CHL7001H S1 Applied Deep Learning

Data Preprocessing

What is data preprocessing

Data preprocessing is a broad technique that involves:

- 1. **Feature extraction & selection** convert raw data into a format which the machine learning model can digest and better.
- 2. Cleaning remove outliers or mistakes
- 3. Transformation

And more.....

Feature extraction: SMS spam detection

	ham 87% spam 13%	5169 unique values
1	ham	Go until jurong point, crazy Available only in bugis n great world la e buffet Cine there got amore wat
2	ham	Ok lar Joking wif u oni
3	spam	Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 084528100750ver18's
4	ham	U dun say so early hor U c already then say

Bag of words (BoW)

neighborhood	7
unit	6
this	4
is	4
a	3
prestigious	1
amenity	1
• • •	• • •

Feature cleaning - smoothing images

Tesseract Will Fail With Noisy Backgrounds

The Machine Learning Process

From "Introduction to Microsoft Azure" by David Chappell

Steps in data preprocessing

- 1. Splitting the data into training and test set before any preprocessing!!!
- 2. Check out the missing values and outliers
- 3. Feature scaling
- 4. See the categorical values

Data splitting

Training, validation, test and maybe more

- Training data is used to train models.
- Validation data is used to tune hyperparameters.
- Test data works like a dry-run to simulate the real-world data performance.
- (Optional) Out-of-time data to capture unusual time behavior.

And more

In production, this Splitting can be varies according to the problems and data accessibility.

Example: recommendation system

Month	1	2	3	4	5	6	7	8	9	10	11
Training set (55%)											
Validation (18%)											
Out of time (27%)											

Data splitting should be done before any feature cleaning, transformation and scaling!!!!!

Missing data

K-fold cross-validation

- Divide data into K roughly equal-sized parts (K = 5 here).
- In the end, every block of data is used for validating and the results/errors are evaluated based on all folds.
- Extreme case:
 leave-one-out-cross-validation
- In practical, K = 5/10.

Missing data

Ways to handle:

Calculate the mean, median of numerical feature or mode of categorical feature and replace it with the missing values.

Don't delete missing feature!!!! Because you cannot just ignore any incomplete inference data in real production.

Missing data - images or sequences

Missing data - images or sequences

Sequential data to predict True/False:

[101, 99, 103, 97] >> True

[102, 98, 105, 93, 111] >> True

[94, 105, 110, 97, 103] >> False

After padding

[101, 99, 103, 97, 999] >> True

[102, 98, 105, 93, 111] >> True

[94, 105, 110, 97, 103] >> False

Feature scaling

Feature scaling

Is used to normalize the range of independent variables or features of data.

1. min-max normalization, [0,1]

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

2. Standardization, mean = 0, std closed to 1

$$x'=rac{x-ar{x}}{\sigma}$$

Neural networks are very sensitive to the feature scales. But some models like trees don't need to bother with various scales.

Categoricals

Categorical values

For example:

- The feature CITY have possible values of { "Toronto", "Montreal", "Vancouver", "Kingston"}
- The feature PROVINCE have possible values of {"Ontario", "Quebec", "Alberta",}.

Values are often nominal: no inherent ordering.

Categorical feature encoding

One-hot-encoding (dummy variables)

BUILDING_TYPE	v1	v2	v3	v4
Toronto	1	0	0	0
Montreal	0	1	0	0
Vancouver	0	0	1	0
Kingston	0	0	0	1

CITY ="Toronto" => four columns [1, 0, 0, 0]

Categorical feature encoding - problems

- The feature space can be **extremely sparse** if there are many possible values for those categorical features.
- Consider the postal code as a feature:
 - As of 2014, there are 855,815 postal codes in total in Canada.
 - A naïve one-hot encoding would yield 855,815 dummy variables to encode this one single feature.
- Extremely high-dimensional feature space
 - => extremely high capacity models
 - => overfitting on training data
 - => less model generality.

Categorical feature encoding - solutions

Strategies to overcome the sparsity issue with one-hot encoding:

- 1. Encode frequent features only.
 - Example: group any postal codes with occurrences fewer than 100 times into one big group "OTHERS".
- 2. If values have natural hierarchy, **reduce the granularity** by rolling up low-level values to higher levels in the hierarchy.
 - Example: group postal codes by their first three digits.
- 3. Embeddings

1-D example

Bleu

Incredibles

Shrek

Harry Potter Knight Rises

The Dark

Star Wars

Memento

Bleu

Animation

Shrek

The Dark **Knight Rises**

Star Wars

Harry Potter

3 - D vector values

	Shrek	Harry Potter	Memento	Star Wars
[i,_,_]	0.335	-0.121	-0.482	0.277
	-0.109	0.152	0.241	0.803
[_,_,i]	0.115	-0.261	-0.263	-0.167

3 - D vector values

	Shrek	Harry Potter	Memento	Star Wars
[i,_,_] Comedy	0.335	-0.121	-0.482	0.277
[_,i,_] Sci-Fi	-0.109	0.152	0.241	0.803
[_,_,i] Animation	0.115	-0.261	-0.263	-0.167

Embeddings - translate to low-dim space

Another strategies to overcome the sparsity issue with embeddings: mapping of a discrete — categorical — variable to a vector of weights.

Embedding layer in a network

You can train them inside a neural network as a weight matrix separate from the hidden layers

Embedding layer in a network

Deep Network

Geometric view of a single movie embedding

Learn Embedding weights in a network

- No separate training process needed the embedding layer is just a hidden layer
- Supervised information tailors the learned embeddings for the desired task
- Intuitively the hidden units discover how to organize the items in the d-dimensional space in a way to best optimize the final objective

Empirical rule-of-thumb

- Higher dim embeddings can more accurately represent the relationships between input values
- But more dims increase the change over overfitting and leads to slow training
- Should experiment in each task

$$\dim \approx \sqrt[4]{possible \ values} + 1$$

Resamplings

Imbalanced data

Scenarios:

- rare diseases diagnosis
- credit card frauds
- user churn

Challenges:

- biased predictions
- misleading accuracy

Resampling strategy

Stratified sampling

Lessons I have leanred

Bias introduced from feature selection Data leakage - future facing data