

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: C07H 21/04, C12Q 1/68	A1	(11) International Publication Number: WO 00/69882 (43) International Publication Date: 23 November 2000 (23.11.2000)
(21) International Application Number: PCT/US00/13168		Published
(22) International Filing Date: 15 May 2000 (15.05.2000)		
(30) Priority Data: 60/134,180 13 May 1999 (13.05.1999) US		
(60) Parent Application or Grant THE PENN STATE RESEARCH FOUNDATION [/]; O. GREGER, Douglas, L. [/]; O. GREGER, Douglas, L. [/]; O. RIGAUT, Kathleen, D. ; O.		
(54) Title: GENETIC MARKER FOR MEAT QUALITY, GROWTH, CARCASS AND REPRODUCTIVE TRAITS IN LIVESTOCK (54) Titre: MARQUEUR GENETIQUE POUR LA QUALITE DE VIANDE, LA CROISSANCE, LA CARCASSE ET LES CARACTERISTIQUES REPRODUCTRICES DU BETAIL		
(57) Abstract Compositions and methods are provided for identifying polymorphisms associated with growth and reproductive traits in livestock.		
(57) Abrégé L'invention concerne des compositions et des procédés permettant l'identification des polymorphismes associés à la croissance et aux caractéristiques de reproduction du bétail.		

BEST AVAILABLE COPY

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C07H 21/04, C12Q 1/68		A1	(11) International Publication Number: WO 00/69882 (43) International Publication Date: 23 November 2000 (23.11.00)
(21) International Application Number: PCT/US00/13168 (22) International Filing Date: 15 May 2000 (15.05.00)		(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 60/134,180 13 May 1999 (13.05.99) US		Published <i>With international search report.</i>	
(71) Applicant (for all designated States except US): THE PENN STATE RESEARCH FOUNDATION [US/US]; 304 Old Main, University Park, PA 16802-7000 (US).			
(72) Inventor; and (75) Inventor/Applicant (for US only): GREGER, Douglas, L. [US/US]; 23 Coventry Lane, State College, PA 16803 (US).			
(74) Agent: RIGAUT, Kathleen, D.; Dann, Dorfman, Herrell and Skillman, Suite 720, 1601 Market Street, Philadelphia, PA 19103 (US).			
(54) Title: GENETIC MARKER FOR MEAT QUALITY, GROWTH, CARCASS AND REPRODUCTIVE TRAITS IN LIVESTOCK			
(57) Abstract <p>Compositions and methods are provided for identifying polymorphisms associated with growth and reproductive traits in livestock.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TU	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

Description

5

10

15

20

25

30

35

40

45

50

55

5

GENETIC MARKER FOR MEAT QUALITY, GROWTH, CARCASS AND
REPRODUCTIVE TRAITS IN LIVESTOCK

5

10

FIELD OF THE INVENTION

15

This invention relates generally to the detection of genetic differences associated with growth, body composition and reproductive traits among livestock. More specifically, the invention provides compositions and methods for predicting heritability of certain traits related to steroid biosynthesis and metabolism.

20

BACKGROUND OF THE INVENTION

25

Several publications are referenced in this application by author name, year and journal of publication in parentheses in order to more fully describe the state of the art to which this invention pertains. The disclosure of each of these publications is incorporated by reference herein.

30

Steroid hormones play a crucial role in the differentiation, development, growth and physiological function of most animal tissues. The first and rate-limiting step in the biosynthesis of all steroid hormones is the conversion of cholesterol into pregnenolone by the cholesterol side chain cleavage enzyme p450scc. The gene which encodes P450scc is termed CYP11a1. Cytochromes P450 are a diverse group of heme-containing mono-oxygenases (termed CYP's; see Nelson et al., DNA Cell Biol. (1993) 12: 1-51) that catalyze a variety of oxidative conversions, notably of steroids but also of fatty acids and xenobiotics. CYP's are most abundantly expressed in the testis, ovary, placenta, adrenal glands and liver. In the reproductive organs, such as testis, ovary and placenta, the most

40

25

35

45

50

55

5 important steroid hormones produced are the androgens (e.g., testosterone), the estrogens (e.g., estradiol) and progestins (e.g., progesterone). In the adrenal glands, the most important steroids are the
10 5 mineralcorticoids (e.g., aldosterone) and the glucocorticoids (e.g., cortisol).

The frequent occurrence of off-odors or off-tastes in cooked pork from boars, commonly known as "boar odor" or "boar taint", is the primary reason for the common practice of castration in swine production. 5α -androstenedione (5α -androst-16-en-3-one), an important compound responsible for boar taint, is synthesized in the boar testis along with other 16-androstene steroids, androgens, and estrogens. At puberty, testicular production of $\Delta 16$ -androstenes, in particular 5α -androstenedione (androstenedione), increases sharply. This results in the accumulation of androstenedione in various body compartments, notably in fat deposits throughout the body and in the submaxillary salivary gland (SMG), where there is a specific binding protein for $\Delta 16$ -androstenes. Concentration of androstenedione and other $\Delta 16$ -androstenes in the SMG are highly correlated with concentrations of $\Delta 16$ -androstenes in the fat. Measurement of $\Delta 16$ -androstenes in the SMG is used, in fact, as a test method to determine the presence or absence of boar taint. Thus, due to this increase in $\Delta 16$ -androstenes, it is common in the industry to castrate the young male boars to minimize this taint in the meat. However, if the problem of boar taint were overcome, raising boars rather than raising castrates (barrows) for pork would have considerable economic advantages. Although boars and barrows gain weight at equivalent rates, boars produce carcasses containing 20-30% less fat. Thus, boars are much more efficient at producing lean muscle. In addition, boars utilize feed

5 more efficiently than barrows (10% less feed consumed per unit of body weight). Since feed represents the major cost in swine production, raising boars for pork would have significant economic advantages.

10 5 In the United States, approximately 90 million hogs are slaughtered annually with an approximate value of \$11 billion. Feed accounts for the major portion of the costs of swine production, accounting for roughly 70% of production costs. Thus, a 10% improvement in feed efficiency would produce savings of 7% of the total cost of production. On a nation-wide basis, considering male swine only, this translates to total market savings of \$335 million. The loss of production efficiency caused by the practice of castration represents a very large economic loss to the swine industry throughout the world.

15 10 20 25 Identification of the inheritance pattern(s) and genetic bases for alterations in steroid biosynthesis in livestock has utility in the production of meat, dairy and egg products of higher quality. It is an object of the present invention to provide compositions and methods for identifying such genetic alterations.

SUMMARY OF THE INVENTION

30 20 25 30 35 40 45 50 In accordance with the present invention, methods for identifying genetic alterations associated with steroid biosynthesis are provided. In one embodiment of the invention, the presence or absence of a polymorphic marker in the CYP11a1 DNA of a test subject is determined. Such test subjects are selected from important livestock species, including without limitation, pigs, cows, chickens and sheep. In accordance with the present invention, it has been determined that certain polymorphisms in the CYP11a1 gene are associated with increased growth, reproductive

5 and carcass traits. Thus, screening methods are provided for identifying those test subjects which possess these beneficial CYP11a1 alleles.

10 5 Identification of such livestock facilitates the implementation of breeding programs for developing stock having these improved genetic traits.

15 10 As is well known to those of skill in the art, a variety of techniques may be utilized when comparing nucleic acid molecules for sequence differences. These include by way of example, restriction fragment length polymorphism analysis, heteroduplex analysis, single strand conformation polymorphism analysis, denaturing gradient electrophoresis and temperature gradient electrophoresis.

20 15 In a preferred embodiment of the invention, the CYP11a1 polymorphism is a restriction fragment polymorphism and the assay comprises identifying the CYP11a1 gene from genetic material isolated from the test subject; exposing the gene to a restriction enzyme that yields restriction fragments of the gene of varying length; separating the restriction fragments to form a restriction pattern, such as by electrophoresis or HPLC separation; and comparing the resulting restriction fragment pattern from a test subject CYP11a1 gene that is either known to have or not to have the desired marker. If a test subject tests positive for the marker, such a subject can be considered for inclusion in the breeding program. If the test subject does not test positive for the marker genotype, the test subject can be culled from the group and otherwise used.

25 20 30 35 40 35 In a particularly preferred embodiment, the test subject is a pig, the polymorphism is in the 5'UTR of the CYP11a1 gene and the restriction enzyme is SphI. Thus, in this aspect, it is an object of the invention to provide a method of screening pigs to determine those

5 more likely to have decreased testis weight and reduced
boar taint, longer carcasses, improved rate of gain, or
heavier weaning weights when bred to or to select
10 5 against pigs which have alleles indicating larger testis
size, increased boar taint, reduced carcass length,
lower rate of gain, or lighter weaning weights. As used
herein "smaller testis size" means a significant
15 10 decrease in testis size below the mean for a given
population. As used herein "reduced boar taint" means a
significant decrease in boar taint below the mean for a
given population. As used herein "increased carcass
20 15 length" means a significant increase in carcass length
above the mean for a given population. As used herein
"higher rate of gain" means a significant increase in
rate of gain above the mean for a given population. As
used herein "heavier weaning weights" mean an increase
25 20 in weaning weight above the mean for a given population.
The method of the invention comprises the steps: 1)
obtaining a sample of genomic DNA from a pig; and
30 25 2) analyzing the genomic DNA obtained in 1) to determine
which CYP11a1 allele(s) is/are present. Briefly, a
sample of genetic material is obtained from a pig, and
the sample is analyzed to determine the presence or
35 30 absence of a polymorphism in the CYP11a1 gene that is
correlated with reduced boar taint, smaller testis size,
increased carcass length, higher rate of gain, and/or
increased weaning weight.
40 35 In a most preferred embodiment the gene is isolated
by the used of primers and DNA polymerase to amplify a
specific region of the gene which contains the
45 40 polymorphism. Next the amplified region is digested with
a restriction enzyme and fragments are separated.
Visualization of the RFLP pattern is by simple staining
of the fragments, or by labeling the primers or the
50 45 nucleoside triphosphates used in amplification.

