Search Framework for a Large Digital Records Archive

DLF SPRING 2007

April 23-25, 2007

Dyung Le & Quyen Nguyen

ERA Systems Engineering
National Archives & Records Administration

Agenda

- ERA Overview
- Access Requirements
- Search Framework
- Search Technologies
- Digital Asset Catalog and Topic Maps

Agenda

- **■** ERA Overview
 - Access Requirements
 - Search Framework
 - Search Technologies for ERA
 - Digital Asset Catalog and Topic Maps

NARA Mission

NARA mission is to provide "for the citizen and the public servant, for the President and for the Congress and the Courts, ready access to essential evidence."

ERA Vision

• In order to fulfill NARA mission in the 21st century and future, NARA created the ERA program. The product will be a system that "will authentically preserve and provide access to any kind of electronic record, free from dependence on any specific hardware or software".

OAIS Functional Model

Agenda

- ERA Overview
- Access Requirements
 - Search Framework
 - Search Technologies for ERA
 - Digital Asset Catalog and Topic Maps

ERA System Challenges

- Scope Digital records from the Entire Federal Government
- Complexity Records in different formats, which may be obsolete.
- Volume Enormous amounts of records

Electronic Records Wave

State Department (.5 TBytes)

25 million electronic diplomatic messages

Bush Administration (12 GBytes)

100 million email messages

Clinton Administration (6 TBytes)

400 million email messages

9/11 Commission (1.2 TBytes)

500 to 600GB emails, plus pdf, GIS, databases,
 etc.

Census Bureau (44 TBytes)

- 600 to 800 million image files (2000 census)

System Requirements

- Highly Available Search capability to satisfy the need of researchers and archivists community.
- Highly Scalable Search to adapt to huge digital record volume and user community growth.
- Extensible Search Framework to handle various types of digital records.
- Evolvable Search
 Framework to allow new search technologies be inserted.
- Secure Search to protect assets via role-based access.

Access Use Cases

- A public researcher:
 - Wants to search for a record by using a Googlelike keyword search.
 - Browses collections of records.
- An Agency Record Officer or NARA Records
 Processor searches for an existing Business Object
 e.g. Disposition Agreement, Transfer Request, Legal
 Transfer Instrument, etc. from which to create a new
 one or to update.
- A NARA Access Reviewer searches for a record under FOIA (Freedom of Information Act) request.

Agenda

- ERA Overview
- Access Requirements
- **Search Framework**
 - Search Technologies for ERA
 - Digital Asset Catalog and Topic Maps

Search Framework Components

- Search Portal:
 - Allows user to issue single search request
- Query Processor:
 - selector: acts as a mediator between the user and the search engine instances on each server.
 - convert request from common format to query input specific to each of the search engines.
- Result Set Processor:
 - aggregator: remove duplicate results
 - perform security filtering based on user roles and security metadata of result sets.
 - convert the results back into a common format
- Administration & Monitoring:
 - Control resources used by a search execution based on user profiles and service level agreements.

Search Framework Data Flow

Framework Benefits

- Address extensibility requirement:
 - Ability to plug-in new search services to support content search of non-textual digital objects: databases, GIS data, images, audio, and rich media.
- Address evolvability requirement:
 - replace or remove old search services.
 - adaptable to technology changes
 - selection of search engine products based on cost/performance
- Address scalability:
 - increase incrementally processor, memory, and storage resources by adding nodes.

Search Framework Deployment

Agenda

- ERA Overview
- Access Requirements
- Search Framework
- Search Technologies for ERA
 - Digital Asset Catalog and Topic Maps

Search Characteristics

- Performance Metrics
 - Precision: card (relevant results) / card (resultSet)
 - Recall: card (relevant results) / card (relevant Collection)
 - Example:
 - 100 relevant objects.
 - A query result yields 80 objects.
 - 60 out of 80 in result set are relevant.
 - Then: precision = 60/80 = 75%; recall = 60/100 = 60%.
 - Relevance: ultimate subjective judgment.
- Improvement strategies:
 - Data Query/Retrieval time.
 - Data Preparation
 - Ahead of time, e.g. at time of record ingestion.
 - Ad-hoc, i.e. whenever a user issued a search request.

Search Technologies

format strategy	Text	DB	Image	Audio	Video
Metadata	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Content	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
Context	√				

Metadata Search

- Data Preparation
 - Record lifecycle data aggregation during ingest phase.
 - Manual metadata creation usually applied at collection level.
 - Metadata extraction
 - Issues and challenges for each format or media type
- Data Query
 - Keyword: Google type search. Ex: "Thomas Jefferson".
 - Boolean. Ex: "Thomas Jefferson AND Declaration of Independence".
 - Fielded.
 - Parametric. Ex: "Immigration records from 1910 to 1930".
 - These types of retrieval also apply for text content search, after documents have been fully indexed.

