

フィーチャー指向分析を用いた 通信シミュレータ開発フレームワーク選定手法

(株) 日立製作所

柚木 祥慈

背景と課題

【背景】通信シミュレータ開発案件増加に伴い、 業務全体の中でシミュレータ開発に要する時間が増加。

【課題】通信シミュレータ開発フレームワーク選定時に十分な検討がなされていないため、不適切フレームワーク利用による余剰開発工数が発生している可能性がある。

手法・ツールの適用による解決

通信シミュレータ開発工数を低減するために、フレームワーク選定手法を提案。

- ① 各フレームワークのフィーチャーを整理
- ② フィーチャー分析結果を活用したフレー ムワーク選択手順を整備

フレームワーク選定手法

①各クレームワークのフィーチャー整理

フィーチャー指向分析の応用により、各フレー ムワークのフィーチャーを整理

- 対象とするフレームワークとして知名度、 利用実績の観点からns-2, Qualnet, Scenargie, Opnetを選択
- ▶ 既開発シミュレータで用いたフィーチャー を元にフィーチャーの洗い出しを実施
- ▶ 各フレームワークの各フィーチャーサポート有無を調査し、表形式にて整理

【フィーチャー分析表の例】

	フレー	フレームワーク			
	Α	В	С		
(1)	0	0	_		
(2)	0	_	0		
(3)	_	0	0		
(4)	0	0	0		

②フィーチャー分析結果を活用したフレームワーク選択手順を整備

- 1. フィーチャー分析表中の各フィーチャーを参照し、各フィーチャーが開発シ ミュレータにおける必須/優先/不要の中のどのフィーチャーになるか分類
- 2. 各フレームワークが開発シミュレータにおける必須/優先フィーチャーを満たすか否かを整理
- 3. 必須フィーチャーを全て満たすフレームワークを候補として残す
- 4. フレームワークの中から優先フィーチャーをみたす数が最大のものを選定 【フィーチャー選定手順実施例】

I	フィーチャー	開発	フレームワーク			各フレームワークの開発シミュレータ必須/優先フィー		
		シミュレータ				チャーサポート有無 (◎:必須フィーチャーサポート有		
		(◎:必須/				/×:必須フィー	-チャーサホ [°] ート無	/〇:優先フィー
		〇:優先/			チャーサホ゜ート有/ー:優先フィーチャーサホ゜ート無)			
		一:不要)	Α	В	С	Α	В	С
I	(1)	0	0	0	_	0	0	×
	(2)	0	0	_	0	0	ı	0
	(3)	1	_	0	0	1	1	1
	(4)	0	0	0	0	0	0	0
	必須フィーチャーを全て満たすか				OK	OK	NG	
	優先フィーチャーのいくつを満たすか					2	1	_

評価

【評価方法】

- ▶車車間通信シミュレータ開発に本手法を適用して評価
- ▶ フレームワーク非適用時の開発工数と、本フレームワーク選定手法を用いて選定したフレームワーク適用時の開発工数を比較 【評価結果】
- ▶ 総開発工数を従来比56[%] (=30.5/54.0) に低減

工数[h]	フレームワーク	フレームワーク適用		
	非適用	フレームワーク適用 (Scenargieを適用)		
フレームワーク選定		1.0		
フレームワーク使用 法調査	-	14.5		
コーディング	54.0	15.0		
合計	54.0	30.5		

今後の課題

- ▶ フレームワークを適用しない方が工数低減となるケースも存在する可能性があるため、どのような場合にフレームワーク適用をすべきでないかの判定方法を整備すること
- 本フレームワーク選定手法を適用した場合の 推薦順位1位、2位、3位フレームワーク適用時 の開発工数を評価すること
- ▶ 大規模開発案件に本フレームワーク選定手法 を適用した場合の評価を実施すること