A continuing overview of STAT 20 R

JE Hug

9/16/2020

Welcome to this document created by Josh Hug, one of the GSI's for STAT 20. This document will try and keep up with our R progress as we go on and I will add in depth (time permitting) explanations of what we are doing as I go on. Remember to check github for the latest updates to this document as it progresses!

A generic glossary of R commands that we have used so far.

```
# these are the packages we are using so far
library(dplyr)
library(ggplot2)
```

I'll begin with some simple use of the main dplyr functions we use, on the palmer penguins data set (make sure to install it if you don't have it yet). I prefer using this dataset over something like iris due to the fact that while iris is a classic dataset, it was compiled by Ronald Fisher (a prominent eugenicist) and published in a eugenics journal originally. This dataset provides a nice alternative with similar properites.

1 Filter, Select, Mutate Basics

The key facts here are to use select if we want

```
# Here I will use the palmer penguins data set

# if you don't have it installed

# install.packages("palmerpenguins")

library(palmerpenguins) # where this data set comes from

glimpse(penguins) # a nice function to take an easy look at the data

## Rows: 344
```

```
## Columns: 8
## $ species
                       <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, A...
## $ island
                       <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torge...
## $ bill_length_mm
                       <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34....
## $ bill_depth_mm
                       <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18....
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, ...
## $ body_mass_g
                       <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 347...
## $ sex
                       <fct> male, female, female, NA, female, male, female, m...
## $ year
                       <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2...
```

Suppose I wanted to make a new column bill_length_cm and body_mass_kg (where I convert units into cm and kg respectively)

We can use mutate to add a new column as some function of another column

```
new_pen <- mutate(penguins, bill_length_cm = bill_length_mm / 10, body_mass_kg = body_mass_g / 1000 )</pre>
glimpse(new_pen)
## Rows: 344
## Columns: 10
## $ species
                       <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, A...
## $ island
                       <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torge...
                       <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34....
## $ bill length mm
## $ bill_depth_mm
                       <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18....
## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, ...
                       <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 347...
## $ body_mass_g
## $ sex
                       <fct> male, female, female, NA, female, male, female, m...
                       <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2...
## $ year
## $ bill_length_cm
                       <dbl> 3.91, 3.95, 4.03, NA, 3.67, 3.93, 3.89, 3.92, 3.4...
## $ body_mass_kg
                       <dbl> 3.750, 3.800, 3.250, NA, 3.450, 3.650, 3.625, 4.6...
```

Now suppose I want penguins that weigh less than like 3000 g (3kg) only. Since this is subsetting over rows with a specific condition we use the filter function from dplyr.

```
new_pen_light<- filter(new_pen, body_mass_kg <3 )
glimpse(new_pen_light)</pre>
```

```
## Rows: 9
## Columns: 10
                       <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, A...
## $ species
## $ island
                       <fct> Dream, Biscoe, Biscoe, Biscoe, Dream, Biscoe, Tor...
## $ bill length mm
                       <dbl> 37.5, 34.5, 36.5, 36.4, 33.1, 37.9, 38.6, 43.2, 46.9
## $ bill_depth_mm
                       <dbl> 18.9, 18.1, 16.6, 17.1, 16.1, 18.6, 17.0, 16.6, 16.6
## $ flipper length mm <int> 179, 187, 181, 184, 178, 193, 188, 187, 192
## $ body_mass_g
                       <int> 2975, 2900, 2850, 2850, 2900, 2925, 2900, 2900, 2700
## $ sex
                       <fct> NA, female, female, female, female, female, female...
                       <int> 2007, 2008, 2008, 2008, 2008, 2009, 2009, 2007, 2008
## $ year
## $ bill_length_cm
                       <dbl> 3.75, 3.45, 3.65, 3.64, 3.31, 3.79, 3.86, 4.32, 4.69
## $ body_mass_kg
                       <dbl> 2.975, 2.900, 2.850, 2.850, 2.900, 2.925, 2.900, ...
```

2 Histograms in R

Take a look at this cheat sheet, you're probably extremely overwhelmed by this and personally I don't know what at least half of the stuff on this page does but it will save you a lot of time from googling. There are actually cheat sheets for most tidyverse (what these packages are a part of) packages so you can check out ones for dplyr and such.

2.1 General format of ggplot

The general format of ggplot is that we call some generic function, then we can just build on it by (literally) adding to it other components. I will go over one of the problems from the worksheet