Maestría y Doctorado en Ciencia de la Computación

Inteligencia Artificial

Ant Colony System

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe 12 de Setiembre del 2020

Índice

Objetivos del Curso

Computación Social

Objetivos del Curso

- ► Conocer, comprender e implementar algoritmos evolutivos para resolver problemas complejos.
- Conocer, comprender e implementar algoritmos de inteligencia de enjambre para resolver problemas complejos.
- ► Conocer, comprender e implementar algoritmos inmunes artificiales para resolver problemas complejos.
- Conocer, comprender e implementar sistemas basados en lógica difusa para resolver problemas complejos.

Computación Social

► El Algoritmo de Optimización basado en Cúmulos de Partículas o Particle Swarm Optimization (PSO) fue propuesto por Kennedy (Psicólogo Social) y Eberhart (Ingeniero Eléctrico) en 1995 [2] y descrito en detalle en [1] y [3].

James Kennedy

Russel.C.Eberhert

Es una técnica metaheurística basada en poblaciones e inspirada en el comportamiento social del vuelo de las bandadas de aves.

- Se basa en un enfoque conocido como "metáfora social" que describe a este algoritmo y que se puede resumir de la siguiente forma:
- "Los individuos que conviven en una sociedad tienen una opinión que es parte de un conjunto de creencias compartido por todos los posibles individuos".

- Cada individuo puede modificar su propia opinión basándose en tres factores:
 - ► Su conocimiento sobre el entorno (su valor de fitness).
 - ► Su conocimiento histórico o experiencias anteriores (su memoria).
 - ► El conocimiento histórico o experiencias anteriores de los individuos situados en su vecindario.

El algoritmo PSO explora el espacio de soluciones y encuentra soluciones de buena calidad. Eventualmente encuentra el óptimo del problema.

► Cada partícula (individuo) tiene una posición x (que en 2 dimensiones es determinada por un vector de la forma [x₁, x₂]) en el espacio de búsqueda; y una velocidad v (que en 2 dimensiones es determinada por un vector de la forma [v₁, v₂]) con la que se mueve a través del espacio.

- ► Además, cada partícula es influenciada por 3 factores:
 - ► La velocidad en que se movía (Inercia).
 - Atracción hacia la mejor localización que cada partícula (personal) ha encontrado en su historia (mejor personal).
 - Atracción hacia la mejor localización que ha sido encontrada por el conjunto de partículas (vecindario) en el espacio de búsqueda (mejor global).
 - El líder o mejor global tiene características o habilidades superiores.
 Los miembros del grupo confían en el líder.
 - ► El líder puede cambiar si un individuo presenta mejores características


```
Algorithm: Canonical Particle Swarm Algorithm
for each particle i in the population do
     Initialise its location by randomly selecting values;
     Initialise its velocity vector to small random values close to zero;
    Calculate its fitness value;
    Set initial p_i^{\text{best}} to the particle's current location:
end
Determine the location of q^{\text{best}};
repeat
     for each particle i in turn do
         Calculate its velocity:
         Update its position;
         Measure fitness of new location:
         if fitness of new location is greater than that of p_i^{\text{best}} then
             Revise the location of p_i^{\text{best}}:
        end
     Determine the location of the particle with the highest fitness;
     if fitness of this location is greater than that of q<sup>best</sup> then
         Revise the location of q^{\text{best}}:
    end
until terminating condition:
```


- ► Un algoritmo PSO consiste en un proceso iterativo y estocástico que opera sobre un cúmulo de partículas.
- ► La posición de cada partícula representa una solución potencial al problema que se está resolviendo.
- Generalmente, una partícula p_i está compuesta de tres vectores y dos valores de fitness:

- ► El vector $x_i = [x_{i1}, x_{i2}, ..., x_{in},]$ almacena la posición actual (localización) de la partícula en el espacio de búsqueda.
- ► El vector $pBest_i = [p_{i1}, p_{i2}, ..., p_{in},]$ almacena la posición de la mejor solución encontrada por la partícula hasta el momento.
- ► El vector de velocidad $v_i = [v_{i1}, v_{i2}, \dots, v_{in},]$ almacena el gradiente (dirección) según el cual se moverá la partícula.
- ► El valor de fitness *fitness_x_i* almacena el valor de adecuación de la solución actual (vector *x_i*).
- ► El valor de fitness *fitness_pBest_i* almacena el valor de adecuación de la mejor solución local encontrada hasta el momento (vector *pBest_i*).

- El cúmulo se inicializa generando las posiciones y las velocidades iniciales de las partículas. Ambas se puede generar de forma aleatoria.
- ► Una vez generadas las posiciones, se calcula el fitness de cada una y se actualizan los valores de fitness_x_i y fitness_pBest_i.
- ▶ Se obtiene la mejor partícula g_{best}

► Inicializado el cúmulo, las partículas se deben mover dentro del proceso iterativo. Una partícula se mueve desde una posición del espacio de búsqueda hasta otra, simplemente, añadiendo al vector posición x_i el vector velocidad v_i para obtener un nuevo vector posición:

$$x_i \leftarrow x_i + \underbrace{v_i}_{\text{rows}}$$

► El vector velocidad de cada partícula es modificado en cada iteración utilizando la velocidad anterior, un componente cognitivo y un componente social. El modelo matemático resultante y que representa el corazón del algoritmo PSO viene representado por las siguientes ecuaciones:

$$v_i^{k+1} = \omega \cdot v_i^k + \varphi_1 \cdot rand_1 \cdot (pBest_i - x_i^k) + \varphi_2 \cdot rand_2 \cdot (g_i - x_i^k)$$
$$x_i^{k+1} = x_i^k + v_i^{k+1}$$

- \triangleright v_i^k : velocidad de la partícula *i* en la iteración *k*,
- ▶ w: factor inercia.
- φ_1, φ_2 : son ratios de aprendizaje (pesos) que controlan los componentes cognitivo y social,
- ► rand₁, rand₂: números aleatorios entre 0 y 1,
- \triangleright x_i^k : posición actual de la partícula i en la iteración k,
- ▶ pBest_i: mejor posición (solución) encontrada por la partícula i hasta el momento,
- ▶ g_i: representa la posición de la mejor solución global encontrada por todas las partículas hasta la iteración actual.

Ejemplo de Implementación del Algoritmo PSO

Considerar los parámetros solo para la población inicial.

	Problema		
Minimiza	$f(x_1, x_2) = x_1^2 + x_2^2$	Limlxi	LimSx _i
	-5 ≤ x ₁ ≤ 5	-5	5
	-5 ≤ x ₂ ≤ 5	-5	5
	$x_1, x_2 \in R$		

Ejemplo de Implementación del Algoritmo PSO

- ► Considere los siguientes parámetros:
 - ► Tamaño de la Población: 6
 - ► Valores iniciales para *v_i* entre -1.0 y 1.0
 - ▶ w: número aleatorio entre 0.0 y 1.0 para cada iteración
 - rand₁, rand₂: número aleatorio entre 0.0 y 1.0 para cada nuevo individuo
 - \triangleright φ_1, φ_2 : 2.0
 - Cantidad de Iteraciones: 100

¡GRACIAS!

Bibliografía

[1] A. P. Engelbrecht.

Fundamentals of Computational Swarm Intelligence. John Wiley and Sons, Inc., Hoboken, NJ, USA, 2006.

[2] J. Kennedy and R. Eberhart. Particle swarm optimization.

In Proceedings of ICNN'95 - International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4, 1995.

[3] J. Kennedy, R. Eberhart, and Y. Shi. Swarm Intelligence.

Evolutionary Computation Series. Elsevier Science, 2001.