Punctual presentability of trees

Dariusz Kalociński

Institute of Computer Science, Polish Academy of Sciences

CSTI workshop, July 17, 2024

Computable presentability

- a countable structure with domain N is computable if its relations and functions are uniformly Turing computable [Mal'tsev, 1961, Rabin, 1960, Tennenbaum, 1959]
- ullet ${\mathscr A}$ is computably presentable if ${\mathscr A}$ is isomorphic to some computable structure
- computable presentability of familiar classes of structures (e.g., linear orders, Boolean algebras, and so on) has been studied extensively
- we want to go below computable

Subrecursive model theory

- algebraic structures presented by finite state automata [Khoussainov and Nerode, 1995],
- polynomial-time algebra [Cenzer and Remmel, 1991].
- Kalimullin, Melnikov, and Ng [Kalimullin et al., 2017] initiated the systematic study of punctual presentations, that lies somewhere in the between of computability and complexity theory:

Definition ([Kalimullin et al., 2017])

A structure with domain $\mathbb N$ is *punctual* (or, fully primitive recursive) if its relations and functions are uniformly primitive recursive.

- we forbid unbounded loops
- theoretical underpinning of online computation [Bazhenov et al., 2019]

Punctual robustness

Definition

A class of structures $\mathfrak K$ is *punctually robust* if every computable member of $\mathfrak K$ is punctually presentable.

In [Kalimullin et al., 2017]:

- punctually robust:
 - torsion-free abelian groups
 - Boolean algebras
 - equivalence structures
 - abelian p-groups
 - linear orders
- not punctually robust:
 - undirected graphs
 - Archimedean ordered abelian groups
 - torsion abelian groups

Trees

- the abstract concept of a tree is consistent across disciplines
- different representations of trees
- how to turn a given representation into a structure?

Trees represented as:

- lacktriangledown prefix-closed subsets of $\mathbb{N}^{<\mathbb{N}}$
- (un)directed graphs
- partially ordered sets
- predecessor functions

sequential trees graph-theoretic trees partially-ordered trees predecessor trees

SEQUENTIAL TREES

From sequential trees to structures

Definition (sequential tree)

 $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is a tree if for all $\alpha, \beta \in \mathbb{N}^{<\mathbb{N}}$: $\alpha \in T \land \beta \subset \alpha \implies \beta \in T$.

Definition (tentative)

Consider τ -structures, where $\tau = \{R_1, R_2, ...\}$ is a relational vocabulary with R_n being n-ary, for n > 0. We say $\mathscr A$ is a sequential tree structure if for every n, for every $x_1, ..., x_n \in \mathscr A$, $R_n(x_1, ..., x_n)$ implies $R_k(x_1, ..., x_k)$ for k < n.

GRAPH-THEORETIC TREES

Definition (graph-theoretic tree)

(V, E), where E is a binary relation, is a graph-theoretic tree if (V, E) is a connected acyclic (un)directed graph.

Theorem (essentially [Cenzer and Remmel, 1998])

The class of graph-theoretic trees is punctually robust.

Case 1: there is a node with infinitely many children

Case 2: no node has infinitely many children

PARTIALLY-ORDERED TREES

Definition (partially ordered tree)

A partial order (P, \leq) is a tree if (P, \leq) has a unique maximal element and, for every $x \in P$, $P_{>x}$ is a finite linear order.

Theorem (K.)

The class of partially-ordered trees is not punctually robust.

- build a computable p.o. tree $\mathscr{T} = (\mathbb{N}, \leq_T)$ such that for every $i \in \mathbb{N}$: $\mathscr{T} \not\cong \mathscr{P}_i = (\mathbb{N}, p_i)$, where p_i is an i-th p.r. binary relation.
- ullet ${\mathscr T}$ will be binary and uniquely branching.
- maintain a dynamic set $F \subset \mathscr{T}$
- a node x is **closed** if for some $y \ge x$, y is in F (stage-sensitive); otherwise x is **open**
- at odd stages the tree grows through open leaves
- at even stages, the strategies for \mathscr{P}_i monitor the relationship between \mathscr{T} and \mathscr{P}_i and change open vs closed nodes to satisfy R_i

Growing the tree

binary branching b_j

Changing open vs closed nodes

PREDECESSOR TREES

Definition (predecessor tree)

Let A be a set and let $T: A \to A$. (A, T) is a *predecessor tree*, if there is a unique $r \in A$ such that T(r) = r, and for every $x \in A$ there exists $i \in \mathbb{N}$ such that $T^i(x) = r$. The unique r is called the root.

