KUMPULAN SOAL TERMOKIMIA

No	Alur Tujuan Pembelajaran (ATP)	Bentuk Soal	Indikator Soal	Contoh Soal	Level Kognitif
1.	Menerapkan hukum kekekalan massa dan penerapanny a dalam reaksi kimia	PG	Siswa dapat menentukan rumus perubahan energi dalam yang sesuai berdasarkan hukum termodinamik a pertama	Sebuah sistem termodinamika menerima kalor sebesar 150 J dan melakukan kerja sebesar 75 J. Gunakan rumus yang tepat untuk menghitung perubahan energi dalam (ΔE) dari sistem tersebut. Pilih rumus yang benar dari opsi di bawah ini dan terapkan untuk menghitung nilai perubahan energi dalam! a. $\Delta E = q$ w b. $\Delta E = q + w$ c. $q = \frac{\Delta E}{W}$ d. $w = q - \Delta E$ e. $\Delta E = q - w$	C3
2.		PG	Siswa dapat menghitung besar kerja yang dilakukan pada sistem	Sejumlah kalor yang sama dengan 3000 J ditambahkan ke dalam system dan dilakukan kerja pada system. Berapa besar kerja yang dilakukan system jika besar perubahan energi dalamnya sebesar 5000 J?	C3

3.		PG	Siswa dapat menentukan sistem terisolasi berdasarkan pemahaman konsep termodinamik a	a. 2000 J b. 2500 J c. 1000 J d. 3000 J e. 500 J Manakah dari pernyataan berikut yang termasuk ke dalam system terisolasi? a. Kolam b. Tubuh manusia c. Secangkir teh tanpa tutup d. Alam semesta e. Semua jawaban benar	С3
4.	Membedakan antara sistem terbuka, tertutup, dan isolasi	PG	Siswa dapat membedakan jenis-jenis sistem termodinamik a berdasarkan contoh- contoh situasi nyata	 Sebuah cangkir kopi panas tanpa tutup. Sebuah botol air mineral yang tertutup rapat. Sebuah termos yang dirancang untuk menjaga suhu minuman. Manakah pernyataan berikut yang benar mengenai jenis sistem yang terkait dengan contoh di atas? a. Cangkir kopi panas adalah sistem tertutup, botol air mineral adalah sistem isolasi, dan termos adalah sistem terbuka. b. Cangkir kopi panas adalah sistem terbuka, botol air mineral adalah sistem tertutup, dan termos adalah sistem terbuka, botol air mineral adalah sistem isolasi, dan termos adalah sistem tertutup d. Cangkir kopi panas adalah sistem terbuka, botol air mineral adalah sistem terbuka, dan termos adalah sistem tertutup. e. Cangkir kopi panas adalah sistem tertutup. e. Cangkir kopi panas adalah sistem tertutup, botol air mineral adalah sistem terbuka, dan termos adalah sistem tertutup. e. Cangkir kopi panas adalah sistem tertutup, botol air mineral adalah sistem terbuka, dan termos adalah sistem isolasi. 	C3

6.		PG	Siswa dapat menjelaskan alasan suatu zat dianggap sebagai sistem dalam konsep termodinamik a	Batu kapur direaksikan dengan air didalam tabung reaksi. Dalam reaksi tersebut zat yang bertindak sebagai system adalah air dan batu kapur. Mengapa air dan batu kapur dikategorikan sebagai sistem? a. Air dan batu kapur adalah zat yang mengalami perubahan kimia, sedangkan lingkungan tidak terlibat dalam reaksi b. Air dan batu kapur terlibat dalam pertukaran energi dan massa dengan lingkungan c. Hanya batu kapur yang berinteraksi dengan lingkungan, sedangkan air Tidak d. Air dan batu kapur berada di luar lingkungan, sehingga tidak ada interaksi dengan energi atau massa. e. Air dan batu kapur merupakan zat yang mempengaruhi tabung reaksi secara fisik.	C2
7.	Memberikan contoh reaksi endotermik dan eksotermik dalam kehidupan sehari-hari	PG	Siswa dapat menentukan reaksi eksoterm dan endoterm berdasarkan perubahan suhu sebelum dan sesudah reaksi berlangsung.	Perhatikan gambar berikut (1) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C3

