.66-4.69 (m, 1H), 5.05 (d, 1H, J = 4.7), 7.10-7.27 (m, 8H); Anal. $(C_{22}H_{25}NO_2)$ C, H, N.

Preparation of Intermediate {1S-[4R-(4-Methyl-benzyl)-5-oxo-tetrahydro-furan-2S-yl]-2-phenyl-ethyl}-carbamic Acid *tert*-Butyl Ester.

[0129] *n*-Butyllithium (8.12 mL of a 1.6 M solution in hexanes, 13.0 mmol, 2.0 equiv) was added to a solution of (1*R/S*-oxiranyl-2*S*-phenyl-ethyl)-carbamic acid *tert*-butyl ester (1:1 mixture of isomers, 1.71 g, 6.49 mmol, 1 equiv) and 3-*p*-tolyl-propionic acid cis-1*S*-amino-2*R*-indanol-acetonide amide (2.18 g, 6.50 mmol, 1 equiv) in THF (100 mL) at -78 °C. The reaction mixture was stirred for 10 min at -78 °C, maintained at 0 °C for 1.5 h, and then partitioned between 0.5 M HCl (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (gradient elution, 20→30% EtOAc in hexanes) gave the coupling

product (1.02 g, single isomer, 26%) as an orange oil contaminated with several minor impurities. This material was dissolved in a 5:1 mixture of toluene and CH₂Cl₂ (60 mL) and was treated with *p*-toluenesulfonic acid monohydrate (0.324 g, 1.70 mmol, 1.0 equiv) at 23 °C. After stirring 12 h at 23 °C, the reaction mixture was filtered through a medium frit, and the filtrate was partitioned between half-saturated NaHCO₃ (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (15% EtOAc in hexanes) to provide {1*S*-[4*R*-(4-methyl-benzyl)-5-oxo-tetrahydro-furan-2S-yl]-2-phenylethyl}-carbamic acid *tert*-butyl ester (0.26 g, 37%) as a white foam: R_f = 0.60 (30% EtOAc in hexanes); IR (cm⁻¹) 3336, 1768, 1703; ¹H NGR (CDCl₃) δ _1.36 (s, 9H), 1.90-1.99 (m, 1H), 2.15-2.27 (m, 1H), 2.30 (s, 3H), 2.74 (dd, 1H, J = 13.5, 8.6), 2.82-2.88 (m, 2H), 2.91-3.00 (m, 1H), 3.06 (dd, 1H, J = 13.5, 4.5), 3.88-3.97 (m, 1H), 4.18-4.23 (m, 1H), 4.51 (d, 1H, J = 9.7), 7.01-7.08 (m, 4H), 7.17-7.31 (m, 5H); Anal. (C₂5H₃1NO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-PheΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-Propenoate.

[0130] Lithium hydroxide (3.17 mL of a 1 M aqueous solution, 3.17 mmol, 5 equiv) was added to a solution of {1*S*-[4R-(4-methyl-benzyl)-5-oxo-tetrahydro-furan-2S-yl]-2-phenyl-ethyl}-carbamic acid *tert*-butyl ester (0.260 g, 0.635 mmol, 1 equiv) in DME (4 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 30 min and then partitioned between 0.5 M HCl (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in a 1:1 mixture of CH₃CN and CH₂Cl₂ (60 mL). 4-Methylmorpholine *N*-oxide (0.149 g, 1.27 mmol, 2 equiv), powdered 4Å molecular sieves (0.50 g), and tetrapropylammonium perruthenate (0.022 g, 0.063 mmol, 0.1 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 1 h at 23 °C and then filtered through celite. The filtrate was concentrated under

reduced pressure to provide a brown oil which was dissolved in CH₂Cl₂ (20 mL). Crude ethyl-3-[H₂N-L-(Tr-Gln)]-E-propenoate•HCl (see preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E-propenoate, 0.762 mmol, 1.2 equiv), 1-hydroxybenzotriazole hydrate (0.112 g, 0.829 mmol, 1.3 equiv), 4methylmorpholine (0.280 mL, 2.55 mmol, 4 equiv), and 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.158 g, 0.824 mmol, 1.3 equiv) were added sequentially, and the reaction mixture was stirred for 18 h at 23 °C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (40% EtOAc in hexanes) provided ethyl-3-[BOC-L-Phe\(\mathbb{I}\)[COCH2]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.190 g, 35%) as a white foam: $R_f = 0.43$ (50% EtOAc in hexanes); IR (cm⁻¹) 3314, 1710, 1665; ¹H NGR (CDCl₃) δ 1.28 (t, 3H, J = 7.2), 1.35 (s, 9H), 1.63-1.65 (m, 1H), 1.97-2.05 (m, 1H), 2.33 (s, 3H), 2.36-2.38 (m, 2H), 2.48 (d, 1H, J = 15.9), 2.57-2.64 (m, 2H), 2.75-3.00 (m, 4H), 4.17 (q, 2H, J = 7.2), 4.25-4.32 (m, 1H), 4.52 (s, br, 1H), 4.77 (d, 1H, J = 6.9), 5.53(dd, 1H, J = 15.9, 1.6), 5.94 (d, 1H, J = 8.4), 6.63 (dd, 1H, J = 15.9, 5.0), 6.99-7.09(m, 5H), 7.11-7.32 (m, 20H); Anal. (C₅₃H₅₉N₃O₇) C, H, N.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-PheΨ[COCH₂]-L-(*p*-CH₃)Phe-L-(Tr-*Gln*)]-E-Propenoate.

[0131] HCl (5 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-PheΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.190 g, 0.224 mmol, 1 equiv) in 1,4-dioxane (6 mL). The reaction mixture was stirred at 23 °C for 1.5 h and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (10 mL), cooled to 0 °C, and 4-methylmorpholine (0.075 mL, 0.682 mmol, 3.0 equiv) and cyclopentyl chlorothiolformate (0.055 mL, 0.334 mmol, 1.5 equiv) were added sequentially. The reaction mixture was stirred for 1 h at 0 °C

and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[CyPentylSCO-L-Phe Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.102 g, 50%) as an off-white foam: R_f = 0.49 (50% EtOAc in hexanes); IR (cm⁻¹) 3316, 1718, 1655; ¹H NGR (CDCl₃) δ 1.29 (t, 3H, J = 7.2), 1.45-1.67 (m, 7H), 1.98-2.05 (m, 2H), 2.33 (s, 3H), 2.42 (d, 1H, J = 15.9), 2.55-2.98 (m, 6H), 3.52-3.63 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.38-4.54 9m, 2H), 5.52-5.58 (m, 2H), 6.03 (d, 1H, J = 8.4), 6.64 (dd, 1H, J = 15.9, 5.0), 6.95-7.08 (m, 5H), 7.11-7.32 (m, 21H); Anal. (C₅₄H₅₉N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-PheΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-Propenoate.

[0132] Triisopropylsilane (0.10 mL) and trifluoroacetic acid (5 mL) were added sequentially to a solution of ethyl-3-[CyPentylSCO-L-PheΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.075 g, 0.085 mmol) in CH₂Cl₂ (6 mL) producing a bright yellow solution. The reaction mixture was stirred for 15 min at 23 °C, then carbon tetrachloride (5 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(CyPentylSCO-L-PheΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-propenoate (0.047 g, 87%) as a white foam: R_f = 0.62 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3286, 1718, 1637; ¹H NGR (DMSO- d_6) δ 1.20 (t, 3H, J = 6.8), 1.33-1.70 (m, 10H), 1.91-2.07 (m, 4H), 2.24 (s, 3H), 2.38-3.05 (m, 5H), 3.42-3.46 (m, 1H), 4.07-4.11 (m, 2H), 4.34 (s, br, 2H), 5.58 (d, 1H, J = 15.7), 6.67 (dd, 1H, J = 15.7, 4.4), 6.76 (s, br, 1H), 7.02-7.25 (m, 10H), 8.07 (d, 1H, J = 7.8), 8.44 (d, 1H, J = 7.5); Anal. (C₃5H₄5N₃O₆S) C, H, N.

Example 13 - Preparation of Compound 13: Ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate trans-6-Methyl-2S-(4-fluoro benzyl)-hept-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0133] n-Butyllithium (32.5 mL of a 1.6 M solution in hexanes, 52.0 mmol, 3.1 equiv) was added to a suspension of anhydrous lithium chloride (7.18 g, 169 mmol, 10 equiv) and diisopropylamine (7.80 mL, 55.7 mmol, 3.3 equiv) in THF (250 mL) at -78 °C. The reaction mixture was stirred for 30 min at -78 °C, then was maintained at 0 °C for 5 min, and subsequently was cooled again to -78 °C. trans-6-Methyl-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (4.91 g, 17.0 mmol, 1 equiv) in THF (50 mL) was added via cannula, and the resulting solution was stirred at -78 °C for 1.75 h, maintained at 0 °C for 20 min, stirred at 23 °C for 5 min, and then cooled again to 0 °C. A solution of 4fluorobenzyl bromide (6.34 mL, 50.9 mmol, 3 equiv) in THF (15 mL) was added, and the reaction mixture was stirred at 0 °C for 30 min, and it then was partitioned between half-saturated NH₄Cl (230 mL) and a 1:1 mixture of EtOAc and hexanes (200 mL, 2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution $20\rightarrow40\%$ EtOAc in hexanes) provided trans-6-methyl-2S-(4fluoro-benzyl)-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (6.33 g, 94%) as a viscous oil: $R_f = 0.38$ (40% EtOAc in hexanes); IR (cm ¹) 3378, 1614; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.85-0.95 (m), 0.96 (d, J =6.8), 2.10-2.32 (m), 2.34-2.46 (m), 2.58 (s), 2.67-2.79 (m), 2.82-2.94 (m), 3.00-3.18 (m), 3.94 (br), 4.37-4.52 (m), 5.24-5.42 (m), 5.44-5.56 (m), 6.89-7.01 (m), 7.08-7.14 (m), 7.19-7.38 (m); Anal. (C₂₅H₃₂FNO₂) C, H, N.

Preparation of Intermediate 5S-(1R-Bromo-2-methyl-propyl)-3R-(4-fluorobenzyl)-dihydrofuran-2-one.

[0134] N-Bromosuccinimide (2.93 g, 16.5 mmol, 1.05 equiv) was added in small portions over 10 min to a solution of trans-6-methyl-2S-(4-fluoro-benzyl)-hept-4-

enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (6.24 g, 15.7 mmol, 1 equiv) and glacial acetic acid (4.49 mL, 78.4 mmol, 5 equiv) in a 4:1 mixture of THF and H₂O (165 mL) at 0°C. The resulting yellow solution was stirred for 15 min at 0 °C, then was warmed to 23 °C, and subsequently was refluxed for 45 min. After cooling to 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (200 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200 mL, 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (gradient elution $4\rightarrow6\rightarrow10\%$ EtOAc in hexanes) gave 5S-(1R-bromo-2-methylpropyl)-3R-(4-fluoro-benzyl)-dihydrofuran-2-one (4.14 g, 80%) as a pale yellow oil (containing approximately 5-10% unidentified impurities by ${}^{1}H$ NGR): $R_{f}=$ 0.56 (25% EtOAc in hexanes); IR (cm⁻¹) 1772; ¹H NGR (CDCl₃, major isomer) δ 0.94 (d, 3H, J = 6.5), 1.00 (d, 3H, J = 6.8), 2.05-2.35 (m, 3H), 2.83 (dd, 1H, J =13.6, 8.4), 2.92-3.03 (m, 1H), 3.11 (dd, 1H, J = 13.6, 4.7), 3.90 (dd, 1H, J = 9.0, 3.7), 4.33-4.40 (m, 1H), 6.98-7.06 (m, 2H), 7.14-7.20 (m, 2H); Anal. $(C_{15}H_{18}BrFO_2)$ C, H.

Preparation of Intermediate 5S-(1S-Azido-2-methyl-propyl)-3R-(4-fluoro-benzyl)-dihydrofuran-2-one.

[0135] A suspension of sodium azide (1.90 g, 29.2 mmol, 2.5 equiv) and 5S-(1R-bromo-2-methyl-propyl)-3R-(4-fluoro-benzyl)-dihydrofuran-2-one (3.85 g, 11.7 mmol, 1 equiv) in N,N-dimethylformamide (40 mL) was heated at 50 °C for 67 hours. The reaction mixture was cooled to 23 °C and partitioned between half-saturated NaCl (200 mL) and a 1:1:1 mixture of EtOAc, hexanes, and acetone (2 x 200 mL, 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (gradient elution 9 \rightarrow 12 \rightarrow 17% EtOAc in hexanes) to give 5S-(1S-azido-2-methyl-propyl)-3R-(4-fluoro-benzyl)-dihydrofuran-2-one (2.10 g, 62%) as a white solid (containing approximately 5-10% unidentified impurities by 1 H NGR): mp 91-96

°C; $R_f = 0.44$ (25% EtOAc in hexanes); IR (cm⁻¹) 2097, 1772; ¹H NGR (CDCl₃, major isomer) δ 0.99 (d, 3H, J = 6.5), 1.02 (d, 3H, J = 6.8), 1.95-2.20 (m, 3H), 2.78-2.88 (m, 1H), 2.94 (dd, 1H, J = 7.0, 4.2), 3.03-3.17 (m, 2H), 4.37-4.43 (m, 1H), 6.97-7.09 (m, 2H), 7.14-7.21 (m, 2H).

Preparation of Intermediate {2-Methyl-1*S*-[4*R*-(4-fluoro-benzyl)-5-oxotetrahydrofuran-2*S*-yl]-propyl}-carbamic Acid *tert*-Butyl Ester.

[0136] A suspension of 5S-(1S-azido-2-methyl-propyl)-3R-(4-fluoro-benzyl)-dihydrofuran-2-one (2.02 g, 6.93 mmol, 1 equiv), di-tert-butyl dicarbonate (2.12 g, 9.71 mmol, 1.4 equiv) and Pd/C (10%, 0.20 g) in CH₃OH (100 mL) was stirred under a hydrogen atmosphere (balloon) for 16 hours. The reaction mixture was vacuum filtered through Whatman #3 paper and concentrated. Purification of the residue by flash column chromatography (15% EtOAc in hexanes) provided {2-methyl-1S-[4R-(4-fluoro-benzyl)-5-oxo-tetrahydrofuran-2S-yl]-propyl}-carbamic acid tert-butyl ester (1.58 g, 62%) as a white foam: R_f = 0.80 (5% MeOH in CH₂Cl₂); IR (cm⁻¹) 3331, 1766, 1702; 1 H NGR (CDCl₃) δ 0.93 (d, 3H, J = 6.8), 0.95 (d, 3H, J = 6.5), 1.41 (s, 9H), 1.71-1.83 (m, 1H), 1.95-2.06 (m, 1H), 2.16-2.27 (m, 1H), 2.80 (dd, 1H, J = 13.5, 8.6), 2.88-2.99 (m, 1H), 3.09 (dd, 1H, J = 13.5, 4.4), 3.32-3.40 (m, 1H), 4.42-4.48 (m, 2H), 6.95-7.03 (m, 2H), 7.11-7.18 (m, 2H); Anal. (C₂₀H₂₈FNO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-Propenoate.

[0137] Lithium hydroxide (9.62 mL of a 1 M aqueous solution, 9.62 mmol, 5 equiv) was added to a solution of {2-methyl-1S-[4R-(4-fluoro-benzyl)-5-oxotetrahydrofuran-2S-yl]-propyl}-carbamic acid *tert*-butyl ester (0.703 g, 1.92 mmol, 1 equiv) in DME (25 mL) at 23°C. The resulting suspension was stirred at 23 °C for 30 min, and it then was partitioned between 10% KHSO₄ (50 mL) and CH₂Cl₂ (3 x 100 mL). The combined organic layers were dried over Na₂SO₄,

concentrated, and the residue dissolved in CH₂Cl₂ (30 mL). Powdered 4Å molecular sieves (0.70 g), 4-methylmorpholine N-oxide (0.451 g, 3.85 mmol, 2 equiv), and tetrapropylammonium perruthenate (0.068 g, 0.19 mmol, 0.10 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 1.33 hours at 23 °C, and it then was vacuum filtered through Whatman #3 paper and then through Whatman #5 paper. The filtrate was concentrated under reduced pressure to provide a dark residue which was dissolved in CH₂Cl₂ (30 mL). Crude ethyl-3-[H₂N-L-(Tr-Gln)]-E-propenoate•HCl (2.30 mmol, 1.2 equiv, prepared as described in Example 1 for the preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E-propenoate), 4-methylmorpholine (0.846 mL, 7.69 mmol, 4 equiv), 1-hydroxybenzotriazole hydrate (0.390 g, 2.89 mmol, 1.5 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.553 g, 2.88 mmol, 1.5 equiv) were added sequentially, and the reaction mixture was stirred for 19 hours at 23 °C and then partitioned between brine (100 mL) and CH₂Cl₂ (3 x 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution 35→40% EtOAc in hexanes) provided ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.820 g, 53%) as a tan foam: $R_f = 0.50$ (50%) EtOAc in hexanes); IR (cm⁻¹) 3307, 1708, 1666; ¹H NGR (CDCl₃) δ 0.67 (d, 3H, J = 6.8), 0.92 (d, 3H, J = 6.8), 1.28 (t, 3H, J = 7.2), 1.40 (s, 9H), 1.53-1.67 (m, 1H), 1.91-2.04 (m, 2H), 2.32-2.41 (m, 2H), 2.46-2.55 (m, 1H), 2.63 (dd, 1H, J =12.1, 5.9), 2.69-2.80 (m, 1H), 2.83 (dd, 1H, J = 12.1, 8.2), 3.03 (dd, 1H, J = 17.7, 10.0), 4.05-4.11 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.40-4.50 (m, 1H), 4.84 (d, 1H, J =8.4), 5.38 (d, 1H, J = 15.7), 6.01 (d, 1H, J = 8.4), 6.60 (dd, 1H, J = 15.7, 5.0), 6.92-6.99 (m, 2H), 7.03-7.12 (m, 3H), 7.17-7.30 (m, 15H); Anal. (C₄₈H₅₆FN₃O₇) C, H, N.

