

積分技巧一

單元六

+ Outline

- 反三角函數
- →分部積分
- 三角函數的積分

* 反三角函數 Inverse Trigonometric Functions (6.8)

■ 例: $f(x) = \sin x$ 與 $g(x) = \sin^{-1} x$ (在限制區間內) 互 為反函數。

FIGURE 2
$$y = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

FIGURE 4 $y = \sin^{-1} x = \arcsin x$

- 稱 $y = \sin^{-1} x = \arcsin x$ 為反正弦函數 (inverse sine function) ∘
- 其他三角函數也能作相似定義。

+ 反餘弦函數與反正切函數 Arccosine & Arctangent

Cosine & arccosine:

Tangent & arctangent:

FIGURE 8
$$y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

FIGURE 7 $y = \cos^{-1} x = \arccos x$

FIGURE 10 $y = \tan^{-1} x = \arctan x$

* 較常見的反三角函數

反三角函數	定義域	值域
$y = \arcsin x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \arccos x$	[-1, 1]	$[0,\pi]$
$y = \arctan x$	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

+ 反三角函數的導數

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\arctan x) = \frac{1}{1 + x^2}$$

$$\frac{d}{dx}(\arccos x) = -\frac{1}{1 + x^2}$$

$$\frac{d}{dx}(\arccos x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\arccos x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

+例1

■ 求:

A.
$$\frac{d}{dx} \left(\frac{1}{\arcsin x} \right)$$

B.
$$\frac{d}{dx}(\arccos(3-2x))$$

+例1(續)

C.
$$\int_0^{1/4} \frac{1}{\sqrt{1-4x^2}} dx$$
D. $\int \frac{x}{x^4+9} dx$

D.
$$\int \frac{x}{x^4+9} dx$$

+ 積分公式 (7.1)

1.
$$\int k \, du = ku + C$$

2.
$$\int u^r du = \begin{cases} \frac{u^{r+1}}{r+1} + C, & r \neq -1\\ \ln|u| + C, & r = -1 \end{cases}$$

$$3. \qquad \int e^u du = e^u + C$$

4.
$$\int a^u du = \frac{a^u}{\ln a} + C, a \neq 1, a > 0$$

$$\int \sin u \, du = -\cos u + C$$

6.
$$\int \cos u \, du = \sin u + C$$

$$7. \qquad \int \sec^2 u \, du = \tan u + C$$

$$\int \csc^2 u \, du = -\cot u + C$$

9.
$$\int \sec u \tan u \, du = \sec u + C$$

10.
$$\int \csc u \cot u \ du = -\csc u + C$$

11.
$$\int \tan u \, du = -\ln|\cos u| + C$$

12.
$$\int \cot u \, du = \ln|\sin u| + C$$

$$13. \quad \int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1} \left(\frac{u}{a}\right) + C$$

14.
$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$$

15.
$$\int \frac{1}{u\sqrt{u^2 - a^2}} du = \frac{1}{a} \sec^{-1} \left(\frac{|u|}{a}\right) + C$$
$$= \frac{1}{a} \cos^{-1} \left(\frac{a}{|u|}\right) + C$$

+
$$\sqrt[4]{2}$$
A. $\int \frac{x}{x^2+4} dx$

B.
$$\int \frac{t^2 \cos(t^3 - 2)}{\sin^2(t^3 - 2)} dt$$

+ 分部積分法 (7.2)

 $\Rightarrow u = f(x), v = g(x),$ 則

$$\int udv = uv - \int vdu$$

◆ 定積分公式:

$$\int_{a}^{b} u dv = [uv]_{a}^{b} - \int_{a}^{b} v du$$

+例3

- 求:
 - A. $\int x \sin x \, dx$
 - B. $\int \ln x \ dx$
 - C. $\int t^2 e^t dt$
 - $D. \int_0^1 \tan^{-1} x \, dx$

- + 例4: 循環積分

+ 例5: 綜合

- 求:
 - A. $\int \cos \sqrt{x} \, dx$
 - B. $\int_0^{\pi} e^{\cos t} \sin 2t \ dt$
 - C. $\int \sin(\ln x) dx$

+ 三角函數的積分 (7.3)

- 某些類型的三角函數可引用等式代換求解。
 - ♦ 例: $\int \cos^3 x \, dx = ?$

+ 三角恆等式

- $\Rightarrow \sin^2 x + \cos^2 x = 1$
- \bullet $\sin 2x = 2 \sin x \cos x$
- $\Rightarrow \sin^2 x = \frac{1}{2}(1 \cos 2x)$
- $cos^2 x = \frac{1}{2}(1 + \cos 2x)$
- \bullet sec² $x = 1 + \tan^2 x$

+ 例6: 求 $\int \sin^m x \cos^n x \, dx$ 的策略

■ 求:

- A. $\int \cos^3 x \, dx$
- B. $\int \sin^5 x \cos^2 x \, dx$
- C. $\int_0^{\pi} \sin^2 x \, dx$

 $\int \sin^m x \cos^n x \, dx$

m 或 n 為奇數: 保留一個 \sin 或 \cos 項.

m 和 n 皆為偶數:使用半角公式.

+ 例7: 求 $\int \tan^m x \sec^n x \, dx$ 的策略

■ 求:

A. $\int \tan^6 x \sec^4 x \, dx$

B. $\int \tan^5 x \sec^7 x \, dx$

 $\int \tan^m x \sec^n x \, dx$

m 為奇數:保留一個 $\sec x \tan x$ 項.

n 為偶數:保留一個 $\sec^2 x$ 項.

+ 其他有用的三角積分公式

+ 例7: (續)

- C. $\int \tan^3 x \, dx$
- D. $\int \sec^3 x \, dx$

+ 教材對應閱讀章節及練習

- **■** 6.8; 7.1-7.3.
- 對應習題:(可視個人情況定量)
 - **◆** 6.8: 1-10, 19-22, 39-72
 - **◆** 7.1: 1-28
 - **◆** 7.2: 1-38
 - **◆** 7.3: 1-28