with the contract of the contr

TECHNICAL REPORT

MATHEMATICAL MODELS FOR **NAVIGATION SYSTEMS**

PAUL D. THOMAS

Marine Sciences Department

OCTOBER 1965

code 1

1.00 151 BAL Carle 1, 24

U. S. NAVAL OCEANOGRAPHIC OFFICE WASHINGTON, D. C. 20390 Price \$2.00

in accessible sources, but many are not readily available. Some are new, such as the expansion of the geodesic to second order in the flattening in both geodetic and parametric latitudes, and conversion formulas between the two forms.

Since the entire treatment is mathematical, an overall summary of the investigation is first presented to allow a quick assay of the topics and accomplishments. This summary is followed by a condensation of the formulas developed or included. The details of the actual development follow in three sections with computational examples in the Appendices.

Paul D. Thomas Scientific Staff Assistant Marine Sciences Department U. S. Naval Oceanographic Office

CONTENTS

	Page
FOREWORD	iii
PREFACE	v
FIGURES AND TABLES	viii
OVERALL SUMMARY OF INVESTIGATIONS	1
COLLECTED FORMULAE	4
DEVELOPMENT	
Section 1. Latitude Formulae	
New formulae	22,5 22,5
Section 2. Spherical Rectangular Coordinate System; Loci	
Great circle track formulae	27,6 28,6 37,7
Section 3. Distance Formulae; Azimuths; Associated Quantities	
Normal section azimuths Great elliptic section azimuths Great elliptic arc distance Geodesic in terms of great elliptic arc and geodetic latitude with second order terms in f Geodesic in terms of great elliptic arc and parametric latitude with second order terms in f Form transformations: Geodetic to Parametric — Parametric to Geodetic Difference formulae to second order in f Chord distance Angle of dip Maximum separation — chord and arc	
Geographic coordinates of point of maximum separation	
APPENDICES	
No. 1. Computations for intersections of Loran lines of position-plane approximation	99
No. 2. Computations using Andoyer-Lambert first order approximation without conversion to parametric latitude	111
No. 3. Computations using Forsyth-Andoyer-Lambert type second order formulae without conversion to parametric latitude	125

FIGURES AND TABLES

Figure 1. Latitude relationships in the auxiliary sphere-spheroid configuration	
2. The great circle track configuration	
3. Parallels at a given distance from a great circle	. 20
4. Spherical triangles for computation of coordinates along	
parallels to great circle tracks	. 2
5. Spherical rectangular coordinate system with a great	
circle base line as an axis	- 29
6. Reference for derivation of polar equation of spherical	
hyperbolas with origin at a focus	32
7. Derivation of alternative equation to spherical	
hyperbolas with origin at a focus	. 34
8. Corresponding plane hyperbola equivalents	
9. Polar case of plane equivalent	
10. Corresponding distances on the reference ellipsoid	•
and the auxiliary sphere	- 39
11. Relationship between arc length, normal section azimuth, chord length,	
angle of depression of the chord below the horizon, maximum	
separation of arc and chord	_ 4
12. Relationships relative to the pole on the ellipsoid of reference,	• т.
of the geodesic, normal sections, and great elliptic section	- 4:
13. The normal section azimuths	
14. The great elliptic section azimuths	
15. Elements of the great elliptic section	
16. Elements of polar spherical triangles	
17. Computations for distance (great elliptic section approximation),	
normal section azimuths, chord length, angle of dip,	
maximum separation of chord and arc	. 60
18,19. Computations, great elliptic arc distance, geodetic azimuths	
20. Differential triangles, sphere and spheroid	
21. Distance computing form, Forsyth-Andoyer-Lambert type	,
approximation with second order terms in f	. 80
22. Distance computing form, Forsyth-Andoyer-Lambert type	
approximation in terms of parametric latitude and	
second order terms in f	- 89
23. Computations, Andoyer-Lambert first order approximation, geodetic azimuths,	0.
normal section azimuths, chord, angle of dip, maximum separation chord and	
arc, geographic coordinates of point of maximum separation	. 9
24. Two plane hyperbolas with a common focus	
25. Intersection of plane hyperbolas. Example 1	. 10
26. Intersection of plane hyperbolas. Example 2	
Table 1. Lines computed	- 65
2. Comparison with true distance and azimuths	- 66
3. Error summary	
4. 17 gc odetic lines computed from equations (110) and compared	. 07
with known lengths and azimuths	. 01

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS

OVERALL SUMMARY OF INVESTIGATIONS

Latitude

A loran station positioned on the auxiliary sphere of the ellipsoid of reference has as its geodetic latitude the angle at the equator made by that normal to the meridian which passes through the station of the sphere. Its longitude will remain the same. See Figure 1, page 13. Now this is analogous to the geodetic latitude of a subsatellite point, if the trajectory were confined wholly to the surface of the auxiliary sphere. It is clearly not one of the three commonly associated latitudes as shown in equation (1), page 12. Actually the relationship between geocentric latitude on the sphere and geodetic latitude on the ellipsoid is given by equation (2), page 12. From these one may find the maximum value of the difference, $\Delta \phi$, and the value of ϕ , the geodetic latitude, at which this maximum difference occurs, equations (3) – (6), page 14. The expansions of $\Delta \phi$ in series in terms of ϕ were obtained and are given in equations (7) – (20), pages 15, 16.

For computation of ϕ as a function of θ , the geocentric latitude, it was necessary to employ the Lagrange expansion formula and the resulting expansion and formulas are given in equations (21) - (33), pages 16 to 18. Development of the series expansions for the height, h, of the auxiliary sphere above the ellipsoid is given in equations (43)- (48). See Figure 1, page 13 and pages 19,20. A summary of latitude formulas and a bibliography of pertinent references are included, pages 21 - 22.

The great circle track as determined by the geographical coordinates of two given points on the auxiliary sphere. Parallels at a given distance from a great circle track.

As shown in figure 2, page 24, the treatment is somewhat different than the usual one in that one works from the vertex of the great circle or the point where the great circle is orthogonal to a meridian. This simplifies computations and provides well balanced triangles from which to compute. It also facilitates the computations for parallels at a given distance from a fixed great circle track as shown in Figures 3 and 4, pages 26 and 27. See also equations (1) – (13), pages 23–27.

A spherical rectangular coordinate system with a great circle base line as an axis.

Figure 5, page 29, shows, pictorially, this coordinate system developed on the great circle base line referenced to the vertex of the great circle base line. The conversion equations are developed in equations (14) to (26), pages 28 to 30.

Derivation of the equations of spherical hyperbolas and their plane equivalents.

Having established a spherical rectangular coordinate system we are in a position to derive the equations of spherical hyperbolas referenced to the system. This is done in both spherical rectangular coordinates and spherical polar form, equations (27) to (50), pages 31 to 34. See also figures 5, 6, and 7, pages 29, 32,34.

The plane hyperbola equivalents are developed in equations (51) to (59), pages 35 and 36 and a comparison table of the spherical and plane equivalents is given as equation (60), page 37. See also Figures (8) and (9), pages 35 and 36.

An example of computations using the plane hyperbola approximation is given as Appendix 1, pages 99 to 110.

Distance computations and conversions; Azimuths; Associated geometrical quantities.

The classical "inverse" problem of geodesy was considered here since it is inherent in the electronic navigational systems problem. In the "inverse" problem, the latitudes and longitudes of each of two points are given from which the distance between the points and the azimuths at the two given points are to be determined.

The geodesic on the reference ellipsoid, other than meridians and circular equator, is a space curve, and its vertex (the latitude where it is orthogonal to a meridian) is not easily expressible in terms of the geographical coordinates (latitude and longitude) of two points on it. The actual length involves the evaluation of an elliptic integral, whose modulus depends on the latitude of the vertex of the geodesic. Iterative solutions have been devised as Helmert's, based on the earlier work of Bessel.

Approximations based on plane curves which are near the geodesic in length as the normal sections and the great elliptic arc have been devised. An investigation of these was made, including some extensions for instance in the series development for the great elliptic arc approximation. See pages 48 to 51 and Figure 15, page 50. Also their use and expression in terms of common computational parameters with some associated geometrical quantities useful in operational applications as the angle of depression of the chord below the horizon, the maximum separation between the chord and the surface, and the geographic coordinates of the point on the surface where maximum separation occurs.

An investigation of the expansion of the geodesic length in powers of the flattening was made which to first order in the flattening are the well-known, so-called Andoyer-Lambert approximation formulas, one in terms of parametric latitude, the other in terms of geodetic latitude. Since this Office uses the Andoyer-Lambert form in terms of parametric latitude, in which geographic latitudes must first be converted to parametric, an investigation was made to see if use of the parametric form to first order in the flattening was justified or necessary in terms of operational requirements. This was done in connection with a review of an extensive study by USAF (ACIC) of geodetic lines up to 6000 miles in length where the Andoyer-Lambert approximation was recommended for such tasks as LORAN computing, since the errors in the very near geodetic distances obtained are fairly constant on lines 50 to 6000 miles in length and in all azimuths. The comparisons are given in tables 1-3, pages 65 to 67.

Since some of the excursions in the first order form were of the order of 10 meters, the problem of obtaining the expansion of the geodesic to second order terms in the flattening was examined. By introducing two parameters X and Y, in terms of the latitude of the vertex of the great elliptic arc, it was found that the great elliptic arc approximation produced the so-called Andoyer-Lambert first order approximations. (See pages 68-69.) Similarly they could be produced by modification of the differential equation to the geodesic (See pages 69 to 74).

In review of an 1895 paper by the British Mathematician, A. R. Forsyth, by identifying his fundamental approximation parameter as the vertex of the great elliptic arc, it was found that he actually had both so-called Andoyer-Lambert first order expansions in the flattening, but it had apparently not been recognized. Furthermore, he had an expansion to second order terms in the flattening and in terms of geodetic latitude but it had two errors in the second order term. After these had been detected and corrected, computations based on the resulting equations give distances within a meter on all lines computed from 50 to 6000 miles. See pages 75 to 81.

Forsyth did not have the expansion to the geodesic in terms of parametric latitude to second order terms in the flattening, so his results were extended to second order terms. See pages 79 to 90. Then transformation equations were developed to convert one form to the other as far as second order terms in the flattening, pages 90 to 92, and finally the difference formulas for the principal parameters, pages 92 to 93. As a result of this study, distance and azimuth formulas are available in terms of easily computed parameters, in terms of either parametric or geodetic latitude which will give distances over all lines within a meter and azimuths within a second which is adequate for any operational requirement. A more detailed summary of the investigations of this section with a bibliography of references is given on pages 93 to 97.

COLLECTED FORMULAE

NEW LATITUDE FORMULAS

If θ is the geocentric latitude of a point P(acos θ , a sin θ) on the auxiliary sphere, then the corresponding geodetic latitude ϕ of P at an altitude h above the ellipsoid of reference as shown in Figure 1, is given by

$$\sin \Delta \phi = \sin(\phi - \theta) = (e^{2}/2a) \text{ Nsin } 2\phi = (e^{2} \sin \phi \cos \phi) / (1 - e^{2} \sin^{2} \phi)^{1/2}$$

$$= c_{1} \sin 2\phi - c_{2} \sin 4\phi + c_{3} \sin 6\phi - c_{4} \sin 8\phi,$$

$$c_{1} = (e^{2}/2) + (e^{4}/8) + (15e^{6}/256) + (35e^{8}/1024)$$

$$c_{2} = (e^{4}/16) + (3e^{6}/64) + (35e^{8}/1024),$$

$$c_{3} = (3e^{6}/256) + (15e^{8}/1024),$$

$$c_{4} = 5e^{8}/2048$$

With the same coefficients,

$$\phi - \theta = \Delta \phi \text{ (radians)} = (c_1 + c_1^3/8) \sin 2\phi - (c_2 + c_1^2 c_2/4) \sin 4\phi + (c_3 - c_1^3/24) \sin 6\phi$$

$$\Delta \phi \text{ (seconds)} = (206,264.8062) \cdot \Delta \phi \text{ (radians)}.$$

To express $\Delta \phi$ in terms of θ , we have

$$\tan \phi = \tan \theta + (e^2 / a \cos \theta) \operatorname{N} \sin \phi$$
$$= \tan \theta + (e^2 / \cos \theta) \sin \phi / (1 - e^2 \sin^2 \phi)^{1/2},$$

which, when expanded by the Lagrange expansion formula gives

$$\Delta \phi = \phi - \theta = c_1 \sin 2\theta + c_2 \sin 4\theta + c_3 \sin 6\theta + c_4 \sin 8\theta$$

$$c_1 = (e^2/2) + (e^4/8) + (11e^6/256) + (31e^8/1024)$$

$$c_2 = (3e^4/16) + (5e^6/64) + (25e^8/1024)$$

$$c_3 = (77e^6/768) + (59e^8/1024),$$

$$c_4 = 127e^8/2048$$

The distance h is given by

h'a =
$$\cos \Delta \phi - a' \nabla = \cos \Delta \phi - (1 - e^2 \sin^2 \phi)^{1/2}$$

= $(1 - e^2 \sin^2 \phi)^{-1/2} \{ [1 - e^2 \sin^2 \phi (1 + e^2 \cos^2 \phi)]^{1/2} - 1 + e^2 \sin^2 \phi \}$
h = $a(d_1 - d_2 \cos 2\phi + d_3 \cos 4\phi - d_4 \cos 6\phi + d_5 \cos 8\phi)$
 $d_1 = (e^2 \Delta) - (e^4 \Delta) - (3e^6 \Delta) - (233e^8 \Delta)^3$
 $d_2 = (e^2 \Delta) + (e^4 \Delta) + (7e^6 \Delta)^2 + (3e^8 \Delta)^3$
 $d_3 = (5e^4 \Delta) + (11e^6 \Delta)^3 + (115e^8 \Delta)^3$
 $d_4 = (9e^6 \Delta)^2 + (37e^8 \Delta)^3$
 $d_5 = 53e^8 \Delta)^3$

STANDARD LATITUDE FORMULAS

The three latitudes usually associated with the auxiliary sphere ellipsoid configuration as shown in Figure 1, are the geocentric, parametric, and geodetic represented here by ψ , θ , and ϕ_0 respectively and related through the equations

$$\tan \psi/\tan \theta = \tan \theta/\tan \phi_0 = (1 - e^2)^{1/2},$$

where e is the eccentricity of the meridian ellipse. The parametric latitude, θ , is also called here the geocentric latitude of points on the auxiliary sphere.

LATITUDES FOR CLARKE 1886 SPHEROID

Series representations, accurate to 0.001 second, for the differences in ϕ , ϕ_0 , θ , ψ are:

$$\Delta \phi$$
 (seconds) = $\phi - \theta = 699$ 12540 sin $2\phi - 0$ 15936 sin $4\phi + 0$ 10004 sin 6ϕ

$$\Delta \phi$$
 (seconds) = $\phi - \theta = 699$.2520 sin $2\theta + 1$.7769 sin $4\theta + 0$.0064 sin 6θ

$$\Delta\theta_{\rm o}({\rm seconds}) = \phi - \phi_{\rm o} = 349\text{.0318} \sin 2\theta + 1\text{.4796} \sin 4\theta + 0\text{.0061} \sin 6\theta$$

h (meters) = $10,788.3852 - 10,811.2646 \cos 2\phi + 22.9147 \cos 4\phi - 0.0350 \cos 6\phi$

$$\phi_0 - \psi = 700$$
".4385 sin $2\phi_0 - 1$ ".1893 sin $4\phi_0 + 0$ ".0027 sin $6\phi_0$

$$\phi_0 - \psi = 700$$
".4385 sin $2\psi + 1$ ".1893 sin $4\psi + 0$ ".0027 sin 6ψ

$$\phi_0 - \theta = 350$$
.2202 sin $2\phi_0 - 0$.2973 sin $4\phi_0 + 0$.0003 sin $6\phi_0$

$$\phi_0 - \theta = 350$$
.2202 sin $2\theta + 0$.2973 sin $4\theta + 0$.0003 sin 6θ

$$\theta - \psi = 350$$
".2202 sin $2\theta - 0$ ".2973 sin $4\theta + 0$ ".0003 sin 6θ

$$\theta - \psi = 350$$
",2202 sin $2\psi + 0$ ",2973 sin $4\psi + 0$ ",0003 sin 6ψ

GREAT CIRCLE TRACK FORMULAS

First compute λ_0 and θ_0 from

$$\tan \lambda_0 = \frac{\tan \theta_2 \cos \lambda_1 - \tan \theta_1 \cos \lambda_2}{\tan \theta_1 \sin \lambda_2 - \tan \theta_2 \sin \lambda_1}$$

$$\cot \theta_0 = \cot \theta_1 \cos (\lambda_0 - \lambda_1) = \cot \theta_2 \cos (\lambda_0 - \lambda_2). \text{ (See Figure 2).}$$

Then compute a_1 and a_2 from

$$\sin a_1 = \frac{\cos \theta_0}{\cos \theta_1}$$
, $\sin a_2 = \frac{\cos \theta_0}{\cos \theta_2}$

Next compute S_1 and S_2 from

$$\tan S_1 = \cos \alpha_1 \cot \theta_1$$
, $\tan S_2 = \cos \alpha_2 \cot \theta_2$

The computations for a_1 , a_2 , S_1 and S_2 are checked by

$$\cos (\lambda_2 - \lambda_1) = \cos \alpha_1 \cos \alpha_2 + \sin \alpha_1 \sin \alpha_2 \cos (S_1 - S_2)$$

For equally spaced intervals along the great circle track, for instance in 100 nautical mile intervals, let $S = S_1 \pm 100K$, K = 1, 2, 3, ---, n. With these values of S one computes successively corresponding values of θ' , λ' , and α' from

 $\sin \theta' = \sin \theta_0 \cos S$, $\tan (\lambda_0 - \lambda') = \tan S/\cos \theta_0$, $\tan \alpha' = \cot \theta_0 /\sin S$ and checks by means of $\sin \theta' \cdot \tan (\lambda_0 - \lambda') \cdot \tan \alpha' = 1$.

PARALLELS AT A GIVEN DISTANCE FROM THE GREAT CIRCLE TRACK

To compute the coordinates $(\theta p, \lambda p)$ and $(\theta p', \lambda p')$ of points at a given distance s from a given great circle track and symmetric with respect to it one computes (see Figure 3):

$$\sin \theta_k = A \cos S \pm B$$
 when $k = p$, use + sign $\sin (\lambda_0 - \lambda_k) = C \sin S / \cos \theta_k$

S and θ_0 are the same as given under the great circle track formulas above and $A=C\sin\theta_0$, $B=\cos\theta_0\sin s$, $C=\cos s$. The computations may be checked by

 $\cos 2s = \sin \theta p \sin \theta p' + \cos \theta p \cos \theta p' \cos (\lambda p' - \lambda p)$.

SPHERICAL RECTANGULAR COORDINATE SYSTEM WITH A GREAT CIRCLE BASE LINE AS AN AXIS

It is assumed that the base line has been established, that is the coordinates (θ_0, λ_0) of the vertex of the great circle base line have been computed from the coordinates of two given points $Q_1(\theta_1, \lambda_1)$, $Q_2(\theta_2, \lambda_3)$, see Figures 2 and 5.

Formulas for computing y, S, x from θ and λ

$$\sin y = \cos \theta_0 \sin \theta - \sin \theta_0 \cos \theta \cos (\lambda_0 - \lambda)$$

$$\tan S = \frac{\sin \theta_0 \cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta - \cos \theta_0 \sin y} = \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta_0 \sin \theta + \cos \theta_0 \cos (\lambda_0 - \lambda)}$$

 $\sin x = \sin (S - S_1) \cos y$

Formulas for computing S, θ , λ from x and y

Let
$$C = \cos y$$
, $D = \sin y$, $E = \sin x$, $A = C \sin \theta_0$, $B = D \cos \theta_0$, then

$$S = arc sin (E/C) + S_1$$

$$\theta = \arcsin (A \cos S + B)$$

$$\lambda = \lambda_0 - \arcsin (C \sin S/\cos \theta)$$

SPHERICAL HYPERBOLA FORMULAS AND PLANE EOUIVALENTS

Spherical

(1)
$$\tan^2 r = \frac{\tan^2 a (\sin^2 c - \sin^2 a)}{\sin^2 c \cos^2 a - \sin^2 a}$$

1)
$$\tan^2 r = \frac{\tan^2 a (\sin^2 c - \sin^2 a)}{\sin^2 c \cos^2 a - \sin^2 a}$$
 $r^2 = \frac{a^2 (c^2 - a^2)}{c^2 \cos^2 a - a^2}$

(2)
$$\sin^2 x = \frac{\sin^2 a \cos^2 c}{\sin^2 c - \sin^2 a} \sin^2 y + \sin^2 a$$

$$x^2 = \frac{a^2y^2}{c^2-a^2} + a^2$$

(3)
$$\tan R = \frac{\cos 2c \pm \cos 2a}{\sin 2c \cos \beta \pm \sin 2a}$$

$$R = \frac{a^2 - c^2}{c \cos \beta - a}$$

(4)
$$\tan^2(\beta/2) = \frac{\sin(c-a)\sin(R+c+a)}{\sin(c+a)\sin(R-c+a)}$$

$$\tan^2(\beta/2) = \frac{(c-a)(R+c+a)}{(c+a)(R-c+a)}$$

In (1) and (2) the origin of coordinates is the midpoint of Q Q_2 , see Figure 5. Equations (3) and (4) are two polar forms with origin at a focus Q1, see Figures (5) and (6). Appendix 1 has computations based on the plane equivalent of (3).

DISTANCE AND AZIMUTH FORMULAS

Normal section azimuths (Geodetic latitude. ϕ)

$$\cot \alpha_{AB} = \frac{\left[\sin \phi_2 - (N_1/N_2) \sin \phi_1\right] e^2 \cos \phi_1 \sec \phi_2 + (\sin \phi_1 \cos \Delta \lambda - \tan \phi_2 \cos \phi_1)}{\sin \Delta \lambda}$$

$$\cot \alpha_{\text{BA}} = -\frac{\left[\sin \phi_1 - (N_2/N_1)\sin \phi_2\right] e^2 \cos \phi_2 \sec \phi_1 + (\sin \phi_2 \cos \Delta \lambda - \tan \phi_1 \cos \phi_2)}{\sin \Delta \lambda}$$

Normal Section Azimuths (parametric latitude θ)

$$\cot a_{AB} = \frac{\sin \theta_1 \cos \Delta \lambda - \cos \theta_1 \tan \theta_2 + e^2 (\sin \theta_2 - \sin \theta_1) \cos \theta_1 \sec \theta_2}{(1-e^2 \cos^2 \theta_1)^{1/2} \sin \Delta \lambda}$$

$$\cot \alpha_{\text{BA}} = -\frac{\sin \theta_2 \cos \Delta \lambda - \cos \theta_2 \tan \theta_1 + e^2 (\sin \theta_1 - \sin \theta_2) \cos \theta_2 \sec \theta_1}{(1 - e^2 \cos^2 \theta_2)^{1/2} \sin \Delta \lambda}$$

Great Elliptic Section Azimuths (Geodetic latitude ϕ)

$$\cot \alpha_{AB} = (1 - e^2) \frac{N_1^2}{a^2} \frac{(\tan \phi_1 \cos \Delta \lambda - \tan \phi_2) \cos \phi_1}{\sin \Delta \lambda}$$

$$\cot \alpha_{\text{BA}} = (1 - e^2) \frac{N_2^2}{a^2} \frac{(\tan \phi_1 - \tan \phi_2 \cos \Delta \lambda) \cos \phi_2}{\sin \Delta \lambda}$$

Great Elliptic Section Azimuths (parametric latitude θ)

$$\cot \alpha_{AB} = \frac{(\tan \theta_1 \cos \Delta \lambda - \tan \theta_2) (\cos \theta_1) (1 - e^2 \cos^2 \theta_1)^{1/2}}{\sin \Delta \lambda}$$

$$\cot \alpha_{\text{BA}} = \frac{(\tan \theta_1 - \tan \theta_2 \cos \Delta \lambda) (\cos \theta_2) (1 - e^2 \cos^2 \theta_2)^{1/2}}{1 + e^2 \cos^2 \theta_2}$$

Great Elliptic Arc Distance

$$s/a = (d_1 + d_2) - \frac{1}{4} k^2 \left[(d_1 + d_2) - \sin (d_1 + d_2) \cos (d_1 - d_2) \right]$$

$$- (1/128) k^4 \left[6(d_1 + d_2) - 8 \sin (d_1 + d_2) \cos (d_1 - d_2) + \sin 2(d_1 + d_2) \cos 2(d_1 - d_2) \right]$$

$$- (1/1536) k^6 \left[30(d_1 + d_2) - 45 \sin (d_1 + d_2) \cos (d_1 - d_2) + 9 \sin 2(d_1 + d_2) \cos 2(d_1 - d_2) \right]$$

$$- \sin 3(d_1 + d_2) \cos 3(d_1 - d_2) \right]$$

Where in terms of geodetic latitude ϕ ,

$$k = (e\sqrt{1-e^2/a}) N_0 \sin \phi_0, d_1 = \arccos (N_1 \sin \phi_1/N_0 \sin \phi_0),$$

$$d_2 = arc \cos (N_2 \sin \phi_2/N_0 \sin \phi_0)$$

$$\sin \phi_0 = [J/(J + \sin^2 \Delta \lambda)]^{1/2}$$
, $J = \tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda$,

and in terms of parametric latitude θ

$$k = e \sin \theta_0$$
, $d_1 = arc \cos (\sin \theta_1/\sin \theta_0)$, $d_2 = arc \cos (\sin \theta_2/\sin \theta_0)$

$$\sin \theta_0 = [F/(F + \sin^2 \Delta \lambda)]^{1/2}, F = \tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda.$$

Also in terms of parametric latitude θ , great ellipticarc distance

where
$$X = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d}$$

$$Y = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d}, d = d_2 - d_1, \text{ where } d_1, d_2 \text{ are spherical distances from } P_1(\theta_1, \lambda_1),$$

 $P_2(\theta_2, \lambda_2)$ to the vertex $P_0(\theta_0, \lambda_0)$.

NOTE: If e² ~ 2f, the higher order terms in f then ignored, this becomes the so-called Andoyer-Lambert approximation in terms of parametric latitude.

GEODESIC IN TERMS OF GREAT ELLIPTIC ARC, IN GEODETIC LATITUDE WITH SECOND ORDER TERMS IN THE FLATTENING

Given the points $P_1(\phi_1, \lambda_1)$, $P_2(\phi_2, \lambda_2)$ on the reference ellipsoid, P_2 west of P_1 , west longitudes considered positive.

With
$$\phi_m = \frac{1}{2}(\phi_1 + \phi_2)$$
, $\Delta\phi_m = \frac{1}{2}(\phi_2 - \phi_1)$, $\Delta\lambda = \lambda_2 - \lambda_1$, $\Delta\lambda_m = \frac{1}{2}\Delta\lambda$,

Let
$$k = \sin \phi_m \cos \Delta \phi_m$$
, $K = \sin \Delta \phi_m \cos \phi_m$,

$$H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m$$

$$L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m = \sin^2 (d/2), 1 - L = \cos^2 (d/2), \cos d = 1 - 2L,$$

$$t = \sin^2 d = 4L(1 - L), U = 2k^2/(1 - L), V = 2K^2/L; X = U + V, Y = U - V,$$

T = d/sin d = 1 + (t/6) + 3(t²/40) + 5(t³/112) + 35(t⁴/1152) + 63(t⁵/2816) +, (1 radian = 206,264.8062 seconds)
E = 30 cos d , A = 4T (8 + TE/15), D = 4(6 + T²), B = -2D,
C = T - ½(A + E), f/4 = 0.000847518825, f²/64 = 0.179572039 x 10⁻⁶ (Clarke 1866)
S = a sin d [T - (f/4) (TX - 3Y) + (f²/64) { X(A + CX) + Y(B + EY) + DXY }],
sin
$$(a_2 + a_1) = (K \sin \Delta \lambda)/L$$
, sin $(a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L)$,
½ $(\delta a_2 + \delta a_1) = -(f/2)$ H (T + 1) sin $(a_2 + a_1)$, ½ $(\delta a_2 - \delta a_1) = -(f/2)$ H (T - 1) sin $(a_2 - a_2)$,
 $a_{1-2} = a_1 + \delta a_1$, $a_{2-1} = a_2 + \delta a_2$.

Additional check formulae

$$\begin{split} X &= \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} + \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2 \cdot \sin^2 \phi_0 = 2F/(F + \sin^2 \Delta \lambda) \\ Y &= \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} - \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2 \sin^2 \phi_0 \cos (d_1 + d_2) \\ F &= \tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda \\ \cos (d_1 + d_2) &= Y/X, \ 1 + \cos d = 8k^2/(X + Y), \ 1 - \cos d = 8K^2/(X - Y), \\ \cos d &= 4\left(\frac{k^2}{X + Y} - \frac{K^2}{X - Y}\right), \ 4\left(\frac{k^2}{X + Y} + \frac{K^2}{X - Y}\right) = 1. \end{split}$$

NOTE: If the second order term is ignored, the resulting equations are the equivalent of the so called Andoyer-Lambert approximation in terms of geodetic latitude.

The quantities H, T, L, k, K enter into both distance and azimuth formulas. Distances are given within a meter and azimuths within a second over all lines in all latitudes and azimuths. Other advantages are (1) no conversion to parametric latitudes, (2) no square root calculations, (3) for desk computers the only tabular data required is a table of the natural trigonometric functions as Peter's eight place tables. (4) the formulas are adaptable to high speed computers. See Table 4 page 81 and Appendix 3, lines 12 through 16, for desk computer sample computations based on these formulas as checked against 5 Coast and Geodetic Survey specially computed lines. The mean difference for the 5 lines between true geodetic lengths and computed values was 0.15 meter with a maximum difference of 0.24 meter. The mean difference between true and computed azimuths was 0.59 second with a maximum difference of 0.93 second.

GEODESIC IN TERMS OF GREAT ELLIPTIC ARC, IN PARAMETRIC LATITUDE WITH SECOND ORDER TERMS IN THE FLATTENING

Given on the reference ellipsoid the points $P_1(\theta_1, \lambda_1)$, $P_2(\theta_2, \lambda_2)$; P_2 west of P_1 , west longitudes considered positive. (Geodetic latitudes are converted to parametric by the relation $\tan \theta = (1 - f) \tan \phi$ or an equivalent formula). With $\theta_m = \frac{1}{2}(\theta_2 + \theta_1)$, $\Delta \theta_m = \frac{1}{2}(\theta_2 - \theta_1)$, $\Delta \lambda = \lambda_2 - \lambda_1$, $\Delta \lambda_m = \Delta \lambda/2$;

Additional check formulae

$$\begin{split} X &= \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0 = 2F/(F + \sin^2 \Delta \lambda) \\ Y &= \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0 \cos (d_1 + d_2) \\ F &= \tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda \\ \cos (d_1 + d_2) &= Y/X, 1 + \cos d = 8k^2/(X + Y), 1 - \cos d = 8K^2/(X - Y), \\ \cos d &= 4 \left(\frac{k^2}{X + Y} - \frac{K^2}{X - Y}\right), \quad 4 \left(\frac{k^2}{X + Y} + \frac{K^2}{X - Y}\right) = 1. \end{split}$$

NOTE: If the second order term is ignored, the resulting equations are the equivalent of the so-called Andoyer-Lambert approximation in terms of parametric latitude.

A PRODUCTION OF THE PRODUCTION

TRANSFORMATIONS: GEODETIC TO PARAMETRIC — PARAMETRIC TO GEODETIC

If primed quantities denote those in geodetic latitude, then the transformation equations are:

$$d' = d - (f/2) \ Y \sin d + (f^2/16) \ [4Y(X-3) \sin d + (2Y^2 - X^2) \sin 2d],$$

$$\sin d' = \sin d - (f/4) \ Y \sin 2d$$

$$X' = X[1 + f(2 - X)]$$

$$Y' = Y[1 + f(2 - X)] + (f/2) (X^2 - Y^2) \cos d$$

$$d = d' + (f/2) \ Y' \sin d' + (f^2/16) \ [4Y'(X'-1) \sin d' + (2Y'^2 - X'^2) \sin 2d']$$

$$\sin d = \sin d' + (f/4) \ Y' \sin 2d'$$

$$X = X'[1 - f(2 - X')]$$

$$Y = Y'[1 - f(2 - X')] - (f/2) (X'^2 - Y'^2) \cos d'$$

DIFFERENCE FORMULAS TO SECOND ORDER IN THE FLATTENING

$$d'-d = -(f/2) Y \sin d + (f^2/16) [4Y (X - 3) \sin d + (2Y^2 - X^2) \sin 2d],$$

$$= -(f/2) Y' \sin d' - (f^2/16) [4Y' (X'-1) \sin d' + (2Y'^2 - X'^2) \sin 2d'];$$

$$X'-X = fX (2 - X) \{1 + (f/2) (3-2 X)\},$$

= $fX'(2 - X')\{1 - (f/2) (1 - 2X')\};$

$$Y'-Y = fY(2-X) + (f/2) (X^{2}-Y^{2}) \cos d$$

$$+ (f^{2}/8 \begin{bmatrix} 4Y (2-X) (3-2X) \\ + (X^{2}-Y^{2}) \{(11-5X) \cos d + Y (1-3 \cos^{2}d)\} \end{bmatrix}$$

$$= fY'(2 - X') + (f/2) (X'^2 - Y'^2) \cos d'$$

$$- (f^2/8) \left[4Y' (2 - X') (1 - 2X') + (X'^2 - Y'^2) \{2(5 - 3X') \cos d' + Y'(1 - 3 \cos^2 d')\} \right]$$

CHORD DISTANCE, c

$$c = a \left[\left\{ 1 - \cos \left(d_1 + d_2 \right) \right\} \left\{ 2 - k^2 \left[1 - \cos \left(d_1 - d_2 \right) \right] \right\} \right]^{1/2}$$

Where in terms of geodetic latitude ϕ ,

$$d_1 = \operatorname{arc\ cos\ } (N_1 \sin\ \phi_1/N_0 \sin\ \phi_0),\ d_2 = \operatorname{arc\ cos\ } (N_2 \sin\ \phi_2/N_0 \sin\ \phi_0)$$

$$k^2 = [e^2(1 - e^2)/a^2] N_0^2 \sin^2 \phi_0$$

in terms of parametric latitude θ

$$d_1 = \arccos (\sin \theta_1 / \sin \theta_0), d_2 = \arccos (\sin \theta_2 / \sin \theta_0), k^2 = e^2 \sin^2 \theta_0.$$

ANGLE OF DIP OF THE CHORD, &

$$\sin \beta = \left\{ \frac{(1 - e^2) \left[1 - \cos \left(d_1 + d_2\right)\right]}{\left[2 - k^2 \left\{1 - \cos \left(d_1 - d_2\right)\right\}\right] \left(1 - e^2 + k^2 \cos^2 d_1\right)} \right\}^{-1/2}$$

with k, d1, d2 expressible in terms of either geodetic or parametric latitude as given above.

MAXIMUM SEPARATION OF CHORD AND ELLIPTIC ARC, Ho

$$H_0 = \frac{2 \text{ abo}}{c} \sin \frac{1}{2} (d_1 + d_2) [1 - \cos \frac{1}{2} (d_1 + d_2)],$$

where c is the chord length as given above, bo = $a\sqrt{1-k^2}$; c, k, d₁, d₂ expressible in either parametric or geodetic latitude as given above.

GEOGRAPHIC COORDINATES OF POINT OF MAXIMUM SEPARATION

 $\tan \phi = R/D$, or $\cos 2\phi = (D^2 - R^2)/(D^2 + R^2)$, $\tan \lambda = (\cos \theta_2 \sin \Delta \lambda)/(\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda)$, $R = \sin \theta_1 + \sin \theta_2$, D = (0.996609925) (4 $\cos^2 \frac{1}{2}d - R^2$) is spherical distance between the points $P_1(\theta_1, \lambda_1)$, $P_2(\theta_2, \lambda_2)$ on the ellipsoid, θ is parametric latitude, $\Delta \lambda = \lambda_2 - \lambda_1$. See Figure 23 for sample computation.

DEVELOPMENT

SECTION 1. LATITUDE FORMULAE

The auxiliary sphere, associated with an ellipsoid of reference, is the sphere tangent to the spheroid along the equator. If it is desired to work on this sphere with formulae for conversion to the spheroidal surface, then a correspondence between geocentric latitude θ on the sphere and geodetic latitude ϕ on the ellipsoid is needed. Longitudes will be the same.

Now there are three latitudes in geodetic usage associated with the auxiliary-sphere ellipsoid configuration as shown in Figure 1. The θ as shown, and which we shall call geocentric latitude, is called the reduced or parametric latitude since it is the eccentric angle of the meridian ellipse. The angle ψ , as shown, is called in geodetic nomenclature, the geocentric latitude since it is the angle measured from the center of the ellipsoid to the point R on the meridian from the equator. The angle ϕ_0 , as shown, is a geodetic latitude corresponding to θ . The three latitudes ψ , θ , ϕ_0 , are related through the equations

$$\tan \psi = \sqrt{1 - e^2} \tan \theta = (1 - e^2) \tan \phi_0$$
or
$$\tan \psi / \tan \theta = \tan \theta / \tan \phi_0 = \sqrt{1 - e^2}.$$
(1)

where e is the eccentricity of the meridian ellipse [1].*

However, for working directly on the auxiliary sphere and transferring directly to the ellipsoid, if θ is the geocentric latitude of the point P (a cos θ , a sin θ) on the auxiliary sphere, then the latitude actually corresponding on the spheroid is that found by dropping a perpendicular upon the meridian ellipse from P meeting the meridian in Q as shown in Figure 1, the normal making the angle ϕ as shown with the equator. The distance PQ = h, and ϕ are needed for the conversion where $0 \le h \le a - b$, a and b the semimajor and semiminor axes of the spheroid. We now develop the necessary conversion formulas between ϕ and θ .

The law of sines applied to triangles POT, POK of figure 1, yields

$$\frac{Ne^2 \sin \phi}{\sin \Delta \phi} = \frac{h + N}{\cos \theta} = \frac{a}{\cos \phi}, \quad \frac{Ne^2 \cos \phi}{\sin \Delta \phi} = \frac{h + N(1 - e^2)}{\sin \theta} = \frac{a}{\sin \phi}, \quad (2)$$

where $N=a/\sqrt{1-e^2\sin^2\phi}$; e, a are the eccentricity and equatorial radius of the reference ellipsoid. $(\Delta\phi=\phi-\theta)$.

^{*[1]} Bracketed numbers refer to the list of references at the end of the section.

Figure 1. Latitude relationships in the auxiliary sphere-spheroid configuration.

From the first and last of either sets of equations (2) find

$$\sin \Delta \phi = \frac{e^2}{2a} \quad N \sin 2\phi = \frac{e^2 \sin \phi \cos \phi}{\sqrt{1 - e^2 \sin^2 \phi}}.$$
 (3)

To find the maximum value of $\Delta\phi$ and the value of ϕ at which the maximum occurs, one

differentiates $\Delta \phi = \arcsin \frac{e^2 \sin \phi \cos \phi}{\sqrt{1 - e^2 \sin^2 \phi}}$ to obtain

$$\frac{d\Delta\phi}{d\phi} = e^2 \frac{e^2 \cos^2 2\phi + 2(2 - e^2) \cos 2\phi + e^2}{(2 - e^2 + e^2 \cos 2\phi) \sqrt{2(2 - e^2) - e^4 + 2e^2 \cos 2\phi + e^4 \cos^2 2\phi}};$$
(4)

neither factor of the denominator of (4) is zero for $0 \le \phi \le 90^{\circ}$. Hence to find the maximum from (4), place the numerator equal to zero and solve for $\cos 2\phi$ to obtain

$$\cos 2\phi = 1 + 2\left(\sqrt{1 - e^2} - 1\right) / e^2. \tag{5}$$

The flattening, f, of the reference ellipsoid is given by $f = (a-b)/a = 1 - b/a = 1 - \sqrt{1-e^2}$, whence $e^2 = 2f - f^2$, we can write

$$\cos 2\phi = 1 - 2(1 - \sqrt{1 - e^2})/e^2 = 1 - 2f/(2f - f^2) = -f/(2 - f)$$

$$\sin^2 2\phi = 1 - \cos^2 2\phi = 1 - f^2/(2 - f)^2 = 4(1 - f)/(2 - f)^2$$

$$\sin^2 \phi = \frac{1}{2} - \frac{1}{2}\cos 2\phi = \frac{1}{2} + \frac{f}{2(2 - f)} = \frac{1}{2 - f}.$$

$$1-e^2\sin^2\phi = 1 - f(2-f)/(2-f) = 1 - f$$
.

from (3)
$$\sin^2 \Delta \phi = \frac{e^4}{4} \frac{\sin^2 2\phi}{1 - e^2 \sin^2 \phi} = \frac{f^2 (2 - f)^2}{4} \frac{4(1 - f)}{(2 - f)^2} \frac{1}{1 - f}$$

$$\sin^2 \Delta \phi = f^2$$

hence $\sin \Delta \phi_{\text{max}} = f = 0.0033900753$ (Clarke 1866 ellipsoid).

 $\cos 2\phi = -0.001697914$

$$\phi = 45^{\circ} 02'55"106$$
,

and
$$\Delta \phi_{\text{max}} = 0^{\circ} 11^{\circ} 39^{\circ}.255,$$
 (6) $\theta = \phi - \Delta \phi = 44^{\circ} 51^{\circ} 15^{\circ}.851.$

Now from (3) and $\theta = \phi - \Delta \phi$ a complete table for corresponding latitudes can be computed readily since complete tables for N to 0.001 meter have been computed for most reference ellipsoids. [2]

To develop $\sin \Delta \phi$ is a series for computation without the necessity of tables of N, write (3) in the form $\sin \Delta \phi = e^2 \sin \phi \cos \phi (1 - e^2 \sin^2 \phi)^{-1/2}$, then expand the radical by the binominal formula to get

$$\sin \Delta \phi = e^2 \sin \phi \cos \phi (1 + \frac{e^2}{2} \sin^2 \phi + \frac{3}{8} e^4 \sin^4 \phi + \frac{5}{16} e^6 \sin^6 \phi)$$

$$= \frac{e^2}{2} \sin 2\phi + \frac{e^4}{2} \sin^3\phi \cos\phi + \frac{3}{8} e^6 \sin^5\phi \cos\phi + \frac{5}{16} e^8 \sin^7\phi \cos\phi. \tag{7}$$

now $\sin^3 \phi \cos \phi = \frac{1}{4} \sin 2\phi - \frac{1}{6} \sin 4\phi$

$$\sin^5\phi\cos\phi = \frac{5}{32}\sin 2\phi - \frac{1}{3}\sin 4\phi + \frac{1}{32}\sin 6\phi \tag{8}$$

 $\sin^{7}\phi\cos\phi = \frac{7}{64}\sin 2\phi - \frac{7}{64}\sin 4\phi + \frac{3}{64}\sin 6\phi - \frac{1}{128}\sin 8\phi$

and the values from (8) placed in (7) give

 $\sin \Delta \phi = c_1 \sin 2\phi - c_2 \sin 4\phi + c_3 \sin 6\phi - c_4 \sin 8\phi;$

where
$$c_1 = \frac{e^2}{2} + \frac{e^4}{8} + \frac{15}{256} e^6 + \frac{35}{1024} e^8$$
, $c_2 = \frac{e^4}{16} + \frac{3}{64} e^6 + \frac{35}{1024} e^8$, (9)
 $c_3 = \frac{3}{256} e^6 + \frac{15}{1024} e^8$, $c_4 = \frac{5}{2048} e^8$

If $\Delta \phi$ in radians is desired rather than $\sin \Delta \phi$, then in the expansion

$$\arcsin x = x(1 + x^2/_6 + - - - -) \tag{10}$$

let $x = \sin \Delta \phi$, whence arc $\sin x = \Delta \phi$ and

$$\Delta \phi = \sin \Delta \phi \, \left(1 + \frac{\sin^2 \! \Delta \phi}{6} + \cdots \right). \tag{11}$$

from (9) with $e^2 = 0.006768657997$, find

$$c_1 = 0.003390074081$$
, $c_2 = 0.000002878029$, $c_3 = 3.665 \times 10^{-9}$, $c_4 = 5 \times 10^{-12}$ (negligible). (12)

For estimation purposes the values in (12) may be written

$$c_1 = 3 \times 10^{-3}, c_2 = 3 \times 10^{-6}, c_3 = 4 \times 10^{-9}$$

 $c_1^2 = 9 \times 10^{-6}, c_2^2 = 9 \times 10^{-12}, c_3^2 = 2 \times 10^{-17}.$ (13)

With the value of $\sin \Delta \phi$ from (9) in terms of the estimation coefficients (13) we examine the term $(\sin^3 \Delta \phi)/6$ in (11), and find that (11) may be written $\Delta \phi = \sin \Delta \phi +$

$$\frac{c_1^3}{6} \sin^3 2\phi - \frac{c_1^2 c_2}{2} \sin^2 2\phi \sin 4\phi. \tag{14}$$

since $\sin^3 2\phi = \frac{3}{4} \sin 2\phi - \frac{1}{4} \sin 6\phi$

$$\sin^2 2\phi \sin 4\phi = \frac{1}{2} \sin 4\phi - \frac{1}{4} \sin 8\phi, \tag{15}$$

equation (14) may be written, with the value of $\sin\Delta\phi$ from (9), as

$$\Delta\phi \text{ (radians)} = \left(c_1 + \frac{c_1^3}{8} \right) \sin 2\phi - \left(c_2 + \frac{c_1^2 c_2}{4} \right) \sin 4\phi + \left(c_3 - \frac{c_1^3}{24} \right) \sin 6\phi, \tag{16}$$

or

 $\Delta \phi$ (seconds) = (206,264.8062) $\Delta \phi$ (radians),

where c₁, c₂, c₃, are given by the expressions in (9) in terms of the eccentricity of the meridian ellipse.

We now check equations (9) and (17), using again values for the Clarke 1866 spheroid and for the maximum value of $\Delta\phi$.

From (9) and (12) we have

$$\sin \Delta \phi = 3.390074081 \times 10^{-3} \sin 2\phi - 2.878029 \times 10^{-6} \sin 4\phi + 3.665 \times 10^{-9} \sin 6\phi.$$
 (18)

From (12) and (17) find

$$\Delta \phi$$
 (seconds) = 699.2540 sin $2\phi - 0.5936$ sin $4\phi + 0.0004$ sin 6ϕ . (19)

Now with $\phi = 45^{\circ} 02$ 55".106 from (6), find $\sin 2\phi = +0.99999856$, $\sin 4\phi = -0.00339575$, $\sin 6\phi = -0.99998703$. (20)

The values from (20) placed in (18) give

 $\sin \Delta \phi = 0.0033900753$ which checks the value found before in the 10th place. (See (6)).

The values from (20) placed in (19) give $\Delta \phi$ (seconds) = 699." 2530 + ... 0020 - ... 0004 = 699." 2546, or 11'39." 255 which is the value of $\Delta \phi_{\text{max}}$. (See (6)).

For explicit computation of ϕ as a function of θ , we obtain the following development. From the second and third of each set of equations (2), find

 $h + N = a \cos \theta / \cos \phi = Ne^2 + a \sin \theta / \sin \phi$, whence

$$\tan \phi = \tan \theta + (e^2/a \cos \theta) \text{ (N sin } \phi)$$
or
$$\tan \phi = \tan \theta + (e^2\sqrt{1 + \tan^2 \theta}) (\tan \phi/\sqrt{1 + (1 - e^2) \tan^2 \phi}).$$
(21)

(NOTE: Equation (21) also follows directly from (3) by expanding the left hand side and dividing every term by the product $\cos \phi \cos \theta$. $\sin \Delta \phi = \sin \phi \cos \theta - \cos \phi \sin \theta$.) Now (21) is of the form

$$y = x + h(x) g(y)$$

and the Lagrange expansion formula may be used, [3].

Equation (21) may be written

$$y = x + e^{2}(1 + x^{2})^{1/2}$$
 $y[1 + (1 - e^{2})y^{2}]^{-1/2}$ (22)

Where $y = \tan \phi$, $x = \tan \theta$, $h(x) = e^2(1 + x^2)^{1/2}$, $g(y) = y[1 + (1 - e^2)y^2]^{-1/2}$.

By use of the Lagrange expansion formula, a function f(y) which has a power series representation may be written

$$f(y) = f(x) + \sum_{n=1}^{\infty} \frac{\{h(x)\}^n}{n!} \frac{d^{n-1}}{dx^{n-1}} \quad f'(x) \{g(x)\}^n$$
 (23)

With $y = \tan \phi$, $f(y) = \arctan y = \phi$; $x = \tan \theta$, $f(x) = \arctan x = \theta$, $f'(x) = \frac{1}{1 + x^2} = \cos^2 \theta$,

equation (23) may be written

$$\Delta \phi = \phi - \theta = \sum_{n=1}^{\infty} \frac{e^{2n} \sec^n \theta}{n!} \frac{d^{n-1}}{dx^{n-1}} G(\theta)$$
 (24)

Where $G(\theta) = (\cos^2 \theta) (\tan \theta / \sqrt{1 + (1 - e^2) \tan^2 \theta})^n$, $\theta = \arctan x$.

