HUMAN-COMPUTER INTERACTION

THIRD **EDITION**

DIX FINLAY ABOWD BEALE

chapter 16

dialogue notations and design

Dialogue Notations and Design

- Dialogue Notations
 - Diagrammatic
 - state transition networks, JSD diagrams, flow charts
 - Textual
 - formal grammars, production rules, CSP
- Dialogue linked to
 - the semantics of the system what it does
 - the presentation of the system how it looks
- Formal descriptions can be analysed
 - for inconsistent actions
 - for difficult to reverse actions
 - for missing actions
 - for potential miskeying errors

what is dialogue?

- conversation between two or more parties
 - usually cooperative
- in user interfaces
 - refers to the structure of the interaction
 - syntactic level of human-computer `conversation'

levels

- lexical shape of icons, actual keys pressed
- syntactic order of inputs and outputs
- semantic effect on internal application/data

structured human dialogue

- human-computer dialogue very constrained
- some human-human dialogue formal too ...

Minister: do you man's name take this woman ...

Man: I do

Minister: do you woman's name take this man ...

Woman: I do

Man: With this ring I thee wed

(places ring on womans finger)

Woman: With this ring I thee wed (places ring ..)

Minister: I now pronounce you man and wife

lessons about dialogue

- wedding service
 - sort of script for three parties
 - specifies order
 - some contributions fixed "I do"
 - others variable "do you man's name ..."
 - instructions for ring concurrent with saying words "with this ring ..."
- if you say these words are you married?
 - only if in the right place, with marriage licence
 - syntax not semantics

... and more

- what if woman says "I don't"?
- real dialogues often have alternatives:

Judge: How do you plead guilty or not guilty?

Defendant: either Guilty or Not guilty

- the process of the trial depends on the defendants response
- focus on normative responses
 - doesn't cope with judge saying "off with her head"
 - or in computer dialogue user standing on keyboard!

dialogue design notations

- dialogue gets buried in the program
- in a big system can we:
 - analyse the dialogue:
 - can the user always get to see current shopping basket
 - change platforms (e.g. Windows/Mac)
 - dialogue notations helps us to
 - analyse systems
 - separate lexical from semantoc
- ... and before the system is built
 - notations help us understand proposed designs

graphical notations

state-transition nets (STN)
Petri nets, state charts
flow charts, JSD diagrams

State transition networks (STN)

- circles states
- arcs actions/events

State transition networks - events

arc labels a bit cramped because:

State transition networks - states

- labels in circles a bit uninformative:
 - states are hard to name

Hierarchical STNs

- managing complex dialogues
- named sub-dialogues

Concurrent dialogues - I simple dialogue box

Text Style

<u>example</u>

Concurrent dialogues - II three toggles - individual STNs

Concurrent dialogues - III bold and italic combined

Concurrent dialogues - IV all together - combinatorial explosion

escapes

- 'back' in web, escape/cancel keys
 - similar behaviour everywhere
 - end up with spaghetti of identical behaviours

try to avoid this

e.g. on high level diagram

'normal' exit for each submenu

plus separate escape arc active 'everywhere' in submenu

help menus

- similar problems
 - nearly the same everywhere
 - but return to same point in dialogue
 - could specify on STN ... but very messy
 - usually best added at a 'meta' level

Petri nets

- one of the oldest notations in computing!
- flow graph:
 - placesa bit like STN states
 - transitionsa bit like STN arcs
 - counterssit on places (current state)
- several counters allowed
 - concurrent dialogue states
- used for UI specification (ICO at Toulouse)
 - tool support Petshop

Petri net example

represented

when all input as a new counter places have counters

State charts

- used in UML
- extension to STN
 - hierarchy
 - concurrent sub-nets
 - escapes
 - OFF always active
 - history
 - link marked H
 goes back to last
 state on re-entering
 subdialogue

Flowcharts

- familiar to programmers
- boxes
 - process/event
 - not state
- use for dialogue (not internal algorithm)

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HUMAN-COMPUTER INTERACTION THIRD EDITION

it works!

- formal notations too much work?
- COBOL transaction processing
 - event-driven like web interfaces
 - programs structure≠ dialogue structure
- used dialogue flow charts
 - discuss with clients
 - transform to code
 - systematic testing
 - 1000% productivity gain
- formalism saves time!!

JSD diagrams

for tree structured dialogues

textual notations

grammars production rules CSP and event algebras

Textual - Grammars

Regular expressions

```
sel-line click click* dble-click
```

- compare with JSD
 - same computational model
 - different notation
- BNF

- more powerful than regular exp. or STNs
- Still NO concurrent dialogue

Production rules

Unordered list of rules:

if condition then action

- condition based on state or pending events
- every rule always potentially active
- Good for concurrency
- Bad for sequence

Event based production rules

```
Sel-line → first
C-point first → rest
C-point rest → rest
D-point rest → < draw line >
```

- Note:
 - events added to list of pending events
 - `first' and `rest' are internally generated events
- Bad at state!

