PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA DISCIPLINA: INFERÊNCIA

DISCIPLINA: INFERENCIA PROFESSORA: DIONE MARIA VALENÇA

2^A LISTA DE EXERCÍCIOS

- 1. Exercício 1.10, pag 14, BS(2001)
- 2. Sejam $X_1,...$, X_n amostra aleatória de $X \sim f(x;\theta) = \frac{1+\theta x}{2} I_{(-1,1)}(x)$, com $\theta \in (-1,1)$. Encontre um estimador consistente para θ .
- 3. Sejam $X_1,...,X_n$ amostra aleatória de $X \sim U(\theta-1,\theta+1)$. Verifique se $(X_{(1)}+X_{(n)})/2$ é consistente para θ , sendo $X_{(1)}$ e $X_{(n)}$ estatísticas de ordem (respectivamente, mínimo e máximo)
- 4. Sejam $X_1, ..., X_n$ amostra aleatória de $X \sim N(1,\theta)$ e seja $S_n^2 = \sum_{i=1}^n (X_i \bar{X})^2 / (n-1)$. Verifique se: a) Para n fixo, S_n é um estimador viciado para σ ; b) S_n é um estimador consistente de σ .
- 5. Seja $f(x|\theta)$ uma função de densidade satisfazendo as condições de regularidade adequadas. Mostre que a informação de Fisher de θ é tal que

$$I_{F}(\theta) = E\left[\left(\frac{\partial log f(X;\theta)}{\partial \theta}\right)^{2}\right] = -E\left[\left(\frac{\partial^{2} log f(X;\theta)}{\partial \theta^{2}}\right)\right]$$

Seja $\mathbf{I_F}(\theta)$ a informação total de Fisher correspondente à amostra, então: i) o resultado acima vale também para $\mathbf{I_F}(\theta)$; ii) $\mathbf{I_F}(\theta) = nI_F(\theta)$;

- 6. Considere que a distribuição X é da família exponencial unidimensional, com densidade dada por $f(x;\theta) = exp\{c(\theta)T(x) + b(\theta) + S(x)\}I_A(x)$. Sendo $I_F(\theta)$ a informação de Fisher, mostre que $I_F(\theta) = \left[\frac{d}{d\theta}c(\theta)\right]^2 Var(T)$.
- 7. Sejam X_1 , ..., X_n amostra aleatória de $X \sim \exp(\theta)$. Seja $X_{(1)} = \min\{X_1,...,X_n\}$
 - a) Obtenha um estimador não viciado para $1/\theta$ com base em $X_{(1)}$;
 - b) Verifique se o estimador obtido em (a) é eficiente parar $1/\theta$
- 8. Sejam X_1, X_2 amostra aleatória de X~Poisson (θ). Verifique se $T = X_1 X_2$ é uma estatística suficiente para θ .
- 9. Sejam X_1 , ..., X_n amostra aleatória de $X \sim \text{Uniforme discreta}(\theta)$ em que $A = \{1, 2, ..., \theta\}$, e $f(x; \theta) = \frac{1}{\theta} I_A(x)$. Mostre que $X(n) = \max\{X_1, ..., X_n\}$ é uma estatística suficiente para θ .
- 10. Sejam $X_1, ..., X_n$ amostra aleatória de $X \sim f(x;\theta)$. Encontre uma estatística suficiente bi-dimensional para $\theta = (\mu, \sigma)$, sendo $f(x;\theta) = \frac{1}{\sigma} exp\left\{-\frac{(x-\mu)}{\sigma}\right\} I_{(\mu,\infty)}(x)$, com $\mu \in R \ e \ \sigma > 0$.
- 11. Sejam X₁, ..., X_n amostra aleatória de X . Obtenha uma estatística suficiente e completa em cada caso abaixo. Justifique
 - a) $X \sim B(n,\theta)$
- b) $X \sim N(\theta, 1)$
- c) $X \sim \exp(\theta)$
- 12. Sejam $X_1, ..., X_n$ a.a. de $X \sim Poisson(\theta)$. Qual o melhor estimador para θ , \overline{X} ou S^2 ?
- 13. Sejam X_1 , ..., X_n a.a. de $X \sim \text{Bernoulli}(\theta)$. Mostre que S^2 é o estimador NVVUM de $\theta(1 \theta)$.
- 14. Sejam X_1 , ..., X_n a.a. de $X \sim U(0, \theta)$. Verifique se W = (n+1)X(n)/n é NVVUM para θ . W é eficiente?
- 15. Sejam $X_1, ..., X_n$ a.a. de $X \sim Poisson(\theta)$. Obtenha o estimador NVVUM de P(X=0).

Obs.: NVVUM denota o (estimador) não viciado de variância uniformemente mínima.