Elements Of Data Science - F2023

Week 7: Model Evaluation and Hyperparameter Tuning

10/28/2024

TODOs

- Readings:
 - PML 4.1 Dealing with Missing Data 4.4 Bringing Features onto the Same Scale
 - Additional: <u>PDSH Chapter 5: Feature Engineering</u>
- Quiz 7, due Mon Nov 11th, 11:59pm ET
- Hw2: TBA
- No class next week, Nov 4

Today

- Model Evaluation and Selection
- Hyperparameter Tuning
- Regularization

Questions?

Environment Setup

Model Evaluation and Hyperparameter Tuning

- How well are any of our models working?
- How can we compare different models?
- How do we decide on hyperparameter settings?
- How can we keep our models from "overfitting" (and what does that mean)?
- How do we do all this for both Regression and Classification?

How well are our models performing?

Regression

- Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)
- R^2 or R^2 or R^2
- (Adjusted ${\it R}^2$ we'll talk about this during Feature Selection)

Classification

- Accuracy
- Precision/Recall/F1
- ROC Area Under the Curve (AUC)

Data Setup for Regression

Data Setup for Regression

Data Setup for Regression

```
In [2]:
        1 zscore = lambda x: (x - x.mean()) / x.std()
         3 df wine = pd.read csv('../data/wine dataset.csv',
                                usecols=['alcalinity of ash','magnesium','alcohol','ash','proline','hue','class'])
         5 numeric cols = ['alcalinity of ash', 'magnesium', 'alcohol', 'ash', 'proline', 'hue']
         7 df wine[numeric_cols] = df_wine[numeric_cols].apply(zscore) # standardize numeric feature cols
         9 X = df wine[['proline', 'hue', 'ash']]
        11 y r = df wine['alcohol']
                                                                       # regression target
In [3]: 1 df_wine.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 178 entries, 0 to 177
        Data columns (total 7 columns):
                               Non-Null Count Dtype
             Column
                          178 non-null
            alcohol
                                               float64
                               178 non-null
                                             float64
             ash
             alcalinity_of ash 178 non-null
                                              float64
            magnesium
                                               float64
                              178 non-null
                              178 non-null
                                              float64
             hue
                        178 non-null
             proline
                                               float64
             class
                              178 non-null
                                               int64
        dtypes: float64(6), int64(1)
        memory usage: 9.9 KB
```

Regression with Simple Linear Model

```
In [4]: 1 from sklearn.linear_model import LinearRegression
2
3 lr = LinearRegression().fit(X[['proline']],y_r)
4 argmax_y_r = np.argmax(y_r)
5 y_lr_pred = lr.predict(X[['proline']])
6
7 fig,ax = plt.subplots(1,1,figsize=(8,6))
8 sns.scatterplot(x=X.proline, y=y_r, color='grey');
9 ax.plot(X.proline,y_lr_pred,color='k');
10 ax.vlines(X.proline.iloc[argmax_y_r],y_r.iloc[argmax_y_r],y_lr_pred[argmax_y_r],color='r');
```


• Mean Squared Error (MSE): $\frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$

• Mean Squared Error (MSE): $\frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$

• Mean Squared Error (MSE): $\frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$

- But this is the squared error! (alcohol^2)
- Root Mean Squared Error (RMSE): $\sqrt{\frac{1}{n} \sum_{i} (y_i \hat{y}_i)^2}$

RMSE has same unit as y

• Mean Squared Error (MSE): $\frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$

- But this is the squared error! (alcohol^2)
- Root Mean Squared Error (RMSE): $\sqrt{\frac{1}{n} \sum_{i} (y_i \hat{y}_i)^2}$

RMSE has same unit as y

```
In [6]: 1 lr_rmse = mean_squared_error(y_r,y_lr_pred,squared=False)
    print(f'{lr_rmse = :0.2f}')
    lr_rmse = 0.76
```

Is this good? Need a Baseline Comparison

- What's a baseline to compare against?
- Simple one for Regression: always predict the mean of the targets

Is this good? Need a Baseline Comparison

- What's a baseline to compare against?
- Simple one for Regression: always predict the mean of the targets

Comparing against the mean: ${\it R}^2$

the proportion of variance explained by the model

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

- maximum value of 1
- a value below 0 means the model is predicting worse than just predicting the mean
- sklearn uses \mathbb{R}^2 as the default for regression scoring

```
In [8]: 1    r2_lr = lr.score(X[['proline']],y_r)
2    r2_dummyr = dummyr.score(X[['proline']],y_r)
3    print(f'{r2_dummyr = :0.2f}\n{r2_lr = :0.2f}')

r2_dummyr = 0.00
r2_lr = 0.41
```

Can we do better?

