International Rectifier

IRL2910PbF

HEXFET® Power MOSFET

Lead-Free

- Logic-Level Gate Drive
- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	55		
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	39	— A	
I _{DM}	Pulsed Drain Current ①	190		
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	200	W	
	Linear Derating Factor	1.3	W/°C	
V _{GS}	Gate-to-Source Voltage	± 16	V	
E _{AS}	Single Pulse Avalanche Energy②	520	mJ	
I _{AR}	Avalanche Current ① ⑤	29	A	
E _{AR}	Repetitive Avalanche Energy®	20	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	°C/W
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{0JA}	Junction-to-Ambient		62	°C/W

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.026	Ω	V _{GS} = 10V, I _D = 29A ④
				0.030		V _{GS} = 5.0V, I _D = 29A ④
				0.040		V _{GS} = 4.0V, I _D = 24A ④
$V_{GS(th)}$	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	28			S	V _{DS} = 50V, I _D = 29A
	Desirate Consolidation of the			25		V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current	Drain-to-Source Leakage Current 2	250	μΑ	V _{DS} = 80V, V _{GS} = 0V, T _J = 150°C	
l	Gate-to-Source Forward Leakage			100		V _{GS} = 16V
IGSS	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
Q_g	Total Gate Charge			140		I _D = 29A
Q_{gs}	Gate-to-Source Charge			20	nC	V _{DS} = 80V
Q_{gd}	Gate-to-Drain ("Miller") Charge			81		V _{GS} = 5.0V, See Fig. 6 and 13 ④
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 50V$
tr	Rise Time		100			$I_{D} = 29A$
$t_{\text{d(off)}} \\$	Turn-Off Delay Time		49		ns	$R_G = 1.4\Omega, V_{GS} = 5.0V$
t _f	Fall Time		55			$R_D = 1.7\Omega$, See Fig. 10 4
L _D	Internal Drain Inductance		4.5		- nH	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		3700			$V_{GS} = 0V$
Coss	Output Capacitance		630		рF	$V_{DS} = 25V$
Crss	Reverse Transfer Capacitance		330			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current					MOSFET symbol
	(Body Diode)	y Diode)		- 55	_	showing the
I _{SM}	Pulsed Source Current		1	190	A	integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 29A, V _{GS} = 0V 4
t _{rr}	Reverse Recovery Time		240	350		T _J = 25°C, I _F = 29A
Qrr	Reverse RecoveryCharge		1.8	2.7	μC	di/dt = 100A/µs 4
ton	Forward Turn-On Time	Intr	Intrinsic tum-on time is negligible (tum-on is dominated by L _S +L _D)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $^{\circ}$ V_{DD} = 25V, starting T_J = 25°C, L = 1.2mH R_G = 25 Ω , I_{AS} = 29A. (See Figure 12)
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

IRL2910PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 2 CONTROLLING DIMENSION: INCH
- $\,\,$ OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.