Distinct Elements in each Window in C++ #include <iostream> #include <unordered_map> // for unordered_map using namespace std; void printDistinct(int arr[], int n, int k) { unordered_map<int, int> m; // Declaration of unordered_map to store element frequencies // Count frequencies of first window for (int i = 0; i < k; i++) { m[arr[i]]++; // Print the size of the map for the first window cout << m.size() << " "; // Process subsequent windows for (int i = k; i < n; i++) { // Remove the element that is moving out of the window m[arr[i - k]]--; // Remove the element from map if its count becomes zero $if(m[arr[i - k]] == 0) {$ m.erase(arr[i - k]); // Add the new element to the map m[arr[i]]++; // Print the size of the map for the current window cout << m.size() << " "; } } int main() { int arr[] = $\{10, 10, 5, 3, 20, 5\}$; int n = sizeof(arr) / sizeof(arr[0]); // Calculate the size of the array int k = 4; // Size of the window // Call the function to print distinct elements in every window of size k printDistinct(arr, n, k); cout << endl;

return 0;

Output: 343

Input

```
arr[] = \{10, 10, 5, 3, 20, 5\}
n = 6
k = 4
```

Dry Run Table (Sliding Window)

Window Index	Elements in Window	Frequencies Map (unordered_map)	Distinct Count
[0–3]		{10: 2, 5: 1, 3: 1}	3
[1–4]	10, 5, 3, 20	{10: 1, 5: 1, 3: 1, 20: 1}	4
[2–5]	5, 3, 20, 5	{5: 2, 3: 1, 20: 1}	3

♥ Final Output

3 4 3