ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ETIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE ÉCOLE POLYTECHNIQUE (FILIÈRE TSI)

CONCOURS D'ADMISSION 1998

MATHÉMATIQUES

DEUXIÈME ÉPREUVE FILIÈRE MP (Durée de l'épreuve : 4 heures)

L'emploi de la calculette est interdit.

Sujet mis à la disposition du concours E.N.T.P.E.; suite à l'arrêté du 9 décembre 1997.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie : MATHÉMATIQUES II - MP.

L'énoncé de cette épreuve, particulière aux candidats de la filière MP, comporte 6 pages.

Si un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Soit n un entier naturel supérieur ou égal à 2 ; soit $(e_1, e_2, ..., e_n)$ la base canonique de l'espace vectoriel R^n . L'espace R^n est muni d'une structure d'espace vectoriel euclidien grâce au produit scalaire $(x \mid y)$ défini par la relation :

$$(x \mid y) = \sum_{i=1}^{n} x_i y_i = {}^{t}X.Y;$$

x et y sont deux vecteurs de R^n de coordonnées respectives $(x_i)_{1 \ 4i \ 4n}$ et $(y_i)_{1 \ 4i \ 4n}$; X et Y désignent les matrices colonnes associées aux vecteurs x et y.

Soit Z^n le sous-ensemble des vecteurs x de R^n dont les coordonnées dans la base canonique de R^n sont toutes des entiers relatifs :

$$Z^n \ = \{ \ x \mid x \ R^n \ , \, x = (x_i)_{1 \ 4i \ 4n} \ , \, x_i \ Z \ \} \ .$$

Par définition une "base" de l'ensemble Z^n est une suite $(\epsilon_1, \epsilon_2, ..., \epsilon_n)$ de vecteurs tels que :

- i/ La suite $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$ est une base de l'espace vectoriel R^n ;
- ii/ Chaque vecteur ε_i , 1 4i 4n , appartient à l'ensemble Z^n ;
- iii/ Tout vecteur x appartenant à Z^n est une combinaison linéaire des vecteurs ϵ_i , 1 4i 4n :

$$x = \sum_{i=1}^n \lambda_i \, \epsilon_i \; ; \; les \; coefficients \; \lambda_i, \; 1 \; 4i \; 4n, \; sont \; des \; entiers \; relatifs.$$

Soit M une matrice appartenant à l'espace vectoriel réel M(n; R) des matrices carrées d'ordre n; le réel m_{ij} est le coefficient de la matrice M à l'intersection de la $i^{\grave{e}me}$ ligne et de la $j^{\grave{e}me}$ colonne. Le sous-ensemble des matrices réelles d'ordre n inversibles est noté GL(n; R).

Soit M(n; Z) l'ensemble des matrices carrées d'ordre n de coefficients égaux à des entiers relatifs. Soit GL(n; Z) le sous-ensemble des matrices inversibles de M(n; Z) dont l'inverse appartient à M(n; Z).

$$GL(n;Z) = \{ \ M \mid M \ M(n;Z) {\longleftrightarrow} GL(n;R) \ et \ M^{-1} \ M(n;Z) \ \} \ .$$

Notation : soient A, B,... des matrices appartenant à M(n; R), les endomorphismes de R^n associés à ces matrices dans la base canoniques de R^n sont notés a, b,...

Soit S⁺(n; R) l'ensemble des matrices symétriques A telles que la forme quadratique x-($x \mid a(x)$) = tX .A.X soit définie et positive.

Le but du problème est d'établir, pour une matrice A de S⁺(n; R), une relation entre le minimum m(A) de la forme quadratique x-($x \mid a(x)$) = ${}^{t}X.A.X$, lorsque x est un vecteur appartenant à Z^{n} différent du vecteur nul, noté 0, et le déterminant de la matrice A.

Première partie.

Construction d'une "base" de Zⁿ à partir d'un vecteur donné de Zⁿ.

I-1°) <u>Déterminant d'une matrice de GL(n; Z)</u>:

Soit M une matrice appartenant à l'espace M(n; Z); démontrer que, pour que cette matrice M appartienne à l'ensemble GL(n; Z), il faut et il suffit que le déterminant det(M) de cette matrice soit égal à 1 ou à -1.

