Achieving Equillibria in Vickrey's model

Mikhail Savelov

University of Passau

07.02.2024

- Problem Setting
- Replicator dynamics
 - Replicator equation
 - Numerical experiments
- Analysis
 - Lyapunov Theory
 - Multiple links
 - Two links
- Further directions

Problem Setting

- Directed graph G = (V, E), source $s \in V$, destination $t \in V$
- Planning horizon $[0, \infty)$, time $\theta \ge 0$
- Strategy space $\Lambda^{\theta}(r) = \{h(\theta) \in \mathbb{R}^{\mathcal{P}} | \sum_{p' \in \mathcal{P}} h_{p'}(\theta) = r\}$
- Path-delay operator according to Vickrey's model:

$$\Psi: (L_+^2[0,\theta])^{\mathcal{P}} \to (L_+^2[0,\theta])^{\mathcal{P}}$$
$$h \mapsto \Psi(\cdot,h)$$

• Dynamic equilibrium $h^*(\theta) \in \Lambda^{\theta}(r)$:

$$\langle \Psi(\theta, h^*), h^* \rangle \leq \langle \Psi(\theta, h^*), h \rangle \ \forall h \in \Lambda^{\theta}(r)$$

• Goal: construct a dynamic for $h(\cdot)$, s.t.

$$\|\Psi(\theta,h)-\Psi(\theta,h^*)\|_2 \stackrel{\theta\to\infty}{\to} 0$$

$$h_0^*(\theta) = \begin{cases} r, & 0 \le \theta < \theta^s \\ \nu_0, & \theta \ge \theta^s \end{cases} \quad h_1^*(\theta) = r - h_0^*(\theta)$$

$$\Psi_0(\theta, h^*) = \begin{cases} \tau_0 + \frac{r - \nu_0}{\nu_0} \theta, & 0 \le \theta < \theta^s \\ \tau_1, & \theta \ge \theta^s \end{cases} \quad \Psi_1(\theta, h^*) \equiv \tau_1$$

$$\theta^s = (\tau_1 - \tau_0) \frac{\nu_0}{r - \nu_0}$$

Replicator dynamics

- Fitness $(\phi_p(\theta,h))_{p\in\mathcal{P}}$, s.t. higher fitness corresponds to "better" path
- Replicator equation for $p \in \mathcal{P}$:

$$\dot{h}_p = h_p \cdot K(\phi_p - \overline{\phi})$$

K > 0 is a scaling constant, $\overline{\phi}(\theta, h) := \langle \phi(\theta, h), \frac{1}{r}h(\theta) \rangle$ is average fitness

- By construction $\sum_{p\in\mathcal{P}} \dot{h_p} = 0 \quad \Rightarrow \quad h(\theta) \in \Lambda^{\theta}(r)$
- We hope to decrease the fitnesses gap by redirecting the inflow to "better" paths

$$\operatorname{Gap}_{\phi}(\theta,h) := \max_{h' \in A^{\theta}(r)} \langle \phi(\theta,h), h' - h(\theta) \rangle = r(\phi_{max}(\theta,h) - \overline{\phi}(\theta,h))$$

• Integrating the equations allows to write them as Dual Averaging Dynamic:

$$y(\theta) = \log(h(0)) + K \cdot \int_0^{\theta} \phi(\theta', h) d\theta'$$

 $h(\theta) = Q_{\lambda}(y(\theta))$

• Q_{λ} is logit choice map on $\Lambda^{\theta}(r)$:

$$Q_{\lambda}(v) := \arg\max_{h' \in \Lambda^{\theta}(r)} \left[\langle v, h' \rangle - \sum_{p \in \mathcal{P}} h'_{p} \log h'_{p} \right] = r \cdot \operatorname{SoftMax}(v)$$

