Name of School:	
Candidate's Name:	
Centre No./Index No:	Signature:

P525/1 CHEMISTRY

Paper 1 2 ³/₄ Hours July/ August 2022

KAMSSA JOINT MOCK EXAMINATION

Uganda Advanced Certificate of Education

CHEMISTRY

Paper1
2Hours 45 Minutes

INSTRUCTIONS TO CANDIDATES

- ✓ This paper consists of two sections A and B
- ✓ Section A is compulsory.
- ✓ Attempt only six questions in section B
- ✓ Answers must be written in the spaces provided only

						For	Exam	iner's	Use C	nly						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

SECTION A (46 MARKS)

Attempt all questions in this section.

1.	Beryllium, Magnesium & Calcium are group II elements. a) Write the general outer configuration of the elements.	(01 mark)
	b) Each of these elements reacts with carbon to form a carbide. equation for the reaction which occurs when each carbide reawater.	
2.	a) Complete the following nuclear reactions.	•••••
	i. ${}^{9}_{4}Be + \gamma \longrightarrow + \dots + \dots$	(01 mark)
	ii. ++ b) It takes 5 days for 0.025mg of Bismuth-214 to disintegrate in	(01 mark) ato 0.0125mg
	of Bismuth-210.Calculate the time required for 0.016mg Bismu	th-214 to
	change into 0.001mg Bismuth-210. (03 mar	·ks)
		• • • • • • • • • • • • • • • • • • • •
	••••••	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
3.	Aluminium and Phosphorus form compounds in the oxidation sta	tes of 3.
	· ·	
	b) Write the equation for the reaction between each element wit	
	hydroxide solution.	(03 marks)
		•••••

4. The **temperature-composition** diagram for a system containing two components **X** and **Y** is shown below.

a)	Sta	ate what each of the following represent.	(72 marks@
	i.	Regions:	
		L:	• • • • • • • • • • • • • • • • • • • •
		M:	
		N:	
	ii.	Points:	
		A:	
		B:	
		C:	
	iii.	Curves:	
		AB:	
		BC:	

iv. State what would happen when a mixture of composition ${\bf R}$ is heated.

(½ marks)

	structure and name the snape	e of the following anions. (03 mar)
Anions	Shapes	Names
SO ₃ ²⁻		
SO ₄ ²⁻		
S ₂ O ₃ ²⁻		
	reagent(s) which can be used to State what would be observed	o distinguish between SO_3^{2-} and the state of the st

 $H_3O^+/Warm$

(a) CH ₃ CH=C (CH ₃)	→	
Name:		
4 2 5	HBr	
(b) Br		
CH ₃	CrO ₂ Cl ₂	
(c) O		
Name:	Br ₂ /H ₂ O	
(d) $CH_3C \equiv CH$	—————————————————————————————————————	
Name:		
Phenol was added to	bromine water.	
a) (i) State what was		(01 mark
		``
(ii) Write an equation	for the reaction.	(1½ mar
,	which can be used to distingui	-
-	what would be observed if the	e reagent is treated with
each compound.		
Reagent:		(01 marl
Observations:		

		rite an equation showing how phenol may be prepared fronium chloride.	(1½ marks)
8.	a) Sta	ate Graham's law of gaseous diffusion.	(01 mark)
		ckel forms a carbonyl; Ni(CO) _n . Deduce the value of n conoxide diffuses 2.46 times faster than the carbonyl com	pound. (03marks)
	 c) Sta	ate the:	
	i.	Oxidation state of Nickel in the compound.	(0½ mark)
	ii.	Co-ordination numbers of Nickel in the compound.	(0½ mark)

	•••••	
9	State what would be observed and write an equation bet compounds and the reagent commonly used in identifying	
	compounds. a) Neutral iron (III) chloride and phenol. Observation:	(02 marks)
	Equation:	
	b) Sodium nitrite in presence of concentrated hydrochl methylamine.Observation:	oric acid and ethyl (02 marks)
	Equation:	
	c) Fehling's solution and ethanal. Observation:	(02 marks)
	Equation:	

SECTION B (54 MARKS)

Attempt any six questions

10 a) A compound Z contains 19.15% nitrogen, 43.5% ox	ygen and the rest being
manganese. (i). Calculate the empirical formula of Z.	(1½ marks)
(i). Calculate the chiph leaf formula of Z.	(1/2 marks)
(ii) 10.05 of 7 in 1000.05 of mater largered to force in a noing	ofto h 0 1270C
(ii) 10.0g of Z in 1000.0g of water lowered to freezing poin	it of water by 0.12 7°C.
Calculate the molecular formula of Z. ($\mathbf{K_f}$ for water is 1.80	6°C/mol/kg) (02 marks)
Calculate the molecular formula of 2. (11, 10) water is 100	o Cimoring) (02 marks)
•••••••••••••••••••••••••••••••••••••••	•••••
b) Z was dissolved in water to form a pink solution and dis	
State would be observed and write equation for the reaction i. Acidified potassium manganite (VII) solution was	<u>-</u>
(02 marks)	added to the first part.
Observation:	

	Equation:	
ii.	Concentrated nitric acid and lead (IV) oxide was added and the mixture boiled. Observation:	to the second part (02 marks)
	Equation:	
11.	a) Distinguish between first electron affinity and first	ionization energy (02 marks)
		•••••
	b) The first electron affinity of sodium is -71kjmol ⁻¹ whi	le the electron
	affinity of magnesium is +50.2kjmol ⁻¹ . Explain.	(03 marks)
		•••••

