Calculus I

Conf.univ.,dr. Elena Cojuhari

elena.cojuhari@mate.utm.md
Technical University of Moldova

2020

- 🚺 The Integral
 - Approximating and Computing Area
 - The Definite Integral
 - The Fundamental Theorem of Calculus, Part I
 - The Fundamental Theorem of Calculus, Part II
 - Net Change as the Integral of a Rate
 - Substitution Method
 - Further Transcendental Functions
 - Exponential Growth and Decay

Subsection 1

Approximating and Computing Area

Approximating Area by Rectangles

Suppose, we want to approximate the area under the graph of y = f(x) from x = a to x = b;

- We may cut the interval [a, b] into N subintervals of equal length; The common length will be equal to $\Delta x = \frac{b-a}{N}$;
- Suppose that in the first subinterval $[a, x_1]$, we take a point x_1^* , in the second $[x_1, x_2]$ a point x_2^* , etc.; Thus, in interval $[x_{i-1}, x_i]$, we will have a point x_i^* ;
- Then we calculate the area of each rectangle by $\Delta A_i = f(x_i^*)\Delta x$;
- Finally, we sum all the elementary rectangular areas: $A \approx \Delta x [f(x_1^*) + f(x_2^*) + \cdots + f(x_N^*)];$

Approximating Area Under $y = x^2$

• We use the method to approximate the area under $f(x) = x^2$ from x = 1 to x = 3 using N = 4 subintervals and taking as x_i^* the right endpoint of the corresponding interval:

• Since $\Delta x = \frac{3-1}{4} = \frac{1}{2}$, we get

$$A \approx \frac{1}{2}[f(\frac{3}{2}) + f(2) + f(\frac{5}{2}) + f(3)]$$

$$= \frac{1}{2}[\frac{9}{4} + 4 + \frac{25}{4} + 9]$$

$$= \frac{1}{2}\frac{86}{4} = \frac{43}{4}.$$

Summation (\sum) Notation

We use the notation

$$\sum_{i=m}^{n} a_i := a_m + a_{m+1} + \cdots + a_{n-1} + a_n.$$

• Example:

$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55;$$

Example: Compute

$$\sum_{k=4}^{6} (k^2 - 2k) = (4^2 - 2 \cdot 4) + (5^2 - 2 \cdot 5) + (6^2 - 2 \cdot 6)$$
$$= 8 + 15 + 24 = 47;$$

Example:
$$\sum_{m=7}^{11} 1 = 1 + 1 + 1 + 1 + 1 = 5$$
;

Linearity Properties of Summation

Linearity of Summation

•
$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$$
;

• Example:
$$\sum_{i=3}^{5} (i^2 + i) = (3^2 + 3) + (4^2 + 4) + (5^2 + 5) = (3^2 + 4^2 + 5^2) + (3 + 4 + 5) = \sum_{i=3}^{5} i^2 + \sum_{i=3}^{5} i;$$

• Example:

$$\sum_{i=0}^{50} (3i^2 - 7i + 8) = \sum_{i=0}^{50} 3i^2 - \sum_{i=0}^{50} 7i + \sum_{i=0}^{50} 8 = 3\sum_{i=0}^{50} i^2 - 7\sum_{i=0}^{50} i + 8\sum_{i=0}^{50} 1;$$

• Example: The sum of the rectangle areas that approximate the area under the curve y = f(x) on [a, b] can be written very succinctly using summation notation

$$A \approx \Delta x [f(x_1^*) + f(x_2^*) + \dots + f(x_{N-1}^*) + f(x_N^*)]$$

= $\frac{b-a}{N} \sum_{i=1}^{N} f(x_i^*).$

Approximating Area Under $y = \frac{1}{y}$

• Let us approximate the area under the graph of $f(x) = \frac{1}{x}$ on [2,4] using N = 6 and mid-points as the x_i^* 's;

$$A \approx \frac{4-2}{6} \sum_{i=1}^{6} f(2+(i-\frac{1}{2})\frac{1}{3})$$

$$= \frac{1}{3} \sum_{i=1}^{6} f(\frac{11+2i}{6})$$

$$= \frac{1}{3} [f(\frac{13}{6}) + f(\frac{15}{6}) + f(\frac{17}{6}) + f(\frac{19}{6}) + f(\frac{21}{6}) + f(\frac{23}{6})]$$

$$= \frac{1}{3} [\frac{6}{13} + \frac{6}{15} + \frac{6}{17} + \frac{6}{19} + \frac{6}{21} + \frac{6}{23}]$$

$$= 2[\frac{1}{13} + \frac{1}{15} + \frac{1}{17} + \frac{1}{19} + \frac{1}{21} + \frac{1}{23}]$$

$$\approx 2 \cdot 0.346 = 0.692.$$

Exact Area as the Limit of Approximations

- When the number of rectangles N
 approaches infinity, then the area
 enclosed by the approximating
 rectangles tends to the exact
 amount of area under the curve;
- Thus

$$A = \lim_{N \to \infty} \frac{b - a}{N} \sum_{i=1}^{N} f(x_i^*).$$

 To use the limit of the approximating sums to compute areas, we need some summation formulas;

