ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 5.2.2/5.2.3 Изучение спектров атома водорода; Изучение молекулярного спектра йода.

> Серебренников Даниил Группа Б02-826м

Цель работы:

Исследовать спектральные закономерности в оптических спектрах водорода и дейтерия. По резелутатам измерений вычилить постоянные Ридберга для этих двух изотопов водорода, их потенциалы ионизации, изотопические сдвиги линий.

Исследовать спектр поглощения паров йода в видимой области; по результатам измерения вычислить энергию колебательного кванта молекулы йода и энергия её диссоциации в основном и возбужденном состояниях.

1 Теоретическая часть

1.1 Спектр водорода

Атом водорода является простейшей квантовой системой, для которой уравнение Шрёдингера может быть решено точно. Это также верно для водородноподобных атомов, то есть атомов с одним электроном на внешней оболочке. Из решения уравнения Шрёдингера следует, что внешний электрон в таких атомах обладает дискретным энергетическим спектром:

$$E_n = -\frac{m_e(Ze^2)^2}{2\hbar^2} \frac{1}{n^2},\tag{1}$$

где n есть номер энергетического уровня, Z есть зарядовое число ядра рассматриваемого атома, которое в случае атома водорода равно 1.

При переходе электрона с *n*-го на *m*-й уровень излучается фотон с энергией

$$E_{\gamma} = E_n - E_m = \frac{m_e e^2}{2\hbar^2} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right). \tag{2}$$

Длина волны соответствующего излучения $\lambda_{n,m}$ связана с номерами уровней следующим соотношением:

$$\lambda_{n,m}^{-1} = \frac{m_e e^2}{4\pi\hbar^3 c} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2}\right) = \text{Ry} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2}\right),\tag{3}$$

где $\mathrm{Ry} = \frac{m_e e^2}{4\pi\hbar^3 c}$ есть постоянная Ридберга.

В данной работе будет исследоваться серия Бальмера атома водорода, в которой электроны совершают переходы с некоторого уровня n на уровень m=2.

1.2 Спектр йода

В первом приближении энергия молекулы может быть представлена в виде:

$$E = E_e + E_o + E_r, (4)$$

где E_e есть энергия электронных уровней, E_o есть энергия колебательных уровней, E_r есть энергия вращательных уровней.

В настоящей работе рассматриваются оптические переходы, то есть переходы, связанные с излучением фотонов в видимом диапазоне длин волн. Они соответсвтуют переходам между различными электронными состояниями. При этом также происходят изменения вращательного и колебательного состояний, однако в реальности ввиду малости характерных энергий вращательные переходы ненаблюдаемы.

Более конкретно, изучаются переходы из колебательного состояния с номером n_1 освновного электронного уровня с энергией E_1 в колебательное состояние с номером

 n_2 на электронный уровень с энергией E_2 . Энергия таких переходов описывается формулой:

$$h\nu_{n_1,n_2} = (E_2 - E_1) + h\nu_2(n_2 + \frac{1}{2}) - h\nu_1(n_1 + \frac{1}{2}),$$
 (5)

где ν_1 и ν_2 суть энергии колебательных квантов на электронных уровнях с энергиями E_1 и E_2 .

При достаточно больших квантовых числах n_1 и n_2 колебательные уровни переходят в непрерывный спектр, что соответствует диссоциации молекулы. Наименьшая энергия, которую нужно сообщить молекуле в нижайшем колебательном состоянии, чтобы она диссоциировала, называется энергией диссоциации.

В данной работе определяются энергии диссоциации на первых двух электронных уровнях.

2 Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стеклянный-призменный монохроматор-спектрометр УМ-2 (универсальный монохроматор), предназначенный для спектральных исследований в диапазоне от 0,38 до 1,00 мкм. Основные элементы монохроматора представлены на 1а.

Рис. 1: Экспериментальная установка.

В нашей работе спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2 (рис. 1b).

3 Экспериментальные данные

Таблица 1: Каллибровка спектрометра.

θ , дел.	σ_{θ} , дел.	λ , HM
6717		2558
6678		2542
6599		2516
6533		2494
6507		2482
6402		2450
6383		2438
6334		2422
6305		2410
6267		2396
6234		2374
6217		2372
6164		2350
6143	1	2340
6096	1	2322
6074		2310
6030		2290
5976		2266
5945		2246
5882		2222
5852		2204
5791		2176
5770		2164
5461		1986
5401		1944
4916		1558
4358		896
4047		340

4 Обработка результатов

Проградуируем спектрометр, для чего используем спектры неоновой и ртутной лампы, длины волн спектральных линий которых известны. Результаты измерений представлены в таблице 1.

Рис. 2: Каллибровка спектрометра.

