This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 December 2001 (20.12.2001)

PCT

(10) International Publication Number WO 01/96584 A2

(51) International Patent Classification7:

C12N 15/82

(21) International Application Number: PCT/US01/18911

(22) International Filing Date: 12 June 2001 (12.06.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/210,917

12 June 2000 (12.06.2000) US

(71) Applicant (for all designated States except US): AKKADIX CORPORATION [US/US]; 4204 Sorrento Valley Blvd., Suite A, San Diego, CA 92121-1412 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MUSHEGIAN, Arcady, R. [--/US]; 3987 Santa Nella Place, San Diego, CA 92130 (US). TAYLOR, Christopher, G. [--/US]; 2910-A

Luciemaga Street, Carlsbad, CA 92009 (US). FEITEL-SON, Jerald, S. [-- /US]; 4387 Mistral Place, San Diego, CA 92130 (US). EROSHKIN, Alexy, M. [-- /US]; 3803 Ruette San Rafael, San Diego, CA 92130 (US).

- (74) Agents: LLOYD, Jeff et al.; Saliwanchik, Lloyd & Saliwanchik, Suite A-1, 2421 N.W. 41st Street, Gainesville, FL. 32606 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NH, SN, TD, TG).

[Continued on next page]

(54) Title: MATERIALS AND METHODS FOR THE CONTROL OF NEMATODES

(57) Abstract: The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides RNAi molecules, polynucleotide sequences, and methods of using these sequences in nematode control.

01/96584 42

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1

DESCRIPTION

MATERIALS AND METHODS FOR THE CONTROL OF NEMATODES

Background of the Invention

[0001] Plant parasitic nematodes, such as root-knot nematodes (Meloidogyne species) and cyst nematodes (Globodera and Heterodera), attack nearly every food crop, and are among the world's most damaging agricultural pests. For example, root-knot nematodes parasitize more than 2,000 plant species from diverse plant families and represent a tremendous threat to crop production world-wide. These biotrophic pathogens have evolved highly specialized and complex feeding relationships with their hosts.

[0002] Nematodes cause millions of dollars of damage each year to turf grasses, ornamental plants, and food crops. Efforts to eliminate or minimize damage caused by nematodes in agricultural settings have typically involved the use of soil fumigation with materials such as chloropicrin, methyl bromide, and dazomet, which volatilize to spread the active ingredient throughout the soil. Such fumigation materials can be highly toxic and may create an environmental hazard. Various non-fumigant chemicals have also been used, but these too create serious environmental problems and can be highly toxic to humans.

[0003] Some research articles have been published concerning the effects of δ-endotoxins from *B. thuringiensis* species on the viability of nematodes. See, for example, Bottjer, Bone and Gill ([1985] *Experimental Parasitology* 60:239-244); Ignoffo and Dropkin (Ignoffo, C.M., Dropkin, V.H. [1977] *J. Kans. Entomol. Soc.* 50:394-398); and Ciordia, H. and W.E. Bizzell ([1961] *Jour. of Parasitology* 47:41 [abstract]). Several patents have issued describing the control of nematodes with *B.t.* See, for example, U.S. Patent Nos. 4,948,734; 5,093,120; 5,281,530; 5,426,049; 5,439,881; 5,236,843; 5,322,932; 5,151,363; 5,270,448; 5,350,577; 5,667,993; and 5,670,365. The development of resistance by insects to *B.t.* toxins is one obstacle to the successful use of such toxins.

2

[0004] The pesticidal activity of avermectins is well known. The avermectins are disaccharide derivatives of pentacyclic, 16-membered lactones. They can be divided into four major compounds: A_{1a}, A_{2a}, B_{1a}, and B_{2a}; and four minor compounds: A_{1b}, A_{2b}, B_{1b}, and B_{2b}. The isolation and purification of these compounds is also described in U.S. Patent No. 4,310,519, issued January 12, 1982. Avermectin B_{2a} is active against the root-knot nematode, *Meloidogyne incognita*. It is reported to be 10-30 times as potent as commercial contact nematicides when incorporated into soil at 0.16-0.25 kg/ha (Boyce Thompson Institute for Plant Research 58th Annual Report [1981]; Putter, I. *et al.* [1981] "Avermectins: Novel Insecticides, Acaracides, and Nematicides from a Soil Microorganism," *Experientia* 37:963-964). Avermectin B_{2a} is not toxic to tomatoes or cucumbers at rates of up to 10 kg/ha.

[0005] Fatty acids are a class of natural compounds which occur abundantly in nature and which have interesting and valuable biological activities. Tarjan and Cheo (Tarjan, A.C., P.C. Cheo [1956] "Nematocidal Value of Some Fatty Acids," Bulletin 332, Contribution 884, Agricultural Experiment Station, University of Rhode Island, Kingston, 41 pp.) report the activity of certain fatty acids against nematodes. In 1977 Sitaramaiah and Singh (Sitaramaiah, K., R.S. Singh [1977] Indian J. Nematol. 7:58-65) also examined the response of nematodes to fatty acids. The results of these tests with short chain acids were equivocal, showing nematode-inhibitory action in some instances and stimulatory activity in other instances. Phytotoxicity of these acids was observed at higher concentrations. The short chain fatty acids were also examined by Malik and Jairajpuri (Malik, Z., M.S. Jairajpuri [1977] Nematol. medit. 12:73-79), who observed nematode toxicity at high concentrations of the fatty acids.

[0006] Notwithstanding the foregoing (some of the limitations of and problems associated with these approaches are discussed above), there is a need for safe and effective alternatives for controlling nematodes.

[0007] One method for disrupting normal cellular processes is by the use doublestranded interfering RNA (RNAi), or RNA-mediated interference (RNAi). When RNAi corresponding to a sense and antisense sequence of a target mRNA is introduced into a cell, the targeted mRNA is degraded and protein translation of that message is stopped. Although not yet fully understood, the mechanism of this post-transcriptional gene

3

silencing appears to be at least partially due to the generation of small RNA molecules, about 21 - 25 nucleotides in length, that correspond to the sense and antisense pieces of the RNAi introduced into the cell (Bass, B. L. [2000] "Double-stranded RNA as a template for gene silencing" *Cell* 101:235-238).

[0008] The specificity of this gene silencing mechanism appears to be extremely high, blocking expression only of targeted genes, while leaving other genes unaffected. A recent example of the use of RNAi; to inhibit genetic function in plants used Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana (Chuang, C.-F. and E. M. Meyerowitz [2000] "Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana" Proc. Natl. Acad. Sci. USA 97:4985-4990). Chuang et al. describe the construction of vectors delivering variable levels of RNAi targeted to each of four genes involved in floral development. Severity of abnormal flower development varied between transgenic lines. For one of the genes, AGAMOUS (AG), a strong correlation existed between declining accumulation of mRNA and increasingly severe phenotypes, suggesting that AG-specific endogenous mRNA is the target of RNAi.

Brief Summary of the Invention

[0009] The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides polynucleotide sequences that encode nematode genes, RNAi that selectively targets mRNA transcripts of these essential nematode genes, and methods of using these sequences in nematode control strategies. Such sequences for use according to the subject invention are summarized in Appendix 1. RNAi molecules disclosed herein can be used to inhibit the expression of one or more of these genes in nematodes.

4

Brief Description of the Drawings

[00010] Figure 1: Modular Binary Construct System (MBCS): A series of six, 8-base cutter restriction enzyme sites has been placed between the left and right Ti borders of a previously created kan^R/tet^R binary plasmid.

[00011] Figure 2: An exemplary shuttle vector created for cloning of useful DNA fragments by containing the multi-cloning site (MCS) of a modified Bluescript plasmid flanked by 8-base restriction sites.

[00012] Figure 3: An exemplary shuttle vector with exemplary inserts.

[00013] Figure 4: A suggested RNAi binary vector with exemplary inserts.

[00014] Figure 5: Exemplary selectable markers for MBCS.

[00015] Figure 6: Exemplary scorable markers for MCBS.

[00016] Figure 7: Exemplary RNAi binary vector.

[00017] Figure 8: Exemplary RNAi shuttle vector.

Brief Description of the Sequences

[00018] Brief Description of the Sequences can be found in Appendix I.

Detailed Disclosure of the Invention

[00019] The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides polynucleotide sequences and methods of using these sequences in nematode control strategies. A preferred method for controlling nematodes according to the subject invention provides materials and methods for controlling nematodes by using double-stranded interfering RNA (RNAi), or RNA-mediated interference (RNAi). The terms RNAi and RNAi are used interchangeably herein unless otherwise noted.

[00020] In one embodiment of the invention, RNAi molecules are provided which are useful in methods of killing nematodes and/or inhibiting their growth, development, parasitism or reproduction. RNAi molecules of the invention are also useful for the regulation of levels of specific mRNA in nematodes.

[00021] dsRNA (RNAi) typically comprises a polynucleotide sequence identical to a target gene (or fragment thereof) linked directly, or indirectly, to a polynucleotide

sequence complementary to the sequence of the target gene (or fragment thereof). The dsRNA may comprise a polynucleotide linker (stuffer) sequence of sufficient length to allow for the two polynucleotide sequences to fold over and hybridize to each other; however, a linker sequence is not necessary. The linker (stuffer) sequence is designed to separate the antisense and sense strands of RNAi significantly enough to limit the effects of steric hindrances and allow for the formation of dsRNA molecules.

[00022] RNA containing a nucleotide sequence identical to a fragment of the target gene is preferred for inhibition; however, RNA sequences with insertions, deletions, and point mutations relative to the target sequence can also be used for inhibition. Sequence identity may optimized by sequence comparison and alignment algorithms known in the art (see Gribskov and Devereux, Sequence Analysis Primer, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFTT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group). Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a fragment of the target gene transcript.

[00023] As disclosed herein, 100% sequence identity between the RNA and the target gene is not required to practice the present invention. Thus the invention has the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence.

[00024] RNA may be synthesized either *in vivo* or *in vitro*. Endogenous RNA polymerase of the cell may mediate transcription *in vivo*, or cloned RNA polymerase can be used for transcription *in vivo* or *in vitro*. For transcription from a transgene *in vivo* or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the RNA strand (or strands). Inhibition may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers); and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated; the RNA strands may or may not be capable of being translated into a polypeptide by a cell's translational apparatus. RNA

may be chemically or enzymatically synthesized by manual or automated reactions. The RNA may be synthesized by a cellular RNA polymerase or a bacteriophage RNA polymerase (e.g., T3, T7, SP6). The use and production of an expression construct are known in the art (see, for example, WO 97/32016; U.S. Pat. Nos. 5,593,874; 5,698,425; 5,712,135; 5,789,214; and 5,804,693; and the references cited therein). If synthesized chemically or by *in vitro* enzymatic synthesis, the RNA may be purified prior to introduction into the cell. For example, RNA can be purified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography, or a combination thereof. Alternatively, the RNA may be used with no or a minimum of purification to avoid losses due to sample processing. The RNA may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.

[00025] Preferably and most conveniently, RNAi can be targeted to an entire polynucleotide sequence of a gene set forth herein. Preferred RNAi molecules of the instant invention are highly homologous or identical to the polynucleotides summarized in Appendix 1. The homology is preferably greater than 90% and is most preferably greater than 95%.

[00026] Fragments of genes can also be targeted. These fragments are typically in the approximate size range of about 20 nucleotides. Thus, targeted fragments are preferably at least about 15 nucleotides. In certain embodiments, the gene fragment targeted by the RNAi molecule is about 20-25 nucleotides in length. However, other size ranges can also be used. For example, using a *C. elegans* microinjection assay, RNAi "fragments" of about 60 nucleotides with between 95 and 100% identity (to a nematode gene) were determined to cause excellent inhibition.

[00027] Thus, RNAi molecules of the subject invention are not limited to those that are targeted to the full-length polynucleotide or gene. The nematode gene product can be inhibited with a RNAi molecule that is targeted to a portion or fragment of the exemplified polynucleotides; high homology (90-95%) or identity is also preferred, but not necessarily essential, for such applications.

[00028] The polynucleotide sequences identified in Appendix A and shown in the Sequence ID listing are from genes encoding nematode proteins having the functions

7

shown in Appendix 1. The genes exemplified herein are representative of particular classes of proteins which are preferred targets for disruption according to the subject invention. These classes of proteins include, for example, proteins involved in ribosome assembly; neurol transmitter receptors and ligands; electron transport proteins; metabolic pathway proteins; and protein and polynucleotide production, folding, and processing proteins.

[00029] Genetic regulatory sequences, such as promoters, enhancers, and terminators, can be used in genetic constructs to practice the subject invention. Such constructs themselves can also be used for nematode control. Various constructs can be used to achieve expression in specific plant tissues (by using root specific promoters, for example) and/or to target specific nematode tissues (by using targeting elements or adjacent targeting sequences, for example).

[00030] In a specific embodiment of the subject invention, plant cells, preferably root cells, are genetically modified to produce at least one RNAi that is designed to be taken up by nematodes during feeding to block expression (or the function of) of a target gene. As is known in the art, RNAi can target and reduce (and, in some cases, prevent) the translation of a specific gene product. RNAi can be used to reduce or prevent message translation in any tissue of the nematode because of its ability to cross tissue and cellular boundaries. Thus, RNAi that is contacted with a nematode by soaking, injection, or consumption of a food source will cross tissue and cellular boundaries. RNAi can also be used as an epigenetic factor to prevent the proliferation of subsequent generations of nematodes.

[00031] Nematode polynucleotide sequences disclosed herein demonstrate conserved nucleotide motifs among different nematode genera. Conserved nucleotide motifs strongly suggest that these sequences are associated with viability and/or parasitism and are functionally conserved and expressed in both *Meloidogyne incognita* (root-knot nematode) and *Globodera rostochiensis* and *Globdera pallids* (potato cyst nematodes). The use of these polynucleotides, and RNAi inhibitors thereof, is advantageous because such RNAi can be designed to have broad RNAi specificity and are thus useful for controlling a large number of plant parasitic nematodes *in planta*. Because the genes identified in this disclosure are associated with nematode survival

8

and/or parasitism, RNAi inhibition of these genes (arising from contacting nematodes with compositions comprising RNAi molecules) prevents and/or reduces parasitic nematode growth, development, and or parasitism.

[00032] Methods of the subject invention include the transformation of plant cells with genes or polynucleotides of the present invention, which can be used to produce nematode inhibitors or RNAi in the plants. In one embodiment, the transformed plant or plant tissue can express RNAi molecules encoded by the gene or polynucleotide sequence introduced into the plant. Other nematode inhibitors contemplated by the invention include antisense molecules specific to the polynucleotide sequences disclosed herein. The transformation of plants with genetic constructs disclosed herein can be accomplished using techniques well known to those skilled in the art and can involve modification of the gene(s) to optimize expression in the plant to be made resistant to nematode infection and infestation. Furthermore, it is known in the art that many tissues of the transgenic plants (such as the roots) can be targeted for transformation.

[00033] RNA-mediated interference (RNAi) of gene expression. Several aspects of root-knot nematode biology make classical genetic studies difficult with this organism. Since root-knot nematodes reproduce by obligatory mitotic parthenogenesis, the opportunity to perform genetic crosses is not available. Microinjection of RNAi can be used to manipulate gene expression in *C. elegans* (Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. [1998] "Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*" Nature 391:806-811). Microinjecting (into adult nematodes) RNAi can turn off specific genes in progeny worms complementary to the coding region of the genes. Moreover, gene inhibition occurs in progeny when RNAi is injected into the body cavity of the adult, indicating the ability of the RNAi to cross cellular boundaries. This RNAi injection method provides a molecular genetic tool that allows for analysis of gene function in root-knot nematodes.

[00034] RNAi can be taken up by *C. elegans* by simply soaking the nematodes in a solution RNAi. This results in targeted inhibition of gene expression in the nematode (Maeda, I., Y. Kohara, M. Yamamoto and A. Sugimoto [1999] "RNAi screening with a non-redundant cDNA set" International Worm Meeting, Madison, WI, abstract 565). Nematodes fed *E. coli* expressing RNAi also demonstrate targeted and

9

heritable inhibition of gene expression (Sarkissian, M., H. Tabara and C. C. Mello [1999] "A mut-6 screen for RNAi deficient mutants" International Worm Meeting, Madison, WI, abstract 741; Timmons, l. and A. Fire [1998] "Specific interference by ingested dsRNA" *Nature* 395:854; WO 99/32619, hereby incorporated by reference in its entirety).

[00035] Accordingly, one aspect of the instant invention is directed to the control of nematodes comprising contacting nematodes with compositions comprising RNAi molecules specific to the nematode genes disclosed herein. The contacting step may include soaking the nematodes in a solution containing RNAi molecules, feeding nematodes RNAi molecules contained in microbes or plant cells upon which the nematode feeds, or injecting nematodes with RNAi. Nematodes can also be "contacted" and controlled by RNAi expressed in plant tissues that would be consumed, ingested, or frequented by nematodes.

[00036] The RNAi molecules provided to the nematodes may be specific to a single gene. A "cocktail" of RNAi molecules specific to various segments of a single gene can also be used. In addition, a "multigene cocktail" of RNAi molecules specific to two or more genes (or segments thereof) may be applied to the nematodes according to the subject invention.

[00037] In addition to RNAi uptake mediated by transgenic plants, nematodes can be directly transformed with RNAi constructs of cDNAs encoding secretory or other essential proteins to reduce expression of the corresponding gene. The transgenic animals can be assayed for inhibition of gene product using immunoassays or for reduced virulence on a host. Progeny of affected worms can also be assayed by similar methods.

[00038] Procedures that can be used for the preparation and injection of RNAi include those detailed by Fire et al., (1998; ftp://ciw1.ciwemb.edu). Root-knot nematodes can be routinely monoxenically cultured on Arabidopsis thaliana roots growing on Gamborg's B-5/Gelrite® media. This nematode-host pathosystem is ideally suited for these microinjection experiments since limited root galling results in the parasitic stages (late J2 through adult females) developing outside of the root for easy accessibility for injecting. Another advantage is the parthenogenic reproduction of root-knot nematodes, which makes fertilization by males unnecessary for egg production. The RNAi can be injected into the body cavity of parasitic stages of root-knot nematodes

10

feeding on A. thaliana roots using microinjection. Control nematodes can be injected in parallel with only buffer or an unrelated RNAi. Injected nematodes can be monitored for egg production, and the eggs can be collected for the assays described below. Female root-knot nematodes will typically survive and lay more than 250 eggs following 1 μ l injection of buffer.

[00039] Alternatively, methods are available for microinjecting materials directly into the plant root cells upon which nematodes feed: giant cells or syncytial cells (Böckenhoff, A. and F.M.W. Grundler [1994] "Studies on the nutrient uptake by the beet cyst nematode *Heterodera schachtii* by *in situ* microinjection of fluorescent probes into the feeding structures in *Arabidopsis thaliana*" *Parasitology* 109:249-254). This provides an excellent test system to screen RNAi molecules for efficacy by directly inhibiting growth and development of the nematode feeding upon the microinjected plant cell, or by reducing fecundity and the ability of said nematode to generate pathogenic or viable progeny.

[00040] There are a number of strategies that can be followed to assay for RNAi gene interference. Inhibition of gene expression by RNAi inhibits the accumulation of the corresponding secretory protein in the esophageal gland cells of transgenic J2 hatched from the eggs produced by the injected nematodes. In the first assay, polyclonal antibodies to the target gene product can be used in immunolocalization studies (Hussey, R. S. [1989] "Monoclonal antibodies to secretory granules in esophageal glands of Meloidogyne species J. Nematol. 21:392-398; Borgonie, G. E. van Driessche, C. D. Link, D. de Waele, and A. Coomans [1994] "Tissue treatment for whole mount internal lectin staining in the nematodes Caenorhabditis elegans, Panagrolaimus superbus and Acrobeloides maximus Histochemistry 101:379-384) to monitor the synthesis of the target protein in the gland cells of progeny of the injected nematodes, or in any other nematode tissue that fails to express the essential targeted gene. Interference of endogenous gene activity by the RNAi eliminates binding of the antibodies to secretory granules in the glands, or any other target tissue, of the transgenic nematodes, and can be monitored by these in situ hybridization experiments. Control nematodes injected only with the injection buffer can be processed similar to the RNAi treated nematodes.

11

[00041] Another assay is designed to determine the effect of the RNAi on reducing the virulence of J2 progeny of the injected females. Egg masses from injected females can be transferred singly to A. thaliana plates to assess the ability of the transgenic J2 to infect roots. The J2 hatching from the eggs transferred to the plates can be monitored; after 25 days the number of galls with egg laying females can be recorded. The A. thaliana roots can also be stained with acid fuschin to enumerate the number of nematodes in the roots. Egg masses from nematodes injected only with the injection buffer can be handled similarly and used as controls. The treatments can be replicated, and the root infection data can be analyzed statistically. These experiments can be used to assess the importance of the target genes in root-knot nematode's virulence or viability. By staining the J2 progeny of the injected females with the antibodies, it can be determined whether RNAi blocks expression of the targeted gene.

[00042] Additional uses of polynucleotides. The polynucleotide sequences exemplified herein can be used in a variety of ways. These polynucleotides can be used in assays for additional polynucleotides and additional homologous genes, and can be used in tracking the quantitative and temporal expression of parasitism genes in nematodes. These polynucleotides can be cloned into microbes for production and isolation of their gene products. Among the many uses of the isolated gene product is the development of additional inhibitors and modifiers. The protein products of the subject polynucleotides can also be used as diagnostic tools. For example, proteins encoded by the parasitism genes, as identified herein, can be used in large scale screenings for additional peptide inhibitors. The use of peptide phage display screening is one method that can be used in this regard. Thus, the subject invention also provides new biotechnological strategies for managing nematodes under sustainable agricultural conditions.

[00043] Antisense technologies can also be used for phytopathogenic nematode control. Antisense technology can be used to interfere with expression of the disclosed endogenous nematode genes. Antisense technology can also be used to alter the components of plants used as targets by the nematodes. For example, the transformation of a plant with the reverse complement of an endogenous gene encoded by a polynucleotide exemplified herein can result in strand co-suppression and gene silencing

12

or inhibition of a target involved in the nematode infection process. Thus, the subject invention includes transgenic plants (which are preferably made nematode-resistant in this manner, and other organisms including microbes and phages) comprising RNAi or antisense molecules specific to any of the polynucleotides identified herein.

[00044] Polynucleotide probes. DNA possesses a fundamental property called base complementarity. In nature, DNA ordinarily exists in the form of pairs of antiparallel strands, the bases on each strand projecting from that strand toward the opposite strand. The base adenine (A) on one strand will always be opposed to the base thymine (T) on the other strand, and the base guanine (G) will be opposed to the base cytosine (C). The bases are held in apposition by their ability to hydrogen bond in this specific way. Though each individual bond is relatively weak, the net effect of many adjacent hydrogen bonded bases, together with base stacking effects, is a stable joining of the two complementary strands. These bonds can be broken by treatments such as high pH or high temperature, and these conditions result in the dissociation, or "denaturation," of the two strands. If the DNA is then placed in conditions which make hydrogen bonding of the bases thermodynamically favorable, the DNA strands will anneal, or "hybridize," and reform the original double-stranded DNA. If carried out under appropriate conditions, this hybridization can be highly specific. That is, only strands with a high degree of base complementarity will be able to form stable double-stranded structures. The relationship of the specificity of hybridization to reaction conditions is well known. hybridization may be used to test whether two pieces of DNA are complementary in their base sequences. It is this hybridization mechanism which facilitates the use of probes of the subject invention to readily detect and characterize DNA sequences of interest.

[00045] The specifically exemplified polynucleotides of the subject invention can themselves be used as probes. Additional polynucleotide sequences can be added to the ends of (or internally in) the exemplified polynucleotide sequences so that polynucleotides that are longer than the exemplified polynucleotides can also be used as probes. Thus, isolated polynucleotides comprising one or more of the exemplified sequences are within the scope of the subject invention. Polynucleotides that have less nucleotides than the exemplified polynucleotides can also be used and are contemplated within the scope of the present invention. For example, for some purposes, it might be

13

useful to use a conserved sequence from an exemplified polynucleotide wherein the conserved sequence comprises a portion of an exemplified sequence. Thus, polynucleotides of the subject invention can be used to find additional, homologous (wholly or partially) genes.

[00046] Probes of the subject invention may be composed of DNA, RNA, or PNA (peptide nucleic acid). The probe will normally have at least about 10 bases, more usually at least about 17 bases, and may have about 100 bases or more. Longer probes can readily be utilized, and such probes can be, for example, several kilobases in length. The probe sequence is designed to be at least substantially complementary to a portion of a gene encoding a protein of interest. The probe need not have perfect complementarity to the sequence to which it hybridizes. The probes may be labeled utilizing techniques that are well known to those skilled in this art.

[00047] One approach for the use of the subject invention as probes entails first identifying DNA segments that are homologous with the disclosed nucleotide sequences using, for example, Southern blot analysis of a gene bank. Thus, it is possible, without the aid of biological analysis, to know in advance the probable activity of many new polynucleotides, and of the individual gene products expressed by a given polynucleotide. Such an analysis provides a rapid method for identifying commercially valuable compositions.

[00048] One hybridization procedure useful according to the subject invention typically includes the initial steps of isolating the DNA sample of interest and purifying it chemically. Either lysed nematodes or total fractionated nucleic acid isolated from nematodes can be used. Cells can be treated using known techniques to liberate their DNA (and/or RNA). The DNA sample can be cut into pieces with an appropriate restriction enzyme. The pieces can be separated by size through electrophoresis in a gel, usually agarose or acrylamide. The pieces of interest can be transferred to an immobilizing membrane.

