1

This print-out should have 23 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Which one of the points

$$P(-3, -4, -4), Q(-6, 8, 9), R(-5, 3, -3)$$

in 3-space is closest to the yz-plane?

- 1. P(-3, -4, -4)
- **2.** R(-5, 3, -3)
- 3. Q(-6, 8, 9)

002 10.0 points

A rectangular box is constructed in 3-space with one corner at the origin and other vertices at

Find the length of the diagonal of the box.

- 1. length = 49
- 2. length = $\sqrt{22}$
- 3. length = 54
- 4. length = 7
- 5. length = $3\sqrt{6}$
- 6. length = 22

003 10.0 points

When \mathbf{u} , \mathbf{v} are the displacement vectors

$$\mathbf{u} = \overrightarrow{AB}, \quad \mathbf{v} = \overrightarrow{AP},$$

determined by the parallelogram

express \overrightarrow{QC} in terms of **u** and **v**, where P, B, D and R are the midpoints of \overline{AQ} , \overline{AC} , \overline{CS} and \overline{SQ} , respectively.

1.
$$\overrightarrow{QC} = 2(\mathbf{u} + \mathbf{v})$$

2.
$$\overrightarrow{QC} = 2(\mathbf{u} - \mathbf{v})$$

3.
$$\overrightarrow{QC} = \mathbf{u} + 2\mathbf{v}$$

4.
$$\overrightarrow{QC} = 2\mathbf{v} - \mathbf{u}$$

5.
$$\overrightarrow{QC} = 2\mathbf{v}$$

6.
$$\overrightarrow{QC} = 2\mathbf{u}$$

004 10.0 points

Determine the vector $\mathbf{c} = 2\mathbf{a} + \mathbf{b}$ when

$$a = \langle 1, 3, 2 \rangle, b = \langle 2, 1, -1 \rangle.$$

1.
$$\mathbf{c} = \langle 3, 7, 4 \rangle$$

2.
$$\mathbf{c} = \langle 4, 7, 4 \rangle$$

3.
$$\mathbf{c} = \langle 3, 8, 4 \rangle$$

4. c =
$$\langle 4, 8, 3 \rangle$$

5.
$$\mathbf{c} = \langle 4, 7, 3 \rangle$$

6.
$$\mathbf{c} = \langle 3, 8, 3 \rangle$$

005 10.0 points

Determine the vector $\mathbf{c} = \mathbf{a} + 2\mathbf{b}$ when

$$\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.

1.
$$c = 8i - 3j + 5k$$

2.
$$c = 7i + 4j + 5k$$

3.
$$c = 8i - 3j - 4k$$

4.
$$c = 8i + 4j - 4k$$

5.
$$c = 7i + 4j - 4k$$

6.
$$c = 7i - 3j + 5k$$

006 10.0 points

Determine the length of the vector $-2\mathbf{a} + \mathbf{b}$ when

$$\mathbf{a} = \langle 1, 2, -1 \rangle, \quad \mathbf{b} = \langle -3, -1, -2 \rangle.$$

1. length =
$$2\sqrt{11}$$

2. length =
$$\sqrt{46}$$

3. length =
$$4\sqrt{3}$$

4. length =
$$5\sqrt{2}$$

5. length =
$$2\sqrt{13}$$

007 10.0 points

Find all scalars λ so that $\lambda(\mathbf{a}+2\mathbf{b})$ is a unit vector when

$$\mathbf{a} = \langle 1, 2 \rangle, \quad \mathbf{b} = \langle 1, -2 \rangle.$$

1.
$$\lambda = -\frac{1}{13}$$

2.
$$\lambda = \frac{1}{13}$$

3.
$$\lambda = -\frac{1}{\sqrt{13}}$$

4.
$$\lambda = \frac{1}{\sqrt{13}}$$

5.
$$\lambda = \pm \frac{1}{13}$$

6.
$$\lambda = \pm \frac{1}{\sqrt{13}}$$

008 10.0 points

Find a unit vector \mathbf{n} with the same direction as the vector

$$\mathbf{v} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}.$$

1.
$$\mathbf{n} = \frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$$

2.
$$\mathbf{n} = \frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{9}\mathbf{k}$$

3.
$$\mathbf{n} = \frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{2}{9}\mathbf{k}$$

4.
$$\mathbf{n} = \frac{3}{10}\mathbf{i} - \frac{3}{5}\mathbf{j} + \frac{1}{5}\mathbf{k}$$

