# Aprendizaje no supervisado VC08: Aprendizaje semi-supervisado

Félix José Fuentes Hurtado felixjose.fuentes@campusviu.es

Universidad Internacional de Valencia















Estrategia para estimar los parámetros de máxima verosimilitud (MLE) cuando hay datos incompletos.

¿Por qué no se pueden obtener directamente?

| $X_1$  | $X_2$                 | C           |
|--------|-----------------------|-------------|
| 1      | <i>X</i> <sub>2</sub> | 0           |
| 0      | 0                     | ?           |
| 0      | 1                     | 0<br>?<br>? |
| 0      | 1                     | ?           |
| 1      | 0                     | 1           |
| 1<br>0 | 0                     | 1           |
| 1      | 1                     | 1<br>?<br>? |
| 1      | 1                     | ?           |
| 0      | 1                     | 0<br>?      |
| 1      | 1                     | ?           |



### Algoritmo *Expectation-Maximization*:

Procedimiento iterativo de dos pasos (E-M) que permite obtener los parámetros de máxima verosimilitud cuando hay datos perdidos (valores perdidos, variables latentes, etc.)

E-step: Se estima el valor de los datos perdidos usando la esperanza condicional de la verosimilitud

M-step: Se estiman unos nuevos parámetros dados los datos completados en el paso E.

### Convergencia:

- Máximo (local)
- Casos raros: Punto de silla



## Algoritmo *Expectation-Maximization*:

Procedimiento iterativo de dos pasos (E-M) que permite obtener los parámetros de máxima verosimilitud cuando hay datos perdidos (valores perdidos, variables latentes, etc.)

E-step:

$$Q(\theta; \theta^t) = E_{Z|X,\theta^t} [\log L(\theta; X, Z)]$$

M-step: Choose  $\theta^{t+1}$  such that, for all  $\theta \in \Theta$ :

$$Q(\theta^{t+1}; \theta^t) \ge Q(\theta; \theta^t)$$

Donde Z son los datos perdidos, X los observados, y  $\theta$  los parámetros del modelo. Se define verosimilitud como:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

## Algoritmo Expectation-Maximization:

Procedimiento iterativo de dos pasos (E-M) que permite obtener los parámetros de máxima verosimilitud cuando hay datos perdidos (valores perdidos, variables latentes, etc.)

E-step:

$$Q(\theta; \theta^t) = E_{Z|X,\theta^t} [\log L(\theta; X, Z)]$$

M-step:

$$\theta^{t+1} = \underset{\theta}{\operatorname{argmáx}} Q(\theta; \theta^t)$$

Donde Z son los datos perdidos, X los observados, y  $\theta$  los parámetros del modelo. Se define verosimilitud como:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X;\theta) = \log p(X,Z;\theta) - \log p(Z|X;\theta)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X;\theta) = \sum_{Z} p(Z|X;\theta^{t}) \log p(X,Z;\theta) - \sum_{Z} p(Z|X;\theta^{t}) \log p(Z|X;\theta)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

$$\log p(X|\theta) - \log p(X|\theta^t) = Q(\theta; \theta^t) - Q(\theta^t; \theta^t) + H(\theta; \theta^t) - H(\theta^t; \theta^t)$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

$$\log p(X|\theta) - \log p(X|\theta^t) = Q(\theta; \theta^t) - Q(\theta^t; \theta^t) + C$$

$$con C \ge 0.$$

Verosimilitud:

$$L(\theta; X, Z) = p(X, Z; \theta)$$

$$L(\theta; X) = p(X; \theta) = \sum_{Z} p(X, Z; \theta)$$

$$p(X; \theta) = \frac{p(X, Z; \theta)}{p(Z|X; \theta)}$$

$$\log p(X|\theta) = Q(\theta; \theta^t) + H(\theta; \theta^t)$$

$$\log p(X|\theta) - \log p(X|\theta^t) \ge Q(\theta; \theta^t) - Q(\theta^t; \theta^t)$$

