

Université Abdelmalek ESSAADI (UAE) Ecole Nationale des Sciences Appliquées Al Hoceima, Maroc

ANALYSE 3: FONCTIONS DE PLUSIEURS VARIABLES

AP2: DEUXIÈME ANNÉE CYCLE PRÉPARATOIRE

RÉDIGÉ PAR

MOUSSAID AHMED

Professeur Assistant
Département de Mathématiques-Informatique
ENSAH

Table des matières

1	Espace Métriques et Espace Vectoriels Normés			4
	1.1	Espac	e Métriques	4
		1.1.1	Distance	4
		1.1.2	Espace Métriques	6
		1.1.3	Suites et étude de la convergence dans un Espace métrique	8
		1.1.4	Suites de Cauchy - Espace métrique complet	9
	1.2	Espac	e Vectoriels Normés	10
		1.2.1	Distance associée à une norme	12
		1.2.2	Normes Équivalentes	13
		1.2.3	Normes subordonnées	14
		1.2.4	Suites dans un K-espace vectoriel normé	14
		1.2.5	Suites extraites	16
		1.2.6	Espace vectoriel normé complet :	18

Chapitre 1

Espace Métriques et Espace Vectoriels Normés

1.1 Espace Métriques

1.1.1 Distance

Définition 1 Soit X un ensemble. Une application :

$$d: X \times X \rightarrow \mathbb{R}^+ = \{x \in \mathbb{R}/x \ge 0\}$$
$$(x, y) \mapsto d(x, y)$$

est appelée distance sur X si elle vérifie : pour tout x; y et $z \in X$, on ait

- 1. Positivité : $d(x, y) \ge 0, \forall x, y \in X$
- 2. Séparation : $d(x, y) = 0 \Leftrightarrow x = y$
- 3. Symétrie: $d(x, y) = d(y, x), \forall x, y \in X$
- 4. Inégalité triangulaire : $d(x,y) \le d(x,z) + d(z,y), \forall x,y,z \in X$

Quelques Exemples:

1. Prenons $X=\mathbb{R}$ ou \mathbb{C} , on a une distance définie, pour tous x et $y\in X$ par

$$d(x,y) = \mid x - y \mid$$

appelée distance usuelle.

où $|\,.\,|:$ représente la valeur absolue dans $\mathbb R$ ou le module dans $\mathbb C.$

2. Prenons $X = \mathbb{K}^n$, ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Pour tous $x = (x_i)_{1 \le i \le n}$ et $y = (y_i)_{1 \le i \le n}$ de \mathbb{K} , l'application définie par :

$$d_1(x,y) \stackrel{def}{=} \sum_{i=1}^n |x_i - y_i|$$

$$d_2(x,y) \stackrel{def}{=} (\sum_{i=1}^n (x_i - y_i)^2)^{\frac{1}{2}}$$

$$d_{\infty}(x, y) \stackrel{def}{=} \max_{1 \le i \le n} |x_i - y_i|$$

alors d_1 ; d_2 et d_∞ sont des distances sur \mathbb{K}^n ; d_2 est appelée distance euclidienne classique sur \mathbb{K}^n .

PROPOSITION 1 Nous avons les propriétés suivantes.

1. Pour $x_1; \dots; x_n$ des points de X on a:

$$d(x_1,x_n) \le d(x_1,x_2) + d(x_2,x_3) + \dots + d(x_{n-1},x_n)$$

2. Pour tout x, y et z dans X on a:

$$|d(x,y) - d(y,z)| \le d(x,z)$$

3. Pour x; x' et y; y' dans X on a:

$$|d(x, y) - d(x', y')| \le d(x, x') + d(y, y')$$

Démonstration.

- 1. La démonstration de (1) est immédiate par récurrence sur n.
- 2. Pour (2), nous avons, en effet,

$$d(x,y) \le d(x,z) + d(z,y)$$
 (inégalité triangulaire)

ce qui donne

$$d(x,y) - d(y,z) \le d(x,z)$$

En permutant x et z, on a de la même manière

$$d(z,y) - d(y,x) \le d(x,z)$$

ce qui donne finalement

$$-d(x,z) \le d(x,y) - d(y,z) \le d(x,z)$$

3. Pour x; x' et y; y' dans X on a

$$d(x, y) \le d(x, x') + d(x', y') + d(y', y)$$

ďoù

$$d(x,y) - d(x',y') \le d(x,x') + d(y',y)$$

En permutant les couples (x; y) et (x'; y') on a

$$d(x', y') - d(x, y) \le d(x, x') + d(y', y)$$

PROPOSITION 2 Soient d_1 et d_2 deux distances sur X. On suppose qu'il existe α , $\beta > 0$ tels que

$$\alpha d_2(x, y) \le d_1(x, y) \le \beta d_2(x, y) \qquad \forall x, y \in X$$

Alors d_1 et d_2 sont dites **équivalentes**.

1.1.2 Espace Métriques

Définition 2 On appelle Espace métrique tout ensemble non vide X muni d'une distance d et on le note (X;d).

Définition 3 : (Boules et Sphères) Soit (X;d) un espace métrique.

- 1. Pour $a \in X$ et $r \ge 0$, on définit les ensembles suivants :
 - $B(a,r) = x \in X$, d(x,a) < r, boule ouvert de centre a et rayon r.
 - $-\overline{B}(a,r) = x \in X, d(x,a) \le r$, boule ermée de centre a et rayon r.
 - $S(a,r) = \overline{B}(a,r) \setminus B(a,r) = x \in X, d(x,a) = r$, sphère de centre a et rayon r.
- 2. Une partie $U \subset X$ est dite ouverte si

$$\forall a \in U, \quad \exists r > 0 \quad t.q. \quad B(a,r) \subset U$$

- 3. Une partie $F \subset X$ est dite fermée si son complémentaire $F^c = X \setminus F$ est ouvert.
- 4. Une partie $A \subset X$ est dite bornée si

$$\exists M>0, \quad \forall x,y\in A, \quad d(x,y)\leq M$$

<u>Lemme</u>

Si x est dans X, pour $\epsilon < \epsilon'$, $B(x,\epsilon) \subset B(x,\epsilon')$, $et \overline{B(x,\epsilon)} \subset \overline{B(x,\epsilon')}$

Théoréme 1 (Propriétés des ensembles ouverts) Soit (E, d) un espace métrique. Alors

- 1. \emptyset et E sont des ouverts.
- 2. Si $(\vartheta_i)_{i\in I}$ est une famille quelconque d'ouverts, alors $\cup_{i\in I}\vartheta_i$ est ouvert.
- 3. Si $\vartheta_1, \vartheta_2, \dots, \vartheta_n$ sont des ouverts, alors $\vartheta_1 \cap \vartheta_2 \cap \dots \cap \vartheta_n$ est ouvert.

Démonstration:

- 1. Evident.
- 2. Soient $\vartheta = \bigcup_{i \in I} \vartheta_i$ et $x \in \vartheta$ alors $\exists i_0 \in I$ tel que $x \in \vartheta_{i_0}$ comme ϑ_{i_0} est ouvert $\Rightarrow \exists r > 0$ tel que $B(x,r) \subset \vartheta_{i_0} \Rightarrow B(x,r) \subset \bigcup_{i \in I} \vartheta_i = \vartheta$ comme $x \in \vartheta$ était quelconque $\Rightarrow \vartheta$ est ouvert.

3. Soit $x \in \vartheta_1 \cap \vartheta_2 \cap \ldots \cap \vartheta_n$ alors $x \in \vartheta_1$, et $x \in \vartheta_2$ et \cdots et $x \in \vartheta_n$. comme ϑ_i est ouvert, il existe $r_1 > 0, r_2 > 0, \cdots, r_n > 0$ tels que $B(x, r_1) \subset \vartheta_1$ et $B(x, r_2) \subset \vartheta_2$ et, \cdots et $B(x, r_n) \subset \vartheta_n$. soit $r = \min(r_1, r_2, \cdots, r_n)0$ Alors $B(x, r) \subset \vartheta_1 \cap \vartheta_2 \cap \ldots \cap \vartheta_n$. donc $\vartheta_1 \cap \vartheta_2 \cap \ldots \cap \vartheta_n$ est ouvert.

Définition 4 : (Intérieur, adhérence) Soit (X;d) un espace métrique. Pour $A \subset X$,

On définit l'intérieurde A, A°, par

$$A^{\circ} = \bigcup_{UOuvert, U \subset A} U$$

et l'adhérence de A, \overline{A} , par

$$\overline{A} = \bigcap_{F \, ferm\acute{e}, F \supset A} F$$

Définition 5 : (voisinage, intérieur) Soit (X;d) un espace métrique.

- 1. Soit V un sous-ensemble de X et $x \in X$: on dit que V est un voisinage de x s'il contient une boule ouverte de centre x.
- 2. Soit A un sous-ensemble de X: on dit qu'un élément a de X est un point intérieur à A si A est un voisinage de a ou, ce qui est équivalent, s'il existe r > 0 tel que $B(a;r) \subset A$. On appelle intérieur de A et on note A° l'ensemble des points intérieurs à A.

PROPOSITION 3 Soit A est un sou ensemble d'un espace métrique F. Alors :

- A° est un ouvert contenu dans A.
- Si U est un ouvert et $U \subseteq A$, alors $U \subseteq A^{\circ}$.

Autrement dit, A° est le plus grand ouvert contenu dans A.

- $-\overline{A}$ est un fermé contenant A.
- Si F est un fermé et $F \supset A$, alors $F \supset \overline{A}$ Autrement dit, \overline{A} est le plus petit fermé contenant A.

