

#### Plan / schedule



- 14.10. srijeda online 17h
- 21.10. srijeda online 15:45
- 22.10. četvrtak uživo 15:45

 Erasmus – first materials uploaded/send by mail - 11.10. Sunday





# Tehnološke osnove iskorištavanja obnovljivih izvora energije

3. Vjetar - resursi



#### Nastajanje vjetra



- Vjetar je masa zraka u pokretu koji nastaje zbog razlike tlakova na površini zemlje kao posljedica različitog zagrijavanja pod utjecajem sunčeve energije – apsorpcija sunčeve energije je veća na ekvatoru nego na polovima
- Na tako nastalu masu zraka u pokretu uvelike utječu rotacija Zemlje (obodna brzina 600 km/h na ekvatoru i 0 na polovima) i konfiguracija tla
- Zrak se giba iz područja visokog tlaka u područje niskog tlaka; vertikalni gradijent tlaka uglavnom se poništava s gravitacijskom silom pa se zrak giba horizontalno
- Razumijevanje principa nastajanja vjetra bitno je za "inženjerski" pristup evaluaciji potencijalne lokacije vjetroelektrane, dizajn sustava i evaluaciju njegovih operativnih karakteristika
- Možemo razmatrati četiri sile: silu razlike tlakova, Coriolisovu silu, inercijalnu silu i silu trenja zemljine površine





- Sila tlaka na jediničnu masu zraka,
- Coriolisova sila po jediničnoj masi ( $\omega$  je kutna brzina rotacije Zemlje, a  $\phi$  zemljopisna širina)
- Geostrofički vjetar
- Centrifugalna sila (izobare su krivulje),
- Trenje.

### Idealizirana slika za "glatku" sfernu površinu

Za realnu sliku bitan je utjecaj konfiguracije tla i razlike u tipovima površine Zemlje (primjerice more i čvrsto tlo)

$$F_{p} = -\frac{1}{\rho} \cdot \frac{\partial p}{\partial n}$$

$$F_{C} = f \cdot v; \quad f = 2\omega \sin(\Phi)$$

$$v_{g} = \frac{-1}{f \cdot \rho} \cdot \frac{\partial p}{\partial n}$$

$$\frac{v_{gr}^{2}}{R^{2}} = -f \cdot v_{gr} - \frac{1}{\rho} \frac{\partial p}{\partial n}$$

#### Prostorno-vremenska skala atmosferskih kretanja ("Wind Energy Exlained", Wiley, 2002)





#### Varijacija vjetra u vremenu



- Višegodišnja utjecaj na dugoročnu proizvodnju vjetroagregata (30 god, 5 god, 1 god)
- Godišnja sezonska
- U danu
- Kratkoročna turbulencije i udari vjetra (10 min ili manje) – bitno za dizajn





### Varijacija vjetra u prostoru















### 🔆 Osnovni meteorološki podaci 🖣



- Standardno mjerenje na visini od 10 m; bilježi se vjetar u trajanju od 10 min svakog sata ili rjeđe →slaba informacija o fluktuacijama u brzini i smjeru vjetra;
- Kontinuirano očitavanje anemometra – bolje
- Transformacija podataka u frekvencijsku domenu varijance brzine vjetra u odnosu na srednju vrijednost brzine vjetra)





- Meteorološki podaci o smjeru vjetra (strane svijeta) obično su dani kao "ruža vjetrova"
- Radijalne linije predstavljanju period u godini (postotak) tijekom kojeg puše vjetar iz određenog smjera
- Detaljnija ruža vjetrova s podacima o brzini vjetra