- Condition for correct stabilization: $\phi(\infty, h^*) = -\Psi(\infty, h^*)$
- Average delay, true delay, projected delay may be considered as fitnesses

$$egin{aligned} \phi^{\mathsf{avg}}(heta,h) &:= -rac{1}{w} \int_{ heta-w}^{ heta} \Psi(heta',h) d heta' \ \phi^{\mathsf{true}}(heta,h) &:= -\Psi(heta,h) \ \phi^{\mathsf{proj}}(heta,h) &:= -\left(\Psi(heta,h) + w\dot{\Psi}(heta,h)
ight) \end{aligned}$$

Replicator equation

- Numerical experiments show that only projected delays lead to convergence
- The Gap function is still not monothone

Figure: Average delays

Figure: True delays

Figure: Projected delays

Figure: Global stability in experiments

Analysis

We have an autonomous system $\dot{x} = f(x)$, f(0) = 0 with Lipshitz RHS

Theorem (Global asymptotic stability)

Let $V: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function, s.t. :

$$V(0) = 0 \text{ and } \forall x \neq 0 : V(x) > 0,$$

$$||x||_2 \to \infty \quad \Rightarrow \quad V(x) \to \infty,$$

$$\forall x \neq 0: \ \dot{V} = \nabla V(x) \cdot f(x) < 0$$

Then x = 0 is globally asymptotically stable.

Theorem (Local asymptotic stability)

Let $A = \frac{\partial f}{\partial x}(0)$ be Jacobian matrix at x = 0. If we have $\operatorname{Re}(\lambda_i(A)) < 0$ for all eigenvalues, then x = 0 is locally asymptotically stable.

- Consider a network with n parallel links $\{(\tau_i, \nu_i)\}_{i=1}^n$
- Introduce queue activity indicator $\mathbb{I}_{q_i} := egin{cases} 1, & q_i > 0 \text{ or } h_i \geq
 u_i \\ 0, & \text{otherwise} \end{cases}$
- Fitnesses based on projected delays:

$$\phi_i^{proj} = -(\Psi_i + w\dot{\Psi}_i) = -\left(\tau_i + \frac{q_i}{\nu_i} + w\frac{h_i - \nu_i}{\nu_i}\mathbb{I}_{q_i}\right)$$

- Assumptions:
 - **1** strict order $\tau_1 < \cdots < \tau_n$
 - $\exists k^* \leq n: \ \sum_{i=1}^{k^*-1} \nu_i < r < \sum_{i=1}^{k^*} \nu_i$
- There is a unique equilibrium configuration:

$$\mathbb{I}_{q_{i}} = \begin{cases} 1, & i < k^{*} \\ 0, & i \ge k^{*} \end{cases} \quad \Psi_{i}^{*} = \begin{cases} \tau_{k^{*}}, & i \le k^{*} \\ \tau_{i}, & i > k^{*} \end{cases} \quad h_{i}^{*} = \begin{cases} \nu_{i}, & i < k^{*} \\ r - \sum_{i < k^{*}} h_{i}^{*}, & i = k^{*} \\ 0, & i > k^{*} \end{cases}$$

• Any other "instantenious" equillibrium is unstable, i.e. some queues vanish

Denote

$$\Delta q_i := \nu_i (\Psi_i - \Psi_i^*), \qquad 1 \le i < k^*$$

$$\Delta h_i := h_i - h_i^*, \qquad 1 \le i \le n$$

• Assuming same active queues and utilizing $\sum_i \Delta h_i = 0$, we linearize the system near the equilibrium:

$$\frac{d}{d\theta} \begin{bmatrix} \Delta q \\ \Delta h_{< k^*} \\ \Delta h_{k*} \\ \Delta h_{> k^*} \end{bmatrix} \approx \mathbf{A} \begin{bmatrix} \Delta q \\ \Delta h_{< k^*} \\ \Delta h_{k*} \\ \Delta h_{> k^*} \end{bmatrix},$$

$$\mathbf{A} = -\frac{K}{r} \begin{bmatrix} 0 & -\frac{r}{K}\mathbf{I} & 0 & 0 \\ r\mathbf{I} - h_{< k^*} \cdot \mathbf{1}^T & w(r\mathbf{I} - h_{< k^*} \cdot \mathbf{1}^T) & 0 & -h_{< k^*} \cdot \tau_{> k^*}^T \\ -h_{k^*} \cdot \mathbf{1}^T & 0 & wh_{k^*} & -h_{k^*}(\tau_{> k^*} - w\mathbf{1})^T \\ 0 & 0 & 0 & r(\operatorname{diag}(\tau_{> k^*}) - \tau_{k^*}\mathbf{I})) \end{bmatrix}$$