# EM en la práctica

Aprendizaje del modelo (NB)

#### Paso E

#### Determinista

| $X_1$ | <i>X</i> <sub>2</sub> 0 | С                |
|-------|-------------------------|------------------|
| 1     | 0                       | 0                |
| 0     | 0                       | 0<br>?<br>?<br>? |
| 0     | 1                       | ?                |
| 0     | 1                       | ?                |
| 1     | 0                       | 1                |
| 0     | 0                       | 1                |
| 1     | 1                       | ?                |
| 1     | 0                       |                  |
| 0     | 1                       | 0                |
| 1     | 1                       | ?                |

#### Probabilista

| $X_1$ | $X_2$ | <i>C</i> |
|-------|-------|----------|
| 1     | 0     | 0        |
| 0     | 0     | ?        |
| 0     | 1     | ?        |
| 0     | 1     | ?        |
| 1     | 0     | 1        |
| 0     | 0     | 1        |
| 1     | 1     | ?        |
| 1     | 0     | ?        |
| 0     | 1     | 0        |
| 1     | 1     | ?        |

# EM en la práctica

Aprendizaje del modelo (NB)

#### Paso E

#### Determinista

| $X_1$ | $X_2$ | C |  |
|-------|-------|---|--|
| 1     | 0     | 0 |  |
| 0     | 0     | 1 |  |
| 0     | 1     | 0 |  |
| 0     | 1     | 1 |  |
| 1     | 0     | 1 |  |
| 0     | 0     | 1 |  |
| 1     | 1     | 0 |  |
| 1     | 0     | 1 |  |
| 0     | 1     | 0 |  |
| 1     | 1     | 0 |  |

## Probabilista

| $X_1$       | $X_2$      | (   | $\mathcal{C}$ |
|-------------|------------|-----|---------------|
| $\lambda_1$ | <b>1</b> 2 | 0   | 1             |
| 1           | 0          | 1.0 | 0.0           |
| 0           | 0          | 0.4 | 0.6           |
| 0           | 1          | 0.7 | 0.3           |
| 0           | 1          | 0.5 | 0.5           |
| 1           | 0          | 0.0 | 1.0           |
| 0           | 0          | 0.0 | 1.0           |
| 1           | 1          | 8.0 | 0.2           |
| 1           | 0          | 0.3 | 0.7           |
| 0           | 1          | 1.0 | 0.0           |
| 1           | 1          | 0.6 | 0.4           |



| $X_1$           | $X_2$                 | C           |
|-----------------|-----------------------|-------------|
| $\frac{X_1}{1}$ | <i>X</i> <sub>2</sub> | 0<br>?<br>? |
| 0               | 0                     | ?           |
| 0<br>0          | 1                     | ?           |
| 0               | 1                     | ?           |
| 1               | 0<br>0                | 1           |
| 0               | 0                     | 1           |
| 1               | 1<br>0                | ?           |
| 1               | 0                     | ?           |
|                 | 1                     | 0<br>?      |
| 1               | 1                     | ?           |



| $X_1$       | $X_2$      | C   |     |
|-------------|------------|-----|-----|
| $\lambda_1$ | <b>1</b> 2 | 0   | 1   |
| 1           | 0          | 1.0 | 0.0 |
| 0           | 0          | 0.5 | 0.5 |
| 0           | 1          | 0.5 | 0.5 |
| 0           | 1          | 0.5 | 0.5 |
| 1           | 0          | 0.0 | 1.0 |
| 0           | 0          | 0.0 | 1.0 |
| 1           | 1          | 0.5 | 0.5 |
| 1           | 0          | 0.5 | 0.5 |
| 0           | 1          | 1.0 | 0.0 |
| 1           | 1          | 0.5 | 0.5 |



