GEL-2005 SYSTÈMES ET COMMANDE LINÉAIRES

Examen #2 19 décembre 2016, 8h30 à 10h20

Document permis : une feuille manuscrite recto verso (8.5" x 11")

Éric Poulin, Département de génie électrique et de génie informatique

REMARQUES

- Accompagnez vos réponses d'unités lorsque c'est pertinent;
- Sauf pour la question 5, les détails de vos calculs sont requis.

NOMENCLATURE

$$G(s) = G_c(s)G_p(s)$$

$$H(s) = \frac{G(s)}{1 + G(s)}$$

Figure 1. Représentation générale d'un asservissement

QUESTION 1 (20 points)

- α Le système étudié est celui à la figure 1 avec $d_u = d_m = 0$ et F(s) = 1. On sait que :
 - le système en boucle fermée est stable;
 - le régulateur est de type proportionnel (gain non nul);
 - le procédé est $G_p(s) = \frac{0.1}{s(s+1)}$;
 - la consigne est r = 2;
 - la perturbation $d_v = 3$.

Que valent y et u en régime permanent? Justifiez votre réponse.

QUESTION 2 (22 points)

Le système étudié est celui à la figure 1 pour lequel les fonctions de transfert sont les suivantes :

$$F(s) = 1$$
 , $G_c(s) = \frac{K_c(5s+1)}{5s}$, $G_p(s) = \frac{0.6e^{-4s}}{5s+1}$

Traitez les questions suivantes de façon indépendante.

- a) (12 points) Pour $K_c = 1.4$, donnez l'augmentation du retard du procédé qui amène le système en boucle fermée à la limite de la stabilité;
- b) (10 points) Donnez la valeur de K_c qui amène le système en boucle fermée à la limite de la stabilité.

QUESTION 3 (23 points)

La stratégie de commande cascade présentée à la figure 2 est considérée.

Figure 2. Stratégie de commande cascade

Les fonctions de transfert sont les suivantes :

$$G_{pi}(s) = \frac{0.5}{6s+1}$$
 , $G_{pe}(s) = \frac{3}{24s+1}$

- a) (8 points) Calculez le régulateur $G_{ci}(s)$ afin que la boucle interne réponde selon la spécification $H_i(s) = \frac{Y_i(s)}{R_i(s)} = \frac{1}{4s+1}$;
- b) (12 points) Le régulateur $G_{ce}(s)$ est de type PIDF. Calculez ses paramètres pour que la fonction de transfert $Y_e(s)/R_e(s)$ se comporte comme un système de premier ordre avec une constante de temps de 18 secondes (négligez l'effet du filtre sur la dérivée et posez $T_f = T_d/4$);
- c) (3 points) Donnez la valeur de u_i en régime permanent lorsque r_e est un échelon de consigne unitaire.

QUESTION 4 (20 points)

Sur le diagramme de Black qui vous est fourni à la fin du questionnaire, tracez $G(j\omega)$ qui illustre clairement les caractéristiques suivantes (fournissez une justification pour chacune des caractéristiques):

• L'erreur statique du système en boucle fermée est nulle pour un échelon de consigne;

• H(s) possède un facteur de résonance Q = 1.41;

• Une augmentation de gain d'un facteur 2 au niveau de G(s) amène le système en boucle fermée à la limite de la stabilité;

• G(s) possède un retard.

N'oubliez pas d'inscrire votre nom sur la feuille et de l'insérer dans votre cahier d'examen.

QUESTION 5 (15 points)

Répondez par *vrai*, *faux* ou *abstention*. Une question non répondue est interprétée comme *abstention*. Une bonne réponse vaut 3 points. Une mauvaise réponse vaut -1 point. La réponse *abstention* vaut 0 point. Exceptionnellement pour cette question, il n'est pas nécessaire de justifier vos réponses.