Remarque

 $\overline{1\text{-Si }x\text{ appartient à }A^\circ\text{ il existe, }\varepsilon>0, \text{ tel que }x∈B(x,\varepsilon)⊂A^\circ⊂A$

2- Un point x est dans \overline{A} si et seulement si pour tout $\varepsilon > 0$, $B(x, \varepsilon)$ intersecte A.

PROPOSITION 4 Soient A et B, deux sous ensembles d'un espace métrique E. Alors :

- 1. On $a A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ} et \overline{A} \subseteq \overline{B}$
- 2. $x \in A^{\circ} \Leftrightarrow \exists \varepsilon > 0 \text{ tel que } B(x, \varepsilon) \subset A$
- 3. $x \in \overline{A}$, $\Leftrightarrow \forall \varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \emptyset$
- 4. A ouvert $\Leftrightarrow A = A^{\circ}$
- 5. A fermé $\Leftrightarrow A = \overline{A}$
- 6. A ouvert \Leftrightarrow A est une union de boules ouvertes.

Démonstration.(Exercice)

1.1.3 Suites et étude de la convergence dans un Espace métrique

Définition 6 :(une suite extraite)

 $Si\ (x_n)$ est une suite, on notera une suite extraite (=sous-suite) soit par (x_{n_k}) , soit par $(x_{\varphi(n)})$. Dans le premier cas n_0, n_1, \cdots , est une suite strictement croissante d'entiers; dans le second, $\varphi \colon \mathbb{N} \to \mathbb{N}$ est une application strictement croissante. Par abus de notation, si tous les termes d'une suite (x_n) appartiennent à un ensemble X, on écrit $(x_n) \subset X$.

Définition 7 :(une suite convergente)

Soit (X;d) un espace métrique. Si $(x_n) \subset X$ et $x \in X$, alors, par définition, $x_n \to x$, $((x_n)$ converge vers x) si et seulement si $d(x_n;x) \to 0$. Une suite (x_n) est convergente s'il existe un $x \in X$ tel que $x_n \to x$. On écrit alors $\lim_{n \to +\infty} x_n = x$

Traduction de $x_n \to x$: pour tout $\varepsilon > 0$, il existe un $n_0 \in \mathbb{N}$ tel que

$$\forall n \ge n_0 \Rightarrow d(x_n, x) < \varepsilon$$

On dit que la suite $(x_n)_n \in \mathbb{N}$ diverge ou est divergente si elle n'est pas convergente.

Il est évident, à partir de la définition, que si $x_n \to x$, et si (x_{n_k}) est une soussuite, alors $x_{n_k} \to x$

Rq:

Dans $\mathbb R$ muni de la distance usuelle, cette définition coïncide avec la définition usuelle de la convergence.

Définition 8 :(valeur d'adhérence) Soit (X;d) un espace métrique. Si $(x_n) \subset X$ et $x \in X$, alors, par définition, x est une **valeur d'adhérence** de la suite (x_n) s'il existe une sous-suite (x_{n_k}) telle que $x_{n_k} \to x$.

Exemple

Dans \mathbb{R} muni de la distance usuelle, soit $x_n = (-1)^n$, $n \in \mathbb{N}$. Alors 1 est une valeur d'adhérence de (x_n) , car $x_{2n} \to 1$.

PROPOSITION 5 Soit (X;d) un espace métrique.

- 1. Si une suite (x_n) , $n \in \mathbb{N}$ d'éléments de X converge vers $x \in X$, alors x est unique : on dit alors que x est la limite de la suite (x_n) , $n \in \mathbb{N}$;
- 2. on peut énoncer la définition de la convergence d'une suite avec le langage des voisinages : une suite (x_n) , $n \in \mathbb{N}$ d'éléments de X converge vers $x \in X$ si
 - pour tout voisinage V de x, $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow x_n \in V$
- 3. Si $x_n \to x$, alors x est la seule valeur d'adhérence de la suite (x_n) .
- 4. une suite $(x_n)_n$ d'éléments de X converge vers $x \in X$ si et seulement si la suite de réels positifs $(d(x_n;x))_n$ converge vers 0.

1.1.4 Suites de Cauchy - Espace métrique complet.

Définition 9 : (Suites de Cauchy) Soit $(x_n)_n$ une suite dans un espace métrique (X;d). On dit que $(x_n)_n$ est suite de Cauchy si elle satisfait :

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \ge n_0, \quad \forall m \ge n_0, \quad d(x_n, x_m) \le \varepsilon$$

Remarque

La définition est équivalente à

$$\forall \varepsilon > 0$$
, $\exists n_0 \in \mathbb{N}$, $\forall n \ge n_0$, $\forall p \ge 0$, $d(x_n, x_{n+p}) \le \varepsilon$

Exemple

dans \mathbb{R} , la suite $(\frac{1}{n})$ est de Cauchy.