| $X_1$       | $X_2$      | C   |     |
|-------------|------------|-----|-----|
| $\lambda_1$ | <b>7</b> 2 | 0   | 1   |
| 1           | 0          | 1.0 | 0.0 |
| 0           | 0          | 0.5 | 0.5 |
| 0           | 1          | 0.5 | 0.5 |
| 0           | 1          | 0.5 | 0.5 |
| 1           | 0          | 0.0 | 1.0 |
| 0           | 0          | 0.0 | 1.0 |
| 1           | 1          | 0.5 | 0.5 |
| 1           | 0          | 0.5 | 0.5 |
| 0           | 1          | 1.0 | 0.0 |
| 1           | 1          | 0.5 | 0.5 |



| $X_1$           | $X_2$ | C   |     |
|-----------------|-------|-----|-----|
| $\mathcal{N}_1$ | 7/2   | 0   | 1   |
| 1               | 0     | 1.0 | 0.0 |
| 0               | 0     | 0.5 | 0.5 |
| 0               | 1     | 0.5 | 0.5 |
| 0               | 1     | 0.5 | 0.5 |
| 1               | 0     | 0.0 | 1.0 |
| 0               | 0     | 0.0 | 1.0 |
| 1               | 1     | 0.5 | 0.5 |
| 1               | 0     | 0.5 | 0.5 |
| 0               | 1     | 1.0 | 0.0 |
| 1               | 1     | 0.5 | 0.5 |



| $X_1$ | С | $p(X_1 C)$ |
|-------|---|------------|
| 0     | 0 |            |
| 1     | 0 |            |
| 0     | 1 |            |
| 1     | 1 |            |

| $X_1$       | $X_2$       | C   |     |
|-------------|-------------|-----|-----|
| $\lambda_1$ | $\lambda_2$ | 0   | 1   |
| 1           | 0           | 1.0 | 0.0 |
| 0           | 0           | 0.5 | 0.5 |
| 0           | 1           | 0.5 | 0.5 |
| 0           | 1           | 0.5 | 0.5 |
| 1           | 0           | 0.0 | 1.0 |
| 0           | 0           | 0.0 | 1.0 |
| 1           | 1           | 0.5 | 0.5 |
| 1           | 0           | 0.5 | 0.5 |
| 0           | 1           | 1.0 | 0.0 |
| 1           | 1           | 0.5 | 0.5 |



| $X_1$ | C | $p(X_1 C)$   |
|-------|---|--------------|
| 0     | 0 | 2,5/5 = 0,50 |
| 1     | 0 | 2.5/5 = 0.50 |
| 0     | 1 | 2,5/5 = 0,50 |
| 1     | 1 | 2,5/5 = 0,50 |

| $X_1$           | $X_2$ | С   |     |
|-----------------|-------|-----|-----|
| $\mathcal{N}_1$ | 7/2   | 0   | 1   |
| 1               | 0     | 1.0 | 0.0 |
| 0               | 0     | 0.5 | 0.5 |
| 0               | 1     | 0.5 | 0.5 |
| 0               | 1     | 0.5 | 0.5 |
| 1               | 0     | 0.0 | 1.0 |
| 0               | 0     | 0.0 | 1.0 |
| 1               | 1     | 0.5 | 0.5 |
| 1               | 0     | 0.5 | 0.5 |
| 0               | 1     | 1.0 | 0.0 |
| 1               | 1     | 0.5 | 0.5 |



| $X_2$ | С | $p(X_2 C)$ |
|-------|---|------------|
| 0     | 0 |            |
| 1     | 0 |            |
| 0     | 1 |            |
| 1     | 1 |            |

| $X_1$           | $X_2$ | С   |     |
|-----------------|-------|-----|-----|
| $\mathcal{N}_1$ | 7/2   | 0   | 1   |
| 1               | 0     | 1.0 | 0.0 |
| 0               | 0     | 0.5 | 0.5 |
| 0               | 1     | 0.5 | 0.5 |
| 0               | 1     | 0.5 | 0.5 |
| 1               | 0     | 0.0 | 1.0 |
| 0               | 0     | 0.0 | 1.0 |
| 1               | 1     | 0.5 | 0.5 |
| 1               | 0     | 0.5 | 0.5 |
| 0               | 1     | 1.0 | 0.0 |
| 1               | 1     | 0.5 | 0.5 |



| $X_2$ | C | $p(X_2 C)$ |
|-------|---|------------|
| 0     | 0 | 2/5 = 0,40 |
| 1     | 0 | 3/5 = 0.60 |
| 0     | 1 | 3/5 = 0.60 |
| 1     | 1 | 2/5 = 0,40 |

| $X_1$      | $X_2$      | С   |     |
|------------|------------|-----|-----|
| <b>^</b> 1 | <b>^</b> 2 | 0   | 1   |
| 1          | 0          | 1.0 | 0.0 |
| 0          | 0          | 0.5 | 0.5 |
| 0          | 1          | 0.5 | 0.5 |
| 0          | 1          | 0.5 | 0.5 |
| 1          | 0          | 0.0 | 1.0 |
| 0          | 0          | 0.0 | 1.0 |
| 1          | 1          | 0.5 | 0.5 |
| 1          | 0          | 0.5 | 0.5 |
| 0          | 1          | 1.0 | 0.0 |
| 1          | 1          | 0.5 | 0.5 |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.4        |
| 1     | 0 | 0.5        | 0.6        |
| 0     | 1 | 0.5        | 0.6        |
| 1     | 1 | 0.5        | 0.4        |

$$\hat{c} = \operatorname{argm}_{c} x p(c) \prod_{i=1}^{2} p(x_{i}|c)$$

| $X_1$      | $X_2$      | (   | C   |
|------------|------------|-----|-----|
| $\wedge_1$ | <b>^</b> 2 | 0   | 1   |
| 1          | 0          | 1.0 | 0.0 |
| 0          | 0          | 0.5 | 0.5 |
| 0          | 1          | 0.5 | 0.5 |
| 0          | 1          | 0.5 | 0.5 |
| 1          | 0          | 0.0 | 1.0 |
| 0          | 0          | 0.0 | 1.0 |
| 1          | 1          | 0.5 | 0.5 |
| 1          | 0          | 0.5 | 0.5 |
| 0          | 1          | 1.0 | 0.0 |
| 1          | 1          | 0.5 | 0.5 |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.4        |
| 1     | 0 | 0.5        | 0.6        |
| 0     | 1 | 0.5        | 0.6        |
| 1     | 1 | 0.5        | 0.4        |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

| $X_1$      | $X_1$ $X_2$ | С    |      |
|------------|-------------|------|------|
| <b>^</b> 1 | <b>^</b> 2  | 0    | 1    |
| 1          | 0           | 1.0  | 0.0  |
| 0          | 0           | 0.10 | 0.15 |
| 0          | 1           | 0.5  | 0.5  |
| 0          | 1           | 0.5  | 0.5  |
| 1          | 0           | 0.0  | 1.0  |
| 0          | 0           | 0.0  | 1.0  |
| 1          | 1           | 0.5  | 0.5  |
| 1          | 0           | 0.5  | 0.5  |
| 0          | 1           | 1.0  | 0.0  |
| 1          | 1           | 0.5  | 0.5  |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.4        |
| 1     | 0 | 0.5        | 0.6        |
| 0     | 1 | 0.5        | 0.6        |
| 1     | 1 | 0.5        | 0.4        |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

| $X_1$      | $X_2$      | C   |     |
|------------|------------|-----|-----|
| <b>^</b> 1 | <b>^</b> 2 | 0   | 1   |
| 1          | 0          | 1.0 | 0.0 |
| 0          | 0          | 0.4 | 0.6 |
| 0          | 1          | 0.5 | 0.5 |
| 0          | 1          | 0.5 | 0.5 |
| 1          | 0          | 0.0 | 1.0 |
| 0          | 0          | 0.0 | 1.0 |
| 1          | 1          | 0.5 | 0.5 |
| 1          | 0          | 0.5 | 0.5 |
| 0          | 1          | 1.0 | 0.0 |
| 1          | 1          | 0.5 | 0.5 |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.4        |
| 1     | 0 | 0.5        | 0.6        |
| 0     | 1 | 0.5        | 0.6        |
| 1     | 1 | 0.5        | 0.4        |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

| $X_1$      | $X_2$      | С    |      |  |
|------------|------------|------|------|--|
| <b>^</b> 1 | <b>^</b> 2 | 0    | 1    |  |
| 1          | 0          | 1.0  | 0.0  |  |
| 0          | 0          | 0.4  | 0.6  |  |
| 0          | 1          | 0.15 | 0.10 |  |
| 0          | 1          | 0.15 | 0.10 |  |
| 1          | 0          | 0.0  | 1.0  |  |
| 0          | 0          | 0.0  | 1.0  |  |
| 1          | 1          | 0.10 | 0.15 |  |
| 1          | 0          | 0.15 | 0.10 |  |
| 0          | 1          | 1.0  | 0.0  |  |
| 1          | 1          | 0.15 | 0.10 |  |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.4        |
| 1     | 0 | 0.5        | 0.6        |
| 0     | 1 | 0.5        | 0.6        |
| 1     | 1 | 0.5        | 0.4        |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

| $X_1$      | $X_2$      | С   |     |
|------------|------------|-----|-----|
| <b>^</b> 1 | <b>^</b> 2 | 0   | 1   |
| 1          | 0          | 1.0 | 0.0 |
| 0          | 0          | 0.4 | 0.6 |
| 0          | 1          | 0.6 | 0.4 |
| 0          | 1          | 0.6 | 0.4 |
| 1          | 0          | 0.0 | 1.0 |
| 0          | 0          | 0.0 | 1.0 |
| 1          | 1          | 0.4 | 0.6 |
| 1          | 0          | 0.6 | 0.4 |
| 0          | 1          | 1.0 | 0.0 |
| 1          | 1          | 0.6 | 0.4 |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.4        |
| 1     | 0 | 0.5        | 0.6        |
| 0     | 1 | 0.5        | 0.6        |
| 1     | 1 | 0.5        | 0.4        |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

| <i>X</i> <sub>1</sub> | $X_2$      | (   | $\mathcal{C}$ |
|-----------------------|------------|-----|---------------|
| $\wedge_1$            | <b>^</b> 2 | 0   | 1             |
| 1                     | 0          | 1.0 | 0.0           |
| 0                     | 0          | 0.4 | 0.6           |
| 0                     | 1          | 0.6 | 0.4           |
| 0                     | 1          | 0.6 | 0.4           |
| 1                     | 0          | 0.0 | 1.0           |
| 0                     | 0          | 0.0 | 1.0           |
| 1                     | 1          | 0.4 | 0.6           |
| 1                     | 0          | 0.6 | 0.4           |
| 0                     | 1          | 1.0 | 0.0           |
| 1                     | 1          | 0.6 | 0.4           |



| <i>X</i> <sub>1</sub> | $X_2$      | C   |     |
|-----------------------|------------|-----|-----|
| $\lambda_1$           | <b>^</b> 2 | 0   | 1   |
| 1                     | 0          | 1.0 | 0.0 |
| 0                     | 0          | 0.4 | 0.6 |
| 0                     | 1          | 0.6 | 0.4 |
| 0                     | 1          | 0.6 | 0.4 |
| 1                     | 0          | 0.0 | 1.0 |
| 0                     | 0          | 0.0 | 1.0 |
| 1                     | 1          | 0.4 | 0.6 |
| 1                     | 0          | 0.6 | 0.4 |
| 0                     | 1          | 1.0 | 0.0 |
| 1                     | 1          | 0.6 | 0.4 |