Theorem (MFCS '24 paper with San Mauro & Wrocławski)

The class of predecessor trees is not punctually robust.

- build a computable predecessor tree $\mathscr{T} = (\mathbb{N}, T)$ such that $\mathscr{T} \not\cong \mathscr{P}_i = (\mathbb{N}, p_i)$, where p_i is the *i*-th p.r. unary function.
- \bullet $\mathscr T$ will be binary and uniquely branching (explain)
- approximating (\mathbb{N}, p_i)

Outside-branch strategy (very roughly)

- ullet an approximation of \mathscr{P}_i branches outside the current \mathscr{T}
- \bullet avoid this branching length in ${\mathscr T}$ by attaching to the leaves of ${\mathscr T}$ very long binary branchings
- this kills $\mathscr{T} \cong \mathscr{P}_i$

Inside-branch strategy (very roughly)

- ullet an approximation of \mathscr{P}_i branches inside the current \mathscr{T} at a node x
- $\bullet \ \text{forbid growing} \ \mathcal{T} \ \text{from} \ x \\$
- this kills $\mathscr{T} \cong \mathscr{P}_i$

Implications for (semi)lattices

Corollary

The following classes of structures are not punctually robust:

- join semilattices,
- meet semilattices,
- (complemented) lattices.

This remains valid under order-theoretic and algebraic interpretation.

Add a least element to the computable tree from the result on partially-ordered trees.

Recap and conclusions

- punctual robustness of trees under various structural definitions
- interaction between structure and p.r. computatation
- intital (invalid) suspicion: punctual robustness depends on whether a signature is relational or functional
- punctual robustness is contingent on the mode of representation
- (semi)lattices are not punctually robust (previous slide)

Further directions

- Boolean algebras are punctually robust [Kalimullin et al., 2017].
 - Complemented lattices are not (this talk)
 - Since Boolean algebras are complemented distributive lattices:
- **Q** Determine whether the class of distributive lattices is punctually robust.
 - 2 Consider a more general concept of a partially ordered tree:

Definition (from set theory, e.g. [Jech, 2007])

A partially ordered set (P, \leq) is a set-theoretic tree if it has a least element and for every $x \in P$, $P_{\leq x}$ is well-ordered by \leq .

∇ Investigate punctual robustness of set-theoretic trees.

Thank you for your attention

- Bazhenov, N., Downey, R., Kalimullin, I., and Melnikov, A. (2019). Foundations of online structure theory.
 - Bulletin of Symbolic Logic, 25(2):141–181.
 - Publisher: Cambridge University Press.
 - Cenzer, D. and Remmel, J. (1991).
 Polynomial-time versus recursive models.

 Annals of Pure and Applied Logic, 54(1):17–58.
- Cenzer, D. and Remmel, J. B. (1998).
 Feasible graphs with standard universe.
 - Annals of Pure and Applied Logic, 94(1):21–35.
- Jech, T. (2007).

 Set Theory: The Third Millennium Edition, revised and expanded.

 Seringer Managembe in Mathematics. Springer Parlin Heidelberg.
 - Springer Monographs in Mathematics. Springer Berlin Heidelberg.
 - Kalimullin, I., Melnikov, A., and Ng, K. M. (2017). Algebraic structures computable without delay. *Theoretical Computer Science*, 674:73–98.

Khoussainov, B. and Nerode, A. (1995).

Automatic presentations of structures.

In Leivant, D., editor, *Logic and Computational Complexity*, pages 367–392, Berlin, Heidelberg. Springer Berlin Heidelberg.

Mal'tsev, A. I. (1961).

Constructive algebras I.

Russian Mathematical Surveys, 16(3):77.

Publisher: IOP Publishing.

Rabin, M. O. (1960).

Computable algebra, general theory and theory of computable fields. *Transactions of the American Mathematical Society*, 95(2):341–360.

Publisher: JSTOR.

Tennenbaum, S. (1959).

Non-archimedean models for arithmetic.

Notices of the American Mathematical Society, 6(270):44.