A FIRST COURSE

IN

NUMERICAL ANALYSIS

A FIRST COURSE

IN

NUMERICAL ANALYSIS

MAT4001 Notebook

Prof. Yutian Li

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	ions	ix
1	Week1	1
1.1	Wednesday	1
1.1.1	Introduction to Imaginary System	. 1
1.1.2	Algebraic and geometric properties	3
1.1.3	Polar and exponential forms	. 5
1.2	Powers and Roots	9

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Wednesday

1.1.1. Introduction to Imaginary System

Definition 1.1 [Complex Number] A complex number z is a pair of real numbers:

$$z = (x, y),$$

where x is the real part and y is the imaginary part of z, denoted as

$$Rez = x \quad Imz = y$$

Note that the complex multiplication does not correspond to any standard vector operation. However, $(\mathbb{C},+)$ and $(\mathbb{C}\setminus\{0\},\cdot)$ forms a field:

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$
$$z_1 + z_2 = z_2 + z_1$$
$$z + 0 = 0 + z = z$$
$$z + (-z) = (-z) + z = 0$$

There is no other Eucliean space that can form a field.

Proposition 1.1 zz' = 0 if and only if z = 0 or z' = 0.

Proof. Rewrite the product as a linear system

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and discuss the determinant of the coefficient matrix.

Solving quadratic equation with one unknown. We can apply the imaginary number to solve the quadratic equations. For example, to solve $z^2 - 2z + 2 = 0$, the first method is to substitute z with x + iy; the second method is to simplify it into standard form to solve it.

Definition 1.2 If $z \neq 0$, then z^{-1} is the complex number satisfying $z \cdot z^{-1} = 1$.

Suppose z = (x,y) and $z^{-1} = (u,v)$. After simplification, we derive

$$\begin{cases} xu - yv = 1 \\ xv + yu = 0 \end{cases} \implies \begin{cases} u = \frac{x}{x^2 + y^2} \\ v = \frac{-y}{x^2 + y^2} \end{cases}$$

Definition 1.3 [Division] The division between complex numbers is defined as:

$$\frac{z_1}{z_2} = z_1 \cdot z_2^{-1}$$
, when $z_2 \neq 0$

■ Example 1.1

$$\frac{3-4i}{1+i} = (3-4i)\left(\frac{1}{2} - \frac{1}{2}i\right) = -\frac{1}{2} - \frac{7}{2}i$$

$$\frac{10}{(1+i)(2+i)(3+i)} = \frac{10}{(1+3i)(3+i)} = \frac{10}{10i} = \frac{1}{i} = -i$$

Definition 1.4 [Complex Conjugate] The complex number x - iy is called the **complex conjugate** of z = x + iy, which is denoted by \bar{z} .

The following properties hold for complex conjugate:

$$\overline{z_1 \pm z_2} = \bar{z}_1 \pm \bar{z}_2, \quad \overline{z_1 z_2} = \bar{z}_1 \bar{z}_2. \quad \overline{\frac{z_1}{z_2}} = \frac{\bar{z}_1}{\bar{z}_2}$$

$$Rez = \frac{z+\bar{z}}{2}$$
, $Imz = \frac{z-\bar{z}}{2i}$

1.1.2. Algebraic and geometric properties

Definition 1.5 [Algebraic Region]

- 1. The complex plane: the z-plane, i.e., $\mathbb C$ 2. Vector in $\mathbb R^2$: $(x,y)=x+iy=z\in\mathbb C$ 3. Modulus of z:

$$|z| = \sqrt{x^2 + y^2}$$
 distance to the origin

Note that

$$|z| = 0 \iff z = 0, \quad |z_1 - z_2| = 0 \iff z_1 = z_2$$

6 [Circle in plane] A circle with center z_0 and radius R is defined as follows

$$\{z \in \mathbb{C} \mid |z - z_0| = R\}$$

Proposition 1.2 Complex roots of polynomials with real coefficients appear in conjugate pairs.

Proof. Given $P(z_0) = 0$, we derive

$$P(z_0) = \overline{P(z_0)} = 0.$$

Note that a polynomial with real coefficients of degree 3 must have at least one real root.

Conjugate Product. Note that the conjugate product leads to the square of modulus:

$$z \cdot \bar{z} = |z|^2 \iff (x + iy)(x - iy) = x^2 + y^2$$

Such a property can be used to simplify quotient of two complex numbers:

$$\frac{z_1}{z_2} = \frac{z_1\bar{z}_2}{|z_2|^2} = \frac{x_1x_2 + y_1y_2 + (y_1x_2 - x_1y_2)i}{x_2^2 + y_2^2}$$

$$\frac{-1+3i}{2-i} = \frac{(-1+3i)(2+i)}{(2-i)(2+i)} = \frac{-5+5i}{5} = -1+i$$
$$|z_1+z_2|^2 + |z_1-z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

We can use conjugate to show the **triangle inequality**:

Proposition 1.3 — Triangle Inequality. $|z_1 + z_2| \le |z_1| + |z_2|$.