First write $G(\theta)$ in the form

$$G(\theta) = (\cos^2 \theta) \left[\sin \theta \left(1 - e^2 \sin^2 \theta \right)^{-1/2} \right]^n. \tag{25}$$

We wish to retain terms to e⁸, but no higher. Hence we expand the radical in (25) to powers of e⁶ since for n = 1, equation (25) will be multiplied by e² as seen from (24). Using the binomial formula for the expansion we can write (25) as

$$G(\theta) = (\cos^2 \theta) \left(\sin \theta + \frac{1}{2} e^2 \sin^3 \theta + {\binom{3}{6}} e^4 \sin^5 \theta + {\binom{5}{16}} e^6 \sin^7 \theta \right)^{n}. \tag{26}$$

To retain terms in e⁸ we will need the first four terms of the expansion (24) and hence three derivatives of (26). Now $\theta = \arctan x$, $\frac{d\theta}{dx} = \frac{1}{1+x^2} = \cos^2\theta$, $\frac{d^2\theta}{dx^2} = -2 \sin\theta \cos^3\theta$,

$$\frac{\mathrm{d}^3\theta}{\mathrm{d}x^3} = 2(3\sin^2\theta - \cos^2\theta)\cos^4\theta.$$

$$\frac{dG}{dx} = \frac{dG}{d\theta} \quad \frac{d\theta}{dx} = \left(\frac{dG}{d\theta}\right) \cos^2\theta \tag{27}$$

$$\frac{d^{2}G}{dx^{2}} = \left(\frac{d^{2}G}{d\theta^{2}}\right) \left(\frac{d\theta}{dx}\right)^{2} + \left(\frac{dG}{d\theta}\right) \left(\frac{d^{2}\theta}{dx^{2}}\right) \\
= \cos^{3}\theta \left[\left(\frac{d^{2}G}{d\theta^{2}}\right) \cos \theta - 2\left(\frac{dG}{d\theta}\right) \sin \theta\right] \tag{28}$$

$$\frac{d^{3}G}{dx^{3}} = \left(\frac{d^{3}G}{d\theta^{3}}\right) \left(\frac{d\theta}{dx}\right)^{3} + 3\left(\frac{d^{2}G}{d\theta^{2}}\right) \left(\frac{d\theta}{dx}\right) \left(\frac{d^{2}\theta}{dx^{2}}\right) + \left(\frac{dG}{d\theta}\right) \left(\frac{d^{3}\theta}{dx^{3}}\right)$$

$$= \cos^{4}\theta \left[\left(\frac{d^{3}G}{d\theta^{3}}\right) \cos^{2}\theta - 6\left(\frac{d^{2}G}{d\theta^{2}}\right) \cos\theta \sin\theta + 2\left(\frac{dG}{d\theta}\right) (3\sin^{2}\theta - \cos^{2}\theta)\right] \tag{29}$$

Because of the factor e^{2} as a multiplier in (24), we can assume the following terms for (26) for n = 1, 2, 3, 4:

$$n = G(\theta)$$

1
$$(\cos^2\theta)(\sin\theta + \frac{1}{2}e^2\sin^3\theta + (\frac{3}{8})e^4\sin^5\theta + (\frac{5}{16})e^6\sin^7\theta)$$
 (30)

2
$$(\cos^2\theta) (\sin^2\theta + e^2 \sin^4\theta + e^4 \sin^6\theta)$$

3
$$(\cos^2\theta) (\sin^3\theta + (3/2)e^2 \sin^5\theta)$$

4
$$(\cos^2\theta) (\sin^4\theta)$$

The terms of (24) are now formed by finding the derivatives of $G(\theta)$ with respect to θ using the appropriate form of $G(\theta)$ from (30) and finding

$$\frac{dG}{dx}$$
, $\frac{d^{2}G}{dx^{2}}$, $\frac{d^{3}G}{dx^{3}}$ by means of (27), (28), and (29).

Thus it is found that the first four terms of (24) are

$$\begin{array}{l} {\rm e}^2 \, \sin \, \theta \, \cos \, \theta + \frac{1}{2} {\rm e}^4 \, \sin^3 \, \theta \, \cos \, \theta + (3/8) {\rm e}^6 \, \sin^5 \, \theta \, \cos \, \theta + (5/16) {\rm e}^8 \, \sin^7 \, \theta \, \cos \, \theta; \\ {\rm e}^4 \, \sin \, \theta \, \cos \, \theta + (2 {\rm e}^6 - 2 {\rm e}^4) \, \sin^3 \, \theta \, \cos \, \theta + (3 {\rm e}^8 - 3 {\rm e}^6) \, \sin^5 \, \theta \, \cos \, \theta - 4 {\rm e}^3 \, \sin^7 \, \theta \, \cos \, \theta; \\ {\rm e}^6 \, \sin \, \theta \, \cos \, \theta + (5 {\rm e}^8 - {}^{35} {/}_6 \, {\rm e}^6) \, \sin^3 \theta \, \cos \, \theta + ({}^{35} {/}_6 \, {\rm e}^6 - {}^{77} {/}_4 \, {\rm e}^8) \, \sin^5 \theta \, \cos \, \theta + {}^{63} {/}_4 \, {\rm e}^8 \, \sin^7 \theta \, \cos \, \theta; \\ {\rm e}^8 \, \sin \, \theta \, \cos \, \theta - 12 {\rm e}^8 \, \sin^3 \theta \, \cos \, \theta + 30 {\rm e}^8 \, \sin^5 \theta \, \cos \, \theta - 20 {\rm e}^8 \, \sin^7 \theta \, \cos \, \theta. \end{array}$$

Adding corresponding terms of these we have

$$\Delta \phi = \phi - \theta = (e^2 + e^4 + e^6 + e^8) \sin \theta \cos \theta - [(3/2)e^4 + (23/6)e^6 + 7e^8] \sin^3 \theta \cos \theta + [(77/24)e^6 + (55/4)e^8] \sin^5 \theta \cos \theta - (127/16)e^8 \sin^7 \theta \cos \theta.$$
(31)

Now $\sin \theta \cos \theta = \frac{1}{2} \sin 2\theta$

$$\sin^{3}\theta\cos\theta = \frac{1}{4}\sin 2\theta - (1/8)\sin 4\theta$$

$$\sin^{5}\theta\cos\theta = (5/32)\sin 2\theta - (1/8)\sin 4\theta + (1/32)\sin 6\theta$$

$$\sin^{7}\theta\cos\theta = (7/64)\sin 2\theta - (7/64)\sin 4\theta + (3/64)\sin 6\theta - (1/128)\sin 8\theta.$$
(32)

The values from (32) placed in (31) give finally

$$\phi = \phi - \theta = C_1 \sin 2\theta + C_2 \sin 4\theta + C_3 \sin 6\theta + C_4 \sin 8\theta$$
where $C_1 = \frac{1}{2}e^2 + (\frac{1}{8})e^4 + (\frac{11}{256})e^6 + (\frac{31}{1024})e^8$

$$C_2 = (\frac{3}{16})e^4 + (\frac{5}{64})e^6 + (\frac{25}{1024})e^8$$
(33)

$$C_3 = (77/768)e^6 + (59/1024)e^8$$
, $C_4 = (127/2048)e^8$.

Again for the Clarke 1866 spheroid

$$e^2 = 0.006768657997, e^4 = 0.00004581473108,$$
 (34)

 $e^6 = 0.0000003101042459$, $e^8 = 0.000000002098989584$, whence from (33)

$$C_1 = 3.390069228 \times 10^{-3}, C_2 = 8.614540216 \times 10^{-6},$$
 (35)

$$C_3 = 3.12121 \times 10^{-8}, C_4 = 1.302 \times 10^{-10}.$$

We now check (33) directly from the maximum value of $\Delta \phi$, the assumption being that if it holds for the maximum it will hold for all $\Delta \phi$.

From (6) $\theta = 44^{\circ} 51' 15" 851$, whence

$$\sin 2\theta = 0.99998708$$
, $\sin 4\theta = 0.01016441$, $\sin 6\theta = -0.99988377$, $\sin 8\theta = -0.02032777$. (36)

-0.0000000312111

With the values from (35) and (36) find

0.0033901129900 Δφ (radians) = 0.0033900817789

$$\Delta \phi$$
 (seconds) = (0.0033900817789) (206,264.8062) = 699.2545611,

or
$$\Delta\phi_{\text{max}}$$
= 11' 39".255 which checks (6).

Note that the term C_4 sin 8θ does not contribute to the result. Also, only eight place tables of trigonometric natural functions were used, [4].

Hence for geodetic latitude ϕ corresponding to geocentric latitude θ on the auxiliary sphere, the following formulas are sufficient for any spheroid of reference to 0.001 second:

$$\Delta\phi \text{ (seconds)} = \phi - \theta = (206,264.8062) \text{ (C}_1 \sin 2\theta + \text{C}_2 \sin 4\theta + \text{C}_3 \sin 6\theta)$$

$$C_1 = \frac{1}{2}e^2 + (\frac{1}{8})e^4 + (\frac{11}{256})e^6 + (\frac{31}{1024})e^8, \quad C_2 = (\frac{3}{16})e^4 + (\frac{5}{34})e^6 + (\frac{25}{1024})e^8, \quad (37)$$

 $C_3 = (77/768)e^6 + (59/1024)e^6$, e is eccentricity of the meridian.

Now we have noted that the geocentric latitude θ as defined here is called the parametric or reduced latitude in geodetic nomenclature and has a corresponding geodetic latitude ϕ_0 as shown in Figure 1. From (1) we see that they are related by the equation $\tan \phi_0 = (\tan \theta)/\sqrt{1-e^2}$. (38) For instance from (6) for $\theta = 44^\circ$ 51' 15".851 find from (38) that $\phi_0 = 44^\circ$ 57' 06".069. Also from

(6), $\phi = 45^{\circ} 02'$ 55.106, whence for $\theta = 44^{\circ} 51'$ 15.851 we have $\Delta \phi_0 = \phi - \phi_0 = 0^{\circ}$ 05' 49.037. (39)

Using the values from (34), equation (37) may be written for the Clarke 1866 spheroid as

$$\Delta \phi \text{ (seconds)} = \phi - \theta = 699.2520 \sin 2\theta + 1.7769 \sin 4\theta + 0.0064 \sin 6\theta.$$
 (40)

From C. & G.S. special publication No. 67, [5], find

$$\phi_0 - \theta = 350".2202 \sin 2\theta + 0".2973 \sin 4\theta + 0".0003 \sin 6\theta. \tag{41}$$

Subtracting (41) from (40) one finds

$$\Delta\phi_0 = \phi - \phi_0 = 349.0318 \sin 2\theta + 1.4796 \sin 4\theta + 0.0061 \sin 6\theta. \tag{42}$$

With $\theta = 44^{\circ} 51^{\circ} 15^{\circ} 851$ and the values from (28), equation (42) gives

 $\Delta\phi_0 = 5'$ 49".036 which is within 0.001 second of (39).

From the second and third members of each set of equations (2) find

$$h = a \sin \theta \csc \phi - (1 - e^2) N = a \cos \theta \sec \phi - N.$$
 (43)

To develop h in a power series in ϕ , free of N and θ , refer again to Figure 1. If the tangent at Q meets OP in P', then PP' = $a - (a^2/N) \sec \Delta \phi$, $h = PP' \cos \Delta \phi$, whence

$$h/a = \cos \Delta \phi - a/N = \cos \Delta \phi - \sqrt{1 - e^2 \sin^2 \phi}$$
(44)

With $\cos \Delta \phi = \sqrt{1 - \sin^2 \Delta \phi}$, and the value of $\sin \Delta \phi$ from (3), (44) may be written

$$h/a = (1 - e^2 \sin^2 \phi)^{-1/2} \{ [1 - e^2 \sin^2 \phi (1 + e^2 \cos^2 \phi)]^{1/2} - 1 + e^2 \sin^2 \phi \}.$$
 (45)

The relation (45) may also be obtained directly from equation (2) by eliminating θ between the equations a $\cos \theta = (h + N) \cos \phi$ and a $\sin \theta = [h + N(1 - e^2)] \sin \phi$.

Expanding the two radicals by the binomial formula, (45) may be written

$$h/a = (e^{2}/2 - e^{4}/2) \sin^{2}\phi + [(5/8)e^{4} - \frac{1}{2}e^{6} - (1/8)e^{8}] \sin^{4}\phi + [(9/16)e^{6} - (1/4)e^{8}] \sin^{6}\phi + (53/128)e^{8} \sin^{8}\phi$$
(46)

Now
$$\sin^2 \phi = \frac{1}{2} (1 - \cos 2\phi)$$

 $\sin^4 \phi = \frac{3}{8} - \frac{1}{2} \cos 2\phi + (\frac{1}{8}) \cos 4\phi$
 $\sin^6 \phi = \frac{5}{16} - (\frac{15}{32}) \cos 2\phi + (\frac{3}{16}) \cos 4\phi - (\frac{1}{32}) \cos 6\phi$
 $\sin^6 \dot{\phi} = \frac{35}{128} - (\frac{7}{16}) \cos 2\phi + (\frac{7}{32}) \cos 4\phi - (\frac{1}{16}) \cos 6\phi + (\frac{1}{128}) \cos 8\phi$
and these values placed in (46) give

$$\begin{aligned} h &= a \; (d_1 - d_2 \cos 2\phi + d_3 \cos 4\phi - d_4 \cos 6\phi + d_5 \cos 8\phi) \\ d_1 &= e^2/4 - e^4/64 - (3/256)e^6 - (233/16,384)e^8, \\ d_2 &= e^2/4 + e^4/16 + 7e^6/512 + 3e^8/2048, \\ d_3 &= 5e^4/64 + 11e^6/256 + 115e^8/4096 \\ d_4 &= 9e^6/512 + 37e^8/2048, \, d_5 = 53e^8/16,384 \end{aligned} \tag{47}$$

a, e are the semimajor axis, eccentricity of the reference ellipsoid.

We now check (47) using the values of a and e for the Clarke 1866 spheroid. From (34) and (47) with a = 6.378,206.4 meters one has h(meters) = $10.788.3852 - 10.811.2646 \cos 2\phi + 22.9147 \cos 4\phi - 0.0350 \cos 6\phi$. (48)

As a check, equation (48) should give

$$h = a - b = 6,378,206.4 - 6,356,583.8 = 21,622.6$$
 meters when $\phi = 90^{\circ}$. Placing $\phi = 90^{\circ}$ in (48) gives

$$h = 10,788.3852 + 10,811.2646 + 22.9147 + 0.0350 = 21,622.5995$$
 meters.

Since we have the values of θ and ϕ for $\Delta\phi_{\rm max}$ from (6) we now check the value given by (48) against the closed formula (43),

$$\begin{aligned} h &= a \, \frac{\cos \, \theta}{\cos \, \phi} - N \, (\phi). \\ \phi &= 45^{\circ} \, 02^{\circ} \, 55^{\circ}.106, \, \cos \, \phi = 0.70650624, \, \cos \, 2\phi = -0.00169788 \\ \cos \, 4\phi &= -0.99999423, \, \cos \, 6\phi = +0.00509360. \\ \theta &= 44^{\circ} \, 51^{\circ} \, 15^{\circ}.851, \, \cos \, \theta = 0.70890136, \, N(\phi) = 6,389,045.266. \\ h &= a \, \frac{\cos \, \theta}{\cos \, \phi} \, - N(\phi) = (6,378,206.4) \, (0.70890136) \, / \, (0.70650624) \, -6,389,045.266 \\ &= 6,399,829.094 \, -6,389,045.266 = 10.783.828 \, \, \text{meters} \end{aligned}$$

Equation (48) gives

$$h = 10,788.3852 + 18.3562 - 22.9146 - 0.0002 = 10,783.827$$
 meters, when $\phi = 0$, $h = 0$ and (48) gives
$$h = 10,788.3852 - 10,811.2646 + 22.9147 - 0.0350 = + 0.0003$$
 meter.

Unless h were required to very high precision it is clear from the above checks that the formula (48) is adequate.

SUMMARY OF LATITUDE FORMULAE

If θ is the geocentric latitude of a point P (a cos θ , a sin θ) on the auxiliary sphere, then the corresponding geodetic latitude ϕ of P at an altitude h above the ellipsoid reference, as shown in figure 1, is given by

$$\sin \Delta \phi = \sin (\phi - \theta) = (e^{2}/2a) \text{ N } \sin 2\phi = (e^{2} \sin \phi \cos \phi) / \sqrt{1 - e^{2} \sin^{2}\phi}$$

$$= c_{1} \sin 2\phi - c_{2} \sin 4\phi + c_{3} \sin 6\phi - c_{4} \sin 8\phi,$$

$$c_{1} = e^{2}/2 + e^{4}/8 + 15e^{6}/256 + 35e^{8}/1024,$$

$$c_{2} = e^{4}/16 + 3e^{6}/64 + 35e^{8}/1024$$

$$c_{3} = 3e^{6}/256 + 15e^{8}/1024, c_{4} = 5e^{8}/2048$$

$$e = \text{eccentricity of the meridian ellipse.}$$
(49)

With the same coefficients as (49), we have

$$\Delta\phi \text{ (radians)} = (c_1 + c_1^3/8) \sin 2\phi - (c_2 + \frac{c_1^2}{4} c_2) \sin 4\phi + (c_3 - \frac{c_1^3}{24}) \sin 6\phi$$
 (50)

and in seconds

 $\Delta\phi(\text{seconds}) = (206, 264.8062) \left[(c_1 + c_1^3/8) \sin 2\phi - (c_2 + c_1^2 c_2/4) \sin 4\phi + (c_3 - c_1^3/24) \sin 6\phi \right].$

To express $\Delta \phi$ in terms of θ , instead of ϕ , we have the relation

 $\tan \phi = \tan \theta + (e^2/a \cos \theta) N \sin \phi$

Which may be expanded by use of the Lagrange expansion formula to give

$$\Delta \phi = \phi - \theta = C_1 \sin 2\theta + C_2 \sin 4\theta + C_3 \sin 6\theta + C_4 \sin 8\theta$$

$$C_1 = e^2/2 + e^4/8 + 11e^6/256 + 31e^8/1024,$$
 (52)

 $C_2 = 3e^4/16 + 5e^6/64 + 25e^8/1024$

 $C_3 = 77e^6/768 + 59e^8/1024$, $C_4 = 127e^8/2048$.

For checks within 0.001 second, (52) may be written $\Delta \phi$ (seconds) = (206,264.8062)

$$(C_1 \sin 2\theta + C_2 \sin 4\theta + C_3 \sin 6\theta) \tag{53}$$

with C₁, C₂, C₃ the same as in (52).

$$h/a = \cos \Delta \phi - a/N = (1 - e^2 \sin^2 \phi)^{-1/2} \{ [1 - e^2 \sin^2 \phi (1 + e^2 \cos^2 \phi)]^{1/2} - 1 + e^2 \sin^2 \phi \}$$

$$h = a(d_1 - d_2 \cos 2\phi + d_3 \cos 4\phi - d_4 \cos 6\phi + d_5 \cos 8\phi)$$
 (54)

$$d_1 = e^2/4 - e^4/64 - 3e^6/256 - 233e^8/16,384$$

$$d_2 = e^2/4 + e^4/16 + 7e^6/512 + 3e^8/2048$$

$$0 \le h \le a - b$$

$$d_3 = 5e^4/64 + 11e^6/256 + 115e^8/4096$$

$$d_4 = 9e^6/512 + 37e^8/2048, d_5 = 53e^8/16,384$$

a = radius of the auxiliary sphere (semimajor axis of the reference ellipsoid).

For the Clarke 1866 spheroid of reference we have from the above formulas:

$$\Delta \phi \text{ (seconds)} = \phi - \theta = 699\text{".}2540 \sin 2\phi - 0\text{".}5936 \sin 4\phi + 0\text{".}0004 \sin 6\phi,$$
 (55)

$$\Delta \phi \text{ (seconds)} = \phi - \theta = 699.2520 \sin 2\theta + 1.7769 \sin 4\theta + 0.0064 \sin 6\theta,$$
 (56)

$$\Delta \phi_0 \text{ (seconds)} = \phi - \phi_0 = 349 \text{ ... 0318 sin } 2\theta + 1 \text{ ... 4796 sin } 4\theta + 0 \text{ ... 0061 sin } 6\theta,$$
 (57)

h (meters) =
$$10,788.3852 - 10,811.2646 \cos 2\phi + 22.9147 \cos 4\phi - 0.0350 \cos 6\phi$$
. (58)

For the Clarke 1866 spheroid, the maximum value of $\Delta\phi$ was found to be 11' 39".255 at $\phi = 45^{\circ}$ 02' 55".106.

The value of $\Delta\phi_0$, at this maximum of $\Delta\phi$, was found to be 5'49".037. Finally (58) was checked at $\phi=0$, 90° and $\phi=45^{\circ}$ 02'55".106. At $\phi=90^{\circ}$, the check was within 0.0005 meter; at $\phi=0$, it was within 0.0003 meter; at $\phi=45^{\circ}$ 02' 55".106, it was within 0.001 meter.

The following latitude formulae are from C & G.S. Special Publication No. 67, [5], Where ϕ_0 , ψ , θ are shown in figure 1.

$$\psi_{\circ} - \psi = 700".4385 \sin 2\phi_0 - 1".1893 \sin 4\phi_0 + 0".0027 \sin 6\phi_0$$
 (59)

$$\phi_0 - \psi = 700".4385 \sin 2\psi + 1".1893 \sin 4\psi + 0".0027 \sin 6\psi$$
 (60)

$$\phi_0 - \theta = 3502202 \sin 2\phi_0 - 0.2973 \sin 4\phi_0 + 0.0003 \sin 6\phi_0 \tag{61}$$

$$\phi_0 - \theta = 350".2202 \sin 2\theta + 0".2973 \sin 4\theta + 0".0003 \sin 6\theta \tag{62}$$

$$\theta - \psi = 350".2202 \sin 2\theta - 0".2973 \sin 4\theta + 0".0003 \sin 6\theta \tag{63}$$

$$\theta - \psi = 350"2202 \sin 2\psi + 0"2973 \sin 4\psi + 0"0003 \sin 6\psi \tag{64}$$

The above are the series expansions for the expressions given as equation (1) page 12, that is

$$\tan \psi = \sqrt{1 - e^2} \tan \theta = (1 - e^2) \tan \phi_0.$$
 (65)

REFERENCES

- [1] Geodesy, Hosmer, Second Edition, John Wiley & Sons, 1930, page 181.
- [2] Army Map Service TM No. 67, Latitude Functions, Hayford Spheroid (International) 1944; AMS TM5-241-18, Latitude Functions, Clarke 1866 Spheroid, December 1960.
- [3] Course in Higher Analysis, Whittaker and Watson, 1962 Edition, page 133, Cambridge University Press.
- [4] Peters, J. Eight-place Tables of Trigonometric Functions, Berlin 1939; Edward Brothers, Inc., Photo-Lithoprint Reproductions, Ann Arbor, Michigan, 1943.
- [5] Latitude Development Connected With Geodesy and Cartography, U.S.C. & G.S. Special Publication No. 67, G.P.O., 1921.

DEVELOPMENT

SECTION 2. SPHERICAL RECTANGULAR COORDINATE SYSTEM; LOCI

THE GREAT CIRCLE TRACK AS DETERMINED BY THE GEOGRAPHICAL COORDINATES OF TWO GIVEN POINTS ON THE AUXILIARY SPHERE

In figure 2, the two given points are $Q_1(\theta_1, \lambda_1)$, $Q_2(\theta_2, \lambda_2)$. The great circle track is then determined from the spherical triangle PQ_1Q_2 . In order to simplify the computations and to have well balanced triangles from which to compute, one finds the point $O(\theta_0, \lambda_0)$ where the great circle Q_1Q_2 is orthogonal to a meridian λ_0 . One then works from the right spherical triangle POQ' by adding or subtracting increments of distance from $S_1 = OQ_1$ to get the distance S. One always has then a strong right triangle POQ' from which to compute the latitude, longitude and azimuth α of the point $Q'(\theta', \lambda')$ on the base line Q_1Q_2 .

DERIVATION OF FORMULAE

From right spherical triangle POO'

$$\cos (\lambda_0 - \lambda') = \tan(\frac{\pi}{2} - \theta_0) \cot(\frac{\pi}{2} - \theta') = \cot \theta_0 \tan \theta'$$
 (1)

If the points Q₁ and Q₂ satisfy (1), we have by substituting their coordinates in (1)

$$\cos (\lambda_0 - \lambda_1) = \cot \theta_0 \tan \theta_1, \qquad (2)$$

 $\cos (\lambda_0 - \lambda_2) = \cot \theta_0 \tan \theta_2$

By forming the ratios of (2), expanding $\cos (\lambda_0 - \lambda_1)$ and $\cos (\lambda_0 - \lambda_2)$, dividing the left member numerator and denominator by $\cos \lambda_0$ one derives the formula

$$\tan \lambda_0 = \frac{\tan \theta_2 \cos \lambda_1 - \tan \theta_1 \cos \lambda_2}{\tan \theta_1 \sin \lambda_2 - \tan \theta_2 \sin \lambda_2}$$
 (3)

Equations (2) may be written as

$$\cot \theta_0 = \cot \theta_1 \cos (\lambda_0 - \lambda_1) = \cot \theta_2 \cos (\lambda_0 - \lambda_2) \tag{4}$$

From right spherical triangle POQ'one has also

$$\sin \alpha' = \frac{\sin\left(\frac{\pi}{2} - \theta_0\right)}{\sin\left(\frac{\pi}{2} - \theta'\right)} = \frac{\cos \theta_0}{\cos \theta'} , \qquad (5)$$

$$\cos \alpha' = \frac{\tan S}{\tan(\frac{\pi}{2} - \theta')} = \tan S \tan \theta', \tag{6}$$

Figure 2. The great circle track configuration.

$$\sin \theta' = \cos S \sin \theta_0, \tag{7}$$

$$\tan (\lambda_0 - \lambda') = \frac{\tan S}{\sin(\frac{\pi}{2} - \theta_0)} = \frac{\tan S}{\cos \theta_0}, \qquad (8)$$

$$\tan \alpha' = \frac{\tan \left(\frac{\pi}{2} - \theta_0\right)}{\sin S} = \frac{\cot \theta_0}{\sin S}$$
 (9)

$$\sin \theta' = \cot (\lambda_0 - \lambda') \cot \alpha'$$
 or

$$\tan \alpha' \sin \theta' \tan (\lambda_0 - \lambda') = 1 \tag{10}$$

From the oblique spherical triangle PQ,Q, find

$$\cos (\lambda_2 - \lambda_1) = -\cos (\pi - \alpha_2) \cos \alpha_1 + \sin (\pi - \alpha_2) \sin \alpha_1 \cos (S_1 - S_2) \text{ or}$$

$$\cos (\lambda_2 - \lambda_1) = \cos \alpha_1 \cos \alpha_2 + \sin \alpha_1 \sin \alpha_2 \cos (S_1 - S_2). \tag{10.1}$$

Computations from the formulae

First compute λ_0 and θ_0 from (3) and (4).

$$\tan \lambda_0 = \frac{\tan \theta_2 \cos \lambda_1 - \tan \theta_1 \cos \lambda_2}{\tan \theta_1 \sin \lambda_2 - \tan \theta_2 \sin \lambda_1}$$

$$\cot \theta_0 = \cot \theta_1 \cos (\lambda_0 - \lambda_1) = \cot \theta_2 \cos (\lambda_0 - \lambda_2)$$

Next compute a_1 and a_2 from (5),

$$\sin \alpha_1 = \frac{\cos \theta_0}{\cos \theta_1} , \sin \alpha_2 = \frac{\cos \theta_0}{\cos \theta_2}$$

Then S₁ and S₂ from (6)

 $\tan S_1 = \cos \alpha_1 \cot \theta_1$, $\tan S_2 = \cos \alpha_2 \cot \theta_2$

The computations for a_1 , a_2 ; S_1 and S_2 are checked by (10.1)

$$\cos (\lambda_2 - \lambda_1) = \cos \alpha_1 \cos \alpha_2 + \sin \alpha_1 \sin \alpha_2 \cos (S_1 - S_2).$$

Now for equally spaced intervals along the great circle track, for instance in 100 nautical mile intervals, let $S = S_1 \pm 100k$.

$$k = 1, 2, 3, \ldots N$$
.

With these values of S one computes successively corresponding values of θ' , λ' and α' from equations (7), (8), and (9)

$$\sin \theta' = \sin \theta_0 \cos S$$
, $\tan (\lambda_0 - \lambda') = \frac{\tan S}{\cos \theta_0}$, $\tan \alpha' = \frac{\cot \theta_0}{\sin S}$.

These last computations are checked by (10)

$$\sin \theta' \cdot \tan (\lambda_0 - \lambda') \cdot \tan \alpha' = 1.$$

Figure 3. Parallels at a given distance from a great circle track.

PARALLELS AT A GIVEN DISTANCE FROM A GREAT CIRCLE TRACK

In Figure 3, the basic great circle track determined by Q_1 (θ_1 , λ_1), Q_2 (θ_2 , λ_2) is the same and the point $O(\theta_0, \lambda_0)$ is the same — (vertex of the great circle track). The point P' is the pole of the great circle determined by Q_1 , Q_2 . The angle at P' of the spherical triangle P'PQ' is the distance S = OQ' along the great circle track. If p and p' are points on the parallels at a distance s from the great circle track, then the coordinates of p and p' can be computed from the two spherical triangles PP'p, PP'p', (Figure 4).

Figure 4

From these triangles one has

 $\sin \theta_p = \cos \theta_0 \sin s + \sin \theta_0 \cos s \cos S$

$$\sin \theta p' = -\cos \theta_0 \sin s + \sin \theta_0 \cos s \cos S \tag{11}$$

$$\frac{\cos s}{\sin (\lambda_0 - \lambda_p)} = \frac{\cos \theta p}{\sin S} , \frac{\cos s}{\sin (\lambda_0 - \lambda_p')} = \frac{\cos \theta p'}{\sin S}$$
 (12)

From (11) and (12) one may write

 $\sin \theta_k = A \cos S \pm B$

$$\sin (\lambda_0 - \lambda_k) = C \sin S / \cos \theta_k \tag{13}$$

where $A = \sin \theta_0 \cos s$, $B = \cos \theta_0 \sin s$, $C = \cos s$.

A, B, C are constants for a given s. When k = p, the + sign is used in the first of equations (13). When k = p', the - sign is used.

The computations may be checked as before by means of the equation $\cos 2s = \sin \theta p \sin \theta p' + \cos \theta p \cos \theta p' \cos (\lambda p' - \lambda p)$.

A SPHERICAL RECTANGULAR COORDINATE SYSTEM WITH A GREAT CIRCLE BASE LINE AS AN AXIS

Figure 5 is a further elaboration of Figures 2 and 3. M is the midpoint of the spherical segment Q_1Q_2 . The section MP'P'' is perpendicular to the base line at M. The general point $Q(\theta, \lambda)$ has for the foot of the perpendicular from Q upon the base line, the point $Q'(\theta', \lambda')$ as shown in figure 2. The great circle arc QQ'passes through P, and QQ' is taken for spherical rectangular coordinate y. The great circle perpendicular to the section MP'P'' and passing through Q meets MP'P'' in T. The distance OQ' is S as shown in Figure 5. Note that the s of Figure 3 in the y of Figure 5. The great circle arc QT is taken for x. That is the spherical rectangular system chosen is x = QT, y = QQ'. Spherical polar coordinates are then r and α as shown in Figure 5, where r = MQ, and α is the angle between r and MQ'.

From the right spherical triangles MQT, MQQ'one finds

 $\sin x = \sin r \cos \alpha$

$$\sin y = \sin r \sin \alpha \tag{14}$$

whence

$$\sin r = (\sin^2 x + \sin^2 y)^{-1/2}$$

$$\tan \alpha = \sin y / \sin x,$$
(15)

that is (14) and (15) represent the conversion formulas between the spherical rectangular and spherical polar systems as given.

We now develop the coordinates x and y as functions of S and of θ and λ . Also θ and λ as functions of x and y.

COMPUTATION OF S, x, y, FROM θ AND λ

Assume that the base line has been established, that is the coordinates θ_0 , λ_0 of the vertex, 0, of the great circle base line have been computed from the coordinates of the two given Points $Q_1(\theta_1, \lambda_1)$, $Q_2(\theta_2, \lambda_2)$ by means of the equations as given on page 23. Then referring to Figure 5, find in spherical triangles:

PP Q:
$$\cos y \sin S = \cos \theta \sin (\lambda_0 - \lambda),$$
 (16)

:
$$\sin y = \cos \theta_0 \sin \theta - \sin \theta_0 \cos \theta \cos (\lambda_0 - \lambda),$$
 (17)

OPQ:
$$\cos f = \sin \theta_0 \sin \theta + \cos \theta_0 \cos (\lambda_0 - \lambda),$$
 (18)

$$OQQ': \cos y \cos S = \cos f, \tag{19}$$

TP
$$\circ$$
: $\sin x = \sin d \cos y$. (20)

Figure 5. Spherical rectangular coordinate system.

Dividing respective members of (16) and (19) find

$$\tan S = \cos \theta \sin (\lambda_0 - \lambda) / \cos f \tag{21}$$

where cos f is given by (18).

From (17) and (18) we have $\sin \theta_0 \cos f = \sin \theta - \cos \theta_0 \sin y$ whence (21) may be written

$$\tan S = \frac{\sin \theta_0 \cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta - \cos \theta_0 \sin y}$$
 (22)

Referring now to Figures 1 and 5, it is seen that $d = MQ' = S - \frac{1}{2}(S_1 + S_2)$, where S_1 and S_2 are the distances from $O(\theta_0, \lambda_0)$ to Q_1 and Q_2 respectively.

Hence given the spherical curvilinear coordinates θ , λ of a point $Q(\theta, \lambda)$, to find S, x and y with θ_0 , λ_0 , S_1 , S_2 known, compute y and S from (17) and (21) or (22) and then x from (20), i.e. $\sin y = \cos \theta_0 \sin \theta - \sin \theta_0 \cos \theta \cos (\lambda_0 - \lambda)$

$$\tan S = \frac{\sin \theta_0 \cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta - \cos \theta_0 \sin y} = \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\cos f}$$

$$= \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta_0 \sin \theta + \cos \theta_0 \cos \theta \cos (\lambda_0 - \lambda)}$$

$$\sin x = \sin d \cos y = \sin \left[S - \frac{1}{2} (S_1 + S_2) \right] (1 - \sin^2 y)^{1/2}$$
(23)

COMPUTATION OF S, θ , λ FROM x AND y

From equation (20) one has $\sin d = \sin x / \cos y$ or $\sin [S - \frac{1}{2}(S_1 + S_2)] = \sin x / \cos y$ whence

$$S = \arcsin (\sin x / \cos y) + \frac{1}{2}(S_1 + S_2).$$
 (24)

From equations (13) page 27,

$$\sin \theta = A \cos S + B$$

$$\sin (\lambda_0 - \lambda) = C \sin S / \cos \theta$$
(25)

where $A = C \sin \theta_0$, $B = D \cos \theta_0$, $C = \cos y$, $D = \sin y$

Hence to compute S, θ , λ from x and y, first compute S from (24) and then θ and λ from (25) i.e.:

let $C = \cos y$, $D = \sin y$, $E = \sin x$, $A = C \sin \theta_0$, $B = D \cos \theta_0$.

Then

$$S = \arcsin (E/C) + \frac{1}{2}(S_1 + S_2)$$

$$\theta = \arcsin (A \cos S + B)$$

$$\lambda = \lambda_0 - \arcsin (C \sin S/\cos \theta)$$
(26)

DERIVATION OF THE EQUATIONS TO SPHERICAL HYPERBOLAS

Having established a rectangular spherical coordinate system on a great circle base line, we are now in a position to develop the equations of spherical hyperbolas referred to our rectangular system. Referring again to Figure 5, we restrict the point $Q(\theta, \lambda)$ or Q(x,y) to the locus defined by demanding that the distances σ_1 and σ_2 from the points Q_2 and Q_1 respectively satisfy the condition

$$\sigma_1 - \sigma_2 = 2c/e = 2a$$

$$2c = S_1 - S_2,$$
(27)

where as before S_1 , S_2 are the distances of Q_1 , Q_2 respectively from $O(\theta_0, \lambda_0)$; e is a number such that e > 1.

From the spherical triangles MQQ1, MQQ2 one has

$$\cos \sigma_2 = \cos r \cos c + \sin r \sin c \cos \alpha$$

$$\cos \sigma_1 = \cos r \cos c - \sin r \sin c \cos \alpha \tag{28}$$

Adding and substracting respective members of (28) obtain

$$\cos \sigma_1 + \cos \sigma_2 = 2 \cos r \cos c$$

$$\cos \sigma_1 - \cos \sigma_2 = -2 \sin r \sin c \cos \alpha$$
(29)

By well known trigonometric identities and condition (27), equations (29) may be written

$$\cos \sigma_1 + \cos \sigma_2 = 2 \cos \frac{1}{2}(\sigma_1 + \sigma_2) \cos \frac{1}{2}(\sigma_1 - \sigma_2) = 2 \cos \frac{1}{2}(\sigma_1 + \sigma_2) \cos a = 2(\cos r)(\cos c),$$

$$\cos \sigma_1 - \cos \sigma_2 = 2 \sin \frac{1}{2}(\sigma_1 + \sigma_2) \sin \frac{1}{2}(\sigma_1 - \sigma_2) = 2 \sin \frac{1}{2}(\sigma_1 + \sigma_2) \sin a = -2(\sin r)(\sin c) \cos a,$$

or
$$\cos \frac{1}{2}(\sigma_1 + \sigma_2) = \cos r \cos c/\cos a$$
, (30)

 $\sin \frac{1}{2} (\sigma_1 + \sigma_2) = \sin r \sin c \cos \alpha / \sin a$.

Squaring and adding respective members of (30), get

$$(\cos^2 r) (\cos^2 c/\cos^2 a) + (\sin^2 r \cos^2 a) (\sin^2 c/\sin^2 a) = 1.$$
 (31)

Now in (31) place $\cos^2 r = 1/(1 + \tan^2 r)$,

 $\sin^2 r = \tan^2 r/(1 + \tan^2 r)$, whence (31) may be written

$$\tan^{2} r = \frac{\tan^{2} a (\cos^{2} a - \cos^{2} c)}{\sin^{2} c \cos^{2} a - \sin^{2} a} = \frac{\tan^{2} a (\sin^{2} c - \sin^{2} a)}{\sin^{2} c \cos^{2} a - \sin^{2} a}$$
(32)

Now (32) is the polar form of the equation to the spherical hyperbola.

From conversion formulas (15) we have

$$\tan^2 r = (\sin^2 x + \sin^2 y)/(1 - \sin^2 x - \sin^2 y),$$

 $\cos^2 \alpha = \sin^2 x/(\sin^2 x + \sin^2 y)$ (33)

and substitutions for $\tan^2 r$, $\cos^2 \alpha$ from (33) in (32) give the rectangular equation to the spherical hyperbola

$$\sin^2 x = \frac{\sin^2 a \cos^2 c}{\sin^2 c - \sin^2 a}$$
 $\cdot \sin^2 y + \sin^2 a$. (34)

| 対立が大力による。| マイアングラジュー | 東京を入れる。| 東京を対する | 東京を介えられる。

THE POLAR EQUATION OF SPHERICAL HYPERBOLAS WITH ORIGIN AT A FOCUS

If we choose the given point Q_1 (θ_1 , λ_1) of the great circle base line as origin of coordinates and a focus, then the following figure may be abstracted from Figure 5:

The polar radius is now $R = \sigma_2$, β is the angle between R and Q_1Q' . $k = Q_1Q' = S - S_1$. From spherical triangle Q_2QQ_1 we find $\cos \sigma_1 = \cos R \cos 2c - \sin R \sin 2c \cos \beta$, (35) and from (27) $\sigma_1 - R = 2a$, whence

$$\cos (\sigma_1 - R) = \cos \sigma_1 \cos R + \sin \sigma_1 \sin R = \cos 2a, \tag{36}$$

 $\sin (\sigma_1 - R) = \cos \sigma_1 \sin R + \sin \sigma_1 \cos R = \sin 2a$.

Multiply the first of (36) by $\sin R$, the second by $\cos R$ and add respective members to solve for

$$\sin \sigma_1 = \cos 2a \sin R + \sin 2a \cos R. \tag{37}$$

Square and add respective members of (35) and (37) to get

$$(\cos R \cos 2c - \sin R \sin 2c \cos \beta)^2 + (\cos 2a \sin R + \sin 2a \cos R)^2 = 1.$$
 (38)

Multiply every term of (38) by sec²R, whence it may be written

$$(\cos 2c - \tan R \sin 2c \cos \beta)^2 + (\cos 2a \tan R + \sin 2a)^2 = \sec^2 R = 1 + \tan^2 R.$$
 (39)

Expanding (39) and writing as a quadratic in tan R find

$$\tan^2 R \left(\sin^2 2c \cos^2 \beta - \sin^2 2a \right) + 2\tan R \left(\sin 2a \cos 2a - \sin 2c \cos 2c \cos \beta \right)$$
 (40)
+ $\cos^2 2c - \cos^2 2a = 0$.

Now equation (40) factors into [tan R (sin 2c cos β + sin 2a) - (cos 2c + cos 2a)].

$$[\tan R (\sin 2c \cos \beta - \sin 2a) - (\cos 2c - \cos 2a)] = 0.$$
 (41)

Whence

$$\tan R = \frac{\cos 2c + \cos 2a}{\sin 2c \cos \beta + \sin 2a}, \tan R = \frac{\cos 2c - \cos 2a}{\sin 2c \cos \beta - \sin 2a}$$

or

$$\tan R = \frac{\cos 2c \pm \cos 2a}{\sin 2c \cos \beta \pm \sin 2a},$$
(42)

where either the (two plus signs) or (two minus) signs are taken together.

Equation (42) is the polar equation to spherical hyperbolas referred to a focus as pole. We now derive expressions for the spherical rectangular coordinates x, y as functions of the polar coordinates R. B.

From right triangles WP Q, WQQ1, Q1QQ'(Figure 6) find

$$\sin x = \sin R \cos \beta$$
,

$$\sin y = \sin R \sin \beta. \tag{43}$$

 $\sin x = \sin k \cos y$;

$$\cos R = \cos k \cos y. \tag{44}$$

Equations (43) are similar to equations (14) and provide the conversions from polar to rectangular coordinates, i.e. from (43)

$$\sin R = (\sin^2 x + \sin^2 y)^{-1/2},$$
 (45)

 $\tan \beta = \sin y / \sin x$.

Since moving the origin from M to Q_1 (see Figure 5) is only a translation along the x-axis, there is no change in y, but x is changed. Hence from (44) and the relations (23) and (26) we can write when the origin is at Q_1 , $k = S - S_1$:

FORMULAS FOR COMPUTATION OF S, x, y, FROM θ AND λ

$$\sin y = \cos \theta_0 \sin \theta - \sin \theta_0 \cos \theta \cos (\lambda_0 - \lambda)$$

$$\tan S = \frac{\sin \theta_0 \cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta - \cos \theta_0 \sin y} = \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\cos f}$$

$$= \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta_0 \sin \theta + \cos \theta_0 \cos \theta \cos (\lambda_0 - \lambda)}$$
(46)

 $\sin x = \sin k \cos y = \sin (S - S_1) \cos y$

FORMULAS FOR COMPUTATION OF S, θ , λ FROM x AND y

Let
$$C = \cos y$$
, $D = \sin y$, $E = \sin x$, $A = C \sin \theta_0$, $B = D \cos \theta_0$, then $S = \arcsin (E/C) + S_1$

$$\theta = \arcsin (A \cos S + B) \tag{47}$$

 $\lambda = \lambda_0 - \arcsin (C \sin S/\cos \theta)$

AN ALTERNATIVE EQUATION TO THE SPHERICAL HYPERBOLA WITH ORIGIN AT A FOCUS

If $S = \frac{1}{2}(a_0 + b_0 + c_0)$ in the spherical triangle

Figure 7.

then
$$\tan^2 \frac{1}{2}A = \frac{\sin (s - h_0) \sin (s - c_0)}{\sin S \sin (s - a_0)}$$
, [6]. (48)

Referring to figure 6, $a_0 = \sigma_1$, $b_0 = 2c$, $c_0 = R$: and from (27) we have the conditions

$$\sigma_1 - R = 2a$$
, $\sigma_1 + R = 2(R + a)$.

Hence

$$s = \frac{1}{2}(\sigma_1 + R) + c = R + a + c,$$

$$s - a_0 = \frac{1}{2}(R - \sigma_1) + c = c - a,$$

$$s - b_0 = R + a - c, S - c_0 = c + a$$

$$A = \pi - \beta, \tan \frac{1}{2}A = \tan (\pi/2 - \beta/2) = \cot \beta/2$$
(49)

With the values from (49) placed in (48) find

$$\tan^{2} \beta/2 = \frac{\sin(c-a)\sin(R+c+a)}{\sin(c+a)\sin(R-c+a)},$$
 (50)

which is the desired alternative form, [7].

CORRESPONDING PLANE HYPERBOLA EQUIVALENTS

For the plane case and analogous reference system, Figure 5 becomes

Figure 8.

Given the condition $\sigma_1 - \sigma_2 = 2a$

By the law of cosines applied to triangles MQQ1 MQQ2

$$\sigma_2^2 = r^2 + c^2 - 2rc \cos \alpha, \ \sigma_1^2 = r^2 + c^2 + 2rc \cos \alpha$$
whence $\sigma_1^2 + \sigma_2^2 = 2(r^2 + c^2), \ \sigma_1^2 \ \sigma_2^2 = (r^2 + c^2)^2 - 4r^2 c^2 \cos^2 \alpha$ (51)

Now by squaring both sides of $\sigma_1 - \sigma_2 = 2a$ obtain

$$\sigma_1^2 - 2\sigma_1 \sigma_2 + \sigma_2^2 = 4a^2$$
 whence

$$(\sigma_1^2 + \sigma_2^2 - 4a^2)^2 = 4\sigma_1^2\sigma_2^2 \tag{52}$$

With the values of $\sigma_1^2 + \sigma_2^2$, $\sigma_1^2 \sigma_2^2$ from (51) placed in (52) obtain

$$[2(r^2 + c^2) - 4a^2]^2 = 4[(r^2 + c^2)^2 - 4r^2c^2\cos^2\alpha].$$
 (53)

Expanding (53) find

$$r^2 c^2 cos^2 \alpha - a^2 r^2 - a^2 c^2 + a^4 = 0$$

or
$$r^2 = \frac{a^2(c^2 - a^2)}{c^2 \cos^2 a - a^2}$$
 (54)

To transform to rectangular equation we have $x = r \cos \alpha$, $y = r \sin \alpha$, or $r^2 = x^2 + y^2$, $\tan \alpha = \frac{y}{x}$, $\cos^2 \alpha = x^2/(x^2 + y^2)$ and these values of r^2 and $\cos^2 \alpha$ placed in (54) give

$$x^2 = \frac{a^2 y^2}{c^2 - a^2} + a^2 \tag{55}$$

as corresponding rectangular equation.

If the focus Q_1 is to be the origin and $\sigma_2 = R$, the radius for polar coordinates, and β the angle which R makes with the positive x-axis, i.e. β is the angle QQ_1Q' , then our plane figure is as follows:

Figure 9.

By the law of cosines in triangle Q2QQ1

$$\sigma_1^2 = 4c^2 + R^2 + 4cR\cos\beta$$
 (56)

From the condition $\sigma_1 - R = 2a$, $\sigma_1 = R + 2a$, and this value of σ_1 placed in (56) gives $(R + 2a)^2 = 4c^2 + R^2 + 4cR \cos \beta$, which when expanded gives

$$R = \frac{a^2 - c^2}{c \cos \beta - a} \tag{57}$$

For the alternative form of (57), we have the well known formula

$$\tan^2 \frac{1}{2}A = \frac{(s - b_0)(s - c_0)}{s(s - a_0)}, \text{ where } 2s = a_0 + b_0 + c_0$$
 (58)

Here $a_0 = \sigma_1$, $b_0 = R$, $c_0 = 2c$, $A = \pi - \beta$,

Hence: s = a + c + R, $s - a_0 = c - a$, $s - b_0 = a + c$, $s - c_0 = a - c + R$,

whence
$$\tan^2 \frac{1}{2}\beta = \frac{(c-a)(R+c+a)}{(c+a)(R-c+a)}$$
, (59)

which is an alternative form of (57).

