Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/001863

International filing date: 23 February 2005 (23.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 012 370.5

Filing date: 13 March 2004 (13.03.2004)

Date of receipt at the International Bureau: 08 June 2005 (08.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

PCT/EP2005/001863

BUNDESREPUBLIK DEUTSCHLAND

0 3. 06. 2005

EPOS/1863

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 012 370.5

Anmeldetag:

13. März 2004

Anmelder/Inhaber:

BASF Plant Science GmbH, 67063 Ludwigshafen/DE

Bezeichnung:

Verfahren zur Herstellung mehrfach ungesättigter

Fettsäuren in transgenen Organismen

IPC:

C 12 N, C 11 B, C 11 C

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. Mai 2005

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Brosin

A 9161 06/00 Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Beschreibung

10

20

25

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ -5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ -6-Desaturase-, eine Δ -5-Desaturase-, Δ -4-Desaturase-, Δ -12-Desaturase- und/oder Δ -6-Elongaseaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira oder Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.

Die vorliegende Erfindung betrifft außerdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω -3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω -3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an ungesättigten ω -3-Fettsäuren, Ölen oder Lipiden mit ω -3-Doppelbindungen aufgrund der Expression der im erfindungsgemäßen Verfahren verwendeten Elongasen und Desaturasen vorteilhaft in Verbindung mit ω -3-Desaturasen z.B. einer ω -3-Desaturase aus Pilzen der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und Art Phytophtora infestans oder einer ω -3-Desaturase aus Algen wie der Familie der Prasinophyceae z.B. der Gattung Ostreococcus speziell der Gattung und Art Ostreococcus tauri oder Diatomeen wie der Gattung Thalassiosira speziell der Gattung und Art Thalassiosira pseudonana.

Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.

Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.

Fettsäuren und Triacylglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich.

10

15

20

30

35

2

Je nachdem, ob es sich um freie gesättigte und ungesättigte Fettsäuren oder um Triacylglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfachungesättigte Fettsäuren wie Linol- und Linolensäure sind für Säugetiere essentiell, da sie nicht von diesen selbst hergestellt werden können. Deshalb stellen mehrfach ungesättigte ω -3-Fettsäuren und ω -6-Fettsäuren einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar.

Mehrfach ungesättigte langkettige ω -3-Fettsäuren wie Eicosapentaensäure (= EPA, C20:5^{Δ 5,8,11,14,17}) oder Docosahexaensäure (= DHA, C22:6 Δ 4,7,10,13,16,19</sup>) sind wichtige Komponenten der menschlichen Ernährung aufgrund ihrer verschiedenen Rollen in der Gesundheit, die Aspekte wie die Entwicklung des kindlichen Gehirns, der Funktionalität des Auges, der Synthese von Hormonen und anderer Signalstoffe, sowie die Vorbeugung von Herz-Kreislauf-Beschwerden, Krebs und Diabetes umfassen (Poulos, A Lipids 30:1-14, 1995; Horrocks, LA und Yeo YK Pharmacol Res 40:211-225, 1999). Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättigter langkettiger Fettsäuren.

Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder Eisosapentaensäure (= EPA, C20:5^{Δ5,8,11,14,17}) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung und Aufrechterhaltung von Gehirnfunktionen zugeschrieben.

Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (<u>poly unsaturated fatty acids</u>, <u>PUFA</u>, mehrfach ungesättigte Fettsäuren; <u>long chain poly unsaturated fatty acids</u>, <u>LCPUFA</u>, langkettige mehrfach ungesättigte Fettsäuren).

Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Sehr langkettige mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{Δ5,8,11,14}), Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}) oder Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}) werden in Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färbersaflor nicht synthetisiert. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.

Je nach Anwendungszweck werden Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt. So werden z.B. in der humanen Ernährung Lipide mit ungesättigten Fett-

10

15

20

25

35

40

(

3

säuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω -3-Fettsäuren wird dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω -3-Fettsäuren zur Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω -3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω -6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ -9-Desaturase beschrieben. In WO 93/11245 wird eine Δ -15-Desaturase in WO 94/11516 wird eine Δ -12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144–20149, Wada et al., Nature 347, 1990: 200–203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ –6–Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO98/46763 WO98/46764, WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO99/64616 oder WO98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe

10

5

20

25

35

4

Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ -Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω -3- und ω -6-Fettsäuren erhalten.

Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Mikroalgen wie Phaeodactylum tricornutum, Porphiridium-Arten, Thraustochytrien-Arten, Schizochytrien-Arten oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor und/oder Moosen wie Physcomitrella, Ceratodon und Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wann immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und ARA anfallen.

Für die Synthese von Arachidonsäure, Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) werden verschiedene Synthesewege diskutiert (Figur. 1). So erfolgt die Produktion von EPA bzw. DHA in marinen Bakterien wie Vibrio sp. oder Shewanella sp. nach dem Polyketid-Weg (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731, 1997).

Ein alternative Strategie verläuft über die wechselnde Aktivität von Desaturasen und Elongasen (Zank, T.K. et al. Plant Journal 31:255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). Eine Modifikation des beschriebenen Weges über $\Delta 6$ -Desaturase, $\Delta 6$ -Elongase, $\Delta 5$ -Desaturase, $\Delta 6$ -Elongase, $\Delta 6$ -Desaturase ist der Sprecher-Syntheseweg (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in Säugetieren. Anstelle der $\Delta 6$ -Desaturierung erfolgt hier ein weiterer Elongationsschritt auf C_{24} , eine weitere $\Delta 6$ -Desaturierung und abschliessend eine β -Oxidation auf die C_{22} -Kettenlänge. Für die Herstellung in Pflanzen und Mikroorganismen ist der sogenannte Sprecher-Syntheseweg (siehe Figur 1) allerdings nicht geeignet, da die Regulationsmechanismen nicht bekannt sind.

Die polyungesättigten Fettsäuren können entsprechend ihrem Desaturierungsmuster in zwei große Klassen, in ω -6- oder ω -3-Fettsäuren eingeteilt werden, die metabolisch und funktionell unterschiedlich Aktivitäten haben (Fig. 1).

Als Ausgangsprodukt für den ω -6-Stoffwechselweg fungiert die Fettsäure Linolsäure (18:2 $^{\Delta9,12}$), während der ω -3-Weg über Linolensäure (18:3 $^{\Delta9,12,15}$) abläuft. Linolensäure

10

20

25

35

40

5

wird dabei durch Aktivität einer ω -3-Desaturase gebildet (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).

Säugetiere und damit auch der Mensch verfügen über keine entsprechende Desaturaseaktivität (Δ -12- und ω -3-Desaturase) und müssen diese Fettsäuren (essentielle Fettsäuren) über die Nahrung aufnehmen. Über die Abfolge von Desaturase- und Elongase-Reaktionen werden dann aus diesen Vorstufen die physiologisch wichtigen polyungesättigten Fettsäuren Arachidonsäure (= ARA, $20:4^{\Delta5,8,11,14}$), eine ω -6-Fettsäure und die beiden ω -3-Fettsäuren Eicosapentaen- (= EPA, $20:5^{\Delta5,8,11,14,17}$) und Docosahexaensäure (DHA, $22:6^{\Delta4,7,10,13,17,19}$) synthetisiert. Die Applikation von ω -3-Fettsäuren zeigt dabei die wie oben beschrieben therapeutische Wirkung bei der Behandlung von Herz-Kreislaufkrankheiten (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), Entzündungen (Calder 2002, Proc. Nutr. Soc. 61, 345-358) und Arthridis (Cleland und James 2000, J. Rheumatol. 27, 2305-2307).

Aus ernährungsphysiologischer Sicht ist es deshalb wichtig bei der Synthese mehrfach ungesättigter Fettsäuren eine Verschiebung zwischen dem ω -6-Syntheseweg und dem ω -3-Syntheseweg (siehe Figur 1) zu erreichen, so dass mehr ω -3-Fettsäuren hergestellt werden. In der Literatur wurden die enzymatischen Aktivitäten verschiedener ω -3-Desaturasen beschrieben, die C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturieren (siehe Figur 1). Keine der biochemisch beschriebenen Desaturasen setzt jedoch ein breites Substratspektrum des ω -6-Synthesewegs zu den entsprechenden Fettsäuren des ω -3-Syntheseweg um.

Es besteht daher weiterhin ein großer Bedarf an einer ω -3-Desaturase, die zur Herstellung von ω -3-polyungesättigte Fettsäuren geeignet ist. Alle bekannten pflanzlichen und cyanobakteriellen ω -3-Desaturasen desaturieren C_{18} -Fettsäuren mit Linolsäure als Substrat, können aber keine C_{20} - oder C_{22} -Fettsäuren desaturieren.

Von dem Pilz Saprolegnia dicilina ist eine ω -3-Desaturase bekannt (Pereira et al. 2003, Biochem. J. 2003 Dez, Manuskript BJ20031319), die C_{20} -mehrfach ungesättigte Fettsäuren desaturieren kann. Von Nachteil ist jedoch, dass diese ω -3-Desaturase keine C_{18} - oder C_{22} -PUFAs, wie den wichtigen Fettsäuren $C_{18:2}$ -, $C_{22:4}$ - oder $C_{22:5}$ - Fettsäuren des ω -6-Syntheseweg desaturieren kann. Ein weiterer Nachteil dieses Enzyms ist, dass es keine Fettsäuren desaturieren kann, die an Phospholipide gebunden sind. Es werden nur die CoA-Fettsäureester umgesetzt.

Die Verlängerung von Fettsäuren durch Elongasen um 2 bzw. 4 C-Atome ist für die Produktion von C₂₀- bzw. C₂₂-PUFAs von entscheidender Bedeutung. Dieser Prozess verläuft über 4 Stufen. Der erste Schritt stellt die Kondensation von Malonyl-CoA an das Fettsäure-Acyl-CoA durch die Ketoacyl-CoA-Synthase (KCS, im weiteren Text als Elongase bezeichnet). Es folgt dann ein Reduktionschritt (Ketoacyl-CoA-Reduktase, KCR), ein Dehydratationsschritt (Dehydratase) und ein abschliessender Reduktionsschritt (enoyl-CoA-Reduktase). Es wurde postuliert, dass die Aktivität der Elongase die Spezifität und Geschwindigkeit des gesamten Prozesses beeinflussen (Millar and Kunst, 1997 Plant Journal 12:121-131).

den C. elegans isoliert.

5

35

6

In der Vergangenheit wurden zahlreiche Versuche unternommen, Elongase Gene zu erhalten. Millar and Kunst, 1997 (Plant Journal 12:121-131) und Millar et al. 1999, (Plant Cell 11:825-838) beschreiben die Charakterisierung von pflanzlichen Elongasen zur Synthese von einfachungesättigten langkettigen Fettsäuren (C22:1) bzw. zur Synthese von sehr langkettigen Fettsäuren für die Wachsbildung in Pflanzen (C28-C32). Beschreibungen zur Synthese von Arachidonsäure und EPA finden sich beispielsweise in WO0159128, WO0012720, WO02077213 und WO0208401. Die Synthese von mehrfachungesättigter C24 Fettsäuren ist beispielsweise in Tvrdik et al 2000, JCB 149:707-717 oder WO0244320 beschrieben.

Zur Herstellung von DHA (C22:6 n-3) in Organismen, die diese Fettsäure natürlicherweise nicht produzieren, wurde bisher keine spezifische Elongase beschrieben. Bisher wurden nur Elongasen beschrieben, die C_{20} - bzw. C_{24} -Fettsäuren bereitstellen. Eine Δ -5-Elongase-Aktivität wurde bisher noch nicht beschrieben.

Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) 5 und Linolensäure (C18:3). ARA, EPA und DHA kommen im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales. Technique & Documentation – Lavoisier, 1995. ISBN: 2-7430-0009-0). Es wäre jedoch vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ 20 hochwertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu müssen vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind Gene, die beispielsweise für Δ -6-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen oder Δ -4-25 Desaturasen codieren. Diese Gene können vorteilhaft aus Mikroorganismen und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Triacylglyceriden einbauen. So konnten bereits Δ-6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ-6-Elongase-Gene aus P. patens und dem Nemato-

Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in DE 102 19 203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen.

Um eine Anreicherung der Nahrung und des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.

40 Es bestand daher die Aufgabe weitere Gene bzw. Enzyme, die für die Synthese von LCPUFAs geeignet sind, speziell Gene, die eine Δ-5-Elongase-, eine Δ-5-Desaturase-,

 Δ -4-Desaturase-, Δ -12-Desaturase- oder Δ -6-Desaturaseaktivität aufweisen, für die Herstellung von mehrfach ungesättigten Fettsäuren zur Verfügung zu stellen. Eine weitere Aufgabe dieser Erfindung war die Bereitstellung von Genen bzw. Enzymen, die eine Verschiebung von den ω -6-Fettsäuren zu den ω -3-Fettsäuren hin ermöglichen. Weiterhin bestand die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus vorteilhaft in einem eukaryontischen Organismus bevorzugt in einer Pflanze oder einem Mikroorganismus zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c}
O & CH_2 & CH_2 & CH_3 \\
\hline
CH = CH & CH_2 & CH_2 & CH_3
\end{array}$$
(I)

10

5

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- und/oder eine Δ -6-Desaturase-Aktivität codiert, und
 - b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -8-Desaturase- und/oder eine Δ -6-Elongase-Aktivität codiert, und
 - c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -5-Desaturase-Aktivität codiert, und
- 20 d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -5-Elongase-Aktivität codiert, und

e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

25 R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

15

20

25

8

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$
 $H_{2}C-O-$
(II)

 R^2 = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-,

 R^3 = Wasserstoff-, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder R^3 unabhängig voneinander einen Rest der allgemeinen Formel Ia:

$$\begin{array}{c|c}
CH_2 & CH_2 \\
\hline
CH=CH & CH_2 \\
\hline
CH_2 & CH_3
\end{array}$$
(Ia)

10 n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3, gelöst.

R¹ bedeutet in der allgemeinen Formel I Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$
 $H_{2}C-O-$
(II)

Die oben genannten Reste von R¹ sind immer in Form ihrer Thioester an die Verbindungen der allgemeinen Formel I gebunden.

R² bedeutet in der allgemeinen Formel II Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-,

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C₂-C₂₄-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Hexylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Tridecylcarbonyl-, n-Tridecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hexad

10

15

25

35

40

9

decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C_{10} - C_{22} -Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-., die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C_{10} – C_{22} –Alkylcarbonylreste wie C_{10} –Alkylcarbonyl-, C_{11} –Alkylcarbonyl-, C_{12} –Alkylcarbonyl-, C_{13} –Alkylcarbonyl-, C_{14} –Alkylcarbonyl-, C_{16} –Alkylcarbonyl-, C_{18} – Alkylcarbonyl-, C_{20} -Alkylcarbonyl- oder C_{22} -Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C_{16} – C_{22} –Alkylcarbonylreste wie C_{16} –Alkylcarbonyl-, C_{18} –Alkylcarbonyl-, C_{20} – Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

20 R³ bedeutet in der allgemeinen Formel II Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂-Alkylcarbonyl.

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C_{10} - C_{22} -Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C_{10} – C_{22} –Alkylcarbonylreste wie C_{10} –Alkylcarbonyl-, C_{11} –Alkylcarbonyl-, C_{12} –Alkylcarbonyl-, C_{13} –Alkylcarbonyl-, C_{14} –Alkylcarbonyl-, C_{16} –Alkylcarbonyl-, C_{18} – Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C₂₂-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder unge sättigte C_{16} – C_{22} –Alkylcarbonylreste wie C_{16} –Alkylcarbonyl-, C_{18} –Alkylcarbonyl-, C_{20} – Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei,

40

10

vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

Die oben genannten Reste von R¹, R² and R³ können mit Hydroxyl- und/oder Epoxygruppen substituierte sein und/oder können Dreifachbindungen enthalten.

Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei, vier, fünf oder sechs Doppelbindungen. Besonders vorteilhaft enthalten die Fettsäuren vier fünf oder sechs Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 18-, 20- oder 22-C-Atome in der Fettsäurekette, bevorzugt enthalten die Fettsäuren 20 oder 22 Kohlenstoffatome in der Fettsäurekette. Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, das im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten Fettsäuren mit weniger als 5 % der Aktivität, vorteilhaft weniger als 3 %, besonders vorteilhaft mit weniger als 2 %, ganz besonders bevorzugt mit weniger als 1; 0,5; 0,25 oder 0,125 % umgesetzt werden. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.

Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase- und/oder Δ -4-Desaturaseaktivität codieren.

Vorteilhaft werden im erfindungsgemäßen Verfahren Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturaseaktivität codieren, verwendet ausgewählt aus der Gruppe bestehend aus:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101 oder SEQ ID NO: 103 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38,

30

35

11

SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102 oder SEQ ID NO: 104 dargestellten Aminosäuresequenzen ableiten lassen, oder

c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, 10 SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID 20 NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID 25 NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102 oder SEQ ID NO: 104 codieren und eine Δ -9-Elongase-, Δ -6-· Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongaseoder Δ-4-Desaturaseaktivität aufweisen.

Vorteilhaft bedeuten die Substituenten R² oder R³ in den allgemeinen Formeln I und II unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl-, besonders vorteilhaft bedeuten sie unabhängig voneinander ungesättigtes C_{18} -, C_{20} oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen.

Eine bevorzugte Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit ω-3-Desaturase-Aktivität codiert, ausgewählt aus der Gruppe bestehend aus:

einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 40 dargestellten Sequenz, oder

20

25

12

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturaseaktivität aufweisen.

In einer weiteren bevorzugten Ausführungsform ist das Verfahrens dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit Δ-12-Desaturaseaktivität codiert, ausgewählt aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Sequenz, oder
- Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Diese vorgenannten Δ -12-Desaturasesequenzen können allein oder in Kombination mit den ω 3-Desaturasesequenzen mit den im Verfahren verwendeten Nukleinsäuresequenzen, die für Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen codieren verwendet werden.

Tabelle 1 gibt die Nukleinsäuresequenzen, den Herkunftsorganismus und die Sequenz-ID-Nummer wieder.

Nr.	Organismus	Aktivität	Sequenznummer
1.	Euglena gracilis	Δ-8-Desaturase	SEQ ID NO: 1
2.	Isochrysis galbana	Δ-9-Elongase	SEQ ID NO: 3
3.	Phaeodactylum tricornutum	Δ-5-Desaturase	SEQ ID NO: 5
4.	Ceratodon purpureus	Δ-5-Desaturase	SEQ ID NO: 7
5.	Physcomitrella patens	Δ-5-Desaturase	SEQ ID NO: 9
6.	Thraustrochytrium sp.	Δ-5-Desaturase	SEQ ID NO: 11
7.	Mortierella alpina	Δ-5-Desaturase	SEQ ID NO: 13

		13	
Nr.	. Organismus	Aktivität	Sequenznummer
8.	Caenorhabditis elegans	Δ-5-Desaturase	SEQ ID NO: 15
9.	Borago officinalis	Δ-6-Desaturase	SEQ ID NO: 17
10.	Ceratodon purpureus	Δ-6-Desaturase	SEQ ID NO: 19
11.	Phaeodactylum tricornutum	Δ-6-Desaturase	SEQ ID NO: 21
12.	Physcomitrella patens	Δ-6-Desaturase	SEQ ID NO: 23
13.	Caenorhabditis elegans	Δ-6-Desaturase	SEQ ID NO: 25
14.	Physcomitrella patens	Δ-6-Elongase	SEQ ID NO: 27
15.	Thraustrochytrium sp.	Δ-6-Elongase	SEQ ID NO: 29
16.	Phytophtora infestans	Δ-6-Elongase	SEQ ID NO: 31
17.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 33
18.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 35
19.	Caenorhabditis elegans	Δ-6-Elongase	SEQ ID NO: 37
20.	Euglena gracilis	Δ-4-Desaturase	SEQ ID NO: 39
21.	Thraustrochytrium sp.	Δ-4-Desaturase	SEQ ID NO: 41
22.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 43
23.	Thalassiosira pseudonana	Δ-6-Elongase	SEQ ID NO: 45
24.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 47
25.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 49
26.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 51
27.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 53
28.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 59
29.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 61
30.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 63
31.	Thraustrochytrium aureum	Δ-5-Elongase	SEQ ID NO: 65
2.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 67
3.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 69
4.	Prímula farinosa	Δ-6-Desaturase	SEQ ID NO: 71
5.	Primula vialii	Δ-6-Desaturase	SEQ ID NO: 73
6.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 75
7.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 77

15

14

Nr.	Organismus	Aktivität	Sequenznummer
38.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 79
39.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 81
40.	Thraustrochytrium sp.	Δ-5-Elongase	SEQ ID NO: 83
41.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 85
42.	Phytophtora infestans	ω-3-Desaturase	SEQ ID NO: 87
43.	Ostreococcus tauri	Δ-6-Desaturase	SEQ ID NO: 89
44.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 91
45.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 93
46.	Ostreococcus tauri	Δ-4-Desaturase	SEQ ID NO: 95
47.	Thalassiosira pseudonana	Δ-6-Desaturase	SEQ ID NO: 97
48.	Thalassiosira pseudonana	Δ-5-Desaturase	SEQ ID NO: 99
49.	Thalassiosira pseudonana	Δ-5-Desaturase	SEQ ID NO: 101
50.	Thalassiosira pseudonana	Δ-4-Desaturase	SEQ ID NO: 103
51.	Thalassiosira pseudonana	ω-3-Desaturase	SEQ ID NO: 105
52.	Ostreococcus tauri	Δ-12-Desaturase	SEQ ID NO: 107
53.	Thalassiosira pseudonana	Δ-12-Desaturase	SEQ ID NO: 109

Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als freie Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Die in den Triacylglyceriden gebundenen verschieden Fettsäuren lassen sich dabei von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren.

Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C_{18} –, C_{20} - und/oder C_{22} -Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester, vorteilhaft mit mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäureester, besonders vorteilhaft von mindestens fünf oder sechs Doppelbindungen im Fettsäureester hergestellt und führen vorteilhaft zur Synthese von Linolsäure (=LA, C18:2 $^{\Delta 9,12}$), γ -Linolensäure (= GLA, C18:3 $^{\Delta 6,9,12}$), Stearidonsäure (= SDA, C18:4 $^{\Delta 6,9,12,15}$). Dihomo- γ -Linolensäure (= DGLA, 20:3 $^{\Delta 8,11,14}$), ω -3-Eicosatetraensäure (= ETA, C20:4 $^{\Delta 5,8,11,14}$), Arachidonsäure (ARA, C20:4 $^{\Delta 5,8,11,14}$), Eicosapentaensäure (EPA, C20:5 $^{\Delta 5,8,11,14,17}$), ω -6-Docosapentaensäure

10

20

25

35

40

15

(C22:5 $^{\Delta4,7,10,13,16}$), ω-6-Docosatetraensäure (C22:4 $^{\Delta,7,10,13,16}$), ω-3-Docosapentaensäure (= DPA, C22:5 $^{\Delta7,10,13,16,19}$), Docosahexaensäure (= DHA, C22:6 $^{\Delta4,7,10,13,16,19}$) oder deren Mischungen, bevorzugt ARA, EPA und/oder DHA. Ganz besonders bevorzugt werden, ω-3-Fettsäuren wie EPA und/oder DHA hergestellt.

Die Fettsäureester mit mehrfach ungesättigten C_{18} -, C_{20} - und/oder C_{22} -Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycosphingolipide, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs bevorzugt fünf oder sechs Doppelbindungen enthalten, isoliert werden, vorteilhaft werden sie in der Form ihrer Diacylglyceride, Triacylglyceride und/oder in Form des Phosphatidylcholin isoliert, besonders bevorzugt in der Form der Triacylglyceride. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt von mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fettsäuren in den transgenen Organismen vorteilhaft in einer transgenen Pflanze hergestellt. Dabei werden vorteilhaft C₁₈- und/oder C₂₀-Fettsäuren, die in den Wirtsorganismen vorhanden sind, zu mindestens 10 %, vorteilhaft zu mindestens 20 %, besonders vorteilhaft zu mindestens 30 %, ganz besonders vorteilhaft zu mindestens 40 % in die entsprechenden Produkte wie DPA oder DHA, um nur zwei beispielhaft zu nennen, umgesetzt. Vorteilhaft werden die Fettsäuren in gebundener Form hergestellt. Mit Hilfe der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren lassen sich diese ungesättigten Fettsäuren an sn1-, sn2- und/oder sn3-Position der vorteilhaft hergestellten Triglyceride bringen. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA), Eicosapentaensäure (EPA), ω-6-Docosapentaensäure oder DHA nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA, EPA oder DHA als Mischungen vor. Die Vorstufen

15

30

C23:6^{A3,8,12,15,18,21}).

16

sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA, EPA oder nur DHA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden die Verbindungen ARA, EPA und DHA gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:1:2 (EPA:ARA:DHA), vorteilhaft von mindestens 1:1:3, bevorzugt von 1:1:4, besonders bevorzugt von 1:1:5 hergestellt.

Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren 10 hergestellt wurden, enthalten vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden. vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-20 Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malyalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopentendodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-25 Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octadecadiensäure. Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem 35 erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % 40 vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren oder keine Buttersäure, kein Cholesterin, keine Clupanodonsäure (=

Docosapentaensäure, C22:5^{Δ4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure,

10

15

20

25

35

40

(

17

Durch die erfindungsgemäßen Nukleinsäuresequenzen bzw. im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beispielsweise einer Hefe, einer Alge, einem Pilz oder einer Pflanze wie Arabidopsis oder Lein beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.

Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in bekannter Weise beispielsweise über Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft.

Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Organismen wie Mikroorganismen, nicht-humane Tiere oder Pflanzen in Frage.

Als Pflanzen kommen prinzipiell alle Pflanzen in Frage, die in der Lage sind Fettsäuren zu synthetisieren wie alle dicotylen oder monokotylen Pflanzen, Algen oder Moose. Vorteilhaft Pflanzen sind ausgewählt aus der Gruppe der Pflanzenfamilien Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Prasinophyceae oder Gemüsepflanzen oder Zierpflanzen wie Tagetes in Betracht.

Beispielhaft seien die folgenden Pflanzen genannt ausgewählt aus der Gruppe: Adelotheciaceae wie die Gattungen Physcomitrella z.B. die Gattung und Arten Physcomitrella patens, Anacardiaceae wie die Gattungen Pistacia, Mangifera, Anacardium z.B. die Gattung und Arten Pistacia vera [Pistazie], Mangifer indica [Mango] oder Anacardium occidentale [Cashew], Asteraceae wie die Gattungen Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana z.B. die Gattung und Arten Calendula officinalis [Garten-Ringelblume], Carthamus tinctorius [Färberdistel, safflower], Centaurea cyanus [Kornblume], Cichorium intybus [Wegwarte], Cynara scolymus [Artichoke], Helianthus annus [Sonnenblume], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [Salat], Tagetes lucida, Tagetes erecta

15

20

25

30

35

40

45

18

oder Tagetes tenuifolia [Studentenblume], Apiaceae wie die Gattung Daucus z.B. die Gattung und Art Daucus carota [Karotte], Betulaceae wie die Gattung Corylus z.B. die Gattungen und Arten Corylus avellana oder Corylus colurna [Haselnuss], Boraginaceae wie die Gattung Borago z.B. die Gattung und Art Borago officinalis [Borretsch], Brassicaceae wie die Gattungen Brassica, Camelina, Melanosinapis, Sinapis, Arabadopsis z.B. die Gattungen und Arten Brassica napus, Brassica rapa ssp. [Raps], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [Senf], Brassica oleracea [Futterrübe] oder Arabidopsis thaliana, Bromeliaceae wie die Gattungen Anana, Bromelia (Ananas) z.B. die Gattungen und Arten Anana comosus, Ananas ananas oder Bromelia comosa [Ananas], Caricaceae wie die Gattung Carica wie die Gattung und Art Carica papaya [Papaya], Cannabaceae wie die Gattung Cannabis wie die Gattung und Art Cannabis sative [Hanf], Convolvulaceae wie die Gattungen Ipomea, Convolvulus z.B. die Gattungen und Arten Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas. Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba oder Convolvulus panduratus [Süßkartoffel, Batate], Chenopodiaceae wie die Gattung Beta wie die Gattungen und Arten Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva oder Beta vulgaris var. esculenta [Zuckerrübe], Crypthecodiniaceae wie die Gattung Crypthecodinium z.B. die Gattung und Art Cryptecodinium cohnii, Cucurbitaceae wie die Gattung Cucubita z.B. die Gattungen und Arten Cucurbita maxima, Cucurbita mixta, Cucurbita pepo oder Cucurbita moschata [Kürbis], Cymbellaceae wie die Gattungen Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria z.B. die Gattung und Art Phaeodactylum tricornutum, Ditrichaceae wie die Gattungen Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia z.B. die Gattungen und Arten Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum. Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus oder Trichodon cylindricus var. oblongus, Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea [Olive], Ericaceae wie die Gattung Kalmia z.B. die Gattungen und Arten Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros oder Kalmia lucida [Berglorbeer], Euphorbiaceae wie die Gattungen Manihot, Janipha,

10

15

20

25

30

35

40

45

(. j

19

Jatropha, Ricinus z.B. die Gattungen und Arten Manihot utilissima, Janipha manihot,, Jatropha manihot., Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [Manihot] oder Ricinus communis [Rizinus], Fabaceae wie die Gattungen Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja z.B. die Gattungen und Arten Pisum sativum, Pisum arvense, Pisum humile [Erbse], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [Seidenbaum], Medicago sativa, Medicago falcata, Medicago varia [Alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida oder Soja max [Sojabohne], Funariaceae wie die Gattungen Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium z.B. die Gattungen und Arten Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria planoconvexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae wie die Gattungen Pelargonium, Cocos, Oleum z.B. die Gattungen und Arten Cocos nucifera, Pelargonium grossularioides oder Oleum cocois [Kokusnuss], Gramineae wie die Gattung Saccharum z.B. die Gattung und Art Saccharum officinarum, Juglandaceae wie die Gattungen Juglans, Wallia z.B. die Gattungen und Arten Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra oder Wallia nigra [Walnuss], Lauraceae Wie die Gattungen Persea, Laurus z.B. die Gattungen und Arten Laurus nobilis [Lorbeer], Persea americana, Persea gratissima oder Persea persea [Avocado], Leguminosae wie die Gattung Arachis z.B. die Gattung und Art Arachis hypogaea [Erdnuss], Linaceae wie die Gattungen Linum,

10

15

20

25

30

35

40

45

20

Adenolinum z.B. die Gattungen und Arten Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum. Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense oder Linum trigynum [Lein], Lythrarieae wie die Gattung Punica z.B. die Gattung und Art Punica granatum [Granatapfel], Malvaceae wie die Gattung Gossypium z.B. die Gattungen und Arten Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum oder Gossypium thurberi [Baumwolle], Marchantiaceae wie die Gattung Marchantia z.B. die Gattungen und Arten Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae wie die Gattung Musa z.B. die Gattungen und Arten Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [Banane], Onagraceae wie die Gattungen Camissonia, Oenothera z.B. die Gattungen und Arten Oenothera biennis oder Camissonia brevipes [Nachtkerze], Palmae wie die Gattung Elacis z.B. die Gattung und Art Elaeis guineensis [Ölpalme], Papaveraceae wie die Gattung Papaver z.B. die Gattungen und Arten Papaver orientale, Papaver rhoeas, Papaver dubium [Mohn], Pedaliaceae wie die Gattung Sesamum z.B. die Gattung und Art Sesamum indicum [Sesam], Piperaceae wie die Gattungen Piper, Artanthe, Peperomia, Steffensia z.B. die Gattungen und Arten Piper aduncum, Piper amalago, Piper angustifolium. Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata. [Cayennepfeffer], Poaceae wie die Gattungen Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (Mais), Triticum z.B. die Gattungen und Arten Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon., Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [Gerste], Secale cereale [Roggen], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [Hafer], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum. Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [Hirse], Oryza sativa, Oryza latifolia [Reis], Zea mays [Mais] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum oder Triticum vulgare [Weizen], Porphyridiaceae wie die Gattungen Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia z.B. die Gattung und Art Porphyridium cruentum, Proteaceae wie die Gattung Macadamia z.B. die Gattung und Art Macadamia intergrifolia [Macadamia], Prasinophyceae wie die Gattungen Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus z.B. die Gattungen und Arten Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae wie die Gattung Coffea z.B. die Gattungen und Arten Cofea spp., Coffea arabica, Coffea canephora oder Coffea liberica [Kaffee], Scrophulariaceae wie die Gattung Verbascum z.B. die Gattungen und Arten Verbascum blattaria, Verbascum chaixii, Verbascum

10

20

25

0

35

40

(

Ę

21

densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum oder Verbascum thapsus [Königskerze], Solanaceae wie die Gattungen Capsicum, Nicotiana, Solanum, Lycopersicon z.B. die Gattungen und Arten Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [Pfeffer], Capsicum annuum [Paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [Tabak], Solanum tuberosum [Kartoffel], Solanum melongena [Aubergine] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyriforme, Solanum integrifolium oder Solanum lycopersicum [Tomate], Sterculiaceae wie die Gattung Theobroma z.B. die Gattung und Art Theobroma cacao [Kakao] oder Theaceae wie die Gattung Camellia z.B. die Gattung und Art Camellia sinensis [Tee].

Vorteilhafte Mikroorganismen sind beispielweise Pilze ausgewählt aus der Gruppe der Familien Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycetaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae oder Tuberculariaceae.

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Choanephoraceae wie den Gattungen Blakeslea, Choanephora z.B. die Gattungen und Arten Blakeslea trispora, Choanephora cucurbitarum, Choanephora infundibulifera var. cucurbitarum, Mortierellaceae wie der Gattung Mortierella z.B. die Gattungen und Arten Mortierella isabellina, Mortierella polycephala, Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, Pythiaceae wie den Gattungen Phytium, Phytophthora z.B. die Gattungen und Arten Pythium debaryanum, Pythium intermedium, Pythium irregulare, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, Saccharomycetaceae wie den Gattungen Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia z.B. die Gattungen und Arten Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorpha, Hansenula saturnus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris,

10

15

20

25

30

35

· 40

22

Pichia philodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis. Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, Saccharomyces bailii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharomyces capensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomycodes ludwigii, Yarrowia lipolytica. Schizosacharomycetaceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytriaceae such as the genera Althornia, Aplanochytrium, Japonochytrium, Schizochytrium, Thraustochytrium e.g. the species Schizochytrium aggregatum, Schizochytrium limacinum, Schizochytrium mangrovei, Schizochytrium minutum, Schizochytrium octosporum, Thraustochytrium aggregatum, Thraustochytrium amoeboideum, Thraustochytrium antacticum, Thraustochytrium arudimentale. Thraustochytrium aureum, Thraustochytrium benthicola, Thraustochytrium globosum, Thraustochytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei. Thraustochytrium motivum, Thraustochytrium multirudimentale, Thraustochytrium pachydermum, Thraustochytrium proliferum, Thraustochytrium roseum, Thraustochytrium rossii. Thraustochytrium striatum oder Thraustochytrium visurgense.

Weitere vorteilhafte Mikroorganismen sind beispielweise Bakterien ausgewählt aus der Gruppe der Familien Bacillaceae, Enterobacteriacae oder Rhizobiaceae.

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Bacillaceae wie die Gattung Bacillus z.B die Gattungen und Arten Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis oder Bacillus thuringiensis; Enterobacteriacae wie die Gattungen Citrobacter, Edwardsiella, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella oder Serratia z.B die Gattungen und Arten Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter geno-

10

15

20

25

30

35

40

∹(

23

mospecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthemi, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coli-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella trevisanii, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella tvphimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivorans oder Serratia rubidaea; Rhizobiaceae wie die Gattungen Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium z.B. die Gattungen und Arten Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatinovorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae,

10

5

20

25

30

35

40

24

Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli oder Sinorhizobium xinjiangense.

Weitere vorteilhafte Mikroorganismen für das erfindungsgemäße Verfahren sind beispielweise Protisten oder Diatomeen ausgewählt aus der Gruppe der Familien Dinophyceae, Turaniellidae oder Oxytrichidae wie die Gattungen und Arten: Crypthe-codinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulata, Stylonychia putrina, Stylonychia notophora, Stylonychia sp., Colpidium campylum oder Colpidium sp.

Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Saccharomyces oder Schizosaccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Caenorhabditis, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium oder Phaeodactylum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen verwendet. Besonders vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Thraustochytrium, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor (Carthamus tinctoria), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.

Für das erfindungsgemäße beschriebene Verfahren ist es vorteilhaft in den Organismus zusätzlich zu den unter Verfahrensschritt (a) bis (d) eingebrachten Nukleinsäuren sowie den ggf. eingebrachten Nukleinsäuresequenzen, die für die ω -3-Desaturasen codieren, zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder Lipidstoffwechsels codieren.

10

15

20

25

30 ∴

35

40

•(

(

25

Im Prinzip können alle Gene des Fettsäure- oder Lipidstoffwechsels vorteilhaft in Kombination mit der(den) erfinderischen Δ -5-Elongase(n), Δ -6-Elongase(n) und/oder ω-3-Desaturase(n) [im Sinne dieser Anmeldung soll der Plural den Singular und umgekehrt beinhalten] im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferasen, Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) in Kombination mit der Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ-4-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -9-Desaturasen, Δ -12-Desaturasen, Δ -6-Elongasen oder Δ -9-Elongasen in Kombination mit den vorgenannten Genen für die Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet, wobei einzelne Gene oder mehrere Gene in Kombination verwendet werden können.

Die erfindungsgemäßen Δ -5-Elongasen haben gegenüber den humanen Elongasen die vorteilhafte Eigenschaft, dass sie C22-Fettsäuren nicht zu den entsprechenden C24-Fettsäuren elongieren. Besonders vorteilhafte Δ -5-Elongasen setzen bevorzugt nur ungesättigte C20-Fettsäuren um. Vorteilhaft werden nur C20-Fettsäuren mit einer Doppelbindung in Δ -5-Position umgesetzt, wobei ω -3-C₂₀ Fettsäuren bevorzugt werden (EPA). Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der Δ-5-Elongaseaktivität keine oder nur eine relativ geringe Δ-6-Elongaseaktivität aufweisen. Vorteilhaft setzen sie in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 15 Gew.-% des zugesetzten EPAs zu Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}), vorteilhaft mindestens 20 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% um. Wird als Substrat γ-Linolensäure (= GLA, C18:3^{Δ6,9,12}) gegeben, so wird diese vorteilhaft gar nicht elongiert. Ebenfalls wird auch C18:3^{A5,9,12} nicht elongiert. In einer anderen vorteilhaften Ausführungsform werden weniger als 60 Gew.-% des zugesetzten GLA zu Dihomo-γ-linolensäure (= C20:3^{Δ8,11,14}) umgesetzt, vorteilhaft weniger als 55 Gew.-%, bevorzugt weniger als 50 Gew.-%, besonders vorteilhaft weniger als 45 Gew.-%, ganz besonders vorteilhaft weniger als 40 Gew.-%. In einer weiteren ganz bevorzugten Ausführungsform der erfindungsgemäßen Δ-5-Elongaseaktivität wird GLA nicht umgesetzt.

Die erfindungsgemäße ω -3-Desaturase hat gegenüber den bekannten ω -3-Desaturase die vorteilhafte Eigenschaft, dass sie ein breites Spektrum an ω -6-Fettsäuren desaturieren kann, bevorzugt werden C_{20^-} und C_{22^-} Fettsäuren wie $C_{20:2^-}$, $C_{20:3^-}$, $C_{20:4^-}$, $C_{22:4^-}$ oder $C_{22:5^-}$ Fettsäuren desaturiert. Aber auch die kürzeren C_{18^-} Fettsäuren wie $C_{18:2^-}$ oder $C_{18:3^-}$ Fettsäuren werden vorteilhaft desaturiert. Durch diese Eigenschaften der ω -3-Desaturase ist es vorteilhaft möglich das Fettsäurespektrum innerhalb eines Organismus vorteilhaft innerhalb einer Pflanze oder einem Pilz von den ω -6-Fettsäuren

10

15

20

25

35

40

26

zu den ω-3-Fettsäuren hin zu verschieben. Bevorzugt werden von der erfindungsgemäßen ω-3-Desaturase C₂₀-Fettsäuren desaturiert. Innerhalb des Organismus werden diese Fettsäuren aus dem vorhandenen Fettsäurepool zu mindestens 10%, 15%, 20%, 25% oder 30% zu den entsprechenden ω-3-Fettsäuren umgesetzt. Gegenüber den C₁₈-Fettsäuren weist die ω-3-Desaturase eine um den Faktor 10 geringere Aktivität auf, das heißt es werden nur ca. 1,5 bis 3% der im Fettsäurepool vorhandenen Fettsäuren zu den entsprechenden ω-3-Fettsäuren umgesetzt. Bevorzugtes Substrat der erfindungsgemäßen ω-3-Desaturase sind die in Phospholipiden gebundenen ω-6-Fettsäuren. Figur 19 zeigt deutlich am Beispiel der Desaturierung von Dihomo-ylinolensäure $[C_{20:4}^{\Delta 8,11,14}]$, dass die ω -3-Desaturase bei der Desaturierung vorteilhaft nicht zwischen an sn1- oder sn2-Position gebundenen Fettsäuren unterscheidet. Sowohl an sn1- oder sn2-Position in den Phospholipide gebundene Fettsäuren werden desaturiert. Weiterhin ist vorteilhaft, dass die ω-3-Desaturase eine breite Palette von Phospholipiden wie Phosphatidylcholin (= PC), Phosphatidylinositol (= PIS) oder Phosphatidylethanolamin (= PE) umsetzt. Schließlich lassen sich auch Desaturierungsprodukte in den Neutrallipiden (= NL), das heißt in den Triglyceriden finden.

Die erfingungsgemäßen Δ -4-Desaturasen, Δ -5-Desaturasen und Δ -6-Desaturasen haben gegenüber den bekannten Δ -4-Desaturasen, Δ -5-Desaturasen und Δ -6-Desaturasen den Vorteil, dass sie Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft CoA-Fettsäureester umsetzen können.

Vorteilhaft setzen die im erfingungsgemäßen Verfahren verwendeten Δ -12-Desaturasen Ölsaure (C18:1^{Δ 9}) zu Linolsäure (C18:2^{Δ 9,12}) oder C18:2^{Δ 6,9} zu C18:3^{Δ 6,9,12} (= GLA) um. Vorteilhaft setzen die verwendeten Δ -12-Desaturasen Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft gebunden an CoA-Fettsäureester um.

Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ -5-Elongase-, Δ -6-Elongase- und/oder ω -3-Desaturaseaktivität codieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie weiteren Polypeptiden mit Δ -4-, Δ -5-, Δ -6-, Δ -8-, Δ -12-Desaturase- oder Δ -5-, Δ -6-oder Δ -9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen wie den vorteilhaften Pflanze lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2^{49,12}) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten

10

15

(

27

Pflanze als ungesättigte Fettsäure nur α -Linolensäure (= ALA, C18:3 $^{\Delta9,12,15}$) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA, EPA und/oder DHA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität des an der Synthese beteiligten Enzyms Δ -5-Elongase vorteilhaft in Kombination mit der Δ -4-, Δ -5-, Δ -6-, Δ -12-Desaturase und/oder Δ -6-Elongase, oder der Δ -4-, Δ -5-, Δ -8-, Δ -12-Desaturase, und/oder Δ –9–Elongase lassen sich gezielt in den vorgenannten Organismen vorteilhaft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ –6–Desaturase und Δ –6–Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Werden die Δ -5-Desaturase, die Δ -5-Elongase und die Δ -4-Desaturase zusätzlich in die Organismen vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ARA, EPA und/oder DHA. Dies gilt auch für Organismen in die vorher die Δ -8-Desaturase und Δ -9-Elongase eingebracht wurde. Vorteilhaft werden nur ARA, EPA oder DHA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläufer-

stanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als
20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10
Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf
das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA, DHA oder deren
Mischungen vorteilhaft EPA oder DHA oder deren Mischungen.

Das von der erfindungsgemäßen Nukleinsäure kodierte Protein zeigt ein hohe Spezifität für die beiden Vorstufen C18:4^{Δ6,9,12,15}- und C20:5^{Δ5,8,11,14,17}-Fettsäuren zur Synthese von DHA (Vorstufen und Synthese von DHA siehe Figur 1). Das von SEQ NO: 53 kodierte Protein hat damit eine Spezifität für Δ6- und Δ5-Fettsäuren mit zusätzlich einer ω3-Doppelbindung (Figur 2). Die Δ-5-Elongase hat eine keto-Acyl-CoA-Synthase-Aktivität, die vorteilhaft Fettsäurereste von Acyl-CoA-Estern um 2 Kohlenstoffatome verlängert.

Mittels der Δ -5-Elongase-Gene, der Δ 5-Desaturase aus Phaeodacylum sowie der Δ 4-Desaturase aus Euglena konnte die Synthese von DHA in Hefe (Saccharomyces cerevisiae) nachgewiesen werden (Figur 3).

Neben der Produktion der Ausgangsfettsäuren für die erfindungsgemäße Δ-5-Elongase, Δ-6-Elongase und/oder ω-3-Desaturase direkt im Organismus können die Fettsäuren auch von außen gefüttert werden. Aus kostengründen ist die Produktion im Organismus bevorzugt. Bevorzugt Substrate der ω-3-Desaturase sind die Linolsäure (C18:2^{Δ9,12}), die γ-Linolensäure (C18:3^{Δ6,9,12}), die Eicosadiensäure (C20:2^{Δ11,14}), die Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}), die Arachidonsäure (C20:4^{Δ5,8,11,14}), die Docosatetraensäure (C22:4^{Δ7,10,13,16}) und die Docosapentaensäure (C22:5^{Δ4,7,10,13,15}).

10

15

20

25

30

35

40

28

Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in den Organismus, die für ein Polypeptid mit Δ-12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie der Familie der Brassicaceae wie der Gattung Brassica z.B. Raps; der Familie der Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art *Olea europaea* oder der Familie Fabaceae wie der Gattung Glycine z.B. die Gattung und Art *Glycine max*, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 - 681) ist die Verwendung der genannten Δ-12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft.

Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen beispielsweise Algen der Familie der Prasinophyceae wie aus den Gattungen Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia oder Tetraselmis wie den Gattungen und Arten Heteromastix longifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetraselmis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, Tetraselmis desikacharyi, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis, Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, Tetraselmis verrucosa fo. Rubens oder Tetraselmis sp. Vorteilhaft stammen die verwendeten Nukleinsäuren aus Algen der Gattungen Mantonielle oder Ostreococcus.

Weitere vorteilhafte Pflanzen sind Algen wie Isochrysis oder Crypthecodinium, Algen/Diatomeen wie Thalassiosira, Phaeodactylum oder Thraustochytrium, Moose wie Physcomitrella oder Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor oder Mortierella, Bakterien wie Shewanella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder Fischen. Vorteilhaft stammen die erfindungsgemäßen isolierten Nukleinsäuresequenzen aus einem Tier aus der Ordnung der Vertebraten. Bevorzugt stammen die Nukleinsäuresequenzen aus der Klasse der Vertebrata; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae bzw. Oncorhynchus. Besonders

10

15

20

25

35

40

29

vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus der Ordnung der Salmoniformes wie der Familie der Salmonidae wie der Gattung Salmo beispielsweise aus den Gattungen und Arten Oncorhynchus mykiss, Trutta trutta oder Salmo trutta fario, aus Algen wie den Gattungen Mantonielle oder Ostreococcus oder aus den Diatomeen wie den Gattungen Thalassiosira oder Crypthecodinium.

Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsäuresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit den für die Δ -12-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase codierenden Nukleinsäuresquenzen in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.

Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren verwendeten Nukleinsäuresequenzen enthält, wobei die Zelle und/oder der Organismus mit einer erfindungsgemäßen Nukleinsäuresequenz, die für die Δ -12-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Elongase und/oder ω -3-Desaturase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Öle, Lipide oder freien Fettsäuren aus dem Organismus oder aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces oder Thraustochytrium oder um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.

"Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem Organismus transformiert mit den erfindungsgemäßen Nukleinsäuresequenzen,

Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder

- a) die erfindungsgemäße Nukleinsäuresequenz, oder
- b) eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
- c) (a) und (b)

5

10

15

20

25

30

35

40

sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsäuresequenzen mit den entsprechenden Δ-12-Desaturase-, Δ-4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, ω -3-Desaturase- und/oder Δ -5-Elongasegenen - wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder WO 00/15815.

Unter transgenen Organismus bzw. transgener Pflanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Phytophtora, Moose wie Physcomitrella, Algen wie Mantoniella oder Ostreococcus, Diatomeen wie Thalassiosira oder Crypthecodinium oder Pflanzen wie die Ölfruchtpflanzen.

Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell unge-

10

15

35

40

31

sättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, FärberSaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Thraustochytrium, Saprolegnia, Phytophtora oder Pythium, Bakterien wie die Gattung Escherichia oder Shewanella, Hefen wie die Gattung Saccharomyces, Cyanobakterien, Ciliaten, Algen wie Mantoniella oder Ostreococcus oder Protozoen wie Dinoflagellaten wie Thalassiosira oder Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum, Phytophtora infestans oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, FärberSaflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Flachs, Raps, FärberSaflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nichthumane Tiere geeignet beispielsweise C. elegans.

Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.

Hierzu gehören Pflanzenzellen und bestimmte Gewebe, Organe und Teile von Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.

Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren enthalten, können vorteilhaft direkt vermarktet werden ohne dass die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien

Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättig-

10

15

20

25

30

32

ten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.

Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs C_{18} -, C_{20} - oder C_{22} -Fettsäuremoleküle vorteilhaft C_{20} - oder C_{22} -Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese C_{18} -, C_{20} - oder C_{22} -Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

Diese Öle, Lipide oder Fettsäuren enthalten wie oben beschrieben vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren

10

15

20

30

35

40

33

hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11-diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-

Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienansäure)

Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren oder keine Butterbuttersäure, kein Cholesterin, keine Clupanodonsäure (=

25 Docosapentaensäure, C22:5^{Δ4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6^{Δ3,8,12,15,18,21}).

Vorteilhaft enthalten die erfindungsgemäßen Öle, Lipide oder Fettsäuren mindestens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, 7%, 8%, 9% oder 10%, besonders vorteilhaft mindestens 11%, 12%, 13%, 14% oder 15% ARA oder mindestens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, oder 7%, besonders vorteilhaft mindestens 8%, 9% oder 10% EPA und/oder DHA bezogen auf den Gesamtfettsäuregehalt des Produktionsorganismus vorteilhaft einer Pflanze, besonders vorteilhaft einer Ölfruchtpflanze wie Soja, Raps, Kokosnuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne, Sonnenblume oder den oben genannten weiteren ein- oder zweikeimblättrigen Ölfruchtpflanzen.

Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika. Die erfindungsgemäßen Öle, Lipide, Fettsäuren oder Fettsäuregemische können in der dem Fachmann bekannten Weise zur Abmischung mit anderen Ölen, Lipiden, Fettsäuren oder Fettsäuregemischen tierischen Ursprungs wie z.B. Fischölen verwendet werden. Auch diese Öle, Lipide, Fettsäuren oder Fettsäuregemische, die aus pflanzlichen und tierischen Bestandteilen

10

15

20

25

35

40

34

bestehen, können zur Herstellung von Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika verwendet werden.

Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomoγ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich wie oben beschrieben beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens fünf oder sechs Doppelbindungen lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einem Organismus vorteilhaft einer Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder vorteilhaft in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.

10

15

20

25

35

40

35

Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipidund PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

Als Substrate der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ -12-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -6-Elongase- und/oder ω -3-Desaturase-Aktivität codieren, und/oder den weiteren verwendeten Nukleinsäuren wie den Nukleinsäuren, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]—Desaturase(n), Acyl-ACP—Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) codieren eignen sich vorteilhaft C_{16} -, C_{18} - oder C_{20} -Fettsäuren. Bevorzugt werden die im Verfahren als Substrate umgesetzten Fettsäuren in Form ihrer Acyl-CoA-Ester und/oder ihrer Phospholipid-Ester umgesetzt.

Zur Herstellung der erfindungsgemäßen langkettigen PUFAs müssen die mehrfach ungesättigten C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C₂₀-Fettsäuren, und nach zwei Elongationsrunden zu C₂₂-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt zu C20- und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, ganz besonders bevorzugt mit fünf oder sechs Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlängerung stattgefunden hat, können weitere Desaturierungs- und Elongierungsschritte wie z.B. eine solche Desaturierung in Δ -5- und Δ -4-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ-linolensäure, Arachidonsäure, Eicosapentaensäure, Docosapetaensäure und/oder Docosahesaensäure. Die C₂₀-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder

20

25

35

40

36

in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Verfahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Thraustochytrium Algen wie Isochrysis, Mantoniella, Ostreococcus, Phaeodactylum oder Crypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.

Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für eine Δ-5-Elongase codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 5 %, bevorzugt mindestens um 10 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.

Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehrfach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwendet, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevorzugt zwischen 10°C bis 60°C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über

25

30

37

Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden.

Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0°C bis 95°, bevorzugt zwischen 10°C bis 85°C, besonders bevorzugt zwischen 15°C bis 75°C, ganz besonders bevorzugt zwischen 15°C bis 45°C durchgeführt.

Der pH-Wert wird dabei vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 6 und 9, besonders bevorzugt zwischen pH 7 und 8 gehalten.

Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.

Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der merican Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z. B. Glycerin, Methanol und/oder Ethanol und/oder organische Säuren wie z.B. Essigsäure und/oder Milchsäure.

Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger- oder gasform oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat oder Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

10

30

35

40

38

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.

Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.

Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.

Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3).

Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv

30

39

wirkende Stoffe; wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z.B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach
Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie
z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden
aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.

- Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewinnung der darin enthaltenen Fettsäuren aufgearbeitet werden.
- Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.
- Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongase codieren, wobei die durch die Nukleinsäuresequenzen codierten Δ-5-Elongasen C₂₀-Fettsäuren mit mindestens vier Doppelbindungen im Fettsäuremolekül umsetzen; die vorteilhaft letztlich in Diacylglyceride und/oder Triacylglyceride eingebaut werden.
 - Vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID
 NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID

NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 dargestellten Aminosäuresequenz ableiten lassen, oder

c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 codieren und eine Δ-5-Elongaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Elongaseaktivität codieren, ausgewählt aus der Gruppe:

15

30

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Sequenz,
- Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70 oder SEQ ID NO: 82 dargestellten Aminosäuresequenz ableiten lassen, oder
- 20 c) Derivate der in SEQ ID NO: 69 oder SEQ ID NO: 81 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70 oder SEQ ID NO: 82 codieren und eine Δ-6-Elongaseaktivität aufweisen.
- Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω-3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω -3-Desaturaseaktivität aufweisen.
- 35 Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

15

20

41

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,
- Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.
- 10 Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID
 NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäure-30 sequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ-4-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

35

40

42

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder in SEQ ID NO: 109 dargestellten Sequenz,
- Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.
- Ein weiterer Erfindungsgegenstand sind Genkonstrukte, die die erfindungsgemäßen Nukleinsäuresequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 enthalten, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist. Zusätzlich können weitere Biosynthesegene des Fettsäureder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-
- Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]—Desaturase(n), Acyl-ACP—
 Thioesterase(n), Fettsäure—Acyl—Transferase(n), Acyl-CoA:LysophospholipidAcyltransferase(n), Fettsäure—Synthase(n), Fettsäure—Hydroxylase(n), AcetylCoenzym A—Carboxylase(n), Acyl—Coenzym A—Oxidase(n), Fettsäure—Desaturase(n),
 Fettsäure—Acetylenasen, Lipoxygenasen, Triacylglycerol—Lipasen, Allenoxid—
- 25 Synthasen, Hydroperoxid–Lyasen oder Fettsäure–Elongase(n) im Genkonstrukt enthalten sein. Vorteilhaft sind zusätzlich Biosynthesegene des Fettsäure– oder Lipidstoffwechsels ausgewählt aus der Gruppe der Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-8-Desaturase, Δ-9-Desaturase, Δ-12-Desaturase, Δ-6-Elongase, Δ-9-Elongase oder ω-3-Desaturase enthalten.
 - Vorteilhaft stammen alle die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen aus einem eukaryontischen Organismus wie einer Pflanze, einem Mikroorganismus oder einem Tier. Bevorzugt stammen die Nukleinsäuresequenzen aus der Ordnung Salmoniformes, Algen wie Mantoniella oder Ostreococcus, Pilzen wie der Gattung Phytophtora oder von Diatomeen wie den Gattungen Thalassiosira oder Crypthecodinium.
 - Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit ω -3-Desaturase-, Δ -4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -9-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- oder Δ -9-Elongase-Aktivität codieren, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht,

15

20

25

30

35

40

43

eingebracht. Es kann im Nukleinsäurekonstrukt mehr als eine Nukleinsäuresequenz einer enzymatischen Aktivität wie z.B. einer Δ -12-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase enthalten sein.

Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer 5 Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Pfu-DNA-Polymerase oder eines Pfu/Taq-DNA-Polymerasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifikats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonierungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effiziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA-vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Terminatoren und/oder Selektionsmarker, mit denen entsprechend transformierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E.-coli als auch in Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101, pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446-451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsendonuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen.

Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und

44

Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.

5 Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Pflanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechno-10 logy (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. 15 Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). Die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass

diese bessere und/oder effizientere Produzenten von PUFAs werden.

- 20 Es gibt eine Reihe von Mechanismen, durch die eine Veränderung des erfindungsgemäßen Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase, Δ -5-Desaturase-, Δ -4-Desaturase-, Δ -6-Desaturase- und/oder ω -3-Desaturase-Proteins sowie der weiteren im Verfahren verwendeten Proteine wie die Δ -12-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase- oder Δ -4-Desaturase-25 Proteine möglich ist, so dass die Ausbeute, Produktion und/oder Effizienz der Produktion der vorteilhaft mehrfach ungesättigten Fettsäuren in einer Pflanze bevorzugt in einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund dieses veränderten Proteins direkt beeinflusst werden kann. Die Anzahl oder Aktivität der Δ-12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Proteine oder -Gene 30 kann erhöht werden, so dass größere Mengen der Genprodukte und damit letztlich größere Mengen der Verbindungen der allgemeinen Formel I hergestellt werden. Auch eine de novo Synthese in einem Organismus, dem die Aktivität und Fähigkeit zur Biosynthese der Verbindungen vor dem Einbringen des/der entsprechenden Gens/Gene 35 fehlte, ist möglich. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promo-
 - Durch das Einbringen eines Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase-

toren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom

Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht.

15

20

25

30

35

40

(

45

und/oder Δ -4-Desaturase-Genes in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Fettsäuren, Ölen, polaren und/oder neutralen Lipiden nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Δ-12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.

Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz ist, die in den Sequenzen SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellt ist, so dass die Proteine oder Teile davon noch eine Δ -12-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Desaturase-, Δ -6-Desaturase-, Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Aktivität aufweisen. Vorzugsweise haben die Proteine oder Teile davon, die von dem Nukleinsäuremolekül/den Nukleinsäuremolekülen kodiert wird/werden, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörperchen in Organismen vorteilhaft in Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft sind die von den Nukleinsäuremolekülen kodierten Proteine zu mindestens etwa 50 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr identisch zu den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID

10

15

20

25

30

35

40

46

NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106 SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenzen. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.

Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151–153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Diese Einstellungen wurden, falls nicht anders angegeben, immer als Standardeinstellungen für Sequenzvergleiche verwendet wurden.

Unter wesentlicher enzymatischer Aktivität der im erfindungsgemäßen Verfahren verwendeten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47; SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am

10

15

40

47

Stoffwechsel von zum Aufbau von Fettsäuren, Fettsäureester wie Diacylglyceride und/oder Triacylglyceride in einem Organismus vorteilhaft einer Pflanze oder Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei C_{18} -, C_{20} - oder C_{22} -Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier, fünf oder sechs Stellen gemeint sind.

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Bakterien, Pilzen, Diatomeen, Tieren wie Caenorhabditis oder Oncorhynchus oder Pflanzen wie Algen oder Moosen wie den Gattungen Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium, speziell aus den Gattungen und Arten Oncorhynchus mykiss, Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans oder besonders vorteilhaft aus Oncorhynchus mykiss, Thalassiosira pseudonona oder Crypthecodinium cohnii.

Alternativ können im erfindungsgemäßen Verfahren Nukleotidsequenzen verwendet 20 werden, die für eine Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase codieren und die an eine Nukleotidsequenz, wie in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, 25 SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellt, vorteilhaft unter stringenten Bedingungen hybridisieren.

Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.

Dabei werden die Nukleinsäuresequenzen, die für die Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase codieren, mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell

10

15

20

25

30

35

40

48

verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationsseguenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäureseguenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Δ -12-Desaturase-, ω -3-Desaturase-, Δ -4-Desaturase-, Δ 5-Desaturase-, Δ -6-Desaturase-, Δ-8-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- und/oder Δ-9-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO:

verbunden sind.

49

15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, 5 SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105 SEQ ID NO: 107 oder SEQ ID NO: 109 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, 10 SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID 15 NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID 20 NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 oder SEQ ID NO: 110 kodieren. Die genannten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Proteine führen dabei vorteilhaft zu einer Desaturierung oder Elongierung von Fettsäuren, wobei das Substrat vorteilhaft 25 ein, zwei, drei, vier, fünf oder sechs Doppelbindungen aufweist und vorteilhaft 18, 20 oder 22 Kohlenstoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression,

Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in 30 Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5–, T3–, gal–, trc–, ara–, SP6–, λ-PR– oder λ-PL–Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, 35 in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992:397-404 (Gatz et al., Tetracyclin-40 induzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanoloder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosyl-

10

15

20

25

30

35

50

pyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.

Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.

Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 und lpt1(Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratiyase (Raps) [US 5,689,040] oder α-Amylase (Gerste) [EP 781 849].

Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. 40 Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor

10

15

20

25

(

51

(WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase und/oder Δ-4-Desaturase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu exprimierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Derartige vorteilhafte Konstrukte werden beispielsweise in DE 10102337 oder DE 10102338 offenbart. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.

Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäureoder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem

20

25

35

40

52

weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]– Desaturase(n), Acyl-ACP—Thioesterase(n), Fettsäure—Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure—Synthase(n), Fettsäure—Hydroxylase(n), Acetyl-Coenzym A—Carboxylase(n), Acyl-Coenzym A—Oxidase(n), Fettsäure—Desaturase(n), Fettsäure—Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid—Synthase(n), Hydroperoxid—Lyase(n) oder Fettsäure—Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleinsäuresequenzen sind Biosynthesegene des Fettsäure— oder Lipidstoffwechsels ausgewählt aus der Gruppe der Acyl-CoA:Lysophospholipid-Acyltransferase, ω-3-Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-8-Desaturase, Δ-9-Desaturase, Δ-12-Desaturase, Δ-5-Elongase, Δ-6-Elongase und/oder Δ-9-Elongase.

Dabei können die vorgenannten Nukleinsäuren bzw. Gene in Kombination mit anderen Elongasen und Desaturasen in Expressionskassetten, wie den vorgenannten, kloniert werden und zur Transformation von Pflanzen Mithilfe von Agrobakterium eingesetzt werden.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.

Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für die Δ-12-Desaturasen, ω-3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ-5-Elongasen oder Δ-4-Desaturasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels wie den Acyl-CoA:Lysophospholipid-Acyltransferasen, ω-3-Desaturasen, Δ-4-Desaturasen, Δ-5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -9-Desaturasen, Δ -12-Desaturasen, Δ -5-Elongasen, Δ -6-Elongasen und/oder Δ -9-Elongasen. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in

10

15

20

25

30

35

40

53

das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.

Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen und/oder Δ -4-Desaturasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können die Δ -12-Desaturase-, ω -3-Desaturase-, Δ -6-Elongase-, Δ -6-Desaturase-, Δ -6-Elongase-,

10

15

20

25

30

35

40

54

 Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.

Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusionsoder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Inc; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen

10

15

20

25

35

40

55

bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.

Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR–Reihe, wie pBR322, die pUC–Reihe, wie pUC18 oder pUC19, die M113mp–Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11 or pBdCl, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23.

Alternativ können die Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).

Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

Bei einer weiteren Ausführungsform des Verfahrens können die Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B.

20

25

30

35

40

56

Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.

Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen,
welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig
verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen,
wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al.,
EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen
in Pflanzen funktionell aktiven Terminatoren sind geeignet.

Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).

Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zelloder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische

Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alpha-Amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).

Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in 10 Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der 15 Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis 20 usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-25 Gen, dem Roggen-Secalin-Gen).

Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische
Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformati-

10

15

20

25

30

58

on" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Saflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuss, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Saflor, Bäume (Ölpalme, Kokosnuss).

Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -5-Elongase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten Elongase C_{16} - und C_{18} - Fettsäuren mit einer Doppelbindung und vorteilhaft mehrfach ungesättigte C_{18} -Fettsäuren mit einer Δ 6-Doppelbindung und mehrfach ungesättigte C_{20} -Fettsäuren mit einer Δ 5-Doppelbindung umsetzt. C_{22} -Fettsäuren werden nicht elongiert.

Vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 40 Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID

25

35

59

NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 dargestellten Aminosäuresequenz ableiten lassen, oder

c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 aufweisen und eine Δ-5-Elongaseaktivität aufweisen.

Weitere Erfindungsgegenstände sind die im folgenden aufgezählten Nukleinsäuresequenzen, die für Δ -6-Elongasen, ω -3-Desaturasen, Δ -6-Desaturasen, Δ -5-Desaturasen, Δ -4-Desaturasen oder Δ -12-Desaturasen codieren.

Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70 oder SEQ ID NO: 82 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70 oder SEQ ID NO: 82 codieren und eine Δ -6-Elongaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Sequenz,
- 30 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3-Desaturaseaktivität aufweisen.

15

30

60

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ -6-Desaturaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in
 SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ -6-Desaturaseaktivität aufweisen.

61

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder in SEQ ID NO: 109 dargestellten Sequenz,
- 5 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie nicht-humanen Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.

- Vorteilhaft stammen die isolierten oben genannten Nukleinsäuresequenzen aus der Ordnung Salmoniformes, den Diatomeengattungen Thalassiosira oder Crythecodinium oder aus der Familie der Prasinophyceae wie der Gattung Ostreococcus oder Pythiaceae wie der Gattung Phytophtora stammt.
- Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte
 Nukleinsäuresequenz, die für Polypeptide mit ω-3-Desaturase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten ω-3-Desaturasen C₁₈-, C₂₀- und C₂₂- Fettsäuren mit zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte C₁₈-Fettsäuren mit zwei oder drei Doppelbindungen und mehrfach ungesättigte C₂₀-Fettsäuren mit zwei, drei oder vier Doppelbindungen umsetzt. Auch
 C₂₂-Fettsäuren mit vier oder fünf Doppelbindungen werden desaturiert.
 - Zu den erfindungsgemäßen Gegenständen gehören außerdem, wie oben beschrieben, isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -12-Desaturasen, Δ -4-Desaturasen, Δ -5-Desaturasen und Δ -6-Desaturasen codieren, wobei die durch diese Nukleinsäuresequenzen codierten Δ -12-Desaturasen, Δ -4-Desaturasen, Δ -5-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -7-Desaturasen, Δ -8-Desaturasen, Δ -8-Desaturasen,
- Desaturasen oder Δ-6-Desaturasen C₁₈-, C₂₀- und C₂₂-Fettsäuren mit ein, zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte C₁₈-Fettsäuren mit ein, zwei oder drei Doppelbindungen wie C18:1^{Δ9}, C18:2^{Δ9,12}oder C18:3 ^{Δ9,12,15}, mehrfach ungesättigte C₂₀-Fettsäuren mit drei oder vier Doppelbindungen wie C20:3^{Δ8,11,14} oder C20:4^{Δ8,11,14,17} oder mehrfach ungesättigte C₂₂-Fettsäuren mit vier
- oder fünf Doppelbindungen wie C22:4^{Δ7,10,13,16} oder C22:5^{Δ7,10,13,16,19} umsetzen. Vorteilhaft werden die Fettsäuren in den Phospholipiden oder CoA-Fettsäureestern desaturiert, vorteilhaft in den CoA-Fettsäureester.

10

15

20

25

30

35

40

62

Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Δ-12-Desaturase-, ω-3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ-4-Desaturasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.

Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47. SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann Mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID

30

35

40

63

NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder 5 SEQ ID NO: 109 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz 10 erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St.Petersburg, FL) herstellen. 15 Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID 20 NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 gezeigten Sequenzen oder Mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-

10

15

20

25

30

35

40

64

Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.

