Processador 8 bits

INTEGRANTES: Marcus Vinícius Ígor Pereira

Descrição do Processador

- Processador RISC;
- Baseado no MIPS;
- Processador de 8bits;

Formatos das Instruções

Instrução do tipo R					
Opcode	rs	rt			
4bits	2bits	2bits			
7-4	3-2	1-0			
Instrução do tipo I					
Opcode	rs	Imediato			
4bits	2bits	2bits			
7-4	3-2	1-0			
Instrução do tipo J					
Opcode	Endereço				
4bits	4bits				
7-4	3-0				

Lista de operações suportadas

Opcode	Sintaxe	Formato	Significado	Exemplo
0000	ADD	R	Soma	add \$s0, \$s1
0001	ADDI		Soma imediata	<i>addi</i> \$s0, 1
0010	SUB	R	Subtração	<i>sub</i> \$s0, \$s1
0011	SUBI	1	Subtração imediata	<i>sub</i> i \$s0, 3
0100	LW	_	Load	<i>lw</i> \$s0 ram (00)
0101	SW	I	Store	sw \$s0 ram (00)
0110	ш	_	Load imediato	<i>li</i> \$s0 2
0111	BEQ	J	Branch Equal	beq endereço
1000	IF	J	If Equal	<i>lf</i> \$s0 \$s1
1001	JUMP	J	Jump	<i>j</i> endereço (0000)

Datapath do Processador

Teste do ADDI, SUB e SUBI

Teste do Fibonacci

```
-- TESTE FIBONACCI

0 => "00010000", -- ADDI SO 0

1 => "01010000", -- SW SO

2 => "00010001", -- ADDI SO 1

3 => "00010101", -- ADDI S1 1

4 => "01001100", -- LW S2 00

5 => "000001101", -- ADD S2 S1

6 => "00000100", -- ADD S1 S0

7 => "010000000", -- LW S0 00

8 => "00000011", -- ADD S0 S2

9 => "10010100", -- J 0100
```


sW s0

Sexta instrução ADD s2 s1

Teste do Fibonacci

Setima instrução ADD s1 s0

Oitava instrução Nona instrução Lw s0 00

ADD s0 S2

décima instrução j 0100

Teste do Fibonacci

Conclusão

Este trabalho apresentou o projeto e implementação do processador de 8 bits, que foi uma rica oportunidade para pôr em prática o que nos foi ensinado na disciplina de AOC.

OBRIGADO PELA ATENÇÃO!!!