ROB311 Quiz 3

Hanhee Lee

March 20, 2025

Contents

1	Reinforcement Learning	2
	1.1 Estimating Q-Star Empirically	. 2
	1.1.1 Running Average Update Rule	. 2
	1.2 Q-Learning Algorithm	
	1.3 Modified Q-Learning Algorithm	
	1.4 Training vs. Testing	
	1.4.1 K Sims, 1 Test	
	1.4.2 K Tests	
		•
2	Partially Observable MDPs (POMDPs)	5
	2.1 Bayesian Network	. 5
3	——————————————————————————————————————	8
	3.1 Estimating the Optimal Quality Function	
	3.2 Exploration versus Exploitation	. 8
	3.2.1 Simplified Case:	. 8
	3.3 Alternate Policies	. 10
,		11
4		11
	4.1 Action Equilibria	
	4.1.1 Finding Action Equilibria	
	4.2 Strategy Equilibria	
	4.2.1 Finding Strategy Equilibria	
	4.2.2 Existence of Stategy Equilibria	
	4.2.3 Convergence of Stategy Equilibria	
	4.3 Examples	
	4.3.1 Optimal Action Profiles	. 11
5	Turn-Based Games	12
J	5.1 Zero-Sum Turn-Based Games	
	5.1 Zero-Sum Turn-Based Games	
	5.2.1 α Cuts	
	$5.2.1 \alpha \text{ Cuts}$	
	5.2.2 β Cuts	

Partially Observable Probabilistic Decision Problems

1 Reinforcement Learning

Summary: In a RL problem, $p(\cdot \mid \cdot, \cdot)$ and/or $r(\cdot, \cdot)$ unknown.

1.1 Estimating Q-Star Empirically

Summary:

Equation

$$0 q^*(s,a) = \lim_{K \to \infty} \bar{R}_K$$

- $\bar{R}_K = \frac{1}{K} \sum_{k=1}^{K} r_k$: empirical average reward.
- r_k : reward obtained in the k^{th} simulation.
- K: # of times action a taken in state s (# of simulations)

$$0 q^*(s,a) \leftarrow q^*(s,a) + \frac{1}{N(s,a)} \left(r(s,a,s') - q^*(s,a) \right)$$

• N(s,a): # of times action a taken in state s.

$$\neq 0 \quad q^*(s,a) \leftarrow q^*(s,a) + \frac{1}{N(s,a)} \left(\left[r(s,a,s') + \gamma \max_{a'} q^*(s',a') \right] - q^*(s,a) \right)$$

• Using old q^* values to estimate.

1.1.1 Running Average Update Rule

Definition:

$$\bar{x} \leftarrow \bar{x} + \alpha (x_{\text{new}} - \bar{x}).$$

• α : learning rate

1.2 Q-Learning Algorithm

```
Algorithm:
   procedure Q_LEARNING():
         for each episode do
               set initial state s \leftarrow s_0
               while s \notin \mathcal{T} do # \mathcal{T}: terminal states
                     randomly choose an action in \mathcal{A}(s)
                     get next state, s', and reward r
                     update N(s,a) and q^{st}(s,a) as follows:
                     q^*(s, a) \leftarrow q^*(s, a) + \frac{1}{N(s, a)} \left( r(s, a, s') + \gamma \max_{a'} q^*(s', a') - q^*(s, a) \right)
                     N(s,a) \leftarrow N(s,a) + 1
12
                     s \leftarrow s'
13
               end while
14
         end for
    • Note: Possible infinite while loop if \mathcal{T} is not reached.
```

1.3 Modified Q-Learning Algorithm

```
Algorithm:
   procedure Q_LEARNING():
          for each episode do
               l \leftarrow 0
                set initial state s \leftarrow s_0
                while s \notin \mathcal{T} and l < l_{\max} do
                      randomly choose an action in \mathcal{A}(s)
                      get next state, s^\prime, and reward r
                      update N(s,a) and q^{*}(s,a) as follows:
                      q^*(s, a) \leftarrow q^*(s, a) + \frac{1}{N(s, a)} \left( r(s, a, s') + \gamma \max_{a'} q^*(s', a') - q^*(s, a) \right)
                      N(s,a) \leftarrow N(s,a) + 1
12
13
14
                      l \leftarrow l + 1
15
                end while
          end for
```

Notes: Choice of γ and l_{\max} are coupled:

- $\gamma \approx 1$ requires large $l_{\rm max}$
- $\gamma \approx 0$ requires small l_{max}

1.4 Training vs. Testing

Notes: Episodes are classified as either:

- training (sim): reward accumulated during episode does not count
- testing (test): reward accumulated during episode counts

1.4.1 K Sims, 1 Test

Notes:

- 1. select actions randomly during K simulations
- 2. extract optimal policy, π^*
- 3. use π^* during test

1.4.2 K Tests

Notes:

- \bullet maximize average reward over K tests
- must balance between exploration and exploitation
- Common ways to balance exploration and exploitation: ε -greedy strategy, UCB algorithm

Strategy Description

 ε -greedy

choose optimal action with probability $\varepsilon(k)$

- In episode k, choose the optimal action with probability $\varepsilon(k)$, where:
 - $-\varepsilon(0)\approx 0$
 - $-\varepsilon(k)$ is increasing
 - $-\varepsilon(k) \to 1 \text{ as } k \to \infty$
- Common choice for $\varepsilon(k)$ is $1 \frac{1}{k}$.

UCB algorithm choose action that maximizes $UCB(\cdot)$

$$UCB(s, a) = \begin{cases} q^*(s, a) + C\sqrt{\frac{\log k}{N(s, a)}}, & \text{if } N(s, a) > 0\\ \infty, & \text{otherwise} \end{cases}$$

- In episode k, choose the action that maximizes $UCB(\cdot)$.
- C: exploration parameter
- N(s,a): # of times a taken from s.

2 Partially Observable MDPs (POMDPs)

Summary: In a POMDPs, we assume that:

- \bullet environment modelled using state space, \mathcal{S}
- single agent
- S_t = state after transition t
- $A_t = action inducing transition t$
- stochastic state transitions with memoryless property:

$$S_T \perp S_0, A_1, \dots, A_{T-1}, S_{T-2} \mid S_{T-1}, A_T$$

- R_t = reward for transition t, i.e., (S_{T-1}, A_T, S_T)
- O_t = observation of S_t

Name	Function:
Initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
Transition distribution Reward function	$p(s' s,a) := \mathbb{P}[S_t = s' A_t = a, S_{t-1} = s]$ r(s,a,s') := reward for transition (s,a,s')

- Since actual state is unknown, so are legal actions.
- Can fix by assuming $A(s) = A(s') := A \forall s, s'$:
 - if $a \notin \mathcal{A}(s)$, then p(s'|s,a) = 0 for all $s' \neq s$
 - if $a \notin \mathcal{A}(s)$, then r(s, a, s') = 0 for all s'

Policy for choosing actions
$$\pi_t(a|o_0,\ldots,o_t) := \mathbb{P}[A_t = a|O_0 = o_0,\ldots,O_t = o_t]$$

Measurement model $m(o|s) := \mathbb{P}[O_t = o|S_t = s]$

- Observe that policy is now time-dependent.
- Special Case: If we assume the agent cannot use past observations, $A_t \perp O_0, \ldots, O_{t-1} \mid O_t$, policy becomes time-independent,

$$\pi_t(a|o_0,\ldots,o_t) = \pi_0(a|o_t).$$

- Only need to specify π_0 .

Belief after
$$t$$
 observations
$$b_t(s_t|a_{1:t},o_{0:t}) = \mathbb{P}[S_t = s_t|A_t = a_t, O_{0:t} = o_{0:t}]$$
$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t)b_{t-1}(s_{t-1}|a_{1:t-1},o_{1:t-1})$$

- b_t : Probability distribution
- $b_0(s_0) = \mathbb{P}[S_0 = s_0]$: Initial belief distribution
- Only holds for $t \geq 1$.
- For t=0 (assuming uniform prior): $b_0(s_0|o_0)=\frac{m(o_0|s_0)}{\sum_s m(o_0|s)}$

2.1 Bayesian Network

Notes: $S_0, O_0, A_1, R_1, S_1, O_1, A_2, R_2, S_2, O_2, ...$ form a Bayesian network:

Figure 1

• Assuming $A_t \perp O_0, \dots, O_{t-1} \mid O_t$. WHERE DOES THIS COME INTO PLAY.

Example:

3 Estimating the Optimal Quality Function

3.1 Estimating the Optimal Quality Function

Motivation: The agent need not know the model of the environment. However, it must actually make moves, even when learning.

If the agent doesn't have a model, it must estimate q^* , \mathcal{A}^* , and π^* .

