

Netzwerke und Schaltungen II, D-ITET Bodeplots — Musterlösung

Hinweise

- Phasenverläufe können aus ästhetischen Gründen um 360° verschoben sein; eine Verschiebung um 360° ändert die Aussage nicht.
- Magnitudenplots sind auf der y-Achse standardmäßig in 20-dB-Schritten beschriftet; falls es sich ästhetisch anbietet, sind auch 10-dB-Schritte zulässig.
- Mit dem MATLAB-Skript kann man selbst experimentieren, die Plots exakt berechnen und alle Ergebnisse nachprüfen.

Version: October 26, 2025

Einleitung: s und $j\omega$

Warum sind manche Übertragungsfunktionen manchmal abhängig von s
 und manchmal von j ω ?

Für sinusförmige stationäre Signale ist die Laplace- mit der Fourier-Transformierten auf der imaginären Achse äquivalent; eine Abklinghülle ist nicht nötig, daher setzt man $\sigma=0$ und damit

$$s=j\omega$$
.

Der Frequenzgang wird zwar als $H(j\omega)$ ausgewertet, aber die Schreibweise in s ist kompakter und, wie wir gesehen haben, äquivalent: Standardformen wie $1+sT,\ 1/(1+sT),\ sL,\ 1/(sC)$ sind sofort lesbar und einfacher zu faktorisieren. Es bietet sich an in s zu modellieren und faktorisieren und um Magnituden/Phasen explitizit auszurechnen, am Ende $s\to j\omega$ einsetzen und mit den Gesetzen der komplexen Zahlen zu arbeiten.

Beispiele

$$H(s) = \frac{1}{1+sT} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{1}{1+j\omega T}$$

$$H(s) = \frac{sT}{1+sT} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{j\omega T}{1+j\omega T}$$

$$H(s) = \frac{1}{sT} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{1}{j\omega T}$$

$$H(s) = sT \qquad \Leftrightarrow \qquad H(j\omega) = j\omega T$$

$$H(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{\omega_0^2}{-\omega^2 + j \, 2\zeta\omega_0 \omega + \omega_0^2}$$
$$H(s) = \frac{1 + sT_z}{1 + sT_p} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{1 + j\omega T_z}{1 + j\omega T_p}$$

Aufgabe A)

$$H(s) = \frac{1}{s+1} \,.$$

A.1 Bode-Diagramm

A.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = \frac{1}{1 + sT_p} \quad \text{mit} \quad T_p = 1.$$

Hier haben wir:

$$\underline{F}_1(s) = \frac{1}{1 + sT_p}$$
 und $K_0 = 1$ und $r = 0$.

Klassifizikation des ersten Teilglieds \underline{F}_1 : reelles Polglied erster Ordnung.

2. Eckfrequenz bestimmen und sortieren. Bestimme die Eckfrequenz aus der Zeitkonstante:

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Es existiert nur diese Eckfrequenz; die aufsteigende Sortierung $\omega_1 < \omega_2 < \ldots$ ist damit trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze die Startfrequenz gleich der kleinsten Eckfrequenz $\omega_{\min} = \omega_p = 1 \text{ rad/s}$. Verwende die Skript-Regel

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \cdot \omega_{\rm min}^r \right) = 20 \log_{10}(1) = 0 \, {\rm dB}$$

Hier gilt $K_0=1,\ r=0$ und $F_{ges}^*(0)=1\Rightarrow F_{\rm dB}(\omega_{\rm min})=0\,{\rm dB}$. Dieser Punkt nützt uns als Anker für die Geradennäherung.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min}$ bleibt die Amplituden-Asymptote waagrecht, denn die Anfangssteigung beträgt $r \cdot 20\,\mathrm{dB/dec} = 0$. Trage also eine horizontale Linie bei $0\,\mathrm{dB}$ ein.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein einfaches Polglied $1/(1+sT_p)$ reduziert die Steigung ab ω_p um $20\,\mathrm{dB/dec}$. Da bist jetzt die Steigung $0\,\mathrm{dB/dec}$ betrug, ist diese ab jetzt $-20\,\mathrm{dB/dec}$. Zeichne rechts von ω_p die Gerade mit Steigung $-20\,\mathrm{dB/dec}$. Die Formel für die Geradennäherung lautet:

$$|H(j\omega)|_{\mathrm{dB}} \approx -20 \log_{10} \omega \quad (\omega \ge 1).$$

Mehrfachpole würden die Änderung mehrfach zählen; hier nicht nötig.

6. Eckabrundung korrekt berücksichtigen. Bei einfachen reellen Polen ergibt sich am Knickpunkt $\omega = \omega_p$ eine Abweichung von -3 dB gegenüber der Gerade. Setze dort einen Stützpunkt:

$$|H(j\omega_p)|_{dB} = -10\log_{10}(1+1^2) = -10\log_{10}2 \approx -3.01 \,dB.$$

Runde die Ecke entsprechend ab. Hätten wir einen Mehrfachpol bei ω_p (Beispielsweise $\left(\frac{1}{1+sT_n}\right)^t$), müsste man die Ecke um $t \cdot 3.01\,\mathrm{dB}$ abrunden.

7. Phasenstartwert festlegen. Nutze die Regel für $\omega \to 0$: Da $K_0 F_{ges}(0) > 0$ und r = 0, ist der Startwert der Phase

$$\varphi(0) = 0^{\circ}$$
.

8. Phasenänderung durch das Polglied eintragen. Ein reelles Polglied erster Ordnung erzeugt insgesamt eine Phasenänderung von -90°. Trage die Näherung ein:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1 \,\omega_{p}, \\ \text{linear mit Steigung } -45^{\circ}/\text{Dec}, & 0.1 \,\omega_{p} < \omega < 10 \,\omega_{p}, \\ -90^{\circ}, & \omega \geq 10 \,\omega_{p}. \end{cases}$$

Das lineare Zwischenstück kann Formelkonform als $\varphi(\omega) \approx -45^{\circ} -45^{\circ} \log_{10} \omega$ dargestellt werden (hier mit $\omega_p = 1$).

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 1/\omega \Rightarrow -20 \log_{10} \omega \, dB$). Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = 0, Nennergra $n = 1 \Rightarrow \varphi(\infty) = (m-n) \cdot 90^{\circ} = -90^{\circ}$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 1, \\ -10\log_{10} 2, & \omega = 1, \\ -20\log_{10} \omega, & \omega \gg 1, \end{cases} \qquad \varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ -45^{\circ} - 45^{\circ}\log_{10} \omega, & 0.1 < \omega < 10, \\ -90^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe B)

$$H(s) = \frac{10}{s+10} \,.$$

B.1 Bode-Diagramm

B.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = \frac{1}{1 + sT_p}$$
 mit $T_p = \frac{1}{10}$.

Hier haben wir:

$$\underline{F}_1(s) = \frac{1}{1 + sT_p}$$
 und $K_0 = 1$ und $r = 0$.

Klassifizikation des ersten Teilglieds \underline{F}_1 : reelles Polglied (LHP) erster Ordnung.

2. Eckfrequenz bestimmen und sortieren. Bestimme die Eckfrequenz aus der Zeitkonstante:

$$\omega_p = \frac{1}{T_p} = 10 \, \text{rad/s}.$$

Es existiert nur diese Eckfrequenz; die aufsteigende Sortierung $\omega_1 < \omega_2 < \ldots$ ist damit trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze die Startfrequenz gleich der kleinsten Eckfrequenz $\omega_{\min} = \omega_p = 10 \,\text{rad/s}$. Verwende die Skript-Regel

$$F_{\text{dB}}(\omega_{\min}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \cdot \omega_{\min}^r \right) = 20 \log_{10}(1) = 0 \,\text{dB}.$$

Hier gilt $K_0=1,\ r=0$ und $F_{ges}^*(0)=1\Rightarrow F_{\rm dB}(\omega_{\rm min})=0\,{\rm dB}$. Dieser Punkt nützt uns als Anker für die Geradennäherung.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min}$ bleibt die Amplituden-Asymptote waagrecht, denn die Anfangssteigung beträgt $r \cdot 20\,\mathrm{dB/dec} = 0$. Trage also eine horizontale Linie bei $0\,\mathrm{dB}$ ein.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein einfaches Polglied $1/(1+sT_p)$ reduziert die Steigung ab ω_p um $20\,\mathrm{dB/dec}$. Da bis jetzt die Steigung $0\,\mathrm{dB/dec}$ betrug, ist diese ab jetzt $-20\,\mathrm{dB/dec}$. Zeichne rechts von ω_p die Gerade mit Steigung $-20\,\mathrm{dB/dec}$. Die Formel für die Geradennäherung lautet:

$$|H(j\omega)|_{\mathrm{dB}} \approx -20 \log_{10} \left(\frac{\omega}{10}\right) \quad (\omega \ge 10).$$

Mehrfachpole würden die Änderung mehrfach zählen; hier nicht nötig.

- 6. Eckabrundung korrekt berücksichtigen. Bei einfachen reellen Polen ergibt sich am Knickpunkt $\omega = \omega_p$ eine Abweichung von -3 dB gegenüber der Gerade.
- 7. Phasenstartwert festlegen. Nutze die Regel für $\omega \to 0$: Da $K_0 F_{ges}(0) > 0$ und r = 0, ist der Startwert der Phase

$$\varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch das Polglied eintragen. Ein reelles Polglied erster Ordnung erzeugt insgesamt eine Phasenänderung von -90°. Trage die Näherung ein:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1 \,\omega_{p} \; (=1), \\ \text{linear mit Steigung } -45^{\circ}/\text{Dec}, & 0.1 \,\omega_{p} < \omega < 10 \,\omega_{p} \; (=100), \\ -90^{\circ}, & \omega \geq 10 \,\omega_{p} \; (=100). \end{cases}$$

Das lineare Zwischenstück kann Formelkonform als $\varphi(\omega) \approx -45^{\circ} - 45^{\circ} \log_{10}(\omega/10)$ dargestellt werden (hier mit $\omega_p = 10$).

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 10/\omega \Rightarrow -20 \log_{10}(\omega/10) \, dB$). Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = 0, Nennergrad $n = 1 \Rightarrow \varphi(\infty) = (m-n) \cdot 90^{\circ} = -90^{\circ}$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 10, \\ -10\log_{10} 2, & \omega = 10, \\ -20\log_{10}(\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 1, \\ -45^{\circ} - 45^{\circ} \log_{10}(\omega/10), & 1 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe C)

$$H(s) = \frac{s+1}{s+10} \,.$$

C.1 Bode-Diagramm

C.2 Erklärung (ausführlich)

1. Zuerst Normalform herstellen.

$$H(s) = \frac{s+1}{s+10} = \frac{1+sT_z}{10(1+sT_p)}$$

Die Teilglieder und Variablen gemäß Skript sind:

$$\underline{F}_1(s) = \frac{1}{1 + s\frac{1}{10}}, \ \underline{F}_2(s) = 1 + s, \quad T_z = 1, \ T_p = \frac{1}{10}, \ K_0 = \frac{1}{10} \text{ und } r = 0.$$

reelle Nullstelle erster Ordnung bei $\omega_z = 1/T_z = 1 \, \text{rad/s}$; reeller Pol erster Ordnung bei $\omega_p = 1/T_p = 10 \, \text{rad/s}$.

