PLSC 504 – Fall 2022 Review: Likelihoods, Optimization, etc.

August 22, 2022

#### Welcome!

- "Proseminar" in methods
- We'll be meeting Monday mornings from 09:00-12:00 ET in the Boucke Building, Room 302
- Texts: Various (mostly articles; see the syllabus)
- All course materials: https://github.com/PrisonRodeo/PLSC504-2022-git
- Teaching Assistant (not "the preceptor"): Michael Burnham
- Software: R...
- Grading: Ten homework assignments (@ 50 points), plus a final project (500 points)
- Contact me: zorn@psu.edu, or @prisonrodeo, or text (803) 553-4077

## A Very Simple Model

$$Y \sim N(\mu, \sigma^2)$$

$$E(Y) = \mu$$
$$Var(Y) = \sigma^2$$

## Some Data

```
Y = 64
63
59
71
68
```

#### Probabilities, Marginal

$$Pr(Y_i = y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]$$

So 
$$\Pr(Y_1 = 64) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(64 - \mu)^2}{2\sigma^2}\right]$$
  
 $\Pr(Y_2 = 63) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(63 - \mu)^2}{2\sigma^2}\right]$ 

5/55

#### Probabilities, Joint

$$\Pr(A, B|\Pr(A) \perp \Pr(B)) = \Pr(A) \times \Pr(B)$$

So:

$$\Pr(Y_1 = 64, Y_2 = 63) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(64 - \mu)^2}{2\sigma^2}\right] \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(63 - \mu)^2}{2\sigma^2}\right]$$

## More Generally...

$$Pr(Y_i = y_i \ \forall \ i) \equiv L(Y|\mu, \sigma^2)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(y_i - \mu)^2}{2\sigma^2}\right]$$

#### Likelihood

$$L(\hat{\mu}, \hat{\sigma}^2 | Y) \propto \Pr(Y | \hat{\mu}, \hat{\sigma}^2)$$

For  $\hat{\mu} = 68$ ,  $\hat{\sigma} = 4$ :

$$L = \frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(64-68)^2}{32}\right] \times$$

$$\frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(63-68)^2}{32}\right] \times$$

$$\frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(59-68)^2}{32}\right] \times \dots$$
= some reeeeeally small number...

## What a Likelihood Looks Like



## Log-Likelihood

$$\ln L(\hat{\mu}, \hat{\sigma}^2 | Y) = \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]$$

$$= \sum_{i=1}^{N} \ln\left\{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]\right\}$$

$$= -\frac{N}{2} \ln(2\pi) - \left[\sum_{i=1}^{N} \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \mu)^2\right]$$

## What a Log-Likelihood Looks Like



#### The "Maximum" Part

For 
$$L = f(Y, \theta)$$
,

- Calculate  $\frac{\partial \ln L}{\partial \theta}$ ,
- Set  $\frac{\partial \ln L}{\partial \theta} = 0$ , solve for  $\hat{\theta}$ ,
- Calculate  $\frac{\partial^2 \ln L}{\partial \theta^2}$ ,
- Verify  $\frac{\partial^2 \ln L}{\partial \theta^2} < 0$ .

## Example: Normal Y

$$\ln L(\hat{\mu}, \hat{\sigma}^2 | Y) = -\frac{N}{2} \ln(2\pi) - \left[ \sum_{i=1}^{N} \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \mu)^2 \right]$$

$$\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (Y_i - \mu)$$

$$\frac{\partial \ln L}{\partial \sigma^2} = \frac{-N}{2\sigma^2} + \frac{1}{2} \sigma^4 \sum_{i=1}^{N} (Y_i - \mu)^2$$

# Example: Normal Y (continued)



$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

## Example: Linear Regression

$$E(Y) \equiv \mu = \beta_0 + \beta_1 X_i$$

$$Var(Y) = \sigma^2$$

$$L(\beta_0, \beta_1, \sigma^2 | Y) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2}\right]$$

# Linear Regression (continued)

$$\ln L(\beta_0, \beta_1, \sigma^2 | Y) = \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[ -\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2} \right]$$
$$= -\frac{N}{2} \ln(2\pi) - \sum_{i=1}^{N} \left[ \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2 \right]$$

Kernel:

$$-\sum_{i=1}^{N} \left[ \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (\underbrace{Y_i - \beta_0 - \beta_1 X_i}_{\hat{u}_i})^2 \right]$$

