Technology and Application of Big Data

Qing LIAO(廖清)

School of Computer Science and Technology

HIT

Course Details

- Instructor:
 - Qing LIAO, <u>liaoqing@hit.edu.cn</u>
 - Rm. 303B, Building C
 - Office hours: by appointment
- Course web site:
 - liaoqing.me
- Reference books/materials:
 - Big data courses from University of California
 - Book: BIG DATA: A Revolution That Will Transform How We Live, Work, and Think
 - Papers
- Grading Scheme:
 - Paper Report 30%
 - Final Exam 70%
- Exam:
 - 21st July(Friday), 14:00-16:00, A502

What You Learnt: Overview

- Topics:
 - 1) Introduction of Big Data
 - 2) Characterizes of Big Data
 - 3) How to Get Value from Big Data
 - 4) Technologies of Big Data
 - 5) Applications of Big Data
- Prerequisites
 - Statistics and Probability would help
 - But not necessary
 - Machine Learning would help
 - But not necessary

Previous Section

Supervised Learning

$$S = \{(x_i, y_i)\}_{i=1}^{N} \qquad f(x \mid w, b) = w^T x - b$$

Training Data

$$f(x \mid w, b) = w^T x - b$$

Model Class(es)

$$L(a,b) = (a-b)^2$$

Loss Function

• Data and machine learning

• Things we want to do with data

Images Label image

Audio

Text

• Computer vision: Identify coffee mug

• Computer vision: Identify coffee mug

• Why is computer vision hard?

Tł	ne c	am	era	see	S						
194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	75	65
20	43	69	75	56	41	51	73	55	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
72	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

• Computer vision

• Features for machine learning

• The idea:

Most perception (input processing) in the brain may be due to one

learning algorithm.

Build learning algorithms that mimic the brain.

Most of human intelligence may be due to one learning algorithm.

• The "one learning algorithm" hypothesis

• Neurons in the brain

Neural Network

Neural Network

Single layer neural network(Signle Perceptron), 1958

Multiple layer neural network(Multiple Perceptron), 1986 Second peak! \mathbf{X}_1 Output \mathbf{X}_2 Output X_3 hidden X_4 input 16

Neural Network

Multiple layer neural network(Multiple Perceptron), 1986 Second peak! \mathbf{X}_1 Output \mathbf{X}_2 Output X_3 w: Backpropagation(BP) Algorithm hidden X_4 input SVM becomes popular! 1992

Geoffery Hinton

Layer L₁

ImageNet NO.1 2012

Third Peak!

• Neural Network (Deep Learning, 2006)

Layer L₂

Geoffery Hinton

18

• Deep Learning

Deep Learning

Yann LeCun

object models object parts edges pixels 20

• Computer vision (~6 years)

Deep Learning

• Speech recognition (next 2-3 years?)

