Matematică M_mate-info

Testul 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul elementelor mulțimii $M = \{n \in \mathbb{N} | n^2 < 7 + \sqrt{7} \}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + m$, unde m este număr real. Determinați valorile reale ale lui m pentru care vârful parabolei asociate funcției f are ordonata strict mai mare decât f.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+3} = x-3$.
- **5p** | **4.** Determinați numărul submulțimilor cu cel mult 2 elemente ale unei mulțimi cu 12 elemente.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,1) și B(-1,2). Determinați coordonatele punctului de intersecție a paralelei prin A la OB cu paralela prin B la OA.
- **5p** 6. Arătați că $\frac{1}{1+\lg x} + \frac{1}{1+\operatorname{ctg} x} = 1$, pentru orice $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} 1-a & 2a & 0 \\ -a & 1+2a & 0 \\ 0 & 0 & 1+a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(1)) = 4$.
- **5p b)** Demonstrați că $A(a) \cdot A(b) = A(a+b+ab)$, pentru orice numere reale $a \neq b$.
- **5p** c) Demonstrați că, dacă a, b și c sunt numere reale pentru care $A(a) \cdot A(b) \cdot A(c) = A(0)$, atunci (1+a)(1+b)(1+c)=1.
 - **2.** Pe mulțimea $M = (0, +\infty)$ se definește legea de compoziție $x * y = \sqrt{x^2 + y^2}$.
- **5p a)** Arătați că 3*4=5.
- **5p b)** Determinați $x \in M$ pentru care $x * \sqrt{5} < x + 1$.
- 5p c) Demonstrați că există o infinitate de perechi (m,n) de numere naturale nenule, pentru care numerele m, n și m*n sunt termeni consecutivi ai unei progresii aritmetice.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \sqrt{x^2 4x + 5}$.
- **5p** a) Arătați că $f'(x) = \frac{\sqrt{x^2 4x + 5} x + 2}{\sqrt{x^2 4x + 5}}, x \in \mathbb{R}$.
- **5p** | **b**) Demonstrați că funcția f este strict crescătoare pe \mathbb{R} .
- **5p** c) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$.
- **5p** a) Arătați că $\int_{0}^{1} f(x) dx = \frac{4}{3}$.

5p b) Calculați
$$\int_{0}^{1} e^{x} f(x) dx$$
.
5p c) Arătați că $\int_{-1}^{1} |x \ln(f(x))| dx = 2 \ln 2 - 1$.

Examenul national de bacalaureat 2021

Proba E. c) Matematică *M mate-info*

Testul 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că numărul $n = (1+6i)^2 + (3-2i)^2$ este întreg negativ, unde $i^2 = -1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax$, unde a este număr real astfel încât f(1) = f(5). Arătați că f(2) = f(4).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(2x^2 2) = 2\log_3(x + 1)$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă cifra unităților egală cu suma dintre cifra sutelor și cifra zecilor.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,4), B(-4,3) și C, astfel încât AOBC este paralelogram. Arătați că triunghiul ACB este dreptunghic isoscel.
- **5p 6.** Determinați $x \in (0, \pi)$ pentru care $2\sin x \sin(\pi x) = 1$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} a & a+1 & a+2 \\ 1 & 2 & 3 \\ 1 & 1 & a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(2))=1$.
- **5p b)** Determinați numărul real a pentru care A(a)A(1) = A(1)A(a).
- **5p** c) Determinați numărul real a pentru care matricea A(a) are rangul doi.
 - **2.** Pe mulțimea \mathbb{Z}_6 se definește legea de compoziție $x \circ y = xy + x + y$.
- **5p** a) Arătați că $\hat{3} \circ \hat{3} = \hat{3}$.
- **5p b)** Arătați că $\hat{0}$ este elementul neutru al legii de compoziție " \circ ".
- **5p** c) Demonstrați că funcția $f: \mathbb{Z}_6 \to \mathbb{Z}_6$, $f(x) = \hat{4} \circ x$ este bijectivă.

- **1.** Se consideră funcția $f:(-1,1)\cup(1,+\infty)\to\mathbb{R}, \ f(x)=\frac{1}{(x-1)^2}-\frac{1}{(x+1)^2}$.
- **5p** a) Arătați că $f'(x) = \frac{-4(3x^2+1)}{(x^2-1)^3}, x \in (-1,1) \cup (1,+\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul în care graficul funcției f intersectează axa O_Y .
- **5p** c) Calculați $\lim_{n\to+\infty} (f(2)+f(4)+f(6)+...+f(2n))^n$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2x-2}{x^2+4}$.
- **5p a)** Arătați că $\int_{0}^{2} (x^2 + 4) f(x) dx = 0$.
- **5p b)** Calculați $\int_{0}^{2\sqrt{3}} f(x)dx$.
- **5p** c) Demonstrați că $\int_{1}^{x} f(t)dt \ge 0$, pentru orice număr real x.

Matematică M_mate-info

Testul 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 1 + i. Arătați că $z^2 z i = -1$.
- **5p** 2. Determinați cel mai mic număr natural n pentru care ecuația $x^2 3x + 3 n = 0$ are două soluții distincte în mulțimea numerelor reale.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_5(25x) + \log_x 5 = 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 2 sau cu 3.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,2), B(4,2) și C(3,0). Calculați aria triunghiului ABC.
- **5p 6.** Se consideră expresia $E(x) = \sin x \sin(\pi x) + \cos x + \cos(\pi x) + \operatorname{tg} 2x$, unde $x \in \left(0, \frac{\pi}{4}\right)$. Arătați că $E\left(\frac{\pi}{8}\right) = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ și $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că $\det(A+I_3)=1$.
- **5p b**) Arătați că $A \cdot A \cdot A = O_3$.
- **5p** c) Demonstrați că, dacă $X \in \mathcal{M}_3(\mathbb{R})$ pentru care $A \cdot X = X \cdot A$, atunci există numerele reale a, b și c, astfel încât $X = aI_3 + bA + cA \cdot A$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = |x y|.
- **5p** a) Arătați că (5*2)*1=2.
- 5p b) Arătați că legea de compoziție "*" este comutativă.
- **5p** c) Demonstrați că $(a*b)+(b*c) \ge a*c$, pentru orice numere reale a, b și c.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 2x + 1}{e^x}$.
- **5p** a) Arătați că $f'(x) = \frac{-(x-1)(x-3)}{e^x}, x \in \mathbb{R}$.
- **5p** \mid **b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că $x-1 \le 2e^{\frac{x-3}{2}}$, pentru orice $x \in [1,+\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \sqrt{x+1}$
- **5p a)** Arătați că $\int_{0}^{2} f^{2}(x) dx = 4$.

- **5p b)** Calculați $\int_{0}^{1} \ln(f(x)) dx$.
- **5p** c) Demonstrați că există un singur număr real x, $x \in [0, +\infty)$, pentru care $\int_{0}^{x} e^{f(t)} dt = 2021$.

Matematică M mate-info

Testul 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Se consideră un număr complex z care are proprietatea $z^2 = 1 i$. Arătați că $z^4 + 2i = 0$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + m$, unde m este număr real. Determinați valorile reale ale lui m pentru care f(x) > 1, pentru orice număr real x.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_5(x+2) + \log_5(2x-1) = 2$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă suma cifrelor divizibilă cu 9.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,1), B(3,2) și C(4,5). Determinați coordonatele punctului D, știind că $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{0}$.
- **5p** | **6.** Determinați $x \in (0,1)$ pentru care $4\cos x \cos(\pi x) + 3 = 0$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- **5p** a) Arătați că det A = 6.
- **5p b**) Arătați că $A \cdot B + B = B \cdot A$.
- **5p** c) Determinați numerele reale x și y, știind că $(x+1)A \cdot B + (y-2)B \cdot A = B \cdot B \cdot B$.
 - **2.** Pe multimea numerelor naturale nenule se definește legea de compoziție $x * y = x^y$.
- **5p a)** Arătați că 2*4=4*2.
- **5p b**) Arătați că legea de compoziție "*" **nu** este comutativă.
- **5p** | **c**) Determinați numerele naturale nenule n pentru care (2*2)*n < 64.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x + \ln(x^2 + x + 1)$.
- **5p** a) Arătați că $f'(x) = \frac{2x^2 + 4x + 3}{x^2 + x + 1}, x \in \mathbb{R}$.
- **5p b**) Calculați $\lim_{x \to +\infty} (f(x+1) f(x)).$
- **5p** c) Demonstrați că funcția f este bijectivă.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1.
- **5p** a) Arătați că $\int_{0}^{1} f(x) dx = 0$.
- **5p b)** Calculați $\int_{0}^{1} e^{x} |f(x)| dx$.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 f^n(x) dx$. Calculați $\lim_{n \to +\infty} I_n$.

Examenul național de bacalaureat 2021 Proba E. c) Matematică *M mate-info*

Testul 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul complex z, pentru care $z 2\overline{z} = -2 + 6i$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + m$, unde m este număr real pozitiv. Determinați numărul real pozitiv m pentru care numerele f(0), f(1) și f(2) sunt, în această ordine, termeni consecutivi ai unei progresii geometrice.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2\log_5(x-1) = \log_5(3x+1)$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{0,1,2,...,20\}$, pătratul acestui număr să aparțină mulțimii A.
- **5p** | **5.** Se consideră punctele A, B, C și D, astfel încât $2\overrightarrow{AD} = \overrightarrow{BD} + \overrightarrow{AC}$. Demonstrați că $\overrightarrow{AB} = \overrightarrow{DC}$.
- **5p 6.** Se consideră triunghiul ABC cu măsura unghiului A de 30° . Arătați că lungimea laturii BC este egală cu lungimea razei cercului circumscris triunghiului.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(m) = \begin{pmatrix} 1 & 0 & 0 \\ m & 1 & 0 \\ 0 & m & 1 \end{pmatrix}$, unde m este număr real.
- **5p** a) Arătați că $\det(A(m) + A(-m)) = 8$, pentru orice număr real m.
- **5p b)** Determinați numărul real m pentru care are loc egalitatea $A(m) \cdot A(m) = A(0)$.
- **5p** c) Demonstrați că A(1) A(2) + A(3) A(4) + ... + A(2n-1) A(2n) = n(A(-1) A(0)), pentru orice număr natural nenul n.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x * y = x^2 + 4xy + y^2$.
- **5p a)** Arătați că $\frac{1}{2} * \frac{3}{2} = \frac{11}{2}$.
- **5p b)** Determinați numerele reale x pentru care (x*(-x))*((-x)*x)=24x.
- **5p** c) Demonstrați că $x * \frac{1}{x} \ge 6$, pentru orice număr real nenul x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+2}{\sqrt{x^2+2}}$.
- **5p** a) Arătați că $f'(x) = \frac{2(1-x)}{(x^2+2)\sqrt{x^2+2}}, x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} (f(x))^{2x}$.
- **5p** c) Demonstrați că $\frac{e^x + 2}{\sqrt{3}} \le \sqrt{e^{2x} + 2}$, pentru orice număr real x.

- **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^3 \ln x$.
- **5p** a) Arătați că $\int_{1}^{\sqrt{2}} (f(x) + \ln x) dx = \frac{3}{4}.$
- 5p b) Calculați $\int_{1}^{e} x \left(x^3 f(x)\right) dx$. 5p c) Arătați că $\int_{1}^{e^2} \frac{1}{x} f(\sqrt{x}) dx = \frac{2e^3 5}{3}$.

Matematică M mate-info

Testul 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că numerele $\sqrt[3]{4}$, $\log_3 9$ și $\sqrt[3]{16}$ sunt termeni consecutivi ai unei progresii geometrice.
- **5p** 2. Se consideră o funcție impară $f: \mathbb{R} \to \mathbb{R}$. Demonstrați că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = (f(x))^2$ este pară.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2^{2x} \sqrt{2} \cdot 2^x = 2^{x+1} 2\sqrt{2}$
- **5p** 4. Determinați termenul care îl conține pe x^8 din dezvoltarea $\left(x\sqrt{x} + \frac{1}{x^2}\right)^{10}$, unde $x \in (0, +\infty)$.
- **5p 5.** În planul triunghiului \overrightarrow{ABC} se consideră punctul M, astfel încât $2\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$. Determinați numărul real k, știind că $\overrightarrow{BC} = k \cdot \overrightarrow{CM}$.
- **5p 6.** Determinați $x \in (0,\pi)$, știind că $\sin 2x + 6\cos x \sin x 3 = 0$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & -1 & 0 \\ 4 & -1 & -1 \end{pmatrix}$ și $M(m) = \begin{pmatrix} -1 & -1 & 1 \\ -1 & m & 1 \\ m-1 & m & -m \end{pmatrix}$, unde m este număr real.
- **5p** a) Arătați că det A = -1.
- **5p** b) Demonstrați că, pentru orice număr real m, rangul matricei M(m) este cel puțin egal cu 2.
- **5p** c) Determinați numărul real m, $m \ne -1$, știind că inversa matricei M(m) este matricea A.
 - **2.** Pe mulțimea numerelor complexe se definește legea de compoziție $z_1 \circ z_2 = z_1 + z_2 + z_1 z_2$.
- **5p a)** Arătați că $(2+i) \circ (2-i) = 9$.
- **5p b)** Demonstrați că, pentru orice număr real nenul a, numărul $A = (-1 + (a+1)i) \circ (-1 + (a-1)i)$ este real strict mai mic decât 0.
- **5p** c) Determinați numerele complexe z pentru care $z \circ z = -5$.

