

Computational Complexity Theory

Lecture 5: Class co-NP and EXP; Diagonalization

Indian Institute of Science

Recap: Alternate definition of NP

- Definition. An NTM M <u>accepts</u> a string $x \in \{0,1\}^*$ iff on input x there <u>exists</u> a sequence of applications of the transition functions δ_0 and δ_1 (beginning from the start configuration) that makes M reach q_{accept} .
- Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.
- Theorem. NP $=_{c}$ U NTIME (nc).

Recap: Search versus Decision for NP

- Theorem. Let $L \subseteq \{0,1\}^*$ be <u>NP-complete</u>. Then, the search version of L can be solved in poly-time if and only if the decision version can be solved in poly-time.
- Theorem. (Bellare-Goldwasser) If EE ≠ NEE then there's a language in NP for which search does not reduce to decision.
- Sometimes, the decision version of a problem can be trivial but the search version is possibly hard.
 E.g. Computing Nash Equilibrium (see class PPAD).

Two types of poly-time reductions

Definition. A language $L_1 \subseteq \{0,1\}^*$ is polynomial time (Karp / many-one) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial time computable function f s.t.

$$x \in L_1$$
 $f(x) \in L_2$

• Definition. A language $L_1 \subseteq \{0,1\}^*$ is polynomial time (Cook / Turing) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a TM that decides L_1 using poly many calls to a

Two types of poly-time reductions

Definition. A language $L_1 \subseteq \{0,1\}^*$ is polynomial time (Karp / many-one) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial time computable function f s.t.

$$x \in L_1$$
 $f(x) \in L_2$

• Definition. A language $L_1 \subseteq \{0,1\}^*$ is polynomial time (Cook / Turing) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a TM that decides L_1 using poly many calls to a

Two types of poly-time reductions

Definition. A language $L_1 \subseteq \{0,1\}^*$ is polynomial time (Karp / many-one) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a polynomial time computable function f s.t.

$$x \in L_1$$
 $f(x) \in L_2$

• Definition. A language $L_1 \subseteq \{0,1\}^*$ is polynomial time (Cook / Turing) reducible to a language $L_2 \subseteq \{0,1\}^*$ if there's a TM that decides L_1 using polymany calls to a

- Pefinition. For every $L \subseteq \{0,1\}^*$ let $L = \{0,1\}^* \setminus L$.
 - A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable} \}$.

- Pefinition. For every $L \subseteq \{0,1\}^*$ let $L = \{0,1\}^* \setminus L$.
 - A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable} \}$.
- Note: co-NP is <u>not</u> complement of NP. Every language in P is in both NP and co-NP.

Pefinition. For every $L \subseteq \{0,1\}^*$ let $L = \{0,1\}^* \setminus L$.

A language L is in co-NP if L is in NP.

• Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable} \}$.

- Pefinition. For every $L \subseteq \{0,1\}^*$ let $L = \{0,1\}^* \setminus L$.
 - A language L is in co-NP if L is in NP.
- Example. SAT = $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable} \}$.
- Note: SAT is Cook reducible to SAT. But, there's a fundamental difference between the two problems that is captured by the fact that SAT is <u>not</u> known to be Karp reducible to SAT. In other words, there's no known polytime verification process for SAT.

```
x \in L \longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
```

```
x \in L \longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1

x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 0
```

```
x \in L \longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 0
x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
M \text{ outputs the opposite of } M
```

```
x \in L \longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 0
x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
M \text{ is a poly-time}
M \text{ TM}
```

```
x \in L \longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 0
x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
\downarrow is in co-NP
```

Recall, a language $L \subseteq \{0,1\}^*$ is in NP if there's a *poly-time verifier* M such that

```
x \in L \longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1

x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 0

x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
```

• Definition. A language $L \subseteq \{0,1\}^*$ is in co-NP if there's a *poly-time TM* M such that

```
x \in L \longrightarrow \forall u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1
for NP this was \exists
```

- Definition. A language $L' \subseteq \{0,1\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

Theorem. SAT is co-NP-complete.

