10 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.6 puntos., MAL: -0.15 puntos, N.C: 0

- 1. Dado el circuito recortador de la figura, y teniendo en cuenta una $V\gamma$ de 0.7V para los diodos. Calcule el valor de Vs cuando Ve = 6V
- [A] 7.3V
- [B] 3V
- [C] 3.7V
- [D] 6V

2. En el circuito de la figura hay dos subcircuitos digitales hechos con diodos, transistores y resistencias: el 1), con entradas A y B, y salida C; y el 2), con entrada D, y salida F.

Suponiendo que se conecta C y D, señale la afirmación CORRECTA:

DATOS: V_{γ} = 0.7V (para todos los diodos); V_{BEON} = 0.7V (para el transistor)

- [A] El primer subcircuito actúa como una puerta OR de dos entradas y el segundo subcircuito como un inversor.
- [B] Cuando las entradas son A = 1 y B = 1, entonces D3 conduce y la salida en F es 0.
- [C] Cuando D1 y/o D2 conduce, entonces también lo hace el diodo D3.
- [D] Cuando D = 0 el transistor conduce y la salida en F es 0.
- 3. En un transistor bipolar NPN que está funcionando en un circuito y cuya ganancia de corriente β es de 100, se miden las siguientes corrientes y tensiones continuas:

$$V_{BE} = 0.7V$$
 $I_{B} = 0.1 \text{mA}$ $I_{E} = 3.5 \text{mA}$

A la vista de los datos anteriores, podemos afirmar que el transistor:

- [A] Está en corte.
- [B] Está funcionando en zona activa.
- [C] No podemos indicar la zona de funcionamiento, ya que nos falta el valor de V_{CE}.
- [D] Está saturado.
- 4. El circuito de la figura es un inversor lógico. ¿Cuál es el valor mínimo de la tensión de entrada para que se alcance la saturación del transistor? (Ve_{MIN(SAT)})
- [A] $V_{eMIN(SAT)} = 1.2V$
- [B] $V_{eMIN(SAT)} = 1.9V$
- [C] $V_{eMIN(SAT)} = 3.7V$
- [D] $V_{eMIN(SAT)} = 5V$

- Datos:
- β: 100
- R1 = 100k
- R2= 4k Vcc= 5V
- V_{BEON} = 0.7, V_{CESAT} =0.2V

- 5. Indique la respuesta CORRECTA sobre la polarización del transistor PMOS del circuito.
- [A] Si Vi = 0 el transistor está en corte.
- [B] Si Vi = 2V el transistor está en saturación
- [C] Si Vi = 2V el transistor está en óhmica.
- [D] Con Vi = 2V, la $V_{GS} = 2V$

Fórmulas PMOS:

Corte: $V_{GS} \ge -V_T$

Saturación: $I_{SD} = K(V_{GS} + V_T)^2, V_{DS} < V_{GS} + V_T$

Óhmica: $I_{SD} \approx 2K(V_{GS}+V_T)V_{DS}$

- 6. Acerca del transistor MOSFET, señale la respuesta FALSA.
- [A] En la zona de saturación, el canal del transistor se estrangula y no permite que aumente la corriente a pesar de aumentar VDS.
- [B] El transistor Mosfet tiene una gran versatilidad, pudiendo funcionar como interruptor, resistencia variable e incluso condensador.
- [C] Para evitar la ruptura de la capa thinox del transistor, se suele utilizar un recortador a dos niveles en el terminal G.
- [D] En los circuitos digitales pseudo-NMOS, las cargas activas se diseñan con transistores NMOS con el terminal de puerta conectado a masa.
- 7. El circuito de la figura está compuesto de puertas NAND con salida en colector abierto. A partir de las especificaciones de la tabla (tensiones y corrientes) y para las entradas (A=4V, B=0.2V, C=4.5V, D=0.6V), **CALCULE** el voltaje en F.

V _{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}
2.5 V	0.8 V	3.0 V	0.5 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
600 μΑ	-0.36 mA	200 μΑ	7 mA

[A] F=0.5V [B] F=3.0V [C] F=4.0V [D] F=5.0V	+5V
	A B
	C F

- 8. Cuál de las siguientes afirmaciones relacionadas con una misma familia lógica es FALSA:
- [A] Siempre se cumple $V_{OHmin} >= V_{IHmin}$.
- [B] El margen de ruido se define como NM=min(NM_L,NM_H)
- [C] Las corrientes en las entradas son siempre positivas, en cambio, las corrientes en las salidas son siempre negativas.
- [D] Si no se cumplen los tiempos de t_{su} (setup) y de t_h (hold) durante la escritura de un biestable, éste puede entrar en modo metaestable y no efectuar correctamente el almacenamiento del dato de entrada.

