IPD

H. GUIOL

CONSTRUCTION DE L'INTÉGRALE

D'ITŌ

PRÉVISIBLE

PRÉVISIBLE ÉLÉMENTAIRE

 $\Pi_2^2([0, T])$ PROCESSUS DI $\Pi^2([0, T])$

PROCESSUS D'ITŌ

VARIATION QUADRATIQUE ET PROCESSUS CROCHE

COVARIATION

INTRODUCTION AUX PRODUITS DÉRIVÉS PAGE DU COURS SUR CHAMILO

Hervé Guiol (IPS LJK)

Wolfgang Döblin 1915-1940

Kiyoshi Itō 1915-2008

PLAN DU COURS D'IPD

IPD

H. GUIOL

DE L'INTÉGRALE D'ITŌ

PRÉVISIBLE PROCESSUS

ÉLÉMENTAIRE

PROCESSUS DE

Π²([n τ])

PROCESSUS E $\Pi_3^2([0, T])$

Processus d'Itō

VARIATION
QUADRATIQUE ET
PROCESSUS CROCHE

- 1. Vecteurs Gaussiens.
- 2. Généralités sur les processus. Mouvement Brownien Standard.
- 3. Premières propriétés du MBS.
- 4. Martingales à temps continu : filtrations, temps d'arrêt.
- 5. Martingales (suite) : martingales du Mouvement Brownien, théorème d'arrêt et applications au Mouvement Brownien.
- 6. Intégrale de Wiener.
- Intégrale d'Itō 1 : définitions et construction. Processus d'Itō. Variations.
- 8. Intégrale d'Itō 2 : formule d'Itō.
- Représentation des martingales Browniennes. Formule d'Itô multi-d. Formule de Cameron-Martin.
- 10. Equation Différentielle Stochastique. Théorèmes d'Itō.
- Modèle de Black-Scholes-Merton : stratégies, prix et portefeuille de couverture.

OUTLINE

IPD

H. GUIOL

CONSTRUCTION DE

L'INTÉGRALE D'ITŌ

PRÓCESSUS DE BA: PRÉVISIBLE

PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

 $\Pi_2^2([0, T])$ PROCESSUS DE $\Pi_2^2([0, T])$

PROCESSUS D'ITŌ

QUADRATIQUE ET PROCESSUS CROCHE

COVARIATION

■ CONSTRUCTION DE L'INTÉGRALE D'ITŌ

- Processus de base prévisible
- Processus prévisible élémentaire
- Processus de $\Pi_2^2([0, T])$
- Processus de $\Pi_3^{\frac{5}{2}}([0, T])$
- PROCESSUS D'ITŌ

INTÉGRALE D'ITŌ: PROCESSUS DE BASE PRÉVISIBLE

IPD

H. GUIOL

CONSTRUCTION DE L'INTÉGRALE

PROCESSUS DE BASE

PRÉVISIBLE

PRÓCESSUS PRÉVISIBLE ÉLÉMENTAIRE

 $\Pi_2^2([0, T])$ PROCESSUS E

 $\Pi_3^2([0, T])$

D'ITŌ

QUADRATIQUE ET PROCESSUS CROCHI

COVARIATIO

DÉFINITION 3.6

On appelle processus de base prévisible un processus $H=(H_t)_{t\geq 0}$ à valeurs dans $\mathbb R$ de la forme

$$H_t = \Phi \cdot \mathbf{1}_{]u,v]}(t) \tag{1}$$

où $0 \le u < v$ et Φ une v.a. \mathcal{F}_u -mesurable de carré intégrable. On note Π_0^2 l'espace vectoriel des processus de base prévisibles. Pour tout $H \in \Pi_0^2$ de représentation (1) on définit son intégrale d'Itō par W, un $(\mathcal{F}_t)_{t \ge 0}$ -M.B.S., comme le processus $I(H) = (I_t(H))_{t \ge 0}$ vérifiant $\forall t > 0$

$$I_t(H) = \Phi \cdot (W_{v \wedge t} - W_{u \wedge t})$$

Proposition 5.8

Pour tout $H \in \Pi_0$ le processus I(H) est une $(\mathcal{F}_t)_{t \geq 0}$ -martingale à trajectoires continues, de carré intégrable, nulle en t=0. De plus le processus $(I_t^2(H) - \int_0^t H_s^2 \ ds)_{t \geq 0}$ est une $(\mathcal{F}_t)_{t \geq 0}$ -martingale à trajectoires continues.