- 1. Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}$, $f(x)=\ln\frac{x+1}{x+3}$.
- **5p** a) Arătați că $f'(x) = \frac{2}{(x+1)(x+3)}, x \in (-1, +\infty).$
- **5p b)** Determinați ecuația asimptotei verticale la graficul funcției f.
- **5p** c) Calculați $\lim_{x \to +\infty} (xf(x))$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x^2 + 1)e^{-x}$.
- **5p** a) Arătați că $\int_{0}^{1} (e^{x} f(x) 2) dx = -\frac{2}{3}$.

- **5p b)** Calculați $\int_{1}^{e} f(\ln x) dx$.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 x^n f(x) dx$. Calculați $\lim_{n \to +\infty} I_n$.

Matematică M_mate-info

Testul 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul elementelor mulțimii $M = \{n \in \mathbb{N} | 2n + 1 < 10\}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 10x + m$, unde m este număr real. Determinați numărul real m pentru care vârful parabolei asociate funcției f este situat pe axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $x + \sqrt{x-5} = 7$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să **nu** fie multiplu de 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,4) și B(-1,3). Determinați coordonatele punctului C astfel încât $\overrightarrow{AB} + 2\overrightarrow{BC} = \overrightarrow{0}$.
- **5p 6.** Se consideră triunghiul ABC cu unghiul A ascuțit, AB = 4, AC = 5 și aria egală cu 6. Calculați cosinusul unghiului A.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & a+1 & a \\ 1 & 1 & a+1 \\ 2 & a & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x + (a+1)y + az = 6a + 3 \\ x + y + (a+1)z = 4a + 7 \\ 2x + ay + z = 2a + 6 \end{cases}$

unde *a* este număr real.

- **5p** a) Arătați că $\det(A(a)) = 2(a^2 + 1)$, pentru orice număr real a.
- **5p b)** Determinați numărul real a pentru care $A(a) \cdot A(0) = A(0) \cdot A(a)$.
- **5p** c) Demonstrați că, dacă (x_0, y_0, z_0) este soluția sistemului de ecuații, atunci x_0 , y_0 și z_0 sunt termeni consecutivi ai unei progresii geometrice.
 - **2.** Pe mulțimea $M = [0, +\infty)$ se definește legea de compoziție $x * y = \frac{2(x+y)}{xy+2}$.
- **5p** a) Arătați că x * 0 = x, pentru orice $x \in M$.
- **5p b)** Arătați că x * y < 2, pentru orice $x, y \in [1, +\infty)$.
- **5p** c) Determinați perechile (m,n) de numere naturale nenule pentru care m*n este număr natural.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x (x^2 4x + 5)$.
- **5p** a) Arătați că $f'(x) = e^x(x-1)^2$, $x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} f(-x)$.
- **5p** c) Demonstrați că graficul funcției f intersectează orice dreaptă paralelă cu axa Ox în cel mult un punct.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 1$.
- **5p a)** Arătați că $\int_{0}^{1} f(x) dx = 2$.

- **5p b)** Calculați $\int_{0}^{1} x^{2} (f(x))^{3} dx$. **5p c)** Demonstrați că $\lim_{x \to +\infty} \int_{1}^{x} \ln(f(t)) dt = +\infty$.

Matematică M_mate-info

Testul 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați produsul elementelor mulțimii $A = \{x \in \mathbb{N} \mid \sqrt[3]{7} < x \le \log_2 21 \}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 4x$. Determinați abscisele punctelor de intersecție a graficului funcției f cu dreapta d de ecuație y = 5x + 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2 \cdot 9^x 3^{2x} 3 = 0$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă cifrele numere prime distincte.
- **5p 5.** Se consideră punctul M în planul triunghiului ABC astfel încât $2\overline{MB} \overline{MC} = \overline{AB}$. Arătați că patrulaterul AMBC este paralelogram.
- **5p 6.** Calculați $\operatorname{tg} x$, știind că $x \in \left(\pi, \frac{3\pi}{2}\right)$ și $\sin x = -\frac{8}{17}$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} a+1 & 1 & a \\ 1 & -1 & -a \\ 2-a & 1 & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} (a+1)x+y+az=-5 \\ x-y-az=10 \\ (2-a)x+y+z=1-a \end{cases}$

unde a este număr real.

- **5p** a) Arătați că $\det(A(2)) = 4$.
- **5p b)** Determinați numerele reale *a* pentru care sistemul de ecuații **nu** este compatibil determinat.
- **5p** c) Determinați numărul natural a pentru care sistemul are soluția unică (x_0, y_0, z_0) și x_0 este număr întreg.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă și cu element neutru $x * y = x + y \frac{xy}{5}$.
- **5p a)** Arătați că 1*5=5.
- **5p b)** Determinați numărul real $x, x \ge 0$, pentru care $\sqrt{x} * \sqrt{x} = 5$.
- **5p** c) Determinați valorile reale ale lui a, $a \ne 5$, pentru care simetricul lui a în raport cu legea de compoziție, *" este strict mai mic decât 0.

- 1. Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=(x-1)\ln(x+1)$.
- **5p** a) Arătați că $f'(x) = 1 + \ln(x+1) \frac{2}{x+1}, x \in (0,+\infty).$
- **5p b)** Calculați $\lim_{x \to +\infty} \left(f(x) f\left(\frac{1}{x}\right) \right)$.
- **5p** | c) Demonstrați că orice două drepte distincte, tangente la graficul funcției f, sunt concurente.

- **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{3x}{\sqrt{x+1}}$.
- a) Arătați că $\int_{1}^{2} x \sqrt{x+1} f(x) dx = 7.$
- **b)** Calculați $\int_{0}^{1} f^{2}(x) dx$.
- c) Știind că $F:(-1,+\infty) \to \mathbb{R}$, $F(x) = 2(x+1)\sqrt{x+1} 6\sqrt{x+1} + 4$ este o primitivă a funcției f, arătați că $\int_{0}^{3} f(x)F(x)dx = 32$.

Matematică M_mate-info

Testul 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $1 \frac{1}{3} + \frac{1}{3^2} \frac{1}{3^3} + \frac{1}{3^4} > \frac{3}{4}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = -3x + 18. Determinați abscisa punctului de intersecție a graficului funcției $f \circ f$ cu axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2^{3-x} 2^{2-x} + 2^{5-x} = 9$.
- **5p** 4. Determinați termenul care **nu** îl conține pe x din dezvoltarea $\left(x^3 + \frac{1}{\sqrt{x}}\right)^{14}$, unde $x \in (0, +\infty)$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(a,1) și B(-2,5), unde a este număr real. Determinați numărul real a, știind că mijlocul segmentului AB aparține dreptei de ecuație y = 2x + 3.
- **5p 6.** Calculați lungimea laturii AB a triunghiului ABC, știind că tg C=1 și că triunghiul ABC este înscris într-un cerc de rază 3.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} a & 1 & 1 \\ 1 & a+1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(3))=10$.
- **5p b**) Demonstrați că, pentru orice număr natural n, $n \ge 2$, rangul matricei A(n) este egal cu 3.
- **5p** c) Arătați că, pentru orice număr natural m, $m \ge 2$, inversa matricei A(m) **nu** are toate elementele numere întregi.
 - **2.** Pe mulțimea $M = (2, +\infty)$ se definește legea de compoziție asociativă $x \circ y = \frac{xy 4}{x + y 4}$.
- **5p** a) Arătați că $8 \circ 8 = 5$.
- **5p b)** Arătați că $(x+2)\circ(y+2)>(x+y)\circ 4$, pentru orice $x, y \in M$.
- **5p** c) Demonstrați că, dacă $x \in M$ și n este număr natural, $n \ge 2$, astfel încât $\underbrace{x \circ x \circ x \circ \ldots \circ x}_{\text{de } 2^n \text{ ori } x} = 2^n \frac{1}{2^n}$,

atunci x este pătratul unui număr natural.

- 1. Se consideră funcția $f:(3,+\infty) \to \mathbb{R}$, $f(x) = \ln(x-3) 2\ln(x^2-9)$.
- **5p** a) Arătați că $f'(x) = \frac{3(1-x)}{x^2-9}, x \in (3,+\infty)$.
- **5p b**) Demonstrați că funcția f este bijectivă.
- **5p** c) Arătați că $\lim_{x\to 3} ((x-3)f(x)) = 0$.

2. Se consideră funcția
$$f:(-2,2) \to \mathbb{R}$$
, $f(x) = x + \frac{x^2}{x^2 - 4}$.

5p a) Arătați că
$$\int_{1}^{3} \left(f(x) - \frac{x^2}{x^2 - 4} \right) dx = \frac{5}{8}$$
.

5p b) Arătați că
$$\int_{-1}^{1} (f(x) + f(-x)) dx = 4(1 - \ln 3)$$
.

5p c) Determinați
$$a \in (0, \sqrt{3})$$
, pentru care
$$\int_{a}^{\sqrt{3}} \sqrt{x - f(x)} dx = \sqrt{3} - 1.$$

Matematică M mate-info

Testul 10

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați modulul numărului complex z = (2+3i)(2-3i)-(9-3i).
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 2 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 5x + 20. Calculați $(g \circ f)(2)$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $4^{x-5} = \frac{1}{16}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă produsul cifrelor egal cu 8.
- 5p 5. Se consideră paralelogramul ABCD cu AB = 4, BC = 6 și măsura unghiului ABC de 120° . Determinați modulul vectorului \overrightarrow{AM} , unde punctul M este mijlocul segmentului BD.
- **5p 6.** Se consideră triunghiul ABC cu AB = 12, AC = 16 și BC = 20. Arătați că $\frac{r}{R} = \frac{2}{5}$, unde r este raza cercului înscris în triunghiul ABC și R este raza cercului circumscris triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} a & 1 & -2 \\ 2 & 1 & 3 \\ 2a - 1 & 2 & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} ax + y - 2z = 2 \\ 2x + y + 3z = 1 \\ (2a - 1)x + 2y + z = a \end{cases}$

unde a este număr real.

- **5p** a) Arătați că $\det(A(4)) = 5$.
- **5p b)** Determinați numărul real a pentru care matricea A(a) **nu** este inversabilă.
- **5p** c) Pentru a = 3, determinați soluțiile (x_0, y_0, z_0) ale sistemului de ecuații pentru care $z_0^2 = x_0 + y_0$.
 - **2.** Pe mulțimea $G = (1, +\infty)$ se definește legea de compoziție asociativă $x * y = \sqrt{x^{\log_3 y}}$.
- **5p a)** Arătați că 4*3=2.
- **5p b)** Arătați că e = 9 este elementul neutru al legii de compoziție "*".
- **5p** c) Determinați $x \in G$, știind că este egal cu simetricul lui în raport cu legea de compoziție "*".

- 1. Se consideră funcția $f: \mathbb{R} \to \overline{\mathbb{R}}, \ f(x) = (x^2 9)(x^2 4) + 3$.
- **5p** a) Arătați că $f'(x) = 2x(2x^2 13), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to 3} \frac{\sin(x-3)}{f(x)-3} = \frac{1}{30}$.
- **5p** c) Determinați valorile reale ale lui m pentru care ecuația f(x) = m are exact patru soluții reale.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x \operatorname{arctg} x$.
- **5p** a) Arătați că $\int_{1}^{2} \frac{f(x)}{\operatorname{arctg } x} dx = 3$.

- **5p b)** Determinați numărul real nenul a pentru care $\int_{0}^{\sqrt{3}} f(x) dx = \frac{\pi}{a} \sqrt{3}$.
- **5p** c) Demonstrați că $\int_{-1}^{1} x f(x) dx = 0$.

Matematică M_mate-info

Testul 11

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt[3]{\left(6-\sqrt{2}\right)^3} + \sqrt{\left(1-\sqrt{2}\right)^2} = 5$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3 și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 2mx 6$, unde m este număr real. Determinați numărul real m, știind că graficul funcției f intersectează axa Ox într-un punct în care și graficul funcției g intersectează axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2 4x + 12) = \log_3 27$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă suma cifrelor divizibilă cu 3.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-4,0), B(-1,3) și C(1,m), unde m este număr real. Determinați numărul real m pentru care triunghiul ABC este dreptunghic în B.
- **5p 6.** Arătați că $\sin \frac{25\pi}{6} + \cos \frac{23\pi}{3} = 1$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a,b,c) = \begin{pmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{pmatrix}$ și sistemul de ecuații $\begin{cases} (1+a)x + y + z = 0 \\ x + (1+b)y + z = 0 \\ x + y + (1+c)z = 0 \end{cases}$

unde a, b și c sunt numere reale nenule.

