

MMAT 5390: Mathematical Imaging

Lecture 7:

Even Discrete Cosine Transform & Image enhancement in the frequency domain

Prof. Ronald Lok Ming Lui
Department of Mathematics,
The Chinese University of Hong Kong

Even Discrete Cosine Transform

1D and 2D Even Discrete Cosine Transform:

1D: The 1D EDCT (for a signal f of size M) is given by

$$\hat{f}_{ec}(m) = \frac{1}{2M} \sum_{k=-M}^{M-1} f(k) \cos \frac{\pi m(2k+1)}{2M}$$

where $0 \le m \le 2M - 1$.

2D: Let f be an $M \times N$ image. Reflect it about its left and top broader to get a $2M \times 2N$ image. (indices are shifted by $\frac{1}{2}$)

The EDCT of f is given by

$$\hat{f}_{ec}(m,n) = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k,l) \cos\left[\frac{m\pi}{M} \left(k + \frac{1}{2}\right)\right] \cos\left[\frac{n\pi}{N} \left(l + \frac{1}{2}\right)\right]$$

with $0 \le m \le 2M - 1, 0 \le n \le 2N - 1$

For details, please refer to Lecture Note Chapter 2

Inverse Even Discrete Cosine Transform

Inverse Even Discrete Cosine Transform:

2D:

$$f(k,l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} C(m)C(n) \hat{f}_{ec}(m,n) \cos \frac{\pi m (2k+1)}{2M} \cos \frac{\pi n (2l+1)}{2N}$$

for
$$C(0) = 1, C(m) = C(n) = 2$$
 for $m, n \neq 0$

Image Decomposition

$$f = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{f}_{ec}(m, n) \vec{T}_m \vec{T'}_n^T$$

where:
$$\vec{T}_m^T = \begin{pmatrix} T_m(0) \\ T_m(1) \\ \vdots \\ T_m(M-1) \end{pmatrix}, \vec{T'}_n^T = \begin{pmatrix} T'_n(0) \\ T'_n(1) \\ \vdots \\ T'_n(N-1) \end{pmatrix}$$
 with $T_m(k) = C(m) \cos \frac{\pi m(2k+1)}{2M}$

and
$$T'_n(k) = C(n)\cos\frac{\pi n(2k+1)}{2N}$$
.

Elementary images of EDCT decomposition

The basis images in terms of which any 8×8 image is expanded by EDCT.

Reconstruction w/ EDCT decomposition

- (a) = using 1x1 elementary images (first 1 row and first 1 column elementary images;
- (b) = using 2x2 elementary images (first 2 rows and first 2 column elementary images...and so on...

Other similar transforms

Odd Discrete Cosine Transform:

$$\hat{f}_{oc}(m,n) \equiv \frac{1}{(2M-1)(2N-1)} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} C(k)C(l)f(k,l) \cos \frac{2\pi mk}{2M-1} \cos \frac{2\pi nl}{2N-1}$$

Even Discrete Sine Transform:

$$\hat{f}_{es}(m,n) \equiv -\frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k,l) \sin \frac{\pi m(2k+1)}{2M} \sin \frac{\pi n(2l+1)}{2N}$$

Odd Discrete Sine Transform:

$$\hat{f}_{os}(m,n) \equiv -\frac{4}{(2M+1)(2N+1)} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k,l) \sin \frac{2\pi m(k+1)}{2M+1} \sin \frac{2\pi n(l+1)}{2N+1}$$

All of them have explicit formula for their inverses. (For details, please refer to Lecture Note Chapter 2)

Other similar transforms

Inverse Odd Discrete Cosine Transform:

$$f(k,l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} C(m)C(n)\hat{f}_{oc}(m,n) \cos \frac{2\pi mk}{2M-1} \cos \frac{2\pi nl}{2N-1}$$

where
$$C(0) = 1, C(m) = C(n) = 2$$
 if $m, n \neq 0$

Inverse Even Discrete Sine Transform:

$$f(k,l) = -\sum_{m=1}^{M} \sum_{n=1}^{N} S(m)S(n) \, \hat{f}_{es}(m,n) \sin \frac{\pi m(2k+1)}{2M} \sin \frac{\pi n(2l+1)}{2N}$$

where
$$S(M) = S(N) = 1$$
, $S(m) = S(n) = 2$ for $m \neq M$, $n \neq N$.

Inverse Odd Discrete Sine Transform:

$$f(k,l) = -16\sum_{m=1}^{M}\sum_{n=1}^{N}\hat{f}_{os}(m,n)\sin\frac{2\pi m(k+1)}{2M+1}\sin\frac{2\pi n(l+1)}{2N+1}$$

(For details, please refer to Lecture Note Chapter 2)

Elementary images of ODCT decomposition

The basis images in terms of which any 8×8 image is expanded by EDCT.

Reconstruction w/ ODCT decomposition

- (a) = using 1x1 elementary images (first 1 row and first 1 column elementary images;
- (b) = using 2x2 elementary images (first 2 rows and first 2 column elementary images...and so on...

Elementary images of EDST decomposition

The basis images in terms of which any 8×8 image is expanded by EDCT.

Reconstruction w/ EDST decomposition

- (a) = using 1x1 elementary images (first 1 row and first 1 column elementary images;
- (b) = using 2x2 elementary images (first 2 rows and first 2 column elementary images...and so on...

Elementary images of ODST decomposition

The basis images in terms of which any 8×8 image is expanded by EDCT.

Reconstruction w/ ODST decomposition

- (a) = using 1x1 elementary images (first 1 row and first 1 column elementary images;
- (b) = using 2x2 elementary images (first 2 rows and first 2 column elementary images...and so on...

Comparison of errors

The flower example:

	0	1	2	3	4	5	6
SVD	230033	118412	46673	11882			
Haar	366394	356192	291740	222550	192518	174625	141100
Walsh	366394	356190	262206	222550	148029	92078	55905
DFT	366394	285895	234539	189508	141481	119612	71908
EDCT	366394	338683	216608	173305	104094	49179	35662
ODCT	368946	342507	221297	175046	96924	55351	39293
EDST	341243	328602	259157	206923	153927	101778	55905
ODST	350896	326264	254763	205803	159056	109829	67374

(a) Uncorrelated image and its DCT; (b) Correlated image and its DCT.

Original image

(a)

Original image

DCT

(c)

Original image

(e)

Inverse DCT of Saturn; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%); (d) DCT(25%).

Inverse DCT of Circuit; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%); (d) DCT(25%).

Inverse DCT of Baboon; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%); (d) DCT(25%).

Inverse DCT of sine wave; (a) DCT(100%); (b) DCT(75%); (c) DCT(50%); (d) DCT(25%).

What is image enhancement?

 Image enhancement is the process by which we improve an image so that it looks subjectively better.

How?

- An image is enhanced when we:
 - remove additive noise and interference;
 - remove multiplicative interference;
 - increase its contrast;
 - decrease its blurring.
- Some standard methods:
 - smoothing or low pass filtering;
 - sharpening or high pass filtering;
 - histogram manipulation and
 - algorithms that remove noise while avoid blurring the image.

- We will consider two image enhancement problems:
 - Image denoising

- We will consider two image enhancement problems:
 - Image denoising

Image deblurring

Linear filtering:

 Modifying a pixel value (in the spatial domain) by a linear combination of neighborhood values.

Operations in spatial domain v.s. operations in frequency domains:

- Linear filtering (matrix multiplication in spatial domain) = discrete convolution
- In the frequency domain, it is equivalent to multiplying the Fourier transform of the image with a certain function that "kills" or modifies certain frequency components

Discrete convolution:

$$v(n,m) = \sum_{n'=0}^{N-1} \sum_{m'=0}^{M-1} g(n-n', m-m') w(n', m')$$

- DFT of Discrete convolution: Product of fourier transform
- DFT(convolution of f and w) = C*DFT(f)*DFT(w)
- Multiplying the Fourier transform of the image with a certain function that "kills" or modifies certain frequency components

Gaussian noise

Example of Gaussian noises:

White noise

Example of white noises:

White noise

Example of white noises:

Noises as high frequency component

Why noises are often considered as high frequency component?

- (a) Clean image spectrum and Noise spectrum (Noise dominates the high-frequency component);
- (b) Filtering of high-frequency component

Discrete convolution:

$$v(n,m) = \sum_{n'=0}^{N-1} \sum_{m'=0}^{M-1} g(n-n', m-m') w(n', m')$$

- DFT of Discrete convolution: Product of fourier transform
- DFT(convolution of f and w) = C*DFT(f)*DFT(w)
- Multiplying the Fourier transform of the image with a certain function that "kills" or modifies certain frequency components

Spatial transform v.s. frequency transform

Spatial transform v.s. frequency transform

Noises as high frequency component

Why noises are often considered as high frequency component?

- (a) Clean image spectrum and Noise spectrum (Noise dominates the high-frequency component);
- (b) Filtering of high-frequency component

Frequency spectrum of an image

Frequency spectrum of an image

Frequency spectrum of an image

Original image

Spectrum

Key steps for image enhancement in the frequency domain

Relationship between spatial and frequency domain

Low pass filtering

Spatial and frequency domain

protrusions

SEM: scanning electron Microscope

(a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a). (Original image courtesy of Dr. J. M. Hudak. Brockhouse Institute for Materials Research. McMaster University. Hamilton. Ontario, Canada.)

notice the ±45° components and the vertical component which is slightly off-axis to the left! It corresponds to the protrusion caused by thermal failure above. 4.29

Ideal Low Pass Filter

Ideal low-pass filter
$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

 D_0 is the cutoff frequency and D(u,v) is the distance between (u,v) and the frequency origin.

Ideal Low Pass Filter

Ideal Low Pass Filter with larger and larger radii D0

Explanation of ringing effect

Butterworth Low Pass Filter

Butterworth Low Pass Filter

Butterworth Low Pass Filter with larger and larger radii D0

Gaussian Low Pass Filter

Applications: fax transmission, duplicated documents and old records.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

GLPF with D_0 =80 is used.

Application: Low Pass Filter

A LPF is also used in printing, e.g. to smooth fine skin lines in faces.

High Pass Filter

Spatial representation of High Pass Filter

Ideal High Pass Filter

D0 = 15

D0 = 30

(Ringing effect is observed)

Ideal High Pass Filter

Butterworth High Pass Filter

D0 = 15

D0 = 30

Comparison: High Pass Filter

High-pass filtering

Low-pass filtering

Ideal filtering

Ideal filtering

Noisy image

Frequency domain

Denoised

Butterworth filtering

Butterworth filtering

Denoised

Gaussian filtering

noisy

denoised

$$(\sigma=1)$$

denoised

$$(\sigma = 1.5)$$