Now (54), (55), (57) and (59) could have been obtained directly from (32), (34),(42) and (50) by replacing correctly the trigonometric functions of lengths by corresponding lengths, i.e. $\tan a = \sin a = a$, $\cos a = 1$, etc. We place them side by side for direct comparison in the following table which will also serve as a summary for both:

SPHERICAL HYPERBOLA FORMULAS AND PLANE EQUIVALENTS, [7]

SPHERICAL

PLANE

(60)

(1)
$$\tan^2 r = \frac{\tan^2 a (\sin^2 c - \sin^2 a)}{\sin^2 c \cos^2 a - \sin^2 a}$$

$$r^2 = \frac{a^2(c^2 - a^2)}{c^2 \cos^2 \alpha - a^2}$$

(2)
$$\sin^2 x = \frac{\sin^2 a \cos^2 c}{\sin^2 c - \sin^2 a} \sin^2 y + \sin^2 a$$

$$x^2 = \frac{a^2y^2}{c^2 - a^2} + a^2$$

(3)
$$\tan R = \frac{\cos 2c \pm \cos 2a}{\sin^2 c \cos \beta \pm \sin 2a}$$

$$R = \frac{a^2 - c^2}{c \cos \beta - a}$$

(4)
$$\tan^2(\beta/2) = \frac{\sin(c-a)\sin(R+c+a)}{\sin(c+a)\sin(R-c+a)}$$

$$\tan^2(\beta/2) = \frac{(c-a)(R+c+a)}{(c+a)(R-c+a)}$$

In (1) and (2) of equations (60), the origin of coordinates is the midpoint M_1 , of the segment Q_1Q_2 , see Figure 5. (3) and (4) are two polar forms with origin at a Focus Q_1 , see Figures (5) and (6).

REFERENCES

- [6] Chauvenet, Plane and Spherical Trigonometry, 1871, page 158.
- [7] Equations (32), (34), (42), (50) to spherical hyperbolas are essentially those given without derivation in LORAN, Pierce, McKenzie, Woodward, McGraw Hill 1948, pages 173, 175.

DEVELOPMENT: DISTANCE FORMULAE;

SECTION 3. DISTANCE COMPUTATIONS AND CONVERSIONS; AZIMUTHS

If we are given two points $P_1(\phi_1,\lambda_1)$, $P_2(\phi_2,\lambda_2)$ on the ellipsoid of reference as shown in Figure 10, we may compute distances and azimuths according to known or given elements. That is we may compute the geographic coordinates of the point $P_2(\phi_2,\lambda_2)$ if we know the geographic coordinates of $P_1(\phi_1,\lambda_1)$ the distance between P_1 and P_2 , and the azimuth from P_1 to P_2 . This is the direct problem and the one most important in Geodesy relative to establishing triangulation control nets. If the coordinates of both P_1 and P_2 are given, the distance between them and the azimuths can be computed. This is the inverse problem, and the one concerned primarily in electronic positioning systems as Loran.

Since there are several possible curves connecting the points P_1 and P_2 on the ellipsoid along which distances would differ very little, for instance — the geodesic, the normal sections, the great elliptic arc, the curve of alinement, etc. — criteria for selection would be simplicity in computations relative to required accuracy. Also to be considered are other useful geometric quantities associated with the configuration and expressible in terms of common computational parameters. (See Figure 11).

The shortest distance is always the geodesic or the geodetic line between P₁ and P₂. It is usually a space curve (that is it has a first and second curvature at each point). For instance on the reference ellipsoid, the equator and the meridians are the only plane geodesics, [8].

THE PERSON AND THE PERSON OF T

Now in Figure 10, the point $P_0(\phi_0,\lambda_0)$ is the vertex of the great elliptic arc, that is P_0 is the point where the great elliptic arc is orthogonal to a meridian. The goedesic, or geodetic line, between P_1 and P_2 also has a vertex where it is orthogonal to a meridian. Since the geodesic is a space curve and climbs nearer to the ellipsoid pole, T_0 , than any of the other representative curves (if P_1 and P_2 were ends of a diameter of the equator, the geodesic would be the elliptic meridian through P_1 and P_2 since it is shorter than the equator), the vertex of the geodesic is closer to T_0 than is P_0 . Unfortunately the geographic coordinates of the geodesic vertex cannot be expressed simply in terms of the geographic coordinates of P_1 and P_2 , hence an approximation scheme, usually iterative, is used. [9] The computations are usually quite lengthy for long lines. Many schemes and formulae have been devised to approximate the geodesic and studies have been made comparing them. [21] The geodetic line is of most interest to the geodesist proper, since he is primarily concerned with closure on a particular ellipsoid of reference of large arcs and areas of triangulation, hence the geodesic or geodetic line and geodetic azimuths on the ellipsoid are consonant with his mathematical model.

Figure 10. Corresponding distances on the reference ellipsoid and the auxiliary sphere.

OPERATIONAL APPLICATIONS

Requirements, accuracy wise, with respect to geodetic data obviously depend on the particular guidance system employing it. If some guidance, particularly external, is to be provided a missile, its initial launch requirements are not as critical as say for a purely ballistic missile. Since it has yet to be demonstrated that the flight of missiles are geodesic or that the traces of the trajectories upon the ellipsoid of reference are geodesics, distances can be computed by any method which will give results within the capability of the particular system. Since alinement is usually with respect to a local vertical and a "bearing", the normal section azimuth, the angle of depression of the chord below the horizon and the maximum separation between the chord and the surface are all useful associated quantities which can be "integrated" in the computations for distance as will subsequently be shown in the discussion of distance computations along the great elliptic arc. This configuration is shown in Figure 11 as abstracted from Figure 10.

HYPERBOLIC MEASURING SYSTEMS

For Loran systems, the earth must be considered an oblate ellipsoid or spheroid, but the nearest hundred feet is probably close enough particularly on long lines. [7], page 170.

Hence a computational system is desirable which provides modifications to spherical elements, i.e. functions of spherical arc lengths so that the auxiliary sphere of the particular spheroid of reference can be used since the hyperbolic propagation of systems as Loran may be worldwide as base lines are added or extended. Also to be considered is the use of such computational systems in local areas as for oceanographic surveying and corresponding adaptation to a local sphere of reference. Azimuth computations should be independent, except for dependence on spherical arc length, so that one can have readily the Normal plane section azimuths as well as geodetic azimuths. Finally the system should be easily adapted to local area work in terms of plane coordinates. This can probably best be accomplished through the series of projections, all conformal; spheroid to aposphere, aposphere to sphere, sphere to plane. [8].

The present investigation will center about the configuration depicted in Figure 12 which shows the relationships, exaggerated; between the Normal sections, The Great Elliptic Section, The Geodesic, and the Chord between two points Q₁, Q₂ on the ellipsoid. We begin by deriving the formulae for the Normal Section Azimuths and the Great Elliptic Arc Azimuths.

NORMAL SECTION AZIMUTHS

The normal section azimuths are shown in Figure 13, as extended from Figure 11. The spheroid has been referred to its center as origin of rectangular coordinates, with the reference plane – xz containing the point $Q_1(\phi_1, \lambda_1)$ as shown. The z-axis is the polar axis of the spheroid

 α = Normal Section Azimuth at P₁ (from North) S = Arc length-Geodetic distance

C=Chord length, PiPe

 β =Angle of depression of C below horizon at Pi

 $H_{\mbox{\scriptsize o}} ext{=}Maximum$ separation of arc S and chord C

Figure 11. Relationship between arc length, normal section azimuth, chord length, angle of depression of the chord below the horizon, maximum separation of arc and chord.

Figure 12. Relationships relative to the pole on the ellipsoid of reference, of the geodesic, normal sections, and great elliptic section.

Figure 13. The normal section azimuths.

and the y-axis is then in the plane of the equator — the xy-plane is the equatorial plane of the ellipsoid. In this coordinate system the points Q_1 (ϕ_1 , λ_1), Q_2 (ϕ_2 , λ_2) have the rectangular coordinates:

$$Q_{1}: x_{1} = N_{1} \cos \phi_{1}$$

$$Q_{2}: x_{2} = N_{2} \cos \phi_{2} \cos \Delta \lambda$$

$$y_{1} = 0$$

$$y_{2} = N_{2} \cos \phi_{2} \sin \Delta \lambda$$

$$z_{1} = N_{1} (1 - e^{2}) \sin \phi_{1}$$

$$Z_{2} = N_{2} (1 - e^{2}) \sin \phi_{2}$$
(1)

The rectangular equation to the ellipsoid is

$$(1-e^2)(x^2+y^2)+z^2-a^2(1-e^2)=0, (2)$$

where a, e are respectively the semimajor axis and eccentricity of the meridian ellipse.

The tangent plane to (2) at any point (x_1, y_1, z_1) is

$$(1 - e^2) (xx_1 + yy_1) + zz_1 - a^2 (1 - e^2) = 0.$$
(3)

Hence the tangent plane at Q₁ is, from (1) and (3)

$$xN_1 \cos \phi_1 + z N_1 \sin \phi_1 - a^2 = 0.$$
 (4)

The equation of the plane containing the normal at Q_1 and the point Q_2 is determined by Q_2 and the points $(N_1 e^2 \cos \phi_1, O, O)$, $(O, O, -N_1 e^2 \sin \phi_1)$, see Figure 13. With the coordinates of Q_2 from (1) we can write the equation as

$$\begin{vmatrix} x & y & z & 1 \\ N_2 \cos \phi_2 \cos \Delta \lambda & N_2 \cos \phi_2 \sin \Delta \lambda & N_2 (1-e^2) \sin \phi_2 & 1 \\ N_1 e^2 \cos \phi_1 & 0 & 0 & 1 \\ 0 & 0 & -N_1 e^2 \sin \phi_1 & 1 \end{vmatrix} = 0,$$

which upon expansion may be written

$$Ax + By - Cz - D = 0$$

where
$$A = N_2 \sin \phi_1 \cos \phi_2 \sin \Delta \lambda$$
 (5)

 $B = (N_1 \sin \phi_1 - N_2 \sin \phi_2) e^2 \cos \phi_1 + N_2 (\sin \phi_2 \cos \phi_1 - \sin \phi_1 \cos \phi_2 \cos \Delta \lambda)$

 $C = N_2 \cos \phi_1 \cos \phi_2 \sin \Delta \lambda$

 $D = N_1 N_2 e^2 \sin \phi_1 \cos \phi_1 \cos \phi_2 \sin \Delta \lambda.$

Now the direction cosines p, q, r of the intersection of two planes $A_1x + B_1y + C_1z = D_1$, $A_2x + B_2y + C_2z = D_2$ are given by

$$p = (B_1C_2 - B_2C_1)/d, q = (C_1A_2 - A_1C_2)/d, r = (A_1B_2 - A_2B_1)/d$$
where
$$d = [(B_1C_2 - B_1C_2)^2 + (C_1A_2 - A_1C_2)^2 + (A_1B_2 - A_2B_1)^2]^{1/2}.$$
(6)

Note from figure 13 that the tangent, t_1 , to the meridian at Q_1 lies in the plane y=0 and that defined by equation (4). To apply (6) to these two planes we have respectively $A_1=C_1=D_1=0$, $B_1=1$; $A_2=N_1\cos\phi_1$, $B_2=0$, $C_2=N_1\sin\phi_1$, $D_2=a^2$ and (6) gives the direction cosines of t_1 as $p_1=\sin\phi_1$, $q_1=0$, $r_2=-\cos\phi_1$. (7)

(These were apparent from inspection of Figure 13 but illustrate the use of (6)).

From Figure 13, the tangent t_2 to the elliptic section lying in the plane (5) is the line of intersection of the planes (4) and (5). From (4) and (5) we have respectively $A_1 = N_1 \cos \phi_1$, $B_1 = \theta$, $C_1 = N_1 \sin \phi_1$; $A_2 = A$, $B_2 = B$, $C_2 = -C$ and applying (6) find the direction cosines of t_2 to be

$$P_{2} = (-B \sin \phi_{1})/d, q_{2} = (A \sin \phi_{1} + C \cos \phi_{1})/d, r_{2} = (B \cos \phi_{1})/d$$
where $d = [B^{2} + (A \sin \phi_{1} + C \cos \phi_{1})^{2}]^{1/2}$. (8)

The forward azimuth α_{AB} from Q_1 to Q_2 , as shown in Figure 13, is the angle reckoned clockwise from south between the tangents t_1 and t_2 . Hence from (7) and (8)

$$\cos a_{AB} = p_1 p_2 + q_1 q_2 + r_1 r_2 = -\frac{B}{d} \sin^2 \phi_1 - \frac{B}{d} \cos^2 \phi_1 = -\frac{B}{d}, \qquad (9)$$

$$d = [B^2 + (A \sin \phi_1 + C \cos \phi_1)^2]^{1/2}$$

Since cot $\alpha_{AB} = \cos \alpha_{AB}/(1 - \cos^2 \alpha_{AB})^{1/2}$ we have from (9) that

$$\cot \alpha_{AB} = -B/(d^2 - B^2)^{-1/2},$$
(10)

Now $d^2 - B^2 = B^2 + (A \sin \phi_1 + C \cos \phi_1)^2 - B^2 = (A \sin \phi_1 + C \cos \phi_1)^2$, so $\sqrt{d^2 - B^2} = A \sin \phi_1 + C \cos \phi_1$ and (10) may be written

$$\cot \alpha_{AB} = -B/(A \sin \phi_1 + C \cos \phi_1). \tag{11}$$

With the values of A, B, C from (5), equation (11) may be written as

$$\cot \alpha_{AB} = \frac{\left[\sin \phi_2 - (N_1/N_2)\sin_1\phi\right] e^2 \cos \phi_1 \sec \phi_2 + (\sin \phi_1 \cos \Delta\lambda - \tan \phi_2 \cos \phi_1)}{\sin \Delta\lambda}$$
(12)

Referring again to figure 13, it is seen that from considerations of symmetry, we have only to interchange the subscripts 1 and 2 and change $\Delta\lambda$ to $-\Delta\lambda$ in (12) to obtain \cot_{BA} (the back azimuth on the other normal section). We thus obtain from (12)

$$\cot \alpha_{\text{BA}} = -\frac{\left[\sin \phi_1 - (N_2/N_1) \sin \phi_2\right]e^2 \cos \phi_2 \sec \phi_1 + \left(\sin \phi_2 \cos \Delta \lambda - \tan \phi_1 \cos \phi_2\right)}{\sin \Delta \lambda} \tag{13}$$

GREAT ELLIPTIC SECTION AZIMUTHS

Figure 14 shows the great elliptic section and azimuths as abstracted from Figure 12. The same coordinate system is used as in Figure 13 so that most of the equations developed with the normal section azimuths can be used. The angle α_{AB} between the tangents t_1 and t_2 is the forward azimuth required. We already have the direction cosines of t_1 see equations (7). The tangent t_2 is the intersection of the great elliptic plane with the tangent plane at Q_1 , equation (4). The equation of the great elliptic plane through Q_1 , Q_2 , using equations (1), is given by the determinant

GREAT ELLIPTIC SECTION AZIMUTHS
AND ASSOCIATED GEOMETRY
P-point of maximum separation, chord and arc
Ho-maximum separation of chord and arc

Figure 14. The great elliptic section azimuths.

$$\begin{vmatrix} x & y & z & 1 \\ N_1 \cos \phi_1 & 0 & N_1 (1 - e^2) \sin \phi_1 & 1 \\ N_2 \cos \phi_2 \cos \Delta \lambda & N_2 \cos \phi_2 \sin \Delta \lambda & N_2 (1 - e^2) \sin \phi_2 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 0$$

which when expanded reduces to

Ax + By - Cz = 0,
A = (1 - e²) tan
$$\phi_1 \sin \Delta \lambda$$

B = (1 - e²) (tan ϕ_2 - tan $\phi_1 \cos \Delta \lambda$)
C = sin $\Delta \lambda$ (14)

Since equation (11) was developed for generalized coefficients A, B, C we have only to substitute the values of A, B, C from (14) in (11) to obtain after some algebraic manipulation,

$$\cot \alpha_{AB} = (1 - e^2) \frac{N_1^2}{a^2} \frac{(\tan \phi_1 \cos \Delta \lambda - \tan \phi_2) \cos \phi_1}{\sin \Delta \lambda}$$
 (15)

By symmetrical interchange of subscripts and replacing $\Delta\lambda$ by $-\Delta\lambda$, we obtain cot $\alpha_{\rm BA}$ from (15) as

$$\cot \alpha_{\text{BA}} = (1 - e^2) \frac{N_2^2}{a^2} \frac{(\tan \phi_1 - \tan \phi_2 \cos \Delta \lambda) \cos \phi_2}{\sin \Delta \lambda}$$
 (16)

Equations (15) and (16) represent the azimuths of the great elliptic section as shown in Figure 14.

NORMAL SECTION AND GREAT ELLIPTIC SECTION AZIMUTHS IN TERMS OF PARAMETRIC LATITUDE θ

From the transformation equations $\tan \theta = (1 - e^2)^{1/2} \tan \phi$, $\cos \theta = \frac{N}{a} \cos \phi$, $\sin \theta = \frac{(1 - e^2)^{1/2}}{a} N \sin \phi$, $(1 - e^2 \cos^2 \theta)^{1/2} = \frac{(1 - e^2)^{1/2}}{a} N$

applied to equations (12), (13), (15), 16) we have the normal section and great elliptic section azimuths in terms of parametric latitude.

Normal Section Azimuths in terms of θ .

$$\cot a_{AB} = + \frac{\sin \theta_1 \cos \Delta \lambda - \cos \theta_1 \tan \theta_2 + e^2 (\sin \theta_2 - \sin \theta_1) \cos \theta_1 \sec \theta_2}{(1 - e^2 \cos^2 \theta_1)^{1/2} \sin \Delta \lambda}$$

$$\cot a_{BA} = - \frac{\sin \theta_2 \cos \Delta \lambda - \cos \theta_2 \tan \theta_1 + e^2 (\sin \theta_1 - \sin \theta_2) \cos \theta_2 \sec \theta_1}{(1 - e^2 \cos^2 \theta_2)^{1/2} \sin \Delta \lambda}$$
(17)

Great Elliptic Section Azimuths in terms of θ

$$\cot \alpha_{AB} = + \frac{(\tan \theta_1 \cos \Delta \lambda - \tan \theta_2) (\cos \theta_1) (1 - e^2 \cos^2 \theta_1)^{1/2}}{\sin \Delta \lambda}$$

$$\cot \alpha_{BA} = + \frac{(\tan \theta_1 - \tan \theta_2 \cos \Delta \lambda) (\cos \theta_2) (1 - e^2 \cos^2 \theta_2)^{1/2}}{\sin \Delta \lambda}$$
(18)

GREAT ELLIPTIC ARC DISTANCE

Referring to Figure 9, it is seen that the great elliptic arc is orthogonal to a meridian at a point $P_0(\phi_0,\lambda_0)$ which is the vertex of the great elliptic arc determined by the points $P_1(\phi_1,\lambda_1),\,P_2(\phi_2,\lambda_2)$ on the ellipsoid. The equation of the great elliptic plane through P_1 and P_2 is given by equations (14). Now a meridional plane orthogonal to (14) has an equation of the form Bx-Ay=0 and the rectangular coordinates of $P_0(\phi_0,\lambda_0)$ must satisfy both planes. From (1), the rectangular coordinates of $P_0(\phi_0,\lambda_0)$ are $x_0=N_0\cos\phi_0\cos\Delta\lambda_0$, $y_0=N_0\cos\phi_0\sin\Delta\lambda_0$, $z=N_0(1-e^2)\sin\phi_0$ and these placed in Bx-Ay=0 and (14) give

B
$$\cos \Delta \lambda_0 - A \sin \Delta \lambda_0 = 0$$
,
A $\cos \Delta \lambda_0 + B \sin \Delta \lambda_0 = C (1 - e^2) \tan \phi_0$. (19)

From the first of (19) find tan $\Delta \lambda_0 = B/A$, whence $\sin \Delta \lambda_0 = B/(A^2 + B^2)^{1/2}$ and these values placed in the second of (19) give tan $\phi_0 = (A^2 + B^2)^{1/2}/C$ $(1 - e^2)$,

$$\sin \phi_0 = \tan \phi_0 / \left(1 + \tan^2 \phi_0\right)^{1/2} = \left(\frac{A^2 + B^2}{A^2 + B^2 + C^2 (1 - e^2)^2}\right)^{1/2} , \tag{20}$$

 $\tan \Delta \lambda_o = B/A$.

With the values of A, B, C from (14), equations (20) may be written

$$\sin \phi_0 = \left(\frac{\tan^2 \phi_1 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda + \tan^2 \phi_2}{\tan^2 \phi_1 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda + \tan^2 \phi_2 + \sin^2 \Delta \lambda}\right)^{1/2} , \qquad (21)$$

 $\tan \Delta \lambda_0 = (\cot \phi_1 \tan \phi_2 - \cos \Delta \lambda)/\sin \Delta \lambda$,

 $\tan \phi_0 = (\tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda)^{1/2} / \sin \Delta \lambda .$

From the second of equations (19), dropping the subscript zero and differentiating we obtain

$$(-A \sin \Delta \lambda + B \cos \Delta \lambda) (d \Delta \lambda) = C (1 - e^2) \sec^2 \phi d \phi.$$
 (22)

By solving A cos $\Delta \lambda + B \sin \Delta \lambda = C (1 - e^2) \tan \phi$ with the identity $\sin^2 \Delta \lambda + \cos^2 \Delta \lambda = 1$, find

$$\sin \Delta \lambda = -\frac{BC (1 - e^2) \tan \phi + A [(A^2 + B^2) - C^2 (1 - e^2)^2 \tan^2 \phi]^{1/2}}{A^2 + B^2},$$
 (23)

$$\cos \Delta \lambda = \frac{-AC(1-e^2)\tan \phi + B[(A^2-B^2)-C^2(1-e^2)^2\tan^2\phi]^{1/2}}{A^2+B^2}.$$

From (23) one has then

- A sin $\Delta \lambda$ + B cos $\Delta \lambda$ = $[(A^2 + B^2) - C^2(1 - e^2)^2 \tan^2 \phi]^{1/2}$ and this value placed in (22) gives

$$(d\Delta\lambda) = \frac{C(1-e^2)\sec^2\phi d\phi}{[(A^2+B^2)-C^2(1-e^2)^2\tan^2\phi]^{-1/2}}$$
(24)

whence, by means of relations (20) and trigonometric identities,

$$(\mathrm{d}\Delta\lambda)^{2} = \frac{\mathrm{C}^{2}(1-\mathrm{e}^{2})^{2} \sec^{4}\phi \mathrm{d}\,\phi^{2}}{\mathrm{A}^{2}+\mathrm{B}^{2}-\mathrm{C}^{2}(1-\mathrm{e}^{2})^{2} \tan^{2}\phi} = \frac{\sec^{4}\phi\,\mathrm{d}\,\phi^{2}}{\mathrm{A}^{2}+\mathrm{B}^{2}} - \tan^{2}\phi$$

$$= \frac{\sec^{4}\phi\,\mathrm{d}\,\phi^{2}}{\tan^{2}\phi_{0}-\tan^{2}\phi} = \frac{\sec^{4}\phi\,\mathrm{d}\,\phi^{2}}{\sec^{2}\phi_{0}-\sec^{2}\phi} .$$

$$(25)$$

Now the linear element of the spheroid is, [8] page 62,

$$ds^{2} = \left[\sec^{2} \phi d \phi^{2} + \left(\frac{N}{R} \right)^{2} (d \Delta \lambda)^{2} \right] R^{2} \cos^{2} \phi, \qquad (26)$$

where
$$R = a(1 - e^2)/(1 - e^2 \sin^2 \phi)^{3/2} = \frac{1 - e^2}{a^2} N^3$$
; $N = a/(1 - e^2 \sin^2 \phi)^{1/2}$

Now from (25) and (26) it is seen that we will be able to express the quantity in brackets in terms of $\sec \phi$ and $\sec \phi_0$ since

$$\left(\frac{N}{R}\right)^{2} = \frac{(1 - e^{2} \sin^{2} \phi)^{2}}{(1 - e^{2})^{2}} = \frac{[(1 - e^{2}) \sec^{2} \phi + e^{2}]^{2}}{(1 - e^{2})^{2} \sec^{4} \phi} \tag{27}$$

With the values of $(d \Delta \lambda)^2$ and $\left(\frac{N}{R}\right)^2$ from (25) and (27), the linear element (26) may be

be written

$$ds^{2} = \left[\sec^{2}\phi + \frac{[(1 - e^{2}) \sec^{2}\phi + e^{2}]^{2}}{(1 - e^{2})^{2} (\sec^{2}\phi_{0} - \sec^{2}\phi)} \right] (R^{2} \cos^{2}\phi d\phi^{2}).$$
 (28)

If the quantity in brackets is given a common denominator, then (28) may be written as

$$ds^{2} = \frac{(1 - e^{2}) \sec^{2} \phi \left[(1 - e^{2}) \sec^{2} \phi_{0} + 2e^{2} \right] + e^{4}}{(1 - e^{2})^{2} (\sec^{2} \phi_{0} - \sec^{2} \phi)} \qquad (R^{2} \cos^{2} \phi d\phi^{2}).$$
 (29)

To bring (29) into manageable form we place
$$k = \frac{e\sqrt{1-e^2}}{a}N_0 \sin \phi_0$$
, and (30)

$$\cos d = \frac{N \sin \phi}{N_0 \sin \phi_0}.$$

(Note that k = eo, is the eccentricity of the great elliptic arc. See Figure 15.)

GREAT ELLIPTIC SECTION

Major semiaxis is a

Minor serniaxis is $b_0 = a\sqrt{1-e^2 \sin^2 \theta_0}$

a,e are semimajor axis and eccentricity of the ellipsoidal meridian $heta_o$ is the geocentric latitude of the vertex Po of the

Great Elliptic Section

eo is the eccentricity of the Great Elliptic

 $e_{\circ} = (a^2 b_{\circ}^2)^{\frac{1}{2}}/a = e \sin \theta_{\circ} = (e^{\sqrt{1-e^2}}/a) N_{\circ} \sin \phi_{\circ}$

Coordinates of Po are Po (a $\cos\theta_o$ $\cos\lambda_o$, a $\cos\theta_o$ $\sin\lambda_o$, b $\sin\theta_o$) or in terms of geodetic latitude ϕ_o

Po (No $\cos\phi_{\rm o}\cos\Delta$ \lambda_{\omega}, No $\cos\phi_{\rm o}\sin\Delta_{\rm o}$, No (1-e²) $\sin\phi_{\rm o}$)

Figure 15. Elements of the great elliptic section.

From the first of (30), placing $N_0 = a/(1 - e^2 \sin^2 \phi_0)^{1/2}$ and solving for $\sec^2 \phi_0$ find $\sec^2 \phi_0 = (1 - e^2 + k^2)/(1 - e^2) (1 - k^2/e^2)$. (31)

With the value of $N_0 \sin \phi_0$ from the first of (30) placed in the second find $N \sin \phi = (ak/e\sqrt{1-e^2}) \cos d$ and with $N = a/\sqrt{1-e^2 \sin^2 \phi}$, solving for $\sec^2 \phi$ find

$$\sec^2 \phi = \frac{1 - e^2 + k^2 \cos^2 d}{(1 - e^2)[1 - (k^2/e^2) \cos^2 d]} . \tag{32}$$

By differentiating N sin $\phi = (ak/e\sqrt{1-e^2}) \cos d$ obtain

$$(N \sin \phi)' d\phi = -(ak/e\sqrt{1-e^2}) \sin d \delta d$$
(33)

Since $(N \sin \phi)' = \frac{R \cos \phi}{1 - e^2}$, equation (33) may be written

$$\frac{R\cos\phi}{1-e^2}\,d\phi = -\left(\frac{ak}{e}\sqrt{1-e^2}\right)\sin\,d\,\delta d\text{ or finally}$$

$$(R^2 \cos^2 \phi d\phi^2) = (1 - e^2) a^2 (k^2/e^2) \sin^2 d \delta d^2.$$
 (34)

Now from (31) and (32) find

$$\sec^2 \phi_0 - \sec^2 \phi = \frac{(k^2/e^2) \sin^2 d}{(1 - e^2) (1 - k^2/e^2) [1 - (k^2/e^2) \cos^2 d]},$$
(35)

and the numerator of (29) becomes

$$(1 - e^2) \sec^2 \phi \left[(1 - e^2) \sec^2 \phi_0 + 2e^2 \right] + e^4 = \frac{1 - k^2 + k^2 \cos^2 d}{(1 - k^2/e^2) \left[1 - k^2/e^2 \right) \cos^2 d}.$$
 (36)

With the values from (34), (35), (36) the linear element (29) becomes

$$ds^{2} = \frac{1 - k^{2} + k^{2} \cos^{2}d}{(1 - k^{2}/e^{2}) [1 - (k^{2}/e^{2}) \cos^{2}d]} \cdot \frac{(1 - e^{2})(1 - k^{2}/e^{2}) [1 - (k^{2}/e^{2}) \cos^{2}d]}{(k^{2}/e^{2}) \sin^{2}d (1 - e^{2})^{2}} \cdot (1 - e^{2}).$$

$$a^{2}(k^{2}/e^{2}) \sin^{2}d \delta d^{2} = a^{2}(1 - k^{2} + k^{2} \cos^{2}d) \delta d^{2},$$

$$ds^{2} = a^{2}(1 - k^{2} \sin^{2}d) \delta d^{2}.$$
(37)

Now equation (37) is the usual elliptic integral form with modulus k, and we write

$$s = a \left[\int_0^{d_1} + \int_0^{d_2} \right] (1 - k^2 \sin^2 d)^{1/2} \delta d, \qquad (38)$$

where $k = (e\sqrt{1-e^2}/a) N_0 \sin \phi_0$, the modulus of the elliptic integral, and $d_1 = \cos^{-1} (N_1 \sin \phi_1/N_0 \sin \phi_0)$, $d_2 = \cos^{-1} (N_2 \sin \phi_2/N_0 \sin \phi_0)$. (k is equal to e_0 the eccentricity of the great elliptic arc – see Figure 15).

The integrand of (38) may be expanded by the binomial formula and integrated term by term to obtain an approximation formula for direct computation. To 6th order terms in k: $(1 - k^2 \sin^2 d)^{1/2} = 1 - \frac{1}{2}k^2 \sin^2 d - (\frac{1}{8})k^4 \sin^4 d - (\frac{1}{16})k^6 \sin^6 d$. (39)

Making the identity substitutions

$$\sin^2 d = \frac{1}{2} - \frac{1}{2} \cos 2d$$
, $\sin^4 d = (3/8) - \frac{1}{2} \cos 2d + (\cos 4d)/8$

 $\sin^6 d = (5/16) - (15/32) \cos 2d + (3/16) \cos 4d - (1/32) \cos 6d$, in (39) and integrating term by term according to (38) one obtains

$$s/a = (d_1 + d_2) - \frac{1}{2}k^2 \left[\frac{1}{2} (d_1 + d_2) - \frac{1}{4} (\sin 2d_1 + \sin 2d_2) \right] - (1/8)k^4 \left[(3/8) (d_1 + d_2) - \frac{1}{4} (\sin 2d_1 + \sin 2d_2) + (1/32) (\sin 4d_1 + \sin 4d_2) \right] - (1/16)k^6 \left[(5/16) (d_1 + d_2) - (15/64) (\sin 2d_1 + \sin 2d_2) + (3/64) (\sin 4d_1 + \sin 4d_2) - (1/192) (\sin 6d_1 + \sin 6d_2) \right].$$
(40)

By means of the identity $\sin x + \sin y =$

 $2 \sin \frac{1}{2}(x + y) \cos \frac{1}{2}(x - y)$, equation (40) may be written finally as

$$s/a = (d_1 + d_2) - \frac{1}{4}k^2 \left[(d_1 + d_2) - \sin (d_1 + d_2) \cos (d_1 - d_2) \right]$$

$$- (1/128)k^4 \left[6(d_1 + d_2) - 8 \sin (d_1 + d_2) \cos d_1 - d_2 \right) + \sin 2(d_1 + d_2) \cos 2(d_1 - d_2) \right]$$

$$- (1/1536)k^6 \left[30(d_1 + d_2) - 45 \sin (d_1 + d_2) \cos (d_1 - d_2) + 9 \sin 2(d_1 + d_2) \cos 2(d_1 - d_2) \right]$$

$$- \sin 3(d_1 + d_2) \cos 3(d_1 - d_2) \right],$$

$$(41)$$

a and e are semimajor axis and eccentricity of the meridian ellipse, $k = (e\sqrt{1-e^2}/a) N_0 \sin \phi_0$ ($k = e_0$, the eccentricity of the great elliptic arc), ϕ_0 is the vertex of the great elliptic arc as given by (21). $d_1 = \arccos (N_1 \sin \phi_1/N_0 \sin \phi_0)$, $d_2 = \arccos (N_2 \sin \phi_2/N_0 \sin \phi_0)$. When $\phi_0 = 90^\circ$; equation (41) gives a meridian arc of the spheroid. When $\phi_0 = 0$, an arc of the equator or circle of radius a is given. Formula (41) thus consists of a circular arc and successive corrective terms.

To examine the contribution of the terms in (41) take the case $\phi_1 = \phi_2 = 0$, $\phi_0 = 45^\circ$, $d_1 = d_2 = 90^\circ$ which will give the semilength of the great ellipse making an angle of 45° with the equator. For the Clarke 1866 spheroid, $e^2 = 6.768657997 \times 10^{-3}$, a = 6,378,206.4 meters. From (41) we have then

1st term
$$a \times (d_1 + d_2) = 20,037,773$$
 meters
2nd term $-a \times 2.65804 \times 10^{-3} = -16,954$ meters
3rd term $-a \times 0.17 \times 10^{-5} = -11$ meters
4th term $-a \times 0.24 \times 10^{-8} = -0.015$ meters

When $\phi_0 = 90$, $\phi_1 = \phi_2 = 0$, $d_1 + d_2 = \pi$, and (41) reduces to the usual formula for length of the semimeridian from equator to equator through the pole $s = a \pi [1 - \frac{1}{4}e^2 - (\frac{3}{64})e^2 - (\frac{5}{256})e^6 - -]$.

GREAT ELLIPTIC ARC LENGTH IN TERMS OF PARAMETRIC LATITUDE heta

Equation (41) gives the arc length, but the modulus k, d_1 and d_2 , and vertex ϕ_0 must be expressed in terms of parametric latitude, θ , if the geographic latitudes ϕ_1 , ϕ_2 of the given points P_1 , P_2 have been first converted to parametric latitudes θ_1 , θ_2 .

The relationships
$$\tan \phi = \frac{\tan \theta}{(1-e^2)^{1/2}}$$
, $\sin \phi = \frac{a}{(1-e^2)^{1/2}} \sin \theta$, applied to

$$k = (e\sqrt{1 - e^2}/a) N_0 \sin \phi_0$$

 d_1 = arc cos ($N_1 \sin \phi_1/N_0 \sin \phi_0$), d_2 = arc cos ($N_2 \sin \phi_2/N_0 \sin \phi_0$), and the last of equations (21) give

$$\begin{split} \mathbf{e}_0 &= \mathbf{k} = \mathbf{e} \, \sin \, \theta_0 \,\,, \, \mathbf{d}_1 = \mathrm{arc} \, \cos \, (\sin \, \theta_1 / \mathrm{sin} \, \theta_0), \, \mathbf{d}_2 = \mathrm{arc} \, \cos \, (\sin \, \theta_2 / \mathrm{sin} \, \theta_0), \\ \tan \, \theta_0 &= (\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \, \tan \, \theta_1 \, \tan \, \theta_2 \, \cos \, \Delta \, \lambda)^{1/2} \, / \mathrm{sin} \, \Delta \lambda \,\,, \end{split}$$

whence

$$\sin \theta_0 = \tan \theta_0 / (1 + \tan^2 \theta_0)^{1/2},$$

$$\sin \theta_0 = \left(\frac{\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda}{\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda + \sin^2 \Delta \lambda}\right)^{1/2}.$$
(42)

Equations (41) and (42) give then the arc length along the great elliptic arc when geographic latitudes have been converted to parametric latitudes.

THE CHORD DISTANCE

The chord distance between the points Q_1 (x_1 , 0, z_1), Q_2 (x_2 , y_2 , z_2) as shown in Figures (13) and (14) is given by the usual distance formula where the coordinates may be expressed in terms of either ϕ or θ , that is from (1)

$$x_1 = N_1 \cos \phi_1, y_1 = 0, z_1 = N_1 (1 - e^2) \sin \phi_1 \text{ (in terms of } \phi)$$

 $x_2 = N_2 \cos \phi_2 \cos \Delta \lambda, y_2 = N_2 \cos \phi_2 \sin \Delta \lambda, z_2 = N_2 (1 - e^2) \sin \phi_2,$ (43)

or $x_1 = a \cos \theta_1$, y = 0, $z_1 = a \sqrt{1 - e^2} \sin \theta_1$ (in terms of θ)

$$x_2 = a \cos \theta_2 \cos \Delta \lambda$$
, $y_2 = a \cos \theta_2 \sin \Delta \lambda$, $z_2 = a \sqrt{1 - e^2} \sin \theta_2$.

Applying the distance formula to each set of formulas in (43) for coordinates one obtains (44)

 $C = [(N_1 \cos \phi_1 - N_2 \cos \phi_2 \cos \Delta \lambda)^2 + N_2^2 \cos^2 \phi_2 \sin^2 \Delta \lambda + (1 - e^2)^2 (N_1 \sin \phi_1 - N_2 \sin \phi_2)^2]^{1/2}$ and in terms of θ

$$C = a [(\cos \theta_2 \cos \Delta \lambda - \cos \theta_1)^2 + \cos^2 \theta_2 \sin^2 \Delta \lambda + (1 - e^2)(\sin \theta_2 - \sin \theta_1)^2]^{1/2}$$
 (45)

In (45), expand the quantities in the brackets combining terms to obtain

$$C = a \left[2 - 2 \left(\sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda \right) - e^2 \left(\sin \theta_2 - \sin \theta_1 \right)^2 \right]^{1/2} . \tag{46}$$

Now cos $(d_1 + d_2) = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda$ and with $\sin \theta_1 = \sin \theta_0 \cos d_1$, $\sin \theta_2 = \sin \theta_0 \cos d_2$, $k^2 = e^2 \sin^2 \theta_0$ from (42), equation (46) can be written

$$C = a[2\{1 - \cos(d_1 + d_2)\} - k^2(\cos d_1 - \cos d_2)^2]^{1/2}.$$
 (47)

With the identity $(\cos d_1 - \cos d_2)^2 = [1 - \cos (d_1 + d_2)] [1 - \cos (d_1 - d_2)]$,

we can write (47) finally as

$$C = a \left[\{1 - \cos \left(d_1 + d_2 \right) \} \left\{ 2 - k^2 \left[1 - \cos \left(d_1 - d_2 \right) \right] \right\} \right]^{1/2} . \tag{48}$$

Now (48) gives the chord length no matter which latitude is used, ϕ or θ , since for ϕ :

 $d_1 = \arccos (N_1 \sin \phi_1 / N_0 \sin \phi_0), d_2 = \arccos (N_2 \sin \phi_2 / N_0 \sin \phi_0),$

 $k^2 = [e^2(1 - e^2)/a^2)] N_0^2 \sin^2 \phi_0$; while for θ :

 $d_1 = \arccos (\sin \theta_1/\sin \theta_0)$, $d_2 = \arccos (\sin \theta_2/\sin \theta_0)$, $k^2 = e^2 \sin^2 \theta_0$. Also (41) and (48) make it possible to prepare a computing form in terms of either ϕ or θ with corresponding azimuth forms from equations (12), (13), (15), (16), (17), (18).

THE ANGLE BETWEEN THE CHORD AND THE HORIZON AT A GIVEN POINT OF THE ELLIPSOID

Referring to Figure 13, it is seen that the angle β is determined by a perpendicular, u, from Q_2 upon the tangent at Q_1 and the chord c. That is $\sin B = u/c$.

Now the length of u is obtained by normalizing the equation of the tangent plane at Q_1 , equation (4), and substituting the coordinates of the point Q_2 from (1):

$$u = \frac{1}{N_1} \left[a^2 - N_1 N_2 \cos \phi_1 \cos \phi_2 \cos \Delta \lambda - (1 - e^2) N_1 N_2 \sin \phi_1 \sin \phi_2 \right]. \tag{49}$$

We can express u in parametric latitude, θ , since $(1-e^2) N_1 N_2 \sin \phi_1 \sin \phi_2 =$ $a^2 \sin \theta_1 \sin \theta_2$, $N_1 N_2 \cos \phi_1 \cos \phi_2 = a^2 \cos \theta_1 \cos \theta_2$, $N_1 = (a/\sqrt{1-e^2}) \sqrt{1-e^2 \cos^2 \theta_1}$, i.e.

$$u = a\sqrt{1 - e^2} \frac{1 - (\sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda)}{\sqrt{1 - e^2 \cos^2 \theta_1}}$$
(50)

Referring to equation (46) and the discussion there,

 $\cos (d_1 + d_2) = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda$,

 $\sin \theta_1 = \sin \theta_0 \cos \theta_1$, $k = e \sin \theta_0$ and (50) can be written in the form

$$u = b \frac{1 - \cos(d_1 + d_2)}{(1 - e^2 + k^2 \cos^2 d_1)^{1/2}},$$
(51)

Where $b = a \sqrt{1 - e^2}$ is the minor semiaxis of the reference ellipsoid. From (48) and (51) we have then

$$\sin \beta = \frac{u}{c} = \begin{cases} \frac{(1 - e^2) [1 - \cos (d_1 + d_2)]}{[2 - k^2 \{1 - \cos (d_1 - d_2)\}] (1 - e^2 + k^2 \cos^2 d_1)} \end{cases}$$
(52)

and thus $\sin \beta$ is expressed in the same quantities as the distance and chord lengths; see equations (41) and (48).

MAXIMUM SEPARATION OF CHORD AND ELLIPTIC ARC

In Figure 14, H_o is the maximum separation between the great elliptic arc and the chord. As shown, this occurs when the tangent to the ellipse is parallel to the chord. Also when this occurs the center of the ellipse, the midpoint of the chord, and the point P on the curve are collinear, [10]. Hence the geographic coordinates of the point P can be found from the intersection of the meridian through Q and the plane of the great elliptic section.

The coordinates of Q, the midpoint of the chord Q1Q2, are

$$Q \begin{cases} (a/2) (\cos \theta_2 \cos \Delta \lambda + \cos \theta_1) \\ (a/2) (\cos \theta_2 \sin \Delta \lambda) \\ (b/2) (\sin \theta_1 + \sin \theta_2) \end{cases}$$

and the meridian through Q has the equation (cos $\theta_2 \sin \Delta \lambda$) x - (cos $\theta_1 + \cos \theta_2 \cos \Delta \lambda$) y = 0. (53)

The equation to the plane of the great elliptic arc in terms of parametric latitude is

$$Ax + By + Cz = 0, (54)$$

 $A = b \tan \theta_1 \sin \Delta \lambda$, $B = b (\tan \theta_2 - \tan \theta_1 \cos \Delta \lambda)$, $C = -a \sin \Delta \lambda$

(Compare equation (14), where it is in terms of geodetic latitude ϕ). Now the point P (a cos θ cos λ , a cos θ sin λ , b sin θ) on the the ellipsoid must satisfy both equations (53) and (54) if it is to be the required point P on the great elliptic arc. This leads to the equations cos θ_2 sin $\Delta\lambda$ cos λ - (cos θ_1 + cos θ_2 cos $\Delta\lambda$) sin λ = 0,

$$A\cos \lambda + B\sin \lambda + C\tan \theta = 0, \tag{55}$$

where A, B, C are those of equation (54).

Solving (55) for λ and θ find,

P
$$\begin{cases} \lambda = \arctan \left[(\cos \theta_2 \sin \Delta \lambda) / (\cos \theta_2 \cos \Delta \lambda + \cos \theta_1) \right], \\ \theta = \arctan \left[\frac{(\tan \theta_1 \sin \Delta \lambda) \cos \lambda + (\tan \theta_2 - \tan \theta_1 \cos \Delta \lambda) \sin \lambda}{\sin \Delta \lambda} \right], \end{cases}$$

$$\theta = \arctan \left[\frac{\tan \theta_2 \sin \lambda + \tan \theta_1 \sin (\Delta \lambda - \lambda)}{\sin \Delta \lambda} \right]$$

 $\theta = \arctan \left[(\sin \theta_1 + \sin \theta_2) / (\cos^2 \theta_1 + \cos^2 \theta_2 + 2 \cos \theta_1 \cos \theta_2 \cos \Delta \lambda)^{1/2} \right].$

We have seen that

$$\cos (d_1 + d_2) = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda$$

$$\sin \theta_1 = \sin \theta_0 \cos d_1, \sin \theta_2 = \sin \theta_0 \cos d_2$$
(57)

whence we can express

$$\begin{split} \cos^2\theta_1 + \cos^2\theta_2 + 2\cos\,\theta_1\,\cos\,\theta_2\,\cos\,\Delta\,\lambda = & \left[1 + \cos\,(d_1 + d_2)\right] \left[2 - \sin^2\!\theta_0 \{1 + \cos\,(d_1 - d_2)\}\right] \,, \\ \left(\sin\,\theta_1 + \sin\,\theta_2\right)^2 = & \sin^2\!\theta_0 \left[1 + \cos\,(d_1 + d_2)\right] \left[1 + \cos\,(d_1 - d_2)\right] \end{split}$$

and the last equation of (56) may be written

$$\theta = \arctan \frac{\sin \theta_0 \sqrt{1 + \cos (d_1 - d_2)}}{\sqrt{2 - \sin^2 \theta_0 [1 + \cos (d_1 - d_2)]}}.$$
 (58)

It is known that $H_0^2 = PP'^2$ will be given by $H_0^2 = [(y - y_1) r - (z - z_1) q]^2 + [(z - z_1) p - (x - x_1)r]^2 + [(x - x_1) q - (y - y_1)p]^2$, where x,y, z, are coordinates of P; x₁, y₁, z₁ are coordinates of Q₁ and p, q, r are direction cosines of the chord $c = Q_1Q_2$, [11]. See Figure 14.

From (56) and (58) we can express the rectangular coordinates of P as

P:
$$x = a \cos \theta \cos \lambda = \frac{a}{\sqrt{2}} \frac{\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda}{\sqrt{1 + \cos (d_1 + d_2)}}$$

$$y = a \cos \theta \sin \lambda = \frac{a}{\sqrt{2}} \frac{\cos \theta_2 \sin \Delta \lambda}{\sqrt{1 + \cos (d_1 + d_2)}}$$
(60)

$$z = b \sin \theta = \frac{b}{\sqrt{2}} \quad \frac{\sin \theta_1 + \sin \theta_2}{\sqrt{1 + \cos (d_1 + d_2)}}$$

If the coordinates from (1) are converted to parametric latitude they will be Q_1 (a cos θ_1 , Q_2), Q_3 (a cos Q_3), a cos Q_4 sin Q_2) whence the direction cosines of the chord Q_3 are

$$p = \frac{a}{c} (\cos \theta_2 \cos \Delta \lambda - \cos \theta_1)$$

$$q = -\frac{a}{c}\cos\theta_2\sin\Delta\lambda \tag{61}$$

$$r = \frac{b}{c} (\sin \theta_2 - \sin \theta_1)$$

From (60) and the coordinates of Q_i (a cos θ_i , 0, b sin θ_i) we have

$$x - x_1 = \frac{a}{\sqrt{2}R_0} \left(\cos\theta_1 + \cos\theta_2\cos\Delta\lambda\right) - a\cos\theta_1$$

$$y - y_1 = \left(a\cos\theta_2\sin\Delta\lambda\right) / \sqrt{2}R_0$$

$$z - z_1 = \frac{b}{\sqrt{2}R_0} \left(\sin\theta_1 + \sin\theta_2\right) - b\sin\theta_1$$
(62)

Where
$$R_0 = \sqrt{1 + \cos(d_1 + d_2)} = \sqrt{2} \cos \frac{1}{2}(d_1 + d_2)$$
.

With the values from (61) and (62) the expression (59) is formed to give

$$H_0^2 = \frac{a^2 (\sqrt{2} - R_0)^2}{c^2 R_0^2} \cos^2 \theta_1 \cos^2 \theta_2 \left[b^2 (\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan^2 \theta_1 \tan^2 \theta_2 \cos^2 \Delta \lambda) + a^2 \sin^2 \Delta \lambda \right]$$
 (63)

Where $R_0 = [1 + \cos (d_1 + d_2)]^{1/2} = \sqrt{2} \cos \frac{1}{2}(d_1 + d_2)$.

Using the relationships (42), (48), (57) equation (63) can be solved for H_0 in any of the following several forms:

$$H_{0} = \frac{b_{0} (\sqrt{2} - \sqrt{1 + \cos(d_{1} + d_{2})})}{\sqrt{2 - k^{2} \{1 - \cos(d_{1} - d_{2})\}}},$$

$$= \frac{ab_{0}}{c} \left(\frac{(\sqrt{2}}{R_{0}} - 1) \sin(d_{1} + d_{2}),$$

$$= \frac{2ab_{0}}{c} \sin \frac{1}{2} (d_{1} + d_{2}) [1 - \cos \frac{1}{2} (d_{1} + d_{2})],$$
(64)

Where $R_0 = \sqrt{1 + \cos(d_1 + d_2)} = \sqrt{2} \cos \frac{1}{2}(d_1 + d_2)$

 $b_0 = \sqrt{1 - k^2} = a\sqrt{1 - e_0^2} = minor$ semiaxis of the great elliptic arc – see Figure 15. Thus H_0 is also expressed in quantities common with other elements of the great elliptic arc – see equations (41), (48), and (52).

