Inducción Estructural sobre Árboles Ternarios

1 Introducción

En este trabajo se abordará una propiedad de los árboles ternarios utilizando el principio de inducción estructural. Los árboles ternarios están definidos de la siguiente manera:

• Definición del Generador de Árboles Ternarios (AT):

```
data AT a = Nil | Tern a (AT a) (AT a) (AT a) deriving Eq
```

El tipo de dato AT a representa un árbol ternario, donde cada nodo contiene un valor de tipo a y tres subárboles. El constructor Nil representa un árbol vacío.

• Definición de la función foldAT:

```
foldAT :: b -> (a -> b -> b -> b -> b) -> AT a -> b
foldAT atNil atBranch Nil = atNil
foldAT atNil atBranch (Tern raiz left right center) =
   atBranch raiz (rec left) (rec center) (rec right)
   where rec = foldAT atNil atBranch
```

La función foldAT es un fold sobre el árbol ternario que nos permite procesar el árbol con base en un valor para el caso base (atNil) y una función cuaternaria (atBranch) que combina el nodo raíz y con el resultado recursivo de sus tres subárboles.

• Preorden y postorden:

```
- preorder :: AT a -> [a]
preorder = foldAT [] (\x left middle right -> x : (left ++ right ++ middle))
- postorder :: AT a -> [a]
postorder = foldAT [] (\x left middle right -> left ++ right ++ middle ++ [x])
```

2 Objetivo

El objetivo es demostrar la siguiente propiedad:

```
\forall t : AT \ a. \ \forall x : a. (elem x (preorder t) = elem x (postorder t))
```

Es decir, queremos probar que para cualquier árbol ternario t y cualquier elemento $x,\ x$ está en el recorrido en preorden del árbol si y solo si está en el recorrido en postorden del mismo árbol:

```
(\forall x), x \in \text{preorder t} \iff x \in \text{postorder t}
```

3 Demostración por inducción estructural

Para probar esta propiedad, aplicaremos el principio de inducción estructural sobre la estructura del árbol t. Esto implica probar:

- Caso base: la propiedad es verdadera para el árbol vacío (Nil).
- Paso inductivo: asumiendo que la propiedad es verdadera para los subárboles, mostrar que también es verdadera para un árbol no vacío (único generador es Tern).

3.1 Caso base

Consideremos el árbol vacío $t=\mathtt{Nil}$. El recorrido en preorden y postorden del árbol vacío es la lista vacía:

$$\begin{array}{l} \texttt{preorder Nil} = [] \\ \texttt{postorder Nil} = [] \end{array}$$

Claramente, para cualquier x, se cumple que:

$$\mathtt{elem}\ x\ [] = \mathtt{False}$$

Por lo tanto, la propiedad se cumple para el caso base.

3.2 Paso inductivo

Partiendo de que aquello que queremos probar es válido para los subárboles de t, se intenta probar que la propiedad vale para t.

3.2.1 Hipótesis inductiva

Se asume que la propiedad se cumple para los subárboles de

```
t = {\tt Tern \ r \ lT \ mT \ rT} (Tern root leftTree middleTree rightTree )
```

Es decir, se asume que:

```
\forall x : a, elem x (preorder 1T) = elem x (postorder 1T) \forall x : a, elem x (preorder mT) = elem x (postorder mT) \forall x : a, elem x (preorder rT) = elem x (postorder rT)
```

Estas asunciones son las hipótesis inductivas que van a ser utilizadas para probar que:

```
\forall x : a,
elem x (preorder (Tern r lT mT rT))
= elem x (postorder (Tern r lT mT rT))
```

3.2.2 Simplificaciones Útiles

Para la claridad del paso inductivo se consideró útil contar con definciones de preorder y postorder equivalentes que no estén definidas por foldAT, sino con recursión explícita. Por definición, tenemos:

```
preorder (Tern r lT mT rT) =
    foldAT [] (\ x left middle right ->
        x : (left ++ right ++ middle)) (Tern r lT mT rT )
```

Aplicando la definición de foldAT:

```
foldAT [] (\ x left middle right -> x : (left ++ right ++ middle)) (Tern lT mT rT ) =
  (\ x left middle right -> x : (left ++ right ++ middle))
    raiz (rec left) (rec center) (rec right) (Tern lT mT rT )
```

```
where rec = foldAT [] (\ x left middle right \rightarrow x : (left ++ right ++ middle))
```

Notar que la definición de rec es igual a la de preorder. Por tanto:

```
preorder (Tern r lT mT rT ) = x : ( preorder lT) ++ (preorder mT) ++ (preorder rT)
```

De la misma manera, queremos una definición de postorder que cumpla el esquema de recursión explícita. Aplicando la recusión explícita de foldAT en la definición de postorder queda:

3.2.3 Inducción

Podemos ver que x puede estar en la raíz, en el subárbol izquierdo, en el subárbol derecho o en el subárbol central o no estar en en t. Por un lado tenemos que

```
elem x (postorder (Tern r lT mT rT = elem x ((postorder lT) ++ (postorder mT) ++ (postorder rT) ++ [r]) = elem x ((postorder lT )++ (postorder mT) ++ (postorder mT)) \lor ( x == r)
```

Otra forma más redudundante (por propiedades básicas de las listas) de decir lo mismo es:

```
elem x (postorder (Tern r lT mT rT)) = (elem x (postorder lT) )  \lor \text{ (elem x (postorder mT) )}   \lor \text{ (elem x (postorder rT) )} \lor \text{ (x == r)}
```

Por hipótesis inductiva, se puede reemplazar los {elem x postorder} aplicados a los subárboles de t por {elem x preorder}, pues por asumimos que son equivalentes.

```
elem x (postorder (Tern left center right)) = (elem x (preorder lT) )  \lor \text{ (elem x (preorder mT) )}   \lor \text{ (elem x (preorder rT) )} \lor \text{ (x == raiz)}
```

Eso es lo mismo que decir:

```
elem x (postorder Tern r lT mT rT ) = elem x (preorder Tern r lT mT rT )
```

Demostrados tanto el caso base como el paso inductivo, queda demostrado que se cumple la propiedad.

3.3 Conclusión

Mediante inducción estructural queda probado que para todo árbol ternario t y todo elemento $x,\,x$ pertenece al recorrido en preorden de t si y solo si pertenece al recorrido en postorden de t.