Arithmetic

Math 2151: Discrete Math for Engineering

University of Western Ontario Fall 2024

Diego Manco (he/him, from Colombia) Office MC 134 e-mail: dmanco@uwo.ca Office hours: Mon 4:30-5:30pm, Tu 2-3pm, and Wed 2:30-3:30pm.

Arithmetic, first definitions

Definition

Recall that for $m, n \in \mathbb{Z}$, we say that m|n when there is $k \in \mathbb{Z}$ s.t. n = mk. We read m|n as m divides n or n is a multiple of m.

Theorem

- 1|a and a|0 for any $a \in \mathbb{Z}$.
- The relation | is reflexive and transitive.
- $(a|b \wedge b|a)$ implies $a = \pm b$.
- a|b implies a|bc for any $c \in \mathbb{Z}$.
- a|b and a|c implies that a|(xb+yc) for any $x,y\in\mathbb{Z}$. Here xb+yc is called a linear combination of b and c.

Definition

We call an integer $p \in \mathbb{Z}^+$ a prime number if the only 2 positive divisors of p are 1 and p itself.

Primes are infinite

Theorem

Let n be an composite (not prime) with $n \ge 1$. Then, there is a prime that divides n.

Proof.

We have to show that the set S of composite numbers with no prime divisors is empty. Assume $S \neq \emptyset$. Then there is m = minS. Since m is composite $m = m_1m_2$ with $1 < m_1 < m$ and $1 < m_2 < m$. So, $m_1 \notin S$ and so there is a prime divisor of m_1 , p. $p|m_1|m_1m_2$, that is p|m, which is impossible.

Primes are infinite

Theorem

There are infinitely many primes

Proof.

Assume there are finitely many primes p_1, \ldots, p_n . Consider the number

$$k=1+(p_1p_2\cdots p_n)$$

Since $k>p_i$, $k\neq p_i$ for $i=1,\ldots,n$. So k is not a prime. This means that there is a prime p_j that divides p. Since $p_j|k$ and $p_j|(p_1p_2\cdots p_n)$,

$$p_i|(p_1p_2\cdots p_n-1)=1.$$

This means p_i is not a prime! This is a contradiction.

Division algorithm

$\mathsf{Theorem}$

If $a, b \in \mathbb{Z}$ with b > 0, then, there exist unique $q, r \in \mathbb{Z}$ with a = qb + r and $0 \le r < b$.

Proof.

 \exists xistence: If b|a then b=qa and we can take r=0. Suppose then that b doesn't divides a and consider the set

$$S = \{a - tb : t \in \mathbb{Z} \land a - tb > 0\}$$

Exercise: show $S \neq \emptyset$. Since $S \neq \emptyset$ there is a minimum element r = minS. By definition of S, r = a - qb. Let's see that we can't have $r \geq b$. If r = b, then a = r + qb = b + qb = q(b+1) which is impossible since b doesn't divide a. If r > b, then r > r - b > 0 and r - b = a - qb > 0, so $r - b \in S$ and r - b < r which is impossible since r is minimum.

Proof continues

Proof.

Uniqueness: We have q and r with a=qb+r and $0 \le r < b$. But we have to proof that they are unique. So, suppose there are q',r' s.t. a=q'b+r' and $0 \le r' < b$. Then qb+r=q'b+r', and so

$$b|q - q'| = |r - r'| < b$$

Because since $0 \le r, r' < b$, |r - r'| < b. This forces |q - q'| < 1, i.e. |q - q'| = 0 and so q = q'. This further forces r = r'

Theorem

If a = qb + r and $0 \le r < |b|$, then

$$q = \begin{cases} \left\lfloor \frac{a}{b} \right\rfloor, & b > 0 \\ \left\lceil \frac{a}{b} \right\rceil, & b < 0 \end{cases}$$

Examples

- Let's divide 93 by 12 we get 93=7(12)+9.
- Let's divide 93 by -12, we get 93=(-7)(-12)+9.
- Let's divide -93 by -12, we get -93=8(-12)+3.

