

FORMULARIO

LÓGICA Y CONJUNTO

Sean p, q, r, proposiciones lógicas. Las siguientes son tautologías usadas comúnmente:

1. Básicas

$$\triangleright$$
 (p \land \bar{p}) = F

$$\triangleright$$
 (p \vee \bar{p}) = \vee

$$\triangleright$$
 (p \land V) = p

$$\rightarrow$$
 (p \wedge F) = F

$$\triangleright$$
 (p \vee F) = p

2. Conmutatividad

$$\rightarrow$$
 (p \wedge q) = (q \wedge p)

$$\rightarrow$$
 (p \vee q) = (q \vee p)

3. Asociatividad

$$\rightarrow$$
 (p \vee q) \vee r = p \vee (q \vee r)

$$\triangleright$$
 $(p \land q) \land r = p \land (q \land r)$

4. Distributividad

$$\triangleright$$
 p \land (q \lor r) = [(p \land q) \lor (p \land r)]

$$ightharpoonup p \lor (q \land r) = [(p \lor q) \land (p \lor r)]$$

5. Caracterizaciones

$$ightharpoonup$$
 (p \Rightarrow q) = ($\bar{p} \lor q$)

$$\triangleright$$
 $(p \Leftrightarrow q) = \{(p \Rightarrow q) \land (q \Rightarrow p)\}$

6. Idempotencia

$$\rightarrow$$
 (p \land p) = p

$$\triangleright$$
 (p \lor p) = p

7. Leyes de Morgan

$$ightharpoonup (p \land q) = (\bar{p} \lor \bar{q})$$

$$ightharpoonup (p \lor q) = (\bar{p} \land \bar{q})$$

8. Propiedades de la Implicancia

$$\triangleright$$
 [(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)

$$ightharpoonup$$
 (p \Rightarrow q) = ($\bar{q} \Rightarrow \bar{p}$)

$$\triangleright$$
 $(p \Rightarrow p) = V$

9. Propiedades de la Equivalencia

$$\rightarrow$$
 $(p \Leftrightarrow q) = (q \Leftrightarrow p)$

$$\triangleright$$
 [(p \Leftrightarrow q) \land (q \Leftrightarrow r)] \Rightarrow (p \Leftrightarrow r)

$$\rightarrow$$
 $(p \Leftrightarrow p) = V$

10. Absorción

$$\rightarrow$$
 [(p v (p \land q)] = p

$$\triangleright$$
 [(p \land (p \lor q)] = p

Sea U un conjunto universo y A, B, C subconjuntos de U.

1. Definiciones

- \rightarrow AUB = {x ∈ U: x ∈ A \lor x ∈ B}
- \triangleright A \cap B = {x \in U: x \in A \land x \in B}
- $A^C = \{x \in U: x \notin A\}$
- \triangleright A\B = A \cap B^C
- ightharpoonup A Δ B = (A\B) U (B\A) = (A U B) \ (A \cap B)

2. Básicas

- \triangleright A =. A U Ø = A \cap U = $(A^C)^C$
- \triangleright Ø = A \cap Ø = A \cap A^C
- \triangleright U = A U U = A U A^C
- \triangleright (A \subseteq B) = (B^C \subseteq A^C)
- \triangleright A \cap B \subseteq A \subseteq A U B
- \triangleright Ø = A \triangle A
- \rightarrow A \triangle Ø = A

3. Conmutatividad

- \triangleright AUB=BUA
- \triangleright A \cap B = B \cap A
- \triangleright A \triangle B = B \triangle A

4. Asociatividad

- ➢ AU(BUC) = (AUB)UC
- \triangleright A \cap (B \cap C) = (A \cap B) \cap C
- \triangleright A \triangle (B \triangle C) = (A \triangle B) \triangle C

5. Distributividad

- \triangleright A U (B \cap C) = (A U B) \cap (B U C)
- \triangleright A \cap (B U C) = (A \cap B) U (A \cap C)
- \triangleright A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)

6. Idempotencias

- > AUA=A
- \rightarrow A \cap A = A

7. Leyes de Morgan

- ightharpoonup (A UB)^C = $A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$

8. Otros

- \triangleright P(A) = { X \subseteq U: X \subseteq A}
- \triangleright (a,b) = {{a},{a,b}}
- \rightarrow A x B = {(x,y): x \in A \land y \in B}

