회귀 기획서

전복 데이터를 사용한 회귀 분석

분석 목적

• 전복의 나이 예측을 통하여 높은 시장 가치를 가진 전복을 평가한다.

대회 개요

· Regression with an Abalone Dataset

Regression with an Abalone Dataset

Playground Series - Season 4, Episode 4

k https://www.kaggle.com/competitions/playground-series-s4e4/overview

- 。 시작일
 - April 1, 2024
- o 마감일 (대회 현재 진행 중)
 - April 30, 2024
- 。 평가

RMSLE(Root Mean Squared Logarithmic Error)

- 。 최종 스코어
 - 1st score: 0.14423 (24.4.11 14:24 기준)
- 。 목표 스코어
 - Top 20% (Silver)를 목표로 진행한다.

선정된 주제 이슈 조사

▼ 대표적으로 대한민국 완도군의 주력 상품인 전복은 보통 시중에서 팔아서 이윤을 남기 기 위해 2년차 성체가 되면 수확을 하며 여기에 전복의 치어라 할 수 있는 치패를 육성하는

데도 반년이 걸리니 판매용이 되려면 2.5년 이상이 걸린다.

• 출처 : 나무위키

https://namu.wiki/w/전복

분석 사례 조사

▼ 전복의 경제적 가치는 연령과 양의 상관 관계가 있다.

https://mpra.ub.uni-muenchen.de/91210/1/MPRA_paper_91210.pdf

출처: MPRA(19.01)

문제 확인

- 전복 나이에 가장 큰 영향을 미치는 변수는 무엇일까?
- 어떤 변수를 선택하고 제거해야할까?
- 변수 전처리는 어떻게 진행해야할까?

데이터

Train

train.csv

。 행(row): 90615

。 열(column): 10

。 데이터 상위값

	id	Sex	Length	Diameter	Height	Whole weight	Whole weight.1	Whole weight.2	Shell weight	Rings
0	0	F	0.550	0.430	0.150	0.7715	0.3285	0.1465	0.2400	11
1	1	F	0.630	0.490	0.145	1.1300	0.4580	0.2765	0.3200	11
2	2	I	0.160	0.110	0.025	0.0210	0.0055	0.0030	0.0050	6
3	3	М	0.595	0.475	0.150	0.9145	0.3755	0.2055	0.2500	10
4	4	I	0.555	0.425	0.130	0.7820	0.3695	0.1600	0.1975	9

Test

test.csv

。 행(row): 60411

。 열(column): 9

。 데이터 상위값

	id	Sex	Length	Diameter	Height	Whole weight	Whole weight.1	Whole weight.2	Shell weight
0	90615	М	0.645	0.475	0.155	1.2380	0.6185	0.3125	0.3005
1	90616	М	0.580	0.460	0.160	0.9830	0.4785	0.2195	0.2750
2	90617	М	0.560	0.420	0.140	0.8395	0.3525	0.1845	0.2405
3	90618	М	0.570	0.490	0.145	0.8740	0.3525	0.1865	0.2350
4	90619	I	0.415	0.325	0.110	0.3580	0.1575	0.0670	0.1050

• Sample_submission

。 행(row) : 60411

。 열(column): 9

。 데이터 상위값

	id	Rings
0	90615	10
1	90616	10
2	90617	10
3	90618	10
4	90619	10

• Original

。 행(row) : 4177

。 열(columns):10

。 데이터 상위값

	id	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Rings
0	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

변수 설명

id

• Sex: 성별

• Length: 길이

• Diameter: 직경

• Height: 높이

• Whole weight: 전체 무게(살+껍질)

• Whole weight.1: 껍질 벗긴 무게

• Whole weight.2: 내장 중량

• Shell weight: 껍질 무게

문제 해결 전략

- 데이터 전처리
 - 。 상관관계 분석을 통한 변수 선택
 - 。 불필요한 피처 제거
 - 。 인코딩
 - Sex(성별)
 - OneHot Encoder
 - Label Encoder
 - ...
 - 。 스케일링
 - Standard Scaler
 - Robust Scaler
 - MinMax Scaler
 - **...**
- 모델링
 - LightGBM Regressor
 - XGBoost Regressor
 - Lasso
 - o ...
- 하이퍼 파라미터 최적화
 - 。 베이지안 최적화
 - 。 랜덤서치

일정표

타임라인 (1)

Aa Name	■ Date	: Tags
✓ 주제 선정	@2024년 4월 11일	
<u> 발표</u>	@2024년 4월 26일	
■ <u>기획서 제출</u>	@2024년 4월 16일	
■ <u>결과물 제출</u>	@2024년 4월 26일	
✓ <u>발표자료 최종 점검</u>	@2024년 4월 25일	
분류/회귀 분석 동시 진행	@2024년 4월 11일 → 2024년 4월 12일	
<u> </u>	@2024년 4월 20일 오후 7:00	
추가 대회 진행	@2024년 4월 22일 → 2024년 4월 24일	
<u> </u>	@2024년 4월 22일 오후 8:00	
<u> 보고서 작성(피드백 반영)</u>	@2024년 4월 22일	
분류/회귀 분석 동시 진행	@2024년 4월 15일 → 2024년 4월 19일	
<u> 보고서 작성</u>	@2024년 4월 19일	

팀원 소개 및 역할

- 김수지 [PM]
 - 。 기획서 작성
 - ㅇ 보고서 작성
 - ㅇ 발표 자료 작성
 - 전복 데이터 세트를 사용한 회귀 분석
 - 데이터 전처리
 - 분석 및 EDA
- 박지은 [PL]
 - 。 기획서 작성
 - 。 보고서 작성
 - 。 발표(회귀)

- 。 전복 데이터 세트를 사용한 회귀 분석
 - 모델링
 - 모델 평가
- 변진영 [PM]
 - 。 기획서 작성
 - 。 보고서 작성
 - 。 발표 자료 작성
 - 。 은행 이탈 데이터를 사용한 이진 분류 분석
 - 모델링
 - 모델 평가
 - 。 전복 데이터 세트를 사용한 회귀 분석
 - 모델 평가
- 이소희 [PM]
 - 。 기획서 작성
 - 。 보고서 작성
 - 。 발표 자료 작성
 - 。 은행 이탈 데이터를 사용한 이진 분류 분석
 - 분석 및 EDA
- 이정수 [PL]
 - 。 기획서 작성
 - 。 보고서 작성
 - 발표(분류)
 - 。 은행 이탈 데이터를 사용한 이진 분류 분석
 - 데이터 전처리
 - 모델 평가