ExaGeoStatCPP

Generated by Doxygen 1.9.1

ExaGeoStat

The **Exascale GeoStatistics** project (ExaGeoStat) is a parallel high-performance unified framework for computational geostatistics on many-core systems. The project aims to optimize the likelihood function for a given spatial data to efficiently predict missing observations in the context of climate/weather forecasting applications. This machine learning framework proposes a unified simulation code structure to target various hardware architectures, from commodity x86 to GPU accelerator-based shared and distributed-memory systems. ExaGeoStat enables statisticians to tackle computationally challenging scientific problems at large-scale while abstracting the hardware complexity through state-of-the-art high-performance linear algebra software libraries.

ExaGeoStatCPP

ExaGeoStatCPP is a C++ API for ExaGeoStat that aims to offer a user-friendly and efficient API for C++ developers, essentially maintaining traditional practices and embracing contemporary C++ elements like namespaces, templates, and exceptions to enhance functionality.

ExaGeoStatR: R Interface of ExaGeoStat

R is a powerful and versatile tool for scientific computing, offering a wide range of statistical and graphical techniques, strong community support, and the flexibility to integrate with other programming languages. Its open-source nature and extensive package ecosystem make it an invaluable resource for researchers and data scientists. Therefore, we decided to create ExaGeoStatR: An interface for functionalities provided by ExaGeoStatCPP to make use of R's various benefits.

Vision of ExaGeoStat/ExaGeoStatCPP

The ExaGeoStat/ExaGeoStatCPP project is a collaboration between the KAUST Spatial Statistics group and the Extreme Computing Research Center (ECRC). Lies not in a new algorithm nor a new dataset, but in demonstrating the routine use of the larger datasets becoming available to geospatial statisticians, thanks to the implementation of state-of-the-art statistical algorithms on High Performance Computing (HPC) hardware.

We have built a standalone software framework (ExaGeoStat/ExaGeoStatCPP) that can run on a variety of hardware resources, including GPUs and massively distributed systems such as Shaheen-II, KAUST's Cray XC40 supercomputer, HLRS HPE Apollo (Hawk), ORNL Summit (OLCF-4) supercomputer, and Riken Fugaku supercomputer, to create a statistical model to predict environmental data (i.e., temperature, flow rates, soil moisture, wind speed, air pollution, etc.) at spatial locations on which data is missing, and to exploit large amounts of data to reduce the effect of individual measurement errors. The best-known methods for such statistical processing have a cost that

2 ExaGeoStat

grows rapidly in the size of the dataset, namely, in proportion to its cube or third power. Thus, increasing the size of the dataset by a factor of ten drives up the cost of the computation by a factor of a thousand while simultaneously driving up the memory requirements by a factor of a hundred.

For instance, according to this cubic growth in complexity, a computation that requires one minute would require nearly 17 hours on a dataset just ten times larger. This creates a computational strain on standard statistics software, for which contemporary data sizes were not anticipated, and even if possible, it puts the computation beyond the interactive attention span of the analyst. Parallelism (assigning thousands of processors to a single task) and Moore's Law allow leading-edge computers to handle such "big data" with ease, but the software bridge must be built. Furthermore, the software interface must resemble the interactive one with which working statisticians are familiar.

To summarize, the combination of emerging computing capabilities and emerging datasets promises significant advances in statistical analyses of environmental and many other phenomena. Such cross-disciplinary advances are natural at KAUST, so this relatively low-hanging fruit was ours to harvest earliest. Our roadmap now takes Exa \leftarrow GeoStat a step further on the algorithmic side by integrating tile low-rank matrix approximation. This low-rank matrix approximation permits the exploitation of the data sparsity of the operator with user-controlled numerical accuracy. This further expands practical problem sizes for statisticians with modest computational resources.

Installation

Note: Installation requires at least CMake of version 3.2. to build ExaGeoStatCPP.

C++ source code installation

To install the ExaGeoStat project locally, run the following commands in your terminal:

- 1. Clone the project from the remote gitHub repository into your local machine using the following command git clone https://github.com/ecrc/ExaGeoStatCPP.git
- 2. Change your current directory by getting into the ExaGeoStatCPP project directory
- 3. Run configure script with the flag -h for help, to know the supported options and their corresponding flags.

 ./configure -h
- 4. Run clean_build.sh script with the flag -h for help, to know the needed arguments to run with your specific options.
- 5. Export the installation paths of the dependencies to your .bashrc file, e.g. export PKG_CONFIG_PATH=\$PWD/installdir/_deps/DEPENDENCY_NAME/lib/pkgconfig:\$PKG_CONFIG_PATH

Now, you can use the pkg-config executable to collect compiler and linker flags for ExaGeoStatCPP.

R package installation

/clean build.sh -h

1. Open the R prompt window by simply running R command in the terminal, inside the prompt, we will install needed packages by running the following commands:

```
install.packages(Rcpp)
install.packages("assert")
```

2. close the R prompt and return to the terminal. Run the following command, make sure your current path is the ExaGeoStat project directory

```
R CMD INSTALL . --configure-args="-r"
```

For more detailed information on setting up ExaGeoStat with different configurations and enabling technologies such as CUDA, MPI, R, etc., please refer to the User Manual

Usage

C++ Example

```
{C++}
int main(int argc, char **argv) {
    // Create a new configurations object.
    Configurations configurations;
    // Initialize the arguments with the provided command line arguments
    configurations.InitializeArguments(argc, argv);
    // Initialize the ExaGeoStat Hardware
    auto hardware = ExaGeoStatHardware(configurations.GetComputation(), configurations.GetCoresNumber(),
        configurations.GetGPUsNumbers());
    // Load data by either read from file or create synthetic data.
    std::unique_ptr<ExaGeoStatData<double> data;
    ExaGeoStat<double>::ExaGeoStatData<double> data;
    ExaGeoStat<double>::ExaGeoStatDataModeling(configurations, data);
    // Modeling module.
    ExaGeoStat<double>::ExaGeoStatDataModeling(configurations, data);
    return 0;
}
```

R Example:

Please take a look at the end-to-end examples as a reference for using all the operations.

Contributing

Find detailed information on how to contribute to ExaGeoStatCPP here

References

- Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "ExaGeoStat: A high performance unified software for geostatistics on manycore systems." IEEE Transactions on Parallel and Distributed Systems 29, no. 12 (2018): 2771-2784.
- 2. Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "Parallel approximation of the maximum likelihood estimation for the prediction of large-scale geostatistics simulations." In 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 98-108. IEEE, 2018.
- 3. Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "Geostatistical modeling and prediction using mixed precision tile Cholesky factorization." In 2019 IEEE 26th international conference on high performance computing, data, and analytics (HiPC), pp. 152-162. IEEE, 2019.
- 4. Mary Lai O. Salvana, Sameh Abdulah, Huang Huang, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "High performance multivariate geospatial statistics on manycore systems." IEEE Transactions on Parallel and Distributed Systems 32, no. 11 (2021): 2719-2733.
- Mary Lai O. Salvaña, Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "Parallel Space-Time Likelihood Optimization for Air Pollution Prediction on Large-Scale Systems." In the Proceedings of the Platform for Advanced Scientific Computing Conference (PASC'22). Association for Computing Machinery, New York, NY, USA, Article 17, 1–11. ACM, 2022.

4 ExaGeoStat

6. Sameh Abdulah, Qinglei Cao, Yu Pei, George Bosilca, Jack Dongarra, Marc G. Genton, David E. Keyes, Hatem Ltaief, and Ying Sun. "Accelerating geostatistical modeling and prediction with mixed-precision computations: A high-productivity approach with PaRSEC." IEEE Transactions on Parallel and Distributed Systems 33, no. 4 (2021): 964-976.

- 7. Sagnik Mondal, Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "Parallel Approximations of the Tukey g-and-h Likelihoods and Predictions for Non-Gaussian Geostatistics." 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, 2022, pp. 379-389. IEEE, 2022.
- 8. Qinglei Cao, Sameh Abdulah, Rabab Alomairy, Yu Pei, Pratik Nag, George Bosilca, Jack Dongarra et al. "Reshaping geostatistical modeling and prediction for extreme-scale environmental applications." In 2022 SC22: International Conference for High-Performance Computing, Networking, Storage and Analysis (SC), pp. 13-24. IEEE Computer Society, 2022. (ACM GORDON BELL PRIZE Finalist).
- 9. Sagnik Mondal, Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "Tile low-rank approximations of non-Gaussian space and space-time Tukey g-and-h random field likelihoods and predictions on large-scale systems." Journal of Parallel and Distributed Computing 180 (2023): 104715.
- 10. Qinglei Cao, Sameh Abdulah, Hatem Ltaief, Marc G. Genton, David E. Keyes, and George Bosilca. "Reducing Data Motion and Energy Consumption of Geospatial Modeling Applications Using Automated Precision Conversion." In 2023 IEEE International Conference on Cluster Computing (CLUSTER), IEEE, 2023.

License

[BSD 3-Clause](LICENSE)

Handout

Include Subdirectory

This contains all the header files for the project.

File structure

- api: Directory contains the high-level drivers for the ExaGeoStat-cpp functionalities that are provided to library users. These functions help users interact with the ExaGeoStat-cpp framework and perform various statistical operations.
- common: Directory contains all ExaGeoStat-cpp common functionalities that might be used across the different modules of the ExaGeoStat-cpp framework.
- configurations: Directory contains all ExaGeoStat-cpp configurations arguments and parsers. These functions are used to parse and set the configuration parameters for the ExaGeoStat-cpp framework.
- data-generators: Directory contains the required methods to generate datasets, i.e., dense...etc
- data-units: Directory is used for all ExaGeoStat-cpp base data structures that the user should utilize and interact with. These data units are used to represent the data and perform operations on it.
- hardware: Directory contains the required methods to manage hardware allocations and de-allocations.
- helpers: Directory contains helper functions that can be used across the different modules of the Exa
 GeoStat-cpp framework.
- kernels: Directory provide low-level implementations of the supported kernels offered by the ExaGeoStatcpp framework.
- linear-algebra-solvers: Directory is used for all ExaGeoStat-cpp integrated linear algebra solvers libraries.
- operators: Directory contains various operators used by the ExaGeoStat-cpp framework. These operators are used to perform various mathematical operations on the data sets.

6 Include Subdirectory

Namespace Index

3.1 Namespace List

Here is a list of all namespaces with brief descriptions:

exageostat
exageostat::adapters
exageostat::api??
exageostat::common
exageostat::configurations
exageostat::dataLoader
exageostat::dataLoader::csv
exageostat::dataunits
exageostat::dataunits::descriptor
exageostat::generators
exageostat::generators::synthetic
exageostat::helpers
exageostat::kernels
exageostat::linearAlgebra
exageostat::linearAlgebra::dense
exageostat::linearAlgebra::diagonalSuperTile??
exageostat::linearAlgebra::tileLowRank
exageostat::plugins
exageostat::prediction
exageostat::results
exageostat::runtime 23

8 Namespace Index

Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

exageostat::dataunits::BaseDescriptor
exageostat::helpers::BasselFunction< T >
exageostat::dataunits::descriptor::ChameleonDescriptor< T >
exageostat::helpers::CommunicatorMPI
exageostat::configurations::Configurations
$exage ostat:: generators:: Data Generator < T > \dots \dots$
exageostat::dataLoader::DataLoader <t></t>
exageostat::dataLoader::csv::CSVLoader< T >
exageostat::generators::synthetic::SyntheticGenerator< T >
DCMG
exageostat::runtime::DCMGCodelet < T >
DDOTP ??
exageostat::runtime::DDOTPCodelet< T >
exageostat::dataunits::DescriptorData< T >
exageostat::helpers::DistanceCalculationHelpers <t></t>
DMDET ??
exageostat::runtime::DMDETCodelet< T >
Dmloe
$exage ostat:: runtime:: Dmloe Mmom Codelet < T > \dots $
DMSE ??
$exage ostat:: runtime:: DMSE Bivariate Codelet < T > \dots $
exageostat::runtime::DMSECodelet< T >
DTRACE
$exage ostat:: runtime:: DTRACEC odelet < T > \dots $
DZCPY ??
$exage ostat:: runtime:: DZCPYCodelet < T > \dots $
$exage ostat:: api:: ExaGeoStat < T > \dots $
ExaGeoStatData <t></t>
$exage ostat:: data units:: descriptor:: ExaGeoStatDescriptor < T > \dots \dots$
ExaGeoStatHardware
std::exception
APIException
Gaussian
exageostat::runtime::GaussianCodelet< T >
$exage ostat:: data units:: descriptor:: Hicma Descriptor < T > \dots \dots$

10 Hierarchical Index

$exageostat:: kernel < T > \dots \dots$
exageostat::kernels::BivariateMaternFlexible< T >
exageostat::kernels::BivariateMaternParsimonious< T >
exageostat::kernels::BivariateSpacetimeMaternStationary< T >
exageostat::kernels::TrivariateMaternParsimonious< T >
exageostat::kernels::UnivariateExpNonGaussian< T >
exageostat::kernels::UnivariateMaternDbeta< T >
exageostat::kernels::UnivariateMaternDdbetaBeta <t></t>
exageostat::kernels::UnivariateMaternDdbetaNu< T >
exageostat::kernels::UnivariateMaternDdnuNu< T >
exageostat::kernels::UnivariateMaternDdsigmaSquare< T >
exageostat::kernels::UnivariateMaternDdsigmaSquareBeta< T >
exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T >
exageostat::kernels::UnivariateMaternDnu< T >
exageostat::kernels::UnivariateMaternDsigmaSquare< T >
exageostat::kernels::UnivariateMaternNonGaussian<
exageostat::kernels::UnivariateMaternNuggetsStationary< T >
exageostat::kernels::UnivariateMaternStationary< T >
exageostat::kernels::UnivariatePowExpStationary< T >
exageostat::kernels::UnivariateSpacetimeMaternStationary< T >
Kernels
9
exageostat::linearAlgebra::LinearAlgebraFactory< T >
$exage ost at:: linear Algebra:: Linear Algebra Methods < T > \dots \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$exageostat:: linear Algebra:: Chameleon Implementation < T > \dots \dots \dots \dots \dots \dots ? \textbf{?} \\$
$exageostat:: linear Algebra:: dense:: Chameleon Dense < T > \dots \dots \dots \dots ? \textbf{?} ?$
$exageostat:: linear Algebra:: diagonal Super Tile:: Chameleon DST < T > \dots \dots \dots ??$
exageostat::linearAlgebra::tileLowRank::HicmaImplementation< T >
exageostat::generators::LocationGenerator< T >
exageostat::dataunits::Locations $<$ T $>$
$exageostat:: data units:: mModeling Data < T > \dots \dots$
exageostat::runtime::NonGaussianLoglike< T >
exageostat::runtime::NonGaussianTransform< T >
exageostat::plugins::PluginRegistry< T >
exageostat::prediction::Prediction<
exageostat::prediction::PredictionAuxiliaryFunctions< T >
exageostat::prediction::PredictionHelpers< T >
exageostat::results::Results
exageostat::runtime::RuntimeFunctions <t></t>
exageostat::runtime::StarPuHelpers
exageostat::runtime::HicmaStarPuHelpers
exageostat::runtime::StarPuHelpersFactory
stride
$exage ostat:: runtime:: STRIDE VECCode let < T > \dots \dots$
$exage ost at :: runtime :: TriStride Vec Codelet < T > \dots \dots$

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

APIException	
Custom exception class for handling API errors and warnings	??
exageostat::dataunits::BaseDescriptor	
Union representing the base descriptor	??
exageostat::helpers::BasselFunction< T >	
The BasselFunction class provides methods for computing various derivatives of the modified	
Bessel function of the second kind, (K_{nu}). This class is templated to support both float and	
double data types, enabling precision-based computations as required by different applications	??
exageostat::kernels::BivariateMaternFlexible < T >	
A class representing a Bivariate Matern Flexible kernel	??
exageostat::kernels::BivariateMaternParsimonious< T >	
A class representing a Bivariate Matern Parsimonious kernel	??
exageostat::kernels::BivariateSpacetimeMaternStationary< T >	
A class representing a Bivariate Spacetime Matern Stationary kernel	??
exageostat::linearAlgebra::dense::ChameleonDense< T >	
ChameleonImplementationDense is a concrete implementation for dense matrices using	
Chameleon	??
exageostat::dataunits::descriptor::ChameleonDescriptor< T >	
ChameleonDescriptor is a class for creating matrix descriptors by CHAMELEON library	??
${\it exageostat::} linear Algebra:: diagonal Super Tile:: Chameleon DST < T >$	
ChameleonImplementationDST is a concrete implementation of LinearAlgebraMethods class for	
diagonal super tile matrices	??
exageostat::linearAlgebra::ChameleonImplementation< T >	
ChameleonImplementation is a concrete implementation of LinearAlgebraMethods class for	
dense or diagonal-super tile matrices	??
exageostat::runtime::ChameleonStarPuHelpers	
ChameleonStarPuHelpers is a concrete implementation of StarPuHelpers interface for	
Chameleon library	??
exageostat::helpers::CommunicatorMPI	
A class for Communicating MPI rank	??
exageostat::configurations::Configurations	
Contains methods to set and get	??
exageostat::dataLoader::csv::CSVLoader< T >	
A class for creating data by reading CSV files	??
exageostat::generators::DataGenerator< T >	
Abstract base class for generating synthetic or real data	??

12 Class Index

exageostat::dataLoader::DataLoader< T >	
Extends DataGenerator to include data loading functionalities	??
DCMG	
A class for starpu codelet dcmg	??
exageostat::runtime::DCMGCodelet< T >	??
DDOTP	
A class for starpu codelet ddotp	??
exageostat::runtime::DDOTPCodelet< T >	??
exageostat::dataunits::DescriptorData< T >	
Manages geo-statistical descriptor data with functions for retrieving and manipulating descriptors	??
exageostat::helpers::DistanceCalculationHelpers< T >	•
Class to calculate the distance between two points	??
DMDET	• •
A class for starpu codelet dmdet	??
·	
exageostat::runtime::DMDETCodelet< T >	??
Dmloe	
A class for starpu codelet dmloe-mmom	??
$exageostat::runtime::DmloeMmomCodelet < T > \dots \dots$??
DMSE	
A class for starpu codelet dmse-bivariate	??
exageostat::runtime::DMSEBivariateCodelet< T >	??
exageostat::runtime::DMSECodelet< T >	??
DTRACE	
A class for starpu codelet dtrace	??
exageostat::runtime::DTRACECodelet< T >	??
DZCPY	
A class for starpu codelet dzcpy	??
exageostat::runtime::DZCPYCodelet < T >	??
	"
exageostat::api::ExaGeoStat< T >	00
High-Level Wrapper class containing the static API for ExaGeoStat operations	??
ExaGeoStatData < T >	
Manages geo-statistical data with functions for location and descriptor manipulation	??
exageostat::dataunits::descriptor::ExaGeoStatDescriptor< T >	
ExaGeoStatDescriptor is a class for creating matrix descriptors used in CHAMELEON and Hi←	
CMA libraries	??
ExaGeoStatHardware	
Class representing the hardware configuration for the ExaGeoStat solver	??
Gaussian	
A class for starpu codelet gaussian-to-non	??
exageostat::runtime::GaussianCodelet< T >	??
exageostat::dataunits::descriptor::HicmaDescriptor< T >	
HicmaDescriptor is a class for creating matrix descriptors by HICMA library	??
exageostat::linearAlgebra::tileLowRank::Hicmalmplementation< T >	• •
Hicmalmplementation is a concrete implementation of LinearAlgebraMethods class for tile low-	00
rank matrices	??
exageostat::runtime::HicmaStarPuHelpers	
HicmaStarPuHelpers is a concrete implementation of StarPuHelpers interface for Hicma library	??
$exageostat:: kernels:: Kernel < T > \dots \dots$??
Kernels	
A base class for kernel functions	??
exageostat::kernels::KernelsConfigurations	??
exageostat::linearAlgebra::LinearAlgebraFactory< T >	
A class that creates linear algebra solvers based on the input computation type	??
exageostat::linearAlgebra::LinearAlgebraMethods< T >	
A class that defines the interface for linear algebra solvers	??
exageostat::generators::LocationGenerator< T >	• •
	??
Generates spatial locations based on given parameters	""

5.1 Class List

exageostat::dataunits::Locations< T >	
A class containing methods to set and get location data	??
exageostat::dataunits::mModelingData< T > Struct containing all the data needed for modeling	??
exageostat::runtime::NonGaussianLoglike< T >	
A class for starpu codelet non gaussian loglike	??
exageostat::runtime::NonGaussianTransform< T >	
A class for starpu codelet non gaussian transform	??
exageostat::plugins::PluginRegistry< T >	
Template class for registering and creating plugins	??
exageostat::prediction::Prediction <t></t>	
Class to handle different Prediction Module calls	??
exageostat::prediction::PredictionAuxiliaryFunctions < T > Class to define and implement different Prediction Module Auxiliary Functions	??
exageostat::prediction::PredictionHelpers< T >	
Class to define and implement different Prediction Module helpers functions	??
exageostat::results::Results	??
exageostat::runtime::RuntimeFunctions< T >	• •
A class that defines runtime static functions	??
exageostat::runtime::StarPuHelpers	
A class that defines the interface for StarPu helpers	??
exageostat::runtime::StarPuHelpersFactory	
A class that creates StarPu helpers based on the input computation type	??
stride	
A class for starpu codelet stride-vec	??
$exage ost at :: runtime :: STRIDE VECC ode let < T > \dots \dots$??
exageostat::generators::synthetic::SyntheticGenerator< T >	
A class for generating synthetic data	??
exageostat::runtime::TriStrideVecCodelet< T >	
A class for starpu codelet tri_stride_vec	??
exageostat::kernels::TrivariateMaternParsimonious< T >	
A class representing a Trivariate Matern Parsimonious kernel	??
exageostat::kernels::UnivariateExpNonGaussian< T >	0.0
A class representing a Univariate Exp Non Gaussian kernel exageostat::kernels::UnivariateMaternDbeta < T >	??
A class representing a Univariate Matern Dbeta kernel	??
exageostat::kernels::UnivariateMaternDdbetaBeta< T >	•
A class representing a Univariate Matern Ddbeta Beta kernel	??
exageostat::kernels::UnivariateMaternDdbetaNu< T >	•
A class representing a Univariate Matern Ddbeta Nu kernel	??
exageostat::kernels::UnivariateMaternDdnuNu< T >	
A class representing a Univariate Matern Ddnu Nu kernel	??
exageostat::kernels::UnivariateMaternDdsigmaSquare< T >	
A class representing a Univariate Matern Ddsigma Square kernel	??
${\tt exageostat::} kernels:: Univariate {\tt MaternDdsigmaSquareBeta} < {\tt T} >$	
A class representing a Univariate Matern Ddsigma Square Beta kernel	??
exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T >	
A class representing a Univariate Matern Ddsigma Square Nu kernel	??
exageostat::kernels::UnivariateMaternDnu< T >	
A class representing a Univariate Matern Dnu kernel	??
exageostat::kernels::UnivariateMaternDsigmaSquare< T >	0.0
A class representing a Univariate Matern Dsigma Square kernel	??
exageostat::kernels::UnivariateMaternNonGaussian< T > A class representing a Univariate Matern Non Gaussian kernel	??
exageostat::kernels::UnivariateMaternNuggetsStationary< T >	f 1
A class representing a Univariate Matern Nuggets Stationary kernel	??
exageostat::kernels::UnivariateMaternStationary< T >	
A class representing a Univariate Matern Stationary kernel	??
, , , , , , , , , , , , , , , , , , , ,	-

14 Class Index

exageostat::kernels::UnivariatePowExpStationary< T >	
A class representing a Univariate PowExp Stationary kernel	??
exageostat::kernels::UnivariateSpacetimeMaternStationary< T >	
A class representing a Univariate Spacetime Matern Stationary kernel	??

File Index

6.1 File List

Here is a list of all files with brief descriptions:

BasselFunction.hpp	
This file contains the BasselFunction class which provides methods for computing derivatives of	
the modified Bessel function of the second kind. These functions are crucial in statistical and	
mathematical computations, especially in fields such as geostatistics and spatial analysis	??
BivariateMaternFlexible.hpp	
Defines the BivariateMaternFlexible class, a Bivariate Matern Flexible kernel	??
BivariateMaternParsimonious.hpp	
Defines the BivariateMaternParsimonious class, a Bivariate Matern Parsimonious kernel	??
BivariateSpacetimeMaternStationary.hpp	
Defines the BivariateSpacetimeMaternStationary class, a Bivariate Spacetime Matern Stationary	
kernel	??
ByteHandler.hpp	
Implementation of byte manipulation functions for ExaGeoStat	??
ChameleonDense.hpp	??
ChameleonDescriptor.hpp	
Defines the ChameleonDescriptor class for creating matrix descriptors using the CHAMELEON	
library	??
ChameleonDST.hpp	??
ChameleonHeaders.hpp	
This file contains the necessary includes for using the Chameleon library	??
ChameleonImplementation.hpp	
This file contains the declaration of ChameleonImplementation class	??
ChameleonStarPuHelpers.hpp	
A class for Chameleon implementation of StarPu helpers interface StarPuHelpers.hpp	??
Communicator MPI.hpp	
Defines the CommunicatorMPI class for MPI rank communication	??
Configurations.hpp	
Contains the declaration of the Configurations class and its member functions	??
CSVLoader.hpp	
A class for generating synthetic data	??
DataGenerator.hpp	
Contains definition for abstract Data Generator Class	??
DataLoader.hpp	
Manages data loading operations for ExaGeoStat	??
dcmg-codelet.hpp	_
A class for starpu codelet dcmg	??

16 File Index

ddotp-codelet.hpp	
A class for starpu codelet ddotp	??
Definitions.hpp	
This file contains common definitions used in ExaGeoStat software package	??
DescriptorData.hpp	00
Contains the definition of the DescriptorData class	??
DistanceCalculationHelpers.hpp	??
Contains the definition of the DistanceCalculationHelpers class	"
A class for starpu codelet dmdet	??
dmloe-mmom-codelet.hpp	• •
A class for starpu codelet dmloe-mmom	??
dmse-bivariate-codelet.hpp	
A class for starpu codelet dmse-bivariate	??
dmse-codelet.hpp	
A class for starpu codelet dmse	??
dtrace-codelet.hpp	
A class for starpu codelet dtrace	??
dzcpy-codelet.hpp	
A class for starpu codelet dzcpy	??
EnumStringParser.hpp	
Provides utility functions for parsing enumeration values from strings	??
ErrorHandler.hpp	
Provides error handling functionalities	??
ExaGeoStat.hpp	
High-Level Wrapper class containing the static API for ExaGeoStat operations	??
ExaGeoStatData.hpp	
Contains the definition of the ExaGeoStatData class	??
ExaGeoStatDescriptor.hpp	
Class for creating matrix descriptors used in CHAMELEON and HiCMA libraries	??
ExaGeoStatHardware.hpp	??
Contains the definition of the ExaGeoStatHardware class	??
FunctionsAdapter.hpp	"
A class for starpu codelet gaussian-to-non	??
HicmaDescriptor.hpp	11
Defines the Hicma Descriptor class for creating matrix descriptors using the HICMA library	??
HicmaHeaders.hpp	• • •
This file contains the necessary includes for using the Chameleon library	??
Hicmalmplementation.hpp	• •
This file contains the declaration of Hicmalmplementation class	??
HicmaStarPuHelpers.hpp	
A class for Hicma implementation of StarPu helpers interface StarPuHelpers.hpp	??
Kernel.hpp	??
LinearAlgebraFactory.hpp	
Header file for the LinearAlgebraFactory class, which creates linear algebra solvers based on	
the input computation type	??
LinearAlgebraMethods.hpp	
Header file for the LinearAlgebraMethods class, which defines the interface for linear algebra	
solvers	??
LocationGenerator.hpp	
Generates and manages spatial locations for ExaGeoStat	??
Locations.hpp	
Header file for the Locations class, which contains methods to set and get location data \dots	??
Logger.hpp	
Provides logging and timing macros for debugging and profiling	??

6.1 File List

Modeling Data Holders. hpp	
This file contains the definition of the mModelingData struct, which contains all the data needed	
for modeling	??
non-gaussian-loglike-codelet.hpp	
A class for starpu codelet non-gaussian-loglike	??
non-gaussian-transform-codelet.hpp	
A class for starpu codelet non-gaussian-transform	??
PluginRegistry.hpp	
Defines a template class for registering and creating plugins	??
Prediction.hpp	
Contains the definition of the Prediction class	??
PredictionAuxiliaryFunctions.hpp	
Contains the definition of the PredictionAuxiliaryFunctions.hpp class	??
PredictionHelpers.hpp	
Contains the definition of the PredictionHelpers.hpp class	??
Results.hpp	
Defines the Results class for storing and accessing result data	??
RuntimeFunctions.hpp	
A class for runtime static functions	??
StarPuCodeletsHeaders.hpp	??
StarPuHelpers.hpp	
An interface for StarPu helpers	??
StarPuHelpersFactory.hpp	
Factory for StarPu helpers	??
stride-vec-codelet.hpp	
A class for starpu codelet stride-vec	??
SyntheticGenerator.hpp	
A class for generating synthetic data	??
tri-stride-vec-codelet.hpp	
A class for starpu codelet tri-stride-vec	??
TrivariateMaternParsimonious.hpp	
Defines the TrivariateMaternParsimonious class, a Trivariate Matern Parsimonious kernel	??
UnivariateExpNonGaussian.hpp	
Defines the UnivariateExpNonGaussian class, a Univariate Exp Non Gaussian kernel	??
UnivariateMaternDbeta.hpp	
Defines the UnivariateMaternDbeta class, a Univariate Matern Dbeta kernel	??
UnivariateMaternDdbetaBeta.hpp	
Defines the UnivariateMaternDdbetaBeta class, a Univariate Matern Ddbeta Beta kernel	??
UnivariateMaternDdbetaNu.hpp	
Defines the UnivariateMaternDdbetaNu class, a Univariate Matern Ddbeta Nu kernel	??
UnivariateMaternDdnuNu.hpp	
Defines the UnivariateMaternDdnuNu class, a Univariate Matern Ddnu Nu kernel	??
UnivariateMaternDdsigmaSquare.hpp	
Defines the UnivariateMaternDdsigmaSquare class, a univariate stationary Matern kernel	??
UnivariateMaternDdsigmaSquareBeta.hpp	
Defines the UnivariateMaternDdsigmaSquareBeta class, a Univariate Matern Ddsigma Square	
Beta kernel	??
UnivariateMaternDdsigmaSquareNu.hpp	
Defines the UnivariateMaternDdsigmaSquareNu class, a Univariate Matern Ddsigma Square Nu	
kernel	??
UnivariateMaternDnu.hpp	
Defines the UnivariateMaternDnu class, a Univariate Matern Dnu kernel	??
UnivariateMaternDsigmaSquare.hpp	
Defines the UnivariateMaternDsigmaSquare class, a Univariate Matern Dsigma Square kernel	??
UnivariateMaternNonGaussian.hpp	
Defines the Universate Matern Non Gaussian class a Universate Matern Non Gaussian kernel	22

18 File Index

UnivariateMaternNuggetsStationary.hpp	
Defines the UnivariateMaternNuggetsStationary class, a Univariate Matern Nuggets Stationary	
kernel	??
UnivariateMaternStationary.hpp	
Defines the UnivariateMaternStationary class, a univariate stationary Matern kernel	??
UnivariatePowExpStationary.hpp	
Defines the UnivariatePowExpStationary class, a univariate stationary PowExp kernel	??
UnivariateSpacetimeMaternStationary.hpp	
Defines the UnivariateSpacetimeMaternStationary class, a Univariate Spacetime Matern Sta-	
tionary kernel	??

Namespace Documentation

7.1 exageostat Namespace Reference

Namespaces

- · adapters
- api
- common
- · configurations
- dataLoader
- · dataunits
- · generators
- helpers
- · kernels
- · linearAlgebra
- · plugins
- · prediction
- · results
- · runtime

7.2 exageostat::adapters Namespace Reference

Functions

- Rcpp::NumericVector R_GetLocationX (ExaGeoStatData < double > *apData)
 Retrieves X coordinates of locations from ExaGeoStat data.
- Rcpp::NumericVector R_GetLocationY (ExaGeoStatData < double > *apData)
 Retrieves Y coordinates of locations from ExaGeoStat data.
- Rcpp::NumericVector R_GetLocationZ (ExaGeoStatData < double > *apData)
 - Retrieves Z coordinates of locations from ExaGeoStat data.
- Rcpp::NumericVector R_GetDescZValues (ExaGeoStatData< double > *apData, const std::string &aType)

 Retrieves descriptive Z values from ExaGeoStat data based on type.

ExaGeoStatData< double > * R_ExaGeoStatLoadData (const std::string &aKernelName, const std::vector< double > &aInitialTheta, const std::string &aDistanceMatrix, const int &aProblemSize, const int &aSeed, const int &aDenseTileSize, const int &aLowTileSize, const std::string &aDimension, const std::string &aLog← Path, const std::string &aDataPath, const std::string &aObservations← FilePath)

Function to load ExaGeoStat data.

std::vector< double > R_ExaGeoStatModelData (const std::string &aComputation, const std::string &a←
KernelName, const std::string &aDistanceMatrix, const std::vector< double > &aLowerBound, const std←
::vector< double > &aUpperBound, const int &aTolerance, const int &aMlelterations, const int &aDense←
TileSize, const int &aLowTileSize, const std::string &aDimension, const int &aBand, const int &aMax←
Rank, SEXP apData, Rcpp::Nullable< Rcpp::NumericVector > aMeasurementsVector=R_NilValue, Rcpp←
::Nullable< Rcpp::NumericVector > aLocationsX=R_NilValue, Rcpp::NumericVector > a←
LocationsY=R NilValue, Rcpp::Nullable< Rcpp::NumericVector > aLocationsZ=R NilValue)

Models ExaGeoStat data using specified arguments.

std::vector< double > R_ExaGeoStatPredictData (const std::string &aKernelName, const std::string &a
 DistanceMatrix, const std::vector< double > &aEstimatedTheta, const int &aDenseTileSize, const int &a
 LowTileSize, const std::string &aDimension, std::vector< std::vector< double >> &aTrainData, std::vector< std::vector< double >> &aTestData)

Predicts outcomes using ExaGeoStat data and configurations.

std::vector< double > R_ExaGeoStatMLOE_MMOM (const std::string &aKernelName, const std::string &a
 DistanceMatrix, const std::vector< double > &aEstimatedTheta, const std::vector< double > &aTrueTheta,
 const int &aDenseTileSize, const int &aLowTileSize, const std::string &aDimension, std::vector< std::vector<
 double >> &aTrainData, std::vector< std::vector< double >> &aTestData)

Calculates the Mean Logarithmic Error (MLOE) and the Mean Measure of Model Output (MMOM) for ExaGeoStat predictions.

std::vector< double > R_ExaGeoStatFisher (const std::string &aKernelName, const std::string &aDistance
 Matrix, const std::vector< double > &aEstimatedTheta, const int &aDenseTileSize, const int &aLowTileSize,
 const std::string &aDimension, std::vector< std::vector< double >> &aTrainData, std::vector< std::vector<
 double >> &aTestData)

Computes the Fisher information matrix for ExaGeoStat models.

std::vector< double > R_ExaGeoStatIDW (const std::string &aKernelName, const std::string &aDistance←
 Matrix, const std::vector< double > &aEstimatedTheta, const int &aDenseTileSize, const int &aLowTileSize,
 const std::string &aDimension, std::vector< std::vector< double >> &aTrainData, std::vector< std::vector<
 double >> &aTestData, std::vector< double > &aTestMeasurementsValues)

Applies Inverse Distance Weighting (IDW) for spatial interpolation using ExaGeoStat data.

double * GetDataFromArguments (Rcpp::Nullable < Rcpp::NumericVector > aMeasurementsVector, Rcpp
 ::Nullable < Rcpp::NumericVector > aLocationsX, Rcpp::Nullable < Rcpp::NumericVector > aLocationsY,
 Rcpp::Nullable < Rcpp::NumericVector > aLocationsZ, std::unique_ptr < ExaGeoStatData < double >>
 &aData, configurations::Configurations &aConfigurations, const std::string &aKernelName, const std::string
 &aDistanceMatrix, const int &aDenseTileSize, const int &aLowTileSize, const std::string &aDimension, const
 common::Computation &aComputation)

Extracts and prepares data from given arguments for ExaGeoStat operations.

void ValidateDataDimensions (const std::vector< std::vector< double >> &aData, const std::string &a
 —
 DataType)

Validates the dimensions of input data.

void PredictionSetupHelper (configurations::Configurations &aConfigurations, const std::string &aKernel
 Name, const std::string &aDistanceMatrix, const int &aDenseTileSize, const int &aLowTileSize, const std
 ::string &aDimension, std::vector< std::vector< double >> &aTrainData, std::vector< std::vector< double
 >> &aTestData, const std::vector< double > &aEstimatedTheta, const std::vector< double > &aTest
 MeasurementsValues)

Sets up the prediction environment.

7.2.1 Function Documentation

7.2.1.1 R_GetLocationX()

Retrieves X coordinates of locations from ExaGeoStat data.

Extracts and returns the X coordinates of geographical or spatial locations stored in an ExaGeoStatData object, facilitating data manipulation and analysis within the ExaGeoStat framework.

Parameters

	in	apData	Pointer to ExaGeoStatData object containing the spatial data.	
--	----	--------	---	--

Returns

Numeric vector of X coordinates.

7.2.1.2 R GetLocationY()

Retrieves Y coordinates of locations from ExaGeoStat data.

Extracts and returns the Y coordinates of geographical or spatial locations stored in an ExaGeoStatData object, supporting various spatial data analyses and operations within the ExaGeoStat software.

Parameters

ſ		an Data	Pointer to ExaGeoStatData object containing the spatial data.	I
	Т11	αμυαια	Tolliter to Exaceostatibata object containing the spatial data.	l

Returns

Numeric vector of Y coordinates.

7.2.1.3 R_GetLocationZ()

Retrieves Z coordinates of locations from ExaGeoStat data.

Extracts and returns the Z coordinates (elevation or depth) of spatial locations stored in an ExaGeoStatData object, enhancing three-dimensional spatial analysis capabilities within the ExaGeoStat framework.

in	apData	Pointer to ExaGeoStatData object containing the spatial data.
----	--------	---

Returns

Numeric vector of Z coordinates.

7.2.1.4 R_GetDescZValues()

Retrieves descriptive Z values from ExaGeoStat data based on type.

Extracts and returns Z values from an ExaGeoStatData object, aiding in targeted spatial data analysis and visualization within ExaGeoStat.

Parameters

in	apData	Pointer to ExaGeoStatData object containing the spatial data.
in	аТуре	String specifying the type of descriptor value to retrieve (e.g., "Chameleon", "HiCMA").

Returns

Numeric vector of descriptive Z values.

7.2.1.5 R_ExaGeoStatLoadData()

Function to load ExaGeoStat data.

This function loads data into an ExaGeoStatData object using the provided configuration and computational settings. It is designed to initialize the data structure necessary for subsequent statistical model operations within the Exa← GeoStat framework.

in	aKernelName	Name of the computational kernel to be utilized.
in	alnitialTheta	Initial parameter values for the statistical model.
in	aDistanceMatrix	Type of distance matrix to be used ("euclidean", "manhattan", etc.).
in	aProblemSize	Size of the problem or dataset.
in	aSeed	Seed for random number generation, ensuring reproducibility.
in	aDenseTileSize	Size of the tile for dense computations.
in	aLowTileSize	Size of the tile for low-rank computations.
in	aDimension	Dimensionality of the problem ("2D" for two dimensions, "3D" for three dimensions).
in	aLogPath	Path to the log file where execution details will be stored.
in	aDataPath	Path to the data file containing spatial observations.
in	aRecoveryFilePath	Path for saving intermediate computation states, aiding in recovery from interruptions.
in	aObservationsFilePath	Path to the file containing observation data.

Returns

A pointer to an ExaGeoStatData object containing the loaded data.

7.2.1.6 R_ExaGeoStatModelData()

```
std::vector<double> exageostat::adapters::R_ExaGeoStatModelData (
           const std::string & aComputation,
           const std::string & aKernelName,
           const std::string & aDistanceMatrix,
           const std::vector< double > & aLowerBound,
           const std::vector< double > & aUpperBound,
           const int & aTolerance,
           const int & aMleIterations,
           const int & aDenseTileSize,
           const int & aLowTileSize,
           const std::string & aDimension,
           const int & aBand,
           const int & aMaxRank,
           SEXP apData,
           Rcpp::Nullable< Rcpp::NumericVector > aMeasurementsVector = R_NilValue,
           Rcpp::Nullable< Rcpp::NumericVector > aLocationsX = R_NilValue,
           Rcpp::Nullable< Rcpp::NumericVector > aLocationsY = R_NilValue,
```

Models ExaGeoStat data using specified arguments.

Applies statistical modeling to ExaGeoStatData based on the provided configurations. This function is essential for preparing the data for in-depth statistical analysis and predictions, optimizing internal representations and parameters for the modeling process.

in	aComputation	Computational method to be used.
in	aKernelName	Name of the kernel for computations.
in	aDistanceMatrix	Type of distance matrix ("euclidean", "manhattan", etc.).
in	aLowerBound	Lower bound for optimization parameters.
in	aUpperBound	Upper bound for optimization parameters.
in	aTolerance	Tolerance level for the optimization algorithm.
in	aMleIterations	Maximum number of iterations for the Maximum Likelihood Estimation (MLE)
		algorithm.
in	aDenseTileSize	Tile size for dense matrix computations.
in	aLowTileSize	Tile size for low-rank approximations.
in	aDimension	Dimensionality of the problem ("2D" or "3D").
in	aBand	Bandwidth for band matrices, applicable in certain computational kernels.
in	aMaxRank	Maximum rank for low-rank approximations.
in	apData	Pointer to ExaGeoStatData object to be modeled.
in	aMeasurementsVector	Optional vector of measurements to enhance modeling, can be nullable.
in	aLocationsX	Optional vector of X coordinates for locations, can be nullable.
in	aLocationsY	Optional vector of Y coordinates for locations, can be nullable.
in	aLocationsZ	Optional vector of Z coordinates for locations, can be nullable.

Returns

Vector of doubles representing the modeled theta.

7.2.1.7 R_ExaGeoStatPredictData()

Predicts outcomes using ExaGeoStat data and configurations.

Utilizes a modeled ExaGeoStatData object to perform predictions, leveraging specified computational settings and statistical models. This function is integral for generating spatial predictions based on the data and models within the ExaGeoStat framework.

Parameters

in	aKernelName	Name of the kernel used for prediction computations.
in	aDistanceMatrix	Type of distance matrix used ("euclidean", "manhattan", etc.).
in	aEstimatedTheta	Vector of estimated parameters from the model.
in	aDenseTileSize	Tile size for dense matrix operations.
in	aLowTileSize	Tile size for low-rank matrix operations.
in	aDimension	Dimensionality of the spatial data ("2D" or "3D").
in	aTrainData	Training data set used for predictions.
in	aTestData	Test data set for which predictions are made.

Generated by Doxygen

Returns

Vector of predicted values based on the test data.

7.2.1.8 R_ExaGeoStatMLOE_MMOM()

Calculates the Mean Logarithmic Error (MLOE) and the Mean Measure of Model Output (MMOM) for ExaGeoStat predictions.

Assesses the accuracy of spatial predictions made by the ExaGeoStat framework by computing the MLOE and MMOM, which provide insights into the predictive performance and uncertainty of the models.

Parameters

in	aKernelName	Kernel used for the prediction computations.
in	aDistanceMatrix	Type of distance matrix ("euclidean", "manhattan", etc.).
in	aEstimatedTheta	Vector of estimated parameters from the model.
in	aTrueTheta	Vector of true parameter values for validation.
in	aDenseTileSize	Tile size for dense matrix operations.
in	aLowTileSize	Tile size for low-rank matrix operations.
in	aDimension	Dimensionality of the spatial data ("2D" or "3D").
in	aTrainData	Training data set used in the model.
in	aTestData	Test data set used for validation.

Returns

Vector containing the calculated MLOE and MMOM values.

7.2.1.9 R_ExaGeoStatFisher()

```
const std::string & aDimension,
std::vector< std::vector< double >> & aTrainData,
std::vector< std::vector< double >> & aTestData )
```

Computes the Fisher information matrix for ExaGeoStat models.

Utilizes the estimated parameters and the Fisher information matrix to evaluate the information content and parameter uncertainties within the ExaGeoStat framework, contributing to the understanding of model reliability and sensitivity.

Parameters

in	aKernelName	Kernel used for computations.
in	aDistanceMatrix	Type of distance matrix ("euclidean", "manhattan", etc.).
in	aEstimatedTheta	Vector of estimated parameters from the model.
in	aDenseTileSize	Tile size for dense matrix operations.
in	aLowTileSize	Tile size for low-rank matrix operations.
in	aDimension	Dimensionality of the spatial data ("2D" or "3D").
in	aTrainData	Training data set used in the model.
in	aTestData	Test data set used for validation.

Returns

Vector representing the Fisher information matrix.

7.2.1.10 R_ExaGeoStatIDW()

Applies Inverse Distance Weighting (IDW) for spatial interpolation using ExaGeoStat data.

Implements the IDW interpolation method to estimate spatial variables at unsampled locations based on the distances and values of nearby sampled points within the ExaGeoStat framework, enhancing spatial prediction capabilities.

Parameters

in	aKernelName	Kernel used for IDW computations.
in	aDistanceMatrix	Type of distance matrix ("euclidean", "manhattan", etc.).
in	aEstimatedTheta	Vector of parameters, typically used for weighting in IDW.
in	aDenseTileSize	Tile size for dense matrix operations.
in	aLowTileSize	Tile size for low-rank matrix operations.

in	aDimension	Dimensionality of the spatial data ("2D" or "3D").
in	aTrainData	Training data set providing sampled locations and values.
in	aTestData	Test data set providing unsampled locations for which values are interpolated.
in	aTestMeasurementsValues	Vector of measured values at the test locations, used as reference in some IDW implementations.

Returns

Vector of interpolated values at the test locations.

7.2.1.11 GetDataFromArguments()

Extracts and prepares data from given arguments for ExaGeoStat operations.

This function is designed to parse and prepare spatial and measurement data from provided arguments, making it suitable for processing within the ExaGeoStat framework. It handles optional data vectors for measurements and locations (X, Y, Z coordinates), and configures an ExaGeoStatData object based on these inputs along with other computational and configuration parameters.

