Problem 1:

Write $P \Rightarrow Q$ using \vee and \sim . Show that your two representations are equivalent.

P	Q	~P	P⇒Q	\sim P \vee Q
T	T	F	T	T
Т	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Problem 2:

Prove that the propositional formulas

$$P\vee Q\vee R$$

and

$$(P \land \sim Q) \lor (Q \land \sim R) \lor (R \land \sim P) \lor (P \land Q \land R)$$

are equivalent.

P	Q	R	~P	~Q	\sim R	$P \vee Q \vee R$	$P \wedge {\sim} Q$	$Q \wedge \sim R$	$R \wedge \sim P$	$P \wedge Q \wedge R$
T	T	T	F	F	F	T	F	F	F	T
T	T	F	F	F	T	T	F	T	F	F
T	F	T	F	T	F	T	T	F	F	F
T	F	F	F	T	T	T	T	F	F	F
F	T	T	T	F	F	T	F	F	T	F
F	T	F	T	F	T	T	F	T	F	F
F	F	T	T	T	F	T	F	F	T	F
F	F	F	T	T	T	F	F	F	F	F

Problem 3:

(a) Write the biconditional (\Leftrightarrow) using only implies (\Rightarrow) and (\land). Prove that the new version is equivalent.

P	Q	$P \Rightarrow Q$	Q⇒P	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$

(b) Write it using only \vee and \sim . Show your derivation.

- 1. $P \Leftrightarrow Q$
- 2. $(P \Rightarrow Q) \land (Q \Rightarrow P)$ [by Problem 3a]
- 3. $(\sim P \vee Q) \wedge (\sim Q \vee P)$ [by Problem 1]
- 4. \sim (\sim (\sim P \vee Q)) \vee \sim (\sim Q \vee P)) [by De Morgan's Laws]