

Introduction to Thermodynamics

Dr Guohong Tian g.tian@surrey.ac.uk

In the beginning...

A thin space...

Deforestation

What happened in 100 years

Vehicle Emissions

As a result:

Global Primary Energy Consumption 1830 - 2010

Applications of Thermodynamics

Basic concepts

Thermal efficiency

Typical system efficiencies

Device	Efficiency
Electric generator	70-99%
Electric motor	50-95%
Gas furnace	70-95%
Wind Turbine	30-40%
Oil/Coal/Gas Power plant	30-40%
Nuclear power plant	30-35%
Internal combustion engine	20-30%
Fluorescent lamp	20%
Incandescent lamp	5%
Solar cell	5-28%

Basic concepts

Overall efficiency

Overall efficiency = $0.35 \times 0.9 \times 0.05 = 0.016$ OR 1.6%

Basic concepts

Energy use and losses

A little of extra thought

20%

 $0.9 \times 0.2 = 18\%$

 $0.35 \times 0.9 \times 0.7 = 22\%$

A Definition of Thermodynamics ...

The study of the relations describing work transfer and heat transfer between a system and its surroundings and the associated changes in the properties of the system

Reading list

- Çengel YA, Turner RH & Cimbala JM, Fundamentals of Thermal-Fluid Sciences,
 3e, McGraw-Hill (2008)
- Çengel YA and Boles MA, Thermodynamics An Engineering Approach, 7e, McGraw-Hill (2011)
- Moran MJ, Shapiro HN, Munson BR & DeWitt DP, Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics & Heat Transfer, Wiley (2003)

The book of property tables, used in this and subsequent courses, is ...

 Rogers, G F C & Mayhew, Y R, Thermodynamics and Transport Properties of Fluids, SI Units, Blackwell (5th edition).

This is an <u>essential purchase</u> for every student.

How to use the handout

Blank space left for YOU to fill during classes

Fig 1.2 System diagram for a conventional power plant

Extra notes

- Handout booklet available on SurreyLearn.
- Self-study (13 topics) on SurreyLearn to enhance your study

Wednesday, 05 August 2020 21

Extra notes

- Handout booklet available on SurreyLearn.
- Self-study (13 topics) on SurreyLearn to enhance your study
- Full solutions of examples are released on Surreylearn when you see

Several notes

- Handout booklet available on SurreyLearn
- Self-study (13 topics) on SurreyLearn to enhance your study
- Full solutions of examples are released on Surreylearn when you see
- Full solutions of tutorial questions are released on Surreylearn but only after the tutorial sessions
- Lectures to be delivered virtually by recorded bite-size videos.
- Face2face tutorials (or by live zoom meeting)
- You are expected to spend at lease 1 hour/week for thermodynamics after class on your self-study
- An quiz-like assessment unit will be released later, weighs 10% of the module.
- Final module mark = 80% final exam + 10% thermo quiz + 10% fluid quiz