- **Definition**. A language $L' \subseteq \{0,1\}^*$ is *co-NP-complete* if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

- Theorem. SAT is co-NP-complete.
 - Proof. Let $L \in \text{co-NP}$. Then $L \in \text{NP}$

- **Definition.** A language $L' \subseteq \{0,1\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

Theorem. SAT is co-NP-complete.
 Proof. Let L ∈ co-NP. Then

$$\begin{array}{c} - \\ L \leq_{p} SAT \end{array}$$

- Pefinition. A language $L' \subseteq \{0,1\}^*$ is co-NP-complete if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

- Theorem. SAT is co-NP-complete.
 - Proof. Let L ∈ co-NP. Then

$$^{-}$$
 L \in NP

$$L \leq SAT$$

- **Definition.** A language $L' \subseteq \{0,1\}^*$ is *co-NP-complete* if
 - L' is in co-NP
 - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

Theorem. Let

TAUTOLOGY = $\{\phi : \text{ every assignment satisfies } \phi \}$.

TAUTOLOGY is co-NP complete.

Proof. Similar (homework)

Definition. Class EXP is the exponential time analogue of class P.

```
EXP = \bigcup_{\substack{c \ge 1}} DTIME (2^n)
```

time analogue of class P.

```
EXP = \bigcup_{\substack{c \ge 1}} DTIME (2^n)
```

• Observation. $P \subseteq NP \subseteq EXP$

time analogue of class P.

```
EXP = \bigcup_{\substack{c \ge 1}} DTIME (2^n)
```

• Observation. $P \subseteq NP \subseteq EXP$

Definition. Class EXP is the exponential time analogue of class P.

```
EXP = \bigcup_{\substack{c \ge 1}} DTIME (2^n)
```

• Observation. $P \subseteq NP \subseteq EXP$

• Exponential Time Hypothesis. (Impagliazzo & Paturi) Any algorithm for 3-SAT takes time $\Omega(2^{\delta,n})$, where δ is a constant and n is the input size $ETH \longrightarrow P \neq NP$

Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - 1. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - 1. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.

 If M_{α} takes T time on x then U takes $O(T \log T)$ time to simulate M_{α} on x.

- Diagonalization refers to a class of techniques used in complexity theory to separate complexity classes.
- These techniques are characterized by <u>two</u> main features:
 - 1. There's a universal TM U that when given strings α and x, simulates M_{α} on x with only a <u>small</u> overhead.
 - Every string represents some TM, and every TM can be represented by <u>infinitely many</u> strings.

- An application of Diagonalization

Let f(n) and g(n) be <u>time-constructible</u> functions s.t., e.g. f(n) = n, $f(n) \cdot \log f(n) = o(g(g(n))) = n^2$

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

• Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n) \cdot \log f(n) = o(g(n)).
```

• Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

Task: Show that there's a language L decided by a

TM D with time complexity O(n²) s.t., any TM

M with runtime O(n) cannot decide

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n) \cdot \log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

1. On input x, compute $|x|^2$.

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

TM D:

- 1. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n) \cdot \log f(n) = o(g(n)).
```

• Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Proof. We'll prove with $f(n) = n_{D's \text{ time steps not } M_x's \text{ time steps.}}$

TM D:

- 1. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n) \cdot \log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

Proof. We'll prove with f(n) = n and g(n) = n

 n^2 .

TM D:

- 1. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs b then

output 1-b

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n) \cdot \log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

Proof. We'll prove with f(n) = n and g(n) = n

 n^2 .

TM D:

- 1. On input x, compute $|x|^2$.
- 2. Simulate M_x on x for $|x|^2$ steps.
 - a. If M_x stops and outputs b then

output 1-b

 n^2 .

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

Proof. We'll prove with f(n) = n and g(n) = n

D runs in $O(n^2)$ time as n^2 is time-constructible.

