Оглавление

Дифференциальная геометрия. Практические задания

Задача 1.

- а) Найти репер Френе и кривизну кривой $\alpha(t)$.
- б) Найти угол между кривой $\alpha(t)$ и кривой, заданной уравнением F(x,y)=0, в т. $M_0.$
- в) Для обеих кривых написать уравнения соприкасающихся окружностей в т. M_0 , сделать чертеж.

N	$\alpha(t)$	F(x,y)	M_0
1	$(t^2+2,t+1)^T$	$x^2 + 2y^2 - 6$	(2,1)
2	$(t, t^2 - 2t + 3)^T$	$2x^2 + y^2 - 6$	(1,2)
3	$(t^2 - 1, t)^T$	$4x^2 + 4x + y^2$	(-1,0)
4	$(t, -t^2 - 1)^T$	$x^2 + 2y^2 + 2y$	(0,-1)
5	$(t^2-t+2,t+1)^T$	$x^2 + 2y^2 - 6$	(2,1)
6	$(-t^2 - 1, t)^T$	$x^2 + x + y^2$	(-1,0)
7	$(t, t^2 - 1)^T$	$x^2 + y^2 + y$	(0, -1)
8	$(-t^2 - 1, 2t)^T$	$4x^2 + 4x + y^2$	(-1,0)
9	$(t+1,t^2+2)^T$	$y^2 + 2x^2 - 6$	(1,2)
10	$(t^2 - 2t + 3, t)^T$	$2y^2 + x^2 - 6$	(2,1)
11	$(t, t^2 - 1)^T$	$4y^2 + 4y + x^2$	(0,-1)
12	$(-t^2 - 1, t)^T$	$y^2 + 2x^2 + 2x$	(-1,0)
13	$(t^2+2,t+1)^T$	$x^2 - 2y^2 - 2$	(2,1)
14	$(t, t^2 - 2t + 3)^T$	$2x^2 - y^2 + 2$	$\boxed{(1,2)}$
15	$(t^2 - 1, t)^T$	$4x^2 + 4x - y^2$	(-1,0)
16	$(t, -t^2 - 1)^T$	$x^2 - 2y^2 - 2y$	(0,-1)
17	$(t^2-t+2,t+1)^T$	$x^2 - 2y^2 - 2$	(2,1)
18	$(-t^2 - 1, t)^T$	$x^2 + x - y^2$	(-1,0)
19	$(t, t^2 - 1)^T$	$x^2 - y^2 - y$	(0,-1)
20	$(-t^2 - 1, 2t)^T$	$4x^2 + 4x - y^2$	(-1,0)
21	$(t+1,t^2+2)^T$	$y^2 - 2x^2 - 2$	(1,2)
22	$(t^2 - 2t + 3, t)^T$	$2y^2 - x^2 + 2$	(2,1)
23	$(t, t^2 - 1)^T$	$4y^2 + 4y - x^2$	
24	$(-t^2 - 1, t)^T$	$y^2 - 2x^2 - 2x$	
	$(t, 2t^2 - 1)^T$	$x^2 - 2x + y^2$	(1,1)
26	$(t,2t^2-1)^T$	$x^2 + y^2 - 2y$	(1,1)

Задача 2. Определить тип особых точек, написать уравнения касательных в этих точках, построить образ кривой.

1	$\alpha(t) = (t^2, -t^3 - t^2)^T$	2	$\alpha(t) = (\sin^3 t, \cos^3 t)^T$
3	$\alpha(t) = (-t^2 + 1, t^3 - t^2)^T$	4	$x^5 - (y - x^2)^2 = 0$
5	$y^2 = x^2 - x^4$	6	$\alpha(t) = (\operatorname{sh} t - t, \operatorname{ch} t - 1)^T$
7	$\alpha(t) = (t^2, -t^4 + t^5)^T$	8	$x^2 = y^2 - 4y^4$
9	$\alpha(t) = (t^2, -2t^4 + t^5)^T$	10	$\alpha(t) = (t^2/(1+t^2), t^3/(1+t^2))^T$
11	$\alpha(t) = (t - \sin t, 1 - \cos t)^T$	12	$y^2(2-x) = x^2(2+x)$
13	$\alpha(t) = (-t^4 + t^5, t^2)^T$	14	$\alpha(t) = (2t^3/(1+t^2), 2t^2/(1+t^2))^T$
15	$\alpha(t) = (-t^3 - t^2, t^2)^T$	16	$\alpha(t) = (t^3 - t^2, -t^2 + 1)^T$
17	$y^5 - (x - y^2)^2 = 0$	18	$\alpha(t) = (t^3 - 2t^2, t^2)^T$
19	$x^2 = y^2 - y^4$	20	$\alpha(t) = (-2t^4 + t^5, t^2)^T$
21	$\alpha(t) = (t^2, t^3 - 2t^2)^T$	22	$y^2(3-x) = x^2(3+x)$
23	$\alpha(t) = (1 - \cos t, t - \sin t)^T$	24	$\alpha(t) = (t^2, t^3 + t^2 - t^4)^T$
25	$\alpha(t) = (\operatorname{ch} t, t - \operatorname{sh} t)^T$	26	$x^{2}(2-y) = y^{2}(2+y)$

Задача 3.

В вариантах 1-6, 13-18 найти кривизну и кручение кривой в точке, написать уравнение соприкасающейся плоскости в этой точке.

 $B\ вариантах\ 7-12,\ 19-26$ доказать, что кривая целиком лежит в некоторой гиперплоскости. Найти последний вектор репера Френе, написать уравнение этой гиперплоскости.

N	$\alpha(t)$	N	$\alpha(t)$
1	$(t, 1-t, t^2/2)^T, t=2$	2	$(2\operatorname{ch} t, 2\operatorname{sh} t, 2t)^T, t = 0$
3	$(e^t \cos t, e^t \sin t, e^t)^T, t = 0$	4	$(\operatorname{ch} t, -\operatorname{sh} t, -t)^T, t = 1$
5	$(t, t^2/2, t^3/6)^T, t = 0$	6	$(1-t, t+t^2/2, t^2/2)^T, t=1$
7	$(2t, t^2, t^3 - t, t - 11)^T$	8	$(t^2 + t + 1, t, t^3, t^2 - t - 2)^T$
9	$(t^4 + t^2 + 1, t^2, t^4, t^3 + 2)^T$	10	$(t^3 + 7, t - 5, t^4 + t, t^4 - t)^T$
11	$(t^5, t^2 + t^5, t^2 + 1, t^3)^T$	12	$(t^3, t-4, t^3+t^2+t, t^2+1)^T$
13	$(e^t, e^t \cos t, e^t \sin t)^T, t = 0$	14	$(1+t, -t+t^2/2, t^2/2)^T, t=-1$

N	$\alpha(t)$	N	$\alpha(t)$
15	$(1-t, t, t^2/2)^T, t=2$	16	$(2t, 2\operatorname{ch} t, 2\operatorname{sh} t)^T, t = 0$
17	$(-t, \operatorname{ch} t, -\operatorname{sh} t)^T, t = 1$	18	$(t^2/2, -t^3/6, -t)^T, t = 0$
19	$(2t, 2t^2 - t, t^3 - t, t - 11)^T$	20	$(t^5, t^2 + 1, t^3, 5t^2 + t^5)^T$
21	$(t^3/3+t^2+1,t^2+1,t^3/3,t+3)^T$	22	$(t-3, t^4+t, t^3+5, t^4-t)^T$
23	$(t, t^2 + t + 2, t^3, t^2 - t - 2)^T$	24	$(t^4, t^2 + 2t + 2, t - 4, t^2 - t + 1)^T$
25	$(t, t^2 + t, t^3 + t^2, t^4)^T$	26	$(t^2 + t, 2t^2, t^3 - t, t^4 - t)^T$

Задача 4.

Bарианты 1-12. Две квадратичные кривые Безье заданы своими опорными точками P_0 , P_1 , P_2 и R_0 , R_1 , R_2 . Найти опорные точки квадратичной кривой Безье, соединяющей т. P_2 и R_0 так, чтобы на получившейся составной кривой (сплайне) не было изломов. Сделать чертеж. Можно ли аналогичным образом соединить точки P_0 и R_2 ? P_0 и R_0 ?

N	P_0	P_1	P_2	R_0	R_1	R_2
1	(0, -4)	(-3, -1)	(-2,1)	(1, 2)	(3,1)	(3, -2)
2	(-4, 2)	(-2, 3)	(-1, 1)	(1,1)	(3,3)	(6,2)
3	(-5,0)	(-8, -4)	(-5, -3)	(1,1)	(3,3)	(1,4)
4	(-2,1)	(-3, 4)	(0, -4)	(3, -2)	(3,1)	(-2,3)
5	(1, -2)	(4, -3)	(-4,1)	(-2,3)	(1,3)	(3, -2)
6	(-3, -3)	(-1, -6)	(2, -4)	(2, -1)	(-1,0)	(-4,0)
7	(2, -2)	(5, -3)	(-3,1)	(-1,3)	(2,3)	(4, -2)
8	(0,1)	(-2, 3)	(-4,1)	(-4, -4)	(-2, -7)	(1, -5)
9	(-3, -3)	(-1, -6)	(2, -4)	(1,2)	(-1,4)	(-3,2)
10	(0, -2)	(3, -3)	(4,0)	(3,3)	(-1,3)	(-2,1)
11	(1,2)	(-1, 4)	(-3, 2)	(-3, -3)	(-1, -6)	(2, -4)
12	(3,3)	(-1, 3)	(-2,1)	(0, -2)	(3, -3)	(4,0)

Варианты 13-26. Кривая Безье задана своими опорными точками P_0 , P_1, P_2 . Разбить эту кривую на две кривые Безье второго порядка точкой, отвечающей значению параметра t=1/2. Сделать чертеж.

N	P_0	P_1	P_2	N	P_0	P_1	P_2
13	(0,1)	(2,3)	(-2,5)	14	(-2,8)	(4,6)	(0,2)
15	(0,0)	(4,6)	(-2,8)	16	(1,0)	(3, 2)	(5, -2)
17	(-3, -3)	(1,5)	(3,7)	18	(-2,0)	(2,6)	(4, -2)
19	(-4,5)	(-2,1)	(4, -3)	20	(-3,3)	(1,5)	(3, -7)
21	(-3,5)	(-1, -1)	(3,3)	22	(4, -4)	(2,6)	(-2,0)
23	(-2,5)	(4, -1)	(6,3)	24	(3, -1)	(-1, 5)	(5,7)
25	(1, -3)	(5,1)	(7, -5)	26	(6,5)	(4, -1)	(-2,3)

Задача 5.

- 1,26. Найти длину кривой $u = 3v, \, 0 < v < 2,$ и угол между кривыми u=3v и u=v вдоль катеноида $f(u,v)=(a\operatorname{ch}\frac{u}{a}\cos v, a\operatorname{ch}\frac{u}{a}\sin v, u)^T.$ 2,25. Найти длину кривой $u=\pi/4, -\pi < v < \pi$, и угол между кривыми
- u = v и u = -v на эллипсоиде $f(u, v) = (a \cos u \cos v, a \cos u \sin v, c \sin u)^T$.
- 3,24. Найти длину кривой $u=2v,\,0< u<1,$ вдоль эллиптического параболоида $f(u, v) = (u \cos v, u \sin v, u^2)^T$.
- 4,23. Найти угол между векторами стандартного базиса касательного пространства в т. (2,0) и (2,1) зонтика Уитни $f(u,v)=(u,uv,v^2)^T$. Найти длину кривой u = 3, 0 < v < 2.
- 5,22. Найти длину кривой $u = -2v, \, 0 < v < 1,$ и угол между кривыми u = -2v и u = v вдоль катеноида $f(u, v) = (a \operatorname{ch} \frac{u}{a} \cos v, a \operatorname{ch} \frac{u}{a} \sin v, u)^T$.
- 6,21. Найти длину кривой $u = \pi/3, -\pi < v < \pi,$ и угол между кривыми u=v и u=-v на эллипсоиде $f(u,v)=(a\cos u\cos v,a\cos u\sin v,c\sin u)^T$.
- 7,20. Найти угол между векторами стандартного базиса касательного пространства в т. (2,0) и (2,1) обезьянего седла $f(u,v)=(u,v,u^3-1)$ $(3uv^2)^T$. Найти длину кривой u = 1, 0 < v < 1.
- 8,19. Найти длину кривой 2u = v, 0 < u < 1, вдоль эллиптического параболоида $f(u, v) = (2u\cos v, 2u\sin v, u^2)^T$.
- 9,18. Найти длину кривой $u=2v,\,0< u<1,$ вдоль конуса f(u,v)= $(au\cos v, au\sin v, u)^T$, и угол между кривыми $u-2=\pm v$.
- 10,17. Найти длину кривой u = av, 0 < u < 1, вдоль гиперболического параболоида $f(u,v) = (u,v,uv)^T$, и угол между векторами стандартного базиса касательного пространства в т. (1,1).

- 11,16. Найти длину кривой 2u = v, 0 < u < 1, вдоль конуса $f(u,v) = (au\cos v, au\sin v, u)^T$, и угол между кривыми $u-1=\pm v$.
- 12,15. Найти длину кривых v = const, $\frac{\pi}{6} < u < \frac{\pi}{2}$, вдоль псевдосферы $f(u,v) = (a \sin u \cos v, a \sin u \sin v, a (\ln \operatorname{tg}(u/2) + \cos u))^T$, $0 < u < \frac{\pi}{2}$, $0 < v < 2\pi$, и угол между кривыми $u \pm v = \pi/4$.
- 13,14. Найти длину кривой v = au, 0 < u < 1, вдоль гиперболического параболоида $f(u,v) = (u,v,uv)^T$, и угол между векторами стандартного базиса в т. (1,-1).

Задача 6.

- 1,14. Найти площадь "внутренней" (т.е. заключенной внутри цилиндра $x^2 + y^2 = a^2$) части поверхности тора
- $f(u,v) = ((a + b\cos u)\cos v, (a + b\cos u)\sin v, b\sin u)^T, 0 < u < 2\pi, 0 < v < 2\pi.$
- 2,15. Найти площадь полосы -1 < u < 1 на поверхности катеноида $f(u,v) = (a \operatorname{ch} \frac{u}{a} \cos v, a \operatorname{ch} \frac{u}{a} \sin v, u)^T, \, -\infty < u < +\infty, \, 0 < v < 2\pi.$
- 3,16. Найти площадь "внешней" (т.е. находящейся вне цилиндра $x^2 + y^2 = a^2$) части поверхности тора
- $f(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u)^T, 0 < u < 2\pi, 0 < v < 2\pi.$
 - 4,17. Найти объем области
- $f(u, v, w) = (w \cos u \cos v, w \cos u \sin v, w \sin u)^{T}, \ \pi/4 < u < \pi/2, \ -\pi < v < \pi, \ 0 < w < R.$
 - 5,18. Найти объем части тора
- $f(u,v,w) = ((a+w\cos u)\cos v, (a+w\cos u)\sin v, w\sin u)^T, \ 0 < u < 2\pi, \ 0 < v < 2\pi, \ 0 < w < b,$ заключенной внутри цилиндра $x^2 + y^2 = a^2$.
 - 6,19. Найти объем части тора
- $f(u,v,w) = ((a+w\cos u)\cos v, (a+w\cos u)\sin v, w\sin u)^T, \ 0 < u < 2\pi, \ 0 < v < 2\pi, \ 0 < w < b,$ находящейся вне цилиндра $x^2 + y^2 = a^2$.
- 7,20. Найти площадь полосы шириной 30 градусов вдоль экватора сферы
- $f(u,v) = (R\cos u\cos v, R\cos u\sin v, R\sin u)^{T}, -\pi/2 < u < \pi/2, -\pi < v < \pi.$
 - 8,21. Найти объем тора
- $f(u, v, w) = ((a + w \cos u) \cos v, (a + w \cos u) \sin v, w \sin u)^{T}, 0 < u < 2\pi, 0 < v < 2\pi, 0 < w < b.$
- 9,22. Найти площадь области шириной 30 градусов вокруг полюса сферы
- $f(u,v) = (R\cos u\cos v, R\cos u\sin v, R\sin u)^T, -\pi/2 < u < \pi/2, -\pi < v < \pi.$
- 10,23. Найти площадь области 0 < u < 1 на эллиптическом параболоиде
- $f(u,v) = (u\cos v, u\sin v, u^2)^T, \ 0 < u < \infty, \ -\pi < v < \pi.$

- 11,24. Найти площадь области, ограниченной кривой $u^2 + v^2 = 1$, на гиперболическом параболоиде $f(u,v) = (u,v,uv)^T$.
- 12,25. Найти площадь поверхности конуса, ограниченной вершиной конуса и кривой u=1,
- $f(u, v) = (au \cos v, au \sin v, u)^T, -\infty < u < \infty, -\pi < v < \pi.$
- 13,26. Найти площадь псевдосферы $f(u,v)=(a\sin u\cos v,a\sin u\sin v,a(\ln \operatorname{tg}(u/2)+\cos u))^T,\ 0< u<\frac{\pi}{2},$ $0< v<2\pi.$

Задача 7.

- 1. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллипсоиде $f(u,v) = (a\cos u\cos v, a\cos u\sin v, c\sin u)^T$.
- 2. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллиптическом параболоиде $f(u,v) = (u\cos v, u\sin v, u^2)^T$.
- 3. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллиптическом цилиндре $f(u,v)=(a\cos v,b\sin v,u)^T.$
- 4. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на торе $f(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u)^T, a > b.$
- 5. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на параболическом цилиндре $f(u,v)=(v,av^2,u)^T$.
- 6. Найти полную и среднюю кривизны, определить тип точек на гиперболическом параболоиде $f(u,v)=(u\operatorname{ch} v,u\operatorname{sh} v,u^2)^T$, а также главные направления в точках, лежащих на кривой v=0.
- 7. Найти матрицу основного оператора, полную и среднюю кривизны в произвольной точке катеноида $f(u,v) = (a \operatorname{ch}(u/a) \cos v, a \operatorname{ch}(u/a) \sin v, u)^T$. Определить тип точек.
- 8. Найти матрицу основного оператора, полную и среднюю кривизны в произвольной точке геликоида $f(u,v) = (u\cos v, u\sin v, v)^T$. Определить тип точек.
- 9. Найти матрицу основного оператора, полную и среднюю кривизны в произвольной точке гиперболического параболоида $f(u,v)=(u,v,uv)^T$. Определить тип точек.
- 10. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на гиперболическом цилиндре $f(u,v) = (a \operatorname{ch} v, b \operatorname{sh} v, u)^T$.

