Algorithm Selection for Maximum Common Subgraph

Paulius Dilkas

School of Computing Science University of Glasgow

23rd March 2018

Algorithms

- McSplit, McSplit↓
 - McCreesh, Prosser and Trimble 2017
- clique encoding
 - McCreesh, Ndiaye et al. 2016
- *k*↓
 - Hoffmann, McCreesh and Reilly 2017

 (G_1, G_2)

$$(G_1, G_2) \xrightarrow{\text{(i)}} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$(G_1, G_2) \xrightarrow{\text{(f)}} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \longrightarrow \boxed{\text{ML }}$$

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - 2 number of edges
 - 3 mean/max degree
 - 4 density
 - 5 mean/max distance between pairs of vertices
 - 6 number of loops
 - $\mathbf{7}$ proportion of vertex pairs with distance ≥ 2 , 3, 4
 - 8 connectedness

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - 2 number of edges
 - 3 mean/max degree
 - 4 density
 - 5 mean/max distance between pairs of vertices
 - 6 number of loops
 - $\mathbf{7}$ proportion of vertex pairs with distance ≥ 2 , 3, 4
 - 8 connectedness
 - g standard deviation of degrees
 - Iabelling percentage

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - 2 number of edges
 - mean/max degree
 - 4 density
 - 5 mean/max distance between pairs of vertices
 - 6 number of loops
 - $\mathbf{7}$ proportion of vertex pairs with distance ≥ 2 , 3, 4
 - 8 connectedness
 - g standard deviation of degrees
 - Iabelling percentage
 - natios of features 1–5

Random forests (Breiman 2001)

Source: Tae-Kyun Kim & Bjorn Stenger, Intelligent Systems and Networks (ISN) Research Group, Imperial College London

Random forests (Breiman 2001)

Source: Random Forests(r), Explained, Ilan Reinstein, KDnuggets

Results

Results (27%)

Results

Results (86%)

Results

Results (88%)

Other Accomplishments

- Identified important features (labelling, standard deviation of degrees),
 - and how they affect best choice of algorithm
- Extended k↓ to support vertex labels, using neighbourhood degree sequences
- \bullet Defined and developed new algorithms capable of switching between $\rm McSPLIT$ and the clique encoding