

CICLO IME 4 - OBJETIVO

TURMA IME-ITA

2022

		,	
RAA	TEN	$\pi \wedge T$	\sim
IVIA		ині	IL.A

1ª QUESTÃO Valor: 0,25

Seja f uma função nos reais tal que:

$$f(x+y) = f(x)f(y),$$

com f(1)=2. Calcule o valor de $a\in\mathbb{N}$ de modo que:

$$\sum_{k=1}^{n} f(a+k) = 16(2^{n} - 1).$$

A() 1 **B**() 2 **C**() 3 **D**() 4 **E**() 5

2ª QUESTÃO Valor: 0,25

Determine o produto das raízes da equação:

$$(5+2\sqrt{6})^{x^2-3} + (5-2\sqrt{6})^{x^2-3} = 10,$$

para $x \in \mathbb{R}$.

A() 2 **B**() -4 **C**() 8 **D**() -2 **E**() 1

Valor: 0,25

Considere a função f nos reais, de maior domínio possível, dada por:

$$f(x) = \sqrt{5 - x}.$$

Qual o valor de $x \ge 0$ de modo que f(f(x)) = x?

- **A**() $\frac{-1+\sqrt{21}}{2}$
- **B**() $\frac{-2+3\sqrt{23}}{2}$
- **C**() $\frac{1+\sqrt{21}}{2}$

- **D**() $\frac{1+\sqrt{17}}{2}$
- **E**() $\frac{1-\sqrt{17}}{2}$

4ª QUESTÃO Valor: 0,25

Considere o polinômio:

$$p(x) = ax^4 + bx^3 + cx^2 + dx + e,$$

onde p(1) = 2, p(2) = 3, p(3) = 4, p(4) = 5 e p(0) = 25. Calcule p(5).

- A() 6 B() 5 C() 30 D() 10
- **E**() 0

5ª QUESTÃO Valor: 0,25

Qual o quadrado da soma dos possíveis valores de $\cos\left(\theta\pm\frac{\pi}{4}\right)$ onde:

$$\sin(\pi\cos(\theta)) = \cos(\pi\sin(\theta))$$
 ?

- **A**() 1 **B**() $\sqrt{2}$ **C**() 0 **D**() 2 **E**() $\sqrt{3}$

6ª QUESTÃO Valor: 0,25

Se a, b e c são as medidas dos lados de um triângulo de modo que vale a relação

$$a^4 + b^4 + c^4 = 2c^2(a^2 + b^2),$$

então determine as possíveis medidas dos ângulos opostos ao lado de medida c:

- **A**() 45° ou 90°
- **B**() 30° ou 135°
- \mathbf{C} () 45° ou 120°

- \mathbf{D} () 60° ou 120°
- **E**() 45° ou 135°

Valor: 0,25

Simplifique:

$$\tan(A) + 2\tan(2A) + 4\tan(4A) + 8\cot(8A).$$

 $\mathbf{A}()$ $\sin(A)$

- $\mathbf{B}(\) \cos(A)$ $\mathbf{C}(\) \tan(A)$ $\mathbf{D}(\) \cot(A)$ $\mathbf{E}(\)$ 1

8ª QUESTÃO

Valor: 0,25

Sabendo que |x| representa a parte inteira de $x \in \mathbb{R}$, calcule a soma das raízes da equação:

$$\lfloor \frac{2x+1}{3} \rfloor + \lfloor \frac{4x+5}{6} \rfloor = \frac{3x-1}{2}.$$

A() 24

- **B**() 39
- **C**() 15
- **D**() 10
- **E**() 32

9ª QUESTÃO

Valor: 0,25

Sejam A e B matrizes simétricas de mesma ordem. Definindo X = AB + BA e Y = AB - BA, analise as afirmativas: I - X e Y também são matrizes simétricas. II - X é simétrica e Y é antissimétrica. III - XY é antissimétrica. IV - O oposto da transposta de YX é igual a XY. Com base nas afirmativas, é(são) verdadeira(s):