- 11. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на гиперболоиде $f(u,v)=(a\operatorname{ch} u\operatorname{cos} v,a\operatorname{ch} u\sin v,c\sin u)^T.$
- 12. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на гиперболоиде $f(u,v) = (a \operatorname{sh} u \operatorname{cos} v, a \operatorname{sh} u \operatorname{sin} v, c \operatorname{ch} u)^T$.
- 13. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершинах гиперболоида $x^2/a^2+y^2/4a^2-z^2/c^2=-1$.
- 14. Найти главные кривизны, полную и среднюю кривизны, а также главные направления в вершине параболоида $x^2 + y^2/4 z + 2 = 0$. Существуют ли направления, в которых нормальная кривизна равна 0? 1/2?
- 15. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершине параболоида $x^2/4a^2-y^2/a^2+z=0.$
- 16. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления, определить тип точек на конусе $f(u, v) = (u \cos v, u \sin v, u)^T$.
- 17. Найти матрицу основного оператора, полную и среднюю кривизны, главные и асимптотические направления в т. u=v=0 катеноида $f(u,v)=(a\operatorname{ch}(u/a)\cos v,a\operatorname{ch}(u/a)\sin v,u)^T.$
- 18. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершинах гиперболоида $x^2/4a^2+y^2/a^2-z^2/c^2=-1$.
- 19. Найти главные кривизны, полную и среднюю кривизны, а также главные направления в вершине параболоида $x^2/4+y^2+z-2=0$. Существуют ли в вершине направления, в которых нормальная кривизна равна $0?\ 1/2?$
- 20. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершине параболоида $x^2/a^2-y^2/4a^2+z=0.$
- 21. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления, определить тип точек на конусе $f(u,v) = (3u\cos v, 3u\sin v, u)^T$.
- 22. Найти матрицу основного оператора, полную и среднюю кривизны, главные и асимптотические направления в т. $u=0, v=\pi/2$ катеноида $f(u,v)=(a\operatorname{ch}(u/a)\cos v, a\operatorname{ch}(u/a)\sin v, u)^T$.
- 23. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллипсоиде $f(u,v) = (2\cos u\cos v, 2\cos u\sin v, \sin u)^T$. Существуют ли точки, где кривизна в каком-либо направлении равна 0? 1/2? 2? 5?

- 24. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллиптическом параболоиде $f(u,v) = (u\cos v, 3u\sin v, u^2)^T$. Существуют ли точки, где кривизна в каком-либо направлении равна 0? 1/3? -1/3? 3? -3?
- 25. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллиптическом цилиндре $f(u,v)=(2\cos v,\sin v,u)^T$. Существуют ли точки, где кривизна в какомлибо направлении равна $0?\ 1/2?\ -1/2?\ 2?\ -2?$
- 26. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллипсоиде $f(u,v) = (\cos u \cos v, \cos u \sin v, 2 \sin u)^T$. Существуют ли на нём точки, где кривизна в каком-либо направлении равна 0? 1/2? 2? 5?

Примеры решения задач

Задача 1.

Теоретические сведения.

Базис Френе плоской кривой $\alpha(t)=(x(t),y(t))^T$ содержит два единичных вектора – касательный $\vec{\tau}=\frac{\dot{\alpha}}{|\dot{\alpha}|}=(\frac{\dot{x}}{|\dot{\alpha}|},\frac{\dot{y}}{|\dot{\alpha}|})^T$ и нормальный $\vec{\nu}=(-\frac{\dot{y}}{|\dot{\alpha}|},\frac{\dot{x}}{|\dot{\alpha}|})^T,\,|\dot{\alpha}|^2=\dot{x}^2+\dot{y}^2.$ Репер Френе плоской кривой – это тройка $(\alpha(t);\vec{\tau}(t),\vec{\nu}(t))$, состоящая из точки на кривой и единичных касательного и нормального векторов в этой точке.

Рис. 1: Репер Френе

Кривизна k кривой $\alpha(t)$ находится по формуле

$$k = \frac{\det[\dot{\alpha} \ \ddot{\alpha}]}{|\dot{\alpha}|^3}.\tag{1}$$

Радиус окружности, соприкасающейся с кривой в т. $\alpha(t_0)$

$$R = |\alpha(t_0) - P(t_0)| = \frac{1}{|k(t_0)|}.$$

Точка $P(t_0)$ – центр соприкасающейся окружности,

$$P(t_0) = \alpha(t_0) + \frac{1}{k(t_0)} \vec{\nu}(t_0) = \alpha(t_0) + \frac{|\dot{\alpha}|^3}{\det[\dot{\alpha}\ \ddot{\alpha}]} \left(-\frac{\dot{y}}{|\dot{\alpha}|}, \frac{\dot{x}}{|\dot{\alpha}|} \right)^T$$
$$= \alpha(t_0) + \frac{|\dot{\alpha}|^2}{\det[\dot{\alpha}\ \ddot{\alpha}]} (-\dot{y}, \dot{x})^T$$

называется центром кривизны кривой $\alpha(t)$ в момент t_0 .

Угол между кривыми $\alpha(t)$ и $\dot{\beta}(\theta)$ в точке их пересечения $\alpha(t_0) = \beta(\theta_0)$ можно найти как угол между их касательными векторами $\dot{\alpha}(t_0)$ и $\dot{\beta}(\theta_0)$.

Если кривая задана уравнением F(x,y)=0, то, выбрав нормаль $\vec{\nu}$ сонаправленной градиенту F, получим для базиса Френе

$$\vec{\nu} = \frac{\operatorname{grad} F}{|\operatorname{grad} F|} = \frac{(F'_x, F'_y)^T}{|\operatorname{grad} F|}, \quad \vec{\tau} = \frac{(F'_y, -F'_x)^T}{|\operatorname{grad} F|}.$$

Кривизна находится по формуле

$$k = \begin{vmatrix} F_{xx}'' & F_{xy}'' & F_{x}' \\ F_{xy}'' & F_{yy}'' & F_{y}' \\ F_{x}' & F_{y}' & 0 \end{vmatrix} |\operatorname{grad} F|^{-3} = \frac{2F_{xy}''F_{x}'F_{y}' - F_{xx}''F_{y}'^{2} - F_{yy}''F_{x}'^{2}}{(F_{x}'^{2} + F_{y}'^{2})^{3/2}}, \quad (2)$$

центром соприкасающейся в т. $M_0(x_0, y_0)$ окружности является точка

$$P = (x_0, y_0)^T + (F_x'^2 + F_y'^2) \begin{vmatrix} F_{xx}'' & F_{xy}'' & F_x'' \\ F_{xy}'' & F_y'' & F_y' \\ F_x' & F_y' & 0 \end{vmatrix}^{-1} (F_x', F_y')^T.$$
(3)

- **1.1.** Даны две кривые, одна задана параметрически, $\alpha(t) = (t t)$ $(1,t^2)^T$, другая задана уравнением $x^2 + 4y^2 - 4 = 0$.
- а) Найти репер Френе и кривизну кривой $\alpha(t)$.
- б) Найти угол между кривой $\alpha(t)$ и кривой, заданной уравнением F(x,y) = 0, в т. $M_0(0,1)$.
- в) Для обеих кривых написать уравнения соприкасающихся окружностей в т. M_0 , сделать чертеж.

