$12n_{0068} \ (K12n_{0068})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3.01211 \times 10^{31}u^{29} + 4.34016 \times 10^{31}u^{28} + \dots + 1.97066 \times 10^{30}b - 8.57936 \times 10^{32},$$

$$1.09509 \times 10^{30}u^{29} - 1.54101 \times 10^{30}u^{28} + \dots + 7.03808 \times 10^{28}a + 2.93651 \times 10^{31},$$

$$u^{30} - 2u^{29} + \dots + 112u - 16 \rangle$$

$$I_2^u = \langle b + 1, -u^8 + 3u^6 + u^5 - 4u^4 - 2u^3 + u^2 + a + 2u + 1, \ u^9 + u^8 - 2u^7 - 3u^6 + u^5 + 3u^4 + 2u^3 - u - 1 \rangle$$

$$I_1^v = \langle a, -v^3 + 8b - 13, \ v^4 - 3v^3 + 8v^2 - 3v + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 43 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3.01 \times 10^{31} u^{29} + 4.34 \times 10^{31} u^{28} + \cdots + 1.97 \times 10^{30} b - 8.58 \times 10^{32}, \ 1.10 \times 10^{30} u^{29} - 1.54 \times 10^{30} u^{28} + \cdots + 7.04 \times 10^{28} a + 2.94 \times 10^{31}, \ u^{30} - 2u^{29} + \cdots + 112u - 16 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -15.5596u^{29} + 21.8953u^{28} + \dots + 2227.18u - 417.232 \\ 15.2848u^{29} - 22.0239u^{28} + \dots - 2273.81u + 435.354 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -114.601u^{29} + 164.616u^{28} + \dots + 17005.3u - 3254.00 \\ -12.2418u^{29} + 17.5529u^{28} + \dots + 1815.63u - 347.070 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.274795u^{29} - 0.128633u^{28} + \dots - 46.6332u + 18.1226 \\ 15.2848u^{29} - 22.0239u^{28} + \dots - 2273.81u + 435.354 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -114.601u^{29} + 164.616u^{28} + \dots + 17005.3u - 3254.00 \\ -24.1706u^{29} + 34.7409u^{28} + \dots + 3584.44u - 686.313 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 80.2622u^{29} - 115.883u^{28} + \dots - 12018.0u + 2311.90 \\ 28.2365u^{29} - 40.6686u^{28} + \dots - 4212.96u + 808.462 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -82.1322u^{29} + 117.960u^{28} + \dots + 12185.6u - 2331.50 \\ -46.3428u^{29} + 66.6043u^{28} + \dots + 6876.00u - 1316.29 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 120.629u^{29} - 173.452u^{28} + \dots - 17928.5u + 3434.03 \\ 58.6201u^{29} - 84.3267u^{28} + \dots - 8714.67u + 1669.08 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -102.359u^{29} + 147.063u^{28} + \dots + 15189.6u - 2906.93 \\ -12.2418u^{29} + 17.5529u^{28} + \dots + 1815.63u - 347.070 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $18.4364u^{29} 27.2600u^{28} + \cdots 2861.01u + 546.175$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 52u^{29} + \dots + 28u + 1$
c_2, c_4	$u^{30} - 12u^{29} + \dots - 4u - 1$