Proof.

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + z_{1}\overline{z}_{2} + \overline{z_{1}}\overline{z}_{2}$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + 2\operatorname{Re}(z_{1}\overline{z}_{2})$$

$$\leq |z_{1}|^{2} + |z_{2}|^{2} + 2|z_{1}\overline{z}_{2}|$$

$$= |z_{1}|^{2} + |z_{2}|^{2} + 2|z_{1}z_{2}| = (|z_{1}| + |z_{2}|)^{2}.$$

Corollary 1.1 1. $||z_1| - |z_2|| \le |z_1 \pm z_2|$.

2. If $|z| \le 1$, then $|z^2 + z + 1| \le 3$

Proof. 1. Note that

$$|z_1| = |z_1 \pm z_2 \mp z_2| \le |z_1 \pm z_2| + |z_2| \implies |z_1| - |z_2| \le |z_1 \pm z_2|$$

Similarly, $|z_2| - |z_1| \le |z_1 \pm z_2|$.

2.

$$|z^2 + z + 1| \le |z^2| + |z + 1| \le |z|^2 + |z| + 1 \le 1 + 1 + 1 = 3.$$

Proposition 1.4 — Cauchy-Schwarz inequality. If $z_1,...,z_n$ and $w_1,...,w_n$ are complex numbers, then

$$\left[\sum_{k=1}^{n} z_k w_k\right]^2 \le \left[\sum_{k=1}^{n} |z_k|^2\right] \left[\sum_{k=1}^{n} |w_k|^2\right]$$

1.1.3. Polar and exponential forms

Definition 1.7 [Polar Form] The polar form of a nonzero complex number z is:

$$z = r(\cos\theta + i\sin\theta)$$

where (r, θ) is the polar coordinates of (x, y).

$$(r,\theta) \implies (x,y): \begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$(x,y) \implies (r,\theta) : \begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \theta = \frac{y}{x} \end{cases}$$

Note that θ is said to be the **argument** of z, i.e., $\theta = \arg z$. The augument is not unique,

$$z = r(\cos\theta + i\sin\theta)r(\cos(\theta + 2\pi) + i\sin(\theta + 2\pi))$$

If given an argument of *z*, then we form the set of arguments of *z*:

$$\{\theta + 2n\pi \mid n \in \mathbb{Z}\}$$

Definition 1.8 [Principal Value] The principal value of arg z, denoted by Argz, is the unique value of $\arg z$ such that $-\pi < \arg z \le \pi$

- 1. Arg $z = \pi$ implies $z = r(\cos \pi + i \sin \pi) = -r < 0$, which is a negative real number.
 - 2. $\operatorname{Arg} z = 0$ implies $z = r(\cos 0 + i \sin 0) = r > 0$ m which is a positive real number. 3. $\operatorname{Arg} z = -\frac{\pi}{2}$ implies $z = r(\cos(-\frac{\pi}{2}) + i \sin(-\frac{\pi}{2})) = -ri$ 4. $\operatorname{Arg} z = \frac{\pi}{2}$ implies z = ri

 - 5. Particularly, $\pm i = \cos(\pm \frac{\pi}{2}) + i\sin(\pm \frac{\pi}{2})$

Product in polar form. Given $z_i = r_i(\cos \theta_i + i \sin \theta_i)$ for i = 1, 2, we can compute its product:

$$z_1 z_2 = r_1 r_2 (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2))$$
$$= r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

Thus, $arg(z_1z_2) = argz_1 + argz_2$.

Note that $Arg(z_1z_2) \neq Argz_1 + Argz_2$. ($Arg(z_1z_2)$ should be restricted to be within the interval $(-\pi, \pi]$)

Inverse in Polar form. Given $z = r(\cos \theta + i \sin \theta)$, we aim to find the inverse such that $zz^{-1} = 1$. Hence, $z^{-1} = \frac{1}{r}(\cos(-\theta) + i \sin(-\theta))$.

If we obtain the inverse, we can compute the division $\frac{z_1}{z_2}$:

$$\frac{z_1}{z_2} = r_1(\cos\theta_1 + i\sin\theta_1) \frac{1}{r_2}(\cos(-\theta_2) + i\sin(-\theta_2)) = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$$

Thus, $\arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2$.

Euler Identity. The Euler Identity is given by:

$$e^{ix} = \cos x + i \sin x$$

The proof requires Taylor's expansion.

Exponential Form. The exponential form of *z* in polar form is given by:

$$z = re^{i\theta}$$

Then it is convenient to define produt, inverse, and division:

$$\begin{split} (r_1 e^{i\theta_1}) \cdot (r_2 e^{i\theta_2}) &= r_1 r_2 e^{i(\theta_1 + \theta_2)} \\ \frac{1}{r e^{i\theta}} &= \frac{1}{r} e^{i(-\theta)} \\ \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} &= \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} \end{split}$$

Nonuniqueness. $z = re^{i\theta} = re^{i(\theta + 2n\pi)}$

Equality. Two complex numbers are equal means that:

$$r_1e^{i heta_1}=r_2e^{i heta_2}\Longleftrightarrow egin{cases} r_1=r_2\ heta_1= heta_2+2k\pi, k\in\mathbb{Z} \end{cases}$$

Circle. The circle centered at the origin with radius *R* can be describled as:

$$|z| = R \iff z = Re^{i\theta}, \quad 0 \le \theta < 2\pi$$

The circle centered at z_0 with radius R can be describled as:

$$|z-z_0|=R \iff z=z_0+Re^{i\theta}, \ \ 0 < \theta < 2\pi$$

Neighborhoold. The ϵ -neighborhood of the point z_0 is given by:

$$|z-z_0|<\epsilon$$

If delete the center, it is given by:

$$0 < |z - z_0| < \epsilon$$

1.2. Powers and Roots

Powers. The powers of $z = re^{i\theta}$ is given by:

$$z^{n} = r^{n}e^{in\theta}$$
$$z^{-n} = r^{-n}e^{i(-n)\theta}$$

Thus we derive the **De Moiver's Formula**:

$$(\cos\theta + i\sin\theta)^n = (e^{i\theta})^n = \cos n\theta + i\sin n\theta.$$

It is useful for computing powers tha contains complex number. For example,

$$(1+i)^n = (\sqrt{2}e^{i\frac{\pi}{4}})^n = 2^{n/2}e^{\frac{in\pi}{4}}$$

Proposition 1.5

$$\sin(n\theta) = \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k+1} (-1)^k \cos^{n-2k-1} \theta \sin^{2k+1} \theta,$$

where |x| denotes the largest integer that not exceeds x.

Solving high order equations. The powers of complex can also be used to solve high order equations.

Example 1.4 To sovle the equation $z^n=1$, we express $z=re^{i\theta}$. It follows that

$$(re^{i\theta})^n = 1e^{i0} \implies \begin{cases} r^n = 1 \\ n\theta = 2k\pi \end{cases} \implies \begin{cases} r = 1 \\ \theta = \frac{2k\pi}{n} \end{cases}$$

Thus, the distinct n-th roots(of unity) are given by:

$$\exp(i\frac{2k\pi}{n}) = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \qquad k = 0, 1, 2, ..., n - 1.$$

If we denote $w_n=\exp(i\frac{2\pi}{n})$, we derive the roots:

$$1, w_n, w_n^2, \ldots, w_n^{n-1}.$$

Roots of high order equations. Suppose $z_0 = r_0 e^{i\theta_0}$, we aim to sovle $z^n = z_0$:

$$r^n e^{in\theta} = r_0 e^{i\theta_0} \implies \begin{cases} r = r_0^{1/n} \\ \theta = \frac{\theta_0 + 2k\pi}{n} \end{cases}$$

Thus the distinct *n*th roots are given by:

$$r_0^{1/n} \exp(i\frac{\theta_0 + 2k\pi}{n}), \quad k = 0, 1, 2, \dots, n-1.$$

If c is any particular n-th roots of z_0 , then

$$(cw)^n = z_0 \implies c^n w^n = z_0 \implies w_n = 1.$$

Hence, the distinct n-th roots of z_0 are

$$c, cw_n, cw_n^2, \ldots, cw_n^{n-1}$$

- There are n of the n-th roots of a complex number, all the roots are equally spaced about a circle that is centered at origin with radius $|z_0|^{1/n}$.
- Let $z_0^{1/n}$ denote the set of all *n*-th roots of z_0 . If $\theta_0 = \text{Arg} z_0$, then

$$c_0 = r_0^{1/n} \exp(i\frac{\theta_0}{n})$$

is called the principal n-th root of z_0 .

• The distinct n-th roots of z_0 are:

$$c_0, c_0 w_n, c_0 w_n^2, \dots, c_0 w_n^{n-1},$$

or equivalently,

$$z_0^{1/n} = r_0^{1/n} \exp(i\frac{\theta_0 + 2k\pi}{n})$$

■ Example 1.5 For
$$z_0 = -8i$$
, we write $z_0 = 8e^{i(-\pi/2)}$. It follows that
$$z_0^{1/3} == 2\exp(i\frac{-\pi/2 + 2k\pi}{3}) = 2\exp(-\frac{\pi}{6}i), 2\exp(\frac{\pi}{2}i), 2\exp(\frac{7\pi}{6}i)$$

11