[00049] The particular hybridization technique is not essential to the subject invention. As improvements are made in hybridization techniques, they can be readily applied.

[00050] The probe and sample can then be combined in a hybridization buffer solution and held at an appropriate temperature until annealing occurs. Thereafter, the membrane is washed free of extraneous materials, leaving the sample and bound probe molecules typically detected and quantified by autoradiography and/or liquid scintillation counting. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong non-covalent bond between the two molecules, it can be reasonably assumed that the probe and sample are essentially identical or very similar. The probe's detectable label provides a means for determining in a known manner whether hybridization has occurred.

[00051] In the use of the nucleotide segments as probes, the particular probe is labeled with any suitable label known to those skilled in the art, including radioactive and non-radioactive labels. Typical radioactive labels include ³²P, ³⁵S, or the like. Non-radioactive labels include, for example, ligands such as biotin or thyroxine, as well as enzymes such as hydrolases or peroxidases, or the various chemiluminescers such as luciferin, or fluorescent compounds like fluorescein and its derivatives. In addition, the probes can be made inherently fluorescent as described in International Application No. WO 93/16094.

[00052] Various degrees of stringency of hybridization can be employed. The more stringent the conditions, the greater the complementarity that is required for duplex formation. Stringency can be controlled by temperature, probe concentration, probe length, ionic strength, time, and the like. Preferably, hybridization is conducted under moderate to high stringency conditions by techniques well known in the art, as described, for example, in Keller, G.H., M.M. Manak (1987) *DNA Probes*, Stockton Press, New York, NY., pp. 169-170.

[00053] As used herein "moderate to high stringency" conditions for hybridization refers to conditions that achieve the same, or about the same, degree of specificity of hybridization as the conditions "as described herein." Examples of moderate to high stringency conditions are provided herein. Specifically, hybridization of immobilized DNA on Southern blots with ³²P-labeled gene-specific probes was performed using standard methods (Maniatis *et al.*). In general, hybridization and subsequent washes were carried out under moderate to high stringency conditions that

allowed for detection of target sequences with homology to sequences exemplified herein. For double-stranded DNA gene probes, hybridization was carried out overnight at 20-25° C below the melting temperature (Tm) of the DNA hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. The melting temperature is described by the following formula from Beltz *et al.* (1983):

[00054] Tm=81.5°C+16.6 Log[Na+]+0.41(%G+C)-0.61(%formamide)-600/length of duplex in base pairs.

Washes are typically carried out as follows:

- Twice at room temperature for 15 minutes in 1X SSPE, 0.1%
 SDS (low stringency wash).
- (2) Once at Tm-20°C for 15 minutes in 0.2X SSPE, 0.1% SDS (moderate stringency wash).

[00055] For oligonucleotide probes, hybridization was carried out overnight at 10-20°C below the melting temperature (Tm) of the hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. Tm for oligonucleotide probes was determined by the following formula from Suggs *et al.* (1981):

[00056] Tm (°C)=2(number T/A base pairs) +4(number G/C base pairs)

[00057] Washes were typically carried out as follows:

[00058] (1) Twice at room temperature for 15 minutes 1X SSPE, 0.1% SDS (low stringency wash).

[00059] (2) Once at the hybridization temperature for 15 minutes in 1X SSPE, 0.1% SDS (moderate stringency wash).

[00060] In general, salt and/or temperature can be altered to change stringency. With a labeled DNA fragment of greater than about 70 or so bases in length, the following conditions can be used:

Low:

1 or 2X SSPE, room temperature

Low:

1 or 2X SSPE, 42°C

Moderate:

0.2X or 1X SSPE, 65°C

High:

0.1X SSPE, 65°C.

[00061] Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid, and, as noted above, a certain degree of mismatch

16

can be tolerated. Therefore, polynucleotide sequences of the subject invention include mutations (both single and multiple), deletions, and insertions in the described sequences, and combinations thereof, wherein said mutations, insertions, and deletions permit formation of stable hybrids with a target polynucleotide of interest. Mutations, insertions, and deletions can be produced in a given polynucleotide sequence using standard methods known in the art. Other methods may become known in the future.

[00062] The mutational, insertional, and deletional variants of the polynucleotide sequences of the invention can be used in the same manner as the exemplified polynucleotide sequences so long as the variants have substantial sequence similarity with the original sequence. As used herein, substantial sequence similarity refers to the extent of nucleotide similarity that is sufficient to enable the variant polynucleotide to function in the same capacity as the original sequence. Preferably, this similarity is greater than 50%; more preferably, this similarity is greater than 75%; and most preferably, this similarity is greater than 90%. The degree of similarity needed for the variant to function in its intended capacity will depend upon the intended use of the sequence. It is well within the skill of a person trained in this art to make mutational, insertional, and deletional mutations that are designed to improve the function of the sequence or otherwise provide a methodological advantage.

[00063] PCR technology. Polymerase Chain Reaction (PCR) is a repetitive, enzymatic, primed synthesis of a nucleic acid sequence. This procedure is well known and commonly used by those skilled in this art (see U.S. Patent Nos. 4,683,195; 4,683,202; and 4,800,159; Saiki et al., 1985). PCR is based on the enzymatic amplification of a DNA fragment of interest that is flanked by two oligonucleotide primers that hybridize to opposite strands of the target sequence. The primers are oriented with the 3' ends pointing towards each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences, and extension of the annealed primers with a DNA polymerase result in the amplification of the segment defined by the 5' ends of the PCR primers. Since the extension product of each primer can serve as a template for the other primer, each cycle essentially doubles the amount of DNA fragment produced in the previous cycle. This results in the exponential accumulation of the specific target fragment, up to several million-fold in a

17

few hours. By using a thermostable DNA polymerase such as *Taq* polymerase, which is isolated from the thermophilic bacterium *Thermus aquaticus*, the amplification process can be completely automated. Other enzymes that can be used are known to those skilled in the art.

[00064] The polynucleotide sequences of the subject invention (and portions thereof such as conserved regions and portions that serve to distinguish these sequences from previously-known sequences) can be used as, and/or used in the design of, primers for PCR amplification. In performing PCR amplification, a certain degree of mismatch can be tolerated between primer and template. Therefore, mutations, deletions, and insertions (especially additions of nucleotides to the 5' end) of the exemplified ppolynucleotides can be used in this manner. Mutations, insertions and deletions can be produced in a given primer by methods known to an ordinarily skilled artisan.

[00065] The polynucleotide sequences of the instant invention may be "operably linked" to regulatory sequences such as promoters and enhancers. Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is "operably linked" to DNA encoding a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is "operably linked" to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is "operably linked" to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

[00066] <u>Polynucleotides and proteins</u>. Polynucleotides of the subject invention can be defined according to several parameters. One characteristic is the biological activity of the protein products as identified herein. The proteins and genes of the subject invention can be further defined by their amino acid and nucleotide sequences. The sequences of the molecules can be defined in terms of homology to certain exemplified sequences as well as in terms of the ability to hybridize with, or be amplified by, certain

18

exemplified probes and primers. Additional primers and probes can readily be constructed by those skilled in the art such that alternate polynucleotide sequences encoding the same amino acid sequences can be used to identify and/or characterize additional genes. The proteins of the subject invention can also be identified based on their immunoreactivity with certain antibodies.

[00067] The polynucleotides and proteins of the subject invention include portions, fragments, variants, and mutants of the full-length sequences as well as fusions and chimerics, so long as the encoded protein retains the characteristic biological activity of the proteins identified herein. As used herein, the terms "variants" or "variations" of genes refer to nucleotide sequences that encode the same proteins or which encode equivalent proteins having equivalent biological activity. As used herein, the term "equivalent proteins" refers to proteins having the same or essentially the same biological activity as the exemplified proteins.

[00068] It will be apparent to a person skilled in this art that genes within the scope of the subject invention can be identified and obtained through several means. The specific genes exemplified herein may be obtained from root-knot nematodes. Genes, or portions or variants thereof, may also be artificially synthesized by, for example, a gene synthesizer.

[00069] Variations of genes may be readily constructed using standard techniques such as site-directed mutagenesis and other methods of making point mutations and by DNA shuffling, for example. In addition, gene and protein fragments can be made using commercially available exonucleases, endonucleases, and proteases according to standard procedures. For example, enzymes such as *Bal31* can be used to systematically cut off nucleotides from the ends of genes. In addition, genes that encode fragments may be obtained using a variety of restriction enzymes. Proteases may be used to directly obtain active fragments of these proteins. Of course, molecular techniques for cloning polynucleotides and producing gene constructs of interest are also well known in the art. *In vitro* evaluation techniques, such as MAXYGEN's "Molecular Breeding" can also be applied to practice the subject invention.

[00070] Other molecular techniques can also be applied using the teachings provided herein. For example, antibodies raised against proteins encoded by

19

polynucleotides disclosed herein can be used to identify and isolate proteins from a mixture of proteins. Specifically, antibodies may be raised to the portions of the proteins that are conserved and most distinct from other proteins. These antibodies can then be used to specifically identify equivalent proteins by immunoprecipitation, enzyme linked immunosorbent assay (ELISA), or Western blotting. Antibodies to proteins encoded by polynucleotides disclosed herein, or to equivalent proteins, can readily be prepared using standard procedures known in the art. The genes that encode these proteins can be obtained from various organisms.

[00071] Because of the redundancy of the genetic code, a variety of different DNA sequences can encode the amino acid sequences encoded by the polynucleotide sequences disclosed herein. It is well within the skill of a person trained in the art to create these alternative DNA sequences encoding proteins having the same, or essentially the same, amino acid sequence. These variant DNA sequences are within the scope of the subject invention. As used herein, reference to "essentially the same" sequence refers to sequences that have amino acid substitutions, deletions, additions, or insertions that do not materially affect biological activity. Fragments retaining the characteristic biological activity are also included in this definition.

[00072] A further method for identifying genes and polynucleotides (and the proteins encoded thereby) of the subject invention is through the use of oligonucleotide probes. Probes provide a rapid method for identifying genes of the subject invention. The nucleotide segments that are used as probes according to the invention can be synthesized using a DNA synthesizer and standard procedures.

[00073] The subject invention comprises variant or equivalent proteins (and nucleotide sequences coding for equivalent proteins or for inhibitors of the genes encoding such proteins) having the same or similar biological activity of inhibitors or proteins encoded by the exemplified polynucleotides. Equivalent proteins will have amino acid similarity with an exemplified protein (or peptide). The amino acid and/or nucleotide identity will typically be greater than 60%. Preferably, the identity will be greater than 75%. More preferably, the identity will be greater than 80%, and even more preferably greater than 90%. Most preferably, the identity will be greater than 95%. RNAi molecules will also have corresponding identities in these preferred ranges. These

identities are as determined using standard alignment techniques for determining amino acid and/or nucleotide identity. The identity/similarity will be highest in critical regions of the protein or gene including those regions that account for biological activity or that are involved in the determination of three-dimensional configuration that is ultimately responsible for the biological activity. In this regard, certain amino acid substitutions are acceptable and can be expected if these substitutions are in regions which are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Below is a list of examples of amino acids belonging to various classes

Class of Amino Acid	Examples of Amino Acids	
Nonpolar	Ala, Val, Leu, Ile, Pro, Met, Phe, Trp	
Uncharged Polar	Gly, Ser, Thr, Cys, Tyr, Asn, Gln	
Acidic	. Asp, Glu	
Basic	Lys, Arg, His	

[00074] In some instances, non-conservative substitutions can also be made. The critical factor is that these substitutions must not detract from the ability to manage nematode-caused diseases.

[00075] An "isolated" or "substantially pure" nucleic acid molecule or polynucleotide is a polynucleotide that is substantially separated from other polynucleotide sequences which naturally accompany a nucleic acid molecule. The term embraces a polynucleotide sequence which was removed from its naturally occurring environment by the hand of man. This includes recombinant or cloned DNA isolates,

chemically synthesized analogues and analogues biologically synthesized by heterologous systems. An "isolated" or "purified" protein, likewise, is a protein removed from its naturally occurring environment.

[00076] Recombinant hosts. The genes, antisense, and RNAi polynucleotides within the scope of the present invention can be introduced into a wide variety of microbial or plant hosts. Plant cells can be transformed (made recombinant) in this manner. Microbes, for example, can also be used in the application of RNAi molecules of the subject invention in view of the fact that microbes are a food source for nematodes

[00077] There are many methods for introducing a heterologous gene or polynucleotide into a host cell or cells under conditions that allow for stable maintenance and expression of the gene or polynucleotide. These methods are well known to those skilled in the art. Synthetic genes, such as, for example, those genes modified to enhance expression in a heterologous host (such as by preferred codon usage or by the use of adjoining, downstream, or upstream enhancers) that are functionally equivalent to the genes (and which encode equivalent proteins) can also be used to transform hosts. Methods for the production of synthetic genes are known in the art.

[00078] Where the gene or polynucleotide of interest is introduced via a suitable vector into a microbial host, and said host is applied to the environment in a living state, certain host microbes are preferred. Certain microorganism hosts are known to occupy the phytosphere, phylloplane, phyllosphere, rhizosphere, and/or rhizoplane of one or more crops of interest. These microorganisms can be selected so as to be capable of successfully competing in the particular environment (crop and other habitats) with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing a polypeptide of interest, and, desirably, provide for improved protection of the protein/peptide from environmental degradation and inactivation.

[00079] A large number of microorganisms is known to inhabit the phylloplane (the surface of the plant leaves) and/or the rhizosphere (the soil surrounding plant roots) of a wide variety of important crops. These microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., genera Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylophilius, Agrobacterium, Acetobacter, Lactobacillus,

22

Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g., genera Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are the pigmented microorganisms.

[00080] Methods of the subject invention also include the transformation of plants or plant tissue with genes which encode the RNAi molecules of the present invention. In one embodiment, the transformed plant or plant tissue expresses antisense RNA and/or RNAi. Transformation of cells can be made by those skilled in the art using standard techniques. Materials necessary for these transformations are disclosed herein or are otherwise readily available to the skilled artisan.

[00081] Additional methods and formulations for control of pests. Control of nematode pests using the RNAi molecules of the instant invention can be accomplished by a variety of additional methods that would be apparent to those skilled in the art having the benefit of the subject disclosure. A "cocktail" of two or more RNAi molecules can be used to disrupt one or more of the genes identified herein. The "cocktail" of RNAi molecules may be specific to segments of a single gene or the entire gene. A "multigene cocktail" of RNAi molecules specific to two or more genes (or segments thereof) is also encompassed by the instant invention. In another embodiment of the instant invention, the disclosed RNAi molecules, cocktails, and/or multigene cocktails thereof, may be used in conjunction with other known nematode control agents and methodologies. Such cocktails can be used to combat the development of resistance by nematodes to a certain inhibitor or inhibitors.

[00082] Compositions of the subject invention which comprise RNAi molecules and carriers can be applied, themselves, directly or indirectly, to locations frequented by, or expected to be frequented by, nematodes. Microbial hosts which were transformed with polynucleotides that encode RNAi molecules, express said RNAi molecules, and which colonize roots (e.g., Pseudomonas, Bacillus, and other genera) can be applied to the sites of the pest, where they will proliferate and be ingested. The result is control of the pest. Thus, methods of the subject invention include, for example, the application of recombinant microbes to the pests (or their locations). The recombinant microbes may also be transformed with more than one RNAi molecule thereby delivering a "cocktail" of RNAi molecules to the nematode pests. A carrier may be any substance suitable for

delivering the RNAi molecules to the nematode. Acceptable carriers are well known in the art and also are commercially available. For example, such acceptable carriers are described in E.W. Martin's *Remington's Pharmaceutical Science*, Mack Publishing Company, Easton, PA.

[00083] All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification.

[00084] Following are examples that illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

Example 1- Production of Hairy Roots for RNAi Testing

[00085] A hairy root assay system was developed for testing the anti-nematode activity of RNAi molecules.

[00086] Agrobacterium rhizogenes: Several Agrobacterium rhizogenes strains produce hairy roots on a variety of plant species. A. rhizogenes strains, A4, 15834, 8196 and LBA4404 demonstrate hairy root development on tomato and sugar beet, with A4 being the most efficient. The A. rhizogenes strain K599 demonstrated very efficient formation on transgenic soybean hairy roots and was also effective on sugar beet and Arabidopsis. However, stain K599 failed to produce hairy roots on tomato tissues possibly due to hyper-virulence.

[00087] Hairy root production: Transgenic hairy roots were identified by stable GUS expression in tomato, sugar beet, soybean and *Arabidopsis*. The construct pAKK1401 (pNOS / NPT-II / tNOS // pSU / GUS / tNOS) was used to produce hairy roots when transformed into *A. rhizogenes* strains A4 or K599. Transgenic roots were identified by GUS expression.

Example 2 — Protocol for Electro-competent Agrobacterium and Electroporation [00088] Electro-competent Agrobacterium Protocol:

24

- [00089] 1. Grow Agrobacterium overnight in 5 mls LB + antibiotics at 30°C on shaker (for Agrobacterium rhizogenes strain K599 no antibiotics are needed).
- [00090] 2. Use the 5 mls of overnight culture to inoculate 500 mls LB + antibiotics at 30°C on shaker. Grow overnight.
- [00091] 3. Add liquid culture in eight 50 ml polypropylene orange cap tubes.
- [00092] 4. Centrifuge 10 min., 4000 rpm, 4°C.
- [00093] 5. Resuspend cells in each tube with 20 mls 10% glycerol (on ice)
- [00094] 6. Centrifuge 10 min., 4000 rpm, 4°C.
- [00095] 7. Resuspend cells in each tube with 10 mls 10% glycerol (on ice).
- [00096] 8. Centrifuge 10 min., 4000 rpm, 4°C.
- [00097] 9. Resuspend cells in each tube with 2 mls 10% glycerol (on ice).
- [00098] 10. Aliquot 50 µl into cold Eppendorf tube and place onto dry ice.
- [00099] 11. Store electro-competent cells at -80°C. These cells can be used for up to two years.

[000100] Electroporations:

- [000101] 1. Add 1 μl to 5 μl of DNA (resuspended in H₂O and not TE or other buffer) to 50 μl of Agrobacterium electrocompetent cells and mix.
- [000102] 2. Transfer 20 µl of DNA/Agrobacterium mix to cuvette.
- [000103] 3. Electroporate:
- $25\mu F$, $400~\Omega$ resistance, 2.5 volts (0.2cm cuvette) or 1.8 volts (0.1cm cuvette for BioRad electroporator. $330~\mu F$, $4000~k\Omega$, low w, fast charge rate for BRL Electroporator.
 - [000104] 4. Add 1ml of LB and transfer to Eppendorf tube.
 - [000105] 5. Shake at 30°C for 2 hours.
 - [000106] 6. Centrifuge down cells (2 min. 14 krpm).
- [000107] 7. Plate all onto LB + antibiotics (most Agrobacterium strains are naturally streptomycin resistant).

Example 3 - Protocol for Production of Transgenic Hairy Roots on Soybean

[000108] Seed Sterilization. Rinse the soybean seed with 70% ETOH for 2-5 min. Remove and add 20% Clorox and shake for 20-25 min. Rinse 3X with sterile water. Plate the seed, 5 seed per plate, onto ½ MSB5 + 2% sucrose + 0.2% gel (referred to as ½ MSB5). Place seed into chamber at 25C, 16/8 photoperiod for 5-7 day (depending on genotype) germination period. After 1 week seedlings can be placed into cold room for longer storage if necessary (not to exceed 2 weeks).

[000109] Agrobacterium Preparation. For Agrobacterium rhizogenes strain K599, take a small sample from frozen glycerol into 25-50 ml of NZYM media with 50 mg/L kanamycin in a 125-250 ml Erlenmyer flask. Place onto shaker at 28-30 °C for 16-20 hours. Pour sample into centrifuge tube and centrifuge the bacterium at 4000 rpm for 10 min. Pour off supernatant and re-suspend the pellet with an equal volume of liquid ½ MSB5 + 200 µM acetosyringone. Use pipette to re-suspend the pellet and homogenize the sample (remove all clumps). To determine O.D., prepare a 1:10 dilution by putting 900 µl ½ MSB5 into cuvette and add 100 µl of bacterial sample. Determine the O.D.660 and calculate the volume needed to adjust (dilute) OD to approximately 0.2 for inoculation. Check final O.D.

[000110] Explant Preparation and inoculation. Place a sterile filter paper onto plates of 1/2 MSB5. Cut soybean cotyledons just above the shoot apex and place onto plate. Lightly scar the cotyledon's abaxial surface (flat side, upper surface that reaches toward sun) with a scalpel blade. Cut each cotyledon transversely into 2-3 pieces (no smaller than 1 cm). Add approximately 10 ml of prepared bacterial solution to each plate and allow cotyledons to incubate for 1 hr. Remove the bacteria using a vacuum aspirator fitted with sterile pipette tip, ensure that there is no standing liquid. Orient all explants with abaxial surface up and wrap plates for a 3 day co-culture, 25°C in light (16/8 photoperiod).

[000111] Hairy root selection and maintenance. After 3 day co-culture, wash explants with liquid ½ MSB5 + 500 mg/L carbenicillin. Transfer the explants abaxial side up to selection media, ½ MSB5 supplemented with 500 mg/L carbenicillin and 200 mg/L kanamycin. Roots should develop in approximately 2-3 weeks. The roots will form primarily from the cut vascular bundles with other roots developing from the small cuts on cotyledon surface. Remove roots (>1cm in length) and place onto replica media with

transfers to fresh media every 2 weeks to prevent Agrobacterium overgrowth. After 6-8 weeks on selection the roots can be moved to media without kanamycin, however carbenicillin must remain in media for several months for continued suppression of Agrobacterium. At this stage roots can be used for testing RNAi for nematode control. Sterilized nematodes can be added and observed for RNAi affects.

Example 4 - Testing of RNAi for Plant Parasitic Nematode Control.

[000112] Various types of nematodes can be used in appropriate bioassays. For example, Caenorhabditis elegans, a bacterial feeding nematode, and plant parasitic nematodes can be used for bioassay purposes. Examples of plant parasitic nematodes include a migratory endo-parasite, Pratylenchus scribneri (lesion), and two sedentary endo-parasites, Meloidogyne javanica (root-knot) and Heterodera schachtii (cyst).

[000113] C. elegans: RNAi vectors can be tested through expression of the RNAi in E. coli. C. elegans are fed E. coli and assayed for their growth by measuring growth of nematodes, production of eggs and viability of offspring. Another approach is to inject dsRNA directly into living nematodes. Finally, soaking nematodes in a solution of in vitro-prepared RNAi can quickly establish efficacy of treatment.

[000114] P. scribneri: The P. scribneri in vitro feeding assay uses a corn root exudate (CRE) as a feeding stimulus and both the red dye Amaranth or potassium, arsenate as feeding indicators. Feeding is confirmed after seven days by the presence of red stained intestinal cells in live worms exposed to the Amaranth or death of worms exposed to arsenate. This bioassay is used to test soluble toxins or RNAi. P. scribneri has also been cultured on wild type roots of corn, rice and Arabidopsis, and on A. rhizogenes-induced hairy roots of sugar beet and tomato. P. scribneri is very valuable in evaluating transgenic hairy roots because of the non-specific feeding of these worms.

[000115] *M. javanica*: Nematode eggs are sterilized using bleach and are used to inoculate hairy roots expressing RNAi. Nematodes are assessed for their growth by measuring knots, egg masses or production of viable eggs. An alternative approach is to microinject dsRNA directly into root feeding sites or into living female nematodes.

[000116] H. schachtii: Cultures of this nematode were maintained on sugar beets. Nematodes eggs are sterilized using bleach and used to inoculate hairy roots

expressing RNAi. Nematodes can be assessed for their growth by measuring knots, egg masses or production of viable eggs.

Example 5 - Plant Expression Vectors for RNAi

[000117] Modular Binary Construct System (MBCS): An important aspect of the subject disclosure is the Modular Binary Construct System. The MBCS eases the burden of construct development by creating modular pieces of DNA that can be easily added, removed, or replaced with the use of low frequency cutting restriction enzymes (8-base cutters). These constructs are useful for delivery of a variety of genes to plant cells and is not limited to the delivery of RNAi genes. To develop this system, a series of six, 8-base cutter restriction enzyme sites was placed between the left and right Ti borders of a previously created kan^R/tet^R binary plasmid (Figure 1). The production of both kan^R and tet^R MCBS aids the testing of constructs using different strains of Agrobacterium rhizogenes in different plant species. In addition to the MBCS, a series of shuttle vectors were created that aid in the cloning of useful DNA fragments by containing the multi-cloning site (MCS) of a modified Bluescript plasmid flanked by 8base restriction sites (Figure 2). With six 8-base cutter sites, each site is, preferably, reserved for a particular function (Figures 3 and 4). Because of the close proximity of the Pme I and Sgf I sites to the left and right border of the binary vector, these sites are, preferably, reserved for gene tagging and enhancer trap experiments. The Not I site is, preferably, reserved for plant selectable markers (Figure 5). The Pac I site is reserved, preferably, for Plant Scorable Markers (Figure 6). The Asc I site is, preferably, reserved for RNAi experiments (Figures 7 and 8), while the SbfI site is, preferably, reserved for anti-nematode proteins. The restriction sites that are denoted in the Figures are, preferably, reserved for the denoted insertions; however, the MCBS binary and shuttle vectors do not require the restriction sites to contain these suggested inserts.

