Commitm Schemes

Leonharo Applis

Basics

nasn-Based

Log

Binary

Commitment-Schemes

Leonhard Applis

TH Nürnberg

20.12.2018

- Basics
- 2 Hash-Based
- 3 Discrete Log
- 4 Binary

Table of Contents

Commitm Schemes

Leonhar Applis

Basics

1 Basics

Hash-Base

3 Discrete Log

4 Binary

Commitments Introduction

Commitm Schemes

Leonharo Applis

Basics

Hash

Discre-Log

Binar

Figure: Kung Fu Hustle - Lollipop Girl

Plot Summary:

- Villain destroys village and steals girls lollipop
- Girls swears vengeance
- Girl becomes Kung Fu master
- Girl finds the villain.
 Villain recognices her by the lollipop

Basics

- A commits to B
- B keeps commitment, unable to read or process it
- A reveals to B
- B verifies the commitment

Figure: Commitments

Commitments Attributes

- **9** Binding: The Values Alice put in the Commitment cannot be changed after B recieved it
- 2 Hiding: Bob cannot gain any information about the message from the commitment itself
- **Viability:** If both parties follow the Protocoll, Bob is always able to recover the committed value

Additional for real-life-applications:

- Bobs are able compare commitments
- 2 Commitments are *tradeable* and replicable

$\begin{array}{c} { m Commitments} \\ { m Applications} \end{array}$

Commitm Schemes

Leonhar Applis

Basics

Hash

Discre

Rinar

Challenge and Response

You can setup your own anonymus challenges, leaving a commitment at Bob's. If someone show's up saying he's Alice, Bob challenges to reveal the commitment.

JSON-Web-Tokens (JWT):

A payload (e.g. some account details) are encrypted and linked to a commitment and passed to a third party.

You can verify yourself at the third-party revealing the commitment this is done *automatic* via session or systemattributes

Table of Contents

Commitm Schemes

Leonhar Applis

Basics
HashBased

Basics

Discret Log

2 Hash-Based

3 Discrete Log

4 Binary

Hash-Based Commitments General Concept

Commitm Schemes

• •

3asics

Hash-Based

Discret Log

Binar

- Alice produces h = Hash(m) and sends Bob h and Hash
- ullet Bob keeps < Alice, h, Hash >
- \bullet Alice reveals herself by sending Bob m
- Bob checks if $Hash(m) \equiv h$

Important: NEVER use actual important data as message, you send it as cleartext in Step 3.

Hash-Based Commitments

Fullfillment of Attributes

Commitm Schemes

Leonhar Applis

Basic

Hash-Based

Discret Log Hiding: because of the Hash-functions Pre-Image resistance, it's nearly impossible to find the message m from the hash. This holds true for any Bob and any Eve.

Binding: because of the Hash-functions collision-resistance, it's nearly impossible to find another message m with the same hash.

Hash-Based Commitments

Problem: unlimited range - limited domain

Commitm Schemes

Hash-Based

Usually: Bob (and Eve) are not able to quess m from h and Hash

But: if the plausible domain of m is known, its possible for modern computers to brute force reveal your m

Example: Alice commits to Bob about the result of a soccer game Germany vs. Brazil.

Therefore she chooses a score of 0:7 and sends Bob $h = SHA_3(str(0:7))$ and the Hashfunction SHA_3

Eve catches the commitment and knows the context of the soccer game. she can know try reasonable combinations of results from 0:0 up to 20:20. She only needs to try $20 \cdot 20 = 400$ results

Hash-Based Commitments

Salting the Hash

Commitm Schemes

Leonharo Applis

Basic

Hash-Based

Discret Log

Binar

Improved Concept:

- lacktriangle Alice chooses a random value s
- Alice produces h = Hash(m, s) and sends h and Hash to Bob
- \bullet Bob keeps < Alice, h, Hash >
- Alice reveals herself by sending bob m and s
- Bob checks if $Hash(m, s) \equiv h$

Hash-Based Commitments Addition

Commitm Schemes

Leonharo Applis

Basic

Hash-Based

Discret Log

Binar

Alice is anonymus. She never stated her name, used certificates, etc. Alice can produce as many commitments for as many personas as she wants.

For increased security:

- commitments should be one-use only
- commitments should have a lifetime (in time and/or tries)
- traded commitments to a third party should be deprecated directly with first reveal
- messages must contain random parts

Table of Contents

Commitm Schemes

Leonhar Applis

Basic

Hash-

Discret Log

Basics

2 Hash-Based

3 Discrete Log

4 Binary

Discrete Logarithm - Pedersen commitment scheme Requirements and Definitions

Commitm Schemes

Leonhar Applis

Basic

Hasn-Based

Discret Log

Binar

Prerequisites: Bob needs to setup the environtment for alice, by

- choosing a large prime number p
- choosing a smaller prime number $q \in \{1..p|q \div (p-1) = 0\}$
- $one only choosing <math>g, v \in G_q \neq 1$
- \bullet sending Alice p, q, g, v

Now Alice can build the exact same group and subgroup like Bob. This is similiar to sending the hash-function.

${\bf Discrete~Logarithm~-~Pedersen~commitment~scheme} \\ {\bf Implementation}$

Commitm Schemes

Leonhar Applis

Basic

Hash-Basec

Discrete Log

Binaı

- Alice requests p, q, g, v from Bob. Alice checks that:
 - \bullet q, p are primes,
 - q divides p-1,
 - that $g, v \in G_q$.
- Alice chooses her message $m \in \{1..p\}$ and a random number $r \in \{1..q-1\}$
- Alice sends $c = g^r v^m$ to Bob (commit)
- Bob keeps $\langle Alice, c, \langle p, q, g, v \rangle \rangle$
- Alice can reveal herself by sending r, m to Bob. Bob checks $c = q^r v^m$

Discrete Logarithm - Pedersen commitment scheme $_{\rm Benefits}$

Commitm Schemes

Leonhar Applis

Basic

Hash Base

Discre Log

Binary

Major:

- Commitments always contain random parts
- No collision possible (unlike Hashfunctions)

Minor:

- tupels are (usually) smaller to store than hashes
- p, q, g, v are easily changed/renewed (you could not renew hashfunctions)

Table of Contents

Commitm Schemes

Leonhar Applis

Basic

1 Basics

Discret Log Binary

2 Hash-Based

3 Discrete Log

Binary

Quadratic Residues

Definitions and Setup

Commitm Schemes

Leonhar Applis

Basic

Hasn-Based

Discret Log

Binary

Commitment to only 0,1 using quadratic residues.

A number **n** is \mathbf{always} quadratic, if it's the product of two quadrats.

$$p^2 * q^2 = p * p * q * q = (p * q)^2$$

choose primes p,q and check for every element $x \in \mathbf{Z}_{\mathbf{n}}^*, n = p * q$

The only way to check if x is quadratic in n, is to check if its quadratic for p and q!

Quadratic Residues

Legendre Symbol

Commitm Schemes

Leonharo Applis

Basic

Hash Base

Discret Log

Binary

Required: Legendre-Symbol $(\frac{x}{p}) = x^{p-1} mod(p)$

$$x \ is \ quadratic \ in \ p \iff (\frac{x}{p}) = 1 \land p \in Primes$$

n is not a prime, so the legendre symbol does not tell if x is quadratic! The only way to check is to check p and q:

$$n = p \cdot q \to \left((x \text{ is quadratic in } n \iff \left(\frac{x}{p}\right) = 1 \land \left(\frac{x}{q}\right) = 1 \right)$$

Additional we 1 can show that: $(\frac{x}{n}) = (\frac{x}{p}) \cdot (\frac{x}{q})$

¹the proof is left for the reader

Quadratic Residues Jakobi-Matrizes

Commitm Schemes

Leonhar Applis

Basic

Hash. Basec

Discret Log

Binary

$(\frac{x}{p})$	$(\frac{x}{q})$	$(\frac{x}{n})$	quadratic
1	1	1	yes
1	-1	-1	no
-1	1	-1	no
-1	-1	1	no

given X and guessing we have 75% cases where it's not quadratic.

given X and $(\frac{x}{n}) = 1$ we have 50:50 Quadratic:nonQuadratic

• Alice chooses primes p, q and an element $v \in \{x \in \mathbf{Z}_n | (\frac{x}{n}) = 1\}$

- **2** Alice commits to a bit b by choosing a random numer r and sending Bob: n, v and $c = r^2 \cdot v^b$
- Bob verifies that $(\frac{v}{n}) = 1$ and keeps $\langle Alice, n, v, c \rangle$
- Alice reveals herself by sending Bob p, q, r, b
- **3** Bob verifies that p, q are primes, n = pq and $c = r^2 \cdot v^b$

If A wants to commit a quadratic residue, she chooses a quadratic v and b=1, therefore $r^2\cdot v^1$ will be quadratic

If a wants to commit a non-quadratic value, she chooses a nonquadratic v and b=0, therefore $r^2\cdot v^0=r^2$ which is quadratic

If v's quadracy and b do not match, c won't be quadratic and therefore rejected