

FCC CFR47 Part 15 Subpart C IC RSS-247 Certification Test Report

For the

Product : Bluetooth Low Energy Module

Model: RMBLE-M5

FCC ID : 2AISERMBLEM5 IC : 21613-RMBLEM5

Applicant: Honeywell Analytics Asia Pacific

Co., Ltd.

FCC Rule : CFR 47 Part 15 Subpart C

IC Rule : IC RSS-247 Issue 2

We hereby certify that the above product has been tested by us with the listed rules and found in compliance with the regulation. The test data and results are issued on the test report no. TR-W1708-008

Signature

Choi, Yeong-min / Technical Manager

Date: 2017-08-19

Test Laboratory: ENG Co., Ltd.

It shall not be reproduced except in full, without the written approval of the ENG Co., Ltd. This document may be altered or revised by the ENG Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Report No.: TR-W1708-008

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form 01 (Rev.0)

FCC/IC CERTIFICATION TEST REPORT

Project Number : EA1703Q-153

Test Report Number : TR-W1708-008

Type of Equipment : Bluetooth Low Energy Module

Model Name : RMBLE-M5

FCC ID : 2AISERMBLEM5

ISED Cert. Number : IC: 21613-RMBLEM5

Multiple Model Name : N/A

Applicant : Honeywell Analytics Asia Pacific Co., Ltd.

Address : 7F SangAm IT Tower, 434 Worldcup Buk-ro, Mapo-gu, Seoul

03922, South Korea

Manufacturer : RAE Systems by Honeywell

Address : No.990E. Hwujwang Road, JIADING DISTRICT, Shanghai

201815, China

Regulation : FCC Part 15 Subpart C Section 15.247, IC RSS-247 Issue 2

Total page of Report : 31 Pages

Date of Receipt : 2017-07-04

Date of Issue : 2017-08-19

Test Result : PASS

This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production.

Prepared by	Song, in-young / Senior Engineer	5	2017-08-19
		Signature	Date
		1/2	
Davioused by	Chai Vaana min / Taahnigal Managar	100	2017 00 10

Reviewed by Choi, Yeong-min / Technical Manager 2017-08-19
Signature Date

Report No.: TR-W1708-008 Page 1 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

CONTENTS

	Page
1. TEST SUMMARY	4
1.1 REGULATIONS AND RESULTS	4
1.2 TEST METHODOLOGY	4
1.3 ADDITIONS, DEVIATIONS, EXCLUSIONS FROM STANDARDS	4
1.4 PURPOSE OF THE TEST	5
1.5 TEST FACILITY	5
2. EUT (EQUIPMENT UNDER TEST) INFORMATION	6
2.1 GENERAL DESCRIPTION	6
2.2 DESCRIPTION OF HOST MODEL NAME	6
3. TEST CONDITION	7
3.1 EQUIPMENT USED DURING TEST	7
3.2 MODE OF OPERATION DURING THE TEST	7
3.3 TEST SETUP DRAWING	8
3.4 EUT MODIFICATIONS	8
4. ANTENNA REQUIREMENT	8
4.1 ANTENNA DESCRIPTION	8
5. TEST RESULT	9
5.1 MAXIMUM PEAK OUTPUT POWER	9
5.2 RADIATED EMISSION	10
5.3 AC POWER LINE CONDUCTED EMISSION	24
APPENDIX I – TEST INSTRUMENTATION	31

Release Control Record

Issue Report No.	Issued Date	Revisions	Effect Section
TR-W1708-008	2017-08-19	Initial Release	All

Report No.: TR-W1708-008 Page 3 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

1. TEST SUMMARY

1.1 Regulations and results

The sample submitted for evaluation (Referred to below as the EUT) has been tested in accordance with the following regulations or standards.

FCC Reference Section	IC Reference Section	Description	P (Pass)	F (Fail)	N.T. (Not Tested)	Note
15.247(a)(2)	RSS-247 5.2(1)	6 dB Bandwidth Occupied Bandwidth	Р		N.T	Note1
15.247(b)(3)	RSS-247 5.4(4)	Maximum peak output power	Р			
15.247(e)	RSS-247 5.2(2)	Power spectral density	Р		N.T	Note1
15.247(d)	RSS-247 5.5	Band Edge Conducted spurious emission	Р			
15.205(a) 15.209(a)	RSS 247 5.5 RSS-GEN 8.9	Radiated spurious emissions	Р			
15.207(a)	RSS GEN 8.8	AC power line conducted emissions	Р			

Note1. Test was performed by modular transmitter (FCC ID: 2AISERMBLEM5, ISED Certification Number: IC: 21613-RMBLEM5, Test Report no. 16-11355707-FCC1 issued on November.02, 2016 by UL Korea Ltd.), so the test was not performed.

Note2: In case of Bluetooth LE (2.4 GHz), The tests are not significantly different between the two versions of RSS-247. RSS-247 Issue1 covers Issue2 and limits are same. It is judged that the EUT complies with RSS-247 issue2 without the additional test.

1.2 Test Methodology

The tests mentioned in clause 1.1 in this test report were performed according to FCC CFR 47 Part 2, CFR 47 Part 15 and ANSI C63.10-2013, and RSS-Gen Issue 4,

KDB 558074 D01DTS Meas Guidance v04: Measurement Procedure PK is used for power.

1.3 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

Report No.: TR-W1708-008 Page 4 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

1.4 Purpose of the test

The EUT, Model: RMBLE-M5, Bluetooth Low Energy Module shall be inserted into Gas detectors mentioned on clause 2.2 in this test report, so the test was performed to determine whether the equipment under test fulfills the requirements of the regulation stated in FCC Part 15 Subpart C Section 15.247, RGG-Gen and RSS-247.

1.5 Test Facility

TEL: +82-31-727-8300

The measurement facilities are located at 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do 12813, Korea. Description details of test facilities were submitted to the ISED, Canada, accredited as a Conformity Assessment Body (CAB) by the FCC, designated by the RRA (Radio Research Agency), and accredited by KOLAS (Korea Laboratory Accreditation Scheme) in Korea according to the requirement of ISO 17025.

Agency Name	Registration No.	Mark
FCC	KR0160	F©
Industry Canada (IC)	IC 12721A-1	*
RRA	KR0160	RRA
Korean Agency for Technology and Standards	KT733	HOLAS KOLAS

Report No.: TR-W1708-008 Page 5 of 31

FAX: +82-31-746-0800

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

http://www.the-eng.co.kr

2. EUT (Equipment Under Test) INFORMATION

2.1 General Description

The EUT, Model: RMBLE-M5 is a Bluetooth Low Energy Module, The product specification described herein

was obtained from product data sheet or user's manual.

vas obtained from product data sneet of user's mandal.					
Description of equipment	Bluetooth Low Energy Module				
Model Name	RMBLE-M5				
Host Model Name (Gas Detector)	SPLI <u>AA</u> BAX <u>B</u> <u>C</u> NZZ				
Application Purpose	FCC C2PC (Add Host to the LMA)				
Serial Number	N/A				
Equipment Type	Radio and ancillary equipment for portable or handheld use, Stand alone / Self contained single unit				
Operating Frequency	2 402 MHz to 2 480 MHz				
Max. RF Output Power	Max14.0 dBm				
Modulation Type(s)	GFSK				
Number of Channels	40 Channels				
Channel Bandwidth	2 MHz				
Generated or used Freq. in EUT	37.768 kHz, 38.4 MHz				
Type of Antenna	■ Integrated Type(PCB Pattern antenna) □ Dedicated Type				
Antenna Gain	Max. : - 1.50 dBi				
Operating Temperature	-40 °C ~ 60 °C				
Electrical Rating	DC 3.30 V				

2.2 Description of host model name (Gas Detector)

Model name	Description of designation		
SPLI <u>AA</u> BAX <u>B</u> <u>C</u> NZZ	AA(Gas)	1) O1:O ₂ 2) C1:CO 3) H1:H ₂ S(L) 4) H2:H ₂ S(H) 5) G1:H ₂ 6) N1:NO ₂ 7) F6:CH ₄ (CAT) 8) FR:CH ₄ (IR)	
	B (Color)	C: Charcoal Y: Yellow	
	C (Entry)	N: ¾ NPT M: M20	

Report No.: TR-W1708-008 Page 6 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

3. TEST CONDITION

3.1 Equipment Used During Test

The following peripheral devices and/or interface cables were connected during the measurement:

Description	Model No.	Manufacturer.	Comments
Bluetooth Low Energy Module (EUT)	RMBLE-M5	RAE Systems by Honeywell.	-
Gas Detector (AE)	SPLIO1BMXCMNZZ	Honeywell Analytics Asia Pacific Co., Ltd.	Only Radiated Spurious Emission Tested (Contain RMBLE-M5)
Gas Detector (AE)	SPLIF6BMXCMNZZ	Honeywell Analytics Asia Pacific Co., Ltd.	Only Radiated Spurious Emission Tested (Contain RMBLE-M5)
Gas Detector (AE)	SPLIFRBMXCMNZZ	Honeywell Analytics Asia Pacific Co., Ltd.	Only Radiated Spurious Emission Tested (Contain RMBLE-M5)
Notebook PC (AE)	Latitude E5470	Dell Inc.	-

Note1. EUT=Equipment Under Test, AE=Auxiliary/Associated Equipment

Note2: Please refer to the 'Letter of EMC&RF Test Sample (Sensepoint XRL)' document for the basis of selection of the representative host models.

3.2 Mode of operation during the test

Signal from the RF module was generated continuously for the representative channels (Low, Mid, High) by the test program incorporated For finding worst case configuration and operating mode, preliminary testing was performed and radiated emission was performed with the EUT set to transmit at the channel with the highest output power as worst case scenario.

Based on preliminary testing following operating modes were selected for the final test as listed below.

3.2.1 Radiated Emission Test Mode

Operating Mode	Channel	Frequency (MHz)	Output Power (dBm)	
	Low	2402	-21.07	
BLE	Middle	2440	-24.55	
	High	2480	-21.76	

Report No.: TR-W1708-008 Page 7 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

3.3 Test Setup Drawing

(Radiated Test below 1 GHz)

(Radiated Test above 1 GHz)

3.4 EUT Modifications

- None.

4. ANTENNA REQUIREMENT

According to FCC CFR 47 Part 15 section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provision of this section.

4.1 Antenna Description

Frequency Band (GHz)	Max Peak Gain (dBi)
2.402 – 2.480	-1.50

Note. The used antenna is same with original certified equipment, so the EUT met the requirement.

