2023 年度インテリジェントシステム レポート課題 # 1 (探索:提出締切 6 月 8 日)

以下の問 $1\sim$ 問 3 に対する解答をレポートにまとめて(文書ファイルを)eALPS から提出せよ。提出するファイルは pdf であること。文書作成には latex, MS-Office などを用いることが望ましいが、手書きのレポートをスキャンして pdf に変換後提出してもよい。

1. 下の図1で示されるようなルーマニアの道路網を用いて、できるだけ移動距離を短くして、Bucharest まで旅行したいものとする。この経路探索に A*探索アルゴリズムを用いる。但し、 tree-like search を行い、冗長性のチェックは行わないものとする。また、ノードのゴールチェックは展開 のために frontier から取り出された際に実行するものとする。

図 1: ルーマニア道路網

A*探索を実行するためには各ノード(都市)<math>n からゴール(Bucharest)までの移動距離を評価するヒューリスティック関数が必要になる。このために、最短距離の値を図 2 に示すような各都市から Bucharest までの最短距離を用いるものとする。この表で与えられる都市n から Bucharest までの距離推定値を D(n) とおく。

A*探索アルゴリズムにおいては、開始状態からノード <math>n までのコスト g(n) とゴール(Bucharest)までのコストの推定値 h(n) により得られる評価関数 f(n)=g(n)+h(n) に基づいて探索を行う。いま、以下の 2 通りのヒューリスティック関数 $h_i(n)$ を用いて A*探索を実施することを考える。

$$h_1(n) = D(n), h_2(n) = 2 * D(n)$$

都市	直線距離	都市	直線距離
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

図 2: Bucharest までの直線距離

すなわち、ノードの評価関数は以下のようになる

$$f_1(n) = g(n) + D(n), \ f_2(n) = g(n) + 2 * D(n)$$

これらのヒューリスティック関数を用いた A*探索アルゴリズムを A1,A2 と呼ぶ。各アルゴリズム において、ノードは以下の情報を持つものとする

(ID, CITY, G, F, PARENT)

ここに ID はノードの番号であり、出発都市に相当するノードが ID:1、以降ノードの展開により新しいノードを生成する度に 1 ずつ加算していくものとする(このとき新しいノードを生成する際には都市名のアルファベット順(辞書式順)に従って生成を行うものとする)。 CITY は都市名、G はそのノードの g 値、F はそのノードの f 値、PARENT は親ノードの ID 値である。

このとき、以下の問(a),(b) に解答せよ。

- (a) Arad から Bucharest までの経路を A1,A2 を用いて探索したとき、見つかったゴール (Buchsrest) のノード情報 (ID, CITY, G, F, PARENT) と見つかった経路 (都市の順) を示せ。 また、ゴールが見つかった時点の frontier 内にある全てのノードのノード情報を F 値の順番に列挙せよ。
- (b) Lugoj から Bucharest までの経路を A1,A2 を用いて探索したとき、見つかったゴール (Buchsrest) のノード情報 (ID, CITY, G, F, PARENT) と見つかった経路 (都市の順) を示せ。 また、ゴールが見つかった時点の frontier 内にある全てのノードのノード情報を F 値の順番に列挙せよ。

- 2. ヒューリスティック関数 $h_i(n)$ はどれも許容的 (admissible) である。このとき、以下の関数 $h_a \sim h_f$ は常に許容的となるか否か答え、許容的であるものはなぜそうなるか理由を示し、許容的でないものは理由または反例を示せ。
 - $h_a(n) = \sum_{i=1}^k h_i(n) = h_1(n) + \dots + h_k(n)$
 - $h_b(n) = \max\{h_1(n), h_2(n), \dots, h_k(n)\}$
 - $h_c(n) = \min\{h_1(n), h_2(n), \cdots, h_k(n)\}$
 - $h_d(n) = \prod_{i=1}^k h_i(n) = h_1(n) \times h_2(n) \times \cdots \cdot h_k(n)$
 - $h_e(n) = \frac{1}{k} \sum_{i=1}^k h_i(n) = \frac{1}{k} (h_1(n) + \dots + h_k(n))$
 - $h_f(n) = \sum_{i=1}^k w_i h_i(n) = w_1 h_1(n) + \dots + w_k h_k(n)$ 但し $0 < w_i, \sum_{i=1}^k w_i = 1$
- 3. 連結されたグラフ上で、ノード S からノード G までの経路を A*アルゴリズムで探索することを考える。但し、グラフの各辺には正のコストが割り当てられているものとする。また、任意のノード n からゴール G までの最適(最小)コストを h*(n) と表す。

いま、hを許容的(admissible)ヒューリスティック関数としたとき、以下で与えられるヒューリスティック関数 \tilde{h} を用いて A*アルゴリズムを適用した場合の結果に関する問いに解答せよ。

- (a) $\tilde{h}(n) = \frac{1}{2}h(n)$ を用いたとき、最適コストの経路が見つかるか解答し、なぜそのような結果が得られると考えられるか述べよ。
- (b) $\tilde{h}(n) = \frac{4}{5}h(n) + \frac{1}{5}h^*(n)$ を用いたとき、最適コストの経路が見つかるか解答し、なぜそのような結果が得られると考えられるか述べよ。
- (c) $\tilde{h}(n) = 2h(n)$ を用いたとき、最適コストの経路が見つかるか解答し、なぜそのような結果が得られると考えられるか述べよ。
- (d) 前の問 (c) のヒューリスティック関数 $\tilde{h}(n)=2h(n)$ の場合、 A^* アルゴリズムによって見つかる経路のコスト C と最適コスト C^* については $C\leq 2C^*$ という関係が成立することを示せ。