Parameters

in	aMeasurementsVector	vector of measurements to enhance modeling, can be nullable.
in	aLocationsX	vector of X coordinates for locations, can be nullable.
in	aLocationsY	vector of Y coordinates for locations, can be nullable.
in	aLocationsZ	vector of Z coordinates for locations, can be nullable.
in	aData	Pointer to ExaGeoStatData object to be modeled.
in	aConfigurations	Configuration settings specifying computational details such as the kernel
		type, matrix storage format, etc.
in	aKernelName	Name of the kernel for computations.
in	aDistanceMatrix	Type of distance matrix ("euclidean", "manhattan", etc.).
in	aDenseTileSize	Tile size for dense matrix computations.
in	aLowTileSize	Tile size for low-rank approximations.
in	aDimension	Dimensionality of the problem ("2D" or "3D").
in	aComputation	Computational method to be used.

Generated by Doxygen

Returns

Pointer to a double array containing the prepared data, ready for use in ExaGeoStat operations.

7.2.1.12 ValidateDataDimensions()

Validates the dimensions of input data.

This function checks the dimensions of the provided data vectors to ensure they meet the expected format and size requirements for a given data type. It's used to verify that the data structures passed into algorithms or processes are correctly formatted, preventing errors or inconsistencies in data processing.

Parameters

aData	A constant reference to a vector of vectors containing the data to be validated.
aDataType	A string describing the type of data being validated, which influences the expected dimensions and format of the data.

Returns

void

7.2.1.13 PredictionSetupHelper()

Sets up the prediction environment.

This function prepares the necessary configurations and data structures for making predictions. It involves setting up various parameters, including kernel names, distance matrices, tile sizes, dimensions, and training/test data. The function is crucial for initializing the prediction process with the appropriate settings and data.

aConfigurations	Reference to a Configurations object containing various prediction and algorithm configurations.
aKernelName	Name of the kernel to be used in predictions.
aDistanceMatrix	String representation of the distance matrix to be used.
aDenseTileSize	Size of the dense tiles in the matrix.
aLowTileSize	Size of the low-resolution tiles in the matrix.
aDimension	String representation of the dimensionality of the data.
aTrainData	Reference to a vector of vectors containing the training data.
aTestData	Reference to a vector of vectors containing the test data.
aEstimatedTheta	Vector containing estimated theta values for the model.
aTestMeasurementsValues	Vector containing the test measurement values.

Returns

Pointer to a double array containing the prepared data, ready for use in ExaGeoStat operations.

7.3 exageostat::api Namespace Reference

Classes

class ExaGeoStat

High-Level Wrapper class containing the static API for ExaGeoStat operations.

7.4 exageostat::common Namespace Reference

Typedefs

typedef enum exageostat::common::TileStorage ExaGeoStatTileStorage

Enumerations

```
    enum Verbose { QUIET MODE = 0 , STANDARD MODE = 1 , DETAILED MODE = 2 }
```

enum Dimension { Dimension2D = 0 , Dimension3D = 1 , DimensionST = 2 }

Enum denoting the dimension of generated data.

• enum Side { EXAGEOSTAT_LEFT = 141 , EXAGEOSTAT_RIGHT = 142 }

Enum denoting the side on which the matrix appears in an equation.

enum Trans { EXAGEOSTAT_NO_TRANS = 111, EXAGEOSTAT_TRANS = 112, EXAGEOSTAT_CONJ_TRANS = 113 }

Enum denoting whether or not to transpose a matrix.

enum Diag { EXAGEOSTAT_NON_UNIT = 131 , EXAGEOSTAT_UNIT = 132 }

Enum denoting whether the diagonal is unitary.

- enum DistanceMetric { EUCLIDEAN_DISTANCE = 0 , GREAT_CIRCLE_DISTANCE = 1 }
- enum DescriptorType { CHAMELEON_DESCRIPTOR = 0 , HICMA_DESCRIPTOR = 1 }
- enum DataSourceType { SYNTHETIC = 0 , CSV_FILE = 1 }

```
• enum DescriptorName : int {
 DESCRIPTOR C = 0, DESCRIPTOR Z = 1, DESCRIPTOR Z COPY = 2, DESCRIPTOR PRODUCT = 3,
 DESCRIPTOR DETERMINANT = 4, DESCRIPTOR CD = 5, DESCRIPTOR CUV = 6, DESCRIPTOR CRK
 = 7,
 DESCRIPTOR Z OBSERVATIONS = 8, DESCRIPTOR Z Actual = 9, DESCRIPTOR Z MISS = 10,
 DESCRIPTOR MSPE = 11,
 DESCRIPTOR Z 1 = 12, DESCRIPTOR Z 2 = 13, DESCRIPTOR Z 3 = 14, DESCRIPTOR PRODUCT 1
 DESCRIPTOR PRODUCT 2 = 16, DESCRIPTOR PRODUCT 3 = 17, DESCRIPTOR C11 = 18,
 DESCRIPTOR C12 = 19.
 DESCRIPTOR C22 = 20, DESCRIPTOR C12D = 21, DESCRIPTOR C12UV = 22, DESCRIPTOR C12RK
 = 23,
 DESCRIPTOR_C22D = 24, DESCRIPTOR_C22UV = 25, DESCRIPTOR_C22RK = 26, DESCRIPTOR_MSPE_1
 DESCRIPTOR_MSPE_2 = 28, DESCRIPTOR_k_T = 29, DESCRIPTOR_k_A = 30, DESCRIPTOR_k_A_TMP
 DESCRIPTOR k T TMP = 32 , DESCRIPTOR K T = 33 , DESCRIPTOR K T TMP = 34 ,
 DESCRIPTOR K A = 35.
 DESCRIPTOR_EXPR_1 = 36 , DESCRIPTOR_EXPR_2 = 37 , DESCRIPTOR_EXPR_3 = 38 ,
 DESCRIPTOR EXPR 4 = 39,
 DESCRIPTOR MLOE = 40 , DESCRIPTOR MMOM = 41 , DESCRIPTOR MLOE MMOM = 42 ,
 DESCRIPTOR ALPHA = 43.
 DESCRIPTOR TRUTH ALPHA = 44, DESCRIPTOR TIMATED ALPHA = 45, DESCRIPTOR CK = 46,
 DESCRIPTOR CJ = 47,
 DESCRIPTOR C TRACE = 48, DESCRIPTOR C DIAG = 49, DESCRIPTOR A = 50, DESCRIPTOR RESULTS
 DESCRIPTOR_SUM = 52, DESCRIPTOR_R = 53, DESCRIPTOR_R_COPY = 54}

    enum TileStorage {

 EXAGOSTAT CM = 101, EXAGOSTAT RM = 102, EXAGOSTAT CCRB = 103, EXAGOSTAT CRRB = 104
 EXAGOSTAT RCRB = 105, EXAGOSTAT RRRB = 106 }

    enum Computation { EXACT_DENSE = 0 , DIAGONAL_APPROX = 1 , TILE_LOW_RANK = 2 }

    Enum denoting the types of computations that can be requested, to use the required Linear Algebra solver library.

    enum Precision { SINGLE = 0 , DOUBLE = 1 , MIXED = 2 }

    Enum denoting the precision of operations that are supported to be done on the matrix.
enum FloatPoint : int {
 EXAGEOSTAT_BYTE = 0 , EXAGEOSTAT_INTEGER = 1 , EXAGEOSTAT_REAL_FLOAT = 2 ,
 EXAGEOSTAT REAL DOUBLE = 3,
 EXAGEOSTAT_COMPLEX_FLOAT = 4, EXAGEOSTAT_COMPLEX_DOUBLE = 5}
    Enum denoting the floating point arithmetic of the matrix.

    enum UpperLower: int { EXAGEOSTAT UPPER = 121, EXAGEOSTAT LOWER = 122, EXAGEOSTAT UPPER LOWER

 = 123 }
    Enum denoting the Upper/Lower part.
• enum CopyDirection : int { CHAMELEON_TO_HICMA = 0 , HICMA_TO_CHAMELEON = 1 }
    Enum denoting the copy descriptors flow.
```

Variables

static const std::set< std::string > availableKernels
 Set denoting the available kernels supported in matrix generation.

7.4.1 Typedef Documentation

7.4.1.1 ExaGeoStatTileStorage

 $\verb|typedef| enum | exageostat::common::TileStorage | exageostat::common::ExaGeoStatTileStorage | exageostat::common::TileStorage | exageostat::tileStorage | exageostat$

7.4.2 Enumeration Type Documentation

7.4.2.1 Verbose

enum exageostat::common::Verbose

Enumerator

QUIET_MODE	
STANDARD_MODE	
DETAILED_MODE	

7.4.2.2 Dimension

enum exageostat::common::Dimension

Enum denoting the dimension of generated data.

Enumerator

Dimension2D	
Dimension3D	
DimensionST	

7.4.2.3 Side

enum exageostat::common::Side

Enum denoting the side on which the matrix appears in an equation.

Enumerator

EXAGEOSTAT_LEFT	
EXAGEOSTAT RIGHT	

7.4.2.4 Trans

enum exageostat::common::Trans

Enum denoting whether or not to transpose a matrix.

Enumerator

EXAGEOSTAT_NO_TRANS	
EXAGEOSTAT_TRANS	
EXAGEOSTAT_CONJ_TRANS	

7.4.2.5 Diag

enum exageostat::common::Diag

Enum denoting whether the diagonal is unitary.

Enumerator

EXAGEOSTAT_NON_UNIT	
EXAGEOSTAT_UNIT	

7.4.2.6 DistanceMetric

enum exageostat::common::DistanceMetric

Enumerator

EUCLIDEAN_DISTANCE	
GREAT_CIRCLE_DISTANCE	

7.4.2.7 DescriptorType

enum exageostat::common::DescriptorType

Enumerator

CHAMELEON_DESCRIPTOR	
HICMA_DESCRIPTOR	

7.4.2.8 DataSourceType

enum exageostat::common::DataSourceType

Enumerator

SYNTHETIC	
CSV_FILE	

7.4.2.9 DescriptorName

enum exageostat::common::DescriptorName : int

Enumerator

DESCRIPTOR_C
DESCRIPTOR_Z
DESCRIPTOR_Z_COPY
DESCRIPTOR_PRODUCT
DESCRIPTOR_DETERMINANT
DESCRIPTOR_CD
DESCRIPTOR_CUV
DESCRIPTOR_CRK
DESCRIPTOR_Z_OBSERVATIONS
DESCRIPTOR_Z_Actual
DESCRIPTOR_Z_MISS
DESCRIPTOR_MSPE
DESCRIPTOR_Z_1
DESCRIPTOR_Z_2
DESCRIPTOR_Z_3
DESCRIPTOR_PRODUCT_1
DESCRIPTOR_PRODUCT_2
DESCRIPTOR_PRODUCT_3
DESCRIPTOR_C11
DESCRIPTOR_C12
DESCRIPTOR_C22
DESCRIPTOR_C12D
DESCRIPTOR_C12UV
DESCRIPTOR_C12RK
DESCRIPTOR_C22D
DESCRIPTOR_C22UV
DESCRIPTOR_C22RK
DESCRIPTOR_MSPE_1
DESCRIPTOR_MSPE_2
DESCRIPTOR_k_T

Enumerator

DESCRIPTOR_k_A	
DESCRIPTOR_k_A_TMP	
DESCRIPTOR_k_T_TMP	
DESCRIPTOR_K_T	
DESCRIPTOR_K_T_TMP	
DESCRIPTOR_K_A	
DESCRIPTOR_EXPR_1	
DESCRIPTOR_EXPR_2	
DESCRIPTOR_EXPR_3	
DESCRIPTOR_EXPR_4	
DESCRIPTOR_MLOE	
DESCRIPTOR_MMOM	
DESCRIPTOR_MLOE_MMOM	
DESCRIPTOR_ALPHA	
DESCRIPTOR_TRUTH_ALPHA	
DESCRIPTOR_TIMATED_ALPHA	
DESCRIPTOR_CK	
DESCRIPTOR_CJ	
DESCRIPTOR_C_TRACE	
DESCRIPTOR_C_DIAG	
DESCRIPTOR_A	
DESCRIPTOR_RESULTS	
DESCRIPTOR_SUM	
DESCRIPTOR_R	
DESCRIPTOR_R_COPY	

7.4.2.10 TileStorage

enum exageostat::common::TileStorage

Enumerator

EXAGOSTAT_CM	
EXAGOSTAT_RM	
EXAGOSTAT_CCRB	
EXAGOSTAT_CRRB	
EXAGOSTAT_RCRB	
EXAGOSTAT_RRRB	

7.4.2.11 Computation

enum exageostat::common::Computation

Enum denoting the types of computations that can be requested, to use the required Linear Algebra solver library.

Enumerator

EXACT_DENSE	
DIAGONAL_APPROX	
TILE_LOW_RANK	

7.4.2.12 Precision

enum exageostat::common::Precision

Enum denoting the precision of operations that are supported to be done on the matrix.

Enumerator

SINGLE	
DOUBLE	
MIXED	

7.4.2.13 FloatPoint

enum exageostat::common::FloatPoint : int

Enum denoting the floating point arithmetic of the matrix.

Enumerator

EXAGEOSTAT_BYTE	
EXAGEOSTAT_INTEGER	
EXAGEOSTAT_REAL_FLOAT	
EXAGEOSTAT_REAL_DOUBLE	
EXAGEOSTAT_COMPLEX_FLOAT	
EXAGEOSTAT_COMPLEX_DOUBLE	

7.4.2.14 UpperLower

enum exageostat::common::UpperLower : int

Enum denoting the Upper/Lower part.

Enumerator

EXAGEOSTAT_UPPER	Use lower triangle of A
EXAGEOSTAT_LOWER	Use upper triangle of A
EXAGEOSTAT_UPPER_LOWER	Use the full A

7.4.2.15 CopyDirection

```
enum exageostat::common::CopyDirection : int
```

Enum denoting the copy descriptors flow.

Enumerator

CHAMELEON_TO_HICMA	
HICMA_TO_CHAMELEON	

7.4.3 Variable Documentation

7.4.3.1 availableKernels

```
exageostat::common::availableKernels [static]
```

Set denoting the available kernels supported in matrix generation.

This set is updated automatically to add new kernels. The set is initialized with a lambda function that iterates through a directory and extracts the kernel names from the filenames. It also adds lowercase versions of the kernel names with underscores before each capital letter.

Returns

set of all available kernels names

7.5 exageostat::configurations Namespace Reference

Classes

· class Configurations

Contains methods to set and get.

7.6 exageostat::dataLoader Namespace Reference

Namespaces

• CSV

Classes

· class DataLoader

Extends DataGenerator to include data loading functionalities.

7.7 exageostat::dataLoader::csv Namespace Reference

Classes

· class CSVLoader

A class for creating data by reading CSV files.

7.8 exageostat::dataunits Namespace Reference

Namespaces

· descriptor

Classes

· union BaseDescriptor

Union representing the base descriptor.

class DescriptorData

Manages geo-statistical descriptor data with functions for retrieving and manipulating descriptors.

class Locations

A class containing methods to set and get location data.

struct mModelingData

Struct containing all the data needed for modeling.

7.9 exageostat::dataunits::descriptor Namespace Reference

Classes

class ChameleonDescriptor

ChameleonDescriptor is a class for creating matrix descriptors by CHAMELEON library.

class HicmaDescriptor

HicmaDescriptor is a class for creating matrix descriptors by HICMA library.

• class ExaGeoStatDescriptor

ExaGeoStatDescriptor is a class for creating matrix descriptors used in CHAMELEON and HiCMA libraries.

7.9.1 Detailed Description

Tile matrix descriptor

Matrices are stored in a contiguous data chunk containing in order A11, A21, A12, A22 with:

7.10 exageostat::generators Namespace Reference

Namespaces

· synthetic

Classes

· class DataGenerator

Abstract base class for generating synthetic or real data.

class LocationGenerator

Generates spatial locations based on given parameters.

7.11 exageostat::generators::synthetic Namespace Reference

Classes

· class SyntheticGenerator

A class for generating synthetic data.

7.12 exageostat::helpers Namespace Reference

Classes

· class BasselFunction

The BasselFunction class provides methods for computing various derivatives of the modified Bessel function of the second kind, (K_{\parallel}). This class is templated to support both float and double data types, enabling precision-based computations as required by different applications.

· class CommunicatorMPI

A class for Communicating MPI rank.

• class DistanceCalculationHelpers

Class to calculate the distance between two points.

Functions

• uint64_t SpreadBits (uint64_t aInputByte)

Spread bits by three spaces.

• uint64_t ReverseSpreadBits (uint64_t aInputByte)

Reverse Spread bits operation.

• bool CompareUint64 (const uint64_t &aFirstValue, const uint64_t &aSecondValue)

Compares two Unit64 values.

7.12.1 Function Documentation

7.12.1.1 SpreadBits()

Spread bits by three spaces.

Parameters

in a	_ InputByte	The input 64 bit to be spread.
------	----------------	--------------------------------

Returns

The byte after being spread.

7.12.1.2 ReverseSpreadBits()

Reverse Spread bits operation.

Parameters

ń			
	in	aInputByte	The input spread 64 bit to be compacted.

Returns

The byte after being compacted.

7.12.1.3 CompareUint64()

Compares two Unit64 values.

Parameters

		Constant reference to the first input 64 bit value.
in	aSecondValue	Constant reference to the second input 64 bit value.

Returns

True if the second value is bigger than the first value, false otherwise.

7.13 exageostat::kernels Namespace Reference

Classes

class BivariateMaternFlexible

A class representing a Bivariate Matern Flexible kernel.

class BivariateMaternParsimonious

A class representing a Bivariate Matern Parsimonious kernel.

· class BivariateSpacetimeMaternStationary

A class representing a Bivariate Spacetime Matern Stationary kernel.

· class TrivariateMaternParsimonious

A class representing a Trivariate Matern Parsimonious kernel.

• class UnivariateExpNonGaussian

A class representing a Univariate Exp Non Gaussian kernel.

class UnivariateMaternDbeta

A class representing a Univariate Matern Dbeta kernel.

class UnivariateMaternDdbetaBeta

A class representing a Univariate Matern Ddbeta Beta kernel.

• class UnivariateMaternDdbetaNu

A class representing a Univariate Matern Ddbeta Nu kernel.

· class UnivariateMaternDdnuNu

A class representing a Univariate Matern Ddnu Nu kernel.

· class UnivariateMaternDdsigmaSquare

A class representing a Univariate Matern Ddsigma Square kernel.

· class UnivariateMaternDdsigmaSquareBeta

A class representing a Univariate Matern Ddsigma Square Beta kernel.

• class UnivariateMaternDdsigmaSquareNu

A class representing a Univariate Matern Ddsigma Square Nu kernel.

class UnivariateMaternDnu

A class representing a Univariate Matern Dnu kernel.

class UnivariateMaternDsigmaSquare

A class representing a Univariate Matern Dsigma Square kernel.

· class UnivariateMaternNonGaussian

A class representing a Univariate Matern Non Gaussian kernel.

class UnivariateMaternNuggetsStationary

A class representing a Univariate Matern Nuggets Stationary kernel.

· class UnivariateMaternStationary

A class representing a Univariate Matern Stationary kernel.

class UnivariatePowExpStationary

A class representing a Univariate PowExp Stationary kernel.

class UnivariateSpacetimeMaternStationary

A class representing a Univariate Spacetime Matern Stationary kernel.

- · struct KernelsConfigurations
- class Kernel

7.14 exageostat::linearAlgebra Namespace Reference

Namespaces

- dense
- · diagonalSuperTile
- tileLowRank

Classes

· class ChameleonImplementation

ChameleonImplementation is a concrete implementation of LinearAlgebraMethods class for dense or diagonal-super tile matrices.

class LinearAlgebraFactory

A class that creates linear algebra solvers based on the input computation type.

· class LinearAlgebraMethods

A class that defines the interface for linear algebra solvers.

7.15 exageostat::linearAlgebra::dense Namespace Reference

Classes

class ChameleonDense

ChameleonImplementationDense is a concrete implementation for dense matrices using Chameleon...

7.16 exageostat::linearAlgebra::diagonalSuperTile Namespace Reference

Classes

class ChameleonDST

ChameleonImplementationDST is a concrete implementation of LinearAlgebraMethods class for diagonal super tile matrices.

7.17 exageostat::linearAlgebra::tileLowRank Namespace Reference

Classes

· class Hicmalmplementation

Hicmalmplementation is a concrete implementation of LinearAlgebraMethods class for tile low-rank matrices.

7.18 exageostat::plugins Namespace Reference

Classes

· class PluginRegistry

Template class for registering and creating plugins.

7.19 exageostat::prediction Namespace Reference

Classes

· class Prediction

Class to handle different Prediction Module calls.

class PredictionAuxiliaryFunctions

Class to define and implement different Prediction Module Auxiliary Functions.

class PredictionHelpers

Class to define and implement different Prediction Module helpers functions.

7.20 exageostat::results Namespace Reference

Classes

class Results

7.21 exageostat::runtime Namespace Reference

Classes

class RuntimeFunctions

A class that defines runtime static functions.

- class DCMGCodelet
- class DDOTPCodelet
- class DMDETCodelet
- · class DmloeMmomCodelet
- · class DMSEBivariateCodelet
- class DMSECodelet
- · class DTRACECodelet

- class DZCPYCodelet
- · class GaussianCodelet
- · class NonGaussianLoglike

A class for starpu codelet non gaussian loglike.

class NonGaussianTransform

A class for starpu codelet non gaussian transform.

- class STRIDEVECCodelet
- class TriStrideVecCodelet

A class for starpu codelet tri_stride_vec.

• class ChameleonStarPuHelpers

ChameleonStarPuHelpers is a concrete implementation of StarPuHelpers interface for Chameleon library.

• class HicmaStarPuHelpers

HicmaStarPuHelpers is a concrete implementation of StarPuHelpers interface for Hicma library.

class StarPuHelpers

A class that defines the interface for StarPu helpers.

• class StarPuHelpersFactory

A class that creates StarPu helpers based on the input computation type.

Chapter 8

Class Documentation

8.1 APIException Class Reference

Custom exception class for handling API errors and warnings.

```
#include <ErrorHandler.hpp>
```

Inheritance diagram for APIException:

Public Member Functions

- APIException (const std::string &aMessage, const ErrorType &aErrorCode) Constructor for APIException.
- ~APIException () override=default Destructor for APIException.

8.1.1 Detailed Description

Custom exception class for handling API errors and warnings.

8.1.2 Constructor & Destructor Documentation

8.1.2.1 APIException()

Constructor for APIException.

Parameters

	in	aMessage	The error or warning message.
ſ	in	aErrorCode	The error type.

8.1.2.2 ~APIException()

```
APIException::~APIException ( ) [override], [default]
```

Destructor for APIException.

The documentation for this class was generated from the following file:

· ErrorHandler.hpp

8.2 exageostat::dataunits::BaseDescriptor Union Reference

Union representing the base descriptor.

#include <DescriptorData.hpp>

Public Attributes

• CHAM_desc_t * chameleon_desc

8.2.1 Detailed Description

Union representing the base descriptor.

This union is used to store different types of descriptors based on the configuration.

8.2.2 Member Data Documentation

8.2.2.1 chameleon_desc

CHAM_desc_t* exageostat::dataunits::BaseDescriptor::chameleon_desc

The documentation for this union was generated from the following file:

• DescriptorData.hpp

8.3 exageostat::helpers::BasselFunction< T > Class Template Reference

The BasselFunction class provides methods for computing various derivatives of the modified Bessel function of the second kind, (K_{\nu}). This class is templated to support both float and double data types, enabling precision-based computations as required by different applications.

```
#include <BasselFunction.hpp>
```

Static Public Member Functions

- static T CalculateDerivativeBesselNu (const T &aOrder, const T &aInputValue)
 - Calculates the derivative of the modified Bessel function of the second kind (K_nu) with respect to its order, evaluated at input_value and order aOrder.
- static T CalculateSecondDerivativeBesselNu (const T &aOrder, const T &aInputValue)
 - Calculates the second derivative of the modified Bessel function of the second kind (K_nu) with respect to its input, evaluated at input_value and order aOrder.
- static T CalculateSecondDerivativeBesselNuInput (const T &aOrder, const T &aInputValue)

Calculates the second derivative of the modified Bessel function of the second kind (K_nu) with respect to its input, evaluated at input_value and order aOrder.

8.3.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::helpers::BasselFunction} < \mbox{T} > \\
```

The BasselFunction class provides methods for computing various derivatives of the modified Bessel function of the second kind, (K_{\nu}). This class is templated to support both float and double data types, enabling precision-based computations as required by different applications.

Template Parameters

```
T Data Type: float or double
```

8.3.2 Member Function Documentation

8.3.2.1 CalculateDerivativeBesselNu()

Calculates the derivative of the modified Bessel function of the second kind (K_nu) with respect to its order, evaluated at input_value and order aOrder.

Parameters

	in	aOrder	The order of the Bessel function.
ĺ	in	alnputValue	The input value at which to evaluate the derivative.

Returns

The value of the derivative of K_nu with respect to its order, evaluated at input_value and order aOrder.

8.3.2.2 CalculateSecondDerivativeBesselNu()

Calculates the second derivative of the modified Bessel function of the second kind (K_nu) with respect to its input, evaluated at input_value and order aOrder.

Parameters

in	aOrder	The order of the Bessel function.
in	alnputValue	The input value at which to evaluate the second derivative.

Returns

The value of the second derivative of K_nu with respect to its input, evaluated at input_value and order aOrder.

8.3.2.3 CalculateSecondDerivativeBesselNuInput()

Calculates the second derivative of the modified Bessel function of the second kind (K_nu) with respect to its input, evaluated at input_value and order aOrder.

Parameters

	in	aOrder	The order of the Bessel function.
ĺ	in	alnputValue	The input value at which to evaluate the derivative.

Returns

The value of the derivative of K_nu with respect to its input, evaluated at input_value and order aOrder.

The documentation for this class was generated from the following file:

BasselFunction.hpp

8.4 exageostat::kernels::BivariateMaternFlexible< T > Class Template Reference

A class representing a Bivariate Matern Flexible kernel.

#include <BivariateMaternFlexible.hpp>

Inheritance diagram for exageostat::kernels::BivariateMaternFlexible < T >:

Public Member Functions

• BivariateMaternFlexible ()

Constructs a new BivariateMaternFlexible object.

• ~BivariateMaternFlexible () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new BivariateMaternFlexible object.

Static Private Attributes

· static bool plugin_name

Additional Inherited Members

8.4.1 Detailed Description

```
template < typename T > class exageostat::kernels::BivariateMaternFlexible < T >
```

A class representing a Bivariate Matern Flexible kernel.

This class represents a Bivariate Matern Flexible, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.4.2 Constructor & Destructor Documentation

8.4.2.1 BivariateMaternFlexible()

```
template<typename T >
exageostat::kernels::BivariateMaternFlexible < T >::BivariateMaternFlexible ( )
```

Constructs a new BivariateMaternFlexible object.

Initializes a new BivariateMaternFlexible object with default values.

8.4.2.2 ~BivariateMaternFlexible()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::BivariateMaternFlexible < T >:: \sim BivariateMaternFlexible ( ) [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.4.3 Member Function Documentation

8.4.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
in	aColumnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.
in	aLocalTheta	An array of kernel parameters.
in	aDistanceMetric	Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski).

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.4.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::BivariateMaternFlexible< T >::Create ( ) [static]
```

Creates a new BivariateMaternFlexible object.

This method creates a new BivariateMaternFlexible object and returns a pointer to it.

Returns

A pointer to the new BivariateMaternFlexible object.

8.4.4 Member Data Documentation

8.4.4.1 plugin_name

```
template<typename T >
bool exageostat::kernels::BivariateMaternFlexible< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• BivariateMaternFlexible.hpp

8.5 exageostat::kernels::BivariateMaternParsimonious< T > Class Template Reference

A class representing a Bivariate Matern Parsimonious kernel.

#include <BivariateMaternParsimonious.hpp>

Inheritance diagram for exageostat::kernels::BivariateMaternParsimonious< T >:

Public Member Functions

· BivariateMaternParsimonious ()

Constructs a new BivariateMaternParsimonious object.

• ~BivariateMaternParsimonious () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new BivariateMaternParsimonious object.

Static Private Attributes

• static bool plugin_name

Additional Inherited Members

8.5.1 Detailed Description

 $\label{template} \mbox{typename T} > \\ \mbox{class exageostat::kernels::BivariateMaternParsimonious} < \mbox{T} > \\ \mbox{Class exageostat::kernels::BivariateMaternParsimonious} < \mbox{Class exageostat::kernels::BivariateMaternParsimonious} < \mbox{Class exageostat::kernels::BivariateMaternParsimonious} < \mbox{Class exageostat::kernels::BivariateMaternParsimonious} < \mbox{Class exageostat::kernels::kernels::BivariateMaternParsimonious} < \mbox{Class exageostat::kernels::$

A class representing a Bivariate Matern Parsimonious kernel.

This class represents a Bivariate Matern Parsimonious, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.5.2 Constructor & Destructor Documentation

8.5.2.1 BivariateMaternParsimonious()

```
template<typename T >
exageostat::kernels::BivariateMaternParsimonious< T >::BivariateMaternParsimonious ( )
```

Constructs a new BivariateMaternParsimonious object.

Initializes a new BivariateMaternParsimonious object with default values.

8.5.2.2 ~BivariateMaternParsimonious()

```
\label{template} $$ \text{template}$$ \text{template}$$ $$ \text{template}$$ $$ \text{te
```

Virtual destructor to allow calls to the correct concrete destructor.

8.5.3 Member Function Documentation

8.5.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
Generated b	y BoxygermnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.5.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::BivariateMaternParsimonious< T >::Create ( ) [static]
```

Creates a new BivariateMaternParsimonious object.

This method creates a new BivariateMaternParsimonious object and returns a pointer to it.

Returns

A pointer to the new BivariateMaternParsimonious object.

8.5.4 Member Data Documentation

8.5.4.1 plugin_name

```
template<typename T >
bool exageostat::kernels::BivariateMaternParsimonious< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

BivariateMaternParsimonious.hpp

8.6 exageostat::kernels::BivariateSpacetimeMaternStationary< T > Class Template Reference

A class representing a Bivariate Spacetime Matern Stationary kernel.

```
#include <BivariateSpacetimeMaternStationary.hpp>
```

Inheritance diagram for exageostat::kernels::BivariateSpacetimeMaternStationary< T >:

```
exageostat::kernels::Kernel< T >

exageostat::kernels::BivariateSpacetimeMaternStationary< T >
```

Public Member Functions

· BivariateSpacetimeMaternStationary ()

Constructs a new BivariateSpacetimeMaternStationary object.

~BivariateSpacetimeMaternStationary () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new BivariateSpacetimeMaternStationary object.

Static Private Attributes

· static bool plugin_name

Additional Inherited Members

8.6.1 Detailed Description

```
template < typename T > class exageostat::kernels::BivariateSpacetimeMaternStationary < T >
```

A class representing a Bivariate Spacetime Matern Stationary kernel.

This class represents a Bivariate Spacetime Matern Stationary, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.6.2 Constructor & Destructor Documentation

8.6.2.1 BivariateSpacetimeMaternStationary()

```
\label{template} \begin{tabular}{ll} template < type name & T > \\ exage ostat:: kernels:: Bivariate Spacetime Matern Stationary < T >:: Bivariate Spacetime Matern Stationary \\ ( ) \end{tabular}
```

Constructs a new BivariateSpacetimeMaternStationary object.

Initializes a new BivariateSpacetimeMaternStationary object with default values.

8.6.2.2 ~BivariateSpacetimeMaternStationary()

```
\label{template} $$ template< typename T > $$ exageostat::kernels::BivariateSpacetimeMaternStationary< T >:: \sim BivariateSpacetimeMaternStationary ( ) [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.6.3 Member Function Documentation

8.6.3.1 GenerateCovarianceMatrix()

```
template<typename T >
void exageostat::kernels::BivariateSpacetimeMaternStationary< T >::GenerateCovarianceMatrix (
        T * apMatrixA,
        const int & aRowsNumber,
        const int & aColumnsNumber,
        const int & aRowOffset,
        const int & aColumnOffset,
        dataunits::Locations< T > & aLocation1,
        dataunits::Locations< T > & aLocation2,
        dataunits::Locations< T > & aLocation3,
        T * apLocalTheta,
        const int & aDistanceMetric ) [override], [virtual]
```

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
in	aColumnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.
in	aLocalTheta	An array of kernel parameters.
in	aDistanceMetric	Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski).

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.6.3.2 Create()

```
\label{template} $$ template< typename T > $$ static Kernel< T>* exageostat::kernels::BivariateSpacetimeMaternStationary< T >::Create () $$ [static] $$
```

Creates a new BivariateSpacetimeMaternStationary object.

This method creates a new BivariateSpacetimeMaternStationary object and returns a pointer to it.

Returns

A pointer to the new BivariateSpacetimeMaternStationary object.

8.6.4 Member Data Documentation

8.6.4.1 plugin name

```
template<typename T >
bool exageostat::kernels::BivariateSpacetimeMaternStationary< T >::plugin_name [static],
[private]
```

The documentation for this class was generated from the following file:

• BivariateSpacetimeMaternStationary.hpp

8.7 exageostat::linearAlgebra::dense::ChameleonDense< T> Class Template Reference

ChameleonImplementationDense is a concrete implementation for dense matrices using Chameleon...

```
#include <ChameleonDense.hpp>
```

 $Inheritance\ diagram\ for\ exageostat:: linear Algebra:: dense:: Chameleon Dense < T>:$

Public Member Functions

• ChameleonDense ()=default

Default constructor.

∼ChameleonDense () override=default

Virtual destructor to allow calls to the correct concrete destructor.

• void ExaGeoStatPotrfTile (const common::UpperLower &aUpperLower, void *apA, int aBand, void *apCD, void *apCrk, const int &aMaxRank, const int &aAcc) override

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

8.7.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::linearAlgebra::dense::ChameleonDense} < \mbox{T} > \\ \mbox{}
```

ChameleonImplementationDense is a concrete implementation for dense matrices using Chameleon...

Template Parameters

T Data Type: float or double

8.7.2 Constructor & Destructor Documentation

8.7.2.1 ChameleonDense()

```
\label{template} $$ \text{template}$$ $$ \text{typename T} > $$ exageostat::linearAlgebra::dense::ChameleonDense} < T >::ChameleonDense ( ) [explicit], [default]
```

Default constructor.

8.7.2.2 ~ChameleonDense()

```
template<typename T >
exageostat::linearAlgebra::dense::ChameleonDense< T >::~ChameleonDense ( ) [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.7.3 Member Function Documentation

8.7.3.1 ExaGeoStatPotrfTile()

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

Parameters

in	aUpperLower	Whether upper or lower part of the matrix A.
in,out	apA	Symmetric matrix A.
in	aBand	Diagonal thickness parameter.
in	apCD	Additional matrix CD.
in	apCrk	Additional matrix Crk.
in	aMaxRank	Maximum rank parameter.
in	aAcc	Accuracy parameter.

Returns

void

Implements exageostat::linearAlgebra::LinearAlgebraMethods< T >.

The documentation for this class was generated from the following file:

· ChameleonDense.hpp

8.8 exageostat::dataunits::descriptor::ChameleonDescriptor< T > Class Template Reference

ChameleonDescriptor is a class for creating matrix descriptors by CHAMELEON library.

```
#include <ChameleonDescriptor.hpp>
```

Static Public Member Functions

static CHAM_desc_t * CreateChameleonDescriptor (void *apDescriptor, const bool &alsOOC, void *ap←
Matrix, const common::FloatPoint &aFloatPoint, const int &aMB, const int &aNB, const int &aSize, const int
&aLM, const int &aLN, const int &aI, const int &aJ, const int &aM, const int &aP, const int &aQ,
const bool &aValidOOC)

Create a chameleon descriptor for a matrix with the given parameters.

static int DestroyChameleonDescriptor (void *apDescriptor)

destroys and finalize a descriptor

8.8.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::dataunits::descriptor::ChameleonDescriptor} < \mbox{T} > \\ \mbox{typename T} > \\ \mbox{typena
```

ChameleonDescriptor is a class for creating matrix descriptors by CHAMELEON library.

Template Parameters

```
T Data Type: float or double
```

8.8.2 Member Function Documentation

8.8.2.1 CreateChameleonDescriptor()

```
template < typename T >
 \texttt{static CHAM\_desc\_t* exageostat::} \\ \texttt{dataunits::} \\ \texttt{descriptor::} \\ \texttt{ChameleonDescriptor} \\ \texttt{< T >::} \\ \texttt{Create} \\ \leftarrow \\ \texttt{ChameleonDescriptor} \\ \texttt{< T >::} \\ \texttt{Create} \\ \leftarrow \\ \texttt{ChameleonDescriptor} \\ \texttt{< T >::} \\ \texttt{Create} \\ \leftarrow \\ \texttt{ChameleonDescriptor} \\ \texttt{< T >::} \\ \texttt{Create} \\ \leftarrow \\ \texttt{ChameleonDescriptor} \\ \texttt{< T >::} \\ \texttt{Create} \\ \leftarrow \\ \texttt{ChameleonDescriptor} \\ \texttt{< T >::} \\ \texttt{Create} \\ \leftarrow \\ \texttt{ChameleonDescriptor} \\ \texttt{< ChameleonDescriptor} \\ \texttt{
ChameleonDescriptor (
                                                                                       void * apDescriptor,
                                                                                       const bool & aIsOOC,
                                                                                        void * apMatrix,
                                                                                          const common::FloatPoint & aFloatPoint,
                                                                                          const int & aMB,
                                                                                          const int & aNB,
                                                                                          const int & aSize,
                                                                                          const int & aLM,
                                                                                          const int & aLN,
                                                                                          const int & aI,
                                                                                          const int & aJ,
                                                                                          const int & aM,
                                                                                          const int & aN,
                                                                                        const int & aP,
                                                                                          const int & aQ,
                                                                                          const bool & aValidOOC ) [static]
```

Create a chameleon descriptor for a matrix with the given parameters.

Parameters

in	apDescriptor	A pointer to the existing CHAM_desc_t descriptor. The new descriptor will be created based on this descriptor.
in	alsOOC	A boolean value indicating whether the matrix is out-of-core or not.
in	apMatrix	A pointer to the beginning of the matrix.
in	aFloatPoint	The precision of the matrix.
in	аМВ	The number of rows in a tile.
in	aNB	The number of columns in a tile.
in	aSize	The size of the matrix in elements including padding.
in	aLM	The number of rows of the entire matrix.
in	aLN	The number of columns of the entire matrix.

Parameters

in	al	The row index to the beginning of the sub-matrix.
in	aJ	The column index to the beginning of the sub-matrix.
in	аМ	The number of rows of the sub-matrix.
in	aN	The number of columns of the sub-matrix.
in	аP	The number of rows of the 2D distribution grid.
in	aQ	The number of columns of the 2D distribution grid.
in	aValidOOC	Boolean refer to whether this descriptor can be created with OOC technology or not.

Returns

A pointer to the newly created CHAM_desc_t descriptor.

8.8.2.2 DestroyChameleonDescriptor()

destroys and finalize a descriptor

Parameters

in	apDescriptor	A pointer to the existing CHAM_desc_t descriptor.
----	--------------	---

Returns

An error code or success code.

The documentation for this class was generated from the following file:

· ChameleonDescriptor.hpp

8.9 exageostat::linearAlgebra::diagonalSuperTile::ChameleonDST< T> Class Template Reference

ChameleonImplementationDST is a concrete implementation of LinearAlgebraMethods class for diagonal super tile matrices.

```
#include <ChameleonDST.hpp>
```

 $Inheritance\ diagram\ for\ exage ostat:: linear Algebra:: diagonal Super Tile:: Chameleon DST < T>:$

Public Member Functions

ChameleonDST ()=default

Default constructor.

∼ChameleonDST () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void ExaGeoStatPotrfTile (const common::UpperLower &aUpperLower, void *apA, int aBand, void *apCD, void *apCrk, const int &aMaxRank, const int &aAcc) override

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

• void ExaGeoStatParallelPotrfDiagonal (const common::UpperLower &aUpperLower, void *apA, int aBand, void *apSequence, void *apRequest)

Computes the parallel Cholesky factorization of a symmetric positive definite diagonal super tile matrix.

• int ExaGeoStatPotrfDiagonalTileAsync (const common::UpperLower &aUpperLower, void *apA, int aBand, void *apSequence, void *apRequest)

Computes the Cholesky factorization of a symmetric positive definite diagonal super tile matrix.

8.9.1 Detailed Description

```
\label{template} template < typename \ T > \\ class \ exageostat:: linear Algebra:: diagonal Super Tile:: Chameleon DST < T > \\ \\
```

ChameleonImplementationDST is a concrete implementation of LinearAlgebraMethods class for diagonal super tile matrices.

Template Parameters

T Data Type: float or double

8.9.2 Constructor & Destructor Documentation

8.9.2.1 ChameleonDST()

```
template<typename T >
exageostat::linearAlgebra::diagonalSuperTile::ChameleonDST< T >::ChameleonDST ( ) [explicit],
[default]
```

Default constructor.

8.9.2.2 ∼ChameleonDST()

```
\label{template} $$ \text{template}$$ $$ \text{typename T} > $$ exageostat::linearAlgebra::diagonalSuperTile::ChameleonDST< T>::~ChameleonDST () [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.9.3 Member Function Documentation

8.9.3.1 ExaGeoStatPotrfTile()

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

Parameters

in	aUpperLower	Whether upper or lower part of the matrix A.
in,out	apA	Symmetric matrix A.
in	aBand	Diagonal thickness parameter.
in	apCD	Additional matrix CD.
in	apCrk	Additional matrix Crk.
in	aMaxRank	Maximum rank parameter.
in	aAcc	Accuracy parameter.

Returns

void

Implements exageostat::linearAlgebra::LinearAlgebraMethods< T >.

8.9.3.2 ExaGeoStatParallelPotrfDiagonal()

```
\label{template} $$\operatorname{typename} \ T > $$ void \ exageostat::linearAlgebra::diagonalSuperTile::ChameleonDST< \ T >::ExaGeoStatParallel \leftarrow PotrfDiagonal (
```

```
const common::UpperLower & aUpperLower,
void * apA,
int aBand,
void * apSequence,
void * apRequest )
```

Computes the parallel Cholesky factorization of a symmetric positive definite diagonal super tile matrix.

Parameters

	in	aUpperLower	Whether upper or lower part of the matrix A
	in	арА	Symmetric matrix A
	in	aBand	diagonal thickness.
	in	apSequence	The sequence structure to associate in the options.
Ī	in	apRequest	The request structure to associate in the options.

Returns

successful exit.

8.9.3.3 ExaGeoStatPotrfDiagonalTileAsync()

Computes the Cholesky factorization of a symmetric positive definite diagonal super tile matrix.

Parameters

in	aUpperLower	Whether upper or lower part of the matrix A
in	apA	Symmetric matrix A
in	aBand	diagonal thickness.
in	apSequence	The sequence structure to associate in the options.
in	apRequest	The request structure to associate in the options.

Returns

successful exit.

The documentation for this class was generated from the following file:

ChameleonDST.hpp

8.10 exageostat::linearAlgebra::ChameleonImplementation< T > Class Template Reference

ChameleonImplementation is a concrete implementation of LinearAlgebraMethods class for dense or diagonal-super tile matrices.

#include <ChameleonImplementation.hpp>

Inheritance diagram for exageostat::linearAlgebra::ChameleonImplementation < T >:

Public Member Functions

T ExaGeoStatMLETile (std::unique_ptr< ExaGeoStatData< T >> &aData, configurations::Configurations &aConfigurations, const double *theta, T *apMeasurementsMatrix, const kernels::Kernel< T > &aKernel) override

Calculates the log likelihood value of a given value theta.

 void ExaGeoStatLapackCopyTile (const common::UpperLower &aUpperLower, void *apA, void *apB) override

Copies a matrix in the tile layout from source to destination.

 void ExaGeoStatTrsmTile (const common::Side &aSide, const common::UpperLower &aUpperLower, const common::Trans &aTrans, const common::Diag &aDiag, const T &aAlpha, void *apA, void *apCD, void *ap← Crk, void *apZ, const int &aMaxRank) override

Solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B.

void ExaGeoStatSequenceWait (void *apSequence) override

Wait for the completion of a sequence.

void ExaGeoStatCreateSequence (void *apSequence) override

Create CHAMELEON Sequence.

8.10.1 Detailed Description

 $\label{template} \mbox{typename T} > \\ \mbox{class exageostat::linearAlgebra::ChameleonImplementation} < \mbox{T} > \\ \mbox{}$

ChameleonImplementation is a concrete implementation of LinearAlgebraMethods class for dense or diagonal-super tile matrices.

Template Parameters

T Data Type: float or double

8.10.2 Member Function Documentation

8.10.2.1 ExaGeoStatMLETile()

```
template<typename T >
T exageostat::linearAlgebra::ChameleonImplementation< T >::ExaGeoStatMLETile (
    std::unique_ptr< ExaGeoStatData< T >> & aData,
    configurations::Configurations & aConfigurations,
    const double * theta,
    T * apMeasurementsMatrix,
    const kernels::Kernel< T > & aKernel) [override], [virtual]
```

Calculates the log likelihood value of a given value theta.

Calculates the log likelihood value of a given value theta.

Parameters

in, out	aData	DescriptorData object to be populated with descriptors and data.
in	aConfigurations	Configurations object containing relevant settings.
in	apTheta	Optimization parameter used by NLOPT.
in	apMeasurementsMatrix	measurements matrix to be stored in DescZ.
in	aKernel	Reference to the kernel object to use.

Returns

log likelihood value

 $Implements\ exage ost at:: linear Algebra:: Linear Algebra Methods < T>.$

8.10.2.2 ExaGeoStatLapackCopyTile()

Copies a matrix in the tile layout from source to destination.

Copies a matrix in the tile layout from source to destination.

Parameters

	in	aUpperLower Specifies the part of the matrix A to be copied to B.	
	in	арА	Source matrix A.
İ	in,out	арВ	Destination matrix B. On exit, B = A in the locations specified by Upper Lower.

Returns

void

 $Implements\ exage ost at:: linear Algebra:: Linear Algebra Methods < T>.$

8.10.2.3 ExaGeoStatTrsmTile()

Solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B.

Solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B.

Parameters

in	aSide	Specifies whether op(A) appears on the left or on the right of X.	
in	aUpperLower	Specifies whether the matrix A is upper triangular or lower triangular.	
in	aTrans	Specifies the form of op(A) to be used in the matrix multiplication.	
in	aDiag	Specifies whether or not A is unit triangular.	
in	aAlpha	Specifies the scalar alpha. When alpha is zero, A is not referenced and B need	
		not be set before entry.	
in	арА	The triangular matrix A.	
in	apCD	Additional matrix CD.	
in	apCrk	Additional matrix Crk.	
in,out	apZ	The matrix B of dimension, on exit is overwritten by the solution matrix X.	
in	aMaxRank	Maximum rank parameter.	

