Regression Assignment - 3

February 22, 2024

[]: """Q1. What is Ridge Regression, and how does it differ from ordinary least $_{\sqcup}$ $_{\hookrightarrow}$ squares regression?

Ans: Ridge Regression is a type of linear regression that adds a penalty \hookrightarrow term to the ordinary least squares regression.

This penalty term shrinks the coefficients of the regression model, $_{\!\!\!\perp}$ -reducing the impact of less important predictors and improving model $_{\!\!\!\perp}$ -performance

in situations where there are many predictors.

[]: """Q2. What are the assumptions of Ridge Regression?

11 11 11

Ans: Ridge regression assumes that the relationship between the dependent \neg variable and independent variables is linear, and that the errors are \neg normally distributed

[]: """Q3. How do you select the value of the tuning parameter (lambda) in Ridge_□ ⇔Regression?

Ans: The value of the tuning parameter (lambda) in Ridge Regression is typically chosen using cross-validation. The data is split into several typically subsets,

and the model is trained on each subset while being evaluated on the \neg remaining data. The value of lambda that results in the best overall \neg performance is chosen.

[]: """Q4. Can Ridge Regression be used for feature selection? If yes, how?

Ans: Ridge regression can't perform feature selection, unlike Lasso $_{\sqcup}$ \neg regression. Ridge regression shrinks the coefficients of all variables $_{\sqcup}$ \neg towards zero,

but it doesn't set any coefficients to exactly zero. Thus, all $_{\sqcup}$ $_{\neg}variables$ contribute to the model to some extent, and Ridge regression is $_{\sqcup}$ $_{\neg}used$ when

all variables are thought to be important.

11 11 11

[]: """Q5. How does the Ridge Regression model perform in the presence of \Box \Box multicollinearity?

Ans: Ridge regression is designed to handle multicollinearity, which is a \Box \Rightarrow situation where two or more independent variables are highly correlated with \Box \Rightarrow each other.

The Ridge regression model adds a penalty term to the loss function, \sqcup \neg which shrinks the regression coefficients towards zero.

This helps to reduce the impact of multicollinearity on the model's $_{\!\!\!\!\perp}$ -performance.

n n n

[]: """Q6. Can Ridge Regression handle both categorical and continuous independent over a variables?

Ans: Yes, Ridge Regression can handle both categorical and continuous \cup independent variables. In Ridge Regression, all variables are treated \cup \cup equally,

and the regularization penalty is applied to all variables regardless \hookrightarrow of their type. Therefore, the model can handle a mix of categorical and \hookrightarrow continuous variables.

,,,,,,

[]: """Q7. How do you interpret the coefficients of Ridge Regression?

Ans: The coefficients of Ridge Regression represent the change in the $_{\sqcup}$ $_{\dashv}$ dependent variable for each unit change in the independent variable while $_{\sqcup}$ $_{\dashv}$ controlling

for other variables. However, unlike in linear regression, the \Box coefficients in Ridge Regression are shrunk towards zero to reduce \Box coverfitting.

Thus, the magnitude of the coefficients should be interpreted in \Box relation to the value of the regularization parameter used in the model.

[]: """Q8. Can Ridge Regression be used for time-series data analysis? If yes, how?

Ans: Yes, Ridge Regression can be used for time-series data analysis. It $_{\sqcup}$ $_{\to}$ can be used to reduce the effects of multicollinearity and improve the $_{\sqcup}$ $_{\to}$ accuracy of predictions.

n n n