طراحی الگوریتم ها

مبحث نوزدهم: پیچیدگی محاسبات

سجاد شیرعلی شهرضا بهار 1402 سه شنبه، 9 خرداد 1402

اطلاع رسانی • آخرین مبحث سال!

زمان حل چند جمله ای

Idea

- Well-known algorithm rule: Polynomial good, exponential bad!
 - The latter is obvious, the former may need some explanation
 - We say that polynomial-time problems are **tractable**
 - I.e., exponential problems are **intractable**

Polynomial Time Benefits

- It's not exponential!
 - We cannot say that every polynomial time algorithm has an acceptable running time
 - But, if it **does not** run in polynomial time, it **only** works for small inputs

Polynomial Time Benefits

- It's not exponential!
 - We cannot say that every polynomial time algorithm has an acceptable running time
 - But, if it **does not** run in polynomial time, it **only** works for small inputs
- Polynomial time is closed under standard operations.
 - \circ If f(t) and g(t) are polynomials, so is f(g(t))
 - Also closed under sum, difference, product

Polynomial Time Benefits

- It's not exponential!
 - We **cannot** say that every polynomial time algorithm has an acceptable running time
 - But, if it **does not** run in polynomial time, it **only** works for small inputs
- Polynomial time is closed under standard operations.
 - \circ If f(t) and g(t) are polynomials, so is f(g(t))
 - Also closed under sum, difference, product
- Almost all of the algorithms we have studied in this course had polynomial time

• Decision problem: a question that has two possible answers, **yes** and **no**

- Decision problem: a question that has two possible answers, **yes** and **no**
- Almost any problem can be rephrased as a decision problem

- Decision problem: a question that has two possible answers, yes and no
- Almost any problem can be rephrased as a decision problem
- The question is about some input
- A problem instance is a combination of the problem and a specific input

- Decision problem: a question that has two possible answers, **yes** and **no**
- Almost any problem can be rephrased as a decision problem
- The question is about some input
- A problem instance is a combination of the problem and a specific input
- The statement of a decision problem has two parts
 - **Instance description**: defines the information expected in the input
 - **Question:** states the specific yes-or-no question
 - Refers to variables that are defined in the instance description

- Decision problem: a question that has two possible answers, **yes** and **no**
- Almost any problem can be rephrased as a decision problem
- The question is about some input
- A problem instance is a combination of the problem and a specific input
- The statement of a decision problem has two parts
 - **Instance description**: defines the information expected in the input
 - **Question:** states the specific yes-or-no question
 - Refers to variables that are defined in the instance description
- Almost every optimization problem can be expressed in decision problem form

• Definition:

o In a graph G=(V,E), a **clique** E is a subset of V such that for all u and v in E, the edge (u,v) is in E.

• Definition:

• In a graph G=(V,E), a **clique** E is a subset of V such that for all u and v in E, the edge (u,v) is in E.

Clique Decision problem

- \circ **Instance**: an undirected graph G=(V,E) and an integer k.
- **Question**: Does G contain a clique of k vertices?

• Definition:

o In a graph G=(V,E), a **clique** E is a subset of V such that for all u and v in E, the edge (u,v) is in E.

• Clique Decision problem

- \circ **Instance**: an undirected graph G=(V,E) and an integer k.
- **Question**: Does G contain a clique of k vertices?

• k-Clique Decision problem

- **Instance**: an undirected graph G=(V,E).
 - Note: k is some constant, independent of the problem
- **Question**: Does G contain a clique of k vertices?

• Definition:

• The **chromatic number** of a graph G=(V,E) is the smallest number of colors needed to color G such that no two adjacent vertices have the same color

• Definition:

• The **chromatic number** of a graph G=(V,E) is the smallest number of colors needed to color G such that no two adjacent vertices have the same color

• Graph Coloring Optimization Problem

- **Instance**: an undirected graph G=(V,E).
- o **Problem**: Find G's chromatic number and a coloring that realizes it

• Definition:

• The **chromatic number** of a graph G=(V,E) is the smallest number of colors needed to color G such that no two adjacent vertices have the same color

• Graph Coloring Optimization Problem

- Instance: an undirected graph G=(V,E).
- o **Problem**: Find G's chromatic number and a coloring that realizes it

• Graph Coloring Decision Problem

- \circ **Instance**: an undirected graph G=(V,E) and an integer k>0.
- **Question**: Is there a coloring of G that uses no more than k colors?

