A. TECHNICAL PROOFS

A.1 Proofs of Section 2

Proof of Theorem 2.1. The first part (the lower bound) comes directly from the definition of the conformal interval in (7), and the (discrete) p-value property in (6). We focus on the second part (upper bound). Define $\alpha' = \alpha - 1/(n+1)$. By assuming a continuous joint distribution of the fitted residuals, we know that the values $R_{y,1}, \ldots, R_{y,n+1}$ are all distinct with probability one. The set C_{conf} in (7) is equivalent to the set of all points y such that $R_{y,n+1}$ ranks among the $\lceil (n+1)(1-\alpha) \rceil$ smallest of all $R_{y,1}, \ldots, R_{y,n+1}$. Consider now the set $D(X_{n+1})$ consisting of points y such that $R_{y,n+1}$ is among the $\lceil (n+1)\alpha' \rceil$ largest. Then by construction

$$\mathbb{P}\Big(Y_{n+1} \in D(X_{n+1})\Big) \ge \alpha',$$

and yet $C_{\text{conf}}(X_{n+1}) \cap D(X_{n+1}) = \emptyset$, which implies the result.

Proof of Theorem 2.2. The first part (lower bound) follows directly by symmetry between the residual at (X_{n+1}, Y_{n+1}) and those at (X_i, Y_i) , $i \in \mathcal{I}_2$. We prove the upper bound in the second part. Assuming a continuous joint distribution of residual, and hence no ties, the set $C_{\text{split}}(X_{n+1})$ excludes the values of y such that $|y - \widehat{\mu}(X_{n+1})|$ is among the $(n/2) - \lceil (n/2+1)(1-\alpha) \rceil$ largest in $\{R_i : i \in \mathcal{I}_2\}$. Denote the set of these excluded points as $D(X_{n+1})$. Then again by symmetry,

$$\mathbb{P}\left(Y_{n+1} \in D(X_{n+1})\right) \ge \frac{(n/2) - \lceil (n/2+1)(1-\alpha) \rceil}{n/2+1} \ge \alpha - 2/(n+2),$$

which completes the proof.

Proof of Theorem 2.4. Without loss of generality, we assume that the sample size is 2n. The individual split conformal interval has length infinity if $\alpha/N < 1/n$. Therefore, we only need to consider $2 \le N \le \alpha n \le n$. Also in this proof we will ignore all the rounding issues by directly working with the empirical quantiles. The differences caused by rounding is negligible.

For each $1 \leq j \leq N$, $C_{\text{split},j}(X)$, the jth split conformal prediction band at X, is an interval with radius $\widehat{F}_{n,j}^{-1}(1-\alpha/N)$, where $\widehat{F}_{n,j}$ is the empirical CDF of fitted absolute residuals in the ranking subsample in the jth split.

We focus on the event $\{\sup_{1\leq j\leq N} \|\widehat{\mu}_j - \mu_0\|_{\infty} < \eta_n\}$, which has probability at least $1 - N\rho_n \geq 1 - n\rho_n \to 1$. In this event the length of $C_{\text{split}}^{(N)}(X)$ is at least

$$2 \min_{1 \le i \le N} \widetilde{F}_{n,j}^{-1} (1 - \alpha/N) - 2\eta_n \,,$$

where $\widetilde{F}_{n,j}$ is the empirical CDF of the absolute residuals in the ranking subsample in the jth split.

Without loss of generality, let $C_{\text{split}}(X) = C_{\text{split},1}(X)$, with length no more than $2\widetilde{F}_{n,1}^{-1}(1-\alpha) + 2\eta_n$ on the events we focus on. Therefore, it suffices to show that

$$P\left[\widetilde{F}_{n,1}^{-1}(1-\alpha) < \widetilde{F}_{n,j}^{-1}(1-\alpha/N) - 2\eta_n, \quad \forall \ 1 \le j \le N\right] \to 1.$$
 (16)

Let \widetilde{F} be the CDF of $|Y - \mu_0(X)|$. Note that it is \widetilde{F}_j , instead of \widehat{F}_j , that corresponds to F. By Dvoretzky-Kiefer-Wolfowitz inequality we have,

$$P\left[\widetilde{F}_{n,j}^{-1}(1-\alpha/N) \leq \widetilde{F}^{-1}(1-\alpha/1.6)\right] \leq P\left[\|\widetilde{F}_{n,j} - \widetilde{F}\|_{\infty} \geq \alpha(1/1.6 - 1/N)\right]$$
$$\leq P\left[\|\widetilde{F}_{n,j} - \widetilde{F}\|_{\infty} \geq \alpha/8\right]$$
$$\leq 2\exp\left(-n\alpha^2/32\right)$$

Taking union bound

$$P\left[\inf_{1 \le j \le N} \widetilde{F}_{n,j}^{-1}(1 - \alpha/N) \le \widetilde{F}^{-1}(1 - \alpha/1.6)\right] \le 2N \exp(-n\alpha^2/32).$$

On the other hand

$$P\left[\widetilde{F}_{n,1}^{-1}(1-\alpha) \ge \widetilde{F}^{-1}(1-\alpha/1.4)\right] \le P\left[\|\widetilde{F}_{n,1} - \widetilde{F}\|_{\infty} \ge \alpha(1-1/1.4)\right] \le 2\exp(-n\alpha^2/8).$$

So with probability at least $1-2\exp(-n\alpha^2/8)-2N\exp(-n\alpha^2/32)$ we have

$$\inf_{1 \le j \le N} \widetilde{F}_{n,j}^{-1}(1 - \alpha/N) - \widetilde{F}_{n,1}^{-1}(1 - \alpha) \ge \widetilde{F}^{-1}(1 - \alpha/1.6) - \widetilde{F}^{-1}(1 - \alpha/1.4) > 0.$$

Therefore we conclude (16) because $\eta_n = o(1)$.

Proof of Theorem 2.3. Comparing the close similarity of \widetilde{d}_1 in (12) and d in Algorithm 2, we see that $\widetilde{d}_1 = d$ if we choose the target coverage levels to be $1 - \alpha$ for the regular split conformal band $C_{\rm split}$, and $1 - (\alpha + 2\alpha/n)$ for the modified ROO split conformal band $\widetilde{C}_{\rm roo}$. The desired result follows immediately by replacing α by $\alpha + 2\alpha/n$ in Theorem 5.1, as it applies to $\widetilde{C}_{\rm roo}$ (explained in the above remark).

A.2 Proofs of Section 5

Proof of Theorem 5.1. For notation simplicity we assume $I_1 = \{1, ..., n/2\}$, and r_i 's are in increasing order for i = 1, ..., n/2. Let $m = \lceil (1 - \alpha)n/2 \rceil$. Then $\mathbb{1}(Y_i \in C_{\text{roo}}(X_i)) = \mathbb{1}(r_i \leq d_i)$ where d_i is the mth smallest value in $r_1, ..., r_{i-1}, r_{i+1}, ..., r_{n/2}$. Now we consider changing a sample point, say, (X_j, Y_j) , in \mathcal{I}_1 and denote the resulting possibly disordered residuals by $r'_1, ..., r'_{n/2}$, and define d'_i correspondingly. We now consider the question "for which values of $i \in \mathcal{I}_1 \setminus \{j\}$ can we have $\mathbb{1}(r_i \leq d_i) \neq \mathbb{1}(r'_i \leq d'_i)$?" Recall that we assume $r_1 \leq r_2 \leq ... \leq r_{n/2}$. If $i \leq m-1$ and $i \neq j$, then $d_i \geq r_m$, $d'_i \geq r_{m-1}$, $r_i = r'_i$, and hence $\mathbb{1}(r_i \leq d_i) = \mathbb{1}(r'_i \leq d'_i) = 1$. If $i \geq m+2$ and $i \neq j$, then using similar reasoning we have $\mathbb{1}(r_i \leq d_i) = \mathbb{1}(r'_i \leq d'_i) = 0$. Therefore, changing a single data point can change $\mathbb{1}(Y_i \in C_{\text{roo}}(X_i))$ for at most three values of i (i = m, m+1, j). Because the input sample points are independent, using McDiarmid's inequality we have

$$\mathbb{P}\left((2/n)\sum_{i\in\mathcal{I}_1}\mathbb{1}(Y_i\in C_{\text{roo}}(X_i))\leq 1-\alpha-\epsilon\right)\leq \exp(-cn\epsilon^2).$$

The claim follows by switching \mathcal{I}_1 and \mathcal{I}_2 and adding the two inequalities up.

Now we consider the other direction. We only need to show that $\mathbb{P}(Y_j \notin C_{\text{roo}}(X_j)) \geq \alpha - 2/n$. Under the continuity assumption, with probability one the residuals r_j are all distinct. Let $j \in \mathcal{I}_k$ for k = 1 or 2. By construction, $C_{\text{roo}}(X_j)$ does not contain the y values such that $|y - \widehat{\mu}_{3-k}(X_j)|$ is among the $n/2 - \lceil (n/2)(1-\alpha) \rceil$ largest of $\{r_i : i \in \mathcal{I}_k \setminus \{j\}\}$. Denote this set by $D_{\text{roo}}(X_j)$. Then the standard conformal argument implies that

$$\mathbb{P}(Y_i \in D_{\text{roo}}(X_i)) \ge \frac{n/2 - \lceil (n/2)(1-\alpha) \rceil}{n/2} \ge \alpha - \frac{2}{n}.$$

And we can establish the corresponding exponential deviation inequality using the same reasoning above.

For $\widetilde{C}_{\text{roo}}(X_j)$, the lower bound follows from that of $C_{\text{roo}}(X_j)$ because $\widetilde{C}_{\text{roo}}(X_j) \supseteq C_{\text{roo}}(X_j)$. To prove the upper bound, realize that $\widetilde{C}_{\text{roo}}(X_j)$ does not contain y such that $|y - \widehat{\mu}_{3-k}(X_j)|$ is among the $(n/2) - \lceil (n/2)(1-\alpha) \rceil - 1$ largest of $\{r_i : i \in \mathcal{I}\}$. Hence it does not contain all y's such that $|y - \widehat{\mu}_{3-k}(X_j)|$ is among the $(n/2) - \lceil (n/2)(1-\alpha) \rceil - 2$ largest of $\{r_i : i \in \mathcal{I} \setminus \{j\}\}$. Comparing with the argument for C_{roo} , the extra -2 in the ranking changes 2/n to 6/n in the second probability statement in the theorem.

A.3 Proofs of Section 3

Proof of Theorem 3.1. For any t > 0, by Fubini theorem and independence between ϵ and (Δ_n, X) ,

$$F_n(t) = \mathbb{P}(|Y - \widehat{\mu}_n(X)| \le t)$$

$$= \mathbb{P}(-t + \Delta_n(X) \le \epsilon \le t + \Delta_n(X))$$

$$= \mathbb{E}_{\widehat{\mu}_n, X}[F_0(t + \Delta_n(X)) - F_0(-t + \Delta_n(X))], \tag{17}$$

where F_0 is the CDF of ϵ .

Let f_0 be the density function of F_0 . We can approximate F_0 at any t using first order Taylor expansion

$$F_0(t+\delta) = F_0(t) + \delta f_0(t) + \delta^2 R(t,\delta),$$

where $R(t,\delta) = 0.5 \int_0^1 (1-u) f_0'(t+u\delta) du$ satisfies $\sup_{t,\delta} |R(t,\delta)| \leq M/4$.

Next, using symmetry of F_0 we have $f_0(t) = f_0(-t)$ for all t, the RHS of (17) becomes

$$\mathbb{E}_{\widehat{\mu}_{n},X}[F_{0}(t + \Delta_{n}(X)) - F_{0}(-t + \Delta_{n}(X))]$$

$$= \mathbb{E}_{\widehat{\mu}_{n},X} \left[F_{0}(t) + \Delta_{n}(X) f_{0}(t) + \Delta_{n}^{2}(X) R(t, \Delta_{n}(X)) - F_{0}(-t) - \Delta_{n}(X) f_{0}(-t) - \Delta_{n}^{2}(X) R(-t, \Delta_{n}(X)) \right]$$

$$= F_{0}(t) - F_{0}(-t) + \mathbb{E}_{\widehat{\mu}_{n},X}[\Delta_{n}^{2}(X)W]$$

$$= F(t) + \mathbb{E}_{\widehat{\mu}_{n},X}[\Delta_{n}^{2}(X)W]$$

where $W = R(t, \Delta_n(X)) - R(-t, \Delta_n(X))$. Equation (10) follows immediately since $|W| \leq M/2$, almost surely.

Next we show equation (11). Because F has density at least r > 0 in an open neighborhood of q_{α} . If $t < q_{\alpha} - \delta$ for some $\delta > (M/2r)\mathbb{E}(\Delta_n^2(X))$ then

$$F_q(t) \le F(q_\alpha - \delta) + (M/2)\mathbb{E}(\Delta_n^2(X))$$

$$\le F(q_\alpha) - \delta r + (M/2)\mathbb{E}(\Delta_n^2(X))$$

$$< 1 - \alpha.$$

Thus $q_{n,\alpha} \geq q_{\alpha} - (M/2r)\mathbb{E}(\Delta_n^2(X))$. Similarly we can show that $q_{n,\alpha} \leq q_{\alpha} + (M/2r)\mathbb{E}(\Delta_n^2(X))$, and hence establish the claimed result.

Proof of Theorem 3.2. Let \widetilde{q}_{α} be the upper α quantile of $|Y - \mu_0(X)|$. We first show that

$$|\widetilde{q}_{\alpha} - q_{n,\alpha}| \le \rho_n / r + \eta_n \,. \tag{18}$$

To see this, note that

$$P(|Y - \widehat{\mu}_n(X)| \le \widetilde{q}_{\alpha + \rho_n} - \eta_n)$$

$$\le P[|Y - \widehat{\mu}_n(X)| \le \widetilde{q}_{\alpha + \rho_n} - \eta_n, \|\mu_0 - \widehat{\mu}_n\|_{\infty} \le \eta_n] + \rho_n$$

$$\le \mathbb{P}[|Y - \mu_0(X)| \le \widetilde{q}_{\alpha + \rho_n}] + \rho_n$$

$$= 1 - \alpha - \rho_n + \rho_n = 1 - \alpha.$$

Thus $q_{n,\alpha} \geq \widetilde{q}_{\alpha+\rho_n} - \eta_n \geq \widetilde{q}_{\alpha} - \rho_n/r - \eta_n$. Similarly, we have $q_{n,\alpha} \leq \widetilde{q}_{\alpha-\rho_n} + \eta_n \leq \widetilde{q}_{\alpha} + \rho_n/r + \eta_n$.

The width of split conformal band equals $2\widehat{F}_n^{-1}(1-\alpha)$, where \widehat{F}_n is the empirical CDF of $\{|Y_i - \widehat{\mu}_n(X_i)| : 1 \leq i \leq n\}$, and $\widehat{\mu}_n = \mathcal{A}_n((X_i, Y_i)_{i=n+1}^{2n})$. On the event $\{\|\widehat{\mu}_n - \mu_0\|_{\infty} \leq \eta_n\}$, we have $||Y_i - \widehat{\mu}_n(X_i)| - |Y_i - \mu_0(X_i)|| \leq \eta_n$ for all $1 \leq i \leq n$. Therefore, let \widetilde{F}_n be the empirical CDF of $\{|Y_i - \mu_0(X_i)| : 1 \leq i \leq n\}$, we have

$$\mathbb{P}\left(|\widehat{F}_n^{-1}(1-\alpha) - \widetilde{F}_n^{-1}(1-\alpha)| \le \eta_n\right) \ge 1 - \rho_n. \tag{19}$$

Using standard empirical quantile theory for i.i.d data and using the assumption that \tilde{f} is bounded from below by r > 0 in a neighborhood of its upper α quantile, we have

$$\widetilde{F}_{n}^{-1}(1-\alpha) = \widetilde{q}_{\alpha} + O_{P}(n^{-1/2}).$$
 (20)

Combining (18), (19), and (20), we conclude that

$$|\widehat{F}_n^{-1}(1-\alpha) - q_{n,\alpha}| = O_P(\eta_n + \rho_n + n^{-1/2}).$$

Proof of Theorem 3.3. We focus on the event

$$\{\|\widehat{\mu}_n - \mu_0\|_{\infty} \le \eta_n\} \cap \left\{ \sup_{y \in \mathcal{Y}} \|\widehat{\mu}_n - \widehat{\mu}_{n,(X,y)}\|_{\infty} \le \eta_n \right\},\,$$

which, by assumption, has probability at least $1 - 2\rho_n \to 1$.

