Manual

Estrutura de Dados e Algoritmos

Índice

2
2
2
3
4
4
4
5
8
8
9
10
11
11
11
11
11
11

Estrutura de Dados e Algoritmos

Requisitos

Para utilizador

Windows	Linux e Mac	
.NET Framework 3.5 ou maior		
https://www.microsoft.com/pt-	Mono 2.2 ou maior	
pt/download/details.aspx?id=21		
Gnuplot (Opcional) - http://www.gnuplot.info		

Para desenvolvedor

Windows	Linux e Mac
Compilador Visual Studio C# OU Mono	Mono 2.2 ou maior
	Mono libraries
.NET Framework 3.5 ou maior	Mono devel
https://www.microsoft.com/pt-	Mono utils
pt/download/details.aspx?id=21	xbuild
	OU
	Mono-complete
Doxygen (Gera a documentação do projeto em HTML)	
Doxygen-latex (Gera a documentação do projeto em PDF)	

Estrutura de Dados e Algoritmos

Manual de utilizador

Figura 1

Estrutura de Dados e Algoritmos

Barra de ferramentas

Algoritmos

Figura 3

Escolha de algoritmos a testar.

Eventos

Figura 4

Visualizador de eventos, todos os passos da aplicação serão reportados para esta janela.

Esta janela será automaticamente visível ao executar uma tarefa.

Estrutura de Dados e Algoritmos

Opções

Figura 5

Gnuplot.exe: Caminho do executável para a aplicação gnuplot.

Save reports to: Caminho / pasta onde são guardados os relatórios de execução e eventos.

Auto open generated lot files: Quando ativo, os relatórios gerados pelo programa são automaticamente mostrados. Caso contrário é necessário abrir manualmente o ficheiro de relatório com o *gnuplot*.

Number of tests: Número de testes a realizar por cada algoritmo.

Estrutura de Dados e Algoritmos

Compute average: Calcular a média de **X** execuções para cada teste (Repetições). Caso ative a opção da direita, o menor valor e o maior valor (tempo de execução) irá ser excluído da média, permitindo assim ter uma média mais fiável cortando os picos.

Ao escolher o valor de 1 não será efetuado um cálculo de média, assim a primeira e a única execução será logo usada para construir o gráfico.

Nota 1: Esta função permite uma medição mais estável e fiável, construindo um gráfico mais preciso. No entanto o tempo total de execução da tarefa irá ser maior consoante o número de repetições. (Tempo * Numero de repetições).

Nota 2: Com a opção da direita ativada, dois valores serão excluídos da média, contando assim com apenas (numero – 2) valores. Para ativar esta opção é necessário pelo menos 3 repetições.

Array initial size: Tamanho inicial do array (número de elementos), neste caso o primeiro teste ao algoritmo vai conter 5000 elementos.

Array grow factor: Fator de crescimento do array, crescimento do array em **X** elementos por teste. É possível escolher o tipo de crescimento por soma OU multiplicação.

 $\begin{array}{l} \textit{elementsCount} = 0 \\ \textit{op=Array grow type} \\ \hline \textit{Number of tests} \\ \\ \sum_{i=Array \ grow \ factor} \textit{elementsCount} \ = \ \textit{elementsCount} \ (\textit{op}) \ i \end{array}$

Exemplo 1:	Exemplo 2:
Número de testes: 5	Número de testes: 5
Array initial size: 5000	Array initial size: 500
Array grow factor: += 5000	Array grow factor: *= 2
1º Teste - Array: 5000 elementos	1º Teste - Array: 500 elementos
2º Teste - Array: 10000 elementos	2º Teste - Array: 1000 elementos
3º Teste - Array: 15000 elementos	3º Teste - Array: 2000 elementos
4º Teste - Array: 20000 elementos	4º Teste - Array: 4000 elementos
5º Teste - Array: 25000 elementos	5º Teste - Array: 8000 elementos

Estrutura de Dados e Algoritmos

Min rand number: Numero aleatório mínimo possível no array.

