

01076244 Advanced Digital System Design

Bachelor Program in Computer Engineering (B.Eng.) Faculty of Engineering

King Mongkut's Institute of Technology Ladkrabang

ออกแบบใดขใช้ state diagram - ระบบต้องไม่เขอะมาก max:10

Designing State Machines Using State Diagrams

- Designing state machines is probably the most creative task of a digital designer.
- · Most people like to take a graphical approach to design.
- State diagrams are often used to design small- to mediumsized state machines.

One fundamental difference between a state diagram and a state table; a difference that makes state-diagram design simpler but also more error prone:

- A state table is an exhaustive listing of the next states for each state/input combination.
 - No ambiguity is possible.
- A state diagram contains a set of arcs labeled with transition expressions.
 - Even when there are many inputs, only one transition expression is required per arc.
 - However, when a state diagram is constructed, there is no guarantee that the transition expression written on the arcs leaving a particular state cover all the input combinations exactly once.

ค่อย 4 ออกแบบ

คลุมเครือ, กำกวม

- Ambiguous state diagram
 - In an improperly constructed state diagram,
 - The next state for some input combinations may be unspecified, which is generally undesirable.
 - While multiple next states may be specified for others, which is just plain wrong.
 - Thus, considerable care must be taken in the design of state diagrams.

- The state machine has two input signals, LEFT and RIGHT.
- It also has an emergency flasher input, HAZ – all six lights flashing on and off in unison.
- Assume the existence of a free-running clock signal whose frequency equals the desired flashing rate for the lights.

ชัวคลุมเครื่อ : กดleft แล้งกด HAZ

State Diagram

State	LC	LB	LA	RA	RB	RC
IDLE	0	0	0	0	0	0
L1	0	0	1	0	0	0
L2	0	1	1	0	0	0
L3	1	1	1	0	0	0
R1	0	0	0	1	0	0
R2	0	0	0	1	1	0
R3	0	0	0	1	1	1
LR3	1	1	1	1	1	1

Output Table

State	LC	LB	LA	RA	RB	RC
IDLE	0	0	0	0	0	0
L1	0	0	1	0	0	0
L2	0	1	1	0	0	0
L3	1	1	1	0	0	0
R1	0	0	0	1	0	0
R2	0	0	0	1	1	0
R3	0	0	0	1	1	1
LR3	1	1	1	1	1	1

$$RA = R1 + R2 + R3 + LR3$$

 $RB = R2 + R3 + LR3$
 $RC = R3 + LR3$

Output Table

• What if ???

- Both LEFT and HAZ are asserted simultaneously?
 - According to the state diagram, the machines goes to two states, L1 and LR3, which is impossible.
 - In reality, the machine would have only one next state, which could be L1, LR3 or a totally unrelated (and possible unused) third state, depending on details of the state machine's realization.

คลุนเครือจีก: อยู่ระหว่าย สภาควาที่จ

ไม่คลุมเครื่อ

- The new state diagram is unambiguous because the transition expressions on the arcs leaving each state are mutually exclusive and all-inclusive. The input with put output
- That is, for each state,
 - No two expression are 1 for the same input combination, and
 - Some expression is 1 for every input combination

• This can be confirmed algebraically for this or any other state diagram by performing two steps:

1. Mutual exclusion.

- For each state, show that the logical product of each possible pair of transition expression on arcs leaving that state is 0.
- If there are n arcs, then there are n(n-1)/2 logical products to evaluate.

2. All inclusion.

• For each state, show that the logical sum of the transition expressions on all arcs leaving that state is 1.

• What if ???

- HAZ is asserted after a left- or right-turn cycles has begun.
- While this may have a certain aesthetic appeal, it would be safer for the car's occupants to have the machine go into hazard mode as soon as possible.

At least 3 FFs

State	Q2	Q1	Q0
IDLE	0	0	0
L1	0	0	1
L2	0	1	1
L3	0	1	0
R1	1	0	1
R2	1	1	1
R3	1	1	0
LR3	1	0	0

State assignment

- There are many state assignment possible.
- The table is used for the following reasons:
 - 1. An initial (idle) state of 000 is compatible with most flip-flops and registers, which are easily initialized to the 0 state.
 - 2. Two state variables, Q1 and Q0, are used to "count" in Gray-code sequence for the left-turn cycle (IDLE → L1 → L2 → L3 → IDLE). This minimizes the number of state-variable changes per state transition, which can <u>often</u> simplify the excitation logic.
 - 3. Because of the symmetry in the state diagram, the same sequence on Q1 and Q0 is used to "count" during a right-turn cycle, which Q2 is used to distinguish between left and right.
 - 4. The remaining state-variable combination is used for the LR3 state.

