TP1 4º aula

15 de março de 2021 15:00

- 29. Seja A um alfabeto.
- (b) Mostre que, para quaisquer $r, r_1, r_2, s, s_1, s_2 \in ER(A)$, se tem:

iii.
$$r \le s \Rightarrow r^* \le s^*$$
;
iv. $(r^+s)^* \le (r^*s^*)^*$;

iii) r < 5 () = L(s) => L(r) = L(s) para qualquer n = No Logo se $r \leq s$, ento $\bigcup_{n \in \mathbb{N}} f(r)^n \subseteq \bigcup_{n \in \mathbb{N}} f(r)^n$ ter r > 5 , c.p.d.

iv) $r^* = r^t + \varepsilon$ parque $d(r)^* = d(r)^t \cup d(\varepsilon)$. Entas $r^t \le r^*$.

Tor i) $5 \le 5^*$. Entas $r^t \le r^* \ge r^*$

Vi) -.-

(c) Verifique se, para quaisquer $r, s \in ER(A), (r^+s)^* = (r^*s^*)^*.$

Depois de 246 IV) a questas que a piu se osloca e equivelente a questionar se $L(s) \subseteq L(r^*)L(s^*)$ forom $E \in L(r^*)$ $e \in L(s^*) = L(s^*) = L(s) \subseteq L(s)$ $\frac{\int_{-1.7}^{1.7} \int_{-1.7}^{1.7} \int_{-1.7}^{1.7} \mathcal{E} \in \int_{-1.7}^{1.7} \int_{-1.7}^{1.7} \int_{-1.7}^{1.7} \mathcal{E} \in \int_{-1.7}^{1.7} \mathcal{E}$

Sya A = {a,b}. Se r=b, entar J(r) = {b}. Se s=a, entar 1(5) = fas. Note caso

 $a \in L(r^+5^*)^*$ page $a = (\varepsilon \cdot a')' \in f(r^\circ5')'$

 $a \not\in \mathcal{L}(\Gamma^{+}S)^{+} = \mathcal{L}(\Gamma$

30. SejaAum alfabeto e sejam $r,s\in ER(A).$ Mostre que:

(b)
$$r^* = (r^*)^*$$
; Vamo motrar que $r^* \leq (r^*)^*$ e que $(r^*)^* \leq r^*$.

Por 29bi) vem que $r^* \leq (r^*)^*$.

i) $r \leq r^*$.

$$f' \leq (r^*)^*$$

$$f' = \int_{n \in \mathbb{N}_0} (f(r)^*)^n = \int_{n \in \mathbb{N}_0} (f(r)$$

$$Logo(\Gamma') = \Gamma'$$

(e)
$$(r^*s)^* = \varepsilon + (r+s)^*s$$
;
(f) $(rs^*)^* = \varepsilon + r(r+s)^*$;

$$\mathcal{E} + (r+s)^{*}s = \mathcal{E} + (r^{*}s)^{*}r^{*}.s$$

$$= \mathcal{E} + (r^{*}s)^{*}$$

$$= \mathcal{E} + (r^{*}s)^{*}$$

$$= (r^{*}s)^{*} \quad \text{o que umplita a prove de e)}.$$

300) $(r+5)^* = [r^*5]^* r^*$

31. Seja $A=\{a,b,c\}$. Verifique se são válidas as seguintes igualdades entre expressões regulares:

(a)
$$a(b^*+a^*b) = a(b^*+a^+b)$$
, $a(b^*+a^*b) = ab^* + aa^*b = ab^* + a^*b$ $a(b^*+a^*b) = ab^* + aa^*b = ab^* + ab + aa^*b = ab^* + ab$

