Теплопроводность, детерминированное горение

Кроз Елена, Ухарова Софья, Новикова Алина, Чупрына Петр, Попов Олег, Ширяев Кирилл $^{\rm 1}$

MatMod-2021, 27 Feb, 2021 Russia, Moscow

¹RUDN University, Moscow, Russian Federation

Горение

Горение

Figure 1: Горение — это завораживающий и зрелищный феномен природы, одновременно являющийся интересным объектом для исследований.

Описание задачи

Предлагается рассмотреть среду с учетом теплопроводности, в которой возможна экзотермическая химическая реакция (XP). Численно решая систему дифференциальных уравнений, можно исследовать различные режимы горения в одномерном и двумерном случаях.

Простейший случай

Среда должна обладать **теплопроводностью** и возможностью протекания **экзотермической реакции**, скорость которой сильно возрастает при увеличении температуры.

Параметр Е

Е - безразмерная энергия активации, равная отношению энергии активации к теплоте реакции.

Режимы горения

- **Одномерный случай**: стационарный, пульсирующий(автоколебательный)
- **Двумерный случай**: стационарный, пульсирующий, спиновый

Одномерный случай [1/2]

Стационарный режим - скорость распространения волны постоянна, а профили температуры и концентрации переносятся вдоль оси X не деформируясь. (рис. 2)

Figure 2: Стационарный режим

Одномерный случай [2/2]

Пульсирующий (автоколебательный) режим - скорость волны переменная, и горение распространяется в виде чередующихся вспышек и угасаний.

-От значения параметра E, зависит какой режим реализуется.

Двумерный случай

Фронт состоит из нескольких зон горения, распространяющихся по винтовой линии вдоль цилиндра(рис. 3)

Спасибо за внимание!

детерминированное горение. Первый

(Проект 6. Теплопроводность,

этап)