Čtení z vyrovnávací paměti je synchronní (data jsou současně načtena z FS na disku do vyrovnávací paměti i do procesu). Zápis obsahu vyrovnávací paměti do FS na disku je asynchronní – prováděný periodicky pomocí systém. démona (např. *syncer* v UNIXu každých 30 sekund).

Systémy souborů

FAT (File Allocation Table)

- jména souborů:
 - 8+3 velkých znaků: jméno+přípona (FAT-12, FAT-16)
 - o 256 znaků (FAT-32).

Rozložení FS:

	Boot sector + partition table	FAT	FAT (duplicate)	Root directory	Data blocks (Files and directories)
- 1	partition table		(5.5.)		(1100 01111 01100101100)

Položka adresáře ve FAT-12 a FAT-16 (32 bajtů):

Položka adresáře ve FAT-32 (32 bajtů):

- každý soubor může mít dvě jména (jméno 8+3 a dlouhé jméno)
- dlouhé jméno je uloženo ve více položkách adresáře

Přístup k souboru: - Jak je vidět, tak tabulka sama o sobě neobsahuje bližší informace o svých položkách. Tyto jsou obsaženy až v datových blocích daných položek. Kořenový adresář má však indformace ve svojí tabulce. Vyhledávání probíhá takto: prostě v tabulce kořenového adresáře najdeme index do FAT k podadresáři *Directory_A*. V tabulce FAT bude pouze napsané číslo datového bloku, který obsahuje informace o adresáři. Tak se podíváme do toho bloku a najdeme tam informace o souborech adresáře, resp. jejich indexy do tabulky FAT. Atd.atd.

/Directory_A/File_B

UFS (Unix File System)

Rozložení FS:

Přístup k souboru: Každý i-node obsahuje ukazatele na datové bloky souborů, takže si nejprve v tabulce i-nodů u adresáře Root najdeme číslo datového bloku, který obsahuje informace o podadresářích, podíváme se do toho bloku a tam je u hledaného podadresáře index do tabulky i-nodů, tedy číslo i-nodu, který obsahuje bližší info o tomto adresáři. Pokračujeme analogicky, než najdeme i-node hledaného souboru a ten obsahuje čísla jeho datových bloků.

/Directory_A/File_B

NTFS (New Technology File System)

- jméno souboru:
 - cesta (32767 znaků) + jméno (255 znaků) v UNICODE
- 64 bitové diskové adresy
- datový blok (Cluster): 512B, ..., 64KB
- podpora hard linků i symbolických linků
- umožňuje kompresi a kryptování
- Tabulka souborů se jmenuje Master File Table (MFT) je to obdoba FAT (file alocation table)

Rozložení FS:

Boot sector	Master File Table	Data blocks
partition table	MFT	(Files and directories)

Příklad Master File Table (MFT):

File

0	\$Mft	Master File Table	
1	\$MftMirr	Mirror copy of MFT	
1 2 3	\$LogFile	Log file to recovery	
3	\$Volume	Volume file	
4 5	\$AttrDef	Attribute definitions	
5	\-	Root directory	
6 7	\$Bitmap	Bitmap of blocks used	
7	\$Boot	Bootstrap loader	
8	\$BadClusList	List of bad blocks	
9	\$Secure	Security descriptors for all files	
10	\$Upcase	Case conversion table	
11	\$Extend	Extentions: quotas, etc	
12	(Reserved for future use)		
13	(Reserved for future use)		
14	(Reserved for future use)		
15	(Reserved for future use)		
16	User file		
17	User file		
18	,		
19			
20			

Položka MFT:

- popisuje jeden soubor / adresář
- skládá se z posloupnosti dvojic (attribute header a hodnota)
- rezidentní atribut = attribute header i hodnota jsou v položce MFT
- nerezidentní atributy = attribute header je v položce MFT, ale hodnota je uložena v datových blocích

Přístup k souboru: Je to podobné jako u předešlých filesystémů...

C:\Directory_A\File_B

Materiály

- X36OSY, přednáška 11
- Wikipedia Unix File System
- http://www.programujte.com/view.php?cisloclanku=2005083102

RAID.

Něco na úvod o Redundant Array of Independent Disks (RAID)

- 1988, University of California at Berkeley
- SLED = Single Large Expensive Disk
- RAID = Redundant Array of Independent (Inexpensive) Disks
- obecná charakteristika:
 - o RAID je množina fyzických disků, které OS vidí jako jeden logický disk
 - o data jsou distribuována mezi jednotlivé fyzické disky