Can we do better?

```
In [9]: 1 from sklearn.tree import DecisionTreeRegressor
         3 dtr = DecisionTreeRegressor(max_depth=10).fit(X[['proline']],y_r)
         4 r2_dtr = dtr.score(X[['proline']],y_r)
         5 print(f'{r2_lr = :0.2f}\n{r2_dtr = :0.2f}')
         7 X_query = pd.DataFrame({'proline':np.linspace(X.proline.min(), X.proline.max(), 1000)})
         8 y_dtr_pred = dtr.predict(X_query)
         9 y_lr_pred = lr.predict(X_query)
        10 fig,ax = plt.subplots(1,1,figsize=(8,4))
        11 sns.scatterplot(x=X.proline, y=y_r,color='gray')
        12 ax.plot(X_query,y_dtr_pred,color='b')
        13 ax.plot(X_query,y_lr_pred,color='r');
        r2 lr = 0.41
        r2\_dtr = 0.76
         alcohol
```

But is this what we want? Interpretation vs Prediction

Always good to ask:

- do we want our model to very closely fit our data for interpretation?
- do we want our model to predict well on new, unseen data (generalize well)?

Generalization:

how well will model predict on data that it hasn't seen yet?

But we used all of our data to train?

• Need to do a **Train/Test Split** to create a held-aside set

Train/Test Split

- Training Set: portion of dataset used for training
- Test/Held-Aside/Validation/Out of sample: portion of dataset used for evaluation

Want the test set to reflect the same distribution as training

Train/Test split with Sklearn

Train/Test split with Sklearn

Train/Test split with Sklearn

- How big should test be?
 - Large enough to capture variance of dataset.
 - Depends on the dataset and the models being trained

Training and Evaluating on Different Data

Training and Evaluating on Different Data

Training and Evaluating on Different Data

DecisionTree model is doing worse than the Dummy model on the test set!

Overfitting and Underfitting

Overfitting and Underfitting

- Overfitting: poor generalization due to complexity
 - learning noise in training data
- Underfitting: poor generalization due to simplicity
 - not flexibile enough to learn concept
- Need to find a balance between simplicity and complexity
- Need to find a balance between **bias** and **variance**

Bias-Variance Tradeoff

From PDSH

Bias-Variance Tradeoff

From PDSH

Bias-Variance Tradeoff Continued

- How close is the model to the underlying concept?
- How sensitive is the model to the training set?

Fig. 1: Graphical Illustration of bias-<u>variance trade</u>-off , Source: Scott Fortmann-Roe., Understanding Bias-<u>Variance Trade</u>-off

Bias-Variance Tradeoff Continued

- We'd like to:
 - reduce the Bias (use a model complex enough to capture the concept)
 - without introducing too much Variance (overfit the data)
 - all in order to minimize Generalization Error

Overfitting/Underfitting Revisited

- Overfitting: poor generalization due to complexity
 - learning noise in training data
 - model has high variance and low bias
- Underfitting: poor generalization due to simplicity
 - not flexibile enough to learn concept
 - model has high bias and low variance

Avoiding Overfitting/Underfitting

Avoiding Overfitting/Underfitting

- Never train and evaluate on the same set of data!
 - train test split
 - cross-validation
- Rule of thumb: keep the model as simple as possible (Occom's Razor)

Avoiding Overfitting/Underfitting

- Never train and evaluate on the same set of data!
 - train test split
 - cross-validation
- Rule of thumb: keep the model as simple as possible (Occom's Razor)

```
In [12]: 1 fig,ax = plt.subplots(1,3,figsize=(16,3))
         2 for i in range(3):
                sns.scatterplot(x=X_train_r.proline,y=y_train_r,color="gray",ax=ax[i])
                sns.scatterplot(x=X_test_r.proline,y=y_test_r,color="black",s=100,ax=ax[i]);
         5 ax[0].plot(X_query,dummyr.predict(X_query),color='r');
         6 ax[1].plot(X_query,lr.predict(X_query),color='g');
         7 ax[2].plot(X query,dtr.predict(X query),color='b');
                                                                 proline
                                                                                                       proline
                            proline
```