On this event, we have

$$\left| |Y_i - \widehat{\mu}_{n,(X,y)}(X_i)| - |Y_i - \mu_0(X_i)| \right| \le 2\eta_n, \quad i = 1, ..., n.$$
 (21)

$$\left| |y - \widehat{\mu}_{n,(X,y)}(X)| - |y - \mu_0(X)| \right| \le 2\eta_n.$$
 (22)

With (21) and (22), by the construction of full conformal prediction interval we can directly verify the following two facts.

1.
$$y \in C_{\text{conf}}(X)$$
 if $|y - \mu_0(X)| \le \widetilde{F}_n^{-1}(1 - \alpha) - 4\eta_n$;

2.
$$y \notin C_{\text{conf}}(X)$$
 if $|y - \mu_0(X)| \ge \widetilde{F}_n^{-1}(1 - (\alpha - 3/n)) + 4\eta_n$,

where \widetilde{F}_n is the empirical CDF of $\{|Y_i - \mu_0(X_i)| : 1 \le i \le n\}$.

Therefore, the length of $C_{\text{conf}}(X)$ satisfies

$$\nu_{n,\text{conf}}(X) = 2\widetilde{q}_{\alpha} + O_P(\eta_n + n^{-1/2}).$$

The claimed result follows by further combining the above equation with (18).

Proof of Theorem 3.4. Without loss of generality, we assume that $C_{\text{split}}(\cdot)$ is obtained using 2n data points. The proof consists of two steps. First we show that $\widehat{\mu}_n(X) - \mu(X) = o_P(1)$. Second we show that $\widehat{F}_n^{-1}(1-\alpha) - q_\alpha = o_P(1)$, where \widehat{F}_n is the empirical CDF of $\{|Y_i - \widehat{\mu}_n(X_i)| : 1 \le i \le n\}$ with $\widehat{\mu}_n = \mathcal{A}_n((X_i, Y_i)_{i=n+1}^{2n})$.

We now show the first part. Throughout this proof we focus on the event that $\mathbb{E}_X(\widehat{\mu}_n(X) - \mu(X))^2 \le \eta_n$, which has probability at least $1 - \rho_n$ by Assumption A4. On this event, using Markov's inequality, we have that $\mathbb{P}(X \in B_n^c \mid \widehat{\mu}_n) \ge 1 - \eta_n^{1/3}$, where $B_n = \{x : |\widehat{\mu}_n(x) - \mu(x)| \ge \eta_n^{1/3}\}$. Therefore we conclude that $\mathbb{P}_{X,\widehat{\mu}_n}(|\widehat{\mu}_n(X) - \mu(X)| \ge \eta_n^{1/3}) \le \eta_n^{1/3} + \rho_n \to 0$ as $n \to \infty$. Part 1 of the proof is complete.

For the second part, define $\mathcal{I}_1 = \{i : 1 \leq i \leq n, X_i \in B_n^c\}$ and $\mathcal{I}_2 = \{1, ..., n\} \setminus \mathcal{I}_1$. Note that B_n is independent of $(X_i, Y_i)_{i=1}^n$. Using Hoeffding's inequality conditionally on $\widehat{\mu}_n$ we have $|\mathcal{I}_2| \leq n\eta_n^{1/3} + c\sqrt{n\log n} = o(n)$ with probability tending to 1, for some absolute constant c > 0. The probability holds both conditionally or unconditionally on $\widehat{\mu}_n$.