Preparation of Intermediate Ethyl-3- $[EtSCO-L-Val\Psi[COCH_2]-L-(p-F)Phe-L-(Tr-Gln)]-E-Propenoate.$

[0138] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.271 g, 0.336 mmol) in 1,4-dioxane (3 mL). The reaction solution was stirred at 23 °C for 2 hours and then was concentrated. The residue was dissolved in dry CH₂Cl₂ (5 mL). N,N-diisopropylethylamine (0.176 mL, 1.01 mmol, 3 equiv) and ethyl chlorothiolformate (0.060 mL, 0.58 mmol, 1.7 equiv) were added sequentially. The reaction solution was stirred 2 hours at 23 °C and then was partitioned between brine (30 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (gradient elution 40→50% EtOAc in hexanes) to afford ethyl-3-[EtSCO-L-ValY[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.183 g, 69%) as a white foam: $R_f = 0.43$ (50% EtOAc in hexanes); IR (cm⁻¹) 3307, 1708, 1655; ¹H NGR $(CDCl_3) \delta 0.70 (d, 3H, J = 6.8), 0.93 (d, 3H, J = 6.5), 1.25 (t, 3H, J = 7.2), 1.29 (t,$ 3H, J = 7.2), 1.55-1.66 (m, 1H), 1.91-2.05 (m, 2H), 2.30-2.39 (m, 2H), 2.51 (dd, 1H, J = 17.4, 2.5), 2.63 (dd, 1H, J = 12.1, 5.9), 2.69-2.90 (m, 4H), 3.02 (dd, 1H, J= 17.4, 10.0, 4.17 (q, 2H, J = 7.2), 4.35-4.49 (m, 2H), 5.39 (dd, 1H, J = 15.6, 1.7), 5.66 (d, 1H, J = 8.1), 6.12 (d, 1H, J = 8.1), 6.60 (dd, 1H, J = 15.6, 5.0), 6.91-6.99(m, 2H), 7.02-7.10 (m, 2H), 7.17-7.32 (m, 16H); Anal. (C₄₆H₅₂FN₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

[0139] Ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.149 g, 0.188 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (6 mL). Triisopropylsilane (0.115 mL, 0.561 mmol, 3 equiv) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. This solution was stirred for 30 minutes and then concentrated. The residue was stirred in Et₂O (6 mL), and the solid was collected by filtration, washed with Et₂O (3 mL then 2 mL), and then dried under vacuum to give ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-

F)Phe-L-Gln)-E-propenoate (0.090 g, 87%) as a white solid: mp = 214 °C (dec); $R_f = 0.49$ (10% CH_3OH in CH_2Cl_2); IR (cm⁻¹) 3425, 3284, 1713, 1643; 1H NGR (DMSO- d_6) δ 0.76 (d, 3H, J = 6.5), 0.82 (d, 3H, J = 6.8), 1.15 (t, 3H, J = 7.2), 1.21 (t, 3H, J = 7.2), 1.53-1.75 (m, 2H), 1.99-2.14 (m, 3H), 2.52-2.85 (m, 6H), 2.88-2.99 (m, 1H), 4.09 (q, 2H, J = 7.2), 4.13-4.20 (m, 1H), 4.25-4.36 (m, 1H), 5.40 (dd, 1H, J = 15.6, 1.4), 6.61 (dd, 1H, J = 15.6, 5.3), 6.74 (s, 1H), 6.99-7.24 (m, 5H), 8.01 (d, 1H, J = 8.1), 8.34 (d, 1H, J = 8.1); Anal. ($C_{27}H_{38}FN_{3}O_{6}S$) C, H, N.

Example 14 - Preparation of Compound 14: Ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-(*p*-F)Phe-L-*Gln*)-E-Propenoate.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-Propenoate.

[0140] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.273 g, 0.339 mmol) in 1,4-dioxane (3 mL). The reaction solution was stirred at 23 °C for 2 hours and then concentrated. The residue was dissolved in dry CH₂Cl₂ (5 mL). N.N-diisopropylethylamine (0.177 mL, 1.02 mmol, 3 equiv) and cyclopentyl chlorothiolformate (0.095 mL, 1.7 equiv) were added sequentially. The reaction solution was stirred 2 hours at 23 °C and then partitioned between brine (30 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[CyPentylSCO-L-Val\(\mathbb{I}\)[COCH2]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.166 g, 59%) as a white foam: $R_f = 0.24$ (40% EtOAc in hexanes); IR (cm⁻¹) 3307, 1713, 1654; ¹H NGR (CDCl₃) δ 0.69 (d, 3H, J = 6.8), 0.93 (d, 3H, J = 6.8), 1.29 (t, 3H, J = 7.2), 1.47 - 1.75 (m, 7H), 1.91 - 2.12 (m, 4H), 2.30-2.41 (m, 2H), 2.51 (dd, 1H, J = 17.2, 2.3), 2.63 (dd, 1H, J = 12.3, 5.9), 2.69-2.412.80 (m, 1H), 2.84 (dd, 1H, J = 12.3, 8.4), 3.01 (dd, 1H, J = 17.2, 10.0), 3.57-3.67(m, 1H), 4.17 (q, 2H, J = 7.2), 4.33-4.50 (m, 2H), 5.39 (dd, 1H, J = 15.7, 1.7), 5.61 (d, 1H, J = 7.8), 6.11 (d, 1H, J = 8.1), 6.60 (dd, 1H, J = 15.7, 4.8), 6.92-7.00 (m, 2H), 7.03-7.12 (m, 3H), 7.18-7.32 (m, 15H); Anal. (C₄₉H₅₆FN₃O₆S•0.5 H₂O) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

[0141] Ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.132 g, 0.158 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (6 mL). Triisopropylsilane (0.097 mL, 0.47 mmol, 3 equiv) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. This solution was stirred for 30 minutes and then concentrated. The residue was stirred in Et₂O (6 mL), and the solid was collected by filtration, washed with Et₂O (3 mL then 2 mL), and then dried under vacuum to give ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-propenoate (0.077 g, 82%) as a white solid: mp = 215 °C (dec); R_f = 0.45 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3413, 3296, 1715, 1649; ¹H NGR (DMSO- d_6) δ 0.75 (d, 3H, J = 6.5), 0.82 (d, 3H, J = 6.5), 1.21 (t, 3H, J = 6.9), 1.36-1.75 (m, 8H), 1.92-2.14 (m, 5H), 2.52-2.85 (m, 4H), 2.87-2.99 (m, 1H), 3.47-3.58 (m, 1H), 4.06-4.18 (m, 1H), 4.09 (q, 2H, J = 6.9), 4.25-4.36 (m, 1H), 5.41 (d, 1H, J = 15.6), 6.61 (dd, 1H, J = 15.6, 5.1), 6.74 (s, 1H), 6.98-7.23 (m, 5H), 8.01 (d, 1H, J = 8.4), 8.28 (d, 1H, J = 8.1); Anal. (C₃₀H₄₂FN₃O₆S•0.25 H₂O) C, H, N.

Example 15 - Preparation of Compound 15: Ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate trans-6-Methyl-2S-(4-trifluoromethyl-benzyl)-hept-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0142] *n*-Butyllithium (25.5 mL of a 1.6 M solution in hexanes, 40.8 mmol, 2.15 equiv) was added to a suspension of anhydrous lithium chloride (5.64 g, 133 mmol, 7 equiv) and disopropylamine (6.13 mL, 43.7 mmol, 2.3 equiv) in THF

(200 mL) at -78 °C. The reaction mixture was stirred for 30 min at -78 °C, then maintained at 0 °C for 5 min, and subsequently cooled again to -78 °C. trans-6-Methyl-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (5.5 g, 19.0 mmol, 1 equiv) in THF (40 mL) was added via cannula, and the resulting solution was stirred at -78 °C for 1.75 h, maintained at 0 °C for 20 min, stirred at 23 °C for 5 min, and then cooled again to 0 °C. A solution of 4trifluoromethylbenzyl bromide (6.81 g, 28.5 mmol, 1.5 equiv) in THF (10 mL) was added, and the reaction mixture was stirred at 0 °C for 30 min and then partitioned between half-saturated NH₄Cl (230 mL) and a 1:1 mixture of EtOAc and hexanes (200 mL, 2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution 20 \rightarrow 40\% EtOAc in hexanes) provided trans-6-methyl-2S-(4trifluoromethyl-benzyl)-hept-4-enoic acid (2R-hydroxy-1R-methyl-2-phenylethyl)-methyl amide (7.64 g, 90%) as a viscous oil: $R_f = 0.47$ (40% EtOAc in hexanes); IR (cm⁻¹) 3378, 1619; ¹H NGR (CDCl₂, mixture of rotamers) δ 0.85 (d, J = 6.5), 0.89 (d, J = 6.5), 0.91 (d, J = 6.5), 0.96 (d, J = 6.8), 2.07-2.34 (m), 2.36-2.47 (m), 2.59 (s), 2.76-2.86 (m), 2.88-3.01 (m), 3.07-3.22 (m), 3.96 (br), 3.99-4.09 (m), 4.37-4.52 (m), 5.19-5.57 (m), 7.19-7.40 (m), 7.47-7.57 (m).

Preparation of Intermediate 5.S-(1.R-Bromo-2-methyl-propyl)-3.R-(4-trifluoromethyl-benzyl)-dihydrofuran-2-one.

[0143] *N*-Bromosuccinimide (3.17 g, 17.8 mmol, 1.05 equiv) was added in small portions over 10 min to a solution of trans-6-methyl-2*S*-(4-trifluoromethyl-benzyl)-hept-4-enoic acid (2*R*-hydroxy-1*R*-methyl-2-phenyl-ethyl)-methyl amide (7.58 g, 16.9 mmol, 1 equiv) and glacial acetic acid (4.85 mL, 84.7 mmol, 5 equiv) in a 4:1 mixture of THF and H₂O (180 mL) at 0 °C. The resulting yellow solution was stirred for 15 min at 0 °C, then warmed to 23 °C, and subsequently refluxed for 45 min. After cooling to 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (200 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 200

mL, 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (gradient elution $5\rightarrow 9\rightarrow 12\%$ EtOAc in hexanes) gave 5S-(1R-bromo-2-methyl-propyl)-3R-(4-trifluoromethyl-benzyl)-dihydrofuran-2-one (5.28 g, 82%) as a white solid (containing approximately 5-10% unidentified impurities by 1 H NGR): mp = 83-85 °C; R_f = 0.60 (25% EtOAc in hexanes); IR (cm $^{-1}$) 1778; 1 H NGR (CDCl₃, major isomer) δ 0.95 (d, 3H, J = 6.5), 1.01 (d, 3H, J = 6.8), 2.05-2.25 (m, 2H), 2.28-2.38 (m, 1H), 2.89 (dd, 1H, J = 13.5, 8.9), 2.98-3.09 (m, 1H), 3.22 (dd, 1H, J = 13.5, 4.5), 3.91 (dd, 1H, J = 8.9, 3.6), 4.40-4.49 (m, 1H), 7.34 (d, 2H, J = 8.1), 7.59 (d, 2H, J = 8.1); Anal. (C₁₆H₁₈BrF₃O₂) C, H.

Preparation of Intermediate 5S-(1S-Azido-2-methyl-propyl)-3R-(4-trifluoromethyl-benzyl)-dihydrofuran-2-one.

[0144] A suspension of sodium azide (2.22 g, 34.1 mmol, 2.5 equiv) and 5*S*-(1*R*-bromo-2-methyl-propyl)-3*R*-(4-trifluoromethyl-benzyl)-dihydrofuran-2-one (5.18 g, 13.7 mmol, 1 equiv) in *N*,*N*-dimethylformamide (50 mL) was heated at 50 °C for 66 hours. The reaction mixture was cooled to 23 °C and partitioned between half-saturated NaCl (200 mL) and a 1:1 mixture of EtOAc and hexanes (3 x 200 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (gradient elution 9 \rightarrow 12 \rightarrow 20% EtOAc in hexanes) to give 5*S*-(1*S*-azido-2-methyl-propyl)-3*R*-(4-trifluoromethyl-benzyl)-dihydrofuran-2-one (2.77 g, 59%) as a viscous oil (containing approximately 5-10% unidentified impurities by ¹H NGR): R_f= 0.42 (25% EtOAc in hexanes); IR (cm⁻¹) 2097, 1772; ¹H NGR (CDCl₃, major isomer) δ 1.01 (d, 3H, J = 6.5), 1.02 (d, 3H, J = 6.8), 1.96-2.23 (m, 3H), 2.84-2.98 (m, 2H), 3.09-3.20 (m, 1H), 3.25 (dd, 1H, J = 13.7, 4.7), 4.44-4.52 (m, 1H), 7.34 (d, 2H, J = 8.1), 7.59 (d, 2H, J = 8.1); Anal. (C₁₆H₁₈F₃N₃O₂) C, H, N.

Preparation of Intermediate {2-Methyl-1S-[4R-(4-trifluoromethyl-benzyl)-5-oxo-tetrahydrofuran-2S-yl]-propyl}-carbamic Acid *tert*-Butyl Ester.

[0145] A suspension of 5*S*-(1*S*-azido-2-methyl-propyl)-3*R*-(4-trifluoromethyl-benzyl)-dihydrofuran-2-one (2.71 g, 7.94 mmol, 1 equiv), di-*tert*-butyl dicarbonate (2.43 g, 11.1 mmol, 1.4 equiv) and Pd/C (10%, 0.225 g) in CH₃OH (110 mL) was stirred under a hydrogen atmosphere (balloon) for 5 hours. The reaction mixture was vacuum filtered through Whatman #5 paper and concentrated. Purification of the residue by flash column chromatography (gradient elution 12 \rightarrow 20% EtOAc in hexanes) provided {2-methyl-1*S*-[4*R*-(4-trifluoromethyl-benzyl)-5-oxotetrahydrofuran-2*S*-yl]-propyl}-carbamic acid *tert*-butyl ester (1.87 g, 57%) as a white foam: R_f = 0.84 (5% MeOH in CH₂Cl₂); IR (cm⁻¹) 3331, 1766, 1708, 1690; ¹H NGR (CDCl₃) δ 0.94 (d, 3H, J = 6.8), 0.96 (d, 3H, J = 6.5), 1.40 (s, 9H), 1.71-1.86 (m, 1H), 1.95-2.06 (m, 1H), 2.20-2.31 (m, 1H), 2.86 (dd, 1H, J = 13.5, 8.9), 2.93-3.04 (m, 1H), 3.20 (dd, 1H, J = 13.5, 4.2), 3.33-3.42 (m, 1H), 4.41-4.56 (m, 2H), 7.31 (d, 2H, J = 8.1), 7.56 (d, 2H, J = 8.1); Anal. (C₂₁H₂₈F₃NO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-Val Ψ [COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-Propenoate.

[0146] Lithium hydroxide (8.8 mL of a 1 M aqueous solution, 8.8 mmol, 5 equiv) was added to a solution of {2-methyl-1*S*-[4*R*-(4-trifluoromethyl-benzyl)-5-oxotetrahydrofuran-2*S*-yl]-propyl}-carbamic acid *tert*-butyl ester (0.731 g, 1.76 mmol, 1 equiv) in DME (25 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 30 min and then partitioned between 10% KHSO₄ (35 mL) and CH₂Cl₂ (2 x 100 mL, 70 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in CH₂Cl₂/CH₃CN 10:1 (33 mL). Powdered 4Å molecular sieves (0.65 g), 4-methylmorpholine *N*-oxide (0.412 g, 3.52 mmol, 2 equiv), and tetrapropylammonium perruthenate (0.062 g, 0.18 mmol, 0.10 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 2 hours at 23 °C, and then vacuum filtered through Whatman #5 paper. The filtrate was then transferred to a flask containing crude ethyl-3-[H₂N-L-(Tr-

Gln)]-E-propenoate•HCl (2.12 mmol, 1.2 equiv, prepared as described in Example 1 for the preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-Epropenoate), 4-methylmorpholine (0.774 mL, 7.04 mmol, 4 equiv), 1hydroxybenzotriazole hydrate (0.357 g, 2.64 mmol, 1.5 equiv), and 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.506 g, 2.64 mmol, 1.5 equiv) were added sequentially, and the reaction mixture was stirred for 17 hours at 23 °C. This mixture then was partitioned between brine (100 mL) and EtOAc (3 x 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (40% EtOAc in hexanes) provided ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-propenoate (0.839 g, 56%) as a tan foam: $R_f = 0.27$ (40% EtOAc in hexanes); IR (cm⁻¹) 3308, 1711, 1666; ¹H NGR (CDCl₃) δ 0.67 (d, 3H, J = 6.5), 0.92 (d, 3H, J = 6.5), 1.27 (t, 3H, J = 7.2), 1.39 (s, 9H), 1.58-1.71 (m, 1H), 1.90-1.922.06 (m, 2H), 2.35-2.50 (m, 3H), 2.65-2.84 (m, 2H), 2.89-3.07 (m, 2H), 4.03-4.22 (m, 3H), 4.38-4.45 (m, 1H), 4.86 (d, 1H, J = 8.1), 5.51 (d, 1H, J = 15.6), 6.32 (d, 1H, J = 8.1), 6.62 (dd, 1H, J = 15.6, 5.0), 7.10 (s, 1H), 7.17-7.31 (m, 17H), 7.53 (d, 2H, J = 7.8); Anal. (C₄₉H₅₆F₃N₃O₇•0.5 H₂O) C, H, N.

Preparation of Intermediate Ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-Propenoate.

[0147] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-propenoate (0.271 g, 0.317 mmol) in 1,4-dioxane (3 mL). The reaction solution was stirred at 23 °C for 2 hours and then concentrated. The residue was dissolved in dry CH₂Cl₂ (5 mL). N,N-diisopropylethylamine (0.165 mL, 0.947 mmol, 3 equiv) and ethyl chlorothiolformate (0.056 mL, 0.54 mmol, 1.7 equiv) were added sequentially. The reaction solution was stirred 2 hours at 23 °C and then partitioned between brine (30 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried

over Na₂SO₄,concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-propenoate (0.142 g, 53%) as a white foam: R_f = 0.25 (40% EtOAc in hexanes); IR (cm⁻¹) 3304, 1713, 1653; ¹H NGR (CDCl₃) δ 0.70 (d, 3H, J = 6.8), 0.94 (d, 3H, J = 6.5), 1.24 (t, 3H, J = 7.5), 1.27 (t, 3H, J = 7.2), 1.59-1.72 (m, 1H), 1.91-2.04 (m, 2H), 2.33-2.51 (m, 3H), 2.65-3.08 (m, 6H), 4.08-4.22 (m, 2H), 4.34-4.48 (m, 2H), 5.52 (dd, 1H, J = 15.7, 1.7), 5.66 (d, 1H, J = 8.1), 6.39 (d, 1H, J = 7.8), 6.62 (dd, 1H, J = 15.7, 5.1), 7.04 (s, 1H), 7.17-7.30 (m, 17H), 7.53 (d, 2H, J = 7.8).

Preparation of Product Ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-Gln)-E-Propenoate.

