Tutorial Worksheet 5 - Advanced Regression Analysis (with Solutions)

Problem 1.

A study was made on the effect of temperature on the yield of a chemical process, the following data were collected:

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
Y	1	5	4	7	10	8	9	13	14	13	18

- (a) Assuming a model, $Y = \beta_0 + \beta_1 X + \epsilon$, what are the least square estimates of β_0 and β_1 ? What is the fitted equation?
- (b) Construct the ANOVA table and test the hypothesis $H_0: \beta_1 = 0$ with $\alpha = 0.05$.
- (c) What are the confidence limits for β_1 at $\alpha = 0.05$?
- (d) What are the confidence limits for the true mean value of Y when X=3 at $\alpha=0.05$?
- (e) What are the confidence limits at $\alpha = 0.05$ level of significance for the difference between the true mean value of Y when $X_1 = 3$ and the true mean value of Y when $X_2 = -2$?

[Given,
$$F_{0.05,1,9} = 5.12$$
, $t_{0.05,9} = 1.833$, $t_{0.025,9} = 2.263$,]

Solution:

(a) The given data is (x_i, y_i) ; i = 1, 2, ..., 11. The linear regression model is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \text{ thus, } S = \sum_{i=1}^{11} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$
$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{11} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{11} x_i^2 - n\bar{x}^2} = \frac{158}{110} = 1.44; \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 9.27$$

Thus, $\hat{y}_i = 9.27 + 1.44x_i$ is the fitted model.

(b) The sum of squares can be calculated as follows:

$$SS_T = \sum_{i=1}^{11} (y_i - \bar{y})^2 = 248.18, \ SS_{Reg} = \hat{\beta}_1^2 S_{xx} = 226.94, \ SS_{Res} = \sum_{i=1}^{11} (y_i - \hat{y}_i)^2 = SS_T - SS_{Reg} = 22.23$$

Thus, the ANOVA table is

Source	DF	SS	MS = SS/DF	F-obs= MS_{Reg}/MS_{Res}	F-tab
Regression	1	226.94	226.94	96.17	$F_{0.05,1,9} = 5.12$
Residual	9	22.23	2.36		
Total	10	248.18			

To test the hypothesis $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$.

Here, we reject H_0 , since $F_{obs} > F_{tab}$. Y and X are linearly dependent.

Alternative method for testing:

To test the hypothesis
$$H_0: \beta_1 = 0$$
 vs $H_1: \beta_1 \neq 0$.
Under $H_0: \beta_1 = 0$, $t = \frac{\hat{\beta}_1}{\sqrt{\frac{MS_{Res}}{S_{xx}}}} \sim t_{n-2}$. Hence, $t = \frac{1.44}{\sqrt{\frac{2.36}{110}}} = 9.83 > t_{0.05,9} = 1.833$. Hence, we reject $H_0: \beta_1 = 0$.

Hence, $F \equiv t^2$, under H_0 .

(c) The confidence interval of β_1 can be computed as follows:

$$\begin{split} \hat{\beta}_1 &\sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right) \ \Rightarrow \frac{\beta_1 - \beta_1}{\sqrt{\frac{\sigma^2}{S_{xx}}}} \sim \mathcal{N}(0, 1) \quad [\sigma^2 \text{ is unknown and estimated by } MS_{Res}] \\ &\Rightarrow \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{MS_{Res}}{S_{xx}}}} \sim \mathbf{t}_{n-2} \\ &\Rightarrow P\left[-\mathbf{t}_{\alpha/2, n-2} \leq \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{MS_{Res}}{S_{xx}}}} \leq \mathbf{t}_{\alpha/2, n-2}\right] = 1 - \alpha \\ &\Rightarrow \hat{\beta}_1 - \mathbf{t}_{\alpha/2, n-2} \sqrt{\frac{MS_{Res}}{S_{xx}}} \leq \beta_1 \leq \hat{\beta}_1 + \mathbf{t}_{\alpha/2, n-2} \sqrt{\frac{MS_{Res}}{S_{xx}}} \\ &\Rightarrow 1.44 - 2.263 * 0.146 \leq \beta_1 \leq 1.44 + 2.263 * 0.146 \Rightarrow 1.11 \leq \beta_1 \leq 1.77. \end{split}$$

(d) The confidence limits for E(Y|X=3) can be computed as follows:

95% CI for $E(Y \text{ at } X = x_0)$ is $\beta_0 + \beta_1 x_0$. An unbiased estimator $E(Y \text{ at } X = x_0)$ is $\hat{\beta}_0 + \hat{\beta}_1 x_0$.

Therefore,
$$\hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N\left(\beta_0 + \beta_1 x_0, \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]\right)$$
.

$$A = \frac{\left(\hat{\beta}_0 + \hat{\beta}_1 x_0\right) - (\beta_0 + \beta_1 x_0)}{\sqrt{MS_{Res}\left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]}} \sim t_{n-2}, \therefore P\left\{-t_{\alpha/2, n-2} \le A \le t_{\alpha/2, n-2}\right\} = 1 - \alpha$$
$$\therefore \left(\hat{\beta}_0 + \hat{\beta}_1 x_0\right) \pm t_{\alpha/2, n-2} \times \sqrt{MS_{Res}\left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]} \text{ is the confidence interval for } \beta_0 + \beta_1 x_0.$$

Thus, replacing the values we get the required confidence interval is $12.15 \le \beta_0 + \beta_1 x_0 \le 15.03$.

(e) The confidence limits for the difference between the true mean value of Y when $X_1 = 3$ and the true mean value of Y when $X_2 = -2$ can be computed as follows:

$$E(Y \text{ at } X_1 = 3) - E(Y \text{ at } X_2 = -2) \equiv Z_1 - Z_2.$$

Unbiased estimators of Z_1 and Z_2 are: $\hat{Z}_1 = \hat{\beta}_0 + \hat{\beta}_1 3$ and $\hat{Z}_2 = \hat{\beta}_0 + \hat{\beta}_1 (-2)$. Thus, $\hat{Z}_1 - \hat{Z}_2 = (\hat{\beta}_0 + \hat{\beta}_1 3) - (\hat{\beta}_0 + \hat{\beta}_1 (-2)) = 5\hat{\beta}_1 = 7.20$ (point estimation). Confidence interval for $Z_1 - Z_2$:

Compute
$$Var(\hat{Z}_1 - \hat{Z}_2) = Var(5\hat{\beta}_1) = \frac{25\sigma^2}{S_{xx}} = \frac{25\sigma^2}{110}$$
; thus $\hat{Z}_1 - \hat{Z}_2 \sim N(Z_1 - Z_2, \frac{25\sigma^2}{110}) \Rightarrow \frac{(\hat{Z}_1 - \hat{Z}_2) - (Z_1 - Z_2)}{\sqrt{\frac{25MS_{Res}}{110}}} \sim t_{n-2}$.

$$(\hat{Z}_1 - \hat{Z}_2) - \mathbf{t}_{\alpha/2,9} \sqrt{\frac{25 \times 2.36}{110}} \le Z_1 - Z_2 \le (\hat{Z}_1 - \hat{Z}_2) + \mathbf{t}_{\alpha/2,9} \sqrt{\frac{25 \times 2.36}{110}} \implies 5.54 \le Z_1 - Z_2 \le 8.86.$$

Problem 2.

