

Master-/ Diplomarbeit

Entwicklung von Konzepten zur Personensicherheit für autonome Fahrerlose Transportsysteme (FTS)

Rahmen: Das Forschungsprojekt KARIS (Kleinskaliges Autonomes Redundantes IntralogistikSystem) ist ein System, das aus einer Menge sich selbst organisierender, autonomer fahrerloser Transportsysteme - sogenannter KARIS-Einzelelemente - besteht. Solche Einzelelemente erhalten von übergeordneten Instanzen Aufträge - beispielsweise den Auftrag zur Beförderung eines Behälters. Die Bewältigung des Auftrages erfolgt dezentral durch das Einzelelement, ohne Steuerung durch eine zentrale Einheit (Video bei YouTube: http://goo.gl/1V8Aq).

Problemstellung: Damit KARIS in Bereichen mit Personen eingesetzt werden kann, müssen Verletzungen (z.B. durch Kollision) durch technische Schutzmaßnahmen vermieden werden.

Aufgabe ist die Durchführung einer Risiko- und Gefahrenanalyse sowie die und Bewertung Erarbeitung von Sicherheitskonzepten. Die Anforderungen für den Einsatz in der Serienfertigung bei Bosch und der R8-Produktion bei der quattro GmbH müssen hierbei berücksichtigt werden.

Voraussetzung ist Interesse an Sensor- und Robotiksystemen. Zur Umsetzung sind grundlegende Kenntnisse im Bereich der Sensorik sowie Elektrotechnik von Vorteil. Die Bereitschaft sich intensiv in sicherheitstechnische Grundlagen einzuarbeiten wird vorausgesetzt.

Geboten wird eine spannende Arbeit, die einen Einblick in die anwendungsnahe Robotik bietet. Sowohl von Institutsseite als auch durch Industriepartner wird fachliche Unterstützung geleistet.

Forschungsbereich:

Steuerungs- und Sicherheitstechnik für fahrerlose Transportsysteme (FTS)

Projekt: KARIS (Kleinskaliges Autonomes Redundantes IntralogistikSystem)

_		_	_		
Λ.		ric	h+	un	
м	uэ	ııc	IIL	uu	u

Exper	ime	ntell
	_	

Theoretisch

Praktisch

☐ Simulation ☐ Konstruktion (CAD)

Hardware-Design (CAE)

Hardwarenahe Program-

mierung

☐ SPS-Programmierung

☐ Anwendungsentwicklung

□ Robotik

Sicherheitstechnik

Studiengang:

Maschinenbau

Mechatronik

☐ Elektrotechnik

☐ Informatik

☐ Informationswirtschaft

Beginn: ab sofort

Bei **Interesse** einfach kurz melden oder vorbei kommen:

Andreas Trenkle Gotthard-Franz-Str. 8 Geb. 50.38; Raum 1.12 Telefon: 0721 608 48625

trenkle@kit.edu