Formas Indeterminadas y la Regla de L'Hôpital

R.M.

Escuela de Matemática Facultad de Ciencias UASD

16 de septiembre de 2025

Contenido

1 Contexto y Definiciones Fundamentales

2 La Regla de L'Hôpital y sus Aplicaciones

3 Otras Formas Indeterminadas

- 1 Contexto y Definiciones Fundamentales
- 2 La Regla de L'Hôpital y sus Aplicaciones
- 3 Otras Formas Indeterminadas

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

- Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$
- Productos: $0 \cdot \infty$

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

• Productos: $0 \cdot \infty$

• Diferencias: $\infty - \infty$

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

• Productos: $0 \cdot \infty$

• Diferencias: $\infty - \infty$

• Potencias: 0^0 , 1^∞ , ∞^0

4 / 21

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

• Productos: $0 \cdot \infty$

• **Diferencias:** $\infty - \infty$

• Potencias: 0^0 , 1^∞ , ∞^0

Formas que NO son Indeterminadas

•
$$\infty + \infty \to \infty$$

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

• Productos: $0 \cdot \infty$

• **Diferencias:** $\infty - \infty$

• Potencias: 0^0 , 1^∞ , ∞^0

Formas que NO son Indeterminadas

•
$$\infty + \infty \to \infty$$

•
$$-\infty - \infty \to -\infty$$

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

• Productos: $0 \cdot \infty$

• **Diferencias:** $\infty - \infty$

• Potencias: 0^0 , 1^∞ , ∞^0

Formas que NO son Indeterminadas

•
$$\infty + \infty \to \infty$$

•
$$-\infty - \infty \to -\infty$$

•
$$\infty \cdot \infty \to \infty$$

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

• Productos: $0 \cdot \infty$

• Diferencias: $\infty - \infty$

• Potencias: 0^0 , 1^∞ , ∞^0

Formas que NO son Indeterminadas

•
$$\infty + \infty \to \infty$$

•
$$-\infty - \infty \to -\infty$$

•
$$\infty \cdot \infty \to \infty$$

•
$$\frac{0}{\infty} \rightarrow 0$$

Definición

Una **forma indeterminada** es una expresión simbólica que surge al evaluar un límite por sustitución directa, cuyo valor no puede ser determinado sin un análisis adicional de la función.

Formas Indeterminadas Canónicas

Las siete formas indeterminadas son:

• Cocientes: $\frac{0}{0}$, $\frac{\infty}{\infty}$

• Productos: $0 \cdot \infty$

• Diferencias: $\infty - \infty$

• Potencias: 0^0 , 1^∞ , ∞^0

Formas que NO son Indeterminadas

•
$$\infty + \infty \to \infty$$

•
$$-\infty - \infty \to -\infty$$

•
$$\infty \cdot \infty \to \infty$$

•
$$\frac{0}{\infty} \rightarrow 0$$

•
$$\frac{\infty}{0^+} \to \infty$$

- ① Contexto y Definiciones Fundamentales
- 2 La Regla de L'Hôpital y sus Aplicaciones
- 3 Otras Formas Indeterminadas

Regla de L'Hôpital: Caso $\frac{0}{0}$

Theorem (Regla de L'Hôpital, Forma $\frac{0}{0}$)

Sean f y g dos funciones derivables en un intervalo abierto I que contiene a c, excepto posiblemente en c mismo. Supongamos que $g'(x) \neq 0$ para todo x en I (con $x \neq c$). Si $\lim_{x \to c} f(x) = 0$ y $\lim_{x \to c} g(x) = 0$, entonces:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

siempre que el límite del cociente de las derivadas exista (o sea ∞ o $-\infty$).

Nota

Este teorema también es válido para límites laterales ($x \to c^+$ o $x \to c^-$) y para límites en el infinito ($x \to \infty$ o $x \to -\infty$).

Teorema del Valor Medio de Cauchy

Theorem (Teorema del Valor Medio de Cauchy)

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Demostración Teorema del Valor Medio de Cauchy I

Demostración.

Consideremos la función auxiliar

$$\varphi(x) = f(x) - \lambda g(x)$$

donde λ es una constante que elegiremos adecuadamente. Queremos que $\varphi(a) = \varphi(b)$, es decir:

$$f(a) - \lambda g(a) = f(b) - \lambda g(b)$$

$$f(b) - f(a) = \lambda(g(b) - g(a))$$

Si $g(b) \neq g(a)$, definimos

$$\lambda = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Demotración Parte 2

Demostración.

