Operációkutatás

Készítette:

Meskó Balázs

2011

Tartalomjegyzék

1. fejezet

Bevezetés

Ide majd jön egy kis rizsa arról, hogy mi ez a cucc, meg hogy honnan lett összelopva :-)

A dokumentum ½T
EX-kel készült, az ábrák jelentős része pedig a Ti k Z csomag segítségével készülhetett el.

2. fejezet

Lineáris programozás

1. A lineáris programozás szimplex módszere

1.1. A szimplex módszer

1.2. Kiinduló szimplex módszer

1.3. Példafeladatok

Egy üzem kétféle terméket gyárt (T_1,T_2) . A termékek három alkatrész (A_1,A_2,A_3) felhasználásával készülnek. Az első táblázat a termékek szerelési idejét, egységárát és az alkatrészigényüket tartalmazza. Az alkatrészek megmunkálását két gépen végzik (G_1,G_2) . A második táblázat az alkatrészek gépenkénti megmunkálási igényét tartalmazza, és a megmunkálógépek kapacitását. A szerelőüzem kapacitása 220 perc/nap.

- a) Határozza meg a szerelő- és gyártóüzem kapacitását nem meghaladó napi termelést úgy, hogy az árbevétel maximális legyen!
- b) Végezzen érzékenységvizsgálatot az 1. termék egységárára illetve a 2. gép kapacitására!
- c) Mennyivel kell megváltoztatni a G_1 gép kapacitását, hogy az árbevétel 1%-kal nőjön?

	A_1	A_2	A_3	Szerelés	Egységár
G_1	1	0	2	2	27
G_2	0	1	1	1	8

	A_1	A_2	A_3	Kapacitás
G_1	1	0	1	240
G_2	7	1	1	630

Először is a megoldáshoz fel kell írnunk a matematikai modellt, amelyhez ki kell hámoznunk az adatokat a táblázatokból:

$$\begin{aligned} 1 \cdot 1x_1 + 0 \cdot 0x_2 + 1 \cdot 2x_3 + 1 \cdot 0x_1 + 0 \cdot 1x_2 + 1 \cdot 1x_3 &\leq 240 \\ 7 \cdot 1x_1 + 1 \cdot 0x_2 + 1 \cdot 2x_3 + 7 \cdot 0x_1 + 1 \cdot 1x_2 + 1 \cdot 1x_3 &\leq 630 \\ 2x_1 + 1x_2 &\leq 220 \\ 27x_1 + 8x_2 &\longrightarrow \text{max!} \end{aligned}$$

azaz

$$3x_1 + x_2 \le 240$$

 $9x_1 + 2x_2 \le 630$
 $2x_1 + 1x_2 \le 220$
 $27x_1 + 8x_2 \longrightarrow \max!$
 $x_1, x_2 \ge 0$

A következő lépés az LP feladat sztenderdizálása:

$$3x_1 + x_2 + u_1 = 240$$

$$9x_1 + 2x_2 + u_2 = 630$$

$$2x_1 + 1x_2 + u_3 = 220$$

$$-27x_1 - 8x_2 \longrightarrow \min!$$

$$x_1, x_2, u_1, u_2, u_3 \ge 0$$

$$\begin{array}{c|cccc}
 & x_1 & x_2 \\
 u_1 & 2 & 1 & 220 \\
 u_2 & 3 & 1 & 240 \\
 u_3 & 9 & 2 & 630 \\
 & 27 & 8 & 0
\end{array}$$

$$\begin{array}{c|cccc}
 & u_2 & u_1 \\
x_2 & -2 & 3 & 180 \\
x_1 & 1 & -1 & 20 \\
u_3 & -5 & \boxed{3} & 90 \\
\hline
 & -11 & 3 & -1980 \\
\end{array}$$

$$\begin{array}{c|cccc}
x_1 & u_1 \\
x_2 & 2 & 1 & 220 \\
u_2 & 1 & -1 & 20 \\
u_3 & 5 & -2 & 190 \\
\hline
11 & -8 & -1760
\end{array}$$

$$\begin{array}{c|cccc}
 & u_2 & u_3 \\
x_2 & 3 & -1 & 90 \\
x_1 & -2/3 & 1/3 & 50 \\
u_1 & -5/3 & 1/3 & 30 \\
\hline
 & -6 & -1 & -2070
\end{array}$$

Mivel a $\mathbf{z} - \mathbf{c}$ vektor ≤ 0 , ezért megvan az optimális megoldás, amely az $\mathbf{x} = (50, 90)$ vektor. A célfüggvény értéke ekkor -2070, azonban ez a segédfeladaté! Az eredeti feladatot maximumot keres, így az eredeti célfüggvény értéke 2070.

Az első termék ára $27 \longrightarrow 27 + \lambda$. A célfüggvény az alábbi módon változik:

$$(-27 - \lambda)x_1 - 8x_2 \longrightarrow \min! \qquad (27 + \lambda)x_1 + 8x_2 \longrightarrow \max!$$

Mivel az x_1 -hez tartozó paraméter változik, a táblázatban az x_1 sorát kell figyelni:

$$-6 + \frac{2}{3}\lambda \le 0 \qquad \longrightarrow \qquad \lambda \le 9$$

$$-1 - \frac{1}{3}\lambda \le 0 \qquad \longrightarrow \qquad \lambda \ge -3$$

$$z_{\min} = -2070 - 50\lambda \qquad \qquad z_{\max} = 2070 + 50\lambda$$

A második gép kapacitása $630 \longrightarrow 630 + \lambda$. Az eredményoszlop eképpen változik:

$$\begin{array}{cccc} 90-1\lambda \geq 0 & \longrightarrow & \lambda \leq 90 \\ 50+\frac{1}{3}\lambda \geq 0 & \longrightarrow & \lambda \geq -150 \\ 30+\frac{1}{3}\lambda \geq 0 & \longrightarrow & \lambda \geq -90 \\ z_{\min} = -2070-\lambda & z_{\max} = 2070+\lambda \end{array}$$

A feladatrész megoldásához először érzékenységvizsgálatot kell végezni. Az első gép kapacitása $240 \longrightarrow 240 + \lambda$. Az eredményoszlop az alábbiak szerint alakul:

$$90+3\lambda \ge 0 \longrightarrow \lambda \ge -30$$

$$50-\frac{2}{3}\lambda \ge 0 \longrightarrow \lambda \le 75$$

$$30-\frac{5}{3}\lambda \ge 0 \longrightarrow \lambda \le 18$$

$$z_{\min} = -2070 - 6\lambda \qquad z_{\max} = 2070 + 6\lambda$$

Az árbevétel növeléséhez a célfüggvényt értéket kell növelni, tehát:

$$2070 + 6\lambda = 2070 \cdot 1,01$$

 $\lambda = 3,45$

Ez belefér az érzékenységi intervallumba, a megoldás ekkor $\mathbf{x} = (47,7;100,35)^T$

- Egy üzemben három terméket gyártanak, melyek megmunkálása két fázisban egy esztergán és egy marógépen történik. Az első termék esztergagépen történő megmunkálása 1 perc/db, a marógépen pedig 1 perc/db. A második terméké rendre 3 és 2 perc/db, a harmadiké pedig rendre 1 és 2 perc/db. Az esztergagép kapacitása 90 perc, a marógépé pedig 120 perc. A termékek várható eladási egységára rendre 1, 2 és 3 pénzegység, a tervezett árbevétel pedig 110 pénzegység. A gépek állásidejének költsége rendre 2 és 1 pénzegység/perc.
 - a) Adja meg azt a termelési tervet, amelynél a gépek állásidejéből eredő költsége minimális, feltéve, hogy a gépek kapacitását nem lépjük túl és árbevételben pontosan a tervezett mennyiséget biztosítjuk!
 - b) Írja fel a feladat duálisát, és adja meg a duál feladat optimális megoldását!
 - c) Végezzen érzékenységvizsgálatot az eszterga kapacitásának változására!

- d) Végezzen érzékenységvizsgálatot az marógép kapacitásának változására!
- e) Hány darab kell gyártáni a termékekből, ha a gépek kapacitása rendre 75 és 100 percre változik és az előírt árbevétel 120 pénzegység?

A megadott adatokat táblázatosan rendezve ezt kapjuk:

	E	M	
T_1	1	1	1
T_2	3	2	2
T_3	1	2	3
	90	120	110

A megadott feltételek matematikailag megfogalmazva az alábbiak:

$$x_1+3x_2+ x_3 \le 90$$

 $x_1+2x_2+2x_3 \le 120$
 $x_1+2x_2+3x_3 = 110$
 $x_1, x_2, x_3 \ge 0$

A célfüggvény pedig a következő:

$$2(x_1 + 3x_2 + x_3) + 1(x_1 + 2x_2 + 2x_3) \longrightarrow \min!$$

 $x_1 + 6x_2 + 2x_3 + x_1 + 2x_2 + 2x_3 \longrightarrow \min!$
 $3x_1 + 8x_2 + 4x_3 \longrightarrow \min!$

Mivel a lineáris programozási feladat nem sztenderd alakú, ezért egy sztenderd segédfeladatot kell felírnunk, amely a következő:

$$x_1+3x_2+ x_3+u_1 = 90$$

$$x_1+2x_2+2x_3+u_2 = 120$$

$$x_1+2x_2+3x_3+u_3^* = 110$$

$$x_1, x_2, x_3 \ge 0$$

$$u_1, u_2, u_3^* \ge 0$$

$$3x_1+8x_2+4x_3 \longrightarrow \min!$$

A feladatot már megoldhatjuk kiinduló szimplex módszerrel, az 1. fázis:

$$\begin{array}{c|ccccc} & u_1 & x_2 & u_3^* \\ x_1 & 3/2 & 7/2 & -1/2 & 80 \\ u_2 & -1/2 & -1/2 & -1/2 & 20 \\ x_3 & -1/2 & -1/2 & 1/2 & 10 \\ \hline & 5/2 & 1/2 & 1/2 & 280 \\ \hline & 0 & 0 & -1 & 0 \\ \end{array}$$

Az első fázisnak ezennel vége, következhet a 2. fázis, az utolsó sort pedig törölhetjük.

	u_1	x_2		u_3^*
x_1	3/2	7/2	80	-1/2
u_2	-1/2	-1/2	20	-1/2
x_3	-1/2	-1/2	10	1/2
	5/2	1/2	280	1/2

A szimplex módszer itt megáll, mivel a vizsgálósor sehol sem pozitív. A módszer által szolgáltatott optimális megoldás a $x=(0,0,110/3)^T$ vektor, és a célfüggvény értéke ekkor $z_o=440/3\approx146,6667$.

A duál feladat egyszerűen felírható a feladatból, az optimuma pedig a segédfeladat utolsó szimplex táblájából.

$$y_1 + y_2 + y_3 \le 3$$

$$3y_1 + 2y_2 + 2y_3 \le 8$$

$$y_1 + 2y_2 + 2y_3 \le 4$$

$$y_1, y_2 \le 0$$

$$90y_1 + 120y_2 + 110y_3 \longrightarrow \text{max!}$$

Az optimális megoldás az $y = (0, 0, -4/3)^T$ vektor, az optimum pedig $z_o = 440/3$.

Az eszterga kapacitása $90 \longrightarrow 90 + \lambda$. Mivel u_1 bázisban van a jobb oldal így változik:

$$\begin{array}{ccc} \frac{160}{3}+1\lambda\geq 0 & \longrightarrow & \lambda\geq -\frac{160}{3} \\ \frac{140}{3}+0\lambda\geq 0 & -\frac{160}{3}\leq \lambda\leq +\infty \\ \frac{110}{3}+0\lambda\geq 0 & \\ z_o=\frac{440}{3}+0\lambda & \end{array}$$

A marógép kapacitása 120 \longrightarrow 120 + λ . Mivel u_2 bázisban van a jobb oldal így változik:

$$\begin{split} \frac{160}{3} + 0\lambda &\geq 0 \\ \frac{140}{3} + 1\lambda &\geq 0 &\longrightarrow \lambda \geq -\frac{140}{3} \\ \frac{110}{3} + 0\lambda &\geq 0 &-\frac{160}{3} \leq \lambda \leq +\infty \\ z_o &= \frac{440}{3} + 0\lambda \end{split}$$

3. fejezet

Egészértékű lineáris programozás

- 1. Gomory-vágás
- 2. Dakin-algoritmus

4. fejezet

Nemlineáris programozás

1. Karush-Kuhn-Tucker feltételek

1.1. Példafeladatok

Tervezzen henger alakú konzervdobozt, amely térfogata legalább 16π cm³, és a felülete minimális. Tehát $V = x_1\pi x_2 \ge 16\pi$ és $A = 2x_1\pi + 2x_1\pi x_2 \longrightarrow$ min!

A KKT feltételek felírásához csoportosítjuk és egyszerűsítjük a feltételeket:

$$f: x_1^2 + x_1 x_2$$
$$g_1: 16 - x_1^2 x_2$$

A Lagrange függvény és gradiensei ekkor a következőek:

$$L(x_1, x_2, u_1) = f + u_1 \cdot g_1 = x_1^2 + x_1 x_2 + u_1 (16 - x_1^2 x_2)$$

$$\nabla L = \begin{pmatrix} 2x_1 + x_2 - 2x_1 x_2 u_1 \\ x_1 - x_1^2 u_1 \\ -16 - x_1^2 x_2 \end{pmatrix} \quad H = \nabla^2 L = \begin{pmatrix} 2 - 2x_2 u_1 & 1 - 2x_1 x_2 \\ 1 - 2x_1 x_2 & 0 \\ -2x_1 x_2 & -x_1^2 \end{pmatrix}$$

A KKT feltételek ebből kiolvasva:

$$2x_1 + x_2 - 2x_1x_2u_1 = 0$$

$$x_1 - x_1^2u_1 = 0$$
 duál feltételek
$$u_1(16 - x_1^2x_2) = 0$$
 komplementaritási feltétel
$$16 - x_1^2x_2 \le 0$$
 primál feltételek
$$u_1 \ge 0$$

Ezután esetszétválasztással megkeressük az összes KKT pontot:

I. eset: $u_1 = 0$

$$2x_1 + x_2 = 0$$
$$x_1 = 0$$
$$16 - x_1^2 x_2 \le 0$$

Ebből egyszerűen adódik, hogy $\mathbf{x}=(0,0)^T$, azonban ez nem KKT pont, mert $16\not \leq 0$. Szemléletesen pedig nyilvánvaló hogy egy zérus átmérőjű és magasságú henger térfogata nem lesz megfelelő.

II. eset: $u_1 > 0$

$$2x_1 + x_2 - 2x_1x_2u_1 = 0$$
$$x_1(1 - x_1u_1) = 0$$
$$16 - x_1^2x_2 = 0$$

A második feltételnél szétválasztjuk az esetet:

II/a. eset: $x_1 = 0$. Ekkor $x_2 = 0$ -t kapunk, de azt már beláttuk hogy en nem KKT pont. **II/b. eset**: $x_1 u_1 = 1$

$$2x_1 + x_2 - 2x_2 = 0$$
 azaz $x_2 = 2x_1$
 $16 - x_1^2 x_2 = 0$

Ebből egyszerűen kijön, hogy

$$16 = 2x_1^3$$
$$x_1^3 = 8$$
$$x_1 = 2$$
$$x_2 = 4$$

Az u_1 Lagrange szorzó értéke ekkor $^1/2$. Az $\mathbf{x} = (2,4)^T$ pont KKT pont, hiszen teljesíti az összes feltételt. Azonban, hogy optimális megoldás legyen teljesülnie kell annak, hogy $H(\mathbf{x})$ pozitív definit mátrix legyen.

A Hesse-féle mátrix értéke az $\mathbf{x} = (2,4)^T$ helyen $(u_1 = 1/2)$:

$$H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \begin{pmatrix} -2 & -1 & -16 \\ -1 & 0 & -4 \\ -16 & -4 & 0 \end{pmatrix}$$

Az inerciateszttel ellenőrízhetjük a definitségét:

Ez alapján az inercia értéke Iner(1,0,2), tehát H feltételesen pozitív definit mátrix, ezért a $\mathbf{x} = (2,4)^T$ pont valóban optimális minimumpont.

Adott az $x_2^2 = x_1 + 3$ parabola. A parabola az (x_1, x_2) síkot két tartományra osztja. Tekintse azt a tartományt, amely az origót tartalmazza. Határozza meg a tartomány azon pontjait, amelyeknél az $f(x_1, x_2) = x_1 x_2$ függvény értéke a legkisebb! A megoldást az alábbi lépésekben végezze el:

- a) Írja fel az optimalizációs feladatot matematikai formában!
- b) Határozza meg az összes KKT pontot!
- c) Döntse el, hogy az egyes KKT pontok közül melyik lokális minimumpont!
- d) Határozza meg a globális minimumpontot!

Először is célszerű készíteni egy ábrát a paraboláról.

A feladat matematikailag megfogalmazva a következő:

$$x_2^2 - x_1 - 3 \le 0$$
$$x_1 x_2 \longrightarrow \min!$$

Most már kiszámolhatjuk a Lagrange függvényt és gradienseit:

$$L(x_1, x_2, u_1, u_2) = x_1 x_2 + u_1 (x_2^2 - x_1 - 3)$$

$$\nabla L = \begin{pmatrix} x_2 - u_1 \\ x_1 + 2x_2 u_1 \\ \vdots \\ x_2^2 - x_1 - 3 \end{pmatrix} \qquad H = \nabla^2 L = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2u_1 & 2x_2 \\ \vdots \\ -1 & 2x_2 & 0 \end{pmatrix}$$

A KKT feltételeket kiolvasva:

Esetszétválasztás:

I. eset: $u_1 = 0$

$$x_2 = 0$$
$$x_1 = 0$$

Ez teljesíti is a KKT feltételeket (azaz KKT pont), nézzük meg a H definitását!

