#### Statistical Analysis in Fin Mkts

MSF 502

Li Cai

# Estimation Chapter

#### Chapter 8 Learning Objectives (LOs)

- LO 8.1: Discuss point estimators and their desirable properties.
- LO 8.2: Explain an interval estimator.
- LO 8.3: Calculate a confidence interval for the population mean when the population standard deviation is known.
- LO 8.4: Describe the factors that influence the width of a confidence interval.
- LO 8.5: Discuss features of the t distribution.
- LO 8.6: Calculate a confidence interval for the population mean when the population standard deviation is not known.
- LO 8.7: Calculate a confidence interval for the population proportion.
- LO 8.8: Select a sample size to estimate the population mean and the population proportion.

#### Fuel Usage of "Ultra-Green"

- A car manufacturer advertises that its new "ultra-green" car obtains an average of 100 mpg and, based on its fuel emissions, has earned an A+ rating from the Environmental Protection Agency.
- Pinnacle Research, an independent consumer advocacy firm, obtains a sample of 25 cars for testing purposes.
- Each car is driven the same distance in identical conditions in order to obtain the car's mpg.

#### Fuel Usage of "Ultra-Green"

• The mpg for each Green" car is given

| _     | 1 ) |     |    |     |     |
|-------|-----|-----|----|-----|-----|
| below | 97  | 117 | 93 | 79  | 97  |
|       | 87  | 78  | 83 | 94  | 96  |
|       | 102 | 98  | 82 | 96  | 113 |
|       | 113 | 111 | 90 | 101 | 99  |
|       | 112 | 89  | 92 | 96  | 98  |

- Jared would like to use the data in this sample to:
  - Estimate with 90% confidence
    - The mean mpg of all ultra-green cars.
    - The proportion of all ultra-green cars that obtain over 100 mpg.
  - Determine the sample size needed to achieve a specified level of precision in the mean and

#### 8.1 Point Estimators and Their

#### LO 8.1 Discuss point estimators and their desirable

#### Point Estimator

- A function of the random sample used to make inferences about the value of an unknown population parameter.
- For example,  $\overline{X}$  is a point estimator for  $\mu$  and  $\overline{M}$  is a point estimator for p.

#### Point Estimate

- The value of the point estimator derived from a given sample.
- For example  $\bar{x} = 96.5$  is a point estimate of the mean mpg for all ultra-green cars.

### 8.1 Point Estimators and Their Properties

#### Example:

A statistics section at a large university has 100 students. The scores of 10 randomly selected final exams are:

| 66 | 72 | 40 | 85 | 75 | 90 | 92 | 60 | 82 | 38 |
|----|----|----|----|----|----|----|----|----|----|
|----|----|----|----|----|----|----|----|----|----|

Calculate the point estimate for the population mean.

**SOLUTION:** We calculate  $\bar{x} = \frac{66 + 72 + \cdots + 38}{10} = \frac{700}{10} = 70$ . Therefore, a score of 70 is a point estimate of the population mean.

#### 8.1 Point Estimators and Their

Properties Properties Properties

#### Unbiased

An estimator is unbiased if its expected value equals the unknown population parameter being estimated.

#### Efficient

An unbiased estimator is efficient if its standard error is lower than that of other unbiased estimators.

#### Consistent

An estimator is consistent if it approaches the unknown population parameter being estimated as the sample size grows larger.

### 8.1 Point Estimators and Their Properties

- Properties
  Properties of Point Estimators Illustrated:
  Unbiased Estimators
  - The distributions of *unbiased* ( $U_1$ ) and biased ( $U_2$ ) estimators.



### 8.1 Point Estimators and Their Properties

- Properties
  Properties of Point Estimators Illustrated:
  Efficient Estimators
  - The distributions of efficient  $(V_1)$  and less efficient  $(V_2)$  estimators.



### 8.1 Point Estimators and Their Properties

- Properties
  Properties of Point Estimators Illustrated:
  Consistent Estimator
  - The distribution of a *consistent* estimator  $\overline{X}$  for various sample sizes.



## o.z Connuence interval of the Population Mean When σ Is Known

LO 8.2 Explain an interval estimator.

- Confidence Interval—provides a range of values that, with a certain level of confidence, contains the population parameter of interest.
  - Also referred to as an interval estimate.
- Construct a confidence interval as: Point estimate ± Margin of error.
  - Margin of error accounts for the variability of the estimator and the desired confidence

level of the Linterval Lute of TECHNOLOGY

## o.z Confidence interval of the Population Mean When σ Is Known

LO 8.3 Calculate a confidence interval for the population mean when the population standard deviation is known.

- Constructing a Confidence Interval for μ
   When σ is Known
  - Consider a standard normal random



#### 8.2 Confidence Interval of the **Population** Mean When σ Is Known

- Constructing a Confidence Interval for µ When  $\sigma$  is Known

□ We get  $P\left(-1.96 \le \frac{X - \mu}{\sigma / \sqrt{n}} \le 1.96\right) = 0.95$ 

 Which, after algebraically manipulating, is equal to  $P(\mu - 1.96 \sigma / \sqrt{n} \le \bar{X} \le \mu + 1.96 \sigma / \sqrt{n}) = 0.95$ 



## 8.2 Confidence Interval of the Population Mean When $\sigma$ Is Known

- Constructing a Confidence Interval for μ
   When σ is Known
- □ Note that  $P(\mu-1.96\sigma/\sqrt{n} \le \bar{X} \le \mu+1.96\sigma/\sqrt{n}) = 0.95$ 
  - implies there is a 95% probability that the sample mean  $\overline{X}$  will fall within the interval  $\mu \pm 1.96 \sigma / \sqrt{n}$
  - Thus, if samples of size n are drawn repeatedly from a given population, 95% of the computed sample means, will fall within the interval and the remaining 5% will fall outside the interval.



Mean When σ Is Known

- Constructing a Confidence Interval for μ When σ is Known
- □ Since we do not know  $\mu$ , we cannot determine if a particular  $\overline{\chi}$  falls within the interval or not.
  - □ However, we do know tha  $\overline{t}$  will fall within the ir  $\mu \pm 1.96 \sigma / \sqrt{n}$  if and only if  $\mu$  falls within the interval  $\overline{x} \pm 1.96 \sigma / \sqrt{n}$ .
  - □ This will happen 95% of the time given the interval construction. Thus, this is a 95% confidence interval for the population

### 8.2 Confidence Interval of the Population

#### Mean When σ Is Known

- Constructing a Confidence Interval for μ When σ is Known
  - □ Level of significance (i.e., probability of error) =  $\alpha$ .
  - □ Confidence coefficient =  $(1 \alpha)$  $\alpha = 1$  – confidence coefficient
  - □ A 100(1- $\alpha$ )% confidence interval of the population mean  $\mu$  when the standard deviation  $\sigma$  is known is computed  $a^{\overline{x} \pm z_{\alpha/2} \sigma / \sqrt{n}}$ 
    - or equivalently  $\left[ \overline{x} z_{\alpha/2} \sigma / \sqrt{n}, \overline{x} + z_{\alpha/2} \sigma / \sqrt{n} \right]$



 $\alpha/2$ 

 $Z_{\alpha/2}$ 

Mean When σ Is Known

Constructing a Confidence Interval for μ
 When σ is Known

□  $z_{\alpha/2}$  is the z value associated with the probability of  $\alpha/2$  in the upper-tail.

$$\left[\overline{x}-z_{\alpha/2}\,\sigma/\sqrt{n}\,,\overline{x}+z_{\alpha/2}\,\sigma/\sqrt{n}\,\right]$$

#### Confidence Intervals:

**90%**, 
$$\alpha$$
 = **0.10**,  $\alpha$ /2 = **0.05**,  $z_{\alpha/2}$  =  $z_{.05}$  = **1.645**.

■ 95%, 
$$\alpha$$
 = 0.05,  $\alpha$ /2 = 0.025,  $z_{\alpha/2}$  =  $z_{.025}$  = 1.96.

99%, 
$$\alpha$$
 = 0.01,  $\alpha$ /2 = 0.005,  $z_{\alpha/2}$  =  $z_{.005}$  = 2.575.



Mean When σ Is Known

- Example: Constructing a Confidence Interval for μ When σ is Known
  - A sample of 25 cereal boxes of Granola
     Crunch, a generic brand of cereal, yields a mean weight of 1.02 pounds of cereal per box.
  - Construct a 95% confidence interval of the mean weight of all cereal boxes.
  - Assume that the weight is normally distributed with a population standard deviation of 0.03 pounds.

#### Mean When σ Is Known

- Constructing a Confidence Interval for μ When σ is Known
  - □ This is what we know  $\bar{x} = 25$ ,  $\bar{x} = 1.02$  pounds

$$\alpha = (1 - .95) = .05, \ z_{\alpha/2} = 1.96$$
 $\sigma = 0.03$ 

Substituting these values, we get

$$\overline{x} \pm 1.96 \, \sigma / \sqrt{n} = 1.02 \pm 1.96 \left( 0.03 / \sqrt{25} \right) = 1.02 \pm 0.012$$

or, with 95% confidence, the mean weight of all cereal boxes falls between 1.008 and 1.032 pounds.



#### Mean When σ Is Known

- Interpreting a Confidence Interval
  - Interpreting a confidence interval requires care.
  - **Incorrect:** The probability that  $\mu$  falls in the interval is 0.95.
  - Correct: If numerous samples of size n are drawn from a given population, then 95% of the intervals formed by the  $\sqrt{\overline{x} \pm z_{\alpha/2}} \sigma / \sqrt{n}$  will contain  $\mu$ .
    - Since there are many possible samples, we will be right 95% of the time, thus giving us 95% confidence.

## Population Mean When $\sigma$ Is Known

LO 8.4 Describe the factors that influence the width of a confidence

- The Width of a Confidence Interval
  - □ Margin of Erro  $\frac{z_{\alpha/2} \sigma \sqrt{n}}{\sqrt{n}}$
  - □ Confidence Interval Widt  $\frac{2(z_{\alpha/2}\sigma/\sqrt{n})}{2}$
  - The width of the confidence interval is influenced by the:
    - Sample size n.
    - Standard deviation σ.
    - Confidence level  $100(1-\alpha)$ %.



## 8.2 Confidence Interval of the Population Mean When $\sigma$ Is Known

- The Width of a Confidence Interval is influenced by:
  - I. For a given confidence level  $100(1 \alpha)$ % and sample size n, the width of the interval is wider, the greater the population standard deviation  $\sigma$ .
  - Example: Let the standard deviation of the population of cereal boxes of Granola Crunch be 0.05 instead of 0.03. Compute a 95% confidence interval based on the same sample information.

$$\overline{x} \pm z_{\alpha/2} \, \sigma / \sqrt{n} = 1.02 \pm 1.96 \left( 0.05 / \sqrt{25} \right) = 1.02 \pm 0.20$$

 This confidence interval width has increased from 0.024 to 2(0.020) = 0.040.



## 8.2 Confidence Interval of the Population Mean When σ Is Known

- The Width of a Confidence Interval is influenced by:
  - II. For a given confidence level  $100(1 \alpha)\%$  and population standard deviation  $\sigma$ , the width of the interval is wider, the smaller the sample size n.
  - Example: Instead of 25 observations, let the sample be based on 16 cereal boxes of Granola Crunch.
     Compute a 95% confidence interval using a sample mean of 1.02 pounds and a population standard deviation of 0.03.

$$\overline{x} \pm z_{\alpha/2} \, \sigma / \sqrt{n} = 1.02 \pm 1.96 \left( 0.03 / \sqrt{16} \right) = 1.02 \pm 0.015$$

□ This confidence interval width has increased from 0.024 to 2(0.015) = 0.030. OF TECHNOLOGY



## 8.2 Confidence Interval of the Population Mean When σ Is Known

- The Width of a Confidence Interval is influenced by:
  - III. For a given sample size n and population standard deviation  $\sigma$ , the width of the interval is wider, the greater the confidence level 100(1  $\alpha$ )%.
  - Example: Instead of a 95% confidence interval, compute a 99% confidence interval based on the information from the sample of Granola Crunch cereal boxes.

$$\overline{x} \pm z_{\alpha/2} \, \sigma / \sqrt{n} = 1.02 \pm 2.575 \left( 0.03 / \sqrt{25} \right) = 1.02 \pm 0.015$$

□ This confidence interval width has increased from 0.024 to 2(0.015) = 0.030.

Output

Output

District of Technology

## 8.2 Confidence Interval of the Population Mean When $\sigma$ Is Known

#### Example:

IQ tests are designed to yield results that are approximately normally distributed. Researchers think that the population standard deviation is 15. A reporter is interested in estimating the average IQ of employees in a large high-tech firm in California. She gathers the IQ information on 22 employees of this firm and records the sample mean IQ as 106.

a. Compute 90% and 99% confidence intervals of the average IQ in this firm.

#### SOLUTION:

**a.** For a 90% confidence interval,  $z_{\alpha/2} = z_{0.05} = 1.645$ . Similarly, for a 99% confidence interval,  $z_{\alpha/2} = z_{0.005} = 2.575$ .

The 90% confidence interval is  $106 \pm 1.645 \frac{15}{\sqrt{22}} = 106 \pm 5.26$ .

The 99% confidence interval is  $106 \pm 2.575 \frac{15}{\sqrt{22}} = 106 \pm 8.23$ .

Note that the 99% interval is wider than the 90% interval.

## o.5 Commutative Interval of the Population Mean When σ Is Unknown

#### LO 8.5 Discuss features of the t distribution.

- The t Distribution
  - If repeated samples of size n are taken from a normal population with a finite variance, then the statistic T follows the t distribution  $T = \frac{\overline{X} \mu}{S/\sqrt{n}}$  with (n-1) degrees of freedom,  $a_t$ .
    - **Degrees of freedom** determine the extent of the broadness of the tails of the distribution; the fewer the degrees of freedom, the broader the tails.



## 8.3 Confidence Interval of the Population Mean When σ Is Unknown

- Summary of the t<sub>df</sub> Distribution
  - Bell-shaped and symmetric around 0 with asymptotic tails (the tails get closer and closer to the horizontal axis, but never touch it).
  - Has slightly broader tails than the z distribution.
  - Consists of a family of distributions where the actual shape of each one depends on the df. As df increases, the t<sub>df</sub> distribution becomes similar to the z distribution; it is identical to the z distribution when df approaches infinity.



Mean When σ Is Unknown

The t<sub>df</sub> Distribution with Various Degrees of Freedom





#### Mean When σ Is Unknown

- **Example:** Compute  $t_{\alpha,df}$  for  $\alpha = 0.025$  using 2, 5, and 50 degrees of freedom.
  - Solution: Turning to the Student's t
     Distribution table in Appendix A, we find that
    - For df = 2,  $t_{0.025.2} = 4.303$ .
    - For df = 5,  $t_{0.025.5} = 2.571$ .
    - For df = 50,  $t_{0.025,50} = 2.009$ .
  - □ Note that the  $t_{df}$  values change with the degrees of freedom. Further, as df increases, the  $t_{df}$  distribution begins to resemble the z

## o.5 Commuence Interval of the Population Mean When σ Is Unknown

LO 8.6 Calculate a confidence interval for the population mean when the population standard deviation is not known.

- Constructing a Confidence Interval for  $\mu$  When  $\sigma$  is Unknown
  - A  $100(1-\alpha)\%$  confidence interval of the population mean  $\mu$  when the population standard deviation  $\sigma$  is not known is

 $\overline{x} \pm t_{\alpha/2,df} s/\sqrt{n}$  equivalent  $\left[\overline{x} - t_{\alpha/2,df} s/\sqrt{n}, \overline{x} + t_{\alpha/2,df} s/\sqrt{n}\right]$ 

where s is the sample standard deviation.

## 8.3 Confidence Interval of the Population Mean When $\sigma$ Is Unknown

- Example: Recall that Jared Beane wants to estimate the mean mpg of all ultra-green cars. Use the sample information to construct a 90% confidence interval of the population mean. Assume that mpg follows a normal distribution.
  - Solution: Since the population standard deviation is not known, the sample standard deviation has to be computed from the sample. As a result, the 90% confidence

$$\overline{x} \pm t_{\alpha/2,df} \ s/\sqrt{n} = 96.52 \pm 1.711 \Big(10.70/\sqrt{25}\Big) = 96.52 \pm 3.66$$



## 8.3 Confidence Interval of the Population Mean When $\sigma$ Is Unknown

 Using Excel to construct confidence intervals. The easiest way to estimate the mean when the population standard deviation is unknown is as follows:

Open the MPG data file.

From the menu choose Data
 Data Analysis > Descriptive
 Statistics > OK.

 Specify the values as shown here and click OK.

 Scroll down through the out until you see the Confidence



## o.4 Connuence Interval of the Population Proportion

#### LO 8.7 Calculate a confidence interval for the population proportion.

- Let the parameter p represent the proportion of successes in the population, where success is defined by a particular putcome.
- is the point estimator of the population proportion p.  $\overline{P}$
- By the central limit theorem, can be approximated by a normal distribution for large samples (i.e., np > 5 and n(1 p) > 5).