## Brzina vjetra; Beaufortova skala; utjecaj na vjetroturbinu (VT)

| Beaufortov<br>broj | Brzina<br>[m/s] | Brzina<br>[km/h] | Brzina<br>[čv] | Opis     | Utjecaj na<br>VT                              | Vidljivi efekti na<br>kopnu          | Vidljivi efekti na<br>moru                       |
|--------------------|-----------------|------------------|----------------|----------|-----------------------------------------------|--------------------------------------|--------------------------------------------------|
| 0                  | 0-0,4           | 0-1,6            | 0-0,9          | Bonaca   | -                                             | Dim se uzdiže<br>vertikalno          | Ravno kao zrcalo<br>– mirno kao ulje             |
| 1                  | 0,4–<br>1,8     | 1,6-6            | 0,9-3,5        | Lagani   | -                                             | Vjetrokaz miruje;<br>dim leluja      | Valići                                           |
| 2                  | 1,8-3,6         | 6-13             | 3,5-7          | Lagani   | -                                             | Vjetrokaz miruje;<br>lišće se pomiče | Vidljivi valovi                                  |
| 3                  | 3,6-5,8         | 13-21            | 7-11           | Lagani   | Početak<br>rada – mala<br>električna<br>snaga | Lišće se miče;<br>zastava            | Povremene<br>krijeste na<br>valovima             |
| 4                  | 5,8-8,5         | 21-31            | 11-17          | Umjereni |                                               | Pomicanje manjih<br>grana; prašina   | Vidljive krijeste                                |
| 5                  | 8,5-11          | 31-40            | 17-22          | Svježi   | Oko 1/3<br>pune snage<br>turbine              | Njihanje manjeg<br>drveća            | Svuda bijele<br>krijeste                         |
| 6                  | 11-14           | 40-51            | 22-28          | Jaki     | Skoro puna<br>snaga                           | Pomicanje većih<br>grana             | Veliki valovi, jake<br>krijeste, pojava<br>pjene |





| Beaufort<br>ov broj | Brzina<br>[m/s] | Brzina<br>[km/h] | Brzina<br>[čv] | Opis           | Utjecaj na VT                             | Vidljivi<br>efekti na<br>kopnu            | Vidljivi efekti na<br>moru                               |
|---------------------|-----------------|------------------|----------------|----------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| 7                   | 14-17           | 51-63            | 28-34          | Jaki           | Puna snaga                                | Drveće se<br>miče                         | Pjena se otkida<br>od krijesta                           |
| 8                   | 17-21           | 63-76            | 34-41          | Olujni         | Isključenje<br>turbine<br>(zaustavljanje) | Teškoće u<br>hodanju;<br>pucanje<br>grana | Gusto otkidanje<br>pjene                                 |
| 9                   | 21-25           | 76-88            | 41-48          | Olujni         |                                           | Manja<br>šteta –<br>dimnjaci              | Intenzivna<br>perjanica pjene                            |
| 10                  | 25-29           | 88-103           | 48-56          | Jaki<br>olujni | Kriterij dizajna                          | Velika<br>šteta,<br>rušenje<br>drveća     | Veliki valovi s<br>dugačkim<br>otkidajućim<br>krijestama |
| 11                  | 29-34           | 103-<br>121      | 56-65          | Jaki<br>olujni | <u>Oštećenja</u>                          | Sveprisut<br>na šteta                     |                                                          |
| 12                  | >34             | >121             | >65            | Orkanski       | Oštećenja                                 | Katastrofa                                | Zrak pun pjene,<br>valovi skrivaju<br>brodove            |

## Analiza prirodnog potencijala za potrebe izgradnje vjetroelektrane

- Od interesa za vjetroelektrane je prizemni granični sloj atmosfere (do cca. 100 m),
- Izmjereni podaci su rezultat djelovanja sinoptičkih sustava i lokalne topografije,
- Na mjestima od interesa u pravilu nema anemografskih mjernih postaja (u Hrvatskoj ih prema podacima iz 2011. ima 60 – veliki broj na aerodromima) – atlas vjetra RH temeljem 25 lokacija
- Za procjenu potencijala na lokaciji od interesa koriste se numerički modeli, primjerice WAsP (Wind Atlas Analysis and Application Programme, Riso National Laboratory, Nizozemska):