Решение. a) $\dot{\alpha}(t)=(1,2t)^T,\ \vec{\tau}=\frac{\dot{\alpha}(t)}{|\dot{\alpha}(t)|}=\frac{1}{\sqrt{1+4t^2}}(1,2t)^T,\ \vec{\nu}=\frac{1}{\sqrt{1+4t^2}}(-2t,1)^T.$ Репер Френе для плоской кривой – это тройка $(\alpha(t);\vec{\tau}(t),\vec{\nu}(t))$. Вектор нормали $\vec{\nu}$ получается из $\vec{\tau}$ поворотом против часовой стрелки на 90° . Чтобы построить $\vec{\nu}$ по $\vec{\tau}$, нужно поменять местами координаты вектора $\vec{ au}$ и затем изменить знак у первой координаты. Находим $\ddot{lpha}(t)=(0,2)^T$ и кривизну по формуле (1),

$$k = \frac{\det[\dot{\alpha}\ddot{\alpha}]}{|\dot{\alpha}|^3} = \frac{\begin{vmatrix} 1 & 0 \\ 2t & 2 \end{vmatrix}}{(1+4t^2)^{3/2}} = \frac{2}{(1+4t^2)^{3/2}}.$$

б) Первый способ. Уравнение второй кривой, заданной неявной функцией $F(x,y) = x^2 + 4y^2 - 4 = 0$, перепишем в виде $x^2/4 + y^2 = 1$. Это уравнение эллипса с полуосями 2 и 1, в параметрическом виде $\beta(\theta) =$ $(2\cos\theta,\sin\theta)^T,\;0\;<\;\theta\;<\;2\pi,\;$ касательный вектор дается производной $\dot{eta}(heta)=(-2\sin heta,\cos heta)^T$. Угол находится как угол между касательными векторами $\dot{\alpha}(1) = (1,2)^T$ и $\dot{\beta}(\pi/2) = (-2,0)^T$ в т. $\alpha(1) = \beta(\pi/2) = M_0$, $\cos \varphi = \frac{-1}{\sqrt{5}}$ (для соответствующего острого угла имеем $\frac{1}{\sqrt{5}}$).

Второй способ (без использования параметризации кривой). Угол между кривыми в точке M_0 , т.е. угол между касательными к кривым в этой точке, равен углу между нормалями к кривым в этой точке. Нормалью к неявно заданной кривой является градиент $\operatorname{grad} F = (F'_x, F'_y)^T =$ $(x/2,2y)^T$, grad $F(M_0)=(0,2)^T$. Удобно вместо последнего вектора взять коллинеарный ему вектор единичной длины $\vec{n} = (0,1)^T$.

Для кривой $\alpha(t)$ имеем $M_0=\alpha(1)$. Далее, $\dot{\alpha}(1)=(1,2)^T$ и $\vec{N}=$ $(-2,1)^T$ – нормаль к кривой $\alpha(t)$ в точке $M_0, |\vec{N}| = \sqrt{5}$. Находим косинус угла между кривыми в точке M_0 :

$$\cos \varphi = \frac{\langle \vec{n}, \vec{N} \rangle}{\sqrt{\langle \vec{n}, \vec{n} \rangle \cdot \langle \vec{N}, \vec{N} \rangle}} = \frac{\langle \vec{n}, \vec{N} \rangle}{|\vec{n}| \cdot |\vec{N}|} = \frac{0 \cdot (-2) + 1 \cdot 1}{1 \cdot \sqrt{5}} = \frac{1}{\sqrt{5}}.$$

в) Радиус соприкасающейся окружности к кривой α в точке $\alpha(t)$ равен 1/|k(t)|, а ее центр – это точка $\alpha(t)+\frac{1}{k(t)}\vec{\nu}(t)$. Для точки M_0 центр соприкасающейся окружности – это точка $\alpha(1)+\frac{1}{k(1)}\vec{\nu}(1)$, ее радиус равен 1/|k(1)|. Находим: $\vec{\nu}(1)=\frac{1}{\sqrt{5}}(-2,1)^T$, $k(1)=\frac{2}{5\sqrt{5}},\ 1/k(1)=5\sqrt{5}/2$. Поэтому $\alpha(1)+\frac{1}{k(1)}\vec{\nu}(1)=(0,1)^T+\frac{5}{2}(-2,1)^T=(-5,7/2)^T$ и $(x+5)^2+(y-7/2)^2=125/4$

Рис. 2: К задаче 1.1

уравнение искомой окружности.

Ту же самую задачу для второй кривой можно решить несколькими способами.

 $\Pi e p в ы й \ c no c o б$ — параметризовать кривую. Поскольку вторая кривая — это эллипс, ее можно параметризовать следующим образом: $\beta(t) = (2\cos t, \sin t)^T$, точка M_0 получается при $t = \pi/2$. Если же в качестве параметра в окрестности точки M_0 взять x, то, поскольку $y = \sqrt{1 - x^2/4}$, получаем еще одну параметризацию $\gamma(x) = (x, \sqrt{1 - x^2/4})^T$, точка M_0 отвечает x = 0. Имея параметризацию, можно дальше действовать так же, как в задаче для кривой α .

 $Bторой\ cnocoб.$ Найдем уравнение соприкасающейся окружности, используя формулу (3) для вычисления координат центра кривизны неявно заданной кривой. Имеем

$$F'_x = x/2, \ F'_y = 2y, \ F''_{xx} = 1/2, \ F''_{yy} = 2, \ F''_{xy} = 0,$$

откуда получаем: $F_x'(M_0)=0$, $F_y'(M_0)=2$ и $F_x'^2(M_0)+F_y'^2(M_0)=4$. Так как $F_x'(M_0)=0$, то координата центра соприкасающейся окружности $P_x=x_0=0$. Определитель в точке M_0 равен

$$\begin{vmatrix} 1/2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 0 \end{vmatrix} = -2,$$

поэтому $P_y = 1 + 2 \cdot \frac{4}{-2} = -3$. Итак, точка P(0, -3) – центр кривизны.

Радиус соприкасающейся окружности равен расстоянию $|PM_0|$ между точками P и M_0 , т.е. равен 4. Зная центр и радиус окружности, пишем ее уравнение: $x^2 + (y+3)^2 = 16$.

Третий способ. В нашей задаче можно воспользоваться теоремой о том, что в окрестности точки существует такая декартова прямоугольная система координат, в которой точка M_0 служит началом координат и кривая является графиком функции $y_1 = \varphi(x_1)$, причем $y_1 = \frac{1}{2}kx_1^2 + o(x_1^2)$, где k – кривизна.

 $\overset{\sim}{\mathrm{B}}$ окрестности точки M_0 введем систему координат $x_1=x,\,y_1=y\!-\!1,$

$$y = \sqrt{1 - x^2/4} = 1 - \frac{1}{2} \cdot \frac{x^2}{4} + o(x^2)$$
, r. e. $y_1 = -\frac{1}{2} \cdot \frac{x_1^2}{4} + o(x_1^2)$.

Следовательно, $k = -\frac{1}{4}$, и, значит, радиус соприкасающейся окружности равен 4. Поскольку кривая ориентирована в окрестности точки M_0 по возрастанию $x_1 = x$, единичная нормаль равна $(0,1)^T$, поэтому центр соприкасающейся окружности имеет координаты $(0,1)^T - 4(0,1)^T = -3(0,1)^T = (0,-3)^T$ а ее уравнение – вид $x^2 + (u+1)^T = (0,1)^T = (0,1)^T = (0,1)^T = (0,1)^T = (0,1)^T$

 $(0,1)^T - 4(0,1)^T = -3(0,1)^T = (0,-3)^T$, а ее уравнение – вид $x^2 + (y+3)^2 = 16$.

Задача 2.

Теоретические сведения.

Особая точка плоской napamempuчески заданной кривой определяется как точка, в которой $\dot{\alpha}(t)=0$. Тип точки кривой $\alpha(t)$ задается парой чисел (p,q), где p - порядок первой отличной от нуля производной $\alpha^{(p)} \neq 0$, а q - порядок производной, следующей за p-й, не коллинеарной $\alpha^{(p)}$.

Если p=1, то точка является регулярной. Если p>1, то при четных p и q имеем точку возврата 2-го рода ("клюв", ветви по одну сторону от касательной), при четном p и нечетном q — точку возврата 1-го рода (ветви по разные стороны от касательной). Направляющий вектор касательной — вектор первой по счету (т.е. p-й) производной, отличной от нуля.

Особая точка плоской кривой, заданной неявной функцией F(x,y)=0 – это точка на кривой, для которой grad $F=(F'_x,F'_y)=0$. В такой точке поведение функции определяется ее вторым дифференциалом d^2F . Второй дифференциал $d^2F(x,y)=F''_{xx}(x-x_0)^2+2F''_{xy}(x-x_0)(y-y_0)+$

 $F''_{yy}(y-y_0)^2$ (если не все вторые частные производные равны нулю) представляет собой квадратичную форму с определителем $\Delta = \left| \begin{array}{cc} F''_{xx} & F''_{xy} \\ F''_{xy} & F''_{yy} \end{array} \right|.$

Будем искать в т. (x_0, y_0) направления, по которым d^2F обращается в 0. Если $\Delta > 0$ (квадратичная форма положительно или отрицательно определена), то $d^2F(x_0, y_0)$ обращается в ноль только в точке (x_0, y_0) –

изолированной особой точке.

Если $\Delta < 0$, то форма не является знакоопределенной и в некотором базисе она может быть приведена к каноническому виду, $d^2F = a^2(\tilde{x} - \tilde{x}_0)^2 - b^2(\tilde{y} - \tilde{y}_0)^2 = 0$. Это уравнения пары пересекающихся прямых (касательных) в точке самопересечения кривой (узле).

Если $\Delta=0$, и хотя бы одна из производных отлична от нуля, то канонический вид $a^2(\tilde{x}-\tilde{x}_0)^2=0$ (каксательные двух ветвей совпадают), т. (x_0,y_0) – точка возврата (1 или 2 рода) или точка самоприкосновения (касательная $\tilde{x}=\tilde{x}_0$), или узел.

