Maximizing Profit through Direct Mail

Presented by George Wilson KPMG Super Day 10/4/2018

Adapted from 5W Strategists Case Competition Collaborators: Sam Beadles, Charles Chen, Andrew Gerin, and Tykai Martin

Agenda

- 1. Context & Objectives
- 2. Executive Summary
- 3. Data Walkthrough
- 4. Modeling Approach
- 5. Results and Recommendations

Who is the target customer for direct mail?

Our client uses direct mail to acquire U.S. customers. They have 40,000 results from a previous campaign, and want to know which **5,000 individuals to target next**.

Objectives

Maximize profit from mailing campaign using previous knowledge about respondents

Out-scoping

- Are other mediums than direct mail more effective?
- Is there an **optimal number** of packages to send to maximize profit?

Approach

We developed and tested several models to rank the most profitable individuals on a unknown test set

Our analysis assumes:

- Original and testing population a representative samples of a larger population
- No effect of history on the experiment

Executive summary

Direct mail is a profitable source of new customers.

Given an response rate of 12%, the biggest driver in revenue will be increasing total responses.

Of several models considered, LightGBM was submitted to the competition. The model increased client profit by 51%, and lifted response rate by 39.9%

Method	Response Rate	Responses (per 5000)	Profit	Response Rate Lift
Baseline	12.18%	609	\$73,700	N/A
LightGBM	17.1%*	855*	\$111,800*	39.93%*

*Based on competition results on unseen data

Maximization of revenue depends strongly on responses

Campaign Profitability: \$14.52 in average profit per package mailed

Response Rate

40,000 mailings resulted in **4,872 responses**

Payment Amount (\$)

Expected value of response = \$128

Data cleaning

Ambiguous Variables

- No data dictionary
 - Percent_Professional encoded a single value
 - Motorcycle_ind 95% zeros
 - Zero variance between some variables
- 189 features may result in noisy dataset

Miscoded Data

- Explored summary statistics
- Identified -1 coded instead of N/A
- Recoded indicators to Boolean
- Created dummy variables for factors to be ingested

N/A Values

- No all customer information is readily available
- Removed columns with greater than 2,000 missing values
- Performed mean imputation

Feature selection using random forest does not identify many payers

- Two initial Random Forest Classifiers
 - 1. All features with dummy variables
 - Random noise most important feature
 - 2. Using only quantitative features

	Importance
WCr_Avg_Median_Home_Value	0.051644
WP_county_pop_density_census	0.040057
Income_Pred_Narrow_Mid_Pts	0.036626
W5r_Median_Income	0.033876
W5r_Curr_Home_Value	0.032235
Random	0.031030

 Random Forest with top five features by feature importance

5-Fold CV Results:

- 87.2% Accuracy
- 50.5% 52.5% AUC
- 1% Recall

Takeaway: Algorithm performs well based on accuracy; however, it fails to differentiate true positives from false negatives.

Advanced modeling: what response rate can be expected?

LightGBM Model: fast, gradient boosted model

Good for: Large datasets and imbalanced classification problems

Limitations: Difficult to explain, slow parameter tuning

Original Objective: Identify top 12.5% of test set

On a holdout set of 8,000 individuals

o Top 12.5% responded **19.3% of the time**

5-Fold Cross Validation: 16.05% - 23.9%

Implication of Model:

Method	Expected Response Rate	Responses (per 5000)	Profit (All \$100 Payments)	Profit (All \$150 Payments)
Worst CV LightGBM	16%	800	\$75,000	\$115,000
Avg. CV LightGBM	19.3%	965	\$92,000	\$140,000
Best CV LightGBM	23.9%	1,195	\$115,000	\$179,000

Recommendations & competition results

- Direct mail acquisitions offer a profitable new customer base
 - Selecting particular individuals may increase revenue given resource constraints
- LightGBM submission increased response rate by 39.9% on unseen data
- Final results fall within expected profit projected by cross-validated predictions

Total Profit: \$116,050

Baseline Profit: \$73,700

Value Added: \$42,350

Predictive modeling in this context performs well, but has room for improvement through parameter tuning and enhanced data cleaning

Questions?

Appendix

Future Work

Lesson Learned/Limitations

Random Forrest Classifier

Light GBM Algorithm

LightGMB Submission Distribution

Future Work

Due to time constraints, the following were considered but not implemented:

- Impute using multiple imputation methods (i.e. MICE)
- Explore different feature selection techniques
 - o PCA for quantitative variables, high correlation filter, Smooth Lasso
- Engineer new features
- Integrate model with expected value of payment
 - See logistic regression analysis
- Tune model parameters
 - Grid Search

Limitations & Lessons Learned

- Advanced algorithms are difficult to explain, "black-box" effect
- Ambiguous features and dirty data plagued modeling success
 - o It is difficult to create a model without fully understanding the data and its attributes
- More data exploration and visualizations are necessary
- Managing response rate vs. expected value of the response
 - Given low response rate, classifying responses is more important than higher payments

Random Forrest Classifier

- Ensembled Method: averages over diverse decision trees
- Each tree is based on bootstrapped sample
- Each node split is based on P random queries

Light GBM Model

Gradient Descent

- Moving towards the point of minimum error
- Problem: how large of increments ..too fast then overshoot, too slow then very long model...adjusted via learning rate

2. Boosted

- Start with weak learner. Improve by weighting misclassified attributes heavier
- 3. Leaf wise growth increases accuracy

Traditional Boosting Algorithms

Light GBM

Light GBM Prediction Submission

count	40000.000000
mean	0.186273
std	0.044859
min	0.125947
25%	0.156580
50%	0.168773
75 %	0.223307
max	0.318032

Predicting payment amount using marriage indicator increases expected value of mailings

We can use whether or not someone is married to predict how much they pay:

- Observation: Campaign Association Flag (CAF) tells us the size of payment.
- Observation: (CAF) and indicator of marriage have strongest association
- **Action**: Impute Campaign Association Flag using married indicator.
 - HHLD_Married_flg had data for all rows

We generate two probabilities for married vs not married:

Probability of CAF being 1 when married indicator is 1: **0.69**

Probability of CAF being 1 when married indicator is 0: **0.31**

This allows us to distinguish between expected values of responders

- EV(CAF=1) = \$135
- > EV(CAF=0) = \$115

Payment amount pay depends on married indicator

Plot of proportion of married vs not married, and relevant probabilities

Logistic regression results