CTET⁺: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation

Benoît Cogliati¹ Jordan Ethan¹ Virginie Lallemand² Byeonghak Lee³ Jooyoung Lee³ Marine Minier²

¹CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

²Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

³KAIST, Daejeon, Korea

FSE 2022, March 24th 2022

CTET⁺ 1 / 10

Disk Encryption

- context: encrypted data storage (full disk encryption)
- ▶ typical disk sector size: 512B to a few KB
- problem: no room to store additional data (nonce/random IVs/authentication tag)
- workaround: encrypt each sector independently

CTET⁺ 2 / 10

Current Standard: AES-XTS [IEE08, Dwo10]

Tweakable mode of opertation combined with the XEX transformation for AES (security when the number of queried blocks is $\ll 2^{64}$)

lacktriangle Problems: small granularity, big data centers most likely hold $>2^{50}$ bytes

 $\mathsf{CTET}^+ \qquad \qquad \mathsf{3} \; / \; \mathsf{10}$

Current Standard: AES-XTS [IEE08, Dwo10]

Tweakable mode of opertation combined with the XEX transformation for AES (security when the number of queried blocks is $\ll 2^{64}$)

lacktriangle Problems: small granularity, big data centers most likely hold $>2^{50}$ bytes

 $\mathsf{CTET}^+ \qquad \qquad \mathsf{3} \; / \; \mathsf{10}$

Wide Tweakable Block Ciphers

- workaround: use whole sectors as input blocks to a "wide" TBC based on a Block Cipher
- ▶ 1-bit change in $M_1 \rightarrow$ all cipher text blocks affected (solves granularity issue)

 CTET^+ 4 / 1

Examples

- 3 families of constructions:
 - Encrypt-Mix-Encrypt [HR03, HR04, Hal04]
 - ► Hash-Encrypt-Hash [CS06b, Hal07]
 - ► Hash-Counter-Hash [WFW05, CS06a, FM07]
- lacktriangle require either pprox 2 AES calls, or pprox 1 AES call and 2 field multiplications per block
- lacktriangle secure up to 2^{64} queries (Beyond Birthday Bound security ightarrow more layers)

CTET⁺ 5 / 10

2-Round SPN as a Tweakable Domain Extender for Block Ciphers

- Hash-Encrypt-Hash-Encrypt-Hash paradigm
- lacktriangle Secure up to $2^{2n/3}$ queries as long as T and T^{-1} are almost Super-Blockwise-Universal and Uniform (SBU) [CDK+18]

6 / 10

$CTET^+$

- ▶ Optimisation of the 2-round SPN: same permutation, more efficient middle layer (1 field multiplication per block \rightarrow 1 doubling per block).
- \blacktriangleright secure up to $2^{2n/3}$ queries as long as T and T^{-1} are SBU

 $\mathsf{CTET}^+ \qquad \qquad 7 \ / \ 10$

AES₆-CTET+

- \triangleright block x_i , tweak t of 128 bits
- $ightharpoonup T_{(k_0,k_0')}$ and $T_{(k_2,k_2')}$, L_{k_1}
- ▶ "AES-box": 6 rounds of AES-128 with a secret key
- claim: 127-bit of security

total: 5×128 -bit key $(k_0,k_0'),k_1,(k_2,k_2')$ for the 3 affine layers, 128-bit key for the AES-box

CTET⁺ 8 / 10

Security Analysis

Our **security proof** justifies the fact that the generic structure of $AES_6-CTET+$ is sound, and will resist generic attacks with high probability

H-coefficients technique

We need **dedicated cryptanalysis** to justify our security claims when the Sbox is 6 rounds of AES

- Exploit weakness of AES and extend it to full construction (AES's strength)
- Structural attacks: yoyo technique,truncated differentials

ΓΕΤ⁺ 9 / 10

Conclusion

Scheme	Key size	Security -	Efficiency (cycles/byte)		- References
			$512~{ m bytes}$	$4096~{ m bytes}$	References
XTS	2κ	n/2	0.80	0.66	[IEE08, Dwo10]
EME	κ	n/2	1.66	1.50	[HR04]
XCB	κ	n/2	1.40	1.15	[FM07]
TET	2κ	n/2	1.49	1.47	[Hal07]
AES ₆ -CDK	6n	2n/3	1.91	1.83	[CDK ⁺ 18]
AES ₆ -CTET ⁺	$5n + \kappa$	2n/3	1.55	1.46	This work
AES-CTET ⁺			2.32	2.22	

Thank you for your attention!

