Analys i en variabel

SF1673 (HT25)

Contents

-	CD1	D 1	TAT 1
Ι.	The	- K.ea i	Numbers

- 1.1. Reals
 - 1.1.1. Prerequisites
 - 1.1.2. Comparison
 - 1.1.3. Bounds
- 1.2. Cardinality
- 1.3. Topology
 - 1.3.1. Points
 - 1.3.2. Open and Closed Sets
 - 1.3.3. Compactness

2. Limits

- 2.1. Sequences
 - 2.1.1. Bounded
 - 2.1.2. Cauchy
- 2.2. Series
- 2.3. Functions
- 2.4. Continuity
 - 2.4.1. Existence
 - 2.4.2. Composition
 - 2.4.3. Results

3. Calculus

- 3.1. The Derivative
 - 3.1.1. Differentiation
 - 3.1.2. Function Character
 - 3.1.3. The Mean Value Theorems
- 3.2. Function Graphs
 - 3.2.1. Asymptotes
 - 3.2.2. Convexity
 - 3.2.3. Points
- 3.3. THE RIEMANN INTEGRAL
 - 3.3.1. Definition
 - 3.3.2. Integrability
 - 3.3.3. Properties
 - 3.3.4. Integration Techniques
- 3.4. Taylor's Theorem
 - 3.4.1. Function Order
- 3.5. Ordinary Differential Equations

1. The Real Numbers

1.1. Reals

then $S = \mathbb{N}$.

mapped to exactly one x. 1.1.2. Comparison Definition 1.1.3 (Equality)

 $a = b \iff (\forall \varepsilon > 0 \Rightarrow |a - b| < \varepsilon)$ Theorem 1.1.4 (Triangle Inequalities)

(i) $|a+b| \le |a| + |b|$

The same does not apply for the rationals.

(ii) $|a-b| \le |a-c| + |c-b|$ (iii) $|a-b| \ge ||a| - |b||$ The reverse triangle inequality (iii) is seldom used. 1.1.3. Bounds

Every bounded, nonempty set of real numbers has a least upper bound. (i) Note

1.2. CARDINALITY Definition 1.2.1 (Cardinality)

A has the same *cardinality* as B if there exists a bijective $f: A \to B$. A is countably infinite if $\mathbb{N} \sim A$.

A is *countable* if it is finite or countably infinite. Otherwise, A is uncountable. Theorem 1.2.3 (Countability of \mathbb{Q} , \mathbb{R})

O is countable. exactly one set. \mathbb{R} is uncountable. *Proof.* Cantor's diagonalization method.

1.3. Topology

 \mathbb{I} is uncountable.

Proof. $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ where \mathbb{Q} is countable.

than x. Theorem 1.3.2 (Sequential Limit Point) x is a limit point of A if $x = \lim a_n$ for some $(a_n) \subseteq A : a_n \neq x \ \forall n \in \mathbb{N}$.

1.3.1. Points

. Then . In particular, there exists $a \in \bigcap_{n=1}^{\infty} I_n$.

with

1.3.2. Open and Closed Sets

Definition 1.3.4 (Open/Closed Set) $A \subseteq \mathbb{R}$ is open if $\forall a \in A \ \exists V_{\varepsilon}(a) \subseteq A$ or equivalently if its complement is closed. complement is open.

Theorem 1.3.5 (Clopen Sets) \mathbb{R} and \emptyset are *clopen* (both opened and closed). Theorem 1.3.6 (Unions/Intersections)

(i) Arbitrary unions of open sets are open; finite intersections of open (ii) Arbitrary intersections of closed sets are closed; finite unions of 1.3.3. Compactness

A set $K \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded. (i) Note

subcover.

sets are open.

Definition 1.3.7 (Compact)

1.1.1. Prerequisites Theorem 1.1.1 (Induction)

Let $S \subseteq \mathbb{N}$. If (i) $1 \in S$, and

(ii) $n \in S \Longrightarrow n+1 \in S$ (inductive step), Definition 1.1.2 (Injective/Surjective/Bijective)

 $f: X \to Y$ is injective (or one-to-one) if $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$ or equivalently if $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$. f is surjective if $\forall y \ \exists x : f(x) = y$. f is bijective if is both injective and surjective or equivalently if each y is

Axiom 1.1.5 (Supremum Property or Axiom of Completeness)

Definition 1.1.6 (Least Upper Bound) Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then, $s = \sup A \iff \forall \varepsilon > 0 \ \exists a \in A : s - \varepsilon < a.$

Definition 1.2.2 (Countable/Uncountable)

Proof. Let $A_1 = \{0\}$ and let $A_n = \{ \pm p/q : p, q \in \mathbb{N}_+, \gcd(p, q) = 1, p + q = n \}$ for all $n \geq 2$. Each A_n is finite and every rational numbers appears in

Theorem 1.2.4 (Density of \mathbb{Q} in \mathbb{R}) (i) $\forall a < b \in \mathbb{R} \ \exists r \in \mathbb{Q} : a < r < b$ (ii) $\forall y \in \mathbb{R} \ \exists (r_n) \in \mathbb{Q} : (r_n) \to y$

Definition 1.3.1 (Limit Point) x is a limit point of A if every $V_{\varepsilon}(x)$ intersects A at some point other

Theorem 1.3.3 (Nested Interval Property)

 $\bigcap_{n=1}^{\infty}I_{n}\neq\emptyset$

Let (I_n) be a nested sequence of nonempty closed and bounded intervals

 $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$

 $A \subseteq \mathbb{R}$ is *closed* if it contains its limit points or equivalently if its

closed sets are closed.

