9. Standardni sekvencijski moduli

Sekvencijski moduli

- sekvencijski moduli:
 - ~ cjeline koje sadrže kombinacijski sklop *i* memoriju (niz/skup bistabila ili registara)
- naročito zanimljivi standardni moduli
 - ~ n-bitni moduli (n bistabila); osnovna funkcija:
 - pohranjivanje podataka~ registri
 - brojanje
 - ~ brojila

Sadržaj predavanja

- registri
 - registri u užem smislu
 - posmačni registri
- brojila
- generatori sekvencije

Registri

- registri
 - ~ pamćenje (= "registriranje") *višebitnih* podataka:
 - obično jedna riječ/znak
 ~ standardna jedinica podataka za digitalni sustav
 - mogućnost upisa i ispisa/čitanja:
 - registri u užem smislu
 paralelni upis i ispis
 - posmačni registri
 ~ serijski upis i ispis
 - kombinacije upisa/ispisa
 druge primjene
 - izvedbe:
 - svi tipovi bistabila (osim T)
 - MSI i LSI moduli, dijelovi VLSI sklopova

- osnovna struktura registra u užem smislu:
 - ~ uređeni skup nepovezanih bistabila
 - paralelni upis podatka
 - paralelno čitanje pohranjenog podatka
- način upisa:
 - sinkroni (upravljani s CP!)
 - ~ uobičajeni, bolji
 - "asinkroni"
 - ~ registri (upravljanih) osnovnih bistabila: problem transparentnosti

Primjer: "8-bit bistable latch" 74100

 dvostruki 4-bitni registar (upravljanih osnovnih) D bistabila

ULAZI		IZLAZI		
D	G	Q	\overline{Q}	
L	Н	L	H	
Н	Н	Н	L	
Χ	L	Q^{n-1}	$\overline{Q}^{\scriptscriptstyle n-1}$	

- primjena 74100:
 - privremeno pohranjivanje podataka na UI sučelju sustava ("međuspremnik", engl. buffer)
 - ostvarivanje složenijih struktura;
 npr. 4-bitni registar dvostrukih bistabila

_	UL	ΑZI	IZLAZI		
-	D	G	Q	\overline{Q}	
	L	Н	L	Н	
	Н	Н	Н	L	
	Χ	L	Q^{n-1}	$\overline{Q}^{\scriptscriptstyle n-1}$	

- prikaz (tipično)
 - ~ blok-simbol za cijeli registar:
 - (svi) bistabili
 - grupe bistabila
 rormat pohranjene riječi

- značajni elementi arhitekture i organizacije sustava:
 - protok podataka (engl. data flow):
 - ~ registri i *staze* (engl. registers & data paths) *između* procesnih elemenata
 - viša razina razmatranja/opisivanja sustava
 PTL (opal Pogistor Transfor Lovel)
 - ~ RTL (engl. Register Transfer Level)

- posmačni registar (engl. shift register):
 - funkcijski pogled:
 - registar sa serijskim upisom i ispisom/čitanjem
 - ~ svojstveni mehanizam pomicanja (bitova) podatka

od ulaza prema izlazu

- analogija s tokarskim strojem
 - ~ "posmak" (engl. shift)
- karakteristična struktura
 - ~ izlaz prethodnog bistabila spaja se na ulaz slijedećeg

po redu

(mogući) paralelni izlazi

posmak podataka:

• *istovremeni* upis:

$$\begin{array}{l} B_i \rightarrow B_{i+1} \\ B_{i-1} \rightarrow B_i \end{array}$$

. . .

ispravnost upisa

~ osigurati *kašnjenje* između bistabila (problem transparentnosti ulaza!)

CP	S_{I}	\mathbf{B}_0	\mathbf{B}_1	\mathbf{B}_2	$ S_0 $
	1	0 <	0 <	0	0
1	0	1	~ 0	2 0	0
2	1	0	1	0	0
2 3	1	1	_ 0 <	1	1
4	0	1	1 <	0	0
5	0	0 <	<u> </u>	1	1
6	0	_ 0 <	<u> </u>	1	1
7	0	0	0	0	0

 $S_0 = B_2$

- izvedbe kašnjenja između bistabila
 - ~ potrebno upravljanje!:
 - dvostruki bistabil
 - dva bistabila po bitu
 "simulacija" dvostrukog bistabila
 - bridom okidani bistabil

