1. More definitions

Modulus

"In computing, the modulo operation finds the remainder after division of one number by another (sometimes called modulus).

Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n) is the remainder of the Euclidean division of a by n." a

 $9 \mod 2 = 1$

If we're dividing a by b, the result is a quotient q. If we're calculating $a \mod b$, the result is the remainder r.

We can also write this out as:

 $a = b \cdot q + r$, where $0 \le r < b$, and q and r are the only two integers that will satisfy the equation.

^aFrom https://en.wikipedia.org/wiki/Modulo_operation

Rational numbers

In mathematics, a rational number is any number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q.[1] Since q may be equal to 1, every integer is a rational number. a

The set of rational numbers is written as \mathbb{Q} .

^aFrom https://en.wikipedia.org/wiki/Rational_number

Question 1

Prove the following

Example: Solve 13 mod 5

$$13 / 5 = 2,$$
 $13 \mod 5 = 3,$ $13 = 5 \cdot 2 + 3$

$$3 \mod 5 = 3, \qquad 13 = 5 \cdot 2 + 3$$

a.
$$9 \mod 7$$
 $(13 = 15 \cdot q + r...)$ $9 \mod 7 = 2;$ $9 = 7 \cdot 1 + 2$

b.
$$5 \mod 2$$
 $5 \mod 2 = 1$; $5 = 2 \cdot 2 + 1$

c. 15 mod 3 15 mod
$$3 = 0$$
; $15 = 3 \cdot 5 + 0$

d.
$$-7 \mod 2$$
 $-7 \mod 2 = 1$; $-7 = 2 \cdot -4 + 1$

Question 2

Prove the following propositions:

a. If a divides b and a divides c, then a divides b + c. ¹

Start with: b = ak and c = aj and calculate b + c.

$$b = ak, c = aj$$
 $\Longrightarrow b + c = ak + aj$ $\Longrightarrow a(k + j)$

b. If a divides b and c divides d, then ac divides bd. ²

Start with: b = ak, d = cj and calculate bd.

$$b = ak, d = cj$$
 $\Longrightarrow bd = (ak)(cj)$ $\Longrightarrow (ac)(kj)$

¹From Discrete Mathematics by Ensley and Crawley

²From Discrete Mathematics by Ensley and Crawley