

Managing and Analyzing Big Data in the Cloud

Klaus M. Miller Goethe University Frankfurt

German Academic Association for Business Research Annual Meeting

Frankfurt, March 18th, 2020

Materials available at: https://github.com/stm/vhb_2020

Description of Problem

Definition of Big Data

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

Definition of Big Data

Data is big anytime it makes you feel it is.

Example of Big Data: Cookie Data Set (I)

Data Provider: Large European Ad Exchange

- 84% reach of internet users in relevant market
- Desktop and mobile browsing traffic

Observation Period:

~2.5 years

Dimensions

- Log-level data set
- ~ 130 columns
- 550 million auctions (= rows) per day
- Total size: 60-65 TB

Example of Big Data: Cookie Data Set (II)

Overview of Type of Information Embedded in the Data

Possibilities to Deal with Large Data Sets in R

- Allocate more memory ("memory.limit")
- Vectorize (use "apply" family instead of "for loops")
- 3. Collect garbage ("gc")
- 4. Parallelize ("parApply", "doParallel")
- 5. Use Command Line Interface (e.g., GIT Bash)
- 6. Scale to the Cloud

Scaling to the Cloud

Cloud Services

Creating an AWS Account

- Free Basic Account and Credits
- Choose Region (e.g., EU (Frankfurt))
- Access AWS Services:
 - Data Storage (S3)
 - Elastic Map Reduce (EMR)
- AWS Educate for Usage in Class

https://aws.amazon.com/

Data Access

- AWS Console Access (Browser)
- API Access
 - Data sharing with collaborators worldwide
 - Obtaining data from data providers
- Cloud Storage Browsers
 (e.g., S3 Browser, Cyberduck)

Create EMR Cluster

Welcome to Amazon Elastic MapReduce

Amazon Elastic MapReduce (Amazon EMR) is a web service that enables businesses, researchers, data analysts, and developers to easily and cost-effectively process vast amounts of data.

You do not appear to have any clusters. Create one now:

Create cluster

How Elastic MapReduce Works

Create Cluster - Advanced Options Go to quick options

Step 2: Hardware

Create Cluster - Advanced Options Go to quick options

Step 2: Hardware

Instance type	vCores	Memory (GB)	Storage (GiB)
c3.xlarge	4	7.5	80 SSD
c3.2xlarge	8	15	160 SSD
c3.4xlarge	16	30	320 SSD
c3.8xlarge	32	60	640 SSD
c4.large	2	3.8	EBS only
c4.xlarge	4	7.5	EBS only
c4.2xlarge	8	15	EBS only
c4.4xlarge	16	30	EBS only
c4.8xlarge	36	60	EBS only
c5.xlarge	4	8	EBS only
c5.2xlarge	8	16	EBS only

nstance types			
m4.large	4	8	EBS only
m4.xlarge	8	16	EBS only
m4.2xlarge	16	32	EBS only
m4.4xlarge	32	64	EBS only
m4.10xlarge	80	160	EBS only
m4.16xlarge	128	256	EBS only
m5.xlarge	4	16	EBS only
m5.2xlarge	8	32	EBS only
m5.4xlarge	16	64	EBS only
m5.12xlarge	48	192	EBS only
m5.24xlarge	96	384	EBS only

Pricing for Amazon EMR and Amazon EC2 (On-Demand)

Prices range between \$.03 - \$.27 for EMR

Create Cluster - Advanced Options Go to quick options General Options Step 1: Software and Steps Cluster name VHB_2020_Cluster Step 2: Hardware Logging 6 Step 3: General Cluster Settings S3 folder s3://aws-logs-480030033378-eu-central-1/elasticmapred Step 4: Security Debugging 0 Termination protection <a>6 Tags 0 Value (optional) Key Add a key to create a tag Additional Options ■ EMRFS consistent view 6 Custom AMI ID None ▼ 📵 ▼ Bootstrap Actions Bootstrap actions are scripts that are executed during setup before Hadoop starts on every cluster node. You can use them to install additional software and customize your applications. Learn more [2] Add bootstrap action Custom action Configure and add Cancel Previous Next