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

• Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

Claim. There's no TM M with running time O(n) that

decides L (the language accepted by

D).

```
f(n). log f(n) = o(g(n)).
```

- Theorem. DTIME(f(n)) \subsetneq DTIME(g(n))

 Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.

```
f(n). log f(n) = o(g(n)).
```

- Theorem. DTIME(f(n)) \subseteq DTIME(g(n))
- Proof. We'll prove with f(n) = n and g(n) = n
 - For contradiction, suppose M decides L and runs for at 1905 tautn steps on inputs of length n.

```
f(n). log f(n) = o(g(n)).
```

- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - \triangleright Think of a <u>sufficiently large</u> x such that M = M_x

```
f(n). log f(n) = o(g(n)).
```

- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - \triangleright Think of a <u>sufficiently large</u> x such that M = M_x
 - \triangleright Suppose $M_x(x) = b$

```
f(n). log f(n) = o(g(n)).
```

- - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - \triangleright Think of a <u>sufficiently large</u> x such that M = M_x
 - \triangleright Suppose $M_x(x) = b$
 - \triangleright D on input x, simulates M_x on x for $|x|^2$ steps.

```
f(n). log f(n) = o(g(n)).
```

- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - \rightarrow Think of a <u>sufficiently large</u> x such that M = M_x
 - \triangleright Suppose $M_x(x) = b$
 - Don input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. |x| steps.

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

- Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$
 - Proof. We'll prove with f(n) = n and $g(n) = n^2$.
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - \rightarrow Think of a <u>sufficiently large</u> x such that M = M_x
 - \triangleright Suppose $M_x(x) = b$
 - Don input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c. |x| steps, D's simulation also stops within c'.c. |x|. |x| steps.

constant

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n) \cdot \log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subseteq DTIME(g(n))

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- \rightarrow Think of a <u>sufficiently large</u> x such that M = M_x
- \triangleright Suppose $M_x(x) = b$
- Don input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. |x| steps. (as c'.c. |x|. |x| for sufficiently large x)

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n) \cdot \log f(n) = o(g(n)).
```

• Theorem. DTIME(f(n)) \subseteq DTIME(g(n))

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- \rightarrow Think of a <u>sufficiently large</u> x such that M = M_x
- \triangleright Suppose $M_x(x) = b$
- Don input x, simulates M_x on x for $|x|^2$ steps. Since M_x stops within c.|x| steps, D's simulation also stops within c'.c. |x|. log |x| steps. And D outputs the opposite of what M_x outputs.

```
f(n). log f(n) = o(g(n)).
```

- Theorem. DTIME(f(n)) \subseteq DTIME(g(n))

 Proof. We'll prove with f(n) = n and g(n) = n
- n².
 - For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
 - \triangleright Think of a <u>sufficiently large</u> x such that M = M_x
 - \triangleright Suppose $M_x(x) = b$
 - \triangleright Hence, D(x) = 1-b

Let f(n) and g(n) be time-constructible functions s.t.,

```
f(n). log f(n) = o(g(n)).
```

• Theorem. $DTIME(f(n)) \subseteq DTIME(g(n))$

Proof. We'll prove with f(n) = n and $g(n) = n^2$.

- For contradiction, suppose M decides L and runs for at most c.n steps on inputs of length n.
- \rightarrow Think of a <u>sufficiently large</u> x such that M = M_x
- \triangleright | Suppose $M_x(x) = b$
- \triangleright Hence, D(x) = 1-b

Contradiction! M does not decide L.