Primjer: posmačni registar 7491

- 8-bitni MSI modul
- dvostruki SR bistabili
- serijski ulaz-serijski izlaz

- zapažanje:
 serijski upisani bitovi "putuju" kroz posmačni registar
 ~ paralelni ispis n-bitnog serijskog podatka:
 serijsko-paralelna pretvorba (konverzija)
- kombinacije ~ tip pretvorbe:
 - paralelni ulaz-serijski izlaz ~ *paralelno-serijska*
 - serijski ulaz-paralelni izlaz ~ serijsko-paralelna

serijski i paralelni ulaz i izlaz
 univerzalni posmačni registar

- "smjer" posmaka:
 - uobičajeno "nadesno" (prema "normalnom" izlazu)
 od prvog bistabila u nizu prema posljednjem

moguće i "nalijevo", prema "normalnom" ulazu
 od posljednjeg bistabila u nizu prema prvom

- kombiniranje smjera posmaka
 - ~ dvosmjerni (engl. bidirectional) posmačni registar: između bistabila ubaciti MUX 2/1

- značajne primjene:
 - efikasno obavljanje aritmetičkih operacija;
 npr. množenje/dijeljenje s 2ⁿ, posmakom za n bitova
 - sklop za posmak (engl. shifter) na izlazu ALU

Primjer: MSI dvosmjerni univerzalni posmačni registar s asinkronim brisanjem (4-bitni: 74194, 8-bitni: 74198)

- primjene (1):
 - pohranjivanje podataka za serijsko izvršavanje (aritmetičkih) operacija

Primjer: n-bitno serijsko zbrajalo

- primjene (2):
 - pretvorba oblika podataka:
 - paralelno-serijska (∃ paralelni ulazi)
 - ~ izlaz iz digitalnog sustava
 - serijsko-paralelna (∃ paralelni izlazi)
 - ~ ulaz u digitalni sustav

- primjene (3):
 - ostvarivanje (aritmetičkih) operacija:
 - množenje s 2: posmak nalijevo
 - dijeljenje s 2: posmak nadesno

Primjer: primitivna 8-bitna aritmetičko-logička jedinica

- sklop za posmak izveden dvosmjernim posmačnim registrom:
 - množenje s 2: posmak nalijevo
 - dijeljenje s 2: posmak nadesno

- primjene (4):
 - sinkronizacija brzina prijenosa
 ~ "glađenje" prometa kod povezivanja digitalnih sustava
 različitih frekvencija CP (f₁≠ f₂):
 - upis podataka s f₁
 - ispis podataka s f₂
 - izvedbe cirkulirajućih memorija
 ~ npr. generatori znakova

- primjene (5):
 - brojanje
 - posmačni registar u funkciji brojila:
 najbrža brojila
 - generiranje "pseudo-slučajnog" slijeda
 - ~ posebni tip brojila: *generatori sekvencije*
 - zaštita podataka od pogrešaka prilikom prijenosa: generiranje linijskih kodova
 - zaštita podataka od neovlaštenog pristupa: kriptiranje

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - sinkrona brojila
 - brojila na osnovi posmačnog registra
 - integrirana brojila
- generatori sekvencije

- brojilo:
 - ~ pod utjecajem ulaznih impulsa (obično CP) prolazi kroz *utvrđeni niz* stanja i *vraća se u početno* stanje:
 - sklop "broji" ulazne impulse
 - impulsi ne moraju biti periodički (f≠ const.)
 - "autonomni" sekvencijski sklop
 ~ samo jedan ulaz, i to za impulse koji se "broje"
 (mogu biti impulsi CP)
 - definicije:
 - ciklus brojanja
 niz stanja kroz koja brojilo prolazi
 - baza brojanja
 - broj stanja u ciklusu brojanja:
 baza brojevnog sustava u kojem brojilo broji

- baza brojanja
 brojanje u "modulu":
 - stanje brojila = ostatak cjelobrojnog dijeljenja bazom (modulom)

a impulsa → $a = k \cdot m + b$, b: sadržaj brojila ~ stanje n bistabila → $N = 2^n$: max broj stanja $W = 2^n - 1$: max broj (binarni kod!) $2^{n-1} = N/2 < m \le 2^n = N$

- osnovna funkcijska podjela:
 - brojila u užem smislu (engl. counters)
 ~ važan je redoslijed izmjene stanja u ciklusu
 i mogućnost ispravnog očitanja (→ dekodiranja!)
 svakog stanja
 - djelitelji frekvencije (engl. scalers)
 - važan samo *broj* stanja,
 ne i redoslijed njihove izmjene;
 nije nužno moći ispravno očitati svako pojedino stanje