Install RStudioServer on Cluster


```
📕 install-rstudio-server - short.sh - Editor
Datei Bearbeiten Format Ansicht ?
#Installation of the specified RStudio Server Version with the defined User and Password.
#These Variables can be changed above, if needed.
grep -Fq "\"isMaster\": true" /mnt/var/lib/info/instance.json
|if [ $? -eq 0 ];
then
   while [[ $# > 1 ]]; do
key="$1"
       case $key in
         # The above specified RStudio Server Version
                      --sd-version)
              VERSION="$2"
              shift
          # The above specified user
          --sd-user)
              USER="$2"
              shift
          # The password for the above specified user
           --sd-user-password)
              PASS="$2"
              shift
              ;;
              echo "Unknown option: ${key}"
              exit 1;
       esac
       shift
   done
   echo "*************
   echo " 1. Download RStudio Server ${VERSION}
   wget https://s3.amazonaws.com/rstudio-dailybuilds/rstudio-server-rhel-${VERSION}-x86_64.rpm
   # This is needed for installing devtools
sudo yum -y install libcurl libcurl-devel 1>&2
echo " 3. Install RStudio Server
   есho "*********************
   epass=$(perl -e 'print crypt($ARGV[0], "password")' ${PASS})
   sudo useradd -m -p ${epass} ${USER}
   # This is to allow access to HDFS
   sudo usermod -a -G hadoop ${USER}
          5. Create environment variables file
   echo
```

Bootstrap Script to Install RStudioServer

Step 4: Security

Create Cluster - Advanced Options Go to quick options

Step 1: Software and Steps
Step 2: Hardware
Step 3: General Cluster Settings
Step 4: Security

Cluster Ready to Use

http://ec2-18-184-169-221.eu-central-1.compute.amazonaws.com:8088

http://ec2-18-184-169-221.eu-central-1.compute.amazonaws.com:8787

Run Analysis

Sparklyr: R Interface for Apache Spark

sparklyr from R Studio dplyr MLib Extensions

Using sparklyr

Configuring connections

Troubleshooting

Guides

Manipulating data

Machine Learning

Understanding Caching

Deployment Options

Distributed R

Data Lakes

ML Pipelines

Text mining

Stream Analysis

sparklyr: R interface for Apache Spark

- Connect to <u>Spark</u> from R. The sparklyr package provides a complete <u>dplyr</u> backend.
- Filter and aggregate Spark datasets then bring them into R for analysis and visualization.
- Use Spark's distributed machine learning library from R.
- Create extensions that call the full Spark API and provide interfaces to Spark packages.

Installation

You can install the sparklyr package from CRAN as follows:

```
install.packages("sparklyr")
```

You should also install a local version of Spark for development purposes:

Source: https://spark.rstudio.com/

Sparklyr Demo

Sparklyr Demo: R Interface with Apache Spark

Klaus Miller, Goethe University Frankfurt

May 2019

Example: Cluster Analysis Using Spark.ML to predict cluster membership with the iris dataset

Slightly adapted from source: https://spark.rstudio.com/

Load Packages

```
library(tidyverse)
Installation
```

```
#install.packages("sparklyr")

# Upgrade to latest version
#devtools::install_github("rstudio/sparklyr")
```

Connecting to Spark

```
library(sparklyr)

##
## Attaching package: 'sparklyr'

## The following object is masked from 'package:purrr':
##
## invoke
sc <- spark_connect(master = "local")
```

Source: https://github.com/stm/vhb_2020

Algorithms

Sparks machine learning library can be accessed from sparklyr through the ml_* set of functions:

Function	Description
ml_kmeans	K-Means Clustering
ml_linear_regression	Linear Regression
ml_logistic_regression	Logistic Regression
ml_survival_regression	Survival Regression
ml_generalized_linear_regression	Generalized Linear Regression
ml_decision_tree	Decision Trees
ml_random_forest	Random Forests
ml_gradient_boosted_trees	Gradient-Boosted Trees
ml_pca	Principal Components Analysis
ml_naive_bayes	Naive-Bayes
ml_multilayer_perceptron	Multilayer Perceptron
ml_lda	Latent Dirichlet Allocation
ml_one_vs_rest	One vs Rest

Introduction to Spark in R

Big Data Not So "Big" After All

Thank You for Your Attention!

Klaus Miller

Theodor-W.-Adorno-Platz 4 60323 Frankfurt am Main

Tel: +49-(0)69-798-33-865

Email: klaus.miller@wiwi.uni-frankfurt.de

Web: fromdatatodecisions.com

y @klausmiller