A set K in a topological space is *compact* if every open cover has a finite

Theorem 1.3.8 (Heine–Borel)

Compactness is like a generalization of closed intervals.

A sequence converges to a if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : n \ge N \Longrightarrow |a_n - a| < \varepsilon$ or equivalently if for any $V_{\varepsilon}(a)$ there exists a point in the sequence after which all terms are in $V_{\varepsilon}(a)$. In other words if every ε -neighborhood contains all but a finite number of the terms in (a_n) . We write this $\lim_{n\to\infty} a_n = \lim a_n = a$ or $a_n \to a$. Example. Template of a typical convergence proof: (i) Let $\varepsilon > 0$ be arbitrary. (ii) Propose an $N \in \mathbb{N}$ (found before writing the proof). (iii) Assume $n \geq N$. (iv) Show that $|a_n - a| < \varepsilon$. Theorem 2.1.3 (Uniqueness of Limits)

2. Limits

2.1.1. Bounded

2.1. SEQUENCES

Definition 2.1.1 (Sequence)

Definition 2.1.2 (Convergence)

A sequence is a function whose domain is \mathbb{N} .

The limit of a sequence, if it exists, is unique.

A sequence is bounded if $\exists M > 0 : |a_n| < M \ \forall n \in \mathbb{N}$.

Definition 2.1.4 (Bounded)

Theorem 2.1.5 (Convergent) Every convergent sequence is bounded. If a sequence is monotone and bounded it converges. Subsequences of a convergent sequence converge to the same limit. Theorem 2.1.6 (Bolzano-Weierstrass) In a compact set $K \subseteq \mathbb{R}$, every bounded sequence contains a convergent subsequence whose limit point is in K. 2.1.2. Cauchy Definition 2.1.7 (Cauchy Sequence) A sequence (a_n) is a Cauchy sequence if

 $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : m, n \ge N \Longrightarrow |a_n - a_m| < \varepsilon.$ Theorem 2.1.8 (Cauchy Criterion) A sequence converges if and only if it is a Cauchy sequence. 2.2. SERIES Definition 2.2.1 (Infinite Series) $\sum_{j=0}^{\infty} a_j = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{j=0}^n a_j.$ If $a_j \geq 0$ for every j we say that the series is positive.

Let $(a_j)_{i=0}^{\infty}$ and let $(s_n)_{n=0}^{\infty}$. The sum of the infinite series is defined as (!) Caution Beware of treating infinite series like elementary algebra, e.g., by rearranging terms. Theorem 2.2.2 (Cauchy Criterion for Series) The series $\sum_{k=0}^{\infty} a_k$ converges if and only if $\forall \varepsilon > 0 \ \exists N : n > m > N \Longrightarrow \left| a_m + a_{m+1} + \dots + a_{n-1} + a_n \right| < \varepsilon.$ Corollary 2.2.3 (Series Term Test)

If $\sum_{k=1}^{\infty} a_k$ converges, then $a_k \to 0$. However, the reverse implication is false. Theorem 2.2.4 The series $\sum_{j=1}^{\infty} 1/j$ is divergent. Theorem 2.2.5 The series $\sum_{j=1}^{\infty} 1/j^p$ converges if and only if p > 1. Theorem 2.2.6 (Ratio Test) Let (a_n) be a sequence of positive terms and define

 $L = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$ Then: (i) If L < 1, the series $\sum_{n=1}^{\infty} a_n$ converges. (ii) If L > 1 (including $L = \infty$), the series diverges. (iii) If L=1, the test is inconclusive. Theorem 2.2.7 (Cauchy Condensation Test) Let (a_n) be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

Theorem 2.2.8 Let $\sum_{i=0}^{\infty} a_j$ and $\sum_{i=0}^{\infty} b_j$ be positive series with terms such that $\lim_{j \to \infty} \frac{a_j}{b_i} = K$ for some $K \neq 0$. Then, $\sum_{j=0}^{\infty} a_j$ converges if and only if $\sum_{j=0}^{\infty} b_j$ converges. Theorem 2.2.9 (Comparison Test) Let (a_k) and (b_k) satisfy $0 \le a_k \le b_k$. Then, (i) $\sum_{k=1}^{\infty} (a_k)$ converges if $\sum_{k=1}^{\infty} (b_k)$ converges. (ii) $\sum_{k=1}^{\infty} (b_k)$ diverges if $\sum_{k=1}^{\infty} (a_k)$ diverges. Theorem 2.2.10 (Alternating Series Test) Let (a_n) satisfy (i) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$ and

(ii) $(a_n) \to 0$. Then, $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. Definition 2.2.11 (Absolutely Convergent) A series $\sum_{j=0}^{\infty} a_j$ is absolutely convergent if $\sum_{j=0}^{\infty} |a_j|$ is convergent. Theorem 2.2.12 If a series is absolutely convergent then it is convergent. Theorem 2.2.13 (Geometric Series) If |x| < 1, then $\sum_{i=0}^{\infty} x^j = \frac{1}{1-x}$ since $s_n = \sum_{i=0}^n x^j = \frac{1 - x^{n+1}}{1 - x}.$ 2.3. Functions Theorem 2.3.1 (Function Limit)

Given $f: A \to \mathbb{R}$ with the limit point c, (i) $\lim_{x\to c} f(x) = L$ is equivalent to (ii) if $\forall (x_n) \subseteq A : (x_n \neq c \text{ and } x_n \to c)$ it follows that $f(x_n) \to L$. (i) Note In the $\varepsilon\delta$ -definition of limits, the additional restriction that 0 < |x-a| is just a way to say $x \neq c$. Definition 2.3.2 (Infinite Limit) Given a limit point $c \in D_f$, we say that $\lim_{x\to c} f(x) = \infty$ if $\forall M \; \exists \delta > 0 : 0 < |x - c| < \delta \Longrightarrow f(x) \ge M.$

2.4. Continuity

Theorem 2.4.1 (Continuity)

(i) $f: A \subseteq \mathbb{R} \to \mathbb{R}$ is continuous at $c \in A$.

Corollary 2.4.2 (Isolated Continuity)

All functions are continuous at isolated points.

Theorem 2.4.3 (Dirichlet Discontinuous)

f(x) = 0 if $x \in \mathbb{I}$ is discontinuous everywhere.

Definition 2.4.4 (Uniform Continuity)

In particular, δ can be chosen independent of y.

If a function is uniformly continuous, it is also continuous.

If f is continuous and defined on a compact set K, then it is also

Proof. Assume the opposite, that f is continuous but not uniformly.

 $\exists \varepsilon_0 > 0 : \forall \delta > 0 \ \exists x, y \in K : \ |x - y| < \delta \ \text{but} \ |f(x) - f(y)| \ge \varepsilon_0.$

 $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \varepsilon_0$.

Theorem 2.1.6 asserts that there exists some subsequence $x_{n_k} \to x_0$ for

 $\left|x_{n_k} - y_{n_k}\right| \to 0,$

 $\left| f(x_{n_h}) - f(x_{n_h}) \right| \to 0.$

 $\left| f(x_{n_k}) \to f(y_{n_k}) \right| \ge \varepsilon_0.$

Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in$

 $\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(y).$

If f is continuous on [a, b], then for any y between f(a) and f(b), there

If f is continuous on the compact set K, then f attains a maximum and

A and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

some $x_0 \in K$. From $|x_n - y_n| < \frac{1}{n}$ it follows that $y_{n_k} \to x_0$. Thus,

and, because f is continuous with $f(x_{n_k}) \to x_0$ and $f(y_{n_k}) \to x_0$,

We say f is uniformly continuous on I if

Theorem 2.4.6 (Heine–Cantor)

Since f is not uniformly continuous,

Now, choose (x_n) and (y_n) such that

However, this contradicts our assumption that

uniformly continuous on K.

Theorem 2.4.5

2.4.2. Composition

2.4.3. Results

Theorem 2.4.7 (Composition)

Theorem 2.4.8 (Composition Limit)

Theorem 2.4.9 (Intermediate Value)

exists some $c \in (a, b)$ such that f(c) = y.

If f is bounded then $\lim_{h\to 0} f(h)h = 0$.

a minimum value on K.

Theorem 2.4.10 (Weierstrass Extreme Value)

Theorem 2.4.11 (Limit of Bounded Function)

If f is continuous at y and $\lim_{x\to c} g(x) = y$, then

(ii) $\forall \varepsilon > 0 \ \exists \delta > 0 : |x - c| < \delta \Longrightarrow |f(x) - f(c)| < \varepsilon$, where $x \in A$.

(v) $\lim_{x\to c} f(x) = f(c)$, also written $\lim_{h\to 0} f(c+h) - f(c) = 0$.

The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = 1 if $x \in \mathbb{Q}$ and

 $\forall \varepsilon > 0 \ \exists \delta > 0 : x, y \in I, |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$

(iii) $\forall V_{\varepsilon}(f(c)) \ \exists V_{\delta}(c) : x \in V_{\delta}(c) \cap A \Longrightarrow f(x) \in V_{\varepsilon}(f(c))$

Note that (ii) defines (i). Mostly (v) is used in practice.

(iv) $x_n \to c$, where $(x_n) \subseteq A$, implies $f(x_n) \to f(c)$.

The following are equivalent:

If c is a limit point of A:

2.4.1. Existence

3. Calculus 3.1. The Derivative 3.1.1. Differentiation Definition 3.1.1 (Derivative at a Point) Let $f: A \to \mathbb{R}$ and c a limit point of A . If $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$	
exists (finite), we say f is differentiable at c . Theorem 3.1.2 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $ (g \circ f)'(c) = g'(f(c))f'(c). $ Theorem 3.1.3 (Basic Derivatives)	
$\frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \frac{1}{\cos^2 x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(x^a) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = \frac{1}{f'(x)} (y = f(x), f'(x) \neq 0)$ Theorem 3.1.4 (L'Hôpital's Rule) Let f and g be differentiable on an open interval containing c (except possibly at c), with $g'(x) \neq 0$ near c . Suppose (i) $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ (or both $\pm \infty$), and	4 0)
(i) $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$ exists (or $\pm\infty$). Then $\lim_{x\to c} \frac{f(x)}{g(x)} = L.$ Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c,x) . Then, rewriting and applying Theorem 3.1.10 gives	
$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x \to c} \frac{f'(p)}{g'(p)} = \lim_{p \to c} \frac{f'(p)}{g'(p)}$ for some p between c and x . Proof of the infinity case. The proof is too complicated. Important This is only an implication, not an equivalence, so there may exist so other solution if this method fails.	
3.1.2. Function Character Theorem 3.1.5 (Fermat's or Interior Extremum) Let $f:(a,b)\to\mathbb{R}$ be differentiable at the local extremum $c\in(a,b)$. Then $f'(x)=0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 3.1.6 (Darboux's)	
If f is differentiable on $[a,b]$ and if y lies strictly between $f'(a)$ and $f'(b)$, then $\exists c \in (a,b): f'(c) = y$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that $f'(a) < y < f'(b)$. Let $g(x) = f(x) - yx$ with $g'(x) = f'(x) - y$. Note that $f'(c) = y$ if $g'(c) = 0$ for some $c \in (a,b)$. Theorem 2.4.10 states that g must have a minimum point $c \in [a,b]$. More precisely $c \in (a,b)$ since, from the assumption, $g'(a) < 0$ and $g'(b) > 0$. Furthermore, $g'(c) = 0$ according to Theorem 3.1.5. Theorem 3.1.7 (Newton's Method) Find roots to a differentiable function $f(x)$. Given x_n with the coordinates $(x_n, f(x_n))$, the tangent line is given by $T(x) = f'(x_n)(x - x_n) + f(x_n)$	
and intersects the x -axis at $T(x_{n+1}) = 0 \iff x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$ The method fails if it iterates endlessly or $f'(x_n) = 0$. 3.1.3. The Mean Value Theorems Let f and g be continuous on $[a,b]$ and differentiable on (a,b) . Theorem 3.1.8 (Rolle's)	
$f(a)=f(b)\Longrightarrow \exists c\in (a,b): f'(c)=0$ Proof. $f(x)$ is bounded and $f'(x)=0$ at its interior extreme points. Theorem 3.1.9 (Mean Value) $\exists c\in (a,b): f'(c)=\frac{f(b)-f(a)}{b-a}$ Proof. Let the signed distance d between the function value f and the secant g through g and g be $d(x)=f(x)-g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)-f(a)$ and note that $d(a)=d(b)=0$. Then apply Theorem 3.1.8. Theorem 3.1.10 (Generalized Mean Value) $\exists c\in (a,b): [f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)$	
If g' is never zero on (a, b) , then the above can be stated as $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$ Proof. Let $h = f(x)[g(b) - g(a)] - g(x)[f(b) - f(a)]$ and then apply Theorem 3.1.8. 3.2. FUNCTION GRAPHS $\frac{Q}{}$ Tip (Sketching Graphs) — Information (i) symmetries (ii) split into cases (iii) domain \rightarrow vertical asymptotes (iv) factorize \rightarrow oblique asymptotes & roots (v) first and second derivative and their roots	
 (vi) sign tables (vii) calculate interesting points: intersection with y-axis, defined nondifferentiable points, local extremums, endpoints, inflection points — Sketching (i) axes (ii) symmetries (iii) asymptotes (iv) interesting points (v) curves 	
