# **XGBoost For Classification**

import xgboost as xgb

xgb.XGBClassifier()

# **How XGBoost Works for Classification**

#### 1. Objective:

- For classification, XGBoost predicts the probability of an instance belonging to a particular class (binary or multi-class).
- It typically uses logistic regression as the base loss function for binary classification (log loss/cross-entropy) or softmax for multi-class problems.
  - Loss Function:
    - logistic regression : binary classification
    - softmax : multi-class problems.

#### 2. Tree Building:

- It constructs decision trees iteratively.
- Each tree focuses on the residuals (errors) of the previous trees, adjusting predictions to reduce the overall error.

#### 3. Gradient Boosting:

• The algorithm calculates the gradient of the loss function and fits each new tree to the negative gradient (pseudo-residuals).

#### 4. Regularization:

• XGBoost adds penalties for model complexity (e.g., number of leaves, depth of trees) via L1 (Lasso) and L2 (Ridge) regularization, making it less prone to overfitting than traditional gradient boosting.

#### 5. Prediction:

- For binary classification, it outputs a probability (0 to 1), which is thresholded (e.g., 0.5) to assign a class.
- For multi-class, it uses softmax to assign the class with the highest probability.

# **Decision Trees: Gradient Boost vs XGBoost**

In Gradient boost, the DTs calculate entropy & gini impurity, while in XGBoost, it calculates similarity score.

# Step-by-Step

#### 1. Initialize the Model

- Start with an initial prediction for all samples. For classification, this is typically the log-odds of the target class probabilities.
  - Example: If 60% of the samples belong to class 1, the initial prediction might be the log-odds of 0.6.

$$log (odds) = log (\frac{p}{1-p})$$
"logit function"

The log of the ratio of the probabilities

The basis of logistic regression

Convert this into Probability

### 2. Calculate Residuals (Errors)

- Compute the difference between the **actual class labels** and the **predicted probabilities** (these are called **residuals**).
  - Example: If the predicted probability for a sample is 0.7 but the actual label is 1, the residual is:

$$1 - 0.7 = 0.3$$

#### 3. Build a Tree to Predict Residuals

- Train a decision tree to predict the residuals.
- Similarity Score:
  - For each node, XGBoost calculates a similarity score to measure how "similar" (homogeneous) the residuals are in that node.
  - Formula (simplified):

$$ext{Similarity} = rac{( ext{Sum of residuals})^2}{ ext{Number of residuals} + \lambda}$$

Classification
$$(\sum \text{Residual}_i)^2$$

$$\sum [P_i \times (1 - P_i) + \lambda]$$

• (where  $\lambda$  is a regularization term to prevent overfitting).

#### Gain:

- The "gain" of a split is the difference between the similarity score of the parent node and the combined similarity scores of its child nodes.
- Splits with higher gain are prioritized (they create more homogeneous groups).



#### Stopping Condition:

A split is only made if the gain exceeds a threshold (gamma), the gamma hyperparameter).

This prevents overly complex trees.

### 4. Calculate Output Values for Leaves

- Each leaf (terminal node) in the tree is assigned an output value that adjusts the predictions.
- Output value formula (simplified):

$$ext{Output} = rac{ ext{Sum of residuals}}{ ext{Number of residuals} + \lambda}$$

• This value represents the "correction" needed for the residuals in that leaf.

### **5. Update Predictions**

- Add the tree's output values (scaled by the learning\_rate) to the previous predictions.
- Example: If a leaf's output is 0.2 and the learning rate is 0.1, the prediction increases by 0.02.

# 6. Repeat for Multiple Trees

- Repeat steps 2–5 for n\_estimators trees.
- Each new tree focuses on the residuals (errors) left by the previous trees.

### 7. Convert Probabilities to Class Labels

- After training, the model outputs probabilities for each class.
- For binary classification, a threshold (e.g., 0.5) is used to convert probabilities to class labels (0 or 1).
- For multi-class classification, the class with the highest probability is selected.

# **Key Features of XGBClassifier**

#### 1. Regularization:

• Uses L1 (reg\_alpha) and L2 (reg\_lambda) regularization to prevent overfitting.

