

CLAIMS

What is claimed is:

- 1 1. An apparatus comprising:
2 at least one data bit generator to generate a first, second and third plurality of
3 data bits; and
4 a combiner function, coupled to the at least one data bit generator, including
5 a network of shuffle units, to combine the third plurality of data bits, using the first
6 and second plurality of data bits as first input data bits and control signals
7 respectively of the network of shuffle units.
- 1 2. The apparatus of claim 1, wherein at least one of the shuffle units comprises
2 a first and a second flip-flop to store a first and a second state value, and a plurality
3 of selectors coupled to the first and second flip-flops in a topological manner to
4 control selective output of one of the first and second state values based on a
5 corresponding one of said second plurality of data bits.
- 1 3. The apparatus of claim 2, wherein said plurality of selectors are coupled to
2 said first and second flip-flops of the shuffle unit in a topological manner that results
3 in the first state value of the shuffle unit being output when the corresponding one of
4 said second plurality of data bits is in a first state, and the second state value of the
5 shuffle unit being output when the corresponding one of said second plurality of data
6 bits is in a second state.

1 4. The apparatus of claim 2, wherein said plurality of the selectors are further
2 coupled to said first and second flip-flops of the shuffle unit to control selective
3 modification of the first and second state values stored in said first and second flip-
4 flops of the shuffle unit based on the same corresponding one of said second
5 plurality of data bits.

1 5. The apparatus of claim 4, wherein said plurality of selectors are coupled to
2 said first and second flip-flops of the shuffle unit in a topological manner that results
3 in the first state value being output and the first and second flip-flops of the shuffle
4 unit to store said second state value and a second input data bit respectively when
5 the corresponding one of said second plurality of data bits is in a first state, and the
6 second state value being output and the first and second flip-flops of the shuffle unit
7 to store the second input data bit and said first state value respectively when the
8 corresponding one of said second plurality of data bits is in a second state.

1 6. The apparatus of claim 5, wherein the second input value is a selected one of
2 an output data bit of an immediately preceding shuffle unit and an output data bit
3 generated from said first plurality of data bits.

1 7. The apparatus of claim 1, wherein at least one of the shuffle units comprises
2 a first and a second flip-flop to store a first and a second state value, and a plurality
3 of selectors coupled to the first and second flip-flops to control modification of the
4 first and second state values based on a corresponding one of said second plurality
5 of data bits.

Attorney Docket Ref: 42390.P7574

1 8. The apparatus of claim 7, wherein said plurality of selectors are coupled to
2 the first and second flip-flops in a topological manner that results in the first and
3 second flip-flops of the shuffle unit to store said second state value and a second
4 input data bit respectively when the corresponding one of said second plurality of
5 data bits is in a first state, and the first and second flip-flops of the shuffle unit to
6 store the second input data bit and said first state value respectively when the
7 corresponding one of said second plurality of data bits is in a second state.

1 9. The apparatus of claim 8, wherein the shuffle units are serially coupled to
2 each other with a first of the shuffle unit serially coupled to the first XOR gate, and
3 said second input data bit is a selected one of an output bit of an immediately
4 preceding shuffle unit and an output bit generated from the first plurality of data bits.

1 10. The apparatus of claim 1, wherein the combiner function further comprises an
2 exclusive-OR gate to combine the first plurality of data bits for the network of shuffle
3 units.

1 11. The apparatus of claim 1, wherein the combiner function further comprises an
2 exclusive-OR gate to combine the third plurality of data bits using an output bit of the
3 network of shuffle units.

1 12. The apparatus of claim 11, wherein the apparatus further comprises a
2 register coupled to the XOR gate to store a cipher key and allow the stored cipher
3 key to be periodically modified by the output of the exclusive-OR gate.

1 13. The apparatus of claim 12, wherein the apparatus further comprises a
2 function block coupled to the register to successively transform the modified cipher
3 key, and a mapping block coupled to the register to generate a pseudo random bit
4 sequence based on the successive transformed states of the modified random
5 number.

1 14. The apparatus of claim 1, wherein the at least one data bit generator
2 comprises a plurality of LFSRs to generate said first, second, and third plurality of
3 data bits.

1 15. The apparatus of claim 1, wherein the apparatus is a stream cipher.

1 16. An apparatus comprising:
2 a first XOR gate to receive a first plurality of data bits and combine them into
3 a second data bit;
4 a network of shuffle units, coupled to the first XOR gate, to output a third data
5 bit by shuffling and propagating the second data bit through the network of shuffle
6 units under the control of a four plurality of data bits; and
7 a second XOR gate coupled to the network of shuffle units to combine a fifth
8 plurality of data bits using the third data bit.