```
f(n). log f(n) = o(g(n)).
```

- Theorem. DTIME(f(n)) \subseteq DTIME(g(n))
- Theorem. P ⊊ EXP
 Proof. Similar (homework)

Ladner's Theorem

- Another application of Diagonalization

Definition. A language L in NP is NPintermediate if L is neither in P nor NPcomplete.

Definition. A language L in NP is NPintermediate if L is neither in P nor NPcomplete.

Definition. A language L in NP is NP-Intermediate if L is neither in P nor NPcomplete.

Definition. A language L in NP is NPintermediate if L is neither in P nor NPcomplete.

... the notion makes sense only if P

≠ NP

- **Definition.** A language L in NP is NPintermediate if L is neither in P nor NPcomplete.
- Theorem. (Ladner) If $P \neq NP$ then there is an NP-intermediate language.

- **Definition.** A language L in NP is NPintermediate if L is neither in P nor NPcomplete.
- Theorem. (Ladner) If $P \neq NP$ then there is an NP-intermediate language.
- Proof. A delicate argument using diagonalization.

- **Definition.** A language L in NP is NPintermediate if L is neither in P nor NPcomplete.
- Theorem. (Ladner) If $P \neq NP$ then there is an NP-intermediate language.

Proof. Let H: N N be a function.

- **Definition.** A language L in NP is NPintermediate if L is neither in P nor NPcomplete.
- Theorem. (Ladner) If $P \neq NP$ then there is an NP-intermediate language.

```
Proof. Let H: N N be a function.
```

```
Let SAT_H = \{\Psi 0 \ 1 : \Psi \in SAT \ and \ |\Psi| = m\}
```

- Definition. A language L in NP is NPintermediate if L is neither in P nor NPcomplete.
- Theorem. (Ladner) If $P \neq NP$ then there is an NP-intermediate language.

Proof. Let H: N N be a function.

Let $SAT_H = \{\Psi 0 1 : \Psi \in SAT \text{ and } |\Psi|\}$

=Hmy}ould be defined in such a way that SAT_H is NPintermediate

(assuming $P \neq NP$)

Theorem. There's a function→ H: N
such that

1. H(m) is computable from m in O(m³) time

Theorem. There's a function H: N N such that

1. H(m) is computable from m in O(m³) time

2. $SAT_H \in P$ constant)

```
for every m
H(m) ≤ C (a
```

Theorem. There's a function H→ N N such that

1. H(m) is computable from m in O(m3) time

2. $SAT_H \in P$ $H(m) \leq C$ (a constant)

3. If $SAT_H \notin P$ then H(m) with m

Theorem. There's a function H→ N N such that

1. H(m) is computable from m in O(m3) time

2. $SAT_H \in P$ $H(m) \leq C$ (a constant)

3. If $SAT_H \notin P$ then H(m) with m

Proof: Later (uses diagonalization).

Ladner's theorem: Proof

 $P \neq NP$

Ladner's theorem: Proof

 $P \neq NP$

- $^{\bullet}$ Suppose SAT_H ∈ $^{\bullet}$. Then H(m) \leq C.
- This implies a poly-time algorithm for SAT as follows:

Ladner's theorem: Proof

```
P \neq NP
```

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - \geq On input ϕ , find $m = |\phi|$.

```
P \neq NP
```

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - ightharpoonup On input ϕ , find $m = |\phi|$.
 - \geq Compute H(m), and construct the string $\phi 0 1$

```
P \neq NP
```

- Suppose $SAT_H \in P$. Then $H(m) \leq C$.
- This implies a poly-time algorithm for SAT as follows:
 - ightharpoonup On input ϕ , find $m = |\phi|$.
 - \geq Compute H(m)mand construct the string $\phi 0 1$
 - \nearrow Check if ϕ 0 1 belongs to SAT_H

```
P \neq NP
```

- ightharpoonupSuppose SAT_H ∈ P. Then H(m) \leq C.
- This implies a poly-time algorithm for SAT as follows:
 - ightharpoonup On input ϕ , find $m = |\phi|$.
 - \geq Compute H(m)mand construct the string $\phi 0 1$
 - Check if 0 1 belongs to SAT_H length at most m + 1 + m^c

```
P \neq NP
```

- ightharpoonup Suppose SAT_H ∈ P. Then H(m) ≤ C.
- This implies a poly-time algorithm for SAT as follows:
 - \triangleright On input ϕ , find $m = |\phi|$.