Az inercia értéke Iner(1, 1, 1), tehát a mátrix indefinit, így az $\mathbf{x} = (0,0)^T$ csak nyeregpont. **II. eset**: $u_1 > 0$

$$x_2 = u_1$$

$$x_1 + 2x_2u_1 = 0$$

$$x_2^2 - x_1 - 3 = 0$$

A második egyenletbe az elsőt behelyettesítve: $x_1 = -2u_1^2$. Ezt és az első egyenletet a harmadikba behelyettesítve: $u_1^2 + 2u_1^2 - 3 = 0$ azaz $u_1^2 = 1$. Ez tehát két megoldást is szolgáltat:

$$u_1 = 1$$
 $u_1 = -1$
 $x_1 = -2$ $x_1 = -2$
 $x_2 = 1$ $x_2 = -1$

Mindkettő KKT pontot szolgáltat, a Hesse-féle mátrix definitségét vizsgálni kell:

Az $\mathbf{x} = (-2,1)^T$ KKT ponthoz tartozó Hesse-féle mátrix feltételesen pozitív definit, míg az $\mathbf{x} = (-2,-1)^T$ KKT ponthoz tartozó feltételesen negatív definit. Tehát az első pont lokális minimum, a második pedig lokális maximum pont. A következő kontúrrajzon ez jól látszik:

Globális minimuma pedig nem létezik a függvénynek, hiszen az x_1 tetszőlegesen nagy pozitív számnak, az x_2 pedig tetszőlegesen kicsi negatív számnak választható (természetesen csak a tartományon belül maradva), így az $f(x_1, x_2) = x_1 x_2$ célfüggvény tetszőlegesen kis értéket vehet fel.

2. Extrémum keresés

A következő keresési módszerek úgy működnek, hogy veszünk egy keresési intervallumot, amelyet különböző módokon felosztunk, majd megnézzük hogy melyik részében szerepel az optimum. Ezt rekurzívan folytatjuk a leállási feltétel teljesüléséig.

A felosztás mindig két részre bontja az intervallumot az alábbi módon:

$$a_k$$
 c_k d_k b_k

A megfelelő intervallum kiválasztása, és a következő a és b paraméterek kiválasztása az alábbi módon történik:

Ha
$$f(c_k) < f(d_k)$$
 Ha $f(c_k) \ge f(d_k)$

$$a_{k+1} = a_k \qquad a_{k+1} = c_k$$

$$b_{k+1} = d_k \qquad b_{k+1} = b_k$$

2.1. Dichotomous-módszer

A módszer során az intervallumok meghatározásához egy δ paramétert alkalmazunk, amelyet előre kiválasztunk. A keresés addig tart, amíg az intervallum hossza nagyobb, mint a megadott ε paraméter.

$$c_k = a_k + \frac{L_k}{2} - \delta$$
 $d_k = a_k + \frac{L_k}{2} + \delta$

2.2. Aranymetszés (Golden Section) módszer

A módszernél a keresési intervallumot az aranymetszés arányában osztjuk fel:

$$c_k = a_k + (1 - \varphi)L_k$$
 $d_k = a_k + \varphi L_k$

ahol $\varphi=\frac{\sqrt{5}-1}{2}.$ A keresés szintén addig tart, amíg $L_k>\varepsilon.$

2.3. Fibonacci-módszer

A Fibonacci módszer esetén a Fibonacci-számok segítségével határozzuk meg az intervallumokat. A Fibonacci-számokat az alábbiak szerint definiáljuk:

$$F_n = \begin{cases} 0, & \text{ha } n = 0 \\ 1, & \text{ha } n = 1 \\ F_{n-1} + F_{n-2}, & \text{ha } n \ge 2 \end{cases}$$

Az intervallumok meghatározása pedig:

$$c_k = a_k + \frac{F_{n-k-1}}{F_{n-k+1}} L_k$$
 $d_k = a_k + \frac{F_{n-k}}{F_{n-k+1}} L_k$

A módszer használatához választunk egy kezdeti n paramétert, amely meghatározza a pontosságot.

2.4. Példafeladat

Adott az $f(x) = x^2 - 4x + 3$ — min! optimalizálási feladat. Adott továbbá az $[a_1, b_1] = [1, 3]$ bizonytalansági intervallum.

- a) Határozza meg az $[a_2, b_2]$ bizonytalansági intervallumot:
 - Dichotomous módszerrel $\delta = 0,3$ paraméter esetén
 - Aranymetszés módszerrel
 - Fibonacci módszerrel n = 8 paraméter esetén
- b) Határozza meg aranymetszés módszer esetén az $[a_6, b_6]$ bizonytalansági intervallum hosszát!

Az intervallum hossza $L_1 = 3 - 1 = 2$. A Dichotomous módszer esetén

$$c_1 = a_1 + \frac{L_1}{2} - \delta = 1 + \frac{2}{2} - 0,3 = 1,7$$
 $d_1 = a_1 + \frac{L_1}{2} + \delta = 1 + \frac{2}{2} - 0,3 = 2,3$
 $f(c_1) = -0,91$ $f(d_1) = -0,91$

Mivel $f(c_1) \ge f(d_1)$, ezért $a_2 = c_1 = 1, 7$, és $b_2 = b_1 = 3$. Az aranymetszés módszer esetén:

$$c_1 = a_1 + (1 - \varphi)L_1 = 1 + 0,38197 \cdot 2 = 1,7639$$
 $d_1 = a_1 + \varphi L_1 = 1 + 0,6180 \cdot 2 = 2,2361$ $f(c_1) = -0,9443$ $f(d_1) = -0,9443$

Mivel $f(c_1) \ge f(d_1)$, ezért $a_2 = c_1 = 1,7639$, és $b_2 = b_1 = 3$. A Fibonacci módszer esetén:

$$c_1 = a_1 + \frac{F_6}{F_8}L_1 = 1 + \frac{8}{21} \cdot 2 = 1,7619$$
 $d_1 = a_1 + \frac{F_7}{F_8}L_1 = 1 + \frac{13}{21} \cdot 2 = 2,2381$
 $f(c_1) = -0,9433$ $f(d_1) = -0,9433$

Mivel $f(c_1) \ge f(d_1)$, ezért $a_2 = c_1 = 1,7619$, és $b_2 = b_1 = 3$.

