Microbiome Simulation Analysis

Olajumoke Evangelina Owokotomo 6/13/2019

General information

• This is a simulation study to study the relatonship between the probability of inclusion from the BVS approach, the R_h^2 from the information theory approach and the adjusted association from the joint moelling approach.

Simulation procedure (One dataset analysis)

For simulating the dataset the following steps and values were used;

- The joint error term for X and Y was assumed to have mean = (0,0) and covariance matrix = ε $\begin{bmatrix} \sigma_x^2 & \sigma_{xy}^2 \\ \sigma_{xy}^2 & \sigma_y^2 \end{bmatrix}$
- The $\sigma_x^2 = \sigma_y^2 = 1$.
- $\rho_{xy} = \sigma_{xy}^2$ because $\sigma_x^2 = \sigma_y^2 = 1$.
- $\rho_{xy} = c(0.25, 0.50, 0.75, 0.90).$
- $\varepsilon_1 = \begin{bmatrix} 1 & 0.25 \\ 0.25 & 1 \end{bmatrix}$, $\varepsilon_2 = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$, $\varepsilon_3 = \begin{bmatrix} 1 & 0.75 \\ 0.75 & 1 \end{bmatrix}$, $\varepsilon_4 = \begin{bmatrix} 1 & 0.90 \\ 0.90 & 1 \end{bmatrix}$.
- The number of subjects in each treatment group is 50, therfore $Z_i = 100$.

$$X_i = \alpha_0 + \alpha_1 Z_i + \epsilon_i^x$$
$$Y_i = \beta_0 + \beta_1 Z_i + \epsilon_i^y$$

- ϵ_i^x and ϵ_i^y were obtained using rmvnorm(100, c(0,0), ε) for each correlation.
- Using the following true value: $\alpha_0 = 1$, $\alpha_1 = 5$, $\beta_0 = 5$, $\beta_1 = 2$.
- The combination of the true parameter values and ϵ_i^x and ϵ_i^y was then used to simulate 1000 dataset for each correllation; we therefore have 1000 dataset for each cor=0.25, for cor=0.5, for cor=0.75 and for cor=0.90.