Report No.: TR-W1708-008 Page 8 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5. TEST RESULT

5.1 Maximum Peak Output Power

5.1.1 Limit

Acc. To section 15.247, For system using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Method of Measurement

Reference to KDB 558074 D01 DTS Meas Guidance v04: 9.1.1 RBW ≥ DTS bandwidth.

Antenna-port conducted tests can't be performed on the EUT, so the tests were performed by radiated compliance measurements.

5.1.3 Test Data for Output Power

Date of Test		2017-07-05			erature	21.1 °C	LI .
			Relative humidity		40.3 % K.	46.3 % R.H.	
Test Result		PASS		Tested	l by	Inyong So	ng /
Channel	Frequency (MHz)	Measured Value (dBuV/m)	EIRP	(dBm)	Output Power (dBm)	Limit (dBm)	Margin (dB)
Low	2 402	72.69	-22	2.57	-21.07		51.07
Middle	2 440	69.21	-26	6.05	-24.55	30	54.55
High	2 480	72.00	-23	3.26	-21.76		51.76

Note: The test result is derived by using radiated method.

The measurement distance(D) is 3m.

EIRP (dBm) = E (dBuV/m) + $20 \log(D) - 104.8$

Output Power (dBm) = EIRP – Antenna gain (-1.5 dBi)

Report No.: TR-W1708-008 Page 9 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2 Radiated Emission

5.2.1 Limit

Acc. To section 15.205 and 15.209, following table shall be applied.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 – 88	100	40
88 – 216	150	43.5
216 – 960	200	46
Above 960	500	24

5.2.2 Method of Measurement

Reference to KDB 558074 D01 DTS Meas Guidance v04: 12.1 Radiated emission measurements.

The radiated emissions measurements were on 3 m, semi-anechoic chamber. The EUT and other support equipment were placed on a non-conductive table 80 cm for below 1 GHz and 1.5 m for above 1 GHz above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

For measurement below 1 GHz, the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

Used Software for measurement is manufactured by TSJ.

5.2.3 Radiated Test Site Requirement for KDB 414788 D01

Acc. to KDB 414788 D01 Radiated Test Site v01, Semi Anechoic Chamber (SAC) shall be verified test results below 30 MHz with Open Area Test Site (OATS), so we compared test results between the measurements from our SAC and an OATS and found test results almost same, so we declare test result for below 30 MHz from our SAC is valid and met the requirement acc. to KDB 414788 D01 Radiated Test Site v01.

Report No.: TR-W1708-008 Page 10 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.4 Measurement Uncertainty

Measurement uncertainties were not taken into account and following uncertainty levels have been estimated for tests performed on the apparatus. The measurement uncertainties are given with at least 95 % confidence.

Frequency Range	requency Range Uncertainty		Uncertainty	
9 kHz ~ 30 MHz	± 3.2 dB	30 MHz ~ 1 GHz	± 3.8 dB	
1 GHz ~ 18 GHz	± 4.9 dB	18 GHz ~ 40 GHz	± 5.1 dB	

5.2.5 Sample Calculated Example

At 80 MHz Limit = 40.0 dBuV/m

Result =Receiver reading value + Antenna Factor + Cable Loss – Pre-amplifier gain = 30 dBuV/m

Margin = Limit - Result = 40 - 30 = 10 so the EUT has 10.0 dB margin at 80 MHz

Report No.: TR-W1708-008 Page 11 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.6 Test Data - Host Model Name: SPLIO1BMXCMNZZ

D	0047.07.05	2017-07-05		ure	21.1 °C	
Date of Test	2017-07-05			umidity	46.3 % R.H.	
Measurement Freq	9 kHz ~ 20	9 kHz ~ 26 GHz				
Test Result	esult PASS			,	In-yong Song	p
Frequency range	Detector Mode	Reso	olution BW	Video BW	Video Filtering	Measurement distance
Below 30 MHz	Peak or Q.P.	9 kHz		100 kHz	-	3 m
30 MHz ~ 1 000 MHz	Peak or Q.P.	1	00 kHz	300 kHz	-	3 m

5.2.6.1 Test Data below 30 MHz

Note: The test results below 30 MHz in our SAC (Semi Anechoic Chamber) was compared with other OATS (Open Area Test Site) and found the result was almost same with OATS.

Report No.: TR-W1708-008 Page 12 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.6.2 Test Data from 30 MHz to 1 GHz

Tabulated Test Data										
Frequency		Detect	Reading	Factor*	Level	Limit	Margin			
(MHz)	Pol.	Mode	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
47.46	V	Peak	40.1	-12.5	27.6	40.0	12.4			
67.83	V	Peak	41.7	-15.7	26.0	40.0	14.0			
71.71	V	Peak	50.8	-16.7	34.1	40.0	5.9			
88.20	V	Peak	39.5	-15.8	23.7	43.5	19.8			
127.00	Н	Peak	36.4	-15.9	20.5	43.5	23.0			
217.21	Н	Peak	32.7	-11.5	21.2	46.0	24.8			

Note: "H" means Horizontal polarity, "V" means Vertical polarity.

GFSK lowest channel is worst case configuration.

The worst case is y-axis and reported.

Corr. Factor = AF + CL + AG (AF : Antenna factor, CL : Cable loss, AG: Pre-Amp gain)

Level = Reading + Corr. Factor (Factor = AF + CL + AG)

Margin = Limit (dBuV/m) - Level (dBuV/m)

Quasi-peak measurements are omitted because the peak data meets the limit.