• Definition:

• Suppose we have an unlimited number of bins, each with capacity 1.0, and n objects with sizes $s_1, ..., s_n$, where $0 < s_i \le 1$ (all s_i rational)

• Definition:

• Suppose we have an unlimited number of bins, each with capacity 1.0, and n objects with sizes $s_1, ..., s_n$, where $0 < s_i \le 1$ (all s_i rational)

• Bin Packing Optimization Problem

- Instance: $s_1, ..., s_n$ as described above.
- **Problem**: Find the smallest number of bins into which the n objects can be packed

• Definition:

• Suppose we have an unlimited number of bins, each with capacity 1.0, and n objects with sizes $s_1, ..., s_n$, where $0 < s_i \le 1$ (all s_i rational)

• Bin Packing Optimization Problem

- \circ **Instance**: $s_1, ..., s_n$ as described above.
- **Problem**: Find the smallest number of bins into which the n objects can be packed

• Bin Packing Decision Problem

- \circ **Instance**: $s_1, ..., s_n$ as described above, and an integer k.
- **Question**: Can the n objects be packed into k bins?

سوال؟

تقليل

- Assumptions:
 - o Goal: solve problem p

- Assumptions:
 - Goal: solve problem p
 - There is another problem q that we know how to solve

- Assumptions:
 - Goal: solve problem p
 - There is another problem q that we know how to solve
 - Have a function T that
 - Takes an input x for p
 - \blacksquare Produces T(x) that is
 - An input for q
 - Correct answer for p with input x is yes **if and only if** the correct answer for q with input T(X) is yes

- Assumptions:
 - Goal: solve problem p
 - There is another problem q that we know how to solve
 - Have a function T that
 - Takes an input x for p
 - \blacksquare Produces T(x) that is
 - An input for q
 - Correct answer for p with input x is yes **if and only if** the correct answer for q with input T(X) is yes
- We say: p is **reducible** to q and we write $\mathbf{p} \leq \mathbf{q}$

Polynomial Reduction

- If there is an algorithm for q, create an algorithm for p:
 - Compose T with that algorithm
 - Get q's answer to get an algorithm for T
 - Use that to generate answer for p

Polynomial Reduction

- If there is an algorithm for q, create an algorithm for p:
 - Compose T with that algorithm
 - Get q's answer to get an algorithm for T
 - Use that to generate answer for p
- If T is a function with polynomially bounded running time:
 - We say: p is **polynomially reducible** to q
 - o We write: **p≤_pq**
- For now, reducible means polynomially reducible

- **Definition**: An algorithm is polynomially bounded if its worst-case complexity is big-O of a polynomial function of the input size n.
 - I.e. there is a single polynomial p such that for each input of size n, the algorithm terminates after at most p(n) steps
 - o Input size: the number of bits to represent the problem instance's input

- **Definition**: An algorithm is polynomially bounded if its worst-case complexity is big-O of a polynomial function of the input size n.
 - I.e. there is a single polynomial p such that for each input of size n, the algorithm terminates after at most p(n) steps
 - Input size: the number of bits to represent the problem instance's input
- **Definition**: A problem is **polynomially bounded** if there is a polynomially bounded algorithm that solves it

- **Definition**: An algorithm is polynomially bounded if its worst-case complexity is big-O of a polynomial function of the input size n.
 - I.e. there is a single polynomial p such that for each input of size n, the algorithm terminates after at most p(n) steps
 - Input size: the number of bits to represent the problem instance's input
- **Definition**: A problem is **polynomially bounded** if there is a polynomially bounded algorithm that solves it
- The class P
 - Class P: the class of decision problems that are polynomially bounded

- **Definition**: An algorithm is polynomially bounded if its worst-case complexity is big-O of a polynomial function of the input size n.
 - I.e. there is a single polynomial p such that for each input of size n, the algorithm terminates after at most p(n) steps
 - Input size: the number of bits to represent the problem instance's input
- **Definition**: A problem is **polynomially bounded** if there is a polynomially bounded algorithm that solves it

The class P

- Class P: the class of decision problems that are polynomially bounded
- o Informally (with slight abuse of notation), we can say that polynomially bounded optimization problems are in P

Example of a problem in P

- Minimum Spanning Tree (MST)
- **Input**: A weighted graph G=(V,E) with n vertices [each edge e is labeled with a non-negative weight w(e)], and a number k.
- **Question**: Is the total weight of a minimal spanning tree for G less than k?