| $X_1$       | $X_2$       | C   |     |
|-------------|-------------|-----|-----|
| $\lambda_1$ | $\lambda_2$ | 0   | 1   |
| 1           | 0           | 1.0 | 0.0 |
| 0           | 0           | 0.4 | 0.6 |
| 0           | 1           | 0.6 | 0.4 |
| 0           | 1           | 0.6 | 0.4 |
| 1           | 0           | 0.0 | 1.0 |
| 0           | 0           | 0.0 | 1.0 |
| 1           | 1           | 0.4 | 0.6 |
| 1           | 0           | 0.6 | 0.4 |
| 0           | 1           | 1.0 | 0.0 |
| 1           | 1           | 0.6 | 0.4 |



| $X_1$ | С | $p(X_1 C)$ |
|-------|---|------------|
| 0     | 0 |            |
| 1     | 0 |            |
| 0     | 1 |            |
| 1     | 1 |            |

| $X_1$       | $X_2$       | С   |     |
|-------------|-------------|-----|-----|
| $\lambda_1$ | $\lambda_2$ | 0   | 1   |
| 1           | 0           | 1.0 | 0.0 |
| 0           | 0           | 0.4 | 0.6 |
| 0           | 1           | 0.6 | 0.4 |
| 0           | 1           | 0.6 | 0.4 |
| 1           | 0           | 0.0 | 1.0 |
| 0           | 0           | 0.0 | 1.0 |
| 1           | 1           | 0.4 | 0.6 |
| 1           | 0           | 0.6 | 0.4 |
| 0           | 1           | 1.0 | 0.0 |
| 1           | 1           | 0.6 | 0.4 |



| $X_1$ | С | $p(X_1 C)$  |
|-------|---|-------------|
| 0     | 0 | 2,6/5,2=0,5 |
| 1     | 0 | 2,6/5,2=0,5 |
| 0     | 1 | 2,4/4,8=0,5 |
| 1     | 1 | 2,4/4,8=0,5 |

| $X_1$       | $X_2$       | (   | $\mathcal{C}$ |
|-------------|-------------|-----|---------------|
| $\lambda_1$ | $\lambda_2$ | 0   | 1             |
| 1           | 0           | 1.0 | 0.0           |
| 0           | 0           | 0.4 | 0.6           |
| 0           | 1           | 0.6 | 0.4           |
| 0           | 1           | 0.6 | 0.4           |
| 1           | 0           | 0.0 | 1.0           |
| 0           | 0           | 0.0 | 1.0           |
| 1           | 1           | 0.4 | 0.6           |
| 1           | 0           | 0.6 | 0.4           |
| 0           | 1           | 1.0 | 0.0           |
| 1           | 1           | 0.6 | 0.4           |



| $X_2$ | С | $p(X_2 C)$ |
|-------|---|------------|
| 0     | 0 |            |
| 1     | 0 |            |
| 0     | 1 |            |
| 1     | 1 |            |

| $X_1$       | $X_2$ | С   |     |
|-------------|-------|-----|-----|
| $\lambda_1$ |       | 0   | 1   |
| 1           | 0     | 1.0 | 0.0 |
| 0           | 0     | 0.4 | 0.6 |
| 0           | 1     | 0.6 | 0.4 |
| 0           | 1     | 0.6 | 0.4 |
| 1           | 0     | 0.0 | 1.0 |
| 0           | 0     | 0.0 | 1.0 |
| 1           | 1     | 0.4 | 0.6 |
| 1           | 0     | 0.6 | 0.4 |
| 0           | 1     | 1.0 | 0.0 |
| 1           | 1     | 0.6 | 0.4 |



| $X_2$ | С | $p(X_2 C)$      |
|-------|---|-----------------|
| 0     | 0 | 2,0/5,2=0,385   |
| 1     | 0 | 3,2/5,2=0,615   |
| 0     | 1 | 3.0/4.8 = 0.625 |
| 1     | 1 | 1,8/4,8=0,375   |

