

Кафедра программных систем

Заболотнов Юрий Михайлович

Самара 2021

(S)

Тема лекции «Численное дифференцирование»

Постановка задачи.

Дана функция, оператор или алгоритм y = f(x) для вычисления некоторой выходной характеристики ММ упо входному аргументу (или параметру) x. Необходимо численно найти производную k- ого порядка. x Предполагается, что f(x) непрерывно зависит от x на отрезке a,b. Для приближенного вычисления производных будем использовать метод конечных разностей (МКР).

Вычисление первой производной.

Разобьем интервал точками $x_i = a + ih$, где i = 0, 1, ...N; h = (b - a)/N. В качестве приближенных выражений для первой производной для любой внутренней точки заданного интервала можно взять любую из следующих формул

$$\tilde{f}'(x_i) \approx (f_i - f_{i-1})/h$$
 , (1)

$$\tilde{f}'(x_i) \approx (f_{i+1} - f_i)/h$$
 , (2)

$$\tilde{f}'(x_i) \approx (f_{i+1} - f_{i-1})/2h$$
, (3)

где
$$f_i = f(x_i)$$
, $f_{i-1} = f(x_{i-1})$, $f_{i+1} = f(x_{i+1})$.

Формулы (1), (2) и (3) называются соответственно левой, правой и центральной разностными производными функции f(x) в точке $x=x_i$. Если точка x_i фиксирована, а $h \to 0$ ($N \to \infty$), то каждое из выражений (1-3) в соответствии с определением первой производной стремится к точному значению производной $\tilde{f}'(x_i) \to f'(x_i)$. Поэтому в качестве приближенного выражения для оценки первой производной можно взять любую из этих формул.

Численное дифференцирование

Вычисление высших производных.

Аналогично может быть произведено численное вычисление второй производной функции f(x). Вычитая правые части выражений для правой и левой разностных производных (2) и (1) друг из друга и разделив на шаг h, получим

$$\tilde{f}$$
" $(x_i) \approx (f_{i+1} - 2f_i + f_{i-1})/h^2$ (4)

Используя формулу вычисления второй производной можно получить выражения для оценки третьей и четвертой производных функции f(x)

$$\tilde{f}'''(x_i) \approx (f_{i+2} - 2f_{i+1} + 2f_{i-1} - f_{i-2})/2h^3$$
, (5)

$$\tilde{f}^{IV}(x_i) \approx (f_{i+2} - 4f_{i+1} + 6f_i - 4f_{i-1} + f_{i-2})/h^4$$
 (6)

(S)

Оценка погрешности численного дифференцирования

Оценка методической погрешности вычисления первой производной Для левой разности (1)

$$\tilde{f}'(x) \approx (f(x) - f(x-h))/h$$
, где $x = x_i$, $f(x) = f_i$, $f(x-h) = f_{i-1}$. (7)

Определим значения f(x-h), разложив функцию f(x) в ряд Тейлора в точке x

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f''''(x)...$$
 (8)

Отсюда

$$\frac{f(x) - f(x - h)}{h} = f'(x) + \frac{h}{2}f''(x) - \dots . (9)$$

Если функция f(x) дифференцируема и ее вторая производная ограничена на интервале [a,b] некоторой константой $M<\infty$, то из выражения (9) получим оценку (с точностью до слагаемых порядка h^2)

$$\left| f'(x) - \tilde{f}'(x) \right| < \frac{h}{2}M \quad . \tag{10}$$

Иногда оценку (1.8) записывают по другому, используя символ порядка O(h)

$$|f'(x) - \tilde{f}'(x)| = O(h)$$
 (11)

Оценка погрешности численного дифференцирования

Определение. Функция F(h) является величиной порядка $h^k(k=0,1,...)$, если

$$\lim_{h \to 0} \frac{F(h)}{h^k} = C_k \quad , \tag{12}$$

где $C_k < \infty$ - ограниченная константа.

Нетрудно показать, что точность оценки первой производной с помощью правой разностной производной та же (11). Однако вычисление первой производной с помощью центральной разностной схемы выше. Покажем это. Наряду с рядом (8) рассмотрим ряд

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f''''(x)...$$
 (13)

Тогда вычитая левые и правые части выражений (13) и (8), получим

$$\frac{f(x+h)-f(x-h)}{2h} = f'(x) + \frac{h^2}{3!}f'''(x) + \dots .$$

От сю да при условии ограниченности третьей производной функции f(x), для центральной разностной схемы получаем

$$|f'(x) - \tilde{f}'(x)| = O(h^2)$$
 (14)

Следоват ельно, центральная разностная схема в общем случае дает большую точность при численном вычислении первой производной, чем формулы правая и левая формулы.

Оценка погрешности численного дифференцирования

Аналогично может быть получена оценка точности вычисления второй производной (4). Для этого необходимо выписать ряды (8) и (13) до слагаемых порядка h^4 и подставить в формулу (1.4), тогда

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \frac{h^2}{12}f^{IV}(x) + \dots$$

или при условии ограниченности четвертой производной

$$|f''(x) - \tilde{f}''(x)| < O(h^2)$$
 (14)

Используя описанную выше методику, можно показать, что точность вычисления производных 3-ого и 4-ого порядков с помощью разностных схем определяется неравенством

$$|f^{(k)}(x) - \tilde{f}^{(k)}(x)| < O(h^k)$$
 , (15)

где k = 3, 4.

Формулы (1-2) – первого порядка точности (p=1).

 Φ ормулы (3-4) — второго порядка точности (p=2)

Формулы (5) и (6) - p=3 и p=4 порядка точности.

В общем случае
$$|f^{(k)}(x) - \tilde{f}^{(k)}(x)| < O(h^p)$$
, (16)

где k и p не всегда совпадают.

(S)

Оценка погрешности численного дифференцирования

О влиянии вычислительной погрешности.

При вычислении функции f(x) может возникнуть вычислительная погрешность, например, $\tilde{f}_i = f_i + \delta_i$, $\tilde{f}_{i-1} = f_{i-1} + \delta_{i-1}$, где δ_i , δ_{i-1} - вычислительная погрешность в точках x_i , x_{i-1} . Тогда, например, для левой разности (2)

$$\tilde{f}'(x_i) \approx (f_i - f_{i-1}) / h + (\delta_i - \delta_{i-1}) / h$$
.

В этом случае оценка для вычислительной погрешности δ_f определения производной дает

$$\left|\delta_{f}\right| = \left|\left(\delta_{i} - \delta_{i-1}\right)/h\right| \le \frac{2\delta}{h}$$
,

где $\delta = \max(|\delta_i|, |\delta_{i-1}|)$. Поэтому при $h \to 0$ вычислительная погрешность неограниченно возрастает.

• В общем случае существует некоторый минимальный шаг дискретизации h_0 , при котором методическая и вычислительная погрешности приблизительно равны. Этот минимальный шаг дискретизации можно оценить, приравняв соответствующие погрешности. Так, для формулы (1) имеем

$$\frac{h_0}{2}M \approx \frac{2\delta}{h_0}$$
.

Отсюда

$$h_0 \approx 2\sqrt{\frac{\delta}{M}} = O(\sqrt{\delta})$$
.

При вычислении производных высших порядков влияние вычислительной погрешности может быть еще больше. Можно показать, что

$$h_0 \approx = O(\delta^{1/2k})$$

и это справедливо для k = 2, 3, 4

Оценка погрешности численного дифференцирования

Пример влияния вычислительной погрешности

Рисунок 1. Полная погрешность для первой производной

Рисунок 2. Полная погрешность для четвертой производной

Порядок точности определяет скорость изменения методической погрешности при уменьшении параметра h!

Прямой и обратный анализ погрешности на примере численного дифференцирования

Различают:

1. Прямой анализ погрешностей (теоретический, априорный).

Анализ проводится до проведения расчетов и служит, как правило, для определения порядка точности p используемой формулы.

2. Обратный анализ погрешности (практический способ, апостериорный, по результатам проведенных численных экспериментов). Это анализ использует информация о порядке точности \mathcal{P} .

Правило Рунге.

На основании (16) можно записать

$$\delta(h) = f^{(k)}(x) - \tilde{f}^{(k)}(h) \approx C_p h^p$$
(17)

где C_p - некоторая константа, $f^{(k)}(x)$ - «точное» значение производной, $\tilde{f}^{(k)}(h)$ - приближенное значение при шаге h .

Проводя два расчета с параметрами h и h/2, получим

$$f^{(k)}(x) - \tilde{f}^{(k)}(h) \approx C_p h^p$$

$$f^{(k)}(x) - \tilde{f}^{(k)}(h/2) \approx C_p (h/2)^p$$
(18)

Отсюда определяем C_p , а значит оценку погрешности

$$\left| \delta(h) \right| \approx \left| \tilde{f}^{(k)}(h) - \tilde{f}^{(k)}(h/2) \right| \cdot \frac{2^p}{2^p - 1}$$
(19)

Спасибо за внимание

e-mail: yumz@yandex.ru

ул. Московское шоссе, д. 34, г. Самара, 443086 Тел.: +7 (846) 335-18-26 , факс: +7 (846) 335-18-36 Сайт: www.ssau.ru, e-mail: ssau@ssau.ru