Uniwersytet Warszawski

Wydział Fizyki

Marysia Nazarczuk

Nr albumu: 417755

BADANIE PROMIENIOWANIA TERMICZNEGO

Streszczenie

Celem doświadczenia jest zbadanie jak promieniowanie termiczne zależy od różnych parametrów promieniującego ciała – odległości od źródła, temperatury oraz współczynnika absorpcji. Zależność od odległości oraz od temperatury zostanie zbadana przy użyciu lampy Stefana-Boltzmanna. Zależność od współczynnika absorpcji zostanie zbadana przy użyciu kostki Lesliego. Pomiary zostaną przeprowadzone przy użyciu detektora promieniowania termicznego. Zmierzone zostały też wartości współczynnika emisji dla różnych powierzchni: $\varepsilon_{\text{czarna}} = (0.95 \pm 0.02), \ \varepsilon_{\text{biała}} = (0.95 \pm 0.02), \ \varepsilon_{\text{matowa}} = (0.24 \pm 0.01)$ oraz $\varepsilon_{\text{blyszczaca}} = (0.08 \pm 0.01)$. Praca została przygotowana zgodnie z instrukcją [1].

Spis treści

1.	Wst	ęp teo	retyczny
2.	Lan	ipa Ste	efana-Boltzmanna
	2.1	_	doświadczalny
	2.2	Przepi	owadzenie doświadczenia
		2.2.1	Pomiar napięcia na detektorze z wyłączoną lampą w zależności od odległości
			detektora od lampy
		2.2.2	Pomiar napięcia na detektorze z włączoną lampą dla ustalonej odległości od
			lampy dla różnych napięć na lampie
		2.2.3	Pomiar napięcia na detektorze z włączoną lampą dla ustalonego napięcia na
			żarówce dla różnych odległości detektora od lampy
		2.2.4	Pomiar napięcia na detektorze z włączoną lampą przesłoniętą szklanym ekranem
			przy ustalonym napięciu na lampie oraz odległości detektora od lampy
	2.3	Analiz	a pomiarów
		2.3.1	Analiza pomiaru 2.2.1
		2.3.2	Analiza pomiaru 2.2.2
		2.3.3	Analiza pomiaru 2.2.3
		2.3.4	Analiza pomiaru 2.2.4
	2.4	Wynik	ii, niepewności i wnioski
		2.4.1	Wyniki
		2.4.2	Niepewności
		2.4.3	Wnioski
2	Kos	tka I o	sliego
ა.	3.1		doświadczalny
	3.2		cowadzenie doświadczenia
	J.∠	3.2.1	Pomiar napięcia na detektorze z wyłączoną kostką dla różnych powierzchni 10
		3.2.1 $3.2.2$	Pomiar napięcia na detektorze dla różnych powierzchni i temperatur
		3.2.3	Pomiar napięcia na detektorze dla ustalonej powierzchni i temperatury z prze-
		ა.∠.ა	słoniętym szklanym ekranem
	3.3	Analiz	a pomiarów
	0.0	3.3.1	Analiza pomiaru 3.2.1
		3.3.2	Analiza pomiaru 3.2.2
			Analiza pomiaru 3.2.3
	3.4		i, niepewności i wnioski
	0.1	3.4.1	Wyniki
		3.4.2	Niepewności
		3.4.3	Wnioski
		0.1.0	1
4.	Pod	lsumov	vanie 19
5.	Tab	ele .	
	5.1	Lampa	a Stefana-Boltzmanna
	5.2	Kogtk	1 Assistance

Bibliografia				25
--------------	--	--	--	----

1. Wstęp teoretyczny

Aby zbadać to w jaki sposób ciało o temperaturze powyżej zera bezwzględnego promieniuje, można założyć, że zachowuje się ono jak ciało doskonale czarne. Jedną z najważniejszych cech ciała doskonale czarnego jest to, że pochłania 100% promieniowania jakie na nie pada. Cechę tę opisuje prawo Planka [2]:

$$P(\nu, T) = \frac{2h\nu^3}{c^2} \cdot \frac{1}{\exp\left(\frac{h\nu}{k_B T}\right) - 1}$$
(1.1)

gdzie $P(\nu,T)$ to moc promieniowania w zależności od ν oraz T,ν to częstotliwość fotonu, T to temperatura promieniującego ciała, h to stała Plancka, zaś k_B to stała Boltzmanna. Całkowitą moc promieniowania jednostki powierzchni we wszystkich długościach fal, czyli strumień J(T) mocy promieniowania, przedstawia tzw. prawo Stefana-Boltzmanna:

$$J(T) = \int_0^\infty P(\nu, T) \ d\nu = \sigma T^4 \tag{1.2}$$

Gdzie: σ to stała Stefana-Boltzmanna.