## 8.4 Confidence Interval of the Population Proportion

■ Thus, a  $100(1-\alpha)\%$  confidence interval of the population proportion is

$$\frac{\overline{p} \pm z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \quad \text{or} \quad \left[ \overline{p} - z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}, \overline{p} + z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \right]$$

where  $\overline{p}$  is used to estimate the population parameter p.



## 8.4 Confidence Interval of the Population Proportion

- Example: Recall that Jared Beane wants to estimate the proportion of all ultra-green cars that obtain over 100 mpg. Use the sample information to construct a 90% confidence interval of the population proportion.
  - Solution: Note th $\sqrt{p}t = 7/25 = 0.28$ . In addition, the normality assumption is met since  $np \ge 5$  and  $n(1 p) \ge 5$ . Thus,

$$\overline{p} \pm z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} = 0.28 \pm 1.645 \sqrt{\frac{0.28(1-0.28)}{28}} = 0.28 \pm 0.148$$

#### 8.5 Selecting a Useful Sample Size

LO 8.8 Select a sample size to estimate the population mean and the population proportion.

- Precision in interval estimates is implied by a low margin of error.
- The larger n reduces the margin of error for the interval estimates.
- How large should the sample size be for a given margin of error?

#### 8.5 Selecting a Useful Sample Size

- Selecting n to Estimate μ
  - Consider a confidence interval for μ with a known  $\sigma$  and let D denote the desired margin of error.
  - □ Since  $D = Z_{\alpha/2} \sigma / \sqrt{n}$

we may rearrange to get  $n = \left(\frac{Z_{\alpha/2}\sigma}{D}\right)^2$ 

$$n = \left(\frac{Z_{\alpha/2}\sigma}{D}\right)^2$$

ullet If  $\sigma$  is unknown, estimate it with  $\hat{\sigma}$  .

### 8.5 Selecting a Useful Sample Size

- Selecting n to Estimate μ
  - □ For a desired margin of error *D*, the minimum sample size *n* required to estimate a 100(1  $-\alpha$ )% confidence interval of the population mean  $\mu$  is

$$n = \left(\frac{Z_{\alpha/2}\hat{\sigma}}{D}\right)^2$$

Where  $\hat{\sigma}$  is a reasonable estimate of  $\sigma$  in the planning stage.

### 8.5 Selecting a Useful Sample Size

- Example: Recall that Jared Beane wants to construct a 90% confidence interval of the mean mpg of all ultra-green cars.
  - Suppose Jared would like to constrain the margin of error to within 2 mpg. Further, the lowest mpg in the population is 76 mpg and the highest is 118 mpg.
  - How large a sample does Jared need to compute the 90% confidence interval of the population mean?

$$n = \left(\frac{Z_{\alpha/2}\hat{\sigma}}{D}\right)^2 = \left(\frac{1.645 \times 10.50}{2}\right)^2 = 74.58 \text{ or } 75$$

#### 8.5 Selecting a Useful Sample Size

- Selecting n to Estimate p
  - Consider a confidence interval for p and let D denote the desired margin of error.
  - Since  $D = Z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$  where  $\overline{p}$  is the sample proportion

we may rearrange to get 
$$n = \left(\frac{Z_{\alpha/2}}{D}\right)^2 \overline{p}(1-\overline{p})$$

Since p comes from a sample, we must use a reasonable estimate of p, that is,  $\hat{p}$ .

### 8.5 Selecting a Useful Sample Size

- Selecting n to Estimate p
  - □ For a desired margin of error D, the minimum sample size n required to estimate a 100(1  $\alpha$ )% confidence interval of the population proportion

$$p is 
 n = \left(\frac{Z_{\alpha/2}}{D}\right)^2 p (1-p)$$

Where  $\hat{P}$  is a reasonable estimate of p in the planning stage.

### 8.5 Selecting a Useful Sample Size

- Example: Recall that Jared Beane wants to construct a 90% confidence interval of the proportion of all ultra-green cars that obtain over 100 mpg.
  - Jared does not want the margin of error to be more than 0.10.
  - How large a sample does Jared need for his analysis of the population proportion?

$$n = \left(\frac{Z_{\alpha/2}}{D}\right)^2 p(1-p) = \left(\frac{1.645}{0.10}\right)^2 0.50(1-0.50) = 67.65 \text{ or } 68$$

#### End of Chapter