Fielded Search

Content Search

- Data Preparation
 - Indexing challenges:
 - Large volume of digital archives
 - Obsolete data type format of digital assets transferred to the system
 - Text Analytics
 - Special modules can be plugged in using IBM's UIMA (Unstructured Information Management Architecture).
 - Use of Natural Language Processing.
 - Thesaurus.
 - Database records:
 - Search engine makes use of connectors to connect to database, and transfer queries.
 - Convert data into XML database, and use XPath, and Xquery.
- Data Retrieval
 - Facets: mutually exclusive containers that contain hierarchies of properties.
 - Ex: UC Berkeley Flamenco; Endeca with "Dimensions" for guided navigation.
 - Dynamic grouping of result sets into pre-configured categories. Ex: FAST.
 - On-the-fly concept abstraction from result sets and dynamic classification into those concept buckets. Ex: AlltheWeb.

Multimedia Content Search

- Data Preparation
 - Prevalent strategy is to translate into a text problem.
 - Audio: Speech-to-text conversion.
 - Image analysis: pattern recognition techniques.
 - Video:
 - combination of various techniques.
 - generate metadata from content analysis.
 - speech-to-text
 - transcript
 - speaker recognition
 - segmentation of a video stream, such as scene selections on a movie DVD.
 - On-screen text recognition.
 - Ex: Blinkx, Virage.
- Data Query
 - Input other than text: tone whispering, hand drawing, etc.
- Use Case: Video clips of Rose Garden ceremonies.

Context Search

- Data Preparation
 - Collect user profile, including interests and roles at registration time
 - Use Al learning agent principles to learn user search patterns
 - Data mining of Query log. Ex: obtain most frequently asked subjects for better guess of intent
 - Save search results for registered users.
- Data Retrieval
 - Query Augmentation:
 - Add context terms.
 - Ex: For Record Officer, ("EPA") → ("EPA", "Disposition Agreement").
 - Add ranking bias.
 - Ex: ("EPA") → ("EPA", ("Disposition Agreement", 7), ("Alaska", 3))
 - Refinement:
 - Search within a result set
 - Search within a category, facet, or concept.

Agenda

- ERA Overview
- Access Requirements
- Search Framework
- Search Technologies for ERA
- Digital Asset Catalog and Topic Maps

Digital Asset Catalog

- Each Digital Asset has an Asset Metadata.
- Digital Asset Catalog contains all the Asset Metadata, hence information of all assets in the system.
- Metadata search based on Catalog.
- Physically, a catalog entry is stored in an XML document.
- Conform to XML schema.

Digital Asset Catalog Schema

- ☐ Id: Unique & Persistent Identifier
- ☐ Summary Info: Information Collected throughout record lifecycle.
- ☐ Security Info: Access Restriction information, integrity seal.
- ☐ Extended Information:
 - o Bibliography
 - o Context
 - o Content
 - o Archival description
- ☐ Components: File attributes.
- ☐ Representation: e.g. transformations, versions.
- ☐ Relations: associations to other assets

Topic Maps

- The TAO of Topic Maps: A Topic Map is a representation of information based on Topics, Associations, and Occurrences.
- Topic:
 - Subject
 - Abstract concept
- Association
 - relationship between a set of topics.
 - roles involving topics in the relationship.
- Occurrence
 - Instance of a topic.
 - Information resource of a topic.
- Use Case:
 - User can browse topics.
 - Two alternative paths:
 - User can browse topics, then perform keyword search within a topic.
 - User can perform keyword search, then browse topics that group result sets.

$AC \rightarrow TM$

- Overlay of multiple TMs on AC.
- Precondition: Process Lifecycle Data and archival description services to populate catalog entries.
- Generate TM from catalog entries.
 - Elements in a catalog entry contain information to define topics, associations, and occurrences.
 - Content in era:SummaryInfo and era:ExtendedInfo could be extracted for forming different topics.
 - era:Representations → occurrences.
 - era:Relations → associations.
 - CatalogEntry.ID, which is a globally unique identifier, will serve to chase the relationships between asset catalog entries.

Generating Topic Maps

Archival Hierarchy-based TM

■ Archival Hierarchy information could be derived from the data element era:Relations and era:Components populated during ingest phase.

Lifecycle-based TM

■ During the record scheduling workflow process, lifecycle data from the business objects were captured in era:SummaryInfo, which could be the basis of generating the Lifecycle-based topic map.

Subject-based TM

■ The archival description contained in the data element era:ExtendedInfo could be used to generate this subject-based topic map.

Summary

- We have shown the requirements and challenges with respect to the access functionality of large digital archive system.
- An extensible and evolvable search framework was designed to handle the above challenges.
- Various search technologies have been investigated with the goal of providing good discovery service to end-users.
- Expect to be able to present presentation issues in the future;
 those issues are tightly related to long-term digital preservation.

Thank You

http://www.archives.gov/era mailto: dyung.le@nara.gov, quyen.nguyen@nara.gov