Minimax Rate of Distribution Estimation On Unknown Submanifolds Under Adversarial Loss

Sharan Sahu, Raghav Ramanujam

University of California, Berkeley ssahu01@berkeley.edu, rramanujam@berkeley.edu

May 4, 2023

Overview

- Background
 - Motivation
- 2 Mathematical Definitions and Problem Formulation
 - Generative Models
 - Adversarial Loss
 - Hölder class and Adversarial Loss
 - Smooth Submanifolds
 - Problem Formulation
- Minimax Rates
 - Minimax Rate Of Distribution Estimation
- 4 Conclusion

Motivation

Generative Adversarial Network Real Samples Latent Space Is D Correct? Discriminator G Generated Generator Fake Samples Fine Tune Training Noise For AE Encoder Decoder x

For VAE

Section 2

Mathematical Definitions and Problem Formulation

Generative Models

Definition: Generative Models

A generative model is a (ν, G) pair where ν is a distribution on a low-dimensional latent space $\mathcal{Z} \subset \mathbb{R}^d$ called the generative distribution, and $G: \mathcal{Z} \to \mathbb{R}^d$ called the generative map.

- Generative models decouples distribution estimation into manifold learning (estimation of G) + density estimation on the manifold (estimation of ν)
- @ Generating samples from an underlying distribution is more important and useful than estimating the distribution
- Generative models can capture highly nonlinear structures that may lead to singularities (such as jumps and point mass) in the distribution and are hard to characterize via a density or distribution function

Adversarial Loss

Definition: Adversarial Loss

With respect to **discriminator class** F of bounded and Borel-measurable functions, the **adversarial loss** between two probability measures μ and ν is given by:

$$d_{\mathcal{F}}(\mu,
u) = \sup_{f \in \mathcal{F}} |\int_{\mathbb{R}^D} f(x) d\mu - \int_{\mathbb{R}^D} f(x) d\nu|$$

- Useful when candidates distributions have different supports
- Many statistics can be defined as an integral of f w.r.t underlying measure
- **3** Computational ease due to empirical sampling of $d_{\mathcal{F}}$

γ -smooth Hölder class

Definition: γ -smooth Hölder class

The γ -smooth Hölder class with radius r > 0 over input space Ω as

$$C_r^{\alpha}(\Omega) = \{ f : \Omega \to \mathbb{R} \mid ||f||_{C_r^{\alpha}(\Omega)} = \sum_{|a| \le \lfloor \alpha \rfloor} \max_{x \in \Omega} |f^{(a)}(x)|$$

$$+ \sum_{|\mathbf{a}|=\lfloor \alpha \rfloor} \max_{\mathbf{x},\mathbf{y} \in \Omega, \mathbf{x} \neq \mathbf{y}} \frac{f^{(\mathbf{a})}(\mathbf{x}) - f^{(\mathbf{a})}(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|^{\alpha - \lfloor \alpha \rfloor}} \}$$

The vector valued function space counterpart is given by

$$C_r^{\alpha}(\Omega; \mathbb{R}^d) = \{ f = (f_1, \dots, f_D) : \Omega \to \mathbb{R}^D \mid \forall j \in [D], f_j \in C_r^{\alpha}(\Omega) \}$$

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣りで

Hölder class and Adversarial Loss

Note: Adversarial Loss w.r.t. γ -smooth Hölder class

In this problem, adversarial loss with respect to the $\gamma\text{-smooth}$ Hölder class on the unit ball is used, and is given by

$$d_{\gamma}(\mu,
u) = \sup_{f \in C^{lpha}_{r}(\mathbb{R}^{d})} |\int_{\mathbb{R}^{D}} f(x) d\mu - \int_{\mathbb{R}^{D}} f(x) d
u|$$

- **1** d_{γ} is a valid probability metric (triangle inequlity, Weierstrauss approximation implies $d_{\gamma}(\mu,\nu)=0$ iff $\mu=\nu$)
- When restricted to bounded set, equivalent to Wasserstein-1 when $\gamma=1$, approaches TV distance as $\gamma\to 0_+$
- **3** Smaller $\gamma \implies$ higher sensitivity to support misalignment

Smooth Submanifolds

Definition: β -smooth d-dimensional manifold $\mathcal M$

A β -smooth d-dimensional manifold $\mathcal M$ is a topological space satisfying the following properties:

- There exists an atlas on $\mathcal M$ consisting of a collection of d-dimensional charts $\mathscr A=\{(U_\lambda,\varphi_\lambda)\}_{\lambda\in\Lambda}$ such that $\mathcal M=\bigcup_{\lambda\in\Lambda}U_\lambda$
- ② Each chart in (U,φ) in atlas $\mathscr A$ consists of a homeomorphism $\varphi:U\to \tilde U$ called a coordinate map from the open set $U\subset M$ to an open set $\tilde U\subset \mathbb R^d$. That is, φ is bijective and both φ and φ^{-1} are continuous
- **3** Any two charts (U, φ) and (V, ψ) in atlas $\mathscr A$ are compatible. That is, the transistion map $\varphi \circ \psi^{-1} : \psi(U \cap V) \to \varphi(U \cap V)$ is C^{β} -diffeomorphic