Autrement dit, une suite de Cauchy est une suite dont les éléments sont arbitrairement proches à partir d'un certain rang. En effet, on peut aisément montrer qu'une suite est de Cauchy si et seulement si pour tout $\varepsilon > 0$ il existe une boule B_{ε} (ouverte ou fermée, cela ne change rien) de rayon ε (dont le centre n'est pas précisé mais dépend possiblement de ε) qui contient tous les élements de la suite à partir d'un certain rang

$$\exists n_0 \ge 0, \quad tq, \quad \forall n \ge n_0, \quad x_n \in B_{\varepsilon}$$

La remarque essentielle concernant les suites de Cauchy est la suivante.

PROPOSITION 6 -Dans un espace métrique (X;d) toute suite convergente est de Cauchy.

<u>Preuve</u>: Soit $(x_n)_n$ une suite qui converge vers une limite x. Pour $\frac{\varepsilon}{2} > 0$ fixé, on peut trouver n_0 tel que $d(x_n;x) \le \frac{\varepsilon}{2}$ pour tout n_0 . Ainsi, si $n \ge n_0$ et $m \ge n_0$, on a par inégalité triangulaire

$$d(x_n, x_m) < d(x_n, x) < d(x, x_m) < \varepsilon$$

Ceci montre bien que la suite est de Cauchy.

- **PROPOSITION 7** 1. Dans un espace métrique (X;d) Toute suite de Cauchy est bornée. Ceci résulte essentiellement du fait que, pour tout $n \ge n_0$, $x_n \in B_f(x_{n_0}; \varepsilon)$.
 - 2. Si les métriques d et d' sont équivalentes sur X, alors toute suite de Cauchy pour d est une suite de Cauchy pour d'.

 $\textbf{D\'efinition 10} \ : (Espaces \ m\'etriques \ complets)$

Un espace métrique (X;d) est dit complet si toute suite de Cauchy dans (X;d) est convergente.

- **PROPOSITION 8** 1. Soit (X,d) un espace métrique complet et $F \subset X$. Alors (F,d) est complet si et seulement si F est fermé dans X
 - 2. Soit (X,d) un espace métrique. Si X est compact alors il est borné : il existe M > 0 tel que $\forall x, y \in X$, $d(x,y) \leq M$.

11

1.2 Espace Vectoriels Normés

On étudie des espaces vectoriels sur le corps K avec $K = \mathbb{R}$ ou $K = \mathbb{C}$

Définition 11 : (Norme)

Soit E un k- espace vectoriel réel. Une application $N: E \to \mathbb{R}^+$ est appelée norme sur E si elle vérifie

1. Positivité :

$$\forall x \in E, \quad N(x) \ge 0$$

2. Séparation :

$$N(x) = 0 \Leftrightarrow x = 0$$

3. Homogénéité:

$$\forall \lambda \in \mathbb{R}, \quad \forall x \in E, \quad N(\lambda x) = |\lambda| N(x)$$

4. Inégalité triangulaire :

$$\forall x, y \in E \quad N(x+y) \le N(x) + N(y)$$

 \mathbf{Rq} : Le plus souvent, on note une norme par $\|.\|$.

- Exemples classiques

1. Les applications définies par $\forall X = (x_1, x_2, ..., x_n) \in K^n$

(a)
$$N_1(X) = \sum_{i=1}^n |x_i| = ||X||_1$$

(b)
$$N_2(X) = \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2} = ||X||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

- (c) $N_2(X) = \max_{1 \le i \le n} (|x_i|) = ||X||_{\infty}$ Sont des Normes dans K^n
- 2. Les applications définies par $\forall f \in C^0([a,b],K)$

(a)
$$N_1(f) = \int_a^b |f(t)| dt$$

(b)
$$N_2(f) = \sqrt{\int_a^b |f(t)|^2 dt}$$

(c)
$$N_{\infty}(f) = \sup_{t \in [a,b]} |f(t)|$$

Sont des normes sur $C^0([a,b],K)$

Req

Lorsque seules les propriétés (1), (3) et (4) de la définition sont vérifiées, ont dit que N est une semi norme.

Définition 12 : (Espace Vectoriels Normés) Un espace **vectoriel normé** est un couple (E,N) où E est un K-espace vectoriel et N est une norme sur E (en abrégé. e.v.n.).

PROPOSITION 9 Soient E un K- espace verctoriel et N une norme sur E alors:

$$\forall (x, y) \in E^2$$
, $|N(x) - N(y)| \le N(x + y)$

Démonstration:

Soit $(x, y) \in E^2$

$$N(x) = N(x + y + (-y)) \le N(x + y) + N(-y) = N(x + y) + N(y) \text{ car } N(-y) = N(y)$$

donc $N(x) - N(y) \le N(x + y)$

En échangeant les rôle de x et y, on obtient

$$N(y) - N(x) \le N(x + y)$$

et finalement

$$|N(x) - N(y)| \le N(x + y)$$

PROPOSITION 10
$$\forall (x_1,...,x_n) \in E^n$$
, $\forall (\lambda_1,...,\lambda_n) \in K^n$, $\|\sum_{k=1}^n \lambda_k x_k\| \le \sum_{k=1}^n |\lambda_k| \|x_k\|$

1.2.1 Distance associée à une norme

Définition 13 : Soit $(E, \|.\|)$ un espace vectoriel normé. Pour $(x, y) \in E^2$, la distance de s à y est $d(x, y) = \|x - y\|$

PROPOSITION 11 Si N est une norme sur E, l'application définie par : $\forall (x,y) \in E^2$, d(x,y) = N(x-y), est une distance sur E appelée distance associée (ou liée) à la Norme N.

