

Uncovering Human Adaptations in the Last 400 Years

Md Touhidul Islam Alan R. Rogers

1. Limited Insight into Recent Human Adaptations

Urbanization, industrialization, and modern lifestyles have reshaped human traits over the past 400 years. But are these shifts purely cultural and environmental, or *has natural selection played a role? No genomic method can yet detect selection over this timescale*, as allele frequencies change too slowly. To uncover recent adaptations, we need new genomic signatures.

2. An Alternative Signature of Recent Selection

Stabilizing and directional selection favor chromosomes with a mix of trait-increasing (+) and trait-decreasing (-) alleles. This mix creates negative covariance between like-effect alleles, reducing genetic variance, known as the *Bulmer effect* (Bulmer 1971). Thus, *negative covariance in sampled genomes hints at recent selection*.

Chromosome	Phenotype
++++	large
	small
+-+-	
-+-+	intermediate
++	
++	

3. Uncertainty in Assigning +/- Alleles

Under selection, (+) and (-) alleles *counteract* each other, leading to underestimated allelic effect sizes in genome-wide association studies and reducing the power to detect selection.

4. BULMER: A Novel Statistical Genomic Method

Our new method is based on the insight that negative correlations between like-effect alleles also result in negative correlations between *like-effect linkage disequilibrium (LD)* blocks.

We use the most significant loci from each block in a multivariate regression to estimate the net effects of individual blocks. This reduces the number of loci analyzed, lowering the required sample size.

5. Confounding & Correction

- ► Genetic drift creates correlation with random sign. We use randomization to test the hypothesis of selection against drift.
- ► Population subdivision masks the Bulmer effect; we correct for it using a clustering approach.

6. BULMER Detects Recent Selection

P-values from 30 downsampled bootstrap replicates using forward simulations with SLiM. BULMER detects selection *within the last 400 years* (15 generations, ~ 27 years/generation) in large biobank datasets, *even under population subdivision*.

7. Conclusions

- ► The Bulmer effect is sensitive to recent stabilizing and directional selection.
- ► The new method corrects for population subdivision.
- ➤ Simulations show selection is detectable in the last 400 years.

8. Future Work

- ► Differentiate between stabilizing and directional selection.
- Separate recent from ongoing selection.
- ► Analyze anthropometric, molecular, and life-history traits in the UK Biobank.

Appendix: The Bulmer Effect

Consider a quantitative trait, such as height, determined by two loci (x & y), whose effects combine additively.

The yellow circle shows all possible heights under neutrality. *All heights* have *equal fitness*. Cov(x, y) = 0

Taller heights in yellow strip have **higher fitness** under directional selection. Cov(x, y) < 0

Intermediate heights in yellow strip have higher fitness under stabilizing selection. Cov(x, y) < 0

Acknowledgements

This work was supported by NSF, and by the Center for High Performance Computing at the University of Utah.

Scan Me!!

