Lab05-Numbering Programs

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

- * Please upload your assignment to FTP or submit a paper version on the next class
 - * If there is any problem, please contact: nongeek.zv@gmail.com
- * Name:Wenhao Zhu StudentId: 5130309717 Email: weehowe.z@gmail.com
- 1. Show that there is a total computable function k such that for each n,
 - (a) k(n) is an index of the function $\lfloor \sqrt[n]{x} \rfloor$.
 - (b) $W_{k(n)}^{(m)} = \{(y_1, \dots, y_m) : y_1 + y_2 + \dots + y_m = n\} \ (m \ge 1).$
 - (c) $E_{k(n)} = W_n$.

Solution. (a)Let P_m be the program corresponding to $f_{P_m}(x) = \lfloor \sqrt[n]{x} \rfloor$

then the P_m can be describe as 1)keep calculating i^n , where i grow up 2)when the first $i^n > x$, stop 3)the result is (i-1). So apparently we can decide the P_m therefore by the Church's Thesis, k(n) is computable.

(b) k(n) is the index of the function that will terminate $\iff \sum_{i=0}^{m} y_i = n$

So the corresponding $P_{k(n)}$ can check the input satisfy the condition. If not it will turn into a endless loop.

By the Church's Thesis, the k(n) is computable.

- (c) $f_{P_{k(n)}}(x)$ is the inverse function of the f_{Pn} , k(n) is apparently computable.
- 2. (a) Find P_{1028} . Distinguish what are $\phi_{1028}(x)$ and $\phi_{1028}^{(n)}(x_1, \dots, x_n)$ and their corresponding $W_{1028}(x)$, $E_{1028}(x)$ and $W_{1028}^{(n)}(x)$, $E_{1028}^{(n)}(x)$;

Solution

 $P_{1028} = 2^{10} + 2^2$, so we can know that $a_1 = 2, a_2 = 7$. Therefore, the instructions are T(1,1) and J(1,1,2). $\phi_{1028}(x) = 1, W_{1028}(x) = N, E_{1028}(x) = 1$.

(b) Let P be the program J(1,2,4), Z(1), S(1). Calculate $\gamma(P)$.

Solution.

$$\beta(J(1,2,4)) = 4\zeta(1,2,4) + 3 = 4\pi(\pi(0,1),3) + 3 = 111$$

$$\beta(Z(1)) = 0$$

$$\beta(S(1)) = 1$$

Thus, $\gamma(P) = 2^{111} + 2^{112} + 2^{114} - 1$

3. (a) (Cantor) Show that the set of all functions from \mathbb{N} to \mathbb{N} is not denumerable.

Proof. Define \mathcal{F} as all the functions maps \mathbb{N} to \mathbb{N} . Let f_0, f_1, f_2, \ldots be any sequence of elements of \mathcal{F} and by Cantor's Diagonal Method, we can define $f \in \mathcal{F}$ by:

$$f(i) = \begin{cases} f_i(i) + 1 & \text{if } f_i(n) \text{ is defined} \\ 0 & \text{otherwise} \end{cases}$$

By construction $f(i) \neq f_i(n)$, so $f \neq f_i$ (for any $i \in \mathbb{N}$), thus the set of all functions from \mathbb{N} to \mathbb{N} is not denumerable.

(b) Show that the set of all non-computable total functions from \mathbb{N} to \mathbb{N} is not denumerable.

1

Proof. Define \mathcal{F} as all non-computable total functions maps \mathbb{N} to \mathbb{N} . Let f_0 , f_1 , f_2 , . . be any sequence of elements of \mathcal{F} , and these functions can be derived by previous problem, by Cantor's Diagonal Method, we can define $f \in \mathcal{F}$ by:

$$f(i) = \begin{cases} f_i(i) + a(i) + 1 & \text{if } f_i(n) \text{ is defined} \\ a(i) & \text{otherwise} \end{cases}$$

By construction $f(i) \neq f_i(n)$, so $f \neq f_i$ (for any $i \in \mathbb{N}$), thus the set of all non-computable total functions from \mathbb{N} to \mathbb{N} is not denumerable.

4. Alternative Selection of π

The π function where $\pi(x,y)=2^x(2y+1)-1$ can enumerate linearly all pairs of natural numbers $(x,y)\in\mathbb{N}\times\mathbb{N}$. However, it does not generate a trace in the first quadrant of the plane. Correspondingly, instead of applying this π function, we can define an alternative bijection π' , such that $\pi':\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ and it grows horizontally and vertically according to the right figure. Thus we have:

Thus we have:

$$\pi'(0,0) = 0, \ \pi'(0,1) = 1, \ \pi'(1,0) = 2,$$

 $\pi'(1,1) = 3, \ \pi'(0,2) = 4, \ \pi'(1,2) = 5,$
 $\pi'(2,0) = 6, \ \pi'(2,1) = 7, \ \pi'(2,2) = 8, \ \text{etc.}$

Now please develop a mathematical formula for π' , (like the notation of original π), and prove the correctness of your design.

Solution.

$$\pi' = \begin{cases} x + y^2 & \text{if } x < y \\ x^2 + x + y & \text{otherwise} \end{cases}$$

Now we begin to prove that π' is bijective.

Injective For $\forall (x_1, y_1), (x_2, y_2)$, with $x_1 \neq x_2$ or $y_1 \neq y_2$. We can define $R = \pi'(x_1, y_1) - \pi'(x_2, y_2)$

(a)
$$x_1 < y_1$$
 and $x_2 < y_2$: $R = (x_1 - x_2) + (y_1 - y_2)(y_1 + y_2)$

(b)
$$x_1 \le y_1$$
 and $x_2 \le y_2$: $R = (x_1 + x_2 + 1)(x_1 - x_2) + (y_1 - y_2)$

(c)
$$x_1 < y_1$$
 and $x_2 \le y_2$: $R = x_1 + y_1^2 - x_2^2 - x_2 - y_2$.

We can infer that none of R = 0, thus it is injective.

Surjective For $\forall n \in \mathbb{N}$, $\exists a, b \in \mathbb{N}$, such that $n = a + b^2$. If a < b, then we let x = a, y = b, else if $a \ge b$, we can let x = b, y = a - b. That means we fin That means $\forall n \in \mathbb{N}$, we can find x, y, makes $\pi'(x, y) = n$. So it is surjective.

Therefore the function we desgin is a bijective map form \mathbb{N} to \mathbb{N} .