#### Observational Studies

Teppei Yamamoto

Keio University

Introduction to Causal Inference Spring 2016

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

- Introduction
- Identification under Conditional Ignorability
- Back-Door Criterion
- Estimation under Conditional Ignorability
  - Subclassification
    - Matching
  - Weighting
- 5 Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

# Essential Role of Research Design

- Causal inference requires good identification strategy
- Treatment assignment mechanism determines whether average causal effects are identifiable
- Treatment is randomized by the researcher ②②②
  - Laboratory experiments
  - Survey experiments
  - Field experiments
- Treatment is haphazard (natural experiment) © ©
  - Birthdays
  - Weather
  - Close elections
  - Arbitrary administrative rules
- Treatment is "as-if" random after statistical control ©
  - Regression
  - Matching
- lacktriangle Treatment is self-selected and no plausible control is available  $\ eciidon$



- Threat to internal validity of causal inference = confounding
- Randomization balances both observed and unobserved confounders between the treated and untreated

- Threat to internal validity of causal inference = confounding
- Randomization balances both observed and unobserved confounders between the treated and untreated
- In practice, randomized experiment is often infeasible
- And natural experiments are difficult to find

- Threat to internal validity of causal inference = confounding
- Randomization balances both observed and unobserved confounders between the treated and untreated
- In practice, randomized experiment is often infeasible
- And natural experiments are difficult to find
- Practical solution: Adjust for the observed covariates and hope that unobservables are balanced

- Threat to internal validity of causal inference = confounding
- Randomization balances both observed and unobserved confounders between the treated and untreated
- In practice, randomized experiment is often infeasible
- And natural experiments are difficult to find
- Practical solution: Adjust for the observed covariates and hope that unobservables are balanced
- Better than just hoping: Do your best to design an observational study to approximate an experiment

"The planner of an observational study should always ask himself: How would the study be conducted if it were possible to do it by controlled experimentation." (Cochran 1965)

#### Treatments, Covariates, Outcomes

- Randomized Experiment:
  - well-defined treatment
  - clear distinction between covariates and outcomes
- Good Observational Study:
  - well-defined treatment
  - clear distinction between covariates and outcomes
- Bad Observational Study:
  - hard to say when treatment began or what the treatment really is
  - distinction between covariates and outcomes is blurred
  - problems that arise in experiments seem to be avoided but are in fact just ignored

#### How were treatments assigned?

- Randomized Experiment:
  - random assignment
- Good Observational Study:
  - circumstances for the study were chosen so that treatment seems haphazard, or at least not obviously related to potential outcomes (i.e. natural or quasi-experiments)
  - there is objective evidence that treatment assignment was a function of known observed pre-treatment covariates (e.g. administrative rules)
- Bad Observational Study:
  - no attention given to assignment process
  - units self-select into treatment based on potential outcomes

#### Were treated and controls comparable?

- Randomized Experiment:
  - balance table for observables
- Good Observational Study:
  - balance table for observables
  - sensitivity analysis for unobservables
- Bad Observational Study:
  - no direct assessment of comparability is presented

#### Eliminating plausible alternatives to treatment effects?

#### Randomized Experiment:

- list plausible alternatives
- experimental design includes features that shed light on these alternatives (e.g. placebos)
- report on potential attrition and non-compliance

#### Good Observational Study:

- list plausible alternatives
- study design includes features that shed light on these alternatives (e.g. multiple control groups, longitudinal covariate data, etc.)
- requires more work than in experiment since there are usually many more alternatives

#### Bad Observational Study:

alternatives are mentioned in discussion section of the paper

- Introduction
- Identification under Conditional Ignorability
- Back-Door Criterion
- Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

- Units: i = 1, ..., n
- Treatment:  $D_i \in \{0, 1\}$
- Potential outcomes:  $Y_i(d)$ , where d = 0, 1

- Units: i = 1, ..., n
- Treatment:  $D_i \in \{0, 1\}$
- Potential outcomes:  $Y_i(d)$ , where d = 0, 1
- Quantities of interest:

ATE: 
$$\tau_{ATE} \equiv \mathbb{E}[Y_i(1) - Y_i(0)]$$
  
ATT:  $\tau_{ATT} \equiv \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$ 

Question: Can we identify  $\tau_{ATE}$  and  $\tau_{ATT}$  when  $D_i$  is not randomized?

- Units: i = 1, ..., n
- Treatment:  $D_i \in \{0, 1\}$
- Potential outcomes:  $Y_i(d)$ , where d = 0, 1
- Quantities of interest:

ATE: 
$$\tau_{ATE} \equiv \mathbb{E}[Y_i(1) - Y_i(0)]$$
  
ATT:  $\tau_{ATT} \equiv \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$ 

Question: Can we identify  $\tau_{ATE}$  and  $\tau_{ATT}$  when  $D_i$  is not randomized?

- Pre-treatment covariates:  $X_i = [X_{i1}, ..., X_{iK}]^{\top} \in \mathcal{X}$ 
  - Predetermined and causally precedent with respect to D<sub>i</sub>
  - Examples: Sex, race, age, etc.
  - $X_i$  may be correlated with both  $D_i$  and  $Y_i(d)$ , thereby confounding the causal relationship

- Units: i = 1, ..., n
- Treatment:  $D_i \in \{0, 1\}$
- Potential outcomes:  $Y_i(d)$ , where d = 0, 1
- Quantities of interest:

ATE: 
$$\tau_{ATE} \equiv \mathbb{E}[Y_i(1) - Y_i(0)]$$
  
ATT:  $\tau_{ATT} \equiv \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$ 

Question: Can we identify  $\tau_{ATE}$  and  $\tau_{ATT}$  when  $D_i$  is not randomized?

- Pre-treatment covariates:  $X_i = [X_{i1}, ..., X_{iK}]^{\top} \in \mathcal{X}$ 
  - Predetermined and causally precedent with respect to D<sub>i</sub>
  - Examples: Sex, race, age, etc.
  - $X_i$  may be correlated with both  $D_i$  and  $Y_i(d)$ , thereby confounding the causal relationship
  - Excludes correlates that are potentially affected by D<sub>i</sub> (post-treatment covariates)

# Conditional Ignorability

• In randomized experiments,  $D_i$  satisfies:

$$\{Y_i(0), Y_i(1)\} \perp \!\!\!\perp D_i$$

# Conditional Ignorability

• In randomized experiments,  $D_i$  satisfies:

$$\{Y_i(0), Y_i(1)\} \perp \!\!\!\perp D_i$$

• Instead, we make the conditional ignorability (CI) assumption:

$$\{Y_i(0), Y_i(1)\} \perp \!\!\!\perp D_i \mid X_i = x \text{ for any } x \in \mathcal{X}$$

(a.k.a. exogeneity, unconfoundedness, selection on observables, no omitted variable, etc.)

Read: Among units with identical values of  $X_i$ ,  $D_i$  is "as-if" randomly assigned.

## Conditional Ignorability

• In randomized experiments,  $D_i$  satisfies:

$$\{Y_i(0), Y_i(1)\} \perp \!\!\!\perp D_i$$

• Instead, we make the conditional ignorability (CI) assumption:

$$\{Y_i(0), Y_i(1)\} \perp \!\!\!\perp D_i \mid X_i = x \text{ for any } x \in \mathcal{X}$$

(a.k.a. exogeneity, unconfoundedness, selection on observables, no omitted variable, etc.)

Read: Among units with identical values of  $X_i$ ,  $D_i$  is "as-if" randomly assigned.

• We also need the common support (a.k.a. positivity) assumption:

$$0 < \Pr(D_i = 1 \mid X_i = x) < 1$$
 for any  $x \in \mathcal{X}$ 

Read: With any value of  $X_i$ , unit could have received either treatment or control.

 In randomized experiments, we considered identification with population difference in means:

$$\hat{\tau} = \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

 In randomized experiments, we considered identification with population difference in means:

$$\hat{\tau} = \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

• Here, we use difference in the population regression functions:

$$\hat{\tau}(x) = \mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x]$$

 In randomized experiments, we considered identification with population difference in means:

$$\hat{\tau} = \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

• Here, we use difference in the population regression functions:

$$\hat{\tau}(x) = \mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x]$$

 Result: Under the conditional ignorability and common support assumptions,  $\tau$  is nonparametrically identified as

$$\tau_{ATE} = \mathbb{E}[\hat{\tau}(X_i)]$$

$$= \int \{\mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x]\} f(x) dx$$

where the first  $\mathbb{E}$  is taken with respect to the distribution of  $X_i$ , f(x).

### Proof of Identification Formula

Given the conditional ignorability assumption, we have

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid X_i] = \mathbb{E}[Y_i(1) \mid X_i, D_i = 1] - \mathbb{E}[Y_i(0) \mid X_i, D_i = 0]$$

$$= \mathbb{E}[Y_i \mid X_i, D_i = 1] - \mathbb{E}[Y_i \mid X_i, D_i = 0]$$

Therefore, under the common support assumption,

$$\tau_{ATE} = \mathbb{E}[Y_i(1) - Y_i(0)]$$

$$= \mathbb{E}[\mathbb{E}[Y_i(1) - Y_i(0) \mid X_i]] \quad \text{(law of iterated expectation)}$$

$$= \int \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = x] f(x) dx \quad \text{(definition of } \mathbb{E})$$

$$= \int \{\mathbb{E}[Y_i \mid X_i = x, D_i = 1] - \mathbb{E}[Y_i \mid X_i = x, D_i = 0]\} f(x) dx$$

$$= \mathbb{E}[\hat{\tau}(x)].$$

### Proof of Identification Formula

Given the conditional ignorability assumption, we have

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid X_i] = \mathbb{E}[Y_i(1) \mid X_i, D_i = 1] - \mathbb{E}[Y_i(0) \mid X_i, D_i = 0]$$

$$= \mathbb{E}[Y_i \mid X_i, D_i = 1] - \mathbb{E}[Y_i \mid X_i, D_i = 0]$$

Therefore, under the common support assumption,

$$\tau_{ATE} = \mathbb{E}[Y_i(1) - Y_i(0)]$$

$$= \mathbb{E}[\mathbb{E}[Y_i(1) - Y_i(0) \mid X_i]] \quad \text{(law of iterated expectation)}$$

$$= \int \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = x] f(x) dx \quad \text{(definition of } \mathbb{E})$$

$$= \int \{\mathbb{E}[Y_i \mid X_i = x, D_i = 1] - \mathbb{E}[Y_i \mid X_i = x, D_i = 0]\} f(x) dx$$

$$= \mathbb{E}[\hat{\tau}(x)].$$

N.B.: This result holds regardless of the true form of the population regression function (i.e. nonparametric identification).

By the similar logic,  $\tau_{ATT}$  is also nonparametrically identified under the conditional ignorability and common support assumptions as:

$$au_{ATT} = \mathbb{E}[\hat{\tau}(X_i) \mid D_i = 1]$$

where  $\mathbb{E}$  is taken with respect to the distribution of  $X_i$  given  $D_i = 1$ .

Causal Inference

By the similar logic,  $\tau_{ATT}$  is also nonparametrically identified under the conditional ignorability and common support assumptions as:

$$au_{ATT} = \mathbb{E}[\hat{\tau}(X_i) \mid D_i = 1]$$

where  $\mathbb{E}$  is taken with respect to the distribution of  $X_i$  given  $D_i = 1$ . Proof also proceeds the same way:

$$\tau_{ATT} = \mathbb{E}[Y_{i}(1) - Y_{i}(0) \mid D_{i} = 1]$$

$$= \mathbb{E}[\mathbb{E}[Y_{i}(1) - Y_{i}(0) \mid X_{i}, D_{i} = 1] \mid D_{i} = 1] \quad (LIE)$$

$$= \int \mathbb{E}[Y_{i}(1) - Y_{i}(0) \mid X_{i} = x, D_{i} = 1] f(x \mid D_{i} = 1) dx \quad (def. of \mathbb{E})$$

$$= \int {\{\mathbb{E}[Y_{i} \mid X_{i} = x, D_{i} = 1] - \mathbb{E}[Y_{i} \mid X_{i} = x, D_{i} = 0]\} f(x \mid D_{i} = 1) dx }$$

$$= \mathbb{E}[\hat{\tau}(x) \mid D_{i} = 1].$$

By the similar logic,  $\tau_{ATT}$  is also nonparametrically identified under the conditional ignorability and common support assumptions as:

$$au_{ATT} = \mathbb{E}[\hat{\tau}(X_i) \mid D_i = 1]$$

where  $\mathbb{E}$  is taken with respect to the distribution of  $X_i$  given  $D_i = 1$ . Proof also proceeds the same way:

Is  $\tau_{ATE} = \tau_{ATT}$  when CI holds?

By the similar logic,  $\tau_{ATT}$  is also nonparametrically identified under the conditional ignorability and common support assumptions as:

$$au_{ATT} = \mathbb{E}[\hat{\tau}(X_i) \mid D_i = 1]$$

where  $\mathbb{E}$  is taken with respect to the distribution of  $X_i$  given  $D_i = 1$ . Proof also proceeds the same way:

$$\begin{aligned} \tau_{ATT} &= & \mathbb{E}[Y_{i}(1) - Y_{i}(0) \mid D_{i} = 1] \\ &= & \mathbb{E}[\mathbb{E}[Y_{i}(1) - Y_{i}(0) \mid X_{i}, D_{i} = 1] \mid D_{i} = 1] \quad \text{(LIE)} \\ &= & \int \mathbb{E}[Y_{i}(1) - Y_{i}(0) \mid X_{i} = x, D_{i} = 1]f(x \mid D_{i} = 1)dx \quad \text{(def. of } \mathbb{E}) \\ &= & \int \left\{ \mathbb{E}[Y_{i} \mid X_{i} = x, D_{i} = 1] - \mathbb{E}[Y_{i} \mid X_{i} = x, D_{i} = 0] \right\} f(x \mid D_{i} = 1)dx \\ &= & \mathbb{E}[\hat{\tau}(x) \mid D_{i} = 1]. \end{aligned}$$

Is  $\tau_{ATE} = \tau_{ATT}$  when CI holds? No, because  $Y_i(d)$  and  $D_i$  are correlated without conditioning on  $X_i$ .

• Why should we **not** condition on post-treatment covariates,  $S_i$ ?

