Calculus and Probability Assignment 1

Christoph Schmidl s4226887 Master Computing Science Group: Tutorial 5

April 20, 2018

Exercise 6

a)

$$x - x^3 = 0$$

= $x(1 - x^2) = 0$
 $\rightarrow x_1 = -1, x_2 = 0, x_3 = 1$

Values x for which $f(x) = 0 \rightarrow \{-1, 0, 1\}$

b)

$$x - x^3 > 0$$

= $x(1 - x^2) > 0$
 $\rightarrow (0, 1), (-\infty, -1)$

Values x for which $f(x) > 0 \rightarrow (0,1), (-\infty,-1)$

Exercise 7

There are three cases in total.

- 1. When a = b, then $y = \{a\}$
- 2. When b > a, then $(b-a) \ge 0$. $x \in (0,1) \to y = a + (b-a)x > a$ and y = a + (b-a)x < a + (b-a) = b. Determine if y takes every value in the interval (a,b): $c \in (a,b)$. $c = a + (b-a)x_c \Leftrightarrow x_c = \frac{c-a}{b-a}$. Therefore y runs through all values in (a,b) because for every element c in (a,b) there exists an element $x_c \in (0,1)$ such that $c = a + (b-a)x_c$. Y runs through all values in (a,b).
- 3. When b < a, then (b-a) < 0. Using $x \in (0,1)$, there is y = a + (b-a)x < a and $y = a + (b-a)x > a + (b-a) = b \to y$ takes values in (b,a). Using the same procedure as above, y runs through all values in (b,a).

y runs through all values in (a, b), except when a = b, then $y = \{a\}$

Exercise 8

a) $f(-x) = 3(-x) - (-x)^3 = -3x + x^3 = -(3x - x^3) = -f(x)$. The function is odd. The function is odd.

b) $f(-x) = \sqrt[3]{(1-(-x))^2} + \sqrt[3]{(1+(-x))^2} = \sqrt[3]{(1+x)^2} + \sqrt[3]{(1-x)^2} = f(x)$. The function is even. The function is even.

Exercise 9

a) $f(x) = \sqrt{7 - x^2} + 1$

Assume that has to be $7-x^2 \ge 0$. The only possible values lie in $-\sqrt{7} \le x \le \sqrt{7}$. So $D(f) = [-\sqrt{7}]$

As $0 \le 7 - x^2 \le 7$, we have $0 \le \sqrt{7 - x^2} \le \sqrt{7}$, so $1 \le f(x) \le \sqrt{7} + 1$. So $R(f) = [1, \sqrt{7} + 1]$ $D(f) = [-\sqrt{7}, \sqrt{7}], R(f) = [1, \sqrt{7} + 1]$

b) $f(x) = \frac{1}{|x|}$

The domain only excludes x = 0. So $D(f) = \mathbb{R} \setminus \{0\}$. The range is $R(f) = (0, \infty)$ $D(f) = \mathbb{R} \setminus \{0\}$, $R(f) = (0, \infty)$

Exercise 10

a) $y(cx+d) = ax+b \to x(cy-a) = -dy+b$ so $x = \frac{-dy+b}{cy-a}$. So the inverse of y is $\frac{-dx+b}{cx-a}$. The inverse of y is $\frac{-dx+b}{cx-a}$

b) It is equal to y when d = -a

Exercise 11

a)

$$\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+3)}$$

$$= \lim_{x \to 2} \frac{1}{(x+3)}$$

$$= \frac{1}{5}$$

 $\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \frac{1}{5}$

b)

$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 1)(x - 3)}{(x + 2)(x - 1)}$$
$$= \lim_{x \to 1} \frac{(x - 3)}{(x + 2)}$$
$$= -\frac{2}{3}$$

 $\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 + x - 2} = -\frac{2}{3}$

Answer Form Assignment 1

Name	Christoph Schmidl
Student Number	s4226887

Questi	ion	Answer
6a (1	lpt)	Values x for which $f(x) = 0 \rightarrow \{-1, 0, 1\}$
6b (1	lpt)	Values x for which $f(x) > 0 \to (0,1), (-\infty, -1)$
7 (1	lpt)	y runs through all values in (a, b) , except when $a = b$, then $y = \{a\}$
8a (0	0.5pt)	The function is odd.
8b (0	0.5pt)	The function is even.
9a (1	lpt)	$D(f) = [-\sqrt{7}, \sqrt{7}], R(f) = [1, \sqrt{7} + 1]$
9b (1	lpt)	$D(f) = \mathbb{R} \setminus \{0\}, R(f) = (0, \infty)$
10a (1	lpt)	The inverse of y is $\frac{-dx+b}{cx-a}$
10b (1	lpt)	It is equal to y when $d = -a$
11a (1	lpt)	$\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \frac{1}{5}$
11b (1	lpt)	$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 + x - 2} = -\frac{2}{3}$