I-2°) <u>Un résultat préliminaire</u>:

Soit P l'application de $Z \infty Z$ dans Z qui, à deux entiers relatifs a et b, associe l'entier P(a,b) égal :

- au P.G.C.D. des entiers relatifs a et b s'ils sont tous les deux différents de 0,
- à l'entier relatif a ou b lorsque respectivement b ou a est nul ; il vient :

$$P(a, 0) = a$$
, $P(0, b) = b$, $P(0, 0) = 0$.

Soit x un vecteur appartenant à l'ensemble Z^2 de coordonnées a et b. Établir l'existence d'un endomorphisme v de R^2 associé à une matrice V, appartenant à GL(2; Z), telle que l'image du vecteur x par l'endomorphisme v soit le vecteur de coordonnées (d, 0) où d est l'entier P(a,b): $V\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}$; poser : $V = \begin{pmatrix} \alpha & \beta \\ \alpha' & \beta' \end{pmatrix}$.

I-3°) Recherche de "base" dans Z^n :

Soit x ((x_i)_{1 4i 4n}) un vecteur appartenant à l'ensemble Zⁿ, différent de 0, dont les coordonnées différentes de 0 sont des entiers premiers entre eux dans leur ensemble.

a. L'entier n est égal à 2 : démontrer, qu'il existe un endomorphisme u de matrice U appartenant à $GL(2; \mathbb{Z})$ tel que le vecteur x soit l'image du vecteur e_1 par u :

 $x = u(e_1)$. En déduire qu'il existe un vecteur y, appartenant à l'ensemble Z^2 , tel que l'ensemble $\{x, y\}$ soit une "base" de Z^2 .

- b. L'entier n est supérieur ou égal à 3 (n 5 3) : soit $(d_i)_{1 \ 4i \ 4n-1}$ la suite des entiers définis par les relations suivantes :
 - $d_{n-1} = P(x_n, x_{n-1})$;
 - pour tout entier i compris entre 1 et n-2 (1 4 i 4 n-2), $d_i = P(d_{i+1}, x_i)$.

Pour tout entier k compris entre 1 et n-1 (1 4 k 4 n-1), y^k est le vecteur dont les coordonnées sont $x_1, x_2, ..., x_{k-1}, d_k, 0, ..., 0$.

Démontrer l'existence d'un endomorphisme v_{n-1} tel que $v_{n-1}(x) = y^{n-1}$ (de coordonnées $x_1, x_2, ..., x_{n-2}, d_{n-1}, 0$).

Démontrer, pour tout entier k, l'existence d'un endomorphisme v_k de matrice V_k appartenant à GL(n;Z), telle que l'image du vecteur x par l'endomorphisme v_k , soit le vecteur y^k : $v_k(x) = y^k$.

En déduire l'existence d'un endomorphisme u de matrice U appartenant à GL(n; Z) tel que la relation $x = u(e_1)$ ait lieu.

c. Démontrer qu'il existe n-1 vecteurs z^2 , z^3 ,..., z^n tels que la suite x, z^2 , z^3 ,..., z^n soit une "base" de Z^n .

Deuxième partie

Deux matrices A et B, appartenant à M(n; R), sont dites Z-congruentes si et seulement s'il existe une matrice U appartenant à l'ensemble GL(n; Z) telle que la relation $B = {}^tU.A.U$ ait lieu. Il est admis que cette propriété est une relation d'équivalence notée : A + B.

Soit A une matrice, appartenant à $S^+(n; R)$. L'ensemble des valeurs prises par la forme quadratique $x-(x \mid a(x)) = {}^tX.A.X$, lorsque x est un vecteur, différent de 0, appartenant à Z^n , est un ensemble de réels strictement positifs. Il est admis que la borne inférieure m(A) de cet ensemble existe et est un réel positif ou nul :

$$m(A) = \inf_{x \neq 0, x \in \mathbb{Z}^n} (x \mid a(x)) 5 0.$$

Le but de cette partie est de montrer que, dans l'ensemble $S^+(n; R)$, toute matrice A est Z-congruente à une matrice B de $S^+(n; R)$ telle que m(B) soit égal au coefficient b_{11} .

