Discrete Math Homework 2

Noflowerzzk

2024.9.28

$1 \quad Answer_1$

a)

				1		
p	q	$\neg p$	$\neg q$	$\neg p \lor q$	$\neg q \lor p$	$(\neg p \lor q) \land (\neg q \lor p)$
T	T	F	F	T	T	T
T	F	F	T	F	T	F
	T	T	F	T	F	F
F	F	T	T	T	T	T

b)

\overline{p}	q	$\neg p$	$\neg q$	$\neg p \lor q$	$\neg q \lor p$	$ (\neg p \lor q) \lor (\neg q \lor p) $
\overline{T}	T	F	F	T	T	T
	F	F	T	F	T	T
	T	T	F	T	F	T
F	F	T	T	T	T	T

c)

p	q	r	$q \vee r$	$p \wedge (q \vee r)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	F
F	T	F	T	F
F	F	T	T	F
F	F	F	F	F

d)

p	q	r	$p \wedge q$	$p \wedge r$	$\mid (p \wedge q) \vee (p \wedge r)$
\overline{T}	T	T	T	T	T
T	T	F	T	F	T
T	F	T	F	T	T
T	F	F	F	F	F
F	T	T	F	F	F
F	T	F	F	F	F
F	F	T	F	F	F
F	$\mid F \mid$	F	F	F	F

e)

\overline{p}	q	$p \wedge q$	$\neg (p \land q)$
\overline{T}	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

f)

p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
\overline{T}	\overline{T}	\overline{F}	\overline{F}	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

g)

\overline{p}	q	$p \wedge q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\overline{\mid (p \wedge q) \vee (\neg p \wedge \neg q)}$
\overline{T}	T	T	F	F	F	T
T	F	F	F	T	F	F
F	T	F	T	F	F	F
F	F	F	T	T	T	T

Obviously, $p \land (q \lor r) \equiv (p \land q) \lor (p \land r), \neg (p \land q) \equiv \neg p \lor \neg q$

2 Answer_2

Proof. Writing the truth table:

\overline{p}	q	r	$\neg p$	$\neg q$	$p \lor q$	$ \neg p \lor r $	$ \neg q \lor r$
T	T	T	F	F	T	T	T
T	T	F	F	F	T	F	F
T	F	T	F	T	T	T	T
T	F	F	F	T	T	F	T
F	T	T	T	F	T	T	T
F	T	F	T	F	T	T	F
F	F	T	T	T	F	T	T
F	F	F	$\mid T \mid$	T	F	$\mid T \mid$	$\mid T \mid$

Noting that with under truth assignment \mathcal{J} in line 1 and line 5, for any $\phi \in \Phi$, $\llbracket \phi \rrbracket_{\mathcal{J}} = T$. and $\mathcal{J}(r) = T$. That means $\Phi \models r$.

3 Answer_3

a) Proof. $\phi \models \psi$ means that under any trhth assignment \mathcal{J} , where $\llbracket \phi \rrbracket_{\mathcal{J}} = T$, we have $\llbracket \psi \rrbracket_{\mathcal{J}} = T$.

Assuming a truth $\mathcal J$ s.t. $[\![\phi]\!]_{\mathcal J}=T,$ then $[\![\psi]\!]_{\mathcal J}=T,$ so

$$[\![\phi \land \psi]\!]_{\mathcal{I}} = [\![\wedge]\!]_{\mathcal{I}} ([\![\phi]\!]_{\mathcal{I}}, [\![\psi]\!]_{\mathcal{I}}) = T = [\![\phi]\!]_{\mathcal{I}}$$

Assuming $\llbracket \phi \rrbracket_{\mathcal{J}} = F$, then

$$\llbracket \phi \wedge \psi \rrbracket_{\mathcal{J}} = \llbracket \wedge \rrbracket_{\mathcal{J}} (\llbracket \phi \rrbracket_{\mathcal{J}}, \llbracket \psi \rrbracket_{\mathcal{J}}) = F = \llbracket \phi \rrbracket_{\mathcal{J}}$$

That means $\phi \wedge \psi \equiv \phi$.

Similarly, Assuming $\llbracket \phi \rrbracket_{\mathcal{J}} = T$, then $\llbracket \psi \rrbracket_{\mathcal{J}} = T$

$$\llbracket \phi \vee \psi \rrbracket_{\mathcal{J}} = \llbracket \vee \rrbracket_{\mathcal{J}} (\llbracket \phi \rrbracket_{\mathcal{J}}, \llbracket \psi \rrbracket_{\mathcal{J}}) = \mathbf{T} = \llbracket \psi \rrbracket_{\mathcal{J}}$$

Assuming $\llbracket \phi \rrbracket_{\mathcal{J}} = F$, then

$$[\![\phi \lor \psi]\!]_{\mathcal{J}} = [\![\lor]\!]_{\mathcal{J}} ([\![\phi]\!]_{\mathcal{J}}, [\![\psi]\!]_{\mathcal{J}}) = [\![\psi]\!]_{\mathcal{J}}$$

That means $\phi \lor \psi = \psi$.

b) We will now prove the absorption rule.

Proof. For all \mathcal{J} s.t. $\llbracket \phi \wedge \psi \rrbracket_{\mathcal{J}} = T$, we know that $\llbracket \phi \rrbracket_{\mathcal{J}} = T$, which means that $\phi \wedge \psi \models \phi$.

$$\phi \lor (\phi \land \psi) \equiv (\phi \land \psi) \lor \phi \equiv \phi$$

Proof. For all \mathcal{J} s.t. $\llbracket \phi \rrbracket_{\mathcal{J}} = T$, we know that $\llbracket \phi \lor \psi \rrbracket_{\mathcal{J}} = T$, which means that $\phi \models \phi \lor \psi$. So

$$\phi \wedge (\phi \vee \psi) \equiv \phi$$