- Why should we **not** condition on post-treatment covariates,  $S_i$ ?
- Consider our formula for ATE, except we condition on  $S_i$  instead of  $X_i$ :

$$\tilde{\tau} \equiv \mathbb{E}_{S_i}[\mathbb{E}[Y_i \mid D_i = 1, S_i] - \mathbb{E}[Y_i \mid D_i = 0, S_i]]$$

- Why should we **not** condition on post-treatment covariates,  $S_i$ ?
- Consider our formula for ATE, except we condition on  $S_i$  instead of  $X_i$ :

$$\tilde{\tau} \equiv \mathbb{E}_{S_i}[\mathbb{E}[Y_i \mid D_i = 1, S_i] - \mathbb{E}[Y_i \mid D_i = 0, S_i]]$$

 Because S<sub>i</sub> is potentially affected by the treatment, the observed post-treatment covariate only equals one of its potential value:

$$S_i = D_i S_i(1) + (1 - D_i) S_i(0)$$

Therefore, we have a mismatch problem:

$$\tilde{\tau} \ = \ \mathbb{E}_{\mathcal{S}_i}[\mathbb{E}[Y_i(1) \mid D_i = 1, \textcolor{red}{S_i(1)}]] - \mathbb{E}_{\mathcal{S}_i}[\mathbb{E}[Y_i(0) \mid D_i = 0, \textcolor{red}{S_i(0)}]] \ \neq \ \tau_{ATE}$$

- Why should we **not** condition on post-treatment covariates,  $S_i$ ?
- Consider our formula for ATE, except we condition on  $S_i$  instead of  $X_i$ :

$$\tilde{\tau} \equiv \mathbb{E}_{S_i}[\mathbb{E}[Y_i \mid D_i = 1, S_i] - \mathbb{E}[Y_i \mid D_i = 0, S_i]]$$

• Because  $S_i$  is potentially affected by the treatment, the *observed* post-treatment covariate only equals one of its *potential* value:

$$S_i = D_i S_i(1) + (1 - D_i) S_i(0)$$

Therefore, we have a mismatch problem:

$$ilde{ au} = \mathbb{E}_{S_i}[\mathbb{E}[Y_i(1) \mid D_i = 1, S_i(1)]] - \mathbb{E}_{S_i}[\mathbb{E}[Y_i(0) \mid D_i = 0, S_i(0)]] \neq \tau_{ATE}$$

• This implies  $\tilde{\tau} = \tau_{ATE}$  if  $f(S_i) = f(S_i(1)) = f(S_i(0))$ . This would be true if

- Why should we **not** condition on post-treatment covariates,  $S_i$ ?
- Consider our formula for ATE, except we condition on  $S_i$  instead of  $X_i$ :

$$\tilde{\tau} \equiv \mathbb{E}_{S_i}[\mathbb{E}[Y_i \mid D_i = 1, S_i] - \mathbb{E}[Y_i \mid D_i = 0, S_i]]$$

• Because  $S_i$  is potentially affected by the treatment, the *observed* post-treatment covariate only equals one of its *potential* value:

$$S_i = D_i S_i(1) + (1 - D_i) S_i(0)$$

Therefore, we have a mismatch problem:

$$\tilde{\tau} \ = \ \mathbb{E}_{S_i}[\mathbb{E}[Y_i(1) \mid D_i = 1, S_i(1)]] - \mathbb{E}_{S_i}[\mathbb{E}[Y_i(0) \mid D_i = 0, S_i(0)]] \ \neq \ \tau_{ATE}$$

• This implies  $\tilde{\tau} = \tau_{ATE}$  if  $f(S_i) = f(S_i(1)) = f(S_i(0))$ . This would be true if  $D_i$  has no effect on  $S_i$ , but then we would never think of controlling for  $S_i$  in the first place!

- Why should we **not** condition on post-treatment covariates,  $S_i$ ?
- Consider our formula for ATE, except we condition on  $S_i$  instead of  $X_i$ :

$$\tilde{\tau} \equiv \mathbb{E}_{S_i}[\mathbb{E}[Y_i \mid D_i = 1, S_i] - \mathbb{E}[Y_i \mid D_i = 0, S_i]]$$

 $\bullet$  Because  $S_i$  is potentially affected by the treatment, the *observed* post-treatment covariate only equals one of its *potential* value:

$$S_i = D_i S_i(1) + (1 - D_i) S_i(0)$$

Therefore, we have a mismatch problem:

$$\tilde{\tau} \ = \ \mathbb{E}_{S_i}[\mathbb{E}[Y_i(1) \mid D_i = 1, \underbrace{S_i(1)}]] - \mathbb{E}_{S_i}[\mathbb{E}[Y_i(0) \mid D_i = 0, \underbrace{S_i(0)}]] \ \neq \ \tau_{ATE}$$

- This implies  $\tilde{\tau} = \tau_{ATE}$  if  $f(S_i) = f(S_i(1)) = f(S_i(0))$ . This would be true if  $D_i$  has no effect on  $S_i$ , but then we would never think of controlling for  $S_i$  in the first place!
- A better way to think of a post-treatment covariate is mediation, a topic we will come back to later.

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- Estimation under Conditional Ignorability
  - Subclassification
    - Matching
  - Weighting
  - Inference without Conditional Ignorability
    - Nonparametric Bounds
    - Sensitivity Analysis
      - Imbens' Approach
      - Rosenbaum's Approach

- An alternative, perhaps more intuitive, way to think about confounding is in terms of DAGs
- Suppose we want to estimate the ATE of X on Y; which covariates do we need to measure?



Causal Inference

- An alternative, perhaps more intuitive, way to think about confounding is in terms of DAGs
- Suppose we want to estimate the ATE of X on Y; which covariates do we need to measure?



- Pearl develops criteria, which can be directly read off of the graph alone.
- Before studying the criteria we need to define some new concepts.

- An alternative, perhaps more intuitive, way to think about confounding is in terms of DAGs
- Suppose we want to estimate the ATE of X on Y; which covariates do we need to measure?



- Pearl develops criteria, which can be directly read off of the graph alone.
- Before studying the criteria we need to define some new concepts.

#### Review of concepts:

Nodes: X, Y, Z₁, Z₂ and Z₃.

ullet Paths: "X o Y", " $X \leftarrow Z_3 o Y$ ", " $X \leftarrow Z_1 o Z_3 \leftarrow Z_2 o Y$ ", etc.

- An alternative, perhaps more intuitive, way to think about confounding is in terms of DAGs
- Suppose we want to estimate the ATE of X on Y; which covariates do we need to measure?



- Pearl develops criteria, which can be directly read off of the graph alone.
- Before studying the criteria we need to define some new concepts.

#### Review of concepts:

Nodes: X, Y, Z₁, Z₂ and Z₃.

ullet Paths: "X o Y", " $X \leftarrow Z_3 o Y$ ", " $X \leftarrow Z_1 o Z_3 \leftarrow Z_2 o Y$ ", etc.

Z<sub>1</sub> is a parent of

- An alternative, perhaps more intuitive, way to think about confounding is in terms of DAGs
- Suppose we want to estimate the ATE of X on Y; which covariates do we need to measure?



- Pearl develops criteria, which can be directly read off of the graph alone.
- Before studying the criteria we need to define some new concepts.

#### Review of concepts:

- Nodes: X, Y, Z₁, Z₂ and Z₃.
- $\bullet \ \ \text{Paths: "$X \rightarrow Y$", "$X \leftarrow Z_3 \rightarrow Y$", "$X \leftarrow Z_1 \rightarrow Z_3 \leftarrow Z_2 \rightarrow Y$", etc. }$
- $Z_1$  is a parent of X and  $Z_3$ . X and  $Z_3$  are children of  $Z_1$ .
- $Z_1$  is an ancestor of

- An alternative, perhaps more intuitive, way to think about confounding is in terms of DAGs
- Suppose we want to estimate the ATE of X on Y; which covariates do we need to measure?



- Pearl develops criteria, which can be directly read off of the graph alone.
- Before studying the criteria we need to define some new concepts.

#### Review of concepts:

- Nodes: X, Y, Z₁, Z₂ and Z₃.
- Paths: " $X \to Y$ ", " $X \leftarrow Z_3 \to Y$ ", " $X \leftarrow Z_1 \to Z_3 \leftarrow Z_2 \to Y$ ", etc.
- $Z_1$  is a parent of X and  $Z_3$ . X and  $Z_3$  are children of  $Z_1$ .
- $Z_1$  is an ancestor of Y. Y is a descendant of  $Z_1$ .

### Definition (blocked paths)

A set of nodes S blocks a path p if either

- p contains at least one arrow-emitting node in S, or
- p contains at least one collision node that is outside S and has no descendant in S.



### Definition (blocked paths)

A set of nodes S blocks a path p if either

- p contains at least one arrow-emitting node in S, or
- p contains at least one collision node that is outside S and has no descendant in S.



### Examples:

" $X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \rightarrow Y$ " is blocked by

### Definition (blocked paths)

A set of nodes S blocks a path p if either

- p contains at least one arrow-emitting node in S, or
- p contains at least one collision node that is outside S and has no descendant in S.



#### Examples:

" $X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \rightarrow Y$ " is blocked by  $\{W_1\}, \{Z_1\}, \{Z_1, Z_3\},$  etc.

## Definition (blocked paths)

A set of nodes S blocks a path p if either

- p contains at least one arrow-emitting node in S, or
- p contains at least one collision node that is outside S and has no descendant in S.



#### Examples:

"
$$X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \rightarrow Y$$
" is blocked by  $\{W_1\}, \{Z_1\}, \{Z_1, Z_3\},$  etc.

"
$$X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \leftarrow Z_2 \rightarrow W_2 \rightarrow Y$$
" is blocked by

### Definition (blocked paths)

A set of nodes S blocks a path p if either

- p contains at least one arrow-emitting node in S, or
- p contains at least one collision node that is outside S and has no descendant in S.



#### Examples:

"
$$X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \rightarrow Y$$
" is blocked by  $\{W_1\}, \{Z_1\}, \{Z_1, Z_3\},$  etc.

"
$$X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \leftarrow Z_2 \rightarrow W_2 \rightarrow Y$$
" is blocked by  $\{\emptyset\}$ , an empty set.

### Definition (*d*-separation)

If *S* blocks all paths from *X* to *Y*, then *S d*-separates *X* and *Y*. If *S d*-separates *X* and *Y*, then  $X \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid S$ .

Example:  $W_1$  and  $Z_3$  are d-separated by set S =

## Definition (blocked paths)

A set of nodes S blocks a path p if either

- p contains at least one arrow-emitting node in S, or
- p contains at least one collision node that is outside S and has no descendant in S.



#### Examples:

"
$$X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \rightarrow Y$$
" is blocked by  $\{W_1\}, \{Z_1\}, \{Z_1, Z_3\},$  etc.

"
$$X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \leftarrow Z_2 \rightarrow W_2 \rightarrow Y$$
" is blocked by  $\{\emptyset\}$ , an empty set.

### Definition (*d*-separation)

If *S* blocks all paths from *X* to *Y*, then *S d*-separates *X* and *Y*. If *S d*-separates *X* and *Y*, then  $X \perp \!\!\!\perp Y \mid S$ .

Example:  $W_1$  and  $Z_3$  are d-separated by set  $S = \{Z_1\}$ .

The correspondence between d-separation and conditional independence leads to the following powerful theorem:

## Theorem (the back-door criterion)

A set S is sufficient for adjustment to identify the causal effect of X on Y if:

- No element of S is a descendant of X, and
- The elements of S block all back-door paths from X to Y

The back-door criterion tells you which covariates to condition on in order to identify a causal effect, given a hypothesized DAG.

The correspondence between d-separation and conditional independence leads to the following powerful theorem:

## Theorem (the back-door criterion)

A set S is sufficient for adjustment to identify the causal effect of X on Y if:

- No element of S is a descendant of X, and
- The elements of S block all back-door paths from X to Y

The back-door criterion tells you which covariates to condition on in order to identify a causal effect, given a hypothesized DAG.



• 
$$S = \{W_1, W_2\}$$
?

The correspondence between d-separation and conditional independence leads to the following powerful theorem:

## Theorem (the back-door criterion)

A set S is sufficient for adjustment to identify the causal effect of X on Y if:

- No element of S is a descendant of X, and
- The elements of S block all back-door paths from X to Y

The back-door criterion tells you which covariates to condition on in order to identify a causal effect, given a hypothesized DAG.



• 
$$S = \{W_1, W_2\}$$
? No.

• 
$$S = \{Z_1, Z_3\}$$
?

The correspondence between d-separation and conditional independence leads to the following powerful theorem:

## Theorem (the back-door criterion)

A set S is sufficient for adjustment to identify the causal effect of X on Y if:

- No element of S is a descendant of X, and
- The elements of S block all back-door paths from X to Y

The back-door criterion tells you which covariates to condition on in order to identify a causal effect, given a hypothesized DAG.



• 
$$S = \{W_1, W_2\}$$
? No.

• 
$$S = \{Z_1, Z_3\}$$
? Yes!

• 
$$S = \{Z_3\}$$
?

The correspondence between d-separation and conditional independence leads to the following powerful theorem:

## Theorem (the back-door criterion)

A set S is sufficient for adjustment to identify the causal effect of X on Y if:

- No element of S is a descendant of X, and
- 2 The elements of S block all back-door paths from X to Y

The back-door criterion tells you which covariates to condition on in order to identify a causal effect, given a hypothesized DAG.



- $S = \{W_1, W_2\}$ ? No.
- $S = \{Z_1, Z_3\}$ ? Yes!
- $S = \{Z_3\}$ ? No, because it unblocks  $X \leftarrow W_1 \leftarrow Z_1 \rightarrow Z_3 \leftarrow Z_2 \rightarrow W_2 \rightarrow Y$ .

• The graphical approach often reveals nonintuitive sources of bias, including the infamous *M*-bias.

 The graphical approach often reveals nonintuitive sources of bias, including the infamous M-bias.

#### Example:



Suppose we only observe seat-belt usage. Should we control for it?

Teppei Yamamoto Observational Studies Causal Inference

 The graphical approach often reveals nonintuitive sources of bias, including the infamous M-bias.

#### Example:



Suppose we only observe seat-belt usage. Should we control for it? No!

 The graphical approach often reveals nonintuitive sources of bias, including the infamous M-bias.

#### Example:



Suppose we only observe seat-belt usage. Should we control for it? No!

16 / 74

Suppose we don't observe any variable other than enrollment and smoking. Are we screwed?

 The graphical approach often reveals nonintuitive sources of bias, including the infamous M-bias.

