Embedding Formulations and Complexity for Unions of Polyhedra

Juan Pablo Vielma

Massachusetts Institute of Technology

Workshop on Combinatorial Optimization, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Germany. November, 2014.

Supported by NSF grant CMMI-1351619

(Linear) Mixed <u>0-1</u> Integer Formulations

Modeling Finite Alternatives = Unions of Polyhedra

(Linear) Mixed <u>0-1</u> Integer Formulations

Modeling Finite Alternatives = Unions of Polyhedra

Outline

- Introduction
 - Classical Formulations v/s Specialized Branching
- Encoding Formulations
 - Role of Binary Variables and Specialized Branching
- Embedding Formulations
 - Smallest Strong Formulations

Strong Extended Formulations for $x \in \bigcup_{i=1}^n P_i$

Balas, Jeroslow and Lowe '70s early '80s

$$P_i = \left\{ x \in \mathbb{R}^d : A^i x \le b^i \right\}$$

$$A^{i}x^{i} \leq b^{i}y_{i} \quad \forall i$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

 \mathcal{H} -formulation

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P_i)} v \lambda_v^i = x$$

$$\sum_{v \in \text{ext}(P_i)} \lambda_v^i = y_i \quad \forall i$$

$$\sum_{i=1}^{n} y_i = 1$$

$$\lambda^i \in \mathbb{R}_+^{\text{ext}(P_i)}$$

$$y \in \{0, 1\}^n$$

 \mathcal{V} -formulation

- Convex Hull (Sharp) = LP relaxation projects to $conv \left(\bigcup_{i=1}^{n} P_i \right)$
- Integral (Locally Ideal) = LP relaxation has integral extreme points (y)

Strong Extended Formulations for $x \in \bigcup_{i=1}^n P_i$

Balas, Jeroslow and Lowe '70s early '80s

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P_i)} v \lambda_v^i = x$$

$$\sum_{v \in \text{ext}(P_i)} \lambda_v^i = y_i \quad \forall i$$

$$\sum_{i=1}^{n} y_i = 1$$

$$\lambda^i \in \mathbb{R}_+^{\text{ext}(P_i)}$$

$$y \in \{0, 1\}^n$$

 \mathcal{V} -formulation

- Convex Hull (Sharp) = LP relaxation projects to $conv \left(\bigcup_{i=1}^{n} P_i \right)$
- Integral (Locally Ideal) = LP relaxation has integral extreme points (y)

"Strong" Extended Formulations for $x \in \bigcup_{i=1}^n P_i$

Balas, Blair and Jeroslow late '80s

$$P_i = \left\{ x \in \mathbb{R}^d : A^{\times} x \le b^i \right\}$$

$$Ax \le \sum_{i=1}^{n} b^{i} y_{i}$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

 \mathcal{H} -formulation

Lee and Wilson late '90s

$$V := \bigcup_{i=1}^{n} \operatorname{ext}\left(P_{i}\right)$$

$$\sum_{v \in V} v \lambda_v = x$$

$$\sum_{v \in V} \lambda_v = 1$$

$$\lambda_v \le \sum_{i:v \in \text{ext}(P_i)} y_i$$

$$\sum_{i=1}^n y_i = 1$$

$$y \in \{0,1\}^n, \quad \lambda \in \mathbb{R}_+^V$$

 \mathcal{V} -formulation

Sometimes

- Convex Hull (Sharp) = LP relaxation projects to $conv \left(\bigcup_{i=1}^{n} P_i \right)$
- Integral (Locally Ideal) LP relaxation has integral extreme points (y)

"Strong" Extended Formulations for $x \in \bigcup_{i=1}^n P_i$

- Balas, Blair and Jeroslow late '80s
- f(x,y)

 y

 X
- Lee and Wilson late '90s

$$V := \bigcup_{i=1}^{n} \operatorname{ext}\left(P_{i}\right)$$

$$\sum_{v \in V} v \lambda_v = x$$

$$\sum_{v \in V} \lambda_v = 1$$

$$\lambda_v \le \sum_{i:v \in \text{ext}(P_i)} y_i$$

$$\sum_{i=1}^n y_i = 1$$

$$y \in \{0,1\}^n, \quad \lambda \in \mathbb{R}_+^V$$

 \mathcal{V} -formulation

- Convex Hull (Sharp) = LP relaxation projects to $conv \left(\bigcup_{i=1}^{n} P_i \right)$
- Integral (Locally Ideal) LP relaxation has integral extreme points (y)

