# ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2012

#### Functional decomposition

- functional decomposition determines the fine grain parallel tasks by partitioning the problem into semi-independent tasks that can be executed in parallel
- our numerical integration examples fall in this category
  - partitioning identified the finest grain work unit as the evaluation of the integrand; no need for fancy domain decomposition
  - little or no communication/synchronization is required among the tasks,
     i.e. they are embarrassingly parallel
  - coarsening consists of grouping fine grain tasks into larger work units in a straight forward manner
  - the mapping of the coarse grain tasks onto processing units is trivial
- in general, the computations involved in carrying out the coarse tasks are computationally equivalent
  - ▶ the computation is *self balancing*
  - or there is no need for sophisticated load balancing
- scalability and parallel efficiency are determined by the particulars of the problem, such as inherent limitations on the largest problem size of interest



### Monte Carlo integration

▶ let f be sufficiently well behaved in a region  $\Omega \subset \mathbb{R}^n$  and consider the integral

$$I_{\Omega}(f) = \int_{\Omega} dx f \tag{1}$$

- the *Monte Carlo* method approximates the value of the integral in Eq. 1 by sampling f at random points in  $\Omega$
- ▶ let  $X_N$  be such a sample of N points; then the Monte Carlo estimate is given by

$$I_{\Omega}(f;X_N) = \Omega \cdot \langle f \rangle = \Omega \frac{1}{N} \sum_{x \in X_N} f(x)$$
 (2)

where  $\langle f \rangle$  is the sample mean of f, and  $\Omega$  is used as a shorthand for the volume of the integration region.

- the approximation error falls like  $1/\sqrt{N}$ 
  - rather slow
  - but dimension independent!



### Implementation strategy

- computer implementations require a pseudo-random number generator to build the sample
- $\blacktriangleright$  most generators return numbers in (0,1) so
  - $\blacktriangleright$  find a box B that contains  $\Omega$
  - $\triangleright$  generate *n* numbers to build a point in the unit  $\mathbb{R}^n$  cube
  - stretch and translate the unit cube onto B
- $\blacktriangleright$  the integration is restricted to  $\Omega$  by introducing

$$\Theta_{\Omega} = \begin{cases} 1 & x \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
 (3)

to get

$$I_{\Omega}(f) = \int_{B} dx \,\Theta_{\Omega} f \tag{4}$$



# Recasting Monte Carlo integration

- ightharpoonup there are now two classes of points in the sample  $X_N$ 
  - ▶ those in Ω
  - and the rest
- ▶ let  $\tilde{N}$  be the number of sample points in  $\Omega$ ; Eq. 2 becomes

$$I_{\Omega}(f; X_N) = \Omega \frac{1}{\tilde{N}} \sum_{x \in X_{\tilde{N}}} f(x)$$
 (5)

▶ let *B* be the volume of the sampling box; observe that the volume of the integration region can be approximated by

$$\Omega = \frac{\tilde{N}}{N}B\tag{6}$$

and the sum over the points  $x \in X_{\tilde{N}}$  can be extended to the entire sample  $X_N$  by using the filter  $\Theta_{\Omega}$ 

$$I_{\Omega}(f; X_N) = B \frac{1}{N} \sum_{x \in X_N} \Theta_{\Omega} f(x)$$
 (7)

#### Requirements

▶ to summarize, the Monte Carlo approximation is computed using

$$I_{\Omega}(f; X_N) = B \frac{1}{N} \sum_{x \in X_N} \Theta_{\Omega} f(x)$$
 (8)

- using
  - an implementation of the function f to be integrated over  $\Omega$
  - ▶ an *n*-dimensional box *B* that contains  $\Omega$
  - ▶ a good pseudo-random number generator to build the sample  $X_N \in B$
  - ▶ a routine to test points  $x \in X_N$  and return false if they are exterior to  $\Omega$  and true otherwise
- ▶ to sum the values of the integrand on points interior to  $\Omega$ , and scale by the volume of the bounding box *B* over the sample size *N*
- essentially a reduction, similar to our other examples
  - should be straightforward to implement in parallel
  - see homework assignment



