Algèbre 3

Avril 2009

DEVOIR (FORMES QUADRATIQUES)

A rendre dans la semaine du 20 avril 2009

Exercice 1

Soit E un \mathbb{R} -espace vectoriel de dimension quelconque et f une forme bilinéaire sur E vérifiant :

$$(\star): \quad \forall x, y \in E, f(x, y) = 0 \Rightarrow f(y, x) = 0.$$

On veut montrer que f est ou bien une forme bilinéaire symétrique (i.e. que pour tous $x, y \in E$ alors f(x, y) = f(y, x)) ou bien une forme bilinéaire antisymétrique (i.e. que pour tous $x, y \in E$ alors f(x, y) = -f(y, x)).

 \bigcirc Soit f une forme bilinéaire sur E. Montrer que si

$$\forall a \in E, f(a, a) = 0$$

alors f est antisymétrique.

- ② Soit f une forme bilinéaire sur E vérifiant (\star) . On suppose en outre qu'il existe $a \in E$ tel que $f(a, a) \neq 0$.
 - (a) Soit $b \in E$. Montrer que f(a,b) = f(b,a).
 - (b) Cette question utilise à plusieurs reprises la sous-question (a) Soit $x \in E$ fixé et tel que f(x,x) = 0. Montrer qu'il existe $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $f(a + \lambda x, a + \lambda x) = 0$. En déduire que si $y \in E$ alors $f(a + \lambda x, y) = f(y, a + \lambda x)$ puis que f(x,y) = f(y,x).
- (3) Démontrer le résultat annoncé.

Exercice 2

Soit E un \mathbb{R} -espace vectoriel de dimension finie et soit f une forme bilinéaire symétrique sur E. On se propose de démontrer que

$$F^{\perp \perp} = F + E^{\perp}.$$

Soit F un sous-espace vectoriel de E. Pour $x \in E$, on note f_x la forme bilinéaire sur E définie par

$$\forall y \in E, f_x(y) = f(x, y).$$

Soit $\varphi: F \to E^*$ l'application définie par

$$\forall x \in F, \varphi(x) = f_x.$$

- \bigcirc Montrer que φ est linéaire puis exprimer $(\operatorname{Im} \varphi)^{\circ}$ et $\ker \varphi$ en fonction de F.
- (2) Montrer que dim F^{\perp} + dim F = dim E + dim $(F \cap E^{\perp})$.
- (3)(a) Comparer les dimensions de $F^{\perp \perp}$ et $F + E^{\perp}$.
 - (b) Montrer que $F^{\perp\perp} = F + E^{\perp}$.

Exercice 3

Soit q une forme quadratique non dégénérée sur un \mathbb{R} -espace vectoriel E de dimension 4. On suppose qu'il existe une partie L de E égale à son orthogonal pour q.

- \bigcirc Montrer que L est un plan vectoriel et que q admet des vecteurs isotropes non nuls.
- ② Soit (e_1, e_2) une base de L. On pose $H_1 = \text{vect}(e_1)^{\perp}$ et $H_2 = \text{vect}(e_2)^{\perp}$.
 - (a) Montrer qu'il existe une base $\mathcal{B} = (e_1, e_2, e_3, e_4)$ de E telle que $H_1 = \text{vect}(e_1, e_2, e_3)$ et $H_2 = \text{vect}(e_1, e_2, e_4)$.
 - $igode{\mathbf{b}}$ Déterminer la matrice M de q dans la base \mathcal{B} . Montrer que $\det(M) > 0$ et en déduire la signature de q.