

Sorting Algorithms

Paolo Camurati
Dip. Automatica e Informatica
Politecnico di Torino

On the importance of sorting

- On an average application 30% of CPU time is spent on sorting data
- Example
 - CPU scheduling
 - Processes p_i with duration
 - p₀ 21, p₁ 3, p₂ 1, p₃ 2
 - Impact of sorting on average wait time

On the importance of sorting

average wait time (0+21+24+25)/4 + 17.5 p_2

• $p_1 - p_3 - p_0 - p_2$

average wait time (0+3+5+26)/4 = 8.5 $p_2p_3p_1$

• (sorted)
$$p_2-p_3-p_1-p_0$$

 p_0

average wait time (0+1+3+6)/4 = 2.5

Sorting applications

Trivial applications

- Sorting a list of names, organizing an MP3 library, displaying Google PageRank results, etc.
- Simple problems if data are sorted
 - Find the median, binary search in a database, find duplicates in a mailing list, etc.
- Non trivial applications
 - Data compression, computer graphics (e.g., convex hull), computational biology, etc.

4

Definitions

Sorting

Input

- Symbols <a₁, a₂, ..., a_n>
- Symbols belong to a set having an order relation

Output

- Permutation $<a'_1, a'_2, ..., a'_n>$ of the input
- Such that the order relation $a'_1 \le a'_2 \le ... \le a'_n$ holds

4

Definitions

Order relation ≤

- Binary relation between elements of a set A satisfying the following properties
 - Reflexivity $\forall x \in A \rightarrow x \le x$
 - Antisymmetry $\forall x, y \in A \rightarrow x \le y \land y \le x \Rightarrow x = y$
 - Transitivity \forall x, y, z ∈ A \rightarrow x ≤ y \land y ≤ z \Rightarrow x ≤ z

A is a partially ordered set (poset)

If relation \leq holds \forall x, y \in A, A is totally ordered set

Classification

- Internal sorting
 - Data are in main memory
 - Direct access to elements
- External sorting
 - Data are on mass memory
 - Sequential access to elements

Classification

- In place sorting
 - n data in array + constant number of auxiliary memory locations
- Stable sorting
 - For data with duplicated keys the relative ordering is unchanged

Example

- Record with 2 keys
 - Name (key is first letter)
 - Group (key is an integer)

Unsorted data

Chiara	3
Barbara	4
Andrea	3
Roberto	2
Giada	4
Franco	1
Lucia	3
Fabio	3

Second sorting according to group NON stable algorithm

Second sorting according to group Stable algorithm

First sorting according to first letter

Andrea	3
Barbara	4
Chiara	3
Fabio	3
Franco	1
Giada	4
Lucia	3
Roberto	2

Franco	1
Roberto	2
Chiara	3
Fabio	3
Andrea	3
Lucia	3
Giada	4
Barbara	4

Franco	1
Roberto	2
Andrea	3
Chiara	3
Fabio	3
Lucia	3
Barbara	4
Giada	4

4

Classification: complexity

- O(n²)
 - Simple, iterative, based on comparison
 - Insertion sort, Selection sort, Exchange/Bubble sort
- $O(n^{3/2})$
 - Shellsort (with certain sequences)
- O(n log n)
 - More complex, recursive, based on comparison
 - Merge sort, Quicksort, Heapsort
- O(n)
 - Applicable with restrictions on data, based on computation
 - Counting sort, Radix sort, Bin/Bucket sort

Classification: complexity

A more detailed analysis is possible, distinguishing between

- Comparison and
- Exchange operations
 When date are large, exchanging them may be expensive

Asymptotic complexity however doesn't change

Algorithms based on comparison

- Elementary operation
 - Comparison a_i: a_j
- Outcome
 - Decision (a_i>a_j or a_i≤a_j)
 - Decisions organized as a decision tree

Sort array of 3 distinct elements a₁, a₂, a₃

- For n distinct integers
 - Number of possible sortings = number of permutations = n!
- Each solution
 - Sits on a tree leaf
- Complexity
 - Number h of comparisons, that is, the tree height h
- For a complete tree
 - Number of leaves = 2^h

Then we must have

•
$$n! > (n/e)^n$$

Then we have

$$2^{h} \ge n! > (n/e)^{n}$$

$$2^{h} > (n/e)^{n}$$

$$h > lg(n/e)^{n}$$

$$h > n (lg n - lg e) = \Omega(n lg n)$$