# **Chapter 1 Signals and Systems**



**Signals** are represented mathematically as functions of one or more independent variables.



## §1.0 Course Specification

- 1. Aim of the course
- ① Develop the necessary mathematical tools, such as the Fourier transform, Laplace transform and Z-transform
- 2 Analyze and design linear time-invariant systems
- ③ Build experience in applying these mathematical tools to the solution of realistic signal processing systems



http://open.163.com/special/opencourse/signals.html

## **Data, Information and Signals**



#### §1.1 Classification of Signals

1. Deterministic Signals and Stochastic Signals



A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time.



A signal is said to be stochastic if there is uncertainty with respect to its value at some instant of time.

- 3. Real Signals and Complex Signals
- 1 Real Signals:

$$\begin{cases} x^*(t) = x(t) \\ x^*[n] = x[n] \end{cases}$$

2 Complex signals:

$$\begin{cases} x(t) = x_R(t) + jx_I(t) \\ x[n] = x_R[n] + jx_I[n] \end{cases}$$

For example,

$$\begin{cases} x(t) = e^{s_0 t} \\ x[n] = z_0^n \end{cases}$$

- a. real signals when  $s_0$  and  $z_0$  are real constants
- b. complex signals when  $s_0$  and  $z_0$  are complex constants

### §1.1 Classification of Signals

2. Continuous-Time Signals and Discrete-Time Signals





- (1) Waveform and Sequence
- 2 Analog Signals and Digital Signals

## **Complex Exponentials**

First let

$$f(x) = \cos x + j \sin x$$

Consider the derivative of  $f(x)e^{-jx}$ 

$$\frac{d}{dx}(\cos x + j\sin x)e^{-jx} = \frac{d}{dx}\cos xe^{-jx} + j\frac{d}{dx}\sin xe^{-jx}$$
$$= -\sin xe^{-jx} + \cos x(-je^{-jx}) + j\cos xe^{-jx} + \sin xe^{-jx}$$
$$= 0$$

So that  $f(x)e^{-jx}$  is a constant function.

$$f(x)e^{-jx} = f(0)e^{-j0} = 1$$

$$(\cos x + j\sin x)e^{-jx} = 1 \xrightarrow{\text{yields}} e^{jx} = \cos x + j\sin x$$

## **Complex Numbers**





Complex Addition



Complex Conjugates



 $-2\pi-\pi$  0  $\pi$  2 $\pi$ 



4. Periodic Signals and Aperiodic Signals

x(t) and x[n] are called periodic signals if

$$x(t) = x(t + kT)$$
  $(\exists T \neq 0, \forall k \in Z)$ 

and

$$x[n] = x[n + mN] \quad (\exists N \neq 0, \forall m \in Z).$$

Otherwise, x(t) and x[n] will be referred to as aperiodic signals.

The fundamental periods are defined as

$$\min\{T|T>0\}=T_0$$

and

$$\min\{N|N>0\}=N_0,$$

respectively.

4 Continuous-Time Complex Exponent Signals:

$$e^{j\omega_0 t} = \cos\omega_0 t + j\sin\omega_0 t$$

$$e^{j\omega_0 t} = e^{j\omega_0(t+T)} \Rightarrow e^{j\omega_0 T} = 1 \Rightarrow \omega_0 T = 2\pi k \ (k \in \mathbb{Z})$$

Therefore,  $e^{j\omega_0t}$  is a periodic signal, of which the period is

Therefore,
$$T = \frac{2\pi}{\omega_0} k$$

and the fundamental period is

$$T_0 = \min\{T|T > 0\} = \frac{2\pi}{|\omega_0|} (\omega_0 \neq 0)$$

Euler's Relation: 
$$\begin{cases} \cos x = \frac{1}{2} \left( e^{jx} + e^{-jx} \right) \\ \sin x = \frac{1}{2j} \left( e^{jx} - e^{-jx} \right) \end{cases} \quad x = \omega_0 t \text{ or } \omega_0 n$$

(5) Discrete-Time Complex Exponent Signals:

$$e^{j\omega_0 n} = \cos \omega_0 n + i \sin \omega_0 n$$

- a. Because  $e^{j(\omega_0+2\pi k)n}=e^{j\omega_0n}e^{j2\pi kn}=e^{j\omega_0n}$ , we need only to consider  $0\leq\omega_0<2\pi$  or  $-\pi\leq\omega_0<\pi$ .
- b. In order for  $e^{j\omega_0 n}=e^{j\omega_0(n+N)}\Rightarrow e^{j\omega_0 N}=1$ ,

$$\omega_0 N = 2\pi m \; (m \in Z)$$

Therefore,  $\frac{\omega_0}{2\pi}=\frac{m}{N}$  must be a rational number to make  $e^{j\omega_0n}$  a periodic signal.

Q1.1 Determine the fundamental period of the signal  $x(t) = 2\cos(10t + 1) - \sin(4t - 1)$ 

and

$$x[n] = 1 + e^{j\frac{4}{7}\pi n} - e^{j\frac{2}{5}\pi n}$$

Solution:

- a. The fundamental period of  $\cos(10t+1)$  is  $\frac{\pi}{5}$  The fundamental period of  $\sin(4t-1)$  is  $\frac{\pi}{2}$  Therefore, the fundamental period of x(t) is  $\pi$
- b. The fundamental period of 1 is arbitrary 
  The fundamental period of  $e^{j\frac{4}{7}\pi n}$  is 7 
  The fundamental period of  $e^{j\frac{2}{5}\pi n}$  is 5 
  Therefore, the fundamental period of x[n] is 35

Example 1.1: Determine the fundamental periods of  $x_1[n]=e^{j\left(\frac{4}{3}\pi n+2\right)}$  and  $x_2[n]=e^{j\frac{n}{4}}$ .

Solution:

a. 
$$x_1[n] = e^{j\left(\frac{4}{3}\pi n + 2\right)} = e^{j\frac{4}{3}\pi n}e^{j2}$$

$$\omega_0 = \frac{4\pi}{3}$$

$$\frac{2\pi}{\omega_0} = \frac{3}{2} \in Q$$

$$x_3[n] = e^{j(a\pi n + b)}$$

$$\frac{2\pi}{\omega_0} = \frac{2}{a}$$

 $x_1[n]$  is a periodic signal and the fundamental period is 3.

$$\begin{array}{l} \text{b. } x_2[n] = e^{j\frac{n}{4}} \\ \omega_0 = \frac{1}{4} \\ \frac{2\pi}{\omega_0} = 8\pi \notin Q \\ x_2[n] \text{ is an aperiodic signal.} \end{array} \qquad \overbrace{ \begin{pmatrix} x_4[n] = e^{j(an+b)} \\ \frac{2\pi}{\omega_0} = \frac{2\pi}{a} \\ \frac{2\pi}{\omega_0} = \frac{2\pi}{a} \end{pmatrix} }$$