# BEST AVAILABLE COPY

# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-305217

(43) Date of publication of application: 05.11.1999

(51)Int.Cl.

G02F 1/1335

G02B 5/30

G09F 9/35

(21)Application number: 10-106140

(71)Applicant: INTERNATL BUSINESS MACH CORP

<IBM>

(22)Date of filing:

16.04.1998

(72)Inventor: SAITO YUKITO

# (54) LIQUID CRYSTAL DISPLAY DEVICE

# (57)Abstract:

PROBLEM TO BE SOLVED: To improve visual characteristics without changing the characteristics of a front direction by using an optical compensation film having a lagging axis parallel or vertical with/to the transmission axis of a polarizing plate.

SOLUTION: When a light advancing obliquely downward 15 transmitted through a polarizing plate 64 and an optical compensation film 66 and arrives at the surface of a liquid crystal(LC) layer 60, a linearly polarized light is rotated only by an angle of (ϕ+180°) and turned to a linearly polarized light vertical to the transmission axis of a polarizing plate 62. The polarization surface of the linearly polarized light arraving at the surface of the LC layer 60 is made parallel with an LC lagging axis 70, so that the obliquely advancing light also is not influenced by the double refraction property of the LC layer 60. Since the absorbing axis 73 of the plate 62 is parallel with the LC lagging axis of the LC layer 60, a light advancing obliquely upward 15 also turned to the linearly polarized light by the plate 62, straight



advanced without being influenced by the double refraction of the LC layer 60, rotated by the film 66, and interrupted by the plate 64 because its polarization axis intersects with the transmission axis of the plate 64 at right angles.

# **LEGAL STATUS**

[Date of request for examination]

25.12.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

2982869

[Date of registration]

24.09.1999

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

# (12)公開特許公報 (A)

(11)特許出願公開番号

# 特開平11-305217

(43)公開日 平成11年(1999)11月5日

| (51) Int. C1.6<br>G 0 2 F<br>G 0 2 B<br>G 0 9 F | 1/1335<br>5/30<br>9/35       | 識別記号<br>5 1 0<br>3 2 0 |    | F I G 0 2 F G 0 2 B G 0 9 F    | 1/1335<br>5/30<br>9/35                                                                                                                | 5 1 0<br>3 2 0 |
|-------------------------------------------------|------------------------------|------------------------|----|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                 | 審査請求                         | 有 請求項の数 9              | OL |                                |                                                                                                                                       | (全10頁)         |
| (21) 出願番号                                       | 特願平10-106140平成10年(1998)4月16日 |                        |    | (71)出願人<br>(72)発明者<br>(74)復代理》 | 390009531 インターナショナル・ビジネス・マシーンズ・コーポレイション INTERNATIONAL BUSINES CORPORATION ESS MASCHINES CORPORATION アメリカ合衆国10504、ニューヨーク州 アーモンク (番地なし) |                |

## (54) 【発明の名称】液晶表示装置

#### (57)【要約】

【課題】 インプレーンスイッチングモードのアクティブマトリクス型液晶表示装置において、正面方向の特性を低下させることなく、方位角 4 5 度の方向から画面を斜めに見るときのコントラストの低下を防止することを目的とする。

【解決手段】 光学補償フィルムの液晶遅相軸の方向を、上下の偏光板に対して同一方向または垂直方向に配置することにより、正面方向の特性を低下させずにコントラストの向上を図ることができる。また、光学補償フィルムが  $\lambda$  / 2 板としての機能を果たすことができるように光学補償フィルムの面内方向および厚さ方向のリタデーションを所定の範囲のものを用いて透過光の偏光面を回転させることにより、斜め方向からみたときに生じるコントラストの低下を防止することができる。



# 【特許請求の範囲】

【請求項1】第1偏光板と、第1基板と、液晶層と、第 2基板と、第2偏光板とをこの順序で配置し、第1基板 または第2基板のいずれか一方の基板の前記液晶層に近 い側の表面に、各画素に対応して一対の電極を有するア クティブマトリクス駆動の電極群が設けられた液晶表示 装置であって、

前記第1偏光板と前記第1基板との間に光学補償フィル ムが配置され、

前記第1偏光板と前記第2偏光板の一方が前記液晶層の 黒表示時における液晶遅相軸に対して平行な透過軸を有 し、かつ、他方が前記液晶遅相軸に対して垂直な透過軸 を有し、

前記光学補償フィルムが有するフィルム遅相軸と、前記 ・ 第1偏光板または前記第2偏光板のいずれかの有する透 過軸とが形成する小さい方の角度が、0度~2度または 88度~90度である、液晶表示装置。

【請求項2】前記光学補償フィルムの面内リターデーシ ョンが190nm~390nmであることを特徴とす る、請求項1に記載の液晶表示装置。

【請求項3】前記光学補償フィルムの面内リターデーシ ョンが 1 9 0 nm~3 9 0 nmで、厚さ方向のリターデ ーションが0.3~0.65であることを特徴とする、 請求項1に記載の液晶表示装置。