- **5p** a) Arătați că $\det(A(-2,0,2)) = -4$.
- **5p b**) Arătați că, dacă $abc + ab + ac + bc \neq 0$, atunci matricea A(a,b,c) este inversabilă.
- **5p c**) Demonstrați că, dacă sistemul de ecuații admite și soluții diferite de soluția (0,0,0), atunci numărul $N = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ este întreg.
 - 2. Pe mulțimea G = (0,2) se definește legea de compoziție asociativă $x * y = \frac{xy}{xy x y + 2}$ și se consideră funcția $f : (0,+\infty) \to (0,2)$, $f(x) = \frac{2}{x+1}$.
- **5p** | **a**) Arătați că 1*1=1.
- **5p b**) Demonstrați că f(x) * f(y) = f(xy), pentru orice $x, y \in (0, +\infty)$.
- **5p** c) Determinați numărul natural n pentru care $f\left(\frac{1}{2}\right)*f\left(\frac{2}{3}\right)*f\left(\frac{3}{4}\right)*...*f\left(\frac{2020}{2021}\right) = \frac{2n}{n+1}$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 2x \ln x x^2 + 3$.
- **5p** a) Arătați că $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}=0$.
- **5p b**) Arătați că funcția f este convexă pe (0,1).

- **5p** c) Demonstrați că $2 \ln x < x \frac{1}{x}$, pentru orice $x \in (1, +\infty)$.
 - **2.** Pentru fiecare număr natural nenul n se consideră numărul $I_n = n \int_0^1 \frac{x^n}{1+x^n} dx$.
- **5p a)** Arătați că $I_1 + \int_0^1 \frac{1}{1+x} dx = 1$.
- **5p b)** Arătați că $I_2 = 2 \frac{\pi}{2}$.
- **5p** c) Demonstrați că $I_n \le \ln 2$, pentru orice număr natural nenul n.

Matematică M mate-info

Testul 12

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați partea întreagă a numărului $a = \frac{4}{\sqrt{2}}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx + 1$, unde m este număr real. Determinați numerele reale m, știind că axa Ox este tangentă la graficul funcției f.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{(x-1)(x+2)} = (x+2)\sqrt{x-1}$.
- **5p** 4. Determinați numărul natural n, $n \ge 2$, știind că mulțimea $\{3,4,5,...,n+2\}$ are exact 55 de submulțimi cu 2 elemente.
- **5.** În reperul cartezian xOy se consideră dreptele d_1 și d_2 , de ecuații 2x y + 1 = 0, respectiv x + y + 2 = 0. Determinați ecuația dreptei d care este perpendiculară pe dreapta d_2 și trece prin punctul de intersecție a dreptelor d_1 și d_2 .
- **5p 6.** Arătați că $\sin \frac{5\pi}{12} + \sin \frac{\pi}{12} = \frac{\sqrt{6}}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(m,x) = \begin{pmatrix} 2 & -x & 1 \\ 1 & m & 3 \\ 3 & -2 & x \end{pmatrix}$, unde m și x sunt numere reale.
- **5p** a) Arătați că $\det(A(4,2)) = 0$.
- **5p b)** Determinați rangul matricei A(2,1).
- **5p** c) Determinați perechile de numere naturale nenule și distincte (n, p) pentru care $\det(A(3, n)) = \det(A(3, p))$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă și cu element neutru $x * y = \frac{xy}{3} x y + 6$.
- **5p a)** Arătați că (-1)*3=3.
- **5p b)** Arătați că x*(y+z-3)=(x*y)+(x*z)-3, pentru orice numere reale x, y și z.
- **5p** c) Determinați numerele reale x, $x \ne 3$ pentru care $\left(x * (x + x' 3)\right) + \left(x' * (2x 3)\right) = 42$, unde x' este simetricul lui x în raport cu legea de compoziție ,, * ".

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 2} ax$, unde a este număr real.
- **5p** a) Pentru a = 0, arătați că $f'(x) = \frac{x}{\sqrt{x^2 + 2}}, x \in \mathbb{R}$.
- **5p b)** Determinați numărul real a pentru care tangenta la graficul funcției f în punctul de abscisă $x = \sqrt{2}$, situat pe graficul funcției f, este paralelă cu axa Ox.
- **5p** c) Demonstrați că, pentru orice număr real a, graficul funcției f admite asimptotă spre $+\infty$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 \operatorname{arctg} x$.
- **5p** a) Arătați că $\int_{1}^{3} \frac{x f(x)}{\operatorname{arctg} x} dx = 20.$
- **5p b)** Arătați că $\int_{1}^{\sqrt{3}} \frac{f(x)}{x} dx = \frac{5\pi}{12} \frac{\sqrt{3} 1}{2}$.
- **5p** c) Demonstrați că $\lim_{n \to +\infty} \int_{0}^{1} f^{n}(x) dx = 0$.

Examenul național de bacalaureat 2021

Proba E. c) Matematică *M mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 1

Testul 1

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$7 + \sqrt{7} \in (9,10)$ și, cum n este număr natural, obținem $M = \{0, 1, 2, 3\}$	3p
	Mulțimea M are 4 elemente	2p
2.	$\Delta = 36 - 4m \Rightarrow y_V = -\frac{\Delta}{4a} = m - 9$	3p
	$m-9>0 \Leftrightarrow m \in (9,+\infty)$	2p
3.	$x+3=(x-3)^2 \Rightarrow x^2-7x+6=0$	3p
	x = 1, care nu convine; $x = 6$, care convine	2p
4.	O mulțime cu 12 elemente are $C_{12}^0 + C_{12}^1 + C_{12}^2 = 1 + 12 + \frac{12 \cdot 11}{2} =$	3p
	=13+66=79 de submulțimi cu cel mult 2 elemente	2p
5.	Paralela prin A la OB intersectează paralela prin B la OA în punctul $C \Rightarrow OACB$ este paralelogram	2p
	OC și AB au același mijloc, deci $x_O + x_C = x_A + x_B$, $y_O + y_C = y_A + y_B$, de unde obținem $x_C = 3$ și $y_C = 3$	3p
6.	$\frac{1}{1+\lg x} + \frac{1}{1+\operatorname{ctg} x} = \frac{1}{1+\lg x} + \frac{1}{1+\frac{1}{\lg x}} = \frac{1}{1+\lg x} + \frac{\lg x}{\lg x+1} =$	3 p
	$= \frac{1 + \lg x}{1 + \lg x} = 1, \text{ pentru orice } x \in \left(0, \frac{\pi}{2}\right)$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 0 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{vmatrix} = $	2p
	= 0 + 0 + 0 - 0 - 0 - (-4) = 4	3 p
b)	$A(a) \cdot A(b) = \begin{pmatrix} 1 - a - b - ab & 2b + 2ab + 2a & 0 \\ -a - b - ab & 1 + 2a + 2b + 2ab & 0 \\ 0 & 0 & 1 + a + b + ab \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (a+b+ab) & 2(a+b+ab) & 0 \\ -(a+b+ab) & 1 + 2(a+b+ab) & 0 \\ 0 & 0 & 1 + (a+b+ab) \end{pmatrix} = A(a+b+ab), \text{ pentru orice numere}$ reale $a \neq b$	2p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea matematică-informatică

c)	Cum $A(a) \cdot A(b) \cdot A(c) = A(a+b+ab) \cdot A(c) = A(a+b+c+ab+ac+bc+abc)$, obţinem $a+b+c+ab+ac+bc+abc=0$	3p
	$1+a+b+c+ab+ac+bc+abc=1 \Rightarrow (1+a)+b(1+a)+c(1+a)+bc(1+a)=1$, de unde obţinem $(1+a)(1+b+c+bc)=1$, deci $(1+a)(1+b)(1+c)=1$	2p
2.a)	$3*4 = \sqrt{3^2 + 4^2} =$	3 p
	$=\sqrt{25}=5$	2p
b)	$x*\sqrt{5} = \sqrt{x^2 + 5} , x \in M$	2p
	Cum $\sqrt{x^2+5} < x+1 \Rightarrow x^2+5 < x^2+2x+1$, obţinem $x \in (2,+\infty)$	3p
c)	Pentru $m = 3k$ și $n = 4k$, unde $k \in \mathbb{N}^*$, obținem $m * n = 5k$	2p
	Cum numerele $3k$, $4k$ și $5k$ sunt termeni consecutivi ai unei progresii aritmetice, există o	
	infinitate de perechi de numere naturale nenule (m,n) , de forma $(3k,4k)$, pentru care	3p
	numerele m , n și $m*n$ sunt termeni consecutivi ai unei progresii aritmetice	

SUBIECTUL al III-lea

(30 de puncte)

	Court of all III-lea	
1.a)	$f'(x) = 1 - \frac{2x - 4}{2\sqrt{x^2 - 4x + 5}} =$	3p
	$=1-\frac{x-2}{\sqrt{x^2-4x+5}}=\frac{\sqrt{x^2-4x+5}-x+2}{\sqrt{x^2-4x+5}}, \ x \in \mathbb{R}$	2p
b)	$\sqrt{x^2 - 4x + 5} = \sqrt{(x - 2)^2 + 1} > x - 2$, pentru orice număr real x	2p
	$f'(x) > 0$, pentru orice număr real x, deci f este strict crescătoare pe \mathbb{R}	3p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - \sqrt{x^2 - 4x + 5} \right) = \lim_{x \to +\infty} \frac{\left(x - \sqrt{x^2 - 4x + 5} \right) \left(x + \sqrt{x^2 - 4x + 5} \right)}{x + \sqrt{x^2 - 4x + 5}} =$	2p
	$= \lim_{x \to +\infty} \frac{4x - 5}{x + \sqrt{x^2 - 4x + 5}} = \lim_{x \to +\infty} \frac{x\left(4 - \frac{5}{x}\right)}{x\left(1 + \sqrt{1 - \frac{4}{x} + \frac{5}{x^2}}\right)} = 2, \text{ deci ecuația asimptotei orizontale}$	3р
	spre $+\infty$ la graficul funcției f este $y=2$	
2.a)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} =$	3р
	$=\frac{1}{3}+1=\frac{4}{3}$	2p
b)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} e^{x} (x^{2} + 1) dx = e^{x} (x^{2} + 1) \Big _{0}^{1} - \int_{0}^{1} 2x e^{x} dx = 2e - 1 - (2x - 2)e^{x} \Big _{0}^{1} =$	3p
	=2e-1-2=2e-3	2p
c)	$ = 2e - 1 - 2 = 2e - 3 $ $ \int_{-1}^{1} x \ln(f(x)) dx = \int_{-1}^{0} (-x) \ln(x^2 + 1) dx + \int_{0}^{1} x \ln(x^2 + 1) dx = \int_{0}^{1} 2x \ln(x^2 + 1) dx = $	2p
	$ = \int_{0}^{1} (x^{2} + 1)' \ln(x^{2} + 1) dx = (x^{2} + 1) \ln(x^{2} + 1) \Big _{0}^{1} - \int_{0}^{1} (x^{2} + 1) \frac{2x}{x^{2} + 1} dx = 2 \ln 2 - x^{2} \Big _{0}^{1} = 2 \ln 2 - 1 $	3р

Examenul national de bacalaureat 2021

Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Testul 2

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n = 1 + 12i + 36i^2 + 9 - 12i + 4i^2 =$	2p
	=1-36+9-4=-30, care este număr întreg negativ	3p
2.	$f(1) = f(5) \Rightarrow 1 + a = 25 + 5a \Rightarrow a = -6$	2p
	$f(x) = x^2 - 6x$, de unde obţinem $f(2) = -8$ şi $f(4) = -8$, deci $f(2) = f(4)$	3 p
3.	$2x^2 - 2 = (x+1)^2 \Rightarrow x^2 - 2x - 3 = 0$	2p
	x = -1, care nu convine; $x = 3$, care convine	3 p
4.	Există 900 de numere naturale de trei cifre, deci sunt 900 de cazuri posibile	2p
	Dacă cifra unităților este c , $1 \le c \le 9$, atunci cifra sutelor poate fi aleasă în c moduri, iar pentru fiecare alegere a cifrei sutelor există o singură alegere a cifrei zecilor; în total sunt $9+8+\ldots+1=45$ de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{900} = \frac{1}{20}$	1p
5.	OA = OB = 5	2p
	$m_{AO} = \frac{4}{3}$ şi $m_{BO} = -\frac{3}{4} \Rightarrow AO \perp BO$ şi, cum $AOBC$ este paralelogram, obţinem că $AOBC$ este pătrat, deci triunghiul ACB este dreptunghic isoscel	3p
6.	$2\sin^2 x = 1 \Rightarrow \sin x = -\frac{\sqrt{2}}{2} \text{sau } \sin x = \frac{\sqrt{2}}{2}$	2p
	Cum $x \in (0, \pi)$, obţinem $\sin x = \frac{\sqrt{2}}{2}$, deci $x = \frac{\pi}{4}$ sau $x = \frac{3\pi}{4}$	3 p

