

Teoría de Algoritmos I

Primer Cuatrimestre 2017 Trabajo Práctico 3

Integrante	Padrón	Correo electrónico
Rodrigo De Rosa	97799	rodrigoderosa@outlook.com
Marcos Schapira	97934	schapiramarcos@gmail.com
Facundo Guerrero	97981	facundoiguerrero@gmail.com

${\rm \acute{I}ndice}$

1.	Programación Dinámica	1
	1.1. Algoritmo	
	1.1.1. Funcionamiento	1
	1.1.2. Ecuación de recurrencia	1
2.	Algoritmos Randomizados	9
	2.1. Algoritmo	3
	2.1.1. Funcionamiento	3
	2.1.2. Categoría de randomización	3
3.	Algoritmos Aproximados	4
	3.0.1. Funcionamiento	4
	3.0.2. Análisis del Algoritmo	
4.	Ejecución de programas	F

1. Programación Dinámica

En esta sección se analiza una solución al problema de la predcción de acciones a través de la programación dinámica.

1.1. Algoritmo

El algoritmo utilizado para resolver el problema planteado esta basado en el algoritmo de kadane. Este busca la maxima suma de elementos contiguos dentro de un arreglo.

1.1.1. Funcionamiento

Este algoritmo funciona de la siguiente forma:

- Inicializa un día de compra, un día de venta, un día de compra auxiliar, todos como el primer dia. Tambien se inicializa una ganancia máxima y una ganancia temporal, ambas como 0 ya que, hasta el momento, el dia de compra es igual al dia de venta.
- Luego itera sobre todos los días (valores diferentes de acciones) verificando si en el día actual(dia i) es más o menos favorable comprar acciones que en el día en el que se pretendía hacerlo hasta el momento(dia k), determinando el día de compra auxiliar. Esto asegura la obtencion de la mayor ganancia hasta el dia i-1.
- A partir del día que determinó, calcula la ganancia temporal como la ganancia que se obtendría si las acciones fueran compradas en el día de compra y vendidas el día actual. Luego se verifica si la ganancia temporal es mayor a la ganancia máxima.
- En tal caso, determina el día de venta como el actual, el día de compra como el que previamente era el día de compra auxiliar y la ganancia máxima como la que era la ganancia temporal.
- Al finalizar la iteración, queda determinado el día de compra más conveniente, el día de venta más conveniente y la ganancia máxima obtenible.
- ullet Dado que el algoritmo propuesto recorre una sola vez el arreglo, funciona en O(n).

1.1.2. Ecuación de recurrencia

Para la ecuación de recurrencia se plantea lo siguiente:

- Para empezar, se debe tener en cuenta las siguientes consideraciones:
- Para la resolución del algoritmo se utilizan las siguientes variables: G_M = Ganancia Máxima, G_T = Ganancia Temporal, D_i = Día actual, D_V = Día de Venta, D_C = Día de Compra y D_{CAux} = Día de Compra Auxiliar.
- Para el paso i de la iteración, el D_{CAux} se actualiza si $D_i < D_C$. Esto se puedé hacer porque en el paso i ya se tiene la ganancia máxima calculada y guardada en G_M . Como ahora se tiené un dia de compra mejor al que se teniá hasta el paso i-1, la mejor ganancia que se pudó obtener hasta el paso i-1, es la que ya se obtuvó hasta el momento. Entonces se lleván las nuevas ganancias en G_T para poder observar si con el nuevo día de compra se puede obtener una mejor ganancia.
- La ganancia temporal se calcula como: $G_T = D_i D_{CAux}$ y la ganancia máxima se calcula como: $G_M = D_V DC$. Entonces, se actualiza la ganancia máxima cuando $G_M < G_T$. Notar que en dico caso tambien se actualizan los dias de compra y venta.
- \blacksquare Entonces, se define V_i como el valor de la accion en el día i.
- Con las consideraciones anteriormente mencionadas, se puede notar que la ganancia en el dia i es: la ganancia del paso anterior, en el caso donde el valor de la acción es mayor en el día anterior que en el día actual, o el máximo entre la ganancia del dia anterior y la ganancia del día actual.
- Consideremos el siguiente caso de valores de acciones: [2,3,4,1,4,5]. Cuando i = 0 el día de compra y el día de venta son iguales entonces la ganancia es 0. Cuando i = 1, ahora el día de venta es 1 y el día de compra es 0, por lo tanto la ganancia es 1. Inductivamente sabemos que para i = 2, la ganancia es 2. Pero en el caso en que i = 3 el día de compra pasa a ser 3, ya que la acción es mas barata, y la ganancia pasa a ser 0. Por eso, se dicé que la ganancia del paso i es el maximo entre la ganancia del día anterior y la del día actual. En este caso se puede observar que la ganancia del día anterior es 2 y la del día actual es 0, entonces corresponde la ganancia del día anterior.

■ Entonces, se define la ganancia temporal para el paso i como:

$$G_{Mi} = \begin{cases} G_T[i-1] & \text{si } V_i \leqslant V_{i-1} \\ V_i - D_{CAux} & \text{si } V_i > V_{i-1} \end{cases}$$

- Finalmente, vale notar que la ganancia máxima al finalizar la iteración será la ganancia temporal calculada en el paso n-esimo.
- lacktriangle Se ve claramente que el orden de dicho algoritmo es O(n) ya que solamente se recorre el arreglo una vez para obtener la máxima ganancia.

