Heat pump (열펌프)

Building HVAC System (건축공기조화설비)

Seoul National University of Science & Technology (서울과학기술대 건축학부 건축공학 전공)

Young II Kim (김영일)

Heat pump (Cooling & heating)

Pump Water(물) High altitude Water **Pump** Work Water Water Low altitude

Water flows from high to low altitude (gravity effect).

To transfer water from low to high altitude, external work is required.

Heat pump

- Naturally, heat flows from high to low temperature.
- To transfer heat from low to high temperature, heat pump which requires work input is required.
- 2nd law of thermodynamics: To transfer heat from low to high temperature, work input is required.

Heat pump (Cooling)

1st law of thermodynamics

$$Q_L + W = Q_H$$

Coefficient of performance (COP)

$$COP_{L} = \frac{Q_{L}}{W} \approx 3$$

Heat pump (Heating)

1st law of thermodynamics
$$Q_L$$
 +

$$Q_L + W = Q_H$$

Coefficient of performance (COP)

$$COP_{\rm H} = \frac{Q_H}{W} \approx 2$$

Vapor-liquid equilibrium, Saturated state

Saturation temperature(포화온도) T_{sat} , saturation pressure(포화압력) P_{sat}

- Evaporation and condensation temperatures depend on pressure.
- If pressure is determined then evaporation or condensation T is known.
- At 1 atm (101.325 kPa) pressure, water boils at 100°C.
- Saturation T_{sat} : T at which 2 phases(liquid, vapor) exist under given P.
- Saturation P_{sat} : P at which 2 phases(liquid, vapor) exist under given T.

Vapor-liquid equilibrium, Saturated state

Sat. vapor
$$m_g$$
, V_g

Sat. liquid m_f , V_f
 $m = m_f + m_g$
Quality(건도) x

$$x = \frac{m_g}{m} = \frac{m_g}{m_f + m_g}$$

If x = 0, then saturated liquid If x = 1, then saturated vapor $0 \le x \le 1$

$$V = V_f + V_g$$

$$V = m_f v_f + m_g v_g$$

Dividing both sides by mass m

$$\frac{v}{m} = \frac{m_f}{m} v_f + \frac{m_g}{m} v_g = (1 - x) v_f + x v_g$$

$$\frac{V}{m} = v \qquad \frac{m_f}{m} = \frac{m - m_g}{m} = 1 - x$$

$$v = v_f + x(v_g - v_f)$$
 Average specific volume of saturated state

For saturated state

$$y = y_f + x(y_g - y_f)$$

y can be v(specific volume), u(internal energy), h(enthalpy) or s(entropy)

Ideal vapor compression heat pump cycle

- ♦ Evaporator(A) : P = Ca → a' Evaporation Sat liquid → Sat. vapor, T = C
- ♦ Compressor : Adiabatic
 a' → b Compression P ↑, T ↑,
 Sat. vapor → Superheated vapor
- ♦ Condenser(B): P = C
 b → c' Cooling, T ↓
 Superheated vapor → Sat. vapor
 c' → c Condensation, T = C
 Sat. vapor → Sat. liquid
- ♦ Expansion valve h = C $c \rightarrow a$ Expansion, $P \downarrow$, $T \downarrow$, $v \uparrow$ Sat. liquid \rightarrow Sat. vapor

1st Law of Thermodynamics or Conservation of Energy (Rate form)

g: gravitational acceleration, 9.807 m/s²

Control volume h: enthalpy, kJ/kg \dot{m} : mass flow rate, kg/s

Subscript: 1: inlet 2: exit

(1) Steady + kinetic and potential energy changes negligible

$$\dot{Q} + \dot{m}_1 h_1 = \dot{m}_2 h_2 + \dot{W}$$
 $\dot{m}_1 = \dot{m}_2 = \dot{m}$ $q + h_1 = h_2 + w$

$$\dot{m}_1 = \dot{m}_2 = \dot{m}$$

$$q + h_1 = h_2 + w$$

(2) Steady + kinetic and potential energy changes negligible + no work

$$\dot{Q} + \dot{m}_1 h_1 = \dot{m}_2 h_2$$

$$q = h_2 - h_1$$

 $\dot{Q} + \dot{m}_1 h_1 = \dot{m}_2 h_2$ $q = h_2 - h_1$ {Heat exchanger(evaporator, condenser)}

