Computational Physics, Aufgabenblatt 8

Kevin Sedlaczek, Mona Kalthoff

Abgabe: 23. Juni 2017

1 Matrixdiagonalisierung

Im Folgenden werden die Eigenwerte der Matrix

$$A = \begin{pmatrix} 1 & -2 & -3 & 4 \\ -2 & 2 & -1 & 7 \\ -3 & -1 & 3 & 6 \\ 4 & 7 & 6 & 4 \end{pmatrix} \tag{1}$$

mittels der C++ Bibliothek *Eigen* und der **Potenzmethode** entwickelt. Bei der Potenzmethode wird die Iteration

$$\vec{w}_n = \underline{\underline{A}} \vec{v}_{n-1} \tag{2}$$

$$\vec{v}_n = \frac{\vec{w}_n}{||\vec{w}_n||} \tag{3}$$

ausgeführt, wobei $\lim_{n\to\infty} \vec{v}_n = \vec{x}$ und \vec{x} der Eigenvektor zum betragsmäßig größten Eigenwert ist. Die Iteration wird abgebrochen, wenn $||\vec{v}_n - \vec{v}_{n-1}||$ unterhalb einer Schwelle eps liegt. Dabei muss beachtet werden, dass für negative Eigenwerte das Vorzeichen alterniert, also $\vec{v}_n = -\vec{v}_{n-1}$ ist, und in diesem Fall $||\vec{v}_n + \vec{v}_{n-1}||$ gegen null gehen muss. Der Eigenwert kann dann über $\lambda_i = \vec{v}_n^T \underline{\underline{A}} \vec{v}$ berechnet werden. Ist ein Eigenwert bestimmt, so wird die Matrix auf

$$\underline{\underline{\tilde{A}}} = \underline{\underline{A}} - \lambda_i \cdot \vec{x}_i \vec{x}_i^T \tag{4}$$

reduziert. Es wird also λ_i mal der Projektor auf den durch \vec{x}_i aufgespannten Unterraum abgezogen. Dadurch bleibt zwar \vec{x}_i ein Eigenvektor, jedoch zum veränderten Eigenwert $\tilde{\lambda}_i = 0$, was nicht der betragsmäßig größte Eigenwert sein kann. Eine erneute Anwendung der Iteration liefert somit den betragsmäßig nächst kleineren Eigenwert. Unsere Ergebnisse mit eps = 0.0001 sind:

	Eigen	Potenzmethode
λ_1	12.08505811	12.08505809
λ_2	-9.27793969	-9.277939715
λ_3	4.597048811	4.597048813
λ_4	2.595832767	2.5958328

Offensichtlich stimmen beide Verfahren also bis auf die 6. Nachkommastelle überein.

2 Anharmonischer Oszillator

Der Hamiltonoperator des Anharmonischen Oszillators ist gegeben durch

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{m\omega^2 x^2}{2} + \lambda x^4 \tag{5}$$

und die stationäre Schrödingergleichung ist somit gegeben durch

$$\hat{H} |\Psi\rangle = E |\Psi\rangle \tag{6}$$

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2 x^2}{2} + \lambda x^4\right)|\Psi\rangle = E|\Psi\rangle.$$
(7)

Um diese Gleichung auf eine dimensionslose Form zu bringen setzten wir

$$E = \beta \varepsilon \tag{8}$$

$$x = \alpha \zeta \rightarrow \zeta = \frac{x}{\alpha}.$$
 (9)

