8) Analysis of Variance (ANOVA)

Vitor Kamada

June 2018

Reference

Tables, Graphics, and Figures from

Introductory Statistics with

Randomization and Simulation

Diez et al. (2014): Chapter 4 - Inference for Numerical Data

Major League Baseball Data

	name	team	position	AB	Н	HR	RBI	AVG	OBP
1	I Suzuki	SEA	OF	680	214	6	43	0.315	0.359
2	D Jeter	NYY	IF	663	179	10	67	0.270	0.340
3	M Young	TEX	IF	656	186	21	91	0.284	0.330
:	:	:	:	:	:	:	:		
325	B Molina	SF	C	202	52	3	17	0.257	0.312
326	J Thole	NYM	C	202	56	3	17	0.277	0.357
327	C Heisey	CIN	OF	201	51	8	21	0.254	0.324

variable	description
position	The player's primary field position (OF, IF, DH, C)
AB	Number of opportunities at bat
Н	Number of hits
HR	Number of home runs
RBI	Number of runs batted in
AVG	Batting average, which is equal to H/AB
OBP	On-base percentage, which is roughly equal to the fraction
	of times a player gets on base or hits a home run

Is Batting Performance related to Player Position?

Summary Statistics of On-base Percentage

$$H_0$$
: $\mu_{OF} = \mu_{IF} = \mu_{DH} = \mu_C$

 H_A : The average on-base percentage (μ_i) varies across some (or all) groups.

	OF	IF	DH	C
Sample size (n_i)	120	154	14	39
Sample mean (\bar{x}_i)	0.334	0.332	0.348	0.323
Sample SD (s_i)	0.029	0.037	0.036	0.045

Mean Square between Groups:

$$MSG = \frac{SSG}{df_G} = \frac{1}{k-1} \sum_{i=1}^k n_i (\bar{x}_i - \bar{x})^2$$

Mean Square Error:

$$MSE = \frac{SSE}{df_E} = \frac{1}{n-k} \sum_{i=1}^{k} (n_i - 1)s_i^2$$

$$F = \frac{MSG}{MSE}$$

Analysis of Variance (ANOVA)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
position	3	0.0076	0.0025	1.9943	0.1147	
Residuals	323	0.4080	0.0013			
$s_{pooled} = 0.036 \text{ on } df = 323$						

Normal Probability Plot of On-base Percentage

Log(Lifetime) of Resin in Integrated Circuits

import pandas as pd

 $\label{eq:resin} $$ = $ pd.read_table('http://www.stat.umn.edu//~gary//book//fcdae.data//exmpheader=10, delim_whitespace=True)$

Γ	Temperature (°C)										
175		194		213		231		250			
	2.04	1.85	1.66	1.66	1.53	1.35	1.15	1.21	1.26	1.02	
	1.91	1.96	1.71	1.61	1.54	1.27	1.22	1.28	.83	1.09	
	2.00	1.88	1.42	1.55	1.38	1.26	1.17	1.17	1.08	1.06	
L	1.92	1.90	1.76	1.66	1.31	1.38	1.16				

Nelson (1990)

Recode Variable

```
def temp_groups(series):
   if series == 1:
        return 175
   elif series == 2:
        return 194
   elif series == 3:
        return 213
   elif series == 4:
        return 231
   elif series == 5:
        return 250
resin['tempC'] = resin['temp'].apply(temp_groups)
```

Descriptive Statistics

resin.describe()

```
temp
                                     tempC
       37.000000
                   37.000000
                                37,000000
count
        2.864865
                    1.465135
                               210.081081
mean
std
        1.397660
                    0.326229
                                26.144235
min
        1.000000
                    0.830000
                               175.000000
25%
        2.000000
                    1.210000
                               194.000000
50%
        3.000000
                    1.380000
                               213.000000
75%
        4.000000
                    1.710000
                               231,000000
        5.000000
                    2.040000
                               250,000000
max
```

import seaborn as sns

sns.boxplot(x="tempC", y="y", data=resin)

ANOVA Table

```
import statsmodels.api as sm from statsmodels.formula.api import ols Model = ols('y \sim C(temp)', \, data=resin).fit() \\ table = sm.stats.anova\_lm(Model, \, typ=2) \\ print(table)
```

```
sum_sq df F PR(>F)
C(temp) 3.537632 4.0 96.362963 2.241949e-17
Residual 0.293692 32.0 NaN NaN
```

F Distribution

```
import scipy.stats scipy.stats.f.cdf(96.363, 4, 32)
```

0

86.38