W celu zwiększenia dokładności przewidywań modelu teoretycznego, założymy, że badane ciało jest ciałem doskonale szarym. Dla danych ciał emitowane promieniowanie jest skalowane przez pewną stałą o wartości mniejszej od 1. Jest to względna zdolność emisyjna, czyli stosunek zdolności emisyjnej badanego ciała do zdolności emisyjnej ciała doskonale czarnego. Stałą tę oznaczamy jako ε i jest ona zależna od materiału z którego wykonane jest ciało.

W trakcie danego doświadczenia rozważymy dwa źródła promieniowania. Pierwszym z nich będzie lampa Stefana-Boltzmanna. Zakładamy, że lampa jest punktowym źródłem promieniowania o bardzo małej powierzchni S oraz emisyjności ε . Jeśli T_0 jest temperaturą pomieszczenia w którym wykonywane jest dane doświadczenie, to efektywna moc na powierzchnię w zależności od odległości r od lampy opisana jest wzorem

$$J(T) = \frac{S\varepsilon\sigma(T^4 - T_0^4)}{4\pi r^2} \tag{1.3}$$

Drugim źródłem promieniowania będzie kostka Lesliego. W tym przypadku detektor umieszczony jest bardzo blisko promieniującej powierzchni, więc możemy założyć, że moc promieniowania na powierzchnię nie zależy od odległości od źródła. W tym przypadku dana moc określona jest wzorem

$$J(T) = \varepsilon \sigma (T^4 - T_0^4) \tag{1.4}$$

2. Lampa Stefana-Boltzmanna

Wykonaliśmy dwa układy doświadczalne. Pierwszym z nich będzie doświadczenie o nazwie "Lampa Stefana-Boltzmana". Jego celem będzie zbadanie jak promieniowanie termiczne zależy od odległości od źródła oraz od temperatury.

2.1. Układ doświadczalny

Poniżej znajduje się układ doświadczalny dla danego eksperymentu. Detektor podłączony jest do woltomierza i ustawiony na szynie w odległości r od żarówki. Żarówka podłączona zaś jest do zasilacza na którym możemy ustawiać odpowiednie napięcie.

Rysunek 2.1: Układ pomiarowy do pomiaru promieniowania termicznego w zależności od odległości i zakresu wysokich temperatur.

Z uwagi na obecność promieniowania otoczenia, niedoskonałości przyrządów pomiarowych oraz inne zakłócenia, wzór opisujący napięcie na detektorze to

$$U = \alpha J - \beta \tag{2.1}$$

gdzie α oraz β to stałe fenomenologiczne, J jest energią padającą na jednostkową powierzchnię detektora w jednostkowym czasie, zaś U to napięcie na detektorze. Aby uniknąć dryfu odczytywanego napięcia, detektor będzie osłonięty od promieniowania termicznego lampy specjalną zasłoną w czasie między pomiarami.

2.2. Przeprowadzenie doświadczenia

Temperatura początkowa w pracowni wynosiła 21.9 °C, zaś temperatura końcowa w pracowni wynosiła 22.5 °C. Stąd średnia wartość temperatury w pomieszczeniu to 22.5 °C. Pomiary napięcia na detektorze podzielimy na cztery części

2.2.1. Pomiar napięcia na detektorze z wyłączoną lampą w zależności od odległości detektora od lampy

Tabela 2.1

Odległość [cm]	Średnia arytmetyczna [mV]	Odchylenie standardowe [mV]
6.5	0.11	0.04
16.5	0.06	0.03
26.5	0.10	0.02
36.5	0.11	0.02

2.2.2. Pomiar napięcia na detektorze z włączoną lampą dla ustalonej odległości od lampy dla różnych napięć na lampie

Odległość detektora od lampy wynosiła $r=(6.5\pm0.1)~\mathrm{cm}.$

Tabela 2.2

Napięcie [V]	Średnia arytmetyczna [mV]	Odchylenie standardowe [mV]
1	0.31	0.01
2	0.94	0.01
3	2.28	0.01
4	3.78	0.01
5	5.78	0.03
6	7.85	0.01
7	10.13	0.01
8	12.70	0.01
9	15.48	0.01
10	18.42	0.01

2.2.3. Pomiar napięcia na detektorze z włączoną lampą dla ustalonego napięcia na żarówce dla różnych odległości detektora od lampy

Napięcie na lampie wynosiło 10 V.

Tabela 2.3

Odległość [cm]	Średnia arytmetyczna [mV]	Odchylenie standardowe [mV]
6.5	18.42	0.01
16.5	3.71	0.01
26.5	1.69	0.01
36.5	1.03	0.01

2.2.4. Pomiar napięcia na detektorze z włączoną lampą przesłoniętą szklanym ekranem przy ustalonym napięciu na lampie oraz odległości detektora od lampy

Wartość napięcia na lampie wynosiła 10 V, zaś odległość lampy od detektora wynosiła (6.5 ± 0.1) cm.