2. Danach Eckfrequenzen bestimmen und sortieren.

$$\omega_z = 1 \, \text{rad/s}, \qquad \omega_p = 10 \, \text{rad/s}, \qquad \omega_z < \omega_p.$$

3. Startpunkt des Amplitudengangs (Geradennäherung). Setze $\omega_{\min} = \omega_z = 1$.

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10}(|K_0 F_{ges}^*(0)| \omega_{\rm min}^r) = 20 \log_{10}(\frac{1}{10}) = -20 \,\mathrm{dB}.$$

Anfangssteigung $r \cdot 20 \, \mathrm{dB/dec} = 0$.

- 4. Verlauf links vom Startpunkt. Für $\omega < 1$ bleibt die Magnitude-Asymptote horizontal bei $-20\,\mathrm{dB},\,\mathrm{da}\;r=0.$
- 5. Steigungswechsel an den Ecken. Die Nullstelle bei $\omega_z = 1$ erhöht die Steigung um $+20\,\mathrm{dB/dec}$. Der Pol bei $\omega_p = 10$ senkt sie wieder um $-20\,\mathrm{dB/dec}$. Damit:

$$\begin{cases} \omega < 1 : & 0 \, \text{dB/dec,} \\ 1 \le \omega < 10 : & +20 \, \text{dB/dec,} \\ \omega \ge 10 : & 0 \, \text{dB/dec.} \end{cases}$$

6. Eckabrundung (exakte Stützpunkte).

$$|H(j\omega)| = \frac{\sqrt{1+\omega^2}}{\sqrt{100+\omega^2}}, \qquad |H(j\cdot 1)|_{\mathrm{dB}} = 10\log_{10}\left(\frac{2}{101}\right) \approx -17.03\,\mathrm{dB},$$

$$|H(j \cdot 10)|_{\text{dB}} = 10 \log_{10} \left(\frac{101}{200}\right) \approx -2.97 \,\text{dB}.$$

Bei $\omega=1$ liegt die Kurve $\approx 3\,\mathrm{dB}$ über der Geradennäherung, bei $\omega=10$ $\approx 3\,\mathrm{dB}$ darunter. Auch hier gilt: Mehrfachpole/-nullstellen sorgen für eine Rundung um $t\cdot 3\,\mathrm{dB}$

7. Phasenstartwert. Da $K_0 F_{qes}(0) > 0$ gilt:

$$\varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch Nullstelle und Pol. Reelle Nullstelle 1. Ordnung: 0° → +90° über [0.1, 10]. Reeller Pol 1. Ordnung: 0° → −90° über [1, 100]. Die Phasensteigungs und -senkungseffekte überschneiden sich in [10, 100] und addieren sich dort. In diesem Interval bleibt also die Phase gleich Die Geradennäherung lautet also:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ +45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 1, \\ +45^{\circ}, & 1 \leq \omega \leq 10, \\ +45^{\circ} - 45^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ 0^{\circ}, & \omega \geq 100. \end{cases}$$

9. Exakte Stützstellen (Kontrolle).

$$\varphi(\omega) = \arctan(\omega) - \arctan\left(\frac{\omega}{10}\right) [^{\circ}].$$

Praktische Punkte:

$$\begin{split} \omega &= 0.1: & |H|_{\rm dB} \approx -19.96, \quad \varphi \approx +5.14^{\circ}, \\ \omega &= 1: & |H|_{\rm dB} \approx -17.03, \quad \varphi \approx +39.29^{\circ}, \\ \omega &= 10: & |H|_{\rm dB} \approx -2.97, \quad \varphi \approx +39.29^{\circ}, \\ \omega &= 100: & |H|_{\rm dB} \approx -0.04, \quad \varphi \approx +5.14^{\circ}. \end{split}$$

10. Grenzwerte und Konsistenz. DC: $|H(0)| = \frac{1}{10} \Rightarrow -20 \,\mathrm{dB}, \ \varphi(0) = 0^\circ$. Für $\omega \to \infty$: $|H(j\omega)| \to 1 \Rightarrow 0 \,\mathrm{dB}$. Pol-/Nullzählung: $m = n = 1 \Rightarrow \varphi(\infty) = (m-n) \cdot 90^\circ = 0^\circ$.

10

Aufgabe D)

$$H(s) = \frac{10(1-s)}{s+10}$$
.

D.1 Bode-Diagramm

D.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform.

$$H(s) = \frac{10(1-s)}{s+10} = (1-sT_z) \cdot \frac{1}{1+sT_p}.$$

mit $K_0=1,\ r=0,\ T_z=1,\ T_p=\frac{1}{10}.$ Klassifiziere die Glieder: RHP-Nullstelle $\underline{F}_z(s)=(1-sT_z)$ mit $T_z=1$; reelles Polglied $\underline{F}_p(s)=\frac{1}{1+sT_p}$ mit $T_p=\frac{1}{10}.$

2. Eckfrequenzen bestimmen und sortieren. Die ω -Eckfrequenzen lassen sich aus den T_n 's bestimmen und müssen anschließend sortiert werden:

$$\omega_z = \frac{1}{T_z} = 1 \,\text{rad/s}, \qquad \omega_p = \frac{1}{T_p} = 10 \,\text{rad/s}, \qquad \omega_z < \omega_p.$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Wähle $\omega_{\min} = \omega_z = 1$. Regel:

$$F_{\text{dB}}(\omega_{\min}) = 20 \log_{10}(|K_0 F_{ges}^*(0)| \cdot \omega_{\min}^r) = 20 \log_{10}(1) = 0 \,\text{dB}.$$

Dieser Punkt ist der Anker der Geradennäherung.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_z$ bleibt die Amplituden-Asymptote bei 0 dB konstant (Anfangssteigung $r \cdot 20$ dB = 0). Zeichne eine waagrechte Gerade links von der kleinsten Eckfrequenz.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Ab der RHP-Nullstelle bei $\omega_z=1$ nimmt die Steigung um $+20\,\mathrm{dB/dec}$ zu. Der Pol bei $\omega_p=10$ bewirkt einen zusätzlichen Steigungswechsel um $-20\,\mathrm{dB/dec}$ ab $\omega=10$. Netto:

$$\begin{cases} 0\,\mathrm{dB/dec}, & \omega < 1, \\ +20\,\mathrm{dB/dec}, & 1 \leq \omega < 10, \\ 0\,\mathrm{dB/dec}, & \omega \geq 10 \ \Rightarrow |H| \rightarrow 20\,\mathrm{dB}. \end{cases}$$

Geradennäherungen:

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \leq 1, \\ 20 \log_{10} \omega, & 1 < \omega \leq 10, \\ 20, & \omega \geq 10. \end{cases}$$

6. Eckabrundungen korrekt berücksichtigen. RHP-Nullstelle: bei $\omega = \omega_z$ liegt die exakte Magnitude um +3 dB über der Asymptote. Pol: bei $\omega = \omega_p$ liegt die exakte Magnitude um -3 dB unter der Asymptote. Stützpunkte:

$$|H(j1)|_{\mathrm{dB}} = 20 + 10 \log_{10}(2) - 10 \log_{10}(101) \approx +3 \,\mathrm{dB},$$

 $|H(j10)|_{\mathrm{dB}} = 20 + 10 \log_{10}(101) - 10 \log_{10}(200) \approx 17 \,\mathrm{dB}.$

7. Phasenstartwert festlegen. Nutze die Regel für $\omega \to 0$: Da $K_0 F_{ges}(0) > 0$ und r = 0, ist der Startwert der Phase

$$\varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch Nullstelle und Pol eintragen. RHP-Nullstelle bei $\omega_z=1$: Phasenänderung -90° über die Dekade [0.1,10] (Geradennäherung $-45^\circ-45^\circ\log_{10}\omega$). Pol bei $\omega_p=10$: zusätzlicher Abfall um -90° über [1,100] (Geradennäherung $-45^\circ-45^\circ\log_{10}(\omega/10)$). Im Intervar [1,10] überlagern sich diese Effekte. Gesamt:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ -45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega \leq 1, \\ -45^{\circ} - 90^{\circ} \log_{10} \omega, & 1 < \omega \leq 10, \\ -135^{\circ} - 45^{\circ} \log_{10} (\omega/10), & 10 < \omega \leq 100, \\ -180^{\circ}, & \omega \geq 100. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \rightarrow 10 \Rightarrow 20 \, dB$. Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = -1, Nennergrad $n = 1 \Rightarrow (m - n) \cdot 90^{\circ} = 0^{\circ}$; m = -1, da die Nullstelle RHP ist.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 1, \\ 20 \log_{10} \omega, & 1 \ll \omega \ll 10, \\ 20, & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ -45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 1, \\ -45^{\circ} - 90^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -135^{\circ} - 45^{\circ} \log_{10}(\omega/10), & 10 < \omega < 100, \\ -180^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe E)

$$H(s) = \frac{-1 + j}{\sqrt{2}(s+1)^2}$$
.

E.1 Bode-Diagramm

E.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion in die Standardform.

$$H(s) = \frac{K_0}{(1+sT_p)^2}, K_0 = \frac{-1+j}{\sqrt{2}} = e^{j135^{\circ}}, T_p = 1, r = 0.$$

Zerlegung: $\underline{F}_1(s) = \frac{1}{(1+sT_p)^2}$ (reelles Polglied zweiter Ordnung, doppelt); konstanter Phasor K_0 mit $|K_0| = 1$, arg $K_0 = +135^\circ$. Wir können K_0 behandeln als wäre es 1, aber müssen den gesamten Phasenplot um 135° verschieben.

