Group Assignment 3

Part A (Textbook Chapter 4.8 Exercises: Q1, Q6, Q8)

Problem 1. *Problem 1:* Using a little bit of algebra, prove that (4.2) is equivalent to (4.3). In other words, the logistic function representation and the logit representation for the logistic regression model are equivalent.

Answer. Solution:

Let

$$p(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}.$$

We want to show this is equivalent to

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

Proof:

$$p(X) = \frac{1}{1 + e^{-z}}, \text{ where } z = \beta_0 + \beta_1 X.$$

Then

$$1 - p(X) = 1 - \frac{1}{1 + e^{-z}} = \frac{1 + e^{-z} - 1}{1 + e^{-z}} = \frac{e^{-z}}{1 + e^{-z}}.$$

Hence,

$$\frac{p(X)}{1 - p(X)} = \frac{\frac{1}{1 + e^{-z}}}{\frac{e^{-z}}{1 + e^{-z}}} = \frac{1}{e^{-z}} = e^{z}.$$

Taking the natural logarithm on both sides,

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \log(e^z) = z = \beta_0 + \beta_1 X.$$

Thus, (4.2) and (4.3) are indeed equivalent.

Problem 6: Logistic Regression Probability Estimate

Answer. Solution:

(a) Given that $\beta_0 = -6$, $\beta_1 = 0.05$, and $\beta_2 = 1$, we estimate the probability of getting an A for a student studying 40 hours with a GPA of 3.5 as follows:

$$P(Y=1) = \frac{1}{1 + e^{-(-6 + 0.05 \cdot 40 + 1 \cdot 3.5)}} = \frac{1}{1 + e^{-(-6 + 2 + 3.5)}} = \frac{1}{1 + e^{-0.5}} \approx 0.378 \text{ (37.8\%)}.$$

(b) To find the number of hours a student with a GPA of 3.5 needs to study to have a 50% chance of getting an A, we set P(Y = 1) = 0.5 and solve for X_1 :

$$0.5 = \frac{1}{1 + e^{-(-6 + 0.05 \cdot X_1 + 1 \cdot 3.5)}}$$

Simplifying:

$$0.5(1 + e^{-(-6+0.05 \cdot X_1 + 3.5)}) = 1$$

$$1 + e^{-(-6+0.05 \cdot X_1 + 3.5)} = 2$$

$$e^{-(-6+0.05 \cdot X_1 + 3.5)} = 1$$

$$-(-6+0.05 \cdot X_1 + 3.5) = 0$$

$$6 - 0.05 \cdot X_1 - 3.5 = 0$$

$$2.5 - 0.05 \cdot X_1 = 0$$

$$-0.05 \cdot X_1 = -2.5$$

$$X_1 = \frac{2.5}{0.05} = 50$$

Therefore, the student would need to study 50 hours to have a 50% chance of getting an A in the class.

Problem 8: Comparison of Logistic Regression and K-Nearest Neighbors

Answer. Solution:

We have two classification methods:

1. Logistic Regression:

Training error: 20%

• Test error: 30%

2. 1-Nearest Neighbor (K=1):

Average error: 18%

Even though KNN (K=1) has a lower average error, it is prone to overfitting and does not generalize well. Logistic regression, despite having a higher test error, is more stable and interpretable.

Thus, logistic regression is the better choice for classifying new observations in this case. However, using a better K value (e.g., K=5 or K=10) for KNN might improve its performance.

Part B (Stock Market Data: Logistic Regression & LDA)

Problem 1. Problem 1: (a)–(d) Logistic Regression on the Stock Market Data

Answer. Solution:

- (a) Compute the testing error rate using all predictors Lag1, Lag2, Lag3, Lag4, Lag5.
- (b) Identify which predictors can be removed to reduce the testing error (based on p-values or other criteria).
- (c) Recompute the testing error after removing the less significant predictors.
- (d) Given Lag1 = 2.1 and Lag2 = -0.5, calculate the predicted probability of the market going up.

Problem 2: (a)–(c) LDA on the Stock Market Data

Answer. Solution:

- (a) Calculate $Pr(Y = \mathsf{UP})$ and $Pr(Y = \mathsf{DOWN})$ based on the training set.
- (b) Compute the mean vector of X (the predictors) for each class (UP vs. DOWN).
- (c) Discuss whether using a 70% posterior probability threshold ($Pr(Y = \mathsf{UP}|\mathbf{X} = x) \ge 0.70$) is feasible or advisable for predicting a market increase.