Tabela 2.4

Średnia arytmetyczna [mV]	Odchylenie standardowe [mV]
15.31	0.02

2.3. Analiza pomiarów

Korzystając ze wzoru na opór $R=\frac{U}{I},$ wyznaczamy opór na żarniku.

Tabela 2.5: Wartość oporu na żarówce w zależności od napięcia i nateżenia

Napięcie [V]	Natężenie [A]	Opór $[\Omega]$
1.00	0.96	1.05
2.00	1.24	1.61
3.00	1.48	2.03
4.00	1.71	2.34
5.00	1.91	2.62
6.00	2.10	2.86
7.00	2.28	3.07
8.00	2.44	3.28
9.00	2.60	3.46
10.00	2.75	3.64

Niepewność wyznaczenia natężenia u(I) w tym zakresie wynosiła 2%, zaś niedokładność mierzonego napięcia u(U) była równa 0.5%. Podczas wyznaczania niepewności oporu u(R) korzystamy z prawa propagacji [3]

$$u^{2}(R) = \left(\frac{u(U)}{I}\right)^{2} + \left(\frac{u(I)}{I^{2}}\right)^{2}$$
 (2.2)

Temperatura w pracowni wynosi $T_p=22.2~{\rm ^{\circ}C}=295.35~{\rm K}\approx 300~{\rm K}$ i dla niej $R_{ref}\approx 0.277~\Omega.$

Tabela 2.6: Opór żarnika w stosunku do oporu żarnika w temperaturze 300 K, w zależności od temperatury żarnika[1].

T [K]	$\frac{R}{R_{ref}}$	T [K]	$\frac{R}{R_{ref}}$	T [K]	$\frac{R}{R_{ref}}$
300	1.00	1400	6.58	2500	13.08
400	1.43	1500	7.14	2600	13.72
500	1.87	1600	7.71	2700	14.34
600	2.34	1700	8.28	2800	14.99
700	2.85	1800	8.86	2900	15.63
800	3.36	1900	9.44	3000	16.29
900	3.88	2000	10.03	3100	16.95
1000	4.41	2100	10.63	3200	17.62
1100	4.95	2200	11.24	3300	18.28
1200	5.48	2300	11.84	3400	18.97
1300	6.03	2400	12.46	3500	19.66

Korzystając z tabeli 2.5 wyliczamy poszczególne wartości $\frac{R}{R_{ref}}$, dla których za pomocą interpolacji liniowej dopasowujemy odpowiednią temperaturę. Wyniki zapisujemy w tabeli poniżej

Tabela 2.7: Zależność temperatury żarnika od napięcia na żarówce

Napięcie [V]	Wartość $\frac{R}{R_{ref}}$	Temperatura [K]
1.00	3.89	882.77
2.00	5.96	1260.41
3.00	7.52	1533.07
4.00	8.67	1728.91
5.00	9.70	1903.13
6.00	10.59	2049.15
7.00	11.37	2174.23
8.00	12.15	2300.19
9.00	12.81	2404.99
10.00	13.48	2509.51

Na podstawie tabel 2.6 oraz 2.7 sporządzamy wykres zależności temperatury na żarniku od stosunków oporów $\frac{R}{R_{ref}}$.

Rysunek 2.2: Wykres zależności temperatury żarnika od stosunku $\left(\frac{R}{R_{ref}}\right)$

2.3.1. Analiza pomiaru 2.2.1

Z pomiaru 2.2.1 możemy wywnioskować, że średnia wartość napięcia na detektorze przy wyłączonej lampie to $U_t = 0.10 \pm 0.02$ mV. Wartość tę musimy odjąć od napięcia zmierzonego na detektorze przy włączonej lampie.

2.3.2. Analiza pomiaru 2.2.2

Równania 1.3 i 2.1 dają nam relację między napięciem na detektorze a temperaturą lampy

$$U = \alpha_1 \cdot \frac{\sigma T^4}{4\pi r_0^2} - \beta_1 \tag{2.3}$$

gdzie r_0 to stała odległość wynosząca $r_0=6.5$ cm. Możemy potraktować równanie 2.3 jako zależność liniową od argumentu $\frac{\sigma T^4}{4\pi r_0^2}$. Następnie na podstawie zależności napięcia na detektorze od tego argumentu możemy dopasować krzywą która pozwoli wyznaczyć α_1 oraz β_1 .

Rysunek 2.3: Wykres zależności napięcie na detektorze w zależności od argumentu liniowego $\left(\frac{\sigma T^4}{4\pi r_0^2}\right)$

Niepewność liniowego argumentu pochodzi od niepewności wyznaczenia oporu żarnika. Niedokładność pomiaru odległości jest nieistotna.