2. Eckfrequenz bestimmen und sortieren.

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Nur diese Eckfrequenz; Sortierung trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung).

$$\omega_{\min} = \omega_p = 1, \quad F_{\text{dB}}(\omega_{\min}) = 20 \log_{10} (|K_0 \underline{F}_{qes}^*(0)| \cdot \omega_{\min}^r) = 0 \,\text{dB}.$$

Anker für die Geradennäherung: 0 dB bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{min}$ bleibt die Amplituden-Asymptote bei 0 dB konstant (Anfangssteigung $r \cdot 20$ dB = 0). Zeichne eine waagrechte Gerade links von der kleinsten Eckfrequenz.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Doppelpol: ab $\omega = 1$ Steigungsänderung um $-40\,\mathrm{dB/dec}$. Geradennäherung rechts:

$$|H(j\omega)|_{\mathrm{dB}} \approx -40 \log_{10} \omega \quad (\omega \ge 1).$$

6. Eckabrundung korrekt berücksichtigen. Bei $\omega = \omega_p$ weicht der exakte Betrag um $-6\,\mathrm{dB}$ von der Asymptote ab (Summe zweier $-3\,\mathrm{dB}$, da Doppelpol):

$$|H(j1)|_{dB} = -20 \log_{10}(1+1) = -20 \log_{10} 2 \approx -6 \,dB.$$

7. Phasenstartwert festlegen. Konstanter Phasor K_0 liefert einen Offset $+135^{\circ}$. Für $\omega \to 0$: $\varphi(0) = +135^{\circ}$.

8. Phasenänderung durch das Polglied eintragen. Ein Doppelpol bewirkt insgesamt -180° über die Dekade [0.1, 10] (je -90° pro einfachem Pol). Näherung:

$$\varphi(\omega) \approx \begin{cases} +135^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} - 90^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ -45^{\circ}, & \omega \geq 10. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = |K_0| = 1 \Rightarrow 0 \,\mathrm{dB}$, $\varphi(0) = +135^\circ$. HF: $|H(j\omega)| \sim 1/\omega^2 \Rightarrow -40 \log_{10} \omega \,\mathrm{dB}$, $\varphi(\infty) = +135^\circ - 180^\circ = -45^\circ$. Pol-/Nullzählung: $m = 0, \ n = 2 \Rightarrow (m - n) \cdot 90^\circ = -180^\circ$ plus Offset $+135^\circ$ durch K_0 ergibt -45° .

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 1, \\ -20\log_{10} 2, & \omega = 1, \\ -40\log_{10} \omega, & \omega \gg 1, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} +135^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} - 90^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ -45^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe F)

$$H(s) = \frac{-1000}{(s+1)(s+100)}.$$

F.1 Bode-Diagramm

Bode-Magnitude

Bode-Phase (um $+360^{\circ}$ verschoben)

F.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = \frac{-1000}{(s+1)(s+100)} = \frac{K_0}{(1+sT_{p1})(1+sT_{p2})}$$

mit

$$K_0 = -10, \quad r = 0, \quad T_{p1} = 1, \quad T_{p2} = \frac{1}{100}.$$

$$\underline{F}_1(s) = \frac{1}{1 + sT_{p1}} = \frac{1}{1 + s}, \qquad \underline{F}_2(s) = \frac{1}{1 + sT_{p2}} = \frac{1}{1 + \frac{s}{100}}.$$

Konstantes Vorzeichen $K_0 < 0$: Phasenoffset $\pm 180^{\circ}$ (hier Darstellung um $+360^{\circ}$ verschoben).

2. Eckfrequenzen bestimmen und sortieren. Die ω -Eckfrequenzen lassen sich aus den T_n 's bestimmen und müssen anschließend sortiert werden:

$$\omega_{p1} = \frac{1}{T_{p1}} = 1 \text{ rad/s}, \qquad \omega_{p2} = \frac{1}{T_{p2}} = 100 \text{ rad/s}, \qquad \omega_{p1} < \omega_{p2}.$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung).

$$\omega_{\min} = \omega_{p1} = 1$$
, $F_{dB}(\omega_{\min}) = 20 \log_{10} (|K_0 \underline{F}_{ges}^*(0)| \omega_{\min}^r) = 20 \log_{10} 10 = 20 \text{ dB}$.
Unser Ankerpunkt ist: 20 dB bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_z$ bleibt die Amplituden-Asymptote bei 20 dB konstant (Anfangssteigung $r \cdot 20$ dB = 0). Zeichne eine waagrechte Gerade links von der kleinsten Eckfrequenz.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Ab $\omega=1$: $-20\,\mathrm{dB/dec}$ (einfacher Pol). Ab $\omega=100$: zusätzl. $-20\,\mathrm{dB/dec}$ \Rightarrow insgesamt $-40\,\mathrm{dB/dec}$. Geradennäherungen:

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 20, & \omega \le 1, \\ 20 - 20\log_{10}\omega, & 1 < \omega \le 100, \\ -20 - 40\log_{10}(\omega/100), & \omega \ge 100. \end{cases}$$

6. Eckabrundungen korrekt berücksichtigen. Bei jedem einfachen Pol:
-3 dB am Knick.

18

$$|H(j1)|_{\text{dB}} = 20 - 10 \log_{10} 2 \approx 17 \,\text{dB}, \qquad |H(j100)|_{\text{dB}} = -20 - 10 \log_{10} 2 \approx -23 \,\text{dB}.$$

- 7. Phasenstartwert festlegen. Wegen $K_0 < 0$: Startphase $-180^{\circ} + r$. $90^{\circ} = -180^{\circ}$. Darstellung um $+360^{\circ}$ verschoben $\Rightarrow +180^{\circ}$ für $\omega \ll 0.1$.
- 8. Phasenänderung durch die Polglieder eintragen. Jeder einfache Pol: -90° über je eine Dekade. Näherung (verschobene Darstellung):

$$\varphi(\omega) \approx \begin{cases} 180^{\circ}, & \omega \leq 0.1, \\ 135^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 45^{\circ} - 45^{\circ} \log_{10} (\omega/100), & 10 < \omega < 1000, \\ 0^{\circ}, & \omega \geq 1000. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 10 \Rightarrow 20 \,\mathrm{dB}$: Phase -180° (hier als $+180^{\circ}$ gezeigt). HF: $|H(j\omega)| \sim 10/\omega^2 \Rightarrow -40 \log_{10}(\omega/100)$ 20 dB. Pol-/Nullzählung bestätigt die Endphase: $m=0, n=2 \Rightarrow$ $(m-n)\cdot 90^{\circ} = -180^{\circ}$; plus negatives $K_0 \Rightarrow \text{zus\"{a}tzlich} -180^{\circ}$; gesamte $-360^{\circ} \equiv 0^{\circ} \pmod{360^{\circ}}$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 20, & \omega \ll 1, \\ 20 - 10 \log_{10} 2, & \omega = 1, \\ 20 - 20 \log_{10} \omega, & 1 \ll \omega \ll 100, \\ -20 - 10 \log_{10} 2, & \omega = 100, \\ -20 - 40 \log_{10} (\omega/100), & \omega \gg 100, \end{cases}$$

$$\varphi(\omega) \text{ (um } + 360^{\circ}) \approx \begin{cases} 180^{\circ}, & \omega \leq 0.1, \\ 135^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 45^{\circ} - 45^{\circ} \log_{10} (\omega/100), & 10 < \omega < 1000, \\ 0^{\circ}, & \omega \geq 1000. \end{cases}$$

$$\varphi(\omega) \text{ (um } + 360^{\circ}) \approx \begin{cases} 180^{\circ}, & \omega \leq 0.1, \\ 135^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 45^{\circ} - 45^{\circ} \log_{10} (\omega/100), & 10 < \omega < 1000, \\ 0^{\circ}, & \omega \geq 1000. \end{cases}$$

Aufgabe G)

$$H(s) = \frac{100 \, s}{s+1} \,.$$

G.1 Bode-Diagramm

G.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = \frac{100s}{s+1} = 100 \cdot s \cdot \frac{1}{(1+sT_p)}$$

Die Teilglieder und Variablen gemäß Skript sind:

$$\underline{F}_1(s) = \frac{1}{1 + sT_p}, \ T_p = 1, \ K_0 = 100 \text{ und } r = 1.$$

2. Eckfrequenz bestimmen und sortieren. Unsere einzige Eckfrequenz ist:

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Da diese die einzige Eckfrequenz ist, ist eine Sortierung der Eckfrequenzen hier hinfällig.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min}=\omega_p=1$. Gemäß Skript:

$$F_{\text{dB}}(\omega_{\min}) = 20 \log_{10} (|K_0 F_{qes}^*(0)| \omega_{\min}^r) = 20 \log_{10} (100 \cdot 1 \cdot 1) = 40 \,\text{dB}.$$

Anfangssteigung $r \cdot 20 \, \mathrm{dB/dec} = +20 \, \mathrm{dB/dec}$, da r = 1.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min} = 1$ gilt die Geradennäherung mit Steigung $+20\,\mathrm{dB/dec}$. Einzeichnen als Gerade mit Steigung $+20\,\mathrm{dB/dec}$ durch den Punkt (ω_{\min} , $40\,\mathrm{dB}$).
- 5. Steigungswechsel an der Eckfrequenz eintragen. \underline{F}_1 reduziert ab ω_p die Steigung um 20 dB/dec:

$$\omega < 1$$
: $+20 \, \mathrm{dB/dec}$, $\omega \ge 1$: $0 \, \mathrm{dB/dec}$.

6. Eckabrundung korrekt berücksichtigen.

$$|H(j\omega)| = \frac{100 \,\omega}{\sqrt{1+\omega^2}}, \qquad |H(j\cdot 1)|_{\mathrm{dB}} = 40 - 10 \log_{10} 2 \approx 36.99 \,\mathrm{dB}.$$

Bei $\omega = 1$ liegt die Kurve etwa 3.01 dB unter der rechten Asymptote.

7. Phasenstartwert festlegen. Da $K_0F_{\text{ges}}(0) > 0$ und r = 1 gilt

$$\varphi(0) = \arg(K_0 F_{\text{ges}}(0)) + r \cdot 90^\circ = 0^\circ + 1 \cdot 90^\circ = +90^\circ.$$

8. Phasenänderung durch die Teilglieder eintragen. für $\omega \ll 0.1$: konstante $+90^{\circ}$. Durch \underline{F}_1 (Pol 1. Ordnung) sinkt die Phase von $90^{\circ} \rightarrow 0^{\circ}$ über [0.1, 10] ab. Geradennäherung gesamt:

$$\varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \le 0.1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 0^{\circ}, & \omega \ge 10. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 0 = -\infty$ dB, $\varphi(0) = 90^{\circ}$. HF: $|H(j\omega)| \to 100 \Rightarrow 40$ dB.

Pol-/Nullzählung: Zählergrad
$$m=1$$
, Nennergrad $n=1\Rightarrow \varphi(\infty)=(m-n)\cdot 90^\circ=0^\circ.$

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 40 + 20 \log_{10} \omega, & \omega \ll 1, \\ 40 - 10 \log_{10} 2, & \omega = 1, \\ 40, & \omega \gg 1, \end{cases} \qquad \varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 0^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe H)

$$H(s) = \frac{10\sqrt{2}\,s^2}{s-1} \,.$$

H.1 Bode-Diagramm

H.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = K_0 \cdot s^r \frac{1}{1 - sT_p}$$
 mit $K_0 = -10\sqrt{2}$, $r = 2$, $T_p = 1$.