2. Algoritmos Randomizados

En esta sección se analiza una solución al problema de hallar el corte global mínimo en un grafo no dirigido a través de un algoritmo randomizado.

2.1. Algoritmo

Para resolver este problema se utilizó el algoritmo de Karger-Stein descripto en la bibliografía proporcionada por la cátedra.

2.1.1. Funcionamiento

Primero presentaremos el algoritmo de Karger, dado que el algoritmo de Karger-Stein es una optimización sobre este mismo:

Karger:

Sea el grafo G = (E, V), el procedimiento del algoritmo es el siguiente:

- Mientras |V| > t:
 - Se elige $e(u, v) \in E$ aleatoriamente.
 - Se crea un $w \in V$, el cual reemplaza tanto a u como a v en todas las aristas en las que se encuentran. Es decir, w puede tener más de una arista que vaya a un mismo vértice $q \in V$.
 - Se elimina e(u, v) de E.
 - Si existe alguna $e(v,v) \in E$ (arista de un vértice consigo mismo), se elimina.
- \blacksquare Se devuelve el grafo resultante con t vertices.

Karger-Stein:

Al algoritmo arriba descripto lo llamaremos MinCut y procederemos a explicar como funciona la optimización de Karger-Stein sobre el algoritmo original. Esta optimización utiliza un aloritmo recursivo, que llamaremos FastMinCut y que recibe como parámetro a un grafo G = (V, E). El funcionamiento es el siguiente:

- Si |V| > 8:
 - $t < --\frac{|V|}{\sqrt{2}} + 1$
 - ullet Se obtienen dos grafos, $G_1^{'}$ y $G_2^{'}$ a través de llamados a FastMinCut(MinCut(G, t)).
 - Se verifica cuál de los dos grafos recibidos tiene el menor tamaño y se devuelve.
- Sino:
 - Se hace un llamado a MinCut(G, 2). Es decir, se utiliza Karger tradicional.

2.1.2. Categoría de randomización

Es un algoritmo *Monte-Carlo* porque para algún orden de selección aleatoria de aristas, el corte obtenido *no* es el mínimo. Es decir, es rápido siempre pero no siempre da resultados correctos.

La probabilidad de que el algoritmo original devuelva un corte que sea mínimo es $p \ge {n \choose 2}^{-1}$ con n = |V|. Un dato adicional es que si el algoritmo se corre $T = {n \choose 2} \ln n$ veces, la probabilidad de no encontrar un corte mínimo es $[1-p]^T \le \frac{1}{n}$ en un tiempo $O(Tm) = O(n^2 m \log n)$ con m = |E|. En cuanto a la optimización de Karger-Stein, si se corriera el algoritmo descripto una cantidad $N = c \ln^2 n$ de veces, con c lo suficientemente grande, la probabilidad de no hallar un corte mínimo sería $P(n) = \frac{1}{\log n}$.

Esto nos dice que, dado que el algoritmo base corre en $O(n^2 \log n)$, repitiendolo tenemos un algoritmo que corre en $O(n^2 \log^3 n)$ y tiene alta probabilidad de ser correcto.

3. Algoritmos Aproximados

En esta sección se analiza una solución al problema de la suma de subconjuntos a través de un algoritmo aproximado. Para resolver este problema se utilizó la estrategia polinómica descripta en la bibliografía proporcionada por la cátedra.

3.0.1. Funcionamiento

El problema de la suma de subconjuntos (subset sum) consiste en, a partir de un conjunto S de enteros positivos y un target t también entero positivo, saber si existe algún subconjunto de S cuya suma sea exactamente t. Este problema es NP-Completo.

A partir de él se puede derivar a una aproximación completamente polinómica mediante el "recorte" o "trimming" de cada subconjunto que se va generando en el algoritmo exacto. Este mecanismo se sostiene de la idea de que si dos números pertenecen a S y tienen valores similares entonces no tiene mucho sentido mantener a ambos explícitamente (en referencia al algoritmo aproximado). Así es como mediante un parámetro de aproximación sigma tal que: $0 < \sigma < 1$

Se eliminan tantos elementos de S como sea posible ya que por cada elemento eliminado va a haber otro que pertenezca a S y lo represente. Así es como el algoritmo logra dado un conjunto S y un parámetro t devolver la mayor suma de elementos menor o igual a t. A la vez el algoritmo obtiene por parámetro a sigma, con lo cual la suma que devuelve está a un factor de $(1 + \sigma)$ del valor real.

3.0.2. Análisis del Algoritmo

La tabla a continuación muestra resultados del algoritmo con σ variables. A la vez los elementos en cada instancia y el valor de t fueron generados aleatoriamente. Z es el valor devuelto por el algoritmo.

Cuadro 1: Resultados para $N = 350$						
${ m T}$	σ	Zreal	Z real porcentual			
2213	0,94	2211	%99,9			
2246	0,46	2245	%99,9			
2182	0,65	2182	%100			
2620	0,74	2618	%99,9			
173	0,62	172	%99,4			

Como se puede apreciar, los porcentajes son extremadamente altos y caen dentro del factor esperado.

4. Ejecución de programas

Para correr cada algoritmo, se debe ejecutar el archivo principal de cada uno. Esto se hace de la siguiente forma:

En la carpeta Programación Dinámica abrir la consola y ejecutar python main.py En la carpeta Algoritmos Randomizados abrir la consola y ejecutra python main.py En la carpeta Algoritmos Aproximados abrir la consola y ejecutra python main.py