实用随机过程

胡太忠 thu@ustc.edu.cn

安徽 合肥 中国科学技术大学

2024年2月

第2章 Poisson 过程

- Poisson 过程的等价定义
- Poisson 过程的性质
- 非齐次 Poisson 过程
- 复合 Poisson 过程与条件 Poisson 过程

计数过程 $\{N(t), t \ge 0\}$ 称为计数过程, 若

- N(t) 取非负整数;
- $N(s) \leq N(t), \forall s < t;$
- 对于任意 s < t, N(t) N(s) 表示在时间段 (s,t] 内发生的事件数.
- ▶ 定义 2.1.1 计数过程 $\{N(t), t \ge 0\}$ 称为强度 λ 的 Poisson 过程, 若
 - N(0) = 0;
 - 过程具有独立增量;
 - $N(t+s) N(s) \sim \text{Poisson}(\lambda t)$, $\forall s, t \geq 0$.

- ▶ 定义 2.1.2 计数过程 $\{N(t), t \ge 0\}$ 称为强度 λ 的 Poisson 过程, 若
 - N(0) = 0;
 - 过程具有平稳增量和独立增量性质;
 - $P(N(h) = 1) = \lambda h + o(h);$
 - $P(N(h) \ge 2) = \circ(h)$.

 $\{N(t), t \geq 0\}$ 称为强度 λ 的 齐次Poisson 过程, 记为 HPP(λ)

▶ 定理 2.1.1 定义 2.1.1 ⇔ 定义 2.1.2

分析: (\iff) 仅证明 $N(t) \sim \text{Poisson}(\lambda t)$. 为此, 将 [0,t] 区间 k 等分: I_{ki} , $j=1,\ldots,k$. 记 N_{k}^{*} 为发生事件的区间数.

$$\leq \sum_{j=1}^{k} P($$
在区间 I_{kj} 发生事件数 $\geq 2) = k \circ \left(\frac{t}{k}\right) = \circ(1).$

于是,
$$N_k^* \sim B(k, \lambda t/k + o(1/k))$$
, 且 $N_k^* \to N(t)$, $k \to \infty$. 故 $N(t) \sim \mathrm{Poisson}(\lambda t)$.

证明: (\iff) 仅证 $N(t) \sim \operatorname{Poisson}(\lambda t)$. 记 $p_n(t) = \operatorname{P}(N(t) = n)$. 由

$$p_0(t+h) = P(N(t) = 0, N(t+h) - N(t) = 0) = p_0(t)[1 - \lambda h + o(h)]$$

得

$$p_0'(t) = -\lambda p_0(t), \quad t > 0.$$
 (*.1)

同样,对任意 $n \ge 1$,

$$\rho_n(t+h) = \sum_{j=0}^n P(N(t) = n-j, N(t+h) - N(t) = j)$$

$$= \rho_n(t)[1-\lambda h] + \rho_{n-1}(t) \cdot \lambda h + o(h),$$

化简得

$$p'_n(t) = -\lambda p_n(t) + \lambda p_{n-1}(t), \quad t > 0.$$
 (*.2)

记 N(t) 的概率母函数为 $\mathbb{P}(z,t) = \sum_{n=0}^{\infty} p_n(t)z^n$, 则

$$rac{\partial}{\partial t}\mathbb{P}(z,t)=\cdots=-\lambda\mathbb{P}(z,t)+\lambda z\mathbb{P}(z,t)=\lambda(z-1)\mathbb{P}(z,t).$$

求解得

$$\log \mathbb{P}(z,t) = \lambda t(z-1) + c(z), \tag{*.3}$$

其中 c(z) 待定. 由 $p_0(0) = 1$, $p_k(0) = 0$, $\forall k > 0$, 得

$$\mathbb{P}(z,0)\equiv 1.$$

代入 (*.3) 得 $c(z) \equiv 0$, 于是

$$\mathbb{P}(z,t) = \exp\big\{\lambda t(z-1)\big\},\,$$

§2.2 另一种等价定义

事件发生时刻: $S_0 = 0 < S_1 < S_2 < \dots < S_k < \dots$ 事件发生间隔: $X_k = S_k - S_{k-1}, k > 1$

▶ 定理 2.2.1 设 $\{N(t), t \geq 0\}$ 为 $\mathsf{HPP}(\lambda)$, 则 $\{X_n, n \geq 1\}$ iid $\sim \mathrm{Exp}(\lambda)$.

证明: $X_1 \sim \operatorname{Exp}(\lambda) \sqrt{.}$ 对任意 s, t > 0,

$$P(X_2 > t | X_1 = s) = P(N(t+s) = 1 | N(s) = 1, N(s-) = 0)$$

$$= P(N(t+s) - N(s) = 0 | N(s) = 1, N(s-) = 0)$$

$$= P(N(t+s) - N(s) = 0) = e^{-\lambda t},$$

即 X_1, X_2 iid ~ $\text{Exp}(\lambda)$. 余类似. ■

§2.2 另一种等价定义

- ▶ 定义 2.2.1 计数过程 $\{N(t), t \ge 0\}$ 称为强度 λ 的 Poisson 过程, 若事件发生间隔序列 $\{X_n, n \ge 1\}$ iid $\sim \text{Exp}(\lambda)$.
- ▶ 定理 2.2.2 定义 2.1.1 ⇔ 定义 2.2.1

证明: ⇒ √.

