Seifert van Kampen Theorem

MAT327

Let (G, \cdot) be an arbitrary group. Denote its identity element as 1, and for arbitrary $x \in G$, denote its inverse as x^{-1} , and $x^0 = 1$. Let $x^n = \underbrace{x \cdot x \cdot \cdots x}_{x}$.

Definition 1. Suppose $\{G_{\alpha}\}$ is a collection of subgroups of G. These subgroups **generate** G if for any $x \in G$ we have

$$x = x_1 \cdot x_2 \cdot \cdot \cdot x_n$$

where $x_i \in G_{\alpha_i}$. The above product is a **word** representing x. A **reduced word** is one where no two adjacent elements in the product are in the same subgroup.

Definition 2. Let G have a collection $\{G_{\alpha}\}$ as subgroups. Suppose $G_{\alpha_1} \cap G_{\alpha_2} = \{1\}$ when $\alpha_1 \neq \alpha_2$. Then G is the **free product** of G_{α} is for any $x \in G$, there is a unique reduced word representing x:

$$G = \prod_{\alpha \in J} G_{\alpha}$$

Definition 3. Let $\{G_{\alpha}\}_{{\alpha}\in J}$ be a family of groups. Suppose G is a group, and $i_{\alpha}:G_{\alpha}\to G$ are monomorphisms. If G is the free product of $\{i_{\alpha}(G_{\alpha})\}$, then G is the **external free product**.

Definition 4. Let G be a group, and $\{a_{\alpha}\}$ be a family of elements of G. $\{a_{\alpha}\}$ generate G is every element of G can be written as a product of the $\{a_{\alpha}\}$. If $\{a_{\alpha}\}$ is finite, G is finitely generated. Suppose each a_{α} generates an **infinite** cyclic group (think \mathbb{Z}) G_{α} of G. If G is a free product of $\{G_{\alpha}\}$, then G is said to be **free**.

Example 1. Free group with one generator. If one element $\{a\}$ generates the free group G, then elements take the form

$$a, a^{-1}, a^3, \varnothing$$

and G is isomorphic to \mathbb{Z} .

SVK Lecture p.2

Example 2. Free group with two generators. Two elements $\{a, b\}$ generate the free group G. Elements take the form

$$a, b, ababa^3b, ab^{-4}$$

and is denoted $\mathbb{Z} * \mathbb{Z}$. In algebraic topology, this can be thought of the fundamental group at the wedge of two loops a, b, and our elements denote travelling around the loops in clockwise/counterclockwise directions!

Lemma 1. Let G be a group. Let $\{a_{\alpha}\}_{{\alpha}\in G}$ be a system of free generators of G. Given any group H, and a family $\{y_n\}$ of elements of H, there exists (!) a homomorphism $h: G \to H$ such that $h(a_{\alpha}) = y_{\alpha}$ for each α .

Definition 5. Let $\{a_{\alpha}\}_{{\alpha}\in J}$ be arbitrary indexed family, G_{α} denote the set of all symbols of the form $a_{\alpha}^n, n \in \mathbb{Z}$. We can make G_{α} into a group $(a^n \cdot a^m = a^{n+m},$ and a^{-n} inverse). The **external free product** of G_{α} is called the free group on the elements of a_{α} . Free groups are isomorphic if and only if the sets of free generators have the same cardinality.

Definition 6. Given G, let $\{a_{\alpha}\}_{{\alpha}\in J}$ be a family of generators for G. Let F be the free group of the elements $\{a_{\alpha}\}$. Take $h: F \to G$, $h(a_{\alpha}) = a_{\alpha} \in G$. h extends to a surjective homomorphism $F \to G$. Letting $N = \ker(h)$, then

$$F/N \cong G$$

and each element is called a **relation.** We may specify N by a family $\{r_{\beta}\}$ of all elements of F such that these elements together with their conjugates generate N. N is called the least normal subgroup of F that contains $\{r_{\beta}\}$. We denote the **presentation** of G as

$$\langle \{a_{lpha}\} : \{r_{eta}\}
angle$$

Theorem 1 (Seifert van Kampen). Let $X = U_1 \cup U_2$ where U_1, U_2 are open in X. Let $U_1 \cap U_2 \neq \emptyset$, and $U_1, U_2, U_1 \cap U_2$ are path connected. Consider the commutative diagram

$$U_1 \cap U_2 \xrightarrow{\phi_1} U_1$$

$$\downarrow^{\phi_2} \qquad \qquad \downarrow^{\psi_1}$$

$$U_2 \xrightarrow{\psi_2} X$$

Let $x_0 \in U_1 \cap U_2$. We may consider the induced homomorphisms

$$\pi_1(U_1 \cap U_2, x_0) \xrightarrow{\phi_1^*} \pi_1(U_1, x_0)
\downarrow^{\phi_2^*} \qquad \qquad \downarrow^{\psi_1^*}
\pi_1(U_2, x_0) \xrightarrow{-\psi_2^*} \pi_1(X, x_0)$$

SVK Lecture p.3

Given the presentations

$$\pi_1(U_1 \cap U_2, x_0) = \langle S : R \rangle, \quad \pi_1(U_1, x_0) = \langle S_1 : R_1 \rangle, \quad \pi_1(U_2, x_0) = \langle S_2 : R_2 \rangle$$

The Seifert van Kampen theorem states that

$$\pi_1(X, x_0) = \langle S_1 \cup S_2 : R \cup R_2 \cup R_3 \rangle$$

This theorem is a powerful tool to compute fundamental groups of complex spaces by looking at smaller parts of the space.