Así, $\varphi(a) = \varphi(b)$. Como f y g son continuas en [a,b] y derivables en (a,b), φ también lo es. Por el Teorema de Rolle, existe $c \in (a,b)$ tal que $\varphi'(c) = 0$:

$$\varphi'(c) = f'(c) - \lambda g'(c) = 0 \implies f'(c) = \lambda g'(c)$$

Por lo tanto,

$$\frac{f'(c)}{g'(c)} = \lambda = \frac{f(b) - f(a)}{g(b) - g(a)}$$

que es lo que queríamos demostrar.

Demostración del Caso $\frac{0}{0}$ I

La demostración rigurosa se apoya en el Teorema del Valor Medio de Cauchy.

Demostración del Caso $\frac{0}{0}$ II

Demostración.

Sean f y g funciones que satisfacen las hipótesis del teorema. Podemos definir f(c) = 0 y g(c) = 0 para que sean continuas en c.

Consideremos el intervalo [c,x]. Por el Teorema del Valor Medio de Cauchy, existe un número ξ tal que $c<\xi< x$ para el cual:

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) - f(c)}{g(x) - g(c)}$$

Dado que f(c) = 0 y g(c) = 0, la expresión se simplifica a:

Regla de L'Hôpital: Caso $\frac{\infty}{\infty}$

Theorem (Regla de L'Hôpital, Forma $\frac{\infty}{\infty}$)

Las condiciones del teorema son idénticas a las del caso $\frac{0}{0}$, con la única salvedad de que la condición inicial es:

$$\lim_{x \to c} f(x) = \pm \infty \quad y \quad \lim_{x \to c} g(x) = \pm \infty$$

Bajo estas condiciones, la conclusión es la misma:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Theorem (Regla de L'Hôpital, Forma $\frac{\infty}{\infty}$)

Las condiciones del teorema son idénticas a las del caso $\frac{0}{0}$, con la única salvedad de que la condición inicial es:

$$\lim_{x \to c} f(x) = \pm \infty \quad y \quad \lim_{x \to c} g(x) = \pm \infty$$

Bajo estas condiciones, la conclusión es la misma:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Nota sobre la Demostración

La demostración de esta versión es considerablemente más compleja que la del caso anterior y excede el alcance de una presentación introductoria, pero se puede consultar en textos de análisis matemático avanzado como el de Rudin.

Ejemplos: Formas de Cociente I

Ejemplo 1 (Forma $\frac{0}{0}$)

$$\mathsf{Calcular}\, \lim_{x\to 0} \frac{e^{2x}-1}{x}.$$

Solución: Al sustituir x=0, obtenemos $\frac{e^0-1}{0}=\frac{0}{0}$. Las condiciones se cumplen.

$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} \stackrel{L'H}{=} \lim_{x \to 0} \frac{\frac{d}{dx}(e^{2x} - 1)}{\frac{d}{dx}(x)} = \lim_{x \to 0} \frac{2e^{2x}}{1} = \frac{2e^0}{1} = 2$$

Ejemplos: Formas de Cociente II

Ejemplo 2 (Forma $\frac{0}{0}$)

Calcular
$$\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$$
.

Solución: La sustitución directa da $\frac{1-1}{0} = \frac{0}{0}$.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \stackrel{L'H}{=} \lim_{x \to 0} \frac{\sin(x)}{2x}$$

El nuevo límite sigue siendo de la forma $\frac{0}{0}$. Aplicamos la regla nuevamente.

$$\lim_{x \to 0} \frac{\sin(x)}{2x} \stackrel{L'H}{=} \lim_{x \to 0} \frac{\cos(x)}{2} = \frac{\cos(0)}{2} = \frac{1}{2}$$

Ejemplos: Formas de Cociente III

Ejemplo 3 (Forma $\frac{\infty}{\infty}$)

Calcular $\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}}$.

Solución: Al tender $x \to \infty$, obtenemos la forma $\frac{\infty}{\infty}$.

$$\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(\sqrt{x})} = \lim_{x \to \infty} \frac{1/x}{1/(2\sqrt{x})}$$

Simplificando la expresión algebraica:

$$= \lim_{x \to \infty} \frac{2\sqrt{x}}{x} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$

Este resultado muestra que la función \sqrt{x} crece más rápido" que $\ln(x)$.

- 1 Contexto y Definiciones Fundamentales
- 2 La Regla de L'Hôpital y sus Aplicaciones
- 3 Otras Formas Indeterminadas

Estrategias para Otras Formas Indeterminadas

El objetivo es siempre el mismo: manipular algebraicamente la expresión para convertirla en un cociente de la forma $\frac{0}{0}$ o $\frac{\infty}{\infty}$, y así poder aplicar la Regla de L'Hôpital.

• Para $0 \cdot \infty$: Se reescribe el producto f(x)g(x) como $\frac{f(x)}{1/g(x)}$ o $\frac{g(x)}{1/f(x)}$.

