

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 80%

Anomaly Detection

LATEST SUBMISSION GRADE

80%

1. For which of the following problems would anomaly detection be a suitable algorithm?

1 / 1 point

In a computer chip fabrication plant, identify microchips that might be defective.

The defective chips are the anomalies you are looking for by modeling the properties of nondefective chips.

From a large set of primary care patient records, identify individuals who might have unusual health conditions.

Since you are just looking for unusual conditions instead of a particular disease, this is a good application of anomaly detection.

Given data from credit card transactions, classify each transaction according to type of purchase (for example: food, transportation, clothing)

2. Suppose you have trained an anomaly detection system for fraud detection, and your system that flags anomalies when p(x) is less than arepsilon, and you find on the cross-validation set that it mis-flagging far too many good transactions as fradulent. What should you do?

- \bigcirc Decrease ε
- \bigcirc Increase ε

Correct

By decreasing ε , you will flag fewer anomalies, as desired.

3. Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses

$$p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2).$$

You have two features x_1 = vibration intensity, and x_2 = heat generated. Both x_1 and x_2 take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_1 pprox x_2$. One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values. What additional feature x_3 should you create to capture these types of anomalies:

- $x_3 = (x_1 + x_2)^2$
- $x_3 = \frac{x_1}{x_2}$
- $\bigcirc \ x_3 = x_1 imes x_2^2$
- $\bigcirc \ \ x_3=x_1^2\times x_2^2$

This is correct, as it will take on large values for anomalous examples and smaller values for normal examples.

4. Which of the following are true? Check all that apply.

1 / 1 poin

When choosing features for an anomaly detection system, it is a good idea to look for features that take on unusually large or small values for (mainly the) anomalous examples.

✓ Correct

These are good features, as they will lie outside the learned model, so you will have small values for p(x) with these examples.

 $ec{y}$ If you do not have any labeled data (or if all your data has label y=0), then is is still possible to learn p(x), but it may be harder to evaluate the system or choose a good value of ϵ .

Only negative examples are used in training, but it is good to have some labeled data of both types for cross-validation.

- If you have a large labeled training set with many positive examples and many negative examples, the anomaly detection algorithm will likely perform just as well as a supervised learning algorithm such as an SVM.
- If you are developing an anomaly detection system, there is no way to make use of labeled data to improve your system.
- 5. You have a 1-D dataset $\{x^{(1)},\dots,x^{(m)}\}$ and you want to detect outliers in the dataset. You first plot the dataset and it looks like this:

0 / 1 point

Suppose you fit the gaussian distribution parameters μ_1 and σ_1^2 to this dataset. Which of the following values for μ_1 and σ_1^2 might you get?

$$\bigcirc \ \mu_1=-3, \sigma_1^2=4$$

$$\mu_1 = -6, \sigma_1^2 = 4$$

$$\bigcirc \ \mu_1=-6, \sigma_1^2=2$$

Incorrect

This is the correct value for μ_1 , but most of the data are in [-5, -1], so σ_1^2 is 4, not 2.

Coursera suggests this material BETA

Was this material helpful? Yes No

