Optimal Binary Search Tree (with dummy keys)

Optimal binary Search Trees

Given: search probabilities p_i for each key k_i $(i=1,\ldots,n)$ and q_i of each interval d_i $(i=0,\ldots,n)$ between search keys of a binary search tree. $\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$.

Optimal binary Search Trees

Given: search probabilities p_i for each key k_i $(i=1,\ldots,n)$ and q_i of each interval d_i $(i=0,\ldots,n)$ between search keys of a binary search tree.

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1.$$

Wanted: optimal search tree T with key depths $\operatorname{depth}(\cdot)$, that minimizes the expected search costs

$$C(T) = \sum_{i=1}^{n} p_i \cdot (\operatorname{depth}(k_i) + 1) + \sum_{i=0}^{n} q_i \cdot (\operatorname{depth}(d_i) + 1)$$
$$= 1 + \sum_{i=1}^{n} p_i \cdot \operatorname{depth}(k_i) + \sum_{i=0}^{n} q_i \cdot \operatorname{depth}(d_i)$$

Example

Expected Frequencies 0 4 5 0.15 0.10 0.05 0.20 0.10 p_i 0.05 0.10 0.05 0.05 0.05 0.10 q_i

Example

Search tree with expected costs 2.8

Search tree with expected costs 2.75

Structure of a optimal binary search tree

- Subtree with keys k_i, \ldots, k_j and intervals d_{i-1}, \ldots, d_j must be optimal for the respective sub-problem.³⁹
- Consider all subtrees with roots k_r and optimal subtrees for keys k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j

³⁹The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.

Sub-trees for Searching

Expected Search Costs

Let depth_T(k) be the depth of a node k in the sub-tree T. Let k be the root of subtrees T_r and T_{L_r} and T_{R_r} be the left and right sub-tree of T_r . Then

$$\operatorname{depth}_{T}(k_{i}) = \operatorname{depth}_{T_{L_{r}}}(k_{i}) + 1, (i < r)$$

$$depth_T(k_i) = depth_{T_{R_r}}(k_i) + 1, (i > r)$$

Expected Search Costs

Let e[i,j] be the costs of an optimal search tree with nodes k_i,\ldots,k_j . Base case e[i,i-1], expected costs d_{i-1} Let $w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$. If k_r is the root of an optimal search tree with keys k_i,\ldots,k_j , then

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

with
$$w(i, j) = w(i, r - 1) + p_r + w(r + 1, j)$$
:

$$e[i, j] = e[i, r - 1] + e[r + 1, j] + w(i, j).$$

Dynamic Programming

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & \text{if } i \le j \end{cases}$$

Computation

Tables $e[1\ldots n+1,0\ldots n], w[1\ldots n+1,0\ldots m], r[1\ldots n,1\ldots n]$ Initially

 $lacksquare e[i,i-1] \leftarrow q_{i-1}$, $w[i,i-1] \leftarrow q_{i-1}$ for all $1 \leq i \leq n+1$.

We compute

$$w[i, j] = w[i, j - 1] + p_j + q_j$$

$$e[i, j] = \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w[i, j]\}$$

$$r[i, j] = \arg\min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w[i, j]\}$$

for intervals [i,j] with increasing lengths $l=1,\ldots,n$, each for $i=1,\ldots,n-l+1$. Result in e[1,n], reconstruction via r. Runtime $\Theta(n^3)$.

Example

	0					
$\overline{p_i}$		0.15	0.10	0.05	0.10	0.20
q_{i}	0.05	0.10	0.05	0.05	0.05	0.10