Example of a problem in P

- Minimum Spanning Tree (MST)
- **Input**: A weighted graph G=(V,E) with n vertices [each edge e is labeled with a non-negative weight w(e)], and a number k.
- **Question**: Is the total weight of a minimal spanning tree for G less than k?
- How do we know it's in P?

Example of a problem in P

- Minimum Spanning Tree (MST)
- **Input**: A weighted graph G=(V,E) with n vertices [each edge e is labeled with a non-negative weight w(e)], and a number k.
- **Question**: Is the total weight of a minimal spanning tree for G less than k?
- How do we know it's in P?
 - Find the MST and check whether its cost is less than k

• It is known that we can determine whether a graph with n vertices has a k-clique in time $O(k^2n^k)$

- It is known that we can determine whether a graph with n vertices has a k-clique in time $O(k^2n^k)$
- Clique Decision problem 1
 - \circ **Instance**: an undirected graph G=(V,E) and an integer k.
 - **Question**: Does G contain a clique of k vertices?

- It is known that we can determine whether a graph with n vertices has a k-clique in time $O(k^2n^k)$
- Clique Decision problem 1
 - \circ **Instance**: an undirected graph G=(V,E) and an integer k.
 - **Question**: Does G contain a clique of k vertices?
- Clique Decision problem 2
 - **Instance**: an undirected graph G=(V,E). Note that k is some constant, independent of the problem.
 - Question: Does G contain a clique of k vertices?

- It is known that we can determine whether a graph with n vertices has a k-clique in time $O(k^2n^k)$
- Clique Decision problem 1
 - \circ **Instance**: an undirected graph G=(V,E) and an integer k.
 - **Question**: Does G contain a clique of k vertices?
- Clique Decision problem 2
 - \circ **Instance**: an undirected graph G=(V,E). Note that k is some constant, independent of the problem.
 - **Question**: Does G contain a clique of k vertices?
- Are either of these decision problems in P?

- It is known that we can determine whether a graph with n vertices has a k-clique in time $O(k^2n^k)$
- Clique Decision problem 1
 - \circ **Instance**: an undirected graph G=(V,E) and an integer k.
 - **Question**: Does G contain a clique of k vertices?
- Clique Decision problem 2
 - **Instance**: an undirected graph G=(V,E). Note that k is some constant, independent of the problem.
 - **Question**: Does G contain a clique of k vertices?
- Are either of these decision problems in P?
 - No. The size to represent k is log k

Class NP

- NP: Nondeterministic Polynomial time
- First stage: assumes a "guess" of a possible solution
- Can we verify in polynomial time whether the proposed solution is a correct solution?
 - I.e., do we have a verifier that verifies an answer in a polynomial time?

- Example: Graph coloring
 - o Given a graph G with N vertices, can it be colored with k colors?

- Example: Graph coloring
 - Given a graph G with N vertices, can it be colored with k colors?
- A solution: an actual k-coloring.

- Example: Graph coloring
 - Given a graph G with N vertices, can it be colored with k colors?
- A solution: an actual k-coloring.
- A "proposed solution": something that is in the right form for a solution.
 - E.g., a coloring that
 - May or may not have only k colors
 - May or may not have distinct colors for adjacent nodes

- Example: Graph coloring
 - Given a graph G with N vertices, can it be colored with k colors?
- A solution: an actual k-coloring.
- A "proposed solution": something that is in the right form for a solution.
 - E.g., a coloring that
 - May or may not have only k colors
 - May or may not have distinct colors for adjacent nodes
- The problem is in NP **if and only if** there is a polynomial-time (in N) algorithm that can check a proposed solution to see if it really is a solution

Another Definition of NP

- Nondeterministic algorithm phases:
 - The nondeterministic "guessing" phase: produce the proposed solution

Another Definition of NP

- Nondeterministic algorithm phases:
 - The nondeterministic "guessing" phase: produce the proposed solution
 - The deterministic **verifying** phase: check the proposed solution to see if it is indeed a solution
 - Output yes if it is a solution

Another Definition of NP

- Nondeterministic algorithm phases:
 - The nondeterministic "guessing" phase: produce the proposed solution
 - The deterministic **verifying** phase: check the proposed solution to see if it is indeed a solution
 - Output yes if it is a solution
- NP Class: class of decision problems for which there is a polynomially bounded nondeterministic algorithm
 - Examples: Graph coloring, Bin packing, Clique

سوال؟

رابطه بین P و NP

• Exp class: set of all decision problems that can be solved by a deterministic exponential-time algorithm.

