K_a & K_b for Weak acids and Bases

Reminder: pH of SA's

 $[H_3O^+]$ =[acid] strong means 100% ionized

so, to find pH of 0.100 M HCl

$$[H_3O^+] = 0.100 \text{ M}$$

 $pH = 1.000$

For weak acids $[H_3O^+] \ll [acid]$

Eg.) What is pH of 0.10 M HF?

Look at equilibrium for Weak Acid HF

$$Keq = \underbrace{[H_3O^+][F^-]}_{[HF]} \qquad \text{for WA's Keq is called } \mathbf{K_a} \text{ (acid ionization constant)}$$

- see acid table for list of Ka's.

higher $Ka \rightarrow stronger$ acid lower $Ka \rightarrow weaker$ acid

For SA's (eg. HCl)
$$Ka = [H_3O^+][Cl]$$
 = called "very large!"
[HCl] Essentially **zero** molecular HCl

-Discuss Relative Strengths of Oxyacids

Calculations Using Ka (*Used for Weak Acids*)

[H₃O⁺] from Ka (pH from Ka)

1. [H₃O⁺] from Ka and Original concentration (Co)

eg.) Find the
$$[H_3O^+]$$
 in 0.10 M HF WA

1. Write out equilibrium equation for ionization

$$HF + H_2O \leftrightarrows H_3O^+ + F^-$$

~ Check assumption (we see that this is quite small compared to 0.10)

Do ex. 74 & 75 Pg. 152

1. First $[H_3O^+] = \sqrt{C_0Ka}$

Eg.) Find pH of 2.0 M acetic acid (Multiple Choice Question)

NOTE: Ions which act as acids can come from compounds.

```
Eg.) See table ~ ammonium ion NH_4^+ - can be found in NH_4NO_3, NH_4Cl, NH_4Br, etc.... ferric ( hexaaquoiron) Fe^{3+} ( Fe(H_2O)_6^{3+}) could be found in Fe(H_2O)_6Br_3 (also called FeBr_3) or Fe(H_2O)_6 (NO_3)<sub>3</sub> (also called Fe(NO_3)_3)
```

Aluminum (hexaaquoaluminum) Al³⁺ (Al(H₂O)₆³⁺) could be found in Al(H₂O)₆Cl₃ (also called AlCl₃)

Do ex. 79 & 81, Pg. 152

More Ka Calculations:

Ka from pH

NOTE: the pH is to 3 SD's so your final answer cannot have more than 3 SD's.

Eg.) a 0.350 M Solution of the weak acid HA has a pH of 1.620. Find the Ka of HA.

Now, you can see that the change in concentration [C] of $[H_3O^+]$ is $+2.399 \times 10^{-2} M$ and using the mole ratios (mole bridges) in the balanced equation, you can figure out the [C]'s for the A⁻ and the HA:

	-2.399 x 10 ⁻² M		$+ 2.399 \times 10^{-2}$	$M + 2.399 \times 10^{-2} M$
	HA	+ H ₂ O	\leftrightarrows H_3O^+	+ A -
[I]	0.350		0	0
[C]	- 2.399 x 10 ⁻²		+ 2.399 x 10 ⁻²	$+ 2.399 \times 10^{-2}$
[E]			2.399 x 10 ⁻²	

Now, we can figure out the equilibrium concentrations of HA and A⁻. There are no "x"s in the table so we don't need to make any assumptions. It is best to use your calculator to figure out the equilibrium [HA], because the [C] may or MAY NOT be insignificant. Using a calculator 0.350 –2.399 x 10⁻² = 0.32601. Don't round it off too much here. I would keep it in a memory in my calculator. BUT BECAUSE THE "0.350" IS 3 DECIMAL PLACES AND YOU ARE SUBTRACTING, THE [E] OF "HA" CANNOT HAVE MORE THAN 3 DECIMAL PLACES (although you should use 0.32601 in your calculator) JUST REMEMBER THAT IN THE NEXT CALCULATION, THE 3 DECIMAL PLACES IN THE ICE TABLE TRANSLATES TO 3 SD'S, SO YOUR FINAL ANSWER CANNOT HAVE MORE THAN 3 SD'S.

	$-2.399 \times 10^{-2} M$.399 x 10 ⁻²	+ 2.399 x 10 ⁻² l	M	
	HA	+ H ₂ O	≒	H_3O^+	+	A^{-}	
[I]	0.350			0		0	
[C]	- 2.399 x 10 ⁻²		+ 2.3	399 x 10 ⁻²	+	2.399 x 10 ⁻²	
[E]	0.326		2.3	99 x 10 ⁻²	2	2.399 x 10 ⁻²	-

3. Write Ka expression & substitute values.

Ka =
$$\frac{[H_3O^+][A^-]}{[HA]}$$
 = $\frac{(2.399 \times 10^{-2})^2}{0.326}$ = 1.7653 x 10⁻³ and expressing in 3SD's, the answer is:

$$Ka = 1.77 \times 10^{-3}$$

For those that want a short-cut for multiple choice:

Ka from $[H_3O^+]$:

Do Ex. 77 & 80 on p. 152 SW

To Calculate Co (conc. of acid needed) form pH & Ka

Eg. Find the concentration of HCOOH needed to form a solution with pH = 2.69

1. First change pH to [H₃O⁺]

$$[H_3O^+] = antilog (-pH)$$

$$=$$
 antilog (-2.69)

 $[H_3O^+] = 2.0417 \times 10^{-3} M$ (notice that the given pH limits us to 2SD's, but keep more in your calculations.)

2. Write out ionization equilibrium with an ICE TABLE. You can insert 2.0417 x 10^{-3} for equilibrium [H₃O⁺]. And since our **unknown** is the initial [HCOOH], we put in an "C₀" for the [I] of HCOOH:

	HCOOH +	- H ₂ O ±	H_3O^+	+ HCOO
[I]	C_{o}		0	0
[C]				
[E]			2.0417 x 10 ⁻³	

Now we can see that the change in concentration [C] of $[H_3O^+]$ is " + 2.0417 x 10^{-3} " and the [C] of HCOO will be the same. The [C] of HCOOH will be " - 2.0417 x 10^{-3} "

	HCOOH +	- H ₂ O ←	\rightarrow H_3O^+ -	+ HCOO
[I]	C_{o}		0	0
[C]	-2.0417×10^{-3}		$+ 2.0417 \times 10^{-3}$	$+ 2.0417 \times 10^{-3}$
[E]			2.0417 x 10 ⁻³	

We can now calculate the equilibrium concentrations [E] of HCOOH and HCOO.

	HCOOH +	H_2O	\rightarrow H_3O^+	+ HCOO
[I]	C _o		0	0
[C]	- 2.0417 x 10 ⁻³		$+ 2.0417 \times 10^{-3}$	$+ 2.0417 \times 10^{-3}$
[E]	$C_0 - 2.0417 \times 10^{-3}$		2.0417×10^{-3}	2.0417×10^{-3}

The next step will be to write the K_a expression and substitute the equilibrium concentrations in:

3. Write Ka expression. Substitute equilibrium concentrations in. Find Ka for HCOOH on the acid table:

$$Ka = [H_3O^+] [HCOO^-]$$

$$[HCOOH]$$
Find Ka on Acid
Table

$$1.8 \times 10^{-4} = \frac{(2.0417 \times 10^{-3})^2}{(\text{Co} - 2.0417 \times 10^{-3})}$$

Now we can solve for Co (the original concentration of the acid):

Co- 2.0417 x
$$10^{-3} = \frac{(2.0417 \times 10^{-3})^2}{1.8 \times 10^{-4}}$$

$$Co - 2.0417 \times 10^{-3} = 2.3159 \times 10^{-2}$$

$$Co = 2.3159 \times 10^{-2} + 2.0417 \times 10^{-3}$$

$$Co = 2.52 \times 10^{-2} M$$

 $Co = 2.5 \times 10^{-2} M \text{ or } 0.025 M \text{ (remember, we are restricted to 2 SD's)}$

Do Ex. 76 & 78 on p. 152 of SW.

Now For Bases

<u>Base ionization</u> $NH_3 \rightarrow very common weak base. It partially ionizes in water to form <math>NH_4^+$ and OH^- :

$$NH_{3(aq)} + H_2O_{(l)} \leftrightarrows NH_4^{+}{}_{(aq)} + OH_{(aq)}^{-}$$

Equilibrium constant – <u>called</u> base ionization constant (Kb)

$$NH_{3(aq)} + H_2O_{(l)} \leftrightarrows NH_{4(aq)}^+ + OH_{(aq)}^-$$

Kb expression:
$$Kb = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

NOTE: Ions can also act as a weak bases. The reaction of an <u>ion</u> with water to form OH⁻ is called <u>base hydrolysis</u>. Equilibrium constant is still called Kb.

Eg.) Hydrolysis of CN

Ionization of N₂H₄ (weak base)

Do Ex 32 on p. 128 of SW.

How to Find Kb using Acid Table

(not shown directly)

Derivation

- Look at hydrolysis of base
$$F^-$$
: $F^- + H_2O \leftrightarrows HF + OH^-$

$$Kb_{(F-)} = \underline{[HF][OH^-]}$$

- Look at ionization the weak acid HF: HF + H₂O \leftrightarrows H₃O⁺ + F

$$Ka_{(HF)} = \frac{[H_3O^+] [F]}{[HF]}$$

$$Ka_{[HF]} \ x \ Kb_{[F^-]} = \underbrace{[H_3O^+] \ [F^-]}_{[HF]} \quad x \ \underbrace{[HF] \ [OH^-]}_{[F^-]} = [H_3O^+] \ [OH^-] \ (\textit{notice that [HF] and [F^-] will cancel.})$$

or
$$\mathbf{K}\mathbf{a}_{(\mathbf{HF})} \times \mathbf{K}\mathbf{b}_{(\mathbf{F})} = \mathbf{K}\mathbf{w}$$

$$Ka_{(HF)} \times Kb_{(F)} = Kw$$

Or
$$Kb_{(F)} = Kw \overline{Ka_{(HF)}}$$

In general:

$$Kb_{(weak\ base)} = \frac{Kw}{Ka_{(it's\ conj.\ acid)}}$$

Using Acid Table:

- 1. Find base on *right* side (if amphiprotic -locate base on *right* side only)
- 2. It's conjugate acid will be across from it on the left side.
- 3. The Ka of it's conjugate acid is on the **far right** of the same line.
- 4. Use equation: $Kb_{(base)} = \frac{Kw}{Ka(conj. acid)}$

Eg.) Calculate the Kb for HCO₃⁻: (find HCO₃⁻ on **RIGHT** SIDE)

$$Kb(HCO_3^-) = Kw Ka(H_2CO_3) = 1.0 \times 10^{-14} = 2.3 \times 10^{-8}$$

Find Kb of SO₃²-

Similarly: If Kb (base) given

Ka (weak acid) =
$$\frac{Kw}{Kb(it's conj. Base)}$$

$$Ka_{(HB)} = \frac{Kw}{Kb_{(B_{0})}} = \frac{1.00 \times 10^{-14}}{2.73 \times 10^{-9}} = \frac{3.66 \times 10^{-6}}{2.73 \times 10^{-9}}$$

NOTES:

- Table only states Ka values. For questions like this Kb will have to be calculated if not given.
- ➤ All Ka's on table are 2 SD's—limits any calculation using them to 2 SD's maximum.
- The larger the Kb, the "stronger" the weak base the more OH produced.
- The smaller the Ka of an acid, the larger the Kb of its conjugate Base. (Weaker acids have stronger conjugate bases)

Calculations Involving Kb

Given: Find or find or find
$$[Base] \& Kb \rightarrow [OH] \rightarrow pOH \rightarrow pH$$

eg.) Find [OH-] in a 0.20 M solution of KNO₂ (this is a salt, so it must be dissociated into it's ions first)