Max rand number: Número aleatório máximo possível no array.

Random numbers between values: Quando ativo o número gerado tem que estar dentro do valor mínimo e máximo imposto. Caso contrário será utilizado um fator de crescimento do número consoante o teste.

Exemplo 1:	Exemplo 2:
Número de testes: 5 Min rand number: 100	Número de testes: 5 Min rand number: 100
Max rand number: 655350	Number grow factor: *= 5
1º Teste –Number: Random(100, 655350) 2º Teste - Number: Random(100, 655350) 3º Teste - Number: Random(100, 655350) 4º Teste - Number: Random(100, 655350) 5º Teste - Number: Random(100, 655350)	1º Teste - Array: Random(100, 500) 2º Teste - Array: Random(100, 2500) 3º Teste - Array: Random(100, 12500) 4º Teste - Array: Random(100, 62500) 5º Teste - Array: Random(100, 312500)

O valor máximo do número está limitado pela aplicação com um valor de: 2,147,483,647.

Estrutura de Dados e Algoritmos

Controlos

Figura 6

Informação

Figura 7

Status: Estado da aplicação, mostra o que a aplicação está a processar de momento.

Time Elapsed: Tempo decorrido desde o inicio da tarefa até agora ou até terminar.

Developed by: Autores / criadores da aplicação.

Project @Google code repository: Link para o repositório de código da aplicação, alojada no Google Code.

Estrutura de Dados e Algoritmos

Barra de progresso

Figura 8

Progresso atual da tarefa em percentagem.

$$Percentage (\%) = \frac{100 * Atual test}{Number of tests}$$

IPBeja escola Superior Tecnologia e Gestão

Engenharia Informática

Estrutura de Dados e Algoritmos

Manual de desenvolvedor

```
🔩 eda12131190311906.Report
   -/**
     * Estruturas de Dados e Algoritmos (EDA) - Project I
     * Tiago Conceição № 11903
     * Gonçalo Lampreia Nº 11906
     * https://code.google.com/p/eda12131190311906/
   ⊡using System;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Globalization;
    using System.IO;
    using System.Windows.Forms;
   □ namespace eda12131190311906
    {
        /// <summary>
        /// Report algorithm execution to file and grafs
        /// </summary>
        public sealed class Report
   Ė
             Classes
   +
   +
             Properties
   +
             Constructor
             Methods
   +
            Static Methods
```

Figura 9

Estrutura de Dados e Algoritmos

Compilar aplicação

Windows

- Abrir o explorador de ficheiros
- Ir à pasta do código do projecto (src)
- Executar o ficheiro: "build.bat"
- Após a execução com sucesso já é possível correr e utilizar o programa. (Será copiado o executável para a pasta: APPROOT/bin)

Linux

- Abrir um terminal / consola
- Ir para o caminho onde se encontra o código do projecto (src)
- Executar o comando: make ou make all
- Após o comando make executar com sucesso já é possível correr e utilizar o programa.
 (Será copiado o executável para a pasta: APPROOT/bin)

Gerar documentação do código

Windows

- Abrir o explorador de ficheiros
- Ir para o caminho onde se encontra a pasta da documentação (sourcedoc)
- Executar o ficheiro: "build.bat"
- Após a execução com sucesso já é possível consultar a documentação. (Abrir o sourcedoc/índex.html OU Documentation.pdf)

Linux

- Abrir um terminal / consola
- Ir para o caminho onde se encontra a pasta da documentação (sourcedoc)
- Executar o comando: make ou make all
 - o make doxygen -> Apenas compila o HTML
 - o make refman.pdf -> Apenas compila o PDF
- Após o comando make executar com sucesso já é possível consultar a documentação.
 (Abrir o sourcedoc/índex.html OU Documentation.pdf)