AQUEOUS SOLUBILITY OF INORGANIC COMPOUNDS AT VARIOUS TEMPERATURES

The solubility of over 300 common inorganic compounds in water is tabulated here as a function of temperature. Solubility is defined as the concentration of the compound in a solution that is in equilibrium with a solid phase at the specified temperature. In this table the solid phase is generally the most stable crystalline phase at the temperature in question. An asterisk * on solubility values in adjacent columns indicates that the solid phase changes between those two temperatures (usually from one hydrated phase to another or from a hydrate to the anhydrous solid). In such cases the slope of the solubility vs. temperature curve may show a discontinuity.

All solubility values are expressed as mass percent of solute, $100 \times w_2$, where

$$w_2 = m_2/(m_1 + m_2)$$

and m_2 is the mass of solute and m_1 the mass of water. This quantity is related to other common measures of solubility as follows:

Molarity: $c_2 = 1000 \rho w_2/M_2$ Molality: $m_2 = 1000 w_2/M_2(1-w_2)$ Mole fraction: $x_2 = (w_2/M_2)/\{(w_2/M_2) + (1-w_2)/M_1\}$ Mass of solute per 100 g of H₂O: $r_2 = 100 w_2/(1-w_2)$

Here M_2 is the molar mass of the solute and M_1 = 18.015 g/mol is the molar mass of water; ρ is the density of the solution in g cm⁻³.

The data in the table have been derived from the references indicated; in many cases the data have been refitted or interpolated in order to present solubility at rounded values of temperature. Where available, values were taken from the IUPAC Solubility Data Series (Reference 1) or related papers in the

Journal of Physical and Chemical Reference Data (References 2 to 5), which present carefully evaluated data.

The solubility of sparingly soluble compounds that do not appear in this table may be calculated from the data in the table "Solubility Product Constants." Solubility of inorganic gases may be found in the table "Solubility of Selected Gases in Water."

Compounds are listed alphabetically by formula.

References

- 1. Solubility Data Series, International Union of Pure and Applied Chemistry. Volumes 1 to 53 were published by Pergamon Press, Oxford, from 1979 to 1994; subsequent volumes were published by Oxford University Press, Oxford. The number following the colon is the volume number in the series. Current reports in the series appear in the Journal of Physical and Chemical Reference Data.
- Clever, H. L., and Johnston, F. J., J. Phys. Chem. Ref. Data, 9, 751, 1980.
- 3. Marcus, Y., J. Phys. Chem. Ref. Data, 9, 1307, 1980.
- Clever, H. L., Johnson, S. A., and Derrick, M. E., J. Phys. Chem. Ref. Data, 14, 631, 1985.
- Clever, H. L., Johnson, S. A., and Derrick, M. E., *J. Phys. Chem. Ref. Data*, 21, 941, 1992.
- Söhnel, O., and Novotny, P., Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam, 1985.
- Krumgalz, B.S., Mineral Solubility in Water at Various Temperatures, Israel Oceanographic and Limnological Research Ltd., Haifa, 1994.
- 8. Potter, R. W., and Clynne, M. A., *J. Research U.S. Geological Survey*, 6, 701, 1978; Clynne, M. A., and Potter, R. W., *J. Chem. Eng. Data*, 24, 338, 1979.
- Marshal, W. L., and Slusher, R., J. Phys. Chem., 70, 4015, 1966;
 Knacke, O., and Gans, W., Zeit. Phys. Chem., NF, 104, 41, 1977.
- 10. Stephen, H., and Stephen, T., Solubilities of Inorganic and Organic Compounds, Vol. 1, Macmillan, New York, 1963.

Aqueous Solubility in Mass% as a Function of Temperature

Formula	0 °C	10 °C	20 °C	25 °C	30 °C	40 °C	50 °C	60 °C	70 ℃	80 °C	90 °C	100 °C	Ref.
$AgBrO_3$				0.193							1.32		7
$AgClO_2$	0.17	0.31	0.47	0.55	0.64	0.82	1.02	1.22	1.44	1.66	1.88	2.11	7
$AgClO_3$				15									7
$AgClO_4$	81.6	83.0	84.2	84.8	85.3	86.3	86.9	87.5	87.9	88.3	88.6	88.8	6
$AgNO_2$	0.155			0.413									7
$AgNO_3$	55.9	62.3	67.8	70.1	72.3	76.1	79.2	81.7	83.8	85.4	86.7	87.8	6
Ag_2SO_4	0.56	0.67	0.78	0.83	0.88	0.97	1.05	1.13	1.20	1.26	1.32	1.39	7
$AlCl_3$	30.84	30.91	31.03	31.10	31.18	31.37	31.60	31.87	32.17	32.51	32.90	33.32	7
$Al(ClO_4)_3$	54.9										64.4		7
AlF_3	0.25	0.34	0.44	0.50	0.56	0.68	0.81	0.96	1.11	1.28	1.45	1.64	7
$Al(NO_3)_3$	37.0	38.2	39.9	40.8	42.0	44.5	47.3	50.4	53.8°			61.5°	6
$Al_2(SO_4)_3$	27.5			27.8	28.2	29.2	30.7	32.6	34.9	37.6	40.7	44.2	7
As_2O_3	1.19	1.48	1.80	2.01	2.27	2.86	3.43	4.11	4.89	5.77	6.72	7.71	10
$BaBr_2$	47.6	48.5	49.5	50.0	50.4	51.4	52.5	53.5	54.5	55.5	56.6	57.6	6
$Ba(BrO_3)_2$	0.285	0.442	0.656	0.788	0.935	1.30	1.74	2.27	2.90	3.61	4.40	5.25	1:14
$Ba(C_2H_3O_2)_2$	37.0			44.2									7
$BaCl_2$	23.30	24.88	26.33	27.03	27.70	29.00	30.27	31.53	32.81	34.14	35.54	37.05	8
$Ba(ClO_2)_2$	30.5			31.3								44.7	7
$Ba(ClO_3)_2$	16.90	21.23	23.66	27.50	29.43	33.16	36.69	40.05	43.04	45.90	48.70	51.17	1:14
$Ba(ClO_4)_2$	67.30	70.96	74.30	75.75	77.05	79.23	80.92	82.21	83.16	83.88	84.43	84.90	7
BaF_2		0.158		0.161									7
BaI_2	62.5	64.7	67.3	68.8	69.1	69.5	70.1	70.7	71.3	72.0	72.7	73.4	6
$Ba(IO_3)_2$	0.0182	0.0262	0.0342	0.0396	0.045°	0.058°	0.073	0.090	0.109	0.131	0.156	0.182	1:14

