МОДЕЛЬ БИРЖЕВЫХ ТОРГОВ С ИНСАЙДЕРОМ С ЭЛЕМЕНТАМИ ПЕРЕГОВОРОВ

А. И. Пьяных^{1,*}

 1 МГУ им. М. В. Ломоносова, ф-т ВМиК (9 ФЕВРАЛЯ 2015 Г.)

Рассматривается модификация дискретной многошаговой модели биржевых торгов. Два игрока ведут между собой торги рисковыми ценными бумагами (акциями). Один из игроков (инсайдер) знает настоящую цену акции, второй знает только её вероятностное распределение. На каждом шаге торгов игроки делают целочисленные ставки. Игрок, предложивший большую ставку, покупает у второго акцию, причем цена сделки определяется как выпуклая комбинация предложенных ставок с некоторых заданным коэффициентом. Получено решение игры бесконечной продолжительности при произвольных значениях параметров: найдены оптимальные стратегии игроков и значение игры.

1. ВВЕДЕНИЕ

В работе Б. Де Мейера и Х. Салей [1] рассматривается модель многошаговых торгов однотипными акциями. Торги ведут между собой два игрока. Случайная цена акции может принимать два значения (0 или m). Перед началом торгов случайный ход определяет цену акции на весь период торгов. Выбранная цена сообщается первому игроку и не сообщается второму, при этом второй знает, что первый игрок — инсайдер. Оба игрока знают вероятность высокой цены акции.

На каждом шаге торогов оба игрока одновременно и независимо назначают некоторую цену за акцию. Игроки могут делать произвольные вещественные ставки. Игрок предложивший большую цену покупает у второго акцию по названной цене. Предложенные цены объявляются игрокам в конце каждого хода. Игроки помнят предложенные цены на всех предыдущих этапах торгов. Задачей игроков является максимизация

^{*} Electronic address: artem.pyanykh@gmail.com

стоимости своего портфеля.

Де Мейер и Салей сводят эту модель к повторяющейся игре с неполной информацией и, решая эту игру, описывают оптимальное поведение обоих игроков и ожидаемый выигрыш инсайдера.

В. Доманским в работе [2] рассмотрен дискретный аналог модели Мейера—Салей, где игрокам разрешено делать только целочисленные ставки от 0 до m. Получено решение игры неограниченной продолжительности. Нахождение явного решения для конечных игр остается открытой проблемой. Для n-шаговых игр в работе [3] В. Крепс получено явное решение при $m \leq 3$. В работе [4] М. Сандомирской и В. Доманским найдено явное решение одношаговой игры при произвольном натуральном значении m.

В настоящей работе будет исследована модификация модели [2], в которой наибольшая ставка определяет направление транзакции, но цена сделки определяется путем переговоров между игроками.

В работе [5] Чаттерджи и Самуэльсон рассматривают модель двухстороннего аукциона с неполной информацией. Кратко ее можно описать следующим образом. В торгах участвуют две стороны, покупатель и продавец, которые характеризуются своими резервными ценами v_b и v_s соответственно. С точки зрения покупателя резервная цена продавца — это случайная величина $\mathbf{v_s}$, распределенная на отрезке $[v_s, \overline{v_s}]$. Аналогично, с точки зрения продавца резервная цена покупателя — это случайная величина $\mathbf{v_b}$, распределенная на отрезке $[v_b, \overline{v_b}]$. Правило торгов следующее: покупатель и продавец одновременно называют цены b и s соответственно. В случае, если $b \geq s$, товар продается по цене $p = \beta b + (1 - \beta)s$, где $0 \leq \beta \leq 1$.

В качестве иллюстрации для модели, в которой $\mathbf{v_s}$ и $\mathbf{v_b}$ распределены равномерно на отрезке [0,1], Чаттерджи и Самуэльсоном было получено явное решение при $\beta=1/2$. Оказывается, что механизм с $\beta=1/2$ является оптимальным в данной модели, в том смысле, что он максимизирует суммарный ожидаемый доход от торгов среди всех механизмов торгов, обладающих свойством индивидуальной рациональности. Данный факт был продемонстрирован Майерсоном и Саттертвейтом в работе [6].

В работе [2] фактически $\beta=1$. Решение задачи при значении $\beta=1/2$ получено в работе [7]. В данной работе мы рассматриваем обобщение модели при произвольном вещественном значении $\beta\in[0,1]$, и исследуем оптимальные стратегии игроков и их выигрыши в бесконечной игре.

Нужно отметить, что в работе [2] ставки пропорциональны денежной единице, в которой ведутся торги, поэтому все транзакции проводятся в целых числах. При вещественном $\beta \in [0,1]$ цена сделки перестает быть целочисленной, однако интерпретацию дискретности модели в этой постановке можно оставить неизменной: проблему нецелой финальной выплаты размера a можно решить с помощью случайного механизма, который выберет либо выплату размера [a], либо выплату размера [a]+1; ожидаемый выигрыш при этом останется неизменным, но свойство дискретности модели сохранится.

1. \refitem{ article}

B. De Meyer and H. Saley, Int J Game Theory 31, 285 (2002).

2. $\text{refitem}\{article\}$

V. Domansky, Int J Game Theory **36**, 241 (2007).

- 3. \refitem{ article}
 - В. Крепс, Изв. РАН. Теория и системы управления 4, 109 (2009).
- 4. \refitem{ article}
 - М. Сандомирская and В. Доманский, Математическая Теория Игр и ее Приложения **4**, 32 (2012).
- 5. \refitem{ article}
 - K. Chatterjee and W. Samuelson, Operations Research 31, 835 (1983).
- 6. \refitem{ article}
 - R. Myerson and M. A. Satterthwaite, Journal of Economic Theory 29, 265 (1983).
- 7. $\text{refitem}\{article\}$
 - А. Пьяных, Математическая Теория Игр и ее Приложения 6, 68 (2014).
- 8. $\lceil book \rceil$
 - А. Гельфонд, Исчисление конечных разностей (М.: Книжный дом «Либроком», 2012).
- 9. $\text{refitem}\{book\}$
 - А. Самарский and А. Гулин, *Численные методы* (М.: Наука, 1989).
- 10. $\text{refitem}\{book\}$
 - R. Aumann and M. Maschler, Repeated Games with Incomplete Information (The MIT

Press, 1995).

MULTISTAGE BIDDING MODEL WITH BARGAINING

A. Pyanykh

This paper is concerned with a modification of a discreete multistage bidding model. Bidding takes place between two players for one unit of a risky asset. The first player (an insider) knows the real price of the asset, while the second knows only a probability distribution over the price. At each stage of the bidding players make integral bids. The higher bid wins and one unit of the asset is transacted to the winning player, wherein the price of the transaction equals to a convex combination of bids with some arbitrary coefficient. This model is reduced to a repeated game with incomplete information. The solution for the infinite game is found including optimal strategies for both players and the value of the game.