Algebraic Geometry II: Exercises for Lecture 5

March 7, 2019

- 1) Show that the closed subschemes of \mathbb{P}_k^n correspond bijectively with the homogeneous ideals $A \subseteq k[X_0, \ldots, X_n]$ with the property that $f \in A$ if $X_i \cdot f \in A$ for all i (for $f \in k[X_0, \ldots, X_n]$).
- 2) Let X be a scheme. Denote by $X \times X$ the fibre product over Spec \mathbb{Z} . Let $Z = \{y \in X \times X \mid p_1(y) \equiv p_2(y)\}$. Show that Z equals $\Delta(X)$, where $\Delta: X \to X \times X$ is the diagonal. Conclude that $\Delta(X)$ is closed if and only if X is separated.
- 3) Let X and K be schemes and let f and g be morphisms from K to X (i.e., K-valued points of X). Assume that K is reduced. Show that f = g if and only if $f(x) \equiv g(x)$ for all $x \in K$.
- 4) Let T and U be open affine subsets of a scheme Y. Show that $T \cap U$ is the union of open sets that are distinguished both in T and in U.