5.
$$\mathbf{n} = \frac{3}{7}\mathbf{i} - \frac{6}{7}\mathbf{j} + \frac{2}{7}\mathbf{k}$$

6.
$$\mathbf{n} = \frac{3}{10}\mathbf{i} + \frac{3}{5}\mathbf{j} - \frac{1}{5}\mathbf{k}$$

009 10.0 points

Determine the dot product of the vectors

$$\mathbf{a} = \langle -1, -2, 3 \rangle, \quad \mathbf{b} = \langle 1, -3, 1 \rangle.$$

1.
$$\mathbf{a} \cdot \mathbf{b} = 6$$

2.
$$a \cdot b = 2$$

3.
$$a \cdot b = 8$$

4.
$$a \cdot b = 4$$

5.
$$\mathbf{a} \cdot \mathbf{b} = 0$$

010 10.0 points

Determine the dot product of the vectors

$$\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}, \quad \mathbf{b} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}.$$

$$1. \mathbf{a} \cdot \mathbf{b} = 9$$

$$\mathbf{2.} \ \mathbf{a} \cdot \mathbf{b} = 13$$

$$\mathbf{3.} \ \mathbf{a} \cdot \mathbf{b} = 15$$

4.
$$\mathbf{a} \cdot \mathbf{b} = 17$$

$$\mathbf{5.} \ \mathbf{a} \cdot \mathbf{b} = 11$$

011 10.0 points

Determine the dot product of vectors \mathbf{a} , \mathbf{b} when

$$|\mathbf{a}| = 3, \qquad |\mathbf{b}| = 6$$

and the angle between **a** and **b** is $\pi/3$.

1.
$$\mathbf{a} \cdot \mathbf{b} = \frac{19}{2}$$

$$\mathbf{2.} \ \mathbf{a} \cdot \mathbf{b} = 9$$

3.
$$\mathbf{a} \cdot \mathbf{b} = 10$$

4.
$$\mathbf{a} \cdot \mathbf{b} = \frac{21}{2}$$

5.
$$\mathbf{a} \cdot \mathbf{b} = \frac{17}{2}$$

012 10.0 points

Find the angle between the vectors

$$\mathbf{a} = \langle -2\sqrt{3}, 1 \rangle, \quad \mathbf{b} = \langle -3\sqrt{3}, -5 \rangle.$$

1. angle =
$$\frac{\pi}{4}$$

2. angle =
$$\frac{5\pi}{6}$$

3. angle =
$$\frac{3\pi}{4}$$

4. angle =
$$\frac{\pi}{6}$$

5. angle
$$=\frac{2\pi}{3}$$

6. angle =
$$\frac{\pi}{3}$$

013 10.0 points

Which, if any, of the following pairs of vectors are perpendicular?

I.
$$\langle 3, 2 \rangle$$
, $\langle 4, -6 \rangle$,

II.
$$\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$$
, $3\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$.

- 1. both of them
- 2. II only
- **3.** I only
- 4. neither of them

014 10.0 points

Find the scalar projection of **b** onto **a** when

$$\mathbf{b} = \langle -5, 4 \rangle, \quad \mathbf{a} = \langle 4, -3 \rangle.$$

- 1. scalar projection = $-\frac{31}{5}$
- 2. scalar projection = $-\frac{32}{5}$
- 3. scalar projection = $-\frac{33}{5}$
- 4. scalar projection = $-\frac{29}{5}$
- 5. scalar projection = -6

015 10.0 points

Find the scalar projection of ${\bf b}$ onto ${\bf a}$ when

$$\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}, \ \mathbf{a} = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k}.$$

- 1. scalar projection = $\frac{2}{3}$
- 2. scalar projection $= -\frac{1}{3}$
- **3.** scalar projection = 0
- 4. scalar projection = 1

5. scalar projection $=\frac{1}{3}$

016 10.0 points

Find the vector projection of \mathbf{b} onto \mathbf{a} when

$$\mathbf{b} = \langle -2, -1 \rangle, \quad \mathbf{a} = \langle -1, -3 \rangle.$$

- 1. vector proj. = $\frac{7}{10}\langle -1, -3 \rangle$
- 2. vector proj. = $\frac{1}{2}\langle -2, -1 \rangle$
- 3. vector proj. = $\frac{7}{\sqrt{10}}\langle -1, -3 \rangle$
- **4.** vector proj. = $\frac{1}{2}\langle -1, -3 \rangle$
- 5. vector proj. = $\frac{7}{\sqrt{10}}\langle -2, -1 \rangle$
- **6.** vector proj. $=\frac{5}{\sqrt{10}}\langle -2, -1\rangle$

017 10.0 points

Find the vector projection of **b** onto **a** when

$$b = 2i + 2j + k$$
, $a = 3i - j + 2k$.

