Random Matrices Pavel Kurilovich

1. What?

Random matrix

Random matrix

= matrix of random variables

What can we study?

Random matrix:
$$H = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$$

Averages?

Random matrix:
$$H = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$$

Averages?

$$\langle H \rangle = \begin{pmatrix} \langle H_{11} \rangle & \langle H_{12} \rangle & \langle H_{13} \rangle \\ \langle H_{21} \rangle & \langle H_{22} \rangle & \langle H_{23} \rangle \\ \langle H_{31} \rangle & \langle H_{32} \rangle & \langle H_{33} \rangle \end{pmatrix}$$

Random matrix:
$$H = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$$

Averages?

$$\langle H \rangle = \begin{pmatrix} \langle H_{11} \rangle & \langle H_{12} \rangle & \langle H_{13} \rangle \\ \langle H_{21} \rangle & \langle H_{22} \rangle & \langle H_{23} \rangle \\ \langle H_{31} \rangle & \langle H_{32} \rangle & \langle H_{33} \rangle \end{pmatrix}$$

$$\begin{array}{c} \mathbf{NOTINTERESTING} \end{array}$$

Random matrix:
$$H = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$$

Statistics of spectrum (eigenvalues)?

$$\det\left(H - E_i\right) = 0$$

Random matrix:
$$H = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$$

Statistics of spectrum (eigenvalues)?

$$\det\left(H - E_i\right) = 0$$

HIGHLY NON-TRIVIAL

Not all $N \times N$ matrices possess N eigenvalues!

Not all $N \times N$ matrices possess N eigenvalues! **Symmetry constrains** for random matrices:

Not all $N \times N$ matrices possess N eigenvalues! **Symmetry constrains** for random matrices:

Complex, $H^{\dagger} = H$

Real, $H^T = H$

and so on...

Nice **real** spectrum!

N eigenvalues

Important class:

Gaussian random matrices

Important class:

Gaussian random matrices

Focus of the talk:

Complex Hermitian Gaussian random matrices

$$H \in N \times N, \quad H = H^{\dagger}$$

$$p(H) \propto \exp\left(-\frac{N}{2} \operatorname{tr} H^2\right)$$

$$H \in N \times N, \quad H = H^{\dagger}$$

$$p(H) \propto \exp\left(-\frac{N}{2} \text{tr} H^2\right)$$

$$p(H) \propto \exp\left(-\frac{N}{2} \left[\sum_{i} H_{ii}^2 + 2\sum_{i < j} |H_{ij}|^2\right]\right)$$

$$H \in N \times N, \quad H = H^{\dagger}$$

$$p(H) \propto \exp\left(-\frac{N}{2} \text{tr} H^2\right)$$

$$H \in N \times N, \quad H = H^{\dagger}$$

$$p(H) \propto \exp\left(-\frac{N}{2} \text{tr} H^2\right)$$

$$H \in N \times N, \quad H = H^{\dagger}$$

$$p(H) \propto \exp\left(-\frac{N}{2} \text{tr} H^2\right)$$

$$H \in N \times N, \quad H = H^{\dagger}$$

$$p(H) \propto \exp\left(-\frac{N}{2} \text{tr} H^2\right)$$

Joint probability density fucntion?

E

2. Why?

Different physical models!

Originally:

Energy levels of heavy nuclei

Different physical models!

Moreover:

Disordered quantum dots (tiny metal grains...)

Also QCD, quantum optics, neuroscience...

3. How?

Gaussian Unitary Ensemble

$$H \in N \times N, \quad H = H^{\dagger}, \quad p(H) \propto \exp\left(-\frac{N}{2} \operatorname{tr} H^2\right)$$

Joint probability density fucntion of eigenvalues?

Is this a Gaussian distribution?

$$H \in N \times N, \quad H = H^{\dagger}, \quad p(H) \propto \exp\left(-\frac{N}{2} \operatorname{tr} H^2\right)$$

Attempt 1:

$$H \in N \times N, \quad H = H^{\dagger}, \quad p(H) \propto \exp\left(-\frac{N}{2} \operatorname{tr} H^2\right)$$

Attempt 1:

$$H = U^{-1}\hat{E}U, \quad \hat{E} = \text{diag}(E_1, ..., E_N)$$

$$p(E_i) \propto \exp\left(-\frac{N}{2}\sum_i E_i^2\right)$$

$$H \in N \times N, \quad H = H^{\dagger}, \quad p(H) \propto \exp\left(-\frac{N}{2} \operatorname{tr} H^2\right)$$