Dann ist

$$\left(\frac{\partial}{\partial x}\right)^2 = \left(\frac{\partial \zeta}{\partial x} \cdot \frac{\partial}{\partial \zeta}\right)^2 = \left(\frac{\partial}{\partial x} \left(\frac{x}{\alpha}\right) \cdot \frac{\partial}{\partial \zeta}\right)^2 = \left(\frac{1}{\alpha} \cdot \frac{\partial}{\partial \zeta}\right)^2 = \frac{1}{\alpha^2} \frac{\partial^2}{\partial \zeta^2} \tag{10}$$

und die stationäre Schrödingergleichung lautet

$$\left(-\frac{\hbar^2}{2m\alpha^2}\frac{\partial^2}{\partial \zeta^2} + \frac{m\omega^2\alpha^2}{2} + \lambda\alpha^4\right)|\Psi\rangle = \beta\varepsilon|\Psi\rangle \tag{11}$$

$$\left(-\frac{\hbar^2}{2m\alpha^2\beta}\frac{\partial^2}{\partial\zeta^2} + \frac{m\omega^2\alpha^2\zeta^2}{2\beta} + \frac{\lambda\alpha^4\zeta^4}{\beta}\right)|\Psi\rangle = \varepsilon|\Psi\rangle.$$
(12)

Ein Koeffizientenvergleich mit

$$\left(-\frac{\partial^2}{\partial \zeta^2} + \zeta^2 + \tilde{\lambda}\zeta^4\right)|\Psi\rangle = \varepsilon|\Psi\rangle . \tag{13}$$

liefert das Differentialgleichungssystem

$$\frac{\hbar^2}{2m\alpha^2\beta} \stackrel{!}{=} 1 \rightarrow \alpha^2 = \frac{\hbar^2}{2m\beta} \tag{14}$$

$$\frac{m\omega^2\alpha^2\zeta^2}{2\beta} \stackrel{!}{=} 1 \rightarrow \frac{m\omega^2}{2\beta} \cdot \frac{\hbar^2}{2m\beta} = 1 \rightarrow \beta^2 = \frac{\hbar^2\omega^2}{4} \rightarrow \beta = \pm \frac{\hbar\omega}{2}$$
 (15)

$$\frac{\lambda \alpha^4}{\beta} \stackrel{!}{=} \tilde{\lambda} \rightarrow \tilde{\lambda} = \pm \lambda \cdot \frac{\hbar^4}{4m^2\beta^2} \cdot \frac{2}{\hbar\omega} = \pm \frac{\lambda \hbar^4}{4m^2} \cdot \left(\frac{2}{\hbar\omega}\right)^2 \cdot \frac{2}{\hbar\omega} = \pm \frac{2\lambda\hbar}{m^2\omega^3} \,. \tag{16}$$

Da alpha für negative beta nicht definiert ist sind die gesuchten Größen gegeben durch

$$\alpha = \sqrt{\frac{\hbar}{m\omega}} \quad , \quad \beta = \frac{\hbar\omega}{2} \quad , \quad \tilde{\lambda} = \frac{2\lambda\hbar}{m^2\omega^3} \,.$$
 (17)

Wird nun eine Diskretisierung angesetzt, in der das Intervall $\zeta \in [-L, L]$ betrachtet und dieses Intervall in $N = \frac{2 \cdot L}{\Delta \zeta} + 1$ Intervalle der Länge $\Delta \zeta$ aufgeteilt wird, so können die N^2 Matrixelemente des diskretisierten Hamiltonoperators über

$$H_{nm} = -\frac{1}{(\Delta\zeta)^2} \left(\delta_{n,m-1} + \delta_{n,m+1} - 2\delta_{nm}\right) + \left(\left(n \cdot \Delta\zeta\right)^2 + \tilde{\lambda} \left(n \cdot \Delta\zeta\right)^4\right) \delta_{nm}$$
 (18)

berechnet werden. Bei der Implementierung muss beachtet werden, dass das Intervall bei -L beginnt, tatsächlich ist also $n \cdot \Delta \zeta = -L + \tilde{n} \cdot \Delta \zeta$ mit $\{\tilde{n} \in \mathbb{N} \mid 0 \leq \tilde{n} < N\}$. Für eine Diskretisierung $\Delta \zeta = 0.1$ auf dem Intervall $\zeta \in [-10\,,10]$, also N=201 ergiben sich die zehn kleinsten Energieeigenwerte für $\tilde{\lambda} = 0.2$ und $\tilde{\lambda} = 0$ (berechnet mit Eigen) zu:

	$\tilde{\lambda} = 0.2$	$\tilde{\lambda} = 0$
λ_1	1.1174	0.999375
λ_2	3.53373	2.99687
λ_3	6.26136	4.99186
λ_4	9.22317	6.98434
λ_5	12.3776	8.9743
λ_6	15.6969	10.9617
λ_7	19.1609	12.9467
λ_8	22.7538	14.929
λ_9	26.463	16.9089
λ_{10}	30.2779	18.8862

Da \hat{H} für $\lambda=0$ dem quantenmechanischen harmonischen Oszillator entspricht, sind die theoretischen Eigenenergien gegeben durch

$$\left\langle n \left| \hat{H} \left(\tilde{\lambda} = 0 \right) \right| m \right\rangle = 2 \left(n + \frac{1}{2} \right) \delta_{nm}$$
 (19)

was den ungeraden Zahlen entspricht. Die Werte in der zweiten Spalte der obigen Tabelle zeigen also nicht zu vernachlässigende Abweichungen von den Theoriewerten. Daher wird der Hamiltonoperator im Folgenden in den harmonischen- und den anharmonischen Teil zerlegt:

$$\left\langle n\left|\hat{H}\left(\tilde{\lambda}\right)\right|m\right\rangle = \left\langle n\left|\hat{H}\left(\tilde{\lambda}=0\right)\right|m\right\rangle + \tilde{\lambda}\left\langle n\left|\zeta^{4}\right|m\right\rangle.$$
 (20)

Im Besetzungszahldarstellung erhält man für den harmonischen Teil

$$\langle n | \zeta^{4} | m \rangle = \frac{1}{4} \left(\sqrt{m \cdot (m-1) \cdot (m-2) \cdot (m-3)} \right) \delta_{n,m-4}$$

$$+ \frac{1}{4} \left(\sqrt{(m+1) \cdot (m+2) \cdot (m+3) \cdot (m+4)} \right) \delta_{n,m+4}$$

$$+ \frac{1}{4} \left(\sqrt{m \cdot (m-1)} (4m-2) \right) \delta_{n,m-2}$$

$$+ \frac{1}{4} \left(\sqrt{(m+1) \cdot (m+2)} (4m+6) \right) \delta_{n,m+2}$$

$$+ \frac{1}{4} \left(6m^{2} + 6m + 3 \right) \delta_{nm} .$$
(21)

Offensichtlich ist diese Matrix hermitesch, bzw. da sie reell ist symmetrisch, denn es gilt

$$\langle m | \zeta^{4} | n \rangle = \frac{1}{4} \left(\sqrt{n \cdot (n-1) \cdot (n-2) \cdot (n-3)} \right) \delta_{m,n-4}$$

$$+ \frac{1}{4} \left(\sqrt{(n+1) \cdot (n+2) \cdot (n+3) \cdot (n+4)} \right) \delta_{m,n+4}$$

$$+ \frac{1}{4} \left(\sqrt{n \cdot (n-1)} (4n-2) \right) \delta_{m,n-2}$$

$$+ \frac{1}{4} \left(\sqrt{(n+1) \cdot (n+2)} (4n+6) \right) \delta_{m,n+2}$$

$$+ \frac{1}{4} \left(6n^{2} + 6n + 3 \right) \delta_{nm}$$

$$= \frac{1}{4} \left(\sqrt{(m+4) \cdot (m+3) \cdot (m+2) \cdot (m+1)} \right) \delta_{m+4,n}$$

$$+ \frac{1}{4} \left(\sqrt{(m-3) \cdot (m-2) \cdot (m-1) \cdot m} \right) \delta_{m-4,n} +$$