(\iff) 由指数分布无记忆性知, $\{N(t), t \geq 0\}$ 具有平稳独立增量性. 下 仅证 $N(t) \sim \operatorname{Poisson}(\lambda t)$. 注意到 $S_n \sim \Gamma(n, \lambda)$ 及

$$S_n \leq t \iff N(t) \geq n$$
,

得

$$P(N(t) \ge n) = P(S_n \le t) = \cdots = \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \ n \ge 0.$$

于是,
$$P(N(t) = n) = e^{-\lambda t} (\lambda t)^n / n!$$
, $n \ge 0$.

§2.2 另一种等价定义

定义 221 的应用:

- 利用 S_n < t ⇔ N(t) > n, 可以求出 Γ(n, λ) 的 cdf 和 pdf.
- 局部几何方法:

$$P(t < S_n < t + h) = P(N(t+h) - N(t) = 1, N(t) = n-1) + o(h)$$

$$= e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} \cdot \lambda h + o(h),$$

于是 $\Gamma(n, \lambda)$ 的 pdf 为

$$f_{S_n}(t)=e^{-\lambda t}\frac{\lambda^n t^{n-1}}{(n-1)!}, \quad t>0.$$

- 有利干将 Poisson 过程推广到更新过程.
- 有利干做 Poisson 过程的计算机模拟仿真.

▶ 定理 2.3.1 设 $\{N(t), t \ge 0\}$ 为 HPP(λ),则

$$\left[\left(S_{1},S_{2},\ldots,S_{n}\right)\middle|N(t)=n\right]\stackrel{\mathrm{d}}{=}\left(U_{1:n},U_{2:n},\ldots,U_{n:n}\right),$$

其中 U_1, U_2, \ldots, U_n iid $\sim U(0, t), U_{1:n} < U_{2:n} < \cdots < U_{n:n}$ 为 U_1, \ldots, U_n 的次序统计量.

* $(U_{1:n}, U_{2:n}, \ldots, U_{n:n})$ 的联合 pdf 为

$$g(t_1, t_2, \ldots, t_n) = \frac{n!}{t^n}, \quad \forall \, 0 < t_1 < t_2 < \cdots < t_n < t.$$

▶ 定理 2.3.1* 设 $\{N(t), t \ge 0\}$ 为 $\mathsf{HPP}(\lambda)$, 则

$$\left[\left(S_1,S_2,\ldots,S_n\right)\middle|S_{n+1}=t\right]\stackrel{\mathrm{d}}{=}\left(U_{1:n},U_{2:n},\ldots,U_{n:n}\right)\!,$$

其中 U_1, U_2, \ldots, U_n iid $\sim U(0, t), U_{1:n} < U_{2:n} < \cdots < U_{n:n}$ 为 U_1, \ldots, U_n 的次序统计量.

证法一: 直接利用 $(X_1, X_2, ..., X_{n+1}) \longleftrightarrow (S_1, S_2, ..., S_{n+1})$ 初等变换.

证法二: 利用

$$\begin{split} &[(S_1, S_2, \dots, S_n)|S_{n+1} = t] \\ &= [(S_1, S_2, \dots, S_n)|N(t-) = n, N(t) - N(t-) = 1] \\ &\stackrel{\mathrm{d}}{=} [(S_1, S_2, \dots, S_n)|N(t-) = n] \\ &\stackrel{\mathrm{d}}{=} [(S_1, S_2, \dots, S_n)|N(t) = n]. \quad \blacksquare \end{split}$$

▶【例 2.3(A)】 假设乘客按 $HPP(\lambda)$ 过程到达火车站,火车于时刻 t 开出. 求 (0,t] 时段到达乘客的等待时间总和的期望,即

$$\mathrm{E}\left[\sum_{k=1}^{N(t)}(t-S_k)
ight].$$

应用定理 2.3.1:

$$\mathrm{E}\left[\sum_{k=1}^{N(t)}(t-S_k)\right] = \mathrm{E}\left\{\mathrm{E}\left[\left.\sum_{k=1}^{N(t)}(t-S_k)\right|N(t)\right]\right\} = \mathrm{E}\left[\frac{t}{2}N(t)\right] = \frac{\lambda t^2}{2}.$$

▶【例 2.3(C)】 一元件易收到冲击,冲击按 $HPP(\lambda)$ 过程到达,第 i 个冲击带来的损伤为 D_i . 假设 $\{D_i, i \geq 1\}$ iid,且独立于 HPP 过程,损伤随时间按负指数衰减,且可以叠加.于是 t 时刻元件的总损伤为

$$D(t) = \sum_{k=1}^{N(t)} D_k e^{-\alpha(t-S_k)}, \quad \alpha > 0,$$

求 E D(t).

应用定理 2.3.1:

$$\mathrm{E}\left[D(t)|N(t)=n\right]=\mathrm{E}\,D\cdot e^{-\alpha t}\mathrm{E}\,\sum_{k=1}^n e^{\alpha U_k}=n\cdot\mathrm{E}\,D\cdot\frac{1-e^{-\alpha t}}{\alpha t}.$$

定理 2.3.1 的应用: Poisson 过程事件分类

设时刻 s 发生的事件以概率 p(s) 划入 I 型,以概率 1 - p(s) 划入 II 型. $N_i(t) = (0, t]$ 时段发生的 i 型事件个数, i = 1, 2.