Az [a_6 , b_6] intervallum hossza $L_1 \cdot \varphi^5 = 0$, 1803.

3. Gradiens-módszer

3.1. Konjugált gradiens módszer

Választunk egy x_0 kezdőpontot, ahonnan elindulunk. A kezdeti d_0 irány a szokásos módon $d_0 = -\nabla f(x_0)$. Az ezt követő elemeket az alábbiakból kaphatjuk:

$$x_{k+1} = x_k + \lambda d_k$$

$$d_k = -\nabla f(x_{k+1}) + \alpha_{k+1} d_k$$

$$\alpha_{k+1} = \frac{||\nabla f(x_{k+1})||_2^2}{||\nabla f(x_k)||_2^2}$$

Másképp megfogalmazva, a gradiensek elemeinek a négyzetösszegét osztjuk el egymással. Az x_{k+1} pont meghatározásához szükséges λ -t a következő módon kaphatjuk meg:

- 1) Az $x_k + \lambda d_k$ vektort behelyettesítjük az f függvénybe. Ezt $\phi(\lambda)$ -val jelöljük.
- 2) A $\phi'(\lambda) = 0$ megoldásai közül kerülhet ki a λ értéke, hiszen itt lehet lokális minimuma a függvénynek. Ha egyetlen λ érték jöhet szóba, akkor azt választjuk.
- 3) Az eljárás addig tart amíg λ nullától különböző vagy egy megadott értéknél abszolútértékben nagyobb.

3.2. Példafeladatok

Az alábbi függvény minimumát szeretnénk meghatározni konjugált gradiens módszerrel:

$$f(x_1, x_2) = x_1^2 + x_2^2 + x_1 - 2x_2 + 7$$

Tegyük fel, hogy már néhány lépést elvégeztünk, és alábbi eredményeket kaptuk:

$$x_6 = \begin{pmatrix} 0 \\ 1 + \frac{\sqrt{2}}{3} \end{pmatrix} \quad d_6 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \quad x_7 = \begin{pmatrix} \frac{1}{2} \\ 4 \end{pmatrix}$$

Határozza meg az x_8 közelítést, és a hozzá tartozó d_7 vektort!

Az irányvektort meghatározhatjuk a megadott adatokból, csak a gradiens értékére van szükségünk hozzá:

$$d_7 = -\nabla f(x_7) + \frac{||\nabla f(x_7)||_2^2}{||\nabla f(x_6)||_2^2} d_6$$

$$\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 + 1 \\ 2x_2 - 2 \end{pmatrix}$$

A behelyettesítés után:

$$d_7 = -\begin{pmatrix} 2 \\ 6 \end{pmatrix} + \frac{2^2 + 6^2}{2^2 + (-1)^2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -2 \\ -6 \end{pmatrix} + 10 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

Ezt felhasználva, most már meg tudjuk mondani x_8 értékét:

$$x_8 = x_7 + \lambda d_7 = \begin{pmatrix} \frac{1}{2} + 3\lambda \\ 4 - \lambda \end{pmatrix}$$

A λ értékének meghatározásához behelyettesítünk:

$$\varphi(\lambda) = (\frac{1}{2} + 3\lambda)^2 + (4 - \lambda)^2 + (\frac{1}{2} + 3\lambda) - 2(4 - \lambda) + 7$$

$$\varphi'(\lambda) = 18\lambda + 3 + 2\lambda - 8 + 3 + 2 = 20\lambda = 0 \longrightarrow \lambda = 0$$

Tehát x_8 megegyezik x_7 -tel, így az algoritmus meg is állna.

Oldja meg az alábbi optimalizálási feladatot konjugált gradiens módszerrel, ha az első öt lépés utáni eredmények az alábbiak:

$$x_5 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad x_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad d_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
$$f(x_1, x_2) = x_1^2 + 3x_1x_2 + 2x_2^2 - x_1 + x_2 + 3 \to \min!$$

$$\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 + 3x_2 - 1 \\ 2x_2 + 3x_1 + 1 \end{pmatrix}$$

$$d_6 = -\nabla f(x_6) + \frac{||\nabla f(x_6)||_2^2}{||\nabla f(x_5)||_2^2} d_5 = -\begin{pmatrix} -2 \\ 2 \end{pmatrix} + \frac{(-2)^2 + 2^2}{(-1)^2 + 1^2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \end{pmatrix}$$

$$x_7 = x_6 + \lambda d_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ -6 \end{pmatrix} = \begin{pmatrix} 1 + 6\lambda \\ -1 - 6\lambda \end{pmatrix}$$

A λ behelyettesítése után:

$$\varphi(\lambda) = (1+6\lambda)^2 - 3(1+6\lambda)^2 + 2(1+6\lambda^2) - (1+6\lambda) - (1+6\lambda) + 3$$
$$= -2(1+6\lambda) + 3 = -12\lambda + 1$$
$$\varphi'(\lambda) = -12 \neq 0$$

A λ értéke nem határozható meg, ezért az algoritmus megáll.

4. Newton és kvázi Newton módszerek

4.1. Newton-módszer

4.2. Broyden-Fletcher-Goldfarb-Shanno (BFGS) módszer

$$B_{k+1} = B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{(B_k s_k)(B_k s_k)^T}{(B_k s_k)^T s_k}$$

A képletben az s_k vektor az $B_k s_k = -\nabla f(x^{(k)})$ lineáris egyenletrendszer megoldása, az y_k pedig az $\nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$ különbség.

4.3. Davidon-Fletcher-Powell (DFP) módszer

$$D_{k+1} = D_k + \frac{s_k s_k^T}{s_k^T y_k} - \frac{(D_k y_k) (D_k y_k)^T}{(D_k y_k)^T y_k}$$

A képletben az s_k vektor az $-D_k \cdot \nabla f(x^{(k)})$ kifejezés értéke, az y_k pedig az $\nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$ különbség.

4.4. Példafeladatok

Adott az $x_1^2 + \frac{1}{2}x_2^2 \longrightarrow \text{min!}$ optimalizási feladat. Adott továbbá egy $\mathbf{x}_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ közelítő vektor és a Hesse-féle mátrixot helyettesítő $\begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix}$ mátrix. A megoldást kvázi-Newton módszerrel kívánjuk meghatározni.

a) Határozza meg az \mathbf{x}_6 közelítő megoldásvektort és a Hesse mátrixot helyettesítő új mátrixot, ha nem alkalmaz vonalmenti keresést!

b) Határozza meg az \mathbf{x}_6 közelítő megoldásvektort ha alkalmaz vonalmenti keresést! A Hesse mátrixot helyettesítő új mátrixot nem kell meghatározni, csak a kiszámításához szükséges két vektort számolja ki!

A feladat megoldható mind DFP, mind BFGS módszerrel. Mindkét módszerhez szükségünk van a f függvény gradiensére, így előszer ezt számoljuk ki:

$$\nabla f = \begin{pmatrix} 2x_1 \\ x_2 \end{pmatrix}$$

A módszerek közül először tekintsük a DFP módszert! Ekkor a következő egyenletet kell megoldanunk:

$$s_{5} = -D_{5} \cdot \nabla f(\mathbf{x}_{5})$$

$$s_{5} = -\begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$s_{5} = \begin{pmatrix} -5 \\ 6 \end{pmatrix}$$

A D_6 mátrix kiszámításához az alábbi képletbe kell behelyettesítenünk:

$$D_6 = D_5 + \frac{s_5 s_5^T}{s_5^T y_5} - \frac{(D_5 y_5)(D_5 y_5)^T}{(D_5 y_5)^T y_5}$$

Az s_5 -öt már kiszámoltuk, az y_5 értéke pedig $\nabla f(\mathbf{x}_6) - \nabla f(\mathbf{x}_5) = \nabla f(\mathbf{x}_5 + s_5) - \nabla f(\mathbf{x}_5) = \begin{pmatrix} 12 \\ -7 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 10 \\ -8 \end{pmatrix}$. Így a következőt kell kiszámolni:

$$D_{6} = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} + \underbrace{\begin{pmatrix} 25 & -30 \\ -30 & 36 \end{pmatrix}}_{-98} - \underbrace{\begin{pmatrix} 784 & -1176 \\ -1176 & 1764 \end{pmatrix}}_{\begin{pmatrix} 784 & -1176 \\ -1176 & 1764 \end{pmatrix}}^{\begin{pmatrix} 784 & -1176 \\ -1176 & 1764 \end{pmatrix}}_{\begin{pmatrix} 784 & -1176 \\ -1176 & 1764 \end{pmatrix}}^{T} = \underbrace{\begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \cdot \begin{pmatrix} 10 \\ -8 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \cdot \begin{pmatrix} 10 \\ -8 \end{bmatrix} \end{bmatrix}^{T}}_{616}$$

A mátrix tehát a következő értékű:

$$D_6 = \begin{pmatrix} 2 - 25/98 - 784/616 & -1 + 30/98 + 1176/616 \\ -1 + 30/98 + 1176/616 & 4 - 36/98 - 1764/616 \end{pmatrix} \approx \begin{pmatrix} 3,0176 & 1,2152 \\ 1,2152 & 0,7690 \end{pmatrix}$$

Iránymenti keresés esetén annyi változik, hogy $\mathbf{x}_6 = \mathbf{x}_5 + \lambda d_5$ -re, ahol $d_5 = s_5$ (csak azért nevezzük át d-re, hogy jelezzük irányról van szó) és λ értéke az $\varphi(\lambda) = f(1-5\lambda, -1+6\lambda)$ függvény minimuma.

$$\varphi(\lambda) = (1 - 5\lambda)^2 + \frac{1}{2}(-1 + 6\lambda)^2$$

$$= 25\lambda^2 - 10\lambda + 1 + \frac{1}{2}(36\lambda^2 - 12\lambda + 1)$$

$$= 43\lambda^2 - 16\lambda + \frac{3}{2}$$

A függvény minimuma ott található, ahol az első derivált értéke nulla:

$$\varphi'(\lambda) = 0$$

$$86\lambda - 16 = 0$$

$$86\lambda = 16$$

$$\lambda = \frac{16}{86}$$

Ebből tehát az \mathbf{x}_6 értéke $\binom{0,0698}{0,1163}$. A DFP módszer Hesse mátrixot helyettesítő mátrixához már csak az y_5 -ra van szükségünk az pedig:

$$y_5 = \begin{pmatrix} 2 \cdot 0,0698 - 2 \\ 0,1163 + 1 \end{pmatrix} = \begin{pmatrix} -2,1395 \\ 1,1163 \end{pmatrix}$$

A BFGS módszer esetén a következő egyenletet kell megoldanunk:

$$B_5 s_5 = -\nabla f(\mathbf{x}_5)$$

$$\begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} s_5 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$s_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

A B₆ mátrix kiszámításához az alábbi képletbe kell behelyettesítenünk:

$$B_6 = B_5 + \frac{y_5 y_5^T}{y_5^T s_5} - \frac{(B_5 s_5)(B_5 s_5)^T}{(B_5 s_5)^T s_5}$$

