1. (16%) Sketch the approximate Bode plot for the transfer function T(s) (include proper label of the frequencies, magnitudes and phases).

(a)
$$T(s) = \frac{2 \times 10^4 s}{(s+10^2)(s+10^5)}$$

- 2. (18%) We want to design a MOSFET amplifier with the configuration in Figure 1. (a) Design R_D such that $I_{DQ}=0.2$ mA and $V_{DSQ}=5$ V. (b) The magnitude of the voltage gain should be -10 in the midband range, determine the required value of g_m and K_n (assuming $\lambda=0$ and ignoring R_{Si}). (c) if midband frequency range from 200 Hz to 3 kHz, and $R_{TH}=R_1||R_2=50$ k Ω , determine the required value of C_C and C_L .
- 3. (18%) For the common-emitter circuit in Figure 2, assume that $r_s = \infty$, $R_1 || R_2 = 5 \text{k}\Omega$, and $R_C = R_L = 1 \text{k}\Omega$. The transistor is biased at $I_{CQ} = 5 \text{ mA}$ and the parameters are $\beta_0 = 200$, $V_A = \infty$, $C_\mu = 5 \text{ pF}$, and $f_T = 250 \text{ MHz}$ (unity-gain bandwidth for short circuit current gain). (a) Determine the value of C_π . (b) Determine the equivalent Millar capacitance. (c) Determine the upper 3dB frequency for the small-signal current gain.

- 4. (10%) The inverting op-amplifier shown in Figure 3 has parameters $R_1 = 25 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, and open-loop gain $A_{od} = 10000$. The input voltage is from an ideal voltage source whose value is $v_I = 1 \text{ V}$. (a) Calculate the actual close-loop voltage gain. (b) What is the voltage at the inverting input terminal of the op-amp?
- 5. (10%) For the circuit shown in Figure 4, (a) plot the voltage transfer characteristic curve of v_0 (versus v_I). (b) plot the voltage transfer characteristic curve of v_{O1} (versus v_I).

- 6. (12%) For the circuit shown in Figure 5, (a) derive the voltage transfer function $A_v = v_O/v_I$ as a function of frequency. (b) What is the voltage gain at dc? (c) At what frequency is the magnitude of the gain a factor of $\sqrt{2}$ less than the dc gain?
- 7. (16%) For the instrumentation amplifier in Figure 6, the parameters are R₄ = 90 kΩ,
 R₃ = 30 kΩ, and R₂ = 50 kΩ. Resistance R₁ is a series combination of a fixed 2 kΩ resistor and a 100 kΩ potentiometer. (a) Determine the range of the differential voltage gain. (b) If one of the resistor R₃, which is connected to the inverting terminal of A3, is R'₃ = 30 kΩ + 5%.
 Determine the CMRR.