【請求項4】前記光学補償フィルムの面内リターデーシ ョンが 2 1 0 nm~3 1 0 nmで、厚さ方向のリターデ ーションが 0.3~0.65であることを特徴とする、 請求項1に記載の液晶表示装置。

【請求項5】第1偏光板と、第1基板と、液晶層と、第 または第2基板のいずれか一方の基板の前記液晶層に近 い側の表面に、各画素に対応して一対の電極を有するア クティブマトリクス駆動の電極群が設けられた液晶表示 装置であって、

前記第1偏光板と前記第1基板との間に光学補償フィル ムが配置され、

前記第1偏光板と前記第2偏光板の一方が前記液晶層の 黒表示時における液晶遅相軸に対して平行な透過軸を有 し、かつ、他方が前記液晶遅相軸に対して垂直な透過軸 を有し、

.前記光学補償フィルムが有するフィルム遅相軸と、前記 第1偏光板または前記第2偏光板のいずれかの有する透 過軸とが形成する小さい方の角度が、0度~2度または 88度~90度であり、

前記第1偏光板と前記第2偏光板の垂直方向のリタデー ションの平均値をΔnzとしたときの前記光学補償フィ ルムの面内リタデーションが $\{190+4\Delta n_z\}$ nm  $\sim \{390+4\Delta n_z\}$  nm  $\sim$  moth  $\sim \{390+4\Delta n_z\}$ 

厚さ方向のリタデーションが

 $\{0.3+0.005\Delta n_z\}$  nm~ $\{0.65+0.$ 

 $0.05\Delta n_z$  nm

(Δn₂<20nmの場合)

 $\{0.\ 2+0.\ 0.\ \Delta n_z\}\ n_{\infty} \sim \{0.\ 5.5+0.\ 0.$  $1\Delta n_z$  nm

(Δn<sub>z</sub>≥20nmの場合)

である液晶表示装置。

【請求項6】さらに、前記面内リタデーションが {21  $0+4\Delta n_z$ }  $nm\sim \{310+4\Delta n_z\}$  nm  $\sigma$ とを特徴とする、請求項5に記載の液晶表示装置。

【請求項7】前記第1偏光板が前記液晶層の黒表示時に おける液晶遅相軸に対して平行な透過軸を有し、かつ、 前記第2偏光板が前記液晶遅相軸と垂直な透過軸を有す ることを特徴とする、請求項1ないし6に記載の液晶表 示装置。

【請求項8】前記電極に対して印加する電圧がゼロまた は最少時において前記液晶表示装置が黒表示となる方向 に前記液晶層の液晶分子が配向されることを特徴とす る、請求項1ないし7に記載の液晶表示装置。

【発明の詳細な説明】

[00001]20

> 【発明の属する技術分野】本発明は、アクティブマトリ クス型液晶表示装置に関し、とくに、水平方向に配向し た液晶分子に横方向の電界を印加することにより光の透 過・遮断を制御する、いわゆるインプレーンスイッチン グモードの液晶表示装置に関する。

[0 0 0 2]

【従来の技術】液晶材料を用いる表示装置としては、従 来よりネマチック液晶をツイスト配列させた液晶層を用 い、電界を基板に対して垂直な方向にかける方式が広く 2基板と、第2偏光板とをこの順序で配置し、第1基板 30 用いられている。この方式においては、通常、液晶層の 上下に偏光軸が直交するように2枚の偏光板を配置し、 電界印加時には液晶分子が垂直方向に配向するため画像 表示として黒が得られる。ところが、電界印加時に液晶 分子が垂直に配向する場合に液晶層を斜めに透過する光 は、液晶分子により複屈折を生じ偏光方向が回転してし まうので、表示装置を斜めから見た場合には完全な黒表 示が得られず、コントラストが低下し、良好な画像表示 を観察することのできる視野角が狭いという問題を生じ ていた。

> 【0003】かかる問題を解決するため、近年液晶に印 加する電界の方向を基板に対して平行な方向とする、い わゆるインプレーンスイッチング(IPS)モードによ る液晶表示装置が提案されている。【PSモードの場 合、液晶分子は主に基板に対して平行な面内で回転する ので、斜めから見た場合の電界印加時と非印加時におけ る複屈折率の度合の相違が小さく、従って、視野角が広 がることが知られている。

【0004】IPSモード液晶表示装置の視野角や色調 を改善する手段の一つとして、液晶層と偏光板の間に複 50 屈折特性を有する光学補償材料を配置することが行われ

ている。例えば、特表平5-505247号公報では、 IPSモードにおいて基板と偏光子の間に複屈折光補償 基が設置された電気光学的液晶切り替えエレメントが開 示されている。また、特開平9-80424号公報においては、IPSモードにおいて基板と偏光板の間に複屈 折媒体を配置し、偏光板の偏光軸と複屈折媒体の遅相軸 方向のなす角が20度以上60度以下、望ましくは30 度以上50度以下とすることで、白表示または中間調表 示を斜め方向から直視した場合に黄色や青色に色づくという問題点が解決されるという点が開示されている。