Homologe der verwendeten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ-4-Desaturase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 %, stärker bevorzugt mindestens etwa 70 oder 80 %, 90 % oder 95 % und noch stärker bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Identität bzw. Homologie zu einer in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringen-

35

40

45

(

65

ten Bedingungen hybridisiert. Unter einem Teil gemäß der Erfindung ist dabei zu verstehen, dass mindestens 25 Basenpaare (= bp), 50 bp, 75 bp, 100 bp, 125 bp oder 150 bp, bevorzugt mindestens 175 bp, 200 bp, 225 bp, 250 bp, 275 bp oder 300 bp, besonders bevorzugt 350 bp, 400 bp, 450 bp, 500 bp oder mehr Basenpaare für die Hybridisierung verwendet werden. Es kann auch vorteilhaft die Gesamtsequenz 5 verwendet werden. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, 10 SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, 15 SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten 20 Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen 25 Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 kodierten Protein. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Gene-

20

25

30

35

66

tics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Elongase- und/oder Δ-4-Desaturase-Aktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen

10

15

20

25

35

40

67

Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion der PUFAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).

Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.

Besonders zur Herstellung von PUFAs, beispielsweise Stearidonsäure, Eicosapentaensäure und Docosahexaensäure eignen sich Brasicaceae, Boraginaceen, Primulaceen, oder Linaceen. Besonders vorteilhaft eignet sich Lein (Linum usitatissimum) zur Herstellung von PUFAS mit dem erfindungsgemäßen Nukleinsäuresequenzen vorteilhaft, wie beschrieben, in Kombination mit weiteren Desaturasen und Elongasen.

Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiolo-

10

15

20

25

30

35

68

gical Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.

Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C₁₈-Kohlenstoff-Fettsäuren müssen auf C₂₀ und C₂₂ verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ -12-, ω 3-, Δ -4-, Δ -5-, Δ -6- und Δ -8-Desaturasen und/oder der Δ -5-, Δ -6-, Δ -9-Elongasen können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure vorteilhaft Eicosapentaensäure und/oder Docosahexaensäure hergestellt werden und anschließend für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können C₂₀- und/oder C₂₂-Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise C20- oder C22-Fettsäuren mit vorteilhaft vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C20 zu C22-Fettsäuren, zu Fettsäuren wie γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate der verwendeten Desaturasen und Elongasen im erfindungsgemäßen Verfahren sind C₁₆-, C₁₈oder C₂₀-Fettsäuren wie zum Beispiel Linolsäure, γ-Linolensäure, α-Linolensäure, Dihomo-y-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, γ-Linolensäure und/oder α-Linolensäure, Dihomo-γ-linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die synthetisierten C20- oder C22-Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.

Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Glyceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin),

10

15

20

25

30

35

40

(

69

Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).

Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16.

Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Es umfasst auch die Produktivität innerhalb einer Pflanzenzelle oder einer Pflanze, das heißt den Gehalt an den gewünschten im Verfahren hergestellten Fettsäuren bezogen auf den Gehalt an allen Fettsäuren in dieser Zelle oder Pflanze. Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg

10

15

20

25

30

35

40

70

Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.

Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 Proteine mit mindestens 40 %, vorteilhaft etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 % und stärker bevorzugt mindestens etwa 70 oder 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 oder SEQ ID NO: 110. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.

Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID 5 NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -6-Elongase oder Δ -5-Elongase codieren wie diejenige, die von den in 10 SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO:85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, 15 SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 gezeigten Nukleotidsequenzen kodiert wird.

Zusätzlich zu den in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, 20 SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 gezeigten Δ -12-Desaturasen, ω-3-Desaturasen, Δ -5-Elongasen, Δ -6-Desaturasen, Δ -5-Desaturasen, Δ -4-Desaturasen oder Δ -6-Elongasen erkennt der Fachmann, dass 25 DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Δ -12-Desaturase, ω-3-Desaturase, Δ -5-Elongase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase und/oder Δ -6-Elongase führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Δ -12-Desaturase-, ω -3-Desaturase-, Δ -5-Elongase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturase- und/oder Δ -6-30 Elongase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Δ -12-Desaturase-, ω -3-Desaturase-, Δ -5-Elongase-, Δ -6-Desaturase-, Δ -5-Desaturaseund/oder Δ -6-Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und 35 daraus resultierende Aminosäurepolymorphismen in der Δ -12-Desaturase, ω -3-Desaturase, Δ -5-Elongase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase und/oder Δ -6-Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von nicht verändern, sollen im Umfang der Erfindung enthalten sein.

Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Δ-12-Desaturase-, ω-3-Desaturase-, Δ-5-Elongase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturaseund/oder Δ-6-Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines

10

15

20

25

30

35

40

72

Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67. SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können.

10

15

20

25

(

73

Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 oder SEQ ID NO: 110) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben.

Ein isoliertes Nukleinsäuremolekül, das für eine Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -5-Elongase und/oder Δ -6-Elongase 30 kodiert, die zu einer Proteinsequenz der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, 35 SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108 oder SEQ ID NO: 110 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID 40 NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 erzeugt werden, so dass eine oder mehrere Aminosäu-

10

15

20

25

30

35

40

bestimmt werden.

74

resubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nichtessentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), betaverzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nichtessentieller Aminosäurerest in einer Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -6-Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -5-Elongase oder Δ -6-Elongase kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Δ -12-Desaturase-, ω -3-Desaturase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturase-, Δ -5-Elongase- oder Δ -6-Elongase--Aktivität durchmustert werden, um Mutanten zu identifizieren, die die Δ -12-Desaturase-, ω -3-Desaturase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturase-, Δ -5-Elongase- oder Δ -6-Elongase-Aktivität beibehalten haben. Nach der Mutagenese einer der Sequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47,SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests

Weitere Erfindungsgegenstände sind transgene nicht-humane Organismen, die die erfindungsgemäßen Nukleinsäuren SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65,

(

75

SEQ ID NO: 67; SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107 oder SEQ ID NO: 109 enthalten oder ein Genkonstrukt oder einen Vektor, die diese erfindungsgemäßen Nukleinsäuresequenzen enthalten. Vorteilhaft handelt es sich bei dem nichthumanen Organismus um einen Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze, besonders bevorzugt um eine Pflanze.

Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

Beispiele

5

25

30

Beispiel 1: Allgemeine Klonierungsverfahren:

Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und die Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt.

Beispiel 2: Sequenzanalyse rekombinanter DNA:

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.

Beispiel 3: Klonierung von Genen aus Oncorhynchus mykiss

Durch Suche nach konservierten Bereichen in den Proteinsequenzen entsprechend der in der Anmeldung aufgeführten Elongase-Gene wurden zwei Sequenzen mit entsprechenden Motiven in der Sequenzdatenbank von Genbank identifiziert.

Gen-Name	Genbank No	Aminosäuren
OmELO2	CA385234, CA364848, CA366480	264
OmELO3	CA360014, CA350786	295

Gesamt-RNA von Oncoryhnchus mykiss wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dT-Cellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit dem Reverse Transcription System Kit von Promega revers transcribiert und die synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene) kloniert. Entsprechend Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt. Die cDNA-Plasmid-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden verwendet.

10 Beispiel 4: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der zwei Sequenzen zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz	
5' f* OmELO2	5' aagcttacataatggcttcaacatggcaa	
3' r* OmELO2	5' ggatccttatgtcttcttgctcttcctgtt	
5' f OmELO3	5' aagettacataatggagacttttaat	
3' r OmELO3	5' ggatccttcagtccccctcactttcc	
* f: forward, r: reverse		

E P

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

20 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

10

15

20

25

30

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschliessend wurde das 812 bp bzw. 905 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und Elongase cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pYES3-OmELO2 und pYES3-OmELO3 wurden durch Sequenzierung verifiziert und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-OmELO2 (SEQ ID NO: 51) und pYES3-OmELO3 (SEQ ID NO: 53). Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 5: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-OmELO2

Forward: 5'-GCGGCCGCATAATGGCTTCAACATGGCAA

Reverse: 3'-GCGGCCGCTTATGTCTTCTTGCTCTTTCTTGTT

PSUN-OMELO3

Forward: 5'-GCGGCCGCataatggagacttttaat Reverse: 3'-GCGGCCGCtcagtccccctcactttcc

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

35 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

10

15

20

25

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OmELO2 und pSUN-OmELO3 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. turnefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel 6: Lipidextraktion aus Hefen und Samen:

Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und

10

15

20

25

40

(

(

79

mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethyl-35 ester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie,

10

15

20

25

30

35

40

80

Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.

Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer Extraktion zugänglicher zu machen.

Dann wird 10 min auf 100°C erhitzt und nach dem Abkühlen auf Eis erneut sedimentiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan 1h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden.

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES3, pYES3-OmELO2 und pYES3-OmELO3 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHCO3, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1N methonolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na2SO4 getrocknet, unter Argon eingedampft und in 100 μ l PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μ m, Agilent) in einem Hewlett-Packard 6850-

15

20

25

30

35

(

81

Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).

Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

10 Beispiel 7: Funktionelle Charakterisierung von OmELO2 und OmELO3:

OmELO2 zeigt keine Elongase-Aktivität, während für OmELO3 eine deutliche Aktivität mit verschiedenen Substraten nachgewiesen werden konnte. Die Substratspezifität der OmElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 2). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der OmElo3-Reaktion. Dies bedeutet, dass das Gen OmElo3 funktional exprimiert werden konnte.

Figur 2 zeigt, dass die OmElo3 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta 5$ - und $\Delta 6$ -Fettsäuren mit einer $\omega 3$ -Doppelbindung führt. Es konnte in geringerer Spezifität des weiteren auch $\omega 6$ -Fettsäuren (C18 und C20) elongiert werden. Stearidonsäure (C18:4 $\omega 3$) und Eicosapentaensäure (C20:5 $\omega 3$) stellen die besten Substrate für die OmElo3 dar (bis zu 66 % Elongation).

Beispiel 8: Rekonstitution der Synthese von DHA in Hefe

Die Rekonstitution der Biosynthese von DHA (22:6 ω 3) wurde ausgehend von EPA (20:5 ω 3) bzw. Stearidonsäure (18:4 ω 3) durch die Coexpression der OmElo3 mit der Δ -4-Desaturase aus *Euglena gracilis* bzw. der Δ -5-Desaturase aus *Phaeodactylum tricornutum* und der Δ -4-Desaturase aus *Euglena gracilis* durchgeführt. Dazu wurden weiterhin die Expressionsvektoren pYes2-EgD4 und pESCLeu-PtD5 konstruiert. Der o.g. Hefestamm, der bereits mit dem pYes3-OmElo3 (SEQ ID NO: 55) transformiert ist, wurde weiter mit dem pYes2-EgD4 bzw. gleichzeitig mit pYes2-EgD4 und pESCLeu-PtD5 transformiert. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium-Agarplatten mit 2% Glucose, aber ohne Tryptophan und Uracil im Falle des pYes3-OmELO/pYes2-EgD4-Stammes und ohne Tryptophan, Uracil und Leucin im Falle des pYes3-OmELO/pYes2-EgD4+pESCLeu-PtD5-Stammes. Die Expression wurde wie oben angegeben durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 120 h bei 15°C inkubiert.

Figur 3 zeigt die Fettsäureprofile von transgenen Hefen, die mit 20:5 ω 3 gefüttert wurden. In der Kontroll-Hefe (A), die mit dem pYes3-OmElo3-Vektor und dem leeren

10

20

25

30

35

40

82

Vektor pYes2 transformiert wurden, wurde 20:5 ω 3 sehr effizient zu 22:5 ω 3 elongiert (65% Elongation). Die zusätzliche Einführung der Eg Δ -4-Desaturase führte zu der Umsetzung von 22:5 ω 3 zu 22:6 ω 3 (DHA). Die Fettsäure-Zusammensetzung der transgenen Hefen ist in Figure 5 wiedergegeben. Nach die Co-Expression von OmElo3 und EgD4 konnte bis zu 3% DHA in Hefen nachgewiesen werden.

In einem weiteren Co-Expressionsexperiment wurden OmElo3, EgD4 und eine $\Delta 5$ -Desaturase aus P. tricornutum (PtD5) zusammen exprimiert. Die transgenen Hefen wurden mit Stearidonsäure (18:4 $\omega 3$) gefüttert und analysiert (Figur 4). Die Fettsäure-Zusammensetzung dieser Hefen ist in Figur 5 aufgeführt. Durch OmElo3 wurde die gefütterte 18:4 $\omega 3$ zu 20:4 $\omega 3$ elongiert (60% Elongation). Letztere wurde durch die PtD5 zu 20:5 $\omega 3$ desaturiert. Die Aktivität der PtD5 betrug 15%. 20:5 $\omega 3$ konnte weiterhin durch die OmElo3 zu 22:5 $\omega 3$ elongiert werden. Im Anschluß wurde die neu synthetisierte 22:5 $\omega 3$ zu 22:6 $\omega 3$ (DHA) desaturiert. In diesen Experimenten konnte bis zu 0,7% DHA erzielt werden.

Aus diesen Experimenten geht hervor, dass die in dieser Erfindung verwendeten Sequenzen OmElo3, EgD4 und PtD5 für die Produktion von DHA in eukaryotischen Zellen geeignet sind.

Beispiel 9: Erzeugung von transgenen Pflanzen

a) Erzeugung transgener Rapspflanzen (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242)

Zur Erzeugung transgener Rapspflanzen wurden binäre Vektoren in Agrobacterium tumefaciens C58C1:pGV2260 oder Escherichia coli genutzt (Deblaere et al, 1984, Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Nordeutsche Pflanzenzucht, Hohenlieth, Deutschland), wurde eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) benutzt. Petiolen oder Hypokotyledonen frisch gekeimter steriler Rapspflanzen (zu je ca. 1 cm²) wurden in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige Colnkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wurde nach 3 Tagen mit 16 Stunden Licht / 8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefotaxime-Natrium), 50 mg/l Kanamycin, 20 mikroM Benzylaminopurin (BAP) und 1,6 g/l Glukose weitergeführt. Wachsende Sprosse wurden auf MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bildeten sich nach drei Wochen keine Wurzeln, so wurde als Wachstumshormon 2-Indolbuttersäure zum Bewurzeln zum Medium gegeben.

Regenerierte Sprosse wurden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen

20

83

geerntet und auf Elongase-Expression wie Δ -5-Elongase- oder Δ -6-Elongaseaktivität oder ω -3-Desaturaseaktivität mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an C20- und C22 mehrfachungesättigten Fettsäuren wurden so identifiziert.

- b) Herstellung von transgenen Leinpflanzen
- Die Herstellung von transgenen Leinpflanzen können zum Beispiel nach der Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. Agrobakterien-vermittelte Transformationen können zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 hergestellt werden.
- 10 Beispiel 10: Klonierung von Δ5-Elongase-Genen aus Thraustochytrium aureum ATCC34304 und Thraustochytrium ssp.

Durch Vergleiche der verschiedenen in dieser Anmeldung gefundenen Elongase-Proteinsequenzen konnten konservierte Nukleinsäurebereiche definiert werden (Histidin-Box: His-Val-X-His-His, Tyrosin-Box: Met-Tyr-X-Tyr-Tyr). Mit Hilfe dieser Sequenzen wurde eine EST-Datenbank von T. aureum ATCC34304 und Thraustochytrium ssp. nach weiteren Δ -5-Elongasen durchsucht. Folgende neue Sequenzen konnten gefunden werden:

Gen-Name	Nukleotide	Aminosäuren
BioTaurELO1	828 bp	275
TL16y2	831	276

Gesamt-RNA von T. aureum ATCC34304 und Thraustochytrium ssp. wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend der Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

25 Beispiel 11: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz	
5' f* BioTaurELO1	5' gacataatgacgagcaacatgag	
3' r* BioTaurELO1	5' cggcttaggccgacttggccttggg	
5'f*TL16y2	5' agacataatggacgtcgtcgagcagcaatg	
3'r*TL16y2	5' ttagatggtcttctgcttcttgggcgcc	
f: forward, r: reverse		

Zusammensetzung des PCR-Ansatzes (50 µL):

5 5,00 μL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL pfu-Polymerase

10 Die Advantage-Polymerase von Clontech wurde eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

15 Anzahl der Zyklen: 35

Die PCR Produkte BioTaurELO1 (siehe SEQ ID NO: 65) und TL16y2 (siehe SEQ ID NO: 83) wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO (Invitrogen) inkubiert gemäss Herstellerangaben. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert.

Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert.

Anschließend würden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-BioTaurELO1 und pYES2.1-TL16y2. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

20

Beispiel 12:

Klonierung von Expressionsplasmiden zur Samen-spezifischen

Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-BioTaurELQ1

Forward: 5'-GCGGCCGCATAATGACGAGCAACATGAGC

10 Reverse: 3'-GCGGCCGCTTAGGCCGACTTGGC

PSUN-TL16y2

Forward: 5'-GCGGCCGCACCATGGACGTCGTCGAGCAGCAATG Reverse: 5'-GCGGCCGCTTAGATGGTCTTCTGCTTCTTGGGCGCC

15 Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

20 0,50 μL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

25 Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

30

35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-BioTaurELO1 und pSUN-TL16y2 wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das

40 Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens

Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

15

5

10

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 13: Funktionelle Charakterisierung von BioTaurELO1 und TL16y2:

Die Substratspezifität der BioTaurELO1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 6). Figur 6 zeigt die Fütterungsexperimente zur Bestimmung der Funktionalität und Substratspezifität mit Hefestämmen, die entweder den Vektor pYes2.1 (Kontrolle = Control) oder den Vektor pYes2.1-BioTaurELO1 (= BioTaur) mit der Δ-5-Elongase enthalten. In beiden Ansätzen wurde 200 uM γ-Linolensäure und Eicosapentaensäure dem Hefeinkubationsmedium zugesetzt und 24 h inkubiert. Nach Extraktion der Fettsäuren aus den Hefen wurden diese transmethyliert und gaschromatographisch aufgetrennt. Die aus den beiden gefütterten Fettsäuren entstandenen Elongationsprodukte sind durch Pfeile markiert.

35

Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der BioTaurELO1-Reaktion. Dies bedeutet, dass das Gen BioTaurELO1 funktional exprimiert werden konnte.

Figur 6 zeigt, dass die BioTaurELO1 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta5$ - und $\Delta6$ -Fettsäuren mit einer $\omega3$ -Doppelbindung führt. Des weiteren konnten auch $\omega6$ -Fettsäuren (C18 und C20) elongiert werden. Es werden γ -Linolensäure (C18:3 $\omega6$) mit 65,28 %, Stearidonsäure (C18:4 $\omega3$) mit 65.66 % und Eicosapentaensäure (C20:5 $\omega3$) mit 22,01 % Konversion umgesetzt. Die Substratspezifitäten der verschiedenen Fütterungsexperimente sind in Tabelle 2 dargestellt (siehe am Ende der Beschreibung).

Die Konversionsrate von GLA bei Fütterung von GLA und EPA betrug 65,28 %. Die Konversionsrate von EPA bei gleicher Fütterung von GLA und EPA betrug 9,99 %.

Wurde nur EPA gefüttert, so betrug die Konversionsrate von EPA 22,01 %. Auch Arachidonsäure (= ARA) wurde bei Fütterung umgesetzt. Die Konversionsrate betrug 14,47 %. Auch Stearidonsäure (= SDA) wurde umgesetzt. In diesem Fall betrug die Konversionsrate 65,66 %.

Die Funktionalität und Substratspezifität von TL16y2 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Tabelle 3 zeigt die Fütterungsexperimente. Die Fütterungsversuche wurden in gleicherweise durchgeführt wie für BioTaurELO1 beschrieben. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TL16y2-Reaktion (Fig. 11). Dies bedeutet, dass das Gen TL16y2 funktional exprimiert werden konnte.

Tabelle 3: Expression von TL16y2 in Hefe.

Flächen	der gaschrom	atograpl	hischen	Analyse	in %				·
			·						
Plasmid	Fettsäure	C18:3	C18:4	C20:3	C20:4	C20:4	C20:5	C22:4	C22:5
		(n-6)	(n-3)	(n-6)	(n-6)	(n-3)	(n-3)	(n-6)	(n-3)
pYES	250 uM EPA						13,79		
TL16y2	250 uM EPA						25,81		2,25
pYES	50 uM EPA						5,07		
TL16y2	50 uM EPA						2,48		1,73
pYES	250 uMGLA	8,31							
TL16y2	250 uM GLA	3,59		10,71					-
pYES	250 uM ARA	. *-			16,03				
TL16y2	250 uM ARA				15,2		3,87	-	
pYES	250 uM SDA		26,79			0,35			
TL16y2	250 uM SDA		7,74			29,17			

Die in Tabelle 3 wiedergegebenen Ergebnisse zeigen mit TL16y2 gegenüber der Kontrolle folgende prozentuale Umsätze: a) % Umsatz EPA (250 uM): 8 %, b) % Umsatz EPA (50 uM): 41 %, c) % Umsatz ARA: 20,3 %, d) % Umsatz SDA: 79, 4% und e) % Umsatz GLA: 74,9 %.

TL16y2 zeigt damit Δ 5-, Δ 6- und Δ 8-Elongaseaktivität. Dabei ist die Aktivität für C18-Fettsäuren mit Δ 6-Doppelbindung am höchsten. Abhängig von der Konzentration an gefütterten Fettsäuren werden dann C20-Fettsäuren mit einer Δ 5- bzw. Δ 8-Doppelbindung verlängert.

5 Beispiel 14: Klonierung von Genen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden.

10 Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300
OtELO2, (Δ-6-Elongase)	SEQ ID NO: 69	292

OtElo1 weist die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweist (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

15 Die Klonierung wurde wie folgt durchgeführt:

20

25

40 ml einer *Ostreococcus tauri* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtElo-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel 15: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus Ostreococcus tauri wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1 und pOTE2 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1 bzw. pOTE2 transformiert. Als Kontrolle wurde eine Hefe verwen-

(

89

det, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

- Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.
 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft.
 Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.
 - Beispiel 16: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1 und OtElo2 abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

20 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

15

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

25 Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu

wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1 und pSUN-OtELO2 wurde durch Sequenzierung verifiziert.

10

25

30

35

90

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRl- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz:

15 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3').

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana,

20 Raps, Tabak und Leinsamen verwendet.

Beispiel 17: Expression von OtELO1 und OtELO2 in Hefen

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1 und pYES3-OtELO2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch.

Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 18: Funktionelle Charakterisierung von OtELO1 und OtELO2:

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab.4). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 4 zeigt, dass die OtElo1 eine enge Substratspezifität aufweist. Die OtElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 7) und Arachidonsäure (Figur 8) elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

Tabelle 4:

5

Fettsäuresubstrat	Umsatz (in %)
16:0	-
16:1 ^{∆9}	-
18:0	-
18:1 ^{∆9}	-
18:1 ^{△11}	-
18:2 ^{∆9,12}	-
18:3 ^{∆6,9,12}	-
18:3 ^{∆5,9,12}	-
20:3 ^{Δ8,11,14}	-
20:4 ^{Δ5,8,11,14}	10,8 ± 0,6
20:5 ^{45,8,11,14,17}	46,8 ± 3,6
22:4 ^{△7,10,13,16}	-
22:6 ^{△4,7,10,13,16,19}	-

Tabelle 4 zeigt die Substratspezifität der Elongase OtElo1 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in $\Delta 5$ Position gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.

Die Substratspezifität der OtElo2 (SEQ ID NO: 81) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 5). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass das Gen OtElo2 funktional exprimiert werden konnte.

Tabelle 5:

Fettsäuresubstrat	Umsatz (in %)
16:0	-
16:1 ^{∆9}	-
16:3 ^{△7,10,13}	-
18:0	-
18:1 ^{∆6}	-
18:1 ^{∆9}	-
18:1 ^{△11}	-
18:2 ^{△9,12}	=
18:3 ^{△6,9,12}	15,3±
18:3 ^{△5,9,12}	
18:4 ^{△6,9,12,15}	21,1±
20:2 ^{∆11,14}	-
20:3 ^{△8,11,14}	-
20:4 ^{△5,8,11,14}	•
20:5 ^{Δ5,8,11,14,17}	-
22:4 ^{△7,10,13,16}	-
22:5 ^{△7,10,13,16,19}	-
22:6 ^{△4,7,10,13,16,19}	-

25

30

(

Tabelle 5 zeigt die Substratspezifität der Elongase OtElo2 gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.

Die enzymatische Aktivität, die in Tabelle 5 wiedergegeben wird, zeigt klar, dass OTEL2 eine Δ -6-Elongase ist.

Beispiel 19: Klonierung von Genen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
TpELO1 (∆5-Elongase)	43	358
TpELO2 (Δ5-Elongase)	59	358
TpELO3 (∆6-Elongase)	45	272

Eine 2 L Kultur von T. pseudonana wurde in f/2 Medium (Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In *Culture of Marine Invertebrate Animals* (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29–60.) für 14 d (= Tage) bei einer Lichtstärke von 80 E/cm² angezogen. Nach Zentrifugation der Zellen wurde RNA mit Hilfe des RNAeasy Kits der Firma Quiagen (Valencia, CA, US) nach Herstellerangaben isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend den Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

Beispiel 20: Klonierung von Expressionsplasmiden zur heterologen Expression in - Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292)

94

neben dem Startcodon trugen. Die Amplifizierung der TpElo-DNAs wurde jeweils mit 1 µL cDNA, 200 µM dNTPs, 2,5 U *Advantage*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
TpELO1 (Δ5-Elongase), SEQ ID NO: 59	F:5'-accatgtgctcaccaccgccgtc
	R:5'- ctacatggcaccagtaac
TpELO2 (Δ5-Elongase), SEQ ID NO: 85	F:5'-accatgtgctcatcaccgccgtc
	R:5'-ctacatggcaccagtaac
TpELO3 (Δ6-Elongase), SEQ ID NO:45	F:5'-accatggacgcctacaacgctgc
	R:5'- ctaagcactcttcttcttt

^{*}F=forward primer, R=reverse primer

- 10 Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA 15 mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachs-20 tumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-TpELO1, pYES2.1-TpELO2 und pYES2.1-TpELO3. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.
 - Beispiel 21: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen
- Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

PSUN-TPELO1

Forward: 5'-GCGGCCGCACCATGTGCTCACCACCGCCGTC

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC

PSUN-TPELO2

5 Forward: 5'-GCGGCCGCACCATGTGCTCATCACCGCCGTC

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC

PSUN-TPELO3

Forward: 5'-GCGGCCGCaccatggacgcctacaacgctgc

Reverse: 3'-GCGGCCGCCTAAGCACTCTTCTTT

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

15 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

20

30

35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-TPELO1, pSUN-TPELO2 und pSUN-TPELO3 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J.,

10

15

25

96

Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3').

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 22: Expression von TpELO1, TpELO2 und TpELO3 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-TpELO1, pYES2-TpELO2 und pYES2-TpELO3 transformiert wurden, wurden folgendermaßen analysiert:

- 20 Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v)
- Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben 30 wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.
- Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit 35 entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

15

20

97

Beispiel 23: Funktionelle Charakterisierung von TpELO1 und TpELO3:

Die Substratspezifität der TpElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 9). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo1-Reaktion. Dies bedeutet, dass das Gen TpElo1 funktional exprimiert werden konnte.

Tabelle 6 zeigt, dass die TpElo1 eine enge Substratspezifität aufweist. Die TpElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure und Arachidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Eicosapentaensäure.

Die Hefen, die mit dem Vektor pYES2-TpELO1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 6: Expression von TpELO1 in Hefe. In den Spalten 1 und 3 sind die Kontrolreaktionen für die Spalten 2 (gefüttert 250 μ M 20:4 Δ 5,8,11,14) und 4 (gefüttert 250 μ M 20:5 Δ 5,8,11,14,17) wiedergegeben.

	Expression	Expression	Expression	Expression	
Fettsäuren	1	2	3	4	
16:0	18.8	17.8	25.4	25.2	
16:1 ⁴⁹	28.0	29.8	36.6	36.6	
18:0	5.2	5.0	6.8	6.9	
18:1 ^{∆9}	25.5	23.6 24.6		23.9	
20:4 ^{Δ5,8,11,14}	22.5	23.4	-	- 11	
22:4 ^{Δ7,10,13,16}	-	0.4	-	-	
$20.5^{\Delta 5,8,11,14,17}$	-	1-	6.6	6.5	
$22.5^{\Delta7,10,13,16,19}$	-	-	-	0.9	
% Umsatz	0	1.7	0	12.2	

Die Substratspezifität der TpElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 10). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo3-Reaktion. Dies bedeutet, dass das Gen TpElo3 funktional exprimiert werden konnte.

98

Tabelle 7 zeigt, dass die TpElo3 eine enge Substratspezifität aufweist. Die TpElo3 konnte nur die C18-Fettsäuren γ -Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Stearidonsäure.

Die Hefen, die mit dem Vektor pYES2-TpELO3 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zeilen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 7: Expression von TpELO3 in Hefe. Spalte 1 zeigt das Fettsäureprofil von Hefe ohne Fütterung. Spalte 2 zeigt die Kontrollreaktion. In den Spalten 3 bis 6 wurden γ-Linolensäure, Stearidonsäure, Arachidonsäure und Eicosapentaensäure gefüttert (250 μM jeder Fettsäure).

Fettsäuren	1	2	3	4	5	6 .
16:0	17.9	20.6	17.8	16.7	18.8	18.8
16:1 ^{△9}	41.7	18.7	27.0	33.2	24.0	31.3
18:0	7.0	7.7	6.4	6.6	5.2	6,0
18:1 ^{∆9}	33.3	16.8	24.2	31.8	25.5	26.4
18:2 ^{△9,12}	-	36.1	-	-	-	-
18:3 ^{46,9,12}	-	-	6.1	-	-	
18:4 ^{Δ6,9,12,15}	-	_	-	1.7	-	
20:2 ^{Δ11,14}	-	0	-	-	_	
20:3 ^{Δ8,11,14}	-	_	18.5	-	_	
20:4 ^{Δ8,11,14,17}	_	-	-	10.0	-	
20:4 ^{\Delta 5,8,11,14}	-	-	-	-	22.5	
22:4 ^{Δ7,10,13,16}	-		-	-	0	
20:5 ^{\(\Delta\)5,8,11,14,17}	-	-	-	-	_	17.4
22:5 ^{Δ7,10,13,16,19}	-	-	-	-	-	0
% Umsatz	0	0	75	85	0	0

Beispiel 24: Klonierung eines Expressionsplasmides zur heterologen Expression der Pi-omega3Des in Hefen

Der Pi-omega3Des Klon wurde für die heterologe Expression in Hefen über PCR mit entsprechenden Pi-omega3Des spezifischen Primern in den Hefe-Expressionsvektor pYES3 kloniert. Dabei wurde ausschließlich der für das Pi-omega3Des Protein

kodierende offene Leseraster des Gens amplifiziert und mit zwei Schnittstellen für die Klonierung in den pYES3 Expressionsvektor versehen:

Forward Primer: 5'-TAAGCTTACATGGCGACGAAGGAGG

Reverse Primer: 5'-TGGATCCACTTACGTGGACTTGGT

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

10 5,00 μL 2mM dNTP

1,25 µL je Primer (10 pmol/µL des 5'-ATG sowie des 3'-Stopp Primers)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

15 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicher-20 weise inkubiert. Anschließend wurde das 1104 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und Desaturase-cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das 25 entstandene Plasmid pYES3-Pi-omega3Des wurde durch Sequenzierung überprüftt und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit 30 die entsprechenden Plasmide pYES3, pYES3-Pi-omega3Des. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 25: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-

5 Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:. PSUN-Pi-omega3Des

Reverse: 3'-GCGGCCGCTTACGTGGACTTGGTC Forward: 5'-GCGGCCGCatGGCGACGAAGGAGG

Zusammensetzung des PCR-Ansatzes (50 µL):

10 5,00 μL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

15 Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

20 Anzahl der Zyklen: 35

Die PCR Produkte wurden für 4 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschließend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pSUN-Piomega3Des wurde durch Sequenzierung verifiziert.

Beispiel 26: Expression von Pi-omega3Des in Hefen

Hefen, die wie unter Beispiel 24 mit dem Plasmid pYES3 oder pYES3- Pi-omega3Des transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethyl-

10

15

20

25

30

35

101

ester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert. Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 27: Funktionelle Charakterisierung von Pi-omega3Des:

Die Substratspezifität der Pi-omega3Des konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 12 bis 18). Die gefütterten Substrate liegen in großen Mengen in allen transgenen Hefen vor, wodurch die Aufnahme dieser Fettsäuren in die Hefen bewiesen ist. Die transgenen Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der Pi-omega3Des-Reaktion. Dies bedeutet, dass das Gen Pi-omega3Des funktional exprimiert werden konnte.

Figur 12 gibt die Desaturierung von Linolsäure (18:2 ω -6-Fettsäure) zu α -Linolensäure (18:3 ω -3-Fettsäure) durch die Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 12 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 12 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C18:2 $^{\Delta 9,12}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

In Figur 13 ist die Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des wiedergegeben. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 13 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 13 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von γ -C18:3 $^{\Delta6,9,12}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 14 gibt die Desaturierung von C20:2- ω -6-Fettsäure zu C20:3- ω -3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 14 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 14 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:2 $^{\Delta 11,14}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 15 gibt die Desaturierung von C20:3-ω-6-Fettsäure zu C20:4-ω-3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 15 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 15 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:3^{Δ8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

15

20

25

10

5

In Figur 16 wird die Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des gezeigt. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 16 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 16 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:4^{Δ5,8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 17 gibt die Desaturierung von Docosatetraensäure (C22:4- ω -6-Fettsäure) zu Docosapentaensäure (C22:5- ω -3-Fettsäure) durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 17 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 17 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C22:4 $^{\Delta 7,10,13,16}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

30

35

Die Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren ist Figur 18 zu entnehmen. Die Hefen, die mit dem Vektor pYes3-Pi-omega3Des transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt einen Mittelwert aus drei Messungen wieder. Die Umsetzungsraten (% Desaturation) wurden mit der Formel:

[Produkt]/[Produkt]+[Substrat]*100 errechnet.

(

103

Wie unter Beispiel 9 beschrieben kann auch die Pi-omega3Des zur Erzeugung transgener Pflanzen verwendet werden. Aus den Samen dieser Pflanzen kann dann die Lipidextraktion wie unter Beispiel 6 beschrieben erfolgen.

Beispiel 28:

Klonierung von Desaturasegenen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) konnten sieben Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	Homologie
OtD4	SEQ ID NO: 95	536	Δ-4-Desaturase
OtD5.1	SEQ ID NO: 91	201	Δ-5-Desaturase
OtD5.2	SEQ ID NO: 93	237	Δ-5-Desaturase
OtD6.1	SEQ ID NO: 89	456	Δ-6-Desaturase
OtFad2	SEQ ID NO: 107	361	Δ-12-Desaturase

10

15

20

25

Die Alignments zur Auffindung von Homologien der einzelnen Gene wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung erfolgte wie folgt:

40 ml einer *Ostreococcus tauri* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtDes-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Folgende Primer wurden für die PCR eingesetzt:

OtDes6.1 Forward:

5'ggtaccacataatgtgcgtggagacggaaaataacg3'

OtDes6.1 Reverse:

5'ctcgagttacgccgtctttccggagtgttggcc3'

Beispiel: 29

5

25

Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Desaturase OtDes6.1 (= Δ-6-Desaturase) aus Ostreococcus tauri wurde der offenen Leserahmen der DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-OtDes6.1 Klon erhalten wurde. In entsprechender Art und Weise können weitere Desaturase-Gene aus Ostreococcus kloniert werden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pYES2.1-OtDes6.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der OtDes6.1 Desaturase wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft.

Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

Beispiel: 30 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR NotI-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

30 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide werden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant 15 transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map 20 of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines 25 synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3').

Das PCR–Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel: 31 Expression von OtDes6.1 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-OtDes6.2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die 5 Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ 10 getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten)

15 programmiert.15 Die Identifikati

20

25

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel: 32 Funktionelle Charakterisierung von Desaturasen aus Ostreococcus:

Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ 15–Desaturasen, WO 94/11516 für Δ 12–Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 für Δ 6-Desaturasen, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 für Δ 4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ 5-Desaturasen.

Tabelle 8 gibt die Substratspezifität der Desaturase OtDes6.1 gegenüber verschiedenen Fettsäuren wieder. Die Substratspezifität der OtDes6.1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtDes6.2-Reaktion (Fig. 20). Dies bedeutet, dass das Gen OtDes6.1 funktional exprimiert werden konnte.

Die Hefen, die mit dem Vektor pYES2-OtDes6.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der

(

107

Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder. Die Aktivität entspricht der Konversionsrate errechnet nach [Substrat/(Substrat+Produkt)*100].

Tabelle 8 zeigt, dass die OtDes6.1 eine Substratspezifität für Linol- und Linolensäure (18:2 und 18:3) aufweist, da mit diesen Fettsäuren die höchsten Aktivitäten erreicht werden. Die Aktivität für Ölsäure (18:1) und Palmitoleinsäure (16:1) ist dagegen deutlich geringer. Die bevorzugte Umsetzung von Linol- und Linolensäure zeigt die Eignung dieser Desaturase für die Herstellung von polyungesättigten Fettsäuren.

10

15

20

25

Substrate	Aktivität in %
16:1 ^{∆9}	5,6
18:1 ^{∆9}	13,1
18:2 ^{∆9,12}	68,7
18:3 ^{△9,12,15}	64,6

Figur 20 zeigt die Umsetzung von Linolsäure durch OtDes6.1. Die Analyse der FAMEs erfolgte über Gaschrommatographie. Das gefütterte Substrat (C18:2) wird zu γ-C18:3 umgesetzt. Sowohl Edukt als auch das entstandene Produkt sind durch Pfeile markiert.

In Figur 21 wird die Umsetzung von Linolsäure (= LA) und α -Linolensäure (= ALA) in Gegenwart von OtDes6.1 zu γ -Linolensäure (= GLA) bzw. Stearidonsäure (= STA) wiedergegeben (Figur 21 A und C). Weiterhin zeigt Figur 21 die Umsetzung von Linolsäure (= LA) und α -Linolensäure (= ALA) in Gegenwart der Δ -6-Desaturase OtDes6.1 zusammen mit der Δ -6-Elongase PSE1 aus Physcomitrella patens (Zank et al. 2002, Plant J. 31:255-268) und der Δ -5-Desaturase PtD5 aus Phaeodactylum tricornutum (Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) zu Dihomo- γ -linolensäure (= DHGLA) und Arachidonsäure (= ARA, Figur 21 B) bzw. zu Dihomostearidonsäure (= DHSTA) bzw. Eicosapentaensäure (= EPA, Figur 21 D). Figur 21 zeigt deutlich, dass die Reaktionsprodukte GLA und STA der Δ -6-Desaturase OtDes6.1 in Gegenwart der Δ -6-Elongase PSE1 fast quantitativ zu DHGLA bzw. DHSTA elongiert wird. Die nachfolgende Desaturierung durch die Δ -5-Desaturase PtD5 erfolgt ebenfalls reibungslos zu ARA bzw. EPA. Es werden ca. 25 – 30% des Elongaseprodukts desaturiert (Figur 21 B und D).

108

Die folgenden Tabelle 9 gibt eine Übersiche über die klonierten Ostreococus Desaturasen wieder:

	<u> </u>		Ostreoco	ccus ta	uri Desatu	rasen	-
Name	bp	aa	Homologie	Cyt. B5	His-Box1	His-Box2	His-Box3
OtD4	1611	536	Δ-4- Desatu- rase	HPGG	HCANH	WRYHHQVSHH	QVEHHLFP
OtD5.1	606	201	Δ-5- Desaturase	-	-	_	QVVHHLFP
OtD5.2	714	237	∆-5- Desaturase	-	-	WRYHHMVSHH	QIEHHLPF
OtD6.1	1443	480	Δ-6- Desaturase	HPGG	HEGGH	WNSMHNKHH	QVIHHLFP
OtFAD2	1086	361	Δ-12- Desaturase	-	HECGH	WQRSHAVHH	HVAHH

Beispiel: 33 Klonierung von Desaturasegenen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, siehe Motive) konnten sieben Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	Homologie
TpD4	SEQ ID NO: 103	503	Δ-4-Desaturase
TpD5-1	SEQ ID NO: 99	476	Δ-5-Desaturase
TpD5-2	SEQ ID NO: 101	482	Δ-5-Desaturase
TpD6	SEQ ID NO: 97	484	Δ-6-Desaturase
TpFAD2	SEQ ID NO: 109	434	Δ-12-Desaturase
TpO3	SEQ ID NO: 105	418	ω-3-Desaturase

Die Klonierung erfolgte wie folgt:

10

40 ml einer *Thalassiosira pseudonana* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die

10

25

109

entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der TpDes-DNAs wurde jeweils mit 1 µl aufgetauten Zellen, 200 µM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel: 34 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Desaturasen aus *Thalassiosira pseudonana* wird der offenen Leserahmen der jeweiligen DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-Klone erhalten werden.

Der Saccharomyces cerevisiae-Stamm 334 wird durch Elektroporation (1500 V) mit den Vektoren pYES2.1-TpDesaturasen transformiert. Als Kontrolle wird eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wird. Die Selektion der transformierten Hefen erfolgt auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion werden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Tp-Desaturasen werden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.
5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren werden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wird durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen werden für weitere 96 h bei 20°C inkubiert.

Beispiel: 35 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR Notl-Schnittstellen am 5' und 3'- Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

5 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

10 Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

(Primersequenz: 5'-

30

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.

Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide 20 werden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des OCS-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7–Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR–Reaktion nach Standardmethoden amplifiziert.

35 GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3').

15

20

25

111

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

5 Beispiel: 36 Expression von Tp-Desaturasen in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-TpDesaturasen transformiert werden, werden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen werden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten werden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu werden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren werden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend werden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben werden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse sind wie folgt: Die Ofentemperatur wird von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgt durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel: 37 Funktionelle Charakterisierung von Desaturasen aus Thalassiosira pseudonana:

Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15-Desaturasen, WO 94/11516 für Δ12-Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022,
WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5-Desaturasen.

Die Aktivität der einzelnen Desaturasen wird aus der Konversionsrate errechnet nach der Formel [Substrat/(Substrat+Produkt)*100].

Die folgenden Tabellen 10 und 11 geben eine Übersicht über die clonierten Thalassiosira pseudonana Desaturasen wieder.

5 Tabelle 10:

10

Länge und charakteristische Merkmale der clonierten Thalassiosira Desaturasen.

	cDNA					
Desaturase	(bp)	Protein (aa)	Cyt. B5	His-Box1	His-Box2	His-Box3
TpD4	1512	503	HPGG	HDGNH	WELQHMLGHH	QIEHHLFP
TpD5-1	1431	476	HPGG	HDANH	WMAQHWTHH	QVEHHLFP
TpD5-2	1443	482	HPGG	HDANH	WLAQHWTHH	QVEHHLFP
TpD6	1449	484	HPGG	HDFLH	WKNKHNGHH	QVDHHLFP
TpFAD2 (d12)	1305	434	_	HECGH	HAKHH	HVAHHLFH
TpO3	1257	419	-	HDAGH	WLFMVTYLQH H	HVVHHLF

Tabelle 11: Länge, Exons, Homolgie und Identitäten der clonierten Desaturasen.

	GDN				
Des.	A (bp)	Exon 1	Exon 2	First Blast Hit	Hom./Iden.
TpD4	2633	496-1314	1571-2260	Thrautochitrium D4- des	56% / 43%
TpD5-1	2630	490-800	900-2019	Phaeodactylum D5- des	74% / 62%
TpD5-2	2643	532-765	854-2068	Phaeodactylum D5- des	72% / 61%
TpD6	2371	379-480	630-1982	Phaeodactylum D6- des	83% / 69%
TpFAD2	2667	728-2032	-	Phaeodactylum FAD2	76% / 61%
ТрО3	2402	403-988	1073-1743	Chaenorhabdidis Fad2	49% / 28%

Analog zu den vorgenannten Beispielen lassen sich auch die Δ -12-Desaturasegene aus Ostreococcus und Thalassiosira clonieren.

Äquivalente:

Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

114

Umsetzungsraten der gefütterten Fettsäuren. Die Konversionsraten wurden berechnet nach der Formel: [Konversionsrate]= [Produkt]/[[Substrat]+[Produkt]*100. Tabelle 2:

BioTaur-	Klone Flä	BioTaur-Klone Fläche in % der GC-Analyse	der GC-A	nalyse										
Clone	Fett- säure	C16:0	C16:1 (n-7)	C18:0	C18:1 (n-9)	C18:3 (n-6)	C18:4 (n-3)	C20:3 (n-6)	C20:4 (n-6)	C20:4 (n-3)	C20:5 (n-3)	C22:4 (n-6)	C22:4 (n-3)	C22:5 (n-3)
Vector	keine	21.261	41.576	4.670	25.330									
BioTaur	Keine	20.831	37.374	4.215	26.475									
Vector	GLA + EPA	22.053	23.632	5.487	17.289	11.574					13.792			
BioTaur	GLA + EPA	20.439	25.554	6.129	19.587	3.521		6.620			10.149			1.127
Vector	EPA	20.669	28.985	6.292	21.712						16.225			
BioTaur	EPA	20.472	26.913	6.570	23.131						11.519			3.251
Vector	ARA	23.169	23.332	6.587	12.735				27.069					
BioTaur	ARA	20.969	31.281	5.367	21.351				9.648			1.632		
Vector	SDA	18.519	12.626	6.642	6.344		47.911			:			=	
BioTaur	SDA	19.683	15.878	7.246	8.403		13.569			25.946			0.876	

Patentansprüche

5

10

15

20

25

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_3 \\
\hline
CH=CH & CH_2 & CH_2 \\
\hline
CH=CH & CH_2 & CH_3
\end{array}$$
(I)

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- oder eine Δ -6-Desaturase-Aktivität codiert, und
- b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -8-Desaturase- oder eine Δ -6-Elongase-Aktivität codiert, und
- c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -5-Desaturase-Aktivität codiert, und
- d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -5-Elongase-Aktivität codiert, und
- e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$ (II)
 $H_{2}C-O-$

215/2004 UP/fr 11.03.2004

21 Fig / 110 Seg

P

R² = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-,

5 R³ = Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-, - oder R² oder R³ unabhängig voneinander einen Rest der allgemeinen Formel Ia:

$$\begin{array}{c|c} CH_2 & CH_2 \\ \hline \end{array}$$

$$\begin{array}{c|c} CH_2 & CH_3 \\ \hline \end{array}$$

$$\begin{array}{c|c} CH_3 & (la) \\ \hline \end{array}$$

n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen, die für Polypeptide mit Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, ausgewählt sind aus der Gruppe bestehend aus:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11,

SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17,

SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27,

SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35,

SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43,

SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63,

SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71,

SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79,

SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID

NO: 99, SEQ ID NO: 101 oder SEQ ID NO: 103 dargestellten

Sequenz, oder

20

30

35

b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14,

SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22,

SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30,

SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38,

SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46,

SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54,

c)

3

SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102 oder SEQ ID NO: 104 dargestellten Aminosäuresequenzen ableiten lassen, oder

10

5

15

20

25

30

35

40

Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102 oder SEQ ID NO: 104 codieren und eine Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturaseaktivität aufweisen.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit ω3-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:

10

15

20

25

(

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten
 Sequenz, oder
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturasaktivität aufweisen.
- 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit Δ-12-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID
 NO: 109 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 110 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturasaktivität aufweisen.
- Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl- bedeuten.
- 6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander ungesättigtes C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen bedeuten.
- Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der transgene Organismus ein transgener Mikroorganismus oder eine transgene Pflanze ist.
- 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass der transgene Organismus eine Öl-produzierende Pflanze, eine Gemüsepflanze oder Zierpflanze ist.

15

20

35

- 9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die transgene Organismus eine transgene Pflanze ausgewählt aus der Gruppe der Pflanzenfamilien: Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae oder Prasinophyceae ist.
- Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die
 Verbindungen der allgemeinen Formel I aus dem Organismus in Form ihrer Öle, Lipide oder freien Fettsäuren isoliert werden.
 - 11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in einer Konzentration von mindestens 5 Gew.-% bezogenen auf den gesamten Lipidgehalt des transgenen Organismus isoliert werden.
 - 12. Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das Verfahren nach einem der Ansprüche 1 bis 11.
 - 13. Öl-, Lipid- oder Fettsäurezusammensetzung, die PUFAs hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 11 umfasst und von transgenen Pflanzen stammt.
 - 14. Verfahren zur Herstellung von Ölen, Lipiden oder Fettsäurezusammensetzungen durch Mischen von Öl, Lipide oder Fettsäuren gemäß Anspruch 12 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 13 mit tierischen Ölen, Lipiden oder Fettsäuren.
- 25 15. Verwendung von Öl, Lipide oder Fettsäuren gemäß Anspruch 12 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 13 oder Ölen, Lipiden oder Fettsäurezusammensetzungen hergestellt gemäß Anspruch 14 in Futter, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
 - 16. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität
 30 codieren, ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46,

SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 dargestellten Aminosäuresequenz ableiten lassen, oder

- 5
- Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, c) SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ D NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 codieren und eine ∆-5-Elongaseaktivität aufweisen.

10

15

17.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Elongaseaktivität

codieren, ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Sequenz.

20

b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70 oder SEQ ID NO: 82 dargestellten Aminosäuresequenz ableiten lassen, oder

25

C) Derivate der in SEQ ID NO: 69 oder SEQ ID NO: 81 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70 oder SEQ ID NO: 82 codieren und eine Δ -6-Elongaseaktivität aufweisen.

18. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Sequenz,

30

b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder

35

Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukc) leinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3-Desaturaseaktivität aufweisen.

10

15

30

35

7

- Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.
- 20. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.
- 25 21. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ-4-Desaturaseaktivität aufweisen.

25

30

- 22. Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -12-Desaturasaktivität codieren, ausgewählt aus der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID
 NO: 109 dargestellten Sequenz, oder
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturasaktivität aufweisen.
 - 23. Isolierte Nukleinsäuresequenz nach den Ansprüchen 16 bis 22, wobei die Sequenz von einer Alge, einem Pilz, einem Mikroorganismus, einer Pflanze oder einem nicht-humanen Tier stammt.
- 15 24. Isolierte Nukleinsäuresequenz nach den Ansprüchen 16 bis 23, wobei die Sequenz aus der Ordnung Salmoniformes, den Diatomeengattungen Thalassiosira oder Crythecodinium oder aus der Familie der Prasinophyceae oder Pythiaceae stammt.
- 25. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 16 bis 24 codiert wird.
 - 26. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 16 bis 24, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
 - 27. Genkonstrukt nach Anspruch 26, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure— oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]—Desaturase(n), Acyl-ACP—Thioesterase(n), Fettsäure—Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure—Synthase(n), Fettsäure—Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure—Desaturase(n), Fettsäure—Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).
- Genkonstrukt nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-6-Elongase- oder Δ-9-Elongase.

- 29. Vektor, enthaltend eine Nukleinsäure nach den Ansprüchen 16 bis 24 oder ein Genkonstrukt nach Anspruch 27.
- 30. Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 16 bis 24, ein Genkonstrukt nach Anspruch 27 oder einen Vektor nach Anspruch 29.
- 31. Transgener nicht-humaner Organismus nach Anspruch 30, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
- 32. Transgener nicht-humaner Organismus nach Anspruch 30 oder 31, wobei der Organismus eine Pflanze ist.

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Zusammenfassung

5

10

15

20

25

30

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ -5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ -6-Desaturase-, eine Δ -5-Desaturase-, Δ -4-Desaturase- und/oder Δ -6-Elongaseaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira oder Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.

Die vorliegende Erfindung betrifft außerdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω -3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω -3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an ungesättigten ω -3-Fettsäuren, Ölen oder Lipiden mit ω -3-Doppelbindungen aufgrund der Expression der im erfindungsgemäßen Verfahren verwendeten Elongasen und Desaturasen vorteilhaft in Verbindung mit ω -3-Desaturasen z.B. einer ω -3-Desaturase aus Pilzen der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und Art Phytophtora infestans oder einer ω -3-Desaturase aus Algen wie der Familie der Prasinophyceae z.B. der Gattung Ostreococcus speziell der Gattung und Art Ostreococcus tauri oder Diatomeen wie der Gattung Thalassiosira speziell der Gattung und Art Thalassiosira pseudonana.

Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.

Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.

Figur 1: Verschiedene Synthese-Wege zur Biosynthese von DHA (Docosahexaensäure)

ib

Figur 2: Substratspezifität der Δ-5-Elongase (SEQ ID NO: 53) gegenüber verschiedenen Fettsäuren

Figur 3: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 20:5ω3.

Figur 4: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 18:4ω3.

pYes3-OmELO/pYes2-EgD4

5/21

Fettsäure-Zusammensetzung (in Mol %) transgener Hefen, die mit den Vektoren pYes3-OmELO3/pYes2-EgD4 oder pYes3-OmELO3/pYes2-EgD4+pESCLeu-PtD5 transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Tryptophan und Uracil / und Leucin in Gegenwart von 250 μM 20:5^{Δ5,8,11,14,17} bzw. 18:4^{Δ6,9,12,15} kultiviert. Die Fettsäuremethylester wurden durch saure Methanolyse aus Zellsedimenten gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n=4) ± Standardabweichung wieder.

pYes3-OmELO/pYes2-EgD4

	p. 666 C226, p. 662 Eg.S.	EgD4 + pESCLeu-PtD5
Fettsäuren	Fütterung mit 20:5 ^{Δ5,8,11,14,17}	Fütterung mit 18:4 ^{Δ6,9,12,15}
16:0	9,35 ± 1,61	7,35 ± 1,37
16:1 ^{Δ9}	14,70 ± 2,72	10,02 ± 1,81
18:0	5,11 ± 1,09	4,27 ± 1,21
18:1 ^{Δ9}	19,49 ± 3,01	10,81 ± 1,95
18:1 ^{∆11}	18,93 ± 2,71	11,61 ± 1,48
18:4 ^{Δ6,9,12,15}	-	7,79 ± 1,29
20:1 ^{Δ11}	$3,24 \pm 0,41$	1,56 ± 0,23
20:1 ^{∆13}	11,13± 2,07	$\textbf{4,40} \pm \textbf{0,78}$
20:4 ^{Δ8,11,14,17}	-	30,05 ± 3,16
20:5 ^{\(\Delta 5,8,11,14,17\)}	6,91± 1,10	$\textbf{3,72} \pm \textbf{0,59}$
22:4 ^{Δ10,13,16,17}	-	5,71 ± 1,30
22:5 ^{△7,10,13,16,19}	8,77 ± 1,32	$1,10 \pm 0,27$
22:6 ^{Δ4,7,10,13,16,19}	$\textbf{2,73} \pm \textbf{0,39}$	$\textbf{0,58} \pm \textbf{0,10}$

22:5^{Δ7,10,13,16,19} 22:4^{Δ7,10,13,16} 22:547,10,13,16,19 22:447,10,13,18 20:505,11,14,17 20:405,8,11,14 Expression 10: TpELO1 + $20:5^{\Delta5,8,11,14,17}$ Expression 9: Kontrolle + 20:5 $^{\Delta5,8,11,14,17}$ Expression 7: Kontrolle + 20: $4^{\Delta5,8,11,14}$ Expression 8: TpELO1 + 20: $4^{\Delta5,8,11,14}$ 18:109 18:0 16:1^{∆9} < 16:0

Figur 9: Expression von TpELO1 in Hefe

Figur 10: Expression von TpELO3 in Hefe.

11/21

Figur 11: Expression von Thraustochytrium ∆5-Elongase TL16/pYES2.1 in Hefe.

Figur 12: Desaturierung von Linolsäure (18:2 ω -6-Fettsäure) zu α -Linolensäure (18:3 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 13: Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 14: Desaturierung von C20:2 ω -6-Fettsäure zu C20:3 ω -3-Fettsäure durch Pi-omega3Des.

Figur 15: Desaturierung von C20:3- ω -6-Fettsäure zu C20:4- ω -3-Fettsäure durch Pi-omega3Des.

Figur 16: Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des.

Figur 17: Desaturierung von Docosatetraensäure (C22:4-ω-6-Fettsäure) zu Docosapentaensäure (C22:5-ω-3-Fettsäure) durch Pi-omega3Des.

18/21

Figur 18: Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren % Desaturierung

19/21

Figur 19: Desaturierung von Phospholipid gebundener Arachidonsäure zu EPA durch die Pi-Omega3Des

20/21

Figur 20: Umsetzung von Linolsäure (Pfeil) zu γ -Linolensäure (γ -18;3) durch Ot-Des6.1.

Absorption mAU

Retentionszeit

21/21

Figur 21: Umsetzung von Linolsäure und α-Linolensäure (A und C), sowie Rekonstitution des ARA- bzw. EPA-Syntheseweges in Hefe (B und D) in Gegenwart von OtD6.1.

					SE	QUEN	ICE I	LISTI	NG							
<110>	BAS	F Pla	int S	Scien	ce G	Hdm										
<120> trans	Ver: genen	fahre Orga	n zu mism	ır He nen	rste	llur	g vo	on me	hrfa	ich u	ngsä	ttig	rten	Fett	säurer	ı in
<130>	PF5	5426														
<140> <141>		10215 1-03-														
<160>	110															
<170>	Pate	entIn	ver	sion	3.1			•								
<210> <211> <212> <213>	_	s lena	grac	ilis												
<220> <221> <222> <223>	CDS (1). Delt	.(12 :a-8-	66) Desa	tura	se											
<400>																
atg aa Met Ly 1	g tca s Ser	Lys	ege Arg 5	caa Gln	gcg Ala	ctt Leu	ccc Pro	ctt Leu 10	aca Thr	att Ile	gat Asp	gga Gly	aca Thr 15	aca Thr		48
tat ga Tyr As	t gtg p Val	tct Ser 20	gcc Ala	tgg Trp	gtc Val	aat Asn	ttc Phe 25	cac His	cct Pro	ggt Gly	ggt Gly	gcg Ala 30	gaa Glu	att Ile		96
ata ga Ilė Gl	g aat u Asn 35	tac Tyr	caa Gln	gga Gly	agg Arg	gat Asp 40	gcc Ala	act Thr	gat Asp	gcc Ala	ttc Phe 45	atg Met	gtt Val	atg Met		144
cac to His Se 50	r Gin	gaa Glu	gcc Ala	ttc Phe	gac Asp 55	aag Lys	ctc Leu	aag Lys	cgc Arg	atg Met 60	ccc Pro	aaa Lys	atc Ile	aat Asn	;	192.
ccc ag Pro Se 65	t tct r Ser	gag Glu	ttg Leu	cca Pro 70	ccc Pro	cag Gln	gct Ala	gca Ala	gtg Val 75	aat Asn	gaa .Glu	gct Ala	caa Gln	gag Glu 80		240
gat tt Asp Ph	c cgg e Arg	aag Lys	ctc Leu 85	cga Arg	gaa Glu	gag Glu	ttg Leu	atc Ile 90	gca Ala	act Thr	ggc Gly	atg Met	ttt Phe 95	gat Asp	:	288
gcc tc Ala Se	c ccc r Pro	ctc Leu 100	tgg Trp	tac Tyr	tca Ser	\mathtt{Tyr}	aaa Lys 105	atc Ile	agc Ser	acc Thr	aca Thr	ctg Leu 110	ggc Gly	ctt Leu	:	336
gga gt Gly Va	g ctg l Leu 115	ggt Gly	tat Tyr	ttc Phe	ctg Leu	atg Met 120	gtt Val	cag Gln	tat Tyr	cag Gln	atg Met 125	tat Tyr	ttc Phe	att Ile	,	384
ggg gc Gly Al 13	a val	ttg Leu	ctt Leu	ejà aaa	atg Met 135	cac His	tat Tyr	caa Gln	cag Gln	atg Met 140	Gly ggc	tgg Trp	ctt Leu	tct Ser	4	132
cat gad His As 145	att Ile	tgc Cys	cac His	cac His 150	cag Gln	act Thr	ttc Phe	aag Lys	aac Asn 155	cgg Arg	aac Asn	tgg Trp	aac Asn	aac Asn 160	4	180

ctc gtg gga ctg gta ttt ggc aat ggt ctg caa ggt ttt tcc gtg aca Leu Val Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val Thr 165 170 175

tgc tgg aag gac aga cac aat gca cat cat tcg gca acc aat gtt caa Cys Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val Gln 180 185 190

							aac Asn 200									624
							ccg Pro									672
							atc Ile									720
tgt Cys	ttc Phe	cag Gln	agc Ser	gtg Val 245	ttg Leu	acc Thr	gtg Val	cgc Arg	agt Ser 250	ctg Leu	aag Lys	gac Asp	aga Arg	gat Asp 255	aac Asn	768
							aag Lys									816
							ttc Phe 280									864
							ttc Phe									912
							atg Met									960
							cat His									1008
							gly ggg									1056
							cac His 360									1104
							tac Tyr									1152
							ccg Pro									1200
							ttc Phe									1248
gcg Ala	GJÀ aaa	aag Lys	gct Ala 420	cta Leu	taa											1266

<210> 2 <211> 421 <212> PRT <213> Euglena gracilis

<400> 2

Met Lys Ser Lys Arg Gln Ala Leu Pro Leu Thr Ile Asp Gly Thr Thr 1 $$ 5 $$ 10 $$ 15

Tyr Asp Val Ser Ala Trp Val Asn Phe His Pro Gly Gly Ala Glu Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ile Glu Asn Tyr Gln Gly Arg Asp Ala Thr Asp Ala Phe Met Val Met 35 40 45

His Ser Gln Glu Ala Phe Asp Lys Leu Lys Arg Met Pro Lys Ile Asn 50 60

Pro Ser Ser Glu Leu Pro Pro Gln Ala Ala Val Asn Glu Ala Gln Glu 65 70 75 80

Asp Phe Arg Lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe Asp 85 90 95

Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Ser Thr Thr Leu Gly Leu 100 105 110

Gly Val Leu Gly Tyr Phe Leu Met Val Gln Tyr Gln Met Tyr Phe Ile 115 120 125

Gly Ala Val Leu Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu Ser 130 135 140

His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn Asn 145 155 160

Leu Val Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val Thr 165 170 175

Cys Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val Gln 180 185 190

Gly His Asp Pro Asp Ile Asp Asn Leu Pro Leu Leu Ala Trp Ser Glu 195 200 205

Asp Asp Val Thr Arg Ala Ser Pro Ile Ser Arg Lys Leu Ile Gln Phe 210 220

Gln Gln Tyr Tyr Phe Leu Val Ile Cys Ile Leu Leu Arg Phe Ile Trp 225 230 235 240

Cys Phe Gln Ser Val Leu Thr Val Arg Ser Leu Lys Asp Arg Asp Asn 245

Gln Phe Tyr Arg Ser Gln Tyr Lys Lys Glu Ala Ile Gly Leu Ala Leu 260 265 270

His Trp Thr Leu Lys Ala Leu Phe His Leu Phe Phe Met Pro Ser Ile 275 280 285

Leu Thr Ser Leu Leu Val Phe Phe Val Ser Glu Leu Val Gly Gly Phe 290 295 300

Gly Ile Ala Ile Val Val Phe Met Asn His Tyr Pro Leu Glu Lys Ile 305 310 315

Gly Asp Ser Val Trp Asp Gly His Gly Phe Ser Val Gly Gln Ile His Glu Thr Met Asn Ile Arg Arg Gly Ile Ile Thr Asp Trp Phe Phe Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu Trp Pro Thr Leu Pro Arg His Asn Leu Thr Ala Val Ser Tyr Gln Val Glu Gln Leu Cys Gln Lys His Asn Leu Pro Tyr Arg Asn Pro Leu Pro His Glu Gly Leu Val Ile Leu Leu Arg Tyr Leu Ala Val Phe Ala Arg Met Ala Glu Lys Gln Pro Ala Gly Lys Ala Leu 420 <210> 3 <211> 777 <212> DNA <213> Isochrysis galbana <220> <221> CDS (1)..(777) <222> <223> Delta-9-Elongase <400> 3 atg gcc ctc gca aac gac gcg gga gag cgc atc tgg gcg gct gtg acc Met Ala Leu Ala Asn Asp Ala Gly Glu Arg Ile Trp Ala Ala Val Thr 48 10 gac ccg gaa atc ctc att ggc acc ttc tcg tac ttg cta ctc aaa ccg 96 Asp Pro Glu Ile Leu Ile Gly Thr Phe Ser Tyr Leu Leu Lys Pro ctg ctc cgc aat tcc ggg ctg gtg gat gag aag aag ggc gca tac agg Leu Leu Arg Asn Ser Gly Leu Val Asp Glu Lys Lys Gly Ala Tyr Arg 144 acg tcc atg atc tgg tac aac gtt ctg ctg gcg ctc ttc tct gcg ctg 192 Thr Ser Met Ile Trp Tyr Asn Val Leu Leu Ala Leu Phe Ser Ala Leu 55 age tte tae gtg acg gcg acc gcc ctc ggc tgg gac tat ggt acg ggc Ser Phe Tyr Val Thr Ala Thr Ala Leu Gly Trp Asp Tyr Gly Thr Gly 240 geg tgg ctg cgc agg caa acc ggc gac aca ccg cag ccg ctc ttc cag 288 Ala Trp Leu Arg Arg Gln Thr Gly Asp Thr Pro Gln Pro Leu Phe Gln 90 tgc ccg tcc ccg gtt tgg gac tcg aag ctc ttc aca tgg acc gcc aag 336 Cys Pro Ser Pro Val Trp Asp Ser Lys Leu Phe Thr Trp Thr Ala Lys 105 gca ttc tat tac tcc aag tac gtg gag tac ctc gac acg gcc tgg ctg Ala Phe Tyr Tyr Ser Lys Tyr Val Glu Tyr Leu Asp Thr Ala Trp Leu 384 agg gtc tcc ttt ctc cag gcc ttc cac cac ttt ggc gcg ccg tgg gat 432

