Al Lab - Lesson 3 Bucket Elimination

Davide Corsi Alessandro Farinelli

University of Verona Department of Computer Science

December 2^{nd} 2021

Start Your Working Environment

Start the previously installed (Session 1) conda environment ai-lab

Listing 1: Update Environment

cd Al-Lab git stash (NB: remember to backup the previous lessons before this step!) git pull git stash pop conda activate ai-lab pip install networkx jupyter notebook

Listing 2: Open Lesson

To open the tutorial navigate with your browser to: lesson_3/lesson_3_problem.ipynb

Al Lab - Lesson 3 Introduction 2/6

Bucket Elimination

Constrained Optimization

Constrained optimization problems are problems for which an objective function f(x) has to be minimized (or maximized), subject to soft and hard constraints.

Dynamic Programming

- build the solution of a problem incrementally from those of smaller sub-problems
- convenient for constrained optimization as it exploits the underlying structure of the problem
- solve sub-problems locally and propagate only important information

Bucket Elimination

The dynamic programming procedures to solve constrained optimization.

Al Lab - Lesson 3 Introduction 3/6

Assignments

- Your assignments for this session are:
 lesson_3/lesson_3_problem.ipynb. You will be required to implement
 the following functions: constraint_partitioning,
 main_bucket_elimination, get_max_table_size and
 evaluate soft constraints
- In the following you can find the pseudo-code for the first function (constraint_partitioning) and a detailed description of the necessary step for the main_bucket_elimination process.

Al Lab - Lesson 3 Introduction 4/6

constraint_partitioning

Input: bucket_elimination, variable_order, soft_constraints, hard_constraints **Output:** bucket_elimination

- 1: Initialize the list of the already assigned constraints
- 2: for variable in (reverse) order do
- 3: Initialize the list of the constraints for the current bucket
- 4: for constraint in soft_constraints do
- 5: Select the constraints that belong to the current bucket
- 6: for constraint in hard constraints do
- 7: Select the constraints that belong to the current bucket
- 8: bucket ← new Bucket(soft_constraints, hard_constraints)
- 9: Add (bucket) to bucket_elimination
- 10: return bucket_elimination

Al Lab - Lesson 3 Introduction 5/6

main_bucket_elimination

Input: problem_name, problem_definition

Output: None

- 1: Initialize the bucket_elimination object
- CONSTRAINT_PARTITIONING(bucket_elimination, variable_order, soft_constraints, hard_constraints)
- 3: Process all the bucket (Processing Step)
- 4: Compute the tables
- 5: Propagate the value to obtain the assignment (Propagation Step)
- 6: Evaluate the soft constraints for the given assignment
- 7: Compute the max table size
- 8: Report the results

Al Lab - Lesson 3 Introduction 6/6