There are a few occasions where it makes sense to fit a model without an intercept β_0 . If there were an occasion to fit the model $y = \beta x + \epsilon$ to a set of data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, the least square estimate of β would be

$$\hat{\beta} = b = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

Suppose you have a programmed calculator that will fit only the intercept model $y = \beta_0 + \beta_1 x + \epsilon$, but you want to fit a non-intercept model. By adding one more fake data point $(m\bar{x}, m\bar{y})$ to the data above, where $m = \frac{n}{(n+1)^{1/2}-1} = \frac{n}{a}$, say, and letting the calculation fit $y = \beta_0 + \beta_1 x + \epsilon$, can you estimate β by using b?

Solution:

Given the data set $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, we fit: $y = \beta x + \epsilon$, where the least square estimate of β is calculated as follows:

$$SSE = S = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}x_i)^2; \quad \frac{\partial S}{\partial \beta} = 0 \Rightarrow \sum (y_i - \hat{\beta}x_i)x_i = 0 \Rightarrow \hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}.$$

For the computer-fitted model with intercept, we have:

$$y = \beta_0 + \beta_1 x + \epsilon$$
 where, the LSEs are $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$, and $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2}$

Adding one more data point: $(m\bar{x}, m\bar{y})$; $m = \frac{n}{(n+1)^{1/2}-1} = \frac{n}{a} \Rightarrow (a+1)^2 = (n+1)$.

Thus the new dataset is given by $(u_1, v_1), (u_2, v_2), \dots, (u_n, v_n), (u_{n+1}, v_{n+1}) = (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n), (m\bar{x}, m\bar{y}).$ Hence we have

$$\bar{u} = \frac{n\bar{x} + (n/a)\bar{x}}{n+1} = \frac{n\bar{x} + m\bar{x}}{n+1} = \frac{n\bar{x}(\frac{a+1}{a})}{n+1} = \frac{n\bar{x}}{(a+1)^2} \times \frac{a+1}{a} = \frac{n\bar{x}}{a(a+1)} \text{ similarly } \bar{v} = \frac{n\bar{y}}{a(a+1)}$$

$$S_{uu} = \sum_{i=1}^{n} x_i^2 + (m\bar{x})^2 - (n+1)\bar{u}^2 = \sum_{i=1}^{n+1} u_i^2 - (n+1)\bar{u}^2 = \sum_{i=1}^{n} x_i^2 + \frac{n^2}{a^2}\bar{x}^2 - (n+1)\frac{n^2\bar{x}^2}{a^2(a+1)^2} = \sum_{i=1}^{n} x_i^2 + \frac{n^2}{a^2(a+1)^2} = \sum_{i=1}^{n} x_i^2 + \frac{n^2}{a^2(a$$

For the programmed calculation: $\hat{\beta}_1 = \frac{S_{uv}}{S_{uu}} = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$

Problem 3.

Fit the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$ for the data given below. Provide an ANOVA table and perform the partial F-tests to test $H_0: \beta_i = 0$ vs $H_1: \beta_i \neq 0$ for i = 1, 2; given the other variable is already in the model. Comment on the relative contributions of the variables X_1 and X_2 , depending on whether they enter the model first or second. Find the regression equation.

X_1	-5	-4	-1	2	2	3	3
X_2	5	4	1	-3	-2	-2	-3
Y	11	11	8	2	5	5	4

Solution:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Fit the model with both X_1, X_2 . OLS estimates can be obtained using $\hat{\beta} = (X^T X)^{-1} X^T Y$

$$X = \begin{pmatrix} 1 & -5 & 5 \\ 1 & -4 & 4 \\ 1 & -1 & 1 \\ 1 & 2 & -3 \\ 1 & 2 & -2 \\ 1 & 3 & -2 \\ 1 & 3 & -3 \end{pmatrix}; \quad \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 68 & -67 \\ 0 & -67 & 63 \end{pmatrix}^{-1} \begin{pmatrix} 46 \\ -66 \\ 69 \end{pmatrix} = \begin{pmatrix} \frac{46}{7} \\ 1 \\ 2 \end{pmatrix} \therefore \hat{Y} = \frac{46}{7} + X_1 + 2X_2$$

 $SS_T = \sum (Y_i - \bar{Y})^2 = 73.71$, $e_i = y_i - \hat{y}_i$, $SS_{Res} = \sum_{i=1}^n e_i^2$, $H_0: \beta_1 = \beta_2 = 0$ vs. $H_1: H_0$ is not true. To test this hypothesis, we have $F = 83.72 > F_{0.05,2,4} = 6.94 \Rightarrow H_0$ is rejected.

Partial F-tast:- Fit the model with X_1 as $Y = \beta_0 + \beta_1 X_1 + \epsilon$, $\hat{Y} = \frac{46}{7} - \frac{66}{68} X_1$ and test the hypothesis $H_0: \beta_2 = 0$ vs $H_1: \beta_2 \neq 0$

Source	DF	SS	MS	F-obs	F-tab
Regression	2	72.00	36.00	83.72	$F_{0.05,2,4} = 6.94$
Residual	4	1.71	0.43		
Total	6	73.71			

$$F = \frac{\{SS_{\text{Reg}} (\text{Full}) - SS_{\text{Reg}} (\text{Restricted Model})\}/1}{MS_{\text{Res}}} = \frac{72 - 64.06}{0.43} = 18.53 > F_{0.05,1,4} = 7.71$$

 \therefore H_0 is rejected at 5% level of significance, i.e., X_2 is significant in the presence of X_1 .

Partial F-tast:- Fit the model with X_2 as $Y = \beta_0 + \beta_2 X_2 + \epsilon$, $\hat{Y} = \frac{46}{7} - \frac{69}{68} X_2$ and test the hypothesis $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$

$$F = \frac{\left\{SS_{\text{Reg}}\left(\text{Full}\right) - SS_{\text{Reg}}\left(\text{Restricted Model}\right)\right\}/1}{MS_{\text{Res}}} = \frac{72 - 70.01}{0.43} = 4.64 < F_{0.05,1,4} = 7.71$$

 $\therefore H_0$ is not rejected at 5% level of significance, i.e., X_1 is not significant in the presence of X_2 .

Implication:- If X_2 is in the model, we do not need X_1 . If X_1 is in the model, X_2 helps out significantly. Then X_2 is clearly more useful variable and it explains $R^2 = \frac{70.01}{73.71} = 95\%$ of the total variability in Y about mean, where as X_1 alone explains $R^2 = \frac{64.06}{79.71} = 86\%$ of total variability in Y about mean. And X_1 and X_2 together explain $\frac{72.00}{73.71} = 97\%$ of total variability

NOTE: In this problem, $X_1 + X_2 \approx 0$ and the presence of multicollinearity (X_1 and X_2 are not independent) and that is why Partial F-test suggests $\beta_0 = 0$ is accepted.

Problem 4.

Given a 2-variables linear regression problem $Y = \beta_1 + \beta_2 X_1 + \beta_3 X_2 + \epsilon$, yield the following

$$X^T X = \begin{bmatrix} 33 & 0 & 0 \\ 0 & 40 & 20 \\ 0 & 20 & 60 \end{bmatrix}, \quad X^T Y = \begin{bmatrix} 132 \\ 24 \\ 92 \end{bmatrix} \quad \text{and} \quad \sum (Y - \bar{Y})^2 = 150.$$

- (a) What is the sample size?
- (b) Write the normal equations and solve for the regression coefficients.
- (c) Estimate the standard error of β_2 and test the hypothesis that $\beta_2 = 0$
- (d) Compute \mathbb{R}^2 and interpret it. Also, interpret the value of regression coefficients.
- (e) Predict the value of y given $x_1 = -4$ and $x_2 = 2$
- (f) Comment on the possibilities of any regressors being a dummy variable.

Solution:

(a) The variance-covariance matrix of the design matrix $X = \begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} \end{bmatrix}$ is given by

$$X^{T}X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{11} & x_{21} & \cdots & x_{n1} \\ x_{12} & x_{22} & \cdots & x_{n2} \end{bmatrix} \begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} \end{bmatrix} = \begin{bmatrix} n & \sum x_{i1} & \sum x_{i2} \\ \sum x_{i1} & \sum x_{i1}^{2} & \sum x_{i1}x_{i2} \\ \sum x_{i2} & \sum x_{i1}x_{i2} & \sum x_{i2}^{2} \end{bmatrix} = \begin{bmatrix} 33 & 0 & 0 \\ 0 & 90 & 20 \\ 0 & 20 & 60 \end{bmatrix}$$

 \therefore The sample size, n = 33.

$$X^{T}Y = \begin{bmatrix} 1 & \dots & 1 \\ x_{21} & \dots & x_{n1} \\ x_{12} & \dots & x_{n2} \end{bmatrix}_{3 \times n} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \sum y_i \\ \sum x_{i1} y_i \\ \sum x_{i2} y_i \end{bmatrix} = \begin{bmatrix} 132 \\ 24 \\ 92 \end{bmatrix}$$

(b) We know the normal equation is given by $\hat{\beta} = (X^T X)^{-1} X^T Y \Rightarrow (X^T X) \hat{\beta} = X^T Y$. Thus we have

$$(X^TX)\hat{\beta} = X^TY \Rightarrow \begin{bmatrix} 33 & 0 & 0 \\ 0 & 40 & 20 \\ 0 & 20 & 60 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 132 \\ 24 \\ 92 \end{bmatrix} \Rightarrow \begin{bmatrix} 33 & 0 & 0 \\ 0 & 40 & 20 \\ 0 & 0 & 50 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 832 \\ 24 \\ 80 \end{bmatrix}$$
 [using Gaussian elimination: $R_3' = R_3 - \frac{1}{2}R_2$]

Thus we obtain $b_3 = 1.60, 40b_2 + 20b_3 = 24 \Rightarrow 40b_2 = -8 \Rightarrow b_2 = -0.20, 33b_1 = 132 \Rightarrow b_1 = 4$. Hence, the regression equation is $\hat{y} = 4 - 0.20x_1 + 1.60x_2$

(c)
$$|X^T X| = 33(2400 - 400) = 66000,$$
 S.E. of $b_2 = S\sqrt{c_{22}}$ where $S = \sqrt{\frac{RSS}{n-k}} = \sqrt{\frac{7.6}{2}} = \sqrt{3.8}$ and $C_{22} = \frac{\det(\text{co-factor})}{|X^T X|} = \frac{1980}{66000} = 0.003$ SE $(b_2) = \sqrt{0.003 \times 3.8} = 0.106$

To test the hypothesis $H_0: b_2=0$ vs. $H_1: b_2\neq 0$, we use the following test statistic $t=\frac{b_2}{\mathrm{SE}(b_2)}=\frac{-0.20}{0.106}=1.88<$ 4.303. We reject H_0 .

(d) $TSS = RSS + SS_{Reg}$

Given that
$$TSS = 150$$
, we can calculate $SS_{Reg} = \beta^{*T}(X^TY)^* = \begin{bmatrix} -0.20 & 1.60 \end{bmatrix} \begin{bmatrix} 24 \\ 92 \end{bmatrix} = 142.4$ and thus we have $RSS = 150 - 142.4 = 7.6$

Thus the coefficient of determination R^2 is given by $R^2 = 142.4/150 = 0.9493$ explains 94.93% of the total variability in the response variable.

(e) The predicted value of y for the given values of $x_1 = -4$ and $x_2 = 2$ is given by $\hat{y} = 4 - 0.20(-4) + 1.60(2) = 8$.

Problem 5.

Can we use the data given below to get a unique fit to the model $Y = \beta_0 X_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$

X_1	-4	3	1	4	-3	-1
X_2	1	2	3	4	5	6
X_3	3	-5	-4	-8	-2	-5
Y	7.4	14.7	13.9	18.2	12.1	14.8

Solution:

The LSE of the regression model $Y = X\beta + \epsilon$ is given by $\hat{\beta} = (X^T X)^{-1} X^T Y$

$$X = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & -4 & 1 & 3 \\ 1 & 3 & 2 & -5 \\ 1 & 1 & 3 & -4 \\ 1 & 4 & 4 & -8 \\ 1 & -3 & 5 & -2 \\ 1 & -1 & 6 & -5 \end{bmatrix}$$

Note that, $X_1 + X_2 + X_3 = 0$ which implies that $(X^T X)$ is a singular matrix, i.e., $|(X^T X)| = 0$. 'NO', we can't compute $\hat{\beta}$ uniquely here.

Problem 6.

Show that in linear regression with a β_0 term in the model:

(a) The correlation between the vector e and Y is $(1 - R^2)^{1/2}$. This result implies that it is a mistake to find defective regressions by a plot of residuals e_i versus observations Y_i as this always shows a slope.

(b) Show further that the correlation between e and \hat{Y} is zero.

Solution:

(a)
$$\operatorname{Cor}(e,Y) = \frac{\sum (e_i - \bar{e}) (Y_i - \bar{Y})}{\sqrt{\sum (e_i - \bar{e})^2 \sum (Y_i - \bar{Y})^2}}$$
$$\sum (e_i - \bar{e}) (Y_i - \bar{Y}) = \sum e_i (Y_i - \bar{Y}) = \sum e_i Y_i = Y^T e \text{ [since, } \bar{e} = 0 \text{ if } \beta_0 \text{ is in the model]}$$

Note that,

$$Y = X\beta + \epsilon, \ \hat{\beta} = \left(X^T X\right)^{-1} X^T Y \Rightarrow \hat{Y} = X \left(X^T X\right)^{-1} X^T Y = X \hat{\beta} = HY, \text{ where } H = X \left(X^T X\right)^{-1} X^T Y = Y \hat{\beta} = HY$$

$$e = Y - \hat{Y} = (I - H)Y \Rightarrow e^T e = Y^T (I - H)^T (I - H)Y = Y^T (I - H)Y = Y^T e \text{ [since, } H^2 = H]$$

Thus we have

$$Cor(e, Y) = \frac{Y^T e}{\sqrt{(e^T e)SS_T}} = \sqrt{\frac{e^T e}{SS_T}} = \sqrt{\frac{SS_{Res}}{SS_T}} = \sqrt{1 - \frac{SS_{Reg}}{SS_T}} = \sqrt{1 - R^2}.$$

Implication: This is why we plot \hat{Y}_i and e_i but not Y_i and e_i since they are correlated.

(b) The correlation between e and \hat{Y} can be computed as follows:

$$Cov(e, \hat{Y}) = \sum_{i} (e_i - \bar{e}) (\hat{Y}_i - \bar{\hat{Y}}) = e^T \hat{Y} = Y^T (I - H) H Y = Y^2 (H - H^2) Y = 0 \text{ [since, } \hat{Y} = H Y, e = (I - H) Y]$$
$$Cor(e, \hat{Y}) = 0.$$

Problem 7.

Prove that the multiple coefficients R^2 is equal to the square of the correlation between Y and \hat{Y} .