▶ 命题 2.3.2 设 $\{N(t), t \ge 0\}$ 为 HPP(λ),则 $N_1(t)$ 与 $N_2(t)$ 独立,且

$$N_1(t) \sim \text{Poisson}(\lambda pt), \qquad N_2(t) \sim \text{Poisson}(\lambda (1-p)t),$$

其中

$$p = \frac{1}{t} \int_0^t p(s) \, \mathrm{d}s, \quad t > 0.$$

* 命题 2.3.2 可以推广到分成有限或可列类事件情形

证明:对任意 $m, n \ge 0$,

$$P(N_1(t) = m, N_2(t) = n)$$
 $= \underbrace{P(N_1(t) = m, N_2(t) = n | N(t) = m + n)}_{\Delta_{m,n}} \cdot P(N(t) = m + n).$
 $\Delta_{m,n}$
 $= P\left(\begin{array}{ccc} \mathcal{F} S_1, S_2, \dots, S_{m+n} & \text{Hologo} \\ \emptyset \mathcal{N}, & \text{Hologo} \end{array} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{(m+n):(m+n)} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{m+n} & \text{Hologo} \\ \emptyset & \text{the problem} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{m+n} & \text{Hologo} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{m+n} & \text{Hologo} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{m+n} & \text{Hologo} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{m+n} & \text{Hologo} \end{aligned} \middle| N(t) = m + n\right).$
 $= P\left(\begin{array}{ccc} \mathcal{F} U_{1:(m+n)}, U_{2:(m+n)}, \dots, U_{m+n} & \text{Hologo} \end{aligned} \middle| N(t) = m + n\right).$

其中

于是

$$\begin{split} \mathrm{P}\left(N_{1}(t) = m, N_{2}(t) = n\right) \\ &= e^{-\lambda p t} \frac{(\lambda p t)^{m}}{m!} \cdot e^{-\lambda (1-p)t} \frac{(\lambda (1-p)t)^{n}}{n!}. \quad \blacksquare \end{split}$$

* 在命题 2.3.2 中,若 $p(s) \equiv p$,则 $\{N_1(t), t \geq 0\}$ 为 HPP(λp), $\{N_2(t), t \geq 0\}$ 为 HPP($\lambda(1-p)$),且相互独立.

▶ 定理 2.3.2 设 $\{N_i(t), t \ge 0\}$ 为 HPP(λ_i), i = 1, 2, 且两个过程相互独立, 记

$$N(t) = N_1(t) + N_2(t),$$

则

$$\{N(t), t \geq 0\} \$$
 $\beta \ HPP (\lambda_1 + \lambda_2).$

* 利用指数分布的无记忆性说明 $\{N(t), t \geq 0\}$ 具有平稳独立增量性

随机服务系统

如: (1) 多服务台并联

(2) 多服务台串联

随机服务系统分类: D.G. Kendall 于 1953 年提出的分类方法,基于顾客到达间隔时间、服务时间分布和服务台个数三个特征. 记号:

X/Y/Z,

- X 处填写表示顾客相继到达时间间隔分布的代码,
- Y 处填写表示服务时间分布的代码,
- Z 处填写系统服务台的个数.

X 可取 "M"、 "GI"、 "D"等, Y 可取 "M"、 "G"、 "D" 等, 其中

- M —— 指数分布(其无记忆性决定过程的 Markov 性)
- GI 一般相互独立的时间间隔分布
- D —— 确定的时长, 退化分布
- G —— 服务时间的一般分布

随机服务系统分类: Kendall 扩充记号

X/Y/Z/A/B/C 或 [X/Y/Z]: [A/B/C],

其中前三项意义同前不变,

- A 处填写系统容量限制数 N,
- B 处填写顾客源数目 m,
- C 处填写系统服务规则, 常见的有如下四种:
 - (1) 先到先服务 (FCFS, First Come First Serve)
 - (2) 后到先服务 (LCFS, Last Come First Serve)
 - (3) 有优先权的服务 (PR, Priority)
 - (4) 随机服务 (SIRO, Service in Random Order)

随机服务系统举例:

- M/G/k系统: 顾客到达时间间隔服从指数分布(到达过程为 Poisson 过程),服务台提供的服务时间具有一般的分布,系统有 k个服务台。
- GI/D/∞系统: 顾客到达时间间隔独立且具有一般分布(到达过程为更新过程),服务台提供的服务时间是固定常数,系统有无穷多个服务台.
- M/G/1/N/∞/FCFS 系统

随机服务系统研究:

系统指标: 平均队长、平均服务时间、平均等待时间、流失顾客比例、期望休闲期长度、期望忙期长度, 等

▶【例 2.3(B)】 $M/G/\infty$ 系统: 顾客到达过程服从 $HPP(\lambda)$ 过程,顾客服务时间独立,且共同 cdf 为 G. 定义

$$N_1(t)$$
 = 时刻 t 服务完毕的顾客数,
 $N_2(t)$ = 时刻 t 正在接受服务的顾客数

则 $N_1(t) \perp N_2(t)$, 且

$$N_1(t) \sim \text{Poisson}(\eta_1(t)), \quad N_2(t) \sim \text{Poisson}(\eta_2(t)),$$

其中

$$\eta_1(t) = \lambda \int_0^t G(x) dx, \qquad \eta_2(t) = \lambda \int_0^t \overline{G}(x) dx.$$

* 应用命题 2.3.2: 时刻 s 发生的事件划入 I 型概率为

$$p(s) = G(t-s), s \leq t$$
 (可定义对 $\forall s$)

▶【例】 设 $N \sim \text{Poisson}(10)$, $\{X_n, n \geq 1\}$ 为 iid 序列,满足

$$P(X_1 = 0) = P(X_1 = 2) = \frac{2}{5}, \quad P(X_1 = 1) = \frac{1}{5},$$

且 N 独立于 $\{X_n, n \ge 1\}$. 记 $S = \sum_{j=1}^N X_j$, 求 P(S = 5).