- a) Un procédé de second ordre est asservi à l'aide d'un régulateur PIDF dont la fonction de transfert est : $G_c(s) = \frac{U(s)}{\varepsilon(s)} = \frac{0.5(5s+1)(4s+1)}{5s(2s+1)}$. Le système en boucle fermée est stable et au repos. L'application d'un échelon de consigne unitaire à t=0 génère une variation de commande $u(0^+)=5$;
- b) Un asservissement est affecté par un bruit de mesure à la fréquence 20 rad/s. On décide donc de filtrer la mesure et d'utiliser ce signal filtré pour le comparer avec la consigne. Deux filtres sont considérés : $F_{m1}(s) = 1/(s+1)$ et $F_{m2}(s) = 1/(0.5s+1)$. Comparativement à $F_{m2}(s)$, le filtre $F_{m1}(s)$ atténue mieux le bruit de mesure, mais rapproche plus le système asservi de l'instabilité;
- c) Le procédé possède un gain positif, un retard et des pôles à partie réelle négative. Avec le régulateur $G_c(s) = \frac{K_c(T_i s + 1)}{T_i s}$ pour lequel $K_c > 0$, le système en boucle fermée est stable. Augmenter K_c implique nécessairement que la largeur de bande augmente et que le temps de réponse à ± 5 % de la valeur finale diminue;
- d) H(s) a un gain statique unitaire. Le régulateur possède donc au moins un intégrateur.
- e) Un filtre passe-bas de premier ordre dont la constante de temps est de 5 secondes doit être appliqué au signal de consigne d'un système asservi. Par erreur lors de l'implantation, ce filtre est plutôt placé en série avec le régulateur. Cette erreur ne réduit pas les marges de stabilité du système.

Transformation de Laplace

F(s) sans pôles

$f(t)$ pour $t \ge 0^-$	F(s)	Pôles de $F(s)$
$\delta(t)$	1	Aucun

F(s) avec des pôles simples (réels ou conjugués)

(reels ou conjugues)					
f(t) pour $t > 0$	F(s)	Pôles de $F(s)$			
1 ou $u_e(t)$	$\frac{1}{s}$	0			
e^{-at}	$\frac{1}{s+a}$	-a			
$\sin(\omega t + \phi)$	$\frac{[\sin\phi]s + \omega\cos\phi}{s^2 + \omega^2}$	$\pm j\omega$			
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\pm j\omega$			
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$\pm j\omega$			
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$-a \pm j\omega$			
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$-a \pm j\omega$			

F(s) avec des pôles multiples

	I	
f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
t	$\frac{1}{s^2}$	0 (double)
$\frac{t^{n-1}}{(n-1)!}, n = 1, 2, 3, \dots$ te^{-at}	$\frac{1}{s^n}$	0 (ordre n)
	$\frac{1}{(s+a)^2}$	-a (double)
$\frac{t^{n-1}}{(n-1)!}e^{-at}, n = 1, 2, 3, \dots$	$\frac{1}{(s+a)^n}$	-a (ordre n)
$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2+\omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t^2}{2\omega}\sin(\omega t)$	$\frac{3s^2 - \omega^2}{(s^2 + \omega^2)^3}$	$\pm j\omega$ (triple)

Table 1: Transformées de Laplace

$$\mathcal{L}f'(t) \text{ (pour } t > 0) = s\mathcal{L}f(t) - f(0^+)$$
(1)

mustalinger at says is vitagen affect
$$\mathcal{L}\left[\int_0^t f(\tau)d au
ight]=rac{1}{s}\mathcal{L}f(t)$$
 for in Tillagen into the social (2)

$$f(0^+) = \lim_{s \to \infty} s \mathcal{L} f(t) \tag{3}$$

$$f(\infty) = \lim_{s \to 0} s \mathcal{L}f(t) \tag{4}$$

$$\mathcal{L}f(t-\theta)u_e(t-\theta) = e^{-\theta s}\mathcal{L}f(t)u_e(t) \tag{5}$$

$$\mathcal{L}\left[\int_0^t f_1(\tau)f_2(t-\tau)d\tau\right] = F_1(s)F_2(s) \tag{6}$$

Systèmes du second ordre

$$G(s) = \frac{K}{\frac{1}{\omega_n^2} s^2 + \frac{2z}{\omega_n} s + 1}$$

$$\omega_p = \omega_n \sqrt{1 - z^2}$$

$$\omega_R = \omega_n \sqrt{1 - 2z^2}$$
(8)

$$\omega_p = \omega_n \sqrt{1 - z^2} \tag{8}$$

$$\omega_R = \omega_n \sqrt{1 - 2z^2} \tag{9}$$

$$Q = \frac{|G(j\omega_R)|}{|G(j0)|} = \frac{1}{2z\sqrt{1-z^2}}$$
 (10)

Figure 1: Les dépassements de la réponse à l'échelon versus le coefficient d'amortissement

Figure 2: Le temps de réponse à $\pm 5\%$.

