Monads and their applications

Dr. Daniel Schäppi's course lecture notes

by Nicola Di Vittorio Matteo Durante

Contents

In	Introduction				
1	Categorical preliminaries	1			
2	Monads and algebras 2.1 Introduction	2 2 4			
3	Beck's monadicity theorem				
4	Monads in 2-category theory				
5	Monads in ∞ -category theory	8			

Introduction

Categorical preliminaries

Definition 1.0.1 (Categories). A category **C** consists of:

- 1. a collection of objects $Ob(\mathbf{C})$;
- 2. a collection of arrows $Ar(\mathbf{C})$;
- 3. two maps dom, cod : $Ar(\mathbf{C}) \to Ob(\mathbf{C})$;
- 4. a map $id_-: Ob(\mathbf{C}) \to Ar(\mathbf{C})$ with $dom(id_c) = c = cod(id_c)$;
- 5. for every $f, g \in Ar(\mathbf{C})$ such that cod(f) = dom(g) a unique composite morphism gf such that cod(gf) = cod(g), dom(gf) = f.

This data has to satisfy the following axioms:

- 1. given $f \in Ar(\mathbf{C})$, c = dom(f) and c' = cod(f), $id_{c'} f = f = id_c$, that is the composition is unital;
- 2. given a composable triple $f, g, h \in Ar(\mathbf{C}), h(gf) = (hg)f$, that is the composition is associative.

An arrow f such that c = dom(f) and c' = cod(f) is denoted $f : c \to c'$.

Definition 1.0.2 (Functors).

Definition 1.0.3 (Full functors, faithful functor).

Definition 1.0.4 (Natural transformations).

Definition 1.0.5 (Equivalent functors).

Definition 1.0.6 (Representable Functors).

Definition 1.0.7 (Whiskering).

Definition 1.0.8 (Horizontal and vertical composition of nat.transf.).

Definition 1.0.9 (adjunctions).

Lemma 1.0.10 (Yoneda).

Proof.

Monads and algebras

2.1 Introduction

Throughout mathematics we encounter structures defined by some action morphisms. Here we give some examples.

Example 2.1.1. Given a group G, we may consider a G-set X described by an action map $G \times X \to X$.

Example 2.1.2. Given an abelian group M and a ring R, we can get an R-module M by fixing a group homomorphism $R \otimes_{\mathbb{Z}} M \to M$.

Example 2.1.3. Given a monoid M in **Set**, we get a map $\Pi_{k=1}^n M \to M$, $(m_1, \ldots, m_n) \mapsto ((\ldots ((m_1 m_2) m_3) \ldots) m_{n-1}) m_n$. This induces an action map from $W(M) = \coprod_{n \in \mathbb{N}} \Pi_{k=1}^n M$, the set of words on M, to M.

Example 2.1.4. Given a set X, let $\mathcal{U}X$ be the set of ultrafilters on it. Any compact T2 topology on X allows us to see each ultrafilter as a system of neighborhoods of a unique point in X, hence it gives us a unique map $\mathcal{U}X \to X$ sending each ultrafilter to the respective point.

Example 2.1.5. Given a directed graph $D = (V, E, E \xrightarrow{s} V, E \xrightarrow{t} E)$, we can create its free category FD, where the objects are the vertices and $FD(v, w) = \{\text{finite paths } v \to \ldots \to w\}$. We set id_v to be the path of length 0, while composition is just the concatenation of paths.

In particular, if D is the directed graph with $V = \{0, ..., n\}$ and an edge $j \to k$ if and only if k = j + 1, we have $FD \cong [n]$.

If $D = \{*\}$ and $E = \{* \rightarrow *\}$, then $FD(*, *) \cong \mathbb{N}$.

Given a small category \mathbf{C} , we may consider the underlying graph $U\mathbf{C} = D$ with $V = \mathrm{Ob}(\mathbf{C})$, $E = \mathrm{Ar}(\mathbf{C})$, $s = \mathrm{dom}$ and $t = \mathrm{cod}$. We get then an action map $UFU\mathbf{C} \to U\mathbf{C}$ sending a finite path to its composite. This map is a morphism of directed graph.

How can we see all of these examples as specific instances of a general phenomenon?

Notice that we always have a category \mathbf{C} and some functor $T: \mathbf{C} \to \mathbf{C}$ with an action map $T\mathbf{C} \to \mathbf{C}$.

Definition 2.1.6. A monad on a category \mathbf{C} is a triple (T, μ, η) where $T: \mathbf{C} \to \mathbf{C}$ is a functor, while $\mu: T^2 \Rightarrow T$ and $\eta: \mathrm{id}_{\mathbf{C}} \Rightarrow T$ are natural transformations such that the following diagrams commute:

$$T^{3} \xrightarrow{T\mu} T^{2} \qquad T \xrightarrow{\eta T} T^{2} \xleftarrow{T\eta} T$$

$$\downarrow \mu T \qquad \downarrow \mu \qquad \downarrow \mu \qquad \downarrow \mu \qquad \downarrow d_{T}$$

$$T^{2} \xrightarrow{\mu} T \qquad T$$

 μ is called the multiplicative map, while η is the unit of T.

