Randomly solving 2-SAT.

Àlex Batlle Casellas

a) Let X_n be the number of satisfied clauses after n iterations of the loop in (2) (we will refer to it as time n). Given the execution up top time n-1, is it always true that $\mathbb{E}[X_n] \geq X_{n-1}$?

Solution

The claim is not true. Let us prove it by a counterexample: let ϕ be the following CNF formula:

$$\phi = (x_1 \lor x_2) \land (x_1 \lor x_3) \land (\bar{x_1} \lor \bar{x_4}) \land (\bar{x_1} \lor x_3) \land (\bar{x_4} \lor \bar{x_3}),$$

and $\mathbf{x} = (0, 1, 0, 1)$ the assignment at time n - 1. Then, it follows that $X_{n-1} = 4$, and the expectancy of the variable X_n can be calculated as follows; whether x_1 swaps its value, and then $X_n = 3$, or x_3 swaps its value and $X_n = 4$. This gives an expectancy

$$\mathbb{E}[X_n] = \frac{1}{2}3 + \frac{1}{2}4 = \frac{7}{2} < 4 = X_{n-1}.$$

b) Since ϕ is satisfiable, let \mathbf{x}^* be an arbitrary satisfying assignment. Let Y_n be the number of variables in \mathbf{x} whose value coincides with the one in \mathbf{x}^* at time n. Given the execution up to time n-1, is it always true that $\mathbb{E}[Y_n] \geq X_{n-1}$?

Solution

c) Argue that if $Y_n = k$, then RAND2SAT terminates at time n. Is the converse true? Solution

Since $Y_n = k$, it means that all variables in \mathbf{x} are equal to \mathbf{x}^* . As \mathbf{x}^* is an arbitrary satisfying assignment, it means that $\phi(\mathbf{x}^*) = 1$, and as $\phi \in \text{CNF-2-SAT}$, it follows that is has no violated clauses. Then, as described by the algorithm, the loop in (2) stops when no clauses are violated. Hence, when $Y_n = k$, the algorithm halts at this moment (time n).

d) Is Y_n a Markov chain? Solution

- e) Design a Markov chain Z_n such that $Y_n \geq Z_n$. Solution
- f) Use Z_n to prove that the expected running time of RAND2SAT is at most k^2 . Solution
- *g) We modify RAND2SAT to stop in bounded time as follows. Let $l \in \mathbb{Z}$. If after $2lk^2$ iterations of the loop in (2) we have not halted, we break the loop and return the current assignment \mathbf{x} . Prove that the output of the modified RAND2SAT is a satisfying assignment with probability at least $1-2^{-l}$. Solution