- brojila u užem smislu:
 - prikladno projektiranje brojila
 zednostavniji dekoder
 - važna primjena

- djelitelji frekvencije:
 - sklop samo broji ulazne impulse
 - očitati samo ono stanje koje definira željeni izlazni impuls, nakon svakih n impulsa, od nekog početnog
 - pojednostavljivanje dekodera
 ~ nepotpuno dekodiranje (dekodira se samo jedno stanje)
 - ubrzanje rada: f_{max}
 npr. naročito za asinkrona brojila

- vremenski odnosi prilikom promjene stanja:
 - sinkrona brojila:
 - (svi) bistabili mijenjaju stanja sinkrono s nailaskom ulaznih impulsa (tipično impulsi CP)
 - složenija, skuplja, brža
 - asinkrona (engl. ripple) brojila:
 - promjena stanja prvog bistabila uzrokuje serijsku promjenu stanja slijedećih u nizu
 - rasprostiranje promjene stanja
 izlaz prethodnog pobuđuje slijedeći bistabil (engl. ripple: mreškanje, talasanje)
 - jednostavnija, jeftinija, sporija

- bistabil u brojilima:
 - ~ konceptualno T, ali izveden od JK ili RS
 - T = 1 → promjena stanja
 dijeli frekvenciju ulaznih impulsa s 2

- direktna implementacija asinkronih brojila ~ niz bistabila od kojih svaki prethodni pobuđuje onaj naredni u nizu
- brojanje u *binarnom* brojevnom sustavu
 2ⁿ stanja za *n* bistabila:
 binarno brojilo (bistabili ~ 2ⁱ : težine potencije od 2)

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - binarno brojilo
 - reverzno i brojilo naprijed-natrag
 - brojilo modulo m
 - sinkrona brojila
 - brojila na osnovi posmačnog registra
- generatori sekvencije

- asinkrona brojila
 - ~ bistabili *ne* mijenjaju stanje u *sinkronizmu* sa zajedničkom pobudom: sporiji rad!

- binarno brojilo:
 - brojilo broji u binarnom brojevnom sustavu
 - 2^n stanja za n bistabila; npr. $n = 3 \rightarrow m = 2^n = 8$

- očitanje (dekodiranje) stanja
 tipični problem:
 - serijsko okidanje bistabila:

~ tranzijentna pogreška dekodiranja (→ hazard)

dekodiranje svih 2ⁿ stanja
 ~ potpuno dekodiranje;
 npr. dekodiranje D₀

$$D_0 = \overline{B}_2 \overline{B}_1 \overline{B}_0$$

$$D_1 = \overline{B}_2 \overline{B}_1 B_0$$

$$\vdots$$

$$D_7 = B_2 B_1 B_0$$

- tranzijentna pogreška dekodiranja:
 - → pojava hazarda
 - moguće rješenje
 ~ zakasniti očitanje tako da prijelazna pojava ne djeluje
 - praktična implementacija
 - ~ *kombinirati* očitanje s ulaznim impulsima

- vremenski odnosi:
 - *vrijeme kašnjenja* (cijelog) brojila \sim najduže vrijeme odziva: promjena stanja *svih* n bistabila $T_d = n \cdot t_{db}$
 - vrijeme razlučivanja (rezolucije) ulaznih impulsa \sim svojstvo prvog bistabila $T_{\min} = t_{db}$
 - maksimalna frekvencija
 različita za brojila u užem smislu i za djelitelje

- maksimalna frekvencija brojila u užem smislu:
 - očitanje (= dekodiranje) svih stanja!
 - najlošiji slučaj
 - \sim B₀ *ne smije* promijeniti stanje sve dok B_{n-1} ne dođe u stanje uzrokovano *prethodnim* impulsom:

$$f_{\text{max}} = \frac{1}{n \cdot t_{db} + t_{o\check{c}}}$$

- maksimalna frekvencija djelitelja:
 - odabrati "prikladno" stanje koje će se očitati
 ~ min broj bistabila mijenja stanje
 - f_{max} slijedi iz analize *prijelaza u to stanje*