(3) Steady + kinetic and potential energy changes negligible + no work + adiabatic

$$\dot{m}_1 h_1 = \dot{m}_2 h_2$$

$$h_1 = h_2$$

 $h_1 = h_2$ {Expansion valve}

(4) Steady + kinetic and potential energy changes negligible + adiabatic

$$\dot{m}_1 h_1 = \dot{m}_2 h_2 - \dot{W}$$

$$w = h_1 - h_2$$

 $w = h_1 - h_2$ {Compressor}

Types of refrigerant compression

- Pressure \bullet When in operation, refrigeration cycle operates between high P and low P.
- Types are classified based on pressure increasing methods.

			Capacity	Usage (용도)
		Reciprocating	Small Medium	Refrigerator, air-conditioner, car air-conditioner
Vapor	Volume (용적식)	Rotary	Small	Small capacity air-conditioner
Compression		Scroll	S·M	Package air-conditioner
(증기 압축식) 		Screw	M·L	Medium size building cooling
	Centrifugal (원심식)	Illrho		Large size building cooling
Absorption	Single eff	fect(1중효용)	Large	Hot water, LSB heating
(흡수식) Liquid	Double ef	fect(2중효용)	Large	Steam, LSB heating
compression (액체 압축식)	_	n chiller/heater l 냉온수기)	Large	Direct fired heat source, LSB cooling, heating, hot water

Vapor compression refrigeration cycle

- Most popular refrigeration type
- Consists of 4 major components
 - Compressor: increases refrigerant pressure (temperature ↑ as well)
 - Condenser: condenses vapor to liquid by discharging heat to outside
 - Pressure drop device (expansion valve) : $P \downarrow$, $t \downarrow$, part of liquid \rightarrow vapor
 - Evaporator: evaporates liquid to vapor by absorbing heat from outside

Cooling mode

Outdoor air Refito li env 냉민 주변

Refrigerant changes from vapor to liquid as heat is expelled to environment

냉매가 기체에서 액체로 응축 주변에 열 방출

Condenser

Mid d (uninsulated)

中관경(미단열)

고압, 고온 기체

High P, high T vapor

Compressor

냉매의 압력 상승 Refrigerant P ↑, T ↑ vapor

Outdoor

냉매의 압력 하강, 부피 팽창, 온도 감소, 액체 중 일부 기화 Refrigerant $P \downarrow$, $v \uparrow$, $T \downarrow$, h = C, liquid \rightarrow vapor

Expansion valve

Low P, low T vapor+liquid

Mid d (insulated) 中관경(단열)

저압,저온 액체+기체

Indoor air

Evaporator

저압, 저온 기체

Low P, low T vapor

大관경(단열) Large d (insulated)

Cold air

Indoor

Vapor compression – volume compression type

- Compressor affects 70% of heat pump performance
- For air cooled heat pump, heat exchanger affects 30% of performance, 50% of weight, 80% of volume.
- Compressor efficiency \rightarrow entropy(s) = constant
 - 1. Isentropic efficiency(등엔트로피 효율): Related to power consumption

$$\eta_s = \frac{w_{ideal}}{w_{actual}} \approx 0.7$$
 $w_{ideal} = h_{2s} - h_1$ (isentropic process) $w_{actual} = h_2 - h_1$

2. Volumetric efficiency(체적효율): Related to capacity

$$\eta_v = \frac{\dot{m}_{actual}}{\dot{m}_{ideal}} \approx 0.9$$

 Type: Reciprocating, rotary, scroll, screw 왕복동식, 로터리, 스크롤, 스크류

6 Assumptions of an ideal vapor compression refrigeration cycle

Rankine cycle:

- Not an actual cycle, but simplified for theoretical analysis

 ◆ Ideal refrigeration cycle → Reverse Rankine cycle (역(逆)랭킨 사이클)
 - ① Evaporator exit (state 1): saturated vapor $(x_1 = 1)$
 - ② Condenser exit (state 3): saturated liquid ($x_3 = 0$) $x = \frac{m_g}{m}$ quality
 - ③ 1→2: adiabatic compression ($P \uparrow$, $t \uparrow$)
 - (4) $2 \rightarrow 3a \rightarrow 3$: P = C condensation 2→3a: vapor cooling $(t \downarrow)$
 - $3a \rightarrow 3$: vapor \rightarrow liquid (t = C)
 - (5) 3→4: h = C expansion $(t \downarrow, P \downarrow)$ some liquid → vapor
 - \bigcirc 4→1 : P = C evaporation (t = C) rest of the liquid → vapor

Evaporator:
$$\dot{m}h_4 + \dot{Q}_e = \dot{m}h_1$$

$$\dot{Q}_e = \dot{m}(h_1 - h_4)$$
 $q_e = \frac{\dot{Q}_e}{\dot{m}} = h_1 - h_4$

Compressor:
$$\dot{m}h_1 + \dot{W}_c = \dot{m}h_2$$

$$\dot{W}_c = \dot{m}(h_2 - h_1) \qquad w_c = \frac{\dot{W}_c}{\dot{m}} = h_2 - h_1$$

Condenser:
$$\dot{m}h_2 = \dot{Q}_c + \dot{m}h_3$$

$$\dot{Q}_c = \dot{m}(h_2 - h_3)$$
 $q_c = \frac{Q_c}{\dot{m}} = h_2 - h_3$

$$P$$
 drop device : $\dot{m}h_3=\dot{m}h_4$ (Expansion valve) $h_3=h_4$

Analysis of ideal refrigeration cycle

Given:
$$P_1$$
, P_3 , η_s η_s or t_1 , t_3 , η_s η_s η_s : Compressor isentropic efficiency)

State 1 =
$$f(P_1, x_1 = 1)$$

State 3 =
$$f(P_3, x_3 = 0)$$

$$P_{2s} = P_2 = P_3$$

$$s_{2s} = s_1$$

State 2s = $f(P_{2s}, s_{2s})$

$$\eta_S = \frac{w_S}{w_a} = \frac{h_{2S} - h_1}{h_2 - h_1}$$

$$h_2 = h_1 + \frac{h_{2s} - h_1}{\eta_s}$$

State 2 =
$$f(P_2, h_2)$$

$$P_4 = P_1$$
, $h_4 = h_3$

State 4 = $f(P_4, h_4)$

Cooling capacity per mass : $q_L = h_1 - h_4$

Heating capacity per mass: $q_H = h_2 - h_3$

Compressor work per mass: $w_c = h_2 - h_1$

Coefficient of performance (COP, 성적계수):

$$COP_{L} = \frac{q_{L}}{w_{c}} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$$

$$COP_{H} = \frac{q_{H}}{w_{c}} = \frac{h_{2} - h_{3}}{h_{2} - h_{1}}$$

$$COP_{H} = \frac{h_{2} - h_{3}}{h_{2} - h_{1}} = \frac{h_{2} - h_{1} + h_{1} - h_{3}}{h_{2} - h_{1}}$$
$$= \frac{h_{2} - h_{1}}{h_{2} - h_{1}} + \frac{h_{1} - h_{3}}{h_{2} - h_{1}} = 1 + COP_{L}$$

[1a] Ideal refrigerant cycle. R134a, evaporator pressure $P_{evap} = 240 \text{ kPa}$, condenser pressure $P_{cond} = 1200 \text{ kPa}$, compressor isentropic efficiency $\eta_s = 0.7$, mass flow rate $\dot{m} = 0.1 \text{ kg/s}$. Find evaporator capacity per mass q_e (kJ/kg), condenser capacity per mass q_c (kJ/kg), compressor work per mass w_c (kJ/kg), cooling COP_L, heating COP_H, compressor exit temperature t_2 (°C), evaporator inlet quality x_4 , evaporator capacity \dot{Q}_e , condenser capacity \dot{Q}_c , compressor power \dot{W}_c in kW. Use thermodynamic property table.