INTÉGRALE D'ITŌ : PROCESSUS DE BASE PRÉVISIBLE

IPD

H. GUIOL

CONSTRUCTION DE

L'INTÉGRAI D'ITŌ

PROCESSUS DE BASE PRÉVISIBLE

PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

 $\Pi_2^2([0, T])$ PROCESSUS DI $\Pi_2^2([0, T])$

PROCESSUS D'ITŌ

VARIATION QUADRATIQUE ET PROCESSUS CROCHI

COVARIATION OUADRATIQUE • Continuité : $t \mapsto I_t(H) = \Phi \cdot (W_{v \wedge t} - W_{u \wedge t})$ et $t \mapsto I_t^2(H) - \int_0^t H_s^2 ds$

• Adaptabilité : $I_t(H) = \Phi \cdot (W_{v \wedge t} - W_{u \wedge t})$ est \mathcal{F}_t -mesurable et $I_t^2(H) - \int_0^t H_s^2 ds$ est \mathcal{F}_t -mesurable.

• Intégrabilité : $\mathbb{E}((I_t(H))^2) = \int_0^t \mathbb{E}(H_s^2) ds$

Propriétés conditionnelles : ∀0 < s < t</p>

$$\mathbb{E}(I_t(H)|\mathcal{F}_s) = I_s(H)$$

et

$$\mathbb{E}((I_t(H)-I_s(H))^2|\mathcal{F}_s)=\mathbb{E}\left(\int_s^t H_u^2 \ du|\mathcal{F}_s\right)$$

INTÉGRALE D'ITŌ: PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

IPD

H. GUIOL

CONSTRUCTIO DE L'INTÉGRALE

PROCESSUS DE BASE

PROCESSUS PRÉVISIBLE

PREVISIBLE ÉLÉMENTAIRE PROCESSUS DI

 $\Pi_2^2([0, T])$ PROCESSUS DI $\Pi_3^2([0, T])$

PROCESSUS D'ITŌ

VARIATION QUADRATIQUE ET PROCESSUS CROCHI

COVARIATION

DÉFINITION 5.9

Soit T > 0 on appelle processus prévisible élémentaire sur [0, T] tout processus $H = (H_t)_{t \ge 0}$ de la forme

$$H_t = \sum_{i=1}^n \Phi_i \cdot \mathbf{1}_{]t_{i-1},t_i]}(t)$$
 (2)

où $n \in \mathbb{N}^*$, $0 = t_0 < t_1 < ... < t_n = T$ et pour tout $i \in \{1, ... n\}$ chaque Φ_i est une v.a. $\mathcal{F}_{t_{i-1}}$ -mesurable de carré intégrable.

On note $\Pi_1^2([0, T])$ l'espace vectoriel des processus prévisibles élémentaires sur [0, T].

