CLAIMS

€	We	cl	ain	n:

10

25

- 5 1 A composition comprising:
 - a) a substrate with a surface comprising discrete sites; and
 - b) a population of microspheres distributed on said sites.
 - 2 A composition according to claim 1 wherein said sites comprise wells.
 - 3 A composition according to claim 2 wherein said substrate is a fiber optic bundle or array comprising individual fibers, and said wells are at a first terminal end of said bundle or array.
- 4 A composition according to claim 2 wherein said substrate is selected from the group consisting of glass and plastic.
 - 5 A composition according to claim 1 wherein said sites comprise chemically functionalized sites.
- 20 6 A composition according to claim 1 wherein said microspheres comprise bioactive agents.
 - 7 A composition according to claim 6 wherein said bioactive agents comprise nucleic acids.
- 8 A composition according to claim 6 wherein said bioactive agents comprise proteins.
 - 9 A composition according to claim 8 wherein said proteins are selected from the group consisting of enzymes and antibodies.
- 10 A composition according to claim 1 wherein said population of microspheres comprises at least a first and a second subpopulation, wherein the microspheres of said first

subpopulation of microspheres are a different size than the microspheres of said second subpopulation.

- 11 A composition according to claim 3 wherein the individual fibers of said bundle have substantially the same cross-section.
 - 12 A composition according to claim 3 wherein the individual fibers of said bundle have different cross-sections.
- 10 13 A composition according to claim 1 wherein said population of microspheres comprises at least a first and a second subpopulation comprising:
 - i) a a first and a second bioactive agent, respectively; and
 - ii) a first and a second optical signature, respectively, capable of identifying said bioactive agent.
 - 14 A composition according to claim 13 wherein said at least one of said optical signatures comprises at least one chromophore.
- 15 A composition according to claim 13 wherein said at least one of said optical signatures comprises at least one fluorescent dye.
 - 16 A composition according to claim 15 wherein said fluorescent dye is entrapped within said microspheres.
- 25 17 A composition according to claim 15 wherein said fluorescent dye is attached to said microspheres.
 - 18 A composition according to claim 13 wherein said optical signature comprises at least two fluorescent dyes.

15

- 19 A method of determining the presence of a target analyte in a sample comprising:
 - a) contacting said sample with a composition comprising:
 - i) a substrate with a surface comprising discrete sites; and
 - ii) a population of microspheres comprising at least a first and a second subpopulation each comprising:
 - 1) a bioactive agent; and

5

10

20

25

- 2) an optical signature capable of identifying said bioactive agent; wherein said microspheres are distributed on said surface such that said discrete sites contain microspheres; and
- b) determining the presence or absence of said target analyte.
- 20 A method according to claim 19 wher in said substrate is a optical fiber bundle and said microspheres are located within wells at a first terminal end of said bundle.
- 15 21 A method according to claim 19 further comprising identifying the location of each bioactive agent on said substrate.
 - 22 A method of making a composition comprising:
 - a) forming a surface comprising individual sites on a substrate;
 - b) distributing microspheres on said surface such that said individual sites contain microspheres, wherein said microspheres comprise at least a first and a second subpopulations each comprising:
 - i) a bioactive agent; and
 - ii) an optical signature capable of identifying said bioactive agent.
 - 23 A method according to claim 22 wherein said distributing comprises serially adding said subpopulations to said sites.