[000118] <u>Plant Selectable Markers for MBCS</u>: To further develop the MBCS, a series of plant selectable markers were added to the MBCS (Figure 5). Plant selectable markers that were added to the MBCS include: pNOS/NPT-II/tNOS (kan^R), pNOS/Bar/tNOS (basta^R for dicots), pUBI/Intron-Bar/tNOS (basta^R for monocots), and pUBI/Intron-PMI/tNOS (mannitol isomerase^R).

[000119] Reporter Genes for MBCS: Four exemplary reporter genes are used in the MBCS are provided in Figure 6 and Appendix 2. GUS, a nuclear localized GUS, GEP, and the anthocyanin transcriptional activator *papIC* genes into the MBCS.

[000120] <u>Promoters for MBCS</u>: We cloned several useful constitutive and nematode-inducible promoters (Figures 6, 7 and Appendix 2). Constitutive promoters include the SuperUbiquitin promoter from pine (pSU) and two promoter regions from the Strawberry Banding Vein virus (pSBV₁ and pSBV₂). Seven nematode-inducible promoters from *Arabidopsis* were also been cloned.

[000121] The following Scorable marker clones have been constructed and placed in the MBCS, NPT-II binary vector (pNOS/NPT-II/tNOS):

Intron/GUS/tNos	Intron/NLS-GUS/tNOS	Intron/GFP/tNOS
pSU/Intron/GUS/tNOS	pSU/Intron/NLS-GUS/tNOS	pSU/Intron/GFP/tNOS
pSBV ₁ /Intron/GUS/tNOS	pSBV ₁ /Intron/NLS-GUS/tNOS	pSBV ₁ /Intron/GFP/tNOS
pSBV ₂ /Intron/GUS/tNOS	pSBV ₂ /Intron/NLS-GUS/tNOS	pSBV ₂ /Intron/GFP/tNOS
pKT/Intron/GFP/tNOS		
pKA/Intron/GFP/tNOS		

Example 6 - Control of Plant parasitic nematodes using RNAi in planta

[000122] Production of RNAi Vector. The RNAi shuttle vector to be used is adapted from the Modular Binary Construct System (MBCS - See Example 5). RNAi shuttle vectors preferably comprise a promoter, intron, antisense RNAi, stuffer fragment, sense RNAi, and terminator (See Figures 7 and 8 and Appendix 2 for more details). The plant promoter can be constitutive, tissue-specific or nematode-inducible. The intron is necessary to eliminate expression in *Agrobacterium*.

[000123] The anti-sense and sense RNAi molecules comprise nematode-specific sequences and are disclosed herein. These genes are associated with pathogenesis, growth, or other cellular function in nematodes. An exemplary group of RNAi sequences for use in plant/nematode control may be based upon:

- [000124] 1. Genes specific for nematode esophageal gland cells.
- [000125] 2. Genes specific for plant parasitic nematodes but not other free living nematodes.

- [000126] 3. Genes common to all plant parasitic nematodes.
- [000127] 4. Genes common to all nematodes (nematode-specific).
- [000128] 5. Genes specific for important tissues or cell types.
- [000129] 6. Genes from large gene families.
- [000130] 7. Genes involved in nematode signal transduction or other cellular pathways.

[000131] Appropriate RNAi constructs allow for the formation of dsRNA molecules (the sense and antisense strands join to form the dsRNA). The terminator sequence adds a poly-A tail for transcriptional termination. The RNAi shuttle vector can then be subcloned into the MBCS and transformed into Agrobacterium rhizogenes.

[000132] <u>Plant Transformation with RNAi Vectors</u>. An exemplary transformation system for generating hairy roots using *Agrobacterium rhizogenes* is provided below. The RNAi vector once introduced into the MBCS can subsequently (as a binary vector) be transformed in *A. rhizogenes* using, for example, the electroporation protocol of Example 2. Once the A. rhizogenes is confirmed to contain the plasmid, it is then used in generating hairy roots (See Example 3). Using this protocol transgenic hairy roots expressing RNAi are isolated, cultured and tested.

[000133] Testing of RNAi Vector for Nematode or Plant Pathogen Resistance. RNAi expressing hairy roots can be inoculated with sterilized nematodes. Infested hairy roots can be observed and the effect on nematodes determined. An alternative approach involves the microinjection of RNAi directly into root feeding sites (giant-cells for root-knot nematode, and syncytia for cyst nematodes) or into living female nematodes.

Example 7 – Insertion of Genes Into Plants

[000134] One aspect of the subject invention is the transformation of plants with genes encoding proteins of the present invention. Transformation of plants as described herein can be used to improve the resistance of these plants to attack by the target pest.

[000135] Genes, polynucleotides, and/or RNAi molecules as disclosed or suggested herein can be inserted into plant cells using a variety of techniques which are

well known in the art. For example, a large number of cloning vectors, for example, pBR322, pUC series, M13mp series, pACYC184, pMON, etc., are available for preparation for the insertion of foreign genes into higher plants via injection, biolistics (microparticle bombardment), Agrobacterium tumefaciens, or Agrobacterium rhizogenesmediated transformation, or electroporation as well as other possible methods. Once the inserted DNA has been integrated into the genome, the genetically modified-cell(s) can be screened via a vector carried-selectable marker that confers on the transformed plant cells resistance to a biocide or an antibiotic, such as kanamycin, G418, bleomycin, hygromycin, chloramphenicol, or bialophos, inter alia. The transformed cell will be regenerated into a morphologically normal plant. The transgene(s) in the transgenic plant is relatively stable and can be inherited by progeny plants.

[000136] If a transformation event involves a germ line cell, then the inserted DNA an corresponding phenotypic trait(s) will be transmitted to progeny plants. Such plants can be grown in the normal manner and crossed with plants that have the same transformed hereditary factors or other hereditary factors. The resulting hybrid individuals have the corresponding phenotypic properties.

[000137] It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.

We claim:

- 1. An RNAi molecule, optionally comprising a linker, wherein at least one strand of said RNAi is encoded by a DNA sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 139.
- 2. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 1.
- An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
- An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
 3.
- 5. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 4.
- An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
- 7. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 6.
- 8. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 7.
- 9. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 8.
- 10. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 9.

32

	11. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
10.	
11.	12. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
12.	13. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
13.	14. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
14.	15. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
15.	16. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
16.	17. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
17.	18. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
18.	19. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
19.	20. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
20.	21. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

21.	33 22. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
22.	23. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
23.	24. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
24.	25. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
25.	26. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
26.	27. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
27.	28. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
28.	29. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
29.	30. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:31. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
30.	32. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
31.	

W	/O 01/96584	PCT/US01/18911
32.	34 33. An RNAi molecule according to claim 1, wherein sa	uid DNA sequence is SEQ ID NO:
33.	34. An RNAi molecule according to claim 1, wherein sa	id DNA sequence is SEQ ID NO:
34.	35. An RNAi molecule according to claim 1, wherein sa	id DNA sequence is SEQ ID NO:
35.	36. An RNAi molecule according to claim 1, wherein sai	id DNA sequence is SEQ ID NO:
36.	37. An RNAi molecule according to claim 1, wherein sai	d DNA sequence is SEQ ID NO:
37.	38. An RNAi molecule according to claim 1, wherein sai	d DNA sequence is SEQ ID NO:
38.	39. An RNAi molecule according to claim 1, wherein said	d DNA sequence is SEQ ID NO:
39.	40. An RNAi molecule according to claim 1, wherein said	d DNA sequence is SEQ ID NO:
40.	41. An RNAi molecule according to claim 1, wherein said	d DNA sequence is SEQ ID NO:
41.	42. An RNAi molecule according to claim 1, wherein said	d DNA sequence is SEQ ID NO:
	43. An RNAi molecule according to claim 1, wherein said	DNA sequence is SEQ ID NO:

42.

43.	35 44. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
44.	45. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
45.	46. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
46.	47. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
47.	48. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
48 .	49. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
1 9.	50. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
50.	51. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
51.	52. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
52.	53. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
3 .	54. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

WO 01/96584

PCT/US01/18911

54.	36 55. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
55.	56. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
56.	57. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
57.	58. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
58.	59. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
59.	60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
60.	61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
61.	62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
62.	63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
63.	64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
64.	65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

65 .	66. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
66.	67. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
67.	68. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
68 .	69. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
69.	70. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
7 0.	71. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
71.	72. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
72.	73. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
73 .	74. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
74.	75. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
75.	76. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

76.	77.	38 An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO
77 .	78.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
78.	7 9.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
79.	80.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
80.	81.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
81.	82.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
82.	83.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
83.	84.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
84 .	85.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
8 5.	86.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
86.	87.	An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

	39 88. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
87. 88.	89. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
89.	90. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
90.	91. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
91.	92. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
92.	93. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
93.	94. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
94.	95. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
95.	96. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
96.	97. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
97.	98. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:

99. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 98.

- 100. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 99.
- 101. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 100.
- 102. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 101.
- 103. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 102.
- 104. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 103.
- 105. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 104.
- 106. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 105.
- 107. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 106.
- 108. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 107.
- 109. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 108.

41

110. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 109.

- 111. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 110.
- 112. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 111.
- 113. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 112.
- 114. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 113.
- 115. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 114.
- 116. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 115.
- 117. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 116.
- 118. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 117.
- 119. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 118.
- 120. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 119.

- 121. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 120.
- 122. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 121.
- 123. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 122.
- 124. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 123.
- 125. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 124.
- 126. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 125.
- 127. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 126.
- 128. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 127.
- 129. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 128.
- 130. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 129.
- 131. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 130.

- 132. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 131.
- 133. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 132.
- 134. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 133.
- 135. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 134.
- 136. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 135.
- 137. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 136.
- 138. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 137.
- 139. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 138.
- 140. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 139.
- 141. A transgenic plant or transgenic plant tissue comprising an RNAi molecule according to any of the preceding claims.

- 142. A method of disrupting cellular processes in a nematode comprising the steps of:
- (a) *providing a composition comprising a compound according to any of the preceding claims; and
 - (b) contacting a nematode with said composition.
 - 143. An isolated promoter comprising the following nucleotide sequence:

aacagcccaagataacagaaaagtcaaaggtgttcgaaa gaccacttgtgactaaggatcatttcatccataattatctggtagca cagactcatgataactgcgaggaacacaagttctttacagtcgattc aaagacactttctctttacggtttcattgaaggagccgacccagaat atgtcagagaagcttttcactgtgggttaatttcattaatctatcca ggtgaaaacctcaaggagatctctctctctcccaaaagacctctacag ggcaatcaaaaactacagaaccagagtttgtagtgcacagagtagac caatctacctgagaatcacgagtaccttcctagagtgggaaaatgat gacatccttattccataccactggattgaggtaggactatccaatgg aaaaattccatgggacaagtcatataagaagaccgcaacagtcgagt atcttccagagataactgcactcagacctaaaaggataaaagcagta tataatcagtgtactaagatcttcgcagattcaaagaagaagcttaa ctatgctgatgacaagataattctaataagcaattattcagaattaa tcaaggagaaagaattaataactctttcagaatatgaagcccgcttt acaaqtqqccaqctaqctatcactgaaaagacagcaagacaatggtg tctcgatgcaccagaaccacatctttgcagcagatgtgaagcagcca gagtggtccacaagacgcactcagaaaaggcatcttctaccgacaca gaaaaagacaaccacagctcatcatccaacatgtagactgtcgttat gcgtcggctgaagataagactgaccccaggccagcactaaagaagaa ataatgcaagtggtcctagctccactttagctttaataattatgttt cattattattctctgcttttgctctctatataaagagcttgtatttt catttgaaggcagaggcgaacacacacagaacctccctgcttaca aaccatgtattgtagctaaacctcttaggag.

144. An isolated promoter comprising the following nucleotide sequence:

tggtggggacaatggatccggtctgcgtagcaacaaggctg aaaaagattaaacagaaacctgtgatcattagcgttggaccaccacc aaaacctcctgagccaccaaagcctccagagcctgaaaaaccaaagc ctccaccagcacctgaaccaccaaagcatgtatgcaagccaccttac tgcaacagttgtgatgttgtgtctgttactacctatgaaagtggaag cqgctqcaccattctttgagtcatatatcgcgtaccatagccttcat gttaagtcctgtatttagccaatactaattcatcatgttctcatgct tttttqtttatttcttttctcaaatatgaatctctgttgtttgtcc ctcccctgtttataattagtcgcttctttgacacaagaagtctcatg agttcatgctaaagaaaataaaagttcaaattaaaacaccaaatgtt tgattaatttccataaacctgtgaagcagaaagttagtcatgttgac ctgaacagagcttaggaagtccttgaaggacatatcttcaagtgcta ttgggtcgtagcactcttaggcccattaacttcattgagcccattaa attatgcaaaacaagaaatgagacatatggaaacattagggttctta caggaaaaaataggaaaaagcagggacaactaaacaaaaattcagaa acaagaggcaagtggacgaccacggcgtaagatcaacatgtggtgat gtgcatgagaccaagaccattttttctcgttcttcaacgcacacttg gtcttttcttatgtttgttgcatttctttattaggcagaccctctct cattttgagttaaaacctaaacttatagtaagcatttgtagagtgaa tttcctatacgacatctatcaacatgacctctaaccaaaaaatatt gatgaaactactttaagtagtaaaacctaaagcaattaaaatttcct ttaaattagtagtttgtgtaaattaattgacatgattgcgtcgaaag aaatcaaaacagttatatcgtgaacttaggagaatgttttatatcgt gtttcaacacatgattgctagcatatgtgtaggtgtcgtagacgtta cataacaatcatcactcgtaaatatcaaagtggtttctgagagaaac aaagggttatgattttcccaactgcactagttgtgtattgtttcttt cacacgtatgcttctgagttctgcccaaagtggaaattaaagcagag ttgggagagatcataatttattagggttcgttatgctcaagtcatga cgtaaaatgaaaatttgtttttattctttcaccaacacaaagaatag ctagttatctcttttttatatataacaattcatgaagttgatcagc tttatacacatcatccaatcgaattgctaatctagagatggaaatat caggatagagccaataagatatcaaatccaatggacccattttctcc atgtgctaattcatacaatctgtttttgtctgctttatttgatgatg atgctgagcgtttttaagtgtgaactaagatctagctaaccaaacaa aagatggtctcttctgtctttgtcgtataagagcaagagtggttt gattcaatttttaaaattctaaataaaactccaaccgtgaatccagc catgaaactctttttagaaaatccttttttataacaaataattcctc tgcttcttcttcttcgtttatttcaccttttttggtttctttag ctcagaaaaagcccattctttttttctattcttgtttattttaatca tactgtgcgtttctacaaagtttgttcctttcttcttcaactctctc actcacagtcacagagatctgtttctttttttttttcttttcactc. ttctcttccagt.

۱,

46
145. An isolated promoter comprising the following nucleotide sequence:

taatccattttcagtttttgcaggatcattcatggaggttaatgcta gtggtcagccatgggcttggatggccaaagagtctggcttgaatggc agtgaaggaataaagagcgtttgcaacttaagctctgtggaaatttc agatggaatggatccaacaatccgatgcagtggcagtattgttgaac ctaaccaatccatgtcatgcagcatatcagattcatcaaatggctca ggcgcagttctgcgtggaagctcatctacttccatggaagattggaa ccaaatgagaacccacaacagtaatagcagcgagagtggatcaacaa cgctgatcgtaaaggccagttatagagaagacactgtacgtttcaag ttcgagccatcagttgggtgtcctcagctctacaaagaagttggaaa acgttttaaactgcaggacgggtcgtttcagctgaagtacttggatg atgaagaagaatgggtgatgctggttacagattctgatctccaagaa tgtttggagatattacatggtatgggaaacactcggtgaagtttct cgttcgtgatttgtctgcccctctaggtagttctggtggcagtaatg gttatgtattcccagtgaaagaatgttgtttatttctctagatatta gtatgcttataaataggcatgaaggagaaagacaattttggtatagt ggagttcagcagaaaatgtatatgttttttcgttttatatgaatcag agaataaaagttggatgttatatctacgttgctaatgttgtacctgc tcacccatctttcatataagaaaagagaacacttttagttatccctg tgatgcagaatcgtattctttgttatctctccattcctgtggaaacc aacaaagtcaactaaatttcggtttaattggttggtttttaagtcaa cgaggacttgattttagttgggcttgggcctataattgtgttcatca ttgggttttttcccccttatcagtttaacgtccatatccatatcttt ttctttttttaacggcaaagttcatatccatatcttatgatgtgcct aaaagagggagaagatgcgaagacagaattttcatatttgaaagggt tcgatatcgatattgggaaacgaatcaaggtcaaaaaactcagtcta atagttgaaatttaaaaattttattaattcaatccgattggtttcgt tttgttatggttcggttctatatcatcaaccaatcggtttggtcct aaagataattataaatattcaccaacaccagtgttaaacacatatca acaaacctaaagttagataaacaaagaga.

146. An isolated promoter comprising the following nucleotide sequence:

aattggcactcttcttctgctgggttccaaaagaaacgaat caatatgtgcaacaagaagctccagaagcagtcatcttctaaaat cttaatctaacaacagctcaagaagaaaaaaattccatagctagaga gaacacaaagtcacaagacgacgtcgtagaggcacaaagtcaaacct gaatggcttaagccgaactgagtggttttgactagaccatcatcaga aaagtctccaagacggtagtcggatgttagatcgctcaagtaatttt tggttttgttggtctcacgttttcagctgcccatttgatttcagttt gggcttttccttatctctaaaggcccaatttcatttaggtttagttt atttgatcattatccttactataaaggcttcgcctttcgagaaattt agggtttcttctgtctgtctcgtcactcaggtttgtgcctcaacgac tgcttcacttctagcttgattcttcttcttcgtttatatgtatactg tacattagattattcttgtttctcgagcttctgctatagattttgat aaattgagacaagctcaaaatgaggtacttgacgcatctcttacatt cactgtttaattagagaacaatacgtctctgaatcgtgattcagaga cgtattgttcttctgtcatatgcaataagtttaattagagaacaata cgtctctgaatcgtgattgttttttggatgtgcgttattgatagctt tatgatgttaatagtctaggattgacacgaagttgttctgcagtttt gcataaatgctctttactaaggcctctaaatttggatgacaaatcta tatggtagtgtctataatgtgggttgttcatgttgaggttgtcaatg ttgtgtatttttgtttgtttagttaatttgcttaactctgttctttg tgggttaatacagtaagcttcagagtgaggccgttcgtgaagccatc actactatcacagggaaatccgaggcaaagaaacgtaactttgtcga gactattgagctccagatcggtctgaagaactatgaccctcaaaagg acaagcgtttcagtggatctgtcaagttaccacatatcccccgtcct aaaatgaagatetgeatgeteggagatgeecageatgttgaagaggt gatatatcttttcatggaaattgatcattttgtgctctgtttcttgt ${\tt ataatggttttgtgctcatttcatttggtggctctattagtttcatt}$ tgatgttgtatatgtcttctgaatgtagatgcatgatgttttcggaa tttggtcattgtttatttaggcttcatttcttgcataattaaatatt tgcttatttcatcttgtatcttttcgtaggctgagaagatggggttg gaaaacatggatgttgagtctctaaaaaagcttaacaagaacaagaa actcgtcaagaagcttgcaaagaaataccatgctttcttggcctctg agtetgteattaageagatteetegtettettggteetggtettaae aaggcaggcaagttctggctacagctaatattccattgttcttcttt acatccgttttgattttggataggttttagtagtctatttcttttgt caatgtctttttgatacaatgccaatcctttatcctgtgagattatg cttctttgatgattcttaagtaacattcctttgctttactttacaca ggaaaattcccaactcttgtgagccaccaggaatccttggagtcaaa ggtgaatgaaacaaaggcaacagtgaagttccagctgaagaaggttc tgtgcatgggagttgcagttggtaaccttt.

, ,|

147. An isolated promoter comprising the following nucleotide sequence:

tggcaaactgagatataagagggaaggtgattttcatgcaa atttttttttattttttttgaatgaatgcaaaatttattcaaaaa aaaaaaacctgggctacatcaagtacttcatttctgagtttttgaaa aatctaaagacaacaaaagactttacaatttaataaaaaaataataa aaatactttatcactctcaacgaaattgttgatttaataacgtatct cttggtaaaacagcgttttatttgacgaaattgttataaatgaataa aatgataatagaaactagtgtggtacgtaaaatacctctcatttggc aaaataacggttatgtatcatgagtattgcatacgacagcgtgctta aatagtgtgctttcaggagaaaatatataccaagttatttgctgaaa ttaccacgcaaatctgaggttcgaatggcaaaataaaaaaccaatgt catttccttaatgtattaaggtcatttaaataaaattgtacactttt ttcacctgtaagcgttccaaagtgtagaatggataactagaagggtc aaaqqtataatattaataaqcgaactcactttttgcccaagtgattt tcccttatacaattqttctattttctggattataaggggaataagaa aaaagaaaagagagtatataataatacttttataaagtgatgtta gattctaatttgtaacgaaaagttcaaagtgaaagaaaaaacgaaaa agtttttctgttttgttttatatctatagccaagaaagtttctcaga tttacaaqaagttaactgagaaaaacaaaaaaaaaacttatgaagca tgaaagactaattaacgaggtgattaattttgagacaaattaaacat cgaattaaaagtaacatttggagggtttatatgttatatatgtgaca tgataagtccgattcatgactaatgtatatctggaatctaacatgga agaatagagaacgaagcaaggccaaggtcaacttgccagacacgaat caacaqattqtqaatqaqaccaaatcaatggtcataaaccggttggg tttaaaccggcaagtcatccttggctcaattccattcgttattcctt catgcaagaccctctgatacaaccaaagactcccattacaatattct ttcgatcacgagctacttattttcaaatgtgttacctctttcgtgac ggcatacatatacaaatgcgacaaaataagtatattatattgtttaa tttctatattccatttctatatgcatggctgggatttttgaccaaaa ccctaattcaagaatagaatccaaaagatgggatcaaagaatataat ctaatgggctgaccacattttccgatttaattcgcatagttaatatt ctttccactactttatqccqcaqaaatttgtaattaagtaagacaaa gaaatacagatataagatggtcgtagaaaccagtagaggaatttcat ttttcgtggataagtggaatattaataagagaatggtctttactctt tacagtgggaaatgggaatagtagcccattataatttcatcagattc tatatatgcatgtttgtataagctaaaataaatacgtttaagcattc ttcaaaaaaatttacaagttctagagactctcttaacgtcggcaatt tatattctactttacatgacactttcaggaaaagaaaactatactca ctagcagatcattaaattttctttttttttttttaatgaaccttag ttgtggtttttatttttgttagctagaaacttcagtgtttttttcc gccaatggtagtgctttgatgatggtccgg.

148. An isolated promoter comprising the following nucleotide sequence:

caatcaaggtaacgaaggaggatcagcgaaaggatgggcta tatttggagttttttcctgcgtgtaagtaatgctttgtgatcttcca tgcggacatataactgaagaataaactcaactcattgtgttctggtg tgtttcttctgatcagattcctcgttgcatctgcacttttctgctgt gggggctttatttataaaacaagagtagagcgtgtggtaatcttcat atctttctacaattccacttccattctctaattattctctcacgtga tatacacacactcaatcactgatgtactcgtatggatgcagcgtgga actgatgcattgccggggatgtcacttctatcgggcttactagaaac tqtaagtattacaagaaaactcaaaaggattccatttatgcaaaatc taagagaaagctcactgtggtctttggttacaatttatggatctctc aagagacaaatgctatgtaagctaattgattttggtcttgataaaca ggtgagtggaagtggacaaagctactcaagaactgaagacatcaaca atgcttttgccaatgaagtctcatgggaccgctcttccgcatcttct actcaagcgacaacaacacagagaccaagtgaaagaacatatggtgc gatctaattttgtcaagtgcctcacaagaggtactgtttcaagccat qqtatgqcacgcttgtgatctgcgatttctggattttgctttgtatg tttattttctaccttctagaaagaggtcaaaaagttaatagcttcac cgtgagaatgttgttttcaccagattcatgtgctatgatagaaaaag acaaagcaaacaagagttctttctttgcttaggttacaagaacaaga qtatcgttataaagtcaacaaagattgaaacatatttttgtcaaggg agtggttagaatctcttcctactcttttccttacttactaagacaa aaaaaagacttggactttgtctaaggttttgtggatattattaacca agtccttttqcaaaaagtaatattgttttttcgcattcctcttttag aatttaqtttaatctaggctttatattggttattactttcttgaaaa atgatctgtttattctattcatacttggttacctcgctttttatctt acttctacaaaaggattatcagtgaaagttagtctcttactctcacc ttccgaaaataaaacaaaaatatcgatacttctagatcaaaccaagt tgattaaaacatccctattccctacgattctgatcttgagatatatt atcatgttaagatctaaattgacaagaaaactgatttttcatttcta gtaggaaaaataattactattagtgatcatgattgtcgaccgtaaga ggtggtttagttactctccatctttctttgaagaagtcagaaagtca gaaattatatcaaattaaacatcaatattgaacacatatatctgtat ggttttatgtttagaaaattccaatatttatatattcctagggaaaa agaagcttattcttcaaattattgttatgagtcgttaaaatatggat aaaaatataaagtctaaatattaaaaaactcagtttgctttgctttta aaaaggtttattagtcaaacttagcatgcaatgctgggtaccaaacc caagcattagtctcttttaatcttctttttctccaataagtttttac aatttttaattgtttgcatttcccttgattatttatcttcatcccaa tttagctaataccaactccgtttcttattcttccaagtcttttccta tcttctcatttcctcat.