| $X_1$ $X_2$ |            | <i>C</i> |     |
|-------------|------------|----------|-----|
| $\lambda_1$ | <b>∧</b> 2 | 0        | 1   |
| 1           | 0          | 1.0      | 0.0 |
| 0           | 0          | 0.4      | 0.6 |
| 0           | 1          | 0.6      | 0.4 |
| 0           | 1          | 0.6      | 0.4 |
| 1           | 0          | 0.0      | 1.0 |
| 0           | 0          | 0.0      | 1.0 |
| 1           | 1          | 0.4      | 0.6 |
| 1           | 0          | 0.6      | 0.4 |
| 0           | 1          | 1.0      | 0.0 |
| 1           | 1          | 0.6      | 0.4 |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.385      |
| 1     | 0 | 0.5        | 0.615      |
| 0     | 1 | 0.5        | 0.625      |
| 1     | 1 | 0.5        | 0.375      |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

| $X_1$      | $X_2$      | С    |      |
|------------|------------|------|------|
| <b>^</b> 1 | <b>^</b> 2 | 0    | 1    |
| 1          | 0          | 1.0  | 0.0  |
| 0          | 0          | 0.41 | 0.59 |
| 0          | 1          | 0.6  | 0.4  |
| 0          | 1          | 0.6  | 0.4  |
| 1          | 0          | 0.0  | 1.0  |
| 0          | 0          | 0.0  | 1.0  |
| 1          | 1          | 0.4  | 0.6  |
| 1          | 0          | 0.6  | 0.4  |
| 0          | 1          | 1.0  | 0.0  |
| 1          | 1          | 0.6  | 0.4  |



|   | $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|---|-------|---|------------|------------|
| ĺ | 0     | 0 | 0.5        | 0.385      |
|   | 1     | 0 | 0.5        | 0.615      |
|   | 0     | 1 | 0.5        | 0.625      |
|   | 1     | 1 | 0.5        | 0.375      |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

| <i>X</i> <sub>1</sub> | $X_2$ | С    |      |
|-----------------------|-------|------|------|
| $\wedge_1$            |       | 0    | 1    |
| 1                     | 0     | 1.0  | 0.0  |
| 0                     | 0     | 0.41 | 0.59 |
| 0                     | 1     | 0.64 | 0.36 |
| 0                     | 1     | 0.64 | 0.36 |
| 1                     | 0     | 0.0  | 1.0  |
| 0                     | 0     | 0.0  | 1.0  |
| 1                     | 1     | 0.64 | 0.36 |
| 1                     | 0     | 0.41 | 0.59 |
| 0                     | 1     | 1.0  | 0.0  |
| 1                     | 1     | 0.64 | 0.36 |



| $X_i$ | С | $p(X_1 C)$ | $p(X_2 C)$ |
|-------|---|------------|------------|
| 0     | 0 | 0.5        | 0.385      |
| 1     | 0 | 0.5        | 0.615      |
| 0     | 1 | 0.5        | 0.625      |
| 1     | 1 | 0.5        | 0.375      |

$$p(c = 0|\mathbf{x}) = \frac{1}{\theta}p(0)\prod_{i=1}^{2}p(x_{i}|0)$$

$$p(c = 1|\mathbf{x}) = \frac{1}{\theta}p(1)\prod_{i=1}^{2}p(x_{i}|1)$$

## En la práctica...

► Estimación de parámetros: Laplace Smoothing

$$\theta_i = \frac{N_i + 1}{N + |L|}$$

Cálculo de probabilidades: cálculo logarítmico

$$\hat{c} = \operatorname*{argm\acute{a}x}\limits_{c} \exp^{\left[\log p(c) + \sum_{i=1}^{2} \log p(x_i|c)\right]}$$





# Aprendizaje no supervisado VC08: Aprendizaje semi-supervisado

Félix José Fuentes Hurtado felixjose.fuentes@campusviu.es

Universidad Internacional de Valencia