II-1°) Propriétés des matrices Z-congruentes :

Soient A et B deux matrices de M(n;R) Z-congruentes. La matrice A appartient à l'ensemble $S^+(n;R)$.

- a. Démontrer que la matrice B appartient aussi à l'ensemble S⁺(n; R).
- b. Établir les relations : det(A) = det(B), m(A) = m(B).

c. Soit B la matrice définie par la relation : $B = \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix}$. Établir que la matrice B appartient à l'ensemble S⁺(2; R) (utiliser la forme quadratique associée à cette matrice) ; déterminer le réel m(B).

II-2°) Propriétés du réel m(A):

dessus.

Dans cette question la matrice A, associée à l'endomorphisme a, appartient à l'ensemble $S^+(n;R)$.

a. Comparer les réels m(A) et a_{11} . Il est admis qu'il n'existe qu'un nombre fini de vecteurs x appartenant à l'ensemble Z^n tels que la relation $(x \mid a(x))$ 4 a_{11} ait lieu. En déduire l'existence d'au moins un vecteur z appartenant à Z^n vérifiant l'égalité

$$(z \mid a(z)) = m(A) .$$

Soient $z_1, z_2,..., z_n$ les coordonnées de ce vecteur z. Démontrer que les coordonnées différentes de 0 sont des entiers relatifs premiers entre eux dans leur ensemble et que le réel m(A) est strictement positif.

b. Démontrer qu'il existe une matrice B congruente à la matrice A telle que la relation $b_{11} = m(B)$ ait lieu.

Troisième partie

Le but de cette partie est d'établir, pour toute matrice A appartenant à l'ensemble $S^+(n;R)$, une relation simple donnant une majoration du réel m(A) au moyen du déterminant de A. Cette relation est d'abord établie pour les matrices d'ordre 2 en introduisant la définition de matrice "réduite" puis établie pour les matrices d'ordre n.

III-1°) Relations vérifiées par les coefficients d'une matrice de S⁺(2; R) :

Étant donnée une matrice A symétrique d'ordre 2, soient a, b et c ses coefficients définis par la relation suivante : $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$

- a. Démontrer qu'une matrice A appartient à $S^+(2; R)$ si et seulement si ses coefficients vérifient les relations : a > 0, c > 0 et $a c b^2 > 0$.
- b. Démontrer que, pour qu'une matrice A appartienne à $S^+(2; R)$, il suffit que ses coefficients vérifient les relations : 0 < a, 2 |b| 4 a 4 c. Déterminer le réel m(A) lorsque les coefficients a, b et c vérifient les inégalités ci-

Une matrice A, appartenant à $S^+(2; R)$, est dite "réduite" lorsque ses coefficients a, b et c vérifient les relations : 0 < a, 0 4 2 b 4 a 4 c.

III-2°) Matrice "réduite" Z-congruente à une matrice donnée

Soit $A_1 = \begin{pmatrix} a_1 & b_1 \\ b_1 & c_1 \end{pmatrix}$ une matrice appartenant à $S^+(2; R)$ telle que le réel $m(A_1)$ soit égal au coefficient a_1 .

Démontrer qu'il existe une matrice $A_2=\begin{pmatrix} a_2 & b_2 \\ b_2 & c_2 \end{pmatrix}$, Z-congruente à la matrice A_1 , dont les coefficients vérifient les relations : $0 < a_2$, $2 \mid b_2 \mid \ 4 \ a_2 \ 4 \ c_2$. Établir cette propriété en recherchant une matrice $U=\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$, où λ est un entier relatif, qui vérifie la relation suivante : $A_2={}^tU.A_1.U$.

En déduire qu'il existe une matrice A_3 (appartenant à $S^+(2; R)$), "réduite" et Z-congruente à la matrice A_1 .

III-3°) Relation entre les réels m(A) et det(A) :

Démontrer que, pour toute matrice A appartenant à l'ensemble $S^+(2;R)$, les réels m(A) et det(A) sont liés par la relation suivante : $m(A) \cdot \frac{2}{\sqrt{3}} \sqrt{det(A)}$.

