

2021 로봇스터디 교육 3주차

Image Processing Technic

목차

1. Edge란?

2. Sobel Filter

3. Canny Edge

4. Edge Detection

• 경계선, 윤곽선

• 영상에서 밝기가 급격하게 변하는 부분 (낮은 값 -> 높은 값)

• Edge를 검출함으로써 물체의 위치, 모양, 크기, 방향성 등에 대한 정보를 쉽게 찾을 수 있다

• 픽셀 값이 급격하게 변하는 지점 -> Edge 부분

■ 픽셀은 곡선 그래프처럼 연속공간에 있지 않으므로 미분 값이 아닌 미분 근사값으로 Edge를 찾을 수 있음
 -〉서로 붙어 있는 픽셀 값의 차를 구하면 됨 (연속된 두 개의 픽셀 중 한쪽 값을 음수로 만든다)

$$G_x \approx f_{x+1,y} - f_{x,y}$$

$$G_y \approx f_{x, y+1} - f_{x, y}$$

$$G_{x} = \begin{bmatrix} -1 & 1 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

• Sobel이 고안해낸 가장자리 검출 알고리즘

• 3X3 크기의 행렬을 사용하여 연산하였을 때 중심을 기준으로 각 방향의 값을 비교하여 픽셀 값의 변화량 검출 -> edge 판별 가능

-1	0	+1
-2	0	+2
-1	0	+1

Χ	fi	lter

	+1	+2	+1
1	0	0	0
1	-1	-2	-1

y filter

• X축 필터: 세로 성분 검출

• Y축 필터: 가로 성분 검출

		+

X축 필터

-1	0	+1
-2	0	+2
-1	0	+1

0

0	0	0	255	255
0	0	0	255	255
255	255	255	255	255

* -2

-1 0 +1 -2 0 +2 -1 0 +1

X축 필터

0

0

0

-2

+1

+2

+1

*

*

→ 세로 Edge 검출 가능

765

0	0	0	255	255
0	0	0	255	255
255	255	255	255	255

X축 필터

-1	0	+1
-2	0	+2
-1	0	+1

*

*

-1	0	+1
-2	0	+2
-1	0	+1

*

Y축 필터

+1	+2	+1
0	0	0
-1	-2	-1

→ 가로 Edge 검출 가능

0	0	0	255	255
0	0	0	255	255
255	255	255	255	255

*

+1	+2	+1
0	0	0
-1	-2	-1

- 0

0 0

0

-255 | -510 | -255

Y축 필터

+1	+2	+1
0	0	0
-1	-2	-1

*

*

+1	+4	+	
0	0	0	
-1	-2	-1	

+	1	+2	+1
)	0	0
Ŀ	1	-2	-1

-76!	5 -25	5
0	0	255
0	0	0
-255	0	-255

*	

Y축 필터

+1	+2	+1
0	0	0
-1	-2	-1

→ 세로 Edge 검출 불가능

0	0	0	255	255
0	0	0	255	255
255	255	0	255	255

*

+1	+2	+1
0	0	0
-1	-2	-1

0	510	255
0	0	0
0	-510	-255

Y축 필터

/ 방향 edge 검출 필터

∖ 방향 edge 검출 필터

네 개의 필터를 사용하여 위와 같은 결과 만들기

Sobel Filter의 특징

- 모든 방향의 Edge 추출 가능
- 돌출한 화소 값을 평균화 하므로 잡음에 대체적으로 강함
- 수직, 수평보다 대각선 방향 Edge에 더 민감하게 반응

Canny Edge 특징

- Edge 검출 알고리즘에서 가장 신뢰성이 높고 활용하기 간편하여 보편화 된 알고리즘
- 도형의 윤곽을 하나의 선으로 얻을 수 있음
- 다양한 환경에 적용 가능
- 이미지의 특징 추출을 위한 전처리로 많이 활용함

〈원본 이미지〉

〈Canny Edge를 사용한 Edge 검출 이미지〉

1. 노이즈 제거

5X5 사이즈의 가우시안 필터를 이용해 이미지의 노이즈를 제거

〈블러링 된 GrayScale 이미지〉


```
# 1. 노이즈 제거 - 가우시안 블러링
gauss_filter = cv.getGaussianKernel(5, 3) # kernal size : 5, sigma : 3
gauss_img = cv.filter2D(img, -1, gauss_filter)
```

2. Edge Gradient(기울기) 계산

소벨 필터를 사용하여 각 방향의 Edge 및 Gradient 검출

〈Sobel Filter 적용한 이미지〉

2. Edge Gradient(기울기) 계산

함수의 점에서 미분 = 그 점에서의 접선의 기울기

픽셀에서의 미분 근사값 = 연속된 픽셀 값의 차이

기울기 = 연속된 픽셀 값의 차이 = Gradient

함수의 그래프 미분 -> 모든 픽셀 Sobel Filter로 Convolution 연산

3. 비최대치 억제 (Non-Maximum Suppression)

Edge 추출에 기여도가 적은 픽셀을 제거하기 위해 이미지를 Full Scan 하여 Edge Gradient 방향부근의 픽셀들이 지역 최대치인지 판별 -> 최대가 아닌 픽셀은 억제하여 0으로 만든다

3. 비최대치 억제 (Non-Maximum Suppression)

x filter

+1	+2	+1
0	0	0
-1	-2	-1

y filter

• X축 필터: 세로 성분 검출

• Y축 필터: 가로 성분 검출

4. 이력 스레시홀딩 (Hyteresis Thresholding)

Gradient 강도가 maxVal보다 크면 Edge, minVal보다 작으면 Edge가 아니라고 판단하여 제거

결과 영상

4. Edge Detection

Roberts Cross Filter

• 대각선 방향으로 +1과 -1을 배치시켜 사선 경계 검출 효과를 높였다

• 노이즈에 민감함

Prewitt Filter

• 영상의 x축, y축의 각 방향으로 차분을 세 번 계산하여 경계를 검출

• 상하좌우 Edge는 뚜렷하지만 대각선 검출에 약함

-1	0	1
-1	0	1
-1	0	1
X축 필터		

Scharr Filter

• 커널의 중심에서 멀어질수록 Edge 방향성의 정확도가 떨어지는 소벨 필터를 개선

-3	0	3
-10	0	10
-3	0	3
 X축 필터		

Laplacian Filter

• 영상의 x축, y축에 각각 이차 미분을 수행하여 합한 수식을 행렬 형태로 만든 필터

• 가우시안 필터와 비슷한 모양의 필터

1	1	1
1	-8	1
1	1	1

가로, 세로, 양 대각선 방향으로 모두 미분연산을 수행한 필터

Laplacian Filter

모든 방향의 뚜렷한 edge 검출 가능

과제

- 1. 주어진 이미지를 Gray Scale로 변환
- 2. 이미지 Blurring 처리
- 3. Canny Edge로 Edge 검출
- 4. ROI로 차선 부분만 추출

형식 보고서 형식(한글, 워드) 또는 PPT 형식

내용 각 단계의 파이썬 코드

각 단계의 결과 화면 캡처

기한 2월 23일 화요일 18:00

실습 정답 파일 비밀번호 필요하신 분은 말씀해주세요!