Overfitting? Simplify the model

Overfitting? Simplify the model

```
In [13]: 1 max_depths = [2,3,4]
          2 fig,ax = plt.subplots(1,3,figsize=(16,4))
          3 for i in range(3):
                dtr_tmp = DecisionTreeRegressor(max_depth=max_depths[i]).fit(X_train_r,y_train_r)
                sns.scatterplot(x=X_train_r.proline,y=y_train_r,color="gray",ax=ax[i])
                sns.scatterplot(x=X_test_r.proline,y=y_test_r,color="black",s=100,ax=ax[i]);
                ax[i].plot(X_query,dtr_tmp.predict(X_query),color='b');
                ax[i].set_title(f'depth {max_depths[i]}, r2: {dtr_tmp.score(X_test_r,y_test_r):0.2f}')
                         depth 2, r2: 0.21
                                                                depth 3, r2: 0.22
                                                                                                      depth 4, r2: 0.10
                             proline
                                                                    proline
                                                                                                          proline
```

Overfitting? Simplify the model

```
In [13]: 1 \max_{depths} = [2,3,4]
          2 fig,ax = plt.subplots(1,3,figsize=(16,4))
          3 for i in range(3):
                dtr_tmp = DecisionTreeRegressor(max_depth=max_depths[i]).fit(X_train_r,y_train_r)
                sns.scatterplot(x=X_train_r.proline,y=y_train_r,color="gray",ax=ax[i])
                sns.scatterplot(x=X_test_r.proline,y=y_test_r,color="black",s=100,ax=ax[i]);
                ax[i].plot(X_query,dtr_tmp.predict(X_query),color='b');
                ax[i].set_title(f'depth {max_depths[i]}, r2: {dtr_tmp.score(X_test_r,y_test_r):0.2f}')
                         depth 2, r2: 0.21
                                                               depth 3, r2: 0.22
                                                                                                      depth 4, r2: 0.10
                                                                   proline
```

- But now we might be overfitting on the test set!
- How to choose hyperparameters: Cross-Validation

Aside: Hyperparameters

• parameter: something learned by the model itself (eg. coefficient in linear model)

• hyperparameter: something we set by hand (eg. decision tree max depth)

k-Fold Cross-Validation

- 1. split dataset into k equal sized subsets (folds)
- 2. for each subset (fold)
 - train on the other k-1 subsets combined
 - test on this subset to get a score
- 3. average across all scores

k-Fold Cross-Validation

- 1. split dataset into k equal sized subsets (folds)
- 2. for each subset (fold)
 - train on the other k-1 subsets combined
 - test on this subset to get a score
- 3. average across all scores
- Result is a set of samples of model performance
- Can use to set hyperparameters without overfitting on train or test
- Can also use to estimate range of generalization performance

Example: 10-Fold Cross-Validation

k-Fold Cross-Validation Continued

- Can be used for:
 - tuning hyperparameters
 - model selection
 - any time we need estimate of model performance
- Issue: each fold requires training the model
 - lacktriangle Training time can be an issue for large k or models with long training time
- What values can k take?
 - min: 2
 - max: *n*, the size of the dataset (aka Leave-One-Out CV)

k-Fold Cross-Validation in sklearn

k-Fold Cross-Validation in sklearn

k-Fold Cross-Validation in sklearn

Tuning Hyperparameters with CV

Tuning Hyperparameters with CV

Tuning Hyperparameters with CV

```
In [16]: 1 mean_scores = []
         3 for depth in [1, 2, 3, 5, 10]:
               dtr tmp = DecisionTreeRegressor(max depth=depth)
               scores = cross val score(dtr tmp, X train r, y train r, cv=5)
               mean scores.append( (depth, scores.mean().round(3)) )
         8 for depth, mean score in mean scores:
                print(f'{depth = :2d} : {mean score: .3f}')
         depth = 1 : 0.289
         depth = 2 : 0.346
         depth = 3 : 0.341
         depth = 5 : 0.050
         depth = 10 : -0.142
In [17]: 1 # find the depth that gives best score (highest R^2)
         2 best depth, best score = sorted(mean scores, key=lambda x:x[1],reverse=True)[0] # sorted is ascending by default
         3 print(f'{best_depth = :2d} : {best_score = : .3f}')
         best depth = 2 : best score = 0.346
```

Visualize Tuning: Validation Curve

Validation Curve

- Show model complexity vs model performance on both train and test/validation
- Want to find point where performance on validation set begins to decline (elbow rule)