~ ~ ~ ~ ~	(ov de punc)	
1.a)	$A(2) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix} =$	2 p
	= 8 + 4 + 9 - 8 - 6 - 6 = 1	3p
b)	$A(a)A(1) = \begin{pmatrix} 3a+3 & 5a+4 & 7a+5 \\ 6 & 9 & 12 \\ 2+a & 4+a & 6+a \end{pmatrix}, \text{ pentru orice număr real } a$	2p
	$A(1)A(a) = \begin{pmatrix} a+5 & a+8 & 4a+8 \\ a+5 & a+8 & 4a+8 \\ a+2 & a+4 & 2a+5 \end{pmatrix}, \text{ pentru orice număr real } a, \text{ deci } A(a)A(1) = A(1)A(a)$	3 p
	implică $a = 1$, care convine	

c)	$\det(A(a)) = \begin{vmatrix} a & a+1 & a+2 \\ 1 & 2 & 3 \\ 1 & 1 & a \end{vmatrix} = (a-1)^2, \text{ pentru orice număr real } a$	3р
	$\begin{bmatrix} \operatorname{Cum} \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} \neq 0, \text{ matricea } A(a) \text{ are rangul doi} \Leftrightarrow a = 1 \end{bmatrix}$	2p
2.a)	$\hat{3} \circ \hat{3} = \hat{3} \cdot \hat{3} + \hat{3} + \hat{3} =$	2p
	$=\hat{3}+\hat{3}+\hat{3}=\hat{3}$	3p
b)	$x \circ \hat{0} = x \cdot \hat{0} + x + \hat{0} = x$, pentru orice $x \in \mathbb{Z}_6$	2p
	$\hat{0} \circ x = \hat{0} \cdot x + \hat{0} + x = x$, pentru orice $x \in \mathbb{Z}_6$, deci $\hat{0}$ este elementul neutru al legii de compoziție " \circ "	3p
c)	$\hat{4} \circ \hat{4} = \hat{0} \Rightarrow \hat{4}$ este simetrizabil în raport cu legea de compoziție "°" și simetricul lui este $\hat{4}$	2p
	$f(x) = f(y) \Rightarrow \hat{4} \circ x = \hat{4} \circ y \Rightarrow x = y \Rightarrow f$ este injectivă, de unde obținem că Im f are 6 elemente, deci Im $f = \mathbb{Z}_6$, de unde obținem că f este bijectivă	3 p

(30 de puncte) $f'(x) = -\frac{2}{(x-1)^3} + \frac{2}{(x+1)^3} =$ 3p $= \frac{2((x-1)^3 - (x+1)^3)}{(x+1)^3 (x-1)^3} = \frac{-4(3x^2+1)}{(x+1)^3 (x-1)^3} = \frac{-4(3x^2+1)}{(x^2-1)^3}, \ x \in (-1,1) \cup (1,+\infty)$ 2p Cum f(0) = 0, graficul funcției f intersectează axa Oy în punctul O(0,0)2p f'(0) = 4, deci ecuația tangentei este y = 4x3p $\lim_{n \to +\infty} \left(f(2) + f(4) + \dots + f(2n) \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} - \frac{1}{(2n+1)^2} - \frac{$ 2p $= \lim_{n \to +\infty} \left(1 - \frac{1}{(2n+1)^2} \right)^n = \lim_{n \to +\infty} \left(\left(1 + \frac{-1}{(2n+1)^2} \right)^{-(2n+1)^2} \right)^{\frac{-n}{(2n+1)^2}} = e^0 = 1$ 3p $\int_{0}^{2} (x^{2} + 4) f(x) dx = \int_{0}^{2} (2x - 2) dx = (x^{2} - 2x) \Big|_{0}^{2}$ 3p 2p 3p $= \ln 16 - \ln 4 - \arctan \sqrt{3} = 2 \ln 2 - \frac{\pi}{3}$ 2p Funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \int_{-\infty}^{x} f(t) dt$ este derivabilă și $F'(x) = f(x) = \frac{2(x-1)}{x^2+4}$, $x \in \mathbb{R}$ 2p $F'(x) \le 0$, pentru orice $x \in (-\infty, 1] \Rightarrow F$ este descrescătoare pe $(-\infty, 1]$ și $F'(x) \ge 0$, pentru orice $x \in [1, +\infty) \Rightarrow F$ este crescătoare pe $[1, +\infty) \Rightarrow F(x) \ge F(1)$, pentru orice număr real 3p x, de unde obținem că $\int f(t)dt \ge 0$, pentru orice număr real x

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Testul 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 - z - i = 1 + 2i + i^2 - 1 - i - i =$	3 p
	=1+2i-1-1-2i=-1	2p
2.	$\Delta = 9 - 4(3 - n) = 4n - 3$	2p
	$\Delta > 0 \Leftrightarrow n > \frac{3}{4}$, deci $n = 1$	3p
3.	$2 + \log_5 x + \frac{1}{\log_5 x} = 4 \Rightarrow (\log_5 x - 1)^2 = 0$	3p
	$\log_5 x = 1$, deci $x = 5$, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În această mulțime există 45 de numere divizibile cu 2, 30 de numere divizibile cu 3 și 15 numere divizibile atât cu 2 cât și cu 3, deci sunt $45 + 30 - 15 = 60$ de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{60}{90} = \frac{2}{3}$	1p
5.	Distanța de la punctul C la dreapta AB este egală cu 2	2p
	$AB = 5 \Rightarrow \mathcal{A}_{\Delta ABC} = \frac{5 \cdot 2}{2} = 5$	3p
6.	$\sin(\pi - x) = \sin x$, $\cos(\pi - x) = -\cos x \Rightarrow E(x) = \operatorname{tg} 2x$, pentru orice $x \in \left(0, \frac{\pi}{4}\right)$	3p
	$E\left(\frac{\pi}{8}\right) = tg\frac{\pi}{4} = 1$	2p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$A + I_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A + I_3) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3 p
b)	$A \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	2p
	$A \cdot A \cdot A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_3$	3р

c)	Pentru $X = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$, obținem $A \cdot X = \begin{pmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{pmatrix}$ și $X \cdot A = \begin{pmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{pmatrix}$	2p
	$A \cdot X = X \cdot A \Rightarrow d = h = 0$, $g = 0$, $a = e = i$, $b = f$, deci $X = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = aI_3 + bA + cA \cdot A$,	3 p
	unde a , b și c sunt numere reale	
2.a)	5*2 = 5-2 = 3	2p
	(5*2)*1=3*1= 3-1 =2	3p
b)	x * y = x - y = -(y - x) =	2p
	= y-x =y*x, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	3 p
c)	$(a*b)+(b*c)= a-b + b-c \ge (a-b)+(b-c) =$	3p
	= a-b+b-c = a-c = a*c, pentru orice numere reale a , b și c	2p

1.a)	$f'(x) = \frac{(2x-2)e^x - (x^2 - 2x + 1)e^x}{e^{2x}} = \frac{e^x (2x - 2 - x^2 + 2x - 1)}{e^{2x}} = e^x (2x - 2 - x^2 + 2x $	3 p
	$= \frac{-x^2 + 4x - 3}{e^x} = \frac{-(x-1)(x-3)}{e^x}, \ x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = 3$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este descrescătoare pe $(-\infty, 1]$, $f'(x) \ge 0$, pentru	2
	orice $x \in [1,3] \Rightarrow f$ este crescătoare pe $[1,3]$ și $f'(x) \le 0$, pentru orice $x \in [3,+\infty) \Rightarrow f$ este descrescătoare pe $[3,+\infty)$	3 p
c)	f este crescătoare pe [1,3], f este descrescătoare pe [3,+ ∞) și $f(3) = \frac{4}{e^3}$, deci $f(x) \le \frac{4}{e^3}$,	2p
	pentru orice $x \in [1, +\infty)$	
	$\frac{\left(x-1\right)^2}{e^x} \le 4e^{-3} \Rightarrow \left(x-1\right)^2 \le 4e^{x-3}, \text{ deci } x-1 \le 2e^{\frac{x-3}{2}}, \text{ pentru orice } x \in \left[1,+\infty\right)$	3 p
2.a)	$\int_{0}^{2} f^{2}(x) dx = \int_{0}^{2} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{0}^{2} =$	3 p
	$=\frac{4}{2}+2=4$	2p
b)	$\int_{0}^{1} \ln \sqrt{x+1} dx = \frac{1}{2} \int_{0}^{1} \ln (x+1) dx = \frac{1}{2} \int_{0}^{1} (x+1) \ln (x+1) dx = \frac{1}{2} (x+1) \ln (x+1) \left \frac{1}{0} - \frac{1}{2} \int_{0}^{1} dx = \frac{1}{2} \ln (x+1) dx = \frac{1}{2} \int_{0}^{1} \ln (x+1) dx = \frac{1}{2} \int_{0}$	3 p
	$= \ln 2 - \frac{1}{2}x \bigg _{0}^{1} = \ln 2 - \frac{1}{2}$	2p

c) $F:[0,+\infty) \to \mathbb{R}, F(x) = \int_{0}^{x} e^{f(t)} dt$ derivabilă și $F'(x) = e^{f(x)} > 0$, pentru orice $x \in [0,+\infty)$	2p
F este strict crescătoare și continuă, $F(0) = 0$ și $F(2021) = \int_{0}^{2021} e^{\sqrt{t+1}} dt \ge \int_{0}^{2021} 1 dt = 2021$,	2
deci există un singur $x \in [0, +\infty)$, pentru care $\int_{0}^{x} e^{f(t)} dt = 2021$	3p

Examenul național de bacalaureat 2021

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^4 = (z^2)^2 = (1-i)^2 = 1 - 2i + i^2 = -2i$	3p
	$z^4 + 2i = -2i + 2i = 0$	2p
2.	$\Delta = 4 - 4m$ și valoarea minimă a funcției f este $-\frac{\Delta}{4 \cdot 1} = -\frac{4 - 4m}{4} = m - 1$	3p
	$m-1>1$, deci $m \in (2,+\infty)$	2p
3.	$\log_5(x+2)(2x-1) = 2 \Rightarrow (x+2)(2x-1) = 25 \Rightarrow 2x^2 + 3x - 27 = 0$	3p
	$x = -\frac{9}{2}$, care nu convine; $x = 3$, care convine	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Numerele naturale care au suma cifrelor divizibilă cu 9 sunt multiplii de 9, deci mulțimea cazurilor favorabile este $\{9\cdot12,9\cdot13,9\cdot14,,9\cdot111\}$ și are 100 de elemente	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{100}{900} = \frac{1}{9}$	1p
5.	$\overrightarrow{AB} = \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{AC} = 2\overrightarrow{i} + 4\overrightarrow{j}$ și $\overrightarrow{AD} = (x_D - 2)\overrightarrow{i} + (y_D - 1)\overrightarrow{j}$	3p
	$\vec{i} + \vec{j} + 2\vec{i} + 4\vec{j} + (x_D - 2)\vec{i} + (y_D - 1)\vec{j} = \vec{0} \Rightarrow x_D = -1 \text{ si } y_D = -4$	2p
6.	Cum $\cos(\pi - x) = -\cos x$, obţinem $-4\cos^2 x + 3 = 0$, deci $\cos^2 x = \frac{3}{4}$	2p
	Pentru $x \in (0,1)$, $\cos x > 0$, deci $\cos x = \frac{\sqrt{3}}{2}$ și $x = \frac{\pi}{6}$, care convine	3 p

1.a)	$\det A = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 3 + 0 + 0 - 0 - 0 - 0 = 6$	2p 3p
b)	$A \cdot B + B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} =$	3p
	$ = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} = B \cdot A $	2p

	· · · · · · · · · · · · · · · · · · ·	
c)	Cum $B \cdot B \cdot B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, obţinem $x + 1 + 2(y - 2) = 0$ şi $2(x + 1) + 3(y - 2) = 0$	3p
	x = -1, y = 2	2p
2.a)	2*4-2 -10	2p
	$4*2=4^2=16$, deci $2*4=4*2$	3 p
b)	$2*1=2^1=2$ și $1*2=1^2=1$	2p
	Deoarece 2*1≠1*2, legea de compoziție "*" nu este comutativă	3p
c)	$(2*2)*n < 64 \Leftrightarrow 4*n < 64 \Leftrightarrow 4^n < 4^3$	3p
	Cum n este număr natural nenul, obținem $n = 1$ sau $n = 2$	2p

SUBIECTUL al III-lea

(30 de puncte)