Formula	0 °C	10 °C	20 °C	25 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C	100 °C	Ref.
$Ba(NO_2)_2$	31.1	36.6	41.8	44.3	46.8	51.6	56.2	60.5	64.6	68.5	72.1	75.6	10
$Ba(NO_3)_2$	4.7	6.3	8.2	9.3	10.2	12.4	14.7	17.0	19.3	21.5	23.5	25.5	6
$Ba(OH)_2$	1.67			4.68	8.4	19	33	52	74	100			7
BaS	2.79	4.78	6.97	8.21	9.58	12.67	16.18	20.05	24.19	28.55	33.04	37.61	7
$BaSO_3$				0.0011									1:26
$Ba(SCN)_2$				62.6									7
$BeCl_2$	40.5			41.7									7
$Be(ClO_4)_2$				59.5									7
$BeSO_4$	26.69	27.58	28.61	29.22	29.90	31.51	33.39	35.50	37.78	40.21	42.72	45.28	7
CaBr ₂	55	56	59	61	63	68	71	73					10
CaCl ₂	36.70	39.19	42.13	44.83°	49.12°	52.85°	56.05°	56.73	57.44	58.21	59.04	59.94	8
$Ca(ClO_3)_2$	63.2	64.2	65.5	66.3	67.2	69.0	71.0	73.2	75.5°	77.4°	77.7	78.0	1:14
Ca(ClO ₄) ₂	0.0012			65.3									7
CaF ₂	0.0013	66.0	67.6	0.0016	60.0	70.0	72.4	74.0	76.0	70.0	70.6	01.0	10 7
CaI ₂ Ca(IO ₃) ₂	64.6 0.082	66.0 0.155	67.6 0.243	68.3 0.305	69.0 0.384*	70.8 0.517°	72.4 0.590	74.0 0.652	76.0 0.811°	78.0 0.665°	79.6 0.668	81.0	1:14
$Ca(1O_3)_2$ $Ca(NO_2)_2$	38.6	39.5	44.5	48.6	0.304	0.517	0.590	0.032	0.011	0.003	0.008		7
$Ca(NO_2)_2$ $Ca(NO_3)_2$	50.0	53.1	56.7	59.0	60.9	65.4	77.8	78.1	78.2	78.3	78.4	78.5	6
CaSO ₃	50.1	55.1	0.0059	0.0054	0.0049	0.0041	0.0035	0.0030	0.0026	0.0023	0.0020	0.0019	1:26
CaSO ₄	0.174	0.191	0.202	0.205	0.208	0.210	0.207	0.201	0.193	0.184	0.173	0.163	9
CdBr ₂	36.0	43.0	49.9	53.4	56.4	60.3°	60.3°	60.5	60.7	60.9	61.3	61.6	6
CdC_2O_4				0.0060									5
$CdCl_2$	47.2	50.1	53.2	54.6	56.3°	57.3°	57.5	57.8	58.1	58.51	58.98	59.5	6
$Cd(ClO_4)_2$				58.7								66.9	7
CdF_2		5.82	4.65	4.18	3.76								5
CdI_2	44.1	44.9	45.8	46.3	46.8	47.9	49.0	50.2	51.5	52.7	54.1	55.4	6
$Cd(IO_3)_2$				0.091									5
$Cd(NO_3)_2$	55.4	57.1	59.6	61.0	62.8	66.5	70.6	86.1	86.5	86.8	87.1	87.4	6
CdSO ₄	43.1	43.1	43.2	43.4	43.6	44.1	43.5	42.5	41.4	40.2	38.5	36.7	6
CdSeO ₄	42.04	40.59	39.02	38.18	37.29	35.35	33.15	30.65	27.84	24.69	21.24	17.49	5
Ce(NO ₃) ₃ CoCl ₂	57.99 30.30	59.80 32.60	61.89 34.87	63.05 35.99	64.31° 37.10	67.0° 39.27	68.6 41.38	71.1° 43.46	74.9° 45.50	79.2 47.51	80.9 49.51	83.1 51.50	1:13 7
$Co(ClO_4)_2$	50.50	32.00	34.07	53.99	37.10	39.27	41.50	43.40	43.30	47.31	47.31	31.30	7
CoF ₂	50.0			1.4									7
CoI ₂	58.00	61.78	65.35	66.99	68.51	71.17	73.41	75.29	76.89	78.28	79.52	80.70	7
$Co(NO_2)_2$	0.076			0.49									7
$Co(NO_3)_2$	45.5	47.0	49.4	50.8	52.4	56.0	60.1	62.6	64.9	67.7			6
$CoSO_4$	19.9	23.0	26.1	27.7	29.2	32.3	34.4	35.9	35.5	33.2	30.6	27.8	6
$Co(SCN)_2$				50.7									7
CrO_3	62.2	62.3	62.6	62.8	63.0	63.5	64.1	64.7	65.5	66.2	67.1	67.9	6
CsBr				55.2									7
CsBrO ₃	1.16	1.93	3.01	3.69	4.46	6.32	8.60	11.32	14.45	17.96	21.83	25.98	1:30
CsCl	61.83	63.48	64.96	65.64	66.29	67.50	68.60	69.61	70.54	71.40	72.21	72.96	1:47
CsClO ₃	2.40	3.87	5.94	7.22	8.69	12.15	16.33	21.14	26.45	32.10	37.89	43.42	1:30
CsClO ₄ CsI	0.79 30.9	1.01 37.2	1.51 43.2	1.96 45.9	2.57 48.6	4.28 53.3	6.55 57.3	9.29 60.7	12.41 63.6	15.80 65.9	19.39 67.7	23.07 69.2	7 6
CsIO ₃	1.08	1.58	2.21	2.59	3.02	3.96	5.06	6.29	7.70	9.20	10.79	12.45	1:30
CsNO ₃	8.46	13.0	18.6	21.8	25.1	32.0	39.0	45.7	51.9	57.3	62.1	66.2	6
CsOH					75								7
Cs_2SO_4	62.6	63.4	64.1	64.5	64.8	65.5	66.1	66.7	67.3	67.8	68.3	68.8	6
$CuBr_2$				55.8									7
$CuCl_2$	40.8	41.7	42.6	43.1	43.7	44.8	46.0	47.2	48.5	49.9	51.3	52.7	6
$Cu(ClO_4)_2$	54.3				59.3								7
CuF_2				0.075									7
$Cu(NO_3)_2$	45.2	49.8	56.3	59.2	61.1	62.0	63.1	64.5	65.9	67.5	69.2	71.0	6
CuSO ₄	12.4	14.4	16.7	18.0	19.3	22.2	25.4	28.8	32.4	36.3	40.3	43.5	6
CuSeO ₄	10.6	E0.00	61.40	16.0	62.20	65.40	60.04	71.50					7
$Dy(NO_3)_3$	58.79	59.99	61.49	62.35	63.29	65.43	68.04	71.58	77 75				1:13
$Er(NO_3)_3$ $Eu(NO_3)_3$	61.58 55.2	63.15 56.7	64.84 58.5	65.75 59.4	66.69 60.4	68.70 62.5	70.96 64.6	73.64	77.75				1:13 1:13
FeBr ₂	33.4	50.7	50.5	54.6°	00.4	02.3	0.7.0					64.8°	7
20012				51.0								01.0	,

