

Best Arm Identification in Linear Bandits

Richa Kushwaha Goutham Bhatta 20172056 20172063

Mentors-

Dr. Naresh Manwani Sahil Chelaramani

Problem Setting

Problem	Multi Arm Bandit Setting	Linear Bandit Setting
Environment	K independent arms, with unknown distribution.	Stochastic linear arms $r(x) = x^{T} \theta^{*}$
Predict	μ , σ (given $\{r_1r_\ell\}$)	θ^* (given $x_{i'}$, $\{r_1r_{i'}\}$)
Objective	Find best arm, while maximizing cumulative reward. (Trade off between exploration and exploitation)	Find the best arm with fixed confidence while minimizing sample complexity. (Pure exploration)

Are rewards deterministic ??

Reward =>
$$r(x) = x^T \theta^* + \varepsilon$$
,
where ε is a zero-mean i.i.d. noise bounded in $[-\sigma; \sigma]$.
Also, $X \subseteq R^d$ be the set arms, $|X| = K$ and $\theta^* \in R^d$

Terminology

Value gap: The difference between the rewards of two arms.

$$\Delta(\mathbf{x},\mathbf{x}')=(\mathbf{x}-\mathbf{x}')^{\top}\boldsymbol{\theta}^{*}$$

Direction: The difference between two arms.

$$Y = \{x - x'\} \quad \forall \ x, x' \in X$$

Modelling the problem

 $x^{\hat{}}(n) = >$ estimated best arm after n steps

Regret : $R = (x^* - x^{\hat{}}(n))^{\mathsf{T}}\theta^*$.

PAC setting: $P(R \ge E) \le \delta$ where E, $\delta \in (0, 1)$

Design an allocation strategy such that it returns arm x^{n} following PAC condition, while minimizing the needed number of steps.

We know that, $r(x) = x^T \theta$. Let \mathbf{x}_n represent sequence of \mathbf{n} pulls. It is given as, $\mathbf{x}_{n} = (x_{1}, \dots, x_{n})$ and (r_{1}, \dots, r_{n})

At,
$$t_1 -> x_1 x^T \theta^* = x_1 r_1$$

 $t_2 -> x_2 x^T \theta^* = x_2 r_2$
 \vdots
 $t_n -> x_n x^T \theta^* = x_n r_n$

summation from t_1 to t_n we get the following equation.

$$\hat{\theta}_n = A_{\mathbf{x}_n}^{-1} b_{\mathbf{x}_n}$$

$$A_{\mathbf{x}_n} = \sum_{t=1}^n x$$

where
$$A_{\mathbf{x}_n} = \sum_{t=1}^n x_t x_t^{\top}$$
 and $b_{\mathbf{x}_n} = \sum_{t=1}^n x_t r_t$

Bounds on prediction error of the OLS estimate:

Case 1) Fixed sequence (varying confidence):

$$\left| \mathbb{P}\left(\forall n \in \mathbb{N}, \forall x \in \mathcal{X}, \left| x^{\top} \theta^* - x^{\top} \hat{\theta}_n \right| \le c ||x||_{A_{\mathbf{x}_n}^{-1}} \sqrt{\log(c' n^2 K/\delta)} \right) \ge 1 - \delta.$$

(obtained using azuma's inequality)

Case 2) Adaptive sequence (fixed confidence):

P (orignal_reward - predicted_reward <=
$$\sqrt{d}$$
 k) = 1 - δ

$$\left| x^{\top} \theta^* - x^{\top} \hat{\theta}_n^{\eta} \right| \leq ||x||_{(\widetilde{A}_{\mathbf{x}_n}^{\eta})^{-1}} \left(\sigma \sqrt{d \log \left(\frac{1 + nL^2/\eta}{\delta} \right)} + \eta^{1/2} ||\theta^*|| \right).$$

Soft allocation strategy:

- Considers the proportions of pulls of arm x.
- Replace A_x by Λ_λ where $\Lambda_\lambda = \lambda(x) x x^{T}$ and $\lambda(x) = T_n(x)/n$, $T_n(x) = \text{no.of}$ times arm x is pulled in sequence \mathbf{x}_n

Cone of Arm:

- $C(x) = \{ \theta \in \mathbb{R}^d, x \in \pi(\theta) \}$
 - \circ set of all parameters θ which admit x is an optimal arm.
- Since Oracle knows x^* , which means it also knows $C(x^*)$.

Confidence Set:

Given static allocation, \mathbf{x}_{n}

- $\bullet \quad S^*(x_n) \subseteq R^d,$
 - $\circ \quad s.t. \ \theta^* \in S^*(x_n)$
 - O.L.S. estimate of $\theta_n^{\wedge} \in S^*(x_n)$ with high probability $P(\theta_n^{\wedge} \in S^*(x_n)) \ge 1 \delta$.

Figure 1: The cones corresponding to three arms (dots) in \mathbb{R}^2 . Since $\theta^* \in \mathcal{C}(x_1)$, then $x^* = x_1$. The confidence set $\mathcal{S}^*(\mathbf{x}_n)$ (in green) is aligned with directions $x_1 - x_2$ and $x_1 - x_3$. Given the uncertainty in $\mathcal{S}^*(\mathbf{x}_n)$, both x_1 and x_3 may be optimal.

