Algorytm batchowy k-średnich

Natalia Potocka

05/25/2015

Algorytmy k-średnich

Loss	Stochastic gradient algorithm
K-Means [?]	$k^* = \arg\min_{k} (z_t - w_k)^2$
$Q_{\text{kmeans}} = \min_{k} \frac{1}{2} (z - w_k)^2$	$n_{k^*} \leftarrow n_{k^*} + 1$
Data $z \in \mathbb{R}^{d^k}$	$w_{k^*} \leftarrow w_{k^*} + \frac{1}{n_{k^*}} (z_t - w_{k^*})$
Centroids $w_1 \dots w_k \in \mathbb{R}^d$	(counts provide optimal learning rates!)
Counts $n_1 \dots n_k \in \mathbb{N}$, initially 0	(

Algorytm mini batch

Algorithm 1 Mini-batch k-Means.

```
1: Given: k, mini-batch size b, iterations t, data set X
 2: Initialize each \mathbf{c} \in C with an \mathbf{x} picked randomly from X
 3: \mathbf{v} \leftarrow 0
 4: for i = 1 to t do
 5: M \leftarrow b examples picked randomly from X
     for \mathbf{x} \in M do
 7: \mathbf{d}[\mathbf{x}] \leftarrow f(C, \mathbf{x}) // Cache the center nearest to \mathbf{x}
     end for
 8:
 9: for \mathbf{x} \in M do
10: \mathbf{c} \leftarrow \mathbf{d}[\mathbf{x}] // Get cached center for this \mathbf{x}
11:
           \mathbf{v}[\mathbf{c}] \leftarrow \mathbf{v}[\mathbf{c}] + 1 // Update per-center counts
           \eta \leftarrow \frac{1}{\mathbf{v}[\mathbf{c}]} // Get per-center learning rate
12:
           \mathbf{c} \leftarrow (1 - \eta)\mathbf{c} + \eta\mathbf{x} // Take gradient step
13:
        end for
14:
15: end for
```

Wyniki

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full batch method (green), while converging to significantly better solutions than the online SGD method (red).

Bibliografia

Stochastic Gradient Descent Tricks, Leon Bottou, Microsoft Research, Redmond, WA, 2012

Web-Scale K-Means Clustering, D. Sculley, Google, Inc. Pittsburgh. PA USA, 2010