Examen Final [Jueves 5 de Julio 2018]

La evaluación dura 3 (tres) horas. Cada ejercicio debe sumar algún puntaje. Entregar en hojas separadas por ejercicio, numeradas, cada una con el Apellido y tema en el margen superior derecho. Entregar este enunciado. Respuestas incompletas reciben puntajes incompletos, incluso cero si no justifica. No usar libros ni apuntes.

- 1) a) Sea P(m,n): m|n, con $m \in \mathbb{Z}^+$ y $m \in \mathbb{Z}^+$, determine y justifique el valor de verdad de:
 - I) $\forall m \ \forall n \ P(m,n)$
 - II) $\exists m \ \forall n \ P(m,n)$
 - III) $\exists n \ \forall m \ P(m,n)$
 - b) Clasifique exhaustivamente la Relación de Recurrencia (RR) $12a_{n-1} = 18a_{n-2} + 2a_n$, para todo entero $n \ge 2$. Obtener la solución de la RR cuando $a_0 = 0$ y $a_1 = 3$, y verificarla.
- 2) a) (i)Enuncie el teorema del "apretón de manos". (ii)Utiliceló para determinar el número de aristas del grafo completo K_{100} . (iii)Describa la fila y columna de la matriz de adyacencia correspondientes a un vértice del grafo K_{100} .
 - b) Un coleccionista quiere comprar discos de música de distintos género, entre los cuales puede optar: clásico, rock, jazz, salsa y tropical. ¿De cuantas formas puede elegir 15 discos suponiendo que quiere tener al menos uno de cada género?
- 3) a) Defina relación reflexiva en un conjunto. Sea A un conjunto finito tal que |A| = n, determine la cantidad de relaciones reflexivas distintas que pueden obtenerse. Justifique.
 - b) Enuncie y simbolice el principio de inducción matemática. Luego demuestre usando inducción que n-1 es el numero de divisiones (o iteraciones) requeridas por el algoritmo de Euclides para calcular el $mcd(f_{n+1}, f_n)$ con n >= 2, donde f_n es el n-ésimo número de Fibonacci (recuerde que $f_1 = 1$ y $f_2 = 1$).
- 4) Nota: Tiene que mostrar todos los pasos intermedios. Puede hacer una tabla o dibujar cada grafo intermedio que resulte en cada etapa de cada algoritmo.
 - a) En el grafo G_1 (Fig. 1, izq.): (i) Encuentre un árbol de expansión T_1 mediante búsqueda en profundidad, usando el orden alfabético e indicando el orden en que se van agregando las aristas; (ii) Dibuje T_1 , determine su altura y recórralo en pre-orden.
 - b) En el grafo G_2 (Fig. 1): use el Algoritmo de Dijkstra (AD) para hallar una Ruta de Peso Mínimo (RPM) desde el vértice A hacia H, trácela e indique su longitud.

Figura 1: Grafos G_1 (izq.) para el inciso 4a y G_2 (der.) para el inciso 4b.