Prepositional Production System

- State based
- Attributes:

```
Mouse: { mouse-off, select-line, click-point, double-click }
Line-state: { menu, first, rest }
```

Rules (feedback not shown):

```
select-line → mouse-off first

click-point first → mouse-off rest

click-point rest → mouse-off

double-click rest → mouse-off menu
```

Bad at events!

CSP and process algebras

- used in Alexander's SPI, and Agent notation
- good for sequential dialogues

```
Bold-tog = select-bold? \rightarrow bold-on \rightarrow select-bold? \rightarrow bold-off \rightarrow Bold-tog Italic-tog = . . . Under-tog = . . .
```

and concurrent dialogue

```
Dialogue-box = Bold-tog || Italic-tog || Under-tog
```

but causality unclear

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HUMAN-COMPUTER INTERACTION THIRD EDITION

Dialogue Notations -Summary

- Diagrammatic
 - STN, JSD, Flow charts
- Textual
 - grammars, production rules, CSP
- Issues
 - event base vs. state based
 - power vs. clarity
 - model vs. notation
 - sequential vs. concurrent

Semantics Alexander SPI (i)

- Two part specication:
 - EventCSP pure dialogue order
 - EventISL target dependent semantics
- dialogue description centralised
- syntactic/semantic trade-off tollerable

Semantics Alexander SPI (ii)

EventCSP

```
Login = login-mess -> get-name -> Passwd
Passwd = passwd-mess -> (invalid -> Login [] valid -> Session)
```

EventISL

```
event: login-mess
    prompt: true
    out: "Login:"
event: get-name
    uses: input
    set: user-id = input
event: valid
    uses: input, user-id, passwd-db
    wgen: passwd-id = passwd-db(user-id)
```


Semantics - raw code

- event loop for word processor
- dialogue description
 - very distributed
- syntactic/semantic trade-off
 - terrible!

```
switch ( ev.type ) {
 case button down:
    if (in text (ev.pos)) {
        mode = selecting;
        mark selection start(ev.pos);
  case button up:
    if ( in text ( ev.pos )
              && mode == selecting ) {
        mode = normal;
        mark selection end(ev.pos);
  case mouse move:
    if (mode == selecting ) {
        extend selection (ev.pos);
  /* end of switch */
```


Action properties

- completeness
 - missed arcs
 - unforeseen circumstances
- determinism
 - several arcs for one action
 - deliberate: application decision
 - accident: production rules
- nested escapes
- consistency
 - same action, same effect?
 - modes and visibility

Checking properties (i)

 completeness – double-click in circle states? double click ick on click on centre circumference Circle 1 Circle 2 Finish rubber band draw circle select 'circle' Start Menu click on select 'line' double click first point Line 2 Finish Line 1 rubber band draw last line click on point draw a line

Checking properties (ii)

Reversibility:

- to reverse select `line'

Checking properties (ii)

- to reverse select `line'
- click

Checking properties (ii)

Start

Reversibility:

- to reverse select `line'

– click - double click

Finish

double click//

draw last

line

Checking properties (ii)

Reversibility:

to reverse select `line'

– click - double click - select `graphics'

Start

select 'circle'

select 'line'

Menu

- (3 actions)

N.B. not undo

click on

rubber band

Line 2

click on point draw a line

Line 1

State properties

- reachability
 - can you get anywhere from anywhere?
 - and how easily
- reversibility
 - can you get to the previous state?
 - but NOT undo
- dangerous states
 - some states you don't want to get to

Dangerous States

word processor: two modes and exit

F1 - changes mode

F2 - exit (and save)

Esc - no mode change

but ... Esc resets autosave

Dangerous States (ii)

- exit with/without save ⇒ dangerous states
- duplicate states semantic distinction

Lexical Issues

- visibility
 - differentiate modes and states
 - annotations to dialogue
- style
 - command verb noun
 - mouse based noun verb
- layout
 - not just appearance ...

layout matters

• word processor - dangerous states

• old keyboard - OK

layout matters

new keyboard layout

intend F1-F2 (save)
finger catches Esc

layout matters

new keyboard layout

finger catches Esc F1-Esc-F2 - disaster!

Dialogue Analysis - Summary

- Semantics and dialogue
 - attaching semantics
 - distributed/centralised dialogue description
 - maximising syntactic description
- Properties of dialogue
 - action properties: completeness, determinism, consistency
 - state properties: reachability, reversibility, dangerous states
- Presentation and lexical issues
 - visibility, style, layout
 - N.B. not independent of dialogue

Dialogue Analysis - Summary

- Semantics and dialogue
 - attaching semantics
 - distributed/centralised dialogue description
 - maximising syntactic description
- Properties of dialogue
 - action properties: completeness, determinism, consistency
 - state properties: reachability, reversibility, dangerous states
- Presentation and lexical issues
 - visibility, style, layout
 - N.B. not independent of dialogue

Digital watch - User Instructions

- two main modes
- limited interface3 buttons
- button A changes mode

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HUMAN-COMPUTER INTERACTION

Digital watch - User Instructions

- dangerous states
 - guarded... by two second hold
- completeness
 - distinguish depress A and release A
 - what do they do in all modes?

Digital watch - Designers instructions

and ...

that's just one button