Hier haben wir:

$$\underline{F}_1(s) = \frac{1}{1 - sT_p}$$
 und $K_0 = -10\sqrt{2}$ und $r = 2$.

Klassifizikation des ersten Teilglieds \underline{F}_1 : reelles Polglied erster Ordnung (RHP).

2. Eckfrequenz bestimmen und sortieren. Bestimme die Eckfrequenz aus der Zeitkonstante:

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Es existiert nur diese Eckfrequenz; die aufsteigende Sortierung $\omega_1 < \omega_2 < \ldots$ ist damit trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze die Startfrequenz gleich der kleinsten Eckfrequenz $\omega_{\min} = \omega_p = 1 \text{ rad/s}$. Verwende die Skript-Regel

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \cdot \omega_{\rm min}^r \right) = 20 + 10 \log_{10} 2 \approx 23 \,\mathrm{dB}.$$

Dieser Punkt nützt uns als Anker für die Geradennäherung.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min}$ verläuft die Amplituden-Asymptote mit Steigung $r \cdot 20 \, \mathrm{dB/dec} = 40 \, \mathrm{dB/dec}$. Trage also eine Gerade mit $+40 \, \mathrm{dB/dec}$ durch den Anker ein.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein einfaches Polglied $1/(1-sT_p)$ reduziert die Steigung ab ω_p um $20\,\mathrm{dB/dec}$. Da bis jetzt die Steigung $+40\,\mathrm{dB/dec}$ betrug, ist diese ab jetzt $+20\,\mathrm{dB/dec}$. Zeichne rechts von ω_p die Gerade mit Steigung $+20\,\mathrm{dB/dec}$. Die Formel für die Geradennäherung lautet:

$$|H(j\omega)|_{dB} \approx 20 + 10 \log_{10} 2 + 20 \log_{10} \omega \quad (\omega \ge 1).$$

Mehrfachpole würden die Änderung mehrfach zählen; hier nicht nötig.

6. Eckabrundung korrekt berücksichtigen. Bei einfachen reellen Polen ergibt sich am Knickpunkt $\omega = \omega_p$ eine Abweichung von -3 dB gegenüber der Gerade. Setze dort einen Stützpunkt:

$$|H(j\omega_p)|_{dB} = 23 \, dB - 3 \, dB = 20 \, dB.$$

Runde die Ecke entsprechend ab. Hätten wir einen Mehrfachpol bei ω_p (Beispielsweise $\left(\frac{1}{1\mp sT_p}\right)^t$), müsste man die Ecke um $t\cdot 3$. dB abrunden.

7. Phasenstartwert festlegen. Nutze die Regel für $\omega \to 0$: Da $K_0 F_{ges}(0) < 0$ und r = 2 (gerade), ist der Startwert der Phase

$$\varphi(0) = -180^{\circ} + r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch das Polglied eintragen. Ein reelles Polglied erster Ordnung (RHP) erzeugt insgesamt eine Phasenänderung von +90°. Trage die Näherung ein:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1 \,\omega_{p}, \\ \text{linear mit Steigung } + 45^{\circ}/\text{Dec}, & 0.1 \,\omega_{p} < \omega < 10 \,\omega_{p}, \\ +90^{\circ}, & \omega \geq 10 \,\omega_{p}. \end{cases}$$

Das lineare Zwischenstück kann Formelkonform als $\varphi(\omega) \approx 45^{\circ} + 45^{\circ} \log_{10} \omega$ dargestellt werden (hier mit $\omega_p = 1$).

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 0 \Rightarrow -\infty \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 10\sqrt{2}\,\omega \Rightarrow 20 + 10\log_{10}2 + 20\log_{10}\omega \, dB$. Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = 2, Nennergra $n = 1 \Rightarrow \varphi(\infty) = (m - n) \cdot 90^{\circ} = +90^{\circ}$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 20 + 10 \log_{10} 2 + 40 \log_{10} \omega, & \omega \ll 1, \\ 20, & \omega = 1, \\ 20 + 10 \log_{10} 2 + 20 \log_{10} \omega, & \omega \gg 1, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 90^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe I)

$$H(s) = \frac{s+1}{(s+10)^2} \,.$$

I.1 Bode-Diagramm

I.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform.

$$H(s) = \frac{s+1}{(s+10)^2} = K_0 \cdot (1+sT_z) \cdot \frac{1}{(1+sT_p)^2}$$

mit

$$K_0 = \frac{1}{100}, \quad r = 0, \quad T_z = 1, \quad T_p = \frac{1}{10}.$$

$$\underline{F}_1(s) = 1 + sT_z$$
 (LHP-Nullstelle), $\underline{F}_2(s) = \frac{1}{(1 + sT_p)^2}$ (Doppelpol).

2. Eckfrequenzen bestimmen und sortieren. Die ω -Eckfrequenzen lassen sich aus den T_n 's bestimmen und müssen anschließend sortiert werden:

$$\omega_z = \frac{1}{T_z} = 1 \, \mathrm{rad/s}, \qquad \omega_p = \frac{1}{T_p} = 10 \, \mathrm{rad/s}, \qquad \omega_z < \omega_p.$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min} = \omega_z = 1$.

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \, \omega_{\rm min}^r \right) = 20 \log_{10} \left(\frac{1}{100} \cdot 1 \cdot 1^0 \right) = -40 \, {\rm dB}.$$

Ankerpunkt: $-40 \, \mathrm{dB}$ bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 1$: Anfangssteigung $r \cdot 20 = 0 \, \mathrm{dB/dec} \Rightarrow$ horizontale Asymptote bei $-40 \, \mathrm{dB}$.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Nullstelle bei $\omega_z=1$: $+20\,\mathrm{dB/dec}$ ab $\omega=1$. Doppelpol bei $\omega_p=10$: zusätzlich $-40\,\mathrm{dB/dec}$ ab $\omega=10$, also insgesamt $-20\,\mathrm{dB/dec}$. Netto:

$$\begin{cases} -40\,\mathrm{dB} \text{ (flach)}, & \omega < 1, \\ -40 + 20\log_{10}\omega, & 1 \leq \omega < 10 \text{ (Steigung } + 20\,\mathrm{dB/dec)}, \\ -20 - 20\log_{10}(\omega/10), & \omega \geq 10 \text{ (Steigung } -20\,\mathrm{dB/dec)}. \end{cases}$$

6. Eckabrundung korrekt berücksichtigen. LHP-Nullstelle: bei $\omega=1$ liegt der exakte Betrag um $+3\,\mathrm{dB}$ über der Gerade:

$$|H(j1)|_{dB} = 10 \log_{10} 2 - 20 \log_{10} 101 \approx -37 \, dB.$$

Doppelpol: bei $\omega = 10$ insgesamt $-6\,\mathrm{dB}$ unter der Asymptote:

$$|H(j10)|_{\text{dB}} = 10 \log_{10} 101 - 20 \log_{10} 200 \approx -26 \,\text{dB}.$$

- 7. Phasenstartwert festlegen. Da $K_0\underline{F}_{ges}^*(0)>0,\ r=0\Rightarrow \varphi(0)=r\cdot 90^\circ=0^\circ.$
- 8. Phasenänderung durch Nullstelle und Doppelpol eintragen. Nullstelle bewirkt eine Phasenänderung um +90° über [0.1, 10]. Jeder Pol −90° über [1, 100] (zwei Pole ⇒ −180° total). Die Effekte überlappen sich in [1, 10]; dort addieren sich die Steigungen. Näherung:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -90^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = \frac{1}{100} \Rightarrow -40 \,\mathrm{dB}$, $\varphi(0) = 0^\circ$. HF: $|H(j\omega)| \sim \omega/\omega^2 = 1/\omega \Rightarrow -20 \log_{10}(\omega/10) - 20 \,\mathrm{dB}$. Pol-/Nullzählung: m = 1, $n = 2 \Rightarrow (m - n) \cdot 90^\circ = -90^\circ \Rightarrow \varphi(\infty) = -90^\circ$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} -40, & \omega \ll 1, \\ -40 + 20 \log_{10} \omega, & 1 \ll \omega \ll 10, \\ -20 - 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -90^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe J)

$$H(s) = \frac{s+1}{s^2+2s+1} = \frac{1}{s+1}$$
.

J.1 Bode-Diagramm

J.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform.

$$H(s) = \frac{1}{s+1} = K_0 \cdot \frac{1}{1+sT_p}$$

mit

$$K_0=1,\quad r=0,\quad T_p=1.$$

$$\underline{F}_1(s)=\frac{1}{1+sT_p}=\frac{1}{1+s}\quad \text{(reelles Polglied 1. Ordnung)}.$$

2. Eckfrequenz bestimmen und sortieren.

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Nur diese Eckfrequenz; Sortierung trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung).

$$\omega_{\min} = \omega_p = 1, \qquad F_{dB}(\omega_{\min}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \, \omega_{\min}^r \right) = 0 \, dB.$$
 Ankerpunkt bei $\omega = 1 \, \text{rad/s}$: $0 \, dB$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 1$ horizontale Asymptote bei 0 dB (Anfangssteigung 0 dB/dec, da $r \cdot 20$ dB/dec = 0).
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein einfacher Polbewirkt ab ω_p eine Steigungsänderung von $-20\,\mathrm{dB/dec}$.

$$|H(j\omega)|_{\mathrm{dB}} \approx -20 \log_{10} \omega \quad (\omega \ge 1).$$

- \rightarrow Zeichne eine Gerade mit Steigung $-20\,\mathrm{dB/dec}$ ab $\omega = 1\,\mathrm{rad/s}$
- 6. Eckabrundung korrekt berücksichtigen. Am Knick $\omega = \omega_p$ liegt der exakte Betrag um -3 dB unter der Asymptote:

$$|H(j1)|_{dB} = -10 \log_{10}(1+1) = -10 \log_{10} 2 \approx -3 dB.$$

7. Phasenstartwert festlegen. $K_0 F_{ges}(0) > 0, r = 0 \Rightarrow \varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$

8. Phasenänderung durch das Polglied eintragen. Ein reelles Polglied 1. Ordnung erzeugt -90° über die Übergangsdekade.

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ -45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ -90^{\circ}, & \omega \geq 10. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 1/\omega \Rightarrow -20 \log_{10} \omega \, dB$, $\varphi(\infty) = -90^{\circ}$. Pol-/Nullzählung: $m = 0, n = 1 \Rightarrow (m - n) \cdot 90^{\circ} = -90^{\circ}$ konsistent.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 1, \\ -10\log_{10} 2, & \omega = 1, \\ -20\log_{10} \omega, & \omega \gg 1, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ -45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ -90^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe K)

$$H(s) = \frac{100(s+1)}{s^2 + 20s + 100} = \frac{100(s+1)}{(s+10)^2}.$$

K.1 Bode-Diagramm

K.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = \frac{100(s+1)}{(s+10)^2} = K_0 \cdot (1+sT_z) \cdot \frac{1}{(1+sT_p)^2}$$

mit

$$K_0=1,\quad r=0,\quad T_z=1,\quad T_p=\tfrac{1}{10}.$$

$$\underline{F}_1(s)=1+sT_z\quad \text{(LHP-Nullstelle)},\qquad \underline{F}_2(s)=\frac{1}{(1+sT_p)^2}\quad \text{(Doppelpol)}.$$

