Fonction définie par une intégrale

Etude de fonctions définies par une intégrale

Exercice 1 [00531] [correction]

Soit $f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{1+x^3+t^3}$.

- a) Montrer que f est définie sur \mathbb{R}^+ .
- b) A l'aide du changement de variable u = 1/t, calculer f(0).
- c) Montrer que f est continue est décroissante.
- d) Déterminer $\lim f$.

Exercice 2 [00532] [correction]

Soit

$$g(x) = \int_0^{+\infty} \frac{e^{-tx^2} dt}{1 + t^3}$$

- a) Calculer g(0) en réalisant le changement de variable t=1/u.
- b) Etudier les variations de q sur son domaine de définition.
- c) Etudier la limite de q en $+\infty$.

Exercice 3 [00533] [correction]

Soit

$$f: x \mapsto \int_0^{\pi/2} \frac{\cos t}{t+x} \, \mathrm{d}t$$

- a) Montrer que f est définie, continue sur $\mathbb{R}^{+\star}$. Etudier les variations de f.
- b) Déterminer les limites de f en 0^+ et $+\infty$.
- c) Déterminer un équivalent de f en 0^+ et $+\infty$.

Exercice 4 [00534] [correction]

a) Justifier que l'intégrale suivante est définie pour tout x>0

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

- b) Justifier la continuité de f sur son domaine de définition.
- c) Calculer f(x) + f(x+1) pour x > 0.
- d) Donner un équivalent de f(x) quand $x \to 0^+$ et la limite de f en $+\infty$.

Exercice 5 [00535] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$$

- a) Montrer que f est dérivable sur \mathbb{R} et exprimer f'(x).
- b) Calculer f(0) et $\lim_{t \to \infty} f$.
- c) On note g l'application définie par $g(x) = f(x^2)$. Montrer

$$g(x) + \left(\int_0^x e^{-t^2} dt\right)^2 = \frac{\pi}{4}$$

d) Conclure

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

Exercice 6 [00536] [correction]

Soit f la fonction définie par $f(x) = \int_0^{\pi/2} \sin^x(t) dt$. a) Montrer que f est définie et positive sur $]-1, +\infty[$.

- b) Montrer que f est C^1 et préciser sa monotonie.
- c) Former une relation entre f(x+2) et f(x) pour tout x > -1.
- d) On pose pour x > 0, $\varphi(x) = x f(x) f(x-1)$.

Montrer que $\forall x > 0, \varphi(x+1) = \varphi(x)$. Calculer $\varphi(n)$ pour $n \in \mathbb{N}^*$.

e) Déterminer un équivalent à f en -1^+ .

Exercice 7 [00537] [correction]

Soit $f: x \mapsto \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$.

- a) Montrer que f est définie et continue sur \mathbb{R}^+ .
- b) Montrer que f est dérivable sur $\mathbb{R}^{+\star}$ et solution de l'équation différentielle

$$y - y' = \frac{\sqrt{\pi}}{2\sqrt{x}}$$

Exercice 8 [00538] [correction]

Soit

$$f: x \mapsto \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$$

Enoncés

Montrer que f est solution sur $\mathbb{R}^{+\star}$ de limite nulle en $+\infty$ de l'équation différentielle

$$y'' + y = \frac{1}{x}$$

Exercice 9 [00540] [correction]

Soit f une application continue de $\mathbb{R} \times [a, b]$ dans \mathbb{R} .

Expliquer pour quoi f est uniformément continue sur $S \times [a,b]$ pour tout segment S de \mathbb{R} .

En déduire que $F: x \mapsto \int_a^b f(x,t) dt$ est continue sur \mathbb{R} .

Pour $x \in \mathbb{R}$, on pose $g(x) = \int_0^1 e^{xt} dt$. A l'aide de la question précédente, étudier la continuité de g. Retrouver le résultat en calculant g(x).

Exercice 10 Centrale MP [00541] [correction]

On considère les fonctions f et g définies sur \mathbb{R}^+ par :

$$f(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt \text{ et } g(x) = \int_0^{+\infty} \frac{\sin t}{x+t} dt$$

a) Montrer que f et g sont de classe \mathcal{C}^2 sur $\mathbb{R}^{+\star}$ et qu'elles vérifient l'équation différentielle

$$y'' + y = \frac{1}{x}$$

- b) Montrer que f et g sont continues en 0
- c) En déduire que

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 11 [00542] [correction]

- a) Justifier la convergence de l'intégrale $I = \int_0^{+\infty} \frac{\sin t}{t} dt$.
- b) Pour tout $x \ge 0$, on pose $F(x) = \int_0^{+\infty} \frac{e^{-xt} \sin t}{t} dt$.

Déterminer la limite de F en $+\infty$.

- c) Justifier que F est dérivable sur $]0,+\infty[$ et calculer F'
- d) En admettant la continuité de F en 0 déterminer la valeur de I.

Exercice 12 [00543] [correction]

Pour $x \in \mathbb{R}^+$ et $t \ge 0$, on pose $f(x,t) = e^{-xt}$ sinct où sinc (lire sinus cardinal) est la fonction $t \mapsto \frac{\sin t}{t}$ prolongée par continuité en 0.

Pour $n \in \mathbb{N}$, on pose $u_n(x) = \int_{n\pi}^{(n+1)\pi} f(x,t) dt$.

- a) Montrer que $u_n(x) = (-1)^n \int_0^{\pi} g_n(x, u) du$ avec $g_n(x, u)$ qu'on explicitera.
- b) Montrer que la série de fonctions de terme général u_n converge uniformément sur \mathbb{R}^+ .
- c) On pose $U(x) = \sum_{n=0}^{+\infty} u_n(x)$. Justifier que U est continue et expliciter U sous la forme d'une intégrale convergente.
- d) Montrer que U est de classe C^1 sur $]0, +\infty[$ et calculer U'(x).
- e) Expliciter U(x) pour x > 0 puis la valeur de $U(0) = \int_0^{+\infty} \frac{\sin t}{t} dt$

Exercice 13 [00544] [correction]

Soient $f: I \times \mathbb{R} \to \mathbb{R}$ et $u, v: I \to \mathbb{R}$ continues.

Montrer que $x \mapsto \int_{u(x)}^{v(x)} f(x,t) dt$ est continue.

Exercice 14 Centrale MP [02491] [correction]

On considère la fonction suivante I définie par :

$$\forall x \in \mathcal{D}, I(x) = \int_0^{\pi/2} (\sin t)^x dt.$$

- a) Déterminer le domaine de définition \mathcal{D} .
- b) Montrer que I est de classe \mathcal{C}^{∞} sur \mathcal{D} .
- c) Calculer I(0), I(1), I(2), I(3), I(4).
- d) Trouver une relation simple entre I(x+2) et I(x).
- e) Soit $n \in \mathbb{N}^*$. Que vaut I(n)I(n-1)?
- f) Déterminer des équivalents simples de I aux extrémités de \mathcal{D} .

Exercice 15 Mines-Ponts MP [02878] [correction]

a) Pour quels x de $\mathbb R$ l'intégrale :

$$\int_0^{\pi/2} (\sin t)^x \, \mathrm{d}t$$

existe-t-elle? Dans ce cas, soit f(x) sa valeur.

- b) Montrer que f est de classe \mathcal{C}^1 sur son intervalle de définition.
- c) Que dire de

$$x \mapsto (x+1)f(x)f(x+1)$$
?

Enoncés

Exercice 16 Mines-Ponts MP [02871] [correction]

On pose $f(x) = \int_0^{+\infty} \frac{\sin(xt)}{e^t - 1} dt$.

- a) définition de f.
- b) Continuité et dérivabilité de f.
- c) Ecrire f(1) comme somme de série.

Exercice 17 Mines-Ponts MP [02875] [correction]

Soit $\Omega = \{z \in \mathbb{C}/\text{Re}z > -1\}$. Si $z \in \Omega$, soit $f(z) = \int_0^1 \frac{t^z}{1+t} dt$. a) Montrer que f est définie et continue sur Ω .

- b) Donner un équivalent de f(x) quand x tend vers -1.
- c) Donner un équivalent de f(z) quand $\text{Re}z \to +\infty$.

Exercice 18 Mines-Ponts MP [02880] [correction]

Montrer que, pour tout x réel positif, $\int_0^{+\infty} \frac{\arctan(x/t)}{1+t^2} dt = \int_0^x \frac{\ln t}{t^2-1} dt$.

Exercice 19 Mines-Ponts MP [02882] [correction]

On pose, pour x > 0,

$$f(x) = \frac{1}{x} \int_0^{+\infty} \frac{1 - e^{-tx}}{1 + t^2} dt$$

Montrer que f est de classe C^2 sur $]0,+\infty[$ et trouver des équivalents simples de f en 0 et en $+\infty$.

Exercice 20 [00294] [correction]

Soient $f: I \to \mathbb{R}$ une fonction de classe \mathcal{C}^{∞} et $a \in \mathbb{R}$ tels que

$$f(a) = f'(a) = \dots = f^{(\alpha - 1)}(a) = 0$$

a) Montrer qu'on a pour tout $x \in I$

$$f(x) = \int_a^x \frac{(x-t)^{\alpha-1}}{(\alpha-1)!} f^{(\alpha)}(t) dt$$

b) En déduire que $f(x) = (x - a)^{\alpha} g(x)$ avec

$$g(x) = \int_0^1 \frac{(1-\theta)^{\alpha-1}}{(\alpha-1)!} f^{(\alpha)}(a+\theta(x-a)) d\theta$$

c) Montrer que q est de classe \mathcal{C}^{∞} .

Exercice 21 Centrale MP [03211] [correction] On considère

$$\varphi: x \mapsto \int_0^{+\infty} \frac{\mathrm{e}^{itx}}{1+t^2} \,\mathrm{d}t$$

3

- a) Montrer la définie et la continuité de φ sur \mathbb{R} .
- b) Montrer que φ est de classe \mathcal{C}^1 sur \mathbb{R}^* et montrer que

$$\varphi'(x) = i \int_0^{+\infty} \frac{t e^{itx}}{1 + t^2} dt$$

c) Montrer que pour x > 0,

$$\varphi'(x) = i \int_0^{+\infty} \frac{u e^{iu}}{x^2 + u^2} \, \mathrm{d}u$$

- et déterminer un équivalent de $\varphi'(x)$ quand $x \to 0^+$.
- d) La fonction φ est-elle dérivable en 0?

Exercice 22 [03313] [correction] Soit

$$f: x \mapsto \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$$

- a) Montrer que f est définie et de classe C^2 sur \mathbb{R} .
- b) Déterminer une équation différentielle linéaire d'ordre 2 dont f est solution.
- c) Montrer que f est développable en série entière sur \mathbb{R} .
- d) Exploiter l'équation différentielle précédente pour former ce développement.

Exercice 23 [03324] [correction]

Pour x > 0, on pose

$$f(x) = \int_{-x}^{x} \frac{dt}{\sqrt{1+t^2}\sqrt{x^2-t^2}}$$

- a) Montrer que f est définie et continue.
- b) Déterminer les limites de f en 0^+ et $+\infty$.

Expression de fonctions définies par une intégrale

Exercice 24 [00545] [correction]

On considère la fonction

$$f: x \in]-1, +\infty[\mapsto \int_0^1 \frac{t-1}{\ln t} t^x dt$$

- a) Montrer que f est bien définie.
- b) Exprimer f'(x) et en déduire l'expression de f(x).

Exercice 25 [00546] [correction]

a) Justifier l'existence et calculer

$$\int_0^{+\infty} \cos(xt) e^{-t} dt$$

Soit

$$F: x \mapsto \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$$

b) Justifier que F est définie et continue sur \mathbb{R} . On rappelle

$$\forall u \in \mathbb{R}, |\sin u| \leqslant |u|$$

- c) Justifier que F est de classe C^1 et calculer F'(x).
- d) En déduire F(x).

Exercice 26 CCP MP [03311] [correction]

Soient a, b deux réels strictement positifs.

a) Justifier l'existence pour tout $x \in \mathbb{R}$ de

$$F(x) = \int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} \cos(xt) dt$$

- b) Justifier que F est de classe C^1 sur \mathbb{R} et calculer F'(x).
- c) Exprimer F(x)

Exercice 27 [00547] [correction]

On pose

$$z: x \mapsto \int_0^{+\infty} e^{(-1+ix)t^2} dt$$

a) Montrer que z est définie, de classe \mathcal{C}^1 sur \mathbb{R} et

$$z'(x) = \frac{-1}{2(x+i)}z(x)$$

b) En déduire l'expression de z(x) sachant

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

Exercice 28 [00548] [correction]

On pose $z: x \mapsto \int_0^{+\infty} \frac{e^{(-1+ix)t}}{\sqrt{t}} dt$ et on donne $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

- a) Justifier et calculer z(0).
- b) Montrer que z est définie, de classe \mathcal{C}^1 sur \mathbb{R} et $z'(x) = \frac{-1}{2(x+i)}z(x)$.
- c) En déduire l'expression de z(x).

Exercice 29 [00549] [correction]

En dérivant la fonction déterminer l'expression de la fonction

$$g(x) = \int_{-\infty}^{+\infty} e^{-t^2} e^{itx} dt$$

Exercice 30 [00550] [correction]

Soit F la fonction définie par :

$$F(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$$

- a) Montrer que F est définie et de classe C^1 sur \mathbb{R}^+ .
- b) Déterminer l'expression de F(x).
- c) Calculer

$$\int_0^{+\infty} \frac{\arctan^2 t}{t^2} dt$$

Enoncés

5

Exercice 31 [00551] [correction]

Soit

$$F(x) = \int_0^1 \frac{\ln(1 + 2t\cos x + t^2)}{t} dt$$

- a) Justifier que F est définie et de classe \mathcal{C}^1 sur $[0,\pi/2]$
- b) Calculer F'(x) sur $[0, \pi/2]$
- c) Donner la valeur de F(0) puis celle de F(x) sachant

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2} = \frac{\pi^2}{12}$$

Exercice 32 [00552] [correction]

Pour $n \in \mathbb{N}^*$ et x > 0, on pose $I_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(x^2 + t^2)^n}$.

- a) Justifier l'existence de $I_n(x)$.
- b) Calculer $I_1(x)$.
- c) Justifier que $I_n(x)$ est de classe \mathcal{C}^1 et exprimer $I'_n(x)$.
- d) Exprimer $I_n(x)$.