2.1. Определить тип особых точек, написать уравнения касательных в этих точках, построить образ кривой

$$\alpha(t) = (t^4, t^2 - t^5)^T.$$

Решение.

Производная $\dot{\alpha}(t)=(4t^3,2t-5t^4)^T$ векторфункции $\alpha(t)=(t^4,t^2-t^5)^T$ обращается в ноль при t=0, а значит $\alpha(0)=(0,0)^T$ – особая точка. Находим первые две отличные от нуля производные в этой точке:

$$\ddot{\alpha}(t) = (12t^2, 2 - 20t^3)^T, \quad \ddot{\alpha}(0) = (0, 2)^T,$$

$$\ddot{\alpha}(t) = (24t, -60t^2)^T, \quad \ddot{\alpha}(0) = (0, 0)^T,$$

$$\alpha^{(4)}(t) = (24, -120t)^T, \quad \alpha^{(4)}(0) = (24, 0)^T.$$

Это производные 2-го и 4-го порядков, поэтому тип точки $(p,q)=(2,4),\ p$ и q четные, а значит $(0,0)^T$ — точка возврата 2-го рода и

Рис. 3: К задаче 2.1

ветви кривой лежат по одну сторону от касательной. Касательный вектор в особой точке задается первой отличной от нуля производной, это $\ddot{\alpha}(0) = (0,2)^T$, уравнение касательной x=0. Составляем таблицу значений x,y в зависимости от параметра t:

t	-2	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	2
\boldsymbol{x}	16	1	$\frac{1}{16}$	0	$\frac{1}{16}$	1	16
y	36	2	$\frac{9}{32}$	0	$\frac{7}{32}$	0	-28

2.2. Определить тип особых точек, написать уравнения касательных в этих точках, построить образ кривой

$$y^2 = 2x^2 + x^3.$$

Решение.

Кривая – прообраз нуля функции $F(x,y) = 2x^2 + x^3 - y^2$. Найдем точки, в которых нарушаются условия теоремы о неявной функции, т.е. dF=0 или $F_x'=F_y'=0$: $F_x'=4x+3x^2=0,\ F_y'=-2y=0.$ Имеем 2 точки, A(0,0) и $B(-\frac{4}{3},0)$. Проверим, лежат ли эти точки на кривой: F(0,0)=0, $F(-\frac{4}{3},0)=\frac{32}{27}\neq 0$. Таким образом, A лежит на кривой и является особой точкой, B не лежит на кривой.

Находим вторые производные в точке A(0,0): $F''_{xx} = 4 + 6x = 4$, $F''_{yy} = -2$, $F''_{xy} = 0$. Т.о., второй дифференциал представляет собой квадратичную форму с определи-

телем
$$\Delta = \begin{vmatrix} 4 & 0 \\ 0 & -2 \end{vmatrix} = -8$$
. Будем

искать в т.A направления, в которых d^2F обращается в ноль.

Форма является знакопеременной, условие $d^2F = 4(x-0)^2 - 2(y-1)^2$ $(0)^2 = 2(\sqrt{2}x + y)(\sqrt{2}x - y) = 0$ удовлетворяется при $\sqrt{2}x \pm y = 0$ – это уравнения 2-х касательных, А – точка самопересечения (узел).

Рис. 4: К задаче 2.2

Для построения образов кривых полезно найти точки пересечения с осью Ox, подставив y = 0 в F(x, y) = 0: $2x^2 + x^3 = 0$, $x^2(2 + x) = 0$, точки x = 0; x = -2 и заметить, что F(x, -y) = F(x, y), а значит, кривая симметрична относительно оси Ox. Для рассматриваемой кривой также легко найти еще несколько точек: при x=-1 $y=\pm 1$, при x=1 $y=\pm\sqrt{3}$.

Задача 3.

Теоретические сведения.

Построение базиса Френе в пространстве \mathbb{R}^3 :

$$\vec{\tau} = \frac{\dot{\alpha}}{|\dot{\alpha}|}, \ \vec{\beta} = \frac{\dot{\alpha} \times \ddot{\alpha}}{|\dot{\alpha} \times \ddot{\alpha}|}, \ \vec{\nu} = \vec{\beta} \times \vec{\tau}.$$

Кривизна и кручение кривой $\alpha(t)$ в \mathbb{R}^3 даются формулами

$$k = \frac{|\dot{\alpha} \times \ddot{\alpha}|}{|\dot{\alpha}|^3}, \qquad \varkappa = \frac{\langle \dot{\alpha}, \ddot{\alpha}, \ddot{\alpha} \rangle}{|\dot{\alpha} \times \ddot{\alpha}|^2},$$

где $\langle \dot{\alpha}, \ddot{\alpha}, \ddot{\alpha} \rangle = \det[\dot{\alpha} \ \ddot{\alpha} \ \ddot{\alpha}]$ – смешанное произведение векторов.

Три условия являются равнозначными: кручение $\varkappa = 0$ для всех t, кривая является плоской, вектор бинормали β не зависит от t. При этом вектор бинормали перпендикулярен плоскости, в которой лежит кривая.

3.1. Найти кривизну и кручение винтовой линии $x = a \cos t, y =$ $a\sin t, z = bt.$

Решение.

 $\alpha(t) = (a\cos t, a\sin t, bt)^T$

 $\dot{\alpha}(t) = (-a\sin t, a\cos t, b)^{T}$

 $\ddot{\alpha}(t) = (-a\cos t, -a\sin t, 0)^T$

Вычисляем
$$|\dot{\alpha} \times \ddot{\alpha}| = \begin{vmatrix} i & -a \sin t & -a \cos t \\ j & a \cos t & -a \sin t \\ k & b & 0 \end{vmatrix} = ab \sin t \, i - ab \cos t \, j + a^2 \, k,$$

$$|\dot{\alpha}(t)| = \sqrt{a^2 + b^2}, \ |\dot{\alpha} \times \ddot{\alpha}| = a\sqrt{a^2 + b^2}$$

$$|\dot{\alpha}(t)| = \sqrt{a^2 + b^2}, \ |\dot{\alpha} \times \ddot{\alpha}| = a\sqrt{a^2 + b^2}$$

Кривизна $k = \frac{|\dot{\alpha} \times \ddot{\alpha}|}{|\dot{\alpha}|^3} = \frac{a}{a^2 + b^2}.$

Чтобы найти кручение, надо посчитать третью производную

Чтооы наити кручение, надо посчитать третью производную
$$\ddot{\alpha}(t) = (a\sin t, -a\cos t, 0)^T, \quad \langle \dot{\alpha}, \ddot{\alpha}, \ddot{\alpha} \rangle = \begin{vmatrix} -a\sin t & -a\cos t & a\sin t \\ a\cos t & -a\sin t & -a\cos t \\ b & 0 & 0 \end{vmatrix} = ba^2.$$
 Кручение
$$\varkappa = \frac{\langle \dot{\alpha}, \ddot{\alpha}, \ddot{\alpha} \rangle}{|\dot{\alpha} \times \ddot{\alpha}|^2} = \frac{ba^2}{a^2(a^2 + b^2)} = \frac{b}{(a^2 + b^2)}.$$

Кручение
$$\varkappa = \frac{\langle \dot{\alpha}, \ddot{\alpha}, \dddot{\alpha} \rangle}{|\dot{\alpha} \times \ddot{\alpha}|^2} = \frac{ba^2}{a^2(a^2 + b^2)} = \frac{b}{(a^2 + b^2)}.$$

3.2. Показать, что кривая $x = 1 + 3t + 2t^2, y = 2 - 2t + 5t^2, z = 1 - t^2$ плоская; найти вектор бинормали и плоскость, в которой она лежит.

Решение:

$$\alpha(t) = (1 + 3t + 2t^2, 2 - 2t + 5t^2, 1 - t^2),$$

$$\dot{\alpha}(t) = (3 + 4t, -2 + 10t, -2t),$$

 $\ddot{\alpha}(t) = (4, 10, -2).$

$$\dot{\alpha}(t) \times \ddot{\alpha}(t) = \begin{vmatrix} 3+4t & 4 & i \\ -2t+10 & 10 & j \\ -2t & -2 & k \end{vmatrix} = 2 \begin{vmatrix} 3 & 2 & i \\ -2 & 5 & j \\ 0 & -1 & k \end{vmatrix} = 2(2i+3j+19k).$$

Так как этот вектор (сонаправленный с бинормалью β) не зависит от t, кривая является плоской, бинормаль $\beta = \frac{2i+\hat{3}j+19k}{\sqrt{374}}$.

Выберем любую точку на кривой; t=0 отвечает точка M(1,2,1).

Кривая лежит в плоскости 2(x-1) + 3(y-2) + 19(z-1) = 0.

Задача 4.