c_{3}, c_{6}	$u^{30} + 3u^{29} + \dots - 1024u + 512$
c_5, c_9	$u^{30} + 2u^{29} + \dots - 112u - 16$
c ₇	$u^{30} - 4u^{29} + \dots + 4u - 1$
c_8, c_{11}	$u^{30} - 4u^{29} + \dots + 4u + 1$
c_{10}, c_{12}	$u^{30} - 8u^{29} + \dots + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} - 136y^{29} + \dots + 4192y + 1$
c_2, c_4	$y^{30} - 52y^{29} + \dots - 28y + 1$
c_{3}, c_{6}	$y^{30} - 63y^{29} + \dots - 1572864y + 262144$
c_5, c_9	$y^{30} - 30y^{29} + \dots - 2176y + 256$
c ₇	$y^{30} - 68y^{29} + \dots - 16y + 1$
c_8, c_{11}	$y^{30} + 8y^{29} + \dots - 4y + 1$
c_{10}, c_{12}	$y^{30} + 32y^{29} + \dots - 428y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.715139 + 0.446335I $a = 0.637691 + 0.192313I$ $b = 0.206372 + 0.122164I$	1.47077 + 1.88429I	-1.09736 - 4.74077I
u = -0.715139 - 0.446335I $a = 0.637691 - 0.192313I$ $b = 0.206372 - 0.122164I$	1.47077 - 1.88429I	-1.09736 + 4.74077I
u = -0.520677 + 0.583530I $a = -1.10072 - 2.04738I$ $b = -1.225610 + 0.025926I$	-2.38851 + 1.39225I	-9.42086 - 3.19191I
u = -0.520677 - 0.583530I $a = -1.10072 + 2.04738I$ $b = -1.225610 - 0.025926I$	-2.38851 - 1.39225I	-9.42086 + 3.19191I
u = -1.297510 + 0.455237I $a = 0.389154 + 0.049150I$ $b = 0.517584 + 0.471630I$	-4.40422 + 6.31187I	-8.00000 - 3.70826I
u = -1.297510 - 0.455237I $a = 0.389154 - 0.049150I$ $b = 0.517584 - 0.471630I$	-4.40422 - 6.31187I	-8.00000 + 3.70826I
u = 1.350390 + 0.302093I $a = 0.402345 + 0.008016I$ $b = 0.436591 - 0.605380I$	-5.03747 - 0.32171I	-10.46137 + 0.I
u = 1.350390 - 0.302093I $a = 0.402345 - 0.008016I$ $b = 0.436591 + 0.605380I$	-5.03747 + 0.32171I	-10.46137 + 0.I
u = 0.458152 + 0.404118I $a = 0.901481 - 0.429883I$ $b = -0.568552 + 0.347997I$	-0.690095 + 0.127607I	-9.90837 - 0.33008I
u = 0.458152 - 0.404118I $a = 0.901481 + 0.429883I$ $b = -0.568552 - 0.347997I$	-0.690095 - 0.127607I	-9.90837 + 0.33008I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.355435 + 0.458702I		
a = 0.191023 + 0.000486I	-8.72787 + 1.60808I	-9.05721 + 6.90396I
b = 1.63285 - 0.05553I		
u = 0.355435 - 0.458702I		
a = 0.191023 - 0.000486I	-8.72787 - 1.60808I	-9.05721 - 6.90396I
b = 1.63285 + 0.05553I		
u = -0.043773 + 0.562236I		
a = 1.55055 + 0.58614I	-0.46641 - 2.28721I	-1.63292 + 4.53779I
b = -0.101765 - 0.109648I		
u = -0.043773 - 0.562236I		
a = 1.55055 - 0.58614I	-0.46641 + 2.28721I	-1.63292 - 4.53779I
b = -0.101765 + 0.109648I		
u = 0.562163 + 0.001137I		
a = -4.72549 - 0.32287I	-1.29017 + 2.42994I	-20.9927 + 0.0895I
b = -0.951592 + 0.196609I		
u = 0.562163 - 0.001137I		
a = -4.72549 + 0.32287I	-1.29017 - 2.42994I	-20.9927 - 0.0895I
b = -0.951592 - 0.196609I		
