Problem statement

The number of books sold by a bookseller per day is given in 'bookseller.csv'.

Let

X = Number of books sold by a bookseller per day

X is a Discrete Random variable (because it represents the book count). Let's see the distribution of X and answer the below questions.

- 1. Find the probability that more than (or equal to) 96 books will be sold on a given day
- 2. Find the probability that less than (or equal to) 92 books will be sold on a given day

```
import pandas as pd
import numpy as np
df = pd.read csv('/Users/vishal/Desktop/CSV files/Bookseller.csv')
df.head()
   S.No
                     Number of Books Sold
               Date
0
      1 01-01-2020
                                        90
      2
        02-01-2020
                                       100
1
2
      3 03-01-2020
                                       100
3
      4 04-01-2020
                                        97
4
      5 05-01-2020
                                        93
```

	S.No	Date	Number of Books Sold
0	1	01-01-2020	90
1	2	02-01-2020	100
2	3	03-01-2020	100
3	4	04-01-2020	97
4	5	05-01-2020	93

df.ta	df.tail()					
361 362 363 364 365	363 364 365	Date 27-12-2020 28-12-2020 29-12-2020 30-12-2020 31-12-2020	Number	of	Books	Sold 91 90 92 92 99

	S.No	Date	Number of Books Sold
361	362	27-12-2020	91
362	363	28-12-2020	90
363	364	29-12-2020	92
364	365	30-12-2020	92
365	366	31-12-2020	99

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 366 entries, 0 to 365
Data columns (total 3 columns):
                          Non-Null Count Dtype
#
    Column
    ----
- - -
                          -----
    S.No
0
                          366 non-null
                                         int64
1
                          366 non-null
                                         object
    Number of Books Sold 366 non-null
2
                                         int64
```

dtypes: int64(2), object(1)
memory usage: 8.7+ KB

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 366 entries, 0 to 365 Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	S.No	366 non-null	int64
1	Date	366 non-null	object
2	Number of Books Sold	366 non-null	int64

dtypes: int64(2), object(1)

memory usage: 8.7+ KB

df.describe()

	S.No	Number of Books Sold
count	366.000000	366.000000
mean	183.500000	94.961749
std	105.799338	3.178465
min	1.000000	90.000000
25%	92.250000	92.000000
50%	183.500000	95.000000
75%	274.750000	98.000000
max	366.000000	100.000000

S.No Number of Books Sold

count	366.000000	366.000000
mean	183.500000	94.961749
std	105.799338	3.178465
min	1.000000	90.000000
25%	92.250000	92.000000
50%	183.500000	95.000000
75%	274.750000	98.000000
max	366.000000	100.000000

Check the distribution Number of Books sold

```
book distribution = df['Number of Books
Sold'].value counts().sort index()
prob distribution = book distribution / book distribution.sum()
prob distribution
Number of Books Sold
90
       0.087432
91
       0.095628
92
       0.092896
93
       0.117486
94
       0.068306
95
       0.087432
96
       0.087432
97
       0.084699
98
       0.087432
99
       0.112022
100
       0.079235
Name: count, dtype: float64
```

```
Number of Books Sold
90
       0.087432
91
       0.095628
92
       0.092896
93
       0.117486
94
       0.068306
95
       0.087432
       0.087432
96
97
       0.084699
98
       0.087432
       0.112022
99
100
       0.079235
Name: count, dtype: float64
```

Calculate the probability of selling >= 96 books

```
prob_more_equal_96 = prob_distribution[prob_distribution.index >=
96].sum()
print(f"Probability of selling >= 96 books: {prob_more_equal_96}")
Probability of selling >= 96 books: 0.4508196721311476
```

Calculate the probability of selling <= 92 books

```
prob_less_equal_92 = prob_distribution[prob_distribution.index <=
92].sum()
print(f"Probability of selling <= 92 books: {prob_less_equal_92}")
Probability of selling <= 92 books: 0.27595628415300544</pre>
```

Probability of selling <= 92 books: 0.27595628415300544

Optional: Visualize the Probability Distribution

```
import matplotlib.pyplot as plt

# Plot the probability distribution
prob_distribution.plot(kind='bar')
plt.title('Probability Distribution of Number of Books Sold per Day')
plt.xlabel('Number of Books Sold')
plt.ylabel('Probability')
plt.show()
```


