Computer Organization and Architecture

6 Floating-point Arithmetic

Tongwei Ren

Sep. 26, 2019

Review

- Decimal arithmetic operations
 - Addition
 - Subtraction

Floating-point Representation

IEEE Standard 754

	Single Precision (32 bits)				Double Precision (64 bits)			
	Sign	Biased exponent	Fraction	Value	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0	0	0	0	0
negative zero	1	0	0	-0	1	0	0	-0
plus infinity	0	255 (all 1s)	0	∞	0	2047 (all 1s)	0	∞
minus infinity	1	255 (all 1s)	0	$-\infty$	1	2047 (all 1s)	0	$-\infty$
quiet NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
signaling NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
positive normalized nonzero	0	0 < e < 255	f	2 ^{e-127} (1.f)	0	0 < e < 2047	f	2 ^{e-1023} (1.f)
negative normalized nonzero	1	0 < e < 255	f	$-2^{e-127}(1.f)$	1	0 < e < 2047	f	$-2^{e-1023}(1.f)$
positive denormalized	0	0	f ≠ 0	2 ^{e-126} (0.f)	0	0	f ≠ 0	2 ^{e-1022} (0.f)
negative denormalized	1	0	f ≠ 0	$-2^{e-126}(0.f)$	1	0	f ≠ 0	$-2^{e-1022}(0.f)$

Addition and Subtraction

 It is necessary to ensure that both operands have the same exponent value

$$X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E}$$

$$X - Y = (X_S \times B^{X_E - Y_E} - Y_S) \times B^{Y_E}$$

$$X_E \le Y_E$$

- Procedure
 - Check for zeros
 - Align the significands
 - Add or subtract the significands
 - Normalize the result

- Exponent overflow
 - A positive exponent exceeds the maximum possible exponent value
 - Designated as +∞ or -∞
- Exponent underflow
 - Negative exponent is less than the minimum possible exponent value
 - Reported as 0

- Significand over flow
 - The addition of two significands of the same sign may result in a carry of the most significant bit
 - Fixed by realignment
- Significand under flow
 - In the process of aligning significands, digits may flow off the right end of the significand
 - Some form of rounding is required

Sign Magnitude Addition

- If two operands have same sign, do addition; otherwise, do subtraction
 - Do addition: add directly
 - If the highest bit has carry, overflow
 - Sign is same to addend
 - Do subtraction: add the complement of the second operand
 - If the highest bit has carry, correct (sign is same to minuend)
 - Otherwise, calculate its complement (sign is minus of minuend)

Sign Magnitude Addition (cont.)

Examples

• Examples (cont.)

0 01111110 1110...00 (20)

[沈佳楠, 121250118]

• Examples (cont.)

0 01111011 000...00 (23)

[沈佳楠, 121250118]

Multiplication

- If either operand is 0, 0 is reported as the result
- Subtract a bias for the sum of exponents
- Multiple the significands
- Result is normalized and rounded
 - May cause exponent overflow

Multiplication (cont.)

• Example			product	Υ
$0.5 \times 0.4375 = 0.21875$	initial		000000	111000
	0	->	000000	<mark>0</mark> 11100
01111110			•••••	
+ 01111101	0	->	000000	000111
11111011	1	+	100000	000111
		->	010000	000011
- 01111111	1	+	110000	000011
01111100		->	011000	000001
	1	+	111000	000001
		->	011100	00000

Division

- If the divisor is 0, an error report is issued, or the result is set to infinity
- A dividend of 0 results in 0
- The divisor exponent is subtracted from the dividend exponent and added bias back
- Divide the significands
- Result is normalized and rounded

Division (cont.) divisor 1000...00

–			remainder	quotient		
• Example		initial		111000	0000	
0.4375/0.5=0.875	(enough	-	011000	00000	1
01111101			<-	110000	00000 <mark>1</mark>	
- 01111110	(enough	-	010000	00000 <mark>1</mark>	1
			<-	100000	0000 <mark>11</mark>	
11111111		enough	_	000000	0000 <mark>11</mark>	1
+ 01111111			<-	000000	000 <mark>111</mark>	
01111110		not		000000	000 <mark>111</mark>	0
01111110			<-	000000	001110	
0 01111110 11000	00 (21)	not		000000	011100	0
			< -	000000	111000	

Precision Consideration

- Guard bits
 - The length of the register is almost always greater than the length of the significand plus an implied bit
 - The register contains additional bits, called guard bits
 - They are used to pad out the right end of the significand with 0s

$$x = 1.00 \dots 00 \times 2^{1}, y = 1.11 \dots 11 \times 2^{0}$$

```
x = 1.000....00 \times 2^{1}
-y = 0.111....11 \times 2^{1}
z = 0.000....01 \times 2^{1}
= 1.000....00 \times 2^{-22}
```

```
x = 1.000....00 0000 \times 2^{1}
-y = 0.111....11 1000 \times 2^{1}
z = 0.000....00 1000 \times 2^{1}
= 1.000....00 0000 \times 2^{-23}
```

without guard bits

with guard bits

Rounding

- The result of any operation on the significands is generally stored in a longer register
- When the result is put back into the floating-point format, the extra bits must be disposed of
 - Round to nearest: to the nearest representable number
 - Round toward +∞: up toward plus infinity
 - Round toward -∞: down toward negative infinity
 - Round toward 0: toward zero

Examples

- Assume represent a floating number with 16 bits, in which 1 bit is for sign, 9 bits are for significand, and 6 bits are for exponent (bias is 31)
- Represent 652.13 and -7.48

- Examples (cont.)
 - Assume ALU has 16 bits, calculate the followings without and with guard bits
 - 652.13 + (-7.48)
 - 652.13 -(-7.48)

• Examples (cont.): 652.13 + (-7.48) = 644.65

• Examples (cont.): 652.13 - (-7.48) = 659.61

[薛家豪,121250185]

Summary

- Floating-point arithmetic operations
 - Addition
 - Subtraction
 - Multiplication
 - Division
- Precision Consideration

Thank You

rentw@nju.edu.en