A COMPUTING FORM FOR GREAT ELLIPTIC ARC LENGTH AND ASSOCIATED ELEMENTS

Since the computations to be discussed with the great elliptic arc approximation and the Andoyer-Lambert approximation both involve corrections to spherical elements, the basic spherical approximation is reviewed in Figure 16, and basic spherical formulae listed.

Now from (42) write

$$\sin^2\theta_0 = K/(K+1),$$

$$K = (A \tan \theta_1 + B \tan \theta_2) / \sin^2 \Delta \lambda$$
 (65)

$$A = \tan \theta_1 - \tan \theta_2 \cos \Delta \lambda, B = \tan \theta_2 - \tan \theta_1 \cos \Delta \lambda.$$
 (66)

Azimuth equations (17) become

$$\cot \alpha_{AB} = D_{1} (R_{1} - B), \cot \alpha_{BA} = D_{2} (A - R_{2})$$

$$D_{1} = \cos \theta_{1} / T_{1} \sin \Delta \lambda, D_{2} = \cos \theta_{2} / T_{2} \sin \Delta \lambda$$

$$R_{1} = C/\cos \theta_{2}, R_{2} = -C/\cos \theta_{1}$$

$$C = e^{2} (\sin \theta_{2} - \sin \theta_{1})$$

$$T_{1} = (1 - e^{2} \cos^{2} \theta_{1})^{1/2}, T_{2} = (1 - e^{2} \cos^{2} \theta_{2})^{1/2}$$
(67)

Equation (41) becomes

$$s = a (H + U_1 + U_2 + U_3)$$
where $U_1 = -N_1 (H - Q_1), U_2 = -N_2 (6H - 8Q_1 + Q_2),$

$$U_3 = -N_3 (30H - 45Q_1 + 9Q_2 - Q_3)$$

$$k^2 = e^2 \sin^2 \theta_0 = e_0^2 \text{ (eccentricity of the great elliptic arc)}.$$
(68)

 $\cot A = \frac{\cos \theta_1 \tan \theta_2 - \sin \theta_1 \cos \Delta \lambda}{\sin \Delta \lambda}$

 $\cot B = \frac{\cos \theta_2 \tan \theta_1 - \sin \theta_2 \cos \Delta \lambda}{\sin \Delta \lambda}$

$$\begin{split} &\cos(d_1+d_2)\!=\!\sin\!\theta_1\,\sin\!\theta_2\!+\!\cos\!\theta_1\cos\!\theta_2\cos\Delta\lambda\\ &\sin(d_1\!+\!d_2)\!=\!(\cos\!\theta_1\!\sin\!\Delta\lambda)/\!\sin\!B\!=\!(\cos\!\theta_2\!\sin\!\Delta\lambda)/\!\sin\!A\\ &\sin\!\theta_1\!=\!\sin\!\theta_0\,\cos\,d_1\ ,\ \sin\!\theta_2\!=\!\sin\!\theta_0\,\cos\,d_2\\ &NOTE\!:\!Q_o\,may\ be\ external\ to\ Q_1Q_2\ ,i.o.\ if\ either\ A\ or\ B\ is\ greater\ than\ 90^\circ \end{split}$$

Figure 16. Elements of polar spherical triangles.

$$N_1 = k^2/4$$
, $N_2 = k^4/128 = 1/8 N_1^2$, $N_3 = k^6/1536 = (1/3) N_1 N_2$,

 $Q_1 = \sin H \cos P$, $Q_2 = \sin 2H \cos 2P$, $Q_3 = \sin 3H \cos 3P$, $H = d_1 + d_2$, $P = d_1 - d_2$.

d, and d2 are computed from

$$\cos 2d_1 = 2(1 - \cos^2\theta_1)/\sin^2\theta_0 - 1$$

$$\cos 2d_2 = 2(1 - \cos^2\theta_2)/\sin^2\theta_0 - 1$$
(69)

since $\cos^2\theta_1$ and $\cos^2\theta_2$ are already needed for T_1 and T_2 , (67) above, and the use of $\sin^2\theta_0$ eliminates the computation of the square root of K/(K+1). A check is provided by $\sin(d_1+d_2)=\sin\theta_1\sin\theta_2+\cos\theta_1\cos\theta_2\cos\Delta\lambda$.

From (48) the equation of the chord may be written

$$c = a(VW)^{1/2}, V = (1 - \cos H), W = 2 - k^2 R, R = (1 - \cos P).$$
 (70)

From (51) and (52) in terms of the symbols used above find

$$u = bV/T_1 \sin \beta = bV/cT_1 = \frac{b}{T_1} \sqrt{\frac{V}{W}}. \tag{71}$$

From (64) in terms of the above symbols find
$$H_0 = \frac{2ab_0}{c} (\sin \frac{1}{2}H) (1 - \cos \frac{1}{2}H)$$
, (72)

$$b_0 = a\sqrt{1 - k^2}, k^2 = e^2 \sin^2 \theta_0$$
.

Figure 17, shows equations (65) through (72) arranged for computing and a computation performed on the line Moscow to Cape of Good Hope. On the form find the geodetic distance, the normal section azimuths, the chord distance, the angle between the chord and the horizon at P_1 , and the maximum separation of the chord and surface. The following table lists these values and gives a comparison with the distances computed by the rigorous Helmert method and the Andoyer-Lambert Approximation. Note that the geographic coordinates of the point $P(\phi,\lambda)$ where the maximum chord separation from the surface occurs may be computed from (56), (58), and already computed quantities in Figure (17).

MOSCOW TO CAPE OF GOOD HOPE

Ŋ	ISTANCE			AZIMUTHS	
Meters	n.m.	Method	Forward	Back	Type
10,102,069.91	5454.6814	Great Elliptic	15° 46' 56".744	190°39' 27"350	Great Elliptic Section
			15° 49' 57".607	190° 41' 29".799	Normal Section
10,102,069.06	5454.6809	Helmert	15° 48' 17".674	190° 39' 32":208	Geodetic
10,102,065.28	5454.6789	Andoyer- Lambert	15° 48' 17".518	190° 39' 32".110	Geodetic
			meters		n.m.
CHORD DISTA	NCE		9,068,419.05	48	396.5546
(MAXIMUM CHO	RD SEPAR	ATION)	1,906,854.55	19	029.6191
CHORD DEPRE	ESSION ANO	GLE	45° 32' 37".462.		

Computations for distance, Normal Section Azimuths, Chord length, Angle of Depression of the Chord, Maximum Separation distance of chord and arc. Based on Great Elliptic

a = 6,378,206.4 meters, b = 6,356,583.8 meters, $e^2 = 6.7686580 \times 10^{-3}$, 1 radian = 206,264,8062 sec. Section Approximation to geodesic. Clarke 1866 Spheroid.

- 0	1, -37 14 15.450		- 8λ=		cos 8x +0.944 99007	sin 28 x + 10.106 99376	T,=(1-e² cos²θ₁)1/2 + 0.998 52325	T ₂ =(1-e ² cos ² θ ₂) 1/2 +0, 997 66269	D ₁ = cos θ ₁ /T ₁ sin δλ = +1,726 20806	D2 = cos θ2/T2 sin δλ = +2.545 10253	sin ² θ ₀ = K/(K + 1) = +0.976 51276	L R ₂ = -C/cos θ ₂ τ 0. 0/65 9293	cot a (AB) = D, (R, -B) +3.556 2487 B. 15 4952 602 cot a (BA) +5.296 60126(BA) 180 41 29.799	764 H = d, +d, +90 5-9 08.385	159 P = d1 - d2 - 15-7 39 26,123	17 20226 H (radians) +1.587 4843	Sin 2H -0.034 34942 cos 2P+0.710 15891 k2= e2 sin20, the 4026849416 N1= k2/4 +1. 452442 110-3	131×15 N3=N1N2/3 +2.05 × 10="	10-3 V=1-cos H +1.012 0226	10 -6 R=1-cos P + 1. 924 70507	110-7 W-2-KR +1, 989 228314	91 meters 5454. 6814 n.mi.		113 16276 cos 1/H = +0.200 58848	meters 124 6/91 " n. mi.	B 45- 32 27.462
	1 (A) Moscow	2 (B) Cape of Good Hope	tan θ = 0. 4966 0 9925 - 431 \$!	tan 8, -0.670 576059	sin θ0,536 93019	cos θ, 70.830 55461	cos 20, 10, 689 82096		,	K = (A tan A + B tan A.)/sin28/4/1.576 21463	5336 R, = C/cos 0, -0.0112683	B 15 4952 602 cot a(BA)=D, (A-	3.5-3499 d33 19 08.8	cos 2d, = 2(1 - cos 2θ,)/sin 2θ, -1 -0, 264 72043 d, +124 /g /2.259 P = d, -d, -15-7	924 70507 cos H-0.01	2,710 15891 k= e2 sin20, the	2.388 62002 N2=N12/8 +3.4	U, =-N,(H-Q,) -4. 15/82 XL	U ₂ = -N ₃ (6H -8Q ₁ +Q ₂) -5 22 X	- U ₃ = -N ₃ (30H - 45Q ₁ +9Q ₂ - Q ₃) = 6.3	Σ=If(radians) + U, +U ₂ +U ₃ = ±1.583 84/8 s = aΣ 10, 102, 069, 91 meters 5454 68/4	42 17820 c= a(VW)1/2 4, Uh8 41	6 357 092,5 sin 1/4 H = +	(sin 1/4 H) (1-cos 1/4H) 1, 106, 854,555 meters 10.29. 6191	sin β = bV/cT ₁ = + 7/3 2853/
=	19,500	03.500	22	-7	67	4	69	8.			sin 28/4/1.57	.009.3588	1.5-36 2491	768-0+1-0z	120, -1 -0, 365	$\vec{3}$ cos P=0	2 cos 2P 22	3 cos 3P-6	4 56824	24 42905	88 1525-2	1,= +6.583	$(VW)^{1/2} = Z$	$\frac{b_0 = a\sqrt{1-k}}{1-k}$	$H_o = (2a b_o/c) (\sin \frac{1}{2})$	= $bV/cT_1 = \mathcal{L}$
-	45-	3-6	tan φ. ±1. 468 995-22	tan 6 0, 472 84157	tan θ. ±1. 464 015-33	825 253	cos θ. +0.564 a1269	cos 20. +0.218 13288	$A = \tan \theta - \tan \theta \cos \delta \lambda$	$R = \tan \theta_1 - \tan \theta_2 \cos \delta \lambda$	$+ B \tan \theta$.)/s	$-\sin \theta$.) = C	D, (R, -B) ±	$-\cos^2\theta$)/sin	$-\cos^2\theta_{\rm s})/\sin^2\theta_{\rm s}$	99 8520	134364	798 6685	s P -0- 92	os 2P=0.0	38 70.3) + U, +U ₂ +U	14640	87687 76	H _o = (š β uis
0	b. +55	d33	an φ. ± μ 4	an 6 0.6	an 0. ±1. 5	in 0 +01	30s θ. ±0.5	305 20. ±Qe	$A = \tan \theta - t$	$B = \tan \theta - t$	$K = (A tan \theta)$	$C = e^2 (\sin \theta)$	$\cot \alpha(AB) =$	1)6 = 96 = 961	$\cos 2d_1 = 2(1)$	sin H. + 10. 9	sin 2H=0.6	sin 3H = 0.5	O, = sin H cos	o,= sin 2H c	0,≖sin 3H co	$\Sigma = H(radians)$	VW = 202	VI = K2 2	•	

Figure 17.

Figures 18 and 19 show the great elliptic arc formulae for distance arranged with geodetic azimuth formulae and the computations for distance and azimuth over the two lines

(1) MOSCOW TO CAPE OF GOOD HOPE and (2) RAMEY AFB to MOUNTAIN HOME AFB.

No square roots are involved and only eight place tables of trigonometric functions, as Peters, are needed in addition to the constants for a particular spheroid of reference. The comparison with the Helmert rigorous and Andoyer-Lambert approximation is:

Line	Distance(meters)	Method	Forward Az.	Back Az.
(1)	10,102,069.91	Great Elliptic Arc	15° 48' 17"519	190° 39' 32":109
	10,102,069.06	Helmert	15° 48' 17".674	190° 39' 32":208
	10,102,065.28	Andoyer-Lambert	15° 48' 17"518	190° 39' 32".110
(2)	5,304,035.439	Great Elliptic Arc	131° 52' 34".985	285° 10' 06".870
	5,304,032.437	Helmert	131° 52' 35"29	285° 10° 06".65
	5,304,030.844	Andoyer-Lambert	131° 52' 35".043	285° 10' 06".869

REVIEW OF FORMER STUDIES

The Air Force Aeronautical Charting and Information Center made an extensive study of the Inverse Problem of Geodesy (1956-1957), over lines 50 to 6000 miles, [12]. A review of this study indicates favorably the use of the so called Andoyer-Lambert Formulae relative to requirements for Hyperbolic Electronic Systems since (1) they give very nearly geodetic distance with about the same error over all lines from 50 to at least 6000 miles, (2) azimuths are within about a second of true geodetic azimuths over all lines, (3) no tabular data for a particular spheroid is needed, (4) the only table of mathematical functions required is a table of the natural trigonometric functions as Peters eight place tables, (5) no root extraction is involved in the computations. The formulae are thus quite adaptable to small electric desk calculators or larger high speed digital machines. However, in review it seemed unnecessary to convert geographic coordinates to parametric before making the computations, hence a series of computations were made over the ACIC chosen lines for direct comparison. A representative group from 50 to 6000 miles was selected and additional comparisons were made against two lines whose true geodetic lengths and azimuths were known. No lines of 0° azimuth (meridional sections) were used because this is the trivial or limiting case and extensive tables of meridional distances for all reference ellipsoids are available or quite simple computation formulae are available for computing meridional arcs. The spherical formulae used are:

COMPUTATIONS, DISTANCE, AZIMUTHS

Clarke 1866 Ellipsoid; a = 6,378,206.4 meters, $e^2 = 6.6786580 \times 10^{-3}$, Great Elliptic Arc, Geodetic Azimuths

f/2 = 0.00169503765, 1 radian = 206,264.8062 seconds, 1852 meters = 1 n. m.

" " " " " " " " " " " " " " " " " " "	tan \$\phi_1 + \text{Liff} \forall \for	"BA = 100 + D ₀ - 0B ₀ - 20
1. (A) MOSCOW	tan ϕ_1 , ± 1 , $\pm \sqrt{k} = \zeta + \zeta$	
φ. +55 45 14.5·00	tan $\phi_1 + I$, $4 \ell \delta = 9 + 5 \ell - 2 + 2 \ell = 2$. Always n tan $\phi_2 = -\alpha_1 \ell / 2 + 2 \ell / 2 \ell / 2 \ell = 2$. tan $\theta_1 = 0.996609$ tan $\theta_1 + I$, $4 \ell \ell \ell \ell / 2 + 2 \ell \ell = 2$ sin $\theta_1 = -\alpha_1 \ell \ell \ell \ell \ell / 2 \ell \ell \ell = 2 \ell \ell \ell \ell \ell = 2 \ell \ell \ell \ell \ell = 2 \ell \ell \ell \ell$	
φ, ±55	tan $\phi_1 + f_{-}$ tan $\phi_2 = Q_2$ tan $\theta_1 + f_{-}$ sin $\theta_1 + f_{-}$ cos $\theta_1 + f_{-}$ cos $\theta_1 + f_{-}$ cos $\theta_1 + f_{-}$ $K = (A \tan \theta_1 + f_{-})$ $K = (A \tan \theta_1 + f_{-})$ $K = (A \tan \theta_1 + f_{-})$ Sin $H = d_1 + d_2 + f_{-}$ sin $H + Q_2 + f_{-}$ sin $H + Q_3 + f_{-}$ $Q_3 + f_{-} + f$	

Figure 18.

COMPUTATIONS, DISTANCE, AZIMUTHS

Great Elliptic Arc, Geodetic Azimuths Clark 1866 Ellipsoid: a = 6,378,206.4 meters, e² = 6.7686580×10^{3} f/2 = 0.00169503765, 1 radian = 206,264.8062 seconds, 1852 meters = 1 n. m.

	0	-	=					٥	-		=
φ1 /8	37	49	52.9	1 (A)	. 9 1 (A) Ramey Air Force Base	ə	γ,	λ, 67	01	01	30.3
ϕ_2	13	43	19.6	. 2 (B)_	2 (B) Mountain Home AFB		γ,	115	115 52 54.7	~	54.7
tan 6, + 0.334	+0.33	7	5-8400	2.	2. Always west of 1.	-	$\Delta \lambda = \lambda$.	- x, 48	Δλ=λ,-λ, 48 45 24, 4	,	24.4
tan 6, +0.934	10.93		225 90	tan θ =	tan θ = 0. 49660 9835 tan φ	tan ϕ	sin Δλ_	+	sin Δλ + 0.751 91780	9	0861
$\tan \theta_1 \neq$	· 10 .33	73	tan 0, + 0.333 44904	. tan θ_j	tan 0, to. 43115847		cos Δλ	+	cos AA + 0.659 25687	2	1895
$\sin \theta \neq$.0.31	9/	sin θ, + 0.3/6 327/6	$\sin \theta$	sin 0, 10. 68146713		$\sin^2\!\!\Delta \lambda$	+	sin2 1 2 28038	3	8038
t = 0.00	9.9	87	cos θ, + 0, 448 65017	θ sos θ	cos θ, 20.23/848 92_ M=tan θ, -tan θ, cos Λλ + , 711 32 944	$M = \tan \theta$, -t	an θ . cos	1 × ×	111	329	44
$\frac{1}{2}$ sos	0.8	66	cos 20, 0.899 93715	θ_z soo	cos 20, 20, 535 60255 N=tan θ, -tan θ, cos Δλ - , 280 H2288	-N=tanθ,-t	an θ , cos ι	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	280	422	88
K = (N ta)	n θ,+ M	$\tan \theta_j)/s$	sin 2 Δ λ 1 006	142	$K = (N \tan \theta_1 + M \tan \theta_2)/\sin^2 \Delta \lambda + CO6 + 14296 $ $V_n = \sin^2 \theta_n = K/(K+1) + O \cdot SO153104$	$\lambda = K/(K+1)$	+0.	5/03	3104		
cos (d, +	d ₂) = sin	nθ, sin 6	$\theta, \cos \theta, \cos \theta, \cos \theta$	s Δλ≠	$\cos (d_1 + d_2) = \sin \theta$, $\sin \theta$, $+ \cos \theta$, $\cos \theta$, $\cos \Delta \lambda + \frac{1}{2} \frac{\theta}{\theta} \frac{326}{326} \frac{238}{26} \cos A = M \cos \theta$, $\sin \Delta \lambda + \frac{890}{2} \sin \Delta \lambda + \frac{890}{2} \sin \Delta \lambda + \frac{1}{2} \cos \Delta \lambda + \frac{1}{2} \cos \Delta \lambda + \frac{1}{2} \cos \Delta \lambda + \frac{1}$	$\frac{1}{1}$ cot $A = M$	$\cos \theta$./ \sin	Δλ. +	1880	442	24
sin (d ₁ +	d_2 = cos	s θ ₁ sin Δ	$\lambda \lambda / \sin B = \cos \theta_2$	sin Δλ,	sin (d1 + d2) = cos θ1 sin Δλ/sin B = cos θ2 sin Δλ/sin A + 739 39875 cot B = N cos θ2/sin Δλ - 272 93825	25 cot B	3 = N cos	θ₂/sin ∆	11 = 2;	5 72	3825
cos 2d,	$2\sin^2\theta$	$\frac{1}{1}/V_0 - 1$	-, 600 91103	7	cos 2d, = 2 sin 20,/V, - 1 = , 600 91032 cos 2d2 = 2 sin 20,/V, - 1 + 0.85/908 A 48 0'5 37,885	1 + 0.851	80518	A	460	o's	782"CE
d, and	d, are al	lways in	the first or secon	d quadr	d ₁ and d ₂ are always in the first or second quadrant. If A > 90°, d ₂ > d ₁ , d ₂ >0, d ₁ <0.	, d,>0, d, <0	_•	B	So	15.	B 105 15 58.929
If B > 1	90°, d ₁	> d ₂ , d ₁	If B > 90°, $ d_1 > d_2 $, $d_1 > 0$, $d_2 < 0$.	1	: :	•			o	-	=

63

= - 0	47 40 48.800 P=d1-d2 79 15 33.139	2P-, 930 53528 Q= sin 2H cos 2P -, 926 46597 K= e' V, 3.394 6 921 X10 -3	3P 533 2068203 = sin 3H cos 3 P 320 58455 N, = k2/4 , 848673 03 X 10-3	-, 2669 x 10 - 6 N2 - N1 2/8 4,003 x 10 - 8	N3 = N1N2/3 2.55 × 10 -11	139 meters 2863,9500 n.m.	sin 2B 508 3061	.",30	352, 1054 B 105 15 58.929		(B-3B) 105 10 06.870	$\alpha_{BA} = 180^{\circ} + (B - \delta B) \frac{2}{2} \frac{6}{8} \frac{1}{2} \frac{10}{6} \frac{66 \cdot 870}{10}$
	2d, 126 56 31.538 2d2-31 24 44.339 H=d1+d2 49 40 49.500 P=d1-d2 79 15 33.139 sin H +2.239 39895 H, (radians) 7.832 19689	sin 2 11 2 445 626 70 cos 2P-, 930 53538 02= sin 2H cos	sin 3 11 7. 401 24803 cos 3P 533 20682 03 sin 3H cos	U1 = - N1(Hr - Q1) = .589 2984 x 10 - 3 U2 = - N2 (6Hr - 8Q1 + Q2) = .2669 x 10 - 6 N2 = N1 2/8 2,003 x 10 - 8	$U_3 = -N_3(30H_r - 45Q_1 + 9Q_2 - Q_3) = -224 \times 100 - 9$	Σ = H _r + U ₁ + U ₂ + U ₃ + U ₃ + U ₄	T = (1/2) H"/sin H 3 43, 447 sin 2A +. 494 17410	$\delta A'' = T \cos^2 \theta, \sin^2 B - 10.7 \cdot ".30$	A 48 05 37.885 SB"= T cos20, sin 2A + 352. 1054	2	(A-SA) 48 07 25:015	aAB = 180° - (A - SA) 131 5-2 34. 985

Spherical Formulae (see Figure 16)

$$\cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda$$

$$\sin A = (\cos \phi_2 \sin \Delta \lambda)/\sin d, \sin B = (\cos \phi_1 \sin \Delta \lambda)/\sin d$$

$$\cot A = (\cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda)/\sin \Delta \lambda$$

$$\cot B = (\cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda)/\sin \Delta \lambda$$

$$\sin d = (\cos \phi_1 \sin \Delta \lambda)/\sin B = (\cos \phi_2 \sin \Delta \lambda)/\sin A.$$
(73)

The Andover-Lambert correction [13] for distance is:

$$\delta d = -\frac{f}{4} \left[\frac{d + 3 \sin d}{1 - \cos d} \left(\sin \phi_1 - \sin \phi_2 \right)^2 + \frac{d - 3 \sin d}{1 + \cos d} \left(\sin \phi_1 + \sin \phi_2 \right)^2 \right], \tag{74}$$

where d is spherical distance from (73) and s = $a(d + \delta d)$, f is the flattening, f = (a - b)/a, where a, b are the semiaxes of the reference ellipsoid (a is the radius of the auxiliary sphere).

Now (73) and (74) are essentially the same as used for several years in Loran computations except for the conversion to parametric latitudes which is not required with these formulas. The only difference in the appearance of the formulas is in the term 3 sin d in (74) which is simply sin d in the formulae for parametric latitude, [14].

The corrections to the spherical angles A and B as given by (73) to get geodesic azimuths are, [13]:

$$\delta A = \frac{f}{2} \left[\frac{d}{\sin d} \cos^2 \phi_2 \sin 2B - \cos^2 \phi_1 \sin 2A \right] ,$$

$$\delta B = \frac{f}{2} \left[\cos^2 \phi_2 \sin 2B - \frac{d}{\sin d} \cos^2 \phi_1 \sin 2A \right] ,$$
(75)

the geodetic azimuths being then

$$\alpha_{AB} = 180^{\circ} - A + \delta A$$
, $\alpha_{BA} = 180 + B + \delta B$.

The formulae as given by (73), (74), (75) were arranged in computing forms to make the check computations of the ACIC chosen lines. Note that the azimuths as given in the ACIC publications differ by 180° from the usual geodetic azimuths and the forward and back azimuths are interchanged from the conventions used in the check computations. The lines chosen are shown in TABLE 1, the comparisons are given in TABLES 2 and 3, while the actual computations are in Appendix 2.

TABLE 1

LINES COMPUTED

Line No.	Az.		ninus		•	Origii				Distance
	0	Lat.	Long	0	La •	11 C		ong	n	Miles
1	45	40	18	40	30	37.757	17	19	43.280	50
2	90	10	18	9	59	48.349	16	31	55.877	100
3	90	70	18	69	48	05.701	9	37	28.637	200
4	45	10	18	13	04	12.564	14	51	13.283	300
5	45	70	18	73	35	09.206	3	26	35.101	400
6	90	40	18	39	37	06.613	8	36	43.276	500
7	45	40	18	44	54	28,507	10	47	43.883	500
8	45	70N	18W	76	00	26.603N	28	42	03.567E	1000
9	90	40N	18W	27	49	42.130N	32	54	12.997E	3000
10	45	40N	18W	35	18	45.644N	102	02	29.370E	6000
11	50	43 03 19.6	115 52 54.7	18	29	57.9	67	07	30.3	3000 п.т.
12	10	33 56 03.5S	18 28 41.4E	55	45	19.5N	37	34	15.450E	5500 n.m.

¹⁻¹⁰ From ACIC Reports 59 (page 39), 80 (page 23).

Ramey AFB to Mountain Home AFB, AFAC-TN-57-53, Astia Document 135972, 1957

¹² Cape of Good Hope to Moscow

TABLE 2

Comparison With True Distances and Azimuths

Line			S _c - S _t	Computed	True	a A D-a A D	Computed	True	ab A-a b A
No.	Distance S _c	Distance S _t	= AS	α_{AB}^{c}	$a_{ m AB}^{ m t}$	$= \Delta \alpha AB$	a BA	$a^{\mathbf{t}}$ BA	$= \Delta \alpha B A$
	meters	meters		= - 0	= - 0		= •	= - 0	=
	80,467.388	80,466.490	+0.898	45 26 00.443	45 26 01.692	-1.249	244 59 58.759	244 59 59.997	-1.238
2	160,935,945	160,932.956	+2,989	90 15 17.506	90 15 17,480	+0.026	270 00 00.023	270 00 00.000	+0.023
3	321,862,977	321,866.796	-3.819	97 52 01.112	97 52 01.063	+0.049	270 00 00.026	269 59 59.950	+0.076
4	482,794.743	482,798.163	-3.420	45 37 44.972	45 37 46.111	-1.139	224 59 58.629	224 59 59.732	-1.103
5	643,728.709	643,732.429	-3.720	58 50 30.885	58 50 31.600	-0.715	224 59 59.601	225 00 00.154	-0.553
9	804,664.697	804,664.762	-0.065	96 01 06.689	96 01 06.640	+0.049	270 00 00.073	270 00 00.001	+0.072
2	804,666.623	804,664.771	+1.861	49 52 14.352	49 52 15.528	-1.176	224 59 58.828	224 59 59,994	-1.166
8	1,609,315,609	1,609,329,060	-13.451	89 55 22.643	89 55 22.833	-0.190	224 59 59.834	224 59 59,958	-0.124
6	4,827,983.105	4,827,984.247	-1.142	119 54 41.396	119 54 41,260	+0.136	269 59 59.612	270 00 00.121	-0.509
10	9,655,972.218	9,655,969.751	+2,467	138 23 42.394	138 23 42.755	-0.361	225 00 00.674	225 00 00.276	+0.398
11	5,304,028.110	5,304,032.437	-4.327	131 52 35.913	131 52 35.290	+0.623	285 10 07.272	285 10 06.650	+0.622
12	10,102,057.97	10,102,069.06	-11.09	15 48 16.939	15 48 17.674	-0.735	190 39 31,445	190 39 32.208	-0.753

TABLE 3

Error Summary

Line No.	Azimuth	Terminal Latitude	S = distance	95	VS	Relative distance error $\Delta S_m/S_m$	$\Delta \alpha_{AB} = \Delta \alpha_{1-2}$	$\Delta \alpha_{BA} = \Delta \alpha_{2-1}$
	degrees	degrees	meters S _m	n.m.	meters feet AS _m	l part in	seconds	spuoses
1	45	40N	80,466	43.5	+ 0.9 + 3.0	89,407	- 1.25 **	- 1.24 **
2	06	10N	160,933	86.9	+ 3.0 +10.0	53,644	+ 0.03	+ 0.02
က	06	70N	321,867	173.8	- 3.8 +12.5	84,702	+ 0.05	+ 0.08
4	45	10N	482,798	260.7	-3.4 -11.2	141,899	- 1.14	- 1.10
ည	45	70N	643,732	347.6	- 3.7 -12.2	173,982	- 0.72	- 0.55
9	06	40N	804,665	434.5	- 0.07 - 0.2	11,495,214	+ 0.05	+ 0.07
2	45	40N	804,667	434.5	+ 1.9 + 6.0	423,509	- 1.18	- 1.17
8	45	70N	1,609,329	0.698	-13.5* -44.6	119,210	- 0.19	-0.12
6	06	40N	4,827,984 2606.9	6.909	- 1.1 - 3.6	4,389,076	+ 0.14	- 0.51
10	45	40N	9,655,970 5	5213.8	+ 2.5 + 8.2	3,862,388	- 0.36	+ 0.40
11	20	43N	5,304,032 2863.9	863.9	- 4.3 -14.2	1,233,496	+ 0.62	+ 0.62
12	10	34S	10,102,069 5	5454.7	-11.1 -36.6	910,096	- 0.74	- 0.75

^{*} Maximum distance error

^{**} Maximum azimuth errors

INVESTIGATION OF HIGHER ORDER TERMS IN ANDOYER-LAMBERT APPROXIMATION

While either form of Andoyer-Lambert approximation is probably satisfactory in the "state of the art" in hyperbolic navigational systems development, the question arises as to the higher order terms in the flattening of the Andoyer-Lambert approximation and the possibility of a single set of formulae which will give distance within one meter and azimuth within one second over all geodetic lines on the spheroid. This would be a practical operational system particularly if it maintained the several attributes of the Andoyer-Lambert first order approximation.

HISTORICAL

Now Lambert, [13], never published his derivation but had equivalent formulae for a first order approximation several years before the publication posthumously in 1932 of Andoyer's. sketch, [15], of the derivation of the form as given in equation (74). Andoyer's derivation employs a differential oblique spherical triangle and it is not clear how one would proceed to higher order terms in the flattening. It is believed that Andoyer's derivation is the only recognized published one in existence.

DERIVATION FROM THE GREAT ELLIPTIC ARC

Independent derivations of the Andoyer-Lambert approximations were sought in the hopes of discovering a simple method of arriving at higher order terms in the flattening. It was noticed that the computations using the Andoyer-Lambert approximations; the ratios $(d - \sin d)/(1 + \cos d)$, $(d + \sin d)/(1 - \cos d)$ were being used in forming computational parameters, [16]. It was decided to try the ratios

$$(\sin \theta_1 + \sin \theta_2)^2/(1 + \cos \theta_1)(\sin \theta_1 - \sin \theta_2)^2/(1 - \cos \theta)$$
 (76) with the hope of relating these to other parameters and identification of the Andoyer-Lambert approximations in some other extant series expansion as the great elliptic arc approximation. See equations (19) through (42).

From equations (42) we have

$$\sin \theta_1 = \sin \theta_0 \cos d_1, \sin \theta_2 = \sin \theta_0 \cos d_2. \tag{77}$$

From (77), by simple algebraic operations and trigonometric identities, we may express (76) as

$$(\sin \theta_1 + \sin \theta_2)^2 / (1 + \cos d) = 2 \sin^2 \theta_0 \cos^2 \frac{1}{2} (d_1 + d_2)$$

$$(\sin \theta_1 - \sin \theta_2)^2 / (1 - \cos d) = 2 \sin^2 \theta_0 \sin^2 \frac{1}{2} (d_1 + d_2) ,$$
(78)

where $d = d_2 - d_1$.

From (78) by adding and subtracting respective members, we write

$$X = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \left[\sin^2 \theta_0 \right]$$
 (79)

$$Y = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2[\sin^2 \theta_0 \cos (d_1 + d_2)],$$

where $d = d_2 - d_1$.

The Andoyer-Lambert forms can now be written in terms of X and Y of (79) as

$$S = a[d - (f/4) (Xd - Y \sin d)],$$

$$S = a[d - (f/4) (Xd - 3Y \sin d)],$$
(80)

where in the second equation, the geodetic latitude, ϕ , is used in forming the X and Y of (79).

If in the expansion of the great elliptic arc, equation (41), we place $d_1 = to -d_1$, and then $d = d_2 - d_1$, $k = e \sin \theta_0$, we obtain as far as sixth order terms in e:

Using relations (79), equation (81) can be written:

$$S = a \begin{bmatrix} \overline{d} - (e^{2}/8) & (Xd - Y \sin d) \\ - (e^{4}/512) & [(6d - \sin 2d) & X^{2} - 8(\sin d) & XY + 2(\sin 2d) & Y^{2}] \\ - (e^{6}/12,288) & \begin{bmatrix} 3(10d - 3 \sin 2d) & X^{3} - 3(15 \sin d - \sin 3d) & X^{2}Y \\ + 18(\sin 2d) & XY^{2} - 4(\sin 3d) & Y^{3} \end{bmatrix} \end{bmatrix}$$
(82)

Note in (82) that if all terms above the first power in f are ignored (e² = 2f) equation (82) reduces directly to the Andoyer-Lambert form as given by the first of (80). Now it is known that the difference in lengths of the great elliptic arc and the geodesic is of 4th order in e, [17], but the 6th order term will be useful for comparison later in the investigation.

DERIVATION FROM MODIFIED DIFFERENTIAL EQUATIONS

The corresponding differential triangles, auxiliary sphere, spheroid, where geodetic latitude has been converted to parametric are, as abstracted from Figure (20):

Figure 20. Differential triangles, sphere and spheroid.

and since $a_c = a_g$ (property of geodesics on surfaces of revolution, i. e. $r \sin a_c = r \sin a_g$, $r = a \cos \theta$), $ds/aD\delta d = a(1 - e^2 \cos^2 \theta)^{1/2} d\theta/ad\theta = (1 - e^2 \cos^2 \theta)^{1/2}$, which may be written

$$S = a(d + \delta d) = a \left[d + \int_{d_1}^{d_2} [(1 - e^2 \cos^2 \theta)^{1/2} - 1] D\delta d \right].$$
 (83)

If (83) also represents the equator, then $\delta d=0$, when $\theta=\theta_0=0$. Hence we add to the integrand $1-(1-e^2\cos^2\theta_0)^{1/2}$ to get

$$S = a(d + \delta d) = a \left[d + \int_{d_1}^{d_2} \left[(1 - e^2 \cos^2 \theta)^{1/2} - (1 - e^2 \cos^2 \theta_0)^{1/2} \right] D\delta d \right], \tag{84}$$

and we note that when $\theta = \theta_0 = 0$, $\delta d = 0$; when $\theta = \theta_0$, $s = d = \delta d = 0$; when $\theta_0 = \pi/2$, $d_1 = \theta_1$, $d_2 = \theta_2$, $D\delta d = d\theta$, $d = \theta_2 - \theta_1$ then (84) represents the meridian.

Expanding (84) to 6th order terms in e, find

$$S = a \begin{bmatrix} d - (e^{2}/2) (1 + e^{2}/2 + 3e^{4}/8) \int_{d_{1}}^{d_{2}} (\sin^{2}\theta_{0} - \sin^{2}\theta) D\delta d \\ + (e^{4}/8) (1 + 3e^{2}/2) \int_{d_{1}}^{d_{2}} (\sin^{4}\theta_{0} - \sin^{4}\theta) D\delta d \\ - (e^{6}/16) \int_{d_{1}}^{d_{2}} (\sin^{6}\theta_{0} - \sin^{6}\theta) D\delta d \end{bmatrix}$$
(85)

Now from (77), $\sin \theta = \sin \theta_0 \cos d$,

$$\sin^2\theta = \sin^2\theta_0 \cos^2d = \frac{\sin^2\theta_0}{2}(1 + \cos 2d).$$
 (86)

The value of $\sin^2\theta$ from (86) placed in (85) and the resulting integrations performed with respect to d, leads to expressions in powers of the right hand quantities in (79) so that (85) may be written finally as

$$S = a \qquad \boxed{d - (e^{2}/8) (1 + e^{2}/2 + 3e^{4}/8) (Xd - Y \sin d)}$$

$$- (e^{4}/512) (1 + 3e^{2}/2) \qquad \boxed{- (10d + \sin 2d) X^{2} + 8(\sin d) XY}$$

$$+ 2(\sin 2d) Y^{2} \qquad \boxed{- (e^{6}/12,288) \qquad \boxed{3(22d + 3\sin 2d) X^{3} - 3(15\sin d - \sin 3d) X^{2}Y}$$

$$- 18(\sin 2d) XY^{2} - 4(\sin 3d)Y^{3} \qquad \boxed{- (8e^{2}/8) (Xd - Y \sin d)} \qquad \boxed{- (8e^{2}/8) (Xd - Y \cos d)} \qquad \boxed{- (8e^{2}/8)$$

Again if all terms above first order in $f(e^2 = 2f)$ in (87) are ignored then the first two terms of (87) represent the Andoyer-Lambert form as given by the first of equations (80).

For the case where geographic latitudes, ϕ , are not first converted to parametric, but are considered spherical, the corresponding differential right triangles are:

(88)

We have for the approximation

$$Rd\phi = ds \cos \alpha_g$$

or
$$Rd\phi = ds \frac{d\phi}{D\delta d}$$
, placing $\cos \alpha_g = \cos \alpha_c = \frac{d\phi}{D\delta d}$.
 $ds = R D\delta d = a(1 - e^2) (1 - e^2 \sin^2 \phi)^{-3/2} D\delta d$.

If (88) represents the equator, then when
$$\phi = 0$$
, $ds = aD\delta d$. Hence add $e^2 \cos^2 \phi_0$ to the

integrand of (88), to obtain

$$(ds/a) = [1 - e^2) (1 - e^2 \sin^2 \phi)^{-3/2} + e^2 \cos^2 \phi_0] D\delta d.$$
 (89)

Note the following for (89): When $\phi = \phi_0 = 0$, ds = a D δ d; when $\phi_0 = \pi/2$, D δ d = d ϕ , equation (89) will represent the meridian.

Expanding (89) to 6th order terms in e get

$$(ds/a) = \begin{bmatrix} 1 + (3/2)e^{2} \sin^{2}\phi + (15/8)e^{4} \sin^{4}\phi + (35/16)e^{6} \sin^{6}\phi) \\ -e^{2}[1 + (3/2)e^{2} \sin^{2}\phi + (15/8)e^{4} \sin^{4}\phi] + e^{2}(1 - \sin^{2}\phi_{0}) \end{bmatrix} D\delta d$$
(90)

which may be written in the integral form

$$S = a \qquad d - (e^{2}/2) \int_{d_{1}}^{d_{2}} (2 \sin^{2}\phi_{0} - 3 \sin^{2}\phi) D\delta d$$

$$- (3e^{4}/8) \int_{d_{1}}^{d_{2}} \sin^{2}\phi(4 - 5 \sin^{2}\phi) D\delta d$$

$$- (5e^{6}/16) \int_{d_{1}}^{d_{2}} \sin^{4}\phi(6 - 7 \sin^{2}\phi) D\delta d$$

$$(91)$$

From (77), with θ replaced by $\dot{\phi}$, we have $\sin^2\phi = \frac{\sin^2\phi_0}{2}$ (1 + cos 2d), and with the aid of trigonometric identities we can find expressions for $\sin^4\phi$ and $\sin^6\phi$, i.e.

$$\sin^2 \phi = \frac{\sin^2 \phi_0}{2} \quad (1 + \cos 2d),$$

$$\sin^4 \phi = \frac{\sin^4 \phi_0}{8} \quad (3 + 4 \cos 2d + \cos 4d),$$

$$\sin^6 \phi = \frac{\sin^6 \phi_0}{32} \quad (10 + 15 \cos 2d + 6 \cos 4d + \cos 6d).$$
(92)

The values of
$$\sin^2 \phi$$
, $\sin^4 \phi$, $\sin^6 \phi$ from (92) placed in (91) give (93)
$$S = a \quad d - (e^2/4) \sin^2 \phi_0 \int_{d_1}^{d_2} (1 - 3 \cos 2d) \, D\delta d$$

$$- (3e^4/64) \sin^2 \phi_0 \int_{d_1}^{d_2} \left[(16 - 15 \sin^2 \phi_0) + (16 - 20 \sin^2 \phi_0) \cos 2d \right] \, D\delta d$$

$$- 5 \sin^2 \phi_0 \cos 4d$$

$$- (5e^6/512) \sin^4 \phi_0 \int_{d_1}^{d_2} \left[(72 - 70 \sin^2 \phi_0) + (96 - 105 \sin^2 \phi_0) \cos 2d \right] + (24 - 42 \sin^2 \phi_0) \cos 4d$$

$$- 7 \sin^2 \phi_0 \cos 6d$$

From (79), with θ replaced by ϕ , we have

$$X = \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} + \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2[\sin^2 \phi_0], \tag{95}$$

$$Y = \frac{(\sin \phi_0 + \sin \phi_2)^2}{1 + \cos d} - \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2[\sin^2 \phi_0 \cos (d_1 + d_2)].$$

Substituting from (95) in (94) we obtain finally

$$= a \begin{bmatrix} d - (e^{2}/8) & (Xd - 3Y \sin d) \\ - (3e^{4}/512) & [64(Xd + Y \sin d) + (5 \sin 2d - 30d) & X^{2} \\ - 40 & (\sin d) & XY - 10 & (\sin 2d) & Y^{2} \end{bmatrix}$$

$$- (5e^{6}/12,288) \begin{bmatrix} (432d - 72 \sin 2d) & X^{2} + 576 & (\sin d) & XY - 144 & (\sin 2d) & Y^{2} \\ + (63 \sin 2d - 210 & d) & X^{3} + (21 \sin 3d - 315 \sin d) & X^{2}Y \\ - 126 & (\sin 2d) & XY^{2} - 28(\sin 3d) & Y^{3} \end{bmatrix}$$

$$(96)$$

If, in (96), we place $e^2 = 2f$, ignoring all terms above first order in f, one obtains the second of equations (80), or the Andoyer-Lambert approximation in terms of geodetic latitude, ϕ .

Now the Andoyer-Lambert forms can be obtained from other modifications of differential equations. For instance if the differential for arc length along the geodesic is taken in the form, [8] page 64,

$$ds = (N^2 \cos^2 \phi / N_0 \cos \phi_0) d\lambda, N = a/(1 - e^2 \sin^2 \phi)^{1/2};$$
(97)

if the differential of arc length from (84), after converting to geodetic latitude is written

$$ds = [(1 - e^2 \sin^2 \phi)^{-1/2} - (1 - e^2 \sin^2 \phi_0)^{-1/2}] D\delta d;$$
(98)

and if (97) and (98) are combined with the relationship $d\lambda = (\sin \alpha_c/\cos \phi) \, D\delta d = (\cos \phi_0/\cos^2 \phi) \, D\delta d$ from the differential right triangles above with θ replaced by ϕ , one can write

$$(ds/a) = D\delta d + \left[(1 - e^2 \sin^2 \phi)^{-1} (1 - e^2 \sin^2 \phi_0)^{1/2} - 1 + (1 - e^2)^{1/2} \left\{ (1 - e^2 \sin^2 \phi)^{-1/2} - (1 - e^2 \sin^2 \phi_0)^{-1/2} \right\} \right] D\delta d$$
(99)

Expanding the expressions in (99) to first order terms in f, $e^2 = 2f$, equation (99) can be written in the integral form

$$S = a \left[d - f \int_{d_1}^{d_2} (2 \sin^2 \phi_0 - 3 \sin^2 \phi) D\delta d \right].$$
 (100)

Comparison of equations (100) and (91) (with e² = 2f) shows that (100) will again give the second of equations (80) or the Andoyer-Lambert Approximation in terms of geodetic latitude.

DERIVATIONS FROM EXPANSIONS OF FORSYTH

In reviewing the literature on geodetic computation one finds that A. R. Forsyth, [18], as early as 1895 had given some series expansions for geodetic arc length in terms of the flattening and certain spherical and elliptic parameters. On page 120 of his treatise one finds the expression

$$S_{12}/a = \nu_2' - \nu_1' - \frac{1}{4} c (\nu_2' - \nu_1') + (1/8) c (\sin 2\nu_2' - \sin 2\nu_1') . \tag{101}$$

Now the correspondences between the parameters as used by Forsyth in deriving (101) and those used above in this investigation are to first order in f:

$$\nu_2' = d_2$$
, $\nu_1' = d_1$, $\nu_2' - \nu_1' = d_2 - d_1 = d$, $c = 2f \sin^2 \theta_0$, $\sin 2\nu_2' - \sin 2\nu_1' = \sin 2d_2 - \sin 2d_1 = 2 \sin (d_2 - d_1) \cos (d_1 + d_2) = 2 \sin d \cos (d_1 + d_2)$ so that equation (101) becomes equivalently

 $S = a \left[d - (f/2) \left\{ d \left[\sin^2 \theta_0 \right] - \sin d \left[\sin^2 \theta_0 \cos \left(d_1 + d_2 \right) \right] \right\} \right],$ which in turn by means of relations (79) can be written $S = a \left[d - (f/4) \left(Xd - Y \sin d \right) \right]$, and identified as the first Andoyer-Lambert form of equations (80).

On page 116 of Forsyth's treatise one finds the expression

$$S_{12}/a = \nu_{2} - \nu_{1} + \xi \{(3/4) \cos^{2} \alpha_{0} (\sin 2\nu_{2} - \sin 2\nu_{1}) - (\frac{1}{2}) (\nu_{2} - \nu_{1}) \cos^{2} \alpha_{0} \}$$

$$+ \xi^{2} \left[(\frac{1}{2}) (\nu_{2} - \nu_{1})^{2} \cos^{2} \alpha_{0} \sin^{3} \alpha_{0} \sin \phi_{1}' \sin \phi_{2}' / \sin 2\phi_{0} \right]$$

$$+ (\nu_{2} - \nu_{1}) \left[(1/16) \cos^{4} \alpha_{0} + \cos^{2} \alpha_{0} \sin^{2} \alpha_{0} \right]$$

$$+ (3/8) \sin^{3} \alpha_{0} \cos^{2} \alpha_{0} (\sin 2\phi_{2}' - \sin 2\phi_{1}')$$

$$- (3/4) \cos^{2} \alpha_{0} \sin^{2} \alpha_{0} (\sin 2\nu_{2} - \sin 2\nu_{1})$$

$$+ (23/64) \cos^{4} \alpha_{0} (\sin 4\nu_{2} - \sin 4\nu_{1})$$

$$(102)$$

Now the equivalent relationships between Forsyth's parameters as used in (102) and the ones used in this investigation are:

$$\nu_{1} = d_{1}, \ \nu_{2} = d_{2}, \ \nu_{2} - \nu_{1} = d_{2} - d_{1} = d, \ \xi = f, \ l_{1} = \phi_{1}, \ l_{2} = \phi_{2},$$

$$2\phi_{0} = \phi_{2}' - \phi_{1}' = \phi_{2} - \phi_{1} = \lambda_{2} - \lambda_{1} = \Delta\lambda, \cos \phi_{1}' = \cot \phi_{0} \tan \phi_{1} = \cos \phi_{0} \cos d_{1} \sec \phi_{1}$$

$$\sin \phi_{1}' = \sin d_{1} \sec \phi_{1}, \cos \phi_{2}' = \cot \phi_{0} \tan \phi_{2} = \cos \phi_{0} \cos d_{2} \sec \phi_{2} \qquad (103)$$

$$\sin \phi_{2}' = \sin d_{2} \sec \phi_{2}, \cos \nu_{1} = \cos d_{1} = \sin \phi_{1}/\sin \phi_{0},$$

$$\cos \nu_{2} = \cos d_{2} = \sin \phi_{2}/\sin \phi_{0}, \ \alpha_{0} = \frac{\pi}{2} - \phi_{0}, \text{ the relationship sin } \alpha_{0} \sin (\nu_{2} - \nu_{1})$$

$$= \cos l_{1} \cos l_{2} \sin 2\phi_{0} \text{ given on pages 106, 121 of Forsyth, [18],}$$
becomes
$$\cos \phi_{0} \sin d = \cos \phi_{1} \cos \phi_{2} \sin \Delta\lambda \text{ in the notation of this investigation.}$$

Assurance that Forsyth's α_0 is the complement of the geodetic latitude, ϕ_0 , of the great elliptic arc is found from his expression, [18] page 106, which is

$$\tan a_0 = \sin 2 \phi_0 / \{(\tan l_1 + \tan l_2)^2 - 4 \tan l_1 \tan l_2 \cos^2 \phi_0\}^{1/2}$$

With equivalent substitutions from (103) and some trigonometric identities it will transform into

$$\tan \phi_0 = (\tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda)^{1/2} / \sin \Delta \lambda$$

which defines the vertex of the great elliptic arc. See equations (21) of this investigation.

