import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

In [2]: ▶

loan_data = pd.read_csv("loan_train.csv")

In [3]:

loan_data.head()

Out[3]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplic
0	LP001002	Male	No	0	Graduate	No	5849	_
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								•

In [4]: ▶

loan_data.tail()

Out[4]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapr
609	LP002978	Female	No	0	Graduate	No	2900	_
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	
4								•

```
In [5]:
                                                                                        M
loan data.shape
Out[5]:
(614, 13)
In [6]:
                                                                                        H
loan_data.columns
Out[6]:
Index(['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education',
       'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmoun
t',
       'Loan_Amount_Term', 'Credit_History', 'Property_Area', 'Loan_Statu
s'],
      dtype='object')
In [7]:
                                                                                        H
loan_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
                        Non-Null Count Dtype
 #
     Column
_ _ _
     _____
                         -----
                                         ----
 0
     Loan_ID
                        614 non-null
                                         object
 1
     Gender
                        601 non-null
                                         object
 2
     Married
                        611 non-null
                                         object
 3
     Dependents
                        599 non-null
                                         object
 4
     Education
                        614 non-null
                                         object
 5
     Self_Employed
                        582 non-null
                                         object
 6
     ApplicantIncome
                        614 non-null
                                         int64
 7
     CoapplicantIncome 614 non-null
                                         float64
 8
     LoanAmount
                        592 non-null
                                         float64
 9
     Loan_Amount_Term
                        600 non-null
                                         float64
     Credit History
                        564 non-null
                                         float64
     Property_Area
                        614 non-null
                                         object
 11
     Loan Status
                        614 non-null
                                         object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

In [8]: ▶

```
loan_data.describe()
```

Out[8]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

```
In [9]: ▶
```

```
loan_data.isnull().sum()
```

Out[9]:

```
Loan_ID
                       0
Gender
                      13
Married
                       3
                      15
Dependents
Education
                       0
Self_Employed
                      32
ApplicantIncome
                       0
CoapplicantIncome
                       0
                      22
LoanAmount
Loan_Amount_Term
                      14
Credit History
                      50
Property_Area
                       0
Loan_Status
                       0
dtype: int64
```

```
In [10]:
```

```
loan_data['Gender']= loan_data['Gender'].map({'Male':0, 'Female':1})
loan_data['Married']= loan_data['Married'].map({'No':0, 'Yes':1})
loan_data['Loan_Status']= loan_data['Loan_Status'].map({'N':0, 'Y':1})
```

```
In [11]:

loan_data
```

Out[11]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Соарг	
0	LP001002	0.0	0.0	0	Graduate	No	5849		
1	LP001003	0.0	1.0	1	Graduate	No	4583		
2	LP001005	0.0	1.0	0	Graduate	Yes	3000		
3	LP001006	0.0	1.0	0	Not Graduate	No	2583		
4	LP001008	0.0	0.0	0	Graduate	No	6000		
609	LP002978	1.0	0.0	0	Graduate	No	2900		
610	LP002979	0.0	1.0	3+	Graduate	No	4106		
611	LP002983	0.0	1.0	1	Graduate	No	8072		
612	LP002984	0.0	1.0	2	Graduate	No	7583		
613	LP002990	1.0	0.0	0	Graduate	Yes	4583		
614 r	ows × 13 c	olumns							
4								>	
In [12]:									
loan	_data['Ge	ender']	= loan	_data[' <mark>Ge</mark> n	der'].fil	lna(loan_dat	a['Gender'].m	ode()[0])	
4								+	
In [13]:							H	
loan	_data['Ma	rried'] = loa	n_data['Ma	rried'].f	illna(loan_d	ata['Married'].mode()[0])	
4								>	
In [14]:									
<pre>loan_data['Dependents'] = loan_data['Dependents'].fillna(loan_data['Dependents'].mode() </pre>									
→									
In [15]:									
<pre>loan_data['Self_Employed'].fillna('No',inplace=True)</pre>									
In [17]:									
loan_data['Credit_History'] = loan_data['Credit_History'].fillna(loan_data['Credit_History']									
←									

