Lectime !

Definition 9.6: If R is a Dedekind domain, $p \in R$ a non-zero prime ideal, we v_p for the nonrealized valuation on $Frac(R) = Frac(R_{(p)})$ corresponding to the DVR $R_{(p)}$.

Eq. R=Z, p=(p), v_p is the p-adic valuation. Theorem 9.7: Let R be a P-edefined domain. Then every non-zero ideal $I \subseteq R$ can be written uniquely as a product of prine ideals: $I=P_1^{e_1} \dots P_r^{e_r}$ (p: distinct)

Remark: This clear for PID's (PID =>UFD)
Proof: (spetch) We girte the following
properties of localization.

(i) If IFP then IRIP FPRCPI.

(ii) I=5 (=) IR(p) = JR(p), Vp pine ideals.

(iii) R Dedekind, p., P. non-zoro proce deals

P.R(P2) = { PER(P2) it p.= Pc

R(P2) it p. + P2

Let I = R be a non-zoro deed.

Then be Lemma 9.2. Here are some Asols

 $p_1,...,p_r$ s.t. $p_1^{\beta_1}...p_r^{\beta_r} \leq I$, where $B_i > 0$. Let p pine ideal, $p \notin \{p_1,...,p_r\}$. Then $(iii) = \sum I R_{(p)} = R_{(p)}$

Cooling 9.5 => $R_{(p_i)} = (p_i R_{(p_i)})^{\alpha_i} = p_i^{\alpha_i} R_{(p_i)}$ some $0 \le \alpha_i \le \beta_i$.

thus $I = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ by property (ii). For uniqueness, if $I = p_1^{\alpha_1} \dots p_r^{\alpha_r} = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ then $p_i^{\alpha_i} R_{(p_i)} = p_i^{\gamma_i} R_{(p_i)} = \lambda \alpha_i = \gamma_i$ by unique factorization in OVR's.

& Dedefeurd domain + extensions

Let L/K be a finite extension. For $x \in L$ we inte $T_{V_K}(x) \in K$ for the trace of the K-tinear map $L \to L$, $y \mapsto xy$.

If L/K is separable and o,..., on: L-> K, dentes the set of embeddings of Linto a separable closure K, then

 $Tr_{HK}(x) = \frac{2}{5} \sigma_i(x)$.

Lemma 10.1: Let L/K be a finite separable externion of fields. Then the symmetric bilinear paints

(,):LXL -> K (x,y) +> Trux (xy)

is non-degenerate

Post: By the printing element theorem, L=K(a) for some at L. We consider the matrix A for (,) in the K-basis for L conen by 1, a, a, ... and then

 $A_{ij} = \Gamma_{r_{L/K}}(\alpha^{i+j}) = [BB]_{ii}$

where B is the nxa matrix with

$$\mathcal{B} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \sigma_{i}(\alpha) & \sigma_{i}(\alpha) & \dots & \sigma_{n}(\alpha) \\ \vdots & \vdots & & \ddots & \vdots \\ \sigma_{i}(\alpha^{h-1}) & \sigma_{i}(\alpha^{n-1}) & \dots & \sigma_{n}(\alpha^{n-1}) \end{pmatrix}$$

=> det A = (det B)= [TT o (a) - o; (a)] (Vandemonde determinant)

70 sune $\sigma_i(\alpha) \neq \sigma_i(\alpha), i\neq j$.

by separability \square

Remark: In fact a finite extension of fields L/K is separable If the trave form is non-degenerate. Ex West 3.

Theorem 10.2: Let Ox be a Dedepind damen and L a funte separable externos of K=Frale a Dedepind domain.

Prof: Since $O_L \subseteq L$, it is an integred domain.

We need to show that

- (i) Or is Noetherun
- (ii) Or is integrally closed ist
- (iii) Every non-zoro prime ideal Pin Ocis maximal-
 - (i) Let $e_1, ..., e_n \in L$ be a K-basis for LU por scaling by K, we may assume $e_i \in \partial_{L_i} t_i$.
 Let f: fL be the dual basis w.r.t. the trave form (,).

Let $x \in \theta_L$, write $x = \frac{\hat{\rho}}{\xi_i} \lambda_i f_i$, $\lambda_i \in K$. Then $\lambda_i = T_{r \cup K}(x e_i) \in \theta_K$

(For any z & OL, TVIK (Z) is a sum of elements which are integral over OK

- =) Truk (Z) is integral over OK
- =) TV4/K(2) EOK)

Thus $O_L \subseteq O_K f_1 + \dots + O_K f_n$ Since O_K is Noetherieur, O_L is fruitely Generaled us an U_K -module, henre U_L is V betherens.

(ii) Ex. sheet 2.

(iii) Let P be a non-zero prime ideal $A O_L$, and define $p:=P \cap O_K$ a prime ideal $A O_K$. Let $x \in P$, then x satisfies an equation

 $x^n + d_{n-1}x^{n-1} + \dots + d_6 = 0$, $a_i \in O_K$ with $a_0 \neq 0$. Then $d_0 \in P \cap O_K$ is a non-zero element A p = p is non-zero

, =) p is maximed.

We have $0 \times / p \subset 0 \times / p$, and $0 \times / p$ is a finite dimensional v: s. over $0 \times / p$.

Since $0 \times / p$ is an integral dornain, it is a field (Eq. use rank - millity theorem applied to map $y \mapsto zy$).

Remark: Theorem 10.2 (rolds inthaut the assumption that $\frac{1}{2}/k$ is separable.

Cadlary 10.3; The ineg of integers inside a number is a Dedelpined domain.

Ennentron: 0_k the iney of integers of a

number field - p = O x a non-zero princidad.

We manabase 1.1p (abs. value associated to V_p) by $|x|_p = N_p^{-V_p(x)}$ where $N_p = \# U_r/p$ Let O_F be a Deelekind domain.