- 1. A ring element a is called *idempotent* if $a^2 = a$. The following are problems regarding idempotent elements. Each problem is otherwise unrelated.
 - (a) Prove that is a is an idempotent ring element, then $a^n = a$ for all positive integers a. a is indempotent so $a^2 = a$. Now for m = 1. $a^m = a^1 = a$. Now for m = k + 1. $a^{k+1} = a^k a = aa = a$ since $a^k = a$ and $a^2 = a$ by the induction hypothesis. So we can say it is true for all natural numbers.
 - (b) Show that any idempotent element in a commutative ring with unity other than 0 or 1 is a zero-divisor. $a \neq 0, 1$ Now $a(1-a) = a(1+(-a)) = a+a(-a) = a-a^2 = a-a$ since the ring is commutive with unity. Now we have a-a=0 So with $a\neq 0, 1$ we have an element (1-a) such that a(1-a)=0. So a is a zero divisor.
- 2. Find all units, zero-divisors, idempotents, and nilpotent elements in ring $\mathbb{Z}_3 \oplus \mathbb{Z}_6$. (Recall: an element a is nilpotent if $a^n = 0$ for some positive integer n.) Zero element of $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ is (0,0). Identity element of $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ is (1,1). Unit let $(a,b)and(c,d) \in \mathbb{Z}_3 \oplus \mathbb{Z}_6$ such that $(a,b)\dot{(c,d)} = (1,1)$. Then we have (ac,bd) = (1,1),ac = 1,bd = 1. So a is a unit and b is a unit. Now we know a is a unit in \mathbb{Z}_n for some integer n if gcd(n,a) = 1 So 1,2 are units in \mathbb{Z}_3 and 1,5 are units in \mathbb{Z}_6 . Hence the units of $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ are (1,1),(1,5),(2,1),and(2,5). Zero divisors: let (a,b) by a zero divisor of $\mathbb{Z}_3 \oplus \mathbb{Z}_6$. Then there exists non zero element (c,d) in $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ such that (ac,bd)=(0,0). So ac=0 and bd=0. 0 is the only zero divisor of \mathbb{Z}_3 as it is a field. the zero divisors of \mathbb{Z}_6 are (0,2),(3,3),(0,4). Indepotent: Let (a,b) be indempotent of $\mathbb{Z}_3 \oplus \mathbb{Z}_6$. Then $(a,b)^2 = (a,b)$ so $a^2 = a$ and $b^2 = b$. So a and b are indempotent in \mathbb{Z}_3 and \mathbb{Z}_6 respectfully. 0,1 are indempotent in \mathbb{Z}_3 0,1,3,4 are indempotent in \mathbb{Z}_6 . So the indempotents of $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ are (0,0),(0,1),(0,3),(0,4),(1,0),(1,1),(1,3), and (1,4). Nilpotent. Similarly if we can show (a,b) is nilpotent in $\mathbb{Z}_3 \oplus \mathbb{Z}_6$ then a,b are nilpotent in \mathbb{Z}_3 and \mathbb{Z}_6 . 0 is the only nilpotent element of $\mathbb{Z}_3 \oplus \mathbb{Z}_6$.
- 3. Suppose that a and b belong to an integral domain a. If $a^m = b^m$ and $a^n = b^n$, where a and a positive integers that are relatively prime, prove that a = b. Note that the elements a, b are not necessarily units, so we cannot assume a^{-1} or a^{-1} (or powers of a^{-1} or a^{-1}) exist. Because a gcd(m,n)=1 a gcd such that mx+ny=1. a gcd such that mx+ny=1 a gcd such
- 4. The following are problems regarding the characteristic of a ring.
 - (a) Let R be a ring with m elements. Show that the characteristic of R divides m. Let r be the characteristic of R. Since the characteristic is r there $\exists x \in R$ such that the group generated by x under addition of the ring has size r. By lagrange theroem r||R|| hence r|m.
 - (b) Show that any finite field has order p^n , where p is a prime. (Hint: Use facts about finite abelian groups.) Let F be a finit efield. Le the smallest multipe of 1 that gives be p. p is the characteristic of the field. We have p.1 = 0 Let it be possible p is not prime. then p=rs for some integers r and s less than p. p.1=(r.1)(s.1). Since p is the smallest possible integer such that p.1 = 0 we have $(r.1) \neq 0$ and $(s.1) \neq 0$ but (r.1)(s.1) = 0 this contradicts that F is a field. Hence p is prime. Finally if q is prime other than p such that q||F|| the since (R,+) is an abelian group $\exists x \in F$ such that $x \neq 0, x+x...(qtimes)+x=0$ hence x(q.1)=0. Since p is the characyeristic of the field and p doesn't divide q we have $q.1 \neq 0$ hence a contracdiction. Hence p is the only prime divisor of ||F||.