Formula	0 °C	10 °C	20 °C	25 °C	30 °C	40 °C	50 °C	60 °C	70 ℃	80 °C	90 °C	100 °C	Ref.
FeCl ₂ Fe(ClO ₄) ₂	33.2° 63.39			39.4° 67.76								48.7°	7 7
FeCl ₃	42.7	44.9	47.9	47.7	51.6	74.8	76.7	84.6	84.3	84.3	84.4	84.7	6
FeF ₃	1217	11.7	2,1,5	5.59	01.0	, 110	, 01,	0 1.0	0 1.0	01.0	01/1	0111	7
Fe(NO ₃) ₂	41.44			46.67									7
$Fe(NO_3)_3$	40.15			46.57									7
$FeSO_4$	13.5	17.0	20.8	22.8	24.8	28.8	32.8	35.5	33.6	30.4	27.1	24.0	6
$Gd(NO_3)_3$	56.3	57.7	59.2	60.1	61.0	62.9	65.2	67.9	71.5				1:13
HIO_3	73.45	74.10	74.98	75.48	76.03	77.20	78.46	79.78	81.13	82.48	83.82	85.14	1:30
H_3BO_3	2.61	3.57	4.77	5.48	6.27	8.10	10.3	12.9	15.9	19.3	23.1	27.3	6
$HgBr_2$	0.26	0.37	0.52	0.61	0.72	0.96	1.26	1.63	2.08	2.61	3.23	3.95	4
$Hg(CN)_2$	6.57	7.83	9.33	10.2	11.1	13.1	15.5	18.2	21.2	24.6	28.3	32.3	6
$HgCl_2$	4.24	5.05	6.17	6.81	7.62	9.53	12.02	15.18	19.16	24.06	29.90	36.62	4
HgI_2			0.0041	0.0055	0.0072	0.0122	0.0199						4
Hg(SCN) ₂				0.070									4
Hg ₂ Cl ₂	50. 0			0.0004								05.00	3
$Hg_2(ClO_4)_2$	73.8	0.042	0.040	79.8*	0.054	0.050	0.065	0.070	0.076	0.000	0.000	85.3*	7
Hg ₂ SO ₄	0.038	0.043	0.048	0.051	0.054	0.059	0.065	0.070	0.076	0.082	0.088	0.093	4
Ho(NO ₃) ₃ KBF ₄	0.28	0.34	0.45	63.8 0.55	0.75	1.38	2.09	2.82	3.58	4.34	5.12	5.90	1:13 10
KBr	35.0	37.3	39.4	40.4	41.4	43.2	44.8	46.2	47.6	48.8	49.8	50.8	6
KBrO ₃	2.97	4.48	6.42	7.55	8.79	11.57	14.71	18.14	21.79	25.57	29.42	33.28	1:30
$KC_2H_3O_2$	68.40	70.29	72.09	72.92	73.70	75.08	76.27	77.31	78.22	79.04	79.80	80.55	7
KCl	21.74	23.61	25.39	26.22	27.04	28.59	30.04	31.40	32.66	33.86	34.99	36.05	1:47
KClO ₃	3.03	4.67	6.74	7.93	9.21	12.06	15.26	18.78	22.65	26.88	31.53	36.65	1:30
KClO ₄	0.70	1.10	1.67	2.04	2.47	3.54	4.94	6.74	8.99	11.71	14.94	18.67	6
KF	30.90	39.8	47.3	50.41	53.2					60.0			7
KHCO ₃	18.62	21.73	24.92	26.6	28.13	31.32	34.46	37.51	40.45				6
$KHSO_4$	27.1	29.7	32.3	33.6	35.0	37.8	40.5	43.4	46.2	49.02	51.82	54.6	6
KH_2PO_4	11.74	14.91	18.25	19.97	21.77	25.28	28.95	32.76	36.75	40.96	45.41	50.12	1:31
KI	56.0	57.6	59.0	59.7	60.4	61.6	62.8	63.8	64.8	65.7	66.6	67.4	6