3.2.1. Asymptotes Definition 3.2.1 (Asymptote) The line $y = kx + m$ is an oblique asymptote of f if $\lim_{x \to \infty} (f(x) - (kx + m)) = 0.$ The line $x = c$ is a vertical asymptote of f if $\lim_{x \to c+} f(x) = \pm \infty \text{or} \lim_{x \to c-} f(x) = \pm \infty.$ The line $y = b$ is a horizontal asymptote of f if $\lim_{x \to \infty} f(x) = b \text{or} \lim_{x \to -\infty} f(x) = b.$ Theorem 3.2.2 (Oblique Asymptote) If $f(x)$ has an oblique asymptote $y = kx + m$, then	
$k = \lim_{x \to \infty} \frac{f(x)}{x}$ and $m = \lim_{x \to \infty} (f(x) - kx).$ 3.2.2. Convexity Theorem 3.2.3 (Convexity)	
Let f be twice differentiable on (a,b) . Then, $f''(x) \ge 0$ if and only if f convex on (a,b) . Definition 3.2.4 (Concave) On $[a,b]$, a function $f:[a,b] \to \mathbb{R}$ is concave if $-f$ is convex. 3.2.3. Points Definition 3.2.5 (Local Extremum)	
A local maximum of $f:D\subseteq\mathbb{R}\to\mathbb{R}$ is a point c for which there exists open neighborhood $N(c)\subseteq D$ such that $f(c)\geq f(x) \forall x\in N(c).$ $\begin{array}{c} \textbf{Definition 3.2.6 (Stationary)}\\ \textbf{The point } c \text{ is a } stationary \ point \ of \ f \text{ if } f'(c)=0.\\ \textbf{The } stationary \ order \text{ is the smallest } n\geq 2 \text{ such that}\\ f'(c)=f''(c)=\cdots=f^{(n-1)}(c)=0 \text{ but } f^{(n)}(c)\neq 0. \end{array}$	an
Definition 3.2.7 (Critical) The point c is a critical point if $f(c)$ is stationary or undefined. Definition 3.2.8 (Inflection) A point c is an inflection point of f if f is continuous at c and if f is convex on one side of c and concave on the other side.	
Theorem 3.2.9 (First Nonzero Derivative) If f has stationary order n , then: • If n is $even \to f$ has a local extremum at c . Furthermore: $f^{(n)}(c) > 0 \to \text{local minimum}, f^{(n)}(c) < 0 \to \text{local maximum}.$ • If n is $odd \to c$ is a stationary inflection point. Proof. The Taylor series with remainder simplifies to $f(c+h) = f(c) + \frac{f^{(n)}(c)}{n!}h^n + O(h^{n+1}).$ Its change close to c is thus $f(c+h) - f(c) \approx \frac{f^{(n)}(c)}{n!}h^n,$ which changes sign if and only if n is odd. Similarly, $f'(c+h) - f'(c) \approx \frac{f^{(n-1)}(c)}{(n-1)!}h^{n-1}$	
for the first derivative and $f''(c+h) - f''(c) \approx \frac{f^{(n-2)}(c)}{(n-2)!} h^{n-2}$ for the second derivative.	
 f"(c) > 0 → local minimum. f"(c) < 0 → local maximum. f"(c) = 0 and f⁽³⁾(c) ≠ 0 → stationary inflection point. Note: f"(c) = 0 alone is insufficient for an inflection; the curvature muchange sign. Examples. f(x) = x³: f'(0) = f"(0) = 0, f⁽³⁾(0) = 6 ≠ 0 (odd n = 3) → stational inflection at 0. f(x) = x⁴: f'(0) = f"(0) = f⁽³⁾(0) = 0, f⁽⁴⁾(0) = 24 > 0 (even n = 4) local minimum at 0, no inflection. 	ary
such that $a=x_0 < x_1 < \cdots < x_n = b,$ The partition P has $subintervals$ $[x_{i-1},x_i] i=1,2,\ldots,n$ of which the length of the largest is its $mesh$ or $norm$ $\ P\ = \max_{1 \le i \le n} (x_i - x_{i-1}).$ A smaller such is indicative of a finer partition.	
Let $f:[a,b]\to\mathbb{R}$ be bounded. We now define its definite integral. Definition 3.3.2 (Darboux Integral) Define the lower sum $L(f,P)=\sum_{i=1}^n(\inf\{f(x):x\in[x_{i-1},x_i]\})(x_i-x_{i-1}).$ and the upper sum	
$U(f,P) = \sum_{i=1}^n (\sup\{f(x): x \in [x_{i-1},x_i]\})(x_i-x_{i-1})$ The function f is $Darboux$ $integrable$ if $\sup_P L(f,P) = \inf_P U(f,P)$. To common value is denoted as the $definite$ $integral$ $\int_a^b f(x) \mathrm{d}x$. Definition 3.3.3 (Alternative Darboux Integral) Let Φ and Ψ be the $lower$ and $upper$ $step$ $functions$ such that $\Phi(x) \leq f(x) \leq \Psi(x) \forall x \in [a,b],$	The
forming the lower integral $L(f) = \sup \left\{ \int_a^b \Phi(x) \mathrm{d}x : \Phi \text{ is a lower step function to } f \right\}$ and the upper integral $U(f) = \inf \left\{ \int_a^b \Psi(x) \mathrm{d}x : \Psi \text{ is an upper step function to } f \right\}$ which, if equal, give the definite integral.	
Note that the integral of a step function is simply its signed area.	
We say f is $Riemann\ integrable$ if there exists $L\in\mathbb{R}$ such that $\forall \varepsilon>0\ \exists \delta>0: \ P\ <\delta\Longrightarrow S(f,P,(t_i))-L <\varepsilon$ for every choice of sample points (t_i) . In that case we write $L=\int_a^b f(x)\mathrm{d}x.$ Theorem 3.3.5	