Sums of Powers

Power Sums

•
$$\sum_{i=1}^{N} i = 1 + 2 + \dots + N = \frac{N(N+1)}{2};$$

•
$$\sum_{i=1}^{N} i^2 = 1^2 + 2^2 + \dots + N^2 = \frac{N(N+1)(2N+1)}{6}$$
;

•
$$\sum_{i=1}^{N} i^3 = 1^3 + 2^3 + \dots + N^3 = \frac{N^2(N+1)^2}{4}$$
;

- Consider the function $f(x) = \frac{1}{2}x$. The area of the triangle under the graph of y = f(x) from x = 0 to x = 4 can be computed using the familiar formula $A = \frac{1}{2}$ base · height; It is equal to $A = \frac{1}{2}4 \cdot 2 = 4$;
- We are going to compute this area using the limit of the approximating sums method in the next slide;

Using Limits of Approximating Sums

• We write an expression using the summation notation for the approximating sum of the area of the triangle under $y = \frac{1}{2}x$ on [0, 4] using N rectangles and right endpoints as the x_i^* 's:

$$A \approx \frac{4-0}{N} \sum_{i=1}^{N} f(\frac{4i}{N}) = \frac{4}{N} \sum_{i=1}^{N} \frac{1}{2} \cdot \frac{4i}{N} = \frac{4}{N} \sum_{i=1}^{N} \frac{2}{N} i$$

$$= \frac{4}{N} \sum_{i=1}^{N} \frac{2}{N} i = \frac{8}{N^2} \sum_{i=1}^{N} i = \frac{8}{N^2} \cdot \frac{N(N+1)}{2}$$

$$= \frac{8N(N+1)}{2N^2} = \frac{4N^2 + 4N}{N^2}.$$

Therefore, the exact area is given by

$$A = \lim_{N \to \infty} \frac{4N^2 + 4N}{N^2} = 4.$$

Finding Area Under Curve

• Find the exact area under $f(x) = -x^2 + 2x + 3$ from x = 1 to x = 3:

The approximation sum for N subintervals using right endpoints for the x_i^* 's is

$$A \approx \frac{3-1}{N} \sum_{i=1}^{N} f\left(1 + \frac{2i}{N}\right)$$

$$= \frac{2}{N} \sum_{i=1}^{N} \left[-\left(1 + \frac{2i}{N}\right)^2 + 2\left(1 + \frac{2i}{N}\right) + 3 \right]$$
$$= \frac{2}{N} \sum_{i=1}^{N} \left[-1 - \frac{4i}{N} - \frac{4i^2}{N^2} + 2 + \frac{4i}{N} + 3 \right]$$

Example (Cont'd)

$$A \approx \frac{2}{N} \sum_{i=1}^{N} \left[4 - \frac{4i^2}{N^2}\right]$$

$$= \frac{2}{N} \left[\sum_{i=1}^{N} 4 - \frac{4}{N^2} \sum_{i=1}^{N} i^2\right]$$

$$= \frac{2}{N} \left[4N - \frac{4N(N+1)(2N+1)}{6N^2}\right]$$

$$= 8 - \frac{4(N+1)(2N+1)}{3N^2};$$

Therefore

$$A = \lim_{N \to \infty} \left(8 - \frac{4(N+1)(2N+1)}{3N^2}\right) = 8 - \frac{8}{3} = \frac{16}{3}.$$

Area up to a Variable Endpoint

• Find the exact area under $f(x) = x^2$ from x = 0 to x = b (a fixed constant);

The approximation sum for N subintervals using right endpoints for the x_i^* 's is

$$A \approx \frac{b-0}{N} \sum_{i=1}^{N} f(0 + \frac{bi}{N})$$

$$=\frac{b}{N}\sum_{i=1}^{N}(\frac{bi}{N})^2=\frac{b}{N}\frac{b^2}{N^2}\sum_{i=1}^{N}i^2=\frac{b^3}{N^3}\frac{N(N+1)(2N+1)}{6};$$

Therefore.

