ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий

Высшая школа программной инженерии

ЛАБОРАТОРНАЯ РАБОТА №1

Решение дифференциального уравнения

по дисциплине «Математическое моделирование»

Студент гр. 3530202/90202

А. М. Потапова

Руководитель Ст. преподаватель Ю.Б. Сениченков

Санкт-Петербург 2022 г

Задание 1_2

Постановка задачи

Динамические системы. Обыкновенное дифференциальное уравнение и его решение. Символьное и численное решение.

1. Решить численно уравнение:

$$\frac{d^2y}{dt_2} + p_2 \cdot y = (a_2 \cdot \cos(t) + a_1 \cdot \sin(t) + a_0); \ t \in [-T, T]; \ y(0) = y_0; \ y'(0) = y_0'; \ p_2 = 1;$$

Вариант 13

N	a 2	a 1	a 0	T	X0	Уравнение
1	1	0	0	1	-6	1.1
2	0	1	0	2	-5	1.1
3	1	1	0	3	-4	1.1
4	0	1	1	4	-3	1.1
5	1	0	1	1	-2	1.1
6	1	1	1	2	-1	1.1
7	1	0	0	3	1	1.1
8	0	1	0	4	2	1.1
9	1	1	0	1	3	1.1
10	0	1	1	2	4	1.1
11	1	0	1	3	5	1.1
12	1	1	1	4	6	1.1
N					<i>y</i> ₀	
13	1	1	0	1	6	1.2

Нарисовать графики построенных численных решений (Anydynamics) и графики абсолютной и относительной погрешностей.

Решение

$$\begin{aligned} \frac{d_{x}^{i}}{d^{2}x} + \rho_{x} \cdot y &= (a_{x} \cdot \cos(t) + a_{x} \cdot \sin(t) + a_{0}); \ t \in [-7, 7] \ ; \ y(0) = g_{0}; \ y'(0) = g_{0}'; \ \rho_{x} = 1 \\ \frac{d^{2}x}{d^{2}x} + y &= \cos(t) + \sin(t) \\ \frac{d^{2}x}{d^{2}x} + y &= 0 \\ y &= e^{4t}, \ \text{rouga} \ e^{4t} \left(\lambda^{2} + 1 \right) = 0 \\ \frac{\partial^{2}x}{\partial t^{2}} + e^{4t} &= 0 \\ \lambda^{2}e^{4t} + e^{4t} &= 0 \\ y &= c_{1}e^{it} + c_{2}e^{-it} \\ y &= c_{2}\cos(t) + c_{2}\sin(t) \\ \frac{\partial^{2}y}{\partial t^{2}} + y &= \cos(t) + \sin(t) \\ \frac{\partial^{2}y}{\partial t^{2}} + y &= \cos(t) + \sin(t) \\ \frac{\partial^{2}y}{\partial t^{2}} + y &= \cos(t) + \sin(t) \\ a_{2} &= \frac{1}{4}, \ a_{2} &= -\frac{1}{4} \\ y &= -\frac{1}{4}t\cos(t) + \frac{1}{4}t\sin(t) + c_{2}\cos(t) + c_{4}\sin(t) \\ y'(0) &= 0 \Rightarrow \frac{dy}{\partial t} = -\frac{1}{4}\cos(t) + \frac{1}{4}t\sin(t) + \frac{1}{4}t\sin(t) - c_{4}\sin(t) \cdot c_{4}\cos(t) \\ c_{4} &= 6, \ c_{4} &= \frac{1}{4} \\ y &= -\frac{1}{4}t\cos(t) + \frac{1}{4}t\sin(t) + 6\cos(t) + \frac{1}{4}\sin(t) + \frac{1}{4}t\sin(t) - c_{4}\sin(t) \\ y &= \frac{1}{4}\left((t+4)\sin(t) - (t-12)\cos(t)\right) \\ \frac{Other:}{2} &= \frac{1}{4}\left((t+4)\sin(t) - (t-14)\cos(t)\right) \end{aligned}$$

Получили ответ:

$$y(t) = \frac{1}{2}((t+1)\cdot\sin(t) - (t-12)\cdot\cos(t));$$

$$y(-1) = \frac{1}{2}((-1+1)\cdot\sin(-1) - (-1-12)\cdot\cos(-1)) = 3.512;$$

$$y'(t) = \frac{1}{2}((t-11)\cdot\sin(t) + t\cdot\cos(t));$$

$$y'(-1) = \frac{1}{2}((-1-11)\cdot\sin(-1) + (-1)\cdot\cos(-1)) = 4.77867;$$

Используя WolframAlpha (тот же результат):

Anydynamics

- x уравнение в качестве общего решения для у;
- yt уравнение, полученное из уравнения, после взятия производной по t;
- y0 start начальное значение для точки t = -1;
- $dy0_start$ значение производной в точке t=-1, для задания начального условия;
- t время, сдвинутое на нужные нам половину промежутка;
- rel err, abs err относительная и абсолютная погрешность.

Графики для заданного по условию интервалу [-1;1]

График абсолютной погрешности

График относительной погрешности

Вывод

Как можно увидеть, графики, предлагаемые Wolfram, и те, что строит AnyDinamics, совпадают. Иногда происходят выбросы, но можно увидеть, что почти весь промежуток погрешность не слишком велика, но через интервалы происходит скачек. Это обусловлено тем, что значение функции в данных точках стремится к нулю и при вычислении погрешности происходит деление на это значение.