Let $\widehat{G}_{n,1}$ be the empirical CDF of $\{|Y_i - \widehat{\mu}_n(X_i)| : i \in \mathcal{I}_1\}$, and $\widetilde{G}_{n,1}$ be the empirical CDF of $\{|Y_i - \mu(X_i)| : i \in \mathcal{I}_1\}$. By definition of \mathcal{I}_1 we know that $||Y_i - \widehat{\mu}_n(X_i)| - |Y_i - \mu(X_i)|| \leq \eta_n^{1/3}$

for all $i \in \mathcal{I}_1$. All empirical quantiles of $\widehat{G}_{n,1}$ and $\widetilde{G}_{n,1}$ are at most $O_P(\sqrt{n})$ apart, because $|\mathcal{I}_1| = n(1 + o_P(1))$.

The half width of $C_{\text{split}}(X)$ is $\widehat{F}_n^{-1}(1-\alpha)$. According to the definition of \mathcal{I}_1 , we have

$$\widehat{G}_{n,1}^{-1}\left(1-\frac{n\alpha}{|\mathcal{I}_1|}\right) \le \widehat{F}_n^{-1}(1-\alpha) \le \widehat{G}_{n,1}\left(1-\frac{n\alpha-|\mathcal{I}_2|}{|\mathcal{I}_1|}\right).$$

Both $\frac{n\alpha}{|\mathcal{I}_1|}$ and $\frac{n\alpha-|\mathcal{I}_2|}{|\mathcal{I}_1|}$ are $\alpha+o_P(1)$. As a result we conclude that

$$\widehat{F}_n^{-1}(1-\alpha) - q_\alpha = o_P(1)$$
.

The second part of the proof is complete.

Proof of Theorem 3.5. The proof naturally combines those of Theorems 3.3 and 3.4.

Using the same argument as in the proof of Theorem 3.4, we can define the set B_n and index sets $\mathcal{I}_1, \mathcal{I}_2$.

Now we assume the event $\{X \in B_n^c\}$, which has probability tending to 1. Then by definition of B_n and the fact that $\eta_n \leq \eta_n^{1/3}$ we have

$$||Y_i - \widehat{\mu}_{n,(X,y)}(X_i)| - |Y_i - \mu_0(X_i)|| \le 2\eta_n^{1/3}, \quad \forall i \in \mathcal{I}_1.$$
 (23)

$$\left| |y - \widehat{\mu}_{n,(X,y)}(X)| - |y - \mu_0(X)| \right| \le 2\eta_n^{1/3}.$$
 (24)

By definition of $C_{\text{conf}}(X)$ and following the same reasoning as in the proof of Theorem 3.3, we can verify the following facts:

1.
$$y \in C_{\text{conf}}(X)$$
 if $|y - \mu_0(X)| \le \widetilde{G}_{n,1}^{-1} \left(1 - \frac{n\alpha}{|\mathcal{I}_1|}\right) - 4\eta_n^{1/3}$;

2.
$$y \notin C_{\text{conf}}(X) \text{ if } |y - \mu_0(X)| \ge \widetilde{G}_{n,1}^{-1} \left(1 - \frac{n\alpha - |\mathcal{I}_2| - 3}{|\mathcal{I}_1|}\right) + 4\eta_n^{1/3},$$

where $\widetilde{G}_{n,1}$ is the empirical CDF of $\{|Y_i - \mu_0(X_i)| : i \in \mathcal{I}_1\}$.

Both $\frac{n\alpha}{|\mathcal{I}_1|}$ and $\frac{n\alpha-|\mathcal{I}_2|-3}{|\mathcal{I}_1|}$ are $\alpha+o_P(1),$ and hence

$$\widetilde{G}_{n,1}^{-1}\left(1 - \frac{n\alpha}{|\mathcal{I}_1|}\right) = q_\alpha + o_P(1) \,, \quad \widetilde{G}_{n,1}^{-1}\left(1 - \frac{n\alpha - |\mathcal{I}_2| - 3}{|\mathcal{I}_1|}\right) = q_\alpha + o_P(1) \,.$$

Thus the lower (upper) end point of $C_{\text{conf}}(X)$ is $q_{\alpha} + o_{P}(1)$ below (above) $\mu(X)$. The proof is complete.