$$A = \lim_{N \to \infty} \frac{b^3}{N^3} \frac{N(N+1)(2N+1)}{6} = \frac{1}{3}b^3.$$

Subsection 2

The Definite Integral

Riemann Sums and Definite Integrals

- Consider a function f(x) on [a, b];
- Choose a partition P of [a, b] of size N, i.e.,

$$P: a = x_0 < x_1 < x_2 < \cdots < x_N = b$$

- Choose sample points $C = \{c_1, \dots, c_N\}$, with $c_i \in [x_{i-1}, x_i]$, for all i;
- Denoting $\Delta x_i = x_i x_{i-1}$, we obtain the **Riemann sum**

$$R(f, P, C) = \sum_{i=1}^{N} f(c_i) \Delta x_i;$$

Definite Integral

The **definite integral** of f(x) over [a,b] is the limit of the Riemann sums as the maximum length ||P|| of the partition subintervals approaches zero:

$$\int_{a}^{b} f(x)dx = \lim_{\|P\| \to 0} R(f, P, C) = \lim_{\|P\| \to 0} \sum_{i=1}^{N} f(c_{i}) \Delta x_{i}.$$

If the limit exists f(x) is called **integrable** over [a, b];

Signed Areas

• Signed Area = (Area Above x-Axis) – (Area Below x-Axis);

• That is exactly the geometric interpretation of the definite integral:

$$\int_{a}^{b} f(x)dx = \text{Signed Area Between Graph and } x\text{-Axis over } [a,b];$$

Interpretation into Signed Area

• Compute $\int_0^5 (3-x)dx$

According to the previous interpretation, we have

$$\int_{0}^{5} (3 - x) dx$$
= (Area Above) - (Area Below)
$$= \frac{1}{2} \cdot 3 \cdot 3 - \frac{1}{2} \cdot 2 \cdot 2$$

$$= \frac{9}{2} - 2$$

$$= \frac{5}{2};$$

Constant Functions and Linearity

Integral of a Constant

$$\int_a^b Cdx = C(b-a).$$

Linearity of the Definite Integral

If f, g are integrable over [a, b], then $f \pm g$ and Cf are also integrable over [a, b] and:

Example: Recall that $\int_0^b x^2 dx = \frac{1}{3}b^3$; Therefore, we have $\int_0^3 (2x^2 - 5) dx = \int_0^3 2x^2 dx - \int_0^3 5 dx = 2 \int_0^3 x^2 dx - \int_0^3 5 dx = 2 \frac{3^3}{3} - 5(3 - 0) = 3$;

Reversing the Limits and Adding Over Intervals

Reversing the Limits of Integration

If a < b, then

$$\int_a^b f(x)dx = -\int_b^a f(x)dx.$$

Additivity over Adjacent Intervals

If $a \le b \le c$ and f(x) is integrable, then:

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_a^b f(x)dx.$$

Comparison Theorem

Comparison Theorem

If f and g are integrable and $g(x) \le f(x)$ for all $x \in [a, b]$, then

$$\int_a^b g(x)dx \le \int_a^b f(x)dx.$$

Example: If $x \ge 1$, $x^2 \ge x$ and, hence, $\frac{1}{\sqrt{2}} \le \frac{1}{\sqrt{2}}$. Therefore,

$$\int_{1}^{4} \frac{1}{x^{2}} dx \leq \int_{1}^{4} \frac{1}{x} dx;$$

Establishing Bounds

Consider the function $f(x) = \frac{1}{x}$ on $[\frac{1}{2}, 2]$; Clearly, if $\frac{1}{2} \le x \le 2$, $\frac{1}{2} \le \frac{1}{x} \le 2$; Therefore, by the Comparison Theorem,

$$\int_{1/2}^{2} \frac{1}{2} dx \le \int_{1/2}^{2} \frac{1}{x} dx \le \int_{1/2}^{2} 2 dx;$$

This yields

$$\frac{3}{2} \cdot \frac{1}{2} \le \int_{1/2}^{2} \frac{1}{x} dx \le \frac{3}{2} \cdot 2$$
; i.e., $\frac{3}{4} \le \int_{1/2}^{2} \frac{1}{x} dx \le 3$;

Subsection 3

The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a, b] and F(x) is an antiderivative of f(x) on [a, b], then

 $\int_a^b f(x)dx = F(b) - F(a).$

• The difference F(b) - F(a) is denoted $F(x)|_a^b$. Using this notation,

we get
$$\int_a^b f(x)dx = F(x)|_a^b.$$

Example: Calculate the area under $f(x) = x^3$ over [2, 4];

$$A = \int_{2}^{4} x^{3} dx = \frac{1}{4} x^{4} \Big|_{2}^{4}$$
$$= \frac{1}{4} (4^{4} - 2^{4}) = 60.$$