~	Soute plantinea (Soute plantine)	
1.a)	$f'(x) = 2 + \frac{2x+1}{x^2 + x + 1} =$	3 p
	$=\frac{2(x^2+x+1)+2x+1}{x^2+x+1}=\frac{2x^2+4x+3}{x^2+x+1}, x \in \mathbb{R}$	2p
b)	$f(x+1) - f(x) = 2(x+1) + \ln(x^2 + 3x + 3) - 2x - \ln(x^2 + x + 1) = 2 + \ln\frac{x^2 + 3x + 3}{x^2 + x + 1}, \ x \in \mathbb{R}$	2p
	$\lim_{x \to +\infty} \left(f(x+1) - f(x) \right) = \lim_{x \to +\infty} \left(2 + \ln \frac{x^2 + 3x + 3}{x^2 + x + 1} \right) = 2 + \ln 1 = 2$	3 p
c)	$f'(x) > 0$, pentru orice număr real $x \Rightarrow f$ este strict crescătoare pe $\mathbb{R} \Rightarrow f$ este injectivă	2p
	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x \left(2 + \frac{\ln(x^2 + x + 1)}{x} \right) \text{ și } \lim_{x \to -\infty} \frac{\ln(x^2 + x + 1)}{x} = \lim_{x \to -\infty} \frac{\frac{2x + 1}{x^2 + x + 1}}{1} = 0 \text{ , deci}$ $\lim_{x \to -\infty} f(x) = -\infty \text{ și, cum } \lim_{x \to +\infty} f(x) = +\infty \text{ și } f \text{ este continuă pe } \mathbb{R} \text{ , obținem că } f \text{ este surjectivă, deci } f \text{ este bijectivă}$	3р
2.a)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} (2x - 1) dx = \left(x^{2} - x\right) \Big _{0}^{1} =$	3p
	=1-1=0	2p
b)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} e^{x} 2x - 1 dx = \int_{0}^{\frac{1}{2}} e^{x} (1 - 2x) dx + \int_{\frac{1}{2}}^{1} e^{x} (2x - 1) dx = e^{x} (3 - 2x) \left \frac{1}{2} + e^{x} (2x - 3) \right _{\frac{1}{2}}^{1} = 0$	3 p
	$=2\sqrt{e}-3-e+2\sqrt{e}=4\sqrt{e}-e-3$	2p
c)	$= 2\sqrt{e} - 3 - e + 2\sqrt{e} = 4\sqrt{e} - e - 3$ $I_n = \int_0^1 (2x - 1)^n dx = \frac{(2x - 1)^{n+1}}{2(n+1)} \Big _0^1 = \frac{1 - (-1)^{n+1}}{2(n+1)}, \text{ unde } n \text{ este număr natural nenul}$	3 p
	Cum $0 \le I_n \le \frac{1}{n+1}$, obținem $\lim_{n \to +\infty} I_n = 0$	2p

Examenul național de bacalaureat 2021

Proba E. c) Matematică *M mate-info*

BAREM DE EVALUARE ŞI DE NOTARE

Testul 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a+ib-2(a-ib)=-2+6i \Leftrightarrow -a+3ib=-2+6i$, unde $z=a+ib$, $a,b \in \mathbb{R}$	3р
	a = 2 și $b = 2$, deci $z = 2 + 2i$	2p
2.	$f(1) - f(0) \cdot f(2) \Leftrightarrow (1+m) - m(4+m) \Leftrightarrow m + 2m + 1 - 4m + m$	3 p
	$2m = 1$, deci $m = \frac{1}{2}$, care convine	2p
3.	$(x-1)^2 = 3x+1 \Rightarrow x^2 - 5x = 0$	3 p
	x = 0, care nu convine; $x = 5$, care convine	2p
4.	Mulțimea $A = \{0,1,2,,20\}$ are 21 de elemente, deci sunt 21 de cazuri posibile	2p
	Numerele din mulțimea A al căror pătrat aparține mulțimii A sunt 0 , 1 , 2 , 3 și 4 , deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{21}$	1p
5.	$\overrightarrow{AD} - \overrightarrow{BD} = \overrightarrow{AC} - \overrightarrow{AD}$	2p
	$\overrightarrow{AD} + \overrightarrow{DB} = \overrightarrow{AC} + \overrightarrow{DA} \Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}$	3 p
6.	$\frac{BC}{\sin A} = 2R$, unde R este raza cercului circumscris triunghiului	2p
	Cum $\sin A = \frac{1}{2}$, obținem $2BC = 2R$, deci $BC = R$	3p

1.a)	$A(m) + A(-m) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \text{ pentru orice număr real } m$	2p
	$\det(A(m) + A(-m)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8 - 0 = 8, \text{ pentru orice număr real } m$	3 p
b)	$A(m) \cdot A(m) = \begin{pmatrix} 1 & 0 & 0 \\ 2m & 1 & 0 \\ m^2 & 2m & 1 \end{pmatrix}, \text{ pentru orice număr real } m$	3p
	$A(m) \cdot A(m) = A(0) \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 2m & 1 & 0 \\ m^2 & 2m & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Leftrightarrow m = 0$	2p

c)	$A(2k-1) - A(2k) = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \text{ pentru orice număr natural nenul } k$	2p
	$A(1) - A(2) + A(3) - A(4) + \dots + A(2n-1) - A(2n) = n \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} = n(A(-1) - A(0)), \text{ pentru}$	3р
L	orice număr natural nenul <i>n</i>	
2.a)	$\frac{1}{2} * \frac{3}{2} = \left(\frac{1}{2}\right)^2 + 4 \cdot \frac{1}{2} \cdot \frac{3}{2} + \left(\frac{3}{2}\right)^2 =$	3 p
	$= \frac{1}{4} + 3 + \frac{9}{4} = \frac{11}{2}$	2p
b)	$x*(-x)=(-x)*x=-2x^2$, pentru orice număr real x	2p
	$\left(-2x^2\right)*\left(-2x^2\right) = 24x \Leftrightarrow 24x^4 = 24x$, de unde obţinem $x = 0$ sau $x = 1$	3 p
c)	$x*\frac{1}{x}=x^2+4\cdot x\cdot \frac{1}{x}+\frac{1}{x^2}=x^2+4+\frac{1}{x^2}$, pentru orice număr real nenul x	2p
	$\left(x * \frac{1}{x}\right) - 6 = x^2 + 4 + \frac{1}{x^2} - 6 = x^2 - 2 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 \ge 0 \text{ , deci } x * \frac{1}{x} \ge 6 \text{ , pentru orice număr real nenul } x$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{\sqrt{x^2 + 2} - (x + 2) \cdot \frac{x}{\sqrt{x^2 + 2}}}{x^2 + 2} =$	3 p
	$= \frac{x^2 + 2 - x^2 - 2x}{\left(x^2 + 2\right)\sqrt{x^2 + 2}} = \frac{2(1 - x)}{\left(x^2 + 2\right)\sqrt{x^2 + 2}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} (f(x))^{2x} = \lim_{x \to +\infty} \left(\frac{(x+2)^2}{x^2+2} \right)^x = \lim_{x \to +\infty} \left(\frac{x^2+4x+4}{x^2+2} \right)^x = \lim_{x \to +\infty} \left(1 + \frac{4x+2}{x^2+2} \right)^x =$	3 p
	$= \lim_{x \to +\infty} \left(\left(1 + \frac{4x+2}{x^2+2} \right)^{\frac{x^2+2}{4x+2}} \right)^{\frac{x(4x+2)}{x^2+2}} = e^4$	2p
c)	$f'(x) \ge 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este crescătoare pe $(-\infty, 1]$ și $f'(x) \le 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este descrescătoare pe $[1, +\infty)$ și, cum $f(1) = \sqrt{3}$, obținem că $f(x) \le \sqrt{3}$, pentru orice număr real x	3p
	$f(e^x) \le \sqrt{3} \Rightarrow \frac{e^x + 2}{\sqrt{e^{2x} + 2}} \le \sqrt{3} \Rightarrow \frac{e^x + 2}{\sqrt{3}} \le \sqrt{e^{2x} + 2}$, pentru orice număr real x	2p
2.a)	$\int_{1}^{\sqrt{2}} (f(x) + \ln x) dx = \int_{1}^{\sqrt{2}} x^{3} dx = \frac{x^{4}}{4} \Big _{1}^{\sqrt{2}} =$	3p
	$= \frac{4}{4} - \frac{1}{4} = \frac{3}{4}$	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

b)	$\int_{1}^{e} x \left(x^{3} - f(x) \right) dx = \int_{1}^{e} x \ln x dx = \frac{x^{2}}{2} \ln x \left \frac{e}{1} - \int_{1}^{e} \frac{x^{2}}{2} \cdot \frac{1}{x} dx = \frac{e^{2}}{2} - \frac{x^{2}}{4} \left \frac{e}{1} \right = 1$	3р
	$=\frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}$	2p
c)	$\int_{1}^{e^{2}} \frac{1}{x} f(\sqrt{x}) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \left(\sqrt{x} - \frac{1}{2} \cdot \frac{1}{x} \ln x \right) dx = \left(\frac{2}{3} \sqrt{x^{3}} - \frac{1}{4} \ln^{2} x \right) \Big _{1}^{e^{2}} = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} $	3р
	$= \frac{2}{3}e^3 - \frac{2}{3} - \frac{1}{4}\ln^2(e^2) = \frac{2}{3}e^3 - \frac{2}{3} - \frac{1}{4}\cdot 4 = \frac{2e^3 - 5}{3}$	2p

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Testul 6

Testul 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt[3]{4} \cdot \sqrt[3]{16} = \sqrt[3]{4^3} = 4 =$	3 p
	$=2^2 = (\log_3 9)^2 \Rightarrow \sqrt[3]{4}$, $\log_3 9$ și $\sqrt[3]{16}$ sunt termeni consecutivi ai unei progresii geometrice	2p
2.	f(-x) = -f(x), pentru orice număr real x	2p
	$g(-x) = (f(-x))^2 = (-f(x))^2 = (f(x))^2 = g(x), \text{ pentru orice număr real } x, \text{ deci funcția}$ $g \text{ este pară}$	3p
3.	$2^{2x} - \sqrt{2} \cdot 2^x - 2 \cdot 2^x + 2\sqrt{2} = 0 \Leftrightarrow 2^x \left(2^x - \sqrt{2}\right) - 2\left(2^x - \sqrt{2}\right) = 0 \Leftrightarrow \left(2^x - 2\right)\left(2^x - \sqrt{2}\right) = 0$	3p
	$x = 1 \text{ sau } x = \frac{1}{2}$	2p
4.	$T_{k+1} = C_{10}^k \left(x \sqrt{x} \right)^{10-k} \left(\frac{1}{x^2} \right)^k = C_{10}^k x^{\frac{3(10-k)}{2} - 2k} = C_{10}^k x^{\frac{30-7k}{2}}, \text{ unde } k \in \{0, 1, 2, \dots, 10\}$	3 p
	$\frac{30-7k}{2} = 8 \Leftrightarrow k = 2, \text{ deci } T_3 = C_{10}^2 x^8 \text{ îl conține pe } x^8$	2p
5.	$\overrightarrow{AM} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC})$, deci punctul M este mijlocul segmentului BC	3p
	$\overrightarrow{BC} = -2\overrightarrow{CM}$, deci $k = -2$	2p
6.	$2\sin x \cos x + 6\cos x - \sin x - 3 = 0 \Leftrightarrow 2\cos x (\sin x + 3) - (\sin x + 3) = 0 \Leftrightarrow (\sin x + 3)(2\cos x - 1) = 0$	2p
	$\sin x + 3 \neq 0$, deci $\cos x = \frac{1}{2}$ și, cum $x \in (0, \pi)$, obținem $x = \frac{\pi}{3}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 0 & -1 \\ 1 & -1 & 0 \\ 4 & -1 & -1 \end{vmatrix} = 2 + 1 + 0 - 4 - 0 - 0 =$	3p
	=3-4=-1	2p
b)	$\left \begin{array}{cc} \text{Cum} & -1 & -1 \\ m-1 & m \end{array} \right = -m+m-1 =$	3 p
	$=-1 \neq 0$, deci matricea $M(m)$ are rangul cel puţin egal cu 2, pentru orice număr real m	2p
c)	$M(m) \cdot A = I_3 \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ m+2 & -m-1 & 0 \\ -m-2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	3p
	m = -2, care convine	2p
2.a)	$(2+i)\circ(2-i)=2+i+2-i+(2+i)(2-i)=$	3p
	$= 4 + 4 - i^2 = 9$	2p

Probă scrisă la matematică M mate-info

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea matematică-informatică

b)	A = -1 + (a+1)i - 1 + (a-1)i + (-1+(a+1)i)(-1+(a-1)i) =	2p
	$=-2+2ai+1-(a-1)i-(a+1)i-(a^2-1)=-a^2<0$, pentru orice număr real nenul a	3р
c)	$2z + z^2 = -5 \Leftrightarrow z^2 + 2z + 5 = 0$	3 p
	z = -1 - 2i sau z = -1 + 2i	2p

SUBIECTUL al III-lea

(30 de puncte)

3p 2p 3p
3p
2p
2p
3p
3p
2p
3p
2p
2p
3p
_

Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Testul 7

Testul 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2n+1<10 \Leftrightarrow n<\frac{9}{2}$	2p
	Cum n este număr natural, obținem că mulțimea M are 5 elemente	3p
2.	$\Delta = 100 - 4m$, $y_V = m - 25$	2p
	Vârful parabolei asociate funcției f este situat pe axa $Ox \Leftrightarrow y_V = 0 \Leftrightarrow m = 25$	3p
3.	$\sqrt{x-5} = 7 - x \Rightarrow x - 5 = (7 - x)^2$, deci $x^2 - 15x + 54 = 0$	3p
	x = 6, care convine; $x = 9$, care nu convine	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Sunt $9 \cdot 10 \cdot 8 = 720$ de numere naturale de trei cifre care nu sunt multipli de 5, deci sunt 720 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{720}{900} = \frac{4}{5}$	1p
5.	$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{0}$, deci punctul C este mijlocul segmentului AB	3p
	Coordonatele punctului C sunt $x_C = 1$, $y_C = \frac{7}{2}$	2p
6.	$\mathcal{A}_{ABC} = \frac{AB \cdot AC \cdot \sin A}{2} \Rightarrow 6 = \frac{4 \cdot 5 \cdot \sin A}{2} \Rightarrow \sin A = \frac{3}{5}$	3p
	$\cos^2 A = 1 - \sin^2 A = \frac{16}{25}$ și, cum unghiul A este ascuțit, obținem $\cos A = \frac{4}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