From PDSH

```
In [18]: 1 from sklearn.model_selection import validation_curve
         3 \text{ depth} = [1,2,3,5,8,10]
         4 train_scores, test_scores = validation_curve(DecisionTreeRegressor(),
                                                         X_train_r, y_train_r,
          6
                                                         param_name='max_depth',
                                                         param range=depth,
                                                         cv=3)
         9 train_scores.round(2)
Out[18]: array([[0.35, 0.42, 0.45],
                [0.48, 0.49, 0.51],
                [0.52, 0.53, 0.56],
                [0.68, 0.69, 0.65],
                [0.79, 0.83, 0.76],
                [0.82, 0.84, 0.81]])
In [19]: 1 test_scores.round(2)
Out[19]: array([[0.41, 0.31, 0.17],
                [0.33, 0.42, 0.16],
                [0.29, 0.4, 0.22],
                [0.2, 0.25, 0.24],
                [0.17, 0.04, 0.12],
                [0.24, 0.04, 0.03]])
```

```
In [18]: 1 from sklearn.model_selection import validation_curve
         3 \text{ depth} = [1,2,3,5,8,10]
         4 train_scores, test_scores = validation_curve(DecisionTreeRegressor(),
                                                        X train r, y train r,
          6
                                                         param_name='max_depth',
                                                         param range=depth,
                                                         cv=3)
         9 train scores.round(2)
Out[18]: array([[0.35, 0.42, 0.45],
                [0.48, 0.49, 0.51],
                [0.52, 0.53, 0.56],
                [0.68, 0.69, 0.65],
                [0.79, 0.83, 0.76],
                [0.82, 0.84, 0.81]])
In [19]: 1 test scores.round(2)
Out[19]: array([[0.41, 0.31, 0.17],
                [0.33, 0.42, 0.16],
                [0.29, 0.4, 0.22],
                [0.2, 0.25, 0.24],
                [0.17, 0.04, 0.12],
                [0.24, 0.04, 0.03]])
In [20]: 1 mean_train_scores = np.mean(train_scores,axis=1) # take the mean across columns
         2 mean_test_scores = np.mean(test_scores,axis=1)
```

Validation Curve in sklearn Continued

Validation Curve in sklearn Continued

```
In [21]: 1 fig,ax = plt.subplots(1,1,figsize=(8,6))
          2 ax.plot(depth, mean_train_scores, 'o-', color='b', label='training score');
          3 ax.plot(depth, mean_test_scores, 'o-', color='r', label='validation score');
          4 ax.set_xlabel('max_depth'), ax.set_ylabel('R^2'); ax.set_title('Validation Curve for DecisionTree');
          5 ax.legend();
                                Validation Curve for DecisionTree
                 training score
            0.7
            0.6
            0.5
            0.4
            0.2
            0.1
                                        max depth
```

More Than One HyperParameter? Grid Search

Grid Search: Search over a 'grid' of hyperparameter settings

Example: KNN "number of neighbors" and "distance metric"

More Than One HyperParameter? Grid Search

Grid Search: Search over a 'grid' of hyperparameter settings

Example: KNN "number of neighbors" and "distance metric"

```
In [22]: 1 distance_metrics = ['euclidean', 'manhattan']
2 n_neighbors = [1,3,5]
3
4 grid = []
5 for d in distance_metrics:
6     for k in n_neighbors:
7     print([d,k])

['euclidean', 1]
['euclidean', 3]
['euclidean', 5]
['manhattan', 1]
['manhattan', 3]
['manhattan', 5]
```

Grid Search in sklearn

Grid Search in sklearn

```
In [23]:
         1 from sklearn.model_selection import GridSearchCV
          2 from sklearn.neighbors import KNeighborsRegressor
          4 params = {'n_neighbors':[1,2,3,5,10],
                      'metric':['euclidean','manhattan']}
          6 gscv = GridSearchCV(KNeighborsRegressor(),
                                                      # grid of size 10
                               param_grid=params,
          8
                                          # do 3-fold CV at every grid point
                               refit=True) # refit True trains one more time on the entire training set
         10
         11 gscv.fit(X train r, y train r) # Q: How many times are we training a model here? (2*5*3 + 1 = 31)
         12
         13 print(gscv.best params )
         {'metric': 'euclidean', 'n_neighbors': 5}
```

Grid Search in sklearn

```
In [23]:
          1 from sklearn.model_selection import GridSearchCV
          2 from sklearn.neighbors import KNeighborsRegressor
          4 params = {'n_neighbors':[1,2,3,5,10],
                      'metric':['euclidean','manhattan']}
          6 gscv = GridSearchCV(KNeighborsRegressor(),
                                param grid=params,
                                                       # grid of size 10
          8
                                            # do 3-fold CV at every grid point
          9
                                refit=True) # refit True trains one more time on the entire training set
        10
        11 gscv.fit(X train r,y train r) # Q: How many times are we training a model here? (2*5*3 + 1 = 31)
        12
        13 print(gscv.best params)
         {'metric': 'euclidean', 'n_neighbors': 5}
In [24]: 1 scores = cross_val_score(gscv.best_estimator_,X_train_r,y_train_r,cv=5)
         3 print(f'{np.mean(scores).round(2):0.2f} +- {2*np.std(scores).round(2):0.2f}')
         0.34 + - 0.26
```