More Examples

Example: Calculate the area under $f(x) = x^{-3/4} + 3x^{5/3}$ over [1, 3]; $A = \int_{1}^{3} (x^{-3/4} + 3x^{5/3}) dx$ $= (4x^{1/4} + \frac{9}{9}x^{8/3})|_1^3$ $=(4\cdot3^{1/4}+\frac{9}{8}\cdot3^{8/3})-(4+\frac{9}{8})\approx21.2.$

Example: Calculate the area under $f(x) = \sec^2 x$ over $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$; $A = \int_{-\pi/4}^{\pi/4} \sec^2 x dx = \tan x \Big|_{-\pi/4}^{\pi/4} =$ $\tan \frac{\pi}{4} - \tan (-\frac{\pi}{4}) = 2.$

Additional Examples

Example: Calculate the area under $f(x) = e^{3x-1}$ over [-1,1]; $A = \int_{-1}^{1} e^{3x-1} dx = \frac{1}{3} e^{3x-1} \mid_{-1}^{1} = \frac{1}{3} (e^2 - e^{-4}) \approx 2.457$

Example: Calculate the area under $f(x) = \frac{1}{x}$ over [2, 8]; $A = \int_2^8 \frac{1}{x} dx = \ln x \mid_2^8 = \ln 8 - \ln 2 \approx 1.386$.

Subsection 4

The Fundamental Theorem of Calculus, Part II

Illustration of Main Concept

• Consider $f(x) = 3x^2$;

The area A(x) under y = f(x) over [1, x] is given by

$$A(x) = \int_1^x 3t^2 dt$$
$$= t^3 \Big|_1^x$$
$$= x^3 - 1;$$

• Now, note that $A'(x) = (x^3 - 1)' = 3x^2 = f(x)$;

Fundamental Theorem of Calculus, Part II

Fundamental Theorem of Calculus, Part II

If f(x) is continuous on an open interval I and $a \in I$, then the area function

$$A(x) = \int_{a}^{x} f(t)dt$$

is an antiderivative of f(x) on I, i.e., A'(x) = f(x); Equivalently,

$$\frac{d}{dx}\int_{a}^{x}f(t)dt=f(x);$$

Note that this antiderivative satisfies the initial condition A(a) = 0.

Examples

• Suppose F(x) is a particular antiderivative of $f(x) = \sin(x^2)$ satisfying $F(-\sqrt{\pi}) = 0$. Express F(x) as an integral.

According to the Part II of the Fundamental Theorem, we have

$$F(x) = \int_{-\sqrt{\pi}}^{x} f(t)dx = \int_{-\sqrt{\pi}}^{x} \sin(t^2)dt.$$

• Find the derivative of $A(x) = \int_{0}^{x} \sqrt{1+t^3} dt$;

By Part II of the Fundamental Theorem,

$$\frac{dA}{dx} = \frac{d}{dx} \int_2^x \sqrt{1 + t^3} dt = \sqrt{1 + x^3}.$$

Fundamental Theorem of Calculus and the Chain Rule

• Let us find the derivative of $G(x) = \int_{-2}^{x^2} \sin t dt$;

It is important to realize that $G(x) = A(x^2)$, where $A(x) = \int_{-2}^{x} \sin t dt$;

Thus, G(x) is a composite function and, as such, the Chain Rule must be used to compute its derivative:

$$\frac{d}{dx}G(x) = \frac{d}{dx}A(x^2) \underbrace{=}_{u=x^2} \frac{d}{du}A(u)\frac{du}{dx}$$
$$= f(u) \cdot 2x = \sin u \cdot 2x$$
$$= 2x \sin(x^2).$$

Subsection 5

Net Change as the Integral of a Rate

Net Change as Integral of Rate of Change

• The **net change** in s(t) over an interval $[t_1, t_2]$ is the integral

$$\int_{t_1}^{t_2} s'(t)dt = s(t_2) - s(t_1);$$

Example: If water leaks from a bucket at a rate of 2 + 5t lt/hr, where t is number of hours after 7 AM, how much water is lost between 9 and 11 AM?

We have

$$s(4) - s(2) = \int_{2}^{4} -(2+5t)dt = \left(-2t - \frac{5}{2}t^{2}\right)\Big|_{2}^{4}$$

= $(-48) - (-14) = -34$ lts.

