ÖVEGES JÓZSEF Fizikaverseny 2017. április 8. III. forduló

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VIII. osztály

I. feladat

Az ábrán látható áramkör a-b kapcsai közé $U_0 = 1,5$ V feszültséget kapcsolunk, a c-d kapcsok közé pedig egy ampermérőt kötünk be, mely I = 60 mA áramerősséget jelez. Ha az ampermérőt egy voltmérővel cseréljük ki, ez U = 1 V feszültséget mutat. Ha most a c-d kapcsokon $U_0 = 1,5$ V feszültséget biztosítunk, az a-b kapcsokra kötött voltmérő U = 1 V feszültséget jelez. Határozd meg az R_1 , R_2 és R_3 ellenállásokat. A mérőeszközöket ideálisak.

10 p

II. feladat

Egy vízzel teli edényben egy olyan jégdarab úszik, aminek belsejében egy ólomgolyó található. A jég tömege m_j , az ólomgolyóé pedig m, a rendszer hőmérséklete 0°C. Mekkora az a legkisebb, rendszernek leadandó hő, aminek hatására a golyó kezd alámerülni/süllyedni? Ismertnek tekintjük: ρ_{viz} , $\rho_{\text{jég}}$, ρ_{Pb} , $\lambda_{\text{jég}}$

10 p

III. feladat

Adott két kocka alakú test, amelyek sűrűsége $\rho_1 = 800 \ kg/m^3$ és $\rho_2 = 850 \ kg/m^3$ és mindkettő oldalhossza L = 1 m.

- a) Számítsd ki, hogy a testek térfogatának hányad része kerül víz alá, ha külön-külön bemerítjük őket.
- b) Egymásra helyezzük a két testet. Számítsuk ki, hogy a testek együttes térfogatának hányad része kerül víz alá. (Vizsgáld mindkét esetet és vond le a következtetést!)

 3 p

2 p

c) A két testet A és B támasztékokkal szereljük fel, amelyek d=3 m távolságra vannak egymástól. A támasztékokra egy elhanyagolható tömegű deszkát teszünk. Az A-tól milyen távolságra kell állnia egy m=100 kg tömegű embernek ahhoz, hogy a deszka vízszintes helyzetben legyen. 5 p Ismert: $\rho_{\text{viz}} = 1000 \ kg/m^3$.