Exercice 33 [00553] [correction]

Soit

$$F(x,y) = \int_0^{+\infty} \frac{e^{-xt} - e^{-yt}}{t} dt \text{ avec } x, y > 0$$

Pour y > 0, montrer que $x \mapsto F(x,y)$ est de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$ et calculer

$$\frac{\partial F}{\partial x}(x,y)$$

En déduire la valeur de F(x, y).

Exercice 34 Centrale MP [00554] [correction]

Existence et calcul de

$$\varphi(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt$$

Exercice 35 [00555] [correction]

Ensemble de définition, dérivée et valeur de

$$f: x \mapsto \int_0^{+\infty} \frac{\ln(1+x^2t^2)}{1+t^2} dt.$$

Exercice 36 [00556] [correction]

Soit $F(x) = \int_0^{\pi/2} \ln(1 + x \sin^2 t) dt$ sur $[0, +\infty[$.

- a) Justifier que F est bien définie et continue.
- b) Etudier la dérivabilité sur $]0, +\infty[$ et donner l'expression de sa dérivée via le changement de variable $u=\tan t.$
- c) Etablir que $F(x) = \pi(\ln(1 + \sqrt{1 + x}) \ln 2)$.

Exercice 37 [02638] [correction]

On pose, pour $t \ge 0$,

$$F(t) = \int_0^{+\infty} e^{-tx} \frac{1 - \cos x}{x^2} dx$$

- a) Montrer que F est continue sur $[0, +\infty[$ et tend vers 0 en $+\infty$.
- b) Montrer que F est deux fois dérivable sur $]0, +\infty[$ et calculer F''(t).
- c) En déduire la valeur de F(0) puis la valeur de l'intégrale convergente

$$\int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

Exercice 38 Centrale MP [02486] [correction]

On pose

$$f(x) = \int_0^{+\infty} \ln t \, \mathrm{e}^{-xt} \, \mathrm{d}t$$

- a) Préciser le domaine de définition de f.
- b) Montrer que f est de classe \mathcal{C}^1 et donner une équation différentielle vérifiée par f.
- c) Calculer f(1) avec un logiciel de calcul forme et en déduire explicitement f.
- d) Retrouver ce résultat par une méthode plus simple.

Exercice 39 Mines-Ponts MP [02872] [correction]

Pour $x \in \mathbb{R}^+$, soit

$$f(x) = \int_0^{+\infty} \frac{\sin t}{t} e^{-tx} dt$$

- a) Justifier la définition de f(x).
- b) Montrer que f est classe $\widehat{\mathcal{C}}^1$ sur $\mathbb{R}^{+\star}$.
- c) Calculer f(x) si $x \in \mathbb{R}^{+\star}$.
- d) Montrer que f est continue en 0. Qu'en déduit-on?

Exercice 40 Mines-Ponts MP [02873] [correction]

Pour tout x réel, on pose $f(x) = \int_0^{+\infty} \frac{\cos tx}{\sqrt{t}} e^{-t} dt$ et $g(x) = \int_0^{+\infty} \frac{\sin tx}{\sqrt{t}} e^{-t} dt$. Existence et calcul de ces deux intégrales.

Exercice 41 Mines-Ponts MP [02874] [correction] Etudier $f: x \mapsto \int_0^1 \frac{t-1}{\ln t} t^x dt$.

Exercice 42 Mines-Ponts MP [02876] [correction]

Existence et calcul de

$$f(x) = \int_0^{+\infty} \frac{\ln(x^2 + t^2)}{1 + t^2} dt$$

Exercice 43 Mines-Ponts MP [02881] [correction] Existence et calcul de $\int_0^{2\pi} \frac{\ln(1+x\cos t)}{\cos t} dt$.

Exercice 44 [03312] [correction]

a) Montrer que pour tout x > -1

$$\int_0^1 \frac{\ln(1+xt)}{1+t^2} dt = \frac{\ln 2}{2} \arctan x + \frac{\pi}{8} \ln(1+x^2) - \int_0^x \frac{\ln(1+t)}{1+t^2} dt$$

b) En déduire la valeur de

$$\int_0^1 \frac{\ln(1+t)}{1+t^2} \,\mathrm{d}t$$

Exercice 45 [03323] [correction]

Pour tout $x \in \mathbb{R}$, on pose

$$F(x) = \int_0^{+\infty} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt$$

- a) Montrer que F est définie et continue sur \mathbb{R} .
- b) Montrer que F est de classe C^1 sur $]0, +\infty[$.
- c) Former une équation différentielle vérifiée par F sur $]0, +\infty[$.
- d) En déduire une expression simple de F sur \mathbb{R} .

Fonction Gamma

Exercice 46 [00557] [correction]

On rappelle que la valeur de $\Gamma(1/2)$ est connue. En déduire les valeurs de $\Gamma(n+\frac{1}{2})$ pour $n \in \mathbb{N}$.

Exercice 47 [00558] [correction]

Sachant $\Gamma'(1) = -\gamma$, calculer $\Gamma'(2)$.

Exercice 48 [00559] [correction]

Sans calculer Γ'' , établir que la fonction Γ est convexe.

Exercice 49 [00560] [correction]

Démontrer que la fonction Γ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$.

Exercice 50 [00561] [correction]

a) Démontrer que la fonction Γ donnée par

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

est définie et continue sur $]0, +\infty[$.

- b) Démontrer que la fonction Γ est de classe C^2 sur $]0, +\infty[$.
- c) En exploitant l'inégalité de Cauchy Schwarz, établir que la fonction $x\mapsto \ln\Gamma(x)$ est convexe.

Exercice 51 [00562] [correction]

L'objectif de cet exercice est de calculer

$$\Gamma'(1) = \int_0^{+\infty} \ln(t) e^{-t} dt$$

a) Montrer que pour tout $t \in [0, n]$,

$$0 \leqslant \left(1 - \frac{t}{n}\right)^{n-1} \leqslant e.e^{-t}$$

b) Etablir que

$$\lim_{n \to +\infty} \int_0^n \ln(t) \left(1 - \frac{t}{n} \right)^{n-1} dt = \int_0^{+\infty} \ln(t) e^{-t} dt$$

c) Observer que

$$\int_0^n \ln(t) \left(1 - \frac{t}{n} \right)^{n-1} dt = \ln n + \int_0^1 \frac{(1-u)^n - 1}{u} du$$

d) Conclure que $\Gamma'(1) = -\gamma$ où γ désigne la constante d'Euler.

Exercice 52 [02635] [correction]

On rappelle $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Pour x > 0, on pose $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- a) Montrer que cette fonction est définie et indéfiniment dérivable sur $]0, +\infty[$. On étudiera la régularité en se restreignant à $x \in [a, b] \subset]0, +\infty[$.
- b) Calculer $\Gamma(n+1)$ pour $n \in \mathbb{N}$.
- c) En réalisant le changement de variable $t=n+y\sqrt{n}$, transformer l'intégrale $\Gamma(n+1)$ en $\frac{n^n}{\mathrm{e}^n}\sqrt{n}\int_{-\infty}^{+\infty}f_n(y)\,\mathrm{d}y$ où $f_n(y)=0$ pour $y\leqslant -\sqrt{x},\, 0\leqslant f_n(y)\leqslant \mathrm{e}^{-y^2/2}$ pour $-\sqrt{t}< y\leqslant 0$ et $0\leqslant f_n(y)\leqslant (1+y)\mathrm{e}^{-y}$ pour y>0 et $t\geqslant 1$.
- d) En appliquant le théorème de convergence dominée établir la formule de Stirling : $n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$.

Exercice 53 X MP [02952] [correction]

- a) Soit $a \in \mathbb{C}$ avec Re(a) > 0. Donner un équivalent de $u_n = a(a+1) \dots (a+n)$.
- b) Montrer que la fonction Γ ne s'annule pas sur $\{z \in \mathbb{C}, \text{Re}z > 0\}$.

Corrections

Exercice 1 : [énoncé]

a) Posons $g(x,t) = \frac{1}{1+x^3+t^3}$.

 $\forall x \in \mathbb{R}^+$, la fonction $t \mapsto g(x,t)$ est définie, continue sur \mathbb{R}^+ et $g(x,t) \sim \frac{1}{t^3}$ donc f(x) existe.

b) $u \mapsto 1/u$ est un \mathcal{C}^1 difféomorphisme entre $\mathbb{R}^{+\star}$ et $\mathbb{R}^{+\star}$.

On peut réaliser le changement de variable t = 1/u qui donne

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3} = \int_0^{+\infty} \frac{u \, \mathrm{d}u}{1+u^3}.$$

Donc
$$2f(0) = \int_0^{+\infty} \frac{dt}{t^2 - t + 1} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2t - 1}{\sqrt{3}} \right]_0^{+\infty} = \frac{4\pi}{3\sqrt{3}} \text{ puis } f(0) = \frac{2\pi}{3\sqrt{3}}$$

c) $x \mapsto g(x,t)$ est continue sur \mathbb{R}^+ , $t \mapsto g(x,t)$ est continue par morceaux sur $[0,+\infty[$ avec $|g(x,t)| \leq \frac{1}{1+t^3} = \varphi(t)$ et φ intégrable sur $[0,+\infty[$ donc f est continue.

Si $x \le y$ alors $\forall t \in [0, +\infty[$, $g(y, t) \le g(x, t)$ donc $f(y) \le f(x)$. Ainsi f est décroissante.

Rq: On peut aussi montrer f de classe \mathcal{C}^1 mais cela alourdit.

d)
$$0 \le f(x) \le \int_0^{+\infty} \frac{dt}{x^3 + t^3} = \frac{1}{t = xu} \int_0^{+\infty} \frac{du}{1 + u^3} \to 0.$$

Exercice 2 : [énoncé]

a) $t \mapsto \frac{1}{1+t^3}$ est intégrable sur \mathbb{R}^+ donc g(0) existe.

 $u\mapsto 1/u$ est un \mathcal{C}^1 difféomorphisme entre $\mathbb{R}^{+\star}$ et $\mathbb{R}^{+\star}$.

On peut réaliser le changement de variable t = 1/u qui donne

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3} = \int_0^{+\infty} \frac{u \, \mathrm{d}u}{1+u^3}.$$

Donc
$$2g(0) = \int_0^{+\infty} \frac{dt}{t^2 - t + 1} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2t - 1}{\sqrt{3}} \right]_0^{+\infty} = \frac{4\pi}{3\sqrt{3}} \text{ puis } g(0) = \frac{2\pi}{3\sqrt{3}}$$

b) La fonction g est paire. Pour $0 \le x \le x'$, on a pour tout $t \ge 0$, $e^{-tx^2} \ge e^{-tx'^2}$ donc q est décroissante sur \mathbb{R}^+ .

c) Pour
$$x > 0$$
, $0 \le g(x) \le \int_0^{+\infty} e^{-tx^2} dt = \frac{1}{x^2} \to 0$ donc $\lim_{x \to +\infty} g(x) = 0$.

Exercice 3 : [énoncé]

a) $g(x,t) = \frac{\cos t}{t+x}$ est définie et continue sur $\mathbb{R}^{+\star} \times [0,\pi/2]$.

g et $\frac{\partial g}{\partial x}$ sont définies et continues sur $\mathbb{R}^{+\star} \times [0,\pi/2]$ donc (intégration sur segment) f est de classe C^1 et

$$f'(x) = -\int_0^{\pi/2} \frac{\cos t}{(t+x)^2} dt \le 0$$

Ainsi f est décroissante.

b) Quand $x \to +\infty$,

$$0 \leqslant f(x) \leqslant \int_0^{\pi/2} \frac{1}{x+t} dt \to 0$$

Quand $x \to 0^+$

$$f(x) \geqslant \int_0^{\pi/4} \frac{\cos t}{t+x} dt \geqslant \frac{\sqrt{2}}{2} \left[\ln(t+x) \right]_0^{\pi/4} = \frac{\sqrt{2}}{2} \ln \frac{x+\pi/4}{x} \to +\infty$$

c)
$$\frac{1}{x+\pi/2} \int_0^{\pi/2} \cos t \, \mathrm{d}t \leqslant f(x) \leqslant \frac{1}{x} \int_0^{\pi/2} \cos t \, \mathrm{d}t$$

donc

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$$

On sait:

$$\forall 0 \leqslant t \leqslant \pi/2, 1 - \frac{1}{2}t^2 \leqslant \cos t \leqslant 1$$

donc

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{t+x} - \frac{1}{2} \int_0^{\pi/2} \frac{t^2 \, \mathrm{d}t}{t+x} \leqslant f(x) \leqslant \int_0^{\pi/2} \frac{\mathrm{d}t}{t+x}$$

Or

$$\int_0^{\pi/2} \frac{dt}{t+x} = \ln \frac{x + \pi/2}{x} \sim -\ln x$$

 $_{
m et}$

$$0 \leqslant \int_0^{\pi/2} \frac{t^2 dt}{t+x} \leqslant \int_0^{\pi/2} t dt = C = o(\ln x)$$

donc

$$f(x) \sim -\ln x$$

Exercice 4: [énoncé]

a) La fonction $t \mapsto \frac{t^{x-1}}{1+t}$ est définie et continue par morceaux sur]0,1]. Quand $t \to 0^+$, $\frac{t^{x-1}}{1+t} \sim t^{x-1} = \frac{1}{t^{1-x}}$ avec 1-x < 1

donc $t \mapsto \frac{t^{x-1}}{1+t}$ est intégrable sur [0,1].

b) Posons $g(x,t) = \frac{t^{x-1}}{1+t}$ sur $]0,+\infty[\times]0,1]$. $t \mapsto g(x,t)$ est continue par morceaux sur]0,1],

 $x \mapsto g(x,t)$ est continue sur $]0,+\infty[$.

Pour a > 0, pour tout $x \ge a$, $|g(x,t)| \le \frac{t^{a-1}}{1+t} \le t^{a-1} = \varphi_a(t)$ avec φ_a intégrable

Par domination sur tous segment de $]0,+\infty[$, on peut affirmer que f est continue sur $]0, +\infty[$.

- c) $f(x) + f(x+1) = \int_0^1 t^{x-1} dt = \frac{1}{x}$.
- d) Quand $x \to 0^+$, $f(x+1) \to f(1)$ donc f(x+1) = o(1/x) puis $f(x) \sim 1/x$. Quand $x \to +\infty$, $0 \le f(x) \le \int_0^{+\infty} t^{x-1} dt = \frac{1}{x} \to 0$ donc $f(x) \xrightarrow[x \to +\infty]{} 0$.

Exercice 5 : [énoncé]

a) Les fonctions

$$g: (x,t) \mapsto \frac{e^{-x(1+t^2)}}{1+t^2} \text{ et } \frac{\partial g}{\partial x}: (x,t) \mapsto -e^{-x(1+t^2)}$$

sont continues sur $\mathbb{R} \times [0,1]$ donc, par intégration sur segment, la fonction f est de classe \mathcal{C}^1 et

$$f'(x) = -\int_0^1 e^{-x(1+t^2)} dt$$

b) On a

$$f(0) = \int_0^1 \frac{\mathrm{d}t}{1 + t^2} = \frac{\pi}{4}$$

Pour $x \geqslant 0$,

$$0 \leqslant f(x) \leqslant \int_0^1 e^{-x} dt = e^{-x}$$

donc $\lim_{t \to \infty} f = 0$.

c) g est de classe \mathcal{C}^1 par composition et

$$g'(x) = 2xf'(x^2) = -2x \int_0^1 e^{-x^2(1+t^2)} dt$$

On a alors

$$\left(g(x) + \left(\int_0^x e^{-t^2} dt\right)^2\right)' = -2x \int_0^1 e^{-x^2(1+t^2)} dt + 2e^{-x^2} \int_0^x e^{-t^2} dt = 0$$

car

$$\int_0^x e^{-t^2} dt = x \int_0^1 e^{-x^2 u^2} du$$

L'évaluation en 0 permet de conclure.

d) Pour $x \ge 0$, $\int_0^x e^{-t^2} dt \ge 0$ donc

$$\int_0^x e^{-t^2} dt = \sqrt{\frac{\pi}{4} - g(x)} \xrightarrow[x \to +\infty]{} \frac{\sqrt{\pi}}{2}$$

Exercice 6 : [énoncé]

a) $t \mapsto (\sin t)^x$ est définie, continue et positive sur $[0, \pi/2]$.

Quand $t \to 0$, $(\sin t)^x \sim t^x$ avec x > -1 donc $t \mapsto (\sin t)^x$ est intégrable sur $[0, \pi/2].$

Ainsi f est définie et positive sur $]-1,+\infty[$

b) Soit a > -1.

 $\frac{\partial g}{\partial x}(x,t) = \ln(\sin t)(\sin t)^x$ est définie continue en x et continue par morceaux en t sur $[a, +\infty[\times]0, \pi/2]$ et $\left|\frac{\partial g}{\partial x}(x,t)\right| \leq |\ln(\sin t)(\sin t)^a| = \varphi(t)$ avec φ est intégrable sur $[0, \pi/2]$ car pour α tel que $-a < \alpha < 1$, $t^{\alpha} \varphi(t) \sim t^{a+\alpha} |\ln(t)| \to 0$. Par domination sur tout segment, f est \mathcal{C}^1 sur $]-1,+\infty[$ et

 $f'(x) = \int_0^{\pi/2} \ln(\sin t)(\sin t)^x dt \le 0$. Ainsi f est décroissante.

c) $f(x+2) = \int_0^{\pi/2} (\sin t)^x (1-\cos^2 t) dt = f(x) - \left[\frac{(\sin t)^{x+1}}{x+1} \cos t \right]_0^{\pi/2} - \frac{1}{x+1} f(x+2)$ donc $f(x+2) = \frac{x+1}{x+2}f(x)$. d) $\varphi(x+1) = (x+1)f(x+1)f(x) = xf(x-1)f(x) = \varphi(x)$.

 $\varphi(1) = f(0) f(1) = \pi/2 \text{ donc } \forall n \in \mathbb{N}, \varphi(n) = \pi/2.$

e) φ est continue et quand $x \to 0$, $\varphi(x) = \varphi(1+x) \to \varphi(1) = \pi/2$.

Quand $x \to 0$, $f(x) \to f(0) = \pi/2$ donc quand $x \to -1$, $f(x) = \frac{\varphi(x+1)}{(x+1)f(x+1)} \sim \frac{1}{x+1}$. Rq: En fait on peut montrer que φ est une fonction constante.

Exercice 7 : [énoncé]

a) $g:(x,t)\mapsto \frac{\mathrm{e}^{-xt^2}}{1+t^2}$ est définie continue en x et continue par morceaux en t sur $\mathbb{R}^+ \times [0, +\infty[$ avec

$$|g(x,t)| \leqslant \frac{1}{1+t^2} = \varphi(t)$$

et φ intégrable sur $[0, +\infty[$.

Par domination, on peut affirmer que f est définie et continue sur \mathbb{R}^+ .

b) $\frac{\partial g}{\partial x}$ existe et est continue en x et continue par morceaux en t sur $\mathbb{R}^{+\star} \times [0, +\infty[$. Pour $x \in [a, +\infty[$ (avec a > 0) on a

$$\left| \frac{\partial g}{\partial x}(x,t) \right| = \left| -\frac{t^2}{1+t^2} e^{-xt^2} \right| \leqslant e^{-at^2} = \psi(t)$$

avec ψ intégrable sur \mathbb{R}^+ .

Par domination sur tout segment, on peut affirmer que f est de classe \mathcal{C}^1 sur $]0,+\infty[$ avec

$$f'(x) = -\int_0^{+\infty} \frac{t^2 e^{-xt^2}}{1+t^2} dt$$

Enfin,

$$f(x) - f'(x) = \int_0^{+\infty} e^{-xt^2} dt = \frac{1}{u = \sqrt{x}t} \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2\sqrt{x}}$$

Exercice 8 : [énoncé]

 $F:(t,x)\mapsto \frac{\mathrm{e}^{-tx}}{1+t^2}, \frac{\partial F}{\partial x}:(t,x)\mapsto -t\frac{\mathrm{e}^{-tx}}{1+t^2}$ et $\frac{\partial^2 F}{\partial x^2}:(t,x)\mapsto t^2\frac{\mathrm{e}^{-tx}}{1+t^2}$ sont définies et continues sur $\mathbb{R}^+\times\mathbb{R}^{+\star}$. Sur $\mathbb{R}^+\times[a,+\infty[$ (avec a>0) ces fonctions sont dominées par $\varphi(t)=\mathrm{e}^{-at}$ intégrable sur \mathbb{R}^+ .

Par suite f est de classe C^2 sur $\mathbb{R}^{+\star}$ et

Far since
$$f$$
 est de classe C sur \mathbb{R}^+ et $f''(x) + f(x) = \int_0^{+\infty} t^2 \frac{e^{-tx}}{1+t^2} dt + \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt = \int_0^{+\infty} e^{-tx} dt = \frac{1}{x}.$ $|f(x)| \le \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt \le \int_0^{+\infty} e^{-tx} dt = \frac{1}{x} \to 0.$

Exercice 9 : [énoncé]

 $S \times [a,b]$ est compact et toute fonction continue sur un compact y est uniformément continue.

Etudions la continuité de F en $\alpha \in \mathbb{R}$ et considérons $S = [\alpha - 1, \alpha + 1]$. $\forall \varepsilon > 0, \exists \eta > 0, \forall (x,t), (x',t') \in S \times [a,b], \|(x,t) - (x',t')\|_{\infty} \leqslant \eta \Rightarrow |f(x,t) - f(x',t')| \leqslant \varepsilon$

Donc pour $|x - \alpha| \leq \eta$, on a $|F(x) - F(\alpha)| \leq \int_a^b \varepsilon dt = \varepsilon (b - a)$. Ainsi F est continue en α .

 $(x,t)\mapsto \mathrm{e}^{xt}$ est continue par opérations donc g l'est aussi par intégration sur un segment.

Pour $x \neq 0$, $g(x) = \frac{e^x - 1}{x}$ et g(0) = 1. Sans difficultés g est continue sur \mathbb{R} .

Exercice 10: [énoncé]

a) Posons

$$\tilde{f}(x,t) = \frac{e^{-xt}}{1+t^2}$$

Les fonctions \tilde{f} , $\frac{\partial \tilde{f}}{\partial x}$ et $\frac{\partial^2 \tilde{f}}{\partial x^2}$ existent et sont continues sur $\mathbb{R}^{+\star} \times \mathbb{R}$. Sur $[a, +\infty[$, on a les dominations

$$|f(x,t)| \leqslant \frac{1}{1+t^2}, \left|\frac{\partial \tilde{f}}{\partial x}(x,t)\right| \leqslant \frac{t\mathrm{e}^{-at}}{1+t^2} \text{ et } \left|\frac{\partial^2 \tilde{f}}{\partial x^2}(x,t)\right| \leqslant \frac{t^2\mathrm{e}^{-at}}{1+t^2}$$

Les fonctions dominantes étant intégrables, on peut affirmer que f est de classe \mathcal{C}^2 et

$$f''(x) = \int_0^{+\infty} \frac{t^2 e^{-xt}}{1 + t^2} dt$$

On a alors

$$f(x) + f''(x) = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$$

Posons

$$\tilde{g}(x,t) = \frac{\sin t}{x+t}$$

Les fonctions \tilde{g} , $\frac{\partial \tilde{g}}{\partial x}$ et $\frac{\partial^2 \tilde{g}}{\partial x^2}$ existent et sont continues sur $\mathbb{R}^{+\star} \times \mathbb{R}$.

La fonction $x \mapsto \int_0^{+\infty} g(x,t) dt$ est bien définie sur \mathbb{R}^+ (intégrale convergente via intégration par parties)

Sur $[a, +\infty[$, on a les dominations

$$\left|\frac{\partial g}{\partial x}(x,t)\right| \leqslant \frac{1}{(a+t)^2} \text{ et } \left|\frac{\partial^2 g}{\partial^2 x}(x,t)\right| \leqslant \frac{2}{(a+t)^3}$$

Les fonctions dominantes étant intégrables, on peut affirmer que g est de classe \mathcal{C}^2 et

$$g''(x) = \int_0^{+\infty} \frac{2\sin t}{(x+t)^3} \,\mathrm{d}t$$

Par une intégration par parties

$$g''(x) = \left[-\frac{\sin t}{(x+t)^2} \right]_0^{+\infty} + \int_0^{+\infty} \frac{\cos t}{(x+t)^2} dt = \int_0^{+\infty} \frac{\cos t}{(x+t)^2} dt = \frac{1}{x} - g(x)$$

b) Pour $x \in \mathbb{R}^+$,

$$\left|\tilde{f}(x,t)\right| \leqslant \frac{1}{1+t^2}$$

donc f est définie et continue sur \mathbb{R}^+ .

$$g(x) - g(0) = -\int_0^{+\infty} \frac{x \sin t}{t(x+t)} dt = x \int_0^1 \frac{\sin t}{t(x+t)} dt + \int_1^{+\infty} \frac{x \sin t}{t(x+t)} dt$$

mais

$$\left| x \int_0^1 \frac{\sin t}{t(x+t)} \, dt \right| \le x \int_0^1 \frac{dt}{(x+t)} = x \ln(x+1) - x \ln x \to 0$$

 et

$$\left| \int_{1}^{+\infty} \frac{x \sin t}{t(x+t)} dt \right| \leqslant x \int_{1}^{+\infty} \frac{dt}{t^2} \to 0$$

donc g est continue en 0.

c) On a

$$|f(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

 $_{
m et}$

$$|g''(x)| \leqslant \int_0^{+\infty} \frac{2|\sin t|}{(x+t)^3} dt \leqslant \frac{1}{x} \int_0^{+\infty} \frac{2|\sin t|}{t^2} dt \xrightarrow[x \to +\infty]{} 0$$

donc

$$g(x) = \frac{1}{x} - g''(x) \xrightarrow[x \to +\infty]{} 0$$

Ainsi $f-g \underset{+\infty}{\rightarrow} 0$ ce qui permet via résolution de l'équation différentielle de conclure

$$f = g$$

On en déduit g(0) = f(0) i.e.

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 11 : [énoncé]

a)
$$\int_0^x \frac{\sin t}{t} dt = \int_0^\pi \frac{\sin t}{t} dt + \int_\pi^x \frac{\sin t}{t} dt = \int_0^\pi \frac{\sin t}{t} dt + \left[-\frac{\cos t}{t} \right]_\pi^x - \int_\pi^x \frac{\cos t}{t^2} dt$$

Or $\left[-\frac{\cos t}{t} \right]_\pi^x - \int_\pi^x \frac{\cos t}{t^2} dt$ admet $-\int_\pi^{+\infty} \frac{\cos t}{t^2} dt$ pour limite quand $x \to +\infty$ car cette dernière intégrale est bien définie. Cela permet de conclure à la convergence de $I = \int_0^{+\infty} \frac{\sin t}{t} dt$.

- b) Puisque $\forall t > 0$, $|\sin t| \le t$, on a $|F(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$.
- c) En application des théorèmes classiques, F est \mathcal{C}^1 sur tout $[a, +\infty[\subset]0, +\infty[$ donc F est \mathcal{C}^1 sur $]0, +\infty[$ et $F'(x) = \int_0^{+\infty} e^{-tx} \sin(t) dt = \frac{-1}{1+x^2}$.
- d) $F(x) = -\arctan x + C^{te} \text{ sur }]0, +\infty[$ et puisque $\lim_{x \to +\infty} F(x) = 0,$

 $F(x) = \frac{\pi}{2} - \arctan x$. Par continuité en $0, I = \frac{\pi}{2}$.