[0148] Ethyl-3-[EtSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-propenoate (0.112 g, 0.133 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (6 mL). Triisopropylsilane (0.082 mL, 0.40 mmol, 3 equiv) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. This solution was stirred for 40 minutes and then concentrated. The residue was stirred in Et₂O (6 mL), and the solid was collected by filtration, washed with Et₂O (2 x 3 mL), and then dried under vacuum to give ethyl-3-(EtSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-Gln)-E-propenoate (0.068 g, 85%) as a white solid: mp = 216 °C (dec); R_f = 0.43 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3425, 3308, 1717, 1655; ¹H NGR (DMSO-d6) δ 0.76 (d, 3H, J = 6.5), 0.82 (d, 3H, J = 6.5), 1.12-1.23 (m, 6H), 1.53-1.75 (m, 2H), 1.99-2.14 (m, 3H), 2.50-2.60 (m, 1H), 2.64-2.87 (m, 5H), 2.93-3.04 (m, 1H), 3.98-4.21 (m, 3H), 4.26-4.36 (m, 1H), 5.50 (d, 1H, J = 15.5), 6.62 (dd, 1H, J = 15.5, 5.4), 6.74 (s, 1H), 7.15 (s, 1H), 7.37 (d, 2H, J = 8.1), 7.59 (d, 2H, J = 8.1), 8.06 (d, 1H, J = 8.1), 8.35 (d, 1H, J = 8.1); Anal. (C₂₈H₃₈F₃N₃O₆S) C, H, N.

Example 16 - Preparation of Compound 16: Ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-(*p*-CF₃)Phe-L-(Tr-*Gln*)]-E-Propenoate.

[0149] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-propenoate (0.268 g, 0.313 mmol) in 1,4-dioxane (3 mL). The reaction solution was stirred at 23 °C for 2 hours and then concentrated. The residue was dissolved in dry CH₂Cl₂ (5 mL). N,N-diisopropylethylamine (0.164 mL, 0.941 mmol, 3 equiv) and cyclopentyl chlorothiolformate (0.088 mL, 1.7 equiv) were added sequentially. The reaction solution was stirred 3 hours at 23 °C and then was partitioned between brine (30 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-(Tr-Gln)]-E-propenoate (0.169 g, 61%) as a white foam: $R_f = 0.25$ (40% EtOAc in hexanes); IR (cm⁻¹) 3324, 1718, 1657; ¹H NGR (CDCl₃) δ 0.70 (d, 3H, J = 6.8), 0.93 (d, 3H, J = 6.5), 1.27 (t, 3H, J = 7.2), 1.46-1.73 (m, 7H), 1.91-2.12 (m, 4H), 2.30-2.52 (m, 3H), 2.65-2.83 (m, 2H), 2.90-3.06 (m, 2H), 3.56-3.66 (m, 1H), 4.08-4.22 (m, 2H), 4.31-4.49 (m, 2H), 5.51 (dd, 1H, J = 15.8, 1.6), 5.65 (d, 1H, J = 7.8), 6.40 (d, 1H, J = 7.8), 6.62 (dd, 1H, J = 15.8, 5.1), 7.08 (s, 1H), 7.17-7.30 (m, 17H), 7.53 (d, 2H, J = 8.1); Anal. $(C_{50}H_{56}F_3N_3O_6S \cdot 0.5 H_2O) C, H, N.$

Preparation of Product Ethyl-3-(CyPentylSCO-L-Val Ψ [COCH₂]-L-(p-CF₃)Phe-L-Gln)-E-Propenoate.

[0150] Ethyl-3-[CyPentylSCO-L-ValΨ[COCH₂]-L-(*p*-CF₃)Phe-L-(Tr-*Gln*)]-E-propenoate (0.148 g, 0.167 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (6 mL). Triisopropylsilane (0.103 mL, 0.503 mmol, 3 equiv) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. This solution

was stirred for 40 minutes and then concentrated. The residue was stirred in Et₂O (6 mL), and the solid was collected by filtration, washed with Et₂O (2 x 3 mL), and then dried under vacuum to give ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CF₃)Phe-L-Gln)-E-propenoate (0.089 g, 83%) as a white solid: mp = 225 °C (dec); R_f = 0.44 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3425, 3303, 1717, 1654; ¹H NGR (DMSO- d_6) δ 0.76 (d, 3H, J = 6.5), 0.82 (d, 3H, J = 6.8), 1.21 (t, 3H, J = 7.2), 1.37-1.74 (m, 8H), 1.92-2.13 (m, 5H), 2.50-2.59 (m, 1H), 2.64-2.87 (m, 3H), 2.93-3.04 (m, 1H), 3.46-3.57 (m, 1H), 4.02-4.18 (m, 3H), 4.25-4.36 (m, 1H), 5.51 (dd, 1H, J = 15.8, 1.2), 6.62 (dd, 1H, J = 15.8, 5.4), 6.74 (s, 1H), 7.16 (s, 1H), 7.37 (d, 2H, J = 8.1), 7.59 (d, 2H, J = 8.1), 8.06 (d, 1H, J = 8.4), 8.28 (d, 1H, J = 7.8); Anal. (C₃₁H₄₂F₃N₃O₆S) C, H, N.

Example 17 - Preparation of Compound 17: [CyPentylSCO-L-Val Ψ [COCH₂]-L-(p-CH₃)Phe-L-Gln]-E-1-Acetyl-3-methylene-pyrrolidin-2-one.

Preparation of Intermediate [1-(1-Acetyl-2-oxo-pyrrolidin-3-ylidenemethyl)-3-(S)-(trityl-carbamoyl)-propyl]-carbamic Acid *tert*-Butyl Ester.

[0151] Triphenylphosphine (0.646 g, 2.46 mmol, 1.40 equiv) was added to a solution of 1-acetyl-3-bromo-pyrrolidin-2-one (prepared as described in: Ikuta, H., Shirota, H., Kobayashi, S., Yamagishi, Y., Yamada, K., Yamatsu, I., Katayama, K., *J. Med. Chem.* 1987, 30, 1995, which document is entirely incorporated herein by reference) (0.378 g, 1.76 mmol, 1.0 equiv) in THF (10 mL). The reaction mixture was refluxed for 5 h, and then the solvent was evaporated to give the crude salt. This material was dissolved in EtOH (10 mL), and Et₃N (0.613 mL, 4.4 mmol, 2.5 equiv) and [BOC-L-(Tr-Gln)]-H (0.832 g, 1.76 mmol, 1 equiv) were added sequentially. The reaction mixture was stirred at 60 °C for 24 h, then the volatiles were evaporated, and the residue was partitioned between CH₂Cl₂ (50 mL) and brine (50 mL). The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel

(35% EtOAc in hexanes) to afford [1-(1-acetyl-2-oxo-pyrrolidin-3-ylidenemethyl)-3-(S)-(trityl-carbamoyl)-propyl]-carbamic acid tert-butyl ester as a pale yellow foam (0.381 g, 38%): R_f = 0.30 (33% EtOAc in hexanes); IR (cm⁻¹) 1687, 1510, 1366, 1274; ¹H NGR (CDCl₃) δ 1.42 (s, 9H), 1.80-1.89 (m, 2H), 2.35-2.44 (m, 2H), 2.55 (s, 3H), 2.57-2.64 (m, 1H), 2.77-2.82 (m, 1H), 3.72-3.77 (m, 2H), 4.25 (m, 1H), 4.80 (d, 1H, J= 8.1), 6.40-6.44 (m, 1H), 6.82 (s, br, 1H), 7.20-7.33 (m, 15H); Anal. (C₃₅H₃₉N₃O₅•1.0 H₂O) C, H, N.

Preparation of Intermediate [BOC-L-Val Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-1-Acetyl-3-methylene-pyrrolidin-2-one.

[0152] HCl (5 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of [1-(1-acetyl-2-oxo-pyrrolidin-3-ylidenemethyl)-3-S-(trityl-carbamoyl)-propyl]-carbamic acid *tert*-butyl ester (0.442 g, 0.760 mmol) in 1,4-dioxane (5 mL). The reaction solution was stirred at 23 °C for 2 hours. It then was concentrated and set aside.

[0153] Lithium hydroxide (3.46 mL of a 1 M aqueous solution, 3.46 mmol, 5 equiv) was added to a solution of {2-methyl-1*S*-[4*R*-(4-methyl-benzyl)-5-oxotetrahydrofuran-2*S*-yl]-propyl}-carbamic acid *tert*-butyl ester (0.250 g, 0.692 mmol, 1 equiv) in DME (10 mL) at 23°C. The resulting suspension was stirred at 23 °C for 30 min and then partitioned between 10% KHSO₄ (20 mL) and CH₂Cl₂ (3 x 70 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in CH₂Cl₂ (12 mL). Powdered 4Å molecular sieves (0.25 g), 4-methylmorpholine *N*-oxide (0.162 g, 1.38 mmol, 2 equiv), and tetrapropylammonium perruthenate (0.024 g, 0.068 mmol, 0.10 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 1.5 hours at 23 °C and then vacuum filtered through Whatman #5 paper. The filtrate was added directly to the crude amine salt prepared above. 4-Methylmorpholine (0.304 mL, 2.77 mmol, 4 equiv), 1-hydroxybenzotriazole hydrate (0.140 g, 1.04 mmol, 1.5 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.199

g, 1.04 mmol, 1.5 equiv) were added sequentially, and the reaction mixture was stirred for 19 hours at 23 °C and then loaded directly onto a flash column for chromatographic purification (50% EtOAc in hexanes) providing [BOC-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-1-acetyl-3-methylene-pyrrolidin-2-one (0.233 g, 40%) as a white foam: R_f = 0.25 (50% EtOAc in hexanes); IR (cm⁻¹) 3336, 1687; 1 H NGR (CDCl₃) δ 0.60 (d, 3H, J = 6.8), 0.91 (d, 3H, J = 6.8), 1.42 (s, 9H), 1.55-1.68 (m, 2H), 1.82-1.96 (m, 2H), 2.30 (s, 3H), 2.34-2.83 (m, 7H), 2.55 (s, 3H), 2.87-2.98 (m, 1H), 3.64-3.72 (m, 2H), 4.03-4.08 (m, 1H), 4.26-4.38 (m, 1H), 4.78 (d, 1H, J = 8.1), 5.79 (d, 1H, J = 8.1), 6.10-6.16 (m, 1H), 6.96 (d, 2H, J = 7.9), 7.06 (d, 2H, J = 7.9), 7.17-7.33 (m, 16H).

Preparation of Intermediate [CyPentylSCO-L-Val Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-1-Acetyl-3-methylene-pyrrolidin-2-one.

[0154] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of [BOC-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-1-acetyl-3-methylene-pyrrolidin-2-one (0.217 g, 0.258 mmol) in 1,4-dioxane (3 mL). The reaction solution was stirred at 23 °C for 2 hours and then concentrated. The residue was dissolved in dry CH₂Cl₂ (5 mL). N,N-diisopropylethylamine (0.135 mL, 0.775 mmol, 3 equiv) and cyclopentyl chlorothiolformate (0.072 mL, 1.7 equiv) were added sequentially. The reaction solution was stirred 3 hours at 23 °C and then partitioned between brine (30 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (50% EtOAc in hexanes) to afford [CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-1-acetyl-3-methylene-pyrrolidin-2-one (0.114 g, 51%) as a colorless glass: R_f = 0.26 (50% EtOAc in hexanes); IR (cm⁻¹) 3328, 1719, 1670; ¹H NGR (CDCl₃) δ 0.64 (d, 3H, J = 6.8), 0.92 (d, 3H, J = 6.5), 1.47-1.78 (m, 8H), 1.80-1.95 (m, 2H), 1.99-2.17 (m, 2H), 2.29-2.84 (m, 7H), 2.30 (s, 3H), 2.55 (s, 3H), 2.94 (dd, 1H, J = 17.4, 10.0), 3.59-3.73 (m, 3H),

4.25-4.38 (m, 2H), 5.57 (d, 1H, J = 8.1), 5.89 (d, 1H, J = 8.1), 6.11-6.17 (m, 1H), 6.96 (d, 2H, J = 7.9), 7.06 (d, 2H, J = 7.9), 7.18-7.33 (m, 16H); Anal. (C₅₂H₆₀N₄O₆S) C, H, N.

Preparation of Product [CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln]-E-1-Acetyl-3-methylene-pyrrolidin-2-one.

[0155] [CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-1-acetyl-3-methylene-pyrrolidin-2-one (0.093 g, 0.107 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (6 mL). Triisopropylsilane (0.066 mL, 0.32 mmol, 3 equiv) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. This solution was stirred for 40 minutes and then concentrated. The residue was stirred in Et₂O (6 mL), and the solid was collected by filtration, washed with Et₂O (2 x 3 mL), and then dried under vacuum to give [CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln]-E-1-acetyl-3-methylene-pyrrolidin-2-one (0.049 g, 73%) as a white solid: mp = 200 °C (dec); R_f = 0.47 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3425, 3337, 1719, 1670; ¹H NGR (DMSO- d_6) δ 0.74 (d, 3H, J = 6.5), 0.81 (d, 3H, J = 6.5), 1.36-1.79 (m, 8H), 1.89-2.13 (m, 5H), 2.20 (s, 3H), 2.39-2.90 (m, 7H), 2.43 (s, 3H), 3.46-3.64 (m, 3H), 4.10-4.16 (m, 1H), 4.24-4.36 (m, 1H), 6.12-6.18 (m, 1H), 6.74 (s, 1H), 6.99 (s, 4H), 7.15 (s, 1H), 8.05 (d, 1H, J = 7.8), 8.25 (d, 1H, J = 7.8); Anal. (C₃₃H₄₆N₄O₆S•0.5 H₂O) C, H, N.

Example 18 - Preparation of Compound 18: Ethyl-3-(CyPentylSCO-L-PheΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate 3-(4-Fluoro-phenyl)-propionic Acid cis-1S-Amino-2R-indanol-acetonide Amide.

[0156] Oxalyl chloride (6.14 mL, 70.4 mmol, 1.05 equiv) was added to a solution of 3-(4-fluoro-phenyl)-propionic acid (11.3 g, 67.2 mmol, 1 equiv) and N,N-dimethylformamide (0.03 mL, 0.39 mmol, 0.006 equiv) in benzene (150 mL) at 23

°C. The reaction mixture was stirred at 23 °C for 1.5 h and then concentrated. The resulting oil was dissolved in THF (30 mL) and was added to a 0 °C solution of (1S,2R)-cis-1-amino-2-indanol (10.0 g, 67.0 mmol, 1.0 equiv) and Et₃N (10.3 mL, 73.9 mmol, 1.1 equiv) in THF (250 mL). After stirring for 20 min at 0 °C, the reaction mixture was partitioned between half-saturated NH₄Cl (150 mL) and EtOAc (2 x 150 mL). The organic layers were dried over Na₂SO₄ and concentrated to afford a white solid. This material was dissolved in a mixture of CH₂Cl₂ (400 mL) and 2-methoxypropene (30 mL), and the resulting solution was treated with methanesulfonic acid (0.20 mL). After stirring 15 min at 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (150 mL) and CH₂Cl₂ (2 x 150 mL). The combined organic layers were dried over MgSO₄ and gravity filtered. The filtrate was concentrated, and the residue was purified by flash column chromatography (gradient elution, 10→20% EtOAc in hexanes) to provide 3-(4-fluoro-phenyl)-propionic acid cis-1S-amino-2R-indanol-acetonide amide (18.2 g, 83%) as a pale yellow oil: $R_f = 0.52$ (50% EtOAc in hexanes); IR (cm⁻¹) 2934, 1645; ¹H NGR (CDCl₃) δ 1.34 (s, 3H), 1.60 (s, 3H), 2.91-2.95 (m, 2H), 3.04-3.13 (m, 4H), 4.68-4.71 (m, 1H), 5.06 (d, 1H, J = 4.7), 6.94-7.00 (m, 2H), 7.02-7.30 (m, 6H); Anal. (C₂₁H₂₂FNO₂) C, H, N.

Preparation of Intermediate {1S-[4R-(4-Fluoro-benzyl)-5-oxo-tetrahydro-furan-2S-yl]-2-phenyl-ethyl}-carbamic Acid *tert*-Butyl Ester.

[0157] *n*-Butyllithium (13.5 mL of a 1.6 M solution in hexanes, 21.6 mmol, 2.0 equiv) was added to a solution of (1*R*-oxiranyl-2*S*-phenyl-ethyl)-carbamic acid *tert*-butyl ester (prepared according to Luly, J. R., Dellaria, J. F., Plattner, J. J., Soderquist, J, L., Yi, N., *J. Org. Chem.* 1987, 52, 1487) (2.85 g, 10.8 mmol, 1 equiv) and 3-(4-fluoro-phenyl)-propionic acid cis-1*S*-amino-2*R*-indanol-acetonide amide (3.67 g, 10.8 mmol, 1.0 equiv) in THF (150 mL) at -78°C. The reaction mixture was stirred for 5 min at -78 °C, maintained at 0 °C for 1 h, and then partitioned between 0.5 M HCl (150 mL) and a 1:1 mixture of EtOAc and hexanes

(2 x 150 mL). The organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (gradient elution, 25→40% EtOAc in hexanes) gave the coupling product (3.19 g, 49%) as a yellow oil contaminated with several minor impurities. This material was dissolved in a 5:1 mixture of toluene and CH₂Cl₂ (180 mL) and treated with p-toluenesulfonic acid monohydrate (1.01 g, 5.31 mmol, 1.0 equiv) at 23°C. After stirring for 13 h at 23 °C, the reaction mixture was filtered through a medium frit, and the filtrate was partitioned between half-saturated NaHCO₃ (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (20% EtOAc in hexanes) to provide {1S-[4R-(4-fluoro-benzyl)-5-oxo-tetrahydro-furan-2S-yl]-2-phenyl-ethyl}-carbamic acid tert-butyl ester (1.28 g, 59%) as a white foam: $R_f = 0.46$ (30% EtOAc in hexanes); IR (cm⁻¹) 3332, 2976, 1767, 1702; ¹H NGR (CDCl₃) δ 1.36 (s, 9H), 1.88-1.97 (m, 1H), 2.19-2.29 (m, 1H), 2.75-2.99 (m, 4H), 3.05 (dd, 1H, J = 13.5, 4.5), 3.93 (q, 2H, J = 8.5), 4.13-4.18 (m, 1H), 4.54 (d, 1H, J = 9.7), 6.91-6.98 (m, 2H), 7.08-7.32 (m, 7H); Anal. (C₂₄H₂₈FNO₄) C, H, N

Preparation of Intermediate Ethyl-3-[BOC-L-PheΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-Propenoate.