Brojila

Primjer: brojilo do $8 \leftrightarrow$ djelitelj frekvencije s 8

- brojilo: dekodiranje svih stanja
 ~ najlošiji slučaj: prijelaz 3 → 4, 7 → 0,
 promjena stanja 3 bistabila
- djelitelj frekvencije
 dekodiranje samo jednog (najpovoljnijeg) stanja:
 - dekodiranje stanja 0
 ~ prijelaz 7 → 0, promjena stanja 3 bistabila ⊗
 - dekodiranje stanja 7
 ~ prijelaz 6 → 7, promjena stanja 1 bistabila ©

- reverzno (binarno) brojilobrojilo unatrag:
 - "smanjivanje" sadržaja brojila
 ~ "odbijanje" impulsa
 - pobuda s \overline{Q}_{i-1} prethodnog bistabila $\sim Q_{i-1} \colon 0 \to 1$

ULAZ	B_2	B_1	B_0
0	0	0	0
1	1	1	1
2	1	1	0
3	1	0	1
4	1.		(0)
5	0	14	1
6	0	1	0
7	0	0	1
8	0	0	0

brojilo naprijed-natrag (engl. up-down counter)

~ kombiniranje brojanja naprijed i natrag:

veća fleksibilnost

 konceptualna implementacija: također MUX 2/1

- primjena:
 - digitalno upravljanje
 - obavljanje jednostavnih aritmetičkih operacija nad impulsima

$$= \overline{Q}_{i} \oplus SMJER$$

$$SMJER = \begin{cases} 0: brojanje \ unatrag \\ 1: brojanje \ unaprijed \end{cases}$$

Primjer: određivanje položaja kod CNC strojeva

- linearno kretanje suporta ~ kružno kretanje kodne ploče
- Grayev kod ~ očitanje smjera kretanja suporta
- nova kodna riječ ~ impuls za promjenu stanja brojila
- stanje brojila ~ položaj suporta

- brojilo modulo m, m ≠ 2ⁿ
 - ~ prekid ciklusa binarnog brojanja korištenjem *asinkronih* ulaza bistabila:
 - prekid ak<u>ti</u>viran zadnjim stanjem u ciklusu, m-1
 putem S_d brojilo se prebacuje u stanje 2ⁿ-1 = W: slijedeći ga impuls prebacuje u 0 mod 2ⁿ

$$0 \rightarrow 1 \rightarrow ... \rightarrow m-2 \rightarrow m-1$$

$$\downarrow \overline{S}_{d}$$

$$2^{n}-1$$

prekid ak<u>ti</u>viran *prvim stanjem izvan* ciklusa, *m* putem C_d brojilo se prebacuje u stanje 0:

$$0 \to 1 \to \dots \to m-2 \to m-1 \to m$$

$$C_d$$

Primjer: brojilo do 11 (ima 11 stanja u ciklusu, 0÷10)

4-bitno binarno brojilo

prekid na zadnje stanje
 u ciklusu, m-1 = W = 10

• prekid na *prvo stanje* izvan ciklusa, $m = 16 \equiv 0$

Primjer: dekadsko brojilo

detektirati karakterističnu pojavu B₃B₁ = 1

(→ brojilo broji *naprijed*: jednostavnije *nepotpuno*

dekodiranje)

СР	B_3	B ₂	B_1	B_0
0	B ₃	0	0	$\frac{B_0}{0}$
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
1 2 3 4 5 6 7 8 9	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10≡0	(1)	0	(1)	0
	0	0	0	0

- problem kod brisanja bistabila
 - ~ rasipanje t_{db}:

nestanak impulsa brisanja prije brisanja svih bistabila!

rješenje problema brisanja:
 ~ osnovni bistabil u "petlju povratne veze"

 sigurno generiranje impulsa brisanja
 traje do slijedećeg CP = 1

- računanje f_{max} za očitanje stanja 10
- uzeti min(f_{max})

$$f_{\max} = \begin{cases} \frac{1}{4 \cdot t_{db} + t_{o\check{c}}} & \text{CP} \\ \frac{1}{2 \cdot t_{db} + t_{db} + t_{dNI} \cdot (+2 \cdot t_{dNI}) + t_{o\check{c}}} & \text{B}_{0} \text{ B}_{1} & \text{osnovni}_{\overline{C}_{d}} \\ \text{bistabil} \end{cases}$$

t_{oč}

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - sinkrona brojila
 - binarno brojilo
 - brojilo naprijed-natrag
 - brojilo modulo m
 - integrirana brojila
 - brojila na osnovi posmačnog registra
- generatori sekvencije

