⑧ 측정불확도 개선방안 도출

위와 같은 연구를 통하여 측정 불확도를 개선할 수 있는 방안을 도출하였으며, 도출 당시의 해석결과, 개선 후 최대 167%까지 측정 불확도가 개선될 것으로 예상되었다. 이는 이후 실제 엔진 시험을 통하여 검증하였다.

시험부	불확도 인자	개선 전(현재)	개선 후(예상)	비고
Cell #1	공기유량	0.74	0.66	12% 개선
	추럭	0.8	0.6	33% 개선
	비연료소모율	0.8	0.7	14% 개선
Cell #2	공기유량	1.5	0.8	88% 개선
	연료유량	0.8	0.3	167% 개선
	비연료소모율	1.0	0.7	43% 개선

Table 3.1.1.5. 측정불확도 개선효과 예상치

(나) 측정정확도 향상을 위한 연구

① 물리량 별 측정기 교정 및 시험

표준연에서는 항우연의 엔진 성능시험에 사용되는 각종 측정기의 교정 및 시험을 수행함으로써, 엔진 성능시험의 정확도를 향상시키고자 하였다. 특히, 압력계 교정의 경우 주관기관의 현장교정 수행 요청에 의해, 현장 교정을 위한 교정 장치를 제작하였으며, 일부 압력계의 현장교정을 통해 신호 전달체계의 불확도까지 평가할 수 있도록 하였다.

그림 3.1.1.30 엔진 성능시험용 압력계 현장교정을 위한 장비

표준연에서의 교정 및 시험 대상 측정기는 온도계, 압력계, 유량계, 로드셀이며, 각 측정기별 교정 및 시험 범위는 다음의 표와 같다.