\sim Transformée en z: cours

1 Séries

1.1 Suites numériques

Définition 1 *Une suite numérique u est une application de* \mathbb{N} *dans* \mathbb{C} .

Autrement dit, à chaque entier naturel n, on associe une valeur complexe (qui peut donc très bien être un nombre réel) notée en général u_n .

On dit que cette suite converge si elle admet une limite, c'est à dire si elle s'approche d'une valeur l quand n est de plus en plus grand.

Dans le cas contraire, elle diverge.

Définition 2 *Soit* $(u_n)_n$ *une suite numérique.*

On dit qu'une suite est géométrique si on peut passer d'un terme au suivant en multipliant toujours par la même valeur q.

Cette valeur est appelée raison de la suite et u_0 est appelé premier terme.

Propriétés 1 Soit $(u_n)_n$ une suite géométrique de raison q et de premier terme u_0 . On a les égalités suivantes :

$$\forall n \in \mathbb{N}, \ u_{n+1} = qu_n$$

 $\forall n \in \mathbb{N}, \ u_n = u_0 q^n$

De plus :

 \implies dans le cas où q = 1, on a:

$$u_0 + u_1 + ... u_n = \sum_{k=0}^{n} u_k = \sum_{k=0}^{n} u_0 = (n+1)u_0$$

En effet de k = 0 à k = n, il y a n + 1 termes.

 \implies dans le cas où $q \neq 1$, on a:

$$u_0 + u_1 + ... u_n = \sum_{k=0}^n u_k = \sum_{k=0}^n u_0 q^k = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

- \implies Si q > 1 alors la suite diverge vers $+\infty$ si $u_0 > 0$ et vers $-\infty$ si $u_0 < 0$
- \implies Si |q| < 1 alors la suite converge vers 0.
- \implies Si q = 1 alors la suite est stationnaire : elle vaut toujours la même valeur, celle de u_0 .
- \implies Si q < -1 alors la suite n'a pas de limite.

1.2 Séries numériques

Définition 3 Une série numérique est une suite particulière, associée à une première suite $(u_n)_n$.

On appelle cette suite S_n), c'est la valeur de la somme des valeurs de u_k pour k allant de 0 à n:

$$S_n = \sum_{k=0}^n u_k$$

On dit que la série $\sum_{k\geq 0} u_k$ converge si la suite S_n associée converge. Dans ce cas, la limite de cette série est notée $\sum_{k=0}^{+\infty} u_k$.

Propriétés 2 \implies Si la série $\sum_{k\geq 0} u_k$ converge alors la suite u_n tend vers 0 : c'est une condition nécessaire de convergence de la série.

- riangleq Si la série $\sum_{k\geq 0} |u_k|$ converge alors la série $\sum_{k\geq 0} u_k$ converge : on dit qu'elle converge absolument.
- \implies La série $\sum_{k\geq 0} |u_k|$ converge si et seulement si la suite $\sum_{k\geq 0}^n |u_k|$ est bornée : il existe un nombre positif par lequel on peut majorer tous les termes de la série.

Exemple 1 1. Les séries géométriques $\sum_{k\geq 0} u_0 q^k$ convergent si et seulement si |q|<1.

2. Les séries de Riemann $\sum_{k\geq 1} k^{-\alpha}$ convergent si et seulement si $\alpha > 1$.

1.3 Séries entières

Définition 4 Une série entière est une série de terme général $u_n = a_n x^n$ où a_n et x sont des nombres complexes.

On peut donc définir une fonction en associant à x la valeur de la somme $\sum_{k=0}^{+\infty} a_k x^k$ quand elle existe.

Définition 5 On considère la série entière est une série de terme général $u_n = a_n x^n$. Le rayon convergence de cette série est le réel positif R tel que :

- \implies si x > R, alors la série numérique $\sum_{k \ge 0} a_k x^k$ diverge.
- \implies si x < R, alors la série numérique $\sum_{k>0} a_k x^k$ converge.

Propriétés 3 Pour |x| < R, la série entière $\sum_{k \ge 0} a_k x^k$ est une fonction continue, dérivable et dont la dérivée est $\sum_{k \ge 0} (k+1) a_{k+1} x^k$

$$\sum_{n=0}^{+\infty} x^n$$

$$\sum_{n=0}^{+\infty} nx^n$$

$$\sum_{n=0}^{+\infty} n^2 x^n$$

$$\sum_{n=0}^{+\infty} n^3 x^n$$

ont pour rayon de convergence 1 : elle converge et donc existe pour x < 1.

Les séries entières

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

$$\sum_{n=0}^{+\infty} n! x^n$$

ont respectivement pour rayon de convergence $+\infty$ et 0: dans un cas, la série converge pour toutes les valeurs de x et dans l'autre, la série ne converge pour aucune valeur de x.

1.4 Exercices

Exercice 1 On considère la suite $(u_n)_n$ définie de la façon suivante :

- $\Rightarrow u_0 = 5$
- \implies le terme d'indice n+1 est une diminution de 10% du terme d'indice n.

- **1.** Quelle est la nature de la suite $(u_n)_n$?
- **2.** Exprimer u_{n+1} en fonction de u_n .
- **3.** Exprimer u_n en fonction de u_0 et de n.
- 4. Est ce ce que cette suite converge? Pourquoi? Si oui, quelle est sa limite?
- **5.** Donner l'expression de S_n , la somme des termes de u_0 à u_n , en fonction de n.
- **6.** Est ce que S_n converge? Si oui, quelle est sa limite?

Exercice 2 On s'intéresse aux série de la forme :

$$S_n(\alpha) = \sum_{k=1}^n \frac{1}{k^{\alpha}}$$

- 1. Comment se nomment ces séries?
- 2. Quelle est la condition de leur convergence?
- 3. On suppose que:

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

En déduire la somme de la série suivante :

$$\sum_{k\geq 0} \frac{1}{(2k+1)^2}$$

après avoir justifié sa convergence.

2 Transformées en z

2.1 Signal causal discret

Définition 6 Un signal est discret s'il est représenté par une suite $(x_n)_n$ associée à une suite des instants (t_n) .

Un signal discret peut échantillonner une fonction f: dans ce cas, on aura:

$$\forall n \in \mathbb{N} \ x_n = f(t_n)$$

Un signal est causal si, pour tout n<0, $x_n = 0$.

Exemple 3 Un exemple de signal discret:

Un exemple de signal échantillonné de la fonction $\sin(3t)$ avec un pas constant de $\frac{\pi}{6}$:

Un exemple de signal causal :

2.2 Transformée en z d'un signal causal

Définition 7 La transformée en z du signal discret causal x(n) est la fonction X de la variable complexe définie par :

$$X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n}$$

Remarque 1 \implies Il y a plusieurs façons de noter cette transformée, la convention adoptée sera précisée dans l'énoncé de l'exercice. Par exemple Z(f)(z) pour la transformée en z du signal f.

- rightharpoonup Cette transformée est en fait une série entière en la variable $\frac{1}{z}$.
- La transformée en z d'un signal discret peut ne pas exister : la série peut ne pas converger. On précisera le domaine d'existence des séries que nous manipulerons.

Il est important de connaître les transformées des signaux discrets causaux suivants

Suite de Dirac

 $\overline{\text{C'est la suite } d \text{ définie par :}}$

$$\begin{cases} d(0) = 1 \\ d(n) = 0 \text{ si } n \neq 0 \end{cases}$$

Sa transformée en z est :

$$X(z)=1$$

Il n'y a pas de problèmes de convergence de la série puisque la somme est finie.

Suite de Dirac retardée

C'est la suite *d* définie par :

$$\begin{cases} d_k(0) = 1 \\ d_k(n) = 0 \text{ si } n \neq k \end{cases}$$

Sa transformée en z est :

$$X(z) = z^{-k}$$

On déduit son dessin du précédent en le décalant de k unités vers la droite. Il n'y a pas de problèmes de convergence de la série puisque la somme est finie.

Echelon unité

C'est la suite *u* définie par :

$$\begin{cases} u(n) = 1 \text{ si } & n \ge 0 \\ u(n) = 0 & \text{ si } n < 0 \end{cases}$$

Sa transformée en z est :

$$X(z) = \sum_{n=0}^{+\infty} z^{-n} = \frac{z}{z - 1}$$

On simplifie la somme de cette série en se servant de la formule pour la somme des premiers termes d'une suite géométrique de raison $\frac{1}{z}$.

Cette série converge si et seulement si $\left|\frac{1}{z}\right| < 1$, c'est à dire si |z| > 1.

Rampe C'est la suite r définie par :

$$\begin{cases} r(n) = n & \text{si } n \ge 0 \\ r(n) = 0 & \text{si } n < 0 \end{cases} \Leftrightarrow \forall n \in \mathbb{N} \ r(n) = nu(n)$$

Sa transformée en z est :

$$X(z) = \sum_{n=0}^{+\infty} nz^{-n} = \frac{z}{(z-1)^2}$$

Cette série converge si et seulement si |z| > 1.

Fonction carrée

C'est la suite *c* définie par :

$$\begin{cases} c(n) = n^2 \text{ si} & n \ge 0\\ c(n) = 0 & \text{ si } n < 0 \end{cases} \Leftrightarrow \forall n \in \mathbb{N} \ c(n) = n^2 u(n)$$

Sa transformée en z est :

$$X(z) = \sum_{n=0}^{+\infty} n^2 z^{-n} = \frac{z(z+1)}{(z-1)^3}$$

Cette série converge si et seulement si |z| > 1.

On peut obtenir cette égalité en dérivant la transformée en z du signal rampe.

Suite géométrique

Ce sont les suites de la forme :

$$f(n) = b^n u(n)$$

Sa transformée en z est :

$$X(z) = \sum_{n=0}^{+\infty} b^n z^{-n} = \frac{z}{z - b}$$

Cette série converge si et seulement si |z| > |b| avec $b \neq 0$.

Exercice Déterminer la transformée en z du signal causal $f(n) = \left(\frac{1}{5}\right)^n$.

2.3 Opérations sur les transformées

Opération	Fonctions	Transformées en z
Multiplication par λ	$oxed{\lambda f}$	$Z(\lambda f) = \lambda Z(f)$
Linéarité	f+g	Z(f+g) = Z(f) + Z(g)
Multiplication par a^n , $a \neq 0$	$g(n) = a^n f(n)$	$Z(g)(z) = Z(f)\left(\frac{z}{a}\right)$
Signal retardé	g(n) = f(n-k)u(n-k)	$Z(g)(z) = z^{-k}Z(f)(z)$

Il nous reste a décrire le signal en avance, qui souvent n'est pas causal :

$$g(n) = f(n+k)u(n+k)$$

qui a pour transformée:

$$Z(g)(z) = z^{k} \left[Z(f)(z) - f(0z^{-0} - f(1)z^{-1} - \dots - f(k-1)z^{-(k-1)} \right]$$

Définition 8 On appelle original de la la fonction X(z) la fonction f dont la transformée en z est X(z).

Propriétés 4 Il y a unicité de la fonction originale une fois la fonction X(z) fixée.

2.4 Exercices

Exercice 1 Déterminer les transformées en z des suites causales définies par :

$$a(n) = (2n+1)u(n) \; ; \; b(n) = (n^2+n)u(n) \; ; \; c(n) = 3^n u(n)$$

$$d(n) = 3^n n u(n) \; ; \; e(n) = 3^n n^2 u(n) \; ; \; f(n) = (2^n + n^2)u(n)$$

$$g(n) = (n-3)u(n-3) \; ; \; h(n) = (n+1)u(n) \; ; \; i(n) = (n+1)u(n+1)$$

$$j(n) = 4^{n-1}u(n-1) \; ; \; k(n) = 3^{n+2}u(n+2) \; ; \; l(n) = 3^{n-2}(n-2)u(n-2)$$

Exercice 2 On considère les signaux causaux discrets définis par :

$$x_1 = nu(n)$$

$$x_2 = nu(n-1)$$

$$x_3 = (n+1)u(n)$$

$$x_4 = (n+1)u(n-1)$$

$$x_5 = (n+1)u(n-2)$$

Déterminer leur transformée en z de deux façons différentes :

- **1.** En écrivant $x_i = (n-a)u(n-a) + bu(n-a)$
- **2.** À l'aide de leurs représentations graphiques en utilisant la transformée en *z* des suites échelons, rampe sans retard et de la suite de Dirac.

Exercice 3

Trouver les originaux de :

$$A(z) = \frac{3}{z - 1} \quad B(z) = \frac{z}{z - 2} \quad C(z) = \frac{z}{z - 1}$$

$$D(z) = \frac{1}{z - 1} \quad E(z) = \frac{1}{z - 1} + \frac{z}{(z - 1)^2}$$

$$F(z) = \frac{z - 1}{z + 3} \quad G(z) = \frac{3z}{(z - 3)^2}$$

Exercice 4 On veut trouver l'original de $F(z) = \frac{z}{(z-1)(z-2)}$.

- **1.** Vérifier que $F(z) = -\frac{1}{z-1} + \frac{2}{z-2}$
- **2.** Déterminer les originaux de $\frac{1}{z-1}$ et $\frac{1}{z-2}$
- **3.** En déduire l'original de *F*.

Exercice 5 On veut trouver l'original de $F(z) = \frac{z^2}{z^2 - 3z + 2}$.

- 1. Vérifier que $\frac{F(z)}{z} = \frac{z}{(z-1)(z-2)}$
- 2. Déterminer A et B tels que :

$$\frac{z}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{z-2}$$

3. En déduire l'original de *F*.

Exercice 6 On considère la fonction $F(z) = \frac{2z}{(z-2)^2}$. Exprimer F en fonction de $\frac{z}{2}$ puis trouver l'original.

3 Résolution d'une équation aux différences

3.1 Exemples détaillés

On veut résoudre, grâce à la transformée en z, les équations aux différences suivantes : **Exemple 1**

$$y(n) - 2y(n-1) = nu(n)$$

où y est une fonction causale.

On commencera par donner les valeurs de y(n) pour n allant de -1 à 3 puis on conjecturera quant à la limite de cette suite.

On commence par déterminer les valeurs des premiers indices de la suite.

Déja, on sait que y(-1) = 0 car la fonction est causale et ensuite y(0) - 2y(-1) = 0 donc y(0) vaut également 0.

Pour les autres termes, on peut utiliser la calculatrice :

On est obligé de changer un peu l'expression de la suite, on doit laisser uniquement un "u(n)" à gauche de l'égalité.

On trouve donc, en faisant contôle T:

$$y(1) = 1$$
$$y(2) = 4$$

$$y(3) = 11$$

En regardant les indices suivants, on peut conjecturer que la suite va tendre vers $+\infty$: On continue en appliquant la transformée en z à l'ensemble signaux de l'équation :

$$y(n) \longrightarrow Y(z)$$

$$y(n-1) \longrightarrow \frac{Y(z)}{z}$$

$$nu(n) \longrightarrow \frac{z}{(z-1)^2}$$

On en déduit l'égalité suivante :

$$Y(z) - 2\frac{Y(z)}{z} = \frac{z}{(z-1)^2}$$

$$\Leftrightarrow Y(z) \left(1 - \frac{2}{z}\right) = \frac{z}{(z-1)^2}$$

$$\Leftrightarrow Y(z) \times \frac{z-2}{z} = \frac{z}{(z-1)^2}$$

$$\Leftrightarrow Y(z) = \frac{z^2}{(z-2)(z-1)^2}$$

On doit maintenant chercher l'original de la fonction de droite. Sous cette forme, on ne reconnait rien de ce qui a été présenté précédemment; on doit décomposer la fonction en éléments simples :

soit on utilise la calculatrice et la commande "expand". On trouve :

On a donc:

$$\frac{z^2}{(z-2)(z-1)^2} = -3 \times \frac{1}{z-1} - \frac{1}{(z-1)^2} + 4 \times \frac{1}{z-2}$$

soit l'énoncé va nous donner l'expression que nous venons de trouver à la calculatrice et nous devrons la mettre au même dénominateur :

$$-3 \times \frac{1}{z-1} - \frac{1}{(z-1)^2} + 4 \times \frac{1}{z-2}$$

$$= \frac{-3(z-1)(z-2) - (z-2) + 4(z-1)^2}{(z-1)^2(z-2)}$$

$$= \frac{-3(z^2 - 3z + 2) - z + 2 + 4(z^2 - 2z + 1)}{(z-1)^2(z-2)}$$

$$= \frac{-3z^2 + 9z - 6 - z + 2 + 4z^2 - 8z + 4)}{(z-1)^2(z-2)}$$

$$= \frac{z^2}{(z-1)^2(z-2)}$$

Maintenant que nous avons cette décomposition, il faut trouver l'original de chacun des termes, le fait qu'il n'y ait plus de z au numérateur indique un retard de 1:

$$-3 \times \frac{1}{z-1} \longrightarrow -3u(n-1)$$

$$4 \times \frac{1}{z-2} \longrightarrow 4 \times 2^{n-1}u(n-1)$$

$$-\frac{1}{(z-1)^2} \longrightarrow -(n-1)u(n-1)$$

Finalement, on trouve:

$$y(n) = -3u(n-1) + 4 \times 2^{n-1}u(n-1) - (n-1)u(n-1)$$

Exemple 2

$$\begin{cases} y(n+2) - 2y(n+1) + y(n) = 2u(n) \\ y(0) = 0 \text{ et } y(1) = 1 \end{cases}$$

où y est une fonction causale.

On commence par appliquer la transformée en z à l'ensemble signaux de l'équation :

$$y(n) \longrightarrow Y(z)$$

$$y(n+1) \longrightarrow z[Y(z)-0] = zY(z)$$

$$y(n+2) \longrightarrow z^{2} \left[Y(z) - 0 - 1 \times \frac{1}{z} \right] = z^{2}Y(z) - z$$

$$2u(n) \longrightarrow 2\frac{z}{z-1}$$

On en déduit l'égalité suivante :

$$z^{2}Y(z) - z - 2zY(z) + Y(z) = 2\frac{z}{z - 1}$$

$$\Leftrightarrow Y(z) \left[z^{2} - 2z + 1 \right] = 2\frac{z}{z - 1} + z = \frac{z(z + 1)}{(z - 1)}$$

$$\Leftrightarrow Y(z) \times (z - 1)^{2} = \frac{z(z + 1)}{(z - 1)}$$

$$\Leftrightarrow Y(z) = \frac{z(z + 1)}{(z - 1)^{3}}$$

On reconnaît la transformée en z du signal $n^2u(n)$, c'est donc l'expression de y(n).

3.2 Exercices

Exercice 1 Soit (y_n) une suite causale définie par l'équation (E): $y(n) = \frac{3}{4}y(n-1) + 2u(n)$

- 1. Calculer y(n) pour chaque n compris entre −1 et 3. Quelle semble être la limite de y(n) lorsque n tend vers $+\infty$?
- 2. Écrire la transformée en z l'équation (E), on notera Y la transformée de y
- **3.** Exprimer Y(z) en fonction de z
- **4.** On pose $G(z) = \frac{Y(z)}{z}$. Décomposer G éléments simples.
- **5.** En déduire l'expression de Y(z)en fonction de z
- **6.** En utilisant la table des transformées usuelles, retrouver l'expression de y(n) en fonction de n
- 7. Vérifier ce résultat en retrouvant les valeurs obtenues en 1) puis calculer la limite de y(n) lorsque n tend vers $+\infty$

Exercice 2 On considère la suite y, causale, définie par l'équation aux différences

$$12y(n) = 7y(n-1) - y(n-2) + 2u(n)$$
 (E)

- 1. Calculer les premiers termes y(0), y(1) et y(2) sachant que u(n) = 1 pour $n \ge 0$
- **2.** Appliquer la transformée en z à l'équation aux différences (E) et isoler Y(z)
- 3. Décomposer $\frac{Y(z)}{z}$ en éléments simples
- **4.** En déduire y(n) par lecture de la table des transformées usuelles

Exercice 3

On dispose d'un filtre analogique passe-bas du premier ordre dont l'équation différentielle est :

$$7s'(t) + s(t) = f(t)$$

où s est la fonction causale associée au signal analogique de sortie, f est la fonction causale associée au signal analogique d'entrée et où le coefficient 7 correspond à la

valeur 7ms de la constante de temps τ du filtre analogique, l'unité pour le temps t étant la milliseconde.

On peut alors réaliser une filtre numérique passe-bas du premier ordre tel que : Le signal d'entrée est le signal causal échantillonné du signal d'entrée analogique avec la période $T_e = 1$; ce signal est donc associé à la suite x définie sur \mathbb{N} par x(n) = f(n)

Le signal de sortie est le signal numérique causal associé à la suite y définie l'équation aux différences obtenue en replaçant dans l'équation différentielle précédente :