- binarno sinkrono brojilo:
 - ~ struktura brojila iz *rekurzivne* definicije mehanizma promjene stanja
 - odnosi se na izvedbe T-bistabilima
 - prvi bistabil B₀
 mijenja stanje uvijek: T₀ = 1
 - *i*-ti bistabil B_i mijenja stanje kad su svi prethodni bistabili u 1: T_i = B₀·B₁·...·B_{i-1}

СР	B ₂	B ₁	B ₀
0	0	0	0
1	0	0,	
2	0	1	0
3	0,	(1) ,	
4	1	0	0
5	1	0,	
6	1	1	0
7	1		

izvođenje strukture
 n-bitnog binarnog sinkronog brojila:

CP	B ₂	B_1	B_0
0	0	0	0
1	0	0,	1
2	0	1	0
3	0,	(1) ,	
4	1	0	0
5	1	0,	
6	1	1	0
7	1,	0,	

 struktura *n* -bitnog binarnog sinkronog brojila:

Q

 B_0

 B_1

CP

 B_0

 $B_1 \cdot T_1$

 B_2

- binarno sinkrono brojilo s paralelnim prijenosom:
 - posebni I-sklop za svaki T_i
 - brže rješenje
 ~ samo jedan I-sklop:

$$f_{\text{max}} = \frac{1}{t_{setup} + t_{db} + t_{dI}}$$

za n
 ¬ izvedba je kontraproduktivna
 ~ teškoće pri ostvarivanju I-sklopa, C_{rasipno} ¬, itd.

- binarno sinkrono brojilo sa serijskim prijenosom:
 - kaskadiranje I-sklopova
 - jeftinije rješenje
 istovrsni sklopovi
 s ograničenim brojem ulaza
 (i to samo 2!)
 - sporije rješenje:

$$f_{\text{max}} = \frac{1}{t_{setup} + t_{db} + (n-2) \cdot t_{dI}}$$

- brojilo naprijed-natrag:
 - mreža za izbor "smjera brojanja"
 ~ MUX za prenošenje Q_i ili Q_i
 - tipična izvedba: EX-ILI (uzeti u obzir kod računanja f_{max})

- brojilo modulo m, $m \neq 2^n$:
 - projektiranje kao proizvoljni sekvencijski sklop ~ mogućnost izbora koda:
 - jednostavniji dekoder
 - ugradnja "sigurnog starta"
 - ~ osigurati da se brojilo vrati u ciklus brojanja ako se zbog neželjene pogreške nađe izvan njega, i to s *najmanjim* brojem "posrednih" stanja!

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - sinkrona brojila
 - integrirana brojila
 - brojila na osnovi posmačnog registra
- generatori sekvencije

- integrirana brojila:
 - uglavnom 4-bitni MSI moduli (binarna brojila!):
 npr. serija 74
 - asinkrono binarno brojilo: 7493
 - sinkrono binarno brojilo: 74163
 - sinkrono brojilo naprijed-natrag: 74191
 - proširivanje broja bitova
 ~ kaskadiranjem modula, npr.

Primjer: integrirano brojilo 7493

- asinkrono brojilo do 16 (1 + 3 bistabila)
 ~ 2 × 8 = 16 stanja
- asinkrono brisanje s logičkom funkcijom I

- *brojilo modulo* m, *m* ≠ 2ⁿ:
 - prekid ciklusa binarnog brojanja:
 - detekcija maksimalnog broja (kao kod asinkronih brojila): W = m-1
 - (m+1)-ti impuls: $W \rightarrow 0$
 - prethodno postavljanje (engl. presetting):
 - početno stanje: 2-komplement baze $m(m_2)$
 - (m+1)-ti impuls: $W \rightarrow m_2$

Primjer: brojilo do 11

• početno stanje: $11_H = 5$

Primjer: integrirano brojilo 74163

CLR	LOAD	ENT	ENP	akcija na rastući brid CP
0	Х	Х	х	brisanje (reset)
1	0	Х	х	upis (A \rightarrow Q _A ; itd.)
1	1	1	1	brojanje
1	1	0	х	pohranjivanje
1	1	Х	0	stanja