Przy użyciu metody najmniejszych kwadratów wyliczamy α_1 oraz β_1 otrzymując

$$\alpha_1 = (4.37 \pm 0.04) \cdot 10^{-10} \left[\frac{\text{m}^4 \cdot \text{V}}{\text{W}} \right]$$
 (2.4)

$$\beta_1 = (0.35 \pm 0.02) \cdot 10^{-3} \text{ [V]}$$
 (2.5)

2.3.3. Analiza pomiaru 2.2.3

Równania 1.3 i 2.1 dają nam relację między napięciem na detektorze a odległością lampy od detektora

$$U = \alpha_2 \cdot \frac{\sigma T_0^4}{4\pi r^2} - \beta_2 \tag{2.6}$$

gdzie T_0 to stała temperatura żarnika równa $T_0 = 2509.5$ K. Możemy potraktować równanie 2.6 jako zależność liniową od argumentu $\frac{\sigma T_0^4}{4\pi r^2}$. Następnie na podstawie zależności napięcia na detektorze od tego argumentu możemy dopasować krzywą która pozwoli wyznaczyć α_2 oraz β_2 .

Rysunek 2.4: Wykres zależności napięcie na detektorze w zależności od argumentu liniowego $\left(\frac{\sigma T_0^4}{4\pi r^2}\right)$

Niepewność liniowego argumentu pochodzi od niepewności wyznaczenia oporu żarnika. Niedokładność pomiaru odległości jest nieistotna.

Przy użyciu metody najmniejszych kwadratów wyliczamy α_2 oraz β_2 otrzymując

$$\alpha_2 = (4.20 \pm 0.06) \cdot 10^{-10} \left[\frac{\text{m}^4 \cdot \text{V}}{\text{W}} \right]$$
 (2.7)

$$\beta_2 = (-0.56 \pm 0.02) \cdot 10^{-3} \text{ [V]}$$
 (2.8)

2.3.4. Analiza pomiaru 2.2.4

Dla $U_z=10~{\rm V}$ na żarówce i odległości $r=0.065~{\rm m},$ średnie napięcie na detektorze przesłoniętym szklanym ekranem ma wartość

$$U = (15.31 \pm 0.02) \text{ mV} \tag{2.9}$$

Jest to wartość nieznacznie mniejsza niż wartość napięcia na detektorze bez przesłonięcia szklanym ekranem, skąd można wywnioskować, że przy wysokich temperaturach szkło zatrzymuje niewielką część promieniowania.

2.4. Wyniki, niepewności i wnioski

2.4.1. Wyniki

Z analizy pomiaru 2.2.2 i 2.2.3, liczymy wartość oczekiwaną współczynników α oraz β

$$\alpha = (4.32 \pm 0.04) \cdot 10^{-10} \left[\frac{\text{m}^4 \cdot \text{V}}{\text{W}} \right]$$
 (2.10)

$$\beta = (0.09 \pm 0.02) \cdot 10^{-3} \text{ [V]}$$
 (2.11)

2.4.2. Niepewności

Regresję liniową przeprowadziliśmy z użyciem metody najmniejszych kwadratów. Na niepewność końcowego wyniku głównie składają się dwa czynniki:

- Przeprowadzanie pomiarów ręcznie i na każdym etapie zaokrąglanie wyników do czterech cyfr znaczących (w pracy poszczególne wyniki zostały dodatkowo zaokrąglone dla przejrzystości).
- Niepewność wyznaczenia wartości $\frac{R}{R_{ref}}$, która wpłynęła na dużą niepewność T^4 i w konsekwencji na liniowy argument $\frac{\sigma T^4}{4\pi r^2}$.

2.4.3. Wnioski

Hipoteza jaką możemy postawić jest więc taka, że

$$U(T) = \alpha \cdot \frac{\sigma}{4\pi \cdot (0.065)^2} \cdot T^4 - \beta \tag{2.12}$$

$$U(r) = \alpha \cdot \frac{\sigma \cdot (2509.5)^4}{4\pi} \cdot \frac{1}{r^2} - \beta$$
 (2.13)

Sprawdzając poprawność powyższych hipotez użyjemy testu χ^2 . Dla zależności napięcia od temperatury uzyskujemy wynik $\chi^2 \approx 0.14$, co przy poziomie istotności 0.05 i liczbie stopni swobody 9 nie daje podstaw do odrzucenia hipotezy. Dla zależności napięcia od odległości otrzymujemy wynik $\chi^2 \approx 1.39$, co przy poziomie istotności 0.05 i liczbie stopni swobody 3 nie daje podstaw do odrzucenia hipotezy.

3. Kostka Lesliego

Drugim doświadczeniem będzie "Kostka Lesliego". Celem tego doświadczenia będzie zbadanie jak promieniowanie termiczne zależy od współczynnika absorpcji.