# [0005]

【発明が解決しようとする課題】IPSモードは、原理 的に視覚特性上の一つの欠点を有している。IPSモー ドでは水平方向にホモジニアスな配向をした液晶分子 と、透過軸が画面正面に対して上下と左右の方向を指し て直交するように配置した2枚の偏光板を用いており、 上下左右の方向から画面を斜めに見るときには、2枚の 透過軸は直交して見える位置関係にありまたホモジニア ス配向液晶層はツイステッドモード液晶層で生じるよう な複屈折も少ないことから、十分なコントラストが得ら れる。これに対して、方位角45度の方向から画面を斜 めに見るときには、2枚の偏光板の透過軸のなす角が9 0 度からずれるように見える位置関係にあることから、 透過光が複屈折を生じ光が漏れるために十分な黒が得ら れず、コントラストが低下してしまう。図1は従来技術 のIPSモードの液晶ディスプレイのコントラスト曲線 の計算結果である。斜線部分はコントラスト50以上の 領域を示しており、一方の偏光板の偏光軸に対して45 度の角度におけるコントラストの低下が 4 方向(方位角 45度、135度、225度、315度) において生じ ていることがわかる。また、4方向でコントラストの低 下が生じる結果、黒から中間調の領域で輝度の反転も生 じている。このような45度方向でのコントラストの低 下が視覚特性の非常に良いIPSモードの欠点であっ た。本願発明は、画面正面方向および上下左右方向にお いては高コントラストが得られているIPSモードの液 晶画像表示装置において、正面および上下左右方向の特 性を低下させることなくさらに45度方向でのコントラ ストをも向上させる手段を提供することを目的とする。

#### $[0\ 0\ 0\ 6\ ]$

【課題を解決するための手段】本願発明は 第1偏光板と、第1基板と、液晶層と、第2基板と、第2偏光板とをこの順序で配置し、第1基板または第2基板のいずれか一方の基板の前記液晶層に近い側の表面に、各画素に対応して一対の電極を有するアクティブマトリクス駆動の電極群が設けられた液晶表示装置であって、前記第1偏光板と前記第1基板との間に光学補償フィルムが配置され、前記第1偏光板と前記第2偏光板の一方が前記液晶層の黒表示時における液晶遅相軸に対して平行な透過軸を有し、かつ、他方が前記液晶遅相軸に対して垂直な 50

透過軸を有し、前記光学補償フィルムが有するフィルム 遅相軸と、前記第1偏光板または前記第2偏光板のいず れかの有する透過軸とが形成する小さい方の角度が、0 度~2度または88度~90度である、液晶表示装置に 関する。

【0007】また、本願発明は、前記光学補償フィルムの面内リターデーションが190nm~390nmであることを特徴とする、液晶表示装置に関する。

【0008】さらに、本願発明は、前記光学補償フィル 10 ムの面内リターデーションが190nm~390nm で、厚さ方向のリターデーションが0.3~0.65で あることを特徴とする、液晶表示装置に関する。

【0009】さらに、本願発明は、前記光学補償フィルムの面内リターデーションが210nm~310nmで、厚さ方向のリターデーションが0.3~0.65であることを特徴とする、液晶表示装置に関する。

【0010】さらに、本願発明は、第1偏光板と、第1 基板と、液晶層と、第2基板と、第2偏光板とをこの順 序で配置し、第1基板または第2基板のいずれか一方の 基板の前記液晶層に近い側の表面に、各画素に対応して 一対の電極を有するアクティブマトリクス駆動の電極群 が設けられた液晶表示装置であって、前記第1偏光板と 前記第1基板との間に光学補償フィルムが配置され、前 記第1偏光板と前記第2偏光板の一方が前記液晶層の黒 表示時における液晶遅相軸に対して平行な透過軸を有 し、かつ、他方が前記液晶遅相軸に対して垂直な透過軸 を有し、前記光学補償フィルムが有するフィルム遅相軸 と、前記第1偏光板または前記第2偏光板のいずれかの 有する透過軸とが形成する小さい方の角度が、0度~2 30 度または88度~90度であり、前記第1偏光板と前記 第2偏光板の垂直方向のリタデーションの平均値を An よとしたときの前記光学補償フィルムの面内リタデーシ  $= \lambda M \{190 + 4\Delta n_z\} nm \sim \{390 + 4\Delta n_z\}$ nmであり、厚さ方向のリタデーションが

 $\{0. 3+0. 005\Delta n_z\} nm \sim \{0. 65+0. 005\Delta n_z\} nm$ 

(Δn<sub>z</sub>< 20nmの場合)

 $\{0. 2+0. 01\Delta n_z\} nm \sim \{0. 55+0. 01\Delta n_z\} nm$ 

40 (Δnz≧20nmの場合)

である液晶表示装置に関する。さらに、本願発明は、前記面内リタデーションが  $\{2\ 1\ 0+4\Delta n_z\}$  nm~  $\{3\ 1\ 0+4\Delta n_z\}$  nmである液晶表示装置に関する。