[0158] Lithium hydroxide (7.6 mL of a 1 M aqueous solution, 7.6 mmol, 5 equiv) was added to a solution of {1S-[4R-(4-fluoro-benzyl)-5-oxo-tetrahydro-furan-2S-yl]-2-phenyl-ethyl}-carbamic acid *tert*-butyl ester (0.630 g, 1.52 mmol, 1 equiv) in DME (8 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 20 min and then partitioned between 0.5 M HCl (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue dissolved in a 1:1 mixture of CH₂Cl₂ and CH₃CN (100 mL). 4-Methylmorpholine *N*-oxide (0.357 g, 3.05 mmol, 2 equiv), powdered 4Å molecular sieves (0.70 g), and tetrapropylammonium perruthenate (0.054 g, 0.153 mmol, 0.1 equiv) were

added sequentially. The resulting dark reaction mixture was stirred for 3 h at 23 °C and then filtered through celite. The filtrate was concentrated under reduced pressure to provide a brown oil which was dissolved in CH₂Cl₂ (40 mL). Crude ethyl-3-[H₂N-L-(Tr-Gln)]-E-propenoate•HCl (see preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E-propenoate, 1.27 mmol, 1.2 equiv), 1hydroxybenzotriazole hydrate (0.268 g, 1.98 mmol, 1.3 equiv), 4methylmorpholine (0.670 mL, 6.09 mmol, 4 equiv), and 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.380 g, 1.98 mmol, 1.3 equiv) were added sequentially, and the reaction mixture was stirred for 22 h at 23 °C and then partitioned between water (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (40% EtOAc in hexanes) provided ethyl-3-[BOC-L-PheY[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)-E-propenoate (0.558 g, 43%) as a white solid: mp = 89-100 °C; R_f = 0.44 (50% EtOAc in hexanes); IR (cm⁻¹) 3316, 2972, 1708, 1665; ¹H NGR $(CDCl_3) \delta 1.29 (t, 3H, J = 7.2), 1.35 (s, 9H), 1.95-2.05 (m, 1H), 2.34-2.39 (m, 2H),$ 2.46 (d, 1H, J = 16.8), 2.57-2.99 (m, 7H), 4.17 (q, 2H, J = 7.2), 4.27-4.33 (m, 1H), 4.48 (s, br, 1H), 4.58 (d, 1H, J = 6.9), 5.42 (d, 1H, J = 15.3), 6.08 (d, 1H, J = 8.4), 6.62 (dd, 1H, J = 15.3, 4.8), 6.93-7.19 (m, 6H), 7.21-7.29 (m, 19H); Anal. (C₅₂H₅₆FN₃O₇) C, H, N.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-Phe Ψ [COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-Propenoate.

[0159] HCl (8 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-Phe\(P\)[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.302 g, 0.354 mmol, 1 equiv) in 1,4-dioxane (10 mL). The reaction mixture was stirred at 23 °C for 1.5 h and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (15 mL), cooled to 0 °C, and 4-methylmorpholine (0.117 mL, 1.06 mmol, 3.0

equiv) and cyclopentyl chlorothiolformate (0.087 mL, 0.528 mmol, 1.5 equiv) were added sequentially. The reaction mixture was stirred for 30 min at 0 °C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (gradient elution, $30\rightarrow40\%$ EtOAc in hexanes) to afford ethyl-3-[CyPentylSCO-L-Phe Ψ [COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.163 g, 52%) as a white solid: mp = 75-85 °C; R_f = 0.48 (50% EtOAc in hexanes); IR (cm⁻¹) 3314, 1710, 1655; ¹H NGR (CDCl₃) δ 1.29 (t, 3H, J = 7.2), 1.48-1.67 (m, 6H), 1.97-2.03 (m, 2H), 2.29-2.42 (m, 2H), 2.54-2.97 (m, 8H), 3.54-3.63 (m, 1H), 4.18 (q, 2H, J = 7.2), 4.51-4.58 (m, 2H), 5.44 (dd, 1H, J = 15.6, 1.7), 5.59 (d, 1H, J = 6.9), 5.90 (d, 1H, J = 7.2), 6.16 (d, 1H, J = 8.4), 6.64 (dd, 1H, J = 15.6, 5.0), 6.91-7.08 (m, 5H), 7.14-7.29 (m, 20H); Anal. (C₅₃H₅₆FN₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-PheΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

[0160] Triisopropylsilane (0.10 mL) and trifluoroacetic acid (6 mL) were added sequentially to a solution of ethyl-3-[CyPentylSCO-L-Phe Ψ [COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-propenoate (0.160 g, 0.181 mmol) in CH₂Cl₂ (10 mL) producing a bright yellow solution. The reaction mixture was stirred for 30 min at 23 °C, then carbon tetrachloride (6 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (5% CH₃OH in CH₂Cl₂) to afford ethyl-3-(CyPentylSCO-L-Phe Ψ [COCH₂]-L-(*p*-F)Phe-L-*Gln*)-E-propenoate (0.082 g, 71%) as a white solid: mp = 210-212 °C; R_f = 0.10 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3284, 1717, 1637; ¹H NGR (DMSO-d₆) δ 1.21 (t, 3H, J = 6.8), 1.33-1.72 (m, 8H), 1.90-2.07 (m, 4H), 2.49-3.07 (m, 7H), 3.43-3.47 (m, 1H), 4.09 (q, 2H, J = 6.8), 4.33-4.35 (m, 2H), 5.37-5.46 (m,

1H), 6.59-6.67 (m, 1H), 6.77 (s, br, 1H), 7.00-7.28 (m, 9H), 8.04 (d, 1H, J = 7.8), 8.46 (d, 1H, J = 7.5), 8.53 (d, 1H, J = 7.5); Anal. (C₃₂H₄₂FN₃O₆S) C, H, N.

Example 19 - Preparation of Compound 19: Ethyl-3-(CyPentyl-L-LeuΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate BOC-L-Leucinol.

[0161] To a solution of BOC-Leu-OH (15.09 g, 65 mmol, 1 equiv) in THF (150 mL) at 0 °C was added BH₃•THF (163 mL of a 1.0 M solution in THF, 163 mmol, 2.51 equiv). The reaction mixture was stirred at 23 °C for 3 h and then cooled to 0 °C. Brine (100 mL) was added carefully, and the aqueous layer was extracted with EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (gradient elution, 25 \rightarrow 35% EtOAc in hexanes) to afford BOC-L-Leucinol as a colorless oil (12.59 g, 89%): IR (cm⁻¹): 3434, 1699, 1256, 739; ¹H NGR (CDCl₃) δ 0.93 (dd, 6H, J = 6.6, 1.5), 1.29-1.31 (m, 2H), 1.45 (s, 9H), 1.60-2.05 (m, 2H), 3.47-3.53 (m, 1H), 3.65-3.72 (m, 2H), 4.56 (s, br, 1H); Anal. (C₁₁H₂₃NO₃) C, H, N.

Preparation of Intermediate BOC-L-Leucinal.

[0162] A solution of sulfur trioxide pyridine complex (7.8 g, 49.1 mmol, 3.0 equiv) in a 1:1 mixture of DMSO and CH₂Cl₂ (100 mL) was added to a solution of BOC-L-Leucinol (3.56 g, 16.4 mmol. 1 equiv) and Et₃N (8 mL) in a 1:1 mixture of DMSO and CH₂Cl₂ (100 mL) at 0 °C. The reaction mixture was stirred at 23 °C for 30 min, then poured into ice water (300 mL), and extracted with Et₂O (2 x 200 mL). The combined organic layers were washed with 0.5 M HCl (150 mL), half saturated NaHCO₃ (150 mL) and H₂O (2 x 150 mL), then dried over Na₂SO₄, and concentrated to afford crude BOC-L-Leucinal as pale yellow oil (3.48 g, 99%). This material was used without further purification. ¹H NGR (CDCl₃) δ 0.92-0.94

(m, 6H), 1.44 (s, 9H), 1.59-1.64 (m, 1H), 1.67-1.85 (m, 2H), (4.21 (m, 1H), 5.12 (s, br, 1H), 9.57 (s, 1H).

Preparation of Intermediate [1S-Isobutyl-allyl]-carbamic Acid tert-Butyl Ester.

[0163] KN(TMS)₂ (67.9 mL of a 0.5 M solution in toluene, 33.9 mmol, 2.1 equiv) was added dropwise to a solution of methyltriphenylphosphonium bromide (12.1 g, 33.9 mmol, 2.1 equiv) in a 5:1 mixture of THF and DMSO (600 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h, then cooled to -78 °C, and a solution of BOC-L-Leucinal (3.48 g, 16.2 mmol, 1 equiv) in THF (60 mL) was added. The reaction mixture was stirred at -78 °C for 10 min and then warmed to 23 °C slowly. The mixture was partitioned between 0.5 M HCl (200 mL) and a 1:1 mixture of EtOAc in hexanes (2 x 150 mL). The combined organic layers were washed with H₂O (150 mL), dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (10% EtOAc in hexanes) to afford (1S-isobutyl-allyl)-carbamic acid tert-butyl ester as a pale yellow solid (2.44 g, 70%): $R_f = 0.78$ (20% EtOAC in hexanes); IR (cm⁻¹): 3343, 2958, 1594, 1520; ¹H NGR (CDCl₃) δ 0.92 (dd, 6H, J = 6.6, 2.1), 1.30-1.38 (m, 2H), 1.45 (s, 9H), 1.61-1.74 (m, 1H), 4.13 (m, 1H), 4.38 (s, br, 1H), 5.08 (dd, 1H, J = 10.2, 1.5), 5.15 (dd, 1H)1H, J = 17.4, 1.5), 5.73 (dd, 1H, J = 16.8, 10.2); Anal. (C₁₁H₂₃NO₂•H₂O) C, H, N.

Preparation of Intermediate [3S-methyl-1R-oxiranyl-butyl]-carbamic Acid tert-Butyl Ester

[0164] 3-Chloroperoxybenzoic acid (~60%, 8.40 g, ~29.2 mmol, 1.8 equiv) was added to a solution of (1*S*-isobutyl-allyl)-carbamic acid *tert*-butyl ester (3.48 g, 16.2 mmol, 1 equiv) in CH₂Cl₂ (100 mL). The reaction mixture was stirred at 23 °C for 6 h, then poured into a 1:1 mixture of EtOAc and hexanes (150 mL), and washed with 10% Na₂S₂O₅ (150 mL) and half-saturated NaHCO₃ (150 mL). The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified

by flash column chromatography (10% EtOAc in hexanes) to afford [3*S*-methyl-1*R*-oxiranyl-butyl]-carbamic acid *tert*-butyl ester as a pale yellow oil (3.15 g, 85%): R_f = 0.55 (20% EtOAc in hexanes); IR (cm⁻¹) 1702, 1501, 1366, 1168; ¹H NGR (CDCl₃) δ 0.96 (d, 6H, J= 6.9),1.43 (s, 9H), 1.64-1.81 (m, 1H), 2.60 (s, br, 1H), 2.72-2.76 (m, 2H), 2.84 (m, 1H), 2.99 (s, br, 1H), 3.60 (s, br, 1H), 3.97-3.99 (m, 1H), 4.29 (m, 1H).

Preparation of Intermediate {1S-[4R'-(4-Fluoro-benzyl)-5-oxo-tetrahydrofuran-2S'-yl]-3-methylbutyl}-carbamic Acid *tert*-Butyl Ester.

[0165] *n*-Butyllithium (8.79 mL of a 1.6 M solution in hexanes, 14.06 mmol, 2.0 equiv) was added to a solution of [3*S*-methyl-1*R*-oxiranyl-butyl]-carbamic acid *tert*-butyl ester (1.61 g, 7.03 mmol, 1.0 equiv) and 3-(4-fluoro-phenyl)-propionic acid cis-1*S*-amino-2*R*-indanol-acetonide amide (2.39 g, 7.03 mmol, 1 equiv) in THF (100 mL) at -78 °C. The resulting yellow solution was stirred at -78 °C for 5 min and then warmed to 0 °C for 1 h. The reaction was quenched with 0.5 M HCl (100 mL) and extracted with a 1:1 mixture of EtOAc in hexanes (2 x 100 mL). The combined organic layers were washed with brine (150 mL), dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (20% EtOAc in hexanes) to afford the coupling product as a white foam (2.28 g, 57%): R_f = 0.44 (25% EtOAc in hexanes); IR (cm⁻¹) 3431, 1637, 1510, 1223; ¹H NGR (CDCl₃) δ (mixture of diastereomers) 0.92 (dd, J = 6.6, 2.1), 1.26-1.46 (m), 1.60 (s), 1.65 (s), 1.68-1.89 (m), 2.65-2.69 (m), 2.75-2.81 (m), 2.91-2.96 (m), 3.06-3.13 (m), 3.24 (m), 3.34-3.48 (m), 3.66 (m), 4.60 (d, J = 7.5), 4.68-4.71 (m), 4.76-4.78 (m), 4.83 (s, br), 5.06 (d, J = 4.8), 6.22 (d, J = 7.2), 6.91-7.31 (m).

[0166] To a solution of this material (2.21 g, 3.89 mmol, 1 equiv) in a 5:1 mixture of toluene and CH₂Cl₂ (120 mL) was added *p*-toluenesulfonic acid monohydrate (0.739 g, 3.89 mmol, 1.0 equiv) at 23 °C. The reaction mixture was stirred at 23 °C for 14 h and then quenched with half-saturated NaHCO₃ (100 mL). The resulting mixture was extracted with a 1:1 mixture of EtOAc in hexanes (2 x 100

mL), and the organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by chromatography on silica gel (15% EtOAc in hexanes) to afford {1*S*-[4*R*'-(4-fluoro-benzyl)-5-oxo-tetrahydrofuran-2*S*'-yl]-3-methylbutyl}-carbamic acid *tert*-butyl ester as a white foam (0.426 g, 31%): R_f = 0.75 (25% EtOAc in hexanes); IR (cm⁻¹) 1765, 1702, 1510, 1186; ¹H NGR (CDCl₃) δ 0.89 (d, 3H, J = 6.6), 0.91 (d, 3H, J = 6.6), 1.23-1.33 (m, 2H), 1.40 (s, 9H), 1.45-1.52 (m, 1H), 1.96-2.05 (m, 1H), 2.22-2.32 (m, 1H), 2.77 (dd, 1H, J = 13.5, 8.7), 2.87-2.97 (m, 1H), 3.10 (dd, 1H, J = 13.5, 4.2), 3.74-3.82 (m, 1H), 4.25 (t, 1H, J = 6.9), 4.34 (d, 1H, J = 6.9), 6.95-7.01 (m, 2H), 7.11-7.16 (m, 2H); Anal. (C₂₁H₃₀FNO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-(p-F)-Phe-L-(Tr-Gln)]-E-Propenoate.

[0167] To a solution of {1S-[4R'-(4-fluoro-benzyl)-5-oxo-tetrahydrofuran-2S'-yl]-3-methylbutyl}-carbamic acid *tert*-butyl ester (0.40 g, 1.06 mmol, 1 equiv) in 1,2-dimethoxyethane (8 mL) was added LiOH (1.0 M solution in H₂O, 5.28 mL, 5.28 mmol, 5.0 equiv). The reaction mixture was stirred at 23 °C for 20 min, then quenched with 0.5 M HCl (100 mL), and extracted with a 1:1 mixture of EtOAc in hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was dissolved in a 1:1 mixture of CH₂Cl₂ and CH₃CN (100 mL), and 4Å molecular sieves (0.70 g), 4-methylmorpholine *N*-oxide (0.248 g, 2.12 mmol, 2.0 equiv), and tetrapropylammonium perruthenate (0.037 g, 0.106 mmol, 0.1 equiv) were added sequentially. The reaction mixture was stirred at 23 °C for 1 h and filtered through celite. The filtrate was concentrated to give a brown oil which was dissolved in CH₂Cl₂ (15 mL). Crude ethyl-3-[H₂N-L-(Tr-*Gln*)]-E-propenoate•HCl (see preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-*Gln*)]-E-propenoate, 1.27 mmol, 1.2 equiv), hydroxybenzotriazole hydrate (0.186g, 1.38 mmol, 1.3 equiv), 4-methylmorpholine (0.466 mL, 4.24

mmol, 4.0 equiv), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.265 g, 1.38 mmol, 1.3 equiv) were added sequentially. The reaction mixture was stirred overnight, then poured into H₂O (50 mL), and extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (40% EtOAc in hexanes) to provide ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-(p-F)-Phe-L-(Tr-Gln)]-E-propenoate as a white foam: mp: 174-176 °C; R_f = 0.56 (50% EtOAc in hexanes); IR (cm⁻¹) 1706, 1662, 1509; ¹H NGR (CDCl₃) (mixture of rotamers) δ 0.87 (dd, J = 6.9, 2.4), 1.02-1.12 (m), 1.27 (t, J = 7.2), 1.39 (s), 1.96-2.02 (m), 2.37 (t, J = 7.2), 2.53 (d, J = 12.3), 2.65 (dd, J = 12.3, 5.7), 2.76-2.99 (m), 3.62-3.68 (m), 4.17 (q, J = 7.2), 4.47 (m), 4.60 (d, J = 7.5), 5.39 (dd, J = 15.9, 1.5), 5.97 (d, J = 8.7), 6.61 (dd, J = 15.3, 5.1), 6.96 (t, J = 8.4), 7.06-7.16 (m), 7.19-7.30 (m); Anal. (C49H₅₈FN₅O₇) C, H, N.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-Propenoate.

[0168] Ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-(p-F-Phe)-L-(Tr-Gln)]-E-propenoate (0.415 g, 0.50 mmol, 1 equiv) was dissolved in 1,4-dioxane (6 mL). A solution of HCl in 1,4-dioxane (4.0 M, 6 mL) was added dropwise. The reaction mixture was stirred for 2 h at 23 °C, and then the solvent was evaporated to provide the amine salt as a white foam. The crude amine salt was dissolved in dry CH₂Cl₂ (10 mL) and cooled to 0 °C. 4-Methylmorpholine (0.166 mL, 1.51 mmol, 3.0 equiv) and cyclopentyl chlorothiolformate (0.123 mL, 0.75 mmol, 1.5 equiv) were added sequentially. The reaction mixture was stirred at 0 °C for 30 min, poured into H₂O (50 mL), and extracted with a 1:1 mixture of EtOAc and hexanes (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (50% EtOAc in hexanes) to provide ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate as a white

foam (0.347 g, 83%): R_f = 0.43 (50% EtOAc in hexanes); IR (cm⁻¹) 1716, 1651, 1510; ¹H NGR (CDCl₃) (mixture of rotamer) δ 0.87 (d, J = 6.6), 1.06-1.16 (m), 1.29 (t, J = 7.2), 1.53-1.60 (m), 1.67-1.69 (m), 2.02-2.06 (m), 2.35 (t, J = 7.2), 2.54 (d, J = 15.3), 2.63-2.69 (m), 2.78-2.97 (m), 3.57-3.68 (m), 4.17 (q, J = 7.2), 4.38-4.49 (m), 4.42 (dd, J = 18.0, 14.1), 6.05 (d, J = 8.1), 6.62 (dd, J = 15.6, 4.8), 6.94-7.00 (m), 7.05-7.12 (m), 7.23-7.31 (m); Anal. (C₅₀H₅₈FN₃O₆S) C, H, N.

Preparation of Product Ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-F)Phe-L-Gln]-E-Propenoate.

[0169] Ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.285 g) was dissolved in CH₂Cl₂ (4 mL). Trifluoroacetic acid (4 mL) and triisopropylsilane (0.077 mL) were added sequentially to give a bright yellow solution. After stirring for 30 min, no yellow color remained. The solvents were evaporated to provide a white solid which was triturated with Et₂O (8 mL) and filtered to give ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-F)Phe-L-Gln]-E-propenoate as white solid (0.134 g, 65%): mp 179-180 °C; IR (cm⁻¹): 1718, 1656, 1511; ¹H NGR (DMSO-d₆) δ 0.83 (d, 3H, J = 6.0), 0.85 (d, 3H, J = 6.0), 1.21 (t, 3H, J = 7.2), 1.30-1.44 (m, 4H), 1.53-1.70 (m, 7H), 1.97-2.05 (m, 4H), 2.43-2.60 (m, 2H), 2.67-2.80 (m, 2H), 2.92-2.96 (m, 1H), 3.02-3.56 (m, 2H), 4.09 (q, 2H, J = 7.2), 4.17-4.19 (m, 1H), 4.31 (m, 1H), 5.42 (d, 1H, J = 15.3), 6.62 (dd, 1H, J = 15.3, 5.1), 6.75 (s, br, 1H), 7.00-7.06 (m, 2H), 7.14-7.19 (m, 2H), 8.01 (d, 1H, J = 8.1), 8.37 (d, 1H, J = 7.8); Anal. (C₃₁H₄₄FN₃O₆S) C, H, N.

Example 20 - Preparation of Compound 20: Ethyl-3-(CyPentylOCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate Ethyl-3-[CyPentylOCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-Propenoate.

[0170] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.311 g, 0.388 mmol) in 1,4-dioxane (3 mL). The reaction solution was stirred at 23 °C for 2 hours and then concentrated. The residue was dissolved in dry CH₂Cl₂ (6 mL). N,N-diisopropylethylamine (0.203 mL, 1.17 mmol, 3 equiv) and cyclopentyl chloroformate (0.098 mL, 1.7 equiv) were added sequentially. The reaction solution was stirred 3 hours at 23 °C and then partitioned between brine (15 mL) and CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (40% EtOAc in hexanes) to afford ethyl-3-[CyPentylOCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln]-E-propenoate (0.189 g, 60%) as a white foam: $R_f = 0.22$ (40% EtOAc in hexanes); IR (cm⁻¹) 3316, 1712, 1667; ¹H NGR (CDCl₃) δ 0.65 (d, 3H, J = 6.8), 0.92 (d, 3H, J = 6.8), 1.28 (t, 3H, J = 7.2), 1.50-1.87 (m, 10H), 1.91-2.05 (m, 2H), 2.29-2.38 (m, 1H), 2.31 (s, 3H), 2.51 (d, 1H, J = 16.8), 2.60-2.69 (m, 1H), 2.72-2.89 (m, 2H), 3.00 (dd, 1H, J = 17.3, 9.8), 4.08-4.22 (m, 3H), 4.42-4.53 (m, 1H),4.88 (d, 1H, J = 8.1), 4.95-5.02 (m, 1H), 5.49 (dd, 1H, J = 15.8, 1.6), 5.88 (d, 1H, J = 15.8), 5.= 8.4), 6.60 (dd, 1H, J = 15.8, 5.1), 7.00 (d, 2H, J = 7.9), 7.09 (d, 2H, J = 7.9), 7.17-7.31 (m, 16H); Anal. (C₅₀H₅₉N₃O₇) C, H, N.

Example 21 - Preparation of Compound 21: Ethyl-3-(CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate {1S-[4R'-(4-Methyl-benzyl)-5-oxotetrahydrofuran-2S'-yl]-3-methylbutyl}-carbamic Acid *tert*-Butyl Ester.

[0171] *n*-Butyllithium (8.43 mL of a 1.6 M solution in hexanes, 13.48 mmol, 2.0 equiv) was added to a solution of (3*S*-methyl-1*R*-oxiranyl-butyl)-carbamic acid *tert*-butyl ester (1.55 g, 6.74 mmol, 1.0 equiv) and 3-*p*-tolyl-propionic acid cis-1*S*-amino-2*R*-indanol-acetonide amide (2.39 g, 7.03 mmol, 1 equiv) in THF (100 mL) at -78 °C. The resulting yellow solution was stirred at -78 °C for 5 min and then warmed to 0 °C for 1 h. The reaction was quenched with 0.5 M HCl (100 mL) and

extracted with a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were washed with brine (150 mL), dried over Na₂SO₄, and concentrated. The residue was purified by chromatography on silica gel (20% EtOAc in hexanes) to afford the coupling product as a white foam (2.07 g, 54%): R_f = 0.30 (25% EtOAc in hexanes); IR (cm⁻¹) 3415, 2955, 1687, 1612, 1355, 1166; ¹H NGR (CDCl₃) (mixture of diastereomers) δ 0.91 (d, J = 6.3), 0.92 (d, J = 6.9), 1.34 (s), 1.40 (s), 1.59 (s), 1.65-1.73 (m), 1.82-1.84 (m), 2.31 (s), 2.36 (s), 2.76 (dd, J = 12.9, 6.0), 3.06 (s), 3.20 (m), 3.34-3.47 (m), 3.68 (m), 4.58 (d, J = 9.3), 4.83 (s, br), 5.66 (m), 6.26 (d, J = 7.5), 6.85-6.90 (m), 7.09-7.24 (m).

[0172] This material was dissolved in a 5:1 mixture of toluene and CH₂Cl₂ (120 mL) and was treated with p-toluenesulfonic acid monohydrate (0.697 g, 3.67 mmol, 1.0 equiv). The reaction mixture was stirred at 23 °C for 14 h and then filtered through a medium frit. The clear filtrate was poured into half-saturated NaHCO₃ (100 mL) and extracted with a 1:1 mixture of EtOAc in hexanes (2 x 100 mL). The organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to afford {1S-[4R'-(4-methyl-benzyl)-5-oxo-tetrahydrofuran-2S'-yl]-3-methylbutyl}-carbamic acid tert-butyl ester as a white foam (0.572 g, 32%): IR (cm⁻¹) 1765, 1707, 1167; ¹H NGR (CDCl₃) δ 0.89 (d, 3H, J = 6.3), 0.90 (d, 3H, J = 6.6) 1.19-1.33 (m, 2H), 1.42 (s, 9H), 1.43-1.54 (m, 1H), 1.96-2.06 (m, 1H), 2.18-2.27 (m, 1H), 2.32 (s, 3H), 2.75 (dd, 1H, J = 13.5, 9.0), 2.88-2.98 (m, 1H), 3.10 (dd, 1H, J = 13.5, 4.2), 3.72-3.80 (m, 1H), 4.24 (t, 1H, J = 6.3), 4.34 (d, 1H, J = 9.9), 7.04-7.12 (m, 4H); Anal. (C₂₂H₃₃NO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)-E-Propenoate.

[0173] This material was prepared from $\{1S-[4R'-(4-\text{methyl-benzyl})-5-\text{oxotetrahydrofuran}-2S'-yl]-3-\text{methylbutyl}\}$ -carbamic acid *tert*-butyl ester (0.572 g,

1.52 mmol) as described previously for the formation of ethyl-3-[BOC-L-Leu Ψ [COCH₂]-L-(p-F)-Phe-L-(Tr-Gln)]-E-propenoate (Example 19) to give ethyl-3-[BOC-L-Leu Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)-E-propenoate as a white foam (0.785 g, 63%): R_f= 0.70 (50% EtOAc in hexanes); IR (cm⁻¹) 1709, 1664, 1170; ¹H NGR (CDCl₃) (mixture of rotamer) δ 0.85 (d, J = 6.3), 0.98-1.08 (m), 1.28 (t, J = 7.2), 1.39 (s), 1.52-1.62 (m), 1.97-2.05 (m), 2.31 (s), 2.36 (t, J = 6.9), 2.52 (d, J = 16.5), 2.64-2.67 (m), 2.83-1.97 (m), 4.17 (q, J = 7.2), 4.48 (m), 4.58 (d, J = 7.2), 5.35 (dd, J = 15.9, 1.5), 5.87 (d, J = 8.4), 6.61 (dd, J = 15.9, 5.1), 7.02-7.11 (m), 7.20-7.30 (m); Anal. (C₅₀H₆₁N₃O₇•0.1H₂O) C, H, N.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)-E-Propenoate.

[0174] Ethyl-3-[BOC-L-Leu Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)-E-propenoate (0.523 g, 0.64 mmol) was deprotected and coupled with cyclopentyl chlorothiolformate (0.158 mL, 0.96 mmol) as described previously for the formation of ethyl-3-[CyPentylSCO-L-Leu Ψ [COCH₂]-L-(p-F)Phe-L-(Tr-Gln)-E-propenoate (Example 19) to give ethyl-3-[CyPentylSCO-L-Leu Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)-E-propenoate as a white foam (0.301 g, 56%): IR (cm⁻¹) 1716, 1651, 1518; ¹H NGR (CDCl₃) (mixture of rotamers) δ 0.85 (d, J = 6.3), 1.02-1.12 (m,), 1.29 (t, J = 7.2), 1.52-1.62 (m), 1.67-1.68 (m), 1.98-2.10 (m), 2.31-2.36 (m), 2.53 (d, J = 15.0), 2.63-2.68 (m), 2.76-2.95 (m), 3.57-3.66 (m), 4.16 (q, J = 7.2), 4.38 (m), 4.48-4.52 (m), 5.35 (d, J = 7.5), 5.53 (dd, J = 15.9, 1.5), 5.94 (d, J = 8.2), 6.62 (dd, J = 15.9, 4.8), 6.99-7.12 (m), 7.21-7.31 (m); Anal. (C₅₁H₆₁N₃O₆S•0.25H₂O) C, H, N.

Preparation of Product Ethyl-3-[CyPentylSCO-L-Leu Ψ [COCH₂]-L-(p-CH₃)Phe-L-Gln]-E-Propenoate.

[0175] Ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)-E-propenoate (0.272 g, 0.32 mmol) was deprotected using the procedure described for the formation of ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-F)Phe-L-Gln]-E-propenoate (Example 19) to give ethyl-3-[CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln]-E-propenoate as white solid (0.106 g, 55%): mp 173-174 °C; IR (cm⁻¹) 1719, 1655, 1522, 1198; ¹H NGR (DMSO- d_6) δ 0.83 (d, 3H, J = 6.0), 0.85 (d, 3H, J = 6.0), 1.21 (t, 3H, J = 7.2), 1.30-1.44 (m, 4H), 1.53-1.70 (m, 7H), 1.97-2.05 (m, 4H), 2.43-2.60 (m, 2H), 2.67-2.80 (m, 2H), 2.92-2.96 (m, 1H), 3.02-3.56 (m, 2H), 4.09 (q, 2H, J = 7.2), 4.17-4.19 (m, 1H), 4.31 (m, 1H), 5.42 (d, 1H, J = 15.3), 6.62 (dd, 1H, J = 15.3, 5.1), 6.75 (s, br, 1H), 7.00-7.06 (m, 2H), 7.14-7.19 (m, 2H), 8.01 (d, 1H, J = 8.1), 8.37 (d, 1H, J = 7.8); Anal. (C₃₁H₄₄FN₃O₆S) C, H, N.

Example 22 - Preparation of Compound 22: Ethyl-3-(CyPentylSCO-L-tert-LeuΨ[COCH₂]-L-Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate CBZ-L-tert-Leucine.

[0176] To a solution of L-tert-leucine (5.12 g, 39 mmol, 1 equiv) in 1,4-dioxane (80 mL) and 1 M NaOH (39 mL, 39 mmol, 1.0 equiv) at 0 °C was added benzyl chlorofomate (6.24 mL, 43.68 mmol, 1.12 equiv). The reaction mixture was stirred at 23 °C overnight, then concentrated, poured into 1 M HCl (80 mL), and extracted with CH₂Cl₂ (2 x 100 mL). The organic layers were dried over Na₂SO₄ and concentrated to give crude CBZ-L-tert-leucine (20.7 g) as a clear oil: IR (cm⁻¹) 3336, 1715, 1521, 1232; ¹H NGR (CDCl₃) δ 1.02 (s, 9H), 4.21 (d, 1H, J = 9.9), 5.11 (s, 2H), 5.35 (d, 1H, J = 9.0), 7.34-7.37 (m, 5H).

Preparation of Intermediate 4-Benzyloxycarbonylamino-5,5-dimethyl-3-oxohexanoic Acid *tert*-Butyl Ester.

[0177] To a solution of CBZ-L-tert-leucine (20.53 g, 77.4 mmol, 1 equiv) in THF (150 mL) was added 1,1'-carbonyldiimidazole (13.81 g, 85.14 mmol, 1.1 equiv) at 23 °C. The resulting solution was stirred at 23 °C for 1 h. In a separate flask, nbutyllithium (101.59 mL of a 1.6 M solution in hexanes, 162.54 mmol, 2.1 equiv) was added to a solution of diisopropylamine (22.78 mL, 162.54 mmol, 2.1 equiv) in THF (100 mL) at -78 °C. The reaction mixture was stirred for 15 min at -78 °C, warmed to 0 °C for 5 min, then cooled back to -78 °C. A solution of tert-butyl acetate (21.9 mL, 162.54 mmol, 2.1 equiv) in THF (10 mL) was added via cannula, and the resulting mixture was stirred at -78 °C for 10 min. The above imidazole solution was then added dropwise to the lithium enolate at -78 °C. The resulting mixture was stirred at -78 °C for 1 h, quenched with 1 M HCl (100 mL), and extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with brine (150 mL), dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to afford 4-benzyloxycarbonylamino-5,5-dimethyl-3-oxo-hexanoic acid tert-butyl ester as a pale yellow oil (12.06 g, 44%): IR (cm⁻¹) 1717, 1508, 1265, 739; ¹H NGR $(CDCl_3) \delta 1.09 (s, 9H), 1.44 (s, 9H), 3.50 (s, 2H), 4.29 (d, 1H, <math>J = 9.3$), 5.03 (s, 2H), 5.35-5.42 (m, 1H), 7.34 (s, 5H).

Preparation of Intermediate CBZ-L-tert-LeuΨ[COCH₂]-L-Phe-OMe.

[0178] To a stirred solution of (R)-2-hydroxy-3-phenyl-propionic acid methyl ester (2.53 g, 14.06 mmol, 3.1 equiv) in CH₂Cl₂ (30 mL) at 0 °C was added trifluoromethanesulfonic anhydride (2.50 mL, 14.8 mmol, 3.3 equiv) and 2,6-lutidine (1.72 mL, 14.8 mmol, 3.3 equiv) slowly. The resulting pink solution was stirred at 0 °C for 30 min, then poured into 0.5 M HCl (100 mL), and extracted with a 1:1 mixture of EtOAc in hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and utilized in the next step below.

[0179] A solution of 4-benzyloxycarbonylamino-5,5-dimethyl-3-oxo-hexanoic acid *tert*-butyl ester (1.64 g, 4.51 mmol, 1 equiv) in THF (100 mL) was added

dropwise to a stirred suspension of NaH (0.190 g of a 60% dispersion in mineral oil, 4.74 mmol, 1.05 equiv) in THF (100 mL) at 0 °C. After stirring for 10 min, a solution of crude (R)-2-triflyoxy-3-phenyl-propionic acid methyl ester (prepared above) in CH₂Cl₂ (10 mL) was added dropwise. The resulting mixture was stirred at 23 °C for 24 h, then quenched with 1 M HCl (50 mL), and extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (100 mL), dried over Na₂SO₄, and concentrated to provide a pale yellow oil. Without further purification, the above oil was dissolved in CH₂Cl₂ (10 mL), treated with trifluoroacetic acid (2 mL), and then maintained at 23 °C for 24 h. After dilution with CH₂Cl₂ (50 mL), the resulting solution was washed with saturated NaHCO₃ (50 mL) and brine (50 mL). The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to afford CBZ-L-tert-LeuΨ[COCH₂]-L-Phe-OMe as a pale yellow oil (1.01 g, 54%): $R_f = 0.41$ (25% EtOAc in hexanes); IR (cm⁻¹) 1711, 1514, 1233; ¹H NGR (CDCl₃) δ 0.97 (s, 9H), 2.58-2.76 (m, 2H), 2.96-3.17 (m, 3H), 3.62 (s, 3H), 4.17 (d, 1H, J = 8.1), 5.06-5.10 (s, 2H), 5.32 (d, 1H, J = 8.6), 7.12-7.36 (m, 10 H); Anal. (C₂₅H₃₁NO₅•0.25 H₂O) C, H, N.

BOC-L-tert-LeuΨ[COCH₂]-L-Phe-OMe.

[0180] 10% Pd on C (0.110 g) was added to a solution of CBZ-L-tert-Leu Ψ [COCH₂]-L-Phe-OMe (0.513 g, 1.33 mmol, 1 equiv) and di-tert-butyl dicarbonate (0.378 g, 1.73 mmol, 1.3 equiv) in CH₃OH at 23 °C. The reaction mixture was stirred at 23 °C under an H₂ atmosphere (balloon) overnight. The mixture was filtered through celite, and the filtrate was concentrated. The residue was purified by flash chromatography on silica gel (10% EtOAc in hexanes) to afford BOC-L-tert-Leu Ψ [COCH₂]-L-Phe-OMe as white solid (0.366 g, 70%): mp = 98-99 °C; R_f= 0.54 (25% EtOAc in hexanes); IR (cm⁻¹) 1707, 1497, 1367, 1236,

1168; 1 H NGR (CDCl₃) δ 0.97 (s, 9H), 1.40 (s, 9H), 2.60-2.78 (m, 2H), 2.95-3.19 (m, 3H), 3.63 (s, 3H), 4.07-4.11 (m, 2H), 5.07 (d, 1H, J = 9.3), 7.13-7.32 (m 5H); Anal. (C₂₅H₃₁NO₅) C, H, N.