3.1. Układ doświadczalny

Poniżej znajduje się układ doświadczalny dla danego eksperymentu. Kostka Lesliego to aluminiowy sześcian posiadający cztery rodzaje powierzchni: matową, błyszczącą, czarną i białą. Jej temperaturę można regulować w zakresie od 40° C do 120° C. Detektor podłączony jest do woltomierza i ustawiony w małej odległości od kostki.

Rysunek 3.1: Układ pomiarowy do pomiaru promieniowania termicznego dla różnych powierzchni i zakresu niskich temperatur.

Związek między napięciem a parametrami kostki możemy określić przez wzór

$$U = \alpha \cdot \varepsilon \cdot \sigma T^4 - \beta \tag{3.1}$$

gdzie α oraz β to stałe fenomenologiczne, zaś ε to emisyjność. Aby uniknąć dryfu odczytywanego napięcia, detektor będzie osłonięty od promieniowania specjalną zasłoną w czasie między pomiarami.

3.2. Przeprowadzenie doświadczenia

Pomiary podzielimy na trzy części

3.2.1. Pomiar napięcia na detektorze z wyłączoną kostką dla różnych powierzchni

Tabela 3.1

Ściana	Średnia arytmetyczna [mV]	Odchylenie standardowe [mV]
Czarna	0.11	0.01
Biała	0.11	0.01
Błyszcząca	0.05	0.01
Matowa	0.05	0.01

3.2.2. Pomiar napięcia na detektorze dla różnych powierzchni i temperatur

Tabela 3.2

Układ	Temperatura	Ściana	Średnia arytmetyczna [mV]	Odchylenie standardowe [mV]
1.	50°C	Czarna	2.60	0.03
		Biała	2.57	0.02
		Błyszcząca	0.00	0.00
		Matowa	0.53	0.03
2.	60°C	Czarna	3.59	0.02
		Biała	3.78	0.04
		Błyszcząca	0.11	0.01
		Matowa	0.89	0.05
3.	70°C	Czarna	4.81	0.02
		Biała	5.03	0.01
		Błyszcząca	0.19	0.01
		Matowa	1.22	0.04
4.	80°C	Czarna	6.12	0.02
		Biała	6.33	0.02
		Błyszcząca	0.31	0.06
		Matowa	1.47	0.00
5.	90°C	Czarna	7.68	0.02
		Biała	7.28	0.02
		Błyszcząca	0.34	0.03
		Matowa	1.92	0.04
6.	100°C	Czarna	9.17	0.02
		Biała	9.31	0.01
		Błyszcząca	0.48	0.01
		Matowa	2.25	0.06
7.	110°C	Czarna	10.82	0.02
		Biała	10.97	0.04
		Błyszcząca	0.59	0.01
		Matowa	2.65	0.18
8.	120°C	Czarna	12.43	0.03
		Biała	12.57	0.02
		Błyszcząca	1.02	0.21
		Matowa	3.09	0.01

3.2.3. Pomiar napięcia na detektorze dla ustalonej powierzchni i temperatury z przesłoniętym szklanym ekranem

Temperatura była ustawiona na 120° C, zaś ściana była czarnego koloru.

Tabela 3.3

Średnia arytmetyczna [mV]	Odchylenie standardowe [mV]
0.03	0.01

3.3. Analiza pomiarów

3.3.1. Analiza pomiaru 3.2.1

Z pomiaru 3.2.1 możemy wywnioskować, że średnia wartość napięcia na detektorze przy wyłączonej kostce to $U_1 = 0.8 \pm 0.03$ mV. Wartość tę musimy odjąć od napięcia zmierzonego na detektorze przy włączonej kostce.

3.3.2. Analiza pomiaru 3.2.2

Na podstawie pomiaru 3.2.2 tworzymy wykres zależności napięcia na detektorze od czwartej potęg temperatury kostki oraz rodzaju powierzchni kostki.

Rysunek 3.2: Wykres zależności napięcie na detektorze w zależności od argumentu liniowego σT^4

Za niepewność pomiarową temperatury przyjęliśmy dokładność urządzenia, czyli 1 K, zaś za niepewność pomiarową napięcia na detektorze przyjęliśmy odchylenie standardowe.