Pour tout $H \in \Pi^2_1([0,T])$ de représentation (2) on définit son intégrale d'Itō par W, un $(\mathcal{F}_t)_{t\geq 0}$ -M.B.S., comme le processus $I(H)=(I_t(H))_{t\geq 0}$ vérifiant $\forall t>0$

$$I_t(H) = \sum_{i=1}^n \Phi_i \cdot (W_{t_i \wedge t} - W_{t_{i-1} \wedge t})$$

INTÉGRALE D'ITŌ: PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

IPD

H. GUIOL

DE L'INTÉGRAL

PROCESSUS DE BAS

PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

PROCESSUS DE $\Pi_2^2([0, T])$ PROCESSUS DE $\Pi^2([0, T])$

PROCESSUS

VARIATION QUADRATIQUE ET PROCESSUS CROCHI

COVARIATION

COROLLAIRE 5.10

Pour tout $H \in \Pi^2_1([0,T])$ l'intégrale d'Itō I(H) de H par W est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale de carré intégrable, à trajectoires continues, nulle en t=0. De plus le processus $(I_t^2(H)-\int_0^t H_s^2\ ds)_{t\geq 0}$ est une $(\mathcal{F}_t)_{t>0}$ -martingale à trajectoires continues. Pour tout $t\in [0,T]$ on notera

$$\int_0^t H_u \ dW_u = I_t(H).$$

Théorème 5.11. Isométrie d'Itō

Pour tous $H \in \Pi_1^2([0, T])$ et $t \in [0, T]$ on a

$$\mathbb{E}\left[\left(\int_0^t H_u \ dW_u\right)^2\right] = \mathbb{E}\left[\int_0^t H_s^2 \ ds\right]$$

Intégrale d'Itō : processus de $\Pi_2^2([0, T])$

IPD

H. GUIOL

Construction

DE L'INTÉGRALE

PROCESSUS DE BAS

PROCESSUS

PRÉVISIBLE ÉLÉMENTAIRE PROCESSUS DE

 $\Pi_2^2([0, T])$ PROCESSUS DI $\Pi_2^2([0, T])$

PROCESSUS D'ITŌ

VARIATION QUADRATIQUE ET PROCESSUS CROCHE

COVARIATIO

Définition 5.12

On définit $\Pi_2^2([0, T])$ l'espace vectoriel des processus $H = (H_t)_{t \ge 0}$ continus à droite limité à gauche, $(\mathcal{F}_t)_{t > 0}$ -adaptés tels que

$$\mathbb{E}\left(\int_0^{\mathcal{T}} H_s^2 ds\right) < +\infty$$

REMARQUE

L'espace $\Pi_1^2([0, T])$ est dense dans $\Pi_2^2([0, T])$ pour la $\|\cdot\|_2$.

Pour $H \in \Pi_2^2([0, T])$ et tout $n \ge 1$ on prend

$$H_t^n = \sum_{k=1}^{2^n-1} \left(rac{2^n}{T} \int_{rac{(k-1)T}{2^n}}^{rac{kT}{2^n}} H_s \ ds
ight) \mathbf{1}_{]kT/2^n,(k+1)T/2^n]}(t)$$

LEMME 5.14

$$\lim_{n\to\infty} \mathbb{E}\left(\int_{0}^{t} (H_{s} - H_{s}^{n})^{2} ds\right) = 0$$

Intégrale d'Itō : processus de $\Pi_2^2([0, T])$

IPD

H. GUIOL

CONSTRUCTION DE L'INTÉGRALE

D'ITŌ
PROCESSUS DE BASE

PRÉVISIBLE
PROCESSUS
PRÉVISIBLE
ÉLÉMENTAIRE

PROCESSUS DE $\Pi_2^2([0, T])$ PROCESSUS DE $\Pi^2([0, T])$

PROCESSU

VARIATION QUADRATIQUE ET PROCESSUS CROCHE

COVARIATIO

THÉORÈME 5.13

Il existe une unique application linéaire $J:\Pi^2_2([0,T])\to \mathcal{M}^2_c$ l'ensemble des martingales de carré intégrable à trajectoires continues vérifiant

- 1. $\forall H \in \Pi_1^2$ on a J(H) = I(H);
- 2. Pour tout $H \in \Pi_2^2([0,T])$ le processus J(H) est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale de carré intégrable, à trajectoires continues, nulle en t=0 vérifiant pour tout $t\geq 0$ l'isométrie d'Itō

$$\mathbb{E}\left(J_t(H)^2\right) = \mathbb{E}\left(\int_0^t H_s^2 \ ds\right)$$

3. Pour tout $H \in \Pi_2^2([0, T])$ le processus $(J_t^2(H) - \int_0^t H_s^2 ds)_{t\geq 0}$ est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale à trajectoires continues.