Preparation of Intermediate CBZ-L-tert-LeuΨ[COCH₂]-L-Phe-OH.

[0181] 2 M NaOH (3.35 mL, 6.7 mmol, 8.0 equiv) was added to a solution of BOC-L-tert-Leu Ψ [COCH₂]-L-Phe-OMe (0.328 g, 0.84 mmol, 1 equiv) in CH₃OH (6 mL) at 0 °C over 10 min. The reaction mixture was stirred at 0 °C for 2 h, then poured into 10% KHSO₄ (80 mL), and extracted with CH₂Cl₂ (2 x 100 mL). The organic layers were dried over Na₂SO₄ and concentrated to give BOC-L-tert-Leu Ψ [COCH₂]-L-Phe-OH as a white solid (0.315 g, 99%) which was used without further purification: IR (cm⁻¹) 2960, 1710, 1498, 1368, 1167; ¹H NGR (CDCl₃) δ 0.94 (s, 9H), 1.39 (s, 9H), 2.60-2.80 (m, 2H), 2.95-3.16 (m, 3H), 4.08 (d, 2H, J = 9.3), 5.09 (d, 1H, J = 9.6), 7.12-7.31 (m 5H).

Preparation of Intermediate Ethyl-3-[BOC-L-tert-Leu Ψ [COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenoate.

[0182] Ethyl-3-[BOC-L-(Tr-Gln)]-E-propenoate (0.523 g, 0.64 mmol) was deprotected and coupled with BOC-L-tert-Leu Ψ [COCH₂]-L-Phe-OH (0.315 g, 0.84 mmol) as described for the formation of ethyl-3-[BOC-L-Leu Ψ [COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (Example 19) to give ethyl-3-[BOC-L-tert-Leu Ψ [COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate as a white foam (0.474 g, 70%): R_f= 0.58 (50% EtOAc in hexanes); IR (cm⁻¹) 1702, 1669, 1494, 1169; ¹H NGR (CDCl₃) (mixture of rotamers) δ 0.85 (s), 1.30 (t, J = 7.2), 1.41 (s), 1.56-1.65 (m), 1.95-2.02 (m), 2.22-2.42 (m), 2.62-2.88 (m), 3.09-3.18 (m), 4.00 (d, J = 8.7), 4.17 (t, J = 7.2), 4.46-4.51 (m), 4.93 (d, J = 8.7), 5.37 (d, J = 15.9), 5.69 (d, J = 9.3),

6.54 (dd, J = 15.9, 4.8), 7.19-7.15 (m), 7.18-7.31 (m); Anal. (C₄₉H₅₉N₃O₇) C, H, N.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-tert-Leu Ψ [COCH₂]-L-Phe-L-(Tr-Gln)]-E-Propenoate.

[0183] Ethyl-3-[BOC-L-*tert*-Leu Ψ [COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate (0.441 g, 0.55 mmol) was deprotected and coupled with cyclopentyl chlorothiolformate (0.135 mL, 0.82 mmol) as described previously for the formation of ethyl-3-[CyPentylSCO-L-Leu Ψ [COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-propenoate (Example 19) to give ethyl-3-[CyPentylSCO-L-*tert*-Leu Ψ [COCH₂]-L-Phe-L-(Tr-*Gln*)]-E-propenoate as a white foam (0.347 g, 76%): IR (cm⁻¹) 1718, 1656, 1493, 1186; ¹H NGR (CDCl₃) (mixture of rotamers) δ 0.86 (s), 1.27 (t, J = 7.2), 1.56-1.68 (m), 1.95-2.12 (m), 2.22-2.39 (m), 2.60-2.74 (m), 2.84-2.90 (m), 3.05-3.14 (m), 3.59-3.64 (m), 4.16 (q, J = 7.2), 4.31 (d, J = 8.4), 4.48 (m), 5.41 (dd, J = 15.9, 1.8), 5.67 (d, J = 8.7), 5.82 (d, J = 9.0), 6.56 (dd, J = 15.6, 5.1), 7.19-7.31 (m); Anal. (C₅₀H₅₉N₃O₆) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-tert-Leu Ψ [COCH₂]-L-Phe-L-Gln)-E-Propenoate.

[0184] Ethyl-3-[CyPentylSCO-L-tert-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.318 g, 0.38 mmol) was deprotected using the procedure described for the formation of ethyl-3-(CyPentylSCO-L-LeuΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-propenoate (Example 19) to give ethyl-3-[CyPentylSCO-L-tert-LeuΨ[COCH₂]-L-Phe-L-Gln]-E-propenoate as white solid (0.204 g, 91%): mp 65-68 °C; IR (cm⁻¹) 1715, 1652, 1520, 1193; ¹H NGR (CDCl₃) (mixture of rotamers) δ 0.96 (s), 1.31 (t, J = 7.2), 1.50-1.73 (m), 1.96-2.13 (m), 2.23 (t, J = 7.5), 2.68-2.79 (m), 2.84-2.95 (m), 3.11-3.21 (m), 3.59-3.69 (m), 4.18 (q, J = 7.2), 4.36 (d, J = 8.1), 4.52-4.59 (m), 5.37 (s, br), 5.42 (dd, 1H, J = 15.9, 1.5), 5.80 (d, J = 9.0), 5.90 (d, J = 8.4),

6.46 (s, br), 6.61 (dd, 1H, J = 15.9, 5.1), 7.18-7.30 (m); Anal. (C₃₁H₄₅N₃O₆S) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-Propenoate.

[0185] Ethyl-3-[CyPentylOCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.160 g, 0.197 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (8 mL). Triisopropylsilane (0.121 mL, 0.591 mmol, 3 equiv) and trifluoroacetic acid (4 mL) were added sequentially producing a bright yellow solution. This solution was stirred for 40 minutes and then concentrated. The residue was stirred in Et₂O (8 mL), and the solid was collected by filtration, washed with Et₂O (2 x 4 mL), and then dried under vacuum to give ethyl-3-(CyPentylOCO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-propenoate (0.094 g, 84%) as a white solid: mp = 206-207 °C (dec); R_f = 0.38 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3413, 3307, 3213, 1708, 1660; ¹H NGR (DMSO- d_6) δ 0.72 (d, 3H, J = 6.8), 0.81 (d, 3H, J = 6.5), 1.20 (t, 3H, J = 7.0), 1.46-1.82 (m, 10H), 1.97-2.10 (m, 3H), 2.23 (s, 3H), 2.38-2.54 (m, 1H), 2.65-2.84 (m, 2H), 2.86-2.97 (m, 1H), 3.81-3.88 (m, 1H), 4.03-4.18 (m, 2H), 4.26-4.38 (m, 1H), 4.85-4.94 (m, 1H), 5.55 (d, 1H, J = 15.9), 6.65 (dd, 1H, J = 15.9, 5.3), 6.73 (s, 1H), 7.03 (s, 4H), 7.14 (s, 1H), 7.27 (d, 1H, J = 8.1), 8.02 (d, 1H, J = 8.4); Anal. (C₃1H₄5N₃O₇) C, H, N.

Example 23 - Preparation of Compound 23: Ethyl-3-(CyPentylCH₂CO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate Ethyl-3-[CyPentylCH₂CO-L-Val Ψ [COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-Propenoate.

[0186] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.315 g, 0.393 mmol, 1 equiv) in 1,4-dioxane (3 mL). The reaction solution was stirred

at 23 °C for 1.67 hours and then was concentrated to provide crude ethyl-3-[H₂N-L-ValΨ[COCH₂]-L-(*p*-CH₃)Phe-L-(Tr-*Gln*)]-E-propenoate•HCl which was set aside.

[0187] Dicyclohexylcarbodiimide (0.162 g, 0.785 mmol, 2 equiv) was added to a solution of cyclopentyl acetic acid (0.197 mL, 1.57 mmol, 4 equiv) in Et₂O (10 mL). The reaction mixture was stirred for 1.5 hours, and then the white precipitate was removed by filtration. The filtrate was concentrated, then dissolved in dry CH₂Cl₂ (5 mL), and added to a solution of crude ethyl-3-[H₂N-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate•HCl (from above) and 4methylmorpholine (0.086 mL, 0.782 mmol, 2 equiv) in dry CH₂Cl₂ (3 mL). The reaction mixture was stirred for 2.5 hours and concentrated. The residue was chromatographed on silica gel (gradient elution 40→50% EtOAc in hexanes) to afford ethyl-3-[CyPentylCH₂CO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-Epropenoate (0.202 g, 63%) as a white foam: $R_f = 0.65$ (10% CH₃OH in CHCl₃); IR (cm^{-1}) 3296, 1716, 1650; ¹H NGR (CDCl₃) δ 0.71 (d, 3H, J = 6.8), 0.92 (d, 3H, J= 6.8), 1.02-1.16 (m, 2H), 1.29 (t, 3H, J = 7.2), 1.47-1.82 (m, 8H), 1.89-2.16 (m, 5H), 2.30-2.36 (m, 1H), 2.31 (s, 3H), 2.46-2.69 (m, 2H), 2.74-2.89 (m, 2H), 2.95-3.08 (m, 1H), 4.12-4.22 (m, 2H), 4.41-4.53 (m, 2H), 5.52 (dd, 1H, J = 15.6, 1.6),5.73 (d, 1H, J = 8.1), 6.00 (d, 1H, J = 8.1), 6.61 (dd, 1H, J = 15.6, 5.1), 6.99 (d, 2H, J = 7.9), 7.08 (d, 2H, J = 7.9), 7.17-7.30 (m, 16H); Anal. (C₅₁H₆₁N₃O₆•0.5 H₂O) C, H, N.

Preparation of Product Ethyl-3-(CyPentylCH₂CO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-Propenoate.

[0188] Ethyl-3-[CyPentylCH₂CO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-(Tr-Gln)]-E-propenoate (0.167 g, 0.206 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (8 mL). Triisopropylsilane (0.126 mL, 0.615 mmol, 3 equiv) and trifluoroacetic acid (4 mL) were added sequentially producing a bright yellow solution. This solution was stirred for 40 minutes and then concentrated. The residue was stirred in Et₂O (8 mL), and the solid was collected by filtration, washed with Et₂O (2 x 4 mL), and then dried under vacuum to give ethyl-3-(CyPentylCH₂CO-L-ValΨ[COCH₂]-L-(p-CH₃)Phe-L-Gln)-E-propenoate (0.092 g, 79%) as a white solid: mp = 253-255 °C (dec); R_f = 0.42 (10% CH₃OH in CHCl₃); IR (cm⁻¹) 3401, 3284, 1713, 1649; ¹H NGR (DMSO- d_6) δ 0.74 (d, 3H, J = 6.8), 0.81 (d, 3H, J = 6.5), 1.03-1.19 (m, 2H), 1.20 (t, 3H, J = 7.0), 1.40-1.75 (m, 9H), 2.00-2.15 (m, 6H), 2.23 (s, 3H), 2.42 (dd, 1H, J = 18.4, 4.7), 2.66-2.84 (m, 2H), 2.86-2.96 (m, 1H), 4.06-4.17 (m, 3H), 4.27-4.37 (m, 1H), 5.57 (dd, 1H, J = 15.7, 1.4), 6.66 (dd, 1H, J = 15.7, 5.4), 6.73 (s, 1H), 7.03 (s, 4H), 7.16 (s, 1H), 7.92 (d, 1H, J = 8.1), 8.01 (d, 1H, J = 7.8); Anal. (C₃₂H₄₇N₃O₆) C, H, N.

Example 24 - Preparation of Compound 24: Ethyl-3-(CyPentylSCO-L-Cyhex\(\mathbb{T}\)[COCH_2]-L-(p-F)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate trans-5-Cyclohexyl-pent-4-enoic Acid.

[0189] A solution of cyclohexane carboxaldehyde (11.22 g, 100 mmol, 1 equiv) in THF (100 mL) was added dropwise via addition funnel to a solution of vinylmagnesium bromide (100 mL of a 1.0 M solution in THF, 100 mmol, 1.0 equiv) in Et₂O (100 mL) at 0 °C. After the addition was completed, the reaction mixture was stirred for 1 h at 0 °C and then partitioned between 0.5 M HCl (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to afford a yellow oil. This material was combined (neat) with diethyl malonate (16.7 mL, 110 mmol, 1.1 equiv) and Ti(OEt)₄ (2.10 mL, 10.0 mmol, 0.10 equiv) and was heated to 160 °C for 1 h (distilling out EtOH as it was formed). The reaction mixture was then maintained at 190 °C for 4 h and then cooled to 60 °C. EtOH (50 mL) and 6.0 M KOH (50 mL) were added sequentially, and the brown reaction mixture was refluxed for 3 h. After cooling to 23 °C, the reaction mixture was filtered through

a medium frit, and the filtrate was partitioned between water (150 mL) and Et₂O (2 x 100 mL). The aqueous layer was then acidified to pH = 2 (as indicated by pH paper) with concentrated HCl and extracted with a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was distilled at reduced pressure to afford trans-5-cyclohexyl-pent-4-enoic acid (5.68 g, 31%) as a colorless liquid: bp: 150-156 °C (1 torr); IR (cm⁻¹) 3001 (br), 2923, 1711; ¹H NGR (CDCl₃) δ 0.96-1.32 (m, 5H), 1.60-1.76 (m, 5H), 1.85-1.94 (m, 1H), 2.27-2.44 (m, 4H), 5.31-5.48 (m, 2H); Anal. (C₁₁H₁₈O₂) C, H.

Preparation of Intermediate trans-5-Cyclohexyl-pent-4-enoic Acid (2*R*-Hydroxy-1*R*-methyl-2-phenyl-ethyl)-methyl Amide.

[0190] Oxalyl chloride (2.81 mL, 32.2 mmol, 1.05 equiv) was added to a solution of trans-5-cyclohexyl-pent-4-enoic acid (5.60 g, 30.7 mmol, 1 equiv) and N,Ndimethylformamide (0.03 mL, 0.39 mmol, 0.013 equiv) in benzene (100 mL) at 23 °C. The reaction mixture was stirred at 23°C for 2 h and then concentrated under reduced pressure. The resulting oil was dissolved in THF (20 mL) and added via cannula to a solution of (1R,2R)-(-)-pseudoephedrine (4.61 g, 27.9 mmol, 0.91 equiv) and triethylamine (5.06 mL, 36.3 mmol, 1.1 equiv) in THF (300 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and then partitioned between half-saturated NH₄Cl (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (50% EtOAc in hexanes) to afford trans-5-cyclohexyl-pent-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (5.21 g, 57%) as a white solid: mp = 89-91 °C; $R_f = 0.33$ (50% EtOAc in hexanes); IR (cm⁻¹) 3380, 1621; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.97-1.32 (m), 1.54-1.74 (m), 1.86-1.93 (m), 2.24-2.58 (m), 2.81 (s), 2.91 (s), 3.98-4.06 (m), 4.35-4.48 (m), 4.55-4.61 (m), 5.32-5.47 (m), 7.24-7.41 (m); Anal. (C₂₁H₃₁NO₂) C, H, N.

Preparation of Intermediate trans-5-Cyclohexyl-2S-(4-fluoro-benzyl)-pent-4-enoic Acid (2R-Hydroxy-1R-methyl-2-phenyl-ethyl)-methyl Amide.

[0191] n-Butyllithium (20.7 mL of a 1.6 M solution in hexanes, 33.1 mmol, 2.1 equiv) was added to a suspension of anhydrous lithium chloride (4.68 g, 110 mmol, 7 equiv) and disopropylamine (4.98 mL, 35.5 mmol, 2.25 equiv) in THF (300 mL) at -78°C. The reaction mixture was stirred for 20 min at -78 °C, then maintained at 0 °C for 5 min, and subsequently cooled again to -78 °C. A solution of trans-5-cyclohexyl-pent-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)methyl amide (5.20 g, 15.8 mmol, 1 equiv) in THF (30 mL) was added via cannula, and the resulting solution was stirred at -78 °C for 1 h, maintained at 0°C for 15 min, stirred at 23 °C for 5 min and then cooled again to 0 °C. 4-Fluorobenzyl bromide (2.95 mL, 23.7 mmol, 1.5 equiv) was added, and the reaction mixture was stirred at 0 °C for 30 min and then partitioned between halfsaturated NH₄Cl (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (gradient elution $30\rightarrow40\%$ EtOAc in hexanes) provided trans-5-cyclohexyl-2S-(4-fluoro-benzyl)pent-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (6.29 g, 91%) as a viscous oil: $R_f = 0.57$ (50% EtOAc in hexanes); IR (cm⁻¹) 3382, 1616; ¹H NGR (CDCl₃, mixture of rotamers) δ 0.83-1.27 (m), 1.51-1.70 (m), 1.86-1.95 (m), 2.12-2.21 (m), 2.28-2.44 (m), 2.58 (s), 2.64-2.77 (m), 2.82 (s), 2.85-2.92 (m), 4.00-4.05 (m), 4.37-4.52 (m), 5.22-5.52 (m), 6.88-7.01 (m), 7.07-7.20 (m), 7.20-7.38 (m); Anal. (C28H36FNO₂•0.25H₂O) C, H, N.

Preparation of Intermediate 5S-(R-Bromo-cyclohexyl-methyl)-3R-(4-fluorobenzyl)-dihydrofuran-2-one.

[0192] N-Bromosuccinimide (2.65 g, 14.9 mmol, 1.1 equiv) was added in small portions over 5 min to a solution of trans-5-cyclohexyl-2S-(4-fluoro-benzyl)-pent-4-enoic acid (2R-hydroxy-1R-methyl-2-phenyl-ethyl)-methyl amide (6.20 g, 14.2 mmol, 1 equiv) and glacial acetic acid (3.87 mL, 70.8 mmol, 5 equiv) in a 4:1

mixture of THF and H₂O (250 mL) at 0 °C. The resulting yellow solution was stirred for 15 min at 0 °C, then warmed to 23 °C, and subsequently refluxed for 1 h. After cooling to 23 °C, the reaction mixture was partitioned between half-saturated NaHCO₃ (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Flash chromatographic purification of the residue (5% EtOAc in hexanes) gave 5*S*-(*R*-bromo-cyclohexyl-methyl)-3*R*-(4-fluoro-benzyl)-dihydrofuran-2-one (3.70 g, 71%) as a white solid: mp = 72-75 °C; R_f = 0.62 (30% EtOAc in hexanes); IR (cm⁻¹) 1774; ¹H NGR (CDCl₃) δ 1.11-1.38 (m, δ H), 1.52-1.77 (m, δ H), 2.13-2.34 (m, 2H), 2.82 (dd, 1H, J = 13.7, 8.4), 2.95-3.05 (m, 1H), 3.12 (dd, 1H, J = 13.7, 4.7), 3.89 (dd, 1H, J = 8.4, 3.7), 4.43-4.51 (m, 1H), 6.98-7.05 (m, 2H), 7.15-7.26 (m, 2H); Anal. (C₁₈H₂₂BrFO₂) C, H, N.