Report No.: TR-W1708-008 Page 13 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.6.3Test Data above 1 GHz

5.2.6.3.1 Duty Cycle

Detector Mode	Resolution BW	Video BW	Sweep Time	Measurement distance	
PEAK	1 MHz	3 MHz	Auto	3 m	
RMS	1 MHz	3 MHz	Auto	3 m	

Report No.: TR-W1708-008 Page 14 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.6.3.2 Test Data for Band edge (Restricted band)

Report No.: TR-W1708-008 Page 15 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

Report No.: TR-W1708-008 Page 16 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.6.3.3 Test Data for Harmonic & Spurious emission

5.2.6.3.3.1 Low Channel

Tabulated Test Data – Low Channel										
Frequency	Pol.	Detect	Reading	Factor*	Level	Limit	Margin			
(MHz)	P0I.	Mode	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
7205.00	Н	Peak	50.1	-1.3	48.8	74.0	25.2			
7205.00	Н	Average	39.4	0.6	40.0	54.0	14.0			
7205.00	V	Peak	57.5	-1.3	56.2	74.0	17.8			
7205.00	V	Average	45.0	0.6	45.6	54.0	8.4			

Note. "H" means Horizontal polarity, "V" means Vertical polarity.

Emission was scanned up to 26 GHz; No emissions were detected above the noise floor which was at least 20 dB below the specification limit.

No other spurious and harmonic emissions were found greater than listed emissions on above table.

The worst case is y-axis and reported.

- * Factor (Peak) = AF + CL + AG (AF: Antenna factor, CL: Cable loss, AG: Pre-Amp gain)
- * Factor (Average) = AF + CL + AG + Duty factor (AF: Antenna factor, CL: Cable loss, AG: Pre-Amp gain) Level = Reading + Factor (Factor = AF + CL + AG)

Margin = Limit (dBuV/m) - Level (dBuV/m)

Report No.: TR-W1708-008 Page 17 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.6.3.3.2 Middle Channel

Tabulated Test Data – Middle Channel										
Frequency	Pol.	Detect	Reading	Factor*	Level	Limit	Margin			
(MHz)	POI.	Mode	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
7324.00	Н	Peak	50.4	-1.3	46.2	74.0	27.8			
7324.00	Н	Average	38.2	0.6	37.2	54.0	16.8			
7324.00	V	Peak	48.1	-1.3	52.8	74.0	21.2			
7324.00	V	Average	37.0	0.6	43.6	54.0	10.4			

Note. "H" means Horizontal polarity, "V" means Vertical polarity.

Emission was scanned up to 26 GHz; No emissions were detected above the noise floor which was at least 20 dB below the specification limit.

No other spurious and harmonic emissions were found greater than listed emissions on above table.

The worst case is y-axis and reported.

- * Factor(Peak) = AF + CL + AG (AF: Antenna factor, CL: Cable loss, AG: Pre-Amp gain)
- * Factor(Average) = AF + CL + AG + Duty factor (AF: Antenna factor, CL: Cable loss, AG: Pre-Amp gain) Level = Reading + Factor (Factor = AF + CL + AG)

Margin = Limit (dBuV/m) - Level (dBuV/m)

Report No.: TR-W1708-008 Page 18 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.6.3.3.3 High Channel

	Tabulated Test Data – High Channel										
Frequency	Pol.	Detect	Reading	Factor*	Level	Limit	Margin				
(MHz)	P01.	Mode	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
7443.00	Н	Peak	46.5	-1.2	45.3	74.0	28.7				
7443.00	Н	Average	36.1	0.7	36.8	54.0	17.2				
7443.00	V	Peak	49.6	-1.2	48.4	74.0	25.6				
7443.00	V	Average	38.4	0.7	39.1	54.0	14.9				

Note. "H" means Horizontal polarity, "V" means Vertical polarity.

Emission was scanned up to 26 GHz; No emissions were detected above the noise floor which was at least 20 dB below the specification limit.

No other spurious and harmonic emissions were found greater than listed emissions on above table.

The worst case is y-axis and reported.

- * Factor(Peak) = AF + CL + AG (AF: Antenna factor, CL: Cable loss, AG: Pre-Amp gain)
- * Factor(Average) = AF + CL + AG + Duty factor (AF: Antenna factor, CL: Cable loss, AG: Pre-Amp gain) Level = Reading + Factor (Factor = AF + CL + AG)

Margin = Limit (dBuV/m) - Level (dBuV/m)

Report No.: TR-W1708-008 Page 19 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.7 Test Data - Host Model Name: SPLIF6BMXCMNZZ

5.2.7.1 Test Data from 30 MHz to 1 GHz

	Tabulated Test Data – Low Channel										
Frequency		Detect	Reading	Factor*	Level	Limit	Margin				
(MHz)	Pol.	Mode	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
47.46	Н	Peak	40.8	-12.5	28.3	40.0	11.7				
58.13	Н	Peak	39.1	-13.1	26.0	40.0	14.0				
71.71	Н	Peak	48.6	-16.7	31.9	40.0	8.1				
88.20	Н	Peak	38.9	-15.8	23.1	43.5	20.4				
131.85	V	Peak	36.4	-16.2	20.2	43.5	23.3				
217.21	V	Peak	33.3	-11.5	21.8	46.0	24.2				

Note: "H" means Horizontal polarity, "V" means Vertical polarity.

