

**Digital Speech Processing** 



## گفتار پردازی رقمی

#### مقدمه

حميدرضا برادران كاشاني



#### سرفصل مطالب

- 💠 معرفی گفتار
- **⇔شاخه های پردازش گفتار**
- 💠 کاربردهای پردازش گفتار
- 💠 علوم مرتبط با پردازش گفتار
- 💠 تاریخچه پردازش خودکار گفتار
  - 💸 زنجیره گفتار

Outlines 2



#### معرفي

#### چرا گفتار؟

۱- ساده ترین راه ارتباطی انسان ها با یکدیگر که بسیار کم هزینه است!
۲ - علاوه بر کلمات، مفاهیم و اطلاعات سطح بالاتری را هم منتقل می
کند.

٣ - نرخ انتقال داده بالایی دارد.

۴ – طبیعی است یعنی نیاز به یادگیری ندارد.

۵ – کامل تر از زبان نوشتاری است.

۶ – بواسطه وجود تاکید و لحن در بیان گفتاری می تواند بهتر از نوشتار مقصود گوینده را مشخص می کند



### معرفي

# چرا پردازش گفتار؟

۱- ایجاد ماشین هایی با توانایی ها و قابلیت های انسان ها در صحبت

کردن، شنیدن و درک کردن گفتار و ...

۲- ایجاد ارتباط میان انسان و ماشین از طریق گفتار

۳– ساخت سیستم های مکالمه گفتار (Spoken Dialog Systems)

••••



# اطلاعات موجود در گفتار





#### شاخه های پردازش گفتار





### شاخه های پردازش گفتار





### شاخه های پردازش گفتار



**Speech-to-Speech Translation** 





#### **Speaker Diarization**







### كاربردها





#### كاربردهاي عمومي

- فرمان های صوتی در اتومبیل، وسایل خانگی و ...
  - پردازش گفتار برای کمک به نابینایان،
- آموزش و یادگیری زبان های خارجی (تلفظ صحیح صداها و آهنگ جملات)،
  - سیستم های یادگیری بصورت پرسش و پاسخ
    - سیستم های اطلاع رسانی مانند تلفن گویا
      - کلید و قفل صوتی
  - خدمات عمومی مثلا فروش خودکار بلیط در ایستگاه های حمل و نقل
    - شناسایی زبان فرد گوینده در سیستم های ترجمه خودکار



#### كاربردها

#### كاربردهاي مخابراتي

- شماره گیری تلفن توسط صدای فرد
- ارسال صدا همرا با تصویر و سایر داده های اطلاعاتی دیگر
  - دسترسی از راه دور با پایگاه های داده توسط صوت افراد

••••

#### کاربردهای پزشکی و صنعتی

- تشخیص ناهنجاری ها و بیمارهای گفتاری
  - ساخت سمعک ها و ابزار کمک شنوایی
- بازشناسی فرامین صوتی در مکان های خاص مثلا کابین هواپیما

•••







#### كاربردها

#### کاربردهای اداری

- بازشناسی هویت افراد قبل در هنگام ورود
- دیکته اتوماتیک و بازشناسی گفتار و گوینده در جلسات اداری
  - فرامین کنترلی توسط صدا

#### کاربردهای امنیتی

- تشخیص شنود و جاسوسی مبتنی بر گفتار
  - فرامین صوتی به ادوات نظامی
- ترجمه زبان مبتنی بر گفتار در مناطق نظامی
- مقایسه صوت فرد مجرم با صوت فرد مظنون به عنوان مدرک در دادگاه



Hamidreza Baradaran Kashani



## علوم مرتبط با پردازش گفتار





#### تاريخچه

- \*۱۹۲۰: ساخت اسیلوگراف برای نمایش شکل موج زمانی گفتار
  - ۱۹۴۶ : ساخت اسپکتروگراف صدا در آزمایشگاه Bell
- 💠 ۱۹۵۸: ساخت یکی از اولین سیستم های بازشناسی گفتار توسط Denis Fry در UCL
  - 💠 ۱۹۷۰ به بعد: ارائه تکنیک های پردازش سیگنال دیجیتال
- ❖ آنالیز پیشگویی خطی (LPC)، تبدیل فوریه سریع (FFT)، استخراج پارامترهای گفتاری مثل گام و فرمنت، آنالیز کپسترال، بکارگیری مدل مخفی مارکوف و رویکردهای مختلف یادگیری ماشین و ....
  - \* ۱۹۹۰: ساخت یکی از سیستم های تجاری بازشناسی گفتار توسط آقای Rabiner
  - از ۲۰۱۳ تا کنون: رویکردهای مختلف یادگیری عمیق در اکثر کاربردهای پردازش گفتار 💠

Hamidreza Baradaran Kashani

History 13



#### زنجيره گفتار

#### Feed-forward, auditory-only speech chain (Denes and Pinson, 1993)



(image by W. Murphey and A. Yeung).



### زنجيره گفتار

#### Multimodal speech chain with feedback loops

(Denes and Pinson, 1993)



(image by W. Murphey and A. Yeung).