Multiple Predictor Variables: Regression & the General Linear Model

Contrasts for a Multiway ANOVA

One-Way ANOVA Graphically

Treatment 1 Response Treatment 2

Two-Way ANOVA Graphically

Multiple Linear Regression?

Note no connection between predictors, as in ANOVA. This is ONLY true if we have manipulated it so that there is no relationship between the two.

Multiple Linear Regression

Curved double-headed arrow indicates COVARIANCE between predictors that we must account for.

Semi-Partial Correlation

 Semi-Partial correlation asks how much of the variation in a response is due to a predictor after the contribution of other predictors has been removed

- ▶ How much would R² change if a variable was removed?
- A / (A+B+C+D) $ightharpoonup sr_{y1} = \frac{r_{y1} - r_{y2}y_{12}}{\sqrt{1 - r_{12}^2}}$

Calculating Multiple Regression Coefficients with OLS

$$Y = bX + \epsilon$$

Remember in Simple Linear Regression $b = \frac{cov_{xy}}{var_{x}}$?

In Multiple Linear Regression $b = cov_{xy}S_x^{-1}$

where cov_{xy} is the covariances of x_i with y and S_x^{-1} is the variance/covariance matrix of all Independent variables

OR
$$bi = \frac{cov_{xy} - \sum cov_{x1xj}b_j}{var_i(x)}$$

Many Things may Influence Species Richness Many Things may Influence Species Richness klm <- lm(rich ~ cover + firesev + hetero, data=keeley)

Checking for Multicollinearity: Correlation Matrices

Correlations over 0.4 can be problematic, but, they may be OK even as high as 0.8. Beyond this, are you getting unique information from each variable?

$$VIF = \frac{1}{1 - R_{\delta}^2}$$

vif(klm)

firesev

 $\ensuremath{\mathsf{VIF}} > 5$ or 10 can be problematic and indicate an unstable solution.

Checking for Multicollinearity: Variance Inflation Factor

Other Diagnostics as Usual!

Other Diagnostics as Usual!

0.280

-1.087

Anova Table (Type II tests) # Response: rich # Sum Sq Df F value Pr(>F) # cover 1674 1 12.01 0.00083 # firesev 636 1 4.56 0.03554 # hetero 4865 1 34.91 6.8e-08 # Residuals 11985 86 If order of entry matters, can use type I. Remember, what models are you comparing?

 $r_{xy} = b_{xy} \frac{sd_x}{sd_x}$

Which Variables Explained Variation: Type II Marginal SS

The coefficients

library(QuantPsyc) lm.beta(klm) # cover firesev hetero # 0.3267 -0.1987 0.5016

Comparing Coefficients on the Same Scale

Anova(klm)

R'2 = 0.41 # 0.3267 -0.1987 0.50

If order of entry matters, can use type I. Remember, what models are you comparing?

Visualization of Multivariate Models is Difficult

Component + Residual Plots

Component-Residual Plots Aid in Visualization

Analagous to the A part of the three-circle diagram from earlier.

Exercise: Bird Species Richness

▶ Which bird abundances influence Species Richness? ► Can we use every variable?

Visualize Resuits

All of the Birds! Correlation Problems cor(wnv[,c(3:8)]) Species.Richness All.Birds Corvids # Species.Richness 1.0000 0.5058 0.4326 # All.Birds 0.5058 1.0000 0.5964 wnv lm vif <- lm(Species.Richness ~ Corvids + # Corvids 0.4326 0.5964 1.0000 Sparrows + 0.2406 # Sparrows 0.8465 0.3846 Robins + # Robins 0.2928 0.8075 0.4028 Thrushes , data=wnv) # Thrushes 0.3859 0.8531 0.4960 Sparrows Robins Thrushes # Species.Richness 0.2406 0.2928 0.3859 # All.Birds 0.8465 0.8075 0.8531 # Corvids 0.3846 0.4028 0.4960 # Sparrows 0.7286 1.0000 0.7083 # Robins 0.9572 0.7083 1.0000 Multicollinearity Problems Odd Results from Robins and Sparrows summary(wnv_lm_vif) # Call: # lm(formula = Species.Richness ~ Corvids + Sparrows + Robins + Thrushes, data = wnv) vif(wnv_lm_vif) # Residuals: Corvids Sparrows Robins Thrushes Min 10 Median Max 1.449 2.145 13 050 15 060 # -24.997 -6.250 -0.093 6.827 22.074

Coefficients:

Corvids

Robins

Thrushos

Sparrows

(Intercept) 53.3019

0.0732

-0.0150

-0.1235

0.1538

Estimate Std. Error t value Pr(>|t|)

31.95 <2e-16

-0.74 0.4596

-2.46 0.0152

2.79 0.0060

3.27 0.0014

1.6681

0.0262

0.0202

0.0502

0.0471