Oracle Stopping Condition:

- Stopping condition => If $S^*(x_n)$ is contained in $C(x^*)$.
- Two Scenarios :
 - ∘ $S^*(x_n)$ overlaps cones of different arms $x \in X$
 - Ambiguity to identify arm $\pi(\theta_n^{\wedge})$.
 - \circ $S^*(x_n)$ lies in one cone
 - Optimal arm is returned.

<u>Modelling Confidence Set [Oracle Allocation Strategy]</u>:

- Objective: To converge $S^*(x_n)$ into $C(x^*)$ in minimum no. of step
 - The condition $S^*(x_n) \subseteq C(x^*)$ is equivalent to

$$\forall x \in \mathcal{X}, \forall \theta \in \mathcal{S}^*(\mathbf{x}_n), (x^* - x)^\top \theta \ge 0 \iff \forall y \in \mathcal{Y}^*, \forall \theta \in \mathcal{S}^*(\mathbf{x}_n), y^\top (\theta^* - \theta) \le \Delta(y)$$

• Replacing y (directions) in place of x (arms) *Prop. 1*, we obtain

$$|c||y||_{A_{\mathbf{x}_n}^{-1}} \sqrt{\log_n(K^2/\delta)} \le \Delta(y)$$

Using the above two equations, we can define an optimal static allocation as

$$\mathbf{x}_{n}^{*} = \arg\min_{\mathbf{x}_{n}} \max_{y \in \mathcal{Y}^{*}} \frac{c||y||_{A_{\mathbf{x}_{n}}^{-1}} \sqrt{\log_{n}(K^{2}/\delta)}}{\Delta(y)} = \arg\min_{\mathbf{x}_{n}} \max_{y \in \mathcal{Y}^{*}} \frac{||y||_{A_{\mathbf{x}_{n}}^{-1}}}{\Delta(y)}$$

4. Oracle to Empirical stopping condition

- Oracle algorithm is not feasible, since x* and theta* are unknown.
- Given arms X, C(x) can be computed for each arm.
- S^(x) (Empirical confidence set) can be constucted from samples.
- Hence, new stopping condition becomes $\widehat{\mathcal{S}}(\mathbf{x}_n) \subseteq \mathcal{C}(x)$

$$\exists x \in \mathcal{X}, \forall x' \in \mathcal{X}, \forall \theta \in \widehat{\mathcal{S}}(\mathbf{x}_n), (x - x')^{\top} \theta \ge 0$$

$$\Leftrightarrow \exists x \in \mathcal{X}, \forall x' \in \mathcal{X}, \forall \theta \in \widehat{\mathcal{S}}(\mathbf{x}_n), (x - x')^{\top} (\hat{\theta}_n - \theta) \le \widehat{\Delta}_n(x, x'). \tag{9}$$

This suggests that the empirical confidence set can be defined as

$$\widehat{\mathcal{S}}(\mathbf{x}_n) = \left\{ \theta \in \mathbb{R}^d, \forall y \in \mathcal{Y}, y^\top (\widehat{\theta}_n - \theta) \le c||y||_{A_{\mathbf{x}_n}^{-1}} \sqrt{\log_n(K^2/\delta)} \right\}.$$
 (10)

Unlike $S^*(\mathbf{x}_n)$, $\widehat{S}(\mathbf{x}_n)$ is centered in $\widehat{\theta}_n$ and it considers all directions $y \in \mathcal{Y}$. As a result, the stopping condition in Eq. 9 could be reformulated as

$$\exists x \in \mathcal{X}, \forall x' \in \mathcal{X}, c ||x - x'||_{A_{\mathbf{x}_n}^{-1}} \sqrt{\log_n(K^2/\delta)} \le \widehat{\Delta}_n(x, x'). \tag{11}$$

4.1 Static allocation strategies

Here, We propose two allocations strategies that achieve the stopping condition as fast as possible.

1. G Allocation Strategy. (Name borrowed from optimal design)

It follows from the observation that,

for any pair
$$(x, x') \in \mathcal{X}^2$$
 we have that $||x - x'||_{A_{\mathbf{x}_n}^{-1}} \leq 2 \max_{x'' \in \mathcal{X}} ||x''||_{A_{\mathbf{x}_n}^{-1}}$.

