10 BOOLEAN LOGIC

Example 3

A logic circuit can be represented by the following logic expression: (A XOR C) OR (NOT C NAND B) $\,$

Produce a logic circuit and a truth table from the above statement.

In this example we have a connecting logic gate which is OR.

So, if we produce one half of the circuit from (A XOR C) we get:

▲ Figure 10.21

The other half of the circuit is found from (NOT C NAND B):

If we now combine these together to form the final logic circuit:

▲ Figure 10.23

The truth table is shown:

▼ Table 10.13

Input values			Values at stages:			Output	
Α	В	С	'P'	'Q'	'R'	Х	
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	0	1	0	0	
0	1	1	1	0	1	1	
1	0	0	1	1	1	1	
1	0	1	0	0	1	1	
1	1	0	1	1	0	1	
1	1	1	0	0	1	1	

?

Example 4

Look at the two truth tables below; in each case produce a logic expression and the corresponding logic circuit:

d

▼ Table 10.14

Inp	uts	Output
Α	В	Х
0	0	0
0	1	0
1	0	1 -
1	1	0

To produce the logic statement, we only concern ourselves with the truth table row where the output value is 1. In this case, A = 1 and B = 0 which gives the logical expression:

A AND NOT B

So we have the logic expression: A AND NOT B

(Note that this could be written as A . \overline{B} in Boolean.) It is now possible to draw the corresponding logic circuit:

10 BOOLEAN LOGIC

b ▼ Table 10.15

Inp	uts	Output	
Α	В	Х	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

This time we have **two** rows where the output is 1; this gives the following logical expressions:

(NOT A AND B)

(A AND B)

We now join these together using an OR gate to give: (NOT A AND B) OR (A AND B)

So we have the logic expression: (NOT A AND B) OR (A AND B) (This could be written as: \overline{A} . B + A . B)

It is now possible to draw the corresponding logic circuit:

▲ Figure 10.25

? Example 5

a Which Boolean expression is represented by the following truth table?

▼ Table 10.16

	Output		
Α	В	С	Х
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

We only need to consider those rows where the output is a 1. This gives us the following three logic expressions:

(NOT A AND NOT B AND NOT C) (A AND NOT B AND NOT C) (A AND B AND NOT C)

If we now join the three expressions with an OR gate, we end up with the final logic expression:

(NOT A AND NOT B AND NOT C) OR (A AND NOT B AND NOT C) OR (A AND B AND NOT C)

- b i Which logic expression is represented by the following truth table?
 - ii Show that your logic expression in part i is the same as: (B AND C) OR (A AND C) OR (A AND B)

▼ Table 10.17

Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

i We only need to consider those rows where the output is a 1. This gives us the following four Boolean expressions:

(NOT A AND B AND C) (A AND NOT B AND C) (A AND B AND NOT C) (A AND B AND C)

If we now join the four expressions with an OR gate we end up with the following logic expression:

(NOT A AND B AND C) OR (A AND NOT B AND C) OR (A AND B AND NOT C) OR (A AND B AND C)

ii To show that (B AND C) OR (A AND C) OR (A AND B) produces the same output as that shown in part i we need to produce a new truth table and show that the output is the same as the one in the given truth table:

▼ Table 10.18

Α	В	С	B AND C	A AND C	A AND B	(B AND C) OR (A AND C) OR (A AND B)	Х
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	1	0	1	0	1	1
1	1	0	0	0	1	1	1
1	1	1	1	1	1	1	1

As the second truth table shows, the outputs from logic expressions are both the same; thus the logic expression **(B AND C) OR (A AND C) OR (A AND B)** gives the same output as the logic expression in part i.