Exercice 12: [énoncé]

- a) On réalise le changement de variable $t=u+n\pi$: $u_n(x)=(-1)^n\int_0^\pi \mathrm{e}^{-x(u+n\pi)}\frac{\sin u}{u+n\pi}\mathrm{d}u$. Ici $g_n(x,u)=\mathrm{e}^{-x(u+n\pi)}\frac{\sin u}{u+n\pi}$
- b) Pour tout $x \in \mathbb{R}^+$ et tout $u \in [0,\pi]$, $g_n(x,u) \geqslant 0$ et $g_{n+1}(x,u) \leqslant g_n(x,u)$ donc $u_n(x) = (-1)^n |u_n(x)|$ avec $(|u_n(x)|)$ décroissante. De plus $|u_n(x)| \leqslant \int_0^\pi \frac{\mathrm{d}u}{n\pi} = \frac{1}{n}$ (pour $n \in \mathbb{N}^*$) donc $|u_n(x)| \xrightarrow[]{} 0$. Par application du critère spécial, la série

$$\sum_{n\geqslant 0} u_n(x) \text{ converge et } \left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \leqslant |u_{n+1}(x)| \leqslant \frac{1}{n+1} \to 0 \text{ ce qui donne la convergence uniforme de la série de fonctions } \sum_{n\geqslant 0} u_n.$$

- c) Comme somme d'une série uniformément convergente de fonctions continues sur \mathbb{R}^+ , la fonction U est continue sur \mathbb{R}^+ . De plus $U(x) = \int_0^{+\infty} \mathrm{e}^{-xt} \frac{\sin t}{t} \mathrm{d}t$ avec cette intégrale qui est définie quand x > 0 et il est connu qu'elle est convergente quand x = 0.
- d) En application des théorèmes classiques, U est \mathcal{C}^1 sur tout $[a, +\infty[\subset]0, +\infty[$ donc U est \mathcal{C}^1 sur $]0, +\infty[$ et $U'(x) = \int_0^{+\infty} e^{-tx} \sin(t) dt = \frac{-1}{1+x^2}$.
- e) En primitivant $U(x) = C \arctan x$ sur $]0, +\infty[$. Or

$$|U(x)| \leqslant \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0 \text{ donc } C = \pi/2.$$

Par continuité en 0, $U(0) = \int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$

Exercice 13: [énoncé]

Réalisons le changement de variable $t=u(x)+\theta(v(x)-u(x))$: $\int_{u(x)}^{v(x)} f(x,t) \, \mathrm{d}t = (v(x)-u(x)) \int_0^1 f(x,u(x)+\theta(v(x)-u(x)) \, \mathrm{d}\theta \text{ or } (x,\theta) \mapsto f(x,u(x)+\theta(v(x)-u(x)) \, \mathrm{est} \text{ continue sur } I \times \mathbb{R} \text{ donc } x \mapsto \int_0^1 f(x,u(x)+\theta(v(x)-u(x)) \, \mathrm{d}\theta \text{ est aussi continue puis enfin la fonction étudiée.}$

Exercice 14: [énoncé]

a) Pour $x \ge 0$, I(x) est définie comme intégrale d'une fonction continue sur un segment.

Pour x < 0, I(x) est une intégrale généralisée en 0^+ avec $(\sin t)^x \sim \frac{1}{t-x}$.

Cette dernière converge si, et seulement si, -x < 1.

Ainsi $\mathcal{D} =]-1, +\infty[$.

b) Posons $f:(x,t)\mapsto (\sin t)^x=\exp(x\ln(\sin t))$.

Pour tout $k \in \mathbb{N}$, $\frac{\partial^k f}{\partial x^k}(x,t) = (\ln(\sin t))^k (\sin t)^x$.

 $\frac{\partial^k f}{\partial x^k}$ est continue sur $\mathcal{D} \times]0, \pi/2]$ et pour tout a > -1,

 $\left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \le \left| \ln(\sin t) \right|^k (\sin t)^a \text{ pour tout } x \ge a.$

Par domination sur tout compact, on peut affirmer que I est de classe \mathcal{C}^{∞} sur \mathcal{D} . c) On définit la fonction I qu'on appellera J pour éviter une confusion avec le i de Maple

Puis on calcule les valeurs demandées

$$seq(J(k),k=0..4);$$

- d) Par intégration par parties $I(x+2) = \frac{x+1}{x+2}I(x)$.
- e) Regardons les premiers termes

$$seq(J(n)*J(n-1),n=1..10);$$

On présume $I_nI_{n-1} = \frac{\pi}{2n}$ ce que l'on établit par récurrence. f) Puisque $I(x) = \frac{x+2}{x+1}I(x+2)$, quand $x \to -1^+$, $I(x) \sim \frac{1}{x+1}I(1) = \frac{\pi}{2(x+1)}$.

Pour obtenir un équivalent de I(x) quand $x \to +\infty$, commençons par étudier I(n). La fonction I est décroissante et positive donc $I(n+1) \leq I(n) \leq I(n-1)$ puis $\frac{\pi}{2(n+1)} \leqslant I(n)^2 \leqslant \frac{\pi}{2n}$ et enfin $I(n) \sim \sqrt{\frac{\pi}{2n}}$.

Puisque $I(n+1) \sim I(n)$ et I monotone, on a $I(x) \sim I(\lfloor x \rfloor)$ et on en déduit $I(x) \sim \sqrt{\frac{\pi}{2x}}$

Exercice 15: [énoncé]

- a) L'intégrale converge pour x > -1 car $(\sin t)^x \sim \frac{1}{t^{-x}}$.
- b) Par domination sur $[a, +\infty[$ pour tout a > -1, on obtient f de classe \mathcal{C}^1 avec $f'(x) = \int_0^{\pi/2} \ln(\sin t) (\sin t)^x dt \leqslant 0.$
- c) Posons $\varphi(x) = (x+1)f(x)f(x+1)$.

Une intégration par parties classique (cf. intégrales de Wallis) donne $\varphi(x+1) = \varphi(x).$

Montrons que cette fonction est constante.

Soit
$$a \in]-1, 0[, \varphi(a+n) = \varphi(a).$$

En posant p = E(a), la décroissance de f donne

$$\varphi(a) = \varphi(a+n) \leqslant (a+n+1)f(p+n)f(p+n+1)$$

Or
$$(a+n+1)f(p+n)f(p+n+1) = \frac{a+n+1}{p+n+1}\varphi(n+p) = \frac{a+n+1}{p+n+1}\varphi(0) \xrightarrow[n \to +\infty]{} \varphi(0).$$

De façon semblable, $\varphi(a)$ peut être minorée par une suite de limite $\varphi(0)$.

On peut donc affirmer que φ est constante.

Exercice 16: [énoncé]

a) Pour $x \in \mathbb{R}$, $t \mapsto \frac{\sin(xt)}{e^t - 1}$ est continue par morceaux sur $]0, +\infty[$, $\frac{\sin(xt)}{e^t - 1} = O(1)$ et $\frac{\sin(xt)}{e^t-1} = o\left(\frac{1}{t^2}\right)$ donc f(x) est bien définie.

b) $g(x,t) = \frac{\sin(xt)}{a^t-1}$. g admet une dérivée partielle $\frac{\partial g}{\partial x}$ avec $\frac{\partial g}{\partial x}(x,t) = \frac{t}{a^t-1}\cos(xt)$. $x\mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} , $t\mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[.$

Enfin $\left|\frac{\partial g}{\partial x}(x,t)\right| \leqslant \frac{t}{e^t-1} = \varphi(t)$ avec φ intégrable sur $]0,+\infty[$.

Par domination, on peut affirmer que f est de classe \mathcal{C}^1 , a fortiori continue et

c) La décomposition $\frac{1}{e^t-1} = \sum_{i=0}^{+\infty} e^{-nt}$ et la majoration $\sin(t) \leqslant t$ permettent d'appliquer le théorème de sommation terme à terme et de conclure $f(1) = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$.

Exercice 17 : [énoncé]

a) Pour a > -1, on note $\Omega_a = \{z \in \mathbb{C}/\text{Re}(z) \geqslant a\}$. $t\mapsto \frac{t^z}{1+t}$ est continue par morceaux sur $]0,1], z\mapsto \frac{t^z}{1+t}$ est continue sur Ω et pour $z \in \Omega_a$, $\left| \frac{t^z}{1+t} \right| \leqslant \frac{t^a}{1+t} = \varphi(t)$ avec φ intégrable sur]0,1] donc f est définie et continue sur Ω .

b)
$$f(x) + f(x+1) = \frac{1}{x+1}$$
 et $f(x+1) \xrightarrow[x \to -1]{} f(0)$ donc $f(x) \underset{x \to -1}{\sim} \frac{1}{x+1}$.

c) Par intégration par parties : $(z+1)f(z) = \frac{1}{2} + \int_0^1 \frac{t^{z+1}}{(1+t)^2} dt$ et $\left| \int_{0}^{1} \frac{t^{z+1}}{(1+t)^{2}} dt \right| \leq \int_{0}^{1} t^{\operatorname{Re}(z)+1} dt \leq \frac{1}{\operatorname{Re}(z)+2} \to 0.$

Exercice 18: [énoncé]

Posons $f(x) = \int_0^{+\infty} \frac{\arctan(x/t)}{1+t^2}$. La fonction f est définie sur \mathbb{R}^+ .

Par domination, f est de classe C^1 et $f'(x) = \int_0^{+\infty} \frac{t}{(t^2 + x^2)(1 + t^2)} dt$. Après décomposition, pour $x \neq 1$, $\frac{t}{(1+t^2)(x^2+t^2)} = \frac{t}{(x^2-1)(1+t^2)} - \frac{t}{(x^2-1)(x^2+t^2)}$.

Donc $f'(x) = \frac{1}{x^2 - 1} \left[\frac{1}{2} \ln \frac{1 + t^2}{x^2 + t^2} \right]_0^{+\infty} = \frac{\ln x}{(x^2 - 1)}$ qui se prolonge par continuité pour x = 1.

Puisque f(0) = 0, on obtient la relation proposée.

Exercice 19: [énoncé]

La fonction f est bien définie sur $]0, +\infty[$ et $xf(x) = \frac{\pi}{2} - \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt.$ Par domination sur tout compact, on obtient $g: x \mapsto xf(x) - \frac{\pi}{2} = -\int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$ de classe C^2 sur $]0, +\infty[$ donc f aussi.

Quand $x \to +\infty$, $0 \leqslant \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt \leqslant \int_0^{+\infty} e^{-tx} dt = \frac{1}{x} \operatorname{donc} xf(x) \to \frac{\pi}{2} \operatorname{puis}$

Etudions maintenant f(x) quand $x \to 0^+$.

Par le changement de variable u = tx,

$$f(x) = \int_0^{+\infty} \frac{1 - e^{-u}}{x^2 + u^2} du = \int_0^{+\infty} \frac{u}{x^2 + u^2} \frac{1 - e^{-u}}{u} du \text{ avec } \varphi : u \mapsto \frac{1 - e^{-u}}{u}.$$
 Par intégration par parties,

$$f(x) = \left[\frac{1}{2}\ln(x^2 + u^2)\varphi(u)\right]_0^{+\infty} - \frac{1}{2}\int_0^{+\infty}\ln(x^2 + u^2)\varphi'(u)\,\mathrm{d}u.$$

Pour $x \in]0,1], \, \left|\ln(x^2 + u^2)\right| \leq \left|\ln(u^2)\right| + \left|\ln(1 + u^2)\right| \,\mathrm{et}$

 $u \mapsto (|\ln(u^2)| + |\ln(1+u^2)|) \varphi'(u)$ est intégrable sur $]0, +\infty[$ car φ' peut être prolongée par continuité en 0 (en fait φ peut-être prolongée en une fonction développable en série entière en 0) et $\varphi'(u) \sim \frac{e^{-u}}{u}$ quand $u \to +\infty$. Par suite, quand $x \to 0^+$, $f(x) = \ln x + O(1) \sim \ln x$.

Exercice 20: [énoncé]

- a) On applique la formule de Taylor reste-intégrale à f en a.
- b) On réalise le changement de variable : $t = a + \theta(x a)$.
- c) Posons

$$h(x,\theta) = \frac{(1-\theta)^{\alpha-1}}{(\alpha-1)!} f^{(\alpha)}(a+\theta(x-a))$$

Pour tout $k \in \mathbb{N}$,

$$\frac{\partial^k h}{\partial x^k}(x,\theta) = \frac{(1-\theta)^{\alpha-1}}{(\alpha-1)!}(x-a)^k f^{(\alpha+k)}(a+\theta(x-a))$$

est définie et continue sur $I \times [0, 1]$.

Par intégration sur un segment g est de classe \mathcal{C}^{∞} .

Exercice 21 : [énoncé]

a) Posons $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ définie par

$$f(x,t) = \frac{e^{itx}}{1+t^2}$$

La fonction f est définie et continue sur \mathbb{R}^2 .

Pour tout $(x,t) \in \mathbb{R}^2$, on a

$$|f(x,t)| \leqslant \frac{1}{1+t^2} = \psi(t)$$

avec ψ intégrable sur $[0, +\infty[$.