 $\mathsf{CTET}^+ \qquad \qquad \mathsf{10} \; / \; \mathsf{10}$

Conclusion

Scheme	Key size	Security -	Efficiency (cycles/byte)		- References
			$512~{\rm bytes}$	$4096~{ m bytes}$	References
XTS	2κ	n/2	0.80	0.66	[IEE08, Dwo10]
EME	κ	n/2	1.66	1.50	[HR04]
XCB	κ	n/2	1.40	1.15	[FM07]
TET	2κ	n/2	1.49	1.47	[Hal07]
AES ₆ -CDK	6n	2n/3	1.91	1.83	$[CDK^+18]$
AES ₆ -CTET ⁺	$5n + \kappa$	2n/3	1.55	1.46	This work
AES-CTET ⁺			2.32	2.22	

Thank you for your attention!

 $\mathsf{CTET}^+ \qquad \qquad \mathsf{10} \ / \ \mathsf{10}$

References I

Benoît Cogliati, Yevgeniy Dodis, Jonathan Katz, Jooyoung Lee, John P. Steinberger, Aishwarya Thiruvengadam, and Zhe Zhang. Provable Security of (Tweakable) Block Ciphers Based on Substitution-Permutation Networks. In Hovav Shacham and Alexandra Boldyreva, editors, *Advances in Cryptology - CRYPTO 2018 - Proceedings, Part 1*, volume 10991 of *LNCS*, pages 722–753. Springer, 2018.

Debrup Chakraborty and Palash Sarka. HCH: A New Tweakable Enciphering Scheme Using the Hash-Encrypt-Hash Approach. In Rana Barua and Tanja Lange, editors, *Progress in Cryptology - INDOCRYPT 2006*, volume 4329 of *LNCS*, pages 287–302. Springer, 2006.

Debrup Chakraborty and Palash Sarkar. A New Mode of Encryption Providing a Tweakable Strong Pseudo-random Permutation. In Matthew Robshaw, editor, *Fast Software Encryption - FSE 2006*, volume 4047 of *LNCS*, pages 293–309. Springer, 2006.

Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices. $NIST\ SP\ 800-38E$, 2010.

CTET⁺ 1/4

References II

- Scott R. Fluhrer and David A. McGrew. The Security of the Extended Codebook (XCB) Mode of Operation. In Carlisle Adams, Ali Miri, and Michael Wiener, editors, *SAC 2007: Selected Areas in Cryptography*, volume 4876 of *LNCS*, pages 311–327. Springer, 2007.
- Shai Halevi. EME*: Extending EME to Handle Arbitrary-Length Messages with Associated Data. In Anne Canteaut and Kapaleeswaran Viswanathan, editors, *Progress in Cryptology INDOCRYPT 2004*, volume 3348 of *LNCS*, pages 315–327. Springer, 2004.
- Shai Halevi. Invertible Universal Hashing and the TET Encryption Mode. In Alfred Menezes, editor, *Advances in Cryptology Crypto 2007*, volume 4622 of *LNCS*, pages 412–429. Springer, 2007.
- Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode. In Dan Boneh, editor, Advances in Cryptology Crypto 2003, volume 2729 of LNCS, pages 482–499. Springer, 2003.
- Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering Mode. In Tatsuaki Okamoto, editor, Topics in Cryptology CT-RSA 2004, volume 2964 of LNCS, pages 292–304. Springer, 2004.
- IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices. *IEEE Std 1619-2007*, pages 17–30, April 2008.

CTET⁺ 2 / 4

References III

Peng Wang, Dengguo Feng, and Wenling Wu. The Security of the Extended Codebook (XCB) Mode of Operation. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, *CISC 2005: Information Security and Cryptology*, volume 3822 of *LNCS*, pages 175–188. Springer, 2005.

CTET⁺ 3 / 4

CTET+ construction

$$T_{k,k'}(t,x) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_w \end{bmatrix} \oplus \left\langle \begin{bmatrix} k \\ k^2 \\ \vdots \\ k^w \end{bmatrix}, \begin{bmatrix} x_1 \oplus t \\ x_2 \oplus t \\ \vdots \\ x_w \oplus t \end{bmatrix} \right\rangle \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \oplus \begin{bmatrix} k' \\ \alpha k' \\ \vdots \\ \alpha^{w-1} k' \end{bmatrix}$$

$$L_k(t,x) = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ & \ddots & \\ 2 & 2 & 3 \end{bmatrix} x \oplus \begin{bmatrix} t \\ t \\ \vdots \\ t \end{bmatrix} \oplus \begin{bmatrix} k' \\ \alpha k' \\ \vdots \\ \alpha^{w-1} k' \end{bmatrix}$$

CTET⁺ 4 /