

Description

The VST08N050 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =85V, I_{D} =115A $R_{DS(ON)}$ <5.7mΩ @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST08N050-T3	VST08N050	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	85	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	115	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	81.3	А	
Pulsed Drain Current	I _{DM}	420	А	
Maximum Power Dissipation	P _D	157	W	
Derating factor		1.05	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	726	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.96	°C/W	
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	60	°C/W	

Electrical Characteristics (T_C=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	85		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	2.9	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =55A	-	5.0	5.7	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =55A	-	47	-	S
Dynamic Characteristics (Note4)						•
Input Capacitance	C _{lss}	V _{DS} =40V,V _{GS} =0V,	-	3841	-	PF
Output Capacitance	Coss		-	651.7	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	32.7	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =40V, I_{D} =55A V_{GS} =10V, R_{G} =3 Ω	-	15.6	-	nS
Turn-on Rise Time	t _r		-	32.7	-	nS
Turn-Off Delay Time	t _{d(off)}		-	24.2	-	nS
Turn-Off Fall Time	t _f		-	15.1	-	nS
Total Gate Charge	Qg	V _{DS} =40V,I _D =55A, V _{GS} =10V	-	59.4		nC
Gate-Source Charge	Q _{gs}		-	16.5		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	12.3		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =115A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	115	А
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = 55$	-	64.3		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	152.7		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation PDSM is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}\,\text{,V}_\text{DD}\text{=}42.5\text{V},\text{V}_\text{G}\text{=}10\text{V},\text{L=}0.5\text{mH,Rg=}25\Omega$

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Rdson vs Vgs

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance