R&R Report

Method

Parts: 10 Operators: 3 Replicates: 2 Total runs: 60

~

Summary

Original	Recoded	Number
Value	Value	of Rows
1.1	1	10
1.2	1	10
2.1	2	10
2.2	2	10
3.1	3	10
3.2	3	10

Recoded data column Operator

Variance Components

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0.0014850	5.16
Repeatability	0.0006758	2.35
Reproducibi l ity	0.0008092	2.81
Part-To-Part	0.0272724	94.84
Total Variation	0.0287574	100.00

Gage Evaluation

		Study Var	%Study Var
Source	StdDev (SD)	(6 × SD)	(%SV)
Total Gage R&R	0.038535	0.23121	22.72
Repeatability	0.025996	0.15598	15.33
Reproducibi l ity	0.028446	0.17068	16.77
Part-To-Part	0.165144	0.99086	97.38
Total Variation	0.169580	1.01748	100.00

			Operator 1
Part #		1	2
1		0.63	0.59
2		1	1
3		0.83	0.77
4		0.86	0.94
5		0.59	0.51
6		0.98	0.98
7		0.96	0.96
8		0.86	0.83
9		0.97	0.97
10		0.64	0.72
Averages:			
ge Average (R double bar) Operator Average (xD) e of Parts Average	0.029333 0.0555 0.525		

Overall Range Average (R double bar)	0.029333		
Range of Operator Average (xD)	0.0555		
Range of Parts Average	0.525		
Trials, r	2		
Operators , m	3		
Parts, n	10		
Tolerance	0.5		
K1	4.56		
K2	2.7		
K3	1.62		
D4	3.27		
		% of Total Variation	Variance Ratio
EV	0.13376	15%	2.35%
AV	0.146835	17%	2.83%
R&R	0.198626	23%	5.17%
PV	0.8505	97%	94.83%
τv	0.873386		
Upper Limit	0.09592		

Upper Limit 0.09592

15%

	Opera					
Average	Range	1	2	Average	Range	1
0.61	0.04	0.56	0.56	0.56	0	0.51
1	0	1.04	0.96	1	0.08	1.05
0.8	0.06	0.8	0.76	0.78	0.04	0.81
0.9	0.08	0.82	0.78	0.8	0.04	0.81
0.55	0.08	0.43	0.43	0.43	0	0.46
0.98	0	1	1.04	1.02	0.04	1.04
0.96	0	0.94	0.9	0.92	0.04	0.95
0.845	0.03	0.72	0.74	0.73	0.02	0.81
0.97	0	0.98	0.94	0.96	0.04	1.03
0.68	0.08	0.56	0.52	0.54	0.04	0.84
0.8295	0.037			0.774	0.034	

% Tolerance

26.75%

29.37%

39.73%

170.10%

ator	3
------	---

2	Average	Range	Part Averages
0.54	0.525	0.03	0.565
1.01	1.03	0.04	1.01
0.81	0.81	0	0.796666667
0.81	0.81	0	0.836666667
0.49	0.475	0.03	0.485
1	1.02	0.04	1.006666667
0.95	0.95	0	0.943333333
0.81	0.81	0	0.795
1.03	1.03	0	0.986666667
0.81	0.825	0.03	0.681666667
	0.8285	0.017	

Glass Breaking Strength

A salsa company is considering using a new container for its salsa. According to their research, the glass containers for the salsa should have a strength between 185 and 325 psi. A vendor has provided the following data for ealuation. Is there evidence that the process is in control? Is it capable of producing jars with a breaking strength between 185 and 325 psi?

Sample			Data			
1	265	205	263	307	220	264.06
2	268	260	234	299	215	
3	197	286	274	243	231	
4	267	281	265	214	318	
5	346	317	242	258	276	
6	300	208	187	264	271	
7	280	242	260	321	228	
8	250	299	258	267	293	
9	265	254	281	294	223	
10	260	308	235	283	277	
11	200	235	246	328	296	
12	276	264	269	235	290	
13	221	176	248	263	231	
14	334	280	265	272	283	
15	265	262	271	245	301	
16	280	274	253	287	258	
17	261	248	260	274	337	
18	250	278	254	274	275	
19	278	250	265	270	298	
20	257	210	280	269	251	

Is the process cabaple of producing jars with a breaking strength between 185 and 325 psi?

Mid Point	255
StdDev	32.01793
Cpl	0.82308
Cpu	0.634436
Cpk	0.634436

Process Capability Report for C2, C3, C4, C5, C6

Descriptive Stats Demo

Statistics

Variable	N	N*	Mean	StDev	Variance	CoefVar	Minimum	Q1	Median	Q3	Maximum
Weight	100	0	38.632	0.444	0.197	1.15	37.300	38.400	38.600	38.975	39.900
Variable	IQR	М	ode N	for Mod	<u>e</u>						

Test and CI for Two Proportions

Method

 p_1 : proportion where Sample 1 = Event p_2 : proportion where Sample 2 = Event Difference: $p_1 - p_2$

Descriptive Statistics

Sample	Ν	Event	Sample p
Sample 1	200	180	0.900000
Sample 2	100	85	0.850000

Estimation for Difference

 Difference
 80% CI for Difference

 0.05
 (-0.003227, 0.103227)

CI based on normal approximation

Test

Null hypothesis $H_0: p_1 - p_2 = 0$ Alternative hypothesis $H_1: p_1 - p_2 \neq 0$

Method	Z-Value	P-Value
Normal approximation	1.20	0.229
Fisher's exact		0.252

```
Demo Week 3
```

Tuesday, June 14, 2022 8:04 PM

$$C\rho = \frac{USL - LSL}{6\sigma} = \frac{1Y - 10}{6\sigma}$$

N= 5 , K= 25 , ER = 81.32 , ET = 276.917 , d2 (5) = 2.326

 $R = \frac{SR_1}{K} = \frac{81.32}{27} = 3.252$

0= 3.272 = 1.398

Cp = 18-10 (L) = 0.954

Cp 6 1.33, Process is NOT capable

 $\rho = \left(\frac{1}{c_p}\right)(100) = \left(\frac{1}{4rq}\right)(100) = 104.87 \%$

 $X = \frac{EX}{K} = \frac{396417}{27} = 15.06$

Co is not at 14 (mean) so not the correct canabin ratio. Use Cou

BP: x=7 , S= 1.41 , N=+

EM: X = 4.92 , S = .96 , N=13

95% CL, d= 0.05

V1- V2 + tol2 152 + 5,2

 $V = \left(\frac{S_1^2}{h_1} + \frac{S_1^2}{h_2}\right)^2 \approx 9 = 2.26$ From take

0.8367 & MI-M2 & 3.30

Midlest: N=100, P= 85%, counts = 85 P2

West Coast: N=200, P= 10%, events = 100 P,

80% CL , d= 0.2

P1 - P2 + Za/2 1 P1 (1-P1)+ P2 (1-P2)

2010 = 1.28 15 (From Excel)

.9-.75 ± (1.28/5) (28/5.1) + (45-1/.15)

-0.0032 & P. - P2 & 0.1032