Vérifier la relation ci-dessus pour la matrice B définie à la question II-1.c.

III-4°) Matrice B induite par une matrice A:

L'entier n est supposé supérieur ou égal à 3 (n 5 3). Étant donnée une matrice $A=(a_{ij})$ appartenant à l'ensemble $S^+(n;R)$, dont le coefficient a_{11} est différent de 0 ($a_{11} \bullet 0$), soit V la matrice dont les coefficients v_{ij} , 1 4 i 4 n, 1 4 j 4 n, sont définis par les relations :

$$v_{ij} = \begin{cases} 1, \text{ si } i = j, \\ \frac{a_{1j}}{a_{11}}, \text{ si } i = 1 \text{ et } j \geq 2, \\ 0, \text{ dans les autres cas.} \end{cases} V = \begin{cases} 1 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} & \dots & \frac{a_{1n}}{a_{11}} \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{cases}.$$

Soient a l'endomorphisme de matrice associée A dans la base canonique $(e_1, e_2, ..., e_n)$ de l'espace vectoriel R^n . Soit f l'endomorphisme défini par les relations :

pour tout entier i, 1 4 i 4 n,
$$f(e_i) = a_{11} a(e_i) - a_{1i} a(e_1)$$
.

a. Démontrer que le sous-espace vectoriel F de \mathbb{R}^n engendré par les vecteurs e_2 , e_3 , ..., e_n est stable par l'endomorphisme f.

Soit B la matrice d'ordre n-1 associée à la restriction de l'endomorphisme f (notée encore f) au sous-espace vectoriel F dans la base (e₂, e₃, ..., e_n). Il est admis que la matrice V, définie ci-dessus vérifie la relation ci-après : $A = {}^tV \begin{pmatrix} a_{11} & 0 \\ 0 & \frac{1}{a_{11}}B \end{pmatrix} V$.

- b. Établir la relation qui lie les déterminants des matrices A et B entre eux.
- c. Étant donné un vecteur x de R^n : $x = \sum_{i=1}^n x_i \, e_i$, soit x_F le vecteur du sous-espace

vectoriel F défini par la relation : $x_F = \sum_{i=2}^n x_i e_i$. Soit y le vecteur v(x) image du vec-

teur x par l'endomorphisme v de matrice associée V. Démontrer la relation :

$$(x \mid a(x)) = a_{11} (y_1)^2 + \frac{1}{a_{11}} (x_F \mid f(x_F))$$
.

Démontrer que la matrice B appartient à l'ensemble S⁺(n-1; R).

III-5°) Relation entre les réels det(A) et m(A) :

Le but de cette question est d'établir, pour toute matrice A de l'ensemble $S^+(n; R)$, la relation ci-dessous, établie lorsque l'entier n est égal à 2 :

(R)
$$m(A) \bullet \left(\frac{4}{3}\right)^{\frac{n-1}{2}} \left(\det(A)\right)^{1/n}.$$

- a. Deux hypothèses sur la matrice A sont formulées :
 - $m(A) = a_{11}$;
 - la relation (**R**) ci-dessus est vraie pour la matrice B construite à partir de la matrice A comme à la question précédente.

D'après la question II-2.a, il existe un vecteur $z_F = \sum_{i=2}^n z_i \; e_i$ (appartenant à Z^{n-1}) pour

lequel l'égalité $(z_F | f(z_F)) = m(B)$ a lieu.

Démontrer qu'il existe un entier relatif z_1 tel que le vecteur z, de Z^n , défini par la relation : $z=z_1$ e_1+z_F , est transformé par l'endomorphisme ν , de matrice associée V, en un vecteur y ($y=\nu(z)$) dont la première coordonnée y_1 a une valeur absolue inférieure ou égale à 1/2 : $|y_1|$ 4 1/2.

En déduire que la matrice A vérifie la relation (**R**).

b. Démontrer, pour toute matrice A de $S^+(n; R)$, la relation (**R**).

FIN DU PROBLÈME FIN DE L'ÉPREUVE