【0011】さらに、本願発明は、前記第1偏光板が前記液晶層の黒表示時における液晶遅相軸に対して平行な透過軸を有し、かつ、前記第2偏光板が前記液晶遅相軸と垂直な透過軸を有することを特徴とする、液晶表示装置に関する。

】【0012】さらに、本願発明は、前記電極に対して印

加する電圧がゼロまたは最少時において前記液晶表示装置が黒表示となるように前記液晶層が配向されることを 特徴とする、液晶表示装置に関する。

#### [0013]

【発明の実施の形態】以下、本発明の内容を具体的に説明する。

【0014】液晶表示装置には種々の方式のものが存在 するが、一般には、液晶層が光を最大限透過する明表示 状態、すなわち白表示状態を実現する方が、光を最大限 遮蔽する最大濃度表示状態、すなわち黒表示状態を実現 するよりも容易であり、表示コントラストを向上させる には、黒表示を髙濃度にすることが必要である。各種の 液晶表示方式においては、いかにして十分な黒表示を達 成するかということに対して様々な考慮が払われてい - る。従来から広く用いられているツイスティッドネマチ ックモードの液晶表示装置では、無通電時または通電時 においては液晶分子が回転状態または垂直配向状態とな るが、回転状態で黒表示を実現するよりも垂直配向状態 で黒表示を実現する方が容易であるため、通電時の垂直 配向状態において黒表示となるような構成を採用してい るものが多い。これを実現するために、液晶層の上下に 偏光板が、その偏光軸が直交するように設置される。こ の場合、無通電時においては一方の偏光板を透過して直 線偏光となった光は液晶層で回転し、反対側の偏光板か ら出射して白表示になるので、このような構成をノーマ リホワイトとよんでいる。

【0015】これに対して、IPSモードでは無通電時には液晶分子が一定の方向に配向し、通電時には配向方向が約45度回転して白表示または黒表示を実現するが、黒表示がより簡単なノーマリブラック、すなわち無 30通電時において黒表示となるような構成をとることが多い。本願発明は、広い視野角度において高コントラストの表示を得るための黒表示の実現手段に関するものであり、以下では主として、ノーマリブラックにおける無通電時の液晶状態を想定して説明しているが、ノーマリホワイトにおける通電時の液晶状態として理解することもできることはいうまでもない。

【0016】図2は従来技術のIPSモードの構成を示している。液晶層10の上下には偏光板12、14が2枚配置され、液晶層の分子長軸方向すなわち液晶遅相軸16と一方の偏光板(図2では偏光板14)の透過軸20とが垂直、液晶遅相軸16と他方の偏光板(図2では偏光板12)の透過軸18とが平行となっている。偏光板の正面方向から入射した光は透過軸の方向に偏光面を有する直線偏光となり、偏光面と液晶遅相軸とは平行又は垂直であるので直線偏光の偏光面は回転等せずに液晶層10を透過し、反対側の偏光板で遮断されることにより、黒表示が得られる。これに対して、偏光板から斜めに入射した光は、反対側の偏光板の透過軸と平行な成分を有し、また、液晶層でも複屈折を生じうることから、

反対側の偏光板で遮断されずに透過する光が生じ、従って十分な黒表示が得られずコントラストが低下してしまう。斜めから偏光板に入射した光が反対側の偏光板の透過軸と平行な成分を有することは、いわゆる直交してエックス(X)の文字を形成する2本の矢印(すなわち、透過軸18、20)を、真上から見ると2本の矢印は直

交してみえるが、斜めから見るとエックスの文字が歪み、2本の矢印のなす角度が90度からずれることからも直感的に理解できる。

【0017】上下の偏光板の透過軸は液晶の遅相軸と平行または垂直であればよい。平行とは、2本の軸が形成する角の小さいほうの角度が0度~5度、好ましくは0度~2度、さらに好ましくは0度~1度であることを意味し、垂直とは、2本の軸が形成する角の小さいほうの角度が85度~90度、好ましくは88度~90度、さらに好ましくは89度~90度であることを意味する。これらの角度範囲から外れる程度が大きくなるほど、直線偏光の遮断性が劣化し、コントラストが低下する。

【0018】本願発明者は、斜めから見たときに生じるコントラスト低下を改善するためには、斜めに透過する光の複屈折を補正し、元に戻すことが必要であり、液晶層と偏光板との間に以下のような特性を有する光学補償フィルムを設けることでそれを実現できることを見出した。

【0019】図3は本願発明の一例を示している。液晶 層30の上下には偏光板32、34が配置され、一方の 偏光板(図3では偏光板34)と液晶層30の間には光 学補償フィルム36が挿入されている。光学補償フィル ム36のフィルム遅相軸46と偏光板32の透過軸42 とはほぼ平行(図3)、またはほぼ垂直(図4)とする ことが必要である。このような配置をとることで、光学 補償フィルムにより斜めからの光の複屈折を改善しつ つ、正面方向の特性を何ら変化させないことが可能とな る。具体的には、正面方向から見たとき、フィルム遅相 軸46と透過軸42のなす角の小さい方の角度が0度以 上2度以下、または88度以上90度以下であることが 望ましい。したがって、フィルム遅相軸46は、透過軸 42、44、および液晶遅相軸40とは平行または垂直 となる。光学補償フィルム36のフィルム遅相軸46が 透過軸42、44または液晶遅相軸40に対して斜めに 配置されていると、正面方向から入射し偏光板により直 線偏光となった入射光が複屈折を受けて楕円偏光となっ てしまい、正面方向のノーマリブラックが実現できなく なる。