- složeniji sinkroni sekvencijski modul:
 - mogućnost kaskadiranja (ENT, ENP)
 - mogućnost upisa podatka (LOAD)
 - detekcija max broja (1111 $_2 = 15_{10} \rightarrow RCO = 1$)
 - sinkrono brisanje (CLR)
 - skraćivanje ciklusa *prethodnim postavljanjem*
 - prioriteti: brisanje → upis → brojanje

Primjer: brojilo do 13 izvedeno sa 74163

- prekid ciklusa prethodnim postavljanjem
- 13 stanja u ciklu<u>su</u> brojanja
 započinje s 13₁₆ = 3

Sadržaj predavanja

- registri
- brojila
 - osnovne definicije
 - asinkrona brojila
 - sinkrona brojila
 - integrirana brojila
 - brojila na osnovi posmačnog registra
 - prstenasto brojilo
 - Johnsonovo brojilo
- generatori sekvencije

- brojila na osnovi posmačnog registra:
 - struktura:
 - ~ povratna veza s izlaza posmačnog registra na njegov ulaz
 - dvije mogućnosti:
 - prstenasto brojilo
 - ~ povratna veza ($D_0 = Q_{n-1}$)
 - + početno samo jedna 1 u posmačnom registru
 - Johnsonovo brojilo:

$$D_0 = \overline{Q}_{n-1}$$

- prstenasto brojilo (engl. ring counter)
 - brojanje impulsa na "ulazu" CP posmakom 1: brojilo modulo broj bistabila

CP	B ₀	B_1	B_2
0	1	0	0
1	0	1	0
2	0	0	1
3	1	0	0

- brojilo u užem smislu
 u posmačnom registru cirkulira samo jedna 1
- djelitelj frekvencije
 ~ početno upisati uzorak *različit* od
 "sve 0" = 0, i "sve 1" = (2ⁿ-1)

- prstenasto brojilo:
 - baza (modul) = broj bistabila
 - ~ neefikasno, ali *brže* od binarnog brojila!

- direktno očitanje stanja
 - ~ stanje ~ $(B_i = 1)$: vrlo povoljno \rightarrow *ne treba* dekoder!
- osigurati sigurni start!
 - ~ ako se sklop nađe u stanju koje nije unutar ciklusa brojanja, sigurno se vraća u ciklus

- popularne izvedbe upravljačkih jedinica računala:
 - prstenasto brojilo
 - proizvoljni valni oblik
 ~ kombiniranje (funkcija ILI) izlaza pojedinih bistabila

Primjer:

$$S_0 = B_0 + B_1 + B_3 + ...$$
 $S_1 = B_1 + B_2 + B_3 + ...$
 S_0
 S_1
 S_1
 S_0
 S_1
 S_1

- Johnsonovo brojilo, brojilo s ukrštenim prstenom (engl. twisted ring counter):
 - povećanje broja stanja za dani broj bistabila: 2.n
 - izvedbe bistabilima SR i JK
 ukrstiti povratnu vezu
 - izvedbe bistabilima D
 na ulaz dovesti Q_{n-1}
 - broje u kodu s $d_{\min} = 1$
 - i dalje brže od binarnog brojila

СР	B_0	B_1	B_2
0	0	0	0
1	1	0	0
2	1	1	0
3	1	1	1
4	0	1	1
5	0	0	1
6	0	0	0

- dekodiranje stanja Johnsonovog brojila:
 - nije tako povoljno kao kod prstenastog brojila
 potreban dekoder!
 - ipak relativno jednostavno rješenje
 ~ konjunkcija dva susjedna izlaza B_i i B̄_i

СР	B ₀ B ₁ B ₂
0	0 0 0
1	1 0 0
2	1 (1 0)
3	1) 1 (1
4	0 1 1
5	0 0 1
6	0 0 0

₀ B ₁ B ₂	0 : $\overline{B}_2\overline{B}_0$
0 0	$1: \overline{B}_1 B_0$
1 0	$2: \overline{B}_2 B_1$
) 1 (1	$3: B_2B_0$
0 0	$4:B_1\overline{B}_0$
0 0	-

 $5: B_2B_1$

Sadržaj predavanja

- registri
- brojila
- generatori sekvencije

- generator sekvencije (engl. sequence generator):
 - generiranje propisane sekvencije bitova
 niz bitova koji se ponavlja!
 - duljina sekvencije
 - ~ *broj* uzastopnih bitova koji se ponavljaju; npr. ...011100101110010111...
 - sekvencija
 ~ očitanje *izlaza* posmačnog registra
 - izvedba
 - posmačni registar s povratnom vezom

- izvedba generatora sekvencije:
 - poopćenje povratne veze posmačnog registra:

$$D_0 = f(B_{n-1}, ..., B_1, B_0)$$

- specijalni slučaj:
 - prstenasto brojilo: $D_0 = B_{n-1}$
 - Johnsonovo brojilo: $D_0 = B_{n-1}$

Primjer: ...011100101110010111...

