Problem komiwojażera

Adrian Stępień i Wojciech Młyńczak

22 marca 2020

1 Opis zadania

Rozważany problem to zmodyfikowany problem komiwojażera. Dany jest zbiór wierzchołków i macierz odległości pomiędzy każdą parą wierzchołków. Celem zadania jest znalezienie najkrótszej ścieżki zamkniętej przechodzącą przez 50% wszystkich wierzchołków (w przypadku nieparzystej liczby wierzchołków liczba jest zaokraglana w górę).

2 Opis zaimplementowanych algorytmów

2.1 Algorytm zachłanny greedy cycle

```
Wybierz pierwszy punkt.
Wybierz drugi punkt leżący najbliżej pierwszego.
Jeżeli nie dodałeś wszystkich punktów:
Dla pozostałych wolnych punktów:
Dla każdej krawędzi w aktualnym rozwiązaniu:
Oblicz koszt dodania punktu do rozwiązania w danej krawędzi.
Sprawdź czy to jest najlepsze rozwiązanie w danym momencie.
Bodaj znaleziony najlepszy punkt w wybranej krawędzi do cyklu.
```

2.2 Algorytm z żalem oparty o 1-żal

```
Wybierz pierwszy punkt.
   Wybierz drugi punkt leżący najbliżej pierwszego.
   Jeżeli nie dodałeś wszystkich punktów:
    Dla pozostałych wolnych punktów:
5
      Dla każdej krawędzi w aktualnym rozwiązaniu:
6
         Oblicz koszt dodania punktu do rozwiązania w danej
            krawędzi.
         Dodaj punkt do listy potencjalnych rozwiązań wraz z
            kosztem dodania.
      Oblicz żal dla danego punktu
8
    W liście potencjalnych rozwiązań znajdź rozwiązanie z
        największym żalem.
    Dodaj znalezione rozwiązanie z największym żalem do cyklu.
```

3 Wyniki pomiarów

3.1 Algorytm zachłanny dla problemu kroA100

Pomiar	Wynik
Wartość średnia	12898.45
Wartość minimalna	11325.00
Wartość maksymalna	14067.00

3.2 Algorytm oparty o żal dla problemu kroA100

Pomiar	Wynik
Wartość średnia	16879.11
Wartość minimalna	14456.00
Wartość maksymalna	17899.00

3.3 Algorytm zachłanny dla problemu kroB100

Pomiar	Wynik
Wartość średnia	12710.59
Wartość minimalna	10240.00
Wartość maksymalna	11320.00

3.4 Algorytm oparty o żal dla problemu kroB100

Pomiar	Wynik
Wartość średnia	17245.51
Wartość minimalna	15547.00
Wartość maksymalna	16965.00

4 Wizualizacje najlepszych rozwiązań

4.1 Algorytm zachłanny dla problemu kroA100

Rysunek 1: Algorytm zachłanny dla problemu kroA100

4.2 Algorytm oparty o żal dla problemu kroA100

Rysunek 2: Algorytm oparty o żal dla problemu kroA100

4.3 Algorytm zachłanny dla problemu kroB100

Rysunek 3: Algorytm zachłanny dla problemu kroB100

4.4 Algorytm oparty o żal dla problemu kroB100

Rysunek 4: Algorytm oparty o żal dla problemu kroB100

5 Wnioski

Z wymienionych wyżej pomiarów można wywnioskoważ, że dla podanych warunków problemu (odwiedzanie połowy punktów), algorytm zachłanny radzi sobie lepiej od algorytmu opartego o żal (cykl, który generuje ma mniejszą długość). Przeprowadzono również testy dla przypadku, gdy oba te algorytmy uruchomione zostaną dla wszystkich punktów. Wtedy wyniki są odmienne, algorytm z żalem okazuje się lepszy od algorytmu zachłannego. Jest to spowodowane tym, że dla warunków zadania z odwiedzeniem połowy punktów algorytm

z żalem czasami dodaje punkty, które mają duży żal, a w ogóle nie powinny zostać dodane do cyklu z powodu dużego kosztu ich dodania. Gdy odwiedzone mają być wszystkie punkty, koszt dodania punktu nie ma takiego znaczenia, ponieważ prędzej lub później i tak każdy punkt będzie musiał zostać dodany.

6 Kod programu

Repozytorium z kodem programu dostępne jest pod adresem: $\verb|https://github.com/adrianstepienfsw/AEM1|$