Introdução à Inteligência Artificial

João Paulo Aires

Objetivos

- Busca Informada;
 - Busca Greedy Best First
 - Busca A*
- Funções Heurísticas

Índice

01 → Busca Informada

02 --- Funções Heurísticas

01 →

Busca Informada

Recap

Árvore vs Grafo

- Busca em árvore
 - Mantém uma lista aberta (a margem)
 - Expande nós de acordo com uma estratégia
- Busca em grafo
 - Mantém uma lista aberta e uma lista fechada
 - Estratégias semelhantes à Busca em árvore

Recap

Estratégias de Busca Desinformada

- Que estratégias de busca tínhamos?
 - Busca ampla (Breadth First)
 - Busca de custo uniforme (Uniform-cost)
 - Busca em profundidade (Depth First)
 - Busca com profundidade limitada (Depth-limited)
 - Busca iterativa de aprofundamento (Iterative deepening)

Busca de Custo Uniforme

Busca de Custo Uniforme

Busca Informada

- Ideia: selecione o nó para expansão com base em uma função de avaliação, f(n)
 - estimativa de "desejabilidade"
 - expandir o nó não expandido mais desejável
- Esta função pode medir a distância do objetivo, então expanda o nó com avaliação mais baixa
- Normalmente implementado por meio de uma fila de prioridade
- Nossa busca é do melhor primeiro; expandimos o nó que (acreditamos) é o melhor primeiro

Busca Greedy Best-first

Heurística

- Diferentes buscas informadas utilizam diferentes funções de avaliação.
- Um componente-chave é a função heurística h(n) que estima o custo do caminho mais barato do nó atual até um nó objetivo.
 - Exemplo: o caminho em linha reta do nó atual até o destino no problema de localização de rota.
- Uma regra para funções heurísticas: se estivermos no nó objetivo n, h(n) = 0.

Exemplo: Busca Greedy

Exemplo: Busca Greedy

Exemplo: Busca Greedy

Busca A*

- A busca A* é provavelmente o tipo de busca heurística mais utilizado
- Combina o custo para chegar a um nó (g(n)) com o custo para ir do nó até o objetivo (h(n))
- $\bullet \quad f(n) = g(n) + h(n)$
- f(n) é o custo estimado da solução mais barata através de n
- Como estamos tentando encontrar a solução mais barata, faz sentido tentar primeiro o nó com o f(n) mais baixo
- Sob certas condições de *h(n)*, a busca A* é completa e ótima

Busca A*

02 →

Funções Heurísticas

Contornos

- Funções heurísticas precisas fazem com que o contorno se estique mais estreitamente em direção ao caminho ideal
- A busca A* é muito boa, mas o número de nós dentro do espaço de busca do contorno objetivo ainda é exponencial no comprimento da solução (a menos que a heurística seja muito boa)
- Existem outras técnicas de busca que utilizam muito menos memória ao custo de maior tempo de computação.
- Para muitos problemas, o requisito de otimização deve ser abandonado.

Funções Heurísticas

- Fator de ramificação:
- Profundidade média:
- Número total de estados:

Funções Heurísticas

Fator de ramificação: 3

Profundidade média: 22

Número total de estados: 3²²

Funções Heurísticas

- Heurísticas:
- São admissíveis?

Funções Heurísticas

Heurísticas:

- o O número de peças fora do lugar distância de *hamming* (*h1* = 6)
- A soma das distâncias das peças em relação às suas posições corretas –
 distância de Manhattan (h2 = 14)
- São admissíveis?

Funções Heurísticas

- Regra: uma peça pode mover-se do quadrado A para o quadrado B se A é horizontal ou verticalmente adjacente a B; e B está em branco
- Podemos gerar problemas relaxados removendo uma ou ambas as condições
 - A remoção da 2a condição leva à distância Manhattan.
 - A remoção de ambas as condições leva a h1
- Existem outras maneiras de obter heurísticas (por exemplo, aprendizagem)

Heurística ≠ **Busca**

Os algoritmos de busca não são iguais às heurísticas que os utilizam!

- Algoritmos de busca informados os utilizam
- Algoritmos de busca ideais dependem de heurísticas admissíveis (A*)