Review So Far

- Regression Metrics
 - MSE and RMSE
 - $\blacksquare R^2$
- Model Selection
 - Comparison to Baseline Model
 - Underfitting/Overfitting and Bias/Variance
 - Train/Test Split
- Hyperparameter Tuning
 - Cross-Validation
 - Validation Curve
 - Grid Search

Data Setup for Classification

Data Setup for Classification

```
In [25]:
         1 idx_binary = df_wine['class'].isin([0,1])
                                                                   # reduce to binary classification
          3 X_bc = df_wine.loc[idx_binary,['alcalinity_of_ash','magnesium']] # only 2 features for ease of plotting
          4 y_bc = df_wine.loc[idx_binary,'class']
                                                                    # pull out classification target [0,1]
          6 X_train_bc, X_test_bc, y_train_bc, y_test_bc = train_test_split(X_bc,
          8
                                                                        stratify=y_bc, # maintain label proportions
          9
                                                                        random state=0
         10
         11
         pd.DataFrame({'train':y_train_bc.value_counts(),'test':y_test_bc.value_counts()}).sort_index()
Out[25]:
            train test
```

Data Setup for Classification

```
In [25]:
          1 idx binary = df wine['class'].isin([0,1])
                                                                    # reduce to binary classification
          3 X_bc = df_wine.loc[idx_binary,['alcalinity_of_ash','magnesium']] # only 2 features for ease of plotting
                                                                     # pull out classification target [0,1]
          4 y_bc = df_wine.loc[idx_binary,'class']
          6 X train bc, X test bc, y train bc, y test bc = train test split(X bc,
          8
                                                                         stratify=y bc, # maintain label proportions
          9
                                                                         random state=0
         10
         11
         12 pd.DataFrame({'train':y train bc.value counts(), 'test':y test bc.value counts()}).sort index()
Out[25]:
            train test
In [26]: 1 X_mc = df_wine.loc[:,['alcalinity_of_ash', 'magnesium']]
                                                                        # multiple features for multiclass classification task
         2 y_mc = df_wine.loc[:,'class']
                                                                          # pull out classification target [0,1,2]
         3 X_train_mc, X_test_mc, y_train_mc, y_test_mc = train_test_split(X_mc,
                                                                         stratify=y mc, # maintain label proportions
```

8 pd.DataFrame({ 'train':y train mc.value counts(), 'test':y test mc.value counts()}).sort values(by="train")

random state=123

Out[26]:

		train	test
	2	36	12
	0	44	15
	1	53	18

Default Metric in Classification: Accuracy

• Accuracy: out of all the observations, how many did I get right?

Default Metric in Classification: Accuracy

• Accuracy: out of all the observations, how many did I get right?

Default Metric in Classification: Accuracy

• Accuracy: out of all the observations, how many did I get right?

- But what if the cost of calling a negative a positive is different from calling a positive a negative?
- Examples:
 - disease testing
 - medical product failures
 - incarceration

Errors in Classification

• Just like hypothesis testing, there are different kinds of error in classification

Visualizing Errors with a Confusion Matrix

Visualizing Errors with a Confusion Matrix

```
In [28]: 1 fig,ax = plt.subplots(1,1,figsize=(6,3));
2 plot_decision_regions(X_train_bc.values,y_train_bc.values,dtc,ax=ax);
3 sns.scatterplot(x=X_bc.columns[0],y=X_bc.columns[1],data=X_test_bc[y_test_bc == 0],color="blue",s=120);
4 sns.scatterplot(x=X_bc.columns[0],y=X_bc.columns[1],data=X_test_bc[y_test_bc == 1],color="red",s=120);
```

Visualizing Errors with a Confusion Matrix

```
In [28]: 1 fig,ax = plt.subplots(1,1,figsize=(6,3));
2 plot_decision_regions(X_train_bc.values,y_train_bc.values,dtc,ax=ax);
3 sns.scatterplot(x=X_bc.columns[0],y=X_bc.columns[1],data=X_test_bc[y_test_bc == 0],color="blue",s=120);
4 sns.scatterplot(x=X_bc.columns[0],y=X_bc.columns[1],data=X_test_bc[y_test_bc == 1],color="red",s=120);
```



```
In [29]: 1 from sklearn.metrics import confusion_matrix
2
3 print('training set error\n', confusion_matrix(y_train_bc,dtc.predict(X_train_bc)))
4 print()
5 print('test set error\n', confusion_matrix(y_test_bc,dtc.predict(X_test_bc)))

training set error
[[41 3]
[14 39]]

test set error
[[15 0]
[ 7 11]]
```