2. Eckfrequenzen bestimmen und sortieren. Die ω -Eckfrequenzen aus den T_n bestimmen und sortieren:

$$\omega_z = \frac{1}{T_z} = 1 \text{ rad/s}, \qquad \omega_p = \frac{1}{T_p} = 10 \text{ rad/s}, \qquad \omega_z < \omega_p.$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min} = \omega_z = 1$.

$$F_{\text{dB}}(\omega_{\text{min}}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \omega_{\text{min}}^r \right) = 20 \log_{10} (1) = 0 \,\text{dB}.$$

Ankerpunkt: 0 dB bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 1$ bleibt die Amplituden-Asymptote bei 0 dB konstant (Anfangssteigung $r \cdot 20$ dB/dec = 0). Zeichne links von der kleinsten Eckfrequenz eine waagrechte Gerade bei 0 dB.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Nullstelle bei $\omega_z=1$ bewirkt eine Steigungsänderung um $+20\,\mathrm{dB/dec}$ ab $\omega=1$. Doppelpol bei $\omega_p=10$ ändert die Magnitudensteigung um zusätzlich $-40\,\mathrm{dB/dec}$ ab $\omega=10$. Netto:

$$\begin{cases} 0\,\mathrm{dB} \text{ (flach)}, & \omega < 1, \\ 20\log_{10}\omega, & 1 \leq \omega < 10 \text{ (Steigung } + 20\,\mathrm{dB/dec)}, \\ 20 - 20\log_{10}(\omega/10), & \omega \geq 10 \text{ (Steigung } -20\,\mathrm{dB/dec)}. \end{cases}$$

6. Eckabrundungen korrekt berücksichtigen. Nullstelle (LHP): bei $\omega = 1 \, \text{rad/s} + 3 \, \text{dB}$ über Asymptote:

$$|H(j1)|_{\mathrm{dB}} \approx +3 \,\mathrm{dB}.$$

Doppelpol: bei $\omega = 10 - 6 \, \mathrm{dB}$ unter Asymptote:

$$|H(j10)|_{\mathrm{dB}} \approx +14\,\mathrm{dB}$$

- 7. Phasenstartwert festlegen. $K_0 > 0, r = 0 \Rightarrow \varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$
- 8. Phasenänderung durch Nullstelle und Doppelpol eintragen. Nullstelle: +90° über [0.1, 10]. Zwei Polglieder: zusammen -180° über [1, 100]. Im Interval [1, 10] überlappen sich die Effekte/Änderungen und addieren sich zu einem Endeffekt. Näherung:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -90^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 100 \, \omega/\omega^2 = 100/\omega \Rightarrow 20 - 20 \log_{10}(\omega/10) \, dB$, $\varphi(\infty) = -90^{\circ}$. Pol-/Nullzählung: m = 1, $n = 2 \Rightarrow (m-n) \cdot 90^{\circ} = -90^{\circ}$ konsistent.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 1, \\ 20 \log_{10} \omega, & 1 \ll \omega \ll 10, \\ 20 - 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -90^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe L)

$$H(s) = \frac{s^2 - 100}{s+1} = \frac{(s-10)(s+10)}{s+1}$$
.

L.1 Bode-Diagramm

L.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = \frac{(s-10)(s+10)}{s+1} = -100(1-sT_{z1})(1+sT_{z2}) \cdot \frac{1}{1+sT_p}$$

mit

$$\begin{split} K_0 &= -100, \quad r = 0, \quad T_{z1} = \frac{1}{10}, \quad T_{z2} = \frac{1}{10}, \quad T_p = 1. \\ &\underline{F}_1(s) = \left(1 - sT_{z1}\right) \text{ (RHP-Nullstelle)}, \\ &\underline{F}_2(s) = \left(1 + sT_{z2}\right) \text{ (LHP-Nullstelle)}, \\ &\underline{F}_3(s) = \frac{1}{1 + sT_p} \text{ (Pol)}. \end{split}$$

2. Eckfrequenzen bestimmen und sortieren.

$$\omega_p = 1 \text{ rad/s}, \qquad \omega_{z1} = \omega_{z2} = 10 \text{ rad/s}, \qquad \omega_p < \omega_z.$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min} = \omega_p = 1$.

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10}(|K_0 \underline{F}_{qes}^*(0)| \omega_{\rm min}^r) = 20 \log_{10} 100 = 40 \,\mathrm{dB}.$$

Ankerpunkt: $40\,\mathrm{dB}$ bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 1$ horizontale Asymptote bei 40 dB (Anfangssteigung $r \cdot 20$ dB/dec = 0). Waagrechte Gerade links von der kleinsten Eckfrequenz eintragen.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Ab $\omega=1$: Pol \Rightarrow Steigungswechsel $-20\,\mathrm{dB/dec.}$ Ab $\omega=10$: zwei Nullstellen \Rightarrow zusätzl. $+40\,\mathrm{dB/dec.}$ Netto:

$$\begin{cases} 40 \, \mathrm{dB}, & \omega < 1, \\ 40 - 20 \log_{10} \omega, & 1 \le \omega < 10, \\ 20 + 20 \log_{10} (\omega/10), & \omega \ge 10. \end{cases}$$

- 6. Eckabrundungen korrekt berücksichtigen. Einfacher Pol bei $\omega = 1$: $-3 \, \mathrm{dB}$ am Knick $\Rightarrow |H(j1)|_{\mathrm{dB}} \approx 40 3 = 37 \, \mathrm{dB}$. Zwei Nullstellen bei $\omega = 10$: $+6 \, \mathrm{dB}$ am Knick $\Rightarrow |H(j10)|_{\mathrm{dB}} \approx 20 + 6 = 26 \, \mathrm{dB}$.
- 7. Phasenstartwert festlegen. Verwende die Regel für $K_0 \underline{F}_{qes}^*(0) < 0$:

$$\varphi(0) = -180^{\circ} + r \cdot 90^{\circ} = -180^{\circ}$$

(Darstellung im Plot um $+360^{\circ}$ verschoben \Rightarrow Start bei $+180^{\circ}$).

8. Phasenänderung durch Pol und Nullstellen eintragen. Pol bei ω_p bewirkt eine Phasenänderung -90° über [0.1, 10]. Nullstellen bei ω_z : LHP-Nullstelle $+90^{\circ}$ und RHP-Nullstelle -90° , beide über [1, 100]. die $+90^{\circ}$ und -90° der beiden Nullstellen kompensieren sich zu 0°. Netto wirkt in [1, 10] nur der Pol. Näherung (mit Phasenverschiebung um +360° gezeigt):

$$\varphi(\omega) \approx \begin{cases}
180^{\circ}, & \omega \leq 0.1, \\
135^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\
90^{\circ}, & \omega \geq 10.
\end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 100 \Rightarrow 40 \,\mathrm{dB}$; $\varphi(0) = -180^{\circ}$ (gezeigt als +180°). HF: $|H(j\omega)| \sim \omega^2/\omega = \omega \Rightarrow 20 \log_{10} \omega +$ $20\,\mathrm{dB}$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 40, & \omega \ll 1, \\ 40 - 3, & \omega = 1, \\ 40 - 20 \log_{10} \omega, & 1 \ll \omega \ll 10, \\ 20 + 6, & \omega = 10, \\ 20 + 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \text{ (Darstellung } + 360^{\circ}) \approx \begin{cases} 180^{\circ}, & \omega \leq 0.1, \\ 135^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 90^{\circ}, & \omega \geq 10. \end{cases}$$

$$\varphi(\omega) \text{ (Darstellung } + 360^{\circ}) \approx \begin{cases} 180^{\circ}, & \omega \leq 0.1, \\ 135^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 90^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe M)

$$H(s) = \frac{10\sqrt{202} \, s}{(s+1)(s+10)} \, .$$

M.1 Bode-Diagramm

M.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = \frac{10\sqrt{202} s}{(s+1)(s+10)} = K_0 \cdot s^r \cdot \frac{1}{(1+sT_{p1})(1+sT_{p2})}$$

mit

$$K_0 = \sqrt{202}, \quad r = 1, \quad T_{p1} = 1, \quad T_{p2} = \frac{1}{10}.$$

$$\underline{F}_1(s) = \frac{1}{1 + sT_{p1}} = \frac{1}{1 + s}, \qquad \underline{F}_2(s) = \frac{1}{1 + sT_{p2}} = \frac{1}{1 + \frac{s}{10}}.$$

2. Eckfrequenzen bestimmen und sortieren.

$$\omega_{p1} = \frac{1}{T_{p1}} = 1 \, \text{rad/s}, \qquad \omega_{p2} = \frac{1}{T_{p2}} = 10 \, \text{rad/s}, \qquad \omega_{p1} < \omega_{p2}.$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min} = \omega_{p1} = 1$.

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 \underline{F}_{ges}^*(0)| \, \omega_{\rm min}^r \right) = 20 \log_{10} (\sqrt{202} \cdot 1) \approx 23 \, {\rm dB}.$$

Ankerpunkt: 23 dB bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 1$: Anfangssteigung $r \cdot 20 = +20\,\mathrm{dB/dec}$. Zeichne links vom Startpunkt die Gerade mit $+20\,\mathrm{dB/dec}$ durch den Ankerpunkt.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Pol bei $\omega_{p1} = 1$: Steigungsänderung $-20 \, \mathrm{dB/dec} \Rightarrow \mathrm{Netto} \, 0 \, \mathrm{dB/dec}$ in [1, 10] (betragsflach). Pol bei $\omega_{p2} = 10$: weitere $-20 \, \mathrm{dB/dec} \Rightarrow \mathrm{Netto} \, -20 \, \mathrm{dB/dec}$ für $\omega \gg 10$. Geradennäherung:

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 10 \log_{10} 202 + 20 \log_{10} \omega, & \omega \leq 1, \\ 10 \log_{10} 202, & 1 < \omega \leq 10, \\ 10 \log_{10} 202 - 20 \log_{10} (\omega/10), & \omega \geq 10. \end{cases}$$

6. Eckabrundungen korrekt berücksichtigen. Jeder einfache Pol: $-3 \, \mathrm{dB}$ unter der Geradennäherung am Knick.

$$|H(j1)|_{\text{dB}} \approx 10 \log_{10} 202 - 3 \text{ dB } (\approx 20 \text{ dB}),$$

 $|H(j10)|_{\text{dB}} \approx 10 \log_{10} 202 - 3 \text{ dB } (\approx 20 \text{ dB}).$

7. Phasenstartwert festlegen. Verwende die Regel für $K_0\underline{F}^*_{aes}(0) > 0$

$$\varphi(0) = r \cdot 90^{\circ} = 1 \cdot 90^{\circ} = +90^{\circ}.$$

8. Phasenänderung durch die Polglieder eintragen. Nullstelle im Ursprung liefert konstant +90°. Pol bei 1: -90° über [0.1, 10]. Pol bei 10: -90° über [1, 100]. In [1, 10] überlappen sich beide Polbeiträge und addieren sich (Netto-Steilheit = Summe der Einzelsteilheiten). Näherung:

$$\varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega + 90^{\circ}, & 0.1 < \omega < 1, \\ 45^{\circ} - 90^{\circ} \log_{10} \omega + 90^{\circ}, & 1 < \omega < 10, \\ -45^{\circ} - 45^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

(vereinfacht im Plot als $90 - \arctan \omega - \arctan(\omega/10)$ gezeigt; Grenzwert $\varphi(\infty) = -90^{\circ}$).

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 0 \Rightarrow -\infty \, dB$, $\varphi(0) = +90^{\circ}$. HF: $|H(j\omega)| \sim \sqrt{202} \, \frac{\omega}{\omega^{2}/10} = \sqrt{202} \cdot \frac{10}{\omega} \Rightarrow 10 \log_{10} 202 - 20 \log_{10}(\omega/10) \, dB$, $\varphi(\infty) = +90^{\circ} - 180^{\circ} = -90^{\circ}$. Pol-/Nullzählung: $m=1, \, n=2 \Rightarrow (m-n) \cdot 90^{\circ} = -90^{\circ}$ konsistent.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 10 \log_{10} 202 + 20 \log_{10} \omega, & \omega \ll 1, \\ 10 \log_{10} 202 - 3, & \omega = 1, \\ 10 \log_{10} 202, & 1 \ll \omega \ll 10, \\ 10 \log_{10} 202 - 3, & \omega = 10, \\ 10 \log_{10} 202 - 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega + 90^{\circ}, & 0.1 < \omega < 1, \\ 45^{\circ} - 90^{\circ} \log_{10} \omega + 90^{\circ}, & 1 < \omega < 10, \\ -45^{\circ} - 45^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe N)

$$H(s) = \frac{s(0.1 - s)(s + 10)}{(s + 1)^2}.$$

N.1 Bode-Diagramm

N.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion in die Standardform.

$$H(s) = K_0 \cdot s^r (1 - sT_{z1}) (1 + sT_{z2}) \cdot \frac{1}{(1 + sT_p)^2}$$

mit

$$K_0 = 1$$
, $r = 1$, $T_{z1} = 10$, $T_{z2} = 0.1$, $T_p = 1$.

$$\underline{F}_2(s) = (1 - sT_{z1})$$
 (RHP-Nullstelle),
 $\underline{F}_3(s) = (1 + sT_{z2})$ (LHP-Nullstelle),
 $\underline{F}_4(s) = \frac{1}{(1 + sT_p)^2}$ (Doppelpol).

2. Eckfrequenzen bestimmen und sortieren.

$$\omega_{z1} = \frac{1}{T_{z1}} = 0.1 \,\text{rad/s}\,, \quad \omega_p = \frac{1}{T_p} = 1 \,\text{rad/s}\,\,\text{(doppelt)}, \quad \omega_{z2} = \frac{1}{T_{z2}} = 10 \,\text{rad/s}$$
$$\omega_{zR} < \omega_p < \omega_{zL}$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min} = \omega_{zR} = 0.1$.

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 F_{\rm ges}^*(0)| \omega_{\rm min}^r \right) = 20 \log_{10} (0.1) = -20 \,\mathrm{dB}.$$

Ankerpunkt: $-20 \, \mathrm{dB}$ bei $\omega = 0.1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 0.1$ Anfangssteigung $r \cdot 20 = +20 \, \mathrm{dB/dec} \Rightarrow \mathrm{Gerade} \; \mathrm{mit} \; +20 \, \mathrm{dB/dec} \; \mathrm{durch} \; \mathrm{den} \; \mathrm{Ankerpunkt}.$
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Nullstelle bei 0.1: $+20\,\mathrm{dB/dec} \Rightarrow \mathrm{Netto} +40\,\mathrm{dB/dec}$ in [0.1,1]. Doppelpol bei 1: $-40\,\mathrm{dB/dec}$ \Rightarrow Netto $0\,\mathrm{dB/dec}$ in [1,10]. Nullstelle bei 10: $+20\,\mathrm{dB/dec} \Rightarrow$ Netto $+20\,\mathrm{dB/dec}$ für $\omega \gg 10$. Geradennäherung:

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 20 \log_{10} \omega, & \omega \leq 0.1, \\ 40 \log_{10} \omega + 20, & 0.1 < \omega \leq 1, \\ 20, & 1 < \omega \leq 10, \\ 20 + 20 \log_{10} (\omega/10), & \omega \geq 10. \end{cases}$$

- 6. Eckabrundungen korrekt berücksichtigen. RHP-/LHP-Nullstelle: $+3\,\mathrm{dB}$ am Knick ($\omega=0.1$ bzw. 10). Doppelpol ($\omega=1$): $-6\,\mathrm{dB}$ am Knick.
- 7. Phasenstartwert festlegen. Da $K_0 F_{ges}^*(0) > 0$ und r = 1:

$$\varphi(0) = 0^{\circ} + r \cdot 90^{\circ} = +90^{\circ}.$$

- 8. Phasenänderung durch Nullstellen und Pol eintragen. Beiträge: RHP-Nullstelle -90° über [0.01, 1]; Doppelpol -180° über [0.1, 10]; LHP-Nullstelle +90° über [1, 100]. Überlappungen addieren sich im jeweiligen Bereich ([0.1, 1] wirken RHP-Nullstelle und beide Pole gemeinsam; [1, 10] wirken beide Pole und die LHP-Nullstelle gemeinsam)). Näherung:
- 9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 0 \Rightarrow -\infty \, dB$, $\varphi(0) = +90^{\circ}$. HF: $|H(j\omega)| \sim \omega \cdot \omega \cdot \omega / \omega^{2} = \omega \Rightarrow +\infty \, dB$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 20 \log_{10} \omega, & \omega \ll 0.1, \\ 40 \log_{10} \omega + 20, & 0.1 \ll \omega \ll 1, \\ 20, & 1 \ll \omega \ll 10, \\ 20 + 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \leq 0.01, \\ 45^{\circ} - 45^{\circ} \log_{10} (\omega/0.1), & 0.01 < \omega < 0.1, \\ 45^{\circ} - 135^{\circ} \log_{10} (\omega/0.1), & 0.1 < \omega < 1, \\ -90^{\circ} - 45^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -135^{\circ} + 45^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ -90^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe O)

$$H(s) = \frac{1}{s}.$$

O.1 Bode-Diagramm

O.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = \frac{1}{s} = K_0 \cdot s^r, \qquad K_0 = 1, \quad r = -1.$$

- 2. Eckfrequenzen bestimmen und sortieren. Keine endliche Eckfrequenz; nur Ursprungspol.
- 3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Wähle Referenz $\omega_{\rm ref}=1\,{\rm rad/s}$ (Fixpunkt).

$$F_{\rm dB}(\omega_{\rm ref}) = 20 \log_{10}(|K_0| \ \omega_{\rm ref}^r) = 20 \log_{10}(1^{-1}) = 0 \,\mathrm{dB}.$$

Ankerpunkt: 0 dB bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Konstante Steigung $r \cdot 20 \, \mathrm{dB/dec} = -20 \, \mathrm{dB/dec}$ über alle Frequenzen. Gerade durch den Ankerpunkt mit Steigung $-20 \, \mathrm{dB/dec}$.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Kein Steigungswechsel (keine endliche Ecke).
- 6. Eckabrundung korrekt berücksichtigen. Keine Ecken \Rightarrow keine $\pm 3/6/9$ dB-Korrekturen.
- 7. Phasenstartwert festlegen. Da $K_0 F_{\text{ges}}^*(0) > 0$ und r = -1:

$$\varphi(0) = r \cdot 90^{\circ} = -90^{\circ}.$$

- 8. Phasenänderung durch Teilglieder eintragen. Nur Ursprungspol: Phase konstant -90° . Keine Überlappung, keine Addition weiterer Beiträge.
- 9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| \to \infty \Rightarrow +\infty \,\mathrm{dB},$ $\varphi(0) = -90^\circ.$ HF: $|H(j\omega)| = 1/\omega \Rightarrow -20 \log_{10} \omega \,\mathrm{dB}, \ \varphi(\infty) = -90^\circ.$

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} -20\log_{10}\omega, & \omega \ll 1, \\ 0, & \omega = 1, \\ -20\log_{10}\omega, & \omega \gg 1, \end{cases}$$
$$\varphi(\omega) \approx -90^{\circ} \text{ (für alle } \omega\text{)}.$$

Aufgabe P)

$$H(s) = \frac{100}{s^2 + s + 100} \,.$$

P.1 Bode-Diagramm

P.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = K_0 \cdot s^r \cdot \frac{1}{1 + 2d_n T_p \cdot s + T_p^2 \cdot s^2}$$

Hier haben wir:

$$\underline{F}_1(s) = \frac{1}{1 + 2d_n T_p \cdot s + T_p^2 \cdot s^2}, \quad K_0 = \frac{100}{100} = 1,$$

$$T_p = \frac{1}{10}, \quad d_n = \frac{1}{20} \quad \text{und} \quad r = 0.$$

Klassifizikation des ersten Teilglieds \underline{F}_1 : konjugiertes komplexes Polpaar zweiter Ordnung.

2. Eckfrequenz bestimmen und sortieren. Bestimme die Eckfrequenz aus der Normform:

$$\omega_n = \frac{1}{T_p} = 10 \,\text{rad/s}$$

Es existiert nur diese charakteristische Frequenz; die aufsteigende Sortierung $\omega_1 < \omega_2 < \dots$ ist damit trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze die Startfrequenz gleich der kleinsten Eckfrequenz $\omega_{\min} = \omega_n = 10 \,\text{rad/s}$. Verwende die Regel im Skript

$$F_{\text{dB}}(\omega_{\text{min}}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \cdot \omega_{\text{min}}^r \right) = 20 \log_{10}(1) = 0 \,\text{dB}.$$

Dieser Punkt dient als Anker für die Geradennäherung (ohne Resonanzüberhöhung).

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min}$ bleibt die Amplituden-Asymptote waagrecht, denn die Anfangssteigung beträgt $r \cdot 20 \, \mathrm{dB/dec} = 0$. Trage also eine horizontale Linie bei $0 \, \mathrm{dB}$ ein.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein konjugiertes Polpaar zweiter Ordnung reduziert die Steigung ab ω_n um $40 \,\mathrm{dB/dec}$. Da bis jetzt die Steigung $0 \,\mathrm{dB/dec}$ betrug, ist diese ab jetzt $-40 \,\mathrm{dB/dec}$. Zeichne rechts von ω_n die Gerade mit Steigung $-40 \,\mathrm{dB/dec}$. Die Formel für die Geradennäherung lautet:

$$|H(j\omega)|_{\mathrm{dB}} \approx -40 \log_{10} \left(\frac{\omega}{\omega_n}\right) \quad (\omega \ge \omega_n = 10).$$

6. Eckabrundung korrekt berücksichtigen. Da $d_n \ll \frac{1}{2}$ müssen wir beim Abrunden eine Resonanzüberhöhung mit einbeziehen. Laut Skript erreicht der Magnitudengang bei $\omega = \omega_n$ eine Überhöhung von

$$-20\log_{10}(2d_n) = -20\log_{10}(\frac{1}{10}) = 20\,\mathrm{dB}$$

über der asymptotischen 0 dB-Gerade. Trage dort einen Stützpunkt und runde die Ecke mit Resonanz entsprechend aus.

7. Phasenstartwert festlegen. Da $K_0F_{ges}(0) > 0$ und r = 0, ist der Startwert der Phase

$$\varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch das Polpaar eintragen. Ein komplexes Polpaar zweiter Ordnung erzeugt insgesamt eine Phasenänderung von -180° . Trage die Näherung ein:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 10^{-1}\omega_n \ (=1), \\ \text{linear } -90^{\circ}/\text{Dec}, & 10^{-1}\omega_n < \omega < \omega_n, \\ \text{linear } -90^{\circ}/\text{Dec}, & \omega_n < \omega < 10 \omega_n, \\ -180^{\circ}, & \omega \geq 10 \omega_n \ (=100). \end{cases}$$

Das lineare Zwischenstück kann formelkonform als $\varphi(\omega) \approx -90^{\circ} \log_{10} \omega$ in [1, 10] und $\varphi(\omega) \approx -90^{\circ} - 90^{\circ} \log_{10}(\omega/10)$ in [10, 100] dargestellt werden.

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 100/\omega^{2} \Rightarrow -40 \log_{10}(\omega/10) \, dB$. Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = 0, Nennergrad $n = 2 \Rightarrow \varphi(\infty) = (m-n) \cdot 90^{\circ} = -180^{\circ}$.

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 10, \\ +20, & \omega = 10, \\ -40 \log_{10}(\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 1, \\ -90^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -90^{\circ} - 90^{\circ} \log_{10}(\omega/10), & 10 < \omega < 100, \\ -180^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe Q)

$$H(s) = \frac{s^2 + 4}{s(s^2 + 10s + 100)}.$$

Q.1 Bode-Diagramm

Q.2 Erklärung

- Schritt 1 Struktur: Integrator 1/s, konjugiertes Polpaar mit $\omega_n = 10$, $\zeta = 0.5$, und Doppelnullen auf der imaginären Achse bei $\omega_z = 2$. Für $\omega \ll 2$: $|H(j\omega)| \approx \frac{4}{100\,\omega} = 0.04/\omega \Rightarrow \text{Slope} -20\,\text{dB/dec}$ um Niveau $20\log_{10}0.04 \approx -20\,\text{dB}$ bei $\omega = 0.4$; Phase $\approx -90^\circ$.
- Schritt 2 Doppelnullen bei $\omega_z = 2$: Betrag hat dort ein exaktes Null (|H(j2)| = 0). Asymptotisch steigt die Slope vor $\omega = 2$ bei $-20 \,\mathrm{dB/dec}$ (Nach $\omega = 2$ netto bei $-20 + 40 \to +20 \,\mathrm{dB/dec}$). Phasenbeitrag der Zählerdoppelnull ist exakt ein Sprung um $+180^\circ$ (von 0° auf 180°); in der Geradennäherung als $+180^\circ$ über zwei Dekaden [0.2, 20] modelliert.
- Schritt 3 Polpaar bei $\omega_n = 10$, $\zeta = 0.5$: ab $\omega = 10$ Slope-Änderung $-40 \,\mathrm{dB/dec}$ (Netto $+20 \to -20 \,\mathrm{dB/dec}$). Exakt bei $\omega = 10$: $|H(j10)| = \frac{|4-100|}{10\cdot 100} = \frac{96}{1000} \approx -20 \,\mathrm{dB}$. Phasenbeitrag des Polpaares -180° über [1,100], wodurch die Gesamtsumme nach dem temporären Anheben durch die Zählernullen wieder zurück auf -90° fällt¹.
- Schritt 4 Resonanz korrekt: Das Zählerpolynom s^2+4 liefert reelle zwei Nullstellen auf der imaginären Achse bei $\omega_z=2$. Folge: |H(j2)|=0; in Dezibel $-\infty$ dB. Das Polpaar $s^2+10s+100$ hat $\omega_n=10$ und $\zeta=0.5$ (Q=1). ζ ist recht groß und Q unterdrückt Resonanz; konkret $|H(j10)|=\frac{|4-100|}{10\cdot100}=0.096 \Rightarrow \approx -20$ dB.

Stückweise Näherung

$$|H(j\omega)|_{dB} \approx \begin{cases} 20 \log_{10}(0.04) - 20 \log_{10}\omega, & \omega \ll 2, \\ -\infty, & \omega = 2, \\ -40 + 20 \log_{10}\omega, & 2 \ll \omega \ll 10, \\ -20 - 20 \log_{10}(\omega/10), & \omega \gg 10, \end{cases}$$

 $^{^1}$ Aufgrund der sehr kleinen Dämpfung ζ wirkt der Phasenverlauf "chaotisch". Tatsächlich überlagern sich zwei 180° -Übergänge: zuerst der abrupte Sprung des Nullstellenpaares, direkt danach der vergleichsweise sanfte Abfall des Polpaares.

Aufgabe R)

$$H(s) = \frac{s^2 + 2s + 10}{s^2 + 2s + 10} = 1$$
.

R.1 Bode-Diagramm

R.2 Erklärung

Schritt 1 Kürzung: Zähler und Nenner sind identisch, daher $H(s) \equiv 1$. DC-Faktor $1 \Rightarrow |H|_{DC} = 0$ dB; Anfangssteigung 0 dB/dec; Phase 0° .

Schritt 2 Keine Ecken: keine endlichen Pole/Nullstellen nach Kürzung, daher keine Eckfrequenzen und keine Phasen- und Magnitudenänderungen. Die Geradennäherungen decken sich exakt mit dem exakten Verlauf.

Schritt 3 Grenzverhalten: für $\omega \to 0$ und $\omega \to \infty$ bleibt $|H(j\omega)| = 1$ und $\angle H(j\omega) = 0^{\circ}$; das gesamte Bode-Diagramm ist konstant.

Stückweise Näherung

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 1, \\ 0, & \omega = 1, \\ 0, & \omega \gg 1, \end{cases}$$

Aufgabe S)

$$H(s) = \frac{4}{s^2 - 4} = \frac{4}{(s - 2)(s + 2)}$$
.

S.1 Bode-Diagramm

S.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = \frac{4}{(s-2)(s+2)} = K_0 \cdot \frac{1}{(1-sT_{p1})} \cdot \frac{1}{(1+sT_{p2})}$$

mit

$$K_0 = -1$$
, $r = 0$, $T_{p1} = \frac{1}{2}$, $T_{p2} = \frac{1}{2}$.

2. Eckfrequenz bestimmen und sortieren.

$$\omega_{p1} = \frac{1}{T_{p1}} = \omega_{p2} = \frac{1}{T_{p2}} = 2 \,\mathrm{rad/s}$$

3. Startpunkt des Amplitudengangs festlegen. Setze $\omega_{\min} = \omega_p = 2$.

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10}(|K_0 \, \underline{F}_{\rm ges}^*(0)| \, \omega_{\rm min}^r) = 20 \log_{10}(1) = 0 \, {\rm dB}.$$

Ankerpunkt: 0 dB bei $\omega = 2$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 2$: Anfangssteigung $r \cdot 20 = 0 \, \text{dB/dec} \Rightarrow \text{horizontale Asymptote bei 0 dB}.$
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ab $\omega=2$: zwei einfache Pole (RHP & LHP) \Rightarrow zusätzliche $-40\,\mathrm{dB/dec}$. Netto:

$$\begin{cases} 0 \, \mathrm{dB}, & \omega < 2, \\ -40 \log_{10}(\omega/2), & \omega \geq 2. \end{cases}$$

6. Eckabrundung korrekt berücksichtigen. Am Knick $\omega = 2$: Summe zweier $-3 \, \mathrm{dB} \Rightarrow -6 \, \mathrm{dB}$ unter der Geraden:

$$|H(j2)|_{\mathrm{dB}} \approx -6 \,\mathrm{dB}.$$

(Dies gilt hier trotz RHP/LHP-Mischung, da es um den Betrag geht.)

7. Phasenstartwert festlegen. Da $K_0 \underline{F}_{ges}^*(0) < 0$ und r = 0,

$$\varphi(0) = -180^{\circ} + r \cdot 90^{\circ} = -180^{\circ}.$$

- 8. Phasenänderung durch die Polglieder (Überlappung/Kompensation). Ein LHP-Pol trägt -90° über seine Übergangsdekade [0.2, 20] bei, ein RHP-Pol gleicher Lage trägt $+90^{\circ}$ über [0.2, 20] bei. Diese Beiträge überlappen vollständig und kompensieren sich zu 0° ; daher bleibt die Phase für alle ω konstant bei -180° (der durch $K_0 < 0$ vorgegebene Offset).
- 9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)|=1\Rightarrow 0\,\mathrm{dB}, \, \varphi(0)=-180^\circ.$ HF: $|H(j\omega)|=\frac{4}{\omega^2+4}\sim\frac{4}{\omega^2}\Rightarrow -40\log_{10}(\omega/2)\,\mathrm{dB}, \, \varphi(\infty)=-180^\circ.$

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 2, \\ -6, & \omega = 2, \\ -40 \log_{10}(\omega/2), & \omega \gg 2, \end{cases}$$

$$\varphi(\omega) \approx \left\{ -180^{\circ}, \text{ für alle } \omega. \right\}$$

Aufgabe T)

$$H(s) = \frac{-1000 (s+2)^2}{4 (s+1)^3 (s+10)} = -250 \frac{(s+2)^2}{(s+1)^3 (s+10)}.$$

T.1 Bode-Diagramm

Bode-Magnitude

Bode-Phase (um $+360^{\circ}$ verschoben)

T.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = -250 \frac{(1+sT_z)^2}{(1+sT_{p1})^3 (1+sT_{p2})}, \quad T_z = \frac{1}{2}, \ T_{p1} = 1, \ T_{p2} = \frac{1}{10}.$$

Konstanten:

$$K_0 = -250, \quad r = 0.$$

Einzelteile der Übertragungsfunktion: Doppelnullstelle (LHP) bei $\omega_z = 2$, Dreifachpol (LHP) bei $\omega_{p1} = 1$, einfacher Pol (LHP) bei $\omega_{p2} = 10$.

2. Eckfrequenzen bestimmen und sortieren.

$$\omega_{p1} = 1 \text{ rad/s} < \omega_z = 2 \text{ rad/s} < \omega_{p2} = 10 \text{ rad/s}.$$

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min} = \omega_{p1} = 1$.

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 \, \underline{F}^*_{ges}(0)| \, \omega^r_{\rm min} \right) = 20 \log_{10}(250/2.5) = 40 \, {\rm dB}.$$

Ankerpunkt: $40 \, \mathrm{dB}$ bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 1$: Anfangssteigung $r \cdot 20 = 0 \, \text{dB/dec} \Rightarrow \text{horizontale Asymptote bei } 40 \, \text{dB}$.
- 5. Steigungswechsel an den Eckfrequenzen eintragen. Ab $\omega=1$: $3\cdot(-20\,\mathrm{dB/dec})=-60\,\mathrm{dB/dec}$ (Tripelpol).

Ab $\omega=2$ kommt zusätzlich hinzu: $2\cdot 20\,\mathrm{dB/dec}=+40\,\mathrm{dB/dec}$ (Doppelnull) \Rightarrow netto $-20\,\mathrm{dB/dec}$ in [2, 10].

Ab $\omega=10$: $-20\,\mathrm{dB/dec}$ (Pol) \Rightarrow netto $-40\,\mathrm{dB/dec}$ für $\omega\gg10$. Geradennäherung:

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 40, & \omega < 1, \\ 40 - 60 \log_{10} \omega, & 1 \leq \omega < 2, \\ 40 - 60 \log_{10} 2 - 20 \log_{10} (\omega/2), & 2 \leq \omega < 10, \\ 40 - 60 \log_{10} 2 - 20 \log_{10} 5 - 40 \log_{10} (\omega/10), & \omega \geq 10. \end{cases}$$

6. Eckabrundungen korrekt berücksichtigen. $\omega=1$ (Tripelpol): $-3\cdot 3\,\mathrm{dB}=-9\,\mathrm{dB}$ unter der Geradennäherung.

 $\omega = 2$ (Doppelnull): $+2 \cdot 3 \, \mathrm{dB} = +6 \, \mathrm{dB}$ über der Geradennäherung.

 $\omega = 10$ (einfacher Pol): -3 dB unter der Geradennäherung.

7. Phasenstartwert festlegen. Da $K_0 \underline{F}_{qes}^*(0) < 0$ und r = 0,

$$\varphi(0) = -180^{\circ} + r \cdot 90^{\circ} = -180^{\circ}$$

(Plot um $+360^{\circ}$ verschoben \Rightarrow Start bei $+180^{\circ}$).

8. Phasenänderung durch Nullstellen und Pole eintragen. Die Phasenlage ergibt sich als Summe der Beiträge aller Glieder und verläuft über die jeweiligen Übergangsdekaden additiv. Zunächst setzt der Tripelpol bei ω = 1 ein: er liefert insgesamt -270° verteilt über die Dekade [0.1, 10], d. h. in seiner aktiven Zone fällt die Phase mit einer Steigung von -135°/dec (pro einfachem Pol -45°/dec). Bei ω = 2 beginnt zusätzlich die Doppelnullstelle zu wirken, die über [0.2, 20] in Summe +180° beisteuert, also +90°/dec in ihrer Übergangszone. Schließlich senkt der einfache Pol bei ω = 10 die Phase über [1, 100] um weitere -90° (Steigung -90°/dec in seiner aktiven Dekade).

Überlappung/Addierung: In den überlappenden Bereichen addieren sich die Steigungen: Zwischen [0.2,1] wirken Tripelpol $(-135^{\circ}/\text{dec})$ und Doppelnull $(+90^{\circ}/\text{dec})$ gleichzeitig, sodass netto $-45^{\circ}/\text{dec}$ entsteht. Im Intervall [2,10] überlagern sich Tripelpol $(-270^{\circ}$ gesamt) und Doppelnull $(+180^{\circ}$ gesamt); die resultierende Steigung ist dort netto $-90^{\circ}/\text{dec}$. Sobald ab $\omega = 10$ der zusätzliche Pol aktiv wird, bleibt die Null über [10,20] noch wirksam: $+90^{\circ}/\text{dec}$ (Null) und $-90^{\circ}/\text{dec}$ (neuer Pol) heben sich auf, sodass netto $+90^{\circ}/\text{dec}$ in [10,20] resultiert.

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = |-250 \cdot 4/(1^3 \cdot 10)| = 100 \Rightarrow 40 \, \text{dB}; \ \varphi(0) = -180^\circ \ (\text{gezeigt als} + 180^\circ).$ HF: $|H(j\omega)| \sim 250 \, \frac{\omega^2}{\omega^4} = 250/\omega^2 \Rightarrow -40 \log_{10}(\omega/10) - 20 \log_{10} 5 \, \text{dB}; \ \varphi(\infty) = 0^\circ \ (\text{mod } 360^\circ).$

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 40, & \omega \ll 1, \\ 40 - 60 \log_{10} \omega, & 1 \ll \omega \ll 2, \\ 40 - 60 \log_{10} 2 - 20 \log_{10} (\omega/2), & 2 \ll \omega \ll 10, \\ 40 - 60 \log_{10} 2 - 20 \log_{10} 5 - 40 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 180^{\circ}, & \omega \leq 0.1, \\ 180^{\circ} - 135^{\circ} \log_{10}(\omega/0.1), & 0.1 < \omega < 0.2, \\ 180^{\circ} - 135^{\circ} \log_{10} 2 - 45^{\circ} \log_{10}(\omega/0.2), & 0.2 < \omega < 1, \\ 135^{\circ} - 90^{\circ} \log_{10}(\omega/2), & 2 < \omega < 10, \\ 135^{\circ} - 90^{\circ} \log_{10} 5 + 90^{\circ} \log_{10}(\omega/10), & 10 < \omega < 20, \\ 0^{\circ} - 90^{\circ} \log_{10}(\omega/20), & 20 < \omega < 100, \\ 0^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe U)

$$H(s) = \frac{2s}{s^2 + 2s + 1} = \frac{2s}{(s+1)^2}.$$

U.1 Bode-Diagramm

U.2 Erklärung (ausführlich)

1. Normalform herstellen.

$$H(s) = \frac{2s}{(s+1)^2} = K_0 \cdot s^r \cdot \frac{1}{(1+sT_p)^2}$$

mit

 $K_0 = 2$, r = 1 (Nullstelle im Ursprung), $T_p = 1$ (Doppelpol bei $\omega_p = 1$).

Teilglieder: $\underline{F}_1(s) = \frac{1}{(1+s)^2}$ (reelles Polglied 2. Ordnung).

2. Eckfrequenz bestimmen und sortieren.

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Nur diese Eckfrequenz; Sortierung trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min} = \omega_p = 1$. Skript-Regel:

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 \, \underline{F}^*_{ges}(0)| \cdot \omega^r_{\rm min} \right) = 20 \log_{10} (2 \cdot 1 \cdot 1) = 20 \log_{10} 2 \approx +6 \, {\rm dB}.$$

Ankerpunkt der Geraden: $+6 \, \mathrm{dB}$ bei $\omega = 1$.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < 1$ gilt Anfangssteigung $r \cdot 20 \, \mathrm{dB/dec} = +20 \, \mathrm{dB/dec}$ (Nullstelle im Ursprung). Zeichne links vom Ankerpunkt eine Gerade mit $+20 \, \mathrm{dB/dec}$.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Doppelpol bei $\omega = 1$ bewirkt $-40\,\mathrm{dB/dec}$ ab $\omega = 1$. Netto-Steigung:

$$\begin{cases} +20\,\mathrm{dB/dec}, & \omega < 1, \\ -20\,\mathrm{dB/dec}, & \omega > 1 \end{cases}$$

(d. h. zwischen 1 und ∞ fällt die Gerade mit $-20 \, \mathrm{dB/dec}$).

6. Eckabrundung korrekt berücksichtigen. Am Knick eines Doppelpols:
 -6 dB unter der Geradennäherung.

$$|H(j1)|_{dB} \approx \underbrace{20 \log_{10} 2}_{\approx +6} - 6 = 0 dB.$$

61

7. Phasenstartwert festlegen. Regel mit Vorzeichen und Ursprungsnull:

$$K_0 \underline{F}_{qes}^*(0) > 0, \quad r = 1 \implies \varphi(0) = r \cdot 90^\circ = 1 \cdot 90^\circ = +90^\circ.$$

8. Phasenänderung durch Nullstelle und Doppelpol eintragen. Die Nullstelle im Ursprung liefert einen konstanten Offset von $+90^{\circ}$. Der Doppelpol bewirkt -180° über die zwei Dekaden [0.1, 10] (je Pol -90°). Überlappung/Addierung: In der Übergangszone [0.1, 10] wirken beide Polbeiträge gleichzeitig und addieren ihre Steigungen (insgesamt -90° /dec). Der Offset $+90^{\circ}$ der Ursprungsnull bleibt währenddessen konstant. Damit fällt die Phase von $+90^{\circ}$ (für $\omega \ll 0.1$) über 0° (bei $\omega \approx 1$) weiter auf -90° (für $\omega \gg 10$). Näherung:

$$\varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \leq 0.1, \\ 0^{\circ} - 90^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ -90^{\circ}, & \omega \geq 10. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 0 \Rightarrow -\infty \, dB$, $\varphi(0) = +90^{\circ}$. HF: $|H(j\omega)| \sim 2/\omega \Rightarrow 20 \log_{10} 2 - 20 \log_{10} \omega \, dB$, $\varphi(\infty) = (r-2) \cdot 90^{\circ} = (1-2) \cdot 90^{\circ} = -90^{\circ}$ (Pol-/Nullzählung konsistent).

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 20 \log_{10} 2 + 20 \log_{10} \omega, & \omega \ll 1, \\ \left(20 \log_{10} 2\right) - 6 = 0, & \omega = 1, \\ 20 \log_{10} 2 - 20 \log_{10} \omega, & \omega \gg 1, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \leq 0.1, \\ 0^{\circ} - 90^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ -90^{\circ}, & \omega \geq 10. \end{cases}$$