Numerical Analysis

Iydon

2018年11月15日

目录

第零章	Iterative Techniques in Matrix Algebra	5
0.1	Norms of Vectors and Matrices	,
	0.1.1 Matrix Norms and Distances	6
0.2	Eigenvalues and Eigenvectors	6

Iterative Techniques in Matrix Algebra

Norms of Vectors and Matrices 0.1

定义 0.1.1 A vector norm on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n to \mathbb{R} with the following properties.

- (i) $\|\mathbf{x}\| \geq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^{\mathbf{n}}$.
- (ii) $\|\mathbf{x}\| = \mathbf{0}$ if and only if $\mathbf{x} = \mathbf{0}$.
- (iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$.
- (iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathbf{n}}$.

定义 0.1.2 The l_1 , l_2 , l_∞ norms for the vector $\mathbf{x}=(\mathbf{x_1},\mathbf{x_2},\ldots,\mathbf{x_n})^{\mathbf{t}}$ are defined by

- $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$ $\|\mathbf{x}\|_2 = \left[\sum_{i=1}^n x_i^2\right]^{1/2}$
- $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$

定理 0.1.1 The sequence of vectors $\mathbf{x}^{(\mathbf{k})}$ converges to \mathbf{x} in \mathbb{R}^n with respect to the $l\infty$ norm if and only if $\lim_{k\to+\infty} x_i^{(k)} = x_i$, for each

 $i=1,2,\ldots,n$.

0.1.1Matrix Norms and Distances

定义 0.1.3 (Matrix Norms) A matrix norm on the set of all $n \times n$ matrices s a real-valued function, $\|\cdot\|$, defined on this ser, satisfying for all $n \times n$ matrices **A** and **B** and all real numbers α .

- (i) $\|A\| \ge 0$.
- (ii) $\|\mathbf{A}\| = \mathbf{0}$ if and only if \mathbf{A} is $\mathbf{0}$, the matrix with all 0 entries. (iii) $\|\alpha\mathbf{A}\| = |\alpha| \|\mathbf{A}\|$. (iv) $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$.

- $(v) \|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \|\mathbf{B}\|.$

定理 0.1.2 If $\|\cdot\|$ is a vector norm on \mathbb{R} , then

$$\|\mathbf{A}\| = \max_{\|\mathbf{x}\| = 1} \|\mathbf{A}\mathbf{x}\|$$

is a matrix norm.

定理 0.1.3 If $A = (a_{ij})$ is on $n \times n$ matrix, then

$$\|A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{i=1}^n |a_{ij}| \,.$$

0.2Eigenvalues and Eigenvectors