A cursory check of the equations just preceding (102) in Forsyth's treatise revealed that the numerical coefficient of the second order term *1 in (102) should be 15/64 instead of 23/64. Then by use of relations (103) and (95) it was found that (102) could be written as

$$S = a \left[d - (f/4) (Xd - 3Y \sin d) + (f^2/128) (AX - BY - CX^2 + DY^2 + EXY + FX^2Y + GX^3) \right]$$
(104)

where A = 64d + 16d² cot d, B = 96 sin d + 16 d² csc d - 48 sin² $\Delta\lambda$ csc d, C = 30d + 15 sin 2d + 8d² cot d + 12 sin² $\Delta\lambda$ cot d, D = 30 sin 2d, E = 48 sin d + 8d² csc d - 36 sin² $\Delta\lambda$ csc d, F = 6 sin² $\Delta\lambda$ csc d, G = 6 sin² $\Delta\lambda$ cot d.

Note that the first two terms of (104) are exactly the Andoyer-Lambert form given by the second of equations (80). But we apparently also have the second order term in the flattening. Thus, Forsyth had both so-called Andoyer-Lambert approximation forms as early as 1895 but they had not been recognized as such.

Equation (104) was used to compute several lines of known lengths. On those in which the term *2 of (102) was small, an improvement would be obtained by including the second order terms. On others, the error introduced would outweigh the first order correction, which could mean, since equation (104) is a power series in f, that the coefficient of the second order term in f is erroneous. Now examination of the second order terms of equations (82) and (96) shows no cubic terms in X and Y as are found in the second order term of (104). Hence Forsyth's paper [18], was reworked from the beginning and it was found that indeed the term *2 in (102) actually vanishes and reaffirmation was also made that the numerical coefficient of the term *1 of (102) should be 15/64 rather than 23/64. These errors are the result of carrying throughout the derivation the numerical factor 9/32 in the last term of the expression for δ , [18], section 17, page 98, when it should be 3/32. This affects the approximation equation for tan Φ , section 22, page 104. In the last term, the factor $-7 \sin^2 \alpha$ should be $+5 \sin^2 \alpha$. This continues to be reflected through section 27, pages 111 to 115, until the term is actually seen to vanish in collecting the terms together on page 115. Also on page 115, omission of a factor $\frac{1}{2}$ in use of a trigonometric identity in the third line from the bottom gave the printed value $\frac{1}{2}$ for the numerical coefficient of

 $\cos 4\alpha_0 \sin 4\nu$ when it should be 1/8. This leads in turn to the printed value 23/64 as given on page 116 when it should be 15/64.

After the two errors in Forsyth's second order term in f had been detected, two papers were found which are concerned with the Forsyth derivation, Wassef 1948, [19], and Gougenheim 1950, [20]. Wassef purports to give the corrected version of Forsyth's second order term but he includes the term *2 in (102) and he gives 15/23 for the numerical coefficient of *1 in (102). Hence Wassef's results are erroneous and useless. Gougenheim, unaware of Forsyth's work, had developed his formulae independently and he has the term *2 in (102) missing in his derivation and the correct numerical coefficient 15/64 for *1 of (102). His formula for the second order term is (in the notation of Forsyth)

$$+ \xi^{2} = \begin{bmatrix} -(1/2) \frac{(\nu_{2} - \nu_{1})^{2}}{\cot \nu_{2} - \cot \nu_{1}} \cos^{2} \alpha_{0} \sin^{2} \alpha_{0} + (1/16) & (\nu_{2} - \nu_{1}) (\cos^{2} \alpha_{0} + 15 \cos^{2} \alpha_{0} \sin^{2} \alpha_{0}) \\ -(3/4) \cos^{2} \alpha_{0} \sin^{2} \alpha_{0} (\sin 2\nu_{2} - \sin 2\nu_{1}) \\ +(15/64) \cos^{4} \alpha_{0} (\sin 4\nu_{2} - \sin 4\nu_{1}) \end{bmatrix}$$

$$(105)$$

Since the last two terms of (105) are the same as the last two of (102), as corrected, we have only to show that

$$(1/16) \cos^4 \alpha_0 + \cos^2 \alpha_0 \sin^2 \alpha_0 \equiv (1/16) (\cos^2 \alpha_0 + 15 \cos^2 \alpha_0 \sin^2 \alpha_0),$$

$$1/(\cot \nu_1 - \cot \nu_2) \equiv (\sin \alpha_0 \sin \phi_1' \sin \phi_2')/\sin 2\phi_0.$$
(106)

Writing the right member of the first of (106) as

$$\begin{aligned} (1/16) & \cos^2 \alpha_0 + (15/16) \cos^2 \alpha_0 \sin^2 \alpha_0 + (1/16) \cos^4 \alpha_0 - (1/16) \cos^2 \alpha_0 (1 - \sin^2 \alpha_0) \\ & \equiv (1/16) \cos^4 \alpha_0 + (1/16) \cos^2 \alpha_0 + (15/16) \cos^2 \alpha_0 \sin^2 \alpha_0 \\ & - (1/16) \cos^2 \alpha_0 + (1/16) \cos^2 \alpha_0 \sin^2 \alpha_0 \\ & \equiv (1/16) \cos^4 \alpha_0 + \cos^2 \alpha_0 \sin^2 \alpha_0. \end{aligned}$$

From relations (103) we have

$$\sin \alpha_0 \sin (\nu_2 - \nu_1) = \cos l_1 \cos l_2 \sin 2\phi_0$$
 or

$$\frac{\sin a_0}{\sin 2\phi_0} = \frac{\cos l_1 \cos l_2}{\sin (\nu_2 - \nu_1)} \tag{107}$$

$$\frac{\sin \alpha_0 \sin \phi_1' \sin \phi_2'}{\sin 2\phi_0} = \frac{\cos l_1 \sin \phi_1' \cdot \cos l_2 \sin \phi_2'}{\sin \nu_2 \cos \nu_1 - \cos \nu_2 \sin \nu_1} = \frac{\frac{\cos l_1 \sin \phi_1'}{\sin \nu_1} \cdot \frac{\cos l_2 \sin \phi_2'}{\sin \nu_2}}{\cot \nu_1 - \cot \nu_2}$$

From pages 111, 117 of Forsyth find: $\tan \phi_1' \sin \alpha_0 = \tan \nu_1$, $\cos \phi_1' = \tan \alpha_0 \tan l_1$, $\cos \nu_1 \cos \alpha_0 = \sin l_1$, $\tan \phi_2' \sin \alpha_0 = \tan \nu_2$, $\cos \phi_2' = \tan \alpha_0 \tan l_2$, $\cos \nu_2 \cos \alpha_0 = \sin l_2$, whence

$$\frac{\cos l_1 \sin \phi_1'}{\sin \nu_1} = \frac{\sin l_1}{\cos \nu_1 \cos \alpha_0} = 1,$$

$$\frac{\cos l_2 \sin \phi_2'}{\sin \nu_2} = \frac{\sin l_2}{\cos \nu_2 \cos \alpha_0} = 1.$$
(108)

The values from (108) placed in (107) prove the second of (106) and thus Gougenheim's paper provides an independent check of the corrections given here to Forsyth's second order term. Gougenheim also gave formulae for azimuths, convergence of the meridians, and difference in longitude between the spheroidal and spherical (elliptical) vertices of geodesics in terms of the same variables. The importance of Gougenheim's work has not been recognized. He has had a correct expansion including the second order term in the flattening, in print since 1950.

THE FORSYTH-ANDOYER-LAMBERT TYPE APPROXIMATION IN GEODETIC LATITUDE WITH SECOND ORDER TERMS

With the corrections to (102), i.e. with the numerical coefficient of *1 as 15/64 and the term *2 omitted, equation (102) may be written, with relations (103) and (95), as

$$S = a[d - (f/4) (Xd - 3Y \sin d) + (f^2/128) (AX + BY + CX^2 + DXY + EY^2)],$$
 (109)

where a, f are the semimajor axis and flattening of the reference ellipsoid; d is the spherical distance between the points P_1 (ϕ_1 , λ_1 ,), P_2 (ϕ_2 , λ_2) on the ellipsoid given by some spherical formula as $\cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda$; ϕ is geodetic latitude, λ is longitude, $\Delta \lambda = \lambda_2 - \lambda_1$; $\lambda = 64d + 16d^2 \cot d$, $\lambda = 48 \sin d + 8d^2 \csc d$, $\lambda = -2D$, $\lambda = 30 \sin 2d$,

$$C = -(30d + 8d^2 \cot d + E/2), X = \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} + \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d},$$

$$Y = \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} - \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d}; d = d_2 - d_1, \text{ there } d_1 \text{ and } d_2 \text{ are spherical distances}$$

from the vertex of the great elliptic arc to the points P_1 (ϕ_1 , λ_1), P_2 (ϕ_2 , λ_2).

Now by factoring sin d out of every term of (109) and using the azimuth formulae as given by Lambert, [13], we can, by means of trigonometric identities, arrange equations (109) in a form more convenient for computing as follows:

Given on the reference ellipsoid the points P_1 (ϕ_1 , λ_1), P_2 (ϕ_2 , λ_2), ϕ is geodetic latitude, λ is longitude, P_2 is west of P_1 with west longitudes considered positive.

With
$$\phi_{\rm m}=(1/2)$$
 $(\phi_1+\phi_2)$, $\Delta\phi_{\rm m}=(1/2)$ $(\phi_2-\phi_1)$, $\Delta\lambda=\lambda_2-\lambda_1$, $\Delta\lambda_{\rm m}=(1/2)$ $\Delta\lambda$;

Let: $k = \sin \phi_m \cos \Delta \phi_m$, $K = \sin \Delta \phi_m \cos \phi_m$,

$$H = \cos^2\!\Delta\phi_{\rm m} - \sin^2\!\phi_{\rm m} = \cos^2\!\phi_{\rm m} - \sin^2\!\Delta\phi_{\rm m} ,$$

$$L = \sin^2\!\!\Delta\phi_{\rm m} + {\rm H}\,\sin^2\!\!\Delta\lambda_{\rm m} = \sin^2({\rm d}/2),\, 1 - L = \cos^2({\rm d}/2),\, \cos\,{\rm d} = 1 - 2L,\,\, t = \sin^2\!\!d = 4L(1-L),\,\, t = \cos^2\!\!d = 4L(1-L),\,\, t = \sin^2\!\!d = 4L(1-L),\,\, t = \cos^2\!\!d = 4L(1-L),\,\, t = \sin^2\!\!d = 4L(1-L),\,\, t = \cos^2\!\!d = 4L(1-L),\,\, t = \sin^2\!\!d = 4L(1-L),\,\, t = \sin^2\!\!d = 4L(1-L),\,\, t = \cos^2\!\!d = 4L(1-L),\,\, t = \cos^2\!\!d = 4L(1-L),\,\, t = \cos^2\!\!d = 4L(1-L),\,\, t = 4L$$

$$U = 2k^2/(1 - L)$$
, $V = 2K^2/L$, $X = U + V$, $Y = U - V$,

$$T = d/\sin d = 1 + (t/6) + 3(t^2/40) + 5(t^3/112) + 35(t^4/1152) + 63(t^5/2816) + -----,$$

$$E = 30 \cos d$$
, $A = 4T (8 + TE/15)$, $D = 4(6 + T^2)$, $B = -2D$, $C = T - \frac{1}{2}(A + E)$, (110)

$$S = a \sin d [T - (f/4) (TX - 3Y) + (f^2/64) {X(A + CX) + Y (B + EY) + DXY}];$$

$$\sin (\alpha_2 + \alpha_2) = (K \sin \Delta \lambda)/L$$
, $\sin (\alpha_2 - \alpha_1) = (K \sin \Delta \lambda)/(1 - L)$

$$(\frac{1}{2}) (\delta a_2 + \delta a_1) = -(f/2) H (T+1) \sin (a_2 + a_1), (\frac{1}{2}) (\delta a_2 - \delta a_1) = -(f/2) H (T-1) \sin (a_2 - a_1),$$

$$\alpha_{1-2} = \alpha_1 + \delta \alpha_1$$
, $\alpha_{2-1} = \alpha_2 + \delta \alpha_2$.

Note that the quantities H, T, L, k, K enter into both distance and azimuth formulas.

Figure (21) shows an arrangement of equations (110) for desk computing using an ordinary ten bank electric desk calculator and Peters eight place tables of trigonometric functions. It is arranged to show the contribution of both the first and second order terms in the flattening.

Table 4 summarizes the results of computations over 17 lines of known lengths and azimuths. The computations are given in Appendix 3. Part of these lines were used in the computations of Appendix 2. The first 11 lines are from two ACIC publications [12], lines 12 through 17 are Coast and Geodetic Survey specially computed lines, [22].

Note that all distances are within one meter and azimuths are within one second which was the objective since this is adequate for any operational requirement. Other advantages are (1) no conversion to parametric latitudes, (2) no square root calculation, (3) for desk computers the only tabular data required is a table of the natural trigonometric functions as Peters eight place tables, (4) the formulas are adaptable to high speed computers, (5) about the same accuracy is obtained over all lines in all azimuths and latitudes.

EXPANSION TO SECOND ORDER TERMS IN I USING PARAMETRIC LATITUDE

For tyth [18], gave an expansion of the geodesic to first order in the elliptic modulus $c = (e^2 \cos^2 \alpha)/(1 - e^2 \sin^2 \alpha)$ where α is the complement of the parametric latitude of the vertex of the geodesic. (See pages 118-120 of his treatise). We will follow the Forsyth method and

DISTANCE COMPUTING FORM, FORSYTH-ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/64 = 0.1795720390 \times 10^{-6}$

1 radian = 206,264.8062 seconds

ϕ_1 $\overset{\circ}{\mathcal{B}}$ $\overset{\circ}{\mathcal{S}8}$ $\overset{\circ}{\mathcal{Z}5.0}$ $\overset{\circ}{1}$. PANAMA	λ, 79 34 24.0
φ ₂ 21 26 06.0 2. HAWAII	λ. 158 01 33.0
$\phi_{\rm m} = \frac{1}{2}(\phi_1 + \phi_2) \frac{25}{2} \frac{1}{2} \frac{1}{2$	$\Delta \lambda = \lambda_2 - \lambda_1 \frac{78}{2} 27 09.0$
$\Delta \phi_{\rm m} = \frac{1}{2} (\phi_2 - \phi_1) \frac{6}{6} \frac{13}{50.5} \frac{50.5}{6}$	$\Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda \frac{39}{39} \frac{13}{34.5} \frac{34.5}{2}$
$\sin \phi_{\rm m} + .26226170 = \sin \Delta \phi_{\rm m} + .10853193$	$_{\sin \Delta\lambda} + .97975909$
$\cos \phi_{\rm m} + 96499679 = \cos \Delta \phi_{\rm m} + 99409297$	$= \sin \Delta \lambda_{\rm m} \frac{\neq .63238428}{}$
$k = \sin \phi_{m} \cos \Delta \phi_{m} + 2607/25/2$ $K = \sin \phi_{m} \cos^{2} \Delta \phi_{m} - \sin^{2} \phi_{m} = \cos^{2} \phi_{m} - \sin^{2} \Delta \phi_{m} + 919439630$ $K = \sin \phi_{m} \cos \Delta \phi_{m} + 2607/25/2$ $K = \sin^{2} \Delta \phi_{m} + \sin^{2} \Delta \phi_{m} + 37947/21/7$	$\Delta \phi_{\rm m} \cos \phi_{\rm m} + .104732963$
$H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m + \frac{4.919439630}{6.5}$	1_L
$L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m \frac{7.57577227}{1.57577227}$	$\cos d = 1 - 2L \frac{7.2372}{2}$
$d + 1.327342885$ $\sin d + .9705/129$	
$U=2k^{2}/(1-L)+\frac{2/9074828}{276886675} V=2K^{2}/L+\frac{0578/18469}{161862991}$	$E = 30 \cos d + 7.23/663/6$
$X=U+V + .276886675$ $Y=U-V + .161262981$ $A=4T(8+ET/15)+47.3727803$ $C=T-\frac{1}{2}(A+E)-25.93455/2$	$D = 4(6 + T^2) + \frac{57.76222676}{25}$ $B = -2D - 62.9642535$
$X(A+CX) + \frac{1}{128587321}$ $Y(B+EY) - \frac{9.9657382}{128587321}$	
$(TX-3Y)105098286$ $\delta f = -(f/4)(TX-3Y)$	
	δf) 8,466,618.26 meters
$\Sigma = X(A+CX) + Y(B+EY) + DXY + 2.5685755 \delta f^2 = +($	
$T + \delta f + \delta f^2 + 1.36176336$ $S_2 = a \sin d(T + 1.36176336)$	_ ,
$\sin(\alpha_2 + \alpha_1) = (K \sin \Delta \lambda)/L + 270 41001$	a2+a1 375 ° 41 19"197
$\sin (\alpha_2 - \alpha_1) = (k \sin \Delta \lambda)/(1 - L) + 4/164222$	$a_2 - a_1 = \frac{155}{155} 41 31.161$
$\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H(T+1) \sin(\alpha_2 + \alpha_1) - \frac{9.97808513 \times 10^{-1}}{2}$	⁴ δα,761931734 × 10-3
$\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin(\alpha_2 - \alpha_1) - 2.35876779 \times 10^{-4}$	δα2 -1,233685292 X10-3
a, 109 59 54.018	a ₂ <u>265 41 25.179</u>
$\delta \alpha_1 - Z = 37.160$	$\delta a_2 = 4 14.466$
a ₁₋₂ 109 57 16.858	a ₂₋₁ 265 37 10.713
$\alpha_{1-2} = \alpha_1 + \delta \alpha_1$	$\alpha_{2-1}=\alpha_2+\delta\alpha_2$

Figure 21.

TABLE 4
Summary of Computations

Approx. No. Lat. Az.			True Length	$S_{i}(\delta f)$	Comput $S_2(\delta f^2)$	ed Lengt S ₁ - S	h S ₂ - S	True Azimuths	Computed Azimuths
0 0			S(Meters)	Meters	Meters	Meters	Meters	0 t II	0 1 11
								45 26 01.69	00.44
1	40	45	80,466.49	67.25	67.02	+ 0.76	+ 0.53	224 59 59.997	58.76
								90 15 17.48	17.51
2	10	90	160,932.96	32.99	32.96	+ 0.03	0.0	270 0 0	00.02
								97 52 01.06	01.11
3	70	90	321,865.91	62,98	65.64	- 2.93	- 0.27	269 59 59.95	270 00 00.03
						·		45 37 46.11	44.97
4	10	45	482,798.87	94.74	99.23	- 4.13	+ 0.36	224 59 59.73	58.63
								58 50 31.60	31.30
5	70	45	643,732.43	27.96	32.44	- 4.47	+ 0.01	225 00 00.15	224 59 59.86
								91 16 14.93	14.87
6	10	90	804,664.78	65.22	65.10	+ 0.44	+ 0.32	270 0 0	269 59 59.98
								49 52 15.53	14.35
7	40	45	804,664.77	66.62	64.75	+ 1.95	- 0.02	224 59 59.99	58.83
								89 55 22.83	22.64
8	70	45	1,609,329.06	15.61	29.04	-13.45	- 0.02	224 59 59.96	59.83
								119 54 41.26	41.40
9	40	90	4,827,984.25	83.17	85.09	- 1.08	+ 0.84	270 00 00.12	269 59 59.61
								138 23 42.76	42.39
10	40	45	9,655,969.75	72.49	70.13	+ 2.74	+ 0.38	225 00 00.28	00.67
								159 54 37.21	37.78
11	70	90	9,655,977.15	63.63	77.01	-13.52	- 0.14	270 00 00.02	00.81
				599,	600,	:		260 17 09.79	09.78
12	70	95	600,000.00	995.26	000.24	- 4.74	+ 0.24	95 0 0	94 59 59.93
				900,	900,			50 0 0	49 59 59.20
13	60	50	900,000.00	000.56	000.23	+ 0.56	+ 0.23	221 03 33.54	32.73
								128 33 08.34	09.17
14	25	50	979,251.25	247.67	251.45	_ 3.58	+ 0.20	305 38 13.25	14.18
								35 16 34.25	33.34
15	60	35	1,232,647.21	652,17	647.21	+ 4.96	0.0	207 08 33.82	32.91
į								109 57 17.41	16.86
16	20	70	8,466,621.01	618,26	621.11	- 2.75	+ 0.10	265 37 10.59	10.71
								15 48 17.67	16.94
17	55	15	10,102,069.06	057.93	069.86	-11.13	+ 0.80	190 39 32.21	31.45

extend the results to second order in c and subsequently to second order in f since c can be expressed as a series in f.

The quantities needed to achieve the approximation are found in or derived from the results of Forsyth's work, pages 86, 97-105. We list them here for reference in the development.

$$\begin{aligned} \Phi &= \phi + \frac{c}{2} \text{ u'sec } a \tan \alpha \left[1 + \frac{c}{8} (1 - 6 \tan^2 a) \right] \end{aligned} \qquad \qquad 111a \\ \text{u'} &= \nu' + c \text{ U} + c^2 \text{V} \end{aligned} \qquad \qquad 111b \\ \phi &= \phi' + c \text{ } \Omega + c^2 \text{W} \end{aligned} \qquad \qquad 111c \\ \alpha &= a_0 + c \text{ } A \cot a_0 + c^2 \text{B} \end{aligned} \qquad \qquad 111d \\ \text{cn } \text{u} &= \cos \text{u'} \left\{ 1 - \frac{c}{8} \cos^2 \text{u'} - \frac{c^2}{64} \sin^2 \text{u'} \left(7 + 4 \cos^2 \text{u'} \right) \right\} \end{aligned} \qquad \qquad 111e \\ c &= \left(e^2 \cos^2 a \right) / (1 - e^2 \sin^2 a), \ e^2 = 2f - f^2, \ e^4 = 4f^2 \\ c &= 2f \cos^2 a + f^2 \cos^2 a \left(3 - 4 \cos^2 a \right) \end{aligned} \qquad \qquad 111f \\ \cos \theta &= \text{cn u } \cos \alpha \end{aligned} \qquad \qquad \qquad \qquad 111g \\ \tan \Phi &= \tan \text{u'} \csc \alpha \left[1 + \frac{c}{8} c + \left(1/64 \right) c^2 \left(9 - 2 \sin^2 \nu' - 4 \tan^2 a_0 \right) \right] \end{aligned} \qquad \qquad 111h \\ \frac{s}{a} &= \left(1 - e^2 \sin^2 a \right)^{1/2} \text{ E(u)} \end{aligned} \qquad \qquad \qquad = \text{u'} + \frac{c}{4} \left[\sin 2 \text{u'} - \left(1 + 2 \tan^2 a \right) \text{u'} \right] \end{aligned} \qquad \qquad \qquad 111i \\ \frac{s}{a} &= \left(1 - e^2 \sin^2 a \right)^{1/2} \text{ E(u)} \end{aligned} \qquad \qquad \qquad = \text{u'} + \frac{c^2}{64} \left[\sin 4 \text{u'} + 4 \sin 2 \text{u'} \left(1 - 2 \tan^2 a \right) + \left\{ 8 \tan^2 a \left(1 + 3 \tan^2 a \right) - 3 \right\} \text{u'} \right] \end{aligned} \qquad \qquad 111i \\ \sin \alpha &= \sin \alpha_0 \left[1 + c \text{ A } \cot^2 a_0 + c^2 \cot a_0 \left(B - \frac{c}{8} \text{A}^2 \cot a_0 \right) \right] \end{aligned} \qquad \qquad 111j \\ \cos \alpha &= \cos \alpha_0 \left[1 - c \text{ A } - c^2 \tan \alpha_0 \left(B + \frac{c}{8} \text{A}^2 \cot a_0 \right) \right] \end{aligned} \qquad \qquad 111k \\ \tan \alpha &= \tan a_0 \left[1 + c \text{ A } \cot^2 a_0 + c^2 \cos^2 a_0 \left(A^2 + B \tan a_0 \right) \right] \end{aligned} \qquad \qquad 111m \\ \sec \alpha &= \sec \alpha_0 \left[1 + c \text{ A } \cot^2 a_0 + c^2 \cot a_0 \left\{ B - \frac{c}{8} \text{A}^2 \cot a_0 \right\} \right] \end{aligned} \qquad \qquad 111c \\ \cos \alpha &= \cos \alpha_0 \left[1 - c \text{ A } \cot^2 a_0 - c^2 \cot a_0 \left\{ B - \frac{c}{8} \text{A}^2 \cot a_0 \left\{ 1 + \frac{c}{2} \cot^2 a_0 \right\} \right\} \right] \end{aligned} \qquad \qquad 111h \\ \cos \alpha &= \csc \alpha_0 \left[1 - c \text{ A } \cot^2 a_0 - c^2 \cot a_0 \left\{ B - \frac{c}{8} \text{A}^2 \cot a_0 \left\{ 1 + \frac{c}{2} \cot^2 a_0 \right\} \right] \end{aligned} \qquad \qquad 111h \\ \cos \alpha &= \csc \alpha_0 \left[1 - c \text{ A } \cot^2 a_0 - c^2 \cot a_0 \left\{ B - \frac{c}{8} \text{A}^2 \cot a_0 \left\{ 1 + \frac{c}{2} \cot^2 a_0 \right\} \right\} \end{aligned} \qquad \qquad 111h \\ \cos \alpha &= \csc \alpha_0 \left[1 - c \text{ A } \cot^2 a_0 - c^2 \cot a_0 \left\{ B - \frac{c}{8} \text{A}^2 \cot a_0 \left\{ 1 + \frac{c}{2} \cot^2 a_0 \right\} \right\} \end{aligned} \qquad \qquad 111h \\ \sin \alpha' &= \sin \alpha' \left[1 + c \text{ U } \cot \alpha' - c^2 \text{ U } \cot \alpha' + c^2 \text$$

In these formulas, α_0 is the complement of the parametric latitude of the vertex of the great elliptic arc. To see this, find on page 119 of Forsyth, the expression

$$\sin \alpha_0 = (\tan \phi_0)/[(p \sec^2 \phi_0 - 1) (p' \sec^2 \phi_0 + 1)]^{1/2},$$

where $p = \sin^2 \frac{1}{2}(\theta_1 + \theta_2) / \sin \theta_1 \sin \theta_2$

(112)

 $p' = \cos^2 \frac{1}{2}(\theta_1 + \theta_2)/\sin \theta_1 \sin \theta_2$

Now replace Forsyth's θ_1 and θ_2 by $90 - \theta_1$, $90 - \theta_2$ respectively and his ϕ_0 by $\Delta \lambda/2$. Then find:

$$\tan \phi_0 = \tan (\Delta \lambda/2) = (1 - \cos \Delta \lambda)/\sin \Delta \lambda$$

$$p \sec^2 \phi_0 - 1 = [(1 - \cos \Delta \lambda)/\sin^2 \Delta \lambda] (1 + \sec \theta_1 \sec \theta_2 - \tan \theta_1 \tan \theta_2) - 1$$
 (113)

p'sec
$$^2\phi_0 + 1 = [(1 - \cos \Delta\lambda)/\sin^2 \Delta\lambda] (-1 + \sec \theta_1 \sec \theta_2 + \tan \theta_1 \tan \theta_2) + 1$$

The values from (113) placed in (112) give

$$\sin \alpha_0 = \sin \Delta \lambda / (\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda + \sin^2 \Delta \lambda)^{1/2}$$
 (114)

Now the right member of (114) is $\cos\theta_0$ where θ_0 is the parametric latitude of the vertex of the great elliptic arc [17]. (See also GEODESICS AND PLANE ARCS ON AN OBLATE SPHEROID, L. E. Ward, American Mathematical Monthly, Aug.—Sept., 1943 page 427).

From 111a, 111b, 111c, 111m, 111n we have, retaining terms to c2 inclusive:

$$\Phi = \phi' + c \left(\Omega + \frac{\nu'}{2} \sec \alpha_0 \tan \alpha_0\right) \tag{115}$$

+
$$c^2 \left[\Psi + \frac{1}{2} \sec \alpha_0 \tan \alpha_0 \left\{ U + A \nu' \left(1 + \csc^2 \alpha_0 \right) + \left(\frac{1}{8} \right) \nu' \left(1 - 6 \tan^2 \alpha_0 \right) \right\} \right]$$

If R, S are the coefficients respectively of c and c2 in (115), then

$$\tan \Phi = \tan \phi' + c \sec^2 \phi' R + c^2 \sec^2 \phi' (S + R^2 \tan \phi')$$
 (116)

With the values of R and S from (115) and the values of $\Omega + (\nu'/2)$ sec $\alpha_0 \tan \alpha_0$ and U from 111t, cot ϕ' from 111s, we can write (116) as

$$\tan \Phi = \tan \phi' - c \text{ A } \cot \nu' \csc \alpha_0 \sec^2 \phi'$$

$$+ c^2 \sec^2 \phi' \left[\Psi + A^2 \cot \nu' \csc^3 \alpha_0 + \frac{1}{2} \sin \alpha_0 \sec^2 \alpha_0 \left[A[\nu'(1 + \csc^2 \alpha_0) - \cot \nu'] - (1/8) \sin 2\nu' + \frac{\nu'}{8} (1 - 6 \tan^2 \alpha_0) \right] \right]$$
(117)

From 111h, 111o, 111r we write a second formula for tan Φ :

$$\tan \Phi = \tan \nu' \csc \alpha_0 - cA \left(\csc^2 \nu' + \cot^2 \alpha_0\right) \tan \nu' \csc \alpha_0$$

$$+ c^2 \tan \nu' \csc \alpha_0 \qquad V \sec \nu' \csc \nu' - B \cot \alpha_0 + (9/64) + (1/32) \sin^2 \nu'$$

$$+ \frac{A}{4} (2 - \csc^2 \nu') - (1/16) \sec^2 \alpha_0$$

$$+ A^2 \left(\csc^2 \nu' \csc^2 \alpha_0 + \cot^4 \alpha_0 + \frac{1}{2} \cot^2 \alpha_0\right)$$
(118)

From 111g, 111e, 111k, 111p, 111q, 111t we can write:

$$\cos \theta = \cos \alpha_0 \cos \nu' + c \cdot 0$$

$$+ c^2 \cos \alpha_0 \cos \nu' \left(\frac{A}{4} \cos 2 \nu' - V \tan \nu' - (5/64) \sin^2 \nu' - (3/32) \sin^4 \nu' \right)$$

$$- B \tan \alpha_0 - A^2 \left(1 + \frac{1}{2} \cot^2 \alpha_0 + \frac{1}{2} \cot^2 \nu' \right)$$
(119)

Now in (119), the coefficient of c was zero as it should be and the coefficient of c^2 must be zero since $\cos \theta = \cos \alpha_0 \cos \nu'$. Placing the coefficient of c^2 in (119) equal to zero find:

$$- B \cot \alpha_0 = A^2 (1 + \frac{1}{2} \cot^2 \alpha_0 + \frac{1}{2} \cot^2 \nu') \cot^2 \alpha_0 - \frac{A}{4} \cos 2 \nu' \cot^2 \alpha_0 + V \tan \nu' \cot^2 \alpha_0 + (5/64) \sin^2 \nu' \cot^2 \alpha_0 + (3/32) \sin^4 \nu' \cot^2 \alpha_0$$
(120)

With the value of – B cot a_0 from (120) placed in the second order term of (118) and with some manipulation through the identities 111s, we can write (118) as:

$$\tan \Phi = \tan \nu' \csc \alpha_0 - c \text{ A } \cot \nu' \csc \alpha_0 \sec^2 \phi'$$

$$+ c^2 \csc \alpha_0 \sec^2 \phi' \left(A^2 \cot \nu' (1 + (3/2) \cot^2 \alpha_0) + V \right)$$

$$+ \frac{A}{4} \left(\sin 2 \nu' - \cot \nu' \right) + (1/16) \sin 2\nu'$$

$$- (3/256) \sin 4\nu' - (1/32) \sin 2\nu' \tan^2 \alpha_0$$
(121)

From (117) and (121), since $\tan \phi' = \tan \nu' \csc \alpha_0$ from 111s, the coefficients of the terms in c and c² must be respeciately equal. Equating the second order terms in (117) and (121) and solving for V we find:

$$V = \Psi \sin \alpha_0 - \frac{1}{4} A^2 \cot \nu' \cot^2 \alpha_0$$

$$+ \frac{A}{4} \left[2\nu' \tan^2 \alpha_0 (1 + \csc^2 \alpha_0) - \sin 2\nu' + \cot \nu' (1 - 2 \tan^2 \alpha_0) \right]$$

$$+ \frac{\nu'}{16} \tan^2 \alpha \left(1 - 6 \tan^2 \alpha \right) - \frac{\sin 2\nu'}{16} + \frac{3 \sin 4\nu'}{256} - \frac{\tan^2 \alpha_0 \sin 2\nu'}{32}$$

$$(122)$$

From 111i, 111b, 111m, 111p, 111q, the value of U in terms of A from 111t, and V from (122) we may write:

$$\frac{S}{a} = \nu' + c \left[(1/8) \sin 2\nu' - A \cot \nu' - \frac{\nu'}{4} (1 + 2 \tan^2 \alpha_0) \right]$$

$$+ c^2 \left[\Psi \sin \alpha_0 - \frac{1}{2} A^2 \cot^2 \alpha_0 \cot \nu' + \frac{A}{4} (\sin 2\nu' - 2\nu') + (1/256) \left[8 \sin 2\nu' (1 - 3 \tan^2 \alpha_0) - \sin 4\nu' \right] + (3/64) \nu' (4 \tan^2 \alpha_0 - 1) \right]$$
(123)

Referring (123) to the end points of the geodesic arc we have:

$$\frac{S}{a} = (\nu_{2}' - \nu_{1}') + c \left[(1/8) \left(\sin 2\nu_{2}' - \sin 2\nu_{1}' \right) - A \left(\cot \nu_{2}' - \cot \nu_{1}' \right) - \frac{1}{4} (\nu_{2}' - \nu_{1}') \left(1 + 2 \tan^{2} \alpha_{0} \right) \right]
+ c^{2} \left[-\frac{1}{2} A^{2} \cot^{2} \alpha_{0} \left(\cot \nu_{2}' - \cot \nu_{1}' \right) + \frac{A}{4} \left[\left(\sin 2\nu_{2}' - \sin 2\nu_{1}' \right) - 2 \left(\nu_{2}' - \nu_{1}' \right) \right] \right]
+ (1/256) \left[8 \left(1 - 3 \tan^{2} \alpha_{0} \right) \left(\sin 2\nu_{2}' - \sin 2\nu_{1}' \right) - \left(\sin 4\nu_{2}' - \sin 4\nu_{1}' \right) \right]
+ (3/64) \left(\nu_{2}' - \nu_{1}' \right) \left(4 \tan^{2} \alpha_{0} - 1 \right)$$
(124)

Note that the term Ψ sin α_0 vanishes in (124).

From 111t we have from the expression for A that:

$$- A \left(\cot \nu_2' - \cot \nu_1'\right) = \frac{\tan^2 a_0}{2} \left(\nu_2' - \nu_1'\right), \tag{125}$$

$$A = \frac{1}{4} (\nu_2' - \nu_1') \tan^2 \alpha_0 \left[\cot \left(\nu_2' - \nu_1' \right) - \csc \left(\nu_2' - \nu_1' \right) \cos \left(\nu_1' + \nu_2' \right) \right]$$

We list also for reference the identities:

$$\sin 2\nu_{2}' - \sin 2\nu_{1}' = 2 \sin (\nu_{2}' - \nu_{1}') \cos (\nu_{1}' + \nu_{2}'),$$

$$\sin 4\nu_{2}' - \sin 4\nu_{1}' = 2 \sin 2(\nu_{2}' - \nu_{1}') \left[2 \cos^{2}(\nu_{1}' + \nu_{2}') - 1 \right]$$
(126)

Applying (125) and (126) to (124) we obtain:

$$\frac{S}{a} = (\nu_{2}' - \nu_{1}') - (c/4) \left[(\nu_{2}' - \nu_{1}') - \sin(\nu_{2}' - \nu_{1}') \cos(\nu_{1}' + \nu_{2}') \right]
+c^{2} \left[\frac{A}{2} \sin(\nu_{2}' - \nu_{1}') \cos(\nu_{1}' + \nu_{2}') - \frac{A}{4} (\nu_{2}' - \nu_{1}') + (3/64) (\nu_{2}' - \nu_{1}') (4 \tan^{2} a_{0} - 1) \right]
+ (1/16) (1 - 3 \tan^{2} a_{0}) \sin(\nu_{2}' - \nu_{1}') \cos(\nu_{1}' + \nu_{2}')
- (1/128) \sin 2 (\nu_{2}' - \nu_{1}') \left[2 \cos^{2} (\nu_{1}' + \nu_{2}') - 1 \right]$$
(127)

Note that the first two terms of (127) are equivalent to Forsyth's equation, page 120 of his treatise.

Now for the value of c, we find on page 97 of Forsyth, that for approximations involving f^2 (second order in the flattening) a value of α that is accurate up to f inclusive must be substituted in the first term of c. Hence from 111d, 111f, 111k we have

$$c = 2f \cos^2 \alpha_0 + 3f^2 \cos^2 \alpha_0 - 4f^2 \cos^4 \alpha_0 (1 + 2A).$$
 (128)

This value of c placed in (127) with the value of A from (125) gives:

$$\frac{S}{a} = (\nu_{2}' - \nu_{1}') - (f/2) \cos^{2}\alpha_{0} [(\nu_{2}' - \nu_{1}') - \sin(\nu_{2}' - \nu_{1}') \cos(\nu_{1}' + \nu_{2}')]
+ f^{2} \begin{bmatrix} \frac{1}{4}(\nu_{2}' - \nu_{1}')^{2} \cot(\nu_{2}' - \nu_{1}') \cos^{2}\alpha_{0} - \frac{1}{4}(\nu_{2}' - \nu_{1}')^{2} \cot(\nu_{2}' - \nu_{1}') \cos^{4}\alpha_{0} \\ -\frac{1}{4}(\nu_{2}' - \nu_{1}')^{2} \csc(\nu_{2}' - \nu_{1}') \cos^{2}\alpha_{0} \cos(\nu_{1}' + \nu_{2}') \\ +\frac{1}{4}(\nu_{2}' - \nu_{1}')^{2} \csc(\nu_{2}' - \nu_{1}') \cos^{4}\alpha_{0} \cos(\nu_{1}' + \nu_{2}') \\ -(1/16) \sin 2(\nu_{2}' - \nu_{1}') \cos^{4}\alpha_{0} \cos^{2}(\nu_{1}' + \nu_{2}') \\ +(1/16)(\nu_{2}' - \nu_{1}') \cos^{4}\alpha_{0} + (1/32) \sin 2(\nu_{2}' - \nu_{1}') \cos^{4}\alpha_{0}$$
(129)

Now in (129) let $\alpha_0 = 90^\circ - \theta_0$, $d_1 = \nu_1'$, $d_2 = \nu_2'$, $d = d_2 - d_1 = \nu_2' - \nu_1'$ and the equation becomes:

Since θ_0 is the parametric latitude of the vertex of the Great elliptic arc, we have (or may place)

$$X = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0,$$

$$Y = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0 \cos (d_1 + d_2)$$
(131)

From (131) $\sin^2\theta_0 = X/2$, $\sin^2\theta_0 \cos(d_1 + d_2) = Y/2$, and we can write (130) in the form:

$$\frac{S}{a} = d - (f/4) (Xd - Y \sin d)$$

$$+ (f^2/128) \qquad \left[(16d^2 \cot d) X - (16d^2 \csc d) Y \right]$$

$$+ (2d + \sin 2d - 8d^2 \cot d) X^2$$

$$+ (8d^2 \csc d) XY - (2 \sin 2d) Y^2$$
(132)

If we factor sin d out of every term of (132), we can write:

$$S = a \sin d [T - (f/4)(TX - Y) + (f^2/64)(A_0X + B_0Y + C_0X^2 + D_0XY + E_0Y^2)]$$

$$T = d/\sin d, E_0 = -2 \cos d, A_0 = -D_0E_0, C_0 = T - \frac{1}{2}(A_0 + E_0),$$
(133)

 $D_0 = 4T^2$, $B_0 = -2$ D_0 , d is the spherical distance between the points $P_1(\theta_1, \lambda_1)$ and $P_2(\theta_2, \lambda_2)$ given by some spherical formula as

$$\cos d = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda$$
, $\Delta \lambda = \lambda_2 - \lambda_1$.

COMPARISON WITH AN EXISTING EXPANSION

On page 8, GIMRADA Research Note No. 11, E. M. Sodano, April 1963 [23] one finds the following formula:

$$\frac{S}{b_0} = (1 + f + f^2) \phi + a [(f + f^2) \sin \phi - (f^2/2) \phi^2 \csc \phi]
+ m \left(-\frac{f + f^2}{2} \phi - \frac{f + f^2}{2} \sin \phi \cos \phi + \frac{f^2}{2} \phi^2 \cot \phi \right)
+ m^2 \left(\frac{f^2}{16} \phi + \frac{f^2}{16} \sin \phi \cos \phi - \frac{f^2}{2} \phi^2 \cot \phi - \frac{f^2}{8} \sin \phi \cos^3 \phi \right)
+ am \left(\frac{f^2}{2} \phi^2 \csc \phi + \frac{f^2}{2} \sin \phi \cos^2 \phi \right) - a^2 (f^2/2) \sin \phi \cos \phi$$
(134)

Now the correspondence between the parameters as used in (133) and those of Sodano are:

m(Sodano) = X/2, $a(Sodano) = \frac{1}{4}(Y + X \cos d)$, $\phi(Sodano) = d$, $b_0(Sodano) = a(1 - f)$ (135) (a is equatorial radius, f the flattening).

If we substitute from (135) into (134), retaining terms to f^2 inclusive, we can write (134) as

$$\frac{S}{a} = d - (f/4) (Xd - Y \sin d)$$
+ $(f^2/128)$ \[\begin{align*} (16d^2 \cot d) \times - (16d^2 \cot d) \times \\ + (2d + \sin 2d - 8d^2 \cot d) \times \\ + (8d^2 \cot d) \times Y - (2 \sin 2d) \times Y^2 \]

Now comparing (132) and (136) find that the equations are identical which gives an independent check of Sodano's inverse formula.

COMPUTING FORM IN TERMS OF PARAMETRIC LATITUDE

Given on the reference ellipsoid the points $P_1(\theta_1, \lambda_1)$, $P_2(\theta_2, \lambda_2)$; P_2 west of P_1 , west longitudes considered positive. (Geodetic latitudes are converted to parametric by $\tan \theta = (1-f)$. $\tan \phi$ or an equivalent formula). Formulas (133) may be used as follows:

With
$$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2)$$
, $\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1)$, $\Delta\lambda = \lambda_2 - \lambda_1$, $\Delta\lambda_{\rm m} = \frac{\Delta\lambda}{2}$

let
$$\begin{aligned} \mathbf{k} &= \sin \, \theta_{\mathrm{m}} \, \cos \, \Delta \theta_{\mathrm{m}}, \, \mathbf{K} = \sin \, \Delta \theta_{\mathrm{m}} \, \cos \, \theta_{\mathrm{m}}, \\ \mathbf{H} &= \cos^2 \Delta \theta_{\mathrm{m}} - \sin^2 \theta_{\mathrm{m}} = \cos^2 \theta_{\mathrm{m}} - \sin^2 \Delta \theta_{\mathrm{m}}, \\ \mathbf{L} &= \sin^2 \! \Delta \theta_{\mathrm{m}} + \mathbf{H} \sin^2 \! \Delta \lambda_{\mathrm{m}} = \sin^2 \! \mathbf{d}/2, \, 1 - \mathbf{L} = \cos^2 \! \mathbf{d}/2, \end{aligned}$$

$$\begin{aligned} \cos d &= 1 - 2L, \ h = \sin^2 d = 4L(1 - L), \ U = 2k^2/(1 - L), \\ V &= 2K^2/L, \ X = U + V, \ Y = U - V \\ T &= (d/\sin d) = 1 + (1/6)h + (3/40)h^2 + (5/112)h^3 + (35/1152)h^4 + (63/2816)h^5 + \dots . \\ E_0 &= -2\cos d, \ A_0 = -D_0 E_0 = -4E_0 T^2, \ D_0 = 4T^2, \ B_0 = -2D_0, \ C_0 = T - \frac{1}{2}(A_0 + E_0) \end{aligned} \tag{137}$$

$$S = a\sin d \left[T - (f/4) (TX - Y) + (f^2/64) (A_0 X + B_0 Y + C_0 X^2 + D_0 XY + E_0 Y^2) \right]$$

$$\sin (\alpha_2 + \alpha_1) = (K \sin \Delta \lambda)/L, \sin (\alpha_2 - \alpha_1) = (k \sin \Delta \lambda)/(1 - L)$$

$$\frac{1}{2}(\delta \alpha_2 + \delta \alpha_1) = -(f/2) \ TH \sin (\alpha_1 + \alpha_2)$$

$$\frac{1}{2}(\delta \alpha_2 - \delta \alpha_1) = -(f/2) \ TH \sin (\alpha_2 - \alpha_1)$$

$$\alpha_{1-2} = \alpha_1 + \delta \alpha_1, \ \alpha_{2-1} = \alpha_2 + \delta \alpha_2. \end{aligned}$$

The azimuth formulas of (137) are obtained by manipulation of expressions given on pages 126-128 of THE DISTANCE BETWEEN TWO WIDELY SEPARATED POINTS ON THE SURFACE OF THE EARTH, W. D. Lambert, Journal of the Washington Academy of Sciences, Vol. 32, No. 5, May 15, 1942, [13]. Note that in the distance and azimuth formulas of (137), the same quantities H, T, L, k, K are used.

Figure 22 in an example of the arrangements of equations (137) and computations for comparison with those of Figure 21, page 80. The results are:

True distance meters		Latitude g. 21	Parametric Latitude Fig. 22				
8,466,621.01	618.26	621.11.	622.30	621.08			
True Azimuths							
109° 57' 17".41		16".86		16".68			
265° 37' 10" 59		10 "71		11".37			

As was to be expected both approximations are adequate within any operational requirements. The coefficients A_0 , B_0 , C_0 , D_0 , E_0 of the parametric latitude form, Figure 22, are slightly less complicated than those of the geodetic form, Figure 21. But no conversion to parametric latitudes needs to be made for Figure 21. For purely geodetic computations further investigation needs to be made and it is suggested that computations be made using both forms against the computed lines contained in the revised issues of ACIC Reports 59 and 80, Sept. 1960 and December 1959.[12]

DISTANCE COMPUTING FORM, FORSYTH-ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS

 $\tan \theta = 0.996609925 \tan \phi$

Clarke Spheroid 1866, a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/64 = 0.1795720390 \times 10^{-6}$ 1 radian = 206,264.8062 seconds

Figure 22

TRANSFORMATION FROM SECOND ORDER FORM IN GEODETIC LATITUDE TO SECOND ORDER IN PARAMETRIC

In terms of geodetic latitude, the equations corresponding to (132) are:

$$\frac{s}{a} = d' - (f/4) (X'd' - 3Y'\sin d')$$

$$+ (f^2/128) (AX' + BY' + CX'^2 + DX'Y' + EY'^2)$$

$$A = 64d' + 16d'^2 \cot d', B = -96 \sin d' - 16d'^2 \csc d',$$

$$C = -30d' - 15 \sin 2d' - 8d'^2 \cot d',$$
(138)

 $D = 48 \sin d' + 8d'^2 \csc d'$, $E = 30 \sin 2d'$

(See Equation (109), page 78.

Equation (132) is written here in the form:

$$\frac{s}{a} = d - (f/4) (Xd - Y \sin d)$$
 (139)

$$+ (f^2/128) (A_0X + B_0Y + C_0X^2 + D_0XY + E_0Y^2)$$

$$A_0 = 16d^2 \cot d$$
, $B_0 = -16d^2 \csc d$, $C_0 = 2d + \sin 2d - 8d^2 \cot d$,

$$D_0 = 8d^2 \csc d$$
, $E_0 = -2 \sin 2d$

Now we should be able to find transformation equations of the form:

$$d' = d'(d, X, Y), X' = X'(X, Y, d), Y' = Y'(Y, X, d)$$
 (140)

which when substituted in (138) should produce equations (139).