Arg Val Ser Phe Leu Gln Ala Phe His His Phe Gly Ala Pro Trp Asp

gtg Val 145	\mathtt{Tyr}	ctc Leu	Gly ggc	att Ile	cgg Arg 150	ctg Leu	cac His	aac Asn	gag Glu	ggc Gly 155	gta Val	tgg Trp	atc Ile	ttc Phe	atg Met 160	480
ttt Phe	ttc Phe	aac Asn	tcg Ser	ttc Phe 165	att Ile	cac His	acc Thr	atc Ile	atg Met 170	tac Tyr	acc Thr	tac Tyr	tac Tyr	ggc Gly 175	ctc Leu	528
acc Thr	gcc Ala	gcc Ala	ggg Gly 180	tat Tyr	aag Lys	ttc Phe	aag Lys	gcc Ala 185	aag Lys	ccg Pro	ctc Leu	atc Ile	acc Thr 190	gcg Ala	atg Met	576
cag Gln	atc Ile	tgc Cys 195	cag Gln	ttc Phe	gtg Val	ggc Gly	ggc Gly 200	ttc Phe	ctg Leu	ttg Leu	gtc Val	tgg Trp 205	gac Asp	tac Tyr	atc Ile	624
aac Asn	gtc Val 210	ccc Pro	tgc Cys	ttc Phe	aac Asn	tcg Ser 215	gac Asp	aaa Lys	Gly	aag Lys	ttg Leu 220	ttc Phe	agc Ser	tgg Trp	gct Ala	672
ttc Phe 225	aac Asn	tat Tyr	gca Ala	tac Tyr	gtc Val 230	ggc ggc	tcg Ser	gtc Val	ttc Phe	ttg Leu 235	ctc Leu	ttc Phe	tgc Cys	cac His	ttt Phe 240	720
ttc Phe	tac Tyr	cag Gln	gac Asp	aac Asn 245	ttg Leu	gca Ala	acg Thr	aag Lys	aaa Lys 250	tcg Ser	gcc Ala	aag Lys	gcg Ala	ggc Gly 255	aag Lys	768
	ctc Leu	tag														777
<21		1														
<21: <21: <21:	2> 1	258 PRT Isocl	ırysi	is ga	albar	ıa									•	
<21	2> 1 3> 1	PRT	nrysi	- Ls ga	albar	ıa									•	
<21: <21: <40	2> 1 3> 1 0> 4	PRT Isoci	nrysi Ala				Gly	Glu	Arg 10	Ile	Trp	Ala	Ala	Val 15	Thr	·
<21: <21: <400 Met 1	2> 1 3> : 0> 4	PRT [soct ! Leu		Asn 5	Asp	Ala			10					15		
<21: <21: <400 Met 1	2> 1 3> 2 0> 4 Ala Pro	PRT [soch Leu Glu	Ala	Asn 5	Asp Ile	Ala Gly	Thr	Phe 25	10 Ser	Tyr	Leu	Leu	Leu 30	15 Lys	Pro	
<21: <21: <400 Met 1 Asp	2> 13> 3 3> Ala Pro Leu	PRT Isoch Leu Glu Arg 35	Ala Ile 20	Asn 5 Leu Ser	Asp Ile Gly	Ala Gly Leu	Thr Val 40	Phe 25 Asp	10 Ser Glu	Tyr Lys	Leu Lys	Leu Gly 45	Leu 30 Ala	15 Lys Tyr	Pro Arg	·
<21: <21: <400 Met 1 Asp Leu	2> 13> 3 3> 3 Ala Pro Leu Ser 50	PRT Isoch Leu Glu Arg 35	Ala Ile 20 Asn	Asn 5 Leu Ser	Asp Ile Gly Tyr	Ala Gly Leu Asn 55	Thr Val 40 Val	Phe 25 Asp Leu	10 Ser Glu Leu	Tyr Lys Ala	Leu Lys Leu 60	Leu Gly 45 Phe	Leu 30 Ala Ser	15 Lys Tyr Ala	Pro Arg Leu	·
<21: <21: <400 Met 1 Asp Leu Thr	2> 13> 3 3> 3 Ala Pro Leu Ser 50 Phe	PRT [soch Leu Glu Arg 35 Met	Ala Ile 20 Asn Ile	Asn 5 Leu Ser Trp	Asp Ile Gly Tyr Ala	Ala Gly Leu Asn 55	Thr Val 40 Val	Phe 25 Asp Leu	Ser Glu Leu Gly	Tyr Lys Ala Trp 75	Leu Lys Leu 60	Leu Gly 45 Phe Tyr	Leu 30 Ala Ser	15 Lys Tyr Ala Thr	Pro Arg Leu Gly 80	
<21: <21: <400 Met 1 Asp Leu Thr Ser 65	2> 13> 20> 40 Ala Pro Leu Ser 50 Phe	PRT Isoch Leu Glu Arg 35 Met Tyr	Ala Ile 20 Asn Ile Val	Asn 5 Leu Ser Trp Thr	Asp Ile Gly Tyr Ala 70	Ala Gly Leu Asn 55 Thr	Thr Val 40 Val Ala Gly	Phe 25 Asp Leu Leu	Ser Glu Leu Gly Thr	Tyr Lys Ala Trp 75	Leu Lys Leu 60 Asp	Leu Gly 45 Phe Tyr	Leu 30 Ala Ser Gly	Lys Tyr Ala Thr Phe	Pro Arg Leu Gly 80 Gln	

Arg Val Ser Phe Leu Gln Ala Phe His His Phe Gly Ala Pro Trp Asp 130 135

Val Tyr Leu Gly Ile Arg Leu His Asn Glu Gly Val Trp Ile Phe Met Phe Phe Asn Ser Phe Ile His Thr Ile Met Tyr Thr Tyr Gly Leu Thr Ala Ala Gly Tyr Lys Phe Lys Ala Lys Pro Leu Ile Thr Ala Met 180 185 Gln Ile Cys Gln Phe Val Gly Gly Phe Leu Leu Val Trp Asp Tyr Ile 200 Asn Val Pro Cys Phe Asn Ser Asp Lys Gly Lys Leu Phe Ser Trp Ala Phe Asn Tyr Ala Tyr Val Gly Ser Val Phe Leu Leu Phe Cys His Phe Phe Tyr Gln Asp Asn Leu Ala Thr Lys Lys Ser Ala Lys Ala Gly Lys Gln Leu <210> 5 <211> 1410 <212> DNA <213> Phaeodactylum tricornutum <220> <221> CDS <222> (1)..(1410) <223> Delta-5-Desaturase <400> 5 atg gct ccg gat gcg gat aag ctt cga caa cgc cag acg act gcg gta Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val gcg aag cac aat gct gct acc ata tcg acg cag gaa cgc ctt tgc agt Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser 96 20 ctg tct tcg ctc aaa ggc gaa gaa gtc tgc atc gac gga atc atc tat Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr 144 gac ctc caa tca ttc gat cat ccc ggg ggt gaa acg atc aaa atg ttt 192 Asp Leu Gln Ser Phe Asp His Pro Gly Glu Thr Ile Lys Met Phe ggt ggc aac gat gtc act gta cag tac aag atg att cac ccg tac cat 240 Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His 70 acc gag aag cat ttg gaa aag atg aag cgt gtc ggc aag gtg acg gat Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp 288 ttc gtc tgc gag tac aag ttc gat acc gaa ttt gaa cgc gaa atc aaa 336 Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys

(:

gga ggaa gtc ttc aag att gtg cga cga ggc aag gat ttc ggt act ttg Arg Glu val Phe Lys Ile Val Arg Arg Arg Gly Lys Asp Phe Gly Thr Leu 115 gga tgg ttc ttc cgt ggg ttt tgc tac att ggc att ttc ttc tac ctg Ill The Phe Phe Arg Ala Phe Cys Tyr Ile Ala Ile Phe Phe Tyr Leu 116 aga tac cat tgg gtc acc acc acg gga acc tct tgg ctg ctg gcc Gln Tyr His Trp Val Thr Thr Gly Thr Ser Trp Leu Leu Ala Val Ala 116 tac gga atc tcc caa ggg atg at tgg atg at ggc atg at gcc Gln Tyr Gly Ile Ser Gln Ala Met Ile Gly Met Asn Val Gln His Asp Ala 117 aac cac ggg gcc acc tcc aag cgt ccc tgg gtc aac gac atg cta ggc Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly 180 tcc ggt gcg gat ttt att ggt ggt tcc aag tgg ctc tgg ag aca 181 cac tgg acc cac acg ct tac acc acg acg fly Ser Lys Trp Leu Trp Gln Gln Gln 195 cac tgg acc cac acg ct tac acc acc acc acg gcg gat gat cac 195 cac tgg acc cac acg ct tac acc acc acc gcc gag ag acc acg 210 acc tgg acc cac acg ct tac acc acc acc gcc gag ag acc acg 221 acc tr ggt gcc gas cac aca tcc tac acc acc acc gcc gag ag acc acc 222 acc tt ggt acc gas caa atg ctc tac acc acc acc gcc gag ag acc acc 223 acc tt ggt acc gas cac aca atg ctc tac acc acc acc 223 acc tt ggt gcc gas cac tgg cta cac acc 223 acc tt ggt acc gat acc tgg cta cac acc acc acc 224 acc tt ggt acc gat acc tgg cta cac acc 225 cat cc gct ctg acc tgg ttg tcc cta tcc acc 226 cat ccc gct ctg acc tgg ttg tcc gct tc acc 227 cat tac acc gct tgg ccc gat acc tgg ttg tcc 226 cat tac acc gct tgg ccc gat acc 227 cat tac acc gct tgg ttg tcc gct 228 cac tgc gct tac acc 229 cat tac acc gc gcg gca act tcc tcc 220 cat tac acc gct acc tgg cac acc 220 cat tac acc gc acc 220 cat tac acc gct acc tgg cac acc 220 cat tac acc gct tgg tcc tgg tcc 220 cat tac acc gct tgg cac tgg tcc 220 cat tac acc gct tgg tcc tgg cgc 220 cat tac acc gct tgg cac tcc 220 cat tac acc gct acc tcc 220 cat tac acc gc acc gcc 220 cat tac acc gc acc gcc 220 cat tac acc gcc acc acc 220 cat tac acc acc acc 220 cat tac acc acc acc 220 cat tac acc acc acc 2	
Cac trop are can cac cac got the are also fly styr fle also fly styr fly fle ser din also fly	384
Gin Tyr His Tyr Val the Thr Gly Thr Ser Tyr Leu Leu Ala Val Ala 1550 1660 tac gga atc tcc caa gcg atg att ggc atg aat gtc cag cac gat gcc Tyr Gly Ile Ser Gin Ala Met Ile Gly Met Asn Val Gln His Asp Ala 1750 aac cac ggg gcc acc tcc aag cgt ccc tgg gtc aac gac atg cta ggc Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly 1860 ctc ggt gcg gat ttt att ggt ggt tcc aag tgg ctc tgg cag gaa caa Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Gln Gln 205 cac tgg acc cac cac gct tac acc aat cac gcg atg gat gag atg gat ccc 3210 cac tgg acc cac cac gct tac acc aat cac gcg atg atg gat ccc 3225 agc ttt ggt gcc gaa cca atg ctc cta ttc aac gac att ccc ttg gat Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp 2230 cat ccc gct cgt acc tgg cta cat tgg ctc cat tcc aaa gca ttc ttt tac atg His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Pro Phe	432
Tyr Gly Ile Ser Gln Ala Met Ile Gly Met Asn Val Gln His Asp Ala 175 aac cac ggg gcc acc tcc aag cgt ccc tgg gtc aac gac atg cta ggc Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly 180 ctc ggt gcg gat ttt att ggt ggt tcc aag tgg ctc tgg cag gaa caa Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln 200 cac tgg acc cac cac gct tac acc aat cac gcc gag atg gat ccc gat His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp 210 agc ttt ggt gcc gaa cca atg ctc cta ttc aac gac tat ccc tgg gat ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp 240 cat ccc gct cgt acc tgg cta cat cgc ttt caa gca ttc ttt aat ggt His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 250 cat ccc gct cgt acc tgg cta cat cgc ttt caa gca ttc ttt aa atg His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 260 ccc gtc ttg gct gga tac tgg ttg tcc gct gtc ttc aat cac aat Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 ctt gac ctc cag caa ccg ggc gca ctt tcc gtc ggt atc cgt ctc gac Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 270 aac gct ttc att cac tcg cac acg ag tag ggt ttc tgg ggt tac tgc ggc gct Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Tyr Arg Ala 290 aac gct ttc att cac tcg cga cgc aag tat gct ctg ggt ttc tgg cgg gtt acc ggt gct Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 acc gaa tgg tcc ggt gc cgt gtc ttt tgg aac acc acc cg gcc acc gat ggt gct acc att gcc gcg gct Asn Ala Phe Ile Ala Val Phe Gly Asn Ile Met Leu Met Gly Val 335 ctc gaa tgg tcc gc gac cc acc acc acc acc acc acc acc	480
Ash His Gly Ala Thr Ser Lys Arg Pro Trp Val Ash Asp Met Leu Gly 190 ctc ggt gcg gat ttt att ggt ggt tcc aag tgg ctc tgg cag gaa caa Leu Gly Ala Asp Phe Tle Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln 205 cac tgg acc cac cac cac gct tac acc aat cac gcc gag atg gat ccc gat His Trp Thr His His Ala Tyr Thr Ash His Ala Glu Met Asp Pro Asp 210 agc ttt ggt gcc gaa cca atg ctc cta ttc aac gac tat ccc ttg gat Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Ash Asp Tyr Pro Leu Asp 225 cat ccc gct ctg cac tag cta cat cgc ttt caa gca ttc ttt tac atg His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 240 cat ccc gtc ttg gct gga tac tgg ttg tcc gct gtc ttc aat cca caa atg His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 245 ccc gtc ttg gct gga cac gac ggc gca ctt tcc gtc gt atc cgc ttl acc cac caa atg Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Ash Pro Gln Ile 260 ctt gac ctc cag caa cgc ggc gca ctt tcc gtc ggt atc cgt ctc gac Leu Asp Leu Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 295 aac gct ttc att cac tcg cga cgc aag tat gcg ttt ttc tgg cgg gct Ash Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 gtg tac att gcg gtg aac gtg att gcc ccg ttt tac acc aca acc ccc gac Ash Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 gtg tac att gcg gtg acc gtg ttt gcc ccg ttt tac acc acc acc gcc gcc acc ttc gac acc gcc gcc gcc acc gcc g	528
Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln 195 200 cac tgg acc cac cac gct tac acc aat cac gcc ga atg gat ccc gat His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp 210 agc ttt ggt gcc gaa cca atg ctc cta ttc aca gac tat ccc ttg gat Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp 225 cat ccc gct cgt acc tgg cta cat cgc ttt caa gca tat ccc ttg gat His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 255 ccc gtc ttg gct gga tac tgg ttg tcc gct gtc ttc aat cat cgc ttt caa gca tat ctc tt tac atg Pro Val Leu Ala Gly Tyr Trp Leu Ser His Val Phe Asn Pro Gln Ile 265 ccc gtc ttg gct gga tac tgg ttg tcc gct gtc ttc aat cca caa att Pro Val Leu Ala Gly Tyr Trp Leu Ser Val Gly Ile Arg Leu Asp Leu Gln Gln Ala Phe Fro Asn Pro Gln Ile 265 aac gct ttc att cac tcg gcg gca ctt tcc gtc ggt atc cgt ctg acc Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 gtg tac att gcg gtg aac gtg att gct gg gcg gca ctt tac acc acc acc acc gct Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 200 gtg tac att gcg gtg acc gtg att gcc gt gtc ttc acc acc acc acc gc ycc ycl Tyr Ile Ala Val Phe Trp Arg Ala 200 gtg tac att gcg gtg acc gt gtg att gcc gt gtc ttc acc acc acc acc acc ycl ycl Tyr Ile Ala Val Phe Trp Arg Ala 200 gtg tac att gcg gtg acc ycc gtg gtg att gcc ycc ycl ycl Yul Ala Phe Trp Arg Ala 300 gcg acc ycc gaa tcg tcc tgg cgt gtc ttt tt gga acc acc acc acc acc acc ycc gcg ycc ycl ycc ycc ycc ycc ycc ycc ycc ycc	576
Also ago the god god and arg the first and and and and argo the series of the series and ago the series and ago the series and and arguments and arguments are series and as a series and a series and arguments are series and as a series and arguments are series are series and arguments are series are series are series and arguments are series are series and arguments ar	624
Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp 240 Cat ccc gct cgt acc tgg cta cat cgc ttt caa gca ttc ttt tac atg Asp 245 Ccc gtc ttg gct gga tac tgg ttg tcc 265 Ccc gtc ttg gct gga tac tgg ttg tcc 265 Ccc gtc ttg gct Gln Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 Ctt gac ctc cag caa cgc ggc gca ctt tcc ggt ggt atc cgc Asn Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 295 Gas ctt ta att cac tcg cga cgc acg gcg gca ctt tcc ggt ttc Asn Ala Phe Pro Asn Pro Gln Ile 285 Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 gtg tac att gcg gtg acc ggt att gcc ggt att tac acc acc gcg gcg acc acc acc acc acc a	672
Ris Pro Ala Arg Thr 245 Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 255 Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 Pro Val Leu Ala Gly Tyr Trp Leu Ser Val Gly Tile Asn Leu Asp Leu Asp Leu Gln Gln Ris Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala Val Phe Trp Arg Ala Zys Tyr Ala Val Phe Trp Arg Ala Tyr Ile Ala Val Asn Val Tle Ala Pro Phe Tyr Thr Asn Ser Gly 315 Pro Thr Asn Ser Gly Val Gly Thr Ser Trp Arg Val Phe Gly Asn Tle Met Leu Met Gly Val Asn Ala Glu Ser Leu Ala Val Phe Gly Asn Ala Glu Ser Ala Asp Arg Asp Pro Thr Ala Val Phe Ser Leu Lys Thr Gly Glu Ser Ala Asp Arg Arg Asp Pro Thr Ala Pro Leu Lys Thr Gly Glu Ser Ala Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 330 Pro Thr Gly Cly Ser Thr Tyr Glu Asn Thr Gly Cly Ser Thr Tyr Glu Asn Thr Glu Val Glu Thr Ser Gly Yal Glu Ser Ctt Ctt Ctt Ctt Ctt Ctt Ctt Ctt Ctt Ct	720
Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 265 Ctt gac ctc cag caa cgc ggc ggc gcc ctc ser Val Gly Ile Asp Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Asp Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 285 aac gct ttc att cac tcg cga cgc aag tat gcg gtt ttc tgg cgg gct Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 300 gtg tac att gcg gtg aac gtg att gry Tyr Ala Val Phe Trp Arg Ala 300 gtg tac att gcg gtg aac ggt gat Asn Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly 310 ctc gaa tgg tcc tgg cgt gtc ttt gga Aac ac atc atg gtg gtg Leu Ala Val Phe Gly Asn Ile Met Leu Met Gly 335 gcg gaa tcg ctc gcg ctg gcg tct ttt tcg ttg Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 345 gaa tcc gcg gat ccg gat ccg acc gcc ctg scc Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 355 gaa tcc gcg gat cgc gat ccg acc ctg acc ctg Asp Arg Asp Arg Asp Arg Asp Arg Asp Arg Asp Pro Thr Ala Ser Cys Thr Gly Glu 365 cca gtc gac tgg ttc aag acc acg gtc gat ctc tac ggt cys Thr Tyr Gly 370 gga ttc ctt tcc ggt ttc acc acc gga ggt ctc acc acc ttc acc ggt tacc tac ggt thr Tyr Gly 385 gga ttc ctt tcc ggt ttc acc acc gga ggt ctc acc acc ttc acc ggt tacc ctc ctc gcg ttc acc acc ttc gat ttc ctc acc ggt tacc ctc gcg ttc ctc acc ggt tacc ctc gcg acc ttc acc ggt tacc ctc acc acc ctc acc acc ctc acc ac	768
Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 285 aac gct ttc att cac tcg cga cgc aag tat gcg gtt ttc tgg cgg gct Asn Ala Phe Ile His Ser Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 gtg tac att gcg gtg aac ggt acc gtg att ttc gg asp gtg Tyr Ile Ala Val Asn 310 ctc gaa tgg tcc tgg cgt gtc ttt gga asp Ile Met Leu Met Gly 335 gcg gaa tcg ctc gcg ctg gcg gtc ttt tcg gcg gtt ttc atc atg ggt gtg Val Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 350 gaa tcc gcg gat cgc gat ccg acc gcc cac acc acc acc acc acc acc	816
Ash Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 gtg tac att gcg gtg aac gtg att gct ray 310 ctc gaa tgg tcc tgg cgt Arg Val Phe Gly Ash 330 gtg gaa tcg tcc tgg cgt Arg Val Phe Gly Ash 330 gcg gaa tcg tcc gcg ctg Arg Val Phe Gly Ash 330 gcg gaa tcg tcc gcg ctg Arg Val Phe Gly Ash 330 gcg gaa tcg tcc gcg ctg Arg Val Phe Gly Ash 330 gcg gaa tcg ctc gcg ctg Arg Val Phe Gly Ash 330 gcg gaa tcg tcc gcg ctg Arg Val Phe Gly Ash 330 gcg gaa tcg ctc Arg Arg Arg Arg Arg Arg Val Phe Gly Ash 330 gcg gaa tcg ctc Arg Ctc Arg Grad Arg	864
Val Tyr Ile Ala Val Asn 310 Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly 320 Ctc gaa tgg tcc tgg cgt gtc ttt gga aac atc atg ctc atg ggt gtg Leu Glu Trp Ser Trp Arg Val Phe Gly Asn 330 Ile Met Leu Met Gly Val 335 gcg gaa tcg ctc gcg ctg gcg gtc ctg ttt tcg ttg tcg cac aat ttc Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 350 gaa tcc gcg gat cgc gat ccg acc gcc cca ctg aaa acg acg gga gaa Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu 370 gaa tcc gcg gat tc aag aca cag gtc gaa act tcc tcc tgc act tac ggt Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 gga ttc ctt tcc ggt tgc ttc acg gga ggt ctc aac ttt cag gtt gaa Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 395 gga ttc ctt tcc ggt tgc ttc acg gga ggt ctc aac ttt cag gtt gaa Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 395	912
Leu Glu Trp Ser Trp Arg Val Phe Gly Asn 330 Tle Met Leu Met Gly Val 335 Tle Gly	960
Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 340 gaa tcc gcg gat ccg acc gcc cca ctg aaa aag acg gga gaa Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu 365 cca gtc gac tgg ttc aag aca cag gtc gaa act tcc tgc act tac ggt Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 gga ttc ctt tcc ggt tgc ttc acg gga ggt ctc aac ttt cag gtt Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Gly Leu Asn Phe Gln Val Glu 395 gga ttc ctt tcc ggt tgc ttc acg gga ggt ctc aac ttt cag gtt gaa Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 400	1008
Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu 365 cca gtc gac tgg ttc aag aca cag gtc gaa act tcc tgc act tac ggt Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 gga ttc ctt tcc ggt tgc ttc acg gga ggt ctc aac ttt cag gtt gaa Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 395	1056
Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 375 380 gga ttc ctt tcc ggt tgc ttc acg gga ggt ctc aac ttt cag gtt gaa Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385 390 395 400	1104
Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385 390 395 400	1152
Cac cac ttg ttg cca cgg atg agg agg ggt tgg tot agg tot agg	1200
His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 405 410 415	1248

ccc aag gtc Pro Lys Val							1296
tac ccg tgg Tyr Pro Trp 435			Leu Ser				1344
gcg gcc ggg Ala Ala Gly 450	acc ggt g Thr Gly A	cc aac tgg la Asn Trp 455	cgc cag Arg Gln	atg gcc Met Ala 460	aga gaa Arg Glu	aat ccc Asn Pro	1392
ttg acc gga Leu Thr Gly 465		aa					1410
<210> 6 <211> 469 <212> PRT <213> Phace	odactylum	cricornutu	ım				
<400> 6							
Met Ala Pro 1	Asp Ala A 5	sp Lys Leu	Arg Gln 10	Arg Gln	Thr Thr	Ala Val 15	
Ala Lys His	Asn Ala A 20	la Thr Ile	e Ser Thr 25	Gln Glu	Arg Leu 30	Cys Ser	
Leu Ser Ser	Leu Lys G	ly Glu Glu 40	ı Val Cys	Ile Asp	Gly Ile 45	Ile Tyr	
Asp Leu Gln 50	Ser Phe A	sp His Pro 55	Gly Gly	Glu Thr 60	Ile Lys	Met Phe	
Gly Gly Asn 65	Asp Val T		Tyr Lys	Met Ile 75	His Pro	Tyr His 80	
Thr Glu Lys	His Leu G 85	lu Lys Met	Lys Arg 90	Val Gly	Lys Val	Thr Asp 95	
Phe Val Cys	Glu Tyr L 100	ys Phe Asp	Thr Glu 105	Phe Glu	Arg Glu 110		
Arg Glu Val 115	Phe Lys I	le Val Arg 120	_	Lys Asp	Phe Gly 125	Thr Leu	
Gly Trp Phe 130	Phe Arg A	la Phe Cys 135	: Tyr Ile	Ala Ile 140	Phe Phe	Tyr Leu	
Gln Tyr His 145		hr Thr Gly 50	Thr Ser	Trp Leu 155	Leu Ala	Val Ala 160	
Tyr Gly Ile	Ser Gln A 165	la Met Ile	e Gly Met 170		Gln His	Asp Ala 175	
Asn His Gly	Ala Thr S 180	er Lys Ar <u>c</u>	Pro Trp 185	Val Asn	Asp Met 190	_	
Leu Gly Ala 195	Asp Phe I	le Gly Gly 200		Trp Leu	Trp Gln 205	. Glu Gln	

His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp

Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp

His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met

Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile

Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 280

Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala

Val Tyr Ile Ala Val Asn Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly

Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val

Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe

Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu

Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 375

Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu

His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala

Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr

Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His

Ala Ala Gly Thr Gly Ala Asn Trp Arg Gln Met Ala Arg Glu Asn Pro 455

Leu Thr Gly Arg Ala

<210> 7 <211> 1344 <212> DNA <213> Ceratodon purpureus

<220> . <221> CDS <222> (1)(1344) <223> Delta-5-Desaturase	
<400> 7 atg gta tta cga gag caa gag cat gag cca ttc ttc att aaa att gat Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp 1 5 10 15	48
gga aaa tgg tgt caa att gac gat gct gtc ctg aga tca cat cca ggt Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly 20 25 30	96
ggt agt gca att act acc tat aaa aat atg gat gcc act acc gta ttc Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe 35 40 45	144
cac aca ttc cat act ggt tct aaa gaa gcg tat caa tgg ctg aca gaa His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu 50 55 60	192
ttg aaa aaa gag tgc cct aca caa gaa cca gag atc cca gat att aag Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys 65 70 75 80	240
gat gac cca atc aaa gga att gat gat gtg aac atg gga act ttc aat Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn 85 90 95	288
att tot gag aaa oga tot goo caa ata aat aaa agt tto act gat ota Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu 100 105 110	336
cgt atg cga gtt cgt gca gaa gga ctt atg gat gga tct cct ttg ttc Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe 115 120 125	384
tac att aga aaa att ctt gaa aca atc ttc aca att ctt ttt gca ttc Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe 130 135 140	432
tac ctt caa tac cac aca tat tat ctt cca tca gct att cta atg gga Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly 145 150 160	480
gtt gcg tgg caa caa ttg gga tgg tta atc cat gaa ttc gca cat cat Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His 165 170 175	528
cag ttg ttc aaa aac aga tac tac aat gat ttg gcc agc tat ttc gtt Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 180 185 190	576
gga aac ttt tta caa gga ttc tca tct ggt ggt tgg aaa gag cag cac Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His 195 200 205	624
aat gtg cat cac gca gcc aca aat gtt gtt gga cga gac gga gat ctt Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 210 215 220	672
gat tta gtc cca ttc tat gct aca gtg gca gaa cat ctc aac aat tat Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 225 230 . 235 240	720
tct cag gat tca tgg gtt atg act cta ttc aga tgg caa cat gtt cat Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 245 250 255	768
tgg aca ttc atg tta cca ttc ctc cgt ctc tcg tgg ctt ctt cag tca Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 260 265 270	816

atc Ile	att Ile	ttt Phe 275	gtt Val	agt Ser	cag Gln	atg Met	cca Pro 280	act Thr	cat His	tat Tyr	tat Tyr	gac Asp 285	tat Tyr	tac Tyr	aga Arg	864
aat Asn	act Thr 290	gcg Ala	att Ile	tat Tyr	gaa Glu	cag Gln 295	gtt Val	ggt Gly	ctc Leu	tct Ser	ttg Leu 300	cac His	tgg Trp	gct Ala	tgg Trp	912
tca Ser 305	ttg Leu	ggt Gly	caa Gln	ttg Leu	tat Tyr 310	ttc Phe	cta Leu	ccc Pro	gat Asp	tgg Trp 315	tca Ser	act Thr	aga Arg	ata Ile	atg Met 320	960
ttc Phe	ttc Phe	ctt Leu	gtt Val	tct Ser 325	cat His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	ttc Phe	ctg Leu	ctc Leu	tct Ser	cat His 335	gta Val	1008
gtt Val	act Thr	ttc Phe	aat Asn 340	cat His	tat Tyr	tca Ser	gtg Val	gag Glu 345	aag Lys	ttt Phe	gca Ala	ttg Leu	agc Ser 350	tcg Ser	aac Asn	1056
atc Ile	atg Met	tca Ser 355	aat Asn	tac Tyr	gct Ala	tgt Cys	ctt Leu 360	caa Gln	atc Ile	atg Met	acc Thr	aca Thr 365	aga Arg	aat Asn	atg Met	1104
aga Arg	cct Pro 370	gga Gly	aga Arg	ttc Phe	att Ile	gac Asp 375	tgg Trp	ctt Leu	tgg Trp	gga Gly	ggt Gly 380	ctt Leu	aac Asn	tat Tyr	cag Gln	1152
att Ile 385	gag Glu	cac His	cat His	ctt Leu	ttc Phe 390	cca Pro	acg Thr	atg Met	cca Pro	cga Arg 395	cac His	aac Asn	ttg Leu	aac Asn	act Thr 400	1200
gtt Val	atg Met	cca Pro	ctt Leu	gtt Val 405	aag Lys	gag Glu	ttt Phe	gca Ala	gca Ala 410	gca Ala	aat Asn	ggt Gly	tta Leu	cca Pro 415	tac Tyr	1248
atg Met	gtc Val	gac Asp	gat Asp 420	tat Tyr	ttc Phe	aca Thr	gga Gly	ttc Phe 425	tgg Trp	ctt Leu	gaa Glu	att Ile	gag Glu 430	caa Gln	ttc Phe	1296
cga Arg	aat Asn	att Ile 435	gca Ala	aat Asn	gtt Val	gct Ala	gct Ala 440	aaa Lys	ttg Leu	act Thr	aaa Lys	aag Lys 445	att Ile	gcc Ala	tag	1344
<210 <211 <212	.> 4	47 RT													•	

PRT

<213> Ceratodon purpureus

<400> 8

Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp 1 5 10 15

Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly 20 25 30

Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe

His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu

Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys 65 70 75 80

Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn 85 90 95

Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu 105 Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 185 Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His 200 Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 225 230 235 240 Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 265 Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met Phe Phe Leu Val Ser His Leu Val Gly Gly Phe Leu Leu Ser His Val Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 370 375 380

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr

395

Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405

Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 425

Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 440

<210> 9

<211> <212> 1443

DNA

<213> Physcomitrella patens

<220>

<221> CDS
<222> (1)..(1443)
<223> Delta-5-Desaturase

atg	gcg Ala	ccc	cac His	tct	gcg Ala	gat	act	gct Ala	ggg	ctc	gtg Val	cct	tct	gac	gaa	4	8
1				5		ענייי		711.01	10	пец	vai	FIU	per	15	Giu		
ttg Leu	agg Arg	cta Leu	cga Arg 20	acg Thr	tcg Ser	aat Asn	tca Ser	aag Lys 25	ggt Gly	ccc Pro	gaa Glu	caa Gln	gag Glu 30	caa Gln	act Thr	9	6
ttg Leu	aag Lys	aag Lys 35	tac Tyr	acc Thr	ctt Leu	gaa Glu	gat Asp 40	gtc Val	agc Ser	cgc Arg	cac His	aac Asn 45	acc Thr	cca Pro	gca Ala	14	4
gat Asp	tgt Cys 50	tgg Trp	ttg Leu	gtg Val	ata Ile	tgg Trp 55	ggc Gly	aaa Lys	gtc Val	tac Tyr	gat Asp 60	gtc Val	aca Thr	agc Ser	tgg Trp	19	2
att Ile 65	ccc Pro	aat Asn	cat His	ccg Pro	ggg Gly 70	Gly	agt Ser	ctc Leu	atc Ile	cac His 75	gta Val	aaa Lys	gca Ala	eja aaa	cag Gln 80	24	0
gat Asp	tcc Ser	act Thr	cag Gln	ctt Leu 85	ttc Phe	gat Asp	tcc Ser	tat Tyr	cac His 90	ccc Pro	ctt Leu	tat Tyr	gtc Vạl	agg Arg 95	aaa Lys	28	8
atg Met	ctc Leu	gcg Ala	aag Lys	Tyr	tgt Cys	att Ile	Gly	gaa Glu	tta Leu	gta Val	ccg Pro	tct Ser	gct Ala	ggt Gly	gat Asp	33	6

100 gac aag ttt aag aaa gca act ctg gag tat gca gat gcc gaa aat gaa Asp Lys Phe Lys Lys Ala Thr Leu Glu Tyr Ala Asp Ala Glu Asn Glu 384 120 gat ttc tat ttg gtt gtg aag caa cga gtt gaa tct tat ttc aag agt Asp Phe Tyr Leu Val Val Lys Gln Arg Val Glu Ser Tyr Phe Lys Ser 432 aac aag ata aac ccc caa att cat cca cat atg atc ctg aag tca ttg Asn Lys Ile Asn Pro Gln Ile His Pro His Met Ile Leu Lys Ser Leu 480 ttc att ctt ggg gga tat ttc gcc agt tac tat tta gcg ttc ttc tgg Phe Ile Leu Gly Gly Tyr Phe Ala Ser Tyr Tyr Leu Ala Phe Phe Trp 528 165 170 tct tca agt gtc ctt gtt tct ttg ttt ttc gca ttg tgg atg ggg ttc 576 Ser Ser Ser Val Leu Val Ser Leu Phe Phe Ala Leu Trp Met Gly Phe 180 185

ttc Phe	gca Ala	gcg Ala 195	gaa Glu	gtc Val	ggc Gly	gtg Val	tcg Ser 200	att Ile	caa Gln	cat His	gat Asp	gga Gly 205	aat Asn	cat His	ggt Gly		624
								gga Gly								-	672
gat Asp 225	cta Leu	gtc Val	gga Gly	gcc Ala	agt Ser 230	agc Ser	ttc Phe	atg Met	tgg Trp	aga Arg 235	cag Gln	caa Gln	cac His	gtt Val	gtg Val 240	•	720
gga Gly	cat His	cac His	tcg Ser	ttt Phe 245	aca Thr	aat Asn	gtg Val	gac Asp	aac Asn 250	tac Tyr	gat Asp	cct Pro	gat Asp	att Ile 255	cgt Arg		768
								gtt Val 265									816
tgg Trp	tat Tyr	cat His 275	gcg Ala	tat Tyr	cag Gln	cat His	atc Ile 280	tac Tyr	ctg Leu	gca Ala	gta Val	tta Leu 285	tat Tyr	gga Gly	act Thr		864
								gat Asp									912
gga Gly 305	tca Ser	att Ile	ggc Gly	cct Pro	gtc Val 310	aag Lys	gtg Val	gcg Ala	aaa Lys	atg Met 315	acc Thr	ccc Pro	ctg Leu	gag Glu	ttc Phe 320		960
aac Asn	atc .Ile	ttc Phe	ttt Phe	cag Gln 325	gga Gly	aag Lys	ctg Leu	cta Leu	tat Tyr 330	gcg Ala	ttc Phe	tac Tyr	atg Met	ttc Phe 335	gtg Val	•	1008
ttg Leu	cca Pro	tct Ser	gtg Val 340	tac Tyr	ggt Gly	gtt Val	cac His	tcc Ser 345	gga Gly	gga Gly	act Thr	ttc Phe	ttg Leu 350	gca Ala	cta Leu		1056
								ggt Gly									1104
		Āla						gtt Val							ggt Gly		1152
ggg Gly 385	aag Lys	gtg Val	aag Lys	gga Gly	gga Gly 390	tgg Trp	gct Ala	gca Ala	atg Met	cag Gln 395	gtt Val	gca Ala	aca Thr	act Thr	acg Thr 400		1200
gat Asp	ttc Phe	agt Ser	cca Pro	cgc Arg 405	tca Ser	tgg Trp	ttc Phe	tgg Trp	ggt Gly 410	cat His	gtc Val	tct Ser	gga Gly	gga Gly 415	Leu		1248
								ttt Phe 425									1296
			Ile					gag Glu					Glu				1344
		Tyr					Thr	ttt Phe									1392
	Ala					Val					Phe				ggc Gly 480		1440
tga																	1443

<210> 10

<211> 480

<212> PRT <213> Physcomitrella patens

<400> 10.

Met Ala Pro His Ser Ala Asp Thr Ala Gly Leu Val Pro Ser Asp Glu 1 5 10 15

Leu Arg Leu Arg Thr Ser Asn Ser Lys Gly Pro Glu Gln Glu Gln Thr 20 25 30

Leu Lys Lys Tyr Thr Leu Glu Asp Val Ser Arg His Asn Thr Pro Ala 35 40 45

Asp Cys Trp Leu Val Ile Trp Gly Lys Val Tyr Asp Val Thr Ser Trp 50 55 60

Ile Pro Asn His Pro Gly Gly Ser Leu Ile His Val Lys Ala Gly Gln 65 70 75 80

Asp Ser Thr Gln Leu Phe Asp Ser Tyr His Pro Leu Tyr Val Arg Lys 85 90 95

Met Leu Ala Lys Tyr Cys Ile Gly Glu Leu Val Pro Ser Ala Gly Asp 100 105 110

Asp Lys Phe Lys Lys Ala Thr Leu Glu Tyr Ala Asp Ala Glu Asn Glu 115 120 125

Asp Phe Tyr Leu Val Val Lys Gln Arg Val Glu Ser Tyr Phe Lys Ser 130 140

Asn Lys Ile Asn Pro Gln Ile His Pro His Met Ile Leu Lys Ser Leu 145 150 155 160

Phe Ile Leu Gly Gly Tyr Phe Ala Ser Tyr Tyr Leu Ala Phe Phe Trp 165 . 170 175

Ser Ser Val Leu Val Ser Leu Phe Phe Ala Leu Trp Met Gly Phe 180 185 190

Phe Ala Ala Glu Val Gly Val Ser Ile Gln His Asp Gly Asn His Gly 195 200 205

Ser Tyr Thr Lys Trp Arg Gly Phe Gly Tyr Ile Met Gly Ala Ser Leu 210 220

Asp Leu Val Gly Ala Ser Ser Phe Met Trp Arg Gln Gln His Val Val 225 235 240

Gly His His Ser Phe Thr Asn Val Asp Asn Tyr Asp Pro Asp Ile Arg 245 250 255

Val Lys Asp Pro Asp Val Arg Arg Val Ala Thr Thr Gln Pro Arg Gln 260 265 270

Trp Tyr His Ala Tyr Gln His Ile Tyr Leu Ala Val Leu Tyr Gly Thr

Leu Ala Leu Lys Ser Ile Phe Leu Asp Asp Phe Leu Ala Tyr Phe Thr 295

Gly Ser Ile Gly Pro Val Lys Val Ala Lys Met Thr Pro Leu Glu Phe

Asn Ile Phe Phe Gln Gly Lys Leu Leu Tyr Ala Phe Tyr Met Phe Val 330

Leu Pro Ser Val Tyr Gly Val His Ser Gly Gly Thr Phe Leu Ala Leu

Tyr Val Ala Ser Gln Leu Ile Thr Gly Trp Met Leu Ala Phe Leu Phe

Gln Val Ala His Val Val Asp Asp Val Ala Phe Pro Thr Pro Glu Gly

Gly Lys Val Lys Gly Gly Trp Ala Ala Met Gln Val Ala Thr Thr

Asp Phe Ser Pro Arg Ser Trp Phe Trp Gly His Val Ser Gly Gly Leu

Asn Asn Gln Ile Glu His His Leu Phe Pro Gly Val Cys His Val His

Tyr Pro Ala Ile Gln Pro Ile Val Glu Lys Thr Cys Lys Glu Phe Asp

Val Pro Tyr Val Ala Tyr Pro Thr Phe Trp Thr Ala Leu Arg Ala His

Phe Ala His Leu Lys Lys Val Gly Leu Thr Glu Phe Arg Leu Asp Gly 475

<210> 11 <211> 1320 <212> DNA <213> Thraustrochytrium

<220>

<221> CDS <222> (1)..(1320)

<223>

<400> 11 48 atg ggc aag ggc agc gag ggc cgc agc gcg cgc gag atg acg gcc Met Gly Lys Gly Ser Glu Gly Arg Ser Ala Ala Arg Glu Met Thr Ala

gag gcg aac ggc gac aag cgg aaa acg att ctg atc gag ggc gtc ctg Glu Ala Asn Gly Asp Lys Arg Lys Thr Ile Leu Ile Glu Gly Val Leu

tac gac gcg acg aac ttt aag cac ccg ggc ggt tcg atc atc aac ttc Tyr Asp Ala Thr Asn Phe Lys His Pro Gly Gly Ser Ile Ile Asn Phe 40

ttg Leu	acc Thr 50	gag Glu	ggc	gag Glu	gcc Ala	ggc Gly 55	gtg Val	gac Asp	gcg Ala	acg Thr	cag Gln 60	gcg Ala	tac Tyr	cgc Arg	gag Glu		192
ttt Phe 65	cat His	cag Gln	cgg Arg	tcc Ser	ggc Gly 70	aag Lys	gcc Ala	gac Asp	aag Lys	tac Tyr 75	ctc Leu	aag Lys	tcg Ser	ctg Leu	ccg Pro 80		240
aag Lys	ctg Leu	gat Asp	gcg Ala	tcc Ser 85	aag Lys	gtg Val	gag Glu	tcg Ser	cgg Arg 90	ttc Phe	tcg Ser	gcc Ala	aaa Lys	gag Glu 95	cag Gln		288
gcg Ala	cgg Arg	cgc Arg	gac Asp 100	gcc Ala	atg Met	acg Thr	cgc Arg	gac Asp 105	tac Tyr	gcg Ala	gcc Ala	ttt Phe	cgc Arg 110	gag Glu	gag Glu		336
ctc Leu	gtc Val	gcc Ala 115	gag Glu	ejà aaa	tac Tyr	ttt Phe	gac Asp 120	ccg Pro	tcg Ser	atc Ile	ccg Pro	cac His 125	atg Met	att Ile	tac Tyr		384
cgc Arg	gtc Val 130	gtg Val	gag Glu	atc Ile	gtg Val	gcg Ala 135	ctc Leu	ttc Phe	gcg Ala	ctc Leu	tcg Ser 140	ttc Phe	tgg Trp	ctc Leu	atg Met		432
												gtg Val					480
att Ile	gcg Ala	cag Gln	ggc Gly	cgc Arg 165	tgc Cys	ggc Gly	tgg Trp	gtc Val	atg Met 170	cac His	gag Glu	atg Met	ggc Gly	cac His 175	Gly ggg		528
tcg Ser	ttc Phe	acg Thr	ggc Gly 180	gtc Val	atc Ile	tgg Trp	ctc Leu	gac Asp 185	gac Asp	cgg Arg	atg Met	tgc Cys	gag Glu 190	ttc Phe	ttc Phe		576
tac Tyr	ggc Gly	gtc Val 195	ggc Gly	tgc Cys	ggc Gly	atg Met	agc Ser 200	Gly ggg	cac His	tac Tyr	tgg Trp	aag Lys 205	aac Asn	cag Gln	cac His		624
agc Ser	aag Lys 210	cac His	cac His	gcc Ala	gcg Ala	ccc Pro 215	aac Asn	cgc Arg	ctc Leu	gag Glu	cac His 220	gat Asp	gtc Val	gat Asp	ctc Leu		672
aac Asn 225	acg Thr	ctg Leu	ccc Pro	ctg Leu	gtc Val 230	gcc Ala	ttt Phe	aac Asn	gag Glu	cgc Arg 235	gtc Val	gtg Val	cgc Arg	aag Lys	gtc Val 240		720
aag Lys	ccg Pro	gga Gly	tcg Ser	ctg Leu 245	ctg Leu	gcg Ala	ctc Leu	tgg Trp	ctg Leu 250	cgc Arg	gtg Val	cag Gln	gcg Ala	tac Tyr 255	ctc Leu	.9"	768
ttt Phe	gcg Ala	ccc Pro	gtc Val 260	tcg Ser	tgc Cys	ctg Leu	ctc Leu	atc Ile 265	ggc	ctt Leu	ggc	tgg Trp	acg Thr 270	ctc Leu	tac Tyr		816
												atg Met 285	Glu				864
															ctc Leu		912
	Tyr														ggc Gly 320		960
ctc Leu	Gly	tgc Cys	att Ile	tac Tyr 325	att Ile	ttc Phe	ctg Leu	cag Gln	ttc Phe 330	Ala	gtc Val	agc Ser	cac	acg Thr 335	cac His		1008

ctg Leu	ccg Pro	gtg Val	acc Thr 340	aac Asn	ccg Pro	gag Glu	gac Asp	cag Gln 345	ctg Leu	cac His	tgg Trp	ctc Leu	gag Glu 350	tac Tyr	gcg Ala	1056
gcc Ala	gac Asp	cac His 355	acg Thr	gtg Val	aac Asn	att Ile	agc Ser 360	acc Thr	aag Lys	tcc Ser	tgg Trp	ctc Leu 365	gtc Val	acg Thr	tgg Trp	1104
tgg Trp	atg Met 370	tcg Ser	aac Asn	ctg Leu	aac Asn	ttt Phe 375	cag Gln	atc Ile	gag Glu	cac His	cac His 380	ctc Leu	ttc Phe	ccc Pro	acg Thr	1152
gcg Ala 385	ccg Pro	cag Gln	ttc Phe	cgc Arg	ttc Phe 390	aag Lys	gaa Glu	atc Ile	agt Ser	cct Pro 395	cgc Arg	gtc Val	gag Glu	gcc Ala	ctc Leu 400	1200
ttc Phe	aag Lys	cgc Arg	cac His	aac Asn 405	ctc Leu	ccg Pro	tac Tyr	tac Tyr	gac Asp 410	ctg Leu	ccc Pro	tac Tyr	acg Thr	agc Ser 415	gcg Ala	1248
gtc Val	tcg Ser	acc Thr	acc Thr 420	ttt Phe	gcc Ala	aat Asn	ctt Leu	tat Tyr 425	tcc Ser	gtc Val	Gly	cac His	tcg Ser 430	gtc Val	Gly	1296
gcc Ala	gac Asp	acc Thr 435	aag Lys	aag Lys	cag Gln	gac Asp	tga									1320
<21 <21 <21 <21	1> 2>	12 439 PRT Thra	ustr	ochy	triu	m										
<40	0>	12														
Met 1	Gly	Lys	Gly	Ser 5	Glu	Gly	Arg	Ser	Ala 10	Ala	Arg	Glu	Met	Thr 15	Ala	
Glu	Ala	Asn	Gly 20	Asp	Lys	Arg	Lys	Thr 25	Ile	Leu	Ile	Glu	Gly 30	Val	Leu	
Tyr	· Asp	Ala 35	Thr	Asn	Phe	Lys	His 40	Pro	Gly	Gly	Ser	Ile 45	Ile	Asn	Phe	
Leu	Thr 50	Glu	Gly	· Glu	Ala	Gly 55	Val	Asp	Ala	Thr	Gln 60	. Ala	Tyr	Arg	Glu	
Ph∈ 65	His	Gln	Arg	Ser	Gly 70	· Lys	Ala	. Asp	Lys	Tyr 75	Lèu	Lys	Ser	Leu	Pro 80	
Lys	s Lev	ı Asp) Ala	Ser 85	· Lys	Val	. Glu	. Ser	Arg 90	Phe	ser	Ala	. Lys	95	Gln	
Ala	a Arg	arg	Asp 100		. Met	: Thr	: Arg	Asp 105	Tyr	Ala	ı Ala	. Phe	arg 110	f Glu	ı Glu	
Let	ı Val	115		ı Gly	т Туг	Phe	Asp 120		Ser	: Ile	e Pro	His 125	Met	: Ile	: Tyr	
Arg	7 Val 130		l Glı	ı Ile	e Val	. Ala 135		ı Phe	a Ala	. Lev	140		e Trg) Let	n Met	
Se:		s Ala	a Sei	Pro	Thr 150		. Lei	ı Val	l Lei	Gly 155	y Val	L Val	L Met	. Asr	160	

Ile Ala Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly

Ser Phe Thr Gly Val Ile Trp Leu Asp Asp Arg Met Cys Glu Phe Phe

Tyr Gly Val Gly Cys Gly Met Ser Gly His Tyr Trp Lys Asn Gln His

Ser Lys His His Ala Ala Pro Asn Arg Leu Glu His Asp Val Asp Leu 215

Asn Thr Leu Pro Leu Val Ala Phe Asn Glu Arg Val Val Arg Lys Val

Lys Pro Gly Ser Leu Leu Ala Leu Trp Leu Arg Val Gln Ala Tyr Leu

Phe Ala Pro Val Ser Cys Leu Leu Ile Gly Leu Gly Trp Thr Leu Tyr

Leu His Pro Arg Tyr Met Leu Arg Thr Lys Arg His Met Glu Phe Val

Trp Ile Phe Ala Arg Tyr Ile Gly Trp Phe Ser Leu Met Gly Ala Leu

Gly Tyr Ser Pro Gly Thr Ser Val Gly Met Tyr Leu Cys Ser Phe Gly

Leu Gly Cys Ile Tyr Ile Phe Leu Gln Phe Ala Val Ser His Thr His

Leu Pro Val Thr Asn Pro Glu Asp Gln Leu His Trp Leu Glu Tyr Ala

Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp Leu Val Thr Trp

Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr 375

Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu 385

Phe Lys Arg His Asn Leu Pro Tyr Tyr Asp Leu Pro Tyr Thr Ser Ala

Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly 425

Ala Asp Thr Lys Lys Gln Asp 435

. <210> 13 <211> 1341 <212> DNA

<213	> 7	orti	erel	la a	lpin	a										
<220 <221 <222 <223	> (CDS (1) Delta	-		uras	se										
<400 atg Met 1	gga	L3 acg Thr	gac Asp	caa Gln 5	gga Gly	aaa Lys	acc Thr	ttc Phe	acc Thr 10	tgg Trp	gaa Glu	gag Glu	ctg Leu	gcg Ala 15	gcc Ala	48
cat His	aac Asn	acc Thr	aag Lys 20	gac Asp	gac Asp	cta Leu	ctc Leu	ttg Leu 25	gcc Ala	atc Ile	cgc Arg	ggc Gly	agg Arg 30	gtg Val	tac Tyr	96
gat Asp	gtc Val	aca Thr 35	aag Lys	ttc Phe	ttg Leu	agc Ser	cgc Arg 40	cat His	cct Pro	ggt Gly	gga Gly	gtg Val 45	gac Asp	act Thr	ctc Leu	144
ctg Leu	ctc Leu 50	gga Gly	gct Ala	ggc ggc	cga Arg	gat Asp 55	gtt Val	act Thr	ccg Pro	gtc Val	ttt Phe 60	gag Glu	atg Met	tat Tyr	cac His	192
gcg Ala 65	ttt Phe	GJA aaa	gct Ala	gca Ala	gat Asp 70	gcc Ala	att Ile	atg Met	aag Lys	aag Lys 75	tac Tyr	tat Tyr	gtc Val	ggt Gly	aca Thr 80	240
ctg Leu	gtc Val	tcg Ser	aat Asn	gag Glu 85	ctg Leu	ccc Pro	atc Ile	ttc Phe	ccg Pro 90	gag Glu	cca Pro	acg Thr	gtg Val	ttc Phe 95	cac His	288
aaa Lys	acc Thr	atc Ile	aag Lys 100	acg Thr	aga Arg	gtc Val	gag Glu	ggc Gly 105	tac Tyr	ttt Phe	acg Thr	gat Asp	cgg Arg 110	aac Asn	att Ile	336
gat Asp	ccc Pro	aag Lys 115	aat Asn	aga Arg	cca Pro	gag Glu	atc Ile 120	tgg Trp	gga Gly	cga Arg	tac Tyr	gct Ala 125	ctt Leu	atc Ile	ttt Phe	384
gga Gly	tcc Ser 130	ttg Leu	atc Ile	gct Ala	tcc Ser	tac Tyr 135	tac Tyr	gcg Ala	cag Gln	ctc Leu	ttt Phe 140	gtg Val	cct Pro	ttc Phe	gtt Val	432
gtc Val 145	Glu	. cgc . Arg	aca Thr	tgg Trp	ctt Leu 150	cag Gln	gtg Val	gtg Val	ttt Phe	gca Ala 155	atc Ile	atc Ile	atg Met	gga Gly	ttt Phe 160	480
gcg Ala	tgc Cys	gca Ala	caa Gln	gtc Val 165	Gly	ctc Leu	aac Asn	cct Pro	ctt Leu 170	cat His	gat Asp	gcg Ala	tct Ser	cac His 175	ttt Phe	528
tca Ser	gtg Val	acc Thr	cac His 180	aac Asn	ccc Pro	act Thr	gtc Val	tgg Trp 185	aag Lys	att Ile	ctg Leu	gga Gly	gcc Ala 190	acg Thr	cac His	576
gac Asp	ttt Phe	ttc Phe 195	Asn	gga Gly	gca Ala	tcg Ser	tac Tyr 200	Leu	gtg Val	tgg Trp	atg Met	tac Tyr 205	Gln	cat His	atg Met	624
ctc Leu	ggc Gly 210	cat His	cac His	ccc	tac Tyr	acc Thr 215	aac Asn	att Ile	gct Ala	gga Gly	gca Ala 220	. Asp	ccc Pro	gac Asp	gtg Val	672
tcg Ser 225	Thi	tct Ser	gag Glu	ccc Pro	gat Asp 230	Val	cgt Arg	cgt Arg	ato Ile	aag Lys 235	Pro	aac Asn	caa Gln	aag Lys	tgg Trp 240	720
ttt Phe	gto Val	e aac L Asr	cac His	ato Ile 245	Asn	cag Gln	cac His	atg Met	ttt Phe 250	. Val	cct Pro	tto Phe	ctg Leu	tac Tyr 255	gga	768
ct <u>c</u> Lev	r cto Lei	g gcg ı Ala	tto Phe 260	Lys	g gtg Val	g cgc . Arg	att Ile	cag Glr 265	. Asp	atc Ile	aac Asr	att Ile	ttg Leu 270	Tyr	ttt Phe	816

								gtc Val								864
								gct Ala								912
								ctg Leu								960
								tac Tyr								1008
gcg Ala	aac Asn	cac His	gtt Val 340	gtt Val	gag Glu	gaa Glu	gtt Val	cag Gln 345	tgg Trp	ccg Pro	ttg Leu	cct Pro	gac Asp 350	gag Glu	aac Asn	1056
								gct Ala								1104
gat Asp	tac Tyr 370	gca Ala	cac His	gat Asp	tcg Ser	cac His 375	ctc Leu	tgg Trp	acc Thr	agc Ser	atc Ile 380	act Thr	ggc Gly	agc Ser	ttg Leu	. 1152
								ttc Phe								1200
								aag Lys								1248
gtt Val	cca Pro	tac Tyr	ctt Leu 420	gtc Val	aag Lys	gat Asp	acg Thr	ttt Phe 425	tgg Trp	caa Gln	gca Ala	ttt Phe	gct Ala 430	tca Ser	cat His	1296
								ctc Leu						tag		1341

<210> 14
<211> 446
<212> PRT
<213> Mortierella alpina

<400> 14

Met Gly Thr Asp Gln Gly Lys Thr Phe Thr Trp Glu Glu Leu Ala Ala 1 5 10 15

His Asn Thr Lys Asp Asp Leu Leu Leu Ala Ile Arg Gly Arg Val Tyr 20 25 30

Asp Val Thr Lys Phe Leu Ser Arg His Pro Gly Gly Val Asp Thr Leu

Leu Leu Gly Ala Gly Arg Asp Val Thr Pro Val Phe Glu Met Tyr His 50 60

Ala Phe Gly Ala Ala Asp Ala Ile Met Lys Lys Tyr Tyr Val Gly Thr 65 70 80

Leu Val Ser Asn Glu Leu Pro Ile Phe Pro Glu Pro Thr Val Phe His 85 90 95

Lys Thr Ile Lys Thr Arg Val Glu Gly Tyr Phe Thr Asp Arg Asn Ile Asp Pro Lys Asn Arg Pro Glu Ile Trp Gly Arg Tyr Ala Leu Ile Phe Gly Ser Leu Ile Ala Ser Tyr Tyr Ala Gln Leu Phe Val Pro Phe Val Val Glu Arg Thr Trp Leu Gln Val Val Phe Ala Ile Ile Met Gly Phe Ala Cys Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe Ser Val Thr His Asn Pro Thr Val Trp Lys Ile Leu Gly Ala Thr His 185 Asp Phe Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Gln His Met Leu Gly His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val Ser Thr Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp Phe Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly 245 250 255 Leu Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe Val Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Leu Phe 305 310 315 Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln Ala Asn His Val Val Glu Glu Val Gln Trp Pro Leu Pro Asp Glu Asn Gly Ile Ile Gln Lys Asp Trp Ala Ala Met Gln Val Glu Thr Thr Gln Asp Tyr Ala His Asp Ser His Leu Trp Thr Ser Ile Thr Gly Ser Leu 375 Asn Tyr Gln Ala Val His His Leu Phe Pro Asn Val Ser Gln His His 395 390

Tyr Pro Asp Ile Leu Ala Ile Ile Lys Asn Thr Cys Ser Glu Tyr Lys

Val Pro Tyr Leu Val Lys Asp Thr Phe Trp Gln Ala Phe Ala Ser His 425

Leu Glu His Leu Arg Val Leu Gly Leu Arg Pro Lys Glu Glu 435 440

<210> 15 <211> 1344 <212> DNA <213> Caenorhabditis elegans

<220>

<221> CDS <222> (1)..(1344) <223> Delta-5-Desaturase

<400>	15														
atg gta Met Val 1															48
gga aaa Gly Lys	tgg Trp	tgt Cys 20	caa Gln	att Ile	gac Asp	gat Asp	gct Ala 25	gtc Val	ctg Leu	aga Arg	tca Ser	cat His 30	cca Pro	ggt Gly	96
ggt agt Gly Se	gca Ala 35	att Ile	act Thr	acc Thr	tat Tyr	aaa Lys 40	aat Asn	atg Met	gat Asp	gcc Ala	act Thr 45	acc Thr	gta Val	ttc Phe	144
cac aca His The 50															192
ttg aas Leu Lys 65															240
gat gad Asp Asj															288
att tc: Ile Se:															336
cgt ato Arg Me		Val													384
tac at Tyr Il 13	a Arg	aaa Lys	att Ile	ctt Leu	gaa Glu 135	aca Thr	atc Ile	ttc Phe	aca Thr	att Ile 140	ctt Leu	ttt Phe	gca Ala	ttc Phe	432
tac ct Tyr Le 145															480
gtt gc Val Al															528
cag tt Gln Le															576

																60.4
gga Gly	aac Asn	ttt Phe 195	tta Leu	caa Gln	gga Gly	ttc Phe	ser 200	tct Ser	ggt	ggt	tgg Trp	aaa Lys 205	gag Glu	Gln	cac His	624
aat Asn	gtg Val 210	cat His	cac His	gca Ala	gcc Ala	aca Thr 215	aat Asn	gtt Val	gtt Val	gga Gly	cga Arg 220	gac Asp	gga Gly	gat Asp	ctt Leu	672
gat Asp 225	tta Leu	gtc Val	cca Pro	ttc Phe	tat Tyr 230	gct Ala	aca Thr	gtg Val	gca Ala	gaa Glu 235	cat His	ctc Leu	aac Asn	aat Asn	tat Tyr 240	720
tct Ser	cag Gln	gat Asp	tca Ser	tgg Trp 245	gtt Val	atg Met	act Thr	cta Leu	ttc Phe 250	aga Arg	tgg Trp	caa Gln	cat His	gtt Val 255	cat His	768
	aca Thr															816
atc Ile	att Ile	ttt Phe 275	gtt Val	agt Ser	cag Gln	atg Met	cca Pro 280	act Thr	cat His	tat Tyr	tat Tyr	gac Asp 285	tat Tyr	tac Tyr	aga Arg	864
aat Asr	act Thr 290	gcg Ala	att Ile	tat Tyr	gaa Glu	cag Gln 295	gtt Val	ggt Gly	ctc Leu	tct Ser	ttg Leu 300	cac His	tgg Trp	gct Ala	tgg Trp	912
	ttg Leu															960
tto Phe	ttc Phe	ctt Leu	gtt Val	tct Ser 325	cat His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	ttc Phe	ctg Leu	ctc Leu	tct Ser	cat His 335	gta Val	1008
gtt Val	act Thr	ttc Phe	aat Asn 340	cat His	tat Tyr	tca Ser	gtg Val	gag Glu 345	aag Lys	ttt Phe	gca Ala	ttg Leu	agc Ser 350	tcg Ser	aac Asn	1056
ato Ile	atg Met	tca Ser 355	aat Asn	tac Tyr	gct Ala	tgt Cys	ctt Leu 360	caa Gln	atc Ile	atg Met	acc Thr	aca Thr 365	aga Arg	aat Asn	atg Met	1104
aga Arg	cct Pro 370	Gly	aga Arg	ttc Phe	att Ile	gac Asp 375	tgg Trp	ctt Leu	tgg Trp	gga Gly	ggt Gly 380	ctt Leu	aac Asn	tat Tyr	cag Gln	1152
att Ile 385	gag Glu	cac His	cat His	ctt Leu	ttc Phe 390	cca Pro	acg Thr	atg Met	cca Pro	cga Arg 395	cac His	aac Asn	ttg Leu	aac Asn	act Thr 400	1200
gti Va.	atg L Met	cca Pro	ctt Leu	gtt Val 405	Lys	gag Glu	ttt Phe	gca Ala	gca Ala 410	gca Ala	aat Asn	ggt Gly	tta Leu	cca Pro 415	$\mathtt{T}\mathtt{y}\mathtt{r}$	1248
ato Me	g gtc Val	gac Asp	gat Asp 420	Tyr	ttc Phe	aca Thr	gga Gly	ttc Phe 425	Trp	ctt Leu	gaa Glu	att Ile	gag Glu 430	Gln	ttc Phe	1296
	a aat g Asn		Āla					Lys					Ile			1344
<2: <2:		16 447 PRT Caen	orha	bdit	is e	lega	ns									
	00>	16			•											

Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp 1 5 10 10 15

Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly 20 25 30 Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys 65 70 75 80 Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly 145 150 150 Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 210 220 Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 305 310 315

Phe Phe Leu Val Ser His Leu Val Gly Gly Phe Leu Leu Ser His Val 335 Val 325 His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 340 Fir Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 350 Ser Asn Ile Met Ser Asn 340 Fir Ala Cys Leu Glu Ile Met Thr Thr Arg Asn Met 355 Asn Tyr Ala Cys Leu Glu Ile Met Thr Thr Arg Asn Met 370 Fir Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 385 Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 400 Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 410 Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 425 Fir Leu Glu Ile Glu Gln Phe 430 Ser Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala Cyll > 17 Coll > 183 Coll > 18 Col
340 345 350 350 345 350
Arg Pro 355
370 375 380 Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 400 Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 415 Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 435 C210> 17 C211> 1683 C213> Borago officinalis
385 390 395 400 Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405 Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 435 C210> 17 C211> 1683 C212> DNA C213> Borago officinalis
Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 435 <210> 17 <211> 1683 <212> DNA <213> Borago officinalis
420 425 430 Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 435 440 445 <210> 17 <211> 1683 <212> DNA <213> Borago officinalis
435 440 445 <210> 17 <211> 1683 <212> DNA <213> Borago officinalis
<211> 1683 <212> DNA <213> Borago officinalis
<220>
<221> CDS <222> (42)(1388) <223> Delta-6-Desaturase
<400> 17 tatctgccta ccctcccaaa gagagtagtc atttttcatc a atg gct gct caa atc 5 Met Ala Ala Gln Ile 1 5
aag aaa tac att acc tca gat gaa ctc aag aac cac gat aaa ccc gga 10 Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn His Asp Lys Pro Gly 10 15 20
gat cta tgg atc tcg att caa ggg aaa gcc tat gat gtt tcg gat tgg 15 Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr Asp Val Ser Asp Trp 25 30 35
25 30 33
gtg aaa gac cat cca ggt ggc agc ttt ccc ttg aag agt ctt gct ggt Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu Lys Ser Leu Ala Gly 40 45 50
gtg aaa gac cat cca ggt ggc agc ttt ccc ttg aag agt ctt gct ggt 20 Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu Lys Ser Leu Ala Gly
gtg aaa gac cat cca ggt ggc agc ttt ccc ttg aag agt ctt gct ggt Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu Lys Ser Leu Ala Gly 40 45 50 caa gag gta act gat gca ttt gtt gca ttc cat cct gcc tct aca tgg Gln Glu Val Thr Asp Ala Phe Val Ala Phe His Pro Ala Ser Thr Trp

aaa Lys	atg Met	ggt Gly	ttg Leu 105	tat Tyr	gac Asp	aaa Lys	aaa Lys	ggt Gly 110	cat His	att Ile	atg Met	ttt Phe	gca Ala 115	act Thr	ttg Leu	392
								atg Met								440
								ttt Phe								488
								gga Gly								536
gta Val	gtg Val	tct Ser	gat Asp	tca Ser 170	agg Arg	ctt Leu	aat Asn	aag Lys	ttt Phe 175	atg Met	ggt Gly	att Ile	ttt Phe	gct Ala 180	gca Ala	584
								ggt Gly 190								632
			Ile					ctt Leu								680
								tcc Ser								728
								act Thr								776
								ttt Phe								824
								ctc Leu 270								872
								ctc Leu								920
att Ile	tgg Trp 295	tac Tyr	ccg Pro	ttg Leu	ctt Leu	gtt Val 300	tct Ser	tgt Cys	ttg Leu	cct Pro	aat Asn 305	tgg Trp	ggt Gly	gaa Glu	aga Arg	968
								tca Ser								1016
								tca Ser								1064
								caa Gln 350								1112
								ttt Phe								1160
								atg Met								1208
								tgc Cys								1256

aat tat gca tct ttc tcc aag gcc aat gaa atg aca ctc aga aca ttg Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met Thr Leu Arg Thr Leu 410 415 420	1304
agg aac aca gca ttg cag gct agg gat ata acc aag ccg ctc ccg aag Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr Lys Pro Leu Pro Lys 425 430 435	1352
aat ttg gta tgg gaa gct ctt cac act cat ggt taa aattaccctt Asn Leu Val Trp Glu Ala Leu His Thr His Gly 440 445	1398
agttcatgta ataatttgag attatgtatc tcctatgttt gtgtcttgtc ttggttctac	1458
ttgttggagt cattgcaact tgtcttttat ggtttattag atgtttttta atatatttta	1518
gaggttttgc tttcatctcc attattgatg aataaggagt tgcatattgt caattgttgt	1578
gctcaatatc tgatattttg gaatgtactt tgtaccactg tgttttcagt tgaagctcat	1638
gtgtacttct atagactttg tttaaatggt tatgtcatgt tattt	1683
<pre> <210> 18 <211> 448 <212> PRT <213> Borago officinalis <400> 18</pre>	
Met Ala Ala Gln Ile Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn	
1 5 . 10 15	
His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 25 30	
Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu 35 40 45	
Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His 50 60	
Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr 65 70 75 80	
Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu 85 90 95	
Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile 100 105 110	
Met Phe Ala Thr Leu Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val 115 120 125	
Tyr Gly Val Leu Phe Cys Glu Gly Val Leu Val His Leu Phe Ser Gly 130 135 140	
Cys Leu Met Gly Phe Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp 145 150 155 160	
Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met 165 170 175	

Gly Ile Phe Ala Ala Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp

Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr

Asp Pro Asp Leu Gln Tyr Ile Pro Phe Leu Val Val Ser Ser Lys Phe 215

Phe Gly Ser Leu Thr Ser His Phe Tyr Glu Lys Arg Leu Thr Phe Asp 230

Ser Leu Ser Arg Phe Phe Val Ser Tyr Gln His Trp Thr Phe Tyr Pro

Ile Met Cys Ala Ala Arg Leu Asn Met Tyr Val Gln Ser Leu Ile Met

Leu Leu Thr Lys Arg Asn Val Ser Tyr Arg Ala Gln Glu Leu Leu Gly

Cys Leu Val Phe Ser Ile Trp Tyr Pro Leu Leu Val Ser Cys Leu Pro 295

Asn Trp Gly Glu Arg Ile Met Phe Val Ile Ala Ser Leu Ser Val Thr 310

Gly Met Gln Gln Val Gln Phe Ser Leu Asn His Phe Ser Ser Ser Val

Tyr Val Gly Lys Pro Lys Gly Asn Asn Trp Phe Glu Lys Gln Thr Asp

Gly Thr Leu Asp Ile Ser Cys Pro Pro Trp Met Asp Trp Phe His Gly

Gly Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Lys Met Pro Arg 375

Cys Asn Leu Arg Lys Ile Ser Pro Tyr Val Ile Glu Leu Cys Lys Lys

His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met

Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly

19

<210> <211> 1563

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (1)..(1563) <223> Delta-6-Desaturase