KIO ₃	4.53	5.96	7.57	8.44	9.34	11.09	13.22	15.29	17.41	19.58	21.78	24.03	1:30
KIO ₄	0.16	0.22	0.37	0.51	0.70	1.24	1.96	2.83	3.82	4.89	6.02	7.17	7
KMnO ₄	2.74	4.12	5.96	7.06	8.28	11.11	14.42	18.16	70.5	TO 1	70.6	00.1	6
KNO ₂	73.7	74.6 17.6	75.3 24.2	75.7 27.7	76.0 31.3	76.7	77.4 45.7	78.0 52.2	78.5 58.0	79.1 63.0	79.6 67.3	80.1 70.8	6
KNO ₃ KOH	12.0 48.7	50.8	53.2	54.7	56.1	38.6 57.9	58.6	59.5	60.6	61.8	63.1	64.6	6
KSCN	63.8	66.4	69.1	70.4	71.6	74.1	76.5	78.9	81.1	83.3	85.3	87.3	6
K ₂ CO ₃	51.3	51.7	52.3	52.7	53.1	54.0	54.9	56.0	57.2	58.4	59.6	61.0	6
K ₂ CrO ₄	37.1	38.1	38.9	39.4	39.8	40.5	41.3	41.9	42.6	43.2	43.8	44.3	6
$K_2Cr_2O_7$	4.30	7.12	10.9	13.1	15.5	20.8	26.3	31.7	36.9	41.5	45.5	48.9	6
K ₂ HAsO ₄	48.5°			63.6°								79.8°	7
K ₂ HPO ₄	57.0	59.1	61.5	62.7	64.1	67.7°		72.7°					1:31
K_2MoO_4				64.7							66.5		7
K_2SO_3	51.30	51.39	51.49	51.55	51.62	51.76	51.93	52.11	52.32	52.54	52.79	53.06	1:26
K_2SO_4	7.11	8.46	9.95	10.7	11.4	12.9	14.2	15.5	16.7	17.7	18.6	19.3	6
$K_2S_2O_3$	49.0°			62.3°							75.7°		7
$K_2S_2O_5$	22.1	26.7	31.1	33.1	35.2	39.0	42.6	46.0	49.1	52.0	54.6		1:26
K_2SeO_3	68.4°			68.5°								68.5°	7
K ₂ SeO ₄	52.70	52.93	53.17	53.30	53.43	53.70	53.99	54.30	54.61	54.94	55.26	55.60	7
K ₃ AsO ₄	51.5°	07.6	01.1	55.6°	24.2	27.0	20.6	41.7	40.5	45.0	46.1	73°	7
K ₃ Fe(CN) ₆	23.9	27.6	31.1	32.8	34.3	37.2	39.6	41.7	43.5	45.0	46.1	47.0	6 7
K_3PO_4 $K_4Fe(CN)_6$	44.3 12.5	17.3	22.0	51.4 23.9	25.6	29.2	32.5	35.5	38.2	40.6	41.4	43.1	6
LaCl ₃	49.0	48.5	48.6	48.9	49.3	50.5	52.1	54.0	56.3	58.9	61.7	43.1	6
$LaCi_3$ $La(NO_3)_3$	55.0	56.9	58.9	60.0	61.1	63.6	66.3	69.9°	74.1°	50.7	01./		1:13
LiBr	58.4	60.1	62.7	64.4	65.9	67.8	68.3	69.0	69.8	70.7	71.7	72.8	6
LiBrO ₃	61.03	62.62	64.44	65.44	66.51	68.90	71.68°	73.24°	74.43	75.66	76.93	78.32	1:30
LiD ₁ O ₃ LiC ₂ H ₃ O ₂	23.76	26.49	29.42	31.02	32.72	36.48	40.65	45.15	49.93	54.91	60.04	65.26	7
LiCl	40.45	42.46°	45.29°	45.81	46.25	47.30	48.47	49.78	51.27	52.98	54.98°	56.34°	1:47
$LiClO_3$	73.2	75.6°	80.8°	82.1	83.4	85.9°	87.1°	88.2	89.6	91.3	93.4	95.7	1:30

