Geometría I Grado en Matemáticas. Grupo A Segunda prueba intermedia

22 de enero de 2015

Ejercicio 1.- Contesta razonadamente a las siguientes cuestiones:

- (a) [0.5 puntos] Sea V un espacio vectorial sobre K con $\dim_K(V) = 1$ ¿Es cierto que para cada $f \in \operatorname{End}_K(V)$ existe un único $a \in K$ de manera que f(v) = av, para todo $v \in V$?
- (b) [0.5 puntos] Para $g \in \text{End}_{\mathbb{R}}(\mathbb{R}^2)$ se sabe que g(1,3) = (0,2) y g(4,2) = (1,1) ¿Puede ocurrir que g(2,5) = g(1,2)?
- (c) Se sabe que $h \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^2)$ tiene rango(h) = 1.

 [1 punto] ¿Es posible encontrar bases ordenadas $B \setminus B'$ de \mathbb{R}^2 de manera que $M(h, B, B') = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$?

 $[1\ \mathbf{punto}]$ ¿Es posible encontrar siempre una base ordenada \widetilde{B} de manera que $M(h,\widetilde{B})=\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)?$

(d) [1 punto] Considera dos formas lineales $\alpha, \beta \in (\mathbb{R}^2)^*$, ambas no nulas y tales que $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$ ¿Existe $c \in \mathbb{R}$, $c \neq 0$, tal que $\beta = c \alpha$?

Ejercicio 2.- [3 puntos] Considera los subespacios $U = \{(x,y,z) \in \mathbb{R}^3 / x + 2y - z = 0\}$ y $W = \{(x,y,z) \in \mathbb{R}^3 / x - 3y + 2z = 0, x + y + z = 0\}$ de \mathbb{R}^3 . Construye, si es posible, un endomorfismo f de \mathbb{R}^3 que cumpla $\mathrm{Im}(f) = U$ y $\mathrm{Ker}(f) = W$, dando su matriz respecto de la base ordenada usual de \mathbb{R}^3 .

Ejercicio 3.- Sea $\mathcal{A}_3(\mathbb{R})$ el espacio vectorial de las matrices antisimétricas reales de orden 3. Considera la forma lineal $\varphi \in \mathcal{A}_3(\mathbb{R})^*$ dada por $\varphi(A) = b - c$, para cada

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}, a, b, c \in \mathbb{R}.$$

- (a) [1 punto] Encuentra una base $\widetilde{\mathcal{B}}$ de $\mathcal{A}_3(\mathbb{R})^*$ que contenga a φ .
- (b) [1 punto] Calcula la base \mathcal{B} de $\mathcal{A}_3(\mathbb{R})$ cuya dual es $\widetilde{\mathcal{B}}$.
- (c) [1 punto] En una base ordenada \widetilde{B} obtenida de $\widetilde{\mathcal{B}}$, calcula las coordenadas de la forma lineal ψ , dada por $\psi(A) = 2a + 3c$.

Duración: 2 horas.

- 1(a) Como dim $\chi V = 1$, tomo $\mathfrak{P} = \{v_1\}$ base de V. Existe a $\in K$ de manera que $f(v_1) = a v_1$. Dado $v \in V$ cualquiera escribimos $v = b v_1 \Rightarrow f(v) = b f(v_1) = b(a v_1) = (ba) v_1 = ab) v_1 = a(b v_1) = av$ (donde ab = ba pues K es conmutativo).
- 1(b) 6000 $\{(1,3), (4,2)\}$ son independientes (comprué bese) entonces forman una base de $\mathbb{R}^2(\mathbb{R})$. Como $\{(0,2), (1,1)\}$ también es base (comprué bese) g lleva base en base. Por tanto g es biyectiva. Si ocurriera g(2,5)=g(1,2) ya no seria inyectiva.
- I(c) Primera parte: Como rango (f) = 1 \Rightarrow mulidad |f) = 2-1=1. Touce $\{v_2\}$ base de Ker(f). Amplio a una base $B=(v_1,v_2)$ de R^2 . Como $f(v_1) \neq 0$, llamo $v_1 = f(v_1)$ y amplio $\{v_1\}$ a una base $B'=(v_1,v_2)$ de R^2 . I(c) Segunda parte: Si Jusse M(f,B)=(10) en toucy

 $M(f_{\circ}f, B) = M(f, B), M(f, B) = \begin{pmatrix} 10 \\ 00 \end{pmatrix}, \begin{pmatrix} 10 \\ 00 \end{pmatrix} = \begin{pmatrix} 10 \\ 00 \end{pmatrix} = M(f, B)$

 \Rightarrow fof=f. Lvego la respusta es NO y un contraejamplo es fe End_RR² dado por M(f,B)= $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ donde Bu= $\begin{pmatrix} e_{1,e_{2}} \end{pmatrix}$ es la

base usual.