On notera à nouveau

$$\int_0^t H_u \ dW_u = J_t(H).$$

Intégrale d'Itō : processus de $\Pi_3^2([0, T])$

IPD

H. GUIOL

Constructio

DE L'INTÉGRALE

D'ITO

PROCESSUS DE BAS PRÉVISIBLE

PROCESSUS PRÉVISIBLE

ÉLÉMENTAIRE PROCESSUS DI

 $\Pi_2^2([0, T])$

 $\Pi_3^2([0, T])$

PROCESSUS

VARIATION QUADRATIQUE ET PROCESSUS CROCHI

COVARIATIO

Définition 5.15

On définit $\Pi_3^2([0, T])$ l'espace vectoriel des processus $H = (H_t)_{t \ge 0}$ continus à droite limité à gauche, $(\mathcal{F}_t)_{t > 0}$ -adaptés tels que

$$\int_0^T H_s^2 ds < +\infty \text{ p.s.}$$

Proposition 5.16

Soit $H \in \Pi_3^2([0, T])$ et τ un $(\mathcal{F}_t)_{t \geq 0}$ -temps d'arrêt alors

$$\int_0^{t\wedge\tau} H_s \; dW_s = \int_0^t H_s \mathbf{1}_{[0,\tau]}(s) \; dW_s$$

REMARQUE

L'intégrale étendue aux processus de $\Pi_3^2([0, T])$ n'est plus une martingale, mais une martingale locale. L'isométrie d'Itô n'est plus nécessairement vérifiée.

OUTLINE

IPD

H. GUIOL

DE L'INTÉGRALE

PROCESSUS DE BA

PROCESSUS PRÉVISIBLE

PRÉVISIBLE ÉLÉMENTAIRE PROCESSUS DI

PROCESSUS DI $\Pi_3^2([0, T])$

Processus d'Itō

QUADRATIQUE ET PROCESSUS CROCHE

COVARIATION OUADRATIOUE

- CONSTRUCTION DE L'INTÉGRALE D'ITC
- PROCESSUS D'ITŌ
 - Variation quadratique et processus crochet
 - Covariation quadratique

PROCESSUS D'ITŌ

IPD

H. GUIOL

DÉFINITION

Soit W un $(\mathcal{F}_t)_{t\geq 0}$ -M.B.S. On appelle processus d'Itō tout processus $X=(X_t)_{t\geq 0}$ de la forme

$$X_t = X_0 + \int_0^t K_s \ ds + \int_0^t H_s \ dW_s$$

où X_0 v.a. \mathcal{F}_0 mesurable, $K=(K_t)_{t\geq 0}$ et $H=(H_t)_{t\geq 0}$ deux processus $(\mathcal{F}_t)_{t\geq 0}$ -adaptés vérifiant $\forall t\geq 0$

$$\int_0^t (|K_s| + H_s^2) \, ds < \infty$$

D'ITŌ PROCESSUS DE BASI

PRÉVISIBLE

PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

PROCESSUS D $\Pi_2^2([0, T])$ PROCESSUS D

Processus d'Itō

QUADRATIQUE ET PROCESSUS CROCHE

COVARIATION QUADRATIQUE

PROPOSITION

La décomposition d'un processus d'Itō est unique presque sûrement.

VARIATION QUADRATIQUE ET PROCESSUS CROCHET

IPD

H. GUIOL

CONSTRUCTION
DE
L'INTÉGRALE
D'ITŌ

PROCESSUS DE BASE

PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

 $\Pi_2^2([0, T])$

 $\Pi_3^2([0, T])$

Processus d'Itō

VARIATION QUADRATIQUE ET PROCESSUS CROCH

COVARIATIO

DÉFINITION. VARIATION QUADRATIQUE D'UNE MARTINGALE.