Solution:

We have to prove that $[Cor(Y, \hat{Y})]^2 = R^2 = \frac{SS_{Reg}}{SS_T}$

Note that,
$$\sum e_{i} = 0 \Rightarrow \sum \left(Y_{i} - \hat{Y}_{i}\right) = 0 \Rightarrow \sum Y_{i} = \sum \hat{Y}_{i} \Rightarrow \bar{Y} = \bar{\hat{Y}} \text{ [since, } Y_{i} = \hat{Y}_{i} + e_{i} \text{]}$$

$$\operatorname{Cor}\left(e, \hat{Y}\right) = 0 \Rightarrow \operatorname{Cov}\left(e, \hat{Y}\right) = 0 \Rightarrow \sum \left(\hat{Y}_{i} - \bar{Y}\right) e_{i} = 0$$

$$\operatorname{r}_{Y\hat{Y}} = \frac{\sum \left(\hat{Y}_{i} - \bar{\hat{Y}}\right) \left(Y_{i} - \bar{Y}\right)}{\sqrt{\sum \left(\hat{Y}_{i} - \bar{\hat{Y}}\right)^{2} \sum \left(Y_{i} - \bar{Y}\right)^{2}}} = \frac{\sum \left(\hat{Y}_{i} - \bar{Y}\right) \left(\hat{Y}_{i} - \bar{Y}\right) + \sum \left(\hat{Y}_{i} - \bar{Y}\right) e_{i}}{\sum \left(Y_{i} - \bar{Y}\right)^{2}} = \sqrt{\frac{\sum \left(\hat{Y}_{i} - \bar{Y}\right)^{2}}{\sum \left(Y_{i} - \bar{Y}\right)^{2}}} = \frac{SS_{Reg}}{SS_{T}} = \sqrt{R^{2}}$$

Problem 8.

A new born baby was weighted weekly. Twenty such weights are shown below, recorded in ounces. Fit to the data, using orthogonal polynomials, a polynomial model of degree justified by the accuracy of the figures, that is, test as you go along for the significance of the linear, quadratic and so fourth, terms.

ſ	No. of weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ĺ	Weights	141	144	148	150	158	161	166	170	175	181	189	194	196	206	218	229	234	242	247	257

Solution:

We wish to fit the model

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \dots + \beta_k X^k + \epsilon$$

Polynomial fitting using orthogonal polynomial:

 $Y = \alpha_0 + \alpha_1 P_1(X) + \alpha_2 P_2(X) + \ldots + \alpha_k P_k(X) + \epsilon;$ [$P_i(x)$ are i^{th} orthogonal polynomial]. The parameters can be estimated as $\hat{\alpha_0} = \bar{y}$ and $\hat{\alpha_j} = \frac{\sum P_j(x_i)y_i}{\sum P_i^2(x_i)}$. Given the data (x_i, y_i) , we compute total variability (SS_T) , then build a model

to explain this variability. Suppose that $SS_{Reg}(\alpha_1)$ represents how much of the total variability in Y is explained by the linear term, similarly for cubic and quadratic.

$$SS_{Reg}(\alpha_1) = \hat{\alpha}_1 \sum_{i=1}^n y_i P_1(x_i) = 25438.75$$
 (linear term), $SS_{Reg}(\alpha_2) = \hat{\alpha}_2 \sum_{i=1}^n y_i P_2(x_i) = 489$ (quadratic term)
 $SS_{Reg}(\alpha_3) = \hat{\alpha}_3 \sum_{i=1}^n y_i P_3(x_i) = 1.15$ (cubic term), $SS_T = \sum_{i=1}^n (y_i - \bar{y})^2 = 26018$

Source	DF	SS	MS	F-obs	F-tab
Regression (α_1)	1	25438.75	25438.75	4558.98	$F_{0.05,1,6} = 4.49$
Regression (α_2)	1	489	489	84.63	
Regression (α_3)	1	1.15	1.15	0.21	
Residual	16	89.30	5.58		
Total	19	26018			

As we can see, the linear term explains the major part of variability, and α_2 is also significant (F-value). Thus the final model is $\hat{y} = 136.227 + 2.68x + 0.167x^2$, (quadratic fit). If residual SS_{Res} is large, you may check for fourth-degree polynomial fitting.

Problem 9.

If you are asked to fit a straight line to the data (X,Y) = (1,3), (2,2.5), (2,1.2), (3,1), and (6,4.5). What would you do about it?

Solution:

Here from the figure below, we can observe that (6,4.5) is an influential observation. Including the influential observation, we have a positive slope in the regression model, and without the influential observation, we have a negative slope in the regression model.

Recommendation: You can ignore influential observation if it's small in number. Some observations between X=3 and X=6 would be useful here.

Problem 10.

Your friend says he/she has fitted a plane to n=33 observations on (X_1, X_2, Y) and his/ her overall regression (given β_0) is just significant at the $\alpha=0.05$ level. You ask him/ her for R^2 value but s/he does not know. You work it out for him/ her based on what s/he has told you.

Solution:

The equation of the plane is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Here we have n = 33 observations

Source	DF	SS	MS	F-obs	F-tab
Regression	2	SS_{Reg}	MS_{Reg}	F	$F_{0.05,2,30} = 3.32$
Residual	30	SS_{Res}	MS_{Res}		
Total	32	SS_T			

$$R^{2} = \frac{SS_{Reg}}{SS_{T}} = \frac{SS_{Reg}}{SS_{Reg} + SS_{Res}} = \frac{SS_{Reg}/MS_{Res}}{\frac{SS_{Reg}}{MS_{Res}} + \frac{SS_{Res}}{MS_{Res}}} = \frac{2MS_{Reg}/MS_{Res}}{\frac{2MS_{Reg}}{MS_{Res}} + \frac{30MS_{Res}}{MS_{Res}}} = \frac{2F}{2F + 30} = \frac{2 \times 3.32}{(2 \times 3.32) + 30} = 0.1812$$

:. 18% of the total variability is explained by the model.

Implication: Thus, R^2 is a "good" measure to measure the "goodness of fit" even when the statistical test suggests that the regression is significant.

Problem 11.

You are given a regression printout that shows a planar to fit X_1, X_2, X_3, X_4, X_5 plus an intercept term obtained from a set of 50 observations. The overall F for regression is ten times as high as the 5% upper-tail F percentage point. How big is \mathbb{R}^2 ?

Solution:

The regression equation is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \epsilon$$

The ANOVA table is We know,

Source	DF	SS	MS	F-obs	F-tab
Regression	5	SS_{Reg}	MS_{Reg}	F	$F_{0.05,5,44} = 2.43$
Residual	44	SS_{Res}	MS_{Res}		$10 \times F_{0.05,5,44} = 24.3$
Total	49	SS_T			

$$R^{2} = \frac{SS_{Reg}}{SS_{T}} = \frac{SS_{Reg}}{SS_{Reg} + SS_{Res}} = \frac{SS_{Reg}/MS_{Res}}{\frac{SS_{Reg}}{MS_{Res}} + \frac{SS_{Res}}{MS_{Res}}} = \frac{\frac{5MS_{Reg}/MS_{Res}}{\frac{5MS_{Reg}}{MS_{Res}} + \frac{44MS_{Res}}{MS_{Res}}}}{\frac{5MS_{Reg}/MS_{Res}}{MS_{Res}}} = \frac{5F}{5F + 44} = \frac{5 \times 24.3}{(5 \times 24.3) + 44} = 0.7343.$$

Conclusion: 73.43% of the total variability in the response variable is explained by the fitted model.

Problem 12.

Consider the simple linear regression model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where the variance of ϵ_i is proportional to x_i^2 , i.e., $V(\epsilon_i) = \sigma^2 x_i^2$ (assumption of constant variance is NOT satisfied).