| Br. | Postaja      | φ           | λ           | h <sub>NM</sub><br>(m) | z <sub>a</sub> (m) | razdoblje | NP<br>(%) | NP5<br>(%) |
|-----|--------------|-------------|-------------|------------------------|--------------------|-----------|-----------|------------|
| 1   | Osijek Čepin | 45° 31' 4"  | 18° 34' 11" | 89                     | 10                 | 2003-09   | 4.0       | 2.5        |
| 2   | Gradište     | 45° 09' 33" | 18° 42' 13" | 97                     | 10                 | 2003-09   | 4.1       | 3.4        |
| 3   | Sl. Brod     | 45° 09' 44" | 17° 59' 44" | 88                     | 10                 | 2001-09   | 2.0       | 1.8        |
| 4   | Daruvar      | 45° 35' 29" | 17° 12' 37" | 161                    | 12                 | 2000-09   | 0.1       | 01         |
| 5   | Čakovec      | 46° 18' 28" | 16° 28' 15" | 170                    | 14                 | 2002-09   | 2.5       | 3.6        |
| 6   | Varaždin     | 46° 16' 55" | 16° 21' 17" | 167                    | 10                 | 2002-09   | 4.6       | 6.7        |
| 7   | Zagreb-Mak.  | 45° 49' 20" | 16° 02' 01" | 123                    | 10                 | 2000-09   | 1.5       | 1.2        |
| 8   | Karlovac     | 45 29' 37"  | 15° 33' 54" | 110                    | 10                 | 2003-09   | 1.7       | 0.8        |
| 9   | Sisak        | 45° 30' 00" | 16° 22' 00" | 98                     | 15                 | 2004-09   | 1.1       | 0.6        |
| 10  | Gorinci      | 45° 21' 3"  | 15° 20' 33" | 185                    | 10                 | 2005-09   | 2.3       | 2.3        |
| 11  | Ogulin       | 45° 15' 47" | 15° 13' 21" | 328                    | 10                 | 2004-09   | 5.8       | 5.0        |
| 12  | Rijeka       | 45° 20' 13" | 14° 26' 34" | 120                    | 10                 | 2000-09   | 5.5       | 5.8        |
| 13  | Senj         | 44° 59' 37" | 14° 54' 11" | 26                     | 10                 | 1995-09   | 2.5       | 1.8        |
| 14  | Rab          | 44° 45' 23" | 14° 46' 18" | 24                     | 12                 | 2004-09   | 3.5       | 8.7        |
| 15  | Mali Lošinj  | 44° 31' 57" | 14° 28' 19" | 53                     | 10                 | 2003-09   | 3.7       | 5.0        |
| 16  | Novalja      | 44° 32' 6"  | 14° 54' 22" | 20                     | 12                 | 1996-09   | 6.2       | 6.2        |
| 17  | Gospić       | 44° 33' 2"  | 15° 22' 23" | 564                    | 10                 | 2000-09   | 4.6       | 4.2        |
| 18  | Knin         | 44° 02' 27" | 16° 12' 25" | 255                    | 10                 | 2004-09   | 2.2       | 2.3        |
| 19  | Zadar        | 44° 07' 48" | 15° 12' 21" | 5                      | 10                 | 2000-09   | 2.3       | 2.0        |
| 20  | Šibenik      | 43° 43' 41" | 15° 54' 23" | 77                     | 10                 | 2004-09   | 1.1       | 0.6        |
| 21  | Split-Marjan | 43° 30' 30" | 16° 25' 33" | 122                    | 12                 | 2004-09   | 2.9       | 3.4        |
| 22  | Makarska     | 43° 17' 16" | 17° 01' 11" | 52                     | 15                 | 2004-09   | 4.8       | 5.4        |
| 23  | Ploče        | 43° 02' 52" | 17° 26' 25" | 2                      | 10                 | 2005-09   | 0.7       | 0.7        |
| 24  | Komarna      | 42° 56 41   | 17° 32 13   | 99                     | 10                 | 2005-09   | 6.5       | 6.5        |
| 25  | Dubrovnik    | 42° 38' 41" | 18° 05' 06" | 52                     | 10                 | 2001-09   | 6.8       | 6.9        |



#### Varijacija vjetra s visinom



- Na visini z = 0 brzina vjetra je uvijek jednaka 0,
- Unutar visine lokalnih prepreka brzina i smjer vjetra podložni su jakim fluktuacijama,
- Brzina vjetra raste s visinom

Logaritamski zakon (drugi izraz pretpostavlja brzinu od 0 m/s na površini)

$$v_h = v_0 \frac{\ln\left(\frac{h}{z_0}\right)}{\ln\left(\frac{h_0}{z_0}\right)}; v_h = v_0 \frac{\ln\left(1 + \frac{h}{z_0}\right)}{\ln\left(1 + \frac{h_0}{z_0}\right)}$$

Zakon profila snage

$$v_h = v_0 \left(\frac{h}{h_0}\right)^{\alpha}$$

 $v_{\rm h}$  i  $v_{\rm 0}$  brzine vjetra na visinama h i  $h_{\rm 0}$ ,  $\alpha$  koeficijent smicanja vjetra, a  $z_{\rm 0}$  koeficijent gruboće terena