(1) porque $ab \le ab^* = ab^* + ab^* = ab^* + ab$

(2) porque $ab + aa^*b = a^*b$
 $ab = ab^* + ab$

(3) $ab = ab^* + ab$

(4) $ab = ab^* + ab$

(5) $ab = ab^* + ab$

(6) $ab = ab^* + ab$

(7) $ab = ab^* + ab$

(8) $ab = ab^* + ab$

(9) $ab = ab^* + ab^*$

(10) $ab = ab^* + ab^*$

(11) $ab = ab^* + ab^*$

(12) $ab = ab^* + ab^*$

(13) $ab = ab^* + ab^*$

(14) $ab = ab^* + ab^*$

(15) $ab = ab^* + ab^*$

(16) $ab = ab^* + ab^*$

(17) $ab = ab^* + ab^*$

(18) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(10) $ab = ab^* + ab^*$

(11) $ab = ab^* + ab^*$

(12) $ab = ab^* + ab^*$

(23) $ab = ab^* + ab^*$

(44) $ab = ab^* + ab^*$

(54) $ab = ab^* + ab^*$

(65) $ab = ab^* + ab^*$

(75) $ab = ab^* + ab^*$

(87) $ab = ab^* + ab^*$

(97) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(10) $ab = ab^* + ab^*$

(11) $ab = ab^* + ab^*$

(12) $ab = ab^* + ab^*$

(13) $ab = ab^* + ab^*$

(14) $ab = ab^* + ab^*$

(15) $ab = ab^* + ab^*$

(16) $ab = ab^* + ab^*$

(17) $ab = ab^* + ab^*$

(18) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(10) $ab = ab^* + ab^*$

(11) $ab = ab^* + ab^*$

(12) $ab = ab^* + ab^*$

(13) $ab = ab^* + ab^*$

(14) $ab = ab^* + ab^*$

(15) $ab = ab^* + ab^*$

(16) $ab = ab^* + ab^*$

(17) $ab = ab^* + ab^*$

(18) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(10) $ab = ab^* + ab^*$

(11) $ab = ab^* + ab^*$

(12) $ab = ab^* + ab^*$

(13) $ab = ab^* + ab^*$

(14) $ab = ab^* + ab^*$

(15) $ab = ab^* + ab^*$

(16) $ab = ab^* + ab^*$

(17) $ab = ab^* + ab^*$

(18) $ab = ab^* + ab^*$

(19) $ab = ab^* + ab^*$

(

((ab) (a+c))* 32. Seja $A = \{a, b, c\}$. Considere a expressão regular $r = \underbrace{((ab)^*(a+c))^*} \in ER(A)$. Diga qual das seguintes igualdades entre expressões regulares sobre o alfabeto A é verdadeira. Palaven de L(r): c, a, (ab), (ab), aba, abc ECEC = c2, a2 = EaE (b) $r = (ab + a + c)^*(a + c) + \varepsilon$. (c) $r = ab(ab + a + c)^* + \varepsilon$. , a = Eaza, (d) $r = (ab + a + c)^*$. α' $\alpha' \notin \mathcal{L}((ab+c)^*(a+c)+\varepsilon)$ e $\alpha' \in \mathcal{L}(r)$ b) t'a afirmal verdadeia. $g/a^2 \in L(ab)^*(a+c)^* = a^2 nd + perfixo ab, logo <math>a^2 \notin L(ab(ab+a+c)^*+E)$ 34. Sejam Aum alfabeto e $r,s,t\in ER(A)$ tais que $s\leq t$ e $\varepsilon\leq r.$ Verifique que r^*t é solução r*t = r.r*t +5 r*t e' solup alu X = r×+5 SSE mt < r +) Zabvi) Ert < r · r t 295VI) $r_1 \leq S_1$ $r_1 r_2 \leq S_1 S_2$ $r_2 \leq S_1 S_2$ Por outro lado r.r*t < r.r*t +5 ryt < r r*++5 (1) Por transitivalade de < , resulta que r. r*t+5 = r*t+5 = r*t+5 = r*t+5 = r*t + et = (r*+ e)t = r*t bgo, tem o que r.r*t+s ≤ r*t. (2 Finalmente, por (1) c (2) conclui-sique r*t=r. r*t+s, como queriama motrar. 37. Seja (t_1,t_2) uma solução do seguinte sistema de equações lineares à direita $\left\{ \begin{array}{ll} X_1 & = & bX_1 + aX_2 + \varepsilon \\ \dot{X}_2 & = & aX_1 + bX_2 \end{array} \right.$ De entre as quatro opções abaixo, diga qual é uma afirmação verdadeira: O sistema tem mais do que uma solução e um resultado possível para t_2 é t_2 = (b) A solução do sistema é única e $t_1 = (b + ba)^*(b + \varepsilon)^*$. (c) A solução do sistema é $((b+ab^*a)^*, b^*a(b+ab^*a)^*)$. (d) Uma solução do sistema é $((b+ab^*a)^*, b^*a)$. NOTA: E & a , E & b (lEs & las e les & lbs)
Logo a solop do sintema é unica. Resolvendo o sitema. $\int X_1 = bX_1 + aX_2 + \varepsilon$ $|X_2 = a X_4 + b X_2$ $(\Rightarrow) \begin{array}{l} |X_1 = b^*(aX_2 + \varepsilon) \\ |X_2 = ab^*(aX_2 + \varepsilon) + bX_2 \end{array}$ $A = ab^{\dagger}a \times_2 + ab^{\dagger} \varepsilon + b \times_2$ $X_1 = b^{\dagger} \left(a \left(a b^{\dagger} a + b \right)^{\dagger} a b^{\dagger} + \varepsilon \right)$

$$\begin{cases} x_2 = ab^{\dagger} (ax_2 + \varepsilon) + bx_2 & | x_1 = b^{\dagger} (a(ab^{\dagger}a + b)^{\dagger}ab^{\dagger} + \varepsilon) \\ x_1 = b^{\dagger} (a(ab^{\dagger}a + b)^{\dagger}ab^{\dagger} + \varepsilon) \end{cases}$$

$$\begin{cases} x_1 = ab^{\dagger} (ax_2 + \varepsilon) + bx_2 & | x_2 = (ab^{\dagger}a + b)^{\dagger}ab^{\dagger} + \varepsilon \end{cases}$$

$$\begin{cases} x_2 = (ab^{\dagger}a + b)^{\dagger}ab^{\dagger} + \varepsilon \end{cases}$$

- · J(Ba) e' emstituide por talavear de sufino a e $J(X_2) = J(aBa+b)^4 J(aB)$ untim palavear que terminam em a letra b. togo d) e' fal sa
- $\int ((b+ba)^* (b+\varepsilon)^*) e^i$ constitué de por palavear de sufino b ou ε e $\int (X_1) = \int (b^* (a (ab^*a + b)^* a b^* + \varepsilon))$ contin palavear de sufino a hogo b) e falso.

Alternativa: Resolver o sintema, iniciando por: 1 x2 = b* (a x1)