Рекомендации на основе содержания

План занятия

- 1 Откуда берутся фичи
- (2) Content-based-модель
- 3 Рекомендации item-to-item

Извлечение фич

Откуда берутся фичи

(1)

Ручное извлечение (2)

Парсинг внешних источников

The Music Genome Project

- 1 Разработка интернет-радио Pandora
- 2 Команда экспертов с музыкальным образованием
- 3 450 музыкальных фич на каждую звукозапись

Микрожанры онлайн-кинотеатров

- 1 Команда тегировщиков
- 2 Десятки страниц правил тегирования
- Почти 100 тысяч микрожанров:
 - документальные фильмы о чернокожих преступниках
 - страшные фильмы 80-х годов о культах и сектах
 - приключенческие фильмы 30-х годов о шпионах

Своя команда

- Разработка правил тегирования
- Найм и обучение экспертов
- Сервисы вроде Толока
- Перекрёстная проверка

MovieLens tags

- (1) Сотни тысяч пользователей, которые бесплатно размечают данные
- 2 Сотни различных тегов

Last.fm tags

- (1) Десятки миллионов пользователей
- (2) Сотни тысяч различных тегов

Парсинг внешних данных

- Очень много (сырых) данных
- Бесплатно
- Нужны правила дедубликации и прочее

Практика

Хотим сделать CBRS для фильмов

CBRS (content-based recommender system) - рекомендация на основе содержания.

Предварительно нужно посмотреть на распределения и статистики имеющихся фич. Знаем о TF-IDF и хотим посмотреть, как его лучше использовать.

Что делать

- Получите гистограмму количества тегов на фильм и пользователя
- Получите график количества тегов по месяцам
- Получите гистограмму количества жанров на фильм

Content-based-модель

Основные принципы

• У объекта должно быть какое-то признаковое описание (жанры фильмов)

Основные принципы

- Фичи свойства объекта (пользователя)
- Простой вариант: один пользователь одна модель
- Иначе: один объект (товар/услуга) одна модель
- Иначе: одна модель на все, а каждый элемент данных это пара пользовательобъект
- Целевая переменная релевантность пользователю

Один пользователь - одна модель

- 1 Должна быть предельно простая модель (линейная)
- (2) Коэффициенты модели профиль пользователя
- 3 Важна L1-регуляризация («совсем не нравится»)
- (4) Не учитывает общие паттерны поведения пользователей
- Должны быть богатые по содержанию объекты

genre	tag	year	 buy
horror	Actionl Adventure	2006	 1
love	Comedyl Romance	2012	 0

Один объект - одна модель

1 Когда мало объектов

2 Описание пользователей

(3) Для каждого нового продукта новая модель

age	city	cite	 buy
18	Moscow	2	 1
36	Kirov	6	 0

Одна модель на все

- 1 Учитывает общие закономерности (больше обобщает)
- 2 Требует больше параметров/сложность
- (3) Ограничения в применимости на большом объеме данных

genre	tag	year	 age	city	cite	 buy
horror	Action Adventure	2006	 18	Moscow	2	 1
love	Comedyl Romance	2012	 36	Kirov	6	 0

Рекомендации item-to-item

Как начать

- (1) Получить векторные представления объектов
- (2) Выбрать какую-нибудь метрику формулу расстояния
- Найти матрицу расстояний между объектами
- (4) Рекомендовать к выбранному объекту его ближайших соседей

А как же машинное обучение

- 1 Нужен функционал качества
- (2) Нужен алгоритм оптимизации функционала качества
- (3) Нет данных нет машинного обучения

Как продолжить (с МЛ)

- 1 Взять фичи объекта, к которому рекомендуют
- 2 Добавить фичи объекта, который рекомендуют
- 3 Целевая переменная 1/0, было ли целевое действие
- (4) Построить модель бинарной классификации

genre	tag	year	 genre	tag	year	 target
horror	Action Adventure	2006	 horror	Action	2009	 1
love	Comedyl Romance	2012	 horror	Adventure	2009	 0

С фильмом «Гарри Поттер и философский камень» также смотрят

ПриключенияПаддингтона 2

Тайна Коко

Фантастические твари и где они обитают

Гадкий я 3

Фердинанд

С фильмом «Гарри Поттер и философский камень» также смотрят

К чему рекомендовали	Что рекомендовали	Клик	
Гарри Поттер	Приключения Паддингтона	0	
Гарри Поттер	Тайна Коко	0	
Гарри Поттер	Фантастические твари	1	
Гарри Поттер	Гадкий я	0	
Гарри Поттер	Фердинанд	0	

Что ещё можно сделать

- Негативное сэмплирование
- Регрессия вместо классификации

Какие ещё можно брать фичи

- Свойства пользователя
- Контекст: время, место, устройство и т. д.
- Расстояние между тем, к чему рекомендуются, и тем, что рекомендуют
- Всё что угодно :)

Почему все любят item-to-item

- Обладаете знаниями о своих товарах/услугах
- Большой простор для экспериментов
- Полезно и понятно бизнесу

Практика

Рекомендации к фильму

Гипотеза: рекомендации похожих фильмов увеличат время сессии и конверсию в просмотр.

Что делать

- TF-IDF на тегах, жанрах
- Найдите ближайших соседей любимого фильма
- Проделайте то же для других расстояний

Итоги

- Сделали EDA для датасета MovieLens
- Поняли, как можно сформировать признаки на основе представленных данных
- Построили простую item-to-item рекомендательную систему на основе метода ближайших соседей

Рекомендации на основе содержания