### Zakon profila snage uz $v_0=5$ m/s i $h_0=10$ m





#### Logaritamski zakon uz v<sub>0</sub>=5 m/s i h<sub>0</sub>=10 m







#### Parametri za određivanje vertikalnog profila snage



#### • Neke vrijednosti parametra $\alpha$ :

- mirna voda i glatko i tvrdo tlo:  $\alpha$ =0,10
- visoka trava  $\alpha$ =0,15
- šumovito  $\alpha$ =0,25
- grad sa velikim zgradama  $\alpha$ =0,40

| Opis                                           | Klasa<br>grubosti | Z <sub>0</sub> [m] | Koeficijent smicanja $\alpha$ |
|------------------------------------------------|-------------------|--------------------|-------------------------------|
| Vodene površine                                | 0                 | 0,001              | 0,01                          |
| Otvoreno tlo s<br>malo površinskih<br>prepreka | 1                 | 0,12               | 0,12                          |
| Farme sa<br>zgradama i živicom                 | 2                 | 0,05               | 0,16                          |
| Farme s puno<br>drveća, šume, sela             | 3                 | 0,3                | 0,28                          |

| Opis terena                          | Vrijednost z <sub>0</sub> [m] |
|--------------------------------------|-------------------------------|
| Snijeg, ravna zemlja                 | 0,0001                        |
| Mirno otvoreno more                  | 0,0001                        |
| Valoviti more                        | 0,001                         |
| Snijeg, kultivirana zemlja           | 0,002                         |
| Travnjaci                            | 0,02-0,05                     |
| Žitna polja                          | 0,05                          |
| Farme                                | 0,002-0,3                     |
| Malo drveća                          | 0,06                          |
| Puno drveća, nekoliko<br>zgrada      | 0,3                           |
| Šume                                 | 0,4-1,2                       |
| Gradovi                              | 1,2                           |
| Centri gradova s<br>visokom zgradama | 3                             |



#### Distribucija brzine vjetra



- Od interesa je funkcija gustoće vjerojatnosti pojavljivanje određene brzine vjetra (u)
- "pravilo palca":
  - Srednja brzina vjetra manja od 5 m/s →za očekivati je duga razdoblja bez vjetra – neprihvatljivo za vjetroelektrane;
  - Srednja brzina vjetra veća od 8 m/s → smatra se dobrom lokacijom
  - Srednja brzina vjetra veća od 12 m/s → smatra se odličnom lokacijom
- "hardcore" statistička analiza anemometarskih podataka → zahtijeva veliki broj mjerenja, dugotrajni numerički postupak, rezultat ovisan o mjerenjima koja ne moraju nužno prikazivati realno stanje;
- Analitički prikaz tražene gustoće vjerojatnosti (odličan kada postoje samo sumarni podaci o lokaciji ili treba projicirati podatke s jedne na drugu lokaciju)





• Jedan način definiranja funkcije gustoće stanja jest da je to vjerojatnost pojave vjetra brzine između  $v_a$  i  $v_b$ ; diskretne vrijednosti vode na histogram brzine vjetra

$$f(v_a \le v \le v_b) = \int_{v_a}^{v_b} f(v) dv$$

$$\int_{0}^{\infty} f(v) dv = 1$$



### Weibullova funkcija



 Mjerene podatke moguće je jako dobro fitati dvoparametarskom funkcijom, primjerice Weibullovom funkcijom;

$$f(v) = \frac{k}{c} \cdot \left(\frac{v}{c}\right)^{k-1} \cdot \exp\left[-\left(\frac{v}{c}\right)^{k}\right]$$

Odabir parametara *k* i *c* – cijeli niz empirijskih parametara

$$k = \left(\frac{\sigma_v}{\overline{v}}\right)^{-1,086}; \quad \frac{c}{\overline{v}} = \left(0,568 + \frac{0,433}{k}\right)^{-\frac{1}{k}}$$

c približan srednjoj vrijednosti brzine, a k između 1,8 i 2,4;

Veći *k* znači da su brzine vjetra grupirane oko srednje brzine, odnosno ravnomjerniju raspodjelu – u području "trgovačkih vjetrova" *k* je oko 4-5



#### Rayleighova funkcija



 Za mnoge je lokacije prikladno dvoparametrasku funkciju zamijeniti jednostavnijom jednoparametarskom, Rayleighovom funkcijom