The Integral of Velocity

- For an object in linear motion with velocity v(t),
 - Displacement during $[t_1, t_2] = \int_{t_1}^{t_2} v(t)dt$;
 - Distance traveled during $[t_1, t_2] = \int_{t_1}^{t_2} |v(t)| dt$;

Example: If $v(t) = t^3 - 10t^2 + 24t$ m/sec, compute both the displacement and the total distance over [0, 6];

Thus, we have

$$\begin{split} &\int_0^6 v(t)dt \\ &= \int_0^6 \left(t^3 - 10t^2 + 24t\right)dt \\ &= \left(\frac{1}{4}t^4 - \frac{10}{3}t^3 + 12t^2\right)\Big|_0^6 \\ &= 36 \text{ meters;} \end{split}$$

The Integral of Velocity: Example (Cont'd)

Note that
$$|v(t)| =$$

$$\begin{cases} t^3 - 10t^2 + 24t, & \text{if } 0 \le t \le 4 \\ -(t^3 - 10t^2 + 24t), & \text{if } 4 \le t \le 6 \end{cases}$$

Thus, we have

$$\begin{split} &\int_0^6 |v(t)| dt \\ &= \int_0^4 (t^3 - 10t^2 + 24t) dt + \int_4^6 -(t^3 - 10t^2 + 24t) dt \\ &= \left(\frac{1}{4}t^4 - \frac{10}{3}t^3 + 12t^2\right)\Big|_0^4 + \left(-\frac{1}{4}t^4 + \frac{10}{3}t^3 - 12t^2\right)\Big|_4^6 \\ &= \frac{128}{3} + \frac{20}{3} = \frac{148}{3} \text{ meters.} \end{split}$$

Total Versus Marginal Cost

- Let C(x) be cost for producing x units of a product or a commodity;
- The derivative C'(x) is called the **marginal cost**;
- The cost of increasing production from a to b is

$$C[a,b] = \int_a^b C'(x) dx;$$

Example: Suppose that the marginal cost for producing x computer chips (x in thousands) is $C'(x) = 300x^2 - 4000x + 40,000$ dollars per thousand chips;

 Determine the cost of increasing production from 10,000 to 15,000 chips.

$$C[10, 15] = \int_{10}^{15} C'(x) dx$$

$$= \int_{10}^{15} (300x^2 - 4000x + 40,000) dx$$

$$= (100x^3 - 2000x^2 + 40,000x) \Big|_{10}^{15}$$

$$= $187,500.$$

Total Versus Marginal Cost: Example (Cont'd)

- The marginal cost for producing x computer chips (x in thousands) is $C'(x) = 300x^2 4000x + 40,000$ dollars per thousand chips;
 - Determine the total production cost for 15,000 chips assuming that the company incurs a cost of \$ 30,000 for setting up the manufacturing run, i.e., that C(0) = 30,000;

$$C(x) = \int C'(x)dx$$

= $\int (300x^2 - 4000x + 40,000)dx$
= $100x^3 - 2000x^2 + 40,000x + C$.

Since C(0) = 30,000, we get C = 30,000; Hence,

$$C(x) = 100x^3 - 2000x^2 + 40,000x + 30,000.$$

Therefore,

$$C(15) = 100 \cdot 15^3 - 2000 \cdot 15^2 + 40,000 \cdot 15 + 30,000 = $517,500;$$

Subsection 6

Substitution Method

The Substitution Method

• Recall the Chain Rule for computing derivatives:

$$\frac{d}{dx}F(u(x)) = F'(u(x))u'(x) = f(u(x))u'(x),$$

where, of course F(x) is an antiderivative of f(x);

 This rule yields the Substitution Rule for computing indefinite integrals:

$$\int f(u(x))u'(x)dx = F(u(x)) + C;$$

- Usually, the Substitution Rule is applied in the form of the Substitution or Change of Variable Method:
 - We want to compute $\int f(u(x))u'(x)dx$;
 - Note that since $\frac{du}{dx} = u'(x)$, one gets du = u'(x)dx;
 - Therefore $\int f(u(x))u'(x)dx = \int f(u)du = F(u) + C$;

Example I

- Evaluate $\int 3x^2 \sin(x^3) dx$;
- Method 1 (Substitution Rule):

$$\int 3x^2 \sin(x^3) dx = \int (x^3)' \sin(x^3) dx$$
$$= -\cos(x^3) + C;$$

• Method 2 (Substitution Method): Let $u = x^3$; Then $\frac{du}{dx} = 3x^2$; Therefore, $du = 3x^2 dx$; So we have

$$\int 3x^2 \sin(x^3) dx = \int \sin u \ du$$

$$= -\cos u + C$$

$$= -\cos(x^3) + C;$$

Example II

- Evaluate $\int x(x^2+9)^5 dx$;
- Method 1 (Substitution Rule):

$$\int x(x^2+9)^5 dx = \frac{1}{2} \int 2x(x^2+9)^5 dx$$
$$= \frac{1}{2} \int (x^2+9)'(x^2+9)^5 dx$$
$$= \frac{1}{2} \cdot \frac{1}{6}(x^2+9)^6 + C;$$

Method 2 (Substitution Method):

Let $u = x^2 + 9$; Then $\frac{du}{dx} = 2x$; Therefore, $\frac{1}{2}du = xdx$;

So we have

$$\int x(x^2+9)^5 dx = \frac{1}{2} \int u^5 du$$

$$= \frac{1}{2} \cdot \frac{1}{6} u^6 + C$$

$$= \frac{1}{12} (x^2+9)^6 + C;$$

Example III

• Evaluate $\int \frac{x^2 + 2x}{(x^3 + 3x^2 + 12)^6} dx$; Let $u = x^3 + 3x^2 + 12$; Then $\frac{du}{dx} = 3x^2 + 6x = 3(x^2 + 2x)$; Therefore, $\frac{1}{3}du = (x^2 + 2x)dx$; So we have

$$\int \frac{x^2 + 2x}{(x^3 + 3x^2 + 12)^6} dx = \frac{1}{3} \int \frac{1}{u^6} du$$

$$= \frac{1}{3} \cdot \frac{1}{-5} u^{-5} + C$$

$$= -\frac{1}{15u^5} + C$$

$$= -\frac{1}{15(x^3 + 3x^2 + 12)^5} + C;$$

• Evaluate $\int \sin(7\theta + 5)d\theta$; Let $u = 7\theta + 5$; Then $\frac{du}{d\theta} = 7$; Therefore, $\frac{1}{7}du = d\theta$; So we have

$$\int \sin (7\theta + 5) d\theta = \frac{1}{7} \int \sin u du$$

$$= \frac{1}{7} (-\cos u) + C$$

$$= -\frac{1}{7} \cos (7\theta + 5) + C;$$

• Evaluate $\int e^{-9t} dt$; Let u=-9t; Then $\frac{du}{dt}=-9$; Therefore, $-\frac{1}{9}du=dt$; So we have

$$\int e^{-9t} dt = -\frac{1}{9} \int e^{u} du
= -\frac{1}{9} e^{u} + C
= -\frac{1}{9} e^{-9t} + C;$$

Additional Examples

• Evaluate $\int \tan \theta d\theta$; Rewrite $\int \tan \theta d\theta = \int \frac{\sin \theta}{\cos \theta} d\theta$; Let $u = \cos \theta$; Then $\frac{du}{d\theta} = -\sin \theta$; Therefore, $-du = \sin \theta d\theta$; Thus, $\int \tan \theta d\theta = \int \frac{\sin \theta}{\cos \theta} d\theta = -\int \frac{1}{u} du$ $= - \ln |u| + C = - \ln |\cos \theta| + C$;

• Evaluate $\int x\sqrt{5x+1}dx$; Let u = 5x + 1; Then, $x = \frac{1}{5}u - \frac{1}{5}$; Also, $\frac{du}{dx} = 5$; So, $\frac{1}{5}du = dx$; We now have

$$\int x\sqrt{5x+1}dx = \frac{1}{5}\int \left(\frac{1}{5}u - \frac{1}{5}\right)\sqrt{u}du = \frac{1}{25}\int \left(u^{3/2} - u^{1/2}\right)du$$

$$= \frac{1}{25}\left(\frac{2}{5}u^{5/2} + \frac{2}{3}u^{3/2}\right) + C = \frac{2}{125}u^{5/2} + \frac{2}{75}u^{3/2} + C$$

$$= \frac{2}{125}(5x+1)^{5/2} + \frac{2}{75}(5x+1)^{3/2} + C$$

Substitution for Definite Integration

$$\int_{a}^{b} f(u(x))u'(x)dx = \int_{u(a)}^{u(b)} f(u)du;$$

• Example: Evaluate $\int_0^2 x^2 \sqrt{x^3 + 1} dx$; Let $u = x^3 + 1$; Then, $\frac{du}{dx} = 3x^2$; So, $\frac{1}{3} du = x^2 dx$; Also, for x = 0, u = 1 and for x = 2, u = 9; We now have

$$\int_{0}^{2} x^{2} \sqrt{x^{3} + 1} dx = \frac{1}{3} \int_{1}^{9} \sqrt{u} du = \frac{1}{3} \left. \frac{2}{3} \sqrt{u^{3}} \right|_{1}^{9}$$
$$= \frac{2}{9} (27 - 1) = \frac{52}{9};$$

Two More Examples

• Evaluate $\int_0^{\pi/4} \tan^3 \theta \sec^2 \theta d\theta$;

Let $u=\tan\theta$; Then, $\frac{du}{d\theta}=\sec^2\theta$; So, $du=\sec^2\theta d\theta$; Also, for $\theta=0$, u=0 and for $\theta=\frac{\pi}{4}$, u=1; We now have

$$\int_0^{\pi/4}\!\tan^3\theta \sec^2\theta \,d\theta \ = \ \int_0^1\!u^3du = \ \tfrac{1}{4}u^4\big|_0^1 = \tfrac{1}{4};$$

• Evaluate $\int_{1}^{3} \frac{x}{x^2 + 1} dx;$

Let $u = x^2 + 1$; Then, $\frac{du}{dx} = 2x$; So, $\frac{1}{2}du = xdx$; Also, for x = 1, u = 2 and for x = 3, u = 10; $\int_{1}^{3} \frac{x}{x^2 + 1} dx = \frac{1}{2} \int_{2}^{10} \frac{1}{u} du = \frac{1}{2} \ln u \Big|_{2}^{10} = \frac{1}{2} (\ln 10 - \ln 2)$;

Subsection 7

Further Transcendental Functions

Transcendental Functions Using Substitution

• Evaluate $\int_0^1 \frac{1}{x^2 + 1} dx$; We have

$$\int_0^1 \frac{1}{x^2 + 1} dx = \tan^{-1} x \Big|_0^1 = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4};$$

• Evaluate $\int_{1/\sqrt{2}}^{1} \frac{1}{x\sqrt{4x^2 - 1}} dx;$

Let u=2x; Then, $\frac{du}{dx}=2$; So, $\frac{1}{2}du=dx$; Also, for $x=\frac{1}{\sqrt{2}}$, $u=\sqrt{2}$ and, for $x=1,\ u=2$; We now have

$$\int_{1/\sqrt{2}}^{1} \frac{1}{x\sqrt{4x^2 - 1}} dx = \int_{\sqrt{2}}^{2} \frac{\frac{1}{2}}{\frac{1}{2}u\sqrt{u^2 - 1}} du = \int_{\sqrt{2}}^{2} \frac{1}{u\sqrt{u^2 - 1}} du$$

$$= \sec^{-1} u \Big|_{\sqrt{2}}^{2} = \sec^{-1} 2 - \sec^{-1} \sqrt{2}$$

$$= \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12};$$

Two More Examples

• Evaluate
$$\int_0^{3/4} \frac{1}{\sqrt{9-16x^2}} dx$$
; Rewrite $\frac{1}{\sqrt{9-16x^2}} = \frac{1}{3\sqrt{1-\frac{16}{9}x^2}} = \frac{1}{3\sqrt{1-(\frac{4x}{3})^2}}$; Set $u = \frac{4x}{3}$; Thus, $\frac{du}{dx} = \frac{4}{3}$; So, $\frac{3}{4} du = dx$; For $x = 0$, $u = 0$; and for $x = \frac{3}{4}$, $u = 1$;
$$\int_0^{3/4} \frac{1}{\sqrt{9-16x^2}} dx = \int_0^{3/4} \frac{1}{3\sqrt{1-(\frac{4x}{3})^2}} dx = \int_0^1 \frac{1}{4\sqrt{1-u^2}} du = \frac{1}{4} \sin^{-1} u \Big|_0^1 = \frac{1}{4} \cdot \frac{\pi}{2}$$
;

• Evaluate $\int_0^{\pi/2} (\cos \theta) 10^{\sin \theta} d\theta$; Let $u = \sin \theta$; Then, $\frac{du}{d\theta} = \cos \theta$; So, $du = \cos \theta d\theta$; Also, for $\theta = 0$, u = 0 and, for $\theta = \frac{\pi}{2}$, u = 1; We now have

$$\int_0^{\pi/2} (\cos \theta) 10^{\sin \theta} d\theta = \int_0^1 10^u du = \frac{1}{\ln 10} 10^u \Big|_0^1 = \frac{9}{\ln 10};$$

Subsection 8

Exponential Growth and Decay

Exponential Growth and Decay

- The quantity P(t) depends **exponentially** on time t, if it varies according to $P(t) = P_0 e^{kt}$:
 - If k > 0, then P(t) grows exponentially and k is the growth constant:
 - If k < 0, then P(t) decays exponentially and k is the decay constant:

Example: If an E-coli culture grows exponentially with growth constant k = 0.41 hours⁻¹ and there are 1000 bacteria at time t = 0, what is the population P(t) at time t? When will the population reach the level of 10,000? We have $P(t) = 1000e^{0.41t}$; Therefore, the population will reach 10,000 when $1000e^{0.41t} = 10,000$; This yields $e^{0.41t} = 10$, or $t = \frac{1}{0.41} \ln 10$;

Differential Equations with Exponential Solutions

Theorem (Solutions of y' = ky)

If y(t) obeys the differential equation y' = ky, then

$$y(t) = P_0 e^{ky},$$

where $P_0 = y(0)$.