GFSK lowest channel is worst case configuration.

The worst case is y-axis and reported.

Corr. Factor = AF + CL + AG (AF : Antenna factor, CL : Cable loss, AG: Pre-Amp gain)

Level = Reading + Corr. Factor (Factor = AF + CL + AG)

Margin = Limit (dBuV/m) - Level (dBuV/m)

Quasi-peak measurements are omitted because the peak data meets the limit.

Report No.: TR-W1708-008 Page 20 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.7.2 Test Data above 1 GHz

5.2.7.2.1 Low Channel

	Tabulated Test Data – Low Channel										
Frequency (MHz)	Pol.	Detect Mode	Reading (dBµV/m)	Factor*	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)				
7205.00	Н	Peak	51.3	-1.3	50.0	74.0	24.0				
7205.00	Н	Average	39.1	0.6	39.7	54.0	14.3				
7205.00	V	Peak	57.1	-1.3	55.8	74.0	18.2				
7205.00	V	Average	44.9	0.6	45.5	54.0	8.5				

5.2.7.2.2 Middle Channel

	Tabulated Test Data – Middle Channel										
Frequency (MHz)	Pol.	Detect Mode	Reading (dBµV/m)	Factor*	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)				
7324.00	Н	Peak	47.3	-1.3	46.0	74.0	28.0				
7324.00	Н	Average	36.4	0.6	37.0	54.0	17.0				
7324.00	V	Peak	53.8	-1.3	52.5	74.0	21.5				
7324.00	V	Average	42.3	0.6	42.9	54.0	11.1				

5.2.7.2.3 High Channel

	Tabulated Test Data – High Channel										
Frequency (MHz)	Pol.	Detect Mode	Reading (dBµV/m)	Factor*	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)				
7443.00	Н	Peak	46.9	-1.2	45.7	74.0	28.3				
7443.00	Н	Average	35.9	0.7	36.6	54.0	17.4				
7443.00	V	Peak	49.5	-1.2	48.3	74.0	25.7				
7443.00	V	Average	38.3	0.7	39.0	54.0	15.0				

Note. "H" means Horizontal polarity, "V" means Vertical polarity.

Emission was scanned up to 26 GHz; No emissions were detected above the noise floor which was at least 20 dB below the specification limit.

No other spurious and harmonic emissions were found greater than listed emissions on above table.

The worst case is y-axis and reported.

Report No.: TR-W1708-008 Page 21 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.8 Test Data - Host Model Name: SPLIFRBMXCMNZZ

5.2.8.1 Test Data from 30 MHz to 1 GHz

	Tabulated Test Data – Low Channel										
Frequency		Detect	Reading	Factor*	Level	Limit	Margin				
(MHz)	Pol.	Mode	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
47.46	V	Peak	40.6	-12.5	28.1	40.0	11.9				
58.13	V	Peak	39.8	-13.1	26.7	40.0	13.3				
71.71	V	Peak	49.5	-16.7	32.8	40.0	7.2				
125.06	Н	Peak	35.8	-15.9	19.9	43.5	23.6				
132.82	Н	Peak	37.5	-16.3	21.2	43.5	22.3				
222.06	Н	Peak	30.8	-11.3	19.5	46.0	26.5				

Note: "H" means Horizontal polarity, "V" means Vertical polarity.

GFSK lowest channel is worst case configuration.

The worst case is y-axis and reported.

Corr. Factor = AF + CL + AG (AF : Antenna factor, CL : Cable loss, AG: Pre-Amp gain)

Level = Reading + Corr. Factor (Factor = AF + CL + AG)

Margin = Limit (dBuV/m) - Level (dBuV/m)

Quasi-peak measurements are omitted because the peak data meets the limit.

Report No.: TR-W1708-008 Page 22 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.2.8.2 Test Data above 1 GHz

5.2.8.2.1 Low Channel

		Tab	pulated Test Da	ata – Low Char	nel		
Frequency	Frequency Pol. Detec		Reading Factor*		Level Limit		Margin
(MHz)	POI.	Mode	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
7205.00	Н	Peak	50.8	-1.3	49.5	74.0	24.5
7205.00	Н	Average	39.8	0.6	40.4	54.0	13.6
7205.00	V	Peak	57.2	-1.3	55.9	74.0	18.1
7205.00	V	Average	45.7	0.6	46.3	54.0	7.7

5.2.8.2.2 Middle Channel

		Tabu	ılated Test Dat	a – Middle Cha	annel		
Frequency (MHz)	Pol. Detect Reading Mode (dBµV/m)			Factor*	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
7324.00	Н	Peak	48.1	-1.3	46.8	74.0	27.2
7324.00	Н	Average	37.4	0.6 38.0		54.0	16.0
7324.00	V	Peak	54.3	-1.3	53.0	74.0	21.0
7324.00	V	Average	42.8	0.6	43.4	54.0	10.6

5.2.8.2.3 High Channel

		Tab	ulated Test Da	ıta – High Chaı	nnel		
Frequency (MHz)	Pol.	Detect Mode	Reading (dBµV/m)	Factor*	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
7443.00	Н	Peak	46.7	-1.2	45.5	74.0	28.5
7443.00	Н	Average	35.8	0.7 36.5		54.0	17.5
7443.00	V	Peak	49.1	-1.2	47.9	74.0	26.1
7443.00	V	Average	38.0	0.7	38.7	54.0	15.3

Note. "H" means Horizontal polarity, "V" means Vertical polarity.