Plot Confusion Matrix with mlxtend

Plot Confusion Matrix with mlxtend

```
In [30]: 1 from mlxtend.plotting import plot_confusion_matrix
          3 fig,ax = plt.subplots(1,1,figsize=(4,4))
          4 plot_confusion_matrix(confusion_matrix(y_test_bc,dtc.predict(X_test_bc)),axis=ax);
                       predicted label
```

Weighing Errors: Precision vs. Recall

Precision

• Out of the observations I predicted positive (TP+FP), how many are truly positive (TP)?

$$precision = \frac{TP}{TP+FP}$$

Recall

• Out of the truly positive (TP+FN), how many obsersevations did I predict positive (TP)?

$$recall = \frac{TP}{TP+FN}$$

Using Other Measures in sklearn

Using Other Measures in sklearn

```
In [31]:
          1 dummyc precision scores = cross val score(dummyc, X train bc, y train bc, cv=5, scoring='precision')
          2 dummyc recall scores
                                    = cross val score(dummyc, X train bc, y train bc, cv=5, scoring='recall')
          4 print(f'dummy precision: {np.mean(dummyc precision scores):0.2f} +- {2*np.std(dummyc precision scores):0.2f}')
          5 print(f'dummy recall : {np.mean(dummyc recall scores):0.2f} +- {2*np.std(dummyc recall scores):0.2f}')
          6 print()
          8 dtc_precision_scores = cross_val_score(dtc,X_train_bc,y_train_bc,cv=5,scoring='precision')
          9 dtc recall scores
                                 = cross val score(dtc, X train bc, y train bc, cv=5, scoring='recall')
         10
         11 print(f'dtc precision : {np.mean(dtc precision scores):0.2f} +- {2*np.std(dtc precision scores):0.2f}')
         12 print(f'dtc recall
                                   : {np.mean(dtc recall scores):0.2f} +- {2*np.std(dtc recall scores):0.2f}')
         dummy precision: 0.55 +- 0.04
         dummy recall : 1.00 + -0.00
         dtc precision : 0.85 + - 0.36
         dtc recall
                        : 0.66 +- 0.38
```

How do we decide if something is positive or negative?

Usually set a threshold:

$$\hat{y}_i = \begin{cases} 1 & \text{if } P(y_i = 1 | x_i) > \text{threshold,} \\ 0 & \text{o.w.} \end{cases}$$

Usually, threshold = .5, but it doesn't have to be.

What happens if we change it?

- High threshold → High Precision, Low Recall
- Low threshold → High Recall, Low Precision

Combining Precision and Recall: F_1 -score

Usually, we just want one number to optimize

 F_1 -score: harmonic mean of precision and recall

• eg. weighted average of the precision and recall

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Note that F_1 ignores True Negatives!

Combining Precision and Recall: F_1 -score

Usually, we just want one number to optimize

 F_1 -score: harmonic mean of precision and recall

• eg. weighted average of the precision and recall

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Note that F_1 ignores True Negatives!

Paying attention to True Negatives: ROC

Receiver Operating Characteristic

• displays FPR vs TPR

False Positive Rate (FPR) =
$$\frac{FP}{FP+TN}$$
 = $\frac{\text{negatives we got wrong}}{\text{all negatives}}$

True Positive Rate (TPR) = Recall =
$$\frac{TP}{TP+FN}$$
 = $\frac{positives we got right}{all positives}$

How do these change as we move our threshold?

Paying attention to True Negatives: ROC

Receiver Operating Characteristic

displays FPR vs TPR

False Positive Rate (FPR) =
$$\frac{FP}{FP+TN}$$
 = $\frac{\text{negatives we got wrong}}{\text{all negatives}}$

True Positive Rate (TPR) = Recall =
$$\frac{TP}{TP+FN}$$
 = $\frac{positives we got right}{all positives}$

