Gompertz Processes

Aaron Geoffrey Sheldon

April 19, 2020

Abstract

Motivated by considering infinitesimal stochastic accelerations of time, we outline a theory of Gompertz processes, Poisson processes subordinated by integrated Geometric Brownian motion.

1 Motivation

Integrated geometric Brownian motion occurs in the asymptotic limit of infinitesimal stochastic accelerations. In the context of accelerated failure times we are observing a fixed absorbing event. We do not have access to metabolic time, which integrated geometric Brownian motion models. By Lévy-Khintchine this is the only representation that is Lévy and jump free.

Definition 1 (Gompertz Process). A Gompertz process G_t is a subordinated Poisson process N_t , with rate λ , where the subordinating process is integrated geometric Brownian motion Y_t , with drift μ and diffusion σ :

$$G_t = N_{Y_t} \tag{1}$$

given:

$$Y_t = \int_0^t X_s ds$$

$$= \int_0^t e^{\mu s + \sigma W_s} ds$$
(2)

$$= \int_0^t e^{\mu s + \sigma W_s} ds \tag{3}$$

2 **Preliminaries**

Lemma 1 (Acceleration Lemma). Induction on powers of geometric Brownian motion, conditioned on integrated geometric Brownian motion.

Lemma 2 (Recursion Convolution Lemma). Powers of integrated geometric Brownian motion.

3 Martingale

Two point conditional expectation

4 Lévy Process

Triangular matrix embedding resulting in independent multiplicative increments

5 Fokker-Planck

Two dimensional stochastic differential equation

6 Hazard Rate

Partial differential equation of Gompertz process hazard rate.