JOBSHEET MATEMATIKA DISKRIT

PERTEMUAN KE-: 8

MATERI : Induksi Matematika

TUJUAN : Mahasiswa mampu memahami tentang definisi induksi matematika dan mampu

melakukan perhitungan meggunakan induksi matematika.

A. PENGERTIAN INDUKSI MATEMATIKA

Induksi matematika merupakan suatu teknik yang dikembangkan untuk membuktikan pernyataan (Jong Jek Siang, 2006). Induksi matematika digunakan untuk membuktikan kebenaran suatu proposisi yang berkaitan dengan bilangan bulat.

Induksi matematika hanyalah suatu metode pembuktian dan tidak dapat digunakan untuk membuat persamaan baru. Pada induksi matematika, kita tidak menghasilkan jawaban, melainkan hanya membuktikan hasil proses yang terjadi secara berulang sesuai pola tertentu.

B. Tahap-tahap pada Induksi Matematika

Induksi matematika terdiri atas 2 tahapan, yaitu:

1. Langkah Dasar

Langkah dasar dilakukan dengan membuktikan kebenaran dari P_0 , yaitu dengan cara memasukkan suku n_0 dari deret ke dalam persamaan.

2. Langkah Induksi

Berdasarkan asumsi bahwa P_n bernilai benar, maka dilakukan pembuktian terhadap P_{n+1} . Asumsi bahwa P_n bernilai benar disebut Hipotesis Induksi.

C. Contoh Kasus

Contoh 1:

Tunjukkan bahwa $1+2+3+4+\ldots+n=\frac{n(n+1)}{2}$ bernilai benar untuk setiap nilai dari n.

Langkah Dasar: Pembuktian Po (Pn untuk no)

$$n_0 = 1$$

$$P(n) = \frac{n(n+1)}{2}$$

$$P(1) = \frac{1(1+1)}{2}$$

$$=\frac{1(2)}{2}=1$$

Maka, Pn terbukti untuk no

.

Langkah Induksi: Pembuktian Pn+1

a. Mencari nilai P_{n+1}:

$$P(n+1) = \frac{(n+1)(n+2)}{2}$$

b. Membuktikan nilai kebenara P_{n+1:}

$$1 + 2 + 3 + 4 + ... + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2}$$

Dengan demikian, P_{n+1} terbukti benar sehingga $1+2+3+4+\dots+n=\frac{n(n+1)}{2}$ bernilai benar untuk setiap nilai n.

Contoh 2:

Tunjukkan bahwa $n^3 + 2n$ adalah kelipatan 3 untuk semua nilai n dengan syarat $n \ge 2$!

Langkah Dasar: Pembuktian Po (Pn untuk no)

Karena terdapat syarat $n \ge 2$, maka $n_0 = 2$

$$P(n) = n^3 + 2n$$

$$P(1) = 2^3 + 2.2$$

$$= 8 + 4$$

Maka, terbukti bahwa P_n adalah kelipatan 3 untuk n₀

Langkah Induksi: Pembuktian P_{n+1}

Dengan asumsi bahwa P_n adalah kelipatan 3 untuk semua nilai n, maka nilai dari P_{n+1} bisa didapatkan dari:

$$P(n) = n^3 + 2n$$

$$P(n+1) = (n+1)^3 + 2(n+1)$$

$$= (n+1)((n+1)^{2} + 2)$$

$$= (n+1)(n^{2} + 2n + 1 + 2)$$

$$= n^{3} + 2n^{2} + 3n + n^{2} + 2n + 3$$

$$= (n^{3} + 2n) + (3n^{2} + 3n + 3)$$

$$= (n^{3} + 2n) + 3(n^{2} + n + 1)$$

Dengan demikian, terbukti bahwa P_{n+1} adalah **kelipatan 3**, sehingga dapat disimpulkan bahwa $n^3 + 2n$ adalah **kelipatan 3** untuk semua nilai n ($n \ge 2$).

Contoh 3:

Buktikan bahwa $2+4+6+\cdots+2n=n(n+1)$ untuk setiap n bilangan genap ≥ 2 !

Langkah Dasar: Pembuktian Po (Pn untuk no)

a. Mencari nilai n₀:

$$2n_0 = 2$$

$$n_0 = 1$$

b. Membuktikan P_n untuk n₀:

$$P_n = n(n+1)$$

 $P_0 = 1(1+1)$

$$P_0 = 1(1+1)$$

Maka, P_n untuk n₀ (P₀) terbukti benar.

Langkah Induksi: Pembuktian P_{n+1}

Pada deret $2+4+6+\cdots+2n=n(n+1)$, suku setelah 2n adalah:

$$2(n+1) = 2n+2$$

a. Mencari persamaan untuk P_{n+1} :

$$P(n) = n(n+1)$$

$$P(n+1) = (n+1)((n+1)+1)$$

$$= (n+1)(n+2)$$

b. Membuktikan nilai kebenara P_{n+1}:

$$2 + 4 + 6 + ... + 2n + 2(n+1) = n(n+1) + 2(n+1)$$

= $n^2 + n + 2n + 2$

$$= n^2 + 3n + 2$$

= $(n+1)(n+2)$

Dengan demikian, $2+4+6+\cdots+2n=n(n+1)$ terbukti **bernilai benar** untuk setiap n bilangan genap ≥ 2 .

Contoh 4:

Buktikan nilai kebenaran $\sum_{i=1}^{n-1} i(i+1) = \frac{n(n-1)(n+1)}{3}$ untuk semua bilangan bulat $n \geq 2!$

Langkah Dasar: Pembuktian P₀ (Pn untuk n₀)

Deret di atas dimulai dari suku i(i + 1) dengan i = 1, yaitu:

$$n_0 = i(i + 1)$$

= 1(1 + 1)
= 1.2 = 2

Selain cara di atas, kita bisa menemukan n_0 dengan melihat syarat untuk anggota n. Karena n harus lebih dari atau sama dengan 2, maka n_0 adalah 2.

$$P(n) = \frac{n(n-1)(n+1)}{3}$$
$$= \frac{2(2-1)(2+1)}{3}$$
$$= \frac{2 \cdot 1 \cdot 3}{3} = 2$$

Maka, P_n untuk n₀ terbukti benar.

Langkah Induksi: Pembuktian Pn+1

Untuk deret $\sum_{i=1}^{n-1} i(i+1) = \frac{n(n-1)(n+1)}{3}$, nilai suku selanjutnya adalah n(n+1) karena suku terakhir adalah (n-1)(n).

a. Mencari persamaan untuk P_{n+1} :

$$P(n) = \frac{n(n-1)(n+1)}{3}$$

$$P(n+1) = \frac{(n+1)((n+1)-1)((n+1)+1)}{3}$$

$$= \frac{n(n+1)(n+2)}{3}$$

b. Membuktikan nilai kebenara P_{n+1}:

$$\begin{split} \sum_{i=1}^{n-1} i(i+1) &= \frac{n(n-1)(n+1)}{3} \\ \sum_{i=1}^{n} i(i+1) &= \frac{n(n-1)(n+1)}{3} + n(n+1) \\ &= \frac{n(n^2-1)+3n(n+1)}{3} \\ &= \frac{n((n^2-1)+3(n+1))}{3} \\ &= \frac{n(n^2+3n+2)}{3} \\ &= \frac{n(n+1)(n+2)}{3} \end{split}$$

Dengan demikian, P_{n+1} terbukti **bernilai benar**, sehingga deret $\sum_{i=1}^{n-1} i(i+1) = \frac{n(n-1)(n+1)}{3}$ terbukti **bernilai benar** untuk semua bilangan bulat $n \ge 2$.

TUGAS

Buktikan pernyataan di bawah ini menggunakan induksi matematika!

1.
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
 untuk semua bilangan bulat $n \ge 1$.

2.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
 untuk semua bilangan bulat $n \ge 1$.

3.
$$1.1! + 2.2! + 3.3! + 4.4! + \cdots + n.n! = (n+1)! - 1$$
 untuk $n \ge 1$.

- 4. $2^{3n} 1$ habis dibagi 7 untuk semua bilangan bulat $n \ge 1$.
- 5. $n^3 7n + 3$ habis dibagi 3 untuk semua bilangan bulat $n \ge 0$.