Regression Assignment

Usually a proper way to approach a dataset is by identifying the three stages of AI Prediction

1.Identify the Problem statement

There are three stages of AI Prediction

Stage 1:

Domain Selection: Machine Learning

Stage 2:

Learning: Supervised

Stage 3:

Classification: Regression

2. Information about the dataset

Insurance_pre.csv contains 1338 rows × 6 columns

3. Prepocessing Method

The Insurance_pre.csv has Nominal Data

- 4. r2 values for each algorithm and their respectives max_features,C parameter
- 1. Multiple Linear Regression r2 value () is 0.7894790349867009
- 2.Support Vector Machine

serial.No	Hyper para meter	Linear R value	RBF(Non Li near R value)	Poly (r value)	Sigmoid (r value)
1	C10	0.46246841 4233968	-0.0322732 9390671052	0.0387162 227602313 45	0.0393071 437827434 7
2	C100	0.62887928 57320359	0.32003178 32050831	0.6179569 624059795	0.5276103 546510407
3	C500	0.76310579 7597537	0.66429846 45143137	0.8263683 54126896	0.4446061 033869479 5
4	C1000	0.76493117 38608445	0.81020648 51758545	0.8566487 675946551	0.2874706 948697669 5

5	C2000	0.74404183 08107487	0.85477664 2539298	0.8605579 27577388	-0.593950 973128350 8
6	C3000	0.74142365 99249815	0.86633939 53081686	0.8598930 084494408	-2.124419 478668986 3

Support Vector Machine best r2 value ($RBF(Non\ Linear)$, Hyperparameter (C3000)) is 0.8663393953081686

3. Descision Tree

Serial.No	criterion	Max_features	Splitter	R_score Value
1	Mse	auto	best	0.6871945632 68898
2	Mse	auto	random	0.7058331807 027536
3	Mse	sqrt	best	0.5780449056 811394
4	Mse	Sqrt	random	0.6717749850 77185
5	Mse	Log2	best	0.6799833114 025472
6	Mse	Log2	random	0.6801072400 316461
7	Mae	auto	best	0.6648432062 010856
8	Mae	auto	random	0.7500551403 583591
9	Mae	sqrt	best	0.7339690095 918607
10	Mae	sqrt	random	0.6941169283 379627
11	Mae	Log2	best	0.5658811496 163172
12	Mae	Log2	random	0.7028754036 814628
13	friedman_mse	auto	best	0.7188171695 197177

14	friedman_mse	auto	random	0.6783110980 709615
15	friedman_mse	sqrt	best	0.7055531104 846458
16	friedman_mse	sqrt	random	0.5952600931 249437
17	friedman_mse	Log2	best	0.7963033250 752416
18	friedman_mse	Log2	random	0.6226609825 934093
19	poisson	auto	best	0.6792193646 949658
20	poisson	auto	random	0.6982855340 536165
21	poisson	sqrt	best	0.6106388856 607337
22	poisson	sqrt	random	0.6542909381 256115
23	poisson	Log2	best	0.5227100972 953048
24	poisson	Log2	random	0.6467486767 283614

Descision Tree best r2 value (criterion (friedman_mse), Max_features (Log2), splitter (Best))

is 0.7963033250752416

4.Random Forest

Serial.No	criterion	Max_features	n_estimators	R_score Value
1	Mse	auto	10	0.8446897393 177992
2	Mse	auto	100	0.8582064953 815349
3	Mse	sqrt	10	0.8535877981 749798

4	Mse	sqrt	100	0.8722476146 127074
5	Mse	Log2	10	0.85841787167 08083
6	Mse	Log2	100	0.8706412205 393324
7	Mae	auto	10	0.8205612752 559868
8	Mae	auto	100	0.8501514295 69389
9	Mae	sqrt	10	0.8500750883 670041
10	Mae	sqrt	100	0.87174566434 95153
11	Mae	Log2	10	0.8543698071 729846
12	Mae	Log2	100	0.8736539550 478307

Random Forest best r2 value (*criterion* (*mae*), Max_features (Log2), N_estimator is 100) is 0.8736539550478307

The final Machine Learning Best Model of Regression for insurance dataset :

From implementing algorithm in order to find the best model .I found that both Random Forest and Support Vector Machine has best R_score values

```
1 . Random Forest best r2 value (criterion~(mae), Max_features (Log2), N_estimator is 100) is 0.8736539550478307
```

or

2 . Support Vector Machine best r2 value (RBF(Non Linear) and HyperParameter(C3000)) is 0.8663393953081686