Example: What are the general solutions of y' = 3y? Which one satisfies the initial condition y(0) = 9? According to the Theorem,

$$y(t) = P_0 e^{3t};$$

Moreover, if y(0) = 9, then $P_0 = 9$, whence $y(t) = 9e^{3t}$;

- Suppose that a drug leaves the bloodstream at a rate proportional to the amount present.
 - Write a differential equation expressing this statement;
 - If 50 mg of the drug remain in the blood 7 hours after an injection of 450 mg, what is the decay constant?
 - At what time, will there be 200 mg present in the blood?
- We work as follows:
 - If y is the amount present, then y' = -ky;
 - The general solution of this equation is $y = P_0 e^{-kt}$; Under hypotheses, $50 = 450e^{-7k}$; Therefore, $-7k = \ln \frac{1}{0} = -\ln 9$, i.e., $k = \frac{\ln 9}{2}$;
 - We must solve $200 = 450e^{-\frac{\ln 9}{7}t}$; So $e^{-\frac{\ln 9}{7}t} = \frac{4}{9}$, i.e., $-\frac{\ln 9}{7}t = \ln \frac{4}{9}$; Thus, we get $t = -\frac{7 \ln (4/9)}{\ln 9}$;

Doubling Time and Half-Life

• If $P(t) = P_0 e^{kt}$, with k > 0, then the **doubling time** of P is

Doubling Time =
$$\frac{\ln 2}{k}$$
;

• If $P(t) = P_0 e^{-kt}$, with k > 0, then the **half-life** of P is

Half-Life =
$$\frac{\ln 2}{k}$$
;

The formulas above are very easy to establish; They need not be memorized!

Set
$$P(t) = 2P_0$$
; Then $2P_0 = P_0e^{kt}$; Now solve for t : $2 = e^{kt}$, whence $kt = \ln 2$, and, therefore, $t = \frac{\ln 2}{k}$;

• If P_0 dollars are invested in an account earning interest at annual rate r, compounded M times yearly, then the future amount P(t) after t years is

$$P(t) = P_0 \left(1 + \frac{r}{M} \right)^{Mt};$$

Theorem (Limit Formulas for e and e^{x})

$$e = \lim_{n o \infty} \left(1 + rac{1}{n}
ight)^n$$
 and $e^{\mathsf{x}} = \lim_{n o \infty} \left(1 + rac{\mathsf{x}}{n}
ight)^n$.

• If P_0 dollars are invested in an account earning interest at annual rate r, compounded continuously, then the future amount P(t) after t years is

$$P(t) = P_0 e^{rt}$$
;

Present Value of Future Amount

Present Value

The **present value** PV of P dollars to be received t years in the future under continuous compounding at an annual rate r, is given by

$$PV = Pe^{-rt}$$
;

Example: If the annual interest rate is r = 0.03, is it better to receive \$ 2000 today or \$ 2200 in two years? The present value of \$ 2200 received two years from now is $PV = Pe^{-rt}$ i.e., $PV = 2200e^{-0.03 \cdot 2} \approx 2,071.88$; Therefore, it is better to receive \$ 2,200 two years from now;

Present value of an Income Stream

PV of an Income Stream

If the annual interest rate is r, the present value of an income stream paying out R(t) dollars per year continuously for $\mathcal T$ years is

$$PV = \int_0^1 R(t)e^{-rt}dt;$$

Example: An investment pays \$100,000 per year continuously for 10 years. What is the investment's present value for r = 0.06?

PV =
$$\int_0^{10} 100,000e^{-0.06t} dt = \frac{100,000}{-0.06} e^{-0.06} \Big|_0^{10}$$

 $\approx 1,666,666.67(e^{-0.6}-1) \approx \$751,980.61;$

Example: An investment pays \leq 50,000 per year continuously for 5 years. What is the investment's present value for r = 0.02?

PV =
$$\int_0^5 50,000e^{-0.02t}dt = \frac{50,000}{-0.02}e^{-0.02}\Big|_0^5$$

 $\approx 2,500,500(e^{-0.2}-1) \approx \text{€}453,173.12;$