Emission was scanned up to 26 GHz; No emissions were detected above the noise floor which was at least 20 dB below the specification limit.

No other spurious and harmonic emissions were found greater than listed emissions on above table.

The worst case is y-axis and reported.

Report No.: TR-W1708-008 Page 23 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.3 AC Power Line Conducted Emission

5.3.1 Limit

Acc. to section 15.207 (a), following table shall be applied.

Frequency Range (MHz)	Quasi-Peak (dBuV)	Average (dBuV)
0.15 - 0.5	66 to 56	56 to 46
0.5 - 5	56	46
5 -30	60	50

5.3.2 Method of Measurement

The EUT was placed on a wooden table, 0.8 m height above the horizontal ground plane and 40 cm from the vertical ground plane. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasipeak or average.

The test was performed for both Neutral and Hot lines.

5.3.3 Measurement Uncertainty

Measurement uncertainties were not taken into account and following uncertainty levels have been estimated for tests performed on the apparatus. The measurement uncertainties are given with at least 95 % confidence.

Frequency Range	Uncertainty	Frequency Range	Uncertainty
9 kHz ~ 150 kHz	± 2.05 dB	150 kHz ~ 30 MHz	± 2.05 dB

5.3.4 Sample Calculated Example

At 5.31 MHz QP Limit = 60.0 dBuV

Correction Factor (C. Factor) of LISN, Pulse Limiter and cable loss at 5.31 MHz = 9.7 dB

Q.P Reading from the Test receiver = 20.8 dBuV

(Calculated value for system losses by software EMC32 manufactured by Rohde & Schwarz)

Therefore Q.P Margin = 60 - 20.8 = 39.2

so the EUT has 39.2 dB margin at 5.31 MHz

Report No.: TR-W1708-008 Page 24 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.3.5 Worst Case Test Data

D	0045.05.05	Temperature	23.0 °C		
Date of Test	2017-07-07	Relative humidity	46.1 % R.H.		
Measurement Freque	ncy Range	9 kHz ~ 30 MHz			
Test Result	PASS	Tested By	In-yong Song		

5.3.5.1 Host Model Name: SPLIO1BMXCMNZZ

Limit and Margin1

Frequency	QuasiPeak	CAverage	Bandwidth	Line	Corr.	Margin	Limit -	Margin	Limit -
(MHz)	(dBµV)	(dBµV)	(kHz)		(dB)	- QPK	QPK	- CAV	CAV
			177			(dB)	(dBµV)	(dB)	(dBµV)
0.162000	33.0	7.8	9.000	L1	9.6	32.4	65.4	47.6	55.4
0.242000	26.7	10.1	9.000	L1	9.6	35.4	62.0	41.9	52.0
0.374000	17.7	8.7	9.000	L1	9.6	40.7	58.4	39.7	48.4
0.806000	15.5	4.9	9.000	L1	9.6	40.5	56.0	41.1	46.0
3.986000	12.1	8.8	9.000	L1	9.7	43.9	56.0	37.2	46.0
29.906000	15.6	12.0	9.000	L1	10.1	44.4	60.0	38.0	50.0

Report No.: TR-W1708-008 Page 25 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

Limit and Margin1

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV)	Margin - CAV (dB)	Limit - CAV (dBµV)
0.150000	37.6	9.4	9.000	N	9.6	28.4	66.0	46.6	56.0
0.214000	28.5	12.9	9.000	N	9.6	34.5	63.0	40.1	53.0
0.322000	23.2	17.5	9.000	N	9.6	36.4	59.7	32.1	49.7
0.374000	22.6	15.5	9.000	N	9.6	35.8	58.4	33.0	48.4
0.806000	19.2	9.6	9.000	N	9.6	36.8	56.0	36.4	46.0
29.906000	15.4	11.8	9.000	N	10.2	44.6	60.0	38.2	50.0

Report No.: TR-W1708-008 Page 26 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.3.5.2 Host Model Name: SPLIF6BMXCMNZZ

Limit and Margin1

Frequency	QuasiPeak	CAverage	Bandwidth	Line	Corr.	Margin	Limit -	Margin	Limit -
(MHz)	(dBµV)	(dBµV)	(kHz)		(dB)	- QPK	QPK	- CAV	CAV
						(dB)	(dBµV)	(dB)	(dBµV)
0.162000	34.1	8.2	9.000	L1	9.6	31.3	65.4	47.2	55.4
0.318000	17.3	11.0	9.000	L1	9.6	42.4	59.8	38.8	49.8
0.374000	19.5	14.3	9.000	L1	9.6	38.9	58.4	34.1	48.4
1.126000	22.7	15.5	9.000	L1	9.6	33.3	56.0	30.5	46.0
1.826000	14.4	7.6	9.000	L1	9.7	41.6	56.0	38.4	46.0
3.314000	15.0	8.9	9.000	L1	9.7	41.0	56.0	37.1	46.0

Report No.: TR-W1708-008 Page 27 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

