

PRÀCTICA 4: DISSENY UNITAT DE CONTROL

Sergi Carol Bosch i Enric Lenard Uró

Grau en Enginyeria de Sistemés TIC **Arquitectura de Computadors**Curs 2013-14, Grup 10, G12 de pràctiques

Realització de la pràctica: 28/04/2014 Lliurament del treball: 12/05/2014

Real ització pràctica

En aquesta pràctica l'alumne ha de realitzar el disseny de la Unitat de Control (UC) pel processador que s'ha estudiat a classe. Com s'ha vist, la UC és la part del processador que dirigeix i coordina totes les operacions que realitza. La UC és un sistema seqüencial que dissenyarem com un Autòmat de Moore.

Els codis d'operació (co) i funció (func) són els següents per a les diferents instruccions que executa el processador:

Instrucció			c,	0.		Funció								
	C5	C4	C3	C2	C1	C0	F5	F4	F3	F2	F1	F0		
add	0	0	0	0	0	0	- 1	0	0	0	0	0		
sub	0	0	0	0	0	0	1	0	0	0	1	0		
and	0	0	0	0	0	0	1	0	0	1	0	0		
or	0	0	0	0	.0	0	1.	0	0	1	0	1		
slt	0	0	0	0	0	0	1	0	1	0	1	0		
addi	0	0	1	0	0	0	х	x	x	х	X	х		
andi	0	0	1	1	0	0	X	X	X	X	X	X		
ori	0	0	1	1	0	1	х	X	х	х	х	X		
lw	1	0	0	0	1	1	X	X	X	х	X	X		
SW	1	0	1	0	1	1	х	X	x	X	X	X		
beq	0	0	0	1	0	0	X	X	X	х	X	X		
bne	0	0	0	1	0	1	х	X	X	X	X	X		
J	0	0	0	0	1	0	х	x	X	х	X	X		
jr	0	0	0	0	0	0	0	0	1	0	0	0		
jal	0	0	0	0	1	1	х	X	X	х	X.	х		

A continuació tenim el recorregut que es realitzarà segons la instrucció que s'executi, passant pels estats corresponents.

En cadascuna de les fases o estats de la UC els senyals a activar són les següents:

Estat	l_sor1	l_sor2	e_reg	nwx_dest	l_mem	e_mem	e_mar	l_mdr	e_mdr	e_ir	l_pc	е_рс	pc_sup	inc_pc	l_desp1	l_desp2	1_extsign	l_acc	e_acc	Tancar	op_alu
1	0	0	0	XX	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	XXX
1a	0	0	0	XX	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	XXX
2	0	0	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	XXX
3	1	0	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	010
4	0	0	0	XX	1	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	XXX
5	0	0	1	00	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	XXX
- 6	0	1	0	XX	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	1	XXX
6a	0	1	0	XX	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	1	XXX
7	0	0	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	XXX
8	1	1	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	110
9	0	0	0	XX	0	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0	010
9a	0	0	0	XX	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	000
10	0	0	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	XXX
11	1	1	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	010
11i	1	0	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	010
12	0	0	1	01	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	XXX
12i	0	0	1	00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	XXX
13	1	1	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	110
14	1	1	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000
14i	1	0	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	000
15	1	1	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	001
15i	1	0	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	001
16	1	1	0	XX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	111
17	0	0	0	XX	0	0	0	0	0	0	1	1	1	0	0	1	0	1	1	0	010
18	0	0	1	10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	XXX
19	0	0	0	XX	0	0	0	0	0	0	1	1	1	0	0	1	0	1	1	0	010
20	1	0	0	XX	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	XXX

UNITAT DE CONTROL (UC)

Dissenyem el codi de programa que realitza el funcionament desitjat, creant les entrades i sortides necessàries.

Primer realitzem el disseny corresponent al circuit de transició entre estats. Per a cada estat caldrà indicar la transició a l'estat següent en funció de les entrades.

Posteriorment realitzem el disseny corresponent al circuit de sortides. Per a cada estat caldrà indicar el valor de les sortides.

ADJUNTAT DOCUMENT PDF AMB EL CODI

TEST BENCH UC

A continuació comprovem mitjançant la simulació que el disseny funciona correctament. Per a això realitzem un conjunt de simulacions comportamentals, on comprovarem el funcionament quan cridem les funcions *add*, *Iwi jal*.

```
125 ⊟init : PROCESS
      -- variable declarations
127
128
               -- code that executes only once
129
      WAIT;
END PROCESS init;
130
131
132 ⊟clock: process
133
134
      begin
135
      clk <= '0';
wait for 100 ns;
clk <= '1';
wait for 100 ns;
136
137
138
139
140
      -end process clock;
141
142 ⊟always : PROCESS
143 BEGIN
      reset <= '1';
144
         co <= "000000";
145
146
          func <= "100000";
          z <= '0';
147
148
         c <= '0';
         wait for 200 ns;
149
        reset <= '0';
151
         wait for 1000 ns;
152
         co <= "000011";
         wait for 1000 ns;
153
154
          co <= "100011";
155
          wait for 100 ns;
156
157 -- optional sensitivity list
158
      -- (
      -- variable declarations
159
160
161
               -- code executes for every event on sensitivity list
162
163
      -END PROCESS always;
164 END UnitatDeControl_arch;
165
```

Un cop tenim el programa de prova, on cridem les funcions add, jal i lw modificant el codi creem una gràfica que ens mostra el resultat visualment.

SIMULACIÓ GRÀFICA UC

Per a poder seguir millor l'execució de cada instrucció visualitzem també a la simulació l'estat en què es troba en cada moment la UC.

- Grafica ADD

- Grafica LW

- Grafica JAL

SIMBOL UC

Un cop tenim creat el símbol de la unitat de control podem realitzar la gràfica en cas real, tenint en compte el retard que aporten les portes lògiques.

SIMULACIÓ GRÀFICA REAL UC

- Grafica real ADD

- Grafica real LW

- Grafica real JAL

Com podem observar obtenim retards causats per les portes que es van acumulant al llarg de les transicions però no tenen molt efecte degut al temps que tenim d'execució.

TAULA ESTATS UC

Omplim la taula amb els 5 primers estats que s'utilitzen i indiquem les senyals que s'activen en cada un dells, diferenciant les funcions *add, jal i lw.*

			ADD					JAL			LW					
Etapa	E1	E1a	E10	E11	E12	E1	E1a	E18	E19	E1	E1	E1a	E2	E3	E4	
l_pc	1					1				1	1					
inc_pc		1					1					1				
e_pc									1							
I_extsig														1		
I_desp1																
I_desp2									1							
e_ir		1					1					1				
mux_desp	00	00	00	00	01	00	00	10	00	00	00	00	00	00	00	
e_reg					1			1								
I_sor1				1										1		
I_sort2				1												
e_acc				1					1							
l_acc					1									1	1	
pc_sup									1							
op_alu	000	000	000	010	000	000	000	000	010	000	000	000	000	010	000	
Tancar								1							1	
e_mar	1					1				1	1				1	
e mdr	1					1				1	1				1	
<u>L_mdr</u>		1					1					1				