- 1. vector proj. = $\frac{14}{9}(2i + 2j + k)$
- **2.** vector proj. = $\frac{2}{3}(2i + 2j + k)$
- **3.** vector proj. = $\frac{2}{3}(3\mathbf{i} \mathbf{j} + 2\mathbf{k})$
- **4.** vector proj. = $\frac{14}{9}(3\,\mathbf{i} \mathbf{j} + 2\,\mathbf{k})$
- **5.** vector proj. = $\frac{3}{7}(3 \, \mathbf{i} \mathbf{j} + 2 \, \mathbf{k})$
- **6.** vector proj. = $\frac{3}{7}(2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$

018 10.0 points

Find the value of the determinant

$$D = \begin{vmatrix} 1 & 2 & -1 \\ -3 & -2 & -2 \\ -1 & 1 & -3 \end{vmatrix}.$$

- 1. D = -3
- **2.** D = -1
- **3.** D = 5
- **4.** D = 3
- **5.** D = 1

019 10.0 points

Find the cross product of the vectors

$$\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}, \quad \mathbf{b} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}.$$

- 1. $\mathbf{a} \times \mathbf{b} = -4\mathbf{i} 5\mathbf{j} + 5\mathbf{k}$
- 2. $a \times b = -3i 6j + 4k$
- 3. $\mathbf{a} \times \mathbf{b} = -3\mathbf{i} 5\mathbf{j} + 4\mathbf{k}$
- **4.** $\mathbf{a} \times \mathbf{b} = -4\mathbf{i} 6\mathbf{j} + 4\mathbf{k}$
- 5. $\mathbf{a} \times \mathbf{b} = -3\mathbf{i} 6\mathbf{j} + 5\mathbf{k}$
- **6.** $\mathbf{a} \times \mathbf{b} = -4\mathbf{i} 6\mathbf{j} + 5\mathbf{k}$

020 10.0 points

Find the cross product of the vectors

$$\mathbf{a} = \langle -1, 1, 3 \rangle, \quad \mathbf{b} = \langle 1, -3, 1 \rangle.$$

- **1.** $\mathbf{a} \times \mathbf{b} = \langle 11, 4, 1 \rangle$
- **2.** $\mathbf{a} \times \mathbf{b} = \langle 11, -7, 1 \rangle$
- **3.** $\mathbf{a} \times \mathbf{b} = \langle 11, 4, 2 \rangle$
- **4.** $\mathbf{a} \times \mathbf{b} = \langle 10, 4, 2 \rangle$
- **5.** $\mathbf{a} \times \mathbf{b} = \langle 10, -7, 1 \rangle$

6.
$$\mathbf{a} \times \mathbf{b} = \langle 10, -7, 2 \rangle$$

021 10.0 points

Determine all unit vectors \mathbf{v} orthogonal to

$$a = i + 4j + 3k$$
, $b = 2i + 6j + 3k$.

1.
$$\mathbf{v} = \pm \left(\frac{3}{7}\mathbf{i} - \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}\right)$$

2.
$$\mathbf{v} = -\frac{6}{7}\mathbf{i} + \frac{3}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$$

3.
$$\mathbf{v} = -3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$$

4.
$$\mathbf{v} = -\frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$$

5.
$$\mathbf{v} = \pm \left(\frac{6}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{2}{7}\mathbf{k}\right)$$

6.
$$\mathbf{v} = -6\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$

022 10.0 points

Find the area of the triangle having vertices

$$P(-3, -1)$$
, $Q(-2, -2)$, $R(3, 3)$.

1. area =
$$5$$

2. area =
$$\frac{9}{2}$$

3. area =
$$4$$

4. area =
$$6$$

5. area =
$$\frac{11}{2}$$

023 10.0 points

Find a vector \mathbf{v} orthogonal to the plane through the points

1.
$$\mathbf{v} = \langle 8, 5, 20 \rangle$$

2.
$$\mathbf{v} = \langle 8, 2, 20 \rangle$$

3.
$$\mathbf{v} = \langle 4, 10, 20 \rangle$$

4.
$$\mathbf{v} = \langle 8, 10, 20 \rangle$$

5.
$$\mathbf{v} = \langle 2, 10, 20 \rangle$$