- (a) Suppose that we use these transformation $y' = \frac{y}{x}$ and $x' = \frac{1}{x}$. Is this a variance-stabilizing transformation?
- (b) What are the relationships between the parameters in the original and the transformed model?
- (c) Suppose we use the method of weighted least squares with $w_i = \frac{1}{x_i^2}$. Is this equivalent to the transformation introduced in part (a).

Solution:

(a)

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_i + \epsilon_i \longrightarrow \text{ original model} \\ \frac{y_i}{x_i} &= \frac{\beta_0}{x_i} + \beta_1 + \frac{\epsilon_i}{x_i}, \ y_i' = \beta_0 x_i' + \beta_1 + \epsilon_i' \longrightarrow \text{ Transformed model} \\ \text{Now, } \text{Var}(y_i') &= \text{Var}\left(\frac{\epsilon_i}{x_i}\right) = \frac{\sigma^2 x_i^2}{x_i^2} = \sigma^2. \text{ Yes, it's a variance-stabilizing transformation.} \end{aligned}$$

- (b) Slope in the transformed model became an intercept in the transformed model and vice-versa.
- (c) Weighted LS function:

$$S_{OLS}(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \implies \text{Oridinary Least Squares}$$

$$S_{WLS}(\beta_0, \beta_1) = \sum_{i=1}^{n} w_i (y_i - \beta_0 - \beta_1 x_i)^2 \implies \text{Weighted Least Squares}$$

$$= \sum_{i=1}^{n} \frac{1}{x_i^2} (y_i - \beta_0 - \beta_1 x_i)^2 = \sum_{i=1}^{n} \left(\frac{y_i}{x_i} - \frac{\beta_0}{x_i} - \beta_1 \right)^2$$

Calculate β_0 and β_1 by minimizing $S_{WLS}(\beta_0, \beta_1)$ in Weighted Least Squares method.

For the transformed model, OLS estimates are:

$$S^* (\beta_0, \beta_1) = \sum_{i=1}^n (y_i' - \beta_0 x_i' - \beta_1)^2 = \sum_{i=1}^n \left(\frac{y_i}{x_i} - \frac{\beta_0}{x_i} - \beta_1 \right)^2$$

Calculate β_0 and β_1 by minimizing $S^*(\beta_0, \beta_1)$ for the transformed model.

Here, $S^*(\beta_0, \beta_1) \equiv S_{WLS}(\beta_0, \beta_1)$.

Problem 13.

Consider the simple linear regression model $y_t = \beta_0 + \beta_1 x_t + \epsilon_t$ where the errors are generated by second-order autoregressive process

$$\epsilon_t = \rho_1 \epsilon_{t-1} + \rho_2 \epsilon_{t-2} + z_t,$$

where z_t is an NID $(0, \sigma_z^2)$ random variable, and ρ_1 and ρ_2 are autocorrelation parameters. Discuss how the Cochrane-Orcutt iterative procedure could be used in this situation. What transformations would be appropriate on the variables y_t and x_t ? How would you estimate the parameters ρ_1 and ρ_2 ?

Solution

 $y_t = \beta_0 + \beta_1 x_t + \epsilon_t$ where $\epsilon_t = \rho_1 \epsilon_{t-1} + \rho_2 \epsilon_{t-2} + z_t$; $z_t \stackrel{\text{ind}}{\sim} N\left(0, \sigma_z^2\right)$ [In OLS-based SLR, we assume $\epsilon_t \stackrel{\text{ind}}{\sim} N\left(0, \sigma^2\right)$ which is Not true here.]

$$y_t \to y_t' = y_t - \rho_1 y_{t-1} - \rho_2 y_{t-2} = (\beta_0 + \beta_1 x_t + \epsilon_t) - \rho_1 (\beta_0 + \beta_1 x_{t-1} + \epsilon_{t-1}) - \rho_2 (\beta_0 + \beta_1 x_{t-2} + \epsilon_{t-2})$$

$$= (\beta_0 - \rho_1 \beta_0 - \rho_2 \beta_0) + \beta_1 (x_t - \rho_1 x_{t-1} - \rho_2 x_{t-2}) + (\epsilon_t - \rho_1 \epsilon_{t-1} - \rho_2 \epsilon_{t-2}) = \beta_0' + \beta_1 x_t' + z_t$$

Now z_t 's are independent and $z_t \sim N(0, \sigma_z^2)$. But, (y_t', x_t') cannot be directly used as

$$y'_t = y_t - \rho_1 y_{t-1} - \rho_2 y_{t-2}$$
 and $x'_t = x_t - \rho_1 x_{t-1} - \rho_2 x_{t-2}$

are functions of unknown parameters ρ_1 and ρ_2 .

We know $\epsilon_t = \rho_1 \epsilon_{t-1} + \rho_2 \epsilon_{t-2} + z_t$; (How to estimate ρ_1 and ρ_2 ?).

- Fit $y_t = \beta_0 + \beta_1 x_t + \epsilon_t$ using OLS and obtain e_i (ignoring autocorrelation)
- Regress e_i on e_{i-1} and e_{i-2} , i.e., $e_i = \rho_1 e_{i-1} + \rho_2 e_{i-2} + z_t$ (MLR with two regressors)
- Compute $S(\rho_1, \rho_2) = \sum_i (e_i \rho_1 e_{i-1} \rho_2 e_{i-2})^2$ and minimize $S(\rho_1, \rho_2)$ and obtain $\hat{\rho}_1$ and $\hat{\rho}_2$.

$$\frac{\partial S}{\partial \rho_1} = 0 \Rightarrow \sum (e_i - \rho_1 e_{i-1} - \rho_2 e_{i-2}) e_{i-1} = 0, \ \frac{\partial S}{\partial \rho_2} = 0 \Rightarrow (e_i - \rho_1 e_{i-1} - \rho_2 e_{i-2}) e_{i-2} = 0$$

These will generate the LSE of $\hat{\rho_1}$ and $\hat{\rho_2}$.

- $y'_t = y_t \hat{\rho}_1 y_{t-1} \hat{\rho}_2 y_{t-2}$ and $x'_t = x_t \hat{\rho}_1 x_{t-1} \hat{\rho}_2 x_{t-2}$ and apply OLS to the transformed data $y'_t = \beta'_0 + \beta_1 x'_t + z_t$, where $z_t \stackrel{\text{ind}}{\sim} N\left(0, \sigma_z^2\right)$.
- Final fitted model is: $\hat{y}'_t = \hat{\beta}'_0 + \hat{\beta}_1 x_t$.

Problem 14.

The following 24 residuals from a straight line fit are equally spaced and are given in time sequential order. Is there any evidence of lag-1 serial correlation?

$$8, -5, 7, 1, -3, -6, 1, -2, 10, 1, -1, 8, -6, 1, -6, -8, 10, -6, 9, -3, 3, -5, 1, -9$$

Use a two-sided test at level $\alpha = 0.05$

Solution:

The correlation between the residuals, e_i , i = 1(1)24 is $Cor(e_u, e_{u+1}) = \rho$. (if $\rho \neq 0$, there is autocorrelation).