The commutativity of the first diagram is equivalent to stating that the following two diagrams are equal:

$$\mathbf{C} \xrightarrow{T} \mathbf{C}$$

On the other hand, the second diagram can be rephrased as follows:

A monad naturally defines other algebraic structures, which we now introduce.

Definition 2.1.7. Given a monad (T, μ, η) , a T-algebra or T-module is a pair (a, α) , where $a \in \mathrm{Ob}(\mathbf{C})$ and $\alpha : Ta \to a$ is such that the following diagrams commute:

$$T^{2}a \xrightarrow{T\alpha} Ta \qquad a \xrightarrow{\eta_{a}} Ta$$

$$\downarrow^{\mu_{a}} \qquad \downarrow^{\alpha} \qquad id_{a} \qquad \downarrow^{\alpha}$$

$$Ta \xrightarrow{\alpha} a \qquad a$$

Definition 2.1.8. A morphism of T-algebras $(a, \alpha) \to (b, \beta)$ is a morphism $f: a \to b$ such that the following diagram commutes:

$$\begin{array}{ccc}
Ta & \xrightarrow{Tf} & Tb \\
\downarrow^{\alpha} & & \downarrow^{\beta} \\
a & \xrightarrow{f} & b
\end{array}$$

T-algebras form a category T-Alg, which has a natural forgetful functor $U^T: T-Alg \to \mathbf{C}$.

We now show how to recover the examples previously given with this language.

Example 2.1.9.

$$T = G \times -: \mathbf{Set} \to \mathbf{Set}$$

 $\mu_A : G \times (G \times A) \to G \times A$
 $(g, (h, a)) \mapsto (gh, a)$
 $\eta_A : A \to G \times A$
 $a \mapsto (e, a)$

is a monad and (A, α) is a T-algebra if and only if A is a G-set. It follows that $T - Alg \cong G - \mathbf{Set}$.

Example 2.1.10. Given a ring R, $T = R \otimes_{\mathbb{Z}} : Ab \to Ab$ is a monad when considered with the following natural transformations:

$$\mu_{-}: R \otimes_{\mathbb{Z}} (R \otimes_{\mathbb{Z}} -) \cong (R \otimes_{\mathbb{Z}}) \otimes_{\mathbb{Z}} - \Rightarrow R \otimes_{\mathbb{Z}} - \eta_{-}: - \cong \mathbb{Z} \otimes_{\mathbb{Z}} - \Rightarrow R \otimes_{\mathbb{Z}} - \eta_{-}: - \eta_$$

We have that $(R \otimes_{\mathbb{Z}} -) - Alg \cong Mod_R$.

Example 2.1.11. COnsider $W : \mathbf{Set} \to \mathbf{Set}$ given by $WX = \coprod_{n \in \mathbb{N}} \prod_{k=1}^{n} X$. Multiplication $\mu_X : WWX \to WX$ is given by concatenation of words, while the unit $\eta_X : X \to WX$ is just $x \mapsto (x)$.

With this, $W - Alg \cong Mon(\mathbf{Set})$.

Example 2.1.12. The functor \mathcal{U} with the right natural transformations is a monad on **Set** and $\mathcal{U} - Alg \cong CHTop$, the category of compact T2 spaces.

Example 2.1.13. UF also induces a monad on the category of directed graphs and $UF - Alg \cong \mathbf{Cat}$.

2.2 Monadic functors

Now that we have introduced these structures, our aim is to characterize monadic functors, that is functors $U: \mathbf{A} \to \mathbf{C}$ which are equivalent to $U^T: T - Alg \to \mathbf{C}$ for some monad (T, μ, η) on \mathbf{C} .

First of all, notice that U^T is faithful by construction, hence U must be faithful, but more is true.

Lemma 2.2.1. The functor U^T is conservative, that is if $U^T f$ is an isomorphism then f is an isomorphism of T-algebras.

Proof. Suppose that g is the inverse of $f: a \to b$ and f is a morphism $(a, \alpha) \to (b, \beta)$. We only need to prove that the square on the left commutes, that is $g\beta = \alpha Tg$:

$$\begin{array}{ccc} Tb & \xrightarrow{Tg} & Ta & \xrightarrow{Tf} & Tb \\ \downarrow^{\beta} & & \downarrow^{\alpha} & & \downarrow^{\beta} \\ b & \xrightarrow{g} & a & \xrightarrow{f} & b \end{array}$$

We see that $fg\beta = \beta$ and $f\alpha Tg = \beta TfTg = \beta T(fg) = \beta T \mathrm{id}_b = \beta$, hence the thesis. \square

Proposition 2.2.2. The functor $U^T: T - Alg \to \mathbf{C}$ has a left adjoint $F^T: \mathbf{C} \to T - Alg$ such that $F^Tc = (Tc, \mu_c)$ and $F^Tf: (Tc, \mu_c) \to (Td, \mu_d)$.

Beck's monadicity theorem

Monads in 2-category theory

Monads in ∞ -category theory