Numbers in different basis

We usually represent integers in base 10. For example 1999 is a number in base 10, meaning that

$$1999 = 1(10)^3 + 9(10)^2 + 9(10) + 9(10)^0$$

We can obtain this representation from the division algorithm in the following way.

$$1999 = 10(199) + 9$$
 divide by 10
 $199 = 10(19) + 9$ divide by 10
 $19 = 10(1) + 9$ divide by 10
 $1 = 10(0) + 1$ divide by 10

We get that

$$1999 = 1(10)^3 + 9(10)^2 + 9(10) + 9(10)^0$$

Numbers in basis

Let's now calculate 1999 in base 3, we are looking for integers r_0, \ldots, r_k s.t. $0 \le r_i \le 7$, and

$$1999 = r_k 8^k + r_{k-1} 8^{k-1} + \dots + r_1 8 + r_0.$$

In this case we write $1999 = (r_k r_{k-1} \cdots r_1 r_0)_8$

$$2999 = 3(666) + 1$$

$$666 = 3(222) + 0$$

$$222 = 3(74) + 0$$

$$74 = 3(24) + 2$$

$$24 = 3(8) + 0$$

$$8 = 3(2) + 2$$

$$2 = 3(0) + 2$$

Thus,

$$1999 = (2202001)_3$$

Binary, octal and hexagesimal basis

Definition

Given a natural number $b \geq 2$, the base b representation of a natural number N is $(a_k a_{k-1} \cdots a_0)$ where a_0, \ldots, a_k are integers with $0 \leq a_i < b$ and

$$N = r_k b^k + r_{k-1} b^{k-1} + \dots + r_1 b^1 + r_0 b^0$$

Let's find the binary (base 2), octal (base 8) and hexagesimal (base 16) representations of 1999. We start with binary reasoning as we did before.

$$1999 = 2(999) + 1,999 = 2(499) + 1,499 = 2(249) + 1,\\ 249 = 2(124) + 1,124 = 2(62) + 0,62 = 2(31) + 0,\\ 31 = 2(15) + 1,15 = 2(7) + 1,7 = 2(3) + 1,3 = 2(1) + 1,2 = 2(0) + 1.$$
 So,

$$1999 = (11111001111)_2$$

Binary, octal and hexagesimal basis

We could do something similar to get 1999 in base 8, but it's easiear when converting base 2 to base 8 to do the following. Divide the number you want to convert into blocks of 3 (because $2^3=8$)

$$011 \ 111 \ 001 \ 111$$

Then transform each block to decimal to get the desired expresion.

$$(111111001111)_2 = (3717)_8$$

This works because

$$\begin{split} &(11111001111)_2\\ =&2^{10}+2^9+2^8+2^7+2^6+0+0+2^3+2^2+2^1+2^0\\ =&(0+2+1)2^9+(2^2+2+1)2^6+(0+0+1)2^3+(2^2+2+1)2^0\\ =&3(8^3)+7(8^2)+1(8^1)+7(8^0) \end{split}$$

Binary, octal, and hexagesimal basis

For base 16 we need 16 symbols to be able to account for the fact that in an expression $(r_k r_{k-1} \cdots r_0)_{16}$, $0 \le r_i < 16$. We use the symbols 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F. For example $F_{16}=15$, $(1A)_{16}=16+10=26$. Let's now convert $1999=(11111001111)_2$ to base 16. Since $2^4=16$ we divide in groups of 4.