Démonstration:

- d est bien une application de $E \times E$ dans \mathbb{R}^+ ie. $\forall (x, y) \in E^2$, $d(x, y) \ge 0$.
- pour $(x, y) \in E^2$

$$d(x,y) = 0 \iff N(x-y) = 0$$
$$\iff x - y = 0$$
$$\iff x = y$$

- pour $(x, y) \in E^2$

$$d(y,x) = N(y-x)$$

$$= N(-(x-y))$$

$$= |-1|N(x-y)$$

$$= N(x-y)$$

$$= d(x,y)$$

— pour
$$(x, y, z) \in E^3$$

$$d(x,z) = N(x-z)$$

$$= N((x-y)+(y-z))$$

$$\leq N(x-y)+N(y-z)$$

$$= d(x,y)+d(y,z).$$

Normes Équivalentes 1.2.2

Définition 14: Soient E un K-espace vectoriel puis N et N' deux normes sur E, $N^{'}$ est équivalente à N si et seulement si il existe deux réels strictement positifs α et β tels que :

$$\forall x \in E$$
 $\alpha N(x) \leq N'(x) \leq \beta N(x)$

Exercice

Dans $E = \mathbb{R}^n$ Montrer que $\|.\|_1$, $\|.\|_2$ et $\|.\|_\infty$ des normes deux à deux équivalentes.

Définition 15 : $Si\ F$ est un sous-espace vectoriel d'un espace vectoriel normé E, la restriction à F de la norme de E est une norme sur F, appelée norme induite.

Rq:

Evident car les propriétés sont vraies pour tous les éléments de E, donc pour ceux de F. La norme induite sur F sera notée comme la norme sur E.

Théoréme 2 Si $E = \prod_{i=1}^{n} E_k$ est un produit d'espaces vectoriels E_k normés par la norme N_k , l'application N définie sur E par $N(x) = \max_k N_k(x_k)$ si $x = (x_1, ..., x_p)$ est une norme sur E appelée norme produit.

Démonstration:

C'est évidemment une application de E dans \mathbb{R}^+ .

- * N(x) = 0 si et seulement si $\forall k \in [1; p]$, $N_k(x_k) = 0$, donc si $\forall k \in [1; p]$, $x_k = 0$ donc x = 0
- * Soit $\lambda \neq 0$:

$$\begin{split} N(\lambda x) &= \max_{1 \leq k \leq p} N_k(\lambda x_k) = \max_{1 \leq k \leq p} |\lambda| N_k(x_k) \\ \text{Or } \forall k \in [1; p], \quad N_k(x_k) \leq N(x). \end{split}$$

Donc: $\forall x \in E$, $N(\lambda x) \le |\lambda| N(x)$. Donc $\forall x \in E$, $N(\frac{1}{\lambda} \lambda x) \le \frac{1}{|\lambda|} N(\lambda x)$

Donc: $\forall x \in E$, $|\lambda| N(x) \le N(\lambda x)$.

Donc si $\lambda \neq 0$ on a $\forall x \in E$, $N(\lambda x) = |\lambda| N(x)$

Pour $\lambda = 0$, l'égalité est évidente.

Donc: $\forall x \in E$, $\forall \lambda \in K$ $|\lambda|N(x) \leq N(\lambda x)$.

* $N(x+y) = \max_{1 \le k \le p} N_k(x_k + y_k).$

Or $\forall k \in [1; p], N_k(x_k + y_k) \le N_k(x_k) + N_k(y_k)$

Donc $\forall k \in [1; p], N_k(x_k + y_k) \le N(x) + N(y).$

Donc $N(x + y) \le N(x) + N(y)$.

1.2.3 Normes subordonnées

Définition 16 : Soient E et F deux espaces vectoriels normés et T une application linéaire de E dans F. La norme de T est :

$$||t|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||} = \sup_{||x|| = 1} ||T(x)||$$

dite norme subordonnée à la norme ||.||.

1.2.4 Suites dans un K-espace vectoriel normé.

Suites bornées

Définition 17 Soit (E,N) un K-espace vectoriel normé.

Soit $(U_n)_n \in E^{\mathbb{N}}$ (une suite d'élément de E est une application de \mathbb{N} dans E) $(U_n)_{n\in\mathbb{N}}$ est bornée si et seulement si $\exists M \in \mathbb{R}^+$ telque $\forall n \in \mathbb{N}, \quad N(U_n) \leq M$

Théorème 3 Soit E un K-espace vectoriel.

