Maximizing Electric fields wrt GND

Phantom electric field amplitudes. (e123 t1)

E pulse stimulation amplitudes with different GNDing strategies in a petri dish of 0.9% saline, electrodes in saline are 7mm apart.

- E pulse, no GND attached $598\mu V$ peak-peak
- E pulse, GND plate underneath petri dish, 497 microvolts peak-peak
- E pulse, GND in solution $217\mu V$.

Note: I repeated each of these measures 5 times, and the trend holds.

E frequency switch modulation amplitudes with different GNDing strategies. I do a strict filter above 1MHz to obtain the 1MHz + 1020Hz which may be attenuating the amplitudes a tiny bit. Either way, the amplitude trend with GND distance still holds.

- fswitch, no GND attached $272\mu V$ peak-peak
- fswitch, GND plate underneath petri dish, 235 microvolts peak-peak
- fswitch, GND in solution $61.3\mu V$.

This suggests, that to wirelessly transmit a signal to another body separated by air, I should have the GND as far away as possible.

Quasistatic Capacitor

When connected to GND plate, the sphere's potential is 0. The other plate has 50V. When not connected to the GND the sphere has a higher potential. I am not sure if I am successfully applying a complex permittivity, but I have selected the material: blood.

GND

Properties

▲ Magnetic Properties

Show Expressions >