```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import preprocessing,svm
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge,RidgeCV,Lasso
from sklearn.preprocessing import StandardScaler
```

In [21]: df=pd.read_csv(r"C:\Users\Lenovo\OneDrive\Desktop\Data Sets\Advertising.csv")
df

Out[21]:

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12.0
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9
38.2	3.7	13.8	7.6
94.2	4.9	8.1	14.0
177.0	9.3	6.4	14.8
283.6	42.0	66.2	25.5
232.1	8.6	8.7	18.4
	230.1 44.5 17.2 151.5 180.8 38.2 94.2 177.0	230.1 37.8 44.5 39.3 17.2 45.9 151.5 41.3 180.8 10.8 38.2 3.7 94.2 4.9 177.0 9.3 283.6 42.0	230.1 37.8 69.2 44.5 39.3 45.1 17.2 45.9 69.3 151.5 41.3 58.5 180.8 10.8 58.4 38.2 3.7 13.8 94.2 4.9 8.1 177.0 9.3 6.4 283.6 42.0 66.2

200 rows × 4 columns

In [22]: df.head()

Out[22]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [23]: df.tail()

Out[23]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

```
In [24]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
Column Non-Null Count Divine

Column Non-Null Count Dtype float64 TV 200 non-null 0 Radio 200 non-null float64 1 Newspaper 200 non-null float64 2 3 Sales 200 non-null float64

dtypes: float64(4)
memory usage: 6.4 KB

In [25]: df.describe()

Out[25]:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

In [26]: df.shape

Out[26]: (200, 4)

In [27]: sns.lmplot(x="TV",y="Sales",data=df,order=2,ci=None)

Out[27]: <seaborn.axisgrid.FacetGrid at 0x12903eeb1d0>

In [28]: sns.lmplot(x="Radio",y="Sales",data=df,order=2,ci=None)

Out[28]: <seaborn.axisgrid.FacetGrid at 0x1290474e0d0>


```
In [29]: sns.lmplot(x="Newspaper",y="Sales",data=df,order=2,ci=None)
```

Out[29]: <seaborn.axisgrid.FacetGrid at 0x12904756550>


```
In [30]: df.fillna(method='ffill',inplace=True)
```

In [31]: sns.pairplot(df,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',height=7,aspect=0.7,kind='reg'

Out[31]: <seaborn.axisgrid.PairGrid at 0x129006ea390>


```
In [32]:
         x=np.array(df['TV']).reshape(-1,1)
         y=np.array(df['Sales']).reshape(-1,1)
         df.dropna(inplace=True)
In [33]: regr=LinearRegression()
In [34]: X_train,X_test,Y_train,Y_test=train_test_split(x,y,test_size=0.25)
         regr.fit(X_train,Y_train)
         regr.fit(X_train,Y_train)
Out[34]:
          ▼ LinearRegression
          LinearRegression()
In [35]: y_pred=regr.predict(X_test)
         plt.scatter(X_test,Y_test,color='r')
         plt.plot(X_test,y_pred,color='b')
         plt.show()
          25
          20
           15
           10
            5
```

```
In [37]: plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),annot=True)
```

Out[37]: <Axes: >


```
In [38]: df.drop(columns=["Radio","Newspaper"],inplace=True)
#pairplot
sns.pairplot(df)
df.Sales=np.log(df.Sales)
```



```
In [39]: features=df.columns[0:2]
    target=df.columns[-1]

#X and y values
X=df[features].values
y=df[target].values

#splot
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=17)

print("The dimension of X_train is {}".format(X_train.shape))
print("The dimension of X test is {}".format(X_test.shape))

#scale features
scaler=StandardScaler()
X_train=scaler.fit_transform(X_train)
X_test=scaler.transform(X_test)
```

The dimension of X_{train} is (183, 2) The dimension of X_{train} test is (17, 2)

```
In [40]:
         #model
         lr=LinearRegression()
         #fit model
         lr.fit(X_train,y_train)
         #predict
         prediction=lr.predict(X_test)
         #actual
         actual=y_test
         train_score_lr=lr.score(X_train,y_train)
         test_score_lr=lr.score(X_test,y_test)
         print("\nLinear Regression Model:\n")
         print("The train score for lr model is {}".format(train_score_lr))
         print("The test score for lr model is {}".format(test_score_lr))
         Linear Regression Model:
         The train score for lr model is 1.0
         The test score for lr model is 1.0
In [41]: #Ridge Regression Model
         ridgeReg=Ridge(alpha=10)
         ridgeReg.fit(X_train,y_train)
         #train and test score for ridge regression
         train_score_ridge=ridgeReg.score(X_train,y_train)
         test_score_ridge=ridgeReg.score(X_test,y_test)
         print("\nLinear Regression Model:\n")
         print("The train score for lr model is {}".format(train_score_ridge))
         print("The test score for lr model is {}".format(test_score_ridge))
         Linear Regression Model:
```

The train score for lr model is 0.9938003534333717 The test score for lr model is 0.9979567956770432


```
In [43]: #lasso regression model
    print("\nLasso Model: \n")
    lasso=Lasso(alpha=10)
    lasso.fit(X_train,y_train)
    train_score_ls=lasso.score(X_train,y_train)
    test_score_ls=lasso.score(X_test,y_test)

    print("The train score for ls model is {}".format(train_score_ls))
    print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.0 The test score for ls model is -0.1764851111612895

```
In [44]: pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[44]: <Axes: >


```
In [45]: #using the Linear CV model
    from sklearn.linear_model import LassoCV

#Lasso cross validation
    lasso_cv=LassoCV(alphas=[0.0001,0.001,0.1,1,10],random_state=0).fit(X_train,y_train)

#score
    print(lasso_cv.score(X_train,y_train))
    print(lasso_cv.score(X_test,y_test))
```

0.9999999406813933

0.9999999492433705

```
In [46]: plt.figure(figsize=(10,10))

plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red'
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label=1
plt.xticks(rotation=90)
plt.legend()
plt.title("Comparison plot of Ridge,Lasso and Linear Regression Model")
plt.show()
```

Comparison plot of Ridge, Lasso and Linear Regression Model

The train score for ridge model is 0.999999999998885 The train score for ridge model is 0.9999999999996397