Comments:

1 Homeomorphic \implies Diffeomorphic. Consider $f(x) = x^3$

Smooth Submanifolds Illustration

Problem Formulation

Setup: Minimax estimation on submanifold

In the rest of this presentation, we will establish the minimax rate of convergence for the adversarial risk on $\mu^* \in \mathcal{P}^*$ of distribution estimation on an unknown submanifold with i.i.d examples $X_1, \dots, X_n \sim u^*$

Section 3

Minimax Rates

Minimax Rate Of Distribution Estimation

Theorem: Minimax Rate of Distribution Estimation

Fix $L^*>0$, $\gamma\geq 0$, $0\leq \alpha\leq \beta-1$, $\beta>1$, and $D,d\in \mathbb{N}^+$ with D>d. Write $\mathcal{P}^*=\mathcal{P}^*(L^*,\gamma,\alpha,\beta,d,D)$. Then,

1 there exists a constant L_0 such that when $L^* \geq L_0$, then

$$\inf_{\hat{\mu} \in \mathcal{P}(\mathbb{R}^{\mathcal{D}})} \sup_{\mu \in \mathcal{P}^*} \mathbb{E}\left[\textit{d}_{\gamma}(\hat{\mu}, \mu) \right] \geq \textit{Cn}^{-\frac{1}{2}} \vee \textit{n}^{\frac{-\alpha + \gamma}{2\alpha + d}} \vee \textit{n}^{-\frac{\gamma\beta}{d}}$$

② there exists positive constants L_1 , L_2 such that for any $L \ge L_1$ and open cover $\mathscr{O}_M = \{\mathbb{B}_{r_m}(a_m)^\circ\}_{m \in [M]}$ of \mathbb{B}_L^D with $\max\{r_1, r_2, ..., r_M\} \le L_2$, it holds that

$$\inf_{\hat{\mu} \in \mathcal{S}_{\nu_0}^{\mathrm{ap}}} \sup_{\mu \in \mathcal{P}^*} \mathbb{E}\left[d_{\gamma}(\hat{\mu}, \mu)\right] \leq C \left(\frac{n}{\log n}\right)^{-\frac{1}{2}} \vee \left(\frac{n}{\log n}\right)^{\frac{-\alpha + \gamma}{2\alpha + d}} \vee \left(\frac{n}{\log n}\right)^{-\frac{\gamma\beta}{d}}$$

Minimax Rate Of Distribution Estimation

Intuition and Proof Insight Sketch For Lower Bound

For obtaining the lower bound, we use the standard Fano's and Le Cam's method by identifying a subset of distributions within the considered distribution family $\mathcal{P}^*(L^*,\gamma,\alpha,\beta,d,D)$ that are statistically hard to distinguish. Here is a breakdown of the methods used to obtain the bound

- ① $n^{-\frac{\gamma\beta}{d}}$ reflects the statistical hardness of estimating an unknown β -smooth submanifold [Use Fano's Method]
- 2 $n^{-\frac{1}{2}} \vee n^{\frac{-\alpha+\gamma}{2\alpha+d}}$ reflects the statistical hardness of estimating an unknown α -smooth density as if the submanifold is known [Use Fano for first, Le Cam for second]

Minimax Rate Of Distribution Estimation

Intuition and Proof Insight Sketch For Upper Bound

For obtaining the upper bound, we make use of wavelets. We create a surrogate loss $\hat{\mathcal{J}} = \hat{\mathcal{J}}_l + \hat{\mathcal{J}}_s + \hat{\mathcal{J}}_h$ to approximate $\mathbb{E}\left[d_\gamma(\hat{\mu},\mu)\right]$. Now, by using similar techniques we saw in Homework 1 with some clever tricks, we can obtain the upper bound

- To recall the techniques in Homework 1, we upper bounded the L^2 risk of a wavelet smoothing operator by its truncation, discretization, and estimation error. We can then upper-bound each one of these to get our final upper bound
- ② The $\frac{n}{\log n}$ terms come from using Bernstein's inequality

Conclusion

- We established a setup using a generative model structure and adversarial loss which generalizes well and gives us flexibility in our model based on our discriminator class choice
- Walked through minimax rate of convergence for the aforementioned loss based on i.i.d samples from an unknown submanifold
- Breakthrough is rate is not dependent on D, and therefore the results break the "curse of dimensionality"

References

- Rong Tang and Yun Yang. Minimax rate of distribution estimation on unknown submanifold under adversarial losses. ArXiv:2202.09030, 2022.
- @ Gharakhanian, Al. "Generative Adversarial Network." Generative Adversarial Networks – Hot Topic in Machine Learning, 2016, https://www.kdnuggets.com/2017/01/generative-adversarialnetworks-hot-topic-machine-learning.html. Accessed 1 May 2023.
- Yadav, Sunil. "Variational Autoencoder." Variational Autoencoders, 2021, https://data-science-blog.com/blog/2022/04/19/variationalautoencoders/. Accessed 1 May 2023.
- Mimetic framework on curvilinear quadrilaterals of arbitrary order -Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Coordinate-charts-on-a-manifold_fig_51956714 [accessed 2 May, 2023]