The Darboux and Riemann integrals are equivalent. 3.3.2. Integrability Theorem 3.3.6 (Integrability) Let $f: [a,b] \to \mathbb{R}$ be bounded. The function is integrable if and only if: (i) $\forall \varepsilon > 0 \ \exists P: U(f,P) - L(f,P) < \varepsilon$. (ii) $\forall (P_n): \ P_n\ \to 0 \Longrightarrow U(f,P_n) - L(f,P_n) \to 0$.	
(iii) (Lebesgue Criterion for Riemann Integrability) Its set of discontinuities has Lebesgue measure zero. (iv) $\forall \varepsilon > 0 \; \exists \Phi, \Psi : \int_a^b \Psi(x) \mathrm{d}x - \int_a^b \Phi(x) \mathrm{d}x < \varepsilon,$ where Φ and Ψ are lower and upper step functions. The function is integrable if: (iii) f is $monotone$ on $[a,b]$ (iv) f is continuous except at finitely many points, or at countably	
many points where it has only removable or jump discontinuities.	
Theorem 3.3.8 (Absolute Value / Triangle) If f integrable, then $ f $ integrable and $\left \int_a^b f(x) \mathrm{d}x\right \leq \int_a^b f(x) \mathrm{d}x.$ Theorem 3.3.9 (Products and Composition)	
If f,g integrable, then fg is integrable. If f integrable and φ continuous on a set containing $f([a,b])$, then $\varphi \circ$ is integrable. Theorem 3.3.10 (Uniform Limit) If (f_n) are integrable on $[a,b]$ and $f_n \to f$ uniformly, then f is integral and $\int_a^b f_n(x) \mathrm{d}x \to \int_a^b f(x) \mathrm{d}x .$ 3.3.3. Properties Theorem 3.3.11 (Linearity) If f,g are integrable and $g,g \in \mathbb{R}$, then $\int_a^b (\alpha f(x) + \beta g(x)) \mathrm{d}x = \alpha \int_a^b f(x) \mathrm{d}x + \beta \int_a^b g(x) \mathrm{d}x .$	
Theorem 3.3.12 (Additivity of the Interval) If $c \in (a,b)$ and f integrable on $[a,b]$, then $\int_a^b f(x) \mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x .$ It follows that $\int_a^a f(x) \mathrm{d}x = 0$ and $\int_b^a f(x) \mathrm{d}x = -\int_a^b f(x) \mathrm{d}x .$	
Theorem 3.3.13 (Order / Comparison) If f, g integrable and $f(x) \leq g(x)$ on $[a, b]$, then $\int_a^b f(x) \mathrm{d}x \leq \int_a^b g(x) \mathrm{d}x .$ Corollary 3.3.14 (Positivity) If $f(x) \geq 0$ on $[a, b]$, then $\int_a^b f(x) \mathrm{d}x \geq 0$. Moreover, if f is continuous and the integral is 0, then $f \equiv 0$.	
Theorem 3.3.15 (Bounding by a Supremum) If $ f(x) \leq M$ on $[a,b]$, then $\left \int_a^b f(x) \mathrm{d}x \right \leq M(b-a).$ Theorem 3.3.16 (Mean Value for Integrals) If f is continuous on $[a,b]$, then	
$\int_a^b f(x) \mathrm{d}x = f(\xi)(b-a).$ for some $\xi \in [a,b]$ or, to be more strict if f is not constant, $\xi \in (a,b)$. Theorem 3.3.17 (Generalized Mean Value for Integrals) If f is continuous and g is integrable and does not change sign on $[a,b]$ $\int_a^b f(x)g(x) \mathrm{d}x = f(\xi) \int_a^b g(x) \mathrm{d}x$)],
for some $\xi \in [a,b]$ or, to be more strict if f is not constant, $\xi \in (a,b)$. Proof. Let $m = \min f(x)$ and $M = \max f(x)$ for $x \in [a,b]$. Then, $m \int_a^b g(x) \le \int_a^b f(x)g(x) \le M \int_a^b g(x)$ by Theorem 3.3.13, or rewritten, $m \le \frac{1}{\int_a^b g(x)} \int_a^b f(x)g(x) \le M.$ Since $m \le f(x) \le M$, Theorem 2.4.9 gives that $f(\xi) = \frac{1}{\int_a^b g(x)} \int_a^b f(x)g(x)$ for some $\xi \in [a,b]$. Rewritten, this is the theorem.	
Theorem 3.3.18 (Fundamental Theorems of Calculus) If f is continuous on $[a,b]$, then the two theorems follow: (i) Let $F(x) = \int_a^x f(t) dt$ for $x \in [a,b]$. Then, F is continuous on $[a,b]$ differentiable on (a,b) , and $F'(x) = f(x)$. Proof. We want to show that $F'(x) = f(x)$. Applying the definition of derivatives, $F'(x) = \lim_{h \to 0} \frac{1}{h} (F(x+h) - F(x)) = \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(x) dx,$ where x and $x + h$ are in (a,b) . By Theorem 3.3.16, $\int_x^{x+h} f(t) dt = f(\xi)h$ for some ξ between x and $x + h$, which in our previous result give	
$F'(x)=\lim_{h\to 0}f(\xi)=f(x)$ since f is continuous. (ii) If $F'(x)=f(x)$ for $x\in(a,b)$, then $\int_a^b f(x)\mathrm{d} x=F(b)-F(a).$ Proof. Let $G(x)$ have $G'(x)=f(x)=F'(x)$ for all $x\in(a,b)$. Then $G'(x)-F'(x)=0 \text{ gives that } G(x)-F(x)=C \text{ for some constant.}$ We have $G(a)-F(a)=C$, but $G(a)=\int_a^a f(t)\mathrm{d} t=0,$ so $C=-F(a)$ and hence $G(b)=F(b)-F(a)$, but by definition $G(b)=\int_a^b f(t)\mathrm{d} t,$	