Returns

void

Implements exageostat::linearAlgebra::LinearAlgebraMethods< T >.

8.10.2.4 ExaGeoStatSequenceWait()

Wait for the completion of a sequence.

Wait for the completion of a sequence.

Parameters

in	apSequence	apSequence A pointer to either CHAMELEON or HiCMA sequence.	
----	------------	---	--

Returns

void

Implements exageostat::linearAlgebra::LinearAlgebraMethods< T >.

8.10.2.5 ExaGeoStatCreateSequence()

Create CHAMELEON Sequence.

Create Sequence.

Parameters

ou	apSequence	A pointer to either CHAMELEON or HiCMA sequence.
----	------------	--

Returns

void

 $Implements\ exage ost at:: linear Algebra:: Linear Algebra Methods < T>.$

The documentation for this class was generated from the following file:

· ChameleonImplementation.hpp

8.11 exageostat::runtime::ChameleonStarPuHelpers Class Reference

ChameleonStarPuHelpers is a concrete implementation of StarPuHelpers interface for Chameleon library.

#include <ChameleonStarPuHelpers.hpp>

Inheritance diagram for exageostat::runtime::ChameleonStarPuHelpers:

exageostat::runtime::StarPuHelpers

exageostat::runtime::ChameleonStarPuHelpers

Public Member Functions

• ChameleonStarPuHelpers ()=default

Default constructor.

∼ChameleonStarPuHelpers ()=default

Default destructor.

void ExaGeoStatOptionsInit (void *apOptions, void *apSequence, void *apRequest) override

Initialize the runtime option structure for CHAMELEON.

void ExaGeoStatOptionsFree (void *apOptions) override

Submit the release of the workspaces associated to the options structure.

void ExaGeoStatOptionsFinalize (void *apOptions) override

Finalize the runtime option structure for CHAMELEON.

void * ExaGeoStatDataGetAddr (void *apDescriptor, const int &aDescRow, const int &aDescCol) override
 Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.

int GetMT (void *apDescriptor) override

Get the number of tile rows of the sub-matrix.

• int GetM (void *apDescriptor) override

Get the descriptor number of rows.

int GetMB (void *apDescriptor) override

Get the descriptor number of rows in a tile.

• void * GetOptions () override

Get the descriptor options.

• void DeleteOptions (void *apOptions) override

Delete the options object.

8.11.1 Detailed Description

ChameleonStarPuHelpers is a concrete implementation of StarPuHelpers interface for Chameleon library.

8.11.2 Constructor & Destructor Documentation

8.11.2.1 ChameleonStarPuHelpers()

```
exageostat::runtime::ChameleonStarPuHelpers::ChameleonStarPuHelpers ( ) [default]
```

Default constructor.

8.11.2.2 ~ChameleonStarPuHelpers()

```
\verb|exageostat::runtime::ChameleonStarPuHelpers:: \sim ChameleonStarPuHelpers () | [default]|
```

Default destructor.

8.11.3 Member Function Documentation

8.11.3.1 ExaGeoStatOptionsInit()

Initialize the runtime option structure for CHAMELEON.

Initialize the runtime option structure for either HiCMA or CHAMELEON.

Parameters

in,out	apOptions	The options structure that needs to be initialized.
in	apSequence	The sequence structure to associate in the options.
in	apRequest	The request structure to associate in the options.

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.11.3.2 ExaGeoStatOptionsFree()

```
\label{lem:constarPuHelpers::ExaGeoStatOptionsFree (} \\ \text{void} * \textit{apOptions} \;) \; \; [\text{override}], \; [\text{virtual}] \\
```

Submit the release of the workspaces associated to the options structure.

Submit the release of the workspaces associated to the options structure.

Parameters

in,out	apOptions	The options structure for which to workspaces will be released	
--------	-----------	--	--

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.11.3.3 ExaGeoStatOptionsFinalize()

```
\label{lem:constarPuHelpers::ExaGeoStatOptionsFinalize (bound of the properties) of the properties o
```

Finalize the runtime option structure for CHAMELEON.

Finalize the runtime option structure for either HiCMA or CHAMELEON.

Parameters

	in,out	apOptions	The options structure that needs to be finalized.
--	--------	-----------	---

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.11.3.4 ExaGeoStatDataGetAddr()

Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.

Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.

Parameters

	in	apDescriptor	The descriptor to which belongs the piece of data
ľ	in	aDescRow	The row coordinate of the piece of data in the matrix
ľ	in	aDescCol	The column coordinate of the piece of data in the matrix

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.11.3.5 GetMT()

Get the number of tile rows of the sub-matrix.

Get the number of tile rows of the sub-matrix.

Parameters

```
in apDescriptor
```

Returns

int

Implements exageostat::runtime::StarPuHelpers.

8.11.3.6 GetM()

```
\label{lem:chameleonStarPuHelpers::GetM} int exageostat::runtime::ChameleonStarPuHelpers::GetM ( \\ void * apDescriptor ) [override], [virtual]
```

Get the descriptor number of rows.

Get the descriptor number of rows.

Parameters

		ı
ın	apDescriptor	

Returns

int

Implements exageostat::runtime::StarPuHelpers.

8.11.3.7 GetMB()

```
\label{eq:constarPuHelpers::GetMB} \mbox{ ( } & \mbox{void} \ * \mbox{\it apDescriptor} \mbox{ ) [override], [virtual]}
```

Get the descriptor number of rows in a tile.

Get the descriptor number of rows in a tile.

Parameters

in	apDescriptor	
in	apDescriptor	

Returns

int

Implements exageostat::runtime::StarPuHelpers.

8.11.3.8 GetOptions()

```
void* exageostat::runtime::ChameleonStarPuHelpers::GetOptions ( ) [override], [virtual]
```

Get the descriptor options.

Get the descriptor options.

Returns

void

void pointer to descriptor_option

Implements exageostat::runtime::StarPuHelpers.

8.11.3.9 DeleteOptions()

```
\label{lem:constarPuHelpers::DeleteOptions} \begin{tabular}{ll} void * apOptions \end{tabular} ) & [override], [virtual] \end{tabular}
```

Delete the options object.

Delete the options object.

Parameters

apOptions

Returns

void

Implements exageostat::runtime::StarPuHelpers.

The documentation for this class was generated from the following file:

· ChameleonStarPuHelpers.hpp

8.12 exageostat::helpers::CommunicatorMPI Class Reference

A class for Communicating MPI rank.

#include <CommunicatorMPI.hpp>

Public Member Functions

• int GetRank () const

Get the rank of the MPI process.

void SetHardwareInitialization ()

Set the hardware initialization flag.

void RemoveHardwareInitialization ()

Unset the hardware initialization flag.

Static Public Member Functions

• static CommunicatorMPI * GetInstance ()

Get a pointer to the singleton instance of the CommunicatorMPI class.

Private Member Functions

• CommunicatorMPI ()=default

Prevent Class Instantiation for Communicator MPI Class.

Private Attributes

· bool mlsHardwareInitialized

Used boolean to check if hardware is initialized.

Static Private Attributes

• static CommunicatorMPI * mpInstance

Pointer to the singleton instance of the CommunicatorMPI class.

8.12.1 Detailed Description

A class for Communicating MPI rank.

The CommunicatorMPI class provides functionality to communicate MPI rank information.

8.12.2 Constructor & Destructor Documentation

8.12.2.1 CommunicatorMPI()

```
exageostat::helpers::CommunicatorMPI::CommunicatorMPI ( ) [private], [default]
```

Prevent Class Instantiation for Communicator MPI Class.

8.12.3 Member Function Documentation

8.12.3.1 GetInstance()

```
static CommunicatorMPI* exageostat::helpers::CommunicatorMPI::GetInstance ( ) [static]
```

Get a pointer to the singleton instance of the CommunicatorMPI class.

Returns

A pointer to the instance of the CommunicatorMPI class.

8.12.3.2 GetRank()

```
int exageostat::helpers::CommunicatorMPI::GetRank ( ) const
```

Get the rank of the MPI process.

Returns

The rank of the MPI process.

8.12.3.3 SetHardwareInitialization()

```
\verb"void exageostat": \verb"helpers":: \verb"Communicator \verb"MPI":: \verb"SetHardware Initialization" ( )
```

Set the hardware initialization flag.

This function sets the flag to indicate that hardware has been initialized.

Returns

void

8.12.3.4 RemoveHardwareInitialization()

```
void exageostat::helpers::CommunicatorMPI::RemoveHardwareInitialization ( )
```

Unset the hardware initialization flag.

This function remove the flag to indicate that hardware has been initialized.

Returns

void

8.12.4 Member Data Documentation

8.12.4.1 mpInstance

```
CommunicatorMPI* exageostat::helpers::CommunicatorMPI::mpInstance [static], [private]
```

Pointer to the singleton instance of the CommunicatorMPI class.

8.12.4.2 mlsHardwareInitialized

```
bool exageostat::helpers::CommunicatorMPI::mIsHardwareInitialized [private]
```

Used boolean to check if hardware is initialized.

The documentation for this class was generated from the following file:

CommunicatorMPI.hpp

8.13 exageostat::configurations::Configurations Class Reference

Contains methods to set and get.

#include <Configurations.hpp>

Public Member Functions

· Configurations ()

Constructor initializing a Configuration object with default values.

∼Configurations ()

destructor to allow calls to the correct concrete destructor.

void InitializeArguments (const int &aArgC, char **apArgV, const bool &aEnableR=false)

Initialize the module arguments.

• void InitializeAllTheta ()

Initialize the all theta arguments.

void InitializeDataGenerationArguments ()

Initialize data generation arguments..

· void InitializeDataModelingArguments ()

Initialize data Modeling arguments.

• void InitializeDataPredictionArguments ()

Initialize data Prediction arguments.

- void SetTolerance (double aTolerance)
- void CheckKernelValue (const std::string &aKernel)

Checks if the kernel value is valid.

• int CheckUnknownObservationsValue (const std::string &aValue)

Checks the value of the unknown observations parameter.

void PrintSummary (int aRank=0)

print the summary of MLE inputs.

• int CalculateZObsNumber ()

Calculates the number of observed measurements.

void ParseDistanceMetric (const std::string &aDistanceMetric)

parse user's input to distance metric.

Static Public Member Functions

static void PrintUsage ()

Print the usage and accepted Arguments.

• static int CheckNumericalValue (const std::string &aValue)

Check if input value is numerical.

• static exageostat::common::Dimension CheckDimensionValue (const std::string &aDimension)

Checks the value of the dimension parameter.

• static common::Computation CheckComputationValue (const std::string &aValue)

Check input computation value.

• static common::Precision CheckPrecisionValue (const std::string &aValue)

Check input precision value.

static void InitTheta (std::vector< double > &aTheta, const int &aSize)

Initialize a vector with a given size to contain zeros.

static std::vector< double > ParseTheta (const std::string &aInputValues)

Parses a string of theta values and returns an array of doubles.

Static Public Attributes

static CREATE_SETTER_FUNCTION(ActualObservationsFilePath, const std::string &, aActual
 — ObservationsFilePath, "ActualObservationsFilePath") static exageostat void SetVerbosity (const common::Verbose &aVerbose)

Getter for the verbosity.

Static Private Member Functions

• static void ParseVerbose (const std::string &aVerbosity)

Checks the run mode and sets the verbosity level.

static bool IsCamelCase (const std::string &aString)

Checks if a given string is in camel case format.

Private Attributes

std::unordered_map< std::string, std::any > mDictionary
 Used Dictionary.

• int mArgC = 0

Used Argument counter.

• char ** mpArgV = nullptr

Used Argument vectors.

Static Private Attributes

- static exageostat::common::Verbose mVerbosity
- · static bool mlsThetaInit
- static bool mHeapAllocated

8.13.1 Detailed Description

Contains methods to set and get.

8.13.2 Constructor & Destructor Documentation

8.13.2.1 Configurations()

exageostat::configurations::Configurations ()

Constructor initializing a Configuration object with default values.

8.13.2.2 ∼Configurations()

```
\verb|exageostat::configurations::{\sim} Configurations ( )
```

destructor to allow calls to the correct concrete destructor.

8.13.3 Member Function Documentation

8.13.3.1 InitializeArguments()

Initialize the module arguments.

Parameters

in	aArgC	The number of arguments being passed into the program from the command line.
in	apArgV	The array of arguments.
in	aEnableR	check if R is enabled

This method initializes the command line arguments and set default values for unused args.

Returns

void

8.13.3.2 InitializeAllTheta()

```
\verb"void exage ostat::configurations::Initialize \verb|AllTheta| ( ) \\
```

Initialize the all theta arguments.

Returns

void

8.13.3.3 InitializeDataGenerationArguments()

<pre>void exageostat::configurations::InitializeDataGenerationArguments ()</pre>
Initialize data generation arguments
Returns Void
8.13.3.4 InitializeDataModelingArguments()
<pre>void exageostat::configurations::Configurations::InitializeDataModelingArguments ()</pre>
Initialize data Modeling arguments.
Returns void
8.13.3.5 InitializeDataPredictionArguments()
<pre>void exageostat::configurations::Configurations::InitializeDataPredictionArguments () Initialize data Prediction arguments.</pre>
void void
8.13.3.6 PrintUsage()
<pre>static void exageostat::configurations::Configurations::PrintUsage () [static]</pre>
Print the usage and accepted Arguments.
Returns void

8.13.3.7 SetTolerance()

END OF THE COMMON ARGUMENTS BETWEEN ALL MODULES. START OF THE DATA GENERATION MODULES. END OF THE DATA GENERATION MODULES. START OF THE DATA MODELING MODULES.

8.13.3.8 CheckNumericalValue()

```
static int exageostat::configurations::Configurations::CheckNumericalValue ( const std::string & aValue ) [static]
```

Check if input value is numerical.

END OF THE DATA MODELING MODULES. START OF THE DATA PREDICTION MODULES. END OF THE DATA PREDICTION MODULES.

Parameters

in	aValue	The input from the user side.
----	--------	-------------------------------

Returns

The int casted value.

8.13.3.9 CheckDimensionValue()

Checks the value of the dimension parameter.

Parameters

	in	aDimension	A string representing the dimension.
--	----	------------	--------------------------------------

Returns

The corresponding dimension value.

8.13.3.10 CheckKernelValue()

```
void exageostat::configurations::Configurations::CheckKernelValue ( const std::string & aKernel )
```

Checks if the kernel value is valid.

Parameters

in aKernel The kernel to check.

Returns

void

8.13.3.11 CheckComputationValue()

Check input computation value.

Parameters

	1,1	l
ın	aValue	The input from the user side.

Returns

Enum with the selected computation, Error if not exist.

8.13.3.12 CheckPrecisionValue()

Check input precision value.

Parameters

in	aValue	The input from the user side.
----	--------	-------------------------------

Returns

Enum with the selected Precision, Error if not exist.

8.13.3.13 CheckUnknownObservationsValue()

```
\label{lem:configurations::CheckUnknownObservationsValue (const std::string \& aValue )
```

Checks the value of the unknown observations parameter.

Parameters

	in	aValue	A string representing the number of unknown observations.
--	----	--------	---

Returns

The corresponding integer value.

8.13.3.14 InitTheta()

```
static void exageostat::configurations::Configurations::InitTheta ( std::vector < \ double \ > \ \& \ aTheta, const \ int \ \& \ aSize \ ) \quad [static]
```

Initialize a vector with a given size to contain zeros.

Parameters

in,out	aTheta	A reference to the vector to initialize.
in	aSize	The size of the vector to initialize.

Returns

void.

8.13.3.15 PrintSummary()

print the summary of MLE inputs.

Parameters

in aRank A MPI Rank variable

Returns

void

8.13.3.16 CalculateZObsNumber()

```
int exageostat::configurations::Configurations::CalculateZObsNumber ()
```

Calculates the number of observed measurements.

Returns

number of observed measurements.

8.13.3.17 ParseTheta()

Parses a string of theta values and returns an array of doubles.

Parameters

in	alnputValues	The input string of theta values.
----	--------------	-----------------------------------

Returns

A vector of parsed theta values.

8.13.3.18 ParseDistanceMetric()

parse user's input to distance metric.

Parameters

in	aDistanceMetric	string specifying the used distance metric.
----	-----------------	---

Returns

void

8.13.3.19 ParseVerbose()

Checks the run mode and sets the verbosity level.

Parameters

in	aVerbosity	A string representing the desired run mode ("verbose" or "standard").
----	------------	---

Exceptions

std::range_error if the input string is not "verbose" or "standard".

Returns

void

8.13.3.20 IsCamelCase()

Checks if a given string is in camel case format.

Parameters

in aString The string to check.

Returns

true if the string is in camel case format, false otherwise.

8.13.4 Member Data Documentation

8.13.4.1 SetVerbosity

CREATE_SETTER_FUNCTION (ActualObservationsFilePath, const std::string &, aActualObservations↔
FilePath, "ActualObservationsFilePath") static exageostat void exageostat::configurations::↔
Configurations::SetVerbosity(const common::Verbose &aVerbose) [static]

Getter for the verbosity.

START OF THE COMMON ARGUMENTS BETWEEN ALL MODULES.

Returns

The verbosity mode.

8.13.4.2 mDictionary

 $\verb|std::unordered_map| < \verb|std::string|, std::any| > exageostat::configurations::Configurations::m \leftarrow \\ \verb|Dictionary| [private]|$

Used Dictionary.

8.13.4.3 mArgC

int exageostat::configurations::Configurations::mArgC = 0 [private]

Used Argument counter.

8.13.4.4 mpArgV

char** exageostat::configurations::Configurations::mpArgV = nullptr [private]

Used Argument vectors.

8.13.4.5 mVerbosity

exageostat::common::Verbose exageostat::configurations::Configurations::mVerbosity [static],
[private]

8.13.4.6 mlsThetaInit

bool exageostat::configurations::Configurations::mIsThetaInit [static], [private]

8.13.4.7 mHeapAllocated

bool exageostat::configurations::Configurations::mHeapAllocated [static], [private]

The documentation for this class was generated from the following file:

· Configurations.hpp

8.14 exageostat::dataLoader::csv::CSVLoader< T > Class Template Reference

A class for creating data by reading CSV files.

```
#include <CSVLoader.hpp>
```

Inheritance diagram for exageostat::dataLoader::csv::CSVLoader< T >:

Public Member Functions

 void ReadData (configurations::Configurations &aConfigurations, std::vector< T > &aMeasurementsMatrix, std::vector< T > &aXLocations, std::vector< T > &aZLocations, const int &aP) override

Reads data from external sources into ExaGeoStat format.

 void WriteData (const T &aMatrixPointer, const int &aProblemSize, const int &aP, std::string &aLoggerPath, exageostat::dataunits::Locations< T > &aLocations) override

Writes a matrix of vectors to disk.

Static Public Member Functions

• static CSVLoader< T > * GetInstance ()

Get a pointer to the singleton instance of the CSVLoader class.

• static void ReleaseInstance ()

Release the singleton instance of the CSVLoader class.

Private Member Functions

• CSVLoader ()=default

Constructor for the CSVLoader class.

∼CSVLoader () override=default

Default destructor.

Static Private Attributes

static CSVLoader< T > * mpInstance

Pointer to the singleton instance of the CSVLoader class.

Additional Inherited Members

8.14.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::dataLoader::csv::CSVLoader} < \mbox{T} > \\ \mbox{total coader::dataLoader::csv::CSVLoader} < \mbox{T} > \\ \mbox{total coader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoader::dataLoa
```

A class for creating data by reading CSV files.

Template Parameters

T Data Type: float or double

8.14.2 Constructor & Destructor Documentation

8.14.2.1 CSVLoader()

Constructor for the CSVLoader class.

Returns

void

8.14.2.2 ∼CSVLoader()

Default destructor.

8.14.3 Member Function Documentation

8.14.3.1 GetInstance()

```
template<typename T >
static CSVLoader<T>* exageostat::dataLoader::csv::CSVLoader< T >::GetInstance ( ) [static]
```

Get a pointer to the singleton instance of the CSVLoader class.

Returns

A pointer to the instance of the CSVLoader class.

8.14.3.2 ReadData()

Reads data from external sources into ExaGeoStat format.

Reads data from external sources into ExaGeoStat format.

Parameters

aConfigurations	Configuration settings for data loading.
aMeasurementsMatrix	Vector to store measurement values.
aXLocations	Vector to store X coordinates of locations.
aYLocations	Vector to store Y coordinates of locations.
aZLocations	Vector to store Z coordinates of locations (if applicable).
aP	Partition index for distributed data loading.

Returns

void

 $Implements\ exageostat:: dataLoader:: DataLoader < T>.$

8.14.3.3 WriteData()

Writes a matrix of vectors to disk.

Writes a matrix of vectors to disk.

Parameters

in	aMatrixPointer	A Reference to the matrix data.
in	aProblemSize	The size of the problem.
in	aP	The number of processes.
in	aLoggerPath	The path to the logger file.
in	aLocations	A Reference to the Locations object.

Returns

void

Implements exageostat::dataLoader::DataLoader< T >.

8.14.3.4 ReleaseInstance()

```
template<typename T >
static void exageostat::dataLoader::csv::CSVLoader< T >::ReleaseInstance ( ) [static]
```

Release the singleton instance of the CSVLoader class.

Returns

void

8.14.4 Member Data Documentation

8.14.4.1 mpInstance

```
template<typename T >
CSVLoader<T>* exageostat::dataLoader::csv::CSVLoader< T >::mpInstance [static], [private]
```

Pointer to the singleton instance of the CSVLoader class.

The documentation for this class was generated from the following file:

CSVLoader.hpp

8.15 exageostat::generators::DataGenerator< T > Class Template Reference

Abstract base class for generating synthetic or real data.

```
#include <DataGenerator.hpp>
```

 $Inheritance\ diagram\ for\ exageostat:: generators:: Data Generator < T>:$

Public Member Functions

virtual std::unique_ptr< ExaGeoStatData< T > > CreateData (configurations::Configurations &a←
 Configurations, exageostat::kernels::Kernel< T > &aKernel)=0

Either generates synthetic data or reads data files.

virtual ~DataGenerator ()

Destructor for the data generator object.

Static Public Member Functions

• static std::unique_ptr< DataGenerator > CreateGenerator (configurations::Configurations &aConfigurations)

Factory method for creating a data generator object.

Static Protected Attributes

static common::DataSourceType aDataSourceType

Used enum for data generators types.

8.15.1 Detailed Description

```
template<typename T> class exageostat::generators::DataGenerator<T>
```

Abstract base class for generating synthetic or real data.

Template Parameters

```
T Data Type: float or double
```

8.15.2 Constructor & Destructor Documentation

8.15.2.1 ∼DataGenerator()

Destructor for the data generator object.

This method frees the memory used by the data generator object.

8.15.3 Member Function Documentation

8.15.3.1 CreateData()

Either generates synthetic data or reads data files.

This method generates the X, Y, and Z variables used to define the locations of the data points.

Parameters

in	aConfigurations	Reference to the data configurations.
in	aKernel	Reference to the used Kernel.

Returns

unique Pointer to a populated data.

 $Implemented \ in \ exageostat:: dataLoader:: DataLoader < T>, \ and \ exageostat:: generators:: synthetic:: SyntheticGenerator < T>.$

8.15.3.2 CreateGenerator()

Factory method for creating a data generator object.

This method creates a data generator object based on the specified configurations.

Parameters

		1	ı.
in	aConfigurations	Reference to the data configurations.	

Returns

A unique pointer to the created data generator object.

8.15.4 Member Data Documentation

8.15.4.1 aDataSourceType

```
template<typename T >
common::DataSourceType exageostat::generators::DataGenerator< T >::aDataSourceType [static],
[protected]
```

Used enum for data generators types.

The documentation for this class was generated from the following file:

• DataGenerator.hpp

8.16 exageostat::dataLoader::DataLoader< T > Class Template Reference

Extends DataGenerator to include data loading functionalities.

#include <DataLoader.hpp>

Inheritance diagram for exageostat::dataLoader::DataLoader< T >:

Public Member Functions

std::unique_ptr< ExaGeoStatData< T >> CreateData (configurations::Configurations &aConfigurations, kernels::Kernel< T > &aKernel) override

Creates the data by synthetically generating it.

virtual void ReadData (configurations::Configurations &aConfigurations, std::vector< T > &aMeasurements←
 Matrix, std::vector< T > &aXLocations, std::vector< T > &aZLocations,
 const int &aP)=0

Reads data from external sources into ExaGeoStat format.

virtual void WriteData (const T &aMatrixPointer, const int &aProblemSize, const int &aP, std::string &a←
 LoggerPath, exageostat::dataunits::Locations < T > &aLocations)=0

Writes a matrix of vectors to disk.

Additional Inherited Members

8.16.1 Detailed Description

 $\label{template} \mbox{typename T} > \\ \mbox{class exageostat::dataLoader::DataLoader} < \mbox{T} > \\$

Extends DataGenerator to include data loading functionalities.

Template Parameters

T Data Type: float or double

8.16.2 Member Function Documentation

8.16.2.1 CreateData()

Creates the data by synthetically generating it.

Implements exageostat::generators::DataGenerator< T >.

8.16.2.2 ReadData()

Reads data from external sources into ExaGeoStat format.

Parameters

aConfigurations	Configuration settings for data loading.
aMeasurementsMatrix	Vector to store measurement values.
aXLocations	Vector to store X coordinates of locations.
aYLocations	Vector to store Y coordinates of locations.
aZLocations	Vector to store Z coordinates of locations (if applicable).
aP	Partition index for distributed data loading.

Returns

void

Implemented in exageostat::dataLoader::csv::CSVLoader< T >.

8.16.2.3 WriteData()

Writes a matrix of vectors to disk.

Parameters

in	aMatrixPointer	A Reference to the matrix data.
in	aProblemSize	The size of the problem.
in	aP	The number of processes.
in	aLoggerPath	The path to the logger file.
in	aLocations	A Reference to the Locations object.

Returns

void

Implemented in exageostat::dataLoader::csv::CSVLoader< T >.

The documentation for this class was generated from the following file:

DataLoader.hpp

8.17 DCMG Class Reference

A class for starpu codelet dcmg.

8.17.1 Detailed Description

A class for starpu codelet dcmg.

Template Parameters

T	Data Type: float or double

This class encapsulates the struct cl_dcmg and its CPU functions.

The documentation for this class was generated from the following file:

• dcmg-codelet.hpp

8.18 exageostat::runtime::DCMGCodelet< T > Class Template Reference

#include <dcmg-codelet.hpp>

Public Member Functions

• DCMGCodelet ()=default

Default constructor.

∼DCMGCodelet ()=default

Default destructor.

void InsertTask (void *apDescriptor, const int &aTriangularPart, dataunits::Locations< T > *apLocation1, dataunits::Locations< T > *apLocation2, dataunits::Locations< T > *apLocation3, T *apLocalTheta, const int &aDistanceMetric, const kernels::Kernel< T > *apKernel)

Inserts a task for DCMG codelet processing.

Static Private Member Functions

static void cl_dcmg_function (void **apBuffers, void *apCodeletArguments)
 CPU Function used by starpu_codelet struct.

Static Private Attributes

 static struct starpu_codelet cl_dcmg starpu_codelet struct

8.18.1 Constructor & Destructor Documentation

8.18.1.1 DCMGCodelet()

```
template<typename T >
exageostat::runtime::DCMGCodelet< T >::DCMGCodelet ( ) [default]
```

Default constructor.

8.18.1.2 ~DCMGCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DCMGCodelet < T >:: \sim DCMGCodelet ( ) [default]
```

Default destructor.

8.18.2 Member Function Documentation

8.18.2.1 InsertTask()

Inserts a task for DCMG codelet processing.

Parameters

in,out	apDescriptor	A pointer to the descriptor containing task information.
in	aTriangularPart	An integer specifying the triangular part of the matrix (upper or lower).
in	apLocation1	A pointer to the first location object for the matrix elements.
in	apLocation2	A pointer to the second location object for the matrix elements.
in	apLocation3	A pointer to the third location object for the matrix elements.
in	apLocalTheta	A pointer to the local theta value.
in	aDistanceMetric	An integer specifying the distance metric to be used.
in	apKernel	A pointer to the kernel function to be applied during the task execution.

Returns

void

8.18.2.2 cl_dcmg_function()

CPU Function used by starpu_codelet struct.

Parameters

in	apBuffers	An array of pointers to the buffers containing the matrix data.
in	apCodeletArguments	A pointer to the codelet arguments structure

Returns

void

8.18.3 Member Data Documentation

8.18.3.1 cl_dcmg

```
template<typename T >
struct starpu_codelet exageostat::runtime::DCMGCodelet< T >::cl_dcmg [static], [private]
starpu codelet struct
```

The documentation for this class was generated from the following file:

· dcmg-codelet.hpp

8.19 DDOTP Class Reference

A class for starpu codelet ddotp.

8.19.1 Detailed Description

A class for starpu codelet ddotp.

Template Parameters

```
T Data Type: float or double
```

This class encapsulates the struct cl_ddotp and its CPU functions.

The documentation for this class was generated from the following file:

ddotp-codelet.hpp

8.20 exageostat::runtime::DDOTPCodelet< T > Class Template Reference

#include <ddotp-codelet.hpp>

Public Member Functions

DDOTPCodelet ()=default

Default constructor.

~DDOTPCodelet ()=default

Default destructor.

void InsertTask (void *apDescA, void *apDescProduct)

Inserts a task for DDOTP codelet processing.

Static Private Member Functions

static void cl_ddotp_function (void **apBuffers, void *apCodeletArguments)
 Executes the DDOTP codelet function for dot product calculation.

Static Private Attributes

 static struct starpu_codelet cl_ddotp starpu_codelet struct

8.20.1 Constructor & Destructor Documentation

8.20.1.1 DDOTPCodelet()

```
template<typename T >
exageostat::runtime::DDOTPCodelet< T >::DDOTPCodelet ( ) [default]
```

Default constructor.

8.20.1.2 ~DDOTPCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DDOTPCodelet < T >:: \sim DDOTPCodelet ( ) [default]
```

Default destructor.

8.20.2 Member Function Documentation

8.20.2.1 InsertTask()

Inserts a task for DDOTP codelet processing.

Parameters

in	apDescA	A pointer to the descriptor for the vector.
in,out	apDescProduct	A pointer to the descriptor for the dot product.

Returns

void

8.20.2.2 cl_ddotp_function()

Executes the DDOTP codelet function for dot product calculation.

Parameters

in	apBuffers	An array of pointers to the buffers.
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the vector size (m)
		and the offset (m0).

Returns

void

8.20.3 Member Data Documentation

8.20.3.1 cl_ddotp

starpu_codelet struct

```
template<typename T >
struct starpu_codelet exageostat::runtime::DDOTPCodelet< T >::cl_ddotp [static], [private]
```

The documentation for this class was generated from the following file:

• ddotp-codelet.hpp

8.21 exageostat::dataunits::DescriptorData< T > Class Template Reference

Manages geo-statistical descriptor data with functions for retrieving and manipulating descriptors.

```
#include <DescriptorData.hpp>
```

Public Member Functions

DescriptorData ()=default

Default Constructor for DescriptorData.

∼DescriptorData ()

Destructor for DescriptorData.

BaseDescriptor GetDescriptor (const common::DescriptorType &aDescriptorType, const common::DescriptorName &aDescriptorName)

Get the base descriptor.

void * GetSequence ()

Get the sequence.

void SetSequence (void *apSequence)

Set the sequence.

void * GetRequest ()

Get the request.

void SetRequest (void *apRequest)

Set the request.

void SetDescriptor (const common::DescriptorType &aDescriptorType, const common::DescriptorName &a ←
 DescriptorName, const bool &alsOOC, void *apMatrix, const common::FloatPoint &aFloatPoint, const int
 &aMB, const int &aNB, const int &aSize, const int &aLM, const int &aLN, const int &aI, const int &aJ, const
 int &aM, const int &aN, const int &aP, const int &aQ, const bool &aValidOOC=true)

Set the descriptor.

T * GetDescriptorMatrix (const common::DescriptorType &aDescriptorType, const common::DescriptorName &aDescriptorName)

Getter for the Descriptor matrix.

bool GetIsDescriptorInitiated ()

Getter for the mlsDescriptorInitiated field.

· void SetIsDescriptorInitiated (bool alsInitiated)

Setter for mlsDescriptorInitiated field.

Private Member Functions

std::string GetDescriptorName (const common::DescriptorName &aDescriptorName)
 Get the descriptor name.

Private Attributes

- std::unordered_map< std::string, void * > mDictionary
- void * mpSequence = nullptr
- void * mpRequest = nullptr
- bool mlsDescriptorInitiated = false

8.21.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::dataunits::DescriptorData} < \mbox{T} > \\ \mbox{total example T} > \\ \mbo
```

Manages geo-statistical descriptor data with functions for retrieving and manipulating descriptors.

@Class DescriptorData

Template Parameters

```
T Data Type: float or double
```

8.21.2 Constructor & Destructor Documentation

8.21.2.1 DescriptorData()

```
\label{template} $$ \exaction T > $$ exaction T > ::Descriptor Data ( ) [explicit], [default] $$ $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [default] $$ \exaction T > ::Descriptor Data ( ) [explicit], [defa
```

Default Constructor for DescriptorData.

8.21.2.2 ~DescriptorData()

```
\label{template} $$ template < typename T > $$ exageostat::dataunits::DescriptorData < T >:: \sim DescriptorData ( )
```

Destructor for DescriptorData.

8.21.3 Member Function Documentation

8.21.3.1 GetDescriptor()

Get the base descriptor.

Parameters

	in	aDescriptorType	The type of the descriptor.
ĺ	in	aDescriptorName	The name of the descriptor.

Returns

The base descriptor.

Exceptions

std::runtime_error if the corresponding library is not enabled (USE_HICMA).

8.21.3.2 GetSequence()

```
template<typename T >
void* exageostat::dataunits::DescriptorData< T >::GetSequence ( )
```

Get the sequence.

Returns

Pointer to the sequence.

8.21.3.3 SetSequence()

Set the sequence.

Parameters

in	apSequence	Pointer to the sequence.
----	------------	--------------------------

Returns

void

8.21.3.4 GetRequest()

```
\label{template} $$ \ensuremath{\sf template}$ $$ \ensurem
```

Get the request.

Returns

Pointer to the request.

8.21.3.5 SetRequest()

Set the request.

Parameters

iı	า	apRequest	Pointer to the request.
----	---	-----------	-------------------------

Returns

void

8.21.3.6 SetDescriptor()

```
template<typename T >
void exageostat::dataunits::DescriptorData< T >::SetDescriptor (
             const common::DescriptorType & aDescriptorType,
             const common::DescriptorName & aDescriptorName,
             const bool & aIsOOC,
             void * apMatrix,
             const common::FloatPoint & aFloatPoint,
             const int & aMB,
             const int & aNB,
             const int & aSize,
             const int & aLM,
             const int & aLN,
             const int & aI,
             const int & aJ,
             const int & aM,
             const int & aN,
             const int & aP,
             const int & aQ,
             const bool & aValidOOC = true )
```

Set the descriptor.

Parameters

in	aDescriptorType	The type of the descriptor.
in	aDescriptorName	The name of the descriptor.
in	alsOOC	Boolean indicating if the descriptor is out-of-core.
in	apMatrix	Pointer to the matrix.
in	aFloatPoint	The floating-point precision.
in	аМВ	The number of rows in a block.
in	aNB	The number of columns in a block.
in	aSize	The size of the matrix.
in	aLM	The leading dimension of the matrix.

Parameters

in	aLN	The trailing dimension of the matrix.
in	al	The row index of the sub-matrix.
in	aJ	The column index of the sub-matrix.
in	аМ	The number of rows in the sub-matrix.
in	aN	The number of columns in the sub-matrix.
in	aP	The number of rows in the complete matrix.
in	aQ	The number of columns in the complete matrix.
in	aValidOOC	Boolean refer to whether this descriptor can be created with OOC technology or not, default is true

Returns

void

Exceptions

```
std::runtime_error if the corresponding library is not enabled (USE_HICMA).
```

8.21.3.7 GetDescriptorMatrix()

Getter for the Descriptor matrix.

Parameters

in	aDescriptorType	Type of the descriptor, whether it's CHAMELEON or HiCMA.
in	aDescriptorName	The name of the descriptor.

Returns

pointer to the Descriptor matrix.

Exceptions

std::runtime_error if the corresponding library is not enabled (USE_HICMA)
--

8.21.3.8 GetIsDescriptorInitiated()

Getter for the mlsDescriptorInitiated field.

Returns

mlsDescriptorInitiated

8.21.3.9 SetIsDescriptorInitiated()

Setter for mlsDescriptorInitiated field.

Parameters

alsInitiated

Boolean for setting the mlsDescriptorInitiated field.

8.21.3.10 GetDescriptorName()

Get the descriptor name.

Parameters

```
in aDescriptorName The descriptor name.
```

Returns

The descriptor name as a string.

Exceptions

std::invalid_argument | if the provided descriptor name is not available.

8.21.4 Member Data Documentation

8.21.4.1 mDictionary

```
template<typename T >
std::unordered_map<std::string, void *> exageostat::dataunits::DescriptorData< T >::mDictionary
[private]
```

8.21.4.2 mpSequence

```
template<typename T >
void* exageostat::dataunits::DescriptorData< T >::mpSequence = nullptr [private]
```

8.21.4.3 mpRequest

```
template<typename T >
void* exageostat::dataunits::DescriptorData< T >::mpRequest = nullptr [private]
```

8.21.4.4 mlsDescriptorInitiated

```
template<typename T >
bool exageostat::dataunits::DescriptorData< T >::mIsDescriptorInitiated = false [private]
```

The documentation for this class was generated from the following file:

DescriptorData.hpp

8.22 exageostat::helpers::DistanceCalculationHelpers< T > Class Template Reference

Class to calculate the distance between two points.

```
#include <DistanceCalculationHelpers.hpp>
```

Static Public Member Functions

static T CalculateDistance (exageostat::dataunits::Locations < T > &aLocations1, exageostat::dataunits::Locations < T > &aLocations2, const int &aldxLocation1, const int &aldxLocation2, const int &aDistanceMetric, const int &aFlagZ)

Calculates the Euclidean distance between two points.

static T DistanceEarth (T &aLatitude1, T &aLongitude1, T &aLatitude2, T &aLongitude2)

Calculates the great-circle distance between two points on Earth using the Haversine formula.

static T DegreeToRadian (T aDegree)

Converts an angle from degrees to radians.

8.22.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::helpers::DistanceCalculationHelpers} < \mbox{T} > \\
```

Class to calculate the distance between two points.

@Class DistanceCalculationHelpers

Template Parameters

```
T Data Type: float or double.
```

8.22.2 Member Function Documentation

8.22.2.1 CalculateDistance()

Calculates the Euclidean distance between two points.

Parameters

in	aLocations1	Reference to the first set of locations.	
in	aLocations2	Reference to the second set of locations.	
in	aldxLocation1 Index of the first location in the first set.		
in	aldxLocation2 Index of the second location in the second set.		
in	aDistanceMetric Flag indicating the distance metric to use (1 for Manhattan distance, 2 for Euclidea		
	distance).		
in	aFlagZ Flag indicating whether the points are in 2D or 3D space (0 for 2D, 1 for 3D).		

Generated by Doxygen

Returns

The Euclidean distance between the two points.

8.22.2.2 DistanceEarth()

Calculates the great-circle distance between two points on Earth using the Haversine formula.

Parameters

in	aLatitude1	Latitude of the first point in degrees.
in	aLongitude1	Longitude of the first point in degrees.
in	aLatitude2	Latitude of the second point in degrees.
in	aLongitude2	Longitude of the second point in degrees.

Returns

The distance between the two points in kilometers.

8.22.2.3 DegreeToRadian()

Converts an angle from degrees to radians.

This function converts an angle from degrees to radians using the conversion factor /180.

Parameters

```
in aDegree The angle in degrees.
```

Returns

The angle converted to radians.

The documentation for this class was generated from the following file:

• DistanceCalculationHelpers.hpp

8.23 DMDET Class Reference

A class for starpu codelet dmdet.

8.23.1 Detailed Description

A class for starpu codelet dmdet.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_dmdet and its CPU functions.

The documentation for this class was generated from the following file:

· dmdet-codelet.hpp

8.24 exageostat::runtime::DMDETCodelet< T > Class Template Reference

#include <dmdet-codelet.hpp>

Public Member Functions

• DMDETCodelet ()=default

Default constructor.

∼DMDETCodelet ()=default

Default destructor.

void InsertTask (const common::Computation &aComputation, void *apDescA, void *apDescDet, std
 ::unique_ptr< StarPuHelpers > &aStarPuHelpers)

Inserts a task for DMDET codelet processing.

Static Private Member Functions

static void cl dmdet function (void **apBuffers, void *apCodeletArguments)

Executes the DMDET codelet function for matrix determinant calculation.

static T core_dmdet (const T *apDescriptor, const int &aSize)

Calculates the determinant of a matrix.

Static Private Attributes

static struct starpu_codelet cl_dmdet

starpu_codelet struct

8.24.1 Constructor & Destructor Documentation

8.24.1.1 DMDETCodelet()

```
template<typename T >
exageostat::runtime::DMDETCodelet< T >::DMDETCodelet ( ) [default]
```

Default constructor.

8.24.1.2 ~DMDETCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DMDETCodelet < T >:: \sim DMDETCodelet ( ) [default]
```

Default destructor.

8.24.2 Member Function Documentation

8.24.2.1 InsertTask()

Inserts a task for **DMDET** codelet processing.

Parameters

in	aComputation	The type of computation to be performed, such as diagonal approximation or exact dense computation.
in apDescA A pointer to the descriptor for matrix A.		A pointer to the descriptor for matrix A.
in,out	t apDescDet A pointer to the descriptor for the determinant.	
in	aStarPuHelpers	A reference to a unique pointer of StarPuHelpers, used for accessing and managing data.

Returns

void

8.24.2.2 cl_dmdet_function()

Executes the **DMDET** codelet function for matrix determinant calculation.

Parameters

	in	apBuffers	An array of pointers to the buffers containing the matrix data and the determinant.
in apCodeletArguments A pointer to the codelet arguments structure, which i		apCodeletArguments	A pointer to the codelet arguments structure, which includes the matrix size.

Returns

void

8.24.2.3 core_dmdet()

Calculates the determinant of a matrix.

Parameters

in	apDescriptor	A pointer to the matrix data.
in	aSize	The size of the matrix (assumed to be square).

Returns

T The calculated determinant of the matrix.

8.24.3 Member Data Documentation

8.24.3.1 cl_dmdet

```
template<typename T >
struct starpu_codelet exageostat::runtime::DMDETCodelet< T >::cl_dmdet [static], [private]
starpu_codelet struct
```

The documentation for this class was generated from the following file:

dmdet-codelet.hpp

8.25 Dmloe Class Reference

A class for starpu codelet dmloe-mmom.

8.25.1 Detailed Description

A class for starpu codelet dmloe-mmom.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_dmloe_mmom and its CPU functions.

The documentation for this class was generated from the following file:

· dmloe-mmom-codelet.hpp

8.26 exageostat::runtime::DmloeMmomCodelet< T > Class Template Reference

#include <dmloe-mmom-codelet.hpp>

Public Member Functions

• DmloeMmomCodelet ()=default

Default constructor.

~DmloeMmomCodelet ()=default

Default destructor.

 void InsertTask (void *apDescExpr1, void *apDescExpr2, void *apDescExpr3, void *apDescMLOE, void *apDescMMOM)

Inserts a task for DmloeMmom codelet processing.

Static Private Member Functions

• static void cl_dmloe_mmom_function (void **apBuffers, void *apCodeletArguments)

Executes the DmloeMmom codelet function for MLOE and MMOM calculations.

Static Private Attributes

 static struct starpu_codelet cl_dmloe_mmom starpu_codelet struct

8.26.1 Constructor & Destructor Documentation

8.26.1.1 DmloeMmomCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DmloeMmomCodelet < T >::DmloeMmomCodelet ( ) [default]
```

Default constructor.

8.26.1.2 ~DmloeMmomCodelet()

```
template<typename T >
exageostat::runtime::DmloeMmomCodelet< T >::~DmloeMmomCodelet ( ) [default]
```

Default destructor.

8.26.2 Member Function Documentation

8.26.2.1 InsertTask()

Inserts a task for DmloeMmom codelet processing.

Parameters

in	apDescExpr1	A pointer to the descriptor for the first expression.
in	apDescExpr2	A pointer to the descriptor for the second expression.
in	apDescExpr3	A pointer to the descriptor for the third expression.
in,out	apDescMLOE	A pointer to the descriptor for the MLOE result.
in,out	apDescMMOM	A pointer to the descriptor for the MMOM result.

Returns

void

8.26.2.2 cl_dmloe_mmom_function()

Executes the DmloeMmom codelet function for MLOE and MMOM calculations.

Parameters

in	n apBuffers An array of pointers to the buffers.		
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the matrix	
		dimensions and offsets.	

Returns

void

8.26.3 Member Data Documentation

8.26.3.1 cl_dmloe_mmom

```
template<typename T >
struct starpu_codelet exageostat::runtime::DmloeMmomCodelet< T >::cl_dmloe_mmom [static],
[private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

• dmloe-mmom-codelet.hpp

8.27 DMSE Class Reference

A class for starpu codelet dmse-bivariate.

8.27.1 Detailed Description

A class for starpu codelet dmse-bivariate.

A class for starpu codelet dmse.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_dmse_bivariate and its CPU functions.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_dmse and its CPU functions.

The documentation for this class was generated from the following files:

- · dmse-bivariate-codelet.hpp
- · dmse-codelet.hpp

8.28 exageostat::runtime::DMSEBivariateCodelet< T > Class Template Reference

#include <dmse-bivariate-codelet.hpp>

Public Member Functions

• DMSEBivariateCodelet ()=default

Default constructor.

∼DMSEBivariateCodelet ()=default

Default destructor.

void InsertTask (void *apDescZMiss, void *apDescZPre, void *apDescsError, void *apDescsError1, void *apDescsError2)

Inserts a task for DMSEBivariate codelet processing.

Static Private Member Functions

 $\bullet \ \ static\ void\ cl_dmse_bivariate_function\ (void\ **apBuffers,\ void\ *apCodeletArguments)$

Executes the DMSEBivariate codelet function for bivariate error calculation.

Static Private Attributes

 static struct starpu_codelet cl_dmse_bivariate starpu_codelet struct

8.28.1 Constructor & Destructor Documentation

8.28.1.1 DMSEBivariateCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DMSEBivariateCodelet < T >::DMSEBivariateCodelet ( ) [default]
```

Default constructor.

8.28.1.2 \sim DMSEBivariateCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DMSEBivariateCodelet < T >:: \sim DMSEBivariateCodelet ( ) [default]
```

Default destructor.

