Aufgabenblatt 6

Wenn Sie sich für das Niveau A der Übungen entschieden haben, brauchen Sie nur die ersten drei der folgenden Aufgaben zu bearbeiten.

Aufgabe 1. (Rechnen mit komplexen Zahlen) (a) Berechnen Sie die Real- und Imaginärteile der Zahlen: $(\sqrt{3}+i)^3$, $\frac{2+3i}{1-2i}$, $\frac{1}{(1+i\sqrt{6})^2}$, $\overline{(1+i)^2}$.

(b) Bestimmen Sie die Polarkoordinaten der folgenden komplexen Zahlen: i^3 , -6, $2i+2\sqrt{3}$, $-\frac{3}{5}+\frac{4}{5}i$.

(c) Berechnen Sie
$$(1+i\sqrt{3})^{50}$$
 auf möglichst einfache Art. (4 Punkte)

Aufgabe 2. (Gleichungen und Ungleichungen) Bestimmen Sie jeweils die Menge aller $z \in \mathbb{C}$, die die folgenden Gleichungen bzw. Ungleichungen erfüllen und skizzieren Sie die Lösungsmengen:

(a)
$$1 < |z - 2i| < 2$$
, (b) $|z - i| > |z + i|$, (c) $2z(z - 4) + 26 = 0$,
(d) $z^4 = 1$, (e) $z^4 + 4 = 0$. (6 Punkte)

Aufgabe 3. (Zerlegung von Polynomen) Zerlegen Sie die folgenden Polynome in nicht weiter zerlegbare Faktoren, und zwar einerseits über \mathbb{R} und andererseits über \mathbb{C} .

(a)
$$p(x) = x^4 - 2x^2 - 15$$
 (b) $p(x) = x^3 - x^2 - 8x + 12$ (Hinweis: $p(2) = 0$) (c) $p(x) = x^4 + 4$. (4 Punkte)

Aufgabe 4. (Cardanosche Formel) Seien $p,q \in \mathbb{R}$ mit $D := q^2 + p^3 \neq 0$. Seien weiter $u = -q + \sqrt{D}$ und $v = -q - \sqrt{D}$. Rechnen Sie nach, dass $x = \sqrt[3]{u} + \sqrt[3]{v}$ eine Nullstelle des Polynoms $f(z) = z^3 + 3pz + 2q$ ist. Welche Nullstelle erhält man konkret für $f(z) = z^3 - 3\sqrt[3]{5}$ z + 6? Finden Sie ausserdem die drei reellen Nullstellen des Polynoms $f(z) = z^3 - 3\sqrt[3]{2}$ z - 2. (3 Punkte)

Aufgabe 5. (Zwischenwertsatz) (a) Seien f, g stetige Funktionen, definiert auf dem Intervall [a, b], und es gelte f(a) < g(a) und f(b) > g(b). Beweisen Sie mit dem Zwischenwertsatz, dass es dann eine Stelle $x_0 \in [a, b]$ gibt, an der sich die Funktionsgraphen von f und g schneiden.

(b) Bestimmen Sie die Schnittstelle von $f(x) = 2 - e^{-x}$ und $g(x) = 4 - x^2$ (für $x \in [0, 2]$) mit einer Genauigkeit von mindestens 1/4, indem Sie auf h(x) = f(x) - g(x) das Intervallhalbierungsverfahren anwenden (siehe Beispiel 2.4.9).

Hinweis zu (b): Ausnahmsweise mit Taschenrechner. (3 Punkte)

Und hier noch zwei Verständnisfragen zur Selbstkontrolle:

muss z_0 sogar reell sein.

Zahlen.

plexe Zahl z = a + ib sind korrekt?

(a) $|z|^2 = a^2 + (ib)^2$. \Box (b) $|z|^2 = a^2 + b^2$. \Box (c) Die Zahl z ist genau dann reell, wenn $z = \overline{z}$. \Box (d) Die z ist genau dann rein imaginär, wenn $z = -\overline{z}$. \Box Frage 2. $(Komplexe\ Wurzeln)$ Welche der folgenden Aussagen sind korrekt?

(a) Jede negative reelle Zahl hat genau zwei rein imaginäre Quadratwurzeln. \Box (b) Jedes Polynom dritten Grades hat in $\mathbb C$ genau drei verschiedene Nullstellen. \Box (c) Ist $z_0 \in \mathbb C$ eine doppelte Nullstelle eines reellen Polynoms dritten Grades, dann

Frage 1. (Reelle und imaginäre Achse) Welche der folgenden Aussagen über die kom-

Abgabe der Aufgaben: Donnerstag, den 28. Oktober 2021, bis 12.30 Uhr als .pdf via ADAM bei Ihrem Tutor bzw. Ihrer Tutorin.

(d) Die Mitternachtsformel für quadratische Gleichungen gilt auch über den komplexen