1 Integral Basics

5.3 Average Value

Integrals are pretty much an infinite amount of Riemann sums. If f is integrable on [a,b], then its average value (or mean) on [a,b] is $\frac{1}{b-a}\int_a^b f(x)dx$.

5.5 U-Substitution

Since du can be substituted for $(\frac{du}{dx})dx$, u-substitution is possible. Ex. Find $\int (x^3 + x)^5 (3x^2 + 1)dx$.

$$\int_{a}^{b} (x^{3} + x)^{5} (3x^{2} + 1) dx$$

$$\int_{a}^{b} (u)^{5} (3x^{2} + 1) dx$$

$$u = x^{3} + x$$

$$\frac{du}{dx} = 3x^{2} + 1$$

$$\int_{a^{3} + a}^{b^{3} + b} (u)^{5} (\frac{du}{dx}) dx$$

$$\int_{a^{3} + a}^{b^{3} + b} (u)^{5} du$$

$$\int_{a^{3} + a}^{b^{3} + b} (u)^{5} du$$

$$\frac{(b^{3} + b)^{6}}{6} - \frac{(a^{3} + a)^{6}}{6}$$
(1)

5.6 Area Between Curves

If $f(x) \ge g(x)$ for [a,b], then the area between both curves from a to b is equal to $A = \int_a^b [f(x) - g(x)] dx$.

6.1 Volume Using Integrals: Disk and Washer Methods

The volume of a solid of integrable cross-sectional area A(x) from x = a to x = b is equal to $\int_a^b A(x) dx$.

The volume of a disk created by rotating a function R(x) around y=0 (the x-axis) for the same bounds is equal to $\int_a^b \pi [R(x)]^2 dx$.

The volume of a disk created by rotating a function R(y) around x=3 for the same bounds is equal to $\int_{R((a)}^{R(b)} \pi[R(y)-3]^2 dy$. The reason 3 is subtracted from R(y) is because the axis of rotation is closer to the area being rotated, so the radius of rotation will be less than if x=0.

The volume of a washer created by rotating the space between R(x) and r(x) around y=1 is equal to $\int_a^b \pi([R(x)-1]^2-[r(x)-1]^2)dx$. The reason a 1 is subtracted is because the axis of rotation is closer to the area being rotated, so the radius of rotation will be less than if y=0.

The volume of a washer created by rotating the space between R(y) and r(y) around x=0 (the y-axis) is equal to $\int_{R(a)}^{R(b)} \pi([R(y)]^2 - [r(y)]^2) dx$.

6.2 Volumes Using Integrals: Shell Method

Summarize Shell Method

2 Integral Applications and Sections

8.2

8.3

8.4

8.5

3 Sequences, Series, and Tests

8.8

10.1

10.2

10.3

10.4

4 Sequences, Series, and Tests cont.

10.5

10.6

10.7

10.8

10.9

5 Parametric Curves

10.10

6.3 Arc Length

Pythagorean's Theoreom can be applied to find the length of a segment f(x). If ds is equal to a single straight segment in f(x), then dx is equal to the horizontal length and dy is equal to its vertical length.

$$(ds)^{2} = (dx)^{2} + (dy)^{2}$$

$$\sqrt{(ds)^{2}} = \sqrt{(dx)^{2} + (dy)^{2}}$$

$$ds = dx\sqrt{(dx)^{2}/(dx)^{2} + (dy)^{2}/(dx)^{2}}$$

$$ds = \sqrt{1 + (dy/dx)^{2}}dx$$
(2)

By taking the integral of this, you can get the total length of the segment.

$$s = \int_{a}^{b} \sqrt{1 + (f(x))^{2}} \, dx \tag{3}$$

- 6.4
- 11.1
- 11.2

6 Polar Coordinates

- 11.3
- 11.4
- 11.5

Complex Numbers

Standard form = a + bi. a is real portion, bi is imaginary. To graph: 3 units to the right, imaginary is 4 so 4 units up. To calculate absolute value, $/absa + bi = /sqrta^2 + b^2$

For -5 + 12i:

Graph 5 units to the left, and up 12 units.

$$|-5 + 12i| = \sqrt{(-5)^2 + 12^2}$$

$$|-5 + 12i| = \sqrt{(25 + 144)}$$

$$|-5 + 12i| = \sqrt{169}$$

$$|-5 + 12i| = 13$$

An example of how a square root of negative looks: $\sqrt{-80} = i * \sqrt{16} * \sqrt{5} = 4i\sqrt{5}$

$$i = \sqrt{-1}$$

$$i^{2} = -1$$

$$i^{3} = -i$$

$$i^{4} = 1$$

$$(4)$$

Idea: Associate polar coordinates to complex numbers

$$\begin{split} z &= x + iy \\ r &= |z| = \sqrt{x^2 + y^2} \\ \text{if } x &\geq 0, \ \theta = \arctan\frac{y}{x} \\ \text{if } x &\leq 0, \ \theta = \arctan\frac{y}{x} + \pi \\ \text{if } x &= 0, \theta = \pm\frac{\pi}{2} \\ \text{Find polar coordinates of } z &= -2\sqrt{2} + 2\sqrt{2}i \\ r &= |z| = \sqrt{(-2\sqrt{2})^2 + (2\sqrt{2})^2} = \sqrt{16} = 4 \\ \text{Since } x &\leq 0, \ \theta = \arctan\frac{y}{x} + \pi = \frac{3\pi}{4} \\ \text{Polar Coordinates} &= (4\cos\frac{3\pi}{4}, 4\sin\frac{3\pi}{4}) \end{split}$$