Assignment-1 4th Sem CSE Discrete Mathematical Structures

Ques 1. Define

- 1. Propositional connectives
- 2. Tautologies and Contradiction.
- 3. Valid Argument
- 4. Boolean Algebra

Ques 2. Prove that the following proposition are tautology:

1.
$$(p \Leftrightarrow q) \Leftrightarrow (p \Rightarrow q) \land (q \Rightarrow p)$$

2.
$$(p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r)$$

$$\beta$$
. $\sim (p \land q) \lor q$

Ques 3. Express the Boolean function $f(a,b,c) = [(a+b)' + (a' \cdot c)]'$ in disjunctive normal form and conjunctive normal form.

Ques 4. For the following function, draw a switching circuit and also give a simpler switching circuit:

$$x.y' + x.y$$

Ques 5. For the following function, draw a switching circuit and also give a simpler switching circuit:

$$f(x, y, z) = x.y.z + x.y'.z + x'.y'.z$$

Ques 6. Show that

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}, \ n \ge 1$$

by mathematical induction.

Ques 7. Show that among 1000 people, there are at least 84 people who are born in the same month

Ques 8. Calculate the number of positive integers less than 500, which are divisible by 3,5, or 7.

Ques 9. Solve the recurrence relation $a_n - 10a_{n-1} + 25a_{n-2} = 8 \cdot 5^n$

Ques 10. Solve by the method of generating functions the recurrence relation $a_r - 4a_{r-1} - 5a_{r-2} = 3$, $r \ge 2$ with boundary conditions $a_0 = 3$ & $a_1 = 5$.