On-Device AI 실습 : Quantization for CNN

1. Uniform Quantization

Linear Quantization, Per-channel Quantization, Quantized inference

2. Non-uniform Quantization

K-Means Quantization, Quantization-aware Training

3. Quantization with PyTorch API

Post-Training Quantization, Quantization Aware Training

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

Intelligent Embedded Systems Lab. @ SKKU

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

$$q = r/s + z$$

[실습1] Linear Quantization 함수 구현

$$q = r/s + z$$

[실습1] Linear Quantization 함수 구현

$$q = int(round(r/s)) + z$$

zero point (2-bit signed int) Integer


```
# Step 1: fp_tensor를 scale 하세요.
scaled_tensor = fp_tensor / scale
# Step 2: 부동 소수점 값을 정수 값으로 rounding 하세요.
rounded_tensor = torch.round(scaled tensor)
rounded_tensor = rounded_tensor.to(dtype)
#Step 3: rounded_tensor를 zero_point 만큼 shift하여 영점을 조정합니다.
shifted_tensor = rounded_tensor + zero_point
```

Linear Quantization

An affine mapping of integers to real numbers r = S(q - Z)

quantized weights (2-bit signed int)

1	-2	0	-1
-1	-1	-2	1
-2	1	-1	-2
1	7	0	0

zero point (2-bit signed int)

scale (32-bit float)

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.14
-1.07	2.14	0	-1.07
2.14	0	1.07	1.07

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	О	0.46	0.42

 Binary
 Decimal

 01
 1

 00
 0

 11
 -1

 10
 -2

Linear Quantization - Scale

$$r_{\text{max}} = S \left(q_{\text{max}} - Z \right)$$

$$r_{\text{min}} = S \left(q_{\text{min}} - Z \right)$$

$$\downarrow$$

$$r_{\text{max}} - r_{\text{min}} = S \left(q_{\text{max}} - q_{\text{min}} \right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

Linear Quantization - Scale

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Min & Max value of fp tensor

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$= \frac{2.12 - (-1.08)}{1 - (-2)}$$
$$= 1.07$$

Linear Quantization – Zero Point

$$r_{\min} = S \left(q_{\min} - Z \right)$$

$$\downarrow$$

$$Z = q_{\min} - \frac{r_{\min}}{S}$$

Linear Quantization – Zero Point

$$r_{\min} = S\left(q_{\min} - Z\right)$$

$$Z = \begin{cases} Q_{\min} - \frac{r_{\min}}{S} \\ \text{Integer} \end{cases}$$

$$V = \begin{cases} Q_{\min} - \frac{r_{\min}}{S} \\ \text{Floating-point} \end{cases}$$

$$Z = \text{round} \left(q_{\min} - \frac{r_{\min}}{S}\right)$$

[실습2] Scale and Zero Point 계산

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

$$Z = \text{round}\left(q_{\min} - \frac{r_{\min}}{S}\right)$$

Linear Quantization is an affine mapping of integers to real numbers r = S(q - Z)

• Consider the following matrix multiplication, when Zw=0.

 Different scaling factors S and zero points Z for different output channels will perform better

Quantized Inference

$$Y = WX + b$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}} S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

Quantized Inference

$$\begin{aligned} \mathbf{Y} &= \mathbf{W}\mathbf{X} + \mathbf{b} \\ Z_{\mathbf{W}} &= 0 \quad \downarrow \quad Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}} \\ S_{\mathbf{Y}}\left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}\right) &= S_{\mathbf{W}}S_{\mathbf{X}}\left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}}\right) \\ \mathbf{q}_{\mathbf{Y}} &= \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}\left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \frac{\mathbf{precompute}}{\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}}\right) + Z_{\mathbf{Y}} \\ &\downarrow \mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} \\ \mathbf{q}_{\mathbf{Y}} &= \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}\left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \mathbf{q}_{bias}\right) + Z_{\mathbf{Y}} \end{aligned}$$

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$$

$$Z_{W} = 0$$

$$Z_{b} = 0, \quad S_{b} = S_{W}S_{X}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{b} - Z_{X}\mathbf{q}_{W}$$

$$\mathbf{q}_{Y} = S_{W}S_{X}$$

$$S_{Y} \mathbf{q}_{w}\mathbf{q}_{X} + \mathbf{q}_{bias} \mathbf{q}_{w}$$

$$N-\text{bit Int Mult.}$$

$$\mathbf{N}-\text{bit Int Mult.}$$

$$\mathbf{N}-\text{bit Int Add.}$$

$$\mathbf{Add}$$

Note: both q_b and q_{bias} are 32 bits.

[실습4] Quantized Convolution Layer

$$\mathbf{Y} = \mathsf{Conv}\left(\mathbf{W}, \mathbf{X}\right) + \mathbf{b}$$

$$Z_{\mathbf{W}} = 0$$

$$Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}}$$

$$\mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - \mathsf{Conv}\left(\mathbf{q}_{\mathbf{W}}, Z_{\mathbf{X}}\right)$$

$$\mathbf{q}_{Y} = S_{\mathbf{W}}S_{\mathbf{X}} \left(\mathsf{Conv}\left(\mathbf{q}_{\mathbf{W}}, \mathbf{q}_{\mathbf{X}}\right) + \mathbf{q}_{bias}\right) + Z_{\mathbf{Y}}$$

$$N\text{-bit Int Mult.}$$

$$32\text{-bit Int Add.}$$

$$N\text{-bit Int Add.}$$

Note: both q_b and q_{bias} are 32 bits.

Model Fusion

- We can fuse a BatchNorm layer into its previous convolutional layer
- Fusing model can reduce the extra multiplication during inference

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Neural Network	ResNet-50	Inception-V3
Floating-point Accuracy	76.4%	78.4%
8-bit Integer- quantized Acurracy	74.9%	75.4%

Latency-vs-accuracy tradeoff of float vs. integer-only MobileNets on ImageNet using Snapdragon 835 big cores.

- "실습 자료 2.2_Nonuniform.ipnyb"를 colab에서 실행해주세요
- Colab 런타임을 GPU(T4)로 설정해 주세요
- Setup 코드 셀을 실행해 필요한 패키지를 설치해주세요

- Popular unsupervised learning algorithm to group data into K clusters
- Select *K* initial centroids and assign each data point into nearest centroids
- Update centroids by calculating the mean of the assigned points

Intelligent Embedded Systems Lab. @ SKKU

K-Means-based Weight Quantization

weig	hts
(32-bit	float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

K-Means-based Weight Quantization

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

[실습6] K-Means Quantization 함수 구현

- Get number of clusters (2ⁿ) based on the quantization precision
- **Decode** the codebook into k-means quantized tensor for inference


```
# bitwidth에 따라 클러스터 수를 설정하세요.
  n clusters = 2**bitwidth
  #k-means를 사용하여 quantization centroid를 얻습니다.
  kmeans = KMeans(n_clusters=n_clusters, mode='euclidean', verbose=0)
  labels = kmeans.fit_predict(fp32_tensor.view(-1, 1)).to(torch.long)
  centroids = kmeans.centroids.to(torch.float).view(-1)
  codebook = Codebook(centroids, labels)
# 추론에서 사용할 quantized tensor를 구하기 위해 코드북을 디코딩하세요.
quantized_tensor = codebook.centroids[codebook.labels]
```

QAT with K-means quantization

Fine-tuning Quantized Weights

[실습7] Fine-tuning K-means quantization

Answer

Quantization with PyTorch API

Machine Learning Libraries

Intelligent Embedded Systems Lab. @ SKKU

Quantization with PyTorch API

