

# Nome documento

### Three Way Milkshake - Progetto "PORTACS"

threewaymilkshake@gmail.com

Versione | 0.0.1

Stato Appr

Approvato/Non approvato

Uso Interno/Esterno

**Approvazione** Nome approvatore

**Redazione** Nome redattore

**Verifica** Nome verificatore

**Destinatari** Three Way Milkshake

Prof. Tullio Vardanega

Prof. Riccardo Cardin

#### Descrizione

Breve descrizione del documento



# Registro delle modifiche

| Versione | Descrizione                             | Data       | Nominativo       | Ruolo  |
|----------|-----------------------------------------|------------|------------------|--------|
| 0.0.3    | Stesura della sezione § 8.1             | 22-11-2020 | Sofia Chiarello  | Ruolo2 |
| 0.0.2    | Stesura della sezione § 3.1             | 21-11-2020 | Simone De Renzis | Ruolo1 |
| 0.0.1    | Impostazione struttura<br>del documento | 20-11-2020 | Simone De Renzis | Ruolo1 |





## Indice

| 1 | Inti | Introduzione |                                                  |   |  |  |  |  |
|---|------|--------------|--------------------------------------------------|---|--|--|--|--|
|   | 1.1  | Scopo        | del documento                                    | 5 |  |  |  |  |
|   | 1.2  |              |                                                  | 5 |  |  |  |  |
| 2 | Ana  | alisi de     | el capitolato scelto                             | 6 |  |  |  |  |
|   | 2.1  | Capit        | olato C5 - Portacs                               | 6 |  |  |  |  |
| 3 | Ana  | alisi de     | ei capitolati rimanenti                          | 7 |  |  |  |  |
|   | 3.1  | Capit        | olato C1 - BlockCOVID                            | 7 |  |  |  |  |
|   |      | 3.1.1        | Informazioni generali                            | 7 |  |  |  |  |
|   |      | 3.1.2        | Descrizione del capitolato                       | 7 |  |  |  |  |
|   |      | 3.1.3        | Finalità del progetto                            | 7 |  |  |  |  |
|   |      | 3.1.4        | Tecnologie interessate                           | 7 |  |  |  |  |
|   |      | 3.1.5        | Aspetti positivi                                 | 8 |  |  |  |  |
|   |      | 3.1.6        | Criticità 8                                      | 3 |  |  |  |  |
|   |      | 3.1.7        | Conclusioni                                      | 8 |  |  |  |  |
|   | 3.2  | Capit        | olato C7 - Soluzioni di sincronizzazione Desktop | 9 |  |  |  |  |
|   |      | 3.2.1        |                                                  | 9 |  |  |  |  |
|   |      | 3.2.2        |                                                  | 9 |  |  |  |  |
|   |      | 3.2.3        |                                                  | 9 |  |  |  |  |
|   |      | 3.2.4        |                                                  | 9 |  |  |  |  |
|   |      | 3.2.5        | Aspetti positivi                                 | 9 |  |  |  |  |
|   |      | 3.2.6        | Criticità e fattori di rischio                   | 0 |  |  |  |  |
|   |      | 327          | Conclusioni 10                                   | n |  |  |  |  |



# Elenco delle figure



## Elenco delle tabelle



## 1 Introduzione

### 1.1 Scopo del documento

Questo documento ha lo scopo di

### 1.2 Scopo del prodotto

Il capitolato ... eccetera



## 2 Analisi del capitolato scelto

### 2.1 Capitolato C5 - Portacs



### 3 Analisi dei capitolati rimanenti

#### 3.1 Capitolato C1 - BlockCOVID

#### 3.1.1 Informazioni generali

• Nome: BlockCOVID

• Proponente: Imola Informatica

• Committente: Prof. Tullio Vardanega, Prof. Riccardo Cardin

#### 3.1.2 Descrizione del capitolato

Il software BlockCOVID si pone l'obiettivo di fornire un'infrastruttura che consenta il tracciamento del personale e della pulizia delle postazioni di lavoro all'interno di un'azienda. Mira infatti a favorire l'attuazione e amministrazione delle misure necessarie per la tutela della salute dei lavoratori nel contesto della pandemia da COVID-19.

#### 3.1.3 Finalità del progetto

Il prodotto finale prevede due modalità di tracciamento:

- Tracciamento delle presenze: registrazione e monitoraggio in tempo reale delle presenze all'interno di un ambiente di lavoro (laboratorio informatico). Gli utenti devono avere la possibilità, in base alle disponibilità di postazioni, di effettuare prenotazioni tramite un applicativo per dispositivi mobili Android e IOS. Tramite lo stesso dispotivo segnaleranno la propria presenza una volta occupata la postazione ed eventualmente la sanificazione della stessa dopo l'uso. L'amministratore deve poter creare e gestire la struttura dell'ambiente, e visualizzarne in tempo reale lo stato di occupazione e sanificazione delle postazioni.
- Tracciamento della pulizia delle postazioni: dedicato agli addetti alle pulizie, il prodotto deve consentire di visualizzare le postazioni non sanificate e segnalare le postazioni sanificate in seguito alla pulizia delle stesse.

#### 3.1.4 Tecnologie interessate

Java (versione 8 o superiori), Python o nodejs

- Java, Python, Node.js: linguaggi suggeriti dal proponente per lo sviluppo del server back-end che amministra l'infrastruttura di tracciamento;
- **Protocolli asincroni:** da utilizzare per gestire la comunicazione tra le componenti del sistema: i dispositivi mobili degli utenti, dell'amministratore e degli addetti alle pulizie con il server centrale;
- **Blockchain:** sistema che assicura la registrazione dei dati relativi alle sanificazioni conferendone valore legale;
- Kubernetes IAAS, PAAS, Openshift, Rancher: piattaforme suggerite dal proponente per il rilascio delle componenti del server e la gestione della scalabilità orizzontale.



