

Description

The VST25N140 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- $V_{DS} = 250V, I_{D} = 90A$ $R_{DS(ON)} < 15m\Omega @ V_{GS} = 10V$
- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- Optimized body diode reverse recovery performance

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST25N140-T7	VST25N140	TO-247	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	250	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	90	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100°C)	63.6	Α	
Pulsed Drain Current	I _{DM}	360	Α	
Maximum Power Dissipation	P _D	330	W	
Derating factor		2.2	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	1700	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	0.45	°C/W
---	-------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	250		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =250V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5		4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =45A	-	14	15	mΩ
Gate resistance	R _G		-	3.3	-	Ω
Forward Transconductance	g FS	V _{DS} =10V,I _D =45A	70	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =125V,V _{GS} =0V, F=1.0MHz	-	6595	-	PF
Output Capacitance	C _{oss}		-	409.5	-	PF
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	11	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V _{DD} =125V,I _D =45A	-	19.5	-	nS
Turn-on Rise Time	t _r		-	28	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	48	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	\/ -105\/ -45A	-	90.9		nC
Gate-Source Charge	Qgs	V_{DS} =125V, I_{D} =45A, V_{GS} =10V	-	40.4		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	18		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =90A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	90	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = 45A$	-	186		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	1.35		uC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance