Контрольное домашнее задание №2

В многокритериальной аналитической задаче множество достижимых векторных оценок задано системой неравенств:

$$\mathbf{F}(\mathbf{X}): \begin{cases} f_1 f_2 \leq n, \\ 0 \leq f_1 \leq 3n, \\ 0 \leq f_2 \leq 3n, \end{cases}$$

где n - номер варианта задачи, совпадающий с номером по списку.

- 1. Построить множество парето-оптимальных решений. Для этого сгенерировать на множестве $\mathbf{F}(\mathbf{X})$ N=100 равномерно распределенных точек. Применить алгоритм исключения заведомо не эффективных решений.
 - 2. Построить множество решений, оптимальных относительно полиэдрального конуса доминирования Ω . Применить алгоритм исключения заведомо не эффективных решений, используя представление Ω , как функции интервалов неопределенности весовых коэффициентов компонент векторного критерия $\mathbf{F} = [f_1, f_2]$.

Рассмотреть следующие варианты интервалов неопределенности весовых коэффициентов.

Варианты:

No	$\mu_{1_{\mathit{MUH}}}$	μ_{1 макс	$\mu_{2_{\mathit{MUH}}}$	$\mu_{2{\scriptscriptstyle Makc}}$
1	0.2	0.6	0.4	0.8
2	0.4	0.8	0.2	0.6
3	0.3	0.6	0.3	0.6

3. Построить множество парето-оптимальных решений и решений, оптимальных относительно полиэдрального конуса доминирования Ω для N=10000. Провести сравнительный анализ мощности множеств: $|\mathbf{F}(\mathbf{X})|$, $|\mathbf{F}_{\Omega}(\mathbf{X})|$, $|\mathbf{F}_{\Omega}(\mathbf{X})|$.