Soint N et N' deux normes sur E.

Si N et N' sont équivalents, alors pour tout suite $(U_n)_{n\in\mathbb{N}}$) d'éléments de E, $(U_n)_{n\in\mathbb{N}}$) est une suite bornée de l'espace vectoriel normé (E,N) si et seulement si $(U_n)_{n\in\mathbb{N}}$) est une suite bornée de l'espace vectoriel normé (E,N')

Démonstration:

Par hypothése, il existe deux réels strictement positifs telque $\alpha N \leq N' \leq \beta N$. Soit $(U_n)_{n \in \mathbb{N}}$) est une suite d'élément de E .

On suppose la suite $(U_n)_{n\in\mathbb{N}}$) bornée pour la norme N.

il existe $M \in \mathbb{R}^+$ telque $\forall n \in \mathbb{N}$, $N(U_n) \leq M$.

Mais alors pour tout $n \in \mathbb{N}$.

$$N'(U_n) \le \beta N(U_n) \le \beta M$$

Donc, la suite $(U_n)_{n\in\mathbb{N}}$) est borné par la norme N'.

En échangeant les rôle de N et N', on a aussi, si la suite $(U_n)_{n\in\mathbb{N}}$) est borné par

la norme N', alors la suite $(U_n)_{n\in\mathbb{N}}$) est borné par la norme N.

Finalement, pour toute suite $(U_n)_{n\in\mathbb{N}}$) d'élément de E, la suite $(U_n)_{n\in\mathbb{N}}$) est bornée par la norme N ssi $(U_n)_{n\in\mathbb{N}}$) est bornée par la norme N'.

Suites convergentes

Définition 18 Soit (E,N) un K-espace vectoriel normé.

Soient $(U_n)_{n\in\mathbb{N}}$) $\in E^n$ et $l\in E$.

La suite $(U_n)_{n\in\mathbb{N}}$) Converge vers l si et seulement si $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ / $\forall n \in \mathbb{N}$ $(n \ge n_0 \Rightarrow N(U_n - l) \le \varepsilon)$.

La suite $(U_n)_{n\in\mathbb{N}}$) Converge ssi il existe $l\in E$ telque la suite $(U_n)_{n\in\mathbb{N}}$) Converge vers l. Dans le cas contraires la suite $(U_n)_{n\in\mathbb{N}}$) est diverge.

Commentaire

une définition équivalente est :

 $(U_n)_{n\in\mathbb{N}}$) Converge vers $l \Leftrightarrow \forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N} \ / \ \forall n \in \mathbb{N} \ (n \ge n_0 \Rightarrow U_n \in B_f(l,\varepsilon)$

Théoréme 4 $(U_n)_{n\in\mathbb{N}}$) Converge vers $l \Leftrightarrow (u_n-l)_{n\in\mathbb{N}}$ Converge vers $0_E \Leftrightarrow (N(U_n-l))_{n\in\mathbb{N}}$ Converge vers 0_E .

Théoréme 5 Si une suite $(U_n)_{n\in\mathbb{N}}$ converge vers l , alors l est unique.

Commentaire

Si une suite $(U_n)_{n\in\mathbb{N}}$ converge vers l, on peut dire que l est la limite de U_n quand n tend vers $+\infty$ et on écrit $\lim_{n\to+\infty}U_n=l$.

Théoréme 6 Soit E un K-espace vectoriel, soient N et N' deux Normes sur E. Si N et N' sont équivalentes, alors pour tout $l \in E$, et toute suites $(U_n)_{n \in \mathbb{N}}$. $(U_n)_{n \in \mathbb{N}}$ converge vers l dans (E,N) si et seulement si $(U_n)_{n \in \mathbb{N}}$ converge vers l dans (E,N').

Démonstration.

Soient N et N' deux normes équivalentes. Soient α et β deux réels strictement positifs tels que $\alpha N \leq N' \leq \beta N$.

Soient $(U_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$. Supposons que $(U_n)_{n\in\mathbb{N}}$ converge vers l dans dans l'espace vectoriel normé (E,N). Alors,

 $\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N} \quad / \quad \forall n \in \mathbb{N} \quad (n \geq n_0 \Rightarrow N(U_n - l) \leq \varepsilon).$

Soit $\varepsilon > 0$. Soit $n_0 \in \mathbb{N}$ tel que pour $n \ge n_0$ $N(U_n - l) \le \frac{\varepsilon}{\beta}$.

Pour $n \ge n_0$, on a

$$N'(U_n-l) \le \beta N(U_n-l) \le \beta \frac{\varepsilon}{\beta} = \varepsilon$$

On a montré que

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N} \quad / \quad \forall n \in \mathbb{N} \quad (n \ge n_0 \Rightarrow N'(U_n - l) \le \varepsilon)$$

et donc que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l dans l'espace vectoriel normé (E,N'). En échangeant les rôles de N et N', ceci montre aussi que si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l dans l'espace vectoriel normé (E,N'), alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l dans l'espace vectoriel normé (E,N).