											•					
<400 atg Met 1	gtg	.9 tcc Ser	cag Gln	ggc Gly 5	ggc	ggt Gly	ctc Leu	tcg Ser	cag Gln 10	ggt Gly	tcc Ser	att Ile	gaa Glu	gaa Glu 15	aac Asn	48
att Ile	gac Asp	gtt Val	gag Glu 20	cac His	ttg Leu	gca Ala	acg Thr	atg Met 25	ccc Pro	ctc Leu	gtc Val	agt Ser	gac Asp 30	ttc Phe	cta Leu	96
aat Asn	gtc Val	ctg Leu 35	gga Gly	acg Thr	act Thr	ttg Leu	ggc Gly 40	cag Gln	tgg Trp	agt Ser	ctt Leu	tcc Ser 45	act Thr	aca Thr	ttc Phe	144
gct Ala	ttc Phe 50	aag Lys	agg Arg	ctc Leu	acg Thr	act Thr 55	aag Lys	aaa Lys	cac His	agt Ser	tcg Ser 60	gac Asp	atc Ile	tcg Ser	gtg Val	192
gag Glu 65	gca Ala	caa Gln	aaa Lys	gaa Glu	tcg Ser 70	gtt Val	gcg Ala	cgg Arg	GJÀ aaa	cca Pro 75	gtt Val	gag Glu	aat Asn	att Ile	tct Ser 80	240
caa Gln	tcg Ser	gtt Val	gcg Ala	cag Gln 85	ccc Pro	atc Ile	agg Arg	cgg Arg	agg Arg 90	tgg Trp	gtg Val	cag Gln	gat Asp	aaa Lys 95	aag Lys	288
ccg Pro	gtt Val	act Thr	tac Tyr 100	agc Ser	ctg Leu	aag Lys	gat Asp	gta Val 105	gct Ala	tcg Ser	cac His	gat Asp	atg Met 110	ccc Pro	cag Gln	336
gac Asp	tgc Cys	tgg Trp 115	att Ile	ata Ile	atc Ile	aaa Lys	gag Glu 120	aag Lys	gtg Val	tat Tyr	gat Asp	gtg Val 125	agc Ser	acc Thr	ttc Phe	384
gct Ala	gag Glu 130	cag Gln	cac His	cct Pro	gga Gly	ggc Gly 135	acg Thr	gtt Val	atc Ile	aac Asn	acc Thr 140	tac Tyr	ttc Phe	gga Gly	cga Arg	432
gac Asp 145	gcc Ala	aca Thr	gat Asp	gtt Val	ttc Phe 150	tct Ser	act Thr	ttc Phe	cac His	gca Ala 155	tcc Ser	acc Thr	tca Ser	tgg Trp	aag Lys 160	480
att Ile	ctt Leu	cag Gln	aat Asn	ttc Phe 165	tac Tyr	atc Ile	ggg	aac Asn	ctt Leu 170	gtt Val	agg Arg	gag Glu	gag Glu	ccg Pro 175	act Thr	528
ttg Leu	gag Glu	ctg Leu	ctg Leu 180	aag Lys	gag Glu	tac Tyr	aga Arg	gag Glu 185	ttg Leu	aga Arg	gcc Ala	ctt Leu	ttc Phe 190	ttg Leu	aga Arg	576
gaa Glu	cag Gln	ctt Leu 195	ttc Phe	aag Lys	agt Ser	tcc Ser	aaa Lys 200	tcc Ser	tac Tyr	tac Tyr	ctt Leu	ttc Phe 205	aag Lys	act Thr	ctc Leu	624
ata Ile	aat Asn 210	gtt Val	tcc Ser	att Ile	gtt Val	gcc Ala 215	aca Thr	agc Ser	att Ile	gcg Ala	ata Ile 220	atc Ile	agt Ser	ctg Leu	tac Tyr	672
aag Lys 225	Ser	tac Tyr	cgg Arg	gcg Ala	gtt Val 230	Leu	tta Leu	tca Ser	gcc Ala	agt Ser 235	Leu	atg Met	ggc	ttg Leu	ttt Phe 240	720
att Ile	caa Gln	cag Gln	tgc Cys	gga Gly 245	Trp	ttg Leu	tct Ser	cac His	gat Asp 250	Phe	cta Leu	cac His	cat His	cag Gln 255	gta Val	768
ttt Phe	gag Glu	aca Thr	cgc Arg 260	Trp	ctc Leu	aat Asn	gac Asp	gtt Val 265	Val	ggc	tat Tyr	gtg Val	gtc Val 270	Gly	aac Asn	816

-		- n		Cala		A	-11
ы.	ASI		lant	Scie	nce	Gm	nн

PF 55426 DE

											acc Thr					864
											tac Tyr 300					912
											agt Ser					960
											ctt Leu				cac His	1008
											gcg Ala					1056
											acc Thr					1104
											att Ile 380					1152
gtt Val 385	gcg Ala	ttt Phe	tat Tyr	ctg Leu	ctc Leu 390	ccc Pro	gga Gly	tgg Trp	aaa Lys	cca Pro 395	gtt Val	gta Val	tgg Trp	atg Met	gtg Val 400	1200
											tac Tyr					1248
											aag Lys					1296
											gly aaa					1344
											cat His 460					1392
											cct Pro					1440
											gtg Val					1488
											gtt Val					1536
						gcg Ala		tga								1563
<210 <211 <212 <213	.> 5 !> I	20 520 PRT Cerat	codor	ı puı	pure	eus										
<400)> 2	20														
Met 1	Val	Ser	Gln	Gly 5	Gly	Gly	Leu	Ser	Gln 10	Gly	Ser	Ile	Glu	Glu 15	Asn	

Ile Asp Val Glu His Leu Ala Thr Met Pro Leu Val Ser Asp Phe Leu Asn Val Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Asp Ile Ser Val Glu Ala Gln Lys Glu Ser Val Ala Arg Gly Pro Val Glu Asn Ile Ser Gln Ser Val Ala Gln Pro Ile Arg Arg Arg Trp Val Gln Asp Lys Lys Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln 100 105 110 Asp Cys Trp Ile Ile Ile Lys Glu Lys Val Tyr Asp Val Ser Thr Phe Ala Glu Gln His Pro Gly Gly Thr Val Ile Asn Thr Tyr Phe Gly Arg Asp Ala Thr Asp Val Phe Ser Thr Phe His Ala Ser Thr Ser Trp Lys 145 150 155 160 Ile Leu Gln Asn Phe Tyr Ile Gly Asn Leu Val Arg Glu Glu Pro Thr Leu Glu Leu Leu Lys Glu Tyr Arg Glu Leu Arg Ala Leu Phe Leu Arg Glu Gln Leu Phe Lys Ser Ser Lys Ser Tyr Tyr Leu Phe Lys Thr Leu Ile Asn Val Ser Ile Val Ala Thr Ser Ile Ala Ile Ile Ser Leu Tyr Lys Ser Tyr Arg Ala Val Leu Leu Ser Ala Ser Leu Met Gly Leu Phe Ile Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His His Gln Val Phe Glu Thr Arg Trp Leu Asn Asp Val Val Gly Tyr Val Val Gly Asn Val Val Leu Gly Phe Ser Val Ser Trp Trp Lys Thr Lys His Asn Leu 280 His His Ala Ala Pro Asn Glu Cys Asp Gln Lys Tyr Thr Pro Ile Asp Glu Asp Ile Asp Thr Leu Pro Ile Ile Ala Trp Ser Lys Asp Leu Leu 305 310 315 320 Ala Thr Val Glu Ser Lys Thr Met Leu Arg Val Leu Gln Tyr Gln His

Leu Phe Phe Leu Val Leu Leu Thr Phe Ala Arg Ala Ser Trp Leu Phe 345

Trp Ser Ala Ala Phe Thr Leu Arg Pro Glu Leu Thr Leu Gly Glu Lys

Leu Leu Glu Arg Gly Thr Met Ala Leu His Tyr Ile Trp Phe Asn Ser

Val Ala Phe Tyr Leu Leu Pro Gly Trp Lys Pro Val Val Trp Met Val 385 390 395

Val Ser Glu Leu Met Ser Gly Phe Leu Leu Gly Tyr Val Phe Val Leu

Ser His Asn Gly Met Glu Val Tyr Asn Thr Ser Lys Asp Phe Val Asn

Ala Gln Ile Ala Ser Thr Arg Asp Ile Lys Ala Gly Val Phe Asn Asp

Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu His His Leu Phe Pro

Thr Met Pro Arg His Asn Leu Asn Lys Ile Ser Pro His Val Glu Thr 465

Leu Cys Lys Lys His Gly Leu Val Tyr Glu Asp Val Ser Met Ala Ser

Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 500 505

Ser His Gln Gln Leu Ala Ala Ser

<210> 21

<211> 1434

<212> DNA <213> Phaeodactylum tricornutum

<220>

<221> CDS

<222> (1)..(1434)

<223> Delta-6-Desaturase

atg ggc aaa gga ggg gac gct cgg gcc tcg aag ggc tca acg gcg gct. Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala

cgc aag atc agt tgg cag gaa gtc aag acc cac gcg tct ccg gag gac Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp 20 25 30

48

gcc Ala	tgg Trp	atc Ile 35	att Ile	cac His	tcc Ser	aat Asn	aag Lys 40	gtc Val	tac Tyr	gac Asp	gtg Val	tcc Ser 45	aac Asn	tgg Trp	cac His	144
gaa Glu	cat His 50	ccc Pro	gga Gly	ggc Gly	gcc Ala	gtc Val 55	att Ile	ttc Phe	acg Thr	cac His	gcc Ala 60	ggt Gly	gac Asp	gac Asp	atg Met	192
acg Thr 65	gac Asp	att Ile	ttc Phe	gct Ala	gcc Ala 70	ttt Phe	cac His	gca Ala	ccc Pro	gga Gly 75	tcg Ser	cag Gln	tcg Ser	ctc Leu	atg Met 80	240
aag Lys	aag Lys	ttc Phe	tac Tyr	att Ile 85	ggc Gly	gaa Glu	ttg Leu	ctc Leu	ccg Pro 90	gaa Glu	acc Thr	acc Thr	ggc Gly	aag Lys 95	gag Glu	288
ccg Pro	cag Gln	caa Gln	atc Ile 100	gcc Ala	ttt Phe	gaa Glu	aag Lys	ggc Gly 105	tac Tyr	cgc Arg	gat Asp	ctg Leu	cgc Arg 110	tcc Ser	aaa Lys	336
ctc Leu	atc Ile	atg Met 115	atg Met	ggc Gly	atg Met	ttc Phe	aag Lys 120	tcc Ser	aac Asn	aag Lys	tgg Trp	ttc Phe 125	tac Tyr	gtc Val	tac Tyr	384
aag Lys	tgc Cys 130	ctc Leu	agc Ser	aac Asn	atg Met	gcc Ala 135	att Ile	tgg Trp	gcc Ala	gcc Ala	gcc Ala 140	tgt Cys	gct Ala	ctc Leu	gtc Val	432
ttt Phe 145	tac Tyr	tcg Ser	gac Àsp	cgc Arg	ttc Phe 150	tgg Trp	gta Val	cac His	ctg Leu	gcc Ala 155	agc Ser	gcc Ala	gtc Val	atg Met	ctg Leu 160	480
gga Gly	aca Thr	ttc Phe	ttt Phe	cag Gln 165	cag Gln	tcg Ser	gga Gly	tgg Trp	ttg Leu 170	gca Ala	cac His	gac Asp	ttt Phe	ctg Leu 175	cac His	528
cac His	cag Gln	gtc Val	ttc Phe 180	acc Thr	aag Lys	cgc Arg	aag Lys	cac His 185	GJÀ aaa	gat Asp	ctc Leu	gga Gly	gga Gly 190	ctc Leu	ttt Phe	576
tgg Trp	Gly ggg	aac Asn 195	ctc Leu	atg Met	cag Gln	ggt Gly	tac Tyr 200	tcc Ser	gta Val	cag Gln	tgg Trp	tgg Trp 205	aaa Lys	aac Asn	aag Lys	624
cac His	aac Asn 210	gga Gly	cac His	cac His	gcc Ala	gtc Val 215	ccc Pro	aac Asn	ctc Leu	cac His	tgc Cys 220	tcc Ser	tcc Ser	gca Ala	gtc Val	672
gcg Ala 225	caa Gln	gat Asp	GJA āāā	gac Asp	ccg Pro 230	gac Asp	atc Ile	gat Asp	acc Thr	atg Met 235	ccc Pro	ctt Leu	ctc Leu	gcc Ala	tgg Trp 240	720
tcc Ser	gtc Val	cag Gln	caa Gln	gcc Ala 245	cag Gln	tct Ser	tac Tyr	cgg Arg	gaa Glu 250	ctc Leu	caa Gln	gcc Ala	gac Asp	gga Gly 255	aag Lys	768
gat Asp	tcg Ser	ggt Gly	ttg Leu 260	gtc Val	aag Lys	ttc Phe	atg Met	atc Ile 265	cgt Arg	aac Asn	caa Gln	tcc Ser	tac Tyr 270	ttt Phe	tac Tyr	816
ttt Phe	ccc Pro	atc Ile 275	ttg Leu	ttg Leu	ctc Leu	gcc Ala	cgc Arg 280	ctg Leu	tcg Ser	tgg Trp	ttg Leu	aac Asn 285	gag Glu	tcc Ser	ttc Phe	864
aag Lys	tgc Cys 290	gcc Ala	ttt Phe	Gly ggg	ctt Leu	gga Gly 295	gct Ala	gcg Ala	tcg Ser	gag Glu	aac Asn 300	gct Ala	gct Ala	ctc Leu	gaa Glu	912
ctc Leu 305	aag Lys	gcc Ala	aag Lys	ggt Gly	ctt Leu 310	cag Gln	tac Tyr	ccc Pro	ctt Leu	ttg Leu 315	gaa Glu	aag Lys	gct Ala	Gly ggc	atc Ile 320	960
ctg Leu	ctg Leu	cac His	tac Tyr	gct Ala 325	tgg Trp	atg Met	ctt Leu	aca Thr	gtt Val 330	tcg Ser	tcc Ser	ggc ggc	ttt Phe	gga Gly 335	cgc Arg	1008

Phe	tcg Ser	ttc Phe	gcg Ala 340	tac Tyr	acc Thr	gca Ala	ttt Phe	tac Tyr 345	ttt Phe	cta Leu	acc Thr	gcg Ala	acc Thr 350	gcg Ala	tcc Ser	1056
tgt Cys	gga Gly	ttc Phe 355	ttg Leu	ctc Leu	gcc Ala	att Ile	gtc Val 360	ttt Phe	ggc Gly	ctc Leu	ggc Gly	cac His 365	aac Asn	ggc Gly	atg Met	 1104
gcc Ala	acc Thr 370	tac Tyr	aat Asn	gcc Ala	gac Asp	gcc Ala 375	cgt Arg	ccg Pro	gac Asp	ttc Phe	tgg Trp 380	aag Lys	ctc Leu	caa Gln	gtc Val	1152
acc Thr 385	acg Thr	act Thr	cgc Arg	aac Asn	gtc Val 390	acg Thr	ggc Gly	gga Gly	cac His	ggt Gly 395	ttc Phe	ccc Pro	caa Gln	gcc Ala	ttt Phe 400	1200
gtc Val	gac Asp	tgg Trp	ttc Phe	tgt Cys 405	ggt Gly	ggc ggc	ctc Leu	cag Gln	tac Tyr 410	caa Gln	gtc Val	gac Asp	cac His	cac His 415	tta Leu	1248
ttc Phe	ccc Pro	agc Ser	ctg Leu 420	ccc Pro	cga Arg	cac His	aat Asn	ctg Leu 425	gcc Ala	aag Lys	aca Thr	cac His	gca Ala 430	ctg Leu	gtc Val	1296
gaa Glu	tcg Ser	ttc Phe 435	tgc Cys	aag Lys	gag Glu	tgg Trp	ggt Gly 440	gtc Val	cag Gln	tac Tyr	cac His	gaa Glu 445	gcc Ala	gac Asp	ctt Leu	1344
gtg Val	gac Asp 450	GJÀ aaa	acc Thr	atg Met	gaa Glu	gtc Val 455	ttg Leu	cac His	cat His	ttg Leu	ggc Gly 460	agc Ser	gtg Val	gcc Ala	ggc Gly	1392
	ttc Phe												taa		٠	1434
	0- 1	22														
<21: <21: <21: <21:	1> 4 2> 1	177 PRT Phaec	odact	ylun	n tri	icorr	utur	n								
<21:	1> 4 2> 1 3> 1	177 ?RT	odact	ylun	n tri	icorr	utur	n								
<21: <21: <21: <40:	1> 4 2> 1 3> 1	177 PRT Phaed 22							Ser 10	Lys	Gly	Ser	Thr	Ala 15	Ala	
<21: <21: <21: <40: Met 1	1> 4 2> 1 3> 1 0> 2	177 PRT Phaec 22 Lys	Gly	Gly 5	Asp	Ala	Arg	Ala	10	_	_			15		
<21: <21: <21: <400 Met 1	1> 4 2> 1 3> 1 0> 2 Gly	177 PRT Phaec 22 Lys Ile	Gly Ser 20	Gly 5	Asp Gln	Ala Glu	Arg Val	Ala Lys 25	10 Thr	His	Ala	Ser	Pro 30	15 Glu	Asp	
<21: <21: <40: Met 1 Arg	1> 4 2> 1 3> 1 0> 2 Gly	177 PRT Phace 22 Lys Ile 35	Gly Ser 20	Gly 5 Trp	Asp Gln Ser	Ala Glu Asn	Arg Val Lys 40	Ala Lys 25 Val	10 Thr Tyr	His Asp	Ala Val	Ser Ser 45	Pro 30 Asn	15 Glu Trp	Asp His	
<21: <21: <20: <40: Met 1 Arg Ala	1> 6 2> 1 3> 1 0> 2 Gly Lys Trp	177 PRT Phace 22 Lys Ile 35 Pro	Gly Ser 20 Ile Gly	Gly 5 Trp His	Asp Gln Ser	Ala Glu Asn Val 55	Arg Val Lys 40	Ala Lys 25 Val	10 Thr Tyr Thr	His Asp His	Ala Val Ala 60	Ser Ser 45	Pro 30 Asn Asp	15 Glu Trp Asp	Asp His Met	
<21: <21: <20: Met 1 Arg Ala Glu Thr 65	1> 4 2> 1 3> 1 0> 2 Gly Lys Trp	177 PRT Phace 22 Lys Ile 35 Pro	Gly Ser 20 Ile Gly	Gly 5 Trp His Gly	Asp Gln Ser Ala Ala	Ala Glu Asn Val 55	Arg Val Lys 40 Ile	Ala Lys 25 Val Phe	10 Thr Tyr Thr	His Asp His Gly	Ala Val Ala 60 Ser	ser Ser 45 Gly	Pro 30 Asn Asp	Glu Trp Asp	Asp His Met Met 80	
<21: <21: <400 Met 1 Arg Ala Glu Thr 65 Lys	1> 6 2> 1 3> 1 0> 2 Gly Lys Trp His 50	Ile Ile Pho Phe	Gly Ser 20 Ile Gly Phe	Gly 5 Trp His Gly Ala	Asp Gln Ser Ala Ala 70 Gly	Ala Glu Asn Val 55 Phe	Arg Val Lys 40 Ile His	Ala Lys 25 Val Phe Ala	Thr Tyr Thr Pro	His Asp His Gly 75	Ala Val Ala 60 Ser	ser ser 45 Gly Gln	Pro 30 Asn Asp Ser	Glu Trp Asp Leu Lys 95	Asp His Met Met 80	

Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Ala Cys Ala Leu Val Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe Trp Gly Asn Leu Met Gln Gly Tyr Ser Val Gln Trp Trp Lys Asn Lys His Asn Gly His His Ala Val Pro Asn Leu His Cys Ser Ser Ala Val Ala Gln Asp Gly Asp Pro Asp Ile Asp Thr Met Pro Leu Leu Ala Trp Ser Val Gln Gln Ala Gln Ser Tyr Arg Glu Leu Gln Ala Asp Gly Lys Asp Ser Gly Leu Val Lys Phe Met Ile Arg Asn Gln Ser Tyr Phe Tyr 260 265 270 Phe Pro Ile Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 295 Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile 305 310 315 320Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser 340 345 350Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe 385 390 395 Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val

Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu 440

Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly

Glu Phe Val Val Asp Phe Val Asp Gly Pro Ala Met 465 470 475

<210> 23 <211> 1578 <212> DNA <213> Physcomitrella patens

<220>

<221> CDS
<222> (1)..(1578)
<223> Delta-6-Desaturase

	gta												gaa Glu			•	48
													gac Asp 30				96
													agt Ser				144
													agc Ser				192
gtg Val 65	caa Gln	tgt Cys	ata Ile	tca Ser	gct Ala 70	gaa Glu	gtt Val	cag Gln	aga Arg	aat Asn 75	tcg Ser	agt Ser	acc Thr	cag Gln	gga Gly 80		240
													aga Arg				288
													gta Val 110				336
													aag Lys				384
													gtt Val				432
													ttt Phe				480
													gac Asp				528
													gaa Glu 190				576

									30							
							ctt Leu 200									624
							gtt Val									672
							att Ile									720
							cag Gln									768
							aca Thr									816
							ctg Leu 280									. 864
							gct Ala									912
							att Ile									960
							gtt Val									1008
							ttc Phe									1056
							tgg Trp 360									1104
							gag Glu									1152
							tgc Cys									1200
							gag Glu									1248
ttt Phe	gta Val	ttt Phe	gta Val 420	ctt Leu	agc Ser	cac His	aat Asn	ggg Gly 425	atg Met	gag Glu	gtt Val	tat Tyr	aat Asn 430	tcg Ser	tct Ser	1296
							atc Ile 440									1344
							act Thr									1392
							ccc Pro									1440
							aag Lys									1488

1578

gta tot att got acc ggc act tgc aag gtt ttg aaa gca ttg aag gaa Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu gtc gcg gag gct gcg gca gag cag cat gct acc acc agt taa Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 515 520 <210> 24 <211> 525 <212> PRT <213> Physcomitrella patens <400> 24 Met Val Phe Ala Gly Gly Leu Gln Gln Gly Ser Leu Glu Asn Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala Ala Ser Thr Trp Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu Arg Val Glu Pro Thr Pro Glu Leu Lys Asp Phe Arg Glu Met Arg Ala Leu Phe Leu Arg Glu Gln Leu Phe Lys Ser Ser Lys Leu Tyr Tyr Val Met Lys Leu Leu Thr Asn Val Ala Ile Phe Ala Ala Ser Ile Ala 215 Ile Ile Cys Trp Ser Lys Thr Ile Ser Ala Val Leu Ala Ser Ala Cys

Met Met Ala Leu Cys Phe Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His Asn Gln Val Phe Glu Thr Arg Trp Leu Asn Glu Val Val Gly Tyr Val Ile Gly Asn Ala Val Leu Gly Phe Ser Thr Gly Trp Trp Lys Glu Lys His Asn Leu His His Ala Ala Pro Asn Glu Cys Asp Gln Thr Tyr Gln Pro Ile Asp Glu Asp Ile Asp Thr Leu Pro Leu Ile Ala Trp Ser Lys Asp Ile Leu Ala Thr Val Glu Asn Lys Thr Phe Leu Arg Ile Leu Gln Tyr Gln His Leu Phe Phe Met Gly Leu Leu Phe Phe Ala Arg Gly Ser Trp Leu Phe Trp Ser Trp Arg Tyr Thr Ser Thr Ala Val Leu 355 360 365 Ser Pro Val Asp Arg Leu Leu Glu Lys Gly Thr Val Leu Phe His Tyr Phe Trp Phe Val Gly Thr Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val Tyr Asn Ser Ser Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 490 Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser

<21 <21 <21 <21	1> 2>	25 1332 DNA Caen		bdit	is e	lega	ns										
<22 <22 <22 <22	1> 2>	CDS (1). Delt			tura	se											
<40 atg Met 1	gto	25 gtc Val	gac Asp	aag Lys 5	aat Asn	gcc Ala	tcc Ser	Gly ggg	ctt Leu 10	cga Arg	atg Met	aag Lys	gtc Val	gat Asp 15	ggc Gly		48
aaa Lys	tgg Trp	ctc Leu	tac Tyr 20	ctt Leu	agc Ser	gag Glu	gaa Glu	ttg Leu 25	gtg Val	aag Lys	aaa Lys	cat His	cca Pro 30	gga Gly	gga Gly		96
gct Ala	gtt Val	att Ile 35	gaa Glu	caa Gln	tat Tyr	aga Arg	aat Asn 40	tcg Ser	gat Asp	gct Ala	act Thr	cat His 45	att Ile	ttc Phe	cac His		144
gct Ala	ttc Phe 50	cac His	gaa Glu	gga Gly	tct Ser	tct Ser 55	cag Gln	gct Ala	tat Tyr	aag Lys	caa Gln 60	ctt Leu	gac Asp	ctt Leu	ctg Leu		192
aaa Lys 65	aag Lys	cac	gga Gly	gag Glu	cac His 70	gat Asp	gaa Glu	ttc Phe	ctt Leu	gag Glu 75	aaa Lys	caa Gln	ttg Leu	gaa Glu	aag Lys 80	*	240
aga Arg	ctt Leu	gac Asp	aaa Lys	gtt Val 85	gat Asp	atc Ile	aat Asn	gta Val	tca Ser 90	gca Ala	tat Tyr	gat Asp	gtc Val	agt Ser 95	gtt Val		288
gca Ala	caa Gln	gaa Glu	aag Lys 100	aaa Lys	atg Met	gtt Val	gaa Glu	tca Ser 105	ttc Phe	gaa Glu	aaa Lys	cta Leu	cga Arg 110	cag Gln	aag Lys		336
ctt Leu	cat His	gat Asp 115	gat Asp	gga Gly	tta Leu	atg Met	aaa Lys 120	gca Ala	aat Asn	gaa Glu	aca Thr	tat Tyr 125	ttc Phe	ctg Leu	ttt Phe		384
aaa Lys	gcg Ala 130	att Ile	tca Ser	aca Thr	ctt Leu	tca Ser 135	att Ile	atg Met	gca Ala	ttt Phe	gca Ala 140	ttt Phe	tat Tyr	ctt Leu	cag Gln		432
tat Tyr 145	ctt Leu	gga Gly	tgg Trp	tat Tyr	att Ile 150	act Thr	tct Ser	gca Ala	tgt Cys	tta Leu 155	tta Leu	gca Ala	ctt Leu	gca Ala	tgg Trp 160		480
caa Gln	caa Gln	ttc Phe	gga Gly	tgg Trp 165	tta Leu	aca Thr	cat His	gag Glu	ttc Phe 170	tgc Cys	cat His	caa Gln	cag Gln	cca Pro 175	aca Thr		528
aag Lys	aac Asn	aga Arg	cct Pro 180	ttg Leu	aat Asn	gat Asp	act Thr	att Ile 185	țct Ser	ttg Leu	ttc Phe	ttt Phe	ggt Gly 190	aat Asn	ttc Phe		576
tta Leu	caa Gln	gga Gly 195	ttt Phe	tca Ser	aga Arg	gat Asp	tgg Trp 200	tgg Trp	aag Lys	gac Asp	aag Lys	cat His 205	aac Asn	act Thr	cat His		624
cac His	gct Ala 210	gcc Ala	aca Thr	aat Asn	gta Val	att Ile 215	gat Asp	cat His	gac Asp	ggt Gly	gat Asp 220	atc Ile	gac Asp	ťtg Leu	gca Ala		672
cca Pro 225	ctt Leu	ttc Phe	gca Ala	ttt Phe	att Ile 230	cca Pro	gga Gly	gat Asp	ttg Leu	tgc Cys 235	aag Lys	tat Tyr	aag Lys	gcc Ala	agc Ser 240		720
ttt Phe	gaa Glu	aaa Lys	gca Ala	att Ile 245	ctc Leu	aag Lys	att Ile	gta Val	cca Pro 250	tat Tyr	caa Gln	cat His	ctc Leu	tat Tyr 255	ttc Phe		768

										tgg Trp						816
										tac Tyr						864
aat Asn	gca Ala 290	ttc Phe	tgg Trp	gag Glu	caa Gln	gca Ala 295	aca Thr	att Ile	gtt Val	gga Gly	cat His 300	tgg Trp	gct Ala	tgg Trp	gta Val	912
										cca Pro 315						960
ttc Phe	att Ile	att Ile	tca Ser	caa Gln 325	atg Met	gga Gly	gga Gly	ggc	ctt Leu 330	ttg Leu	att Ile	gct Ala	cac His	gta Val 335	gtc Val	1008
										cca Pro						1056
										acc Thr						1104
										gga Gly						1152
										tgc Cys 395						1200
										aat Asn						1248
										aat Asn						1296
								aaa Lys		gcc Ala	taa					1332
<210 <210 <210 <210	L> 4 2> 1	26 143 PRT Caend	orhal	odit:	is el	Legar	ıs									
<40	0> 2	26														
Met 1	Val	Val	qaA	Lys 5	Asn	Ala	Ser	Gly	Leu 10	Arg	Met	Lys	Val	Asp 15	Gly	
Lys	Trp	Leu	Tyr 20	Leu	Ser	Glu	Glu	Leu 25	Val	Lys	Lys	His	Pro 30	Gly	Gly	
Ala	Val	Ile 35	Glu	Gln	Tyr	Arg	Asn 40	ser	Asp	Ala	Thr	His 45	Ile	Phe	His	
Ala	Phe 50	His	Glu	Gly	Ser	Ser 55	Gln	Ala	Tyr	Lys	Gln 60	Leu	Asp	Leu	Leu	
Lys	Lys	His	Gly	Glu	His	Asp	Glu	Phe	Leu	Glu	Lys	Gln	Leu	Glu	Lys	

Arg Leu Asp Lys Val Asp Ile Asn Val Ser Ala Tyr Asp Val Ser Val 85 90 95

Ala Gln Glu Lys Lys Met Val Glu Ser Phe Glu Lys Leu Arg Gln Lys 100 105 110

Leu His Asp Asp Gly Leu Met Lys Ala Asn Glu Thr Tyr Phe Leu Phe 115 120 125

Lys Ala Ile Ser Thr Leu Ser Ile Met Ala Phe Ala Phe Tyr Leu Gln 130 135 140

Tyr Leu Gly Trp Tyr Ile Thr Ser Ala Cys Leu Leu Ala Leu Ala Trp 145 150 155

Gln Gln Phe Gly Trp Leu Thr His Glu Phe Cys His Gln Gln Pro Thr 165 170 175

Lys Asn Arg Pro Leu Asn Asp Thr Ile Ser Leu Phe Phe Gly Asn Phe 180 185 190

Leu Gln Gly Phe Ser Arg Asp Trp Trp Lys Asp Lys His Asn Thr His 195 200 205

His Ala Ala Thr Asn Val Ile Asp His Asp Gly Asp Ile Asp Leu Ala 210 225

Pro Leu Phe Ala Phe Ile Pro Gly Asp Leu Cys Lys Tyr Lys Ala Ser 225 230 235 240

Phe Glu Lys Ala Ile Leu Lys Ile Val Pro Tyr Gln His Leu Tyr Phe 245 250 255

Thr Ala Met Leu Pro Met Leu Arg Phe Ser Trp Thr Gly Gln Ser Val 260 265 270

Gln Trp Val Phe Lys Glu Asn Gln Met Glu Tyr Lys Val Tyr Gln Arg 275 280 285

Asn Ala Phe Trp Glu Gln Ala Thr Ile Val Gly His Trp Ala Trp Val 290 295 300

Phe Tyr Gln Leu Phe Leu Leu Pro Thr Trp Pro Leu Arg Val Ala Tyr 305 310 315 320

Phe Ile Ile Ser Gln Met Gly Gly Leu Leu Ile Ala His Val Val 325 330 335

Thr Phe Asn His Asn Ser Val Asp Lys Tyr Pro Ala Asn Ser Arg Ile 340 345

Leu Asn Asn Phe Ala Ala Leu Gln Ile Leu Thr Thr Arg Asn Met Thr 355 360 365

Pro Ser Pro Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln Ile 370 380

			•														
Glu 385	His	His	Leu	Phe	Pro 390	Thr	Met	Pro	Arg	Cys 395	Asn	Leu	Asn	Ala	Cys 400		
Val	Lys	Tyr	Val	Lys 405	Glu	Trp	Cys	Lys	Glu 410	Asn	Asn	Leu	Pro	Tyr 415	Leu		-
Val	Asp	Asp	Tyr 420	Phe	Asp	Gly	Tyr	Ala 425	Met	Asn	Leu	Gln	Gln 430	Leu	Lys		
Asn	Met	Ala 435	Glu	His	Ile	Gln	Ala 440	Lys	Ala	Ala							
<210 <211 <212 <213	L> 8 2> I	27 373 ONA Physo	comit	rell	la pa	atens	5	٠									
<220		ND.C															
<223 <223 <223			. (873 a-6-1		gase										,		
<400)> 2	27															
atg	gag									ttg Leu							48
										Gly ggg							96
										gac Asp						1	44
gtc Val	ctc Leu 50	ggt Gly	gtt Val	tct Ser	gta Val	tac Tyr 55	ttg Leu	act Thr	att Ile	gtc Val	att Ile 60	gga Gly	Gly aaa	ctt Leu	ttg Leu	1	92
tgg Trp 65	ata Ile	aag Lys	gcc Ala	agg Arg	gat Asp 70	ctg Leu	aaa Lys	ccg Pro	cgc Arg	gcc Ala 75	tcg Ser	gag Glu	cca Pro	ttt Phe	ttg Leu 80	2	40
ctc Leu	caa Gln	gct Ala	ttg Leu	gtg Val 85	ctt Leu	gtg Val	cac His	aac Asn	ctg Leu 90	ttc Phe	tgt Cys	ttt Phe	gcg Ala	ctc Leu 95	agt Ser	2	88
										gct Ala						3	36
										cat His						3	84
										gtg Val						4	32
										caa Gln 155						4	80
										tgg Trp						5	28

ca Hi	c gct s Ala	cct Pro	ggc Gly 180	GTĀ	gaa Glu	gca Ala	tat Tyr	tgg Trp 185	Ser	gcg Ala	gct Ala	ctg Leu	aac Asn 190	tca Ser	gga Gly		576
gt Va	g cat l His	gtt Val 195	Leu	atg Met	tat Tyr	gcg Ala	tat Tyr 200	Tyr	ttc Phe	ttg Leu	gct Ala	gcc Ala 205	tgc Cys	ctt Leu	cga Arg	-	624
ag Se:	t ago r Ser 210	PIO	aag Lys	tta Leu	aaa Lys	aat Asn 215	aag Lys	tac Tyr	ctt Leu	ttt Phe	tgg Trp 220	ggc Gly	agg Arg	tac Tyr	ttg Leu		672
ac: Th: 22!	a caa r Gln 5	ttc Phe	caa Gln	atg Met	ttc Phe 230	cag Gln	ttt Phe	atg Met	ctg Leu	aac Asn 235	tta Leu	gtg Val	cag Gln	gct Ala	tac Tyr 240		720
tae Ty:	c gac c Asp	atg Met	aaa Lys	acg Thr 245	aat Asn	gcg Ala	cca Pro	tat Tyr	cca Pro 250	caa Gln	tgg Trp	ctg Leu	atc Ile	aag Lys 255	att Ile		768
tt <u>c</u> Lei	g ttc 1 Phe	tac Tyr	tac Tyr 260	atg Met	atc Ile	tcg Ser	ttg Leu	ctg Leu 265	ttt Phe	ctt Leu	ttc Phe	ggc Gly	aat Asn 270	ttt Phe	tac Tyr		816
gta Val	caa Gln	aaa Lys 275	tac Tyr	atc Ile	aaa Lys	ccc Pro	tct Ser 280	gac Asp	gga Gly	aag Lys	caa Gln	aag Lys 285	gga Gly	gct Ala	aaa Lys		864
	gag Glu 290	-															873
<21 <21 <21	.1> .2>	28 290 PRT														\supset	
<21	.3>	Physo	comit	rell	la pa	atens	5										
<21 <40		Physo 28	comit	rell	la pa	atens	5										
<40		28						Gly	Glu 10	Leu	Asp	Gly	Lys	Val 15			-
<40 Met 1	0> :	28 Val	Val	Glu 5	Arg	Phe	Tyr		10					15	Ser		-
<40 Met 1 Glr	0> : Glu	28 Val Val	Val Asn 20	Glu 5 Ala	Arg Leu	Phe Leu	Tyr Gly	Ser 25	10 Phe	Gly	Val	Glu	Leu 30	15 Thr	Ser		-
<40 Met 1 Glr	0> : Glu Gly	Val Val Thr	Val Asn 20	Glu 5 Ala Lys	Arg Leu Gly	Phe Leu Leu	Tyr Gly Pro 40	Ser 25 Leu	10 Phe Val	Gly Asp	Val Ser	Glu Pro 45	Leu 30 Thr	15 Thr Pro	Ser Asp		-
<40 Met 1 Glr Thr	Glu Gly Pro	Val Val Thr 35	Val Asn 20 Thr	Glu 5 Ala Lys Ser	Arg Leu Gly Val	Phe Leu Leu Tyr 55	Tyr Gly Pro 40 Leu	Ser 25 Leu Thr	10 Phe Val Ile	Gly Asp Val	Val Ser Ile	Glu Pro 45 Gly	Leu 30 Thr	15 Thr Pro	Ser Asp Ile		-
<40 Met 1 Glr Thr Val	Glu Gly Pro Leu 50	Val Thr 35 Gly Lys	Val Asn 20 Thr Val Ala	Glu 5 Ala Lys Ser Arg	Arg Leu Gly Val Asp 70	Phe Leu Leu Tyr 55	Tyr Gly Pro 40 Leu Lys	Ser 25 Leu Thr Pro	10 Phe Val Ile	Gly Asp Val Ala	Val Ser Ile 60 Ser	Glu Pro 45 Gly Glu	Leu 30 Thr Gly Pro	15 Thr Pro Leu	Ser Asp Ile Leu Leu 80		
<40 Met 1 Glr. Thr Val Trp 65 Leu	Glu Gly Pro Leu 50	Val Val Thr 35 Gly Lys Ala	Val Asn 20 Thr Val Ala	Glu 5 Ala Lys Ser Arg Val	Arg Leu Gly Val Asp 70	Phe Leu Leu Tyr 55 Leu Val	Tyr Gly Pro 40 Leu Lys	Ser 25 Leu Thr Pro	Phe Val Ile Arg	Gly Asp Val Ala 75	Val Ser Ile 60 Ser Cys	Glu Pro 45 Gly Glu Phe	Leu 30 Thr Gly Pro	Thr Pro Leu Phe Leu 95	Ser Asp Ile Leu So Ser		
<40 Met 1 Glr Thr Val Trp 65 Leu	Glu Gly Pro Leu 50 Ile	Val Val Thr 35 Gly Lys Ala	Val Asn 20 Thr Val Ala Leu Cys 100	Glu 5 Ala Lys Ser Arg Val 85	Arg Leu Gly Val Asp 70 Leu Gly	Phe Leu Leu Tyr 55 Leu Val	Tyr Gly Pro 40 Leu Lys His	Ser 25 Leu Thr Pro Asn	Phe Val Ile Arg Leu 90 Gln	Gly Asp Val Ala 75 Phe	Val Ser Ile 60 Ser Cys Ile	Glu Pro 45 Gly Glu Phe	Leu 30 Thr Gly Pro Ala Trp	Thr Pro Leu Phe Leu 95	Ser Asp Ile Leu Leu Sor		

Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 His Ala Pro Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 200 Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 230 Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 280 Thr Glu 290 <210> 29 <211> 1049 <212> DNA <213> Thraustochytrium <220> <221> CDS <222> (43)..(858) <223> Delta-6-Elongase <400> 29 gaatteggea egagagegeg eggageggag aceteggeeg eg atg atg gag eeg 54 Met Met Glu Pro ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc 102 Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser 10 tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc 150 Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 30 gtc ggg ccc ctg gga atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc 198 Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser gtg gtc ctc tac ctg agc ctg ctg gcc gtg gtc tac gcg ctg cgg aac Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr Ala Leu Arg Asn 246

60

tac Tyr	ctt Leu 70	Gly	Gly gg:c	ctc Leu	atg Met	gcg Ala 75	ctc Leu	cgc Arg	agc Ser	gtg Val	cat His 80	aac Asn	ctc Leu	Gly	ctc Leu	294
tgc Cys 85	ctc Leu	ttc Phe	tcg Ser	ggc	gcc Ala 90	gtg Val	tgg Trp	atc Ile	tac Tyr	acg Thr 95	agc Ser	tac Tyr	ctc Leu	atg Met	atc Ile 100	342
cag Gln	gat Asp	ggg	cac His	ttt Phe 105	cgc Arg	agc Ser	ctc Leu	gag Glu	gcg Ala 110	gca Ala	acg Thr	tgc Cys	gag Glu	ccg Pro 115	ctc Leu	390
aag Lys	cat His	ccg Pro	cac His 120	ttc Phe	cag Gln	ctc Leu	atc Ile	agc Ser 125	ttg Leu	ctc Leu	ttt Phe	gcg Ala	ctg Leu 130	tcc Ser	aag Lys	438
atc Ile	tgg Trp	gag Glu 135	tgg Trp	ttc Phe	gac Asp	acg Thr	gtg Val 140	ctc Leu	ctc Leu	atc Ile	gtc Val	aag Lys 145	ggc Gly	aac Asn	aag Lys	486
ctc Leu	cgc Arg 150	ttc Phe	ctg Leu	cac His	gtc Val	ttg Leu 155	cac His	cac His	gcc Ala	acg Thr	acc Thr 160	ttt Phe	tgg Trp	ctc Leu	tac Tyr	534
gcc Ala 165	atc Ile	gac Asp	cac His	atc Ile	ttt Phe 170	ctc Leu	tcg Ser	tcc Ser	atc Ile	aag Lys 175	tac Tyr	ggc ggc	gtc Val	gcg Ala	gtc Val 180	582
aat Asn	gct Ala	ttc Phe	atc Ile	cac His 185	acc Thr	gtc Val	atg Met	tac Tyr	gcg Ala 190	cac His	tac Tyr	ttc Phe	cgc	cca Pro 195	ttc Phe	630
ccg Pro	aag Lys	ggc Gly	ttg Leu 200	cgc Arg	ccg Pro	ctt Leu	att Ile	acg Thr 205	cag Gln	ttg Leu	cag Gln	atc Ile	gtc Val 210	cag Gln	ttc Phe	678
att Ile	ttc Phe	agc Ser 215	atc Ile	ggc Gly	atc Ile	cat His	acc Thr 220	gcc Ala	att Ile	tac Tyr	tgg Trp	cac His 225	tac Tyr	gac Asp	tgc Cys	726
Glu	ccg Pro 230	ctc Leu	gtg Val	cat His	acc Thr	cac His 235	ttt Phe	tgg Trp	gaa Glu	tac Tyr	gtc Val 240	acg Thr	ccc Pro	tac Tyr	ctt Leu	774
ttc Phe 245	gtc Val	gtg Val	ccc Pro	ttc Phe	ctc Leu 250	atc Ile	ctc Leu	ttt Phe	ttc Phe	aat Asn 255	ttt Phe	tac Tyr	ctg Leu	cag Gln	cag Gln 260	822
tac Tyr	gtc Val	ctc Leu	Ala	ccc Pro 265	gca Ala	aaa Lys	acc Thr	aag Lys	aag Lys 270	gca Ala	tag	ccac	gtaa	ca		868
gtag	acca	gc a	gcgc	cgag	g ac	gcgt	gccg	cgt	tato	gcg	aagc	acga	aa t	aaag	aagat	928
															aaaaa	
															aaaaa	
c																1049
<210:	> 3	0														

<210> 30 <211> 271 <212> PRT

<213> Thraustochytrium

Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala 1 5 15

Arg Tyr Ala Ser Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala 20 25 30

Lys Asp Ser Phe Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Leu Val Gly Ser Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr 50 60

Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His 65 70 75 80

Asn Leu Gly Leu Cys Leu Phe Ser Gly Ala Val Trp Ile Tyr Thr Ser 85 90 95

Tyr Leu Met Ile Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr 100 105 110

Cys Glu Pro Leu Lys His Pro His Phe Gln Leu Ile Ser Leu Leu Phe 115 120 125

Lys Gly Asn Lys Leu Arg Phe Leu His Val Leu His His Ala Thr Thr 145 150 155 160

Phe Trp Leu Tyr Ala Ile Asp His Ile Phe Leu Ser Ser Ile Lys Tyr 165 170 175

Gly Val Ala Val Asn Ala Phe Ile His Thr Val Met Tyr Ala His Tyr 180 185

Phe Arg Pro Phe Pro Lys Gly Leu Arg Pro Leu Ile Thr Gln Leu Gln 195 200 205

Ile Val Gln Phe Ile Phe Ser Ile Gly Ile His Thr Ala Ile Tyr Trp 210 215 220

His Tyr Asp Cys Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val 225 230 235

Thr Pro Tyr Leu Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe 245 250 255

Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala 260 265 270

<210> 31

<211> 837

<212> DNA

<213> Phytophthora infestans

<220>

<221> CDS

<222> (1)..(837)

<223> Delta-6-Elongase

_																						
1	tg t et S				5	_			D C.		YΥ	10	- A.	ıa '	ı r p	Αı	.a A	sn	Ala 15	а Т	hr	48
	ag g lu A			20			•			25	5	F T C	, G.1	·u·	этХ	GT	у Т З	rp 0	Lys	s V	al	96
	at c is P		35						40		La z	7211	. P1)	e s	er	5e 45	r V	al	Туг	- A.	la	144
	e C	0		_	_		5	5		· va		гте	PII	e G 6	0 TÀ	.T.D.:	r A.	la	Leu	Me	et	192
65	a at s Me		_			70			ی برت	111	.L 5	eī	75	ОЪ	eu	GII	ı Pr	1e	Val	Ту 80	r)	240
	c co n Pr				85			,	د برے	56.	9	0 A T	мет	ב כי	ys	Va.	r G1	.u	Ala 95	Al	a	288
	c ca e Gl			100	_		0.		-7-	105	5	1a	ATS	ı Pı	. 0	Cys	: As 11	n 1	Ala	Ph	е	336
	g tc s Se	1	15	-		-		1	20	ASI.	1 V	ат	теп	r 13	rr :	Leu 125	. Ph	e j	ſyr	Le	u	384
	2 aa 2 Ly: 13	0					13	5	حيد	T 11T	. Vc	ZТ	rne	14	.e . 0	ITe	Le	u G	ly	Lys	5	432
145	tg: Tr					150)		Cu	1112	Ve	L.	155	нŕ	s E	ils	Let	1 T	hr	Va]	L)	480
	tto Phe	•		-	165					arg	17	0	чта	GT.	n A	sp	G17	, A 1	sp 75	Ser		528
	gct Ala		1	80					- 2	185	va	- F	115	Thi	r I	Te	Met 190	T	yr '	Thr		576
	tac Tyr	19	5					20	00	9	11.5.	11 1	.16	TIT	2	rp 05	гЛS	L	ys :	ſyr		624
ctc Leu	210						215	5		110	va.	T T	IIL	220	: As	sn	Val	G]	ln (∃ly		672
tac Tyr 225			_			230	01,1	. Су	S F	10	GTZ	2.	95 35	Pro	Pı	:o :	Lys	Va	ıl F 2	140		720
ctc Leu				2	45	-4 -	V 4.1	01	11 0	•	250)	ne .	ттр	Le	eu]	Phe	Ме 25	t A 5	sn		768
ttc Phe			26	ō			, u_	tt. Ph	G .	gc ly : 65	ccc Pro	aa Ly	ag a /s]	aaa Lys	cc Pr	O Z	gcc Ala 270	gt Va	g g l G	ag lu		816
gaa Glu :	tcg Ser	aag Lys 275	: Гу	g aa s Ly	ag t /s I	tg eu	taa															837

<212> PRT

<213> Phytophthora infestans

<400> 32

Met Ser Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Asn Ala Thr 1 5 10 15

Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 20 25 30

His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala 35 40 45

Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met 50 60

Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr 65 70 75 80

Asn Pro Ile Gln Val Ile Ala Cys Ser Tyr Met Cys Val Glu Ala Ala 85 90 95

Ile Gln Ala Tyr Arg Asn Gly Tyr Thr Ala Ala Pro Cys Asn Ala Phe 100 105 110

Lys Ser Asp Asp Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu 115 120 125

Ser Lys Met Leu Asp Leu Cys Asp Thr Val Phe Ile Ile Leu Gly Lys 130 135 140

Lys Trp Lys Gln Leu Ser Ile Leu His Val Tyr His His Leu Thr Val 145 150 155 160

Leu Phe Val Tyr Tyr Val Thr Phe Arg Ala Ala Gln Asp Gly Asp Ser 165 170 175

Tyr Ala Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr 180 180 185 190

Tyr Tyr Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr 195 200 205

Leu Thr Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly 210 215 220

Tyr Leu Thr Tyr Ser Arg Gln Cys Pro'Gly Met Pro Pro Lys Val Pro 225 230 235 . 240

Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn 245 250 255

Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu 260 265 270

Glu Ser Lys Lys Leu 275

	.1> .2>	33 954 DNA Mort	iere	lla	alpi	na	-									
	1> 2>	CDS (1). Delt			gase								-			
atg	0> gcc Ala	33 gcc Ala	gca Ala	atc Ile 5	ttg Leu	gac Asp	aag Lys	gtc Val	aac Asn 10	ttc Phe	ggc	att Ile	gat Asp	cag Gln 15	ccc Pro	48
ttc Phe	gga Gly	atc Ile	aag Lys 20	ctc Leu	gac Asp	acc Thr	tac Tyr	ttt Phe 25	gct Ala	cag Gln	gcc Ala	tat Tyr	gaa Glu 30	ctc Leu	gtc Val	96
acc Thr	gga Gly	aag Lys 35	tcc Ser	atc Ile	gac Asp	tcc Ser	ttc Phe 40	gtc Val	ttc Phe	cag Gln	gag Glu	ggc Gly 45	gtc Val	acg Thr	cct Pro	144
ctc Leu	tcg Ser 50	acc Thr	cag Gln	aga Arg	gag Glu	gtc Val 55	gcc Ala	atg Met	tgg Trp	act Thr	atc Ile 60	act Thr	tac Tyr	ttc Phe	gtc Val	192
gtc Val 65	atc Ile	ttt Phe	ggt Gly	ggt Gly	cgc Arg 70	cag Gln	atc Ile	atg Met	aag Lys	agc Ser 75	cag Gln	gac Asp	gcc Ala	ttc Phe	aag Lys 80	240
ctc Leu	aag Lys	ccc Pro	ctc Leu	ttc Phe 85	atc Ile	ctc Leu	cac His	aac Asn	ttc Phe 90	ctc Leu	ctg Leu	acg Thr	atc Ile	gcg Ala 95	tcc Ser	288
gga Gly	tcg Ser	ctg Leu	ttg Leu 100	ctc Leu	ctg Leu	ttc Phe	atc Ile	gag Glu 105	aac Asn	ctg Leu	gtc Val	ccc Pro	atc Ile 110	ctc Leu	gcc Ala	336
aga Arg	aac Asn	gga Gly 115	ctt Leu	ttc Phe	tac Tyr	gcc Ala	atc Ile 120	tgc Cys	gac Asp	gac Asp	ggt Gly	gcc Ala 125	tgg Trp	acc Thr	cag Gln	384
cgc Arg	ctc Leu 130	gag Glu	ctc Leu	ctc Leu	tac Tyr	tac Tyr 135	ctc Leu	aac Asn	tac Tyr	ctg Leu	gtc Val 140	aag Lys	tac Tyr	tgg Trp	gag Glu	432
ttg Leu 145	gcc Ala	gac Asp	acc Thr	gtc Val	ttt Phe 150	ttg Leu	gtc Val	ctc Leu	aag Lys	aag Lys 155	aag Lys	cct Pro	ctt Leu	gag Glu	ttc Phe 160	480
ctg Leu	cac His	tac Tyr	ttc Phe	cac His 165	cac His	tcg Ser	atg Met	acc Thr	atg Met 170	gtt Val	ctc Leu	tgc Cys	ttt Phe	gtc Val 175	cag Gln	528
ctt Leu	gga Gly	gga Gly	tac Tyr 180	act Thr	tca Ser	gtg Val	tcc Ser	tgg Trp 185	gtc Val	cct Pro	att Ile	acc Thr	ctc Leu 190	aac Asn	ttg Leu	576
act Thr	gtc Val	cac His 195	gtc Val	ttc [.] Phe	atg Met	tac Tyr	tac Tyr 200	tac Tyr	tac Tyr	atg Met	cgc Arg	tcc Ser 205	gct Ala	gcc Ala	ggt Gly	624
gtt Val	cgc Arg 210	atc Ile	tgg Trp	tgg Trp	aag Lys	cag Gln 215	tac Tyr	ttg Leu	acc Thr	act Thr	ctc Leu 220	cag Gln	atc Ile	gtc Val	cag Gln	672
ttc Phe 225	gtt Val	ctt Leu	gac Asp	ctc Leu	gga Gly 230	ttc Phe	atc Ile	tac Tyr	ttc Phe	tgc Cys 235	gcc Ala	tac Tyr	acc Thr	tac Tyr	ttc Phe 240	720
gcc Ala	ttc Phe	acc Thr	tac Tyr	ttc Phe 245	ccc Pro	tgg Trp	gct Ala	ccc Pro	aac Asn 250	gtc Val	ggc	aag Lys	tgc Cys	gcc Ala 255	ggt Gly	768

acc Thr	gag Glu	ggt Gly	gct Ala 260	gct Ala	ctc Leu	ttt Phe	ggc	tgc Cys 265	Gly	ctc Leu	ctc Leu	tcc Ser	agc Ser 270	tat Tyr	ctc Leu	
ttg Leu	ctc Leu	ttt Phe 275	atc Ile	aac Asn	ttc Phe	tac Tyr	cgc Arg 280	att Ile	acc Thr	tac Tyr	aat Asn	gcc Ala 285	aag Lys	gcc Ala	aag Lys	
gca Ala	gcc Ala 290	aag Lys	gag Glu	cgt Arg	gga Gly	agc Ser 295	aac Asn	ttt Phe	acc Thr	ccc Pro	aag Lys 300	act Thr	gtc Val	aag Lys	tcc Ser	
ggc Gly 305	gga Gly	tcg Ser	ccc Pro	aag Lys	aag Lys 310	ccc Pro	tcc Ser	aag Lys	agc Ser	aag Lys 315	cac His	atc Ile	taa	٠		·
<210 <210 <210 <210	L> : 2> :	34 317 PRT Mort:	iere:	lla a	alpir	na										
<400)> :	34														
Met 1	Ala	Ala	Ala	Ile 5	Leu	Asp	Lys	Val	Asn 10	Phe	Gly	Ile	Asp	Gln 15	Pro	
Phe	Gly	Ile	Lys 20	Leu	Asp	Thr	Tyr	Phe 25	Ala	Gln	Ala	Tyr	Glu 30	Leu	Val	
Thr	Gly	Lys 35	Ser	Ile	Asp	Ser	Phe 40	Val	Phe	Gln	Glu	Gly 45	Val	Thr	Pro	
Leu	Ser 50	Thr	Gln	Arg	Glu	Val 55	Ala	Met	Trp	Thr	Ile 60	Thr	Tyr	Phe	Val	
Val 65	Ile	Phe	Gly	Gly	Arg 70	Gln	Ile	Met	Lys	Ser 75	Gln	Asp	Ala	Phe	Lys 80	
Leu	Lys	Pro	Leu	Phe 85	Ile	Leu	His	Asn	Phe 90	Leu	Leu	Thr	Ile	Ala 95	Ser	
Gly	Ser	Leu	Leu 100	Leu	Leu	Phe	Ile	Glu 105	Asn	Leu	Val	Pro	Ile 110	Leu	Ala	
Arg	Asn	Gly 115	Leu	Phe	Tyr	Ala	Ile 120	Cys	Asp	Asp	Gly	Ala 125	Trp	Thr	Gln	
Arg	Leu 130	Glu	Leu	Leu	Tyr	Tyr 135	Leu	Asn	Tyr	Leu	Val 140	Lys	Tyr	Trp	Glu	
Leu 145	Ala	Asp	Thr	Val	Phe 150	Leu	Val	Leu	Lys	Lys 155	Lys	Pro	Leu	Glu	Phe 160	
Leu	His	Tyr	Phe	His 165	His	Ser	Met	Thr	Met 170	Val	Leu	Cys	Phe	Val 175	Gln	
Leu	Gly	Gly	Tyr 180	Thr	Ser	Val	Ser	Trp 185	Val	Pro	Ile	Thr	Leu 190	Asn	Leu	
Thr	Val	His 195	Val	Phe	Met	Tyr	Туr 200	Tyr	Tyr	Met	Arg	Ser 205	Ala	Ala	Gly	

Val Arg Ile Trp Trp Lys Gln Tyr Leu Thr Thr Leu Gln Ile Val Gln 210 220

Phe Val Leu Asp Leu Gly Phe Ile Tyr Phe Cys Ala Tyr Thr Tyr Phe 225 230 235

Ala Phe Thr Tyr Phe Pro Trp Ala Pro Asn Val Gly Lys Cys Ala Gly 245 250 250

Thr Glu Gly Ala Ala Leu Phe Gly Cys Gly Leu Leu Ser Ser Tyr Leu 260 265 270

Leu Leu Phe Ile Asn Phe Tyr Arg Ile Thr Tyr Asn Ala Lys 275 280 285

Ala Ala Lys Glu Arg Gly Ser Asn Phe Thr Pro Lys Thr Val Lys Ser 290 295 300

Gly Gly Ser Pro Lys Lys Pro Ser Lys Ser Lys His Ile 305 310

<210> 35

<211> 957

<212> DNA <213> Mortierella alpina

<220>

<221> CDS

<222> (1)..(957)

<223> Delta-6-Elongase

<400> 35

atg gag tcg att gcg cca ttc ctc cca tca aag atg ccg caa gat ctg

Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Leu

1 10 15

ttt atg gac ctt gcc acc gct atc ggt gtc cgg gcc gcg ccc tat gtc
Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Val
20 25 30

gat cct ctc gag gcc gcg ctg gtg gcc cag gcc gag aag tac atc ccc Asp Pro Leu Glu Ala Ala Leu Val Ala Glu Ala Glu Lys Tyr Ile Pro 35 40 45

acg att gtc cat cac acg cgt ggg ttc ctg gtc gcg gtg gag tcg cct 192
Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser Pro
50 55 60

ttg gcc cgt gag ctg ccg ttg atg aac ccg ttc cac gtg ctg ttg atc
Leu Ala Arg Glu Leu Pro Leu Met Asn Pro Phe His Val Leu Leu Ile
65 70 75 80

gtg ctc gct tat ttg gtc acg gtc ttt gtg ggc atg cag atc atg aag
Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met Lys
85 90 95

aac ttt gag cgg ttc gag gtc aag acg ttt tcg ctc ctg cac aac ttt Asn Phe Glu Arg Phe Glu Val Lys Thr Phe Ser Leu Leu His Asn Phe 100 105 110

tgt ctg gtc tcg atc agc gcc tac atg tgc ggt ggg atc ctg tac gag
Cys Leu Val Ser Ile Ser Ala Tyr Met Cys Gly Gly Ile Leu Tyr Glu
115 120 125

		cag Gln														432
		ggt Gly														480
		atg Met														528
		cag Gln														576
		tgg Trp 195														624
		gct Ala														672
		ttg Leu														720
		acg Thr														768
		tgg Trp														816
		ttc Phe 275														864
ggt Gly	ctc Leu 290	ttc Phe	tac Tyr	aac Asn	ttt Phe	tac Tyr 295	aga Arg	aag Lys	aac Asn	gcc Ala	aag Lys 300	ttg Leu	gcc Ala	aag Lys	cag Gln	912
		gcc Ala												taa		957
<21 <21 <21 <21	1> 3 2> 3	36 318 PRT Mort:	iere:	lla a	alpii	na										
<40	0> :	36														
Met 1	Glu	Ser	Ile	Ala 5	Pro	Phe	Leu	Pro	Ser 10	Lys	Met	Pro	Gln	Asp 15	Leu	
Phe	Met	Asp	Leu 20	Ala	Thr	Ala	Ile	Gly 25	Val	Arg	Ala	Ala	Pro 30	Tyr	Val	
Asp	Pro	Leu 35	Glu	Ala	Ala	Leu	Val 40	Ala	Gln	Ala	Glu	Lys 45	Tyr	Ile	Pro	
Thr	Ile 50	Val	His	His	Thr	Arg 55	Gly	Phe	Leu	Val	Ala 60	Val	Glu	Ser	Pro	
Leu 65	Ala	Arg	Glu	Leu	Pro 70	Leu	Met	Asn	Pro	Phe 75	His	Val	Leu	Leu	Ile 80	

Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met Lys

Asn Phe Glu Arg Phe Glu Val Lys Thr Phe Ser Leu Leu His Asn Phe 105

Cys Leu Val Ser Ile Ser Ala Tyr Met Cys Gly Gly Ile Leu Tyr Glu

Ala Tyr Gln Ala Asn Tyr Gly Leu Phe Glu Asn Ala Ala Asp His Thr

Phe Lys Gly Leu Pro Met Ala Lys Met Ile Trp Leu Phe Tyr Phe Ser

Lys Ile Met Glu Phe Val Asp Thr Met Ile Met Val Leu Lys Lys Asn

Asn Arg Gln Ile Ser Phe Leu His Val Tyr His His Ser Ser Ile Phe

Thr Ile Trp Trp Leu Val Thr Phe Val Ala Pro Asn Gly Glu Ala Tyr

Phe Ser Ala Ala Leu Asn Ser Phe Ile His Val Ile Met Tyr Gly Tyr

Tyr Phe Leu Ser Ala Leu Gly Phe Lys Gln Val Ser Phe Ile Lys Phe

Tyr Ile Thr Arg Ser Gln Met Thr Gln Phe Cys Met Met Ser Val Gln

Ser Ser Trp Asp Met Tyr Ala Met Lys Val Leu Gly Arg Pro Gly Tyr

Pro Phe Phe Ile Thr Ala Leu Leu Trp Phe Tyr Met Trp Thr Met Leu

Gly Leu Phe Tyr Asn Phe Tyr Arg Lys Asn Ala Lys Leu Ala Lys Gln

Ala Lys Ala Asp Ala Ala Lys Glu Lys Ala Arg Lys Leu Gln

<210> 37 <211> 867

<212> DNA

<213> Caenorhabditis elegans

<220>

<221> CDS <222> (1)..(867)

<223> Delta-6-Elongase

<400> 37

•	atg Met 1	gct Ala	cag Gln	cat His	ccg Pro 5	ctc Leu	gtt Val	caa Gln	cgg Arg	ctt Leu 10	ctc Leu	gat Asp	gtc Val	aaa Lys	ttc Phe 15	gac Asp	48
	acg Thr	aaa Lys	cga Arg	ttt Phe 20	gtg Val	gct Ala	att Ile	gct Ala	act Thr 25	cat His	ggg ggg	cca Pro	aag Lys	aat Asn 30	ttc Phe	cct Pro	96
	gac Asp	gca Ala	gaa Glu 35	ggt Gly	cgc Arg	aag Lys	ttc Phe	ttt Phe 40	gct Ala	gat Asp	cac His	ttt Phe	gat Asp 45	gtt Val	act Thr	att Ile	144
	cag Gln	gct Ala 50	tca Ser	atc Ile	ctg Leu	tac Tyr	atg Met 55	gtc Val	gtt Val	gtg Val	ttc Phe	gga Gly 60	aca Thr	aaa Lys	tgg Trp	ttc Phe	192
	atg Met 65	cgt Arg	aat Asn	cgt Arg	caa Gln	cca Pro 70	ttc Phe	caa Gln	ttg Leu	act Thr	att Ile 75	cca Pro	ctc Leu	aac Asn	atc Ile	tgg Trp 80	240
			atc Ile														288
			ttc Phe														336
	tgc Cys	aaa Lys	gtg Val 115	ttt Phe	gat Asp	ttc Phe	acg Thr	aaa Lys 120	gga Gly	gag Glu	aat Asn	gga Gly	tac Tyr 125	tgg Trp	gtg Val	tgg Trp	384
	ctc Leu	ttc Phe 130	atg Met	gct Ala	tcc Ser	aaa Lys	ctt Leu 135	ttc Phe	gaa Glu	ctt Leu	gtt Val	gac Asp 140	acc Thr	atc Ile	ttc Phe	ttg Leu	432
	gtt Val 145	ctc Leu	cgt Arg	aaa Lys	cgt Arg	cca Pro 150	ctc Leu	atg Met	ttc Phe	ctt Leu	cac His 155	tgg Trp	tat Tyr	cac His	cat His	att Ile 160	480
	ctc Leu	acc Thr	atg Met	atc Ile	tac Tyr 165	gcc Ala	tgg Trp	tac Tyr	tct Ser	cat His 170	cca Pro	ttg Leu	acc Thr	cca Pro	gga Gly 175	ttc Phe	528
	aac Asn	aga Arg	tac Tyr	gga Gly 180	att Ile	tat Tyr	ctt Leu	aac Asn	ttt Phe 185	gtc Val	gtc Val	cac His	gcc Ala	ttc Phe 190	atg Met	tac Tyr	576
	tct Ser	tac Tyr	tac Tyr 195	ttc Phe	ctt Leu	cgc Arg	tcg Ser	atg Met 200	aag Lys	att Ile	cgc Arg	gtg Val	cca Pro 205	gga Gly	ttc Phe	atc Ile	624
			gct Ala								Gln						672
	gcc Ala 225	gtt Val	ctt Leu	gct Ala	cat His	ctt Leu 230	ggt Gly	tat Tyr	ctc Leu	atg Met	cac His 235	ttc Phe	acc Thr	aat Asn	gcc Ala	aac Asn 240	720
			ttc Phe														768
	aca Thr	tac Tyr	ttg Leu	gct Ala 260	ctt Leu	ttc Phe	gtc Val	aac Asn	ttc Phe 265	ttc Phe	ctc Leu	caa Gln	tca Ser	tat Tyr 270	gtt Val	ctc Leu	816
	cgc Arg	gga Gly	gga Gly 275	aaa Lys	gac Asp	aag Lys	tac Tyr	aag Lys 280	gca Ala	gtg Val	cca Pro	aag Lys	aag Lys 285	aag Lys	aac Asn	aac Asn	864
	taa																867