Figure 3: Le facteur de résonance versus le coefficient d'amortissement

Identification des systèmes

Туре	Modèle Fonction de transfert	Réponse à l'échelon	Paramètres
I	$\frac{K_p}{1+T_1s}, T_1>0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$
II	$\frac{K_{p}e^{-\theta s}}{1+T_{1}s}, T_{1}>0$	$ \begin{array}{c c} \bullet & & \Delta y \\ \hline & & \Delta u \\ \hline & & \delta_{3\%} \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$
III	$\frac{K_p}{s}$	Δt Δt	$K_p = \frac{\Delta y}{\Delta t \Delta u}$
IV	$\frac{K_{p}e^{-\theta s}}{s}$	Δy Δt Δy	$K_{p} = \frac{\Delta y}{\Delta t \Delta u}$
v	$\frac{K_p}{(1+T_1s)^2}, T_1 > 0$	$\begin{array}{c c} & & & \Delta y \\ \hline & & & \Delta u \\ \hline & & & \\ \hline \end{array}$	$K_{p} = \frac{\Delta y}{\Delta u}$ $T_{1} = \frac{t_{73\%}}{2.6}$
VI	$\frac{K_{p}e^{-\theta s}}{\left(1+T_{1}s\right)^{2}}, T_{1}>0$	$ \begin{array}{c c} & \Delta y \\ \hline & \Delta y \\ \hline & t_{73\%} \end{array} $	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$
VII	$\frac{K_{p}(1-T_{0i}s)}{(1+T_{1}s)^{2}}, T_{1} > 0, T_{0i} > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ Table 2
VIII	$\frac{K_{p}(1-T_{0i}s)e^{-\theta s}}{(1+T_{1}s)^{2}}, T_{1} > 0, T_{0i} > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ Table 2

Туре	Modèle Fonction de transfert	Réponse à l'échelon	Paramètres
IX	$\frac{K_{p}(1+T_{0s}s)}{(1+T_{1}s)^{2}}, T_{1} > 0, T_{0s} > T_{1}$	$ \begin{array}{c c} & \Delta y \\ & \Delta y \\ & \downarrow \\ &$	$K_p = \frac{\Delta y}{\Delta u}$ Table 2
X	$\frac{K_{p}(1+T_{0s}s)e^{-\theta s}}{(1+T_{1}s)^{2}}, T_{1} > 0, T_{0s} > T_{1}$	$ \begin{array}{c c} & \Delta y_{max} & \Delta u \\ & \downarrow \\$	$K_p = \frac{\Delta y}{\Delta u}$ Table 2
XI	$\frac{K_{p}}{\frac{1}{\omega_{n}^{2}}s^{2} + \frac{2z}{\omega_{n}}s + 1}, 0 < z < 1, \omega_{n} > 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_p = \frac{\Delta y}{\Delta u}$ z: dépassements (fig. 1) $\omega_n : \omega_p \text{ ou } T_{5\%} \text{ (fig. 2)}$
XII	$\frac{K_{p}e^{-\theta s}}{\frac{1}{\omega_{n}^{2}}s^{2} + \frac{2z}{\omega_{n}}s + 1}, 0 < z < 1, \omega_{n} > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta u}$ z: dépassements (fig. 1) $\omega_n : \omega_p \text{ ou } T_{5\%} \text{ (fig. 2)}$
XIII	$\frac{K_p}{(1+T_1s)s}, T_1 > 0$	$ \begin{array}{c c} & \Delta y \\ \hline \Delta t \\ \hline T_1 \end{array} $	$K_p = \frac{\Delta y}{\Delta t \Delta u}$
XIV	$\frac{K_p e^{-\theta s}}{(1+T_1 s)s}, T_1 > 0$	$ \begin{array}{c} $	$K_p = \frac{\Delta y}{\Delta t \Delta u}$

