Supporting Information

Calculating Partition Coefficients of Organic Solvents in Octanol/Water and Octanol/Air

Miroslava A. Nedyalkova*†, Sergio Madurga‡, Marek Tobiszewski.§, Vasil Simeonov ¹

e-mail address: mici345@yahoo.com

SOLUTE MOLECULE	logPexp.	logKoaexp.	M06-2X-logP	M06-2X-logKoa	M11-logP	M11-logKoa	B3LYP-logP	B3LYP-logKoa
1,3-di-iso-propoxy-2-propanol	0,86	7,64	0,56	7,63	0,31	3,79	-0,03	4,14
1,3-dimethoxypropan-2-ol	-0,59	6,33	-1,25	6,60	-0,94	4,48	-1,48	4,83
1,3-di-n-butoxy-2-propanol	2,07	8,53	1,69	9,10	1,82	6,10	1,18	6,45
1-ethoxy-3-iso-propoxy-2- propanol	1,42	7,36	0,15	7,80	0,77	5,51	0,53	5,86
1-methoxy-3-(propan-2-yloxy) propan-2-ol	0,13	6,98	-0,35	6,43	-0,52	5,13	-0,76	5,48
1-n-butoxy-3-ethoxy-2-propanol	1,42	7,79	0,71	7,98	0,77	5,94	0,53	6,29
1-n-butoxy-3-iso-propoxy-2- propanol	1,46	8,09	1,13	1,65	0,81	4,10	1,70	4,45
1-n-butoxy-3-methoxy-2- propanol	0,74	7,43	0,22	7,42	0,09	5,58	0,10	5,93
1-tert-butoxy-3-ethoxy-2- propanol	0,69	7,68	0,60	7,67	0,04	3,20	-0,20	3,55
1-tert-butoxy-3-methoxy-2- propanol	0,34	7,32	0,11	7,30	-0,31	3,87	0,20	4,22
3-butoxypropane-1,2-diol	0,33	7,04	0,33	6,99	-0,32	5,19	-0,56	5,54

[†] Inorganic Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria

[‡] Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain

[§] Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), 80-233 Gdańsk, Poland

¹ Analytical Chemistry Department, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria

^{*} author for correspondence

3-ethoxypropane-1,2-diol	-0,65	6,30	-0,66	6,30	-1,30	4,45	-1,54	4,80
3-methoxypropane-1,2-diol	-1,00	5,93	-1,15	6,01	-1,65	4,08	-2,09	4,43
3-n-butoxy-1-tert-butoxy-2- propanol	1,67	8,42	1,58	8,40	1,02	5,80	0,78	6,15
isopropylidene glycerol	0,03	8,18	-0,35	8,24	-0,62	7,30	-0,96	7,65
1,2,3-trimethoxypropane	0,18	4,51	-0,56	4,49	1,00	2,66	-0,71	3,01
γ-valerolactone	-0,27	2,37	0,19	2,70	-0,92	0,52	-3,16	0,87
dihydrolevoglucosenone	-0,71	5,32	-0,28	5,13	-1,36	3,47	-2,60	3,82
ethyl levulinate	0,40	5,36	0,29	4,43	-0,25	3,51	-1,49	3,86
glycerol triacetate	-0,24	6,55	0,36	6,55	-0,89	3,31	-1,13	3,66
methyl levulinate	-0,13	5,06	-0,20	4,97	-0,78	4,90	-2,02	5,25
2-pyrrolidone	-1,01	5,38	-0,32	5,23	-1,66	3,51	-1,90	3,86
2-heptanone	1,98	4,15	1,73	4,14	1,33	2,27	1,09	2,62
benzyl alcohol	1,10	5,96	1,08	5,95	0,45	3,07	1,76	3,42
glycerol	-2,32	4,39	-1,65	4,32	-2,97	2,54	-3,12	2,89
phenol	1,50	6,33	1,51	6,29	4,00	4,48	0,68	4,83
o-cresol	1,98	6,26	2,06	6,24	1,33	3,41	1,18	3,76
m-cresol	1,96	6,30	2,06	6,20	1,31	3,45	1,16	3,80
p-cresol	1,94	6,33	2,06	6,12	2,40	4,38	1,14	4,73
furfural	0,40	4,27	0,83	4,12	-0,25	2,42	0,87	2,77
cyclohexanone	0,81	4,24	1,13	4,10	1,20	2,39	0,54	2,74
butyric acid	0,79	5,45	0,80	5,39	0,14	3,60	0,50	3,95
isobutyric acid	0,94	5,38	0,81	4,99	0,29	3,53	0,86	3,88
valeric acid	1,39	6,11	1,56	5,87	0,74	3,28	0,59	3,60
hexanoic acid	1,92	6,43	2,05	6,23	1,27	4,58	1,12	4,90
butyl lactate	0,88	4,91	0,80	3,98	0,23	3,06	0,08	3,38
ethyl lactate	-0,19	2,53	-0,18	2,44	-0,84	0,68	-0,99	1,00
pentane	3,40	2,00	3,44	1,90	2,75	0,15	2,60	0,47
cyclohexane	3,44	2,80	3,31	2,65	2,79	0,95	2,64	1,27
hexane	4,00	2,50	4,07	2,30	3,35	0,65	3,20	0,97
heptane	4,50	3,00	4,46	2,75	3,85	1,15	3,70	1,47

isooctane	4,50	2,00	4,17	1,88	3,85	0,15	3,70	0,47
decane	6,07	2,69	6,12	2,43	5,42	0,84	5,27	1,16
undecane	6,60	3,84	6,09	3,65	5,95	1,99	5,80	2,31
dodecane	7,13	3,57	6,32	3,43	6,48	1,72	6,33	2,04
tridecane	7,66	4,66	6,55	4,43	7,01	2,81	6,86	3,13
tetradecane	8,19	4,63	8,24	4,12	7,54	2,78	7,39	3,10
pentadecane	8,73	5,00	8,66	4,70	4,01	3,15	7,93	3,47
1-pentene	2,90	1,45	3,07	1,87	2,25	-0,40	2,10	-0,08
1-hexene	3,43	2,16	3,10	2,19	2,78	0,31	2,63	0,63
1-heptene	3,96	2,75	3,69	2,76	2,87	0,90	3,16	1,22
1-octene	4,50	3,16	4,59	2,76	3,85	1,31	3,70	1,63
1-nonene	5,03	3,64	4,55	3,40	4,38	1,79	4,23	2,11
methoxycyclopentane	1,41	3,17	1,22	2,87	0,76	1,32	0,61	1,64
1,2,3-tri-n-butoxypropane	3,80	7,82	3,63	6,80	3,15	3,97	3,00	4,29

Table S1: Experimental logP, Predicted logP, experimental Koa and predicted logKoa.

The experimental values were extracted from material safety data sheets of chemicals and from Handbook On Physical-Chemical Properties And Environmental Fate For Organic Chemicals. ¹

Reference

[1.] Mackay, D., Shiu, W.-Y., Ma, K.-C., Lee, S. C.,2006. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, second ed. CRC/Taylor & Francis, New York