

Pesquisa Operacional

Professor Msc. Aparecido Vilela Junior

aparecido.vilela@unicesumar.edu.br

Exercícios - AMPL

Problema de Alocação de Disciplinas a Professores

Considere os Seguintes Dados:

- Número de turmas *N*
- Carga horária da turma i: a_i
- Número de Professores M
- Carga horária máxima admitida pelo professor j: β_j
- Conjunto de turmas que batem horário com a turma i: C_i

Exemplo: Se C_1 ={4,6} significa que as turmas 4 e 6 batem horário com a turma 1

- Satisfação do professor j em dar a disciplina $i:s_{ij}$

GRADUAÇÃO

Problema de Alocação de Disciplinas Jai Cesumar Professores

Considere as Seguintes exigências:

- Todas as turmas devem ser ministradas por um professor
- A Carga horária total atribuída a cada professor não pode ultrapassar a sua carga máxima
- Disciplinas que coincidam horários não podem ser atribuídas ao mesmo professor

Para modelar matematicamente este problema consideremos a seguinte variável binária

$$\mathbf{x}_{ij} = \int 1$$
 se a turma i for atribuída ao professor j 0 caso contrário

GRADUAÇÃO

Problema de Alocação de Disciplina Salcesumar Professores

- A representação do modelo matemático na linguagem AMPL, é bastante parecida com a representação algébrica

- Deve-se entrar com o conjunto de dados, os quais serão utilizados na resolução do modelo
- Exercício: formular esse problema em AMPL, construir um conjunto de dados e resolver utilizando o solver CPLEX;
- Na página www.ampl.com é possível encontrar algumas dicas

Problema de Alocação de Disciplinas acesumar Professores

Modelo Matemático

$$Maximizar \sum_{i=1}^{N} \sum_{j=1}^{M} s_{ij} x_{ij}$$

$$\begin{cases} \sum_{j=1}^{M} x_{ij} = 1 & i = 1,..., N \\ \sum_{j=1}^{N} a_{i} x_{ij} \leq \beta_{j} & j = 1,..., M \\ \\ \sum_{i=1}^{N} x_{kj} + x_{ij} \leq 1 & i = 1,..., N & j = 1,..., M \\ \\ x_{ij} \in \{0,1\} & i = 1,..., N & j = 1,..., M \end{cases}$$

Resolução - Arquivo de Modelo:

- set TURMAS;
- set PROFESSORES;

- param ch_turma {TURMAS} >= 0;
- param ch professor {PROFESSORES} >= 0;
- param conflito_turma {TURMAS,TURMAS} >=0;
- param satisfacao_prof {PROFESSORES,TURMAS}>= 0;

Resolução - Arquivo de Modelo:

GRADUAÇÃO

- var x {TURMAS,PROFESSORES} >=0;
- maximize satisfacao_total: sum {i in PROFESSORES,j in TURMAS}
 satisfacao_prof[i,j] * x[j,i];
- subject to restricao1 {j in TURMAS}:
- sum {i in PROFESSORES} x[j,i]=1;
- subject to restricao2 {i in PROFESSORES}:
- sum {j in TURMAS} x[j,i] * ch_turma[j] <= ch_professor[i];
- subject to restricao3 {i in PROFESSORES}:
- sum {j in TURMAS} sum{k in TURMAS} conflito_turma[j,k]*x[j,i]*x[k,i] = 0;

Resolução — Arquivo PATCesumar

- set TURMAS := PO, BD, ES, IA, CN, II, IU, GF, ET, GS, AA;
- set PROFESSORES := JUNIOR, VINICIUS, VANDER, INES, WESLEY, DANTE, CE LIA, VITORIA;

Resolução – Arquivo PATCesumar

GRADUAÇÃO

- param:
- ch_turma :=
- PO 10 # PESQUISA OPERACIONAL
- BD 6 # BANCO DE DADOS
- ES 4 # ENGENHARIA DE SOFTWARE
- IA 2 # INTELIGENCIA ARTIFICIAL
- CN 14 # COMPUTAÇÃO NATURAL
- II 2 # INTRODUCAO A INFORMATICA
- IU 2 # INTERFACE COM O USUARIO
- GF 4 # GRAFOS
- ET 4 # ESTAGIO DE TRABALHO DE CURSO
- GS 2 # GERENCIAMENTO DE SOFTWARE
- AA 6 # ANALISE DE ALGORITMOS
- ;

Resolução — Arquivo PATCesumar

- param:
- ch_professor :=
- JUNIOR 40
- VINICIUS 04
- VANDER 06
- INES 12
- WESLEY 08
- DANTE 08
- CELIA 06

Resolução — Arquivo Pat^{Cesumar}

- param conflito_turma:
- PO BD ES IA CN II IU GF ET GS AA :=
- PO
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
- BD 1 0 0 0 0 0 1 0 0 0 1
- ES 0000000010
- IA 00000000000
- CN 0 0 0 1 0 0 0 1 1 0 0
- II 0 0 1 0 0 0 0 1 0 0 0
- IU 0 1 0 0 0 0 0 0 0 1
- GF 00001100100
- ET 00001001000
- GS 0 0 1 0 0 0 0 0 0 0
- AA
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Resolução — Arquivo Pat^{Cesumar}

- param satisfacao_prof:
- PO BD ES IA CN II IU GF ET GS AA :=
- JUNIOR 10 9 3 7 6 4 8 2 0 0 5
- VINICIUS 2 10 0 0 0 7 7 0 0 0 0
- VANDER 8 8 0 6 8 4 4 5 5 5 0
- INES 1 4 0 10 8 6 5 6 4 4 0
- WESLEY
 2
 1
 8
 0
 3
 3
 0
 0
 8
- DANTE 4 0 7 0 0 1 0 0 0 0 10
- CELIA
 3
 0
 6
 5
 2
 2
 10
 10
 9
 0
- VITORIA 6 7 4 3 2 0 1 5 9 10 9;