Definition: When the environment is in state s, the agent can take an action a and:

- Update \hat{q} : $\hat{q}(s, a; t) \leftarrow (1 \alpha)\hat{q}(s, a; t) + \alpha \left(r' + \gamma \max_{a'} \hat{q}(s', a'; t + 1)\right)$
 - $-0 \le \alpha \le 1$: learning rate
- Compute \hat{A} : $\hat{A}(s;t) = \arg \max_{a' \in A(s)} \hat{q}(s,a';t)$
- Compute $\hat{\pi}$: $\hat{\pi}(a' \mid s; t) = 0 \ \forall a' \notin \hat{\mathcal{A}}(s; t)$

3.2 Exploration versus Exploitation

Motivation: To ensure \hat{q} converges to q^* and the agent's expected return is maximized, the agent must balance exploration and exploitation.

Definition:

- Exploitation: Choose the most promising actions based on current knowledge.
 - Use optimal policy: $\hat{\pi}(\cdot,\cdot;t)$
- Exploration: Choose the least tried actions to improve current knowledge.
 - Choose actions randomly

3.2.1 Simplified Case:

Example:

• Given: Assume the environment is stateless, but rewards are random.

Figure 2

Figure 3

- $-\mu(a)$: expected reward for action a (unknown to the agent):
- $-0 \le \mu(a) \le 1$ for all a.
- Best-case expected return: (with $\gamma = 1$ under π^*) from transition t is:

$$u^*(t) := (T - t) \max_{a'} \mu(a')$$

where in this case:

$$\pi^*(a;t) = 0$$
 if $a \notin \arg \max_{a'} \mu(a')$.

• Estimation of $\mu(\cdot)$. Since the agent does not have a model, it must estimate $\mu(\cdot)$.

The agent can take an action a and:

1. **Update** $n(\cdot)$ and $\hat{\mu}(\cdot)$:

$$n(a) \leftarrow n(a) + 1$$

$$\hat{\mu}(a) \leftarrow \left(1 - \frac{1}{n(a)}\right)\hat{\mu}(a) + \frac{1}{n(a)}r'$$

2. Compute $\hat{\pi}$:

$$\hat{\pi}(a;t) = 0$$
 for all $a \notin \arg \max_{a'} \hat{\mu}(a')$.

• Alternate Policies We want to compare the expected return under various policies. The expected return from transition t under a policy ρ is:

$$u^{\rho}(t) := \mathbb{E}^{\pi}[G_t] = \sum_{a'} \rho(a';t) \left(\mu(a') + u^{\rho}(t+1)\right).$$

3.3 Alternate Policies

Summary: To ensure the agent's expected return is maximized, the agent must strike still strike a balance exploration and exploitation.

In the following cases, the expected return from transition t is

$$u^{\text{avg}}(t) \equiv \frac{T - t}{|\mathcal{A}|} \sum_{a} \mu(a)$$

We want to choose ρ so that $u^{\rho} > u^{\text{avg}}$.

Policy	Function:
Exploitation only	Choose a random action, same for all transitions
Exploration only	Choose a random action, different for each transition
Softmax	Apply a soft-max over \hat{u} $\rho(a;t) = \left[\sum_{a'} \exp\left(\frac{\hat{\mu}(a')}{\tau}\right)\right]^{-1} \exp\left(\frac{\hat{\mu}(a)}{\tau}\right)$

- \bullet Choose a temperature value decrease with t.
- $\tau(t) \in [0, \infty), \tau \to 0$

e-greedy Use $\hat{\pi}$ w/ prob. $1 - \epsilon$, otherwaise take a random action $\rho(a;t) = \epsilon \frac{1}{|\mathcal{A}|} + (1 - \epsilon)\hat{\pi}(a;t)$

- Choose an exploration rate decrease w/t.
- $\epsilon(t) \in [0,1], \epsilon \to 0$

Upper confidence bound — Choose the action with the highest $\operatorname{ucb}(\cdot)$ $\rho(a;t)=0$ if $a\notin\arg\max_{a'}\operatorname{ucb}(a';t)$

- Compute $ucb(\cdot)$ for each action.
- $\operatorname{ucb}(a;t) = \hat{\mu}(a) + \sqrt{\frac{\ln t}{n(a)}}$

Figure 4

One-Shot Multi-Agent Decision Problems

4 Multi-Agent Problems

Summary: In a Multi-Agent problem, we assume that:

- ullet Set of states for environment is ${\mathcal S}$
- P agents within environment.
- For each state $s \in \mathcal{S}$:
 - possible actions for agent i is $A_i(s)$
 - set of action profiles is $\mathcal{A}(s) = \prod_{i=1}^{r} \mathcal{A}_i(s)$
- possible state-action pairs are $\mathcal{T} = \{(s, a) \text{ s.t. } s \in \mathcal{S}, a \in \mathcal{A}(s)\}$
- environment in some origin state, s_0
- ullet environment destroyed after N transitions
- agent j wants to find policy $\pi_j(a_j \mid s)$ so that $\mathbb{E}[r_j(p)]$ is maximized
- agents act independently given the environmen