Az s_5 -öt már kiszámoltuk, az y_5 értéke pedig $\nabla f(\mathbf{x}_6) - \nabla f(\mathbf{x}_5) = \nabla f(\mathbf{x}_5 + s_5) - \nabla f(\mathbf{x}_5) = \begin{pmatrix} 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$. Így a következőt kell kiszámolni:

$$D_{6} = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} + \frac{\begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}}{\begin{pmatrix} -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -2 & 0 \end{pmatrix}} - \frac{\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix}}{\begin{bmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} \end{bmatrix}^{T}}{\begin{bmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} \end{bmatrix}^{T} \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix}}$$

$$D_{6} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{7}{2} \end{pmatrix}$$

Iránymenti keresés esetén $\mathbf{x}_6 = \mathbf{x} + \lambda d_5$. A λ meghatározásához a következő egyenlet minimumát keressük:

$$\varphi(\lambda) = (1 - \lambda)^2 + \frac{1}{2}(-1)^2 = \lambda^2 - 2\lambda + 1 + \frac{1}{2} = \lambda^2 - 2\lambda + \frac{3}{2}$$
$$\varphi'(\lambda) = 0 \longrightarrow 2\lambda - 2 = 0 \longrightarrow \lambda = 1$$

Így tehát:

$$y_5 = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$

3. oldal

5. fejezet

Hálózati folyamok

1. Szállítási feladat

Három raktárban (R) 100, 120 és 120 tonnányi nyersanyagunk van. Az anyagot 5 felhasználó üzembe (Ü) kell szállítani, amelyek igénye rendre 40, 50, 70, 90 és 90 tonna. Az anyagok tonnánkénti szállítási költségét az alábbi táblázat tartalmazza. A feladatunk olyan szállítási terv készítése, mely minimális költséggel juttatja el a 240 tonna anyagot, feltéve hogy a szállítási költség arányos a szállított nyersanyag mennyiségével.

	Ü ₁	\ddot{U}_2	Ü ₃	\ddot{U}_4	$\ddot{\mathrm{U}}_{5}$
R_1	1	1	2	6	9
R_2	6	4	3	5	7
R_3	5	2	6	4	8

Mindenekelőtt vegyünk a költségmátrix sor-oszlopredukcióját:

0	0	1	3	4
0	1	0	0	0
0	0	4	0	2

Ez alapján jöhet az első lépés, melyben veszünk egy kezdeti szállítást (észak-nyugati sarok módszerrel), majd utat kersünk címkézéssel:

Folytatjuk az útkeresést:

Mivel nem találtunk új utat, ezért lefedjük a sor-oszlop redukált táblát:

Ø	Ø	1	3	4
A)	\sim	√0 ✓	R	8
Ø	0	4	Ø	2

Az ε értéke jelen esetben 1, frissítjük a táblát:

0	0	0	3	3
1	2	0	1	0
0	0	3	0	1

Folytatjuk a keresést az új táblán:

Frissítjük a táblát, majd folytatjuk a keresést:

Ezzel megkaptuk az optimális megoldást.

A szállítás teljes költsége így 1400 pénzegység.

2. Hozzárendelési feladat

A hozzárendelési feladat tekinthető egy olyan szállítási feladatnak, ahol minden egyes termelő és fogyasztó kapacitása illetve igénye pontosan 1.

Egy város A_1 , A_2 , A_3 , A_4 pontján egy-egy azonos típusú teherautó áll rendelkezésünkre. A város B_1 , B_2 , B_3 , B_4 pontjain szükség egy-egy teherautóra. Milyen utasítást adjunk ki, ha azt szeretnénk, hogy a kiszállás költsége a lehető legkisebb legyen, feltéve hogy a költség arányos a távolsággal.

	B_1	B_2	B_3	B_4
A_1	7	1	2	6
A_2	7	4	3	5
A_3	1	2	6	4
A_4	9	6	9	4

Legelőször vesszük a sor-oszlopredukciót:

6	0	1	5
4	1	0	2
0	1	5	3
5	2	5	0

Meghátorozunk egy kezdeti hozzárendelést az észak-nyugati sarok módszerrel:

	(*)		
		*	
*			
			(*)

Jelen esetben nagy szerencsénk volt, azonnal megkaptuk a hozzárendelést:

$$A_1 \rightarrow B_2$$
 $A_3 \rightarrow B_1$

$$A_2 \rightarrow B_3$$
 $A_4 \rightarrow B_4$

3. Futószalag feladat

Legyenek adottak $I_1.I_2,...,I_n$ személyek, és $J_1,J_2,...,J_n$ egy futószalag munkahelyei. Legyen adott egy T mátrix, amelynek $t_{i,j}$ eleme azt mutatja, hogy I_i személy az J_j munkahelyen mennyi idő alatt végez.

A feladatunk az, hogy megadjunk egy olyan kölcsönösen egyértelmű megfeleltetést, amely esetén a futószalag *ütemideje* a lehető legrövidebb. Az ütemidő a leghosszabb munkafázis hossza.

3.1. A megoldási algoritmus

A feladatot szintén házásság feladatok sorozatával fogjuk megoldani, de *nem* magyar módszerrel. Az alogritmus lépései az alábbiak:

- 1) Egy kezdeti hozzárendelés megadása (pl. a legkisebb időértékekkel).
- 2) A hozzárendeléshez tartozó ütemidő meghatározása, ezt jelöljük ε -nal.

3) Próbáljunk meg az előző ε -nál kisebb ütemidejű hozzárendelést készíteni. Ez egy olyan házasság feladat, ahol akkor lehet hozzárendelés, ha $t_{i,j} < \varepsilon$. Ezen alfeladat megoldhatósága szerint két elágazásunk van:

- (a) Ha nem tudtunk hozzárendelést megadni, akkor az előző hozzárendelés volt a legjobb → stop!
- (b) Ha sikerült hozzárendelést találni, akkor ez határozottan jobb hozzárendelés, mint az előző volt. Az algoritmus folytatódik → UGRÁS 3)!

Elég nyilvánvaló, hogy az algoritmus véges lépésben mindenképp végetér.

4. Az utazó ügynök problémája

Az utazó ügynök problémája egy kombinatorikus optimalizálási feladat, és kiváló példa a bonyolultság-elmélet által NP-nehéznek nevezett problémaosztályra.

