(1) Min
$$4x + \sqrt{2} x_1 - .35x_3$$
Set $6x + \sqrt{2} x_2 - .35x_3$
S.t. $7001 \times 1 + 200 \times 1 - x_4 = 700 \times 1 + 200 \times 1 - x_4 = 700 \times 1 + 200 \times 1 - x_5 = 4$

But x_1 is still unbounded, so:

 $x_1 \times 1 = x_2 + x_3 + x_4 = x_5 = 4$
S.t. $x_2 \times 1 = x_3 + x_4 = x_5 = 4$
 $x_3 \times 1 = x_3 + x_4 + x_5 = 0$
 $x_4 \times 1 = x_5 + x_5 + x_5 = 0$
 $x_4 \times 1 = x_5 + x_5 + x_5 = 0$
 $x_4 \times 1 = x_5 + x_5 + x_5 = 0$

(a)
$$x_{1} = x_{1} + 20$$
; $x_{2} = x_{3} - 15$
(b) $x_{1} = x_{1} + 20$; $x_{2} = x_{3} - x_{3}$
 $x_{1} = x_{2} + 20$
 $x_{2} = x_{3} + x_{4} = 210$
 $x_{1} = x_{2} + x_{3} = 210$
 $x_{2} = x_{3} + x_{4} = 210$

(-) Minimize
$$x_1^+ - X_1^- + 3x_2^- + 2x_3^+ + 2x_3^-$$

 $S_1^+ - 3x_1^- - 5x_2^- + x_4^- = 15$
 $3x_1^+ - 3x_1^- - 5x_2^- - x_5 = -2$
 $-5x_1^+ + 5x_1^- + 20x_2^- + x_6^- = 40$
 $-5x_1^+ + 5x_1^- + 20x_2^- - x_3^- = 11$
 $-5x_1^+ + 5x_1^- + 20x_2^- - x_3^- = 0$
 $X_1^+ + X_1^- + X_2^+ + X_3^- + X_3^+ + X_3^- + X_3^$

	\xi		
1.2 (a) $m_1 n_1 m_1 = 2x_1^{+} - 2x_1^{-} + 6x_2 + 8x_3$ 5.4. $x_1^{+} - x_1^{-} + 2x_2 + x_3 = 5$ $4x_1^{+} - 4x_1^{-} + 6x_2 + 2x_3 = 12$ $x_1^{+}, x_1^{-}, x_2, x_3 = 0$ (b) $x_1 = 5 - 2x_2 - x_3$, $x_2^{-}, x_3^{-} = 0$ $x_1^{+}, x_1^{-}, x_2^{-}, x_3^{-} = 0$ $x_2^{+}, x_3^{-} = 0$ $x_1^{+}, x_2^{-}, x_3^{-} = 0$ $x_2^{+}, x_3^{-} = 0$ $x_1^{+}, x_2^{-} = 0$ $x_2^{+}, x_3^{-} = 0$ $x_2^{+}, x_3^{-} = 0$ $x_3^{+}, x_3^{-} = 0$	5.t. $2x_{2} + 2x_{3} = 8$ $x_{2}, x_{3} \ge 0$ 8. $x_{1}, x_{2} \ge 0$ 8. $x_{2} + 6x_{3}$ 5.t. $2x_{2} + 2x_{3} = 8$ $x_{2}, x_{3} \ge 0$	1 to solve, take x_3 to lowest value = 0 The $2x_3 = 8$ $x_2 = 4$, $x_3 = 0$ and $x_4 = 5 - 4 - 0 =$	
7:			

Gis time for person; to finish project $X = \{1 | 14 \}$ is assigned to i $X = \{0 \text{ otherwise.} \\ S. t. <math>\sum_{i=1}^{\infty} X_{i;i} = 1$ for each; Minimize 60. Z Z X(C), where i= projects 1... 5 resource : skiller labor = 100 constraiats: unskilled labor=70 So each project is assigned exectly J=Rerson A... E 20 14w material = one person at minimum cost, for example, X4, + X42 + X43 + XA4 + XA5 = \$ X; = 1 for each i Maximize revenue= 15x, + 25x2 3X, + 4X, 5 100 2X, + 3X, 5 70 X, + 2X, 5 30 X, + 2X, 5 30 X, 20, X, 2 3 Chip type= X, X2 s.t. resource