Problem 1. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

1. *
$$y = 1/x$$
, $y = 0$, $x = 1$, $x = 4$; about the x-axis.

2.
$$y = \sqrt{25 - x^2}$$
, $y = 0$, $x = 2$, $x = 4$; about the x-axis.

3.
$$y = x^3$$
, $y = x$, $x \ge 0$; about the x-axis.

4.
$$y^2 = x$$
, $x = 2y$; about the y-axis.

5.
$$x = 2 - y^2$$
, $x = y^4$ about the *y*-axis.

Problem 2. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the given axis.

1. *
$$y = \sqrt[3]{x}$$
, $y = 0$, $x = 1$; about the *y*-axis.

2.
$$y = 4x - x^2$$
, $y = x$; about the y-axis.

3.
$$y = x^2$$
, $y = 6x - 2x^2$; about the *y*-axis.

4.
$$x = 1 + (y - 2)^2$$
, $x = 2$; about the x-axis.

5.
$$x + y = 4$$
, $x = y^2 - 4y + 4$; about the x-axis.