Proofs Using Logical Equivalences

Rosen (6th Ed.) 1.2

Note: These are all **Direct Proofs**

Prove: $(p \land \neg q) \lor q \Leftrightarrow p \lor q$

 $(p \land \neg q) \lor q$ Left-Hand Statement

 \Leftrightarrow q v (p \(\sigma \)q) Commutative \Leftrightarrow (q v p) \(\lambda \) (q v \(\sigma \)q) Distributive

 \Leftrightarrow (qvp) \wedge T Negation \Leftrightarrow qvp Identity

⇔ pvq Commutative

Begin with exactly the left-hand side statement End with exactly what is on the right Justify EVERY step with a logical equivalence

Prove: $(p \land \neg q) \lor q \Leftrightarrow p \lor q$

(p∧¬q) v q Left-Hand Statement

 \Leftrightarrow q v (p $\land \neg$ q) Commutative

 \Leftrightarrow (qvp) \land (q v¬q) Distributive

Why did we need this step?

Our logical equivalence specified that **v** is distributive on the right. This does not guarantee distribution on the left!

Ex.: Matrix multiplication

(Note that whether or not \mathbf{v} is distributive on the left is not the point here.)

Prove: $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$

 $p \rightarrow q$

⇒ ¬p v q

Implication Equivalence

Contrapositive

 \Leftrightarrow q v ¬p Commutative

 $\Leftrightarrow \neg(\neg q) \lor \neg p$ Double Negation

 $\Leftrightarrow \neg q \to \neg p$ Implication Equivalence

Prove: $p \rightarrow p \vee q$ is a tautology

Must show that the statement is true for any value of p and q.

 $p \rightarrow p \vee q$

⇔ ¬p v (p v q) Implication Equivalence

 $\Leftrightarrow (\neg p \lor p) \lor q \qquad \text{Associative}$ $\Leftrightarrow (p \lor \neg p) \lor q \qquad \text{Commutative}$ $\Leftrightarrow T \lor q \qquad \text{Negation}$ $\Leftrightarrow q \lor T \qquad \text{Commutative}$ $\Leftrightarrow T \qquad \text{Domination}$

This tautology is called the addition rule of inference.

Why do I have to justify everything?

- Note that your operation must have the same order of operands as the rule you quote unless you have already proven (and cite the proof) that order is not important.
 - 3+4 = 4+3
 - 3/4 ≠ 4/3

 $A*B \neq B*A$ for everything!

Prove: $(p \land q) \rightarrow p$ is a tautology

 $\begin{array}{lll} (p \land q) \rightarrow p \\ \Leftrightarrow \neg (p \land q) \lor p & Implication Equivalence \\ \Leftrightarrow (\neg p \lor \neg q) \lor p & DeMorgan's \\ \Leftrightarrow (\neg q \lor \neg p) \lor p & Commutative \\ \Leftrightarrow \neg q \lor (\neg p \lor p) & Associative \\ \Leftrightarrow \neg q \lor (p \lor \neg p) & Commutative \\ \Leftrightarrow \neg q \lor T & Negation \\ \Leftrightarrow T & Domination \end{array}$

Prove or Disprove

 $p \rightarrow q \Leftrightarrow p \land \neg q ???$

To prove that something is not true it is enough to provide one counter-example. (Something that is true must be true in every case.)

<u>**p q p→q p∧¬q**</u> F T T F

The statements are not logically equivalent

Prove: $\neg p \leftrightarrow q \Leftrightarrow p \leftrightarrow \neg q$

¬p ↔ q ⇔ (¬p→q) ∧ (q→¬p) Biconditional Equivalence ⇔ (¬¬pvq) ∧ (¬qv¬p) Implication Equivalence (x2) ⇔ (pvq) ∧ (¬qv¬p) Double Negation ⇔ (qvp) ∧ (¬pv¬q) Commutative ⇔ (¬¬qvp) ∧ (¬pv¬q) Double Negation ⇔ (¬q→p) ∧ (p→¬q) Implication Equivalence (x2) ⇔ p ↔ ¬q Biconditional Equivalence

Class Exercise: Without using truth tables, prove that $((p \lor q) \land \neg p) \rightarrow q$ is a <u>tautology</u>.