Formula	0 °C	10 °C	20 °C	25 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C	100 °C	Ref.
$LiClO_4$	30.1	32.6	35.5	37.0	38.6	41.9	45.5	49.2	53.2	57.2	61.3	71.4	6
LiF	0.120	0.126	0.131	0.134									7
LiH_2PO_4	55.8												7
LiI	59.4	60.5	61.7	62.3	63.0	64.3	65.8	67.3	68.8	81.3	81.7	82.6	6
LiIO ₃				43.8									1:30
LiNO ₂	41	45	49	51	53	56	60	63	66	68	60.5	60.7	10
LiNO ₃	34.8	37.6	42.7	50.5	57.9	60.1	62.2	64.0	65.7	67.2	68.5	69.7	6
LiOH LiSCN	10.8	10.8	11.0	11.1 54.5	11.3	11.7	12.2	12.7	13.4	14.2	15.1	16.1	6 7
Li ₂ CO ₃	1.54	1.43	1.33	1.28	1.24	1.15	1.07	0.99	0.92	0.85	0.78	0.72	7
Li_2CO_3 $\text{Li}_2\text{C}_2\text{O}_4$	1.54	1.43	1.55	5.87	1.24	1.13	1.07	0.77	0.72	0.03	0.76	0.72	7
Li ₂ HPO ₃	9.07	8.40	7.77	7.47	7.18	6.64	6.16	5.71	5.30	4.91	4.53	4.16	7
Li ₂ SO ₄	26.3	25.9	25.6	25.5	25.3	25.0	24.8	24.5	24.3	24.0	23.8	23.6	6
Li ₃ PO ₄				0.027									1:31
$Lu(NO_3)_3$				71.1									1:13
MgBr_2	49.3	49.8	50.3	50.6	50.9	51.5	52.1	52.8	53.5	54.2	55.0	55.7	6
$Mg(BrO_3)_2$	43.0	45.2	48.0	49.4	51.0	54.3	57.9	61.6	65.3	69.0°	70.9°	71.7	1:14
MgC_2O_4				0.038									7
$Mg(C_2H_3O_2)_2$	36.18	37.55	38.92	39.61									7
$MgCl_2$	33.96	34.85	35.58	35.90	36.20	36.77	37.34	37.97	38.71	39.62	40.75	42.15	8
$Mg(ClO_3)_2$	53.35	54.40	56.81	58.66	60.91°	65.46°	67.33	69.27	71.01	72.44	73.48		1:14
Mg(ClO ₄) ₂	47.8	48.7	49.6	50.1	50.5	51.3	52.1						6
MgCrO ₄	32.06°			35.39°						6 0			7
MgCr ₂ O ₇				58.9						67.0			7
MgF ₂	E 4 7	E 6 1	E 0 2	0.013	60.9	62.0	65.0	6E 0	6E 0	6E 0	6E 1	6E 2	7 6
MgI_2 $Mg(IO_3)_2$	54.7 3.19°	56.1 6.70°	58.2 7.92	59.4 8.52	60.8 9.11	63.9 10.45	11.99	65.0 13.7	65.0 15.6	65.0 17.6	65.1 19.6	65.2	0 1:14
$Mg(NO_3)_2$ $Mg(NO_2)_2$	3.19	0.70	1.92	47	9.11	10.43	11.99	13.7	13.0	17.0	19.0		7
$Mg(NO_2)_2$ $Mg(NO_3)_2$	38.4	39.5	40.8	41.6	42.4	44.1	45.9	47.9	50.0	52.2	70.6	72.0	6
MgSO ₃	0.32	0.37	0.46	0.52	0.61	0.87°	0.85°	0.76	0.69	0.64	0.62	0.60	1:26
MgSO ₄	18.2	21.7	25.1	26.3	28.2	30.9	33.4	35.6	36.9	35.9	34.7	33.3	6
MgS_2O_3	30.7			34.1									7
$MgSeO_4$	31.4°			35.7°								47°	7
$MnBr_2$	56.00	57.72	59.39	60.19	60.96	62.41	63.75	65.01	66.19	67.32	68.42	69.50	7
$MnCl_2$	38.7	40.6	42.5	43.6	44.7	47.0	49.4	54.1	54.7	55.2	55.7	56.1	6
MnF_2	0.80°			1.01°								0.48	7
$Mn(IO_3)_2$				0.27							0.34		7
$Mn(NO_3)_2$	50.5			61.7									7
$MnSO_4$	34.6	37.3	38.6	38.9	38.9	37.7	36.3	34.6	32.8	30.8	28.8	26.7	6
NH ₄ Br	37.5	40.2	42.7	43.9	45.1	47.3	49.4	51.3	53.0	54.6	56.1	57.4	7
NH ₄ Cl	22.92	25.12	27.27	28.34	29.39	31.46	33.50	35.49	37.46	39.40	41.33	43.24	1:47
NH ₄ ClO ₄	10.8	14.1	17.8	19.7	21.7	25.8	29.8	33.6	37.3	40.7	43.8	46.6	6
NH₄F NH₄HCO₃	41.7 10.6	43.2	44.7 17.6	45.5 19.9	46.3 22.4	47.8 27.9	49.3 34.2	50.9 41.4	52.5 49.3	54.1 58.1	67.6	78.0	7 7
NH ₄ HCO ₃ NH ₄ H ₂ AsO ₄	25.2	13.7 29.0	32.7	34.5	36.3	39.7	43.1	46.2	49.3	52.2	55.0	76.0	7
$NH_4H_2PO_4$ $NH_4H_2PO_4$	17.8	22.0	26.4	28.8	31.2	36.2	41.6	47.2	53.0	59.2	65.7	72.4	7
NH ₄ I	60.7	62.1	63.4	64.0	64.6	65.8	66.8	67.8	68.7	69.6	70.4	71.1	6
NH ₄ IO ₃	0011	02.1	00.1	3.70	4.20	5.64	7.63	0.10	0011	07.0	, 0,1	, 1,1	1:30
NH_4NO_2	55.7	59.0	64.9	68.8									7
NH_4NO_3	54.0	60.1	65.5	68.0	70.3	74.3	77.7	80.8	83.4	85.8	88.2	90.3	6
NH ₄ SCN				64.4					81.1				7
$(NH_4)_2C_2O_4$	2.31	3.11	4.25	4.94	5.73	7.56	9.73	12.2	15.1	18.3	21.8	25.7	7
$(NH_4)_2HPO_4$	36.4	38.2	40.0	41.0	42.0	44.1	46.2	48.5	50.9	53.3	55.9	58.6	7
$(NH_4)_2SO_3$	32.2	34.9	37.7	39.1	40.6	43.7	47.0	50.6	54.5	58.9			1:26
$(NH_4)_2SO_4$	41.3	42.1	42.9	43.3	43.8	44.7	45.6	46.6	47.5	48.5	49.5	50.5	6
$(NH_4)_2S_2O_5$	65.5	67.9	69.8	70.5	71.3	72.3	72.9	73.1					1:26
$(NH_4)_2S_2O_8$	37.00	40.45	43.84	45.49	47.11	50.25	53.28	56.23	59.13	62.00			7
$(NH_4)_2SeO_3$	49.0	51.1	53.4	54.7	56.0	58.9	62.0	65.4	69.1				7
$(NH_4)_2SeO_4$				54.02									7
$(NH_4)_3PO_4$.==	15.5	40 -		50 -						7
NaBr	44.4	45.9	47.7	48.6	49.6	51.6	53.7	54.1	54.3	54.5	54.7	54.9	6

