AMENDMENTS TO THE CLAIMS

 (Currently Amended) A method of improving visibility of information on a display of a portable electronic device comprising:

measuring ambient light with light detection electronics located on the portable electronic device;

averaging the measured ambient light over a predefined time to determine an average measured ambient light; and

receiving a user input; and

adjusting a size of information displayed on the display based on the average measured ambient light by increasing/decreasing the size of the displayed information as the average measured ambient light decreases/increases in response to the user input.

2. (Previously Presented) The method of claim 1 wherein measuring the ambient light with light detection electronics comprises detecting the ambient light with a light sensor, and wherein averaging the measured ambient light comprises averaging the detected ambient light over the predefined time to determine the average measured ambient light.

Canceled

(Previously Presented) The method of claim 2 wherein the light sensor is comprises an
image sensor of a camera assembly.

(Previously Presented) The method of claim 1 further comprising adjusting at least one
of a backlight intensity of the display and a display contrast based on the average measured
ambient light.

Canceled

- 7. (Previously Presented) The method of claim 5 wherein adjusting the backlight intensity of the display based on the average measured ambient light comprises adjusting a pulse width modulation duty cycle of the display based on the average measured ambient light.
- 8. (Previously Presented) The method of claim 5 wherein adjusting the backlight intensity of the display based on the average measured ambient light comprises increasing/decreasing the backlight intensity as the average measured ambient light decreases/increases.
- (Previously Presented) The method of claim 5 wherein adjusting the display contrast based on the average measured ambient light comprises adjusting at least one of a font type, font color, and a background color based on the average measured ambient light.
- 10. (Previously Presented) The method of claim 5 wherein adjusting the display contrast based on the average measured ambient light comprises adjusting a bias voltage of the display based on the average measured ambient light.
- 11. (Previously Presented) The method of claim 10 further comprising determining a display temperature and adjusting the bias voltage of the display on the portable electronic device based on the average measured ambient light and the display temperature.

 (Original) The method of claim 11 wherein determining the display temperature comprises measuring a temperature of the display.

13. (Original) The method of claim 11 wherein determining the display temperature comprises measuring an ambient temperature and determining the display temperature based on the measured ambient temperature.

14. (Previously Presented) The method of claim 5 further comprising adjusting at least two of a size of the displayed information, the backlight intensity of the display, and the display contrast based on the average measured ambient light.

- 15. (Previously Presented) The method of claim 1 further comprising generating a table of display adjustment values, wherein each display adjustment value corresponds a size of the displayed information to a different ambient light value.
- 16. (Previously Presented) The method of claim 15 wherein adjusting the size of the displayed information based on the average measured ambient light comprises:

selecting the display adjustment value from the table of display adjustment values that corresponds to the average measured ambient light; and adjusting the size of the displayed information based on the selected display adjustment value.

17. - 20. Canceled

Application Ser. No. 10/809,132 Attorney Docket No. 2002-048 PU03 0187US1

- 21. (Previously Presented) The method of claim 1 further comprising adjusting at least one of a gamma setting, a white point setting, and a black point setting of the display on the portable electronic device based on the average measured ambient light.
- 22. (Original) The method of claim 1 further comprising adjusting a second display on the portable electronic device by using a conversion standard to convert display adjustment parameters generated based on the measured ambient light for a first display on the portable electronic device to display adjustment parameters for the second display on the portable electronic device.
- 23. (Original) The method of claim 1 wherein the display on the portable electronic device comprises one of a liquid crystal display, a thin film transistor display, a thin film diode display, an organic light emitting diode, and a super twisted nematic display.

24. (Currently Amended) A portable electronic device comprising:

a user input device to receive user input:

light detection electronics located in the portable electronic device for determining a measured ambient light and for averaging the measured ambient light to determine an average measured ambient light; and

a display controller comprising a size controller for adjusting a size of information displayed on a display on the portable electronic device based on the average measured ambient light in response to the user input.

25 Canceled

- 26. (Previously Presented) The portable electronic device of claim 24 wherein the display controller further comprises a backlight controller for adjusting a backlight intensity of the display based on the average measured ambient light.
- 27. (Previously Presented) The portable electronic device of claim 26 wherein the backlight controller adjusts a pulse width modulation duty cycle of the display to control the backlight intensity of the display based on the average measured ambient light.
- (Previously Presented) The portable electronic device of claim 24 wherein the display
 controller further comprises a contrast controller for adjusting a display contrast based on the
 average measured ambient light.

29. (Previously Presented) The portable electronic device of claim 28 wherein the contrast controller adjusts at least one of a font type, a font color, and a background color based on the average measured ambient light.

30. (Previously Presented) The portable electronic device of claim 28 wherein the contrast controller adjusts a bias voltage of the display to control the display contrast based on the average measured ambient light.

 (Original) The portable electronic device of claim 28 further comprising a temperature sensor for determining a display temperature.

32. (Previously Presented) The portable electronic device of claim 31 wherein the contrast controller adjusts the bias voltage of the display based on the average measured ambient light and the display temperature.

 (Original) The portable electronic device of claim 31 wherein the temperature sensor measures the display temperature.

34. (Original) The portable electronic device of claim 31 further comprising a temperature processor for determining the display temperature from an ambient temperature measured by the temperature sensor.

(Previously Presented) The portable electronic device of claim 24 further comprising a
memory circuit for storing at least one table of display adjustment values, where each display

PU03 0187US1

adjustment value in a first table corresponds a size of the displayed information to a different ambient light value.

 (Previously Presented) The portable electronic device of claim 35 wherein the display controller selects the display adjustment value corresponding to the average measured ambient

light from the table of display adjustment values and adjusts the size of the displayed

information based on the selected display adjustment value.

37. (Previously Presented) The portable electronic device of claim 35 wherein the memory

circuit stores a table of display adjustment values for each of at least one of a display contrast

and a backlight intensity of the display.

38. Cancel

39. (Currently Amended) The portable electronic device of claim 24 claim 38 wherein the

user input device comprises a control button disposed on a housing of the portable electronic

device.

40. (Currently Amended) The portable electronic device of claim 24 claim 38-wherein the

user input device comprises a speaker for receiving an audible display command from the user.

41. Cancel

42. (Original) The portable electronic device of claim 24 wherein the light detection

electronics comprises a light sensor for detecting ambient light.

8 of 12

- 43. (Previously Presented) The portable electronic device of claim 42 wherein the light detection electronics further comprises a light processor for processing the detected ambient light and determining the average measured ambient light from the processed ambient light.
- 44. (Previously Presented) The portable electronic device of claim 24 wherein the light detection electronics comprises an image sensor for a camera assembly.
- 45. (Original) The portable electronic device of claim 24 wherein the portable electronic device comprises one of a laptop computer, a calculator, a personal data assistant, a portable gaming system, and a portable music player.
- 46. (Original) The portable electronic device of claim 24 wherein the portable electronic device comprises a cellular telephone comprising a transceiver for transmitting and receiving wireless communication signals.
- (Original) The portable electronic device of claim 46 wherein the light detection electronics are disposed in a camera assembly within the cellular telephone.
- 48. (Original) The portable electronic device of claim 24 wherein the display comprises one of a liquid crystal display, a thin film transistor display, a thin film diode display, an organic light emitting diode, and a super twisted nematic display.

Application Ser. No. 10/809,132 Attorney Docket No. 2002-048 PU03 0187US1

49. (Original) The portable electronic device of claim 24 further comprising a second display on the portable electronic device, wherein the display controller adjusts the second display by using a conversion standard to convert display adjustment parameters generated based on measured ambient light for a first display on the portable electronic device to display adjustment parameters for the second display on the portable electronic device.