Weibullova funkcija

$$f(v) = \frac{k}{c} \cdot \left(\frac{v}{c}\right)^{k-1} \cdot \exp\left[-\left(\frac{v}{c}\right)^{k}\right]$$



Rayleighova funkcija

$$f(v) = \frac{\pi}{2} \cdot \frac{v}{\overline{v}^2} \exp \left[ -\frac{\pi}{4} \cdot \left( \frac{v}{\overline{v}} \right)^2 \right]$$

| Klasa | Sr.brz. vj. | Br. sati | Frek.  | f*v   |
|-------|-------------|----------|--------|-------|
| ATT   | 0,5         | 54       | 0,0062 | 0,003 |
| 2     | 1,5         | 146      | 0,0167 | 0,025 |
| 3     | 2,5         | 353      | 0,0403 | 0,101 |
| 4     | 3,5         | 487      | 0,0556 | 0,195 |
| 5     | 4,5         | 617      | 0,0704 | 0,317 |
| 6     | 5,5         | 747      | 0,0853 | 0,469 |
| 7     | 6,5         | 844      | 0,0963 | 0,626 |
| 8     | 7,5         | 950      | 0,1084 | 0,813 |
| 9     | 8,5         | 949      | 0,1083 | 0,921 |
| 10    | 9,5         | 940      | 0,1073 | 1,019 |
| 11    | 10,5        | 801      | 0,0914 | 0,960 |
| 12    | 11,5        | 702      | 0,0801 | 0,922 |
| 13    | 12,5        | 486      | 0,0555 | 0,693 |
| 14    | 13,5        | 302      | 0,0345 | 0,465 |
| 15    | 14,5        | 175      | 0,0200 | 0,290 |
| 16    | 15,5        | 85       | 0,0097 | 0,150 |
| 17    | 16,5        | 52       | 0,0059 | 0,098 |
| 18    | 17,5        | 32       | 0,0037 | 0,064 |
| 19    | 18,5        | 22       | 0,0025 | 0,046 |
| 20    | 19,5        | 12       | 0,0014 | 0,027 |
| 21    | 20,5        | 4        | 0,0005 | 0,009 |
|       | UKUPNO      | 8760     | 1      | 8,214 |







## Weibulova i Rayleighova funkcija u diskretnom obliku

$$f(v) = \Delta v \cdot \frac{k}{c} \cdot \left(\frac{v}{c}\right)^{k-1} \exp\left[-\left(\frac{v}{c}\right)^{k}\right]$$

$$f(v) = \Delta v \cdot \frac{\pi}{2} \cdot \frac{v}{\overline{v}^2} \exp \left[ -\frac{\pi}{4} \cdot \left( \frac{v}{\overline{v}} \right)^2 \right]$$

 $\Delta v$  - širina klase vjetra v - srednja brzina pojedine klase vjetra

Primjer uz pretpostavku da je srednja brzina vjetra 8,2 m/s; k =1,8; c = 8,2 m/s



| Klasa                                 | Srednja<br>brzina klase<br>[m/s] | Frekvenc<br>ija -<br>Weibull | Frekvenc<br>ija -<br>Rayleigh |
|---------------------------------------|----------------------------------|------------------------------|-------------------------------|
| 1                                     | 0                                | 0.0000                       | 0.0000                        |
| 2                                     | 2                                | 0.1312                       | 0.0892                        |
| 3                                     | 4                                | 0.1878                       | 0.1550                        |
| 4                                     | 6                                | 0.1934                       | 0.1841                        |
| 5                                     | 8                                | 0.1654                       | 0.1770                        |
| 6                                     | 10                               | 0.1232                       | 0.1453                        |
| 7                                     | 12                               | 0.0818                       | 0.1043                        |
| 8                                     | 14                               | 0.0491                       | 0.0663                        |
| 9                                     | 16                               | 0.0268                       | 0.0376                        |
| 10                                    | 18                               | 0.0134                       | 0.0191                        |
| 11                                    | 20                               | 0.0062                       | 0.0087                        |
| 12                                    | 22                               | 0.0026                       | 0.0036                        |
| snove iskorištava<br>ora energije 202 | •                                | 0.9810                       | 0.9902                        |