50
149. An isolated promoter comprising the following nucleotide sequence:

atgttgtgagtgaaggagaagagggaaacaaaggtatt tatttgtagcgagttttgttttgtgacgcggttttgtctgtgttcaa tgttgacgaaacgagtgagagagtgtctgattattaaagaaaaccct aattaagtcagacccgccggttataaaaatagtcaaaaagtaggaaa acgcgtgtgtgagtgagacagagacagcccattgtttgctttatggg cttataagcgagacgtgttaattgggctttttcctttatggccgaaa acaaaagaaacgtcgcctgagagattcgaactctcgcgggcagagcc catgtacttagcaggcacacgccttaaccactcggccaaagcgactt qttgctatgagttagacaaaatcattaaaaattctctattatgatttc tcatagtgtgtgtgtatattgtggatctactaaaaattctttgttat tattactttattttgtgaattagtttgatataggtaagtacaaagtt aactttattatttactcaaaatttatcagattaactgattttatatt gtttcctttggtatatagacgtactatagtttttagaaaaaccataa agacgaggaggaggactcttggttgatccagtctttacgttagacat cgacccctacatttatttgcctttctctatcaacatggcaggtaaaa atcttcattcaaccgaaccaaccaaagtctcttcccaataatattca agcaccatcctttgggaaactcatacatactacagtctacactcttt cattttctttcaacgctcaacttaacaaatgatatagtctagttgtc aattatatgttttaattagtgttttcacatcaaattctggtttgata tttgatgactattttcggaaacatctcaatgtcccgcaaatacaatc tatggcgtgatctttataatataacatatagaatcgtgtagatttat tttattttattttatatatcgcataaattgcaaaatacttatatat gtttgttatatatgatacccattttatagttacttaaaaaaagttaa gcgataatatatatatcaactttttataacaaaaagtataacac atggtaaagaaaataaaaatgaagacatggtgtgacacgaaaatgg cactàaatatacatatataatagatagctacaatatcccatcataca cacttttttaattgactaatacataacttacacacttttttaattga ctaattcataactttttatcattgtcaacatgcaaattcatatttcc gttgaactattattcttattttgtttttaaaagaagggcttcctggt gttgtctggtctggtaaaatgaaaaagcaaagcgtcttggtatagaa aagtaatatactgcctcctaatttcttcgtccttctaccgaagaatc tctccactcttgccctctttcgaaaccctaaaccagaagcaccagat tttttcaactttttcccagagaacaatagaaaacccaacttgtgctc tctagggttttctttattccttctcatctttggattttcttgggtca tcattttggaagcttacccaccagcgaaaaaattataacttccatcg attectggcttctctctctcgctctctctgcatgtgctaaatcgccg gactgatcctcactgtcacctctgtt.

150. An isolated promoter comprising the following nucleotide sequence:

gattaggggtttgagttgtcactggaaagaggtttgattgt gagtgatgatggagagattatgaaggagtttgtgtgtatttatagag gttgttgcaacttatttagagttacttgttccacaaccacaagtaag attggtcacttctaagttctaactagaaacaaccatgacacatggag tattataaaataaatttttcacaaataaaagaactacaaaaaa gtgagaaaaataatttgataaacaaatttagaaaattagtatatcaa taaataaatttataatccgatggttttgccttttggtttggcctttg tttgaacttcgatgagtgactatgtatagcgaaaacaattcggtttg tttttggtttaattttaaaaaatacaagcgacaatatctgatgagaa taggtgaaaagcaaataatatcagtttaattggaaatatttactttt aataqtgatattgcatggcggaaggtccggaagcaacacatatctcc aattaataaaqaatacatatttctaatttttgcgtcagatagatgat taaagagtgtgttttttttaacaaacaaggaatacattatacata tttcatatttctctcgacattgtttgtttttttaaaaaatagattaa agagtctacgaagctaagtagctaacgaagacttgaaatgagaagaa gacgagaatcttttaatattttttgttaagcgataatattttgaaaa ttaataaatatagattaaggaaataacaataacgcagatatcggtaa gtcatagaaaaaaagaaacaacacaaacttacataaacatgtttcct qqattccaattagtaaagaactcaatgactataaataacctttaacc ctctcattatttcttactatcaattgattaagctctcgttcctaaga aagcaatagacgaacaagaacccatcgaagaacacaaatctctcttt qaaqttgtcgataatgttagtacaccgttacttcgtccaagactttt ttgccgttccgtttcttacaaaacaaggatttggttaccattacttt tgtcgtaactcctttttacatgtacgtcaaaaagtggttcctcgctc cggcttgaagaaacgaccttcttacccacaaaaagcttattttaaac cqtctaaaaccggaaaatctcaatctaaaccggatacggttcatgag aaaccgattcaaacaccgagtgaagaagtagaattttttgatggttc cgtcacaatgtgtgctgctccttcgccaagacatgtaccgattccga tattttgtggtgtaaagatgatcaaagagtcttcaaagctaagcacg acttgaatgagaagaagaccaattactcaattagattttgtttt gtggagcaattattgtctatttatctttgtttttagcaaataatctg tatccactaatcttcacagtacttgactaacaagaagtaaagagttt tcttatttccaattgttttttaatctgatacttttttcataatttta caatgtttgatgaaaaaaaacattcaaacctaaattttctttttg gtatgaattcaaacctgaattacttttgacgaggacccgacggtata aataqqqtqatctcccaacaaacaaaaagggt.

, 1¦

151. A transgenic plant or transgenic plant tissue comprising an isolated promoter according to any of claims 143 through 150.

54 APPENDIX 1

SEQ ID NO:	APPENDIX 1 INTERNAL IDENTIFIER	FUNCTION OF
SEQ III.	ATTENDED TO THE REAL PROPERTY.	POLYNUCLEOTID E/GENE
1, 2, 3	2293133	glyceraldehyde-3-pho sphate-dehydrogenase
4, 5, 6, 7	7143495	Histone H4
8 & 9	7143515	ATP dependent RNA helicase, mRNA sequence
10, 11, 12, 13	7143527	nematode specific
14 & 15	7143602	protein serine-threonine phosphatase 1, catalytic subunit
16 & 17	7143612	40S ribosomal protein S4
18	7143666	cytochrome p450
19, 20, 21, 22	7143675	Neuroendocrine protein 7B2
23, 24, 25	7143839	nematode specific
26	7143863	40S ribosomal protein S17
27 & 28	7144016	vacuolar ATP synthase subunit G
29	7144025	malate dehydrogenase
30 & 31	7144060	J2 pcDNAII Globodera rostochiensis cDNA similar to Bystin, mRNA sequence
32 & 33	7144225	similar to arginine kinase
34	7144354	pyrroline-5-carboxyla te reductase

• .	APPENDIX 1 (cont.)	
SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE
35, 36, 37, 38	C10	ribosomal protein L18a
39, 40, 41, 42, 43	C118	ribosomal protein S11
44 & 45	C122	ribosomal protein L16/L10E
46 & 47	C127	FMRFamide-related neuropeptide precursor
48	C129	ADP-ribosylation factor 1
49	C130	ribosomal protein L11
50	C137	nematode specific; conserved in C.elegans
51 & 52	C138	ribosomal protein L7
53	C145	ADP/ATP translocase
54 & 55	C148	troponin
56 & 57	C154	calponin
58	C16	translation elongation factor EF1A
59 & 60	C18	40S ribosomal protein S16
61	C27	ubiquitin
62 & 63	C46	nematode specific
64, 65, 66	C48	ribosomal protein S3AE
67	C59	40S ribosomal protein S5/S7

	APPENDIX 1 (cont.)	
SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE
68	C8	glyceraldehyde 3-phosphate dehydrogenase
69 & 70	C82	60S ribosomal protein 130/L7E
71	C90	glyceraldehyde 3-phosphate dehydrogenase
72	C135	nematode specific
73& 74	C206	predicted troponin
75	C227	cytochrome P450
76	C238	vacuolar ATP synthase subunit G
77	C246	40S ribosomal protein S4
78	C308	FMRFamide-like neuropeptide precursor
79	C342	ubiquitin
80 & 81	C344	nematode specific; conserved in C.elegans
82, 83, 84, 85	C370	40S ribosomal protein S5/S7
86	C426	nematode specific
87	C458	histone H4
88 & 89	C481	ribosomal protein L30E
90 & 91	C556	nematode specific; conserved in C.elegans

	APPENDIX 1 (cont.)	
SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E / GENE
92	C628	ribosomal protein S17E
93 & 94	C665	malate dehydrogenase
95 & 96	C669	malate dehydrogenase
97	C694	ribosomal protein S3AE
98 & 99	C709	ADP/ATP translocase
100 & 101	C714	ADP-ribosylation factor 1
102	C721	calponin
103 & 104	C726	ribosomal protein L11
105	C736	nematode specific
106 & 107	C773	troponin
108	C834	nematode specific
109	C860	bystin
110 & 111	C863	troponin
112 & 113	C883	translation elongation factor eEF-1A
116	C888	40S ribosomal protein S16
117	C898	glyceraldehyde 3-phosphate dehydrogenase
118 & 119	C935	peptidyl-glycine alpha-amidating monooxygenase
120 & 121	C937	calponin
122 & 123	C942	peptidyl-glycine alpha-amidating monooxygenase

. 58		
SEQ ID NO:	APPENDIX 1 (cont.) INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E/GENE
124	C954	arginine kinase
125, 126, 127	C969	calponin
128 & 129	7235653	ribosomal protein L18A
130	8005381	neuroendocrine protein
131	7235496	pyrroline-5-carboxyla te reductase
132 & 133	7275710	protein phosphatase ppl-beta catalytic subunit
134	7923685	nematode specific
135	7641370	40S ribosomal protein S11
136 & 137	7923404	nematode specific
138	7797811	ATP-dependent RNA helicase
139	7143613	predicted phospholipase D

Appendix 2:

Exemplary genes used for RNAi vectors.

Promoters:

Constitutive:

Super Ubiquitin from Pine CCCGGGAAAACCCCT CACAAATACATA AAAAAAATTCTT TATTTAATTATC AAACTCTCCACT ACCTT TCCCACCAACCGTTA CAATCCTGAATG TTGGAAAAAAACT AACTACATTGAT ATAAAAAAACTA CATTA CTTCCTAAATCATAT CAAAATTGTATA AATATATCCACT CAAAGGAGTCTA GAAGATCCACTT GGACA AATTGCCCATAGTTG GAAAGATGTTCA CCAAGTCAACAA GATTTATCAATG GAAAAATCCATC TACCA AACTTACTTTCAAGA AAATCCAAGGAT TATAGAGTAAAA AATCTATGTATT ATTAAGTCAAAA AGAAA ACCAAAGTGAACAA TATTGATGTACA AGTTTGAGAGGA TAAGACATTGGA ATCGTCTAACCA GGAGG CGGAGGAATTCCCTA GACAGTTAAAAG TGGCCGGAATCC CGGTAAAAAAGA TTAAAATTTTTT TGTAG AGGGAGTGCTTGAAT CATGTTTITTAT GATGGAAATAGA TTCAGCACCATC AAAAACATTCAG GACAC CTAAAATTTTGAAGTTTAACAAAAATAACTTGGATCTACAAAAATCCGTATCGGATTTTCTCTAAATA TAACTAGAATITTCA TAACTTICAAAG CAACTCCTCCCC TAACCGTAAAAC TTITCCTACTTC ACCGT TAATTACATTCCTTA AGAGTAGATAAA GAAATAAAGTAA ATAAAAGTATTC ACAAACCAACAA TITAT TTCTTTTATTTACTT AAAAAAACAAAA AGTTTATTTATT TTACTTAAATGG CATAATGACATA TCGGA GAT CCCTCGAACGAG AATCTTTTATCT CCCTGGTTTTGT ATTAAAAAGTAA TITATTGTGGGG TCCAC GCGGAGTTGGAATCC TACAGACGCGCT TTACATACGTCT CGAGAAGCGTGA CGGATGTGCGAC CGGAT GACCCTGTATAACCC ACCGACACAGCC AGCGCACAGTAT ACACGTGTCATT TCTCTATTGGAA AATGT CGTTGTTATCCCCGC TGGTACGCAACC ACCGATGGTGAC AGGTCGTCTGTT GTCGTGTCGCGT AGCGG GAGAAGGGTCTCATC CAACGCTATTAA ATACTCGCCTTC ACCGCGTTACTT CTCATCTTTTTCT CTTGC GITGTATAATCAGTG CGATATTCTCAG AGAGCTTTTCAT TCAACCCGGG

Strawberry Banding Vein Virus 1

aagcttttcactgtgggttaatttcattaatctatccaggtgaaaacctcaaggaga
tctctcttctcccaaaagacctctacagggcaatcaaaaactacagaaccagagttt
gtagtgcacagagtagaccaatctacctgagaatcacgagtaccttcctagagtggg
aaaatgatgacatccttattccataccactggattgaggtaggactatccaatggaa
aaattccatgggacaagtcatataagaagaccgcaacagtcgagtatcttccagaga
taactgcactcagacctaaaaggataaaaagcagtatataatcagtgtactaagatct
tcgcagattcaaagaagaagctt

Strawberry Banding Vein Virus 2

Gtttaaacaacagcccaagataacagaaaagtcaaaggtgttcgaaagaccacttgt gactaaggatcatttcatccataattatctggtagcacagactcatgataactgcga ggaacacaagttctttacagtcgattcaaagacactttctctttacggtttcattga aggagccgacccagaatatgtcagagaagcttttcactgtgggttaatttcattaat ctatccaggtgaaaacctcaaggagatctctctctctcccaaaagacctctacagggc aatcaaaaactacagaaccagagtttgtagtgcacagagtagaccaatctacctgag aatcacgagtaccttcctagagtgggaaaatgatgacatccttattccataccactg qattgaggtaggactatccaatggaaaaattccatgggacaagtcatataagaagac cgcaacagtcgagtatcttccagagataactgcactcagacctaaaaqgataaaaqc agtatataatcagtgtactaagatcttcgcagattcaaagaagaagcttaactatgc aaagacagcaagacaatggtgtctcgatgcaccagaaccacatctttgcagcagatg tgaagcagccagagtggtccacaagacgcactcagaaaagqcatcttctaccgacac agaaaaagacaaccacagctcatcatccaacatgtagactgtcgttatgcgtcggct gaagataagactgaccccaggccagcactaaagaagaaataatgcaagtggtcctag ctccactttagctttaataattatgtttcattattattctctgcttttgctctat tgcttacaaaccatgtattgtagctaaacctcttaggaggatatc

Nematode Inducible:

Trypsin Inhibitor from Arabidopsis (clone#6598343) cccgggagcaaagcaacaccagagaagaagaaaagcactacagagaaaaatgtg agcttaagcgctctccaacaacacttctctgggagtctaaaggatgctgcaaaaagc cttggtggtgagacttccgcatatttccaagcatgggtttatttttgttagcacaca aactatetgaccetegacttggattttettetgeagtttgteeaactacattgaaac ggatatgcaggcaacatgggatcatgaggtggccatctcgtaagattaacaaagtga acaggtcactaaggaaaatacagacggtactggactcggtccaaggtgtagaaggag gactaaagttcgactcagcaactggcgaattcattgcagttagaccttttattcaag aaattgatacccaaaagggtctgtcgtctcttgataatgatgcacatgcaagaagaa gtcaggaggatatgcctgacgatacttcattcaagctccaggaagctaaatctgtcg acttctctatccataaaccatagatggagcgattagaatcttaatccattttcagtt tttgcaggatcattcatggaggttaatgctagtggtcagccatgggcttggatggcc aaagagtctggcttgaatggcagtgaaggaataaagagcgtttgcaacttaagctct gtggaaatttcagatggaatggatccaacaatccgatgcagtggcagtattgttgaa cctaaccaatccatgtcatgcagcatatcagattcatcaaatggctcaggcgcagtt ctgcgtggaagetcatctacttccatggaagattggaaccaaatgagaacccacaac agtaatagcagcgagagtggatcaacaacgctgatcgtaaaggccagttatagagaa gacactgtacgtttcaagttcgagccatcagttgggtgtcctcagctctacaaagaa gttggaaaacgttttaaactgcaggacgggtcgtttcagctgaagtacttggatgat gaagaagaatgggtgatgctggttacagattctgatctccaagaatgtttggagata ctaggtagttctggtggcagtaatggttatcttggaacaggcttatgacgtcgtaag acatagacacacacagttatgtattcccagtgaaagaatgttgtttatttctctaga tattagtatgcttataaataggcatgaaggagaaagacaattttggtatagtggagt tcagcagaaaatgtatatgttttttcgttttatatgaatcagagaataaaagttgga tgttatatctacgttgctaatgttgtacctgctcacccatctttcatataagaaaag agaacacttttagttatccctgtgatgcagaatcgtattctttgttatctctccatt aacgaggacttgattttagttgggcttgggcctataattgtgttcatcattgggttt agttcatatccatatcttatgatgtgcctaaaagagggagaagatgcgaagacagaa ttttcatatttgaaagggttcgatatcgatattgggaaacgaatcaaggtcaaaaa ctcagtctaatagttgaaatttaaaaattttattaattcaatccgattggtttcgtt ttgttatggttcggttctatatcatcaaaccaatcggtttggtcctaaagataatta taaatattcaccaacaccagtgttaaacacatatcaacaaacctaaagttagataaa caaagagacccggg

Arabidopsis Transmembrane Protein from Arabidopsis (clone#6468048)

ttatgatgttaatagtctaggattgacacgaagttgttctgcagttttgcataaatq ctctttactaaggcctctaaatttggatgacaaatctaaatcttgcctcataaaaat ttaggtgtattaagataagattattttgtatggtagtgtctataatgtgggttgttc atgttgaggttgtcaatgttgtgtatttttgtttgtttagttaatttgcttaactct gttctttgtgggttaatacagtaagcttcagagtgaggccgttcgtgaagccatcac tactatcacagggaaatccgaggcaaagaaacgtaactttgtcgagactattgagct ccagatcggtctgaagaactatgaccctcaaaaggacaagcgtttcagtggatctgt caagttaccacatatcccccgtcctaaaatgaagatctgcatgctcggagatgccca gcatgttgaagaggtgatatatcttttcatggaaattgatcattttgtgctctgttt cttgtataatggttttgtgctcatttcatttggtggctctattagtttcatttgatg ttgtatatgtcttctgaatgtagatgcatgatgttttcggaatttggtcattgttta tttaggcttcatttcttgcataattaaatatttgcttatttcatcttgtatctttc gtaggctgagaagatggggttggaaaacatggatgttgagtctctaaaaaagcttaa caagaacaagaaactcgtcaagaagcttgcaaagaaataccatgctttcttggcctc tgagtctgtcattaagcagattcctcgtcttcttggtcctggtcttaacaaggcagg caagttctggctacagctaatattccattgttcttctttacatccgttttgattttg gataggttttagtagtctatttcttttgtcaatgtctttttgatacaatgccaatcc tttatcctgtgagattatgcttctttgatgattcttaagtaacattcctttgcttta ctttacacaggaaaattcccaactcttgtgagccaccaggaatccttggagtcaaag gtgaatgaaacaaaggcaacagtgaagttccagctgaagaaggttctgtgcatggga gttgcagttggtaacctttcccggg

Diaminopimelate Decarboxylase from Arabidopsis (clone#4159709)

aagtacttcatttctgagtttttgaaaaatctaaagacaacaaagactttacaatt taataaaaaaataataaaaatactttatcactctcaacgaaattgttgatttaataa cgtatctcttggtaaaacagcgttttatttgacgaaattgttataaatgaataaaat gataatagaaactagtgtggtacgtaaaatacctctcatttggcaaaataacggtta tgtatcatgagtattgcatacgacagcgtgcttaaatagtgtgctttcaggagaaaa tatataccaagttatttgctgaaattaccacgcaaatctgaggttcgaatggcaaaa ttttttcacctgtaagcgttccaaagtgtagaatggataactagaagggtcaaaggt ataatattaataagcgaactcactttttgcccaagtgatttcacttcttacatttgc ttgatatagttacccaaaagtgtatatatattcccttatacaattgttctatttct aagtttttctgttttatatctatagccaagaaagtttctcagatttacaaga agttaactgagaaaaaaaaaaaaaacttatgaagcatgaaagactaattaacgag gtgattaattttgagacaaattaaacatcgaattaaaagtaacatttggagggttta tatgttatatatgtgacatgataagtccgattcatgactaatgtatatctggaatct aacatggaagaatagagaacgaagcagagccaaggtcaacttgccagacacgaatca acagattgtgaatgagaccaaatcaatggtcataaaccggttgggtttaaaccggca agtcatccttggctcaattccattcgttattccttcatgcaagaccctctgatacaa ccaaagactcccattacaatattctttcgatcacgagctacttattttcaaatgtgt tacctctttcgtgactcttgtgttgtgtggtaaagcctagtcgagatgtgtcggtat atataggcatacatatacaaatgcgacaaaataagtatattatattgtttaatttct atattccatttctatatgcatggctgggatttttgaccaaaaccctaattcaagaat agaatccaaaagatgggatcaaagaatataatctaatgggctgaccacattttccga tttaattcgcatagttaatattctttccactactttatgccgcagaaatttgtaatt aagtaagacaaagaaatacagatataagatggtcgtagaaaccagtagaggaatttc atttttcgtggataagtggaatattaataagagaatggtctttactctttacagtgg gaaatgggaatagtagcccattataatttcatcagattctatatatgcatgtttgta taagctaaaataaatacgtttaagcattcttcaaaaaaatttacaagttctagagac tctcttaacgtcggcaatttatattctactttacatgacactttcaggaaaagaaaa

tgctttgatgatggtccggcccggg

Peroxidase from Arabidopsis (clone#4006885)

cccgggcaatcaaggtaacgaaggaggatcagcgaaaggatgggctatatttggagt tttttcctgcgtgtaagtaatgctttgtgatcttccatgcggacatataactgaaga ataaactcaactcattgtgttctggtgtgtttcttctgatcagattcctcgttgcat ctgcacttttctgctgtgggggctttatttataaaacaagagtagagcgtgtggtaa tettcatatetttetacaattecaetteeattetetaattatteteteaegtgatat acacacactcaatcactgatgtactcgtatggatgcagcgtggaactgatgcattgc cggggatgtcacttctatcgggcttactagaaactgtaagtattacaagaaactca aaaggattccatttatgcaaaatctaagagaaagctcactgtggtctttggttacaa tttatggatctctcaagagacaaatgctatgtaagctaattgattttggtcttgata aacaggtgagtggaagtggacaaagctactcaagaactgaagacatcaacaatgctt ttgccaatgaagtctcatgggaccgctcttccgcatcttctactcaagcgacaacaa cacagagaccaagtgaaagaacatatggtgcgatctaattttgtcaagtgcctcaca agaggtactgtttcaagccatggtatggcacgcttgtgatctgcgatttctggattt tgctttgtatgtttattttctaccttctagaaagaggtcaaaaagttaatagcttca ccgtgagaatgttgttttcaccagattcatgtgctatgatagaaaaagacaaagcaa acaagagttctttctttgcttaggttacaagaacaagagtatcgttataaagtcaac aaagattgaaacatatttttgtcaagggagtggttagaatctcttcctactcttg cctttctcactaagacaaaaaaagacttggactttgtctaaggttttgtggatatt attaaccaagtccttttgcaaaaagtaatattgttttttcgcattcctcttttagaa tttagtttaatctaggctttatattggttattactttcttgaaaaatgatctgttta ttctattcatacttggttacctcgctttttatcttacttctacaaaaggattatcag tgaaagttagtctcttactctcaccttccgaaaataaaacaaaatatcgatacttc tagatcaaaccaagttgattaaaacatccctattccctacgattctgatcttgagat atattatcatgttaagatctaaattgacaagaaaactgatttttcatttctagtagg aaaaataattactattagtgatcatgattgtcgaccgtaagaggtggtttagttact ctccatctttctttgaagaagtcagaaagtcagaaattatatcaaattaaacatcaa tattgaacacatatatctgtatggttttatgtttaqaaaattccaatatttatatat tcctagggaaaaagaagcttattcttcaaattattgttatgagtcgttaaaatatgg ataaaaatataaagtctaaatattaaaaactcagtttgctttgcttttacctctcca agtctccaaagtcaaattaattttagttaattaaaccaaaaaaggtttattagtcaa acttagcatgcaatgctgggtaccaaacccaagcattagtctcttttaatcttcttt tcatcccaatttagctaataccaactccgtttcttattcttccaagtcttttcctat aaatacgttcttcttcccctcttatttcatatcactcaccacaaagtcttctcattt cctcatcccggg