#### 2. Handling Missing Values:

Automatically learns the best imputation strategy during training.

#### 3. Early Stopping:

 Stops training if validation performance doesn't improve for a specified number of rounds.

#### 4. Feature Importance:

• Provides insights into which features contribute most to the predictions.

## **Example: Binary Classification**

Suppose you're predicting whether a customer will churn (1) or not (0):

- 1. Initial Prediction: Start with the log-odds of the churn rate (e.g., 0.2).
- 2. **First Tree**: Corrects predictions for customers with high usage but low churn probability.
- 3. Second Tree: Adjusts for customers with low satisfaction scores.
- 4. **Final Prediction**: Combines all corrections from all trees to output probabilities (e.g., 0.85 for churn).

### Why XGBClassifier is Powerful

• **Speed**: Optimized for fast training and prediction.

- Accuracy: Often achieves state-of-the-art performance on classification tasks.
- **Flexibility**: Supports custom objectives, evaluation metrics, and handling of missing values.

# **Python Example: Binary Classification**

```
import xgboost as xgb
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_
matrix
# Load dataset
data = load_breast_cancer()
X, y = data.data, data.target
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_stat
e = 42
# Initialize XGBClassifier
model = xqb.XGBClassifier(
  objective='binary:logistic', # Binary classification
                     # Number of trees
  n_estimators=100,
  learning_rate=0.1, # Learning rate
  max_depth=5,
                       # Maximum depth of trees
                    # Fraction of samples used per tree
  subsample=0.8,
  colsample_bytree=0.8,
                            # Fraction of features used per tree
                      # Minimum loss reduction for a split
  gamma=1,
  reg_lambda=1,
                       # L2 regularization
  reg_alpha=0, #L1 regularization
  eval_metric='logloss', # Evaluation metric
  early_stopping_rounds=10, # Early stopping
```

```
random_state=42
                            # Random seed
)
# Train the model
model.fit(X_train, y_train, eval_set=[(X_test, y_test)], verbose=False)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
# Classification report
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=data.target_names))
# Confusion matrix
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

| Accuracy: 0.9                            | 6                       |        |              |            |
|------------------------------------------|-------------------------|--------|--------------|------------|
| Classificatio                            | on Report:<br>precision | recall | f1-score     | support    |
| malignant                                | 0.98                    | 0.93   | 0.95         | 43         |
| benign                                   | 0.96                    | 0.99   | 0.97         | 71         |
| accuracy<br>macro avg                    | 0.97                    | 0.96   | 0.96<br>0.96 | 114<br>114 |
| weighted avg                             | 0.97                    | 0.96   | 0.96         | 114        |
| Confusion Matrix:<br>[[40 3]<br>[ 1 70]] |                         |        |              |            |

```
Accuracy: 0.96
Classification Report:
            precision
                        recall f1-score
                                          support
                 0.95
  malignant
                          0.93
                                   0.94
                                              43
     benign
                 0.96
                          0.97
                                   0.97
                                              71
                                   0.96
   accuracy
                                             114
  macro avg
                 0.96
                          0.95
                                   0.95
                                             114
weighted avg
                 0.96
                          0.96
                                   0.96
                                             114
Confusion Matrix:
[[40 3]
[ 2 69]]
```

# **Multi-Class Classification Example**

For multi-class classification, change the objective to multi:softmax and specify the number of classes (num\_class):

```
# Initialize XGBClassifier for multi-class classification
model = xgb.XGBClassifier(
    objective='multi:softmax', # Multi-class classification
    num_class=3, # Number of classes
    n_estimators=100,
    learning_rate=0.1,
    max_depth=5,
    subsample=0.8,
    colsample_bytree=0.8,
    gamma=1,
    reg_lambda=1,
    eval_metric='mlogloss', # Multi-class log loss
    early_stopping_rounds=10,
```