"Strong" Projected Formulations for $x \in \bigcup_{i=1}^n P_i$

- Balas, Blair and Jeroslow late '80s
- f(x,y)
- Lee and Wilson late '90s

$$V := \bigcup_{i=1}^{n} \operatorname{ext}\left(P_{i}\right)$$

$$\sum_{v \in V} v \lambda_v = x$$

$$\sum_{v \in V} \lambda_v = 1$$

$$\lambda_v \le \sum_{i:v \in \text{ext}(P_i)} y_i$$

$$\sum_{i=1}^n y_i = 1$$

$$y \in \{0,1\}^n, \quad \lambda \in \mathbb{R}_+^V$$

 \mathcal{V} -formulation

- Convex Hull (Sharp) = LP relaxation projects to $conv \left(\bigcup_{i=1}^{n} P_i \right)$
- Integral (Locally Ideal) LP relaxation has integral extreme points (y)

"Strong" Projected Formulations for $x \in \bigcup_{i=1}^n P_i$

- Balas, Blair and Jeroslow late '80s
- f(x,y)
- Lee and Wilson late '90s

$$V := \bigcup_{i=1}^{n} \operatorname{ext}\left(P_{i}\right)$$

$$\sum_{v \in V} v \lambda_v = x$$

$$\sum_{v \in V} \lambda_v = 1$$

$$\lambda_v \le \sum_{i:v \in \text{ext}(P_i)} y_i$$

$$\sum_{i=1}^n y_i = 1$$

$$y \in \{0,1\}^n, \quad \lambda \in \mathbb{R}_+^V$$

 \mathcal{V} -formulation

- Convex Hull (Sharp) = LP relaxation projects to $conv \left(\bigcup_{i=1}^{n} P_i \right)$
- Integral (Locally Ideal) LP relaxation has integral extreme points (y)

Projected Formulation for Univariate Functions

- Convex Hull, but not Integral
- Branching is very ineffective (unbalanced B&B tree)

$$-y_{i_0}=1$$
 \Rightarrow $y_i=0$ $\forall i \neq i_0$ $y_{i_0}=0$ does not imply much (anything)

Projected Formulation for Univariate Functions

One solution = SOS2 branching (Beale and Tomlin '70):

$$- \lambda_{d_i} = 0 \quad \forall i \le i_0 - 1$$

$$-\lambda_{d_i} = 0 \quad \forall i \ge i_0 + 1$$

Projected Formulation for Univariate Functions

One solution = SOS2 branching (Beale and Tomlin '70):

$$- \lambda_{d_i} = 0 \quad \forall i \le i_0 - 1$$

$$-\lambda_{d_i} = 0 \quad \forall i \le i_0 - 1 \qquad y_i = 0 \quad \forall i \le i_0 - 1$$

$$-\lambda_{d_i} = 0 \quad \forall i \ge i_0 + 1 \qquad y_i = 0 \quad \forall i \ge i_0$$

$$y_i = 0 \quad \forall i \ge i_0$$

MIP Formulations v/s Specialized Branching

CPLEX 9: Basic SOS2
 branching implementation
 (Nemhauser, Keha and V. '08)

CPLEX 11: Improved SOS2
 branching implementation
 (Nemhauser, Ahmed and V. '10)

Embedding

Projected

SOS2

Encoding Formulations: The Role of Binary Variables

Encodings to Induce Specialized Branching

• Discrete alternatives ($P_i = \{v^i\}$):

$$\sum_{i=1}^{n} y_i v^i = x, \quad \sum_{i=1}^{n} y_i = 1$$
$$y \in \{0, 1\}^n$$

Encodings to Induce Specialized Branching

• Discrete alternatives ($P_i = \{v^i\}$):

$$\sum_{i=1}^{n} y_i v^i = x, \qquad \sum_{i=1}^{n} y_i = 1$$

$$g \in \{0, 1\}^n \quad y \in \mathbb{R}_+^n$$

$$\sum_{i=1}^{n} y_i h^i = w, \quad w \in \{0, 1\}^k$$

- Pick $\left\{h^i\right\}_{i=1}^n \subseteq \left\{0,1\right\}^k$, $h^i \neq h^j$ Encoding
- Li and Lu '09, Adams and Henry '11, V. and Nemhauser '08 for $k = \log_2 n$. Also in the folklore, e.g. Sommer, TIMS '72

Different Encodings = Different Branching

• Unary encoding : $\{h^i\}_{i=1}^n = \{e^i\}_{i=1}^n$

$$\sum_{i=1}^{8} y_i = 1, \quad y \in \mathbb{R}_+^8$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} y = \begin{pmatrix}
w_1 \\
w_2 \\
w_3 \\
w_4 \\
w_5 \\
w_6 \\
w_7 \\
w_8
\end{pmatrix}, \quad w \in \{0, 1\}^8$$

$$\Rightarrow y_i = w_i$$

Different Encodings = Different Branching

•Binary encoding : $\left\{h^i\right\}_{i=1}^n = \left\{0,1\right\}^{\log_2 n}$

$$\sum_{i=1}^{8} y_{i} = 1, \quad y \in \mathbb{R}^{8}_{+}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} y = \begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \end{pmatrix}, \quad w \in \{0, 1\}^{3}$$

Discrete Alternatives to Unions of Polyhedra

Adapt extended \mathcal{V} -formulation:

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P_i)} v \lambda_v^i = x$$

$$\sum_{v \in \text{ext}(P_i)} \lambda_v^i = y_i \ \forall i$$

$$\sum_{i=1}^{n} y_i = 1$$

$$\lambda^i \in \mathbb{R}_+^{\text{ext}(P_i)}$$

$$y \in \{0, 1\}^n$$

Discrete Alternatives to Unions of Polyhedra

Adapt extended \mathcal{V} -formulation:

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P_i)} v \lambda_v^i = x$$

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P_i)} \lambda_v^i = 1 \quad \forall i$$

$$\sum_{i=1}^{n} h^i \sum_{v \in \text{ext}(P_i)} \lambda_v^i = w$$

$$\lambda^i \in \mathbb{R}_+^{\text{ext}(P_i)}$$

$$w \in \{0, 1\}^k$$

V., Ahmed and Nemhauser 2010; Yıldız and V. 2013; V. 2014

Performance for Univariate Functions

Results from Nemhauser, Ahmed and V. '10 using CPLEX 11

 Multivariate functions: Embedding Binary is 6 times faster than Extended Binary

Embedding Formulations: Strong Projected Formulations

Polyhedra as MIP Formulations

$$\lambda \in \bigcup_{i=1}^{n} P_{i}, \qquad P_{i} = \left\{\lambda \in \mathbb{R}^{d} : A^{i}\lambda \leq b^{i}\right\}$$

$$Q = \left\{(\lambda, y) \in \mathbb{R}^{d} \times \mathbb{R}^{n} : 1 = \sum_{i=1}^{n} y_{i} \\ y_{i} \geq 0 \\ y \in \mathbb{Z}^{n} \right\}$$

$$\left(\lambda, e^{i}\right) \in Q \quad \Leftrightarrow \quad \lambda \in P_{i}$$

Embedding Formulations for Union of Polyhedra

- **Projected** MIP formulation of $\lambda \in \bigcup_{i=1}^n P_i \subseteq \mathbb{R}^V$:
 - Encoding $\left\{h^i\right\}_{i=1}^n \subseteq \left\{0,1\right\}^k, \quad h^i \neq h^j$
 - Polyhedron $Q \subseteq \mathbb{R}^V \times \mathbb{R}^k$, s.t.

$$(\lambda, h^i) \in Q \quad \Leftrightarrow \quad \lambda \in P_i$$

• **Embedding formulation** = strongest polyhedron:

Cayley
$$\longrightarrow Q = \operatorname{conv}\left(\bigcup_{i=1}^{n} P_i \times \left\{h^i\right\}\right)$$

For unary encoding:

$$h^i = e^i$$

Cayley Embedding

Embedding Formulations for Union of Polyhedra

- **Projected** MIP formulation of $\lambda \in \bigcup_{i=1}^n P_i \subseteq \mathbb{R}^V$:
 - Encoding $\left\{h^i\right\}_{i=1}^n \subseteq \left\{0,1\right\}^k, \quad h^i \neq h^j$
 - Polyhedron $Q \subseteq \mathbb{R}^V \times \mathbb{R}^k$, s.t.

$$(\lambda, h^i) \in Q \quad \Leftrightarrow \quad \lambda \in P_i$$

• **Embedding formulation** = strongest polyhedron:

$$Q = \operatorname{conv}\left(\bigcup_{i=1}^{n} P_i \times \left\{h^i\right\}\right)$$

size(Q) := # of facets of Q (usually function of n)

Binary v/s Unary Encodings

$$Q = \text{conv}\left(\bigcup_{i=1}^{n} P_i \times \{h^i\}\right), \ \{h^i\}_{i=1}^{n} \subseteq \{0, 1\}^k$$

- Unary better than Binary?
 - •Formulation contains convex hull through **projection**:

•
$$\operatorname{Proj}_{\lambda}(Q) = \operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i}\right)$$

• size
$$(\operatorname{Proj}_{\lambda}(Q)) \leq \binom{\operatorname{size}(Q)}{\operatorname{size}(Q)-k-1}$$

- •Binary encoding has $k = \log_2 n$:
 - Size of projection is at most quasipolynomial in size of formulation
- •Unary encoding has k=n:
 - •Size of projection can be exponential in size of formulation

Binary v/s Unary Encodings

$$Q = \text{conv}\left(\bigcup_{i=1}^{n} P_i \times \{h^i\}\right), \ \{h^i\}_{i=1}^{n} \subseteq \{0, 1\}^k$$

- Binary better than Unary?
 - •Formulation contains Minkowski sum through sections:
 - For unary encoding

$$\left(\lambda, \frac{1}{n} \sum_{i=1}^{n} e^{i}\right) \in \mathbb{Q} \quad \Leftrightarrow \quad \lambda \in \frac{1}{n} P_{1} + \ldots + \frac{1}{n} P_{n}$$

- •Unary encoding formulation can be large even if convex hull is simple(x)
- •Binary encoding seems to only contain partial sums of $\log_2 n$ polytopes

Simple Case: Combinatorial Part of \mathcal{V} -formulation

•
$$\Delta^{V} := \left\{ \lambda \in \mathbb{R}_{+}^{V} : \sum_{v \in V} \lambda_{v} = 1 \right\}, \operatorname{ext}(P_{i}) = T_{i} \subseteq V$$

•
$$P_i = \{ \lambda \in \Delta^V : \lambda_v \le 0 \quad \forall v \notin T_i \}$$

$$\lambda \in \bigcup_{i=1}^{n} P_i \qquad \Leftrightarrow \qquad$$

$$\sum_{v \in V} v \lambda_v = x$$

$$\sum_{v \in V} \lambda_v = 1$$

$$\lambda_v \le \sum_{i:v \in \text{ext}(P_i)} y_i$$

$$\sum_{i=1}^n y_i = 1$$

$$y \in \{0, 1\}^n, \quad \lambda \in \mathbb{R}_+^V$$

Simple Case: Combinatorial Part of \mathcal{V} -formulation

•
$$\Delta^{V} := \left\{ \lambda \in \mathbb{R}_{+}^{V} : \sum_{v \in V} \lambda_{v} = 1 \right\}, \operatorname{ext}(P_{i}) = T_{i} \subseteq V$$

•
$$P_i = \{ \lambda \in \Delta^V : \lambda_v \le 0 \quad \forall v \notin T_i \}$$

• conv
$$\left(\bigcup_{i=1}^{n} P_i\right) = \Delta^V$$

Message 1: The Devil is in the Detail

Choice of binary encoding is crucial

Formulation Size for Univariate case

- Simple facets: $\lambda_v \geq 0$
 - Only sometimes are facets
 - "Zero" computational cost and at most n of them
- All other facets: $\sum_{v \in V} \alpha_v \lambda_v \leq \sum_{i=1}^k \beta_i y_i$
- Unary encoding (Padberg, Lee and Wilson, early 00's):
 - 2n facets (2n + 2 including bounds)
- Binary encoding with Gray code (V. and Nemhauser, 08, 11):
 - $-\log_2 n \text{ facets } (\leq 2\log_2 n + n \text{ including bounds})$

High Binary Complexity? Gray v/s Anti-Gray

• Assumption: $n=2^k$

$$-\left\{h^{i}\right\}_{i=1}^{n} = \left\{0,1\right\}^{k}, \quad H := \left\{h^{i} - h^{i+1}\right\}_{i=1}^{n-1} \subseteq \left\{-1,0,1\right\}^{k}$$

- # facets =twice the # of **linear** hyperplanes spanned by $oldsymbol{H}$
- Gray code: $\{h^i h^{i+1}\}_{i=1}^{n-1} \equiv \{e^i\}_{i=1}^k$
 - # hyperplanes : $k = \log_2 n$, # facets $\leq 2 \log_2 n + n$
- One kind of Anti-Gray code: $\left\{h^i-h^{i+1}\right\}_{i=1}^{n-1}$ " \supseteq " $\left\{-1,1\right\}^k$
 - # hyperplanes = # affine hyperplanes spanned by $\left\{0,1\right\}^{k-1}$
 - Using believed growth rate (e.g. Aichholzer and Auremacher '96):
 - # facets = $\Theta\left(n^{\log_2 n}\right)$

Message 2 : Binary Encoding = Smaller Formulation

• Size of unary formulation is at least (Lee and Wilson '01):

$$\binom{2\sqrt{n/2}}{\sqrt{n/2}} + \underbrace{\left(\sqrt{n/2} + 1\right)^2}_{\text{Non-negativity}}$$

 Size of best binary formulation for union jack triangulation is at most (V. and Nemhauser '08):

$$4\log_2\sqrt{n/2} + 2 + \underbrace{\left(\sqrt{n/2} + 1\right)^2}_{\text{Non-negativity}}$$

Beyond Union Jack: Exploit Redundancy

 Embedding-like formulation for triangulations with "even degree outside the boundary"

•Formulation size at most two larger than for union jack:

$$4\log_2\sqrt{n/2} + 4 + \left(\sqrt{n/2} + 1\right)^2$$

•Formulation fits **independent branching** framework (V. and Nemhauser '08)

Independent Branching = Embedding + Redundancy

- Triangle ← binary vector
- More vectors than triangles
 - Ind. Branch ≠ Embedding
 - Embedding size is larger (17)
- Ind. Branching solution:
 - Add redundant single-vertex polytopes with remaining 8 binary vectors
- Unary cannot reduce size through redundancy

Summary

- Embedding Formulations = Systematic procedure
 - Encoding can significantly affect size
 - Redundancy can help for binary encodings
- Complexity of Union of Polyhedra beyond convex hull
 - Embedding Complexity (Integral Formulation)
 - MIP formulation complexity
- More on encoding properties
 - All gray codes yield the same size, but not combinatorially equivalent polytopes
- Can help discover strong (non-integral) formulations
 - Facility layout problem (Huchette, Dey, V. '14)

Formulation Size for all Binary Encodings

$$\lambda_{(i,j)} \geq 0 \quad i,j \in [m+1] \\ \\ \lambda_{(2,1)} \\ \\ \lambda_{(1,1)} \\ \\ \end{pmatrix} m = 2^k$$

$$\lambda_{(i,j)} \ge 0 \quad i, j \in [m+1]$$

$$\lambda_{d_i}^r = \sum_{j=1}^{m+1} \lambda_{(i,j)}$$

$$(\lambda^r, y^r) \in Q \subseteq \mathbb{R}^m \times \mathbb{R}^k$$
Univariate Gray Code Formulation

$$\lambda_{(i,j)} \ge 0 \quad i, j \in [m+1]$$

$$\lambda_{d_i}^r = \sum_{j=1}^{m+1} \lambda_{(i,j)}$$

$$\lambda_{d_i}^c = \sum_{i=1}^{m+1} \lambda_{(i,j)}$$

$$(\lambda^r, y^r) \in Q \subseteq \mathbb{R}^m \times \mathbb{R}^k$$

 $(\lambda^c, y^c) \in Q \subseteq \mathbb{R}^m \times \mathbb{R}^k$

$$m = 2^{k}$$

$$\lambda_{(i,j)} \ge 0 \quad i, j \in [m+1]$$

$$\lambda_{d_i}^r = \sum_{j=1}^{m+1} \lambda_{(i,j)}$$

$$\lambda_{d_i}^c = \sum_{i=1}^{m+1} \lambda_{(i,j)}$$

$$m=2^k$$

$$\begin{pmatrix} \boldsymbol{\lambda}^r, y^r \end{pmatrix} \in Q \subseteq \mathbb{R}^m \times \mathbb{R}^k \\
(\boldsymbol{\lambda}^c, y^c) \in Q \subseteq \mathbb{R}^m \times \mathbb{R}^k \end{pmatrix} 4 \log_2 m$$

Beyond Union Jack: Part II = Selecting Triangles

- 1. Add "Dual" Triangulation
- 2. Color vertices following diagonal arcs:
 - Keep color for original arcs
 - Change color for dual arcs
- 3. Add binary y_1^t and constraints:

$$\sum_{(i,j) \text{ colored red}} \lambda_{(i,j)} \leq y_1^t \quad \text{ and } \quad \sum_{(i,j) \text{ colored blue}} \lambda_{(i,j)} \leq 1 - y_1^t$$

4. May need to repeat coloring once more

Independent Branching = Embedding + Redundancy

- Triangle ← binary vector
- More vectors than triangles
 - Ind. Branch ≠ Embedding
 - Embedding size is larger (17)
- Ind. Branching solution:
 - Add redundant single-vertex polytopes with remaining 8 binary vectors
- Unary cannot reduce size through redundancy

