Lecture 11: Chapter 4 Part 3

The Greedy Approach CS3310

Prim's and Kruskal's algorithms determine a minimum spanning tree in a weighted, undirected graph.

Dijkstra's algorithm works with a weighted, directed graph.

- In a directed graph, arrows indicate in which direction an edge can be taken.
 - i.e. in this graph, v_1 to v_5 is a valid direction, but v_5 to v_1 is not.
- We use angle brackets to indicate that an edge is directed: $\langle v_1, v_5 \rangle$

Dijkstra's algorithm is a greedy algorithm that solves what is known as the *Single-Source Shortest Paths* problem.

- The goal is to determine the shortest paths from one particular vertex in a graph to every other vertex in that graph.
 - \circ i.e. the shortest path from v_1 to v_2 , the shortest path from v_1 to v_3 , etc
- We initialize a set Y to contain only the vertex whose shortest paths we are determining.
- An empty set F will eventually contain all the edges needed to connect v_1 to every other vertex with the least amount of weight.
- In our examples, we will always solve the paths from v_1 , but in practice any vertex can be chosen.

- After initialization, select the vertex v nearest to v_1 and add it to Y.
 - The edge $\langle v_1, v \rangle$ is therefore the shortest path from v_1 to v: add it to F.
- Next, find the shortest path from v_1 to any vertex in V Y, using only the other vertices in Y as possible intermediaries.
 - o i.e. if $Y = \{v_1, v_2\}$ and $V Y = \{v_3, v_4, v_5\}$ which paths do we need to check?

- After initialization, select the vertex v nearest to v_1 and add it to Y.
 - \circ The edge $\langle v_1, v \rangle$ is therefore the shortest path from v_1 to v: add it to F.
- Next, find the shortest path from v_1 to any vertex in V Y, using only the other vertices in Y as possible intermediaries.
 - o i.e. if $Y = \{v_1, v_2\}$ and $V Y = \{v_3, v_4, v_5\}$ which paths do we need to check?
 - Any of the following paths that exist in the graph:

$$, , , , , .$$

- Add the vertex at the end of shortest path to Y. Add the path's final edge to F.
 - If the shortest path is $\langle v_1, v_3 \rangle$, add: ??
 - \circ If the shortest path is $\langle v_1, v_2, v_4 \rangle$, add: ??

- After initialization, select the vertex v nearest to v_1 and add it to Y.
 - \circ The edge $\langle v_1, v \rangle$ is therefore the shortest path from v_1 to v: add it to F.
- Next, find the shortest path from v_1 to any vertex in V Y, using only the other vertices in Y as possible intermediaries.
 - o i.e. if $Y = \{v_1, v_2\}$ and $V Y = \{v_3, v_4, v_5\}$ which paths do we need to check?
 - Any of the following paths that exist in the graph:

$$, , , , , .$$

- Add the vertex at the end of shortest path to Y. Add the path's final edge to F.
 - If the shortest path is $\langle v_1, v_3 \rangle$, add: $\langle v_1, v_3 \rangle$ to F and v_3 to Y.
 - If the shortest path is $\langle v_1, v_2, v_4 \rangle$, add: $\langle v_2, v_4 \rangle$ to F and v_4 to Y.

Problem: Determine the shortest paths from a vertex (v_1 in this example) to all other vertices in a weighted, directed graph.

Inputs: integer $n \ge 2$, and a connected, weighted, directed graph containing n vertices. The graph is represented by a two-dimensional array W, with its rows and columns indexed from 1 to n, where W[i][j] is the weight on the edge from the ith vertex to the jth vertex.

Outputs: set of edges F containing edges in shortest paths.

Dijkstra's Algorithm High-Level

```
Y = \{ v_1 \}
F = \{ \}
while (the instance is not solved) // selection procedure and select a vertex v from V - Y, with a // feasibility check shortest path from v_1, using only vertices in Y as possible intermediaries. add the vertex v to Y add the edge (on the shortest path) that touches v to F)

if (Y == V)
the instance is solved // Solution Check
```

Dijkstra's Algorithm Initialization

Suppose we want to find the shortest paths of v_1

$$Y = \{ v_1 \}$$
 $V - Y = \{ v_2, v_3, v_4, v_5 \}$
 $F = \{ \}$

- Initialize Y to contain v_1
- Initialize F to the empty set.