10^a QUESTÃO Valor: 0,25

QUESTÃO 10 Sejam a, b e c números reais tais que |a - b| = m, |b - c| = n, |c - a| = p e abc = q, com $q \neq 0$. Calcule o valor da expressão:

$$\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} - \frac{1}{a} - \frac{1}{b} - \frac{1}{c}.$$

3

A()
$$\frac{m^2 + n^2 + p^2}{2q}$$

B()
$$\frac{m^2 - n^2 + p^2}{2q}$$

B()
$$\frac{m^2-n^2+p^2}{2q}$$
 C() $\frac{m^2+n^2-p^2}{2q}$

D()
$$\frac{m^2 + n^2 + p^2}{q}$$

$$\mathbf{E}(\) \quad \frac{m+n+p}{q}$$

11a QUESTÃO

Valor: 0,25

Calcule:

$$\frac{\sum_{k=1}^{99} \sqrt{10 + \sqrt{k}}}{\sum_{k=1}^{99} \sqrt{10 - \sqrt{k}}}.$$

B()
$$\sqrt{2}$$

C()
$$\sqrt{2} + 1$$

A() 1 **B**()
$$\sqrt{2}$$
 C() $\sqrt{2}+1$ **D**() $\sqrt{2}-1$ **E**() $\frac{\sqrt{2}}{2}$

$$\mathbf{E}(\) \quad \frac{\sqrt{2}}{2}$$

12ª QUESTÃO

Valor: 0,25

Para $x \in \mathbb{R}$, sabendo que:

$$\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7,$$

qual o valor de $\sin x + \cos x$?

A()
$$\sqrt{3}$$

B()
$$\sqrt{5}-2$$

D()
$$\sqrt{7}-4$$

A()
$$\sqrt{3}$$
 B() $\sqrt{5}-2$ **C**() 1 **D**() $\sqrt{7}-4$ **E**() $\sqrt{10}-5$

13ª QUESTÃO

Valor: 0,25

Os dois lados iguais de um triângulo isósceles estão sobre as retas de equações 7x - y + 3 = 0 e x + y - 3 = 0. Se o terceiro lado está contido na reta de equação geral ax + by + c = 0 que passa pelo ponto (1, -10), calcule todos os valores possíveis para a soma a + b + c.

C() 33 **D**()
$$-11$$
 E() -22

E()
$$-22$$

14a QUESTÃO

Valor: 0,25

Se $z^2 + z + 1 = 0$, com $z \in \mathbb{C}$, então calcule:

$$\left(z+\frac{1}{z}\right)^2+\left(z^2+\frac{1}{z^2}\right)^2+\cdots+\left(z^6+\frac{1}{z^6}\right)^2.$$

A() 18

15ª QUESTÃO

Valor: 0,25

Na expansão de $(1 + ax + bx^2)(1 - 2x)^{18}$, ambos os coeficientes de x^3 e de x^4 são nulos. Qual o valor de 51a - 3b ?

4

FÍSICA

16^a QUESTÃO Valor: 0,25

Dois semicilindros circulares de igual comprimento, raios r_1 e r_2 ($r_1>r_2$) e pesos P_1 e P_2 , respectivamente, se apoiam entre si sendo rugosas as superfícies de contato. Calcular o coeficiente de atrito para que os semicilindros estejam na iminência de escorregar na posição indicada na figura. Sabe-se que as distâncias entre os centros de gravidade dos semicilindros ao plano de contato valem $\frac{4_1}{3\pi}$ e $\frac{4_2}{3\pi}$.

$$\mathbf{A}\,(\)\quad \frac{3\pi}{4}\frac{(P_1P_2)(r_1+r_2)}{(P_1+P_2)(r_1r_2)}$$

$$\mathbf{B(\)}\quad \frac{3\pi}{4}\frac{P_{2}(r_{1}r_{2})}{P_{1}r_{1}P_{2}r_{2}}$$

$$\mathbf{C}(\) \quad \frac{3\pi}{4}(P_1+P_2)\frac{\sqrt{r_1^2+r_2^2}}{P_{11}P_2r_2}$$

$$\mathbf{D}(\) \quad \frac{3\pi}{4} \frac{(P_1 + P_2) \sqrt{r_1^2 + r_2^2}}{P_1 r_1 P_2 r_2}$$

