

Pre-lecture Video

Context - Free Language (CFL) Context - Free Grammar (CFG)

Exp S - OSI , S - E i.e. S → OSI, E

S = 0S1 = 0008 | 3000 € 120 € S

S ⇒ * 000 lii

Definition: CFG

A CFG is a 4-tuple G=(V, Z, P, S) where

4 V- set of variables (finite)

Lo Z - alphabet (Set of terminals - Non-variable, non-E that appear on RHS of production)

→ P - Set of productions (each has form A - α, where A ∈ V, α ∈ (VUZ)*)

4 5 - start variable (SEV)

Definition:

 $\alpha \Rightarrow B$ $(\alpha, B \in (V \cup \Sigma)^*)$ (
Means that B can be devived (generated) by one application of production.

 $\alpha \Rightarrow B$ means that B can be derived (generated) by 0 or more applications of production.

Definition:

Let G=(V, Z, P, S) be a CFG. The language of G (generated by G) is

L(G) = {x∈ Z*: S = x }

Ex 2:

G: S → osi, E

I(G) = {0"1" : ne N}

Definition:

A language L is context-free iff L= Z(G) for some CFG

$$S \rightarrow E$$
, OB, 1A
 $A \rightarrow OS$, IAA
 $B \rightarrow IS$, OBB

What's Z(G)?

$$Z(G) = \{x \in \Sigma^* : \#_{\bullet}(x) = \#_{\bullet}(x) \}$$

Left to right Method

Design:

S generates Le.

B generates $\{x \in \Sigma^*, \#_1(x) = \#_0(x) + 1\}$ A generates $\{x \in \Sigma^*, \#_0(x) = \#_1(x) + 1\}$

Another CFG that generates Le

Parse Tree (100110 & Le)

G :

OR

Definition:

A.C.F.G. G is ambiguous iff there's G

Definition:

A CFL is inherently ambiguous iff every CFG that generates it is