u = 0.485715		
a = 0.919058	-0.783101	-12.6230
b = -0.317479		
u = 1.54469 + 0.29004I	40.0000 4.000	
a = 1.71848 - 0.49046I	-13.3728 - 4.6597I	0
b = 1.98426 + 0.12684I		
u = 1.54469 - 0.29004I	10.0500 : 4.0505	_
a = 1.71848 + 0.49046I	-13.3728 + 4.6597I	0
b = 1.98426 - 0.12684I		
u = 0.12715 + 1.72473I	10.0001 : 0.00017	_
a = 0.181586 + 0.001643I	-16.8261 + 3.2961I	0
b = 2.07079 - 0.05873I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.12715 - 1.72473I		
a = 0.181586 - 0.001643I	-16.8261 - 3.2961I	0
b = 2.07079 + 0.05873I		
u = 1.75662 + 0.28335I		
a = -0.969045 + 0.338183I	-10.34510 - 5.56831I	0
b = -1.39226 - 0.94810I		
u = 1.75662 - 0.28335I		
a = -0.969045 - 0.338183I	-10.34510 + 5.56831I	0
b = -1.39226 + 0.94810I		
u = -1.78192		
a = 1.50256	-17.8492	0
b = 2.09847		
u = -1.78762 + 0.03529I		
a = -0.998109 - 0.180287I	-10.57970 - 1.09876I	0
b = -1.51752 + 0.83695I		
u = -1.78762 - 0.03529I		
a = -0.998109 + 0.180287I	-10.57970 + 1.09876I	0
b = -1.51752 - 0.83695I		
u = 1.61551 + 0.87429I		
a = 1.026870 - 0.855426I	18.1572 - 12.2530I	0
b = 1.96767 + 0.40947I		
u = 1.61551 - 0.87429I		
a = 1.026870 + 0.855426I	18.1572 + 12.2530I	0
b = 1.96767 - 0.40947I		
u = -1.75729 + 0.77336I		
a = 1.083390 + 0.694936I	16.9360 + 5.5790I	0
b = 2.05068 - 0.37214I		
u = -1.75729 - 0.77336I		
a = 1.083390 - 0.694936I	16.9360 - 5.5790I	0
b = 2.05068 + 0.37214I		

II.
$$I_2^u = \langle b+1, \ -u^8+3u^6+u^5-4u^4-2u^3+u^2+a+2u+1, \ u^9+u^8-2u^7-3u^6+u^5+3u^4+2u^3-u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{8} - 3u^{6} - u^{5} + 4u^{4} + 2u^{3} - u^{2} - 2u - 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{8} - 3u^{6} - u^{5} + 4u^{4} + 2u^{3} - u^{2} - 2u - 2 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{8} - 3u^{6} - u^{5} + 4u^{4} + 2u^{3} - u^{2} - 2u - 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{4} + u^{2} - 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + u^{2} - 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{7} + 2u^{5} - 2u^{3} \\ u^{8} + u^{7} - 3u^{6} - 2u^{5} + 3u^{4} + 2u^{3} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^8 2u^7 2u^6 + 3u^5 + 6u^4 3u^3 3u^2 4u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^9$
c_3, c_6	u^9
<i>C</i> ₄	$(u+1)^9$
<i>C</i> ₅	$u^9 + u^8 - 2u^7 - 3u^6 + u^5 + 3u^4 + 2u^3 - u - 1$
c ₇	$u^9 + 5u^8 + 12u^7 + 15u^6 + 9u^5 - u^4 - 4u^3 - 2u^2 + u + 1$
<i>c</i> ₈	$u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1$
<i>c</i> 9	$u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1$
c_{10}	$u^9 + 3u^8 + 8u^7 + 13u^6 + 17u^5 + 17u^4 + 12u^3 + 6u^2 + u - 1$
c_{11}	$u^9 - u^8 + 2u^7 - u^6 + 3u^5 - u^4 + 2u^3 + u + 1$