We wzorze 3.1 wartości α oraz β powinny być takie same dla każdej powierzchni. Rozbieżność wartości β dla poszczególnych prostych nie jest jasna, natomiast wielkość nachylenia prostych zależy jedynie od emisyjności ε . Zakładając, że współczynnik emisji czarnej powierzchni wynosi $\varepsilon_{\text{czarna}}=0,95$ [1], możemy wyliczyć pozostałe współczynniki $\varepsilon_{\text{biała}}$, $\varepsilon_{\text{matowa}}$ oraz $\varepsilon_{\text{błyszcząca}}$. W tym celu skorzystamy z tego, że

$$\alpha \cdot \varepsilon_i = \alpha_i \tag{3.2}$$

gdzie α_i to współczynnik nachylenia i-tej ścianki. Wiedząc ile wynosi $\varepsilon_{\rm czarna}$ możemy napisać

$$\varepsilon_i = \frac{\alpha_i}{\alpha_{\text{czarna}}} \cdot \varepsilon_{\text{czarna}} \tag{3.3}$$

Korzystając z metody najmniejszych kwadratów wyliczamy α_i a następnie szukane wartości emisyjności:

Tabela 3.4: Współczynnik emisji dla różnych powierzchni

Ścianka	Emisyjność	Niepewność
czarna	0.95	0.02
biała	0.95	0.02
matowa	0.24	0.01
błyszcząca	0.08	0.01

3.3.3. Analiza pomiaru 3.2.3

Dla temperatury kostki $T_k=120^\circ$ C oraz czarnej ściany, średnie napięcie na detektorze przedłoniętym szklanym ekranem ma wartość

$$U = (0.03 \pm 0.01) \text{mV} \tag{3.4}$$

Jest to wartość mocno mniejsza niż wartość napięcia na detektorze bez przesłonięcia szklanym ekranem, skąd można wywnioskować, że przy niskich temperaturach szkło zatrzymuje większość promieniowania.

3.4. Wyniki, niepewności i wnioski

3.4.1. Wyniki

Wyniki doświadczenia zostały zebrane w tabeli 3.4.

3.4.2. Niepewności

Głównym źródłem niepewności w danym doświadczeniu jest odczyt temperatury, który pokazuje temperaturę z dokładnością do 1° C.

3.4.3. Wnioski

Rozbieżność współczynników β dla poszczególnych powierzchni jest zbyt duża by móc jednoznacznie wyznaczyć wzór na napięcie na detektorze w zależności od temperatury dla powierzchni o różnej emisyjności. Hipoteza jaką możemy postawić jest taka, że współczynniki emisyjności poszczególnych powierzchni są jak w tabeli 3.4. Sprawdzając poprawność powyższych hipotez użyjemy testu χ^2 . Otrzymujemy $\chi^2_{\rm czarna} \approx 0.009$, $\chi^2_{\rm biała} \approx 0.029$, $\chi^2_{\rm matowa} \approx 0.015$ oraz $\chi^2_{\rm blyszcząca} \approx 0.070$, co przy poziomie istotności 0.05 i 7 stopniach swobody nie pozwala nam odrzucić hipotezy.

4. Podsumowanie

W eksperymencie zbadano współczynniki emisji powierzchni białej, szarej i błyszczącej. Okazało się, że największy współczynnik emisji uzyskano dla powierzchni białej, natomiast najmniejszy dla powierzchni błyszczącej, co było zgodne z oczekiwaniami. Ponadto przeprowadzono analizę zależności mocy promieniowania termicznego od temperatury oraz odległości od źródła. Podczas pomiarów z użyciem kostki Lesliego i lampy Stefana-Boltzmana stwierdzono, że napięcie na detektorze promieniowania jest liniowo zależne od czwartej potęgi temperatury oraz od odwrotności kwadratu odległości od źródła promieniowania, co jest zgodne z teoretycznymi przewidywaniami. Ponadto ustalono, że szkło skutecznie absorbuje promieniowanie w zakresie podczerwonym, ale przepuszcza większość promieniowania w zakresie widzialnym. W doświadczeniu wyznaczono też współczynniki emisji różnych powierzchni powierzchni

Tabela 4.1: Współczynnik emisji dla różnych powierzchni

Ścianka	Emisyjność	Niepewność
czarna biała	0.95 0.95	0.02 0.02
matowa	0.24	0.02
błyszcząca	0.08	0.01

Wszelkie rachunki przeprowadziłam ręcznie, posługując się jedynie kalkulatorem prostym oraz arkuszem kalkulacyjnym Goole. Na każdym etapie obliczeń zaokrąglałam wynik do dwóch miejsc znaczących. Użyłam tej metody by lepiej zrozumieć i przećwiczyć analizę błędów pomiarowych. Ostateczne wyniki sprawdziłam przy użyciu programów napisanych w Pythonie i na podstawie tych wyników dopasowałam krzywą do danych na wykresach. Do szacowania niepewności pomiarowych użyłam metody obliczania niepewności pomiarowej za pomocą pierwiastków elementów na diagonali macierzy kowariancji.

5. Tabele

W tym rozdziale umieszczone zostały wszystkie pomiary jakie zebrano podczas wykonywania doświadczenia. Na ich podstawie została wykonana analiza wyników.

5.1. Lampa Stefana-Boltzmanna

Układ	Odległość	1. pomiar	2. pomiar	3. pomiar
1.	6.5 cm	0.15 mV	0.11 mV	0.08 mV
2.	$16.5~\mathrm{cm}$	$0.05~\mathrm{mV}$	0.06 mV	0.08 mV
3.	$26.5~\mathrm{cm}$	$0.10~\mathrm{mV}$	$0.10~\mathrm{mV}$	$0.11~\mathrm{mV}$
4.	$36.5~\mathrm{cm}$	$0.11~\mathrm{mV}$	$0.11~\mathrm{mV}$	$0.11~\mathrm{mV}$

Tabela 5.1: Pomiary napięcia na detektorze z wyłączoną lampą

Układ	Odległość	Napięcie	Natężenie	Moc	1. pomiar	2. pomiar	3. pomiar
1.	$6.5~\mathrm{cm}$	1.00 V	0.96 A	0.970 W	0.29 mV	0.30 mV	0.33 mV
		2.00 V	1.24 A	$2.480~\mathrm{W}$	$0.94~\mathrm{mV}$	$0.95~\mathrm{mV}$	$0.93~\mathrm{mV}$
		3.00 V	1.48 A	$4.440~\mathrm{W}$	$2.29~\mathrm{mV}$	$2.28~\mathrm{mV}$	$2.27~\mathrm{mV}$
		$4.00 \mathrm{\ V}$	1.71 A	$6.840~\mathrm{W}$	$3.78~\mathrm{mV}$	$3.78~\mathrm{mV}$	$3.79~\mathrm{mV}$
		$5.00 \mathrm{~V}$	1.91 A	$9.550~\mathrm{W}$	$5.97~\mathrm{mV}$	$5.67~\mathrm{mV}$	$5.70~\mathrm{mV}$
		6.00 V	2.10 A	12.600 W	$7.81~\mathrm{mV}$	$7.79~\mathrm{mV}$	$7.94~\mathrm{mV}$
		$7.00 \mathrm{V}$	2.28 A	15.960 W	$10.12~\mathrm{mV}$	$10.17~\mathrm{mV}$	$10.11~\mathrm{mV}$
		8.00 V	2.44 A	$19.520~\mathrm{W}$	$12.71~\mathrm{mV}$	$12.70~\mathrm{mV}$	$12.70~\mathrm{mV}$
		9.00 V	2.60 A	$23.400~\mathrm{W}$	$15.47~\mathrm{mV}$	$15.48~\mathrm{mV}$	$15.50~\mathrm{mV}$
		10.00 V	2.75 A	27.500 W	$18.40~\mathrm{mV}$	$18.43~\mathrm{mV}$	$18.44~\mathrm{mV}$
2.	$16.5~\mathrm{cm}$	10.00 V	2.75 A	27.500 W	$3.73~\mathrm{mV}$	$3.71~\mathrm{mV}$	$3.70~\mathrm{mV}$
3.	$26.5~\mathrm{cm}$	10.00 V	2.75 A	$27.500~\mathrm{W}$	$1.67~\mathrm{mV}$	$1.70~\mathrm{mV}$	$1.69~\mathrm{mV}$
4.	36.5 cm	10.00 V	2.75 A	27.500 W	$1.04~\mathrm{mV}$	$1.02~\mathrm{mV}$	$1.04~\mathrm{mV}$

Tabela 5.2: Pomiary napięcia na detektorze z włączoną lampą przy danych parametrach (napięcie, natężenie oraz moc) dla żarówki

Odległość	Napięcie	Natężenie	Moc	1. pomiar	2. pomiar	3. pomiar
6.5 cm	10.00 V	2.75 A	27.500 W	15.27 mV	15.29 mV	15.37 mV

Tabela 5.3: Pomiary napięcia na detektorze z włączoną lampą przesłoniętą szklanym ekranem

5.2. Kostka Lesliego

Ściana	1. pomiar	2. pomiar	3. pomiar
Czarna	0.11 mV	0.11 mV	0.11 mV
Biała	$0.11~\mathrm{mV}$	$0.10~\mathrm{mV}$	$0.11~\mathrm{mV}$
Błyszcząca	$0.05~\mathrm{mV}$	$0.06~\mathrm{mV}$	$0.05~\mathrm{mV}$
Matowa	$0.05~\mathrm{mV}$	$0.04~\mathrm{mV}$	$0.05~\mathrm{mV}$

Tabela 5.4: Pomiary napięcia na detektorze przy wyłączonym grzaniu i różnych rodzajach ścian