On en déduit que φ est définie et continue sur \mathbb{R} .

b) Par intégration par parties

$$\varphi(x) = -\frac{1}{ix} + \frac{1}{ix} \int_0^{+\infty} \frac{2te^{itx}}{(1+t^2)^2} dt$$

La fonction

$$x \mapsto \int_0^{+\infty} \frac{2t e^{itx}}{(1+t^2)^2} dt$$

est de classe \mathcal{C}^1 sur \mathbb{R} en vertu de la domination

$$\left| \frac{\partial}{\partial x} \left(\frac{2te^{itx}}{(1+t^2)^2} \right) \right| = \frac{2t^2}{(1+t^2)^2} \leqslant \frac{2}{1+t^2}$$

On en déduit que φ est de classe \mathcal{C}^1 sur \mathbb{R}^* avec

$$\varphi'(x) = \frac{1}{ix^2} - \frac{1}{ix^2} \int_0^{+\infty} \frac{2te^{itx}}{(1+t^2)^2} dt + \frac{1}{x} \int_0^{+\infty} \frac{2t^2e^{itx}}{(1+t^2)^2} dt$$

Or par intégration par parties

$$\int_0^{+\infty} \frac{2te^{itx}}{(1+t^2)^2} = \left[-\frac{e^{itx}}{1+t^2} \right]_0^{+\infty} + ix \int_0^{+\infty} \frac{e^{itx}}{1+t^2} dt$$

donc

$$\varphi'(x) = -\frac{1}{x} \int_0^{+\infty} \frac{e^{itx}}{1+t^2} dt + \frac{1}{x} \int_0^{+\infty} \frac{2t^2 e^{itx}}{(1+t^2)^2} dt = \frac{1}{x} \int_0^{+\infty} \frac{t^2 - 1}{(1+t^2)^2} e^{itx} dt$$

Enfin, une dernière intégration par parties donne

$$\varphi'(x) = \frac{1}{x} \left[-\frac{2t}{1+t^2} e^{itx} \right]_0^{+\infty} + i \int_0^{+\infty} \frac{2t}{1+t^2} e^{itx} dt$$

et la relation voulue...

c) Par le changement de variable u = tx, on obtient l'expression proposée. On peut décomposer

$$\varphi'(x) = i \int_0^1 \frac{u e^{iu}}{x^2 + u^2} du + \int_1^{+\infty} \frac{u e^{iu}}{x^2 + u^2} du$$

D'une part, par intégration par parties

$$\int_{1}^{+\infty} \frac{u e^{iu}}{x^2 + u^2} du = \left[\frac{u e^{iu}}{x^2 + u^2} \right]_{1}^{+\infty} - \int_{1}^{+\infty} \frac{x^2 - u^2}{(x^2 + u^2)^2} e^{iu} du$$

avec

$$\left[\frac{ue^{iu}}{x^2 + u^2} \right]_1^{+\infty} = -\frac{e^i}{x^2 + 1} \xrightarrow[x \to 0^+]{} -e^i$$

 $_{
m et}$

$$\left| \int_1^{+\infty} \frac{x^2 - u^2}{(x^2 + u^2)^2} e^{iu} \, du \right| \leqslant \int_1^{+\infty} \frac{u^2 - x^2}{(x^2 + u^2)^2} \, du = \frac{1}{x^2 + 1} \xrightarrow[x \to 0^+]{} 1$$

D'autre part

$$\int_0^1 \frac{u e^{iu}}{x^2 + u^2} du = \int_0^1 \frac{u}{x^2 + u^2} du + \int_0^1 \frac{u(e^{iu} - 1)}{x^2 + u^2} du$$

avec

$$\int_0^1 \frac{u}{x^2 + u^2} \, \mathrm{d}u = \left[\frac{1}{2} \ln(x^2 + u^2) \right]_0^1 \sim \lim_{x \to 0^+} \ln x$$

et

$$\left| \int_0^1 \frac{u(e^{iu} - 1)}{x^2 + u^2} \, \mathrm{d}u \right| \leqslant \int_0^1 \frac{\left| e^{iu} - 1 \right|}{u} \, \mathrm{d}u < +\infty$$

Au final

$$\varphi'(x) = i \ln x + o(\ln x) + O(1) \underset{x \to 0^+}{\sim} i \ln x$$

d) En vertu de ce qui précède

$$\operatorname{Im}(\varphi'(x)) \underset{x \to 0^+}{\sim} \ln x \to -\infty$$

On en déduit que la fonction réelle /mp.cpgedupuy delome.fr n'est pas dérivable en 0, il en est a fortiori de même de φ .

Exercice 22: [énoncé]

a) Posons $u: \mathbb{R} \times [0, \pi] \to \mathbb{R}$ la fonction définie par

$$u(x,t) = \cos(x\sin\theta)$$

Puisque pour chaque $x \in \mathbb{R}$, l'application $t \mapsto u(x,t)$ est définie et continue par morceaux sur $[0,\pi]$, la fonction f est bien définie.

La fonction u admet des dérivées partielles

$$\frac{\partial u}{\partial x}(x,t) = -\sin\theta\sin(x\sin\theta)$$
 et $\frac{\partial^2 u}{\partial x^2}(x,t) = -\sin^2\theta\cos(x\sin\theta)$

et ces dernières sont continues sur $\mathbb{R} \times [0, \pi]$ donc, par intégration sur un segment, la fonction f est de classe \mathcal{C}^2 avec

$$f'(x) = -\frac{1}{\pi} \int_0^{\pi} \sin \theta \cos(x \sin \theta) d\theta \text{ et } f''(x) = -\frac{1}{\pi} \int_0^{\pi} \sin^2 \theta \cos(x \sin \theta) d\theta$$

b) On remarque

$$f''(x) = \frac{1}{\pi} \int_0^{\pi} (\cos^2 \theta - 1) \cos(x \sin \theta) d\theta$$

et donc

$$x(f''(x) + f(x)) = \int_0^{\pi} \cos \theta \cdot (\cos \theta \cos(x \sin \theta)) d\theta$$

Par intégration par parties, on obtient

$$x(f''(x) + f(x)) = -f'(x)$$

On en déduit que f est solution de l'équation différentielle linéaire d'ordre 2

$$xy''(x) + y'(x) + xy(x) = 0$$

c) Pour tout $x \in \mathbb{R}$, on peut écrire

$$f(x) = \frac{1}{\pi} \int_0^{\pi} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} (\sin \theta)^{2n} x^{2n} d\theta$$

Puisque la série $\sum \frac{x^{2n}}{(2n)!}$ est convergente, un argument de convergence normale permet une intégration terme à terme et donc

$$f(x) = \sum_{n=0}^{+\infty} a_n x^{2n} \text{ avec } a_n = \frac{(-1)^n}{(2n)!\pi} \int_0^{\pi} (\sin \theta)^{2n} d\theta$$

d) Nous pourrions calculer l'intégrale définissant a_n car c'est une intégrale de Wallis, mais puisqu'on nous demande d'exploiter l'équation différentielle... Pour tout $x \in \mathbb{R}$, par dérivation d'une série entière

$$f'(x) = \sum_{n=0}^{+\infty} (2n+2)a_{n+1}x^{2n+1} \text{ et } f''(x) = \sum_{n=0}^{+\infty} (2n+2)(2n+1)a_{n+1}x^{2n}$$

L'équation xf''(x) + f'(x) + xf(x) = 0 donne alors

$$\sum_{n=0}^{+\infty} \left((2n+2)^2 a_{n+1} + a_n \right) x^{2n+1} = 0$$

Par unicité des coefficients d'un développement en série entière de rayon de convergence > 0, on obtient

$$(2n+2)^2 a_{n+1} + a_n = 0$$

Sachant $a_0 = 1$, on conclut

$$a_n = \frac{(-1)^n}{2^{2n}(n!)^2}$$

Exercice 23 : [énoncé]

a) Par le changement de variable t = ux (bijection de classe \mathcal{C}^1) on obtient

$$f(x) = \int_{-1}^{1} \frac{\mathrm{d}u}{\sqrt{1 + x^2 u^2} \sqrt{1 - u^2}}$$

Posons $g:]0, +\infty[\times] -1, 1[\to \mathbb{R}$ définie par

$$g(x,u) = \frac{1}{\sqrt{1 + x^2 u^2} \sqrt{1 - u^2}}$$

La fonction g est continue sur $]0, +\infty[\times]-1, 1[$ et

$$|g(x,u)| \leqslant \frac{1}{\sqrt{1-u^2}} = \varphi(u)$$

avec φ intégrable sur]-1,1[.

On en déduit que f est définie et continue sur $]0, +\infty[$.

b) Soit (x_n) une suite d'élément de $]0, +\infty[$ divergeant vers $+\infty$. On a

$$f(x_n) = \int_{-1}^1 f_n(u) du \text{ avec } f_n(u) = g(x_n, u)$$

Les fonctions f_n sont continues par morceaux et convergent simplement vers $f_{\infty}: u \mapsto 0$ elle-même continue par morceaux. Puisque $|f_n| \leqslant \varphi$ avec φ intégrable, on peut appliquer le théorème de convergence dominée et affirmer

$$f(x_n) \xrightarrow[n \to +\infty]{} \int_{-1}^{1} f_{\infty}(u) du = 0$$

Par la caractérisation séquentielle des limites, on obtient

$$f(x) \xrightarrow[x \to +\infty]{} 0$$

Une étude semblable donne aussi

$$f(x) \xrightarrow[x \to 0^+]{} \int_{-1}^{1} \frac{\mathrm{d}u}{\sqrt{1 - u^2}} = \left[\arcsin u\right]_{-1}^{1} = \pi$$

Exercice 24 : [énoncé]

a) $t \mapsto \frac{t-1}{\ln t} t^x$ est définie et continue sur]0,1[.

Quand
$$t \to 0^+$$
, pour $-x < y < 1$, $t^y \frac{t-1}{\ln t} t^x \sim \frac{t^{y+x}}{\ln t} \to 0$.

Quand
$$t \to 1^-$$
, posons $h = 1 - t \to 0^+$, $\frac{t-1}{\ln t} t^x = -\frac{h}{\ln(1-h)} (1-h)^x \to 1$.

Donc f est bien définie.

b) $g(x,t) = \frac{t-1}{\ln t} e^{x \ln t}$ est définie et continue sur $]-1, +\infty[\times]0, 1[$.

 $\frac{\partial g}{\partial x}(x,t) = (t-1)e^{x \ln t}$ est définie sur $]-1,+\infty[\times]0,1[$.

 $t\mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur]0,1[,

 $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur $]-1,+\infty[$.

Pour a > -1, on a

$$\forall x \geqslant a, \left| \frac{\partial g}{\partial x}(x, t) \right| \leqslant (1 - t)t^a = \varphi_a(t)$$

avec φ_a continue par morceaux et intégrable.

Par domination sur tout segment, on peut affirmer que f est de classe \mathcal{C}^1 sur $]-1,+\infty[$ et

$$f'(x) = \int_0^1 (t-1)t^x dt = \frac{1}{x+2} - \frac{1}{x+1}$$

d'où

$$f(x) = \ln \frac{x+2}{x+1} + C$$

Etudions $C = \lim_{x \to +\infty} f(x)$.

La fonction $t\mapsto \frac{t-1}{\ln t}$ peut être prolongée par continuité sur [0,1], elle y est donc bornée par un certain M et alors

$$0 \leqslant f(x) \leqslant \int_0^1 M t^x \, \mathrm{d}x = \frac{M}{x+1} \xrightarrow[x \to +\infty]{} 0$$

On en déduit C=0.

Exercice 25 : [énoncé] a) $\cos(xt)e^{-t} = \text{Re}(e^{(-1+i.x)t})$ et $|e^{(-1+i.x)t}| = e^{-t}$ qui est intégrable sur \mathbb{R}^+ . Par suite $\int_0^{+\infty} \cos(xt) e^{-t} dt$ existe et

$$\int_0^{+\infty} \cos(xt) e^{-t} dt = \text{Re}\left(\int_0^{+\infty} e^{(-1+i.x)t} dt\right) = \text{Re}\left(\frac{1}{1-i.x}\right) = \frac{1}{1+x^2}$$

b) $g(x,t) = \frac{\sin xt}{t} \mathrm{e}^{-t}$ est définie et continue sur $\mathbb{R} \times]0, +\infty[$. $t \mapsto g(x,t)$ est continue par morceaux sur $]0, +\infty[$, $x \mapsto g(x,t)$ est continue sur \mathbb{R} et pour tout a > 0, $\forall x \in [-a, a]$, $|g(x, t)| \leq |x| e^{-t} \leq a e^{-t} = \varphi_a(t)$ avec φ_a intégrable sur $\mathbb{R}^{+\star}$ donc par domination sur tout segment F est continue sur \mathbb{R} . c) $\frac{\partial g}{\partial x}$ est définie sur $\mathbb{R} \times (0, +\infty)$, $t \mapsto \frac{\partial g}{\partial x}(x, t)$ est continue par morceaux sur $[0,+\infty[,x\mapsto \frac{\partial g}{\partial x}(x,t)]$ est continue sur \mathbb{R} et pour tout a>0,

Corrections

 $\left| \frac{\partial g}{\partial x}(x,t) \right| = \left| \cos xt. \mathrm{e}^{-t} \right| = \mathrm{e}^{-t} = \psi(t) \text{ avec } \psi \text{ intégrable sur } \mathbb{R}^{+\star} \text{ donc } F \text{ est } \mathcal{C}^1 \text{ sur } \mathbb{R} \text{ avec } F'(x) = \int_0^{+\infty} \cos(xt) \mathrm{e}^{-t} \, \mathrm{d}t = \frac{1}{1+x^2}.$ d) $F(0) = 0 \text{ donc } F(x) = \arctan x.$

Exercice 26: [énoncé]

On définit $f: \mathbb{R} \times]0, +\infty[\to \mathbb{R} \text{ par}$

$$f(x,t) = \frac{e^{-at} - e^{-bt}}{t} \cos(xt)$$

a) Pour $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est définie et continue par morceaux sur $]0,+\infty[$.

Quand $t \to +\infty$, $t^2 f(x,t) \to 0$ et quand $t \to 0^+$, $f(x,t) \to b-a$ donc $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$.

b) Pour $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,y) = (e^{-bt} - e^{-at})\sin(xt)$$

La fonction $\frac{\partial f}{\partial x}$ est continue sur $\mathbb{R} \times]0, +\infty[$ et

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \le e^{-at} + e^{-bt} = \varphi(t)$$

avec φ fonction intégrable.