Exemple.

Reprenons l'exemple des normes N et N' définies sur $E=C^1([0,1],\mathbb{R})$ par $N(f)=\int_0^1|f(t)|dt$ et $N'(f)=|f(0)|+\int_0^1|f'(t)|dt$. Pour $n\in\mathbb{N}$ et $x\in[0,1]$, posons $f_n(x)=x^n$. La suite $(f_n)_{n\in\mathbb{N}}$ est une suite d'éléments de E. Pour tout entier naturel n, $N(f_n)=\frac{1}{n+1}$ et pour tout entier natureln, $N'(f_n)=1$. Donc, la suite $(f_n)_{n\in\mathbb{N}}$ converge vers 0 dans l'espace vectoriel normé (E,N) et ne converge pas vers 0 dans l'espace vectoriel normé (E,N'). On en déduit que les normes N et N' ne sont pas des normes équivalentes.

Théoréme 7 Si la suite $(U_n)_n$ converge (pour la norme N), alors $(U_n)_n$ est bornée (pour la même norme N).

Démonstration.

Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E convergeant vers un certain élément l de E. Il existe un entier n_0 strictement positif tel que pour $n \ge n_0$, $N(U_n - l) \le 1$. Pour $n \ge n_0$, on a

$$N(U_n) = N(U_n - l + l) \le N(U_n - l) + N(l) \le 1 + N(l)$$

Mais alors, pour tout entier naturel n,

$$N(U_n) \le \max(N(U_0 - l), ..., N(U_{n_0 - 1} - l), 1 + N(l))$$

Ceci montre que la suite $(u_n)_n$ est bornée.

- **Théoréme 8** 1. Si la suite $(U_n)_n$ converge vers l et la suite $(V_n)_n$ converge vers l', Alors pour tout $(\alpha, \beta) \in K^2$, la suite $(\alpha U_n + \beta V_n)_{n \in \mathbb{N}}$ converge vers $\alpha l + \beta l'$
 - 2. Si la suite $(U_n)_n$ converge vers l et la suite $(V_n)_n$ converge vers l', alors la suite $(U_nV_n)_n$ converge vers ll'

Théoréme 9 (Liens entre suite et suites coordonnées dans une base de l'espace) Soit E un espace de dimension finie $p \in \mathbb{N}^*$

Soit $\beta = (e_1,, e_p)$ une base donnée de E.

Soient $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et l un élément de E.

Pour tout entier naturel n, on pose : $U_n = \sum_{k=1}^p u_{n,k} e_k$ et $l = \sum_{k=1}^p l_k e_k$

la suite $(U_n)_{n\in\mathbb{N}}$ converge vers l si et seulement si pour tout $k\in[1;p]$ la suite numérique $(u_{n,k})_{n\in\mathbb{N}}$ converge vers l_k .

17

1.2.5 Suites extraites

Définition 19 Soit (E,N) un espace vectoriel normé.

Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

une suite extraite de la suite $(U_n)_{n\in\mathbb{N}}$ est une suite de la forme $(U_{\varphi(n)})_{n\in\mathbb{N}}$. où φ est une application de \mathbb{N} dans \mathbb{N} strictement croissante sur \mathbb{N} .

Théoréme 10 Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de l'espace normée (E,N). Si la suite $(U_n)_{n\in\mathbb{N}}$ convergente dans (E,N), alors toute suite extraite de la suite $(U_n)_{n\in\mathbb{N}}$ est convergente de même limite que $(U_n)_{n\in\mathbb{N}}$. Ce résultat s'énonce encore de la façon suivante : toute suite extraite d'une suite convergente dans un espace vectoriel normé est convergente dans cet espace de même limite.

PROPOSITION 12 Une suite extraite d'une suite convergente est convergente. Toute suite extraite d'une suite (u_n) convergeant vers une limite l est une suite convergeant vers l

COROLLAIRE 1 (Critère de divergence d'une suite) Soit (u_n) une suite d'un evn $(E, \|.\|)$. On suppose qu'il existe deux suites extraites $u_{\varphi(n)}$ telles que :

$$\begin{aligned}
&-\lim_{x \to +\infty} u_{\varphi(n)} = \ell \\
&-\lim_{x \to +\infty} u_{\varphi'(n)} = \ell' \\
&-\ell \neq \ell'
\end{aligned}$$

Alors la suite (u_n) est divergente.

PROPOSITION 13 Deux suites extraites particulières

Si les deux suites extraites (u_{2n}) et (u_{2n+1}) convergent vers la même limite $\ell \in E$, alors la suite (u_n) converge vers ℓ .