```
random_state=42
)
```

# **Feature Importance**

```
import matplotlib.pyplot as plt

# Get feature importance
importance = model.feature_importances_

# Plot feature importance
plt.figure(figsize=(10, 6))
plt.barh(data.feature_names, importance)
plt.title("Feature Importance")
plt.xlabel("Importance Score")
plt.ylabel("Features")
plt.show()
```



# 

• For Imbalanced datasets (use scale\_pos\_weight for class imbalance)

### How to use scale\_pos\_weight?

• **Answer:** Set it as the ratio of negative to positive samples (e.g., neg\_samples / pos\_samples) for binary classification to balance imbalanced classes.

#### • Details:

- Used in binary classification to give more weight to the minority class.
- Example: If you have 900 negatives (0) and 100 positives (1),
  - scale\_pos\_weight = 900 / 100 = 9.
- o xgb.XGBClassifier(scale\_pos\_weight=9)
- Helps when precision/recall for the minority class is critical (e.g., fraud detection).

# **How to Manage Imbalanced Data?**

There are four key techniques:

| Method                               | How It Works                                     | Pros                      | Cons                       |
|--------------------------------------|--------------------------------------------------|---------------------------|----------------------------|
| Oversampling (SMOTE, ADASYN)         | Generates synthetic minority samples             | More data, better recall  | Can introduce noise        |
| Undersampling                        | Removes some majority class samples              | Faster training           | Risk of losing useful data |
| Class Weighting ( scale_pos_weight ) | Adjusts class importance                         | No data loss              | Can lead to overfitting    |
| Balanced Ensemble<br>Models          | Uses multiple models trained on balanced subsets | Handles extreme imbalance | Computationally expensive  |

• **Evaluation Metric:** Use F1-score, AUC-PR, or balanced accuracy instead of plain accuracy.

# What's stratify?

- Ensures train-test split maintains class ratio
  - If you have 80% class 0, 20% class 1, a normal split might randomly select too many from one class.
  - Stratify keeps the same ratio in both train & test sets.
  - Without it, random splitting might skew the distribution (e.g., test set with no minority class).

**Usage:** train\_test\_split(X, y, test\_size=0.2, stratify=y).

# Does XGBoost Auto-Select multi:softmax or binary:logistic?

**▼** Yes, based on num\_class.

| Scenario                                | <b>Objective Auto-Selected</b> |
|-----------------------------------------|--------------------------------|
| Binary Classification (0/1)             | binary:logistic                |
| Multi-Class Classification (3+ classes) | multi:softmax                  |
| <b>Custom Probabilities</b>             | multi:softprob                 |

To force a choice, explicitly se

xgb.XGBClassifier(objective='multi:softmax', num\_class=3)

### **How to Deal with Missing Data?**

- XGBoost automatically handles missing values (no need for imputation).
  - It learns optimal split directions for missing values.
- If a feature is missing in a row, XGBoost chooses the best path instead of discarding data.
- If you want to manually set missing values, use missing=np.nan.

xgb.XGBClassifier(missing=np.nan)

### Does it need one-hot encoding?

Answer: No, it works with categorical data directly!

XGBoost doesn't require one-hot encoding; it handles categorical data natively (with some prep).

- If you use XGBClassifier() (>= v1.3), it supports categorical features natively.
- One-Hot Encoding (OHE) expands features → Can increase feature count to thousands, slowing down training.
- Instead of OHE, use Label Encoding or let XGBoost handle categories.

### **Example: Label Encoding Instead of OHE**

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['category'] = le.fit_transform(df['category'])
```

• XGBoost can handle categorical features directly using LabelEncoder or by specifying enable\_categorical=True (in newer versions).

```
model = xgb.XGBClassifier(enable_categorical=True)
```



If the data contains string categories (e.g., city names), XGBoost cannot process them directly. It expects numerical input and provides two ways to handle it:

### **Automatic Categorical Handling (XGBoost 1.3+)**

- XGBoost natively supports categorical data.
- Convert the column to a Pandas categorical type and pass it to XGBClassifier().

```
df['city'] = df['city'].astype('category')
model = xgb.XGBClassifier()
model.fit(df[['city']], y)
```

If you're using a newer version of XGBoost, you can enable categorical feature support with enable\_categorical=True:

```
model = xgb.XGBClassifier(enable_categorical=True)
```

When you set enable\_categorical=True in XGBoost, the library automatically detects and handles categorical columns. You do not need to explicitly specify the column names of the categorical features.