On en déduit que F est de classe \mathcal{C}^1 sur \mathbb{R} et

$$F'(x) = \int_0^{+\infty} (e^{-bt} - e^{-at}) \sin(xt) dt$$

Or

$$\int_0^{+\infty} e^{-ct} \sin(xt) dt = \operatorname{Im} \left(\int_0^{+\infty} e^{(-c+ix)t} dt \right) = \frac{x}{c^2 + x^2}$$

donc

$$F'(x) = \frac{x}{x^2 + b^2} - \frac{x}{x^2 + a^2}$$

c) On en déduit

$$F(x) = \frac{1}{2} \ln \left(\frac{x^2 + b^2}{x^2 + a^2} \right) + C^{te}$$

Pour déterminer la constante, on étudie la limite de F en $+\infty$. Posons

$$\psi(t) = \frac{e^{-at} - e^{-bt}}{t}$$

ce qui définit une fonction de classe C^1 intégrable ainsi que sa dérivée sur $]0, +\infty[$. Par intégration par parties généralisée justifiée par deux convergences

$$\int_0^{+\infty} \psi(t) \cos(xt) dt = \frac{1}{x} \left[\psi(t) \sin(xt) \right]_0^{+\infty} - \frac{1}{x} \int_0^{+\infty} \psi'(t) \cos(xt) dt$$

et donc

$$\left| \int_0^{+\infty} \psi(t) \cos(xt) \, \mathrm{d}t \right| \leqslant \frac{1}{x} \int_0^{+\infty} |\psi'(t)| \, \mathrm{d}t \to 0$$

On peut conclure

$$F(x) = \frac{1}{2} \ln \left(\frac{x^2 + b^2}{x^2 + a^2} \right)$$

Exercice 27 : [énoncé]

a) $t \mapsto g(x,t) = e^{(-1+ix)t^2}$ est définie et continue par morceaux sur $[0,+\infty[$, $t \mapsto \frac{\partial g}{\partial x}(x,t) = it^2 e^{(-1+ix)t^2}$ est définie et continue par morceaux sur $[0,+\infty[$, $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} ,

 $\left|\frac{\partial g}{\partial x}(x,t)\right|\leqslant t^2{\rm e}^{-t^2}=\varphi(t)$ qui est intégrable sur $[0,+\infty[$ donc z existe, est de classe \mathcal{C}^1 et

$$z'(x) = \int_0^{+\infty} it^2 e^{(-1+ix)t^2} dt = -\frac{1}{2(x+i)} z(x).$$

b)

$$\frac{-1}{2(x+i)} = \frac{-x+i}{2(x^2+1)} = -\frac{x}{2(x^2+1)} + \frac{i}{2(x^2+1)}$$

donc

$$z(x) = C \exp\left(i\frac{\arctan x}{2} - \frac{1}{4}\ln(x^2 + 1)\right) = \frac{Ce^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}$$

Puisque $z(0) = \frac{\sqrt{\pi}}{2}$, on conclut

$$z(x) = \frac{\sqrt{\pi}e^{i(\arctan x)/2}}{2(x^2+1)^{1/4}}$$

Exercice 28 : [énoncé]

- a) On réalise le changement de variable $u = \sqrt{t}$. On obtient $z(0) = \sqrt{\pi}$.
- b) $t \mapsto g(x,t) = \frac{e^{(-1+ix)t}}{\sqrt{t}}$ est définie et continue par morceaux sur $]0,+\infty[$, $t \mapsto \frac{\partial g}{\partial x}(x,t) = i.\sqrt{t}e^{(-1+ix)t}$ est définie et continue par morceaux sur $]0,+\infty[$, $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} ,

 $\left|\frac{\partial g}{\partial x}(x,t)\right|\leqslant \sqrt{t}\mathrm{e}^{-t}=\varphi(t)$ qui est intégrable sur]0,+ ∞ [donc z existe, est de classe \mathcal{C}^1 et

$$z'(x) = \int_0^{+\infty} i \cdot \sqrt{t} e^{(-1+i \cdot x)t} dt = \frac{i}{\text{ipp}} \frac{i}{2(1-ix)} \int_0^{+\infty} \frac{e^{(-1+i \cdot x)t}}{\sqrt{t}} dt = -\frac{1}{2(x+i)} z(x).$$

c)
$$\frac{-1}{2(x+i)} = \frac{-x+i}{2(x^2+1)} = -\frac{x}{2(x^2+1)} + \frac{i}{2(x^2+1)}$$
 donc

$$z(x) = C \exp\left(i\frac{\arctan x}{2} - \frac{1}{4}\ln(x^2 + 1)\right) = \frac{Ce^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}.$$
Puisque $z(0) = \sqrt{\pi}$, on conclut $z(x) = \frac{\sqrt{\pi}e^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}.$

Exercice 29 : [énoncé]

Posons

$$f(x,t) = e^{-t^2} e^{itx}$$

La fonction $t\mapsto f(x,t)$ est continue par morceaux et intégrable sur $\mathbb R$ et donc la fonction g est définie sur \mathbb{R} .

La fonction $x \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = ite^{-t^2}e^{itx}$$

La fonction $t \mapsto \frac{\partial f}{\partial x}(t,x)$ est continue par morceaux, la fonction $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue et

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \le t e^{-t^2} = \varphi(t)$$

avec φ intégrable sur \mathbb{R} indépendant de x.

On en déduit que la fonction q est de classe \mathcal{C}^1 et par une intégration par parties

$$g'(x) = \int_{-\infty}^{+\infty} it e^{-t^2} e^{itx} dt = \left[-\frac{i}{2} e^{-t^2} e^{itx} \right]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} x e^{-t^2} e^{itx} dt$$

On en déduit que g est solution de l'équation différentielle

$$q'(x) + xq(x) = 0$$

Après résolution de cette équation différentielle

$$q(x) = \lambda e^{-x^2/2}$$

Enfin $q(0) = \sqrt{\pi}$ donne $\lambda = \sqrt{\pi}$.

Exercice 30 : [énoncé]

a) Posons

$$f(x,t) = \frac{\arctan(xt)}{t(1+t^2)}$$

est définie sur $[0, +\infty[\times]0, +\infty[$,

 $t\mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ car prolongeable par continuité en 0 et égale à un $O(1/t^3)$ en $+\infty$. Ainsi F est définie sur \mathbb{R}^+

$$\frac{\partial f}{\partial x}(x,t) = \frac{1}{(1+x^2t^2)(1+t^2)}$$

est définie sur $[0, +\infty[\times]0, +\infty[,$

 $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$ et $x\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $[0, +\infty[$.

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \frac{1}{1+t^2} = \varphi(t)$$

avec φ continue par morceaux et intégrable sur $]0, +\infty[$, donc F est de classe \mathcal{C}^1 sur \mathbb{R}^+ avec

$$F'(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+x^2t^2)(1+t^2)}$$

b) Pour $x \neq 1$

$$\frac{1}{(1+x^2t^2)(1+t^2)} = \frac{1}{x^2-1} \left(\frac{x^2}{1+x^2t^2} - \frac{1}{1+t^2} \right)$$

d'où

$$F'(x) = \frac{x-1}{x^2 - 1} \frac{\pi}{2} = \frac{\pi}{2(x+1)}$$

ce qui est encore valable en 1 par continuité.

Par suite

$$F(x) = \frac{\pi}{2}\ln(x+1) + C$$

avec C=0 puisque F(0)=0.

c) En intégrant par parties, on obtient $\pi \ln 2$.

Exercice 31 : [énoncé]

a) Posons

$$g(x,t) = \frac{\ln(1 + 2t\cos x + t^2)}{t}$$

Puisque $\cos x \ge 0$,

$$1 + 2t\cos x + t^2 \geqslant 1 + t^2$$

donc $t\mapsto g(x,t)$ est définie et continue par morceaux sur]0,1]. De plus

$$\lim_{t \to 0} \frac{\ln(1 + 2t\cos x + t^2)}{t} = \cos x$$

on peut donc prolonger $t \mapsto g(x,t)$ par continuité en 0. Par suite F(x) est bien définie.

La dérivée partielle $\frac{\partial g}{\partial x}$ existe sur $[0, \pi/2] \times]0, 1]$ et

$$\frac{\partial g}{\partial x}(x,t) = -\frac{2\sin x}{1 + 2t\cos x + t^2}$$

 $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur]0,1], $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur $[0,\pi/2]$ et

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \leqslant 2 = \varphi(t)$$

avec φ est intégrable. Par domination F est de classe \mathcal{C}^1 .

b) Pour x = 0, F'(0) = 0.

Pour $x \neq 0$,

$$F'(x) = -\int_0^1 \frac{2\sin x}{1 + 2t\cos x + t^2} dt = -\int_0^1 \frac{2\sin x}{(t + \cos x)^2 + \sin^2 x} dt = -\left[2\arctan\frac{t + \cos x}{\sin x}\right]_0^1$$

Or

$$\arctan \frac{\cos x}{\sin x} = \arctan(\tan(\pi/2 - x))$$

avec $\pi/2 - x \in [-\pi/2, \pi/2]$ donc

$$\arctan \frac{\cos x}{\sin x} = \pi/2 - x$$

 $_{
m et}$

$$\arctan \frac{1 + \cos x}{\sin x} = \arctan \frac{\cos (x/2)}{\sin (x/2)} = \pi/2 - x/2$$

Finalement

$$F'(x) = 2((\pi/2 - x) - (\pi/2 - x/2)) = -x$$

c)
$$F(0) = \int_0^1 \frac{2\ln(1+t)}{t} dt = 2 \int_0^1 \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} t^n dt$$

or la série de fonctions $\sum \frac{(-1)^n}{n+1} t^n$ converge uniformément sur [0,1] puisque la série numérique satisfait au critère spécial ce qui permet d'écrire

$$|R_N(t)| \leqslant \frac{t^{n+1}}{n+2} \leqslant \frac{1}{n+2}$$

d'où $||R_N||_{\infty} \to 0$.

Par suite

$$F(0) = 2\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2} = \frac{\pi^2}{6}$$

puis

$$F(x) = \frac{\pi^2}{6} - \frac{x^2}{2}$$

Exercice 32 : [énoncé]

a) Posons

$$g_n(x,t) = \frac{1}{(x^2 + t^2)^n}$$

 $t \to g_n(x,t)$ est définie continue par morceaux sur \mathbb{R}^+ et $g_n(x,t) \sim \frac{1}{t^{2n}}$ donc l'intégrale définissant $I_n(x)$ existe.

 $\frac{\cos x}{x}\bigg]_0^1$

$$I_1(x) = \int_0^{+\infty} \frac{dt}{x^2 + t^2} = \left[\frac{1}{x} \arctan \frac{t}{x} \right]_0^{+\infty} = \frac{\pi}{2x}$$

c) $\frac{\partial g_n}{\partial x}(x,t) = \frac{-2nx}{(x^2+t^2)^{n+1}}$ existe sur $]0,+\infty[\times[0,+\infty[$.

 $t \mapsto \frac{\partial g_n}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[,x\mapsto \frac{\partial g}{\partial x}(x,t)]$ est continue sur $[0,+\infty[]$ et pour tout 0 < a < b,

$$\forall x \in [a, b], \left| \frac{\partial g_n}{\partial x}(x, t) \right| \leqslant \frac{2nb}{(a^2 + t^2)^{n+1}} = \varphi_{a, b}(t)$$

avec $\varphi_{a,b}$ intégrable sur \mathbb{R}^+ . Par domination sur tout segment, I_n est de classe \mathcal{C}^1 sur [a,b] puis sur $\mathbb{R}^{+\star}$ et

$$I_n'(x) = -2nxI_{n+1}(x)$$

d)
$$I_n(x)=\frac{\lambda_n}{x^{2n+1}}$$
 avec $\lambda_1=\frac{\pi}{2}$ et $\lambda_{n+1}=\frac{2n+1}{2n}\lambda_n$ d'où

$$\lambda_n = \frac{(2n)!}{2^{2n+1}(n!)^2} \pi$$

Exercice 33: [énoncé]

 $f:(x,t)\to \frac{\mathrm{e}^{-xt}-\mathrm{e}^{-yt}}{t}$ et $\frac{\partial f}{\partial x}(x,t)=-\mathrm{e}^{-xt}$ sont définies et continues sur $\mathbb{R}^{+\star}\times\mathbb{R}^{+\star}$. $t\mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ car prolongeable par continuité en 0 et négligeable devant $1/t^2$ en $+\infty$.

Pour a > 0,

$$\forall x \in [a, +\infty[\left| \frac{\partial f}{\partial x}(x, t) \right| \leq e^{-at} = \varphi_a(t)$$

avec φ_a intégrable sur $\mathbb{R}^{+\star}$.

Par domination $x \mapsto F(x,y)$ est de classe \mathcal{C}^1 et

$$\frac{\partial F}{\partial x}(x,y) = \int_0^{+\infty} -e^{-xt} dt = -\frac{1}{x}$$

Donc $F(x,y) = -\ln x + C^{te}$ et puisque pour x = y, on a F(x,y) = 0 on obtient

$$F(x,y) = \ln y - \ln x$$

Exercice 34: [énoncé]

Posons $g(x,t) = e^{-t^2} \cos(xt)$. $t \mapsto g(x,t)$, $t \mapsto \frac{\partial g}{\partial x}(x,t)$ sont continues par morceaux sur \mathbb{R}^+ et $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} .

 $t\mapsto g(x,t)$ est intégrable sur $[0,+\infty[$ car négligeable devant $1/t^2$ en $+\infty.$

Pour $x \in [0, +\infty[, \left| \frac{\partial g}{\partial x}(x, t) \right| \le t e^{-t^2} \text{ avec } t \mapsto t e^{-t^2} \text{ intégrable sur } [0, +\infty[, la]]$

fonction φ est de classe \mathcal{C}^1 et $\varphi'(x) = \int_0^{+\infty} -t e^{-t^2} \sin(xt) dt$.

Par intégration par parties,

$$\varphi'(x) = \left[\frac{1}{2}e^{-t^2}\sin(xt)\right]_0^{+\infty} - \frac{1}{2}\int_0^{+\infty} xe^{-t^2}\cos(xt)dt = -\frac{1}{2}x\varphi(x).$$

 φ est solution d'une équation différentielle linéaire d'ordre 1 et $\varphi(0) = \sqrt{\pi}/2$ on conclut $\varphi(x) = \frac{\sqrt{\pi}}{2} e^{-\frac{1}{4}x^2}$.

Exercice 35 : [énoncé]

Posons $g(x,t) = \frac{\ln(1+x^2t^2)}{1+t^2}$

 $x \mapsto g(x,t)$ est continue sur \mathbb{R} ,

 $t \mapsto g(x,t)$ est continue par morceaux sur $[0,+\infty[$,

 $|g(x,t)| \leqslant \frac{\ln(1+a^2t^2)}{1+t^2}$ sur [-a,a] avec $t \mapsto \frac{\ln(1+a^2t^2)}{1+t^2}$ intégrable.

Par domination sur tout segment, on peut donc affirmer que f est définie et continue sur \mathbb{R} .

Il est évident que f est paire. Nous poursuivons son étude sur \mathbb{R}^+ . $\frac{\partial g}{\partial x}(x,y) = \frac{2xt^2}{(1+x^2t^2)(1+t^2)}$ est bien définie.

 $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R}^+ ,

 $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[$.

 $\operatorname{Enfin} \left| \frac{\partial g}{\partial x}(x,t) \right| \leqslant \frac{2bt^2}{(1+a^2t^2)(1+t^2)} \text{ sur } [a,b] \subset \mathbb{R}^{+\star} \text{ avec } t \mapsto \frac{2bt^2}{(1+a^2t^2)(1+t^2)} \text{ intégrable.}$

Par domination sur tout segment de $\mathbb{R}^{+\star}$, on peut affirmer que f est de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$ et $f'(x) = \int_0^{+\infty} \frac{2xt^2}{(1+x^2t^2)(1+t^2)} dt$

En réalisant la décomposition en éléments simples (pour $x \neq 1$),

 $f'(x) = \frac{\pi}{x+1}$ et cette relation est aussi valable pour x = 1 par continuité.

