Fancy Fence

ledereen weet dat Balázs het mooiste hek heeft. Het hek bestaat uit N secties. De secties zijn rechthoeken die naast elkaar op de grond staan. Sectie i heeft hoogte h_i , en breedte w_i . De hoogte en breedte zijn integers.

We zoeken naar fancy rechthoeken in dit hek. Een rechthoek is fancy als:

- De zijkanten horizontaal of verticaal zijn, en een integer lengte hebben.
- De afstand van de rechthoek tot de grond een integer is.
- De afstand tussen de rechthoek en de linkerkant van de eerste sectie een integer is
- · Deze volledig op de secties ligt.

Wat is het aantal fancy rechthoeken?

Dit getal kan erg groot zijn, daarom zijn we geinteresseerd in het getal modulo 10⁹ + 7.

Invoer

Op de eerste regel staat een integer *N*, het aantal secties.

Op de tweede regel staan N integers, gescheiden door een spatie; het _i_-de getal is h_i .

Op de derde regel staan N integers, gescheiden door een spatie; het _i_-de getal is w_i .

Uitvoer

Je moet een enkele integer printen, het aantal fancy rechthoeken modulo $10^9 + 7$. De uitvoer komt dus uit de reeks 0, 1, 2, ..., $10^9 + 6$.

Voorbeelden, plaatjes en randvoorwaarden

Zie Engelse tekst.

Fancy Fence

Everybody knows that Balázs has the fanciest fence in the whole town. It's built up from N fancy sections. The sections are rectangles standing closely next to each other on the ground. The ith section has integer height h_i and integer width w_i .

We are looking for fancy rectangles on this fancy fence.

A rectangle is fancy if:

- its sides are either horizontal or vertical and have integer lengths
- the distance between the rectangle and the ground is integer
- the distance between the rectangle and the left side of the first section is integer
- it's lying completely on sections

What is the number of fancy rectangles?

This number can be very big, so we are interested in it modulo $10^9 + 7$.

Input

The first line contains N, the number of sections.

The second line contains N space-separated integers, the ith number is h_i .

The third line contains N space-separated integers, the ith number is w_i .

Output

You should print a single integer, the number of fancy rectangles modulo $10^9 + 7$. So the output range is $0, 1, 2, \ldots, 10^9 + 6$.

Examples

Input	Output
2	12
1 2	
1 2	

1

v2

Explanation

There are 5 fancy rectangles of shape:	

There are 3 fancy rectangles of shape:	

	i	i
	!	!
	i	i
	!	!
	i	i
	:	:
There is 1 fancy rectangle of shape:		

rnere	1S	1	rancy	rectangle	OI	snape.	

There is 1 fancy rectangle of shape:

Constraints

$$1 \le N \le 10^5 1 \le h_i, w_i \le 10^9$$

Time limit: $0.1 \mathrm{\ s}$

Memory limit: 32 MiB

Grading

Subtask	Points	Constraints
1	0	sample
2	12	$N \leq 50$ and $h_i \leq 50$ and $w_i = 1$ for all i
3	13	$h_i = 1 \text{ or } h_i = 2 \text{ for all } i$
4	15	all h_i are equal
5	15	$h_i \le h_{i+1}$ for all $i \le N-1$
6	18	$N \le 1000$
7	27	no additional constraints

2

v2