8.28.2 Member Function Documentation

8.28.2.1 InsertTask()

Inserts a task for DMSEBivariate codelet processing.

Parameters

in	apDescZMiss	A pointer to the descriptor for the observed values.	
in apDescZPre		A pointer to the descriptor for the predicted values.	
in,out	apDescsError	A pointer to the descriptor for the total error sum.	
in,out	apDescsError1	A pointer to the descriptor for the error sum for the first variable.	
in,out	apDescsError2	A pointer to the descriptor for the error sum for the second variable.	

Returns

void

8.28.2.2 cl_dmse_bivariate_function()

Executes the DMSEBivariate codelet function for bivariate error calculation.

Parameters

in	apBuffers	An array of pointers to the buffers.
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the vector size and offset.

Returns

void

8.28.3 Member Data Documentation

8.28.3.1 cl_dmse_bivariate

```
template<typename T >
struct starpu_codelet exageostat::runtime::DMSEBivariateCodelet< T >::cl_dmse_bivariate [static],
[private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

• dmse-bivariate-codelet.hpp

8.29 exageostat::runtime::DMSECodelet < T > Class Template Reference

```
#include <dmse-codelet.hpp>
```

Public Member Functions

• DMSECodelet ()=default

Constructor for DMSE codelet.

∼DMSECodelet ()=default

Default destructor.

void InsertTask (void *apDescError, void *apDescZPredict, void *apDescZMiss)

Inserts a task for DMSE codelet processing.

Static Private Member Functions

• static void cl_dmse_function (void **apBuffers, void *apCodeletArguments)

Executes the DMSE codelet function for error calculation.

Static Private Attributes

 static struct starpu_codelet cl_dmse starpu_codelet struct

8.29.1 Constructor & Destructor Documentation

8.29.1.1 DMSECodelet()

```
template<typename T >
exageostat::runtime::DMSECodelet< T >::DMSECodelet ( ) [default]
```

Constructor for **DMSE** codelet.

8.29.1.2 ~DMSECodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DMSECodelet < T >:: \sim DMSECodelet ( ) [default]
```

Default destructor.

8.29.2 Member Function Documentation

8.29.2.1 InsertTask()

Inserts a task for DMSE codelet processing.

Parameters

	in,out	apDescError	A pointer to the descriptor for the error sum.
Ī	in	apDescZPredict	A pointer to the descriptor for the predicted values.
	in	apDescZMiss	A pointer to the descriptor for the observed values.

Returns

void

8.29.2.2 cl_dmse_function()

Executes the DMSE codelet function for error calculation.

Parameters

in	apBuffers	Buffers An array of pointers to the buffers.	
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the vector size and	
		offset. @retur void	

8.29.3 Member Data Documentation

8.29.3.1 cl_dmse

```
template<typename T >
struct starpu_codelet exageostat::runtime::DMSECodelet< T >::cl_dmse [static], [private]
starpu_codelet struct
```

The documentation for this class was generated from the following file:

· dmse-codelet.hpp

8.30 DTRACE Class Reference

A class for starpu codelet dtrace.

8.30.1 Detailed Description

A class for starpu codelet dtrace.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_dtrace and its CPU functions.

The documentation for this class was generated from the following file:

· dtrace-codelet.hpp

8.31 exageostat::runtime::DTRACECodelet< T > Class Template Reference

#include <dtrace-codelet.hpp>

Public Member Functions

• DTRACECodelet ()=default

Default constructor.

• \sim DTRACECodelet ()=default

Default destructor.

void InsertTask (void *apDescA, void *apDescNum, void *apDescTrace)

Inserts a task for DTRACE codelet processing.

Static Private Member Functions

- static void cl_dtrace_function (void **apBuffers, void *apCodeletArguments)
 - Executes the DTRACE codelet function for matrix trace calculation.
- static double core_dtrace (const T *pDescriptor, const int &aSize, T *pTrace)
 Calculates the trace of a matrix.

Static Private Attributes

 static struct starpu_codelet cl_dtrace starpu_codelet struct

8.31.1 Constructor & Destructor Documentation

8.31.1.1 DTRACECodelet()

```
template<typename T >
exageostat::runtime::DTRACECodelet< T >::DTRACECodelet ( ) [default]
```

Default constructor.

8.31.1.2 \sim DTRACECodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::DTRACECodelet < T >:: \sim DTRACECodelet ( ) [default]
```

Default destructor.

8.31.2 Member Function Documentation

8.31.2.1 InsertTask()

Inserts a task for DTRACE codelet processing.

Parameters

in	apDescA	A pointer to the descriptor for the matrix.
in,out	apDescNum	A pointer to the descriptor for the sum.
in,out	apDescTrace	A pointer to the descriptor for the trace.

Returns

void

8.31.2.2 cl_dtrace_function()

Executes the DTRACE codelet function for matrix trace calculation.

Parameters

in	apBuffers	An array of pointers to the buffers.	
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the matrix size.	

Returns

void

8.31.2.3 core_dtrace()

Calculates the trace of a matrix.

Parameters

in	pDescriptor	A pointer to the matrix data.
in	aSize	The size of the matrix (assumed to be square).
in,out	pTrace	A pointer to the buffer where the trace value will be stored.

Returns

The calculated trace of the matrix.

8.31.3 Member Data Documentation

8.31.3.1 cl_dtrace

```
template<typename T >
struct starpu_codelet exageostat::runtime::DTRACECodelet< T >::cl_dtrace [static], [private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

· dtrace-codelet.hpp

8.32 DZCPY Class Reference

A class for starpu codelet dzcpy.

8.32.1 Detailed Description

A class for starpu codelet dzcpy.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_dzcpy and its CPU functions.

The documentation for this class was generated from the following file:

· dzcpy-codelet.hpp

8.33 exageostat::runtime::DZCPYCodelet< T > Class Template Reference

#include <dzcpy-codelet.hpp>

Public Member Functions

• DZCPYCodelet ()=default

Default constructor.

~DZCPYCodelet ()=default

Default destructor.

void InsertTask (void *apDescriptor, void *apDoubleVector)

Inserts a task for DZCPY codelet processing.

Static Private Member Functions

static void cl_dzcpy_function (void **apBuffers, void *apCodeletArguments)
 Executes the DZCPY codelet function for copying a double vector.

Static Private Attributes

 static struct starpu_codelet cl_dzcpy starpu_codelet struct

8.33.1 Constructor & Destructor Documentation

8.33.1.1 DZCPYCodelet()

```
template<typename T >
exageostat::runtime::DZCPYCodelet< T >::DZCPYCodelet ( ) [default]
```

Default constructor.

8.33.1.2 ~DZCPYCodelet()

```
template<typename T >
exageostat::runtime::DZCPYCodelet< T >::~DZCPYCodelet ( ) [default]
```

Default destructor.

8.33.2 Member Function Documentation

8.33.2.1 InsertTask()

Inserts a task for DZCPY codelet processing.

Parameters

	in,out	apDescriptor	A pointer to the descriptor for the vector.
ſ	in	apDoubleVector	A pointer to the double vector to be copied.

Returns

void

8.33.2.2 cl_dzcpy_function()

```
template<typename T >
static void exageostat::runtime::DZCPYCodelet< T >::cl_dzcpy_function (
```

```
void ** apBuffers,
void * apCodeletArguments ) [static], [private]
```

Executes the DZCPY codelet function for copying a double vector.

Parameters

in	apBuffers	An array of pointers to the buffers.
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the vector size, offset, and the pointer to the destination vector.

Returns

void

8.33.3 Member Data Documentation

8.33.3.1 cl_dzcpy

```
template<typename T >
struct starpu_codelet exageostat::runtime::DZCPYCodelet< T >::cl_dzcpy [static], [private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

· dzcpy-codelet.hpp

8.34 exageostat::api::ExaGeoStat< T > Class Template Reference

High-Level Wrapper class containing the static API for ExaGeoStat operations.

```
#include <ExaGeoStat.hpp>
```

Static Public Member Functions

static void ExaGeoStatLoadData (configurations::Configurations &aConfigurations, std::unique_ptr
 ExaGeoStatData< T >> &aData)

Generates Data whether it's synthetic data or real.

 static T ExaGeoStatDataModeling (configurations::Configurations &aConfigurations, std::unique_ptr<
 ExaGeoStatData< T >> &aData, T *apMeasurementsMatrix=nullptr)

Models Data whether it's synthetic data or real.

static double ExaGeoStatMLETileAPI (const std::vector< double > &aTheta, std::vector< double > &aGrad, void *apInfo)

Objective function used in optimization, and following the NLOPT objective function format.

static void ExaGeoStatPrediction (configurations::Configurations &aConfigurations, std::unique_ptr
 ExaGeoStatData< T >> &aData, T *apMeasurementsMatrix=nullptr, dataunits::Locations< T > *ap←
 TrainLocations=nullptr, dataunits::Locations< T > *apTestLocations=nullptr)

Predict missing measurements values.

8.34.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename T > \\ class exageostat::api::ExaGeoStat < T > \\ \end{tabular}
```

High-Level Wrapper class containing the static API for ExaGeoStat operations.

Template Parameters

```
T Data Type: float or double
```

8.34.2 Member Function Documentation

8.34.2.1 ExaGeoStatLoadData()

Generates Data whether it's synthetic data or real.

Parameters

in	aConfigurations	Reference to Configurations object containing user input data.
out	aData	Reference to an ExaGeoStatData <t> object where generated data will be stored.</t>

Returns

void

8.34.2.2 ExaGeoStatDataModeling()

Models Data whether it's synthetic data or real.

Parameters

in	aConfigurations	Reference to Configurations object containing user input data.
in	aData	Reference to an ExaGeoStatData <t> object containing needed Generated by Doxygen descriptors, and locations.</t>
in	apMeasurementsMatrix	Pointer to the user input measurements matrix.

Returns

the last optimum value of MLE.

8.34.2.3 ExaGeoStatMLETileAPI()

Objective function used in optimization, and following the NLOPT objective function format.

Parameters

in	aTheta An array of length n containing the current point in the parameter space.	
in	aGrad	An array of length n where you can optionally return the gradient of the objective function.
in	apInfo	pointer containing needed configurations and data.

Returns

double MLE results.

8.34.2.4 ExaGeoStatPrediction()

Predict missing measurements values.

Parameters

in	aConfigurations	Reference to Configurations object containing user input data.
in,out	aData	Reference to an ExaGeoStatData <t> object containing needed descriptors, and locations.</t>
in	apMeasurementsMatrix	Pointer to the user input measurements matrix.
in	apTrainLocations	(Optional) Pointer to Locations representing training locations. these are used in training phase.
in	apTestLocations	(Optional) Pointer to Locations representing test locations. These are used in prediction phase.

Returns

void

The documentation for this class was generated from the following file:

ExaGeoStat.hpp

8.35 ExaGeoStatData < T > Class Template Reference

Manages geo-statistical data with functions for location and descriptor manipulation.

```
#include <ExaGeoStatData.hpp>
```

Public Member Functions

• ExaGeoStatData (const int &aSize, const exageostat::common::Dimension &aDimension)

Constructor for ExaGeoStatData.

• ExaGeoStatData (const int &aSize, const std::string &aDimension)

Constructor for ExaGeoStatData.

• ExaGeoStatData ()=default

Default constructor for ExaGeoStatData.

∼ExaGeoStatData ()

Destructor for ExaGeoStatData.

exageostat::dataunits::Locations
 T > * GetLocations ()

Get the locations.

void SetLocations (exageostat::dataunits::Locations < T > &aLocation)

Set the locations.

exageostat::dataunits::DescriptorData < T > * GetDescriptorData ()

Get the descriptor data.

void SetMleIterations (const int &aMleIterations)

Setter for the number of performed MLE iterations.

• int GetMleIterations ()

Get the number of performed MLE iterations.

void CalculateMedianLocations (const std::string &aKernelName, exageostat::dataunits::Locations< T > &aLocations)

Calculates Median Locations.

Private Attributes

- exageostat::dataunits::DescriptorData < T > * mpDescriptorData = nullptr
- exageostat::dataunits::Locations < T > * mpLocations = nullptr
- int mMleIterations = 0

8.35.1 Detailed Description

```
template < typename T> class ExaGeoStatData < T>
```

Manages geo-statistical data with functions for location and descriptor manipulation.

@Class ExaGeoStatData

Template Parameters

```
T Data Type: float or double
```

8.35.2 Constructor & Destructor Documentation

8.35.2.1 ExaGeoStatData() [1/3]

Constructor for ExaGeoStatData.

Parameters

in	aSize	The size of the data.
in	aDimension	The dimension of the data.

8.35.2.2 ExaGeoStatData() [2/3]

Constructor for ExaGeoStatData.

Parameters

in	aSize	The size of the data.
in	aDimension	The dimension of the data.

8.35.2.3 ExaGeoStatData() [3/3]

```
template<typename T >
ExaGeoStatData< T >::ExaGeoStatData ( ) [default]
```

Default constructor for ExaGeoStatData.

8.35.2.4 ~ExaGeoStatData()

Destructor for ExaGeoStatData.

8.35.3 Member Function Documentation

8.35.3.1 GetLocations()

```
\label{template} $$ template < typename T > $$ exageostat::dataunits::Locations < T > * ExaGeoStatData < T > ::GetLocations ( ) $$ $$
```

Get the locations.

Returns

Pointer to the Locations object.

8.35.3.2 SetLocations()

```
\label{template} $$ \ensuremath{\sf template}$ $$ \ensurem
```

Set the locations.

Parameters

in	aLocation	Pointer to the Locations object.
----	-----------	----------------------------------

Returns

void

8.35.3.3 GetDescriptorData()

```
\label{template} $$ template < typename T > $$ exageostat::dataunits::DescriptorData < T > ::GetDescriptorData ( ) $$
```

Get the descriptor data.

Returns

Pointer to the DescriptorData object.

8.35.3.4 SetMleIterations()

Setter for the number of performed MLE iterations.

Parameters

in	aMleIterations	number of performed MLE iterations.
----	----------------	-------------------------------------

Returns

void

8.35.3.5 GetMleIterations()

```
template<typename T >
int ExaGeoStatData< T >::GetMleIterations ( )
```

Get the number of performed MLE iterations.

Returns

Pointer to the DescriptorData object.

8.35.3.6 CalculateMedianLocations()

Calculates Median Locations.

Parameters

in	aKernelName	Name of the Kernel used.
out	aLocations	Location object to save medianLocations in.

Returns

void

8.35.4 Member Data Documentation

8.35.4.1 mpDescriptorData

```
template<typename T >
exageostat::dataunits::DescriptorData<T>* ExaGeoStatData< T >::mpDescriptorData = nullptr
[private]
```

8.35.4.2 mpLocations

```
template<typename T >
exageostat::dataunits::Locations<T>* ExaGeoStatData< T >::mpLocations = nullptr [private]
```

8.35.4.3 mMlelterations

```
template<typename T >
int ExaGeoStatData< T >::mMleIterations = 0 [private]
```

The documentation for this class was generated from the following file:

ExaGeoStatData.hpp

8.36 exageostat::dataunits::descriptor::ExaGeoStatDescriptor< T > Class Template Reference

ExaGeoStatDescriptor is a class for creating matrix descriptors used in CHAMELEON and HiCMA libraries.

```
#include <ExaGeoStatDescriptor.hpp>
```

Public Member Functions

void * CreateDescriptor (void *apDescriptor, const common::DescriptorType &aDescriptorType, const bool &aIsOOC, void *apMatrix, const common::FloatPoint &aFloatPoint, const int &aMB, const int &aNB, const int &aSize, const int &aLM, const int &aLN, const int &aI, const int &aJ, const int &aM, const int &aN, const int &aP, const int &aQ, const bool &aValidOOC)

Create a descriptor for a matrix with the given parameters.

int DestroyDescriptor (const common::DescriptorType &aDescriptorType, void *apDescriptor)
 destroys and finalize a descriptor

8.36.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::dataunits::descriptor::ExaGeoStatDescriptor} < \mbox{T} > \\ \mbox{typename T} > \\ \mbox{class exageostat::dataunits::descriptor::ExaGeoStatDescriptor} < \mbox{T} > \\ \mbox{typename T} > \\ \mbox{typen
```

ExaGeoStatDescriptor is a class for creating matrix descriptors used in CHAMELEON and HiCMA libraries.

Template Parameters

```
T Data Type: float or double
```

8.36.2 Member Function Documentation

8.36.2.1 CreateDescriptor()

```
template<typename T >
\verb|void*| exageostat::dataunits::descriptor::ExaGeoStatDescriptor < T >::CreateDescriptor (
            void * apDescriptor,
             const common::DescriptorType & aDescriptorType,
             const bool & aIsOOC,
             void * apMatrix,
             const common::FloatPoint & aFloatPoint,
             const int & aMB,
             const int & aNB,
             const int & aSize,
             const int & aLM,
             const int & aLN,
             const int & aI,
             const int & aJ,
             const int & aM,
             const int & aN,
             const int & aP,
             const int & aQ,
             const bool & aValidOOC )
```

Create a descriptor for a matrix with the given parameters.

Parameters

out	apDescriptor	A pointer to the existing to the descriptor. The new descriptor will be created based on this descriptor Type.
in	aDescriptorType	The type of the descriptor.
in	alsOOC	A boolean value indicating whether the matrix is out-of-core or not.
in	apMatrix	A pointer to the beginning of the matrix.
in	aFloatPoint	The precision of the matrix.
in	аМВ	The number of rows in a tile.
in	aNB	The number of columns in a tile.
in	aSize	The size of the matrix in elements including padding.
in	aLM	The number of rows of the entire matrix.
in	aLN	The number of columns of the entire matrix.
in	al	The row index to the beginning of the sub-matrix.
in	aJ	The column index to the beginning of the sub-matrix.
in	аМ	The number of rows of the sub-matrix.
in	aN	The number of columns of the sub-matrix.
in	aP	The number of rows of the 2D distribution grid.
in	aQ	The number of columns of the 2D distribution grid.
in Generated b	aValidOOC y Doxygen	Boolean refer to whether this descriptor can be created with OOC technology or not.

Returns

A pointer to the newly created descriptor.

8.36.2.2 DestroyDescriptor()

destroys and finalize a descriptor

Parameters

in	aDescriptorType	The type of the descriptor.
in	apDescriptor	A pointer to the existing descriptor.

Returns

An error code or success code.

The documentation for this class was generated from the following file:

· ExaGeoStatDescriptor.hpp

8.37 ExaGeoStatHardware Class Reference

Class representing the hardware configuration for the ExaGeoStat solver.

```
#include <ExaGeoStatHardware.hpp>
```

Public Member Functions

ExaGeoStatHardware (const exageostat::common::Computation &aComputation, const int &aCoreNumber, const int &aGpuNumber)

Constructor for ExaGeoStatHardware.

- ExaGeoStatHardware (const std::string &aComputation, const int &aCoreNumber, const int &aGpuNumber)
 Constructor for ExaGeoStatHardware.
- void FinalizeHardware ()

A Finalize caller for Hardware.

∼ExaGeoStatHardware ()

Destructor for ExaGeoStatHardware.

Static Public Member Functions

• static void InitHardware (const exageostat::common::Computation &aComputation, const int &aCoreNumber, const int &aGpuNumber)

Initializes hardware configuration.

static void * GetChameleonContext ()

Get the Chameleon hardware context.

static void * GetHicmaContext ()

Get the HiCMA hardware context.

static void * GetContext (exageostat::common::Computation aComputation)

Get the hardware context.

Static Private Attributes

```
    static void * mpChameleonContext
```

• static void * mpHicmaContext

8.37.1 Detailed Description

Class representing the hardware configuration for the ExaGeoStat solver.

8.37.2 Constructor & Destructor Documentation

8.37.2.1 ExaGeoStatHardware() [1/2]

Constructor for ExaGeoStatHardware.

Parameters

in	aComputation	The computation mode for the solver.
in	aCoreNumber	The number of CPU cores to use for the solver.
in	aGpuNumber	The number of GPUs to use for the solver.

8.37.2.2 ExaGeoStatHardware() [2/2]

```
const int & aCoreNumber,
const int & aGpuNumber ) [explicit]
```

Constructor for ExaGeoStatHardware.

Parameters

	in	aComputation	The computation mode for the solver as a string.
	in	aCoreNumber	The number of CPU cores to use for the solver.
ſ	in	aGpuNumber	The number of GPUs to use for the solver.

8.37.2.3 ~ExaGeoStatHardware()

```
ExaGeoStatHardware:: \sim ExaGeoStatHardware ( )
```

Destructor for ExaGeoStatHardware.

8.37.3 Member Function Documentation

8.37.3.1 FinalizeHardware()

```
void ExaGeoStatHardware::FinalizeHardware ( )
```

A Finalize caller for Hardware.

Returns

void.

8.37.3.2 InitHardware()

Initializes hardware configuration.

Parameters

in	aComputation	The computation mode for the solver.
in	aCoreNumber	The number of CPU cores to use for the solver.
in	aGpuNumber	The number of GPUs to use for the solver.

Returns

void

8.37.3.3 GetChameleonContext()

```
static void* ExaGeoStatHardware::GetChameleonContext ( ) [static]
```

Get the Chameleon hardware context.

Returns

Pointer to the hardware context.

8.37.3.4 GetHicmaContext()

```
static void* ExaGeoStatHardware::GetHicmaContext ( ) [static]
```

Get the HiCMA hardware context.

Returns

Pointer to the hardware context.

8.37.3.5 GetContext()

Get the hardware context.

Parameters

in aComputation Used computation to decide whether to use Hicma or Chameleon context.

Returns

Pointer to the hardware context.

8.37.4 Member Data Documentation

8.37.4.1 mpChameleonContext

void* ExaGeoStatHardware::mpChameleonContext [static], [private]

8.37.4.2 mpHicmaContext

```
void* ExaGeoStatHardware::mpHicmaContext [static], [private]
```

The documentation for this class was generated from the following file:

· ExaGeoStatHardware.hpp

8.38 Gaussian Class Reference

A class for starpu codelet gaussian-to-non.

8.38.1 Detailed Description

A class for starpu codelet gaussian-to-non.

Template Parameters

```
T Data Type: float or double
```

This class encapsulates the struct $cl_gaussian_to_non$ and its CPU functions.

The documentation for this class was generated from the following file:

• gaussian-to-non-codelet.hpp

8.39 exageostat::runtime::GaussianCodelet< T > Class Template Reference

#include <gaussian-to-non-codelet.hpp>

Public Member Functions

GaussianCodelet ()=default

Default constructor.

∼GaussianCodelet ()=default

Default destructor.

void InsertTask (void *apDesc, T *apTheta)

Inserts a task for Gaussian to non-Gaussian conversion codelet processing.

Static Private Member Functions

- static void cl_gaussian_to_non_function (void **apBuffers, void *apCodeletArguments)

 Executes the Gaussian to non-Gaussian conversion codelet function.
- static void core_gaussian_to_non (T *apDescriptorZ, const T *apLocalTheta, const int &aSize)

 Transforms data from a Gaussian distribution to a non-Gaussian distribution.

Static Private Attributes

 static struct starpu_codelet cl_gaussian_to_non starpu_codelet struct

8.39.1 Constructor & Destructor Documentation

8.39.1.1 GaussianCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::GaussianCodelet < T >::GaussianCodelet ( ) [default]
```

Default constructor.

8.39.1.2 ~GaussianCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::GaussianCodelet < T >:: \sim GaussianCodelet ( ) [default]
```

Default destructor.

8.39.2 Member Function Documentation

8.39.2.1 InsertTask()

Inserts a task for Gaussian to non-Gaussian conversion codelet processing.

Parameters

in,out	apDesc	A pointer to the descriptor for the matrix tile.
in	apTheta	A pointer to the transformation parameters.

Returns

void

8.39.2.2 cl_gaussian_to_non_function()

Executes the Gaussian to non-Gaussian conversion codelet function.

Parameters

in	apBuffers	An array of pointers to the buffers.
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the matrix size,
		offset, and the transformation parameters.

Returns

void

8.39.2.3 core_gaussian_to_non()

Transforms data from a Gaussian distribution to a non-Gaussian distribution.

Parameters

in,out	apDescriptorZ	A pointer to the array of data to be transformed. This array is modified in place.	
in	apLocalTheta	A pointer to the array of transformation parameters. The first element is the mean (xi), the second element is the scale (omega), the third element is the skewness (g), and the fourth element is the kurtosis (h).	
in	aSize	The size of the data array (pZ) and the transformation parameters array (apLocalTheta).	

Exceptions

std::runtime error

If the kurtosis parameter (h) is negative, indicating an invalid transformation parameter.

Returns

void

8.39.3 Member Data Documentation

8.39.3.1 cl gaussian to non

```
template<typename T >
struct starpu_codelet exageostat::runtime::GaussianCodelet< T >::cl_gaussian_to_non [static],
[private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

· gaussian-to-non-codelet.hpp

8.40 exageostat::dataunits::descriptor::HicmaDescriptor< T > Class Template Reference

HicmaDescriptor is a class for creating matrix descriptors by HICMA library.

```
#include <HicmaDescriptor.hpp>
```

Static Public Member Functions

static HICMA_desc_t * CreateHicmaDescriptor (void *apDescriptor, const bool &alsOOC, void *apMatrix, const common::FloatPoint &aFloatPoint, const int &aMB, const int &aNB, const int &aSize, const int &aLM, const int &aLN, const int &aI, const int &aJ, const int &aM, const int &aP, const int &aQ, const bool &aValidOOC)

Create a Hicma descriptor for a matrix with the given parameters.

static int DestroyHicmaDescriptor (void *apDescriptor)

destroys and finalize a descriptor

8.40.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::dataunits::descriptor::HicmaDescriptor} < \mbox{T} > \\ \mbox{topselone} > \mbox{topselone} > \mbox{topselone} > \\ \mbox{topselone} > \mbox{topselone} > \mbox{topselone} > \\ \mbox{topselone} > \mbox{topselone} > \mbox{topselone} > \\ \mbox{t
```

HicmaDescriptor is a class for creating matrix descriptors by HICMA library.

Template Parameters

```
T Data Type: float or double
```

8.40.2 Member Function Documentation

8.40.2.1 CreateHicmaDescriptor()

```
template<typename T >
Descriptor (
          void * apDescriptor,
          const bool & aIsOOC,
          void * apMatrix,
          const common::FloatPoint & aFloatPoint,
          const int & aMB,
          const int & aNB,
          const int & aSize,
          const int & aLM,
          const int & aLN,
          const int & aI,
          const int & aJ,
          const int & aM,
          const int & aN,
          const int & aP,
          const int & aQ,
          const bool & aValidOOC ) [static]
```

Create a Hicma descriptor for a matrix with the given parameters.

in	apDescriptor	A pointer to the existing HICMA_desc_t descriptor. The new descriptor will be created based on this descriptor.
in	alsOOC	A boolean value indicating whether the matrix is out-of-core or not.
in	apMatrix	A pointer to the beginning of the matrix.
in	aFloatPoint	The precision of the matrix.
in	аМВ	The number of rows in a tile.
in	aNB	The number of columns in a tile.
in	aSize	The size of the matrix in elements including padding.
in	aLM	The number of rows of the entire matrix.
in	aLN	The number of columns of the entire matrix.
in	al	The row index to the beginning of the sub-matrix.
in	aJ	The column index to the beginning of the sub-matrix.
in	аМ	The number of rows of the sub-matrix.
in	aN	The number of columns of the sub-matrix.
in	аР	The number of rows of the 2D distribution grid.
in	aQ	The number of columns of the 2D distribution grid.
in	aValidOOC	Boolean refer to whether this descriptor can be created with OOC technology or not.

Returns

A pointer to the newly created HICMA_desc_t descriptor.

8.40.2.2 DestroyHicmaDescriptor()

```
\label{template} $$ template < typename T > $$ static int exageostat::dataunits::descriptor::HicmaDescriptor < T >::DestroyHicmaDescriptor ( void * apDescriptor ) [static]
```

destroys and finalize a descriptor

Parameters

```
in apDescriptor A pointer to the existing HICMA_desc_t descriptor.
```

Returns

An error code or success code.

The documentation for this class was generated from the following file:

· HicmaDescriptor.hpp

8.41 exageostat::linearAlgebra::tileLowRank::Hicmalmplementation< T > Class Template Reference

Hicmalmplementation is a concrete implementation of LinearAlgebraMethods class for tile low-rank matrices.

```
#include <HicmaImplementation.hpp>
```

 $Inheritance\ diagram\ for\ exageostat:: linear Algebra:: tile Low Rank:: Hicmalmplementation < T>:$

```
exageostat::linearAlgebra::LinearAlgebraMethods< T >

exageostat::linearAlgebra::tileLowRank::HicmaImplementation< T >
```

Public Member Functions

Hicmalmplementation ()=default

Default constructor.

• ~Hicmalmplementation () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void SetModelingDescriptors (std::unique_ptr< ExaGeoStatData< T>> &aData, configurations::Configurations &aConfigurations, const int &aP)

Set the modeling descriptors for HiCMA implementation.

T ExaGeoStatMLETile (std::unique_ptr< ExaGeoStatData< T >> &aData, configurations::Configurations &aConfigurations, const double *theta, T *apMeasurementsMatrix, const kernels::Kernel< T > &aKernel) override

Calculates the log likelihood value of a given value theta.

 void ExaGeoStatLapackCopyTile (const common::UpperLower &aUpperLower, void *apA, void *apB) override

Copies a matrix in the tile layout from source to destination.

void ExaGeoStatSequenceWait (void *apSequence) override

Wait for the completion of a sequence.

void ExaGeoStatCreateSequence (void *apSequence) override

Create HiCMA Sequence.

• void ExaGeoStatPotrfTile (const common::UpperLower &aUpperLower, void *apA, int aBand, void *apCD, void *apCrk, const int &aMaxRank, const int &aAcc) override

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

 void ExaGeoStatTrsmTile (const common::Side &aSide, const common::UpperLower &aUpperLower, const common::Trans &aTrans, const common::Diag &aDiag, const T &aAlpha, void *apA, void *apCD, void *ap← Crk, void *apZ, const int &aMaxRank) override

Solves one of the matrix equations op(A)*X = A

8.41.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::linearAlgebra::tileLowRank::Hicmalmplementation} < \mbox{T} > \\ \mbox{topselementation} < \mbox{T} > \\ \
```

Hicmalmplementation is a concrete implementation of LinearAlgebraMethods class for tile low-rank matrices.

Template Parameters

```
T Data Type: float or double
```

8.41.2 Constructor & Destructor Documentation

8.41.2.1 Hicmalmplementation()

```
\label{template} $$ template < typename T > $$ exageostat::linearAlgebra::tileLowRank::HicmaImplementation ( ) $$ [explicit], [default] $$
```

Default constructor.

8.41.2.2 ~Hicmalmplementation()

```
\label{template} $$ \exage ostat::linearAlgebra::tileLowRank::HicmaImplementation ( ) $$ [override], [default] $$
```

Virtual destructor to allow calls to the correct concrete destructor.

8.41.3 Member Function Documentation

8.41.3.1 SetModelingDescriptors()

Set the modeling descriptors for HiCMA implementation.

Parameters

	in,out	aData	Reference to the ExaGeoStatData object.
	in	aConfigurations	Reference to the Configurations object.
Ī	in	aP	the P value of the kernel multiplied by time slot.

8.41.3.2 ExaGeoStatMLETile()

```
template<typename T >
T exageostat::linearAlgebra::tileLowRank::HicmaImplementation< T >::ExaGeoStatMLETile (
    std::unique_ptr< ExaGeoStatData< T >> & aData,
    configurations::Configurations & aConfigurations,
    const double * theta,
    T * apMeasurementsMatrix,
    const kernels::Kernel< T > & aKernel ) [override], [virtual]
```

Calculates the log likelihood value of a given value theta.

Calculates the log likelihood value of a given value theta.

in,out	aData	DescriptorData object to be populated with descriptors and data.
in	aConfigurations	Configurations object containing relevant settings.
in	apTheta	Optimization parameter used by NLOPT.
in	apMeasurementsMatrix	measurements matrix to be stored in DescZ.
Generated by Dox	aKernel	Reference to the kernel object to use.

Returns

log likelihood value

 $Implements\ exage ost at:: linear Algebra:: Linear Algebra Methods < T>.$

8.41.3.3 ExaGeoStatLapackCopyTile()

Copies a matrix in the tile layout from source to destination.

Copies a matrix in the tile layout from source to destination.

Parameters

in	aUpperLower	Specifies the part of the matrix A to be copied to B.
in	арА	Source matrix A.
in,out	арВ	Destination matrix B. On exit, B = A in the locations specified by Upper Lower.

Returns

void

 $Implements\ exage ost at:: linear Algebra:: Linear Algebra Methods < T>.$

8.41.3.4 ExaGeoStatSequenceWait()

```
template<typename T >
void exageostat::linearAlgebra::tileLowRank::HicmaImplementation< T >::ExaGeoStatSequenceWait
(
         void * apSequence ) [override], [virtual]
```

Wait for the completion of a sequence.

Wait for the completion of a sequence.

in	apSequence	apSequence A pointer to either CHAMELEON or HiCMA sequence.
----	------------	---

Returns

void

 $Implements\ exage ost at:: linear Algebra:: Linear Algebra Methods < T>.$

8.41.3.5 ExaGeoStatCreateSequence()

```
\label{template} $$\operatorname{typename} \ T > $$ void \ exageostat::linearAlgebra::tileLowRank::HicmaImplementation< T >::ExaGeoStatCreate \\ $$\operatorname{Sequence} \ ( \\ void * apSequence \ ) \ [override], [virtual] $$
```

Create HiCMA Sequence.

Create Sequence.

Parameters

|--|

Returns

void

 $Implements\ exageostat:: linear Algebra:: Linear Algebra Methods < T>.$

8.41.3.6 ExaGeoStatPotrfTile()

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

in	aUpperLower	Whether upper or lower part of the matrix A.
in,out	арА	Symmetric matrix A.
in	aBand	Diagonal thickness parameter.
in	apCD	Additional matrix CD.
Generated by Dox	^{yg} ଣ୍ଗbCrk	Additional matrix Crk.
in	aMaxRank	Maximum rank parameter.
in	aAcc	Accuracy parameter.

Returns

void

 $Implements\ exage ost at:: linear Algebra:: Linear Algebra Methods < T>.$

8.41.3.7 ExaGeoStatTrsmTile()

Solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B.

Solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B.

Parameters

in	aSide	Specifies whether op(A) appears on the left or on the right of X.
in	aUpperLower	Specifies whether the matrix A is upper triangular or lower triangular.
in	aTrans	Specifies the form of op(A) to be used in the matrix multiplication.
in	aDiag	Specifies whether or not A is unit triangular.
in	aAlpha	Specifies the scalar alpha. When alpha is zero, A is not referenced and B need
		not be set before entry.
in	арА	The triangular matrix A.
in	apCD	Additional matrix CD.
in	apCrk	Additional matrix Crk.
in,out	apZ	The matrix B of dimension, on exit is overwritten by the solution matrix X.
in	aMaxRank	Maximum rank parameter.

Returns

void

Implements exageostat::linearAlgebra::LinearAlgebraMethods< T >.

The documentation for this class was generated from the following file:

· Hicmalmplementation.hpp

8.42 exageostat::runtime::HicmaStarPuHelpers Class Reference

HicmaStarPuHelpers is a concrete implementation of StarPuHelpers interface for Hicma library.

#include <HicmaStarPuHelpers.hpp>

Inheritance diagram for exageostat::runtime::HicmaStarPuHelpers:

exageostat::runtime::StarPuHelpers

exageostat::runtime::HicmaStarPuHelpers

Public Member Functions

• HicmaStarPuHelpers ()=default

Default constructor.

~HicmaStarPuHelpers ()=default

Default destructor.

void ExaGeoStatOptionsInit (void *apOptions, void *apSequence, void *apRequest) override

Initialize the runtime option structure for HiCMA.

void ExaGeoStatOptionsFree (void *apOptions) override

Submit the release of the workspaces associated to the options structure.

void ExaGeoStatOptionsFinalize (void *apOptions) override

Finalize the runtime option structure for HiCMA.

void * ExaGeoStatDataGetAddr (void *apDescriptor, const int &aDescRow, const int &aDescCol) override
 Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.

• int GetMT (void *apDescriptor) override

Get the number of tile rows of the sub-matrix.

• int GetM (void *apDescriptor) override

Get the descriptor number of rows.

int GetMB (void *apDescriptor) override

Get the descriptor number of rows in a tile.

void * GetOptions () override

Get the descriptor options.

void DeleteOptions (void *apOptions) override

Delete the options object.

8.42.1 Detailed Description

HicmaStarPuHelpers is a concrete implementation of StarPuHelpers interface for Hicma library.

8.42.2 Constructor & Destructor Documentation

8.42.2.1 HicmaStarPuHelpers()

```
exageostat::runtime::HicmaStarPuHelpers::HicmaStarPuHelpers ( ) [default]
```

Default constructor.

8.42.2.2 ~HicmaStarPuHelpers()

```
\verb|exageostat::runtime::HicmaStarPuHelpers:: \sim \verb|HicmaStarPuHelpers () | [default]|
```

Default destructor.

8.42.3 Member Function Documentation

8.42.3.1 ExaGeoStatOptionsInit()

Initialize the runtime option structure for HiCMA.

Initialize the runtime option structure for either HiCMA or CHAMELEON.

Parameters

in,out	apOptions	The options structure that needs to be initialized.
in	apSequence	The sequence structure to associate in the options.
in	apRequest	The request structure to associate in the options.

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.42.3.2 ExaGeoStatOptionsFree()

```
\label{local_problem} \begin{tabular}{ll} void exageostat::runtime::HicmaStarPuHelpers::ExaGeoStatOptionsFree ( \\ void * apOptions ) & [override], [virtual] \end{tabular}
```

Submit the release of the workspaces associated to the options structure.

Submit the release of the workspaces associated to the options structure.

Parameters

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.42.3.3 ExaGeoStatOptionsFinalize()

```
\label{lem:void} \begin{tabular}{ll} void exageostat::runtime::HicmaStarPuHelpers::ExaGeoStatOptionsFinalize ( \\ void * apOptions ) & [override], [virtual] \end{tabular}
```

Finalize the runtime option structure for HiCMA.

Finalize the runtime option structure for either HiCMA or CHAMELEON.

Parameters

in,	out	apOptions	The options structure that needs to be finalized.
-----	-----	-----------	---

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.42.3.4 ExaGeoStatDataGetAddr()

Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.

Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.

in	apDescriptor	The descriptor to which belongs the piece of data
in	aDescRow	The row coordinate of the piece of data in the matrix
in	aDescCol	The column coordinate of the piece of data in the matrix

Returns

void

Implements exageostat::runtime::StarPuHelpers.

8.42.3.5 GetMT()

Get the number of tile rows of the sub-matrix.

Get the number of tile rows of the sub-matrix.

Parameters

```
in apDescriptor
```

Returns

int

Implements exageostat::runtime::StarPuHelpers.

8.42.3.6 GetM()

Get the descriptor number of rows.

Get the descriptor number of rows.

Parameters

		ı
ın	apDescriptor	

Returns

int

Implements exageostat::runtime::StarPuHelpers.

8.42.3.7 GetMB()

Get the descriptor number of rows in a tile.

Get the descriptor number of rows in a tile.

Parameters

in	apDescriptor	
in	apDescriptor	

Returns

int

Implements exageostat::runtime::StarPuHelpers.

8.42.3.8 GetOptions()

```
void* exageostat::runtime::HicmaStarPuHelpers::GetOptions ( ) [override], [virtual]
```

Get the descriptor options.

Implements exageostat::runtime::StarPuHelpers.

8.42.3.9 DeleteOptions()

```
\label{lem:poisson} \begin{tabular}{ll} void exageostat::runtime::HicmaStarPuHelpers::DeleteOptions ( \\ void * apOptions ) & [override], [virtual] \end{tabular}
```

Delete the options object.

Delete the options object.

Parameters

Returns

void

Implements exageostat::runtime::StarPuHelpers.

The documentation for this class was generated from the following file:

· HicmaStarPuHelpers.hpp

8.43 exageostat::kernels::Kernel < T > Class Template Reference

#include <Kernel.hpp>

Inheritance diagram for exageostat::kernels::Kernel < T >:

Public Member Functions

- virtual \sim Kernel ()=default
- virtual void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns↔
 Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
 dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const int &aDistanceMetric)=0

Generates a covariance matrix using a set of locations and kernel parameters.

• int GetVariablesNumber () const

Returns the value of the parameter P used by the kernel function.

void SetPValue (int aTimeSlot)

Sets the value of the parameter P used by the kernel function.

• int GetParametersNumbers () const

Returns the number of the parameters used by the kernel function.

Protected Attributes

- int mP = 1
- int mVariablesNumber = 1
- int mParametersNumber = 3

8.43.1 Constructor & Destructor Documentation

8.43.1.1 ~Kernel()

```
template<typename T >
virtual exageostat::kernels::Kernel< T >::~Kernel ( ) [virtual], [default]
```

Default virtual destructor to be overridden by the the suitable concrete kernel destructor.

8.43.2 Member Function Documentation

8.43.2.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
in	aColumnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.
in	aLocalTheta	An array of kernel parameters.
in	<u>a</u> DistanceMetric	Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski).
Generated by Doxygen		

Returns

void

 $Implemented \ in exageostat::kernels::UnivariateSpacetimeMaternStationary < T>, exageostat::kernels::UnivariatePowExpStationary exageostat::kernels::UnivariateMaternStationary < T>, exageostat::kernels::UnivariateMaternNuggetsStationary < T>, exageostat::kernels::UnivariateMaternDuggetsStationary < T>, exageostat::kernels::UnivariateMaternDsigmaSquare < T>, exageostat::kernels::UnivariateMaternDsigmaSquare < T>, exageostat::kernels::UnivariateMaternDdsigmaSquareNu < T>, exageostat::kernels::UnivariateMaternDdsigmaSquare < T>, exageostat::kernels::UnivariateMaternDdsigmaSquare < T>, exageostat::kernels::UnivariateMaternDdbetaNu < T>, exageostat::kernels::UnivariateMaternDdbetaNu < T>, exageostat::kernels::UnivariateMaternDbeta < T>, exageostat::kernels::UnivariateMaternDbeta < T>, exageostat::kernels::UnivariateMaternDbeta < T>, exageostat::kernels::UnivariateMaternParsimonious < T>, exageostat::kernels::BivariateSpacetimeMaternStationary < T>, exageostat::kernels::BivariateMaternParsimonious < T>, and exageostat::kernels::BivariateMaternFlexible < T>. exageos$

8.43.2.2 GetVariablesNumber()

```
\label{template} $$ template < typename T > $$ int exageostat::kernels::Kernel < T >::GetVariablesNumber ( ) const
```

Returns the value of the parameter P used by the kernel function.

Returns

The value of P (Variables Number).

8.43.2.3 SetPValue()

Sets the value of the parameter $\mbox{\bf P}$ used by the kernel function.

Parameters

```
in aTimeSlot Value to set mP with.
```

Returns

void

8.43.2.4 GetParametersNumbers()

```
\label{template} $$\operatorname{typename} \ T > $$ int \ exageostat::kernels::Kernel < T >::GetParametersNumbers ( ) const
```

Returns the number of the parameters used by the kernel function.

Returns

The value of ParametersNumber.

8.43.3 Member Data Documentation

8.43.3.1 mP

```
template<typename T >
int exageostat::kernels::Kernel< T >::mP = 1 [protected]
```

8.43.3.2 mVariablesNumber

```
template<typename T >
int exageostat::kernels::Kernel< T >::mVariablesNumber = 1 [protected]
```

8.43.3.3 mParametersNumber

```
template<typename T >
int exageostat::kernels::Kernel< T >::mParametersNumber = 3 [protected]
```

The documentation for this class was generated from the following file:

· Kernel.hpp

8.44 Kernels Class Reference

A base class for kernel functions.

```
#include <Kernel.hpp>
```

8.44.1 Detailed Description

A base class for kernel functions.

This class provides a base class for kernel functions and contains several utility functions for computing distance metrics and Bessel functions.

The documentation for this class was generated from the following file:

Kernel.hpp

8.45 exageostat::kernels::KernelsConfigurations Struct Reference

#include <Kernel.hpp>

Static Public Member Functions

static std::unordered_map< std::string, int > & GetParametersNumberKernelMap ()
 Returns the static map containing kernel parameter numbers.

8.45.1 Member Function Documentation

8.45.1.1 GetParametersNumberKernelMap()

static std::unordered_map<std::string, int>& exageostat::kernels::KernelsConfigurations::Get←ParametersNumberKernelMap () [inline], [static]

Returns the static map containing kernel parameter numbers.

Returns

Reference to the static map.

Static map containing kernel parameter numbers.

The map is initialized only once and retains its value across multiple function invocations.

The documentation for this struct was generated from the following file:

· Kernel.hpp

8.46 exageostat::linearAlgebra::LinearAlgebraFactory< T > Class Template Reference

A class that creates linear algebra solvers based on the input computation type.

```
#include <LinearAlgebraFactory.hpp>
```

Static Public Member Functions

static std::unique_ptr< LinearAlgebraMethods< T >> CreateLinearAlgebraSolver (common::Computation aComputation)

Creates a linear algebra solver based on the input computation type.

8.46.1 Detailed Description

```
template < typename T > class exageostat::linearAlgebra::LinearAlgebraFactory < T >
```

A class that creates linear algebra solvers based on the input computation type.

Template Parameters

T Data Type: float or double.

8.46.2 Member Function Documentation

8.46.2.1 CreateLinearAlgebraSolver()

Creates a linear algebra solver based on the input computation type.

Parameters

in	aComputation	The computation type to create the solver for.
----	--------------	--

Returns

Pointer to the created linear algebra solver.