Sachant que f(0) = 0 et que f est paire, on obtient $f(x) = \pi \ln(1 + |x|)$.

Exercice 36: [énoncé]

a) $f(x,t) = \ln(1 + x\sin^2 t)$ est définie et continue sur $[0,\pi/2] \times [0,+\infty[$.

Par intégration sur un segment F est définie et continue sur $[0, +\infty[$.

b) $\frac{\partial f}{\partial x}(x,t) = \frac{\sin^2 t}{1+x\sin^2 t}$ est définie et continue sur $[0,\pi/2] \times]0,+\infty[$.

Par intégration sur un segment F est de classe \mathcal{C}^1 sur $]0,+\infty[$ et

$$F'(x) = \int_0^{\pi/2} \frac{\sin^2 t}{1 + x \sin^2 t} \, \mathrm{d}t.$$

Par le changement de variable $u = \tan t$, $F'(x) = \int_0^{+\infty} \frac{u^2}{(1+u^2)(1+(x+1)u^2)}$.

Après décomposition simple et calcul, $F'(x) = \frac{\pi}{2} \frac{1}{x} \left(1 - \frac{1}{\sqrt{x+1}} \right) = \frac{\pi}{2} \frac{1}{(1+\sqrt{x+1})\sqrt{x+1}}$.

c) On remarque que $\ln(1+\sqrt{1+x})' = \frac{1}{2} \frac{1}{(1+\sqrt{x+1})\sqrt{x+1}}$ donc

 $F(x) = \pi \ln(1 + \sqrt{1 + x}) + C^{te}$ sur $\mathbb{R}^{+\star}$. Par continuité en 0 et sachant F(0) = 0, on parvient à conclure.

Exercice 37 : [énoncé]

a) La fonction $\varphi: x \mapsto \frac{1-\cos x}{x^2}$ est intégrable sur $]0, +\infty[$ car $\varphi(x) = O(1/x^2)$ quand $x \to +\infty$ et $\varphi(x) \xrightarrow[x \to 0]{} 1/2$ et $g(x,t) = \mathrm{e}^{-tx} \frac{1-\cos x}{x^2}$ est dominée par φ .

Sachant, $t \mapsto g(x,t)$ continue, on conclut que F est continue. De plus $\lim_{t \to +\infty} F(t) = \int_0^{+\infty} \lim_{t \to +\infty} g(x,t) \, \mathrm{d}x = 0.$

b) Pour a > 0, sur $[a, +\infty[$, pour $k = 1, 2: \left| \frac{\partial^k g}{\partial t^k}(x, t) \right| \leqslant x^k e^{-ax} \varphi(x) = \psi_k(x)$ donc

F est fois dérivable et $F''(t) = \int_0^{+\infty} e^{-tx} (1 - \cos x) dx = \frac{1}{t} - \frac{t}{t^2 + 1}$.

c) On a $F'(t) = \ln t - \frac{1}{2} \ln(t^2 + 1)$ car $F'(t) \xrightarrow[t \to +\infty]{} 0$ et

 $F(t) = t \ln t - t \ln \sqrt{t^2 + 1} - \arctan t + \frac{\pi}{2} \operatorname{car} F(t) \xrightarrow[t \to +\infty]{} 0.$

Par continuité, $F(0) = \pi/2$.

 $\int_0^A \frac{1 - \cos x}{x^2} \, \mathrm{d}x = \int_0^A \frac{2 \sin^2(x/2)}{x^2} \, \mathrm{d}x = \left[-\frac{2 \sin^2(x/2)}{x} \right]_0^A + \int_0^A \frac{\sin x}{x} \, \mathrm{d}x \text{ donc quand}$

 $A \to +\infty$, on obtient: $\int_0^{+\infty} \frac{1-\cos x}{x^2} dx = \int_0^{+\infty} \frac{\sin x}{x} dx \text{ d'où } \int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}. \text{ Document2}$

Exercice 38 : [énoncé]

a) f est définie pour x > 0.

b) Par domination sur tout segment, on obtient aisément f de classe \mathcal{C}^1 et

$$f'(x) = \int_0^{+\infty} -t \ln t \, \mathrm{e}^{-xt} \, \mathrm{d}t$$

Par intégration par parties,

$$xf'(x) = [t \ln t e^{-xt}]_0^{+\infty} - f(x) - \int_0^{+\infty} e^{-xt} dt$$

Ainsi

$$xf'(x) + f(x) + \frac{1}{x} = 0$$

c) On obtient la valeur de f(1) par

int(ln(t)*exp(-t),t=0..infinity);

On résout l'équation différentielle

 $dsolve({x*D(f)(x)+f(x)+1/x,f(1)=-gamma},f(x));$

On en déduit $f(x) = -\frac{\gamma + \ln x}{x}$.

d) On peut commencer en exprimant f via le changement de variable u = xt. On a

$$xf(x) = \int_0^{+\infty} \ln u e^{-u} du - \int_0^{+\infty} \ln x e^{-u} du$$

qui conduit au même résultat que ci-dessus sachant

$$\int_0^{+\infty} \ln u \, \mathrm{e}^{-u} \, \mathrm{d}u = -\gamma$$

Exercice 39 : [énoncé] a) Pour x > 0, $t^{2 \frac{\sin t}{t}} e^{-tx} \xrightarrow[t \to +\infty]{} 0$ donne l'intégrabilité de $t \mapsto \frac{\sin t}{t} e^{-tx}$.

Pour x=0, il est connu que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ est convergente bien que $t\mapsto \frac{\sin t}{t}$ ne soit pas intégrable.

b) Pour $x \in [a, +\infty[\subset]0, +\infty[$

$$\left| \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\sin t}{t} \mathrm{e}^{-tx} \right) \right| \leqslant \mathrm{e}^{-ax} = \varphi(x)$$

avec φ intégrable. On peut donc appliquer le théorème de dérivation sous le signe intégrale et conclure que f est \mathcal{C}^1 sur $]0, +\infty[$.

c) Pour x > 0,

$$f'(x) = \int_0^{+\infty} -\sin(t)e^{-tx} dt = \operatorname{Im}\left(-\int_0^{+\infty} e^{(-x+i)t} dt\right) = -\frac{1}{x^2 + 1}$$

donc $f(x) = C - \arctan x$.

Or

$$|f(x)| \le \int_0^{+\infty} e^{-tx} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

donc

$$C=\frac{\pi}{2}$$

d) En découpant l'intégrale, on a

$$f(x) = \sum_{n=0}^{+\infty} \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} e^{-tx} dt$$

Posons

$$u_n(t) = \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} e^{-tx} dt$$

Par application du critère spécial des séries alternées, on établir que la série de fonctions continues $\sum u_n$ converge uniformément sur [0, 1], on en déduit que sa somme, à savoir la fonction f, est continue en 0. On peut conclure que

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

(intégrale de Dirichlet).

Exercice 40: [énoncé]

La fonction $\varphi: t \mapsto \frac{\mathrm{e}^{(ix-1)t}}{\sqrt{t}}$ est continue par morceaux sur $]0, +\infty[$, vérifie $\varphi(t) \underset{t\to 0}{\sim} \frac{1}{\sqrt{t}}$ et $t^2 \varphi(t) \xrightarrow[t\to +\infty]{} 0$ donc φ est intégrable. Ceci assure l'existence de $F(x) = \int_0^{+\infty} \frac{e^{(ix-1)t}}{\sqrt{t}} dt$ puis de f(x) et g(x) qui en sont les parties réelles et imaginaires. Les théorèmes d'usage assurent que F est \mathcal{C}^1 et une intégration par parties donne $F'(x) = -\frac{1}{2(x+i)}F(x)$. La résolution de cette équation différentielle avec $\int_{0}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$ donne $F(x) = \frac{\sqrt{\pi}e^{i(\arctan x)/2}}{(-2+1)!/4}$ d'où f(x) et g(x).

Exercice 41: [énoncé]

f est définie pour x > -1.

Par les théorèmes d'usage, on montre que f est \mathcal{C}^1 en observant une domination sur tout $[a, +\infty[$ avec a > -1. On obtient $f'(x) = \int_0^1 (t-1)t^x \, \mathrm{d}t = \frac{1}{x+2} - \frac{1}{x+1}$ puis $f(x) = \ln \frac{x+2}{x+1} + C$.

Quand $n \to +\infty$, le théorème de convergence dominée donne $f(n) \to 0$ donc C = 0. Finalement $f(x) = \ln \frac{x+2}{x+1}$ dont l'étude est désormais facile.

Exercice 42 : [énoncé]

 $t \mapsto \frac{\ln(x^2 + t^2)}{1 + t^2}$ est continue par morceaux sur $[0, +\infty[$, $x \mapsto \frac{\ln(x^2 + t^2)}{1 + t^2}$ est continue sur \mathbb{R} et pour $x \in [-a, a]$

$$\left| \frac{\ln(x^2 + t^2)}{1 + t^2} \right| \le \frac{\left| \ln(a^2 + t^2) \right| + \left| \ln(t^2) \right|}{1 + t^2} = \varphi(t)$$

avec φ intégrable. Par suite f est définie et continue sur \mathbb{R} . Il est immédiat que f est paire. Poursuivons, en étudiant f sur \mathbb{R}^{+*}

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln(x^2 + t^2)}{1 + t^2} \right) = \frac{2x}{(x^2 + t^2)(1 + t^2)}$$

 $t \mapsto \frac{2x}{(x^2+t^2)(1+t^2)}$ est continue par morceaux sur $[0,+\infty[, x \mapsto t \mapsto \frac{2x}{(x^2+t^2)(1+t^2)}$ est continue sur \mathbb{R} et pour $x \in [a,b] \subset \mathbb{R}^{+\star}$,

$$\left| \frac{2x}{(x^2 + t^2)(1 + t^2)} \right| \leqslant \frac{2b}{(a^2 + t^2)(1 + t^2)} = \psi(t)$$

avec ψ intégrable. Par suite f est de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$. Pour $x \neq 1$,

$$\frac{2x}{(x^2+t^2)(1+t^2)} = \frac{2x}{x^2-1} \left(\frac{1}{1+t^2} - \frac{1}{x^2+t^2} \right)$$

donc

$$f'(x) = \int_0^{+\infty} \frac{2x}{(x^2 + t^2)(1 + t^2)} dt = \frac{\pi}{x + 1}$$

et cette relation vaut aussi pour x = 1 par continuité.

En procédant au changement de variable u = 1/t, on obtient f(0) = 0 et donc on peut conclure

$$f(x) = \pi \ln (x+1)$$

pour $x \in \mathbb{R}^+$ en exploitant un argument de continuité.

Exercice 43: [énoncé]

Posons $f(x) = \int_0^{2\pi} \frac{\ln(1+x\cos t)}{\cos t} dt$.

Pour |x| > 1, l'intégrale ne peut pas être définie.

Pour $|x| \leq 1$

En $t=\pi/2$ et $t=3\pi/2$, il est possible de prolonger par continuité la fonction intégrée.

Pour x = -1:

Quand $t \to 0^+$, $\ln(1 - \cos t) \sim 2 \ln t$

Quand $t \to 2\pi^-$, $t = 2\pi - h$, $\ln(1 - \cos t) = \ln(1 - \cos h) \sim 2 \ln h$

Pour x = 1, quand $t \to \pi, t = \pi + h$, $\ln(1 + \cos t) = \ln(1 - \cos h) \sim 2 \ln h$.

Finalement f est définie sur [-1,1].

Pour des raisons de symétrie, $f(x) = 2 \int_0^{\pi} \frac{\ln(1+x\cos t)}{\cos t} dt$

Par domination sur [-a, a] avec a < 1, f est \mathcal{C}^1 sur]-1, 1[et $f'(x) = 2\int_0^{\pi} \frac{\mathrm{d}t}{1 + x \cos t}$.

Par le changement de variable $u = \tan \frac{t}{2}$, $f'(x) = 4 \int_0^{+\infty} \frac{du}{(1+u^2)+x(1-u^2)} = \frac{2\pi}{\sqrt{1-x^2}}$. Puisque f(0) = 0, on en déduit $f(x) = 2\pi \arcsin x$.

Exercice 44: [énoncé]

a) Posons

$$f(x,t) = \frac{\ln(1+xt)}{1+t^2}$$

La fonction f est définie et continue sur $]-1, +\infty[\times [0, 1]$. Pour $t \in [0, 1]$, la fonction $x \mapsto f(x, t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = \frac{t}{(1+xt)(1+t^2)}$$

La fonction $\frac{\partial f}{\partial x}$ est continue sur $]-1, +\infty[\times [0,1]]$.

Par intégration sur un segment, on peut affirmer que la fonction

$$F: x \mapsto \int_0^1 f(x,t) \,\mathrm{d}t$$

est définie, de classe C^1 sur $]-1, +\infty[$ et

$$F'(x) = \int_0^1 \frac{t}{(1+xt)(1+t^2)} dt$$

Par décomposition en éléments simples (en la variable t)

$$\frac{t}{(1+xt)(1+t^2)} = \frac{-x}{(x^2+1)(1+xt)} + \frac{x+t}{(x^2+1)(1+t^2)}$$

donc

$$F'(x) = -\frac{\ln(1+x)}{x^2+1} + \frac{\pi}{4} \frac{x}{x^2+1} + \frac{\ln 2}{2} \frac{1}{1+x^2}$$

Puisque F(0) = 0, on peut écrire

$$F(x) = \int_0^x F'(t) dt = -\int_0^x \frac{\ln(1+t)}{t^2+1} dt + \frac{\pi}{8} \ln(x^2+1) + \frac{\ln 2}{2} \arctan x$$

b) Pour x = 1, la relation précédente donne

$$\int_0^1 \frac{\ln(1+t)}{1+t^2} \, \mathrm{d}t = \frac{\pi \ln 2}{8}$$

Exercice 45 : [énoncé]

a) Posons $f: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ définie par

$$f(x,t) = \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right)$$

La fonction f est continue sur $\mathbb{R} \times [0, +\infty[$ et

$$|f(x,t)| \leqslant e^{-t^2} = \varphi(t)$$

avec φ intégrable sur $]0, +\infty[$.

