Predavanje 9

Magnetizam Jakost magnetskog polja

- Proton uleti u homogeno magnetsko polje indukcije 0,8 T brzinom 5·10⁵ m/s pod kutom od 30° prema smjeru magnetske indukcije. Kolika sila djeluje na proton? (naboj elektrona je 1,6·10⁻¹⁹ C)
- a) 1,2·10⁻¹³ N
- b) 3,2·10⁻¹⁴ N
- c) $1.8 \cdot 10^{-12} \text{ N}$
- d) 6,4·10⁻¹⁴ N
- e) 2,5·10⁻¹⁵ N

- Elektron ubrzan razlikom potencijala 300 V uleti u homogeno magnetsko polje indukcije B = 2,5·10⁻⁴ T. Kolika sila djeluje na elektron ako je brzina elektrona okomita na magnetsko polje? (Masa elektrona 9,11·10⁻³¹ kg, naboj elektrona je 1,6·10⁻¹⁹ C)
- a) 5,2·10⁻¹⁶ N
- b) $2.5 \cdot 10^{-16} \text{ N}$
- c) $4,1\cdot10^{-16}$ N
- d) 1,6·10⁻¹⁶ N
- e) 1,0·10⁻¹⁶ N

- Kvadratni vodič stranice a = 20 cm postavljen je okomito na silnice homogenog magnetskog polja indukcije B = 0,1 T. Kolika će bit inducirana elektromotorna sila u vodiču ako magnetska indukcija opadne jednoliko za 50% tijekom 10 ms?
- a) 1,0 V
- b) 0,2 V
- c) 0,4 V
- d) 0,5 V
- e) 0,1 V

- Zavojnica ima 100 namota, unutarnji otpor 6 Ω i površinu poprečnog presjeka od 80 cm².
 Kojom brzinom se mijenja magnetska indukcija usmjerena okomito na površinu poprečnog presjeka zavojnice ako se u njoj inducira struja jakosti 1 mA?
- a) 0,0035 T/s
- b) 0,0045 T/s
- c) 0,0055 T/s
- d) 0,0065 T/s
- e) 0,0075 T/s

- Elektron je iz mirovanja ubrzan razlikom potencijala U = 300 V i giba se paralelno ravnom vodiču na udaljenosti a = 4 mm. Kolika sila djeluje na elektron ako kroz vodič teče struja jakosti I = 5 A? (e, m_e , μ_0)
- a) 2,4·10⁻¹⁴ N
- b) 4,1·10⁻¹⁹ N
- c) $1,3\cdot10^{-15}$ N
- d) 4,1·10⁻¹⁶ N
- e) 1,3·10⁻¹⁸ N

 Nađite ubrzanje elektrona koji uleti brzinom v u homogeno magnetsko polje indukcije B i električno polje jakosti E. Smjerovi djelovanja oba polja su jednaki, a brzina elektrona okomita je na ta polja.

$$a)$$
 $a = eE/m$

b)
$$a = vEB/2$$

c)
$$a = (e/m)((vB)^2 + E^2)^{1/2}$$

$$d)$$
 $a = (e/m)(vB+E)$

$$e)$$
 $a = 0$

- Dvjema ravnim, paralelnim i dugim žicama, razmaknutima za d, teku električne struje jednake jakosti I. Kolika je jakost magnetskog polja u sredini između žica, ako struje teku istim smjerom?
- a) 21/d
- b) $2I(\pi d)$
- c) $1/(2\pi d)$
- d) 0
- e) 2d/I

- Putanja elektronskog snopa u homogenom magnetskom polju indukcije 0,007 T u vakuumu je kružni luk polumjera 3 cm. Kolika je energija jednog elektrona u tom snopu? (m_e, e)
- a) 6,2·10⁻¹⁶ J
- b) $3,7\cdot10^7$ J
- c) $6,2\cdot10^{-8}$ J
- d) 3,9·10⁻⁸ J
- e) 6,2·10⁻⁴ J