

EGR 106 Foundations of Engineering II

Week 7 Lecture – Part B
2D Plotting

This Week's Topics

2D Plotting

plot command

line specifiers and properties

multiple graphs

formatting a plot

logarithmic axes

special graphs - histograms, pie charts, polar plots, etc.

3D plotting (brief intro)

2D Plotting

Graphical presentation has become the standard method to show technical information. Engineers use plots to analyze, visualize, and present their work.

Matlab provides many powerful plotting tools.

We'll review <u>some</u> of them today.

A Simple Example

```
colon and dot notation for arrays x = -3:0.1:3; y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; standard form for plot y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^3 - 5*x.^2 + 4; annotation tools y = x.^3 - 5*x.^3 - 5*x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; annotation tools y = x.^3 - 5*x.^3 + 4; and y = x.^3 - 5
```

Resulting Plot

Figure Formatting

Two Approaches:

Interactive figure editing

Command line formatting (recommended)

Interactive Figure Editing

Property Editor

Provides interactive editing of text, axes, line properties, marker properties

Example – axis editor:

Property Editor vs. Command Line Formatting

```
Property editor is like a spreadsheet's tools, but ...
is limited to a single figure
is tedious to repeat for other plots
Often more efficient to use command line plot formatting: plot(x,y, 'linespec', 'Propname', PropValue)
line specifiers: color, line type, markers for data property name and value: thickness, size, etc
```

Line Specifiers

Note: The order is not important!

Line Specifiers - Example

Line Properties

Note: Can have multiple properties in one command

Line Properties - Example

Line Properties – Another Example

plot(x,y, '- k o', 'LineWidth', 3, 'MarkerSize', 10,...
'MarkerEdgeColor','red','MarkerFaceColor','green')

Multiple Graphs on Same Plot

```
x=linspace(0,3*pi);
y1=cos(x);
y2=sin(x);
plot(x,y1,x,y2)
```

Note: Default is solid line with 'rotating' colors

Multiple Graphs (cont.)

```
x=linspace(0,3*pi,25);
y1=cos(x);
y2=sin(x);
plot(x,y1,'ro-',x,y2,'m*--')
```

Each line can have its own specification

Multiple Graphs using 'hold'

By default, each plot command will erase previous plots.

The 'hold on' command will add plots to existing plots.

Example:

```
x=linspace(0,3*pi);
y1=cos(x);
y2=sin(x);
plot(x,y1,'r','linewidth',2)
hold on
plot(x,y2,'b','linewidth',2)
```


Multiple Graphs in Single Window - Subplot

```
x=linspace(0,10);
y1=cos(x);
y2=sin(x);
y3=x.^2+2*x;
y4=log10(x);
subplot(2,2,1)
plot(x,y1,'r','linewidth',2)
xlabel('x')
ylabel('cos(x)')
subplot(2,2,2)
plot(x,y2,'b','linewidth',2)
xlabel('x')
ylabel('cos(x)')
subplot(2,2,3)
plot(x,y3,'g','linewidth',2)
xlabel('x')
ylabel('x.^2+2*x')
subplot(2,2,4)
plot(x, y4, 'm', 'linewidth', 2)
xlabel('x')
ylabel('log10(x)')
```


Argument list is: rows, columns, subplot number

Multiple Figure Windows

```
x=linspace(0,10);
y1=cos(x);
y2=sin(x);
%
plot(x,y1,'r','linewidth',2)
%
figure
plot(x,y2,'b','linewidth',2)
%
figure(1)
xlabel('x')
ylabel('cos(x)')
%
figure(2)
xlabel('x')
ylabel('sin(x)')
```


Other Useful Commands

```
figure
    opens a new figure window, by default Figure number 1
    figure(n) creates new figure window (Figure n), or if Figure n exists,
       takes you to existing figure window n
text(x,y,'string')
    used to print text in the figure at location (x,y)
gtext('string')
    used to print text in the figure at location specified by mouse click
ginput(1)
    creates crosshairs on the screen
    returns (x,y) location of cursor at mouse click
    ginput(n) returns n pairs of locations
```

gtext and ginput example

```
clc; close all; clear

%
    A Simple Example using gtext

%
x=-3:0.3:3;
y=x.^3-5*x.^2+4;
plot(x,y)
xlabel('value of x')
ylabel('value of y')
title('A Simple Plotting Example')
% text(0,-30,'EGR106 example')
gtext('EGR106 example')
[x1,y1]=ginput(5);
x1
y1
```

```
A Simple Plotting Example

10

-10

-20

-40

-40

-50

-60

-70

-3

-2

-1

0

1

2

3

value of x
```


Figure Window

Command Window

Adding Text with Greek Letters, Subscripts and Superscripts, Color

```
x=linspace(0,2*pi);
y1=cos(x);
y2=sin(x);
plot(x,y1,'r',x,y2,'b','linewidth',2)
text(3,.6,'\alpha_1 + \beta^2 + a_3^4', ...
'fontsize',14,'color','b')
```


Adding a Legend

```
x=linspace(0,3*pi);
y1=cos(x);
y2=sin(x);
plot(x,y1,'r',x,y2,'b','linewidth',2)
legend('cosine','sine')
```


Adding Axis Labels

```
x=linspace(0,2*pi);
y1=cos(x);
y2=sin(x);
plot(x,y1,'r',x,y2,'b','linewidth',2)
xlabel('X axis label')
ylabel('Y axis label')
title('Plot Title')
```


Formatting Axes and Adding a Grid

Adding a grid:

grid

Setting the axis limits:

axis([xmin xmax ymin ymax])

Example:

```
x=linspace(0,2*pi);
y1=cos(x);
y2=sin(x);
plot(x,y1,'r',x,y2,'b','linewidth',2)
axis([ 0 4 -1.25 1.25])
grid
```


Log and Semilog Plots

Copying Figures to Other Applications

In Figure window => Edit => Copy

Other application (MS Word, Powerpoint, etc.) => Paste

Histograms

```
% Normal (Gaussian) distribution of random numbers
% with mean 3 and standard deviation 0.2
x=3+.2*randn(1,10000);
hist(x,100)
```


Pie Charts

```
x = [2 4 6 5 3];
explode = [0 1 0 0 0];
pie(x,explode)
```


Polar Plots

Other Plot Types

Vertical bar plot - bar Horizontal bar plot - barh Stem plot - stem Stair plot - stairs

(see text for details)

3D Space Curve Plot

```
t=linspace(0,6*pi,50);
x=cos(t);
y=sin(t);
z=t;
plot3(x,y,z,'r-*')
axis([-1.2 1.2 -1.2 1.2 0 20])
title('3-D Space Curve - Spiral')
pause; clear; close all
```

3-D Space Curve - Spiral

3D Surface and Contour Plots

```
x=-3:0.2:3;
y=x;
[X,Y]=meshgrid(x,y);
Z=1.8.^(-1.5*sqrt(X.^2+Y.^2)).*cos(0.5*Y).*sin(X);
surfc(X,Y,Z);
```