5 In another embodiment, the invention comprises a
method for identifying a genetic marker for boar taint,
testis size, carcass length, rate of gain, and/or
weaning weight in a particular population. Male and
10 5 female pigs of the same breed or breed cross or similar
genetic lineage are bred, and traits such as boar taint,
testis size, carcass length, rate of gain, and/or
weaning weight are determined. A polymorphism in the
15 10 CYP11a1 gene of each pig is identified and associated
with the traits of boar taint, testis size, carcass
length, rate of gain, and/or weaning weight. Preferably,
20 20 RFLP analysis is used to determine the polymorphism, and
most preferably, the DNA is digested with the
restriction endonuclease SphI, or other restriction
25 15 endonuclease that differentially cleaves the restriction
site based on the presence or absence of the
polymorphism.

Methods are also provided to establish linkage
between specific alleles of alternative DNA markers and
30 20 alleles of DNA markers known to be associated with a
particular gene (e.g. the CYP11a1 gene discussed
herein), which have been previously shown to be
associated with a particular trait. Thus, selection for
pigs likely to have reduced boar taint, smaller testes,
35 25 increased carcass length, higher rate of gain, and/or
heavier weaning weights, or alternatively to select
against pigs likely to have increased boar taint, larger
testes, reduced carcass length, lower rate of gain,
40 30 and/or lighter weaning weights, may be done indirectly,
by selecting for certain alleles of a CYP11a1 associated
marker through the selection of specific alleles of
45 35 alternative markers located on the same chromosome as
CYP11a1.

The invention further comprises kits for evaluating
50 35 a sample of test subject DNA for the presence in test

5 subject genetic material of a desired marker located in
the test subject, CYP11a1 gene indicative of the
inheritable traits of boar taint (in the pig), testis
size, carcass length, rate of gain, and/or weaning
10 5 weight. At a minimum, using the pig as the test subject,
the kit is a container with one or more reagents that
identify a polymorphism in the pig CYP11a1 gene.
Preferably, the reagent is a set of oligonucleotide
15 10 primers capable of amplifying a fragment of the pig
CYP11a1 gene that contains the polymorphism. More
preferably, the kit further contains a restriction
enzyme that cleaves the pig CYP11a1 gene in at least one
20 20 place. In a most preferred embodiment the restriction
enzyme is SphI or one which cuts at the same recognition
15 15 site.

25 The following definitions are provided to
facilitate an understanding of the present invention:
The term "corresponds to" is used herein to mean
that a polynucleotide sequence is homologous to all or a
20 20 portion of a reference polynucleotide sequence, or that
a polypeptide sequence is identical to a reference
polypeptide sequence. In contradistinction, the term
"complementary to" is used herein to mean that the
complementary sequence is homologous to all or a portion
30 30 of a reference polynucleotide sequence. For
illustration, the nucleotide sequence "TATAC"
corresponds to a reference sequence "TATAC" and is
complementary to a reference sequence "GTATA".
35 25 Hybridization probes may be DNA or RNA, or any synthetic
nucleotide structure capable of binding in a base-
specific manner to a complementary strand of nucleic
40 30 acid. For example, probes include peptide nucleic acids,
as described in Nielsen et al., Science 254:1497-1500
(1991).
45 35

5 "Linkage" describes the tendency of genes, alleles,
loci or genetic markers to be inherited together as a
result of their location on the same chromosome, and is
measured by percent recombination (also called
10 5 recombination fraction, or θ) between the two genes,
alleles, loci or genetic markers. The closer two loci
physically are on the chromosome, the lower the
recombination fraction will be. Normally, when a
15 10 polymorphic site from within a disease-causing gene is
tested for linkage with the disease, the recombination
fraction will be zero, indicating that the disease and
the disease-causing gene are always co-inherited. In
20 15 rare cases, when a gene spans a very large segment of
the genome, it may be possible to observe recombination
between polymorphic sites on one end of the gene and
causitive mutations on the other. However, if the
25 20 causative mutation is the polymorphism being tested for
linkage with the disease, no recombination will be
observed.

30 20 "Centimorgan" is a unit of genetic distance
signifying linkage between two genetic markers, alleles,
genes or loci, corresponding to a probability of
35 25 recombination between the two markers or loci of 1% for
any meiotic event.

40 30 "Linkage disequilibrium" or "allelic association"
means the preferential association of a particular
allele, locus, gene or genetic marker with a specific
45 35 allele, locus, gene or genetic marker at a nearby
chromosomal location more frequently than expected by
chance for any particular allele frequency in the
population.

50 35 An "oligonucleotide" can be DNA or RNA, and single-

5 or double-stranded. Oligonucleotides can be naturally occurring or synthetic, but are typically prepared by synthetic means.

10 5 The term "primer" refers to an oligonucleotide capable of acting as a point of initiation of DNA synthesis under conditions in which synthesis of a primer extension product complementary to a nucleic acid strand is induced, i.e., in the presence of four 15 10 different nucleoside triphosphates and an agent for polymerization (i.e., DNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. A primer is preferably a single-stranded oligonucleotide. The appropriate length of a 20 15 primer depends on the intended use of the primer but typically ranges from 15 to 30 nucleotides. Short primer 25 20 molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the 30 25 template but must be sufficiently complementary to hybridize with a template. The term "primer" may refer to more than one primer, particularly in the case where there is some ambiguity in the information regarding one 35 30 or both ends of the target region to be amplified. For instance, if a region shows significant levels of 40 35 polymorphism or mutation in a population, mixtures of primers can be prepared that will amplify alternate sequences. A primer can be labeled, if desired, by incorporating a label detectable by spectroscopic, 45 40 photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include ^{32}P , 50 45 fluorescent dyes, electron-dense reagents, enzymes (as commonly used in an ELISA), biotin, or haptens and 55 50 proteins for which antisera or monoclonal antibodies are available. A label can also be used to "capture" the

5 primer, so as to facilitate the immobilization of either
the primer or a primer extension product, such as
amplified DNA, on a solid support.

10 5 "Chromosome 7 set" in boars for example, means the
two copies of chromosome 7 found in somatic cells or the
one copy in germ line cells of a test subject or family
member. The two copies of chromosome 7 may be the same
15 10 or different at any particular allele, including alleles
at or near the locus of interest. The chromosome 7 set
may include portions of chromosome 7 collected in
chromosome 7 libraries, such as plasmid, yeast, or phage
20 15 libraries, as described in Sambrook et al., Molecular
Cloning, 2nd Edition, and in Mandel et al., Science
258:103-108 (1992).

25 "Penetrance" is the percentage of individuals with
a defective gene or polymorphism who show some symptoms
of a trait resulting from that genetic alteration.
30 20 Expressivity refers to the degree of expression of the
trait (e.g., mild, moderate or severe).

35 25 "Polymorphism" refers to the occurrence of two or
more genetically determined alternative sequences or
alleles in a population. A polymorphic marker is the
locus at which divergence occurs. Preferred markers have
40 30 at least two alleles, each occurring at frequency of
greater than 1%. A polymorphic locus may be as small as
one base pair difference. Polymorphic markers suitable
45 35 for use in the invention include restriction fragment
length polymorphisms, variable number of tandem repeats
(VNTR's), hypervariable regions, minisatellites,
dinucleotide repeats, trinucleotide repeats,
tetranucleotide repeats, and other microsatellite
50 35 sequences.

5 "Restriction fragment length polymorphism" (RFLP)
means a variation in DNA sequence that alters the length
of a restriction fragment as described in Botstein et
al., Am. J. Hum. Genet. 32:314-331 (1980). The
10 5 restriction fragment length polymorphism may create or
delete a restriction site, thus changing the length of
the restriction fragment. For example, the DNA sequence
GAATTC are the six bases, together with its
15 complementary strand CTAAAG which comprises the
recognition and cleavage site of the restriction enzyme
EcoRI. Replacement of any of the six nucleotides on
either strand of DNA to a different nucleotide destroys
the EcoRI site. This RFLP can be detected by, for
20 10 example, amplification of a target sequence including
the polymorphism, digestion of the amplified sequence
with EcoRI, and size fractionation of the reaction
products on an agarose or acrylamide gel. If the only
25 15 EcoRI restriction enzyme site within the amplified
sequence is the polymorphic site, the target sequences
comprising the restriction site will show two fragments
30 20 of predetermined size, based on the length of the
amplified sequence. Target sequences without the
restriction enzyme site will only show one fragment, of
the length of the amplified sequence. Similarly, the
35 25 RFLP can be detected by probing an EcoRI digest of
Southern blotted DNA with a probe from a nearby region
such that the presence or absence of the appropriately
sized EcoRI fragment may be observed. RFLP's may be
40 30 caused by point mutations which create or destroy a
restriction enzyme site, VNTR's, dinucleotide repeats,
deletions, duplications, or any other sequence-based
45 35 variation that creates or deletes a restriction enzyme
site, or alters the size of a restriction fragment.

35 "Variable number of tandem repeats" (VNTR's) are

5 short sequences of nucleic acids arranged in a head to
tail fashion in a tandem array, and found in each
individual, as described in Wyman et al., Proc. Nat.
Acad. Sci. 77:6754-6758 (1980). Generally, the VNTR
10 5 sequences are comprised of a core sequence of at least
16 base pairs, with a variable number of repeats of that
sequence. Additionally, there may be variation within
the core sequence, Jefferys et al., Nature 314:67-72
15 10 (1985). These sequences are highly individual, and
perhaps unique to each individual. Thus, VNTR's may
generate restriction fragment length polymorphisms, and
may additionally serve as size-based amplification
20 product differentiation markers.

15 "Microsatellite sequences" comprise segments of at
least about 10 base pairs of DNA consisting of a
25 variable number of tandem repeats of short (1-6 base
pairs) sequences of DNA (Clemens et al., Am. J. Hum.
Genet. 49:951-960 1991). Microsatellite sequences are
20 generally spread throughout the chromosomal DNA of an
individual. The number of repeats in any particular
tandem array varies greatly from individual to
individual, and thus, microsatellite sequences may serve
30 to generate restriction fragment length polymorphisms,
and may additionally serve as size-based amplification
35 25 product differentiation markers.

40 **BRIEF DESCRIPTION OF THE DRAWINGS**

30 Figure 1 depicts the sequence of approximately 630
base pairs of the 5' untranslated region of the porcine
45 CYP11A1 gene (SEQ ID NO: 1). The PCR fragment was
produced using DNA extracted from porcine testis
samples. The primers used were forward primer (SEQ ID
35 NO:2) and reverse primer (SEQ ID NO:3).

Figure 2 depicts the polymorphic pattern of SphI-digested PCR product. The forward and reverse primers were used in the following PCR conditions: Two minutes @ 94°C, 35 cycles of one minute @ 94°C, one minute @ 55°C, one minute @ 72°C and a final two minutes @ 72°C. Samples were digested with SphI (New England Biolabs) and separated on 1.5% agarose gel at 50 volts for 45 minutes at room temperature. Gels were stained with ethidium bromide. Lane 1: low molecular weight markers; Lane 2: undigested PCR fragment; Lanes 3 and 7: genotype CT; and Lanes 4-6: genotype CC. A Restriction Fragment Length Polymorphism (RFLP) was discovered whereby the 630 bp PCR fragment from CC pigs was digested into a 450 bp product while the PCR fragment from the CT pigs was only partially digested, which indicates the presence of the T allele.

Figure 3 depicts the concentrations of submaxillary salivary gland (SMG) Δ -16 androstenes in boars of the CC versus the CT genotype. Five out of thirty of the CC boars exhibited SMG Δ -16 androstene concentrations greater than the recommended threshold level for identifying tainted carcasses (55 μ g/g SMG). All of boars carrying the T allele (n=20) were below the recommended threshold level for boar taint.

Figure 4 is a table that shows the observed differences in various growth, carcass, and reproductive traits of CC versus CT boars. The greater weights of testes, submaxillary glands and bulbourethral glands, as well as higher concentrations of SMG Δ -16-androstanes, are all indications of higher boar taint in the CC boars. Surprisingly the CC boars also had 5.9% increase in rate of gain and longer carcasses as well.

Figure 5 shows the sequence of the bovine CYP11a1 gene, including 948 nucleotides of the 5' UTR.

Figure 6 shows the sequence of the chicken CYP11a1 gene, including 137 nucleotide of the 5'UTR.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, materials and methods are provided for diagnosing genetic alterations in the CYP11a1 gene associated with aberrant or increased steroid biosynthesis in livestock. In the mouse, polymorphic variation in CYP11a1 is responsible for genetic differences in testosterone production. In mouse, CYP11a1 maps to chromosome 9. This region is syntenic with porcine chromosome 7.

A principle cause of taint in the boar is the presence of the Δ -16 steroid, androstenone, which is one of many steroids produced in the boar testis.

Androstenone and androstenone metabolites such as androstenol are secreted by the testis and sequestered in the submaxillary salivary glands (SMG). During mating behavior these steroids are released into the air through the saliva and function as sexual pheromones whereby they induce estrous behavior in female pigs

(sows). Since Δ^{10} sterols are highly lipophilic, androstenone is also stored in body fat, where its presence in high concentrations contributes to the off-flavors in pork known as boar taint.

Concentrations of androstenone in the fat are highly heritable. A quantitative trait locus (QTL) has been identified for fat androstenone (microsatellite marker SO102), which is located on porcine chromosome 7 in the region of the swine leukocyte antigen complex (SLA). In accordance with the present invention, a particular genetic polymorphic sequence has been

5 identified which is associated with androstenone
production and boar taint.

10 5 The presence of a quantitative trait locus (QTL)
for fat androstenone on chromosome 7 in the pig suggests
that porcine CYP11a1 may be located on chromosome 7 and,
as the rate limiting enzyme in steroid synthesis may be
an important control point for androsterone synthesis
and the occurrence of boar taint.

15 10 A genomic search was conducted to compare 2.4 kb of
the untranslated region (5'UTR) of the porcine CYP11a1
gene from a preselected group of boars in order to
determine if polymorphisms exist which are associated
20 20 with compounds which cause boar taint. First,
comparisons of the genotypes of five "high taint" and
25 15 five "low taint" boars by direct sequencing of PCR
products (using the ABI Prism 377 at the Nucleic Acid
Facility, Penn State University Biotechnology Institute)
revealed the presence of one single nucleotide
30 25 polymorphism (SNP) in the entire 2.4 kb 5' UTR. This
SNP (CT allele) was discovered only in boars that
exhibited low concentrations of delta-16 steroids in the
salivary gland, a measurement that is highly correlated
35 30 with androstenone concentrations in the fat. This
polymorphism consists of either a thymidine (T) or a
cytosine (C) at position - 155 from the start site of
translation. The polymorphism was located in a
40 35 restriction enzyme recognition site such that the
presence of the T allele would change the restriction
fragment length pattern observed after digestion with
specific restriction enzymes. In this particular case,
45 40 the restriction enzyme used was SphI (New England
Biolabs). Additional restriction enzymes are available
which are able to cut the same DNA sequence. Presence or
absence of the T allele was determined by examination of
restriction digests of CYP11a1 5'UTR using SphI.

5 Presence of the T allele, either homozygous (TT) or heterozygous (CT), was associated with low boar taint. 10 Presence of the CC allele was associated with high boar taint, as well as with increased testis weight, 15 5 bulbourethral gland length and weight and submaxillary salivary gland weights. In addition, boars that possessed the CC allele exhibited a 5.9% improvement in rate of gain as well as longer carcasses.

10 The discovery that this polymorphism is associated with increased rate of gain and carcass length in addition to its effects on reproductive traits indicates that this polymorphism affects many other growth and 15 developmental traits. Thus, presence or absence of this polymorphism may also be associated with feed efficiency 20 and with birth weight. The association of this polymorphism with reproductive traits such as testis weight, bulbourethral gland length and weight, 25 submaxillary gland weight, and Δ -16 steroid concentrations, are all indications of a general effect 30 on gonadal steroid production.

30 The data presented herein indicate that the presence or absence of the CYP11a1 polymorphism may have 35 effects on other reproductive traits such as ovulation rate, litter size, milk production, and fertility (both male and female). Additionally, since the adrenal gland 40 is another site where CYP11a1 is expressed to produce glucocorticoid steroids such cortisol, this polymorphism may be associated with disease response traits since these traits are known to be modulated by adrenal 45 steroids.

45 In a further aspect of the invention, this genetic marker may also be used in combination with other genetic markers to produce favorable combinations of alleles or to select against those test subjects 50 carrying unfavorable combinations. Examples of some of

5 these previously identified genes are: tumor necrosis
factor alpha (TNFa), CYP11a1, prolactin (PRL), estrogen
receptor (ER) and prolactin receptor (PRIR). Examples
10 5 of some of these previously identified microsatellite
markers are: S0064, S0102, S0078, S0158, S0066, SW304,
SW1083, S0101, and S0212.

15 Additional polymorphisms in the porcine CYP11a1
gene may be identified using the methods of the present
invention. Such alterations may occur in the
20 10 untranslated region of the gene but may also be
identified in the translated region, as well as in the
intronic and exonic sequences. It is likely that a
subset of these changes will cause or be associated with
changes in androgen function and phenotypic traits.
25 15 Once such genetic alterations are identified, it is
possible to introduce these or similar changes into the
20 20 genome by known techniques in order to produce
transgenic animals that possess a desired CYP11a1
genotype. The data further suggest that polymorphisms
in homologous areas of CYP11a1 of other agriculturally
30 25 important species are likely to cause or be associated
with similar changes in function and phenotype.

35 25 In a further aspect of the invention, the
corresponding CYP11a1 sequences from the cow and the
chicken are provided. This information facilitates
40 30 genomic scanning of the 5'UTR of the bovine or chicken
CYP11a1 to reveal polymorphisms that are associated with
growth, carcass traits, and reproduction (including milk
production and egg production).

30
45 **DIAGNOSTIC KITS FOR PRACTICING
THE METHODS OF THE INVENTION**

The present invention also includes kits for the
practice of the methods of the invention. The kits
35 35 comprise a vial, tube, or any other container which

5 contains one or more oligonucleotides, which hybridizes to a DNA segment which DNA segment which is or is linked to the CYP11a1 gene. Some kits contain two such 10 oligonucleotides, which serve as primers to amplify a segment of chromosome DNA. The segment selected for amplification can be a CYP11a1 gene that includes a site at which a variation is known to occur. Some kits 15 contain a pair of oligonucleotides for detecting precharacterized variations. For example, some kits 20 contain oligonucleotides suitable for allele-specific oligonucleotide hybridization, or allele-specific amplification hybridization. The kits of the invention may also contain components of the amplification system, 25 including PCR reaction materials such as buffers and a thermostable polymerase. In other embodiments, the kit of the present invention can be used in conjunction with commercially available amplification kits, such as may be obtained from GIBCO BRL (Gaithersburg, Md.) 30 Stratagene (La Jolla, Calif.), Invitrogen (San Diego, Calif.), Schleicher & Schuell (Keene, N.H.), Boehringer Mannheim (Indianapolis, Ind.). The kits may optionally 35 include positive or negative control reactions or markers, molecular weight size markers for gel electrophoresis, and the like. The kits usually include labeling or instructions indicating the suitability of the kits for diagnosing steroid biosynthesis alterations and indicating how the oligonucleotides are to be used 40 for that purpose. The term "label" is used generically to encompass any written or recorded material that is attached to, or otherwise accompanies the diagnostic at 45 any time during its manufacture, transport, sale or use.

50 **MODES OF PRACTICING THE INVENTION**

1. Linkage Analysis

55 Determining linkage between a polymorphic marker

5 and a locus associated with a particular phenotype is
performed by mapping polymorphic markers and observing
whether they co-segregate with the high taint phenotype
(for example) on a chromosome in an informative meiosis.