Limit and Margin1

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV)	Margin - CAV (dB)	Limit - CAV (dBµV)
0.162000	32.4	8.8	9.000	N	9.6	33.0	65.4	46.6	55.4
0.214000	28.7	11.7	9.000	N	9.6	34.4	63.0	41.3	53.0
0.322000	22.5	15.0	9.000	N	9.6	37.2	59.7	34.7	49.7
0.378000	22.0	16.6	9.000	N	9.6	36.3	58.3	31.7	48.3
0.782000	16.5	7.2	9.000	N	9.6	39.5	56.0	38.8	46.0
29.906000	13.7	9.9	9.000	N	10.2	46.3	60.0	40.1	50.0

Report No.: TR-W1708-008 Page 28 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

5.3.5.3 Host Model Name: SPLIFRBMXCMNZZ

Limit and Margin1

			annic and margini											
quency	QuasiPeak	CAverage	Bandwidth	Line	Corr.	Margin	Limit -	Margin	Limit -					
MHz)	(dBµV)	(dBµV)	(kHz)		(dB)	- QPK	QPK	- CAV	CAV					
			100-11-00			(dB)	(dBµV)	(dB)	(dBµV)					
		7.6		L1	9.6	32.7	65.4	47.7	55.4					
.242000		9.5	9.000	L1	9.6	36.1			52.0					
.322000	18.8	12.8	9.000	L1	9.6	40.8	59.7	36.8	49.7					
.070000	22.8	14.9	9.000	L1	9.6	33.2	56.0	31.1	46.0					
.722000	15.3	8.6	9.000	L1	9.7	40.7	56.0	37.4	46.0					
.282000	15.0	8.3	9.000	L1	9.7	41.0	56.0	37.7	46.0					
	n.162000 0.242000 0.322000 0.070000 0.722000 0.282000	MHz) (dBμV) 1.162000 32.7 1.242000 25.9 1.322000 18.8 1.070000 22.8 1.722000 15.3	MHz) (dBμV) (dBμV) 1.162000 32.7 7.6 1.242000 25.9 9.5 1.322000 18.8 12.8 1.070000 22.8 14.9 1.722000 15.3 8.6	MHz) (dBμV) (dBμV) (kHz) 0.162000 32.7 7.6 9.000 0.242000 25.9 9.5 9.000 0.322000 18.8 12.8 9.000 0.070000 22.8 14.9 9.000 0.722000 15.3 8.6 9.000	MHz) (dBμV) (dBμV) (kHz) 1.162000 32.7 7.6 9.000 L1 1.242000 25.9 9.5 9.000 L1 1.322000 18.8 12.8 9.000 L1 1.070000 22.8 14.9 9.000 L1 1.722000 15.3 8.6 9.000 L1	MHz) (dBμV) (dBμV) (kHz) (dB) 0.162000 32.7 7.6 9.000 L1 9.6 0.242000 25.9 9.5 9.000 L1 9.6 0.322000 18.8 12.8 9.000 L1 9.6 0.070000 22.8 14.9 9.000 L1 9.6 0.722000 15.3 8.6 9.000 L1 9.7	MHz) (dBμV) (dBμV) (kHz) (dB) -QPK (dB) 0.162000 32.7 7.6 9.000 L1 9.6 32.7 0.242000 25.9 9.5 9.000 L1 9.6 36.1 0.322000 18.8 12.8 9.000 L1 9.6 40.8 0.070000 22.8 14.9 9.000 L1 9.6 33.2 .722000 15.3 8.6 9.000 L1 9.7 40.7	MHz) (dBμV) (dBμV) (kHz) (dB) - QPK (dBμV) QPK (dBμV) 0.162000 32.7 7.6 9.000 L1 9.6 32.7 65.4 0.242000 25.9 9.5 9.000 L1 9.6 36.1 62.0 0.322000 18.8 12.8 9.000 L1 9.6 40.8 59.7 .070000 22.8 14.9 9.000 L1 9.6 33.2 56.0 .722000 15.3 8.6 9.000 L1 9.7 40.7 56.0	MHz) (dBμV) (dBμV) (kHz) (dB) - QPK (dB) QPK (dBμV) - CAV (dB) 0.162000 32.7 7.6 9.000 L1 9.6 32.7 65.4 47.7 0.242000 25.9 9.5 9.000 L1 9.6 36.1 62.0 42.5 0.322000 18.8 12.8 9.000 L1 9.6 40.8 59.7 36.8 0.070000 22.8 14.9 9.000 L1 9.6 33.2 56.0 31.1 .722000 15.3 8.6 9.000 L1 9.7 40.7 56.0 37.4					

Report No.: TR-W1708-008 Page 29 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