Mitochondrial Uncoupler from Arabidopsis (clone#4220510)

gagttttgttttgtgacgcggttttgtctgtgttcaatgttgacgaaacgagtgaga gagtgtctgattattaaagaaaaccctaattaagtcagacccgccggttataaaaat agtcaaaaagtaggaaaacgcgtgtgtgagtgagacagagacagcccattgtttgct ttatgggcttataagcgagacgtgttaattgggctttttcctttatggccgaaaaca aaagaaacgtcgcctgagagattcgaactctcgcgggcagagcccatgtacttagca ggcacacgccttaaccactcggccaaagcgacttgttgctatgagttagacaaaatc attaaaattctctattatgatttctcatagtgtgtgtgtatattgtggatctactaa aaattetttgttattattattttgtgaattagtttgatataggtaagtacaa agttaactttattattactcaaaatttatcagattaactgattttatattgtttcc tttggtatatagacgtactatagtttttagaaaaaccataagattcctttatatttc atagagtgaagatgagatgagatcttggctggagaagaaataagtttccacgagg aggactcttttttttggtgaagacgaggaggaggactcttggttgatccagtcttt acgttagacatcgacccctacatttatttgcctttctctatcaacatggcaggtaaa aatcttcattcaaccgaaccaaccaaagtctcttcccaataatattcaagcaccatc acttaacaaatgatatagtctagttgtcaattatatgttttaattagtgttttcaca

tcaaattctggtttgatatttgatgactattttcggaaacatctcaatgtcccgcaa aaaaaagtataacacatggtaaaqaaaaataaaaatqaaqacatggtqtqacacqaa aatggcactaaatatacatatataatagatagctacaatatcccatcatacacactt ttttaattgactaatacataacttacacacttttttaattgactaattcataacttt ttatcattgtcaacatgcaaattcatatttccgttgaactattattcttattttgtt tttaaaagaagggcttcctggtaataaaaatatgatttccaaatgacgttagagcaa aaaaaaaaaaggttgtctggtctggtaaaatgaaaaagcaaagcgtcttqqtataq aaaagtaatatactgcctcctaatttcttcgtccttctaccgaagaatctctccact cttgccctctttcgaaaccctaaaccagaagcaccagattttttcaactttttccca gagaacaatagaaaacccaacttgtgctctctagggttttctttattccttctcatc tttggattttcttgggtcatcattttggaagettacccaccagcgaaaaaattataa actgatectcactgtcacctctgttcccggg

Stress protein from Arabidopsis (clone#6598614)

cccggggattaggggtttgagttgtcactggaaagaggtttgattgtgagtqatgat gatgagaagtaggtttgaagaagttttgttgttgcaacttatttagagttacttqtt ccacaaccacaagtaagattggtcacttctaagttctaactagaaacaaccatgaca tataaaataaaattttcacaaataaaagaactacaaaaaagtgagaaaaataa ttttgccttttggtttggcctttgtttgaacttcgatgagtgactatgtatagcgaa aacaattcggtttgtttttggtttaattttaaaaaatacaagcgacaatatctgatg agaataggtgaaaagcaaataatatcagtttaattggaaatatttacttttttacaa tttatttgttgcgacagtatatatatgttaaaatagtgatattgcatggcggaaggt ccggaagcaacacatatctcctttttaattttttttttaacaagaataacatgttaa ttaaagagtgtgttttttttaacaaacaaggaatacattatacatatttcatatt tctctcgacattgtttttttttaaaaaatagattaaagagtctacgaagctaagt agctaacgaagacttgaaatgagaagaagacgagaatcttttaatattttttgttaa gcgataatattttgaaaattaataaatatagattaaggaaataacaataacgcagat atcggtaagtcatagaaaaaagaaacaacacaaacttacataaacatgtttcctaa gtaaagaactcaatgactataaataacctttaaccctctcattatttcttactatca attgattaagctctcgttcctaagaaagcaatagacgaacaagaacccatcgaagaa cacaaatctctctttgaagttgtcgataatgttagtacaccgttacttcgtccaaga cttttttgccgttccgtttcttacaaaacaaggatttggttaccattacttttgtcg taactcctttttacatgtacgtcaaaaagtggttcctcgctccggcttgaagaaacg accttcttacccacaaaagcttattttaaaccgtctaaaaccggaaaatctcaatc taaaccggatacggttcatgagaaaccgattcaaacaccgagtgaagaagtagaatt ttttgatggttccgtcacaatgtgtgctgctccttcgccaagacatgtaccgattcc gatattttgtggtgtaaagatgatcaaagagtcttcaaagctaagcacgacttgaat gagaagaagaagaccaattactcaattagattttgttttgtggagcaattattgtct atttatctttgtttttagcaaataatctgtatccactaatcttcacagtacttgact aacaagaagtaaagagttttcttatttccaattgttttttaatctgatactttttc ataattttacaatgtttgatgaaaaaaaacattcaaacctaaattttcttttttgg tatgaattcaaacctgaattacttttgacgaggacccgacggtataaatagggtgat ctcccaacaaacaaaagggtcccggg

Pectinacetylesterase from Arabidopsis (clone#6671954)

cccgggtggtggggacaatggatccggtctgcgtagcaacaaggctgaaaaagatta

2/8

3/8

Selectable Markers

pNOS / NPT-II / tNOS

pSU / Bar / tNOS

pSU/Intron/Bar/tNOS

pUBQ3 / Intron / PMI / tNOS

FIG. 5

Scorable Markers

¹Construct useful for promoter analysis.

²Construct useful for high constitutive expression of genes of interest.

FIG. 6

FIG

FIG. 8

AKK110P1 SEQUENCE LISTING

```
<110> Mushegian, Arcady R.
          Taylor, Christopher G.
          Feitelson, Gerald S.
Eroshkin, Alexey M.
 <120> Materials and Methods for RNAi Control of Nematodes
 <130> AKK-110P
 <140>
 <141>
 <160> 139
 <170> PatentIn Ver. 2.1
 <210> 1
 <211> 165
<212> DNA
 <213> Globodera rostochiensis
gtttgagatt attgactttg catatttcca accaagttca tttgaccaat attttcctgc 60
taaacatagc aaaaatggtg aaaccgaagg tcggcattaa tggctttgga cgcattgggc 120
gcttggcgtt gcgcgctgcg gttgagaagg acaccgttca ggtgg
<210> 2
<211> 342
<212> DNA
 <213> Globodera rostochiensis
<400> 2
cgactacatg gtatacatgt tcaactacga ctcgacccat ggccgcttca atggcaaaat 60 ttcgacaagc gccggcaatt tggtcgttga gaaagagggg aaggccacgc acaccatcaa 120 ggtgttcaac ctcaaggacc cggccgagat caaatgggct gaggtgggcg cggaatatgt 180 gatcgagtcc accggggtgt tcactaccat tgagaaggct tcggcacact tgaagggggg 240 cgccaagaag gtggtcatct ctgctccgtc cgctgatgca ccgatgtacg tgatgggcgt 300 caacgaggac aaatatgacc cggccaagga caacgtgatt ag 342
<210> 3
<211> 205
<212> DNA
<213> Globodera rostochiensis
<400> 3
gaagccggcc tcattggacg ccatcaaggc ggcggtgaag aaggctgccg aagggaattt 60
gaagggcatt ttgggttaca cagaggacca ggtggtgtcc acggactttc ttggagacag 120
tcgctcgtcg atcttcgacg ctggggcgtg catctcgttg aacccgcact ttgtcaagtt 180 ggtcagctgg tacgacaatg aattt
<210> 4
<211> 167
<212> DNA
<213> Globodera rostochiensis
ttaaacgatt tattcacacg cacggagaaa tgaggattac ctaatttgat tgagtctttc 60
tcgtccattt gtcaattgtg gccctaaaga gggccgtttg ggttagttt ttggtgttcc 120
ttctccttgc tggctcaacc accgaagccg tacagcgtcc ggccttg 167
```

PCT/US01/18911 **AKK110P1** <211> 41 <212> DNA <213> Globodera rostochiensis catggccgtc acggtcttgc gcttcgcgtg ttcgcagtat g 41 <210> 6 <211> 79 <212> DNA <213> Globodera rostochiensis <400> 6 gtttcccagg aaaactttca gcacggaacg agtctcctcg taaatgaggc cagagatgcg 60 cttaacgcct ccacgacgg <210> 7 <211> 168 <212> DNA <213> Globodera rostochiensis <400> 7 cggcttggtg atgccctgga tgttatcccg caagactttt cggtggcgtt ttgcgcctcc 60 ctttccgagt cctttccgc cctttccgcg tccggacatt ttgttgttaa atcagaagag 120 cacagagagt aggagaaata ggaaattttg cctcgtgccg aacgtgcc 168 <210> 8 <211> 330 <212> DNA <213> Globodera rostochiensis gacagtetee gttetggtta tgtgteacae gegegaaett gettteeaaa tttetaagga 60 atacgagega tteaceaagt acatgeeggg agtgaaggtt teegtateet teggagggat 120 geegataaag aaagaegaag aggtattgge taagaaeaeg eegeacattg tegteggaae 180 geegggaegt ettttggeet taggaegeae tggaeatetg aagetgaaag gegteaaate 240 etttgtgeeg gaegaatgeg acaaaatgat tggagatgee gaeatgegee aegaegtgea 300 ggaaatette aaaatgaege etcaggagaa saaatgaegee aaaatgaegee 330 <210> 9 <211> 136 <212> DNA <213> Globodera rostochiensis actitgccgc gggagctgcg cgtcttctgc aaaaagttca tgcaggaacc aatggaggta 60 tacgtcgacg acgaggctaa gcttacgctt cacggtctcc aacaatacta cgttagactg 120 aaggaaaatg agaaga <210> 10 <211> 141 <212> DNA <213> Globodera rostochiensis <400> 10 tattaaaata aaatacaaac aataatataa tggctgtttt ttctgtcatg tttcaagttt 60

<210> 11 <211> 141 <212> DNA

. 1

tcaatagctc gctcggtacc t

ttgttgttca tcactttctt cagcagcgac aatacggcca atccggtgaa agggccaaag 120

. 4

AKK110P1

```
<213> Globodera rostochiensis
  <400> 11
 acccaggeac tetgtteate tteggeateg etttttggea atgteaacaa caetttgetg 60
  gccattitgt ttctacagca cacgcacacc gtcgtcttta cagcgttcac ctcgccaaaa 120
  aagtagccgt atttgcgaaa t
 <210> 12
<211> 37
 <212> DNA
 <213> Globodera rostochiensis
 <400> 12
 gcgttgggtg caagctgtac acaaggtcgc ccggttt
                                                                                                  37
 <211> 161
 <212> DNA
 <213> Globodera rostochiensis
 <400> 13
 gcgcgttcca tcgcccgcac cacaaaaagt cccatcgctt catatcgtag cgcaaattgt 60
 ctttggtgca aatggcaaaa cggccaaaat aatggtcgaa gccgtacaca accgccaccg 120 ccacagcgcc aaccccacac caaatgcgaa atttatcgaa a 161
 <210> 14
<211> 306
 <212> DNA
 <213> Globodera rostochiensis
 <400> 14
 gaattcgttt gaggtataaa taaataataa atggcagcca acgaatcgct aaatgtggac 60
agtttgatca ctcgattgtt agaagttcgg ggttgtagac cgggaaaaac agtgcaaatg 120 gacgaatctg agatacgcac tttgtgcatc aaaacacgtg aaattttgct gtcgcagcca 180 atcttgttgg agctcgaggc acctttaaaa atttgtggtg acattcacgg acaatataat 240 gatcttctga gattgttcga atatggtggg tttccaccgg aagcgaacta tctattctt 300
ggggac
                                                                                                 306
<210> 15
<211> 261
<212> DNA
<213> Globodera rostochiensis
<400> 15
gcaaagcctt gagacgattt gtttgctgct tgcttacaag attaaatatc ctgaaaattt 60
ttttcttctt cgtggcaatc acgaatgtgc ttcaatcaat cggatttacg gatttatga 120 tgaatgcaaa cggaggttcc tcaatcaagt tgtggaagac cttcactgac tgcttcaact 180 gtctgccaat tgccgcttta atcgacgaaa agatcttttg ctgccacgga ggctgtctcc 240
tgatttgcta aacatggcag c
<210> 16
<211> 151
<212> DNA
<213> Globodera rostochiensis
<400> 16
gaattetttg agtgcattca gcgtttaatt ttttcgtatt ataataagca tggctcgcgg 60
acccaaaaag catttgaagc gacttgcagc acccaaaaaa tggatgttgg acaaattggg 120
tggcgttttt gcgccacgtc cattgtgcgg a 151
<210> 17
<211> 306
```

Page 3

٩ŀ

```
<212> DNA
  <213> Globodera rostochiensis
  tcaagtacgc gcagtcgtac aacgaagcgc gcatgatctg caaacagcgg ctgatcaagg 60 tggacggcaa agtgcgcacc gagatgcgct tcccgtgcgg aataatggat gtgatctcga 120 ttgagaagac aaacgaaacg tttcgtctgg tgtacgatgt gaagggccgt tttgtcatcc 180
  atcgaattca aaagctggag ggccagtaca agctgtgcaa agtgaagaag caggccgtcg 240
  gggācaagca ggtčccctač attgtčacac atgacgcgcg caccattcgc taccggaccg 300
  <210> 18
  <211> 528
  <212> DNA
  <213> Globodera rostochiensis
 gaattcgcac aacgaattga agacttatgc ggcagaaaaa ggacttttgc caaagtgtga 60 ggagcaagca gacgaccttt cggattggct ttgttcgtcc attgggttgg agcatcgccc 120
<210> 19
<211> 335
<212> DNA
 <213> Globodera rostochiensis
 gaattetttg agaaagegga aattegtttt tggetataaa atgattetgt gggeeacgat 60
gattettig agalagegya adtelytti tygetatada atgattetgt gggccacgat 60 tttgttgatg gettiggaca ttgcgttegg tggccaccaat caaatggaat ttgatcagtc 120 ggcgccgatg ttccccgact cccagttcat cgatttgatt tcgcggcgaca tcgaatcett 180 ctccggccca ttgggcgttg gccataaatt tatgagcggc ggtgccggtg agggcgtcca 240 acagctaggc cccgaggggc cctttgagca gcggcaacag gtgaagagtg acaatgttct 300 ccccgcgtat tgcgagcctc caaatccctg tccga
 <210> 20
 <211> 52
 <212> DNA
<213> Globodera rostochiensis
<400> 20
ggacggctgc acggaacagt tcgagaacac tgccgagttt tcgcgcagct ac
                                                                                                               52
<210> 21
<211> 190
<212> DNA
<213> Globodera rostochiensis
<400> 21
gcttgtga ccaggagcac atgtttaact gtccgtcgaa gaacaaccgc gaggagtacg 60 agcaggatt ggagcaattg ctggccaaca acggactgca caaatcaatg attgccaaga 120 aattccatct cacgcgggcg gaggagccgc gccgtcgaaa acgctcttgt cgcccggctt 180
cggccaacco
<210> 22
<211> 52
<212> DNA
<213> Globodera rostochiensis
```

```
<400> 22
 ccgctacaac ccctacctgg agggcgcccc gctgaagtca gtggccaaaa ag
                                                                                                     52
 <210> 23
<211> 54
  <212> DNA
 <213> Globodera rostochiensis
 gaattccgac tctcaaggtg gacccacgcc caaccaacag caattgtcag ctgc
                                                                                                     54
 <210> 24
<211> 77
 <212> DNA
 <213> Globodera rostochiensis
 ccgcacatgt cgaggcctcc atcttttggc actggtcatc accttccgcc tactgctaac 60
 aacagaccgg aacagca
 <210> 25
 <211> 439
 <212> DNA
 <213> Globodera rostochiensis
 gtcaatcaaa aacgccgact tcgattcctc agctgatggt cagtaatgcg ctaaagggca 60
 tccattccgt ctcttctaca tcagcaacac aatcacattc cacgcccagt tttatgacac 120
acaacgtgca gcagcaacat gttgttggtc aacaacagca gcaacaacag aatttccaac 180 aaccgccgcc cctatcgtac actcacagcc accaacaaca aaaacaacca ccacaagcgt 240
cacagtcgat gttgtcaatg aaaagtggca atgttgtcgt tgttgttccg caacaatcgc 300 agcagcacca ctaccaacag cggacactga cgccactgaa gcacacatcc gcatcctcca 360 cgtccgatcg cttcgtcatc accaaaacca acagggtgct tccactcccg tcgcagcaag 420
gcgccacggc cactgatga
<210> 26
 <211> 539
 <212> DNA
 <213> Globodera rostochiensis
<400> 26
gaattcgttt gagacacatc caattaatta atagttattg ttggcaatgg gacgagttcg 60
aacgaaaact gtgaagaagg cgtcgcgcgt cattattgag aagtattaca ccaaattggg 120
cctcgactt cacaccaaca agcgcatttg cgaggaggtg gccattatcc caagcaaacg 180 gatgcggaac cgaattgcgg gattatca acatctgatg aagcgcattg agctgggcc 240 tgtccgtggc atttccatca aattgcagga ggaggagcgc gagcgtcgcg acaattacat 300 gcccgaaatc tcttacctgg atgcgcagaa tcaccagatg atcagcacg accaaggagc 360 gaaggatatg gcggaatttc tggggctagg cctcaacttg gaagtgaaag ggcctttgaa 420 gaaggacacg gctggcagaa gacgacaacgaca attagcacta tcatcagaa 420
gagtggcggc gctggcgcag gacgtcgttg agtcaggaca attggcatta ttgttgaaaa 480 atcatcgatg ttttgttcgc atttggatga taatgcgctg ataaattttt gttgattt 539
<210> 27
<211> 179
<212> DNA
<213> Globodera rostochiensis
<400> 27
gaattcnaca gtttctgtga gtaatggcat ntcacactgc cggcatccaa cagttgcttg 60
cggccgaaaa gcgtgcggca gaaaagatta atgatgcccg gaagcgaaaa gcacagcgac 120
ttaagcagge caaacaagaa geceaggegg agategagea gtategneag gagagggag 179
```

٠,;

```
<210> 28
  <211> 133
   <212> DNA
   <213> Globodera rostochiensis
  gcaaaattat ttgggcacgc gcgacgacat cgagcagcaa ataaagcgcg agacagaaga 60 gtcgctggag gcaatgaatc gcaatgtcgc ggcgaacaaa cagcaggtca ttgtacgtct 120
  gctgcagttg gtg
  <210> 29
  <211> 482
  <212> DNA
  <213> Globodera rostochiensis
  <400> 29
 gaattcgtga aatcaaaagc ttttttaatt tatttacaca aaaaatggtt ccaccaccaa 60
ttcgcgtgtt ggtcactggt gccgctggac aaattggcta ttcactggtt ctgcaaatcg 120 caaaaaggcga tgtgtttggc aaagatcagc caattggtta ttcactggtt ctgcaaatcg 120 caaaaggcga agtactctct ggtgtccatt ttgaattgat ggactgtgcg ttggcaaacc 240 ttgccggtgt ggaggctgtg accacggaag agcaggcctt caaggacatt gactacgctt 300 ttcttgtcgg agcgatgccc cgaaggaggg gaatggaacg aaaggacctt ttggcggcaa 360 atgtcaaaat tttcaagtcc caaggcgaag cattggcccg cttttccaag cccgtncgtc 420 aaagttctcg tggtgggcaa cccggccaac acgaacgcgt acatttgcgc aaaatatgcc 480
                                                                                                                                                482
 <210> 30
 <211> 605
 <212> DNA
 <213> Globodera rostochiensis
 <400> 30
 gaattcaaag tgccgaaagc gttcaaaata attccggcaa tggcaaattg ggaacaaatt 60
gaattcaaag tgccgaaagc gttcaaaata attccggcaa tggcaaattg ggaacaaatt 60 ctagacctta cttccccga aaaatggagt tcagcggcga tgttcaagc aactcgtgtg 120 tttctgcca ccggcacacc gtcacaatgc caaaggtca acactttggt gctgttgcca 180 cgactccgtg atgagattga cgagtacaag aagctaaact ttcatttgta tcagtgcttg 240 tttaaagcaa tgttcaagcc ggccggattt tttaagggca ttattttgcc tctttgcaaa 300 tctggcactt gcactctccg tgaagccatc atctttgggt ctgctctgcg aaagattca 360 ataccgcaac tccacgccgc tgcagcaatg ctcagcatag caaaaatgga ctactcgggc 420 gccattctt ttatcctacg tgttcttgtt gaaaaaaaat acacacttcc tttccgagca 480 attagacggcc tcgttttca tttcttgga atgcgctcac atcagggcga gctgccagtg 540 atttogacc agacactott ooctttotc gagcgttacg caaaagacat aagtgcagaa 600
 attiggcacc agacactgit ggcttitgic gagcgitacg caaaagacat aagigcagaa 600
cagag
                                                                                                                                              605
<210> 31
<211> 112
<212> DNA
<213> Globodera rostochiensis
<400> 31
ccattcccat catcaaatta ccccgattta ctgcggcttt tgcgcggcgc cgagtcgagg 60
aatgaggaaa gtgaagcaaa tgtgcccqtt tatqcqcqta atgatqaaat qq
<210> 32
<211> 105
<212> DNA
<213> Globodera rostochiensis
<400> 32
gaattcgttt gagcatttat ttgacaaaat ctgaataaat ggccgtacca aaagaagtta 60
ttgacaaaat cgaggcgggt tacaagaagc ttcaggaagc gtctn
```

- 1

· 1

AKK110P1

```
<211> 425 ·
  <212> DNA
   <213> Globodera rostochiensis
   <400> 33
  aagaagtacc tcaccaagga agtcgtcgat gcctgcaagg ataagcgcac caagcttgga 60
  gcgaccttgc tggatgtgat ccagtcgggc gttgccaact tggacagcgg agttggggtg 120
  tacgeteetg eggatgtgat ceagleggt gregetate eggatagegg agreggggg 120 tacgeteetg acgetgagge tracacettg tracageget tgttegacee gateateaac 180 gactaceatg gregetregg teegggeage aagrageegg caactgacet tggtgaegge 240 aaaacgeana tgetgaeegg atetegaeee egaggggaaa attracaat tregaeaege 300 gttegttgeg geegtteet tracagggata eeeggteaa eeeggteegg acnaaaggan 360 aactaenttr ggagatggga aacnaaggte nagggeegtt tretaaeatt traaagggen 420
  atcct
  <210> 34
<211> 581
  <212> DNA
  <213> Globodera rostochiensis
quartcgtt gagcgaagag ttttgtggtt gacaccggtt tatggacttt tagcccgtga 60 tccttgacgg tccaaagccg cgttcagttc cgtgccgtgt tttttaaaag aggcggagag 120 tctgacggtc attccaagca gccaataac caccaaacc ttccccccct ccaattcctc cgcattattc gcattatcaa gcatcattcc tttcccgacc atacggatgct aagtgaaact ttgaaaattg atggcccaag cattggcaag aggacttatc aggaggatt gtccaaagac ggacgaggct attgggaatc atggcgatc acgacaacac tttggtcgcg cgagagacgg aagtcaacac tttggtcgcg gaaatcgcac aagtcaacac ttggtcgcg gaaatcgcac ccaattccg 540 gaggggaacat ttgcttattt cattgattag gaattacact t
 <210> 35
<211> 102
  <212> DNA
  <213> Globodera rostochiensis
 <400> 35
 gaattcgttt gagaatttta ctttatataa ttgacgttta atcagcagcc ataagcaatg 60
 cccatcaaag catccggaga aacattaagg aagtttattg tc
 <210> 36
 <211> 34
 <212> DNA
 <213> Globodera rostochiensis
tgcaaatgat gcaaacccca cgcttcacaa gatg
                                                                                                                                         34
<210> 37
<211> 100
 <212> DNA
 <213> Globodera rostochiensis
<400> 37
tcatgttgtg gccaaatctc gcttctggta ctttacgagc atgctgcgtc gagttaagaa 60
aacacacgga gagatcgttt cgtgtcaaga ggttttcgag
<210> 38
<211> 176
<212> DNA
<213> Globodera rostochiensis
<400> 38
```

Page 7

. 1

```
AKK110P1
  tgaagaactt cggaatttgg ctccgttacg attctcgtac tggacaccac aatatgtacc 60
  gcgagtatcg ctgatgttac cgaggccggt gccgtgaccc aatgctatcg cgacatgggc 120 gctcgtcacc gcgctcaggc ggatcgaatt caaatcatca aagtgcaaac ctcaag 176
  <210> 39
  <211> 155
<212> DNA
  <213> Globodera rostochiensis
  gaattccaag tttgaggtat tgtttgttat acgatttctt acaaatgaca gaacaaactg 60
 agcgcgcgtt ccaaaaacaa ccgatcgttt ttctgaacga caagttcaga acgcaaggga 120
ttgggaagaa ggcatccaac aaggaccgtt actgg
 <210> 40
 <211> 35
<212> DNA
 <213> Globodera rostochiensis
 <400> 40
 tcctcgcgag gctattgagg gcatatatat cgaca
                                                                                               35
 <210> 41
 <211> 70
 <212> DNA
 <213> Globodera rostochiensis
 tggaaatgtg tccatccgcg gtcgcattct cactggggtg gtgatcaaaa acaaaatgca 60
 gcggacgatt
<210> 42
 <211> 85
 <212> DNA
<213> Globodera rostochiensis
 <400> 42
tcgtaccaaa atatcgtcgc tatgagaaac gccacaaaaa catgtccgtc cactgttcgc 60
cgtgcttccg agatgtctct ctcgg
<210> 43
<211> 193
<212> DNA
<213> Globodera rostochiensis
<400> 43
agttcggttc aatgtgctca aggtgatcaa agcatcgggc tcgaagaaag cgttcgacaa 60 attctgagtc ggccaagcca accgcgaacg gtcatttgtt atggttccta attgttgctg 120 tttttcaatt attgtgtta aatgactgaa tttatgatca acggtatact agtattcttc 180
tgaaaaagct cga
<210> 44
<211> 219
<212> DNA
<213> Globodera rostochiensis
<400> 44
gaattcattt agatttgttt tgaagctaga aatctttatt ttggggagtca acgacaatgg 60 gaagacgtcc ggcgcgttgt tatcgctata ttaagaacaa gccgtatccg aagtcgcgct 120 ttgtcgcgg tgtacccgac ccaaaaattc gcatttttga tttgggtaga aagcgcgcca 180
ccgttgacga attcccatgc tgcgtgcata tgatatcga
```