Preparation of Intermediate 5S-(S-Azido-cyclohexyl-methyl)-3R-(4-fluoro-benzyl)-dihydro-furan-2-one.

[0193] A suspension of sodium azide (1.30 g, 20.0 mmol, 2 equiv) and 5*S*-(*R*-bromo-cyclohexyl-methyl)-3*R*-(4-fluoro-benzyl)-dihydrofuran-2-one (3.70 g, 10.0 mmol, 1 equiv) in *N*,*N*-dimethylformamide (30 mL) was heated at 50 °C for 18 h. The reaction mixture was cooled to 23 °C and then partitioned between water (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue purified by flash column chromatography (10% EtOAc in hexanes) to give 5*S*-(*S*-azido-cyclohexyl-methyl)-3*R*-(4-fluoro-benzyl)-dihydro-furan-2-one (1.76 g, 53%) as a colorless oil: R_f = 0.33 (20% EtOAc in hexanes); IR (cm⁻¹) 2109, 1772; ¹H NGR (CDCl₃) δ 1.06-1.29 (m, 6H), 1.67-1.82 (m, 5H), 2.02-2.21 (m, 2H), 2.79-2.86 (m, 1H), 2.92-2.95 (m, 1H), 3.05-3.17 (m, 2H), 4.45-4.50 (m, 1H), 6.97-7.04 (m, 2H), 7.15-7.26 (m, 2H).

Preparation of Intermediate {S-Cyclohexyl-[4R-(4-fluoro-benzyl)-5-oxotetrahydro-furan-2S-yl]-methyl}-carbamic Acid tert-Butyl Ester.

[0194] A suspension of 5S-(S-azido-cyclohexyl-methyl)-3R-(4-fluoro-benzyl)dihydro-furan-2-one (1.76 g, 5.31 mmol, 1 equiv) and Pd/C (10%, 0.15 g) in CH₃OH (30 mL) was stirred under a hydrogen atmosphere (balloon) for 3 h. The reaction mixture was filtered through celite, concentrated, and the residue dissolved in 1,4-dioxane (30 mL). N,N-diisopropylethylamine (1.85 mL, 10.6 mmol, 2 equiv) and di-tert-butyl dicarbonate (1.74 g, 7.97 mmol, 1.5 equiv) were added sequentially, and the resulting solution was stirred at 23 °C for 1.5 h. The reaction mixture was then partitioned between water (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (15% EtOAc in hexanes) provided {S-cyclohexyl-[4R-(4-fluorobenzyl)-5-oxo-tetrahydro-furan-2S-yl]-methyl}-carbamic acid tert-butyl ester (1.11 g, 52%) as a white foam: $R_f = 0.55$ (30% EtOAc in hexanes); IR (cm⁻¹) 3338, 1766, 1699; ¹H NGR (CDCl₃) δ 0.92-1.26 (m, 5H), 1.40 (s, 9H), 1.62-1.80 (m, 6H), 1.95-2.05 (m, 1H), 2.17-2.27 (m, 1H), 2.79 (dd, 1H, J = 13.5, 8.6), 2.88-2.98 (m, 1H), 3.09 (dd, 1H, J = 13.5, 4.5), 3.37-3.43 (m, 1H), 4.43 (d, 1H, J = 10.0), 4.48-4.52 (m, 1H), 6.96-7.01 (m, 2H), 7.12-7.27 (m, 2H); Anal. (C₂₁H₃₁NO₄) C, H, N.

Preparation of Intermediate Ethyl-3-[BOC-L-Cyhex Ψ [COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-Propenoate.

[0195] Lithium hydroxide (7.0 mL of a 1 M aqueous solution, 7.0 mmol, 5 equiv) was added to a solution of {S-cyclohexyl-[4R-(4-fluoro-benzyl)-5-oxo-tetrahydro-furan-2S-yl]-methyl}-carbamic acid *tert*-butyl ester (0.567 g, 1.40 mmol, 1 equiv) in DME (10 mL) at 23 °C. The resulting suspension was stirred at 23 °C for 30 min and then partitioned between 0.5 M HCl (100 mL) and EtOAc (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the

residue dissolved in CH₂Cl₂ (30 mL). 4-Methylmorpholine N-oxide (0.328 g, 2.80 mmol, 2 equiv), powdered 4Å molecular sieves (0.60 g), and tetrapropylammonium perruthenate (0.049 g, 0.139 mmol, 0.1 equiv) were added sequentially. The resulting dark reaction mixture was stirred for 2 h at 23 °C and then filtered through celite. The filtrate was concentrated under reduced pressure to provide a brown oil which was dissolved in CH₂Cl₂ (40 mL). Crude ethyl-3-[H₂N-L-(Tr-Gln)]-E-propenoate•HCl (see preparation of ethyl-3-[CBZ-L-LeuΨ[COCH₂]-D/L-Phe-L-(Tr-Gln)]-E-propenoate, 1.68 mmol, 1.2 equiv), 1hydroxybenzotriazole hydrate (0.284 g, 2.10 mmol, 1.5 equiv), 4methylmorpholine (0.616 mL, 5.60 mmol, 4 equiv), and 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.403 g, 2.10 mmol, 1.5 equiv) were added sequentially, and the reaction mixture was stirred for 20 h at 23 °C and then partitioned between water (150 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 150 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography (40% EtOAc in hexanes) provided ethyl-3-[BOC-L-Cyhex\(\mathbb{P}\)[COCH_2]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.379 g, 32%) as a white solid: mp = 192-195 °C; R_f = 0.50 (50% EtOAc in hexanes); IR (cm⁻¹) 3316, 1709, 1667; ¹H NGR (CDCl₃) δ 0.98-1.12 (m, 5H), 1.29 (t, 3H, J = 7.2), 1.40 (s, 9H), 1.43-1.74 (m, 6H), 1.96-2.02(m, 1H), 2.30-2.39 (m, 2H), 2.53 (d, 1H, J = 17.1), 2.61-2.88 (m, 4H), 3.00 (dd, 1H), 2.50-2.88 (m, 2H), 3.00 (dd, 2H), 3.001H, J = 17.6, 10.1), 4.01-4.06 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.45 (s, br, 1H), 4.80 (d, 1H, J = 8.1), 5.35 (d, 1H, J = 15.7), 5.90 (d, 1H, J = 8.4), 6.60 (dd, 1H, J = 8.4) 15.7, 5.0), 6.93-7.10 (m, 4H), 7.17-7.30 (m, 16H); Anal. (C₅₁H₆₀FN₃O₇) C, H, N.

Preparation of Intermediate Ethyl-3-[CyPentylSCO-L-Cyhex Ψ [COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-Propenoate.

[0196] HCl (10 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-LeuΨ[COCH₂]-L-Phe-L-(Tr-Gln)]-E-propenoate (0.379 g, 0.448

mmol, 1 equiv) in 1,4-dioxane (10 mL). The reaction mixture was stirred at 23 °C for 2 h and then concentrated. The resulting oil was dissolved in CH₂Cl₂ (15 mL), cooled to 0 °C, and 4-methylmorpholine (0.123 mL, 1.12 mmol, 2.5 equiv) and cyclopentyl chlorothiolformate (0.096 mL, 0.583 mmol, 1.3 equiv) were added sequentially. The reaction mixture was stirred for 30 min at 0 °C and then partitioned between water (100 mL) and a 1:1 mixture of EtOAc and hexanes (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (30% EtOAc in hexanes) to afford ethyl-3-[CyPentylSCO-L-Cyhex\(\Psi\)[COCH2]-L-(p-F)Phe-L-(Tr-Gln)]-Epropenoate (0.161 g, 41%) as a white solid: mp = 90-95 °C; R_f = 0.51 (50% EtOAc in hexanes); IR (cm⁻¹) 3312, 1714, 1654; ¹H NGR (CDCl₃) δ 0.98-1.22 (m, 6H), 1.29 (t, 3H, J = 7.2), 1.56-1.70 (m, 11 H), 1.98-2.08 (m, 3H), 2.29-2.37 (m, 2H), 2.51-3.30 (m, 6H), 3.58-3.65 (m, 1H), 4.17 (q, 2H, J = 7.2), 4.33 (s, br, 1H), 4.45(s, br, 1H), 5.37 (dd, 1H, J = 15.7, 1.6), 5.55 (d, 1H, J = 8.1), 5.99 (d, 1H, J = 8.4), 6.61 (dd, 1H, J = 15.7, 4.7), 6.93-7.10 (m, 4H), 7.16-7.31 (m, 16H); Anal. (C52H60FN3O6S) C, H, N.

Preparation of Product Ethyl-3-(CyPentylSCO-L-CyhexΨ[COCH₂]-L-(*p*-F)Phe-L-*Gln*)-E-Propenoate.

[0197] Triisopropylsilane (0.10 mL) and trifluoroacetic acid (6 mL) were added sequentially to a solution of ethyl-3-[CyPentylSCO-L-Cyhex Ψ [COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.150 g, 0.172 mmol) in CH₂Cl₂ (8 mL) producing a bright yellow solution. The reaction mixture was stirred for 20 min at 23 °C, then carbon tetrachloride (4 mL) was added, and the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (3% CH₃OH in CH₂Cl₂) to afford ethyl-3-(CyPentylSCO-L-Cyhex Ψ [COCH₂]-L-(p-F)Phe-L-Gln)-E-propenoate (0.069 g, 63%) as a white foam: R_f = 0.56 (10% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3281, 1716, 1637; ¹H NGR

(DMSO- d_6) δ 0.93-1.14 (m, 6H), 1.21 (t, 3H, J = 7.2), 1.41-1.70 (m, 13H), 1.96-2.03 (m, 4H), 2.53-2.93 (m, 5H), 3.46-3.56 (m, 1H), 3.97-4.15 (m, 3H), 4.30 (s, br, 1H), 5.41 (d, 1H, J = 15.7), 6.61 (dd, 1H, J = 15.7, 5.0), 6.74 (s, 1H), 7.00-7.19 (m, 5H), 8.00 (d, 1H, J = 8.4), 8.28 (d, 1H, J = 7.8); Anal. (C₃₃H₄₆FN₃O₆S) C, H, N.

Example 25 - Preparation of Compound 25: Ethyl-3-(CyPentylOCO-L-Val Ψ [COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

Preparation of Intermediate Ethyl-3-[CyPentylOCO-L-ValΨ[COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-Propenoate.

[0198] HCl (3 mL of a 4.0 M solution in 1,4-dioxane) was added to a solution of ethyl-3-[BOC-L-ValΨ[COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-propenoate (0.220 g, 0.273 mmol, 1 equiv) in 1,4-dioxane (3 mL). The reaction solution was stirred at 23 °C for 2.25 hours and then concentrated to provide crude ethyl-3-[H₂N-L-ValΨ[COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-propenoate•HCl which was set aside.

[0199] Cyclopentanol (0.431 mL, 4.75 mmol, 17.4 equiv) was dissolved in dry CH₂Cl₂ (25 mL). Triethylamine (0.662 mL, 4.75 mmol, 17.4 equiv) and triphosgene (0.507 g, 1.71 mmol, 6.26 equiv) were added sequentially. The reaction solution was stirred 2.5 hours to provide a stock solution of cyclopentyl chloroformate (0.19 M). A portion of this solution (2.87 mL, 0.545 mmol, 2 equiv) was added to a solution of crude ethyl-3-[H₂N-L-ValΨ[COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-propenoate•HCl (from above) and 4-methylmorpholine (0.120 mL, 1.09 mmol, 4 equiv) in dry CH₂Cl₂ (4 mL). The reaction mixture was stirred for 1.75 hours, then poured into water (30 mL), and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried over Na₂SO₄, concentrated, and the residue was chromatographed on silica gel (gradient elution 40→50% EtOAc in hexanes) to afford ethyl-3-[CyPentylOCO-L-ValΨ[COCH₂]-L-(*p*-F)Phe-L-(Tr-*Gln*)]-E-propenoate (0.077 g, 35%) as a colorless glass: ¹H NGR

(CDCl₃) δ 0.68 (d, 3H, J = 6.8), 0.93 (d, 3H, J = 6.8), 1.29 (t, 3H, J = 7.2), 1.50-1.86 (m, 10H), 1.93-2.04 (m, 2H), 2.29-2.38 (m, 2H), 2.52 (d, 1H, J = 15.9), 2.64 (dd, 1H, J = 12.1, 5.6), 2.73-2.90 (m, 2H), 2.99 (dd, 1H, J = 17.0, 9.8), 4.10-4.22 (m, 3H), 4.40-4.51 (m, 1H), 4.92 (d, 1H, J = 8.1), 4.95-5.03 (m, 1H), 5.38 (d, 1H, J = 15.9), 6.06 (d, 1H, J = 8.4), 6.60 (dd, 1H, J = 15.9, 4.8), 6.92-7.00 (m, 2H), 7.04-7.11 (m, 2H), 7.16-7.32 (m, 15H).

Preparation of Product Ethyl-3-(CyPentylOCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-Propenoate.

[0200] Ethyl-3- 119 -[CyPentylOCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-(Tr-Gln)]-E-propenoate (0.076 g, 0.093 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (6 mL). Triisopropylsilane (0.057 mL, 0.278 mmol, 3 equiv) and trifluoroacetic acid (3 mL) were added sequentially producing a bright yellow solution. This solution was stirred for 40 minutes and then concentrated. The residue was stirred in Et₂O (6 mL), and the solid was collected by filtration, washed with Et₂O (2 x 3 mL), and then dried under vacuum to give ethyl-3-(CyPentylOCO-L-ValΨ[COCH₂]-L-(p-F)Phe-L-Gln)-E-propenoate (0.040 g, 75%) as a white solid: mp = 220-222 °C (dec.); R_f = 0.16 (5% CH₃OH in CH₂Cl₂); IR (cm⁻¹) 3413, 3317, 1708, 1658; ¹H NGR (DMSO- d_6) δ 0.74 (d, 3H, J = 6.5), 0.82 (d, 3H, J = 6.5), 1.20 (t, 3H, J = 7.2), 1.38-1.84 (m, 10H), 1.96-2.12 (m, 3H), 2.46-2.84 (m, 4H), 2.88-2.97 (m, 1H), 3.82-3.89 (m, 1H), 4.09 (q, 2H, J = 7.2), 4.25-4.36 (m, 1H), 4.84-4.94 (m, 1H), 5.40 (d, 1H, J = 15.6), 6.61 (dd, 1H, J = 15.6, 5.3), 6.73 (s, 1H), 6.98-7.24 (m, 5H), 7.30 (d, 1H, J = 8.7), 7.99 (d, 1H, J = 8.4); Anal. (C₃₀H₄₂FN₃O₇*0.5 H₂O) C, H, N.

BIOCHEMICAL AND BIOLOGICAL EVALUATION

Inhibition of Rhinovirus Protease

[0201] Stock solutions (50 mM, in DMSO) of various compounds were prepared; dilutions were in the same solvent. Recombinant Rhinovirus 3C proteases from

serotypes 14, 16, and 2 were prepared by the following standard chromatographic procedures: (1) ion exchange using Q Sepharose Fast Flow from Pharmacia; (2) affinity chromatography using Affi-Gel Blue from Biorad; and (3) sizing using Sephadex G-100 from Pharmacia. Assays contained 2% DMSO, 50 mM tris pH 7.6, 1 mM EDTA, a compound at the indicated concentrations, approximately 1μM substrate, and 50-100 nM protease. For K_i determinations, the compound and the enzyme were preincubated for 10 minutes at 30 °C prior to addition of the substrate (substrate start). The k_{obs/l} values were obtained from reactions initiated by addition of enzyme rather than substrate. RVP activity is measured in the fluorescence resonance energy transfer assay. The substrate was (N-terminal) DABCYL-(Gly-Arg-Ala-Val-Phe-Gln-Gly-Pro-Val-Gly)-EDANS. In the uncleaved peptide, the EDANS fluorescence was quenched by the proximal DABCYL moiety. When the peptide was cleaved, the quenching was relieved, and activity was measured as an increase in fluorescence signal. Data was analyzed using standard non-linear fitting programs (Enzfit), and are shown in Table 1.

TABLE 1

COMPOUND	RVP	INHIB	$\frac{k_{\text{obs/I}} (M^{-1} \text{sec}^{-1})}{(M^{-1} \text{sec}^{-1})}$
1		ND	17,380
	(2)	ND	2,242
	(16)	ND	3,880
2		ND	47,000
	(2)	ND	4,600
	(16)	ND	10,410
3		$>7\mu M(K_i)$	29,200
4		ND	180,000
	(2)	ND	17,800
	(16)	ND	34,600
5		ND	500,000
	(2)	ND	26,900
	(16)	ND	89,700
6		ND	87,600
	(2)	ND	13,350
	(16)	ND	23,230
7		ND	255,000
	(2)	ND	25,000
	(16)	ND	100,000
8		ND	55,700

22 ND 124,000 23 ND 36,500 24 0.67 240,000	23	(2)	ND	36,500
	24	(16)	0.67	240,000
25 ND 16,000				

[0202] In the above table, all data are for RVP serotype-14 unless otherwise noted in parentheses. All strains of human rhinovirus (HRV) were purchased from American Type Culture Collection (ATCC) except for serotype 14, which was produced from the infectious cDNA clone constructed and supplied to Applicants by Dr. Robert Rueckert at the Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin. The column designated INHIB represents the percent inhibition at 10 minute preincubation with 50 nM RVP prior to addition of substrate. The data in the column designated $k_{obs/I}$ was measured from progress curves in enzyme start experiments. The designation ND indicates that a value was not determined for that compound.

Antirhinoviral HI-HeLa Cell Culture Assay

[0203] In the Cell Protection Assay, the ability of compounds to protect cells against HRV infection was measured by the XTT dye reduction method. This method is described in Weislow, O. S., Kiser, R., Fine, D. L., Bader, J., Shoemaker, R. H., Boyd, M. R., *J. Natl. Cancer Inst.* 1989, 81, 577-586, the disclosure of which is incorporated herein by reference.

[0204] HI-HeLa cells were infected with HRV-14 at a multiplicity of infection (m.o.i.) of 0.13 (virus particles/cell) or mock-infected with medium only. Infected or mock-infected cells were resuspended at 8 x 10⁵ cells per mL and incubated with appropriate concentrations of compounds of formula I. Two days later, XTT/PMS was added to test plates, and the amount of formazan produced was quantified spectrophotometrically at 450/650 nm. The EC₅₀ was calculated as the concentration of compound that increased the percentage of formazan production in compound-treated, virus infected cells to 50% of that produced by compound-free mock-infected cells. The 50% cytotoxic dose (CC₅₀) was calculated as the concentration of compound that decreased the percentage of formazan produced in compound-treated, mock-infected cells to 50% of that produced by compound-free mock-infected cells. The therapeutic index (TI) was calculated by dividing the CC₅₀ by the EC₅₀.

