Box Operations

Alice purchased an array of n wooden boxes that she indexed from 0 to n-1. On each box i, she writes an integer that we'll refer to as box_i .

Alice wants you to perform q operations on the array of boxes. Each operation is in one of the following forms:

(Note: For each type of operations, $l \leq i \leq r$)

- 1 | r c: Add c to each box_i . Note that c can be negative.
- $2 \operatorname{Ird}$: Replace each box_i with $\left| \frac{box_i}{d} \right|$.
- 3 l r: Print the minimum value of any box_i .
- 4 Ir : Print the sum of all box_i .

Recall that $\lfloor x \rfloor$ is the maximum integer y such that $y \leq x$ (e.g., $\lfloor -2.5 \rfloor = -3$ and $\lfloor -7 \rfloor = -7$).

Given n, the value of each box_i , and q operations, can you perform all the operations efficiently?

Input Format

The first line contains two space-separated integers denoting the respective values of n (the number of boxes) and q (the number of operations).

The second line contains n space-separated integers describing the respective values of $box_0, box_1, \ldots, box_{n-1}$ (i.e., the integers written on each box).

Each of the q subsequent lines describes an *operation* in one of the four formats defined above.

Constraints

- $1 \le n, q \le 10^5$
- $-10^9 \le box_i \le 10^9$
- $0 \le l \le r \le n-1$
- $-10^4 \le c \le 10^4$
- $2 \le d \le 10^9$

Output Format

For each operation of type **3** or type **4**, print the answer on a new line.

Sample Input 0

```
10 10
-5 -4 -3 -2 -1 0 1 2 3 4
1 0 4 1
1 5 9 1
2 0 9 3
3 0 9
4 0 9
3 0 1
4 2 3
3 4 5
4 6 7
3 8 9
```

-2 -2 -2 -2 0 1

Explanation 0

Initially, the array of boxes looks like this:

We perform the following sequence of operations on the array of boxes:

1. The first operation is 1041, so we add 1 to each box_i where $0 \le i \le 4$:

2. The second operation is 1591, so we add c=1 to each box_i where $5 \le i \le 9$:

3. The third operation is 2 0 9 3, so we divide each box_i where $0 \le i \le 9$ by d = 3 and take the floor:

4. The fourth operation is 309, so we print the minimum value of box_i for $0 \le i \le 9$, which is the result of min(-2,-1,-1,0,0,0,1,1,1) = -2.

5. The fifth operation is 409, so we print the sum of box_i for $0 \le i \le 9$, which is the result of -2+-1+-1+0+0+0+1+1+1=-2.

... and so on.