<210> 38 <211> 288 <212> PRT

<213> Caenorhabditis elegans

<400> 38

Met Ala Gln His Pro Leu Val Gln Arg Leu Leu Asp Val Lys Phe Asp

Thr Lys Arg Phe Val Ala Ile Ala Thr His Gly Pro Lys Asn Phe Pro

Asp Ala Glu Gly Arg Lys Phe Phe Ala Asp His Phe Asp Val Thr Ile

Gln Ala Ser Ile Leu Tyr Met Val Val Val Phe Gly Thr Lys Trp Phe

Met Arg Asn Arg Gln Pro Phe Gln Leu Thr Ile Pro Leu Asn Ile Trp

Asn Phe Ile Leu Ala Ala Phe Ser Ile Ala Gly Ala Val Lys Met Thr

Pro Glu Phe Phe Gly Thr Ile Ala Asn Lys Gly Ile Val Ala Ser Tyr

Cys Lys Val Phe Asp Phe Thr Lys Gly Glu Asn Gly Tyr Trp Val Trp

Leu Phe Met Ala Ser Lys Leu Phe Glu Leu Val Asp Thr Ile Phe Leu

Val Leu Arg Lys Arg Pro Leu Met Phe Leu His Trp Tyr His His Ile

Leu Thr Met Ile Tyr Ala Trp Tyr Ser His Pro Leu Thr Pro Gly Phe 165

Asn Arg Tyr Gly Ile Tyr Leu Asn Phe Val Val His Ala Phe Met Tyr

Ser Tyr Tyr Phe Leu Arg Ser Met Lys Ile Arg Val Pro Gly Phe Ile

Ala Gln Ala Ile Thr Ser Leu Gln Ile Val Gln Phe Ile Ile Ser Cys

Ala Val Leu Ala His Leu Gly Tyr Leu Met His Phe Thr Asn Ala Asn

Cys Asp Phe Glu Pro Ser Val Phe Lys Leu Ala Val Phe Met Asp Thr 245

Thr Tyr Leu Ala Leu Phe Val Asn Phe Phe Leu Gln Ser Tyr Val Leu 265

Arg	Gly	Gly 275	Lys	Asp	Lys	Tyr	Lys 280	Ala	Val	Pro	Lys	Lys 285	Lys	Asn	Asn	
<210 <211 <212 <213	-> 1 2> I	39 L626 DNA Eugle	ena g	graci	ilis										· •	
<220 <221 <222 <223	> (CDS (1) Delta		-	uras	se										
	ttg				Gly ggc											48
					aac Asn											96
					ggc Gly											144
					cgt Arg											192
					tcg Ser 70											240
					cac His											288
					gat Asp											336
					ctg Leu											384
					gct Ala										tac Tyr	432
					cag Gln 150											480
					gag Glu											528
					cgg Arg											576
					ttc Phe											624
					gcc Ala											672
					gat Asp 230											720

ctg Leu	gtg Val	aac Asn	cgc Arg	ctg Leu 245	gcg Ala	ggg Gly	tgg Trp	ggc Gly	atg Met 250	gac Asp	ttg Leu	atc Ile	Gly	gcg Ala 255	tcg Ser	768
tcc Ser	acg Thr	gtg Val	tgg Trp 260	gag Glu	tac Tyr	cag Gln	cac His	gtc Val 265	atc Ile	ggc Gly	cac His	cac His	cag Gln 270	tac Tyr	acc Thr	816
aac Asn	ctc Leu	gtg Val 275	tcg Ser	gac Asp	acg Thr	cta Leu	ttc Phe 280	agt Ser	ctg Leu	cct Pro	gag Glu	aac Asn 285	gat Asp	ccg Pro	gac Asp	864
gtc Val	ttc Phe 290	tcc Ser	agc Ser	tac Tyr	ccg Pro	ctg Leu 295	atg Met	cgc Arg	atg Met	cac His	ccg Pro 300	gat Asp	acg Thr	gcg Ala	tgg Trp	912
cag Gln 305	ccg Pro	cac His	cac His	cgc Arg	ttc Phe 310	cag Gln	cac His	ctg Leu	ttc Phe	gcg Ala 315	ttc Phe	cca Pro	ctg Leu	ttc Phe	gcc Ala 320	960
ctg Leu	atg Met	aca Thr	atc Ile	agc Ser 325	aag Lys	gtg Val	ctg Leu	acc Thr	agc Ser 330	gat Asp	ttc Phe	gct Ala	gtc Val	tgc Cys 335	ctc Leu	1008
agc Ser	atg Met	aag Lys	aag Lys 340	GJÀ āāā	tcc Ser	atc Ile	gac Asp	tgc Cys 345	tcc Ser	tcc Ser	agg Arg	ctc Leu	gtc Val 350	cca Pro	ctg Leu	1056
gag Glu	Gly	cag Gln 355	ctg Leu	ctg Leu	ttc Phe	tgg Trp	360 360	gcc Ala	aag Lys	ctg Leu	gcg Ala	aac Asn 365	ttc Phe	ctg Leu	ttg Leu	1104
cag Gln	att Ile 370	gtg Val	ttg Leu	cca Pro	tgc Cys	tac Tyr 375	ctc Leu	cac His	Gly ggg	aca Thr	gct Ala 380	atg Met	ggc Gly	ctg Leu	gcc Ala	1152
ctc Leu 385	ttc Phe	tct Ser	gtt Val	gct Ala	cac His 390	ctt Leu	gtg Val	tcg Ser	GJÀ aaa	gag Glu 395	tac Tyr	ctc Leu	gcg Ala	atc Ile	tgc Cys 400	1200
ttc Phe	atc Ile	atc Ile	aac Asn	cac His 405	atc Ile	agc Ser	gag Glu	tct Ser	tgt Cys 410	gag Glu	ttt Phe	atg Met	aat Asn	aca Thr 415	agc Ser	1248
ttt Phe	caa Gln	acc Thr	gcc Ala 420	gcc Ala	cgg Arg	agg Arg	aca Thr	gag Glu 425	atg Met	ctt Leu	cag Gln	gca Ala	gca Ala 430	cat His	cag Gln	1296
			gcc Ala													1344
gct Ala	gtg Val 450	aca Thr	cag Gln	gtc Val	caa Gln	tgc Cys 455	tgc Cys	gtg Val	aat Asn	tgg Trp	aga Arg 460	tca Ser	ggt Gly	ggc Gly	gtg Val	1392
ttg Leu 465	gcc Ala	aat Asn	cac His	ctc Leu	tct Ser 470	gga Gly	ggc	ttg Leu	aac Asn	cac His 475	cag Gln	atc Ile	gag Glu	cat His	cat His 480	1440
ctg Leu	ttc Phe	ccc Pro	agc Ser	atc Ile 485	tcg Ser	cat His	gcc Ala	aac Asn	tac Tyr 490	ccc Pro	acc Thr	atc Ile	gcc Ala	cct Pro 495	gtt Val	1488
gtg Val	aag Lys	gag Glu	gtg Val 500	tgc Cys	gag Glu	gag Glu	tac Tyr	ggg 505	ttg Leu	ccg Pro	tac Tyr	aag Lys	aat Asn 510	tac Tyr	gtc Val	1536
acg Thr	Phe	tgg Trp 515	gat Asp	gca Ala	gtc Val	tgt Cys	ggc Gly 520	atg Met	gtt Val	cag Gln	cac His	ctc Leu 525	cgg Arg	ttg Leu	atg Met	1584

ggt gct cca ccg gtg cca acg aac ggg gac aaa aag tca taa Gly Ala Pro Pro Val Pro Thr Asn Gly Asp Lys Lys Ser 530 535 540

1626

<210> 40

<211> 541

<212> PRT <213> Euglena gracilis

<400> 40

Met Leu Val Leu Phe Gly Asn Phe Tyr Val Lys Gln Tyr Ser Gln Lys 1 5 10 15

Asn Gly Lys Pro Glu Asn Gly Ala Thr Pro Glu Asn Gly Ala Lys Pro 20 25 30

Gln Pro Cys Glu Asn Gly Thr Val Glu Lys Arg Glu Asn Asp Thr Ala 35 40 . 45

Asn Val Arg Pro Thr Arg Pro Ala Gly Pro Pro Pro Ala Thr Tyr Tyr 50 55 60

Asp Ser Leu Ala Val Ser Gly Gln Gly Lys Glu Arg Leu Phe Thr Thr 65 70 75 80

Asp Glu Val Arg Arg His Ile Leu Pro Thr Asp Gly Trp Leu Thr Cys 85 90 95

His Glu Gly Val Tyr Asp Val Thr Asp Phe Leu Ala Lys His Pro Gly 100 105 110

Gly Gly Val Ile Thr Leu Gly Leu Gly Arg Asp Cys Thr Ile Leu Ile 115 120 125

Glu Ser Tyr His Pro Ala Gly Arg Pro Asp Lys Val Met Glu Lys Tyr 130 140

Arg Ile Gly Thr Leu Gln Asp Pro Lys Thr Phe Tyr Ala Trp Gly Glu 145 150 155

Ser Asp Phe Tyr Pro Glu Leu Lys Arg Arg Ala Leu Ala Arg Leu Lys 165 170 175

Glu Ala Gly Gln Ala Arg Arg Gly Gly Leu Gly Val Lys Ala Leu Leu 180 185 190

Val Leu Thr Leu Phe Phe Val Ser Trp Tyr Met Trp Val Ala His Lys 195 200 205

Ser Phe Leu Trp Ala Ala Val Trp Gly Phe Ala Gly Ser His Val Gly 210 220

Leu Ser Ile Gln His Asp Gly Asn His Gly Ala Phe Ser Arg Asn Thr 225 230 235 240

Leu Val Asn Arg Leu Ala Gly Trp Gly Met Asp Leu Ile Gly Ala Ser 245 250 255 Ser Thr Val Trp Glu Tyr Gln His Val Ile Gly His His Gln Tyr Thr 260 265 270

Asn Leu Val Ser Asp Thr Leu Phe Ser Leu Pro Glu Asn Asp Pro Asp 275 280 285

Val Phe Ser Ser Tyr Pro Leu Met Arg Met His Pro Asp Thr Ala Trp 290 295 300

Gln Pro His His Arg Phe Gln His Leu Phe Ala Phe Pro Leu Phe Ala 305 310 315

Leu Met Thr Ile Ser Lys Val Leu Thr Ser Asp Phe Ala Val Cys Leu 325 330 335

Glu Gly Gln Leu Leu Phe Trp Gly Ala Lys Leu Ala Asn Phe Leu Leu 355 360 365

Gln Ile Val Leu Pro Cys Tyr Leu His Gly Thr Ala Met Gly Leu Ala 370 380

Leu Phe Ser Val Ala His Leu Val Ser Gly Glu Tyr Leu Ala Ile Cys 385 390 395 400

Phe Ile Ile Asn His Ile Ser Glu Ser Cys Glu Phe Met Asn Thr Ser 405 410 415

Phe Gln Thr Ala Ala Arg Arg Thr Glu Met Leu Gln Ala Ala His Gln 420 425 430

Ala Ala Glu Ala Lys Lys Val Lys Pro Thr Pro Pro Pro Asn Asp Trp
435 440 445

Leu Ala Asn His Leu Ser Gly Gly Leu Asn His Gln Ile Glu His His 465 470 475 480

Leu Phe Pro Ser Ile Ser His Ala Asn Tyr Pro Thr Ile Ala Pro Val 485 490 495

Val Lys Glu Val Cys Glu Glu Tyr Gly Leu Pro Tyr Lys Asn Tyr Val
500 505 510

Thr Phe Trp Asp Ala Val Cys Gly Met Val Gln His Leu Arg Leu Met 515 520 525

Gly Ala Pro Pro Val Pro Thr Asn Gly Asp Lys Lys Ser 530 540

<210> 41 <211> 1548

<212> <213>	DNA Thra	aust	ochy	triw	m										
<220> <221> <222> <223>	CDS (1). Delt	(1: :a-4-	548) -Desa	atura	ase										
<400> atg acg Met Thr 1	gto	Gl ⁷ Gg ⁷	ttt Phe 5	gad Asp	c gaa o Glu	a aco	g gto C Val	g act l Thi 10	t ato	g ga E As	c acq p Thi	g gte r Vai	c cg l Ar 15	c aac g Asn	48
cac aac His Asn	ato Met	ccg Pro 20	gac Asp	gac Asr	gco Ala	tgg Tr	tgo Cys 25	c gcg s Ala	g ato a Ile	c cae	s Gl7 c ggd	c acc 7 Th: 30	c gt	g tac l Tyr	96
gac ato Asp Ile	acc Thr 35	aag Lys	r tto Phe	ago Ser	aag Lys	gtg Val 40	cac His	c ccc Pro	Gl ⁷	Gly Gly	g gad y Asp 45	ato Ile	c ato	c atg e Met	144
ctg gcc Leu Ala 50	gct Ala	ggc	aag Lys	gag Glu	gco Ala 55	acc Thr	ato Ile	ctg Leu	tto Phe	gag Glu	acc 1 Thr	tac Tyr	cac His	atc Ile	192
aag ggc Lys Gly 65	gtc Val	ccg Pro	gac Asp	gcg Ala 70	gtg Val	ctg Leu	cgc Arg	aag Lys	tac Tyr 75	aac Lys	g gtc Val	ggc Gly	aag Lys	ctc Leu 80	240
ccc cag Pro Gln	ggc	aag Lys	aag Lys 85	ggc Gly	gaa Glu	acg Thr	agc Ser	cac His 90	atg Met	Pro	acc Thr	GJA aaa	cto Leu 95	gac Asp	288
tcg gcc Ser Ala	tcc Ser	tac Tyr 100	tac Tyr	tcg Ser	tgg Trp	gac Asp	agc Ser 105	gag Glu	ttt Phe	tac Tyr	agg Arg	gtg Val 110	Leu	cgc Arg	336
gag cgc Glu Arg	gtc Val 115	gcc Ala	aag Lys	aag Lys	ctg Leu	gcc Ala 120	gag Glu	ccc Pro	Gly	ctc Leu	atg Met 125	cag Gln	cgc Arg	gcg Ala	384
cgc atg Arg Met 130	gag Glu	ctc Leu	tgg Trp	gcc Ala	aag Lys 135	gcg Ala	atc Ile	ttc Phe	ctc Leu	ctg Leu 140	gca Ala	ggt Gly	ttc Phe	tgg Trp	432
ggc tcc Gly Ser 145	ctt Leu	tac Tyr	gcc Ala	atg Met 150	tgc Cys	gtg Val	cta Leu	gac Asp	ccg Pro 155	cac His	GJA āāc	ggt Gly	gcc Ala	atg Met 160	480
gta gcc Val Ala	gcc Ala	gtt Val	acg Thr 165	ctc Leu	Gly ggc	gtg Val	ttc Phe	gct Ala 170	gcc Ala	ttt Phe	gtc Val	gga Gly	act Thr 175	tgc Cys	528
atc cag Ile Gln	cac His	gac Asp 180	ggc Gly	agc Ser	cac His	ggc Gly	gcc Ala 185	ttc Phe	tcc Ser	aag Lys	tcg Ser	cga Arg 190	ttc Phe	atg Met	576
aac aag Asn Lys	gcg Ala 195	gcg Ala	ggc Gly	tgg Trp	acc Thr	ctc Leu 200	gac Asp	atg Met	atc Ile	Gly ggc	gcg Ala 205	agt Ser	gcg Ala	atg Met	624
acc tgg Thr Trp 210	gag Glu	atg Met	cag Gln	HIS	gtt Val 215	ctt Leu	ggc	cac His	cac His	ccg Pro 220	tac Tyr	acc Thr	aac Asn	ctc Leu	672
atc gag (Ile Glu) 225	atg Met	gag Glu	UDII	ggt Gly 230	ttg Leu	gcc Ala	aag Lys	gtc Val	aag Lys 235	Gly ggc	gcc Ala	gac Asp	gtc Val	gac Asp 240	720
ccg aag a Pro Lys 1	aag : Lys '	var.	gac Asp 245	cag Gln	gag Glu	agc Ser	Asp	ccg Pro 250	gac Asp	gtc Val	ttc Phe	agt Ser	acg Thr 255	tac Tyr	768

ccg Pro	atg Met	g ctt : Lei	cgc Arg 260	тег	g cac 1 His	ccg Pro	tg <u>c</u> Trp	cac His 265	arc	cag Glr	g cgg n Arg	tti Phe	tac Tyr 270	His	aag Lys	816
ttc Phe	cag Glr	cac His 275	neu	tac Tyr	gcc Ala	ccg Pro	ttt Phe 280	Ile	ttt Phe	ggg Gly	tct Ser	ato Met	Thr	r att	aac Asn	864
aag Lys	gtg Val 290		tcc Ser	cag Gln	gat Asp	gtc Val 295	GTA	gtt Val	gtg Val	ctg Leu	cgc Arg 300	[Lys	g cgc s Arg	ctg Leu	ttc Phe	912
cag Gln 305	ato	gac Asp	gcc Ala	aac Asn	tgc Cys 310	Arg	tat Tyr	ggc	agc Ser	ccc Pro 315	Trp	tac Tyr	gtg Val	gcc Ala	cgc Arg 320	960
ttc Phe	tgg Trp	atc Ile	atg Met	aag Lys 325	ctc Leu	ctc Leu	acc Thr	acg Thr	ctc Leu 330	Tyr	atg Met	gtg Val	gcg Ala	ctt Leu 335	Pro	1008
atg Met	tac Tyr	atg Met	cag Gln 340	GTĀ	cct Pro	gct Ala	cag Gln	ggc Gly 345	ttg Leu	aag Lys	ctt Leu	ttc Phe	ttc Phe 350	atg Met	gcc Ala	1056
cac His	ttc Phe	acc Thr 355	Cys	gga Gly	gag Glu	gtc Val	ctc Leu 360	gcc Ala	acc Thr	atg Met	ttt Phe	att Ile 365	Val	aac Asn	cac His	1104
atc Ile	atc Ile 370	gag Glu	ggc	gtc Val	agc Ser	tac Tyr 375	gct Ala	tcc Ser	aag Lys	gac Asp	gcg Ala 380	gtc Val	aag Lys	ggc Gly	gtc Val	1152
atg Met 385	gct Ala	ccg Pro	ccg Pro	cgc Arg	act Thr 390	gtg Val	cac His	ggt Gly	gtc Val	acc Thr 395	ccg Pro	atg Met	cag Gln	gtg Val	acg Thr 400	1200
caa Gln	aag Lys	gcg Ala	ctc Leu	agt Ser 405	gcg Ala	gcc Ala	gag Glu	tcg Ser	gcc Ala 410	aag Lys	tcg Ser	gac Asp	gcc Ala	gac Asp 415	aag Lys	1248
acg Thr	acc Thr	atg Met	atc Ile 420	ccc Pro	ctc Leu	aac Asn	gac Asp	tgg Trp 425	gcc Ala	gct Ala	gtg Val	cag Gln	tgc Cys 430	cag Gln	acc Thr	1296
tct Ser	gtg Val	aac Asn 435	tgg Trp	gct Ala	gtc Val	Gly ggg	tcg Ser 440	tgg Trp	ttt Phe	tgg Trp	aac Asn	cac His 445	ttt Phe	tcg Ser	Gly	1344
ggc Gly	ctc Leu 450	aac Asn	cac His	cag Gln	att Ile	gag Glu 455	cac His	cac His	tgc Cys	ttc Phe	ccc Pro 460	caa Gln	aac Asn	ccc Pro	cac His	1392
acg Thr 465	gtc Val	aac Asn	gtc Val	tac Tyr	atc Ile 470	tcg Ser	ggc Gly	atc Ile	gtc Val	aag Lys 475	gag Glu	acc Thr	tgc Cys	gaa Glu	gaa Glu 480	1440
tac Tyr	Gly	gtg Val	Pro	tac Tyr 485	cag Gln	gct Ala	gag Glu	atc Ile	agc Ser 490	ctc Leu	ttc Phe	tct Ser	gcc Ala	tat Tyr 495	ttc Phe	1488
aag : Lys 1	atg Met	ctg Leu	tcg Ser 500	cac His	ctc Leu	cgc Arg	Thr	ctc Leu 505	Gly ggc	aac Asn	gag Glu	gac Asp	ctc Leu 510	acg Thr	gcc Ala	1536
tgg f	Ser		tga													1548
<210: <211:		2 15														

<211> 515 <212> PRT <213> Thraustochytrium

<400> 42

Met Thr Val Gly Phe Asp Glu Thr Val Thr Met Asp Thr Val Arg Asn 1 5 10 15

His Asn Met Pro Asp Asp Ala Trp Cys Ala Ile His Gly Thr Val Tyr 20 25 30

Asp Ile Thr Lys Phe Ser Lys Val His Pro Gly Gly Asp Ile Ile Met 35 40 45

Leu Ala Ala Gly Lys Glu Ala Thr Ile Leu Phe Glu Thr Tyr His Ile 50 60

Lys Gly Val Pro Asp Ala Val Leu Arg Lys Tyr Lys Val Gly Lys Leu 65 70 75 80

Pro Gln Gly Lys Lys Gly Glu Thr Ser His Met Pro Thr Gly Leu Asp 85 90 95

Ser Ala Ser Tyr Tyr Ser Trp Asp Ser Glu Phe Tyr Arg Val Leu Arg 100 105 110

Glu Arg Val Ala Lys Lys Leu Ala Glu Pro Gly Leu Met Gln Arg Ala 115 120 125

Arg Met Glu Leu Trp Ala Lys Ala Ile Phe Leu Leu Ala Gly Phe Trp 130 135 140

Gly Ser Leu Tyr Ala Met Cys Val Leu Asp Pro His Gly Gly Ala Met 145 150 155 160

Val Ala Ala Val Thr Leu Gly Val Phe Ala Ala Phe Val Gly Thr Cys 165 170

Ile Gln His Asp Gly Ser His Gly Ala Phe Ser Lys Ser Arg Phe Met 180 185 190

Asn Lys Ala Ala Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Met 195 200 205

Thr Trp Glu Met Gln His Val Leu Gly His His Pro Tyr Thr Asn Leu 210 215 220

Ile Glu Met Glu Asn Gly Leu Ala Lys Val Lys Gly Ala Asp Val Asp 225 230 235 240

Pro Lys Lys Val Asp Gln Glu Ser Asp Pro Asp Val Phe Ser Thr Tyr 245 250 255

Pro Met Leu Arg Leu His Pro Trp His Arg Gln Arg Phe Tyr His Lys
260 265 270

Phe Gln His Leu Tyr Ala Pro Phe Ile Phe Gly Ser Met Thr Ile Asn 275 280 285

Lys Val Ile Ser Gln Asp Val Gly Val Val Leu Arg Lys Arg Leu Phe 290 295

Gln Ile Asp Ala Asn Cys Arg Tyr Gly Ser Pro Trp Tyr Val Ala Arg 305 310 315 320

Phe Trp Ile Met Lys Leu Leu Thr Thr Leu Tyr Met Val Ala Leu Pro

Met Tyr Met Gln Gly Pro Ala Gln Gly Leu Lys Leu Phe Phe Met Ala 345

His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile Val Asn His

Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val Lys Gly Val 370 375 380

Met Ala Pro Pro Arg Thr Val His Gly Val Thr Pro Met Gln Val Thr 390

Gln Lys Ala Leu Ser Ala Ala Glu Ser Ala Lys Ser Asp Ala Asp Lys 405

Thr Thr Met Ile Pro Leu Asn Asp Trp Ala Ala Val Gln Cys Gln Thr

Ser Val Asn Trp Ala Val Gly Ser Trp Phe Trp Asn His Phe Ser Gly

Gly Leu Asn His Gln Ile Glu His His Cys Phe Pro Gln Asn Pro His

Thr Val Asn Val Tyr Ile Ser Gly Ile Val Lys Glu Thr Cys Glu Glu

Tyr Gly Val Pro Tyr Gln Ala Glu Ile Ser Leu Phe Ser Ala Tyr Phe

Lys Met Leu Ser His Leu Arg Thr Leu Gly Asn Glu Asp Leu Thr Ala

Trp Ser Thr 515

<210> 43

<211> 960

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(960) <223> Delta-5-Elongase

<400> 43

atg gtg ttg tac aat gtg gcg caa gtg ctg ctc aat ggg tgg acg gtg Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val 10

												-									
ta Ty	t go r Al	g a .a I	itt le	gtg Val 20	ga As	t go p A	cg g la v	gtg /al	ato Met	g aa t As 25	17 T	ga .rg	gad	c ca Hi	t c s P	cg	tt Ph 30	ıe I	tt 1e	gga Gly	96
ag Se:	t ag r Ar	a a g S 3	gt er 5	ttg Leu	gt Va	t gg 1 G:	gg g ly z	rcg la	gcg Ala 40	g tt 1 Le	g c u H	at is	agt Ser	gg Gl	g a y S 4	er	to Se	g t r T	at yr	gcg Ala	144
gto Val	g tg l Tr 50	g g p V	tt al:	cat His	ta Ty:	t to	- P	at sp 5	aaç Lys	ta Ty:	t t r L	tg eu	gag Glu	tto Pho	c t e P	tt he	ga As	t a p T	cg hr	tat Tyr	192
ttt Phe 65	at Me	g g t V	tg 1 al 1	ttg Leu	agg Arg	g gg g G1 70	· y -	aa ys :	atg Met	ga Ası	C C	ag ln	atg Met 75	gta Va	a ci l Le	tt eu	gg Gl	t ga y Gi	aa lu	gtt Val 80	240
ggt Gly	gg Gl	z ag Y Se	gt g ≥r \	gtg 7al	tgg Trp 85	y tg Cy	t g s G	gc ;	gtt Val	Gl ₂	a ta 7 Ty 90	ĄΤ.	atg Met	gat Asr	at Me	et	gaç Gli	g aa u Ly 95	/S	atg Met	288
ata Ile	cta Lei	a ct 1 Le		gc Ser .00	ttt Ph∈	gg Gl	ag yV	tg d	cat His	cgc Arc	3 56	et er	gct Ala	caç Glr	gg Gl	-У	aco Thi	Gl Gl	g Y	aag Lys	336
gct Ala	tto Phe	c ac e Th		ac sn	aac Asn	gt Va	t a	11. Z	aat Asn L20	cca	ca Hi	t s	ctc Leu	acg Thr	ct Le	u	cca Pro	e co Pr	t o	cat His	384
tct Ser	aca Thr 130	,	a a s T	ca hr	aaa Lys	aa: Ly:	a ca s Gl	rii /	gtc 7al	tcc Ser	tt Ph	ic i	ctc Leu	cac His 140	Il	.c :	tac Tyr	ca Hi	c s	cac His	432
acg Thr 145	acc	at Il	a g e A	cg la	tgg Trp	gca Ala 150		ig t	gg	atc Ile	gc Al	a ı	ctc Leu 155	cgc Arg	tt Ph	c i	tcc Ser	cc Pr	0 (ggt Gly 160	480
gga Gly	gac Asp	at Il	t ta e T	. –	ttc Phe 165	GJ ⁷ aaa	g gc Al	a c a L	tc	ctc Leu	aa As: 17	11 5	cc Ser	atc Ile	at. Il	c c e F	cac His	gto Va: 17:	1 1	ctc Seu	528
atg Met	tat Tyr	tc: Se:		ec i	tac Iyr	gcc Ala	ct Le	t g u A	та	cta Leu 185	ct. Le	c a u I	ys	gtc Val	agi Se:	r Ç	gt ys 90	cca Pro	a t	rp gg	576
aaa Lys	cga Arg	tac Ty: 195		g a eu 1	act Thr	caa Gln	gc Al	a G	aa ln 00	tta Leu	tt: Le:	ı G	aa ln	ttc Phe	aca Thi	: S	gt	gtç Val	ı ç	rtg Zal	624
gtt Val	tat Tyr 210	acc	g gg	g t	gt Ys	acg Thr	gg Gl: 21	Y I	at yr '	act Thr	cat His	t s T	yr '	tat Tyr 220	cat His	a F T	cg hr	aag Lys	ı c	at is	672
gga Gly 225	gcg Ala	gat Asp	ga Gl	ga u T	ca hr	cag Gln 230	Pro	c ag	yt † ≥r 1	tta Leu	GJ? āās	T.	cg t hr 7	cat Cyr	tat Tyr	t P	tc he	tgt Cys	C	gt ys 40	720
gga Gly	gtg Val	cag Gln	gt. Va		tt he 45	gag Glu	ato Met	g gt : Va	t a	er	ttg Leu 250	P	tt g he V	rta ⁄al	ctc Leu	ti Pl	tt he	tcc Ser 255	a I	tc le	768
ttt Phe	tat Tyr	aaa Lys	cg Ar 26	-	cc er	tat Tyr	tc: Ser	r aa Ly	2 T	aag Lys 265	aac Asn	aa Ly	ag t 7s S	ca er	gga Gly	gg GJ 27	Ly	aag Lys	g: A:	at sp	816
agc a Ser I		aag Lys 275	aa Ası	t ga	at g sp 2	gat Asp	ej aaa	aa As 28	TT W	at i	gag Glu	ga As	at c sp G	Tu (tgt Cys 285	ca Hi	ac is :	aag Lys	go A.	ct La	864
atg a Met I	ys Lys ag	gat Asp	ata Ile	a to e Se	eg g	gag 3lu	ggt Gly 295	gc Al	g a a L	ag g ys (gag 3lu	gt Va	TT A	tg g al 0	317 333	ca Hi	t :	gca Ala	go A]	g .a	912
aag g Lys A 305	sp 1	gct Ala	GJ7 āās	a aa 7 Ly	-	tg eu 10	gtg Val	gc Ala	t a a T	cg a hr A	aga Arg	gt Va 31	T A	gg t rg C	gt Ys	aa Ly	.g g 's 7	gtg Val	ta	ıa	960

<210> 44

<211> 319 <212> PRT

<213> Thalassiosira pseudonana

<400> 44

Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val 1 5 10 15

Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly
20 25 30

Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr 50 60

Phe Met Val Leu Arg Gly Lys Met Asp Gln Met Val Leu Gly Glu Val 65 70 75 80

Gly Gly Ser Val Trp Cys Gly Val Gly Tyr Met Asp Met Glu Lys Met . 85 90 95

Ile Leu Leu Ser Phe Gly Val His Arg Ser Ala Gln Gly Thr Gly Lys 100 105 110

Ala Phe Thr Asn Asn Val Thr Asn Pro His Leu Thr Leu Pro Pro His 115 120 125

Ser Thr Lys Thr Lys Lys Gln Val Ser Phe Leu His Ile Tyr His His 130 140

Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly 145 150 155 160

Gly Asp Ile Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu 165 170 175

Met Tyr Ser Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp 180 185 190

Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val 195 205

Val Tyr Thr Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His 210 220

Gly Ala Asp Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys 225 230 235 240

Gly Val Gln Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile 245 250 255

Phe Tyr Lys Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp 260 265 270 Ser Lys Lys Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala 275 280 280

Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala 295

Lys Asp Ala Gly Lys Leu Val Ala Thr Arg Val Arg Cys Lys Val 305 310 315

<210> 45 <211> 819 <212> DNA <213> Thalassiosira pseudonana

<220>

<221> CDS <222> (1)..(819) <223> Delta-5-Elongase

		45														
atg Met 1	gac Asp	gcc Ala	tac Tyr	aac Asn 5	gct Ala	gca Ala	atg Met	gat Asp	aag Lys 10	atc Ile	ggt Gly	gcc Ala	gcc Ala	ato Ile 15	atc Ile	48
gat Asp	tgg Trp	tct Ser	gat Asp 20	ccc Pro	gat Asp	gga Gly	aag Lys	ttc Phe 25	cgt Arg	gcc Ala	gat Asp	aga Arg	gag Glu 30	gac . Asp	tgg Trp	96
tgg Trp	ctc Leu	tgc Cys 35	gac Asp	ttc Phe	cgt Arg	agc Ser	gcc Ala 40	atc Ile	acc Thr	atc Ile	gcc Ala	ctc Leu 45	atc Ile	tac Tyr	atc Ile	144
gcc Ala	ttc Phe 50	gtc Val	atc Ile	ctc Leu	ggt Gly	tcc Ser 55	gcc Ala	gtc Val	atg Met	caa Gln	tcc Ser 60	ctc Leu	ccc Pro	gca Ala	atg Met	192
gat Asp 65	ccc Pro	tac Tyr	ccc Pro	atc Ile	aaa Lys 70	ttc Phe	ctc Leu	tac Tyr	aac Asn	gtc Val 75	tcc Ser	caa Gln	atc Ile	ttc Phe	ctt Leu 80	240
tgt Cys	gcc Ala	tac Tyr	atg Met	act Thr 85	gtc Val	gag Ģlu	gcg Ala	gga Gly	ttt Phe 90	ttg Leu	gcc Ala	tac Tyr	cgc Arg	aat Asn 95	gga Gly	288
tat Tyr	acc Thr	gtc Val	atg Met 100	cct Pro	tgc Cys	aat Asn	cat His	ttc Phe 105	aat Asn	gtg Val	aat Asn	gat Asp	cct Pro 110	ccc Pro	gtg Val	336
gcg Ala	aat Asn	ctt Leu 115	ctt Leu	tgg Trp	ttg Leu	ttt Phe	tat Tyr 120	att Ile	tcc Ser	aag Lys	gtg Val	tgg Trp 125	gac Asp	ttt Phe	tgg Trp	384
gat Asp	acc Thr 130	att Ile	ttc Phe	att Ile	gtg Val	ttg Leu 135	Gly ggg	aag Lys	aag Lys	tgg Trp	cgt Arg 140	caa Gln	tta Leu	tct Ser	ttc Phe	432
ttg Leu 145	cat His	gta Val	tac Tyr	cat His	cac His 150	acc Thr	acc Thr	atc Ile	ttt Phe	cta Leu 155	ttc Phe	tat Tyr	tgg Trp	ctg Leu	aat Asn 160	480
gcc Ala	aat Asn	gtc Val	ttg Leu	tac Tyr 165	gat Asp	ggt Gly	gac Asp	atc Ile	ttc Phe 170	ctt Leu	acc Thr	atc Ile	ttg Leu	ctc Leu 175	aat Asn	528
gga Gly	ttc Phe	atc Ile	cac His 180	acg Thr	gtg Val	atg Met	Tyr	acg Thr 185	tat Tyr	tac Tyr	ttc Phe	atc Ile	tgt Cys 190	atg Met	cat His	576

-		D1 4	O	A I. I. I
BA	15F	Plant	Science	GMbH

PF 55426 DE

acc aaa gat tcc aag acg ggc aag agt ctt cct ata tgg tgg aag tcg Thr Lys Asp Ser Lys Thr Gly Lys Ser Leu Pro Ile Trp Trp Lys Ser 195 200 205	624
agt ttg acg gcg ttt cag ttg ttg caa ttc act atc atg atg agt cag Ser Leu Thr Ala Phe Gln Leu Leu Gln Phe Thr Ile Met Met Ser Gln 210 215 220	672
gct acc tac ctt gtc ttc cac ggg tgt gat aag gtg tcg ctt cgt atc Ala Thr Tyr Leu Val Phe His Gly Cys Asp Lys Val Ser Leu Arg Ile 225 230 . 235 240	720
acg att gtg tac ttt gtg tcc ctt ttg agt ttg ttc ttc ctt ttt gct Thr Ile Val Tyr Phe Val Ser Leu Leu Ser Leu Phe Phe Leu Phe Ala 245 250 255	768
cag ttc ttt gtg caa tca tac atg gca ccc aaa aag aag aag agt gct Gln Phe Phe Val Gln Ser Tyr Met Ala Pro Lys Lys Lys Lys Ser Ala 260 265 270	816
tag	819
<210> 46 <211> 272 <212> PRT <213> Thalassiosira pseudonana	
<400> 46	
Met Asp Ala Tyr Asn Ala Ala Met Asp Lys Ile Gly Ala Ala Ile Ile 1 5 10 15	
Asp Trp Ser Asp Pro Asp Gly Lys Phe Arg Ala Asp Arg Glu Asp Trp 20 25 30	
Trp Leu Cys Asp Phe Arg Ser Ala Ile Thr Ile Ala Leu Ile Tyr Ile 35 40 45	
Ala Phe Val Ile Leu Gly Ser Ala Val Met Gln Ser Leu Pro Ala Met 50 55 60	
Asp Pro Tyr Pro Ile Lys Phe Leu Tyr Asn Val Ser Gln Ile Phe Leu 65 70 75 80	
Cys Ala Tyr Met Thr Val Glu Ala Gly Phe Leu Ala Tyr Arg Asn Gly . 85 90 95	
Tyr Thr Val Met Pro Cys Asn His Phe Asn Val Asn Asp Pro Pro Val 100 105 110	
Ala Asn Leu Leu Trp Leu Phe Tyr Ile Ser Lys Val Trp Asp Phe Trp 115 120 125	
Asp Thr Ile Phe Ile Val Leu Gly Lys Lys Trp Arg Gln Leu Ser Phe 130 135 140	
Leu His Val Tyr His His Thr Thr Ile Phe Leu Phe Tyr Trp Leu Asn 145 150 155 160	
Ala Asn Val Leu Tyr Asp Gly Asp Ile Phe Leu Thr Ile Leu Leu Asn 165 170 175	
Gly Phe Ile His Thr Val Met Tyr Thr Tyr Tyr Phe Ile Cys Met His 180 185 190	

Thr Lys Asp Ser Lys Thr Gly Lys Ser Leu Pro Ile Trp Trp Lys Ser

		195					200					205				
Ser	Leu 210	Thr	Ala	Phe	Gln	Leu 215	Leu	Gln	Phe	Thr	Ile 220	Met	Met	Ser	Gln	
Ala 225	Thr	Tyr	Leu	Val	Phe 230	His	Gly	Cys	Asp	Lys 235	Val	Ser	Leu	Arg	Ile 240	
Thr	Ile	Val	Tyr	Phe 245	Val	Ser	Leu	Leu	Ser 250	Leu	Phe	Phe	Leu	Phe 255	Ala	
Gln	Phe	Phe	Val 260	Gln	Ser	Tyr	Met	Ala 265	Pro	Lys	Lys	Lys	Lys 270	Ser	Ala	
<210 <211 <212 <213	L> 9 2> I	17 936 ONA Crypt	checo	odini	ium d	cohni	ii									
<220 <223 <223 <223	L> (2>	CDS (1) Delta			gase											
<400 atg Met 1	tct	47 gcc Ala	ttc Phe	atg Met 5	act Thr	ctc Leu	cca Pro	cag Gln	gct Ala 10	ctc Leu	tcc Ser	gat Asp	gtg Val	acc Thr 15	tcg Ser	48
		gtc Val														96
gct Ala	gtc Val	act Thr 35	ggc Gly	ttc Phe	tgc Cys	agg Arg	gag Glu 40	cag Gln	tgg Trp	G17 aaa	att Ile	ccg Pro 45	aca Thr	gta Val	ttc Phe	144
		ggc Gly														192
cag Gln 65	His	ggc Gly	tac Tyr	Met	Val	Ala	Val	Asp	cgt Arg	Cys	Phe	gct Ala	gct Ala	\mathtt{Trp}	aac Asn 80	240
		ctc Leu														288
Gly ggg	ctc Leu	tac Tyr	aac Asn 100	atg Met	aca Thr	gag Glu	acg Thr	agg Arg 105	ggc Gly	ttg Leu	caa Gln	ttc Phe	acc Thr 110	atc Ile	tgc Cys	336
		act Thr 115														384
		ctc Leu														432
		ttt Phe														480

									• •								
tac Tyr	cac His	cat His	gcc Ala	aca Thr 165	gtc Val	atg Met	ctc Leu	ttc Phe	tgt Cys 170	tgg Trp	ctc Leu	gcc Ala	ctc Leu	gcg Ala 175	acg Thr		528
gag Glu	tac	act Thr	cct Pro 180	Gly	ttg Leu	tgg Trp	ttt Phe	gcg Ala 185	gcg Ala	acg Thr	aac Asn	tac Tyr	ttc Phe 190	gtg Val	cac His		576
tcc Ser	atc Ile	atg Met 195	tac Tyr	atg Met	tac Tyr	ttc Phe	ttc Phe 200	ctc Leu	atg Met	acc Thr	ttc Phe	aag Lys 205	tcg Ser	gcc Ala	gcg Ala		624
aag Lys	gtg Val 210	gtg Val	aag Lys	ccc Pro	atc Ile	gcc Ala 215	cct Pro	ctc Leu	atc Ile	aca Thr	gtt Val 220	atc Ile	cag Gln	att Ile	gct Ala		672
cag Gln 225	atg Met	gtc Val	tgg Trp	ggc	ctc Leu 230	atc Ile	gtc Val	aac Asn	ggc Gly	atc Ile 235	gcc Ala	atc Ile	acc Thr	acc Thr	ttc Phe 240		720
ttc Phe	acg Thr	act Thr	ggt Gly	gcc Ala 245	tgc Cys	cag Gln	atc Ile	cag Gln	tct Ser 250	gtg Val	act Thr	gtg Val	tat Tyr	tcg Ser 255	gcc Ala		768
atc Ile	atc Ile	atg Met	tac Tyr 260	gct Ala	tcg Ser	tac Tyr	ttc Phe	tac Tyr 265	ctg Leu	ttc Phe	tcc Ser	cag Gln	ctc Leu 270	ttc Phe	ttc Phe		816
gag Glu	gcc Ala	cat His 275	ggt Gly	gcc Ala	gct Ala	ggc Gly	aag Lys 280	aac Asn	aag Lys	aag Lys	aag Lys	ttg Leu 285	acc Thr	cgc Arg	gag Glu		864
ctc Leu	tct Ser 290	cga Arg	aaa Lys	atc Ile	tcg Ser	gag Glu 295	gct Ala	ctc Leu	ctg Leu	aac Asn	acc Thr 300	ggt Gly	gac Asp	gag Glu	gtt Val		912
		cac His					tga										936
<210 <211 <212 <213	.> 3 !> I	18 311 PRT Crypt	heco	odini	.um c	cohni	.i										
<400)> 4	18															
Met 1	Ser	Ąla	Phe	Met 5	Thr	Leu	Pro	Gln	Ala 10	Leu	Ser	Asp	Val	Thr 15	Ser	•	
Ala	Leu	Val	Thr 20	Leu	Gly	Lys	Asp	Val 25	Ser	Ser	Pro	Ser	Ala 30	Phe	Gln		
Ala	Val	Thr 35	Gly	Phe	Cys	Arg	Glu 40	Gln	Trp	Gly	Ile	Pro 45	Thr	Val	Phe		
Cys	Leu 50	Gly	Tyr	Leu	Ala	Met 55	Val	Tyr	Ala	Ala	Arg 60	Arg	Pro	Leu	Pro		
Gln 65	His	Gly	Tyr	Met	Val 70	Ala	Val	Asp	Arg	Cys 75	Phe	Ala	Ala	Trp	Asn 80	•	
Leu	Ala	Leu	Ser	Val 85	Phe	Ser	Thr	Trp	Gly 90	Phe	Tyr	His	Met	Ala 95	Val		
Gly	Leu	Tyr	Asn 100	Met	Thr	Glu	Thr	Arg 105	Gly	Leu	Gln	Phe	Thr 110	Ile	Cys		

Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Thr Gly Pro Thr Ala

Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met Asp 135

Thr Val Phe Leu Ile Leu Lys Ala Lys Lys Val Arg Phe Leu Gln Trp

Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala Thr

Glu Tyr Thr Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His

Ser Ile Met Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Ser Ala Ala 200

Lys Val Val Lys Pro Ile Ala Pro Leu Ile Thr Val Ile Gln Ile Ala

Gln Met Val Trp Gly Leu Ile Val Asn Gly Ile Ala Ile Thr Thr Phe

Phe Thr Thr Gly Ala Cys Gln Ile Gln Ser Val Thr Val Tyr Ser Ala

Ile Ile Met Tyr Ala Ser Tyr Phe Tyr Leu Phe Ser Gln Leu Phe Phe 260 265

Glu Ala His Gly Ala Ala Gly Lys Asn Lys Lys Lys Leu Thr Arg Glu 280

Leu Ser Arg Lys Ile Ser Glu Ala Leu Leu Asn Thr Gly Asp Glu Val

Ser Lys His Leu Lys Val Asn

<210> 49

<211> 927 <212> DNA <213> Crypthecodinium cohnii

<220>

<221> CDS <222> (1)..(927)

<223> Delta-5-Elongase

atg get tee tae caa caa gea tte tee gaa ttg get aga get ttg tee Met Ala Ser Tyr Gln Gln Ala Phe Ser Glu Leu Ala Arg Ala Leu Ser

act ttg aac cac gac ttc tcc agc gtc gag cca ttc aaa gtc gtg acg Thr Leu Asn His Asp Phe Ser Ser Val Glu Pro Phe Lys Val Val Thr 20 25

cag Gln	ttc Phe	tgc Cys 35	agg Arg	gac Asp	cag Gln	tgg Trp	gcg Ala 40	atc Ile	ccg Pro	aca Thr	gtc Val	ttt Phe 45	tgc Cys	atc Ile	ggt Gly		144
tac Tyr	ttg Leu 50	gca Ala	atg Met	gtc Val	tac Tyr	gcc Ala 55	acg Thr	cga Arg	aga Arg	cct Pro	atc Ile 60	gcg Ala	aag Lys	cac His	ccc Pro		192
tac Tyr 65	atg Met	tct Ser	ctc Leu	gtg Val	gat Asp 70	cgc Arg	tgc Cys	ttt Phe	gcg Ala	gcc Ala 75	tgg Trp	aac Asn	ttg Leu	ggc	ctc Leu 80	•	240
tcg Ser	ctc Leu	ttc Phe	agt Ser	tgc Cys 85	tgg Trp	ggc Gly	ttc Phe	tac Tyr	cac His 90	atg Met	gca Ala	gtg Val	gga Gly	ctc Leu 95	tcc Ser		288
cac His	acc Thr	act Thr	tgg Trp 100	aat Asn	ttc Phe	Gly ggg	ctc Leu	cag Gln 105	ttc Phe	acc Thr	atc Ile	tgc Cys	ggc Gly 110	agc Ser	acc Thr		336
acg Thr	gag Glu	ctt Leu 115	gtg Val	aat Asn	ggc Gly	ttc Phe	cag Gln 120	aag Lys	ggc Gly	ccg Pro	gcg Ala	gcc Ala 125	ctc Leu	gcc Ala	ctc Leu		384
atc Ile	ctg Leu 130	ttc Phe	tgc Cys	ttc Phe	tcc Ser	aag Lys 135	atc Ile	ccg Pro	gag Glu	ttg Leu	ggc Gly 140	gac Asp	acc Thr	gtc Val	ttc Phe		432
ttg Leu 145	atc Ile	ttg Leu	aag Lys	gga Gly	aag Lys 150	aag Lys	gtc Val	cgc Arg	ttc Phe	ttg Leu 155	cag Gln	tgg Trp	tac Tyr	cac His	cac His 160		480
acg Thr	acc Thr	gtg Val	atg Met	ctc Leu 165	ttc Phe	tgt Cys	tgg Trp	atg Met	gcc Ala 170	ttg Leu	gcg Ala	act Thr	gag Glu	tac Tyr 175	act Thr		528
cct Pro	gga Gly	ttg Leu	tgg Trp 180	ttc Phe	gcg Ala	gcc Ala	acg Thr	aac Asn 185	tac Tyr	ttc Phe	gtg Val	cac His	tcc Ser 190	atc Ile	atg Met		576
tac Tyr	atg Met	tac Tyr 195	ttc Phe	ttc Phe	ctc Leu	atg Met	acc Thr 200	ttc Phe	aag Lys	acg Thr	gcc Ala	gcc Ala 205	Gly ggc	atc Ile	atc Ile		624
aag Lys	ccc Pro 210	atc Ile	gcg Ala	cct Pro	ctc Leu	atc Ile 215	acc Thr	atc Ile	atc Ile	cag Gln	atc Ile 220	tcc Ser	cag Gln	atg Met	gtc Val		672
												ttc Phe			aca Thr 240		720
Gly	aac Asn	tgc Cys	cag Gln	atc Ile 245	cag Gln	gca Ala	gtg Val	aca Thr	gtc Val 250	tac Tyr	tcc Ser	gcc Ala	atc Ile	gtg Val 255	atg Met		768
												ttc Phe					816
ggt Gly	tcg Ser	gct Ala 275	gga Gly	aag Lys	gac Asp	aag Lys	aag Lys 280	aag Lys	ttg Leu	gcc Ala	cga Arg	gag Glu 285	ctg Leu	agc Ser	cga Arg		864
aag Lys	gtc Val 290	tcg Ser	cgg Arg	gct Ala	Leu	aca Thr 295	gca Ala	acg Thr	ggc Gly	gaa Glu	gag Glu 300	gtg Val	tcg Ser	aag Lys	cac His		912
atg Met 305	aag Lys			tga													927

<212> PRT . <213> Crypthecodinium cohnii

<400> 50

Met Ala Ser Tyr Gln Gln Ala Phe Ser Glu Leu Ala Arg Ala Leu Ser

Thr Leu Asn His Asp Phe Ser Ser Val Glu Pro Phe Lys Val Val Thr

Gln Phe Cys Arg Asp Gln Trp Ala Ile Pro Thr Val Phe Cys Ile Gly

Tyr Leu Ala Met Val Tyr Ala Thr Arg Arg Pro Ile Ala Lys His Pro

Tyr Met Ser Leu Val Asp Arg Cys Phe Ala Ala Trp Asn Leu Gly Leu 65 70 75 80

Ser Leu Phe Ser Cys Trp Gly Phe Tyr His Met Ala Val Gly Leu Ser

His Thr Trp Asn Phe Gly Leu Gln Phe Thr Ile Cys Gly Ser Thr

Thr Glu Leu Val Asn Gly Phe Gln Lys Gly Pro Ala Ala Leu Ala Leu

Ile Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Gly Asp Thr Val Phe

Leu Ile Leu Lys Gly Lys Lys Val Arg Phe Leu Gln Trp Tyr His His

Thr Thr Val Met Leu Phe Cys Trp Met Ala Leu Ala Thr Glu Tyr Thr

Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His Ser Ile Met

Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Thr Ala Ala Gly Ile Ile

Lys Pro Ile Ala Pro Leu Ile Thr Ile Ile Gln Ile Ser Gln Met Val

Trp Gly Leu Val Val Asn Ala Ile Ala Val Gly Thr Phe Phe Thr Thr

Gly Asn Cys Gln Ile Gln Ala Val Thr Val Tyr Ser Ala Ile Val Met

Tyr Ala Ser Tyr Phe Tyr Leu Phe Gly Gln Leu Phe Phe Glu Ala Gln

Gly Ser Ala Gly Lys Asp Lys Lys Leu Ala Arg Glu Leu Ser Arg 275 280 285

Lys Val Ser Arg Ala Leu Thr Ala Thr Gly Glu Glu Val Ser Lys His 290 295 300

Met Lys Val Asn

<210> 51
<211> 795
<212> DNA
<213> Oncorhynchus mykiss
<220>
<221> CDS
<222> (1)..(795)
<223> Delta-5-Elongase

<400> 51... atg gct tca aca tgg caa agc gtt cag tcc atg cgc cag tgg att tta Met Ala Ser Thr Trp Gln Ser Val Gln Ser Met Arg Gln Trp Ile Leu gag aat gga gat aaa agg aca gac cca tgg cta ctg gtc tac tcc cct Glu Asn Gly Asp Lys Arg Thr Asp Pro Trp Leu Leu Val Tyr Ser Pro 96 atg cca gtg gcc att ata ttc ctc ctc tat ctt ggt gtg gtc tgg gct 144 Met Pro Val Ala Ile Ile Phe Leu Leu Tyr Leu Gly Val Val Trp Ala ggg ccc aag ctg atg aaa cgc agg gaa cca gtt gat ctc aag gct gta Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val 192 ctc att gtc tac aac ttc gcc atg gtc tgc ctg tct gtc tac atg ttc Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe 240 cat gag ttc ttg gtc acg tcc ttg ctg tct aac tac agt tac ctg tgt 288 His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys caa cct gtg gat tac agc act agt cca ctg gcg atg agg atg gcc aaa Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys 336 105 gta tgc tgg tgg ttt ttc ttc tcc aag gtc ata gaa ttg gct gac acg 384 Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr gtg ttc ttc atc ctg agg aag aac agt cag ctg act ttc ctg cat 432 Val Phe Phe Ile Leu Arg Lys Lys Asn Ser Gln Leu Thr Phe Leu His gtc tat cac cat ggc acc atg atc ttc aac tgg tgg gca ggg gtc aag 480 Val Tyr His His Gly Thr Met Ile Phe Asn Trp Trp Ala Gly Val Lys tat ctg gct gga ggc caa tcg ttc ttc atc ggc ctg ctc aat acc ttt Tyr Leu Ala Gly Gly Gln Ser Phe Phe Ile Gly Leu Leu Asn Thr Phe 528 gtg cac atc gtg atg tac tct tac tac gga ctg gct gcc ctg ggg cct Val His Ile Val Met Tyr Ser Tyr Tyr Gly Leu Ala Ala Leu Gly Pro 576 180 cac acg cag aag tac tta tgg tgg aag cgc tat ctg acc tca ctg cag 624 His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln

BASF Plant Science Gn	nbH 2004021	15 PF 55426 DE
	76	
ctg ctc cag ttt gtc ct	eg ttg acc act cac ace	rt ggc tac aac ctc ttc 672
Leu Leu Gln Phe Val Le	Eu Leu Thr Thr His Th	r Gly Tyr Asn Leu Phe
210	215	220
act gag tgt gac ttc co Thr Glu Cys Asp.Phe Pr 225 23	co Asp Ser Met Asn Al	a Val Val Phe Ala Tyr
tgt gtc agt ctc att gc Cys Val Ser Leu Ile Al 245	ct ctc ttc agc aac tt La Leu Phe Ser Asn Ph 250	c tac tat cag age tac 768
ctc aac agg aag agc aa Leu Asn Arg Lys Ser Ly 260		795
<210> 52 <211> 264 <212> PRT <213> Oncorhynchus my	rkiss	
<400> 52		
Met Ala Ser Thr Trp Gl	n Ser Val Gln Ser Me	t Arg Gln Trp Ile Leu
1 5	10	15
Glu Asn Gly Asp Lys Ar	rg Thr Asp Pro Trp Le	u Leu Val Tyr Ser Pro
20	25	30
Met Pro Val Ala Ile Il	e Phe Leu Leu Tyr Le	u Gly Val Val Trp Ala
35	40	45
Gly Pro Lys Leu Met Ly	rs Arg Arg Glu Pro Va	l Asp Leu Lys Ala Val
50	55	60
Leu Ile Val Tyr Asn Ph 65 70		u Ser Val Tyr Met Phe 80
His Glu Phe Leu Val Th	ur Ser Leu Leu Ser As:	n Tyr Ser Tyr Leu Cys
85	90	95
Gln Pro Val Asp Tyr Se	er Thr Ser Pro Leu Al	a Met Arg Met Ala Lys
100	105	. 110
Val Cys Trp Trp Phe Ph	e Phe Ser Lys Val Il	e Glu Leu Ala Asp Thr
115	120	125
Val Phe Phe Ile Leu Ar	g Lys Lys Asn Ser Gl:	n Leu Thr Phe Leu His
130	135	140
Val Tyr His His Gly Th 145 15		
Tyr Leu Ala Gly Gly Gl	n Ser Phe Phe Ile Gly	y Leu Leu Asn Thr Phe
165	170	175
Val His Ile Val Met Ty	r Ser Tyr Tyr Gly Le	u Ala Ala Leu Gly Pro
180	185	190

His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln 195 $\,$ 200 $\,$ 205 $\,$

Leu	Leu	${\tt Gln}$	Phe	Val	Leu	Leu	Thr	Thr	His	Thr	Gly	Tyr	Asn	Leu	Phe
	210					215					220				

Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 225 230 235

Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 250

Leu Asn Arg Lys Ser Lys Lys Thr 260

<210>	53
<211>	885
<212>	DNA
<213>	Oncorhynchus mykiss
<220>	
<221>	CDS
<222>	(1)(885)
<223>	Delta-5-Elongase
<400>	53
atg ga	g act ttt aat tat aas

145

~±0(,	,,															
														tgg Trp 15			48
ggt Gly	ccc Pro	aga Arg	gat Asp 20	gag Glu	cgg Arg	gta Val	cag Gln	gga Gly 25	tgg Trp	ctg Leu	ctt Leu	ctg Leu	gac Asp 30	aac Asn	tac Tyr		96
														tgg Trp			144
														ggt Gly			192
	Leu													atg Met		* .	240
														ttt Phe 95			288
														aat Asn			336
		Trp	Tyr	Tyr	Phe	Ser	Lys	Leu		Glu	Phe	Met	Asp	acc Thr			384

125

432

480

528

120

ttc ttc atc ctg cgg aag aac aac cat caa atc acg ttt ctg cac atc Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile

tac cac cat gct agc atg ctc aac atc tgg tgg ttc gtc atg aac tgg
Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp

gtg ccc tgt ggt cac tcc tac ttt ggt gcc tcc ctg aac agc ttc atc Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile

BASF Plant Science G	SmbH	20040215	PF 55426 DE
		78	
cat gtc ctg atg tac His Val Leu Met Tyr 180		y Leu Ser Ala V	
cgg ccc tat cta tgg Arg Pro Tyr Leu Trp 195		r Ile Thr Gln V	
cag ttc ttt ttg acc Gln Phe Phe Leu Thr 210			
tgt gat ttc ccc aga Cys Asp Phe Pro Arg 225			
aca ctt att gcc ctt Thr Leu Ile Ala Leu 245			
cac ctt gtt tca caa His Leu Val Ser Gln 260		r His Gln Asn G	
tca ttg aat ggc cat Ser Leu Asn Gly His 275		l Thr Pro Thr G	
cac agg aaa gtg agg His Arg Lys Val Arg 290			885
<210> 54 <211> 295 <212> PRT <213> Oncorhynchus	mykiss		
<400> 54			
Met Glu Thr Phe Asn 1 5	Tyr Lys Leu As	n Met Tyr Ile A 10	sp Ser Trp Met 15
Gly Pro Arg Asp Glu 20	Arg Val Gln Gl 25		eu Asp Asn Tyr 30
Pro Pro Thr Phe Ala 35	Leu Thr Val Me 40	t Tyr Leu Leu I 4	
Gly Pro Lys Tyr Met 50	Arg His Arg Gl 55	n Pro Val Ser C 60	ys Arg Gly Leu
Leu Leu Val Tyr Asn 65	Leu Gly Leu Th 70	r Ile Leu Ser P 75	he Tyr Met Phe 80
Tyr Glu Met Val Ser 85	Ala Val Trp Hi	s Gly Asp Tyr A 90	sn Phe Phe Cys 95
Gln Asp Thr His Ser 100	Ala Gly Glu Th		le Ile Asn Val 110
Leu Trp Trp Tyr Tyr 115	Phe Ser Lys Le 120		et Asp Thr Phe 25
Phe Phe Ile Leu Arg 130	Lys Asn Asn Hi 135	s Gln Ile Thr P 140	he Leu His Ile

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp 160 Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu 180 Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 285 His Arg Lys Val Arg Gly Asp <210> <211> 55 6753 DNA <212> <213> Oncorhynchus mykiss <220> <221> CDS <222> (513)..(1397) <223> Delta-5-Elongase

<400> 55 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60 cctcgtcctc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga 120 acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac 180 ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga 240 ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat 300 taacagatat ataaatgcaa aaactgcatt aaccacttta actaatactt tcaacatttt 360 cggtttgtat tacttcttat tcaaatgtaa taaaagtatc aacaaaaaat tgttaatata 420 cctctatact ttaacgtcaa ggagaaaaaa ccccggatcg gactactagc agctgtaata 480 cgactcacta tagggaatat taagcttaca ta atg gag act ttt aat tat aaa 533 Met Glu Thr Phe Asn Tyr Lys cta aac atg tac ata gac tca tgg atg ggt ccc aga gat gag cgg gta Leu Asn Met Tyr Ile Asp Ser Trp Met Gly Pro Arg Asp Glu Arg Val 581

	7				
10 .		15	20)	
cag gga tgg ctg Gln Gly Trp Leu 25	ctt ctg gac Leu Leu Asp 30	aac tac cct Asn Tyr Pro	cca acc.tt Pro Thr Ph 35	t gca cta ne Ala Leu	aca 629 Thr
gtc atg tac ctg Val Met Tyr Leu 40	ctg atc gta Leu Ile Val 45	tgg atg ggg Trp Met Gly	ccc aag ta Pro Lys Ty 50	ic atg aga r Met Arg	cac 677 His 55
aga cag ccg gtg Arg Gln Pro Val	tct tgc cgg Ser Cys Arg 60	ggt ctc ctc Gly Leu Leu 65	ttg gtc ta Leu Val Ty	r Asn Leu 70	ggc 725 Gly
ctc acg atc ttg Leu Thr Ile Leu 75	tcc ttc tat Ser Phe Tyr	atg ttc tat Met Phe Tyr 80	gag atg gt Glu Met Va	g tct gct l Ser Ala 85	gtg 773 Val
tgg cac ggg gat Trp His Gly Asp 90	tat aac ttc Tyr Asn Phe	ttt tgc caa Phe Cys Gln 95	gac aca ca Asp Thr Hi 10	s Ser Ala	gga 821 Gly
gaa acc gat acc Glu Thr Asp Thr 105	aag atc ata Lys Ile Ile 110	aat gtg ctg Asn Val Leu	tgg tgg ta Trp Trp Ty 115	c tac ttc r Tyr Phe	tcc 869 Ser
aag ctc ata gag Lys Leu Ile Glu 120	ttt atg gat Phe Met Asp 125	acc ttc ttc Thr Phe Phe	ttc atc ct Phe Ile Le 130	g cgg aag u Arg Lys	aac 917 Asn 135
aac cat caa atc Asn His Gln Ile	acg ttt ctg Thr Phe Leu 140	cac atc tac His Ile Tyr 145	His His Al	t agc atg a Ser Met 150	ctc 965 Leu
aac atc tgg tgg Asn Ile Trp Trp 155	ttc gtc atg Phe Val Met	aac tgg gtg Asn Trp Val 160	ccc tgt gg Pro Cys Gl	t cac tcc y His Ser 165	tac 1013 Tyr
ttt ggt gcc tcc Phe Gly Ala Ser 170	ctg aac agc Leu Asn Ser	ttc atc cat Phe Ile His 175	gtc ctg at Val Leu Me 18	t Tyr Ser	tac 1061 Tyr
tat ggg ctc tct Tyr Gly Leu Ser 185	gct gtc ccg Ala Val Pro 190	gcc ttg cgg Ala Leu Arg	ccc tat ct Pro Tyr Le 195	a tgg tgg u Trp Trp	aag 1109 Lys
aaa tac atc aca Lys Tyr Ile Thr 200					
cag acg ata tgt Gln Thr Ile Cys	gca gtc att Ala Val Ile 220	tgg cca tgt Trp Pro Cys 225	Asp Phe Pr	c aga ggg o Arg Gly 230	tgg 1205 Trp
ctg tat ttc cag Leu Tyr Phe Gln 235	ata ttc tat Ile Phe Tyr	gtc atc aca Val Ile Thr 240	ctt att gc Leu Ile Al	c ctt ttc a Leu Phe 245	tca 1253 Ser
aac ttc tac att Asn Phe Tyr Ile 250	Gln Thr Tyr			r Gln Lys	
gag tat cat cag Glu Tyr His Gln 265					
ggg gtg aca ccc Gly Val Thr Pro 280	acg gaa acc Thr Glu Thr 285	att aca cac Ile Thr His	agg aaa gt Arg Lys Va 290	g agg ggg l Arg Gly	gac 1397 Asp 295
tgaaggatcc actag	rtaacg gccgcc	agtg tgctgg	aatt ctgcag	atat ccago	acagt 1457
ggcggccgct cgagt	ctaga gggccc	ttcg aaggta	agcc tatccc	taac cctct	cctcg 1517
gtctcgattc tacgo	gtacc ggtcat	catc accatc	acca ttgagt	ttaa acccg	ctgat 1577

cctagaggg	cgcatcatgt	aattagttat	gtcacgctta	cattcacgcc	ctccccccac	1637
atccgctcta	accgaaaagg	aaggagttag	acaacctgaa	gtctaggtcc	ctatttattt	1697
ttttatagtt	atgttagtat	taagaacgtt	atttatattt	caaatttttc	ttttttttt	1757
gtacagacgo	gtgtacgcat	gtaacattat	actgaaaacc	ttgcttgaga	aggttttggg	1817
acgctcgaag	gctttaattt	gcaagetgeg	gccctgcatt	aatgaatcgg	ccaacgcgcg	1877
gggagaggcg	gtttgcgtat	tgggcgctct	teegetteet	cgctcactga	ctcgctgcgc	1937
teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	1997
acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaagcccagg	2057
aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	ţccgccccc	tgacgagcat	2117
cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	2177
gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	gcttaccgga	2237
tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagctc	acgctgtagg	2297
tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	accccccgtt	2357
cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggtaagacac	2417
gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	2477
ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	2537
ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	2597
ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	gattacgcgc	2657
agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	cgctcagtgg	2717
aacgaaaact	cacgttaagg	gattttggtc	atgagattat	caaaaaggat	cttcacctag	2777
atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	2837
tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	2897
tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	gcgcttacca	2957
tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	agatttatca	3017
gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	3077
tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	agttaatagt	3137
ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	gtttggtatg	3197
gcttcattca	gctccggttc	ccaacgatca	aggcgagtta	catgatcccc	catgttgtgc	3257
aaaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	ggccgcagtg	3317
ttatcactca	tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	atccgtaaga	3377
tgcttttctg	tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	tatgcggcga	3437
ccgagttgct	cttgcccggc	gtcaacacgg	gataataccg	cgccacatag	cagaacttta	3497
aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	3557
ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	atcttttact	3617
ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	aaagggaata	3677
agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	ttgaagcatt	3737
tatcagggtt	attgtctcat	gagcggatac	atatttgaat	gtatttagaa	aaataaacaa	3797

ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgtctaaga	aaccattatt	3857
atcatgacat	taacctataa	aaataggcgt	atcacgaggc	cctttcgtct	tcaagaaatt	3917
cggtcgaaaa	aagaaaagga	gagggccaag	agggagggca	ttggtgacta	ttgagcacgt	3977
gagtatacgt	gattaagcac	acaaaggcag	cttggagtat	gtctgttatt	aatttcacag	4037
gtagttctgg	tccattggtg	aaagtttgcg	gcttgcagag	cacagaggcc	gcagaatgtg	4097
ctctagattc	cgatgctgac	ttgctgggta	ttatatgtgt	gcccaataga	aagagaacaa	4157
ttgacccggt	tattgcaagg	aaaatttcaa	gtcttgtaaa	agcatataaa	aatagttcag	4217
gcactccgaa	atacttggtt	ggcgtgtttc	gtaatcaacc	taaggaggat	gttttggctc	4277
tggtcaatga	ttacggcatt	gatatcgtcc	aactgcacgg	agatgagtcg	tggcaagaat	4337
accaagagtt	cctcggtttg	ccagttatta	aaagactcgt	atttccaaaa	gactgcaaca	4397
tactactcag	tgcagcttca	cagaaacctc	attcgtttat	tcccttgttt	gattcagaag	4457
caggtgggac	aggtgaactt	ttggattgga	actcgatttc	tgactgggtt	ggaaggcaag	4517
agagccccga	gagcttacat	tttatgttag	ctggtggact	gacgccagaa	aatgttggtg	4577
atgcgcttag	attaaatggc	gttattggtg	ttgatgtaag	cggaggtgtg	gagacaaatg	4637
gtgtaaaaga	ctctaacaaa	atagcaaatt	tcgtcaaaaa	tgctaagaaa	taggttatta	4697
ctgagtagta	tttatttaag	tattgtttgt	gcacttgccc	tagcttatcg	atgataagct	4757
gtcaaagatg	agaattaatt	ccacggacta	tagactatac	tagatactcc	gtctactgta	4817
cgatacactt	ccgctcaggt	ccttgtcctt	taacgaggcc	ttaccactct	tttgttactc	4877
tattgatcca	gctcagcaaa	ggcagtgtga	tctaagattc	tatcttcgcg	atgtagtaaa	4937
actagctaga	ccgagaaaga	gactagaaat	gcaaaaggca	cttctacaat	ggctgccatc	4997
attattatcc	gatgtgacgc	tgcagcttct	caatgatatt	cgaatacgct	ttgaggagat	5057
acagcctaat	atccgacaaa	ctgttttaca	gatttacgat	cgtacttgtt	acccatcatt	5117
gaattttgaa	catccgaacc	tgggagtttt	ccctgaaaca	gatagtatat	ttgaacctgt	5177
ataataatat	atagtctagc	gctttacgga	agacaatgta	tgtatttcgg	ttcctggaga	5237
aactattgca	tctattgcat	aggtaatctt	gcacgtcgca	tccccggttc	attttctgcg	5297
tttccatctt	gcacttcaat	agcatatctt	tgttaacgaa	gcatctgtgc	ttcattttgt	5357
agaacaaaaa	tgcaacgcga	gagcgctaat	ttttcaaaca	aagaatctga	gctgcatttt	5417
tacagaacag	aaatgcaacg	cgaaagcgct	attttaccaa	cgaagaatct	gtgcttcatt	5477
tttgtaaaac	aaaaatgcaa	cgcgacgaga	gcgctaattt	ttcaaacaaa	gaatctgagc	5537
tgcattttta	cagaacagaa	atgcaacgcg	agagcgctat	tttaccaaca	aagaatctat	5597
acttcttttt	tgttctacaa	aaatgcatcc	cgagagcgct	atttttctaa	caaagcatct	5657
tagattactt	tttttctcct	ttgtgcgctc	tataatgcag	tctcttgata	actttttgca	5717
ctgtaggtcc	gttaaggtta	gaagaaggct	actttggtgt	ctattttctc	ttccataaaa	5777
aaagcctgac	tccacttccc	gcgtttactg	attactagcg	aagctgcggg	tgcattttt	5837
caagataaag	gcatccccga	ttatattcta	taccgatgtg	gattgcgcat	actttgtgaa	5897
cagaaagtga	tagcgttgat	gattcttcat	tggtcagaaa	attatgaacg	gtttcttcta	5957
ttttgtctct	atatactacg	tataggaaat	gtttacattt	tcgtattgtt	ttcgattcac	6017
tctatgaata	gttcttacta	caatttttt	gtctaaagag	taatactaga	gataaacata	6077

aaaaatgtag aggtcgagtt tagatgcaag ttcaaggagc gaaaggtgga tgggtaggtt

ata	tagg	gat	atag	caca	ga g	atat	atag	c aa	agag	atac	ttt	tgag	caa	tgtt	tgtgga	
agc	ggta	ttc	gcaa	tggg	aa g	ctcc	accc	c gg	ttga	taat	cag	aaaa	gcc	ccaa	aaacag	
gaa	gatt	gta	taag	caaa	ta t	ttaa	attg	t aa	acgt	taat	att	ttgt	taa	aatt	egegtt	
aaa [.]	tttt	tgt	taaa	tcag	ct c	attt	ttta	a cg	aata	gccc	gaa	atcg	gca (aaat	ccctta	
taaa	atca	aaa	gaat	agac	cg a	gata	gggt	t ga	gtgt	tgtt	cca	gttt	cca a	acaa	gagtcc	
acta	atta	aag	aacg	tgga	ct c	caac	gtca	a ag	ggcg	aaaa	agg	gtcta	atc a	aggg	cgatgg	
CCC	acta	cgt	gaac	catc	ac c	ctaa	tcaa	g tt	tttt	gggg	tcg	aggt	gec i	gtaa	agcagt	
aaa	tcgg	aag	ggta	aacg	ga t	gccc	ccat	t ta	gagc	ttga	cgg	ggaa	agc (cggc	gaacgt	
ggc	gaga	aag	gaag	ggaa	ga a	agcg	aaag	g ag	cggg	ggct	aggg	gcgg	tgg (gaagi	tgtagg	
ggt	cacg	ctg	ggcg.	taac	ca c	caca	cccg	c cg	eget	taat	ggg	gcgc	tac a	aggg	egegtg	
ggga	atga	tcc	acta	gt												
<210 <211 <211 <211	1> ; 2> ; 3> ;	56 295 PRT Onco:	rhyn	chus	myk:	iss										
Met 1	Glu	Thr	Phe	Asn 5	Tyr	Lys	Leu	Asn	Met 10	Tyr	Ile	Asp	Ser	Trp 15	Met	
Gly	Pro	Arg	Asp 20	Glu	Arg	Val	Gln	Gly 25	Trp	Leu	Leu	Leu	Asp 30	Asn	Tyr	
Pro	Pro	Thr 35	Phe	Ala	Leu	Thr	Val 40	Met	Tyr	Leu	Leu	Ile 45	Val	Trp	Met	
Gly	Pro 50	Lys	Tyr	Met	Arg	His 55	Arg	Gln	Pro	Val	Ser 60	Cys	Arg	Gly	Leu	
Leu 65	Leu	Val	Tyr	Asn	Leu 70	Gly	Leu	Thr	Ile	Leu 75	Ser	Phe	Tyr	Met	Phe 80	
Tyr	Glu	Met	Val	Ser 85	Ala	Val	Trp	His	Gly 90	Asp	Tyr	Asn	Phe	Phe 95	Cys	
Gln	Asp	Thr	His 100	Ser	Ala	Gly	Glu	Thr 105	Asp	Thr	Lys	Ile	Ile 110	Asn	Val	
Leu	Trp	Trp 115	Tyr	Tyr	Phe	Ser	Lys 120	Leu	Ile	Glu	Phe	Met 125	Asp	Thr	Phe	
Phe	Phe 130	Ile	Leu	Arg	Lys	Asn 135	Asn	His	Gln	Ile	Thr 140	Phe	Leu	His	Ile	
Tyr 145	His	His	Ala	Ser	Met 150	Leu	Asn	Ile	Trp	Trp 155	Phe	Val	Met	Asn	Trp 160	
Val	Pro	Cys	Gly	His	Ser	Tyr	Phe	Gly	Ala	Ser	Leu	Asn	Ser	Phe	Ile	