Limit and Margin1

in the direction of the second										
QuasiPeak	CAverage	Bandwidth	Line	Corr.	Margin	Limit -	Margin	Limit -		
(dBµV)	(dBµV)	(kHz)		(dB)	- QPK	QPK	- CAV	CAV		
		*255.0			(dB)	(dBµV)	(dB)	(dBµV)		
31.5	7.2	9.000	N	9.6	33.7	65.2	48.0	55.2		
28.5	13.0	9.000	N	9.6	34.5	63.0	40.1	53.0		
23.5	9.6	9.000	N	9.6	33.3	56.7	37.1	46.7		
25.7	16.9	9.000	N	9.6	30.3	56.0	29.1	46.0		
17.9	10.9	9.000	N	9.7	38.1	56.0	35.1	46.0		
15.6	9.4	9.000	N	9.7	40.4	56.0	36.6	46.0		
	QuasiPeak (dBµV) 31.5 28.5 23.5 25.7 17.9	QuasiPeak (dBμV) CAverage (dBμV) 31.5 7.2 28.5 13.0 23.5 9.6 25.7 16.9 17.9 10.9	QuasiPeak (dBμV) CAverage (dBμV) Bandwidth (kHz) 31.5 7.2 9.000 28.5 13.0 9.000 23.5 9.6 9.000 25.7 16.9 9.000 17.9 10.9 9.000	QuasiPeak (dBμV) CAverage (dBμV) Bandwidth (kHz) Line (kHz) 31.5 7.2 9.000 N N 28.5 13.0 9.000 N N 23.5 9.6 9.000 N N 25.7 16.9 9.000 N N 17.9 10.9 9.000 N N	QuasiPeak (dBμV) CAverage (dBμV) Bandwidth (kHz) Line (dB) Corr. (dB) 31.5 7.2 9.000 N 9.6 28.5 13.0 9.000 N 9.6 23.5 9.6 9.000 N 9.6 25.7 16.9 9.000 N 9.6 17.9 10.9 9.000 N 9.7	QuasiPeak (dBμV) CAverage (dBμV) Bandwidth (kHz) Line (dB) Corr. (dB) Margin - QPK (dB) 31.5 7.2 9.000 N 9.6 33.7 28.5 13.0 9.000 N 9.6 34.5 23.5 9.6 9.000 N 9.6 33.3 25.7 16.9 9.000 N 9.6 30.3 17.9 10.9 9.000 N 9.7 38.1	QuasiPeak (dBμV) CAverage (dBμV) Bandwidth (kHz) Line (dB) Corr. (dB) Margin (dBμV) Limit - QPK (dBμV) 31.5 7.2 9.000 N 9.6 33.7 65.2 28.5 13.0 9.000 N 9.6 34.5 63.0 23.5 9.6 9.000 N 9.6 33.3 56.7 25.7 16.9 9.000 N 9.6 30.3 56.0 17.9 10.9 9.000 N 9.7 38.1 56.0	QuasiPeak (dBμV) CAverage (dBμV) Bandwidth (kHz) Line (dB) Corr. (dB) Margin - QPK (dBμV) Limit - QPK (dBμV) Margin - CAV (dB) 31.5 7.2 9.000 N 9.6 33.7 65.2 48.0 28.5 13.0 9.000 N 9.6 34.5 63.0 40.1 23.5 9.6 9.000 N 9.6 33.3 56.7 37.1 25.7 16.9 9.000 N 9.6 30.3 56.0 29.1 17.9 10.9 9.000 N 9.7 38.1 56.0 35.1		

Report No.: TR-W1708-008 Page 30 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)

Appendix I – Test Instrumentation

Description	Model No.	Serial No.	Manufacturer.	Due for Cal Date
TS8997 System				
Signal & Spectrum Analyzer	FSW 43	100578	Rohde & Schwarz	2018-05-04
Power Module	OSP 120	101389	Rohde & Schwarz	2018-01-19
Signal Generator	SMF100A	101441	Rohde & Schwarz	2018-01-19
Vector Signal Generator	SMBV100A	257560	Rohde & Schwarz	2018-01-19
DC Power Supply	U8001A	MY51080019	AGILENT	2017-07-28
Slidacs	DSD-1005	M06-117	Digitek Power	-
Attenuator	56-10	58769	WEINSCHEL	2018-01-19
Attenuator	10dB	N/A	Rohde & Schwarz	2018-01-19
Temperature & Humidity Chamber	PR-3KP	14004209	Espec	2017-07-29
Test Receiver	ESU 26	100303	Rohde & Schwarz	2018-01-19
Loop Antenna	HFH2-Z2	100341	Rohde & Schwarz	2019-04-21
TRILOG Broadband Antenna	VULB9163	9163.770	Schwarzbeck	2019-02-13
Horn Antenna	HF 907	102426	Rohde & Schwarz	2019-01-06
Horn Antenna	BBHA9170	BBHA9170440	Schwarzbeck	2018-11-28
Attenuator	6dB	272.4110.50	Rohde & Schwarz	2018-01-19
Pre-Amplifier	310N	344015	Sonoma Instrument	2018-01-19
Pre-Amplifier	SCU 18D	19006450	Rohde & Schwarz	2018-04-24
Pre-Amplifier	CBL18265035	28706	CERNEX	2018-03-29
Turn Table	DT3000-3t	1310814	INNCO SYSTEM	-
Antenna Master	MA4000-EP	4600814	INNCO SYSTEM	_
Camera Controller	HDCon4102	6531445048	PONTIS	_
CO3000 Controller	Co3000-4Port	CO3000/806/ 34130814/L	INNCO SYSTEM	-
EMI Test Receiver	ESCI 7	100722	Rohde & Schwarz	2018-01-19
LISN	ENV216	100110	Rohde & Schwarz	2017-07-29
LISN	LS16C	16011403310	AFJ	2017-07-28

The measuring equipment utilized to perform the tests documented in this test report has been calibrated in accordance with manufacturer's recommendations, and is traceable to recognized national standards.

Report No.: TR-W1708-008 Page 31 of 31

ENG Co., Ltd. 135-60 Gyeongchung-daero, Gonjiam-eup, Gwangju-si, Gyeonggi-do, Korea 12813

Report Form_01 (Rev.0)