Теоретические сведения. Квадратичная кривая Безье

$$\mathbf{B}(t) = (1-t)^2 \mathbf{P}_0 + 2t(1-t)\mathbf{P}_1 + t^2 \mathbf{P}_2, \quad t \in [0, 1],$$

задается 3 опорными точками $\mathbf{P}_0, \mathbf{P}_1, \mathbf{P}_2$ и представляет собой отрезок параболы. Производные

Рис. 5: Квадратичная кривая

$$\mathbf{B}'(0) = 2(\mathbf{P}_1 - \mathbf{P}_0), \quad \mathbf{B}'(1) = 2(\mathbf{P}_2 - \mathbf{P}_1), \quad \text{Безье}$$

представляющие собой направляющие вектора касательных в конечных точках кривой \mathbf{P}_0 и \mathbf{P}_2 – это вектора $\mathbf{P}_0\mathbf{P}_1$ и $\mathbf{P}_1\mathbf{P}_2$. Следовательно, точка \mathbf{P}_1 – это точка пересечения касательных к кривой в точках \mathbf{P}_0 и \mathbf{P}_2 .

4.1. Две квадратичные кривые Безье заданы своими опорными точками $P_0(-1,0)$, $P_1(1,1)$, $P_2(2,0)$ и $R_0(3,0)$, $R_1(4,1)$, $R_2(5,1)$. Найти опорные точки квадратичной кривой Безье, соединяющей т. $P_2(2,0)$ и $R_0(3,0)$ так, чтобы на получившейся составной кривой (сплайне) не было изломов. Можно ли аналогичным образом соединить точки P_0 и R_2 ? P_0 и R_0 ? Сделать чертеж.

Решение.

Пусть Q — точка пересечения прямых, проходящих через $P_1(1,1)$, $P_2(2,0)$ и $R_0(3,0)$, $R_1(4,1)$ соответственно. Тогда квадратичная кривая Безье с опорными точками P_2 , Q, R_0 и является искомой частью сплайна (кривая Безье под-

Рис. 6: К задаче 4.1

ходит к первой и последней опорным точкам касаясь соответственно первого и последнего звеньев).

Найдем пересечение прямых. Первая прямая имеет направляющий вектор $\overrightarrow{P_1P_2}=(1,-1)^T$, и проходит через P_2 . Поэтому ее уравнение: $\frac{x-2}{1}=\frac{y}{-1}$, или y=2-x. Вторая прямая проходит через точку R_0 и ее направляющий вектор равен $\overrightarrow{R_0R_1}=(1,1)^T$, поэтому ее уравнение имеет вид: $\frac{x-3}{1}=\frac{y}{1}$, или y=x-3. Находим координаты точки Q, решая систему из двух уравнений прямых. Имеем 2-x=x-3, поэтому x=2.5 и y=-0.5. Искомая кривая Безье задается точками $P_2(2,0)$, Q(2.5,-0.5), $R_0(3,0)$.

В двух других случаях будут получаться точки возврата и построенный сплайн не будет гладким. Чтобы сплайн получался гладким, в ломаной, построенной по точкам $P_1,\,P_2,\,Q,\,R_0,\,R_1$, не должно быть наложения звеньев, т.е. звенья должны пересекаться только в концевых точках. По другому можно сказать, что на прямой, проходящей через точки $P_1,\,P_2,\,Q$, точки P_1 и Q должны располагаться по разные стороны от точки $Q,\,R_0,\,R_1$, точки Q и R_1 должны располагаться по разные стороны от точки R_0 .

4.2. Кривая Безье задана своими опорными точками $P_0(0,-1)$, $P_1(2,3)$, $P_2(4,-1)$. Разбить эту кривую на две кривые Безье второго порядка точкой, отвечающей значению параметра t=1/2. Сделать чертеж.

Решение.

Найдем точку $R=B(\frac{1}{2})$, подставляя t=1/2 в уравнение исходной квадратичной кривой Безье $B(t)=(1-t)^2P_0+2t(1-t)P_1+t^2P_2$:

$$R = B\left(\frac{1}{2}\right) = \frac{1}{4}P_0 + \frac{1}{2}P_1 + \frac{1}{4}P_2 = (2,1).$$

Осталось найти средние опорные точки R_1 и R_2 новых кривых P_0, R_1, R и R, R_2, P_2 как точки пересечения касательных в их конеч-

Рис. 7: К задаче 4.2

ных опорных точках. Находим сначала касательную к исходной кривой Безье P в точке R(2,1). Касательный вектор $B'(t)=-2(1-t)P_0+2(1-2t)P_1+2tP_2=P_2-P_0=(4,0)$, уравнение касательной y=1. Касательные векторы в точках P_0 и P_2 – это соответственно $P_0P_1=(2,4)$ и $P_1P_2=(2,-4)$, уравнения касательных $\frac{x}{2}=\frac{y+1}{4},\,\frac{x-4}{-2}=\frac{y+1}{4}$, или $x=2y+2,\,y=-2x+7$. Находим их точки пересечения R_1 и R_2 с касательной y=1 к исходной кривой в т. R: $R_1(1,1),\,R_2(3,1)$.

Задача 5.

Теоретические сведения.

Матрица первой фундаментальной формы поверхности $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ находится как матрица из скалярных произведений векторов стандартного базиса касательного пространства: $g_{ik} = \langle f'_{u^i}, f'_{u^k} \rangle$. Длина кривой вдоль поверхности с матрицей первой фундаментальной формы $[g_{ik}]$:

$$l[\alpha]|_a^b = \int_a^b |\dot{\alpha}(t)| dt = \int_a^b \sqrt{g_{ij}\dot{u}^i(t)\dot{u}^j(t)} dt = \int_a^b \sqrt{g_{ij}du^idu^j}.$$

Последнее выражение удобно, когда явная параметризация неизвестна, но известно соотношение между дифференциалами du^i (т.е. когда кривая задана изначально уравнением в поверхностных координатах).

Рассмотрим пару кривых вдоль поверхности f:

$$\alpha_1(t) = f(u_1(t)), \quad \alpha_2(\theta) = f(u_2(\theta)).$$

Пусть они пересекаются в точке $p=u_1(t_0)=u_2(\theta_0)\in U$; это означает, что они пересекаются на поверхности в точке $f(p)=\alpha_1(t_0)=\alpha_2(\theta_0),$ $\dot{\alpha}_1(t_0)=f'_{u^i}(p)\dot{u}^i_1(t_0),\,\dot{\alpha}_2(\theta_0)=f'_{u^i}(p)\dot{u}^i_2(\theta_0),$

$$\cos \varphi = \frac{\langle \dot{\alpha}_1(t_0), \dot{\alpha}_2(\theta_0) \rangle}{|\dot{\alpha}_1(t_0)||\dot{\alpha}_2(\theta_0)|} = \frac{g_{ij}\dot{u}_1^i(t_0)\dot{u}_2^j(\theta_0)}{\sqrt{g_{ij}\dot{u}_1^i(t_0)\dot{u}_1^j(t_0)}\sqrt{g_{ij}\dot{u}_2^i(\theta_0)\dot{u}_2^j(\theta_0)}}$$

5.1. Найти длину кривой u = v, $0 < v < 2\pi$, вдоль прямого геликоида $f(u,v) = (u\cos v, u\sin v, av)^T$. Под каким углом пересекаются кривые u = v и u = 0?

Решение.

Находим вектора стандартного базиса касательного пространства

$$f'_{u} = (\cos v, \sin v, 0)^{T}, \quad f'_{v} = (-u \sin v, u \cos v, a)^{T}.$$

Матрица 1-й фундаментальной формы строится как их матрица Грама,

$$g = \begin{bmatrix} 1 & 0 \\ 0 & u^2 + a^2 \end{bmatrix}, \quad ds^2 = du^2 + (a^2 + u^2)dv^2.$$

На кривой $u=v=t,\,du=dt,\,dv=dt,\,$ поэтому её длина

$$l = \int ds = \int \sqrt{du^2 + (a^2 + u^2)dv^2} = \int_0^{2\pi} \sqrt{1 + a^2 + t^2} dt.$$

Проинтегрируем по частям, и из полученного соотношения выразим l.

$$\begin{split} l &= \int_0^{2\pi} \sqrt{1 + a^2 + t^2} \, dt = t \sqrt{1 + a^2 + t^2} \Big|_0^{2\pi} - \int_0^{2\pi} t \, d \left(\sqrt{1 + a^2 + t^2} \right) = \\ &= \sqrt{1 + a^2 + 4\pi^2} - \int_0^{2\pi} \frac{t^2 \, dt}{\sqrt{1 + a^2 + t^2}} = \\ &= \sqrt{1 + a^2 + 4\pi^2} - \int_0^{2\pi} \frac{(1 + a^2 + t^2) \, dt}{\sqrt{1 + a^2 + t^2}} + \int_0^{2\pi} \frac{(1 + a^2) dt}{\sqrt{1 + a^2 + t^2}} = \\ &= \sqrt{1 + a^2 + 4\pi^2} - l + (1 + a^2) \ln(t + \sqrt{1 + a^2 + t^2}) \Big|_0^{2\pi} = \\ &= -l + \sqrt{1 + a^2 + 4\pi^2} + (1 + a^2) \ln\left(\frac{2\pi + \sqrt{1 + a^2 + 4\pi^2}}{\sqrt{1 + a^2}}\right), \end{split}$$

откуда находим:

$$l = \frac{1}{2}\sqrt{1+a^2+4\pi^2} + \frac{1}{2}(1+a^2)\ln\left(\frac{2\pi+\sqrt{1+a^2+4\pi^2}}{\sqrt{1+a^2}}\right).$$

Отметим, что рассмотренный выше интеграл можно также вычислить, приведя к виду $\int \sqrt{1+x^2}dx$, после чего использовать подстановку $x=\sinh\theta$ или $x=\tan\theta$.