TABLE A-12

Saturated refrigerant-134a—Pressure table

		Specific m ³ /		<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K		
Press.,	temp.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat.	Evap.,	Sat.	Sat. liquid,	Evap.,	Sat. vapor,
kPa	T _{sat} °C	V _f	Vg	U _f	Ufg	u _g	h _f	h _{fg}	hg	S _f	S _{fg}	Sg
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80	0.01633	0.94812	0.9644
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74	0.03264	0.92783	0.9604
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47	0.04707	0.91009	0.9571
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04	0.06003	0.89431	0.9543
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46	0.07182	0.88008	0.9519
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99	0.09269	0.85520	0.9478
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19	0.11080	0.83387	0.9446
160	-15.60	0.0007435	0.12355	31.06	190.31	221.37	31.18	209.96	241.14	0.12686	0.81517	0.9420
180	-12.73	0.0007485	0.11049	34.81	188.20	223.01	34.94	207.95	242.90	0.14131	0.79848	0.9397
200	-10.09	0.0007532	0.099951	38.26	186.25	224.51	38.41	206.09	244.50	0.15449	0.78339	0.9378
240	-5.38	0.0007618	0.083983	44.46	182.71	227.17	44.64	202.68	247.32	0.17786	0.75689	0.9347
280	-1.25	0.0007697	0.072434	49.95	179.54	229.49	50.16	199.61	249.77	0.19822	0.73406	0.9322
320	2.46	0.0007771	0.063681	54.90	176.65	231.55	55.14	196.78	251.93	0.21631	0.71395	0.9302
360	5.82	0.0007840	0.056809	59.42	173.99	233.41	59.70	194.15	253.86	0.23265	0.69591	0.9285
400	8.91	0.0007905	0.051266	63.61	171.49	235.10	63.92	191.68	255.61	0.24757	0.67954	0.9271
450	12.46	0.0007983	0.045677	68.44	168.58	237.03	68.80	188.78	257.58	0.26462	0.66093	0.9255
500	15.71	0.0008058	0.041168	72.92	165.86	238.77	73.32	186.04	259.36	0.28021	0.64399	0.9242
550	18.73	0.0008129	0.037452	77.09	163.29	240.38	77.54	183.44	260.98	0.29460	0.62842	0.9230
600	21.55	0.0008198	0.034335	81.01	160.84	241.86	81.50	180.95	262.46	0.30799	0.61398	0.9219
650	24.20	0.0008265	0.031680	84.72	158.51	243.23	85.26	178.56	263.82	0.32052	0.60048	0.9210
700	26.69	0.0008331	0.029392	88.24	156.27	244.51	88.82	176.26	265.08	0.33232	0.58780	0.9201
750	29.06	0.0008395	0.027398	91.59	154.11	245.70	92.22	174.03	266.25	0.34348	0.57582	0.9193
800	31.31	0.0008457	0.025645	94.80	152.02	246.82	95.48	171.86	267.34	0.35408	0.56445	0.9185
850	33.45	0.0008519	0.024091	97.88	150.00	247.88	98.61	169.75	268.36	0.36417	0.55362	0.9177
900	35.51	0.0008580	0.022703	100.84	148.03	248.88	101.62	167.69	269.31	0.37383	0.54326	0.9170
950	37.48	0.0008640	0.021456	103.70	146.11	249.82	104.52	165.68	270.20	0.38307	0.53333	0.9164
1000	39.37	0.0008700	0.020329	106.47	144.24	250.71	107.34	163.70	271.04	0.39196	0.52378	0.9157
1200	46.29	0.0008935	0.016728	116.72	137.12	253.84	117.79	156.12	273.92	0.42449	0.48870	0.9132
1400	52.40	0.0009167	0.014119	125.96	130.44	256.40	127.25	148.92	276.17	0.45325	0.45742	0.9106
1600	57.88	0.0009400	0.012134	134.45	124.05	258.50	135.96	141.96	277.92	0.47921	0.42881	0.9080
1800	62.87	0.0009639	0.010568	142.36	117.85	260.21	144.09	135.14	279.23	0.50304	0.40213	0.9051
2000	67.45	0.0009887	0.009297	149.81	111.75		151.78	128.36	280.15	0.52519	0.37684	0.9020
2500	77.54	0.0010567	0.006941	167.02	96.47	263.49	169.66	111.18	280.84	0.57542	0.31701	0.8924
3000	86.16	0.0011410	0.005272	183.09	80.17	263.26	186.51	92.57	279.08	0.62133	0.25759	0.8789