Y only contains v_1 , so there are no potential intermediaries yet. For the first step, simply find the vertex in the graph nearest to v_1

$$Y = \{ v_1, v_5 \}$$

$$V - Y = \{ v_2, v_3, v_4 \}$$

$$F = \{ \langle v_1, v_5 \rangle \}$$

 v_5 is the nearest vertex to v_1 .

- v_5 is added to Y
- $\langle v_1, v_5 \rangle$ is added to F

We next choose the vertex in V - Y that is closest to v_1 , either by direct connection or by passing through v_5 first.

$$Y = \{ v_1, v_4, v_5 \}$$

$$V - Y = \{ v_2, v_3 \}$$

$$F = \{ \langle v_1, v_5 \rangle, \langle v_5, v_4 \rangle \}$$

 v_4 is the closest vertex to v_1 when passing through v_5 with a total weight of 2.

- v_4 is added to Y
- $\langle v_5, v_4 \rangle$ is added to F, since v_5 is the vertex in Y that *touches* v_4 .

We next choose the vertex in V - Y that is closest to v_1 , either by direct connection or by passing through v_5 or v_4 (or both)

Dijkstra's Algorithm Step Three

$$Y = \{ v_1, v_3, v_4, v_5 \}$$

$$V - Y = \{ v_2 \}$$

$$F = \{ \langle v_1, v_5 \rangle, \langle v_1, v_3 \rangle, \langle v_5, v_4 \rangle \}$$

 v_3 is the nearest vertex to v_1 by direct connection

- v_3 is added to Y
- $\langle v_1, v_3 \rangle$ is added to F, since v_1 is the vertex in Y that *touches* v_3 .

We finally find the shortest path from v_1 to v_2

$$Y = \{ v_1, v_2, v_3, v_4, v_5 \}$$

$$V - Y = \{ \}$$

$$F = \{ \langle v_1, v_5 \rangle, \langle v_1, v_3 \rangle, \langle v_5, v_4 \rangle, \langle v_4, v_2 \rangle \}$$

The shortest path between v_1 and v_2 is $[v_1, v_5, v_4, v_2]$

- v_2 is added to Y
- $\langle v_4, v_2 \rangle$ is added to F.

We are finished!

• This high-level algorithm only works for a human solving a small graph.

For the detailed algorithm, we keep two arrays, touch and length:

- touch [i] = index of the vertex v in Y such that the edge $\langle v, v_i \rangle$ is the last edge on the current shortest path from v_1 to v_i , using only vertices in Y as intermediaries.
 - i.e. If touch [2] = 4 then $\langle v_4, v_2 \rangle$ is the last edge on the current shortest path from v_1 to v_2
- length [i] = length of the current shortest path from v_1 to v_i using only vertices in Y as intermediaries.

```
void dijkstra (int n, const number W[][], set of edges& F)
          index i, vnear;
          edge e;
          index touch[2..n];
          index length[2..n];
         F = \{ \}
         for ( i = 2; i <= n; i++) ^{//} For each vertex v_{\rm i} , initialize v_{\rm 1} to be
                   touch[i] = 1; the final vertex on the shortest path from Y
                   length[i] = W[1^{\dagger}P_i]^{V_i}, and initialize the length of that
                                     path to be the weight on the edge from v_1 to
                                     V_{\mathsf{i}}
```

Dijkstra's Algorithm cont'd

```
repeat (n - 1 times)
                                          // Add all n - 1 vertices to Y
        min = \infty;
         for (i = 2; i \le n; i++) // see which vertex is on current shortest
path
                  if ( 0 <= length[i] < min)
                          min = length[i];
                          vnear = i:
                                                     // vnear is closest vertex
to those in Y
         e = edge from touch [vnear] to vnear. Add to F;
    // for each vertex in V - Y, update shortest path from v_1 if necessary
    for ( i = 2; i <= n; i++)
         if ( length[vnear] + W[vnear][i] < length[i])</pre>
                  length[i] = length[vnear] + W[vnear][i];
                  touch[i] = vnear;
    length[vnear] = -1;
                                                                                16
```