How do these change as we move our threshold?

```
1 def plot_roc(curves):
In [34]:
                fig,ax = plt.subplots(1,1,figsize=(6,6))
               lw = 2
                for fpr,tpr,model_name in curves:
                   11, = ax.plot(fpr, tpr, lw=lw, label=model_name)
                ax.plot([0, 1], [0, 1], color='k', lw=lw, linestyle='--')
                ax.set_xlim([0.0, 1.0])
                ax.set_ylim([0.0, 1.05])
                ax.set_xlabel('False Positive Rate')
                ax.set_ylabel('True Positive Rate')
         10
         11
                ax.set aspect('equal', 'box')
         12
                ax.set_title('Receiver operating characteristic example')
         13
                ax.legend()
```

```
In [35]: 1 curves = [(fpr_dtc,tpr_dtc,'dtc2')]
          2 fpr_dummyc, tpr_dummyc, _ = roc_curve(y_train_bc, dummyc.predict_proba(X_train_bc)[:,1]) # Compare dummy
          3 curves.append((fpr_dummyc,tpr_dummyc,'dummy'));
           4 plot_roc(curves);
                     Receiver operating characteristic example
             0.8
             0.2
                       0.2
                               0.4
                                       0.6
                                               0.8
                                                        1.0
                               False Positive Rate
```

```
In [36]: 1 for depth in [3,4]:
                  fpr, tpr, _ = roc_curve(y_train_bc,
                                              DecisionTreeClassifier(max_depth=depth).fit(X_train_bc,y_train_bc).predict_proba(X_train_bc)[:,1])
                  curves.append((fpr,tpr,'dtc'+str(depth)))
           5 plot_roc(curves);
                      Receiver operating characteristic example
             1.0
           True Positive Rate
9.0
             0.2
             0.0
                                                          1.0
                                False Positive Rate
```

ROC AUC

- But again, we'd like one number to optimize
- ROC Area Under the Curve
 - How much area falls under the ROC curve?

ROC AUC

- But again, we'd like one number to optimize
- ROC Area Under the Curve
 - How much area falls under the ROC curve?

```
In [37]: 1 dummyc_rocauc_scores = cross_val_score(dummyc,X_train_bc,y_train_bc,cv=5,scoring='roc_auc')
2 dtc_rocauc_scores = cross_val_score(dtc,X_train_bc,y_train_bc,cv=5,scoring='roc_auc')
4 print(f'dummyc_rocauc = {np.mean(dummyc_rocauc_scores).round(2):0.2f} +- {2*np.std(dummyc_rocauc_scores).round(2):0.2f}')
5 print(f'dtc_rocauc = {np.mean(dtc_rocauc_scores).round(2):0.2f} +- {2*np.std(dtc_rocauc_scores).round(2):0.2f}')

dummyc_rocauc = 0.50 +- 0.00
dtc_rocauc = 0.78 +- 0.22
```

Review: Steps to Choosing a Model

- 1. Create Held-Aside Set (Train/Test Split)
- 2. Determine Metric to use (or combination of metrics)
- 3. Get a Baseline for comparison
- 4. Use Cross-Validation to fit Hyperparameters and Choose Model
- 5. Evaluate Chosen Model on Held-Aside Set

Avoiding Overfitting in Linear Models: Regularization

- Use to avoid overfitting in linear models
- Idea: can we reduce complexity of our linear model by minimizing weights?

From https://www.wikiwand.com/en/Regularization (mathematics)

Regression: Finding the Weights

- Linear models learn by finding weights that minimize a cost.
- Can we get close to the solution while still keeping weights small (simpler model)?

Regularization: Add a cost for large weights

Goal: Penalize extreme weights (w)

If the original cost function looks like:

$$arg min_w C(f(w, x), y)$$

we can add a **regularization term**:

$$\arg\min_{w} C(f(w, x), y) + \lambda g(w)$$

Regularization: Ridge

- Goal:
 - Keep all coefficeints relatively small
 - Drive coefficients of uninformative features to be smaller

• Uses
$$L_2$$
 norm: $\|w\|_2 = \sqrt{\sum_{j=1}^m w_j^2}$

Regularization: LASSO

- Goal:
 - Keep all coefficeints relatively small
 - Drive coefficients of unhelpful features to zero
- Uses L_1 norm: $\|w\|_1 = \sum_{j=1}^m |w_j|$

