

Goals

- Improve model performance for Tabular datasets
 - Learn and apply best practices for data preprocessing and feature engineering
- Accelerate training pipelines
 - Leverage GPUs acceleration for quick experimentation

Agenda

- Experimentation Pipeline for Tabular Datsets
 - Acceleration is Important for Tabular Datasets
 - Overview of Feature Types
 - Accuracy Improvements with Target Encoding
- NVIDIA RAPIDS: Accelerating Data Science End-to-End
 - NVIDIA cuDF: Automatic pandas Acceleration
 - NVIDIA cuML: Accelerated scikit-learn

Experimentation Pipeline for Tabular Datasets

Developing high accuracy model requires a cycle to run multiple experiments to iterate on feature engineering, model types and architectures.

Accelerating pipelines enables more experiments

NVIDIA @RecSys Challenge 2020

NVIDIA @RecSys Challenge 2021

Illustrative day as a data scientist w/wo GPU acceleration

- 。 RecSys2020 28x faster than optimized CPU code
- RecSys2021 92x faster than initial CPU code
- Less computation time enables more experiments

Overview Feature Types

Bold techniques in focus

Feature Type	Example	Feature Engineering			
Categorical	User ID / Item ID Brand Main Category	Target Encoding Count Encoding Categorify + Combining Categories			
Unstructured list	Keywords Subcategories Colors	Target Encoding Count Encoding Categorify			
Numeric	Price Deliver time Avg. reviews	Binning Normalization Gauss Rank			
Timestamp	Timestamp	Extract month, weekday, weekend, hour			
Timeseries	Events in order Time since last event	# of events in past X Difference in time (lag)			
Image	Product image	Extract latent representation with deep learning			
Text	Description	Extract latent representation with deep learning			
Social graph	Follower/Following graph	Term frequency-inverse document			
Geo location	Addresses	Distances to point of interest			

Overview Some Models

Support Vector Machines

Types: SVM

Components:

- . Maximizes distance between decision boundary and data
- May require normalization
- Good for high dimensional data

Tree Based

Types:

- CatBoost
- XGBoost
- LightGBM

Components:

- Defines split by information gain per feature
- Does not require normalization of input features

XGBoost cannot handle raw categorical features

Deep Learning

Hidden Layers

Embedding Layers

Types:

- Wide And Deep
- DeepFM
- DLRM

Components:

- Embedding Layers
- Feed-Forward Layers
- Requires normalization of input features

Dataset of the Tutorial

Dataset: Amazon Review Dataset - Category Electronics

URL: https://jmcauley.ucsd.edu/data/amazon/

Events: Ratings

Timeframe: Jun 1999 - July 2014

Goal:

Positive target: Rating>=4Negative target: Rating<=3

Dataset split:

• Training: June-1999 - May-2014 (1.6 Mio samples)

• Validation: June-2014 (43k samples)

• Test: July-2014 (33k Mio samples)

Baseline: ~80% of events are high ratings

Features:

- userID, productID
- price
- timestamp
- category
- brand

Performance improvement of 25% with Target Encoding

XE: XGB Built-In Enable Categorical

LE: Label encoding

TE: Target Encoding

Modern Applications Need Accelerated Computing

Petabye scale data | Massive models | Real-time performance

NVIDIA CUDA-X Libraries: Accelerating Data Science End-to-End

NVIDIA cuDF

Background: What is NVIDIA cuDF?

- pandas-like data processing library for the GPU
 - Core functions for loading, filtering, aggregating,
 - Numeric, datetime, categorical, string and nested data
 - GPU accelerated I/O (e.g., CSV, parquet, json)
 - o 10s-100s times faster than pandas*
- Built upon the libcudf C++/CUDA library
- Part of the wider RAPIDS ecosystem see NVIDIA cuML, cuGraph, cuSpatial, RAFT, etc,
- Two modes of usage:
 - Standalone library (classic)
 - cudf.pandas

RAPIDS

* Benchmark on AMD EPYC 7642 (using 1x 2.3GHz CPU core) w/ 512GB and NVIDIA A100 80GB (1x GPU) w/ pandas v1.5 and cuDF v23.02

Accelerating pandas with ZERO Code Change

pandas Acceleration with NVIDIA cuDF

- Enables the acceleration of pandas workflows using GPUs with minimal code changes
- Significantly speeds up data processing tasks, especially with larger datasets
- cuDF synchronizes data between the GPU and CPU as needed, managing the complexities of heterogeneous execution.
- <u>cuDF pandas</u> supports different file formats such as .csv, .json, .pickle, .paraquet, and hence enables GPU-accelerated data manipulation

Up to 50x Faster pandas

Standard DuckDB Data Benchmark (5 GB) on cudf.pandas, pandas v2.2 HW: NVIDIA L4, CPU: Intel Xeon 8480CL SW: pandas v2.2.1, RAPIDS cuDF 24.02

Automatic pandas Acceleration

 Requires no changes to existing pandas code. Just install cudf and:

- Suports 100% of the pandas API
- Accelerates operations by 10-100x using the GPU
- Falls back to using pandas on the CPU for unsupported functions and methods

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_parquet("data.parquet")
subset = data.index.indexer_between_time("09:30", "16:00")
data = data.iloc[subset]
results = data.groupby(pd.Grouper(freq="1D")).mean()

sns.lineplot(results)
plt.xticks(rotation=30)
```


Zero Code Change for scikit-learn with NVIDIA cuML

- · Accelerates popular ML algorithms used in scikit-learn, plus UMAP and HDBSCAN
- · Zero code changes required to existing scikit-learn code just load the extension
 - . %load_ext cuml.accel
 - . \$ python -m cuml.accel script.py
- Speedups ranging from 5-200x depending on the algorithm
- Compatible with third party libraries

from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(X_train, y_test) preds = clf.predict_proba(X_test)

cuML OFF

Specs: NVIDIA cuML 25.02 on NVIDIA H100 80GB HBM3 (scikit-learn v1.5.2 on Intel Xeon Platinum 8480CL

Deploying NVIDIA CUDA-X Python Libraries

Documentation to get you and up and running RAPIDS anywhere

Structure of the Hands-On Lab

- Part 1: Accelerated Feature Engineering with RAPIDS cuDF Pandas on GPU
 - Target Encoding
 - Count Encoding
- Part 2: Train ML models on GPU
 - Train an XGBoost model on GPU
 - Train an SVC with RAPIDS cuML on GPU

Lab Details

Use!nvidia-smi to check GPU memory - we are using 1x NVIDIA Tesla T4 with 16GB memory

u Fel	b 27 19	9:46:18 20	25							
NVID	IA-SMI	535.104.12	2		0	river		535.104.12	CUDA Versio	n: 12.2
	Name Temp	Perf	1	Pwr:Usa	age	e/Cap	Bus-Id	Disp.A Memory-Usage		MIG M.
0 N/A	Tesla 32C			9W	/	0n 70W	2M	1:00:00.0 Off iB / 16384MiB	 0% 	Off Default N/A
200	esses:									
GPU	GI	ID	PID	Type		Proces	s name			GPU Memory Usage

Shutdown notebooks in the end to free GPU memory

```
import IPython
app = IPython.Application.instance()
app.kernel.do_shutdown(False)
{'status': 'ok', 'restart': False}
```

Some notebooks automatically restart kernel to free GPU memory and reset DataFrame

```
import IPython
app = IPython.Application.instance()
app.kernel.do_shutdown(True)
{'status': 'ok', 'restart': True}
```