1 17. The apparatus of claim 14, wherein at least one of the shuffle units comprises
2 a first and a second flip-flop to store a first and a second state value, and a plurality
3 of selectors coupled to the first and second flip-flops to control selective output of
4 one of the first and second state values based on a corresponding one of said fourth
5 plurality of data bits.

1 16.¹⁷ The apparatus of claim 15, wherein said plurality of selectors are coupled to
2 the first and second flip-flops of the shuffle unit in a topological manner that results
3 in the first state value of the shuffle unit being output when the corresponding one of
4 said fourth plurality of data bits is in a first state, and the second state value of the
5 shuffle unit being output when the corresponding one of said fourth plurality of data
6 bits is in a second state.

1 17.¹⁸ The apparatus of claim 16, wherein said plurality of the selectors are further
2 coupled to the first and second flip-flops to control selective modification of the first
3 and second state values stored in the first and second flip-flops of the shuffle unit
4 based on the same corresponding one of said fourth plurality of data bits.

1 18.¹⁹ The apparatus of claim 17, wherein said plurality of selectors are coupled to
2 the first and second flip-flops of the shuffle unit in a topological manner that results
3 in the first state value being output and the first and second flip-flops of the shuffle
4 unit to store said second state value and a sixth data bit respectively when the
5 corresponding one of said fourth plurality of data bits is in a first state, and the
6 second state value being output and the first and second flip-flops of the shuffle unit
7 to store the sixth data bit and said first state value respectively when the
8 corresponding one of said fourth plurality of data bits is in a second state.

1 19.²⁰ The apparatus of claim 18, wherein the shuffle units are serially coupled to
2 each other with a first of the shuffle unit serially coupled to the first XOR gate, and
3 said sixth data bit is a selected one of said second data bit and the output of an
4 immediately preceding shuffle unit.

1 20²² The apparatus of claim 14, wherein at least one of the shuffle units comprises
2 a first and a second flip-flop to store a first and a second state value, and a plurality
3 of selectors coupled to the first and second flip-flops to control modification of the
4 first and second state values based on a corresponding one of said fourth plurality
5 of data bits.

1 21²³ The apparatus of claim 20, wherein said plurality of selectors are coupled to
2 the first and second flip-flops of the shuffle unit in a topological manner that results
3 in the first and second flip-flops of the shuffle unit to store said second state value
4 and a sixth data bit respectively when the corresponding one of said fourth plurality
5 of data bits is in a first state, and the first and second flip-flops of the shuffle unit to
6 store the sixth data bit and said first state value respectively when the corresponding
7 one of said fourth plurality of data bits is in a second state.

1 22²⁴ The apparatus of claim 21, wherein the shuffle units are serially coupled to
2 each other with a first of the shuffle unit serially coupled to the first XOR gate, and
3 said sixth data bit is a selected one of said second data bit and the output of an
4 immediately preceding shuffle unit.

1 23²⁵ The apparatus of claim 14, wherein the apparatus further comprises a
2 register coupled to the second exclusive-OR gate to store a value to be periodically
3 modified using the result of said combination of the fifth plurality of data bits.

1 24²⁶ The apparatus of claim 23, wherein the apparatus further comprises a
2 function block coupled to the register to successively transform a modified version of

3 the stored value, and a mapping block coupled to register to generate a pseudo
4 random bit sequence based on the successively transformed states of the modified
5 value.

1 25. ²⁷ The apparatus of claim 14, wherein the apparatus is a stream cipher.

1 26. ²⁸ A method comprising:
2 generating a first, second and third plurality of data bits; and
3 shuffling and propagating a fourth data bit generated from the first plurality of
4 data bits, under the control of the second plurality of data bits, to output a fifth data
5 bit to combine the third plurality of data bits.

1 27. ²⁹ The method of claim 26, wherein the fourth data bit is serially shuffle and
2 propagated, and at each stage, a first state value is output when the corresponding
3 one of said second plurality of data bits is in a first state, and a second state value is
4 output when the corresponding one of said second plurality of data bits is in a
5 second state.

1 28. ³⁰ The method of claim 26, wherein the fourth data bit is serially shuffle and
2 propagated, and at each stage, a first of the state values is replaced by an input
3 value, and shuffled, when the corresponding one of said second plurality of data bits
4 is in a first state, and a second of the state values is replaced by the input value,
5 and shuffled, when the corresponding one of said second plurality of data bits is in a
6 second state.