Eksamen efterår 2015 Page 1 of 12

In English Log ud

Søren Kegnæs INSIDE CampusNet / 26050 Indledende kemi for biovidenskaberne E16 / Opgaver Eksamen efterår 2015 Vis rigtige svar Side 1 O Skjul rigtige svar Spørgsmål 1 Vægtning 4%: Hvad er mulige sæt af kvantetal for valenselektronerne i grundtilstanden for Ge? (4,1,1,½), (4,1,0,-½) \checkmark (4,0,0,½), (4,0,0,-½), (4,1,-1,½), (4,1,0,½) $\overbrace{(4,0,0,1/2),(4,0,0,-1/2),(4,2,-2,1/2),(4,2,-1,1/2),(4,2,0,1/2),(4,2,1,1/2),(4,2,2,1/2),(4,2,2,1/2),(4,2,2,1/2),(4,2,1/2),(4,2,1/2),(4,2,$ $(4,0,0,1/2),\ (4,0,0,-1/2),\ (4,2,-2,1/2),\ (4,2,-1,1/2),\ (4,2,-1,1/2),\ (4,2,1/2),\ (4,2,1$ Spørgsmål 2 Vægtning 3%: Hvad er elektronkonfigurationen i grundtilstanden for Br: ☑ [Ar] 4s² 3d¹⁰ 4p⁵ [Kr] 4s² 3d¹⁰ 4p⁵ \square 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4 \square 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁸ 4p⁶ \Box 4s² 4d⁵ Spørgsmål 3 Vægtning 4%: Opstil i rækkefølge efter stigende 1. ioniseringsenergi følgende grundstoffer: Ba, Cl, Ge, S, Se 🔲 Ba, CI, Ge, S, Se ☑ Ba, Ge, Se, S, CI S, CI, Ge, Se, Ba Se, S, Ge, Ba, CI S, Ge, Ba, Se, CI

Eksamen efterår 2015 Page 2 of 12

Side 2
Molekylorbitalteori
/edhæftet er molekylorbitaldiagrammet for B ₂
Filer: MO for B2.jpg
Spørgsmål 4
/ægtning 2%:
Molekylorbitalteori:
Angiv om B_2 er stabilt og angiv de magnetiske egenskaber for B_2 .
☐ B₂ er stabilt og diamagnetisk
$\ensuremath{ \ensuremath{ \second} \hspace{-0.07cm} \ensuremath{ \second} \hspace{-0.07cm} \ensuremath{ \second} \hspace{-0.07cm} B_2$ er stabilt og paramagnetisk
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
☐ B₂ er ustabilt og paramagnetisk
☐ B₂ er stabilt og antimagnetisk
Spørgsmål 5
/ægtning 4%:
Molekylorbitalteori:
Angiv bindingsordenen for F ₂ ²⁺
☐ Bindingsorden = 0
Bindingsorden = 1
☑ Bindingsorden = 2
☐ Bindingsorden = 3
Distinguished 4

Eksamen efterår 2015 Page 3 of 12

Side 3
Lewisstrukturer
Spørgsmål 6
Vægtning 3%:
Angiv hvilken af følgende forbindelser der er isoelektronisk med Kl
BaO
LIF
☐ NaI
☑ CaO
□ NaH
Spørgsmål 7
Vægtning 2%:
Angiv antallet af lonepairs på C og hver Br for forbindelsen CBr ₄
☐ C: 0 og Br: 2
√ C: 0 og Br: 3
☐ C: 1 og Br: 2
☐ C: 2 og Br: 3
☐ C: 2 og Br: 2
Spørgsmål 8
Vægtning 2%:
Angiv antallet af lonepairs på N og hver H for forbindelsen NH_3
☐ N: 0 og H: 0
☐ N: 0 og H: 1
☑ N: 1 og H: 0
□ N: 1 og H: 1
□ N: 1 og H: 3

Eksamen efterår 2015 Page 4 of 12

Side 4	
Navngivning	
Spørgsmål 9	
Vægtning 1%: Navngiv SO ₂	
Svovloxid	
☑ Svovldioxid	
☐ Svovlperoxid	
☐ Svovlsuperoxid	
☐ monosvovloxid	
Spørgsmål 10	
Vægtning 1%: Navngiv SrCO ₃	
☑ Strontiumcarbonat	
Siliciumcarbonat	
☐ Strontiumcarbonoxid	
☐ Strontiummonocarbontrioxid	
☐ Strontiumcarbonyl	
Spørgsmål 11	
Vægtning 1%: Navngiv ${\sf CaH}_2$	
☑ Calciumhydrid	
☐ Calciumhydrat	
☐ Calciumdihydrogen	
☐ Kaliumhydrid	
☐ Kaliumhydrat	
Spørgsmål 12	
Vægtning 1%: Navngiv NH₄H₂PO₄.	
☑ Ammoniumdihydrogenphosphat	
☐ Ammoniumdihydrogenphosphid	
☐ ammoniakphosphorsyre	
☐ nitrogentetrahydriddihydrogenphosphortetraoxid	
☐ ammoniakdihydrogenphosphat	

Eksamen efterår 2015 Page 5 of 12

Spørgsmål	13	
opol gomai		

vægtillig 1%:
Opskriv formlen for magnesiumnitrat.
$Mg(NO_3)_2$
☐ MgNO ₃
☐ Mg(NO₂)₃
☐ Mg(NO ₂) ₂
☐ MnNO₃

Eksamen efterår 2015 Page 6 of 12

Side 5
Navngivning
Spørgsmål 14
Vægtning 1%:
Opskriv formlen for chrom(III)oxid.
☐ CrO ₃
☐ CuO ₃
☑ Cr ₂ O ₃
☐ Cu(OH)₃
□ Cu₂O₂

Eksamen efterår 2015 Page 7 of 12

Side 6
Kompleksforbindelser
Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)
Filer: ligandfeltopsplitning.jpg
Spørgsmål 15
Vægtning 1%:
Angiv centralatomets koordinationstal for de to ioniske kompleksforbindelser:
a): [Fe(H ₂ O) ₆] ²⁺ b): [Fe(CN) ₆] ⁴⁻
5). [[C(3)] _{6]}
a) 6 b) 6
ш b) 6
a) 3
□ _{b) 3}
a) 1
□ _{b) 1}
a) 0
□ _{b) 1}
_ a) 2
□ _{b) -4}
Spørgsmål 16
Vægtning 5%: Angiv antallet af d-elektroner i e_g og t_{2g} for følgende kompleks:
[Fe(CN) ₆] ⁴ -
e ₉ : O
Cap. C
e _g : 3
□ _{t2g} : 3
eg: 6
□ t _{2g} ; 0
e ₉ : 0
□ _{t2g} : 3
e _g : 2
□ t ₂₉ : 4
Spørgsmål 17
Vægtning 3%: Navngiv følgende kompleksforbindelse: [Cr(NH ₃) ₄ Cl ₂]Cl.
✓ tetraammindichloridochrom(III)chlorid
tetraammindichloridochrom(I)chlorid
tetraamminchrom(III)chlorid
tetraammoniaktrichloridochrom(II)
chrom(III)tetraammindichloridochlorid

Eksamen efterår 2015 Page 8 of 12

Spørgsmål 18
vægtning 3%:
Opskriv formlen for tetrachloridocobaltat(II)-ionen.
√ [CoCl ₄] ²⁻
\square [CoCl ₄] ²⁺
\square [CuCl ₄] ²⁻
☐ [Cl ₄ CO] ²⁺
☐ [CuCl₄] ²⁺

Eksamen efterår 2015 Page 9 of 12

Side 7

Reaktionsskemaer

Spørgsmål 19

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori kalium reagerer med stort overskud af vand.

$$K(s) + H_2O(l) \rightharpoonup ?$$

$$\nearrow$$
 2K(s) + 2H₂O(l) \rightharpoonup 2KOH(aq) + H₂(g)

$$\square$$
 2K(s) + 2H₂O(l) \rightharpoonup 2KO₂(aq) + 2H₂(g)

$$\ \ \, \underline{\ \ }\ \, 2K(s)+2H_2O(l) \rightharpoonup 2KH(s)+2OH^-(aq)$$

$$\square$$
 2K(s) + 3H₂O(l) \rightharpoonup K₂O₃(s) + 3H₂(g)

$$\ \ \, \bigsqcup \, K(s) + 6H_2O(l) \rightharpoonup [K(H_2O)_6]^+(aq)$$

Spørgsmål 20

Vægtning 4%:

Opskriv den afstemte reaktionsligning for fremstilling af $Fe_{(s)}$ ud fra $Fe_2O_{3(s)}$ og et reduktionsmiddel

$$\square$$
 2Fe₂O₃(s) \rightharpoonup 4Fe(s) + 3O₂(g)

$$\square$$
 2Fe₂O₃(s) + 2H₂(g) \rightharpoonup 4Fe(s) + 2H₂(g) + 3O₂(g)

$$\ \ \square \ Fe_2O_3(s) + 3H_2O(l) \rightharpoonup 2Fe(OH)_3(s)$$

Spørgsmål 21

Vægtning 4%:

Angiv den korrekt afstemte reaktionsligning for svovldioxids reduktion af iod til iodid i sur opløsning

$${\color{red}\triangleright}\hspace{-0.5em}\mid SO_2(aq) + I_2(aq) + 2H_2O(l) \rightharpoonup HSO_4^-(aq) + 2I^-(aq) + 3H^+(aq)$$

$$\label{eq:so2} \ \, \square \ \, SO_2(aq) + I_2(aq) + H_2O(l) \rightharpoonup SO_4^{2-}(aq) + 2I^-(aq) + H_2(aq)$$

$$\square$$
 SO₂(aq) + 4I₂(aq) + H₂O(l) \rightharpoonup HSO₄ (aq) + 4I⁻(aq) + H₂(g)

$$\ \ \, \square \ \, 2SO_2(aq) + I_2(aq) + H_2O(l) \rightharpoonup 2HSO_4^-(aq) + 2I^-(aq)$$

Eksamen efterår 2015 Page 10 of 12

Side 8	
Støkiometri	
Spørgsmål 22	
ægtning 7%:	
Reaktionen mellem kaliumsuperoxid, KO ₂ (s) og CO ₂ (g) bruges til at udskifte CO ₂ (g) med dioxygen, O ₂ (g), i atmosfærisk luft, som gennem udånding er blevet relativt beriget med CO ₂ (g).	
Den ikke-afstemte reaktionsligning er:	
$KO_2(s) + CO_2(g) \rightarrow K_2CO_3(s) + O_2(g)$	
nvor mange mol $O_2(g)$ dannes ved reaktion med 156 g $CO_2(g)$ og overskud af $KO_2(s)$	
☑ 5,318 mol	
☐ 4,235 mmol	
□ 0,198 mol	
☐ 3,545 mol	
☐ 48,79 mol	
Spørgsmål 23	
/ægtning 7%:	
Eddikesyreindholdet (CH ₃ COOH) i lagereddike kan bestemmes ved titrering med NaOH.	
5,00 mL lagereddike titreres med 38,08 mL 0,1000 M NaOH.	
-lvad er indholdet af eddikesyre (densiteten af lagereddiken er 1,01 g/mL)?	
✓ 4,53 % w/w	
□ 49,2 % w/w	
□ 0,41 % w/w	
□ 0.049 % w/w	

__ 1,01 % w/w

Eksamen efterår 2015 Page 11 of 12

Side 9
Syre-base- og puffersystemer
Spørgsmål 24
Agething 7%: Hypochlorsyrling bruges til at desinficere svømmebassiner. Det reagerer som svag syre: $HCIO(aq) \rightleftharpoons H^+(aq) + CIO^-(aq), K_a = 3, 0 \times 10^{-8}$ for at man skal kunne være i vandet uden at det svier for meget i øjnene, skal pH være 7,8. Hvad er de respektive molprocenter af HCIO(aq) og CIO $^{-7}$
☑ 67% CIO ⁻ og 33% HCIO
33% CIO ⁻ og 67% HCIO
50% CIO ⁻ og 50% HCIO
90% CIO og 10% HCIO
☐ 10% CIO ⁻ og 90% HCIO
Spørgsmål 25
/ægtning 7%: 0,156 g Na ₂ CO ₃ (s) opløses i 100 mL vand. Hvad er pH i denne opløsning? Antag at volumenet er uændret $K_a(1)=4,2\cdot 10^{-7}, K_a(2)=4,8\cdot 10^{-10}$
□ 12,17
☑ 10,74
9,30
□ 6,37
□ 3,26

Eksamen efterår 2015 Page 12 of 12

Side 10
igevægte
Spørgsmål 26
/ægtning 7%: Opløseligheden af calciumsulfat, CaSO₄, i vand er 0,67 g/L. Beregn opløselighedsproduktet K₅p for CaSO
$\square\ 2,2\times 10^{-1}$
□ 0,67
$\Box 4.9 \times 10^{-3}$
4.2×10^{-9}
Spørgsmål 27
/ægtning 7%: someriseringsreaktionen mellem butan(g) og isobutan(g) er: butan(g) \Rightarrow isobutan(g), Ligevægtskonstanten $K=25$ bet initielle tryk af butan er 10,0 bar og af isobutan er 0,0 bar. Hvad er trykkene ved ligevægt?
butan: 0,00 bar; isobutan: 10,0 bar
☑ butan: 0,38 bar; isobutan: 9,6 bar
butan: 9,6 bar; isobutan: 0,38 bar
butan: 5,0 bar ; isobutan: 5,0 bar

butan: 10,0 bar; isobutan: 0,00 bar