【0020】次に、本願発明では、光学補償フィルムとして直線偏光の偏光軸を回転させる性質を有するものを用いる。斜めの方位角方向から偏光板に入射して直線偏光となった光の偏光軸がそのまま直進したのでは、反対側の偏光板に到達する際には、直線偏光の偏光軸と反対側の偏光板の偏光軸とは直交しないことから、直線偏光

を途中で回転させるのである。特に望ましい光学補償フィルムは $\lambda/2$  板に近い特性を示すフィルムである。 $\lambda/2$  板は、リタデーションが $\Delta n d = \lambda/2$  ( $\lambda$ は光の波長)という値を有するものであり、 $\lambda/2$  板の遅相軸から偏光面が  $\phi$  ずれた直線偏光が入射すると直線偏光を2  $\phi$  回転させるという性質を有する。ここで、

 $\Delta n d = (nx - ny) \times d$ 

ただし、nxはフィルム面内の屈折率最大値最大方向 (x軸)の屈折率

nyはフィルム面内にてx軸と直交する方向(y軸)の 屈折率

dはフィルムの厚み

である。光学補償フィルムのリタデーションが $\lambda/2$ に近いほど出射側の偏光板に到達した光が直線偏光に近くなる。可視光の波長領域が約380nm $\sim$ 約780nmであり、本願発明の液晶表示装置に用いる光学補償フィルムとしてはそのリタデーション値が可視光の波長領域の1/2倍である約190nm $\sim$ 約390nmであれば有効に作用し、可視光について斜めから見た場合のコントラストを向上させ、視角特性を向上させることができる。

【0021】さらに、このような λ/2板に相当する光 学補償フィルムにより直線偏光を直線偏光のまま回転さ せる際に、回転後の直線偏光の偏光面と出射側の偏光板 の透過軸とが垂直となるように配置することで、より黒 表示濃度を高めることが可能となる。このような光学補 償フィルムは、正面方向からの光に対しては何ら光学的 な影響を与えないが、斜め方向からの光に対して λ/2 板としての効果を発揮することとなる。以下、この点を 説明する。図5は、斜め方向から見たときの、2枚の偏 光板の透過軸52、54および光学補償フィルムのフィ ルム遅相軸58の位置関係を示している。ここでフィル ムの遅相軸とは、フィルム中を斜めに光が進行するとき に 2 軸フィルムに 2 つの固有な偏光軸とそれに対応する 屈折率が存在するところ、そのうちの屈折率が大きいほ うの軸を指す。上下の偏光板の吸収軸は45度の方位角 方向からみると偏平なエックス(X)の文字となるが、 偏光板の透過軸すなわち偏光軸は偏光板の吸収軸と直交 するので、透過軸 5 2 、 5 4 は縦長の X となる。 光学補 償フィルムのフィルム遅相軸58が透過軸52とずれて いるのは光学補償フィルムの厚み方向の屈折率が面内の 屈折率と異なる、すなわち 2 軸性フィルムであるためで ある。透過軸52と透過軸54は90度から角度ゆだけ ずれている。方位角方向 45 度、極角方向  $\theta$  のときの **ψ**は幾何学的に求めることができ(P. Yeh, J. O pt. Soc. Am., 72, P. 507 (198 2)),

[0022]

【数1】

$$\phi = 2 \arcsin \left[ \frac{\sin^2 \frac{1}{2} \theta o}{(1 - \frac{1}{2} \sin^2 \theta o)^{\frac{1}{2}}} \right]$$

【0023】で表される。光学補償フィルムが $\lambda$ /2板の特性を有し、さらにその遅相軸が軸58の方向あるいは軸58と垂直な方向となるような2軸性フィルムを用いると、入射側の偏光板を通過した光の偏光面(透過軸52と平行)と光学補償フィルムの遅相軸58のなす角10度が $\phi$ /2あるいは( $\phi$ /2+90度)であるので、光学補償フィルムにおいて偏光面は角度 $\phi$ または( $\phi$ +180度)だけ回転することにより軸56(透過軸54と直交)と一致し、したがって、出射側の偏光板において光をほぼ完全に遮断することが可能となる。以上の考察に基づいて実験を行い、厚さ方向のリタデーション $^{1}$  ントラストが最大となる(すなわち、光学補償フィルムが $^{1}$  ンイン板に最も近い物性を有する)ことが判明した。ここで $^{1}$  に

 $[0\ 0\ 2\ 4]\ N_z = (n_x - n_z) / (n_x - n_y)$ 

【0025】で表される。 $N_z=0$ . 5である場合には リタデーションの値が角度依存性を有しないことが報告 されており(H. Mori, P. J. Bos:IDR C'97Digest <math>M-88(1997))、斜め 方向からであってもリタデーションの値が $\lambda/2$ に近い値を示すので、このような $N_z$ を有することは、より一層好ましいといえる。

【0026】液晶層における複屈折の影響が無視できな い場合には、液晶遅相軸は、光学補償フィルムが存在す る側の偏光板の透過軸と平行であり(正面方向から見た とき)、したがって光学補償フィルムが存在しない側の 偏光板の透過軸とは直交する、という配置をとることに より、液晶層の複屈折の影響を最低限に抑えることがで きる。図6および図7はこのような場合の配置を示して いる。例えば、図6において上から下へ斜めの方位角方 向に進行する光の場合、偏光板64と光学補償フィルム 66を透過した光は、液晶層60の表面に到達した時点 においては直線偏光が角度(0+180度)だけ回転す ることにより、偏光板62の透過軸と垂直方向の直線偏 光となっている。液晶遅相軸70と偏光板の吸収軸73 は斜めから見ても平行に見えることからわかるように、 液晶層60の表面に到達した直線偏光の偏光面と液晶遅 相軸とは平行となる。したがって、斜めに進行する光で あっても液晶層の有する複屈折性の影響を受けることが ない。同様に、下から上に斜めに進行する場合も、偏光 板62の吸収軸73と液晶層60の液晶遅相軸70は平 行であるので、偏光板62で直線偏光となって斜めに進 行する光は液晶層による複屈折の影響を受けずに直進 し、光学補償フィルムにより回転して直線偏光の偏光軸 が偏光板64の透過軸と直交することとなる結果、偏光 50 板64によってほぼ完全に遮断される。

【0027】これに対して図3において上から下へ斜め の方位角方向に進行する光は、偏光板34で直線偏光と なり光学補償フィルム36によって角度(4180 度)だけ回転するので、液晶層30に到達した直線偏光 の偏光面は、偏光板32の透過軸42と垂直すなわち偏 光板32の吸収軸43とは平行となっている。しかし、 偏光板32の吸収軸43と液晶遅相軸40とは斜め方向 からみると90度ではないことからわかるように、液晶 層に到達した光の偏光面と液晶遅相軸40とは90度か らずれることとなる。したがって、液晶層30において 直線偏光は複屈折の影響を受けて楕円偏光となってしま い、偏光板32で完全には光が遮断されなくなってしま こう。下から上に進行する光の場合も液晶層 3 0 の複屈折 の影響を受け完全には遮断されなくなる。

#### - [0028]

【実施例】以下に実施例を示して、本願発明の内容をさ らに詳細に説明する。これらの実施例は本願発明の内容 の具体例を示すものであり、本願発明がこれらの実施例 に限定されるものではない。実施例においでは、ジョー ンズマトリクスを用いた光学シミュレーションで計算し 検討している。

【0029】液晶セルや電極・基板、偏光板等はIPS として従来から用いられているものがそのまま使用でき る。液晶セルの配向は水平配向であり、液晶は正の誘電 率異方性を有しており、IPS液晶用に開発され市販さ れているものを用いることができる。液晶セルの物性 は、液晶の $\Delta n: 0.078$ 、液晶層のセルギャップ: 4. 8 μm、プレチルト角: 5 度、ラビング方向: 7 5 度とした。上下の偏光板の偏光軸を直交させ、片方の偏 光板の偏光軸は液晶層の分子長軸方向と平行とした。偏 光板と液晶層の間に光学補償フィルムを挟み、光学補償 フィルムの面内リタデーションの遅相軸を偏光板の偏光 軸と直交させることで、正面特性を何ら変えることなく 視覚特性を向上させることができる。光学補償フィルム の面内リタデーションは270nm、厚さ方向のリタデ ーションは135nmとした。以上の値を用いて光学計 算して得られたコントラスト曲線を図8に示す。斜線部 分はコントラストが50以上の領域を示している。ほぼ 全方位で0度から80度まで、コントラストが50以上 になることがわかった。図1の従来のものと比較する と、コントラストの低かった4方向においてコントラス トが改善されている点がわかる。

【0030】図9は、コントラストについての、光学補 償フィルムの面内におけるフィルム遅相軸の角度依存性 を計算した結果を示す。光学補償フィルムの面内遅相軸 は、偏光板の偏光軸と理想的には90度、好ましくは8 8度~92度(2軸のなす角の小さいほうの角度をとれ ば88度~90度)の範囲にあることが望ましい。ここ で、測定方向は、方位角方向45度、極角方向80度で ある。

【0031】図10は、光学補償フィルムの面内のリタ デーション(nx-ny)×d、および厚み方向のリタデ ーション $N_z = (n_x - n_z) / (n_x - n_y)$ 、を変化さ せたときのコントラストの値を示している。斜線の部分 は方位角45度、極角80度でのコントラストが10以 上になる領域である。  $(n_x-n_y) \times d = 270$  nmで  $N_z=0$ . 5付近を中心に、 $(n_x-n_y) \times d$ が210 nm~310nm、Nzが0.3~0.65のときに高 コントラストが得られていることがわかる。

【0032】以上においては、偏光板そのもののリタデ ーションは考慮していないが、偏光板がリタデーション を有する場合にはそれを考慮して光学補償フィルムの物 性を定めることでより高い精度でコントラストを向上さ せることができる。偏光板がリタデーションをもつ場合 としては、偏光板の基板そのものがリタデーションをも つ場合や、基板が保護層でサンドイッチされておりその 保護層がリタデーションをもつ場合などがある。自然光 がリタデーションの影響を受けても何ら問題ではなく、 問題となるのは偏光がリタデーションの影響を受ける場 合であるので、偏光板の両面にリタデーションを有する 保護層が存在しても、影響を及ぼすのは偏光板の液晶層 側のリタデーションのみである。したがって、本願にお いて偏光板のリタデーションとは、偏光板の基板そのも ののリタデーション、または偏光板の液晶層側に設けら れた保護層のリタデーションとして把握することができ る。保護層として広く用いられているトリアセチルセル ロース(TAC)も垂直方向にリタデーションをもって いる。TAC保護層を有する場合、その厚みによっても 異なるが、一般に広く用いられている偏光板は、保護層 の厚さ方向のリタデーション  $\{(n_x + n_y) / 2$  $n_z$ } × dとして、片面につき 0 ~ 7 0 n m程度の値を 有する保護層が両面に設けられているものが多い。この 場合光学補償フィルムとして最適な 2 軸性フィルムの物 性値、すなわち、(n<sub>x</sub>−n<sub>y</sub>)×dおよびN₂が、偏光 板のリタデーションがゼロの場合と異なってくることと なる。

【0033】図11および12は、偏光板の厚さ方向の リタデーション $\Delta n_z = \{ (n_x + n_y) / 2 - n_z \} \times d$ が変化したときに、高コントラストが得られる(nxー ny)×dおよびNzの範囲を示している。グラフの斜線 部分は、方位角方向45度、極角方向80度でのコント ラストが10以上になる領域を示している。たとえば、 上下の偏光板の厚さ方向のリタデーションΔn₂が40 nmのとき、コントラストが10以上となる光学補償フ ィルムの範囲は、 $(n_x-n_y) \times d = 360 \sim 460 n$ m、 $N_z = 0$ . 6 ~ 0. 9 5 となる。図 1 1 における傾 きが4であるので、光学補償フィルムの面内リタデーシ ョンは、好ましくは $\{190+4\Delta n_z\}$ nm~ $\{39\}$  $0+4\Delta n_z$ } nm、さらに好ましくは {210+4\Delta

50  $n_z$   $nm \sim \{3 \mid 0 + 4 \Delta n_z\}$  nmである。また、図

12における傾きが0.005 ( $\Delta n_z$ <20nmの場合)または0.01 ( $\Delta n_z$ ≥20nmの場合)であるので、厚さ方向のリタデーションは、好ましくは {0.3+0.005 $\Delta n_z$ } nm~ {0.65+0.005 $\Delta n_z$ } nm~ {0.65+0.005 $\Delta n_z$ } nm ( $\Delta n_z$ <20nmの場合)、 {0.2+0.01 $\Delta n_z$ } nm~ {0.55+0.01 $\Delta n_z$ } nm ( $\Delta n_z$ ≥20nmの場合)である。

## [0034]

【発明の効果】偏光板の透過軸と平行または垂直である 遅相軸を有する光学補償フィルムを用いることにより、 正面方向の特性を何ら変更させることなく、視覚特性を 向上させることが可能となる。また、所定の光学補償フ ィルムを用いることにより、偏光の偏光軸を回転させる ことができ、さらに、その回転量を最適なものとするこ とにより、斜めの方位角方向から見た場合に2枚の偏光 板の吸収軸が90度からずれることから生ずるコントラ ストの低下、特に45度の斜め方向からのコントラスト の低下を改善することができる。さらに、偏光板自体が リタデーションを有する場合にはそれを考慮して、コン トラストの低下を防止することができる。さらに、液晶 層の液晶遅相軸と液晶層に隣接する側の偏光板の透過軸 とを直交させることにより、液晶層自体のリタデーショ ンの影響によるコントラストの低下を防止することがで きる。