9. Se desea conectar entre sí dos familias lógicas A y B (A →B) cuyas especificaciones se indican en las tablas adjuntas. Seleccione la opción **CORRECTA** de entre las siguientes:

Familia A (+5V)				Familia B (+5V)			
V _{IHmin}	V_{ILmax}	V_{OHmin}	V_{OLmax}	V_{IHmin}	V_{ILmax}	V_{OHmin}	V_{OLmax}
3.5 V	1.5 V	4.9 V	0.1 V	2 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}	I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
10 pA	-10 pA	-0.5 mA	0.5 mA	40 μΑ	-1.6 mA	-400 μΑ	16 mA

- [A] Se puede realizar la conexión directamente.
- [B] Los niveles lógicos son compatibles y el margen de ruido global es de 2.9 V
- [C] No hay compatibilidad en tensiones, por lo que hay que añadir un buffer en colector abierto, entre A y B con una resistencia de pull-up a su salida conectada a +5V.
- [D] Las corrientes son incompatibles, por lo que hay que intercalar un buffer de la familia A con la alimentación conectada a +5V.
- 10. Dado el siguiente circuito secuencial, implementado con biestables D, señale la afirmación CORRECTA:

Parámetros temporales: Biestables: (Set up: t_{su} = 10 ns, Hold: t_h = 5 ns, Retardo: $t_{pd(max)}$ = 20 ns), Puertas NOT: (Retardo: $t_{pd(max)}$ = 20 ns).

- [A] La frecuencia de funcionamiento no debe superar los 20MHz.
- [B] La frecuencia de funcionamiento ha de ser mayor de 15 MHz.
- [C] El período de reloj no debe superar los 50ns.
- [D] El circuito no funciona bien por tener un tiempo de hold muy bajo.

(PAGINA INTENCIONADAMENTE EN BLANCO)

Apellidos:	Nombre:

PROBLEMA (4 PUNTOS)

El circuito digital de la figura, diseñado con transistores MOSFET, tiene entradas A y B, y salida F.

Nota: En zona óhmica utilice la expresión aproximada $R_{ON} \approx 1/(2K(V_{GS} - V_T))$

Parámetros transistores:	
$V_{\rm T} = 0.5 \ {\rm V}$	
$K = 0.1 \text{ mA/V}^2$	

[A] (0.5 Puntos) Rellene la siguiente tabla de verdad e indique la expresión lógica de F en función de las entradas A y B.

А	В	Х	F
0	0		
0	1		
1	0		
1	1		

[B] (1.5 Puntos) Suponga que A = 0V ("0" lógico) y B = 5V ("1" lógico).

Nota: como el circuito es digital, los transistores funcionan en conmutación, entre corte y zona lineal (Ron).

Dibuje el circuito eléctrico equivalente (substituya cada transistor por Ron o un interruptor abierto) y
efectúe los cálculos para rellenar la tabla siguiente.

• Rellene la siguiente tabla de funcionamiento del circuito.

Ron (kΩ)	Zona T1	Zona T2	Zona T3	$V_X(Volt)$	V_F (Volt)	Consumo estático (mA)	Consumo estático (mW)

[C] (1.5 Puntos) Suponga que A = 5V ("1" lógico) y B = 0V ("0" lógico).

• Dibuje el circuito eléctrico equivalente (substituya cada transistor por Ron o un interruptor abierto) y efectúe los cálculos para rellenar la tabla siguiente.

Rellene la siguiente tabla de funcionamiento del circuito.

Ron (kΩ)	Zona T1	Zona T2	Zona T3	$V_X(Volt)$	V _F (Volt)	Consumo estático (mA)	Consumo estático (mW)

[D] (1 Puntos) Para controlar el funcionamiento de un motor por parte del circuito lógico anterior, se diseña el siguiente esquema. El motor funciona con 18V y 60mA.

Rellene la siguiente tabla (justifique los cálculos):

F	Motor (marcha/paro)	Potencia disipada motor (mW)	Potencia disipada transistor (mW)
"0"			
"1"			

Indique el valor de Ron del transistor: