

Data Intelligence Applications - Presentazione del progetto

Pricing and Advertising d'Amato - Frantuma - Fucci

Specifiche

Lo scopo del progetto è ricercare, per uno specifico prodotto sul mercato, la miglior combinazione di prezzo proposto al pubblico e offerta (per click) per la pubblicizzazione online, al fine di massimizzare i profitti in un orizzonte temporale di un anno.

Le variabili controllate nel modello sono:

- Prezzo, p
- Offerta, b

Mentre le variabili aleatorie da esse dipendenti sono:

- Numero di click giornalieri
- Visite future
- Costo per click
- Numero di vendite attraverso pubblicità (tasso di conversione)

Modello delle variabili aleatorie

- Nuovi click giornalieri: $d_t(b_t) \sim \mathcal{N}(\mu_{0,i} + \mu_{bid,i}(b_t), \sigma^2)$
- Vendite attraverso pubblicità al giorno t: $q_t(b_t, p_t) = \sum_{i=1}^{d_t(b_t)} X(p_t)$, dove $X(p_t) \sim \mathcal{B}e(r(p_t), 1 r(p_t))$ and $r(p_t)$ è il tasso di conversione valutato al prezzo p_t .
- Costo per click: $c_i(b_t) = b_t |X(b_t)|$, $X \sim \mathcal{N}(\frac{b_t}{\alpha}, 0.1)$, dove α è una costante di normalizzazione ottenuta pesando le relative costanti di ogni classe.
- Visite future di ogni utente: $n_i(p) \sim \mathcal{P}oisson(\lambda)$

Classi e caratteristiche

Caratteristiche	anziano	giovane
attivo	Sportivo (classe 1)	Sportivo (classe 1)
sedentario	Pensionato (classe 2)	Programmatore (classe 3)

Visite future

Le visite nei 30 giorni successivi all'acquisto sono modellate con una distribuzione di Poisson, il cui parametro lambda varia in base alla classe di utenti e al prezzo di acquisto.

II prodotto

Confezione da 6 lattine di energy drink, con relativo dash button incluso al primo acquisto

Classe aggregata

La classe aggregata corrisponde all'aggregazione delle classi 1,2 e 3. Pertanto i suoi parametri sono derivati dalla media pesata tra le classi, basata sul numero di nuovi clienti giornalieri per ogni classe, valore che dipende dall'offerta b. Per esempio:

$$X_{agg} \sim \mathcal{P}oisson(\lambda_{agg})$$

$$\lambda_{agg} = \frac{n_1(b)\lambda_1(p) + n_2(b)\lambda_2(p) + n_3(b)\lambda_3(p)}{n_1(b) + n_2(b) + n_3(b)}$$

$$n_i \sim \mathcal{N}(\mu_i, \sigma^2|b)$$

Step 1

maximize
$$\mathcal{R}(p, b) = \sum_{i=1}^{q(b,p)} [(p - c_{prod})(1 + n_i(p)) - c_i(b)]$$

$$\mathcal{A}: \max \leftarrow -\infty$$

$$\text{for } p \text{ in } P$$

$$\text{for } b \text{ in } B$$

$$\text{if } \mathcal{R}(p,b) > \max$$

$$\text{then } \max \leftarrow \mathcal{R}(p,b)$$

$$\text{return } \max$$

Step 2

maximize
$$\sum_{t=1}^{365} \mathcal{R}_t(p,b) = \sum_{t=1}^{365} \sum_{i=1}^{q_t(b,p)} \left[(p_t - c_{prod})(1 + n_i(p_t)) - c_i(b_t) \right]$$

- Nuovi click giornalieri: $d_t(b_t) \sim \mathcal{N}(\mu_{0,i} + \mu_{bid,i}(b_t), \sigma^2)$
- Vendite attraverso pubblicità al giorno t: $q_t(b_t, p_t) = \sum_{i=1}^{d_t(b_t)} X(p_t)$, dove $X(p_t) \sim \mathcal{B}e(r(p_t), 1 r(p_t))$ and $r(p_t)$ è il tasso di conversione valutato al prezzo p_t .
- Costo per click: $c_i(b_t) = b_t |X(b_t)|$, $X \sim \mathcal{N}(\frac{b_t}{\alpha}, 0.1)$, dove α è una costante di normalizzazione ottenuta pesando le relative costanti di ogni classe.
- Visite future di ogni utente: $n_i(p) \sim \mathcal{P}oisson(\lambda)$

Upper Confidence Bound

7.5

Gaussian Thompson Sampling

 Nell'algoritmo GTS abbiamo scelto di aggiornare i parametri delle distribuzioni di probabilità a posteriori attraverso la definizione di precisione, invece di calcolare direttamente la deviazione standard dall'insieme dei campioni.

$$\tau_{0,a} \leftarrow \tau_{0,a} + n_a(t-1)\tau_a$$

$$\mu_{0,a} \leftarrow \frac{\tau_{0,a}\mu_{0,a} + \tau_a \sum_{i=1}^n x_i}{\tau_{0,a} + n_a(t)\tau_a}$$

Step 3: risultati

Step 5

Il vincolo di sicurezza richiesto in questo punto è implementato tramite una maschera binaria che esclude dai candidati i bracci valutando la funzione di ripartizione della distribuzione a posteriori, secondo la condizione:

$$\Phi_a(0) = \Phi(0|\mu_a, \sigma_a^2) = P(x \le 0|\mu_a, \sigma_a^2) \ge 0.2$$

verificata tramite

Step 5: risultati Thompson Sampling

Step 6

 Per affrontare il problema di una combinazione di 10*10 bracci, abbiamo utilizzato un algoritmo di Gaussian Process Thompson Sampling. Il kernel utilizzato tiene conto della differenza di scala dei vettori di input:

Step 6: risultati

Step 6: valore atteso e appreso

Context generation (Step 4 & Step 7)

Per poter effettuare lo splitting 9 learner operano in parallelo per i diversi contesti, questo permette di valutare, in fase di splitting, il valore atteso prima e dopo la divisione

Per poter generare delle ricompense autonome sono stati necessari 4 environments, ciascuno dei quali produce ricompense per gruppi di learners tra loro indipendenti

Context generation (Step 4 & Step 7)

Come lower bound in entrambi i casi si è scelto di usare (mu - sigma) di ciascun braccio

La condizione per lo splitting è la seguente: $\underline{R}_1 + \underline{R}_2 > \underline{R}_0$

Dove R è il lower bound del miglior braccio per ciascuno dei 3 learner.

Step 4: risultati

Step 4: risultati

Step 7: risultati

Step 7: risultati

Context generation: scelte

- tempo di inizio splitting scelto con un trade-off correttezza vs regret
- La scelta di un contesto verosimile, porta a situazioni in cui si hanno più bracci con reward simili, aumentando la varianza