And then transform each block to hexagesimal. $(0111)_2 = 7 = 7_8$, $(1100)_2 = 12 = C_16$, $1111 = 15 = F_{16}$, and so

$$1999 = (1111100111)_2 = (7CF)_{16}$$

Greatest common divisor

L

et $a, b \in \mathbb{Z}$, where either $a \neq 0$ or $b \neq 0$. $c \in \mathbb{Z}^+$ (positive integers) is the greatest common divisor of a, b if

- c|a and c|b
- for any positive common divisor of a and b, d, d|c.

c is unique and we call it c = gcd(a, b)

Although the definition makes sense for negative integers, one usually focuses on the set of positive integers \mathbb{Z}^+ . In the set \mathbb{Z}^+ , the divisibility relation | is a partial order and for $a,b\in\mathbb{Z}^+$ $\gcd(a,b)=a\wedge b$ in this partial order.

Greatest common divisors exist

The proof of this theorem says that gcd(a,b) is the minimum linear combination of a and b

Theorem

Let $a,b \in \mathbb{Z}^+$, then there is a unique greatest common divisor of a and b and we call it gcd(a,b)

Proof.

Consider the set $S = \{as + bt : s, t \in \mathbb{Z} \land as + bt > 0\}$. $S \neq \emptyset$ (why?). By the well ordering principle there is c = minS. Since $c \in S$, c = ax + by. First of all, if d|a and d|b, then d|(ax + by) = c.

Let's now prove c|a. By contradiction suppose $\neg(c|a)$, then $a=qc+r,\, 0< r< c.$ So,

 $r = a - qc = a - qax - qby = a(1 - z) - b(qy) \in S$. This is impossible. Similarly c|b.

Uniqueness is easy, prove it!

Euclidean algorithm

The Euclidean algorighm allows not only finding the gcd of two numbers but also expressing it as a linear combination of the two.

Theorem

Euclidean Algorithm Let $z, b \in \mathbb{Z}^+$. Set $r_0 = a$, and $r_1 = b$ and apply the division algorithm iteratively as follows:

$$r_{0} = q_{1}r_{1} + r_{2},$$
 $0 < r_{2} < r_{1}$
 $r_{1} = q_{2}r_{2} + r_{3},$ $0 < r_{3} < r_{2}$
 \cdots
 $r_{i} = q_{i+1}r_{i+1} + r_{i+2},$ $0 < r_{i+2} < r_{i+1}$
 \cdots
 $r_{n-2} = q_{n-1}r_{n-1} + r_{n},$ $0 < r_{n} < r_{n-1}$
 $r_{n-1} = q_{n}r_{n}.$

The last nonzero remainder is $gcd(a,b) = r_n$

Proof of the Euclidean algorithm

Proof.

By the last equation $r_n|r_{n-1}$. Since r_n divides both r_n and r_{n-1} , by the second to last equation, $r_n|r_{n-2}$. Continuing in this way we realize that $r_n|r_1$ and $r_n|r_0$. So, r_n is a common divisor. Now, suppose c|a and c|b. By the first equation, since $c|r_0$ and $c|r_1$, $c|r_2$. By the second equation, since $c|r_1$ and $c|r_2$, $c|r_3$. Continuing this way we conclude that $c|r_n$ as we wanted to show.

Next we will show an example of calculating the *gcd* of two numbers using the Euclidean algorithm and expressing this *gcd* as a linear combination of the two numbers.

Examples

Find $\gcd(2020,322)$ and express it as a linear combination of 2020 and 322.

$$2020 = 322(6) + 88$$

$$322 = 88(3) + 58$$

$$88 = 58(1) + 30$$

$$58 = 30(1) + 28$$

$$30 = 28(1) + 2$$

$$28 = 2(14) + 0$$
(1)
(2)
(3)
(5)
(6)

This means that 2 = gcd(2020, 322). Now,

$$2 = 30 - 28, from (5)$$

$$= 30 - (58 - 30) = -58 + 2(30), from (4)$$

$$= -58 + 2(88 - 58) = 2(88) - 3(58), from (3)$$

$$= 2(88) - 3(322 - 3(88)) = 11(88) - 3(3222)$$

$$= 11(2020 - 6(322)) - 3(322) = 11(2020) - 69(322)$$