Identity Laws p∧T⇔p; pvF⇔p pvT ⇔ T; p∧F ⇔ F **Domination Laws** pvp ⇔ p; p∧p ⇔ p Idempotent Laws ¬(¬p) **⇔** p Double Negation Law pvq ⇔ qvp; paq ⇔ qap Commutative Laws p Λ (qAr) Associative Laws $(pvq)v r \Leftrightarrow pv (qvr); (paq) a r \Leftrightarrow$ $p\mathbf{v}(q\mathbf{A}r) \Leftrightarrow (p\mathbf{v}q)\mathbf{A}(p\mathbf{v}r)$ Distributive Laws $pA(qVr) \Leftrightarrow (pAq)V(pAr)$ ¬(p**v**q)**⇔**(¬p ∧ ¬q) De Morgan's Laws ¬(p**∧**q)**⇔**(¬p **v** ¬q) Absorption Laws p v (p∧q) ⇔ p p ∧ (pvq) ⇔ p Negation Laws p **v ¬**p **⇔** T р∧¬р⇔ Г (p→q) ⇔ (¬p v q) Implication Equivalence

Class Exercise: Without using truth tables, prove that $((p \lor q) \land \neg p) \rightarrow q$ is a <u>tautology</u>.

 $((p \lor q) \land \neg p) \rightarrow q$

 $\Leftrightarrow \neg((p \lor q) \land \neg p) \lor q \qquad \text{Implication Equivalence} \\ \Leftrightarrow (\neg(p \lor q) \lor \neg \neg p) \lor q \qquad \text{DeMorgan} \\ \Leftrightarrow (\neg(p \lor q) \lor p) \lor q \qquad \text{Double Negation} \\ \Leftrightarrow \neg(p \lor q) \lor (p \lor q) \qquad \text{Associative} \\ \Leftrightarrow (p \lor q) \lor \neg(p \lor q) \qquad \text{Commutative} \\ \Leftrightarrow T \qquad \text{Negation}$

Normal or Canonical Forms

Rosen (6th Ed.) 1.2 (exercises)

Logical Operators

v - Disjunction Do we need all these?

Λ - Conjunction

¬ - Negation

→ - Implication $p \rightarrow q = \neg p \lor q$ ⊕ - Exclusive or $(p \land \neg q) \lor (\neg p \land q)$

- Biconditional $p \leftrightarrow q \Leftrightarrow$ $(p \rightarrow q) \land (q \rightarrow p) \Leftrightarrow$

 $(\neg p \lor q) \land (\neg q \lor p)$

Functionally Complete

- A <u>set</u> of logical operators is called functionally complete if every compound proposition is logically equivalent to a compound proposition involving only these logical operators.
- A, V, and ¬ form a functionally complete set of operators.

Are $\neg(pv(\neg p \land q))$ and $(\neg p \land \neg q)$ equivalent?

 $\neg(pv(\neg p \land q))$

 $\Leftrightarrow \neg p \land \neg (\neg p \land q)$ DeMorgan

⇔¬p∧(¬¬pv¬q) DeMorgan

 $\Leftrightarrow \neg p \land (p \lor \neg q) \qquad \quad \text{Double Negation} \\ \Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q) \qquad \quad \text{Distribution}$

 $\Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{Distribution}$ $\Leftrightarrow (p \land \neg p) \lor (\neg p \land \neg q) \qquad \text{Commutative}$

 \Leftrightarrow F v(¬p ∧¬q) Negation \Leftrightarrow (¬p ∧¬q) v F Commutative

 $\Leftrightarrow (\neg p \land \neg q)$ Identity

Are $\neg(p \lor (\neg p \land q))$ and $(\neg p \land \neg q)$ equivalent?