10 5 See, e.g., Kerem et al., *Science* 245:1073-1080 (1989);
Monaco et al., *Nature* 316:842 (1985); Yamoka et al.,
Neurology 40:222-226 (1990), and as reviewed in Rossiter
et al., *FASEB Journal* 5:21-27 (1991). A single pedigree
15 10 rarely contains enough informative meioses to provide
definitive linkage, because families are often small and
markers may be not sufficiently informative. For
example, a marker may not be polymorphic in a particular
20 family.

Linkage may be established by an affected sib-pairs
15 15 analysis as described in Terwilliger & Ott, *Handbook of
Human Genetic Linkage* (Johns Hopkins, Md., 1994), Ch.
25 26. This approach requires no assumptions to be made
concerning penetrance or variant frequency, but only
takes into account the data of a relatively small
20 20 proportion (i.e., the SIB pairs) of all the family
members whose phenotype and polymorphic markers have
been determined. Specifically, the affected SIB pairs
analysis scores each pair of affected SIBS as sharing
30 30 (concordant) or not sharing (discordant) the same
allelic variant of each polymorphic marker. For each
marker, a probability is then calculated that the
observed ratio of concordant to discordant SIB pairs
35 35 would arise without linkage of the marker.

40 As described in Thompson & Thompson, *Genetics in
Medicine*, 5th ed, 1991, W.B. Saunders Company,
45 30 Philadelphia, in linkage analysis, one calculates a
series of likelihood ratios (relative odds) at various
possible values of θ , ranging from $\theta = 0.0$ (no
recombination) to $\theta = 0.50$ (random assortment). Thus, the
35 likelihood ratio at a given value of θ is (likelihood of

5 data if α loci are linked at θ)/(likelihood of data if
loci are unlinked). Evidence in support of linkage is
usually expressed as the \log_{10} of this ratio and called a
"lod score" for "logarithm of the odds." For example, a
10 5 lod score of 5 indicates 100,000:1 odds that the linkage
being observed did not occur by chance.

15 The use of logarithms allows data collected from
different families to be combined by simple addition.
Computer programs are available for the calculation of
20 lod scores for differing values of θ . Available programs
include LIPED, and MLINK (Lathrop, Proc. Nat. Acad. Sci.
81:3443-3446 (1984)).

25 For any particular lod score, a recombination
fraction may be determined from mathematical tables. See
30 Smith et al., Mathematical tables for research workers
in human genetics (Churchill, London, 1961) and Smith,
35 Ann. Hum. Genet. 32:127-150 (1968). The value of θ at
which the lod score is the highest is considered to be
40 the best estimate of the recombination fraction, the
"maximum likelihood estimate".

45 Positive lod score values suggest that the two loci
are linked, whereas negative values suggest that linkage
is less likely (at that value of θ) than the possibility
that the two loci are unlinked. By convention, a
50 25 combined lod score of +3 or greater (equivalent to
greater than 1000:1 odds in favor of linkage) is
considered definitive evidence that two loci are linked.
Similarly, by convention, a negative lod score of -2 or
less is taken as definitive evidence against linkage of
the two loci being compared. If there are sufficient
negative linkage data, a locus can be excluded from an
entire chromosome, or a portion thereof, a process
referred to as exclusion mapping. The search is then
focused on the remaining non-excluded chromosomal
locations. For a general discussion of lod scores and

5 linkage analysis, see, e.g., T. Strachan, Chapter 4,
"Mapping the human genome" in The Human Genome, 1992
BIOS Scientific Publishers Ltd. Oxford.

10 5 The data can also be subjected to haplotype
analysis. This analysis assigns allelic markers between
the chromosomes of an individual such that the number of
recombinational events needed to account for segregation
between generations is minimized. Linkage may also be
15 10 established by determining the relative likelihood of
obtaining observed segregation data for any two markers
when the two markers are located at a recombination
fraction θ , versus the situation in which the two
20 20 markers are not linked, and thus segregating
independently.

15 15 2. Isolation and Amplification of DNA

25 Samples of patient, proband, test subject, or
family member genomic DNA are isolated from any
20 20 convenient source including saliva, buccal cells, hair
roots, blood, cord blood, amniotic fluid, interstitial
fluid, peritoneal fluid, chorionic villus, and any other
suitable cell or tissue sample with intact interphase
35 25 nuclei or metaphase cells. The cells can be obtained
from solid tissue as from a fresh or preserved organ or
from a tissue sample or biopsy. The sample can contain
compounds which are not naturally intermixed with the
40 40 biological material such as preservatives,
anticoagulants, buffers, fixatives, nutrients,
30 antibiotics, or the like.

45 Methods for isolation of genomic DNA from these
various sources are described in, for example, Kirby,
DNA Fingerprinting, An Introduction, W.H. Freeman & Co.
New York (1992). Genomic DNA can also be isolated from
35 35 cultured primary or secondary cell cultures or from

5 transformed cell lines derived from any of the
aforementioned tissue samples.

3. PCR Amplification

5 paraffin from tissue sections are described in a variety
of specialized handbooks well known to those skilled in
the art.

10 5 To amplify a target nucleic acid sequence in a
sample by PCR, the sequence must be accessible to the
components of the amplification system. One method of
isolating target DNA is crude extraction which is useful
for relatively large samples. Briefly, mononuclear cells
15 10 from samples of blood, amniocytes from amniotic fluid,
cultured chorionic villus cells, or the like are
isolated by layering on sterile Ficoll-Hypaque gradient
by standard procedures. Interphase cells are collected
20 and washed three times in sterile phosphate buffered
saline before DNA extraction. If testing DNA from
25 15 peripheral blood lymphocytes, an osmotic shock
(treatment of the pellet for 10 sec with distilled
water) is suggested, followed by two additional washings
if residual red blood cells are visible following the
initial washes. This will prevent the inhibitory effect
30 20 of the heme group carried by hemoglobin on the PCR
reaction. If PCR testing is not performed immediately
after sample collection, aliquots of 10^6 cells can be
pelleted in sterile Eppendorf tubes and the dry pellet
frozen at -20°C until use.

35 25 The cells are resuspended (10^6 nucleated cells per
100 μl) in a buffer of 50 mM Tris-HCl (pH 8.3), 50 mM
KCl 1.5 mM MgCl₂, 0.5% Tween 20, 0.5% NP40 supplemented
40 30 with 100 $\mu\text{g}/\text{ml}$ of proteinase K. After incubating at 56°C
for 2 hr, the cells are heated to 95°C for 10 min to
inactivate the proteinase K and immediately moved to wet
ice (snap-cool). If gross aggregates are present,
45 35 another cycle of digestion in the same buffer should be
undertaken. Ten μl of this extract is used for
amplification.

50 35 When extracting DNA from tissues, e.g., chorionic

5 villus cells or confluent cultured cells, the amount of
the above mentioned buffer with proteinase K may vary
according to the size of the tissue sample. The extract
is incubated for 4-10 hrs at 50°-60° C and then at 95° C
10 5 for 10 minutes to inactivate the proteinase. During
longer incubations, fresh proteinase K should be added
after about 4 hr at the original concentration.

15 When the sample contains a small number of cells,
extraction may be accomplished by methods as described
in Higuchi, "Simple and Rapid Preparation of Samples for
20 PCR", in PCR Technology, Ehrlich, H. A. (ed.), Stockton
Press, New York, which is incorporated herein by
reference. PCR can be employed to amplify target regions
from chromosome 7 in very small numbers of cells (1000-
25 5000) derived from individual colonies from bone marrow
and peripheral blood cultures. The cells in the sample
are suspended in 20 μ l of PCR lysis buffer (10 mM Tris-
HCl (pH 8.3), 50 mM KCl, 2.5 mM MgCl₂, 0.1 mg/ml gelatin,
0.45% NP40, 0.45% Tween 20) and frozen until use. When
30 20 PCR is to be performed, 0.6 μ l of proteinase K (2 mg/ml)
is added to the cells in the PCR lysis buffer. The
sample is then heated to about 60° C and incubated for 1
hr. Digestion is stopped through inactivation of the
35 25 proteinase K by heating the samples to 95° C for 10 min
and then cooling on ice.

40 A relatively easy procedure for extracting DNA for
PCR is a salting out procedure adapted from the method
described by Miller et al., Nucleic Acids Res. 16:1215
(1988), which is incorporated herein by reference.
45 30 Mononuclear cells are separated on a Ficoll-Hypaque
gradient. The cells are resuspended in 3 ml of lysis
buffer (10 mM Tris-HCl, 400 mM NaCl, 2 mM Na₂ EDTA, pH
8.2). Fifty μ l of a 20 mg/ml solution of proteinase K
35 and 150 μ l of a 20% SDS solution are added to the cells
and then incubated at 37° C overnight. Rocking the tubes

5 during incubation will improve the digestion of the
sample. If the proteinase K digestion is incomplete
after overnight incubation (fragments are still
visible), an additional 50 μ l of the 20 mg/ml proteinase
10 5 K solution is mixed in the solution and incubated for
another night at 37° C on a gently rocking or rotating
platform. Following adequate digestion, one ml of a 6M
NaCl solution is added to the sample and vigorously
15 mixed. The resulting solution is centrifuged for 15
minutes at 3000 rpm. The pellet contains the
20 10 precipitated cellular proteins, while the supernatant
contains the DNA. The supernatant is removed to a 15 ml
tube that contains 4 ml of isopropanol. The contents of
the tube are mixed gently until the water and the
25 15 alcohol phases have mixed and a white DNA precipitate
has formed. The DNA precipitate is removed and dipped in
a solution of 70% ethanol and gently mixed. The DNA
precipitate is removed from the ethanol and air-dried.
The precipitate is placed in distilled water and
20 20 dissolved.

30 Kits for the extraction of high-molecular weight
DNA for PCR include a Genomic Isolation Kit A.S.A.P.
(Boehringer Mannheim, Indianapolis, Ind.), Genomic DNA
Isolation System (GIBCO BRL, Gaithersburg, Md.), Elu-
35 25 Quik DNA Purification Kit (Schleicher & Schuell, Keene,
N.H.), DNA Extraction Kit (Stratagene, La Jolla,
Calif.), TurboGen Isolation Kit (Invitrogen, San Diego,
Calif.), and the like. Use of these kits according to
40 the manufacturer's instructions is generally acceptable
30 for purification of DNA prior to practicing the methods
of the present invention.

45 The concentration and purity of the extracted DNA
can be determined by spectrophotometric analysis of the
absorbance of a diluted aliquot at 260 nm and 280 nm.
35 After extraction of the DNA, PCR amplification may

5 proceed. The first step of each cycle of the PCR involves the separation of the nucleic acid duplex formed by the primer extension. Once the strands are separated, the next step in PCR involves hybridizing the
10 5 separated strands with primers that flank the target sequence. The primers are then extended to form complementary copies of the target strands. For successful PCR amplification, the primers are designed so that the position at which each primer hybridizes
15 10 along a duplex sequence is such that an extension product synthesized from one primer, when separated from the template (complement), serves as a template for the extension of the other primer. The cycle of denaturation, hybridization, and extension is repeated
20 15 as many times as necessary to obtain the desired amount of amplified nucleic acid.

25 In a particularly useful embodiment of PCR amplification, strand separation is achieved by heating the reaction to a sufficiently high temperature for an
30 20 sufficient time to cause the denaturation of the duplex but not to cause an irreversible denaturation of the polymerase (see U.S. Pat. No. 4,965,188, incorporated herein by reference). Typical heat denaturation involves temperatures ranging from about 80° C to 105° C for
35 25 times ranging from seconds to minutes. Strand separation, however, can be accomplished by any suitable denaturing method including physical, chemical, or enzymatic means. Strand separation may be induced by a helicase, for example, or an enzyme capable of
40 30 exhibiting helicase activity. For example, the enzyme RecA has helicase activity in the presence of ATP. The reaction conditions suitable for strand separation by helicases are known in the art (see Kuhn Hoffman-Berling, 1978, CSH-Quantitative Biology, 43:63-67; and Radding, 1982, Ann. Rev. Genetics 16:405-436, each of
45 35 50

5 which is incorporated herein by reference).

Template-dependent extension of primers in PCR is
catalyzed by a polymerizing agent in the presence of
adequate amounts of four deoxyribonucleotide
triphosphates (typically dATP, dGTP, dCTP, and dTTP) in
a reaction medium comprised of the appropriate salts,
metal cations, and pH buffering systems. Suitable
polymerizing agents are enzymes known to catalyze
template-dependent DNA synthesis.

10 In some cases, the target regions may encode at least a portion of a protein expressed by the cell. In this instance, mRNA
may be used for amplification of the target region.

15 Alternatively, PCR can be used to generate a cDNA library from RNA for further amplification, the initial
template for primer extension is RNA.

20 Polymerizing agents suitable for synthesizing a complementary, copy-DNA (cDNA) sequence from the RNA template are reverse transcriptase (RT), such as avian myeloblastosis virus
RT, Moloney murine leukemia virus RT, or *Thermus*

25 *thermophilus* (Tth) DNA polymerase, a thermostable DNA polymerase with reverse transcriptase activity marketed by Perkin Elmer Cetus, Inc. Typically, the genomic RNA template is heat degraded during the first denaturation step after the initial reverse transcription step

30 leaving only DNA template. Suitable polymerases for use with a DNA template include, for example, *E. coli* DNA polymerase I or its Klenow fragment, T4 DNA polymerase, Tth polymerase, and Taq polymerase, a heat-stable DNA polymerase isolated from *Thermus aquaticus* and

35 commercially available from Perkin Elmer Cetus, Inc. The latter enzyme is widely used in the amplification and sequencing of nucleic acids. The reaction conditions for using Taq polymerase are known in the art and are described in Gelfand, 1989, PCR Technology, supra.

40
45
50
35

5 4. Allele Specific PCR

10 5 Allele-specific PCR differentiates between
 chromosome 7 target regions differing in the presence or
 absence of a variation or polymorphism. PCR
 amplification primers are chosen which bind only to
 certain alleles of the target sequence. Thus, for
 example, amplification products are generated from those
 chromosome 7 sets which contain the primer binding
 sequence, and no amplification products are generated in
 chromosome 7 sets without the primer binding sequence.
 This method is described by Gibbs, Nucleic Acid Res.
20 10 17:12427-2448 (1989).

15 15 5. Allele Specific Oligonucleotide Screening Methods

25 20 Further diagnostic screening methods employ the
 allele-specific oligonucleotide (ASO) screening methods,
 as described by Saiki et al., Nature 324:163-166 (1986).
 Oligonucleotides with one or more base pair mismatches
30 30 are generated for any particular allele. ASO screening
 methods detect mismatches between variant target genomic
 or PCR amplified DNA and non-mutant oligonucleotides,
 showing decreased binding of the oligonucleotide
35 35 relative to a mutant oligonucleotide. Oligonucleotide
 probes can be designed that under low stringency will
 bind to both polymorphic forms of the allele, but which
 at higher stringency, bind to the allele to which they
 correspond. Alternatively, stringency conditions can be
40 40 devised in which an essentially binary response is
 obtained, i.e., an ASO corresponding to a variant form
 of the CYP11a1 gene will hybridize to that allele, and
45 45 not to the wildtype allele.

35

50

5 6. Ligase Mediated Allele Detection Method

10 Target regions of a test subject's DNA can be
5 compared with target regions in unaffected and affected
15 family members by ligase-mediated allele detection. See
 Landegren et al., *Science* 241:1077-1080 (1988). Ligase
 may also be used to detect point mutations in the
 ligation amplification reaction described in Wu et al.,
15 *Genomics* 4:560-569 (1989). The ligation amplification
 reaction (LAR) utilizes amplification of specific DNA
 sequence using sequential rounds of template dependent
 ligation as described in Wu, *supra*, and Barany, *Proc.
20 Nat. Acad. Sci.* 88:189-193 (1990).

15 7. Denaturing Gradient Gel Electrophoresis

25 Amplification products generated using the
 polymerase chain reaction can be analyzed by the use of
 denaturing gradient gel electrophoresis. Different
20 alleles can be identified based on the different
 sequence-dependent melting properties and
 electrophoretic migration of DNA in solution. DNA
 molecules melt in segments, termed melting domains,
 under conditions of increased temperature or
35 denaturation. Each melting domain melts cooperatively at
 a distinct, base-specific melting temperature (Tm).
 Melting domains are at least 20 base pairs in length,
 and may be up to several hundred base pairs in length.
40 Differentiation between alleles based on sequence
 specific melting domain differences can be assessed
 using polyacrylamide gel electrophoresis, as described
 in Chapter 7 of Erlich, ed., *PCR Technology, Principles
45 and Applications for DNA Amplification*, W.H. Freeman and
 Co, New York (1992), the contents of which are hereby
 incorporated by reference.

20 In an alternative method of denaturing gradient gel
electrophoresis, the target sequences may be initially
15 attached to a stretch of GC nucleotides, termed a GC
clamp, as described in Chapter 7 of Erlich, *supra*.
25 Preferably, at least 80% of the nucleotides in the GC
clamp are either guanine or cytosine. Preferably, the GC
clamp is at least 30 bases long. This method is
20 particularly suited to target sequences with high T_m 's.

8. Temperature Gradient Gel Electrophoresis

35 Temperature gradient gel electrophoresis (TGGE) is

5 based on the same underlying principles as denaturing
gradient gel electrophoresis, except the denaturing
gradient is produced by differences in temperature
instead of differences in the concentration of a
10 5 chemical denaturant. Standard TGGE utilizes an
electrophoresis apparatus with a temperature gradient
running along the electrophoresis path. As samples
migrate through a gel with a uniform concentration of a
15 10 chemical denaturant, they encounter increasing
temperatures. An alternative method of TGGE, temporal
temperature gradient gel electrophoresis (TTGE or tTGGE)
uses a steadily increasing temperature of the entire
20 15 electrophoresis gel to achieve the same result. As the
samples migrate through the gel the temperature of the
entire gel increases, leading the samples to encounter
increasing temperature as they migrate through the gel.
25 Preparation of samples, including PCR amplification with
incorporation of a GC clamp, and visualization of
products are the same as for denaturing gradient gel
electrophoresis.

9. Single-Strand Conformation Polymorphism Analysis

35 25 Target sequences or alleles at the CYP11a1 locus
can be differentiated using single-strand conformation
polymorphism analysis, which identifies base differences
by alteration in electrophoretic migration of single
stranded PCR products, as described in Orita et al.,
40 Proc. Nat. Acad. Sci. 86:2766-2770 (1989). Amplified PCR
30 products can be generated as described above, and heated
or otherwise denatured, to form single stranded
amplification products. Single-stranded nucleic acids
45 may refold or form secondary structures which are
partially dependent on the base sequence. Thus,
35 electrophoretic mobility of single-stranded

5 amplification products can detect base-sequence difference between alleles or target sequences.

10. Chemical or Enzymatic Cleavage of Mismatches

10 5 Differences between target sequences can also be detected by differential chemical cleavage of mismatched base pairs, as described in Grompe et al., Am. J. Hum. Genet. 48:212-222 (1991). In another method, differences between target sequences can be detected by enzymatic cleavage of mismatched base pairs, as described in Nelson et al., Nature Genetics 4:11-18 (1993). Briefly, genetic material from a patient and an affected family member may be used to generate mismatch free heterohybrid DNA duplexes. As used herein, "heterohybrid" means a DNA duplex strand comprising one strand of DNA from one person, usually the patient, and a second DNA strand from another person, usually an affected or unaffected family member. Positive selection for heterohybrids free of mismatches allows determination of small insertions, deletions or other polymorphisms that may be associated with alterations in androgen metabolism.

15 10

20 15

25 20

30

11. Non-PCR Based DNA Diagnostics

5 for the presence or absence of the probe, one can detect
the presence or absence of the target sequence. Direct
labeling methods include radioisotope labeling, such as
with ^{32}P or ^{35}S . Indirect labeling methods include
10 fluorescent tags, biotin complexes which may be bound to
avidin or streptavidin, or peptide or protein tags.
Visual detection methods include photoluminescents,
Texas red, rhodamine and its derivatives, red leuco dye
15 and 3, 3', 5, 5'-tetramethylbenzidine (TMB),
fluorescein, and its derivatives, dansyl, umbelliferone
and the like or with horse radish peroxidase, alkaline
phosphatase and the like.

20 Hybridization probes include any nucleotide
sequence capable of hybridizing to the porcine
chromosome where CYP11a1 resides, and thus defining a
genetic marker linked to CYP11a1, including a
25 restriction fragment length polymorphism, a
hypervariable region, repetitive element, or a variable
number tandem repeat. Hybridization probes can be any
gene or a suitable analog. Further suitable
30 hybridization probes include exon fragments or portions
of cDNAs or genes known to map to the relevant region of
the chromosome.

35 Preferred tandem repeat hybridization probes for
use according to the present invention are those that
recognize a small number of fragments at a specific
locus at high stringency hybridization conditions, or
40 that recognize a larger number of fragments at that
locus when the stringency conditions are lowered.

45 The following examples are provided to illustrate
embodiments of the present invention. They are not
intended to limit the invention in any way.

EXAMPLE I

5

A Genetic Marker for Meat Quality, Growth, Carcass and
Reproductive Traits in Pigs

10

5

In accordance with the present invention, a genetic marker has been identified and characterized which is associated with improved meat quality and improved growth and carcass traits in pigs. The following materials and methods were utilized in the practice of

15

10

Example I.

20

15

Testis tissue samples were obtained from fifty Yorkshire boars for which growth, carcass, and boar taint data had previously been collected. Boars were weaned at approximately 10 weeks of age, assigned to pens, and fed a standard grower-finisher diet to a final weight of approximately 120 kg. Boars were killed by electrical stunning and exsanguination at the Penn State University meats Laboratory. Testes, bulbourethral glands and submaxillary salivary glands were collected, trimmed, and weighed. Carcasses were weighed and then chilled overnight. The following day data were collected for standard carcass measurements such as carcass length, loin eye area, fat depth and marbling.

25

20

30

25

35

25

The assay for submaxillary salivary gland delta-16-androstanes was adapted from a procedure developed by Squires (J. Animal Sci. 69: 1092-1100, 1991). Briefly, submaxillary salivary glands were trimmed and minced in a food processor (Cusinart) and one gram of minced tissue was placed in a 50 ml test tube. Methanol (5 ml) was added and the mixture was homogenized for 30 sec by Polytron. Samples were placed in a centrifuge for 5 min @ 2800 rpm. Three ml of distilled water were added to 3 ml of the supernatant and mixed by vortexing. Six ml of hexane were added to extract the delta-16-androstanes. The mixture was vortexed and allowed to stand for 5 min

40

30

45

35

50

5 for the phases to separate. Three milliliters of the
organic phase were transferred to a glass culture tube
and the extract was dried under nitrogen while in a
water bath (30°C). Color reagents were added (.5 ml of
10 .5% resorcyaldehyde in glacial acetic acid plus .5 ml
of 5% sulfuric acid in glacial acetic acid). The tubes
were placed in a heat block for 10 min at 95 C.
15 Development of a violet color, an index of the presence
of delta-16-androstanes, was measured by pipetting 100
10 μ l of the test solution into a well in a 96-well
microplate. Absorbance was measured at several
20 wavelengths near the known absorbance maximum for Δ 16-
androstanes (593 nm) and compared against standard test
solutions containing 5α -androst-16-ene-3 β -ol (the
15 predominant Δ 16-androstene in the submaxillary salivary
gland). Concentration of Δ 16-androstanes was established
25 by generation of a standard curve with the standard test
solutions.
30 Data were analyzed by ANOVA using the GLM
procedures of SAS (1990).
35 Testis tissue samples were obtained from storage
(-20°C) for ten boars: five that had the highest
concentrations of Δ 16-androstanes (high boar taint) and
40 five that had the lowest concentrations of Δ 16-
androstanes (low boar taint). DNA was extracted by
Proteinase K digestion. Approximately 50 mg of testis
tissue was wrapped in aluminum foil and frozen in liquid
nitrogen. The sample was then pulverized and
45 approximately 20 mg was placed in a microfuge tube with
.5 ml digestion buffer (50 mM Tris, pH 8.5; 1mM EDTA;
0.5% Tween 20; 200 μ g/ml proteinase K (Gibco Life
Technologies, Grand Island, NY). Proteinase K was
50 stored at -20°C in stock solution (20 mg/ml proteinase
K; 1-mM Tris-HCl, pH 7.5; 20 mM calcium chloride, and 5%
glycerol). The samples were suspended in digestion

5 buffer and placed in a water bath @ 55°C for 3 hours.
Samples were centrifuged for 1 min @13,000 g and placed
in a heat block for 10 min @ 95°C. Samples were removed
and stored at -20°C until analyzed.

10 5 Four sets of primers were obtained which
corresponded to approximately 600 bp each for a total of
approximately 2.4kb of the 5'UTR of the porcine CYP11a1
gene (sequence obtained from Urban, et al., J. Biol.

15 10 Chem. 269:25761-25769, 1994). See Figure 1. Polymerase
Chain Reactions were initiated for each primer set for
each of the ten DNA templates. PCR was performed as
follows.

20 1. 2 min @ 94 C.
2. 1 min @ 94 C
15 3. 1 min @ 55 C
4. 1 min @ 72 C
25 5. 35 cycles to (2.)
6. 2 min @ 72 C
7. hold at 5 C

20 20 Reactions were performed using 10x buffer (w/MgCl₂);
dNTP's (10 nmol); primer CYPscc For1 (20 pmol); primer
CYPscc Rev1 (20 pmol); Taq polymerase ;ddH₂O and DNA
template (1:10 dilution of Proteinase K digested sample,
35 25 approximately 100 ng).

40 30 PCR products were analyzed by agarose gel
electrophoresis, and the ~600 bp bands cut out of the
agarose gel and purified using the QIAquick gel
extraction kits (QIAGEN Inc., Valencia CA). The
30 35 nucleotide sequences of each of the forty PCR products
was determined in both forward and reverse directions
45 40 using an ABI Prism Model 377 Sequencer (Perkin Elmer,
CA) at the Penn State Nucleic Acid Facility, PSU
Biotechnology Institute.

5 The sequences of the PCR products were aligned
manually and examined for differences between the ten
10 animals. While there were 37 differences in the samples
when compared with the published sequence (Urban et al.,
15 1994, *supra*), there was only one base pair that varied
among this group of animals. At position -155 (155 bases
before the start site ATG codon), six of the samples had
the cytosine (CC), and four were polymorphic; that is
they had both the cytosine and thymidine (CT),
20 10 indicating heterozygosity at that base pair. Of
significant interest was that all five of the high taint
boar samples were the CC genotype, whereas four out of
five of the low taint boar samples had the CT genotype.

This polymorphism was located in a restriction enzyme recognition site such that the presence of the T allele would change the restriction fragment length pattern observed after digestion with specific restriction enzymes. In this particular case, the restriction enzyme used was SphI (New England Biolabs).
25
20 Presence or absence of the T allele in the DNA samples from the full group of fifty boars was determined by Restriction Fragment Length Polymorphism analysis involving examination of restriction digests of CYP11a1 5'UTR using SphI. For exemplary gel, see Figure 2.
30
35 25 Presence of the T allele, either homozygous (TT) or heterozygous (CT) was associated with low boar taint. Presence of the CC allele was associated with high boar taint, as well as with increased testis weight, increased bulbourethral gland length and weight, and increased submaxillary salivary gland weight. See Figure 3 and Table 4. In addition, boars that possessed the CC allele exhibited a 5.9% improvement in rate of gain, and had greater amounts of lean muscle as evidenced by longer carcasses, and tended to have less
40
45 30 35 fat as determined by backfat depth measurements. Boars

5 with the CC allele also tended to have higher concentrations of serum testosterone in blood samples taken at slaughter.

10 5 A retrospective analysis of production records of direct female relatives (dams and siblings) of these boars revealed that those females related to boars possessing the T allele tended to have slightly larger litter sizes (+.31 pigs/litter) and weaned heavier litters (+4.27 kg). Thus this polymorphism appears to 15 10 confer beneficial fertility and productivity traits to female pigs.

20 EXAMPLE II
15 A Genetic Marker for Meat Quality, Growth, Carcass and Reproductive Traits in Cows and Chickens

25 The identification and characterization of the CYP11a1 polymorphism in pigs facilitates the characterization of the corresponding polymorphism in bovines which are associated with improved reproductive and carcass traits. The bovine CYP11a1 sequence is 30 provided in Figure 5. A suitable primer set for amplifying the bovine homologue of the 5' UTR for the CYP11a1 gene has the following sequences: Sense: 35 25 5'-GCAGATGTCCCTGGTGATTC-3'; and Antisense: 5'-TGAACGGAGGGGAAGGCC-3'.

40 Amplified bovine CYP11a1 sequences and corresponding genetic traits are then characterized as set forth herein for the porcine CYP11a1 gene.

45 30 Figure 6 depicts the CYP11a1 gene from chicken. In order to assess genetic changes in a more lengthy 5'UTR sequence from the chicken CYP11a1 sequence provided in Genbank, the cDNA sequence provided in Figure 6 is utilized as the basis for 5' rapid amplification of cDNA ends (RACE) using a kit from Clontech containing RACE- 35

5 ready cDNA prepared from chicken. Clones obtained from
this RACE approach yield 5' end points of the chicken
CYP11a1 sequence for further analysis of genetic changes
in the 5'UTR associated with improved reproductive and
10 carcass traits. Genetic polymorphisms and alterations
so identified are within the scope of the present
invention. Suitable protocols for practicing RACE are
provided in Current Protocols of Molecular Biology; J.
15 Wiley & Sons, Inc. 1998, Chapter 15.6.9, the entire
disclosure of which is incorporated by reference herein.

20 The present invention is not limited to the
embodiments specifically described above, but is capable
of variation and modification without departure from the
15 scope of the appended claims.