3.3.4. Integration Techniques Theorem 3.3.19 (Integration by Substitution) Also known as change of variables or u-substitution. Let g be continuously differentiable on $[a,b]$ and let f be continuous of $g([a,b])$. Then, with $u=g(x)$ and $\mathrm{d} u=g'(x)\mathrm{d} x$, $\int_a^b f(g(x))g'(x)\mathrm{d} x=\int_{g(a)}^{g(b)} f(u)\mathrm{d} u.$ Equivalently, if g is strictly monotonic and thus invertible as $x=g^{-1}(\int_a^b f(x)\mathrm{d} x=\int_{g^{-1}(a)}^{g^{-1}(b)} f'(g(u))g'(u)\mathrm{d} u.$ Proof. We prove the first formulation of the theorem. We have,	
$\int_a^b f(g(x))g'(x) = [f(g(x))]_a^b = [f(u)]_{g(a)}^{g(b)} = \int_{g(a)}^{g(b)} f(u) \mathrm{d}u$ according to Theorem 3.3.18 (ii) and Theorem 3.1.2. Theorem 3.3.20 (Integration by Parts) If f, g are continuously differentiable on $[a, b]$, then $\int_a^b f(x)g(x) \mathrm{d}x = [F(x)g(x)]_a^b - \int_a^b F(x)g'(x) \mathrm{d}x .$	
 Q LIATE The LIATE rule helps choose f(x) and g(x) for integration by parts: Logarithmic: ln(x), log_{a(x)} Inverse trigonometric: arctan(x), arcsin(x), arccos(x) Algebraic: x, x², x³, etc. Trigonometric: sin(x), cos(x), tan(x), etc. Exponential: e^x, a^x Choose g(x) as the function that appears first in this list. 	
Q Arctangent Rules (i) Addition: $(ab < 1, \text{ otherwise add or subtract } \pi/2)$ $\arctan(a) + \arctan(b) = \arctan\left(\frac{a+b}{1-ab}\right)$ (ii) Subtraction: $(ab > 1, \text{ otherwise add or subtract } \pi/2)$ $\arctan(a) - \arctan(b) = \arctan\left(\frac{a-b}{1+ab}\right)$ (iii) Inverse: $\arctan(x) = -\arctan(-x)$ (iv) Integration: $\int \frac{a}{b^2 + c^2 x^2} \mathrm{d}x = \frac{a}{b^2} \int \frac{1}{1 + c^2 x^2/b^2}$	
$= \begin{cases} u = cx/b \\ du = c/b \end{cases}$ $= \frac{a}{bc} \int \frac{1}{1+u^2} du$ $= \frac{a}{bc} \arctan\left(\frac{cx}{b}\right)$ 3.4. Taylor's Theorem Theorem 3.4.1 (Taylor's) Suppose f is continuously differentiable n times on $[a, b]$ and $n+1$ times	r
Suppose f is continuously differentiable n times on $[a,b]$ and $n+1$ times on (a,b) . Fix $c \in [a,b]$. Then, $f(x) = P_n(x) + R_n(x),$ where the $Taylor\ polynomial$ of degree n around c is $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$ and the $Lagrange\ remainder$ of degree n around c is	ıes
$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}$ for some ξ strictly between c and x . Note that other remainder forms exist. $Proof. \text{ Let } h = x - c \text{ be the deviation from the point. Then,}$ $f(x) = f(c+h) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} h^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1} = p_n(h) + r_n(h),$ where $p_n(h)$ and $r_n(h)$ correspond to $P_n(x)$ and $R_n(x)$. Define $F_{n,h}(t) = \sum_{k=0}^n \frac{f^{(k)}(t)}{k!}(c+h-t)^k,$ with $F_{n,h}(c) = p_{n(h)}$ and $F_{n,h}(c+h) = f(c+h)$, and derivative $F'_{n,h}(t) = \frac{f^{(n+1)}(\xi)}{(c+h-\xi)^n}(c+h-\xi)^n$	
$F_{n,h}'(\xi) = \frac{f^{(n+1)}(\xi)}{n!}(c+h-\xi)^n.$ Also let $g_{n,h}(t) = (c+h-t)^{n+1},$ with $g_{n,h}(c) = h^{n+1}$ and $g_{n,h}(c+h) = 0$ and $g_{n,h}'(\xi) = -(n+1)(c+h-\xi)^n.$ Theorem 3.1.10 gives $\frac{F_{n,h}(c+h) - F_{n,h}(c)}{g_{n,h}(c+h) - g_{n,h}(c)} = \frac{F_{n,h}'(\xi)}{g_{n,h}'(\xi)}$	
$\frac{f_{n,h}(c+h)-f_{n,h}(c)}{g_{n,h}(c+h)-g_{n,h}(c)}=\frac{f_{n,h}(c)}{g_{n,h}'(\xi)}$ for some ξ between c and $c+h$. Substituting, $\frac{f(c+h)-p_n(h)}{0-h^{n+1}}=\frac{f^{(n+1)}(\xi)(c+h-\xi)^n/n!}{-(n+1)(c+h-\xi)^n}$ so $f(c+h)-p_n(h)=\frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}.$ Hence	
Hence $f(c+h)=p_n(h)+r_n(h)$ or in x-notation $f(x)=P_n(x)+R_n(x)$ with ξ strictly between c and x . $Proof\ using\ integrals.\ \text{From\ Theorem\ 3.3.18\ (ii)}\ \text{we have}$ $\int_c^x f'(t)\mathrm{d}t=f(t)-f(c)$	
$f(c+h)=p_n(h)+r_n(h)$ or in x-notation $f(x)=P_n(x)+R_n(x)$ with ξ strictly between c and x . $Proof\ using\ integrals.\ From\ Theorem\ 3.3.18\ (ii)\ we\ have$	$\mathrm{d}t igg)$