c_{12}	$u^9 - 3u^8 + 8u^7 - 13u^6 + 17u^5 - 17u^4 + 12u^3 - 6u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^9$
c_3, c_6	y^9
c_5, c_9	$y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1$
c_7	$y^9 - y^8 + 12y^7 - 7y^6 + 37y^5 + y^4 - 10y^2 + 5y - 1$
c_8, c_{11}	$y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1$
c_{10}, c_{12}	$y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.772920 + 0.510351I		
a = -0.457852 - 1.072010I	0.13850 + 2.09337I	-8.93344 - 3.71284I
b = -1.00000		
u = -0.772920 - 0.510351I		
a = -0.457852 + 1.072010I	0.13850 - 2.09337I	-8.93344 + 3.71284I
b = -1.00000		
u = 0.825933		
a = -1.46592	-2.84338	-14.0380
b = -1.00000		
u = 1.173910 + 0.391555I		
a = -0.522253 + 0.392004I	-6.01628 - 1.33617I	-14.5101 + 2.5441I
b = -1.00000		
u = 1.173910 - 0.391555I		
a = -0.522253 - 0.392004I	-6.01628 + 1.33617I	-14.5101 - 2.5441I
b = -1.00000		
u = -0.141484 + 0.739668I		
a = 1.63880 - 0.65075I	-2.26187 - 2.45442I	-7.83172 + 1.00072I
b = -1.00000		
u = -0.141484 - 0.739668I		
a = 1.63880 + 0.65075I	-2.26187 + 2.45442I	-7.83172 - 1.00072I
b = -1.00000		
u = -1.172470 + 0.500383I		
a = -0.425734 - 0.444312I	-5.24306 + 7.08493I	-13.7057 - 8.1735I
b = -1.00000		
u = -1.172470 - 0.500383I		
a = -0.425734 + 0.444312I	-5.24306 - 7.08493I	-13.7057 + 8.1735I
b = -1.00000		

III.
$$I_1^v = \langle a, -v^3 + 8b - 13, v^4 - 3v^3 + 8v^2 - 3v + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{8}v^{3} + \frac{13}{8} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{8}v^{3} + \frac{21}{8} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{8}v^{3} + \frac{13}{8} \\ \frac{1}{8}v^{3} + \frac{13}{8} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{8}v^{3} + \frac{13}{8} \\ -\frac{1}{8}v^{3} - \frac{21}{8} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{8}v^{3} - \frac{13}{8} \\ -\frac{1}{8}v^{3} - \frac{21}{8} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{4}v^{3} + v + \frac{5}{4} \\ -\frac{1}{8}v^{3} - \frac{21}{8} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{7}{8}v^{3} - 2v^{2} + 6v - \frac{5}{8} \\ -\frac{9}{8}v^{3} + 3v^{2} - 8v + \frac{3}{8} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{8}v^{3} - \frac{13}{8} \\ \frac{1}{8}v^{3} + \frac{21}{8} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{9}{2}v^3 + 13v^2 33v \frac{17}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - 3u + 1)^2$
c_2, c_3	$(u^2+u-1)^2$
c_4, c_6	$(u^2 - u - 1)^2$
c_5, c_9	u^4
	$(u^2 + 3u + 1)^2$
c_8, c_{12}	$(u^2 - u + 1)^2$
c_{10}, c_{11}	$(u^2+u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^2 - 7y + 1)^2$
