Pendolo quadrifilare

Francesco Tarantelli, Francesco Sacco, Giovanni Sucameli

4 aprile 2017

1 Scopo dell'esperienza

L'esperienza verte sullo studio del moto di un pendolo e della dipendenza del periodo dall'ampiezza dell'oscillazione.

2 Cenni teorici

Le forze tangenti al cavo che agiscono sul pendolo sono descitte dalla seguente equazione:

$$l\ddot{\theta} = g\sin\theta\tag{1}$$

dove m é la massa del pendolo, l é la lunghezza del cavo, θ é l'angolo formato con la normale a pavimento e g é l'accelerazione di gravitá

Sviluppando l'equazione 1 in serie di Taylor si ottiene l'equazione approssimata del periodo T:

$$T = 2\pi \sqrt{\frac{l_{CM}}{g}} \left(1 + \frac{1}{16}\theta_0^2 + \frac{11}{3072}\theta_0^4 + \dots \right)$$
 (2)

3 Materiale a disposizione

- Pendolo quadrifilare con bandierina
- Metro a nastro (risoluzione di 1mm)
- Traguardo ottico
- Dispositivo di acquisizione dati

4 Descrizione delle misure

Attraverso il programma arduino, si sono presi i valori dei tempi di transito t_T nella posizione con $\theta=0$ della bandierina di larghezza $\omega=(0.0210\pm0.0005)m$ posta al centro ad una distanza $d=(1.16\pm0.01)m$ dal punto di rotazione del corpo e le misure del periodo T di oscillazione. Con questi dati si é reso possibile calcolare la velociti $\pounds_{\bf i}$ media del centro di massa del corpo (posto ad una distanza l_{CM}) nel punto di equilibrio e, successivamente, ricavare l'ampiezza dell'oscillazione per verificare la validiti $\pounds_{\bf i}$ dell'equazione (2). (Si sottolinea che il pendolo fisico puó essere approssimativamente trattato come un pendolo semplice a distanza l_{CM} dal punto di rotazione).

5 Analisi Dati

Ottenuti i dati con arduino, si é utilizzata la seguente equazione: $v_o = \frac{\omega}{t_T} \frac{l_{CM}}{d}$ per calcolare la velocitá del centro di massa con cui si é poi calcolato l'ampiezza iniziale di oscillazione θ_o con la seguente espressione: $\theta_o = \arccos(1 - \frac{v_o^2}{2gl_{CM}})$. Poi con il modulo curve-fit di scipy.optimize di Python si é fatto il fit lineare con la funzione (2) con θ_o la variabile indipendente, il periodo T la variabile dipendente, i paremetri liberi i coefficienti $p_1 = \frac{1}{16}$, $p_2 = \frac{11}{3072}$ e l_{CM} , senza mettere gli errori sulla T in quanto tutti uguali a 0.00007 s. Importante notare che gli errori su T non sono gaussiani, ma hanno distribuzione uniforme.

Tabella 1: Risultato del fit lineare con curve-fit

 $l_{CM} = (1.1266 \pm 0.0001)m$ $p_1 = 0.064 \pm 0.002$ $p_2 = -0.022 \pm 0.027$ Chisquare = 11.6

Chisquare atteso : 14.0 ± 3.3

Si nota immediatamente che a causa degli errori troppo elevati su T il coefficiente p_2 non puó essere assolutamente ricavato attraverso questi dati in quanto troppo 'grossolani', del resto si sta cercando di rilevare un contribito di $o(\theta^3)$. Con questi valori si é poi realizzato un grafico della retta di best fit confrontata con i valori ottenuti per via sperimentale.

Figura 1: Retta di best fit (in verde) e valori sperimentali (in blu)

6 Conclusione

Dal test del chisquare si nota immediatamente che il chi
2 ottenuto dista meno di una sigma dal valore atteso corrispondente ai gradi di libert
Ãă del problema. Di conseguenza il p-value ricavato pari a 36% risulta molto buono e ci assicura che la probabilit
Ãă di ottenere un vlore estremante rispetto a quello trovato ÃÍ molto alta. L'unico problema di questo fit
 ÃÍ che a causa di errori di misura sul periodo T molto elevati, il coefficiente p_2 non pu
Ú essere ricavato con questo fit, anche se molto buono.