HW3 Report

B07901069 電機三 劉奇聖

1. Snapshots

a. RTL(Pass)

b. SYN(Pass)

c. no latch

```
Inferred memory devices in process
       in routine CHIP line 169 in file
                '/home/raid7 2/userb07/b07069/Desktop/hw3/CHIP.v'.
                             Type
                                     | Width | Bus | MB | AR | AS | SR | SS | ST
     Register Name
     _____
   instruction_type_reg
                          Flip-flop
                                        23
                                                                         Ν
                                                    Ν
                                                               Ν
                                                                    Ν
                                                                              Ν
                                        5
                                                          Υ
                           Flip-flop
                                                    Ν
                                                              Ν
                                                                   Ν
                                                                         Ν
                                                                              Ν
 instruction format reg
     mem addr_I_reg
                          Flip-flop
Presto compilation completed successfully.
Current design is now '/home/raid7 2/userb07/b07069/Desktop/hw3/CHIP.db:CHIP'
Loaded 1 design.
Current design is 'CHIP'.
Current design is 'CHIP'.
```

d. Timing report

3 1		
CHIP tsmc13_wl10	slow	
Point	Incr	Path
clock CLK (rise edge)	0.00	0.00
clock network delay (ideal)	0.50	0.50
mem_addr_I_reg_3_/CK (DFFRX2)	0.00	0.50 r
mem_addr_I_reg_3_/Q (DFFRX2)	0.26	0.76 r
add_53/A[1] (CHIP_DW01_inc_0)	0.00	0.76 r
add_53/U1_1_1/CO (ADDHX1)	0.17	0.93 r
add_53/U1_1_2/CO (ADDHX2)	0.13	1.07 r
add_53/U1_1_3/C0 (ADDHX2)	0.14	1.20 r
add_53/U1_1_4/CO (ADDHX4)	0.10	1.31 r
add_53/U1_1_5/CO (ADDHX2)	0.13	1.44 r
add_53/U1_1_6/C0 (ADDHX4)	0.10	1.54 r
add_53/U1_1_7/C0 (ADDHX2)	0.13	1.67 r
add_53/U1_1_8/CO (ADDHX4)	0.10	1.77 r
add_53/U1_1_9/CO (ADDHX2)	0.13	1.90 r
add_53/U1_1_10/C0 (ADDHX4) add_53/U1_1_11/C0 (ADDHX2)	0.10 0.13	2.01 r 2.13 r
add_53/U1_1_1/CO (ADDHX2) add_53/U1_1_12/CO (ADDHX4)	0.13	2.13 r 2.24 r
add_53/U1_1_13/CO (ADDHX4)	0.10	2.34 r
add_53/U1_1_14/CO (ADDHXL)	0.10	2.54 r
add_53/U1_1_15/CO (ADDHXL)	0.21	2.75 r
add_53/U1_1_16/CO (ADDHXL)	0.21	2.97 r
add_53/U1_1_17/CO (ADDHXL)	0.21	3.18 r
add 53/U1 1 18/CO (ADDHXL)	0.21	3.40 r
add_53/U1 1 19/CO (ADDHXL)	0.21	3.61 r
add 53/U1 1 20/C0 (ADDHXL)	0.21	3.83 r
add_53/U1_1_21/C0 (ADDHXL)	0.21	4.04 r
add 53/U1 1 22/C0 (ADDHXL)	0.21	4.26 r
add_53/U1_1_23/C0 (ADDHXL)	0.23	4.49 r
add 53/U1 1 24/C0 (ADDHX1)	0.19	4.68 r
add_53/U1_1_25/C0 (CMPR22X2)	0.14	4.82 r
add_53/U1_1_26/C0 (CMPR22X2)	0.12	4.94 r
add_53/U1_1_27/C0 (ADDHX2)	0.12	5.06 r
add_53/U1_1_28/C0 (ADDHX2)	0.11	5.17 r
add_53/U1/Y (X0R2X2)	0.09	5.26 r
add_53/SUM[29] (CHIP_DW01_inc_0)	0.00	5.26 r
mem_addr_I_reg_31_/D (DFFRX2)	0.00	5.26 r
data arrival time		5.26
clock CLK (rise edge)	5.00	5.00
clock network delay (ideal)	0.50	5.50
clock uncertainty	-0.10	5.40
mem_addr_I_reg_31_/CK (DFFRX2)	0.00	5.40 r
library setup time	-0.10	5.30
data required time		5.30
data manifestation		5.30
data required time		5.30
data arrival time		-5.26
slack (MET)		0.03
Stack (MLT)		0.03

e. Area report

```
*************
Report : area
Design : CHIP
Version: N-2017.09-SP2
Date : Tue Dec 1 01:27:52 2020
Library(s) Used:
    typical (File: /home/raid7 2/course/cvsd/CBDK IC Contest/CIC/SynopsysDC/db/typical.db)
Number of ports:
                                         153
Number of nets:
                                         395
Number of cells:
                                         239
Number of combinational cells:
                                         180
Number of sequential cells:
                                          58
Number of macros/black boxes:
Number of buf/inv:
                                          78
Number of references:
                                          32
Combinational area:
                                 2359.385976
Buf/Inv area:
                                  899.621994
                                 1904.482742
Noncombinational area:
Macro/Black Box area:
                                    0.000000
Net Interconnect area:
                                28186.808014
Total cell area:
                                 4263.868719
Total area:
                                32450.676733
```

2. Circuit Design & Experience

我把 output 全部設成 reg type,對於每個 output reg 設一個 reg next_XXX 的變數,並且把所有要輸出的內容設成 constants。Combinational logic 的部份就是每次都把 mem_addr_I 加 1,之後取 mem_rdata_I 的相應位置(opcode, func7, funct3...)寫一堆 if else 去輸出。而 sequential logic 的部份就是 rst_n 時就把 output reg 全部設成 0,否則就把 next_XXX assign 到相對應的 output reg。

在這次作業上遇到的困難大概就是因為是第一次寫 Verilog 所以語法不太熟,還有查表查得很累,除此之外應該沒有什麼困難。

經過這次作業後對 Verilog 和相關的工具有了粗淺的認識,希望接下來的作業和期末的 project 能順利。