Для нахождения угла между кривыми u=v и u=0 параметризуем их: $\alpha_1(t)=(t,t)^T,\ \alpha_2(\theta)=(0,\theta)^T.$ Кривые пересекаются в точке u=v=0 при $t=\theta=0.$ Касательные векторы в этой точке получаем, дифференцируя, $\dot{\alpha}_1(0)=(1,1)^T,\ \alpha_2'(0)=(0,1)^T.$ Далее стандартным образом находим скалярное произведение и длины этих векторов с помощью матрицы Грама, т.е. матрицы 1-й фундаментальной формы

геликоида. При u=v=0 матрица равна $\begin{bmatrix} 1 & 0 \\ 0 & a^2 \end{bmatrix}$, поэтому скалярное произведение векторов $(\xi_1,\eta_1)^T$ и $(\xi_2,\eta_2)^T$ равно $\xi_1\xi_2+a^2\eta_1\eta_2$. Таким образом,

$$\langle \dot{\alpha}_1(0), \dot{\alpha}_1(0) \rangle = 1 \cdot 1 + a^2 \cdot 1 \cdot 1 = 1 + a^2,$$

 $\langle \alpha'_2(0), \alpha'_2(0) \rangle = 0 \cdot 0 + a^2 \cdot 1 \cdot 1 = a^2,$
 $\langle \dot{\alpha}_1(0), \alpha'_2(0) \rangle = 1 \cdot 0 + a^2 \cdot 1 \cdot 1 = a^2,$

и, следовательно,

$$\cos \varphi = \frac{\langle \dot{\alpha}_1(0), \alpha_2'(0) \rangle}{\sqrt{\langle \dot{\alpha}_1(0), \dot{\alpha}_1(0) \rangle \cdot \langle \alpha_2'(0), \alpha_2'(0) \rangle}} = \frac{a^2}{\sqrt{(1+a^2)a^2}} = \frac{a}{\sqrt{1+a^2}}.$$

Задача 6.

Теоретические сведения.

Объем *п*-мерной поверхности находится по формуле:

$$V[f] = \int_{U} \sqrt{\det g(p)} \, du^{1} \dots du^{n}.$$

6.1. Найти площадь полусферы

$$f(u, v) = (R \cos u \cos v, R \cos u \sin v, R \sin u)^{T}$$
$$= R(\cos u \cos v, \cos u \sin v, \sin u)^{T}.$$

Решение.

Находим вектора стандартного базиса касательного пространства:

$$f'_u = R(-\sin u \cos v, -\sin u \sin v, \cos u)^T,$$

$$f'_v = R(-\cos u \sin v, \cos u \cos v, 0)^T.$$

$$f_v'' = R(-\cos u \sin v, \cos u \cos v, 0)^T$$

Находим элементы матрицы первой фундаментальной формы:
$$g_{11} = \langle f'_u, f'_u \rangle = R^2 (\sin^2 u \cos^2 v + \sin^2 u \sin^2 v + \cos^2 u) = R^2,$$

$$g_{22} = \langle f'_v, f'_v \rangle = R^2 (\cos^2 u \sin^2 v + \cos^2 u \cos^2 v) = R^2 \cos^2 u,$$

$$g_{22} = \langle f'_v, f'_v \rangle = R^2(\cos^2 u \sin^2 v + \cos^2 u \cos^2 v) = R^2 \cos^2 u$$

$$g_{12} = g_{21} = \langle f'_u, f'_v \rangle = \langle f'_v, f'_u \rangle = 0,$$

$$g = \begin{bmatrix} \langle f'_u, f'_u \rangle & \langle f'_u, f'_v \rangle \\ \langle f'_v, f'_u \rangle & \langle f'_v, f'_v \rangle \end{bmatrix} = \begin{bmatrix} R^2 & 0 \\ 0 & R^2 \cos^2 u \end{bmatrix} \implies \sqrt{\det g} = R^2 \cos u.$$

На верхней полусфере $u \in [0, \pi/2], v \in [0, 2\pi]$, поэтому площадь равна:

$$\int_0^{\pi/2} du \int_0^{2\pi} R^2 \cos u \, dv = R^2 \int_0^{\pi/2} \cos u \, du \int_0^{2\pi} dv = R^2 \left(\sin u \big|_0^{\pi/2} \right) 2\pi = 2\pi R^2.$$

6.2. Найти объем шара

 $f(u, v, w) = (w \cos u \cos v, w \cos u \sin v, w \sin u)^T$;

$$u \in (-\frac{\pi}{2}; \frac{\pi}{2}); v \in (-\pi; \pi); 0 < w < R.$$

Решение.

 $f'_u = (-w \sin u \cos v, -w \sin u \sin v, w \cos u)^T,$ $f'_v = (-w \sin v \cos u, w \cos u \cos v, 0)^T,$ $f'_w = (\cos u \cos v, \cos u \sin v, \sin u)^T.$

$$f'_v = (-w\sin v\cos u, w\cos u\cos v, 0)^T$$

$$f''_{vv} = (\cos u \cos v, \cos u \sin v, \sin u)^T$$

Находим элементы матрицы первой фундаментальной формы:
$$g_{11} = \langle f'_u, f'_u \rangle = w^2 \cos^2 v \sin^2 u + w^2 \sin^2 v \sin^2 u + w^2 \cos^2 u = w^2$$
,

$$g_{11} - \langle f_u, f_v \rangle - w \cos^2 v \sin^2 u + w \sin^2 v \sin^2 u + w \cos^2 u - w ,$$

$$g_{12} = \langle f_u', f_v' \rangle = w^2 \cos v \cos u \sin u \sin v - w^2 \cos v \cos u \sin u \sin v = 0,$$

$$g_{22} = \langle f_v', f_v' \rangle = w^2 \cos^2 u \sin^2 v + w^2 \cos^2 v \cos^2 u) = w^2 \cos^2 u,$$

$$g_{33} = \langle f_w', f_w' \rangle = \cos^2 u \cos^2 v + \cos^2 u \sin^2 v + \sin^2 u = 1,$$

$$g_{22} = \langle f_v', f_v' \rangle = w^2 \cos^2 u \sin^2 v + w^2 \cos^2 v \cos^2 u \rangle = w^2 \cos^2 u,$$

$$g_{33} = \langle f'_w, f'_w \rangle = \cos^2 u \cos^2 v + \cos^2 u \sin^2 v + \sin^2 u = 1,$$

$$g_{13} = g_{23} = 0,$$

$$g_{13} = g_{23} = 0,$$

$$g = \begin{bmatrix} w^2 & 0 & 0 \\ 0 & w^2 \cos^2 u & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \sqrt{\det g} = w^2 \cos u.$$

$$V = \iiint_{V} w^{2} \cos u du dv dw = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos u du \int_{-\pi}^{\pi} dv \int_{0}^{R} w^{2} dw = \frac{4\pi R^{3}}{3}.$$

Задача 7.

Теоретические сведения.

Элементы матрицы второй фундаментальной формы гиперповерхности $f:U\to\mathbb{R}^{n+1}$ находятся по формуле

$$h_{ij} = \langle \vec{N}, f_{u^i u^j}^{"} \rangle = \frac{\langle f_{u^i}^{'} \times \dots \times f_{u^n}^{'}, f_{u^i u^j}^{"} \rangle}{\sqrt{\det g}} = \frac{\det[f_{u^1}^{'} \dots f_{u^n}^{'} f_{u^i u^j}^{"}]}{\sqrt{\det g}},$$

где $f'_{u^i} \times \cdots \times f'_{u^n}$ – обобщенное векторное произведение. В частном случае $f: U \subseteq R^2 \to R^3$:

$$h_{ij} = \frac{\det[f'_{u^1} \ f'_{u^2} \ f''_{u^i u^j}]}{\sqrt{\det g}},$$

где в числителе стоит смешанное произведение

$$\langle f'_{u^1}, f'_{u^2}, f''_{u^i u^j} \rangle = \det[f'_{u^1} f'_{u^2} f''_{u^i u^j}].$$

В стандартном базисе $f'_{u^1}, \ldots, f'_{u^n}$ касательного пространства $T_p f$ матрица основного оператора гиперповерхности L_p имеет вид:

$$[L_p] = [g_{ij}]^{-1} [h_{ij}].$$

 $K(p)=\det\left[L_{p}
ight]$ – полная (Гауссова) кривизна гиперповерхности f в точке p,

 $H(p) = \frac{1}{n} \operatorname{Tr}[L_p]$ – средняя кривизна гиперповерхности f в точке p.