	` 1	
1.a)	$\det(A(a)) = \begin{vmatrix} 1 & 1 & a+1 \\ 2 & a & 1 \end{vmatrix} = 1 + a^2 + 2(a+1)^2 - 2a - a(a+1) - (a+1) =$	3 p
	$=2a^2+2=2(a^2+1)$, pentru orice număr real a	2p
b)	$A(0) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, A(a) \cdot A(0) = \begin{pmatrix} 3a+2 & a+2 & 2a+1 \\ 2a+4 & 2 & a+2 \\ a+4 & a+2 & a+1 \end{pmatrix}, A(0) \cdot A(a) = \begin{pmatrix} 2 & a+2 & 2a+1 \\ 4 & 2a+2 & 2a+2 \\ 4 & 3a+2 & 2a+1 \end{pmatrix},$ pentru orice număr real a	3р
	$\begin{pmatrix} 3a+2 & a+2 & 2a+1 \\ 2a+4 & 2 & a+2 \\ a+4 & a+2 & a+1 \end{pmatrix} = \begin{pmatrix} 2 & a+2 & 2a+1 \\ 4 & 2a+2 & 2a+2 \\ 4 & 3a+2 & 2a+1 \end{pmatrix} \Leftrightarrow a=0$	2p
c)	Sistemul este compatibil determinat și are soluția (x_0, y_0, z_0) , cu $x_0 = 1$, $y_0 = 2$ și $z_0 = 4$	3p
	Cum $x_0z_0 = 4 = y_0^2$, obținem că x_0 , y_0 și z_0 sunt termeni consecutivi ai unei progresii geometrice	2p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

2.a)	$x*0 = \frac{2(x+0)}{x\cdot 0 + 2} =$	3p
	$=\frac{2x}{2}=x$, pentru orice $x \in M$	2p
b)	$x * y - 2 = \frac{2(x+y)}{xy+2} - 2 = \frac{2x+2y-2xy-4}{xy+2} = -2 \cdot \frac{xy-x-y+2}{xy+2} =$	3p
	$= -2 \cdot \frac{(x-1)(y-1)+1}{xy+2} < 0, \text{ pentru orice } x, y \in [1,+\infty) \Rightarrow x * y < 2, \text{ pentru orice } x, y \in [1,+\infty)$	2p
c)	Cum m și n sunt numere naturale nenule, obținem $0 < m * n < 2$ și, cum $m * n$ este număr natural, obținem $m * n = 1$	2p
	$\frac{2(m+n)}{mn+2} = 1 \Leftrightarrow mn-2m-2n+2 = 0 \Leftrightarrow (m-2)(n-2) = 2 \text{si, cum } m \text{si } n \text{ sunt numere}$	3 p
	naturale nenule, obţinem perechile $(3,4)$ şi $(4,3)$	

SUBIECTUL al III-lea (30 de puncte)

SODI	SUBIECTUL al III-lea (30 de pu	
1.a)	$f'(x) = e^x(x^2 - 4x + 5) + e^x(2x - 4) =$	3p
	$=e^{x}(x^{2}-2x+1)=e^{x}(x-1)^{2}, x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(-x) = \lim_{x \to +\infty} e^{-x} \left(x^2 + 4x + 5 \right) = \lim_{x \to +\infty} \frac{x^2 + 4x + 5}{e^x} =$	2p
	$= \lim_{x \to +\infty} \frac{2x+4}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 1, \ f'(x) > 0$ pentru orice $x \in (-\infty, 1) \Rightarrow f$ este strict crescătoare pe $(-\infty, 1)$ şi $f'(x) > 0$ pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict crescătoare pe $(1, +\infty)$	2p
	Cum funcția f este continuă în $x = 1$, obținem că f este strict crescătoare pe $\mathbb{R} \Rightarrow f$ este injectivă, deci graficul funcției f intersectează orice paralelă la Ox în cel mult un punct	3 p
2.a)	$\int_{0}^{1} (4x^{3} + 1) dx = (x^{4} + x) \Big _{0}^{1} =$	3 p
	=1+1=2	2p
b)	$\int_{0}^{1} x^{2} (f(x))^{3} dx = \int_{0}^{1} x^{2} (4x^{3} + 1)^{3} dx = \frac{1}{12} \int_{0}^{1} (4x^{3} + 1)^{4} (4x^{3} + 1)^{4} dx = \frac{1}{12} \cdot \frac{(4x^{3} + 1)^{4}}{4} \Big _{0}^{1} =$	3p
	$=\frac{5^4-1}{48}=13$	2p
c)	$4t^3 + 1 \ge 5$, pentru orice $t \in [1, +\infty) \Rightarrow \int_1^x \ln(f(t)) dt = \int_1^x \ln(4t^3 + 1) dt \ge \int_1^x \ln 5 dt = (x - 1) \ln 5$,	3p
	pentru orice $x \in [1, +\infty)$	
	Cum $\lim_{x \to +\infty} (x-1) \ln 5 = +\infty$, obţinem $\lim_{x \to +\infty} \int_{1}^{x} \ln(f(t)) dt = +\infty$	2p

Examenul național de bacalaureat 2021 Proba E. c) Matematică M mate-info BAREM DE EVALUARE ȘI DE NOTARE

Testul 8

Testul 8

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 < \sqrt[3]{7} < 2$ și $4 < \log_2 21 < 5$, deci $A = \{2, 3, 4\}$	3р
	Produsul elementelor multimii A este egal cu 24	2p
2.	$f(x) = y \Leftrightarrow x^2 + 4x = 5x + 2 \Leftrightarrow x^2 - x - 2 = 0$	3p
	Abscisele punctelor de intersecție a graficului funcției f cu dreapta d sunt $x = -1$ și $x = 2$	2p
3.	$2 \cdot 3^{2x} - 3^{2x} - 3 = 0 \Leftrightarrow 3^{2x} = 3$	3p
	$2x = 1$, deci $x = \frac{1}{2}$	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Mulțimea numerelor naturale de trei cifre, care au cifrele numere prime distincte, are $4 \cdot 3 \cdot 2 = 24$ de elemente, deci sunt 24 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{24}{900} = \frac{2}{75}$	1p
5.	$\overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{AB} - \overrightarrow{MB} \Leftrightarrow \overrightarrow{MB} + \overrightarrow{CM} = \overrightarrow{AB} + \overrightarrow{BM}$	3p
	$\overrightarrow{CB} = \overrightarrow{AM}$, deci AMBC este paralelogram	2p
6.	$\cos^2 x = 1 - \sin^2 x = \frac{225}{289}$	2p
	Cum $x \in \left(\pi, \frac{3\pi}{2}\right)$, obținem $\cos x = -\frac{15}{17}$, deci $\operatorname{tg} x = \frac{8}{15}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{vmatrix} A(2) = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \end{vmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \end{vmatrix} =$	2p
	=-3+2+0-0-(-6)-1=4	3р
b)	$\det(A(a)) = a^2 + a - 2$, pentru orice număr real a	2p
	Sistemul de ecuații nu este compatibil determinat $\Leftrightarrow \det(A(a)) = 0$, deci $a = -2$ sau $a = 1$	3 p
c)	Sistemul are soluția unică (x_0, y_0, z_0) , deci $a \in \mathbb{N} \setminus \{1\}$ și $x_0 = \frac{5}{a+2}$	3p
	$x_0 \in \mathbb{Z} \Leftrightarrow (a+2) 5 \text{ si, cum } a \in \mathbb{N} \setminus \{1\} \text{, obtinem } a = 3$	2p
2.a)	$1*5 = 1+5 - \frac{1 \cdot 5}{5} =$	3p
	=1+5-1=5	2p

Probă scrisă la matematică M mate-info

Barem de evaluare și de notare

b)	$\sqrt{x} + \sqrt{x} - \frac{x}{5} = 5 \Leftrightarrow 10\sqrt{x} = 25 + x$, unde x este număr real, $x \ge 0$	2p
	$(\sqrt{x}-5)^2=0$, de unde obținem $x=25$	3p
c)	x*0=0*x=x, pentru orice număr real x , deci $e=0$ este elementul neutru al legii de compoziție ,,*"	1p
	$a*a'=0 \Leftrightarrow 5a+5a'-aa'=0 \Leftrightarrow a'(a-5)=5a$, deci $a'=\frac{5a}{a-5}$, pentru orice număr real a , $a \neq 5$, unde a' este simetricul lui a	3 p
	$\frac{5a}{a-5} < 0 \Leftrightarrow a \in (0,5)$	1p

(30 de puncte) SUBIECTUL al III-lea

1.a)	$f'(x) = \ln(x+1) + (x-1) \cdot \frac{1}{x+1} =$	3p
	$= \ln(x+1) + \frac{x+1-2}{x+1} = 1 + \ln(x+1) - \frac{2}{x+1}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to +\infty} \left(f(x) f\left(\frac{1}{x}\right) \right) = \lim_{x \to +\infty} \left(-\frac{(x-1)^2}{x} \ln(x+1) \ln\left(\frac{1}{x}+1\right) \right) =$	2p
	$= \lim_{x \to +\infty} \left(-\frac{\left(x-1\right)^2}{x^2} \ln\left(x+1\right) \ln\left(1+\frac{1}{x}\right)^x \right) = -\infty$	3 p
c)	$f''(x) = \frac{x+3}{(x+1)^2} > 0$, pentru orice $x \in (0,+\infty) \Rightarrow f'$ este strict crescătoare pe $(0,+\infty)$	2p
	f' este injectivă pe $(0,+\infty)$, deci $f'(a) \neq f'(b)$, pentru orice $a, b \in (0,+\infty)$, cu $a \neq b$, de	
	unde obținem că tangentele la graficul funcției f în punctele $A(a, f(a))$ și $B(b, f(b))$	3р
		ъp
	sunt concurente, pentru orice $a, b \in (0, +\infty)$, cu $a \neq b$	
2.a)	$\int_{1}^{2} x \sqrt{x+1} f(x) dx = \int_{1}^{2} 3x^{2} dx = x^{3} \Big _{1}^{2} =$	3p
	=8-1=7	2p
b)	$\int_{0}^{1} \frac{9x^{2}}{x+1} dx = 9 \int_{0}^{1} \frac{x^{2} - 1 + 1}{x+1} dx = 9 \int_{0}^{1} \left(x - 1 + \frac{1}{x+1} \right) dx = 9 \left(\frac{x^{2}}{2} - x + \ln\left(x + 1\right) \right) \Big _{0}^{1} =$	3p
	$=9\left(\frac{1}{2}-1+\ln 2-0\right)=9\left(\ln 2-\frac{1}{2}\right)$	2p
c)	$\int_{0}^{3} f(x)F(x)dx = \int_{0}^{3} F'(x)F(x)dx = \frac{1}{2}F^{2}(x)\bigg _{0}^{3} =$	3p
	$= \frac{1}{2} \left(F^2(3) - F^2(0) \right) = \frac{1}{2} \left(8^2 - 0^2 \right) = 32$	2p

Examenul național de bacalaureat 2021 Proba E. c) Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Testul 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} = 1 \cdot \frac{1 - \left(-\frac{1}{3}\right)^5}{1 - \left(-\frac{1}{3}\right)} =$	3р
	$=\frac{3}{4}\left(1+\frac{1}{3^5}\right)>\frac{3}{4}$	2p
2.	$(f \circ f)(x) = 0 \Leftrightarrow -3f(x) + 18 = 0 \Leftrightarrow f(x) = 6$	3 p
	$-3x+18=6 \Leftrightarrow x=4$, deci abscisa punctului de intersecție a graficului funcției $f\circ f$ cu axa Ox este egală cu 4	2p
3.		3p
	x=2	2p
4.	$T_{k+1} = C_{14}^k \left(x^3\right)^{14-k} \left(\frac{1}{\sqrt{x}}\right)^k = C_{14}^k x^{42-3k-\frac{k}{2}} = C_{14}^k x^{\frac{84-7k}{2}}, \text{ unde } k \in \{0,1,2,\dots,14\}$	3 p
	$\frac{84-7k}{2} = 0 \Leftrightarrow k = 12, \text{ deci } T_{13} = C_{14}^{12} = 91 \text{ nu îl conține pe } x$	2p
5.	Punctul $M\left(\frac{a-2}{2},3\right)$ este mijlocul segmentului AB	3 p
	$3 = 2 \cdot \frac{a-2}{2} + 3 \Leftrightarrow a = 2$	2p
6.	În $\triangle ABC$, $\operatorname{tg} C = 1 \Rightarrow \angle C = \frac{\pi}{4}$, $\operatorname{deci} \sin C = \frac{\sqrt{2}}{2}$	3 p
	$2R = \frac{AB}{\sin C} \Rightarrow AB = 2 \cdot 3 \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2}$	2p