The documentation for this class was generated from the following file:

LinearAlgebraFactory.hpp

8.47 exageostat::linearAlgebra::LinearAlgebraMethods< T > Class Template Reference

A class that defines the interface for linear algebra solvers.

```
#include <LinearAlgebraMethods.hpp>
```

Inheritance diagram for exageostat::linearAlgebra::LinearAlgebraMethods < T >:

Public Member Functions

virtual ~LinearAlgebraMethods ()=default

Virtual destructor to allow calls to the correct concrete destructor.

 void InitiateDescriptors (configurations::Configurations &aConfigurations, dataunits::DescriptorData < T > &aDescriptorData, const int &aP, T *apMeasurementsMatrix=nullptr)

Initializes the descriptors necessary for the linear algebra solver.

void InitiateFisherDescriptors (configurations::Configurations &aConfigurations, dataunits::DescriptorData
 T > &aDescriptorData)

Initializes the descriptors necessary for the Fisher prediction function.

void InitiatePredictionDescriptors (configurations::Configurations &aConfigurations, std::unique_ptr<
 <p>ExaGeoStatData< T >> &aData)

Initializes the descriptors necessary for the Prediction.

void InitiateMLOEMMOMDescriptors (configurations::Configurations &aConfigurations, std::unique_ptr
 ExaGeoStatData< T >> &aData, const int &aP)

Initializes the descriptors necessary for the Prediction Auxiliary function MLE-MLOE-MMOM.

void GenerateSyntheticData (configurations::Configurations &aConfigurations, std::unique_ptr< ExaGeoStatData
 T >> &aData, const kernels::Kernel
 T >> &aKernel)

Generates synthetic data.

void GenerateObservationsVector (configurations::Configurations &aConfigurations, std::unique_ptr
 ExaGeoStatData< T >> &aData, dataunits::Locations< T > *apLocation1, dataunits::Locations< T > *apLocation2, dataunits::Locations< T > *apLocation3, const int &aDistanceMetric, const kernels::Kernel
 T > &aKernel)

Generates the observations vector.

virtual T ExaGeoStatMLETile (std::unique_ptr< ExaGeoStatData< T>> &aData, configurations::Configurations &aConfigurations, const double *apTheta, T *apMeasurementsMatrix, const kernels::Kernel< T > &a← Kernel)=0

Calculates the log likelihood value of a given value theta.

virtual void ExaGeoStatLapackCopyTile (const common::UpperLower &aUpperLower, void *apA, void *apB)=0

Copies a matrix in the tile layout from source to destination.

• virtual void ExaGeoStatSequenceWait (void *apSequence)=0

Wait for the completion of a sequence.

virtual void ExaGeoStatCreateSequence (void *apSequence)=0

Create Sequence.

 virtual void ExaGeoStatPotrfTile (const common::UpperLower &aUpperLower, void *apA, int aBand, void *apCD, void *apCrk, const int &aMaxRank, const int &aAcc)=0

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

virtual void ExaGeoStatTrsmTile (const common::Side &aSide, const common::UpperLower &aUpperLower, const common::Trans &aTrans, const common::Diag &aDiag, const T &aAlpha, void *apA, void *apCD, void *apCrk, void *apZ, const int &aMaxRank)=0

Solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B.

void ExaGeoStatPosvTile (const common::UpperLower &aUpperLower, void *apA, void *apB)

Solve a positive definite linear system of equations AX = B using tiled algorithms.

T * ExaGeoStatMLEPredictTile (std::unique_ptr< ExaGeoStatData< T >> &aData, T *apTheta, const int &aZMissNumber, const int &aZObsNumber, T *apZObs, T *apZActual, T *apZMiss, configurations::Configurations &aConfiguration, exageostat::dataunits::Locations< T > &aMissLocations, exageostat::dataunits::Locations< T > &aCobsLocations, const kernels::Kernel< T > &aKernel)

Predict missing values base on a set of given values and covariance matrix/.

T * ExaGeoStatMLENonGaussianPredictTile (std::unique_ptr< ExaGeoStatData< T >> &aData, T *ap←
Theta, const int &aZMissNumber, const int &aZObsNumber, T *apZObs, T *apZActual, T *apZMiss,
configurations::Configurations &aConfiguration, exageostat::dataunits::Locations< T > &aMissLocations,
exageostat::dataunits::Locations< T > &aCobsLocations, const kernels::Kernel< T > &aKernel)

Predict missing values base on a set of given values and Non-Gaussian covariance matrix/.

void ExaGeoStatLap2Desc (T *apA, const int &aLDA, void *apDescA, const common::UpperLower &a
 UpperLower)

Copy Lapack matrix to Descriptor Matrix.

void ExaGeoStatDesc2Lap (T *apA, const int &aLDA, void *apDescA, const common::UpperLower &a←
 UpperLower)

Copy Descriptor Matrix to Lapack matrix.

void ExaGeoStatLaSetTile (const common::UpperLower &aUpperLower, T aAlpha, T aBeta, void *ap
 — Descriptor)

Sets the values of all or part of a two-dimensional Tile.

void ExaGeoStatGetZObs (configurations::Configurations &aConfigurations, T *apZ, const int &aSize, exageostat::dataunits::DescriptorData< T > &aDescData, T *apMeasurementsMatrix, const int &aP)

Copy the Z matrix into a pointer.

void ExaGeoStatMLETileMLOEMMOM (configurations::Configurations &aConfigurations, std::unique_ptr
 ExaGeoStatData< T >> &aData, T *apTruthTheta, T *apEstimatedTheta, dataunits::Locations< T > &a←
 MissLocations, dataunits::Locations< T > &aObsLocations, const kernels::Kernel< T > &aKernel)

Predict missing values based on a set of given values and covariance matrix.

T * ExaGeoStatFisherTile (configurations::Configurations &aConfigurations, std::unique_ptr< ExaGeoStatData
 T >> &aData, T *apTheta, const kernels::Kernel < T > &aKernel)

Maximum Likelihood Evaluation (MLE) Fisher method.

void ExaGeoStatGeaddTile (const common::Trans &aTrans, const T &aAlpha, void *apDescA, const T &a
 —
 Beta, void *apDescB)

Perform a matrix addition with scaling.

 void ExaGeoStatTrmmTile (const common::Side &aSide, const common::UpperLower &aUpperLower, const common::Trans &aTrans, const common::Diag &aDiag, const T &alpha, void *apDescA, void *apDescB)

Perform a triangular matrix multiplication.

• bool Recover (char *apPath, const int &alterationCount, T *apTheta, T *apLogLik, const int &aNumParams)

Recovers theta and log-likelihood from a file.

8.47.1 Detailed Description

template < typename T > class exageostat::linearAlgebra::LinearAlgebraMethods < T >

A class that defines the interface for linear algebra solvers.

Template Parameters

T Data Type: float or double.

8.47.2 Constructor & Destructor Documentation

8.47.2.1 ∼LinearAlgebraMethods()

```
template<typename T >
virtual exageostat::linearAlgebra::LinearAlgebraMethods< T >::~LinearAlgebraMethods ( ) [virtual],
[default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.47.3 Member Function Documentation

8.47.3.1 InitiateDescriptors()

Initializes the descriptors necessary for the linear algebra solver.

This method initializes the descriptors necessary for the linear algebra solver.

Parameters

in	aConfigurations	Configurations object containing relevant settings.
in,out	aDescriptorData	Descriptor Data object to be populated with descriptors and data.
in	аР	the P value of the kernel multiplied by time slot.
in apMeasurementsMatrix		Pointer to the measurement matrix.

Returns

void

8.47.3.2 InitiateFisherDescriptors()

Initializes the descriptors necessary for the Fisher prediction function.

Parameters

in	aConfigurations	Configurations object containing relevant settings.	
in,out	aDescriptorData	Descriptor Data object to be populated with descriptors and data.]

Returns

void

8.47.3.3 InitiatePredictionDescriptors()

Initializes the descriptors necessary for the Prediction.

This method initializes the descriptors necessary for the linear algebra solver.

Parameters

in	aConfigurations	Configurations object containing relevant settings.
in,out	aData	DescriptorData object to be populated with descriptors and data.

Returns

void

8.47.3.4 InitiateMLOEMMOMDescriptors()

Initializes the descriptors necessary for the Prediction Auxiliary function MLE-MLOE-MMOM.

This method initializes the descriptors necessary for the linear algebra solver.

Parameters

in	aConfigurations	Configurations object containing relevant settings.
in,out	aData	DescriptorData object to be populated with descriptors and data.
in	aP	the P value of the kernel multiplied by time slot.

Returns

void

8.47.3.5 GenerateSyntheticData()

```
configurations::Configurations & aConfigurations, std::unique_ptr< ExaGeoStatData< T >> & aData, const kernels::Kernel< T > & aKernel)
```

Generates synthetic data.

Parameters

	in	aConfigurations	The configurations object containing relevant settings.
ſ	in,out	aData	ExaGeoStatData object to be populated with synthetic data.
Ī	in aKernel		Reference to the kernel object to use.

Returns

void.

8.47.3.6 GenerateObservationsVector()

Generates the observations vector.

Parameters

in	aConfigurations	Configurations object containing relevant settings.
in	aDescriptorData	pointer to the DescriptorData object holding descriptors and data.
in	apLocation1	Pointer to the first set of locations.
in	apLocation2	Pointer to the second set of locations.
in	apLocation3	Pointer to the third set of locations.
in	aDistanceMetric	Specifies the distance metric to use.
in	aKernel	Reference to the kernel object to use.

Returns

void

8.47.3.7 ExaGeoStatMLETile()

Calculates the log likelihood value of a given value theta.

Parameters

in,out	aData	DescriptorData object to be populated with descriptors and data.	
in <i>aConfigurations</i>		Configurations object containing relevant settings.	
in apTheta		Optimization parameter used by NLOPT.	
in	apMeasurementsMatrix	measurements matrix to be stored in DescZ.	
in aKernel		Reference to the kernel object to use.	

Returns

log likelihood value

Implemented in exageostat::linearAlgebra::tileLowRank::HicmaImplementation< T >, and exageostat::linearAlgebra::ChameleonImp

8.47.3.8 ExaGeoStatLapackCopyTile()

Copies a matrix in the tile layout from source to destination.

Parameters

	in	aUpperLower Specifies the part of the matrix A to be copied to B.	
İ	in	арА	Source matrix A.
Ì	in,out	арВ	Destination matrix B. On exit, B = A in the locations specified by Upper Lower.

Returns

void

 $Implemented \ in \ exage ost at:: linear Algebra:: tile Low Rank:: Hicmal mplementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T> = (Algebra:: Chameleon Implemen$

8.47.3.9 ExaGeoStatSequenceWait()

Wait for the completion of a sequence.

Parameters

	in	apSequence	apSequence A pointer to either CHAMELEON or HiCMA sequence.	
--	----	------------	---	--

Returns

void

 $Implemented \ in \ exage ost at:: linear Algebra:: tile Low Rank:: Hicmal mplementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T>, \ and \ exage ost at:: linear Algebra::

8.47.3.10 ExaGeoStatCreateSequence()

Create Sequence.

Parameters

out	apSequence	A pointer to either CHAMELEON or HiCMA sequence.
-----	------------	--

Returns

void

 $Implemented \ in \ exage ostat:: linear Algebra:: tile Low Rank:: Hicmal mplementation < T>, \ and \ exage ostat:: linear Algebra:: Chameleon Implementation < T> = (Algebra:: Chameleon Implementa$

8.47.3.11 ExaGeoStatPotrfTile()

Computes the Cholesky factorization of a symmetric positive definite or Symmetric positive definite matrix.

Parameters

in	aUpperLower	Whether upper or lower part of the matrix A.
in,out	apA	Symmetric matrix A.
in	aBand	Diagonal thickness parameter.
in	apCD	Additional matrix CD.
in	apCrk	Additional matrix Crk.
in	aMaxRank	Maximum rank parameter.
in	aAcc	Accuracy parameter.

Returns

void

 $Implemented \ in \ exageostat:: linear Algebra:: diagonal Super Tile:: \ and \ exageostat:: linear Algebra:: diagonal Super Tile:: \ and \ exageostat:: linear Algebra:: dense:: Chameleon Dense < T >.$

8.47.3.12 ExaGeoStatTrsmTile()

Solves one of the matrix equations op(A)*X = alpha*B, or X*op(A) = alpha*B.

in	aSide	Specifies whether op(A) appears on the left or on the right of X.
in	aUpperLower	Specifies whether the matrix A is upper triangular or lower triangular.
in	aTrans	Specifies the form of op(A) to be used in the matrix multiplication.
in	aDiag	Specifies whether or not A is unit triangular.
in	aAlpha Specifies the scalar alpha. When alpha is zero, A is not referenced and B ne	
		not be set before entry.
in	арА	The triangular matrix A.
in	apCD	Additional matrix CD.
in	apCrk	Additional matrix Crk.
in,out	apZ	The matrix B of dimension, on exit is overwritten by the solution matrix X.
in	aMaxRank	Maximum rank parameter.

Returns

void

 $Implemented \ in \ exage ost at:: linear Algebra:: tile Low Rank:: Hicmal mplementation < T>, \ and \ exage ost at:: linear Algebra:: Chameleon Implementation < T> = (Algebra:: Chameleon Implemen$

8.47.3.13 ExaGeoStatPosvTile()

Solve a positive definite linear system of equations AX = B using tiled algorithms.

Parameters

in	aUpperLower	Specifies whether the matrix A is upper triangular or lower triangular.	
in	арА	coefficient matrix of the system of linear equations. This matrix is expected to be positive definite.	
in	арВ	Pointer to coefficient matrix of the system of linear equations. This matrix is expected to be positive definite.	

Returns

void

8.47.3.14 ExaGeoStatMLEPredictTile()

```
template<typename T >
T* exageostat::linearAlgebra::LinearAlgebraMethods< T >::ExaGeoStatMLEPredictTile (
    std::unique_ptr< ExaGeoStatData< T >> & aData,
    T * apTheta,
    const int & aZMissNumber,
    const int & aZObsNumber,
    T * apZObs,
    T * apZActual,
    T * apZMiss,
    configurations::Configurations & aConfiguration,
    exageostat::dataunits::Locations< T > & aMissLocations,
    exageostat::dataunits::Locations< T > & aObsLocations,
    const kernels::Kernel< T > & aKernel)
```

Predict missing values base on a set of given values and covariance matrix/.

Parameters

in	aData	Reference to Data containing different MLE inputs.	
in	apTheta	theta Vector with three parameter (Variance, Range, Smoothness) that is used to to	
		generate the Covariance Matrix.	
in	aZMissNumber	number of missing values (unknown observations).	
in	aZObsNumber	number of observed values (known observations).	
in	apZObs	observed values vector (known observations).	
in	apZActual	actual missing values vector (in the case of testing MSPE).	
in	apZMiss	missing values vector (unknown observations).	
in	aConfigurations	Configurations object containing relevant settings.	
in	aMissLocations	Reference to Locations object containing missed locations.	
in	aObsLocations	ObsLocations Reference to Locations object containing observed locations.	
in	aKernel	Reference to the kernel object to use.	

Returns

the prediction Mean Square Error (MSPE).

8.47.3.15 ExaGeoStatMLENonGaussianPredictTile()

Predict missing values base on a set of given values and Non-Gaussian covariance matrix/.

in	aData	Reference to Data containing different MLE inputs.	
in	apTheta	theta Vector with three parameter (Variance, Range, Smoothness) that is used to to generate the Covariance Matrix.	
in	aZMissNumber	number of missing values (unknown observations).	
in	aZObsNumber	number of observed values (known observations).	
in	apZObs	ZObs observed values vector (known observations).	
in	apZActual	actual missing values vector (in the case of testing MSPE).	
in	apZMiss	missing values vector (unknown observations).	
in	aConfigurations	Configurations object containing relevant settings.	
in	aMissLocations	Reference to Locations object containing missed locations.	
in	in aObsLocations Reference to Locations object containing observed locations.		
Generated by Doxygen in <i>aKernel</i>		Reference to the kernel object to use.	

Returns

the prediction Mean Square Error (MSPE).

8.47.3.16 ExaGeoStatLap2Desc()

Copy Lapack matrix to Descriptor Matrix.

Parameters

in	арА	Lapack Matrix.	
in	aLDA	Size.	
out	apDescA Matrix Descriptor.		
in	aUpperLower	aUpperLower Specifies Specifies whether the upper or lower triangular part of the covariance matrix is stored.	

Returns

void

8.47.3.17 ExaGeoStatDesc2Lap()

Copy Descriptor Matrix to Lapack matrix.

out	apA	Lapack Matrix.
in	in aLDA Size.	
in	n apDescA Matrix Descriptor	
in	in aUpperLower Specifies whether the upper or lower triangular part of the covariance matrix is sto	

Returns

void

8.47.3.18 ExaGeoStatLaSetTile()

Sets the values of all or part of a two-dimensional Tile.

Parameters

in	aUpperLower	Specifies Specifies whether the upper or lower triangular part of the covariance matrix is stored.	
in	aAlpha	All the off diagonal array elements are set to aAlpha.	
in	aBeta	eta All the diagonal array elements are set to aBeta.	
out	apDescriptor Pointer to matrix descriptor to be set with aAlpha and aBeta.		

Returns

void

8.47.3.19 ExaGeoStatGetZObs()

Copy the Z matrix into a pointer.

out	apZ	Pointer to an array to copy Z matrix into.
in	aSize	Size of the matrix.
in	aDescData	Descriptor data containing required Z matrix Descriptor.
in	aP	the P value of the kernel multiplied by time slot.

Returns

void

8.47.3.20 ExaGeoStatMLETileMLOEMMOM()

Predict missing values based on a set of given values and covariance matrix.

This function predicts missing values using the maximum likelihood estimation (MLE), maximum likelihood on the empirical orthogonal functions (MLOE), and method of moments (MMOM).

Parameters

in	aConfigurations	Configurations for the prediction.
in,out	aData	Data for prediction (input and output).
in	apTruthTheta	Pointer to the true theta values.
in	apEstimatedTheta	Pointer to the estimated theta values.
in	aMissLocations	Locations of missing values.
in	aObsLocations	Locations of observed values.
in	aKernel	Reference to the kernel object to use.

Returns

void

8.47.3.21 ExaGeoStatFisherTile()

Maximum Likelihood Evaluation (MLE) Fisher method.

Parameters

	in	aConfigurations	Configurations object containing relevant settings.
in, out aData Descriptor Data object to be populated with descriptors and data.		Descriptor Data object to be populated with descriptors and data.	
,		apTheta	Pointer containing three parameter (Variance, Range, Smoothness) that is used to to generate the Covariance Matrix.
	in aKernel Reference to the kernel object to use.		Reference to the kernel object to use.

Returns

Fisher Matrix

8.47.3.22 ExaGeoStatGeaddTile()

Perform a matrix addition with scaling.

This function performs a matrix addition with scaling, given the matrices A and B.

Parameters

in	aTrans	Specifies whether to transpose matrix A.
in aAlpha		Scaling factor for matrix A.
in	apDescA	Descriptor for matrix A.
in <i>aBeta</i>		Scaling factor for matrix B.
in	apDescB	Descriptor for matrix B.

Returns

void

8.47.3.23 ExaGeoStatTrmmTile()

```
const common::Diag & aDiag,
const T & alpha,
void * apDescA,
void * apDescB )
```

Perform a triangular matrix multiplication.

This function performs triangular matrix multiplication on two matrices A and B.

Parameters

in	aSide Specifies whether the multiplication is performed on the left or right si	
in	in aUpperLower Specifies whether the matrix is upper or lower triangular.	
in	in aTrans Specifies whether to transpose the matrix.	
in	in aDiag Specifies whether the diagonal elements are unitary or non-unitar	
in	in alpha Scaling factor for the multiplication.	
in	in apDescA Descriptor for matrix A.	
in	apDescB	Descriptor for matrix B.

8.47.3.24 Recover()

Recovers theta and log-likelihood from a file.

Parameters

in	apPath	A pointer to the path of the file from which to recover the data.	
in	alterationCount	The iteration count to look for in the file.	
in,out apTheta		A pointer to the array where the theta values will be stored.	
in,out	apLogLik A pointer to the variable where the log-likelihood value will be store		
in	aNumParams	The number of parameters (elements) in the theta array.	

Returns

bool true if the specified iteration count is found and successfully parsed, false otherwise.

The documentation for this class was generated from the following file:

• LinearAlgebraMethods.hpp

8.48 exageostat::generators::LocationGenerator< T > Class Template Reference

Generates spatial locations based on given parameters.

```
#include <LocationGenerator.hpp>
```

Static Public Member Functions

• static void GenerateLocations (const int &aN, const int &aTimeSlot, const common::Dimension &aDimension, dataunits::Locations< T > &aLocations)

Generates the data locations.

- static T UniformDistribution (const T &aRangeLow, const T &aRangeHigh)
 - Generate uniform distribution between rangeLow, rangeHigh.
- static void SortLocations (const int &aN, const common::Dimension &aDimension, dataunits::Locations < T > &aLocations)

Sort locations in Morton order (input points must be in [0;1]x[0;1] square]).

8.48.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::generators::LocationGenerator} < \mbox{T} > \\
```

Generates spatial locations based on given parameters.

Template Parameters

```
T Data Type: float or double
```

8.48.2 Member Function Documentation

8.48.2.1 GenerateLocations()

Generates the data locations.

This method generates the X, Y, and Z variables used to define the locations of the data points.

Parameters

	in	aN The number of data points.	
ſ	in	in aTimeSlot The time slot.	
ſ	in aDimension The dimension of the locations.		The dimension of the locations.
out aLocations Reference to the Locations object where the generated data will be		Reference to the Locations object where the generated data will be stored.	

Returns

void

8.48.2.2 UniformDistribution()

Generate uniform distribution between rangeLow, rangeHigh.

Parameters

in	aRangeLow	The Lower range.	
in	aRangeHigh	The Higher range.	

Returns

The scaled uniform distribution between the two bounds.

8.48.2.3 SortLocations()

Sort locations in Morton order (input points must be in [0;1]x[0;1] square]).

in	aN	The problem size divided by P-Grid.	
in	aDimension	Dimension of locations.	
in,out	aLocations	Locations to be sorted.	

Returns

void

The documentation for this class was generated from the following file:

LocationGenerator.hpp

8.49 exageostat::dataunits::Locations < T > Class Template Reference

A class containing methods to set and get location data.

```
#include <Locations.hpp>
```

Public Member Functions

• Locations (const int &aSize, const exageostat::common::Dimension &aDimension)

Constructor.

Locations (const Locations < T > &aLocations)=default

Default copy constructor.

∼Locations ()

destructor for Locations.

void SetLocationX (T &aLocationX, const int &aSize)

Setter for LocationX.

T * GetLocationX ()

Getter for LocationX.

void SetLocationY (T &aLocationY, const int &aSize)

Setter for LocationY.

• T * GetLocationY ()

Getter for LocationY.

void SetLocationZ (T &aLocationZ, const int &aSize)

Setter for LocationZ.

• T * GetLocationZ ()

Getter for LocationZ.

void SetSize (const int &aSize)

Setter for mSize.

• int GetSize ()

Getter for mSize.

· void SetDimension (const common::Dimension &aDimension)

Setter for Dimensions.

• common::Dimension GetDimension ()

Getter for Dimension.

Private Attributes

```
• T * mpLocationX = nullptr
```

Pointer to X data.

• T * mpLocationY = nullptr

Pointer to Y data.

• T * mpLocationZ = nullptr

Pointer to Z data.

• int mSize = 1

Size of each dimension.

• common::Dimension mDimension = common::Dimension2D

Data dimensions.

8.49.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::dataunits::Locations} < \mbox{T} > \\
```

A class containing methods to set and get location data.

Template Parameters

```
T Data Type: float or double
```

8.49.2 Constructor & Destructor Documentation

8.49.2.1 Locations() [1/2]

Constructor.

Parameters

in	aSize	The number of data points.
in	aDimension	The dimensionality of the data points.

Returns

void

8.49.2.2 Locations() [2/2]

```
\label{template} $$ template < typename T > $$ exageostat::dataunits::Locations < T > ::Locations ( $$ const Locations < T > & alocations ) [default]
```

Default copy constructor.

Parameters

```
in aLocations Locations to be copied.
```

8.49.2.3 \sim Locations()

```
template<typename T > exageostat::dataunits::Locations < T >:: \sim Locations \mbox{ ( )}
```

destructor for Locations.

8.49.3 Member Function Documentation

8.49.3.1 SetLocationX()

Setter for LocationX.

Parameters

```
in aLocationX Reference to X data.
```

Returns

void

8.49.3.2 GetLocationX()

```
\label{template} $$T* exageostat::dataunits::Locations< T >::GetLocationX ( )
```

Getter for LocationX.

Returns

Pointer to X data.

8.49.3.3 SetLocationY()

Setter for LocationY.

Parameters

```
in aLocationY Reference to Y data.
```

Returns

void

8.49.3.4 GetLocationY()

```
template<typename T >
T* exageostat::dataunits::Locations< T >::GetLocationY ( )
```

Getter for LocationY.

Returns

Pointer to Y data.

8.49.3.5 SetLocationZ()

Setter for LocationZ.

Parameters

in	aLocationZ	Reference to Z data.

Returns

void

8.49.3.6 GetLocationZ()

```
\label{template} $$ $$ $$ template < typename T > $$ $$ T* exageostat::dataunits::Locations < T >::GetLocationZ ( )
```

Getter for LocationZ.

Returns

Pointer to Z data.

8.49.3.7 SetSize()

Setter for mSize.

Parameters

Returns

void

8.49.3.8 GetSize()

```
template<typename T >
int exageostat::dataunits::Locations< T >::GetSize ( )
```

Getter for mSize.

Returns

Locations size.

8.49.3.9 SetDimension()

Setter for Dimensions.

Parameters

```
in aDimension.
```

Returns

void

8.49.3.10 GetDimension()

```
\label{template} $$ template < typename T > $$ common::Dimension exageostat::dataunits::Locations < T >::GetDimension ( )
```

Getter for Dimension.

Returns

Locations dimension.

8.49.4 Member Data Documentation

8.49.4.1 mpLocationX

```
template<typename T >
T* exageostat::dataunits::Locations< T >::mpLocationX = nullptr [private]
```

Pointer to X data.

8.49.4.2 mpLocationY

```
template<typename T >
T* exageostat::dataunits::Locations< T >::mpLocationY = nullptr [private]
```

Pointer to Y data.

8.49.4.3 mpLocationZ

```
template<typename T >
T* exageostat::dataunits::Locations< T >::mpLocationZ = nullptr [private]
```

Pointer to Z data.

8.49.4.4 mSize

```
template<typename T >
int exageostat::dataunits::Locations< T >::mSize = 1 [private]
```

Size of each dimension.

8.49.4.5 mDimension

```
template<typename T >
common::Dimension exageostat::dataunits::Locations< T >::mDimension = common::Dimension2D
[private]
```

Data dimensions.

The documentation for this class was generated from the following file:

· Locations.hpp

8.50 exageostat::dataunits::mModelingData< T > Struct Template Reference

Struct containing all the data needed for modeling.

```
#include <ModelingDataHolders.hpp>
```

Public Member Functions

mModelingData (std::unique_ptr< ExaGeoStatData< T >> &aData, configurations::Configurations &a←
 Configuration, T &aMatrix, const kernels::Kernel< T > &aKernel)

Constructor.

Public Attributes

std::unique_ptr< ExaGeoStatData< T >> * mpData

ExaGeoStatData<T> object containing needed descriptors, and locations.

• configurations::Configurations * mpConfiguration

Configurations object containing user input data.

const kernels::Kernel < T > * mpKernel

Used Kernel for ExaGeoStat Modeling Data.

• T * mpMeasurementsMatrix

User Input Measurements Matrix.

8.50.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{struct exageostat::dataunits::mModelingData} < \mbox{T} > \\ \mbox{}
```

Struct containing all the data needed for modeling.

Template Parameters

```
T The data type of the data.
```

8.50.2 Constructor & Destructor Documentation

8.50.2.1 mModelingData()

Constructor.

Parameters

aData	The ExaGeoStatData object.
aConfiguration	The Configurations object.
aKernel	The Kernel object.

8.50.3 Member Data Documentation

8.50.3.1 mpData

```
\label{template} $$ $$ template < typename T > $$ std::unique_ptr < ExaGeoStatData < T > ::mpData < T > ::mpD
```

ExaGeoStatData<T> object containing needed descriptors, and locations.

8.50.3.2 mpConfiguration

```
template<typename T >
configurations::Configurations* exageostat::dataunits::mModelingData< T >::mpConfiguration
```

Configurations object containing user input data.

8.50.3.3 mpKernel

```
template<typename T >
const kernels::Kernel<T>* exageostat::dataunits::mModelingData< T >::mpKernel
```

Used Kernel for ExaGeoStat Modeling Data.

8.50.3.4 mpMeasurementsMatrix

```
template<typename T >
T* exageostat::dataunits::mModelingData< T >::mpMeasurementsMatrix
```

User Input Measurements Matrix.

The documentation for this struct was generated from the following file:

• ModelingDataHolders.hpp

8.51 exageostat::runtime::NonGaussianLoglike< T > Class Template Reference

A class for starpu codelet non gaussian loglike.

```
#include <non-gaussian-loglike-codelet.hpp>
```

Public Member Functions

• NonGaussianLoglike ()=default

Constructor for NonGaussianLoglike.

 $\bullet \ \sim \! \mathsf{NonGaussianLoglike} \ () \! = \! \mathsf{default}$

Default destructor.

void InsertTask (void *apDescZ, void *apDescSum, const T *apTheta, std::unique_ptr< StarPuHelpers >
 &aStarPuHelper)

Inserts a task for Non-Gaussian log-likelihood codelet processing.

Static Private Member Functions

- static void cl_non_gaussian_loglike_function (void **apBuffers, void *apCodeletArguments)
 Executes the Non-Gaussian log-likelihood codelet function.
- static double core_non_gaussian_loglike_helper (const T *apDescriptorZ, const T *apLocalTheta, const int &aSize)

Helper function for calculating the log-likelihood under a non-Gaussian distribution.

Static Private Attributes

 static struct starpu_codelet cl_non_gaussian_loglike starpu_codelet struct

8.51.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename T > \\ class exageostat::runtime::NonGaussianLoglike < T > \\ \end{tabular}
```

A class for starpu codelet non gaussian loglike.

Template Parameters

```
T Data Type: float or double
```

This class encapsulates the struct cl_non_gaussian_loglike and its CPU functions.

8.51.2 Constructor & Destructor Documentation

8.51.2.1 NonGaussianLoglike()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::NonGaussianLoglike < T >::NonGaussianLoglike ( ) $$ [default] $$ $$
```

 $Constructor\ for\ NonGaussian Log like.$

8.51.2.2 ~NonGaussianLoglike()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::NonGaussianLoglike < T >:: \sim NonGaussianLoglike ( ) [default]
```

Default destructor.

8.51.3 Member Function Documentation

8.51.3.1 InsertTask()

Inserts a task for Non-Gaussian log-likelihood codelet processing.

Parameters

in	apDescZ	A pointer to the descriptor for the dataset.
in,out	apDescSum	A pointer to the descriptor for the sum.
in	apTheta	A pointer to the transformation parameters.
in	aStarPuHelpers	A reference to a unique pointer of StarPuHelpers, used for accessing and
		managing data.

Returns

void

8.51.3.2 cl_non_gaussian_loglike_function()

Executes the Non-Gaussian log-likelihood codelet function.

Parameters

in	apBuffers	An array of pointers to the buffers.
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the dataset size, offset, and the transformation parameters.

Returns

void

8.51.3.3 core_non_gaussian_loglike_helper()

Helper function for calculating the log-likelihood under a non-Gaussian distribution.

Parameters

in	apDescriptorZ	A pointer to the dataset.
in	apLocalTheta	A pointer to the transformation parameters.
in	aSize	The size of the dataset.

Returns

T The calculated log-likelihood of the dataset under a non-Gaussian distribution.

8.51.4 Member Data Documentation

8.51.4.1 cl_non_gaussian_loglike

```
template<typename T >
struct starpu_codelet exageostat::runtime::NonGaussianLoglike< T >::cl_non_gaussian_loglike
[static], [private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

• non-gaussian-loglike-codelet.hpp

8.52 exageostat::runtime::NonGaussianTransform< T> Class Template Reference

A class for starpu codelet non gaussian transform.

#include <non-gaussian-transform-codelet.hpp>

Public Member Functions

• NonGaussianTransform ()=default

Default constructor.

∼NonGaussianTransform ()=default

Default destructor.

void InsertTask (void *apDescZ, const T *apTheta, std::unique_ptr< StarPuHelpers > &apStarPuHelpers)
 Inserts a task for Non-Gaussian transformation codelet processing.

Static Private Member Functions

- static void cl_non_gaussian_transform_function (void **apBuffers, void *apCodeletArguments)
 Executes the Non-Gaussian transformation codelet function.
- static void core_non_gaussian_transform_helper (T *apDescripZ, const T *apLocalTheta, const int &aSize)
 Helper function for transforming a dataset to a non-Gaussian representation. It applies the Non-Gaussian transformation to each element of a dataset using the Newton-Raphson method for finding the root of a function.

Implements the Newton-Raphson method for finding the root of a function.

Calculates the Non-Gaussian transformation of a value.

• static double tukeyGHDiferencial (T aCurrentValue, T aTransScale, T aTransShape, T aTransKurtosis)

Calculates the derivative of the Non-Gaussian transformation.

Static Private Attributes

 static struct starpu_codelet cl_non_gaussian_transform starpu_codelet struct

8.52.1 Detailed Description

template < typename T > class exageostat::runtime::NonGaussianTransform < T >

A class for starpu codelet non gaussian transform.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_non_gaussian_transform and its CPU functions.

8.52.2 Constructor & Destructor Documentation

8.52.2.1 NonGaussianTransform()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::NonGaussianTransform ( ) [default]
```

Default constructor.

8.52.2.2 \sim NonGaussianTransform()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::NonGaussianTransform ( ) [default]
```

Default destructor.

8.52.3 Member Function Documentation

8.52.3.1 InsertTask()

Inserts a task for Non-Gaussian transformation codelet processing.

Parameters

in,out	apDescZ	A pointer to the descriptor for the dataset.
in	apTheta	A pointer to the transformation parameters.
in	apStarPuHelpers	A reference to a unique pointer of StarPuHelpers, used for accessing and managing data.

Returns

void

8.52.3.2 cl_non_gaussian_transform_function()

```
template<typename T >
static void exageostat::runtime::NonGaussianTransform< T >::cl_non_gaussian_transform_function
```

```
void ** apBuffers,
void * apCodeletArguments ) [static], [private]
```

Executes the Non-Gaussian transformation codelet function.

Parameters

in a	apBuffers	An array of pointers to the buffers.
in á	apCodeletArguments	A pointer to the codelet arguments structure, which includes the dataset size, offset, and the transformation parameters.

Returns

void

8.52.3.3 core_non_gaussian_transform_helper()

Helper function for transforming a dataset to a non-Gaussian representation. It applies the Non-Gaussian transformation to each element of a dataset using the Newton-Raphson method for finding the root of a function.

Parameters

in,out	apDescripZ	A pointer to the dataset to be transformed.
in	apLocalTheta	A pointer to the transformation parameters.
in	aSize	The size of the dataset.

Returns

void

8.52.3.4 newton_raphson()

```
T aTransKurtosis,
T aEpsilon ) [static], [private]
```

Implements the Newton-Raphson method for finding the root of a function.

Parameters

in	apDescriptorZ	The initial guess for the root.
in	aTransLocation	The location parameter of the transformation.
in	aTransScale	The scale parameter of the transformation.
in	aTransShape	The shape parameter of the transformation.
in	aTransKurtosis	The kurtosis parameter of the transformation.
in	aEpsilon	The error threshold for the root-finding process.

Returns

T The calculated root of the function.

8.52.3.5 tukeyGHTransfor()

Calculates the Non-Gaussian transformation of a value.

Parameters

in	aOriginalValue	The original value to be transformed.
in	aCurrentValue	The current value of the transformation variable.
in	aTransLocation	The location parameter of the transformation.
in	aTransScale	The scale parameter of the transformation.
in	aTransShape	The shape parameter of the transformation.
in	aTransKurtosis	The kurtosis parameter of the transformation.

Returns

T The transformed value.

8.52.3.6 tukeyGHDiferencial()

```
T aTransScale,
T aTransShape,
T aTransKurtosis ) [static], [private]
```

Calculates the derivative of the Non-Gaussian transformation.

Parameters

in	aCurrentValue	The current value of the transformation variable.
in	aTransScale	The scale parameter of the transformation.
in	aTransShape	The shape parameter of the transformation.
in	aTransKurtosis	The kurtosis parameter of the transformation.

Returns

T The derivative of the transformation at the given value.

8.52.4 Member Data Documentation

8.52.4.1 cl_non_gaussian_transform

```
template<typename T >
struct starpu_codelet exageostat::runtime::NonGaussianTransform< T >::cl_non_gaussian_transform
[static], [private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

· non-gaussian-transform-codelet.hpp

8.53 exageostat::plugins::PluginRegistry< T > Class Template Reference

Template class for registering and creating plugins.

```
#include <PluginRegistry.hpp>
```

Public Types

- typedef std::function < T *()> FactoryFunction
 Function type that returns a pointer to an instance of T.
- typedef std::unordered_map< std::string, FactoryFunction > FactoryMap
 Unordered map that maps plugin names to their corresponding factory functions.

Static Public Member Functions

- static bool Add (const std::string &name, FactoryFunction fac)
 - Adds a factory function to the FactoryMap under the given plugin name.
- static T * Create (const std::string &aName, const int &aTimeSlot)

Creates an instance of the plugin with the given name.

Static Private Member Functions

static FactoryMap & GetFactoryMap ()
 Returns a reference to the FactoryMap singleton.

8.53.1 Detailed Description

```
template<typename T> class exageostat::plugins::PluginRegistry< T>
```

Template class for registering and creating plugins.

Template Parameters

T Data Type: float or double

8.53.2 Member Typedef Documentation

8.53.2.1 FactoryFunction

```
\label{template} $$ template < typename T > $$ typedef std::function < T *() > exageostat::plugins::PluginRegistry < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFunction < T >::FactoryFuncti
```

Function type that returns a pointer to an instance of T.

8.53.2.2 FactoryMap

```
template<typename T >
typedef std::unordered_map<std::string, FactoryFunction> exageostat::plugins::PluginRegistry<
T >::FactoryMap
```

Unordered map that maps plugin names to their corresponding factory functions.

8.53.3 Member Function Documentation

8.53.3.1 Add()

Adds a factory function to the FactoryMap under the given plugin name.

Parameters

in	name	The name of the plugin to be added.
in	fac	The factory function to be added.

Returns

true if the factory function was successfully added, false otherwise.

8.53.3.2 Create()

Creates an instance of the plugin with the given name.

Parameters

	in	name	The name of the plugin to be created.	
--	----	------	---------------------------------------	--

Returns

A pointer to the created plugin, or nullptr if the plugin could not be created.

8.53.3.3 GetFactoryMap()

```
template<typename T >
static FactoryMap& exageostat::plugins::PluginRegistry< T >::GetFactoryMap ( ) [inline],
[static], [private]
```

Returns a reference to the FactoryMap singleton.

Returns

A reference to the FactoryMap singleton.

The documentation for this class was generated from the following file:

PluginRegistry.hpp

8.54 exageostat::prediction::Prediction< T > Class Template Reference

Class to handle different Prediction Module calls.

#include <Prediction.hpp>

Static Public Member Functions

static void PredictMissingData (std::unique_ptr< ExaGeoStatData< T>> &aData, configurations::Configurations &aConfigurations, T *apMeasurementsMatrix, const kernels::Kernel< T> &aKernel, dataunits::Locations
 T> *apTrainLocations=nullptr, dataunits::Locations< T> *apTestLocations=nullptr)

Takes care of calling the MSPE function, and the appropriate auxiliary function.

static void InitializePredictionArguments (configurations::Configurations &aConfigurations, std::unique_ptr<
 ExaGeoStatData< T >> &aData, std::unique_ptr< exageostat::linearAlgebra::LinearAlgebraMethods< T
 >> &aLinearAlgebraSolver, T *apZObs, T *apZActual, exageostat::dataunits::Locations< T > &aMiss
 Location, exageostat::dataunits::Locations< T > &aObsLocation, T *apMeasurementsMatrix, const int &aP, dataunits::Locations< T > *apTrainLocations, dataunits::Locations< T > *apTestLocations)

Initializes needed pointers for prediction.

8.54.1 Detailed Description

template < typename T > class exageostat::prediction::Prediction < T >

Class to handle different Prediction Module calls.

@Class Prediction

Template Parameters

T Data Type: float or double.

8.54.2 Member Function Documentation

8.54.2.1 PredictMissingData()

```
template<typename T >
static void exageostat::prediction::Prediction< T >::PredictMissingData (
    std::unique_ptr< ExaGeoStatData< T >> & aData,
    configurations::Configurations & aConfigurations,
    T * apMeasurementsMatrix,
    const kernels::Kernel< T > & aKernel,
    dataunits::Locations< T > * apTrainLocations = nullptr,
    dataunits::Locations< T > * apTestLocations = nullptr ) [static]
```

Takes care of calling the MSPE function, and the appropriate auxiliary function.

Parameters

in,out	aData	Reference to an ExaGeoStatData <t> object containing needed descriptors, and locations.</t>
in	aConfigurations	Reference to Configurations object containing user input data.
in	apMeasurementsMatrix	Pointer to the user input measurements matrix.
in	aKernel	Reference to the kernel object to use.
in	apTrainLocations	(Optional) Pointer to Locations representing training locations. these are used in training phase.
in	apTestLocations	(Optional) Pointer to Locations representing test locations. These are used in prediction phase.

Returns

void

8.54.2.2 InitializePredictionArguments()

Initializes needed pointers for prediction.

Parameters

in aconfigurations Reference to Configurations object containing user input data.	in aConfigurations	Reference to Configurations object containing user input data.
---	--------------------	--

Parameters

in,out	aData	Reference to an ExaGeoStatData <t> object containing needed descriptors, and locations.</t>
in	aLinearAlgebraSolver	linear algebra solver depending on implementation.
out	apZObs	Pointer to be filled with observation measurements
out	apZActual	Pointer to be filled with actual measurements
out	aMissLocation	Location object to be filled with missed locations.
out	aObsLocation	Location object to be filled with missed locations.
in	apMeasurementsMatrix	Pointer to the user input measurements matrix.
in	аP	the P value of the kernel multiplied by time slot.
in	apTrainLocations	(Optional) Pointer to Locations representing training locations. these are used in training phase.
in	apTestLocations	(Optional) Pointer to Locations representing test locations. These are used in prediction phase.

Returns

void

The documentation for this class was generated from the following file:

· Prediction.hpp

8.55 exageostat::prediction::PredictionAuxiliaryFunctions < T > Class Template Reference

Class to define and implement different Prediction Module Auxiliary Functions.

#include <PredictionAuxiliaryFunctions.hpp>

Static Public Member Functions

static void PredictIDW (T *apZMiss, T *apZActual, T *apZObs, const int &aZMissNumber, const int &a
 ZObsNumber, exageostat::dataunits::Locations < T > &aMissLocation, exageostat::dataunits::Locations < T
 > &aObsLocation, T *apMSPE)

implements the Inverse Distance Weighting (IDW) interpolation method for predicting missing values based on available observed values.

8.55.1 Detailed Description

 $\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::prediction::PredictionAuxiliaryFunctions} < \mbox{T} > \\ \mbox{typename T} > \\ \mbox{typename$

Class to define and implement different Prediction Module Auxiliary Functions.

@Class PredictionAuxiliaryFunctions

Template Parameters

```
T Data Type: float or double.
```

8.55.2 Member Function Documentation

8.55.2.1 PredictIDW()

```
template<typename T >
static void exageostat::prediction::PredictionAuxiliaryFunctions< T >::PredictIDW (
    T * apZMiss,
    T * apZActual,
    T * apZObs,
    const int & aZMissNumber,
    const int & aZObsNumber,
    exageostat::dataunits::Locations< T > & aMissLocation,
    exageostat::dataunits::Locations< T > & aObsLocation,
    T * apMSPE ) [static]
```

implements the Inverse Distance Weighting (IDW) interpolation method for predicting missing values based on available observed values.

Parameters

in	apZMiss	Pointer to the missed measurements.
in	apZActual	Pointer to the actual measurements.
in	apZObs	Pointer to the observed measurements.
in	aZMissNumber	Number of missed measurements.
in	aZObsNumber	Number of observed measurements.
in	aMissLocation	Reference to the missed locations.
in	aObsLocation	Reference to the observed locations.
out	apMSPE	Pointer to be filled with MSPE value.

Returns

T Array provides insight into the accuracy of the IDW-interpolated predictions for missing values

The documentation for this class was generated from the following file:

PredictionAuxiliaryFunctions.hpp

8.56 exageostat::prediction::PredictionHelpers< T> Class Template Reference

Class to define and implement different Prediction Module helpers functions.

