Announcement

- Course project
 - 3~5 per team
 - Group registration: https://wj.qq.com/s2/7551413/2fd0/
 - Due on Nov 30

Project

Proposal presentation

- 6min presentation: topic, motivation, possible methods
- Dec. 14, 16, in class
- Presentation schedule will be sent out later

Project evaluation criteria

- Novelty, soundness and depth
- Relevance to this course
- Quality of report and presentation

Supervised Machine Learning

AIMA Chapter 18, 20

Machine Learning

- Up until now: how use a model to make optimal decisions
- Machine learning: how to acquire a model from data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)
- Related courses
 - SI151 Optimization and Machine Learning
 - CS282 Machine Learning
 - CS280 Deep Learning

Types of Learning

Supervised learning

- Training data includes desired outputs
- Unsupervised learning
 - Training data does not include desired outputs
- Semi-supervised learning
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised learning

- To learn an unknown target function f
- Input: a training set of labeled examples (x_j, y_j) where $y_i = f(x_i)$
- Output: hypothesis h that is "close" to f

- Types of supervised learning
 - Classification = learning f with discrete output value
 - Regression = learning f with real-valued output value
 - Structured prediction = learning f with structured output

Classification

bit.ly/cs188lec27

Example: Spam Filter

Input: an email

Output: spam/ham

Setup:

- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails

Features: The attributes used to make the ham / spam decision

Words: FREE!

Text Patterns: \$dd, CAPS

Non-text: SenderInContacts

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9

0

,

_

- Setup:
 - Get a large collection of example images, each labeled with a digit
 - Note: someone has to hand label all this data!
 - Want to learn to predict labels of new, future digit images

L

4

- Features: The attributes used to make the digit decision
 - Pixels: (6,8)=ON
 - Shape Patterns: NumComponents, AspectRatio, NumLoops
 - **...**

Other Classification Tasks

Classification: given inputs x, predict labels (classes) y

Examples:

- Spam detection (input: document, classes: spam / ham)
- OCR (input: images, classes: characters)
- Medical diagnosis (input: symptoms, classes: diseases)
- Automatic essay grading (input: document, classes: grades)
- Fraud detection (input: account activity, classes: fraud / no fraud)
- Customer service email routing
- ... many more

Classification is an important commercial technology!

Model-Based Classification

Model-Based Classification

Model-based approach

- Build a model (e.g. Bayes' net) where both the label and features are random variables
- Instantiate any observed features
- Query for the distribution of the label conditioned on the features

Challenges

- What structure should the BN have?
- How should we learn its parameters?

Naïve Bayes for Digits

- Naïve Bayes: Assume all features are independent effects of the label
- Simple digit recognition version:
 - One feature (variable) F_{ii} for each grid position <i,j>
 - Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.

- Here: lots of features, each is binary valued
- Naïve Bayes model: $P(Y|F_{0,0}\dots F_{15,15})\propto P(Y)\prod_{i,j}P(F_{i,j}|Y)$
- What do we need to learn?

General Naïve Bayes

A general Naive Bayes model:

$$P(Y, F_1 ... F_n) = P(Y) \prod_i P(F_i|Y)$$

$$|Y| \times |F|^n \text{ values} \qquad \text{n x } |F| \times |Y| \text{ parameters}$$

- We only have to specify how each feature depends on the class
- Total number of parameters is *linear* in n
- Model is very simplistic, but often works anyway

Inference for Naïve Bayes

- Goal: compute posterior distribution over label variable Y
 - Step 1: get joint probability of label and evidence for each label

- Step 2: sum to get probability of evidence
- Step 3: normalize by dividing Step 1 by Step 2

$$P(Y|f_1 \dots f_n)$$

General Naïve Bayes

- What do we need in order to use Naïve Bayes?
 - Inference method (we just saw this part)
 - Start with a bunch of probabilities: P(Y) and the P(F_i|Y) tables
 - Use standard inference to compute $P(Y|F_1...F_n)$
 - Nothing new here
 - Estimates of local conditional probability tables
 - P(Y), the prior over labels
 - P(F_i|Y) for each feature (evidence variable)
 - lacktriangle These probabilities are collectively called the *parameters* of the model and denoted by $oldsymbol{ heta}$
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data counts: we'll look at this soon

Example: Conditional Probabilities

A Spam Filter

Dear Sir.

Naïve Bayes spam filter

Data:

- Collection of emails, labeled spam or ham
- Note: someone has to hand label all this data!
- Split into training, held-out, test sets

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret....

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Classifiers

- Learn on the training set
- (Tune it on a held-out set)
- Test it on new emails

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Naïve Bayes for Text

Bag-of-words Naïve Bayes:

how many variables are there? how many values?