#### MLE in General

$$\begin{aligned} \mathsf{Pr}(Y) &= f(\mathbf{X}, \theta) \\ L &= \prod_{i=1}^{N} f(Y_i | \mathbf{X}_i, \theta) \\ \ln L &= \sum_{i=1}^{N} \ln f(Y_i | \mathbf{X}_i, \theta) \\ \ln L(\hat{\theta} | Y, \mathbf{X}) &= \max_{\theta} \left\{ \ln L(\theta | Y, \mathbf{X}) \right\} \end{aligned}$$

#### The Gradient

$$\mathbf{g}(\hat{\theta}) = \frac{\partial \ln L(\hat{\theta})}{\partial \hat{\theta}}$$

Taylor series:

$$\frac{\partial \ln L}{\partial \hat{\theta}} \approx \frac{\partial \ln L}{\partial \theta} + \frac{\partial^2 \ln L}{\partial \theta^2} (\hat{\theta} - \theta)$$

$$\hat{\theta} - \theta = \left( -\frac{\partial^2 \ln L}{\partial \theta^2} \right)^{-1} \frac{\partial \ln L}{\partial \theta}$$
$$= -\mathbf{H}(\theta)^{-1} \mathbf{g}(\theta)$$

## Consistency

Need

$$\mathsf{plim}(\hat{\theta} - \theta) = 0$$

So:

- Assume  $\mathbf{H}(\theta) \stackrel{\mathsf{a}}{\to} \mathbf{A} < \infty$
- Show  $\mathsf{E}[\mathbf{g}(\theta)] \to \mathbf{0}$  as  $\mathsf{N} \to \infty$

## Consistency (continued)

$$E[\mathbf{g}(\theta)] = \frac{1}{N} E\left(\frac{\partial \ln L_1}{\partial \theta} + \frac{\partial \ln L_2}{\partial \theta} + \dots + \frac{\partial \ln L_N}{\partial \theta}\right)$$
$$= \frac{1}{N} \left[ E\left(\frac{\partial \ln L_1}{\partial \theta}\right) + E\left(\frac{\partial \ln L_2}{\partial \theta}\right) + \dots \right]$$
$$\stackrel{\text{a}}{=} \mathbf{0}$$

## Efficiency

Cramer-Rao say:

$$\mathsf{Var}(\hat{ heta}) \geq \left[ -\mathsf{E}\left( \frac{\partial^2 \mathsf{In} \ L( heta)}{\partial heta^2} \right) 
ight]^{-1}$$

## Efficiency, continued

$$Var(\hat{\theta}) = E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)']$$

$$= E\left[\left(-\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)^{-1} \frac{\partial \ln L}{\partial \theta} \frac{\partial \ln L'}{\partial \theta} \left(-\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)^{-1}\right]$$

For MLE:

$$\mathsf{E}\left[\frac{\partial \mathsf{ln} \, L}{\partial \theta} \frac{\partial \mathsf{ln} \, L'}{\partial \theta}\right] \quad = \quad \mathsf{E}\left[\frac{\partial^2 \mathsf{ln} \, L}{\partial \theta^2}\right]$$

So,

$$Var(\hat{\theta}) = \left[ -E \left( \frac{\partial^2 \ln L}{\partial \theta^2} \right) \right]^{-1}$$
$$= [I(\theta)]^{-1}$$

## Normality

By LLN:

$$rac{\hat{ heta} - heta}{\sqrt{ extsf{I}( heta)^{-1}}} \sim extsf{N}( extsf{0}, extsf{1})$$

Or:

$$\hat{ heta} \sim \mathsf{N}( heta, \mathsf{I}( heta)^{-1})$$

## Invariance: Parameters

For

$$\gamma = h(\theta)$$

$$\hat{\gamma}_{\mathsf{ML}} = \mathit{h}(\hat{ heta}_{\mathsf{ML}})$$

Suppose

$$\phi^2 = 1/\sigma^2$$

so that

$$Y \sim N(\mu, \phi^2)$$
.

#### Invariance: Example

Then:

$$\ln L(\hat{\mu}, \hat{\phi}^2) = -\left[\sum_{i=1}^N \frac{1}{2} \ln \phi^2 - \frac{1}{2\phi^2} (Y_i - \mu)^2\right]$$

and:

$$\frac{\partial \ln L}{\partial \phi^2} = \frac{-N}{2\phi^2} + \frac{1}{2}\phi^4 \sum_{i=1}^{N} (Y_i - \mu)^2$$

and:

$$\hat{\phi}^2 = \frac{N}{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}$$
$$= \frac{1}{\hat{\sigma}^2}$$

## Summary

#### MLEs:

- Maximize  $L(\theta|Y, \mathbf{X})$
- Are consistent in N
- Are asymptotically efficient
- Are asymptotically Normal
- Are invariant to (injective) transformations and varying sampling methods

# Optimization

## **Unconstrained Optimization**

The basic problem: find

$$\max_{\hat{oldsymbol{eta}} \in \mathbb{R}^k} \ln L(\hat{oldsymbol{eta}}|Y,\mathbf{X})$$

#### The intuition:

- Start with  $\hat{\beta}_0$
- Adjust:

$$\boldsymbol{\hat{eta}_1} = \boldsymbol{\hat{eta}_0} + \mathbf{A_0}$$

Repeat.

