ВЛИЯНИЕ ДОБАВКИ СТЕКЛА НА ПРОВОДИМОСТЬ ТОНКОПЛЕНОЧНОГО ЭЛЕКТРОЛИТА Li_{6.6}Al_{0.05}La₃Zr_{1.75}Nb_{0.25}O₁₂

Лялин Е.Д.⁽¹⁾, Першина Л.С.^(1,2), Ильина Е.А.⁽¹⁾
⁽¹⁾ Институт высокотемпературной электрохимии УрО РАН 620137, г. Екатеринбург, ул. Академическая, д. 20
⁽²⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

На данный момент актуальным направлением разработки полностью твердотельных литиевых и литий-ионных источников тока является получение высокопроводящих твердых электролитов в форме тонких пленок.

Целью работы являлось исследование влияния содержания стекла $65\text{Li}_2\text{O}\cdot27\text{B}_2\text{O}_3\cdot8\text{SiO}_2$ (LBS) на проводимость и фазовый состав тонкопленочного твердого электролита $\text{Li}_{6,6}\text{Al}_{0,05}\text{La}_3\text{Zr}_{1,75}\text{Nb}_{0,25}\text{O}_{12}$.

Пленки композиционного твердого электролита с различным содержанием стекла LBS получали методом ленточного литья. Шликер отливали на майларовую пленку и сушили при температуре 40 °C. Пленки в количестве 10 слоев прессовали при 60 МПа, отжиг проводили при 1150 °C с выдержкой 30 минут. Согласно данным рентгенофазового анализа, образования примесных фаз не обнаружено. Для измерения сопротивления на отожженные пленки напыляли Pt электроды. Измерения проводили методом электрохимического импеданса в интервале от 25 до 200 °C. При комнатной температуре состав с добавкой 2 масс. % LBS имел наибольшую проводимость $7,9\cdot10^{-6}$ См·см⁻¹, по сравнению с образцом без добавки стекла — $3,3\cdot10^{-8}$ См·см⁻¹ (см. рисунок). Энергия активации уменьшилась при введении стекла с $43,9\pm0,4$ (0 масс. % LBS) до $40,0\pm1,2$ (2 масс. % LBS) кДж·моль⁻¹. Таким образом, было установлено, что введение стекла LBS способствует росту проводимости твердого электролита.

а) Дифрактограммы и б) температурные зависимости проводимости пленок $Li_{6.6}Al_{0.05}La_3Zr_{1.75}Nb_{0.25}O_{12}$ с различным содержанием LBS