```
#include <PredictionHelpers.hpp>
```

Static Public Member Functions

static void PickRandomPoints (configurations::Configurations &aConfigurations, std::unique_ptr
 ExaGeoStatData< T >> &aData, T *apZObs, T *apZActual, T *apZ, exageostat::dataunits::Locations< T > &aMissLocation, exageostat::dataunits::Locations< T > &aObsLocation, const int &aP)

Pick random Z points for prediction depending on p.

- static void Shuffle (T *apArray, exageostat::dataunits::Locations < T > &aLocations, int aSize)
 Shuffle array.
- static void Shuffle (T *apArray1, T *apArray2, exageostat::dataunits::Locations < T > &aLocations, int aSize)
 Shuffle array.
- static void Shuffle (T *apArray1, T *apArray2, T *apArray3, exageostat::dataunits::Locations < T > &a←
 Locations, int aSize)

Shuffle array.

static void SortArray (uint32 t *aData, int aCount)

Sorts the input data using the C++, the pre-defined standard library function sort().

static int SortInplace (int aN, exageostat::dataunits::Locations < T > &aLocations, T *apZ)

Sorts location data and corresponding observation values in-place based on Locations coordinates.

8.56.1 Detailed Description

```
template < typename T > class exageostat::prediction::PredictionHelpers < T >
```

Class to define and implement different Prediction Module helpers functions.

@Class PredictionHelpers

Template Parameters

```
T Data Type: float or double.
```

8.56.2 Member Function Documentation

8.56.2.1 PickRandomPoints()

Pick random Z points for prediction depending on p.

Parameters

in	aConfigurations	Configurations object containing relevant settings.	
in,out	aData Reference ExaGeoStatData object populated with locations and descriptor dat		
out	apZObs	Pointer to be filled with observed measurements.	
out	apZActual	Pointer to be filled with actual measurements.	
in	apZ	Pointer to a copy of the measurements matrix.	
out	aMissLocation	Location object to be filled with missed locations.	
out	aObsLocation	Location object to be filled with missed locations.	
in	aP	the P value of the kernel multiplied by time slot.	

Returns

void

8.56.2.2 Shuffle() [1/3]

Shuffle array.

Parameters

in,out	apArray	Array to be shuffled.
in,out	aLocations	Locations to be shuffled.
out	aSize	Size of data.

Returns

void

8.56.2.3 Shuffle() [2/3]

Shuffle array.

Parameters

in,out	apArray1	First Array to be shuffled.
in,out	apArray2	Second Array to be shuffled.
in,out	aLocations	Locations to be shuffled.
out	aSize	Size of data.

Returns

void

8.56.2.4 Shuffle() [3/3]

Shuffle array.

Parameters

in,out	apArray1	First Array to be shuffled.
in,out	apArray2	Second Array to be shuffled.
in,out	apArray3	Third Array to be shuffled.
in,out	aLocations	Locations to be shuffled.
out	aSize	Size of data.

Returns

void

8.56.2.5 SortArray()

Sorts the input data using the C++, the pre-defined standard library function sort().

Parameters

aData[in]	Pointer to the array of data to be sorted.
aCount[in]	Number of elements in the input array.
aDimension[in]	Dimension of the input data.

Returns

void

8.56.2.6 SortInplace()

Sorts location data and corresponding observation values in-place based on Locations coordinates.

Parameters

	in	aN	Number of data points (input).
ſ	in,out	aLocations	Reference to the Locations object containing X and Y coordinates (input/output).
Ī	in,out	apZ	Pointer to the array containing observation values (input/output).

Returns

0 if the sorting is successful.

The documentation for this class was generated from the following file:

· PredictionHelpers.hpp

8.57 exageostat::results::Results Class Reference

```
#include <Results.hpp>
```

Public Member Functions

• void SetIsSynthetic (bool alsSynthetic)

Set the flag indicating whether the results are synthetic or not.

void SetGeneratedLocationsNumber (int aNumLocations)

Set the number of generated locations.

void SetIsLogger (bool alsLogger)

Set the flag indicating whether the logger is active or not.

void SetLoggerPath (const std::string &aLoggerPath)

Set the path for the logger.

void SetTotalDataGenerationExecutionTime (double aTime)

Set the Total Data Generation execution time.

void SetTotalDataGenerationFlops (double aFlops)

Set the Data Generation floating-point operations (FLOPs).

void SetLogLikValue (double aLogLikValue)

Set the log-likelihood value.

void SetMLEIterations (int alterationsNumber)

Set the number of maximum likelihood estimation (MLE) iterations.

void SetMaximumTheta (const std::vector< double > &aMaximumTheta)

Set the vector of maximum theta values.

void SetTotalModelingExecutionTime (double aTime)

Set the total modeling execution time.

double GetTotalModelingExecutionTime () const

Get the total modeling execution time.

• double GetMLOE () const

Get the MLOE.

• double GetMSPEError () const

Get the MSPEError.

std::vector< double > GetIDWError () const

Get the IDW error.

double GetMMOM () const

Get the MMOM.

std::vector< double > GetFisherMatrix () const

Get the Fisher matrix elements.

• std::vector< double > GetPredictedMissedValues () const

Get the Predicted Missed Z matrix elements.

void SetTotalModelingFlops (double aTime)

Set the total modeling FLOPs.

double GetTotalModelingFlops () const

Get the total modeling FLOPs.

• double GetAverageModelingExecutionTime () const

Get the average modeling execution time.

double GetAverageModelingFlops () const

Get the average modeling FLOPs.

void SetZMiss (int aZMiss)

Set the value of ZMiss.

• void SetMSPEError (double aMSPEError)

Set the value of MSPEError.

void SetMSPEExecutionTime (double aTime)

Set the MSPE execution time.

void SetMSPEFlops (double aFlops)

Set the MSPE number of floating-point operations (FLOPs).

void SetIDWError (const std::vector< double > &aIDWError)

Set the vector of IDW errors.

void SetMLOE (double aMLOE)

Set the value of MLOE.

• void SetMMOM (double aMMOM)

Set the value of MMOM.

void SetExecutionTimeMLOEMMOM (double aTime)

Set the MLOE-MMOM execution time.

void SetMatrixGenerationTimeMLOEMMOM (double aTime)

Set the MLOE-MMOM matrix generation time.

void SetFactoTimeMLOEMMOM (double aTime)

Set the MLOE-MMOM cholesky factorization time.

void SetLoopTimeMLOEMMOM (double aTime)

Set the MLOE-MMOM loop time.

void SetFlopsMLOEMMOM (double aFlops)

Set the MLOE-MMOM number of floating-point operations (FLOPs).

void SetTotalFisherTime (double aTime)

Set The total execution time of the fisher tile computation.

void SetFisherMatrix (std::vector< double > aFisherMatrix)

Set the elements of the fisher matrix.

void SetPredictedMissedValues (std::vector< double > aPredictedValues)

Set the elements of the Z missed matrix.

void PrintEndSummary ()

Print the end summary of the results.

Static Public Member Functions

• static Results * GetInstance ()

Get a pointer to the singleton instance of the Results class.

Private Attributes

• bool mlsSynthetic = true

Used is synthetic.

• int mGeneratedLocationsNumber = 0

Used number of generated locations.

• bool mlsLogger = false

Used is logger.

std::string mLoggerPath

Used logger path.

• double mExecutionTimeDataGeneration = 0

Used Data Generation Execution time.

• double mFlopsDataGeneration = 0

Used Data Generation flops.

• int mMLEIterations = 0

Used MLE number of iterations.

std::vector< double > mMaximumTheta

Used MAX theta.

• double mLogLikValue = 0

Used log likelihood value.

• int mZMiss = 0

Used number of Z missed values.

• double mMSPEError = 0

Used MSPE error.

double mExecutionTimeMSPE

Used Execution time.

• double mFlopsMSPE

Used flops.

std::vector< double > mIDWError

Used IDW error.

• double mMLOE = 0

Used MLOE.

• double mMMOM = 0

USED MMOM.

• double mExecutionTimeMLOEMMOM = 0

Used MLOE-MMOM Execution time.

• double mGenerationTimeMLOEMMOM = 0

Used MLOE-MMOM Matrix Generation time.

double mFactoTimeMLOEMMOM = 0

Used MLOE-MMOM cholesky factorization time.

double mLoopTimeMLOEMMOM = 0

Used MLOE-MMOM loop time.

• double mFlopsMLOEMMOM = 0

Used MLOE-MMOM flops.

double mTotalModelingExecutionTime = 0

Used Data Modeling Execution time.

double mTotalModelingFlops = 0

Used Data Modeling Number of Flops.

• double mTotalFisherTime = 0

Used Total Fisher Time.

• std::vector< double > mFisherMatrix

Fisher matrix.

• std::vector< double > mPredictedMissedValues

Z miss values.

Static Private Attributes

static Results * mpInstance

Pointer to the singleton instance of the SyntheticGenerator class.

8.57.1 Member Function Documentation

8.57.1.1 GetInstance()

```
static Results* exageostat::results::Results::GetInstance ( ) [static]
```

Get a pointer to the singleton instance of the Results class.

Returns

A pointer to the instance of the Results class.

8.57.1.2 SetIsSynthetic()

Set the flag indicating whether the results are synthetic or not.

Parameters

in	alsSynthetic	True if the results are synthetic, false otherwise.
----	--------------	---

8.57.1.3 SetGeneratedLocationsNumber()

```
\begin{tabular}{ll} void exageostat::results::SetGeneratedLocationsNumber ( \\ int aNumLocations ) \end{tabular}
```

Set the number of generated locations.

Parameters

	in	aNumLocations	The number of generated locations.	
--	----	---------------	------------------------------------	--

8.57.1.4 SetIsLogger()

Set the flag indicating whether the logger is active or not.

Parameters

in	alsLogger	True if the logger is active, false otherwise.
----	-----------	--

8.57.1.5 SetLoggerPath()

Set the path for the logger.

Parameters

8.57.1.6 SetTotalDataGenerationExecutionTime()

```
void exageostat::results::SetTotalDataGenerationExecutionTime ( double aTime )
```

Set the Total Data Generation execution time.

Parameters

in <i>aTime</i> The ex	ecution time.
------------------------	---------------

8.57.1.7 SetTotalDataGenerationFlops()

```
void exageostat::results::Results::SetTotalDataGenerationFlops ( double aFlops )
```

Set the Data Generation floating-point operations (FLOPs).

Parameters

in	aFlops	The number of FLOPs.	

8.57.1.8 SetLogLikValue()

Set the log-likelihood value.

Parameters

in	al ogl ikValue	The log-likelihood value.
T11	aLogLik value	The log-likelihood value.

8.57.1.9 SetMLEIterations()

```
\begin{tabular}{ll} \begin{tabular}{ll} void exageostat::results::Results::SetMLEIterations ( \\ & int $aIterationsNumber \end{tabular} ) \end{tabular}
```

Set the number of maximum likelihood estimation (MLE) iterations.

Parameters

in	alterationsNumber	The number of MLE iterations.
----	-------------------	-------------------------------

8.57.1.10 SetMaximumTheta()

Set the vector of maximum theta values.

Parameters

in	aMaximumTheta	The vector of maximum theta values.
----	---------------	-------------------------------------

8.57.1.11 SetTotalModelingExecutionTime()

Set the total modeling execution time.

Parameters

in aTime	The total execution time for data modeling.
----------	---

8.57.1.12 GetTotalModelingExecutionTime()

 $\verb|double exageostat::results::Results::GetTotalModelingExecutionTime () | const|$

Get the total modeling execution time.

Returns

The total execution time for data modeling.

8.57.1.13 GetMLOE()

The MLOE.

double exageostat::results::Results::GetMLOE () const
Get the MLOE.
Returns

8.57.1.14 GetMSPEError()

double exageostat::results::Results::GetMSPEError () const

Get the MSPEError.

Returns

The MSPEError.

8.57.1.15 GetIDWError()

std::vector<double> exageostat::results::Results::GetIDWError () const

Get the IDW error.

Returns

The the IDW error vector.

8.57.1.16 GetMMOM()

 $\verb|double exageostat::results::Results::GetMMOM () const|\\$

Get the MMOM.

Returns

The MMOM.

8.57.1.17 GetFisherMatrix()

```
std::vector<double> exageostat::results::Results::GetFisherMatrix ( ) const
```

Get the Fisher matrix elements.

Returns

the Fisher matrix.

8.57.1.18 GetPredictedMissedValues()

```
std::vector<double> exageostat::results::Results::GetPredictedMissedValues ( ) const
```

Get the Predicted Missed Z matrix elements.

Returns

the Z Predicted matrix.

8.57.1.19 SetTotalModelingFlops()

```
void exageostat::results::Results::SetTotalModelingFlops ( double aTime )
```

Set the total modeling FLOPs.

Parameters

in	aTime	The total number of FLOPs for data modeling.
----	-------	--

8.57.1.20 GetTotalModelingFlops()

double exageostat::results::Results::GetTotalModelingFlops () const

Get the total modeling FLOPs.

Returns

The total number of FLOPs for data modeling.

8.57.1.21 GetAverageModelingExecutionTime()

 $\verb|double exageostat::results::Results::GetAverageModelingExecutionTime () const|\\$

Get the average modeling execution time.

Returns

The average execution time for data modeling.

8.57.1.22 GetAverageModelingFlops()

double exageostat::results::Results::GetAverageModelingFlops () const

Get the average modeling FLOPs.

Returns

The average number of FLOPs for data modeling.

8.57.1.23 SetZMiss()

Set the value of ZMiss.

Parameters

in <i>aZMiss</i>	The value of ZMiss.
------------------	---------------------

8.57.1.24 SetMSPEError()

Set the value of MSPEError.

Parameters

in	aMSPEError	The value of MSPEError.
----	------------	-------------------------

8.57.1.25 SetMSPEExecutionTime()

Set the MSPE execution time.

Parameters

in aTime The execution time	ıe.
-----------------------------	-----

8.57.1.26 SetMSPEFlops()

```
void exageostat::results::Results::SetMSPEFlops ( double aFlops )
```

Set the MSPE number of floating-point operations (FLOPs).

Parameters

in	aFlops	The number of FLOPs.	
	ai iopo	1110 110111001 01 1 201 01	

8.57.1.27 SetIDWError()

Set the vector of IDW errors.

Parameters

```
in alDWError The vector of IDW errors.
```

8.57.1.28 SetMLOE()

Set the value of MLOE.

Parameters

in aMLOE The value of MLOE.	in
---------------------------------	----

8.57.1.29 SetMMOM()

Set the value of MMOM.

Parameters

in
in

8.57.1.30 SetExecutionTimeMLOEMMOM()

Set the MLOE-MMOM execution time.

Parameters

in a	Time	The execution time.
------	------	---------------------

8.57.1.31 SetMatrixGenerationTimeMLOEMMOM()

```
void exageostat::results::SetMatrixGenerationTimeMLOEMMOM ( double aTime )
```

Set the MLOE-MMOM matrix generation time.

Parameters

in aTime	The execution time.
-----------------	---------------------

8.57.1.32 SetFactoTimeMLOEMMOM()

Set the MLOE-MMOM cholesky factorization time.

Parameters

in	aTime	The execution time.
----	-------	---------------------

8.57.1.33 SetLoopTimeMLOEMMOM()

Set the MLOE-MMOM loop time.

Parameters

in <i>aTime</i>	The execution time.
-----------------	---------------------

8.57.1.34 SetFlopsMLOEMMOM()

```
void exageostat::results::Results::SetFlopsMLOEMMOM ( \label{eq:condition} \mbox{double $aFlops$ )}
```

Set the MLOE-MMOM number of floating-point operations (FLOPs).

Parameters

in	aFlops	The number of FLOPs.

8.57.1.35 SetTotalFisherTime()

Set The total execution time of the fisher tile computation.

Parameters

in	aTime	The total execution time for fisher tile computation.
----	-------	---

8.57.1.36 SetFisherMatrix()

Set the elements of the fisher matrix.

Parameters

aFisherMatrix | Elements of the fisher matrix.

8.57.1.37 SetPredictedMissedValues()

```
\label{lem:condition} \begin{tabular}{ll} void exageostat::results::Results::SetPredictedMissedValues ( \\ std::vector< double > aPredictedValues ) \end{tabular}
```

Set the elements of the Z missed matrix.

Parameters

aPredictedValues | Elements of the Predicted Z missed matrix.

8.57.1.38 PrintEndSummary()

```
void exageostat::results::Results::PrintEndSummary ( )
```

Print the end summary of the results.

8.57.2 Member Data Documentation

8.57.2.1 mpInstance

```
Results* exageostat::results::Results::mpInstance [static], [private]
```

Pointer to the singleton instance of the SyntheticGenerator class.

8.57.2.2 mlsSynthetic

bool exageostat::results::Results::mIsSynthetic = true [private]

Used is synthetic.

8.57.2.3 mGeneratedLocationsNumber

```
int exageostat::results::mGeneratedLocationsNumber = 0 [private]
```

Used number of generated locations.

8.57.2.4 mlsLogger

```
bool exageostat::results::Results::mIsLogger = false [private]
```

Used is logger.

8.57.2.5 mLoggerPath

std::string exageostat::results::Results::mLoggerPath [private]

Used logger path.

8.57.2.6 mExecutionTimeDataGeneration

```
double exageostat::results::Results::mExecutionTimeDataGeneration = 0 [private]
```

Used Data Generation Execution time.

8.57.2.7 mFlopsDataGeneration

double exageostat::results::Results::mFlopsDataGeneration = 0 [private]

Used Data Generation flops.

8.57.2.8 mMLEIterations

int exageostat::results::mMLEIterations = 0 [private]

Used MLE number of iterations.

8.57.2.9 mMaximumTheta

std::vector<double> exageostat::results::Results::mMaximumTheta [private]

Used MAX theta.

8.57.2.10 mLogLikValue

double exageostat::results::Results::mLogLikValue = 0 [private]

Used log likelihood value.

8.57.2.11 mZMiss

int exageostat::results::Results::mZMiss = 0 [private]

Used number of Z missed values.

8.57.2.12 mMSPEError

double exageostat::results::Results::mMSPEError = 0 [private]

Used MSPE error.

8.57.2.13 mExecutionTimeMSPE

double exageostat::results::Results::mExecutionTimeMSPE [private]

Used Execution time.

8.57.2.14 mFlopsMSPE

double exageostat::results::Results::mFlopsMSPE [private]

Used flops.

8.57.2.15 mIDWError

std::vector<double> exageostat::results::Results::mIDWError [private]

Used IDW error.

8.57.2.16 mMLOE

double exageostat::results::Results::mMLOE = 0 [private]

Used MLOE.

8.57.2.17 mMMOM

double exageostat::results::Results::mMMOM = 0 [private]

USED MMOM.

8.57.2.18 mExecutionTimeMLOEMMOM

double exageostat::results::Results::mExecutionTimeMLOEMMOM = 0 [private]

Used MLOE-MMOM Execution time.

8.57.2.19 mGenerationTimeMLOEMMOM

double exageostat::results::Results::mGenerationTimeMLOEMMOM = 0 [private]

Used MLOE-MMOM Matrix Generation time.

8.57.2.20 mFactoTimeMLOEMMOM

double exageostat::results::mFactoTimeMLOEMMOM = 0 [private]

Used MLOE-MMOM cholesky factorization time.

8.57.2.21 mLoopTimeMLOEMMOM

double exageostat::results::Results::mLoopTimeMLOEMMOM = 0 [private]

Used MLOE-MMOM loop time.

8.57.2.22 mFlopsMLOEMMOM

double exageostat::results::Results::mFlopsMLOEMMOM = 0 [private]

Used MLOE-MMOM flops.

8.57.2.23 mTotalModelingExecutionTime

double exageostat::results::Results::mTotalModelingExecutionTime = 0 [private]

Used Data Modeling Execution time.

8.57.2.24 mTotalModelingFlops

double exageostat::results::Results::mTotalModelingFlops = 0 [private]

Used Data Modeling Number of Flops.

8.57.2.25 mTotalFisherTime

double exageostat::results::Results::mTotalFisherTime = 0 [private]

Used Total Fisher Time.

8.57.2.26 mFisherMatrix

std::vector<double> exageostat::results::Results::mFisherMatrix [private]

Fisher matrix.

8.57.2.27 mPredictedMissedValues

std::vector<double> exageostat::results::Results::mPredictedMissedValues [private]

Z miss values.

The documentation for this class was generated from the following file:

· Results.hpp

8.58 exageostat::runtime::RuntimeFunctions< T > Class Template Reference

A class that defines runtime static functions.

#include <RuntimeFunctions.hpp>

Static Public Member Functions

static void CovarianceMatrix (dataunits::DescriptorData< T > &aDescriptorData, void *apDescriptor, const int &aTriangularPart, dataunits::Locations< T > *apLocation1, dataunits::Locations< T > *ap← Location2, dataunits::Locations< T > *apLocation3, T *apLocalTheta, const int &aDistanceMetric, const kernels::Kernel< T > *apKernel)

Computes the covariance matrix.

static void ExaGeoStatMLETileAsyncMLOEMMOM (void *apDescExpr2, void *apDescExpr3, void *apDescExpr3, void *apDescExpr4, void *apDescMLOE, void *apDescMMOM, void *apSequence, void *apRequest)

Perform an asynchronous computation of MLE, MLOE, and MMOM for a tile.

• static void ExaGeoStatMLEMSPETileAsync (void *apDescZPredict, void *apDescZMiss, void *apDescError, void *apSequence, void *apRequest)

Calculate mean square prediction error (MSPE) scalar value of the prediction.

static void CopyDescriptorZ (dataunits::DescriptorData < T > &aDescriptorData, void *apDescriptor, T *ap←
 DoubleVector)

Copies the descriptor data to a double vector.

 static void ExaGeoStatGaussianToNonTileAsync (dataunits::DescriptorData< T > &aDescriptorData, void *apDesc, T *apTheta)

Converts a Gaussian descriptor to a non-tiled descriptor.

static void ExaGeoStaStrideVectorTileAsync (void *apDescA, void *apDescB, void *apDescC, void *apCescB, void *apDescB, void *ap

copy Chameleon descriptor to vector float*.

static void ExaGeoStaStrideVectorTileAsync (void *apDescA, void *apDescB, void *apDescC, void *apCescD, void *apSequence, void *apRequest)

Copy Chameleon descriptor to vector float*.

static void ExaGeoStatMeasureDetTileAsync (const common::Computation &aComputation, void *apDescA, void *apSequence, void *apRequest, void *apDescDet)

Calculate determinant for triangular matrix.

static void ExaGeoStatMLETraceTileAsync (void *apDescA, void *apSequence, void *apRequest, void *ap←
DescNum, void *apDescTrace)

Calculate determinant for triangular matrix.

static void ExaGeoStatDoubleDotProduct (void *apDescA, void *apDescProduct, void *apSequence, void *apRequest)

Computes dot product of A.A.

static void ExaGeoStatMLEMSPEBivariateTileAsync (void *apDescZPre, void *apDescZMiss, void *apDescError1, void *apDescError2, void *apDescError, void *apSequence, void *apRequest)

Calculate mean square error (MSE) scalar value for Bivariate kernels.

 static void ExaGeoStatNonGaussianLogLikeTileAsync (const common::Computation &aComputation, void *apDescZ, void *apDescSum, const T *apTheta, void *apSequence, void *apRequest)

Calculate the log likelihood of non-Gaussian MLE.

 static void ExaGeoStatNonGaussianTransformTileAsync (const common::Computation &aComputation, void *apDescZ, const T *apTheta, void *apSequence, void *apRequest)

Transform the measurements vector inside the non-Gaussian MLE function.

8.58.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::runtime::RuntimeFunctions} < \mbox{T} > \\ \mbox{Class exageostat::runtime::RuntimeFunctions} < \mbox{Class exageostat::runtime::RuntimeFunctions} < \mbox{Class exageostat::runtimeFunctions} < \mbox{Class exageostat::runti
```

A class that defines runtime static functions.

Template Parameters

T Data Type: float or double.

8.58.2 Member Function Documentation

8.58.2.1 CovarianceMatrix()

Computes the covariance matrix.

Parameters

in	aDescriptorData	pointer to the DescriptorData object holding descriptors and data.
out	apDescriptor	Pointer to the descriptor for the covariance matrix.
in	aTriangularPart	Specifies whether the upper or lower triangular part of the covariance matrix is stored.
in	apLocation1	Pointer to the first set of locations.
in	apLocation2	Pointer to the second set of locations.
in	apLocation3	Pointer to the third set of locations.
in	apLocalTheta	Pointer to the local theta values.
in	aDistanceMetric	Specifies the distance metric to use.
in	apKernel	Pointer to the kernel object to use.

Returns

void

8.58.2.2 ExaGeoStatMLETileAsyncMLOEMMOM()

Perform an asynchronous computation of MLE, MLOE, and MMOM for a tile.

his function performs the computation of Maximum Likelihood Estimation (MLE), Maximum Likelihood on the Empirical Orthogonal Functions (MLOE), and Method of Moments (MMOM) for a tile asynchronously.

Parameters

in	apDescExpr2	Descriptor for expression 2.
in	apDescExpr3	Descriptor for expression 3.
in	apDescExpr4	Descriptor for expression 4.
in	apDescMLOE	Descriptor for MLOE.
in	apDescMMOM	Descriptor for MMOM.
in	apSequence	Sequence for the computation.
in	apRequest	Request for the computation.

Returns

void

8.58.2.3 ExaGeoStatMLEMSPETileAsync()

Calculate mean square prediction error (MSPE) scalar value of the prediction.

Parameters

in	apDescZPredict	Observed measurements.
in	apDescZMiss	Missing measurements.
out	apDescError	Mean Square Prediction Error (MSPE).
in	apSequence	Identifies the sequence of function calls that this call belongs to.
out	apRequest	Identifies this function call (for exception handling purposes).

Returns

void

8.58.2.4 CopyDescriptorZ()

Copies the descriptor data to a double vector.

Parameters

in	aComputation	computation used in configuration.
in	aDescriptorData	pointer to the DescriptorData object holding descriptors and data.
in	apDescriptor	Pointer to the descriptor data.
in,out	apDoubleVector	Pointer to the double vector to copy the descriptor data to.

Returns

void

8.58.2.5 ExaGeoStatGaussianToNonTileAsync()

Converts a Gaussian descriptor to a non-tiled descriptor.

Parameters

Ī	in	aDescriptorData	DescriptorData struct with the Gaussian descriptor.
	in	apDesc	Pointer to the non-tiled descriptor.
	in	apTheta	Theta vector.

Returns

void

8.58.2.6 ExaGeoStaStrideVectorTileAsync() [1/2]

copy Chameleon descriptor to vector float*.

Parameters

in	apDescA	Exageostat descriptor A.
in	apDescB	Exageostat descriptor B.
in	apDescC	Exageostat descriptor C.
in	apSequence	Identifies the sequence of function calls that this call belongs to.
in	apRequest	Identifies this function call (for exception handling purposes).

Returns

void

8.58.2.7 ExaGeoStaStrideVectorTileAsync() [2/2]

Copy Chameleon descriptor to vector float*.

Parameters

in	apDescA	Exageostat descriptor A.
in	apDescB	Exageostat descriptor B.
in	apDescC	Exageostat descriptor C.
in	apDescD	Exageostat descriptor D.
in	apSequence	Identifies the sequence of function calls that this call belongs to.
in	apRequest	Identifies this function call (for exception handling purposes).

Returns

void

8.58.2.8 ExaGeoStatMeasureDetTileAsync()

Calculate determinant for triangular matrix.

Parameters

in	aComputation	computation used in configuration.
in	apDescA	Exageostat descriptor.
in	apSequence	Identifies the sequence of function calls that this call belongs to.
in	apRequest	Identifies this function call (for exception handling purposes).
in	apDescDet	determinant value

Returns

void

8.58.2.9 ExaGeoStatMLETraceTileAsync()

Calculate determinant for triangular matrix.

Parameters

i	n	apDescA	Pointer to the descriptor of the matrix 'descA'.
i	n	apSequence	Pointer to a sequence structure for managing asynchronous execution.
i	n	apRequest	Pointer to a request structure for tracking the operation's status.
0	ut	apDescNum	Pointer to the descriptor of the matrix to store the sum of elements.
0	ut	apDescTrace	Pointer to the descriptor of the matrix to store the trace.

Returns

void

8.58.2.10 ExaGeoStatDoubleDotProduct()

Computes dot product of A.A.

Parameters

	in	apDescA	A Descriptor
Ī	out	apDescProduct	Stores the result of A.A.
ſ	in	apSequence	Identifies the sequence of function calls that this call belongs to.
Ī	in	apRequest	Identifies this function call (for exception handling purposes).

Returns

void

8.58.2.11 ExaGeoStatMLEMSPEBivariateTileAsync()

Calculate mean square error (MSE) scalar value for Bivariate kernels.

Parameters

in	apDescZPre	Observed measurements descZpre.
in	apDescZMiss	Missing measurements descZpre
out	apDescError1	Mean Square Error (MSE) 1.
out	apDescError2	Mean Square Error (MSE) 2.
out	apDescError	Mean Square Error (MSE).
in	apSequence	Sequence for the computation.
in	apRequest	Request for the computation.

Returns

void

8.58.2.12 ExaGeoStatNonGaussianLogLikeTileAsync()

Calculate the log likelihood of non-Gaussian MLE.

Parameters

in	aComputation	computation used in configuration.
in	apDescZ	pointer to the Observed Measurements descriptor.
in	apDescSum	The log-likelihood Sum of descriptor Z.
in	apTheta	Pointer to Model parameters.
in	apSequence	Identifies the sequence of function calls that this call belongs to.
out	apRequest	Identifies this function call (for exception handling purposes).

Returns

void

8.58.2.13 ExaGeoStatNonGaussianTransformTileAsync()

Transform the measurements vector inside the non-Gaussian MLE function.

Parameters

in	aComputation	computation used in configuration.
in	apDescZ	pointer to the Observed Measurements descriptor.
in	apTheta	Pointer to Model parameters.
in	apSequence	Identifies the sequence of function calls that this call belongs to.
in	apRequest	Identifies this function call (for exception handling purposes).

Returns

void

The documentation for this class was generated from the following file:

• RuntimeFunctions.hpp

8.59 exageostat::runtime::StarPuHelpers Class Reference

A class that defines the interface for StarPu helpers.

```
#include <StarPuHelpers.hpp>
```

Inheritance diagram for exageostat::runtime::StarPuHelpers:

Public Member Functions

- virtual void ExaGeoStatOptionsInit (void *apOptions, void *apSequence, void *apRequest)=0
 Initialize the runtime option structure for either HiCMA or CHAMELEON.
- virtual void ExaGeoStatOptionsFree (void *apOptions)=0

Submit the release of the workspaces associated to the options structure.

virtual void ExaGeoStatOptionsFinalize (void *apOptions)=0

Finalize the runtime option structure for either HiCMA or CHAMELEON.

- virtual void * ExaGeoStatDataGetAddr (void *apDescriptor, const int &aDescRow, const int &aDescCol)=0
 Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.
- virtual int GetMT (void *apDescriptor)=0

Get the number of tile rows of the sub-matrix.

virtual int GetM (void *apDescriptor)=0

Get the descriptor number of rows.

virtual int GetMB (void *apDescriptor)=0

Get the descriptor number of rows in a tile.

virtual void * GetOptions ()=0

Get the descriptor options.

virtual void DeleteOptions (void *apOptions)=0

Delete the options object.

8.59.1 Detailed Description

A class that defines the interface for StarPu helpers.

Template Parameters

```
T Data Type: float or double.
```

8.59.2 Member Function Documentation

8.59.2.1 ExaGeoStatOptionsInit()

```
void * apSequence,
void * apRequest ) [pure virtual]
```

Initialize the runtime option structure for either HiCMA or CHAMELEON.

Parameters

in,out	apOptions	The options structure that needs to be initialized.
in	apSequence	The sequence structure to associate in the options.
in	apRequest	The request structure to associate in the options.

Returns

void

Implemented in exageostat::runtime::HicmaStarPuHelpers, and exageostat::runtime::ChameleonStarPuHelpers.

8.59.2.2 ExaGeoStatOptionsFree()

Submit the release of the workspaces associated to the options structure.

Parameters

in, out	apOptions	The options structure for which to workspaces will be released
---------	-----------	--

Returns

void

Implemented in exageostat::runtime::HicmaStarPuHelpers, and exageostat::runtime::ChameleonStarPuHelpers.

8.59.2.3 ExaGeoStatOptionsFinalize()

```
\label{lem:condition} \begin{tabular}{ll} void exageostat::runtime::StarPuHelpers::ExaGeoStatOptionsFinalize ( \\ void * apOptions ) & [pure virtual] \end{tabular}
```

Finalize the runtime option structure for either HiCMA or CHAMELEON.

Parameters

in,out	apOptions	The options structure that needs to be finalized.
--------	-----------	---

Returns

void

Implemented in exageostat::runtime::HicmaStarPuHelpers, and exageostat::runtime::ChameleonStarPuHelpers.

8.59.2.4 ExaGeoStatDataGetAddr()

Get the pointer to the data or the runtime handler associated to the piece of data (m, n) in desc.

Parameters

in	apDescriptor	The descriptor to which belongs the piece of data
in	aDescRow	The row coordinate of the piece of data in the matrix
in	aDescCol	The column coordinate of the piece of data in the matrix

Returns

void

Implemented in exageostat::runtime::HicmaStarPuHelpers, and exageostat::runtime::ChameleonStarPuHelpers.

8.59.2.5 GetMT()

Get the number of tile rows of the sub-matrix.

Parameters

in	apDescriptor	

Returns

int

Implemented in exageostat::runtime::HicmaStarPuHelpers, and exageostat::runtime::ChameleonStarPuHelpers.

8.59.2.6 GetM()

```
\label{lem:continuous} \begin{tabular}{ll} virtual int exageostat::runtime::StarPuHelpers::GetM ( \\ void * apDescriptor ) & [pure virtual] \end{tabular}
```

Get the descriptor number of rows.

Parameters

```
in apDescriptor
```

Returns

int

Implemented in exageostat::runtime::HicmaStarPuHelpers, and exageostat::runtime::ChameleonStarPuHelpers.

8.59.2.7 GetMB()

Get the descriptor number of rows in a tile.

Parameters

```
in apDescriptor
```

Returns

int

 $Implemented \ in \ exageostat:: runtime:: HicmaStarPuHelpers, \ and \ exageostat:: runtime:: ChameleonStarPuHelpers.$

8.59.2.8 GetOptions()

```
virtual void* exageostat::runtime::StarPuHelpers::GetOptions ( ) [pure virtual]
```

Get the descriptor options.

Returns

void pointer to descriptor_option void

 $Implemented\ in\ exageostat:: runtime:: HicmaStarPuHelpers,\ and\ exageostat:: runtime:: ChameleonStarPuHelpers.$

8.59.2.9 DeleteOptions()

```
virtual void exageostat::runtime::StarPuHelpers::DeleteOptions (  \mbox{void} * apOptions \mbox{) [pure virtual]}
```

Delete the options object.

Parameters

apOptions

Returns

void

Implemented in exageostat::runtime::HicmaStarPuHelpers, and exageostat::runtime::ChameleonStarPuHelpers.

The documentation for this class was generated from the following file:

StarPuHelpers.hpp

8.60 exageostat::runtime::StarPuHelpersFactory Class Reference

A class that creates StarPu helpers based on the input computation type.

```
#include <StarPuHelpersFactory.hpp>
```

Static Public Member Functions

• static std::unique_ptr< StarPuHelpers > CreateStarPuHelper (const common::Computation &aComputation) Creates a StarPu helper.

8.60.1 Detailed Description

A class that creates StarPu helpers based on the input computation type.

8.60.2 Member Function Documentation

8.60.2.1 CreateStarPuHelper()

```
\label{lem:static} stat:: unique\_ptr < StarPuHelpers > exageostat:: runtime:: StarPuHelpers Factory:: CreateStar \leftarrow PuHelper ( \\ const common:: Computation & a Computation ) [static]
```

Creates a StarPu helper.

Parameters

Returns

Unique pointer to the created StarPu helper.

The documentation for this class was generated from the following file:

StarPuHelpersFactory.hpp

8.61 stride Class Reference

A class for starpu codelet stride-vec.

8.61.1 Detailed Description

A class for starpu codelet stride-vec.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_stride_vec and its CPU functions.

The documentation for this class was generated from the following file:

• stride-vec-codelet.hpp

8.62 exageostat::runtime::STRIDEVECCodelet< T > Class Template Reference

#include <stride-vec-codelet.hpp>

Public Member Functions

• STRIDEVECCodelet ()=default

Default constructor.

• \sim STRIDEVECCodelet ()=default

Default destructor.

void InsertTask (const void *apDescA, void *apDescB, void *apDescC)

Inserts a task for STRIDE vector operation codelet processing.

Static Private Member Functions

• static void cl_stride_vec_function (void **apBuffers, void *apCodeletArguments)

Executes the STRIDE vector operation codelet function.

Static Private Attributes

 static struct starpu_codelet cl_stride_vec starpu_codelet struct

8.62.1 Constructor & Destructor Documentation

8.62.1.1 STRIDEVECCodelet()

```
template<typename T >
exageostat::runtime::STRIDEVECCodelet< T >::STRIDEVECCodelet ( ) [default]
```

Default constructor.

8.62.1.2 ~STRIDEVECCodelet()

```
template<typename T >
exageostat::runtime::STRIDEVECCodelet< T >::~STRIDEVECCodelet ( ) [default]
```

Default destructor.

8.62.2 Member Function Documentation

8.62.2.1 InsertTask()

Inserts a task for STRIDE vector operation codelet processing.

Parameters

	in	apDescA	A pointer to the descriptor for the source vector.
	in,out	apDescB	A pointer to the descriptor for the first destination vector.
Ī	in,out	apDescC	A pointer to the descriptor for the second destination vector.

Returns

void

8.62.2.2 cl_stride_vec_function()

Executes the STRIDE vector operation codelet function.

Parameters

in	apBuffers	An array of pointers to the buffers.
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the vector size,
		offset, and the stride factor.

Returns

void

8.62.3 Member Data Documentation

8.62.3.1 cl_stride_vec

```
template<typename T >
struct starpu_codelet exageostat::runtime::STRIDEVECCodelet< T >::cl_stride_vec [static],
[private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

• stride-vec-codelet.hpp

8.63 exageostat::generators::synthetic::SyntheticGenerator< T > Class Template Reference

A class for generating synthetic data.

#include <SyntheticGenerator.hpp>

Inheritance diagram for exageostat::generators::synthetic::SyntheticGenerator< T >:

exageostat::generators::DataGenerator< T >

exageostat::generators::synthetic::SyntheticGenerator< T >

Public Member Functions

std::unique_ptr< ExaGeoStatData< T >> CreateData (configurations::Configurations &aConfigurations, exageostat::kernels::Kernel< T > &aKernel) override

Creates the data by synthetically generating it.

Static Public Member Functions

• static SyntheticGenerator< T > * GetInstance ()

Get a pointer to the singleton instance of the SyntheticGenerator class.

• static void ReleaseInstance ()

Release the singleton instance of the SyntheticGenerator class.

Private Member Functions

• SyntheticGenerator ()=default

Constructor for the SyntheticGenerator class.

• \sim SyntheticGenerator () override=default

Default destructor.

Static Private Attributes

static SyntheticGenerator< T > * mpInstance

Pointer to the singleton instance of the SyntheticGenerator class.

Additional Inherited Members

8.63.1 Detailed Description

template<typename T> class exageostat::generators::synthetic::SyntheticGenerator< T>

A class for generating synthetic data.

Template Parameters

```
T Data Type: float or double
```

This class generates synthetic data for use in testing machine learning models.

8.63.2 Constructor & Destructor Documentation

8.63.2.1 SyntheticGenerator()

```
\label{template} \begin{tabular}{ll} template < typename $T >$ \\ exageostat::generators::synthetic::SyntheticGenerator < $T >::SyntheticGenerator ( ) [private], \\ [default] \end{tabular}
```

Constructor for the SyntheticGenerator class.

Returns

void

8.63.2.2 ∼SyntheticGenerator()

```
\label{template} $$ \text{template}$$ $$ \text{typename T} > $$ exageostat::generators::synthetic::SyntheticGenerator< T>::~SyntheticGenerator ( ) [override], [private], [default]
```

Default destructor.

8.63.3 Member Function Documentation

8.63.3.1 GetInstance()

```
\label{template} $$ template< typename T>$ static SyntheticGenerator< T>* exageostat::generators::synthetic::SyntheticGenerator< T>$$ ::GetInstance ( ) [static]
```

Get a pointer to the singleton instance of the SyntheticGenerator class.

Returns

A pointer to the instance of the SyntheticGenerator class.

8.63.3.2 CreateData()

Creates the data by synthetically generating it.

Either generates synthetic data or reads data files. This method generates the X, Y, and Z variables used to define the locations of the data points.

Parameters

in	aConfigurations	Reference to the data configurations.		
in	aKernel	Reference to the used Kernel.		

Returns

unique Pointer to a populated data.

Implements exageostat::generators::DataGenerator< T >.

8.63.3.3 ReleaseInstance()

```
template<typename T >
static void exageostat::generators::synthetic::SyntheticGenerator< T >::ReleaseInstance ( )
[static]
```

Release the singleton instance of the SyntheticGenerator class.

Returns

void

8.63.4 Member Data Documentation

8.63.4.1 mpInstance

```
template<typename T >
SyntheticGenerator<T>* exageostat::generators::synthetic::SyntheticGenerator< T >::mpInstance
[static], [private]
```

Pointer to the singleton instance of the SyntheticGenerator class.

The documentation for this class was generated from the following file:

• SyntheticGenerator.hpp

8.64 exageostat::runtime::TriStrideVecCodelet< T > Class Template Reference

A class for starpu codelet tri_stride_vec.

#include <tri-stride-vec-codelet.hpp>

Public Member Functions

• TriStrideVecCodelet ()=default

Default constructor.

∼TriStrideVecCodelet ()=default

Default destructor.

void InsertTask (const void *apDescA, void *apDescB, void *apDescC, void *apDescD)

Inserts a task for TriStride vector operation codelet processing.

Static Private Member Functions

• static void cl_tri_stride_vec_function (void **apBuffers, void *apCodeletArguments)

Executes the TriStride vector operation codelet function.

Static Private Attributes

 static struct starpu_codelet cl_tri_stride_vec starpu_codelet struct

8.64.1 Detailed Description

 $\label{template} \mbox{template$<$typename T$>$} \mbox{class exageostat::runtime::TriStrideVecCodelet} < T >$

A class for starpu codelet tri_stride_vec.

Template Parameters

T Data Type: float or double

This class encapsulates the struct cl_tri_stride_vec and its CPU functions.

8.64.2 Constructor & Destructor Documentation

8.64.2.1 TriStrideVecCodelet()

```
template<typename T >
exageostat::runtime::TriStrideVecCodelet< T >::TriStrideVecCodelet ( ) [default]
```

Default constructor.

8.64.2.2 ~TriStrideVecCodelet()

```
\label{template} $$ template < typename T > $$ exageostat::runtime::TriStrideVecCodelet < T >::~TriStrideVecCodelet ( ) [default]
```

Default destructor.

8.64.3 Member Function Documentation

8.64.3.1 InsertTask()

Inserts a task for TriStride vector operation codelet processing.

Parameters

in	apDescA	A pointer to the descriptor for the source vector.
in,out	apDescB	A pointer to the descriptor for the first destination vector.
in,out	apDescC	A pointer to the descriptor for the second destination vector.
in,out	apDescD	A pointer to the descriptor for the third destination vector.

Returns

void

8.64.3.2 cl_tri_stride_vec_function()

```
template<typename T >
static void exageostat::runtime::TriStrideVecCodelet< T >::cl_tri_stride_vec_function (
```

```
void ** apBuffers,
void * apCodeletArguments ) [static], [private]
```

Executes the TriStride vector operation codelet function.

Parameters

in	apBuffers	An array of pointers to the buffers.	
in	apCodeletArguments	A pointer to the codelet arguments structure, which includes the vector size,	
		offset, and the stride factor.	

Returns

void

8.64.4 Member Data Documentation

8.64.4.1 cl tri stride vec

```
template<typename T >
struct starpu_codelet exageostat::runtime::TriStrideVecCodelet< T >::cl_tri_stride_vec [static],
[private]
```

starpu_codelet struct

The documentation for this class was generated from the following file:

• tri-stride-vec-codelet.hpp

8.65 exageostat::kernels::TrivariateMaternParsimonious< T > Class Template Reference

A class representing a Trivariate Matern Parsimonious kernel.

```
#include <TrivariateMaternParsimonious.hpp>
```

 $Inheritance\ diagram\ for\ exageostat:: kernels:: Trivariate Matern Parsimonious < T>:$

Public Member Functions

· TrivariateMaternParsimonious ()

Constructs a new TrivariateMaternParsimonious object.

~TrivariateMaternParsimonious () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns⇔
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new TrivariateMaternParsimonious object.

Static Private Attributes

static bool plugin_name

Additional Inherited Members

8.65.1 Detailed Description

```
template < typename T > class exageostat::kernels::TrivariateMaternParsimonious < T >
```

A class representing a Trivariate Matern Parsimonious kernel.

This class represents a Trivariate Matern Parsimonious, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.65.2 Constructor & Destructor Documentation

8.65.2.1 TrivariateMaternParsimonious()

```
template<typename T >
exageostat::kernels::TrivariateMaternParsimonious< T >::TrivariateMaternParsimonious ( )
```

Constructs a new TrivariateMaternParsimonious object.

Initializes a new TrivariateMaternParsimonious object with default values.

8.65.2.2 ~TrivariateMaternParsimonious()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::TrivariateMaternParsimonious < T >:: \sim TrivariateMaternParsimonious ( ) $$ [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.65.3 Member Function Documentation

8.65.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
in	aColumnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.
in	aLocalTheta	An array of kernel parameters.
in	aDistanceMetric	Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski).

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.65.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::TrivariateMaternParsimonious< T >::Create ( ) [static]
```

Creates a new TrivariateMaternParsimonious object.

This method creates a new TrivariateMaternParsimonious object and returns a pointer to it.

Returns

A pointer to the new TrivariateMaternParsimonious object.

8.65.4 Member Data Documentation

8.65.4.1 plugin_name

```
template<typename T >
bool exageostat::kernels::TrivariateMaternParsimonious< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• TrivariateMaternParsimonious.hpp

8.66 exageostat::kernels::UnivariateExpNonGaussian< T > Class Template Reference

A class representing a Univariate Exp Non Gaussian kernel.

```
#include <UnivariateExpNonGaussian.hpp>
```

 $Inheritance\ diagram\ for\ exageostat:: kernels:: Univariate ExpNonGaussian < T>:$

Public Member Functions

UnivariateExpNonGaussian ()

Constructs a new UnivariateExpNonGaussian object.

~UnivariateExpNonGaussian () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()
 Creates a new UnivariateExpNonGaussian object.

Static Private Attributes

• static bool plugin_name

Additional Inherited Members

8.66.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{T} > \\ \mbox{Class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{Class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{Class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{Class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{Class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{Class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{Class exageostat::kernels::UnivariateExpNonGaussian} < \mbox{Class exageostat::kernels::Lass exageostat::Lass exageostat::kernels::Lass exageostat::Lass exageostat::Lass exageostat::Lass exageostat::Lass exageostat::Lass exageostat::La
```

A class representing a Univariate Exp Non Gaussian kernel.

This class represents a Univariate Exp Non Gaussian, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.66.2 Constructor & Destructor Documentation

8.66.2.1 UnivariateExpNonGaussian()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::Univariate ExpNonGaussian < T >::Univariate ExpNonGaussian ( ) $$
```

Constructs a new UnivariateExpNonGaussian object.

Initializes a new UnivariateExpNonGaussian object with default values.

8.66.2.2 ~UnivariateExpNonGaussian()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateExpNonGaussian ( ) [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.66.3 Member Function Documentation

8.66.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
in	aColumnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.
in	aLocalTheta	An array of kernel parameters.
in	aDistanceMetric	Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski).

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.66.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateExpNonGaussian< T >::Create () [static]
```

Creates a new UnivariateExpNonGaussian object.

This method creates a new UnivariateExpNonGaussian object and returns a pointer to it.

Returns

A pointer to the new UnivariateExpNonGaussian object.

8.66.4 Member Data Documentation

8.66.4.1 plugin name

```
template<typename T >
bool exageostat::kernels::UnivariateExpNonGaussian< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

UnivariateExpNonGaussian.hpp

8.67 exageostat::kernels::UnivariateMaternDbeta< T > Class Template Reference

A class representing a Univariate Matern Dbeta kernel.

```
#include <UnivariateMaternDbeta.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariateMaternDbeta < T >:

Public Member Functions

UnivariateMaternDbeta ()

Constructs a new UnivariateMaternDbeta object.

~UnivariateMaternDbeta () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new UnivariateMaternDbeta object.

Static Private Attributes

• static bool plugin_name

Additional Inherited Members

8.67.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateMaternDbeta} < \mbox{T} > \\ \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse} > \mbox{topse
```

A class representing a Univariate Matern Dbeta kernel.

This class represents a Univariate Matern Dbeta, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.67.2 Constructor & Destructor Documentation

8.67.2.1 UnivariateMaternDbeta()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternDbeta < T >::UnivariateMaternDbeta ( ) $$
```

Constructs a new UnivariateMaternDbeta object.