- s'(t) par y(n) y(n-1)
- s(t) par v(n)
- f(t) par x(n)
- 1. Montrer que l'équation aux différences peut s'écrire : $y(n) = \frac{7}{8}y(n-1) + \frac{1}{8}x(n)$
- **2.** Dans cette question, le signal d'entrée x est l'impulsion unité discrète d définie par d(0) = 1 et d(n) = 0 pour tout n entier non nul.
 - **a.** Calculer y(0) sachant que la suite y est associée à un signal causal
 - **b.** Calculer successivement y(n) pour les valeurs de n comprises entre 1 et 3
 - **c.** Démontrer que la transformée en \mathcal{Z} du signal y vérifie : $\mathcal{Z}_y(z) = \frac{1}{8} \frac{z}{z \frac{7}{8}}$
 - **d.** En déduire l'expression de y(n) en fonction de n
 - **e.** Déterminer $\lim_{n \to +\infty} y(n)$
 - **f.** Donner l'allure de la représentation graphique de la suite *y* dans le plan muni d'un repère adapté.
- **3.** Dans cette question, le signal causal d'entrée x est l'échelon unité discret e définie par u(n) = 1 pour tout $n \in \mathbb{N}$.
 - **a.** Calculer y(0) sachant que la suite y est associée à un signal causal
 - **b.** Calculer la valeur exacte de y(1) puis sa valeur approchée au millième
 - **c.** Démontrer que la transformée en \mathcal{Z} du signal y vérifie : $\mathcal{Z}_y(z) = \frac{1}{8} \frac{z^2}{(z-1)\left(z-\frac{7}{8}\right)}$
 - **d.** Un logiciel de calcul formel donne : $\frac{z}{(z-1)\left(z-\frac{7}{8}\right)} = \frac{8}{z-1} \frac{7}{z-\frac{7}{8}}$

En déduire l'expression de y(n) en fonction de n valable pour tout $n \in \mathbb{N}$

- **e.** Déterminer $\lim_{n \to +\infty} y(n)$
- **f.** Déterminer les valeurs arrondies au millième de y(10), y(20), y(30)
- **g.** Donner l'allure de la représentation graphique de la suite *y* dans le plan muni d'un repère adapté.

Exercice 4

Dans tout cet exercice, le nombre *n* est un entier relatif.

La suite $n \mapsto e(n)$ représente l'échelon discrétisé causal défini par :

$$\begin{cases} u(n) = 0 \text{ pour } n < 0 \\ u(n) = 1 \text{ pour } n \ge 0 \end{cases}$$

On considère un filtre numérique dans lequel le signal d'entrée est $n \mapsto u(n)$ et le signal de sortie est un signal discret causal noté $n \mapsto x(n)$. Ce filtre est régi par l'équation récurrente :

$$x(n) - 2x(n-1) = u(n)$$
 (E)

Partie 1

Dans cette partie, on résout l'équation récurrente (E) sans utilisation de la transformation en Z.

- **1. a.** Justifier que x(0) = 1.
 - **b.** Calculer x(1), x(2) et x(3).
- **2.** Pour tout entier naturel *n* l'équation (*E*) s'écrit :

$$x(n) - 2x(n-1) = 1$$
 (E)

a. On considère la suite y définie pour tout entier naturel n par :

$$y(n) = x(n) + 1$$

Montrer que la suite y est une suite géométrique de raison 2. Donner l'expression de y(n) en fonction de l'entier naturel n.

b. En déduire, pour tout entier naturel n, l'expression de x(n). Vérifier que l'on retrouve les mêmes valeurs de x(0), x(1), x(2) et x(3) qu'à l'équation 1.

Partie 2

Dans cette partie on résout l'équation récurrente (E) en utilisant la transformation en Z.

1. On rappelle que x(0) = 1.

On se place dans le cas où $n \ge 1$ et on admet que le signal $n \mapsto x(n)$, solution de l'équation récurrente (E), a une transformation en Z notée Z(x)(z).

a. Montrer que pour tout z différent de 0, de 1 et de 2 on a :

$$Z(x)(z) = \frac{z^2}{(z-1)(z-2)}$$

b. Montrer que pour tout z différent de 0, de 1 et de 2 on a :

$$\frac{(Z(x)(z)}{z} = \frac{-1}{z-1} + \frac{2}{z-2}$$

- **c.** En déduire par lecture inverse du dictionnaire d'images, le signal de sortie $n \mapsto x(n)$ pour $n \ge 1$.
- **2.** Représenter dans un repère orthogonal, pour les nombres entiers n tels que $-2 \le n \le 3$, le signal de sortie $n \mapsto x(n)$. Prendre comme unités graphiques 2 cm sur l'axe des abscisses et 0,5 cm sur l'axe des ordonnées.