How Well Do WGANs Estimate the Wasserstein Metric?

Machine Learning 2021 Course

Denis Rollov Nikolay Goncharov Svetlana Gabdullina

Skoltech

March 24, 2021

Introduction

What are the methods for evaluating the Wassertstein-1 distance and how good are they?

Ways for computing Wasserstein-1 distance:

- 1. Gradient Penalty (GP)
- 2. Weight Clipping (WC)
- 3. c-transform
- 4. (c, ϵ) -transform
- 5. Lipschitz Penalty (LP)

What is Wasserstein distance?

Wasserstein Distance is a measure of the distance between two probability distributions (Earth Mover's distance).

Experiments

- Datasets: MNIST, CIFAR-10.
- Models: MLP (two hidden layers (width=128), ReLU activation), CNN (DCGAN).
- Optimizers: Adam, RMSProp.

Weight Clipping

$$\max_{\omega} \left\{ \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega}(x_i) - \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega}(y_i) \right\}. \tag{1}$$

- ▶ learning rate: 5×10^{-5}
- optimizer: RMSprop
- MLP, $\epsilon=0.05$ and $\epsilon=0.08$ MNIST and CIFAR10 respectively. CNN, $\epsilon=0.03$ and $\epsilon=0.2$ MNIST and CIFAR10 respectively.

Gradient Penalty

$$\max_{\omega} \left\{ \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega} (x_{i}) - \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega} (y_{i}) - \frac{\lambda}{M} \sum_{i=1}^{M} (1 - \|\nabla_{z=z_{i}} \varphi_{\omega}(z)\|)^{2} \right\}.$$
(2)

- ▶ beta values: (0, 0.9)
- MLP, learning rate: 5×10^{-3} . CNN, learning rate: 8×10^{-3} and 10^{-2} MNIST and CIFAR-10 respectively.
- optimizer: Adam
- $\lambda = 10$

Lipschitz Penalty

$$\max_{\omega} \left\{ \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega}(x_{i}) - \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega}(y_{i}) - \frac{\lambda}{M} \sum_{i=1}^{M} \max\{0, \|\nabla_{z=z_{i}}\varphi_{\omega}(z)\| - 1\}^{2} \right\}.$$
(3)

- beta values: (0, 0.9)
- MLP, learning rate: 5×10^{-3} . CNN, learning rate: 8×10^{-4} and 10^{-3} MNIST and CIFAR-10 respectively.
- optimizer: Adam
- $\lambda = 10$

c-transform

$$\varphi_{\omega}^{c}(y_{i}) \approx \widehat{\varphi_{\omega}^{c}}(y_{i}) = \min_{i} \left\{ c(x_{j}, y_{i}) - \varphi_{\omega}(x_{j}) \right\},$$
 (4)

$$\max_{\omega} \left\{ \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega} \left(x_{i} \right) + \frac{1}{N} \sum_{i=1}^{N} \widehat{\varphi_{\omega}^{c}} \left(y_{i} \right) \right\}. \tag{5}$$

- ightharpoonup learning rate: 10^{-3}
- optimizer: RMSprop
- MLP, $\epsilon=0.05$ and $\epsilon=0.08$ MNIST and CIFAR10 respectively. CNN, $\epsilon=0.03$ and $\epsilon=0.2$ MNIST and CIFAR10 respectively.

(c, ϵ) -transform

$$\varphi_{\omega}^{c}(y_{i}) \approx \widehat{\varphi_{\omega}^{(c,\epsilon)}}(y_{i}) =$$

$$-\epsilon \log \left(\frac{1}{N} \sum_{j=1}^{N} \exp\left(-\frac{1}{\epsilon} \left(c\left(x_{j}, y_{i}\right) - \varphi_{\omega}\left(x_{j}\right)\right)\right) \right),$$

$$\max_{\omega} \left\{ \frac{1}{N} \sum_{i=1}^{N} \varphi_{\omega}\left(x_{i}\right) + \frac{1}{N} \sum_{i=1}^{N} \widehat{\varphi_{\omega}^{(c,\epsilon)}}(y_{j}) \right\}.$$

$$(6)$$

- ightharpoonup learning rate: 10^{-4}
- optimizer: RMSprop
- ▶ MLP, CNN, $\epsilon=12$ and $\epsilon=1$ MNIST and CIFAR10 respectively.

Weight clipping

Gradient penalty

Lipschitz penalty

c-transform

(c, ϵ) -transform CNN, MLP / CIFAR-10, MNIST

Results

Approximation

MLP	MNIST	CIFAR-10		
WC	0.407 ± 0.018	4.854 ± 0.157		
GP	$\boldsymbol{1.641 \pm 0.009}$	$\textbf{7.819} \pm \textbf{0.017}$		
LP	$\boldsymbol{1.491 \pm 0.002}$	$\textbf{7.642} \pm \textbf{0.011}$		
c-transform	0.059 ± 0.001	$\boldsymbol{0.448 \pm 0.005}$		
(c,ϵ) -transform	0.189 ± 0.001	$\boldsymbol{1.696 \pm 0.008}$		

ConvNet	MNIST	CIFAR-10		
WC	$\textbf{0.184} \pm \textbf{0.011}$	3.056 ± 0.109		
GP	2.612 ± 0.049	$\boldsymbol{9.926 \pm 0.063}$		
LP	61.65 ± 1.659	$\boldsymbol{9.761 \pm 0.18}$		
c-transform	0.065 ± 0.001	$\textbf{0.344} \pm \textbf{0.006}$		
(c,ϵ) -transform	0.186 ± 0.001	$\boldsymbol{1.807 \pm 0.007}$		

Results

Stability

MNIST	WC	GP	LP	<i>c</i> -T	(c,ϵ) - T
N = 64, M = 64	0.08	0.19	0.01	1.45	1.69
N = 64, M = 512	0.06	-0.66	0.02	1.3	1.64
N = 512, M = 64	0.0	-0.38	0.01	1.44	1.65
N = 512, M = 512	0.0	-0.18	0.02	1.3	1.59
Ground truth	1.36	1.36	1.36	1.36	1.36
CIFAR-10	WC	GP	LP	c-T	(c,ϵ) -T
N = 64, M = 64	0.05	-0.74	0.02	7.21	9.22
N = 64, M = 512	0.04	-0.14	-0.04	6.49	9.19
N = 512, M = 64	0.0	-0.6	0.01	6.98	9.17
N = 512, M = 512	0.01	-2.9	0.01	6.3	9.13
Ground truth	6.89	6.89	6.89	6.89	6.89

Conclusion

	WC	GΡ	LP	<i>c</i> -transform	(c,ϵ) -transform
Approximation	√	×	×	✓	\checkmark
Stability	×	×	×	\checkmark	\checkmark

Further improvements: work in (c, ϵ) -transform with smaller values of ϵ without nan's.