Initializes a new UnivariateMaternDbeta object with default values.

8.67.2.2 ∼UnivariateMaternDbeta()

```
\label{template} $$\text{template}$$ $$\text{typename T} > $$$ exageostat::kernels::UnivariateMaternDbeta ( ) [override], $$$ $$ $$ $$\text{default}$$
```

Virtual destructor to allow calls to the correct concrete destructor.

8.67.3 Member Function Documentation

8.67.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
in	aColumnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.
in	aLocalTheta	An array of kernel parameters.
in	aDistanceMetric	Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski).

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.67.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDbeta< T >::Create ( ) [static]
```

Creates a new UnivariateMaternDbeta object.

This method creates a new UnivariateMaternDbeta object and returns a pointer to it.

Returns

A pointer to the new UnivariateMaternDbeta object.

8.67.4 Member Data Documentation

8.67.4.1 plugin_name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDbeta< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• UnivariateMaternDbeta.hpp

8.68 exageostat::kernels::UnivariateMaternDdbetaBeta< T > Class Template Reference

A class representing a Univariate Matern Ddbeta Beta kernel.

#include <UnivariateMaternDdbetaBeta.hpp>

Inheritance diagram for exageostat::kernels::UnivariateMaternDdbetaBeta< T >:

Public Member Functions

UnivariateMaternDdbetaBeta ()

Constructs a new UnivariateMaternDdbetaBeta object.

• ~UnivariateMaternDdbetaBeta () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new UnivariateMaternDdbetaBeta object.

Static Private Attributes

• static bool plugin_name

Additional Inherited Members

8.68.1 Detailed Description

 $\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateMaternDdbetaBeta} < \mbox{T} > \\ \mbox{topse} > \mbox{topse} > \mbox{topse} > \\ \mbox{topse} > \mbox{topse} > \mbox{topse} > \\ \mbox{topse} > \\ \mb$

A class representing a Univariate Matern Ddbeta Beta kernel.

This class represents a Univariate Matern Ddbeta Beta, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.68.2 Constructor & Destructor Documentation

8.68.2.1 UnivariateMaternDdbetaBeta()

```
template<typename T >
exageostat::kernels::UnivariateMaternDdbetaBeta< T >::UnivariateMaternDdbetaBeta ( )
```

Constructs a new UnivariateMaternDdbetaBeta object.

Initializes a new UnivariateMaternDdbetaBeta object with default values.

8.68.2.2 ∼UnivariateMaternDdbetaBeta()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternDdbetaBeta ( ) [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.68.3 Member Function Documentation

8.68.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	aRowsNumber	The number of rows in the output matrix.
in	aColumnsNumber	The number of columns in the output matrix.
in	aRowOffset	The row offset for the input locations.
Generated b	y BoxygermnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.68.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDdbetaBeta< T >::Create ( ) [static]
```

Creates a new UnivariateMaternDdbetaBeta object.

This method creates a new UnivariateMaternDdbetaBeta object and returns a pointer to it.

Returns

A pointer to the new UnivariateMaternDdbetaBeta object.

8.68.4 Member Data Documentation

8.68.4.1 plugin_name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDdbetaBeta< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• UnivariateMaternDdbetaBeta.hpp

8.69 exageostat::kernels::UnivariateMaternDdbetaNu< T > Class Template Reference

A class representing a Univariate Matern Ddbeta Nu kernel.

```
#include <UnivariateMaternDdbetaNu.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariateMaternDdbetaNu< T >:

```
exageostat::kernels::Kernel< T >

exageostat::kernels::UnivariateMaternDdbetaNu< T >
```

Public Member Functions

• UnivariateMaternDdbetaNu ()

Constructs a new UnivariateMaternDdbetaNu object.

~UnivariateMaternDdbetaNu () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns⇔
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new UnivariateMaternDdbetaNu object.

Static Private Attributes

· static bool plugin_name

Additional Inherited Members

8.69.1 Detailed Description

```
template < typename T > class exageostat::kernels::UnivariateMaternDdbetaNu < T >
```

A class representing a Univariate Matern Ddbeta Nu kernel.

This class represents a Univariate Matern Ddbeta Nu, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.69.2 Constructor & Destructor Documentation

8.69.2.1 UnivariateMaternDdbetaNu()

```
template<typename T >
exageostat::kernels::UnivariateMaternDdbetaNu< T >::UnivariateMaternDdbetaNu ( )
```

Constructs a new UnivariateMaternDdbetaNu object.

Initializes a new UnivariateMaternDdbetaNu object with default values.

8.69.2.2 ~UnivariateMaternDdbetaNu()

```
\label{template} $$\text{template}$$ $$\text{template}$$ $\text{template}$$ ```

Virtual destructor to allow calls to the correct concrete destructor.

## 8.69.3 Member Function Documentation

## 8.69.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

## **Parameters**

| out | apMatrixA       | The output covariance matrix.                                             |
|-----|-----------------|---------------------------------------------------------------------------|
| in  | aRowsNumber     | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber  | The number of columns in the output matrix.                               |
| in  | aRowOffset      | The row offset for the input locations.                                   |
| in  | aColumnOffset   | The column offset for the input locations.                                |
| in  | apLocation1     | The set of input locations 1.                                             |
| in  | apLocation2     | The set of input locations 2.                                             |
| in  | apLocation3     | The set of input locations 3.                                             |
| in  | aLocalTheta     | An array of kernel parameters.                                            |
| in  | aDistanceMetric | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

#### Returns

void

Implements exageostat::kernels::Kernel < T >.

## 8.69.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDdbetaNu< T >::Create () [static]
```

Creates a new UnivariateMaternDdbetaNu object.

This method creates a new UnivariateMaternDdbetaNu object and returns a pointer to it.

Returns

A pointer to the new UnivariateMaternDdbetaNu object.

## 8.69.4 Member Data Documentation

#### 8.69.4.1 plugin name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDdbetaNu< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

UnivariateMaternDdbetaNu.hpp

# 8.70 exageostat::kernels::UnivariateMaternDdnuNu< T > Class Template Reference

A class representing a Univariate Matern Ddnu Nu kernel.

```
#include <UnivariateMaternDdnuNu.hpp>
```

 $Inheritance\ diagram\ for\ exageostat:: kernels:: Univariate Matern Ddnu Nu < T>:$ 



## **Public Member Functions**

UnivariateMaternDdnuNu ()

Constructs a new UnivariateMaternDdnuNu object.

~UnivariateMaternDdnuNu () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

# **Static Public Member Functions**

static Kernel < T > \* Create ()
 Creates a new UnivariateMaternDdnuNu object.

## **Static Private Attributes**

• static bool plugin\_name

# **Additional Inherited Members**

# 8.70.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateMaternDdnuNu} < \mbox{T} > \\ \mbox{}
```

A class representing a Univariate Matern Ddnu Nu kernel.

This class represents a Univariate Matern Ddnu Nu, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

# 8.70.2 Constructor & Destructor Documentation

# 8.70.2.1 UnivariateMaternDdnuNu()

```
\label{template} \begin{tabular}{ll} template < typename T > \\ exageostat::kernels::UnivariateMaternDdnuNu < T >::UnivariateMaternDdnuNu () \\ \end{tabular}
```

Constructs a new UnivariateMaternDdnuNu object.

Initializes a new UnivariateMaternDdnuNu object with default values.

# 8.70.2.2 ~UnivariateMaternDdnuNu()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternDdnuNu < T >:: \sim UnivariateMaternDdnuNu () [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

# 8.70.3 Member Function Documentation

## 8.70.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Parameters**

| out | apMatrixA       | The output covariance matrix.                                             |
|-----|-----------------|---------------------------------------------------------------------------|
| in  | aRowsNumber     | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber  | The number of columns in the output matrix.                               |
| in  | aRowOffset      | The row offset for the input locations.                                   |
| in  | aColumnOffset   | The column offset for the input locations.                                |
| in  | apLocation1     | The set of input locations 1.                                             |
| in  | apLocation2     | The set of input locations 2.                                             |
| in  | apLocation3     | The set of input locations 3.                                             |
| in  | aLocalTheta     | An array of kernel parameters.                                            |
| in  | aDistanceMetric | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

#### Returns

void

Implements exageostat::kernels::Kernel < T >.

## 8.70.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDdnuNu< T >::Create () [static]
```

Creates a new UnivariateMaternDdnuNu object.

This method creates a new UnivariateMaternDdnuNu object and returns a pointer to it.

# Returns

A pointer to the new UnivariateMaternDdnuNu object.

# 8.70.4 Member Data Documentation

## 8.70.4.1 plugin name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDdnuNu< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

· UnivariateMaternDdnuNu.hpp

# 8.71 exageostat::kernels::UnivariateMaternDdsigmaSquare< T > Class Template Reference

A class representing a Univariate Matern Ddsigma Square kernel.

```
#include <UnivariateMaternDdsigmaSquare.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariateMaternDdsigmaSquare< T >:



## **Public Member Functions**

UnivariateMaternDdsigmaSquare ()

Constructs a new UnivariateMaternDdsigmaSquare object.

 $\quad \quad \bullet \quad \text{$\sim$UnivariateMaternDdsigmaSquare () override=default} \\$ 

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

# **Static Public Member Functions**

static Kernel < T > \* Create ()

Creates a new UnivariateMaternDdsigmaSquare object.

# **Static Private Attributes**

• static bool plugin\_name

#### **Additional Inherited Members**

# 8.71.1 Detailed Description

```
\label{template} template < typename \ T > \\ class \ exageostat:: kernels:: Univariate Matern Ddsigma \ Square < T > \\
```

A class representing a Univariate Matern Ddsigma Square kernel.

This class represents a Univariate Matern Ddsigma Square, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

## 8.71.2 Constructor & Destructor Documentation

# 8.71.2.1 UnivariateMaternDdsigmaSquare()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternDdsigmaSquare () $$
```

Constructs a new UnivariateMaternDdsigmaSquare object.

Initializes a new UnivariateMaternDdsigmaSquare object with default values.

# 8.71.2.2 ~UnivariateMaternDdsigmaSquare()

```
template<typename T >
exageostat::kernels::UnivariateMaternDdsigmaSquare< T >::~UnivariateMaternDdsigmaSquare ()
[override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

# 8.71.3 Member Function Documentation

# 8.71.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Parameters**

| out | apMatrixA       | The output covariance matrix.                                             |
|-----|-----------------|---------------------------------------------------------------------------|
| in  | aRowsNumber     | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber  | The number of columns in the output matrix.                               |
| in  | aRowOffset      | The row offset for the input locations.                                   |
| in  | aColumnOffset   | The column offset for the input locations.                                |
| in  | apLocation1     | The set of input locations 1.                                             |
| in  | apLocation2     | The set of input locations 2.                                             |
| in  | apLocation3     | The set of input locations 3.                                             |
| in  | aLocalTheta     | An array of kernel parameters.                                            |
| in  | aDistanceMetric | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

# Returns

void

Implements exageostat::kernels::Kernel < T >.

# 8.71.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDdsigmaSquare< T >::Create () [static]
```

Creates a new UnivariateMaternDdsigmaSquare object.

This method creates a new UnivariateMaternDdsigmaSquare object and returns a pointer to it.

# Returns

A pointer to the new UnivariateMaternDdsigmaSquare object.

# 8.71.4 Member Data Documentation

# 8.71.4.1 plugin\_name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDdsigmaSquare< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• UnivariateMaternDdsigmaSquare.hpp

# 8.72 exageostat::kernels::UnivariateMaternDdsigmaSquareBeta< T > Class Template Reference

A class representing a Univariate Matern Ddsigma Square Beta kernel.

#include <UnivariateMaternDdsigmaSquareBeta.hpp>

Inheritance diagram for exageostat::kernels::UnivariateMaternDdsigmaSquareBeta< T >:



## **Public Member Functions**

UnivariateMaternDdsigmaSquareBeta ()

Constructs a new UnivariateMaternDdsigmaSquareBeta object.

~UnivariateMaternDdsigmaSquareBeta () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Static Public Member Functions**

static Kernel < T > \* Create ()

Creates a new UnivariateMaternDdsigmaSquareBeta object.

## **Static Private Attributes**

• static bool plugin\_name

## **Additional Inherited Members**

# 8.72.1 Detailed Description

 $\label{template} \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateMaternDdsigmaSquareBeta} < \mbox{T} > \\ \mbox{typename T} > \\ \mbox{ty$ 

A class representing a Univariate Matern Ddsigma Square Beta kernel.

This class represents a Univariate Matern Ddsigma Square Beta, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

## 8.72.2 Constructor & Destructor Documentation

# 8.72.2.1 UnivariateMaternDdsigmaSquareBeta()

```
\label{template} \mbox{template<typename T>} \\ \mbox{exageostat::kernels::UnivariateMaternDdsigmaSquareBeta<T>::UnivariateMaternDdsigmaSquareBeta} \\ \mbox{()}
```

Constructs a new UnivariateMaternDdsigmaSquareBeta object.

Initializes a new UnivariateMaternDdsigmaSquareBeta object with default values.

# 8.72.2.2 ~UnivariateMaternDdsigmaSquareBeta()

```
template<typename T >
exageostat::kernels::UnivariateMaternDdsigmaSquareBeta< T >::~UnivariateMaternDdsigmaSquareBeta
() [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

# 8.72.3 Member Function Documentation

## 8.72.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

## **Parameters**

| out               | apMatrixA      | The output covariance matrix.               |
|-------------------|----------------|---------------------------------------------|
| in                | aRowsNumber    | The number of rows in the output matrix.    |
| in                | aColumnsNumber | The number of columns in the output matrix. |
| in<br>Generated b | aRowOffset     | The row offset for the input locations.     |
| in                | aColumnOffset  | The column offset for the input locations.  |
| in                | apLocation1    | The set of input locations 1.               |
| in                | apLocation2    | The set of input locations 2.               |

Returns

void

Implements exageostat::kernels::Kernel < T >.

# 8.72.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDdsigmaSquareBeta< T >::Create ()
[static]
```

Creates a new UnivariateMaternDdsigmaSquareBeta object.

This method creates a new UnivariateMaternDdsigmaSquareBeta object and returns a pointer to it.

Returns

A pointer to the new UnivariateMaternDdsigmaSquareBeta object.

# 8.72.4 Member Data Documentation

## 8.72.4.1 plugin\_name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDdsigmaSquareBeta< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

· UnivariateMaternDdsigmaSquareBeta.hpp

# 8.73 exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T > Class Template Reference

A class representing a Univariate Matern Ddsigma Square Nu kernel.

```
#include <UnivariateMaternDdsigmaSquareNu.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T >:

```
exageostat::kernels::Kernel< T >

exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T >
```

## **Public Member Functions**

• UnivariateMaternDdsigmaSquareNu ()

Constructs a new UnivariateMaternDdsigmaSquareNu object.

~UnivariateMaternDdsigmaSquareNu () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns⇔
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

## **Static Public Member Functions**

static Kernel < T > \* Create ()

Creates a new UnivariateMaternDdsigmaSquareNu object.

# **Static Private Attributes**

· static bool plugin\_name

# **Additional Inherited Members**

# 8.73.1 Detailed Description

```
template < typename T> class exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T>
```

A class representing a Univariate Matern Ddsigma Square Nu kernel.

This class represents a Univariate Matern Ddsigma Square Nu, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

## 8.73.2 Constructor & Destructor Documentation

## 8.73.2.1 UnivariateMaternDdsigmaSquareNu()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternDdsigmaSquareNu < T >::UnivariateMaternDdsigmaSquareNu ()
```

Constructs a new UnivariateMaternDdsigmaSquareNu object.

Initializes a new UnivariateMaternDdsigmaSquareNu object with default values.

# 8.73.2.2 ~UnivariateMaternDdsigmaSquareNu()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternDdsigmaSquareNu < T >:: \sim UnivariateMaternDdsigmaSquareNu () [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

## 8.73.3 Member Function Documentation

## 8.73.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

## **Parameters**

| out | apMatrixA       | The output covariance matrix.                                             |
|-----|-----------------|---------------------------------------------------------------------------|
| in  | aRowsNumber     | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber  | The number of columns in the output matrix.                               |
| in  | aRowOffset      | The row offset for the input locations.                                   |
| in  | aColumnOffset   | The column offset for the input locations.                                |
| in  | apLocation1     | The set of input locations 1.                                             |
| in  | apLocation2     | The set of input locations 2.                                             |
| in  | apLocation3     | The set of input locations 3.                                             |
| in  | aLocalTheta     | An array of kernel parameters.                                            |
| in  | aDistanceMetric | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

#### Returns

void

Implements exageostat::kernels::Kernel < T >.

## 8.73.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T >::Create () [static]
```

Creates a new UnivariateMaternDdsigmaSquareNu object.

This method creates a new UnivariateMaternDdsigmaSquareNu object and returns a pointer to it.

Returns

A pointer to the new UnivariateMaternDdsigmaSquareNu object.

# 8.73.4 Member Data Documentation

#### 8.73.4.1 plugin name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

· UnivariateMaternDdsigmaSquareNu.hpp

# 8.74 exageostat::kernels::UnivariateMaternDnu< T > Class Template Reference

A class representing a Univariate Matern Dnu kernel.

```
#include <UnivariateMaternDnu.hpp>
```

 $Inheritance\ diagram\ for\ exageostat:: kernels:: Univariate Matern Dnu < T>:$ 



## **Public Member Functions**

UnivariateMaternDnu ()

Constructs a new UnivariateMaternDnu object.

~UnivariateMaternDnu () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

# **Static Public Member Functions**

static Kernel < T > \* Create ()
 Creates a new UnivariateMaternDnu object.

# **Static Private Attributes**

· static bool plugin\_name

# **Additional Inherited Members**

# 8.74.1 Detailed Description

```
template<typename T> class exageostat::kernels::UnivariateMaternDnu< T>
```

A class representing a Univariate Matern Dnu kernel.

This class represents a Univariate Matern Dnu, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

# 8.74.2 Constructor & Destructor Documentation

# 8.74.2.1 UnivariateMaternDnu()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternDnu < T >::UnivariateMaternDnu ()
```

Constructs a new UnivariateMaternDnu object.

Initializes a new UnivariateMaternDnu object with default values.

# 8.74.2.2 ~UnivariateMaternDnu()

```
template<typename T >
exageostat::kernels::UnivariateMaternDnu< T >::~UnivariateMaternDnu () [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

# 8.74.3 Member Function Documentation

## 8.74.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Parameters**

| out | apMatrixA       | The output covariance matrix.                                             |
|-----|-----------------|---------------------------------------------------------------------------|
| in  | aRowsNumber     | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber  | The number of columns in the output matrix.                               |
| in  | aRowOffset      | The row offset for the input locations.                                   |
| in  | aColumnOffset   | The column offset for the input locations.                                |
| in  | apLocation1     | The set of input locations 1.                                             |
| in  | apLocation2     | The set of input locations 2.                                             |
| in  | apLocation3     | The set of input locations 3.                                             |
| in  | aLocalTheta     | An array of kernel parameters.                                            |
| in  | aDistanceMetric | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

#### Returns

void

Implements exageostat::kernels::Kernel < T >.

## 8.74.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDnu< T >::Create () [static]
```

Creates a new UnivariateMaternDnu object.

This method creates a new UnivariateMaternDnu object and returns a pointer to it.

# Returns

A pointer to the new UnivariateMaternDnu object.

# 8.74.4 Member Data Documentation

## 8.74.4.1 plugin name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDnu< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

· UnivariateMaternDnu.hpp

# 8.75 exageostat::kernels::UnivariateMaternDsigmaSquare< T > Class Template Reference

A class representing a Univariate Matern Dsigma Square kernel.

```
#include <UnivariateMaternDsigmaSquare.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariateMaternDsigmaSquare< T >:



## **Public Member Functions**

UnivariateMaternDsigmaSquare ()

Constructs a new UnivariateMaternDsigmaSquare object.

~UnivariateMaternDsigmaSquare () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

# **Static Public Member Functions**

static Kernel < T > \* Create ()

Creates a new UnivariateMaternDsigmaSquare object.

# **Static Private Attributes**

• static bool plugin\_name

#### **Additional Inherited Members**

# 8.75.1 Detailed Description

```
template < typename T > class exageostat::kernels::UnivariateMaternDsigmaSquare < T >
```

A class representing a Univariate Matern Dsigma Square kernel.

This class represents a Univariate Matern Dsigma Square, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

## 8.75.2 Constructor & Destructor Documentation

# 8.75.2.1 UnivariateMaternDsigmaSquare()

```
\label{template} \begin{tabular}{ll} template < typename T > \\ exageostat::kernels::UnivariateMaternDsigmaSquare < T >::UnivariateMaternDsigmaSquare () \\ \end{tabular}
```

Constructs a new UnivariateMaternDsigmaSquare object.

Initializes a new UnivariateMaternDsigmaSquare object with default values.

# 8.75.2.2 ~UnivariateMaternDsigmaSquare()

```
template<typename T >
exageostat::kernels::UnivariateMaternDsigmaSquare< T >::~UnivariateMaternDsigmaSquare ()
[override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

# 8.75.3 Member Function Documentation

# 8.75.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Parameters**

| out | apMatrixA       | The output covariance matrix.                                             |
|-----|-----------------|---------------------------------------------------------------------------|
| in  | aRowsNumber     | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber  | The number of columns in the output matrix.                               |
| in  | aRowOffset      | The row offset for the input locations.                                   |
| in  | aColumnOffset   | The column offset for the input locations.                                |
| in  | apLocation1     | The set of input locations 1.                                             |
| in  | apLocation2     | The set of input locations 2.                                             |
| in  | apLocation3     | The set of input locations 3.                                             |
| in  | aLocalTheta     | An array of kernel parameters.                                            |
| in  | aDistanceMetric | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

# Returns

void

Implements exageostat::kernels::Kernel < T >.

# 8.75.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternDsigmaSquare< T >::Create () [static]
```

Creates a new UnivariateMaternDsigmaSquare object.

This method creates a new UnivariateMaternDsigmaSquare object and returns a pointer to it.

# Returns

A pointer to the new UnivariateMaternDsigmaSquare object.

# 8.75.4 Member Data Documentation

# 8.75.4.1 plugin\_name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternDsigmaSquare< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• UnivariateMaternDsigmaSquare.hpp

# 8.76 exageostat::kernels::UnivariateMaternNonGaussian< T > Class Template Reference

A class representing a Univariate Matern Non Gaussian kernel.

#include <UnivariateMaternNonGaussian.hpp>

Inheritance diagram for exageostat::kernels::UnivariateMaternNonGaussian< T >:



## **Public Member Functions**

UnivariateMaternNonGaussian ()

Constructs a new UnivariateMaternNonGaussian object.

~UnivariateMaternNonGaussian () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Static Public Member Functions**

static Kernel < T > \* Create ()

Creates a new UnivariateMaternNonGaussian object.

## **Static Private Attributes**

· static bool plugin\_name

## **Additional Inherited Members**

# 8.76.1 Detailed Description

 $\label{template} \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateMaternNonGaussian} < \mbox{T} > \\ \mbox{topselder}  

A class representing a Univariate Matern Non Gaussian kernel.

This class represents a Univariate Matern Non Gaussian, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

## 8.76.2 Constructor & Destructor Documentation

## 8.76.2.1 UnivariateMaternNonGaussian()

```
\label{template} \begin{tabular}{ll} template < typename $T >$ \\ exageostat::kernels::UnivariateMaternNonGaussian < $T >$::UnivariateMaternNonGaussian () \\ \end{tabular}
```

Constructs a new UnivariateMaternNonGaussian object.

Initializes a new UnivariateMaternNonGaussian object with default values.

#### 8.76.2.2 ~UnivariateMaternNonGaussian()

```
\label{template} $$ \text{template}$$ $$ \text{template}$$ \text{typename T} > $$ \text{exageostat::kernels::UnivariateMaternNonGaussian} () [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

## 8.76.3 Member Function Documentation

# 8.76.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Parameters**

| out         | apMatrixA         | The output covariance matrix.               |
|-------------|-------------------|---------------------------------------------|
| in          | aRowsNumber       | The number of rows in the output matrix.    |
| in          | aColumnsNumber    | The number of columns in the output matrix. |
| in          | aRowOffset        | The row offset for the input locations.     |
| Generated b | y BoxygermnOffset | The column offset for the input locations.  |
| in          | apLocation1       | The set of input locations 1.               |
| in          | apLocation2       | The set of input locations 2.               |
| in          | apLocation3       | The set of input locations 3.               |

Returns

void

Implements exageostat::kernels::Kernel < T >.

## 8.76.3.2 Create()

```
\label{template} $$ template < typename T > $$ static Kernel < T > * exageostat::kernels::Univariate Matern Non Gaussian < T > ::Create () [static]
```

Creates a new UnivariateMaternNonGaussian object.

This method creates a new UnivariateMaternNonGaussian object and returns a pointer to it.

Returns

A pointer to the new UnivariateMaternNonGaussian object.

# 8.76.4 Member Data Documentation

#### 8.76.4.1 plugin\_name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternNonGaussian< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• UnivariateMaternNonGaussian.hpp

# 8.77 exageostat::kernels::UnivariateMaternNuggetsStationary< T > Class Template Reference

A class representing a Univariate Matern Nuggets Stationary kernel.

```
#include <UnivariateMaternNuggetsStationary.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariateMaternNuggetsStationary< T >:

```
exageostat::kernels::Kernel< T >

exageostat::kernels::UnivariateMaternNuggetsStationary< T >
```

## **Public Member Functions**

• UnivariateMaternNuggetsStationary ()

Constructs a new UnivariateMaternNuggetsStationary object.

~UnivariateMaternNuggetsStationary () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns⇔ Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1, dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

## Static Public Member Functions

static Kernel < T > \* Create ()

Creates a new UnivariateMaternNuggetsStationary object.

# **Static Private Attributes**

· static bool plugin\_name

# **Additional Inherited Members**

# 8.77.1 Detailed Description

```
template < typename T > class exageostat::kernels::UnivariateMaternNuggetsStationary < T >
```

A class representing a Univariate Matern Nuggets Stationary kernel.

This class represents a Univariate Matern Nuggets Stationary, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

## 8.77.2 Constructor & Destructor Documentation

## 8.77.2.1 UnivariateMaternNuggetsStationary()

```
\label{template} \begin{tabular}{ll} template < typename $T >$ \\ exageostat::kernels::UnivariateMaternNuggetsStationary < $T >$::UnivariateMaternNuggetsStationary \\ () \end{tabular}
```

Constructs a new UnivariateMaternNuggetsStationary object.

Initializes a new UnivariateMaternNuggetsStationary object with default values.

# 8.77.2.2 ~UnivariateMaternNuggetsStationary()

```
\label{template} $$\text{typename T} > $$ exageostat::kernels::UnivariateMaternNuggetsStationary< T} >::\sim UnivariateMaternNuggetsStationary () [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

## 8.77.3 Member Function Documentation

## 8.77.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

## **Parameters**

| out | apMatrixA       | The output covariance matrix.                                             |
|-----|-----------------|---------------------------------------------------------------------------|
| in  | aRowsNumber     | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber  | The number of columns in the output matrix.                               |
| in  | aRowOffset      | The row offset for the input locations.                                   |
| in  | aColumnOffset   | The column offset for the input locations.                                |
| in  | apLocation1     | The set of input locations 1.                                             |
| in  | apLocation2     | The set of input locations 2.                                             |
| in  | apLocation3     | The set of input locations 3.                                             |
| in  | aLocalTheta     | An array of kernel parameters.                                            |
| in  | aDistanceMetric | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

#### Returns

void

Implements exageostat::kernels::Kernel < T >.

## 8.77.3.2 Create()

```
\label{template} $$ template < typename T > $$ static Kernel < T > * exageostat::kernels::UnivariateMaternNuggetsStationary < T >::Create () [static]
```

Creates a new UnivariateMaternNuggetsStationary object.

This method creates a new UnivariateMaternNuggetsStationary object and returns a pointer to it.

Returns

A pointer to the new UnivariateMaternNuggetsStationary object.

## 8.77.4 Member Data Documentation

## 8.77.4.1 plugin\_name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternNuggetsStationary< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

· UnivariateMaternNuggetsStationary.hpp

# 8.78 exageostat::kernels::UnivariateMaternStationary< T > Class Template Reference

A class representing a Univariate Matern Stationary kernel.

```
#include <UnivariateMaternStationary.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariateMaternStationary< T >:



## **Public Member Functions**

UnivariateMaternStationary ()

Constructs a new UnivariateMaternStationary object.

~UnivariateMaternStationary () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns↔
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

# **Static Public Member Functions**

static Kernel < T > \* Create ()
 Creates a new UnivariateMaternStationary object.

## **Static Private Attributes**

• static bool plugin\_name

# **Additional Inherited Members**

# 8.78.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateMaternStationary} < \mbox{T} > \\ \mbox{topse} > \mbox{topse} > \mbox{topse} > \\ \mbox{topse} > \mbox{topse} > \mbox{topse} > \\ \mbox{topse} > \\ \mbox{to
```

A class representing a Univariate Matern Stationary kernel.

This class represents a Univariate Matern Stationary, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

# 8.78.2 Constructor & Destructor Documentation

# 8.78.2.1 UnivariateMaternStationary()

```
\label{template} \mbox{template<typename T >} \\ \mbox{exageostat::kernels::UnivariateMaternStationary< T >::UnivariateMaternStationary ()} \\
```

Constructs a new UnivariateMaternStationary object.

Initializes a new UnivariateMaternStationary object with default values.

# 8.78.2.2 ~UnivariateMaternStationary()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariateMaternStationary () [override], $$ [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

# 8.78.3 Member Function Documentation

#### 8.78.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Parameters**

| out | apMatrixA                                 | The output covariance matrix.                                             |
|-----|-------------------------------------------|---------------------------------------------------------------------------|
| in  | aRowsNumber                               | The number of rows in the output matrix.                                  |
| in  | aColumnsNumber                            | The number of columns in the output matrix.                               |
| in  | aRowOffset                                | The row offset for the input locations.                                   |
| in  | aColumnOffset                             | The column offset for the input locations.                                |
| in  | apLocation1 The set of input locations 1. |                                                                           |
| in  | apLocation2                               | The set of input locations 2.                                             |
| in  | apLocation3                               | The set of input locations 3.                                             |
| in  | aLocalTheta                               | An array of kernel parameters.                                            |
| in  | aDistanceMetric                           | Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski). |

#### Returns

void

Implements exageostat::kernels::Kernel < T >.

#### 8.78.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariateMaternStationary< T >::Create () [static]
```

Creates a new UnivariateMaternStationary object.

This method creates a new UnivariateMaternStationary object and returns a pointer to it.

#### Returns

A pointer to the new UnivariateMaternStationary object.

288 Class Documentation

# 8.78.4 Member Data Documentation

#### 8.78.4.1 plugin name

```
template<typename T >
bool exageostat::kernels::UnivariateMaternStationary< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

· UnivariateMaternStationary.hpp

# 8.79 exageostat::kernels::UnivariatePowExpStationary< T > Class Template Reference

A class representing a Univariate PowExp Stationary kernel.

```
#include <UnivariatePowExpStationary.hpp>
```

Inheritance diagram for exageostat::kernels::UnivariatePowExpStationary< T >:



#### **Public Member Functions**

UnivariatePowExpStationary ()

Constructs a new UnivariatePowExpStationary object.

~UnivariatePowExpStationary () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T \*apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T \*apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

#### **Static Public Member Functions**

static Kernel < T > \* Create ()

Creates a new UnivariatePowExpStationary object.

#### **Static Private Attributes**

• static bool plugin\_name

#### **Additional Inherited Members**

## 8.79.1 Detailed Description

```
\label{template} \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariatePowExpStationary} < \mbox{T} > \\ \mbox{tonary} < \mbox{T} > \\ \m
```

A class representing a Univariate PowExp Stationary kernel.

This class represents a Univariate PowExp Stationary, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

#### 8.79.2 Constructor & Destructor Documentation

#### 8.79.2.1 UnivariatePowExpStationary()

```
\label{template} $$ template < typename T > $$ exageostat::kernels::UnivariatePowExpStationary T >::UnivariatePowExpStationary () $$ $$ $$
```

Constructs a new UnivariatePowExpStationary object.

Initializes a new UnivariatePowExpStationary object with default values.

#### 8.79.2.2 ∼UnivariatePowExpStationary()

```
\label{template} $$\text{template}$$ $$\text{template}$$ $\text{template}$$ ```

Virtual destructor to allow calls to the correct concrete destructor.

8.79.3 Member Function Documentation

290 Class Documentation

8.79.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.
in	in aRowsNumber The number of rows in the output matrix.	
in	in aColumnsNumber The number of columns in the output matrix.	
in	aRowOffset	The row offset for the input locations.
in	aColumnOffset	The column offset for the input locations.
in	apLocation1	The set of input locations 1.
in	apLocation2	The set of input locations 2.
in	apLocation3	The set of input locations 3.
in	aLocalTheta	An array of kernel parameters.
in	aDistanceMetric	Distance metric to be used (1 = Euclidean, 2 = Manhattan, 3 = Minkowski).

Returns

void

Implements exageostat::kernels::Kernel < T >.

8.79.3.2 Create()

```
template<typename T >
static Kernel<T>* exageostat::kernels::UnivariatePowExpStationary< T >::Create ( ) [static]
```

Creates a new UnivariatePowExpStationary object.

This method creates a new UnivariatePowExpStationary object and returns a pointer to it.

Returns

A pointer to the new UnivariatePowExpStationary object.

8.79.4 Member Data Documentation

8.79.4.1 plugin_name

```
template<typename T >
bool exageostat::kernels::UnivariatePowExpStationary< T >::plugin_name [static], [private]
```

The documentation for this class was generated from the following file:

• UnivariatePowExpStationary.hpp

292 Class Documentation

8.80 exageostat::kernels::UnivariateSpacetimeMaternStationary< T > Class Template Reference

A class representing a Univariate Spacetime Matern Stationary kernel.

#include <UnivariateSpacetimeMaternStationary.hpp>

Inheritance diagram for exageostat::kernels::UnivariateSpacetimeMaternStationary< T >:

Public Member Functions

UnivariateSpacetimeMaternStationary ()

Constructs a new UnivariateSpacetimeMaternStationary object.

~UnivariateSpacetimeMaternStationary () override=default

Virtual destructor to allow calls to the correct concrete destructor.

void GenerateCovarianceMatrix (T *apMatrixA, const int &aRowsNumber, const int &aColumns←
Number, const int &aRowOffset, const int &aColumnOffset, dataunits::Locations< T > &aLocation1,
dataunits::Locations< T > &aLocation2, dataunits::Locations< T > &aLocation3, T *apLocalTheta, const
int &aDistanceMetric) override

Generates a covariance matrix using a set of locations and kernel parameters.

Static Public Member Functions

static Kernel < T > * Create ()

Creates a new UnivariateSpacetimeMaternStationary object.

Static Private Attributes

• static bool plugin_name

Additional Inherited Members

8.80.1 Detailed Description

 $\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class exageostat::kernels::UnivariateSpacetimeMaternStationary} < \mbox{T} > \\ \mbox{typename T} > \\ \mbox{type$

A class representing a Univariate Spacetime Matern Stationary kernel.

This class represents a Univariate Spacetime Matern Stationary, which is a subclass of the Kernel class. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

8.80.2 Constructor & Destructor Documentation

8.80.2.1 UnivariateSpacetimeMaternStationary()

Constructs a new UnivariateSpacetimeMaternStationary object.

Initializes a new UnivariateSpacetimeMaternStationary object with default values.

8.80.2.2 ~UnivariateSpacetimeMaternStationary()

```
template<typename T >
exageostat::kernels::UnivariateSpacetimeMaternStationary< T >::~UnivariateSpacetimeMaternStationary
( ) [override], [default]
```

Virtual destructor to allow calls to the correct concrete destructor.

8.80.3 Member Function Documentation

8.80.3.1 GenerateCovarianceMatrix()

Generates a covariance matrix using a set of locations and kernel parameters.

Generates a covariance matrix using a set of locations and kernel parameters.

Parameters

out	apMatrixA	The output covariance matrix.	
in	aRowsNumber	The number of rows in the output matrix.	
in	aColumnsNumber	The number of columns in the output matrix.	1
in Generated b	aRowOffset	The row offset for the input locations.	-
in	aColumnOffset	The column offset for the input locations.]
in	apLocation1	The set of input locations 1.	-
in	apLocation2	The set of input locations 2.	1

294 Class Documentation

Returns

void

Implements exageostat::kernels::Kernel< T >.

8.80.3.2 Create()

```
\label{template} $$ template< typename T>$ static Kernel< T>* exageostat::kernels::UnivariateSpacetimeMaternStationary< T>::Create () [static]
```

Creates a new UnivariateSpacetimeMaternStationary object.

This method creates a new UnivariateSpacetimeMaternStationary object and returns a pointer to it.

Returns

A pointer to the new UnivariateSpacetimeMaternStationary object.

8.80.4 Member Data Documentation

8.80.4.1 plugin_name

```
template<typename T >
bool exageostat::kernels::UnivariateSpacetimeMaternStationary< T >::plugin_name [static],
[private]
```

The documentation for this class was generated from the following file:

• UnivariateSpacetimeMaternStationary.hpp

Chapter 9

File Documentation

9.1 BasselFunction.hpp File Reference

This file contains the BasselFunction class which provides methods for computing derivatives of the modified Bessel function of the second kind. These functions are crucial in statistical and mathematical computations, especially in fields such as geostatistics and spatial analysis.

#include <common/Definitions.hpp>

Classes

class exageostat::helpers::BasselFunction< T >

The BasselFunction class provides methods for computing various derivatives of the modified Bessel function of the second kind, ($K_{\ln n}$). This class is templated to support both float and double data types, enabling precision-based computations as required by different applications.

Namespaces

- · exageostat
- exageostat::helpers

9.1.1 Detailed Description

This file contains the BasselFunction class which provides methods for computing derivatives of the modified Bessel function of the second kind. These functions are crucial in statistical and mathematical computations, especially in fields such as geostatistics and spatial analysis.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-01-24

9.2 BivariateMaternFlexible.hpp File Reference

Defines the BivariateMaternFlexible class, a Bivariate Matern Flexible kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::BivariateMaternFlexible < T >
 A class representing a Bivariate Matern Flexible kernel.

Namespaces

- exageostat
- exageostat::kernels

9.2.1 Detailed Description

Defines the BivariateMaternFlexible class, a Bivariate Matern Flexible kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar Mary Lai Salvana

Date

2023-04-14

9.3 BivariateMaternParsimonious.hpp File Reference

Defines the BivariateMaternParsimonious class, a Bivariate Matern Parsimonious kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

- class exageostat::kernels::BivariateMaternParsimonious < T >

A class representing a Bivariate Matern Parsimonious kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.3.1 Detailed Description

Defines the BivariateMaternParsimonious class, a Bivariate Matern Parsimonious kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.4 BivariateSpacetimeMaternStationary.hpp File Reference

Defines the BivariateSpacetimeMaternStationary class, a Bivariate Spacetime Matern Stationary kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::BivariateSpacetimeMaternStationary < T >
 A class representing a Bivariate Spacetime Matern Stationary kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.4.1 Detailed Description

Defines the BivariateSpacetimeMaternStationary class, a Bivariate Spacetime Matern Stationary kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.5 ByteHandler.hpp File Reference

Implementation of byte manipulation functions for ExaGeoStat.

```
#include <memory>
```

Namespaces

- · exageostat
- exageostat::helpers

Functions

- uint64_t exageostat::helpers::SpreadBits (uint64_t aInputByte)
 - Spread bits by three spaces.
- uint64_t exageostat::helpers::ReverseSpreadBits (uint64_t alnputByte)

Reverse Spread bits operation.

bool exageostat::helpers::CompareUint64 (const uint64_t &aFirstValue, const uint64_t &aSecondValue)
 Compares two Unit64 values.

9.5.1 Detailed Description

Implementation of byte manipulation functions for ExaGeoStat.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-01-24

9.6 ChameleonDense.hpp File Reference

 $\verb|#include| < linear-algebra-solvers/concrete/chameleon/ChameleonImplementation. \\ \leftarrow \verb|hpp>|$

Classes

class exageostat::linearAlgebra::dense::ChameleonDense < T >
 ChameleonImplementationDense is a concrete implementation for dense matrices using Chameleon...

Namespaces

- · exageostat
- · exageostat::linearAlgebra
- exageostat::linearAlgebra::dense

9.7 ChameleonDescriptor.hpp File Reference

Defines the ChameleonDescriptor class for creating matrix descriptors using the CHAMELEON library.

```
#include <linear-algebra-solvers/concrete/ChameleonHeaders.hpp>
#include <common/Definitions.hpp>
```

Classes

class exageostat::dataunits::descriptor::ChameleonDescriptor < T >
 ChameleonDescriptor is a class for creating matrix descriptors by CHAMELEON library.

Namespaces

- · exageostat
- · exageostat::dataunits
- · exageostat::dataunits::descriptor

9.7.1 Detailed Description

Defines the ChameleonDescriptor class for creating matrix descriptors using the CHAMELEON library.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-08-15

9.8 ChameleonDST.hpp File Reference

 $\verb|#include| < linear-algebra-solvers/concrete/chameleon/ChameleonImplementation. \\ \leftarrow \verb|hpp>|$

Classes

class exageostat::linearAlgebra::diagonalSuperTile::ChameleonDST< T >

ChameleonImplementationDST is a concrete implementation of LinearAlgebraMethods class for diagonal super tile matrices.

Namespaces

- · exageostat
- exageostat::linearAlgebra
- exageostat::linearAlgebra::diagonalSuperTile

9.9 ChameleonHeaders.hpp File Reference

This file contains the necessary includes for using the Chameleon library.

```
#include <chameleon.h>
#include <control/async.h>
#include <control/descriptor.h>
#include <control/context.h>
#include <include/chameleon/flops.h>
#include <coreblas.h>
```

9.9.1 Detailed Description

This file contains the necessary includes for using the Chameleon library.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2023-08-24

9.10 ChameleonImplementation.hpp File Reference

This file contains the declaration of ChameleonImplementation class.

```
#include <linear-algebra-solvers/LinearAlgebraMethods.hpp>
```

Classes

class exageostat::linearAlgebra::ChameleonImplementation < T >
 ChameleonImplementation is a concrete implementation of LinearAlgebraMethods class for dense or diagonal-super tile matrices.

Namespaces

- · exageostat
- exageostat::linearAlgebra

9.10.1 Detailed Description

This file contains the declaration of ChameleonImplementation class.

ChameleonImplementation is a concrete implementation of the LinearAlgebraMethods class for the common functionality implementation shared between dense and diagonal-super tile matrices.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-03-20

9.11 ChameleonStarPuHelpers.hpp File Reference

A class for Chameleon implementation of StarPu helpers interface StarPuHelpers.hpp.

#include <runtime/starpu/helpers/StarPuHelpers.hpp>

Classes

class exageostat::runtime::ChameleonStarPuHelpers
 ChameleonStarPuHelpers is a concrete implementation of StarPuHelpers interface for Chameleon library.

Namespaces

- · exageostat
- · exageostat::runtime

9.11.1 Detailed Description

A class for Chameleon implementation of StarPu helpers interface StarPuHelpers.hpp.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-02-25

9.12 CommunicatorMPI.hpp File Reference

Defines the CommunicatorMPI class for MPI rank communication.

Classes

class exageostat::helpers::CommunicatorMPI
 A class for Communicating MPI rank.

Namespaces

- · exageostat
- exageostat::helpers

9.12.1 Detailed Description

Defines the CommunicatorMPI class for MPI rank communication.

Version

1.1.0

Author

Sameh Abdulah

Date

2023-11-10

9.13 Configurations.hpp File Reference

Contains the declaration of the Configurations class and its member functions.

```
#include <vector>
#include <unordered_map>
#include <any>
#include <common/Definitions.hpp>
```

Classes

· class exageostat::configurations::Configurations

Contains methods to set and get.

Namespaces

- · exageostat
- · exageostat::configurations

Macros

• #define CREATE_SETTER_FUNCTION(name, type, argument_name, dictionary_name)

Macro that generates a setter function for a member variable.

• #define CREATE_GETTER_FUNCTION(name, type, dictionary_name)

Macro that generates a getter function for a member variable.

9.13.1 Detailed Description

Contains the declaration of the Configurations class and its member functions.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-04

9.13.2 Macro Definition Documentation

9.13.2.1 CREATE_SETTER_FUNCTION

Macro that generates a setter function for a member variable.

This macro generates a function named Set##name that takes an argument of the specified type and sets the member variable with the specified name to the value of the argument. The name of the member variable is used as the key to set the corresponding value in the specified dictionary.

Parameters

	in	name	The name of the member variable to be set.	
	in	in <i>type</i> The data type of the member variable.		
	in	argument_name	The name of the argument to the generated function.	
ĺ	in	in dictionary_name The name of the dictionary to set the value in		

9.13.2.2 CREATE_GETTER_FUNCTION

Macro that generates a getter function for a member variable.

This macro generates a function named Get##name that returns the value of the member variable with the specified name from the specified dictionary.

Parameters

in	name	The name of the member variable to be retrieved. The data type of the member variable. ry_name The name of the dictionary to retrieve the value from.	
in	type		
in	dictionary_name		

9.14 CSVLoader.hpp File Reference

A class for generating synthetic data.

```
#include <data-loader/DataLoader.hpp>
```

Classes

class exageostat::dataLoader::csv::CSVLoader< T >
 A class for creating data by reading CSV files.

Namespaces

- exageostat
- exageostat::dataLoader
- exageostat::dataLoader::csv

9.14.1 Detailed Description

A class for generating synthetic data.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-04

9.15 DataGenerator.hpp File Reference

Contains definition for abstract Data Generator Class.

```
#include <linear-algebra-solvers/LinearAlgebraFactory.hpp>
#include <linear-algebra-solvers/LinearAlgebraMethods.hpp>
```

Classes

class exageostat::generators::DataGenerator< T >
 Abstract base class for generating synthetic or real data.

Namespaces

- exageostat
- exageostat::generators

9.15.1 Detailed Description

Contains definition for abstract Data Generator Class.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2023-02-14

9.16 DataLoader.hpp File Reference

Manages data loading operations for ExaGeoStat.

#include <data-generators/DataGenerator.hpp>

Classes

class exageostat::dataLoader::DataLoader< T >
 Extends DataGenerator to include data loading functionalities.