La variation quadratique d'une martingale $M=(M_t)_{t\geq 0}$ de carré intégrable à trajectoire continue est définie comme l'unique processus croissant, continu, noté $\langle M \rangle = (\langle M \rangle_t)_{t\geq 0}$ tel que $\langle M \rangle_0 = 0$ et vérifiant que que le processus $N=(N_t)_{t\geq 0}$, définit par $N_t=M_t^2-\langle M \rangle_t$ pour tout $t\geq 0$, est une martingale.

EXEMPLE

Soit *B* un M.B.S. alors $\langle B \rangle_t = t$

DÉFINITION. PROCESSUS CROCHET.

Pour tout processus d'Itō X de décomposition $X_t = X_0 + \int_0^t K_s \ ds + \int_0^t H_s \ dB_s$ on appelle processus crochet le processus $\langle X \rangle$ définit par

$$\langle X \rangle_t = \int_0^t H_s^2 ds$$

VARIATION QUADRATIQUE ET PROCESSUS CROCHET

IPD

H. GUIOL

DE L'INTÉGRAL

PROCESSUS DE BASE

PROCESSUS PRÉVISIBLE

PRÉVISIBLE ÉLÉMENTAIRE PROCESSUS DE

 $\Pi_2^2([0, T])$ PROCESSUS E $\Pi^2([0, T])$

PROCESSU.

VARIATION QUADRATIQUE ET PROCESSUS CROCHI

COVARIATION OUADRATIQUE

PROPOSITION

Si $X_t = X_0 + \int_0^t H_s dB_s$ avec

 $H \in \Pi_2^2 := \{H \text{ càd-làg, adapt\'e et t.q. } \mathbb{E}(\int_0^t H_s^2 ds) < +\infty, \ \forall t \geq 0 \}$ alors les processus crochet et variation quadratique de X coı̈ncident

$$\langle X \rangle_t = \int_0^t H_s^2 ds$$

De plus on a dans L^2

$$\langle X \rangle_t = \lim_{n \to \infty} \sum_{t_i \in \Delta_n} (X_{t_i} - X_{t_{i-1}})^2$$

où $\Delta_n = \{0 = t_0^n < t_1^n < ... < t_k^n = t\}$ est une subdivision de l'intervalle [0,t] vérifiant $\lim_{n\to\infty} \sup_{t_i\in\Delta_n} (t_i-t_{i-1}) = 0$.

COVARIATION QUADRATIQUE

IPD

H. GUIOL

CONSTRUCTION DE L'INTÉGRALE

D'ITO
PROCESSUS DE BASE

PRÉVISIBLE

PROCESSUS PRÉVISIBLE ÉLÉMENTAIRE

 $\Pi_2^2([0, T])$ PROCESSUS DE $\Pi_2^2([0, T])$

Processus d'Itō

VARIATION QUADRATIQUE ET PROCESSUS CROCHE

COVARIATION QUADRATIQUE

DÉFINITION. COVARIATION QUADRATIQUE.

La **covariation quadratique** entre 2 processus *X* et *Y* est définie par

$$\langle X, Y \rangle = \frac{1}{4} (\langle X + Y \rangle - \langle X - Y \rangle)$$

PROPRIÉTÉS.

- 1. L'application $(X, Y) \rightarrow \langle X, Y \rangle$ est bilinéaire.
- 2. Pour X et Y deux processus d'Itō de décomposition

$$X_t = X_0 + \int_0^t K_s ds + \int_0^t H_s dB_s$$

$$Y_t = Y_0 + \int_0^t L_s ds + \int_0^t M_s dB_s$$

On a
$$\langle X, Y \rangle_t = \int_0^t H_s M_s ds$$
.