Lecture 11: Dynamic Programming

Version of March 9, 2021

Outline

1. Introduction to Dynamic Programming

2. The Rod-Cutting Problem

Dynamic Programming (DP) bears similarities to Divide and Conquer (D&C)

- Both partition a problem into smaller subproblems
 - => build solution of larger problems from solutions of smaller problems
- In D&C, work top-down.
 Solve exact smaller problems that need to be solved to solve larger problem
- In DP, (usually) work bottom-up.
- Solve all smaller size problems => build larger problem solutions from them.
 - many large subproblems reuse solution to same smaller problem.
- DP often used for optimization problems
- Problems have many feasible solutions, we want the best solution.

Main idea of DP

- 1. Analyze the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution (usually bottom-up)

First Example: Stairs Climbing

Problem: You can climb 1 or 2 stairs with one step. How many different ways can you climb n stairs?

Solution: Let F(n) be the number of different ways to climb n stairs.

$$F(1) = 1, F(2) = 2, F(3) = 3, ...$$

 $F(n) = F(n-1) + F(n-2)$

Q: How to compute F(n)?

Solving the recurrence by recursion

$$F(1) = 1,$$
 $F(2) = 2$
 $F(n) = F(n-1) + F(n-2)$

Running time?

•••

Between $2^{n/2}$ and 2^n .

A more deeper analysis yields $\Theta(\varphi^n)$ where $\varphi \approx 1.618$ is the golden ratio.

Q: Why so slow?

A: Solving the same subproblem many many times.

n

Solving the recurrence by dynamic programming

$$F(1) = 1$$
, $F(2) = 2$
 $F(n) = F(n-1) + F(n-2)$

$\begin{array}{l} \mathbf{F}\,(n): \\ \mathbf{allocate} \ \mathbf{an} \ \mathbf{array} \ A \ \mathbf{of} \ \mathbf{size} \ n \\ A[1] \leftarrow 1 \\ A[2] \leftarrow 2 \\ \mathbf{for} \ i = 3 \ \mathbf{to} \ n \\ A[i] \leftarrow A[i-1] + A[i-2] \\ \mathbf{return} \ A[n] \end{array}$

Running time: $\Theta(n)$

Space: $\Theta(n)$ but can be improved to $\Theta(1)$ by freeing array entries that are no longer needed.

Dynamic programming:

- Used to solve recurrences
- Avoid solving a subproblem more than once by remembering solution to old problems
- Usually done "bottom-up", filling in subproblem solutions in table in order from "smallest" to largest".
 - There is also "top-down" version (memoization) that we will not be discussing. Essentially equivalent
- "Programming" here means "planning", not coding!

Outline

1. Introduction to Dynamic Programming

2. The Rod-Cutting Problem

The Rod Cutting Problem

Problem: Given a rod of length n and prices p_i for $i=1,\ldots,n$, where p_i is the price of a rod of length i. Find a way to cut the rod to maximize total revenue.

length i	1	2	3	4	5	6	7	8	9	10	
	1	5	8	9	10	17	17	20	24	30	
						_					
9			()		0	5	5)		3	
(a)			(b)			(c)			(d)	
			5		0	5	1 1				
(e)			(f)			(g)			(h)	

Want to calculate the maximum revenue r_n that can be achieved by cutting a rod of size n. Will do this by finding a way to calculate r_n from r_1 , r_2 , ..., r_{n-1}

There are 2^{n-1} ways of cutting rod of size n . Too many to check all of them separately.

Visualization of Optimal Substructure

The best choice is the maximum of p_1+r_{n-1} , p_2+r_{n-2} , ..., $p_{n-1}+r_1$, p_n

Rod Cutting: Another View

Define: Let r_n be the maximum revenue obtainable from cutting a rod of length n.

Consider an optimal (revenue maximizing) cutting.

- Suppose the "first" cut created a piece of length j (with revenue p_j)
- that leaves a piece of length n-j.
 - The max revenue from that piece is r_{n-j}
- . Total max revenue from cutting with first piece length ${
 m j}$ is $p_j + r_{n-j}$
- Try out every possible first cutting and calculate max revenue for each
 - Largest of those is max possible revenue

Recurrence: $r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, ..., p_{n-1} + r_1 \}, r_1 = p_1$

- lacksquare p_n if we do not cut at all
- $p_1 + r_{n-1}$ if the first piece has length 1
- $p_2 + r_{n-2}$ if the first piece has length 2
- **...**

Define: Let r_n be the maximum revenue obtainable from cutting a rod of length n.

```
Recurrence: r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, ..., p_{n-1} + r_1\}, r_1 = p_1
```

```
let r[0..n] be a new array r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j q \leftarrow \max(q, p[i] + r[j - i]) max revenue if first piece has length \in [1, j] r[j] \leftarrow q return r[n]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1									

Define: Let r_n be the maximum revenue obtainable from cutting a rod of length n.

```
Equivalent Recurrence: r_0 = 0; r_n = \max_{0 < i \le n} (p_i + r_{n-i})
```

```
let r[0..n] be a new array r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j q \leftarrow \max(q, p[i] + r[j - i]) max revenue if first piece has length \in [1, j] r[j] \leftarrow q return r[n]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1									

Define: Let r_n be the maximum revenue obtainable from cutting a rod of length n.

```
Equivalent Recurrence: r_0 = 0; r_n = \max_{0 < i \le n} (p_i + r_{n-i})
```

```
let r[0..n] be a new array r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j q \leftarrow \max(q, p[i] + r[j - i]) max revenue if first piece has length \in [1, j] r[j] \leftarrow q return r[n]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5								

$$r[2] = max(p_1 + r_1, p_2 + r_0) = max(1 + 1, 5 + 0) = 5$$

Define: Let r_n be the maximum revenue obtainable from cutting a rod of length n.

```
Equivalent Recurrence: r_0 = 0; r_n = \max_{0 < i \le n} (p_i + r_{n-i})
```

```
let r[0..n] be a new array r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j q \leftarrow \max(q, p[i] + r[j - i]) max revenue if first piece has length \in [1, j] r[j] \leftarrow q return r[n]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5	8							

$$r[3] = max(p_1 + r_2, p_2 + r_1, p_3 + r_0) = max(1 + 5, 5 + 1, 8 + 0) = 8$$

Define: Let r_n be the maximum revenue obtainable from cutting a rod of length n.

```
Equivalent Recurrence: r_0 = 0; r_n = \max_{0 < i \le n} (p_i + r_{n-i})
```

```
let r[0..n] be a new array r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j q \leftarrow \max(q, p[i] + r[j - i]) max revenue if first piece has length \in [1, j] r[j] \leftarrow q return r[n]
```

<u>i</u>	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5	8	10						

$$r[4] = max(p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0) = max(1 + 8, 5 + 5, 8 + 1, 9 + 0) = 10$$

Define: Let r_n be the maximum revenue obtainable from cutting a rod of length n.

Equivalent Recurrence:
$$r_0 = 0$$
; $r_n = \max_{0 < i \le n} (p_i + r_{n-i})$

```
let r[0..n] be a new array r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j q \leftarrow \max(q, p[i] + r[j - i]) max revenue if first piece has length \in [1, j] r[j] \leftarrow q return r[n]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5	8	10	13	17	18	22	25	30

Running time: $\Theta(n^2)$

This only finds max-revenue.

How can we construct SOLUTION that yields max-revenue

```
let r[0..n] and s[0..n] be new arrays r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j if q < p[i] + r[j-i] then similar to previous alg q \leftarrow p[i] + r[j-i] but keeps track in s[j] s[j] \leftarrow i of where max occurred r[j] \leftarrow q j = n while j > 0 do print s[j] j \leftarrow j - s[j]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0										
S[i]	0										

```
let r[0..n] and s[0..n] be new arrays r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j if q < p[i] + r[j-i] then similar to previous alg q \leftarrow p[i] + r[j-i] but keeps track in s[j] s[j] \leftarrow i of where max occurred r[j] \leftarrow q j = n while j > 0 do print s[j] j \leftarrow j - s[j]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1									
s[i]	0	1									

```
let r[0..n] and s[0..n] be new arrays r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j if q < p[i] + r[j-i] then similar to previous alg q \leftarrow p[i] + r[j-i] but keeps track in s[j] s[j] \leftarrow i of where max occurred r[j] \leftarrow q j = n while j > 0 do print s[j] j \leftarrow j - s[j]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5								
S[i]	0	1	2								

```
let r[0..n] and s[0..n] be new arrays r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j if q < p[i] + r[j-i] then similar to previous alg q \leftarrow p[i] + r[j-i] but keeps track in s[j] s[j] \leftarrow i of where max occurred r[j] \leftarrow q j = n while j > 0 do print s[j] j \leftarrow j - s[j]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5	8							
s[i]	0	1	2	3							

```
let r[0..n] and s[0..n] be new arrays r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j if q < p[i] + r[j-i] then similar to previous alg q \leftarrow p[i] + r[j-i] but keeps track in s[j] s[j] \leftarrow i of where max occurred r[j] \leftarrow q j = n while j > 0 do print s[j] j \leftarrow j - s[j]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]	0	1	5	8	10						
s[i]	0	1	2	3	2						_

```
let r[0..n] and s[0..n] be new arrays r[0] \leftarrow 0 for j \leftarrow 1 to n q \leftarrow -\infty for i \leftarrow 1 to j if q < p[i] + r[j-i] then similar to previous alg q \leftarrow p[i] + r[j-i] but keeps track in s[j] s[j] \leftarrow i of where max occurred r[j] \leftarrow q j = n while j > 0 do print s[j] j \leftarrow j - s[j]
```

i	0	1	2	3	4	5	6	7	8	9	10
p[i]											
r[i]	0	1	5	8	10	13	17	18	22	25	30
S[i]	0	1	2	3	2	2	6	1	2	3	10

Idea: Remember the optimal decision for each subproblem in s[j]

```
let r[0..n] and s[0..n] be new arrays
r[0] \leftarrow 0
for j \leftarrow 1 to n
      q \leftarrow -\infty
      for i \leftarrow 1 to j
            if q < p[i] + r[j-i] then
                 q \leftarrow p[i] + r[j - i]
                 s[j] \leftarrow i
      r[i] \leftarrow q
i = n
while j > 0 do
     print s[j] pull off first piece
     j \leftarrow j - s[j] & construct opt soln
                         of remainder
```

Reconstructing solution for n = 9

j=9
$$s[j] = 3$$

j=9-3 =6 $s[j] = 6$

Solution is to cut 9 into {3, 6}

i	0	1	2	3	4	5	6	7	8	9	10
p[i]	0	1	5	8	9	10	17	17	20	24	30
r[i]											
s[i]	0	1	2	3	2	2	6	1	2	3	10

A Quick Review

- · Our Goal was to solve a problem of size n
 - . Maximize Revenue from cutting a rod of size n
- Defined smaller subproblems
 - . Maximize Revenue from cutting a rod of size i: $i \le n$
- Noted that structure of optimal solution can be expressed in terms of optimal solution of subproblems
 - Maximal revenue solution does an initial cut into one piece of size i, and cuts the remaining n-i size rod optimally
- Implicitly used the optimal substructure property
 - e.g., the subproblem of size n-i must be cut optimally.
 If it wasn't we could replace the solution to the subproblem with an optimal one, contradicting optimality of original solution
- Used this to develop a recurrence describing cost of optimal solution in terms of previously calculated optimal solutions to subproblems
 - $r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \dots, p_{n-1} + r_1\}, r_1 = p_1$
- Recurrence translated into algorithm