Feuille d'exercice n° 18 : Fractions rationnelles - Indications

Exercice 7

- 1) a) Soit $n \in \mathbb{N}$. Calculer $\left(X + \frac{1}{X}\right) \left(X^n + \frac{1}{X^n}\right) \left(X^{n-1} + \frac{1}{X^{n-1}}\right)$.
 - b) Par récurrence double, montrer, que pour tout entier $n \in \mathbb{N}$, il existe un polynôme $P_n \in \mathbb{R}[X]$ de degré n tel que

$$X^n + \frac{1}{X^n} = P_n \left(X + \frac{1}{X} \right).$$

- c) Montrer que pour tout $k \in [0, n-1]$, on a $2\cos\frac{(2k+1)\pi}{2} = \left(e^{\frac{(2k+1)\pi}{2n}}\right)^n + \frac{1}{\left(e^{\frac{(2k+1)\pi}{2n}}\right)^n}$.
- d) En déduire n racines distinctes de P_n .
- e) Montrer que P_n est unique et donnez sa factorisation dans $\mathbb{C}[X]$.
- 2) Soit $n \in \mathbb{N}^*$ et $k \in [0, n-1]$. On note $\lambda_k = 2\cos\frac{(2k+1)\pi}{2n}$ et $\mu_k = e^{\frac{(2k+1)\pi}{2n}}$.
 - a) Montrer que $nX^n \frac{n}{X^n} = \left(X \frac{1}{X}\right)P_n'\left(X + \frac{1}{X}\right)$.
 - **b)** Montrer que $\frac{1}{P'_n(\lambda_k)} = \frac{\sin\frac{(2k+1)\pi}{2n}}{n\sin\frac{(2k+1)\pi}{2}}.$
 - c) Décomposer $\frac{1}{P_n}$ en éléments simples dans $\mathbb{C}(X)$.

Exercice 1 Montrer que la dérivée d'une fraction rationnelle n'est jamais de degré -1 (relisez une certaine démo du cours !). Puis utilisez la DEES.