(30 de puncte) SUBIECTUL al II-lea

1.a)	$A(3) = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(3)) = \begin{vmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & -1 & 1 \end{vmatrix} =$	2p
	=12+1+(-1)-4-(-3)-1=10	3 p
b)	$\det(A(a)) = a^2 + a - 2$, pentru orice număr real a , deci $\det(A(a)) = 0 \Leftrightarrow a = 1$ sau $a = -2$	3 p
	Cum $\det(A(n)) \neq 0$, pentru orice număr natural $n, n \geq 2$, rangul matricei $A(n)$ este egal	2n
	cu 3, pentru orice număr natural n , $n \ge 2$	-P

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

c)	Pentru orice număr natural $m \ge 2$, $A(m)$ este inversabilă, deci $A^{-1}(m)$ are toate elementele numere întregi dacă $\det(A(m)) = -1$ sau $\det(A(m)) = 1$	3 p
	Cum $m \ge 2$, obținem $\det(A(m)) = m^2 + m - 2 \ge 4$, deci $A^{-1}(m)$ nu are toate elementele	2 p
	numere întregi	
2.a)	$8 \circ 8 = \frac{8 \cdot 8 - 4}{8 + 8 - 4} =$	3 p
	$=\frac{60}{12}=5$	2p
b)	$(x+2)\circ(y+2) = \frac{xy+2x+2y}{x+y}, (x+y)\circ 4 = \frac{4x+4y-4}{x+y}, \text{ pentru orice } x, y \in M$	2p
	$(x+2) \circ (y+2) - (x+y) \circ 4 = \frac{xy - 2x - 2y + 4}{x+y} = \frac{(x-2)(y-2)}{x+y}$, pentru orice $x, y \in M$ şi, cum $x > 2$ şi $y > 2$, obţinem că $(x+2) \circ (y+2) > (x+y) \circ 4$, pentru orice $x, y \in M$	3 p
(c)	$x \circ x = \frac{x^2 - 4}{2x - 4} = \frac{x + 2}{2}$, $\underbrace{x \circ x \circ x \circ \dots \circ x}_{\text{de } 2^n \text{ ori } x} = \frac{x + 2^{n+1} - 2}{2^n}$, unde $x \in M$ şi n este număr natural,	3 p
	$n \ge 2$	
	$\frac{x+2^{n+1}-2}{2^n} = 2^n - \frac{1}{2^n} \implies x = 2^{2n} - 2 \cdot 2^n + 1 \implies x = \left(2^n - 1\right)^2$	2 p

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$f'(x) = \frac{1}{x-3} - 2 \cdot \frac{2x}{x^2 - 9} =$	3p
	$=\frac{x+3-4x}{x^2-9} = \frac{3(1-x)}{x^2-9}, \ x \in (3,+\infty)$	2 p
b)	$f'(x) < 0$, pentru orice $x \in (3, +\infty) \Rightarrow f$ este strict descrescătoare pe $(3, +\infty)$, deci f este injectivă	2p
	Cum f este continuă pe $(3,+\infty)$, $\lim_{x\to 3} f(x) = +\infty$ și $\lim_{x\to +\infty} f(x) = -\infty$, obținem că f este surjectivă, deci f este bijectivă	3 p
c)	$\lim_{x \to 3} ((x-3)f(x)) = \lim_{x \to 3} \frac{f(x)}{\frac{1}{x-3}} = \lim_{x \to 3} \frac{f'(x)}{\left(\frac{1}{x-3}\right)'} = \lim_{x \to 3} \frac{-\frac{3(x-1)}{x^2-9}}{-\frac{1}{(x-3)^2}} =$	3р
	$= \lim_{x \to 3} \frac{3(x-1)(x-3)^2}{x^2 - 9} = \lim_{x \to 3} \frac{3(x-1)(x-3)}{x+3} = 0$	2 p
2.a)	$\int_{1}^{\frac{3}{2}} \left(f(x) - \frac{x^{2}}{x^{2} - 4} \right) dx = \int_{1}^{\frac{3}{2}} x dx = \frac{x^{2}}{2} \left \frac{3}{2} \right = 1$	3 p
	$=\frac{1}{2}\left(\frac{9}{4}-1\right)=\frac{5}{8}$	2 p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

b)	$\int_{-1}^{1} (f(x) + f(-x)) dx = \int_{-1}^{1} \frac{2x^2}{x^2 - 4} dx = 2 \int_{-1}^{1} \frac{x^2 - 4 + 4}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \left(x + \ln \left \frac{x - 2}{x + 2} \right \right) \Big _{-1}^{1} = \frac{1}{x^2 - 4} dx = 2 \int_{-1}^{1} (1 + \frac{4}{x^2 - 4}) dx = 2 \int_{-1}^{1$	3p
	$= 2\left(1 + \ln\frac{1}{3} + 1 - \ln 3\right) = 4\left(1 - \ln 3\right)$	2 p
c)	$\int_{a}^{\sqrt{3}} \sqrt{x - f(x)} dx = \int_{a}^{\sqrt{3}} \sqrt{x - x - \frac{x^2}{x^2 - 4}} dx = \int_{a}^{\sqrt{3}} \frac{x}{\sqrt{4 - x^2}} dx = -\sqrt{4 - x^2} \begin{vmatrix} \sqrt{3} \\ a \end{vmatrix} = \sqrt{4 - a^2} - 1, \ a \in (0, \sqrt{3})$	3 p
	$\sqrt{4-a^2} = \sqrt{3} \Leftrightarrow a^2 = 1$ și, cum $a \in (0, \sqrt{3})$, obținem $a = 1$	2p

Examenul național de bacalaureat 2021 Proba E. c)

Matematică M mate-info BAREM DE EVALUARE ŞI DE NOTARE

Testul 10

Testul 10

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z = (2+3i)(2-3i) - (9-3i) = 2^2 - (3i)^2 - 9 + 3i = 4 + 3i$	3 p
	$ z = \sqrt{4^2 + 3^2} = 5$	2p
2.	f(2)=0	2p
	$(g \circ f)(2) = g(f(2)) = 5 \cdot 0 + 20 = 20$	3p
3.	$4^{x-5} = 4^{-2} \Leftrightarrow x-5 = -2$	3p
	x = 3	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Mulţimea numerelor naturale de trei cifre care au produsul cifrelor egal cu 8 este {118, 181, 811, 124, 142, 214, 241, 412, 421, 222}, deci sunt 10 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{900} = \frac{1}{90}$	1p
5.	ABCD este paralelogram, deci $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AC}$	2p
	$AC^2 = AB^2 + BC^2 - 2 \cdot AB \cdot BC \cdot \cos(\angle ABC) = 76 \Rightarrow AC = 2\sqrt{19} \Rightarrow \overrightarrow{AM} = AM = \sqrt{19}$	3p
6.	$BC^2 = AB^2 + AC^2 \Rightarrow \triangle ABC$ este dreptunghic în $A \Rightarrow R = \frac{BC}{2} = 10$	2p
	$P_{\Delta ABC} = 48 \text{ și } \mathcal{A}_{\Delta ABC} = \frac{12 \cdot 16}{2} = 96 \Rightarrow r = \frac{96}{24} = 4 \text{, de unde obținem } \frac{r}{R} = \frac{4}{10} = \frac{2}{5}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(4) = \begin{pmatrix} 4 & 1 & -2 \\ 2 & 1 & 3 \\ 7 & 2 & 1 \end{pmatrix} \Rightarrow \det(A(4)) = \begin{vmatrix} 4 & 1 & -2 \\ 2 & 1 & 3 \\ 7 & 2 & 1 \end{vmatrix} =$	2p
	=4+21+(-8)-(-14)-2-24=5	3p
b)	$\det(A(a)) = 5a - 15$, pentru orice număr real a	2p
	Matricea $A(a)$ nu este inversabilă $\Leftrightarrow \det(A(a)) = 0$, deci $a = 3$	3 p
c)	Pentru $a = 3$ soluțiile sistemului de ecuații sunt de forma $(1 + 5\alpha, -1 - 13\alpha, \alpha)$, unde $\alpha \in \mathbb{R}$	3p
	$ z_0^2 = x_0 + y_0 \Leftrightarrow \alpha^2 + 8\alpha = 0 \Leftrightarrow \alpha = -8 \text{ sau } \alpha = 0 \text{ , deci } (x_0, y_0, z_0) = (-39, 103, -8) \text{ sau } (x_0, y_0, z_0) = (1, -1, 0) $	2p

2.a)	$4*3=44^{23}=$	3 p
	$=\sqrt{4}=2$	2p
b)	$x*9 = \sqrt{x^{\log_3 9}} = \sqrt{x^2} = x$, pentru orice $x \in G$	2p
	$9*x = \sqrt{9^{\log_3 x}} = \sqrt{3^{2\log_3 x}} = \sqrt{\left(3^{\log_3 x}\right)^2} = \sqrt{x^2} = x$, pentru orice $x \in G$, deci $e = 9$ este	3p
	elementul neutru al legii de compoziție "*"	
(c)	$x * x = e \Rightarrow \sqrt{x^{\log_3 x}} = 9 \Rightarrow x^{\log_3 x} = 81 \Rightarrow \log_3 x^{\log_3 x} = \log_3 81$, deci $\log_3^2 x = 4$	3 p
	$\log_3 x = -2$ sau $\log_3 x = 2 \Rightarrow x = \frac{1}{9}$, care nu convine; $x = 9$, care convine	2p

SUBIECTUL al III-lea

(30 de puncte)

Testul 10

	` 1	
1.a)	$f'(x) = 2x \cdot (x^2 - 4) + (x^2 - 9) \cdot 2x =$	3p
	$=2x(x^2-4+x^2-9)=2x(2x^2-13), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 3} \frac{\sin(x-3)}{f(x)-3} = \lim_{x \to 3} \frac{\sin(x-3)}{(x^2-9)(x^2-4)} = \lim_{x \to 3} \left(\frac{\sin(x-3)}{x-3} \cdot \frac{1}{(x+3)(x^2-4)} \right) =$	2p
	$=1 \cdot \frac{1}{(3+3)(3^2-4)} = \frac{1}{30}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -\sqrt{\frac{13}{2}}, x = 0 \text{ sau } x = \sqrt{\frac{13}{2}}; f'(x) < 0, \text{ pentru orice } x \in \left(-\infty, -\sqrt{\frac{13}{2}}\right) \cup \left(0, \sqrt{\frac{13}{2}}\right)$	2
	și $f'(x) > 0$, pentru orice $x \in \left(-\sqrt{\frac{13}{2}}, 0\right) \cup \left(\sqrt{\frac{13}{2}}, +\infty\right)$	3р
	$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty , \ f\left(-\sqrt{\frac{13}{2}}\right) = f\left(\sqrt{\frac{13}{2}}\right) = -\frac{13}{4}, \ f(0) = 39, \ f \text{ continuă pe } \mathbb{R},$	
	f strict descrescătoare pe $\left(-\infty, -\sqrt{\frac{13}{2}}\right)$ și pe $\left(0, \sqrt{\frac{13}{2}}\right)$ și f strict crescătoare pe $\left(-\sqrt{\frac{13}{2}}, 0\right)$	2p
	și pe $\left(\sqrt{\frac{13}{2}}, +\infty\right)$, deci ecuația $f(x) = m$ are exact patru soluții reale $\Leftrightarrow m \in \left(-\frac{13}{4}, 39\right)$	
2.a)	$\int_{1}^{2} \frac{f(x)}{\operatorname{arctg} x} dx = \int_{1}^{2} 2x dx = x^{2} \Big _{1}^{2} =$	3p
	=4-1=3	2p
b)	$\int_{0}^{\sqrt{3}} f(x)dx = \int_{0}^{\sqrt{3}} (x^{2} + 1) \operatorname{arctg} x dx = (x^{2} + 1) \operatorname{arctg} x \left \int_{0}^{\sqrt{3}} - \int_{0}^{\sqrt{3}} (x^{2} + 1) \cdot \frac{1}{x^{2} + 1} dx = 4 \cdot \frac{\pi}{3} - x \right _{0}^{\sqrt{3}} =$	3p
	$=\frac{4\pi}{3}-\sqrt{3}$, de unde obţinem $a=\frac{3}{4}$	2p
c)	$\int_{-1}^{1} x f(x) dx = 2 \int_{-1}^{1} x^{2} \operatorname{arctg} x dx = 2 \int_{1}^{-1} (-x)^{2} \operatorname{arctg} (-x) (-1) dx = -2 \int_{-1}^{1} x^{2} \operatorname{arctg} x dx = -\int_{-1}^{1} x f(x) dx$	3p
	$2\int_{-1}^{1} x f(x) dx = 0, \det \int_{-1}^{1} x f(x) dx = 0$	2p

Probă scrisă la matematică $M_{_}$ mate-info Barem de evaluare și de notare

Examenul național de bacalaureat 2021 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Testul 11