The definitions of X', Y' and X, Y are:

$$X' = 2 \sin^2 \phi_0, X = 2 \sin^2 \theta_0$$
 (141)

$$Y' = 2 \sin^2 \phi_0 \cos (d_1 + d_2), Y = 2 \sin^2 \theta_0 \cos (d_1 + d_2)$$

where ϕ_0 , θ_0 are respectively geodetic, parametric latitude of the vertex of the great elliptic arc. From the equation tan $\theta = (1 - f)$ tan ϕ , or equivalent, we find:

$$\phi_0 = \theta_0 + f \sin \theta_0 \cos \theta_0 (1 + f \cos^2 \theta_0). \tag{142}$$

From the values indicated by Forsyth on page 120, of his treatise, to first order in f, extending the results to second order in f we find:

$$d' = d - (f/2) Y \sin d + (f^2/16) [4Y (X - 3) \sin d + (2Y^2 - X^2) \sin 2d]$$
(143)

and to first order in f,

$$\cos (d_1 + d_2) = \cos (d_1 + d_2) + f \cos d \sin^2 \theta_0 - f \cos d \sin^2 \theta_0 \cos^2 (d_1 + d_2). \tag{144}$$

From (142), to first order in f, find

$$2 \sin^2 \phi_0 = 2 \sin^2 \theta_0 (1 + 2f \cos^2 \theta_0). \tag{145}$$

From (143), to first order in f, find

$$\sin d' = \sin d - (f/4) Y \sin 2d \tag{146}$$

From (141), (144), and (145) find

$$X' = X + 2fX - fX^2$$

 $Y' = Y + 2fY - fXY + (f/2) (X^2 - Y^2) \cos d$, (147)

Hence the transformations (140) are from (143), (146), and (147) the following:

$$d' = d - (f/2) Y \sin d + (f^{2}/16) [4Y (X - 3) \sin d + (2Y^{2} - X^{2}) \sin 2d]$$

$$\sin d' = \sin d - (f/4) Y \sin 2d$$

$$X' = X + 2fX - fX^{2}$$

$$Y' = Y + 2fY - fXY + (f/2) (X^{2} - Y^{2}) \cos d$$
(148)

Substitution of the relations (148) into (138) produces equations (139); providing a second check of Sodano's formula for the inverse solution

The inverse of the transformations (148) which will carry (139) into (138) are:

$$d = d' + (f/2) Y' \sin d' + (f^{2}/16) [4Y'(X'-1) \sin d' + (2Y'^{2} - X'^{2}) \sin 2d']$$

$$\sin d = \sin d' + (f/4) Y' \sin 2d'$$

$$X = X' - 2fX' + fX'^{2}$$

$$Y = Y' - 2fY' + fX'Y' + (f/2) (Y'^{2} - X'^{2}) \cos d'.$$
(149)

DIFFERENCE FORMULAE FOR THE TWO SECOND ORDER FORMS

From equation (142) to second order in f, find

$$2 \sin^2 \phi_0 = 2 \sin^2 \theta_0 (1 + 2f - 2f \sin^2 \theta_0 + 3f^2 - 7f^2 \sin^2 \theta_0 + 4f^2 \sin^4 \theta_0), \tag{150}$$

and extending (144) to second order in f

$$\cos (d_1' + d_2') = \cos (d_1 + d_2) + f \sin^2 \theta_0 \cos d \sin^2 (d_1 + d_2)$$

$$- (f^2/2) \sin^2 \theta_0 \sin^2 (d_1 + d_2)$$

$$+ \sin^2 \theta_0 \cos d - (3/2) \cos d$$

$$+ (3/2) \sin^2 \theta_0 \cos 2d \cos (d_1 + d_2)$$

$$(151)$$

From equations (148), by factoring sin d out of every term of the expression for d', we can write:

$$d' = \sin d \{T - (f/2) Y + (f^2/8) [2Y(X-3) + (2Y^2 - X^2) \cos d] \}$$
 (152)

Since we can write $X' = 2 \sin^2 \phi_0$, $X = 2 \sin^2 \theta_0$, $Y' = 2 \sin^2 \phi_0 \cos(d_1' + d_2')$, $Y = 2 \sin^2 \theta_0 \cos(d_1 + d_2)$ we have from (150) and then combining (150) and (151) (multiplying respective members together)

$$X' = X \left[1 + f(2 - X) \left\{ 1 + (f/2) (3 - 2X) \right\} \right]$$

$$Y' = Y \left[1 + f(2 - X) \right] + (f/2) (X^{2} - Y^{2}) \cos d$$

$$+ (f^{2}/8) \left[4Y (2 - X) (3 - 2X) + (X^{2} - Y^{2}) \left\{ (11 - 5X) \cos d + Y (1 - 3 \cos^{2}d) \right\} \right]$$
(153)

From Figure 22 we have

$$X = 0.2752704532$$
, $Y = 0.1603011198$,
 $\sin d = 0.97057512$, $\cos d = 0.24079852$, (155)

T = 1.367856856, f = 0.0033900753,

f/2 = 0.00169503765, $f^2/8 = 1.436576317 \times 10^{-6}$

Using the values from (155) to compute d', X', Y' from (152), (153), (154) find:

$$d' = (0.97057512) (1.367856856 - 2.717164 \times 10^{-4} - 1.2634 \times 10^{-6})$$

$$= (0.97057512) (1.367583876) = 1.327342885;$$
(156)

X' = (0.2752704532) (1.005871239) = 0.27688663;

 $Y' = 0.160301120 + 9.37275 \times 10^{-4} + 2.0440 \times 10^{-5} + 4.068 \times 10^{-6} = 0.16126290$.

From Figure 21, d'=1.327342885, X'=0.27688668, Y'=0.16126298 and comparing with the values from (156), we have a "flat" check for d', 5 in the eighth place for X' and 8 in the eighth place for Y'. Now the first significant figure of f^2 is 1 in the 5th decimal place and of f^3 is 4 in the 8th decimal place. If seven place tables are used, terms in f^2 are sufficient. If eight figure tables are used, as Peters trigonometric functions, there is some uncertainty in the 8th place of decimals.

Now the corresponding formulas for d, X, Y in the terms of d', X', Y'are found similarly to be, to second order terms in f inclusive;

$$d = \sin d' \{T' + (f/2) Y' + (f^{2}/8) [2 Y'(X'-1) + (2Y'^{2} - X'^{2}) \cos d'] \}$$

$$X = X'[1 + f(X'-2) \{1 + (f/2) (2X'-1)\}]$$

$$Y = Y'[1 - f(2 - X')] - (f/2) (X'^{2} - Y'^{2}) \cos d'$$

$$+ (f^{2}/8) \left[4Y'(2 - X') (1 - 2X') + (X'^{2} - Y'^{2}) \{(5 - 3X') 2 \cos d' + Y'(1 - 3 \cos^{2}d')\} \right]$$
(157)

From Figure 21 we have

$$X' = 0.276886675, Y' = 0.161262981,$$
 (158)
 $\sin d' = 0.97051129, \cos d' = 0.24105566$
 $T' = 1.367673822.$

With the values of X', Y', $\sin d'$, $\cos d'$, T' from (158) and of f, f/2, $f^2/8$ from (155)

we find from (157) that

$$d = (0.97051129) (1.367673822 + 2.73347 \times 10^{-4} - 3.44 \times 10^{-7})$$

$$d = (0.97051129) (1.36794682) = 1.327607833$$

$$X = (0.276886675) (0.994162934) = 0.27527047$$
(159)

$$Y = 0.161262981 - 9.42015 \times 10^{-4} - 2.0700 \times 10^{-5} + 8.68 \times 10^{-7} = 0.16030113.$$

From (155). X = 0.27527045, Y = 0.16030112, and from Figure 22, d = 1.327607832. Comparing with (159) we have a difference in d of 1 in the 9th decimal place; in X and Y of 2 and 1 in the 8th decimal place respectively, which is within the computational uncertainties.

From (152), (153), (154), and (157) we can express the differences as functions of either set of variables:

$$\Delta d = d' - d = -(f/2) \ Y \sin d + (f^2/16) \left[4Y \ (X - 3) \sin d + (2Y^2 - X^2) \sin 2d \right],$$

$$= -(f/2) \ Y' \sin d' - (f^2/16) \left[4Y' \ (X' - 1) \sin d' + (2Y'^2 - X'^2) \sin 2d' \right];$$

$$\Delta X = X' - X = fX(2 - X) \left\{ 1 + (f/2) \left(3 - 2X \right) \right\},$$

$$= fX' \left(2 - X' \right) \left\{ 1 - (f/2) \left(1 - 2X' \right) \right\};$$

$$\Delta Y = Y' - Y = fY \ (2 - X) + (f/2) \left(X^2 - Y^2 \right) \cos d$$

$$+ (f^2/8) \left[4Y \ (2 - X) \ (3 - 2X) \right],$$

$$= fY' \left(2 - X' \right) + (f/2) \left(X'^2 - Y'^2 \right) \cos d'$$

$$- (f^2/8) \left[4Y' \ (2 - X') \ (1 - 2X') \right],$$

$$= fY' \left(2 - X' \right) + (f/2) \left(X'^2 - Y'^2 \right) \cos d'$$

$$- (f^2/8) \left[4Y' \ (2 - X') \ (1 - 2X') \right],$$

SUMMARY OF DISTANCE COMPUTATIONS INVESTIGATION

As long as accuracy requirements remain within the range of the capabilities of the Andoyer-Lambert formulae, as exhibited in TABLE 3, they are quite adequate and it makes no difference if geographic latitudes are transformed to parametric latitudes first as far as accuracy requirements are concerned relative to hyperbolic electronic measuring systems. However, the formulae for geodetic azimuths are slightly more complicated in terms of geodetic latitude and some of the auxiliary quantities as chord length, dip of the chord, etc. are slightly less difficult to compute when expressed in terms of parametric lacitude.

In order to arrange the computing in conformance with the Andoyer-Lambert formulae, equations (17), (48), (52), 56)), and (64) have been rearranged as follows to be expressible in common computational parameters:

The spherical length, d, is determined from formulae as given with Figure 16,

$$(\mathbf{d} = \mathbf{d}_1 \div \mathbf{d}_2);$$

 $\cot A = (\cos \theta_1 \tan \theta_2 - \sin \theta_1 \cos \Delta \lambda) / \sin \Delta \lambda$

 $\cot B = (\cos \theta_2 \tan \theta_1 - \sin \theta_2 \cos \Delta \lambda) / \sin \Delta \lambda$

 $\sin d = \cos \theta_1 \sin \Delta \lambda / \sin B = \cos \theta_2 \sin \Delta \lambda / \sin A;$

these will compensate for any unfavorable triangle geometry.

The Andoyer-Lambert Formulae are taken in the form [13]

$$\delta d_r = -(f/8) (VQ^2/\sin^2 \frac{1}{2}d + UR^2/\cos^2 \frac{1}{2}d)$$

(1)
$$s = a(d_r + \delta d_r), Q = \sin \theta_2 - \sin \theta_1, R = \sin \theta_1 + \sin \theta_2.$$

$$V = d_r + \sin d, U = d_r - \sin d,$$

With corresponding geodetic azimuths computed from

$$T = (f/2) d''/\sin d$$
, $\delta A'' = T \cos^2 \theta_2 \sin 2B$,

- (2) $\delta B'' = T \cos^2 \theta_1 \sin 2A$; $g\alpha_{AB} = 180^\circ A + \delta A$; $g\alpha_{BA} = 180^\circ + B \delta B$ The Normal Section Azimuths may be written
- (3) $\cot_{n} \alpha_{AB} = -(\cot A)/T_{1} + (e^{2} Q \cos \theta_{1})/(\sin \Delta \lambda)T_{1} \cos \theta_{2}$ $\cot_{n} \alpha_{BA} = (\cot B/T_{2} + (e^{2} Q \cos \theta_{2})/(\sin \Delta \lambda)T_{2} \cos \theta_{1}$ $T_{1} = (1 e^{2} \cos^{2} \theta_{1})^{1/2} \quad T_{2} = (1 e^{2} \cos^{2} \theta_{2})^{1/2}$

The chord length becomes

(4) $c = a (4 \sin^2 d/2 - e^2 Q^2)^{1/2}$

The angle of dip of the chord may be written

(5) $\beta = \arcsin \left[2b \left(\sin^2 d / 2 \right) / c T_1 \right]$

b = semiminor axis of ellipsoid, c = chord length, $T_1 = (1 - e^2 \cos^2 \theta_1)^{1/2}$.

The maximum separation of chord and arc becomes

(6) $H = (a^2/c) (1 - \cos \frac{1}{2}d) [4 \sin \frac{2}{d}/2 (\cos^2 d/2 - M) - e^2 Q^2]^{1/2}/\cos \frac{1}{2}d$ $a = \text{the semimajor axis of ellipsoid, } c = \text{chord length, } M = e^2 \sin \theta_1 \sin \theta_2$, $Q = \sin \theta_2 - \sin \theta_1$, e = eccentricity of the spheroid.

The geographic coordinates of the point where maximum separation of chord and arc occurs

(7) $\tan \lambda = (\cos \theta_2 \sin \Delta \lambda)/(\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda)$ $\tan \phi = R/(0.996609925) \sqrt{4 \cos^2 \frac{1}{2} d - R^2}$ where $R = \sin \theta_1 + \sin \theta_2$.

Figure 23, shows the above formulae arranged in a computing form and the computations done over the line MOSCOW TO CAPE OF GOOD HOPE. See line No. 12, TABLE 1, and Figure 17.

COMPUTATIONS: GEODETIC DISTANCE AND AZIMUTHS, NORMAL SECTION AZIMUTHS, CHORD, ANGLE OF DIP, MAXIMUM SEPARATION, GEOGRAPHIC COORDINATES OF POINT OF MAXIMUM SEPARATION

Clarke 1866 Ellipsoid: a = 6,378,206.4 meters, b = 6,356,583.8 meters, e2 = 6.7686580 × 10-3 f/2 = 1.69503765 \times 10-3, f/8 = 4.237594 \times 10-4, 1 radian = 206,264.8062 seconds

- 0	1, -37 34 15, 45°0	λ2 18	Δλ=λ2-λ1+14 OS 34.0SO			T,=		12 01 01 01 01 11 11 11 11 11 11 11 11 11	27/7/380 sin B 7, 1845-2184		Ň	cos d = -0.017 22200 IJ = d - sin d 2.588 14816 V = d + sin d 22.58785220 in 1/4 2. 21.630 2	sin θ, + sin θ, 20, 268 8/52 9 cos / 4 t. 200 9982	a(d, +8d,) 10, 100, 066, 280 meters	T=(1/2) d"/sin d SSS" 289 8A" = T cos 20, sin 2B + 128; " 535" 8B" = T cos 20, sin 2A - 92, "348	detic (gaAB=180-A+8A K 48 12.578	Azimuths \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(4) Chord: c=a(4 sin² ½d - e² Q²)1/2 9 168 422.24/ m	15 " 15 " 2 " 2/2 S. 3. 2. S. 3. S. S. 3. S.	$(^{2}d/2-M) - e^{2}Q^{2} + (^{2}/\cos \frac{1}{2})^{2}$	(6) H ₀ - 1, 906, 856 - 210 m	occurs: (7) $\tan \lambda = (\cos \theta_1 \sin \Delta \lambda)/(\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda) + \frac{2e}{\lambda + 1} + \frac{4e}{\lambda + 1} + \frac{2e}{\lambda $	3603 4 11 18 16.952
	_ 1 (A) MOSCOW	2 (B) CAPE OF GOOD HOPE		tan θ = 0, 99660 9525 tan φ	tan θ, - O · 6, 70 5605-9	sin θ, -0.5.56 43719	cos θ, τ0.830 55 461	7// 15/50 50/ /1	in A > 3.54/ 88/56 sin A +.	in DX +55 226 35295 sin 2A-	/sin A +0. 99985202 d 4	sin d +.588 14816V=d.+sin	$\sin \theta_2 - \sin \theta_1 - \frac{1.382 65965}{1.382 65965} \text{R} = 0$	oof 15887 (1) S= 8	8A" = T cos 20, sin 2B + 13.	θ_1)/(sin $\Delta\lambda$) $T_1\cos\theta_2$] (2) Geodetic		- 52 484 Normal Section (3)		sin [2b (sin² d/2)/cT ₁]	$(a^2/c) (1-\cos \frac{1}{2}d) [4 \sin^2 d/2 (\cos^2 d)]$	naximum separation	$\theta_1 + \cos \theta_2 \cos \Delta \lambda$) $\pm \frac{20}{3} \frac{H}{2}$	cos 1/4 - Rz
- 0	4, + 555 45 19.50C	576	468 4952	tan 6, -0.672 84157	tan 8. + 1. 464 015.23	sin θ, + 0, 835 752 46	cos θ, +0.5-64 03269	71 711 1 15000 801 0+ 02 0000 8000 1 1 02 02 02	cos $\theta_1 = \frac{1}{2} $	cot B = $(\cos \theta, \tan \theta, -\sin \theta, \cos \Delta \lambda)/\sin \Delta \lambda + \sqrt{5.226.352705} \sin 2A - \frac{5.22.28.28.2}{5.22.28.28.2}$	$\sin d = \cos \theta, \sin \Delta \lambda / \sin B = \cos \theta, \sin \Delta \lambda$	cos d = -0.0/7 20300 [] = d -	$M = e^2 \sin \theta, \sin \theta, -3. \frac{1/265.34}{10^2} = -4.0 = $	$\delta d_{\perp} = -(f/8) (VO^2/\sin^2 \frac{1}{2}d + UR^2/\cos^2 \frac{1}{2}d)$	T=(f/2) d"/sin d 555." 289	$_{n}a_{A}R = arc \cot [-(\cot A)/T_{1} + (e^{2} \bigcirc \cos \theta_{1})/(\sin \Delta \lambda) T_{1}\cos \theta_{2}]$	$_{\rm n}^{\alpha}$ BA = arc cot [(cot B)/T ₂ + (e 2 Q cos θ_2)/(sin $\Delta\lambda$)T ₂ cos θ_1]	naAB ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	naBA 190 41 29.	Angle of dip of the chord (5) $\beta = \text{arc sin} [2b (\sin^2 d/2)/cT_1]$	Maximum separation of chord – arc: $H = (a^2/c) (1-\cos \frac{1}{2}d) [4 \sin^2 d/2 (\cos^2 d/2 - M) - e^2 Q^2]^{\frac{1}{2}} \cos \frac{1}{2}d$	Geographic coordinates of point where n	occurs: (7) $\tan \lambda = (\cos \theta_2 \sin \Delta \lambda)/(\cos \theta_2 \sin \Delta \lambda)$	$\tan \phi = R/(0.996609925) \sqrt{3}$

Andoyer-Lambert Approximation (Parametric latitude)

Figure 23.

Note in Figure 23 that two values of longitude are given, λ and λg . λ is the longitude associated with the point where maximum separation of chord and arc occurs but corresponding to the rectangular coordinate system as defined in say Figure 14. λg is the true geodetic longitude of the same point and is of course obtained by adding λ to λ_1 since λ_1 is negative.

While a continuous system based on either the great elliptic section as depicted by Figure 17, or the Forsyth-Andoyer-Lambert approximation, Figure 23, will provide all the information as indicated and accurate enough for hyperbolic electronic systems and any present operational requirements, the Forsyth-Andoyer-Lambert is probably to be preferred because of computational simplicity and existence of programs already operating for high speed computers. Should the need arise for accuracy of the order of 1 meter in distance and 1 second in azimuth over the ellipsoid, the extension to second order terms in the flattening provided by equations (110) or (137), will suffice.

Many formulae are available for geodetic lines and differential corrections are available for transforming elements such as geodetic azimuths to normal section azimuths, etc. [24]. Usually these are complicated, involve tabular material for a particular spheroid of reference, require extensive root computation, and accuracy depends on line length. For instance, Bomford says Rudoe's formulae for the reverse problem, are "Unnecessarily complex for general use," [21], page 108. Also they give "Normal Section" distances — not geodetic. The difference between the geodesic and the Normal Section distance is of 4th order in the eccentricity of the meridian ellipse [24].

Finally this investigation has raised the question as to whether either Andoyer or Lambert should share any credit for the first order approximation formula in terms of parametric latitude recognizable intact in Forsyth's 1895 paper. While Forsyth had an erroneous second order term to the same expansion in terms of geodetic latitude, his first order term was correct and he thus had both so-called Andoyer-Lambert formulae. Gougenheim apparently had in 1950 the first correct expansion in print in terms of geodetic latitude which included the second order terms in the flattening.

REFERENCES (Distance Investigation)

- [8] Conformal Projections, P. D. Thomas, C. & G. S. Special Publication No. 251, G.P.O. 1952, pages 63, 72.
- [9] Helmert, F. R. Die mathematischen und physikalischen Theorieen der Höheren Geodäsie 1, chapters 5 and 7, Leipzig, 1880.
- [10] Conic Sections, C. Smith, MacMillan 1930, page 164.

- [11] Coordinate Geometry of Three Dimensions, R.J.T. Bell, MacMillan, 1937, page 24.
- [12] ACIC, Technical Reports Nos. 59 and 80; Geodetic distance and azimuth computations for lines under 500 miles, Geodetic distance and azimuth computations for lines over 500 miles; June 1956, August 1957, Revisions, Sept. 1960 and Dec. 1959.
- [13] The distance between two widely separated points on the surface of the Earth, W. D. Lambert,
 Journal of the Washington Academy of Sciences, Vol. 32, No. 5, May 15, 1942.
- [14] H.O. Publication No. 223, Auxiliary tables for Loran computation, 1953 reprint.
- [15] Andoyer, H. Formule donnant la longueur de la géodésique, joignant 2 points de l'ellipsoide donnes par leurs coordonnées géographiques, Bulletin Géodésique, No. 34, 77-81, 1932.
- [16] Hershey, A.V., Hershey, E.J. Techniques for computing Loran maps, U.S. Naval Weapons Laboratory Report No. 1902, January 1964.
- [17] Thomas, P.D., Inverse computation for long lines, Transactions AGU, Vol. 29, No. 6, 763-766, 1948.
- [18] Forsyth, A.R., Geodesics on an oblate spheroid, Messenger of Mathematics, Vol. XXV, 81-124, 1895.
- [19] Wassef, A.M., Note on Forsyth method of direct computation of geodetic distances on an oblate spheroid, Bulletin Géodésique, No. 10, 353-355, 1948.
- [20] Gougenheim, A., Note sur la méthode de Forsyth, Bulletin Géodésique, No. 15, 69-70, 1950.

- [21] Bomford, G., Geodesy, Second Edition, Oxford at the Clarendon Press, 1962.
- [22] Personal Communication, B.K. Meade, Chief of Geodetic Computations, Coast & Geodetic Survey, Dec. 1964.
- [23] Sodano, E.M., General non-iterative solution of the inverse and direct geodetic problems, GIMRADA, Fort Belvoir, April 1963; also published as GIMRADA Research Note 11.
- [24] Geodesy, W.M. Tobey, Geodetic Survey of Canada Publication No. 11, Ottawa, 1928.

APPENDIX 1

Example of
Computations of Loran Lines
of Position (Plane Approximation)

Intersections of Loran Lines of Position (Plane Approximation)

P. D. Thomas, Mathematician

Consider the hyperbolic system as shown in Figure 24. The hyperbolic locus with foci F, F' has for equation

$$(c^2 - a^2) x^2 - a^2 y^2 = a^2 (c^2 - a^2), (e^{-\frac{c}{a}} > 1)$$
 (1)

As a varies (a < c) all the hyperbolas with the fixed foci F, F'(which are 2c apart) are generated.

The hyperbolic locus with the fixed foci F, F" when referred to the same coordinate system as (1), has for equation

Ax² + Bxy + Cy² + Dx + Ey + F = 0, (e = d/b>1). (2)
where one may first compute
$$\tau = b^2 - d^2$$
, $\mu = d \cos \alpha$, $\nu = d \sin \alpha$, $S = \tau - c \mu$, and then
A = $\mu^2 - b^2$, B = $2\mu\nu$, C = $\nu^2 - b^2$, D = $2(\tau\mu - c A)$, E = $2S\nu$, F = $S^2 - b^2c^2$.

As b varies (b < d) all the hyperbolas with the fixed foci F, F" (which are 2d apart) are generated.

The respective pairs of constants c, a; d, b for each hyperbola are related to the fundamental constants of a Loran line by

$$c = kB_1/2$$
, $a = kV_1/2$; $d = kB_2/2$, $b = kV_2/2$ (2.1)

where $v_i = t_i$, t_i is the time difference, v_i is the difference of light microseconds, B_i is the length (measured in light microseconds) of the direct line (baseline) between two Loran stations. k is the length of a light microsecond in the linear units in which x and y are expressed.

Since five distinct points determine a conic uniquely, two conics can have at most four points in common. For the hyperbolas (1) and (2) there will always be four real points of intersection except when F', F, F'' are collinear ($\alpha = 0$) and then there will be two.

ALGEBRAIC SOLUTIONS

I. If equations (1) and (2) are solved simultaneously for x one obtains the quartic equation
$$x^4 + Hx^3 + Jx^2 + Mx + N = 0 \tag{3}$$
 where one may first compute $G = c^2 - a^2$, $\beta_0 = CG + Aa^2$, $\omega = F - CG$, $\delta = BEG$,
$$\gamma = a^2B^2 - E^2$$
, $L = \beta_0^2 - G B^2a^2$, and then $H = 2a^2 (D\beta_0 - \delta)/L$, $J = a^2 (a^2D^2 + 2\beta_0 \omega + G\gamma)/L$,

¹Loran; Pierce, McKenzie, Woodward; McGraw Hill, 1948, pages 52, 53, 174.

Figure 24. Two plane hyperbolas with a common focus.

 $M = 2a^4(D\omega + \delta)/L$, $N = a^4(\omega^2 + GE^2)/L$. The corresponding values of y are then given by $y = \pm [G(x^2 - a^2)]^{1/2}/a$.

Equation (3) may be solved by the standard algebraic method² or by any of a number of numerical techniques.³

II. Again, if equations (1) and (2) are written in the forms $x^2 - Qy^2 = a^2$, $x^2 + Uxy + Vy^2 + Wx + Ry + T = 0$, where $Q = a^2/(c^2 - a^2)$, U = B/A, V = C/A, W = D/A, R = E/A, T = F/A and these forms of the equations solved simultaneously with the line of slope m through the common focus F(c,0) whose equation is y = m(x - c), one obtains the two equations:

$$(Qm^2 - 1) x^2 - 2cQm^2x + (a^2 + c^2Qm^2) = 0,$$

$$(1 + Um + Vm^2) x^2 + [W + (R - cU)m - 2cVm^2] x + (c^2Vm^2 - cRm + T) = 0.$$
(4)

The resultant of the quadratic equations (4) is the condition that they have the same solutions or correspondingly that the parameter m will be restricted to those values for the points common to the hyperbolas (1) and (2).4

The resultant of the quadratics $a_0x^2 + a_1x + a_2 = 0$, $b_0x^2 + b_1x + b_2 = 0$ is given by

$$(a_0b_2 - b_0a_2)^2 + (b_1a_2 - a_1b_2)(a_0b_1 - a_1b_0) = 0.$$
 (5)

でなるので、「本人のなどのである。 不らななな。 大きななられる。 これできたをは、「カンケング」 「大きななる」というないと、「大きななる」 「大きななる」

From (4) $a_0 = Qm^2 - 1$, $a_1 = -2cQm^2$, $a_2 = a^2 + c^2Qm^2$, $b_0 = 1 + Um + Vm^2$, $b_1 = [W + (R - cU)m - 2cVm^2]$, $b_2 = c^2Vm^2 - cRm + T$, and these values placed in (5) lead to the quartic equation

$$k_{1}m^{4} + k_{2}m^{3} + k_{3}m^{2} + k_{4}m + k_{5} = 0,$$
where with $G = c^{2} - a^{2}$, $\Omega = (a^{2} + c^{2}) V + O (c^{2} - T)$, $\theta_{0} = R + cU$, $\phi = c^{2} + cW + T$,
$$\eta = R - cU$$
, $\xi = a^{2}U - cR$, $\rho = a^{2} - T$, $\rho' = a^{2} + T$ one finds: $k_{1} = (GV + \phi Q)^{2} - a^{2}\theta_{0}^{2}$,
$$k_{2} = 2[\xi\Omega + 2\eta ca^{2}V + a^{2}RQ \cdot (W + 2c) + c^{2}QU(cW + 2T)], k_{3} = \xi^{2} - a^{2}\eta^{2} + 2\rho'\Omega + W[4a^{2}cV + 2c\rho Q - a^{2}W], k_{4} = 2(\rho'\xi - a^{2}W\eta), k_{5} = \rho'^{2} - a^{2}W^{2}.$$

Again the solutions of (6) may be found by well known algebraic or numerical methods. The values of m obtained are of course the slopes of the lines through F(c,o) and the points of intersection of the hyperbolas (1) and (2).

²College Algebra, H. B. Fine, Page 486.

³ Numerical Mathematical Analysis, J. B. Scarborough, Second Edition, 1950, Pages 62-72. (The Johns Hopkins Press, Baltimore)

⁴College Algebra, H. B. Fine, Page 512.

POLAR SOLUTION

The following procedure involves tables of the trigonometric functions but no root extraction. First express the equations of (1) and (2) in polar form both referred to the common focus F(c,o), and the corresponding rectangular coordinates in terms of the polar parameters. Find for equation (1)

$$r_a = \frac{c^2 - a^2}{\pm a - c \cos \theta}$$
 (c>a) (see equation (3) PLANE, page 37 with $R = r_a$, $\beta = \theta$)
$$x = c + r_a \cos \theta, y = r_a \sin \theta$$
 (7)

and for equation (2)

STAGES CONTRACT REPRESENTATION FOR THE STAGES

$$r_{b} = \frac{(d^{2} - b^{2}) \left[d \cos \left(\theta - \alpha \right) \pm b \right]}{d^{2} \cos^{2} \left(\theta - \alpha \right) - b^{2}} \quad (d > b)$$

$$x = c + r_{b} \cos \theta, y = r_{b} \sin \theta \tag{8}$$

Since (7) and (8) express the two hyperbolas in polar form with respect to the same pole F(c,o), a common focus of the two loci, it is clear (see Figure 24) that at a point of intersection P'(x,y) the two values r_a and r_b are equal to a common value r' for a common value of θ and the distances to P' from F' and F'' are then given by $r_1 = r' + 2a$, $r_2 = r' + 2b$.

Equating the values of $\mathbf{r_a},\,\mathbf{r_b}$ from (7) and (8) one obtains

$$\Gamma' = \frac{c^2 - a^2}{\pm a - c \cos \theta} = \frac{d^2 - b^2}{d \cos (\theta - \alpha) \pm b}$$
 (9)

and since c, d, α are constants, (9) is a relation between the parameters a, b, and θ . That is given any two of the three the third may be found from (9).

Consider a and b given. First write (9) in the form

$$\frac{d \cos (\theta - a) \mp b}{\pm a - c \cos \theta} = \frac{d^2 - b^2}{c^2 - a^2} = K, \text{ whence}$$

$$(d \cos a + cK) \cos \theta + (d \sin a) \sin \theta = \pm aK \pm b.$$
 (10)

The solution of the trigonometric equation (10) is

$$\theta_{i} = \beta + \gamma_{i}$$

$$\tan \beta = (d \sin \alpha)/(d \cos \alpha + cK) \qquad (i = 1,2,3,4)$$

$$\cos \gamma_{i} = (\pm aK \pm b) \sin \beta/d \sin \alpha. \qquad (11)$$

From (11) it is seen that in general there will be four angles (γ_i) , and thus four values

of θ_i , four values of r_i from (9) and four sets of rectangular coordinates from $x_i = c + r_i$ cos θ_i , $y_i = r_i$ sin θ_i (i = 1,2,3,4) (12)

and for each point of intersection two of the additional distances

$$r_i = r_i' \pm 2b, r_{i+4} = r_i' \pm 2a$$
 (i = 1,2,3,4). (13)

A procedure for using equations (9) through (13) will be described and used for two examples. Since a,b,c,d,a will be given, first compute $K = (d^2 - b^2)/(c^2 - a^2)$, $\mu = d \cos a$, $\nu = d \sin a$, $\tan \beta = \nu/(\mu + cK)$.

From tan β , using tables, find β and sin β . Then compute

$$\cos \gamma_i = (\pm aK \pm b) \sin \beta / \nu$$
 (i = 1,2,3,4), and

$$\theta_i = \beta + \gamma_i$$
 (i = 1,2,3,4). Next compute

$$r'_{i} = \frac{c^2 - a^2}{\pm a - c \cos \theta_i} = \frac{d^2 - b^2}{d \cos (\theta_i - \alpha) \pm b}$$
 $i = 1,2,3,4$

choosing the proper value (with respect to sign) of \pm a, \pm b in each member which will make them equal and positive for each value of θ_i . Now the rectangular coordinates may be computed from $x_i = c + r_i' \cos \theta_i$, $y_i = r_i' \sin \theta_i$. Useful checks are provided at this point by the relations $(x_i - c)^2 + y_i^2 = r_i'^2$ and by $\sum x_i = -H$ from equation (3). $H = 2a^2 (D\beta_0 - \delta)/L$, $\beta_0 = CG + Aa^2$, $\delta = BEG$, $L = \beta_0^2 - GB^2a^2$, $G = c^2 - a^2$, $A = \mu^2 - b^2$, $B = 2\mu\nu$, $C = \nu^2 - b^2$, $D = 2(\tau\mu - cA)$, $E = 2S\nu$, $\tau = b^2 - d^2$, $S = \tau - c\mu$. Finally compute the additional distances $r_i = r_i' \pm 2b$, $r_{i+A} = r_i' \pm 2a$. (i = 1,2,3,4).

Example 1. Let c = d = 2, a = b = 1, $\alpha = 45^{\circ}$. $\sin \alpha = \cos \alpha = \sqrt{2}/2$.

$$K = (d^2 - b^2)/(c^2 - a^2) = 1$$
. $\nu = \mu = 2 (0.70710678) = 1.41421356$.

 $\tan \beta = \nu/(\mu + cK) = (1.41421356)/(3.41421356) = 0.41421356.$

$$\beta$$
 = 22°30°, $\sin\beta$ = 0.38268343.

$$\cos \gamma_i = (\pm aK \pm b) (\sin \beta/\nu) = (\pm 1 \pm 1) (0.27059805) = \pm (0.54119610), 0.$$

$$0 < \gamma_i < 2\pi$$
.

$$\gamma_i = 57^{\circ} 14' 05".666, 90^{\circ}, 122^{\circ} 45' 54".334, 270^{\circ}$$

$$\theta_{i} = \beta + \gamma_{i}$$
, $\theta_{i} = 79^{\circ} 44'$ 05'.666, $\theta_{2} = 112^{\circ} 30'$, $\theta_{3} = 145^{\circ} 15'$ 54".334, $\theta_{4} = 292^{\circ} 30'$

$$r_i' = \frac{3}{\pm 1 - 2 \cos \theta_i} = \frac{3}{2 \cos (\theta_i - 45) \pm 1}$$
. (Choose the proper value of ± 1 in each member which

will make them equal and positive for each value of θ_i . If this cannot be done the values of θ_i may be in error.) The work may be arranged in table form as follows:

Table 1.

$ heta_{\mathbf{i}}$	θ_{i} – 45	$\sin heta_{f i}$	$\cos heta_{f i}$	$\cos{(\theta_{i}-45)}$	r _i '
79 44 05.666	34 44 05.666	0.98399379	0.17820275	0.82179706	4.6613215
112 30	67 30	0.92387953	-0.38268343	0.38268343	1.6993635
145 15 54.334	100 15 54.334	0.56978031	-0.82179706	-0.17820275	4.6613215
292 30	247 30	-0.92387953	0.38268343	-0.38268343	12.785918

$x_i = 2 + r_i \cos \theta_i$	$y_i = r_i \sin \theta_i$	r _i = r _i '± 2	$r_{i+4} = r_{i}' \pm 2$
2.8306603	4.5867114	r ₁ = 2.6613215	r _s = 6.6613215
1.3496817	1.5700072	r ₂ = 3.6993635	r ₆ = 3.6993635
-1.8306603	2.6559292	r ₃ = 6.6613215	r ₇ = 2.6613215
6.8929590	-11.812648	r ₄ = 14.785918	r _a = 14.785918

Checks were computed but are not shown here. Figure 25 shows the results of Table 1 graphically.

Example 2. Let
$$c = 3$$
, $a = d = 2$, $b = 1$, $\alpha = 30^{\circ}$. $\sin \alpha = \frac{1}{2}$, $\cos \alpha = \sqrt{3/2}$

$$K = 0.6$$
, $\tan \beta = 1/(\sqrt{3} + 1.8) = 1/(3.5320508) = 0.28312164$, $\nu = 1$, $\mu = \sqrt{3}$.

$$\beta = 15^{\circ} 48' \ 28''.676. \sin \beta = 0.27241402, \cos \gamma_{i} = \frac{(\pm 1.2 \pm 1)}{2} (0.54482804)$$

$$\cos \gamma_i = \pm (1.1) (0.54482804), \pm (0.1) (0.54482804)$$

$$\cos \gamma_i = \pm 0.59931084, \pm 0.054482804$$

$$\gamma_{\rm i} = 53^{\circ}\,10^{\circ}\,46\,!\!.000,\,86^{\circ}\,52^{\circ}\,36\,!\!.550,\,126^{\circ}\,49^{\circ}\,14\,!\!.000,\,273^{\circ}\,07^{\circ}\,23\,!\!.450$$

$$\theta_{\rm i} = \beta + \gamma_{\rm i}, \; \theta_{\rm i} = 68^{\circ} \, 59^{\circ} \, 14".676, \; \theta_{\rm i} = 102^{\circ} \, 41' \, 05".226, \; \theta_{\rm i} = 142^{\circ} \, 37' \, 42".676$$

$$\theta_4 = 288^{\circ} 55' 52".126$$
. $r_i' = \frac{5}{\pm 2 - 3 \cos \theta_i} = \frac{3}{2 \cos (\theta_i - 30) \pm 1}$. The work is arranged in the

following table:

KOSENION TENENOS GERMANIAS EN SOCIONOS RESERVIDOS CONTRACTOS GERMANIAS CONTRACTOS CONTRACTOR CONTRA

Table 2

Γ	$\theta_{\mathbf{i}}$	$\theta_{\rm i}$ – 30	$\sin heta_{ ext{i}}$	$\cos \theta_{i}$	$\cos (\theta_i - 30)$	$\mathbf{r_i}'$
	68 59 14.676	38 59 14.676	0.93350166	0.35857308	0.77728423	5.40961166
	102 41 05.226	72 41 05.226	0.97559289	-0.21958714	0.29762840	1.88057496
	142 37 42.676	112 37 42.676	0.60698032	-0.79471687	-0.38475484	13.015729
	288 55 52.126	258 55 52.126	-0.94590914	0.32443167	-0.19198850	4.86994806

$x_i = 3 + r_i \cos \theta_i$	$y_i = r_i \sin \theta_i$	$r_i = r_i' \pm 2$	$r_{i+4} = r_{i}' \pm 4$	tan $ heta_{f i}$
4.93974111	5.04988146	r ₁ = 3.40961166	$r_s = 9.40961161$	2.60337906
2.58704992	1.83467556	r ₂ = 3.88057496	$r_6 = 5.88057496$	- 4.4428508
- 7.34381941	7.90029135	$r_3 = 15.015729$	r ₇ = 9.015729	- 0.76376927
4.57996538	- 4.60652838	r ₄ = 6.86994806	r ₈ = 8.86994806	- 2.91558822

Checks of the computations of Table 2 were made as follows:

1. Using $(x_i - 3)^2 + y_i^2 = r_i^2$ and values from Table 2:

$(x_i - 3)^2$	y _i ²	$(x_i - 3)^2 + y_i^2$	r _i ²
3.762 59557	25.501 30276	29,263 89833	29.263 89831
0.170 52777	3.366 03441	3.536 56218	3.536 56218
106,994 59999	26.414 60341	169.409 20340	169.409 20140
2.496 29060	21.220 10372	23.716 39432	23,716 39410

2. From the formulas of (2) and (3) find A = 2, B = $2\sqrt{3}$, C = 0, D = $-6(\sqrt{3}+2)$, E = $-6(\sqrt{3}+1)$, F = $9(2\sqrt{3}+3)$, δ = BEG = $-60(\sqrt{3}+3)$, β_0 = a^2A + CG = 8, L = β_0^2 - a^2 GB² = -11×2^4 H = -2^3 [$-48(\sqrt{3}+2)+60(\sqrt{3}+3)$] $/11\times 2^4$, = $\mp(2/11)$ [26.1961524] = -4.76293680. From Table 2, $\Sigma_{\mathbf{X_i}}$ = 4.76293700 = - H = 4.76293680. Again computing N from equations (3), find N = -429.826515. From Table 2 find $\Pi_{\mathbf{X_i}}$ = -429.826494 and $\Pi_{\mathbf{X_i}}$ = N.

3. From equation (6), compute the quantities:

$$\begin{split} &U=B/A=\sqrt{3},\ V=C/A=0,\ W=D/A=-3\ (\sqrt{3}+2),\ R=E/A=-3\ (\sqrt{3}+1),\ T=F/A\\ &=9(2\sqrt{3}+3)/2,\ \phi=c^2+cW+T=9/2,\ \theta_0=R+cU=-3,\ \rho'=a^2+T=\frac{1}{2}\ (18\sqrt{3}+35),\\ &Q=a^2/(c^2-a^2)=4/5,\ k_1=(GV+\phi\,Q)^2-a^2\,\theta_0^2=-2^6\,3^2/5^2,\ k_5=\rho'^2-a^2\,W^2=+(1189+684\sqrt{3})/2^2.\\ &\text{Now from equation (6),}\ \Pi\,m_{\hat{i}}=\Pi\ \tan\theta_{\hat{i}}=k_5/k_1=-5^2\ (1189+684\sqrt{3})/2^6\,3^2=-25.756540. \end{split}$$

Now forming Π tan θ_i from the values in Table 2, find

II tan $\theta_i = -25.756539$.

Figure (26) depicts the solution graphically.

anastron received between appropriate proposed butteress surrected respected

SUMMARY REMARKS (Plane Approximation)

While the formulas (9) through (13) are convenient for hand computing, since no root extraction is involved, the use of trigonometric tables may make it unsuitable for larger machine coding and computation, and it may be better to use the algebraic solution, equation (3). If the algebraic solution is to be used, the number of significant figures to be retained in the coefficients of the resulting quartic, equation (3), will have to be considered relative to the number of significant figures required in the rectangular coordinates of the intersections points.

If solutions only above the base line, F'F", are desired (see Figure 24), then in the trigonometric solution, equations (9) – (13), θ should be limited to $\pi > \theta > \alpha$.

Note that the parameters a and b of the two families of confocal hyperbolas are related to the fundamental constants of a Loran line by the relations (2.1).

Figure 25. Intersection of plane hyperbolas. Example 1.

Figure 26. Intersection of plane hyperbolas. Example 2.

