

Power-to-Liquid Sustainable Aviation Fuels (SAF) as a Catalyst for India's Green Hydrogen Economy

Prepared For: Various U.S.-based Organizations

India's Green Hydrogen Landscape

- Current Indian (lower bound) green hydrogen costs range between
 \$5.00 \$6.00 per kg (barring subsidy)
 - Costs are 3 4x higher than current blue and gray production costs
- India has outlaid \$2.1 billion across:
 - Electrolyzer manufacturing
 - Direct H2/H2 derivative subsidies
- Analysis indicates that this funding alone is not enough to reach cost parity:
 - Costs remain 2 3x more expensive
 - Subsidies are significantly less than U.S./E.U. producers

India's Green Hydrogen Costs

Reaching Green – Gray Cost Parity Will Require Lower Costs of Capital

Fertilizer and Refineries Face High Green Production Costs

- Production costs range from $5.21 \rightarrow 7.27$ per kg of H2.
- The cost at the cheapest fertilizer/refinery plant is more than 2.8 times as expensive as grey hydrogen; at the most expensive plants, green hydrogen costs are nearly 3.8 times as expensive.

India Green Hydrogen Costs Rank as the Pack" In the G20

- To compete as a global exporter, India needs to:
 - Reduce median production costs
 by 53%.
 - Lower minimum production costs
 by 48%.
- For cost advantage over G20 importers:
 - Median production costs must decrease by ~30%.
 - Minimum production costs should
 be cut by ~25%.

Building a GH2 Ecosystem Requires Sectors Proven Demand and High W2P

- Sustainable aviation fuels (SAF), driven by global, domestic, and airlinespecific decarbonization mandates have:
 - Necessary hydrogen demand
 - A willingness to absorb a green premium
- India is considering a SAF mandate of between 1 5 % by 2027^{1} .
- The EU has a 2% SAF mandate by 2025, 6% by 2030, and 63% by 2050².

Demand for SAF is High, Even With Increased Production Costs

- SAF demand has outpaced production¹:
 - In 2024, SAF demand was 2.156 million mt and supply was 2.13 million barrels.

"Every drop of SAF produced has been bought",
despite prices being more than 2 times more
expensive than current jet fuels.

SUSTAINABLE AVIATION FUEL DEMAND

Note: Assumes 2% blending achieved by 2050 in countries without national blending mandates. Source: SEP Global Commodity Insights

SAF Pathways Require Green Hydrogen Could Act as a Long-term Offtaker

- Power to Liquid (PtL) SAF production requires electrolytic hydrogen and point source/captured CO2.
 - Green hydrogen is required to meet this demand.
- Biofuel-based SAF has a higher TRL, but questionable decarbonization effects and is unsustainable.

Hydrogen and CO2 Required to Replace 0.7% of 2030 UK SAF Demand¹

Indian Fuel Consumption is Growing, PtL SAF is Required Achieve Decarbonization Goals

- Bio-based SAF could provide up to 24 million tons of feedstock
 - Meet 1% SAF targets by 2030
- PtL SAF will be required to meet demand by 2050
 - Sell into global markets
 - Achieve complete decarbonization

Source: Clearview Analysis; Data aggregated from Petroleum Planning and Analysis Cell

PtL SAF Supply Chain Components

1. Feedstock Production

2. SAF Production, Transportation, and Blending

3. SAF Use

Required Plant Components

Hydrogen Generation

CO2 Collection

Point Source Capture DAC

SAF Fueling and Use

PtL SAF Locations Require:

- 1. CO2 Source
 - 1. Point Source
- 2. Hydrogen Source
 - 1. Electrolytic
 - 2. Carbon Capture
- 3. Intermediate Transportation
- 4. Appropriate Demand Profiles

Regions in India Have High PtL SAF Warrant A Deeper Dive

Gujarat/Maharashtra

SABAR, KANTHA KACHCHH **Bhuj Airport** Sardar Vallabhai Patel International Airport KHEDA PANCHTALU GUJAR JHABUA Airport Bhavnagar Airport **Porbandar Airport Keshod Airport** AMRELI JUNAGADH Diu Airport Chhatrapati Shivaji International Airpo

Haryana/Uttar Pradesh

Legend

Ethanol Plants

Refinery

Airport

Petroleum Pipeline

 Ethanol plants and refineries represent potential sources of CO2 capture

Example Analysis: Generating FT Fuels Using Hydrogen and Captured CO2

- To evaluate India's (and other country's) PtL SAF potential, Clearview has built a technoeconomic cost model to:
 - Estimate current production costs
 - Identify key cost drivers
 - Evaluate the effect of tax credits and policy incentives
- Power-to-Liquid SAF production is an expensive endeavor but provides real emissions reduction benefits.
- The following slides provide an example analysis to highlight the potential uses for this model.

