Department of Mathematics Indian Institute of Technology Guwahati

MA322: Lab Assignment 5

Date of Submission: 10/03/2022

1. The function g(x) is defined by

$$g(x) = \int_0^x e^{-x^2} dx.$$

Write a program for composite rectangle rule (R_{rule}) , trapezoidal rule (T_{rule}) and Simpson's rule (S_{rule}) to evaluate g(1) with N=50,100,200 subdivisions. Compare the results with the correct value g(1)=0.74682413 and print the approximate values for R_{rule} , T_{rule} , S_{rule} and the corresponding errors E_R , E_T , E_S as per the format shown below.

N	R_{rule}	T_{rule}	S_{rule}	E_R	E_T	E_S

2. Apply the trapezoid rule and corrected trapezoid rule to the approximation of

$$\int_0^1 x^2 e^{-2x} dx = 0.0808308960 \dots,$$

and compare your results in light of the expected error theory for both methods, and comment on what occurs.

3. The normal probability distribution is defined as

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

where μ is the mean, and σ is the variance. This is the famous bell-shaped curve that one hears so much about; the mean gives the center of the bell and the variance gives its width. If x is distributed in this fashion, then the probability that $a \le x \le b$ is given by the integral

$$P(a \le x \le b) = \int_a^b p(x)dx.$$

The change of variable $z = (x\mu)/\sigma$ leads to

$$P(-m\sigma \le x \le m\sigma) = \frac{1}{\sqrt{2\pi}} \int_{-m}^{m} e^{-\frac{z^2}{2}} dz.$$

Compute values of $P(-m\sigma \le x \le m\sigma)$ for m = 1, 2 using Simpson's rule.