Regularization: ElasticNet

- ullet Mixture of L_1 and L_2
- $\alpha L_1 + (1 \alpha)L_2$

- introduces a new hyperparameter α or 11_ratio
- 11_ratio = 1 is LASSO (L_1)
- 11_ratio = 0 is Ridge (L_2)

```
In [38]: 1 from sklearn.linear_model import LogisticRegression
         3 logr = LogisticRegression(penalty='12', # default
                                                  # weight on regularization, 1/lambda above
                                     C=1.0
                                     11 ratio=None # only used when penalty is 'elasticnet'
In [39]: 1 for C in [.001,.1,1,10,1000]:
               logr = LogisticRegression(penalty='12', # default
                                         C=C,
                                                      # weight on regularization, 1/lambda above
                                   ).fit(X_train_bc,y_train_bc)
               print(f'{str(C):5s} : {logr.coef [0].round(2)}')
         0.001 : [0.02 - 0.02]
         0.1 : [0.69 - 0.57]
              : [ 1.09 -0.93]
              : [ 1.19 -1.02]
         1000 : [ 1.2 -1.03]
```

```
In [38]: 1 from sklearn.linear model import LogisticRegression
         3 logr = LogisticRegression(penalty='12', # default
                                                  # weight on regularization, 1/lambda above
                                     C=1.0.
                                    11 ratio=None # only used when penalty is 'elasticnet'
In [39]: 1 for C in [.001,.1,1,10,1000]:
               logr = LogisticRegression(penalty='12', # default
                                        C=C
                                                     # weight on regularization, 1/lambda above
                                   ).fit(X_train_bc,y_train_bc)
               print(f'{str(C):5s} : {logr.coef [0].round(2)}')
         0.001 : [0.02 - 0.02]
         0.1 : [0.69 - 0.57]
         1 : [ 1.09 -0.93]
             : [ 1.19 -1.02]
         1000 : [ 1.2 -1.03]
In [40]: 1 for C in [.001,.1,1,10,1000]:
               logr = LogisticRegression(penalty='11',
                                                      # weight on regularization, 1/lambda above
                                         C=C,
                                        solver='liblinear'
                                   ).fit(X train bc, y train bc)
               print(f'{str(C):5s} : {logr.coef [0].round(2)}')
         0.001 : [0.0.]
         0.1 : [0.5 - 0.37]
           : [ 1.08 -0.92]
            : [ 1.19 -1.02]
         1000 : [ 1.2 -1.03]
```

GridSearchCV with Regularization

```
In [ ]: 1
```

GridSearchCV with Regularization

```
In [ ]: 1
In [44]:
         1 param_grid = {'l1_ratio':[0,.5,1],
                          'C': [.001,.01,1,10]}
          3 logr gscv = GridSearchCV(estimator=LogisticRegression(penalty='elasticnet', solver='saga'),
                                     param grid=param grid,
                                     cv=3,
          6
                                     n jobs=-1).fit(X train bc,y train bc)
          8 print(f'best parameter setting found: {logr_gscv.best_params_}')
         9 print(f'best coefficients found : {logr_gscv.best_estimator_.coef_[0].round(2)}')
         10 print(f'best training score found : {logr gscv.best score .round(3)}')
         11
         12 logr gscv test score = logr gscv.score(X test bc, y test bc)
        13 logr noreg test score = (LogisticRegression(penalty='none')
                                     .fit(X_train_bc,y_train_bc)
         14
        15
                                     .score(X test bc,y test bc)
        16
        17 print()
        18 print(f'logr gscv test score : {logr gscv test score.round(3)}')
        19 print(f'logr noreg test score : {logr noreg test score.round(3)}')
         20
         best parameter setting found: {'C': 1, 'll ratio': 1}
                                     : [ 1.1 -0.93]
         best coefficients found
         best training score found : 0.825
         logr gscv test score : 0.818
         logr noreg test score : 0.818
```

ElasticNetCV

ElasticNetCV

```
1 from sklearn.datasets import make regression
In [42]:
          2 from sklearn.linear model import ElasticNetCV
          4 X synth, y synth = make regression(n samples=100,
                                              n features=200,
                                              n informative=10,
          6
                                              random state=123
         9 X synth train, X synth test, y synth train, y synth test = train test split(X synth, y synth, random state=123)
         10
        dummy synth = DummyRegressor(strategy='mean').fit(X synth train,y synth train)
        12 | lr synth = LinearRegression().fit(X synth train, y synth train)
         13 en synth = ElasticNetCV(alphas=[.01,.1,1,100]).fit(X synth train,y synth train)
         14
        15 print(f'found alpha: {en synth.alpha }, found l1 ratio: {en synth.l1 ratio }\n')
        16 print(f'dummy synth train: {dummy synth.score(X synth train,y synth train).round(2) : 0.2f}')
        17 print(f'lr synth train : {lr synth.score(X synth train,y synth train).round(2)
                                                                                                : 0.2f}')
        18 print(f'en synth train : {en synth.score(X synth train,y synth train).round(2)
                                                                                                : 0.2f \setminus n'
        19 print(f'dummy_synth test: {dummy_synth.score(X_synth_test,y_synth_test).round(2)
                                                                                                : 0.2f}')
         20 print(f'lr_synth test
                                     : {lr synth.score(X synth test,y synth test).round(2)
                                                                                                : 0.2f}')
         21 print(f'en synth test
                                     : {en synth.score(X synth test,y synth test).round(2)
                                                                                                : 0.2f}')
         found alpha: 1.0, found 11 ratio: 0.5
         dummy synth train: 0.00
         lr synth train
                        : 1.00
         en synth train : 0.95
         dummy synth test: -0.00
         lr synth test
                          : 0.13
                          : 0.24
         en synth test
```

Questions?