Formula	0°C	10 °C	20 °C	25 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C	100 °C	Ref.
NaBrO ₃	20.0	23.22	26.65	28.28	29.86	32.83	35.55	38.05	40.37	42.52	<i>7</i> 0 C	100 C	1:30
NaCHO ₂	30.8	37.9	45.7	48.7	50.6	52.0	53.5	55.0					6
$NaC_2H_3O_2$	26.5	28.8	31.8	33.5	35.5	39.9	45.1	58.3	59.3	60.5	61.7	62.9	6
NaCl	26.28	26.32	26.41	26.45	26.52	26.67	26.84	27.03	27.25	27.50	27.78	28.05	1:47
NaClO	22.7			44.4									7
NaClO ₂				97.0°				95.3°					7
NaClO ₃	44.27	46.67	49.3	50.1	51.2	53.6	55.5	57.0	58.5	60.5	63.3	67.1	1:30
NaClO ₄	61.9	64.1	66.2	67.2	68.3	70.4	72.5	74.1	74.7	75.4	76.1	76.7	6
NaF	3.52	3.72	3.89	3.97	4.05	4.20	4.34	4.46	4.57	4.66	4.75	4.82	6
NaHCO ₃	6.48	7.59	8.73	9.32	9.91	11.13	12.40	13.70	15.02	16.37	17.73	19.10	7
NaHSO ₄	26.54	41.07	46.00	22.2	51.54	57 00°	C1 17°	60.0°	<i>(</i> 5.0)	60.7		33.3	10
NaH ₂ PO ₄ NaI	36.54 61.2	41.07 62.4	46.00 63.9	48.68 64.8	51.54 65.7	57.89° 67.7	61.7* 69.8	62.3° 72.0	65.9 74.7	68.7 74.8	74.9	75.1	1:31 6
NaIO ₃	2.43	4.40	7.78°	8.65°	9.60	11.67	13.99	16.52	19.25°	21.1°	22.9	24.7	1:30
NaIO ₄	2.43	7.70	7.70	12.62	2.00	11.07	13.77	10.52	17.23	21.1	22.7	27.7	7
NaNO ₂	41.9	43.4	45.1	45.9	46.8	48.7	50.7	52.8	55.0	57.2	59.5	61.8	6
NaNO ₃	42.2	44.4	46.6	47.7	48.8	51.0	53.2	55.3	57.5	59.6	61.7	63.8	6
NaOH	30	39	46	50	53	58	63	67	71	74	76	79	10
NaSCN		52.9	57.1	60.2	62.7	63.5	64.2	65.0	65.9	66.9	67.9	69.0	6
$Na_2B_4O_7$	1.23	1.71	2.50	3.07	3.82	6.02	9.7	14.9	17.1	19.9	23.5	28.0	6
Na ₂ CO ₃	6.44	10.8	17.9	23.5	28.7	32.8	32.2	31.7	31.3	31.1	30.9	30.9	6
$Na_2C_2O_4$	2.62	2.95	3.30	3.48	3.65	4.00	4.36	4.71	5.06	5.41	5.75	6.08	6
Na_2CrO_4	22.6	32.3	44.6	46.7	46.9	48.9	51.0	53.4	55.3	55.5	55.8	56.1	6
$Na_2Cr_2O_7$	62.1	63.1	64.4	65.2	66.1	68.0	70.1	72.3	74.6	77.0	79.6	80.7	6
Na_2HAsO_4	5.6°			29.3°								67*	7
Na_2HPO_4	1.66	4.19	7.51	10.55	16.34°	35.17°	44.64°	45.20	46.81	48.78	50.52	51.53	1:31
Na_2MoO_4	30.6	38.8	39.4	39.4	39.8	40.3	41.0	41.7	42.6	43.5	44.5	45.5	6
Na ₂ S	11.1	13.2	15.7	17.1	18.6	22.1	26.7	28.1	30.2	33.0	36.4	41.0	6
Na ₂ SO ₃	12.0	16.1	20.9	23.5	26.3*	27.3*	25.9	24.8	23.7	22.8	22.1	21.5	1:26
Na ₂ SO ₄	22.1	26.2	16.13	21.94	29.22°	32.35°	31.55	30.90	30.39	30.02	29.79	29.67	8
Na ₂ S ₂ O ₃	33.1	36.3 38.4	40.6	43.3 40.0	45.9 40.6	52.0 41.8	62.3 43.0	65.7	68.8 45.5	69.4	70.1	71.0	6 1:26
Na ₂ S ₂ O ₅		38.4	39.5	40.0 47.3°	40.6	41.8	45.0	44.2	45.5	46.8	48.1	49.5 45°	7
Na ₂ SeO ₃ Na ₂ SeO ₄	11.7			36.9°								42.1°	7
Na_2SeO_4 Na_2WO_4	41.6	41.9	42.3	42.6	42.9	43.6	44.4	45.3	46.2	47.3	48.4	49.5	6
Na ₃ PO ₄	4.28	7.30	10.8	12.6	14.1	16.6	22.9	28.4	32.4	37.6	40.4	43.5	6
$Na_4P_2O_7$	2.23	3.28	4.81	6.62	7.00	10.10	14.38	20.07	27.31	36.03	32.37	30.67	6
NdCl ₃	49.0	49.3	49.7	50.0	50.4	51.2	52.2	53.3	54.5	55.8	57.1	58.5	6
Nd(NO ₃) ₃	55.76	57.49	59.37	60.38	61.43	63.69	66.27	69.47					1:13
NiCl ₂	34.7	36.1	38.5	40.3	41.7	42.1	43.2	45.0	46.1	46.2	46.4	46.6	6
Ni(ClO ₄) ₂	51.1			52.8									7
NiF_2				2.50							2.52		7
NiI_2	55.40	57.68	59.78	60.69	61.50	62.80	63.73	64.38	64.80	65.09	65.30		7
$Ni(NO_3)_2$	44.1	46.0	48.4	49.8	51.3	54.6	58.3	61.0	63.1	65.6	67.9	69.0	6
NiSO ₄	21.4	24.4	27.4	28.8	30.3°	32.0°	34.1	35.8	37.7	39.9	42.3	44.8	6
Ni(SCN) ₂				35.48									7
NiSeO ₄	21.6	0.600	26.2°				4.00					45.6°	7
PbBr ₂	0.449	0.620	0.841	0.966	1.118	1.46	1.89	1.00	2.24	0.60	0.00	0.40	2
PbCl ₂	0.66	0.81	0.98	1.07	1.17	1.39	1.64	1.93	2.24	2.60	2.99	3.42	2
Pb(ClO ₄) ₂ PbF ₂		0.0603	0.0649	81.5 0.0670	0.0693								7 2
PbI ₂	0.041	0.0503	0.0649	0.0670	0.086	0.112	0.144	0.187	0.243	0.315			2
$Pb(IO_3)_2$	0.041	0.032	0.007	0.0025	0.000	0.112	0.144	0.167	0.243	0.313			7
$Pb(NO_3)_2$ $Pb(NO_3)_2$	28.46	32.13	35.67	37.38	39.05	42.22	45.17	47.90	50.42	52.72	54.82	56.75	2
$PbSO_4$	0.0033	0.0038	0.0042	0.0044	0.0047	0.0052	0.0058	10	55.12	J-1.1 L	5 1.02	20.73	2
PrCl ₃	48.0	48.1	48.6	49.0	49.5	50.8	52.3	54.1	56.1	58.3			6
$Pr(NO_3)_3$	57.50	59.20	61.16	62.24	63.40°	65.7°	67.8	70.2	73.4				1:13
RbBr	47.4	50.1	52.6	53.8	54.9	57.0	58.8	60.6	62.1	63.5	64.8	65.9	6
$RbBrO_3$	0.97	1.55	2.36	2.87	3.45	4.87	6.64	8.78	11.29	14.15	17.32	20.76	1:30
RbCl	43.58	45.65	47.53	48.42	49.27	50.86	52.34	53.67	54.92	56.08	57.16	58.15	1:47
$RbClO_3$	2.10	3.38	5.14	6.22	7.45	10.35	13.85	17.93	22.53	27.57	32.96	38.60	1:30

