Devoir surveillé nº 3, 20 avril 2022

Consignes: - Les documents et outils électroniques sont interdits.

- Le devoir a un total de 26 points. Les notes ≥ 20 seront considérées comme 20.
- Vous devez justifier vos réponses au maximum.
- Les affirmations irresponsables vous font perdre la confiance du correcteur : Il faut les éviter à tout prix.
- La bonne compréhension et interprétation des questions fait partie du devoir.
- Le barème est donné à titre indicatif.

Conventions. Dans la suite, G désigne un groupe. Un "Sylow" d'un groupe arbitraire est une abréviation de "sous-groupe de Sylow".

Exercice 1 (Question de cours). (4 pts) Soit K un corps et A une K-algèbre. On suppose que en tant qu'anneau, A est intègre et en tant que K-espace vectoriel, A est de dimension finie. Montrer que A est un corps.

Correction. Soit $a \in A \setminus 0$. Soit $m : A \to A$ la multiplication par a. Comme A est intègre, Ker m = 0. Donc m est iso. Donc existe b t.q. ab = 1.

Exercice 2. (10 pts) Soit p > 2 un nombre premier G un groupe d'ordre 2p qui n'est pas commutatif. Construire un isomorphisme $\phi : \mathcal{D}_{2p} \to G$.

Correction. Soit n_q le nombre de q-Sylows de G. On sait que $n_p \mid 2$ et que $n_p \equiv 1 \mod p$. Donc $n_p = 1$ et on n'aura que un unique p-Sylow S_p . (2pts) On voit que $n_2 \mid p$ et n_2 est impair. Si $n_2 = 1$, alors on n'aura que un unique 2-Sylow, S_2 disons. Comme S_2 est distingué, on déduit que $S_p \times S_2 \to G$ définie par $(x,y) \mapsto xy$ est un isomorphisme et G est commutatif, ce qui est exclu. (2pts) On conclut alors que un 2-Sylow arbitraire, S_2 , n'est pas distingué. Le groupe S_pS_2 est un sous-groupe de 2p éléments. Il suit que $G = S_pS_2$. (2pts) Si $c: S_2 \to \operatorname{Aut}(S_2)$ désigne la conjugaison, on sait ainsi que $G \simeq S_p \rtimes_c S_2$. Soit r un générateur de S_p et s un générateur de S_2 . Il suit que $srs^{-1} = r^k$ pour un $k \in \{1, \ldots, p-1\}$. Si k = 1, alors sr = rs et G serait commutatif, ce qui est exclu. Donc 1 < k < p et $c(s): r \mapsto r^k$. Or, mais $c(s)^2: r \mapsto r^{k^2} = r$ car $s^2 = e$; on déduit que $p \mid k^2 - 1$. Dans ce cas, soit $p \mid k - 1$, soit $p \mid k + 1$. Mais $p \mid k - 1 \leqslant p - 1$ est impossible, donc k = p - 1. On déduit que $srs^{-1} = r^{-1}$. Il suit que la fonction $(R^i, S^j) \mapsto r^i s^j$ est un isomorphisme car $SRS^{-1} = R^{-1}$. (4 pts)

Exercice 3. (12 pts) Soit G un groupe d'ordre $255 = 3 \cdot 5 \cdot 17$. Pour $\ell \in \{3, 5, 17\}$, soit P_{ℓ} un ℓ -Sylow de G.

(1) (2 pts) Montrer que $P_{17} \lhd G$.

Correction. On sait que $n_{17} = 1, 3, 5$ et que $n_{17} \equiv 1 \mod 17$. Donc $n_{17} = 1$.

(2) (3 pts) D'après les théorèmes de Sylow, quels sont les ordres possibles du normalisateur $N_5 = \{g \in G : {}^gP_5 = P_5\}$?

Correction. Si n_5 désigne le nombre de 5-Sylows, alors $n_5 = |G|/|N_5|$, car N_5 est le stabilisateur de P_5 . On sait que $n_5 = 1, 3, 17, 51$ et que $n_5 \equiv 1 \mod 5 \Rightarrow n_3 = 1, 51$. Il suit que $|N_5| = 255$ ou 5.

(3) (3pts) En étudiant $H := P_{17}P_5$, montrer que $P_5 \triangleleft G$.

Correction. P_5 est un 5-Sylow de H. Or, ne nombre de 5-Sylows dans H est soit 1, soit 17.Mais $17 \not\equiv 1 \mod 5 \Rightarrow P_5 \lhd H$. On conclut que $H \subset N_5 \Rightarrow |N_5| = 255 \Rightarrow P_5 \lhd G$.

(4) (4 pts) On admet que 1 $P_3 \triangleleft G$. Montrer que G est cyclique. (Je m'attends à que vous donnez une explication brève du résultat du cours portant sur la structure d'un groupe où les Sylows sont tous distingués.)

^{1.} Ceci se démontre en suivant exactement le même raisonnement que pour montrer $P_5 \lhd G$.