$$+ \frac{1}{4} \left(\sqrt{(m+2) \cdot (m+1)} (4m+6) \right) \delta_{m+2,n}$$

$$+ \frac{1}{4} \left(\sqrt{(m-1) \cdot m} (4m-2) \right) \delta_{m-2,n}$$

$$+ \frac{1}{4} \left(6m^{2} + 6m + 3 \right) \delta_{nm}$$

$$= \langle n | \zeta^{4} | m \rangle .$$

$$(24)$$

Mit

$$a^{\dagger} - a = \frac{\zeta - \frac{\partial}{\partial \zeta} - \zeta - \frac{\partial}{\partial \zeta}}{\sqrt{2}} = \frac{-2\frac{\partial}{\partial \zeta}}{\sqrt{2}} = -\sqrt{2}\frac{\partial}{\partial \zeta}\frac{\partial}{\partial \zeta} = \frac{a^{\dagger} - a}{\sqrt{2}}$$
 (25)

$$\frac{\partial^2}{\partial \zeta^2} = \frac{1}{2} \cdot \left(aa - aa^{\dagger} - a^{\dagger}a + a^{\dagger}a^{\dagger} \right) \tag{26}$$

und

$$\zeta^2 = \frac{1}{2} \cdot \left(aa + aa^{\dagger} + a^{\dagger}a + a^{\dagger}a^{\dagger} \right) \tag{27}$$

ist in Besetzungszahldarstellung

$$-\frac{\partial^2}{\partial \zeta^2} + \zeta^2 = aa^{\dagger} + a^{\dagger}a \tag{28}$$

und

$$\left\langle n \left| -\frac{\partial^2}{\partial \zeta^2} + \zeta^2 \right| m \right\rangle = \left\langle n \left| a a^{\dagger} \right| m \right\rangle + \left\langle n \left| a^{\dagger} a \right| m \right\rangle \tag{29}$$

$$= \sqrt{m+1} \cdot \langle n | a | m+1 \rangle + \sqrt{m} \langle n | a^{\dagger} | m-1 \rangle$$
 (30)

$$= (m+1) \cdot \langle n|m\rangle + m \cdot \langle n|m\rangle \tag{31}$$

$$= (2m+1)\delta_{nm}. (32)$$

Damit sind die Matrixelemente des Hamiltonoperators gegeben durch

$$\hat{H}_{nm} = (2m+1)\,\delta_{nm} + \tilde{\lambda} \cdot \langle n | \zeta^4 | m \rangle . \tag{33}$$

Die zehn kleinsten Eigenwerte dieser Matrix, berechnet mit Eigen sind in in Tabelle 1 für zwei verschiedene Diskretisierungen aufgelistet. Für den harmonischen Teil $\tilde{\lambda}=0$ ist selbst die gröbere Diskretisierung mit N=51 exakt, und auch für den Anharmonischen Oszillator führt eine vierfach kleine Diskretisierung nur zu einer Veränderung in der neunten Nachkommastelle. Es bleibt anzumerken dass die Energieniveaus des anharmonischen Oszillators im Gegensatz zum harmonischen Oszillator nicht äquidistant sind.

Tabelle 1: Energieeigenwerte des Anharmonischen Oszillators, wobei die Matrix in Besetzungszahlbasis berechnet und mit Eigen ausgewertet wurde

	$\tilde{\lambda} = 0.2$	$\tilde{\lambda} = 0$	$\tilde{\lambda} = 0.2$	$\tilde{\lambda} = 0$
	N = 201	N = 201	N = 51	N = 51
λ_1	1.11829265436434	1 1	1.1182926543667	1
λ_2	3.53900528789777	3	3.53900528789811	3
λ_3	6.27724861699549	5	6.27724861699627	5
λ_4	9.2577656177761	7	9.25776561777625	7
λ_5	12.4406018000143	9	12.440601800013	9
λ_6	15.7995344557426	11	15.7995344557429	11
λ_7	19.315679984317	13	19.3156799843205	13
λ_8	26.7649496148908	15	22.9746311588945	15
λ_9	22.9746311588881	17	26.7649496149	17
λ_{10}	30.6772840789901	19	30.6772840793703	19