Собственные значения $k_1 \dots k_n$ оператора L_p называются главными нормальными кривизнами.

Собственные вектора $X_1 ... X_n$ оператора L_p называются главными направлениями.

На двумерных поверхностях \mathbb{R}^3 в зависимости от значений полной (Гауссовой) кривизны $K=k_1k_2$ и средней кривизны $H=\frac{1}{2}(k_1+k_2)$ различается 4 типа точек.

- 1) Эллиптическая точка.
- K > 0 (k_1 и k_2 одного знака) поверхность вблизи точки f(p) представляет собой эллиптический параболоид (с точностью до $o(x^2 + y^2)$). Поверхность загибается по главным направлениям в одну и ту же сторону (относительно касательной плоскости): точки, близкие к точке f(p), лежат по одну сторону от касательной плоскости.
 - 2) Гиперболическая точка.

K < 0 (k_1 и k_2 разных знака) – гиперболический параболоид (седло). Поверхность загибается по главным направлениям в разные стороны; точки, близкие к точке f(p), могут лежать по разные стороны от касательной плоскости.

- 3) Параболическая точка.
- $K=0,\ H\neq 0$ параболический цилиндр (поверхность искривлена только в одном направлении); всегда есть сколь угодно близкие к f(p) точки, лежащие на касательной плоскостии.
 - $4) \ K = 0, \ H = 0$ точка уплощения.

Главные нормальные кривизны k_1 и k_2 задают экстремальные значения кривизны в точке, в промежуточных направлениях кривизна принимает промежуточные значения между k_1 и k_2 .

7.1. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек конуса $f(u, v) = (u\cos v, u\sin v, au)^{T}.$

Решение.

Находим частные производные первого и второго порядков от f:

Паходим частные производные первого и второго по
$$f'_u = (\cos v, \sin v, a)^T.$$
 $f'_v = (-u \sin v, u \cos v, 0)^T,$ $f''_{uu} = (0, 0, 0)^T,$ $f''_{uv} = (-\sin v, \cos v, 0)^T,$ $f''_{vv} = (-u \cos v, -u \sin v, 0)^T.$ Находим матрицу первой фундаментальной формы:

$$g_{11} = \langle f'_u, f'_u \rangle = 1 + a^2, \ g_{12} = g_{21} = \langle f'_u, f'_v \rangle = 0, \ g_{22} = \langle f'_v, f'_v \rangle = u^2,$$

$$g = \begin{bmatrix} 1+a^2 & 0 \\ 0 & u^2 \end{bmatrix}, \qquad \sqrt{\det g} = u\sqrt{1+a^2}, \qquad g^{-1} = \begin{bmatrix} \frac{1}{1+a^2} & 0 \\ 0 & \frac{1}{u^2} \end{bmatrix}.$$

Далее находим элементы матрицы второй фундаментальной формы (определители получаем разложением по третьей строке):

$$\sqrt{\det g} \ h_{11} = \det[f'_u f'_v f''_{uu}] = \langle f'_u, f'_v, f''_{uu} \rangle = \begin{vmatrix} \cos v & -u \sin v & 0 \\ \sin v & u \cos v & 0 \\ a & 0 & 0 \end{vmatrix} = 0,$$

$$h_{11} = 0.$$

$$\sqrt{\det g} \ h_{12} = \det[f'_u f'_v f''_{uv}] = \langle f'_u, f'_v, f''_{uv} \rangle = \begin{vmatrix} \cos v & -u \sin v & -u \sin v \\ \sin v & u \cos v & u \cos v \\ a & 0 & 0 \end{vmatrix} = 0,$$

$$h_{12} = h_{21} = 0.$$

$$\sqrt{\det g} \ h_{22} = \det[f'_u f'_v f''_{uv}] = \langle f'_u, f'_v, f''_{uv} \rangle = \begin{vmatrix} \cos v & -u \sin v & -u \cos v \\ \sin v & u \cos v & -u \sin v \\ a & 0 & 0 \end{vmatrix} = au^2,$$

$$h_{22} = \frac{au}{\sqrt{1+a^2}}.$$

Здесь $\langle \cdot, \cdot, \cdot \rangle$ – смешанное произведение трех векторов в \mathbb{R}^3 .

Итак, матрица второй фундаментальной формы имеет вид:

$$II = [h_{ij}] = \begin{bmatrix} 0 & 0 \\ 0 & \frac{au}{\sqrt{1+a^2}} \end{bmatrix}.$$

Далее, находим матрицу основного оператора поверхности:

$$L = g^{-1} \cdot \text{II} = [g_{ij}]^{-1} [h_{ij}] = \begin{bmatrix} \frac{1}{1+a^2} & 0\\ 0 & \frac{1}{u^2} \end{bmatrix} \begin{bmatrix} 0 & 0\\ 0 & \frac{au}{\sqrt{1+a^2}} \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 0 & \frac{a}{u\sqrt{1+a^2}} \end{bmatrix}.$$

Следовательно,

$$k_1 = 0$$
, $k_2 = \frac{a}{u\sqrt{1+a^2}}$, $K = k_1k_2 = 0$, $H = \frac{k_1 + k_2}{2} = \frac{a}{2u\sqrt{1+a^2}}$.

Базисные векторы f'_u , f'_v – собственные векторы оператора L. Они определяют главные направления. Конус является поверхностью вращения, меридианы – это исходящие из вершины конуса прямые. Эти прямые и ортогональные им касательные к параллелям дают главные направления. Отметим также, что исходящие из вершины прямые, лежащие на конусе, являются линиями кривизны и одновременно асимптотическими линиями.

Поскольку K = 0, а $H \neq 0$, точки на конусе параболические.

7.2. Найти главные нормальные кривизны и главные направления в вершине z=c эллипсоида $\frac{x^2}{3^2}+\frac{y^2}{2^2}+\frac{z^2}{c^2}=1$. Существуют ли в этой вершине направления, в которых кривизна равна 0? -c/5? c/5? -c/2? Pewenue.

Для решения задачи можно было бы найти матрицу основного оператора гиперповерхности, однако вычисления сильно сократятся, если мы воспользуемся теоремой о том, что в окрестности точки такой поверхности существует такая декартова прямоугольная система координат, что поверхность является графиком функции $z = \varphi(x,y)$, причем $z = \frac{1}{2}(k_1x^2 + k_2y^2) + o(x^2 + y^2)$, где k_1 и k_2 – кривизны.

В окрестности вершины z=c имеем $z=c\sqrt{1-(\frac{x^2}{3^2}+\frac{y^2}{2^2})}=c(1-\frac{1}{2}(\frac{x^2}{3^2}+\frac{y^2}{2^2})+o(x^2+y^2)),$ $z=c-\frac{c}{2\cdot 3^2}x^2-\frac{c}{2\cdot 2^2}y^2+o(x^2+y^2),$ и в точке (0,0,c) $k_1=-\frac{c}{3^2},$ $k_2=-\frac{c}{2^2}.$ (Чтобы привести уравнение к форме, указанной выше, надо сдвинуть начало отсчета в т. z=c.)

Главные направления в рассматриваемой вершине совпадают с направлениями первых двух координатных осей. В промежуточных направлениях кривизна принимает промежуточные значения между $k_1 = -\frac{c}{3^2}$ и $k_2 = -\frac{c}{2^2}$, а значит, существуют направления, в которых кривизна принимает значение $-\frac{c}{5}$, другие значения из приведенного списка кривизна принимать не может.

Вопросы к экзамену

- 1. Аффинное пространство. Обобщенное векторное произведение.
- 2. Векторные функции скалярного аргумента. Кривая. Регулярность, длина кривой.
- 3. Эквивалентность кривых, кривые единичной скорости. Натурально параметризованные кривые.
- 4. Касание плоских кривых. Соприкасающаяся окружность.
- 5. Репер Френе плоской кривой, уравнения Френе, нахождение кривизны. Натуральные уравнения кривой.
- 6. Особые точки плоских кривых, заданных параметрически.
- 7. Особые точки плоских кривых, заданных уравнением F(x,y) = 0.
- 8. Кривые Безье, их свойства.
- 9. Кривые общего вида. Репер и уравнения Френе. Основная теорема локальной теории кривых. Теорема о последней кривизне.
- 10. Построение репера Френе, нахождение кривизны и кручения кривой в 3-х мерном пространстве.
- 11. Дифференциал гладкого отображения. Определение поверхности. Касательное пространство.
- 12. Первая фундаментальная форма поверхности. Внутренняя геометрия поверхностей: нахождение длин, углов, объемов.
- 13. Криволинейные системы координат в \mathbb{R}^n .
- 14. Замена поверхностных координат. Изометричность поверхностей.
- 15. Основной оператор гиперповерхности. Вторая фундаментальная форма поверхности.
- 16. Внешняя геометрия гиперповерхности. Кривизны и главные направления, линии кривизны.
- 17. Локальное строение гиперповерхности, типы точек.
- 18. Нормальная кривизна гиперповерхности. Теорема Менье, формула Эйлера для нахождения кривизны, асимптотические направления.
- 19. Поверхности Безье.