Types VII et VIII			Types IX et X			
$-\Delta y_{min}/\Delta y$	t_{min}/T_1	T_{0i}/T_1	$\Delta y_{max} / \Delta y$	t_{max}/T_1	T_{0s}/T_I	
0.01	0.14	0.16	1.02	3.13	1.47	
0.02	0.19	0.23	1.04	2.69	1.59	
0.03	0.22	0.29	1.06	2.45	1.69	
0.04	0.25	0.34	1.08	2.28	1.78	
0.05	0.28	0.39	1.10	2.16	1.86	
0.06	0.31	0.44	1.15	1.95	2.05	
0.00	0.32	0.48	1.20	1.81	2.23	
0.07	0.34	0.52	1.25	1.72	2.39	
	0.36	0.56	1.30	1.65	2.55	
0.09	0.38	0.60	1.35	1.58	2.71	
0.10		0.96	1.40	1.54	2.86	
0.20	0.49	1.28	1.45	1.50	3.01	
0.30	0.56	1.58	1.50	1.46	3.16	
0.40	0.61	1.88	1.55	1.43	(3.31	
0.50	0.65	2.17	1.60	1.41	3.45	
0.60	0.68	2.17	1.65	1.38	3.60	
0.70	0.71	2.75	1.70	1.36	3.74	
0.80	0.73	3.03	1.75	1.35	3.88	
0.90	0.75	3.32	1.80	1.33	4.03	
1.00	0.77	3.60	1.85	1.32	4.17	
1.10	0.78	3.87	1.90	1.30	4.31	
1.20	0.79	4.15	1.95	1.29	4.45	
1.30	0.81	4.43	2.00	1.28	4.60	
1.40	0.82	4.70	2.10	1.26	4.87	
1.50	0.82	4.98	2.20	1.24	5.16	
1.60	0.83	5.26	2.30	1.23	5.43	
1.70	0.84 0.85	5.53	2.40	1.21	5.71	
1.80	0.85	5.81	2.50	1.20	5.98	
1.90	0.86	6.09	2.60	1.19	6.26	
2.00	0.87	6.63	2.70	1.18	6.54	
2.20	0.88	7.18	2.80	1.17	6.81	
2.40	0.89	7.72	2.90	1.16	7.09	
2.60	0.89	8.27	3.00	1.16	7.36	
2.80	0.90	8.82	3.50	1.13	8.73	
3.00	0.90	9.37	4.00	1.11	10.10	
3.20	0.90	9.91	4.50	1.10	11.47	
3.40	0.91	10.46	5.00	1.08	12.84	
3.60	0.91	11.00	6.00	1.07	15.56	
3.80	0.92	11.56	7.00	1.06	18.28	
4.00	0.92	12.91	8.00	1.05	21.00	
4.50 5.00	0.93	14.28	9.00	1.04	23.72	