$$\mathbf{E(\)} \quad \frac{3\pi}{4} \frac{P_1(r_1+r_2)}{P_1r_1P_2r_2}$$

17^a QUESTÃO Valor: 0,25

Gabriel, Lucas e Renan foram fazer um churrasco na casa do Daniel . Para isso, eles compraram uma churrasqueira elétrica, com as especificações de $220\ V\ \ 20\ A$ para funcionamento em sua potência máxima. Chegando à casa do Daniel, encontraram uma tomada de $220\ V\ \ 20\ A$, mas não estava em um local apropriado para colocar uma churrasqueira. Sendo assim, eles tiveram a brilhante ideia de usar uma extensão, mas sua corrente máxima permitida era de $10\ A$. Sabendo que a churrasqueira elétrica possui uma escala linear de potência que vai de 0 (desligado) a 4 (ligado com sua potência máxima), pode-se afirmar que o valor máximo da escala que Daniel pode ligar sua churrasqueira sem danificar os equipamentos é:

- A() 0, pois se ligar a churrasqueira com qualquer potência, a extensão queimará.
- **B**() 1
- **C**() 2
- **D**() 3
- **E**() 4

18^a QUESTÃO Valor: 0,25

Uma amostra de um gás ideal de $1,00\ mol\ (\gamma=1,4)$ segue o ciclo mostrado abaixo. No ponto A, a pressão é $25,0\ atm$ e a temperatura é $600\ K$. No ponto C, a pressão é de $1\ atm$ e a temperatura é $127^{\circ}C$. O trabalho realizado neste ciclo é aproximadamente dado por:

Dados: Constante universal dos gases perfeitos: $= 8,31 \ /mol \cdot K \ln(5) = 1,61 \ln(\frac{3}{2}) = 0,405$

- **A**() 3,0 kJ
- **B**() 4, 2 kJ
- **C**() 2, 1 kJ
- **D**() 1,5 kJ
- **E**() 5,0 kJ

Uma pista sem atrito consiste em uma parte horizontal de comprimento desconhecido ligado a um semicírculo de raio r, como mostra a figura. Qual o menor comprimento possível para a parte horizontal da pista para que o objeto, ao sair do loop do semicírculo, caia de volta na posição inicial?

- $\mathbf{A}()$ r
- $\mathbf{B}(\)$ $\sqrt{2}r$
- $\mathbf{C}(\)$ $\sqrt{3}r$
- **D**() 1,5r
- $\mathbf{E}(\)$ 2r

20^a QUESTÃO Valor: 0,25

A figura abaixo mostra o diagrama $P \times V$ de um processo feito com certa quantidade de gás oxigênio. Os valores do volume V_0 e pressão p_0 da figura são $V_0=12~dm^3$, $p_0=1, 2\cdot 10^5~Pa$. No estado inicial A, o volume do gás é $V_A=23V_0$ e sua temperatura é $T_A=300~K$. No estado final B, $V_B=512V_0$. Determine o calor absorvido e o calor liberado pelo gás durante o processo, respectivamente.

- **A**() 30 J = 90 J
- **B**() 50 J = 50 J
- **C**() 30 J = 120 J

- **D**() 50 J e 90 J
- **E**() 50 J e 120 J

Valor: 0,25

Considere um circuito como na figura a seguir. Tal circuito é utilizado para medir o valor da resistência desconhecida R_x . Para isso, um galvanômetro (G) pode se movimentar livremente em cima de um fio de cobre AB. No momento em que há ausência de corrente no galvanômetro, este divide o fio em dois comprimentos l_1 e l_2 , como na figura. Sendo R_0 a resistência padrão, podemos afirmar que:

- a) [] $R_x R_0 = l_1 l_2$
- b) $[]_{R_0}^{R_x} = \frac{l_2}{l_1}$
- c) $[x] rac{R_x}{R_0} = rac{l_1}{l_2}$
- d) [] $rac{R_x}{R_0} = rac{l_2^2}{l_1^2}$
- e) [] $rac{R_x}{R_0}=\sqrt{rac{l_2}{l_1}}$

Qual é a velocidade angular máxima que se pode ter na haste para que a esfera permaneça em repouso em relação ao ponto C?

