第十章 双线性函数

§ 10.2 对偶空间

§ 10.3 双线性函数

● § 10.4 对称双线性函数

◎ § 10.5 辛空间

§ 10.1 线性函数

- 一、线性函数的定义
- 二、线性函数的简单性质

一、线性函数的定义

定义

设V是数域 F上的线性空间,映射 $f:V \to F$,

若满足: $\forall \alpha, \beta \in V, k \in F$

(1)
$$f(\alpha + \beta) = f(\alpha) + f(\beta)$$

(2)
$$f(k\alpha) = kf(\alpha)$$

则称 f为V上的一个线性函数.

二、线性函数的基本性质

1.
$$f(0) = 0, f(-\alpha) = -f(\alpha)$$

2. 若
$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_s \alpha_s$$
, 则
$$f(\beta) = k_1 f(\alpha_1) + k_2 f(\alpha_2) + \dots + k_s f(\alpha_s)$$

3.设
$$f:V \to F$$
 为一个线性函数, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为 V 的一组基, $f(\varepsilon_i) = a_i, i = 1, 2, \dots, n$ $\forall \alpha \in V, \alpha = k_1 \varepsilon_1 + k_2 \varepsilon_2 + \dots + k_n \varepsilon_n$

則
$$f(\alpha) = k_1 f(\varepsilon_1) + k_2 f(\varepsilon_2) + \dots + k_n f(\varepsilon_n)$$
$$= k_1 a_1 + k_2 a_2 + \dots + k_n a_n$$

即 f 可由 V 的基的像确定.

反之,设 a_1,a_2,\dots,a_n 是F中任意n个确定的数,

而 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为V的一组基.

$$\forall \alpha \in V, \alpha = k_1 \varepsilon_1 + k_2 \varepsilon_2 + \dots + k_n \varepsilon_n$$

$$\Leftrightarrow f(\alpha) = \sum_{i=1}^{n} k_i a_i,$$

则 $f:V\to F$ 为线性函数,且

$$f(\varepsilon_i) = a_i, i = 1, 2, \dots, n$$

例1. 设 $a_1, a_2, \dots, a_n \in F$, $\alpha = (x_1, x_2, \dots, x_n) \in F^n$

则
$$f(\alpha) = \sum_{i=1}^{n} a_i x_i$$

是**F**ⁿ 到 **F**的一个线性函数. 当 $a_1, a_2, \dots, a_n = 0$ 时,称 f 为零函数.

例2. 设
$$A = (a_{ij}) \in \mathbb{F}^{n \times n}$$
,则 $f(A) = traceA = \sum_{i=1}^{n} a_{ii}$

是 $F^{n\times n}$ 到 F的一个线性函数.

例3.设 V 是数域 F上的线性空间, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为 V 的

一组基,f是 V上的一个线性函数,已知

$$f(\varepsilon_1 + \varepsilon_3) = 1, f(\varepsilon_2 - 2\varepsilon_3) = -1, f(\varepsilon_1 + \varepsilon_2) = -3$$

求 $f(x_1\varepsilon_1+x_2\varepsilon_2+x_3\varepsilon_3)$.

$$\begin{cases} f(\varepsilon_1) + f(\varepsilon_3) = 1 \\ f(\varepsilon_2) - 2f(\varepsilon_3) = -1 \\ f(\varepsilon_1) + f(\varepsilon_2) = -3 \end{cases} \Rightarrow \begin{cases} f(\varepsilon_1) = 4 \\ f(\varepsilon_2) = -7 \\ f(\varepsilon_3) = -3 \end{cases}$$

 $f(x_1\varepsilon_1 + x_2\varepsilon_2 + x_3\varepsilon_3) = 4x_1 - 7x_2 - 3x_3$.

例4. V 是数域 F上的3维线性空间, f 是V上的

一个线性函数,已知

$$f(\varepsilon_1 + \varepsilon_3) = f(\varepsilon_1 - 2\varepsilon_3) = 0, f(\varepsilon_1 + \varepsilon_2) = 1,$$
 求 f .

$$\begin{cases} f(\varepsilon_1) + f(\varepsilon_3) = 0 \\ f(\varepsilon_1) - 2f(\varepsilon_3) = 0 \\ f(\varepsilon_1) + f(\varepsilon_2) = 1 \end{cases} \Rightarrow \begin{cases} f(\varepsilon_1) = 0 \\ f(\varepsilon_2) = 1 \\ f(\varepsilon_3) = 0 \end{cases}$$

则
$$\forall \alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + x_3 \varepsilon_3 \in V$$
,
$$f(\alpha) = x_2, f(\varepsilon_2) = x_2.$$

定理1 设V为数域F上的一个n维线性空间,

 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为V的一组基, a_1, a_2, \dots, a_n 为 F中任意n个数. 则存在唯一的V上线性函数 f 使

$$f(\varepsilon_i) = a_i, \quad i = 1, 2, \dots, n.$$

证明: 映射 $f:V \to F$,

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + x_3 \varepsilon_3 \mapsto x_1 a_1 + x_2 a_2 + x_3 a_3$$

即为V上的线性函数,且 $f(\varepsilon_i) = a_i, i = 1, 2, \dots, n$
若还有 g 是 V上线性函数使 $g(\varepsilon_i) = a_i, i = 1, 2, \dots, n$,
则 $\forall \alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + x_3 \varepsilon_3 \in V$,有
 $g(\alpha) = x_1 g(\varepsilon_1) + x_2 g(\varepsilon_2) + \dots + x_n g(\varepsilon_n)$
 $= x_1 a_1 + x_2 a_2 + \dots + x_n a_n$
 $= x_1 f(\varepsilon_1) + x_2 f(\varepsilon_2) + \dots + x_n f(\varepsilon_n)$
 $= f(x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n) = f(\alpha)$ $\therefore f = g$

§ 10.1 线性函数