8.	PG	Siswa dapat menentukan jenis reaksi dan arah perpindahan energi berdasarkan hasil pengamatan perubahan suhu dan pembentukan gas	Jika satu sendok serbuk seng dimasukkan ke dalam gelas kimia yang berisi larutan HCl, ternyata terbentuk gelembung gas dan dasar tabung terasa panas. Berdasarkan ilustrasi diatas, pernyataan yang sesuai adalah a. Endoterm, energi tidak berpindah b. Eksoterm, energi berpindah dari lingkungan ke sistem c. Endoterm, energi berpindah dari sistem ke lingkungan d. Eksoterm, energi berpindah dari sistem ke lingkungan e. Endoterm, energi berpindah dari lingkungan ke sistem	C3
9.	PG	Siswa dapat menentukan perubahan suhu hasil reaksi netralisasi berdasarkan data volume, konsentrasi, dan suhu awal reaktan	Sebanyak 50 mL larutan KOH 0,2 M ditambahkan ke dalam 50 mL larutan HCl 0,2 M, sehingga suhu campuran naik dari 13°C menjadi 28°C. Jika 25 mL larutan KOH 0,1 M ditambahkan kedalam larutan 25 mL HCl 0,1 M, maka kenaikan suhunya adalah a. 3,75°C b. 7,5°C c. 15°C d. 30°C 45°C	C3

10.	PG	Siswa dapat menghitung perubahan entalpi (ΔH) dari reaksi netralisasi dengan menggunakan data suhu, konsentrasi, volume, dan kapasitas kalor air.	kalor Jenis air 4,2 J/g.K, maka peubanan entaipi (ΔH) reaksi tersebut adalah a. 4,2 kJ b. 16,8 kJ c21,0 kJ d84,0 kJ e210 kJ	
11.	PG	Menentukan entalpi Pelarutan berdasarkan data massa zat, massa larutan, kalor jenis, dan perubahan suhu.	Pada pelarutan 2 gram kristal NaOH (Mr = 40) dalam 60 mL air terjadi kenaikan suhu dari 27°C menjadi 32°C. Jika kalor jenis larutan 4,2 J/g°C, entalpi pelarutan NaOH adalah (kJ/mol) a21 kJ/mol b. 22 kJ/mol c23 kJ/mol d. 23 kJ/mol e. 21,5 kJ/mol	C3

12		Siswa dapat	Pencampuran CaO (Ar Ca = 40 dan O = 16) dan H_2O (kalor jenis = 4 J $K^{-1}g^{-1}$) berlebih	
		menghitung	memberikan reaksi :	
		massa zat yang	$CaO(s) + H2O(l) \square Ca(OH)2(aq)$	
		bereaksi	$\Delta H = -64 kJ$	
		berdasarkan	Bila panas yang dihasilkan reaksi ini mampu menaikkan suhu 1.000 gram air sebesar 0,1 K,	
		perubahan	maka jumlah CaO yang bereaksi adalah	
		suhu, kalor	a. 0,035 gram	
		jenis, dan	b. 0,080 gram	
		perubahan	c. 0,105 gram	
	PG	entalpi reaksI	d. 0,350 gram	С3
			3,500 gram	
		Siswa dapat	Entalpi pembakaran gas C2H4 = a kJ/mol. Jika entalpi pembentukan CO2 berturut- turut	
		menghitung	adalah b kJ/mol, maka entalpi pembentukan C2H4 (g) adalah	
		entalpi	a. $a+b+c$	
		pembentukan	b. $a + 2b + 2c$	
13.	PG	senyawa	ca + b + c	C3
13.		berdasarkan	da + 2b + c	CS
		data entalpi	e. $-a + 2b + 2c$	
		pembakaran		
		dan entalpi		
		pembentukan		
		senyawa-		
		senyawa lain		

.

1	4.	PG	Menghitung entalpi pembakaran menggunakan data entalpi pembentukan dari zat-zat yang terlibat dalam reaksi pembakaran.	Diketahui: ΔH ° _f C3H8 (g)=-24,8 kJ/mol ΔH ° _f CO2 (g)=-94,7 kJ/mol ΔH ° _f H2O (1) -68,3 kJ/mol ΔH ° _c C3H8 (g) adalah a. 532,5 kJ/mol b. +81 kJ/mol b. c81 kJ/mol a94 kJ/mol b208 kJ/mol	C3
			решоакаган.	D208 KJ/IIIOI	
1	Mengaitkan hubungan antara kekuatan ikatan kimia dan perubahan entalpi.	PG	Siswa dapat menghitung kalor berdasarkan data energi data ikatan rata-rata	Diketahui data energi ikatan rata-rata sebagai berikut Cl – Cl = 57,8 kkal/mol H – Cl = 103,1 kkal/mol Kalor yang diperlukan untuk menguraikan 146 gram HCl (Ar H = 1, Cl = 35,5) menjadi unsur -unsurnya adalah kkal a. + 353,6 b 353,6 c. + 88,4 d 88,4 e. + 22,1	C3

.