۱, ۱

```
<210> 45
    <211> 489
    <212> DNA
    <213> Globodera rostochiensis
    <400> 45
    tccgaggcgc ttgaggctgc gcgaatttgt gcgaacaaat atatggtgaa gaattgcgga 60 aaggacgggt ttcatatgcg cgtcagaatc catccatacc atgtaattcg catcaacaaa 120
   atgitgitct gcgctggtgc ggaccgtctg cagactggga tgcgtggtgc gttcggaaag 180 cctcagggac tcgtggcgcg tgtcagcatc ggtgatatgc tgatgtcagt gcgtattcgt 240
   gaccaacacc aagctcacgc attggaggcg ttccgtcggg ctaaattcaa gttccctggt
   cgtcaataca tcgtcttgtc ccgcaagtgg ggcttcacca aattcgatcg cgaggtatac 360 gagaaatacc gcaaggaggg ccgtgttatc cctgacggtg tgcattgcaa gttactcaag 420 caacacggac ccgctgaagg agtggctcaa gaaccccatt taatcttctg tttgtcttgt 480
   gactcttgg
   <210> 46
   <211> 101
   <212> DNA
   <213> Globodera rostochiensis
   <400> 46
  gaattccccg gctcgagccg ggttgacgat gtcctcctcc acctcctctc actgcgttcc 60 gtcctccttc agccggaaat tgttcctgtg gctgttgccg g 10
   <210> 47
   <211> 485
   <212> DNA
   <213> Globodera rostochiensis
   <400> 47
  tccaccaaag tccattcgct gtcgccagtc catttattcc acaaaaagat gattccgtcg 60
 tcgttccgat gacgtcgttt ggccaaccgt tgcccccgtc accgctttca ctggtgccaa 120 acccgccgct ttatttgtg ttcccagaaa acttgccgtt ggagcggccc ttcgacgagc 180
 aaaacgacgg ctccgaggag gaattagccg aagaagcgat gggaacgaag gcgaagaggg 240 cgcaaacgtt cgtccgattc ggcaaaaggg cgcaaacatt tgtgcggttc ggaaagcgtg 300 cacaaacatt tgtacgctc ggaagggaca cgcaaaggca attcgatggg aaaatgcaaa 360
 gtgaacagca acagaaaaag gcttaaagca aacggcggcg acttttcttt taatgaatgc 420 gcgcccaccg catgacaatt cttttgtgta atgtgttgcg atttttatga tcggtaaatg 480
  taaca
  <210> 48
  <211> 651
  <212> DNA
  <213> Globodera rostochiensis
<400> 48
atctgttcaa gggactgttc ggcaagaagg aaatgcgcat tctgatggtt gggttggacg 60 ctgctggaaa gacgaccatt ctgtacaagt taaagctcgg cgaaattgtc accaccatcc 120 caacaattgg cttcaacgtg gaaaccgtcg aatacagaaa catctcgttc actgtttggg 180 acgtggtgtg tcaagacaaa attcgtccac tttggaggca ctacttccag aacacgcaag 240 gactgatctt cgtcgtggac agcaacgatc gcgaagcggt gggcgaggcg cgtgaagagt 300 tgatgcgaat gctggcggag gacgagttgc gcgaactgac agacagactt gccgaatgg atgaacgccg ccgaactgac agacagactt gccgaattgg tacatccagg ccacctgcg gactgcgaca 420 acgagggact ggactgctg ggactgcaca tctgttgcact tgccgcgga attgatgacg attgaatta tttgtgtgt tgcgcgcac 600 gctcttttgt gggacgcccg attaattttg ataattatt tattccgtgt t
 <400> 48
 <210> 49
 <211> 660
<212> DNA
 <213> Globodera rostochiensis
```

· .:

```
<400> 49
   gaattcccaa gtttgagatc aattcagttt cacttagaca aaaatgccgc cgaaattcga 60
   cccaactgag atcaaaatcg tgtacctgcg ttgcgtcggt ggtgaaattg gtgcaacatc 120
  tgcacttgca ccaaaagttg gcccacttgg attgtcgccc aaaaaaattg gtgaagacat 180 tgcgaaggcc acacaggact ggaaagggct taaggttacc tgcaagctga caattcagaa 240 tcgtgtcgcc aagatcgacg ttgtcccatc ggccgccctc ctgatcatca aagagttgcg 300
  cgaacctccg cgagaccgca aaaaagtcaa aaacgtgaag cacaatggca acctgaccat 360 cgagcaagtg atcaacattg cgcgtcagat gcgcctcgt tcaatcgcac ggaagttgca 420 gggcaccgtg aaggaaattt tgggaaccgc ccagtcggtt ggctgcacca tcgatggaca 480 acatccgcac gacattgtgg acgcgatcag agggggagac atcgaaatac ccgaggaata 540 aagaaaggac ggcgcctccg attttgtgg gacggacatt gggaatttga ggtgaatgag 600 ttgccaattt cattcattca tcaattgttg ttattgntgg tacggataaa tttgtaattg 660
  <210> 50
  <211> 625
  <212> DNA
  <213> Globodera rostochiensis
  <400> 50
 gtgccggaac agacgctcga ggaggttagc cgtctgcagc ggacgagctc cttgttggac 60 gtggcaatcc gggacggcgt cccctacccc ccactgcctc ctacaaaccg atccccgaa 120
tacatgaaca tgctgacccg ctccttctcc gtgccaaatt tccgcatcta ctcgggcgcc 180 atcggaccgt acagaccttc gtgcccgtg tacacttaca acacttacca cgggtacttc 240 ccctaccgca actaccagcgg ctacaccttg gcgaatgctt actggtacga ccgatactat 300 tacttctcgc cgctgtacaa acgaagcatg ttccccaccc gcttcaaaca ttgtgactat 360 aaagcgaacc cgcactattg gcgactacccg cacacctttt gggactatcc ctaccagggc 420 aaatggttcg actacgacaa ccctcccaat taccggccct actacaacca tcgccttaac 480 ggatatgctc ggccgtatca ctaccggtcc catgcgctgg cccacccgtt caattacccg 540 gaaggaatgg tcaggaaaca agctt accacactac tccaaattga cgtggccgc 600 attcgaaaag agacgaaaaa agctt
 <210> 51
 <211> 402
 <212> DNA
 <213> Globodera rostochiensis
 gaattccaag tttgagcaac attttgaaaa tgaccgaagc caaaaaactt cccgaggtgc 60
 cggaaacttt gctcaagcga cgcaaaatca gagctgcgca aaaggccgca aaagcaaaga 120
acaaattgag ttctatcaa aaagcacgga ccaagaaggt ggaaatttt aaaagagcgg 180
agcagtattt ggtggagtac cgtcagaagc aacgccaatt gcttgcgctg aaacgtgaat 240
cgaagaaagt cggcaattat tatgtgccag aagagcccaa actcgccttt gtggtccgaa 300
tcaaaggcat caataagatt catccgcgtc ctcgcaaggt tctgcagctt ctccgcttgc 360
gtcagatcaa caacggcgtt ttcgtaaagt tgaacaaggc ga 402
<210> 52
<211> 433
 <212> DNA
<213> Globodera rostochiensis
<400> 52
ccgacccgta catcgcttgg ggttatccga gtcagaagat catccgtcag ttggtctaca 60 aacgcggtta cgccaaagag aagggacagc gcattccaat aacggataac aacattgttg 120 agcgcagttt gggcaagcat gacgtgattt gtgtggagga tatgatccat cagatttgga 180 ccggtcggac cgcacttcaa acaggtgacc aacttcctat ggccttcaa gctgagcaac 240
ccggtgggcg ggttcaagaa gaagtccaat cacttttgtg gagggaggcg attatggaaa 300 ccgcgaggac caaatcaaca aattattgga aagaatggtc taatggaagg gaagcggana 360 aagaaaggaa attgnggcgt ttttctgttg ttgttttgac gataaattgt taactccaaa 420
aaaaaaaaaa aaa
                                                                                                                                                                                  433
<210> 53
<211> 768
<212> DNA
```

٠,!

```
<213> Globodera rostochiensis
  <400> .53
  gaattcgttt gaggtcaaac tttattagcg tatttaacaa tgtccgaagg aggagcgaaa 60
 <210> 54
<211> 338
<212> DNA
 <213> Globodera rostochiensis
 <400> 54
 gaattccagc agattaattg gaatggctga gaacatcgaa gagattcttg ccgaaatcga 60 cggctcccaa attgaggagt atcaacgctt tttcgacatg ttcgaccgcg gaaagaatgg 120 ttacattatg gccacccaaa ttggacaaat tatgaacgcg atggagcagg actttgacga 180 aaagaccctc cgaaaattga tccgcaagtt cgacgcggac ggttccggca aactggagtt 240 cgacgagttc tgcgcgttgg tgtacacggt ggccaacact gtggacaagg acactctgcg 300 aaaggagctg aaggaggcat tccgactctt tgacaagg
 <210> 55
<211> 267
<212> DNA
 <213> Globodera rostochiensis
 gaaattgcgc ccgatctcag cgacaaggat ttggaggcgg cggtcgacga aattgacgag 60
gacggcagcg ggaagatcga attcgaggag ttctggggagt tgatggcggg cgaaaccgac 120 tgagaaaaga gcaaatcgat ccaaatccaa acggacccgt cccatttcac ctccatccgt 180 ccgtcgtatt attatattt ccagtggaat tttcccatta aaattcggtg aaagtaaaat 240
 aatttgacga aaaaaaaaa aaaaaaa
<210> 56
 <211> 597
 <212> DNA
 <213> Globodera rostochiensis
<210> 57
<211> 80
<212> DNA
<213> Globodera rostochiensis
```

٠,؛

```
AKK110P1
      <400> 57
     ggcattgtgc gtctgcaagc cggtacgaac aagttcgact cgcagaaggg catgaccctt 60
      trcggtacgg gcccgtcgtg
     <210> 58
<211> 513
     <212> DNA
     <213> Globodera rostochiensis
    gaattcgcca caccgctcac atcgcgtgca aattcgccga acttaaagag aaggtggacc 60
    gncggtctgg caagaaagtt gaggacaacc cgaagtcgct gaagactggc gacgccggaa 120
ttgtcgaact gattccgacc aagccgatgt gtgtggaggc attcactgac tacgcaccgc 180
tcggccgttt tgctgttcgc gacatgaggc anactgttgc cgtggcgcg atcaaactag 240
tggagaaagac ggaaggcggt ggcaaagtga ccaagccagc gcagaaaggc ggcgcgactg 360
   gtggcgggaa gaagacatga ccaaggggag gggcggttcc ctaagggcca accgtcgacg 360 aaaatgcgac caacctcttg tttatcgttg tcttattcag ttccttccac ccgtctctat 420 ccatattgtc gttgcgttgg ataatgttt atttttgtt attgtcctgg ttggaaaata 480
    aatttggtca attaaaaaaa aactcgtgcc gaa
    <210> 59 <211> 393
    <212> DNA
    <213> Globodera rostochiensis
    <400> 59
   gaattcgttt gagcgaaaaa aacatactat acaatggcaa caactgagaa gcctcaggtg 60
  gttcaacagc Ccgtgcaggt ctttggccga aagaagacag caacagccgt tgcgtttgca 120
aaaaggggca agggcttgat caaggtcaat gggcgtctt tggactacat gcagccggag 180
attctgcgca ttaagctcca ggagccaatt ctcattgttg ggaaggacaa atttgaggga 240
atcgacatac gaatccgcgt caagggcggt ggacacattg cgcaaattta tgcaatcgc 300
caagcactgg ccaaggcact ggtcgctttc taccagaaga atgtcgacga gcagagcaaa 360
aaggaactga aggagcaatt tgttgcttac gac 393
   <210> 60
   <211> 154
<212> DNA
   <213> Globodera rostochiensis
 Cacgagccaa agaaattcgg tggacccggg agctcgcgct cgctaccaga atcgtaccgt 60 taagaaataa ttttgtagat caaatgttt gatgatgatc cttgtttttg ttgttgataa 120 aaaaaattta taaaaaaaaa ccgccgatac tgac 154
  <210> 61
  <211> 666
  <212> DNA
  <213> Globodera rostochiensis
<400> 61
gtattccaag tttgagcgat cagagttctt caatctatta tcaactgttt tccatcaacc 60
aactgtcatc atgcaaattt tcgtcaagac gctcaccggc aagaccatca ctctcgaggt 120
cgaggctagc gataccatcg agaacgtgaa agccaagatc caggacaagg agggcattcc 180
gcctgatcag cagcgtctga tcttcgccgg aaaacagctt gaagacggac gcaccttggc 240
cgactacaac atccagaagg gcaaatttt gtcaagacg caactct ccatctcgtg ctgcgtctcc gtgggcggaat 300
gcaaatttt gtcaagacg caagatca gaccatcact ttggaggtcg aggccagcga 360
caccatcgag aacgtgaagg ccaagatcca ggacaaggag ggcattccg ctgatcagca 420
gcgtctgatc ttcgccggaa aacagctcga agacgggcg actctggcg actacaacact 480
ccagaaggag tccactctc aacgtctg ggaggagaga actgaatcgc 540
gggctgatgg tccattgtc ggtcatcaaa tcttatgac cccctattg ggcatggaac 660
gataaa
 gataaa
```

· 1

```
<210> 62
<211> 213
   <212> DNA
   <213> Globodera rostochiensis
 gaattcgttt gagaaacttt ttcaaccatt cattcaaatg tctcatcaag tgacacgggc 60 agcactcaac cacgggacgc gtgtactgag cgtgttggag aaggtcaagt tggtctgctg 120 gtttgaggag acacattcgt tcgcgcaagt ggctcgaaga taccgggcag aatttggtat 180
  ggaaccaccg cagttggacc aagtgaagaa gtt
 <210> 63
<211> 488
  <212> DNA
  <213> Globodera rostochiensis
 agcaccggct caatcctcaa tggcacaacg acggcattct ccggcatagg agacggagtc 60 ggtcttggag aacaacagcc aattcccgtc gtaagcgatg cgggactgga tgcggaagaa 120
cagctgagaa tggccagaat gtgagccgga ggacctgaag atttatgaac gaaatttcc 180 agtgaagtgg accaacgctc ttcgactta tctgctttgt gtaaagtgta tagaatcggc 240 ttccaattca aaggctttc attccccaac ttttatttt gcgcaaaaaa tttcttagga 300 taagcgtgaa taatttattg atttgtttt tctttcttt atctccgcc cgaagtcgca 360 agtgttcctt ttggcccgtt ccctttgtt ttgaatgtta ttccatccc atccctcac 420 ttctcaatt ttgtgacatt cagctgcatt gttcgactcc catttaaaag ttgagtgaaa 480
 tgcgattg
 <210> 64
<211> 249
 <212> DNA
 <213> Globodera rostochiensis
wccrgakbng aacahcdkdg vhwatnvcbn gschvbwagc rngtcsvddb wgnhnsswtg 60
gkgdyrbwnt msnwrmanrg artsstsgaa ttcccaagtt tgagagtaaa tattattagc 120
 taaaaatggc agtcggaaag aataagagaa tgggcaaaaa gggagccaag aagaaggctg 180
 tcgatccgīt cācacgcaaā gaatggtācg ačātcaaagc gccggcgatg ttcacācatc 240
 qaaatssts
                                                                                                                                                    249
<210> 65
<211> 362
 <212> DNA
 <213> Globodera rostochiensis
weberbhdyb ytsgersnek tbdsbheysy gedwkmtnvk hsengdekty nyykkkvbmr 60 ntmsnwrman rgartsstsg teaacegtae teagggaaeg egeattega gegaetteet 120 aaaaggeege gittaegaag tgteaetggg tgaeettaae ageaetgaeg eegaetteet 180 aaagtteege etgatetgt aagaggtaea gggeaagatt tgeetgaeea actteaegg 240 aatgtegte actegggaea aactgtgete tattgteaag aagtggeaea egeteattg 300 ggegaatgtg geagtgaaga etaeeggg ttteatgee egaetettt gtateggtss 360
<210> 66
<211> 128
<212> DNA
 <213> Globodera rostochiensis
<400> 66
aatcaaatta agaagacgag ctatgcaaaa gcctctcagg tgcggatgat tcgtgccaaa 60 atggtggaga tcatgcagaa agaggtctct tccggcgatc ttgaangaaa gtagtcaaca 120
agcctgat
```

```
<210> 67
  <211> 502
  <212> DNA
  <213> Globodera rostochiensis
  <400> 67
  gaattccatt aaaaaactaa acgaacaaat ctaaagatgg ccaccqaagt ggaqqaaaat 60
 gttcctacgg ttgacccatg gggtgctgtg gaggaagtgg gtggtgaaga gtcgatgcag 120 ttggtcagcc ttgacgttac cgaggtcaaa ctgttcggaa aatggtccct taacgatgtg 180 gaagtgtccg acatttcgct tgtggattat attgcggtga aggaaaaggc ggccaaatat 240 ctgccgcaca gcgccggccg ttaccaacag aagcgcttcc gcaaggccac ctgtccggtg 300 gtggaacggt tgtctttgtc aatgatgatg cacgggcgga acaacgggaa gaaactaatg 360 gcggtgcgca ttgtggaaaca ccccttcgag atcatcacca gctaccggag agaacccagt 420
 ccaagtgttg gtcaatgctg tgataaacag tgggccccnc gaagattnca cacgtatcgg 480 acgtgcggc actgttcgtc ga
 <210> 68
 <211> 519
<212> DNA
 <213> Meloidogyne incognita
 gcaaactttt atcaaataaa aaatttatat ttgccaaaca aatttatgaa taaaaattca 60
 ttaatcatta aaactacatt taaaatatac ttittagaga atgtcgtcta aaatattctt 120
ttctcccctt tatgcatcta tctaaccaga cttggaagca atatggctaa tcaagtcaac 180
aatacggcag gaatacccaa actcgttatc ataccagcta accaatttaa caaaatgcgg 240 gttgagaacc ataagagcct cggcgtcgaa aatagacgaa tgagtgtcgc caagaaagtc 300 ggtagaaaca acctggtcct cagtatatcc aagaatccct ttaagctttc cttccgaagc 360 agtcttaatt gcattcttaa tagcctctt cgttgctgc tcttccaaac gagcatcaa 420
atcaacaacg aaaacgtttg ggcgtcggca cacgaaaagc catttccggt aagcttccca 480 tccaattcat ggattgacct ttccaacagc ctttgcagc
<210> 69
<211> 218
<212> DNA
 <213> Meloidogyne incognita
ttgattcttt attagtggac aatgacggaa gaccagaaga agttgccgat ggtgcctgag 60
actgttttga agcgaaggaa agttagggct gctcagcgtg cttctctact caagaataaa 120 ttggagaata ttaagaaggc taaggttaaa acgcaagtta tctttaaacg tgctgagcaa 180
tacttgattg catatcgacg taagcaaaag caagagtt
<210> 70
<211> 293
<212> DNA
<213> Meloidogyne incognita
taagaaagca gggaattttt atgtcccaga tgaacctaaa cttgcttttg ttgtgcgtat 60
taagggaatc aacaaggtta atttaaattt gctataaagt ttaggatggg tttagacaat 120 tcttctcttt taatgctttc taactttttc aaaaaagtta tgattttatc acccattaat 180
ctacaaattc tttaatttat cagatccatc ctcgtcctcg aaaagttctt caacttttcc 240 gcttgcgtca aatcaacaat ggagttttca ttaaattgaa taaagctaca atc 293
<210> 71
<211> 422
<212> DNA
<213> Meloidogyne incognita
<400> 71
aatgcaatta agactgcttc ggaaggaaag cttaaaggga ttcttggata tactgaggac 60 caggttgtt ctaccgactt tcttggcgac actcattcgt ctatttcga cgccgaggcg 120
taagttitga ttttctaaga ttatattaa cettttaat ttttcagtet tatgggtete 180
                                                               Page 14
```

· 1

. , !

```
AKK110P1
   aacccgcatt ttgttaaatt ggttagctgg tatgataacg agtttgggta ttcctgccgt 240 attgttgact tgattagcca tattgcttcc aagtctggtt agatagatgc ataaagggga 300
   gaaaagaata tittagacga cattetetaa aaagtatatt tiaaaigtag ttttaaigat 360
   taatgaattt ttattcataa atttgtttgg caaatataaa ttttttattt gataaaagtt 420
  <210> 72
<211> 374
<212> DNA
   <213> Meloidogyne incognita
  atctgagcat aaggaaactt ggcctcaagc tatagagcag accgattatg tggcaccgac 60 tgagccagtt aaactggact tcaacgttcc gcttattagt gattgggctg ctgcttctga 120 gtggcctcaa gaagaggaag ctcaggttgc acctactgca ccaattggtc agccacagcc 180 tcaacagcag caaactcaac aaggaggtga ttggaactct ggtactagtg gatggtgaag 240 ggcaggaaaa ttgatagaaa gagaaattat tatggaataa atgtaatcaa tgttgttgtc 300 tgtattattt gttacatata caacaagttt tattttgttg tttatttaat aaaagttgtt 360 agc
  aattaaaaaa aaaa
  <210> 73
<211> 120
  <212> DNA
  <213> Meloidogyne incognita
  <400> 73
 tttttttttt tttttcttca tcaatatttt gaagtgaaga accagaagta gttgcattcg 60 agctttcaaa ttttgtttt tgattactct ttaaacaaga ttcaactgat ggatctactg 120
 <210> 74
<211> 369
  <212> DNA
 <213> Meloidogyne incognita
 <400> 74
 gtctaaccaa tctagagcta ttcggttcgt ctgtctgttg attattagat gttgattgaa 60 cagcactagt ctctgatgta gttttcttca atctcatttt taagtgatgt agaggaagtt 120
tagaattctg attgctatcg tcttctttct cttcttttaa tggcttttc aatttatctt 180 cttccttttc ttgtccattc ttttcttcat tcttttcaaa aggctcagga aattttaatt 240 cagacccgct ccttttaact gctgtatcta aagaaaaccc tctaggcaac gtcccagttc 300 cactcaaatt caattttgtt aaattttgc cagatctaag tccttcttcc ttttgaacga 360
 attgaactg
 <210> 75
<211> 529
 <212> DNA
 <213> Meloidogyne incognita
<400> 75
ttttgttttt tttttttt ttatcagaaa aaagtttaat cagaaaaaaa aattaaaaca 60
aatctaaata aggetetatt etaagtitat attittettt tacataaace gteaaceete 120
caagttitte aatgettgga ggttttaatg gateettgg taataatttg taggetagaa 180 aaaagttige agcaaaaagg aaaagcatea teettgetaa ggetteteea geacattgee 240 titteeeca accaaaaget attagetegt cagettitt taatteeet teattgeta 300 tataacgtte agggteaaa tittggggat titgggatea cettggatea aaaagaacaa 360
ccgatacttg gggtatcata aatgtacctt taggcaacac aaactttcca acattcaaat 420 cttccaaggc taaatgcccc aaattgaaag ggactaaatt aacgagtctt aatgttcat 480 taacaacagc atttgtataa attaatttag gtctgtgttc caaactaat 529
<210> 76
<211> 449
<212> DNA
<213> Meloidogyne incognita
```

```
<400> 76
    agittittt titgaataaa agactitti tiattaaaat ggcticgcaa actgcaggaa 60 ticaacaatt actigcagca gaaaagcgtg cigcagaaaa gattaataag gcacgtaaaa 120
   gaaaggcaca acgacttaaa caagcaaaac aggaagcgca agctgaaatt gacaaatata 180 gagaggaacg tgaaaacgt tttaaagagt ttgaacataa ttacctcggc gctagagatg 240 atattgctgc acaaataaag cgtgaaactg atgagacgct taatgaaatg actcgtagtg 300 ttgctgctaa taaacagcag gtaattgttc gtctacttca acttgtctgt gacattcgtc 360 cagaactgca tcacaattta caacttcaac ttaagcttaa tgaaaagcct gcctaatttg 420 tagttgattg attataaaaa tgaaattga
    <210> 77
    <211> 643
    <212> DNA
    <213> Meloidogyne incognita
   atttatattt gaacaaataa tttaacaaaa aagtatggct cgaggaccaa agaagcattt 60
 gaagcgtttg gccgctccaa agaattggat gttggacaaa ttgggtggag tttttgcccc 120 acgtccatg tgcgggcctc acaagcttcg tgaatcgctt cctcttattt tgttcttcg 180 taatcgtcta aaatatgcac aatcttataa tgaagctagg atgattgca aacaacgtct 240 cattaaagtt gatggcaagg tgcgtacaga aatgcgcttt ccagctggat ttatggatgt 300 ggtttccatt gagaaaactg gcgaagtctt tcgtctctc tatgatgtca aaggacgttt 360 cattactcat cgcatacaaa aggaagagg tcagcttaaa ttgtgcaagg tagtaaagca 420 aggattggg ccaaaacaag ttccttatat tgttactcat gatgccgta ctattcgcta 480 tccggatcca cacatcaagg ttgaccgacac tgttgctgtt gatataaaca ctggaaaggt 540 tacagatcac attagatttg attctggtaa tgtttgtatg attactggtg gtcacaacat 600 aggaacotott ootatacoto acoccacct oot
   gggačgtgtt ggtaťtggtť gacatčgtga ačgccácccť ggt
  <210> 78
<211> 584
   <212> DNA
  <213> Meloidogyne incognita
 atttcctcta aaaatgaatt taaaagaaca acaaatatat ttaaatattc aattattatt 60
 ttttattttg gctgtcagta gtttttgac aactaaggga agtgaagtaa aacaacgaga 120 aaataataaa ttggaatata ataaaaatga aattgagagg caaaaagagc aattaattcg 180 agatttgatt gcctccttaa cacgtgaaag gcaatattca cgagattggc aacaatcaca 240
acagcaacaa aatttcatta acagtttgg Cccttcccca cattattcc cctcttcagg 300 cattagaatgg ccccaacaac aacaaaaaat atttttggaa gaaggggaag tagaaggaac 360 tttagaggaa aatgagaagg aaaaaaggg acaaacttt gttcgtttcg gaaagaggc 420 acaaacattt gttcggtttg gaaaaagggg acagacttt gttcgatttg ggagaggattc 480 aaaacatcaa cataacttgt cagatcagaa gcagttaaaa actgacaaac aataaaaaatg 540 atgaattatt taaaaaattt tttaatgatc ttttaattaa aatt
 <210> 79
<211> 556
  <212> DNA
 <213> Meloidogyne incognita
 <400> 79
gaaaggttca cggttcattg gctcgtgctg gaaagggtcg tgctcaaact cctaaggtcg 300 aaaagcagga acataagaaa aagaagcgcg gccgtgctt ccgtcgcatt caatataacc 360 gtcgcttcac caatgttgct acttctgggg cgggacgccg tcgtggcct aactccaacg 420
ctgcataaga gaatggtcgt atcttgatga atgtatggtg atataatcaa tttaatacat 480 tcgactntat gaagttttct gttattcaag ataaatcttt ttgttgaaaa aaaaaccaag 540
 tttgagatca gttact
```