```
H
In [18]:
loan_data['LoanAmount'] = loan_data['LoanAmount'].fillna(loan_data['LoanAmount'].median
                                                                                             H
In [19]:
loan_data['Loan_Amount_Term'] = loan_data['Loan_Amount_Term'].fillna(loan_data['Loan_Amount_Term']
                                                                                             H
In [20]:
loan_data['Gender'].value_counts()
Out[20]:
0.0
       502
       112
1.0
Name: Gender, dtype: int64
                                                                                             H
In [21]:
plt.figure(figsize=(15,6))
sns.countplot('Gender', data = loan_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
  500
  400
  300
  200
  100
                      0.0
                                                             1.0
```

```
H
In [22]:
loan_data['LoanAmount'].value_counts()
Out[22]:
128.0
         33
120.0
         20
110.0
         17
100.0
         15
160.0
         12
240.0
          1
214.0
           1
59.0
           1
166.0
           1
253.0
           1
Name: LoanAmount, Length: 203, dtype: int64
In [23]:
                                                                                             H
loan_data['Dependents'].value_counts()
Out[23]:
      360
0
1
      102
2
      101
3+
       51
Name: Dependents, dtype: int64
In [26]:
                                                                                             H
plt.figure(figsize=(15,6))
sns.countplot('Dependents', data = loan_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
  350
  300
  250
200
8
  150
  100
```

```
In [24]: ▶
```

```
loan_data['Credit_History'].value_counts()
```

Out[24]:

```
1.0 525
0.0 89
```

Name: Credit_History, dtype: int64

```
In [28]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot('Credit_History', data = loan_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [25]: ▶
```

```
loan_data['Self_Employed'].value_counts()
```

Out[25]:

No 532 Yes 82

Name: Self_Employed, dtype: int64

In [26]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot('Self_Employed', data = loan_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [27]: ▶

```
loan_data['Loan_Amount_Term'].value_counts()
```

Out[27]:

```
360.0
          526
180.0
           44
480.0
           15
300.0
           13
240.0
            4
84.0
            4
120.0
            3
            2
60.0
            2
36.0
12.0
```

Name: Loan_Amount_Term, dtype: int64

In [28]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot('Loan_Amount_Term', data = loan_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [29]: ▶
```

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Loan_Status', y = 'ApplicantIncome', data = loan_data)
plt.xticks(rotation = 90)
plt.show()
```


In [49]: ▶

```
plt.figure(figsize=(15,6))
sns.boxplot(x = 'Loan_Status', y = 'CoapplicantIncome', data = loan_data)
plt.xticks(rotation = 90)
plt.show()
```



```
In [30]:
```

```
plt.figure(figsize=(15,6))
sns.catplot(x = 'Gender', y = 'LoanAmount', data = loan_data, kind = 'box')
plt.xticks(rotation = 90)
plt.show()
```

<Figure size 1080x432 with 0 Axes>


```
In [31]:
```

```
In [32]:
                                                                                        M
X.shape, y.shape
Out[32]:
((614, 5), (614,))
In [33]:
                                                                                        H
from sklearn.model_selection import train_test_split
x_train, x_cv, y_train, y_cv = train_test_split(X,y, test_size = 0.2,
                                                 random_state = 10)
In [34]:
                                                                                        M
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(max_depth=4, random_state = 10)
model.fit(x_train, y_train)
Out[34]:
RandomForestClassifier(max_depth=4, random_state=10)
In [35]:
                                                                                        H
from sklearn.metrics import accuracy_score
pred_cv = model.predict(x_cv)
accuracy_score(y_cv,pred_cv)
Out[35]:
0.7967479674796748
In [36]:
                                                                                        H
pred_train = model.predict(x_train)
accuracy_score(y_train,pred_train)
Out[36]:
```

0.8167006109979633