Introduction to Parallel Computing

George Karypis

Analytical Modeling of Parallel

Algorithms

Sources of Overhead in Parallel Programs

- The total time spent by a parallel system is usually higher than that spent by a serial system to solve the same problem.
 - Overheads!
 - Interprocessor Communication & Interactions
 - Idling
 - Load imbalance, Synchronization, Serial components
 - Excess Computation
 - □ Sub-optimal serial algorithm
 - More aggregate computations
- Goal is to minimize these overheads!

Figure 5.1 The execution profile of a hypothetical parallel program executing on eight processing elements. Profile indicates times spent performing computation (both essential and excess), communication, and idling.

Performance Metrics

- Parallel Execution Time
 - Time spent to solve a problem on p processors.
 - *T*_p
- Total Overhead Function
 - \Box $T_o = pT_p T_s$
- Speedup
 - \Box $S = T_s/T_p$
 - ☐ Can we have superlinear speedup?
 - exploratory computations, hardware features
- Efficiency
 - \Box E = S/p
- Cost
 - \Box p T_p (processor-time product)
 - ☐ Cost-optimal formulation
- Working example: Adding n elements on n processors.

Effect of Granularity on Performance

- Scaling down the number of processors
- Achieving cost optimality
- Naïve emulations vs Intelligent scaling down
 - □ adding *n* elements on *p* processors

Scaling Down by Emulation

Figure 5.5 Four processing elements simulating 16 processing elements to compute the sum of 16 numbers (first two steps). Σ_i^j denotes the sum of numbers with consecutive labels from i to j.

M

Intelligent Scaling Down

Figure 5.6 A cost-optimal way of computing the sum of 16 numbers using four processing elements.

Scalability of a Parallel System

- The need to predict the performance of a parallel algorithm as p increases
- Characteristics of the T_o function
 - Linear on the number of processors
 - serial components
 - \square Dependence on T_s
 - usually sub-linear
- Efficiency drops as we increase the number of processors and keep the size of the problem fixed
- Efficiency increases as we increase the size of the problem and keep the number of processors fixed

Figure 5.9 Variation of efficiency: (a) as the number of processing elements is increased for a given problem size; and (b) as the problem size is increased for a given number of processing elements. The phenomenon illustrated in graph (b) is not common to all parallel systems.

Scalable Formulations

- A parallel formulation is called scalable if we can maintain the efficiency constant when increasing p by increasing the size of the problem
- Scalability and cost-optimality are related
- Which system is more scalable?

Table 5.1	Effic	Efficiency as a function of n and p for adding n numbers on p processing elements.							
		n	p = 1	p = 4	p = 8	p = 16	p = 32		
		64	1.0	0.80	0.57	0.33	0.17		
		192	1.0	0.92	$\theta.8\theta$	0.60	0.38		

0.87

0.91

0.71

0.80

0.50

0.62

0.95

0.97

Measuring Scalability

- What is the *problem size?*
- Isoefficiency function
 - measures the rate by which the problem size has to increase in relation to p
- Algorithms that require the problem size to grow at a lower rate are more scalable
- Isoefficiency and cost-optimality
- What is the best we can do in terms of isoefficiency?