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile

Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro

Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile

Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys

His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala 265

Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 280 285

His Arg Lys Val Arg Gly Asp

<210> 57

<211> 6645

<211> 664:

<213> Oncorhynchus mykiss

<220>

<221> CDS

25

(513)..(1304) <222>

<222> (513)..(1304) <223> Delta-5-Elongase

<400> 57 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60 120 cctcgtcctc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac 180 240 ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga 300 ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat 360 taacagatat ataaatgcaa aaactgcatt aaccacttta actaatactt tcaacatttt cggtttgtat tacttcttat tcaaatgtaa taaaagtatc aacaaaaaat tgttaatata 420 cctctatact ttaacgtcaa ggagaaaaaa ccccggatcg gactactagc agctgtaata 480 533 cgactcacta tagggaatat taagcttaca ta atg gct tca aca tgg caa agc Met Ala Ser Thr Trp Gln Ser 581 gtt cag tcc atg cgc cag tgg att tta gag aat gga gat aaa agg aca Val Gln Ser Met Arg Gln Trp Ile Leu Glu Asn Gly Asp Lys Arg Thr

3.5

gac cca tgg cta ctg gtc tac tcc cct atg cca gtg gcc att ata ttc Asp Pro Trp Leu Leu Val Tyr Ser Pro Met Pro Val Ala Ile Ile Phe

									00							
cto Leu 40	cto Leu	tat Tyr	ctt Leu	ggt Gly	gtg Val 45	gtc Val	tgg Trp	gct Ala	gly ggg	ccc Pro 50	aag Lys	ctg Leu	atg Met	aaa Lys	cgc Arg 55	677
agg Arg	gaa Glu	cca Pro	gtt Val	gat Asp 60	ctc Leu	aag Lys	gct Ala	gta Val	ctc Leu 65	att	gtc Val	tac Tyr	aac Asn	ttc Phe 70	gcc Ala	725
atg Met	gtc Val	tgc Cys	ctg Leu 75	tct Ser	gtc Val	tac Tyr	atg Met	ttc Phe 80	cat His	gag Glu	ttc Phe	ttg Leu	gtc Val 85	acg Thr	tcc Ser	773
ttg Leu	ctg Leu	tct Ser 90	aac Asn	tac Tyr	agt Ser	tac Tyr	ctg Leu 95	tgt Cys	caa Gln	cct Pro	gtg Val	gat Asp 100	tac Tyr	agc Ser	act Thr	821
agt Ser	cca Pro 105	ьeu	gcg Ala	atg Met	agg Arg	atg Met 110	gcc Ala	aaa Lys	gta Val	tgc Cys	tgg Trp 115	tgg Trp	ttt Phe	ttc Phe	ttc Phe	869
tcc Ser 120	aag Lys	gtc Val	ata Ile	gaa Glu	ttg Leu 125	gct Ala	gac Asp	acg Thr	gtg Val	ttc Phe 130	ttc Phe	atc Ile	ctg Leu	agg Arg	aag Lys 135	917
aag Lys	aac Asn	agt Ser	cag Gln	ctg Leu 140	act Thr	ttc Phe	ctg Leu	cat His	gtc Val 145	tat Tyr	cac His	cat His	ggc Gly	acc Thr 150	atg Met	965
atc Ile	ttc Phe	aac Asn	tgg Trp 155	tgg Trp	gca Ala	Gl ^A aaa	gtc Val	aag Lys 160	tat Tyr	ctg Leu	gct Ala	gga Gly	ggc Gly 165	caa Gln	tcg Ser	1013
ttc Phe	ttc Phe	atc Ile 170	ggc ggc	ctg Leu	ctc Leu	aat Asn	acc Thr 175	ttt Phe	gtg Val	cac His	atc Ile	gtg Val 180	atg Met	tac Tyr	tct Ser	1061
tac Tyr	tac Tyr 185	gga Gly	ctg Leu	gct Ala	gcc Ala	ctg Leu 190	gly ggg	cct Pro	cac His	acg Thr	cag Gln 195	aag Lys	tac Tyr	tta Leu	tgg Trp	1109
tgg Trp 200	aag Lys	cgc Arg	tat Tyr	ctg Leu	acc Thr 205	tca Ser	ctg Leu	cag Gln	ctg Leu	ctc Leu 210	cag Gln	ttt Phe	gtc Val	ctg Leu	ttg Leu 215	1157
acc Thr	act Thr	cac His	Thr	ggc Gly 220	tac Tyr	aac Asn	ctc Leu	ttc Phe	act Thr 225	gag Glu	tgt Cys	gac Asp	ttc Phe	ccg Pro 230	gac Asp	1205
tcc Ser	atg Met	Asn	gct Ala 235	gtg Val	gtg Val	ttt Phe	gcc Ala	tac Tyr 240	tgt Cys	gtc Val	agt Ser	ctc Leu	att Ile 245	gct Ala	ctc Leu	1253
ttc Phe	Ser	aac Asn 250	ttc Phe	tac Tyr	tat Tyr	Gln	agc Ser 255	tac Tyr	ctc Leu	aac Asn	Arg	aag Lys 260	agc Ser	aag Lys	aag Lys	1301
aca Thr	taag	gatc	ca c	tagt	aacg	g cc	gcca	gtgt.	gct	ggaa	ttc	tgca	gata	tc		1354
cato	acac	tg g	cggc	cgct	c ga	gcat	gcat	cta	gagg	gcc	gcat	catg	ta a	ttag	ttatg	1414
tcac	gctt	ac a	ttca	cgcc	c tc	cccc	caca	tcc	gctc	taa	ccga	aaag	ga a	ggag	ttaga	1474
caac	ctga	ag t	ctag	gtcc	c ta	ttta	tttt	ttt	atag	tta	tgtt	agta	tt a	agaa	cgtta	1534
ttta	tatt	tc a	aatt	tttc	t tt	tttt	tctg	tac	agac	gcg	tgta	cgca	tg t	aaca	ttata	1594
ctga	aaac	ct t	gctt	gaga	a gg	tttt	ggga	cgc	tcga	agg	cttt	aatt	tg c	ggcc	ctgca	1654
															gcttc	1714
															cactc	1774
aaag	gcgg	ta at	tacgg	gttai	t cc	acaga	aatc	agg	ggat	aac	gcag	gaaa	ga a	catg	tgagc	1834

aaaaggccag	caaaagccca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	1894
gctccgcccc	cctgacgagc _.	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	1954
gacaggacta	taaagatacc	aggcgtttcc	ccctggaagc	tccctcgtgc	gctctcctgt	2014
tccgaccctg	ccgcttaccg	gatacctgtc	cgcctttctc	ccttcgggaa	gcgtggcgct	2074
ttctcatagc	tcacgctgta	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	2134
ctgtgtgcac	gaaccccccg	ttcagcccga	ccgctgcgcc	ttatccggta	actatcgtct	2194
tgagtccaac	ccggtaagac	acgacttatc	gccactggca	gcagccactg	gtaacaggat	2254
tagcagagcg	aggtatgtag	gcggtgctac	agagttcttg	aagtggtggc	ctaactacgg	2314
ctacactaga	aggacagtat	ttggtatctg	cgctctgctg	aagccagtta	ccttcggaaa	2374
aagagttggt	agctcttgat	ccggcaaaca	aaccaccgct	ggtagcggtg	gtttttttgt	2434
ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa	gaagatcctt	tgatcttttc	2494
tacggggtct	gacgctcagt	ggaacgaaaa	ctcacgttaa	gggattttgg	tcatgagatt	2554
atcaaaaagg	atcttcacct	agatcctttt	aaattaaaaa	tgaagtttta	aatcaatcta	2614
aagtatatat	gagtaaactt	ggtctgacag	ttaccaatgc	ttaatcagtg	aggcacctat	2674
ctcagcgatc	tgtctatttc	gttcatccat	agttgcctga	ctccccgtcg	tgtagataac	2734
tacgatacgg	gagcgcttac	catctggccc	cagtgctgca	atgataccgc	gagacccacg	2794
ctcaccggct	ccagatttat	cagcaataaa	ccagccagcc	ggaagggccg	agcgcagaag	2854
tggtcctgca	actttatccg	cctccattca	gtctattaat	tgttgccggg	aagctagagt	2914
aagtagttcg	ccagttaata	gtttgcgcaa	cgttgttggc	attgctacag	gcatcgtggt	2974
gtcactctcg	tcgtttggta	tggcttcatt	cagctccggt	tcccaacgat	caaggcgagt	3034
tacatgatcc	cccatgttgt	gcaaaaaagc	ggttagctcc	ttcggtcctc	cgatcgttgt	3094
cagaagtaag	ttggccgcag	tgttatcact	catggttatg	gcagcactgc	ataattctct	3154
tactgtcatg	ccatccgtaa	gatgcttttc	tgtgactggt	gagtactcaa	ccaagtcatt	3214
ctgagaatag	tgtatgcggc	gaccgagttg	ctcttgcccg	gcgtcaatac	gggataatag	3274
tgtatcacat	agcagaactt	taaaagtgct	catcattgga	aaacgttctt	cggggcgaaa	3334
actctcaagg	atcttaccgc	tgttgagatc	cagttcgatg	taacccactc	gtgcacccaa	3394
ctgatcttca	gcatctttta	ctttcaccag	cgtttctggg	tgagcaaaaa	caggaaggca	3454
aaatgccgca	aaaaagggaa	taagggcgac	acggaaatgt	tgaatactca	tactcttcct	3514
ttttcaatgg	gtaataactg	atataattaa	attgaagctc	taatttgtga	gtttagtata	3574
catgcattta	cttataatac	agttttttag	ttttgctggc	cgcatcttct	caaatatgct	3634
tcccagcctg	cttttctgta	acgttcaccc	tctaccttag	catcccttcc	ctttgcaaat	3694
agtcctcttc	caacaataat	aatgtcagat	cctgtagaga	ccacatcatc	cacggttcta	3754
tactgttgac	ccaatgcgtc	tcccttgtca	tctaaaccca	caccgggtgt	cataatcaac	3814
caatcgtaac	cttcatctct	tccacccatg	tctctttgag	caataaagcc	gataacaaaa	3874
tctttgtcgc	tcttcgcaat	gtcaacagta	cccttagtat	attctccagt	agatagggag	3934
cccttgcatg	acaattctgc	taacatcaaa	aggcctctag	gttcctttgt	tacttcttct	3994
gccgcctgct	tcaaaccgct	aacaatacct	gggcccacca	caccgtgtgc	attcgtaatg	4054

O)	
tctgcccatt ctgctattct gtatacaccc gcagagtact gcaatttgac tgtattacc	a 4114
atgtcagcaa attttctgtc ttcgaagagt aaaaaattgt acttggcgga taatgcctt	t 4174
ageggettaa etgtgeeete eatggaaaaa teagteaaga tateeacatg tgtttttag	4234
aaacaaattt tgggacctaa tgcttcaact aactccagta attccttggt ggtacgaaca	4294
tccaatgaag cacacaagtt tgtttgcttt tcgtgcatga tattaaatag cttggcagca	4354
acaggactag gatgagtagc agcacgttcc ttatatgtag ctttcgacat gatttatct	4414
cgtttcctgc aggtttttgt tctgtgcagt tgggttaaga atactgggca atttcatgt	4474
tetteaacae tacatatgeg tatatatace aatetaagte tgtgeteett eettegttet	4534
tccttctgtt cggagattac cgaatcaaaa aaatttcaaa gaaaccgaaa tcaaaaaaaa	4594
gaataaaaaa aaaatgatga attgaattga aaagctagct tatcgatgat aagctgtcaa	4654
agatgagaat taattccacg gactatagac tatactagat actccgtcta ctgtacgata	4714
cactteeget eaggteettg teetttaaeg aggeettaee aetettttgt taetetattg	4774
atccagctca gcaaaggcag tgtgatctaa gattctatct tcgcgatgta gtaaaactag	4834
ctagaccgag aaagagacta gaaatgcaaa aggcacttct acaatggctg ccatcattat	
tateegatgt gaegetgeag etteteaatg atattegaat aegetttgag gagataeage	
ctaatatccg acaaactgtt ttacagattt acgatcgtac ttgttaccca tcattgaatt	
ttgaacatcc gaacctggga gttttccctg aaacagatag tatatttgaa cctgtataat	
aatatatagt ctagcgcttt acggaagaca atgtatgtat ttcggttcct ggagaaacta	5134
ttgcatctat tgcataggta atcttgcacg tcgcatcccc ggttcatttt ctgcgtttcc	5194
atettgeact teaatageat atetttgtta aegaageate tgtgetteat tttgtagaae	5254
aaaaatgcaa cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc atttttacag	5314
aacagaaatg caacgcgaaa gcgctatttt accaacgaag aatctgtgct tcatttttgt	5374
aaaacaaaaa tgcaacgcga cgagagcgct aatttttcaa acaaagaatc tgagctgcat	5434
ttttacagaa cagaaatgca acgcgagagc gctattttac caacaaagaa tctatacttc	5494
ttttttgttc tacaaaaatg catcccgaga gcgctatttt tctaacaaag catcttagat	5554
tacttttttt ctcctttgtg cgctctataa tgcagtctct tgataacttt ttgcactgta	5614
ggtccgttaa ggttagaaga aggctacttt ggtgtctatt ttctcttcca taaaaaaagc	5674
ctgactccac ttcccgcgtt tactgattac tagcgaagct gcgggtgcat tttttcaaga	5734
taaaggcatc cccgattata ttctataccg atgtggattg cgcatacttt gtgaacagaa	5794
agtgatagcg ttgatgattc ttcattggtc agaaaattat gaacggtttc ttctattttg	5854
tctctatata ctacgtatag gaaatgttta cattttcgta ttgttttcga ttcactctat	5914
gaatagttet taetacaatt tttttgteta aagagtaata etagagataa acataaaaaa	5974
tgtagaggtc gagtttagat gcaagttcaa ggagcgaaag gtggatgggt aggttatata	6034
gggatatagc acagagatat atagcaaaga gatacttttg agcaatgttt gtggaagcgg	6094
tattcgcaat gggaagctcc accccggttg ataatcagaa aagccccaaa aacaggaaga	6154
ttgtataagc aaatatttaa attgtaaacg ttaatatttt gttaaaattc gcgttaaatt	6214
tttgttaaat cagctcattt tttaacgaat agcccgaaat cggcaaaatc ccttataaat	6274
caaaagaata gaccgagata gggttgagtg ttgttccagt ttccaacaag agtccactat	6334 .

taaa	ıgaa	cgt (ggact	tccaa	ac gt	caaa	aggg	gaa	aaaa	gggt	ctat	cago	ggc g	gatgo	gcccac
tacc	ıtga	acc a	atcad	cccta	aa to	caagt	tttt	tgg	ggt	gag	gtg	ccgta	aaa g	gcagt	taaatc
ggaa	ggg	taa a	acgga	atgco	cc c	catt	cagag	g ctt	gac	199g	aaag	gccgg	geg a	acgt	ggcga
gaaa	ıgga	agg (gaaga	aaago	cg as	aagga	agcgg	g ggg	gctag	gggc	ggt	gggaa	agt g	gtagg	ggtca
cgct	ggg	cgt a	aacca	accad	ca co	ccgc	gcg	c tta	atgg	gggc	gcta	acagg	ggc g	gegte	gggat
gato	cac	tag	t												
<210 <211 <212 <213	.> ?>	58 264 PRT Onco:	rhyno	chus	myk	iss									
<400)>	58													
Met 1	Ala	Ser	Thr	Trp 5	Gln	Ser	Val	Gln	Ser 10	Met	Arg	Gln	Trp	Ile 15	Leu
Glu	Asn	Gly	Asp 20	Lys	Arg	Thr	Asp	Pro 25	Trp	Leu	Leu	Val	Tyr 30	Ser	Pro
Met	Pro	Val 35	Ala	Ile	Ile	Phe	Leu 40	Leu	Tyr	Leu	Gly	Val 45	Val	Trp	Ala
Gly	Pro 50	Lys	Leu	Met	Lys	Arg 55	Arg	Glu	Pro	Val	Asp 60	Leu	Lys	Ala	Val
Leu 65	Ile	Val	Tyr	Asn	Phe 70	Ala	Met	Val	Cys	Leu 75	Ser	Val	Tyr	Met	Phe 80
His	Glu	Phe	Leu	Val 85	Thr	Ser	Leu	Leu	Ser 90	Asn	Tyr	Ser	Tyr	Leu 95	Cys
Gln	Pro	Val	Asp 100	Tyr	Ser	Thr	Ser	Pro 105	Leu	Ala	Met	Arg	Met 110	Ala	Lys
Val	Cys	Trp 115	Trp	Phe	Phe	Phe	Ser 120	Lys	Val	Ile	Glu	Leu 125	Ala	Asp	Thr
Val	Phe 130	Phe	Ile	Leu	Arg	Lys 135	Lys	Asn	Ser	Gln	Leu 140	Thr	Phe	Leu	His
Val 145	Tyr	His	His	Gly	Thr 150	Met	Ile	Phe	Asn	Trp 155	Trp	Ala	Gly	Val	Lys 160
Tyr	Leu	Ala	Gly	Gly 165	Gln	Ser	Phe	Phe	Ile 170	Gly	Leu	Leu	Asn	Thr 175	Phe
Val	His	Ile	Val 180	Met	Tyr	Ser	Tyr	Tyr 185	Gly	Leu	Ala	Ala	Leu 190	Gly	Pro
His	Thr	Gln 195	Lys	Tyr	Leu	Trp	Trp 200	Lys	Arg	Tyr	Leu	Thr 205	Ser	Leu	Gln
Leu	Leu 210	Gln	Phe	Val	Leu	Leu 215	Thr	Thr	His	Thr	Gly 220	Tyr	Asn	Leu	Phe

576

89

Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 225 230 235 240	
Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 245 250 255	- :
Leu Asn Arg Lys Ser Lys Lys Thr 260	
<210> 59 <211> 1077 <212> DNA <213> Thalassiosira pseudonana	
<220> <221> CDS <222> (1)(1077) <223> Delta-5-Elongase	
<pre><400> 59 atg tgc tca tca ccg ccg tca caa tcc aaa aca aca tcc ctc cta gca Met Cys Ser Ser Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 1</pre>	48
cgg tac acc acc gcc gcc ctc ctc ctc ctc acc ctc aca aca tgg tgc Arg Tyr Thr Thr Ala Ala Leu Leu Leu Thr Leu Thr Thr Trp Cys 20 25 30	96
cac ttc gcc ttc cca gcc gcc acc gcc aca ccc ggc ctc acc gcc gaa His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 35 40 45	144
atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 50 55 60	192
agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 65 70 75 80	240
tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 85 90 95	288
gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 100 105 110	336
gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 115 120 125	384
gcg gcg ttg cat agt ggg agc tcg tat gcg gtg tgg gtt cat tat tgt Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 130 135 140	432
gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 145 150 160	480
aaa atg gac cag gtc tcc ttc ctc cac atc tac cac cac acg acc ata Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 165 170 175	528

gcg tgg gca tgg tgg atc gcc ctc cgc ttc tcc ccc ggt gga gac att Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 180 185 190

									50							
			gca Ala													624
tac Tyr	tac Tyr 210	gcc Ala	ctt Leu	gcc Ala	cta Leu	ctc Leu 215	aag Lys	gtc Val	agt Ser	tgt Cys	cca Pro 220	tgg Trp	aaa Lys	cga Arg	tac Tyr	672
ctg Leu 225	act Thr	caa Gln	gct Ala	caa Gln	tta Leu 230	ttg Leu	caa Gln	ttc Phe	aca Thr	agt Ser 235	gtg Val	gtg Val	gtt Val	tat Tyr	acg Thr 240	720
			ggt Gly													768
gag Glu	aca Thr	cag Gln	cct Pro 260	agt Ser	tta Leu	gga Gly	acg Thr	tat Tyr 265	tat Tyr	ttc Phe	tgt Cys	tgt Cys	gga Gly 270	gtg Val	cag Gln	816
			atg Met													864
cga Arg	tcc Ser 290	tat Tyr	tcg Ser	aag Lys	aag Lys	aac Asn 295	aag Lys	tca Ser	gga Gly	gga Gly	aag Lys 300	gat Asp	agc Ser	aag Lys	aag Lys	912
			gly aaa													960
ata Ile	tcg Ser	gag Glu	ggt Gly	gcg Ala 325	aag Lys	gag Glu	gtt Val	gtg Val	330 Gly 339	cat His	gca Ala	gcg Ala	aag Lys	gat Asp 335	gct Ala	1008
			gtg Val 340													1056
			ggt Gly			tag										1077
<210 <213 <213 <213	L> : 2> :	50 358 PRT Thala	assio	osira	a pse	euđor	nana									
<400)> (50														•
Met 1	Cys	Ser	Ser	Pro 5	Pro	Ser	Gln	Ser	Lys 10	Thr	Thr	Ser	Leu	Leu 15	Ala	
Arg	Tyr	Thr	Thr 20	Ala	Ala	Leu	Leu	Leu 25	Leu	Thr	Leu	Thr	Thr 30	Trp	Cys	
His	Phe	Ala 35	Phe	Pro	Ala	Ala	Thr 40	Ala	Thr	Pro	Gly	Leu 45	Thr	Ala	Glu	
Met	His 50	Ser	Tyr	Lys	Val	Pro 55	Leu	Gly	Leu	Thr	Val 60	Phe	Tyr	Leu	Leu	
Ser 65	Leu	Pro	Ser	Leu	Lys 70	Tyr	Val	Thr	Asp	Asn 75	Tyr	Leu	Ala	Lys	Lys 80	
тàт	Asp	Met	Lys	Ser 85	Leu	Leu	Thr	Glu	Ser 90	Met	Val	Leu	Tyr	Asn 95	Val	

Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 105

Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly

Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 200

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 215

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 265

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 340

Arg Val Thr Gly Ala Met 355

<210> 61

<211> 933
<212> DNA
<213> Thalassiosira pseudonana

<220>

<2	21> 22> 23>	CDS (1). Delt	.(93 :a-5-	3) Elon	ıgase	!										
ate	00> g cac His	tcc:	tac Tyr	aaa Lys 5	gtc Val	cca Pro	cto Leu	ggt Gly	ctc Leu 10	acc Thr	gta Val	tto Phe	tac Tyr	ctg Leu 15	ctg Leu	48
agi Sei	cta Leu	ccg Pro	tca Ser 20	cta Leu	aag Lys	tac Tyr	gtt Val	acg Thr 25	gac Asp	aac Asn	tac Tyr	ctt Leu	gcc Ala 30	aaa Lys	aag Lys	96
tat Ty:	gat Asp	atg Met 35	aag Lys	tca Ser	ctc Leu	cta Leu	acg Thr 40	gaa Glu	tca Ser	atg Met	gtg Val	ttg Leu 45	tac Tyr	aat Asn	gtg Val	144
gcg Ala	g caa Gln 50	gtg Val	ctg Leu	ctc Leu	aat Asn	ggg Gly 55	tgg Trp	acg Thr	gtg Val	tat Tyr	gcg Ala 60	att Ile	gtg Val	gat Asp	gcg Ala	192
gtg Val 65	r atg . Met	aat Asn	aga Arg	gac Asp	cat His 70	ccg Pro	ttt Phe	att Ile	gga Gly	agt Ser 75	aga Arg	agt Ser	ttg Leu	gtt Val	80 GJA aaa	240
Ala	gcg Ala	ttg Leu	cat His	agt Ser 85	Gly aaa	agc Ser	tcg Ser	tat Tyr	gcg Ala 90	gtg Val	tgg Trp	gtt Val	cat His	tat Tyr 95	tgt Cys	288
gat Asp	aag Lys	tat Tyr	ttg Leu 100	gag Glu	ttc Phe	ttt Phe	gat Asp	acg Thr 105	tat Tyr	ttt Phe	atg Met	gtg Val	ttg Leu 110	agg Arg	Gl ^A aaa	336
aaa Lys	atg Met	gac Asp 115	cag Gln	gtc Val	tcc Ser	ttc Phe	ctc Leu 120	cac His	atc Ile	tac Tyr	cac His	cac His 125	acg Thr	acc Thr	ata Ile	384
gcg Ala	tgg Trp 130	gca Ala	tgg Trp	tgg Trp	atc Ile	gcc Ala 135	ctc Leu	cgc Arg	ttc Phe	tcc Ser	ccc Pro 140	ggt Gly	gga Gly	gac Asp	att Ile	432
tac Tyr 145	ttc Phe	Gly aaa	gca Ala	ctc Leu	ctc Leu 150	aac Asn	tcc Ser	atc Ile	atc Ile	cac His 155	gtc Val	ctc Leu	atg Met	tat Tyr	tcc Ser 160	480
tac Tyr	tac Tyr	gcc Ala	ctt Leu	gcc Ala 165	cta Leu	ctc Leu	aag Lys	gtc Val	agt Ser 170	tgt Cys	cca Pro	tgg Trp	aaa Lys	cga Arg 175	tac Tyr	528
ctg Leu	act Thr	caa Gln	gct Ala 180	caa Gln	tta Leu	ttg Leu	caa Gln	ttc Phe 185	aca Thr	agt Ser	gtg Val	gtg Val	gtt Val 190	tat Tyr	acg Thr	576
GJÀ aàa	tgt Cys	acg Thr 195	ggt Gly	tat Tyr	act Thr	cat His	tac Tyr 200	tat Tyr	cat His	acg Thr	aag Lys	cat His 205	gga Gly	gcg Ala	gat Asp	624
gag Glu	aca Thr 210	cag Gln	cct Pro	agt Ser	tta Leu	gga Gly 215	acg Thr	tat Tyr	tat Tyr	ttc Phe	tgt Cys 220	tgt Cys	gga Gly	gtg Val	cag Gln	672
gtg Val 225	ttt Phe	gag Glu	atg Met	gtt Val	agt Ser 230	ttg Leu	ttt Phe	gta Val	ctc Leu	ttt Phe 235	tcc Ser	atc Ile	ttt Phe	tat Tyr	aaa Lys 240	720
cga Arg	tcc Ser	tat Tyr	tcg Ser	aag Lys 245	aag Lys	aac Asn	aag Lys	tca Ser	gga Gly 250	gga Gly	aag Lys	gat Asp	agc Ser	aag Lys 255	aag Lys	768
aat Asn	gat Asp	gat Asp	ggg Gly 260	aat Asn	aat Asn	gag Glu	gat Asp	caa Gln 265	tgt Cys	cac His	aag Lys	gct Ala	atg Met 270	aag Lys	gat Asp	816

BASF Plant Science G	imbH 200402 ⁻	15 PF 55426 DE
	93	
ata tcg gag ggt gcg a	aag gag gtt gtg ggg ca	at gca gcg aag gat gct 864
Ile Ser Glu Gly Ala 1	Lys Glu Val Val Gly Hi	is Ala Ala Lys Asp Ala
275	280	285
		ta aag agg aag gga act 912 al Lys Arg Lys Gly Thr 300
cgt gtt act ggt gcc a Arg Val Thr Gly Ala I 305		933
<210> 62 <211> 310 <212> PRT <213> Thalassiosira	pseudonana	
<400> 62		
Met His Ser Tyr Lys v	Val Pro Leu Gly Leu Th	r Val Phe Tyr Leu Leu
1 5	10	15
Ser Leu Pro Ser Leu 1	Lys Tyr Val Thr Asp As	sn Tyr Leu Ala Lys Lys
20	25	30
Tyr Asp Met Lys Ser 1	Leu Leu Thr Glu Ser Me	et Val Leu Tyr Asn Val
35	40	45
Ala Gln Val Leu Leu i	Asn Gly Trp Thr Val Ty	yr Ala Ile Val Asp Ala
50	55	60
	His Pro Phe Ile Gly Se 70 75	er Arg Ser Leu Val Gly 5 80
Ala Ala Leu His Ser (Gly Ser Ser Tyr Ala Va	al Trp Val His Tyr Cys
85	90	95
Asp Lys Tyr Leu Glu 1	Phe Phe Asp Thr Tyr Ph	ne Met Val Leu Arg Gly
100	105	110
Lys Met Asp Gln Val 9	Ser Phe Leu His Ile Ty	yr His His Thr Thr Ile
115	120	125
Ala Trp Ala Trp Trp 1	Ile Ala Leu Arg Phe Se 135	er Pro Gly Gly Asp Ile 140
. T		is Val Leu Met Tyr Ser 55 160
Tyr Tyr Ala Leu Ala I	Leu Leu Lys Val Ser Cy	ys Pro Trp Lys Arg Tyr
165	170	175
Leu Thr Gln Ala Gln 1	Leu Leu Gln Phe Thr Se	er Val Val Tyr Thr
180	185	190

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 195 200

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215 220

94

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 230

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 245

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr

Arg Val Thr Gly Ala Met

<210> 63 <211> 933 <212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

(1)..(933) <222>

<223> Delta-5-Elongase

<400> 63 atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 48 agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag 96 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 144 gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 192 gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg 240 Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly gcg gcg ttg cat agt ggg agc tcg tat gcg gtg tgg gtt cat tat tgt 288 Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 85 90 336 gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 100 aaa atg gac cag gtc tcc ttc ctc cac atc tac cac acg acc ata Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 384

gcg tgg gca tgg tgg atc gcc ctc cgc ttc tcc ccc ggt gga gac att

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile

140

BASF Plant Scie	ence GmbH	20040215	PF 55426 DE
		95	
tac ttc ggg gca Tyr Phe Gly Ala 145	a ctc ctc aac tcc a Leu Leu Asn Ser 150	e atc atc cac gtc Ile Ile His Val 155	ctc atg tat tcc 480 Leu Met Tyr Ser 160
tac tac gcc ctt Tyr Tyr Ala Leu	gcc cta ctc aag Ala Leu Leu Lys 165	g gtc agt tgt cca s Val Ser Cys Pro 170	tgg aaa cga tac 528 Trp Lys Arg Tyr 175
ctg act caa gct Leu Thr Gln Ala 180	ı Gln Leu Leu Gln	ttc aca agt gtg Phe Thr Ser Val 185	gtg gtt tat acg 576 Val Val Tyr Thr 190
ggg tgt acg ggt Gly Cys Thr Gly 195	tat act cat tac Tyr Thr His Tyr 200	tat cat acg aag Tyr His Thr Lys	cat gga gcg gat 624 His Gly Ala Asp 205
gag aca cag cct Glu Thr Gln Pro 210	agt tta gga acg Ser Leu Gly Thr 215	tat tat ttc tgt Tyr Tyr Phe Cys 220	tgt gga gtg cag 672 Cys Gly Val Gln
gtg ttt gag atg Val Phe Glu Met 225	gtt agt ttg ttt Val Ser Leu Phe 230	gta ctc ttt tcc Val Leu Phe Ser 235	atc ttt tat aaa 720 Ile Phe Tyr Lys 240
cga tcc tat tcg Arg Ser Tyr Ser	aag aag aac aag Lys Lys Asn Lys 245	tca gga gga aag Ser Gly Gly Lys 250	gat agc aag aag 768 Asp Ser Lys Lys 255
aat gat gat ggg Asn Asp Asp Gly 260	' Asn Asn Glu Asp	caa tgt cac aag Gln Cys His Lys 265	gct atg aag gat 816 Ala Met Lys Asp 270
ata tcg gag ggt Ile Ser Glu Gly 275	gcg aag gag gtt Ala Lys Glu Val 280	gtg ggg cat gca Val Gly His Ala	gcg aag gat gct 864 Ala Lys Asp Ala 285
gga aag ttg gtg Gly Lys Leu Val 290	gct acg gcg agt Ala Thr Ala Ser 295	aag gct gta aag Lys Ala Val Lys 300	agg aag gga act 912 Arg Lys Gly Thr
cgt gtt act ggt Arg Val Thr Gly 305	gcc atg tag Ala Met 310		933
<210> 64 <211> 310 <212> PRT <213> Thalassic	osira pseudonana		
<400> 64			
Met His Ser Tyr 1	Lys Val Pro Leu 5	Gly Leu Thr Val 1	Phe Tyr Leu Leu 15
Ser Leu Pro Ser 20	Leu Lys Tyr Val	Thr Asp Asn Tyr 1 25	Leu Ala Lys Lys 30
Tyr Asp Met Lys 35	Ser Leu Leu Thr 40	Glu Ser Met Val I	Leu Tyr Asn Val 15
Ala Gln Val Leu 50	Leu Asn Gly Trp 55	Thr Val Tyr Ala 3	Ile Val Asp Ala

Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 65 70 75 80

Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 85 90 95

96

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 100 105

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 180 185

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr

Arg Val Thr Gly Ala Met

<210> 65 <211> 825 <212> DNA

<213> Thraustochytrium aureum

<220>

<221> CDS

<222> (1)..(825) <223> Delta-5-Elongase

<400> 65

atg acg agc aac atg agc gcg tgg ggc gtc gcc gtc gac cag acg cag Met Thr Ser Asn Met Ser Ala Trp Gly Val Ala Val Asp Gln Thr Gln 5 1.0 15

cag Gln	gtc Val	gtc Val	gac Asp 20	cag Gln	atc Ile	atg Met	ggc Gly	ggc Gly 25	gcc Ala	gag Glu	ccg Pro	tac Tyr	aag Lys 30	ctg Leu	aca Thr	96
											gcg Ala					144
											atg Met 60					192
											cac His					240
											gtc Val					288
											gag Glu					336
											atc Ile					384
											atc Ile 140					432
											cac His					480
											Gly					528
											gtc Val					576
											aag Lys					624
											gcg Ala 220					672
											ccg Pro					720
											gcg Ala					768
											aag Lys					816
	gcc Ala	taa														825

<210> 66 <211> 274 <212> PRT <213> Thraustochytrium aureum

<400> 66

Met Thr Ser Asn Met Ser Ala Trp Gly Val Ala Val Asp Gln Thr Gln 1 5 10 15

Gln Val Val Asp Gln Ile Met Gly Gly Ala Glu Pro Tyr Lys Leu Thr 20 25 30

Glu Gly Arg Met Thr Asn Val Glu Thr Met Leu Ala Ile Glu Cys Gly 35 40 45

Tyr Ala Ala Met Leu Leu Phe Leu Thr Pro Ile Met Lys Gln Ala Glu 50 60

Lys Pro Phe Glu Leu Lys Ser Phe Lys Leu Ala His Asn Leu Phe Leu 65 70 75 80

Phe Val Leu Ser Ala Tyr Met Cys Leu Glu Thr Val Arg Gln Ala Tyr 85 90 95

Leu Ala Gly Tyr Ser Val Phe Gly Asn Asp Met Glu Lys Gly Ser Glu 100 105 110

Pro His Ala His Gly Met Ala Gln Ile Val Trp Ile Phe Tyr Val Ser 115 120 125

Lys Ala Tyr Glu Phe Val Asp Thr Leu Ile Met Ile Leu Cys Lys Lys 130 135 140

Phe Asn Gln Val Ser Val Leu His Val Tyr His His Ala Thr Ile Phe 145 150 155 160

Ala Ile Trp Phe Met Ile Ala Lys Tyr Ala Pro Gly Gly Asp Ala Tyr 165 170 175

Phe Ser Val Ile Leu Asn Ser Phe Val His Thr Val Met Tyr Ala Tyr 180 185 190

Tyr Phe Phe Ser Ser Gln Gly Phe Gly Phe Val Lys Pro Ile Lys Pro 195 200 205

Tyr Ile Thr Ser Leu Gln Met Thr Gln Phe Met Ala Met Leu Val Gln 210 215 220

Ser Leu Tyr Asp Tyr Leu Tyr Pro Cys Asp Tyr Pro Gln Gly Leu Val 225 230 235 240

Phe Phe Val Gln Ser Tyr Leu Lys Lys Ser Asn Lys Pro Lys Ala Lys 260 265 270

Ser Ala

<210> 67 <211> 903

<212> <213>	DNA Ostr	eoco	ccus	tau	ri											
<220> <221> <222> <223>	CDS (1). Delt	.(90 a-5-	3) Elon	gase	-	÷										
<400> atg age Met Se: 1	67 c gcc r Ala	tcc Ser	ggt Gly 5	gcg Ala	ctg Leu	ctg Leu	ccc Pro	gcg Ala 10	atc Ile	gcg Ala	ttc Phe	gcc Ala	gcg Ala 15	tac Tyr	48	}
gcg tac Ala Ty	c gcg r Ala	acg Thr 20	tac Tyr	gcc Ala	tac Tyr	gcc Ala	ttt Phe 25	gag Glu	tgg Trp	tcg Ser	cac His	gcg Ala 30	aat Asn	Gly ggc	96	ĵ
atc gad Ile Asp	c aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	144	Ī
ctc ccc Leu Pro 50	g gcg o Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192	;
ccg agg Pro Arg 65	g ttg g Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	Gly ggg	ttc Phe	atg Met 80	240)
ctg gcg Leu Ala	g tac a Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	ggg ggg	288	ŀ
atg tto Met Pho	c gcg e Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	ggg Gly	ctg Leu 105	Gly ggg	cag Gln	ccc Pro	gtg Val	tgg Trp 110	Gly ggg	tca Ser	336	;
acc ato	g ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	Gly ggg	gtg Val	384	:
tgg ttg Trp Lei 130	ı His	tac Tyr	aac Asn	aac Asn	caa Gln 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	432	1
atg gtt Met Val 145	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480	l
cat cac His His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528	1
gcc acc Ala Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	Gly	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576	i
ttc att Phe Ile															624	:
att cga Ile Arg 210	Cys														672	1
ttc gtc Phe Val 225	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val ·	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720	l
tgc ccg Cys Pro	gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met	768	í

BASF Plant Science Gr	nbH 2004021	15 PF 55426 DE
•	100	
ctc gtg ctc ttc ggg a Leu Val Leu Phe Gly A 260	ac ttc tac ctc aag gc sn Phe Tyr Leu Lys Al 265	g tac tcg aac aag tcg 816 a Tyr Ser Asn Lys Ser 270
cgc ggc gac ggc gcg a Arg Gly Asp Gly Ala S 275		c gag acc acg cgc gcg 864 a Glu Thr Thr Arg Ala 285
ccc agc gtg cga cgc a Pro Ser Val Arg Arg T 290		
<210> 68 <211> 300 <212> PRT <213> Ostreococcus ta	auri	-
<400> 68		
Met Ser Ala Ser Gly A 1 5	la Leu Leu Pro Ala Il 10	e Ala Phe Ala Ala Tyr 15
Ala Tyr Ala Thr Tyr A	la Tyr Ala Phe Glu Tr 25	p Ser His Ala Asn Gly 30
Ile Asp Asn Val Asp A 35	la Arg Glu Trp Ile Gl 40	y Ala Leu Ser Leu Arg 45
Leu Pro Ala Ile Ala T 50	hr Thr Met Tyr Leu Le 55	u Phe Cys Leu Val Gly 60
Pro Arg Leu Met Ala L 65 7		
Leu Ala Tyr Asn Ala T 85	yr Gln Thr Ala Phe As 90	n Val Val Val Leu Gly 95
Met Phe Ala Arg Glu I. 100	le Ser Gly Leu Gly Gl 105	n Pro Val Trp Gly Ser 110
Thr Met Pro Trp Ser A: 115	sp Arg Lys Ser Phe Ly 120	rs Ile Leu Leu Gly Val 125
Trp Leu His Tyr Asn A	sn Gln Tyr Leu Glu Le 135	u Leu Asp Thr Val Phe 140
Met Val Ala Arg Lys Ly 145	ys Thr Lys Gln Leu Se 50 15	
His His Ala Leu Leu I 165	le Trp Ala Trp Trp Le 170	u Val Cys His Leu Met 175
Ala Thr Asn Asp Cys II	le Asp Ala Tyr Phe Gl 185	y Ala Ala Cys Asn Ser 190
Phe Ile His Ile Val Mo 195	et Tyr Ser Tyr Tyr Le 200	u Met Ser Ala Leu Gly 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe 225	Va.	l Ile	Val	Phe	Ala 230	His	Ala	Val	Phe	Va1 235	Leu	Arg	Gln	Lys	His 240	
Cys	Pro	Val	Thr	Leu 245	Pro	Trp	Ala	Gln	Met 250	Phe	Val	Met	Thr	Asn 255	Met	. :
Leu	Va]	. Leu	Phe 260	Gly	Asn	Phe	Tyr	Leu 265	Lys	Ala	Tyr	Ser	Asn 270	Lys	Ser	
Arg	Gl7	275	Gly	Ala	Ser	Ser	Val 280	Lys	Pro	Ala	Glu	Thr 285	Thr	Arg	Ala	
Pro	Ser 290	Val	Arg	Arg	Thr	Arg 295	Ser	Arg	Lys	Ile	Asp 300					
<210 <211 <212 <213	.> !>	> 879 > DNA														
<220 <221 <222 <223	.> !>	CDS (1)(879) Delta-6-Elongase														

atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys tgg gac tac gcg att tcc aaa gtc gtc ttc acg tgt gcc gac agt ttt Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 96 20 cag tgg gac atc ggg cca gtg agt tcg agt acg gcg cat tta ccc gcc Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 144 att gaa too cot acc coa ctg gtg act agc ctc ttg ttc tac tta gtc 192 Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val aca gtt ttc ttg tgg tat ggt cgt tta acc agg agt tca gac aag aaa 240 Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala ttc ttg ata gtc ctc agt ctt tac atg tgc ctt ggt tgt gtg gcc caa Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 336 gcg tat cag aat gga tat act tta tgg ggt aat gaa ttc aag gcc acg Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 384 gaa act cag ctt gct ctc tac att tac att ttt tac gta agt aaa ata 432 Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile tac gag ttt gta gat act tac att atg ctt ctc aag aat aac ttg cgg 480 Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 145 150

D/		lant	0-			<u></u>	L. I. I
-04	131	lant	5 C	len	ce '	um	DH

PF 55426 DE

caa Gln	gta Val	agt Ser	ttc Phe	cta Leu 165	cac His	att Ile	tat Tyr	cac His	cac His 170	agc Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	att Ile	528
		atc Ile														576
gcg Ala	gcc Ala	ttg Leu 195	aac Asn	tca Ser	tgg Trp	gta Val	cac His 200	gtg Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	tat Tyr	tat Tyr	cta Leu	624
		acc Thr														672
		ggt Gly														720
		ctt Leu														768
ttt Phe	ttg Leu	tcc Ser	aaa Lys 260	att Ile	ctg Leu	ctc Leu	gtc Val	tat Tyr 265	atg Met	atg Met	agc Ser	ctt Leu	ctc Leu 270	ggc Gly	ttg Leu	816
		cat His 275														864
		cag Gln		tga												879
<210 <210 <210 <210	L> 2 2> I	70 292 PRT Ostre	eococ	ccus	taur	ci										
<21:	L> 2 2> 1 3> 0	292 PRT	eoco(ccus	taur	ri										
<21: <21: <21: <40:	L> 2 2> I 3> 0	292 PRT Ostre					Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys	
<21: <21: <21: <400 Met 1	1> 2 2> 1 3> 0 0> 7	292 PRT Ostre	Leu	Arg 5	Ala	Pro			10		_		_	15		
<21: <21: <21: <400 Met 1	1> 2 2> 1 3> 0 0> 5 Ser	292 PRT Ostre 70 Gly	Leu Ala 20	Arg 5	Ala Ser	Pro Lys	Val	Val 25	10 Phe	Thr	Cys	Ala	Asp 30	15 Ser	Phe	
<21: <21: <21: <400 Met 1 Trp	1> 2 2> 1 3> 0 0> 3 Ser Asp	292 PRT Ostro 70 Gly Tyr	Leu Ala 20 Ile	Arg 5 Ile Gly	Ala Ser Pro	Pro Lys Val	Val Ser 40	Val 25 Ser	10 Phe Ser	Thr Thr	Cys	Ala His 45	Asp 30	15 Ser Pro	Phe Ala	
<21: <21: <20: <40: Met 1 Trp Gln	1> 2 2> 1 3> 0 0> 3 Ser Asp Trp Glu 50	292 PRT Ostro 70 Gly Tyr Asp 35	Leu Ala 20 Ile Pro	Arg 5 Ile Gly Thr	Ala Ser Pro	Pro Lys Val Leu 55	Val Ser 40 Val	Val 25 Ser Thr	10 Phe Ser Ser	Thr Thr Leu	Cys Ala Leu 60	Ala His 45 Phe	Asp 30 Leu Tyr	Ser Pro	Phe Ala Val	
<21: <21: <21: <400 Met 1 Trp Gln Ile	1> 2 2> 1 3> 0 0> 3 Ser Asp Trp Glu 50	292 PRT Ostro 70 Gly Tyr Asp 35	Leu Ala 20 Ile Pro	Arg 5 Ile Gly Thr	Ala Ser Pro Pro	Pro Lys Val Leu 55	Val Ser 40 Val	Val 25 Ser Thr	10 Phe Ser Thr	Thr Thr Leu Arg 75	Cys Ala Leu 60 Ser	Ala His 45 Phe Ser	Asp 30 Leu Tyr	Ser Pro Leu	Phe Ala Val Lys	
<21: <21: <400 Met 1 Trp Gln Ile Thr 65	1> 2 2> 1 3> 0 0> 3 Ser Asp Trp Glu 50 Val	292 PRT Ostro 70 Gly Tyr Asp 35 Ser	Leu Ala 20 Ile Pro Leu Pro	Arg 5 Ile Gly Thr Trp	Ala Ser Pro Pro Tyr 70	Pro Lys Val Leu 55	Val Ser 40 Val Arg	Val 25 Ser Thr Leu	10 Phe Ser Ser Thr	Thr Leu Arg 75	Cys. Ala Leu 60 Ser	Ala His 45 Phe Ser	Asp 30 Leu Tyr Asp	Ser Pro Leu Lys Asn 95	Phe Ala Val Lys 80 Ala	

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 200 Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 265 Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln Lys Lys Gln Gln 290

<210> 71 <211> 1362 <212> DNA <213> Primula farinosa

<220>

<221> CDS <222> (1)..(1362) <223> Delta-6-Desaturase

<400> 71 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac ata acc agc Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser tca gac ctg aaa tcc cac aac aag gca ggt gac cta tgg ata tca atc Ser Asp Leu Lys Ser His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile 96 cac ggc caa gtc tac gac gtg tcc tct tgg gcc gcc ctt cat ccg ggg His Gly Gln Val Tyr Asp Val Ser Ser Trp Ala Ala Leu His Pro Gly 144

ggc act gcc cct ctc atg gcc ctt gca gga cac gac gtg acc gat gct 192 Gly Thr Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala

									104								
ttc Phe 65	ctc Leu	gcg Ala	tac Tyr	cat His	ccc Pro 70	cct Pro	tcc Ser	act Thr	gcc Ala	cgt Arg 75	ctc Leu	ctc Leu	cct Pro	cct Pro	ctc Leu 80		240
					ctt Leu												288
					ctc Leu												336
					gct Ala												384
					act Thr											-	432
					gga Gly 150												480
					tct Ser												528
					caa Gln												576
					aag Lys												624
Asn					gac Asp												672
					ttc Phe 230												720
					ggc Gly												768
					gtc Val												816
cag Gln	tca Ser	ttt Phe 275	ata Ile	acg Thr	ctt Leu	ttc Phe	tcg Ser 280	agt Ser	agg Arg	gag Glu	gtg Val	tgc Cys 285	cat His	agg Arg	gcg Ala		864
					ctt Leu												912
					aat Asn 310												960
					Gly ggg											1	800.
					tat Tyr											1	.056
					Gl ⁷ aaa											1	.104

BASF Plant Scien	ce GmbH	20040215	PF 55426 DE
		105	
gat tgg ttc cat c Asp Trp Phe His C 370	ggc ggg tta cag Gly Gly Leu Gln 375	ttt cag gtc gag Phe Gln Val Glu 380	cac cac ttg ttt 1152 His His Leu Phe
ccg cgg atg cct a Pro Arg Met Pro A 385	agg ggt cag ttt Arg Gly Gln Phe 390	agg aag att tct Arg Lys Ile Ser 395	cct ttt gtg agg 1200 Pro Phe Val Arg 400
gat ttg tgt aag a Asp Leu Cys Lys I	aaa cac aac ttg Lys His Asn Leu 105	cct tac aat atc Pro Tyr Asn Ile 410	gcg tct ttt act 1248 Ala Ser Phe Thr 415
aaa gcg aat gtg t Lys Ala Asn Val I 420	tt acg ctt aag Phe Thr Leu Lys	acg ctg aga aat Thr Leu Arg Asn 425	acg gcc att gag 1296 Thr Ala Ile Glu 430
gct cgg gac ctc t Ala Arg Asp Leu S 435	cct aat ccg ctc Ser Asn Pro Leu 440	Pro Lys Asn Met	gtg tgg gaa gct 1344 Val Trp Glu Ala 445
ctt aaa act ctc g Leu Lys Thr Leu G 450	ggg tga Sly		1362
<210> 72 <211> 453 <212> PRT <213> Primula fa	urinosa		
<400> 72			
Met Ala Asn Lys S 1 5		Pro Lys Thr Gly 10	Tyr Ile Thr Ser 15
Ser Asp Leu Lys S 20	Ser His Asn Lys	Ala Gly Asp Leu 25	Trp Ile Ser Ile 30
His Gly Gln Val T 35	Yr Asp Val Ser 40	Ser Trp Ala Ala	Leu His Pro Gly 45
Gly Thr Ala Pro L 50	eu Met Ala Leu 55	Ala Gly His Asp	Val Thr Asp Ala
Phe Leu Ala Tyr H 65	is Pro Pro Ser 70	Thr Ala Arg Leu 75	Leu Pro Pro Leu 80 .
Ser Thr Asn Leu L 8	eu Leu Gln Asn 5	His Ser Val Ser	Pro Thr Ser Ser 95
Asp Tyr Arg Lys L 100	eu Leu Asp Asn	Phe His Lys His 105	Gly Leu Phe Arg 110
Ala Arg Gly His T	hr Ala Tyr Ala 120	Thr Phe Val Phe	Met Ile Ala Met 125

Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 130 135 140

His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 145 150 150

Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys 165 170 175

Trp Asn Trp Phe Ala Gln Ile Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185 190

Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 195 200 205

Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 215 220

Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 225 230 235 240

Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 245 250 255

Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Leu Ala 260 265 270

Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Cys His Arg Ala 275 280 285

Leu Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Leu Leu Ala 305 310 315

Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325 330 335

Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 355 360 365

Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 385 390 395 400

Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 405 410 415

Lys Ala Asn Val Phe Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 425 430

Ala Arg Asp Leu Ser Asn Pro Leu Pro Lys Asn Met Val Trp Glu Ala 435 440

Leu Lys Thr Leu Gly 450

	<21 <21 <21 <21	1> 2>	73 1362 DNA Prim	ula	vial	ii											
	<22: <22: <22: <22:	1> 2>		.(13 a-6-		tura	se	-		= =							
	<400 atg Met 1	gct	73 aac Asn	aaa Lys	tct Ser 5	cca Pro	cca Pro	aac Asn	ccc Pro	aaa Lys 10	aca Thr	ggt Gly	tac Tyr	att Ile	acc Thr 15	agc Ser	48
	tca Ser	gac Asp	ctg Leu	aaa Lys 20	Gly aga	cac His	aac Asn	aaa Lys	gca Ala 25	gga Gly	gac Asp	cta Leu	tgg Trp	ata Ile 30	tca Ser	atc Ile	96
	cac His	Gly	gag Glu 35	gta Val	tac Tyr	gac Asp	gtg Val	tcc Ser 40	tcg Ser	tgg Trp	gcc Ala	Gly	ctt Leu 45	cac His	ccg Pro	ggg Gly	144
	ggc Gly	agt Ser 50	gcc Ala	ccc Pro	ctc Leu	atg Met	gcc Ala 55	ctc Leu	gca Ala	gga Gly	cac His	gac Asp 60	gta Val	acc Thr	gac Asp	gct Ala	192
	ttt Phe 65	cta Leu	gcg Ala	tat Tyr	cat His	cct Pro 70	cct Pro	tct Ser	acc Thr	gcc Ala	cgc Arg 75	ctc Leu	ctc Leu	cct Pro	ccc Pro	ctc Leu 80	240
	tcc Ser	acc Thr	aac Asn	ctc Leu	ctc Leu 85	ctt Leu	caa Gln	aac Asn	cac His	tcc Ser 90	gtc Val	tcc Ser	ccc Pro	acc Thr	tcc Ser 95	tct Ser	288
	gac Asp	tac Tyr	cgc Arg	aaa Lys 100	ctc Leu	ctc Leu	cac His	aac Asn	ttc Phe 105	cat His	aaa Lys	att Ile	ggt Gly	atg Met 110	ttc Phe	cgc Arg	336
	gcc Ala	agg Arg	ggc Gly 115	cac His	act Thr	gct Ala	tac Tyr	gcc Ala 120	acc Thr	ttc Phe	gtc Val	atc Ile	atg Met 125	ata Ile	gtg Val	atg Met	384
	ttt Phe	cta Leu 130	acg Thr	agc Ser	gtg Val	acc Thr	gga Gly 135	gtc Val	ctt Leu	tgc Cys	agc Ser	gac Asp 140	agt Ser	gcg Ala	tgg Trp	gtc Val	432
	cat His 145	ctg Leu	gct Ala	agc Ser	Gly ggc	gca Ala 150	gca Ala	atg Met	GJ ^A aaa	ttc Phe	gcc Ala 155	tgg Trp	atc Ile	cag Gln	tgc Cys	gga Gly 160	480
	tgg Trp	ata Ile	ggt Gly	cac His	gac Asp 165	tct Ser	ggg ggg	cat His	tac Tyr	cgg Arg 170	att Ile	atg Met	tct Ser	gac Asp	agg Arg 175	aaa Lys	528
	tgg Trp	aac Asn	tgg Trp	ttc Phe 180	gcg Ala	cag Gln	gtc Val	ctg Leu	agc Ser 185	aca Thr	aac Asn	tgc Cys	ctc Leu	cag Gln 190	Gly aaa	atc Ile	576
	agt Ser	atc Ile	ggg Gly 195	tgg Trp	tgg Trp	aag Lys	tgg Trp	aac Asn 200	cat His	aac Asn	gcc Ala	cac His	cac His 205	att Ile	gct Ala	tgc Cys	624
	Asn	agc Ser 210	ctg Leu	gac Asp	tac Tyr	gac Asp	ccc Pro 215	gac Asp	ctc Leu	cag Gln	tat Tyr	atc Ile 220	cct Pro	ttg Leu	ctc Leu	gtg Val	672
•	gtc Val 225	tcc Ser	ccc Pro	aag Lys	ttc Phe	ttc Phe 230	aac Asn	tcc Ser	ctt Leu	act Thr	tct Ser 235	cgt Arg	ttc Phe	tac Tyr	gac Asp	aag Lys 240	720
	aag Lys :	ctg Leu	aat Asn	ttc Phe	gac Asp 245	ggc Gly	gtg Val	tca Ser	agg Arg	ttt Phe 250	ctg Leu	gtt Val	tgc Cys	tac Tyr	cag Gln 255	cac His	768

								gtc Val 265								816
								agc Ser								 864
caa Gln	gag Glu 290	att Ile	ttc Phe	gga Gly	ctt Leu	gct Ala 295	gtg Val	ttt Phe	tgg Trp	gtt Val	tgg Trp 300	ttt Phe	ccg Pro	ctc Leu	ctg Leu	912
								gag Glu								960
								cac His								1008
								ccg Pro 345								1056
								aac Asn								1104
gac Asp	tgg Trp 370	ttc Phe	cat His	ggc Gly	Gly ggg	ttg Leu 375	cag Gln	ttt Phe	cag Gln	gtc Val	gag Glu 380	cac His	cac His	ttg Leu	ttt Phe	1152
ccg Pro 385	cgg Arg	atg Met	cct Pro	agg Arg	ggt Gly 390	cag Gln	ttt Phe	agg Arg	aag Lys	att Ile 395	tct Ser	cct Pro	ttt Phe	gtg Val	agg Arg 400	1200
gat Asp	ttg Leu	tgt Cys	aag Lys	aaa Lys 405	cac His	aac Asn	ttg Leu	cct Pro	tac Tyr 410	aat Asn	atç Ile	gcg Ala	tct Ser	ttt Phe 415	act Thr	1248
								acg Thr 425								1296
gct Ala	cgg Arg	gac Asp 435	ctc Leu	tct Ser	aat Asn	ccg Pro	acc Thr 440	cca Pro	aag Lys	aat Asn	atg Met	gtg Val 445	tgg Trp	gaa Glu	gcc Ala	1344
			cac His													1362
<21: <21: <21: <21:	1> / 2> :	74 453 PRT Prim	ula [,]	vial:	ii											
<40	0>	74														
Met 1	Ala	Asn	Lys	Ser 5	Pro	Pro	Asn	Pro	Lys 10	Thr	Gly	Tyr	Ile	Thr 15	Ser	
Ser	Asp	Leu	Lys 20	Gly	His	Asn	Lys	Ala 25	Gly	Asp	Leu	Trp	Ile 30	Ser	Ile	
His	Gly	Glu 35	Val	Tyr	Asp	Val	Ser 40	Ser	Trp	Ala	Gly	Leu 45	His	Pro	Gly	
Gly	Ser 50	Ala	Pro	Leu	Met	Ala 55	Leu	Ala	Gly	His	Asp 60	Val	Thr	Asp	Ala	

Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser Asp Tyr Arg Lys Leu Leu His Asn Phe His Lys Ile Gly Met Phe Arg Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Ile Met Ile Val Met Phe Leu Thr Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val His Leu Ala Ser Gly Ala Ala Met Gly Phe Ala Trp Ile Gln Cys Gly Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys Trp Asn Trp Phe Ala Gln Val Leu Ser Thr Asn Cys Leu Gln Gly Ile Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 215 Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Ile Ala Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Gly His Arg Ala 275 Gln Glu Ile Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu Leu Ser Cys Leu Pro Asn Trp Ser Glu Arg Ile Met Phe Leu Leu Ala Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Ala Asn Asp Trp Phe Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met

110

Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 375 Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 395 Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr Lys Ala Asn Val Leu Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 Ala Arg Asp Leu Ser Asn Pro Thr Pro Lys Asn Met Val Trp Glu Ala 440 Val His Thr His Gly 450 <210> 75 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase <400> 75 atg age gee tee ggt geg etg etg eee geg ate geg tee gee geg tae 48 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr 10 gcg tac gcg acg tac gcc tac gcc ttt gag tgg tcg cac gcg aat ggc 96 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly ate gae aae gte gae geg ege gag tgg ate ggt geg etg teg ttg agg 144 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg ctc ccg gcg atc gcg acg acg atg tac ctg ttg ttc tgc ctg gtc gga Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 192 50 ccg agg ttg atg gcg aag cgc gag gcg ttc gac ccg aag ggg ttc atg 240 Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg 288 Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly 85 90 atg ttc gcg cga gag atc tcg ggg ctg ggg cag ccc gtg tgg ggg tca 336 Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 acc atg ccg tgg agc gat aga aaa tcg ttt aag atc ctc ctc ggg gtg Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Gly Val 384 tgg ttg cac tac aac aac aaa tat ttg gag cta ttg gac act gtg ttc Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe

135

BASF Plant Science GmbH	2004	40215	PF 55426 DE
	111	1	
atg gtt gcg cgc aag aag a Met Val Ala Arg Lys Lys 1 145 150	icg aag cag ttg hr Lys Gln Leu	g agc ttc ttg 1 Ser Phe Leu : 155	cac gtt tat 480 His Val Tyr 160
cat cac gcc ctg ttg atc t	egg gcg tgg tgg	o Leu Val Cys I	cac ttg atg 528
His His Ala Leu Leu Ile 1	Trp Ala Trp Trp		His Leu Met
165	170		175
gcc acg aac gat tgt atc g	gat gcc tac ttc	e Gly Ala Ala (tgc aac tcg 576
Ala Thr Asn Asp Cys Ile A	Asp Ala Tyr Phe		Cys Asn Ser
180	185		190
ttc att cac atc gtg atg t	ac tcg tat tat	t ctc atg tcg :	gcg ctc ggc 624
Phe Ile His Ile Val Met 1	yr Ser Tyr Tyr	Leu Met Ser :	Ala Leu Gly
195	200	205	
att cga tgc ccg tgg aag c Ile Arg Cys Pro Trp Lys A 210	ega tac atc acc arg Tyr Ile Thr 15	c cag gct caa a c Gln Ala Gln I 220	atg ctc caa 672 Met Leu Gln
ttc gtc att gtc ttc gcg c Phe Val Ile Val Phe Ala E 225 230	ac gcc gtg ttc is Ala Val Phe	gtg ctg cgt og Val Leu Arg (235	cag aag cac 720 Gln Lys His 240
tgc ccg gtc acc ctt cct t	gg gcg caa atg	: Phe Val Met !	acg aac atg 768
Cys Pro Val Thr Leu Pro T	rp Ala Gln Met		Thr Asn Met
245	250		255
ctc gtg ctc ttc ggg aac t	tc tac ctc aag	s Ala Tyr Ser A	aac aag tcg 816
Leu Val Leu Phe Gly Asn F	he Tyr Leu Lys		Asn Lys Ser
260	265		270
cgc ggc gac ggc gcg agt t Arg Gly Asp Gly Ala Ser S 275	cc gtg aaa cca er Val Lys Pro 280	a gcc gag acc a o Ala Glu Thr : 285	acg cgc gcg 864 Thr Arg Ala
ccc agc gtg cga cgc acg c	ga tct cga aaa	a att gac taa	903
Pro Ser Val Arg Arg Thr A	rg Ser Arg Lys	s Ile Asp	
290	95	300	
<210> 76 <211> 300 <212> PRT <213> Ostreococcus tauri			
<400> 76			
Met Ser Ala Ser Gly Ala L	eu Leu Pro Ala	ı Ile Ala Ser A	Ala Ala Tyr
1 5	10		15
Ala Tyr Ala Thr Tyr Ala T	yr Ala Phe Glu		Ala Asn Gly
20	25		30
Ile Asp Asn Val Asp Ala A	rg Glu Trp Ile	e Gly Ala Leu s	Ser Leu Arg
35	40	45	
Leu Pro Ala Ile Ala Thr T	hr Met Tyr Leu	ı Leu Phe Cys I	Leu Val Gly
50 5	5	60	
Pro Arg Leu Met Ala Lys A	rg Glu Ala Phe	Asp Pro Lys 0 75	Sly Phe Met 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

96

112

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 230 235

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser

Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280

Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295

<210> 77

<211> 903
<212> DNA
<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(903)

<223> Delta-5-Elongase

<400> 77

atg age gee tee ggt geg etg etg eee geg ate geg tte gee geg tae Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr

gcg tac gcg acg tac gcc tac gcc ttt gag tgg tcg cac gcg aat ggc Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly

144 atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 40 35

ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192
					aag Lys 70											240
					tat Tyr											288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	Gly ggg	ctg Leu 105	GJA aaa	cag Gln	ccc Pro	gtg Val	tgg Trp 110	Gly ggg	tca Ser	336
					gat Asp											384
					aac Asn											432
					aag Lys 150											480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528
					atc Ile											576
ttc Phe	att Ile	cac His 195	atc Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	tat Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	gcg Ala	ctc Leu	ggc Gly	624
					aag Lys											672
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720
tgc Cys					cct Pro					Phe						768
					aac Asn											816
					agt Ser											864
					acg Thr							taa				903

<210> 78 <211> 300 <212> PRT <213> Ostreococcus tauri

<400> 78

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 10

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 60 Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80 Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125 Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 150 155 160His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp

	1> 2>	79 903 DNA Ostr	eoco	ccus	tau	ri											
<22	1> 2>	CDS (1). Delt			gase	-						. =				8_8*	
atg	0> agc Ser		tcc Ser	ggt Gly 5	gcg Ala	ctg Leu	ctg Leu	ccc Pro	gcg Ala 10	atc Ile	gcg Ala	tcc Ser	gcc Ala	gcg Ala 15	tac Tyr		48
gcg Ala	tac Tyr	gcg Ala	acg Thr 20	tac Tyr	gcc Ala	tac Tyr	gcc Ala	ttt Phe 25	gag Glu	tgg Trp	tcg Ser	cac His	gcg Ala 30	aat Asn	Gly		96
atc Ile	gac Asp	aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg		144
ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly		192
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	Gly aaa	ttc Phe	atg Met 80		240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	GJA aaa		288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	ggg Gly	ctg Leu 105	Gly aaa	cag Gln	ccc Pro	gtg Val	tgg Trp 110	Gly ggg	tca Ser		336
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	gly ggg	gtg Val		384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	caa Gln 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe		432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160		480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met		528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	ggc Gly	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser		576
ttc Phe	att Ile	cac His 195	atc Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	tat Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	gcg Ala	ctc Leu	ggc Gly		624
att Ile	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln		672
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240		720
tgc Cys	ccg Pro	gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met		768

ctc Leu	gtg Val	ctc Leu	ttc Phe 260	eja aaa	aac Asn	ttc Phe	tac Tyr	ctc Leu 265	aag Lys	gcg Ala	tac Tyr	tcg Ser	aac Asn 270	aag Lys	tcg Ser
					agt Ser										
					acg Thr							taa			
<210 <211 <212 <213	L> 3 2> 1	30 300 PRT Ostre	eoco	ccus	tauı	ri									
<400)> (30													
Met 1	Ser	Ala	Ser	Gly 5	Ala	Leu	Leu	Pro	Ala 10	Ile	Ala	Ser	Ala	Ala 15	Tyr
Ala	Tyr	Ala	Thr 20	Tyr	Ala	Tyr	Ala	Phe 25	Glu	Trp	Ser	His	Ala 30	Asn	Gly
Ile	Asp	Asn 35	Val	Asp	Ala	Arg	Glu 40	Trp	Ile	Gly	Ala	Leu 45	Ser	Leu	Arg
Leu	Pro 50	Ala	Ile	Ala	Thr	Thr 55	Met	Tyr	Leu	Leu	Phe 60	Cys	Leu	Val	Gly
Pro 65	Arg	Leu	Met	Ala	Lys 70	Arg	Glu	Ala	Phe	Asp 75	Pro	Lys	Gly	Phe	Met 80
Leu	Ala	Tyr	Asn	Ala 85	Ţyr	Gln	Thr	Ala	Phe 90	Asn	Val	Val	Val	Leu 95	Gly
Met	Phe	Ala	Arg 100	Glu	Ile	Ser	Gly	Leu 105	Gly	Gln	Pro	Val	Trp 110	Gly	Ser
Thr	Met	Pro 115	Trp	Ser	Asp	Arg	Lys 120	Ser	Phe	Lys	Ile	Leu 125	Leu	Gly	Val
Trp	Leu 130	His	Tyr	Asn	Asn	Gln 135	Tyr	Leu	Glu	Leu	Leu 140	Asp	Thr	Val	Phe
Met 145	Val	Ala	Arg	Lys	Lys 150	Thr	Lys	Gln	Leu	Ser 155	Phe	Leu	His	Val	Tyr 160
His	His	Ala	Leu	Leu 165	Ile	Trp	Ala	Trp	Trp 170	Leu	Val	Cys	His	Leu 175	Met
Ala	Thr	Asn	Asp 180	Cys	Ile	Asp	Ala	Tyr 185	Phe	Gly	Ala	Ala	Cys 190	Asn	Ser
Phe	Ile	His 195	Ile	Val	Met	Tyr	Ser 200	Tyr	Tyr	Leu	Met	Ser 205	Ala	Leu	Gly
Ile	Arg 210	Cys	Pro	Trp	Lys	Arg 215	Tyr	Ile	Thr	Gln ·	Ala 220	Gln	Met	Leu	Gln

Phe 225	Val	Ile	Va1	Phe	Ala 230	His	Ala	Val	Phe	Val 235	Leu	Arg	Gln	Lys	His 240	
Cys	Pro	Val	Thr	Leu 245	Pro	Trp	Ala	Gln	Met 250	Phe	Val	Met	Thr	Asn 255	Met	-
Leu	Val	Leu	Phe 260	Gly	Asn	Phe	Tyr	Leu 265	Lys	Ala	Tyr	Ser	Asn 270	Lys	Ser	
Arg	Gly	Asp 275	Gly	Ala	Ser	Ser	Val 280	Lys	Pro	Ala	Glu	Thr 285	Thr	Arg	Ala	
Pro	Ser 290	Val	Arg	Arg	Thr	Arg 295	Ser	Arg	Lys	Ile	Asp 300					
<210 <213 <213 <213	L> 1 2> 1 3> (31 379 ONA Ostre	9 000	ccus	tau	ri										
<220 <220 <220 <220	L> (2>	CDS (1). Delta	•	•	gase											
atg)> { agt Ser	ggc	tta Leu	cgt Arg 5	gca Ala	ccc Pro	aac Asn	ttt Phe	tta Leu 10	cac His	aga Arg	ttc Phe	tgg Trp	aca Thr 15	aag Lys	48
								gtc Val 25								96
								tcg Ser								144
								act Thr								192
								tta Leu								240
								aga Arg								288
								atg Met 105								336
								tgg Trp								384
								tac Tyr								432
tac Tyr	gag Glu	ttt Phe	gta Val	gat Asp	act Thr	tac Tyr	att Ile	atg Met	ctt Leu	ctc Leu	aag Lys	aat Asn	aac Asn	ttg Leu	cgg Arg	480

caa Gln	gta Val	aga Arg	ttc Phe	cta Leu 165	cac His	act Thr	tat Tyr	cac His	cac His 170	agc Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	att Ile	528
tgg Trp	tgg Trp	atc Ile	att Ile 180	gct Ala	cgg Arg	agg Arg	gct Ala	ccg Pro 185	ggt Gly	ggt Gly	gat Asp	gct Ala	tac Tyr 190	ttc Phe	agc Ser	576
gcg Ala	gcc Ala	ttg Leu 195	aac Asn	tca Ser	tgg Trp	gta Val	cac His 200	gtg Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	tat Tyr	tat Tyr	cta Leu	624
tta Leu	tca Ser 210	acc Thr	ctt Leu	att Ile	gga Gly	aaa Lys 215	gaa Glu	gat Asp	cct Pro	aag Lys	cgt Arg 220	tcc Ser	aac Asn	tac Tyr	ctt Leu	672
tgg Trp 225	tgg Trp	ggt Gly	cgc Arg	cac His	cta Leu 230	acg Thr	caa Gln	atg Met	cag Gln	atg Met 235	ctt Leu	cag Gln	ttt Phe	ttc Phe	ttc Phe 240	720
	gta Val															768
	ttg Leu															816
	Gly ggg															864
	aaa Lys 290			tga												879
<21: <21: <21: <21:	1> 2 2> 1	32 292 PRT Ostre	9000	ccus	taur	ci										
<21:	1> 2 2> 1 3> 0	292 PRT	eocod	ccus	taur	ci										
<21: <21: <21: <40:	1> 2 2> 1 3> 0	292 PRT Ostre					Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys	
<21: <21: <21: <40: Met 1	1> 2 2> 1 3> 0	292 PRT Ostre 32 Gly	Leu	Arg 5	Ala	Pro			10				_	15	_	
<21: <21: <21: <400 Met 1	1> 2 2> 1 3> 0 0> 8 Ser	292 PRT Ostre 32 Gly Tyr	Leu Ala 20	Arg 5	Ala Ser	Pro Lys	Val	Val 25	10 Phe	Thr	Cys	Ala	Asp 30	15 Ser	Phe	
<21: <21: <21: <40: Met 1 Trp	11> 2 2> 1 3> 0 0> 8 Ser	292 PRT Ostre 32 Gly Tyr Asp 35	Leu Ala 20	Arg 5 Ile Gly	Ala Ser Pro	Pro Lys Val	Val Ser 40	Val 25 Ser	10 Phe Ser	Thr	Cys	Ala His 45	Asp 30	Ser Pro	Phe Ala	
<21: <21: <400 Met 1 Trp Gln	1> 2 2> 1 3> 0 0> 8 Ser Asp Trp Glu	292 PRT Ostro 32 Gly Tyr Asp 35	Leu Ala 20 Ile Pro	Arg 5 Ile Gly Thr	Ala Ser Pro	Pro Lys Val Leu 55	Val Ser 40 Val	Val 25 Ser Thr	10 Phe Ser	Thr Thr Leu	Cys Ala Leu 60	Ala His 45 Phe	Asp 30 Leu Tyr	15 Ser Pro Leu	Phe Ala Val	
<21: <21: <40: Met 1 Trp Gln Ile	1> 2 2> 1 3> 0 0> 8 Ser Asp Trp	292 PRT Ostre 32 Gly Tyr Asp 35 Ser	Leu Ala 20 Ile Pro Leu	Arg 5 Ile Gly Thr	Ala Ser Pro Pro	Pro Lys Val Leu 55	Val Ser 40 Val Arg	Val 25 Ser Thr	10 Phe Ser Ser	Thr Thr Leu Arg 75	Cys Ala Leu 60 Ser	Ala His 45 Phe Ser	Asp 30 Leu Tyr	Ser Pro Leu Lys	Phe Ala Val Lys	
<21: <21: <21: <400 Met 1 Trp Gln Ile Thr 65	1> 2 2> 1 3> 0 0> 8 Ser Asp Trp Glu 50	292 PRT Ostre 32 Gly Tyr Asp 35 Ser Phe	Leu Ala 20 Ile Pro Leu Pro	Arg 5 Ile Gly Thr Trp	Ala Ser Pro Pro Tyr 70	Pro Lys Val Leu 55	Val Ser 40 Val Arg	Val 25 Ser Thr Leu	10 Phe Ser Ser Thr	Thr Leu Arg 75	Cys Ala Leu 60 Ser	Ala His 45 Phe Ser	Asp 30 Leu Tyr Asp	Ser Pro Leu Lys Asn 95	Phe Ala Val Lys 80 Ala	

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 135

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 155

Gln Val Arg Phe Leu His Thr Tyr His His Ser Thr Ile Ser Phe Ile

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 235

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys

Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu

Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln

Lys Lys Gln Gln 290

<210> 83

<211> 831

<212> DNA

<213> Thraustochytrium sp.

