Indian Institute of Technology Kanpur

Department of Mathematics and Statistics

Quiz -3 (MTH305A)

Semester: 2022-2023, I

Full Marks. 20 Time. 45 Minutes

(1) Are the following statements TRUE/FALSE? Justify your answer.

(a) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a smooth function and $r \in \mathbb{R}$ such that $f^{-1}(r)$ is a regular surface. Then $r \in f(\mathbb{R}^3)$ is a regular value of f.

Solution.

FALSE

Consider $f: \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = x^2$ for all $(x, y, z) \in \mathbb{R}^2$. Note that $f^{-1}(0) = \{(0, y, z) \mid y, z \in \mathbb{R}\}$ is a regular surface but 0 is a critical value of f. [3 points]

(b) The set $C = \{(\sin \theta, \cos \theta, t) \mid \theta \in \mathbb{R} \text{ and } -1 < t < 1\} \subset \mathbb{R}^3 \text{ is a regular surface.}$ Solution.

TRUE

Consider $U = \{(x,y) \in \mathbb{R}^2 \mid 1 < \|(x,y)\| < 3\}$. Define $\phi: U \to C$ by

$$\phi(x,y) = \left(\frac{x}{\|(x,y)\|}, \frac{y}{\|(x,y)\|}, \|(x,y)\| - 2\right).$$

Then $\{(U,\phi)\}$ is an atlas showing that C is a regular surface.

[3 points]

(c) The set $H=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=z^2 \text{ and }\}$ is a regular surface. Solution.

FALSE

If H is a regular surface, then there exists a local co-ordinate chart $\phi: \mathbb{R}^2 \to V$, where V is an open set in H containing (0,0,0). Let $\phi(q)=(0,0,0)$. Note that ϕ is a homeomorphism and hence $\phi: \mathbb{R}^2 \setminus \{q\} \to V \setminus \{(0,0,0)\}$ is a homeomorphism, which cannot exists as $\mathbb{R}^2 \setminus \{q\}$ is connected but $V \setminus \{(0,0,0)\}$ is disconnected.

(2) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = xyz + x^3 + y^3 + z^3$ for all $(x, y, z) \in \mathbb{R}^3$. For each $\alpha \in \mathbb{R}$, we denote $F_{\alpha} = f^{-1}(\alpha)$.

1

(a) Determine the set of (i) critical points, (ii) critical values (iii) regular points and (iv) regular values of the function f.
Solution.

 $Df(x, y, z) = 0 \implies (yz + 3x^2, xz + 3y^2, xy + 3z^2) = (0, 0, 0).$

- (i) Critical points: $(0,0,0) \in \mathbb{R}^3$.
- (ii) Critical values: $0 = f(0, 0, 0) \in \mathbb{R}$.
- (iii) Regular points: $\mathbb{R}^3 \setminus \{(0,0,0)\}.$
- (iv) Regular values: $\mathbb{R} \setminus \{0\}$.
- (b) Show that $F_0 \setminus \{(0,0,0)\}$ is a regular surface.

Let $U = \mathbb{R}^3 \setminus \{(0,0,0)\} \subset_{\text{open}} \mathbb{R}^3$ and $g: U \to \mathbb{R}$ be defined by $g(x,y,z) = xyz + x^3 + y^3 + z^3$. Then $g^{-1}(0) = F_0 \setminus \{(0,0,0)\}$ is a regular surface as 0 is a regular value of the function g.

[3+3=6 points]

- (3) (a) Let $f:[a,b]\to\mathbb{R}$ be a function. Suppose $F,\tilde{F}:I\to\mathbb{R}^2$, where I is an open set in \mathbb{R} containing [a,b], are two smooth functions such that $F\mid_{[a,b]}=f$ and $\tilde{F}\mid_{[a,b]}=f$. Show that $F^{(k)}(a)=\tilde{F}^{(k)}(b)$ for all $k\in\mathbb{N}$. Solution.
 - Note that f is smooth on (a,b) and for all $t \in (a,b)$, we have $F^{(k)}(t) = \tilde{F}^{(k)}(t) = f^{(k)}(t)$ for all $k \in \mathbb{N}$.
 - $F^{(k)}(a) = \lim_{t \to a-} F^{(k)}(t) = \lim_{t \to a+} F^{(k)}(t) = \lim_{t \to a+} f^{(k)}(t)$ and $\tilde{F}^{(k)}(a) = \lim_{t \to a-} \tilde{F}^{(k)}(t) = \lim_{t \to a+} \tilde{F}^{(k)}(t) = \lim_{t \to a+} f^{(k)}(t)$.
 - Hence, we conclude that $F^{(k)}(a) = \tilde{F}^{(k)}(a)$.
 - (b) Consider $\alpha: [-2.0, 2.0] \to \mathbb{R}^2$ defined by $\alpha(t) = (t^3 4t, t^2 4)$. Determine whether α is (i) Closed, (ii) Simple, (iii) Smooth closed curve. Solution.
 - $\alpha(-2.0) = (0,0) = \alpha(+2.0)$ implies that α is closed.
 - Note that α has self intersection at (0,0), i.e., for $t=\pm 2$. Hence, α is injective on [-2,2) implies that α simple.
 - $\alpha'(2) = (8,4)$ and $\alpha'(-2) = (8,-4)$ and $\alpha'(2) = (8,4)$. Therefore, α is not a smooth closed curve.

[3+3=6 points]