Dijkstra's Algorithm Initialization

	1	2	3	4	5
1	0	7	4	6	1
2	∞	0	∞	∞	∞
3	∞	2	0	5	∞
4	∞	3	∞	0	∞
5	∞	∞	∞	1	0

$$V - Y = \{?\}$$

 $Y = \{?\}$
 $F = \{\}$

length = { ? }	touch = {?}
vnear =	e =

$$F = \{\}$$

W =

Dijkstra's Algorithm Initialization

		1	2	3	4	5
W =	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

$$V - Y = \{ 2, 3, 4, 5 \}$$

 $Y = \{ 1 \}$
 $F = \{ \}$

length = { -1, 7, 4, 6, 1 }	touch = { 0, 1, 1, 1, 1 }
vnear =	e =

$$F = \{\}$$

		1	2	3	4	5
W =	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

$$V - Y = \{ 2, 3, 4, 5 \}$$

 $Y = \{ 1 \}$
 $F = \{ \}$

- v_5 is the closest vertex in V Y to Y with a weight of 1.
- The vertex it touches in Y is v_1

		1	2	3	4	5
W =	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

$$V - Y = \{ 2, 3, 4 \}$$

 $Y = \{ 1, 5 \}$
 $F = \{ <1, 5 > \}$

length = { -1, 7, 4, 6, 1 }	touch = { 0, 1, 1, 1, 1 }
vnear = 5	<i>e</i> = <1, 5>

- Add *e* to F and update length and touch.
- length[vnear] + W[vnear][4] = 1 + 1 = 2, which is less than length[4] = 6.
 - i.e. v_4 is only 2 away from v_1 using v_5 as an intermediary.

		1	2	3	4	5
W =	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

$$V - Y = \{ 2, 3, 4 \}$$

 $Y = \{ 1, 5 \}$
 $F = \{ <1, 5 > \}$

length = { -1, 7, 4, 2, -1 }	touch = { 0, 1, 1, 5, 1 }
vnear = 5	<i>e</i> = <1, 5>

- Set length [4] to 2 indicating the current shortest path from v_1 to v_4 has a weight of 2.
- Set touch [4] to 5 indicating v_5 is the vertex in Y that v_4 touches on this shortest path
- Set length [vnear] to -1 to add vnear to Y

		1	2	3	4	5
W =	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

V - Y =
$$\{2, 3, 4\}$$

Y = $\{1, 5\}$
F = $\{<1, 5>\}$

- v_4 is the closest vertex in V Y to Y.
- The vertex it touches in Y is v_5 .

		1	2	3	4	5
W =	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

- Add *e* to F and see if we need to update length and touch.
- length[2] = 7 and length[vnear] + W[vnear][2] = 2 + 3 = 5.
 - \circ i.e. v_2 is closer to v_1 via v_4 with a weight of 5 than it is to v_1 directly.

		1	2	3	4	5
W =	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

- v_2 is closer to v_1 via v_4 with a weight of 5 than it is to v_1 directly.
 - O Update touch[2] to 4 and length[2] to 5
 - O Add vnear to Y by setting its length to -1

		1	2	3	4	5
	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
W =	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

length = { -1, 5, 4, -1, -1 }	touch = { 0, 4, 1, 5, 1 }
vnear = 3	<i>e</i> = <1, 3>

- v_3 is the closest vertex in V Y to Y with a weight of 4.
- The vertex it touches in Y is v_1 .