<220>

<221> CDS <222> (1)..(831)

<223> Delta-5-Elongase

<400> 83

atg gac gtc gtc gag cag caa tgg cgc cgc ttc gtg gac gcc gtg gac 48 Met Asp Val Val Glu Gln Gln Trp Arg Arg Phe Val Asp Ala Val Asp

aac gga atc gtg gag ttc atg gag cat gag aag ccc aac aag ctg aac Asn Gly Ile Val Glu Phe Met Glu His Glu Lys Pro Asn Lys Leu Asn 96

gag ggc aag ctc ttc acc tcg acc gag gag atg atg gcg ctt atc gtc Glu Gly Lys Leu Phe Thr Ser Thr Glu Glu Met Met Ala Leu Ile Val 144

ggc tac ctg gcg ttc gtg gtc ctc ggg tcc gcc ttc atg aag gcc ttt Gly Tyr Leu Ala Phe Val Val Leu Gly Ser Ala Phe Met Lys Ala Phe 192 55 60

									120								
					gag Glu 70											240)
					tcc Ser											288	3
gca Ala	tac Tyr	ctc Leu	ggc Gly 100	ggc Gly	tac Tyr	aag Lys	ctc Leu	ttt Phe 105	ggc Gly	aac Asn	ccg Pro	atg Met	gag Glu 110	aag Lys	ggc Gly	330	5
acc Thr	gag Glu	tcg Ser 115	cac His	gcc Ala	ccg Pro	ggc Gly	atg Met 120	gcc Ala	aac Asn	atc Ile	atc Ile	tac Tyr 125	atc Ile	ttc Phe	tac Tyr	384	4
gtg Val	agc Ser 130	aag Lys	ttc Phe	ctc Leu	gaa Glu	ttc Phe 135	ctc Leu	gac Asp	acc Thr	gtc Val	ttc Phe 140	atg Met	atc Ile	ctc Leu	ggc Gly	43:	2
aag Lys 145	aag Lys	tgg Trp	aag Lys	cag Gln	ctc Leu 150	agc Ser	ttt Phe	ctc Leu	cac His	gtc Val 155	tac Tyr	cac His	cac His	gcg Ala	agc Ser 160	48	0
atc Ile	agc Ser	ttc Phe	atc Ile	tgg Trp 165	ggc Gly	atc Ile	atc Ile	gcc Ala	cgc Arg 170	ttc Phe	gcg Ala	ccc Pro	ggt Gly	ggc Gly 175	gac Asp	52	8
gcc Ala	tac Tyr	ttc Phe	tct Ser 180	acc Thr	atc Ile	ctc Leu	aac Asn	agc Ser 185	agc Ser	gtg Val	cat His	gtc Val	gtg Val 190	ctc Leu	tac Tyr	57	6
Gly	tac Tyr	tac Tyr 195	gcc Ala	tcg Ser	acc Thr	acc Thr	ctc Leu 200	ggc Gly	tac Tyr	acc Thr	ttc Phe	atg Met 205	cgc Arg	ccg Pro	ctg Leu	62	4
cgc Arg	ccg Pro 210	tac Tyr	att Ile	acc Thr	acc Thr	att Ile 215	cag Gln	ctc Leu	acg Thr	cag Gln	ttc Phe 220	atg Met	gcc Ala	atg Met	gtc Val	67:	2
					gac Asp 230											72	0
ctc Leu	gtc Val	aag Lys	ctg Leu	ctc Leu 245	ttc Phe	tgg Trp	tac Tyr	atg Met	ctc Leu 250	acc Thr	atg Met	ctc Leu	ggc Gly	ctc Leu 255	ttc Phe	76	8
Gly ggc	aac Asn	ttc Phe	ttc Phe 260	gtg Val	cag Gln	cag Gln	tac Tyr	ctc Leu 265	aag Lys	ccc Pro	aag Lys	gcg Ala	ccc Pro 270	aag Lys	aag Lys	81	6
_	_	acc Thr 275	atc Ile	taa												83	1
<21: <21: <21: <21:	1> : 2> :	84 276 PRT Thra	usto	chyt:	rium	sp.											
<40	0>	84															
Met 1	Asp	Val	Val	Glu 5	Gln	Gln	Trp	Arg	Arg 10	Phe	Val	Asp	Ala	Val 15	Asp		
Asn	Gly	Ile	Val 20	Glu	Phe	Met	Glu	His 25	Glu	Lys	Pro	Asn	Lys 30	Leu	Asn		
Glu	Gly	Lys 35	Leu	Phe	Thr	Ser	Thr 40	Glu	Glu	Met	Met	Ala 45	Leu	Ile	Val		

Gly Tyr Leu Ala Phe Val Val Leu Gly Ser Ala Phe Met Lys Ala Phe

Val Asp Lys Pro Phe Glu Leu Lys Phe Leu Lys Leu Val His Asn Ile

Phe Leu Thr Gly Leu Ser Met Tyr Met Ala Thr Glu Cys Ala Arg Gln

Ala Tyr Leu Gly Gly Tyr Lys Leu Phe Gly Asn Pro Met Glu Lys Gly

Thr Glu Ser His Ala Pro Gly Met Ala Asn Ile Ile Tyr Ile Phe Tyr

Val Ser Lys Phe Leu Glu Phe Leu Asp Thr Val Phe Met Ile Leu Gly 135

Lys Lys Trp Lys Gln Leu Ser Phe Leu His Val Tyr His His Ala Ser 155

Ile Ser Phe Ile Trp Gly Ile Ile Ala Arg Phe Ala Pro Gly Gly Asp

Ala Tyr Phe Ser Thr Ile Leu Asn Ser Ser Val His Val Val Leu Tyr

Gly Tyr Tyr Ala Ser Thr Thr Leu Gly Tyr Thr Phe Met Arg Pro Leu

Arg Pro Tyr Ile Thr Thr Ile Gln Leu Thr Gln Phe Met Ala Met Val

Val Gln Ser Val Tyr Asp Tyr Tyr Asn Pro Cys Asp Tyr Pro Gln Pro 225 230 235 240

Leu Val Lys Leu Leu Phe Trp Tyr Met Leu Thr Met Leu Gly Leu Phe

Gly Asn Phe Phe Val Gln Gln Tyr Leu Lys Pro Lys Ala Pro Lys Lys 265

Gln Lys Thr Ile 275

<210> 85 <211> 1077 <212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS <222> (1)..(1077) <223> Delta-5-Elongase

									122							
atg Met 1	tgc Cys	tca Ser	cca Pro	ccg Pro 5	ccg Pro	tca Ser	caa Gln	tcc Ser	aaa Lys 10	aca Thr	aca Thr	tcc Ser	ctc Leu	cta Leu 15	gca Ala	48
										acc Thr						96
cac His	ttc Phe	gcc Ala 35	ttc Phe	cca Pro	gcc Ala	gcc Ala	acc Thr 40	gcc Ala	aca Thr	ccc Pro	ggc Gly	ctc Leu 45	acc Thr	gcc Ala	gaa Glu	144
atg Met	cac His 50	tcc Ser	tac Tyr	aaa Lys	gtc Val	cca Pro 55	ctc Leu	ggt Gly	ctc Leu	acc Thr	gta Val 60	ttc Phe	tac Tyr	ctg Leu	ctg Leu	192
agt Ser 65	cta Leu	ccg Pro	tca Ser	cta Leu	aag Lys 70	tac Tyr	gtt Val	acg Thr	gac Asp	aac Asn 75	tac Tyr	ctt Leu	gcc Ala	aaa Lys	aag Lys 80	240
tat Tyr	gat Asp	atg Met	aag Lys	tca Ser 85	ctc Leu	ctg Leu	acg Thr	gaa Glu	tca Ser 90	atg Met	gtg Val	ttg Leu	tac Tyr	aat Asn 95	gtg Val	288
										tat Tyr						336
gtg Val	atg Met	aat Asn 115	aga Arg	gac Asp	cat His	cct Pro	ttt Phe 120	att Ile	gga Gly	agt Ser	aga Arg	agt Ser 125	ttg Leu	gtt Val	ejà aaa	384
gcg Ala	gcg Ala 130	ttg Leu	cat His	agt Ser	GJA aaa	agc Ser 135	tcg Ser	tat Tyr	gcg Ala	gtg Val	tgg Trp 140	gtt Val	cat His	tat Tyr	tgt Cys	432
										ttt Phe 155						480
aaa Lys	atg Met	gac Asp	cag Gln	gtc Val 165	tcc Ser	ttc Phe	ctc Leu	cac His	atc Ile 170	tac Tyr	cac His	cac His	acg Thr	acc Thr 175	ata Ile	528
										tcc Ser						576
										cac His						624
										tgt Cys						672
									Thr	agt Ser 235						720
										acg Thr						768
gag Glu	aca Thr	cag Gln	cct Pro 260	agt Ser	tta Leu	gga Gly	acg Thr	tat Tyr 265	tat Tyr	ttc Phe	tgt Cys	tgt Cys	gga Gly 270	gtg Val	cag Gln	816
										ttt Phe						864
										gga Gly						912

			. , .												
aat Asn 305	gat Asp	gat Asp	Gly	aat Asn	aat Asn 310	Glu	gat Asp	caa Gln	tgt Cys	cac His 315	Lys	gct Ala	atg Met	aag Lys	gat Asp 320
ata Ile	tcg Ser	gag Glu	ggt	gcg Ala 325	. Lys	gag Glu	gtt Val	gtg Val	330 GJ ^y aaa	cat His	gca Ala	gcg Ala	aag Lys	gat Asp 335	gct Ala
gga Gly	aag Lys	ttg Leu	gtg Val 340	Ala	acg Thr	gcg Ala	agt Ser	aag Lys 345	gct Ala	gta Val	aag Lys	agg Arg	aag Lys 350	gga Gly	act Thr
cgt Arg	gtt Val	act Thr 355	ggt Gly	gcc Ala	atg Met	tag									
<21 <21 <21 <21	1> 2>	86 358 PRT Thal	assi	osir	a ps	eudo	nana								
<40	0>	86													
Met 1	Cys	Ser	Pro	Pro 5	Pro	Ser	Gln	Ser	Lys 10	Thr	Thr	Ser	Leu	Leu 15	Ala
Arg	Tyr	Thr	Thr 20	Ala	Ala	Leu	Leu	Leu 25	Leu	Thr	Leu	Thr	Thr 30	Trp	Cys
His	Phe	Ala 35	Phe	Pro	Ala	Ala	Thr 40	Ala	Thr	Pro	Gly	Leu 45	Thr	Ala	Glu
Met	His 50	Ser	Tyr	Lys	Val	Pro 55	Leu	Gly	Leu	Thr	Val 60	Phe	Tyr	Leu	Leu
Ser 65	Leu	Pro	Ser	Leu	Lys 70	Tyr	Val	Thr	Asp	Asn 75	Tyr	Leu	Ala	Lys	Lys 80
Tyr	Asp	Met	Lys	Ser 85	Leu	Leu	Thr	Glu	Ser 90	Met	Val	Leu	Tyr	Asn 95	Val
Ala	Gln	Val	Leu 100	Leu	Asn	Gly	Trp	Thr 105	Val	Tyr	Ala	Ile	Val 110	Asp	Ala
Val	Met	Asn 115	Arg	Asp	His	Pro	Phe 120	Ile	Gly	Ser	Arg	Ser 125	Leu	Val	Gly
Ala	Ala 130	Leu	His	Ser	Gly	Ser 135	Ser	Tyr	Ala	Val	Trp 140	Val	His	Tyr	Cys
Asp 145	Lys	Tyr	Leu	Glu	Phe 150	Phe	Asp	Thr	Tyr	Phe 155	Met	Val	Leu	Arg	Gly 160
Lys	Met	Asp	Gln	Val 165	Ser	Phe	Leu	His	Ile 170	Tyr	His	His	Thr	Thr 175	Ile
Ala	Trp	Ala	Trp 180	Trp	Ile	Ala	Leu	Arg 185	Phe	Ser	Pro	Gly	Gly 190	Asp	Ile
Tyr	Phe	Gly 195	Ala	Leu	Leu	Asn	Ser 200	Ile	Ile	His	Val	Leu 205	Met	Tyr	Ser

			•													
Tyr	Тут 210	Ala	Leu	Ala	Leu	Leu 215	Lys	Val	Ser	Cys	Pro 220		Lys	Arg	Tyr	
Leu 225	Thr	Gln	Ala	Gln	Leu 230	Leu	Gln	Phe	Thr	Ser 235		Val	Val	Tyr	Thr 240	
Gly	Cys	Thr	Gly	Tyr 245	Thr	His	Tyr	Tyr	His 250	Thr	Lys	His	Gly	Ala 255		
Glu	Thr	Gln	Pro 260	Ser	Leu	Gly	Thr	Туr 265	Tyr	Phe	Cys	Cys	Gly 270	Val	Gln	
Val	Phe	Glu 275	Met	Val	Ser	Leu	Phe 280	Val	Leu	Phe	Ser	Ile 285	Phe	Tyr	Lys	
Arg	Ser 290	Tyr	Ser	Lys	Lys	Asn 295	Lys	Ser	Gly	Gly	Lys 300	Asp	Ser	Lys	Lys	
Asn 305	Asp	Asp	Gly	Asn	Asn 310	Glu	Asp	Gln	Cys	His 315	Lys	Ala	Met	Lys	Asp 320	
Ile	Ser	Glu	Gly	Ala 325	Lys	Glu	Val	Val	Gly 330	His	Ala	Ala	Lys	Asp 335	Ala	
Gly	Lys	Leu	Val 340	Ala	Thr	Ala	Ser	Lys 345	Ala	Val	Lys	Arg	Lys 350	Gly	Thr	
Arg	Val	Thr 355	Gly	Ala	Met											
<21: <21: <21: <21:	1> : 2> :	37 1086 ONA Phyto	ophth	nora	infe	estan	ıs									
<220 <221 <221 <221	1> (2>	CDS (1). Omega	. (108 a-3-E	36) Desat	curas	se										
<400 atg Met 1	gcg	37 acg Thr	aag Lys	gag Glu 5	gcg Ala	tat Tyr	gtg Val	ttc Phe	ccc Pro 10	act Thr	ctg Leu	acg Thr	gag Glu	atc Ile 15	aag Lys	48
cgg Arg	tcg Ser	cta Leu	cct Pro 20	aaa Lys	gac Asp	tgt Cys	ttc Phe	gag Glu 25	gct Ala	tcg Ser	gtg Val	cct Pro	ctg Leu 30	tcg Ser	ctc Leu	96
tac Tyr	tac Tyr	acc Thr 35	gtg Val	cgt Arg	tgt Cys	ctg Leu	gtg Val 40	atc Ile	gcg Ala	gtg Val	gct Ala	cta Leu 45	acc Thr	ttc Phe	ggt Gly	144
ctc Leu	aac Asn 50	tac Tyr	gct Ala	cgc Arg	gct Ala	ctg Leu 55	ccc Pro	gag Glu	gtc Val	gag Glu	agc Ser 60	ttc Phe	tgg Trp	gct Ala	ctg Leu	192
gac Asp 65	gcc Ala	gca Ala	ctc Leu	tgc Cys	acg Thr 70	ggc Gly	tac Tyr	atc Ile	ttg Leu	ctg Leu 75	cag Gln	ggc Gly	atc Ile	gtg Val	ttc Phe 80	240

tgg Trp	ggc	ttc Phe	ttc Phe	acg Thr 85	gtg Val	ggc Gly	cac His	gat Asp	gcc Ala 90	ggc Gly	cac His	ggc Gly	gcc Ala	ttc Phe 95	tcg Ser	288
cgc Arg	tac Tyr	cac His	ctg Leu 100	ctt Leu	aac Asn	ttc Phe	gtg Val	gtg Val 105	ggc Gly	act Thr	ttc Phe	atg Met	cac His 110	tcg Ser	ctc Leu	336
atc Ile	ctc Leu	acg Thr 115	ccc Pro	ttc Phe	gag Glu	tcg Ser	tgg Trp 120	aag Lys	ctc Leu	acg Thr	cac His	cgt Arg 125	cac His	cac His	cac His	384
aag Lys	aac Asn 130	acg Thr	ggc Gly	aac Asn	att Ile	gac Asp 135	cgt Arg	gac Asp	gag Glu	gtc Val	ttc Phe 140	tac Tyr	ccg Pro	caa Gln	cgc Arg	432
aag Lys 145	gcc Ala	gac Asp	gac Asp	cac His	ccg Pro 150	ctg Leu	tct Ser	cgc Arg	aac Asn	ctg Leu 155	att Ile	ctg Leu	gcg Ala	ctc Leu	ggg Gly 160	480
gca Ala	gcg Ala	tgg Trp	ctc Leu	gcc Ala 165	tat Tyr	ttg Leu	gtc Val	gag Glu	ggc Gly 170	ttc Phe	cct Pro	cct Pro	cgt Arg	aag Lys 175	gtc Val	528
					ttc Phe											576
gtg Val	gta Val	atc Ile 195	tct Ser	ctt Leu	ctc Leu	gcc Ala	cac His 200	ttc Phe	ttc Phe	gtg Val	gcc Ala	gga Gly 205	ctc Leu	tcc Ser	atc Ile	624
tat Tyr	ctg Leu 210	agc Ser	ctc Leu	cag Gln	ctg Leu	ggc Gly 215	ctt Leu	aag Lys	acg Thr	atg Met	gca Ala 220	atc Ile	tac Tyr	tac Tyr	tat Tyr	672
gga Gly 225	cct Pro	gtt Val	ttt Phe	gtg Val	ttc Phe 230	ggc Gly	agc Ser	atg Met	ctg Leu	gtc Val 235	att Ile	acc Thr	acc Thr	ttc Phe	cta Leu 240	720
cac His	cac His	aat Asn	gat Asp	gag Glu 245	gag Glu	acc Thr	cca Pro	tgg Trp	tac Tyr 250	gcc Ala	gac Asp	tcg Ser	gag Glu	tgg Trp 255	acg Thr	768
tac Tyr	gtc Val	aag Lys	ggc Gly 260	aac Asn	ctc Leu	tcg Ser	tcc Ser	gtg Val 265	gac Asp	cga Arg	tcg Ser	tac Tyr	ggc Gly 270	gcg Ala	ctc Leu	816
att Ile	gac Asp	aac Asn 275	ctg Leu	agc Ser	cac His	aac Asn	atc Ile 280	ggc Gly	acg Thr	cac His	cag Gln	atc Ile 285	cac His	cac His	ctt Leu	864
ttc Phe	cct Pro 290	atc Ile	att Ile	ccg Pro	cac His	tac Tyr 295	aaa Lys	ctc Leu	aag Lys	aaa Lys	gcc Ala 300	act Thr	gcg Ala	gcc Ala	ttc Phe	912
cac His 305	cag Gln	gct Ala	ttc Phe	cct Pro	gag Glu 310	ctc Leu	gtg Val	cgc Arg	aag Lys	agc Ser 315	gac Asp	gag Glu	cca Pro	att Ile	atc Ile 320	960
aag Lys	gct Ala	ttc Phe	ttc Phe	cgg Arg 325	gtt Val	gga Gly	cgt Arg	ctc Leu	tac Tyr 330	gca Ala	aac Asn	tac Tyr	ggc Gly	gtt Val 335	gtg Val	1008
gac Asp	cag Gln	gag Glu	gcg Ala 340	aag Lys	ctc Leu	ttc Phe	acg Thr	cta Leu 345	aag Lys	gaa Glu	gcc Ala	aag Lys	gcg Ala 350	gcg Ala	acc Thr	1056
					acc Thr				taa							1086

<210> 88 <211> 361 <212> PRT

<213> Phytophthora infestans

Met Ala Thr Lys Glu Ala Tyr Val Phe Pro Thr Leu Thr Glu Ile Lys

Arg Ser Leu Pro Lys Asp Cys Phe Glu Ala Ser Val Pro Leu Ser Leu

Tyr Tyr Thr Val Arg Cys Leu Val Ile Ala Val Ala Leu Thr Phe Gly

Leu Asn Tyr Ala Arg Ala Leu Pro Glu Val Glu Ser Phe Trp Ala Leu

Asp Ala Ala Leu Cys Thr Gly Tyr Ile Leu Leu Gln Gly Ile Val Phe

Trp Gly Phe Phe Thr Val Gly His Asp Ala Gly His Gly Ala Phe Ser

Arg Tyr His Leu Leu Asn Phe Val Val Gly Thr Phe Met His Ser Leu 100

Ile Leu Thr Pro Phe Glu Ser Trp Lys Leu Thr His Arg His His His

Lys Asn Thr Gly Asn Ile Asp Arg Asp Glu Val Phe Tyr Pro Gln Arg

Lys Ala Asp Asp His Pro Leu Ser Arg Asn Leu Ile Leu Ala Leu Gly 150 155

Ala Ala Trp Leu Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg Lys Val 165 170

Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val Ser Ala

Val Val Ile Ser Leu Leu Ala His Phe Phe Val Ala Gly Leu Ser Ile

Tyr Leu Ser Leu Gln Leu Gly Leu Lys Thr Met Ala Ile Tyr Tyr

Gly Pro Val Phe Val Phe Gly Ser Met Leu Val Ile Thr Thr Phe Leu

His His Asn Asp Glu Glu Thr Pro Trp Tyr Ala Asp Ser Glu Trp Thr

Tyr Val Lys Gly Asn Leu Ser Ser Val Asp Arg Ser Tyr Gly Ala Leu 260 265 270

IJ	.e As	p As 27	n Le 5	u Sei	: His	a Asn	11e 280	gly	Thr	His	Gln	. Ile 285		His	Leu	
Pł	ne Pr 29	o I1 0	e Il	e Pro) His	Tyr 295	Lys	Leu	Lys	Lys	30.0		Ala		Phe	
ні 30	s Gl 5	n Al	a Phe	e Pro	Glu 310	Leu	Val	Arg	Lys	Ser 315		Glu	Pro	Ile	Ile 320	
Ly	s Al	a Ph	e Pho	a Arg 325	y Val	Gly	Arg	Leu	Tyr 330	Ala	Asn	Tyr	Gly	Val 335		
As	p Gl	n Gl	u Ala 340	a Lys	: Leu	. Phe	Thr	Leu 345	Lys	Glu	. Ala	Lys	Ala 350		Thr	
Gl	u Al	a Al 35	a Ala 5	a Lys	Thr	Lys	Ser 360	Thr								
<2 <2	10> 11> 12> 13>	89 137 DNA Ost		occus	tau	ri										
<2 <2	20> 21> 22> 23>	(1)	(13 ta-6-	371) -Desa	tura	se										
at	00> g tg: t Cy:	gt	g gag L Glu	g acg i Thr 5	gaa Glu	aat Asn	aac Asn	gat Asp	ggg 10	atc Ile	ccc Pro	acg Thr	gtg Val	gag Glu 15	atc Ile	48
gc Al	g tto a Pho	c gad e Asj	ggt Gly 20	gag Glu	cgc Arg	gag Glu	cgg Arg	gcg Ala 25	gag Glu	gca Ala	aac Asn	gtg Val	aag Lys 30	ctg Leu	tcc Ser	96
gc Al	g gaq a Gli	g aag 1 Lys 35	g atg s Met	gag Glu	ccg Pro	gcg Ala	gcg Ala 40	ctg Leu	gcg Ala	aag Lys	acg Thr	ttc Phe 45	gcg Ala	agg Arg	cgg Arg	144
ta Ty:	c gto r Val 50	gtg L Val	g ato	gag Glu	gl ⁷ aaa	gtg Val 55	gag Glu	tac Tyr	gat Asp	gtg Val	acg Thr 60	gat Asp	ttt Phe	aag Lys	cac His	192
Pro 65	o Glz	, GJ7 s aga	acg Thr	gtt Val	att Ile 70	ttc Phe	tat Tyr	gcg Ala	ttg Leu	tca Ser 75	aac Asn	acc Thr	ejā aaa	gcg Ala	gac Asp 80	240
gc	g aco	g gaa Glu	gcg Ala	ttc Phe 85	aag Lys	gag Glu	ttt Phe	cat His	cat His 90	cgg Arg	tcg Ser	aga Arg	aag Lys	gcg Ala 95	agg Arg	288
aa: Ly:	a gco s Ala	tto Lev	gcg Ala 100	gcg Ala	ctc Leu	ccg Pro	tct Ser	cga Arg 105	ccg Pro	gcc Ala	aag Lys	acg Thr	gcc Ala 110	aag Lys	gtg Val	336
ga Ası	c gac o Asp	gcg Ala 115	Glu	atg Met	ctc Leu	caa Gln	gat Asp 120	ttc Phe	gcc Ala	aag Lys	tgg Trp	cgg Arg 125	aaa Lys	gaa Glu	ttg Leu	384
gag Gli	g aga 1 Arg 130	, Asp	gga Gly	ttc Phe	ttc Phe	aag Lys 135	ccc Pro	tct Ser	ccg Pro	gcg Ala	cac His 140	gtg Val	gcg Ala	tat Tyr	cgc Arg	432
tto Phe 145	a Ala	gag Glu	ctc Leu	gcg Ala	gcg Ala 150	atg Met	tac Tyr	gct Ala	ctc Leu	ggg Gly 155	acg Thr	tac Tyr	ctg Leu	atg Met	tac Tyr 160	480

gct Ala	cga Arg	tac Tyr	gtc Val	gtc Val 165	tcc Ser	tcg Ser	gtg Val	ctc Leu	gtg Val 170	tac Tyr	gct Ala	tgc Cys	ttt Phe	ttc Phe 175	ggc Gly	528
gcc Ala	cga Arg	tgc Cys	ggt Gly 180	tgg Trp	gtg Val	cag Gln	cac His	gag Glu 185	ggc Gly	gga Gly	cac His	agc Ser	tcg Ser 190	ctg Leu	acg Thr	576
ggc Gly	aac Asn	att Ile 195	tgg Trp	tgg Trp	gac Asp	aag Lys	cgc Arg 200	atc Ile	cag Gln	gcc Ala	ttc Phe	aca Thr 205	gcc Ala	Gly aaa	ttc Phe	624
								tgg Trp								672
cac His 225	gcg Ala	acg Thr	cct Pro	caa Gln	aag Lys 230	gtt Val	cgt Arg	cac His	gac Asp	atg Met 235	gat Asp	ctg Leu	gac Asp	acc Thr	acc Thr 240	720
ccc Pro	gcg Ala	.gtg Val	gcg Ala	ttc Phe 245	ttc Phe	aac Asn	acc Thr	gcg Ala	gtg Val 250	gaa Glu	gac Asp	aat Asn	cgt Arg	ccc Pro 255	cgt Arg	768
Gly ggc	ttt Phe	agc Ser	aag Lys 260	tac Tyr	tgg Trp	ttg Leu	cgc Arg	ctt Leu 265	cag Gln	gcg Ala	tgg Trp	acc Thr	ttc Phe 270	atc Ile	ccc Pro	816
gtg Val	acg Thr	tcc Ser 275	ggc Gly	ttg Leu	gtg Val	ctc Leu	ctt Leu 280	ttc Phe	tgg Trp	atg Met	ttt Phe	ttc Phe 285	ctc Leu	cac His	ccc Pro	864
tcc Ser	aag Lys 290	gct Ala	ttg Leu	aag Lys	ggt Gly	ggc Gly 295	aag Lys	tac Tyr	gaa Glu	gag Glu	ttg Leu 300	gtg Val	tgg Trp	atg Met	ctc Leu	912
gcc Ala 305	gcg Ala	cac His	gtc Val	atc Ile	cgc Arg 310	acg Thr	tgg Trp	acg Thr	atc Ile	aag Lys 315	gcg Ala	gtg Val	acc Thr	gga Gly	ttc Phe 320	960
								ttt Phe								1008
								tcc Ser 345								1056
								tcc Ser								1104
cac His	acg Thr 370	atc Ile	gac Asp	atc Ile	gat Asp	ccg Pro 375	agt Ser	caa Gln	ggt Gly	tgg Trp	gtg Val 380	aac Asn	tgg Trp	ttg Leu	atg Met	1152
								cac His								1200
								cgc Arg								1248
								atg Met 425								1296
gca Ala	acg Thr	ctc Leu 435	gga Gly	aac Asn	ctc Leu	gac Asp	aac Asn 440	gtg Val	ggt Gly	aag Lys	cac His	tac Tyr 445	tac Tyr	gtg Val	cac His	1344

ggc caa cac tcc gga aag acg gcg taa Gly Gln His Ser Gly Lys Thr Ala

1371

<210> 90 <211> 456

<212> PRT

<213> Ostreococcus tauri

<400> 90

Met Cys Val Glu Thr Glu Asn Asn Asp Gly Ile Pro Thr Val Glu Ile

Ala Phe Asp Gly Glu Arg Glu Arg Ala Glu Ala Asn Val Lys Leu Ser

Ala Glu Lys Met Glu Pro Ala Ala Leu Ala Lys Thr Phe Ala Arg Arg

Tyr Val Val Ile Glu Gly Val Glu Tyr Asp Val Thr Asp Phe Lys His 50 55 60

Pro Gly Gly Thr Val Ile Phe Tyr Ala Leu Ser Asn Thr Gly Ala Asp

Ala Thr Glu Ala Phe Lys Glu Phe His His Arg Ser Arg Lys Ala Arg

Lys Ala Leu Ala Ala Leu Pro Ser Arg Pro Ala Lys Thr Ala Lys Val 105

Asp Asp Ala Glu Met Leu Gln Asp Phe Ala Lys Trp Arg Lys Glu Leu

Glu Arg Asp Gly Phe Phe Lys Pro Ser Pro Ala His Val Ala Tyr Arg 135

Phe Ala Glu Leu Ala Ala Met Tyr Ala Leu Gly Thr Tyr Leu Met Tyr

Ala Arg Tyr Val Val Ser Ser Val Leu Val Tyr Ala Cys Phe Phe Gly

Ala Arg Cys Gly Trp Val Gln His Glu Gly Gly His Ser Ser Leu Thr

Gly Asn Ile Trp Trp Asp Lys Arg Ile Gln Ala Phe Thr Ala Gly Phe

Gly Leu Ala Gly Ser Gly Asp Met Trp Asn Ser Met His Asn Lys His

His Ala Thr Pro Gln Lys Val Arg His Asp Met Asp Leu Asp Thr Thr

Pro Ala Val Ala Phe Phe Asn Thr Ala Val Glu Asp Asn Arg Pro Arg 245 250

96

130

Gly Phe Ser Lys Tyr Trp Leu Arg Leu Gln Ala Trp Thr Phe Ile Pro

Val Thr Ser Gly Leu Val Leu Leu Phe Trp Met Phe Leu His Pro

Ser Lys Ala Leu Lys Gly Gly Lys Tyr Glu Glu Leu Val Trp Met Leu

Ala Ala His Val Ile Arg Thr Trp Thr Ile Lys Ala Val Thr Gly Phe

Thr Ala Met Gln Ser Tyr Gly Leu Phe Leu Ala Thr Ser Trp Val Ser 325

Gly Cys Tyr Leu Phe Ala His Phe Ser Thr Ser His Thr His Leu Asp

Val Val Pro Ala Asp Glu His Leu Ser Trp Val Arg Tyr Ala Val Asp

His Thr Ile Asp Ile Asp Pro Ser Gln Gly Trp Val Asn Trp Leu Met

Gly Tyr Leu Asn Cys Gln Val Ile His His Leu Phe Pro Ser Met Pro 390

Gln Phe Arg Gln Pro Glu Val Ser Arg Arg Phe Val Ala Phe Ala Lys

Lys Trp Asn Leu Asn Tyr Lys Val Met Thr Tyr Ala Gly Ala Trp Lys

Ala Thr Leu Gly Asn Leu Asp Asn Val Gly Lys His Tyr Tyr Val His

Gly Gln His Ser Gly Lys Thr Ala 450

<210> 91 <211> 606 <212> DNA <213> Ostreococcus tauri

<220>

<221> CDS <222> (1)..(606) <223> Delta-5-Desaturase

<400> 91

atg tac ggt ttg cta tcg ctc aag tcg tgc ttc gtc gac gat ttc aac Met Tyr Gly Leu Leu Ser Leu Lys Ser Cys Phe Val Asp Asp Phe Asn

gcc tac ttc tcc gga cgc atc ggc tgg gtc aag gtg atg aag ttc acc Ala Tyr Phe Ser Gly Arg Ile Gly Trp Val Lys Val Met Lys Phe Thr 20

									131	[
cgc Arg	Gly ggc	gag Glu 35	geg Ala	rato □ Ile	gca Ala	ttt Phe	tgg Trp 40	g ggc o Gly	aco Thi	c aag C Lys	g cto s Lei	tt: Le: 45	y tgg ı Tr <u>r</u>	g gco	c gcg a Ala		144
tat Tyr	tac Tyr 50	ctc Leu	gcg Ala	ttg Leu	ccg Pro	cta Leu 55	aag Lys	g ato s Met	tcg Ser	g cat His	cgg Arg 60	g CC	g cto Lev	r Gl7 s gga	a gaa 7 Glu		192
ctc Leu 65	ctc Leu	gca Ala	ctc Leu	tgg Trp	gcc Ala 70	gtc Val	acc Thr	gag Glu	tto Phe	gto Val	acc Thr	Gly Gg	tgg Trp	r ctg Lei	ttg Leu 80		240
gcg Ala	ttc Phe	atg Met	ttc Phe	caa Gln 85	gtc Val	gcc Ala	cac His	gtc Val	gto Val 90	ggc Gly	gag Glu	gtt Va]	cac His	tto Phe 95	ttc Phe		288
acc Thr	ctc Leu	gac Asp	gcg Ala 100	aag Lys	aac Asn	cgc Arg	gtg Val	aac Asn 105	Leu	gga Gly	tgg Trp	gga Gly	gag Glu 110	. Ala	cag Gln		336
ctc Leu	atg Met	tcg Ser 115	agc Ser	gcg Ala	gat Asp	ttc Phe	gcc Ala 120	His	gga Gly	tcc Ser	aag Lys	ttt Phe 125	Trp	acg Thr	cac His		384
ttc Phe	tcc Ser 130	gga Gly	ggc Gly	tta Leu	aac Asn	tac Tyr 135	caa Gln	gtc Val	gtc Val	cac His	cat His 140	Leu	ttc Phe	ccg Pro	ggc		432
145	Cys	nis	vaı	HIS	150	Pro	Ala	ctc Leu	Ala	Pro 155	Ile	Ile	Lys	Ala	Ala 160		480
AIA	GIU	тĀг	HIS	165	ьеи	Hls	Tyr	cag Gln	11e 170	Tyr	Pro	Thr	Phe	Trp 175	Ser	!	528
AIG	теп	Arg	180	HIS	Pne	Arg	His	ctc Leu 185	Ala	aac Asn	gtc Val	Gly	cgc Arg 190	gcc Ala	gcg Ala	į	576
tac Tyr	gta Val	ccg Pro 195	tcc Ser	ctc Leu	caa Gln	acc Thr	gtc Val 200	gga Gly	tga							(506
<210 <211 <212 <213	> 2 > F > 0	2 01 PRT Stre	ococ	cus	taur	·i											
Met			Leu	Leu	Ser	Leu	Lvs	Ser	Cvs	Phe	Val	Asn	Acn	Phe	λen		
1				5					10	~	vul	11010	nsp	15	ASII		
Ala	Tyr	Phe	Ser 20	Gly .	Arg	Ile	Gly	Trp 25	Val	Lys	Val	Met	Lys 30	Phe	Thr		
Arg (Gly	Glu . 35	Ala	Ile :	Ala :	Phe '	Trp 40	Gly	Thr	Lys	Leu	Leu 45	Trp	Ala	Ala		
Tyr i	Tyr : 50	Leu 1	Ala :	Leu :	Pro 1	Leu 1 55	Lys	Met	Ser	His	Arg 60	Pro	Leu	Gly	Glu		
Leu 1 65	Leu i	Ala 1	Leu !	rp į	Ala v 70	Val :	Thr	Glu	Phe	Val 75	Thr	Gly	Trp	Leu	Leu 80		

Ala Phe Met Phe Gln Val Ala His Val Val Gly Glu Val His Phe Phe 85 90 95

132

The Leu Asp Ala Lys Asn Arg Val Asn Leu Gly Trp Gly Glu Ala Gln
Leu Met Ser Ser Ala Asp Phe Ala His Gly Ser Lys Phe Trp Thr His
Phe Ser Gly Gly Leu Asn Tyr Gln Val Val His His Leu Phe Pro Gly
130 Cys His Val His Tyr Pro Ala Leu Ala Pro Ile Lys Ala Ala
145 Glu Lys His Gly Leu His Tyr Gln Ile Tyr Pro Thr Phe Trp Ser
Ala Leu Arg Ala His Phe Arg His Leu Ala Asn Val Gly Arg Ala Ala
187 Val Pro Ser Leu Gln Thr Val Gly

<210> 93

<211> 714

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(714)

<223> Delta-5-Desaturase

<400> 93

atg gtg age cat cac teg tac tgt aac gac geg gat ttg gat cag gat 48 Met Val Ser His His Ser Tyr Cys Asn Asp Ala Asp Leu Asp Gln Asp gtg tac acc gca ctg ccg ctc ctg cgc ctg gac ccg tct cag gag ttg Val Tyr Thr Ala Leu Pro Leu Leu Arg Leu Asp Pro Ser Gln Glu Leu 96 aag tgg ttt cat cga tac cag gcg ttt tac gcc ccg ctc atg tgg ccg Lys Trp Phe His Arg Tyr Gln Ala Phe Tyr Ala Pro Leu Met Trp Pro 144 35 ttt ttg tgg ctc gcg gcg cag ttt ggc gac gcg cag aac atc ctg atc 192 Phe Leu Trp Leu Ala Ala Gln Phe Gly Asp Ala Gln Asn Ile Leu Ile 55 gac cga gcg tcg ccg ggc gtc gcg tac aag gga ttg atg gcg aac gag Asp Arg Ala Ser Pro Gly Val Ala Tyr Lys Gly Leu Met Ala Asn Glu 240 75 gtc gcg ctg tac gtt ctc ggt aag gtt tta cac ttt ggt ctt ctc ctc Val Ala Leu Tyr Val Leu Gly Lys Val Leu His Phe Gly Leu Leu Leu 288 ggc gtt cct gcg tac ttg cac gga ttg tcc aac gcg atc gtt cca ttc Gly Val Pro Ala Tyr Leu His Gly Leu Ser Asn Ala Ile Val Pro Phe 336

Leu Ala Tyr Gly Ala Phe Gly Ser Phe Val Leu Cys Trp Phe Phe Ile 115 120 125

,	gto Val	age Se: 13	r ur:	t aa s Asi	c cto n Le	c gaa ı Glu	gcg Ala 135	. Let	g aca Thr	e ccc	gtt Val	aad L Asr 140	ı Leı	aac Asr	aag Lys	j tcc s Ser	432
	acg Thr 145	י עַיד	g aad s Asi	c gad n Asj	e tgg p Trj	g ggg p Gly 150	Ala	tgg Trp	cag Gln	g ato	gag Glu 155	ı Thr	tcg Ser	gcg Ala	tct Ser	tgg Trp 160	480
9	ggc Gly	aac Asr	gcg 1 Ala	tto Pho	tgg Trg 165	Ser	ttc Phe	ttc Phe	tct Ser	gga Gly 170	r Gly	ctg Lev	aac Asi	ctg Leu	caa Glr 175	atc lle	528
Ć	gag Glu	Cac	cac His	cto Let 180	ı Pue	ccg Pro	ggc	atg Met	gcg Ala 185	His	aac Asn	ctg Leu	tac Tyr	ccg Pro	Lys	g atg s Met	576
7	gtg Val	Pro	ato Ile 195	: TTE	aag Lys	gac Asp	gag Glu	tgt Cys 200	gcg Ala	aaa Lys	gcg Ala	Gly	gtt Val 205	Arg	tac Tyr	acc Thr	624
Ċ	ggt 31y	tac Tyr 210	. GTĀ	Gly ggc	tac Tyr	acc Thr	ggc Gly 215	ctg Leu	ctc Leu	ccg Pro	atc Ile	Thr	Arg	gac Asp	atg Met	ttc Phe	672.
	ecc Ser 225	tac Tyr	Leu	cat His	aag Lys	tgt Cys 230	ggc Gly	cga Arg	acg Thr	gcg Ala	aaa Lys 235	cta Leu	gcc Ala	taa			714
<	210 211 212 213	L> 2> 3>	94 237 PRT Ostr 94	eoco	ccus	tauı	ci										
M	(et	Val	Ser	His	His	Ser	Tvr	Cvs	Asn	Asn	Δla	Δen	T.011	λcn	Cln.	7 ~~	
. 1					5			-4-		10		,,,,D	Dea	ASD	15	ASD	
V	al	Tyr	Thr	Ala 20	Leu	Pro	Leu	Leu	Arg 25	Leu	Asp	Pro	Ser	Gln 30	Glu	Leu	
L	ys	Trp	Phe 35	His	Arg	Tyr	Gln	Ala 40	Phe	Tyr	Ala	Pro	Leu 45	Met	Trp	Pro	
P	he	Leu 50	Trp	Leu	Ala	Ala	Gln 55	Phe	Gly	Asp	Ala	Gln 60	Asn	Ile	Leu	Ile	
А: б:	sp 5	Arg	Ala	Ser	Pro	Gly 70	Val	Ala	Tyr	Lys	Gly 75	Leu	Met	Ala	Asn	Glu 80	
Vä	al .	Ala	Leu	Tyr	Val 85	Leu	Gly	Lys	Val	Leu 90	His	Phe	Gly	Leu	Leu 95	Leu	
G.	Ly .	Val	Pro	Ala 100	Tyr	Leu	His (Gly	Leu 105	Ser	Asn	Ala	Ile	Val 110	Pro	Phe	
Le	eu i	Ala	Tyr 115	Gly	Ala	Phe	Gly	Ser 120	Phe	Val	Leu	Cys	Trp 125	Phe	Phe	Ile	
Va	al :	Ser 130	His	Asn	Leu	Glu i	Ala 1 135	Leu '	Thr	Pro '		Asn 140	Leu	Asn	Lys	Ser	
Th 14	ır I 15	.ys	Asn	Asp	Trp	Gly 1 150	Ala :	Trp (Gln :	Ile	Glu 155	Thr	Ser .	Ala		Trp 160	

134

Gly Asn Ala Phe Trp Ser Phe Phe Ser Gly Gly Leu Asn Le 165 170	Gln :	Ile
---	-------	-----

Glu His His Leu Phe Pro Gly Met Ala His Asn Leu Tyr Pro Lys Met 1.85 190

Val Pro Ile Ile Lys Asp Glu Cys Ala Lys Ala Gly Val Arg Tyr Thr

Gly Tyr Gly Gly Tyr Thr Gly Leu Leu Pro Ile Thr Arg Asp Met Phe

Ser Tyr Leu His Lys Cys Gly Arg Thr Ala Lys Leu Ala 230

<210> 95 <211> 1611 <212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS <222> (1)..(1611) <223> Delta-4-Desaturase

<400> 95

atg Met 1	tac Tyr	ctc Leu	gga Gly	cgc Arg 5	ggc Gly	cgt Arg	ctc Leu	gag Glu	agc Ser 10	GJA aaa	acg Thr	acg Thr	cga Arg	ggg Gly 15	atg Met		48
atg Met	cgg Arg	acg Thr	cac His 20	gcg Ala	cgg Arg	cga Arg	ccg Pro	tcg Ser 25	acg Thr	acg Thr	tcg Ser	aat Asn	ccg Pro 30	tgc Cys	gcg Ala	-	96

cgg tca cgc gtg cgt aag acg acg gag cga tcg ctc gcg cga gtg cga Arg Ser Arg Val Arg Lys Thr Thr Glu Arg Ser Leu Ala Arg Val Arg 144

cga tcg acg agt gag aag gga agc gcg ctc gtg ctc gag cga gag agc Arg Ser Thr Ser Glu Lys Gly Ser Ala Leu Val Leu Glu Arg Glu Ser 192

gaa cgg gag aag gag gag ggg aaa gcg cga gcg gag gga ttg cga Glu Arg Glu Lys Glu Glu Gly Lys Ala Arg Ala Glu Gly Leu Arg 240

ttc caa cgc ccg gac gtc gcc gcg ccg ggg gga gcg gat cct tgg aac 288 Phe Gln Arg Pro Asp Val Ala Ala Pro Gly Gly Ala Asp Pro Trp Asn

gac gag aag tgg aca aag acc aag tgg acg gta ttc aga gac gtc gcg 336 Asp Glu Lys Trp Thr Lys Thr Lys Trp Thr Val Phe Arg Asp Val Ala 105

tac gat etc gat eet tte tte get ega cac ecc gga gga gac tgg etc 384 Tyr Asp Leu Asp Pro Phe Phe Ala Arg His Pro Gly Gly Asp Trp Leu

ctg aac ttg gcc gtg gga cga gac tgc acc gcg ctc atc gaa tcc tat Leu Asn Leu Ala Val Gly Arg Asp Cys Thr Ala Leu Ile Glu Ser Tyr 432

cac ttg cga cca gag gtg gcg acg gct cgt ttc aga atg ctg ccc aaa 480 His Leu Arg Pro Glu Val Ala Thr Ala Arg Phe Arg Met Leu Pro Lys 150 155

ctc Leu	gag Glu	gat Asp		ccc g Pro 1	gtc Val	gag Glu	gco Ala	c gt a Va		cc ro 70	aag Lys	tc Se	c co r Pi	eg a	rg	ccc Pro	aac Asn		528
		;	180			*1011	T. T. C	18	5 A	SII .	arg	va.	ı Ar	g G 1	1u 90	Glu	. Leu		576
	cca Pro	195			- <u>,,</u> -		200	. 11.1	5 A.	rg (żΙΠ	GT2	20 20	у А: 5	sp :	His	Gly	·	624
	ggt Gly 210	_	•			215	Arg	בעד י	S 116	≓u ı	.eu	ьет 220	ı Me	t Pi	ro (Cys	Thr		672
225				2	30		FILE	WT.	3 116	2u £	35	Pro	Ar	g Va	al S	Ser	Arg 240		720
GJĀ āāā		_	2	45		y		77.0	25	50	ys	Ala	. As:	n Hi	.s 0	31y 255	Ala		768
atg : Met :		2	60				roii	265	va 5		eu	GIY	Let	1 Th 27	r A	sn	Asp		816
ctc a Leu 1	2	75	-				280	111	, AI	9 1	уr	HIS	285	e GT	n V	al	Ser		864
cac c His H	ac a His I 190	tt ca le H	at to is Cy	jc aa /s As		ac a sp 1 95	aac Asn	gcc Ala	at Me	g g t A	sp	caa Gln 300	gac As <u>r</u>	gt. Va	g t l T	ac yr	acg Thr		912
gcg a Ala M 305	itg c [et P:	ca ti ro Le	ta tt eu Le	g cg u Ar 31	S -	tc q he 2	ac Asp	gct Ala	cgo	J A	gg (rg :	ccc Pro	aag Lys	tc: Se:	c to	rp	tac Tyr 320		960
cat c His A			32	5	£ ±.	, YT 1.	iec .	rue	330	1 A.	la 1	Phe	Pro	Let	ı Le 33	eu (35	Gln		1008
gtt g Val A		34	0	_ 0_	y 11.	ap T	TE .	345	ATE	LЬ	eu i	?ne	Thr	Arc 350	AS)	g q	Phr -		1056
gaa g Glu G	35	55				3	60		7 111	11	p e	±⊥u	365	Thr	Th	ır (7a1		1104
gtc ct Val Le 37	70			- • • • • • • • • • • • • • • • • • • •	37	5	iie c	3.T.Ā	ьец	. Le	3	80	GТĀ	Pro	Le	u M	ſet		1152
aac ca Asn Hi 385				390)	· z _ z .	su L	<i>i</i> eu	GTĀ	39	e v 5	aı (этх	Phe	Me	t A 4	la 00		1200
tgc ca Cys Gl	a gg n Gl	t ata y Ila	a gtt e Val 405		g gc a Al	g tọ a Cy	JC a /S T	III.	ttt Phe 410	gc Al	t g a V	tg a	agt Ser	cac His	aa As: 41	n V	tc	;	1248
gcg ga Ala Gl	g gc	g aag a Lys 420		cct Pro	ga Gl	g ga u As	υD τ	cc hr 25	gga Gly	gg:	a go y Gi	aa g lu <i>I</i>	gcc Ala	tgg Trp 430	ga: Gl:	g a u A	ga rg	:	1296
gat tg Asp Tr	g ggt p Gl ₃ 435		cag Gln	cag Gln	tt: Le	g gt u Va 44	-L 1.	ct a	agc Ser	gco Ala	e ga	r ge	gg rp 45	ggt Gly	gga	a aa y Ly	ag ag	Ξ	L344
ata gg Ile Gl 45		ttc Phe	ttc Phe	acg Thr	gg: Gl: 45:	y Gi	y L	tc a eu A	aac Asn	tto Lev	g Ca 1 G1 46	ın V	tt al	gag Glu	cac His	C Ca	ac is	1	1392

ttg Lei 465		t co le Pi	cg g ro A	cg a la I	att [le	tgc Cys 470	tto Phe	gt Va	с са 1 Ні	c to	yr E	ccg Pro	As:	c at p Il	.c g	cg la	aac Lys	rato	:	1440
gt <u>g</u> Val	g aa L Ly	g ga s G	aa g Lu G	ru r	jcg 11a 185	gcc Ala	aag Lys	cto	c aa u As	n 1.				c go r Al	g to a So	ct er	tac Tyr 495	480 agg Arg		1488
act Thr	ct Le	t co u Pr		gt a ly I 00	tt le	ttc Phe	gtc Val	caa Gl:	a tt n Ph 50	c to e Tr		ıga .rg	tti Phe	at e Me	t Ly	ag /s		atg Met		1536
ggc Gly	ac Th	g go r Al 51		ag c lu G	aa ln	att Ile	ggt Gly	gaa Glu 520	ı va.	t co l Pr	a to L	tg eu	ccc	aa Ly 52	g at s I]		ccc Pro	aac Asn		1584
ccg Pro	Gl: 53	u re	c go	cg c La P	cg a	aag Lys	ctc Leu 535	gct Ala	: tag	ਭ										1611
<21 <21 <21: <21:	1> 2> 3>			:0CC1	us t	aur	·i													
<40 Met 1		96 : Le:	u Gl	y A: 5	rg G	31y	Arg	Leu	. Glu	1 Se:	r G	ly	Thr	Thr	ar Ar		31y L5	Met		
Met	Arg	Th:	r Hi 20	s Al	la A	rg .	Arg	Pro	Ser 25	Th	r Tì	ır	Ser	Asn	Pr 30	0 (: Ys	Ala		
Arg	Ser	Arg 35	y Va	l Ar	g L	ys '	Thr	Thr 40	Glu	Arg	g S∈	er :	Leu	Ala 45	. Arg	g V	al	Arg		
Arg	Ser 50	Thi	: Se	r Gl	u L	ys (31y 55	Ser	Ala	Leu	ı Va	1]	Leu 60	Glu	Arg	g G	lu	Ser		
Glu 65	Arg	Glu	ı Ly:	s Gl	น G 7	lu (0	3ly (Gly	Lys	Ala	1 Ar 75	g 1	Ala	Glu	GlZ	, L		Arg 80		
Phe	Gln	Arg	Pro	85	p Va	al A	Ala i	Ala	Pro	Gly 90	· Gl	y A	Ala	Asp	Pro) T 9	rp . 5	Asn		
Asp	Glu	Lys	Trg 100	Th:	r Ly	Ys I	hr 1	ŗλε	Trp 105	Thr	Va	1 F	Phe	Arg	Asp 110		al 2	Ala		
Tyr :	Asp	Leu 115	Asp	Pr	o Pl	ne P	he A	Ala 120	Arg	His	Pro	o G		Gly 125	Asp	T:	rp 1	Leu		
Leu i	Asn 130	Leu	Ala	.Va:	l Gl	y A 1	rg A 35	ds/	Cys	Thr	Ala	a L 1	eu 40	Ile	Glu	Se	er 1	yr		
His I 145	Leu	Arg	Pro	Glı	ı Va 15	1 A 0	la T	hr .	Ala	Arg	Phe 155	e A	rg 1	Met	Leu	Pı		.ys .60		
Leu G	€lu	Asp	Phe	Pro 165	va S	l G	lu A	la '	Val	Pro 170	Lys	s S	er 1	Pro	Arg	Pr 17		sn		
Asp S	Ser	Pro	Leu 180	Tyr	As:	n A:	sn I	le z	Arg 185	Asn	Arg	ı Va	al A	Arg	Glu 190	Gl	u L	eu		

Phe Pro Glu Glu Gly Lys Asn Met His Arg Gln Gly Gly Asp His Gly 195 200 205

Asp Gly Asp Asp Ser Gly Phe Arg Arg Leu Leu Met Pro Cys Thr 210 215 220

Tyr Ser Leu Pro Gly Val Pro Phe Arg Leu Pro Pro Arg Val Ser Arg 225 230 235 240

Gly Arg Gly Leu Val Ser Arg Phe Arg His Cys Ala Asn His Gly Ala 245 250 255

Met Ser Pro Ser Pro Ala Val Asn Gly Val Leu Gly Leu Thr Asn Asp 260 265 270

Leu Ile Gly Gly Ser Ser Leu Met Trp Arg Tyr His His Gln Val Ser 275 280 285

His His Ile His Cys Asn Asp Asn Ala Met Asp Gln Asp Val Tyr Thr 290 295 300

Ala Met Pro Leu Leu Arg Phe Asp Ala Arg Arg Pro Lys Ser Trp Tyr 305 310 315 320

His Arg Phe Gln Gln Trp Tyr Met Phe Leu Ala Phe Pro Leu Leu Gln 325 330 335

Val Ala Phe Gln Val Gly Asp Ile Ala Ala Leu Phe Thr Arg Asp Thr 340 345 350

Glu Gly Ala Lys Leu His Gly Ala Thr Thr Trp Glu Leu Thr Thr Val 355 360 365

Val Leu Gly Lys Ile Val His Phe Gly Leu Leu Gly Pro Leu Met 370 375 380

Asn His Ala Val Ser Ser Val Leu Leu Gly Ile Val Gly Phe Met Ala 385 390 395 400

Cys Gln Gly Ile Val Leu Ala Cys Thr Phe Ala Val Ser His Asn Val 405 410 415

Ala Glu Ala Lys Ile Pro Glu Asp Thr Gly Gly Glu Ala Trp Glu Arg

Asp Trp Gly Val Gln Gln Leu Val Thr Ser Ala Asp Trp Gly Gly Lys 435 440 445

Leu Phe Pro Ala Ile Cys Phe Val His Tyr Pro Asp Ile Ala Lys Ile 465 470 475 480

Val Lys Glu Glu Ala Ala Lys Leu Asn Ile Pro Tyr Ala Ser Tyr Arg 485 490 495

Thr Leu Pro Gly Ile Phe Val Gln Phe Trp Arg Phe Met Lys Asp Met 500 505

Gly Thr Ala Glu Gln Ile Gly Glu Val Pro Leu Pro Lys Ile Pro Asn 515 . 520 525

Pro Gln Leu Ala Pro Lys Leu Ala

<210> 97 <211> 1455 <212> DNA <213> Thalassiosira pseudonana

<220>

<221> CDS <222> (1)..(1455) <223> Delta-6-Desat

<223	3>	Del:	ta-6	-Des	atur	ase										
<400 atg Met 1	gga	97 aaa Lys	a gga	a gga 7 Gl ₃ 5	a gad 7 Asj	c gca p Ala	a gco a Ala	c gca a Ala	a gci a Ala 10	t aco	c aag	g cg	t agi g Sei	t gg r Glj 15	a gca y Ala	48
	_		20			, 110	GII	25	2 TĀ1	Thr	Tr) GI1	1 Glu 30	ı Va:	g aag Lys	96
		35			1101	, roř	40	LIT	val	. vaı	. Hls	45	1 Asr	Lys	gtc Val	144
	50					55	nop	, urs	PLO	GIŻ	60 613	Ala	ı Val	Val	ttc Phe	192
acc of Thr 1 65			023	م د	70	Mec	1111	Asp	тте	75	Ala	Ala	. Phe	His	Ala 80	240
caa g Gln (31y ggc	tct Ser	cag Gln	gcc Ala 85	atg Met	atg Met	aag Lys	aag Lys	ttt Phe 90	tac Tyr	att Ile	gga Gly	gat Asp	ttg Leu 95	att Ile	288
eeg g Pro 0			100		******	nys	изр	105	Arg	GIN	Leu	Asp	Phe 110	Glu	Lys	336
gga t Gly I	_	cgt Arg 115	gat Asp	tta Leu	cgg Arg	gcc Ala	aag Lys 120	ctt Leu	gtc Val	atg Met	atg Met	ggg Gly 125	atg Met	ttc Phe	aag Lys	384
tcg a Ser S 1	gt er: 30	aag Lys	atg Met	tat Tyr	tat Tyr	gca Ala 135	tac Tyr	aag Lys	tgc Cys	tcg Ser	ttc Phe 140	aat Asn	atg Met	tgc Cys	atg Met	432
tgg t Trp L 145	tg (eu 1	gtg Val	gcg Ala		gcc Ala 150	atg Met	gtg Val	tac Tyr	tac Tyr	tcg Ser 155	gac Asp	agt Ser	ttg Leu	gca Ala	atg Met 160	480
cac a His I	tt d le (gga 31y		gct Ala 165	ctc Leu	ttg Leu	ttg Leu	GTA	ttg Leu 170	ttc Phe	tgg Trp	cag Gln	Gln	tgt Cys 175	gga Gly	528
tgg ct Trp Le	tt g eu A		cac g His 1 180	gac Asp	ttt Phe	ctt Leu	****	cac His 185	caa Gln	gtc Val :	ttt Phe	ьуs	caa Gln 190	cga Arg	aag Lys	576

ta Ty:	c gg r Gl	a ga y As 19	_	tc gi ∋u Va	tt gg al Gl	rc at y II	c tt le Ph 20	re TT	p Gl	a ga y As	t ct p Le	c at u Me 20	et G	n G	gg t ly P	tc he	624
tc: Se:	g at r Me 21		ig to in Ti	gg to Tp Ti	p Ly	g aa s As 21	n rā	g ca s Hi	c aa s As	t gg n Gl	с са у Ні 22	s Hi	it go .s Al	t g .a Va	tt c al P	cc ro	672
aad Asi 225		g ca u Hi	ıc aa .s As	nc to	t to r Se 23		g ga u As	c ag p Se	t cag r Gl	g ga n As; 23.	D GT	t ga y As	t co p Pr	c ga	SP I	tt le 40	720
gat As <u>r</u>	aco Thi	c at c Me	g cc t Pr	a ct o Le 24	c ct u Le 5	t gc u Al	t tg a Tr	g ag p Se:	t cto r Len 250	т гъ	g cag s Gl	g gc n Al	t ca a Gl	g ag n Se 25	er Pl	tc 1e	768
aga Arg	ı gaç Gli	g at 1 Il	c aa e As 26	TT TIX	g gg s Gl	a aa y Ly	g gad s Asj	c agi p Sei 26!	r Thi	tto Phe	c gto e Va:	c aa l Ly	g ta s Ty 27	r Al	t at a I	cc Le	816
aaa Lys	tto Phe	G1: 27:		a tt a Ph	c aca	a ta	c tto r Phe 280	e Pro	ato Ile	cto Lei	cto Lei	tt: Le: 28:	u Al	t cg a Ar	c atg I]	c Le	864
tct Ser	Trp 290	~~	g aa u As:	t ga n Gl	a tco u Sei	29:	≃ гХг	a act	gca Ala	tto Phe	gga Gl∑ 300	, Let	c gga u Gl	a go y Al	t go a Al	c .a	912
tcg Ser 305	gag Glu	aat Asi	t gc	c aag a Lys	g ttg s Lev 310	. 61	g ttg 1 Lev	gag ıGlu	aag Lys	cgt Arg 315	L GTĀ	cti Lei	cag 1 Glr	y ta 1 Ty	c cc r Pr 32	.0	960
ctt Leu	ttg Leu	gaç Glı	g aag 1 Lys	g ctt Let 325	gga Gly	ato Ile	acc Thr	ctt Leu	cat His 330	tac Tyr	act Thr	tgg Tr	g ato Met	tt: Ph	e Va	с 1	1008
ctc Leu	tct Ser	tcc Ser	gga Gl _y 340	T 116	gga Gly	agg Arg	tgg Trp	tct Ser 345	ctt Leu	cca Pro	tat Tyr	tcc Ser	ato 11e 350	Me Me	g ta t Ty	t r	1056
ttc Phe	ttc Phe	act Thr 355	77.0	aca Thr	tgc Cys	tcc Ser	tcg Ser 360	gga Gly	ctt Leu	ttc Phe	ctc Leu	gca Ala 365	. Leu	gto Val	tt L Ph	t e	1104
Gly	ttg Leu 370	gga Gly	cac His	aac Asn	ggt Gly	atg Met 375	tca Ser	gtg Val	tac Tyr	gat Asp	gcc Ala 380	acc Thr	acc Thr	cga Arg	cc Pro	t o	1152
gac Asp 385	ttc Phe	tgg Trp	caa Gln	ctc Leu	caa Gln 390	gtc Val	acc Thr	act Thr	aca Thr	cgt Arg 395	aac Asn	atc Ile	att Ile	ggt Gly	gga Gl ₃	7	1200
cac His	Gly ggc	att Ile	ccc Pro	caa Gln 405	ttc Phe	ttt Phe	gtg Val	gat Asp	tgg Trp 410	ttc Phe	tgc Cys	ggt Gly	gga Gly	ttg Leu 415	Glr	1	1248
tac Tyr	caa Gln	gtg Val	gat Asp 420	cac His	cac His	ctc Leu	ttc Phe	ccc Pro 425	atg Met	atg Met	cct Pro	aga Arg	aac Asn 430	aat Asn	ato Ile	2	1296
gcg Ala		tgc Cys 435	cac His	aag Lys	ctt Leu	gtg Val	gag Glu 440	tca Ser	ttc Phe	tgt Cys	aag Lys	gag Glu 445	tgg Trp	ggt. Gly	gtg Val		1344
aag Lys !	tac Tyr 450	cat His	gag Glu	gcc Ala	gat Asp	atg Met 455	tgg Trp	gat Asp	ggt Gly	acc Thr	gtg Val 460	gaa Glu	gtg Val	ttg Leu	caa Gln		1392
cat o His 1 465	ctc Leu	tcc Ser	aag Lys	gtg Val	tcg Ser 470	gat Asp	gat Asp	ttc Phe	ren	gtg Val 475	gag Glu	atg Met	gtg Val	aag Lys	gat Asp 480		1440
ttc o	ect e	gcc Ala	atg Met	taa													1455