* 引入 Poisson 过程, 再应用命题 2.3.2

▶【例】 设 $X_1, X_2, ..., X_n$ iid $\text{Exp}(\lambda)$, 证明 $nX_{1:n}$, $(n-1)(X_{2:n} - X_{1:n})$, ..., $(n-k+1)(X_{k:n} - X_{(k-1):n})$, ..., $X_{n:n} - X_{(n-1):n}$ iid $\text{Exp}(\lambda)$.

* 引入 Poisson 过程,再应用定理 2.3.2 和指数分布的无记忆性模型:

- 设 n 个元件寿命分别为 $X_1, X_2, ..., X_n$ iid $\mathrm{Exp}(\lambda)$, 元件一旦失效立即用同一型号元件替换,每个元件是独立工作. 记 N(t) 为 $\{0,t\}$ 时间段失效的元件个数,则 $\{N(t), t \geq 0\}$ 为 $\{0,t\}$ 为 $\{0,t\}$ 件(失效)发生时刻为 $\{0,t\}$ 之 $\{0,t\}$ 之 $\{0,t\}$ 之 $\{0,t\}$ 。
- 当第一个失效发生时,扔掉该元件,把该时刻点记为时间起点(0点),考虑余下的正在工作的 (n-1) 个元件,一旦失效立即给与替换,则 $X_{2:n}-X_{1:n}\sim \mathrm{Exp}((n-1)\lambda)$,且独立于 $X_{1:n}$.
- 余下略.

- ▶ 定义 2.4.1 计数过程 $\{N(t), t \ge 0\}$ 称为强度函数 $\lambda(t)$ 的 非齐次 Poisson 过程, 若
 - N(0) = 0;
 - 过程具有独立增量性质;
 - $P(N(t+h) N(t) = 1) = \lambda(t)h + o(h);$
 - $P(N(t+h)-N(t) \geq 2) = \circ(h)$.

*

- (1) 非齐次 Poisson 过程,记为 NHPP(Non-homogeneous Poisson Process)
- (2) 在上述定义中,要求 $\lambda(t)$ 具有连续性

▶ 定理 2.4.1 设 $\{N(t), t \ge 0\}$ 为强度函数 $\lambda(t)$ 的 NHPP, 则

$$N(t+s)-N(t)\sim \mathrm{Poi}\left(m(t+s)-m(t)\right),\quad t\geq 0, s>0,$$

其中 m(t) 为均值函数

$$m(t) = \int_0^t \lambda(s) \, \mathrm{d}s.$$

* NHPP 的等价定义

- ▶ 定义 2.4.2 计数过程 $\{N(t), t \ge 0\}$ 称为强度函数 $\lambda(t)$ 的 NHPP, 若
 - N(0) = 0;
 - 过程具有独立增量性质;
 - $N(t+s) N(s) \sim \text{Poi}(m(t+s) m(s)), \forall s \geq 0, t > 0.$

▶ 定理 2.4.1 设 $\{N(t), t \ge 0\}$ 为强度函数 $\lambda(t)$ 的 NHPP, 则

$$N(t+s)-N(t)\sim \mathrm{Poi}\left(m(t+s)-m(t)\right),\quad t\geq 0, s>0,$$

其中 m(t) 为均值函数

$$m(t) = \int_0^t \lambda(s) \, \mathrm{d}s.$$

* NHPP 的等价定义

- ▶ 定义 2.4.2 计数过程 $\{N(t), t \ge 0\}$ 称为强度函数 $\lambda(t)$ 的 NHPP, 若
 - N(0) = 0;
 - 过程具有独立增量性质;
 - $N(t+s) N(s) \sim \text{Poi}(m(t+s) m(s)), \forall s \geq 0, t > 0.$

定理 2.4.1 证明: 固定 t, 记 $p_n(s) = P(N(t+s) - N(t) = n)$. 由

$$p_0(s+h) = P(N(t+s) - N(t) = 0, N(t+s+h) - N(t+s) = 0)$$

= $p_0(s)[1 - \lambda(t+s)h + o(h)]$

得

$$p'_0(s) = -\lambda(t+s)p_0(t+s), \quad t > 0.$$
 (*.4)

同样,对任意 $n \ge 1$,

$$\rho_n(s+h) = \sum_{j=0}^n P(N(t+s) - N(t) = n-j, N(t+s+h) - N(t+s) = j)
= \rho_n(s)[1 - \lambda(t+s)h] + \rho_{n-1}(s) \cdot \lambda(t+s)h + o(h),$$

化简得

$$p'_n(s) = -\lambda(t+s)p_n(s) + \lambda(t+s)p_{n-1}(s), \quad s > 0.$$
 (*.5)

记
$$N(t+s)-N(t)$$
 的概率母函数为 $\mathbb{P}(z,s)=\sum_{n=0}^{\infty}p_n(s)z^n$,则
$$\frac{\partial}{\partial c}\mathbb{P}(z,s)=\lambda(t+s)(z-1)\mathbb{P}(z,s).$$

求解得

$$\log \mathbb{P}(z,s) = (z-1)[m(t+s) - m(t)] + c(z), \tag{*.6}$$

其中 c(z) 待定. 由 $p_0(0) = 1$, $p_k(0) = 0$, $\forall k > 0$, 得

$$\mathbb{P}(z,0)\equiv 1.$$

代入 (*.3) 得 $c(z) \equiv 0$, 于是

$$\mathbb{P}(z,s) = \exp\big\{[m(t+s)-m(t)](z-1)\big\},\,$$

$$\mathbb{P} N(t+s) - N(t) \sim \operatorname{Poi}(m(t+s) - m(t)). \quad \blacksquare$$

HPP 与 NHPP 关系:

NHPP 可视为 HPP 随机抽样
 设 λ(t) 连续, 满足

$$\lambda(t) \leq \lambda_0 < \infty, \quad \forall \ t \geq 0.$$

设 $\{N^*(t), t \geq 0\}$ 是 $\mathsf{HPP}(\lambda_0)$, 且于时刻 s 发生的事件以概率

$$p(s) = \frac{\lambda(s)}{\lambda_0}$$

划入 | 型,以 N(t) 为 (0,t] 时间段划入 | 型事件数,则 $\{N(t),t\geq 0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP.

HPP 与 NHPP 关系:

• NHPP 可视为 HPP 对时间作变换产生的新过程设 $\lambda(t) > 0$ 连续, 定义

$$m(t) = \int_0^t \lambda(s) ds, \quad t > 0.$$

设 $\{N^*(t), t \ge 0\}$ 是 HPP(1), 定义

$$N(t) = N^*(m(t)),$$

则 $\{N(t), t \geq 0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP.

HPP 与 NHPP 关系:

• HPP 可视为 NHPP 对时间作变换产生的新过程 设 $\lambda(t) > 0$ 连续, 定义

$$m(t) = \int_0^t \lambda(s) ds, \quad t > 0.$$

设 $\{N(t), t \ge 0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP, 定义

$$N^*(t) = N(m^{-1}(t)),$$

则 $\{N^*(t), t \geq 0\}$ 是 HPP(1).

HPP与NHPP关系的应用:

▶ 定理 2.4.1 设计数过程 $\{N(t), t \geq 0\}$ 的事件发生时刻为

$$0 < S_1 < S_2 < \cdots < S_n < \cdots,$$

且
$$m(0) = 0$$
, $m'(t) = \lambda(t) > 0$. 若

$$m(S_1), m(S_2) - m(S_1), \ldots, m(S_n) - m(S_{n-1}), \ldots \text{ iid } \sim \text{Exp}(1),$$

则 $\{N(t), t \geq 0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP.

证明: 定义
$$N^*(t) = N(m^{-1}(t))$$
, 则 $\{N^*(t), t \ge 0\}$ 事件发生时刻为
$$0 < m(S_1) < m(S_2) < \dots < m(S_n) < \dots$$

则 $\{N^*(t), t \ge 0\}$ 是 HPP(1),于是 $\{N(t), t \ge 0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP. \blacksquare

NHPP 的等价定义

▶ 定义 2.4.3 设计数过程 $\{N(t), t \ge 0\}$ 的事件发生时刻为

$$0 < S_1 < S_2 < \cdots < S_n < \cdots,$$

且
$$m(0) = 0$$
, $m'(t) = \lambda(t) > 0$. 若

$$m(S_1), m(S_2) - m(S_1), \ldots, m(S_n) - m(S_{n-1}), \ldots \text{ iid } \sim \text{Exp}(1),$$

则称 $\{N(t), t \geq 0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP.

记录值过程

▶【例 2.4 (A)】 考虑非负序列 $\{X_n, n \ge 1\}$ iid $\sim F$, F 的 pdf 满足 f(x) > 0, x > 0, 该序列对应的记录值序列为

$$0 < R_1 < R_2 < \cdots < R_n < \cdots.$$

定义一个计数过程

$$N(t) = \#\{n: R_n \le t, n \ge 1\}, t \ge 0\},$$

则 $\{N(t), t \geq 0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP, 其中

$$\lambda(t) = \frac{f(t)}{\overline{F}(t)}, \quad t > 0.$$

记录值过程

证法一: 只验证定义 2.4.1 中(3) 和(4) 两条. 先约定 $X_0 = 0$, 则

$$P(N(t+h) - N(t) \ge 1)$$

$$= P\left(\bigcup_{n=1}^{\infty} \{X_n \in (t, t+h), X_n > \max\{X_0, X_1, \dots, X_{n-1}\}\right)$$

$$= \sum_{n=1}^{\infty} P(X_n \in (t, t+h), X_n > \max\{X_0, X_1, \dots, X_{n-1}\})$$