Name	Function:
State transition given state-action pair defined by $\operatorname{tr}:\mathcal{T}\to\mathcal{S}$	tr(s, a) = state transition from s under a
Reward to each agent, i defined by $r_i: \mathcal{Q} \times \mathcal{S} \to \mathbb{R}_+$	$r_i(s, a, \operatorname{tr}(s, a)) = \operatorname{rwd}$ to agent i for $(s, a, \operatorname{tr}(s, a))$
State evolution of environment after N transitions	$p = \langle (s_0, a^{(1)}, s_1), \dots, (s_{N-1}, a^{(N)}, s_N) \rangle$
• Given sequence of actions: $p.a = \langle a^{(1)}, \dots, a^{(n)} \rangle$ • $s_N = \tau(s_{n-1}, a^{(n)})$	
reward to agent i	$r_i(p) = \sum_{n=1}^{N} r_i(s_{n-1}, a^{(n)}, s_n)$
expected-reward (value) of playing a from s for agent j	$p(s' s) := \mathbb{P}[S_{t+1} = s' S_t = s]$
Prob. that state of the env. after T transitions is s	$p_T(s) := \mathbb{P}[S_T = s]$ $= \sum_{s'} p_{T-1}(s')p(s s')$
• $p_{T-1}(s')$: Prob. s' at T -1 (given) - $p_0(s)$: Base case • $p(s s')$: Prob. s given s' (from graph)	

4.1 Action Equilibria

- 4.1.1 Finding Action Equilibria
- 4.2 Strategy Equilibria
- 4.2.1 Finding Strategy Equilibria
- 4.2.2 Existence of Stategy Equilibria
- 4.2.3 Convergence of Stategy Equilibria
- 4.3 Examples
- 4.3.1 Optimal Action Profiles

5 Turn-Based Games

5.1 Zero-Sum Turn-Based Games

Summary: In a zero-sum turn-based games, we assume that

- Agents and Environment:
 - there are two agents, called the **maximizer** and **minimizer**
 - the environment is always in one of a discrete set of states, \mathcal{S}
 - a subset of the states, $\mathcal{T} \subseteq \mathcal{S}$, are terminal states
 - there is only one decision maker for each non-terminal state, $s \in \mathcal{S} \setminus \mathcal{T}$
 - For each non-terminal state, $s \in \mathcal{S} \setminus \mathcal{T}$, the decision-maker has a discrete set of actions, $\mathcal{A}(s)$
- **Decision Process:** At time-step t, the decision-maker will:
 - **Observe:** Observe the state s_t
 - **Select:** Select an action $a_t \in \mathcal{A}(s_t)$
 - Move: Make the move (s_t, a_t)
- State Transitions:
 - Environment transitions to a deterministic state, s_{t+1} , based on a stationary fn,

$$s_{t+1} = \operatorname{tr}(s_t, a_t)$$

- Once a terminal state is reached (if $s_{t+1} \in \mathcal{T}$), the maximizer obtains a reward for the final transition based on a reward fn, $r(\cdot, \cdot, \cdot)$:

 $r(s_t, a_t, s_{t+1}) = \text{maximizer's reward for reaching state } s_{t+1}$

 $-r(s_t, a_t, s_{t+1}) = \text{minimizer's reward for reaching state } s_{t+1}$

5.2 α/β Pruning

Definition: For each state s:

- α_s : Maximum value at s thus far (initially $-\infty$)
- β_s : Minimum value at s thus far (initially $+\infty$)

5.2.1 α Cuts

Notes: If the maximizer is the turn-taker at s, then α_s increases to the maximum value of s's successors as they are explored, and $\beta_s = \beta_{\text{parent}(s)}$.

Figure 5

5.2.2 β Cuts

Notes: If the minimizer is the turn-taker at s, then β_s decreases to the minimum value of s's successors as they are explored, and $\alpha_s = \alpha_{\text{parent}(s)}$.

Figure 6

5.3 Examples

Example:

• Given: Cavemen is injured from his hunt. He has extra food, but needs medicine.

- He meets another caveman who is willing to trade.

Figure 7: States

Figure 8: Game Tree

- States
 - * Red triangle: Maximizing agent
 - * Blue triangle: Minimizing agent
 - * White circles with #s: terminal states
- Actions: Square boxes are actions

Figure 9: Actions

Figure 10: Decision Process