TABLE A-13													
Superheated refrigerant-134a (Concluded)													
T	U	и	h	S	υ	и	h	S	υ	и	h	S	
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	
	$P = 0.50 \text{ MPa} (T_{\text{sat}} = 15.71^{\circ}\text{C})$					$P = 0.60 \text{ MPa} (T_{\text{sat}} = 21.55^{\circ}\text{C})$				$P = 0.70 \text{ MPa} (T_{\text{sat}} = 26.69^{\circ}\text{C})$			
Sat.	0.041168		259.36	0.9242	0.034335	241.86	262.46	0.9220	0.029392	244.51	265.08	0.9201	
20	0.042115		263.48	0.9384	0.025004	240.24	270.02	0.0500	0.020077	247.40	269.47	0.0214	
30	0.044338		273.03	0.9704	0.035984	249.24	270.83	0.9500	0.029966	247.49	268.47	0.9314	
40 50	0.046456 0.048499		282.50 291.98	1.0011 1.0309	0.037865 0.039659	257.88 266.50	280.60 290.30	0.9817 1.0122	0.031696 0.033322	256.41 265.22	278.59 288.54	0.9642 0.9955	
60	0.050485		301.51	1.0600	0.037037	275.17	300.00	1.0417	0.033322	274.03	298.44	1.0257	
70	0.052427		311.12	1.0884	0.043069	283.91	309.75	1.0706	0.036373	282.88	308.34	1.0550	
80	0.054331		320.82	1.1163	0.044710	292.74	319.57	1.0988	0.037829	291.81	318.29	1.0835	
90	0.056205		330.63	1.1436	0.046318	301.69	329.48	1.1265	0.039250	300.84	328.31	1.1115	
100	0.058053		340.55	1.1706	0.047900	310.75	339.49	1.1536	0.040642	309.96	338.41	1.1389	
110	0.059880		350.59	1.1971	0.049458	319.93	349.61	1.1804	0.042010	319.21	348.61	1.1659	
120	0.061687		360.75	1.2233	0.050997	329.24	359.84	1.2068	0.043358	328.57	358.92	1.1925	
130			371.05	1.2492	0.052519	338.69	370.20	1.2328	0.044688	338.06	369.34	1.2186	
140	0.065256		381.47	1.2747	0.054027	348.26	380.68	1.2585	0.046004	347.67	379.88	1.2445	
150 160	0.067021 0.068775	358.52	392.04 402.73	1.3000 1.3250	0.055522	357.98	391.29	1.2838	0.047306	357.42	390.54	1.2700	
100		$T_{\text{sat}} = 31.$		0.057006 367.83 402.03 1.3089				0.048597 367.31 401.32 1.2952 $P = 1.00 \text{ MPa} (T_{\text{sat}} = 39.37^{\circ}\text{C})$					
G .					$P = 0.90 \text{ MPa} (T_{\text{sat}} = 35.51^{\circ}\text{C})$								
Sat.	0.025645		267.34	0.9185	0.022686	248.82	269.25	0.9169	0.020319	250.71	271.04	0.9157	
40 50	0.027035 0.028547	263.87	276.46 286.71	0.9481 0.9803	0.023375 0.024809	253.15 262.46	274.19 284.79	0.9328 0.9661	0.020406 0.021796	251.32	271.73 282.76	0.9180	
50 60	0.028347		296.82	1.0111	0.024809	271.62	295.15	0.9001	0.021790	260.96 270.33	293.40	0.9526 0.9851	
70	0.031340	281.83	306.90	1.0409	0.027413	280.74	305.41	1.0280	0.024261	279.61	303.87	1.0160	
80	0.032659		316.99	1.0699	0.028630	289.88	315.65	1.0574	0.025398	288.87	314.27	1.0459	
90	0.033941	299.97	327.12	1.0982	0.029806	299.08	325.90	1.0861	0.026492	298.17	324.66	1.0749	
100	0.035193	309.17	337.32	1.1259	0.030951	308.35	336.21	1.1141	0.027552	307.52	335.08	1.1032	
110	0.036420	318.47	347.61	1.1531	0.032068	317.72	346.58	1.1415	0.028584	316.96	345.54	1.1309	
120	0.037625	327.89	357.99	1.1798	0.033164	327.19	357.04	1.1684	0.029592	326.49	356.08	1.1580	
130	0.038813	337.42	368.47	1.2062	0.034241	336.78	367.59	1.1949	0.030581	336.12	366.70	1.1847	
140	0.039985		379.07	1.2321	0.035302	346.48	378.25	1.2211	0.031554	345.87	377.42	1.2110	
150	0.041143	356.86	389.78	1.2577	0.036349	356.30	389.01	1.2468	0.032512	355.73	388.24	1.2369	
160	0.042290 0.043427		400.61	1.2830	0.037384	366.25	399.89	1.2722	0.033457	365.71	399.17	1.2624	
170 180	0.043427	376.83 387.01	411.57 422.65	1.3081 1.3328	0.038408 0.039423	376.33 386.54	410.89 422.02	1.2973 1.3221	0.034392 0.035317	375.82 386.06	410.22 421.38	1.2876 1.3125	
	$P = 1.20 \text{ MPa} (T_{\text{sat}} = 46.29^{\circ}\text{C})$					$P = 1.40 \text{ MPa} (T_{\text{sat}} = 52.40^{\circ}\text{C})$				$P = 1.60 \text{ MPa} (T_{\text{sat}} = 57.88^{\circ}\text{C})$			
Sat.	0.016728	253.84	273.92	0.9132	0.014119	256.40	276.17	0.9107	0.012134	258.50	277.92	0.9080	
50	0.017201	257.64	278.28	0.9268									
60	0.018404		289.66	0.9615	0.015005	264.46	285.47	0.9389	0.012372	260.91	280.71	0.9164	
70	0.019502		300.63	0.9939	0.016060	274.62	297.10	0.9733	0.013430	271.78	293.27	0.9536	
80	0.020529		311.40	1.0249	0.017023	284.51	308.34	1.0056	0.014362	282.11	305.09	0.9875	
90	0.021506			1.0547	0.017923 0.018778		319.37		0.015215		316.53	1.0195	
100	0.022442		332.74	1.0836		304.01	330.30	1.0661	0.016014	302.16	327.78	1.0501	
110 120	0.023348 0.024228		343.41 354.12	1.1119 1.1395	0.019597 0.020388	313.76 323.55	341.19 352.09	1.0949 1.1230	0.016773 0.017500	312.09 322.03	338.93 350.03	1.0795 1.1081	
130	0.024228		364.12	1.1595	0.020388	333.41	363.02	1.1230	0.017300	332.02	361.14	1.1360	
140	0.025080		375.74	1.1931	0.021133	343.34	374.01	1.1773	0.018201	342.06	372.27	1.1633	
150	0.026753		386.68	1.2192	0.022636	353.37	385.07	1.2038	0.019545	352.19	383.46	1.1901	
160	0.027566		397.71	1.2450	0.023355	363.51	396.20	1.2298	0.020194	362.40	394.71	1.2164	
170	0.028367		408.84	1.2704	0.024061	373.75	407.43	1.2554	0.020830	372.71	406.04	1.2422	
180	0.029158		420.09	1.2955	0.024757	384.12	418.78	1.2808	0.021456	383.13	417.46	1.2677	

[1b] Ideal refrigerant cycle. R134a, evaporator pressure $P_{evap} = 240 \text{ kPa}$, condenser pressure $P_{cond} = 1200 \text{ kPa}$, compressor isentropic efficiency $\eta_s = 0.7$, mass flow rate $\dot{m} = 0.1 \text{ kg/s}$. Find evaporator capacity per mass q_e (kJ/kg), condenser capacity per mass q_c (kJ/kg), compressor work per mass w_c (kJ/kg), cooling COP_L, heating COP_H, compressor exit temperature t_2 (°C), evaporator inlet quality x_4 , evaporator capacity \dot{Q}_e , condenser capacity \dot{Q}_c , compressor power \dot{W}_c in kW. Use EES software.

[2a] Heat pump(air-to-air). Evaporator air inlet temperature $t_1 = 25.7$ °C, evaporator air inlet relative humidity $\phi_1 = 55$ %, Evaporator air outlet temperature $t_2 = 12.7$ °C, evaporator air outlet relative humidity $\phi_2 = 95$ %, evaporator air inlet flow rate $\dot{V}_1 = 1325$ cmh, condenser air inlet temperature $t_3 = 30.7$ °C, condenser air inlet relative humidity $\phi_3 = 45$ %, condenser air outlet temperature $t_4 = 39.4$ °C, condenser air outlet relative humidity $\phi_4 = 30.4$ %, condenser air inlet flow rate $\dot{V}_3 = 4360$ cmh, compressor power $\dot{W}_c = 2.64$ kW, indoor fan power $\dot{W}_{f,c} = 0.12$ kW, outdoor fan power $\dot{W}_{f,c} = 0.22$ kW. Use thermodynamic property table and equations.

- (1) Find cooling heat pump COP_{HP} .
- (2) Find cooling system COP_{system}.

- [2b] Heat pump(air-to-air). Evaporator air inlet temperature $t_1 = 25.7$ °C, evaporator air inlet relative humidity $\phi_1 = 55$ %, Evaporator air outlet temperature $t_2 = 12.7$ °C, evaporator air outlet relative humidity $\phi_2 = 95$ %, evaporator air inlet flow rate $\dot{V}_1 = 1325$ cmh, condenser air inlet temperature $t_3 = 30.7$ °C, condenser air inlet relative humidity $\phi_3 = 45$ %, condenser air outlet temperature $t_4 = 39.4$ °C, condenser air outlet relative humidity $\phi_4 = 30.4$ %, condenser air inlet flow rate $\dot{V}_3 = 4360$ cmh, compressor power $\dot{W}_c = 2.64$ kW, indoor fan power $\dot{W}_{f,c} = 0.12$ kW, outdoor fan power $\dot{W}_{f,c} = 0.22$ kW. Use psychrometric chart.
- (1) Find cooling heat pump COP_{HP} .
- (2) Find cooling system COP_{system}.

- [2c] Heat pump(air-to-air). Evaporator air inlet temperature $t_1 = 25.7$ °C, evaporator air inlet relative humidity $\phi_1 = 55$ %, Evaporator air outlet temperature $t_2 = 12.7$ °C, evaporator air outlet relative humidity $\phi_2 = 95$ %, evaporator air inlet flow rate $\dot{V}_1 = 1325$ cmh, condenser air inlet temperature $t_3 = 30.7$ °C, condenser air inlet relative humidity $\phi_3 = 45$ %, condenser air outlet temperature $t_4 = 39.4$ °C, condenser air outlet relative humidity $\phi_4 = 30.4$ %, condenser air inlet flow rate $\dot{V}_3 = 4360$ cmh, compressor power $\dot{W}_c = 2.64$ kW, indoor fan power $\dot{W}_{f,e} = 0.12$ kW, outdoor fan power $\dot{W}_{f,c} = 0.22$ kW. Use EES software.
- (1) Find cooling heat pump COP_{HP} .
- (2) Find cooling system COP_{system}.

[3a] Chiller(water-to-water). Chilled water(CHW) flow rate $\dot{V}_{CHW} = 2000$ lpm, CHW inlet temperature $t_{CHW,in} = 12.6\,^{\circ}\text{C}$, CHW outlet temperature $t_{CHW,out} = 7.4\,^{\circ}\text{C}$, cooling water(COW) flow rate $\dot{V}_{COW} = 2630$ lpm, COW inlet temperature $t_{COW,in} = 30.6\,^{\circ}\text{C}$, COW outlet temperature $t_{COW,out} = 35.8\,^{\circ}\text{C}$, compressor power $\dot{W}_c = 182.3$ kW, CHW pump power $\dot{W}_{p,CHW} = 19.2$ kW, COW pump power $\dot{W}_{p,COW} = 25.3$ kW, cooling tower fan power $\dot{W}_{CT} = 7.5$ kW, air handling unit power $\dot{W}_{AHU} = 29.5$ kW. Water density $\rho_W = 1000$ kg/m³, water specific heat $c_W = 4.1868$ kJ/(kg $^{\circ}\text{C}$). Use thermodynamic equations.

(1) Chiller COP. $COP_{chiller} = \frac{Q_e}{\dot{W}_c}$

(2) Chiller system COP.
$$COP_{system} = \frac{Q_e}{\dot{W}_{total}}$$
 $\dot{W}_{total} = \dot{W}_c + \dot{W}_{p,CHW}$
(3) Energy balance % error. $PE = \frac{\dot{Q}_c - (\dot{Q}_e + \dot{W}_c)}{\dot{Q}_c} \times 100$ $+ \dot{W}_{p,COW} + \dot{W}_{CT} + \dot{W}_{AHU}$

(4) Auxiliary power ratio.
$$R_{aux} = \frac{\dot{W}_{p,CHW} + \dot{W}_{p,COW} + \dot{W}_{CT} + \dot{W}_{AHU}}{\dot{W}_{total}}$$

- [3b] Chiller(water-to-water). \dot{V}_{CHW} = 2000 lpm, $t_{CHW,in}$ = 12.6°C, $t_{CHW,out}$ = 7.4°C, \dot{V}_{COW} = 2630 lpm, $t_{COW,in}$ = 30.6°C, $t_{COW,out}$ = 35.8°C, \dot{W}_{c} = 182.3 kW, $\dot{W}_{p,CHW}$ = 19.2 kW, $\dot{W}_{p,COW}$ = 25.3 kW, \dot{W}_{CT} = 7.5 kW, \dot{W}_{AHU} = 29.5 kW. Use EES software.
- (1) Chiller COP. $COP_{chiller} = \frac{\dot{Q}_e}{\dot{W}_c}$
- (2) Chiller system COP. $COP_{system} = \frac{\dot{Q}_e}{\dot{W}_{total}}$ $\dot{W}_{total} = \dot{W}_c + \dot{W}_{p,CHW}$ (3) Energy balance % error. $PE = \frac{\dot{Q}_c (\dot{Q}_e + \dot{W}_c)}{\dot{Q}_c} \times 100$ $+ \dot{W}_{p,COW} + \dot{W}_{CT} + \dot{W}_{AHU}$
- (4) Auxiliary power ratio. $R_{aux} = \frac{\dot{W}_{p,CHW} + \dot{W}_{p,COW} + \dot{W}_{CT} + \dot{W}_{AHU}}{\dot{W}_{total}}$