1.Tipos de materiales

Los **materiales** lo constituyen todo, desde las **herramientas** hasta la **materia prima** que deseamos modificar.

Propiedades de los materiales

- <u>Dureza</u>: Grado de resistencia que posee un material al ser rayado penetrado por otro material.
- <u>Ductilidad</u>: La capacidad de un material para deformarse plásticamente. Se dice que un material que sufre grandes deformaciones antes de romperse es dúctil.
- Fragilidad: Material que se rompe sin sufrir una deformación significativa.

Clasificación de los materiales

2.Hierro

Características

- Es un tipo de metal
- Aparece abundantemente en la naturaleza pero como un elemento compuesto. Se debe utilizar un proceso de horno especifico para separar el hierro de los demás elementos.

Aleaciones del hierro

Es una mezcla homogénea de dos o más elementos. Al menos uno de estos debe ser metálico.

Tipos de aleaciones del hierro

2.1. Aceros

Fe- C hierro y carbono. El porcentaje de carbono entre **0,1% y 2%** (normalmente menos de 1,76%.

2.2. Hierro fundido

Fe- C hierro y carbono. El porcentaje de carbono es más alto que 2,11% (entre 2%-6%)

2.1.1.Dependiendo de la cantidad de carbono

Acero bajo en carbono Fe + <0,25%

- Se conocen como aceros dulces.
- Blandas y de baja resistencia.
- Tienen una plasticidad alta, capacidad de deformación
- Fáciles de soldar y baratos.
- Alguna aplicaciones son como ejemplo: Tornillería general, botes de conserva

Aceros medio en carbono (0,2%-0,6%)

- Se endurecen con temple.
- Más resistencias que las de bajo carbono.
- Aplicación: ruedas de tren, ejes, engranajes, bielas, cigüeñal...

Aceros ricos en carbono (0,6%-2%)

- Más <u>duros</u> y resistentes.
- Se deforman menos.
- Más frágiles
- Se utilizan templados.
- Poco desgaste.
- Aplicación: tijeras, alicates, rodamientos...

2.1.2. Aceros aleados

Se componen de: Fe + C + elementos adicionales

A esta aleación se le **añaden** algunos **elementos** nuevos para **mejorar** sus **propiedades** o conseguir algunas nuevas. Por ejemplo:

- Resistencia
- Elasticidad
- <u>Ductilidad</u>
- Mecanizabilidad
- <u>Dureza</u>

Elementos adicionales (1 2 4 5 6 9)

Aluminio	Antioxidante
Cromo.	Resistencia a la oxidación Templabilidad Resistencia a temperaturas altas
Cobalto.	Dureza del acero en caliente
Manganeso	Ductilidad Templabilidad
Molibdeno.	Dureza
Níquel.	Resistencia en aceros no templados
Fosforo.	Resistencia acero al carbono Resistencia a la oxidación
Silicio	Antioxidante Mayor resistencia a los aceros poco aleados
Titanio.	Facilita la soldabilidad
Wolframio	Aumente la dureza

Acero inoxidable y tipos

$$Fe + C + Cr + Ni$$

- Composición: ≥Cr 12% y ≥Ni 10%.
- Función de Cr: Capta el oxigeno para rodear la pieza de una capa protectora y así evitar que se oxide el acero.
- Al realizar una soldadura:
 - El Cr reacciona con el C → Oxida el acero
 - Es necesario un tratamiento térmico para que no se oxide.
- Resistencia 80kg/mm².
- Dureza 175-205 HB.

Acero inoxidable ferrítico

- Dureza y bajas resistencias.
- Gran tenacidad y ductilidad.
- Son magnéticos.
- Aisi 400. Por ejemplo, Aisi 430.

Acero inoxidable martensíticos

- Buena dureza y resistencia tras el tratamiento térmico.
- Tenacidad y ductilidad admisibles.
- Entre todos los inoxidables, los menos resistentes a la corrosión.
- Son magnéticos.
- AISI 400. Por ejemplo, AISI 410, AISI 416 y AISI 420

Aceros inoxidables austeníticos

- Dureza y bajas resistencias.
- Tenacidad y ductilidad bajá .
- No magnéticos.
- Son los más utilizados, pero pueden oxidarse en la zona de cloruros.
- AISI 316 y AISI 200.

2.2. Hierro fundido

Fundición: Fe+C, cuando el porcentaje de carbono sea superior al 2,11%. Del 2% al 6%

Propiedades

- No se pueden conformar, con lo que se moldean en general.
- Se reservan para piezas de forjas complejas.
- **Difíciles** de **mecanizar** por su alto porcentaje en carbono.
- Duros y frágiles.
- Buena resistencia a la compresión, mala a la tracción.
- Malos para soldar y forjar.