### Pseudo-random number generators

- essential when solving problems using stochastic methods
- ▶ most generators are terrible, e.g. libc
  - always check that you are getting the statistics you expect
  - ▶ /dev/random is better, but not portable and produces integers only
- get the GNU scientific library
  - ▶ from http://www.gnu.org/software/gsl, or your OS distribution
  - broad scope, extensive documentation
  - ► thread safe
  - pick RANLUX or something similar
- there are algorithms that use uniformly distributed random numbers to generate numbers of any distribution function

#### Monte Carlo estimate of $\pi$

```
#include <cmath>
 2 #include <iostream>
   #include <gsl/gsl_rng.h>
   int main(int, char*[]) {
      // the number of points in the sample
      const long N = (long) 1.0e7;
8
      // point counters
9
      long interiorPoints = 0, totalPoints = 0;
10
      // create the random number generator
      qsl rnq * generator = qsl rnq alloc(qsl rnq ranlxs2);
14
      // integrate by sampling some number of times
      for (long i=0; i<N; ++i) {
         // create a random point
16
         double x = qsl rnq uniform(generator);
18
         double y = gsl_rng_uniform(generator);
19
         // check whether it is inside the unit quarter circle
2.0
         if ((x*x + y*y) \le 1.0) { // no need to waste time computing the square root
            // update the interior point counter
            interiorPoints++;
24
         // update the total number of points
         totalPoints++:
26
28
      // print the results
29
      std::cout << "pi: " << 4.*((double)interiorPoints)/totalPoints << std::endl:
30
      return 0:
```

### Functional decomposition and load balancing

- load balancing refers to a class of algorithms that attempt to provide optimal or near optimal solutions to the task scheduling problem
  - enormous and diverse literature
  - broad applicability
    - computer systems: operating systems, parallel computing, distributed computing
    - theoretical computer science
    - operations research
    - and many other application domains, perhaps disguised
- scheduling is a closely related problem: determine the order in which a set of tasks should run
- problems that parallelize effectively using functional decomposition tend to be self scheduling and self balancing
- abstract the essentials of the approach and construct a load balancing technique
  - static and semi-static load balancing
  - self scheduling
  - distributed task queues



## Overview of load balancing

- ▶ information relevant to work distribution
  - number of tasks: is it fixed or are tasks added as the work progresses?
  - task costs: when is the cost known? what is the cost distribution among tasks?
  - task inter-dependencies: can they be run in any order? when do we find out?
  - locality: should some tasks be scheduled close to each other, i.e. on the same processor, or a nearby one? when does this information become available?
- there is a spectrum of available solutions depending on how information about task details becomes available
  - static: all necessary information is available initially
    - off-line algorithms: run before any real computation starts
  - semi-static: some information available, context changes slowly
    - off-line algorithms produce acceptable results in most cases
  - dynamic: little or no information is available at the outset
    - on-line algorithms, based on code instrumentation to enable decisions



# Static and semi-static load balancing

- common static cases:
  - dense matrix algorithms: LU factorizations, etc.
  - most computations on a regular grid: FFT
  - sparse matrix-vector multiplication: when graph partitioned
- common semi-static cases:
  - particle and particle-in-cell methods
    - where the main problem is locality as particles move from one cell to another
  - computations structured as tree traversals
  - dynamic grids that change slowly, e.g. after many time steps

#### Self scheduling

- ► task manager:
  - maintain a central pool of tasks that are ready to be scheduled
  - once a processor completes its current task, assign it a new one from the pool
  - ▶ if a computation of a task generates more, add them to the pool
- works well when
  - tasks have no dependencies on each other
  - tasks are very weakly inter-dependent (but not studied extensively)
  - task cost is not known
  - locality is not important
- ▶ do not schedule the fine grain parallel tasks directly; coarsen first
  - ▶ larger grains reduce the task queue management overhead
  - smaller grains even out the finish times
- variations:
  - fixed grain size: like our quadrature implementation
  - guided self scheduling: start out with coarse grains and refine as you approach the end of the queue
  - distributed task queues: details and an important use case next time