2. Hydrolysis (if ion) or ionization (if molecule) equation followed by an ICE table:

	NO_2^-	+ H ₂ O	\rightarrow HNO ₂	+	OH^{-}
[I]	0.20		0		0
[C]					
[E]					

We can let "x" equal the moles/L of NO_2 which hydrolyze as the reaction reaches equilibrium. Using the mole ratios in the equation and calculating [E]'s we get:

	NO_2 +	H ₂ O ±	\rightarrow HNO ₂	+ OH
[I]	0.20		0	0
[C]	-X		+x	+x
[E]	0.20 - x		X	X

3. K_b Expression:

$$K_b = \underline{[HNO_2][OH]}$$
 at equilibrium $[NO_2]$

On the next page, we substitute the [E]'s into the Kb expression (Don't forget, we are in "baseland" not "acidland" now!)

 $[OH^-] = 2.1 \times 10^{-6} M$ Both the 0.20 M and the Ka used in calculating Kb limit us to 2 SD's.

NOTE: In many problems, finding [OH $^-$] is only the first step. Often you have to find the pH. Then you would use the process [OH $^-$] \rightarrow pOH \rightarrow pH

Kb From pH and Concentration

Eg.) At a certain temp, a 0.20 M solution of K₂SO₃ has a pH of 10.25. Calculate the Kb of SO₃²⁻ at this temp.

- 1. Identify SO_3^{2-} as a <u>weak base</u> (When K_2SO_3 is dissociated, it yields K^+ (a spectator) and SO_3^{2-})
- 2. $[OH^{-}]$ can be obtained from pH $(pH \rightarrow pOH \rightarrow [OH^{-}])$

pH =
$$10.25$$
 so pOH = $14.00 - 10.25 = 3.75$
[OH⁻] = antilog (-pOH) = antilog (-3.75) = $1.778 \times 10^{-4} M$

3. Write <u>hydrolysis</u> equation and an ICE table. (It is called *hydrolysis* this time because SO_3^{2-} is an <u>ion</u>.) We know the *initial* $[SO_3^{2-}]$ is 0.20M and the *equilibrium* $[OH^-]$ is 1.778 x 10^{-4} M:

	SO_3^{2-}	+ H ₂ O	≒	HSO_3^-	4	- OH
[I]	0.20			0		0
[C]						
[E]						1.778 x 10 ⁻⁴

So, from this, the change in conc. [C] of OH^- is "+ 1.778 x 10^{-4} " and using the coefficient ratios we can insert the [C]'s for the other species and calculate the equilibrium concentrations [E]'s:

	SO_3^{2-}	+ H ₂ O €		+	OH^-
[I]	0.20		0		0
[C]	- 1.778 x 10 ⁻⁴		+ 1.778 x 10 ⁻⁴		+ 1.778 x 10 ⁻⁴
[E]	0.1998		1.778 x 10 ⁻⁴		1.778 x 10 ⁻⁴

4. Now we write the Kb expression and substitute the values from the [E]'s in our ICE table:

$$K_b = \underline{[HSO_3^-][OH^-]} = \underline{(1.778 \times 10^{-4})^2} = 1.5825 \times 10^{-7}$$

 $\underline{[SO_3^{2^-}]}$

We round it to 1.6×10^{-7} because the 0.20M and the pH given both had 2 SD's

So:

Kb of SO_3^{2-} at the temperature given is = 1.6 x 10^{-7}

$$\begin{split} & \underbrace{Short\ Cut}_{Kb} \ for\ Multiple\ Choice: \\ & Kb = \underbrace{ [OH^*]^2 }_{(C_O - [OH^*])} \\ & Like\ Weak\ acids: \\ & Ka = \underbrace{ [H_3O^+]^2 }_{(Co - [H_3O^+])} \end{split}$$

Rd. pg. 128 – 129 & 152-153 Do Ex. 84, 87, 88, & 89 on p. 153 of SW

- Do worksheet on Ka, Kb calculations