c_2, c_3, c_4 c_6	$(y^2 - 3y + 1)^2$
c_5, c_9	y^4
$c_8, c_{10}, c_{11} \\ c_{12}$	$(y^2 + y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.190983 + 0.330792I		
a = 0	-8.88264 + 2.02988I	-15.5000 - 9.2736I
b = 1.61803		
v = 0.190983 - 0.330792I		
a = 0	-8.88264 - 2.02988I	-15.5000 + 9.2736I
b = 1.61803		
v = 1.30902 + 2.26728I		
a = 0	-0.98696 + 2.02988I	-15.5000 + 2.3454I
b = -0.618034		
v = 1.30902 - 2.26728I		
a = 0	-0.98696 - 2.02988I	-15.5000 - 2.3454I
b = -0.618034		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^2-3u+1)^2(u^{30}+52u^{29}+\cdots+28u+1)$
c_2	$((u-1)^9)(u^2+u-1)^2(u^{30}-12u^{29}+\cdots-4u-1)$
<i>C</i> 3	$u^{9}(u^{2}+u-1)^{2}(u^{30}+3u^{29}+\cdots-1024u+512)$
C4	$((u+1)^9)(u^2-u-1)^2(u^{30}-12u^{29}+\cdots-4u-1)$
<i>C</i> 5	$u^{4}(u^{9} + u^{8} - 2u^{7} - 3u^{6} + u^{5} + 3u^{4} + 2u^{3} - u - 1)$ $\cdot (u^{30} + 2u^{29} + \dots - 112u - 16)$
c_6	$u^{9}(u^{2}-u-1)^{2}(u^{30}+3u^{29}+\cdots-1024u+512)$
C ₇	$((u^{2} + 3u + 1)^{2})(u^{9} + 5u^{8} + \dots + u + 1)$ $\cdot (u^{30} - 4u^{29} + \dots + 4u - 1)$
c_8	$(u^{2} - u + 1)^{2}(u^{9} + u^{8} + 2u^{7} + u^{6} + 3u^{5} + u^{4} + 2u^{3} + u - 1)$ $\cdot (u^{30} - 4u^{29} + \dots + 4u + 1)$
c_9	$u^{4}(u^{9} - u^{8} - 2u^{7} + 3u^{6} + u^{5} - 3u^{4} + 2u^{3} - u + 1)$ $\cdot (u^{30} + 2u^{29} + \dots - 112u - 16)$
c_{10}	$(u^{2} + u + 1)^{2}$ $\cdot (u^{9} + 3u^{8} + 8u^{7} + 13u^{6} + 17u^{5} + 17u^{4} + 12u^{3} + 6u^{2} + u - 1)$ $\cdot (u^{30} - 8u^{29} + \dots + 4u + 1)$
c_{11}	$(u^{2} + u + 1)^{2}(u^{9} - u^{8} + 2u^{7} - u^{6} + 3u^{5} - u^{4} + 2u^{3} + u + 1)$ $\cdot (u^{30} - 4u^{29} + \dots + 4u + 1)$
c_{12}	$(u^{2} - u + 1)^{2}$ $\cdot (u^{9} - 3u^{8} + 8u^{7} - 13u^{6} + 17u^{5} - 17u^{4} + 12u^{3} - 6u^{2} + u + 1)$ $\cdot (u^{30} - 8u^{29} + \dots + 4u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^2-7y+1)^2(y^{30}-136y^{29}+\cdots+4192y+1)$
c_2, c_4	$((y-1)^9)(y^2-3y+1)^2(y^{30}-52y^{29}+\cdots-28y+1)$
c_{3}, c_{6}	$y^{9}(y^{2} - 3y + 1)^{2}(y^{30} - 63y^{29} + \dots - 1572864y + 262144)$
c_5,c_9	$y^{4}(y^{9} - 5y^{8} + 12y^{7} - 15y^{6} + 9y^{5} + y^{4} - 4y^{3} + 2y^{2} + y - 1)$ $\cdot (y^{30} - 30y^{29} + \dots - 2176y + 256)$
c_7	$(y^{2} - 7y + 1)^{2}(y^{9} - y^{8} + 12y^{7} - 7y^{6} + 37y^{5} + y^{4} - 10y^{2} + 5y - 1)$ $\cdot (y^{30} - 68y^{29} + \dots - 16y + 1)$
c_8, c_{11}	$(y^{2} + y + 1)^{2}$ $\cdot (y^{9} + 3y^{8} + 8y^{7} + 13y^{6} + 17y^{5} + 17y^{4} + 12y^{3} + 6y^{2} + y - 1)$ $\cdot (y^{30} + 8y^{29} + \dots - 4y + 1)$
c_{10}, c_{12}	$((y^{2} + y + 1)^{2})(y^{9} + 7y^{8} + \dots + 13y - 1)$ $\cdot (y^{30} + 32y^{29} + \dots - 428y + 1)$