		1	2	3	4	5
	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
W =	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

length = { -1, 5, -1, -1, -1 }	touch = { 0, 4, 1, 5, 1 }
vnear = 3	<i>e</i> = <1, 3>

- Add *e* to F and see if we need to update length and touch.
 - No updates needed!
 - Add vnear to Y by setting length to -1

		1	2	3	4	5
	1	0	7	4	6	1
	2	∞	0	∞	∞	∞
W =	3	∞	2	0	5	∞
	4	∞	3	∞	0	∞
	5	∞	∞	∞	1	0

length = { -1, 5, -1, -1, -1 }	touch = { 0, 4, 1, 5, 1 }
vnear = 2	<i>e</i> = < 4 , 2 >

- v_2 is the closest vertex in V Y to Y with a weight of 5.
 - The vertex it touches in Y is v_4 .
 - Add e to F and we're done!

The 0-1 Knapsack problem is famous and has multiple solutions or partial solutions.

• Today, we will discuss the greedy approach to this problem. Later in the semester we will look at dynamic programming and backtracking solutions.

The Problem:

- Imagine that a thief breaks into a jewelry store with a knapsack. The knapsack will break if the total weight of the items stolen exceeds some maximum weight W.
- Each item has a value and a weight.
- How do we maximize the total value of the items taken while not breaking the bag?

```
S = \{item_1, item_2, ..., item_n \}, the list of items to be stolen w_i = \text{weight of } item_i p_i = \text{profit of } item_i W = \text{maximum weight the knapsack can hold}
```

A = bag of stolen items.

- The brute-force solution is to consider all subsets of the *n* items, discard the ones that exceed W, and take one of the remaining subsets with maximum total profit.
- What is the Order of this solution?

```
S = \{item_1, item_2, ..., item_n\}, the list of items to be stolen w_i = \text{weight of } item_i
p_i = \text{profit of } item_i
W = \text{maximum weight the knapsack can hold}
```

A = bag of stolen items.

- The brute-force solution is to consider all subsets of the *n* items, discard the ones that exceed W, and take one of the remaining subsets with maximum total profit.
- What is the Order of this solution? $\Theta(2^n)$

What is a greedy solution to this problem?

1st idea: steal the items with the largest profit first.

What is wrong with this solution?

What is a greedy solution to this problem?

1st idea: steal the items with the largest profit first.

Suppose we have three items and W = 30:

Item	Weight	Profit
a	25	\$10
ь	10	\$9
c	10	\$9

We would take item a and not be able to take b or c, but taking b and c is the optimal solution!

What is a greedy solution to this problem?

2nd idea: steal the items with the smallest weight first.

Suppose we have three items and W = 30:

Item	Weight	Profit
a	5	\$1
b	10	\$2
c	20	\$10

We would take item a and b and not be able to take or c, but taking b and c is the optimal solution!

What is a greedy solution to this problem?

3rd idea: Steal the items with the largest profit-per-unit weight first. We order the items in nonincreasing order according to profit-per-unit weight, and select them in sequence.

> An item is placed in the knapsack if its weight does not bring the total weight above W.

Is there a counterexample for this strategy?

3rd idea: Steal the items with the largest profit-per-unit weight first. We order the items in nonincreasing order according to profit-per-unit weight, and select them in sequence.

➤ An item is placed in the knapsack if its weight does not bring the total weight above W.

Imagine we have the following items, and W = 30:

- $item_1$. \$50 / 5 = \$10 profit-per-unit weight
- $item_2$, \$60 / 10 = \$6 profit-per-unit weight
- $item_3$; \$140 / 20 = \$7 profit-per-unit weight

Our Greedy Solution is better, but still not optimal!

The Fractional Knapsack Problem

- Now imagine the thief does not have to steal all of an item, but can take any fraction of an item.
 - o i.e. bags of gold dust
- Instead of having 5 pounds leftover in the bag, we would simply take 5/10(\$60) of item 2, adding \$30 to the total, giving us \$220!

In-Class Exercise

1. Use Dijkstra's Algorithm to find the shortest path from v_5 to all the other vertices in the following graph. Show the values in F, length, and touch after each step

	1	2	3	4	5	6
1	0	∞	1	5	9	2
2	∞	0	3	2	5	7
3	1	3	0	∞	15	9
4	5	2	∞	0	2	3
5	9	8	15	2	0	8
6	2	7	9	3	8	0