[0205] All strains of human rhinovirus (HRV) for use in this assay were purchased from American Type Culture Collection (ATCC) except for HRV serotype-14, which was produced from the infectious cDNA clone constructed and supplied to Applicants by Dr. Robert Rueckert at the Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin. HRV stocks were propagated, and viral assays were performed in HI-HeLa cells (ATCC). Cells were grown in Minimal Essential Medium, available from Life Technologies, with 10% fetal bovine serum.

[0206] The compounds were tested against control compounds WIN 51711, WIN 52084, and WIN 54954, all obtained from Sterling-Winthrop Pharmaceuticals, and control compound Pirodavir, obtained from Janssen Pharmaceuticals. Antiviral data obtained for the test compounds are shown in Table 2 where all data are for HRV serotype-14 unless otherwise noted in parentheses.

TABLE 2

	()	ιM)	(μΜ)	
1		0.36	>320	>889
2		0.24	>320	>1333
	(2)	1.8	>320	>178
3		1.9	50.1	26
4		0.10	>320	>3200
	(2)	0.50	>320	>640
5		0.19	>320	>1730
6		0.68	>100	>147
7		0.022	>10	>454
	(2)	0.10	>10	>100
	(10)	0.035	>10	>286
	(89)	0.004	>10	>2500
	(39)	0.13	>10	>75
8		0.19	>100	>526
1+9 (~1:1)		1.3	>320	>246
(2,2)	(16)	2.8	>320	>114
	(2)	2.0	>320	>160
	(10)	4.1	>320	>78
	(89)	5.1	>320	>63
10		0.011	>1	>91
	(2)	0.18	>1	>57

(2) 0.12 >3 >25 (39) 0.13 >3 >23 (10) 0.060 >3 >50 (16) 0.025 >3 >120 (1A) 0.16 >3 >18 12 0.14 >1 >7 13 0.060 >3 >50 14 0.020 >10 >500 (2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (10) 0.16 >10 >62 (1A) 0.17 >10 >143 15 0.063 >1 >15 (39) 0.07 >10 >143 15 0.063 >1 >15 (2) 0.18 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >3	11		0.006	>3	>500
(10) 0.060 >3 >50 (16) 0.025 >3 >120 (1A) 0.16 >3 >18 12 0.14 >1 >7 13 0.060 >3 >50 14 0.020 >10 >500 (2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(2)	0.12	>3	>25
(16) 0.025 >3 >120 (1A) 0.16 >3 >18 12 0.14 >1 >7 13 0.060 >3 >50 14 0.020 >10 >500 (2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(39)	0.13	>3	>23
(1A) 0.16 >3 >18 12 0.14 >1 >7 13 0.060 >3 >50 14 0.020 >10 >500 (2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(10)	0.060	>3	>50
12 0.14 >1 >7 13 0.060 >3 >50 14 0.020 >10 >500 (2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(16)	0.025	>3	>120
13 0.060 >3 >50 14 0.020 >10 >500 (2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(1A)	0.16	>3	>18
14 0.020 >10 >500 (2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30	12		0.14	>1	>7
(2) 0.13 >10 >76 (89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30	13		0.060	>3	>50
(89) 0.080 >10 >125 (16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30	14		0.020	>10	>500
(16) 0.10 >10 >100 (10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(2)	0.13	>10	>76
(10) 0.16 >10 >62 (1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(89)	0.080	>10	>125
(1A) 0.17 >10 >58 (39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(16)	0.10	>10	>100
(39) 0.07 >10 >143 15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(10)	0.16	>10	>62
15 0.063 >1 >15 16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(1A)	0.17	>10	>58
16 0.050 >3 >60 (2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30		(39)	0.07	>10	>143
(2) 0.18 >3 >16 (39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30	15		0.063	>1	>15
(39) 0.20 >3 >15 (89) 0.080 >3 >37 (16) 0.10 >3 >30	16		0.050	>3	>60
(89) 0.080 >3 >37 (16) 0.10 >3 >30		(2)	0.18	>3	>16
(16) 0.10 >3 >30		(39)	0.20	>3	>15
		(89)	0.080	>3	>37
(10) 0.15 >3 >20		(16)	0.10	>3	>30
		(10)	0.15	>3	>20

	(1A)	0.18	>3	>16
17		0.027	>10	>370
	(2)	0.36	>10	>27
	(39)	0.48	>10	>20
18		0.48	>3	>6
19		0.28	>3	>10
	(2)	0.71	>3	>4
	(10)	1.6	>3	>1.8
	(1A)	0.60	>3	>5
20		0.042	>3	>71
	(2)	0.56	>3	>5
	(39)	1.2	>3	>2.5
	(89)	0.47	>3	>6
	(16)	0.15	>3	>20
	(10)	0.50	>3	>6
	(1A)	0.53	>3	>5
21		0.16	>10	>62
	(2)	1.0	>10	>10
	(10)	1.4	>10	>7
	(1A)	0.56	>10	>17
22		0.050	>32	>640
	(2)	0.36	>32	>88

	(39)	0.40	>32	>80
	(89)	0.24	>32	>133
	(16)	0.40	>32	>80
	(10)	0.50	>32	>64
	(1A)	0.43	>32	>74
23		20.9	>10	ND
24		0.032	>3	>93
25		0.14	>3	>21
	(2)	0.68	>3	>4
	(10)	1.7	>3	>1.7
	(1A)	0.90	>3	>3
	(16)	0.71	>3	>4
	(39)	0.56	>3	>5
	(89)	0.32	>3	>9
WIN 51711		0.78	>60	>77
WIN 52084		0.07	>10	>143
WIN		2.13	>63	>30
Piro-		0.03	>10	>300
54954				

Anticoxsackieviral HI-HeLa Cell Culture Assay

[0207] The Coxsackie strain A-21 (CVA-21) was purchased from American Type Culture Collection (ATCC). Virus stocks were propagated, and antiviral assays were performed in HI-HeLa cells (ATCC). Cells were grown in Minimal Essential Medium with 10% fetal bovine serum.

[0208] The ability of compounds to protect cells against CVA-21 infection was measured by the XTT dye reduction method. This method is described in Weislow, O. S., Kiser, R., Fine, D. L., Bader, J., Shoemaker, R. H., Boyd, M. R., J. Natl. Cancer Inst. 1989, 81, 577-586, the disclosure of which is incorporated herein by reference. HI-HeLa cells were infected with CVA-21 at a multiplicity of infection (m.o.i.) of 0.05 (CVA-21) or mock-infected with medium only. Infected or uninfected cells were resuspended at 4 x 10⁴ cells per mL and incubated with appropriate concentrations of drug. One day later, XTT/PMS was added to test plates, and the amount of formazan produced was quantified spectrophotometrically at 450/650 nm. The EC₅₀ was calculated as the concentration of drug that increased the percentage of formazan production in drug-treated, virus-infected cells to 50% of that produced by drug-free, uninfected cells. The 50% cytotoxic dose (CC₅₀) was calculated as the concentration of drug that decreased the percentage of formazan produced in drug-treated, uninfected cells to 50% of that produced in drug-free, uninfected cells. The therapeutic index (TI) was calculated by dividing the CC_{50} by the EC_{50} .

[0209] The compounds were tested against control compound WIN 54954, obtained from Sterling-Winthrop Pharmaceuticals, and control compound Pirodavir, obtained from Janssen Pharmaceuticals. Antiviral data obtained for the test compounds against Coxsackie strain A-21 (CVA-21) are shown in Table 3.

 Table 3

 COMPOUND # EC₅₀ (μM)
 CC₅₀ (μM)
 TI

7	0.16	>10	>63
WIN 54954	>100	>100	
Pirodavir	>100	>100	

[0210] In describing the invention, the inventors have set forth certain theories and mechanisms in an effort to disclose how or why the invention works in the manner in which it works. These theories and mechanisms are set forth for informational purposes only. Applicants are not to be bound by any specific chemical or physical mechanisms or theories of operation.

[0211] While the invention has been described in terms of various preferred embodiments and specific examples, those skilled in the art will recognize that various changes and modifications can be made without departing from the spirit and scope of the invention, as defined in the appended claims.

TABLE 1

COMPOUND	RVP	INHIB	$\frac{k_{\text{obs/I}}(M^{-1}\text{sec}^{-1})}{M^{-1}}$
1		ND	17,380
	(2)	ND	2,242
	(16)	ND	3,880
2	. ,	ND	47,000
	(2)	ND	4,600
	(16)	ND	10,410
3		$>7\mu M(K_i)$	29,200
4		ND	180,000
	(2)	ND	17,800
	(16)	ND	34,600
5		ND	500,000
	(2)	ND	26,900
	(16)	ND	89,700
6		ND	87,600
	(2)	ND	13,350
	(16)	ND	23,230
7		ND	255,000
	(2)	ND	25,000
	(16)	ND	100,000

20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000	8 1+9 (~1:1) 10 11 12 13 14 15 16 17 18	(2) (16)	ND ND ND ND ND ND 1.6 1.7 ND 3.4 ND 0.78	55,700 7,000 14,200 5,100 440,000 850,000 404,000 196,000 293,000 127,000 150,000 845,000 127,400
14 1.7 293,000 15 ND 127,000 16 3.4 150,000 17 ND 845,000 18 0.78 127,400 19 ND 67,200 20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000				
15 ND 127,000 16 3.4 150,000 17 ND 845,000 18 0.78 127,400 19 ND 67,200 20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000				•
16 3.4 150,000 17 ND 845,000 18 0.78 127,400 19 ND 67,200 20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000				•
17 ND 845,000 18 0.78 127,400 19 ND 67,200 20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000	15		ND	•
18 0.78 127,400 19 ND 67,200 20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000	16		3.4	150,000
19 ND 67,200 20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000	17		ND	845,000
20 ND 52,140 21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000	18		0.78	127,400
21 ND 243,000 22 ND 124,000 23 ND 36,500 24 0.67 240,000	19		ND	67,200
22 ND 124,000 23 ND 36,500 24 0.67 240,000	20		ND	52,140
23 ND 36,500 24 0.67 240,000	21		ND	243,000
24 0.67 240,000	22		ND	124,000
·	23		ND	36,500
	24		0.67	240,000
25 ND 16,000	25		ND	16,000

[0212] In the above table, all data are for RVP serotype-14 unless otherwise noted in parentheses. All strains of human rhinovirus (HRV) were purchased from American Type Culture Collection (ATCC) except for serotype 14, which was produced from the infectious cDNA clone constructed and supplied to Applicants by Dr. Robert Rueckert at the Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin. The column designated INHIB represents the percent inhibition at 10 minute preincubation with 50 nM RVP prior to addition of substrate. The data in the column designated $k_{obs/I}$ was measured from progress curves in enzyme start experiments. The designation ND indicates that a value was not determined for that compound.

Antirhinoviral HI-HeLa Cell Culture Assay

[0213] In the Cell Protection Assay, the ability of compounds to protect cells against HRV infection was measured by the XTT dye reduction method. This method is described in Weislow, O. S., Kiser, R., Fine, D. L., Bader, J., Shoemaker, R. H., Boyd, M. R., J. Natl. Cancer Inst. 1989, 81, 577-586, the disclosure of which is incorporated herein by reference.

[0214] HI-HeLa cells were infected with HRV-14 at a multiplicity of infection (m.o.i.) of 0.13 (virus particles/cell) or mock-infected with medium only. Infected or mock-infected cells were resuspended at 8 x 10⁵ cells per mL and incubated with appropriate concentrations of compounds of formula I. Two days later, XTT/PMS was added to test plates, and the amount of formazan produced was quantified spectrophotometrically at 450/650 nm. The EC₅₀ was calculated as the concentration of compound that increased the percentage of formazan production in compound-treated, virus infected cells to 50% of that produced by compound-free mock-infected cells. The 50% cytotoxic dose (CC₅₀) was calculated as the concentration of compound that decreased the percentage of formazan produced in compound-treated, mock-infected cells to 50% of that produced by compound-free mock-infected cells. The therapeutic index (TI) was calculated by dividing the CC₅₀ by the EC₅₀.

[0215] All strains of human rhinovirus (HRV) for use in this assay were purchased from American Type Culture Collection (ATCC) except for HRV serotype-14, which was produced from the infectious cDNA clone constructed and supplied to Applicants by Dr. Robert Rueckert at the Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin. HRV stocks were propagated, and viral assays were performed in HI-HeLa cells (ATCC). Cells were grown in Minimal Essential Medium, available from Life Technologies, with 10% fetal bovine serum.

[0216] The compounds were tested against control compounds WIN 51711, WIN 52084, and WIN 54954, all obtained from Sterling-Winthrop Pharmaceuticals, and control compound Pirodavir, obtained from Janssen Pharmaceuticals. Antiviral data obtained for the test compounds are shown in Table 2 where all data are for HRV serotype-14 unless otherwise noted in parentheses.

TABLE 2

	(1	μ M)	(μΜ)	
1		0.36	>320	>889
2		0.24	>320	>1333
	(2)	1.8	>320	>178
3		1.9	50.1	26
4		0.10	>320	>3200
	(2)	0.50	>320	>640
5		0.19	>320	>1730
6		0.68	>100	>147
7		0.022	>10	>454
	(2)	0.10	>10	>100
	(10)	0.035	>10	>286
	(89)	0.004	>10	>2500
	(39)	0.13	>10	>75
8		0.19	>100	>526
1+9 (~1:1)		1.3	>320	>246
	(16)	2.8	>320	>114
	(2)	2.0	>320	>160
	(10)	4.1	>320	>78
	(89)	5.1	>320	>63
10		0.011	>1	>91
	(2)	0.18	>1	>57

11		0.006	>3	>500
	(2)	0.12	>3	>25
	(39)	0.13	>3	>23
	(10)	0.060	>3	>50
	(16)	0.025	>3	>120
	(1A)	0.16	>3	>18
12		0.14	>1	>7
13		0.060	>3	>50
14		0.020	>10	>500
	(2)	0.13	>10	>76
	(89)	0.080	>10	>125
	(16)	0.10	>10	>100
	(10)	0.16	>10	>62
	(1A)	0.17	>10	>58
	(39)	0.07	>10	>143
15		0.063	>1	>15
16		0.050	>3	>60
	(2)	0.18	>3	>16
	(39)	0.20	>3	>15
	(89)	0.080	>3	>37
	(16)	0.10	>3	>30
	(10)	0.15	>3	>20

	(1A)	0.18	>3	>16
17		0.027	>10	>370
	(2)	0.36	>10	>27
	(39)	0.48	>10	>20
18		0.48	>3	>6
19		0.28	>3	>10
	(2)	0.71	>3	>4
	(10)	1.6	>3	>1.8
	(1A)	0.60	>3	>5
20		0.042	>3	>71
	(2)	0.56	>3	>5
	(39)	1.2	>3	>2.5
	(89)	0.47	>3	>6
	(16)	0.15	>3	>20
	(10)	0.50	>3	>6
	(1A)	0.53	>3	>5
21		0.16	>10	>62
	(2)	1.0	>10	>10
	(10)	1.4	>10	>7
	(1A)	0.56	>10	>17
22		0.050	>32	>640
	(2)	0.36	>32	>88

	(39)	0.40	>32	>80
	(89)	0.24	>32	>133
	(16)	0.40	>32	>80
	(10)	0.50	>32	>64
	(1A)	0.43	>32	>74
23		20.9	>10	ND
24		0.032	>3	>93
25		0.14	>3.	>21
	(2)	0.68	>3	>4
	(10)	1.7	>3	>1.7
	(1A)	0.90	>3	>3
	(16)	0.71	>3	>4
	(39)	0.56	>3	>5
	(89)	0.32	>3	>9
WIN 51711		0.78	>60	>77
WIN 52084		0.07	>10	>143
WIN 54954		2.13	>63	>30
Piro- davir		0.03	>10	>300

Anticoxsackieviral HI-HeLa Cell Culture Assay

[0217] The Coxsackie strain A-21 (CVA-21) was purchased from American Type Culture Collection (ATCC). Virus stocks were propagated, and antiviral assays

were performed in HI-HeLa cells (ATCC). Cells were grown in Minimal Essential Medium with 10% fetal bovine serum.

[0218] The ability of compounds to protect cells against CVA-21 infection was measured by the XTT dye reduction method. This method is described in Weislow, O. S., Kiser, R., Fine, D. L., Bader, J., Shoemaker, R. H., Boyd, M. R., J. Natl. Cancer Inst. 1989, 81, 577-586, the disclosure of which is incorporated herein by reference. HI-HeLa cells were infected with CVA-21 at a multiplicity of infection (m.o.i.) of 0.05 (CVA-21) or mock-infected with medium only. Infected or uninfected cells were resuspended at 4 x 10⁴ cells per mL and incubated with appropriate concentrations of drug. One day later, XTT/PMS was added to test plates, and the amount of formazan produced was quantified spectrophotometrically at 450/650 nm. The EC₅₀ was calculated as the concentration of drug that increased the percentage of formazan production in drug-treated, virus-infected cells to 50% of that produced by drug-free, uninfected cells. The 50% cytotoxic dose (CC₅₀) was calculated as the concentration of drug that decreased the percentage of formazan produced in drug-treated, uninfected cells to 50% of that produced in drug-free, uninfected cells. The therapeutic index (TI) was calculated by dividing the CC_{50} by the EC_{50} .

[0219] The compounds were tested against control compound WIN 54954, obtained from Sterling-Winthrop Pharmaceuticals, and control compound Pirodavir, obtained from Janssen Pharmaceuticals. Antiviral data obtained for the test compounds against Coxsackie strain A-21 (CVA-21) are shown in Table 3.

Table 3

COMPOUND #	EC ₅₀ (μM)	CC ₅₀ (µM)	TI
7	0.16	>10	>63
WIN 54954	>100	>100	

Pirodavir	>100	>100	
	L	<u> </u>	

[0220] In describing the invention, the inventors have set forth certain theories and mechanisms in an effort to disclose how or why the invention works in the manner in which it works. These theories and mechanisms are set forth for informational purposes only. Applicants are not to be bound by any specific chemical or physical mechanisms or theories of operation.

[0221] While the invention has been described in terms of various preferred embodiments and specific examples, those skilled in the art will recognize that various changes and modifications can be made without departing from the spirit and scope of the invention, as defined in the appended claims.