#### Energija i snaga vjetra



Energija vjetra je kinetička energija mase zraka



Možemo koristiti podatak da je gustoća zraka 1,225 kg/m3 koja vrijedi za standardne uvjete na moru (1,013 Mpa i 15°C)

$$E_k = \frac{mv^2}{2}$$

$$m = \rho V = \rho Ax = \rho Avt$$

$$E_k = \frac{1}{2} \rho A v^3 t \qquad \Rightarrow \qquad P_{vjetra} = \frac{1}{2} \rho A v^3$$



#### Teorijski iskoristiva snaga vjetra



Ako pretpostavimo da je srednja brzina vjetra kroz površinu koju zahvaćaju lopatice jednaka prosječnoj brzini vjetra prije i poslije rotora, odnosno da vrijedi

$$v=rac{v_1+v_2}{2}$$
 pri čemu  $v_1$  označava brzinu prije, a  $v_2$  brzinu poslije rotora onda je masa zraka koja u jediničnom vremenu prođe kroz rotor

$$\frac{m}{t} = \rho A \frac{v_1 + v_2}{2}$$

Kinetička energija koju je vjetar izgubio prilikom prolaska kroz rotor u jednici vremena iznosi

$$\Delta E_k = \frac{1}{2} m (v_1^2 - v_2^2)$$

Kombiniranje prethodna dva izraza rezultira izrazom za snagu rotora

$$P = \frac{1}{4} \rho A (v_1 + v_2) (v_1^2 - v_2^2)$$





Uvođenjem supstitucije  $x = \frac{v_2}{v_2}$  Izraz za snagu možemo pisati u obliku

$$P = \frac{1}{4} \rho A \frac{\left(v_1 + v_2\right)}{v_1} \frac{\left(v_1^2 - v_2^2\right)}{v_1^2} v_1^3 = \frac{1}{2} \rho A v_1^3 \frac{\left(1 + x\right)}{2} \left(1 - x^2\right) = \frac{1}{2} \rho A v_1^3 c_P$$

Pri čemu  $c_P$  nazivamo koeficijent snage vjetroagregata



**ZPF-FER-UNIZG** 

Maksimalna vrijednost od 59,3% postiže se kod x=1/3.



#### 🔆 Stvarna iskoristivost snage vjetra 🤝



U praksi tri efekta utječu na smanjenje snage:

- •Rotacija zračne mase iza rotora (očuvanje kutne količine gibanja),
- Konačan broj lopatica,
- Postojanje, aerodinamičkog trenja složena aerodinamička teorija.





#### U konačnici









Snaga vjetra

Snaga rotora





 $c_{\rm P}$  (45%-52%)

 $\eta_{\mathsf{g}}$ 

Mjenjačka kutija, generator, konverter (95%-97%) (97%-98%) (96%-99%)

Ukupna iskoristivost konverzije: oko 42-50%



#### Izvedbe vjetroagregata



 horizontalna os (HAWT) – svi komercijalni VA na mreži

prednosti: bolja efikasnost; razvijena

tehnologija

nedostaci: stup







- vertikalna os (VAWT); Savonius i Darrieus tipovi
- prednosti: mogućnost pozicioniranja generatora i opreme na zemlji; nije potreban mehanizam za zakretanje
- nedostaci: manje brzine vjetra blizu zemlje; manja efikasnost; Darrieus nije samostartajući (nije problem ako je spojen na mrežu); "potporne" žice; otežana promjena ležajeva; varijacija snage tijekom jednog okreta





#### Pozicioniranje HAWT-a



#### Upwind

- rotor okrenut prema dolazećem vjetru
- lopatice rotora nisu zaklonjene iza stupa iako postoji blago zakrivljenje silnica vjetra prije rotora zbog stupa
- mora postojati mehanizam za zakretanje
- izvedba rotora (lopatica) zahtijeva čvrstoću

#### Downwind

- Kućište okrenuto prema nadolazećem vjetru
- Ne mora postojati mehanizam za zakretanje
- izvedba rotora (lopatica) može biti fleksibilna
- Fluktuacija snage tijekom jednog okreta



#### Broj lopatica HAWT-a



- Zašto ne paran broj?
- Trokraki "danski" koncept
- Dvokraki koncept paran
- Jednokraki koncept











## Kako optimirati – što je cilj – efikasnost ili cijena po kWh?



Broj lopatica u funkciji režima rada



Rad i pri malim brzinama vjetra; neefikasne na većim brzinama isključenje



Ne rade na malim brzinama; bolje iskorištenje kod većih brzina vjetra

- Relativan odnos veličine generatora i rotora
- Visina tornja
- Buka mehanička i aerodinamička problem optimiranja?