Namespaces

- exageostat
- exageostat::dataLoader

9.16.1 Detailed Description

Manages data loading operations for ExaGeoStat.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-04

9.17 dcmg-codelet.hpp File Reference

A class for starpu codelet dcmg.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::runtime::DCMGCodelet< T >

Namespaces

- · exageostat
- exageostat::runtime

9.17.1 Detailed Description

A class for starpu codelet dcmg.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-19

9.18 ddotp-codelet.hpp File Reference

A class for starpu codelet ddotp.

```
#include <common/Definitions.hpp>
```

Classes

class exageostat::runtime::DDOTPCodelet< T >

Namespaces

- exageostat
- · exageostat::runtime

9.18.1 Detailed Description

A class for starpu codelet ddotp.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

9.19 Definitions.hpp File Reference

This file contains common definitions used in ExaGeoStat software package.

```
#include <set>
#include <filesystem>
```

Namespaces

- · exageostat
- · exageostat::common

Macros

#define EXAGEOSTAT_INSTANTIATE_CLASS(TEMPLATE_CLASS)

Macro definition to instantiate the EXAGEOSTAT template classes with supported types.

- #define SIZE OF FLOAT 4
- #define SIZE OF DOUBLE 8
- #define PI (3.141592653589793)
- #define EARTH_RADIUS 6371.0
- #define Q NORM 1.959964
- #define KERNELS PATH PROJECT SOURCE DIR "/inst/include/kernels/concrete/"
- #define LOG_PATH PROJECT_SOURCE_DIR "/synthetic_ds/"

Typedefs

typedef enum exageostat::common::TileStorage exageostat::common::ExaGeoStatTileStorage

Enumerations

- enum exageostat::common::Verbose { exageostat::common::QUIET_MODE = 0 , exageostat::common::STANDARD_MODE = 1 , exageostat::common::DETAILED_MODE = 2 }
- enum exageostat::common::Dimension { exageostat::common::Dimension2D = 0 , exageostat::common::Dimension3D = 1 , exageostat::common::DimensionST = 2 }

Enum denoting the dimension of generated data.

enum exageostat::common::EXAGEOSTAT_LEFT = 141, exageostat::common::EXAGEOSTAT_R
 = 142 }

Enum denoting the side on which the matrix appears in an equation.

enum exageostat::common::Trans { exageostat::common::EXAGEOSTAT_NO_TRANS = 111 , exageostat::common::EXAGEOSTAT_CONJ_TRANS = 113 }

Enum denoting whether or not to transpose a matrix.

enum exageostat::common::EXAGEOSTAT_NON_UNIT = 131, exageos

Enum denoting whether the diagonal is unitary.

- enum exageostat::common::DistanceMetric { exageostat::common::EUCLIDEAN_DISTANCE = 0 , exageostat::common::GREAT CIRCLE DISTANCE = 1 }
- enum exageostat::common::DescriptorType { exageostat::common::CHAMELEON_DESCRIPTOR = 0 , exageostat::common::HICMA_DESCRIPTOR = 1 }

```
    enum exageostat::common::DataSourceType { exageostat::common::SYNTHETIC = 0 , exageostat::common::CSV_FILE

enum exageostat::common::DescriptorName : int {
 exageostat::common::DESCRIPTOR_C = 0, exageostat::common::DESCRIPTOR_Z = 1, exageostat::common::DESCRIPTOF
 = 2, exageostat::common::DESCRIPTOR PRODUCT = 3,
 exageostat::common::DESCRIPTOR DETERMINANT = 4, exageostat::common::DESCRIPTOR CD = 5,
 exageostat::common::DESCRIPTOR CUV = 6, exageostat::common::DESCRIPTOR CRK = 7,
 exageostat::common::DESCRIPTOR Z OBSERVATIONS = 8, exageostat::common::DESCRIPTOR Z Actual
 = 9, exageostat::common::DESCRIPTOR Z MISS = 10, exageostat::common::DESCRIPTOR MSPE = 11
 exageostat::common::DESCRIPTOR_Z_1 = 12 , exageostat::common::DESCRIPTOR_Z_2 = 13 ,
 exageostat::common::DESCRIPTOR Z 3 = 14 , exageostat::common::DESCRIPTOR PRODUCT 1 =
 exageostat::common::DESCRIPTOR_PRODUCT_2 = 16, exageostat::common::DESCRIPTOR_PRODUCT_3
 = 17, exageostat::common::DESCRIPTOR C11 = 18, exageostat::common::DESCRIPTOR C12 = 19,
 exageostat::common::DESCRIPTOR C22 = 20 , exageostat::common::DESCRIPTOR_C12D = 21
 exageostat::common::DESCRIPTOR C12UV = 22 , exageostat::common::DESCRIPTOR C12RK = 23
 exageostat::common::DESCRIPTOR_C22D = 24 , exageostat::common::DESCRIPTOR_C22UV = 25 ,
 exageostat::common::DESCRIPTOR C22RK = 26, exageostat::common::DESCRIPTOR MSPE 1 = 27,
 exageostat::common::DESCRIPTOR_MSPE_2 = 28 , exageostat::common::DESCRIPTOR_k_T = 29 ,
 exageostat::common::DESCRIPTOR_k_A = 30, exageostat::common::DESCRIPTOR_k_A_TMP = 31,
 exageostat::common::DESCRIPTOR_k_T_TMP = 32 , exageostat::common::DESCRIPTOR_K_T = 33 ,
 exageostat::common::DESCRIPTOR_K_T_TMP = 34, exageostat::common::DESCRIPTOR_K_A = 35,
 exageostat::common::DESCRIPTOR_EXPR_1 = 36, exageostat::common::DESCRIPTOR_EXPR_2 = 37,
 exageostat::common::DESCRIPTOR_EXPR_3 = 38, exageostat::common::DESCRIPTOR_EXPR_4 = 39,
 exageostat::common::DESCRIPTOR MLOE = 40, exageostat::common::DESCRIPTOR MMOM = 41,
 exageostat::common::DESCRIPTOR MLOE MMOM = 42, exageostat::common::DESCRIPTOR ALPHA =
 43.
 exageostat::common::DESCRIPTOR TRUTH ALPHA = 44, exageostat::common::DESCRIPTOR TIMATED ALPHA
 = 45, exageostat::common::DESCRIPTOR CK = 46, exageostat::common::DESCRIPTOR CJ = 47,
 exageostat::common::DESCRIPTOR_C_TRACE = 48 , exageostat::common::DESCRIPTOR_C_DIAG = 49
 , exageostat::common::DESCRIPTOR_A = 50 , exageostat::common::DESCRIPTOR_RESULTS = 51 ,
 exageostat::common::DESCRIPTOR_SUM = 52 , exageostat::common::DESCRIPTOR_R = 53 ,
 exageostat::common::DESCRIPTOR R COPY = 54 }
enum exageostat::common::TileStorage {
 exageostat::common::EXAGOSTAT CM = 101 , exageostat::common::EXAGOSTAT RM = 102 ,
 exageostat::common::EXAGOSTAT CCRB = 103, exageostat::common::EXAGOSTAT CRRB = 104,
 exageostat::common::EXAGOSTAT_RCRB = 105, exageostat::common::EXAGOSTAT_RRRB = 106}

    enum exageostat::common::Computation { exageostat::common::EXACT DENSE = 0 , exageostat::common::DIAGONAL APF

 = 1, exageostat::common::TILE LOW RANK = 2}
    Enum denoting the types of computations that can be requested, to use the required Linear Algebra solver library.
• enum exageostat::common::Precision { exageostat::common::SINGLE = 0 , exageostat::common::DOUBLE
 = 1, exageostat::common::MIXED = 2}
    Enum denoting the precision of operations that are supported to be done on the matrix.

    enum exageostat::common::FloatPoint : int {

 exageostat::common::EXAGEOSTAT_BYTE = 0 , exageostat::common::EXAGEOSTAT_INTEGER = 1 ,
 exageostat::common::EXAGEOSTAT_REAL_FLOAT = 2 , exageostat::common::EXAGEOSTAT_REAL_DOUBLE
 exageostat::common::EXAGEOSTAT COMPLEX FLOAT = 4, exageostat::common::EXAGEOSTAT COMPLEX DOUBLE
 = 5 }
    Enum denoting the floating point arithmetic of the matrix.
enum exageostat::common::UpperLower : int { exageostat::common::EXAGEOSTAT_UPPER = 121
 exageostat::common::EXAGEOSTAT_LOWER = 122, exageostat::common::EXAGEOSTAT_UPPER_LOWER
 = 123
    Enum denoting the Upper/Lower part.
```

 enum exageostat::common::CopyDirection : int { exageostat::common::CHAMELEON_TO_HICMA = 0 , exageostat::common::HICMA_TO_CHAMELEON = 1 }

Enum denoting the copy descriptors flow.

Variables

• static const std::set< std::string > exageostat::common::availableKernels

Set denoting the available kernels supported in matrix generation.

9.19.1 Detailed Description

This file contains common definitions used in ExaGeoStat software package.

Version

1.1.0

These definitions include enums for dimension, computation, precision, and floating point arithmetic; A macro for instantiating template classes with supported types; and a set of available kernels.

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-03-21

9.19.2 Macro Definition Documentation

9.19.2.1 EXAGEOSTAT_INSTANTIATE_CLASS

Value:

```
template class TEMPLATE_CLASS<float>; \
template class TEMPLATE_CLASS<double>;
```

Macro definition to instantiate the EXAGEOSTAT template classes with supported types.

9.19.2.2 SIZE_OF_FLOAT

#define SIZE_OF_FLOAT 4

9.19.2.3 SIZE_OF_DOUBLE

#define SIZE_OF_DOUBLE 8

9.19.2.4 PI

#define PI (3.141592653589793)

Pi value.

9.19.2.5 EARTH_RADIUS

#define EARTH_RADIUS 6371.0

Earth Radius value.

9.19.2.6 Q_NORM

#define Q_NORM 1.959964

Q Norm value.

9.19.2.7 KERNELS_PATH

#define KERNELS_PATH PROJECT_SOURCE_DIR "/inst/include/kernels/concrete/"

Kernel Files Path Definition

9.19.2.8 LOG_PATH

#define LOG_PATH PROJECT_SOURCE_DIR "/synthetic_ds/"

Logging Path Definition

9.20 DescriptorData.hpp File Reference

Contains the definition of the DescriptorData class.

```
#include <unordered_map>
#include <data-units/descriptor/ExaGeoStatDescriptor.hpp>
#include <hardware/ExaGeoStatHardware.hpp>
```

Classes

union exageostat::dataunits::BaseDescriptor

Union representing the base descriptor.

class exageostat::dataunits::DescriptorData< T >

Manages geo-statistical descriptor data with functions for retrieving and manipulating descriptors.

Namespaces

- · exageostat
- · exageostat::dataunits

9.20.1 Detailed Description

Contains the definition of the DescriptorData class.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-07-18

9.21 DistanceCalculationHelpers.hpp File Reference

Contains the definition of the DistanceCalculationHelpers class.

```
#include <data-units/Locations.hpp>
```

Classes

- class exageostat::helpers::DistanceCalculationHelpers $\!<$ T $\!>$

Class to calculate the distance between two points.

Namespaces

- · exageostat
- exageostat::helpers

9.21.1 Detailed Description

Contains the definition of the DistanceCalculationHelpers class.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-06-08

9.22 dmdet-codelet.hpp File Reference

A class for starpu codelet dmdet.

#include <runtime/starpu/helpers/StarPuHelpers.hpp>

Classes

class exageostat::runtime::DMDETCodelet< T >

Namespaces

- exageostat
- · exageostat::runtime

9.22.1 Detailed Description

A class for starpu codelet dmdet.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-21

9.23 dmloe-mmom-codelet.hpp File Reference

A class for starpu codelet dmloe-mmom.

#include <common/Definitions.hpp>

Classes

- class exageostat::runtime::DmloeMmomCodelet< T >

Namespaces

- exageostat
- exageostat::runtime

9.23.1 Detailed Description

A class for starpu codelet dmloe-mmom.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-19

9.24 dmse-bivariate-codelet.hpp File Reference

A class for starpu codelet dmse-bivariate.

```
#include <common/Definitions.hpp>
```

Classes

class exageostat::runtime::DMSEBivariateCodelet< T >

Namespaces

- exageostat
- exageostat::runtime

9.24.1 Detailed Description

A class for starpu codelet dmse-bivariate.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

9.25 dmse-codelet.hpp File Reference

A class for starpu codelet dmse.

```
#include <common/Definitions.hpp>
```

Classes

class exageostat::runtime::DMSECodelet< T >

Namespaces

- · exageostat
- exageostat::runtime

9.25.1 Detailed Description

A class for starpu codelet dmse.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-21

9.26 dtrace-codelet.hpp File Reference

A class for starpu codelet dtrace.

```
#include <common/Definitions.hpp>
```

Classes

class exageostat::runtime::DTRACECodelet< T >

Namespaces

- exageostat
- · exageostat::runtime

9.26.1 Detailed Description

A class for starpu codelet dtrace.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

9.27 dzcpy-codelet.hpp File Reference

A class for starpu codelet dzcpy.

```
#include <common/Definitions.hpp>
```

Classes

class exageostat::runtime::DZCPYCodelet< T >

Namespaces

- · exageostat
- · exageostat::runtime

9.27.1 Detailed Description

A class for starpu codelet dzcpy.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

9.28 EnumStringParser.hpp File Reference

Provides utility functions for parsing enumeration values from strings.

```
#include <algorithm>
#include <utilities/ErrorHandler.hpp>
#include <common/Definitions.hpp>
```

Functions

- exageostat::common::Computation GetInputComputation (std::string aComputation)
 - Convert a string representation of computation mode to its corresponding enum value.
- exageostat::common::Dimension GetInputDimension (std::string aDimension)

Converts string to dimension enum.

9.28.1 Detailed Description

Provides utility functions for parsing enumeration values from strings.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-01-20

9.28.2 Function Documentation

9.28.2.1 GetInputComputation()

Convert a string representation of computation mode to its corresponding enum value.

Parameters

in	aComputation	String representation of computation mode.
----	--------------	--

Returns

Computation enum value.

9.28.2.2 GetInputDimension()

Converts string to dimension enum.

Parameters

in	aDimension	Dimension as a string.

Returns

Dimension as an enum.

9.29 ErrorHandler.hpp File Reference

Provides error handling functionalities.

Classes

class APIException

Custom exception class for handling API errors and warnings.

Macros

• #define API_EXCEPTION(MESSAGE, ERROR_TYPE) APIException(MESSAGE, ERROR_TYPE) EXAGEOSTAT API Exceptions Macro to use for Errors and Warnings.

Enumerations

 enum ErrorType : int { RUNTIME_ERROR = 0 , RANGE_ERROR = 1 , INVALID_ARGUMENT_ERROR = 2 , WARNING = 3 }

Enumeration for error types.

9.29.1 Detailed Description

Provides error handling functionalities.

Version

1.1.0

Defines macros and functions for handling errors and warnings.

Author

Mahmoud ElKarargy

David Helmy

Date

2024-01-20

9.29.2 Macro Definition Documentation

9.29.2.1 API_EXCEPTION

EXAGEOSTAT API Exceptions Macro to use for Errors and Warnings.

9.29.3 Enumeration Type Documentation

9.29.3.1 ErrorType

```
enum ErrorType : int
```

Enumeration for error types.

Enumerator

RUNTIME_ERROR	
RANGE_ERROR	
INVALID_ARGUMENT_ERROR	
WARNING	

9.30 ExaGeoStat.hpp File Reference

High-Level Wrapper class containing the static API for ExaGeoStat operations.

```
#include <nlopt.hpp>
#include <configurations/Configurations.hpp>
#include <data-units/ExaGeoStatData.hpp>
```

Classes

class exageostat::api::ExaGeoStat< T >

High-Level Wrapper class containing the static API for ExaGeoStat operations.

Namespaces

- · exageostat
- · exageostat::api

9.30.1 Detailed Description

High-Level Wrapper class containing the static API for ExaGeoStat operations.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-02-04

9.31 ExaGeoStatData.hpp File Reference

Contains the definition of the ExaGeoStatData class.

```
#include <data-units/DescriptorData.hpp>
#include <data-units/Locations.hpp>
```

Classes

class ExaGeoStatData< T >

Manages geo-statistical data with functions for location and descriptor manipulation.

9.31.1 Detailed Description

Contains the definition of the ExaGeoStatData class.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-04

9.32 ExaGeoStatDescriptor.hpp File Reference

Class for creating matrix descriptors used in CHAMELEON and HiCMA libraries.

```
#include <linear-algebra-solvers/concrete/ChameleonHeaders.hpp>
#include <linear-algebra-solvers/concrete/HicmaHeaders.hpp>
#include <common/Definitions.hpp>
```

Classes

class exageostat::dataunits::descriptor::ExaGeoStatDescriptor< T >
 ExaGeoStatDescriptor is a class for creating matrix descriptors used in CHAMELEON and HiCMA libraries.

Namespaces

- · exageostat
- · exageostat::dataunits
- · exageostat::dataunits::descriptor

9.32.1 Detailed Description

Class for creating matrix descriptors used in CHAMELEON and HiCMA libraries.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-07-16

9.33 ExaGeoStatHardware.hpp File Reference

Contains the definition of the ExaGeoStatHardware class.

```
#include <common/Definitions.hpp>
```

Classes

· class ExaGeoStatHardware

Class representing the hardware configuration for the ExaGeoStat solver.

9.33.1 Detailed Description

Contains the definition of the ExaGeoStatHardware class.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-01-24

9.34 FunctionsAdapter.hpp File Reference

```
#include <Rcpp.h>
#include <configurations/Configurations.hpp>
#include <data-units/ExaGeoStatData.hpp>
```

Namespaces

- · exageostat
- · exageostat::adapters

Functions

- Rcpp::NumericVector exageostat::adapters::R_GetLocationX (ExaGeoStatData < double > *apData)
 Retrieves X coordinates of locations from ExaGeoStat data.
- Rcpp::NumericVector exageostat::adapters::R_GetLocationY (ExaGeoStatData< double > *apData)

 *Retrieves Y coordinates of locations from ExaGeoStat data.
- Rcpp::NumericVector exageostat::adapters::R_GetLocationZ (ExaGeoStatData < double > *apData)
 Retrieves Z coordinates of locations from ExaGeoStat data.
- Rcpp::NumericVector exageostat::adapters::R_GetDescZValues (ExaGeoStatData< double > *apData, const std::string &aType)

Retrieves descriptive Z values from ExaGeoStat data based on type.

ExaGeoStatData< double > * exageostat::adapters::R_ExaGeoStatLoadData (const std::string &aKernel← Name, const std::vector< double > &aInitialTheta, const std::string &aDistanceMatrix, const int &aProblem← Size, const int &aSeed, const int &aDenseTileSize, const int &aLowTileSize, const std::string &aDimension, const std::string &aLogPath, const std::string &aRecoveryFilePath, const std::string &aObservationsFilePath)

Function to load ExaGeoStat data.

std::vector< double > exageostat::adapters::R_ExaGeoStatModelData (const std::string &aComputation, const std::string &aKernelName, const std::string &aDistanceMatrix, const std::vector< double > &aLower Bound, const std::vector< double > &aUpperBound, const int &aTolerance, const int &aMlelterations, const int &aDenseTileSize, const int &aLowTileSize, const std::string &aDimension, const int &aBand, const int &aMaxRank, SEXP apData, Rcpp::Nullable< Rcpp::NumericVector > aMeasurementsVector=R_NilValue, Rcpp::Nullable< Rcpp::NumericVector > aLocationsY=R_NilValue, Rcpp::NumericVector > aLocationsZ=R_NilValue)

Models ExaGeoStat data using specified arguments.

std::vector< double > exageostat::adapters::R_ExaGeoStatPredictData (const std::string &aKernelName, const std::string &aDistanceMatrix, const std::vector< double > &aEstimatedTheta, const int &aDenseTile <Size, const int &aLowTileSize, const std::string &aDimension, std::vector< std::vector< double >> &a
TrainData, std::vector< std::vector< double >> &aTestData)

Predicts outcomes using ExaGeoStat data and configurations.

std::vector< double > exageostat::adapters::R_ExaGeoStatMLOE_MMOM (const std::string &aKernel← Name, const std::string &aDistanceMatrix, const std::vector< double > &aEstimatedTheta, const std::vector< double > &aTrueTheta, const int &aDenseTileSize, const int &aLowTileSize, const std::string &a← Dimension, std::vector< std::vector< double >> &aTrainData, std::vector< std::vector< double >> &a← TestData)

Calculates the Mean Logarithmic Error (MLOE) and the Mean Measure of Model Output (MMOM) for ExaGeoStat predictions.

std::vector< double > exageostat::adapters::R_ExaGeoStatFisher (const std::string &aKernelName, const std::string &aDistanceMatrix, const std::vector< double > &aEstimatedTheta, const int &aDenseTileSize, const int &aLowTileSize, const std::vector< double >> &aTrainData, std::vector< std::vector< double >> &aTestData)

Computes the Fisher information matrix for ExaGeoStat models.

std::vector< double > exageostat::adapters::R_ExaGeoStatIDW (const std::string &aKernelName, const std::string &aDistanceMatrix, const std::vector< double > &aEstimatedTheta, const int &aDenseTileSize, const int &aLowTileSize, const std::vector< double >> &aTrainData, std::vector< std::vector< double >> &aTestData, std::vector< double > &aTestMeasurementsValues)

Applies Inverse Distance Weighting (IDW) for spatial interpolation using ExaGeoStat data.

double * exageostat::adapters::GetDataFromArguments (Rcpp::Nullable< Rcpp::NumericVector > a←
 MeasurementsVector, Rcpp::Nullable< Rcpp::NumericVector > aLocationsX, Rcpp::Nullable< Rcpp::←
 NumericVector > aLocationsY, Rcpp::Nullable< Rcpp::NumericVector > aLocationsZ, std::unique_ptr<
 ExaGeoStatData< double >> &aData, configurations::Configurations &aConfigurations, const std::string &aKernelName, const std::string &aDistanceMatrix, const int &aDenseTileSize, const int &aLowTileSize, const std::string &aDimension, const common::Computation &aComputation)

Extracts and prepares data from given arguments for ExaGeoStat operations.

void exageostat::adapters::ValidateDataDimensions (const std::vector< std::vector< double >> &aData, const std::string &aDataType)

Validates the dimensions of input data.

 void exageostat::adapters::PredictionSetupHelper (configurations::Configurations &aConfigurations, const std::string &aKernelName, const std::string &aDistanceMatrix, const int &aDenseTileSize, const int &a LowTileSize, const std::string &aDimension, std::vector< std::vector< double >> &aTrainData, std::vector< std::vector< double >> &aTestData, const std::vector< double > &aEstimatedTheta, const std::vector< double >> &aTestMeasurementsValues)

Sets up the prediction environment.

9.35 gaussian-to-non-codelet.hpp File Reference

A class for starpu codelet gaussian-to-non.

#include <common/Definitions.hpp>

Classes

class exageostat::runtime::GaussianCodelet< T >

Namespaces

- exageostat
- · exageostat::runtime

9.35.1 Detailed Description

A class for starpu codelet gaussian-to-non.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

9.36 HicmaDescriptor.hpp File Reference

Defines the Hicma Descriptor class for creating matrix descriptors using the HICMA library.

```
#include <linear-algebra-solvers/concrete/HicmaHeaders.hpp>
#include <common/Definitions.hpp>
```

Classes

class exageostat::dataunits::descriptor::HicmaDescriptor< T >
 HicmaDescriptor is a class for creating matrix descriptors by HICMA library.

- exageostat
- exageostat::dataunits
- exageostat::dataunits::descriptor

9.36.1 Detailed Description

Defines the Hicma Descriptor class for creating matrix descriptors using the HICMA library.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-08-15

9.37 HicmaHeaders.hpp File Reference

This file contains the necessary includes for using the Chameleon library.

9.37.1 Detailed Description

This file contains the necessary includes for using the Chameleon library.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2023-08-24

9.38 Hicmalmplementation.hpp File Reference

This file contains the declaration of Hicmalmplementation class.

#include <linear-algebra-solvers/LinearAlgebraMethods.hpp>

Classes

 class exageostat::linearAlgebra::tileLowRank::HicmaImplementation < T >
 HicmaImplementation is a concrete implementation of LinearAlgebraMethods class for tile low-rank matrices.

Namespaces

- · exageostat
- · exageostat::linearAlgebra
- exageostat::linearAlgebra::tileLowRank

9.38.1 Detailed Description

This file contains the declaration of Hicmalmplementation class.

Hicmalmplementation is a concrete implementation of LinearAlgebraMethods class for tile low-rank matrices.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-03-26

9.39 HicmaStarPuHelpers.hpp File Reference

A class for Hicma implementation of StarPu helpers interface StarPuHelpers.hpp.

#include <runtime/starpu/helpers/StarPuHelpers.hpp>

Classes

• class exageostat::runtime::HicmaStarPuHelpers

HicmaStarPuHelpers is a concrete implementation of StarPuHelpers interface for Hicma library.

- · exageostat
- exageostat::runtime

9.39.1 Detailed Description

A class for Hicma implementation of StarPu helpers interface StarPuHelpers.hpp.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-02-25

9.40 Kernel.hpp File Reference

```
#include <cmath>
#include <starpu.h>
#include <gsl/gsl_sf_bessel.h>
#include <gsl/gsl_sf_psi.h>
#include <common/PluginRegistry.hpp>
#include <data-units/Locations.hpp>
#include <helpers/DistanceCalculationHelpers.hpp>
#include <helpers/BasselFunction.hpp>
```

Classes

- struct exageostat::kernels::KernelsConfigurations
- class exageostat::kernels::Kernel < T >

Namespaces

- exageostat
- exageostat::kernels

Macros

• #define EARTH_RADIUS 6371.0

The radius of the Earth in kilometers.

9.40.1 Macro Definition Documentation

9.40.1.1 EARTH_RADIUS

```
#define EARTH_RADIUS 6371.0
```

The radius of the Earth in kilometers.

This macro defines the radius of the Earth in kilometers, which is used by the Great Circle Distance (GCD) function.

9.41 LinearAlgebraFactory.hpp File Reference

Header file for the LinearAlgebraFactory class, which creates linear algebra solvers based on the input computation type.

```
#include <memory>
#include <common/Definitions.hpp>
#include <data-units/DescriptorData.hpp>
#include clinear-algebra-solvers/LinearAlgebraMethods.hpp>
```

Classes

class exageostat::linearAlgebra::LinearAlgebraFactory< T >

A class that creates linear algebra solvers based on the input computation type.

Namespaces

- · exageostat
- exageostat::linearAlgebra

9.41.1 Detailed Description

Header file for the LinearAlgebraFactory class, which creates linear algebra solvers based on the input computation type.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2023-03-20

9.42 LinearAlgebraMethods.hpp File Reference

Header file for the LinearAlgebraMethods class, which defines the interface for linear algebra solvers.

```
#include <vector>
#include <gsl/gsl_errno.h>
#include <utilities/Logger.hpp>
#include <results/Results.hpp>
#include <data-units/ExaGeoStatData.hpp>
#include <runtime/RuntimeFunctions.hpp>
```

Classes

class exageostat::linearAlgebra::LinearAlgebraMethods

A class that defines the interface for linear algebra solvers.

Namespaces

- · exageostat
- exageostat::linearAlgebra

9.42.1 Detailed Description

Header file for the LinearAlgebraMethods class, which defines the interface for linear algebra solvers.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

This header file defines the abstract class LinearAlgebraMethods, which provides an interface for linear algebra solvers. The purpose of this interface is to allow different concrete linear algebra solvers to be interchangeable, so that they can be used interchangeably by other parts of the software system that rely on linear algebra.

9.43 LocationGenerator.hpp File Reference

Generates and manages spatial locations for ExaGeoStat.

```
#include <data-units/Locations.hpp>
```

Classes

- class exageostat::generators::LocationGenerator< T >

Generates spatial locations based on given parameters.

Namespaces

- · exageostat
- exageostat::generators

9.43.1 Detailed Description

Generates and manages spatial locations for ExaGeoStat.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-02-04

9.44 Locations.hpp File Reference

Header file for the Locations class, which contains methods to set and get location data.

```
#include <common/Definitions.hpp>
```

Classes

- class exageostat::dataunits::Locations < T >

A class containing methods to set and get location data.

- exageostat
- exageostat::dataunits

9.44.1 Detailed Description

Header file for the Locations class, which contains methods to set and get location data.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-02-27

9.45 Logger.hpp File Reference

Provides logging and timing macros for debugging and profiling.

```
#include <iostream>
#include <string>
#include <sys/time.h>
#include <common/Definitions.hpp>
#include <configurations/Configurations.hpp>
#include <helpers/CommunicatorMPI.hpp>
```

Macros

• #define DEFAULT PRECISION 6

The value of the default C++ std::std::cout number of precision.

#define VERBOSE(msg)

Verbose macro for logging and debugging mode.

#define LOGGER_1(msg)

LOGGER 1 macro for logging outputs with double taps and new line at the end.

#define LOGGER_2(msg, A)

LOGGER_2 macro for logging outputs with double taps and without new line at the end.

#define LOGGER_CONTROL(x, A, B, FUNC, ...) FUNC

LOGGER_CONTROL is The internal macro that simply strips the excess and ends up with the required macro.

#define LOGGER(...)

LOGGER macro that's called, Used to logging outputs.

#define LOGGER_PRECISION_1(msg, precision)

LOGGER_PRECISION_1 macro for logging outputs without any taps, without new line at the end, and with customized precision.

• #define LOGGER_PRECISION_2(msg)

LOGGER_PRECISION_2 macro for logging outputs without any taps, without new line at the end, and with default C++ precision.

• #define LOGGER PRECISION CONTROL(x, A, B, FUNC, ...) FUNC

is The internal macro that simply strips the excess and ends up with the required macro

• #define LOGGER_PRECISION(...)

LOGGER_PRECISION macro that's called, Used for logging outputs with precision.

#define START_TIMING(t) auto t##_start = std::chrono::high_resolution_clock::now()

Timing macro to start timing.

#define STOP_TIMING(t)

Timing macro to stop timing.

9.45.1 Detailed Description

Provides logging and timing macros for debugging and profiling.

Defines macros for verbose logging, various levels of logging, and timing.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-04

9.45.2 Macro Definition Documentation

9.45.2.1 DEFAULT_PRECISION

```
#define DEFAULT_PRECISION 6
```

The value of the default C++ std::std::cout number of precision.

9.45.2.2 VERBOSE

```
#define VERBOSE(
```

Value:

```
if(exageostat::configurations::Configurations::GetVerbosity() ==
    exageostat::common::Verbose::DETAILED_MODE && \
   !exageostat::helpers::CommunicatorMPI::GetInstance()->GetRank()) { \
    std::ostringstream oss; \
    oss « "\t\t\t " « msg « std::endl; \
    std::cout « oss.str(); \
}
```

Verbose macro for logging and debugging mode.

9.45.2.3 LOGGER_1

LOGGER 1 macro for logging outputs with double taps and new line at the end.

9.45.2.4 LOGGER_2

LOGGER_2 macro for logging outputs with double taps and without new line at the end.

9.45.2.5 LOGGER_CONTROL

LOGGER_CONTROL is The internal macro that simply strips the excess and ends up with the required macro.

9.45.2.6 LOGGER

LOGGER macro that's called, Used to logging outputs.

9.45.2.7 LOGGER_PRECISION_1

LOGGER_PRECISION_1 macro for logging outputs without any taps, without new line at the end, and with customized precision.

9.45.2.8 LOGGER_PRECISION_2

LOGGER_PRECISION_2 macro for logging outputs without any taps, without new line at the end, and with default C++ precision.

9.45.2.9 LOGGER_PRECISION_CONTROL

is The internal macro that simply strips the excess and ends up with the required macro

9.45.2.10 LOGGER_PRECISION

LOGGER_PRECISION macro that's called, Used for logging outputs with precision.

9.45.2.11 START_TIMING

Timing macro to start timing.

9.45.2.12 STOP_TIMING

Timing macro to stop timing.

9.46 ModelingDataHolders.hpp File Reference

This file contains the definition of the mModelingData struct, which contains all the data needed for modeling.

Classes

struct exageostat::dataunits::mModelingData< T >
 Struct containing all the data needed for modeling.

- · exageostat
- · exageostat::dataunits

9.46.1 Detailed Description

This file contains the definition of the mModelingData struct, which contains all the data needed for modeling.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2023-08-24

9.47 non-gaussian-loglike-codelet.hpp File Reference

A class for starpu codelet non-gaussian-loglike.

```
#include <runtime/starpu/helpers/StarPuHelpers.hpp>
```

Classes

class exageostat::runtime::NonGaussianLoglike < T >
 A class for starpu codelet non gaussian loglike.

Namespaces

- · exageostat
- exageostat::runtime

9.47.1 Detailed Description

A class for starpu codelet non-gaussian-loglike.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-26

9.48 non-gaussian-transform-codelet.hpp File Reference

A class for starpu codelet non-gaussian-transform.

#include <runtime/starpu/helpers/StarPuHelpers.hpp>

Classes

class exageostat::runtime::NonGaussianTransform< T >
 A class for starpu codelet non gaussian transform.

Namespaces

- · exageostat
- · exageostat::runtime

9.48.1 Detailed Description

A class for starpu codelet non-gaussian-transform.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-26

9.49 PluginRegistry.hpp File Reference

Defines a template class for registering and creating plugins.

```
#include <functional>
#include <configurations/Configurations.hpp>
```

Classes

class exageostat::plugins::PluginRegistry< T >
 Template class for registering and creating plugins.

Namespaces

- · exageostat
- exageostat::plugins

9.49.1 Detailed Description

Defines a template class for registering and creating plugins.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2023-04-30

9.50 Prediction.hpp File Reference

Contains the definition of the Prediction class.

```
#include <linear-algebra-solvers/LinearAlgebraMethods.hpp>
```

Classes

- class exageostat::prediction::Prediction < T >

Class to handle different Prediction Module calls.

Namespaces

- · exageostat
- exageostat::prediction

9.50.1 Detailed Description

Contains the definition of the Prediction class.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-06-08

9.51 PredictionAuxiliaryFunctions.hpp File Reference

Contains the definition of the PredictionAuxiliaryFunctions.hpp class.

```
#include <data-units/Locations.hpp>
```

Classes

class exageostat::prediction::PredictionAuxiliaryFunctions< T >
 Class to define and implement different Prediction Module Auxiliary Functions.

Namespaces

- · exageostat
- · exageostat::prediction

9.51.1 Detailed Description

Contains the definition of the PredictionAuxiliaryFunctions.hpp class.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-06-08

9.52 PredictionHelpers.hpp File Reference

Contains the definition of the PredictionHelpers.hpp class.

```
#include <data-units/Locations.hpp>
#include <data-units/ExaGeoStatData.hpp>
#include <configurations/Configurations.hpp>
```

Classes

class exageostat::prediction::PredictionHelpers < T >
 Class to define and implement different Prediction Module helpers functions.

Namespaces

- exageostat
- · exageostat::prediction

9.52.1 Detailed Description

Contains the definition of the PredictionHelpers.hpp class.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-06-08

9.53 README.md File Reference

9.54 README.md File Reference

9.55 Results.hpp File Reference

Defines the Results class for storing and accessing result data.

```
#include <iostream>
#include <vector>
```

Classes

· class exageostat::results::Results

- · exageostat
- · exageostat::results

9.55.1 Detailed Description

Defines the Results class for storing and accessing result data.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2023-09-14

9.56 RuntimeFunctions.hpp File Reference

A class for runtime static functions.

```
#include <kernels/Kernel.hpp>
#include <data-units/ExaGeoStatData.hpp>
```

Classes

- class exageostat::runtime::RuntimeFunctions < T >

A class that defines runtime static functions.

Namespaces

- · exageostat
- · exageostat::runtime

9.56.1 Detailed Description

A class for runtime static functions.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-03-10

9.57 StarPuCodeletsHeaders.hpp File Reference

```
#include <runtime/starpu/concrete/dcmg-codelet.hpp>
#include <runtime/starpu/concrete/ddotp-codelet.hpp>
#include <runtime/starpu/concrete/dmdet-codelet.hpp>
#include <runtime/starpu/concrete/dmloe-mmom-codelet.hpp>
#include <runtime/starpu/concrete/dmse-bivariate-codelet.hpp>
#include <runtime/starpu/concrete/dmse-codelet.hpp>
#include <runtime/starpu/concrete/dtrace-codelet.hpp>
#include <runtime/starpu/concrete/dzcpy-codelet.hpp>
#include <runtime/starpu/concrete/gaussian-to-non-codelet.hpp>
#include <runtime/starpu/concrete/non-gaussian-loglike-codelet.hpp>
#include <runtime/starpu/concrete/non-gaussian-transform-codelet.hpp>
#include <runtime/starpu/concrete/stride-vec-codelet.hpp>
#include <runtime/starpu/concrete/stride-vec-codelet.hpp>
#include <runtime/starpu/concrete/tri-stride-vec-codelet.hpp>
#include <runtime/starpu/concrete/tri-stride-vec-codelet.hpp>
```

9.58 StarPuHelpers.hpp File Reference

An interface for StarPu helpers.

```
#include <complex>
#include <common/Definitions.hpp>
#include <hardware/ExaGeoStatHardware.hpp>
```

Classes

· class exageostat::runtime::StarPuHelpers

A class that defines the interface for StarPu helpers.

Namespaces

- · exageostat
- exageostat::runtime

9.58.1 Detailed Description

An interface for StarPu helpers.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-02-25

9.59 StarPuHelpersFactory.hpp File Reference

Factory for StarPu helpers.

#include <runtime/starpu/helpers/StarPuHelpers.hpp>

Classes

· class exageostat::runtime::StarPuHelpersFactory

A class that creates StarPu helpers based on the input computation type.

Namespaces

- · exageostat
- · exageostat::runtime

9.59.1 Detailed Description

Factory for StarPu helpers.

Version

1.1.0

Author

Mahmoud ElKarargy

Date

2024-02-25

9.60 stride-vec-codelet.hpp File Reference

A class for starpu codelet stride-vec.

#include <common/Definitions.hpp>

Classes

class exageostat::runtime::STRIDEVECCodelet< T >

Namespaces

- exageostat
- exageostat::runtime

9.60.1 Detailed Description

A class for starpu codelet stride-vec.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

9.61 SyntheticGenerator.hpp File Reference

A class for generating synthetic data.

#include <data-generators/DataGenerator.hpp>

Classes

class exageostat::generators::synthetic::SyntheticGenerator< T >
 A class for generating synthetic data.

- exageostat
- exageostat::generators
- exageostat::generators::synthetic

9.61.1 Detailed Description

A class for generating synthetic data.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2023-02-14

9.62 tri-stride-vec-codelet.hpp File Reference

A class for starpu codelet tri-stride-vec.

```
#include <common/Definitions.hpp>
```

Classes

class exageostat::runtime::TriStrideVecCodelet< T >
 A class for starpu codelet tri_stride_vec.

Namespaces

- · exageostat
- · exageostat::runtime

9.62.1 Detailed Description

A class for starpu codelet tri-stride-vec.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Date

2024-02-25

9.63 TrivariateMaternParsimonious.hpp File Reference

Defines the TrivariateMaternParsimonious class, a Trivariate Matern Parsimonious kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::TrivariateMaternParsimonious < T >
 A class representing a Trivariate Matern Parsimonious kernel.

Namespaces

- exageostat
- exageostat::kernels

9.63.1 Detailed Description

Defines the TrivariateMaternParsimonious class, a Trivariate Matern Parsimonious kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar Mary Lai Salvana

Date

2023-04-14

9.64 UnivariateExpNonGaussian.hpp File Reference

Defines the UnivariateExpNonGaussian class, a Univariate Exp Non Gaussian kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateExpNonGaussian< T >
 A class representing a Univariate Exp Non Gaussian kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.64.1 Detailed Description

Defines the UnivariateExpNonGaussian class, a Univariate Exp Non Gaussian kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.65 UnivariateMaternDbeta.hpp File Reference

Defines the UnivariateMaternDbeta class, a Univariate Matern Dbeta kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDbeta < T >

A class representing a Univariate Matern Dbeta kernel.

- exageostat
- exageostat::kernels

9.65.1 Detailed Description

Defines the UnivariateMaternDbeta class, a Univariate Matern Dbeta kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.66 UnivariateMaternDdbetaBeta.hpp File Reference

Defines the UnivariateMaternDdbetaBeta class, a Univariate Matern Ddbeta Beta kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDdbetaBeta < T >
 A class representing a Univariate Matern Ddbeta Beta kernel.

Namespaces

- · exageostat
- exageostat::kernels

9.66.1 Detailed Description

Defines the UnivariateMaternDdbetaBeta class, a Univariate Matern Ddbeta Beta kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.67 UnivariateMaternDdbetaNu.hpp File Reference

Defines the UnivariateMaternDdbetaNu class, a Univariate Matern Ddbeta Nu kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDdbetaNu< T >
 A class representing a Univariate Matern Ddbeta Nu kernel.

Namespaces

- exageostat
- exageostat::kernels

9.67.1 Detailed Description

Defines the UnivariateMaternDdbetaNu class, a Univariate Matern Ddbeta Nu kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar Mary Lai Salvana

Date

2023-04-14

9.68 UnivariateMaternDdnuNu.hpp File Reference

Defines the UnivariateMaternDdnuNu class, a Univariate Matern Ddnu Nu kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDdnuNu < T >
 A class representing a Univariate Matern Ddnu Nu kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.68.1 Detailed Description

Defines the UnivariateMaternDdnuNu class, a Univariate Matern Ddnu Nu kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.69 UnivariateMaternDdsigmaSquare.hpp File Reference

Defines the UnivariateMaternDdsigmaSquare class, a univariate stationary Matern kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDdsigmaSquare< T >
 A class representing a Univariate Matern Ddsigma Square kernel.

- · exageostat
- exageostat::kernels

9.69.1 Detailed Description

Defines the UnivariateMaternDdsigmaSquare class, a univariate stationary Matern kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar Mary Lai Salvana

Date

2023-04-12

This file provides the declaration of the UnivariateMaternDdsigmaSquare class, which is a subclass of the Kernel class and represents a univariate stationary Matern kernel. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

9.70 UnivariateMaternDdsigmaSquareBeta.hpp File Reference

Defines the UnivariateMaternDdsigmaSquareBeta class, a Univariate Matern Ddsigma Square Beta kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

- class exageostat::kernels::UnivariateMaternDdsigmaSquareBeta $\!<$ T $\!>$

A class representing a Univariate Matern Ddsigma Square Beta kernel.

- · exageostat
- · exageostat::kernels

9.70.1 Detailed Description

Defines the UnivariateMaternDdsigmaSquareBeta class, a Univariate Matern Ddsigma Square Beta kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.71 UnivariateMaternDdsigmaSquareNu.hpp File Reference

Defines the UnivariateMaternDdsigmaSquareNu class, a Univariate Matern Ddsigma Square Nu kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDdsigmaSquareNu< T >
 A class representing a Univariate Matern Ddsigma Square Nu kernel.

Namespaces

- · exageostat
- exageostat::kernels

9.71.1 Detailed Description

Defines the UnivariateMaternDdsigmaSquareNu class, a Univariate Matern Ddsigma Square Nu kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.72 UnivariateMaternDnu.hpp File Reference

Defines the UnivariateMaternDnu class, a Univariate Matern Dnu kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDnu < T >
 A class representing a Univariate Matern Dnu kernel.

Namespaces

- exageostat
- exageostat::kernels

9.72.1 Detailed Description

Defines the UnivariateMaternDnu class, a Univariate Matern Dnu kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar Mary Lai Salvana

Date

2023-04-14

9.73 UnivariateMaternDsigmaSquare.hpp File Reference

Defines the UnivariateMaternDsigmaSquare class, a Univariate Matern Dsigma Square kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternDsigmaSquare < T >
 A class representing a Univariate Matern Dsigma Square kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.73.1 Detailed Description

Defines the UnivariateMaternDsigmaSquare class, a Univariate Matern Dsigma Square kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.74 UnivariateMaternNonGaussian.hpp File Reference

Defines the UnivariateMaternNonGaussian class, a Univariate Matern Non Gaussian kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternNonGaussian < T >
 A class representing a Univariate Matern Non Gaussian kernel.

- exageostat
- exageostat::kernels

9.74.1 Detailed Description

Defines the UnivariateMaternNonGaussian class, a Univariate Matern Non Gaussian kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.75 UnivariateMaternNuggetsStationary.hpp File Reference

Defines the UnivariateMaternNuggetsStationary class, a Univariate Matern Nuggets Stationary kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternNuggetsStationary < T >
 A class representing a Univariate Matern Nuggets Stationary kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.75.1 Detailed Description

Defines the UnivariateMaternNuggetsStationary class, a Univariate Matern Nuggets Stationary kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14

9.76 UnivariateMaternStationary.hpp File Reference

Defines the UnivariateMaternStationary class, a univariate stationary Matern kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateMaternStationary < T >
 A class representing a Univariate Matern Stationary kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.76.1 Detailed Description

Defines the UnivariateMaternStationary class, a univariate stationary Matern kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar Mary Lai Salvana

Date

2023-04-12

This file provides the declaration of the UnivariateMaternStationary class, which is a subclass of the Kernel class and represents a univariate stationary Matern kernel. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

9.77 UnivariatePowExpStationary.hpp File Reference

Defines the UnivariatePowExpStationary class, a univariate stationary PowExp kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariatePowExpStationary< T >
 A class representing a Univariate PowExp Stationary kernel.

Namespaces

- · exageostat
- · exageostat::kernels

9.77.1 Detailed Description

Defines the UnivariatePowExpStationary class, a univariate stationary PowExp kernel.

Version

1.1.0

Author

Mahmoud ElKarargy Sameh Abdulah Suhas Shankar Mary Lai Salvana

Date

2024-11-22

This file provides the declaration of the UnivariatePowExpStationary class, which is a subclass of the Kernel class and represents a univariate stationary PowExp kernel. It provides a method for generating a covariance matrix using a set of input locations and kernel parameters.

9.78 UnivariateSpacetimeMaternStationary.hpp File Reference

Defines the UnivariateSpacetimeMaternStationary class, a Univariate Spacetime Matern Stationary kernel.

```
#include <kernels/Kernel.hpp>
```

Classes

class exageostat::kernels::UnivariateSpacetimeMaternStationary< T >

A class representing a Univariate Spacetime Matern Stationary kernel.

Namespaces

- exageostat
- exageostat::kernels

9.78.1 Detailed Description

Defines the UnivariateSpacetimeMaternStationary class, a Univariate Spacetime Matern Stationary kernel.

Version

1.1.0

Author

Mahmoud ElKarargy

Sameh Abdulah

Suhas Shankar

Mary Lai Salvana

Date

2023-04-14