Estrategias para Otras Formas Indeterminadas

El objetivo es siempre el mismo: manipular algebraicamente la expresión para convertirla en un cociente de la forma $\frac{0}{0}$ o $\frac{\infty}{\infty}$, y así poder aplicar la Regla de L'Hôpital.

- Para $0 \cdot \infty$: Se reescribe el producto f(x)g(x) como $\frac{f(x)}{1/g(x)}$ o $\frac{g(x)}{1/f(x)}$.
- **Para** $\infty \infty$: Se busca un denominador común, se racionaliza o se factoriza para crear un cociente.

Estrategias para Otras Formas Indeterminadas

El objetivo es siempre el mismo: manipular algebraicamente la expresión para convertirla en un cociente de la forma $\frac{0}{0}$ o $\frac{\infty}{\infty}$, y así poder aplicar la Regla de L'Hôpital.

- Para $0 \cdot \infty$: Se reescribe el producto f(x)g(x) como $\frac{f(x)}{1/g(x)}$ o $\frac{g(x)}{1/f(x)}$.
- Para $\infty \infty$: Se busca un denominador común, se racionaliza o se factoriza para crear un cociente.
- Para 1^{∞} , 0^{0} , ∞^{0} : Se utiliza la técnica logarítmica. Si L = lím y, entonces se calcula $\text{lím}(\ln y) = L^{*}$. El límite original será $L = e^{L^{*}}$.

Ejemplos: Otras Formas Indeterminadas I

Ejemplo 4 (Forma $0 \cdot \infty$)

Calcular $\lim_{x\to 0^+} x \ln(x)$.

Solución: Esto es de la forma $0 \cdot (-\infty)$. Reescribimos:

$$\lim_{x \to 0^{+}} x \ln(x) = \lim_{x \to 0^{+}} \frac{\ln(x)}{1/x} \quad \left(\text{Forma } \frac{-\infty}{\infty} \right)$$

$$\stackrel{L'H}{=} \lim_{x \to 0^{+}} \frac{1/x}{-1/x^{2}} = \lim_{x \to 0^{+}} (-x) = 0$$

Ejemplos: Otras Formas Indeterminadas II

Ejemplo 5 (Forma $\infty - \infty$)

Calcular
$$\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$$
.

Solución: Es de la forma $\infty - \infty$. Combinamos las fracciones.

$$\lim_{x\to 1^+}\frac{x-1-\ln x}{(\ln x)(x-1)}\quad \left(\text{Forma }\frac{0}{0}\right)$$

$$\stackrel{L'H}{=} \lim_{x \to 1^+} \frac{1 - 1/x}{\frac{1}{x}(x - 1) + \ln x} = \lim_{x \to 1^+} \frac{(x - 1)/x}{1 - 1/x + \ln x} = \lim_{x \to 1^+} \frac{x - 1}{x - 1 + x \ln x}$$

Nuevamente, es de la forma $\frac{0}{0}$.

$$\stackrel{L'H}{=} \lim_{x \to 1^{+}} \frac{1}{1 + (\ln x + x \cdot \frac{1}{x})} = \lim_{x \to 1^{+}} \frac{1}{2 + \ln x} = \frac{1}{2}$$

Ejemplos: Otras Formas Indeterminadas III

Ejemplo 6 (Forma 1^{∞})

$$\mathsf{Calcular} \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x.$$

Solución: Es la forma 1^{∞} . Sea $y = \left(1 + \frac{1}{x}\right)^{x}$. Tomamos logaritmo natural:

$$\ln y = x \ln \left(1 + \frac{1}{x} \right)$$

Calculamos el límite de ln y (forma $\infty \cdot 0$).

$$\lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln(1 + 1/x)}{1/x} \quad \left(\text{Forma } \frac{0}{0} \right)$$

Sea u = 1/x. Cuando $x \to \infty$, $u \to 0^+$.

$$\lim_{u \to 0^+} \frac{\ln(1+u)}{u} \stackrel{L'H}{=} \lim_{u \to 0^+} \frac{1/(1+u)}{1} = 1$$

Hemos encontrado que $\lim(\ln y) = 1$. Por lo tanto, el límite original es:

Bibliografía I

- [1] Ron Larson y Bruce Edwards, Cálculo, Volumen 1, 9na Edición, Cengage Learning, 2010.
- [2] James Stewart, *Cálculo de una variable*, 7ma Edición (equivalente a la 9na en inglés), Cengage Learning, 2013.
- [3] George B. Thomas, Maurice D. Weir, Joel Hass, *Thomas' Calculus*, 13ra Edición, Pearson, 2014.