In textbook, compactness theorem of proposition logic is proved based on König lemma. Here prove inversely. It means that they are equivalent.

Exercises

- 1. Design a circuit for multiply with two two bits input and four bits output. For example, have 1*1=1,10*11=110.
- 2. Brown, Jones, and Smith are suspected of a crime. They testify as follows:
 - (a) Brown: Jones is guilty and Smith is innocent.
 - (b) Jones: If Brown is guilty then so is Smith.
 - (c) Smith: I'm innocent, but at least one of the others is guilty.

Represent their testimonies with propositions and show who would be the criminal.

3. Every set S can be (totally) ordered. (Hint: Use proposition to represent partial order and

Let elements of the order be $\{p_n \mid n \in N\}$. Consider propositions Kp_ip_i , Ap_i , Bp_i and Cp_i for $i,j \in N$. Think of Rp_ip_j as saying that $p_i < p_j$. Think of Ap_i as saying that $p_i < p_j$. Think of Ap_i as saying that $p_i < p_j$. Think of Ap_i as saying that p_i is in chain A and similarly for Bp_i and Cp_i 3. Each of A, B, C is a chain; every element is in A, B, or C; the order has with D. $Ap_i \lor Bp_i \lor Cp_i$ $BC \mid 0 \le i \le n$ for all $p_i \in S$.

- 3. Rpipi VRApi VRApi -- VRPipi for for orall pie & /B/C.
- ③·最为有益对不可比较的证券

 O TRPip:VTRPmPnVTRPxPy.

 Pi. Pj., Pm. Pm., Px. Py 6 S.

 for any subset So S S, we can extract elements pi from it and construct a set SI which des for every finite subset of width at machthree can be dear divided into three chains. Si is satisfiable. So much not satisfiable according to compactness theorem, S is satisfiable means an of infinite partial order of width at most 3 can be divided into three chains.