- Exp class: set of all decision problems that can be solved by a deterministic exponential-time algorithm.
- Then $P \subseteq NP \subseteq Exp$

- Exp class: set of all decision problems that can be solved by a deterministic exponential-time algorithm.
- Then $P \subseteq NP \subseteq Exp$
- $P \subseteq NP$
 - Directly solve the problem to find the answer
 - No guessing needed

- Exp class: set of all decision problems that can be solved by a deterministic exponential-time algorithm.
- Then $P \subseteq NP \subseteq Exp$
- $P \subseteq NP$
 - Directly solve the problem to find the answer
 - No guessing needed
- $NP \subseteq Exp$
 - Generate all possible solutions
 - Will be exponential in terms of the input
 - Check them to see if one of them is the answer
 - Will be deterministic

• Is P = NP?

- Is P = NP?
- Or is it $P \neq NP$

- Is P = NP?
- Or is it $P \neq NP$
 - This seems to be the case:
 - We have a large group of problems in NP
 - All reducible to each other
 - No one can find a Polynomial-time algorithm for them yet

- Is P = NP?
- Or is it $P \neq NP$
 - This seems to be the case:
 - We have a large group of problems in NP
 - All reducible to each other
 - No one can find a Polynomial-time algorithm for them yet
- Try to solve it as an extra assignment
 - Will give you extra mark for course if you do it!

• NP-Hard: A problem that all NP problems can be reduced to it in polynomial time

- NP-Hard: A problem that all NP problems can be reduced to it in polynomial time
- Class of NP Complete (NP C): the set of all problems in NP "at least as hard" as every other problem in NP.

- NP-Hard: A problem that all NP problems can be reduced to it in polynomial time
- Class of NP Complete (NP C): the set of all problems in NP "at least as hard" as every other problem in NP.
- To prove a problem x is NP complete
 - \circ Show that x is in NP
 - \circ Show that some other NP C problem reduces to x

- NP-Hard: A problem that all NP problems can be reduced to it in polynomial time
- Class of NP Complete (NP C): the set of all problems in NP "at least as hard" as every other problem in NP.
- To prove a problem *x* is NP complete
 - \circ Show that x is in NP
 - \circ Show that some other NP C problem reduces to x
- If an NP hard problem can be solved in polynomial time, then all NP complete problems can be solved in polynomial time.

- NP-Hard: A problem that all NP problems can be reduced to it in polynomial time
- Class of NP Complete (NP C): the set of all problems in NP "at least as hard" as every other problem in NP.
- To prove a problem *x* is NP complete
 - \circ Show that x is in NP
 - \circ Show that some other NP C problem reduces to x
- If an NP hard problem can be solved in polynomial time, then all NP complete problems can be solved in polynomial time.
- NP H includes all NP C problems

Relation between P, NP, NP-H, NP-C

- A problem is NP-hard if every problem in NP is reducible to it
- A problem is NP-complete if it is in NP and is NP-hard

- A problem is NP-hard if every problem in NP is reducible to it
- A problem is NP-complete if it is in NP and is NP-hard
- Showing that a problem is NP complete is difficult.
 - Has only been done directly for a few problems.
 - Example: 3-satisfiability

- A problem is NP-hard if every problem in NP is reducible to it
- A problem is NP-complete if it is in NP and is NP-hard
- Showing that a problem is NP complete is difficult.
 - Has only been done directly for a few problems.
 - Example: 3-satisfiability
- If p is NP-hard, and $p \leq_p q$, then q is NP-hard.

- A problem is NP-hard if every problem in NP is reducible to it
- A problem is NP-complete if it is in NP and is NP-hard
- Showing that a problem is NP complete is difficult.
 - Has only been done directly for a few problems.
 - Example: 3-satisfiability
- If p is NP-hard, and $p \leq_p q$, then q is NP-hard.
 - Most NP-complete problems are shown to be NP-C by showing that 3-satisfiability (or some other known NP-complete problem) reduces to them

3-SAT

- 3-Satisfiability problem:
- A CNF (conjunctive normal form) formula is in 3-CNF if every clause has exactly three literals
- **Instance**: A 3CNF propositional formula *f* (containing **n** different variables)
- **Question**: Is there a truth assignment that satisfies *f*?

 $(\neg a \lor b \lor c) \land (\neg b \lor a \lor c) \land (\neg c \lor a \lor b) \land (\neg d \lor a \lor b) \land (\neg e \lor a \lor b) \land (\neg a \lor b \lor d) \land (\neg b \lor a \lor d)$

سوال؟