Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики $N_{\rm 0}$ 3.2.8

Релаксационные колебания

Автор:

Баранников Андрей Б01-001

Долгопрудный, 2021

Цель работы: изучение вольт-амперной характеристики нормального тлеющего разряда; исследование релаксационного генератора на стабилитроне.

В работе используются: стабилитрон СГ-2 (газонаполненный диод) на монтажной панели, амперметр, магазин сопротивлений, магазин ёмкостей, источник питания, осциллограф (Θ), генератор звуковой частоты (Θ).

Описание работы

Рис. 1: Вольтамперная характеристика стабилитрона с последовательно включенным резистором

Зависимость тока от напряжения для газоразрядной лампы не подчиняется закону Ома и характеризуется рядом особенностей, ее вольтамперная характеристика указана на $puc.\ 1$

При малых напряжениях лампа практически не пропускает ток. Как только разность потенциалов на ее электродах достигает напряжения зажигания в лампе начинает течь ток. После, так как наш источник напряжения не может поддерживать такую силу тока, напряжение на лампе начинает падать и достигая напряжения гашения, силу тока на ней скачком падает до нуля.

Рис. 2: Режимы работы релаксационного генератора

Колебательный процесс возможен когда нагрузочная прямая не пересекает характеристику лампы (3 прямая на puc. 2). Это происходит из-за того, что в стационарном режиме ток через лампу равен:

$$I_{\rm ct} = \frac{U - V}{R},$$

где V - напряжение на конденсаторе и оно постоянно. Тогда прямая 2 проходящая через точку (I_2, V_2) , соответствует критическому сопротивлению:

$$R_{\rm kp} = \frac{U - V_2}{I_2},$$

тогда для $R > R_{\rm kp}$ в системе установятся колебания.

Рис. 3: Схема установки для изучения релаксационных колебаний

Схема установки изображена на puc. 3. Здесь период колебаний будет складываться из времени заряда $\tau_{\mathfrak{g}}$ и времения разряда $\tau_{\mathfrak{p}}$. В случае, когда сопротивление R существенно превосходит внутреннее сопротивление стабилитрона, справедливо соотношение $\tau_{\mathfrak{g}} \gg \tau_{\mathfrak{p}}$. В таком случае период колебаний можно посчитать при помощи такой формулы:

$$T \approx \tau_3 = RC \ln \frac{U - V_2}{U - V_1},\tag{1}$$

где V_1 и V_2 потенциалы зажигания и гашения соответственно.

Ход работы

Снимем вольтамперную характеристику стабилитрона, внутреннее сопротивление стабилитрона r=5,1 кОм. Запишем данные в таблицу для систем из стабилитрона и дополнительного сопротивления r и для стабилитрона без сопротивления r. Построим графики зависимости I=f(V) по данным таблицам.

С учётом г		Без учёта г		
U, B	І, мА	U, B	І, мА	
41,7	0,0	41,7	0,0	
50,8	0,0	50,8	0,0	
59,8	0,0	59,8	0,0	
71,8	0,0	71,8	0,0	
82,3	0,0	82,3	0,0	
88,2	2,2	77,0	2,2	V_1
97,3	3,5	79,7	3,5	
108,5	5,1	82,5	5,1	
97,2	3,4	79,8	3,4	
84,2	1,6	76,0	1,6	V_2

Таблица 1: Зависимость U(I). V_1 - напряжение зажигания, V_2 - напряжение гашения

Соберем релаксационный генератор. Подберем частоту развертки так, чтобы было видно пилообразную картинку. Отношение времени зарядки к времени разрядки $\tau_{\rm 3}/\tau_{\rm p}=15.$

Рис. 4: Пилообразная картинка

Уменьшая сопротивление магазина определим $R_{\rm kp}$, при котором пропадают колебания. $R_{\rm kp}=115~{\rm kOm}$, при этом теоретическое значение критического сопротивления $R_{meop}=23~{\rm kOm}$. Такие различия возникают в результате неидеальности схемы и возникновения в ней помех.

Подадим сигнал с генератора на вход X осциллографа. Меняя частоту 3Γ получим на экране фигуру Лиссажу без самопересечений. Не меняя параметров релаксационного генератора получим фигуры Лиссажу при соотношении частот 2:1, 3:1, 1:2, 1:3.

При значении сопротивления $R=3R_{\rm kp}$ снимем с помощью фигур Лиссажу зависимость частоты колебаний от ёмкости C.

$C \cdot 10^{-3}$ мкФ	Теория	Эксперимент
C · 10 MKP	Т, с	Т, с
48	0,00325	0,02288
42	0,00284	0,02004
38	0,00257	0,01767
35	0,00237	0,01706
40	0,00270	0,01873
45	0,00304	0,02119
50	0,00338	0,02375

R, кОм	Теория	Эксперимент
	Т, с	Т, с
999999	9,79999	0,07143
800	0,00784	0,05556
700	0,00686	0,04926
600	0,00588	0,04167
500	0,00490	0,03448
400	0,00392	0,02703
300	0,00294	0,02028
200	0,00196	0,01346

Аналогично проведём серию измерений $\nu=f(R)$ при постоянной ёмкости $C=5\cdot 10^{-2}$ мк Φ , меняя величину R от максимального значения до критического.

По полученным данным построим графики T(R) и T(C):

Рис. 5: Зависимость периода колебаний от ёмкости Т(С)

Рис. 6: Зависимость периода колебаний от ёмкости T(R)

Рассчитаем динамический потенциал гашения для получившихся экспериментальных прямых по формуле:

$$T \approx RC \ln \frac{U - V_2}{U - V_1}$$

В случае зависимости T(C) получаем $V_2=85,7\,B,$ а в случае зависимости T(R) получим $V_2=86,2\,B$