Dados: - L = 0, 3 m; - $g = 10 m/s^2$.

- **A**() 10/3 rad/s
- **B**() 20/3 rad/s
- **C**() 10 rad/s

- **D**() 40/3 rad/s
- **E**() 20 rad/s

23ª QUESTÃO Valor: 0,25

Uma partícula de carga $10~\mu$ e massa 1~ é lançada a partir da origem de um sistema de coordenadas xyz e com velocidade $\vec{v_0}=(2\hat{x}+3\hat{y}+5\hat{z})~m/s$, em uma região onde age um campo elétrico $\vec{E}=$ $10^5 \hat{z} \ N/C$. Despreze os efeitos gravitacionais. Assinale a alternativa que corresponde às coordenadas do P onde estará a carga quando o módulo da sua velocidade for mínimo ao longo da trajetória.

A()
$$P = (1; 1, 5; 2, 5)10^{-2} m$$

B()
$$P = (1; 1, 25; 1, 25)10^{-2} n$$

C()
$$P = (2; 1, 5; 1, 25)10^{-2} m$$

B()
$$P=(1;1,25;1,25)10^{-2}~m$$

D() $P=(1;1,5;1,25)10^{-2}~m$

E()
$$P = (1; 2; 1, 25)10^{-2} m$$

Dois corpos de mesma massa m são conectados na horizontal por uma mola de constante elástica k. Repentinamente é imposta uma velocidade horizontal v direcionada à direita no corpo que se encontra à esquerda. Determine a equação do movimento do corpo que se encontra à direita em relação à sua posição inicial.

A()
$$\frac{v}{2}t - \frac{v}{2}\sqrt{\frac{m}{2k}}sen\left(\sqrt{\frac{2k}{m}}t\right)$$

B()
$$vt - v\sqrt{\frac{m}{2k}}sen\left(\sqrt{\frac{k}{m}}t\right)$$

$$\mathbf{C}$$
() $\frac{v}{2}t - v\sqrt{\frac{m}{2k}}sen\left(\sqrt{\frac{2k}{m}}t\right)$

$$\mathbf{D}$$
() $\frac{v}{2}t+v\sqrt{\frac{m}{2k}}sen\left(\sqrt{\frac{k}{m}}t\right)$

E()
$$\frac{v}{2}t + \frac{v}{2}\sqrt{\frac{m}{2k}}sen\left(\sqrt{\frac{2k}{m}}t\right)$$

25^a QUESTÃO Valor: 0,25

A figura mostra um sistema formado por dois blocos, A e B cada um com massa m=2~kg. O bloco A pode deslocar-se sobre a superfície plana e horizontal onde se encontra. O bloco B está conectado a um fio inextensível fixado à parede, e que passa por uma polia ideal com eixo preso ao bloco A. Um suporte vertical sem atrito mantém o bloco B descendo sempre paralelo a ele, conforme mostra a figura. Sendo $\mu=\sqrt{3}$ o coeficiente de atrito cinético entre o bloco A e a superfície, $g=10~m/s^2$ a aceleração da gravidade, e $\theta=30^\circ$ mantido constante, determine a tração no fio após o sistema ser abandonado do repouso em newtons.

A() 40

B() 35

26^a QUESTÃO

Valor: 0,25

Um cilindro de altura 25~cm e diâmetro desprezível foi abandonado de uma posição tal, que sua base inferior estava alinhada com a extremidade superior de um espelho plano de $50\ cm$ de altura e a $20\ cm$ deste. Durante sua queda, ele é visto, assim como a sua imagem, por um observador, que se encontra a 1 m do espelho e a meia altura deste. Calcule por quanto tempo o observador vê a imagem do cilindro, que permanece vertical durante a queda. Considere $g = 10 \ m/s^2$.

- **A**() 0,13 s
- **B**() 0,20 s

- C() 0,33 s D() 0,40 s E() 0,53 s

27ª QUESTÃO Valor: 0,25

Seja um material cujo coeficiente de dilatação linear varia com a temperatura da seguinte forma: $\alpha(\theta)=\theta_0+k\theta$ onde θ_0 e k são constantes da ordem de 10^5 e θ é a temperatura em °. Sabe-se que a 0° o material possuía um comprimento igual a L_0 e após elevar-se a temperatura até $T({}^{\circ}C)$ o comprimento passou a ser L. Encontre o valor de L em função de T, k, L_0 , θ_0 .