Tipos de hierro fundido

Aunque existen diferentes tipos se pueden distinguir:

- Fundición gris → Carbono en forma de láminas
- <u>Fundición de hierro nodular</u> → Contiene magnesio

Aplicaciones

- Cazuela:
 - Por la ductilidad.
 - Buen conductor térmico y eléctrico
- Herrajes:
 - Por la ductilidad.
 - Buen conductor térmico y eléctrico
- Piezas de automoción:
 - Por la ductilidad.
 - Buen conductor térmico y eléctrico
- Carcasas de máquinas:
 - Por la ductilidad.
 - Buen conductor térmico y eléctrico

2.2.1. Fundición de hierro gris

Propiedades

- Plasticidad muy baja.
- Soldable.
- Cuando se rompe la superficie suele ser color gris.
- Dificultad de mecanizado.
- Dificultad para oxidarse.
- Útil para fricciones y vibraciones.
- Uso en fabricación por moldeado.

2.2.2. Fundición de hierro nodular

Propiedades

- Hoy en día **se usa más**, es más reciente.
- Menos frágiles.
- Más fácil para mecanizar.
- Mejores propiedades de elasticidad.
- Mejor resistencia mecánica.

3.1. Aluminio

Aluminio: $Al(Base) + Elemento\ adicional$

Elementos adicionales

- Cobre
- Magnesio
- Silicio
- Zinc
- Estaño

Propiedades

- **Baja** densidad: $2700kg/m^3$.
- Resistencia a la corrosión.
- Baja temperatura de fusión: 520 650°C.
- Muy dúctil (se deforma mucho).
- Muy fácil de mecanizar.
- Muy buen conductor del calor y electricidad.
- Resistencia a la rotura.
- De baja resiliencia.

Aplicaciones

- Cables
 - Ductilidad
 - Buena conductividad
- Aeronáutica, automoción...
 - Ligereza
 - Resistencia
 - Buena conductividad térmica y eléctrica
- Construcción
 - Ligereza
 - Resistencia a la corrosión
- Papel de aluminio y envases
 - Buena conductividad térmica
 - Ductilidad
 - Ligereza

Formas

Se obtienen de forja o por modelado

3.2. Cobre

Cobre: $Cu(base) + Elemento\ adicional$

Elementos adicionales

- Cinc
- Estaño
- Aluminio
- Plomo
- Níquel

Propiedades

- Es un muy buen conductor del calor y de la electricidad.
- **Densidad** muy **alta**: 8960kg.
- Resistencia a la corrosión.
- Alta ductilidad (deformable).
- Dureza baja.
- Forjable.
- Es caro.
- Baja resistencia mecánica.

Formas

Se consiguen desde forja o moldeando.

Aplicaciones

- Para hacer cables:
 - Ductilidad
 - Buen conductividad térmica y eléctrica
- Tubos:
 - Resistencia a la corrosión
 - Buen conductor térmico

- Frenos, cojinetes...:
 - Resistencia a la corrosión
 - Buen conductor térmico
- Monedas y decoración:
 - Buen conductor térmico
 - Ductilidad
 - Peso ligero
- Instrumentos de música:
 - Moldabilidad
 - Peso ligero

Aleaciones de cobre

- C2000:Cu + Zn\ aleaciones para moldeo
 - Aleaciones de Latón para moldeo
- C3000:Cu + Sn aleaciones para moldeo
 - Aleaciones de Bronce para moldeo
- C6000:Cu + Zn aleaciones para forja
 - Aleaciones de Latón para forja
- C7000:Cu + Sn aleaciones para forja
 - Aleaciones de Bronce para forja

3.2.1. Aleaciones de cobre. Bronce

Bronce

$$Cobre(base) + Esta\~no(Sn) + Aluminio\ cobre(Cu+Al)$$

Propiedades

- Alta resistencia.
- Caro.
- Bajo coeficiente de fricción.
- Muy buena resistencia a la oxidación.

Aplicaciones

- Válvulas.
- Monedas.
- Medallas.
- Estatuas.
- Campanas.
- · Cojinetes autolubricados (Selfoil).

3.2.2. Aleaciones de cobre. Latón

Latón

$$Cobre(base(Cu)) + Zinc(Zn)$$

Propiedades

- Aumenta la resistencia a la oxidación.
- Resistencia al agua y al vapor.
- No produce chispa.
- Muy buena soldabilidad.

Polímeros

Materiales orgánicos formador por cadenas de polímeros

$$C + H + (O + N + S)$$

Clasificación

- Termoplásticos
- Termoestables
- Elastómeros

Propiedades

- Baja densidad.
- Muy moldeables.
- Peores propiedades mecánicas que los metales.
- Aislante térmico y eléctrico.
- Baratos.
- Contaminantes.
- De alta resistencia a la corrosión.

Clasificación

Clasificación según estructura química y su comportamiento frente al calor:

Termoplásticos

- Al calentar → Emblandecer + Perder forma.
- Muy fáciles de moldear. Se pueden moldear y fundir más de una vez, por eso son reciclables.

Teflón, nylon, PVC, Metacrilato.

Termoestables

- Muy **rígidos**.
- Solo se pueden moldear una vez.
- Al calentarse \rightarrow No pierden la forma, se queman y no se pueden reutilizar.
- No se disuelven.
- Muy difíciles de reciclar.
- Poliuretano, melanina, Loctite, epoxy...

Elastómeros

- Material muy elástico(goma).
- No se disuelven ni se funden.
- Solo se pueden moldear una vez, después siempre recuperan la forma inicial.
- · Caucho sintético, caucho natural, silicona...