本资料仅供内部使用!

comX100 模块测试报告

2013年9月7日

修改记录

制定日期	生效日期	制定 / 修订 内容摘要	页数	版本	拟稿	审查	批准
2013.09.07		初稿	2	0.01	朱正晶		
2013.10.29		补充测试结论	2	0.02	朱正晶		

目 录

1	本文	文档组成部分	1
2	CO	MX100 和 NETIC 测试连接框图	1
		式方法	
		COMX100 CANOPEN 主站	
		NETIC CANOPEN 从站	
4	测话	式结论	2

1 本文档组成部分

主要由以下几个方面组成:

- ① comX100 和三个从站测试连接框图
- ② comX100 和三个从站的测试方法
- ③ 测试结果

2 comX100 和 NetIC 测试连接框图

comX100 CANOpen 主站和三个 CANOpen 从站连接框图如下:

图 2-1 主从站连接框图

3 测试方法

3.1 comX100 CANOpen 主站

由于 Toolkit 软件的限制,主站采用轮询的方法来读取 CANOpen。这样会出现一个问题,如果读取不及时,CANOpen 数据包有可能会丢失。因此在实际应用中我们需要确定一个合理的读取间隔。太快会占用大量 CPU 时间,太慢会使通信的延时变大,丢失数据包的概率变大。应用时我们需要保证下位发送数据的频率不能超过这里的读取间隔。本次测试中我们采用 10 毫秒的间隔来读取comX100 DPM。

考虑到现在使用一片 STM32F207VG 拖三个 NetIC 从站,我们采取 50 毫秒的间隔来写 comX100 DPM。也就是每 50 毫秒发送三个包给三个从站模块。

发送数据包格式

BYTE1	BYTE2	BYTE3	BYTE4	BYTE5	BYTE6	BYTE7	BYTE8
FN	XX						

Byte1 为序列号,即主站启动后发送从 0 开始的包,到达 255 (0xFF) 后回 0。从站接收第一个包时记录下 FN,不作判断。接收第二个包时判断:在第一个包 FN 的基础上加 1,以这个值和接收到的 FN 进行对比,如果出错,即说明收到的包有误。

主站接收的包按照相同的方法进行处理。

3.2 NetIC CANOpen 从站

每隔 50 毫秒三个从站分别发送一个数据包给主站处理,从站接收数据包确认的方法和主站相同。

3.3 出错处理

一旦出错即在终端上打印相应的信息。测试时保证 PC 一直开机读取模块的调试信息。

4 测试结论

经过连续几天的测试,模块的通信没有发生任何错误。

在接下来的一个月我们时断时续的也进行着相关的测试,模块的运行稳定,没有发生通信错误。