Exemple:

$$\overline{\text{Si } U_n = (-1)^n}$$

alors $\lim_{x\to +\infty} u_{2n} = 1$ et $\lim_{x\to +\infty} u_{2n+1} = -1$ donc la suite $(U_n)_{n\in\mathbb{N}}$ est diverge.

Définition 20 Soit (E,N) un espace vectoriel normé.

Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et soit $\ell\in E$.

 ℓ est une valeur d'adhérence de la suite $(U_n)_{n\in\mathbb{N}}$ si et seulement si il existe une suite extraite de la suite $(U_n)_{n\in\mathbb{N}}$ convergente de limite ℓ .

Théoréme 11 Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

Si la suite $(U_n)_{n\in\mathbb{N}}$ converge, alors la suite $(U_n)_{n\in\mathbb{N}}$ a une valeur d'adhérence et une seule, à savoir sa limite. Ainsi, si la suite $(U_n)_{n\in\mathbb{N}}$ admet au moins deux valeurs d'adhérence distinctes, alors la suite $(U_n)_{n\in\mathbb{N}}$ diverge.

Théorème 12 (Théorème de Bolzano-Weierstrass.)

Soit E un K-espace de dimension finie.

De toute suite bornée, on peut extraire une sous-suite convergente ou encore toute suite bornée d'éléments de E admet au moins une valeur d'adhérence.

Définition 21 (SUITES DE CAUCHY)

Soit $(U_n)_{n\in\mathbb{N}}$ une suite de E. On dit $que(U_n)_{n\in\mathbb{N}}$ est une suite de Cauchy si et seulement si pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$, tel que pour tous

$$n, m \ge N \quad \Rightarrow ||U_n - U_m|| < \varepsilon$$

Théoréme 13 Toute suite convergente $(U_n)_{n\in\mathbb{N}}$ d'éléments de E est une suite de Cauchy.

Démonstration:

Soit la suite $(U_n)_{n\in\mathbb{N}}$ converge vers ℓ alors

 $\forall \varepsilon > 0, \quad \forall n \in \mathbb{N} \quad \exists n_0 \in \mathbb{N}, \quad \forall n \ge n_0 \Rightarrow \|U_n - \ell\| \le \frac{\varepsilon}{2}.$

Donc si $n \ge n_0$, et $m \ge n_0$: $||U_n - U_m|| \le ||U_n - \ell|| + ||U_m - \ell|| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Donc la suite $(U_n)_{n\in\mathbb{N}}$ est une suite de Cauchy.

PROPOSITION 14 Soit (E,N), un espace vectoriel normé. Alors :

- 1- Si deux normes N_1 et N_2 sont équivalentes sur E, alors, toute suite de Cauchy pour N_1 est également une suite de Cauchy pour N_2 .
- 2- Toute suite de Cauchy est bornée

PROPOSITION 15 Caractérisation séquentielle des fermés.

Soit (E,N), un espace vectoriel normé, et A, un sous-ensemble de E. Alors, les propositions suivantes sont équivalentes :

- 1. A est fermé dans E.
- 2. Toute suite $(U_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers $\ell\in E$ implique que $\ell\in A$

1.2.6 Espace vectoriel normé complet :

Définition 22 Espace Vectoriel Normé complet. Soit (E,N), un espace vectoriel normé. On dit que E est complet si, et seulement si toute suite de Cauchy de E converge dans E.

PROPOSITION 16 L'espace vectoriel \mathbb{R} muni de la norme euclidienne est un espace vectoriel normé complet.

Démonstration.(exercice)

PROPOSITION 17 Soient (E_1, N_1) et (E_2, N_2) , deux espaces vectoriels normés complets. Alors, l'espace produit $E_1 \times E_2$ est également complet.

PROPOSITION 18 Soit (E,N), un espace vectoriel normé complet. Soit X, une partie de E. Alors,X est complète si, et seulement si X est fermée.

Démonstration : On va démontrer les deux implications :

- Sens \Rightarrow :

supposons X complète dans E complet. Soit $(u_n)_{n\in\mathbb{N}}$, une suite de X convergeant dans E. On note ℓ sa limite dans E. $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy (car convergente) dans E, donc en particulier dans X qui est complet. On en déduit l'existence de $\ell' \in X$ tel que $U_n \overset{dans X}{\longrightarrow}_{n \to +\infty} \ell'$. Or, $(u_n)_{n \in \mathbb{N}}$ étant convergente dans E, par unicité de la limite, $\ell' = \ell \in X$. On retrouve la caractérisation séquentielle des fermés. Ainsi, X est une partie fermée.

- Sens ←

supposons X fermée. Soit $(u_n)_{n\in\mathbb{N}}$, une suite de Cauchy d'éléments de X. En particulier, $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy de E, donc est convergente vers $\ell\in E$ Mais puisque X est fermée, toujours d'après la caractérisation séquentielle des fermés, il s'ensuit que $\ell\in X$. Donc $(u_n)_{n\in\mathbb{N}}$, converge dans X.