# 【図面の簡単な説明】

【図1】従来技術における液晶表示装置のコントラスト 曲線を示すグラフである。

【図2】従来技術における液晶表示装置の層構成を示す図である。

【図3】本願発明における液晶表示装置の層構成を示す図である。

12

【図4】本願発明における液晶表示装置の層構成を示す図である。

【図5】本願発明における積層体の軸の相互関係を示す図である。

【図6】本願発明における液晶表示装置の層構成を示す 図である。

【図7】本願発明における液晶表示装置の層構成を示す 10 図である。

【図8】本願発明における液晶表示装置のコントラスト 曲線を示すグラフである。

【図9】本願発明における液晶表示装置のコントラスト を示すグラフである。

【図10】本願発明における液晶表示装置の高コントラスト領域を示すグラフである。

【図11】本願発明における液晶表示装置の高コントラスト領域を示すグラフである。

【図12】本願発明における液晶表示装置の高コントラ 20 スト領域を示すグラフである。

## 【符号の説明】

10、30、60 液晶層

12、14、32、34、62、64 偏光板

16、40、70 液晶遅相軸

18、20、42、44、52、54、72、74 透過軸

36、66 光学補償フィルム

46、58、76 フィルム遅相軸

43、45、73、75 吸収軸

【図1】





【図2】

·【図3】



#### 【図11】



【手続補正書】

【提出日】平成11年8月2日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】第1偏光板と、第1基板と、液晶分子が前記第1基板に対して平行な方向に配向され、前記第1基板に対して平行な方向に電界を印加することにより前記液晶分子が前記第1基板に対して平行な面内で回転する液晶層と、第2基板と、第2偏光板とをこの順序で配置し、前記第1基板または前記第2基板のいずれか一方の基板の前記液晶層に近い側の表面に、各画素に対応して一対の電極を有するアクティブマトリクス駆動の電極群が設けられた液晶表示装置であって、

前記第1偏光板と前記第1基板との間に、直線偏光の偏 光軸を回転させる光学補償フィルムが配置され、

前記第1偏光板と前記第2偏光板の一方が前記液晶層の 黒表示時における液晶遅相軸に対して平行な透過軸を有 し、かつ、他方が前記液晶遅相軸に対して垂直な透過軸 を有し、

前記光学補償フィルムが有するフィルム遅相軸と、前記第1偏光板または前記第2偏光板のいずれかの有する透過軸とが形成する小さい方の角度が、0度~2度または88度~90度である、液晶表示装置。

【請求項2】前記光学補償フィルムの面内リターデーションが190nm~390nmであることを特徴とする、請求項1に記載の液晶表示装置。

【請求項3】前記光学補償フィルムの面内リターデーションが190nm~390nmで、厚さ方向のリターデーションが0.3~0.65であることを特徴とする、請求項1に記載の液晶表示装置。

【請求項4】前記光学補償フィルムの面内リターデーションが210nm~310nmで、厚さ方向のリターデーションが0.3~0.65であることを特徴とする、

請求項1に記載の液晶表示装置。

【請求項5】第1偏光板と、第1基板と、液晶層と、第2基板と、第2偏光板とをこの順序で配置し、第1基板または第2基板のいずれか一方の基板の前記液晶層に近い側の表面に、各画素に対応して一対の電極を有するアクティブマトリクス駆動の電極群が設けられた液晶表示装置であって、

前記第1偏光板と前記第1基板との間に光学補償フィルムが配置され、

前記第1偏光板と前記第2偏光板の一方が前記液晶層の 黒表示時における液晶遅相軸に対して平行な透過軸を有 し、かつ、他方が前記液晶遅相軸に対して垂直な透過軸 を有し、

前記光学補償フィルムが有するフィルム遅相軸と、前記第1偏光板または前記第2偏光板のいずれかの有する透過軸とが形成する小さい方の角度が、0度~2度または88度~90度であり、

前記第1偏光板と前記第2偏光板の垂直方向のリタデーションの平均値を $\Delta n_z$ としたときの前記光学補償フィルムの面内リタデーションが $\{190+4\Delta n_z\}$ nmであり、

厚さ方向のリタデーションが

 $\{0.3+0.005\Delta n_{z}\}\ nm \sim \{0.65+0.$ 

 $0.05\Delta n_{z}$  nm

(Δn₂<20nmの場合)

 $\{0.\ 2+0.\ 0\ 1\ \Delta n_{z}\}\ nm \sim \{0.\ 5\ 5+0.\ 0$ 

 $l\Delta n_z$  nm

(Δn z ≥ 2 0 n m の場合)

である液晶表示装置。

【請求項6】前記液晶層の液晶分子が前記第1基板に対して平行な方向に配向され、前記第1基板に対して平行な方向に電界を印加することにより前記液晶分子が前記第1基板に対して平行な面内で回転し、そして前記光学補償フィルムが直線偏光の偏光軸を回転させることを特徴とする請求項5に記載の液晶表示装置。

【請求項7】さらに、前記面内リタデーションが {21

0+4△n₂} nm~{310+4△n₂} nmであることを特徴とする、請求項6に記載の液晶表示装置。 【請求項8】前記第1偏光板が前記液晶層の黒表示時における液晶遅相軸に対して平行な透過軸を有し、かつ、前記第2偏光板が前記液晶遅相軸と垂直な透過軸を有することを特徴とする、請求項1ないし7に記載の液晶表 示装置。

【請求項9】前記電極に対して印加する電圧がゼロまたは最少時において前記液晶表示装置が黒表示となる方向に前記液晶層の液晶分子が配向されることを特徴とする、請求項1ないし8に記載の液晶表示装置。

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| BLACK BORDERS                                                           |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| ☐ FADED TEXT OR DRAWING                                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS                                    |
| GRAY SCALE DOCUMENTS                                                    |
| LINES OR MARKS ON ORIGINAL DOCUMENT                                     |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                   |
| OTHER:                                                                  |

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.