Machine Learning Worksheet 4

Multivariate Normal

1 Basic Gaussian

Problem 1: We decomposed the covariance matrix Σ into $U\Lambda U^T$ with the orthonormal matrix U and the diagonal matrix of eigenvalues Λ . Show that:

$$oldsymbol{U}oldsymbol{\Lambda}^{-1}oldsymbol{U}^T = \sum_{i=1}^d rac{1}{\lambda_i}oldsymbol{u}_ioldsymbol{u}_i^T$$

Problem 2: Let L be an invertible n by n matrix over \mathbb{R} . Show that the linear transformation Y = LX of a Gaussian is again a Gaussian. Use the moment parametrisation and the change of variable theorem to get there.

2 Conditioned Gaussian

You got a dataset with pairs \boldsymbol{x} and \boldsymbol{y} . You computed the covariance of the concatenated datapoints $\begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{pmatrix}$. The covariance matrix looks like this: $\begin{pmatrix} \boldsymbol{\Sigma}_{X,X} & \boldsymbol{\Sigma}_{X,Y} \\ \boldsymbol{\Sigma}_{Y,X} & \boldsymbol{\Sigma}_{Y,Y} \end{pmatrix}$. For simplicity we assume that $\boldsymbol{\mu}_X$ and $\boldsymbol{\mu}_Y$ are $\boldsymbol{0}$.

Problem 3: The underlying process of the probability distribution $p(y \mid x)$ can be expressed as Y = TX + Z where $Z \sim \mathcal{N}(\mathbf{0}, \Sigma_{Y \mid X})$. What is the value of the matrix T?

Problem 4: What is the covariance of Z?