APPENDIX 2

Computations

Using Andoyer-Lambert

First Order Formulae Without Conversion

to Parametric Latitude

(No conversion to parametric latitudes)

Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

1 År 20 37767 1 Onio	, in	0	19	43.280
φ. 40 30 37.757 1. Orig φ. 40 00 00.000 2. Term	ninus	18		
$\sin \phi_1$. 649 58723 2. West of 1	Λ)-)	_ \ _		
$\cos \phi_1 - \frac{76028707}{\cos \phi_2} \sin \phi_2 - \frac{64}{3}$	12 78761	-2- M1	11716.	32
$\tan \phi_1 \frac{.85439731}{\cos \phi_2} \frac{.76}{.76}$				
$\tan \phi_1 = \cos \phi_2 = \cos \phi_2$ $\tan \phi_2 = 83909963 = \cos d = \sin \phi_1 \sin \phi_2$				
$\tan \phi_2$ $\cos d = \sin \phi_1 \sin \phi_2$	$\lim \phi_2 + \cos \phi_1 \cos \phi_2$:0s \(\Delta \ldot \frac{1}{2} \)	2000	207
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - 0/15866$	$\cot A = \frac{W}{\sin x}$	$\frac{-76}{\Delta\lambda}$	20000	////
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + .6117622$				
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} + 0.0262251 \sin A716$	104900	134	40	46.816
$= \frac{\cos \phi_2 \sin \Delta \lambda}{\sin A} + \frac{1.01262251}{\sin A} \sin B - \frac{70}{4.62} \times 10^{-5}$ $K = (\sin \phi_1 - \sin \phi_2)^2 - \frac{4.62 \times 10^{-5}}{4.62 \times 10^{-5}}$	570498	B 44	53 11	.491
sin A 7.01202257		- d 7	13' 28	1017
$K = (\sin \phi_1 - \sin \phi_2)^2 - \frac{4.62 \times 10^{-3}}{4.62 \times 10^{-3}}$	$H = (d+3 \sin d)/(1$	-cos d)	017	70000
$L = (\sin \phi_1 + \sin \phi_2)^2 1.67023273$	$G = (d - 3 \sin d)/(1$	+ cos d)	11 20	8028
$\delta d = -(f/4) (HK + GL) - 6.9463 \times 10^{-6}$	= a (d + d)	(d) 80,4	1100	m eters
d (radians) .0/26/2293382 d + δd (rad) .0/26/599		s 45.7	707 033 1	n.m.
d + δd (rad)	$T = d/\sin \alpha$	7,000	2333	76
2A <u>269 21 33.632</u>	2B 0 4	76	22	,994
sin 2A 99993749	sin 2B . 909.	99216		
$U = (f/2) \cos^2 \phi_1 \sin 2A \frac{-9.79732265 \times 10^{-3}}{10^{-3}}$	$V = (f/2) \cos^2 \phi_2$ s	in 2B + 9.9	468111	1X10-4
VT +9.947145 × 10-4	UT -9-797	6516>	10-	4
δA = VT - U <u>+.00/9744468</u>				
+ 8A + 6 47.259		,		
-A -134 40 46.816		<i>త</i> 3	11.4	97
. 100	. 100	•		
$a_{1-2} = 45^{\circ} = 26 = 00.443$	$a_{2-1} = \frac{224}{2}$	59	<u> 58.75</u>	39
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$	$a_{2-1} = a_{BA} = 180^{\circ}$	+ B + δB		
Time No. 1 (See Tables 1	2 22400 65 66)			

(No conversion to parametric latitudes)

Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

```
59 48.3491. Oci4in
6, 10 00 00.000 2. Terminus
\tan \phi_2 \cdot 17632698 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda \cdot 99968177
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + \frac{f' \cos \Delta 1 + \frac{32}{\cos \Delta \lambda}}{\cos \Delta \lambda} = \cot A = \frac{M}{\sin \Delta \lambda} + \frac{f \cos \phi' + \frac{462}{55}}{\cos \Delta \lambda}
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda \frac{-0.0000038}{-0.0000038} \cot B = \frac{N}{\sin \Delta \lambda} \frac{-0.0001483}{0}
\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin R} . 02522645 \sin A . 999999004 A 89 44 39.457
                = \frac{\cos \phi_2 \sin \Delta \lambda}{\sin A} \cdot 02522645 \sin B \frac{1.00000000}{\sin A} B = 90
K = (\sin \phi_1 - \sin \phi_2)^2 - 3.1 \times 10 - 9
                                                                                                                     H = (d+3 \sin d)/(1-\cos d) 317-092888
\delta d = (f/4) (HK + GL) \frac{+3.04/0 \times 10 - 6}{4} G = (d - 3 \sin d)/(1 + \cos d) \frac{-0.02522.9/29}{4}
L = (\sin \phi_1 + \sin \phi_2)^2 - 1205 7612
d (radians) - 02522 9/2 2 2
                                                                                                                                                                 T = d/sin d 1.000105918
d + 8d (rad) -025-232 /632
 2A 179 29 18.914 2B

\sin 2A = \frac{1}{120} \cos^2 \phi_1 \sin 2A = \frac{1}{120} \frac{1}{120} \sin 2B = \frac{1}{120} \cos^2 \phi_2 \sin 2B = \frac{1}{120} \sin 2B = \frac{1}
                                                                                                                                      δB = -UT + V __/. 4724 × 10-5
δA = VT - U -1. 4722 × 10 -5
-A <u>- 89</u>
             +180
                                                                                                                                                                                                                                    00.023
                                                                                                 17.506 02-1 270
 a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A
                                                                                                                                           a_{2-1} = a_{BA} = 180^{\circ} + B + \delta B
                      Line No. 2 (See Tables 1,2 - pages 65,66)
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

0 1 11	,	٥	11 11
φ, 69 48 05.901 1. Origi			28.637
φ2 70 00 00.000 2. TP/M			0 60.000
$\sin \phi_1 - 938 \cdot 50257$ 2. West of 1.	$\Delta \lambda = \lambda_2 -$	- A1= 8 2	2 31,363
$\cos \phi_1 \cdot 345 \cdot 2722 \cdot 6 \sin \phi_2 \cdot 939$	69262 sin	1 DA - 145	- 65 7 90
tan ϕ_1 2. 918 15334 $\cos \phi_2$ - 34.	2 02014 co	s Δλ - 98	9 33502
$\tan \phi_2 = 2.949 + 999 + 999 \cos d = \sin \phi_1 \sin \phi_2$			
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 0.020 $ 134			22992
	sin Δλ		
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda - 000 00$	$\frac{80}{\text{cot B}} = \frac{N}{\text{cot A}}$	000	00 5499
		•	07 47.577
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} + \frac{0.05029113}{\sin A} \sin A + 0.9$	190 58101 A	82	07 47.577
$=\frac{\cos\phi_2\sin\Delta\lambda}{\sin\Delta} + 35039163\sin\beta + 1.66$	000 00000 B	90	00 11.342
3111 / 1	ત	2 4	12 50,050
$K = (\sin \phi_1 - \sin \phi_2)^2 + 1.41622 \times 10^{-6}$	$H = (d+3 \sin d)/(1-c^2)$	os d) +15-8	1. 988826
$L = (\sin \phi_1 + \sin \phi_2)^2 + 3.52761717$	$G = (d - 3 \sin d)/(1 + c)$	cos d) <u>05</u>	0294892
$\delta d = (f/4) (HK + GL) + 000150177$	$=$ s = a (d + δ d)	321,862	eters meters
d (radians) + 0503 1295-2	s _	113 - 1	92 / n.m.
d + δd (rad) +. 0504 6292 9	T = d/sin d _	1.000 4	12
2A 164 15 35. 154	2B 180°		22. 684
sin 2A +. 27/ 2764/	sin 2B		
$U = (f/2) \cos^2 \phi_1 \sin 2A + 5. 48169 \times 10^{-5}$	$V = (f/2) \cos^2 \phi_2 \sin^2 \phi_2$		
VT -2.182 X 10 -8	UT +5. 484	O X 10	
δA = VT - U - 5. 4839 × 10-5	$\delta B = -UT + V - 3$	1862	X 10 -5
	$\delta B = -UT + V - \frac{1}{2}$,	11
+ 8A = //. 3//	+δB		11,316
-A - 12 07 47,577	+ B + 90	00	11.342
+ 180 。	+ 180 °	1	11
a ₁₋₂ 97 52 01.112	a2-1 - 270	00	00-026
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$	$a_{2-1} = a_{BA} = 180^{\circ} +$	B + δB	
-1-1 "AB 100 on	-3-1 - "BY - 100 4		

Line No. 3 (See Tables 1,2 - pages 65,66)

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes)

Clarke Spheroid, $1866 \quad a = 6,378,206.4 \text{ meters}$

f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

	0 1 "
φ ₁ /3 04 /2.564 1. Origin	λ, 14 51 13.283
φ ₂ 10 00 00.000 2. <u>Terminus</u>	λ ₂ 18 00 00,000
$\sin \phi_2 = 173 648/8 = 2$. West of 1.	$\Delta \lambda = \lambda_2 - \lambda_1 \underline{3} \underline{08} \underline{46.717}$
$\cos \phi_2 = -98480775 \sin \phi_1 = .226$	14397 sin Δλ .054 88 588
cos 2φ2 . 969 84630 cos φ1 . 974	09389 cos DA . 998 492 63
$\cos^2 \phi_1 = 94885891 = \cos d = \sin \phi_1 \sin \phi$	$a + \cos \phi_0 \cos \phi_0 \cos \Delta \lambda$. 997 11869
$K = (\sin \phi_1 - \sin \phi_2)^2 + .0027558/$	4 21 01.722
$L = (\sin \phi_1 + \sin \phi_2)^2 $.159 83376	d (radians) .075 930/7/
H = $(d+3\sin d)/(1-\cos d)$ + 105.33468	sin d .075 85 723
$G = (d-3\sin d)/(1+\cos d)075930/5$	$s = a(d + \delta d) \frac{492,794.743}{meters}$
$\delta d = -f(HK + GL)/4 - 2.35734 \times 10^{-1}$	s 260.6383 n.m.
$R = \sin \Delta \lambda / \sin d$ - 723 54184	T = d/sin d 1.000 9616
$\sin A = R \cos \phi_2 \frac{.7/25496/}{}$	$\sin B = R \cos \phi_1 - \frac{.704}{.79769}$
A 134 33 26".138	B 44 48 47.526
2A Z69 06 52.276	2B 89 37 35.052
sin 2A99988058	sin 2B + .999 97874
$U = (f/2) \cos^2 \phi_1 \sin 2A$	$V = (f/2) \cos^2 \phi_2 \sin 2B$
U (rad)	_ V (rad) <u>+,0016 43891</u>
U	_ V
VT + ,0016454718	UT -00/609706
$\delta A = VT - U + \frac{1}{2} + \frac{1}{2} 1$	
$a_{AB} = 180^{\circ} - A + \delta A + \frac{45}{5} = \frac{37}{5} + \frac{44}{972}$	2 an = 180° + B + 8B 224 59 58.629
αAB = 100 - Λ + 0Λ	- "BY - 100 + D + 0D

Line No. 4 (See Tables 1,2 - pages 65,66)

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes)

Clarke Spheroid, 1866 a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

0 1 11	0	•	11
φ ₁ <u>73</u> <u>35</u> <u>09.2%</u> 1. <u>Origin</u>	λ, <u>3</u>	26	35.101
φ ₂ 70 00 00,000 2. Terminus			00.000
$\sin \phi_2 \cdot 93969262$ 2. West of 1. $\cos \phi_2 \cdot 34202014 \sin \phi_1 \cdot 95924$	$\Delta \lambda = \lambda_2 - \lambda_1 / 4$	33	24.899
$\cos \phi_2 = .34202014 \sin \phi_1 = .95924$	$\frac{1441}{\sin \Delta \lambda}$. 2	5134	162
$\cos^2\phi_2 - 1/6 97178 \cos \phi_1 , 28257$	7768 cos Δλ -9	6789	844
$\cos^2 \phi_1 = .079 \ 850/5 = \cos d = \sin \phi_1 \sin \phi_2 = .000$	+ cos φ ₁ cos φ ₂ cos Δλ <u> </u>	94939	762
$K = (\sin \phi_1 - \sin \phi_2)^2$.000 382272	_ d <u>Š</u>	45	59,408
$L = (\sin \phi_1 + \sin \phi_2)^2 3.60596184$	d (radians)_ •	10064	1445
$H = (d+3\sin d)/(1-\cos d) + 79.454/793$	sin d/	00 474	163
$G = (d-3\sin d)/(1+\cos d) - 100644369$	$= a(d + \delta d) \frac{643}{643}$		
$\delta d = -f(HK + GL)/4 + 00028/84$	_ s <u>347.</u>	5851	7 n.m.
$R = \sin \Delta \lambda / \sin d \frac{2.50/5.43/25}{43.25}$	T = d/sin d	902	
$\sin A = R \cos \phi_2 - 855 - 578/3$	$\sin B = R \cos \phi_1 - \frac{70}{2}$	6880	25_
A 121 10 34.813	B 44 58		
2A 242 21 09.626	2B 89 57		
sin 2A <u>-885</u> 82060	sin 2B + . 9999	9980	
$U = (f/2) \cos^2 \phi_1 \sin 2A$	$V = (f/2) \cos^2 \phi_2 \sin 2B_{\perp}$		
U (rad) -1.19895 × 10-4	V (rad) +1.982	82 x	10-4
U	V		
VT +1.98617×10-4	UT -1.20092	8×10	-4
δA = VT-U + 0/ 05.698	$\delta B = -UT + V +$	01	05.671
a _{AB} = 180° - A + δA <u>58</u> <u>50</u> 30.885	$\alpha_{\text{BA}} = 180^{\circ} + \text{B} + \delta \text{B} \ \underline{22}$	4 59	59.601

Line No. 5 (See Tables 1,2 - pages 65,66)

(No conversion to parametric latitudes)

Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

φ, 39 37 06. "13 1. Origin	· \	° 1 8 36	43-276
φ ₂ 40 00 00.000 2. Termin		18 00	
	$\Delta \lambda = \lambda_2 -$	λ ₁₌ 9 23	16.734
$\cos \phi_1 = \frac{770 \ 30}{30} = \frac{735}{\sin \phi_2} = \frac{1642}{100}$	7876/ sin	DA - 163	11897
tan ϕ_1 . 827 81605 cos ϕ_2 . 766	04444 cos	Δλ - 486	60641
$\tan \phi_2 \cdot 839 09963 \cos d = \sin \phi_1 \sin \phi_2$	$+\cos\phi_1\cos\phi_2\cos$	DA +. 992	07441
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 0.017 2325$	$\int \cot A = \frac{M}{\sin A}$	+. 105	64406
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda - \frac{00003450}{100000000000000000000000000000000000$	$\frac{S}{S} = \frac{N}{\sin \Delta \lambda}$	000 3	1150
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} \frac{.12565194}{\sin A} \sin A \frac{.0994}{}$	46595 A_	83 58	09.874
$= \frac{\cos \phi_2 \sin \Delta \lambda}{\sin A} \cdot \frac{12565194}{\sin A} \sin B \cdot \frac{99999}{\sin A}$	9998 B-	90 00	43,625
$K = (\sin \phi_1 - \sin \phi_2)^2 + 2.6161384 \times 10^{-5} H =$	= (d+3 sin d)/(1 -cc	os d) 63. 45	11511
$L = (\sin \phi_1 + \sin \phi_2)^2 / 6395788 $ G =	$= (d - 3 \sin d)/(1 + cd)$	os d) - · /25	98454
$\delta d = (f/4) (HK + GL) + 000 17366$	$s = a (d + \delta d)$	804,664.	597 meters
d (radians) +. 125-98 480	s _	434.48	42 n.m.
d + δd (rad) 7.126 15-846	$T = d/\sin d$		
2A 167 56 19.748 2B	180	نه اه	12. 250
sin 2A +, 208 95 605 sin	2B	42300	0
$U = (f/2) \cos^2 \phi_1 \sin 2A + 0002 /0/66$ V	= (f/2) cos ² d ₂ sin 2	B -4. 21	X 10 -1
VT - 4,22 × 10-1	T. 000.21	0723	· · · · · · · · · · · · · · · · · · ·
$\delta A = VT - U \frac{0002 10588}{8}$	= -UT + V	000 2 111	44
	3	00 4	13.552
· -	+ 90	00 4	<u></u>
	+ 180 0		.073
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$ a_{2}	$a_1 = a_{BA} = 180^{\circ} + B$	+ δΒ	

Line No. 6 (See Tables 1,2 - pages 65,66)

(No conversion to parametric latitudes)

Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

φ, 44 54 28.501 1. Origin λ, 10 49 43.883
φ ₂ 40 00 00.000 2. Terminus λ ₂ 18 00 00.000
$\sin \phi_1 = 0.705 969 46$ 2. West of 1. $\Delta \lambda = \lambda_2 - \lambda_1 = 7 12 16.117$
$\cos \phi_1 = 0.70824228 \sin \phi_2 = 0.04278761 \sin \Delta \lambda = 0.12541075$
tan d. 0,996 79091 cos do . 766 0 44 44 cos Ad 0. 992 10491
$\tan \phi_2 \cdot 83909963 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda = 0.992.05004$
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda 106 10993 \cot A = \frac{M}{\sin \Delta \lambda} 846 09916$
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + \frac{135}{135} + \frac{81339}{\sin \Delta \lambda} \cot B = \frac{N}{\sin \Delta \lambda} + \frac{1.00368}{0.000} + \frac{900}{0.000}$
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\cos \phi_2 \sin \Delta \lambda} .12584404 - 76340687 - A 130 14 04.316$
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} \frac{.125 84404}{\sin A} \sin A \frac{.763 40687}{.763 40687} = A \frac{.30}{.130} \frac{.14}{.04.316}$
= cos φ ₂ sin Δλ./25-8440 sin B. 705 80373 B 44 53 40. 246
$\sin A$ $K = (\sin \phi_1 - \sin \phi_2)^2 \frac{3.991946 \times 10^{-3}}{10.3601565} H = (d+3 \sin d)/(1-\cos d) \frac{7}{10.3601565} \frac{13.46.36}{10.3601565}$
$L = (\sin \phi_1 + \sin \phi_2)^2 \frac{1.819 + 14563}{1.819 + 14563} G = (d - 3 \sin d)/(1 + \cos d) \frac{126178331}{1.819 + 14563}$
$\delta d = -(f/4) (HK + GL) = -000 0/9826 $ $s = a (d + \delta d) 804, 666.623 $ meters
d (radians) - 126 178588 s 434. 4852 n.m.
$d + \delta d \text{ (rad)} \cdot 126 158762$ $T = d/\sin d 1.002658433$
0 1 11 11
sin 2A 986 19633 sin 2B 999 99322
$U = (f/2) \cos^2 \phi_1 \sin 2A - \frac{8.385 - 065 \times 10^{-4}}{V} = (f/2) \cos^2 \phi_2 \sin 2B + \frac{9.946832 \times 10^{-4}}{V} = (f/2) \cos^2 \phi_2 \sin 2B$
VT + 7. 9/3263 X /2 . IT - 8. 40/336 X /2
δA = VT - U + 18. 35833 × 10 - 4
+8A + 0 6' 18.668 + 8B + 0 6' 18.582
-A - 130 14 04.316 +B 44 53 40.246
a_{1-2} 49 $5-2$ $14.35-2$ a_{2-1} 234 $5-9$ $5-8-8-8$
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$ $a_{2-1} = a_{BA} = 180^{\circ} + B + \delta B$
Line No. 7 (See Tables 1,2 - pages 65,66)

(No conversion to parametric latitudes)

Clarke Spheroid 1866 a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

$\phi_1 + 76$ 00 26.603N1. Origin $\lambda_1 28 + 2 03.567 E$
φ2 + 70 00 00.000 N2. Terminus λ2 18 00 00-000 W
$\sin \phi_1 - 970 - 326 - 92$ 2. West of 1. $\Delta \lambda = \lambda_2 - \lambda_1 = -46 - 42 - 03.567$
$\cos \phi_1$. 241 79675 $\sin \phi_2$. 939 692 62 $\sin \Delta \lambda$. 727 78462
$\tan \phi_1 \frac{4.0129858}{\cos \phi_2} \frac{.342 \ 03014}{\cos \Delta \lambda} \frac{.685}{.685} \frac{80517}{}$
$\tan \phi_2 = \frac{2.74147142}{\cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda} = \frac{968}{5.3415}$
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - \frac{00112469}{\cos \Delta \lambda} = \frac{M}{\cos \Delta \lambda} = \frac{-00154536}{\cos \Delta \lambda}$
sin Λλ
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + \frac{72807535}{\sin \Delta \lambda} \cot B = \frac{N}{\sin \Delta \lambda} + \frac{71.00039947}{0}$
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} \cdot \frac{24891730}{\sin A} \sin A \cdot \frac{999999880}{\sin B} A \cdot \frac{90}{18.753}$
$\cos \phi_2 \sin \Delta \lambda$, 24891130 p . 706 96 556 p 44 59 18.810
sin A
$K = (\sin \phi_1 - \sin \phi_2)^2 \frac{9.38 46034 \times 10^{-4}}{10^{-4}} H = (d + 3 \sin d) / (1 - \cos d) \frac{31.7174323}{10^{-4}}$
$L = (\sin \phi_1 + \sin \phi_2)^2 \frac{3.648 \ 17464}{19464} G = (d - 3 \sin d)/(1 + \cos d) \frac{35155-3703}{19464}$
$\delta d = (f/4) (HK + GL) + 000 95 255 12$ $s = a (d + \delta d) + 1, 609, 315.609$ meters
d (radians) - 2515 622076 s 868. 9608 n.m.
$d + \delta d \text{ (rad)} = \frac{1.010625647}{1.010625647}$
2A 180° 10 37. 506 2B 89° 58 37. 620
sin 2A 00309071 sin 2B + . 99999992
$U = (f/2) \cos^2 \phi_1 \sin 2A - 3.0629403410^{-7} V = (f/2) \cos^2 \phi_2 \sin 2B + 1.98281925410^{-4}$
VT + 2,003 8 8 60 × 10 - 1 UT - 3,093 4 8 60 × 10 - 1
δA = VT - U +2-0069489 × 10-4 δB = -UT + V + 1.98892322 × 10-4
$+ \delta A + 41.396 + \delta B + 41.024$
-A - 40 05 18.753 +B + 44 59 18.810
+ 180 0 + 180 0
a_{1-2} 89 55 25.643 a_{2-1} 224 59 54.834
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$ $a_{2-1} = a_{BA} = 180^{\circ} + B + \delta B$
Line No. 8 (See Tables 1,2 - pages 65,66)

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes)

Clarke Spheroid, 1866 a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

0 1 "	0	id in man
φ ₁ 27 49 42.130N 1. Origin	λ, <u>32</u>	54 12.997E
ϕ_2 40 00 00.000 2. Terminus	λ ₂ 18	00 00,000 N
$\sin \phi_2 = .642 78761$ 2. West of 1.	$\Delta \lambda = \lambda_2 - \lambda_1 50$	54 12.997
$\cos \phi_2 - 76604444 \sin \phi_1 - 4668$		608614
cos ² φ ₂ . 5868 2408 cos φ ₁ . 88434	1994 COS A) .63	062691
$\cos \frac{\varphi_2}{\cos^2 \phi_1} \cdot \frac{78207482}{\cos d = \sin \phi_1 \sin \phi_2}$		
$\cos \phi_1 = \cos \alpha = \sin \phi_1 \sin \phi_2$		20 25.706
$K = (\sin \phi_1 - \sin \phi_2)^2 - 030962988$		
$L = (\sin \phi_1 + \sin \phi_2)^2 \frac{1.2312.3921}{1.2312.3921}$		15 6433 968
$H = (d+3\sin d)/(1-\cos d) + 10.3239296$	sin d <u>. 68</u>	6 33228
$G = (d-3 \sin d)/(1+\cos d)754/08629$	$\mathbf{s} = \mathbf{a}(\mathbf{d} + \delta \mathbf{d}) 4, 827,$	983.105 meters
$\delta d = -f(HK + GL)/4 + 0.000515996$	-	. 9023 n.m.
$R = \sin \Delta \lambda / \sin d $ /.130773187	T = d/sin d //10213	39575
$\sin A = R \cos \phi_2$. 866 22251	$\sin B = R \cos \phi_1 - 999$	199920
	$B = \frac{90}{64}$	
	· · · · · · · · · · · · · · · · · · ·	
2A 120 02 42.678		42.000
sin 2A 86563079	sin 2B <	3072
$U = (f/2) \cos^2 \phi_1 \sin 2A$	$V = (f/2) \cos^2 \phi_2 \sin 2B$	
U (rad) .00114752022	V (rad) -2.5/72	79×10-6
u		00.519
VT - 00.572	, ο	4 20.869
g 1 "	G	11 11
0 - 1 - 1 - 1	$\delta B = -UT + V - {}$	4 21.388
$a_{AB} = 180^{\circ} - A + \delta A $ 114 34 44.346	$-\alpha_{BA} = 180^{\circ} + B + \delta B = 269$	59 59.612

Line No. 9 (See Tables 1,2 - pages 65,66)

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes)

Clarke Spheroid, $1866 \quad a = 6,378,206.4 \text{ meters}$

f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

0 1 7 5	18	45.644 N1.	Oninin	\	102	02	29.310E
φ. <u>35</u>		00,000N2.					
φ <u>2 40</u>					18		
$\sin \phi_2$				$\Delta \lambda = \lambda_2 - \lambda$			29.370
$\cos \phi_2$	7660	4444 sin	φ ₁ _5780.	<i>3821</i> sin Δ)	0.8	6566	304
$\cos^2\phi_2$	5868.	2 <i>408</i> cos	· 81600	970 cos A	0.5	0062	701
cos ²φ,	6658	7183 cos	$d = \sin \phi_1 \sin \phi$	$_2$ + cos ϕ_1 cos ϕ_2 cos	Δλ -05	86/4	101
K = (sin φ.	$-\sin\phi_2$) ²	.004/92	24848				23.060
$L = (\sin \phi)$	+ sin φ ₂)	1.4904	1568		ians)		
H = (d+3si)	in d)/(1-c	osd) 4.787	61188	sin	d 0.9	1982	8068
G = (d-3 si	n d)/(1+c	os d) <u>-/.400</u>	59863	$=$ s = a(d + δ e	9,655	912.2	18 meters
$\delta d = -f(HK)$	+GL)/4_	4.00173	216		5213.		
$R \approx \sin \Delta \lambda$	/sin d	867 15	4005	T = d/sin d	5147	5305	
sin A = R c	$\cos \phi_2 - \frac{4}{3}$.664278	850	$\sin B = R \cos \phi_1$	+.7	0760	0611
A 41	37	37.19	<u>_</u>	y , .	<u>82</u>		25.708
		14.382	<u>?</u>	2B <u>90</u>			1.416
sin 2A 🛨	,9930	7665		sin 2B + . 9	99 99	1900	
$U = (f/2) \cdot cc$	os ²φ ₁ sin	2A		$V = (f/2) \cos^2 \phi_2$	sin 2B_		
U (rad)	00112	20864		_ V (rad)	0099	468	79
U		3	51.195	_		<u> </u>	25.169
VT		္ ၌	10:180	UT	1	ک	50.203
$\delta A = VT - U$	J	0 1	19.585	$\delta B = -UT + V$	•	- ż	25.034
$a_{AB} = 180^{\circ}$		138 23	a 11	$\alpha_{BA} = 180^{\circ} + B +$	0	5 00	00.674

Line No. 10 (See Tables 1,2 - pages 65,66)

INVERSE COMPUTATION (Andoyer-Lambert Formula) Clarke 1866 Ellipsoid 40-50-6000 Line

φ ₄ 40° 00' 00":000N	1. Point o	f Origin	λ_1	18° 00' 00".000W
ϕ_1 40 00 00.000N ϕ_2 35 18 45.644N	2. Termin	- 1	•	102 02 29.370E
<i>φ</i> ₂ σσ 2σ σσ	Point 1 sh		_	120° 02' 29"370
	west of po		an .	120 02 27.010
$\tan \beta = b/a \tan \phi$	<u> </u>		sin Δλ 0.86	566309
$tan \phi_1 0.83909963$			$\cos \Delta \lambda = 0.50$	062701
tan ϕ_2 0.70837174				
tan 8. 0.83625502 39°	angle		sin	COS
1-4	54' 15".203 13 15 .443		0.64150618 0.57673115	0.76711787 0.81693401
$\cot A = \frac{\cos \beta_1 \tan \beta_2 - \sin \beta_1 \cos}{\sin \beta_1 \cos \beta_2}$	$\Delta \lambda$	co	of B = $\frac{\cos \beta_2 \tan \beta}{s}$	$\frac{1-\sin\beta_2\cos\Delta\lambda}{1-\cos\beta_2\cos\Delta\lambda}$
sin Δλ			sin	
cot A 0.99659760 45°	angle 05' 51".495		0.70831073	cos (5 places) 0.705901
tan B				
B 0.89069853 41	41 29.068		0.66511838	0.746738
$\sin \sigma = \frac{\cos \beta_1 \sin \Delta \lambda}{\sin B} = \frac{\cos \beta_2 s}{\sin A}$	in Δλ		sin σ 0.99841720	
			$\cos \sigma \ 0.05624132$	
$\cos \sigma = \sin \beta_1 \sin \beta_2 + \cos \beta_1 \cos \beta_2$		- 	σ 86° 46' σ'' 312393.27]	33"271
$M = (\sin \beta_1 + \sin \beta_2)^2 \qquad M 1.484$			σ 1.51452532	
$N = (\sin \beta_1 - \sin \beta_2)^2$ U 0.4886			$= \alpha \sigma - H (MU + NV)$	
$U = \frac{\sigma - \sin \sigma}{1 + \cos \sigma} \qquad \qquad \begin{array}{c} N 0.004 \\ V 2.6626 \end{array}$			σ 9659955.089	,
	09000		H (MU + NV) - 398	0.422
$V = \frac{\sigma + \sin \sigma}{1 - \cos \sigma} \qquad \frac{f\sigma''}{\sin \sigma} 1060$	0.7155		9 655 974 .667	meters
	···			
$\delta A'' = -\cos^2 \beta_2 \sin B \cos B \left(\frac{f \sigma'}{\sin \alpha} \right)$,)	δΑ"	- 351.593	
$\delta B'' = -\cos^2 \beta_1 \sin A \cos A \left(\frac{f\sigma''}{\sin \sigma} \right)$	-	δΒ"	- 312.098	
A 45° 05' 51".495			B 41° 41'	29".068
δA – <u>05 51.593</u>			δB – 5	12.098
A _f 44 59 59.902			B _f 41 36	16.970
$a_1 = 180^{\circ} + A_f 224^{\circ} 59' 59".902$),		$\alpha_2 = 180^{\circ} - B_f$	138° 23' 43".030

Line No. 10 as computed by ACIC, converting to parametric latitude.

(From Page 39 of the ACIC Technical Report No. 80 - August 1957)

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes)

Clarke Spheroid, $1866 \quad a = 6,378,206.4 \text{ meters}$

f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

φ, 18 29 57.9001. Origin	λ, 67 07 30.300
φ ₂ 43 03 19.6002. Terminus	115 52 54.700
$\sin \phi_2$. 682 70576 2. West of 1.	$\Delta \lambda = \lambda_2 - \lambda_1 48 45 24.400$
cos do 130 693 39 sin do -317 1	9500 sin AA . 751 91780
$\cos^2 \phi_2 \cdot 533 \frac{9/283}{\cos \phi_1} \cos \phi_1 \frac{.948}{.948}$	32688 cos AA 1659 25681
$\cos^2 \phi_1 - 899 33387 \cos d = \sin \phi_1 \sin \phi_2$	$+\cos\phi_1\cos\phi_2\cos\Delta\lambda$ $\frac{-69344366}{-69344366}$
$K = (\sin \phi_1 - \sin \phi_2)^2 \frac{133}{53502}$	d 47 40 00.179
$L = (\sin \phi_1 + \sin \phi_2)^2 \frac{1.0000015.2}{1.0000015.2}$	d (radians) . 931 941144
$H = (d+3\sin d)/(1-\cos d) + 9.33880573$	sin d . 739 24001
$G = (d-3\sin d)/(1+\cos d) - 828 100908$	$s = a(d + \delta d) = \frac{5}{304038.110}$ meters
$\delta d = -f(HK + GL)/4 - 3.5499347 \times 10^{-2}$	s 1863 - 946 / n.m.
$R = \sin \Delta \lambda / \sin d \frac{1.017149761}{1.017149761}$	$T = d/\sin d \frac{1.125 - 40059}{1.125 - 40059}$
$\sin A = R \cos \phi_2 - 1143 - 23 - 461$	$\sin B = R \cos \phi_1 - 964 - 59646$
A 48 00 24.496	B 105 17 34, 164
2A 96 00 48.992	2B 210 35 08,328
sin 2A <u>-994</u> 49704	sin 2B 5 18 82577
$U = (f/2) \cos^2 \phi_1 \sin 2A$	$V = (f/2) \cos^2 \phi_2 \sin 2B$
U (rad) 1.515 9992 × 10 -3	V (rad) - 4. 60 4885 2 × 10 - 4
U	V
VT - 5:18234 × 10-4	
$\delta A = VT - U - \frac{6}{39.39} \frac{59.39}{16.3}$	$\delta B = -UT + V - \frac{9}{26.892}$
$a_{AB} = 180^{\circ} - A + \delta A$ $\frac{137}{37}$ $\frac{5^{2}}{2}$ $\frac{35^{2}}{2}$ $\frac{913}{3}$	$\alpha_{\rm BA} = 180^{\circ} + B + \delta B = \frac{383}{10} = \frac{100}{10} = \frac{39.2}{10}$
Line No. 11 (See Tables 1,2 - pages 65,	66)

(No conversion to parametric latitudes)

Clarke Spheroid 1866 a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

```
φ, 55 45 19.5(N)1. Moseow λ, -37 34 15.450(E)
 φ2-33 56 03.5 (5) 2. Cape of Good Hope λ2-18 28 41. 400 (E)
\sin \phi_1 + 826 + 64295 2. West of 1. \Delta \lambda = \lambda_2 - \lambda_1 = +19 + 05 + 34.050
 \cos \phi_1 + 56272678 \sin \phi_2 - 55824198 \sin \Delta \lambda + 327 09901
tan 6, 1.468 99522 cos 6, +.839 67819 cos Ax +. 944 99007
\tan \phi_2 = -67284157 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda = -63036782
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda \frac{-1.15979535}{\sin \Delta \lambda} \cot A = \frac{M}{\sin \Delta \lambda} \frac{-3.54570119}{\sin \Delta \lambda}
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + 1.74632643 \cot B = \frac{N}{\sin \Delta \lambda} + 5.33883129
\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin R} \cdot \frac{99979459}{\sin A} \cdot \frac{1-27144267}{4267} = A \frac{164}{14} \cdot \frac{14}{59.524}
= \frac{\cos \phi_2 \sin \Delta \lambda}{\sin A} \cdot \frac{.99999459 \sin B}{\sin A} \cdot \frac{1.184 \cdot 10519}{\text{H} = (d+3 \sin d)/(1-\cos d)} \cdot \frac{36 \cdot 32.283}{4 \cdot 91 \cdot 99.825}
K = (\sin \phi_1 - \sin \phi_2)^2 \cdot \frac{11.91790627}{4 \cdot 99.825} \cdot \frac{10.36}{4 \cdot 99.825} \cdot \frac
 L = (\sin \phi_1 + \sin \phi_2)^2 + 0.072039081
G = (d - 3 \sin d)/(1 + \cos d) - 1.43745225
 \delta d = (f/4) (HK + GL) = 0072256/0  s = a (d + \delta d) \frac{10,102,057,965}{meters}
 d (radians) + 1. 591065538
                                                                                                                                                                                                                                                  s 5454. 6749 n.m.
                                                                                                                                                                 T = d/sin d 1.59 139242
 d + 8d (rad) +1. 58383 9928
 2A 328 39 59.048 2B 21 13 04. 566
U = (f/2) \cos^2 \phi_1 \sin 2A - \frac{2.804548 \times 10^{-4}}{V} = (f/2) \cos^2 \phi_2 \sin 2B + \frac{4.2526}{V} = (f/2) \cos^2 \phi_2 \sin 2B + \frac{4.2526}{V} = \frac{100}{V} = 
                                                                                                                                                                          V = (f/2) \cos^2 \phi_2 \sin 2\theta + 4.2228626 \chi - 4
 VT + 6 \cdot 72023 | 5 \times 10^{-4} 
\delta A = VT - U + 9.524 | 78 \times 10^{-4} 
\delta B = -UT + V + 8.685 | 999 \times 10^{-4} 
                                                                                                                                                                            +δB <u>+</u> 2
 + δA <del>/</del>
                                                                   14 59,524 B + 10
 -A - 164
                 + 180
                                                                 48 16.939 02-1 190 39 31.445
 \alpha_{1-2} = \alpha_{AB} = 180^{\circ} - A + \delta A
                                                                                                                                                                                \alpha_{2-1} = \alpha_{BA} = 180^{\circ} + B + \delta B
                                 Line No. 12 (See Tables 1,2 - pages 65,66)
```

APPENDIX 3

Computations
Using Forsyth-Andoyer-Lambert Type
Second Order Formulae
Without Conversion to Parametric Latitude

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

```
30 17.7571 Origin
                                                      00 00.0002. TERMINUS
                                                                                                                                         2. west of 1.
                                                                                                                                                                                                          \Delta \lambda = \lambda_2 - \lambda_1
                                                                                                                       sin φ, +.642 1876/ sin Δλ T. 011
                                                                                                                    cos φ, +. 766 04444cos Δλ +,
                                                               \frac{09963}{\cos d} = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + \frac{999}{9903}
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda  = -011 58604 cot u = M/\sin \Delta \lambda = - 488 58647
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda \frac{T}{2} \frac{\partial H}{\partial \phi_2} \frac{\partial 
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + \frac{\tau_1 0/2 62251}{2} u
csc d + 1. 922 35458 cot d + 1. 921 123 41 v
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{\tau.835149633}{(1 + \cos d)} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau.580329259}{(1 + \cos d)}
X=K,+K,+1. 4154 78892 Y=K.-K.+. 2548 20374 XY +.3606928 61
 x2 +2.003580494 y2 +.064 933423 d. +.012 622 93382 d. 2 +.000 159 33846
 A=64d + 16d 2 cot d + 8280635298 D=48 sin d +8d 2 csc d + 615 979
 B = -2D-1.23/95834 E=30 sin 2d +. 95729030 sin 2d +.025-2430/
                                                                                                                                                                                       AX + 1.172 106445
 C=-(30dr +8dr cot d+E/2)-. 7674310463
                                                                                              CX2 -1.537609875 DXY +, 2221792891
  BY-,313 928085
 EY2 + .049 193 4514  \(\Sigma = AX + BY + CX^2 + DXY + EY^2 - . 40807 8 974
 \delta d_{f} = -(f/4)(Xd_{r} - 3Y\sin d) - 6.96498 \times 10^{-6} \delta d_{f}^{2} = +(f^{2}/128) \Sigma - 3.66398 \times 10^{-8}
                                                                                                                        dr + 8df + 8df 2 - 012 615 93220
 d + 8d , -012 61596 884
 S(\delta d_f) = a(d_r + \delta d_f) 80 467. 253
                                                                                                                                       -m S(\delta d_{f^2}) = a(d_r + \delta d_f + \delta d_{f^2}) 80, 467.020
                                                                                             "T = d/sin d 1.0000 33576
  sin 2n -- 999
                                                                                                                                                                             sin 2v_+, 999
                                                                                                                                                                                                                                                          99216
  U = (f/2)\cos^2\phi_1 \sin 2u - 9.79732365 \times 10^{-3}
                                                                                                                                                          V = (f/2) \cos^2 \phi_2 \sin 2v + 9.946
  VT + 9, 947 145 X 10-
  δu = VT - U +. 0019 7444 68
                                                                                                                                                                     \delta v = -UT + V + . OOI97
                                                                                                        47.253
  + \delta u = 
                   134
                  +180
                                                                                                                                                                                                  +180
                                                                                                               00.443
                                                                                                                                                                                                                                                                                 58,23
                                                                                                                                                                               a_{2-1} = a_{vu} = 180^{\circ} + v + \delta v
  \alpha_{1-2} = \alpha_{uv} = 180^{\circ} - u + \delta u
                           Line No. 1, See Tables 1 and 2. True distance 80, 466. 490
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

```
00.000 2. Teriminus
               +.193
                                         59355
                                                                                                      2. west of 1.
                              98481956
                                                                                          sin φ, +.173 648/8 sin Δλ +.025
                                                                                          cos φ, 1,98480175 cos Δλ +,999
                                                                                  \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda \quad \cancel{7.999 68/27}
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 000 ii432
                                                                                                                                             cot u = M/sin Δλ + . 00 y 46293
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta\lambda - \frac{000000033}{2}
                                                                                                                                             -\cot v = N/\sin \Delta \lambda =
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + \frac{7.025}{2000} = \frac{32645}{100}
csc d +39.640 9324
                                                                             _ cot d +39. 6283/
1 + cos d +1.99968177
                                                                               1-cos d +.000 3/823
(\sin \phi_1 + \sin \phi_2)^2 \frac{\tau_1/20576/2}{(\sin \phi_1 - \sin \phi_2)^2} \frac{3.1 \times 10}{(\sin \phi_1 + \sin \phi_2)^2}
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{2.0602976542}{1.0602976542} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_4 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976542} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.06029765} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.06029765} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.06029765} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.0602976} K_5 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{9.74138 \times 10^2}{1.06029} K_5 = (\cos \phi_1 - \cos \phi_1 - \cos \phi_2)^2 / (1 - \cos \phi_1 - \cos \phi_2)^2 / (1 - \cos \phi_1 - \cos \phi_2)^2 / (1 - \cos \phi_2)^2 / (1 - \cos \phi_1 - \cos \phi_2)^2 / (1 - \cos \phi_2)^2 / (1
X=K1+K2 +.0603093956 Y=K,-K, +.0602879128 XY +. 00363580901
x2 +. 00363698196 42+.00363463243 d. +.0252291222d.2+,000636508607
A=64d, +16d2 cot d +2.01924 4063 D=48 sin d +8d2 csc d +1.412 723957
B = -2D-2815447914E=30 sin 2d+1.513 1052 sin 2d+.05043684
C = -(30d_n + 8d_n^2 \cot d + E/2) -1.715 - 216 -38
                                                                                                                                       AX +0.121715-043
BY -. 170340357
                                                                               CX2 -,006 23 82 11
                                                                                                                                                     DXY +-0051363 9167
                                                                          \Sigma = AX + BY + CX^2 + DXY + EY^2 - O44237553
\delta d_f = -(f/4)(Xd_r - 3Y \sin d) + 2 - 509345 - X/10 - \delta d_f^2 = +(f^2/128) \Sigma - 3.99/102
                                                                                         d + 8d, + 8d; + . 025 - 13/6955
d + 8d + 1.025 3316 995
S(\delta d_f) = a(d_r + \delta d_f) 260
                                                                                                      S(\delta d_{f^2}) = a(d_r + \delta d_f + \delta d_{f^2}) / (60)
                                                                          T = d/sin d +1. 000 105-928
                                                           タタンクユ
                                                                                                                                sin 2v _______
                                                                                                                                                                                   0296
U = (f/2) \cos^2 \phi_1 \sin 2u \frac{\tau}{L} = 16.03 \sqrt{3} \sqrt{3} \sqrt{2} \sqrt{6}
                                                                                                                   V = (f/2)\cos^2\phi_2 \sin 2v_2
VT - 4. 808 X
\delta u = VT - U - 1.4722
                                                                                                                          \delta v = -UT + V - / \cdot
+ δu <del>--</del>
- u _89
                                                                                                                                                   +90
                                                                                                                                                                                           00
           +180
                                                                                                                                               +180
                                                                                      17.506
                                                                                                                                                                                          00
                                                                                                                                 \alpha_{2-1} = \alpha_{vu} = 180^{\circ} + v + \delta v
\alpha_{1-2} = \alpha_{uv} = 180^{\circ} - u + \delta u
                  Line No. 2, See Tables 1 and 2. True distance 160 932, 956
                                                                                                                                                                                                  meters.
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

```
2. west of 1.
                                                                \Delta \lambda = \lambda_0 - \lambda
                                      sin φ, 1939 69362 sin Δλ T.
cos φ. - 345
                                      cos φ . 342 02014 cos Δλ t.
tan d. 2. 718
                                   \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda t. 020 134286
                                                            _ cot u = M/sin Δλ <u>ナー/38</u>
\cot v = N/\sin \Delta \lambda =
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u  \frac{\text{7.050.29/5.3}}{\text{2.9/5.3}} u 
csc d +19. 884 02443 cot d +19.858 8639 v 90
1+cos d +1. 998 13458 1-cos d +. 00126542 sin u . +. 99058100
(\sin \phi_1 + \sin \phi_2)^2 + 3.52961919 (\sin \phi_1 - \sin \phi_2)^2 / 41622 \times 10^{-6} \sin v - 1.000
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos \theta_1) \frac{7/.764 42527}{1.764 42527} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos \theta_1) \frac{7.007}{1.007}
X=K,+K,+1,76604444 Y=K,-K,+1,76380610 XY +3,114 95-996
x2 +3.118 91296 42+3.111 01196 d. +.050312752d.2+.0025
A=64d + 16d<sup>2</sup> cot d +4.024 33915 D=48 sin d +8d<sup>2</sup> csc d +2.816
B = -2D -5-633 3386 E = 30 sin 2d +3.0136194
                                                                _ sin 2d +100 455
                                                        AX + 7.101
C = -(30d_a + 8d_a^2 \cot d + E/2) - 3.4/8 38377
                                 CX2 -10.6616 4144
BY-9, 936 116 99
                                                               DXY +8-103
EY2 +9.305 59266
                                 \Sigma = AX + BY + CX^2 + DXY + EY^2 + 4 \cdot 658
\delta d_f = -(f/4)(Xd_2 - 3Y \sin d) + 000/50/19 \delta d_f^2 = +(f^2/128) \Sigma + 000000 4/8
d + 8d, +. 0504 62929
                                     -d + 8d + 8d 2 + 0504 633 4
S(\delta d_f) = a(d_r + \delta d_f) \frac{321}{862}
                                    \frac{977}{m} S(\delta d_{f^2}) = a(d_r + \delta d_f + \delta d_{f^2}) 32/865.641
                               T = d/sin d 1.000 42
sin 2u +, 27/
U = (f/2)\cos^2\phi, \sin 2u \neq 5
                                                 V = (f/2)\cos^2\phi_2 \sin 2v - 2
VT -2.182
δu = VT - U - 5, 483
                                                    \delta v = -UT + V - 5 - 4862
, + δu 🚄
                                                               + 90
                                                                             00
     +180
                                                             +180
                                                                               00
a_{1-2} = a_{uv} = 180^{\circ} - u + \delta u
                                                       a_{2-1} = a_{vv} = 180^{\circ} + v + \delta v
        Line No. 3, See Tables 1 and 2. True distance 321, 866. 796
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

```
00.000 2. Ter
\phi_2
sin φ, +, 226
                                              14397
                                                                                                                                                \Delta \lambda = \lambda_2 - \lambda_1
cos 0, T, 974
                                                                                                                   19364818 sin AA T. US
                                          15829
tan 0, +, 232
                                                                                      cos φ, 7. 984 80205 cos Δλ 7.998
tan 0, 7.176
                                                                               \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + \frac{991}{991} \frac{11869}{11869}
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda = -0.54 + 0.44 + 0.53 \cot u = M/\sin \Delta \lambda = -9.84 + 66.223
                                                                                                                                       -\cot v = N/\sin \Delta \lambda T \cdot 1.0065
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda \frac{7.055}{244} \frac{244}{853}
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + 0.025 + 35 - 1.05 = 1.34
                                                                      __ cot d +13.1446 8525
csc d + 13.182 6686
                                                                                                                                                    sin u +. 7/255013
1 + cos d +1.997 1186 9
                                                                            1-cos d +,00288131
(\sin \phi_1 + \sin \phi_2)^2 + 15983376 (\sin \phi_1 - \sin \phi_2)^2 + 100275581 \sin v + 170479821
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{7.0300331737}{(1 + \cos d)} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{7.9564434343}{(1 + \cos d)} K_3 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{7.95644343}{(1 + \cos d)} K_3 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{7.9564434}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.95644}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.9564}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.9564}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.9564}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.9564}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 + \cos d) \frac{7.956}{(1 + \cos d)} K_3 = (\sin \phi_1 - \cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\sin \phi_1 - \cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\sin \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\sin \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\sin \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_1 - \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) \frac{7.956}{(1 + \cos \phi_2)} K_3 = (\cos \phi_1 - \cos \phi_2) K_3 = (\cos \phi_1 - \cos \phi_2) K_4 = (\cos \phi_1 - 
X=K,+K,+1.036 425602 Y=K,-K,--.87641244 XY-
x2 +1.094 281694 x2+. 9680966 69 d .095 930171 d2+.005 7653 909
 A=64d_+16d_cot d+6,072 078 92 D=48 sin d+8d_cot d+4, 249
B = -2D - 8.49834060E = 30 \sin 2d + 4.53831630 \sin 2d + 1.1512772
C=-(30dr +8dr cot d+E/2)-5-15333727 AX +6.29356/654
BY + 7:448041257 CX2-5.536 135789 DXY -3.859856529
EY2 +3. 485865633
                                                                            \Sigma = AX + BY + CX^2 + DXY + EY^2 + 7.831 + 476 + 231
\delta d_f = -(f/4)(Xd_g - 3Y \sin d) - 00023573398 \delta d_f^2 = +(f^2/128) \Sigma + 7.03157 X
                                                                                      d + 8d, + 8d; + .025 695
d + 8d, +,075-694 437
S(\delta d_f) = a(d_r + \delta d_f) + \frac{482}{794} \cdot \frac{794}{743}
                                                                                                   S(\delta d_{f^2}) = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{4}{3} \delta d_f
                                                                       T = d/sin d +1.00096 2282 0
                                                                        51.912
 sin 2u - 0.998
                                                                                                                           sin 2v + 999
                                                    88056
 U = (f/2)\cos^2\phi_1 \sin 2u - collect \sqrt{5/1} \qquad V = (f/2)\cos^2\phi_2 \sin 2v + collet
                                                                                                                               UT -- .00 1608
 VT +, 00 16 45 4730
 Su = VT - U T. 003252 02 41
                                                                                                                     δv = -UT + V + -00326-19882
                                                                               10.718
 – u .
            +180
                                                                                                                                          +180
                                                                                                                            a_{2-1} = a_{vu} = 180^{\circ} + v + \delta v
 \alpha_{1-2} = \alpha_{11V} = 180^{\circ} - u + \delta u
                  Line No. 4, See Tables 1 and 2. True distance 482, 798. 163
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6.378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$

```
09.206 1
                                70
sin ø._* 959
                                                                                                                                                  2. west of 1.
                                                                                                                               sin φ, -93969262 sin Δλ
cos d. 282
                                                                                                                                cos φ. - 342 03014 cos Δλ
                                                                                                                     \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + 994
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda = -152 \quad 0.7537
                                                                                                                                                                                                   __ cot u = M/sin Δλ <u>__</u>
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + .35/50207
                                                                                                                                                                                                        \_\cot v = N/\sin \Delta\lambda 
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 
 csc d +9.952 17310 cot d +9.902 40838
 1+cos d +1.994 93963 1-cos d +.00506037 sin u +.865 57916
 (\sin \phi_1 + \sin \phi_2)^2 3.605 96/84 (\sin \phi_1 - \sin \phi_2)^2 .000 3823 72 \sin v 7. 706
 K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{7 / 80755437}{6} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{7 / 80755425032}{6}
 X=K1+K2+1.88309667 Y=K1-K2+1.73201307 XY+3.36154616
 X2 +3.546 05307 Y2 +2, 99986581 d. +. 100644334 d.2 +. 010129283
 A=64dr+16dr cot d +8.046 10597 D=48 sin d+8dr csc d +5.62929204
 B = -2D - 11.25858408 E = 30 sin 2d +5.997 96430 sin 2d +.19993214
 C=-(30d, +8d, cot d+E/2)-6.82074642
                                                                                                                                                                                           AX +15.15159536
                                                                                                       CX2 - 24.18672878 DXY +18.360 19584
 BY - 19.500 0035 2
 EY^2 + 17.99308773 \Sigma = AX + BY + CX^2 + DXY + EY^2 + 7.81814
 d + 8d + . 100 926113
                                                                                                                            _d + δd, + δd, 2 - 100 92682
                                                                                                                                                -_{\rm m} S(\delta d_{\rm f}^2) = a(d_{\rm r} + \delta d_{\rm f} + \delta d_{\rm f}^2) = a(d_{\rm r} + \delta d_{\rm f}^2) = a(d_{\rm r}
                                                                                                          T = d/sin d 1.001 6 90 22
                                                                                                                                                                                       sin 2v
                                                                                                                                                                     V = (f/2)\cos^2\phi_2 \sin 2v_1
  U = (f/2) \cos^2 \phi_1 \sin 2u - 1
   _ u __/2/
                  +180
                                                                                                                             31.296
                                                                                                                                                                                         \alpha_{2-1} = \alpha_{vu} = 180^{\circ} + v + \delta v
  \alpha_{1-2} = \alpha_{uv} = 180^{\circ} - u + \delta u
                            Line No. 5, See Tables 1 and 2. True distance 643 732.429
```

130

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$

1 radian = 206,264.8062 seconds

O 10 10 Origin	0 1 11
φ ₁ 9 55 09.138 2. Terminus	λ ₁ 10 39 43.554
ϕ_2	$\lambda_2 = 18 0 0$
$\phi_{\rm m} = \frac{1}{2}(\phi_1 + \phi_2) = \frac{9}{57} = \frac{57}{34.569} = \frac{12}{34.569}$. Always west of 1.	$\Delta \lambda = \lambda_2 - \lambda_1 \qquad 7 20 16.446$
$\Delta \phi_{\rm m} = \frac{1}{2} (\phi_2 - \phi_1)$ 2 25.431	$\Delta \lambda_{\text{m}} = \frac{1}{2} \Delta \lambda_{\text{m}} = 3 40 08.223$
$\sin \phi_{\rm m} = +0.17295377 \qquad \sin \Delta \phi_{\rm m} + 0.00070507$	$\sin \Delta \lambda + 0.12772073$
$\cos \phi_{\rm m} = \frac{+ 0.98492994}{\cos \Delta \phi_{\rm m} + 0.999999975}$	$\sin \Delta \lambda_{m} + 0.06399152$
$k = \sin \phi_{\rm m} \cos \Delta \phi_{\rm m} + 0.17295373$ K =	$\sin \Delta \phi_{\rm m} \cos \phi_{\rm m} + 0.00069444$
$H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m + 0.97008649$	1 – L <u>0.99602708</u>
$L = \sin^2 \Delta \phi_{\rm m} + H \sin^2 \Delta \lambda_{\rm m} + 0.00397292$	$\cos d = 1 - 2L $ 0.99205416
d <u>+ 0.1261458534</u> sin d <u>+ 0.12581156</u>	$T = d/\sin d + 1.00265710$
$U = 2k^2/(1 - L) + 0.060064618$ $V = 2K^2/L + 0.000242767$	$E = 60 \cos d + 59.52324960$
X = U + V + 0.060307385 $Y = U - V + 0.059821851$	$D = 8 (6 + T^2) + 56.04257008$
A = 4T $(16 + ET/15) + 80.12738460$ C = 2T - $\frac{1}{2}$ (A + E) - 67.820002	290 B = -2D <u>-112.08514016</u>
X(A + CX) + 4.58561299 $Y(B + EY) - 6.49212745$	DXY + 0.20218475
$(TX - 3Y)$ -0.118997925 $\delta f = -(f/4)(TX - 3Y)$ $+1.008$	53 × 10 ⁻⁴
$T + \delta f$ $+ 1.00275795$ $S_1 = a \sin d (T + \delta f)$ 804,6	65.223 meters
$\Sigma = X(A + CX) + Y(B + EY) + DXY - 1.70432971$ δf^2	$= + (f^2/128) \Sigma -1.53 \times 10^{-7}$
$T + \delta f + \delta f^2 + 1.00275780$ $S_2 = a \sin d ($	$T + \delta f + \delta f^2$) 804,665.102 meters
$\sin (\alpha_2 + \alpha_1) = (K \sin \Delta \lambda)/L + 0.02232473$	$\alpha_2 + \alpha_1 = \frac{361}{361} = \frac{16}{16} = \frac{45.188}{16}$
$\sin (\alpha_2 - \alpha_1) = (k \sin \Delta \lambda)/(1 - L) + 0.02217789$	$a_2 - a_1 = 178 + 43 + 45.107$
$\frac{1}{2}(\delta \alpha_1 + \delta \alpha_2) = -(f/2) \text{ H (T + 1) } \sin (\alpha_2 + \alpha_1) \frac{-7.351613 \times 10^{-5}}{2.00000000000000000000000000000000000$	$\delta a_1 = 7.350644 \times 10^{-5}$
$\frac{1}{2}(\delta \alpha_2 - \delta \alpha_1) = -(f/2) \text{ H (T-1) sin } (\alpha_2 - \alpha_1) = -0.000969006 \times 10^{-5}$	$\delta a_2 = 7.352582 \times 10^{-3}$
$a_1 = 91 = 16 = 30.040$	
	α ₂ 270 00 15.147
$\delta \alpha_1 = -15.162$	$\delta a_2 = -15.166$
$a_{1-2} = 91 = 16 = 14.878$	a ₂₋₁ 269 59 59.981
$a_{1-2} = a_1 + \delta a_1$	$\alpha_{2-1} = \alpha_2 + \delta \alpha_2$

d = 7° 13' 39".450

Line No. 6, see Tables 1 and 2. (Pages 65,66)

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$