Adva van n város, illetve az útiköltség bármely két város között, keressük a legolcsóbb utat egy adott városból indulva, amely minden várost pontosan egyszer érint, majd a kiindulási városba ér vissza. Gyakorlatilag $\frac{(n-1)!}{2}$ út közül kell választanunk, ez ugyanis a Hamilton-körök száma az n pontú teljes gráfban (a képlet csak n>2 esetén működik, de amúgy is csak ekkor érdekes vizsgálni a problémát).

4.1. Alkörút eliminációs módszer

A módszer során először felépítünk több alkörutat, majd ezekből egyetlen, optimális körutat hozunk létre.

Adott egy 6 városú utazó ügynök probléma, az alábbi költségmátrixszal:

	5	9	2	10	13
12		3	13	10	6
1	5		3	10	13
5	4	10		12	2
11	14	7	4		5
8	3	11	13	3	

Legelőször vesszük a sor-oszlopredukcióját, felírunk egy kezdeti hozzárendelést, majd címkézünk ha szükséges:

Mivel nem találtunk megfelelő cserelehetőséget, ezért lefedtük a táblát. Az új tábla:

Ismét lefedtünk, az új tábla:

A vonalkázott körök lesznek az új hozzárendelés tagjai, a tömör körök pedig kikerülnek a hozzárendelésből. Ez alapján két alkörutat kapunk: $1 \xrightarrow{2} 4 \xrightarrow{4} 2 \xrightarrow{3} 3 \xrightarrow{1} 1$ és $5 \xrightarrow{3} 6 \xrightarrow{5} 5$. A két út összsúlya 18.

Most már felírhatjuk a feladat gráfjának gyökerét is. A gráfot aszerint fogjuk elágaztatni, hogy az $5 \rightarrow 6$, vagy az $6 \rightarrow 5$ irányt tiltjuk le.

Most felírjuk az 1 gráfponthoz tartozó táblát. Ehhez a kezdeti T táblában beírunk a $t_{5,6}$ helyre egy M-et, jelezve hogy tiltott, majd sor-oszlop redukció után címkézünk:

Itt megint lefedtünk, az új tábla a következő:

	0	4	0	5	8
9		0	13	7	3
0	5		5	9	11
3	2	8		10	0
4	7	0	0		M
5	0	8	13	0	

Az észak-nyugati sarok módszer most jó eredményt adott. A körutak most: $1 \xrightarrow{5} 2 \xrightarrow{3} 3 \xrightarrow{1} 1$ és $4 \xrightarrow{2} 6 \xrightarrow{3} 5 \xrightarrow{4} 4$. Az utak összsúlya $k_1 = 18$. s.í.t.

4.2. Körút építő algoritmus

A módszer a körutat lépésenként fogjuk felépíteni.

Adott egy 5 városú utazó ügynök probléma, az alábbi költségmátrixszal:

$C_0 = \frac{1}{2}$		8	3	7	4
	13		4	5	1
	2	6		5	3
	8	5	1		7
	7	4	8	2	

$\widehat{C}_0 = 0$		3	0	4	1
	12		3	4	0
	0	2		3	1
	7	2	0		6
	5	0	6	0	

Az u és v vektorok elemeinek összege pedig 11. Ez lesz a k_0 értékünk. A továbblépéshez megkeressük a legkisebb költségű $x_{i,j}$ elemet, ahol a $\widehat{c}_{i,j}=0$. Itt két ilyen van, így választanunk egyet. Most a $x_{2,5}$ szerint haladunk tovább:

Ha a 2 \rightarrow 5 utazást megtiltjuk, akkor $c_{2,5} = M$. Ekkor a költségmátrix:

$C_1 =$		8	3	7	4
	13		4	5	M
	2	6		5	3
	8	5	1		7
	7	4	8	2	

Az u és v vektorok összege ||u|| + ||v|| = 15. Tehát $k_1 = 15$, most pedig visszalépünk a o gráfpontba. Ha $2 \to 5$ utazást elfogadjuk, akkor a fordított irányt tiltanunk kell és a 2. sort és az 5. oszlopot törölni. Így a C_2 költségmátrix a következő:

$C_2 =$		8	3	7	
	>	X	>	>	\langle
	2	6		5	
	8	5	1		
	7	M	8	2	Z

Az ||u|| + ||v|| = 12, viszont itt ehhez hozzá kell adni $c_{2,5}$ -t, így $k_2 = 13$. Mivel ez jobb mint a másik ág értéke, így inkább erre haladunk tovább. Mivel továbbágazzuk a gráfot, így szükség van a \widehat{C}_2 mátrixra:

$\widehat{C}_2 =$		1	0	4	
	>	X	{	>	\langle
	0	0		3	
	7	0	0		
	5	M	6	0	Z

Ismét két legolcsóbb lehetőségünk van, most a $x_{3,1}$ -et választjuk.

 $k_3 = 18$

$$||u|| + ||v|| = 11$$

 $k_4 = 14$

Mivel a 4-es gráfpontban kedvezőbb az k_4 érték, ezért arra megyünk tovább.

Most csak egyetlen opciónk van, az $x_{4,3}$:

Most így kaptunk egy lehetséges megoldást, de az alsó határokat is megnézve nem biztos hogy ez az optimális. A 3-mas gráfpontból továbbmenve jobb megoldást biztosan nem kaphatunk, az 5-ösből viszont még lehetséges. Ezért lássuk a \widehat{C}_5 mátrixot:

Az x_{5,4}-et választjuk:

Jól látható, hogy ez rosszabb, mint a z_6 érték, tehát ez nem lehet optimális megoldás. Tehát az egyetlen optimum a 6-os gráfpontnál található, ez pedig:

Ezzel megoldottuk a feladatot, a teljesség kedvéért még lerajzoljuk a teljes gráfot:

Innen nagyon jól láthatjuk, hogy az 1-es, 3-mas és 7-es gráfpontokból továbbhaladva sem kaphatunk a z_6 értéknél kisebbet.