```
_{\rm m}^{\rm H(m)}
```

- Compute H(m), and construct the string $\phi \ 0 \ 1$
- As P \neq NP, it must be that SAT_H \notin P.

 $P \neq NP$

Suppose SAT_H is NP-complete. Then Hom) with m.

 $P \neq NP$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{SAT}^{SAT} \leq_{p}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then them by with m.
- This also implies a poly-time algorithm for SATSAT ≤ POLY-TIME ALGORITHM FOR SATSAT

$$|\phi| = |\Psi \ 0 \ 1^k| = n^c$$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Them Hom) with m.
- This also implies a poly-time algorithm for SAT, ≤ Ψ 0 1 × 0 1

 \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Them Hom) with m.
- This also implies a poly-time algorithm for $SAT_{+}^{SAT} \leq_p \Psi 0 1^k$

- \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \nearrow Compute H(m) and check if $k = m_{\text{H(m)}}$.

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{+}^{SAT} \leq_p \Psi 0 1^k$

- On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$. Compute H(m) its admits the task
- Compute H(mɨjitanɨdne lɨgegrɨgailɨ (ἐn-winɨpɨnɨŋase the task reduces to checking if a small Ψ is satisfiable),

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{+}^{SAT} \leq_p \Psi 0 1^k$

- On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$. Compute H(m) its admits the task
- Compute H(m)itherdne hearth (kn-whiphmasse the task reduces to checking if a small Ψ is satisfiable), or H(m) > 2c (as H(m) tends to infinity with m).

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{+}^{SAT} \leq_p \Psi 0 1^k$

- \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \nearrow Compute H(m) and check if $k = m_{\text{H(m)}}$.
- \geq Hence, w.lo.g. $|f(\phi)| \geq m^{2c}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{+}^{SAT} \leq_p \Psi 0 1^k$

- \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \nearrow Compute H(m) and check if $k = m_{\text{H(m)}}$.
- \nearrow Hence, w.l.o.g. $n^c = |f(\phi)| \ge m^{2c}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{+}^{SAT} \leq_p \Psi 0 1^k$

- \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \geq Compute H(m) and check if $k = m_{\text{H(m)}}$.
- Hence, √n ≥ m

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{+}^{SAT} \leq_p \Psi 0 1^k$

- \geq On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \nearrow Compute H(m) and check if $k = m_{\text{H(m)}}$.
- \nearrow Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{H}^{SAT} \leq_{p} \psi 0 1^{k}$

- \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \geq Compute H(m) and check if $k = m^{H(m)}$.
- \nearrow Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$

$P \neq NP$

- Suppose SAT_H is NP-complete. Then Hom) with m.
- This also implies a poly-time algorithm for $SAT_{H}^{SAT} \leq_{p} \psi 0 1^{k}$

- \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \nearrow Compute H(m) and check if $k = m^{H(m)}$.
- Hence, $\sqrt{n} \geq \frac{1}{100} \frac{1}{100}$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Them Hom) with m.
- This also implies a poly-time algorithm for $SAT_{H}^{SAT} \leq_{p} \psi 0 1^{k}$

- \nearrow On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- Compute H(m) and check if $k = m_{\text{H}(m)}$.

 Do this recursively! Only $Q(\log \log n)$ recursive steps Hence $n \geq m$. Also $\varphi \in SAT$ iff $\Psi \in SAT$

$$P \neq NP$$

- Suppose SAT_H is NP-complete. Then $H(\underline{m})_{\infty}$ with \underline{m} .
- This also implies a poly-time algorithm for SAT:

```
SAT \leq_{p} \qquad \qquad \phi \xrightarrow{f} \Psi 0 1^{p}
SAT_{H}
```

- On input ϕ , compute $f(\phi) = \Psi \ 0 \ 1^k$. Let $m = |\Psi|$.
- \triangleright Compute H(m) and check if $k = m_{\text{H(m)}}$.
- ightharpoonup Hence, $\sqrt{n} \ge m$. Also $\phi \in SAT$ iff $\Psi \in SAT$
- Hence SAT_H is not NP-complete, as $P \neq NP$.