Table 2 : Paramètres des modèles VII à X

Réglage des régulateurs avec action intégrale

7.1.1.20.1	Modèle	1	Réglage			
Type	Fonction de transfert	K_c	T_i	T_d	T_f	T_c
I	$\frac{K_p}{1+T_1s}, T_1 > 0$	$\frac{T_1}{K_p T_H}$	T_1	-	-	-
TI		$\frac{T_1}{K_p(T_1+\theta)}$	T_1	-	-	-
II	$\frac{K_p e^{-\theta s}}{1 + T_1 s}, T_1 > 0$	équ. 13	équ. 11	-	-	-
III	$\frac{K_p}{s}$	$\frac{4.2}{K_p T_r}$	$0.47T_r$	-		T_i
$V(\theta=0)$		$\frac{T_1}{K_p(T_1+ heta)}$	$1.5T_{1}$	-	-	-
$VI(\theta > 0)$	$\frac{K_p e^{-\theta s}}{(1+T_1 s)^2}, T_1 > 0$	équ. 13	équ. 11	-		-
VII $(\theta = 0)$	$\frac{K_p(1-T_{0i}s)e^{-\theta_s}}{(1+T_1s)^2}$, $T_1 > 0$, $T_{oi} > 0$	$\frac{T_1}{K_p(T_1+T_{0i}+\theta)}$	$1.5T_{1}$	-	-	-
VIII $(\theta > 0)$	$\frac{T_{i}}{(1+T_{1}s)^{2}}$, $I_{1} > 0$, $I_{oi} > 0$	équ. 13	équ. 11	-	· -	-
IX	$\frac{K_p(1+T_{0s}s)}{(1+T_1s)^2}$, $T_1 > 0$, $T_{0s} > 0$	$\frac{T_1}{K_p T_H}$ T_1	T_1	T_1	T_{0s}	
X	$\frac{K_p(1+T_{0s}s)e^{-\theta s}}{(1+T_1s)^2}, T_1 > 0, T_{0s} > 0$	$\frac{T_1}{K_p(T_1+T_{0s}+\theta)}$	$1.5T_{1}$	-	T_{0s}	
$\frac{1}{(1+T_1s)^2}$, $I_1 > 0$, $I_{0s} > 1$	$\frac{T_1}{(1+T_1s)^2}$, $T_1 > 0$, $T_{0s} > 0$	équ. 13	équ. 11	-	T_{0s}	-
XIII $(\theta = 0)$ XIV $(\theta > 0)$	$\frac{K_p e^{-\theta s}}{(1+T_1 s)s}, T_1 > 0$	équ. 18	équ. 16	- 7	1,17	T_i

Le régulateur est $G_c(s) = \frac{K_c(1+T_is)(1+T_ds)}{T_is(1+T_fs)}$.

Le filtre sur la consigne est $F(s) = \frac{1}{1+T_c s}$

 T_H est la constante de temps désirée de $H(s) = \frac{1}{1+T_H s}$.

 T_r est le temps de réponse désiré de $\frac{Y(s)}{R(s)}$

Table 2: Réglages des régulateurs à action intégrale

Méthode des contours - procédés stables asymptotiquement:

$$T_{i} = \begin{cases} \left(1 + 0.175 \frac{\theta}{T_{1}} + 0.3 \left(\frac{T_{2}}{T_{1}}\right)^{2} + 0.2 \frac{T_{2}}{T_{1}}\right) T_{1} & \frac{\theta}{T_{1}} \leq 2\\ \left(0.65 + 0.35 \frac{\theta}{T_{1}} + 0.3 \left(\frac{T_{2}}{T_{1}}\right)^{2} + 0.2 \frac{T_{2}}{T_{1}}\right) T_{1} & \frac{\theta}{T_{1}} > 2 \end{cases}$$

$$(11)$$

$$1.015 = \frac{-\pi}{2} + \arctan \omega_0 T_i - \arctan \omega_0 T_0 - \arctan \omega_0 T_1 - \arctan \omega_0 T_2 - \omega_0 \theta + \pi$$
 (12)

$$K_c = \frac{T_i}{K} \sqrt{\frac{(T_1 T_2)^2 \omega_0^6 + (T_1^2 + T_2^2) \omega_0^4 + \omega_o^2}{(T_i T_0)^2 \omega_0^4 + (T_i^2 + T_0^2) \omega_0^2 + 1}}$$
(13)

Méthode des contours - procédés avec une intégration:

$$A_{max} = \frac{10^{0.05M_r}}{\sqrt{10^{0.1M_r} - 1}} \tag{14}$$

$$\phi_{max} = -\pi + \arccos A_{max}^{-1} \tag{15}$$

$$\phi_{max} = -\pi + \arccos A_{max}^{-1}$$

$$T_i = \frac{16(T+\theta)}{(2\phi_{max} + \pi)^2}$$
(15)

$$\omega_{max} = \frac{1}{\sqrt{T_i(T+\theta)}} \tag{17}$$

$$K_{c} = \frac{T_{i}A_{max}}{K} \sqrt{\frac{T^{2}\omega_{max}^{6} + \omega_{max}^{4}}{T_{i}^{2}\omega_{max}^{2} + 1}}$$
(18)