#### Zašto se rotor okreće



- Sila čeonog otpora ("Drag force")
- Sila na otvorenoj (konkavnoj) strani površine je veća od sile na zatvorenoj (konveksnoj) strani
- Sila uzgona ("Lift force")
- Zahtijeva aerodinamički profil lopatica, ali je iskoristivost veće nego kod "drag" sile





Tehnološke osnove iskorištavanja obnovljivih izvora energije 2020/21











# Glavne komponente HAWT-a





| Pitch            | Zakretanje lopatica            |  |  |  |
|------------------|--------------------------------|--|--|--|
| Rotor            | Rotor                          |  |  |  |
| Wind direction   | Smjer vjetra                   |  |  |  |
| Brake            | Kočnica                        |  |  |  |
| Low-speed shaft  | Sporookretna<br>osovina        |  |  |  |
| Gearbox          | Prijenosnik<br>(multiplikator) |  |  |  |
| Controller       | Upravljanje                    |  |  |  |
| Anemometer       | Anemometar                     |  |  |  |
| Wind vane        | Pokazivač smjera<br>vjetra     |  |  |  |
| High-speed shaft | Brzookretna osovina            |  |  |  |
| Yaw drive        | Zakretanje                     |  |  |  |
| Yaw motor        | Zakretni motor                 |  |  |  |
| Blades           | Lopatice                       |  |  |  |
| Tower            | Toranj                         |  |  |  |
| Nacelle          | Kućište                        |  |  |  |



## Generator



- Pretvorba mehaničke u električnu energiju
- Kod VA izražena fluktuacija mehaničke snage
- Kod velikih VA generatori proizvode 690 V trofazni napon – zatim na transformator 10-30 kV
- Zahtijevaju hlađenje, zračno ili vodeno
- Sinkroni ili asinkroni; direktni ili indirektni spoj na mrežu





### Sinkroni

- Koriste rotirajuće magnetsko polje
- Na slici je dvopolni motor s permanentnim magnetom – princip rada generatora je suprotan – magnet rotira i inducira struju u zavojnicama
- Kod VA se umjesto permanentnih magneta koriste elektromagneti

### Asinkroni

- Uglavnom samo za VA
- Stator na mreži, rotor se okreće uz razliku od 1% brzine













#### 2.1. Asinkroni kavezni generator i turbine konstantne brzine vrtnje

Prednosti: jednostavnost izrade, jednostavno održavanje, prigušenje pulzacija momenta turbine, niska nabavna cijena i direktno spajanje na mrežu.

Nedostaci: potrebna jalova energija, potreban soft start uređaj za prvo priključenje na mrežu, primjenjivo samo za fiksne brzine turbine, upotreba multiplikatora, neupotrebljivo za mnogo polova.



Slika 1. Vjetroagregat s multiplikatorom, asinkronim generatorom i turbinom konstantne brzine vrtnje

U praksi je česta varijanta kaveznog asinkronog generatora s promjenjivim brojem polova, obično za dvije brzine vrtnje.





### 2.2. Asinkroni klizno-kolutni dvostrano napajani generator

Prednosti: bitno smanjena snaga i cijena pretvarača, mogućnost regulacije brzine vrtnje za optimalno korištenje energije, jalova snaga za magnetiziranje stroja iz pretvarača, moguć podsinkroni i nadsinkroni rad.

Nedostaci: klizni koluti i četkice, trošenje, održavanje – složeno upravljanje agregatom, izravan spoj na mrežu otežan.



Slika 2. Vjetroagregat s multiplikatorom, asinkronim generatorom i turbinom promjenjive brzine vrtnje





#### 2.3. Sinkroni generator s uzbudnom strujom na rotoru, s multiplikatorom

Prednosti: jednostavno upravljanje jalovom snagom, široko područje brzina vrtnje, jednostavan za upravljanje, male dimenzije i masa generator, standardni generator.

Nedostaci: potreban pretvarač za ukupnu snagu, potreban uzbudni sustav, klizni koluti i četkice, trošenje i održavanje, visoka cijena, gubici, problem održavanja multiplikatora.