We try to minimize this upper bound. Leading to the following eqn.

$$\mathbf{x}_n^G = \arg\min_{\mathbf{x}_n} \max_{x \in \mathcal{X}} ||x||_{A_{\mathbf{x}_n}^{-1}}.$$

2. XY Allocation Strategy.

$$\mathbf{x}_n^{\mathcal{X}\mathcal{Y}} = \arg\min_{\mathbf{x}_n} \max_{y \in \mathcal{Y}} ||y||_{A_{\mathbf{x}_n}^{-1}}.$$

Follows from the observation that, arms should be pulled with the objective of increasing the accuracy over directions rather than arms

4.1.1 Static allocation algorithms

The above problems are NP-hard discrete optimization problems. Hence we use an incremental approach to get an approximate solution.

```
Input: decision space \mathcal{X} \in \mathbb{R}^d, confidence \delta > 0
Set: t = 0; Y = \{y = (x - x'); x \neq x' \in \mathcal{X}\};
while Eq. 11 is not true do
   if G-allocation then
     x_t = \operatorname*{arg\,min}_{x \in X} \max_{x' \in X} x'^{\top} (A + xx^{\top})^{-1} x'
   else if XY-allocation then
     x_t = \underset{x \in X}{\arg\min} \max_{y \in Y} y^{\top} (A + xx^{\top})^{-1} y
   end if
   Update \hat{\theta}_t = A_t^{-1}b_t, t = t + 1
end while
Return arm \Pi(\hat{\theta}_t)
```

Figure 2: Static allocation algorithms

5. Adaptive algorithms

- Upper bounds for sample complexity of both G, XY allocation algorithms scale linearly with 'd'. (From theorem 1, 2)
- Even adaptive algorithms suffer from 'sqrt(d)' dimensionality problem. As seen in proposition 2.
- Hence we propose a phased algorithm where we combine both static and adaptive algorithms, whose sample complexity bound does not depend upon 'd'.

Sub Optimal Condition:

$$\exists x' \in \mathcal{X} \text{ s.t. } c ||x' - x||_{A_{\mathbf{x}_n}^{-1}} \sqrt{\log_n(K^2/\delta)} < \widehat{\Delta}_n(x', x),$$

5. XY - Adaptive algorithm

We Introduce few terms,

X_hat_j => Set of potentially optimal arms in phase j

Hence, new stopping condition => | X_hat_j | = 1

Algorithm:

- 1. In each phase we implement XY iterative algo.
- 2. The phase length is determined by the uncertainty present in estimating the active directions between successive phases.
- 3. Once a phase ends then we compute theta_hat using OLS method.
- 4. We then use the sub-optimal condition to remove the arms from X_hat_j.
- 5. And loop over the above steps until we meet stopping condition.

```
Input: decision space \mathcal{X} \in \mathbb{R}^d; parameter \alpha; confidence \delta
Set j = 1; \widehat{\mathcal{X}}_i = \mathcal{X}; \widehat{\mathcal{Y}}_1 = \mathcal{Y}; \rho_0 = 1; n_0 = d(d+1) + 1
while |\widehat{\mathcal{X}}_i| > 1 do
   \rho^j = \rho^{j-1}
    t = 1: A_0 = I
   while \rho^{j}/t \geq \alpha \rho^{j-1}(\mathbf{x}_{n_{j-1}}^{j-1})/n_{j-1} do
        Select arm x_t = \underset{x \in X}{\operatorname{arg min}} \max_{y \in Y} y^\top (A + xx^\top)^{-1} y
       Update A_t = A_{t-1} + x_t x_t^{\mathsf{T}}, t = t+1

\rho^j = \max_{y \in \widehat{\mathcal{Y}}_i} y^{\mathsf{T}} A_t^{-1} y
    end while
    Compute b = \sum_{s=1}^{t} x_s r_s; \hat{\theta}_i = A_t^{-1} b
    X_{i+1} = X
    for x \in \mathcal{X} do
       if \exists x': ||x-x'||_{A_{\star}^{-1}} \sqrt{\log_n(K^2/\delta)} \leq \widehat{\Delta}_j(x',x) then
            \widehat{\mathcal{X}}_{j+1} = \widehat{\mathcal{X}}_{j+1} - \{x\}
    end for
    \widehat{\mathcal{Y}}_{i+1} = \{ y = (x - x'); x, x' \in \widehat{\mathcal{X}}_{i+1} \}
end while
Return \Pi(\theta_i)
```

Figure 3: XY-Adaptive allocation algorithm

Published results:

Algorithm No.of samples required

XY-adaptive O(k) G, XY-static O(d)

Our scope Implementation:

- G allocation strategy
- XY allocation strategy
- XY-adaptive allocation strategy

Plot the performance w.r.t dimensionality as shown in the paper and compare them.

Figure 4: The sampling budget needed to identify the best arm, when the dimension grows from \mathbb{R}^2 to \mathbb{R}^{10} .

Implementation:

```
Current phase length: 27
Theta hat[Predicted Theta] :
No. of dominant arms : 3
The dominant arms :
Current phase length: 42
Theta hat[Predicted Theta] :
No. of dominant arms : 3
The dominant arms :
Current phase length: 56
Theta hat[Predicted Theta] :
[0.48038249]
No. of dominant arms : 1
The dominant arms :
Original Theta:
```

XY-adaptive algo with d = 2, K = 3, d = 0.05

Visualization of confidence set after each phase in theta space.

On a sample run of XY-adaptive algorithm

Observation:

No.of samples vs dimensionality

Reference:

 Research paper on Best Arm Identification in Linear Bandit https://arxiv.org/abs/1409.6110

THANK-YOU