

Reliability Prediction for Naval Shafting Under Cyclic Loads

PIs: Professor Alex Slocum*, Professor Ronald Ballinger (MM1(SS), Ret.)**

Research Team (Indentured Servant): LCDR Douglas Jonart

*Department of Mechanical Engineering

**Department of Nuclear Science & Engineering, Materials Science & Engineering

April 30th, 2014

Massachusetts Institute of Technology

Program Driver & Objectives

Driver-Ohio Replacement Program

Objectives

- Develop an Engineering & Science Based
 Probabilistic Determination of Shaft Life Including
 Uncertainty Estimates
 - Development of Required Inspection Intervals and Basis for These Intervals
- Identify and Quantify Advanced materials and/or Design Changes that would Alloy Extension of Inspection Intervals

Shaft Life Extension Program-Areas of Thrust

Center for Ocean Engineering Naval Construction & Engineering Program Department of Mechanical Engineering

Modeling Path

General Literature Search

- General Corrosion of Steels
- · Pitting/SCC of Steels
- Fatigue/Corrosion Fatigue of Steels
- Marine Shafting Research/Failure Analysis
- Classification Society Data (ABS, Lloyd's, DNV, etc.)

Modeling Literature Search

- · General Modeling Approaches
 - · Deterministic
 - · Empirical (Weibull, etc.)
 - Probabilistic
- Pitting/SCC of Steels
- Fatigue/Corrosion Fatigue
- Available Models
 - AFGROW (www.afgrow.net)
 - Others
 - From Literature

Design

Characterization of System

- Physical
 - Materials
 - Geometry
 - Environment
 - Chemical,
 - Mechanical
- Problem Definition
- Workshop
 - Definition of System
 - Definition of Requirements
 - Week if 1/21/13?

Design Mods.

Coatings (GRP)

Weld Overlay

Spray (hot/cold)

Experimental Path

New Materials

(Fe-Cr-Si), Other Coatings

Material Characterization

- Shaft Material
- Fe-Cr-Si
- Other

Tasks-Corrosion

- 1. Base Material
 - Polarization Tests
 - Measure Pitting Potential
 - Corrosion Current
- 2. Coupled To Shaft Steel
 - Measure Coupled Current
 - Measure Coupled Mixed Potential
- 3. Overlay on Shaft Material
 - Measure Electrochemical Parameters

Tasks-Mechanical

- 1. Tensile Properties
- 2. Fatigue (Air)
- 3. Fatigue (In Environment)
- · 4. Abrasion, impact resistance

(Corrosion Fatigue)

Modeling Components: Key Variables

Center for Ocean Engineering Naval Construction & Engineering Program Department of Mechanical Engineering

What if we Could ELIMINATE the Problem?

- Prevent Pitting-No Fatigue CrackInitiation
 - Prevent Water Ingress ("impossible"??)
 - Provide a Surface that Does Not Pit (not impossible???)

Benefits of Success

- Increased Inspection Interval-Reduces Required # of Hulls
- Elimination of Problem-Allows Expanded Operational Envelope
- Saves a TON of Cash

Submarine Shaft Life Project

Professor Ballinger
Professor Slocum
LCDR Jonart

Key Takeaways

- Uncertainty drives predictions for desired performance
- ORP shaft needs to stay dry for an order of magnitude longer than OHIO shaft
- Driver and problem
- Solutions and method
- Results

Project Driver

OHIO class

- Shafts inspected and refurbished at least every 6 years
- Over 30 years of service without breaking a shaft
- Class design service life was 30 years; recertified for 42
- OHIO Replacement Program (ORP)
 - Shafts inspected and refurbished at least every 12 years
 - Being designed for "OHIO-like" service life
- Is this a problem?

The Problem: Failure Locations

Corrosion Fatigue Initiated from Pits

The Problem: Corrosion Fatigue Failure

Center for Ocean Engineering Naval Construction & Engineering Program Department of Mechanical Engineering

Massachusetts Institute of Technology Solutions: How to Improve?

Center for Ocean Engineering

Naval Construction & Engineering Program

Department of Mechanical Engineering

- Material
 - Stainless steel
 - Claddings
 - Preservatives
- Shaft design
- Loading limits
- Prevent water ingress
 - Mechanical systems (O-rings, seals, design)
 - Coatings
- Housing around shaft
- Alternative propulsion
- Sensing

Project evaluated these; My thesis focused on water ingress

Corrosion Fatigue: Method

Center for Ocean Engineering Naval Construction & Engineering Program Department of Mechanical Engineering

Target Values: 70% Wetted 40% Pitted 4% Cracked 0 Failures

- Search literature for best model for each stage
 - Pitting, transition, and crack models
 - Parameters from literature, testing, Navy specifications
- Infer water ingress distribution
 - Run Monte Carlo Simulation
 - Evaluate "goodness" by L2 Norm from OHIO target values
- Repeat for 12 year shaft life and evaluate

Results: Real Story for ORP: Uncertainty

Uncertainty comes from:

- Differences in physical environment
- Variations in chemical environment
- Differences in nominally similar materials, exposures, specimens
- Temperature of corrosion environment (10°= 2x corrosion rate)
- Loading
- Built into each model (probabilistic)
- Monte Carlo technique
- Many more

Primary effect: widens distribution

- For given reliability, must push mean to right
- Sensitivity of true control variables diminished

Uncertainty: Drastic Effect on Mean

Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Results: Ohio Wetting

Thousands of days

Results: Comparison

Results: Comparison

6 Years	OHIO	ORP		12 Years	OHIO	ORP
Wetted	71%	2.3%		Wetted	87%	5.6%
Pitted	39%	0.04%		Pitted	69%	0.3%
Cracked	5%	0		Cracked	59%	0.16%
Failed	0 *	0		Failed	45%	0*
	This is the real performance desired					

^{*} Denotes that successive runs reveal about a 10% chance of having 1 failure in 60 service cycles

Results: ORP

Results: Conclusions

- Minimum L2 norm is Shape = 0.75
 - Indicative of highly skewed water ingress
 - Reasonable physics would be O-ring failures or similar
- Uncertainty becomes very large
 - Drives problem for ORP predictions
 - Effectively eliminates desired reverse probability approach
- Bottom line, though, is need to improve dry time by an "order of magnitude"
- Improved inspection data reduces uncertainty
 - Levels of corrosion
 - Sizes, shapes, distribution of pits
 - Sizes and characteristics of cracks

Results: Key Takeaways

- Uncertainty drives predictions for desired performance
 - Solution: Improved inspection procedures and data
- ORP shaft needs to stay dry much longer than OHIO shaft
 - Solutions already being investigated and in some cases implemented
 - How to model and predict their effects
- Without reducing uncertainty, may be challenging to defend reliability performance
 - Solution: Break the failure chain elsewhere
 - Clad shaft to preclude pitting is one solution

Questions and Discussion