A()
$$L_0[1+T(\theta_0+\frac{kT}{2})]$$
 B() $L_0[1+T(\theta_0+kT)]$ **C**() $L_0T(\theta_0+\frac{kT}{2})$

B()
$$L_0[1 + T(\theta_0 + kT)]$$

$$\mathbf{C}(\)\ L_0T(heta_0+rac{kT}{2})$$

$$\mathbf{D}(\) \quad L_0T(\theta_0+kT)$$

$$\mathbf{D}$$
() $L_0T(heta_0+kT)$ \mathbf{E} () $L_0(1+rac{kT^2}{2})$

Considere que a trajetória de um raio de luz em um meio não homogêneo varia, em função da ordenada y de acordo com a seguinte equação:

$$y = \begin{cases} \frac{x^3}{4} & \text{, } x \ge 0\\ \frac{-x^3}{4} & \text{, } x < 0 \end{cases}$$

Sabendo que o índice de refração varia em função da coordenada x, determine o valor do índice de refração quando x=1. Dados: n(0)=1

- **A**() 1
- **B**() 3/2
- **C**() 5/4
- **D**() 5/3
- **E**() 2

29^a QUESTÃO Valor: 0,25

Considere dois cubos idênticos de mesma massa $m_1=3,0\ kg$ e uma cunha de massa $m_2=2,0\ kg$ e seção triangular equilátera simetricamente posicionada entre eles. Desprezando-se todos os atritos, determine a aceleração vertical adquirida pela cunha, quando o sistema for abandonado a partir do repouso.

A() $2 m/s^2$

B() $3 m/s^2$

C() $5 m/s^2$

- **D**() $2\sqrt{3} \ m/s^2$
- **E**() $\frac{3\sqrt{3}}{2} m/s^2$

30^a QUESTÃO Valor: 0,25

Duas partículas, A e B, se movimentam em relação a um observador estático com velocidades $v_A=0,9c$ e $v_B=0,6c$ em sentidos opostos. Neste caso, podemos afirmar que as velocidades relativas da partícula A em relação à B (v_{AB}) e da partícula B em relação à A (v_{BA}) são Dado: c = velocidade da luz no vácuo.

- **A**() $v_{AB} = 0,556c$ e $v_{BA} = 0,556c$.
- **B**() $v_{AB} = 0.652c$ e $v_{BA} = 0.974c$.
- **C**() $v_{AB} = 0.974c$ e $v_{BA} = 0.652c$.
- **D**() $v_{AB} = 0,974c$ e $v_{BA} = 0,974c$.
- **E**() $v_{AB} = 0,652c$ e $v_{BA} = 0,652c$.

QUÍMICA

Dados

Constantes

- Aceleração da gravidade $g=9.8\,\mathrm{m\,s^{-2}}$
- \bullet Carga elementar $e=1.6\times 10^{-19}\,\mathrm{C}$
- ullet Constante de Avogadro $N_{
 m A}=6.0 imes10^{23}\,{
 m mol}^{-1}$
- \bullet Constante de Planck $h=6.6\times 10^{-34}\,\mathrm{J\,s}$
- \bullet Constante de Rydberg $\mathcal{R}_{\infty}=1.1\times 10^7\,\mathrm{m}^{-1}$
- \bullet Constante dos Gases $R=8.3\,\mathrm{J\,K^{-1}\,mol^{-1}}$
- \bullet Velocidade da luz no vácuo $c=3\times 10^8\,\mathrm{m\,s^{-1}}$

Elementos

Elemento Químico	Número Atômico	Massa Molar $(g \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	CI	17	35,45
He	2	4,00	Ar	18	$39,\!95$
С	6	12,01	K	19	39,10
N	7	14,01	Ca	20	40,08
0	8	16,00	Cr	24	52,00
F	9	19,00	Fe	26	$55,\!84$
Ne	10	20,18	Cu	29	$63,\!55$
Na	11	22,99	Zn	30	$65,\!38$
Mg	12	24,31	Br	35	79,90
S	16	32,06	Į	53	126,90

31^a QUESTÃO Valor: 0,25

Considere as proposições a seguir.

- **1.** A molécula ${\rm SiO_4}^{4-}$ é apolar.
- **2.** A hibridização do átomo central na molécula ${\rm IF}_7$ é sp^3d^3 .
- **3.** A molécula XeF_6 possui geometria octaédrica.
- **4.** O menor ângulo de ligação F-Cl-F no ClF_3 é menor que o ângulo de ligação F-N-F no NF_3 .

Assinale a alternativa que relaciona as proposições corretas.

32^a QUESTÃO Valor: 0,25

Considere dois recipientes perfeitamente isolados em pressão de $1\,\mathrm{atm}$. O recipiente **A** contém um cubo de gelo a $0\,^\circ\mathrm{C}$ e água a $0\,^\circ\mathrm{C}$. O recipiente **B** inicialmente contém um cubo de gelo a $0\,^\circ\mathrm{C}$ e uma solução de água do mar a $0\,^\circ\mathrm{C}$. Considere as seguintes proposições.

- 1. A variação de entropia da vizinhança é nula para o processo que ocorre no recipiente A.
- 2. A variação de entropia da vizinhança é nula para o processo que ocorre no recipiente B.
- 3. A variação de entropia do sistema é negativa para o processo que ocorre no recipiente A.
- 4. A variação de entropia do sistema é positiva para o processo que ocorre no recipiente B.

Assinale a alternativa que relaciona as proposições corretas.

A() 1 e 2

B() 1 e 4

C() 2 e 4

D() 1, 2 e 4

E() 1, 2, 3 e 4

33^a QUESTÃO Valor: 0,25

A análise elemental de um composto revelou que esse possui 40% de massa em carbono, 6.7% de massa em hidrogênio e 53.3% de massa de oxigênio. Uma solução de $0.65\,\mathrm{g}$ de sólido em $27.8\,\mathrm{g}$ de bifenilo, $C_{12}H_{10}$, levou a um abaixamento de $1.56\,^{\circ}\mathrm{C}$ na temperatura de congelamento.

Assinale a alternativa com a fórmula molecular desse composto.

A() $C_2H_4O_2$

B() $C_2H_6O_2$

C() $C_4H_8O_4$

D() $C_4H_{10}O_4$

 $\mathbf{E}()$ $C_4H_8O_8$

Dados

 \bullet Constante crioscópica do bifenilo $K_f(\mathrm{C}_{12}\mathrm{H}_{10}) = 8\,^\circ\mathrm{C}\,\mathrm{kg}\,\mathrm{mol}^{-1}$

Valor: 0,25

Acetileno é submetido a sequencia de reações a seguir.

- 1. Tratamento com amida de sódio
- 2. Adição de iodeto de metila
- 3. Tratamento com amida de sódio
- 4. Adição de iodeto de etila
- 5. Hidrogenação catalítica com paládio em sulfato de bário.

Assinale a alternativa que com o produto majoritário final obtido.

A() Pent-2-ino

B() (*Z*)-Pent-2-eno

C() (*E*)-Pent-2-eno

D() Pentano

E() Pent-2-ilamina

35ª QUESTÃO

Valor: 0,25

A decomposição térmica da fosfina segue cinética de primeira ordem.

$$4 PH_3(g) \longrightarrow P_4(g) + 6 H_2(g)$$

A meia-vida para essa reação é $35\,\mathrm{s}$ a $680\,^{\circ}\mathrm{C}$.

Assinale a alternativa que mais se aproxima do tempo necessário para que 95% da fosfina se decomponha. Dados: ln(2) = 0.7, ln(5) = 1.6

A() 100 s

B() 125 s **C**() 150 s **D**() 175 s **E**() 200 s

Uma garrafa possui $482\,\mathrm{mL}$ de volume útil e contém $400\,\mathrm{mL}$ de uma bebida gaseificada pesando $853.5\,\mathrm{g}$ a $298\,\mathrm{K}$. A tampa da garrafa doi cuidadosamente removida até todo o CO_2 escapar. A tampa foi recolocada e a garrafa pesou $851.5\,\mathrm{g}$.

Assinale a alternativa que mais se aproxima da pressão inicial de CO_2 na garrafa.

A() 1,7 atm

B() 2,7 atm

C() 3,7 atm

D() 4,7 atm

E() 8,7 atm

Dados

ullet Constante de Henry do CO_2 a $k_{\mathrm{H}}(\mathrm{CO}_2) = 34\,\mathrm{mmol}\,\mathrm{L}^{-1}\,\mathrm{atm}^{-1}$

37^a QUESTÃO Valor: 0,25

Considere as seguintes proposições:

- 1. O tratamento de 2-metilbut-1-eno com ácido sulfúrico diluído gera 2-metilbutan-2-ol .
- 2. O tratamento de etilciclopenteno com ácido peracético gera uma mistura racêmica.
- 3. A reação de hidroboração-oxidação com o 2-metilbut-2-eno gera o 2-metilbutan-2-ol.
- 4. Reagir o buteno com HF em peróxido gera o 1-fluorbutano.
- **A**() **1**

B() 2

C() 1 e 2

D() 1, 2 e 3

E() 1, 2 e 4

38^a QUESTÃO Valor: 0,25

Lítio metálico pode reagir com ácido clorídrico gasoso para formar gás hidrogênio e cloreto de lítio sólido, conforme a reação a seguir.

$$2\operatorname{Li}(s) + 2\operatorname{HCl}(g) \longrightarrow 2\operatorname{LiCl}(s) + \operatorname{H}_2(g)$$

Assinale a alternativa com o valor que mais se aproxima da variação de entalpia para a formação de 22,4L de gás hidrogênio em CNTP.

A() -560kJ

B() -900kJ

C() 4140kJ

D() 820kJ

E() 2760kJ

Dados

- \bullet Afinidade eletrônica do cloro $AE({\rm Cl})=3.6\,{\rm eV}$
- ullet Energia de ionização do lítio $EI({
 m Li})=5.4\,{
 m eV}$
- ullet Energia de ligação H-H $EL(\mathrm{H-H})=432\,\mathrm{kJ\,mol}^{-1}$
- \bullet Entalpia de rede do cloreto de lítio $\Delta H_{\rm R}({\rm LiCl}) = 829\,{\rm kJ\,mol}^{-1}$
- ullet Entalpia de sublimação do lítio $\Delta H_{
 m sub}({
 m Li}) = 166\,{
 m kJ\,mol}^{-1}$

O mecanismo de Lindemann-Hinshelwood para reações unimoleculares é apresentado a seguir.

$$\mathbf{A} + \mathbf{A} \stackrel{k_1}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}}} \mathbf{A} + \mathbf{A}^\star$$

$$\mathbf{A}^{\star} \xrightarrow{k_2} \mathbf{P}$$

Considere as seguintes proposições.

1. A velocidade de formação do produto P é dada por

$$v = \frac{k_1 k_2 [\mathbf{A}]^2}{k_2 + k_{-1} [\mathbf{A}]}$$

- 2. Se a primeira etapa é lenta, a reação pode ser descrita como de segunda ordem em A.
- 3. Se a segunda etapa é lenta, a reação pode ser descrita como de primeira ordem em A.
- Se a concentração de A se torna muito baixa, a reação assume uma cinética de segunda ordem em
 A.

Assinale a alternativa que relaciona as proposições corretas.

A() 1, 2 e 3

B() 1, 2 e 4

C() 1,3e4

D() 2,3e4

E() 1, 2, 3 e 4

40^a QUESTÃO Valor: 0,25

Considere as proposições a seguir.

- 1. A amônia é mais básica que a fosfina.
- 2. A acetamida é mais básica que a etilamina.
- 3. A dietilamina é mais básica que a trietilamina.
- 4. A dietilamina é mais básica que a metilamina.

Assinale a alternativa que relaciona as proposições corretas.

A() 1 e 3

B() 1 e 4

C() 3 e 4

D() 1,3 e 4

E() 1, 2, 3 e 4