Slika 3. Vjetroagregat s multiplikatorom, sinkronim generatorom i turbinom promjenjive brzine vrtnje

Priključenje generator ovog tipa u energetski sustav fiksne frekvencije izvodi se upotrebom frekvencijskog pretvarača.

42



## (indirektno spajanje na mrežu)

### 2.4. Sinkroni generator s uzbudnom strujom na rotoru, direktan pogon

Prednosti: jednostavno upravljanje jalovom snagom, široko područje brzina vrtnje, jednostavan za upravljanje, jednostavnija izvedba vjetroagregata jer nema multiplikatora koji se smatra kompliciranim za izradu i održavanje, veća korisnost agregata

Nedostaci: potreban pretvarač za ukupnu snagu, potreban uzbudni sustav, klizni koluti i četkice, trošenje i održavanje, velike dimenzije i masa, problem izrade, transporta i montaže.



Slika 4. Vjetroagregat bez multiplikatora, sa sinkronim generatorom i turbinom promjenjive brzine vrtnje

Ovo je primjer ne klasične izvedbe generatora, velikih dimenzija i mase. Zbog velikog broja polova i male brzine vrtnje generator mora razvijati veliki moment vrtnje.



# Upravljanje vjetroagregatom















| rotor diameter | 25 - 4 | 25 - 45 m |     | 45,1 - 64 m |     | 64,1 - 80 m |     | > 80 m |  |
|----------------|--------|-----------|-----|-------------|-----|-------------|-----|--------|--|
| no gearbox     | 57     | 6         | 29  | 82          | 414 | 262         | 3   | 110    |  |
| @ gearbox      | 0      | 0         | 88  | 31          | 407 | 92          | 203 | 300    |  |
| → pitch        | 57     | 6         | 95  | 113         | 817 | 353         | 134 | 390    |  |
| stall          | 0      | 0         | 14  | 0           | 0   | 0           | 0   | 0      |  |
| active-stall   | 0      | 0         | 8   | 0           | 4   | 1           | 72  | 20     |  |
| 1 fixed speed  | 0      | 0         | 0   | 0           | 0   | 4           | 0   | 0      |  |
| 2 fixed speeds | 0      | 0         | 27  | 0           | 4   | 1           | 72  | 20     |  |
| ariable speed  | 57     | 6         | 90  | 113         | 817 | 349         | 134 | 390    |  |
| number of WTs  | 57     | 6         | 117 | 113         | 821 | 354         | 206 | 410    |  |

Karakteristike VA instaliranih u Njemačkoj za 2004. i 2007.

Izvor: M. Stiebler, "Wind Energy Systems for Electric Power Generation", Springer 2008.

in 2007

# Efekt više VA u blizini





### turbine niz vjetar:

- manje brzine: manje snage
- veće turbulencije: više opterećenja
- veći broj VA u VE povećava gubitke
- optimiranje pozicioniranja za snagu i trošenje (računalni programi za simulacije i mjerenje)
- razmak u dominantnom smjeru od 4 do 9 promjera
  - gubici od 5 do > 60%, za manji (2x2) ili veći (10x10) broj VA u VE



# **Tip Speed Ratio**



Uvodimo parametar  $\lambda$  (tip speed ratio - TSR)

$$\lambda = \frac{\Omega R}{v}$$



Figure 3.28 Sample  $C_P - \lambda$  curve for a high tip speed ratio wind turbine









## Optimalni TSR



- •Rotor se sporo okreće vjetar slobodno prolazi kroz lopatice mala ekstrakcija snage
- •Rotor se brzo okreće "čvrsta" prepreka za vjetar mala ekstrakcija snage
- •Potrebno je optimirati brzinu okretanja rotora odnosno TSR ovisno o dizajnu vjetroagregata i lopatica, kao i o broju lopatica
- •Za vjetroagregate spojene na mrežu s tri lopatice optimalni TSR je oko 7 (6-8)
- •U principu poželjan je veliki faktor snage (veća brzina okretanja osovine što je poželjno za generator) ima i nedostataka
- •Nedostaci velikog TSR:
  - •Obodna brzina lopatica veća od 80 m/s oštećenja zbog erozije visokokvalitetni materijali
  - Veća buka
  - •Vibracije, posebno za rotore s jednom ili dvije lopatice
  - Poteškoće na osovine kod pokretanja
  - Smanjenje efikasnosti rotora
  - Mogućnost pobjega turbine