0.1 Effect Weakening Definition

Introduce a relation $\omega : \Phi' \triangleright \Phi$ relating effect-environments.

0.1.1 Relation

- $(\mathrm{Id}) \frac{\Phi \mathsf{0k}}{\iota : \Phi \triangleright \Phi}$
- (Project) $\frac{\omega : \Phi' \triangleright \Phi}{\omega \pi : (\Phi', \alpha) \triangleright \Phi}$
- (Extend) $\frac{\omega : \Phi' \triangleright \Phi}{\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)}$

0.1.2 Weakening Properties

0.1.3 Effect Weakening Preserves 0k

$$\omega: \Phi' \triangleright \Phi \land \Phi \mathsf{Ok} \Leftarrow \Phi' \mathsf{Ok} \tag{1}$$

Proof

Case ι

$$\Phi \mathtt{Ok} \wedge \iota : \Phi \triangleright \Phi \Leftarrow \Phi \mathtt{Ok}$$

Case $\omega \pi$ By inversion,

$$\omega: \Phi' \triangleright \Phi \land \alpha \notin \Phi' \tag{2}$$

So, by induction, Φ' Ok and hence (Φ', α) Ok

Case $\omega \times$ By inversion,

$$\omega: \Phi' \triangleright \Phi \land \alpha \notin \Phi' \tag{3}$$

So

$$(\Phi, \alpha) \mathbf{0k} \Rightarrow \Phi \mathbf{0k} \tag{4}$$

$$\Rightarrow \Phi'$$
0k (5)

$$\Rightarrow (\Phi', \alpha) \mathsf{Ok}$$
 (6)

(7)

0.1.4 Domain Lemma

$$\omega: \Phi' \triangleright \Phi \Rightarrow (\alpha \notin \Phi \Rightarrow \alpha \notin \Phi')$$

 ${\bf Proof} \quad {\rm By \ trivial \ Induction}.$

0.1.5 Weakening Preserves Effect Well-Formed-Ness

If $\omega : \Phi' \triangleright \Phi$ then $\Phi \vdash \epsilon \implies \Phi' \vdash \epsilon$

Proof By induction over the well-formed-ness of effects

Case Ground By inversion, $\Phi 0 k \wedge \epsilon \in E$. Hence by the ok-property, $\Phi' 0 k$ So $\Phi' \vdash \epsilon$

Case Var $\Phi = \Phi'', \alpha$

So either:

Case $\Phi' = \Phi''', \alpha$ So $\omega = \omega' \times$ So $\omega' : \Phi''' \triangleright \Phi''$, and hence:

$$(\operatorname{Var}) \frac{\Phi''', \alpha \operatorname{Ok}}{\Phi''', \alpha \vdash \alpha} \tag{8}$$

Case $\Phi' = \Phi''', \beta$ and $\beta \neq \alpha$

So $\omega = \omega' \pi$

By induction, $\omega':\Phi''' \rhd \Phi$ so

$$(\text{Weaken}) \frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{9}$$

Case Weaken By inversion, $\Phi = \Phi'', \beta$.

So $\omega = \omega' \times$

And, $\Phi' = \Phi''', \beta$ So By inversion $\omega' : \Phi''' \triangleright \pi_1'''$

So by induction

$$(\text{weak}) \frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{10}$$

Case Monoid By inversion, $\Phi \vdash \epsilon_1$ and $\Phi \vdash \epsilon_2$. So by induction, $\Phi' \vdash \epsilon_1$ and $\Phi' \vdash \epsilon_2$, and so:

$$\Phi' \vdash \epsilon_1 \cdot \epsilon_2 \tag{11}$$

0.1.6 Weakening Preserves Type-Well-Formed-Ness

If $\omega : \Phi' \triangleright \Phi$ and $\Phi \vdash A$ then $\Phi' \vdash A$.

Proof:

Case Ground: By inversion, $\Phi 0k$, hence by property 1 of weakening, $\Phi' 0k$. Hence $\Phi' \vdash \gamma$.

Case Function: By inversion, $\Phi \vdash A$, $\Phi \vdash B$. So by induction $\Phi' \vdash A$, $\Phi' \vdash B$, hence,

$$\Phi' \vdash A \to B$$

Case Computation: By inversion $\Phi \vdash A$, and $\Phi \vdash \epsilon$.

So by induction and the effect-well-formed-ness theorem,

 $\Phi' \vdash A \text{ and } \Phi' \vdash \epsilon$

So

$$\Phi' \vdash M_{\epsilon}A$$

Case For All: By inversion, $\Phi, \alpha \vdash A$ Picking $\alpha \notin \Phi'$ using α -conversion.

So $\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)$

So $(\Phi', \alpha) \vdash A$

So $\Phi \vdash \forall \alpha.A$

0.1.7 Corollary

$$\omega: \Phi' \triangleright \Phi \land \Phi \vdash \Gamma \mathsf{Ok} \implies \Phi' \vdash \Gamma \mathsf{Ok}$$

Case Nil: By inversion ΦOk so $\Phi \vdash \Diamond Ok$

Case Var: By $\operatorname{inversion}\Phi \vdash \Gamma \mathsf{Ok}, \ x \in \operatorname{dom}(\Gamma), \ \Phi \vdash A$

So by induction $\Phi' \vdash \Gamma Ok$, and $\pi'_1 \vdash \Gamma Ok$

So $\Phi' \vdash (\Gamma, x : A) \mathsf{Ok}$

0.1.8 Effect Weakening preserves Type Relations

$$\Phi \mid \Gamma \vdash v: A \land \omega : \Phi' \triangleright \Phi \implies \Phi' \mid \Gamma \vdash v: A$$
 (12)

Proof:

Case Constants: If $\Phi \vdash \Gamma Ok$ then $\Phi' \vdash \Gamma Ok$ so:

$$(\text{Const}) \frac{\Phi' \vdash \Gamma 0 k}{\Phi' \mid \Gamma \vdash C^A : A}$$

$$(13)$$

Case Variables: If $\Phi \vdash \Gamma Ok$ then $\Phi' \vdash \Gamma Ok$ so: So, $\Phi' \mid G \vdash x : A$, if $\Phi \mid G \vdash x : A$

Case Lambda: By inversion, $\Phi \mid \Gamma, x : A \vdash v : B$, so by induction $\Phi' \mid \Gamma, x : A \vdash v : B$. So,

$$\Phi' \mid \Gamma \vdash \lambda x : A.v: A \to B \tag{14}$$

Case Apply: By inversion $\Phi \mid \Gamma \vdash v_1 : A \to B$ and $\Phi \mid \Gamma \vdash v_2 : A$. Hence by induction, $\Phi \mid \Gamma \vdash v_1 : A \to B$ and $\Phi \mid \Gamma \vdash v_2 : A$. So

 $\Phi \mid \Gamma \vdash \mathsf{app} v_1 v_2 : B$

Case Return: By inversion $\Phi \mid \Gamma \vdash v : A$

So by induction $\Phi \mid \Gamma \vdash v : A$ Hence $\Phi \mid \Gamma \vdash \mathtt{return}v : M_1 A$

Case Bind: By inversion $\Phi \mid \Gamma \vdash v_1 : \mathbb{M}_{\epsilon_1} A$ and $\Phi \mid \Gamma, x : A \vdash \epsilon_2 : \mathbb{M}_{\epsilon_2} A$. Hence by induction $\Phi \mid \Gamma \vdash v_1 : \mathbb{M}_{\epsilon_1} A$ and $\Phi' \mid \Gamma, x : A \vdash v_2 : \mathbb{M}_{\epsilon_2} A$. So

$$\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : M_{\epsilon_1 \cdot \epsilon_2} B \tag{15}$$

Case If: By inversion $\Phi \mid \Gamma \vdash v$: Bool, $\Phi \mid \Gamma \vdash v_1$: A, and $\Phi \mid \Gamma \vdash v_2$: A. Hence by induction $\Phi \mid \Gamma \vdash v$: Bool, $\Phi \mid \Gamma \vdash v_1$: A, and $\Phi \mid \Gamma \vdash v_2$: A. So

$$\Phi \mid \Gamma \vdash \mathsf{if}_{A}, \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 : A \tag{16}$$

Case Subtype:

Case Efect-Lambda:

Case Effect-Apply:

0.2 Type Environment Weakening