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBII	SUBIECTUL I (30 de pu	
1.	$\sqrt{\left(1-\sqrt{2}\right)^2} = \left 1-\sqrt{2}\right = \sqrt{2} - 1$	2p
	Cum $\sqrt[3]{\left(6-\sqrt{2}\right)^3} = 6-\sqrt{2}$, obținem că $\sqrt[3]{\left(6-\sqrt{2}\right)^3} + \sqrt{\left(1-\sqrt{2}\right)^2} = 6-\sqrt{2}+\sqrt{2}-1=5$	3p
2.	$f(x) = 0 \Leftrightarrow x = 3$, deci graficul funcției f intersectează axa Ox în punctul $(3,0)$	2p
	$g(3) = 0 \Leftrightarrow 9 - 6m - 6 = 0$, deci $m = \frac{1}{2}$	3p
3.	$\log_2(x^2 - 4x + 12) = 3 \Rightarrow x^2 - 4x + 12 = 8 \Rightarrow x^2 - 4x + 4 = 0$	3 p
	x = 2, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri	2 p
	posibile Numerele naturale de două cifre care au suma cifrelor divizibilă cu 3 sunt numerele naturale de două cifre care sunt divizibile cu 3, deci sunt 30 de cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{30}{90} = \frac{1}{3}$	1p
5.	$AB \perp BC \Rightarrow m_{AB} \cdot m_{BC} = -1$	2p
	Cum $m_{AB} = 1$ și $m_{BC} = \frac{m-3}{2}$, obținem $\frac{m-3}{2} = -1$, deci $m = 1$	3p
6.	$\sin\frac{25\pi}{6} = \sin\left(4\pi + \frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$	2p
	Cum $\cos \frac{23\pi}{3} = \cos \left(6\pi + \frac{5\pi}{3}\right) = \cos \frac{5\pi}{3} = \frac{1}{2}$, obținem că $\sin \frac{25\pi}{6} + \cos \frac{23\pi}{3} = \frac{1}{2} + \frac{1}{2} = 1$	3 p
CUDIFICATION OF THE CONTRACT O		

SUBII	ECTUL al II-lea (30 de pu	incte)
1.a)	$A(-2,0,2) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix} \Rightarrow \det(A(-2,0,2)) = \begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{vmatrix} =$	2p
	=-3+1+1-1-(-1)-3=-4	3 p
b)	$\det(A(a,b,c)) = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = (1+a)(1+b)(1+c)+1+1-(1+a)-(1+b)-(1+c) =$	2p
	$= abc + ab + ac + bc \neq 0$, deci matricea $A(a,b,c)$ este inversabilă	3 p
c)	Sistemul este compatibil nedeterminat, deci $\det(A(a,b,c)) = 0 \Rightarrow abc + ab + ac + bc = 0$	3 p
	$ab + ac + bc = -abc \Rightarrow \frac{ab + ac + bc}{abc} = -1$, deci $N = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -1$, care este număr întreg	2 p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

Testul 11

2.a)	$1*1 = \frac{1 \cdot 1}{1 \cdot 1 - 1 - 1 + 2} = \frac{1}{1 - 1 - 1 + 2} =$	3p
	$=\frac{1}{1}=1$	2p
b)	$f(x)*f(y) = \frac{f(x)f(y)}{f(x)f(y) - f(x) - f(y) + 2} = \frac{\frac{2}{x+1} \cdot \frac{2}{y+1}}{\frac{2}{x+1} \cdot \frac{2}{y+1} - \frac{2}{x+1} \cdot \frac{2}{y+1} + 2} =$	2p
	$= \frac{4}{4 - 2(y+1) - 2(x+1) + 2(x+1)(y+1)} = \frac{4}{2xy+2} = \frac{2}{xy+1} = f(xy), \text{ pentru orice } x, y \in (0, +\infty)$	3 p
c)	$f\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2020}{2021}\right) = \frac{2n}{n+1} \Leftrightarrow f\left(\frac{1}{2021}\right) = \frac{2n}{n+1}, \text{ unde } n \text{ este număr natural}$	3 p
	$\frac{2}{\frac{1}{2021} + 1} = \frac{2n}{n+1} \Leftrightarrow \frac{2 \cdot 2021}{2022} = \frac{2n}{n+1}, \text{ deci } n = 2021$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 2\ln x - 2x + 2, \ x \in (0, +\infty)$	3 p
	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 0$ $f''(x) = \frac{2(1 - x)}{x}, \ x \in (0, +\infty)$	2p
b)	$f''(x) = \frac{2(1-x)}{x}, x \in (0,+\infty)$	2p
	Cum $f''(x) > 0$, pentru orice $x \in (0,1)$, obținem că funcția f este convexă pe $(0,1)$	3 p
c)	$f''(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f'$ strict descrescătoare pe $x \in (1, +\infty) \Rightarrow f'(x) < f'(1)$, deci $f'(x) < 0$, pentru orice $x \in (1, +\infty)$	2p
	f continuă și f strict descrescătoare pe $(1,+\infty) \Rightarrow f(x) < f(1)$, pentru orice $x \in (1,+\infty)$, deci $2x \ln x - x^2 + 3 < 2$, de unde obținem $2\ln x < x - \frac{1}{x}$, pentru orice $x \in (1,+\infty)$	3 p
2.a)	$I_1 + \int_0^1 \frac{1}{1+x} dx = \int_0^1 \frac{x}{1+x} dx + \int_0^1 \frac{1}{1+x} dx = \int_0^1 \left(\frac{x}{1+x} + \frac{1}{1+x}\right) dx = \int_0^1 1 dx = \int_0^1 \frac{1}{1+x} dx = \int_0^1 \frac{1}{1+x$	3 p
	$=x\begin{vmatrix} 1\\0 \end{vmatrix}=1$	2p
b)	$I_2 = 2\int_0^1 \frac{x^2}{1+x^2} dx = 2\int_0^1 \left(1 - \frac{1}{1+x^2}\right) dx = 2\left(x - \arctan x\right) \Big _0^1 =$	3 p
	$=2\left(1-\frac{\pi}{4}\right)=2-\frac{\pi}{2}$	2p
c)	$I_n = n \int_0^1 \frac{x^n}{1+x^n} dx = \int_0^1 x \cdot \left(\ln\left(1+x^n\right) \right)' dx \le \int_0^1 \left(\ln\left(1+x^n\right) \right)' dx =$	3p
	$=\ln(1+x^n)\Big _{0}^{1}=\ln 2$, deci $I_n \leq \ln 2$, pentru orice număr natural nenul n	2p

Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Testul 12

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	\ 1	,
1.	$a=2\sqrt{2}$	2p
	Cum $\sqrt{4} < \sqrt{8} < \sqrt{9}$, deci $2 < a < 3$, obținem că $[a] = 2$	3p
2.	Axa Ox este tangentă la graficul funcției $f \Rightarrow \Delta = 0$	2p
	$m^2 - 4 = 0$, deci $m = -2$ sau $m = 2$	3p
3.	$(x-1)(x+2) = (x-1)(x+2)^2 \Rightarrow (x-1)(x+2)(x+1) = 0$	2p
	x = -2, care nu convine; $x = -1$, care nu convine; $x = 1$, care convine	3p
4.	$C_n^2 = 55 \Rightarrow \frac{n(n-1)}{2} = 55 \Rightarrow n^2 - n - 110 = 0$	3p
	Cum n este număr natural, $n \ge 2$, obținem $n = 11$	2p
5.	Punctul de intersecție a dreptelor d_1 și d_2 este punctul $M(-1,-1)$	2p
	$m_{d_2} = -1$ și, cum $m_d \cdot m_{d_2} = -1$, obținem $m_d = 1$, deci ecuația dreptei d este $y = x$	3p
6.	$\sin\frac{5\pi}{12} + \sin\frac{\pi}{12} = 2\sin\frac{\frac{5\pi}{12} + \frac{\pi}{12}}{2}\cos\frac{\frac{5\pi}{12} - \frac{\pi}{12}}{2} = 2\sin\frac{\pi}{4}\cos\frac{\pi}{6} =$	3 p
	$=2\cdot\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

	` <u>-</u>	
1.a)	$A(4,2) = \begin{pmatrix} 2 & -2 & 1 \\ 1 & 4 & 3 \\ 3 & -2 & 2 \end{pmatrix} \Rightarrow \det(A(4,2)) = \begin{vmatrix} 2 & -2 & 1 \\ 1 & 4 & 3 \\ 3 & -2 & 2 \end{vmatrix} =$	2p
	= 16 + (-2) + (-18) - 12 - (-12) - (-4) = 0	3 p
b)	$A(2,1) = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & -2 & 1 \end{pmatrix} \Rightarrow \det(A(2,1)) = 0 \Rightarrow \operatorname{rang}(A(2,1)) \le 2$	3р
	Cum $\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 5 \neq 0$, obţinem că rangul matricei $A(2,1)$ este egal cu 2	2p
c)	$n^{2}-3n+1=p^{2}-3p+1 \Leftrightarrow (n-p)(n+p-3)=0$	2p
	Cum n și p sunt numere naturale nenule și distincte, obținem $n+p=3$, iar perechile sunt $(1,2)$ și $(2,1)$	3 p
2.a)	$(-1)*3 = \frac{-3}{3} - (-1) - 3 + 6 =$	3p
	=-1+1-3+6=3	2p

b)	$x*(y+z-3) = \frac{x(y+z-3)}{3} - x - (y+z-3) + 6 = \frac{xy+xz}{3} - 2x - y - z + 9 =$	2p
	$= \frac{xy}{3} - x - y + 6 + \frac{xz}{3} - x - z + 6 - 3 = (x * y) + (x * z) - 3, \text{ pentru orice numere reale } x, y \text{ si } z$	3p
c)	x*6=6*x=x, pentru orice număr real x , deci $e=6$ este elementul neutru al legii de compoziție "*", de unde obținem că $x*x'=x'*x=6$, unde x' este simetricul lui x în raport cu legea de compoziție "*"	2p
	Decoarece $2x - 3 = x + x - 3$ şi $x * (y + z - 3) = (x * y) + (x * z) - 3$, pentru orice $x, y, z \in \mathbb{R}$, obţinem $(x * x) + (x * x') - 3 + (x' * x) + (x' * x) - 3 = 42 \Leftrightarrow (x * x) + 6 - 3 + 6 + 6 - 3 = 42$, deci $x * x = 30 \Rightarrow \frac{x^2}{3} - 2x + 6 = 30$, de unde obţinem $x = -6$ sau $x = 12$, care convin	3р

(30 de puncte) $f(x) = \sqrt{x^2 + 2} \Rightarrow f'(x) = \frac{1}{2\sqrt{x^2 + 2}} \cdot (x^2 + 2)' =$ 3p $=\frac{2x}{2\sqrt{x^2+2}}=\frac{x}{\sqrt{x^2+2}}, \ x \in \mathbb{R}$ 2p **b)** Tangenta la graficul funcției f în punctul de abscisă $x = \sqrt{2}$, situat pe graficul funcției f, 2p este paralelă cu axa $Ox \Leftrightarrow f'(\sqrt{2}) = 0$ Cum $f'(x) = \frac{x}{\sqrt{x^2 + 2}} - a$, pentru orice număr real a, obținem că $\frac{\sqrt{2}}{2} - a = 0$, deci $a = \frac{\sqrt{2}}{2}$ 3p $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{f(x)}{x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{\sqrt{x^2 + 2} - ax}{x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{x\left(\sqrt{1 + \frac{2}{x^2}} - a\right)}{x} = 1 - a, \text{ pentru orice număr real } a$ 3p $\lim_{x \to +\infty} (f(x) - (1-a)x) = \lim_{x \to +\infty} (\sqrt{x^2 + 2} - x) = \lim_{x \to +\infty} \frac{2}{\sqrt{x^2 + 2} + x} = 0, \text{ deci, pentru orice număr}$ 2p real a, dreapta de ecuație y = (1-a)x este asimptotă spre $+\infty$ la graficul funcției f 2.a) $\int_{1}^{3} \frac{x f(x)}{\operatorname{arctg} x} dx = \int_{1}^{3} x^{3} dx = \frac{x^{4}}{4} \Big|_{1}^{3} =$ 3p 2p **b)** $\int_{1}^{\sqrt{3}} \frac{f(x)}{x} dx = \frac{1}{2} \int_{1}^{\sqrt{3}} (x^2 + 1) \operatorname{arctg} x dx = \frac{x^2 + 1}{2} \operatorname{arctg} x \Big|_{1}^{\sqrt{3}} - \frac{1}{2} \int_{1}^{\sqrt{3}} \frac{x^2 + 1}{x^2 + 1} dx = 2 \cdot \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} - \frac{1}{2} \int_{1}^{\sqrt{3}} 1 dx = \frac{\pi}{3} - \frac{\pi}{4} -$ 3p $=\frac{5\pi}{12}-\frac{1}{2}x\Big|_{1}^{\sqrt{3}}=\frac{5\pi}{12}-\frac{\sqrt{3}-1}{2}$ 2p Pentru orice $n \in \mathbb{N}^*$ și orice $x \in [0,1]$, $0 \le x^{2n} \le 1$ și $0 \le \operatorname{arctg} x \le \frac{\pi}{4} \Rightarrow 0 \le \operatorname{arctg}^n x \le \left(\frac{\pi}{4}\right)^n$, 3p de unde obținem că $0 \le \int_{0}^{1} f^{n}(x) dx \le \int_{0}^{1} \left(\frac{\pi}{4}\right)^{n} dx = \left(\frac{\pi}{4}\right)^{n}$ Cum $\lim_{n \to +\infty} \left(\frac{\pi}{4}\right)^n = 0$, obţinem că $\lim_{n \to +\infty} \int_0^1 f^n(x) dx = 0$ 2p