Homework 1 -- Combinatorial Logic & CPU

1. Determine the truth table for the following Boolean functions.

$$F(X,Y,Z) = \overline{XZ} + XYZ$$

2. Determine the truth table for the following logic circuit.

3. (a) Find the **complement** of the following Boolean function and reduce it to seven literals in sum-of-products form.

$$\bar{F} = \bar{B}D + \bar{A}B\bar{C} + ACD + \bar{A}BC$$

- (b) Implement the simplified expression F from Q.3(a) using AND, OR and NOT logic gates in a 2-level gate circuit.
- **4.** Design an ALU with 3-bit commands and operations:

0: NOP

1: Accu = -Accu

2: Accu = Accu + data

3: Accu = Accu - data

4: Accu = Accu * data

5: Accu = data

6: don't care

7: don't care

- **5.** Build a CU which advances the program counter by 2 in very step.
- 6. Review Functionality of CPU4 where its diagram and opcodes were showing below. Write a machine program to multiply two numbers by repeated addition by using the opcodes of CPU4. Your code must satisfy: (a). The two operands are in memory cells 0xA1 and 0xA2; (b). Store the result in memory cell 0xFF.

Fig.1 CPU4

Table 1 Opcodes

Opcode	Description	Abbreviation
0	$acc \leftarrow memory$ $pc \leftarrow pc + 2$	LOAD memory
1	memory \leftarrow acc pc \leftarrow pc + 2	STORE memory
2	$acc \leftarrow NOT acc$ $pc \leftarrow pc + 2$	NOT
3	$acc \leftarrow acc + memory$ $pc \leftarrow pc + 2$	ADD memory
4	$acc \leftarrow acc - memory$ $pc \leftarrow pc + 2$	SUB memory
5	$\begin{array}{ll} acc & \leftarrow acc \; AND \; memory \\ pc & \leftarrow pc + 2 \end{array}$	AND memory
6	$acc \leftarrow acc OR memory$ $pc \leftarrow pc + 2$	OR memory
7	$ \begin{array}{l} (\text{* acc unchanged *}) \\ \text{if acc} = 0 \\ \text{then } pc \leftarrow pc + address \\ \text{else } pc \leftarrow pc + 2 \end{array} $	BEQ address
8	$acc \leftarrow constant$ $pc \leftarrow pc + 2$	LOAD constant
9		
10		
11	$acc \leftarrow acc + constant$ $pc \leftarrow pc + 2$	ADD constant
12	$acc \leftarrow acc - constant$ $pc \leftarrow pc + 2$	SUB constant
13	$\begin{array}{ll} acc & \leftarrow acc \; AND \; constant \\ pc & \leftarrow pc + 2 \end{array}$	AND constant
14	$\begin{array}{ll} acc & \leftarrow acc \ OR \ constant \\ pc & \leftarrow pc+2 \end{array}$	OR constant
15	(* acc unchanged *) pc ← pc + address	BRA address