#### Example:



- Suppose we only observe seat-belt usage. Should we control for it? No!
- Suppose we don't observe any variable other than enrollment and smoking. Are we screwed? No!

 The graphical approach often reveals nonintuitive sources of bias, including the infamous M-bias.

#### Example:



- Suppose we only observe seat-belt usage. Should we control for it? No!
- Suppose we don't observe any variable other than enrollment and smoking. Are we screwed? No!
- In practice, missing arrows in this DAG encode strong assumptions that are probably not true (e.g. no common cause of Risk Aversion and X).
- What to do in practice (where we are usually uncertain about a DAG itself) is an open question.
- A standard recommendation (based on a lot of anecdotal evidence) is still to control for every observed pre-treatment covariate available.

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- 4 Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- 4 Estimation under Conditional Ignorability
  - Subclassification
    - Matching
  - Weighting
  - 5 Inference without Conditional Ignorability
    - Nonparametric Bounds
    - Sensitivity Analysis
      - Imbens' Approach
      - Rosenbaum's Approach

## Identification Results for Discrete Covariates

• If  $X_i$  is all discrete, the identification results can be rewritten as:

$$\tau_{ATE} = \sum_{x \in \mathcal{X}} \left\{ \mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x] \right\} \Pr(X_i = x)$$

$$\tau_{ATT} = \sum_{x \in \mathcal{X}} \{ \mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x] \} \Pr(X_i = x \mid D_i = 1)$$

## Identification Results for Discrete Covariates

• If  $X_i$  is all discrete, the identification results can be rewritten as:

$$\tau_{ATE} = \sum_{x \in \mathcal{X}} \left\{ \mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x] \right\} \Pr(X_i = x)$$

- $\tau_{ATT} = \sum_{x \in \mathcal{X}} \{ \mathbb{E}[Y_i \mid D_i = 1, X_i = x] \mathbb{E}[Y_i \mid D_i = 0, X_i = x] \} \Pr(X_i = x \mid D_i = 1)$ 
  - That is,  $\tau_{ATE}$  can be calculated by:
    - (1) Group units into strata (or cells) defined by the values of  $X_i$ .
    - (2) For each stratum, calculate difference in means of Y<sub>i</sub> between the treated and untreated.
    - (3) Calculate the weighted average of (2), with weights equal to the proportions of units in the strata.

## Identification Results for Discrete Covariates

• If  $X_i$  is all discrete, the identification results can be rewritten as:

$$\tau_{ATE} = \sum_{x \in \mathcal{X}} \{ \mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x] \} \Pr(X_i = x)$$

$$\tau_{ATT} = \sum_{x \in \mathcal{X}} \{ \mathbb{E}[Y_i \mid D_i = 1, X_i = x] - \mathbb{E}[Y_i \mid D_i = 0, X_i = x] \} \Pr(X_i = x \mid D_i = 1)$$

- That is,  $\tau_{ATE}$  can be calculated by:
  - (1) Group units into strata (or cells) defined by the values of  $X_i$ .
  - (2) For each stratum, calculate difference in means of  $Y_i$  between the treated and untreated.
  - (3) Calculate the weighted average of (2), with weights equal to the proportions of units in the strata.
- $\tau_{ATT}$  can be calculated similarly:
  - (1)  $\cdot$  (2) Same as (1)  $\cdot$  (2) for ATE.
  - (3) Calculate the weighted average of (2), with weights equal to the proportions of units in the strata within the treatment group.

## Subclassification Estimators

 The sample analogues of the formulas on the previous slide are the subclassification estimators:

$$\hat{\tau}_{ATE} = \sum_{j=1}^{M} \left\{ \overline{Y}_{1j} - \overline{Y}_{0j} \right\} \frac{n_j}{n}$$

$$\hat{\tau}_{ATT} = \sum_{j=1}^{M} \left\{ \overline{Y}_{1j} - \overline{Y}_{0j} \right\} \frac{n_{1j}}{n_1}$$

where  $\begin{cases} M &= \text{ \# of strata} \\ n_j &= \text{ \# of units in cell } j \\ \underline{n_{1j}} &= \text{ \# of treated units in cell } j \\ \overline{Y}_{dj} &= \text{ mean outcome for units with } D_i = d \text{ in cell } j \end{cases}$ 

# Example: Smoking and Mortality (Cochran 1968)

TABLE 1
DEATH RATES PER 1,000 PERSON-YEARS

| Smoking group | Canada | U.K. | U.S. |
|---------------|--------|------|------|
| Non-smokers   | 20.2   | 11.3 | 13.5 |
| Cigarettes    | 20.5   | 14.1 | 13.5 |
| Cigars/pipes  | 35.5   | 20.7 | 17.4 |

# Example: Smoking and Mortality (Cochran 1968)

TABLE 2 MEAN AGES, YEARS

| Non-smokers       54.9       49.1       57.0         Cigarettes       50.5       49.8       53.2         Cigars/pipes       65.9       55.7       59.7 | Smoking group | Canada | U.K. | U.S. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|------|------|
|                                                                                                                                                        | Cigarettes    | 50.5   | 49.8 | 53.2 |

|         | Death Rate | Death Rate  | #       | #    |
|---------|------------|-------------|---------|------|
| $X_{i}$ | Smokers    | Non-Smokers | Smokers | Obs. |
| Old     | 28         | 24          | 3       | 10   |
| Young   | 22         | 16          | 7       | 10   |
| Total   |            |             | 10      | 20   |

What is the subclassification estimator for the ATE of smoking on death rate?

|         | Death Rate | Death Rate  | #       | #    |
|---------|------------|-------------|---------|------|
| $X_{i}$ | Smokers    | Non-Smokers | Smokers | Obs. |
| Old     | 28         | 24          | 3       | 10   |
| Young   | 22         | 16          | 7       | 10   |
| Total   |            |             | 10      | 20   |

What is the subclassification estimator for the ATE of smoking on death rate?

$$\hat{\tau}_{ATE} = (28 - 24) \cdot \frac{10}{20} + (22 - 16) \cdot \frac{10}{20} = 5$$

|         | Death Rate | Death Rate  | #       | #    |
|---------|------------|-------------|---------|------|
| $X_{j}$ | Smokers    | Non-Smokers | Smokers | Obs. |
| Old     | 28         | 24          | 3       | 10   |
| Young   | 22         | 16          | 7       | 10   |
| Total   |            |             | 10      | 20   |

What is the subclassification estimator for the ATT of smoking on death rate?

|         | Death Rate | Death Rate  | #       | #    |
|---------|------------|-------------|---------|------|
| $X_{i}$ | Smokers    | Non-Smokers | Smokers | Obs. |
| Old     | 28         | 24          | 3       | 10   |
| Young   | 22         | 16          | 7       | 10   |
| Total   |            |             | 10      | 20   |

What is the subclassification estimator for the ATT of smoking on death rate?

$$\hat{\tau}_{ATT} = (28 - 24) \cdot \frac{3}{10} + (22 - 16) \cdot \frac{7}{10} = 5.4$$

# Subclassification by Age and Gender (M = 4)

|               | Death Rate | Death Rate  | #       | #    |
|---------------|------------|-------------|---------|------|
| $X_{j}$       | Smokers    | Non-Smokers | Smokers | Obs. |
| Old, Male     | 28         | 22          | 3       | 7    |
| Old, Female   |            | 24          | 0       | 3    |
| Young, Male   | 21         | 16          | 3       | 4    |
| Young, Female | 23         | 17          | 4       | 6    |
| Total         |            |             | 10      | 20   |

What is the subclassification estimate for the ATE of smoking on death rate?

# Subclassification by Age and Gender (M = 4)

|               | Death Rate | Death Rate  | #       | #    |
|---------------|------------|-------------|---------|------|
| $X_{j}$       | Smokers    | Non-Smokers | Smokers | Obs. |
| Old, Male     | 28         | 22          | 3       | 7    |
| Old, Female   |            | 24          | 0       | 3    |
| Young, Male   | 21         | 16          | 3       | 4    |
| Young, Female | 23         | 17          | 4       | 6    |
| Total         |            |             | 10      | 20   |

What is the subclassification estimate for the ATE of smoking on death rate?

Not identified! (because of the lack of common support)

# Subclassification by Age and Gender (M = 4)

|               | Death Rate | Death Rate  | #       | #    |
|---------------|------------|-------------|---------|------|
| $X_{j}$       | Smokers    | Non-Smokers | Smokers | Obs. |
| Old, Male     | 28         | 22          | 3       | 7    |
| Old, Female   |            | 24          | 0       | 3    |
| Young, Male   | 21         | 16          | 3       | 4    |
| Young, Female | 23         | 17          | 4       | 6    |
| Total         |            |             | 10      | 20   |

What is the subclassification estimate for the ATT of smoking on death rate?

# Subclassification by Age and Gender (M = 4)

|               | Death Rate | Death Rate  | #       | #    |
|---------------|------------|-------------|---------|------|
| $X_{j}$       | Smokers    | Non-Smokers | Smokers | Obs. |
| Old, Male     | 28         | 22          | 3       | 7    |
| Old, Female   |            | 24          | 0       | 3    |
| Young, Male   | 21         | 16          | 3       | 4    |
| Young, Female | 23         | 17          | 4       | 6    |
| Total         |            |             | 10      | 20   |

What is the subclassification estimate for the ATT of smoking on death rate?

$$\hat{\tau}_{ATT} = (28 - 22) \cdot \frac{3}{10} + (21 - 16) \cdot \frac{3}{10} + (23 - 17) \cdot \frac{4}{10}$$

$$= 5.1$$

### Summary

- Causal inference in observational studies often rests on the conditional ignorability assumption
- Goal is to approximate a randomized experiment within subgroups
- Better to have a design-based justification for conditional ignorability
- Do not control for post-treatment covariates
- A DAG can tell you what specific variables to control for, if you can draw one
- If you have a small number of discrete covariates, ATE can be estimated completely nonparametrically via subclassification

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- 4 Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

- ullet Subclassification only works when all covariates in  $X_i$  are discrete
- An alternative when some/all of  $X_i$  are continuous: matching

- Subclassification only works when all covariates in  $X_i$  are discrete
- An alternative when some/all of  $X_i$  are continuous: matching
- Basic idea: Impute missing potential outcomes using observed outcomes of "closest" units (a.k.a. nearest neighbors)

- ullet Subclassification only works when all covariates in  $X_i$  are discrete
- An alternative when some/all of X<sub>i</sub> are continuous: matching
- Basic idea: Impute missing potential outcomes using observed outcomes of "closest" units (a.k.a. nearest neighbors)
- lacktriangledown For each observation in the treated group i, find an observation in the untreated group with the most similar values of X
- Estimate ATT by the average difference between the pairs:

$$\hat{\tau}_{ATT} = \frac{1}{n_1} \sum_{i:D_i=1} (Y_i - \tilde{Y}_i) \simeq \frac{1}{n_1} \sum_{i:D_i=1} (Y_i(1) - Y_i(0)) = \tau_{SATT}$$

where  $\tilde{Y}_i$  is the observed outcome of i's untreated "buddy"

- ullet Subclassification only works when all covariates in  $X_i$  are discrete
- An alternative when some/all of X<sub>i</sub> are continuous: matching
- Basic idea: Impute missing potential outcomes using observed outcomes of "closest" units (a.k.a. nearest neighbors)
- lacktriangledown For each observation in the treated group i, find an observation in the untreated group with the most similar values of X
- Estimate ATT by the average difference between the pairs:

$$\hat{\tau}_{ATT} = \frac{1}{n_1} \sum_{i:D_i=1} (Y_i - \tilde{Y}_i) \simeq \frac{1}{n_1} \sum_{i:D_i=1} (Y_i(1) - Y_i(0)) = \tau_{SATT}$$

where  $\tilde{Y}_i$  is the observed outcome of i's untreated "buddy"

When there are multiple  $(M_i)$  "close" units, their average can be used:

$$\hat{\tau}_{ATT} = \frac{1}{n_1} \sum_{i:D_i=1} \left\{ Y_i - \left( \frac{1}{M_i} \sum_{m=1}^{M_i} \tilde{Y}_{i_m}, \right) \right\}$$

where  $\tilde{Y}_{i_m}$  is *i*'s *m*th untreated buddy

# Example with Single Pre-treatment Covariate

| unit | Potential Outcome under Treatment | Potential Outcome under Control |    |    |
|------|-----------------------------------|---------------------------------|----|----|
| i    | Y:(1)                             | Y:(0)                           | D; | Xi |
| 1    | 6                                 | ?                               | 1  | 3  |
| 2    | 1                                 | ?                               | 1  | 1  |
| 3    | 0                                 | ?                               | 1  | 4  |
| 4    |                                   | 0                               | 0  | 2  |
| 5    |                                   | 9                               | 0  | 3  |
| 6    |                                   | 1                               | 0  | -2 |
| 7    |                                   | 1                               | 0  | -4 |

27 / 74

Causal Inference

# Example with Single Pre-treatment Covariate

| unit | Potential Outcome under Treatment | Potential Outcome under Control |    |    |
|------|-----------------------------------|---------------------------------|----|----|
| i    | <i>Y<sub>i</sub></i> (1)          | $Y_i(0)$                        | Di | Xi |
| 1    | 6                                 | 9                               | 1  | 3  |
| 2    | 1                                 | 0                               | 1  | 1  |
| 3    | 0                                 | 9                               | 1  | 4  |
| 4    |                                   | 0                               | 0  | 2  |
| 5    |                                   | 9                               | 0  | 3  |
| 6    |                                   | 1                               | 0  | -2 |
| 7    |                                   | 1                               | 0  | -4 |

Match and plug in:

# Example with Single Pre-treatment Covariate

| unit | Potential Outcome under Treatment | Potential Outcome under Control |    |    |
|------|-----------------------------------|---------------------------------|----|----|
| i    | $Y_i(1)$                          | $Y_i(0)$                        | Di | Xi |
| 1    | 6                                 | 9                               | 1  | 3  |
| 2    | 1                                 | 0                               | 1  | 1  |
| 3    | 0                                 | 9                               | 1  | 4  |
| 4    |                                   | 0                               | 0  | 2  |
| 5    |                                   | 9                               | 0  | 3  |
| 6    |                                   | 1                               | 0  | -2 |
| 7    |                                   | 1                               | 0  | -4 |

Match and plug in:

$$\hat{\tau}_{ATT} = \frac{1}{3} \left\{ (6-9) + (1-0) + (0-9) \right\} = -3.7$$

### The Curse of Dimensionality

• How do we define the "closest" when  $X_i$  contains > 1 variable?

