Discrete random walks with memory: Models and applications

Ing. Tomáš Kouřim

Institute of Information Theory and Automation, AS CR Prague

16.9.2019

Outline

- 1. Prepare mathematical model
- Describe its properties
- Apply it on data

Outline

- 1. Prepare mathematical model
- 2. Describe its properties
- Apply it on data

Outline

- 1. Prepare mathematical model
- 2. Describe its properties
- 3. Apply it on data

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Where is the "Drunken sailor"?

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Where is the "Drunken sailor"?

Random walk

Definition

Let $\{X_k\}_{k=1}^{\infty}$ be a sequence of independent, identically distributed discrete random variables. For each positive integer n, let S_n denote the sum $X_1 + X_2 + \cdots + X_n$, with $S_0 = 0$. The sequence $\{S_n\}_{n=1}^{\infty}$ is called a random walk. If the common range of the X_k 's is \mathbb{R}_m , then $\{S_n\}$ is a random walk in \mathbb{R}_m .

For $X_k \sim B(p=\frac{1}{2})$ it is called the standard random walk.

Random walk properties

- Discrete random process
- n—dimensional, on a matrix, graph, finite or infinite set
- Self avoiding, reinforced
- Brownian motion, polymer creation, games simulation, sports simulation

Random walk with memory

- Based on standard random walk (Bernoulli distribution with p = 0.5, discrete time).
- ► Constant total step size:

$$I_i^+ + I_i^- = 2 \ \forall i \in \mathbb{N}.$$

At the beginning the step sizes are equal $(I_1^+ = I_1^- = 1)$ and further for t > 1 evolve using a memory parameter $\lambda \in (0, 1)$:

$$X_{t-1} = 1 \to \begin{cases} I_t^+ = \lambda I_{t-1}^+ \\ I_t^- = 2 - \lambda I_{t-1}^+ \end{cases} \quad X_{t-1} = -1 \to \begin{cases} I_t^+ = 2 - \lambda I_{t-1}^- \\ I_t^- = \lambda I_{t-1}^- \end{cases}$$

► Loïc Turban. On a random walk with memory and its relation with markovian processes. Journal of Physics A: Mathematical and Theoretical (2010).

Random walk with varying transition probability

- ▶ Based on standard random walk (Bernoulli distribution with p = 0.5, discrete time).
- Step size remains constant, transition probability changes
- First step realized according to starting probability p_0 which then for t > 1 evolve using a memory parameter $\lambda \in (0, 1)$:

$$X_t = 1 \rightarrow p_t = \lambda p_{t-1}$$

$$X_t = -1 \to p_t = 1 - \lambda(1 - p_{t-1})$$

Example - RW evolution

Example - Expected position of the walker

Example - Expected transition probability

Example - Transition probability variance

Example - Walker's position variance

Formulas to obtain next transition probability P_i :

- $\frac{1}{2} [(1+X_i)\lambda P_{i-1} + (1-X_i)(1-\lambda(1-P_{i-1}))]$ Success numbered
- $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$ Success rewarded
- $\frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$ Success punished with multiple λ
- $\frac{1}{2}[(1-X_i)\lambda_0 P_{i-1} + (1+X_i)(1-\lambda_1(1-P_{i-1}))]$

- Formulas to obtain next transition probability P_i :
 - - Success punished
 - $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$ Success rewarded
 - $\frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$ Success punished with multiple λ
 - $\frac{1}{2} [(1 X_i) \lambda_0 P_{i-1} + (1 + X_i) (1 \lambda_1 (1 P_{i-1}))]$
 - Success rewarded with multiple λ

- Formulas to obtain next transition probability P_i :
 - $\frac{1}{2}[(1+X_i)\lambda P_{i-1}+(1-X_i)(1-\lambda(1-P_{i-1}))]$
 - Success punished
 - $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$
 - $\frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$

- Formulas to obtain next transition probability P_i :
 - - Success punished
 - - Success rewarded
 - - lacksquare Success punished with multiple λ
 - - Success rewarded with multiple λ

- Formulas to obtain next transition probability P_i :
 - - Success punished
 - - Success rewarded
 - - Success punished with multiple λ
 - - Success rewarded with multiple λ

- Formulas to obtain next transition probability P_i:
 - - Success punished
 - - Success rewarded
 - - Success punished with multiple λ
 - $\frac{1}{2}[(1-X_i)\lambda_0 P_{i-1} + (1+X_i)(1-\lambda_1(1-P_{i-1}))]$

• Success rewarded with multiple λ

- Formulas to obtain next transition probability P_i:
 - - Success punished
 - $\frac{1}{2}[(1-X_i)\lambda P_{i-1}+(1+X_i)(1-\lambda(1-P_{i-1}))]$
 - Success rewarded
 - $\frac{1}{2}[(1+X_i)\lambda_0P_{i-1}+(1-X_i)(1-\lambda_1(1-P_{i-1}))]$
 - Success punished with multiple λ
 - $\frac{1}{2}[(1-X_i)\lambda_0P_{i-1}+(1+X_i)(1-\lambda_1(1-P_{i-1}))]$
 - Success rewarded with multiple λ

Data generation

- Ways to generate data, different conditions, number of repetitions
- popis jaka data generuju

Fitting on generated data

- Which types are detectable and predictable from the data
- ► Error rates
- ► Grafy?

Real life examples

- Kratce popsat co jsem delal do Aten
- ► Zminit, ze jsem desne vydelal na US Open

Results

- Zajimavy nastroj s possible implementations
- ▶ link na github kam neco nahraju

- Model implementation
 - $ightharpoonup \lambda$ optimization
 - \triangleright p_1 optimization
- ► Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- ► Model testing
 - Model evaluation granularity
 - Performance on a larger dataset
 - Bbetting module for more bookmakers
 - Application of the model to best-of-three matches
- ► Application in other domains

- Model implementation
 - \triangleright λ optimization
 - \triangleright p_1 optimization
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- ► Model testing
 - Model evaluation granularity
 - Performance on a larger dataset
 - Bbetting module for more bookmakers
 - Application of the model to best-of-three matches
- Application in other domains

- Model implementation
 - \triangleright λ optimization
 - ▶ p₁ optimization
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Model testing
 - Model evaluation granularity
 - ► Performance on a larger dataset
 - Bbetting module for more bookmakers
 - Application of the model to best-of-three matches
- Application in other domains

- Model implementation
 - \triangleright λ optimization
 - \triangleright p_1 optimization
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Model testing
 - Model evaluation granularity
 - Performance on a larger dataset
 - Bbetting module for more bookmakers
 - Application of the model to best-of-three matches
- Application in other domains

Thank you.

tom@skourim.com