On peut donc affirmer que F est définie et continue sur \mathbb{R} .

b) $x \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = -\frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right)$$

La fonction $\frac{\partial f}{\partial x}$ est continue sur $\mathbb{R} \times]0, +\infty[$ et pour $x \in [a,b] \subset]0, +\infty[$

$$\left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant \frac{2b}{t^2} \exp\left(-\frac{a^2}{t^2}\right) \exp\left(-t^2\right) = \varphi_{a,b}(t)$$

La fonction $\varphi_{a,b}$ est intégrable sur $]0, +\infty[$ (notamment car de limite nulle en 0^+) donc on peut affirmer que F est de classe \mathcal{C}^1 sur $]0, +\infty[$ et

$$F'(x) = -2x \int_0^{+\infty} \frac{1}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt$$

c) Procédons au changement de variable u = x/t (bijection de classe C^1)

$$F'(x) = -2 \int_0^{+\infty} \exp\left(-\left(\frac{x^2}{u^2} + u^2\right)\right) du = -2F(x)$$

d) On en déduit qu'il existe $\lambda \in \mathbb{R}$ vérifiant

$$\forall x > 0, F(x) = \lambda e^{-2x}$$

Puisque F est paire et continue en 0, on obtient

$$\forall x \in \mathbb{R}, F(x) = F(0)e^{-2|x|}$$

Exercice 46: [énoncé]

Sachant
$$\Gamma(x+1) = x\Gamma(x)$$
 et $\Gamma(1/2) = \sqrt{\pi}$ on a $\Gamma\left(n+\frac{1}{2}\right) = \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{1}{2}\right) = \dots = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\cdots\frac{3}{2}\frac{1}{2}\Gamma(1/2)$ donc $\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n-1)(2n-3)\times \dots \times 3\times 1}{2^{n-1}}\sqrt{\pi} = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$.

Exercice 47 : [énoncé]

$$\Gamma(x+1) = x\Gamma(x) \text{ donc } \Gamma'(x+1) = x\Gamma'(x) + \Gamma(x) \text{ puis } \Gamma'(2) = 1 - \gamma.$$

Exercice 48: [énoncé]

Pour tout t>0, la fonction $x\mapsto t^{x-1}=\mathrm{e}^{(x-1)\ln t}$ est convexe donc pour tout $a,b\in]0,+\infty[$ et tout $\lambda\in [0,1],$ $t^{\lambda a+(1-\lambda)b-1}\leqslant \lambda t^{a-1}+(1-\lambda)t^{b-1}$ puis $t^{\lambda a+(1-\lambda)b-1}\mathrm{e}^{-t}\leqslant \lambda t^{a-1}\mathrm{e}^{-t}+(1-\lambda)t^{b-1}\mathrm{e}^{-t}.$ En intégrant sur $]0,+\infty[$, on obtient $\Gamma(\lambda a+(1-\lambda)b)\leqslant \lambda\Gamma(a)+(1-\lambda)\Gamma(b).$

Exercice 49 : [énoncé]

Pour x > 0, la fonction $t \mapsto (\ln t)^k t^{x-1} e^{-t}$ est intégrable sur $]0, +\infty[$. En effet $t^2 \times (\ln t)^k t^{x-1} e^{-t} \xrightarrow[t \to +\infty]{} 0$ et $(\ln t)^k t^{x-1} e^{-t} \sim \frac{(\ln t)^k}{t^{1-x}}$ avec 1 - x < 1.

Posons $f(x,t) = t^{x-1}e^{-t}$

Pour tout $k \in \mathbb{N}$, $\frac{\partial^k f}{\partial x^k}$ existe et $\frac{\partial^k f}{\partial x^k}(x,t) = (\ln t)^k t^{x-1} e^{-t}$.

Pour tout $x > 0: t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux.

Pour tout $t > 0 : t \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ est continue.

Pour tout $[a,b] \subset]0, +\infty[$ et tout $(x,t) \in [a,b] \times]0, +\infty[$:

 $\left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leqslant (\ln t)^k (t^{a-1} + t^{b-1}) e^{-t} = \varphi_k(t) \text{ avec } \varphi_k \text{ intégrable sur }]0, +\infty[.$

Par domination, Γ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$

Exercice 50 : [énoncé]

a) Pour x > 0, la fonction $t \mapsto (\ln t)^k t^{x-1} e^{-t}$ est intégrable sur $]0, +\infty[$.

En effet $t^2 \times (\ln t)^k t^{x-1} e^{-t} \xrightarrow[t \to +\infty]{} 0$ et $(\ln t)^k t^{x-1} e^{-t} \sim \frac{(\ln t)^k}{t^{1-x}}$ avec 1 - x < 1.

Ainsi la fonction Γ est définie sur $]0, +\infty[$.

Posons $f(x,t) = t^{x-1}e^{-t}$.

Pour $[a,b] \subset]0,+\infty[$, on a $t^{x-1} \leqslant t^{a-1}$ ou $t^{x-1} \leqslant t^{b-1}$ selon que $t \leqslant 1$ ou $t \geqslant 1$. Dans les deux cas $t^{x-1} \leqslant t^{a-1} + t^{b-1}$ et donc $|f(x,t)| \leqslant f(a,t) + f(b,t) = \omega(t)$ avec φ intégrable.

Par domination : Γ est continue sur $]0, +\infty[$.

b) Pour k = 1 ou 2.

 $\frac{\partial^k f}{\partial x^k}$ existe et $\frac{\partial^k f}{\partial x^k}(x,t) = (\ln t)^k t^{x-1} e^{-t}$.

Pour tout $x>0: t\mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux.

Pour tout $t > 0 : t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue. Pour tout $[a,b] \subset [0,+\infty[$ et tout $(x,t) \in [a,b] \times [0,+\infty[$:

 $\left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leqslant (\ln t)^k (t^{a-1} + t^{b-1}) e^{-t} = \varphi_k(t) \text{ avec } \varphi_k \text{ intégrable sur }]0, +\infty[.$

Par domination Γ est de classe C^2 sur $]0, +\infty[$.

c) La dérivée seconde de $\ln \Gamma(x)$ est du signe de $\Gamma''(x)\Gamma(x) - \Gamma'(x)^2$.

Par l'inégalité de Cauchy-Schwarz :

$$\left(\int_0^{+\infty} \sqrt{t^{x-1}e^{-t}} \sqrt{(\ln t)^2 t^{x-1}e^{-t}}\right) dt \leqslant \left(\int_0^{+\infty} t^{x-1}e^{-t} dt\right) \left(\int_0^{+\infty} (\ln t)^2 t^{x-1}e^{-t} dt\right).$$

Ainsi $\Gamma'(x)^2 \leq \Gamma(x)\Gamma''(x)$ et donc $(\ln \Gamma(x))'' \geq 0$.

Finalement $x \mapsto \ln \Gamma(x)$ est convexe.

Exercice 51 : [énoncé]

a) Puisque $\ln(1+u) \leq u$, on a

$$0 \leqslant \left(1 - \frac{t}{n}\right)^{n-1} = \exp\left((n-1)\ln\left(1 - \frac{t}{n}\right)\right) \leqslant \exp\left(-(n-1)\frac{t}{n}\right) = e^{-t}e^{t/n} \leqslant e.e^{-t}$$

b) Pour tout $t \in \mathbb{R}^+$, $\ln(t)e^{-t}$ est limite simple de la suite de fonction (u_n) définie par $u_n(t) = \left(1 - \frac{t}{n}\right)^{n-1}$ si $t \in]0, n[$ et $u_n(t) = 0$ sinon. Puisque $|\ln(t)u_n(t)| \leq e \cdot \ln(t)e^{-t}$, par convergence dominée :

$$\lim_{n \to +\infty} \int_0^n \ln(t) \left(1 - \frac{t}{n}\right)^{n-1} dt = \int_0^{+\infty} \ln(t) e^{-t} dt$$

c) Par le changement de variable u = nt

$$\int_0^n \left(1 - \frac{t}{n}\right)^{n-1} \ln(t) dt = \int_0^1 n (1 - u)^{n-1} \ln(nu) du$$

avec

$$\int_0^1 n (1-u)^{n-1} \ln(nu) du = \ln n + \int_0^1 n \ln(u) (1-u)^{n-1} du$$

 $_{
m et}$

$$\int_{\varepsilon}^{1} n \ln(u) (1-u)^{n-1} du = \left[\ln(u) (1-(1-u)^{n})\right]_{\varepsilon}^{1} + \int_{\varepsilon}^{1} \frac{(1-u)^{n} - 1}{u} du$$

On notera que la fonction $u \mapsto n(1-u)^{n-1}$ est primitivée en $(1-(1-u)^n)$ qui s'annule en 0 de sorte que l'intégration par parties donne à la limite quand $\varepsilon \to 0^+$

$$\int_0^1 n \ln(u) (1-u)^{n-1} du = \int_0^1 \frac{(1-u)^n - 1}{u} du$$

d) Par le changement de variable u = 1 - v

$$\int_0^1 \frac{(1-u)^n - 1}{u} \, \mathrm{d}u = -\int_0^1 \frac{v^n - 1}{v - 1} \, \mathrm{d}v = -\int_0^1 \sum_{k=0}^{n-1} v^k \, \mathrm{d}v$$

puis

$$\int_0^1 \frac{(1-u)^n - 1}{u} \, \mathrm{d}u = -\sum_{k=1}^n \frac{1}{k} = -\ln n - \gamma + o(1)$$

Finalement

$$\int_0^{+\infty} \ln(t) e^{-t} dt = -\gamma$$

a) $q(x,t) = e^{-t}t^{x-1}$, $\frac{\partial^k g}{\partial x^k}(x,t) = (\ln t)^k e^{-t}t^{x-1}$ pour tout $k \in \mathbb{N}$.

Pour $t \in [a, b], \left| \frac{\partial^k g}{\partial x^k}(x, t) \right| \leq |\ln t|^k e^{-t} \left(t^{a-1} \mathbf{1}_{[0, 1]} + t^{b-1} \mathbf{1}_{[1, +\infty[} \right) = \varphi_k(t).$

 $t^2 \varphi_k(t) \xrightarrow[t \to +\infty]{} 0$ et pour $0 < \alpha < a, t^{1-\alpha} \varphi_k(t) \xrightarrow[t \to +\infty]{} 0$ donc φ_k est intégrable.

Par théorème, Γ est \mathcal{C}^{∞} .

b) Par ipp, $\Gamma(t+1) = t\Gamma(t)$. Sachant $\Gamma(1) = 1$, on obtient par récurrence $\Gamma(n+1) = n!$

c) Par le changement de variable proposé $\Gamma(n+1) = \frac{n^n}{e^n} \sqrt{n} \int_{-\infty}^{+\infty} f_n(y) dy$ avec :

$$f_n(y) = 0 \text{ sur }]-\infty, -\sqrt{n}], f_n(y) = e^{-y\sqrt{n}} \left(1 + \frac{y}{\sqrt{n}}\right)^n \text{ sur }]-\sqrt{n}, +\infty[.$$

Sur $]-\sqrt{n},0]$, une étude fonctionnelle montre $n\ln\left(1+\frac{y}{\sqrt{n}}\right)-y\sqrt{n}\leqslant -\frac{y^2}{2}$ qui donne $0 \leqslant f_n(y) \leqslant e^{-y^2/2}$

Sur $[0, +\infty[$, une étude fonctionnelle montre $n \ln \left(1 + \frac{y}{\sqrt{n}}\right) - y\sqrt{n} \leqslant -y + \ln(1+y)$ pour $t \geqslant 1$. Cela donne $0 \leqslant f_n(y) \leqslant (1+y)\mathrm{e}^{-y}$.

d) La fonction $\varphi: y \to \left\{ \begin{array}{ll} \mathrm{e}^{-y^2/2} & \mathrm{si} \ y \leqslant 0 \\ (1+y)\mathrm{e}^{-y} & \mathrm{sinon} \end{array} \right.$ est intégrable sur \mathbb{R} .

Quand $n \to +\infty,$ en réalisant un DL du contenu de l'exponentiel :

$$f_n(y) = e^{-y\sqrt{n} + n \ln\left(1 + \frac{y}{\sqrt{n}}\right)} \to e^{-y^2/2}.$$

Par convergence dominée : $\int_{-\infty}^{+\infty} f_n(y) dy \to \int_{-\infty}^{+\infty} e^{-y^2/2} dy = \sqrt{2\pi} d$ 'où

 $\Gamma(n+1) = n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$. Etudes.doc

Exercice 53: [énoncé]

a) $a = \alpha + i\beta$ avec $\alpha > 0$ et $\beta \in \mathbb{R}$.

a+n=|a+n| $e^{i\theta_n}$ avec $|a+n|=\sqrt{(\alpha+n)^2+\beta^2}=n+\alpha+O\left(\frac{1}{n}\right)$ et

 $\theta_n = \arctan \frac{\beta}{a+n} = \frac{\beta}{n} + O\left(\frac{1}{n^2}\right).$

$$u_n = a \exp\left(\sum_{k=1}^n \ln|a+k| + i\theta_k\right) =$$

$$a \exp\left(\sum_{k=1}^{n} \ln k + \sum_{k=1}^{n} \ln\left(1 + \frac{\alpha}{k} + O\left(\frac{1}{k^2}\right)\right) + i\sum_{k=1}^{n} \frac{\beta}{k} + O\left(\frac{1}{k^2}\right)\right).$$

Ainsi $u_n = an! \exp(\alpha \ln n + i\beta \ln n + \chi + o(1))$ et donc $u_n \sim A(a)n!n^a$ avec $n^a = \exp(a \ln n)$ et $A(a) \in \mathbb{C}^*$.

b) Notons $H = \{z \in \mathbb{C}, \text{Re} z > 0\}$. Pour $z \in H$, on a $\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt$.

Par convergence dominée, on montre que $\Gamma(z) = \lim_{n \to +\infty} \int_0^n t^{z-1} \left(1 - \frac{t}{n}\right)^n dt$.

Par changement de variable, $\int_0^n t^{z-1} \left(1 - \frac{t}{n}\right)^n dt = n^z \int_0^1 u^{z-1} (1-u)^n du$ puis par intégrations par parties successives $\int_0^n t^{x-1} \left(1 - \frac{t}{n}\right)^n dt = \frac{n^z n!}{z(z+1)...(z+n)}$.

On en déduit que pour z = a, $\Gamma(z) = \frac{1}{A(a)}$.

On en déduit en particulier que $\Gamma(z) \neq 0$ mais aussi que $a(a+1) \dots (a+n) \sim \frac{n^a n!}{\Gamma(a)}$