<210> 98 <211> 484 <212> PRT <213> Thalassiosira pseudonana

<400> 98

Met Gly Lys Gly Gly Asp Ala Ala Ala Ala Thr Lys Arg Ser Gly Ala

Leu Lys Leu Ala Glu Lys Pro Gln Lys Tyr Thr Trp Gln Glu Val Lys 20 25 30

Lys His Ile Thr Pro Asp Asp Ala Trp Val Val His Gln Asn Lys Val

Tyr Asp Val Ser Asn Trp Tyr Asp His Pro Gly Gly Ala Val Val Phe

Thr His Ala Gly Asp Asp Met Thr Asp Ile Phe Ala Ala Phe His Ala

Gln Gly Ser Gln Ala Met Met Lys Lys Phe Tyr Ile Gly Asp Leu Ile

Pro Glu Ser Val Glu His Lys Asp Gln Arg Gln Leu Asp Phe Glu Lys

Gly Tyr Arg Asp Leu Arg Ala Lys Leu Val Met Met Gly Met Phe Lys

Ser Ser Lys Met Tyr Tyr Ala Tyr Lys Cys Ser Phe Asn Met Cys Met

Trp Leu Val Ala Val Ala Met Val Tyr Tyr Ser Asp Ser Leu Ala Met

His Ile Gly Ser Ala Leu Leu Gly Leu Phe Trp Gln Gln Cys Gly

Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Lys Gln Arg Lys

Tyr Gly Asp Leu Val Gly Ile Phe Trp Gly Asp Leu Met Gln Gly Phe

Ser Met Gln Trp Trp Lys Asn Lys His Asn Gly His His Ala Val Pro 215

Asn Leu His Asn Ser Ser Leu Asp Ser Gln Asp Gly Asp Pro Asp Ile

Asp Thr Met Pro Leu Leu Ala Trp Ser Leu Lys Gln Ala Gln Ser Phe

Arg Glu Ile Asn Lys Gly Lys Asp Ser Thr Phe Val Lys Tyr Ala Ile 260 265 270

Lys Phe Gln Ala Phe Thr Tyr Phe Pro Ile Leu Leu Ala Arg Ile

Ser Trp Leu Asn Glu Ser Phe Lys Thr Ala Phe Gly Leu Gly Ala Ala 295

Ser Glu Asn Ala Lys Leu Glu Leu Glu Lys Arg Gly Leu Gln Tyr Pro

Leu Leu Glu Lys Leu Gly Ile Thr Leu His Tyr Thr Trp Met Phe Val

Leu Ser Ser Gly Phe Gly Arg Trp Ser Leu Pro Tyr Ser Ile Met Tyr 345

Phe Phe Thr Ala Thr Cys Ser Ser Gly Leu Phe Leu Ala Leu Val Phe

Gly Leu Gly His Asn Gly Met Ser Val Tyr Asp Ala Thr Thr Arg Pro 375

Asp Phe Trp Gln Leu Gln Val Thr Thr Thr Arg Asn Ile Ile Gly Gly 395

His Gly Ile Pro Gln Phe Phe Val Asp Trp Phe Cys Gly Gly Leu Gln

Tyr Gln Val Asp His His Leu Phe Pro Met Met Pro Arg Asn Asn Ile 420

Ala Lys Cys His Lys Leu Val Glu Ser Phe Cys Lys Glu Trp Gly Val

Lys Tyr His Glu Ala Asp Met Trp Asp Gly Thr Val Glu Val Leu Gln 455

His Leu Ser Lys Val Ser Asp Asp Phe Leu Val Glu Met Val Lys Asp 470 475

Phe Pro Ala Met

<210> 99

<211> 1431

<212> DNA <213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(1431)

<223> Delta-5-Desaturase

<400> 99

atg ccc ccc aac gcc gat atc tcc cgc atc cgc aac cgc atc ccc acc Met Pro Pro Asn Ala Asp Ile Ser Arg Ile Arg Asn Arg Ile Pro Thr 10

aa Ly	a ac s Th	a gg r Gl	rt ac y Th 20	ıı va	t gc	c tc a Se:	t gco r Ala	c gae a Asj 25	c aac p Asi	c aad n Asi	c ga n Asj	c cc p Pr	c gc o Al 30	a Tì	cc ar	caa Gln		96
tc Se	c gt r Va	c cg l Ar 35	9 111	c ct r Le	c aaa u Lya	a tci s Sei	t cto Lei 40	c aaq ı Ly:	s Gly	c aac y Asi	c gag n Gli	g gt u Va 45	c gt 1 Va	c at l I]	c le :	aac Asn	1	.44
gg Gl	c act y Th: 50	a at r Il	t ta e Ty	t ga r As	c att	t gct e Ala 55	gac Asp	ttt Phe	t gto e Val	c cat L His	cct Fro 60	t gga o Gl	a gg Y Gl	a ga y Gl	ig :	gtt Val	1	.92
gte Va: 65	c aag l Ly:	g tt s Ph	c tt e Ph	t gg e Gl	t ggg y Gly 70	g aat y Asr	gat Asp	gtt Val	act Thr	att Ile 75	cag Glr	g tai 1 Ty:	t aa c As:	t at n Me	et :	att Ile 30	2	40
cat His	ccg Fro	y ta o Ty	t ca r Hi	t acg s Th: 85	r GJ7 a aaa	g aaa / Lys	cat His	ctg Lev	gag Glu 90	aag Lys	r ato Met	g aag Lys	g gc s Ala	t gt a Va 95	.1 (gga 31y	2	88
aag Lys	g gtt s Val	gt. Va	a ga l Asj 10	י זיני	g cag o Glr	tcg Ser	gac Asp	tac Tyr 105	Lys	ttc Phe	gac Asp	aco Thr	C CCC Pro	o Ph	t g	gaa Blu	3:	36
cga Arg	gag Glu	ato Ile 11:	- uy:	a tca s Sei	a gaa Glu	ı gtg ı Val	ttc Phe 120	aag Lys	atc Ile	gta Val	. cgt Arg	cgc Arg 125	r Gly	g cg / Ar	t g g G	gag Slu	3	84
tto Phe	ggc Gly 130	1111	a aca Thi	a ggo c Gly	tac Tyr	ttc Phe 135	ctc Leu	cgt Arg	gcc	ttt Phe	ttc Phe 140	Tyr	ato Ile	gc Ala	t c a I	tc eu	43	32
tto Phe 145	FILE	aco Thi	ato Met	g caa : Gln	tac Tyr 150	unr	ttc Phe	gcc Ala	aca Thr	tgc Cys 155	acc Thr	acc Thr	tto Phe	ace Th:	r T	cc hr 60	48	30
tac Tyr	gat Asp	cac His	tgg Trp	tat Tyr 165	GIN	agt Ser	ggt Gly	gta Val	ttc Phe 170	atc Ile	gca Ala	att Ile	gtç Val	tti Phe	∍ G	gt ly	52	28
att Ile	tca Ser	cag Gln	gca Ala 180	Pile	att Ile	Gly	ttg Ļeu	aat Asn 185	gtc Val	cag Gln	cac His	gat Asp	gcc Ala 190	aat Asr	c n H	ac is	57	76
gga Gly	gct Ala	gcc Ala 195	. ser	Lys aag	cgt Arg	ccc Pro	tgg Trp 200	gtg Val	aat Asn	gac Asp	ttg Leu	ttg Leu 205	gga Gly	ttt Phe	g G	ga ly	62	4
acg Thr	gat Asp 210	ttg Leu	att Ile	gga Gly	tct Ser	aac Asn 215	aaa Lys	tgg Trp	aat Asn	tgg Trp	atg Met 220	gca Ala	cag Gln	cat His	t to	ub aa	67	2
act Thr 225	cat His	cac His	gct Ala	tac Tyr	act Thr 230	aac Asn	cat His	agt Ser	gag Glu	aag Lys 235	gat Asp	ccc Pro	gat Asp	agc Ser	. bj	tc ne 10	72	0
agc Ser	tcg Ser	gaa Glu	cct Pro	atg Met 245	ttt Phe	gca Ala	ttc Phe	aat Asn	gac Asp 250	tat Tyr	ccc Pro	att Ile	gga Gly	cac His 255	Pi	g o	76	8
aag Lys	aga Arg	aag Lys	tgg Trp 260	tgg Trp	cat His	agg Arg	ttc Phe	cag Gln 265	gga Gly	GJĀ āāā	tac Tyr	ttc Phe	ctc Leu 270	ttc Phe	at Me	g et	81	6
ctt Leu	gga Gly	ctt Leu 275	tac Tyr	tgg Trp	ctc Leu	ser	act Thr 280	gta Val	ttc Phe	aat Asn	ccg Pro	caa Gln 285	ttc Phe	att Ile	ga As	it Sp	86-	4
ctt Leu	cgt Arg 290	caa Gln	cgt Arg	Gly aaa	ALC	cag Gln 295	tac (Tyr	gtc Val	gga Gly	Ile	caa Gln 300	atg Met	gag Glu	aat Asn	ga As	t	912	2
ttc Phe 305	att Ile	gtc Val	aag Lys	agg Arg	agg Arg 310	aag Lys	tac (Tyr)	gcc Ala	Val .	gca Ala : 315	ttg Leu .	agg Arg	atg Met	atg Met	ta Ty 32	r	960	D

a++	taa																
•	_			32	5	. Der	. FI	2 E11	33	0	n As	sn G.	ΓΆ Γ	eu S 3	er 35		1008
tct Ser	acc Thr	ttt Phe	gga Gly 340		e Ile	atg Met	r ttg : Lev	at 1 Me 34	r GT	a at y Il	c ag e Se	r Gl	ag ag Lu Se 35	er L	tc	act Thr	1056
ctc Leu	agt Ser	gtg Val 355		tto Phe	tcg Ser	ttg Leu	tct Ser 360	HI	c aa s As	c tt n Ph	c at e Il	c aa e As 36	n Se	g g r A	at sp	cgt Arg	1104
gat Asp	cct Pro 370	acg Thr	gct Ala	gac Asp	ttc Phe	aaa Lys 375	πys	ace Thi	c gg c Gl	a ga y Gl	a ca u Gl: 38	n Va	g tg 1 Cy	c t	gg rp	ttc Phe	1152
aag Lys 385	tcg Ser	cag Gln	gtg Val	gag Glu	act Thr 390	tcg Ser	tct Ser	aco Thi	tai	gg: Gl: 39	y Gl	t tt y Ph	t at e Il	t to e So	cc er	gga Gly 400	1200
tgt (Cys 1	ctt Leu	acg Thr	gga Gly	gga Gly 405		aac Asn	ttt Phe	caç Glr	g gtg 1 Val 410	- GT	a cat 1 His	t ca s Hi	t ct s Le	u Pi	ct ne	ccc Pro	1248
cgt a Arg N	atg Met	agc Ser	agt Ser 420	gct Ala	tgg Trp	tat Tyr	cct Pro	tac Tyr 425	. TTE	gca Ala	a cct	ace Th:	g gt r Va 43	l Ar	gt :g	gag Glu	1296
gtt t Val C		aag Lys 435	aag Lys	cac His	Gly ggg	gtg Val	aac Asn 440	tac Tyr	gct Ala	tat Tyr	tat Tyr	cci Pro	o Trj	g at o Il	t .e	Gl ⁷ aaa	1344
cag a Gln A 4	at sn 50	ttg Leu	gta Val	tca Ser	aca Thr	ttc Phe 455	aaa Lys	tac Tyr	atg Met	cat His	cgc Arg	I Ala	ggt a Gl	z ag 7 Se	t	gga Gly	1392
gcc a Ala A 465	ac sn '	tgg Trp	gag Glu	ctc Leu	aag Lys 470	ccg Pro	ttg Leu	tct Ser	gga Gly	agt Ser 475	Ala	taa	ı				1431
<210><211><212><213>	4' PI		ssio	sira	pse	ນຕັດກ	ana										
<400>					<u>,</u>												
Met P: 1	ro E	Pro 1	Asn .	Ala 5	Asp :	Ile :	Ser	Arg	Ile 10	Arg	Asn	Arg	Ile	Pro	o 5	Thr	
Lys Tì	ar G	ly :	Thr '	Val .	Ala s	Ser 1	Ala	Asp 25	Asn	Asn	Asp	Pro	Ala 30	Thi	ר כ	ln	
Ser Va	al A 3	rg 1 5	hr 1	Leu :	Lys S	Ser I	ieu : 10	Lys	Gly	Asn	Glu	Val 45	Val	Ile	e <i>2</i> 4	sn	
Gly Th 50	ır I	le T	yr ?	. qa	Ile A 5	la A 5	Asp 1	Phe	Val	His	Pro 60	Gly	Gly	Glu	ı V	al	
Val Ly 65	rs P	he P	he G	ely (3ly A 70	sn A	sp 7	/al	Thr	Ile 75	Gln	Tyr	Asn	Met	: I 8		
His Pr	0 T	yr H	is I 8	hr 0	Sly L	ys H	is I	eu (Glu : 90	Lys	Met	Lys	Ala	Val 95	G	ly	

Lys Val Val Asp Trp Gln Ser Asp Tyr Lys Phe Asp Thr Pro Phe Glu 100 105 110

Arg Glu Ile Lys Ser Glu Val Phe Lys Ile Val Arg Arg Gly Arg Glu Phe Gly Thr Thr Gly Tyr Phe Leu Arg Ala Phe Phe Tyr Ile Ala Leu Phe Phe Thr Met Gln Tyr Thr Phe Ala Thr Cys Thr Thr Phe Thr Thr Tyr Asp His Trp Tyr Gln Ser Gly Val Phe Ile Ala Ile Val Phe Gly Ile Ser Gln Ala Phe Ile Gly Leu Asn Val Gln His Asp Ala Asn His 185 Gly Ala Ala Ser Lys Arg Pro Trp Val Asn Asp Leu Leu Gly Phe Gly Thr Asp Leu Ile Gly Ser Asn Lys Trp Asn Trp Met Ala Gln His Trp Thr His His Ala Tyr Thr Asn His Ser Glu Lys Asp Pro Asp Ser Phe Ser Ser Glu Pro Met Phe Ala Phe Asn Asp Tyr Pro Ile Gly His Pro Lys Arg Lys Trp Trp His Arg Phe Gln Gly Gly Tyr Phe Leu Phe Met Leu Gly Leu Tyr Trp Leu Ser Thr Val Phe Asn Pro Gln Phe Ile Asp Leu Arg Gln Arg Gly Ala Gln Tyr Val Gly Ile Gln Met Glu Asn Asp Phe Ile Val Lys Arg Arg Lys Tyr Ala Val Ala Leu Arg Met Met Tyr Ile Tyr Leu Asn Ile Val Ser Pro Phe Met Asn Asn Gly Leu Ser Trp Ser Thr Phe Gly Ile Ile Met Leu Met Gly Ile Ser Glu Ser Leu Thr Leu Ser Val Leu Phe Ser Leu Ser His Asn Phe Ile Asn Ser Asp Arg Asp Pro Thr Ala Asp Phe Lys Lys Thr Gly Glu Gln Val Cys Trp Phe Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr Gly Gly Phe Ile Ser Gly Cys Leu Thr Gly Gly Leu Asn Phe Gln Val Glu His His Leu Phe Pro 405

7\ ~~	er Me	·+ G-	0-		_											
AL	g Me	i se	42	O AI	a Tr	TO TY	r Pr	TO TY 42	r Il	.e Al	la Pr	o Th	r Va 43	l Ar	g Glu	L
۷a	1 Су	rs Ly 43	s Ly 5	rs Hi	s Gl	y Va	l As 44	n Ty	r Al	а Ту	т ту	r Pr 44	o Tr 5	p Il	e Gly	•
Gl:	n As 45	n Le 0	u Va	l Se	r Th	r Ph 45	e Ly 5	s Ty	r Me	t Hi	s Ar 46	g Al O	a Gl	y Se	r Gly	
Ala 46!	a As	n Tr	p Gl	u Le	u Ly 47	s Pr 0	o Le	u Se	r Gl	y Se 47		a.				
<23 <23	10> 11> 12> 13>	101 144 DNA Tha		iosi	ra p:	seudo	onana	a								
<22 <22	20> ¹ 21> 22> 23>	CDS (1). Delt	(14 :a-5-	149) -Desa	atura	ase										
<40 atg Met 1	r cca	101 a cco p Pro	aac Asr	geo Ala 5	gag Glu	g gto 1 Val	aaa Lys	a aac s Asr	cto Leo 10	c cgt	tca Sei	a cgt Arg	tco Ser	ato Ile	cca Pro	48
acg Thr	aag Lys	aag Lys	tco Ser 20	agt Ser	tca Ser	tcg Ser	tca Ser	tcc Ser 25	aco Thr	gcg Ala	g aac a Asr	gac Asp	gat Asp 30	ccg Pro	gct Ala	96
acc Thr	caa Gln	tcc Ser 35	acc Thr	tca Ser	cct	gtg Val	aac Asn 40	cga Arg	acc Thr	cto Leu	aag Lys	r tct Ser 45	ttg Leu	aat Asn	gga Gly	144
aac Asn	gaa Glu 50	ata Ile	gct Ala	att Ile	gac Asp	ggt Gly 55	gtc Val	atc Ile	tat Tyr	gat Asp	att Ile 60	gat Asp	ggc	ttt Phe	gtc Val	192
cat His 65	cct Pro	gga Gly	gga Gly	gag Glu	gtt Val 70	att Ile	agc Ser	ttc Phe	ttt Phe	gga Gly 75	ggc	aac Asn	gat Asp	gtg Val	act Thr 80	240
gta Val	cag Gln	tac Tyr	aaa Lys	atg Met 85	att Ile	cat His	ccg Pro	tat Tyr	cat His 90	aat Asn	agt Ser	aag Lys	cat His	ctc Leu 95	gag Glu	288
aag Lys	atg Met	aga Arg	gcc Ala 100	gtt Val	gga Gly	aag Lys	att Ile	gca Ala 105	gac Asp	tac Tyr	tcc Ser	aca Thr	gag Glu 110	tac Tyr	aag Lys	336
ttc Phe	gac Asp	aca Thr 115	ccc Pro	ttt Phe	gaa Glu	cga Arg	gag Glu 120	atc Ile	aaa Lys	tcc Ser	gaa Glu	gtg Val 125	ttc Phe	aaa Lys	atc Ile	384
gtc Val	cgt Arg 130	cga Arg	gga Gly	cgt Arg	gaa Glu	ttc Phe 135	ggt Gly	aca Thr	aca Thr	gga Gly	tat Tyr 140	ttc Phe	ctc Leu	cgt Arg	gcc Ala	432
ttc Phe 145	ttc Phe	tac Tyr	att Ile	gct Ala	ctc Leu 150	ttc Phe	ttc Phe	acc Thr	atg Met	caa Gln 155	tac Tyr	acc Thr	ttc Phe	gcc Ala	aca Thr 160	480
tgc Cys	act Thr	acc Thr	ttc Phe	acc Thr 165	acc Thr	tac Tyr	gat Asp	cat Hịs	tgg Trp 170	tat Tyr	caa Gln	agt Ser	ggt Gly	gta Val 175	ttc Phe	528

									170							
atc Ile	gcc Ala	att Ile	gtg Val 180	Phe	ggt Gly	ato Ile	tca Ser	caa Gln 185	ı Ala	ttc Phe	att Ile	Gly	ttg Leu 190	. Asn	gta Val	576
caa Gln	cat His	gat Asp 195	Ala	aat Asn	cac His	gga Gly	gct Ala 200	Ala	agc Ser	aaa Lys	cga Arg	cct Pro 205	Trp	gtg Val	aat Asn	624
gat Asp	ctc Leu 210	. Leu	gga Gly	tct Ser	gga	gct Ala 215	Asp	ctc Leu	atc Ile	ggt Gly	gga Gly 220	Cys	aaa Lys	tgg Trp	aac Asn	672
tgg Trp 225	Leu	gct Ala	cag Gln	cat His	tgg Trp 230	act Thr	cat His	cat His	gcg Ala	tat Tyr 235	acc Thr	aat Asn	cac His	gct Ala	gat Asp 240	720
aaa Lys	gat Asp	cct Pro	gat Asp	agc Ser 245	Phe	agt Ser	tcc Ser	gag Glu	ccg Pro 250	gtc Val	ttc Phe	aac Asn	ttt Phe	aac Asn 255	gat Asp	768
tat Tyr	ccc Pro	att Ile	ggt Gly 260	cac His	ccc Pro	aaa Lys	aga Arg	aag Lys 265	tgg Trp	tgg Trp	cat His	agg Arg	ttc Phe 270	caa Gln	Gly aaa	816
ctc Leu	tac Tyr	ttc Phe 275	cta Leu	atc Ile	atg Met	ctg Leu	agt Ser 280	ttc Phe	tat Tyr	tgg Trp	gta Val	tcg Ser 285	atg Met	gta Val	ttc Phe	864
aac Asn	cca Pro 290	caa Gln	gtt Val	atc Ile	gac Asp	ctc Leu 295	cgt Arg	cat His	gct Ala	gga Gly	gct Ala 300	gcc Ala	tac Tyr	gtt Val	gga Gly	912
ttt Phe 305	cag Gln	atg Met	gag Glu	aac Asn	gac Asp 310	ttt Phe	atc Ile	gtc Val	aaa Lys	cgg Arg 315	aga Arg	aag Lys	tat Tyr	gca Ala	atg Met 320	960
gca Ala	ctt Leu	cgt Arg	gca Ala	atg Met 325	tac Tyr	ttc Phe	tat Tyr	ttc Phe	aac Asn 330	atc Ile	tat Tyr	tgt Cys	ccg Pro	att Ile 335	gtc Val	1008
aac Asn	aat Asn	gga Gly	ttg Leu 340	act Thr	tgg Trp	tcg Ser	aca Thr	gtt Val 345	gga Gly	atc Ile	atc Ile	ctc Leu	tta Leu 350	atg Met	gga Gly	1056
gtt Val	agc Ser	gaa Glu 355	agc Ser	ttc Phe	atg Met	ctc Leu	tcc Ser 360	ggt Gly	cta Leu	ttc Phe	gta Val	ctc Leu 365	tca Ser	cac His	aac Asn	1104
ttt Phe	gaa Glu 370	aat Asn	tcc Ser	gaa Glu	cgt Arg	gat Asp 375	cct Pro	acc Thr	tct Ser	gag Glu	tat Tyr 380	cgc Arg	aag Lys	act Thr	ggt Gly	1152
gag Glu 385	caa Gln	gta Val	tgt Cys	tgg Trp	ttc Phe 390	aag Lys	tct Ser	caa Gln	gtg Val	gag Glu 395	act Thr	tct Ser	tct Ser	acc Thr	tac Tyr 400	1200
gga Gly	ggt Gly	atc Ile	gtt Val	gct Ala 405	GJA aaa	tgt Cys	ctc Leu	act Thr	ggt Gly 410	gga Gly	ctc Leu	aac Asn	ttt Phe	caa Gln 415	gtg Val	1248
gag Glu	cat His	cat His	ttg Leu 420	ttc Phe	ccg Pro	agg Arg	atg Met	agc Ser 425	agt Ser	gct Ala	tgg Trp	tat Tyr	cct Pro 430	ttc Phe	atc Ile	1296
gcg Ala	ccg Pro	aag Lys 435	gtt Val	aga Arg	gag Glu	att Ile	tgt Cys 440	aag Lys	aag Lys	cat His	gga Gly	gtt Val 445	aga Arg	tac Tyr	gct Ala	1344
tac Tyr	tat Tyr 450	ccg Pro	tac Tyr	atc Ile	\mathtt{Trp}	cag Gln 455	aac Asn	ttg Leu	cat His	Ser	acc Thr 460	gtg Val	agt Ser	tac Tyr	atg Met	1392
cat His 465	GJĀ āāā	acg Thr	gga Gly	acg Thr	gga Gly 470	gct Ala	aga Arg	tgg Trp	gag Glu	ctt Leu 475	cag Gln	ccg Pro	ttg Leu	tct Ser	gga Gly 480	1440

agg gcg tag Arg Ala

1449

<210> 102

<211> 482 <212> PRT <213> Thalassiosira pseudonana

<400> 102

Met Pro Pro Asn Ala Glu Val Lys Asn Leu Arg Ser Arg Ser Ile Pro

Thr Lys Lys Ser Ser Ser Ser Ser Ser Thr Ala Asn Asp Asp Pro Ala

Thr Gln Ser Thr Ser Pro Val Asn Arg Thr Leu Lys Ser Leu Asn Gly

Asn Glu Ile Ala Ile Asp Gly Val Ile Tyr Asp Ile Asp Gly Phe Val

His Pro Gly Gly Glu Val Ile Ser Phe Phe Gly Gly Asn Asp Val Thr

Val Gln Tyr Lys Met Ile His Pro Tyr His Asn Ser Lys His Leu Glu 85 90 95

Lys Met Arg Ala Val Gly Lys Ile Ala Asp Tyr Ser Thr Glu Tyr Lys 105

Phe Asp Thr Pro Phe Glu Arg Glu Ile Lys Ser Glu Val Phe Lys Ile

Val Arg Arg Gly Arg Glu Phe Gly Thr Thr Gly Tyr Phe Leu Arg Ala

Phe Phe Tyr Ile Ala Leu Phe Phe Thr Met Gln Tyr Thr Phe Ala Thr

Cys Thr Thr Phe Thr Thr Tyr Asp His Trp Tyr Gln Ser Gly Val Phe

Ile Ala Ile Val Phe Gly Ile Ser Gln Ala Phe Ile Gly Leu Asn Val

Gln His Asp Ala Asn His Gly Ala Ala Ser Lys Arg Pro Trp Val Asn

Asp Leu Leu Gly Ser Gly Ala Asp Leu Ile Gly Gly Cys Lys Trp Asn

Trp Leu Ala Gln His Trp Thr His His Ala Tyr Thr Asn His Ala Asp

Lys Asp Pro Asp Ser Phe Ser Ser Glu Pro Val Phe Asn Phe Asn Asp 245

Tyr Pro Ile Gly His Pro Lys Arg Lys Trp Trp His Arg Phe Gln Gly 265

Leu Tyr Phe Leu Ile Met Leu Ser Phe Tyr Trp Val Ser Met Val Phe

Asn Pro Gln Val Ile Asp Leu Arg His Ala Gly Ala Ala Tyr Val Gly 290 295 300

Phe Gln Met Glu Asn Asp Phe Ile Val Lys Arg Arg Lys Tyr Ala Met

Ala Leu Arg Ala Met Tyr Phe Tyr Phe Asn Ile Tyr Cys Pro Ile Val 325

Asn Asn Gly Leu Thr Trp Ser Thr Val Gly Ile Ile Leu Leu Met Gly 345

Val Ser Glu Ser Phe Met Leu Ser Gly Leu Phe Val Leu Ser His Asn

Phe Glu Asn Ser Glu Arg Asp Pro Thr Ser Glu Tyr Arg Lys Thr Gly

Glu Gln Val Cys Trp Phe Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr 390

Gly Gly Ile Val Ala Gly Cys Leu Thr Gly Gly Leu Asn Phe Gln Val

Glu His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Phe Ile

Ala Pro Lys Val Arg Glu Ile Cys Lys Lys His Gly Val Arg Tyr Ala

Tyr Tyr Pro Tyr Ile Trp Gln Asn Leu His Ser Thr Val Ser Tyr Met

His Gly Thr Gly Ala Arg Trp Glu Leu Gln Pro Leu Ser Gly

Arg Ala

<210> 103 <211> 1512

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS <222> (1)..(1512)

<223> Delta-4-Desaturase

<400> 103

	atg Met 1	tgc Cys	aac Asr	gg Gl	c aa y As 5	ac c sn I	tc eu	cca Pro	gca Ala	a to	=1	acc Thr 10	gc	a c a G	ag In	cto	e aa 1 Ly	ys S	cc ser l5	acc Thr		48
	tcg Ser	aag Lys	Pro	Ca: Cl: 20	g ca n Gl	ag c ln G	aa (ln)	cat His	gag Glu	7 Ca 1 Hi 25	٠.	cgc Arg	ac Th	c a r I	tc le	tcc Ser	: as: Ly 30	s S	cc er	gag Glu	ē	96
:	ctc Leu	gcc Ala	caa Gln 35	cac His	c aa s As	nc a	cg d hr I	s. CCC	aaa Lys 40	to Se	a e	gca Ala	tg: Tr]	g to	gt ys	gcc Ala 45	gt Va	c c	ac Iis	tcc Ser		144
į	act Thr	ccc Pro 50	gcc Ala	acc Thr	ga As	.C C P:		cc er 5	cac His	tc Se	c a	aac Asn	aac Asr	c aa 1 Ly 60	ys	caa Gln	ca Hi	C g	ca la	cac His		192
1 6	cta Leu 55	gtc Val	ctc Leu	gac	at Il	t ad e Tl		ac sp	ttt Phe	gc Al	g t a s	cc Ser	cgc Arg 75	c ca Hi	at is :	cca Pro	gg Gl	y G g g	ga ly	gac Asp 80		240
I	etc Leu	atc Ile	ctc Leu	ctc Leu	gc Ala 85	t to a Se	c g er G	gc a ly 1	aaa Lys	ga Asj	بر	rcc la	tcg Ser	gt Va	g d	ctg Leu	tt Ph	t g: e G: 9!	lu			288
t T	ac yr	cat His	cca Pro	cgt Arg 100	gga Gl	agt Va	t c	cg a ro 1	acg Thr	tct Sei	- 1	tc	att Ile	ca Gl	a a n I	iag iys	cts Let	ı Gi		att Ile		336
g G	ga q	gtg Val	atg Met 115	gag Glu	gag Glu	g ga 1 Gl	g g u A	-u -	tt he	cgg Arg	g g A	at sp	tcg Ser	tt Ph	e 1	ac Yr .25			.p ig	act Thr		384
g A	at t sp §	ct g Ser 2	gac Asp	ttt Phe	tat Tyr	ac Th	t gt r Va 13		tg eu	aag Lys	ra:	gg rg j	agg Arg	gt Va 14	t g l V		gaç Glu	g cg 1 Ar	g :	ttg Leu		432
g: G: 14	ag g lu d 45	gag a Blu A	agg (Gly aaa	ttg Leu	ga As _]	9 231	ga gA	gg rg	gga Gly	to Se	er 1	aaa Lys 155			tt le	tgg Trp	r at	e I	aag Lys 160		480
g(A]	ct t la I	tg t	tc : he]	ttg Leu	ttg Leu 165	gt: Va:	gg L Gl	a t y Pl	tt he '	tgg Trp	ta Ty 17	<u> </u>	gt Ys	tt: Let	g t ı T	ac yr :	aag Lys	at Me 17	g t			528
ac Th	t a ir T	cg t hr S	cg g er 1	gat Asp 180	atc Ile	gat As <u>r</u>	ca Gl	g ta n Ty	Ϋ́Υ (ggt 3ly 185	at Il	t g	rcc la-	att Ile	g A	La :	tat Tyr 190			tt le		576
gg G1	ra a y M	tg g et G 1	ga a ly 1 95	ecc Thr	ttt Phe	gcg Ala	gc. Ala	a tt a Ph 20	16 7	atc [le	gg	са уТ	.cg hr	tgt Cys	I.			ca His	c g s A	at .sp		624
Gl	а аа У Ая 23	at c sn H	ac g is G	gt (gca Ala	ttc Phe	gci Ala 21	~ 01	ig a	ac Asn	aa Ly	g t s L	eu.	ctc Leu 220	aa As	-	ıag ys	tto Lev	g g ı A	ct la		672
gg G1: 22:	g to Y Tı 5	gg ao TP TI	cg t ir L	tg g eu <i>l</i>	gat Asp	atg Met 230	att Ile	gg Gl	rt g y A	rcg .la	ag Se:	L A.	cg f la 1 35	ttt Phe	ac Th	g t r I	rp gg	gag Glu	ı L	tt ≘u 40		720
cag Gli	g ca n Hi	ıc at .s Me	g c et L		999 31y 245	cat His	cat His	cc Pr	a t o T	ÄΤ	aco Thi	C As	at g sn (gtg /al	tt Le	g g u A	at sp	999 Gly 255	gt Va			768
gag Glı	g ga ı Gl	g ga u Gl		gg a rg L 60	ag ys	gag Glu	agg Arg	gg Gl	y G	ag lu . 65	gat Asp	gt Va	it g	rct la	tt Le	цĢ	aa lu 70			ig 7s		816 '
gat Asp	ca Gl:	g ga n As 27	t tt p Pl 5	t g ne G	aa i	gtt Val	gcç Ala	aca Thi	5 56	er (gga Gly	cc Ar	ra t g L	ta eu	ta Ty: 28!	t ca		att Ile	ga As	ıt p		864
gcc Ala	aa Ası 29	t gt n Va D	a co 1 Ar	gt t	at g yr (ggt 31y	tcg Ser 295	gta Val	a to L Ti	gg a	aat Asn	gt Va	т M	tg et 00			it ne '	tgg Irp	gc Al	t a		912
																						•

atg Met 305	· ⊔y⊳	gtc Val	att Ile	acg Thr	atg Met 310	GIY	tat Tyr	atg Met	atg Met	gga Gly 315	tta Leu	cca Pro	atc Ile	tac Tyr	ttt Phe 320	960
cat His	gga Gly	gta Val	ctg Leu	agg Arg 325	GTA	gtt Val	gga Gly	ttg Leu	ttt Phe 330	Val	att Ile	Gly	cat His	ttg Leu 335	gcg Ala	1008
tgt Cys	gga Gly	gag Glu	ttg Leu 340	rea	gcg Ala	acg Thr	atg Met	ttt Phe 345	att Ile	gtg Val	aat Asn	cac His	gtc Val 350	att Ile	gag Glu	1056
ggt Gly	gtg Val	agt Ser 355	tat Tyr	gga Gly	acg Thr	aag Lys	gat Asp 360	ttg Leu	gtt Val	ggt Gly	ggt Gly	gcg Ala 365	agt Ser	cat His	gta Val	1104
gat Asp	gag Glu 370	aag Lys	aag Lys	att Ile	gtc Val	aag Lys 375	cca Pro	acg Thr	act Thr	gta Val	ttg Leu 380	gga Gly	gat Asp	aca Thr	cca Pro	1152
atg Met 385	gta Val	aag Lys	act Thr	cgc Arg	gag Glu 390	gag Glu	gca Ala	ttg Leu	aaa Lys	agc Ser 395	aac Asn	agc Ser	aat Asn	aac Asn	aac Asn 400	1200
aag Lys	aag Lys	aag Lys	gga Gly	gag Glu 405	aag Lys	aac Asn	tcg Ser	gta Val	cca Pro 410	tcc Ser	gtt Val	cca Pro	ttc Phe	aac Asn 415	gac Asp	1248
tgg Trp	gca Ala	gca Ala	gtc Val 420	caa Gln	tgc Cys	cag Gln	acc Thr	tcc Ser 425	gtg Val	aat Asn	tgg Trp	tct Ser	cca Pro 430	ggc Gly	tca Ser	1296
tgg Trp	ttc Phe	tgg Trp 435	aat Asn	cac His	ttt Phe	tct Ser	ggg Gly 440	gga Gly	ctc Leu	tct Ser	cat His	cag Gln 445	att Ile	gag Glu	cat His	1344
cac His	ttg Leu 450	ttc Phe	ccc Pro	agc Ser	att Ile	tgt Cys 455	cat His	aca Thr	aac Asn	tac Tyr	tgt Cys 460	cat His	atc Ile	cag Gln	gat Asp	1392
gtt Val 465	gtg Val	gag Glu	agt Ser	acg Thr	tgt Cys 470	gct Ala	gag Glu	tac Tyr	gga Gly	gtt Val 475	ccg Pro	tat Tyr	cag Gln	agt Ser	gag Glu 480	1440
agt Ser	aat Asn	ttg Leu	ttt Phe	gtt Val 485	gct Ala	tat Tyr	gga Gly	Lys	atg Met 490	att Ile	agt Ser	cat His	Leu	aag Lys 495	ttt Phe	1488
ttg Leu	ggt Gly	Lys	gcc Ala 500	aag Lys	tgt Çys	gag Glu	tag									1512

<210> 104 <211> 503 <212> PRT <213> Thalassiosira pseudonana

<400> 104

Met Cys Asn Gly Asn Leu Pro Ala Ser Thr Ala Gln Leu Lys Ser Thr 1 5 10 15

Ser Lys Pro Gln Gln His Glu His Arg Thr Ile Ser Lys Ser Glu

Thr Pro Ala Thr Asp Pro Ser His Ser Asn Asn Lys Gln His Ala His 50 55 60 50.

Leu Val Leu Asp Ile Thr Asp Phe Ala Ser Arg His Pro Gly Gly Asp 65 70 75 80

Leu Ile Leu Leu Ala Ser Gly Lys Asp Ala Ser Val Leu Phe Glu Thr 85 90 95

Tyr His Pro Arg Gly Val Pro Thr Ser Leu Ile Gln Lys Leu Gln Ile 100 105 110

Gly Val Met Glu Glu Glu Ala Phe Arg Asp Ser Phe Tyr Ser Trp Thr 115 120 125

Asp Ser Asp Phe Tyr Thr Val Leu Lys Arg Arg Val Val Glu Arg Leu 130 140

Glu Glu Arg Gly Leu Asp Arg Arg Gly Ser Lys Glu Ile Trp Ile Lys 145 155 160

Ala Leu Phe Leu Leu Val Gly Phe Trp Tyr Cys Leu Tyr Lys Met Tyr 165 170 175

Thr Thr Ser Asp Ile Asp Gln Tyr Gly Ile Ala Ile Ala Tyr Ser Ile 180 185 190

Gly Met Gly Thr Phe Ala Ala Phe Ile Gly Thr Cys Ile Gln His Asp

Gly Asn His Gly Ala Phe Ala Gln Asn Lys Leu Leu Asn Lys Leu Ala 210 215 220

Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Phe Thr Trp Glu Leu 225 230 235 240

Gln His Met Leu Gly His His Pro Tyr Thr Asn Val Leu Asp Gly Val 245 250 250

Glu Glu Glu Arg Lys Glu Arg Gly Glu Asp Val Ala Leu Glu Glu Lys 260 265 270

Asp Gln Asp Phe Glu Val Ala Thr Ser Gly Arg Leu Tyr His Ile Asp 275 280 285

Ala Asn Val Arg Tyr Gly Ser Val Trp Asn Val Met Arg Phe Trp Ala 290 295 300

Met Lys Val Ile Thr Met Gly Tyr Met Met Gly Leu Pro Ile Tyr Phe 305 310 315 320

His Gly Val Leu Arg Gly Val Gly Leu Phe Val Ile Gly His Leu Ala 325 330 335

Cys Gly Glu Leu Leu Ala Thr Met Phe Ile Val Asn His Val Ile Glu 340 345 350

Gly Val Ser Tyr Gly Thr Lys Asp Leu Val Gly Gly Ala Ser His Val 355 360 365

152

Asp Glu Lys Lys Ile Val Lys Pro Thr Thr Val Leu Gly Asp Thr Pro

Met Val Lys Thr Arg Glu Glu Ala Leu Lys Ser Asn Ser Asn Asn Asn 395

Lys Lys Lys Gly Glu Lys Asn Ser Val Pro Ser Val Pro Phe Asn Asp

Trp Ala Ala Val Gln Cys Gln Thr Ser Val Asn Trp Ser Pro Gly Ser 425

Trp Phe Trp Asn His Phe Ser Gly Gly Leu Ser His Gln Ile Glu His 440

His Leu Phe Pro Ser Ile Cys His Thr Asn Tyr Cys His Ile Gln Asp

Val Val Glu Ser Thr Cys Ala Glu Tyr Gly Val Pro Tyr Gln Ser Glu

Ser Asn Leu Phe Val Ala Tyr Gly Lys Met Ile Ser His Leu Lys Phe 490

Leu Gly Lys Ala Lys Cys Glu 500

<210> 105 <211> 1257 <212> DNA

<213> Thalassiosira pseudonana

<220>

<400> 105

<221> CDS <222> (1)..(1257) <223> Omega-3-Desaturase

atg tac aga tta aca tcc acc ttc ctc atc gca ttg gca ttc tcc tcc Met Tyr Arg Leu Thr Ser Thr Phe Leu Ile Ala Leu Ala Phe Ser Ser

tee ate aat gee tte tet eea caa egg eea eea egt aet ate ace aaa Ser Ile Asn Ala Phe Ser Pro Gln Arg Pro Pro Arg Thr Ile Thr Lys 96 20 25

agt aaa gtc caa agc acc gtg cta ccc ata ccg acc aag gat gat ctg Ser Lys Val Gln Ser Thr Val Leu Pro Ile Pro Thr Lys Asp Asp Leu 144 40

aac ttt ctc caa cca caa ctc gat gag aat gat ctc tac ctc gac gat Asn Phe Leu Gln Pro Gln Leu Asp Glu Asn Asp Leu Tyr Leu Asp Asp 192

gtc aac act cca cca aga gca ggt acc atc atg aag atg ttg ccg aag Val Asn Thr Pro Pro Arg Ala Gly Thr Ile Met Lys Met Leu Pro Lys 240 70

gaa acg ttc aac att gat aca gca act tca ttg ggt tac ttt ggt atg Glu Thr Phe Asn Ile Asp Thr Ala Thr Ser Leu Gly Tyr Phe Gly Met 288 90

													-									
				10	0	tt g al V				1	05	T 111	ге	u L	eu	As	n A 1	1a 10	Ile	∋ Va	ıl	336
			115	,		ac c		******	12	0	1.0	neu	Pr	о г	eu	G1:	n A) 5	la	Ala	a Th	r	384
	1	30				ag c ln I		135	232	u 0.	-y	rne	ΑŢ	a Me	≘c 10	T,T,) C <u>1</u>	ys	Met	Tr	p	432
14	15		_				50	G T Y	HIL	. <i>5</i> e	=.T	THE	va. 15	1 Se	er	Lys	s Th	ır	Lys	Tr 16	ф 0	480
					16	-	-2 \	J	V 61.3	LAI	.a	170	ser	r va	rΤ	vaı	. Су	7S :	Leu 175	Th:	r	528
			-	180)	g ca				18	5	MI Q	гу	s Hl	.S .	Hls	Le 19	0	Asn	His	5	576
		1	L95			g ga s As	-11	.Y.	200	n.t.	S 1	ıys	Trp	, т.	r s	ser 205	Ar	g Z	4sp	Glı	1	624
	21	.0	-			a ca o Gl	2	15	тут	υy.	S]	HIL	Pue	22	0 A .1	yr	As:	n F	ro	Arc	ſ	672
225	5					tt Ph 23	0	cu.	тХт	FILE	≥ IV.	iet	1yr 235	ьeı	ı A	Δla	Let	u G	ly	11e 240		720
			-	-	245				. 110	171	2	50	Arg	Met	: 1	rp	GII	1 G 2	1y 55	Val		768
				260		tt Ph	<u> </u>	op r	11a	265	;	re ,	ser	val	. A	la	Val 270	. S	er	Cys		816
		2	75			ct: Le:	~	2	80	ASII	r IM	ec (яTХ	TUX	2	1a 85	Asp	Pl	1e	Thr		864
	290) -				Pro	29	5	eu	var	1.6	⊒u S	er	300	T	rp	Leu	. Pł	ne 1	Met		912
305						2.10)	.5 .5	CT	GIU	A	3 Qa	15	rys	L€	eu '	Tyr	Th	er i	Asp 320		960
gaa Glu					325	010	ىرىد .	S G.	ту .	Ата	33	10 10	TU.	'I'II.Y	Va	il l	Asp	Ar 33	g 5 5	Ser		1008
tac Tyr	-	•	3	40		11011	224.	9 110		345	пı	S A	ısı	Met	Me	et 2	Asp 350	Gl	у Н	Iis		1056
gtg Val		35	5			1110	T. 1T.	36	50	ar g	va	.I P	ro E	His	Ту 36	r 1 5	Arg	Le	u G	lu		1104
gca Ala	370					200	375	5 103	'S (этХ	we	L A	sp G	380 31u	Th	re	ly	Gl:	n L	ys		1152
cat His 385	ttg Leu	tac Ty:	c aa r Ly	aa t ys I		att Ile 390	gat Asp	ac Th	t c r F	ro .	ga Asj	t ti o Pi 39	ne A	at sn	gc Ala	c g a G	ag lu	at: Ile	∋ V	tc al 00		1200

1257

154

aac gga ttt cgc gac aat tgg ttc ctt gtt gaa gag gag aac atc aaa Asn Gly Phe Arg Asp Asn Trp Phe Leu Val Glu Glu Glu Asn Ile Lys 405 410 agg gag tag Arg Glu <210> 106 <211> 418 <212> PRT <213> Thalassiosira pseudonana <400> 106 Met Tyr Arg Leu Thr Ser Thr Phe Leu Ile Ala Leu Ala Phe Ser Ser Ser Ile Asn Ala Phe Ser Pro Gln Arg Pro Pro Arg Thr Ile Thr Lys 25 Ser Lys Val Gln Ser Thr Val Leu Pro Ile Pro Thr Lys Asp Asp Leu Asn Phe Leu Gln Pro Gln Leu Asp Glu Asn Asp Leu Tyr Leu Asp Asp Val Asn Thr Pro Pro Arg Ala Gly Thr Ile Met Lys Met Leu Pro Lys Glu Thr Phe Asn Ile Asp Thr Ala Thr Ser Leu Gly Tyr Phe Gly Met Asp Met Ala Ala Val Val Ser Ser Met Thr Leu Leu Asn Ala Ile Val 105 Thr Ser Asp Gln Tyr His Ala Leu Pro Leu Pro Leu Gln Ala Ala Thr Val Ile Pro Phe Gln Leu Leu Ala Gly Phe Ala Met Trp Cys Met Trp Cys Ile Gly His Asp Ala Gly His Ser Thr Val Ser Lys Thr Lys Trp 150 Ile Asn Arg Val Val Gly Glu Val Ala His Ser Val Val Cys Leu Thr Pro Phe Val Pro Trp Gln Met Ser His Arg Lys His His Leu Asn His Asn His Ile Glu Lys Asp Tyr Ser His Lys Trp Tyr Ser Arg Asp Glu Phe Asp Asp Ile Pro Gln Leu Tyr Lys Thr Phe Gly Tyr Asn Pro Arg 210 Met Met Gln Leu Pro Phe Leu Tyr Phe Met Tyr Leu Ala Leu Gly Ile 230

Pro Asp Gly Gly His Val Val Phe Tyr Gly Arg Met Trp Glu Gly Val 250

Ser Leu Gln Lys Lys Phe Asp Ala Ala Ile Ser Val Ala Val Ser Cys

Ala Thr Ala Gly Ser Leu Trp Met Asn Met Gly Thr Ala Asp Phe Thr

Val Val Cys Met Val Pro Trp Leu Val Leu Ser Trp Trp Leu Phe Met

Val Thr Tyr Leu Gln His His Ser Glu Asp Gly Lys Leu Tyr Thr Asp

Glu Thr Phe Thr Phe Glu Lys Gly Ala Phe Glu Thr Val Asp Arg Ser

Tyr Gly Lys Leu Ile Asn Arg Met Ser His His Met Met Asp Gly His

Val Val His His Leu Phe Phe Glu Arg Val Pro His Tyr Arg Leu Glu 360

Ala Ala Thr Glu Ala Leu Val Lys Gly Met Asp Glu Thr Gly Gln Lys 375

His Leu Tyr Lys Tyr Ile Asp Thr Pro Asp Phe Asn Ala Glu Ile Val

Asn Gly Phe Arg Asp Asn Trp Phe Leu Val Glu Glu Asn Ile Lys 410

Arg Glu

<210> 107 <211> 1086 <212> DNA <213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(1086)

<223> Delta-12-Desaturase

<400> 107

atg cag gag ggg gtg cga aac att ccg aac gag tgc ttt gag acg gga Met Gln Glu Gly Val Arg Asn Ile Pro Asn Glu Cys Phe Glu Thr Gly 48

cat ctt gaa aga ccc tgg cgt tcc ggc cgg tgt ggg cgc gat ccc ggt His Leu Glu Arg Pro Trp Arg Ser Gly Arg Cys Gly Arg Asp Pro Gly 96

teg aat tgg ggc get ggc tte ege ttt ttt teg ete aag ggg ttt tgg Ser Asn Trp Gly Ala Gly Phe Arg Phe Phe Ser Leu Lys Gly Phe Trp 144

tç Ti	gg co np Pi 50	cg g ro A O	cg la	tgg Trp	tgg Tr	g gc p Al	g ta a Ty 5:		ıcg 11a	tt: Ph	c gt e Va	g a	cg hr	G1 60	.Х. Т.	cg hr	gcg Ala	g gc	c .a	act Thr		192	
gg G] 65	g to Y C	gt t ys T	rp gg	gtc Val	gco	gc a Ala 70	g ca a Hi	ac g .s G	ag lu	tgo Cys	c gg s Gl	Y E	ac is 5	G1 gg	y A	cg : la :	tto Phe	ag Se	ic ic	gat Asp 80		240	
aa As	ic as in Ly	aga /s T	cg hr	ttg Leu	caa Gln 85	ı gar ı Ası	t go p Al	g g .a V	tt al	GJ7 gga	ta Ty 90	r v	tg al	tt Le	g ca u H:	ac t is s	tcg Ser	tt Le 95	u	ctc Leu		288	
	g gt u Va			100			- 44	p G	-1-11	105	se:	c H	ıs	AL	a Va	11 F	lis L10	Hi	s	Ser		336	
ag Ar	g ac g Th		at o sn 1 l5	cac His	gtt Val	ctt Lev	ga Gl	u G	gc ly 20	gag Glu	Th:	g c	ac is	gt Va:	g co l Pr 12	OA	jcg Ma	cg Ar	c j	ttg Leu		384	
G1	g ac y Th 13		aa g Lu 2	gac Asp	gcc Ala	aac Asn	gt Va 13	T AS	tg āl	ttc Phe	aag Lys	g C	tt ∋u	cgo Aro	g Gl	a t u L	tg eu	ato Ilo	c :	ggt 3ly		432	
. 14	5	-				150		- A	JII .	neu	val	1. 1.	55	val	L Pn	e A	.la	Let	1 (L60		480	
_	g cc				165		T.1.1.3	. 63	- <u>y</u> ,	мта	170) : GJ	.У	GTĀ	r Pr	0 V	al	Arc 175	F C	ly		528	
aac Asi	ace Thi	g aa r As		ac lis .80	ttc Phe	tta Leu	Pro	tt Ph	re r	atg Met 185	ggc	ga Gl	ıg .u :	aaa Lys	gg Gl	Υ L	ag ys 90	cac	: <u>c</u>	rcg la		576	
	f tto Phe	19	5	·	Lys	יביב	WTC	20	0	JĀ2	Val	TT	p q	Gln	Se:	r As 5	ge	Ile	: G	ly		624	
	gtt Val 210)	_ ,	u	Jeu	GIĀ	215	. ье	u A	ита	Ala	Tr	р <i>I</i>	Ala 220	Ala	a Hi	is	Ser	G	ly		672	
225	gcc		- V.	ai r	16.0	230	теп	тy	r v	aı	GIY	23	o 7 5	ľyr	Met	: Va	al '	Thr	A 2	sn 40		720	
	tgg Trp	- 1100		2	45	171	TILL	TI	ЭΓ	eu	250	Hi	s I	hr	Asp	Va	11 2	Asp 255	V	al		768	
	cac His		26	50	т <u>у</u> .	nsp	ASD	TI	2 2	sn 65	ren	va.	L I	љs	Glу	Al 27	a 1	Phe	Me	et		816	
acg Thr	atc Ile	gat Asp 275	231	gc c	cg ro!	tac Tyr	ggc	Pro 280	o va	tt al :	ttt Phe	gat As <u>r</u>	t DP	tc he	ttg Leu 285	Hi	c c s H	cac His	CQ A1	gc		864	
	ggc Gly 290	Der	4.1.1	r n	.15 /	val.	295	HIS	5 H:	ıs :	IIe	Asr	3	hr 00	Pro	Ph	e I	Pro	Hi	.s		912	
305	aag Lys		-	.11 14	3	310	T 11'T	ASD	A	ıa 1	_eu	туя 315	G	Ιu	Ala	Ty:	r F	ro	As 32	φ 0	:	960	
	tac Tyr		# <i>X</i>	32	25	10	TITE	PLO	1.1	Le <i>E</i>	330	unr	Α.	la	Thr	Tr	р А З	rg 35	Va	1	10	800	
gly aaa	agc Ser	aag Lys	tg Cy 34		tc g le A	la V	gtc /al	gtg Val	aa Ly 34	SI	ys .ys	gga Gly	ga As	ac (gaa Glu	tgg Trg 350	y V	tg al	tt Ph	c e	10)56	

acg gat aag caa ctc ccg gtc gcg gcg tga Thr Asp Lys Gln Leu Pro Val Ala Ala

1086

<210> 108 <211> 361 <212> PRT

<213> Ostreococcus tauri

<400> 108

Met Gln Glu Gly Val Arg Asn Ile Pro Asn Glu Cys Phe Glu Thr Gly

His Leu Glu Arg Pro Trp Arg Ser Gly Arg Cys Gly Arg Asp Pro Gly 20 25 30

Ser Asn Trp Gly Ala Gly Phe Arg Phe Phe Ser Leu Lys Gly Phe Trp

Trp Pro Ala Trp Trp Ala Tyr Ala Phe Val Thr Gly Thr Ala Ala Thr 50 55 60

Gly Cys Trp Val Ala Ala His Glu Cys Gly His Gly Ala Phe Ser Asp
65 70 75 80

Asn Lys Thr Leu Gln Asp Ala Val Gly Tyr Val Leu His Ser Leu Leu 85 90 95

Leu Val Pro Tyr Phe Ser Trp Gln Arg Ser His Ala Val His His Ser

Arg Thr Asn His Val Leu Glu Gly Glu Thr His Val Pro Ala Arg Leu

Gly Thr Glu Asp Ala Asn Val Val Phe Lys Leu Arg Glu Leu Ile Gly

Glu Gly Pro Phe Thr Phe Phe Asn Leu Val Gly Val Phe Ala Leu Gly

Trp Pro Ile Tyr Leu Leu Thr Gly Ala Ser Gly Gly Pro Val Arg Gly

Asn Thr Asn His Phe Leu Pro Phe Met Gly Glu Lys Gly Lys His Ala

Leu Phe Pro Gly Lys Trp Ala Lys Lys Val Trp Gln Ser Asp Ile Gly

Val Val Ala Val Leu Gly Ala Leu Ala Ala Trp Ala Ala His Ser Gly

Ile Ala Thr Val Met Ala Leu Tyr Val Gly Pro Tyr Met Val Thr Asn

Phe Trp Leu Val Leu Tyr Thr Trp Leu Gln His Thr Asp Val Asp Val

Pro His Phe Glu Gly Asp Asp Trp Asn Leu Val Lys Gly Ala Phe Met

Thr Ile Asp Arg Pro Tyr Gly Pro Val Phe Asp Phe Leu His His Arg

Ile Gly Ser Thr His Val Ala His His Ile Asn Thr Pro Phe Pro His 295

Tyr Lys Ala Gln Met Ala Thr Asp Ala Leu Lys Glu Ala Tyr Pro Asp

Leu Tyr Leu Tyr Asp Pro Thr Pro Ile Ala Thr Ala Thr Trp Arg Val

Gly Ser Lys Cys Ile Ala Val Val Lys Lys Gly Asp Glu Trp Val Phe

Thr Asp Lys Gln Leu Pro Val Ala Ala

<210> 109

<211> 1305

<212> DNA

Thalassiosira pseudonana

<220>

<221> CDS <222> (1)..(1305)

<223> Delta-12-Desaturase

<400> 109

atg gga aag gga gga aga tca gta acc cgc gct caa aca gca gaa aag Met Gly Lys Gly Gly Arg Ser Val Thr Arg Ala Gln Thr Ala Glu Lys 48

tca gca cac acc atc caa acc ttc acc gac ggc cga tgg gtc tcc ccc Ser Ala His Thr Ile Gln Thr Phe Thr Asp Gly Arg Trp Val Ser Pro 96

tac aac ccc ctc gca aaa gat gca cct gaa ctc ccc tcc aag ggt gaa Tyr Asn Pro Leu Ala Lys Asp Ala Pro Glu Leu Pro Ser Lys Gly Glu 144

atc aag gcg gtc atc ccc aaa gag tgc ttc gaa cga agc tac ctc cac Ile Lys Ala Val Ile Pro Lys Glu Cys Phe Glu Arg Ser Tyr Leu His 192

tcc atg tac ttc gtc ctc cgt gac acc gtc atg gcc gtg gcc tgc gcc Ser Met Tyr Phe Val Leu Arg Asp Thr Val Met Ala Val Ala Cys Ala 240

tac atc gcc cac tca acg ctc tcc acc gat att ccc tcc gag tta ctg Tyr Ile Ala His Ser Thr Leu Ser Thr Asp Ile Pro Ser Glu Leu Leu 288

age gtg gae gea etc aaa tgg tte etc gga tgg aac ace tac gee ttt Ser Val Asp Ala Leu Lys Trp Phe Leu Gly Trp Asn Thr Tyr Ala Phe 336 100 105

tgg atg ggg tgc att ctc acc gga cac tgg gtc cta gcc cat gaa tgt Trp Met Gly Cys Ile Leu Thr Gly His Trp Val Leu Ala His Glu Cys 384

gga Gly	cat His 130		t gc / Al	a tt a Ph	c to e Se	et co er Pr 13	co se	ct c er G	ag ln	acg Thr	tt Ph	t aa e As 14	sn A	ac sp	tt: Ph	t to	.b ia	Gly aaa	432
145	-		- 114.	J G.	15	0	g tt ll Le	eu Va	3 .L	Pro	15.	r Pr 5	ne A	.la	Trr	Gl	n,	Tyr 160	480
			-2.	16	5	o Al	ra co g Ar	.g 11	ıır.	170	ASI	ם דד	.е м	et.	Asr	Gl 17	У 5	Glu	528
			180)		C 711	c aa a Ly	18	35	mec	GT2	, re	u A	sn	Glu 190	Ly	s.	Asn	576
gag Glu	cgc Arg	agt Ser 195		. GJ7	a ta 7 Ty:	t gc r Al	c gc a Al 20	а лл	t d	cat His	gaç Glu	g gc	a I.	tt g le d 05	gga 31y	ga As	t : p (gga Gly	624
ccc Pro	ttt Phe 210	gcg Ala	atg Met	ttt Phe	caa Gli	a ate 1 Ile 21	= F11	t go e Al	t d a I	cac His	ttg Leu	gt Va 22	T I	cc g le (agg ≩1y	tg: Tr]	g (cct Pro	672
att Ile 225	tac Tyr	ttg Leu	atg Met	gga Gly	ttt Phe 230		t tc	c ac r Th	t c	gga 31y	cgt Arg 235	Lei	ı Gl	yt o	ag Eln	ga: Ası	Ç Ç	ggg Sly 240	720
aag (Lys (gaa Glu	ctt Leu	cag Gln	gct Ala 245	<u>G</u> 1	gag Gli	y ato 1 Ile	c at	e A	rac Asp 250	cat His	tac Tyr	c cg	rt c g F	ro	tgg Trg 255	2 5	agt Ser	768
aag a Lys N	atg Met	ttc Phe	ccc Pro 260	acc Thr	aag Lys	r ttg : Lev	g cga L Arg	tte Phe 26	= 1	aa ys	att Ile	gct Ala	ct Le	u s	cg er 70	aca Thr	a c	ett eu	816
Gly /		att Ile 275	gcc Ala	gcc Ala	tgg Trp	gtt Val	999 Gly 280	тет	g t ı T	ac yr	ttt Phe	gct Ala	gc A1 28	a G	aa ln	gag Glu	r t	at Yr	864
gga g Gly V 2	tc 7al :	ttg Leu	ccc Pro	gtg Val	gtt Val	ctt Leu 295	TTD	tac Tyr	c a : I	tt i le i	ggc Gly	cca Pro 300	Le	са u М	tg et	tgg Trp	a A	at sn	912
cag g Gln A 305	rcg t la :	tgg Trp	ctt Leu	gtg Val	ctc Leu 310	tac Tyr	act Thr	tgg) F	eu (cag Gln 315	cac His	aa Asi	t ga	at sp	ccc Pro	S	cc er 20	960
gtg c Val P	ro C	caa 31n	tat Tyr	gga Gly 325	agt Ser	gac Asp	gaa Glu	tgg Trp	.T.1	ca t hr 1 30	tgg Trp	gtc Val	aag Lys	g gg	Ly .	gct Ala 335	t: Le	tg eu	1008
tcg a Ser T	cg a hr I		gat Asp 340	cgc Arg	ccg Pro	tat Tyr	ggt Gly	atc Ile 345	PI	tt g ne 2	ac Asp	ttc Phe	tto Phe	C Ca Hi	ls :	cac His	aa Ly	ag Ys	1056
att g	-, ~	gc a Ser : 55	act Thr	cac His	gta Val	gct Ala	cat His 360	cat His	tt Le	g t	tc he	cac His	gag Glu 365	t M∈	g (et]	cca Pro	tt Pł	t ne	1104
tac as Tyr Ly 37	ag g ys A 70	cg g la A	gat (Asp '	gtg Val	gct Ala	act Thr 375	gcg Ala	tcg Ser	at Il	c a .e L	ys (ggt Gly 380	ttc Phe	tt Le	g g u (gag 3lu	CC Pr	eg To	1152
aag gg Lys G] 385	ja c ly L	tt t eu 1	ac a Yr 1	11011	tat Tyr 390	gat Asp	cca Pro	acg Thr	cc Pr	O .T.	gg rp ' 95	tat Tyr	gtg Val	gc	c a	ıtg Iet	tg Tr 40	p	1200
agg gt Arg Va	g g	cc a la I	-2 -	hr o	tgt Cys	cat His	tat Tyr	att Ile	ga G1 41	u A	at g sp 7	gtg Val	gat Asp	gg Gl	УV	rtt Val	ca Gl	g n	1248
tat ta Tyr Ty	t aa T Ly	ב כי	gt t er I 20	tg g eu (gag Glu	gat Asp	vaı	cct Pro 425	tt: Le	g a u L	ag a ys I	ys	gat Asp	gc Al. 43	a L	ag ys	aa Ly	ğ	1296

tct gat tag Ser Asp

1305

<210> 110 <211> 434

<212> PRT

<213> Thalassiosira pseudonana

<400> 110

Met Gly Lys Gly Gly Arg Ser Val Thr Arg Ala Gln Thr Ala Glu Lys

Ser Ala His Thr Ile Gln Thr Phe Thr Asp Gly Arg Trp Val Ser Pro

Tyr Asn Pro Leu Ala Lys Asp Ala Pro Glu Leu Pro Ser Lys Gly Glu

Ile Lys Ala Val Ile Pro Lys Glu Cys Phe Glu Arg Ser Tyr Leu His 50 60

Ser Met Tyr Phe Val Leu Arg Asp Thr Val Met Ala Val Ala Cys Ala

Tyr Ile Ala His Ser Thr Leu Ser Thr Asp Ile Pro Ser Glu Leu Leu

Ser Val Asp Ala Leu Lys Trp Phe Leu Gly Trp Asn Thr Tyr Ala Phe

Trp Met Gly Cys Ile Leu Thr Gly His Trp Val Leu Ala His Glu Cys

Gly His Gly Ala Phe Ser Pro Ser Gln Thr Phe Asn Asp Phe Trp Gly

Phe Ile Met His Gln Ala Val Leu Val Pro Tyr Phe Ala Trp Gln Tyr

Ser His Ala Lys His His Arg Arg Thr Asn Asn Ile Met Asp Gly Glu

Ser His Val Pro Asn Ile Ala Lys Glu Met Gly Leu Asn Glu Lys Asn

Glu Arg Ser Gly Gly Tyr Ala Ala Ile His Glu Ala Ile Gly Asp Gly

Pro Phe Ala Met Phe Gln Ile Phe Ala His Leu Val Ile Gly Trp Pro

Ile Tyr Leu Met Gly Phe Ala Ser Thr Gly Arg Leu Gly Gln Asp Gly

Lys Glu Leu Gln Ala Gly Glu Ile Ile Asp His Tyr Arg Pro Trp Ser 250

Lys Met Phe Pro Thr Lys Leu Arg Phe Lys Ile Ala Leu Ser Thr Leu 260 265 270

Gly Val Ile Ala Ala Trp Val Gly Leu Tyr Phe Ala Ala Gln Glu Tyr 275 280 285

Gly Val Leu Pro Val Val Leu Trp Tyr Ile Gly Pro Leu Met Trp Asn 290 295 300

Gln Ala Trp Leu Val Leu Tyr Thr Trp Leu Gln His Asn Asp Pro Ser 310 315 320

Val Pro Gln Tyr Gly Ser Asp Glu Trp Thr Trp Val Lys Gly Ala Leu 325 330 335

Ser Thr Ile Asp Arg Pro Tyr Gly Ile Phe Asp Phe Phe His His Lys 340 345 350

Ile Gly Ser Thr His Val Ala His His Leu Phe His Glu Met Pro Phe 355 360 365

Tyr Lys Ala Asp Val Ala Thr Ala Ser Ile Lys Gly Phe Leu Glu Pro 370 375 380

Lys Gly Leu Tyr Asn Tyr Asp Pro Thr Pro Trp Tyr Val Ala Met Trp 385 390 395 400

Tyr Tyr Lys Ser Leu Glu Asp Val Pro Leu Lys Lys Asp Ala Lys Lys 420 425 430

Ser Asp