$f(c+h) = p_n(h) + r_n(h)$ or in x -notation $f(x) = P_n(x) + R_n(x)$ with ξ strictly between c and x . $Proof using integrals. \text{ From Theorem 3.3.18 (ii) we have} \\ \int_c^x f'(t) \mathrm{d}t = f(t) - f(c)$ which we expand using Theorem 3.3.20 as $f(x) = f(c) + \int_c^x 1 \cdot f'(t) \mathrm{d}t \\ = f(c) + \left[(t-x)f'(t) \right]_c^x - \int_c^x (t-x)f''(x) \mathrm{d}t \\ = f(c) + f'(c)(x-c) - \left(\left[\frac{(t-x)^2}{2} f''(t) \right]_c^x - \int_c^x \frac{(t-x)^2}{2} f^{(3)}(t) \mathrm{d}t \right] \\ = f(c) + f'(c)(x-c) + \frac{f''(t)}{2}(x-c)^2 + \int_c^x \frac{(t-x)^2}{2} f^{(3)}(t) \mathrm{d}t \\ = \cdots \\ = P_n(x) + (-1)^n \int_c^x \frac{(t-x)^n}{n!} f^{(n+1)}(t) \mathrm{d}t$ $ \text{Definition 3.4.2 (Radius of Convergence)} \\ \text{Let } R_n(x) \text{ be the remainder to the Taylor polynomial around a point The radius \ of \ convergence \ R \ \text{is the supremum of } r \geq 0 \ \text{such that} \forall x: x-c < r \Rightarrow \lim_{n \to \infty} R_n(x) = 0, which implies that the Taylor series converges to f(x) for all such x (s f(x) = P_\infty(x)). \text{Theorem 3.4.3 (Common Maclaurin Series)} The following functions have a Maclaurin series with radius of convergence r = \infty: e^x = \sum_{k=0}^\infty \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $	c.
$f(c+h) = p_n(h) + r_n(h)$ or in x -notation $f(x) = P_n(x) + R_n(x)$ with ξ strictly between c and x . $Proof using integrals. \text{ From Theorem 3.3.18 (ii) we have} \\ \int_c^x f'(t) \mathrm{d}t = f(t) - f(c)$ which we expand using Theorem 3.3.20 as $f(x) = f(c) + \int_c^x 1 \cdot f'(t) \mathrm{d}t$ $= f(c) + \left[(t-x)f'(t) \right]_c^x - \int_c^x (t-x)f''(x) \mathrm{d}t$ $= f(c) + f'(c)(x-c) - \left(\left[\frac{(t-x)^2}{2} f''(t) \right]_c^x - \int_c^x \frac{(t-x)^2}{2} f^{(3)}(t) \mathrm{d}t \right]$ $= f(c) + f'(c)(x-c) + \frac{f''(t)}{2}(x-c)^2 + \int_c^x \frac{(t-x)^2}{2} f^{(3)}(t) \mathrm{d}t$ $= \cdots$ $= P_n(x) + (-1)^n \int_c^x \frac{(t-x)^n}{n!} f^{(n+1)}(t) \mathrm{d}t$ $\text{Definition 3.4.2 (Radius of Convergence)}$ Let $R_n(x)$ be the remainder to the Taylor polynomial around a point The $radius$ of $convergence$ R is the supremum of $r \geq 0$ such that $\forall x : x-c < r \Rightarrow \lim_{n \to \infty} R_n(x) = 0,$ which implies that the Taylor series converges to $f(x)$ for all such x (so $f(x) = P_\infty(x)$). Theorem 3.4.3 (Common Maclaurin Series) The following functions have a Maclaurin series with radius of convergence $r = \infty$:	c.
$f(c+h) = p_n(h) + r_n(h)$ or in x-notation $f(x) = P_n(x) + R_n(x)$ with ξ strictly between c and x . $Proof using integrals. From Theorem 3.3.18 (ii) we have \int_{c}^{x} f'(t) dt = f(t) - f(c) which we expand using Theorem 3.3.20 as f(x) = f(c) + \int_{c}^{x} 1 \cdot f'(t) dt = f(c) + \left[(t-x)f'(t) \right]_{c}^{x} - \int_{c}^{x} (t-x)f''(x) dt = f(c) + f'(c)(x-c) - \left(\left[\frac{(t-x)^{2}}{2} f''(t) \right]_{c}^{x} - \int_{c}^{x} \frac{(t-x)^{2}}{2} f^{(3)}(t) dt \right] = f(c) + f'(c)(x-c) + \frac{f''(t)}{2}(x-c)^{2} + \int_{c}^{x} \frac{(t-x)^{2}}{2} f^{(3)}(t) dt = \cdots = P_{n}(x) + (-1)^{n} \int_{c}^{x} \frac{(t-x)^{n}}{n!} f^{(n+1)}(t) dt \frac{Definition 3.4.2 (Radius of Convergence)}{n!} Let R_{n}(x) be the remainder to the Taylor polynomial around a point The radius of convergence R is the supremum of r \geq 0 such that \forall x : x-c < r \Rightarrow \lim_{n \to \infty} R_{n}(x) = 0, which implies that the Taylor series converges to f(x) for all such x (s. f(x) = P_{\infty}(x)). \frac{d^{2}}{dx^{2}} = \frac{d^{2}}{dx^{2}} = \frac{d^{2}}{dx^{2}} + d^{2$	c.
$f(c+h) = p_n(h) + r_n(h)$ or in x -notation $f(x) = P_n(x) + R_n(x)$ with ξ strictly between c and x . $Proof using integrals. From Theorem 3.3.18 (ii) we have \int_{c}^{x} f'(t) dt = f(t) - f(c) which we expand using Theorem 3.3.20 as f(x) = f(c) + \int_{c}^{x} 1 \cdot f'(t) dt = f(c) + [(t-x)f'(t)]_{c}^{x} - \int_{c}^{x} (t-x)f''(x) dt = f(c) + f'(c)(x-c) - \left(\left[\frac{(t-x)^{2}}{2}f''(t)\right]_{c}^{x} - \int_{c}^{x} \frac{(t-x)^{2}}{2}f^{(3)}(t) dt\right] = f(c) + f'(c)(x-c) + \frac{f''(t)}{2}(x-c)^{2} + \int_{c}^{x} \frac{(t-x)^{2}}{2}f^{(3)}(t) dt = \cdots = P_{n}(x) + (-1)^{n} \int_{c}^{x} \frac{(t-x)^{n}}{n!} f^{(n+1)}(t) dt $	c.