Case 3 - DD Traders

- -Chenhao Zheng
- -Yiwei Wang

DD Traders allocate product manufacturing in China

- 20 Products (with different SKU ID)
- 3 Suppliers
- Planning for October, November, and December of 2010
- Supplier 2 cannot produce Product 4&11
- DD Traders would like to minimize cost while producing enough products to meet demand for each month and product.

Assumptions

- Demand for each product in each month is fixed and must be met.
- There is no inventory or warehouse. Products produced in each month can only be used in that month.
- For each supplier, the total production in November cannot be more than 115% or less than 85% of the total production in October. Similarly, the total production in December cannot be more than 115% or less than 85% of the total production in November.
- Individual product order for each supplier in each month cannot be less than 300 units. Of course, DD Trader can choose to not order that product from a certain supplier in any month.

Model Development

We developed an IP with

- Decision variable X_{ijk} where i = SKU ID, j = month (1=October, 2=November, 3=December), k=supplier#.
- Cost index C_{iik}
- Demand index D_{ii}
- Capacity index P_{ik}
- Demand constraint
- Capacity constraint
- 115% and 85% supplier monthly cost constraint
- Non-negativity constraint (we omit the >300 unit constraint in order for simplicity, turns out in all our models there is no order that has <300 units)

Model Development

$$min. \sum_{i=1}^{20} \sum_{j=1}^{3} \sum_{k=1}^{3} c_{ijk} \times x_{ijk}$$

$$s.t. \sum_{k=1}^{3} x_{ijk} = D_{ij} \quad for \ i = 1..20, \ j = 1..3$$

$$\sum_{i=1}^{20} c_{ijk} \times x_{ijk} \le P_{jk} \quad for \ j = 1..3, \ k = 1..3$$

$$\sum_{i=1}^{20} c_{i1k} \times x_{i1k} \le 1.15 \times \sum_{i=1}^{20} c_{i2k} \times x_{i2k} \quad for \ k = 1..3$$

$$\sum_{i=1}^{20} c_{i1k} \times x_{i1k} \ge 0.85 \times \sum_{i=1}^{20} c_{i2k} \times x_{i2k} \quad for \ k = 1..3$$

$$\sum_{i=1}^{20} c_{i2k} \times x_{i2k} \le 1.15 \times \sum_{i=1}^{20} c_{i3k} \times x_{i3k} \quad for \ k = 1..3$$

$$\sum_{i=1}^{20} c_{i2k} \times x_{i2k} \ge 0.85 \times \sum_{i=1}^{20} c_{i3k} \times x_{i3k} \quad for \ k = 1..3$$

$$x_{ijk} \ge 0 \quad for \ i = 1..20, \ j = 1..3, \ k = 1..3$$

Base Solution

- INFEASIBLE
- After a brief review, we found out that it's impossible to meet the +/-15% supplier monthly cost variation constraint

•	Monthly Total Production (in units)									
	October	November	December							
	382.140	702.184	276.744							

 No matter how we allocate the production plan, the 115% and 85% constraint cannot be satisfied. Therefore, we discarded this constraint and reran the model.

New model

- Without the +/- 15% constraint, the new model can be divided into three sub-models, each dealing with the production allocation in each month.
- For each month, the model is:

$$min. \sum_{i=1}^{20} \sum_{j=1}^{3} c_{ij} \times x_{ij}$$

$$s.t. \sum_{j=1}^{3} x_{ij} = D_i \quad for \ i = 1..20$$

$$\sum_{i=1}^{20} c_{ij} \times x_{ij} \le P_j \quad for \ j = 1..3$$

$$x_{ij} \ge 0 \quad for \ i = 1..20, \ j = 1..3$$

Base Solution

• Total Cost:

\$4,066,017.71

• Original Cost:

\$4,231,114.98

	2	2010 Octobe	er	20	10 Novemb	oer	2010 December					
SKU ID	Supplier 1	Supplier 2	Supplier 3	Supplier 1	Supplier 2	Supplier 3	Supplier 1	Supplier 2	Supplier 3			
1	6082	0	37038	3795	0	37469	0	0	500			
2	0	0	13320	0	0	20844	0	0	20448			
3	11592	0	0	22176	0	0	0	0	35784			
4	30224	0	0	31024	0	0	(0	1280			
5	0	0	11832	0	0	16080	0	0	18528			
6	16032	0	0	23280	0	0	0	0	37296			
7	0	0	12480	0	0	27792	0	0	6048			
8	11848	0	0	38504	0	0	0	0	0			
9	0	0	10040	0	0	28280	0	0	22880			
10	0	0	26352	0	0	60624	0	0	13032			
11	6696	0	0	35424	0	0	9324	0	0			
12	2160	0	0	26244	0	0	5040	0	0			
13	0	12168	0	0	24444	0	0	3420	0			
14	23904	0	0	30816	0	0	13152	0	0			
15	31572	0	0	15552	0	0	0	0	4932			
16	29556	0	0	34632	0	0	0	0	6912			
17	0	19908	0	0	36756	0	0	9936	0			
18	0	0	18144	0	0	57504	0	0	18816			
19	0	0	40032	0	0	90624	0	0	31776			
20	0	0	11160	0	0	40320	0	0	17640			

Sensitivity Analysis - Supplier 2 price change

- After November, the unit price for each product from Supplier 2 is increased by 5%
- Same constraints with the new model
- Ordering pattern is almost the same, except when SKU ID = 17, where the order is given to Supplier 1 instead.

SKU ID	2	2010 Octobe	er	20	10 Novemb	per	2010 December				
	Supplier 1	Supplier 2	Supplier 3	Supplier 1	Supplier 2	Supplier 3	Supplier 1	Supplier 2	Supplier 3		
1	6082	0	37038	3794	0	37470	0	0	500		
2	1	0	13319	1	0	20843	0	0	20448		
3	11592	0	0	22176	0	0	0	0	35784		
4	30224	0	0	31024 0	0	0	0	0	1280		
5	0	C	11832			16080	0	0	18528		
6	16031	0	1	23280	0	0	0	0	37296		
7	0 11848	0	12480	0	0	27792			6048		
8		0	0	38504	0	0			C		
9	0 0 10040		0	0	28280	0	0	22880			
10	0	0	26352	0	0	60624	4 0	0	13032		
11	6696	6696 0	0	35424	0	0	9324	0	- 0		
12	2160	0	0	26244	0	0	5040	0	C		
13	0	12168	0	0	24444	0	0	3420	0		
14	23904	0	0	30816	0	0	13152	0	C		
15	31572	0	0	15552	0	0	0	0	4932		
16	29556	0	0	34632	0	0	0	0	6912		
17	0	19908	0	36756	0	0	9936	0	C		
18	0	0	18144	0	0	57504	0	0	18816		
19	0	0	40032	0	0	90624	0	0	31776		
20	0	0	11160	0	0	40320	0	0	17640		

Sensitivity Analysis - Supplier monthly cost floatation

- While we can't accommodate the +/- 15% supplier monthly cost variation constraint, we would like to find out the minimum variation percentage that would generate a feasible solution
- Turns out that from somewhere between +/- 65% and +/-70% month-to-month variation, the IP would become feasible (work shown in stability 1.xlsx and stability 2.xlsx)
- Since that under the current demand, the month-to-month cost variation is so high, it would be reasonable to disregard the plan of stabilizing volume from each supplier

Sensitivity Analysis - Total price increase effects

• Due to the possible CHY appreciation and labour shortage, we would like to evaluate the change in purchasing allocations in response to the increase in unit prices from all suppliers.

•		+2%	+4%	+6%	+8%	+10%
	Total Cost	\$4,147,918	\$4,229,819	\$4,311,720	\$4,393,621	\$4,475,521

• In October and November, where supplier 3 monthly capacities are already at maximum, the extra work is shifted to supplier 1. Other than that, the purchasing allocations remain the same.

Conclusion

 According to our analysis, each unit type at each month is produced by one supplier, except for SKU ID #1 in October & November which is produced by both supplier 1 and 3.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Oct	1+3	3	1	1	3	1	3	1	3	3	1	1	2	1	1	1	2	3	3	3
Nov	1+3	3	1	1	3	1	3	1	3	3	1	1	2	1	1	1	2	3	3	3
Dec	3	3	3	3	3	3	3	0	3	3	1	1	2	1	3	3	2	3	3	3

 The total cost is \$4,066,017.71, which is about 4% less than the original purchase allocation plan of \$4,231,114.98.