DES

Стандарт шифрования данных *DES* (*Data Encryption Standard*) опубликован в США в 1977 году, а в 1980 году *DES* принят Национальным институтом стандартов и технологий США (*NIST*) в качестве стандарта шифрования данных для защиты от несанкционированного доступа несекретной информации государственного и коммерческого характера.

Рис. 1.*Алгоритм DES* (*DEA*)

Криптоалгоритм DEA (Data Encryption Algorithm), реализующий DES, шифрует 64-битовые блоки открытых данных под управлением 56-битового секретного ключа.

Замечание. Ключ обычно представляется в виде 64-битового блока KS, но каждый восьмой бит отбрасывается. Пользователь выбирает ключ K, содержащий 56 случайных битов, но затем к каждым семи битам добавляется восьмой бит так, чтобы в каждом получающемся байте было нечетное число битовых единиц. Это используется для обнаружения ошибок в ключе при обмене и хранении ключей.

DES построен в соответствии со схемой Фейстеля (см. рис. 1). Для зашифрования и расшифрования применяется один и тот же алгоритм. Различие состоит лишь в том, что при расшифровании раундовые подключи используются в обратном порядке.

Алгоритм зашифрования

 $Bxo\partial: B = L \parallel R - 64$ -битовый блок открытых данных, представленных в виде конкатенации 32-битовых подблоков L и R, в которой R следует за L.

Шаг 1. (Начальная подстановка.)

$$B := IP(B);$$

Шаг 2. (16 раундов шифрования под управлением 16 48-битовых раундовых подключей.)

$$for i:=1 to 15 do \{$$
 $L:=L \oplus f(R,K_i);$
 LR
 $\};$
 $L \coloneqq L \oplus f(R,K_{16});$
 $B \coloneqq L \parallel R;$
Шаг 3. (Заключительная подстановка.)
 $C:=IP^{-1}(P)$.
 B ыход: $C-64$ -битовый блок шифртектса.

Биты в блоках нумеруются слева направо, начиная с 1. Начальная перестановка IP задаётся таблицей 1: бит 58 блока открытых данных В перемещается в позицию 1, бит 50 - в позицию $2, \ldots$, бит 7 - в позицию 64.

58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5	63	55	47	39	31	33	15	7

Заключительная перестановка IP^{-1} , заданная табл. 2, является обратной перестановкой по отношению к IP.

Таблица 2 3аключительная перестановка IP^{-1} в DES

							1								
40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26	33	1	41	9	49	17	57	25

Раундовая функция f называется функцией шифрования. Её аргументами являются 32-битовый блок R и 48-битовый раундовый подключ k. Схема вычисления 32-битового значения f(R,k) представлена на рис. 2.

Рис.2. Функция шифрования f в DES

Функция f является композицией четырёх функций: $f(R,k) = P(S(\mathcal{E}(R) \oplus k)))$. Функция \mathcal{E} "расширяет" 32-битовый блок R до 48-битового блока $\mathcal{E}(R)$ путём дублирования некоторых битов блока R (см. рис. 3). Операция расширения выполняет-

ся следующим образом: подблок R разбивается на восемь 4-битовых подблоков; затем каждому подблоку слева и справа присоединяется по одному биту, в качестве которых берутся ближайшие биты соседних подблоков (для первого подблока соседним слева считается восьмой подблок, а для восьмого подблока соседним справа считается первый подблок).

Значение $\mathcal{E}(R)$ складывается побитно по модулю 2 с раундовым подключом k, результат представляется в виде восьми 6-битовых подблоков B_i :

$$E(R) \oplus k = B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8.$$

Функция S "сжимает" каждый 6-битовый подблок B_j , заменяя его на 4-битовый подблок $S_j(B_j)$, j=1,2,...,8. Подстановки замены, называемые -блоками, заданы табл. 4. Каждый из блоков S_j состоит из 4 строк и 16 столбцов, занумерованных соответственно как 0,1,2,3, и 0,1,...,15.

Пусть подблок B_j образован битами b_1 , b_2 , b_3 , b_4 , b_5 , b_6 . Биты b_1 и b_6 образуют число $a=2b_1+b_6$ со значением от 0 до 3, а средние 4 бита b_2 , b_3 , b_4 и b_5 образуют число $d=8b_2+4b_3+2b_4+b_5$ со значением от 0 до 15. В таблице S_i на пересечении ой строки и d-го столбца находится число m со значением от 0 до 15. 4-битовое представление $B'=b_1'b_2'b_3'b_4'$ числа m даёт выходное значение $S_j(B_j)$. Например, если $B_2=110110$, то $a=(10)_2=2_{10}$, $d=(1011)_2=(11)_{10}$ и $B_2'=S_2(B_2)=(0110)_2$. Функция P преобразует 32-битовый блок $B'=B_1'B_2'B_3'B_4'B_5'B_6'B_7'B_8'$, полученный

Функция P преобразует 32-битовый блок $B' = B'_1 B'_2 B'_3 B'_4 B'_5 B'_6 B'_7 B'_8$, полученный после операции сжатия, в 32-битовый блок P(B') путём перестановки битов в блоке B'. Соответствующая перестановка задаётся таблицей 5: бит 16 перемещается в позицию 1, бит 7 -в позицию 2, ..., бит 25 -в позицию 32.

Раундовые подключи $k_1, k_2, ..., k_{16}$ формируются на основе 64-битового секретного ключа KS. Сначала ключ KS уменьшается до 56-битового ключа k путём отбрасывания каждого восьмого бита, при этом биты переставляются. Соответствующее преобразование, обозначаемое как PS-1, описывается таблицей 6: биты из позиций 57, 49, 41, ..., 20, 12, 4 ключа KS перемещаются в позиции 1, 2, 3, ..., 54, 55, 56 ключа k.

После извлечения 56-битового ключа для каждого из 16 раундов генерируются 48-битовые подключи k_i . Эти подключи определяются следующим образом. Сначала ключ k делится на две 28-битовые половины C и D, затем половины циклически сдвигаются влево на один или два бита в зависимости от номера раунда. Величины сдвигов показаны в табл.7. После сдвига выбираются 48 из 56 битов. Соответствующее преобразование, получившее название *перестановка со сжатием* и обозначаемое как PC-2, описывается табл. 8: бит 14 ключа $K = C \parallel D$ помещается в позицию 1 ключа k_i , бит 7 — в позицию 2 и т.д. Циклический процесс получения раундовых подключений иллюстрируется на рис. 4.

28 29 28 29 26 27 (a)

Рис. 3. Перестановка с расширением в DES: (a) Е-блок; (б) схема перестановки

Таблица 4

S-блоки DES

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
S_1	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	1 [1	0	1.4		11	3			7	2	12	12		5	10
	15	1	8	14	6	11	_	4	9	7	2	13	12	0		10
S_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
\mathcal{S}_2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	12	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
S_3	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
S_4	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
S_5	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	- 10		4.0													
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
_	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
S_6	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
S_7	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	12	2	3	12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
S_8	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Таблица 5

Перестановка Р в DES

Таблица 6

Преобразование PS-1 — выбор ключа в DES

Таблица 7

Сдвиги ключа в DES в зависимости от номера раунда

Номер раунда	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Сдвиг (бит)	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Таблица 8

Преобразование PC-2 — перестановка со сжатием в DES

Рис. 4. Циклический процесс получения раундовых подключей в DES