Quadruple Tank Process

Building the Model

Physical models are based on conservation principles:

- 1. Mass
- 2. Energy
- 3. Momentum

The general derivation of the system of equations have the form

$$\label{eq:accumulated} Accumulated = influx \ - \ Outflux \ + (Produced \ - \ Consumed)$$

For non-reactive systems, the generation term is absent

$$Accumulated = Influx - Outflux$$

The 4-Tank System

Tank 1

Accumulated = Influx - Outflux

with,

$$egin{aligned} ext{Accumulated} &= m_1(t+\Delta t) - m_1\left(t
ight) \ ext{Influx} &=
ho q_{1,in}\left(t
ight) \Delta t +
ho q_3\left(t
ight) \Delta t \ ext{Outflux} &=
ho q_1\left(t
ight) \Delta t \end{aligned}$$

Therefore,

$$m_{1}(t+\Delta t)-m_{1}\left(t
ight)=
ho q_{1,in}\left(t
ight)\Delta t+
ho q_{3}\left(t
ight)\Delta t-
ho q_{1}\left(t
ight)\Delta t \ =
ho\Delta t\left(q_{1,in}\left(t
ight)+q_{3}\left(t
ight)-q_{1}\left(t
ight)
ight) \ \Longrightarrow rac{m_{1}(t+\Delta t)-m_{1}\left(t
ight)}{\Delta t}=
ho\left(q_{1,in}\left(t
ight)+q_{3}\left(t
ight)-q_{1}\left(t
ight)
ight)$$

Let $\Delta t o 0$

$$rac{dm_{1}\left(t
ight) }{dt}=
ho \left(q_{1,in}\left(t
ight) +q_{3}\left(t
ight) -q_{1}\left(t
ight)
ight)$$

Overview of process:

- 1. Conservation of mass.
- 2. Division by Δt
- 3. Taking the limit ($\Delta t \rightarrow 0$, i.e., differentiation from first principles).

Entire System

Mass Balances:

$$egin{aligned} rac{dm_1\left(t
ight)}{dt} &=
ho\left(q_{1,in}\left(t
ight) + q_3\left(t
ight) - q_1\left(t
ight)
ight), \quad m_1\left(t_0
ight) = m_{1,0} \ rac{dm_2\left(t
ight)}{dt} &=
ho\left(q_{2,in}(t) + q_4(t) -
ho q_2(t)
ight), \quad m_2\left(t_0
ight) = m_{2,0} \ rac{dm_3\left(t
ight)}{dt} &=
ho\left(q_{3,in}\left(t
ight) - q_3\left(t
ight)
ight), \quad m_3\left(t_0
ight) = m_{3,0} \ rac{dm_4\left(t
ight)}{dt} &=
ho\left(q_{4,in}\left(t
ight) - q_4\left(t
ight)
ight), \quad m_4\left(t_0
ight) = m_{4,0} \end{aligned}$$

Inflows:

$$egin{aligned} q_{1,in}(t) &= \gamma_1 F_1(t), \quad q_{2,in}(t) = \gamma_2 F_2(t) \ q_{1,in}(t) &= (1-\gamma_2) F_2(t), \quad q_{2,in}(t) = (1-\gamma_1) F_1(t) \end{aligned}$$

Outflows:

$$q_i(t)=a_i\sqrt{2gh_i(t)},\quad h_i(t)=rac{m_i(t)}{
ho A_i},\quad i\in\{1,2,3,4\}$$

Where the variables are:

• A_i : Cross-sectional area of tank i

- h_i: Water height of tank i
- a_i : Cross-sectional area of outlet of tank i

Converting to a System of ODEs

$$\dot{x}(t)=f(x(t),u(t),p),\quad x(t_0)=x_0$$

with vectors defined as,

$$x = egin{bmatrix} m_1 \ m_2 \ m_3 \ m_4 \end{bmatrix}, \quad u = egin{bmatrix} F_1 \ F_2 \end{bmatrix}$$

$$p = \left[a_1 \ a_2 \ a_3 \ a_4 \ A_1 \ A_2 \ A_4 \ \gamma_1 \ \gamma_2 \ g \
ho
ight]^ op$$

The Generic Input-Output Model

$$egin{aligned} rac{dx(t)}{dt} &= f(x(t), u(t), p), \quad x(t_0) = x_0 \quad ext{(Process Model)} \ y(t) &= f(x(t), p), \quad ext{(Sensor function)} \ z(t) &= h(x(t), p), \quad ext{(Output function)} \end{aligned}$$

Sensor Function

These are sensors measuring the level/height of all the tanks.

$$y = egin{bmatrix} y_1 \ y_2 \ y_3 \ y_4 \end{bmatrix} = egin{bmatrix} h_1 \ h_2 \ h_3 \ h_4 \end{bmatrix} = egin{bmatrix} rac{m_1}{
ho A_1} \ rac{m_2}{
ho A_2} \ rac{m_3}{
ho A_4} \end{bmatrix} = g\left(x,p
ight)$$

Output Function

In this case, we will consider the output as the level in tank 1 and tank 2.

$$z=egin{bmatrix} z_1\ z_2 \end{bmatrix}=egin{bmatrix} h_1\ h_2 \end{bmatrix}=egin{bmatrix} rac{m_1}{
ho A_1}\ rac{m_2}{
ho A_2} \end{bmatrix}=h(x,p)$$