

TWO-WAY-COUPLING USING DYN3D-SP3 AND SUBCHANFLOW

Francisco Javier Chaparro

Nuclear Engineering School of Physics and Mathematics National Polytechnic Institute

Paper,

International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS) / American Nuclear Society (ANS) ISBN 978-85-63688-00-2

PIN LEVEL NEUTRONIC – THERMALHYDRAULIC TWO-WAY-COUPLING USING DYN3D-SP3 AND SUBCHANFLOW

Armando Gómez Torres*, Victor Sánchez Espinoza, and Uwe Imke Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology Hermann-von-Helmholtz-Platz 1, D – 76344 Eggenstein – Leopoldshafen armando.gomez@kit.edu; uwe.imke@kit.edu

Rafael Macián Juan

Department of Nuclear Engineering Technical University München Boltzmannstr. 15, D – 85748 Garching Rafael.Macian@ntech.mw.tum.de

Aim

- Presenting a new coupled program system DYNSUB developed by coupling DYN3D-SP3 and SUBCHANFLOW codes at pin level.
- The paper summarizes the codes update for the new program.
- DYNSUB was used to analyse stationary PWR mini core problems at the pin-level neutronic-thermalhydraulic.

• Computational Tools

- \bullet Computational Tools
 - DYN3D

- Computational Tools
 - DYN3D
 - SUBCHANFLOW

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- \bullet Coupling

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- Coupling
 - DYNSUB

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- Coupling
 - DYNSUB
 - Two-way-coupling code

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- Coupling
 - DYNSUB
 - Two-way-coupling code
- Results

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- Coupling
 - DYNSUB
 - Two-way-coupling code
- Results
 - Case A

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- Coupling
 - DYNSUB
 - Two-way-coupling code
- Results
 - Case A
 - Case B

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- Coupling
 - DYNSUB
 - Two-way-coupling code
- Results
 - Case A
 - Case B
 - Case C

- Computational Tools
 - DYN3D
 - SUBCHANFLOW
- Coupling
 - DYNSUB
 - Two-way-coupling code
- Results
 - Case A
 - Case B
 - Case C
- Conclusions

• DYN3D

Includes a 3-dimensional neutron kinetics models based on a nodal expansion method for solving the two-group neutron diffusion equation in hex-z or rectangular x,y,z-geometry.

• DYN3D-SP3

It has a one dimensional thermal hydraulic model to describe the two phase flow and thermal behaviour of fuel rods. This code is already validated for stand alone version.

• SUBCHANFLOW

The code consist of a three equation two phase flow model a mixture equation for mass, momentum and energy balance.

In DYNSUB, the module DYN3D-SP3 is the master and the slave is SUBCHANFLOW

The radial mapping is: 4 subchannels corresponds to one neutronic node.

Figure 3. Bundle of 4 fuel rods with 9 subchannels.

Definition of the Test

The cases were based in the "OECD/NEA and U.S. NRC PWR MOX/UO2 core transient Benchmark"

- One assembly UO₂ at 4.50%,
- A minicore 3 x 3, with a central UO₂ 4.5% assembly and surrounded by 8 MOX - 4.3% assemblies.
- A minicore 5 x 5, based the quarter of the central section of the core.

Definition of the Test

Table II. Operational conditions for the three cases considered.

	Case A	Case B	Case C
Number assemblies	1	9	25
Power level (MWth)	18.47	166.24	461.79
Inlet Temperature (°C)	287	287	287
Core Outlet Pressure (MPa)	15.375	15.375	15.375
Active flow (kg/sec)	82.12124	739.09116	2053.031
Fuel lattice, fuel rods per assembly	17 x 17, 264	17 x 17, 264	17 x 17, 264
Heated length (cm)	3657.6	3657.6	3657.6
Assembly pitch (cm)	21.41	21.41	21.41
Pin pitch (cm)	1.26	1.26	1.26
Radial boundary conditions	$\alpha = 1.0$	$\alpha = 1.0$	$\alpha = 1.0$
Axial boundary conditions	$\alpha = 0.5$	$\alpha = 0.5$	$\alpha = 0.5$
Number of axial nodes	17	17	17

Definition of the Test

PhD Seminar

Results Case A

Figure 6. Results for "Case A", upper: Convergence of Keff, lower: Axial Power Profile.

Results Case B

Figure 7. Results for "Case B", upper: Convergence of Keff, lower: Axial Power Profile.

Table IV. Keff. Number of Iterations and Calculation Time for "Case B".

	Keff	pcm	No. Iteration	Relative CPU time
DYN3D-SP3	1.165381		15	1.000
DYNSUB 1	1.165520	13.9	12	1.406
DYNSUB 2	1.165552	17.1	12	1.312

Results Case B

Difference in % of the pin power distribution for the layer 6 DYNSUB 2 - DYN3D-SP3

Difference in % of the pin power distribution for the layer 15 DYNSUB 2 - DYN3D-SP3

Results Case C

Results Case C

Figure 11. Normalized Pin Power Distribution for the hottest layer with DYNSUB 1 for "Case C".

Conclusions

- DYNSUB is a new tool with a two-way-coupling methodology ready for steady state calculations.
- For the three cases, the behaviour of DYNSUB in steady state is in agreement with the results coming from the already validated stand alone version of DYN3D-SP3.
- Larger deviations emerged when comparing the temperature profiles of particular pins against the averaged values coming from DYN3D-SP3.
- The differences in axial temperature profile may be significant when a transient is investigated.
- At least in the steady state, the effect of cross flow implies not too much deviation.