Chapter 5 语法分析-自下而上分析

回顾

- ▶ 算符优先文法
 - 算符优先级顺序
- 算符优先方法归约方法
 - $a_{i-1} \lessdot a_i = \cdots a_j \geqslant a_{j+1}$
- ▶ LR(0)分析法
 - ▶ LR(0)项目的计算
 - ▶ LR(0)分析表的生成

SLR分析表的构造

- ▶ LR(0)文法太简单,<u>没有实用价值</u>.
- ▶假定一个LR(0)规范族中含有如下的一个项目集
- ► (状态)I={X→α·bβ, A→α·, B→α}。
 FOLLOW(A)和FOLLOW(B)的交集为Ø,且不包含b,那么,当状态I面临任何输入符号a时,可以:
 - 1. 若a=b,则移进;
 - 2. 若a∈FOLLOW(A),用产生式A→α进行归约;
 - 3. \dot{a} ∈ FOLLOW(B),用产生式B $\rightarrow \alpha$ 进行归约;
 - 4.此外,报错。

- ▶ 假定LR(0)规范族的一个项目集I={ $A_1 \rightarrow \alpha \cdot a_1 \beta_1$, $A_2 \rightarrow \alpha \cdot a_2 \beta_2$, ..., $A_m \rightarrow \alpha \cdot a_m \beta_m$, $B_1 \rightarrow \alpha$; $B_2 \rightarrow \alpha$; ..., $B_n \rightarrow \alpha$ } 如果集合{ a_1 , ..., a_m }, FOLLOW(B_1), ..., FOLLOW(B_n)两两不相交(包括不得有两个FOLLOW集合有#),则 1. 若a是某个 a_i , i=1,2,...,m,则移进;

 - 3. 此外,报错。
- ▶冲突性动作的这种解决办法叫做SLR(I)解决办法

构造SLR(1)分析表方法:

- ▶ 首先把G拓广为G′,对G′构造LR(0)项目集规范族C 和活前缀识别自动机的状态转换函数GO.
 - ▶ 拓广文法: 增加 $S' \rightarrow S$,新起始符号
- ▶ 然后使用C和GO,按下面的算法构造SLR分析表:
 - ▶ 令每个项目集 I_k 的下标k作为分析器的状态,包含项目 $S' \rightarrow S$ 的集合 I_k 的下标k为分析器的初态。

分析表的ACTION和GOTO子表构造方法:

- I. 若项目 $A \rightarrow \alpha \cdot a\beta$ 属于 I_k 且 $GO(I_k,a)=I_j$, a为终结符,则置 ACTION[k,a]为 "sj";
- 2. 若项目 $A \rightarrow \alpha$ '属于 I_k , 那么,对任何终结符a, $a \in FOLLOW(A)$, 置ACTION[k,a]为 "rj"; 其中,假定 $A \rightarrow \alpha$ 为文法G'的第j个产生式;
- 3. 若项目S'→S·属于I_k,则置ACTION[k,#]为 "acc";
- 4. 若 $GO(I_k,A) = I_j$, A为非终结符,则置GOTO[k,A] = j;
- 5. 分析表中凡不能用规则 | 至4填入信息的空向格均置上"出错标志"。

- > 按上述方法构造出的ACTION与GOTO表如果不含 多重入口,则称该文法为SLR(I)文法。
- ▶ 使用SLR表的分析器叫做一个SLR分析器。
- ▶每个SLR(I)文法都是无二义的。但也存在许多无二义文法不是SLR(I)的.

) 例 考察下面的拓广文法:

- (0) S'→E
- (I) **E**→**E**+**T**
- (2) **E**→**T**
- **(3) T**→**T*****F**
- **(4) T**→**F**
- **(5) F**→**(E)**
- (6) **F**→i

▶ 这个文法的LR(0)项目集规范族为:

I₀:
$$S' \rightarrow \cdot E$$
 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot i$

$$I_1: S' \rightarrow E \cdot E \cdot T$$

I₂:
$$E \rightarrow T$$
·
 $T \rightarrow T \cdot *F$

$$I_3$$
: $T \rightarrow F$

I₄:
$$F \rightarrow (\cdot E)$$

 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot i$

$$I_5$$
: $F \rightarrow i$

I₆:
$$E \rightarrow E + \cdot T$$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot i$

$$I_7: T \rightarrow T^* \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_8: F \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + T$$

$$I_9$$
: $E \rightarrow E + T \cdot T \rightarrow T \cdot *F$

$$I_{10}$$
: $T \rightarrow T*F$

$$I_{11}$$
: $F \rightarrow (E)$

- ▶ 1、12和19都含有"移进-归约"冲突。
- FOLLOW(E) = {#,), +},

$$I_1: S' \rightarrow E \cdot E \cdot + T$$

$$I_2: E \rightarrow T \cdot T \rightarrow T \cdot *F$$

$$I_9$$
: $E \rightarrow E + T \cdot T \rightarrow T \cdot *F$

	Action						Goto		
状态	i	+	*	()	#	Е	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

► SLR在方法中,如果项目集I;含项目A→α.而且下一输入符号a∈FOLLOW(A),则状态i面临a时,可选用"用A→α归约"动作。但在有些情况下,当状态i显现于栈项时,栈里的活前缀未必允许把α归约为A,因为可能根本就不存在一个形如"βAa"的规范句型。因此,在这种情况下,用"A→α"归约不一定合适。

FOLLOW集合提供的信息太泛!