$$= \int_{t}^{t+h} \sum_{n=1}^{\infty} F^{n-1}(s) dF(s) = \lambda(t)h + o(h).$$

类似,

$$P(N(t+h)-N(t)\geq 2)=\circ(h).$$

$$\begin{split} & P\left(N(t+h) - N(t) \geq 2\right) \\ & = P\left(\bigcup_{n=1}^{\infty} \bigcup_{m=0}^{\infty} \left\{ (t,t+h) \, \text{中前两个记录值发生时刻为 } n \, \text{和 } n + m + 1 \right\} \right) \\ & = \circ(h) + \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} P\left(\left\{ (t,t+h) \, \text{中前两个记录值发生时刻为 } n \, \text{和 } n + m + 1 \right\} \right) \\ & = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} F^{n-1}(t) \int_{t}^{t+h} F^{m}(s) [F(t+h) - F(s)] \, \mathrm{d}F(s) + \circ(h) \\ & = \frac{1}{\overline{F}(t)} \cdot \int_{t}^{t+h} \frac{1}{\overline{F}(s)} [F(t+h) - F(s)] \, \mathrm{d}F(s) + \circ(h) \\ & = \frac{1}{\overline{F}(t)} \cdot \int_{t}^{t+h} \frac{1}{\overline{F}(s)} [F(s)h + \circ(h)] \, \mathrm{d}F(s) + \circ(h) \\ & = \circ(h). \end{split}$$

记录值过程

证法二: 首先,

$$m(t) = \int_0^t \lambda(s) ds = -\log \overline{F}(t), \quad t \geq 0.$$

由定义 2.4.3, 仅证明

$$\{m(R_n) - m(R_{n-1}), n \ge 1\} \text{ iid } \sim \text{Exp}(1),$$
 (*.7)

其中约定 $R_0 = 0$. 注意到

- $\{m(R_n), n \ge 1\}$ 为序列 $\{-\log \overline{F}(X_k), k \ge 1\}$ 的记录值序列;
- $\{-\log \overline{F}(X_k), k \geq 1\}$ iid $\sim \operatorname{Exp}(1)$,
- ⇒ (*.7) √ (利用例 1.6(B)). ■

最小修理过程

▶【例 2.4 (C)】 一个元件于时刻 0 投入使用, 元件寿命为 X ~ F, F 的 pdf 满足 f(x) > 0, x > 0. 元件一旦失效立即对元件进行最小修理 (即恢复到元件失效前的状态),修理时间不计.记 N(t)为该元件于 $\{0,t\}$ 时间段进行最小修理的次数, 则 $\{N(t),t>0\}$ 是强度函数为 $\lambda(t)$ 的 NHPP. 其中

$$\lambda(t) = \frac{f(t)}{\overline{F}(t)}, \quad t > 0.$$

* 最小修理

元件于时刻 t 进行最小修理是指修好后的元件剩余寿命 X,满足:

$$P(X_t > s) = \frac{\overline{F}(t+s)}{\overline{F}(t)}, \quad s > 0,$$

即

$$X_t \stackrel{\mathrm{d}}{=} [X - t | X > t].$$

最小修理过程

证明: 首先, $m(t) = \int_0^t \lambda(s) ds = -\log \overline{F}(t)$, 设最小修理时刻序列为 $\{S_n, n \geq 1\}$. 由定义 2.4.3, 仅证明

$$\{m(S_n) - m(S_{n-1}), n \ge 1\} \text{ iid } \sim \text{Exp}(1),$$
 (*.8)

其中约定 $S_0 = 0$. 注意到

- $m(S_1) = -\log \overline{F}(X) \sim \operatorname{Exp}(1);$
- 对 ∀ *s* > 0, *t* > 0,

$$\begin{split} & \mathrm{P}\left(m(S_2) - m(S_1) > t \middle| m(S_1) = s\right) \\ & = & \mathrm{P}\left(S_2 > F^{-1}(1 - e^{-s - t})\middle| S_1 = F^{-1}(1 - e^{-s})\right) \\ & = & \mathrm{P}\left(X > F^{-1}(1 - e^{-s - t})\middle| X > F^{-1}(1 - e^{-s})\right) = e^{-t}, \end{split}$$

牌 $m(S_2) - m(S_1), m(S_1)$ iid $\sim \text{Exp}(1)$.

余下类似可证. ■

对比

最小修理过程

例 2.4 (C)

事件:进行最小修理

 \longleftrightarrow 最小修理时刻 $S_n, n \ge 1$

$$P(S_n - S_{n-1} > t | S_{n-1} = s)$$

$$= \frac{\overline{F}(t+s)}{\overline{F}(s)}$$

$M/G/\infty$ -系统输出过程

▶【例 2.4 (B)】 考虑一个 $M/G/\infty$ -系统, 顾客到达过程为 HPP(λ), 服务台提供的服务时间 \sim G, 记 $N_{\rm out}(t)$ 为 (0,t] 时间段服务完毕的顾客人数, 则 $\{N_{\rm out}(t), t \geq 0\}$ 是强度函数为 $\lambda G(t)$ 的 NHPP.

分析: 定义

$$m(t) = \lambda \int_0^t G(s) ds,$$

仅需注明

- $N_{\text{out}}(t+s) N_{\text{out}}(s) \sim \text{Poi}(m(t+s) m(s)), \forall s, t > 0;$
- 对互不相交区间 A 和 B,

$$N_{\text{out}}(A)$$
 和 $N_{\text{out}}(B)$ 相独立.

$M/G/\infty$ -系统输出过程

为此,视于(s,s+t)被服务完毕离开系统的那个顾客到达为I-型事件,于时刻y的到达划入I-型的概率为

$$p(y) = \begin{cases} G(s+t-y) - G(s-y), & y \le s, \\ G(t+s-y), & s < y \le s+t, \\ 0, & y > s+t, \end{cases}$$

记 N₁(u) 为 (0, u] 时间段 I-型事件数,则

$$N_{\mathrm{out}}(t+s) - N_{\mathrm{out}}(s) = N_1(s+t) \sim \mathrm{Poi}\left(\eta\right),$$

其中

$$\eta = \lambda \int_0^{s+t} p(y) dy = m(t+s) - m(s).$$

类似可证 N_{out}(A) ⊥ N_{out}(B). ■

▶ 定义 2.5.1 $\{S(t), t \ge 0\}$ 称为复合 Poisson 过程,若 S(t) 可表示为

$$S(t) = \sum_{n=0}^{N(t)} X_n,$$

其中,

- (1) $\{N(t), t \geq 0\}$ β HPP(λ);
- (2) $\{X, X_n, n \ge 1\}$ iid $\sim F$;
- (3) $\{X_n, n \geq 1\}$ 独立于 $\{N(t), t \geq 0\}$.
- * 复合 Poisson 随机变量,复合 Poisson 过程,应用

复合 Poisson 过程 $\{S(t), t \geq 0\}$ 性质

- (1) 具有平稳和独立增量性质;
- (2) 求均值、方差(设 $EX_1^2 < \infty$)
 - 矩母函数(mgf)法: 设 X 的 mgf 为 $M_X(z)$, 则 S(t) 的 mgf 为 $M_{S(t)}(z) = \exp \left\{ \lambda t (M_X(z) 1) \right\}.$ 于是, $\mathrm{E}\left[S(t)\right] = \lambda t \cdot \mathrm{E}\,X$, $\mathrm{Var}\left(S(t)\right) = \lambda t \cdot \mathrm{E}\,X^2$.
 - 两步走方法:

$$\begin{split} \mathrm{E}\left[S(t)\right] &= \mathrm{E}\left\{\mathrm{E}\left[S(t)|N(t)\right]\right\} = \mathrm{E}\left[N(t)\cdot\mathrm{E}\,X\right] = \lambda t\cdot\mathrm{E}\,X, \\ \mathrm{Var}\left(S(t)\right) &= \mathrm{E}\left[\mathrm{Var}\left(S(t)|N(t)\right)\right] + \mathrm{Var}\left(\mathrm{E}\left[S(t)|N(t)\right]\right) \\ &= \mathrm{E}\left[N(t)\cdot\mathrm{Var}\left(X\right)\right] + \mathrm{Var}\left(N(t)\cdot\mathrm{E}\,X\right) \\ &= \lambda t\cdot\mathrm{E}\,X^2. \end{split}$$

- (2) 求均值、方差(设 $EX_1^2 < \infty$)
 - Poisson 过程事件分类方法 (仅适用于 X 离散取值情形): 设 X 取值于 $\{x_1, x_2, ..., x_m\}$ 且 $p_j = P(X = x_j), j = 1, ..., m$. 记

$$N_j(t) = \#\{k: X_k = x_j, 1 \leq k \leq N(t)\},\$$

则 $N_1(t),\ldots,N_m(t)$ 相互独立, $N_j(t)\sim \operatorname{Poi}(\lambda t p_j)$, $\forall j$,且

$$S(t) = \sum_{j=1}^{m} x_j N_j(t).$$

于是

$$E[S(t)] = \sum_{j=1}^{m} x_j \cdot \lambda t p_j = \lambda t \cdot E X,$$

$$\operatorname{Var}(S(t)) = \sum_{j=1}^{m} x_j^2 \cdot \lambda t p_j = \lambda t \cdot \operatorname{E} X^2.$$

复合 Poisson 过程 $\{S(t), t \geq 0\}$ 性质

(3) 高阶中心矩

$$E[S(t)] = \lambda t \cdot E X,$$

$$Var(S(t)) = \lambda t \cdot E X^{2},$$

$$E[S(t) - E S(t)]^{3} = \lambda t \cdot E X^{3},$$

$$E[S(t) - E S(t)]^{4} \neq \lambda t \cdot E X^{4}.$$

▶【例 2.5 (A)】 (冲击模型) 一个元件易于收到外界的冲击,冲击发生可以用 $HHP(\alpha)$ 描述,于时刻 s 发生的冲击造成的损失其分布为 F_s ,依赖于 s. 于是,(0,t] 时间段冲击造成的损失累计为

$$W(t) = \sum_{j=1}^{N(t)} Z_j,$$

此处 Z_j 之间既不独立,也不同分布.

* W(t) 的随机表示: 设 Y(s) 表示于时刻 s 发生的冲击所造成的损失,独立于 $\{S_n, n \geq 1\}$,则

$$W(t) = \sum_{j=1}^{N(t)} Y(S_j),$$

设 $\{U_k, k \geq 1\}$ iid $\sim U(0, t)$. 应用定理 2.3.1, 得

$$[W(t)|N(t) = n] = \left[\sum_{j=1}^{n} Y(S_j)|N(t) = n\right]$$

$$\stackrel{d}{=} \left[\sum_{j=1}^{n} Y(U_{j:n})\right] = \left[\sum_{j=1}^{n} Y(U_j)\right]$$

 \Longrightarrow

$$W(t) \stackrel{\mathrm{d}}{=} \sum_{j=1}^{N(t)} Y(U_j) = \sum_{j=1}^{N(t)} X_j,$$

其中 $X_j = Y(U_j), j \ge 1$, $iid \sim F$, $\{X_k, k \ge 1\}$ 独立于 $\{N(t), t \ge 0\}$, 且

$$F(x) = \frac{1}{t} \int_0^t F_s(x) \, \mathrm{d}s.$$

一个复合 Poisson 恒等式

复合 Poisson 随机变量: $W = \sum_{j=1}^{N} X_j$, $N \sim \text{Poi}(\lambda)$, $X_1 \sim F$

▶ 命题 2.5.1 设 X ~ F, X ⊥ W, 则

$$\mathrm{E}\left[W\,h(W)\right] = \lambda\cdot\mathrm{E}\left[X\,h(W+X)\right],\quad\forall\,h(t).$$

证明: 设X独立于所有的随机变量.对任意 n ≥ 0,

$$E[W h(W)|N = n] = n \cdot E\left[X h\left(X + \sum_{i=1}^{n-1} X_i\right)\right],$$

$$E[W h(W)] = \lambda \sum_{n=1}^{\infty} e^{-\lambda} \frac{\lambda^{n-1}}{(n-1)!} \cdot E\left[X h\left(X + \sum_{i=1}^{n-1} X_i\right)\right]$$

$$= \lambda \cdot E\left[X h(W + X)\right]. \quad \blacksquare$$

命题 2.5.1 的应用

复合 Poisson 随机变量: $W = \sum_{j=1}^{N} X_j$, $N \sim \text{Poi}(\lambda)$, $X_1 \sim F$

▶ 推论 2.5.2 设 X ~ F, 则对任意正整数 n,

$$\mathrm{E}\left[W^{n}\right] = \lambda \sum_{j=0}^{n-1} \binom{n-1}{j} \mathrm{E}\left[W^{j}\right] \cdot \mathrm{E}\left[X^{n-j}\right].$$

证明: 在命题 2.5.1 中取 $h(x) = x^{n-1}$, 则

$$\mathrm{E}\left[W^{n}\right] = \mathrm{E}\left[W \cdot W^{n-1}\right] = \lambda \cdot \mathrm{E}\left[X\left(W + X\right)^{n-1}\right].$$

求 pmf 的递推公式

复合 Poisson 随机变量: $W=\sum_{j=1}^N X_j,\ N\sim \operatorname{Poi}(\lambda),\ X_1\sim F,\ X_1$ 为正整值随机变量. 定义

$$\alpha_i = P(X_1 = i), \quad P_j = P(W = j), \quad i \ge 1, \ j \ge 0.$$

▶ 推论 2.5.3

$$P_0 = e^{-\lambda}, \quad P_n = \frac{\lambda}{n} \sum_{j=1}^n j \alpha_j P_{n-j}, \quad n \ge 1.$$

证明: 设
$$n \ge 1$$
, 在命题 2.5.1 中取 $h(x) = \frac{1}{n} \cdot 1_{\{n\}}(x)$, 则

$$P_n = \lambda \operatorname{E} [X h(W+X)] = \lambda \operatorname{E} \{ \operatorname{E} [X h(W+X)|X] \}$$
$$= \sum_{j=0}^n \lambda \alpha_j \operatorname{E} [j \cdot h(W+j)] = \operatorname{RHS}. \quad \blacksquare$$

§2.6 条件 Poisson 过程

▶ 定义 2.6.1 计数过程 $\{N(t), t \ge 0\}$ 称为条件 Poisson 过程,若存在一个非负随机变量 $\Lambda \sim G$,使得

$$[{N(t), t ≥ 0}|Λ = λ]$$
 为 HPP(λ).

*

- 不是 Poisson 过程;
- 具有平稳增量, 但不具有独立增量;
- R P(N(t+s) N(t) = n);
- $R P(\Lambda \leq x | N(t) = n].$
- 【例 2.6(A)】

§2.6 条件 Poisson 过程

▶ 定理 2.6.1 设 $\{N(t), t \ge 0\}$ 为条件 Poisson 过程,则

$$\left[\left(S_{1},S_{2},\ldots,S_{n}\right)\middle|N(t)=n\right]\stackrel{\mathrm{d}}{=}\left(U_{1:n},U_{2:n},\ldots,U_{n:n}\right),$$

其中 U_1, U_2, \ldots, U_n iid $\sim U(0, t), U_{1:n} < U_{2:n} < \cdots < U_{n:n}$ 为 U_1, \ldots, U_n 的次序统计量.

* $(U_{1:n}, U_{2:n}, \ldots, U_{n:n})$ 的联合 pdf 为

$$g(t_1, t_2, \ldots, t_n) = \frac{n!}{t^n}, \quad \forall \, 0 < t_1 < t_2 < \cdots < t_n < t.$$

§2.6 条件 Poisson 过程

▶ 定理 2.6.1* 设 $\{N(t), t \ge 0\}$ 为条件 Poisson 过程,则

$$\left[\left(S_1,S_2,\ldots,S_n\right)\Big|S_{n+1}=t\right]\stackrel{\mathrm{d}}{=} \left(U_{1:n},U_{2:n},\ldots,U_{n:n}\right)\!,$$

其中 U_1, U_2, \ldots, U_n iid $\sim U(0, t), U_{1:n} < U_{2:n} < \cdots < U_{n:n}$ 为 U_1, \ldots, U_n 的次序统计量.

证明: 直接利用 $(X_1, X_2, ..., X_{n+1}) \longleftrightarrow (S_1, S_2, ..., S_{n+1})$ 初等变换.

第2章第一次作业

4, 5, 14-20

第2章第二次作业

22, 30, 31, 32, 38, 39