٠,

```
<211> 424
   <212> DNA
   <213> Meloidogyne incognita
  aacattgttt taattaaaat ttacccctcc tgtagcaatg acatcagaca gacttggccc 60 agtagttcca gatttgacag cccaagagac caacagactt gaacgaacta gttctttggt 120
  cgattggca attcgggatg gagttccata tccacctagg cctgcaatta ataatgttcc 180 tccatacctg aatatgttga ctcgaacgtt ttctgtacca aatgtaaatc agtacacggg 240 tgcaataggt ccttatcgac cagcaaatcc tgtttatact tattatagct ataaatgcta 300 ttttccgtat agaaattatc gaggctacac actgacggat gcttactggt acgaccgtta 360 ttattatttt tcgccaatat acaaacggtc aatgttccca attagattcc ggcattctga 420
  <210> 81
  <211> 89
  <212> DNA
  <213> Meloidogyne incognita
  <400> 81
  attatccaca cacctattgg agctaccctt accaaggaaa atggtacgac tatgacaatc 60 caacanatta ccgcccattc tttgaccca 89
  <210> 82
  <211> 168
  <212> DNA
  <213> Melcidogyne incognita
  <400> 82
 tttttttttt taaaatttat tcattaacaa atgaccttaa cagataaaac ttaacagtca 60
 aaagacaaca taatttccaa ctttttcaat attatccttt ttaacggttt gattttgcaa 120
 ctcgctccaa ttcgtccttc ttcttgatag catatgaatt gctcgaac
 <210> 83
 <211> 67
  <212> DNA
 <213> Meloidogyne incognita
 aattcatcag ccagacattc agcaattgtt ttgatattac ggaaagaagc ttcacgagac 60
 ccagtac
 <210> 84
 <211> 42
 <212> DNA
 <213> Meloidogyne incognita
 taacacgacg aagaggcgaa acatcaacag cctgacgacg aa
                                                                                                                  42
 <210> 85
 <211> 429
 <212> DNA
 <213> Meloidogyne incognita
tatacgagta gaatcctccc gtggtcctcc attaataaca gcgccaacaa gtatttgaac 60 tggattctct ccagtcaaaa tatgtataat ttcaaaagcg tgcttcacaa tccgaacagc 120 catcaacttt ttaccattgt tacgtccatg catcatcatc gaacaacca aacgttcaac 180 aatcggacaa tgagccttc gaaaacgtt gattgatat cgaccagcac tgtgcggcaa 240 atatttggcc gatttgtctt taacagcaat ataatccact aaagaagcat cattaacttc 300 catatcoctt aaagaccatt taccaacaa ttraattca gaaaacgaa ttraattca gaaaacgaa tataactaa 360
gatatcgctt aaagaccatt taccaaacaa tttaatttca ggaaaatcaa ttgtagtcat 360
ttgcatatcc ccttgtccac caggaacatc agttgcgccc caattatcat cagcgggtaa 420
                                                             Page 17
```

· il

```
accatctcc
                                                                                                                        429
  <210> 86
  <211> 435
  <212> DNA
  <213> Meloidogyne incognita
  <400> 86
  tttgagtttt taaaaagtac atactattta atttttaaca aattattttg atcaatttaa 60
  aattitetti teateattit tiaattiaaa aaacattita acaaattaca agaacaacaa 120
 acataattgt ctccttttta ttataaaatt taaagtttaa taagttttaa aacattctcg 180 actggagtac gtgtacttag tgttttagaa aaggcaaaat tagtttgttg gtttgaagag 240 acaaattctt ttgcacaagt agcgagaaga tatcgagcag aatttggaat ggaaccccca 300
 catatggatt tagttaaaaa attacatcaa cgttttctca atactggttc tgtttctaat 360
 ggaaatactg aacattttga agttaatcca acaatggaaa catcgacatc ctcaacagag 420
 ggtgtagcag atccg
 <210> 87
<211> 501
 <212> DNA
 <213> Meloidogyne incognita
 gtttttttt tttttttta aacaaaatat cgagtcttta taagacaaaa ataaaagaca 60
aaagcaattt agtttatca aacaaaataa cgagtctta taagacaaaa ataaaagaca bu aaagcaattt agtttatca ataaaattaa aaatagtcaa tgtctcgttt cactcattag 120 atttgtggc ctaaagaggg ccgtttggt ttggttgttg tacttcagct gccttccacc 180 aattgttcct tagccaccaa atccgtaaag agtacgtcct tggcgtttca acgcatagac 240 gacgtccatg gctgtgaccg tcttctctt ggcgtgtacg caataagtta ccgcgtcgcg 300 gatcacattt tcaaggaaga ctttcagaac acctcggaat tcctcgtaaa tgagcccgga 360
aatacgtttc actccaccac gacgtgccaa tcgccggatt gccggtttgg tgataccttg 420 gatgatatca cgcaagactt ttcggtggcg cttagcgcct ccctttccaa gtccctttcc 480
 gccttttact cgtccggaca t
<210> 88
<211> 270
 <212> DNA
 <213> Meloidogyne incognita
<400> 88
ggaagtgtgt ttaagataaa tggatgatta gaaataaaaa tgaattgatt aaaaattacg 60 ttagaataat aatggaatat ataaaaataa attggatgat ttaataaaaa aaaaaaagag 120 agaactagtc tcgagttttt ttttttttt tttttaanaa ttaacaattt atctcattt 180
cctcttccat gaaaattaac aaaaagacga caacttaatc ccataattaa catcatttt 240
aagetteagt eggeatgett egaataatgt
<210> 89
<211> 286
<212> DNA
<213> Meloidogyne incognita
<400> 89
caagcggttc ccaactcaat gttgttgcca tgatactcgt gaacaccagt tctcgccaac 60 atagaatagt actcaatctc actgcgtcta aggcttggag tattattcga aataataaca 120 agtttagcct ttccagaacg aagagtcttc aacgtctgct tgtagcccaa acaatacttg 180 cccgatttgg taaccatggc gagaacgagca ttgatatttt ctgtttt 240
ccaacaacca ttgtaacgca aaattaaaat ctcttttta acaaat
<210> 90
<211> 391
<212> DNA
<213> Meloidogyne incognita
<400> 90
```

```
AKK110P1
   agatatgaca tcagacagac ttggcccagt agttccagat ttgaccagcc aagagaccaa 60
   tagacttgaa cgaactagtt ctttggttga tttagcaatt cgggatggag ttccatatcc 120
  tcctaggcct gcaattaaca atgttcctc atacctgaat atgttgactc gaacatttc 180 tgtaccaaat gtaaatcagt acacgggtgc aataggtcct tatcgaccag taaatcctgt 240 ctatacttat tatagctata aatgctattt tccgtataga aactatcgag gctacacatt 300 gacggatgct tattggtacg accgttatta ttatttttcg cctatataca aacggtcaat 360 gtttccaatt agattccggc actctgacta c 391
  <210> 91
   <211> 131
   <212> DNA
   <213> Meloidogyne incognita
  attatccaca cacctattgg agctaccctt accaaggaaa atggtatgac tatgataatc 60
  caacaaatta ccgcccgttc ttcgacccac gcatcagcgc atcatttca agaccttatg 120
  <210> 92
  <211> 571
  <212> DNA
  <213> Meloidogyne incognita
  <400> 92
  ttggtgcgac aacaaaaaa ttttatttat tttttaacaa cagaaaaata tacttttaa 60
 ttttgtgtggdd aacadaada ttttattat tttttaacaa cagaaaaata tacttttaa 60 tttttaatat ttttccatga ttcaacagcc atactttcct catttaata cttcttaaca 120 cctcaaaaaa ttcattatt gacgaccagc agcaggttgt tgctgctgtt gttgaccacc 180 acccccttgc gcttgacctt gctgttgctg tcccttcacg tcaacaggca aattgagttg 240 caaataatca accatctcct tagtctcttg atcaacacta atagttggat gttgagaagc 300 atcaagatag gaaacttctg gaacccaatt atcacgacgc tcacgctctt cttcttgcaa 360 tttaatagga attccacgaa caggtcttt ttcgatacgc tccatcaat gggtaataaaa 420 accacaatt tagttggat tcattacaa gggtaataaaa 420
 accagcaatt tgattacgca tccgtttgct aggaataaca gcaatttcct cacaaattcg 480 tttgttcaca tgaaaatcat aagtcaagcg tgtataatat ttgtcaataa taacacgaga 540 tgctttcttg acagttttga gagaaccgat t
 <210> 93
 <211> 671
 <212> DNA
 <213> Meloidogyne incognita
tttgagaatt taacttttct aaccaaaact tttatttttg tctttgatgt ctactcaagt 60 accaatacgc gtgctggtta ctggagcagc tggtcagatt ggttattctt tggttattca 120 aattgcaaag ggtgatgttt ttggaaagga aacgcccatt gttctggtaa tgttggatat 180
aattgcaaag ggtgatgttt ttggaaagga aacgcccatt gttctggtaa tgttggatat lou tcctccaatg gccgaagtgc ttaaaggagt ggaacttgaa ctttacgatt gtgccttggc 240 gaatcttata gctgtcgagc cagtcacgac tgaagaggca gcgttcaaag acattgatta 300 tgcttttctt gttggtgcaa tgcctcgaaa ggaaggaatg gaacgaaagg atttacttgc 360 tgctaatgtg aaaatatta aatcgcaagg attggctcta gcaaaatatt caaagccaac 420 tgttaaggtt ctggttgtg gaaatccagc aaatacaaat gctttattt gtgcaaaata 480 cgcagcagat aaaattccag caaagaatgt cagcgctatg actcgtcttg accataaccg 540
tgcaattgcc caaatagctg ctcgttgtgg ggttgactgt ggatctgtga agaaagttat 600 aatttgggga aatcattcaa gtacccaatt tcctgatgtt aaacatgcta aagtaattaa 660
 aggtggcacg g
 <210> 94
 <211> 289
 <212> DNA
 <213> Meloidogyne incognita
ggctgtaaat gatgtgccgt ggatacagaa tgaatttatt tcgaccgtcc aaaagcgcgg 60 agctgttatt atcgaaaaac gcaaactgtc cagcgcaatg tcggcagcaa aggcggcatg 120 tgatcacatt catgattggc actttggaac aaaagatggc gattgggttt ctatggccgt 180 tccttccgat ggttcttatg gaattccgga aggttgtc ttctcattc caattacaat 240
                                                                                         Page 19
```

. .!

```
tgatgcanaa acgcgtgact ggaaaattgt acaaagatta gaactcgat
                                                                                                                                                                             289
    <210> 95
    <211> 262
    <212> DNA
    <213> Meloidogyne incognita
   <400> 95
   aatttaactt ttctaaccaa aacttttatt tttgtctttg atgtctactc aagtaccgat 60 acgcgtgctg gttactggag cagctggtca gattggttat tctttggtta ttcaaattgc 120 aaagggagat gtttcggga aagaaacgcc catcgttctg gtaatgttgg atattcctcc 180 aatggccgaa gtgcttaaag gagtggaact tgaactttac gattgtgcct tggcaaatct 240 tatagctgtc gagccagtca cg
  <210> 96
<211> 323
<212> DNA
   <213> Meloidogyne incognita
 aagacattga ctatgctttt cttgttggtg caatgcctcg aaaagaagga atggaacgaa 60 aggatttact tgctgctaat gtaaaaatat ttaaatcgca aggactggct ctagcgaaat 120 attcaaagcc aactgttaag gttctggttg ttggaaatcc agcagataca aatgctttta 180 tttgtgcaaa atatgcagca gaaaaaattc cgacaaagaa tttcagcgct atgactcgtc 240 ttgaccataa ccgtgcaatt gcccaaatag ctgctcgttg tgtggttgac tgtgggtctg 302
  tcaagatagt tataatgtgg gga
  <210> 97
  <211> 717
<212> DNA
  <213> Meloidogyne incognita
 <400> 97
 aatatttta acaaacgatg taacagaaa acaaagttt tttaacaaat tttcttgaac 60 cttattttt ttcaaaacat tttttattt aaatttaaac ctctcttcat ttctcttaaa 120 cactttcctg aactggaggt tcataagcat ctggacgact ttcaataact tctccacttg 180 ctgtagttat agcaacttgt ccaccaccac ttccagcacc ctctccatgc atatccaaaa 240
 gtittccaag ticaaattit ggtttttca aaattittac tittcgaata taaacgtctt 300 gaagtggata gaaataagaa caagacttit caatgtctit tccaatagaa tcaggaatta 360
 attigctgac aactictita agatcgcatg aagaaacctc gcgatgaata atctcaacca 420 tcctagcacg aattigacgc acttgagacg attitgcata actagtcttt ttcacttggt 480
 ttggagcttť ctttgťgaag ccaaťacaga acaaťcgaag caaaťaacca tcagttgťít 540
 tgacagcaac atttgcttca attaaagtat gccacttttt gacaatagaa caaagcttgt 600 ctcgagtaaa agtcattcca tggaaattgg tcaaacaaac tttgccttga acctcttcac 660 aaataagtcg aaatttgcga aagtcagctt cggtgttgtt cagatcacca agagaaa 717
 <210> 98
 <211> 758
 <212> DNA
 <213> Meloidogyne incognita
 gacaagttta accttgtgtg actttatcta tattcttgtc taaataattc taacaaattg 60
taacaacaaa caaaaatggg cgagcaagac aaaaagaaag ctggcggcgg cgatggtggc 120
aaaaagaagg atggcttcga tgccaaaaag tttgcgattg atttggcttc tggaggaact 180
gccgctgcgg tttctaagac ggctgtggcg cctattgaac gtgtcaagtt gttgctacag 240
gttcaagacg cttctcagca catcgctgcc gataaacgct ataaaggaat aattgatgtg 300
cttgttcgtg tgcccaaaga acagggagtc cttgctttt ggcgtggtaa tttggctaac 360
gtgatccgtt actttccaac gcaagctctc aactttgcgt tcaaggacac ttacaagagg 420 atcttcatgg aaggtgttga caagaacaaa cagtttggca aattctttt gatgatgctg 480 ttatgagca aaaattcct tggttggaat agacctaaca gttgaagagt atcttgcct 540 ctgtgatacg tatacaacac tctctcaat tggagatca atgttgggg gagatgctga 600 tagtaatcct ctgttacaat cacttaacaa ttcaatcaat tccaatgcca ctgctcagaa 660 tagtaatcct ctgttacaat cacttaacaa ctcaatcaat tccaatgcca ctgctcagaa 670
ttataactcc tcaacaattg gccgaagcta aaaactacgt ttcaacatgc tacagctact 720
                                                                                           Page 20
```

- 11

٠,:

```
AKK110P1
 tcaaaatcga aacagattgt tttaaacgtt tgaaattt
                                                                                                 758
 <210> 99
 <211> 154
 <212> DNA
 <213> Meloidogyne incognita
 <400> 99
 ttgagttcgt tggcacattt gttgtgttac aaaacgaaaa ttattgggaa cgggtttcag 60 tgcctattct cgcaggttat tggcacttca cacatttgta ccaataacaa cgttaccgtt 120
 tataatcaaa ctgttcctca aagttatgcc catt
<210> 100
<211> 125
 <212> DNA
 <213> Meloidogyne incognita
ttcagaatac tcaaggtctt atattcgttg ttgatagtaa cgacaaagag cgtattgttg 60 aagctcgtga ggaattgatg cgtatgttgt ctgaagacga acttcgcgat tctgtactcc 120
<210> 101
<211> 219
<212> DNA
 <213> Meloidogyne incognita
<400> 101
cttgccgaat gctatgaacg ctgctgaact tacagacaaa cttggacttc acacgctgag 60 aaatcgtaac tggtatatcc aggctacttg tgccacttca ggagatggtt tgtatgaagg 120 tttggactgg ttgagtaacc aattgaagaa tcaaggttaa atgagtctaa ataaaaatgg 180
agaggggaaa gaggagaggt taattttta aggaaaaaa
<210> 102
<211> 473
<212> DNA
<213> Meloidogyne incognita
<400> 102
cgtcacgagg agtaccaaat ccagtcatca actittgaga gtctccctta ttccaaccgg 360 cctgggatgg aattatcgtt tctgacttct tcatatcttc atatggaagt tcgccagact 420
ccgcctcgta tgttgtgttc cttggcgttc caaaacctgt catgcccgct tgc
<210> 103
<211> 114
<212> DNA
<213> Meloidogyne incognita
ttggaccgtt aggattgtcg ccaaagaaaa ttggagaaga cattgcaaag gcaacacaag 60 actggaaagg cttaaaggtt acttgcaaat tgactatcca aaaccgaatt gcca 114
<210> 104
<211> 255
<212> DNA
<213> Meloidogyne incognita
```

```
<400> 104
   ccgcttctcg aattgtgaag gaattgaagg aacctcaccg agaccgcaaa aaagtcaaac 60 acgtaaaaca cagtggaaat ttgacgatcg agcaaattat caacattgca cggcaaatgc 120
  gacctcgttc aatggcgaaa aaaattggaa gggactgtta aggaaattct tggcactgca 180 caatctgttg ggtgtactgt tgatggacaa catccacatg atattgttga tgcaatccga 240 agtgggaaaa ttgaa 255
  <210> 105
<211> 571
<212> DNA
   <213> Meloidogyne incognita
   <400> 105
  ttttttttt ttttttttt tgtcaacaat aaatttactc agaaaaatca tttaacaatt 60
 ttttttttt ttttttttt tgtcaacaat aaatttactc agaaaaatca tttaacaatt 60 taacacacat ttttaattcc ttaatactcc aaaaaaacttc tcttctttat tccctcttat 120 tctcccaatt catttaaagt ttcagtttg tgcggcgcca atgacgacgt tttgcattat 180 agcgtatacg actgccagtt ttcattcgaa cccattgcgg cagcggtcga ttttgtttag 240 cagccttagc cagcttgcgc ttgataataa acgttttgtg tgcagccatt aaattgttga 300 cttataccaa aattgtttt ttgaaggcaa taaacaaatt taattttct gctcaacaag 360 tccataggag ctcatctggt caacaatct cctcatgcgc ctcagtctc agcgcttcct 420 cttatgaatg tcaaaaacaag cagcaacaac cccagcaga accttgtgga ccttctttgg 480 aagttcatca atctggtcat tcaacaacaa cccttccatc tccatgtnct ttatacccc 540 ctccctcttc tttacaccct ataaatcatc 0 571
  ctccctcttc tttacatcct ataaatcatc g
 <210> 106
<211> 235
  <212> DNA
  <213> Meloidogyne incognita
 <400> 106
 tgctttattt tcaattcttc aaccaaaaat taaatcttcc cttattttaa ttacaattcc 60 aattttagca gcattagccc caactacttt agctgctaat aaaattgttt atgaggatgg 120 agatagtgat ggacttgata tggctaaaag tattttaaat tgaataaagg aaaaagaagc 180
 attttaaaga aaattagatg gaaatgctga agaaagaaaa aaattattta ttttt
 <210> 107
 <211> 702
 <212> DNA
 <213> Meloidogyne incognita
 ttttttcaaa aaataattcg aattttgttc ttttttattt tgctacaaat aaaatttaaa 60
 tttgaaaaaa aaaaaaaaa aaaaaaaaac tcgagaagaa atccttgccg aaattgacgg 120
ctctcaaatt gaggagtatc aacgtttctt cgatatgttt gaccgtggaa agaatggcta 180 tattatggct actcaaattg gggtaattat gaatgctatg gaacaagatt ttgatgaaaa 240 aactcttcgg aaattaatcc gaaaattcga cgcagacggc agcggcaaaa tcgaattcga 300 cgaattctgc gctttggtat acactgtggc gaatactgta gacaaggaca ctttgcggaa 360 agaattgaga gaagctttc gtctctttga caaagagggc aatggttaca tctctcgtcc 420 aacactcaaa ggattacttc acgaaatcgc cccagacctc agcgataaag acttggatga 480 cgcagtagaa gaattgaga gaagtgaaa gaagaaga acttggatga 540
<210> 108
<211> 423
<212> DNA
<213> Meloidogyne incognita
aaaattaaaa taaaagacaa acaaataaat ataaattaaa taaataatat ttaaataaac 60
acacaaataa actctccaaa cataattttt ttaaatttta ataacatttt gtcccatttg 120
agaaagaaaa tgccaaagga gatgaagaac ttgttgaaga aaaaagttca aaaatatcaa 180 ctcctccatt tgtcgtcaca ttttcttca ttattccatt tgttgtaagc tcagtaactg 240
```

11

```
AKK110P1
 ccccaattgt tgttgtagtc catggagaga aagcactttc cccattcgaa aatgttgaac 300
 caaattggfc aaattgtfgc tgttgtfgac ctcgaagttc gttagaaaca gaacgaaata 360 aattatgagg ttgttgttgt tcctgacgtt tttgattgtc tggagctggg tgaggatcac 420
 <210> 109
<211> 994
 <212> DNA
 <213> Meloidogyne incognita
 <400> 109
 ttttattttt tatttgaaaa taatcatcac attataatta atgggaaaaa gacaaaaaat 60
 tagaacaggt gctggcgatc ttgtcacaac ccctggacct cttcataaac aaattgaaag 120
gtcaaaacta gccaagccga aattcaagcc tttaaaacgt tcaagagaag agcaaaaaga 180
 tgaaattgaa cttgtcgatc catcgttaaa gggcaaaatt attattaaag caaacaaaaa 240
attggaaaaa gatgttgtgt tcaatgagga tggagaatct gataattctg aagaaattga 300 agaagaagaa gaagacggca atgaaaagtt ggatgttgat caattagtat caaaacattt 360
 ggaagattta gatgaactaa aattggatga tggcgttgaa aatgtgcgaa agataataac 420
ggaagattta gatgaactaa aattggatga tggcgttgaa aatgtgcgaa agataataac 420 gaaattcaga taaaaataac aaagaaagtg ttataaataa agctgagtt gccgatatcg 480 acccaaaaat tgttgatctt tttacagaaa ttggtcaagt tttaaagaaa tatagaagtg 540 gacgtattcc caaagctttt aaagttattc caactttggt tgattgggag aaaattatcg 600 aattaactcg cccagatgat tggtcggcag ctgcaatgtt acatgctacc aaaatatttg 660 cttcaactgc tacccctact caatgccaaa ggtttataa tttgatttg ttgccacgta 720 ttcgagatga tattgacgga ttaaaaaatt acatttccat atgtatcaat gcttattaa 780 agcattgttc aaaccagctg catttttcaa aggaatcctt ttgccgcttt gcaaatcgaa 840 caatttttct cttcgagaag ctgttgatat ttgctgtataa gctccatcac 900
caattettet ettegagaag etgetettet tgettetatg ettegtaaag eeteeatee 900 teaattacae geggeegeag eattgetgag tatteettgt ttagaatata ettetteaag 960 ggettatate etteaageat tgatagaaaa gaat
<210> 110
<211> 476
 <212> DNA
<213> Meloidogyne incognita
tttaaacact taaaaatacc ttcaaattta ttttagaacc tttttgccat taaaaaaaat 60
tttatttcga aaaaatggct gagaatatag aagaaatcct tgccgaaatt gacggctctc 120 aaattgagga gtatcaacgt ttcttcgata tgtttgaccg tggaaagaat ggctatatta 180
tggccactca aattggggta attatgaatg ctatggaaca agattttgat gaaaaaactc 240 ttcgaaaatt aatccgaaaa ttcgacgcag acggcagcgg caaaatcgaa ttcgacgaat 300 tctgcgcctt ggtatacact gtggcgaata ctgtagataa ggacactttg cggaaagaat 360 tgagagaagac ttttcgtctc ttcgacaagg agggtaatgg ttacatctct cgtccaacac 420 tcaaaggatt actccacgaa atcgccccag acctcagcga taaagacttg gatgcc 476
<210> 111
<211> 189
<212> DNA
<213> Meloidogyne incognita
cgaagacgga agcggaaaaa ttgaatttga agaattttgg gaattaatgg ctggagagac 60
tgattgaaat titaattaga gatgaataaa aaattaacta aaatattiiq ccataaaatt 120
ttggaaagtg ccaaaaattg cctttttgag aatttttatt tttaacgtct aaataatgaa 180
taaatqqat
                                                                                                                         189
<210> 112
<211> 164
<212> DNA
<213> Meloidogyne incognita
<400> 112
ttgaggaaat ttaattttt aaacaaatat aataattacc aaacaacaaa aaagaatccc 60
aaaaacaaca tttttaaatc aaatgacaga catatatttg caataacgat gtgtggattt 120
tcttttttt taaataatta acatcttaag cctgctattt cttc
                                                                 Page 23
```

. , !

- 1

.....

```
<210> 113
<211> 539
   <212> DNA
   <213> Meloidogyne incognita
  <400> 113
  cagctttctg cgcagatttg gtaacctttc caccagcttc gaccttctcg acggccttga 60 taacaccaac agccacagtt tgacgcatgt cacgaacggc gaagcgtcca agaggagcgt 120 agtcagtaaa agcctcaaca cacattggct tggttggaat taagtcgaca ataccagcat 180
  ctccagtctt caaagccttt ggattgtctt caaccttctt tccagttcga cggtcgacct 240 tctctttaag ctcagcgaac ttgcaagcaa tgtgagcagt gtgacagtca agaacaggcg 300 tgtagccagc agcaatctgc ccaggatggt tcatgatgat aacctgagca gtgaattgct 360
 tggtctcctt tgctgggtca ttcatagagt cagaagtgac tgaaccacgt cggatgtcct 420 tgacagagat gttcttaacg ttaaatccaa cattgtcttc aggaacagct tcagggagag 480 actcgtggtg catctcaaca gatttaactt cagtagaaat tccttcagga gcaaaggta 539
 <210> 114
<211> 314
  <212> DNA
  <213> Meloidogyne incognita
 gttttaatt ttagaaaatg tctacagaaa cagaaaagga tttagaacgt tgggaggatg 60 tccgtcgatt tactgagatt ggttcttcta aatttgccca tcccgctttt gttccaagcc 120 cggagaatct tgaaagagta aggaaatgtc cagttttggt tgttggtgct ggtgggcttg 180 gatgtgaaat ttgaaaaat ttggccttat caggatttca aaatattgaa gttattgata 240 tggacacaat tgacctttca aatctcaaca gacagtttt gtttcgtgaa cacgatgttg 300 cgttatacaa 2003
 gcttatacaa agca
 <210> 115
<211> 200
  <212> DNA
 <213> Meloidogyne incognita
 <400> 115
ttcgaagacg tgttaaagga tgtcgtctta ctgcacataa ttgtaaaata caagataaag 60 gacttgactt ttatgggcaa ttttcaatta taatttgtgg actagattct attgatgctc 120
 gaagatggtt aaacgccaca gtgtgttctt tggtcgaatt tgacgaagaa aacaagccac 180
 ggccaggcac aattattcca
 <210> 116
 <211> 471
 <212> DNA
 <213> Meloidogyne incognita
 tttggtcgaa aaaagactgc tactgctgtg gcatattcca aaaagggaaa aggattaatc 60
aagggcaatg gccgtccttt agaattittg caacctgaaa ttctcgtat taagctacaa 120 gagccaatgt tgattgtagg aaaggacaaa tttgctggaa tggatattcg catccgtgtc 180 aaaggtggtg gtcatgttgc acaaatttat gcaattcgac agtcaattgc taaagttttg 240 gtggcctatt accagaaaaa cgtggatgag caaagcaaga aagaattgaa ggatcaactt 300 gttgcttatg atcgtaattt gcttgttgcc gatccgagac gtcacgagcc aaagaagttt 360 ggaggacctg gtgctcgtgc tcgttatcag aaatcttatc gttaagaagt atgaaatta 420
aaaattgtgt gttacgaatt aattgttatt ttgttgggat aaatnigaat a
<210> 117
<211> 593
 <212> DNA
<213> Meloidogyne incognita
<400> 117
gaattcaaaa aatattaaaa ttgtttaata taatttctaa aatgaagcca aaggttggaa 60
                                                                             Page 24
```

- 1

```
AKK110P1
     ttaacggatt tggacgtatt ggacgtcttg ccctgcgtgc agcggtcgag aaggatactg 120
  ttaacggatt tggacgtatt ggacgtcttg ccctgcgtgc agcggtcgag aaggatactg 120 tccaagttgt ggCtgtcaat gacccgttca ttgatcttga ctatatggtc tatatgttta 180 actatgattc caccacgga cgctttaaag gaaagattca agcaagcaat ggaaatttgg 240 tagttgagaa ggagggaaag tctactcata ctatcaaagt tttcaacttc aaagaacctg 300 aaaagattga ctgggcaggt tctggtgctg atttgttat tgagtcgact ggaggtttta 360 ctactaccga gaaagcttct gctcacttga agggcggagc caagaaagtg gttatctccg 420 ctccatctgc tgatgctcca atgttgtgg ttggtgtaa tgaggacaaa tatgatcctt 480 ccaagcatca tatcattagt aatgcttcct gcactactaa ttgtcttgct cctcttgcga 540 aggttataaa tgacgagttt ggcataattg aaagttgaat gactactgga cac 593
    <210> 118
    <211> 576
<212> DNA
    <213> Meloidogyne incognita
    <400> 118
  gaattccgag ttttttttt tttttttaa aacaaaaatt aaaagattta tcgccatcct 60
  ttgccagcca tttgcccgcc attttttgt gcacaataaa ttttttgta attttgggg 120
tgagggggaa gtaaaatgaa agaagggaga gagatatgaa ttggaggtt ttttgtaaa 180
ataaatttt ttttcttgaa aattcttccc gtttctgagc ttttcgtct tttttcaatt 240
ttcgtttgtc gaaatactaa actttacaat ttggttaggt tctattgtg aaacataaat 300
  atctccatta tcgctgattg caagggcatg ggcgttttcg agaccctttg caaagctatt 360 agcccttcct gtgttcatat ccattacgaa aacttgggat tctaattgac tgccttgatc 420
  ttgattggtg acgccgacga ggaagtgttc tttctctcgg atagcaaaga ctcgcccaat 480 attttcagcc tttgtgaaga aagtgcctgt ggggacgtaa gcacgtctat gttggtgttg 540 agcgccttct aatccagcag aaaagcattg aatacg 576
  <210> 119
<211> 559
  <212> DNA
  <213> Meloidogyne incognita
acgcagagta agttgagatc ttcaataagg gttagagagt gtggtacgag gaattctcca 60 tttttgggtg tttcactgga gtcaggcttc ccaaattgac tgagcaatt cccatccttg 120 tcaaacttca ttattcggct attacagtaa ccatctgcca cgaaaaactc tcctgtactg 180 gcaatagcaa cgtctgtagg tttgcaaaaa tgtttgtcat ctgtccctgg aacaagcttt 240 tcgcccaaac tcataattaa tttaaaatcc ttgtcaagtt tgtggacttg atgacttcca 300 acgtcagtaa cccaactatt gccgtgggca tcgattgtta gtccatgagg catgtaaaac 360 atgctttttc cgtattcttc caagactgcc cctgattccg tgtctataac agcaattgtt 420 gtgtttgaaa tgatgcccag ggatctgtt aggtggttgt tctcatcaaa cgaaaattca 480 tcccaaactc tgtcagatg gtgaaaaaga acaagtcgat tcaatggatc caatgcaata 540 cccaaactc tgccaatat
  cccggagctt gcccaatat
 <210> 120
 <211> 366
  <212> DNA
  <213> Meloidogyne incognita
 tttaagaatt ttttaaaaat taaaacttgg actagatttt aataaaatgt cagctccacg 60
tagtgttgct agcggtgttg gtgctgctgt tatgaataag caagcaagta aatacaatga 120 agttgaagga gaactccttc ttaattggat taagaaagtg acaggcgaaa atattgctat 180 aaacggaact agggaaaatt ttgtgaaaca attgaaagat ggaactctgc tctgcaaatt 240 tgctaacaaa attgtgccaa attcaatcac aaaggcacag gcaaaaccga acagcacatt 300 ccaatatatg agcaatttgg agctgttctt aacatttatt tcaagccaag gagtccctag 360
ggagga
<210> 121
<211> 661
 <212> DNA
<213> Meloidogyne incognita
<400> 121
```

```
AKK110P1
  ttagttgaat ctcgtgacct ctactctgtt tgtatgacat taaattctct tggccgcatt 60
 ttggaacgtc aaggaaaaac tcatccagag caggttaagt cgtcagaaat tcttaatttg 120 ggtactggag accaagtgcg ccttcgtgtt taaagatggg aaattgaaag aatttggtt 180 aaacataata aaaagacatt ttatggcaat aaaaaaatgt caaaaaagct tgtctttaa 240
 atattttggc aaaacatttt actttcacaa aattttaaaa taaatttatg aagattgttc 300
 cgtcactttc atcatttccg atcgaccttt gttgttttct aagttcgttg gccaaagaaa 360 ggatatgtaa aattgaatta tgaataaaaa taaatcactc aatcagaggc attgttagtc 420
 tctcacttcc tcctctttac ccattggcta accagettta aggatttitt ccataagite 480
 aaggtgtacg taaatcgaat accgactgtg gtatcttaat ttttccatga aattctccaa 540 taaaaaaaaa tttttttat ttttttcca taatgctatc tatattttt gctttaatc 600
 tttttttggct atcaggcttt aaaatagtaa atatacttat attaatattt tatttccttt 660
 <210> 122
 <211> 173
 <212> DNA
 <213> Meloidogyne incognita
 <400> 122
 ggagagtttt tcgtggcaga tggttactgt aatagtcgaa taatgaagtt tgacaaggat 60 gggaaattgc tcagtcaatt tgggaagcct gactccagtg aaacacccaa aaatggagaa 120
 ttccttgtac cacactctct aaccctcatt gaagatctca acttactttg tgt
 <210> 123
<211> 584
 <212> DNA
 <213> Meloidogyne incognita
 <400> 123
cgcattcaat gcttttctgc tggattagaa ggcgctcaac accaacatag acgtgcttac 60 gtccccacag gcactttctt cacaaaggct gaaaatattg ggcgagtctt tgctatccga 120 gagaaagaac acttcctcgt cggcgtcacc aatcaagatc agggcagtca attagaatcc 180
caagttttcg taatggatat gaacacagga agggctaata gctttgctaa gggtctagaa 240 aacgccatg cccttgcaat cagcgataat ggagatattt atgtttcaca aatagaaccc 300
aaccaaattg taaaatttag tatticgaca aacgaaaatt gagaaaaaaa aaaaaaaagc 360 tcagaaacgg gaagaattt caagaaaaaa tttttttacc aaacaaaaaa cctccaattc 420 atatctctcc cttcttcat ttttccttcc ccttctcccc aaaaattaca aaaaatttta 480
ttgtgcacaa aaaaatgggc gggcgggcga atggctgggc aaaggatggc gataaatctt 540 ttaatttttg aaaaaaaaaa aaagaattcg aattatatgg ccta 584
<210> 124
 <211> 650
 <212> DNA
 <213> Meloidogyne incognita
gtttaagaca attaaaacgt ttattttcta caatcaaaac aaatatggct gttcctcccg 60
atgitatega gaagategag getgggtaca aaaagttgea ggaggeaceg gagtgeaagt 120 ctettetea gaagtactte acgaaggaag ttatggaca gtgtaaaggg cteaaacta 180 agettggtge gaacttgett gatgigatee actetggagt tgcgaatete gatageggtg 240 tiggtgitta tgcgcetgat getgagtett acactetett caaaccgett titgaecega 300 ttatteagga ttaccacaat ggattiggae ctgaecagaa geageegeaa actgaetigg 360 gigaggggaaa gaeteagett titgeetgate tggateetga gggtaaatte ateaactega 420
ctcgtgttcg atgtgggcgt tctcttcagg gatatccgtt caatccgtgc ttgactaaag 480 agaattatac ggaaatgcat gacaaagtta aaggggtttt tgagcagctt aagtctgatg 540
ctgagcttgg tggcacctat tatcctttgg agggaatgac caaagaggtt caaactcaat 600
tgatcaagga tcacttcctc ttcaaagaag gagaccgctt tttgcaagct
                                                                                                                       650
<210> 125
<211> 1013
<212> DNA
<213> Meloidogyne incognita
<400> 125
```

- 1

· ; }

```
AKK110P1
  ttttttttt tttgatgttt ctaattttg tgggcaatat ttaatattat ttttaattat 60
  taaattttct tctttatttt ttaaaaaaatt atticttaaa tttattcttc tcctcttcgt 120
  gttttgaatc aaataattaa attttaaatt atttaaacag ctacacgagg cctcagcctc 180 ccccgttgca ttcaaattgg tcggcacggt tggcgatgat aatttattt tttaggtaat 240
  tttgǧtgāga aaatattttt aaaǧgtaāta atǧtcctttt ggacaattaa aaaaāaactc 300
 gaggagagag tgaatatttt aaaggtaata atgtcctttt ggacaattaa aaaaaaactc 300 gaggagagag tgaatatttt tacaaattat ttgaagagca gccagcctat tgttatcaac 360 aaaaaacctt caaaatgcca gaaaatgatt atgatgagga ggaggcgcca aacgccacga 420 tggaaacaaa ggtagcttca ggtggacagc caaaacgctg ttggaaaatg gacattatcc 480 cagctgcgcc agactgatgg tataattcca tcccaggccg gttggaacaa gggagactcc 540 caaaagttga tgaccaattt tggtactcca cgtaacacaa caaccaaaat tcgtgctgaa 600 tgccttgctg atgtgcctga agaaattgct cttaaaagtc acggtgaagt acgcctccaa 660 tccggtacta accgttttgc ttcgcagaag ggaatggttg gatttggtac tggacgtgac 720 tatgccagag aaggagtgt tggagtcaa gacccagccg atttatagcc cctcccagaa 780 gagataatcc gtgctagcga tggaattgtt cgtctccaat ccggtaccaa caaattcgac 840 tcccaaaaag gaatggtcag cttcggtacaa caactacaag aatgaaagac 900
 tcccaaaagg gaatggtcag cttcggtaca aaccgacgcg aaactacaag aatgaaagac 900 accaaacatc cggaatacaa ccacgaagtt aacattgacc aaagcgaaat tcctttgcaa 960
  tctggtacaa acaaattcgc atcccaaaag ggaatgacca gcttcggtac aaa
                                                                                                                                          1013
  <210> 126
 <211> 80
  <212> DNA
  <213> Meloidogyne incognita
 <400> 126
 tgttggacac tgctcaccca gaatacagtc acgaaagcag catcgatcaa acgagcattc 60
 cttaccaaat gggatcaaat
<210> 127
<211> 585
<212> DNA
 <213> Meloidogyne incognita
agggaatgac ttgctttgga cagccacgtt gggaggtgct tgacccgagc attagctacc 60 agaaccgtaa atcacaagga atggtccgtc tccaatccgg aacaaaccgg gtcgcctcgc 120 aagcgggcat gacaggtttt ggaactccaa ggaacacaac atacgaggcg gagtctggcg 180 aacttccata cgaagatatg aagaagtcag aaacgataat tccatcccag gccggttgga 240 ataagggaga ctctcaaaag ttgatgactg gatttggtac tcctcgtgac gttaaaggca 300 aacatttgaa gcgtatttgg gagttggaat acccagagga ggctgaaatt tcgttggatc 360 gactttaaag gaattttaga agaagaaaa agaaagaaa atttagtgga aggaaggcaa 420 cgacatttga ctctacaatt gacacacacc ttttcacaca ttttacaaat acattagaaa 480
cgacatttga ctctacaatt gacacacacc ttttcacaca tttacaaaat acattaaaaa 480 aaaattttt ttggcttttt ggcttgctcc tatttttcc ccccatcatt ctccctattc 540
585
<210> 128
<211> 287
<212> DNA
 <213> Meloidogyne incognita
<400> 128
catctggaga aacgttgagg caatacatcg ttattggccg taaacttcct acagagaatg 60 agccaaatcc aaaactttac aaaatgcaaa tttttgccag taatcatgtt gttgctaaat 120
cgcgtttctg gtactttact agtatgttgc gtcgtgttaa gaagactaac ggagagattg 180
tttcgtgtca ggaggttttt gaaaagaaga taggctctgt aaagaattat ggaatttggc 240
ttcgttatga ctctcgaacc ggtcatcaca acatgtaccg tgaatac
                                                                                                                                         287
<210> 129
<211> 175
<212> DNA
<213> Meloidogyne incognita
gctgtcactc aggcttatcg cgacatgggt gctcgtcatc gtgctcaagc cgatcgaatc 60
caaataatca aggitcaacc gatcaaggct gccgattgca aacgtactgg agttaaacag 120
                                                                         Page 27
```

· .:

```
AKK110P1
  ttccacaact cttcaatcaa gtttcctttg ccgcatcgtg tgaatgacaa acgtc
                                                                                                                                                175
  <210> 130
<211> 599
  <212> DNA
  <213> Meloidogyne incognita
  <400> 130
 acttttgttt ataatcacat ttgcattact ttccgtccat ccttctttga gacagaattt 60
aaaggttcac cttctaagta aggattgtag cggctgtatg attgatgttg cttttgttgg 120 ggagcaatag aacgcttgcg tcgccgaggc tcctcagcc tagtaacgtg aaatttcttt 180 gcaatcatcg attgttgtag tccatttttg gctaagacct gttctaagtc ttgttcatat 240 tgttcagaat tgcttttga ttgacagtta aacattgtgt ctttggtcac aaggcattgc 300 tgattggcct ggtagctacg cgagaaatcg gcggtgttat caaactcct caaacatcca 360 tctcgactgg agtatcccac agggcaggga tttggagggt cacaatatgc tggcaaaaca 420 ttgtcactct taatctcttg gcggtgtaa aattcagatt ctggatggag ttgttggtct 480 ccttcaccgg cacctcctgt cataaattta tgtcaaacg caatgggcc ggaagcactt 540 tcaatgtcac gagaaatcaa gtcgattaat tgtgaatgcg gaaatatagg ctccccaga 599
 <210> 131
 <211> 466
 <212> DNA
 <213> Meloidogyne incognita
gaagattgga tttattggcg ctggaaagat ggcacaggca ttggccagag gactaataaa 60 ttctggacgt tatccttcac aaaatttgat ggctagttgc cctaagactg atgtctcttt 120 attggaggat tgcaagaggc ttgggagtaa tacagcacat gataatgcac aagttgctcg 180 tgaaaatgat gtggtgatta tagcaggtaa accaactatt gtgtctaaag ttgctcgga 240 aattgcacca gccatccgcc gagatcatgt acttattct atagcattgg gcatcaccat 300 acgctacatt gagcagtaat tgacttcaga atcccgaatt gttcgtgtaa tgccagatac 360 tcctgtaggt ggtaggagca ggctgctgca gccatatatc attgggatca gcattgtcag 420 gataggtgat gcccagatag ttcaagatct tctgataacg ctgggg
<210> 132
<211> 266
 <212> DNA
 <213> Meloidogyne incognita
<400> 132
atgaaattcg agttctttgc atcaaggccc gtgaaatttt tctttcgcaa cctattttgc 60
tggaattgga agcgccgttg aagatttgtg gcgatattca cggtcaatac aacgaccttt 120
tgcggctttt tgaatatgga ggttttccgc ctgaagcgaa ttatttattt ttgggtgatt 180
atgiggatag aggaaagcag agcttggaga cgatttgttt gctgttggcc tacaagatca 240
aatccccga aaattctttt tgctga 266
<210> 133
<211> 308
<212> DNA
<213> Meloidogyne incognita
tctatcaacc gaatatatgg attttacgat gaatgcaaac gcagattttc tataaaattg 60
tggaaaacat ttactgattg cttcaattgt ctgccaattg ctgctgtgat cgatgagaaa 120
atattttgtt gccatggagg tttgtcacca gatttgcaga atatggagca aattcgaaga 180 attatgcgac cgacggatgt gccagataca ggtcttctct gcgaccttct atggtctgat 240
ccagaccaag atgtccaagg attgggagaa aatgatcgtg gggtctcttt cacttttgga 300
ccagatgt
                                                                                                                                             308
<210> 134
<211> 335
<212> DNA
<213> Meloidogyne incognita
```

```
<400> 134
  taaatttagt ttctttctt ccatctcttt ttatgttttg aaagagtgtg ccaaaacaaa 60 tggccgcccg tgatggaaga agcaggcaaa attatttaca agaacattca attcctcaac 120 tttttgaggg tttaatgact ggacttatat acaatcaacc aatcgatcct attcaattt 180
  tggagaatgc aatagctaaa cttcgaaaaa atcctgatct tccattaaag tgggatactt 240 ttataagtgt ttcgcctcaa caacagcaac aacaacagac gagaatgaat actggagaaa 300
  atgcagittic ttataaacaa agcaciccta tcgaa
  <210> 135
<211> 506
  <212> DNA
  <213> Meloidogyne incognita
  <400> 135
 tttttttttt tttaaaaatc aacagattta ttcaagtgcc tcgggcaaat aacaacaaac 60
 atccacaaac ataatattat tgaacttttc ctttttaaaa cttatcaaag gccttctttg 120 ttcctgagac tttgatcacc ttcaaaacat taaaacgaac agttttactc aaaggcctgc 180
 attcaccgat cgtgacaata tcaccaatag agatatcacg gaaacatggc gaacagtga 240 cggacatgt tttgtgacgt tcctcgtatc gacgatattt cggaacaaag tgcaaataat 300 cacgccgaat gacaattgtg cgctgcattt tgttcttgat aacaacacca gtcaaaatac 360 ggccacgaat tgaaacattt ccagtgaaag gacacttttt gtcaatataa ttgccttcga 420 tagcctcgcg tggagtttta aatcctaacc caacattctt ccaataacga tccttattt 480 tcaactattt
 tcggctnttt gccaatccct tgcgtc
 <210> 136
<211> 230
 <212> DNA
 <213> Meloidogyne incognita
aattcctcaa actctgccct ggctgtcctt ctcaaaacga caccctcgct ttattatcac 60 ctccagtcaa ctacgaaaat tctttgcgag atcaagggag taattcgaca ttatggattc 120 ttttgttggt ttttaattgt ttattttgc tactaattt ccttctaatt gccgcctacc 180
 tccgttgtcg catttttggc tccgcccct acaaaaacca gttccgtcgt
 <210> 137
 <211> 216
 <212> DNA
 <213> Meloidogyne incognita
 <400> 137
 acaaatacac aacaacaaaa tcattgttta ccccaaatat ccaaaagttc tcctccaact 60
tcactcgctg tttgtaccaa ctctactagc tgtaattcgt ccttagctgt gccgttaatt 120 tctagtgaat cggaagaaag tgatgaacaa caaaagacgg gggaatggac aaatctaaca 180 ttattaatta tttattctca tgattgtaaa ttgcat 216
 <210> 138
<211> 395
<212> DNA
 <213> Meloidogyne incognita
atgcattcct gaagcaattt tgggtatgga cattgtatgc caagcaaagt ctggtatggg 60
gaagacaget gtatttgtgt tggcaacact ccaacaattg actccagttg acgggacggt 120 ctctgttctc gttatgtgtc acactcgcga acttgcttt caaatttcaa aggaatatga 180 aagatttagc aaatatatgc ccggaactaa ggtttcggtt ttctttggtg gtatgccgat 240 caagaaggac gaggagact tggctaagga cactccgcac attgttgtg gcactccagg 300
gcgtctgctg gcgttgggac gtacaggaca attgaagctg aaaaacatca aattcttcgt 360
tttagacgaa tgtgacaaaa tgattgggga cgctg
                                                                                                                                    395
<210> 139
<211> 591
```

٠,!

WO 01/96584 PCT/US01/18911

AKK110P1

<212> DNA <213> Meloidogyne incognita <400> 139

 $\{j_1^1\}$

<400> 139						
gaattcggcg	ttgtctcggt	gtccacgctc	aatttcaccg	aaatttttgg	ggcaggcgtc	60
ctccacacca	aactctgggt	cattgacaac	cggcactttt	atctgggttc	agcaaacatg	120
	cacttactga					
	aactgagcaa					
cgcttgcccg	ctgtttggcc	agtttattta	caatcaaaat	tcaacgctca	acacccaatg	300
gaaattcatt	ttggacctga	gccctcgcac	acgtacattt	cgcactcgcc	tgagaagttg	360
	gcagagaaca					
	gaattgcggt					
	attggccatc					540
aaagttgacc	tttggtgagt	ctgtggcccc	atttgaatga	acgagcgatt	t	591