SLR分析的问题

▶ 如下文法:

$$S' \to S$$

$$A \to a|b$$

$$S \to aAa|aBb|bAb|bBa$$

$$B \to a|b$$

由于Follow(A)和Follow(B)都是 {a,b}, 无法判断应该如何归约

- ▶ 将后续的一个字符加入项目之中
- $(A \to \alpha \cdot B\beta, a)$

LR(0)项目

$$S \stackrel{*}{\Rightarrow} \delta A \omega \stackrel{+}{\Rightarrow} \delta \alpha \cdot \beta \omega$$
 得到 $(A \rightarrow \alpha \cdot \beta)$
LR(1)项目
 $S \stackrel{*}{\Rightarrow} \delta A a \omega \stackrel{+}{\Rightarrow} \delta \alpha \cdot \beta a \omega$ 得到 $(A \rightarrow \alpha \cdot \beta, a)$

LR(0)的两个函数应该如何修改?

$$(A \to \alpha \cdot b\beta, a)$$
 $\stackrel{\mathbf{b}}{\Longrightarrow}$ $(A \to \alpha b \cdot \beta, a)$ Go函数 没有变化 $(A \to \alpha \cdot B\beta, a)$ $\stackrel{\mathbf{B}}{\Longrightarrow}$ $(A \to \alpha B \cdot \beta, a)$

$$(A \to \alpha \cdot B\beta, a) \xrightarrow{\varepsilon - closure} (B \to c, d)$$

$$B \to c \qquad d = First(\beta a)$$

 ε – closure 需要修改

- ▶ 拓广文法
 - $S' \rightarrow S, S \rightarrow BB, B \rightarrow aB, B \rightarrow b$

$$(A \to \alpha \cdot B\beta, \alpha) \xrightarrow{\varepsilon - closure} (B \to c, d)$$

$$B \to c \qquad d = First(\beta\alpha)$$

- ▶ 拓广文法
 - $S' \rightarrow S, S \rightarrow BB, B \rightarrow aB, B \rightarrow b$

$$(S' \rightarrow S, \#) \implies (S \rightarrow BB, \#)$$

$$(S \rightarrow BB, \#) \Longrightarrow (B \rightarrow aB, First(B\#))$$

$$B \rightarrow aB \qquad (B \rightarrow aB, a/b)$$

$$(A \to \alpha \cdot B\beta, \alpha) \xrightarrow{\varepsilon - closure} (B \to c, d)$$

$$B \to c \qquad d = First(\beta\alpha)$$

Exercise

▶ 例12 已知文法G[S]:

$$S\rightarrow *A$$
 $A\rightarrow 0A1|*$

- ▶ (1) 求文法G的各非终结符号的FIRSTVT集和 LASTVT集;
- ▶ (2) 构造文法G的优先关系矩阵,并判断该文法是否是算符优先文法;

Exercise

▶ (1) 求文法G的各非终结符号的FIRSTVT集和 LASTVT集。

- ▶ 根据非终结符号的FIRSTVT集定义得到
- $FIRSTVT (S) = \{*\}$
- $FIRSTVT (A) = \{0, *\}$
- ▶ 根据非终结符号的LASTVT集定义得到
- $LASTVT (S) = \{*, 1\}$
- $LASTVT (A) = \{1, *\}$

Exercise

```
対S\to*A, (*\checkmark0) , (*\checkmark*) 

対A\to0A1, (0≒1) (0\checkmark0) , (0\checkmark*) (1\nearrow1) , (*\nearrow1)
```

	0	1	*
0	≮	<u>:</u>	≮
1		>	
*	≮	>	≮

练习:

- ▶ 设文法G(S):
- ▶ S -> (A) | a
- A -> A+S | S
- ▶ (1) 构造非终结符的FIRSTVT和LASTVT集合
- ▶ (2) 构造优先关系表

- ▶ 已知文法G(S):
- S -> aS | bS | a
- ▶ (1) 构造该文法的LR (0) 项目集规范族
- ▶ (2) 构造识别该文法所产生的活前缀的DFA
- ▶ (3) 构造其SLR分析表,并判断该文法是否是SLR(1)文法

- ▶ 己知文法G=({a,b},{S,B},S,P), 其中P:
- ▶ S -> BB
- ▶ B->aB|b
- ▶ (1) 构造该文法的LR (0) 项目集规范族
- ▶ (2) 构造识别该文法所产生的活前缀的DFA
- ▶ (3) 构造其LR分析表,并写出aabab的分析过程

- ▶ 已知文法G(P):
- ▶ P -> aPb|Q
- Q->bQc|bSc
- ▶ S->Sa|a

▶ 构造SLR分析表,以说明它是不是SLR文法

- ▶ 已知文法G(S):
- S->iSeS | iS | a

▶ 构造SLR分析表,以说明它是不是SLR文法

第5题

 \blacktriangleright 文法G(S): S \rightarrow AS | b A \rightarrow SA | a

▶ 该文法的LR(0)项目有:

- $S \rightarrow AS$
- 3. $S \rightarrow AS$
- 5. $S \rightarrow b$
- 7. $A \rightarrow S \cdot A$
- 9. A→·a

- 2. $S \rightarrow A \cdot S$
- 4. $S \rightarrow b$
- 6. $A \rightarrow SA$
- $A \rightarrow SA$
- 10. $A \rightarrow a$

第5题

该文法的拓广文法为:

$$S' \rightarrow S S \rightarrow AS | b A \rightarrow SA | a$$

▶ LR(0)项目有:

$$S' \rightarrow S'$$
; $S' \rightarrow S'$; $S \rightarrow A \cdot S'$; $S \rightarrow B \cdot S'$; $S \rightarrow B$

