III. CLAIM AMENDMENTS

1-11. (cancelled)

12. (currently amended) A method for detecting pauses in speech in speech recognition, in which method, for recognizing speech commands uttered by the a user, the voice speech is converted electrical signal, the frequency spectrum into electrical signal is divided into two or more sub-bands, samples. of the signals in the sub-bands are stored at intervals, the energy levels of the sub-bands are determined on the basis of the stored samples, a power threshold value (thr) is determined, and the energy levels of the sub-bands are compared with said power threshold value (thr), wherein the comparison results are used for producing a pause detecting result, and further wherein a detection time limit (END) and a detection quantity (SB SUFF TH) are determined, wherein in the method, the calculation of the length of a pause in a sub-band is started when the energy level of the sub-band falls below said power threshold value (thr), wherein in the method, a sub-band specific detection is performed when the calculation reaches the detection time limit (END), it is examined on how many sub-bands the energy level was below the power threshold value (thr) longer than the time detection limit (END), wherein a pause detection decision is made if the number of sub-band specific detections is greater than or equal to the detection quantity (SB SUFF TH) - and

further wherein an activity time limit (SB ACTIVE TH) and an activity quantity (SB MIN TH) are determined, wherein a pause detection decision is made if the quantity of sub-band specific detections is greater than or equal to the activity quantity

(SB MIN TH) and the activity time limit (SB ACTIVE TH) has not been reached on the other sub-bands in the calculation of the length of the pause in the sub-band.

13. (cancelled)

(currently amended) A method for detecting pauses in speech 14. in speech recognition, in which method, for recognizing speech commands uttered by the a user, the voice speech is converted an electrical signal, the frequency spectrum the electrical signal is divided into two or more sub-bands, samples of the signals in the sub-bands are stored at intervals, the energy levels of the sub-bands are determined on the basis of the stored samples, a power threshold value (thr) is determined, and the energy levels of the sub-bands are compared with said power threshold value (thr), wherein the comparison results are used for producing a pause detecting result, wherein a pause detection is performed on each sub-band on the basis of the comparison results, the number of sub-bands on which a pause is detected are compared with an activity threshold, wherein if the number of sub-bands on which a pause is detected is greater than said activity threshold, it is deduced that there is a pause in the speech, and further wherein the power threshold value (thr) is calculated by the formula:

$$thr = p_min + k \cdot (p_max - p_min)$$
, in which

- p_min = the smallest power maximum determined of the stored
 samples of the sub-bands, and
- p_max = the greatest power minimum determined of the stored
 samples of the sub-bands

- 15. (previously presented) The method according to claim 12, characterized in that said power threshold value (thr) is calculated adaptively by taking into account the environmental noise level at each instant.
- 16. (currently amended) A method for detecting pauses in speech in speech recognition, in which method, for recognizing speech commands uttered by the a user, the voice-speech is converted into an electrical signal, the frequency spectrum electrical signal is divided into two or more sub-bands, samples of the signals in the sub-bands are stored at intervals, the energy levels of the sub-bands are determined on the basis of the stored samples, a power threshold value (thr) is determined, and the energy levels of the sub-bands are compared with said power threshold value (thr), wherein the comparison results are used for producing a pause detecting result, wherein a pause detection is performed on each sub-band on the basis of the comparison results, the number of sub-bands on which a pause is detected are compared with an activity threshold, wherein if the number of sub-bands on which a pause is detected is greater than said activity threshold, it is deduced that there is a pause in the speech, wherein said power threshold value (thr) is calculated adaptively by taking into account the environmental noise level at each instant and further wherein, for calculating said power threshold value (thr), a modification coefficient (UPDATE C) is determined, and on the basis of the stored samples, the greatest power level (win max) and the smallest power level (win min) of

the sub-bands are calculated, wherein the power maximum (p_max) and power minimum (p_min) are determined by the formulae:

$$p_{max}(i,t) = (1-UPDATE_C) \cdot p_{max}(i,t-1) + (UPDATE_C \cdot win_{max})$$

$$p_{min}(i,t) = (1-UPDATE_C) \cdot p_{min}(i,t-1) + (UPDATE_C \cdot win_{min})$$

to 1 representing different moments in time, wherein t-1 is the moment in time preceding t.

- 17. (previously presented) The method according to claim 16, characterized in that further in the method,
 - the modification coefficient (UPDATE_C) is increased, if the absolute value of the difference between said calculated highest power level (win_max) and the power maximum (p_max), or the absolute value of the difference between said calculated lowest power level (win_min) and the power minimum (p_min) has increased,
 - the modification coefficient (UPDATE_C) is reduced, if the absolute value of the difference between said calculated highest power level (win_max) and the power maximum (p_max), or the absolute value of the difference between said calculated lowest power level (win_min) and the power minimum (p_min) has decreased.

- 18. (currently amended) A speech recognition device (16) comprising:
 - means (la, lb) for converting speech commands uttered by a user into an electrical signal,
 - means (8) for dividing the frequency spectrum of the electrical signal into two or more sub-bands,
 - means (14) for storing samples of the signals of the subbands at intervals,
 - means (5, 13) for determining energy levels of the sub-bands on the basis of the stored samples,
 - means (5, 13) for determining a power threshold value (thr),
 - means (5, 13) for comparing the energy levels of the subbands with said power threshold value (thr), and
 - means (5, 13) for detecting a pause in the speech on the basis of said comparison results, wherein the power threshold value is calculated by the formula

$thr = p_min + k \cdot (p_max - p_min)$, in which

- p_min = the smallest determined power maximum of the stored
 samples of the sub-bands, and
- p_max = the greatest determined power minimum of the stored
 samples of the sub-bands
- k = a factor that is greater than zero and less than one.

- 19. (previously presented) The speech recognition device (16) according to claim 18, characterized in that it comprises also means (10, 11) for filtering the signals of the sub-bands before storage.
- 20. (currently amended) A method for detecting pauses in speech during speech recognition comprising the steps of:

recognizing speech uttered by the a user;

converting said speech into an electrical signal;

dividing the frequency spectrum of the electrical signal into two or more sub-bands;

storing samples of the signals in the sub-bands at intervals;

calculating the energy levels of each of the sub-bands on the basis of the stored samples;

setting a predetermined-power threshold energy level-value;

comparing the calculated energy levels of each of the subbands with said <u>power energy level</u> threshold value;

counting the number of sub-bands in which said calculated energy level is below said energy level threshold value;

setting an activity threshold for determining a pause in said speech at a predetermined number of sub-bands;

comparing said counted number of sub-bands with said activity threshold, wherein, if said counted number of sub-bands is greater than said activity threshold, a pause in speech is indicated,

determining an activity time limit (SB ACTIVE TH) and an activity quantity (SB MIN TH), wherein a pause detection decision is made if the quantity of sub-band specific detections is greater than or equal to the activity quantity (SB MIN TH) and the activity time limit (SB ACTIVE TH) has not been reached on the other sub-bands in the calculation of the length of the pause in the sub-band.

21. (currently amended) A method according to claim 20, further comprising the steps of:

setting a predetermined time threshold; and

counting the number of sub-bands in which said calculated energy level is below <u>said</u> energy level threshold value for at least said predetermined time threshold.