We test the hypothesis $H_0: \rho = 0$ vs $H_1: \rho \neq 0$, thus H_0 indicates that there is no lag-1 autocorrelation. To perform this test we compute the Durbin - Watson test statistic:

$$d = \frac{\sum_{u=2}^{24} (e_u - e_{u-1})^2}{\sum_{v=1}^{24} e_v^2} = \frac{2225}{834} = 2.67 \Rightarrow 4 - d = 1.33$$

Now, compare with d_L and d_U values from d table. For $\alpha = 0.025$. (two-sided test) n = 24, k = 1 (since straight line fit with one regressor variable) $d_L = 1.16, d_U = 1.33$

- If $d < d_L$ and $4 d < d_L$: reject H_0 . Here, we accept H_0 as d = 2.67 > 1.16 (then is no lag-1 autocorrelation).
- If $d > d_U$ and $4 d > d_U$: accept H_0 . Here, we accept H_0 as d = 2.67 > 1.33 (then is no lag-1 autocorrelation).

Thus, there is no lag-1 autocorrelation/serial correlation in the data.

Problem 15.

Estimate the parameters α & β in the non-linear model $Y = \alpha + (0.49 - \alpha)e^{-\beta(X-8)} + \epsilon$ from the following observations:

X	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42
Y	0.490	0.475	0.450	0.433	0.458	0.423	0.407	0.407	0.407	0.405	0.393	0.405	0.400	0.395	0.400	0.390	0.407	0.390

Solution:

The problem is to estimate α, β of the non-linear model using the data, the residual sum of square can be written as

$$S(\alpha, \beta) = \sum_{u} (y_u - f(x_u, \alpha, \beta))^2 = \sum_{u} (y_u - \alpha - (0.49 - \alpha)e^{-\beta(x_u - 8)}))^2$$

$$f(x_u, \alpha, \beta) = \alpha + (0.49 - \alpha)e^{-\beta(x_u - 8)}$$

[Since, f is nonlinear, we solve the system of nonlinear eqns by using the Taylor series approximation of nonlinear into linear one]

$$\frac{\partial f}{\partial \alpha} = 1 - e^{-\beta(x_u - 8)}, \quad \frac{\partial f}{\partial \beta} = -(0.49 - \alpha)e^{-\beta(x_u - 8)} (x_u - 8)$$

Linearization: Taylor series expansion of $f(x_u, \alpha, \beta)$ about the point (α_0, β_0) is

$$f(x_u; \alpha, \beta) = f(x_u, \alpha_0, \beta_0) + (1 - e^{-\beta_0(x_u - 8)})(\alpha - \alpha_0) + [-(0.49 - \alpha_0)e^{-\beta_0(x_u - 8)}(x_u - 8)](\beta - \beta_0)$$

$$= f_u^0 + z_{1u}^0(\alpha - \alpha_0) + z_{2u}^0(\beta - \beta_0) \text{ [linear function from nonlinear function using Taylor approximation]}$$

$$Y_u = f_u^0 + z_{1u}^0(\alpha - \alpha_0) + z_{2u}^0(\beta - \beta_0) + \epsilon_u$$

$$\Rightarrow Y_u - f_u^0 = z_{1u}^0(\alpha - \alpha_0) + z_{2u}^0(\beta - \beta_0) + \epsilon_u \longrightarrow [\text{MLR model}]$$

$$\Rightarrow Y_0 = z_0\theta_0 + \epsilon \longrightarrow [\text{In matrix form}]$$

$$\Rightarrow \hat{\theta_0} = (z_0^T z_0)^{-1} z_0^T Y_0 \text{ is the least square estimate}$$

where

$$Y_0 = \begin{bmatrix} Y_1 - f_1^0 \\ \vdots \\ Y_n - f_n^0 \end{bmatrix}, \ z_0 = \begin{bmatrix} z_{11}^0 & z_{21}^0 \\ \vdots & \vdots \\ z_{1n}^0 & z_{2n}^0 \end{bmatrix}, \ \theta_0 = \begin{bmatrix} \alpha - \alpha_0 \\ \beta - \beta_0 \end{bmatrix}, \ \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

• If we begin the iteration with initial guess $\alpha_0 = 0.30, \beta_0 = 0.02$

$$z_0 = \begin{bmatrix} 1 - e^{-\beta_0(x_1 - 8)} & -(0.49 - \alpha_0)(x_1 - 8)e^{-\beta_0(x_1 - 8)} \\ \vdots & \vdots \\ 1 - e^{-\beta_0(x_n - 8)} & -(0.49 - \alpha_0)(x_n - 8)e^{-\beta_0(x_n - 8)} \end{bmatrix}$$

$$\begin{array}{c|cccc} iteration & \alpha_j & \beta_j \\ \hline 0 & 0.30 & 0.02 \\ 1 & 0.84 & 0.10 \\ \end{array}$$

iteration	α_{j}	eta_j
2	0.3901	0.1004
3	0.3901	0.1016
4	0.3901	0.1016

- Iteration continues and obtain α_{j+1} and β_{j+1} .
- This process continue until $|\alpha_{j+1} \alpha_j| < \delta$ and $|\beta_{j+1} \beta_j| < \delta = 0.0001$. So, we stop here.

Problem 16.

Look at these data. I don't know whether to fit two straight lines, one straight line or what. How to solve this dilemma?

7.1 2.4 Y 5.1 4.4

Solution:

If we attach a dummy variable Z to distinguish the two groups (such that Z = 0 for set A and Z = 1 for set B), we can look at all 4 possibilities.

$$Y = (\beta_0 + \beta_1 X) + Z(\alpha_0 + \alpha_1 X) + \epsilon = \beta_0 + \beta_1 X + \alpha_0 Z + \alpha_1 X Z + \epsilon$$

Thus the X matrix becomes

$$X = \begin{bmatrix}
1 & X & Z & XZ \\
1 & 8 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 12 & 0 & 0 \\
1 & 2 & 0 & 0 \\
1 & 9 & 1 & 9 \\
1 & 7 & 1 & 7 \\
1 & 8 & 1 & 8 \\
1 & 6 & 1 & 6
\end{bmatrix}$$

Thus we have $Y = X\beta + \epsilon \Rightarrow \beta = (\beta_0, \beta_1, \beta_2, \beta_3)^T$ and $\hat{\beta} = (X^T X)^{-1} X^T Y \Rightarrow \hat{Y} = 1.142 + 0.506X - 0.0418Z - 0.036XZ$ Case: Test if a single line is sufficient i.e., $H_0: \alpha_0 = \alpha_1 = 0$

$$F = \frac{\left\{SS_{Reg}(\mathbf{Full}) - SS_{Reg}(\mathbf{Restricted\ Model})\right\} / \left\{df(\mathbf{Full}) - df(\mathbf{Restricted\ Model})\right\}}{MS_{Res}}$$

$$= \frac{0.1818/(3-1)}{0.3272/4} = 1.11 < F_{0.05,2,4}$$

Hence, we fail to reject H_0 and can go for a single straight-line fit.

Problem 17.

Let \underline{x} be a vector of p random variables and α_k is a vector of p constants and we write $\alpha_k^T\underline{x} = \sum_{j=1}^p \alpha_{kj}x_j$. Also, let S be the (known) sample covariance matrix for the random variable \underline{x} . For k=1,2, show that the k^{th} principal component is given by $z_k = \alpha_k^T\underline{x}$ where α_k is an eigenvector of S corresponding to its k^{th} largest eigenvalue λ_k . [Principal component Regression]

Solution:

The solution is given in the teaching material, the method is based on Lagrange's multipliers. We will explain the technique below.

METHOD OF LAGRANGE'S MULTIPLIERS: Suppose we wish to minimize or maximize a function of two variables z = f(x, y) where (x, y) is constrained to satisfy g(x, y) = 0. Assuming that these functions have continuous derivatives, we can visualize g(x, y) = 0 as a curve along with the level curve of z = f(x, y).

Intuitively, if we move the level curve in the direction of increasing z, the largest or smallest z occurs at a point where a level curve touches g(x,y)=0. The quadrants of 'f' and 'g' should be in the same or opposite direction. Then $\nabla f = -\lambda \nabla g$ for some constant $\lambda \ni \nabla \{f + \lambda g\} = 0$.

Proof. g(x,y) = 0, $-\frac{dy}{dx} = -\frac{g_x}{g_y}$ and for f(x,y) = c, $\frac{dy}{dx} = -\frac{f_x}{f_y}$.

At the point of tangency,
$$-\frac{f_x}{f_y} = \frac{dy}{dx} = -\frac{g_x}{g_y} \Rightarrow -\frac{f_x}{f_x} = \frac{f_y}{g_y} = -\lambda \text{ (say) } \therefore (f_x, f_y) = -\lambda (g_x, g_y)$$

Hence, to find the maximum on minimum of f(x,y) subject to g(x,y)=0, we find all the solution of equation,

$$\nabla \{f + \lambda g\} = 0 \text{ and } g(x, y) = 0$$

$$\Rightarrow \frac{\partial F}{\partial x} = 0 = \frac{\partial F}{\partial y}, \ g(x, y) = 0; \text{ where } F(x, y) = f(x, y) + \lambda g(x, y).$$

Local maxima and minima will be among the solutions. If the curve g(x,y)=0 is closed and bounded, then the absolute maxima and minima of f(x,y) exist and are among these solutions.

General Case: To maximize or minimizes $z = f(x_1, x_2, \dots, x_n)$ subject to the constraints $g_i(x_1, x_2, \dots, x_n) = 0$; $i = 1, 2, \dots, n$ 1(1)k, solve the following equations simultaneously,

$$\nabla \left\{ f + \sum_{i=1}^{k} \lambda_i g_i \right\} = 0 \text{ and } g_i(x_1, x_2, \dots, x_n) = 0, i = 1(1)k.$$

The numbers $\lambda_1, \lambda_2, \dots, \lambda_k$ are called the Lagrange's multipliers. The method for finding the extrema of a function subject to some constraints is called the "method of Lagrange's Multipliers".

EXAMPLE OF LAGRANGE'S MULTTPUERS:

Maximize $f(x,y)=x^2y$ subject to $x^2+xy=12$. We let $F(x,y)=x^2y+\lambda\left(x^2+xy-12\right)$

$$0 = \frac{\partial F}{\partial x} = 2xy + \lambda(2x + y) \rightarrow (i), \ 0 = \frac{\partial F}{\partial y} = x^2 + \lambda x \rightarrow (ii), \ x^2 + xy = 12 \rightarrow (iii)$$

From (ii) $\rightarrow x(x+\lambda) = 0 \Rightarrow x = -\lambda$ as x = 0 is not a solution of $x^2 + xy = 12$.

From (i)
$$\rightarrow -2\lambda y + \lambda 2(-\lambda) + \lambda y = 0 \Rightarrow -\lambda y = 2\lambda^2 \Rightarrow y = -2\lambda$$

From (iii) $\rightarrow x = -\lambda, y = -2\lambda$, then $x^2 + xy = 12$ gives $\lambda = \pm 2$.

(x,y) = (-2,-4) or (2,4). Hence $\max\{xy\} = 16, \min\{xy\} = -16$.

Problem 18.

Find the maximum and minimum value of $\underline{x}'A\underline{x}$ subject to $\underline{x}'\underline{x} = 1$.

$$F(\underline{x}) = \underline{x}^T A \underline{x} - \lambda(\underline{x}^T \underline{x} - 1)$$

$$\frac{\partial F(\underline{x})}{\partial \underline{x}} = \underline{0}$$

$$\Rightarrow \frac{\partial}{\partial \underline{x}} \{\underline{x}^T A \underline{x} - \lambda(\underline{x}^T \underline{x} - 1)\} = \underline{0} \Rightarrow 2A \underline{x} - 2\lambda \underline{x} = \underline{0} \Rightarrow A \underline{x} = \lambda \underline{x} \Rightarrow \underline{x}^T A \underline{x} = \underline{x}^T \lambda \underline{x} = \lambda \underline{x}^T \underline{x} = \lambda \text{ [since, } \underline{x}^T \underline{x} = 1]$$

$$\therefore \operatorname{Max} \{\underline{x}^T A \underline{x}\} = \operatorname{max} \{\lambda_i\} = \lambda_{(n)} = \operatorname{Largest \ eigenvalue \ of } \underline{x} \ni \underline{x}^T \underline{x} = 1.$$

$$\operatorname{Min} \{\underline{x}^T A \underline{x}\} = \min \{\lambda_i\} = \lambda_{(1)} = \operatorname{Smallest \ eigenvalue \ of } \underline{x} \ni \underline{x}^T \underline{x} = 1.$$

Problem 19.

Show that $\|\hat{\beta}_{Ridge}\|$ increases as its tuning parameter $\lambda \to 0$. Does the same property hold for the LASSO regression? Solution

SVD Decomposition of $X = U_{n \times p} D_{p \times p} V_{p \times p}^T$

$$\hat{\beta}_{\text{Ridge}} = \left(X^T X + \lambda I\right)^{-1} X^T Y = \left(V D^2 V^T + \lambda I\right)^{-1} V D U^T Y = \left(V \left(D^2 + \lambda I\right) V^T\right)^{-1} V D U^T Y = V^T \left(D^2 + \lambda I\right)^{-1} D U^T Y.$$

$$\|\hat{\beta}_{\text{Ridge}}\|_2^2 = Y^T U D (D^2 + \lambda I)^{-1} (D^2 + \lambda I)^{-1} D U^T Y = (U^T Y)^T [D (D^2 + \lambda I)^{-2} D] (U^T Y) = \sum_{i=1}^p \frac{d_i^2 (U^T Y)_i^2}{(d_i^2 + \lambda)^2};$$

where $D\left(D^2 + \lambda I\right)^{-1}D$ represents a diagonal matrix with elements $\frac{d_j^2}{\left(d_j^2 + \lambda\right)^2}$.

Therefore, we see that $\|\hat{\beta}_{\text{Ridge}}\|$ increases as its tuning parameter $\lambda \to 0$. Recall the dual form of LASSO as defined below:

$$\hat{\beta}_{\text{Lasso}} = \arg\min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
s.t.
$$\sum_{j=1}^{p} |\beta_j| \le t$$

$$\hat{\beta}_{\text{Lasso}} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

It is easy to see that t and λ have an inverse relationship; therefore, as $\lambda \to 0, t$ increases and so does the norm of optimal solutions.

Problem 20.

Consider a two-class logistic regression problem with $x \in \mathbb{R}$. Characterize the maximum-likelihood estimates of the slope and intercept parameter if the sample x_i for the two classes are separated by a point $x_0 \in \mathbb{R}$. Generalize this result to (a) $x \in \mathbb{R}^p$ and (b) more than two classes.

