

Figure 50.8: Figures (i.) and (ii.) illustrate the purple moon shaped region associated with Example 50.2. Figure (i.) also illustrates C(0), the cone of feasible directions, while Figure (ii.) illustrates the strict containment of C(0) in $C^*(0)$.

(2) If the constraints are qualified at u (and the functions φ_i are continuous at u for all $i \notin I(u)$ if we only assume φ_i differentiable at u for all $i \in I(u)$), then

$$C(u) = C^*(u).$$

Proof. (1) For every $i \in I(u)$, since $\varphi_i(v) \leq 0$ for all $v \in U$ and $\varphi_i(u) = 0$, the function $-\varphi_i$ has a local minimum at u with respect to U, so by Proposition 50.1(2), we have

$$(-\varphi_i')_u(v) > 0$$
 for all $v \in C(u)$,

which is equivalent to $(\varphi_i')_u(v) \leq 0$ for all $v \in C(u)$ and for all $i \in I(u)$, that is, $u \in C^*(u)$.

(2)(a) First, let us assume that φ_i is affine for every $i \in I(u)$. Recall that φ_i must be given by $\varphi_i(v) = h_i(v) + c_i$ for all $v \in V$, where h_i is a linear form and $c_i \in \mathbb{R}$. Since the derivative of a linear map at any point is itself,

$$(\varphi_i')_u(v) = h_i(v)$$
 for all $v \in V$.