	Succes	sive ioniz	zation en	ergies(kjn	nol ⁻¹)								
Element	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th					
R	736	1450	7740	10500	13600	18000	21700	25600					
Q	1060	1900	2920	4960	6280	21200	25900	30500					
State	the grou	p in the p						к)					
				on between			(02 mark						
	the equa												
) Write	the equa												
) Write	the equa												
) Write	the equa												

(iii) Write an equation for the reaction between the chloride of \mathbf{Q} and water	(iii)
(01 mark)	
a). Define the following terms: (01 mark@)(i) Lattice energy.	
	•
	•
	•
	•
(ii) Standard heat of formation of a substance.	(1
	•••
	•••
The standard heat of formation of phosphorus trichloride is -306KJ/mol . The nd dissociation energy and enthalpy of atomization of chlorine and phosphorus e 314 & 242KJ/mol respectively.	bond diss
i. Draw a Born-Haber cycle for the formation of phosphorus	
trichloride. (02 marks)	
	•••
	•••
(ii) Use your cycle to calculate the P-Cl bond energy . (02 marks)	(i
	•••

•••••	••••••
•••••	
ii.	Calculate the standard heat of formation of ethane if the standard heats of combustion of graphite, hydrogen and ethane are -403,-285 and -1395 KJ/mol respectively. 03 marks)
•••••	
a) Diffe	erentiate between addition and condensation polymers. (02 marks)
•••••	
•••••	

b) The structure formulae of two polymers \boldsymbol{R} and \boldsymbol{T} are shown below.

R			T	
$ \left\{O-CH_2CH_2-CH_2\right\} $	0 ∥ 0-C- (_	$\rightarrow C$	$ \begin{cases} CH_3 \\ CH_2 - C \\ COOCH_3 \end{cases} $	$\frac{1}{n}$

Name the polymer.	(@01 mark)
i. R:	
ii. T:	
iii. c).Write the structural formula and T respectively.	(e) of monomer(s) of the polymers R (03marks)
R:	
T:	
d).Give one use of:	(01 mark@)
iv. R:	
v. T:	
14. a) Write the name and formula of one extracted.	ore from which aluminium can be (½ mark@)
Name:	,
Formula of the ore:	

b) (1). Describe how the ore is purified.	(04 marks)
	•••••
(ii).Describe the reaction of aluminium metal with acids.	(04 marks)
(ii).Describe the reaction of distinuition mean with defast	
ompound F contains 62.1% carbon, 10.3% hydrogen, the re a) Calculate the empirical formula of F .	st being oxygen. (03 marks)

•••••		•••••
•••••		
b)	F distils in steam at 98°C and 1.01 X 10 ⁵ Nm ² . If the vapour patter at 98°C is 9.5 X 10 ⁴ Nm ² . i. Calculate the molecular mass of F if the distillate conby mass of F.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
wat i c) F fo Wr sod	F formed a grey precipitate when treated with ammoniacal s Write equation and outline a mechanism for the reaction be sodium hydrogen sulphite solution.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
1 < 11		
16. W	Then heated, carbon dioxide gas decomposes according to the	equation below.
	$2CO_{2(g)} + O_{2(g)}, \Delta H = -ve$	V 6.1
	If at a certain temperature and 1 atmospheric pressure , 60 % original carbon dioxide gas remained undissociated .	% of the
a) Ca	alculate the equilibrium constant , Kp for the reaction.	(05 marks)
		•••••

	••••	••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • •		
	• • • • •		
	• • • • •		
	••••		
	• • • • •		•••••
	• • • •		•••••
	••••		•••••
	• • • •		
b) S		nd explain the effect of:	
	i.	Increasing the pressure to 2 atmospheres on the equilibrium	
		concentration of oxygen gas.	(02 marks)
	•••		•••••
	•••	••••••	• • • • • • • • • • • • • • • • • • • •
	ii.	Carrying out the decomposition at a lower temperature of value of the equilibrium constant, Kp.	on the (02 marks)
		······································	
	••••		•••••••
	••••		••••••
	••••		• • • • • • • • • • • • • • • • • • • •
	••••		• • • • • • • • • • • • • • • • • • • •
	• • • •		
17 '	White	regretions to show how the following common de combine	thorizod on 1
1/.		equations to show how the following compounds can be syrach case indicate the conditions of reaction.	imesized and
8		hylbenzoate from benzene	(03 marks)
	• • • •		

2-hydroxypropanoic acid from ethyne	(03 marks)
1-phenylethanol from phenol	(3marks)
	2-hydroxypropanoic acid from ethyne 1-phenylethanol from phenol

.....

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 Ho 2
6.9 Li 3	9.0 Be											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	1000000
39.1 K 19	40.1 Ca 20	45.0 Sc 21		50.9 V 23	52.0 Cr 24		55.8 Fe 26	58.9 Co 27	58.7 Ni 28			69.7 Ga 31	72.6 Ge 32		79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37		88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	1	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				1 - 3 2 - 3 10 - 33		9 45	in in								3 3
		/s 1.	139 La 57			144 Nd 60		150 Sm 62	152 Eu 63		159 Tb 65	162 Dy 66	165 Ho 67		1	173 Yb 70	175 Lu 71
		5 (8) 14	227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95		247 Bk 97	251 Cf 98	254 Es 99	Fm	Md		260 Lw 103

END