MXenes as Photocatalytic Materials for Water Splitting

Diego Ontiveros, Carme Sousa, Francesc Viñes

Institut de Química Teòrica i Computacional (IQTCUB), Departament de Ciència de Materials i Química Física, Universitat de Barcelona.

Need for green fuels

Hydrogen (H₂)

Modify and design the bandgap of by varying

CBM

VBM

M = Transition Metal (Groups III - VI) $X = C \text{ or } N \quad n = 1-3$ T = Termination (p-block: O, F, OH, H, S, Cl)

 H_2 %

Semiconductors when adding a termination.^[2] Good candidates for photocatalysing the water splitting process and produce clean H₂.^[3]

 H^+/H_2

 O_2/H_2O

Sustainable source of H₂: Water Splitting $2 H_2O \rightarrow 2 H_2 + O_2$

Problem: Requires larges amounts of energy

Solution: Sunlight as energy source

Photocatalysis

TOOLS *

Computational Method: DFT Functional: PBE and PBE0 Structures: periodic slab models, considering two stackings (ABC and ABA) and three termination positions for each stacking (H_M/H,

 H_{MX} and H_{X})

OBJECTIVES Q

MXenes their composition (M, X, T), width (n), stacking and termination position, to find potential photoactive candidates for water splitting using solar light.

Density of States

- 6 different structures for each terminated MXene are considered (2376 in total).
- Group III and IV MXenes with $n = 1 \rightarrow large bandgaps$, in the visible region. The most promising cases for being photoactive materials with sunlight.
- C-MXenes → more semiconducting cases and larger bandgaps than N-MXenes.
- Pristine MXenes \rightarrow metallic properties (not photoactive).

 H_2O

MXenes $n = 2, 3 \rightarrow$ Increasing the amount of "bulk" tends to make them metallic.

X Band Alignment

- The band alignment with respect to the half-reaction potentials has been studied for the most promising photoactive cases ($E_g > 1.23 \text{ eV}$).
- The ideal cases will be those that, in addition to having a suitable band alignment, are the most stable structure among the six considered.
- Several structures from Groups III and IV exhibit correct alignments.
- The cases of Zr₂CO₂, Sc₂CCl₂, Y₂CCl₂, Sc₂CS₂, and Y₂CS₂ fulfill these optimal conditions, which allows us to propose them as potential candidates for the photocatalytic water splitting.
- These systems exhibit an indirect bandgap and a significant charge density separation between the valence band maximum and conduction band minimum (VBM and CBM), promoting the separation of generated charges.

Conduction Band Bandgap 2.26 eV 2.48 eV 2.44 eV 3.23 eV 3.42 eV H_2O Valence Band Zr_2CO_2 Sc₂CCl₂ Y₂CCl₂ Sc₂CS₂ Y_2CS_2

CONCLUSIONS \

Based on DFT calculations, MXenes with n = 1, X = C, M = Groups III and IV,and T = O, S, Cl, especially Zr_2CO_2 , Sc_2CCl_2 , Y_2CCl_2 , Sc_2CS_2 , and Y_2CS_2 , exhibit a visible range bandgap, optimal for solar light absorption, and band edges that exceed the half-reaction potentials of water splitting, suitable for photocatalysing the process and generating green H₂.

REFERENCES

[2] Adv. Funct. Mater. 2013, 23, 2185–2192. [3] J. Mater. Chem. A 2016, 4, 11446–11452.