### The Curse of Dimensionality

- How do we define the "closest" when  $X_i$  contains > 1 variable?
- Can we hope to exactly match on every  $X_{ik}$  if we have large n?

# The Curse of Dimensionality

- How do we define the "closest" when  $X_i$  contains > 1 variable?
- Can we hope to exactly match on every  $X_{ik}$  if we have large n?  $\Rightarrow$  No! because of curse of dimensionality



As number of dimensions (d) in the covariate space increases, data sparsity exponentially increases for a given sample size.

# Distance Metrics for Matching

- With many covariates, we can use a low-dimensional (usually scalar) distance metric:
  - Mahalanobis distance:

$$D_M(X_i, X_j) = \sqrt{(X_i - X_j)^{\top} \Sigma_X^{-1} (X_i - X_j)}$$

where  $\Sigma_X$  is the (sample) variance-covariance matrix of  $X_i$ 

# Distance Metrics for Matching

- With many covariates, we can use a low-dimensional (usually scalar) distance metric:
  - Mahalanobis distance:

$$D_M(X_i, X_j) = \sqrt{(X_i - X_j)^{\top} \Sigma_X^{-1} (X_i - X_j)}$$

where  $\Sigma_X$  is the (sample) variance-covariance matrix of  $X_i$ 

Genetic matching (Diamond and Sekhon 2005; GenMatch in R):

$$D_{gen}(X_i,X_j) \ = \ \sqrt{(X_i-X_j)^\top \left(\Sigma_X^{-1/2}\right)^\top \, W\left(\Sigma_X^{-1/2}\right) (X_i-X_j)},$$

where  $\it{W}$  is a weight matrix chosen via an optimization algorithm etc. (many other variants)

# Mahalanobis Distance: Graphical Illustration



Which observations are closer to the origin?

|           | index | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> |
|-----------|-------|-----------------------|-----------------------|
| Treated   | i     | 0                     | 0                     |
| Control A | Α     | 5                     | 5                     |
| Control B | В     | 4                     | 0                     |

where 
$$\Sigma_X = \begin{pmatrix} 1 & .9 \\ .9 & 1 \end{pmatrix}$$

|           | index | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> |
|-----------|-------|-----------------------|-----------------------|
| Treated   | i     | 0                     | 0                     |
| Control A | Α     | 5                     | 5                     |
| Control B | В     | 4                     | 0                     |

where 
$$\Sigma_X = \begin{pmatrix} 1 & .9 \\ .9 & 1 \end{pmatrix}$$

$$D_M(X_i, X_A) = \sqrt{(X_i - X_j)^{\top} \Sigma^{-1} (X_i - X_j)}$$

|           | index | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> |
|-----------|-------|-----------------------|-----------------------|
| Treated   | i     | 0                     | 0                     |
| Control A | Α     | 5                     | 5                     |
| Control B | В     | 4                     | 0                     |

where 
$$\Sigma_X = \begin{pmatrix} 1 & .9 \\ .9 & 1 \end{pmatrix}$$

$$D_{M}(X_{i}, X_{A}) = \sqrt{(X_{i} - X_{j})^{\top} \Sigma^{-1} (X_{i} - X_{j})}$$

$$= \sqrt{((0 \ 0) - (5 \ 5)) (\frac{1}{.9} \frac{.9}{1})^{-1} ((0 \ 0) - (5 \ 5))^{\top}}$$

$$= \sqrt{(-5 \ -5)^{\top} (\frac{5.2}{-4.7} \frac{-4.7}{5.2}) (-5 \ -5)} = 26$$

$$D_M(X_i, X_B) =$$

|           | index | <i>X</i> <sub>1</sub> | $X_2$ |
|-----------|-------|-----------------------|-------|
| Treated   | i     | 0                     | 0     |
| Control A | Α     | 5                     | 5     |
| Control B | В     | 4                     | 0     |

where 
$$\Sigma_X = \begin{pmatrix} 1 & .9 \\ .9 & 1 \end{pmatrix}$$

$$D_{M}(X_{i}, X_{A}) = \sqrt{(X_{i} - X_{j})^{\top} \Sigma^{-1} (X_{i} - X_{j})}$$

$$= \sqrt{((0 \ 0) - (5 \ 5)) (\frac{1}{.9} \frac{.9}{1})^{-1} ((0 \ 0) - (5 \ 5))^{\top}}$$

$$= \sqrt{(-5 \ -5)^{\top} (\frac{5.2}{-4.7} \frac{-4.7}{5.2}) (-5 \ -5)} = 26$$

$$D_{M}(X_{i}, X_{B}) = \sqrt{(-4 \ 0) (\frac{5.2}{-4.7} \frac{-4.7}{5.2}) (-4 \ 0)^{\top}} = 84$$

# Propensity Score and the Balancing Property

- Another important metric: propensity score
- ullet Definition: Probability of receiving the treatment given  $X_i$

$$\pi(X_i) \equiv \Pr(D_i = 1 \mid X_i)$$

# Propensity Score and the Balancing Property

- Another important metric: propensity score
- ullet Definition: Probability of receiving the treatment given  $X_i$

$$\pi(X_i) \equiv \Pr(D_i = 1 \mid X_i)$$

- Result: Suppose the following assumptions hold:
  - $\{Y_i(0), Y_i(1)\} \perp \!\!\!\perp D_i \mid X_i \text{ (conditional ignorability)}$
  - 2  $0 < Pr(D_i = 1 \mid X_i = x) < 1$  for any x (common support)

Then, the propensity score has the balancing property:

$$D_i \perp \!\!\!\perp X_i \mid \pi(X_i)$$

Read: Among those units with the same propensity score,  $X_i$  is identically distributed between the treated and untreated.

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$Pr(D_i = 1 | \pi(X_i), X_i) = \mathbb{E}[D_i | \pi(X_i), X_i]$$
$$= \mathbb{E}[D_i | X_i] \quad (\because$$

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$Pr(D_i = 1 | \pi(X_i), X_i) = \mathbb{E}[D_i | \pi(X_i), X_i]$$

$$= \mathbb{E}[D_i | X_i] \quad (\because X_i \text{ contains all information in } \pi(X_i))$$

$$=$$

Causal Inference

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\Pr(D_i = 1 | \pi(X_i), X_i) = \mathbb{E}[D_i | \pi(X_i), X_i]$$

$$= \mathbb{E}[D_i | X_i] \quad (\because X_i \text{ contains all information in } \pi(X_i))$$

$$= \Pr(D_i = 1 | X_i) =$$

Causal Inference

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{array}{rcl} \Pr(D_i = 1 | \pi(X_i), X_i) & = & \mathbb{E}[D_i | \pi(X_i), X_i] \\ & = & \mathbb{E}[D_i | X_i] \quad (\because X_i \text{ contains all information in } \pi(X_i)) \\ & = & \Pr(D_i = 1 \mid X_i) = \pi(X_i) \text{ (by definition!)} \end{array}$$

$$Pr(D_i = 1 | \pi(X_i)) = \mathbb{E}[D_i | \pi(X_i)]$$
$$= \mathbb{E}[\mathbb{E}[D_i | X_i] | \pi(X_i)] \quad (::$$

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{array}{rcl} \Pr(D_i = 1 | \pi(X_i), X_i) & = & \mathbb{E}[D_i | \pi(X_i), X_i] \\ & = & \mathbb{E}[D_i | X_i] \quad (\because X_i \text{ contains all information in } \pi(X_i)) \\ & = & \Pr(D_i = 1 \mid X_i) = \pi(X_i) \text{ (by definition!)} \end{array}$$

$$Pr(D_i = 1 | \pi(X_i)) = \mathbb{E}[D_i | \pi(X_i)]$$

$$= \mathbb{E}[\mathbb{E}[D_i | X_i] | \pi(X_i)] \quad (\because L. I. E.)$$

$$=$$

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{array}{lcl} \Pr(D_i = 1 | \pi(X_i), X_i) & = & \mathbb{E}[D_i | \pi(X_i), X_i] \\ & = & \mathbb{E}[D_i | X_i] \quad (\because X_i \text{ contains all information in } \pi(X_i)) \\ & = & \Pr(D_i = 1 \mid X_i) = \pi(X_i) \text{ (by definition!)} \end{array}$$

$$Pr(D_i = 1 | \pi(X_i)) = \mathbb{E}[D_i | \pi(X_i)]$$

$$= \mathbb{E}[\mathbb{E}[D_i | X_i] | \pi(X_i)] \quad (\because L. I. E.)$$

$$= \mathbb{E}[\pi(X_i) | \pi(X_i)] =$$

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{array}{rcl} \Pr(D_i = 1 | \pi(X_i), X_i) & = & \mathbb{E}[D_i | \pi(X_i), X_i] \\ & = & \mathbb{E}[D_i | X_i] \quad (\because X_i \text{ contains all information in } \pi(X_i)) \\ & = & \Pr(D_i = 1 \mid X_i) = \pi(X_i) \text{ (by definition!)} \end{array}$$

$$Pr(D_i = 1 | \pi(X_i)) = \mathbb{E}[D_i | \pi(X_i)]$$

$$= \mathbb{E}[\mathbb{E}[D_i | X_i] | \pi(X_i)] \quad (\because L. I. E.)$$

$$= \mathbb{E}[\pi(X_i) | \pi(X_i)] = \pi(X_i)$$

Recall: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{array}{rcl} \Pr(D_i = 1 | \pi(X_i), X_i) & = & \mathbb{E}[D_i | \pi(X_i), X_i] \\ & = & \mathbb{E}[D_i | X_i] \quad (\because X_i \text{ contains all information in } \pi(X_i)) \\ & = & \Pr(D_i = 1 \mid X_i) = \pi(X_i) \text{ (by definition!)} \end{array}$$

And we can also show:

$$Pr(D_i = 1 | \pi(X_i)) = \mathbb{E}[D_i | \pi(X_i)]$$

$$= \mathbb{E}[\mathbb{E}[D_i | X_i] | \pi(X_i)] \quad (\because L. I. E.)$$

$$= \mathbb{E}[\pi(X_i) | \pi(X_i)] = \pi(X_i)$$

Therefore,  $\Pr(D_i = 1 | \pi(X_i), X_i) = \Pr(D_i = 1 | \pi(X_i))$ , which implies  $D_i \perp \!\!\!\perp X_i \mid \pi(X_i)$ , the balancing property.

Teppei Yamamoto

# Identification with the Propensity Score

 The balancing property implies that conditional ignorability holds given just the propensity score:

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \pi(X_i)$$

Causal Inference

# Identification with the Propensity Score

 The balancing property implies that conditional ignorability holds given just the propensity score:

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \pi(X_i)$$

• Implication:

It is sufficient to just condition on  $\pi(X_i)$ , instead of whole  $X_i$ !

# Identification with the Propensity Score

 The balancing property implies that conditional ignorability holds given just the propensity score:

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \pi(X_i)$$

• Implication:

It is sufficient to just condition on  $\pi(X_i)$ , instead of whole  $X_i$ !

• Doesn't that sound awesome? Yes, but there is a catch:  $\pi(X_i)$  itself needs to be estimated!

# Identification with the Propensity Score

 The balancing property implies that conditional ignorability holds given just the propensity score:

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \pi(X_i)$$

• Implication:

It is sufficient to just condition on  $\pi(X_i)$ , instead of whole  $X_i$ !

- Doesn't that sound awesome? Yes, but there is a catch:  $\pi(X_i)$  itself needs to be estimated!
- Two-step procedure to estimate causal effects:
  - (1) Estimate  $\pi(X_i)$  with a model for a binary response (e.g. logit, probit details in Quant III)
  - (2) Do nearest neighbor matching on  $\pi(X_i)$

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$Pr(D_{i} = 1 | Y_{i}(1), Y_{i}(0), \pi(X_{i}))$$

$$= \mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), \pi(X_{i})]$$

$$= \mathbb{E}[\mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), X_{i}] | Y_{i}(1), Y_{i}(0), \pi(X_{i})] \quad (::$$

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$Pr(D_{i} = 1 | Y_{i}(1), Y_{i}(0), \pi(X_{i}))$$

$$= \mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), \pi(X_{i})]$$

$$= \mathbb{E}[\mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), X_{i}] | Y_{i}(1), Y_{i}(0), \pi(X_{i})] \quad (\because L. I. E.)$$

$$=$$

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$Pr(D_{i} = 1 | Y_{i}(1), Y_{i}(0), \pi(X_{i}))$$

$$= \mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), \pi(X_{i})]$$

$$= \mathbb{E}[\mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), X_{i}] | Y_{i}(1), Y_{i}(0), \pi(X_{i})] \quad (\because L. I. E.)$$

$$= \mathbb{E}[\mathbb{E}[D_{i} | X_{i}] | Y_{i}(1), Y_{i}(0), \pi(X_{i})] \quad (\because$$

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{aligned} & \text{Pr}(D_i = 1 | Y_i(1), Y_i(0), \pi(X_i)) \\ & = \mathbb{E}[D_i | Y_i(1), Y_i(0), \pi(X_i)] \\ & = \mathbb{E}\left[\mathbb{E}[D_i | Y_i(1), Y_i(0), X_i] \mid Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ L. I. E.}) \\ & = \mathbb{E}\left[\mathbb{E}[D_i | X_i] | Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ conditional ignorability}) \\ & = \mathbb{E}\left[\pi(X_i) | Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \end{aligned}$$

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{aligned} & \Pr(D_{i} = 1 | Y_{i}(1), Y_{i}(0), \pi(X_{i})) \\ & = \mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), \pi(X_{i})] \\ & = \mathbb{E}\left[\mathbb{E}[D_{i} | Y_{i}(1), Y_{i}(0), X_{i}] \mid Y_{i}(1), Y_{i}(0), \pi(X_{i})\right] \quad (\because \text{ L. I. E.}) \\ & = \mathbb{E}\left[\mathbb{E}[D_{i} | X_{i}] | Y_{i}(1), Y_{i}(0), \pi(X_{i})\right] \quad (\because \text{ conditional ignorability}) \\ & = \mathbb{E}\left[\pi(X_{i}) | Y_{i}(1), Y_{i}(0), \pi(X_{i})\right] \quad (\because \text{ definition of } \pi(X_{i})) \\ & = \pi(X_{i}) \end{aligned}$$

And in the previous proof, we have already shown:

$$Pr(D_i = 1|\pi(X_i)) =$$

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{aligned} & \text{Pr}(D_i = 1 | Y_i(1), Y_i(0), \pi(X_i)) \\ & = \mathbb{E}[D_i | Y_i(1), Y_i(0), \pi(X_i)] \\ & = \mathbb{E}\left[\mathbb{E}[D_i | Y_i(1), Y_i(0), X_i] \mid Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ L. I. E.}) \\ & = \mathbb{E}\left[\mathbb{E}[D_i | X_i] | Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ conditional ignorability}) \\ & = \mathbb{E}\left[\pi(X_i) | Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ definition of } \pi(X_i)) \\ & = \pi(X_i) \end{aligned}$$

And in the previous proof, we have already shown:

$$\Pr(D_i = 1 | \pi(X_i)) = \pi(X_i)$$

Again: To prove independence between two random variables A and B, all you need is to show that  $Pr(A \mid B) = Pr(A)$ .

$$\begin{split} & \text{Pr}(D_i = 1 | Y_i(1), Y_i(0), \pi(X_i)) \\ & = \mathbb{E}[D_i | Y_i(1), Y_i(0), \pi(X_i)] \\ & = \mathbb{E}\left[\mathbb{E}[D_i | Y_i(1), Y_i(0), X_i] \mid Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ L. I. E.}) \\ & = \mathbb{E}\left[\mathbb{E}[D_i | X_i] | Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ conditional ignorability}) \\ & = \mathbb{E}\left[\pi(X_i) | Y_i(1), Y_i(0), \pi(X_i)\right] \quad (\because \text{ definition of } \pi(X_i)) \\ & = \pi(X_i) \end{split}$$

And in the previous proof, we have already shown:

$$Pr(D_i = 1 | \pi(X_i)) = \pi(X_i)$$

Therefore,  $\Pr(D_i = 1 | Y_i(1), Y_i(0), \pi(X_i)) = \Pr(D_i = 1 | \pi(X_i))$ , which implies  $\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \pi(X_i)$ , conditional ignorability just given  $\pi(X_i)$ .

• Estimation of propensity scores requires a correct specification of  $\pi(X_i)$  (functional form, etc.) Any guidance?

- Estimation of propensity scores requires a correct specification of  $\pi(X_i)$  (functional form, etc.) Any guidance?
- Solution: Check balance
  - Ideally, compare the joint distribution of all X<sub>i</sub> between the treated and untreated in the matched sample
  - In practice, check various low-dimensional summaries of F(x) (mean difference, variance ratio, etc.)

- Estimation of propensity scores requires a correct specification of  $\pi(X_i)$  (functional form, etc.) Any guidance?
- Solution: Check balance
  - Ideally, compare the joint distribution of all X<sub>i</sub> between the treated and untreated in the matched sample
  - In practice, check various low-dimensional summaries of F(x) (mean difference, variance ratio, etc.)
  - Balance tests are often used (e.g. t-test, F-test, KS test) like the ones we saw for randomized experiments.
  - Note that balance tests can be misleading in a matching context
  - Reason: you can make everything insignificant by simply dropping lots of observations — make sure this is not happening

- Estimation of propensity scores requires a correct specification of  $\pi(X_i)$  (functional form, etc.) Any guidance?
- Solution: Check balance
  - Ideally, compare the joint distribution of all X<sub>i</sub> between the treated and untreated in the matched sample
  - In practice, check various low-dimensional summaries of F(x) (mean difference, variance ratio, etc.)
  - Balance tests are often used (e.g. t-test, F-test, KS test) like the ones we saw for randomized experiments.
  - Note that balance tests can be misleading in a matching context
  - Reason: you can make everything insignificant by simply dropping lots of observations — make sure this is not happening
- Is this data snooping? No, because inference remains blind to Y

### Kolmogorov-Smirnov (KS) Test

- The KS test is used to test whether two random variables are sampled from the same distribution
- The test is nonparametric, meaning that it works (asymptotically) without assumptions about the form of the underlying distribution

# Kolmogorov-Smirnov (KS) Test

- The KS test is used to test whether two random variables are sampled from the same distribution
- The test is nonparametric, meaning that it works (asymptotically) without assumptions about the form of the underlying distribution

Consider *n* observations of two random variables,  $X_0$  and  $X_1$ .

The (two-sample) KS statistic:

$$D = \sup_{x} \left| \widehat{F}_{1}(x) - \widehat{F}_{0}(x) \right|,$$

where  $\widehat{F}_0(x)$ ,  $\widehat{F}_1(x)$  is the empirical CDF of  $X_0$ ,  $X_1$ .



## Kolmogorov-Smirnov (KS) Test

- The KS test is used to test whether two random variables are sampled from the same distribution
- The test is nonparametric, meaning that it works (asymptotically) without assumptions about the form of the underlying distribution

Consider *n* observations of two random variables,  $X_0$  and  $X_1$ .

The (two-sample) KS statistic:

$$D = \sup_{x} \left| \widehat{F}_{1}(x) - \widehat{F}_{0}(x) \right|,$$

where  $\widehat{F}_0(x)$ ,  $\widehat{F}_1(x)$  is the empirical CDF of  $X_0$ ,  $X_1$ .



The KS null hypothesis:  $F_1(x) = F_0(x)$  (no difference in true distributions) Under the null, D has the Kolmogorov distribution as  $n \to \infty$ .

Reject the null at level  $\alpha$  if

$$D > c_{\alpha} \sqrt{(n_1 + n_0)/n_1 n_0}$$

| level $(\alpha)$              | .1   | .05  | .01  |
|-------------------------------|------|------|------|
| critical value $(c_{\alpha})$ | 1.22 | 1.36 | 1.63 |

### Matching Workflow



# Are Coethnics More Effective Counterinsurgents?

| Pretreatment<br>Covariates | Mean<br>Treated | Mean<br>Control | Mean<br>Difference | Std.<br>Bias | Rank Sum<br>Test | K-S<br>Test |
|----------------------------|-----------------|-----------------|--------------------|--------------|------------------|-------------|
| Demographics               | outou           | 00111101        | D01010             | 2.00         | 1001             |             |
| Population Population      | 8.657           | 8.606           | 0.049              | 0.033        | 0.708            | 0.454       |
| Tariga                     | 0.076           | 0.048           | 0.028              | 0.104        | 0.331            |             |
| Poverty                    | 1.917           | 1.931           | -0.016             | -0.024       | 0.792            | 1.000       |
| Spatial                    |                 |                 |                    |              |                  |             |
| Elevation                  | 5.078           | 5.233           | -0.155             | -0.135       | 0.140            | 0.228       |
| Isolation                  | 1.007           | 1.070           | -0.063             | -0.096       | 0.343            | 0.851       |
| Groznyy                    | 0.131           | 0.138           | -0.007             | -0.018       | 0.864            | _           |
| War Dynamics               |                 |                 |                    |              |                  |             |
| TAC                        | 0.241           | 0.282           | -0.041             | -0.095       | 0.424            | _           |
| Garrison                   | 0.379           | 0.414           | -0.035             | -0.072       | 0.549            |             |
| Rebel                      | 0.510           | 0.441           | 0.070              | 0.139        | 0.240            | _           |
| Selection                  |                 |                 |                    |              |                  |             |
| Presweep violence          | 3.083           | 3.117           | -0.034             | 0.009        | 0.454            | 0.292       |
| Large-scale theft          | 0.034           | 0.055           | -0.021             | -0.115       | 0.395            | _           |
| Killing                    | 0.117           | 0.090           | 0.027              | 0.084        | 0.443            |             |
| Violence Inflicted         |                 |                 |                    |              |                  |             |
| Total abuse                | 0.970           | 0.833           | 0.137              | 0.124        | 0.131            | 0.454       |
| Prior sweeps               | 1.729           | 1.812           | -0.090             | -0.089       | 0.394            | 0.367       |
| Other                      |                 |                 |                    |              |                  |             |
| Month                      | 7.428           | 6.986           | 0.442              | 0.130        | 0.260            | 0.292       |
| Year                       | 2004.159        | 2004.110        | 0.049              | 0.043        | 0.889            | 1.000       |

Lyall (2010), American Political Science Review.

### Is SAT Coaching Effective?



Figure 3. Standardized Biases Without Stratification or Matching, Open Circles, and Under the Optimal [.5, 2] Full Match, Shaded Circles.

Hansen (2004), Journal of the American Statistical Association.

Teppei Yamamoto Observational Studies Causal Inference

## A Plethora of Matching Methods

- One-to-one or Many-to-one matching
- Matching with or without replacement
- Calipar matching
- Doubly robust estimation
- Genetic matching
- Optimal matching
- Coarsened exact matching
- Covariate balancing propensity scores ...and many more in the pipeline!

# A Plethora of Matching Methods

- One-to-one or Many-to-one matching
- Matching with or without replacement
- Calipar matching
- Doubly robust estimation
- Genetic matching
- Optimal matching
- Coarsened exact matching
- Covariate balancing propensity scores

...and many more in the pipeline!

Q: Oh my. Which matching method should I use?

# A Plethora of Matching Methods

- One-to-one or Many-to-one matching
- Matching with or without replacement
- Calipar matching
- Doubly robust estimation
- Genetic matching
- Optimal matching
- Coarsened exact matching
- Covariate balancing propensity scores

  and many more in the pipeline!

...and many more in the pipeline!

Q: Oh my. Which matching method should I use?

A: Whichever gives you the best balance!

#### Blattman (2010): Before Matching

```
pscore.fmla <- as.formula(paste("abd~", paste(names(covar),</pre>
                                                 collapse="+")))
abd <- data$ahd
pscore_model <- glm(pscore.fmla, data = data,
                     family = binomial(link = logit))
pscore <- predict(pscore_model, type = "response")</pre>
```



# Blattman (2010): Propensity Score Matching

```
library(Matching)
match.pscore <- Match(Tr=abd, X=pscore, M=1, estimand="ATT")</pre>
```



#### Blattman (2010): Check Balance

MatchBalance(abd ~ age, data=data, match.out = match.pscore)

```
**** (V1) age ****
                  Before Matching After Matching
mean treatment..... 21.366
                                   21.366
                     20,151
mean control....
                                   20.515
std mean diff.....
                  24.242
                                   16.976
var ratio (Tr/Co).....
                   1.0428
                                  0.98412
T-test p-value..... 0.0012663
                               0.0034409
                  0.016
KS Bootstrap p-value..
                                  0.034
KS Naive p-value.....
                  0.024912
                                 0.070191
KS Statistic....
                  0.11227
                                 0.077899
```

#### Blattman (2010): Mahalanobis Distance Matchng

```
match.mah <- Match (Tr=abd, X=covar, M=1, estimand="ATT",
                Weight = 2)
MatchBalance(abd ~ age, data=data, match.out = match.mah)
**** (V1) age ****
                   Before Matching After Matching
mean treatment..... 21.366
                                    21.366
mean control..... 20.151
                                    21.154
std mean diff.......... 24.242
                                    4.2314
                               1.0336
var ratio (Tr/Co).....
                   1.0428
T-test p-value..... 0.0012663 3.0386e-05
                   0.008
                                   0.798
KS Bootstrap p-value..
                                 0.94687
KS Naive p-value..... 0.024912
KS Statistic....
                   0.11227
                                0.034261
```

#### Blattman (2010): Genetic Matching

```
genout <- GenMatch(Tr=abd, X=covar, BalanceMatrix=covar,</pre>
                  estimand="ATT", pop.size=1000)
match.gen <- Match(Tr=abd, X=covar, M=1, estimand="ATT",</pre>
                   Weight.matrix=genout)
MatchBalance (abd~age, match.out=match.gen, data=covar)
**** (V1) age ****
                      Before Matching
                                         After Matching
mean treatment.....
                          21.366
mean control.....
                          20.151
std mean diff.....
                          24.242
                                          2.8065
                       1.0428
                                        1.1337
var ratio (Tr/Co).....
T-test p-value.....
                       0.0012663
                                         0.21628
KS Bootstrap p-value..
                      0.008
                                         0.454
KS Naive p-value.....
                        0.024912
                                         0.68567
                         0.11227
KS Statistic.....
                                        0.046512
```

- 1 Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- 4 Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

## Weighting on the Propensity Score

- An alternative way to achieve balance is weighting
- Can be seen as a continuous version of matching

# Weighting on the Propensity Score

- An alternative way to achieve balance is weighting
- Can be seen as a continuous version of matching
- Result: Under the conditional ignorability and common support assumptions, we can identify the ATE and ATT as:

$$\tau_{ATE} = \mathbb{E}\left[Y_i \cdot \frac{D_i - \pi(X_i)}{\pi(X_i) \cdot (1 - \pi(X_i))}\right]$$

$$\tau_{ATT} = \frac{1}{\Pr(D_i = 1)} \cdot \mathbb{E}\left[Y_i \cdot \frac{D_i - \pi(X_i)}{1 - \pi(X_i)}\right]$$

# Weighting on the Propensity Score

- An alternative way to achieve balance is weighting
- Can be seen as a continuous version of matching
- Result: Under the conditional ignorability and common support assumptions, we can identify the ATE and ATT as:

$$\begin{aligned} \tau_{ATE} &=& \mathbb{E}\left[Y_i \cdot \frac{D_i - \pi(X_i)}{\pi(X_i) \cdot (1 - \pi(X_i))}\right] \\ \tau_{ATT} &=& \frac{1}{\text{Pr}(D_i = 1)} \cdot \mathbb{E}\left[Y_i \cdot \frac{D_i - \pi(X_i)}{1 - \pi(X_i)}\right] \end{aligned}$$

These can be estimated using sample analogues:

$$\widehat{\tau}_{ATE} = \frac{1}{N} \sum_{i=1}^{N} \left\{ Y_{i} \cdot \frac{D_{i} - \widehat{\pi}(X_{i})}{\widehat{\pi}(X_{i}) \cdot (1 - \widehat{\pi}(X_{i}))} \right\} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{D_{i} Y_{i}}{\widehat{\pi}(X_{i})} - \frac{(1 - D_{i}) Y_{i}}{1 - \widehat{\pi}(X_{i})} \right\} 
\widehat{\tau}_{ATT} = \frac{1}{N_{1}} \sum_{i=1}^{N} \left\{ Y_{i} \cdot \frac{D_{i} - \widehat{\pi}(X_{i})}{1 - \widehat{\pi}(X_{i})} \right\} = \frac{1}{N_{1}} \sum_{i=1}^{N} \left\{ D_{i} Y_{i} - (1 - D_{i}) Y_{i} \frac{\widehat{\pi}(X_{i})}{1 - \widehat{\pi}(X_{i})} \right\}$$

These inverse PS weighting (IPW) estimators are consistent, but not unbiased.

## Proof of Identification with PS Weighting

We begin with the estimator conditional on a specific covariate value *x*:

$$\tilde{\tau}(x) \equiv \mathbb{E}\left[Y_{i} \cdot \frac{D_{i} - \pi(X_{i})}{\pi(X_{i}) \cdot (1 - \pi(X_{i}))} \middle| X_{i} = x\right] 
= \mathbb{E}\left[Y_{i} \cdot \frac{1 - \pi(X_{i})}{\pi(X_{i}) \cdot (1 - \pi(X_{i}))} \middle| X_{i} = x, D_{i} = 1\right] \Pr(D_{i} = 1 \mid X_{i} = x) 
- \mathbb{E}\left[Y_{i} \cdot \frac{\pi(X_{i})}{\pi(X_{i}) \cdot (1 - \pi(X_{i}))} \middle| X_{i} = x, D_{i} = 0\right] \Pr(D_{i} = 0 \mid X_{i} = x) 
(::$$

## Proof of Identification with PS Weighting

We begin with the estimator conditional on a specific covariate value x:

$$\begin{split} \tilde{\tau}(x) & \equiv & \mathbb{E}\left[\left.Y_{i} \cdot \frac{D_{i} - \pi(X_{i})}{\pi(X_{i}) \cdot (1 - \pi(X_{i}))}\right| X_{i} = x\right] \\ & = & \mathbb{E}\left[\left.Y_{i} \cdot \frac{1 - \pi(X_{i})}{\pi(X_{i}) \cdot (1 - \pi(X_{i}))}\right| X_{i} = x, D_{i} = 1\right] \text{Pr}(D_{i} = 1 \mid X_{i} = x) \\ & - \mathbb{E}\left[\left.Y_{i} \cdot \frac{\pi(X_{i})}{\pi(X_{i}) \cdot (1 - \pi(X_{i}))}\right| X_{i} = x, D_{i} = 0\right] \text{Pr}(D_{i} = 0 \mid X_{i} = x) \\ & \qquad \qquad (\because \text{ Law of Total Expectation}) \\ & = & \mathbb{E}\left[\left.\frac{Y_{i}}{\pi(X_{i})}\right| X_{i} = x, D_{i} = 1\right] \pi(x) - \mathbb{E}\left[\left.\frac{Y_{i}}{1 - \pi(X_{i})}\right| X_{i} = x, D_{i} = 0\right] (1 - \pi(x)) \\ & = & \end{split}$$

## Proof of Identification with PS Weighting

We begin with the estimator conditional on a specific covariate value *x*:

$$\begin{split} \tilde{\tau}(x) & \equiv & \mathbb{E}\left[\left.Y_i \cdot \frac{D_i - \pi(X_i)}{\pi(X_i) \cdot (1 - \pi(X_i))}\right| X_i = x\right] \\ & = & \mathbb{E}\left[\left.Y_i \cdot \frac{1 - \pi(X_i)}{\pi(X_i) \cdot (1 - \pi(X_i))}\right| X_i = x, D_i = 1\right] \Pr(D_i = 1 \mid X_i = x) \\ & - \mathbb{E}\left[\left.Y_i \cdot \frac{\pi(X_i)}{\pi(X_i) \cdot (1 - \pi(X_i))}\right| X_i = x, D_i = 0\right] \Pr(D_i = 0 \mid X_i = x) \\ & \qquad \qquad (\because \text{ Law of Total Expectation}) \\ & = & \mathbb{E}\left[\left.\frac{Y_i}{\pi(X_i)}\right| X_i = x, D_i = 1\right] \pi(x) - \mathbb{E}\left[\left.\frac{Y_i}{1 - \pi(X_i)}\right| X_i = x, D_i = 0\right] (1 - \pi(x)) \\ & = & \mathbb{E}[Y_i|X_i = x, D_i = 1] - \mathbb{E}[Y_i|X_i = x, D_i = 0] \\ & = & \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = x] = \tau(x) \quad (\because \text{ conditional ignorability}) \end{split}$$

Averaging  $\tau(x)$  over the distribution of x, f(x), yields the expression of  $\tau_{ATE}$  on the previous slide.

The same argument also shows the result for  $\tau_{ATT}$  if we now average over  $f(x \mid D_i = 1)$ .

Teppei Yamamoto Observational Studies Causal Inference

## Blattman (2010): Balance after PS Weighting Score

```
# Balance in age before weighting
mean(covar$age[abd == 1]) - mean(covar$age[abd == 0])
[1] 1.215263
# Balance in age after weighting
sum(covar$age * (abd - pscore) / (1 - pscore)) / length(abd)
[1] 0.007663878
```

#### Performance of the IPW estimators

- Recall that IPW estimators are consistent but biased in small samples. How bad are their small sample biases?
- It turns out the bias is substantial when some weights are extremely large or small.
- Weights tend to be extreme when there is a lack of overlap.

#### Performance of the IPW estimators

- Recall that IPW estimators are consistent but biased in small samples. How bad are their small sample biases?
- It turns out the bias is substantial when some weights are extremely large or small.
- Weights tend to be extreme when there is a lack of overlap.
- A simple workaround is trim units with extreme weights.
- Problem: Trimming changes the estimand to a quantity that is still causal yet difficult to interpret.

#### Performance of the IPW estimators

- Recall that IPW estimators are consistent but biased in small samples. How bad are their small sample biases?
- It turns out the bias is substantial when some weights are extremely large or small.
- Weights tend to be extreme when there is a lack of overlap.
- A simple workaround is trim units with extreme weights.
- Problem: Trimming changes the estimand to a quantity that is still causal yet difficult to interpret.
- Alternative weighting methods for better balance includes:
  - Entropy balancing (Hainmueller 2012, ebal): Choose weights that directly optimize covariate balance.
  - Covariate balancing propensity scores (Imai and Ratkovic 2014, CBPS)
    - etc. (again, many more are in the pipeline)

## Summary: Estimation under Conditional Ignorability

- Matching and weighting are main methods to estimate average causal effects when one can assume conditional ignorability
- Many alternative methods are available and easily implemented in R, Stata, SAS, etc., and no single method is dominant
- Key is to balance treatment and control groups and avoid extrapolation
- Use whichever method to achieve good balance, then estimate causal effects

51 / 74

## Summary: Estimation under Conditional Ignorability

- Matching and weighting are main methods to estimate average causal effects when one can assume conditional ignorability
- Many alternative methods are available and easily implemented in R, Stata, SAS, etc., and no single method is dominant
- Key is to balance treatment and control groups and avoid extrapolation
- Use whichever method to achieve good balance, then estimate causal effects
- Note: You could also use regression to control for the observed pretreatment covariates – a model-based approach to conditioning on the covariates
- Estimates will be close to unbiased for ATE if (1) linear approximation is good or (2) causal effects are highly homogeneous across units

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

- Causal quantities of interest are often not identifiable from observed data without invoking strong assuptions that cannot be well justified
- How can we make causal inference when we are not willing to fully endorse assumptions such as conditional ignorability?
- Manski's approach: Partial identification
  - · Assume only what is credible
  - Derive bounds (preferrably nonparametric sharp bounds) on the Qol, i.e., the set of possible values that it can logically take
  - This establishes a "domain of consensus" among researchers who might disagree on what assumptions they are willing to make

- Causal quantities of interest are often not identifiable from observed data without invoking strong assuptions that cannot be well justified
- How can we make causal inference when we are not willing to fully endorse assumptions such as conditional ignorability?
- Manski's approach: Partial identification
  - Assume only what is credible
  - Derive bounds (preferrably nonparametric sharp bounds) on the Qol, i.e., the set of possible values that it can logically take
  - This establishes a "domain of consensus" among researchers who might disagree on what assumptions they are willing to make
  - Identification analysis precedes statistical inference

- Causal quantities of interest are often not identifiable from observed data without invoking strong assuptions that cannot be well justified
- How can we make causal inference when we are not willing to fully endorse assumptions such as conditional ignorability?
- Manski's approach: Partial identification
  - Assume only what is credible
  - Derive bounds (preferrably nonparametric sharp bounds) on the Qol, i.e., the set of possible values that it can logically take
  - This establishes a "domain of consensus" among researchers who might disagree on what assumptions they are willing to make
  - Identification analysis precedes statistical inference
- Key principle: Law of Decreasing Credibility
  - The stronger your assumptions, the less credible your inference.

52 / 74

- Causal quantities of interest are often not identifiable from observed data without invoking strong assuptions that cannot be well justified
- How can we make causal inference when we are not willing to fully endorse assumptions such as conditional ignorability?
- Manski's approach: Partial identification
  - Assume only what is credible
  - Derive bounds (preferrably nonparametric sharp bounds) on the Qol, i.e., the set of possible values that it can logically take
  - This establishes a "domain of consensus" among researchers who might disagree on what assumptions they are willing to make
  - Identification analysis precedes statistical inference
- Key principle: Law of Decreasing Credibility
  - The stronger your assumptions, the less credible your inference.
  - Add an assumption, rederive the bounds and see exactly the contribution of the assumption

#### Notation:

- Treatment (binary):  $D_i \in \{0, 1\}$
- Potential outcomes: Y<sub>di</sub>
- ATE is the quantity of interest:

$$\tau \equiv \mathbb{E}[Y_{1i} - Y_{0i}]$$

#### Notation:

- Treatment (binary):  $D_i \in \{0, 1\}$
- Potential outcomes: Y<sub>di</sub>
- ATE is the quantity of interest:

$$\tau \equiv \mathbb{E}[Y_{1i} - Y_{0i}]$$

How much can we learn about  $\tau$  from data, without making any assumption?

#### Notation:

- Treatment (binary):  $D_i \in \{0, 1\}$
- Potential outcomes: Y<sub>di</sub>
- ATE is the quantity of interest:

$$\tau \equiv \mathbb{E}[Y_{1i} - Y_{0i}]$$

How much can we learn about  $\tau$  from data, without making any assumption?

$$\begin{array}{rcl} \tau & = & \mathbb{E}[Y_{1i} - Y_{0i}] \\ & = & \mathbb{E}[Y_{1i} \mid D_i = 1] \, \mathsf{Pr}(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \, \mathsf{Pr}(D_i = 0) \\ & & - \mathbb{E}[Y_{0i} \mid D_i = 1] \, \mathsf{Pr}(D_i = 1) - \mathbb{E}[Y_{0i} \mid D_i = 0] \, \mathsf{Pr}(D_i = 0) \end{array}$$

#### Notation:

- Treatment (binary):  $D_i \in \{0, 1\}$
- Potential outcomes: Y<sub>di</sub>
- ATE is the quantity of interest:

$$\tau \equiv \mathbb{E}[Y_{1i} - Y_{0i}]$$

How much can we learn about  $\tau$  from data, without making any assumption?

$$\tau = \mathbb{E}[Y_{1i} - Y_{0i}] 
= \mathbb{E}[Y_{1i} \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) 
- \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_{0i} \mid D_i = 0] \Pr(D_i = 0)$$

#### Notation:

- Treatment (binary):  $D_i \in \{0, 1\}$
- Potential outcomes: Y<sub>di</sub>
- ATE is the quantity of interest:

$$\tau \equiv \mathbb{E}[Y_{1i} - Y_{0i}]$$

How much can we learn about  $\tau$  from data, without making any assumption?

$$\begin{split} \tau &= & \mathbb{E}[Y_{1i} - Y_{0i}] \\ &= & \mathbb{E}[Y_{1i} \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) \\ &- \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_{0i} \mid D_i = 0] \Pr(D_i = 0) \\ &= & \mathbb{E}[Y_i \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) \\ &- \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_i \mid D_i = 0] \Pr(D_i = 0) \end{split}$$

Quantities in red are unobserved, so data tell us nothing about them unless we make some assumptions.

|               | Di | Y <sub>0i</sub>            | Y <sub>1</sub> i           |
|---------------|----|----------------------------|----------------------------|
| $Pr(D_i = 0)$ | 0  | $\mathbb{E}[Y_{0i} D_i=0]$ | ?                          |
| $Pr(D_i = 1)$ | 1  | ?                          | $\mathbb{E}[Y_{1i} D_i=1]$ |

|               | Di | <i>Y</i> <sub>0<i>i</i></sub> | Y <sub>1</sub> ;           |
|---------------|----|-------------------------------|----------------------------|
| $Pr(D_i = 0)$ | 0  | $\mathbb{E}[Y_{0i} D_i=0]$    | $\mathbb{E}[Y_{1i} D_i=1]$ |
| $Pr(D_i = 1)$ | 1  | $\mathbb{E}[Y_{0i} D_i=0]$    | $\mathbb{E}[Y_{1i} D_i=1]$ |

- Randomized experiments let us impute missing PO directly
- Treatment and control groups are identical in expectation

... PO of treatment and control groups identical in expectation

|               | Di | Y <sub>0i</sub>            | Y <sub>1i</sub>            |
|---------------|----|----------------------------|----------------------------|
| $Pr(D_i=0)$   | 0  | $\mathbb{E}[Y_{0i} D_i=0]$ | <u>Y</u>                   |
| $Pr(D_i = 1)$ | 1  | Y                          | $\mathbb{E}[Y_{1i} D_i=1]$ |

- Nuclear option: assume the worst possible outcome
- Treated units would have best possible outcome  $(\overline{Y})$  if untreated
- ullet Control units would have had worst possible outcome  $(\underline{Y})$  if treated

|               | Di | Y <sub>0i</sub>            | Y <sub>1i</sub>            |
|---------------|----|----------------------------|----------------------------|
| $Pr(D_i=0)$   | 0  | $\mathbb{E}[Y_{0i} D_i=0]$ | Y                          |
| $Pr(D_i = 1)$ | 1  | $\overline{Y}$             | $\mathbb{E}[Y_{1i} D_i=1]$ |

- Nuclear option: assume the worst possible outcome
- Treated units would have best possible outcome  $(\overline{Y})$  if untreated
- ullet Control units would have had worst possible outcome  $(\underline{Y})$  if treated

This gives the sharp lower bound on  $\tau$ :

$$\underline{\tau} = \left(\mathbb{E}[Y_i|D_i = 1] - \overline{Y}\right) \Pr(D_i = 1) + \left(\underline{Y} - \mathbb{E}[Y_i|D_i = 0]\right) \Pr(D_i = 0)$$

|               | Di | Y <sub>0i</sub>            | Y <sub>1i</sub>            |
|---------------|----|----------------------------|----------------------------|
| $Pr(D_i = 0)$ | 0  | $\mathbb{E}[Y_{0i} D_i=0]$ | Y                          |
| $Pr(D_i = 1)$ | 1  | <u>Y</u>                   | $\mathbb{E}[Y_{1i} D_i=1]$ |

- Conversely, consider the best possible scenario
- Control units would have had best possible outcome (Y) if treated
- ullet Treated units would have worst possible outcome ( $\underline{Y}$ ) if untreated

This yields the sharp upper bound on  $\tau$ :

$$\overline{\tau} = \left(\mathbb{E}[Y_i|D_i = 1] - \underline{Y}\right)\mathsf{Pr}(D_i = 1) + \left(\overline{Y} - \mathbb{E}[Y_i|D_i = 0]\right)\mathsf{Pr}(D_i = 0)$$

$$\tau = \mathbb{E}[Y_i \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) \\ - \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_i \mid D_i = 0] \Pr(D_i = 0)$$

- The no-assumption sharp bounds are often too wide to be useful (e.g. If  $Y_i \in \{0, 1\}$ , the bounds always include zero)
- The next step is to add an assumption and see how bounds change

Example: Monotone treatment selection (MTS) assumption:

$$\mathbb{E}[Y_{0i} \mid D_i = 0] \le \mathbb{E}[Y_{0i} \mid D_i = 1]$$

$$\mathbb{E}[Y_{1i} \mid D_i = 0] \le \mathbb{E}[Y_{1i} \mid D_i = 1]$$

In words, MTS assumes that

$$\tau = \mathbb{E}[Y_i \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) \\ - \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_i \mid D_i = 0] \Pr(D_i = 0)$$

- The no-assumption sharp bounds are often too wide to be useful (e.g. If  $Y_i \in \{0, 1\}$ , the bounds always include zero)
- The next step is to add an assumption and see how bounds change

Example: Monotone treatment selection (MTS) assumption:

$$\mathbb{E}[Y_{0i} \mid D_i = 0] \le \mathbb{E}[Y_{0i} \mid D_i = 1]$$

$$\mathbb{E}[Y_{1i} \mid D_i = 0] \le \mathbb{E}[Y_{1i} \mid D_i = 1]$$

 In words, MTS assumes that units who select the treatment have higher expectation of outcome under either condition on average (e.g. sicker)

$$\tau = \mathbb{E}[Y_i \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) \\ - \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_i \mid D_i = 0] \Pr(D_i = 0)$$

- The no-assumption sharp bounds are often too wide to be useful (e.g. If  $Y_i \in \{0, 1\}$ , the bounds always include zero)
- The next step is to add an assumption and see how bounds change

Example: Monotone treatment selection (MTS) assumption:

$$\mathbb{E}[Y_{0i} \mid D_i = 0] \leq \mathbb{E}[Y_{0i} \mid D_i = 1]$$

$$\mathbb{E}[Y_{1i} \mid D_i = 0] \leq \mathbb{E}[Y_{1i} \mid D_i = 1]$$

- In words, MTS assumes that units who select the treatment have higher expectation of outcome under either condition on average (e.g. sicker)
- This implies a tighter upper bound on  $\tau$ :

$$\tau = \mathbb{E}[Y_i \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) \\ - \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_i \mid D_i = 0] \Pr(D_i = 0)$$

- The no-assumption sharp bounds are often too wide to be useful (e.g. If  $Y_i \in \{0, 1\}$ , the bounds always include zero)
- The next step is to add an assumption and see how bounds change

Example: Monotone treatment selection (MTS) assumption:

$$\mathbb{E}[Y_{0i} \mid D_i = 0] \leq \mathbb{E}[Y_{0i} \mid D_i = 1]$$

$$\mathbb{E}[Y_{1i} \mid D_i = 0] \leq \mathbb{E}[Y_{1i} \mid D_i = 1]$$

- In words, MTS assumes that units who select the treatment have higher expectation of outcome under either condition on average (e.g. sicker)
- This implies a tighter upper bound on  $\tau$ :

$$\tau \leq \mathbb{E}[Y_i \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 1] \Pr(D_i = 0)$$
$$- \mathbb{E}[Y_{0i} \mid D_i = 0] \Pr(D_i = 1) - \mathbb{E}[Y_i \mid D_i = 0] \Pr(D_i = 0)$$

$$\tau = \mathbb{E}[Y_i \mid D_i = 1] \Pr(D_i = 1) + \mathbb{E}[Y_{1i} \mid D_i = 0] \Pr(D_i = 0) \\ - \mathbb{E}[Y_{0i} \mid D_i = 1] \Pr(D_i = 1) - \mathbb{E}[Y_i \mid D_i = 0] \Pr(D_i = 0)$$

- The no-assumption sharp bounds are often too wide to be useful (e.g. If  $Y_i \in \{0, 1\}$ , the bounds always include zero)
- The next step is to add an assumption and see how bounds change

Example: Monotone treatment selection (MTS) assumption:

$$\mathbb{E}[Y_{0i} \mid D_i = 0] \leq \mathbb{E}[Y_{0i} \mid D_i = 1]$$

$$\mathbb{E}[Y_{1i} \mid D_i = 0] \leq \mathbb{E}[Y_{1i} \mid D_i = 1]$$

- In words, MTS assumes that units who select the treatment have higher expectation of outcome under either condition on average (e.g. sicker)
- This implies a tighter upper bound on  $\tau$ :

- Manski (2007, Ch.7.2) uses an example on how the type of sentence for juvenile offenders affect recidivism:
  - D<sub>i</sub> = 1 if sentence involves confinement in residential facilities; 0 if not
  - $Y_{di} = 1$  if commits a crime again given sentence type d; 0 if not

- Manski (2007, Ch.7.2) uses an example on how the type of sentence for juvenile offenders affect recidivism:
  - D<sub>i</sub> = 1 if sentence involves confinement in residential facilities; 0 if not
  - $Y_{di} = 1$  if commits a crime again given sentence type d; 0 if not
- Observed strata:

- Manski (2007, Ch.7.2) uses an example on how the type of sentence for juvenile offenders affect recidivism:
  - D<sub>i</sub> = 1 if sentence involves confinement in residential facilities; 0 if not
  - $Y_{di} = 1$  if commits a crime again given sentence type d; 0 if not
- Observed strata:

- Nonparametric bounds:
  - Random assignment: .08/(.03 + .08) .53/(.36 + .53) = .13

- Manski (2007, Ch.7.2) uses an example on how the type of sentence for juvenile offenders affect recidivism:
  - D<sub>i</sub> = 1 if sentence involves confinement in residential facilities; 0 if not
  - $Y_{di} = 1$  if commits a crime again given sentence type d; 0 if not
- Observed strata:

- Nonparametric bounds:
  - Random assignment: .08/(.03 + .08) .53/(.36 + .53) = .13
  - No assumption: [-.53 .03, .36 + .08] = [-.56, .44]
  - MTS: [-.56, .13]

- Introduction
- 2 Identification under Conditional Ignorability
- Back-Door Criterion
- Estimation under Conditional Ignorability
  - Subclassification
  - Matching
  - Weighting
- Inference without Conditional Ignorability
  - Nonparametric Bounds
  - Sensitivity Analysis
    - Imbens' Approach
    - Rosenbaum's Approach

## Sensitivity Analysis for Conditional Ignorability

• An alternative approach: Sensitivity analysis

60 / 74

## Sensitivity Analysis for Conditional Ignorability

- An alternative approach: Sensitivity analysis
- Sensitivity analysis takes the following general form:
  - Quantify the degree of violation of the key assumption by a sensitivity parameter  $(\sigma)$
  - 2 Set  $\sigma$  to various values and derive what the true value of the quantity of interest would be
  - See at what point the effect would go away completely (or become statistically insignificant)

60 / 74

## Sensitivity Analysis for Conditional Ignorability

- An alternative approach: Sensitivity analysis
- Sensitivity analysis takes the following general form:
  - Quantify the degree of violation of the key assumption by a sensitivity parameter  $(\sigma)$
  - f 2 Set  $\sigma$  to various values and derive what the true value of the quantity of interest would be
  - See at what point the effect would go away completely (or become statistically insignificant)
- In the current context, we ask:

How substantial would the unobserved confouding have to be in order for the estimated treatment effect to completely go away?

## Sensitivity Analysis for ATE

• Assume that conditional ignorability would hold if you could control for unobserved  $U_i$ , i.e.,

$$(Y_{1i}, Y_{0i}) \perp \!\!\!\perp D_i \mid U_i$$

but

$$(Y_{1i}, Y_{0i}) \not\perp \!\!\!\perp D_i$$

## Sensitivity Analysis for ATE

• Assume that conditional ignorability would hold if you could control for unobserved  $U_i$ , i.e.,

$$(Y_{1i}, Y_{0i}) \perp \!\!\!\perp D_i \mid U_i$$

but

$$(Y_{1i}, Y_{0i}) \not\perp \!\!\! \perp D_i$$

• If  $U_i$  were observed (and discrete), the true ATE could be estimated by subclassification:

$$\tau = \sum_{i} \{ \mathbb{E}[Y_i \mid D_i = 1, U_i = u] - \mathbb{E}[Y_i \mid D_i = 0, U_i = u] \} \Pr(U_i = u)$$

• But you don't observe  $U_i$ , so you can only estimate

$$\hat{\tau} = \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

## Sensitivity Analysis for ATE

For simplicy assume  $U_i \in \{0, 1\}$ . Then the bias is

$$\mathbb{E}[\hat{\tau}] - \tau = \mathbb{E} \{ \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0] \}$$

$$- \sum_{u=0.1} \{ \mathbb{E}[Y_i \mid D_i = 1, U_i = u] - \mathbb{E}[Y_i \mid D_i = 0, U_i = u] \} \Pr(U_i = u)$$

62 / 74

For simplicy assume  $U_i \in \{0, 1\}$ . Then the bias is

$$\mathbb{E}[\hat{\tau}] - \tau = \mathbb{E} \{ \mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0] \}$$

$$- \sum_{u=0,1} \{ \mathbb{E}[Y_i \mid D_i = 1, U_i = u] - \mathbb{E}[Y_i \mid D_i = 0, U_i = u] \} \Pr(U_i = u)$$

$$= \text{ (some algebra)}$$

Causal Inference

For simplicy assume  $U_i \in \{0, 1\}$ . Then the bias is

$$\begin{split} \mathbb{E}[\hat{\tau}] - \tau &= \mathbb{E}\left\{\mathbb{E}[Y_{i} \mid D_{i} = 1] - \mathbb{E}[Y_{i} \mid D_{i} = 0]\right\} \\ &- \sum_{u=0,1} \left\{\mathbb{E}[Y_{i} \mid D_{i} = 1, U_{i} = u] - \mathbb{E}[Y_{i} \mid D_{i} = 0, U_{i} = u]\right\} \Pr(U_{i} = u) \\ &= \text{ (some algebra)} \\ &= \left\{\mathbb{E}[Y_{i} \mid D_{i} = 1, U_{i} = 1] - \mathbb{E}[Y_{i} \mid D_{i} = 1, U_{i} = 0]\right\} \\ &\cdot \left\{\Pr(U_{i} = 1 \mid D_{i} = 1) - \Pr(U_{i} = 1)\right\} \\ &- \left\{\mathbb{E}[Y_{i} \mid D_{i} = 0, U_{i} = 1] - \mathbb{E}[Y_{i} \mid D_{i} = 0, U_{i} = 0]\right\} \\ &\cdot \left\{\Pr(U_{i} = 1 \mid D_{i} = 0) - \Pr(U_{i} = 1)\right\} \end{split}$$

For simplicy assume  $U_i \in \{0, 1\}$ . Then the bias is

$$\mathbb{E}[\hat{\tau}] - \tau = \mathbb{E}\left\{\mathbb{E}[Y_{i} \mid D_{i} = 1] - \mathbb{E}[Y_{i} \mid D_{i} = 0]\right\} \\ - \sum_{u=0,1} \left\{\mathbb{E}[Y_{i} \mid D_{i} = 1, U_{i} = u] - \mathbb{E}[Y_{i} \mid D_{i} = 0, U_{i} = u]\right\} \Pr(U_{i} = u) \\ = \text{(some algebra)} \\ = \left\{\mathbb{E}[Y_{i} \mid D_{i} = 1, U_{i} = 1] - \mathbb{E}[Y_{i} \mid D_{i} = 1, U_{i} = 0]\right\} \\ \cdot \left\{\Pr(U_{i} = 1 \mid D_{i} = 1) - \Pr(U_{i} = 1)\right\} \\ - \left\{\mathbb{E}[Y_{i} \mid D_{i} = 0, U_{i} = 1] - \mathbb{E}[Y_{i} \mid D_{i} = 0, U_{i} = 0]\right\} \\ \cdot \left\{\Pr(U_{i} = 1 \mid D_{i} = 0) - \Pr(U_{i} = 1)\right\}$$

So the bias can be characterized by:

- The relationship between  $Y_i$  and  $U_i$  in each treatment group
- The relationship between  $U_i$  and  $D_i$

Now to further simplify things, assume that  $D_i$  and  $U_i$  do not interact (i.e. the average effect of  $U_i$  on  $Y_i$  is constant between treatment groups)

Now to further simplify things, assume that  $D_i$  and  $U_i$  do not interact (i.e. the average effect of  $U_i$  on  $Y_i$  is constant between treatment groups)

Under this asumption, the bias is:

$$\begin{split} \mathbb{E}[\hat{\tau}] - \tau &= \{ \Pr(U_i = 1 | D_i = 1) - \Pr(U_i = 1 | D_i = 0) \} \\ &\quad \cdot \{ \mathbb{E}[Y_i | U_i = 1] - \mathbb{E}[Y_i | U_i = 0] \} \\ &\quad \equiv \quad \delta \gamma, \end{split}$$

where  $\left\{ \begin{array}{ll} \delta &=& \text{difference in average } U_i \text{ between treatment conditions} \\ \gamma &=& \text{effect of } U_i \text{ on } Y_i \end{array} \right.$ 

Now to further simplify things, assume that  $D_i$  and  $U_i$  do not interact (i.e. the average effect of  $U_i$  on  $Y_i$  is constant between treatment groups)

Under this asumption, the bias is:

$$\mathbb{E}[\hat{\tau}] - \tau = \{ \Pr(U_i = 1 | D_i = 1) - \Pr(U_i = 1 | D_i = 0) \}$$

$$\cdot \{ \mathbb{E}[Y_i | U_i = 1] - \mathbb{E}[Y_i | U_i = 0] \}$$

$$\equiv \delta \gamma,$$

where  $\left\{ \begin{array}{ll} \delta &=& \text{difference in average } U_i \text{ between treatment conditions} \\ \gamma &=& \text{effect of } U_i \text{ on } Y_i \end{array} \right.$ 

Imbens-style sensitivity analysis proceeds by setting  $\delta$  and  $\gamma$  (sensitivity parameters) to different values and see what the true  $\tau$  would be.

Now to further simplify things, assume that  $D_i$  and  $U_i$  do not interact (i.e. the average effect of  $U_i$  on  $Y_i$  is constant between treatment groups)

Under this asumption, the bias is:

$$\begin{split} \mathbb{E}[\hat{\tau}] - \tau &= \{ \mathsf{Pr}(U_i = 1 | D_i = 1) - \mathsf{Pr}(U_i = 1 | D_i = 0) \} \\ &\quad \cdot \{ \mathbb{E}[Y_i | U_i = 1] - \mathbb{E}[Y_i | U_i = 0] \} \\ &\equiv \delta \gamma, \end{split}$$

where  $\left\{ \begin{array}{lcl} \delta & = & \text{difference in average } U_i \text{ between treatment conditions} \\ \gamma & = & \text{effect of } U_i \text{ on } Y_i \end{array} \right.$ 

Imbens-style sensitivity analysis proceeds by setting  $\delta$  and  $\gamma$  (sensitivity parameters) to different values and see what the true  $\tau$  would be.

#### Notes:

- ullet Observed covariates ( $X_i$ ) can be incorporated with minor extension.
- The framework is fully nonparametric so far, but we need additional parametric assumptions to accommodate X, non-binary U or D, etc.

 A parametric example with continuous treatment X, with the following true model

$$X = U\delta + \eta$$
$$Y = X\beta + U\gamma + \varepsilon$$

where  $\eta$  and  $\varepsilon$  are independent error terms with  $\mathbb{E}[\eta \mid U] = \mathbb{E}[\varepsilon \mid X, U] = 0$ 

• With *U* unobserved, we run the linear regression

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$

$$= (X^{\top}X)^{-1}X^{\top}(X\beta + U\gamma + \varepsilon)$$

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}[(X^{\top}X)^{-1}X^{\top}(X\beta + U\gamma + \varepsilon)]$$

$$= \mathbb{E}[(X^{\top}X)^{-1}X^{\top}X\beta] + \mathbb{E}[(X^{\top}X)^{-1}X^{\top}U\gamma] + \mathbb{E}[(X^{\top}X)^{-1}X^{\top}X\varepsilon)]$$

$$= \beta + \delta\gamma$$

 Note this is identical to the "omitted variables bias formula" which you might remember from a regression class

### Example: Blattman and Annan on Child Soldiers

Plotting implied true ATE as function of assumed  $\delta$  and  $\gamma$ :



### Example: Blattman and Annan on Child Soldiers

#### Another way of plotting:



Note how we can use observed covariates as benchmarks.

Teppei Yamamoto Observational Studies Causal Inference

#### Example: Blattman and Annan on Child Soldiers

A common approach is to standardize the scale by converting  $\delta$  and  $\gamma$  to partial  $R^2$ s:



Blattman and Annan (2010, ReStat)

#### Sensitivity Analysis for Randomization Inference

- Another sensitivity approach is developed in Rosenbaum (2002):
  - Uses a single sensitivity parameter  $\Gamma \geq 1$  representing departure from unconfoundedness
  - Unlike Imbens' approach which targets ATE, Rosenbaum considers sharp null tests and p-values from randomization inference

### Sensitivity Analysis for Randomization Inference

- Another sensitivity approach is developed in Rosenbaum (2002):
  - Uses a single sensitivity parameter  $\Gamma \geq 1$  representing departure from unconfoundedness
  - Unlike Imbens' approach which targets ATE, Rosenbaum considers sharp null tests and p-values from randomization inference

Example: One-to-one exact matching without replacement

- Consider two matched units i and j with  $X_i = X_j$
- Under conditional ignorability:
  - Both units must have the same treatment probability:  $\pi(X_i) = \pi(X_j)$
  - Within the pair the treatment is as-if randomized

### Sensitivity Analysis for Randomization Inference

- Another sensitivity approach is developed in Rosenbaum (2002):
  - Uses a single sensitivity parameter  $\Gamma \geq 1$  representing departure from unconfoundedness
  - Unlike Imbens' approach which targets ATE, Rosenbaum considers sharp null tests and p-values from randomization inference

#### Example: One-to-one exact matching without replacement

- Consider two matched units i and j with  $X_i = X_j$
- Under conditional ignorability:
  - Both units must have the same treatment probability:  $\pi(X_i) = \pi(X_j)$
  - Within the pair the treatment is as-if randomized
- Without conditional ignorability:
  - The true treatment probability is a function of both X and unobserved confounders
  - That is,  $\pi(X_i) > \pi(X_i)$  or  $\pi(X_i) < \pi(X_i)$  even if  $X_i = X_i$

#### Rosenbaum's F

Quantify the degree of confounding by bounding the odds ratio by Γ:

$$\frac{1}{\Gamma} \leq \frac{\pi(X_i)/(1-\pi(X_i))}{\pi(X_j)/(1-\pi(X_j))} \leq \Gamma$$

 $\Gamma=1$  no hidden bias, but if  $\Gamma=2$  unit i can be up to twice/half as likely to be treated than unit j (despite identical X)

#### Rosenbaum's Γ

Quantify the degree of confounding by bounding the odds ratio by Γ:

$$\frac{1}{\Gamma} \leq \frac{\pi(X_i)/(1-\pi(X_i))}{\pi(X_j)/(1-\pi(X_j))} \leq \Gamma$$

 $\Gamma=1$  no hidden bias, but if  $\Gamma=2$  unit *i* can be up to twice/half as likely to be treated than unit *j* (despite identical *X*)

Sensitivity analysis procedure for pair matching:

- (1) Set  $\Gamma$  to a certain level
- (2) Calculate the max/min treatment assignment probabilities for the  $\Gamma$ :

$$\frac{1}{1+\Gamma} \leq \pi(X_i) \leq \frac{\Gamma}{1+\Gamma}$$

- (3) With  $\pi(X_i)$  set to values most in favor of the null for each i, do a randomization test and record the p-value
  - For one-to-one match w/o replacement with a continuous outcome, we typically use Wilcoxon's signed rank test

- (4) Iterate through (1) (3) with different  $\Gamma$  values
  - Various versions exist for different matching methods, statistics, etc.

### Wilcoxon's Signed Rank Test

A test of the difference in medians for matched data:

- Calculate the absolute difference  $|\Delta_i|$  between  $Y_i$  and matched pair  $Y_i$ .
- **2** Rank the pairs in ascending order of absolute difference,  $R_i = 1, 2, ..., N_R$ .

Drop pairs with  $\Delta_i = 0$ .

Break ties by assigning the average of the pairs' ranks if not tied.

- **3** Sign the ranks with the sign of  $Y_i Y_j$ , or  $sgn(\Delta_i)R_i$
- Calculate the sum of the positive signed ranks as a test statistic W  $W = \sum_{i=1}^{N_{R^+}} R_i \quad \forall R_i > 0.$
- Compare W to a critical value

Under conditional ignorability:  $\Gamma = 1$ ,  $\max \pi(X_i) = \min \pi(X_i) = 0.5$ 

| i | $Y_i$ | $Y_j$ | $\Delta_i$ | $ \Delta_i $ | $R_i$ | $sgn(\Delta_i)R_i$ | Γ | worst $\pi(X_i)$ |
|---|-------|-------|------------|--------------|-------|--------------------|---|------------------|
| 1 | 13    | -3    | 16         | 16           | 4     | 4                  | 1 | .5               |
| 2 | 15    | 7     | 8          | 8            | 3     | 3                  | 1 | .5               |
| 3 | -1    | -4    | 3          | 3            | 2     | 2                  | 1 | .5               |
| 4 | 5     | 7     | -2         | 2            | 1     | -1                 | 1 | .5               |

Under conditional ignorability:  $\Gamma = 1$ ,  $\max \pi(X_i) = \min \pi(X_i) = 0.5$ 

| i | $Y_i$ | $Y_j$ | $\Delta_i$ | $ \Delta_i $ | $R_i$ | $sgn(\Delta_i)R_i$ | Γ | worst $\pi(X_i)$ |
|---|-------|-------|------------|--------------|-------|--------------------|---|------------------|
| 1 | 13    | -3    | 16         | 16           | 4     | 4                  | 1 | .5               |
| 2 | 15    | 7     | 8          | 8            | 3     | 3                  | 1 | .5               |
| 3 | -1    | -4    | 3          | 3            | 2     | 2                  | 1 | .5               |
| 4 | 5     | 7     | -2         | 2            | 1     | -1                 | 1 | .5               |

- Wilcoxon statistic: W = 4 + 3 + 2 = 9
- Randomization distribution of W:

 $W \in \{0, 1, 2, ...9, 10\}$  with probability  $\frac{1}{16}$  for each event

• p-value for the sharp null is:  $p = Pr(W \ge 9 \mid H_0) = 0.125$ 

With unobserved confounding:  $\Gamma = 2$ ,  $\max \pi(X_i) = 0.67$ ,  $\min \pi(X_i) = 0.33$ 

| i | $Y_i$ | $Y_j$ | $\Delta_i$ | $ \Delta_i $ | $R_i$ | $sgn(\Delta_i)R_i$ | Γ | worst $\pi(X_i)$ |
|---|-------|-------|------------|--------------|-------|--------------------|---|------------------|
| 1 | 13    | -3    | 16         | _            | 4     | 4                  | 2 | .67              |
| 2 | 15    | 7     | 8          |              | 3     | 3                  | 2 | .67              |
| 3 | -1    | -4    | 3          | 3            | 2     | 2                  | 2 | .67              |
| 4 | 5     | 7     | -2         | 2            | 1     | -1                 | 2 | .33              |

With unobserved confounding:  $\Gamma = 2$ ,  $\max \pi(X_i) = 0.67$ ,  $\min \pi(X_i) = 0.33$ 

| i | $Y_i$ | $Y_j$ | $\Delta_i$ | $ \Delta_i $ | $R_i$ | $sgn(\Delta_i)R_i$ | Γ | worst $\pi(X_i)$ |
|---|-------|-------|------------|--------------|-------|--------------------|---|------------------|
| 1 | 13    | -3    | 16         | 16           | 4     | 4                  | 2 | .67              |
| 2 | 15    | 7     | 8          | 8            | 3     | 3                  | 2 | .67              |
| 3 | -1    | -4    | 3          | 3            | 2     | 2                  | 2 | .67              |
| 4 | 5     | 7     | -2         | 2            | 1     | -1                 | 2 | .33              |

- Wilcoxon statistic: W = 4 + 3 + 2 = 9
- Randomization distribution of W:

$$W \in \{0,1,2,...9,10\}$$

with probabilities

$$\left(\frac{1}{3}\right)^4,\, \left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^3,\,...,\, \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^3,\, \left(\frac{2}{3}\right)^4\,=\,\frac{1}{81},\,\frac{2}{81},\,...,\,\frac{8}{81},\,\frac{16}{81}$$

72 / 74

• max p-value for the sharp null is:  $p = Pr(W \ge 9 \mid H_0) = 0.296$ 

With unobserved confounding:  $\Gamma = 2$ ,  $\max \pi(X_i) = 0.67$ ,  $\min \pi(X_i) = 0.33$ 

| i | $Y_i$ | $Y_j$ | $\Delta_i$ | $ \Delta_i $ | $R_i$ | $sgn(\Delta_i)R_i$ | Γ | best $\pi(X_i)$ |
|---|-------|-------|------------|--------------|-------|--------------------|---|-----------------|
| 1 | 13    | -3    | 16         | 16           | 4     | 4                  | 2 | .33             |
| 2 | 15    | 7     | 8          | 8            | 3     | 3                  | 2 | .33             |
| 3 | -1    | -4    | 3          | 3            | 2     | 2                  | 2 | .33             |
| 4 | 5     | 7     | -2         | 2            | 1     | -1                 | 2 | .67             |

Causal Inference

With unobserved confounding:  $\Gamma = 2$ ,  $\max \pi(X_i) = 0.67$ ,  $\min \pi(X_i) = 0.33$ 

| i | $Y_i$ | $Y_j$ | $\Delta_i$ | $ \Delta_i $ | $R_i$ | $sgn(\Delta_i)R_i$ | Γ | best $\pi(X_i)$ |
|---|-------|-------|------------|--------------|-------|--------------------|---|-----------------|
| 1 | 13    | -3    | 16         | 16           | 4     | 4                  | 2 | .33             |
| 2 | 15    | 7     | 8          | 8            | 3     | 3                  | 2 | .33             |
| 3 | -1    | -4    | 3          | 3            | 2     | 2                  | 2 | .33             |
| 4 | 5     | 7     | -2         | 2            | 1     | -1                 | 2 | .67             |

- Wilcoxon statistic: W = 4 + 3 + 2 = 9
- Randomization distribution of W:

$$W \in \{0,1,2,...9,10\}$$

with probabilities

$$\left(\frac{2}{3}\right)^4,\, \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^3,\,...,\, \left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^3,\, \left(\frac{1}{3}\right)^4\,=\,\frac{16}{81},\,\frac{8}{81},\,...,\,\frac{2}{81},\,\frac{1}{81}$$

73 / 74

• min p-value for the sharp null is:  $p = Pr(W \ge 9 \mid H_0) = 0.037$ 

#### Example: Blattman Data

```
matched.data<-Match(Y=Y, Tr=Treat, X=X,replace=F)
psens(matched.data, Gamma=2, GammaInc=.1)</pre>
```

Rosenbaum Sensitivity Test for Wilcoxon Signed Rank P-Gamma Lower bound Upper bound

1.0 0.0000 1.1 0.0002 1.2 0.0027 1.3 0.0183 1.4 0.0725 1.5 0.1924 1.6 0.3744 1.7 0.5774 1.8 0.7522 1.9 0.8732 2.0 0.9429