### **Label Encoding (For Older Versions or Compatibility)**

- Convert categorical data into numeric labels using LabelEncoder.
- Best for tree-based models (keeps feature space small).

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

df['city'] = le.fit_transform(df['city'])
```

### one-hot encoding vs. LabelEncoding

- One-hot encoding increases dimensionality, while LabelEncoding is more efficient for tree-based models.
  - One-Hot Encoding: Creates a binary column for each category. Increases dimensionality and can lead to sparse data.
  - LabelEncoding: Converts categories into integers. More efficient for treebased models like XGBoost.

| Method                    | How It Works                                                | Best Used When                   | Impact on Performance                             |
|---------------------------|-------------------------------------------------------------|----------------------------------|---------------------------------------------------|
| One-Hot<br>Encoding (OHE) | Converts categorical columns into multiple binary columns   | Small datasets,<br>linear models | Increases feature<br>space (1000s of new<br>cols) |
| Label Encoding            | Assigns numeric values $(A \rightarrow 0, B \rightarrow 1)$ | Tree-based models (XGBoost, RF)  | Works well, keeps<br>feature space small          |

### **▼**Use Label Encoding for XGBoost.

Cons: Implies order (e.g., 0 < 1 < 2), which might mislead tree splits if no real order exists.

OHE only when needed for compatibility with other models.

### Do we need to scale the data?

Answer: No, XGBoost doesn't require scaling since it's tree-based.

| Model                                                        | Needs Scaling? | Why?                                               |
|--------------------------------------------------------------|----------------|----------------------------------------------------|
| Linear Models (Logistic Regression, SVM, kNN)                | ✓ Yes          | These models are sensitive to feature magnitudes   |
| Tree-Based Models (XGBoost,<br>Decision Tree, Random Forest) | ×No            | Splits are based on feature ordering, not distance |

# **How does XGBoost handle White Spaces?**

- ▼ XGBoost does NOT automatically remove white spaces.
  - Leading/trailing spaces in categorical features can cause issues.
  - Remove them manually before training:

df = df.apply(lambda x: x.str.strip() if x.dtype == "object" else x)

- **Rows**: If a feature value is " " (string), XGBoost expects numeric input and will fail unless converted (e.g., to NaN or 0).
- **Columns:** Whitespace in column names (e.g., "fixed acidity") is fine in DMatrix as long as Pandas handles it upfront.

- Fix: Use df.replace('', np.nan) for values, and
- o df.columns = df.columns.str.replace('','\_') for names

# **DMatrix**

- ✓ DMatrix is an optimized data structure for XGBoost that improves speed & memory efficiency.
  - Converts data into an efficient internal format.
  - Reduces memory usage by storing sparse data effectively.
  - Speeds up training by avoiding repeated conversions.

### **Components:**

- data: Feature matrix (e.g., X\_train).
- label: Target vector (e.g., y\_train).
- Optional: weight, missing (for custom handling).

### Why use DMatrix?

- Faster training and evaluation compared to standard NumPy arrays or Pandas DataFrames.
- Supports advanced features like cross-validation and early stopping.

```
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)

# Define parameters
params = {
   'objective': 'reg:squarederror',
   'max_depth': 3,
   'eta': 0.1
}

# Train model using DMatrix
```

```
bst = xgb.train(params, dtrain, num_boost_round=100)

# Make predictions
y_pred = bst.predict(dtest)
```

#### **How It Works:**

- 1. **Conversion**: Takes X\_train (e.g., a 1000×11 matrix) and y\_train (e.g., a 1000-element vector) and builds a compressed object.
- 2. **Missing Values:** Identifies np.nan (or custom missing) and prepares them for special handling.
- 3. **Optimization**: Stores data in a column-major format, enabling fast access for feature splits and parallel processing.

### Why Not Raw Data?:

- Raw Pandas/NumPy data requires repeated preprocessing (e.g., missing value checks) during training, slowing it down.
- DMatrix does this once upfront, caching results for speed.