- generirani bitovni niz se očitava na bistabilu B_{m-1}
- trenutni izlaz B_{m-1} je prethodni ulaz: $D_{m-1}^{n-1} = B_{m-1}^n$
- broj bistabila posmačnog registra
- ~ ponavljati sekvenciju uz $D_j^{n-1} = B_j^n$ sve dok se stanja više ne ponavljaju: 3 bistabila B_2 B_1 B_0

 principijelna logička shema generatora sekvencije:

• projektiranje generatora sekvencije: $D_0^n = B_0^{n+1}$

$B_0^{\ n+1}$	00	01	11	$_{10}^{\mathrm{B}_{2}}$	\mathbf{B}_{1}
B_{0}		1		1	
1		1		1	

$$D_0^n = B_0^{n+1} = \overline{B_2} \cdot B_1 + B_2 \cdot \overline{B_1}$$
$$= B_2 \oplus B_1$$

naročito jednostavna izvedba povratne veze
 ~ linearna funkcija:

$$f(x_{n-1},...,x_1,x_0) = c_{n-1}x_{n-1} \oplus ... \oplus c_1x_1 \oplus c_0x_0, c_i \in \{0,1\}$$

- posmačni registar s linearnom povratnom vezom (engl. Linear Feedback Shift Register, LFSR):
 - jednostavna struktura sklopa
 ~ samo sklopovi EX-ILI
 - najveća moguća duljina sekvencije (za n bistabila)
 ~ 2ⁿ-1
 - zabranjeno stanje 00..00
 izbjeći to stanje:
 sklop za sigurni start

Primjer: $D_0 = f(B_2, B_1, B_0) = B_2 \oplus B_0$

B_0	<i>B</i> ₁	B_2	D_0	
1	0	0	1	
1	1	0	1	
1	1	1	0	<u>:</u>
0	1	1	1	sekvencija
1	0	1	0	sek
0	1	0	0	
0	0	1	1	\downarrow
1	0	0	1	

- primjena generatora sekvencije:
 - - "randomizacija" bitovnih nizova (engl. scrambling)
 - zaštitni bitovi prilikom prijenosa
 - tajni ključevi za kriptiranje
 - *ispitni vektori* za ispitivanje digitalnih sklopova
 - očitanje stanja posmačnog registra
 ~ generator pseudoslučajnih brojeva
 (engl. Pseudo-Random Number Generator, PRNG)

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 11: Sekvencijski moduli: registri i brojila.
- registri: str. 414-422
- asinkrona brojila: str. 435-440
- sinkrona brojila: str. 426-434
- brojila na osnovi posmačnog registra: str. 422-425
- generatori sekvencije: str. 441-451

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 11: Sekvencijski moduli: registri i brojila.
- registri: 11.1, 11.2, 11.10, 11.11, 11.22, 11.24, 11.26, 11.27, 11.35
- modeliranje u VHDL: 11.23, 11.28, 11.32, 11.33
- asinkrona brojila: 11.36—11.41
- sinkrona brojila: 11.3-11.8, 11.13-11.17, 11.19-11.21, 11.29
- brojila na osnovi posmačnog registra: 11.9, 11.12, 11.26, 11.31;
- modeliranje u VHDL: 11.30
- generatori sekvencije: 11.18, 11.34

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 9: Registri; Cjelina 10: Brojila. Cjelina 11: Strojevi s konačnim brojem stanja.
- registri:
 - riješeni zadaci: 9.1-9.3, 9.5-9.15
 - zadaci za vježbu: 1, 2
- asinkrona brojila:
 - riješeni zadaci: 10.1, 10.7
 - zadaci za vježbu: 1, 4
- sinkrona brojila:
 - riješeni zadaci: 10.3-10.6, 10.9, 10.10; 11.10, 11.11, 11.16
 - zadaci za vježbu: 2, 3
- brojila na osnovi posmačnog registra:
 - riješeni zadaci: 9.4
 - zadaci za vježbu: 3, 4
- generatori sekvencije:
 - riješeni zadaci: 11.17