Układ	Temperatura	Ściana	1. pomiar	2. pomiar	3. pomiar
1.	50°C	Czarna	2.66 mV	2.57 mV	2.57 mV
		Biała	$2.54~\mathrm{mV}$	$2.58~\mathrm{mV}$	$2.59~\mathrm{mV}$
		Błyszcząca	$0.00~\mathrm{mV}$	$0.00~\mathrm{mV}$	$0.00~\mathrm{mV}$
		Matowa	$0.55~\mathrm{mV}$	$0.49~\mathrm{mV}$	$0.55~\mathrm{mV}$
2.	$60^{\circ}\mathrm{C}$	Czarna	$3.61~\mathrm{mV}$	$3.59~\mathrm{mV}$	$3.57~\mathrm{mV}$
		Biała	$3.83~\mathrm{mV}$	3.76 mV	3.75 mV
		Błyszcząca	$0.12~\mathrm{mV}$	$0.09~\mathrm{mV}$	0.11 mV
		Matowa	$0.89~\mathrm{mV}$	$0.96~\mathrm{mV}$	0.83 mV
3.	$70^{\circ}\mathrm{C}$	Czarna	$4.84~\mathrm{mV}$	$4.81~\mathrm{mV}$	$4.79~\mathrm{mV}$
		Biała	$5.05~\mathrm{mV}$	$5.03~\mathrm{mV}$	$5.02~\mathrm{mV}$
		Błyszcząca	$0.19~\mathrm{mV}$	$0.19~\mathrm{mV}$	$0.20~\mathrm{mV}$
		Matowa	$1.18~\mathrm{mV}$	$1.22~\mathrm{mV}$	$1.27~\mathrm{mV}$
4.	$80^{\circ}\mathrm{C}$	Czarna	$6.14~\mathrm{mV}$	$6.12~\mathrm{mV}$	$6.10~\mathrm{mV}$
		Biała	$6.35~\mathrm{mV}$	$6.33~\mathrm{mV}$	$6.32~\mathrm{mV}$
		Błyszcząca	$0.25~\mathrm{mV}$	$0.27~\mathrm{mV}$	$0.40~\mathrm{mV}$
		Matowa	$1.47~\mathrm{mV}$	$1.47~\mathrm{mV}$	$1.47~\mathrm{mV}$
5.	90°C	Czarna	7.70 mV	7.68 mV	7.66 mV
		Biała	$7.30~\mathrm{mV}$	$7.28~\mathrm{mV}$	$7.27~\mathrm{mV}$
		Błyszcząca	$0.32~\mathrm{mV}$	$0.33~\mathrm{mV}$	$0.37~\mathrm{mV}$
		Matowa	1.96 mV	1.94 mV	1.87 mV
6.	100°C	Czarna	$9.19~\mathrm{mV}$	$9.17~\mathrm{mV}$	$9.16~\mathrm{mV}$
		Biała	$9.32~\mathrm{mV}$	$9.31~\mathrm{mV}$	$9.30~\mathrm{mV}$
		Błyszcząca	$0.49~\mathrm{mV}$	$0.48~\mathrm{mV}$	$0.48~\mathrm{mV}$
		Matowa	$2.32~\mathrm{mV}$	$2.21~\mathrm{mV}$	$2.21~\mathrm{mV}$
7.	110°C	Czarna	10.85 mV	10.82 mV	10.79 mV
		Biała	$10.96~\mathrm{mV}$	$11.03~\mathrm{mV}$	$10.93~\mathrm{mV}$
		Błyszcząca	$0.58~\mathrm{mV}$	$0.60~\mathrm{mV}$	$0.59~\mathrm{mV}$
		Matowa	$2.46~\mathrm{mV}$	$2.83~\mathrm{mV}$	$2.65~\mathrm{mV}$
8.	120°C	Czarna	12.46 mV	12.43 mV	12.40 mV
		Biała	$12.59~\mathrm{mV}$	$12.57~\mathrm{mV}$	$12.56~\mathrm{mV}$
		Błyszcząca	$0.82~\mathrm{mV}$	$0.99~\mathrm{mV}$	$1.24~\mathrm{mV}$
		Matowa	$3.08~\mathrm{mV}$	$3.09~\mathrm{mV}$	$3.09~\mathrm{mV}$

Tabela 5.5: Pomiary napięcia na detektorze przy różnych temperaturach i rodzajach ścian

Temperatura	Ściana	1. pomiar	2. pomiar	3. pomiar
120°C	Czarna	$0.03~\mathrm{mV}$	$0.02~\mathrm{mV}$	$0.03~\mathrm{mV}$

Tabela 5.6: Pomiary napięcia na detektorze przesłoniętym szklanym ekranem

Bibliografia

- $[1]\,$ A. Drabińska. Instrukcja do zadania c
4 badanie promieniowania termicznego, 07.2021.
- [2] Max Planck. Planck's radiation law. Journal of Applied Physics, 1(1):1–7, 1900.
- [3] Andrzej Majhofer. Analiza niepewności pomiarowych, 2022.