- Even though both are expressed with only \(\times \), v, and \(\times \), it is still hard to tell without doing a proof.
- What we need is a unique representation of a compound proposition that uses A, V, and
- This unique representation is called the **Disjunctive Normal Form**.

Disjunctive Normal Form

- A disjunction of conjunctions where every variable or its negation is represented once in each conjunction (a *minterm*)
 - each minterm appears only once

Example: DNF of p⊕q is

 $(p \wedge \neg q) \vee (\neg p \wedge q)$

Truth Table

_p	q	p⊕q	$(p \wedge \neg q) \vee (\neg p \wedge q)$
T	T	F	F
T	F	T	T
F	T	T	T
F	F	F	F

Method to construct DNF

- Construct a truth table for the proposition.
- Use the rows of the truth table where the proposition is True to construct minterms
 - If a variable is false, use the negation of the variable in the minterm
 - If the variable is true, use the propositional variable in the minterm
- Connect the minterms with v's.

How to find the DNF of $(p \lor q) \rightarrow \neg r$

p	q	r	(p v q)	¬r	(p ∨ q)→¬r
T	T	T	T	F	F
T	T	F	T	T	T
T	F	T	T	F	F
T	F	F	T	T	T
F	T	T	T	F	F
F	T	F	T	T	T
F	F	T	F	F	T
F	F	F	F	T	T

There are five sets of input that make the statement true. Therefore there are five minterms.

p	q	r	(p v q)	¬r	$(p \lor q) \rightarrow \neg r$
Т	T	T	T	F	F
T	T	F	T	T	T
T	F	T	T	F	F
T	F	F	T	T	T
F	T	T	T	F	F
F	T	F	T	T	T
F	F	T	F	F	T
F	F	F	F	T	T

From the truth table we can set up the DNF $(p \lor q) \rightarrow \neg r \Leftrightarrow (p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$ Can we show that just \neg and \land form a set of functionally complete operands?

Use DeMorgan's Laws on the DNF.

Example:

$$\begin{array}{l} (p \lor q) \Longrightarrow r \\ \Leftrightarrow (p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor \\ (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor \\ \Leftrightarrow \neg \neg [(p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor \\ (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)] & Double Neg \\ \Leftrightarrow \neg [\neg (p \land q \land \neg r) \land \neg (p \land \neg q \land \neg r) \land \neg (\neg p \land q \land \neg r) \land \\ \neg (\neg p \land \neg q \land r) \land \neg (\neg p \land \neg q \land \neg r)] & DeMorgan \end{array}$$

Find an expression equivalent to $p \rightarrow q$ that uses only conjunctions and negations.

p	q	$p \rightarrow q$	II i
T	T	T	How many minterms in the DNF?
T	F	F	
F	T	T	
F	F	T	

The DNF of $p \rightarrow q$ is $(p \wedge q) \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q)$.

Then, applying DeMorgan's Law, we get that this is equivalent to

 $\neg [\neg (p \land q) \land \neg (\neg p \land q) \land \neg (\neg p \land \neg q)].$

Now can we write an equivalent statement to $p \rightarrow q$ that uses only disjunctions and negations?

```
p \rightarrow q

\Leftrightarrow \neg [\neg (p \land q) \land \neg (\neg p \land q) \land \neg (\neg p \land \neg q)] From Before

\Leftrightarrow \neg [(\neg p \lor \neg q) \land (\neg \neg p \lor \neg q) \land (\neg \neg p \lor \neg \neg q)] DeMorgan

\Leftrightarrow \neg [(\neg p \lor \neg q) \land (p \lor \neg q) \land (p \lor q)] Doub. Neg.

\Leftrightarrow \neg (\neg p \lor \neg q) \lor \neg (p \lor \neg q) \lor \neg (p \lor q) DeMorgan
```