- Features: W_i is the word at positon i
- As before: predict label conditioned on feature variables (spam vs. ham)
- As before: assume features are conditionally independent given label
- New: each W_i is identically distributed

Word at position i, not ith word in the dictionary!

- Generative model: $P(Y, W_1 ... W_n) = P(Y) \prod P(W_i|Y)$
- "Tied" distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution P(F|Y)
 - In a bag-of-words model
 - Each position is identically distribute

 - All positions share the same condition
- in is lecture lecture next over person remember room sitting the the to to up wake when you

- Why make this assumption?
- Called "bag-of-words" because model is insensitive to word order or reordering

Example: Spam Filtering

- Model: $P(Y, W_1 \dots W_n) = P(Y) \prod_i P(W_i|Y)$
- What are the parameters?

P(Y)

ham: 0.66 spam: 0.33

P(W|spam)

the: 0.0156
to: 0.0153
and: 0.0115
of: 0.0095
you: 0.0093
a: 0.0086
with: 0.0080
from: 0.0075

$P(W|\mathsf{ham})$

the: 0.0210
to: 0.0133
of: 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and: 0.0105
a: 0.0100

Where do these tables come from?

Spam Example

D(V)
P(Y)
$P(W_1 Y)$
$P(W_2 Y)$
<u> </u>
:
:
<u> </u>
•
•
•
=

Word	P(w spam)	P(w ham)	Tot Spam	Tot Ham
(prior)	0.33333	0.66666	-1.1	-0.4

Training and Testing

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never "peek" at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - Underfitting: fits the training set poorly

Training Data

Held-Out Data

> Test Data

Underfitting and Overfitting

Overfitting

Example: Overfitting

$$P(\text{features}, C = 2)$$

$$P(C = 2) = 0.1$$

$$P(\text{on}|C=2) = 0.8$$

P(on|C=2) = 0.1

P(off|C=2) = 0.1

 $P(\mathsf{on}|C=2) = 0.01$

$$P(C = 3) = 0.1$$

$$P(\text{on}|C=3)=0.8$$

$$P(\text{on}|C=3)=0.9$$

$$P(\text{off}|C=3) = 0.7$$

$$-P(\text{on}|C=3)=0.0$$

2 wins!!

Example: Overfitting

Posteriors determined by relative probabilities (odds ratios):

$$\frac{P(W|\mathsf{ham})}{P(W|\mathsf{spam})}$$

south-west : inf
nation : inf
morally : inf
nicely : inf
extent : inf
seriously : inf

$$\frac{P(W|\text{spam})}{P(W|\text{ham})}$$

```
screens : inf
minute : inf
guaranteed : inf
$205.00 : inf
delivery : inf
signature : inf
```


Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn't mean we won't see it at test time
 - Unlikely that every occurrence of "minute" is 100% spam
 - Unlikely that every occurrence of "seriously" is 100% ham
 - What about all the words that don't occur in the training set at all?
 - In general, we can't go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn't generalize at all
 - Just making the bag-of-words assumption gives us some generalization, but isn't enough
- To generalize better: we need to smooth or regularize the estimates

Parameter Estimation

Parameter Estimation

- Estimating the distribution of a random variable
- Elicitation: ask a human (why is this hard?)
- Empirically: use training data (learning!)
 - E.g.: for each outcome x, look at the *empirical rate* of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

$$P_{\rm ML}({\bf r}) = 2/3$$

This is the estimate that maximizes the likelihood of the data

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i) = \theta \cdot \theta \cdot (1-\theta)$$

$$P_{\theta}(x = \text{red}) = \theta$$

 $P_{\theta}(x = \text{blue}) = 1 - \theta$

Your First Consulting Job

- A billionaire tech entrepreneur asks you a question:
 - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - You say: Please flip it a few times:

- You say: The probability is:
 - P(H) = 3/5
- He says: Why???
- You say: Because...

Your First Consulting Job

• P(Heads) = θ , P(Tails) = $1-\theta$

- Flips are *i.i.d.*: $D = \{x_i | i = 1...n\}, P(D | \theta) = \prod_i P(x_i | \theta)$
 - Independent events
 - Identically distributed according to unknown distribution
- Sequence *D* of α_H Heads and α_T Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Maximum Likelihood Estimation

- **Data:** Observed set D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails
- Hypothesis space: Binomial distributions
- Learning: finding θ is an optimization problem
 - What's the objective function?

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• MLE: Choose θ to maximize probability of D

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \ln P(\mathcal{D} \mid \theta)$$

Maximum Likelihood Estimation

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero, and solve!

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right]$$

$$= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln (1 - \theta) \right]$$

$$= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln (1 - \theta)$$

$$= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \qquad \widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$