Attempt 1:

$$H = U^{-1}\hat{E}U, \quad \hat{E} = \text{diag}(E_1, ..., E_N)$$

$$p(E_i) \propto \exp\left(-rac{N}{2}\sum_i E_i^2
ight)$$
 WRONG

$$H \in N \times N, \quad H = H^{\dagger}, \quad p(H) \propto \exp\left(-\frac{N}{2} \operatorname{tr} H^2\right)$$

Taking Jacobian into the account:

$$p(E_i) \propto \left(\prod_{i < j} |E_i - E_j|^2\right) \exp\left(-\frac{N}{2} \sum_i E_i^2\right)$$

Repulsion of eigenvalues!

$$p(E_i) \propto \left(\prod_{i < j} |E_i - E_j|^2\right) \exp\left(-\frac{N}{2} \sum_i E_i^2\right)$$

Repulsion of eigenvalues – usual for QM

Something simple to look at...

Something simple to look at...

Spectral density:
$$\nu(E) = dn(E)/dE$$

Something simple to look at...

Spectral density:
$$\nu(E) = dn(E)/dE$$

dn(E) - average number of eigenvalues in (E, E+dE)

$$p(E_i) \propto \left(\prod_{i < j} |E_i - E_j|^2\right) \exp\left(-\frac{N}{2} \sum_i E_i^2\right)$$

PAIN to work with

Possible to circumvent for $N\gg 1$

$$N=2$$

$$N=4$$

$$N=10$$

Spectral density:
$$\nu(E) = dn(E)/dE$$

For
$$N \gg 1$$

$$\nu(E) \approx \frac{N}{2\pi} \sqrt{4 - E^2}$$

Spectral density:
$$\nu(E) = dn(E)/dE$$

dn(E) - average number of eigenvalues in (E, E+dE)

For
$$N \gg 1$$

$$\nu(E) \approx \frac{N}{2\pi} \sqrt{4 - E^2}$$

How to derive this result? **Feynman diagrams**

$$\nu(E) = \langle \Sigma_n \delta(E - E_n) \rangle = -\frac{1}{\pi} \langle \text{Im} \left(\text{tr} \left[E - H + i0 \right]^{-1} \right)$$

$$\nu(E) = \langle \Sigma_n \delta(E - E_n) \rangle = -\frac{1}{\pi} \langle \text{Im} \left(\text{tr} \left[E - H + i0 \right]^{-1} \right)$$

Green's function (resolvent)

Spectral density:
$$\nu(E) = dn(E)/dE$$

$$\nu(E) = \langle \Sigma_n \delta(E - E_n) \rangle = -\frac{1}{\pi} \langle \text{Im} \left(\text{tr} \left[E - H + i0 \right]^{-1} \right)$$

Green's function (resolvent)

$$\frac{1}{E-H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$

Spectral density:
$$\nu(E) = dn(E)/dE$$

$$\nu(E) = \langle \Sigma_n \delta(E - E_n) \rangle = -\frac{1}{\pi} \langle \text{Im} \left(\text{tr} \left[E - H + i0 \right]^{-1} \right)$$

Green's function (resolvent)

$$\frac{1}{E - H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$
$$\langle H_{mn}H_{kp}^* \rangle \propto \delta_{mk}\delta_{np}$$

$$\frac{1}{E-H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$

$$\langle H_{mn}H_{kp}^{\star}\rangle\propto\delta_{mk}\delta_{np}$$

$$\frac{1}{E-H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$

$$\langle H_{mn}H_{kp}^{\star}\rangle\propto\delta_{mk}\delta_{np}$$

$$\frac{1}{E-H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$

$$\langle H_{mn}H_{kp}^{\star}\rangle\propto\delta_{mk}\delta_{np}$$

$$\frac{1}{E-H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$

$$\langle H_{mn}H_{kp}^{\star}\rangle \propto \delta_{mk}\delta_{np}$$

Dyson equation

$$\frac{1}{E-H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$

$$\langle H_{mn}H_{kp}^{\star}\rangle\propto\delta_{mk}\delta_{np}$$

Dyson equation

$$\left(\frac{1}{E-H}\right)_{mn} \approx \delta_{mn} \frac{E - i\sqrt{4 - E^2}}{2}$$

$$\frac{1}{E-H} = \frac{1}{E} + \frac{1}{E^2}H + \frac{1}{E^3}H^2 + \frac{1}{E^4}H^3 + \dots$$

 $\langle H_{mn}H_{kn}^{\star}\rangle\propto\delta_{mk}\delta_{np}$

Dyson equation

$$\left(\frac{1}{E-H}\right)_{mn} \approx \delta_{mn} \frac{E - i\sqrt{4 - E^2}}{2}$$

Summary

- 1. Random matrices = matrices of random variables
- 2. Eigenvalue problem: level repulsion for GUE
- 3. Spectral density: Wigner semicircle

Thank you for attention!