Individual Component Models for Feedstock Production

3. PtL FT Model

Renewable Energy

Electrolysis

Financial Inputs

Levelized Cost of Hydrogen
Production

- Cost breakdown
- Sensitivity analysis
- Uncertainty analysis

Natural Gas Cost

Point Source CO2

Emissions

Transportation Cost

Financial Inputs

- Analyze various point sources:
 - Ammonia
 - Ethanol
 - Coal
 - Etc.
- Cost breakdown
- Sensitivity analysis
- Uncertainty analysis

Hydrogen Cost

Carbon Dioxide Cost

FT + SAF Synthesis

Minimum Fuel Sales Price

- FT synthesis
- RWGS
- Cost breakdown
- Sensitivity analysis
- Uncertainty analysis

CO2 Capture Model Parameters

Parameter	Value
Purchased Power Price (\$/MWh)	58.5
Purchased NG Price (\$/MMBTU)	6.3
Capital Charge Factor	5.5%
Fraction of Total Available CO2 in Primary Reformer	34% (18% CO2 by volume, low purity)
Fraction of Total Available CO2 in Stripper Vent	66% (99% CO2 by volume, high purity)
CO2 Transportation and Storage Costs (\$/ton)	10
Plant Lifetime (years)	30

CO2 Capture Model (Cost Breakdown)

PtL Fischer-Tropsch Model Parameters

Parameter	Value
Nominal Capacity (tons/year)	~128,000
Construction Period (years)	3
Plant Lifetime (years)	40
Depreciation Schedule (type, years)	MACRS, 20
Interest Rate	3.7%
Decommissioning Costs	10%
Total Tax Rate	25.74%
Green Hydrogen Cost (\$/kg)	6.00

PtL FT SAF Model (Cost Breakdown)

Cost breakdown of the Minimum Fuel Sales Price. Variable OPEX (i.e. feedstock costs), are responsible for >80% of total costs.

Variable OPEX (feedstock costs) are key driver in creating cost decline. Reducing feedstock costs by 20% results in MFSP falling by over \$400.

At current jet fuel market prices, a PtL SAF to reach bankability.

- Selling PtL SAF at market price results in
 NPV of ~ -\$4 Billion
 - Market price: ~\$700/ton
 - Green hydrogen costs is the primary cost driver.
 - A cost reduction is necessary to achieve positive NPV

Reduced GH2 costs improve NPV but fail to achieve

- Reducing green hydrogen costs from
 \$6.00 to \$3.00 per kg, approximately
 halves project NPV to \$2 billion.
 - Achieving cost parity requires additional revenue support.

U.S. 40B SAF tax credit and reduced GH2 costs reach breakeven NPV.

- Even applying the U.S. 40B SAF tax credit, which provides $\sim $1.75/gal$ is not enough.
- If sold at market price, the tax credit would

 need to increase by ~70% to reach a

 breakeven NPV
 - Importantly, other paths to cost parity exist, no tax credit is needed to reach a breakeven NPV given:
 - GH2 Cost of \$3.00
 - Sales Price of \sim \$1600 per ton

Achieving a sales price of \$1400/ton with 40B. results positive NPV

- A sales price of \$1400 and applying 40B
 SAF tax credits results in an extremely profitable facility.
 - NPV: ~+600 million
- Securing high-paying offtake is key to achieving project bankability.

A sales price of \$1600/ton and reduced GH2 costs positive NPV without extra incentive

 Achieving long-term, sustainable offtake is necessary for project bankability.

- Current market SAF prices range between \$1,100 \$1,700/ton.
 - Estimated costs sit within this range
 - PtL SAF produces larger emissions
 reductions than biomass-based SAF.

PtL SAF is not competitive in the near-term but could attractive option as costs fall.

- PtL SAF could play a pivotal role in decarbonizing aviation fuels, yet high fuel costs *prevent immediate adoption*.
- As green hydrogen (and carbon capture costs) fall, the economic viability will increase.
- The reliance on GH2 costs, while hurting short-term project viability, also presents an opportunity as a demand-sink for India's growing GH2 sector.

