1- State Machine for each component

2- State Machine for the system

ECU1

ECU₂

3- Sequence Diagram

ECU1

ECU₂

4- Block Diagram

ECU1 CPU Load

We have three tasks:

sendDoor(), sendSpeed(), sendLight().

E1 = 0.5 ms, E2 = 0.5 ms, E3 = 0.5 ms

Hyper Period = 20ms

$$CPU \ Load = \sum_{n=1}^{3} \frac{E_n}{Hyper \ Period} * \frac{Hyper \ Period}{P_n} = \frac{E_n}{P_n}$$

$$CPU\ Load = \frac{0.5}{5} + \frac{0.5}{10} + \frac{0.5}{20} = 0.175 = 17.5\%$$

ECU2 CPU Load

We have two tasks:

receive(), updateState().

E1 = 0.5 ms, E2 = 0.5 ms

Hyper Period = 5ms

$$CPU \ Load = \sum_{n=1}^{2} \frac{E_n}{Hyper \ Period} * \frac{Hyper \ Period}{P_n} = \frac{E_n}{P_n}$$

$$CPU\ Load = \frac{0.5}{5} + \frac{0.5}{5} = 0.2 = 20\%$$

Bus Load

We have only three tasks that use the bus:

sendDoor(), sendSpeed(), sendLight().

E1 = 0.5 ms, E2 = 0.5 ms,

E3 = 0.5 ms

Hyper Period = 1s

$$Bus\ Load = \sum_{n=1}^{3} \frac{E_n}{Hyper\ Period} * \frac{Hyper\ Period}{P_n} = \frac{E_n}{P_n}$$

$$Bus\ Load = \frac{0.5}{5} + \frac{0.5}{10} + \frac{0.5}{20} = 0.175 = 17.5\%$$