Algorithm Ford-Fulkerson(G, s, t)

for each edge $(u,v) \in E$ **do** \\initialize

$$f(u,v) \leftarrow 0; f(v,u) \leftarrow 0$$

while there exists a path p from s to t in G_f do \\find augmenting path

compute $c_f(p)$

for each edge (u,v) in p **do**

if
$$(u,v) \in E$$
 then $f(u,v) \leftarrow f(u,v) + c_f(p)$

else $f(v, u) \leftarrow -f(u, v)$

An although pseudocode for Algorithm Ford-Fulkerson(G, s, t)

Initialize f as zero-flow and residual network G_f with G

while there exists a path p from s to t in G_f do

Augment f using p

Update Gf

return f

Running time of Ford-Fulkerson

- Building the residual network
- Finding an augmenting path in the residual network
- How many augmenting paths can be found in the worst case?
 - value of maximum flow many (no more since the augmenting path has at least capacity 1)

Theorem: Ford-Fulkerson indeed computes a maximum flow

 To show this, we prove the Maxflow-mincut Theorem

st-cuts (continued)

- Recall: A cut in a (directed) graph is a partition of the vertices into two disjoint subsets.
- The cut edges of a graph with a cut are the edges that have one endpoint in each subset of the partition.
- An *st-cut* is a cut that places vertex *s* in one of its subsets and vertex *t* in the other.

st-cuts

- Capacity of an st-cut in an st-network: sum of the capacities of the cut's edges from the subset containing s to the subset containing t
- Flow across an st-cut in an st-network: difference between the sum of the flows of cut's edges from the subset containing s to the subset containing t and the sum of the flows of cut's edges from the subset containing t to the subset containing s

minimum *st*-cut problem (or *mincat* problem)

 Given an st-network, find an st-cut such that the capacity of no other cut is smaller.

Properties of feasible *st*-flows in *st*-flow networks

- 1. For any *st*-flow, the flow across each *st*-cut is equal to the value of the flow
- 2. The outflow from s is equal to the inflow to t
- 3. No *st*-flow's value can exceed the capacity of any *st*-cut
- 4. Let f be an st-flow and let (S,T) be an st-cut whose capacity equals |f|. Then f is a maximum flow and (S,T) is a minimum cut.

Maxflow-Mincut Theorem

- Let f be an *st*-flow. The following three conditions are equivalent:
 - A. there exists an st-cut whose capacity equals |f|
 - B. *f* is a maximum flow
 - C. there is no augmenting path with respect to f

EdmondsKarp(G, s, t)

Initialize f as zero-flow and residual network G_f with G

while there exists a path p from s to t in G_f do

Let p be a path from s to t in G_f

Augment f using p

Update G_f

return f