Inoltre il proponente specifica i seguenti requisiti minimi:

- Fornire delle API che utilizzino tecnologie Rest o gRPC nell'ambito della comunicazione tra server e dispositivi;
- Studiare la tecnologia RFID o eventuali alternative da utilizzare per certificare la presenza di persone nelle postazioni, analizzandone il consumo energetico;
- Effettuare test di integrazione e unità (copertura  $\geq 80\%$ ) delle componenti applicative;
- Assicurare l'integrità del sistema tramite test end-to-end.

#### 3.1.5 Aspetti positivi

Il progetto si pone in un contesto quanto mai attuale e di grande interesse generale. Trova infatti soluzione a problematiche diffuse e richieste da molte realtà, fornendo un caso di studio molto interessante per quanto riguarda i sistemi distribuiti e real-time. Le tecnologie impiegate e richieste sono valide, e il loro studio consentirebbe ai membri del gruppo di acquisire competenze facilmente spendibili nel mondo del lavoro.

#### 3.1.6 Criticità

I requisiti del proponente sono dettagliati e appaiono abbastanza esigenti; le tecnologie da impiegare, per quanto interessanti, configurano un carico di lavoro consistente.

In generale, il capitolato ha riscosso un discreto interesse da parte del gruppo ma non si è configurato come prima scelta a favore di capitolati riguardanti temi considerati più interessanti, tecnologie più stimolanti e carichi di lavoro affrontabili con più agitilà.

#### 3.1.7 Conclusioni

Nonostante l'elevato interesse e attenzione che questi sistemi hanno attirato, il gruppo ha deciso di procedere a favore di altri capitolati. Per quanto attuale, il progetto si presuppone essere completato ed eventualmente utilizzato in un periodo in cui le problematiche legate alla pandemia dovrebbero – sperabilmente – risultare fortemente mitigate dall'avvento delle campagne vaccinali. Non è comunque da escludere che, visto l'enorme impatto di questa emergenza, forme di tracciamento non debbano continuare ad essere applicate anche in condizioni di normalità.



#### 3.2 Capitolato C7 - Soluzioni di sincronizzazione Desktop

#### 3.2.1 Informazioni generali

• Nome: Soluzioni di sincronizzazione Desktop;

• **Proponente:** Zextras;

• Committente: Prof. Tullio Vardanega e Prof. Riccardo Cardin;

#### 3.2.2 Descrizione del capitolato

Il capitolato richiede di sviluppare un algoritmo di sincronizzazione Desktop solido ed efficiente in grado di garantire il salvataggio in cloud del lavoro, in modo da poter raggiungere in qualsiasi momento e da qualsiasi dispositivo il proprio lavoro. Inoltre deve essere sviluppata un'interfaccia multipiattaforma per l'uso dell'algoritmo nei più importanti sistemi operativi esistenti (MacOs, Windows, Linux) senza richiedere all'utente l'installazione di ulteriori prodotti per il funzionamento.

#### 3.2.3 Finalità del progetto

L'obiettivo è quello di creare questo algoritmo di sincronizzazione che funzioni in più piattaforme in grado di garantire il salvataggio in cloud del lavoro e contemporaneamente la sincronizzazione dei cambiamenti presenti in cloud. Inoltre viene richiesto l'utilizzo dell'algoritmo sviluppato per richiedere e fornire i cambiamenti ai contenuti in sincronizzazione verso il prodotto Zextras Drive. L'algoritmo deve avere le seguenti principali funzionalità:

- Configurazione ed autenticazione dell'utente;
- Gestione di cosa sincronizzare e di cosa ignorare nelle cartelle cloud;
- Gestione di cosa sincronizzare e di cosa ignorare nelle cartelle locali;
- Sincronizzazione costante dei cambiamenti, siano essi locali o remoti;
- Possibilità di modifica delle preferenze a posteriori;
- Sistema di notifica utente dei cambiamenti.

#### 3.2.4 Tecnologie interessate

L'azienda esprime la necessità di sviluppare l'algoritmo per i più importanti sistemi operativi esistenti (MacOs, Windwos, Linux) e consiglia l'utilizzo:

- **Qt Framework:** strumento basato sul linguaggio C++ orientato ad oggetti, da utilizzare per creare l'interfaccia poiché fortemente supportato e documentato;
- **Python:** strumento consigliato per lo sviluppo della Business Logic, linguaggio ad alto livello adatto allo sviluppo di applicazioni distribuite.

#### 3.2.5 Aspetti positivi

Il progetto si pone in un contesto molto utilizzato sia da utenti privati che da aziende. Inoltre le tecnologie consigliate fanno già parte delle conoscenze di gran parte dei membri del gruppo e ci sono molti esempi, anch'essi ben conosciuti, a cui ispirarsi per la creazione dell'algoritmo (Dropbox, Google Drive, ect).



#### 3.2.6 Criticità e fattori di rischio

Il confronto con tecnologie già esistenti di questo tipo può essere svantaggioso poiché si potrebbe creare un prodotto molto più inefficiente. Inoltre le richieste sono numerose e abbastanza complesse.

#### 3.2.7 Conclusioni

Si è deciso di puntare su altri capitolati poiché questo non ha suscitato grande interesse per quanto riguarda la tematica che affronta e il settore interessato.