Для интерполяции графика (2) на все промежуточные значения используем формулу Гартмана:

$$\lambda = \lambda_0 + \frac{C_0}{\theta - \theta_0},$$

где λ_0, C_0, θ_0 суть параметры, определяемые по трём ближайшим точкам графика.

Измерим положения трёх линий водорода из серии Бальмера — H_{α} , H_{β} , H_{γ} . Линию H_{δ} пронаблюдать не удалось ввиду её слабой интенсивности. Получили соответствующие показания спектрометра:

$$H_{\alpha}: 2500 \pm 1, \ H_{\beta}: 1508 \pm 1, \ H_{\gamma}: 874 \pm 1.$$

С учётом градуировки спектрометра получаем следующие длины волн:

$$H_{\alpha} = 656 \pm 2 \text{ HM}, \ H_{\beta} = 487 \pm 2 \text{ HM}, \ H_{\gamma} = 434 \pm 2 \text{ HM}.$$

Для каждой линии определим константу Ридберга по формуле (3), учитывая, что $m=2,\,Z=1,\,$ а также, что для линии $H_{\alpha}-n=3,\,$ для линии $H_{\beta}-n=4,\,$ для линии $H_{\gamma}-n=5.\,$ Получаем следующие значения константы Ридберга:

$$Ry_{\alpha} = (0.0110 \pm 0.0001) \text{ Hm}^{-1}, Ry_{\beta} = (0.0109 \pm 0.0001) \text{ Hm}^{-1}, Ry_{\gamma} = (0.0109 \pm 0.0001) \text{ Hm}^{-1}.$$

По МНК определяем наилучшее значение константы Ридберга, а также его погрешность:

$$Ry_E = (0.0109 \pm 0.0002) \text{ HM}^{-1}$$

Полученное значение в пределах погрешности совпадает с табличным значением:

$$Ry = 0.01097 \text{ HM}^{-1}.$$

Запишем показания спектрометра для следующих переходов в молекуле йода: $\theta_{1,0}$ – переход из первого колебательного уровня основного состояния в нулевой колебательный уровень возбуждённого состояния, $\theta_{1,5}$ – переход из первого колебательного уровня основного состояния в пятый колебательный уровень возбуждённого состояния, θ_g – переход из нулевого колебательного уровня основного состояния в область непрерывного спектра возбуждённого состояния. Получаем следующие данные:

$$\theta_{1,0} = 2344 \pm 1, \ \theta_{1,5} = 2242 \pm 1, \ \theta_g = 1850 \pm 1,$$

откуда находим соответствующие длины волн:

$$\lambda_{1.0} = (615 \pm 2) \text{ HM}, \ \lambda_{1.5} = (594 \pm 2) \text{ HM}, \ \lambda_{q} = (522 \pm 2) \text{ HM}.$$

Определим энергию колебательного кванта возбуждённого состояния молекулы по формуле:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{0,5}}{5}.$$

Итого:

$$h\nu_2 = (0.014 \pm 0.002) \text{ BB}$$

Вычислим энергию электронного перехода $\Delta E = E_2 - E_1$, энергию диссоциации D_1 в основном состоянии и энергию диссоциации D_2 в возбуждённом состоянии, если известно, что энергия колебательного кванта основного состояния есть $h\nu_1 = 0,027$ эВ, а энергия возбуждения, то есть энергия перехода атома из области непрерывного спектра основного состояния в область непрерывного спектра возбуждённого состояния, равна $E_A = 0.94$ эВ.

Имеем систему уравнений:

$$\begin{cases} D_1 + E_A = h\nu_g, \\ h\nu_g = D_2 + \Delta E, \\ h\nu_{1,0} = \Delta E + h\nu_2 - \frac{3}{2}h\nu_1, \\ h\nu_{1,5} = \Delta E + \frac{11}{2}h\nu_2 - \frac{3}{2}h\nu_1. \end{cases}$$

Из неё находим все необходимые величины:

$$\Delta E = (2.050 \pm 0.002) \text{ 9B}, \ D_1 = (1.436 \pm 0.002) \text{ 9B}, \ D_2 = (0.326 \pm 0.002) \text{ 9B}.$$

5 Обсуждение результатов и выводы

В работе исследовались сериальные закономерности в оптическом спектре водорода и спектр поглощения паров йода в видимой области.

С помощью информации о спектральных линиях неона и ртути проградуирован спектрометр. Построен соответствующий график.

Получены длины волн линий H_{α} , H_{β} и H_{γ} серии Бальмера, вычислена постоянная Ридберга. В рамках погрешности данные совпали с табличными.

Получены длины волн, соответствующие некоторым электронно-колебательным переходам из основного состояния в возбуждённое. Вычислены энергия колебательного кванта возбуждённого состояния молекулы, энергия электронного перехода, энергии диссоциации молекулы в основном и в возбуждённом состояниях.