## More Specifically...

Iterative process:

$$oldsymbol{\hat{eta}}_\ell = oldsymbol{\hat{eta}}_{\ell-1} + oldsymbol{\mathsf{A}}_{\ell-1}$$

$$\hat{oldsymbol{eta}} = \hat{oldsymbol{eta}}_\ell 
i \hat{oldsymbol{eta}}_\ell - \hat{oldsymbol{eta}}_{\ell-1} (\equiv oldsymbol{\mathsf{A}}_\ell) < au$$

#### What's **A**?

$$\mathbf{A} = f[\mathbf{g}(\hat{\boldsymbol{\beta}})]$$

- $\mathbf{g}(\hat{\boldsymbol{\beta}}) =$  "directionality" of change
  - $\mathbf{g}(\hat{\beta}_k) < 0 \rightarrow A_k < 0$
  - $\mathbf{g}(\hat{\beta}_k) > 0 \rightarrow A_k > 0$



"Steepest Ascent"

$$\mathbf{A}_{\ell} = \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell}}$$

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$



#### Add Some Information

"Step size":

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \lambda_{\ell-1} \boldsymbol{\Delta}_{\ell-1}$$

- $\Delta \rightarrow direction$
- $\lambda \rightarrow amount$  ("step size")

Key: Hessian

$$\mathbf{H}(\hat{\boldsymbol{\beta}}) = \frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}^2}$$

How?

## Newton-Raphson

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left(\frac{\partial^{2} \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}^{2}}\right)^{-1} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

$$= \hat{\boldsymbol{\beta}}_{\ell-1} - \mathbf{H}(\hat{\boldsymbol{\beta}}_{\ell-1})^{-1} \mathbf{g}(\hat{\boldsymbol{\beta}}_{\ell-1})$$
(1)

#### Sidebar: Newton-Raphson, re-revealed

Taylor series, anyone?

$$f(X) \approx f(a) + f'(a)(x - a)$$

Here,

$$\frac{\partial \ln L}{\partial \hat{\beta}_{\ell}} \approx \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} + \frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} (\hat{\beta}_{\ell} - \hat{\beta}_{\ell-1})$$

# What we really want...

$$\frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell}} = \mathbf{0}$$

So:

$$\mathbf{0} \approx \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} + \frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} (\hat{\beta}_{\ell} - \hat{\beta}_{\ell-1})$$

$$egin{array}{ll} \hat{oldsymbol{eta}}_{\ell} &pprox & \hat{oldsymbol{eta}}_{\ell-1} - \left(rac{\partial^2 \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}^2}
ight)^{-1} rac{\partial \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}} \ &pprox & \hat{oldsymbol{eta}}_{\ell-1} - \mathbf{H}(\hat{oldsymbol{eta}}_{\ell-1})^{-1} \mathbf{g}(\hat{oldsymbol{eta}}_{\ell-1}) \end{array}$$

### Other Methods

Newton-Raphson requires  $\mathbf{H}(\hat{\beta})^{-1} \to calculates \mathbf{H}(\hat{\beta})^{-1}$  at every iteration. This can make it somewhat slow / computationally demanding.

#### Modified Marquardt:

- Used when  $\mathbf{H}(\hat{\boldsymbol{\beta}})$  isn't invertable
- Adds a constant  $\hat{\mathbf{C}}$  to diag[ $\mathbf{H}(\hat{\boldsymbol{\beta}})$ ]
- Variants: Add C(h<sub>k</sub>)

"Method of Scoring" (due to Fisher) uses:

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left[ \mathsf{E} \left( \frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}^2} \right)^{-1} \right] \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}} \\
= \hat{\boldsymbol{\beta}}_{\ell-1} - \left\{ \mathsf{E} [\mathbf{H} (\hat{\boldsymbol{\beta}}_{\ell-1})] \right\}^{-1} \mathbf{g} (\hat{\boldsymbol{\beta}}_{\ell-1})$$

# Berndt, $Hall^2$ , and Hausman ("BHHH")

Uses:

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left(\sum_{i=1}^{N} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}'\right)^{-1} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

### Advantages:

- (Relatively) very easy to compute
- Reasonably accurate...