25

30

35

40

45

50

39

55

Claims

5

10

15

20

25

30

35

40

45

50

55

5 What is claimed is:

10 5 1. A method of screening test subjects to identify those more likely to have better growth, development, reproduction and carcass traits such as rates of gain, carcass length, or litter size, comprising: obtaining a sample of genetic material from a test subject and assaying for the presence of a polymorphism in the CYP11a1 gene which is associated with rate of gain, carcass length, and litter size.

15 10 2. The method of claim 1 wherein said step of assaying is selected from the group consisting of restriction fragment length polymorphism (RFLP) analysis, heteroduplex analysis, single strand conformational polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE).

20 20 3. The method of claim 1, wherein said step of assaying for the presence of said polymorphism comprises the steps of digesting said genetic material with a restriction enzyme that cleaves the CYP11a1 gene in at least one place; separating the fragments obtained from the said digestion; detecting a restriction pattern generated by said fragments; and comparing said pattern with a second restriction pattern for the CYP11a1 gene obtained by using said restriction enzyme, wherein said second restriction pattern is associated with increased rates of gain, increased carcass length, and increased litter size.

25 25 4. A method as claimed in claim 1, wherein said test subject is selected from the group consisting of pigs, cows and chickens.

30

40

5 5. The method of claim 3 wherein said restriction
enzyme is SphI and said test subject is a pig.

10 5 6. The method of claim 3 wherein said separation is
by gel electrophoresis.

15 10 7. The method of claim 3 wherein said step of
comparing said restriction patterns comprises
identifying specific fragments by size and comparing the
sizes of said fragments.

20 15 8. The method of claim 5 further comprising the
step of amplifying the amount of porcine CYP11a1 gene or
a portion thereof which contains said polymorphism,
prior to said digestion step.

25 20 9. The method of claim 3 wherein said restriction
site is located in the untranslated region of the
CYP11a1 gene.

30 25 10. The method of claim 7 wherein said
amplification includes the steps of selecting a forward
and a reverse sequence primer capable of amplifying a
region of the porcine CYP11a1 gene which contains a
35 25 polymorphic restriction site.

40 30 11. The method of claim 10 wherein said forward and
reverse primers are between 10 and 50 nucleotides in
length and selected from SEQ ID NO: 1.

45 35 12. The method of claim 10 wherein said forward
primer is SEQ ID NO:2 and said reverse primer is SEQ ID
NO:3.

50 35 13. The method of claim 6 wherein said step of

5 detecting sizes of said fragments comprises the steps of
separating said fragments by size using gel
electrophoresis in the presence of a control DNA
fragment of known size; contacting said separated
10 5 fragments with a probe that hybridizes with said
fragments to form probe-fragment complexes; and
determining the size of separated fragments by detecting
the presence of the probe fragment.

15 10 14. A method for identifying a genetic marker for
pig growth rate, carcass length, litter size, or boar
taint comprising the steps of breeding male and female
pigs of the same breed or breed cross or derived from
similar genetic lineages; determining the growth rates,
20 15 carcass lengths, number of offspring, or presence of
boar taint; determining the presence of a polymorphism
in the CYP11a1 gene of each pig; and associating the
growth rate, carcass length, number of offspring, or
presence of boar taint of each pig with said
25 20 polymorphism thereby identifying a polymorphism for
these traits.

35 25 15. The method of claim 14 further comprising the step of selecting pigs for breeding which are predicted to have better growth rates, longer carcasses, increased litter size, or decreased boar taint by said marker.

45 17. The method of claim 12 wherein said polymorphism associated with growth rate, carcass length, litter size, or boar taint is detected by use of
35 forward and reverse primers comprising at least 4

5 consecutive bases in SEQ NOS: 2 and 3.

10 5 18. A kit for evaluating a sample of porcine DNA comprising, in a container, a reagent that identifies a polymorphism in the porcine CYP11a1 gene.

15 10 19. The kit of claim 18 wherein said reagent is a primer that amplifies the porcine CYP11a1 gene or a fragment thereof.

20 15 20. The kit of claim 18 further comprising a DNA polymerase, a restriction enzyme which cleaves the porcine CYP11a1 gene in at least one place; and forward and reverse primers capable of amplifying a region of the porcine CYP11a1 gene which contains a polymorphic site.

25 20 21. A primer for assaying for the presence of a polymorphic SphI site in the porcine CYP11a1 gene wherein said primer comprises a sequence from the group of SEQ ID NO:2 and SEQ ID NO:3.

30 35 25 22. A genetic marker associated with growth rate, carcass length, litter size, and boar taint in pigs, said marker comprising a polymorphism in the porcine CYP11a1 gene.

40 30 45 23. The genetic marker of claim 22 wherein said polymorphism is a SphI restriction site.

35 24. The marker of claim 22 wherein said polymorphism is located in the 5' untranslated region of the porcine CYP11a1 gene.

50 25. A DNA sequence from the porcine CYP11a1 gene 5'

5 untranslated region, said sequence consisting of SEQ ID
NO: 1.

10 5 26. A primer designed to amplify a polymorphic SphI
restriction site in the porcine CYP11a1 gene wherein
said primer is 4 or more continuous bases from SEQ ID
NO: 1.

15 10 27. A primer designed to amplify a polymorphic SphI
restriction site in the porcine CYP11a1 gene wherein
said primer is a reverse primer generated from the SEQ
ID NO: 1.

20 15 28. A method for screening pigs to determine those
more likely have increased growth rates, longer
carcasses, larger litters, higher boar taint, and/or
25 15 those less likely to exhibit increased growth rates,
longer carcasses, larger litters, or higher boar taint,
which method comprises of the steps: determining the
20 20 alleles of the CYP11a1 gene present in a pig;
determining the alleles of other markers for genes known
30 30 to affect growth rate, carcass length, litter size, or
boar taint; and selecting for animals with favorable
combinations of alleles and against those carrying
35 25 unfavorable combinations.

40 20 29. The method of claim 28 wherein the
determination of CYP11a1 alleles comprises determining
the presence of at least one allele associated with at
30 30 least one DNA marker linked either directly or
indirectly to CYP11a1.

45 35 30. The method of claim 28 wherein the DNA marker
is a microsatellite.

5 31. The method of claim 28 wherein the DNA marker
is S0064, S0102, S0078, S0158, S0066, SW304, SW1083,
S0101, or S0212.

10 32. The method of claim 28 wherein the marker is
selected from the group of tumor necrosis factor alpha
(TNF α), CYP11a1, prolactin (PRL), estrogen receptor (ER)
and prolactin receptor (PRLR).

15

20

25

30

35

40

45

50

45

55

Figure 1.

SEQ ID NO:1

GCTCCAAAGAGACATTTGGGGTGGCAAAATAGTCTACAGGATTCTATGGCATA
GGAGACAACTCTCAGATAGCTCTGCAGACCTGCTCCAAAGAAGTATAGGAGAAG
CAGGATTATAAGAACCTTTTGTTGGGAAATAAATGTAGTCACAAACATAAAAAG
ACAACGTCTAATAACAAACAAATAGACATGTCAAGATAATGACCTTAGTGCCTTCT
ATGTGTGGAAAGACTCAAGAACATGGGTCAATTGAACCTTTCTTAGATATGCA
TCTTAATATCCTGGGGTCAGTATAATCCAAATGCTTCCCTGTTTCTCCATCCTAA
AGTCCCCTCCGGGTGCACTGATGGTTCCCTCCAGTGGGCAACTGCAGTGGC
AATTGGCTTGATCTCTGTAGAACTGGAATGGTGGGCAACATTCTTACAG
TATCCTGAGTCTGGGAGGGCTGTGTGGGCCAGAGCCTGNATGCAGGAGGAG
GAGGGAGTCTGATCGCTTAGTCAGCTCTCGCTTAACCTTGAGCTGGTGGTTAT
AAGCTGGGCCCCAGGGCGCCCGAGGCCAGACTCACCTCATCAGGCCCTGCTGCA
GTGGGAGCAGGGAGAGTAGCAGTGGTAGGGCAGCATG

N = C or T at polymorphic site

SEQ ID NO:2

Forward primer:

GCTCCAAAGAGACATTTGGGGTGGC

SEQ ID NO:3

Reverse primer:

CATGCTGCCCTACCACTGCTACTCT

Figure 2. SphI restriction digest of porcine CYP11a1 PCR fragment

Figure 3. Comparison of submaxillary salivary gland $\Delta 16$ -androstenes in boars possessing a CYP11a1 single nucleotide polymorphism.

Genotype			
	CC	CT	P value
Rate of gain (kg BW/d)	0.76 ± .01	0.72 ± .01	.05
Carcass length (cm)	85.17 ± .38	82.96 ± .47	.001
Submaxillary salivary gland (SMG) wt (g)	92.1 ± 3.1	71.5 ± 4.9	.0001
Δ16- androstenes in SMG (μg/g)	38.7 ± 4.1	23.9 ± 5.0	.05
Relative SMG wt (g/kg BW)	0.72 ± .023	0.58 ± .027	.001
Bulbourethral gland length (mm)	128.8 ± 2.4	117.7 ± 2.9	.01
Relative bulbourethral gland wt (g/kg BW)	93.8 ± 4.0	73.5 ± 4.9	.01
Testis wt (g)	628.6 ± 27.1	530.2 ± 25.4	.05
Relative testis wt (g/kg BW)	4.92 ± .20	4.33 ± .24	.10
Serum testosterone at slaughter (ng/ml)	2.04 ± .28	1.59 ± .35	.32

Figure 4. Growth, carcass, and reproductive traits of pigs with CC or CT CYP11a1 polymorphism.

1 gcagatgtcc ctgggtgatcc ctgaaacagg ccctctgttt aaattcttca gcagtttagag
61 ggaaggctcaa tttttcccaa ggcttttggg ctttgattgtt tttcatttt aaattatctg
121 cattctaaag agatattttg ggtggcagat tttgctctcc tacaggactt tgccttaggg
181 acggctctca gcccagctcc gacgactgtt ccaaagaatg aaggaaagc tagggttat
241 atcaatctttt tttttgtcg ggagaagggg gatgaacatc tagtcaaacaa taaaaagatc
301 actgctaatac ccaaacaaca gacaccaa gtaatgtt ttagtgttt tctatataatg
361 ttgttttagtc actaagtctt gtccgactct tttgcgactc catagactgt agccccacca
421 gctccctctgtt ccattggatt ttcttagcga aaaaactctgg agtgggttgc cattttcttc
481 tccctggat cttcttaacc caaggactga acccttgc cttgcatttc aggtggattt
541 tttaccgact gagccaccag ggaagttatg tgcataagaa tccgggggtca tggaaattt
601 ccccttagata tacatcgat ctagggacca gtacaatgc aatgtttctt gttttttttc
661 atccctgaaat ctcctcaggg tgcattgggg gaggaggatc cttcagggtgg gtgaccacag
721 tggctgacgc ttgatgtgtt agaactggaa tggatgggtta cattttttcg tttacatgt
781 tggatctggg aggagctgtg tggctggag tcaagccggag gaggctgacc gccccgttgc
841 cttctcactt acccttgc tggatgtt aagctgggtt ccagggttccc aggggccagag
901 tcaacctgtc cagtagcgc agagacagca gcaatgtgg gggcagatc ttagcaaggg
961 ggctccccc cctgttccggcc ctggtcaaaag cttggccacc catcctgagc tcagtgggg
1021 agggtgggg ccaccacagg gtggccactg gagagggagc tggcatctcc acaaagaccc
1081 ctccccccta cagttagatc cccctccctg gtgacaatgg ctggcttaac ctctaccatt
1141 tctggaggga aaaaaaaaaaaaaatcc acttttcgc catcgaaac ttccagaatgt
1201 atggcccat ttacaggtaa gccttgcagg aggattgggg ctggcggtt aaggaaagcc
1261 gtgggtggccc cttccctgaa aggtttggccc tccccccttccaa ggctctgggtt caccctctgac
1321 tttatttttt cttgccttgc ggtggcagga gttaggttaa tgcattcccg acagtgggtt
1381 cacttcccg ccttgagggc ccaacatcc cccggctcta caccctttaga aactttgggg
1441 aggtggggag gccccaaagaaa ataagcccccg g

FIGURE 5

1 cttttttccgg ttgtacctt gtcctctgtac agatattttg taatataatataaaaacaaaaac
61 ctactgagct cctcgccctt agccccaggat tcagggataa gagcggaggtc gccccggccg
121 tgcgcgcgcc tgcctccatcg ctctccaggcg ctgcacccat agcggggcagc ttccaggcat
181 gccgcgtgc cggagggate ccagccctcg cgggggttca ctaacccattt cccagctctt
241 cgggagctcg gccttcgc cagggtccgg gtgaatggag agcggggttgg ctcaacctgt
301 accacttcgt gaaggaggga ggctccaca acgtgcacaa catcatggcc agcaagttcc
361 agcgccttgg gccccatctac agggagaagt tgggtgtcta cgagagcgtg aatatcatca
421 gcccccgccga tgcggccacg ctcttcaagt cagagggggat gctgcggccag cgcttcagcg
481 tgcctccatcg ggtggcatacg ctgtactacc gcaacaagcc ctacggcgtg ctccctcaaga
541 caggggagggc ctggcgcctcg gaceccctga ccctgaacaa ggaggtgtcg tgcggcggagg
601 tggggacag cttcgtgcctt ttgtggacc aggtggccca ggactttttt cggcgccggc
661 gggcgccagggt ccagcagacg ggcggggagc gttggacggc cgacttcagc cagagctct
721 tccgccttgc ttggagctt gtgtgcacg tgcgtgtatgg ggaacgcctg gggctgtctgc
781 aggactttgtt ggacccagag gcacagcagt tcatcgacgc cgtcacccctc atgtttccaca
841 ccacccccc catgtctac gtgcaccccg ccctgtcccg cccatctcaac accaaagacat
901 ggcgtgacca ctgtcatgtc tggatgcca ttttcacaca ggtgtacaaa tgtatccaaa
961 acgtttaccg ggacatccgg ctgcacacgca agagcaccga ggagcacacg ggcacccct
1021 tcacgccttgc tgcaggac aagctggccc tggatgacat caaggccagc gtcacccggag
1081 tggatggggggggccggcgtggac acgacttcca tgcacttgc atggggccatg ctggagctgg
1141 cacatccccccccc gggcatcccg gagggcgtgc gggcagaggt gctggcggcc aagcaggagg
1201 cacaggggggc cagggtgaag atgcgtgaaga gcatccgact gtcacaaagcc gcatcaagg
1261 agacttcag gctgcaccccg gtggcggtga cgctgcggag gtacacccacaa caggaggctca
1321 tccgcggga ctacccatc ccccccacaa cgctgggtcga ggttgggttc tacggccatgg
1381 gacgagaccc tgaggatcc cccaaagccgg agcagttcaa ccctgagcgc tggctgggtga
1441 tgggcctccaa gcaatccaag ggactggagct tgggtttgg gccacggccag tgcgtgggtc
1501 gtgcgcatecg cgactgtggat atgcgtctt tccatgcacatccctgg aactttaaaga
1561 tcgaaaccaa gcccgggtg gaagttggga ccaagttcga cctcattttt gtcctgtaaa
1621 aacccatcta ctgtggactg cggccctcc agccccaggaa gtgacatgg gttgtccccag
1681 ttggtccccag ttggggacac cttccatcgat ctccatcgat tcaagcccttgg ctccagccct
1741 tcttacgcac tggggagat ggctgcccccttccatctt ttttttgcattt gatggctct
1801 gtaatttctg caccaaaagc

FIGURE 6

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/13168

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) :C07H 21/04; C12Q 1/68 US CL :435/6; 536/23.1, 24.33 According to International Patent Classification (IPC) or to both national classification and IPC													
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S. : 435/6; 536/23.1, 24.33													
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched													
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.													
C. DOCUMENTS CONSIDERED TO BE RELEVANT <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Category*</th> <th style="text-align: left; padding: 2px;">Citation of document, with indication, where appropriate, of the relevant passages</th> <th style="text-align: left; padding: 2px;">Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td style="padding: 2px;">A</td> <td style="padding: 2px;">WO 99/18192 A1 (THE PENN STATE RESEARCH FOUNDATION) 15 April 1999, see entire document.</td> <td style="padding: 2px;">1-32</td> </tr> <tr> <td style="padding: 2px;">A</td> <td style="padding: 2px;">NOLAN et al. Genotype of the P450scc locus determines differences in the amount of P450scc protein and maximal testosterone production in mouse Leydig cells. Mol. Endocrinol. October 1990. Vol. 4, No. 10, pages 1459-1464, see entire document.</td> <td style="padding: 2px;">1-32</td> </tr> <tr> <td style="padding: 2px;">A</td> <td style="padding: 2px;">DUROCHER et al. Genetic linkage mapping of the CYP11a1 gene encoding the cholesterol side-chain cleavage P450scc close to the CYP11a1 gene and D15S204 in the chromosome 15q22.33-q23 region. Pharmacogenetics. February 1998, Vol. 8, No. 1, pages 49-53, see entire document.</td> <td style="padding: 2px;">1-32</td> </tr> </tbody> </table>		Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	A	WO 99/18192 A1 (THE PENN STATE RESEARCH FOUNDATION) 15 April 1999, see entire document.	1-32	A	NOLAN et al. Genotype of the P450scc locus determines differences in the amount of P450scc protein and maximal testosterone production in mouse Leydig cells. Mol. Endocrinol. October 1990. Vol. 4, No. 10, pages 1459-1464, see entire document.	1-32	A	DUROCHER et al. Genetic linkage mapping of the CYP11a1 gene encoding the cholesterol side-chain cleavage P450scc close to the CYP11a1 gene and D15S204 in the chromosome 15q22.33-q23 region. Pharmacogenetics. February 1998, Vol. 8, No. 1, pages 49-53, see entire document.	1-32
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.											
A	WO 99/18192 A1 (THE PENN STATE RESEARCH FOUNDATION) 15 April 1999, see entire document.	1-32											
A	NOLAN et al. Genotype of the P450scc locus determines differences in the amount of P450scc protein and maximal testosterone production in mouse Leydig cells. Mol. Endocrinol. October 1990. Vol. 4, No. 10, pages 1459-1464, see entire document.	1-32											
A	DUROCHER et al. Genetic linkage mapping of the CYP11a1 gene encoding the cholesterol side-chain cleavage P450scc close to the CYP11a1 gene and D15S204 in the chromosome 15q22.33-q23 region. Pharmacogenetics. February 1998, Vol. 8, No. 1, pages 49-53, see entire document.	1-32											
<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.													
* Special categories of cited documents *A* document defining the general state of the art which is not considered to be of particular relevance *B* earlier document published on or after the international filing date *C* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *D* document referring to an oral disclosure, use, exhibition or other means *E* document published prior to the international filing date but later than the priority date claimed													
T later documents published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art *Z* document member of the same patent family													
Date of the actual completion of the international search	Date of mailing of the international search report												
10 AUGUST 2000	05 SEP 2000												
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer ROBERT SCHWARTZMAN Telephone No. (703) 305-0196												

INTERNATIONAL SEARCH REPORT

Internal application No.
PCT/US00/13168

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A,P	DAVIS et al. Association of cytochrome b5 with 16-androstene steroid synthesis in the testis and accumulation in the fat of male pigs. J. Anim. Sci. May 1999, Vol. 77, No. 5, pages 1230-1235, see entire document.	1-32

Form PCT/ISA/210 (continuation of second sheet) (July 1998) *

INTERNATIONAL SEARCH REPORT

Internal. ref application No.
PCT/US00/13168

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 11, 12, 17, 21, 25-27 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

The claims are drawn to specific SEQ ID NOS but the claims could not be searched as the computer readable form of the Sequence Listing filed July 27, 2000 was blank (See attached CRP Problem Report).
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Internal application No.
PCT/US00/13168

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

STN: Medline Biosis Embase CAPLus
WEST

Search Terms: boar taint, boar odor, CYP11a1, cytochrome P450, polymorphism

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.