1(d) Se cumple 3= mulidad $(\alpha)+$ range (α) con range $(\alpha) \le 1$. Como α no es la forma lineal mula \Rightarrow range $(\alpha)=1$. A si, tanto range (α) como mulidad (α) son ignals $\alpha 1$. Lo mismo para β .

Como su ponemos Ker $(\alpha)=$ Ker (β) tomans una base suya $\{w_1\}$. Amplianos a una base de \mathbb{R}^2 , $\{w_1, w_2\}$. Necesariamente α $(w_2)\neq 0$ y β $(w_2)\neq 0$. Se cumple β $(w_2)=$ a α (w_2) si endo $\alpha=\frac{\beta w_2}{\alpha(w_2)}$. Como esta misma ignaldad se cumple para w_1 , teneno que β (0)= a α (0) para todo $v\in \mathbb{R}^2$.

2.- Considerances bases de V_y de W_s , respectivamente $\{v_1'=(1,0,1), v_2'=(0,1,2)\}$ y $\{v_3=(-5,1,4)\}$ (compruébese). Amplio a una base de \mathbb{R}^3 la base de W_s :

 $N_1 = (1,0,0), V_2 = (0,1,0), N_3 = (-5,1,4)$

Construjo ficomo el divico endouvirfismo de IR3 que cample (segon el teorema de existencia yunicidad conocidas las imágenes de los vectores de una base) $f(v_1) = v_1$

 $f(v_1) = v_1$ $f(v_2) = v_2$

 $f(v_3) = 0'$

es de air $f(a_1v_1 + a_2v_2 + a_3v_3) = a_1v_1 + a_2v_2$ vector analquiera de IR3

Sabemos dimpU=2 y esta claro que rango(f)=2. Pero Im(f)
que esta generada por 101, 102 coincide con U. Ker(f) con
dimension 1 contiene a W, que también tiene dimension 1, así
Ker(f)=W.

Tengo que calcular $f(e_1)$, $f(e_2)$, $f(e_3)$ expresa dos en función de e_1, e_2, e_3 . $e_1 = \sqrt{1} \Rightarrow f(e_1) = f(v_1) = v'_1 = e_1 + e_3$. $e_2 = v_2 \Rightarrow f(e_1) = f(v_2) = v'_2 = e_2 + 2e_3$ $e_3 = \frac{5}{4}v'_1 + (-\frac{1}{4})v_2 + \frac{1}{4}v_3 \Rightarrow f(e_3) = \frac{5}{4}f(v_1) - \frac{1}{4}f(v_2) + \frac{1}{4}f(v_3)$ $\Rightarrow f(e_3) = \frac{5}{4}(e_1 + e_3) - \frac{1}{4}(e_2 + 2e_3)$. $= \frac{5}{4}e_1 - \frac{1}{4}e_2 + \frac{3}{4}e_3$. De mauera que $M(f_1B_u) = \begin{pmatrix} 1 & 0 & 5/4 \\ 0 & 1 & -1/4 \\ 1 & 2 & 3/4 \end{pmatrix}$.

3(b) Ponemos $A_1 = \begin{pmatrix} 0 & a_1 & b_2 \\ -a_1 & 0 & c_1 \\ -b_1 - c_1 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & a_2 & b_2 \\ -a_2 & 0 & c_2 \\ -b_2 - c_2 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & a_3 & b_3 \\ -a_2 & 0 & c_3 \\ -b_3 - c_3 & 0 \end{pmatrix}$

 $1 = f_1(A_1) = a_1$ $0 = f_2(A_1) = b_1$ $0 = f_3(A_1) = b_1 - c_1$ $0 = f_3(A_2) = b_2$ $0 = f_3(A_2) = b_2 - c_2$ $0 = f_3(A_2) = b_2$ $0 = f_3(A_2) = b_2$

 $0 = 4_1(A_3) = a_3$ $0 = 4_2(A_3) = b_3$ $1 = 4_3(A_3) = b_3 - c_3$ por tauto $a_3 = b_3 = 0$, $c_3 = -1$

 $\beta = \{A_{1}, A_{2}, A_{3}\} \text{ base de } (A_{3}(R)) \text{ of } B^{*} = \{P_{1}, P_{2}, P_{3}\}.$ $3(c) \text{ Ponemos } B = (A_{1}, A_{2}, A_{3}) \text{ of } B^{*} = (P_{1}, P_{2}, P_{3}) (= B)$ $Y = c_{1} P_{1} + c_{2} P_{2} + c_{3} P_{3} \text{ doude } c_{1} = Y(A_{1}) = 2, c_{2} = Y(A_{2}) = 3$ $Y = c_{3} = Y(A_{3}) = -3. \text{ Las coordena das pedidas son } (2, 3, -3).$