### Other "Newton Jr.s"

- Davidson-Fletcher-Powell ("DFP")
- Broyden et al. ("BFGS")
- They are:
  - Faster / more efficient
  - ullet Comparatively bad at getting  $-\left(\mathbf{H}(\hat{eta})
    ight)^{-1}$

# Summary: Optimization & Inference

| Method  | "Step size" $(\partial^2)$ matrix | Variance-Covariance Estimate |
|---------|-----------------------------------|------------------------------|
| Newton  | Inverse of the observed           | Inverse of the negative      |
|         | second derivative (Hessian)       | Hessian                      |
| Scoring | Inverse of the expected           | Inverse of the negative      |
|         | value of the Hessian              | information matrix           |
|         | (information matrix)              |                              |
| BHHH    | Outer product approximation       | Inverse of the outer         |
|         | of the information matrix         | product approximation        |

### Software Issues: R

### Lots of optimizers:

- maxLik package: options for Newton-Raphson, BHHH, BFGS, others
- optim (in stats) quasi-Newton, plus others
- nlm (in stats) nonlinear minimization "using a Newton-type algorithm"
- newton (in Bhat) Newton-Raphson solver
- solveLP (in linprog) linear programming optimizer

R: Using maxLik

- Must provide log-likelihood function
- Can provide  $\mathbf{H}(\hat{\boldsymbol{\beta}})$ ,  $\mathbf{g}(\hat{\boldsymbol{\beta}})$ , both, or neither
- Choose optimizer (Newton, BHHH, BFGS, etc.)
- Returns an object of class maxLik

## R: An Example

Rayleigh distribution density:

$$Pr(X = x) = \frac{x}{b^2} \exp \left[ \frac{-x^2}{2b^2} \right], \ b > 0$$

Other traits:

- Support  $\in [0, \infty)$
- $E(X) = b\sqrt{\frac{\pi}{2}}$
- Mode = *b*
- $Var(X) = \frac{4-\pi}{2}b^2$

# Rayleigh Densities



### R: What We Like To See

We can generate a Rayleigh-distributed random variable X with parameter b via inverse transform sampling, as:

$$X = b\sqrt{-2\ln(1-U)}$$

where  $U \in \text{Uniform}[0,1]$ . So, for (e.g.) b = 3:

### R: What We Like To See

```
> x<-rayleigh
> hats <- maxLik(loglike, start=c(1))</pre>
> summary(hats)
Maximum Likelihood estimation
Newton-Raphson maximisation, 8 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -195.7921
1 free parameters
Estimates:
    Estimate Std. error t value Pr(> t)
[1.] 2.9168 0.1459 20 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

## Comparing Optimizers







## R : What We *Don't* Like To See

```
> Y<-c(0,0,0,0,0,1,1,1,1,1)
> X<-c(0,1,0,1,0,1,1,1,1,1)
> logL <- function(param) {
+ b0<-param[1]
+ b1<-param[2]
+ l1<-Y*log(exp(b0+b1*X)/(1+exp(b0+b1*X))) +
+ (1-Y)*log(1-(exp(b0+b1*X)/(1+exp(b0+b1*X))))
+ l1
+ }</pre>
```

## R: What We Don't Like To See

```
> Bhat<-maxLik(logL,start=c(0,0))</pre>
> summary.maxLik(Bhat)
Maximum Likelihood estimation
Newton-Raphson maximisation, 9 iterations
Return code 1: gradient close to zero
Log-Likelihood: -4.187887
2 free parameters
Estimates:
    Estimate Std. error t value Pr(> t)
[1,] -104.3 Inf
[2,] 105.2 Inf 0
```

# Practical Optimization...

- Potential Problems
- Likely Causes
- Tips

## **Problems**

# Enemy # 1: Noninvertable $\mathbf{H}(\hat{\beta})$

- "Non-concavity," "non-invertability," etc.
- (Some part of) the likelihood is "flat"
- Why? (Bob Dole...)

### **Problems**

#### Identification

- Possible due to functional form alone...
- "Fragile"
- Manifestation: parameter instability

### Poor Conditioning

- Numerical issues
- Potentially:
  - Collinearity
  - Other weirdnesses (nonlinearities)

### **Potential Causes**

- Misspecification.
- Missing data
- Variable scaling
- Typical Pr(Y)

## Hints

- T-h-i-n-k!
- Know thy data
- Keep an eye on your iteration logs...
- Don't overreach