

BCSE0133 and BCSE0701

Linear Regression

Machine Learning Lab

DR GAURAV KUMAR ASST. PROF, CEA, GLA UNIVERSITY

Supervised Machine learning algorithms

Regression

• It is commonly used to make projections, such as for sales revenue for a given business, weather forecasting, stock price prediction and so on.

- It is used to understand the relationship between dependent and independent variables.
- Linear regression, logistical regression, and polynomial regression are popular regression algorithms.

Supervised Machine learning algorithms

Linear Regression

- It is used to estimate real values (cost of houses, number of calls, total sales etc.) based on continuous variable(s).
- We establish the relationship between independent and dependent variables by fitting a best line.

Supervised Machine learning algorithms

Linear Regression

Example- House Prediction

- A list of houses with size and price is given.
- Need to find best fit line to predict the price. This best fit line is known as regression line and represented by a linear equation Y= a *X + b.

In this equation:

- Y Dependent Variable (Predicted Price of House)
- a Slope
- X Independent variable (Size of House (Predictor))
- b Intercept

These coefficients a and b are derived based on minimizing the sum of squared difference of distance between data points and regression line.

1. Download and read the data set

It has 2 columns — "Years of Experience" and "Salary" for 30 employees in a company. So in this example, we will train a Simple Linear Regression model to learn the correlation between the number of years of experience of each employee and their respective salary.

```
import pandas as pd
dataset = pd.read_csv('Salary_Data.csv')
```


YearsExperience	Salary
1.1	39343.00
1.3	46205.00
1.5	37731.00
2.0	43525.00
2.2	39891.00
2.9	56642.00
3.0	60150.00
3.2	54445.00
3.2	64445.00
3.7	57189.00
3.9	63218.00
4.0	55794.00
4.0	56957.00
4.1	57081.00
4.5	61111.00
4.9	67938.00
5.1	66029.00
5.3	83088.00
5.9	81363.00
6.0	93940.00
6.8	91738.00

2. Visualize the data set


```
#Visualize the dataset
plt.scatter(dataset['Experiences'], dataset['Salary'], color='red')

plt.title("linear Regression Salary Vs Experience")
plt.xlabel("Years of Employee")
plt.ylabel("Salaries of Employee")
plt.show()
```

Experiences	Salary
1.1	39343.00
1.3	46205.00
1.5	37731.00
2.0	43525.00
2.2	39891.00
2.9	56642.00
3.0	60150.00
3.2	54445.00
3.2	64445.00
3.7	57189.00
3.9	63218.00
4.0	55794.00
4.0	56957.00
4.1	57081.00
4.5	61111.00
4.9	67938.00
5.1	66029.00
5.3	83088.00
5.9	81363.00
6.0	93940.00
6.8	91738.00

3. Divide the dataset

Categorized dataset into Independent and Dependent variable

X = dataset.iloc[:, :-1].values

OR

X = dataset.iloc[:, 0].values

OR

X = dataset.iloc[:, [0]].values

OR

X = dataset[Experience].values

y = dataset.iloc[:,1].values

Independent Variable

Dependent Variable

•	, , , , , , , , , , , , , , , , , , ,
Experience	Salary
1.1	39343.00
1.3	46205.00
1.5	37731.00
2.0	43525.00
2.2	39891.00
2.9	56642.00
3.0	60150.00
3.2	54445.00
3.2	64445.00
3.7	57189.00
3.9	63218.00
4.0	55794.00
4.0	56957.00
4.1	57081.00
4.5	61111.00
4.9	67938.00
5.1	66029.00
5.3	83088.00
5.9	81363.00
6.0	93940.00
6.8	91738.00

4. Training and Testing (Splitting again)

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=0)
X train
X_train.shape
X test
X_test.shape
y train
y_train.shape
y_test
y_test.shape
Also Calculate Shape and Size
```

- With random_state=None , we get different train and test sets across different executions and the shuffling process is out of control. i.e., every time you run your code again, it will generate a different test set.
- With random_state=0 , (or 42) we get the same train and test sets across different executions.

5. Apply Linear Regression Model

```
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train,y_train)

#for predict the test values
y_prdict=reg.predict(X_test)
```

Note- If reg.fit shows error, then convert X_train 1-D data into 2-D Array using reshape(-1,1) Use this X_train=X_train.shape(-1,1) then execute reg.fit

6. Analyzing the Results

Understand the result, Print Actual and Predicted Values

```
X_test
y_test
y_prdict

diff_pred= y_test - y_prdcit
```


6. Analyzing the Results

res_df = pd.concat([pd.Series(y_pred),pd.Series(y_test), pd.Series(diff_pred)], axis=1)

res df.columns=['Prediction','Original Data','Diff']

Axis=1 indicates column

Axis=0 indicates row

Use Flatten() to convert 2D array into 1D array

y_pred=y_pred.flatten()

7. Visualize the Training data

```
plt.scatter(X_train, y_train,color='red')
plt.plot(X_train, reg.predict(X_train), color='blue')
plt.title("Training of linear Regression Salary Vs Experience")
plt.xlabel("Years of Employee")
plt.ylabel("Salaries of Employee")
plt.show()
```


8. Visualize the Testing data

```
plt.scatter(X_test, y_test, color='red')
plt.plot(X_train, reg.predict(X_train), color='blue')
plt.title("Linear Regression Salary Vs Experience")
plt.xlabel("Years of Employee")
plt.ylabel("Salaries of Employee")
plt.show()
```


Root Mean Squared Error (RMSE) — The square root of average of the squares of the difference between the true values and the predicted values.

- The basic idea is to measure how bad/erroneous the model's predictions are when compared to actual observed values. So a high RMSE is "bad" and a low RMSE is "good".
- The lower the difference the better the performance of the model. This is a common metric used for regression analysis.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

9. Model Evaluation

Explained Variance Score — A measurement to examine how well a model can handle the variation of values in the dataset. Or

Explained variance (also called explained variation) is used to measure the discrepancy between a model (predicted value) and actual data (test value).

The explained variance score explains the dispersion of errors of a given dataset. A score of 1.0 is the perfect score.

$$explained\ variance(y, \hat{y}) = 1 - \frac{Var(y - \hat{y})}{Var(y)}$$

9. Model Evaluation

 R^2 Score (R Squared Value, also called goodness-of-fit measure) — A measurement to examine how well our model can predict values based on the test set (unknown samples). (Percentage of the dependent variable variation that a linear model explains) The perfect score is 1.0. More than 70% score is good.

The R-squared value = 15%

The R-squared value = 85%

9. Model Evaluation

```
import sklearn.metrics as sm
import numpy as np
print("Root Mean squared error =", round(np.sqrt(sm.mean_squared_error(y_test, y_prdict)), 2))
print("Explain variance score =", round(sm.explained_variance_score(y_test, y_prdict), 2))
print("R2 score =", round(sm.r2_score(y_test, y_prdict), 2))

Root Mean squared error = 4834.26
Explain variance score = 0.98
R2 score = 0.97
```

10. Salary Prediction

```
new_salary_pred = reg.predict([[15]])
print (new_salary_pred)
```


Exploring the Different Variations Assignment

- 1. Changing the Testing Size
- 2. Increasing and Decreasing the Size of Data Set

Analyze the results of different possible scenario you can think of

THANKYOU

gaurav.kumar@gla.ac.in