Formula	0 °C	10 °C	20 °C	25 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C	100 °C	Ref.
RbClO ₄	1	10 0	20 0	1.5	30 0	10 0	50 0	00 0	70 0	00 0	<i>70 C</i>	17	7
RbF	1		75	1.0								17	7
RbHCO ₃			53.7										7
RbI	55.8	58.6	61.1	62.3	63.4	65.4	67.2	68.8	70.3	71.6	72.7	73.8	6
RbIO ₃	1.09	1.53	2.07	2.38	2.74	3.52	4.41	5.42	6.52	7.74	9.00	10.36	1:30
RbNO ₃	16.4	25.0	34.6	39.4	44.2	53.1	60.8	67.2	72.2	76.1	79.0	81.2	6
RbOH	10.4	25.0	34.0	37.4	63.4	33.1	00.0	07.2	1 2.2	70.1	7.0	01.2	7
Rb ₂ CrO ₄	38.27			43.26	03.4								7
Rb_2SO_4	27.3	30.0	32.5	33.7	34.8	36.9	38.7	40.3	41.8	43.0	44.1	44.9	6
SbCl ₃	85.7	30.0	32.3	90.8	34.0	30.9	36.7	40.5	41.0	43.0	44.1	44.7	7
SbF ₃	79.4			83.1									7
$Sc(NO_3)_3$	57.0	59.3	61.6	62.8	63.9	66.2	68.5						1:13
SmCl ₃	37.0	48.0	48.2	48.4	48.6	49.2	50.0						6
$Sm(NO_3)_3$	E 1 02						65.05°	60 1°	70.9	74.2			
$SnCl_2$	54.83 46	56.33 64	58.08	59.05	60.08	62.38	05.05	68.1°	70.8	74.2			1:13 7
SnI ₂	40	04	0.97									3.87	7
2	46.0	40.2		<i>5</i> 1.7	52.0	FF 2	F7 6	50.0	62.2	616	66.0		6
SrBr ₂	46.0	48.3	50.6	51.7	52.9	55.2	57.6	59.9	62.3 38.64*	64.6	66.8	69.0	
Sr(BrO ₃) ₂	18.53	22.00	25.39	27.02	28.59	31.55	34.21	36.57		40.2°	40.8	41.0	1:14
SrCl ₂	31.94	32.93	34.43	35.37	36.43	38.93	41.94	45.44°	46.81°	47.69	48.70	49.87	8 7
$Sr(ClO_2)_2$	13.0	13.6	14.1	14.3	14.5	14.9	15.3	15.6	15.9	66.10	6674	67.21	
Sr(ClO ₃) ₂	63.29	63.42	63.64	63.77	63.93	64.29	64.70	65.16	65.65	66.18	66.74	67.31	1:14
Sr(ClO ₄) ₂	70.04*			75.35°		78.44°							7 7
SrF ₂	0.011	62.0	62.5	0.021	645	65.0	67.2	60.0	70.0	72.7	747	70.2	
SrI ₂	62.5	62.8	63.5	63.9	64.5	65.8	67.3	69.0	70.8	72.7	74.7	79.2	6
$Sr(IO_3)_2$	0.102	0.126	0.152	0.165	0.179	0.206	0.233	0.259	0.284	0.307	0.328	0.346	1:14 7
$Sr(MnO_4)_2$	2.5				41.0	44.2						F0.6	
$Sr(NO_2)_2$	20.2	24.6	41.0	44.5	41.9	44.3	47.0	40.4	40.0	40.5	50.1	58.6	7
$Sr(NO_3)_2$	28.2	34.6	41.0	44.5	47.0	47.4	47.9	48.4	48.9	49.5	50.1	50.7	6
Sr(OH) ₂	0.9			2.2									7
SrSO ₃				0.0015									1:26
SrSO ₄	0.0	12.0	177	0.0135	22.2	26.0							7
SrS ₂ O ₃	8.8	13.2	17.7	20.0	22.2	26.8							7
$Tb(NO_3)_3$	2.65	2.56	60.6	61.02	F 00	7.00	0.46	0.00	11 22	10.77	1410	15.50	1:13
Tl ₂ SO ₄	2.65	3.56	4.61	5.19	5.80	7.09	8.46	9.89	11.33	12.77	14.18	15.53	6
$Tm(NO_3)_3$	40.52	F1 00	F 4 4 2	67.9	F7 FF	61.50	67.07						1:13
$UO_2(NO_3)_2$	49.52	51.82	54.42	55.85	57.55	61.59	67.07	(7.0	70.5				1:??
$Y(NO_3)_3$	55.57	56.93	58.75	59.86	61.11°	63.3°	64.9	67.9	72.5				1:13
$Yb(NO_3)_3$	70.2	00.1	01.0	70.5	0.4.1	05.6	05.0	06.1	06.2	06.6	06.0	07.1	1:13
$ZnBr_2$	79.3	80.1	81.8	83.0	84.1	85.6	85.8	86.1	86.3	86.6	86.8	87.1	6
ZnC_2O_4		0.0010	0.0019	0.0026	01.4	01.0	00.4	02.0	02.7	04.4	05.0	06.0	5
$ZnCl_2$ $Zn(ClO_4)_2$	44.20*	76.6	79.0	80.3	81.4	81.8	82.4	83.0	83.7	84.4	85.2	86.0	6
	44.29°			46.27*			48.70						7
ZnF ₂	01.1	01.0	01.2	1.53	01.5	01.7	02.0	00.0	00.6	02.0	02.2	02.7	5
ZnI_2	81.1	81.2	81.3	81.4	81.5	81.7	82.0	82.3	82.6	83.0	83.3	83.7	6
$Zn(IO_3)_2$	47.0	50.0	0.58	0.64	0.69	0.77	0.82	07.5	90.0				5
$Zn(NO_3)_2$	47.8	50.8	54.4	54.6	58.5	79.1	80.1	87.5	89.9				6
ZnSO ₃	20.1	22.0	0.1786	0.1790	0.1794	0.1803	0.1812	40.1	41.0	20.0	20.0	27.6	5
ZnSO ₄	29.1	32.0	35.0	36.6	38.2	41.3	43.0	42.1	41.0	39.9	38.8	37.6	6
ZnSeO ₄	33.06	34.98	37.38	38.79	40.34								5

 $[\]rm ZnSeO_4$ 33.06 34.98 37.38 38.3 Solid phase changes between these temperatures