- Finding eigenvalues by $\mathbf{A}v = \lambda v$ with $\mathbf{v} = \begin{bmatrix} a & b & c & d \end{bmatrix}^T$
 - ① c, d = 0: $-\frac{K}{r}(r\mathbf{I} - h_{< k^*} \cdot \mathbf{1}^T)a = \mu a \Rightarrow \quad \mu = -K \text{ or } \mu = -K(1 - \frac{1}{r}\mathbf{1}^T h_{< k^*}) < 0$ $\lambda^2 = \mu(1 + w\lambda) \Rightarrow Re(\lambda) < 0$
 - $2 c \neq 0: h_{k^*} > 0 \Rightarrow \lambda < 0$
- We have $\operatorname{Re}(\lambda(\mathbf{A})) < 0$, which guarantees local asymptotic stability

Figure: Multiple links

- Suppose we only have two links 0 and 1 with $\tau_0 < \tau_1$.
- Denoting $\psi(\theta, h) := \Psi_0(\theta, h) \Psi_1(\theta, h)$ allows to simplify the equations:

$$\dot{h_0} = -\frac{K}{r}h_0(r - h_0)(\psi + w\dot{\psi})$$

$$\dot{\psi} = \frac{h_0 - \nu_0}{\nu_0} \mathbb{I}_{q_0} + \frac{h_0 - (r - \nu_1)}{\nu_1} \mathbb{I}_{q_1}$$

 $\bullet \ \ \mathsf{Equillibrium} \Leftrightarrow \psi, \dot{\psi} = \mathsf{0}$

Introduce inflow potentials

$$\Pi_0(h_0) := \int_{\nu_0}^{h_0} \frac{r^{\frac{h-\nu_0}{\nu_0}}}{h(r-h)} dh, \quad \Pi_1(h_0) := \int_{r-\nu_1}^{h_0} \frac{r^{\frac{h-(r-\nu_1)}{\nu_1}}}{h(r-h)} dh$$

Candidate for Lyapunov function

$$V(\psi, h_0) = \frac{1}{2}\psi^2 + \frac{1}{K} (\Pi_0 \mathbb{I}_{q_0} + \Pi_1 \mathbb{I}_{q_1})$$

- ① V = 0 only at the equilibrium, else V > 0;
- $V \to \infty$ if $|\psi| \to \infty$ or $h_0 \to 0, 1$;
- For each queue configuration we have

$$\dot{V} = \frac{\partial V}{\partial \psi} \dot{\psi} + \frac{\partial V}{\partial h_0} \dot{h_0} = -w \dot{\psi}^2 \le 0$$

• Problem: switching between cases

Figure: Inflow potentials

- Max demand: $r = \nu_0 + \nu_1$
- Three different "attractors" merge into one

$$r - \nu_1 = r \frac{\nu_0}{\nu_0 + \nu_1} = \nu_0$$

• Denote $Q := q_0 + q_1$ and observe that

$$\dot{Q} = \dot{q_0} + \dot{q_1} = (h_0 - \nu_0) \mathbb{I}_{q_0} + ((r - h_0) - \nu_1) \mathbb{I}_{q_1} \ge 0$$

Queues grow and can't vanish

$$\Psi_{e}(\theta, h) - \Psi_{e}(\theta, h^{*}) \stackrel{\theta \to \infty}{\to} c > 0$$

Figure: Max demand convergence

Further directions

- Showing global stability
 - Patterns in case switching
 - Max demand
- Considering more complex networks
- Other options for fitnesses