ED5340 - Data Science: Theory and Practise

L20 - Support vector machine (SVM)

Ramanathan Muthuganapathy (https://ed.iitm.ac.in/~raman)

Course web page: https://ed.iitm.ac.in/~raman/datascience.html

Moodle page: Available at https://courses.iitm.ac.in/

Decision boundary

- Find a linear separable boundary
- with a margin
- looks very similar to logistic regression.

Decision boundary

• Find a hyperplane that separates the two classes

• ℓ - the margin is the largest

Two problems
Soft margin problem
Hard margin problem

Recall vector notation

•
$$h_w(x) = w_0 x_0 + w_1 x_1 + w_1 x_2$$

•
$$\mathbf{w}^T = [w_1 \quad w_2]$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- $b = w_0$ (bias)
- $\bullet \ h_w(x) = \mathbf{w}^T \mathbf{x} + b$

Recall vector notation

•
$$h_w(x) = w_0 x_0 + w_1 x_1 + w_1 x_2$$

•
$$\mathbf{w}^T = [w_1 \quad w_2]$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- $b = w_0$ (bias)
- $\bullet \ h_w(x) = \mathbf{w}^T \mathbf{x} + b$

Constrained optimization problem

Recall vector notation

•
$$h_w(x) = w_0 x_0 + w_1 x_1 + w_1 x_2$$

•
$$\mathbf{w}^T = [w_1 \quad w_2]$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- $b = w_0$ (bias)
- $\bullet \ h_w(x) = \mathbf{w}^T \mathbf{x} + b$

Basic vector calculus

- Two vectors w and x
- What is $\mathbf{w}^T \mathbf{x}$?

Basic vector calculus

- What is $\mathbf{w}^T \mathbf{x}$?
- Dot product between the two vectors

Basic vector calculus

- What is $\mathbf{w}^T \mathbf{x}$?
- Dot product between the two vectors

$$\bullet \mathbf{w}^T \mathbf{x} = \mathscr{C} || \mathbf{w} ||$$

•
$$\mathbf{w}^T \mathbf{x} \geq 0$$

Basic vector calculus

• $\mathbf{w}^T \mathbf{x} \geq 0$

Basic vector calculus

• $\mathbf{w}^T \mathbf{x} \leq 0$

- Hyperplane
- perpendicular to w
- with constraints

Putting together

• \mathbf{w}^T . $(x^{(1)} - x^{(2)})$

•
$$\mathbf{w}^T$$
. $(x^{(1)} - x^{(2)})$

•
$$\mathbf{w}^T \cdot (x^{(1)} - x^{(2)}) = \mathcal{E} \|\mathbf{w}\|$$

•
$$\mathbf{w}^T$$
. $(x^{(1)} - x^{(2)})$

•
$$\mathbf{w}^T \cdot (x^{(1)} - x^{(2)}) = \mathcal{E} \|\mathbf{w}\|$$

•
$$(1-b) - (-1-b) = \mathcal{E} ||\mathbf{w}||$$

•
$$\mathbf{w}^T$$
. $(x^{(1)} - x^{(2)})$

•
$$\mathbf{w}^T \cdot (x^{(1)} - x^{(2)}) = \mathcal{E} ||\mathbf{w}||$$

•
$$(1-b) - (-1-b) = \mathcal{E} \|\mathbf{w}\|$$

•
$$2 = \ell \|\mathbf{w}\|$$

•
$$\mathbf{w}^T$$
. $(x^{(1)} - x^{(2)})$

•
$$\mathbf{w}^T \cdot (x^{(1)} - x^{(2)}) = \mathcal{E} ||\mathbf{w}||$$

•
$$(1-b) - (-1-b) = \mathcal{E} \|\mathbf{w}\|$$

•
$$2 = \ell \|\mathbf{w}\|$$

$$\mathcal{E} = \frac{2}{\|\mathbf{w}\|}$$

cost function

$$\mathcal{E} = \frac{2}{\|\mathbf{w}\|^2}$$

Optimization

$$\max \ell = \max \frac{2}{\|\mathbf{w}\|^2}$$

Optimization Objective

$$\frac{\|\mathbf{w}\|^2}{2}$$

Optimization Objective

$$\frac{\|\mathbf{w}\|^2}{2}$$

•
$$\mathbf{w}^T \mathbf{x} + b \le -1$$

•
$$\mathbf{w}^T \mathbf{x} + b \ge -1$$

Optimization Objective

$$\frac{\|\mathbf{w}\|^2}{2}$$

$$\bullet \ 1 - y^{(i)}(\mathbf{w}^T \mathbf{x} + b) \le 0$$

Constrained Optimization Problem,

$$\frac{min}{2}$$

•
$$y^{(i)}(\mathbf{w}^T\mathbf{x} + b) - 1 \ge 0$$