Q2

0

1

Q1

0

0

Q0

0

0

State

IDLE

LR3

State	Q2	Q1	Q0
IDLE	0	0	0
L1	0	0	1
L2	0	1	1
L3	0	1	0
R1	1	0	1
R2	1	1	1
R3	1	1	0
LR3	1	0	0

ไปปรับสถานะตาล FF ที่เลือก (excitation equation) but.เทเลือกพันบบน์แทน

S	Q2	Q1	Q0	Transition expression	S*	Q2*	Q1*	Q0*
IDLE	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0
IDLE	0	0	0	LEFT · HAZ' · RIGHT'	L1	0	0	1
IDLE	0	0	0	HAZ + LEFT · RIGHT	LR3	1	0	0
IDLE	0	0	0	RIGHT · HAZ' · LEFT'	R1	1	0	1
L1	0	0	1	HAZ'	L2	0	1	1
L1	0	0	1	HAZ	LR3	1	0	0
L2	0	1	1	HAZ'	L3	0	1	0
L2	0	1	1	HAZ	LR3	1	0	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	HAZ'	R2	1	1	1
R1	1	0	1	HAZ	LR3	1	0	0
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1	IDLE	0	0	0

Transition list

State-Machine Synthesis Using Transition Lists

• The main purpose of this section is to help you understand the internal operation and the external quirks of **CAD** programs and languages that deal with state machines.

Transition Equations

- The first step is to develop a set of equations that define each next-state variable V* in terms of the current state and input.
- The transition list can be viewed as a sort of hybrid truth table in which the state-variable combinations for current-state are listed explicitly and input combinations are listed algebraically.
- Reading down a V* column in a transition list, we find a sequence of 0s and 1s, indicating the value of V* for various (if we've done it right, all) state/input combinations.

A transition equation for a next-state variable V* can be written using a sort of hybrid canonical sum:

That is, the transition equation has one "transition p-term" for each row of the transition list that contains a 1 in the V* column. A row's transition p-term is the product of the current state's minterm and the transition expression.

S	Q2	Q1	Q0	Transition expression	S*	Q2*	Q1*	Q0*
IDLE	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0
IDLE	0	0	0	LEFT · HAZ' · RIGHT'	L1	0	0	1
IDLE	0	0	0	HAZ + LEFT · RIGHT	LR3		0	0
IDLE	0	0	0	RIGHT · HAZ' · LEFT'	R1		0	1
				1.50		1	U	1
L1	0	0	1	HAZ'	L2	0	/ 1/	1
L1	0	0	1	HAZ	LR3	1	8	0
L2	0	1	1	HAZ'	L3	0	1	0
L2	0	1	1	HAZ	LR3	1	8	/ 8
L3	0	1	0	1	IDLE	0	0	/ k
R1	1	0	1	HAZ'	R2	1	1	1
R1	1	0	1	HAZ	LR3	1	0	\ \d \ \
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	<i>b</i> X
R3	1	1	0	1	IDLE	O	0	0 X
LR3	1	0	0	1	IDLE	0	0	$\sqrt{\delta}$
								$/\chi$ /
	_						- /	/ X

S	Q2	Q1	Q0	Transition expression	S*	Q2*	Q1*	Q0*
IDLE	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0
IDLE	0	0	0	LEFT · HAZ' · RIGHT'	L1	0	0	1
IDLE	0	0	0	HAZ + LEFT · RIGHT	LR3	1	0	0
IDLE	0	0	0	RIGHT · HAZ' · LEFT'	R1	1	0	1
L1	0	0	1	HAZ'	L2	0	1	1
L1	0	0	1	HAZ	LR3	1	0	0
L2	0	1	1	HAZ'	L3	0	1	0
L2	0	1	1	HAZ	LR3	1	0	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	HAZ'	R2	1	1	1
R1	1	0	1	HAZ	LR3	1	0	0
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1	IDLE	0	0	0

		127 11		Zerick C. M. W	1			
S	Q2	Q1	Q0	Transition expression	S*	Q2*	Q1*	Q0*
IDLE	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0
IDLE	0	0	0	LEFT · HAZ' · RIGHT'	L1	0	0	1
IDLE	0	0	0	HAZ + LEFT · RIGHT	LR3	1	0	0
IDLE	0	0	0	RIGHT · HAZ' · LEFT'	R1	1	0	1
L1	0	0	1	HAZ'	L2	0	1	1
L1	0	0	1	HAZ	LR3	1	0	0
L2	0	1	1	HAZ'	L3	0	1	0
L2	0	1	1	HAZ	LR3	1	0	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	HAZ'	R2	1	1	1
R1	1	0	1	HAZ	LR3	1	0	0
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1	IDLE	0	0	0

 $Q2* = Q2' \cdot Q1' \cdot Q0' \cdot (HAZ + RIGHT)$

- So far we have derived only transition equations, not excitation equations.
- If we use D flip-flops as the memory elements in our state machines, then the excitation equations are trivial to derive from the transition equations, since the characteristic equation of a D flip-flop is Q* = D.

Therefore, if the transition equation for a state variable Q* is

then the excitation equation for the corresponding D flip-flop input is

Variations on the Scheme

If the column for a particular next-state variable contains fewer 0s than 1s, it may be advantages to write that variable's transition equation in terms of the 0s in its column.

Here, a row's transition s-term is the sum of the maxterm for the current state and the complement of the transition expression. If the transition expression is a simple product term, then its compliment is a sum, and the transition equation express V* in product-of-sums form.