```
54 28,501 1. Origin
                        00.000 2. TERMINUS
                  00
sin 6, T. 705 96946
                                        2. west of 1.
                                                            \Delta \lambda = \lambda - \lambda.
cos p. t. 708 24228
                                  sin φ, +.642 7876/sin Δλ +0.125
tan 0, +. 996 79091
                                  _ cos φ, + , 766 04444 cos Δλ +0. 992 10491
\tan \phi_2 + 839 09963 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + 992 05004
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda = -106 \quad 10993 \quad \cot u = M/\sin \Delta \lambda = -846 \quad 09916
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + \frac{12581339}{\cos v} \cot v = N/\sin \Delta \lambda + \frac{11.00368900}{\cos v}
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + 125 84 40 4 u
                               cot d + 7.883 170629 44
csc d + 7. 946 343 744
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) + \frac{9/3 202777}{6} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{7.502}{6} \frac{134098}{6}
X=K1+K2+1.415336875 Y=K,-K2+.411068679 XY +.581800660
X2 +2.003 178 470 Y2+. 168 977 459 d, +. 126 178588 d, 2 +. 015 92 1036
A=64d<sub>r</sub>+16d<sub>r</sub><sup>2</sup> cot d +10-0835C/536 D=48 sin d +8d<sub>r</sub><sup>2</sup> csc d +7-052626/19
B = -2D -14.105 25 2238 E = 30 sin 2d +7. 490 615/0 sin 2d +. 249 68 717
C = -(30d_r + 8d_r^2 \cot d + E/2) - 8.534931134
                                                   AX +14. 271636465
BY-5: 798 227 405 CX2-17.096589655 DXY + 4.103 222531
EY2 +1.265745106 Σ=AX+BY+CX2+DXY+EY2 -3.254212958
\delta d_f = -(f/4)(Xd_r - 3Y \sin d) - 1.98365 \times 10^{-5} \delta d_f^2 = +(f^2/128) \Sigma - 2.9218 \times 10^{-7}
dr + 8d + 126158 762 dr + 8d + 8d + 8d + 126 158469
S(\delta d_f) = a(d_r + \delta d_f) \frac{\text{$f$} \circ \text{$f$} \cdot 666.623}{\text{$m$}} S(\delta d_{f^2}) = a(d_r + \delta d_f + \delta d_{f^2}) \frac{\text{$f$} \circ \text{$f$} \cdot 664.75^{-4}}{\text{$f$} \circ \text{$f$} \cdot 644.75^{-4}}
                             08.632
                                                   sin 2v T. 999 99322
                      19633
sin 2u ____ 986
U = (f/2)\cos^2\phi_1\sin 2u - 8.385065110^{-4} V = (f/2)\cos^2\phi_2\sin 2v + 9.946832X
                                                     UT -8.407356 X 10.
VT + 9.473265-X10-4
δu = VT - U +18.35-833 × 10 - 4
                                                 δv = -UT + V - 18. 354178 X
                                  18.668
+ δu <u></u>
                                                    + Sv_+
- u _-/30
                                                      +v +44
     +180
                                                                                  58.828
a_{1-2} =
                                                   a_{2-1} = a_{yy} = 180^{\circ} + v + \delta v
a_{1-2} = a_{uv} = 180^{\circ} - u + \delta u
```

Line No. 7, See Tables 1 and 2. True distance 804, 664. 771 meters.

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

 $f/2 \approx 0.00169503765$, $f/4 \approx 0.000847518825$, $f^2/128 = 0.0897860195 \times 10^{-6}$

```
26-803N 1. Origin
                                                                      00.000 N 2.
                                                                                                                                                                                                                                      00 00.000W
                                                                                                                        TERMINUS
sin 6, 7.970
                                                  32692
                                                                                                                          2. west of 1.
                                                                                                                                                                                   \Delta \lambda = \lambda_2 - \lambda_1 - 46
                                                                                                     sin φ, <u>T. 93969262</u>sin Δλ <u>T. 727 78462</u>
cos 0, +, 24/
                                                  29675
tan 0, + 4.012 9858
                                                                                                 cos φ, +.34203014 cos Δλ +. 685 805 77
\tan \phi_2 + 2.74747742 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda \frac{7.96952475}{2475}
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - \frac{100112469}{9}
                                                                                                                                                                   __ cot u = M/sin Δλ ____00/54536
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + .728 \text{ or } 35
                                                                                                                                                                      _ cot v = N/sin Δλ <u>71.000 3994</u>7
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + \frac{\tau \cdot 248 \ 91030}{} u
                                                                                        __ cot d +3.890 94993 v 44
 csc d + 4.017 3 9855
1 + cos d +1-96852495 1-cos d +. 031 49525 sin u +. 999 99 880
(\sin \phi_1 + \sin \phi_2)^2 \frac{3.648}{1946} \frac{1946}{4} (\sin \phi_1 - \sin \phi_2)^2 \frac{9.3846034}{1946} \frac{7.90696556}{1946}
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) + \frac{1.85325312}{1.85325312} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325312}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325353}{1.85325312} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.8532535}{1.85325} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325}{1.85325} K_3 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1.85325} K_3 = (\cos \phi_1 - \cos \phi_2) + \frac{1.85325}{1
X=K,+K,+1.883 06894 Y=K,-K,+1.82343130XY +3.433 65814
X2 +3.545 94863 Y2+3.334 9235 9 d. -2515 632076 d. 2.063 2835 443
A=64d, +16d2 cot d+20.03971099 D=48 sin d+8d2 csc d+13.98191215
B = -2D - 27. 963 83430 E = 30 sin 2d +14. 464 95396 sin 2d +. 482 165-13-2
C = -(30d_n + 8d_n^2 \cot d + E/2) - 16.749.20803
                                                                                                                                                       __AX +37. 136 1573 2
                                                                                    __ CX2 -59.39/83/27 DXY + 48.009/0647
 BY -50. 99028028
 EY^2 + 48.09486665 \Sigma = AX + BY + CX^2 + DXY + EY^2 + 23.45 - 801879
\delta d_{f} = -(f/4)(Xd_{r} - 3Y \sin d) + 00015 + 25312 - \delta d_{f}^{2} = +(f^{2}/128) \Sigma + 0.1062021 \times 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.0015 + 0.001
 dr + 8df + . 2523147588 dr + 8df + 8df + . 25231685
S(\delta d_f) = a(d_r + \delta d_f) \frac{1}{1609315.609} S(\delta d_{f^2}) = a(d_r + \delta d_f + \delta d_{f^2}) \frac{1609329.043}{1609329.043} 
                                                                                        T = d/sin d 1,010625-647
                                                                                37.506
 sin 2u - . 003 090 7/
                                                                                                                                                        U = (f/2)\cos^2\phi_1\sin 2u - 3-0629403 \times 10^{-7}V = (f/2)\cos^2\phi_1\sin 2v + 1.98281125 \times 10^{-1}V
 VT +2. 0038860 X
                                                                                                                                                             IIT -3-095-4860
 δu = VT - U+2.006 9489 X 10 - 4
                                                                                                                                                  \delta v = -UT + V + 1.988
  + δu _____
 - u _ -
               +180
                                                                                                                                                                           +180
 \alpha_{1-2} = \alpha_{uv} = 180^{\circ} - u + \delta u
                                                                                                                                                          \alpha_{2-1} = \alpha_{VII} = 180^{\circ} + v + \delta v
                       Line No. 8, See Tables 1 and 2. True distance 1,609, 329. 060
```

133

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$

```
42.130 1. Origin.
                                                              00.000 2. TermINUS
\sin \phi_1 + 466
                                                82458
                                                                                                      2. west of 1.
                                                                                       sin φ, +.642 78761 sin Δλ +.776
cos 0, T. 884
                                               34994
tan 0, +, 527
                                                                                         cos φ, +.766 04444 cos Δλ +.630 626 91
                                                                                  .\cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda \quad \frac{\tau.727}{28811}
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 447 66557
                                                                                                                                      \cot u = M/\sin \Delta \lambda + 576 
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda = -000 984 88 \cot v = N/\sin \Delta \lambda = -001 2690
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + \frac{1.686 \cdot 33229}{0.0000} u = \frac{60}{0.0000}
                                                                             _ cot d + 1.059 62346
                                                                                                                                                               _ v _ 10
 csc d +1. 45702018
 1 + cos d +1. 7272 8811
                                                                               1-cos d +.272 71189 sin u +1866
 (\sin \phi_1 + \sin \phi_2)^2 \frac{t/.23/2392/}{(\sin \phi_1 - \sin \phi_2)^2 + .03096299} \sin v \frac{t - 999}{(\sin \phi_1 + \sin \phi_2)^2}
 K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{\tau_1 / 1/2}{2} \frac{8/6.352}{6} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau_1 / 1/3}{6} \frac{53.7}{3} \frac{36.0}{6}
X=K1+K2+1826 353 71 Y=K1-K2 +1599 2089 9XY +1495 21642
X2 +, 682 86045 Y2 +, 359 13531 d, +, 756433978d, 2 +, 572 192
 A=64d_+16d_cot d+58.113 16931 D=48 sin d +8d_cos d+37.531
B = -2D -15.042 9111 E = 30 sin 2d +29. 949 6783 sin 2d +. 998 32361
 C = -(30d_a + 8d_a^2 \cot d + E/2) - 42.57855 + 485
                                                                                                                                    AX +48, 02203141
 BY -44. 91/62970 CX2-29.034 23950 DXY +18.58/2573/
 EY^2 + 10.755 - 98700 \Sigma = AX + BY + CX^2 + DXY + EY^2 + 3.353 35652
 \delta d_f = -(f/4)(Xd_r - 3Y \sin d) + 0005/5 - 996 - \delta d_f^2 = +(f^2/128) \Sigma + 000000 3011
                                                                                      _d + 8d, + 8d, + 8d, + . 756 9502 75
 d + 8d, +. 256 949974
 S(\delta d_f) = a(d_r + \delta d_f) + \frac{11}{27} \frac{1983 \cdot 169}{983 \cdot 169} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta d_{f^2}) + \frac{11}{27} \frac{1985 \cdot 088}{985 \cdot 088} = a(d_r + \delta d_f + \delta
                                                                           T = d/sin d 1.102 1395-74
                                                                           42.678
                                                                                                                                 sin 2v --- 00 2
 U = (f/2)\cos^2\phi_1 \sin 2u - 00114 753032 V = (f/2)\cos^2\phi_2 \sin 2v - 2.52459
 VT -- 00000 278245
 δu = VT - U -. 00/15030367
                                                                                                                           δv = -UT + V - . 00126 7252 04
                                                                                  57,267
                                                                                                                                                    +
                                                                                                                                                +180
            +180
                                                                                          11.394
                                                                                                                                  a_{2-1} = a_{yy} = 180^{\circ} + v + \delta v
 \alpha_{1-2} = \alpha_{11V} = 180^{\circ} - u + \delta u
```

Line No. 9, See Tables 1 and 2. True distance 4,827, 984. 247 meters.

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

```
OPISIN.
                                                    TERMINUS
sin 0, +.578
                                                     2. west of 1.
                                                                              \Delta \lambda = \lambda_0 - \lambda_1
cos 0, +, 816
                                              sin do +.642 78761 sin DA +.865
                                              cos φ, +, 166 04444 cos Δλ -, 50062701
tan 6, 1, 708 77
                                           \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda
M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + \frac{1.474 \text{ 094 9862}}{1.474 \text{ 094 9862}} \cot u = M/\sin \Delta \lambda + \frac{1.474 \text{ 094 9862}}{1.474 \text{ 094 9862}} \cot u = M/\sin \Delta \lambda
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda \frac{\tau.864}{4410} \frac{4410}{22} \cot v = N/\sin \Delta \lambda \frac{\tau.}{2}
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + \frac{7.99828072}{2}
csc d +1.00172324
1 + cos d <u>71.058</u> 61401
                                         1-cos d +.941 385 99 sin u . +.66
(\sin \phi_1 + \sin \phi_2)^2 + 1.49041568 = (\sin \phi_1 - \sin \phi_2)^2 + .0041924848 \sin v + .707
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{L409 893402}{L409 893402} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{L00443}{L00443}
X=K,+K,+1.412346926
                                        Y=K,-K, +1.403 439878 XY +1.982
X2 +1. 994723839 Y2 +1. 969643491 dr +1.512 148751 dr2 +2
A=64d, +16d, cot d +98.925 6.36 322 D=48 sin d +8d, csc d +66.
B = -2D-132.48345966 E = 30 sin 2d +3.516794766
C = -(30d_r + 8d_r^2 \cot d + E/2) - 48.193817794
                                         CX2-96. 133357 13 8
BY -185.93257052
EY2 +6. 915 012877
                                         \Sigma = AX + BY + CX^2 + DXY + EY^2
\delta d_{f} = -(f/4) (Xd_{r} - 3Y \sin d) + 001752 162
                                                             \delta d_f^2 = +(f^2/128)\Sigma
d + 8d, +1.5/3 9009/3
                                              .dr + 8df + 8df + 71.513900542
S(\delta d_f) = a(d_r + \delta d_f) - 9.655, 972.492
                                                     \int_{\mathbf{m}} S(\delta d_{\mathbf{f}^2}) = a(d_{\mathbf{r}} + \delta d_{\mathbf{f}} + \delta d_{\mathbf{f}^2})
                                      T = d/sin d +1.51475305
                                       14,382
                                                                                   999
                                001120864
                                                            V = (f/2) \cos^2 \phi_2 \sin 2v + 00099
 U = (f/2) \cos^2 \phi_1 \sin 2u \tau
 \delta u = VT - U
                                                                \delta v = -UT + V
 - u _---
                                                                      + v +4
                                                                           +180
      +180
\alpha_{1-2} = \alpha_{uv} = 180^{\circ} - u + \delta u
                                                                   a_{2-1} = a_{vu} = 180^{\circ} + v + \delta v
          Line No.10, See Tables 1 and 2. True distance 9, 655 969. 757
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

```
12.425MI Or1911
                        00.000 (N)2. TermINUS
sin 0, +.050
                                           2. west of 1.
                                                               \Delta \lambda = \lambda - \lambda, \pm 88
cos φ. - 998
                                    sin φ, + ,93969262 sin Δλ + , 999
tan 6. -05/
                                    cos φ. +. 342 03014 cos Δλ 4. 030
                    \frac{47742}{\cos d} = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + 0.05484028
M = cos φ, tan φ, - sin φ, cos Δλ +3-742869955 cot u = M/sin Δλ+2-743437355
N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda = \frac{-001656331}{\cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda}
\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u \frac{T_2 99849511}{2}  , \frac{36}{3}
csc d +1.00150716 cot d +.05492347
                                _ 1-cos d + . 945 1591 2
                                                                 sin u + 342 464 78
1 + cos d +1.054 84078
(\sin\phi_1 + \sin\phi_2)^2 t, \frac{981408127}{408127} (\sin\phi_1 - \sin\phi_2)^2 t, \frac{989831752}{408127} \sin v
K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos \theta_1) + 930385083 K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos \theta_1) + 8356599988
X=K,+K,+1.766045081 Y=K,-K,+.094725085 XY+.16728877
X2+3.11891523 Y2+.0089728417 d. 1.515-928018 d.2+2.24803776
A=64d_+16d2cot d + 99.03885/009 D=48 sin d +8d2csc d +66.33977544
B = -2D -132.69955088 E = 30 sin 2d 13.285 4950 sin 2d +. 1095/650
C=-(30d, +8d2 cot d+E/2) -48-130316 97 AX +114-907075654
BY-12.568081137 CX2-150.114378622 DXY+11.097899 435
EY^2 + O29480227 \Sigma = AX + BY + CX^2 + DXY + EY^2 + 23.35799496
\delta d_f = -(f/4)(Xd_r - 3Y \sin d) - \frac{0020284936}{606} \delta d_f^2 = +(f^2/128)\Sigma + \frac{100000209668}{60000209668}
                                    d_r + \delta d_f + \delta d_f^2 + 1.51.3901621
d + 8d, +1.51.3899.5-24
S(\delta d_f) = a(d_f + \delta d_f) \frac{9}{9} \frac{6.5.5}{5.5} \frac{96.3}{5} \frac{6.3.3}{5} m S(\delta d_{f^2}) = a(d_f + \delta d_f + \delta d_{f^2}) \frac{9}{9} \frac{6.5.5}{5} \frac{999.008}{1008} m
                               T = d/sin d +1-51821276
                           57232
                                                      sin 2v ___ 0033/2
U = (f/2)\cos^2\phi_1 \sin 2u + 1.087944 \times 10^{-3} V = (f/2)\cos^2\phi_2 \sin 2v - 6.5683
VT - 9, 972
                                                       UT +1,65/23067
δu = VT - U - . 00/0889
                                                   δv = -UT + V - · 001652 38
                                     44.610
      __
                                                            +180
     +180
                                                                                       00.811
                                                      a_{2-1} = a_{vii} = 180^{\circ} + v + \delta v
\alpha_{1-2} = \alpha_{11V} = 180^{\circ} - u + \delta u
        Line No.11, See Tables 1 and 2. True distance 9, 655, 977. 148
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

 $f/2 = 0.00169503765, \ f/4 = 0.000847518825, \ f^2/128 = 0.0897860195 \times 10^{-6}$ $1 \ radian = 206,264.8062 \ seconds$

0 1 11 - , 0 1 11
φ, 10 00 00.0 1. Origin λ,
φ ₂ 69 46 36.594 2. Terminus λ ₂
$\phi_{\rm m} = \frac{1}{2} (\phi_2 + \phi_1) \frac{69}{53} \frac{318.387}{18.387} 2$. Always west of 1. $\Delta \lambda = \lambda_2 - \lambda_1 \frac{15}{39} \frac{39}{38.398} \frac{38.398}{18.398}$
$\Delta \phi_{m} = \frac{1}{2} (\phi_{2} - \phi_{1}) = \frac{6 + 1}{2} \frac{1}{2} \frac{1}$
$\sin \phi_{\rm m} \frac{\tau \cdot 93903474}{\sin \Delta \phi_{\rm m}} = 00194756 \sin \Delta \lambda \frac{\tau \cdot 26989234}{\sin \Delta \lambda}$
$\cos \phi_{\rm m} + .34384960 \cos \Delta \phi_{\rm m} + .2999810 \sin \Delta \lambda_{\rm m} + .13621582$
$k = \sin \phi_{\rm m} \cos \Delta \phi_{\rm m} + 939022956$ $K = \sin \Delta \phi_{\rm m} \cos \phi_{\rm m} - 000669667127$
$H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m + \frac{118 - 28 + 245}{1 - L} = \frac{1 - L + 997802502}{1 - L + 997802502}$
$L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m - 002 / 97 4 98 \qquad \cos d = 1 - 2L + 99.5605 004$
d+.093 789 35 93 sin d+.09365191 T=d/sin d+1.001467661
$U=2k^2/(1-E)$ +1.767 412 109 $V=2K^2/L$ +.000 408 1504
X=U+V+1.767820259 Y=U-V+1.767003959 XY+3.123745396
X2 +3-125-188 468 Y2 +3.12230299/ E=60 cos d +59-73630024
A=4[16T+(E/15)T2] +80.07040344 D=8(6+T2) +56.023499808
B=-2D-112-046 999 616 C=2T-1/(A+E)-67. 900 41652
AX +141,550081348 BY -197,987491887 CX2-212.2015-98681
DXY +195.003149599 EY2+186-5148289118f = -(f/4) (TX-3Y) +.00299224747
$T + \delta_f + 1.004459909$ $S_1 = a \sin d (T + \delta_f) = 599.995.255_m$
$\delta_{02} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + 8.33923 \times 10^{-6}$
$T + \delta_f + \delta_{f^2} + \frac{1.004468248}{\text{S}_2 = a \sin d (T + \delta_f + \delta_{f^2})} + \frac{600,000.136}{\text{m}}$
$\sin (a_2 + a_1) = (K \sin \Delta \lambda)/L082 24926 a_2 + a_1 355 16 56.099$ $\sin (a_2 + a_1) = (K \sin \Delta \lambda)/(1 - 1) + 253 99325 a_2 + a_1 17 09 821$
$\sin (a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L) + 25399325 a_2 - a_1 $ $\frac{165}{1709.82}$ $\frac{1709.82}{1709.82}$ $\frac{165}{1709.82}$ $\frac{1709.82}{1709.82}$ $\frac{165}{1709.82}$ $\frac{1709.82}{1709.82}$ $\frac{1709.82}{1709.$
$\frac{7(0a_1 + 0a_2) = -(1/2) \Pi(1+1) \sin (a_1 + a_2) + \sqrt{(1/2)} + (1$
$\frac{1}{2}(\delta a_2 - \delta a_1) = -(1/2) H(1-1) \sin (a_2 - a_1) \frac{1}{2} \frac{\partial (\partial a_1)}{\partial a_2} \frac{\partial (\partial a_2)}{\partial a_3} \frac{\partial (\partial a_2)}{\partial a_4} \partial$
$\delta a_1 + 00 06.820 \delta a_2 + 00 06.789$
$a_{1-2} = 260 17 09.180$ $a_{2-1} = 94 59 59.928$
$a_{1-2} = + a_1 + \delta a_1$ $a_{2-1} = + a_2 + \delta a_2$
$d = \frac{3}{3} \frac{3.2}{2.5.4444} $ True distance <u>600,000.00</u> meters
True Azimuths 260 17 09,79 95 00 00.000

Line No. 12

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$ 1 radian = 206,264.8062 seconds

· · · · · · · · · · · · · · · · · · ·
φ, 60 00 00.000 1. Origin λ,
φ ₂ <u>54 18 59.3192. TERMINUS</u> λ ₂
$\phi_{\rm m} = \frac{1}{2} (\phi_2 + \phi_1) \frac{5 - 0.09 - 1.9 - 0.59}{2.}$ Always west of 1. $\Delta \lambda = \lambda_2 - \lambda_1 + 10.37 + 10.172$
$\Delta \phi_{\rm m} = \frac{1}{2} (\phi_2 - \phi_1) - \frac{2^{\circ}}{50} = \frac{50}{30} = \frac{30.1340}{30.1340} \qquad \Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda + \frac{18}{35.086} = \frac{35.086}{30.1340}$
$\sin \phi_{\rm m} + 840 /9/54 \sin \Delta \phi_{\rm m} - 1049 57776 \sin \Delta \lambda + 184 28574$
$\cos \phi_{\rm m} \frac{\tau_{\star} 542}{32073} \frac{32073}{\cos \Delta \phi_{\rm m}} \frac{\tau_{\star} 998}{\tau_{\star} 998} \frac{17027}{1027} \sin \Delta \lambda_{\rm m} \frac{\tau_{\star} 092}{\sin \Delta \lambda_{\rm m}} \frac{53996}{\sin \Delta \lambda_{\rm m}}$
$k = \sin \phi_m \cos \Delta \phi_m + 1839 + 138356 = K = \sin \Delta \phi_m \cos \phi_m - 1026887047$
$H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m + \frac{29165383}{1 - L} + \frac{7.995044426}{1 - L}$
$L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m + \frac{1.00495557392}{1.00495557392} \cos d = 1 - 2L + \frac{990088852}{1.00495557392}$
d+ 140 9087457 sin d+ 14044242 T=d/sin d+ 1.0033 16844
U=2k2/(1-L) +1. 41531 008 V=2K2/L +.291757 648
X=U+V+1.107011128 Y=U-V+1.123562432 XY+1.918008404
X2 +2. 914 114 369 Y2 +1. 262 392539 E=60 cos d +59. 405 33112
A=4[16T+(E/15)T2] +80-158 96096 D=8(6+T2) +56.053157512
B=-2D =112-106315024 C=2T-1/2(A+E) -67.775-51235
AX + 136.837576454 BY -125. 958 443 924 CX2-197.50559 4405
DXY + 109.510 427175 EY2 + 74, 892848736f = -(f/4) (TX-3Y) +.001405142
$T + \delta_f + \frac{1.004721986}{\text{S_1} = a \sin d (T + \delta_f)} = \frac{900.000.559}{\text{m}}$
$\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) - 370205 \times 10^{-6}$
$T + \delta_f + \delta_{f^2} + 1.004721616$ $S_2 = a \sin d (T + \delta_f + \delta_{f^2}) = 0.00.238$
$\sin (a_2 + a_1) = (K \sin \Delta \lambda)/L - 99986388$ $a_2 + a_1 = 270$ S6 43.429
sin (a - a) - (b sin A))/(1-1) + 155-41/39 a-a 171 12 27 136
$\frac{1}{2}(\delta c_{1} + \delta a_{2}) = -(f/2) H(T+1) \sin(a_{1} + a_{2}) + 9.90233366 \times 10^{-4} \delta a_{2} + 9.90488199 \times 10^{-4}$
$ \frac{1}{2} 1$
a ₁ 49 56 34.896 a ₂ 331 is 08.532
$\delta a_1 + 03$ 24.303 $\delta a_2 + 03$ 24.198
a_{1-2} 49 59 59. 199 a_{2-1} 231 03 32.730
$a_{1-2} = +a_1 + \delta a_1$ $a_{2-1} = +a_2 + \delta a_2$
d = 8. 04 34.4/2 True distance 900,000.00 meters
Two Asimuths 9 / // /
\$0 00 00.000 221 03 33.37
Tino No. 17

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$ 1 radian = 206,264.8062 seconds

O 1 11 O 1 11
φ. 19 51 31.432 1. Origin λ.
φ ₂ 25 12 03.231 2. TermINUS λ ₂
$\phi_{\rm m} = \frac{1}{2} (\phi_2 + \phi_1) \frac{-32}{2} \frac{31}{40.332} \frac{40.332}{2} 2$. Always west of 1. $\Delta \lambda = \lambda_2 - \lambda_1 \frac{7}{35} \frac{35}{26-307}$
$\Delta \phi_{m} = \frac{1}{2} (\phi_{0} - \phi_{1}) = \frac{2}{2} \frac{40}{45.899}$ $\Delta \lambda_{m} = \frac{1}{2} \Delta \lambda_{m} = \frac{3}{2} \Delta \lambda_$
$\sin \phi_{\rm m} + 38316413 \sin \Delta \phi_{\rm m} + 046 60231 \sin \Delta \lambda + 13209481$
$\cos \phi_{\rm m} \frac{.923 \ 680.37}{1000} \cos \Delta \phi_{\rm m} \frac{t.998}{1000} \frac{9/35.2}{1000} \sin \Delta \lambda_{\rm m} \frac{t.066}{19.25.7}$
$k = \sin \phi_m \cos \Delta \phi_m + 382747830$ $K = \sin \Delta \phi_m \cos \phi_m + 043045634$
$H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m + 1851 + 01341 + 1 - 1 + 1940 + 948 + 941 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $
$L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m + \cos^2 \frac{900 + 3}{3} \qquad \cos d = 1 - 2L + \frac{988 + 9999}{3}$
d+1/37803447 sin d+-1/5317496 T=d/sin d+1/005952243
$U=2k^2/(1-L)$ + 294 730848 $V=2K^2/L$ + 628 062 491
X=U+V+,922793339 Y=U-V-,333331643 XY307596220
X2 + . 85/547 547 Y2 + . 111 109 984 E=60 cos d + 59. 29/945400
$A = 4[16T + (E/15)T^{2}] + 80 - 189355264 D = 8(6 + T^{2}) + 56.063360848$
$B = -2D - 1/2 \cdot 1/26 \cdot 1/20 $ $C = 2T - \frac{1}{2}(A + E) - 67 \cdot 1/2 \cdot 1/$
AX + 13.498202 893 BY +37.375 384256 CX2 -57.677653580
$DXY - 17.244877878 EY^2 + 6.587927105 \delta_f = -(f/4)(TX - 3Y)0016326902$
$T + \delta_f + \frac{71.002319553}{}$ $S_1 = a \sin d (T + \delta_f) + \frac{979347.671}{}$ m
$\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + 3.8643 \times 10^{-6}$
$T + \delta_f + \delta_{f^2} $ 1.002 323 417 $S_2 = a \sin d \left(T + \delta_f + \delta_{f^2} \right) \frac{979.251.446}{m}$
$\sin (a_2 + a_1) = (K \sin \Delta \lambda)/L + 96369259$ $a_2 + a_1$ 434 30 32.53/
$\sin (a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L) + \cos \theta + \frac{199}{2} = \frac{199}{2} $
$\frac{1}{3}(\delta a + \delta a_2) = -(\frac{1}{2}) \prod_{x \in \mathbb{Z}} \frac{1}{3} \frac{1}{$
$\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - a_1) - \frac{3}{2}(\delta a$
a1 138 42 43,700 a2 305 47 48.831
$\delta a_1 = 0$ 9 34.530 $\delta a_2 = 9$ 34.649
a ₁₋₂ 138 33 09.170 a ₂₋₁ 305 38 14.182
$a_{1-2} = + a_1 + \delta a_1$ $a_{2-1} = + a_2 + \delta a_2$
$d = \frac{8}{48} \frac{48}{39.473}$ True distance $\frac{479}{251.25}$ meters
True Azimuths 128 33 08.34 305 38 13.25
Line No. 14

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

 $f/2 = 0.00169503765, \ f/4 = 0.000847518825, \ f^2/128 = 0.0897860195 \times 10^{-6}$ l radian = 206,264.8062 seconds

φ ₁ 59 30 12-0 1. Or1510 λ ₁
φ, 50 00 03.8 2. TERMINUS λ,
$\phi_{\rm m} = \frac{1}{2}(\phi_2 + \phi_1) + \frac{5445}{5445} = \frac{01.9}{2}$ 2. Always west of 1. $\Delta \lambda = \lambda_2 - \lambda_1 = \frac{9}{55} = \frac{55}{01.000}$
$\Delta \phi_{\rm m} = \frac{1}{2} (\phi_2 - \phi_1) - \frac{1}{2} \frac{45}{20} \frac{04.1}{04.1}$ $\Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda_{\rm m} = \frac{1}$
$\Delta \phi_{\rm m} = \frac{1}{2} (\phi_2 - \phi_1) - \frac{1}{2} \frac{45}{04.1} \frac{04.1}{10.500}$ $\sin \phi_{\rm m} \frac{70.816}{10.500} \frac{66.364}{10.500} \sin \Delta \phi_{\rm m} \frac{08282801}{10.500} \sin \Delta \lambda \frac{4.57}{10.500} \frac{30.500}{10.500}$ $\cos \phi_{\rm m} \frac{70.816}{10.500} \frac{66.364}{10.500} \sin \Delta \phi_{\rm m} \frac{08282801}{10.500} \sin \Delta \lambda \frac{4.57}{10.500} \frac{30.500}{10.500}$ $\cos \phi_{\rm m} \frac{70.816}{10.500} \frac{66.364}{10.500} \sin \Delta \phi_{\rm m} \frac{08282801}{10.500} \sin \Delta \lambda \frac{4.57}{10.500} \frac{30.500}{10.500}$
cos φ _m — sin a _m —
$k = \sin \phi_m \cos \Delta \phi_m + 8/3 857 489$ $K = \sin \Delta \phi_m \cos \phi_m - 647 801198$
$H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m + \frac{1.326/999955}{1 - L} = \frac{1 - L}{1 - L} + \frac{99070255}{1 - L}$
$L = \sin^2 \Delta \phi_{\text{m}} + H \sin^2 \Delta \lambda_{\text{m}} + \frac{7.009297}{0.00000000000000000000000000000000000$
d+ .193 146 6435 sin d+ .191 947 97 T=d/sin d+ 1.006 244 783
$U = 2k^{2}/(1-L) + \frac{1.331160 + 2024}{1.331160 + 2024} \qquad V = 2K^{2}/L + \frac{49132292265}{1.491160 + 2024}$
X=U+V+1.828683125 Y=U-V+.8456372798XY+1.546402623
X2 + 3,344 081 972 Y2 +.715 102 4090 E=60 cos d +58.88430618
$A = 4[16T + (E/15)T^2] + 80 - 298877292 D = 8(6+T^2) + 56.100228 504$
$B = -2D - 1/2 \cdot 200 + 57008$ $C = 2T - \frac{1}{2}(A + E) - 67 \cdot 579 = 102 = 170$
AX + 146.841201857 BY - 94.88088933 4 CX2 -225.990057251
DXY +86. 753540 503 EY2 +42. 108309200 = -(f/4) (TX-3Y) +. 000 5 905 59
$T + \delta_f + 1.006 835 342$ $S_1 = a \sin d (T + \delta_f) 1.33 652 169 m$
$\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) - 4.053 - 4453 - 10 - 6$
$T + \delta_f + \delta_{f^2} \frac{1.006831287}{S_2 = a \sin d (T + \delta_f + \delta_{f^2}) \frac{1.232649.205}{m}}$
$\sin(a_1 + a_2) = (K \sin \Delta \lambda)/L - 885 + 44 + 108 + a_2 + a_3 + a_4 + 21.056$
$\sin (\alpha_2 - \alpha_1) = (k \sin \Delta \lambda)/(1-L) + $
$\frac{1}{2}(\delta a_{1} + \delta a_{2}) = -(f/2) H(T+1) \sin (a_{1} + a_{2}) + \frac{9 \cdot 822 \cdot 157 \times 10^{-4}}{1200000000000000000000000000000000000$
$\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2)H(T-1)\sin(a_2 - a_1) - \frac{0.04885}{10} \times \frac{10^{-4}}{10^{-4}} \delta a_2 + \frac{19.817272}{10^{-4}} \times \frac{10^{-4}}{10^{-4}}$
a1 35 13 10.643 a2 207 05 10". 414
80 + 3 22.697 80 + 3 22.496
a_{1-2} 35 16 33.340 a_{2-1} 307 08 32.910
$a_{1-2} = +a_1 + \delta a_1$ $a_{2-1} = +a_2 + \delta a_2$
d = 1/ 03 59.355 True distance 1,232,647.21 meters
True Azimuths 35 16 34.25 207 08 33-82
37 /6 37.00

Line No. 15

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$ 1 radian = 206,264.8062 seconds

```
8 58 25.0 1. PANAMA A. 79
φ2 21 26 06.0 2. HAWATT λ2 158 01 33.0
                                                         Δλ=λ2-λ1 18 27 09.
\phi_m = \frac{1}{2}(\phi_2 + \phi_1) 2. Always west of 1.
\Delta \phi_{m} = \frac{1}{2} (\phi_{2} - \phi_{1}) \frac{\dot{G}}{G} \frac{13}{50.5}
                                                          Δλm=1/2 Δλ 39 13 34~
\sin \phi_m t. 26226/70 = \sin \Delta \phi_m t. 10853193 = \sin \Delta \lambda t. 979 7590
\cos \phi_{\rm m} \frac{{\it t.964~99679}}{\it t.964~99679} \cos \Delta \phi_{\rm m} \frac{{\it t.994~09297}}{\it t.994~09297} \sin \Delta \lambda_{\rm m} \frac{{\it t.632~38428}}{\it t.632~38428}
k = \sin \phi_m \cos \Delta \phi_m + 2607/25/2 K = \sin \Delta \phi_m \cos \phi_m + 104732963
H = \cos^2 \Delta \phi_{\rm m} - \sin^2 \phi_{\rm m} = \cos^2 \phi_{\rm m} - \sin^2 \Delta \phi_{\rm m} + \frac{f \cdot 9/9 + 439 + 30}{20} = 1 - L + \frac{f \cdot 620 + 527830}{20}
L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m \frac{T \cdot 379 472 170}{Cos d} = 1 - 2L \frac{T - 2410.55 660}{Cos d}
d+ 1.337342885 sin d+ + 970 51129 T=d/sin d+ 1.367 613 821
                                               V=2K2/L +.0578/18 469
U=2k²/(1-L) +-219074 8283
X=U+V+.276 886 6752 Y=U-V.161262 9814 XY +. 044651 571
X2 +.0766661309 Y2 +.0260057492 E=60 cos d +14.46333 96
A=4[16T+(E/15)T<sup>2</sup>] + 94. 745 56060 D=8(6+T<sup>2</sup>) +62. 964253 464
B=-2D -125. 928.506 928 C=2T-1/(A+E) -51. 869102 456
AX +26. 233 783264 BY - 20.307606 466 CX2-3.976 608 586
DXY +3.811452 821 EY2 +0.376129982 \delta_f = -(f/4) (TX-3Y) +8.90728 \(\frac{10}{28}\)
T + 8, +1.367762895
                                                S_1 = a \sin d (T + \delta_f) 8.466.618.258
\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + 4.6124 \times 10^{-7}
T + \delta_f + \delta_{f^2} + \frac{1.367763356}{52} = a \sin d (T + \delta_f + \delta_{f^2}) + \frac{8.466.621.112}{52}
\sin (a_2 + a_1) = (K \sin \Delta \lambda)/L + 270 + 1001 a_2 + a_1 = 375 + 11 + 19.197
\sin (a_2 - a_1) = (k \sin \Delta \lambda)/(1-L) + \frac{f \cdot 4}{L} + \frac{64222}{L} = a_2 - a_1
\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H(T+1) \sin (a_1 + a_2) - 000997808513 \delta a_1 - 76/931734
\frac{1}{2}(\delta a_2 - \delta a_3) = -(f/2)H(T-1)\sin(\alpha_2 - \alpha_3) - \cos(2358767999) \delta a_2 - (-233685292)
a, 109 59 54,018
\delta a_1 -
                      2 37.160
                                                    δα2 ____
                                                    a2-1-265 37
a<sub>1-2</sub> 109
                                                      a_{2-1} = + a_2 + \delta a_2
  a_{1-2} = + a_1 + \delta a_1
                                            True distance 4, 466, 621.01 meters
  True Azimuths
                          57 17.41
       Line No. 16
```

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$ l radian = 206,264.8062 seconds

45 19.5 (N) 1. MOSCOW 1 - 37 34 15.450 (E) 03-33 56 03.5(5) 2. CAPE OF GOODHOPE -18 28 41. 400 (E) Δλ=λ2-λ, +19 05 34,050 $\phi_{m} = \frac{1}{2} (\phi_{2} + \phi_{1}) + \frac{10}{5} = \frac{54}{3} = \frac{38}{5} = \frac{0}{2}$. Always west of 1. $\Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda + \frac{9}{32} + \frac{32}{100} + \frac{100}{100} = \frac{1}{100}$ $\Delta \phi_{\rm m} = \frac{1}{2} (\phi_2 - \phi_1) = 44$ $\sin \phi_m T.189 27635 \sin \Delta \phi_m - .705 - 18957 \sin \Delta \lambda T.327 09901$ $-\cos\Delta\phi_{\rm m} \frac{\tau,709}{} \frac{01881}{} \sin\Delta\lambda_{\rm m} \frac{\tau,165}{} \frac{84621}{}$ cos om +. 98192386 $k = \sin \phi_{\rm m} \cos \Delta \phi_{\rm m} + .134 + 20049 = K = \sin \Delta \phi_{\rm m} \cos \phi_{\rm m} - .692 + 44346$ $H = \cos^2 \Delta \phi_{\rm m} - \sin^2 \phi_{\rm m} = \cos^2 \phi_{\rm m} - \sin^2 \Delta \phi_{\rm m} + \frac{1}{2} \frac{1}$ ____ cos d = 1-2L <u>-.020 26 78 2</u> $L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m$ T.5/0 1339/ d+1.591065538 sind+99979459 T=d/sind+1.59139242 U=2k2/(1-L) +.073529368 V=2K2/L + 1.87980665 X=U+V+1.953 336 025 Y=U-V-1. 806 277 289XY -3. 528 266 500 x2+3.8/552/627 y2+3.262637645 E=60 cos d-1.216069200 A=4[16T+(E/15)T2] +101.027853152 D=8(6+T2) +68.260238672 B=-2D -136.520 41734 C=2T-1/(A+E) -46.723 10712 AX + 197. 34/345 184 BY + 246.59383763 CX2-178.273025697 DXY -140. 840 313 38/ EY2-3. 96759315/0f = -(f/4) (TX-3Y) --007227095 $T + \delta_f + \frac{1}{5} \frac{5}{5} \frac{4}{165} \frac{165}{325} = S_1 = a \sin d \left(T + \delta_f \right) \frac{10}{105} \frac{057}{057}$ $\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + \frac{1}{2} \frac{1}{2$ $T + \delta_f + \delta_{f^2} + 1.584 / 67 / 97$ $S_2 = a \sin d \left(T + \delta_f + \delta_{f^2} \right) / 0.102 / 069.863$ $\sin (\alpha_2 + \alpha_1) = (K \sin \Delta \lambda)/L - 44399566$ $\alpha_2 + \alpha_1$ 306 21 $\sin (\alpha_2 - \alpha_1) = (k \sin \Delta \lambda)/(1-L) + .089 60989$ $\alpha_2 - \alpha_1$ $\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H(T+1) \sin (a_1 + a_2) + \frac{1}{2} \frac{1}{$ $\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin (a_2 - a_1) - \frac{1}{2}(\delta a_2 - \delta a_1) + \frac{1}{2}(\delta$ a, is 45 00.476 $\delta a_1 +$ 59.163 16.939 $a_{2-1} = + a_2 + \delta a_2$ $a_{1-2} = + a_1 + \delta a_1$ True distance 10,102,069.06 meters d = ___ True Azimuths 48 17.674 Line No. 17

ORIGINATIN G ACTIVITY (Corporate author)		24. REPORT SECURITY CLASSIFICATION			
U. S. Naval Oceanographic Office Washington, D. C. 20390		Unclassified 2b. GROUP			
					REPORT TITLE
	t Cycmpic (11)				
MATHEMATICAL MODELS FOR NAVIGATION	(U) CM11616 (
4. DESCRIPTIVE NOTES (Type of report and inclusive dat	es) Technical Report				
5. AUTHOR(S) (Last name, first name, initial) THOMAS	, Paul D.				
s. REPORT DATE October 1965	78. TOTAL NO. OF PAG	ES 7b. NO. OF REFS			
	142	25			
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPO				
b. PROJECT NO. HF-103-04-02	Technical Rep	ort (TR)-182			
8. PROJECT NO. HT=103-04-02					
c. F31-36-ANB	96. OTHER REPORT NO	(S) (Any other numbers that may be assigned			
	this report)				
d					
10. A VAIL ABILITY/LIMITATION NOTICES		11.51 1.550			
All distribution of this publicati					
submit requests for copies to the Washington, D. C. 20390, ATTN: Co		val Oceanographic Office,			
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITA	RYACTIVITY			
	U. S. Naval Oceanographic				
	Washington, D.	-			
13. ABSTRACT					
The principal objective of thi basic to the geodetic inverse solu					
U. S. Naval Oceanographic Office i					
formulas for past requirements was					
requirements, they were modified t					
between any two points on the refe					
than a meter and a second respecti	ively.				
During the study, associated g	•				
studied: latitudes associated wit					
a spherical rectangular coordinate bolic loci referenced to it; and					
distance, such as chord length, di	-				
and arc, and the geographical posi					
formulas with their derivations an		maximum sebaracion, the			
U					

FORM 1473

Unclassified

Security Classification

Unclas	sified
Security	Classification

14.	LIN	LINK A		LINK B		LINK C	
KEY WORDS		WT	ROLE	WT	ROLE	WT	
Geodetic distance inverse solution Andoyer-Lambert formulae generalization Forsyth method for geodesics(Corrected) Geodetic formulae(latitude, distance, azimuths) Geodesic approximations(spheroid)							

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION; Enter the overall security classification of the report. Indicate whether 'Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, &c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

amposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- "Foreign announcement and dissemination of this report by DDC is not authorized."
- "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- "All distribution of this report is controlled Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

> Unclassified Security Classification

U. S. Naval Oceanographic Office

L

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, by P. D. Thomas, October 1965.142 p. Including figures and tables. (TR-182)

latitudes and geometric quantities referenced to the sions of formulae to give distance and azimuths on the reference ellipsoid within a meterand a second solution as used in loran-type charting with exten-An evaluation is given of the inverse distance respectively. Also developed or studied were auxillary sphere-spherold configuration.

1. Geodesy

È

- 2. Loran
- Computation Distance m
- Spheroldal Geometry Sphere-4.
- matical models for navigation i. title: Mathe-
- author: P. D. Thomas TR-182 :: :

+

- 1. Geodesy
- Computation Distance 'n

2. Loran

MATHEMATICAL MODELS FOR NAVIGATION

U. S. Naval Oceanographic Office

SYSTEMS, by P. D. Thomas, Ociober 1965.142 p.

Including figures and tables. (TR-182)

- Spheroldal Geometry Sphere-4.
- motical models for navigation i. title: Mathe-

latitudes and geometric quantities referenced to the

auxillary sphere-spheroid configuration.

respectively. Also developed or studied were

sions of formulae to give distance and azimuths on the reforence ellipsoid within a meterand a second

solution as used in loran-type charting with exten-

An evaluation is given of the inverse distance

author: P. D. Thomas III. TR-182 :

U. S. Naval Oceanographic Office

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, by P. D. Thomas, October 1965, 142 p. Including figures and tables. (TR-182)

atitudes and geometric quantities referenced to the the reference ellipsoid within a muterand a second sions of formulae to give distance and azimuths on solution as used in loran-type charting with exten-An evaluation is given of the inverse distance respectively. Also developed or studied were auxillary sphere-spheroid configuration.

1. Geodesy

٢

Distance To ran ň 'n

Computation

- Spheroidal Sphere-4
- 1. title: Mathe-Geometry
- matical models for navigation author: P. D. :
- Thomas TR-182
- 1. Geodesy
- Loran 4

MATHEMATICAL MODELS FOR NAVIGATION

U. S. Naval Oceanographic Office

SYSTEMS, by P. D. Thomas, October 1965,142 p.

Including figures and tables. (TR-182)

- Computation Distance 'n
- Spheroldal Geometry Sphere-4:
- matical models for navigation author: P. D. 1. title: Mathe-:

atitudes and geometric quantities referenced to the

auxiliary sphere-spheroid configuration.

respectively. Also developed or studied were

sions of formulae to give distance and azimuths on the reference ellipsold within a meterand a second

solution as used in loran-type charting with exten-

An evaluation is given of the inverse distance

- Thomas TR-182
 - 111.