Solution

Without loss of generality, suppose that $x_0 = 0$ and that the coding is y = 1 for $x_i > 0$ and y = 0 for $x_i < 0$. Now, suppose that

$$p(x;\beta) = \frac{\exp\{\beta x + \beta_0\}}{1 + \exp\{\beta x + \beta_0\}}$$

so that

$$1 - p(x; \beta) = \frac{1}{1 + \exp{\{\beta x + \beta_0\}}}$$

Since $x_0 = 0$ is the boundary then $p(x_0) = 1 - p(x_0)$ then $\beta_0 = 0$. Therefore,

$$p(x;\beta) = \frac{\exp\{\beta x\}}{1 + \exp\{\beta x\}}$$

so that

$$1 - p(x; \beta) = \frac{1}{1 + \exp\{\beta x\}}.$$

Therefore, the likelihood function

$$L(\beta; y, x) = \prod_{i=1}^{N} p(x_i; \beta)^{y_i} \left[1 - p(x_i; \beta)\right]^{1 - y_i} = \prod_{i=1}^{N} \left[\frac{p(x_i; \beta)}{1 - p(x_i; \beta)}\right]^{y_i} \left[1 - p(x_i; \beta)\right] = \prod_{i=1}^{N} \left[\exp\left\{\beta x_i\right\}\right]^{y_i} \left[1 + \exp\left\{\beta x_i\right\}\right]$$

so that the log-likelihood function

$$l(\beta; y, x) = \sum_{i=1}^{N} y_i [\beta x_i] - \log [1 + \exp {\{\beta x_i\}}]$$

Taking the derivative with respect to β and substituting in the proper coding of y_i gives

$$\frac{dl(\beta; x, y)}{d\beta} = \sum_{i=1}^{N} x_i \left(y_i - \frac{\exp{\{\beta x_i\}}}{1 + \exp{\{\beta x_i\}}} \right) \\
= \sum_{x_i > 0} x_i \left(1 - \frac{\exp{\{\beta x_i\}}}{1 + \exp{\{\beta x_i\}}} \right) - \sum_{x_i < 0} x_i \left(\frac{\exp{\{\beta x_i\}}}{1 + \exp{\{\beta x_i\}}} \right) \\
= \sum_{x_i > 0} x_i - \sum_{x_i > 0} x_i \left(\frac{\exp{\{\beta x_i\}}}{1 + \exp{\{\beta x_i\}}} \right) - \sum_{x_i < 0} x_i \left(\frac{\exp{\{\beta x_i\}}}{1 + \exp{\{\beta x_i\}}} \right).$$

Setting the above equal to zero gives

$$\sum_{x_i > 0} x_i = \sum_{i=1}^N x_i \left(\frac{\exp\left\{\beta x_i\right\}}{1 + \exp\left\{\beta x_i\right\}} \right).$$

Clearly, for any data set $\{x_i\}_{i=1}^N$ we must have that $\beta \to \infty$ for the above equality to hold.

(b) Now, suppose that there are K classes such that x_1 seperates classes one and two, x_2 seperates classes two and three, and so on to x_{K-1} that seperates classes K-1 and K with $-\infty = x_0 < x_1 < x_2 < \ldots < x_{K-1} < x_K = \infty$. Now, define probabilities

$$p_1(x;\beta) = \frac{\exp\{\beta_1 x + \beta_{01}\}}{1 + \sum_{j=1}^{K-1} \exp\{\beta_j x + \beta_{0j}\}}$$
$$p_2(x;\beta) = \frac{\exp\{\beta_2 x + \beta_{02}\}}{1 + \sum_{j=1}^{K-1} \exp\{\beta_j x + \beta_{0j}\}}$$
$$\vdots$$
$$p_{K-1}(x;\beta) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp\{\beta_j x + \beta_{0j}\}}.$$

Now, suppose that the coding is $y_i = 1$ if $x_{j-1} < x_i < x_j$ and $y_i = 0$ otherwise for observation i = 1, ..., N and class j = 1, ..., K. Therefore, the likelihood function

$$L(\beta; y, x) = \prod_{j=1}^{K} \prod_{i=1}^{N_j} [p_j(x_i; \beta)]^{y_i}$$

where N_j is the number of observations in class j, so that the log-likelihood function

$$l(\beta; y, x) = \sum_{j=1}^{K-1} \sum_{i=1}^{N_j} y_i \log \left[\frac{\exp\{\beta_j x_i + \beta_{0j}\}}{1 + \sum_{j=1}^{K-1} \exp\{\beta_j x + \beta_{0j}\}} \right] + \sum_{i=1}^{N_k} y_i \log \left[\frac{1}{1 + \sum_{j=1}^{K-1} \exp\{\beta_j x_i + \beta_{0j}\}} \right]$$
$$= \sum_{j=1}^{K-1} \sum_{i=1}^{N_j} y_i \left[\beta_j x_i + \beta_{0j} \right] - \sum_{j=1}^{K} \sum_{i=1}^{N_j} y_i \log \left[1 + \sum_{j=1}^{K-1} \exp\{\beta_j x_i + \beta_{0j}\} \right]$$

Now, we determine the values of β_{0j} . First, note that β_{0j} is a function of β_j, x_{j-1} , and x_j . So that the expression $p(x; \beta)$ maintains proper form, for $x_{j-1} < x < x_j$ we define

$$p(x; \beta_j) = \frac{\exp \{\beta_j (x - x_{j-1})\} - \exp \{\beta_j (x - x_j)\}}{1 + \sum_{j=1}^{K-1} \exp \{\beta_j x_i + \beta_{0j}\}}$$

$$= \frac{\exp \{\beta_j x\} [\exp \{\beta_j x_{j-1}\} - \exp \{\beta_j x_j\}]}{1 + \sum_{j=1}^{K-1} \exp \{\beta_j x_i + \beta_{0j}\}}$$

$$= \frac{\exp \{\beta_j x + \beta_{0j}\}}{1 + \sum_{j=1}^{K-1} \exp \{\beta_j x_i + \beta_{0j}\}}$$

where $\beta_{0j} = \log \left[\exp \left\{ \beta_j x_{j-1} \right\} - \exp \left\{ \beta_j x_j \right\} \right]$. The reason for the beginning step of the formulation above is due to the fact that, for example, when $x \in (x_1, x_2)$ so that x classifies to class two, the probability function appears as in the following figure, where it was assumed that $x_1 = 1$ and $x_2 = 2$.

Now, taking the derivative with respect to $\beta = (\beta_1, \dots, \beta_{K-1})$ and substituting in the proper coding of y_i gives

$$\frac{dl(\beta; x, y)}{d\beta_{j}} = \sum_{i=1}^{N_{j}} x_{i} + \sum_{i=1}^{N_{j}} \frac{\exp\{\beta_{j} x_{j-1}\} x_{j-1} - \exp\{\beta_{j} x_{j}\} x_{j}}{\exp\{\beta_{j} x_{j-1}\} - \exp\{\beta_{j} x_{j}\}}
- \sum_{i=1}^{N_{j}} \left[x_{i} + \frac{\exp\{\beta_{j} x_{j-1}\} x_{j-1} - \exp\{\beta_{j} x_{j}\} x_{j}]}{\exp\{\beta_{j} x_{j-1}\} - \exp\{\beta_{j} x_{j}\}} \right] \left(\frac{\exp\{\beta_{j} x_{i} - \beta_{0j}\}}{1 + \sum_{j=1}^{K-1} \exp\{\beta_{j} x_{i} + \beta_{0j}\}} \right)$$

Note that the $\frac{\exp\{\beta_j x_{j-1}\}x_{j-1}-\exp\{\beta_j x_j\}x_j}{\exp\{\beta_j x_{j-1}\}-\exp\{\beta_j x_j\}}$ term in the above is a constant in the sum over $i=1,\ldots,N_j$. Therefore, setting the above equal to zero for each $j=1,\ldots,K-1$ and solving for β_j gives the maximum likelihood estimators in a similar fashion to the two-class case that $\beta_j \to \infty$