Lecture 2

Xiaoping Shi
Department of Statistics, University of Toronto
xpshi@utstat.toronto.edu
http://www.utstat.utoronto.ca/~xpshi/sta261-2013s.html

July 8, 2013

- Method of Moment
- Method of Maximum Likelihood
- Brief review

Note that we should choose the lowest possible order moment

Example 2: Consider X_1, \dots, X_n are iid Poisson(λ) with $E(X_i) = Var(X_i) = \lambda$.

Our aim is to show that we should choose the lowest possible order moment in the method of moment.

Two estimators of λ by the method of moment are $\hat{\lambda}_1 = \sum_{i=1}^n X_i/n$ and $\hat{\lambda}_2 = \sum_{i=1}^n (X_i - \sum_{i=1}^n X_i/n)^2/n$.

We use simulations to show that $\hat{\lambda}_1$ is better by applying the lower order moment.

For n=20 and n=100, we take $\lambda=5$ and $\lambda=10$. Simulate 1000 times and we obtain $\hat{\lambda}_{1i}, \hat{\lambda}_{2i}$ for $i=1,\cdots,1000$. We calculate the sample means and sample variances of them as

Recall Example 2
Method of Maximum Likelihood

n	λ	$\hat{E}(\hat{\lambda}_1)$	\hat{V} ar $(\hat{\lambda}_1)$	$\hat{E}(\hat{\lambda}_2)$	\hat{V} ar $(\hat{\lambda}_2)$
20	5	5.0025	0.2656	4.7813	2.5178
	10	10.0406	0.5163	9.5677	9.8858
100	5	4.9864	0.0500	4.9440	0.5278
	10	9.9916	0.0964	9.8545	2.0582

The Table indicates $\hat{\lambda}_1$ is more accurate than $\hat{\lambda}_2$, why?

$$E(\hat{\lambda}_1) = \lambda$$
 unbiased $E(\hat{\lambda}_2) < \lambda$ biased $Var(\hat{\lambda}_1) < Var(\hat{\lambda}_2)$

Conclusion: suppose we wish to estimate two parameters θ_1 and θ_2 :

$$\theta_1 = f_1(\mu_1, \mu_2)$$

$$\theta_2 = f_2(\mu_1, \mu_2)$$

The the method of moments estimates are

$$\begin{aligned}
\hat{\theta}_1 &= f_1(\hat{\mu}_1, \hat{\mu}_2) \\
\hat{\theta}_2 &= f_2(\hat{\mu}_1, \hat{\mu}_2)
\end{aligned}$$

Usually we know $\mu_i = g_i(\theta_1, \theta_2)$ for i = 1, 2, then we solve the invert functions g_i and get θ_i . Use low order moments and replace moments by sample moments.

Example 3: Consider X_1, \dots, X_n is iid Normal distribution $N(\mu, \sigma^2)$ with parameters $\theta_1 = \mu$ and $\theta_2 = \sigma^2$.

$$\mu_1 = E(X) = \mu$$

 $\mu_2 = E(X^2) = \sigma^2 + \mu^2$

$$\mu = \mu_1$$

$$\sigma^2 = \mu_2 - \mu_1^2$$

So
$$\hat{\mu} = \bar{X}$$
, $\hat{\sigma}^2 = \sum_{i=1}^n X_i^2/n - \bar{X}^2 = \sum (X_i - \bar{X})^2/n$ with $E(\hat{\mu}) = \mu$, $Var(\hat{\mu}) = \sigma^2/n$, $E(\hat{\sigma}^2) = (n-1)\sigma^2/n$ and $Var(\hat{\sigma}^2) = 2(n-1)\sigma^4/(n^2)$

Example 4: Consider X_1, \dots, X_n are iid Gamma distribution $G(\alpha, \lambda)$ with parameters $\theta_1 = \alpha$ and $\theta_2 = \lambda$.

$$\mu_1 = E(X) = \alpha/\lambda$$

 $\mu_2 = E(X^2) = \mu_1/\lambda + \mu_1^2$

$$\lambda = \mu_1/(\mu_2 - \mu_1^2)$$

$$\alpha = \mu_1^2/(\mu_2 - \mu_1^2)$$

So $\hat{\alpha} = \bar{X}^2/(\sum (X_i - \bar{X})^2/n)$ and $\hat{\lambda} = \bar{X}/(\sum (X_i - \bar{X})^2/n)$. To find the sample distribution of $\hat{\alpha}$ and $\hat{\lambda}$ such as their expectations and variances is difficult.

- Approximating by simulations
- Approximating by central limit theorem (CLT)

Example 5: Consider X_1, \dots, X_n are iid Angular distribution $A(\alpha)$ with parameters $\theta_1 = \alpha$ and pdf

$$f(x|\alpha) = \frac{1 + \alpha x}{2}, -1 \le x \le 1, -1 \le \alpha \le 1.$$

$$\mu_1 = E(X) = \alpha/3$$

So $\hat{\alpha} = 3\bar{X}$.

The sampling distribution of $\hat{\alpha}$ can be obtained by **central limit theorem**.

Note: $\hat{\alpha}$ is a consistent estimate of α in probability, that is, for any $\varepsilon > 0$,

$$P(|\hat{\alpha} - \alpha| > \varepsilon) \to 0$$
, as $n \to \infty$ (1.1)

by Chebyschev's Lemma.

The sample distribution of moment estimates is obtained by CLT or simulation. However, we will later see that Maximum Likelihood estimates (MLE) have nice theoretical properties.

Suppose that r.v.'s X_1, \dots, X_n have a joint density function

$$f(x_1, x_2, \cdots, x_n | \theta.$$

Then given observed data $X_i = x_i$, the likelihood function is

$$L(\theta)=f(X_1,X_2,\cdots,X_n),$$

where $L(\theta)$ is considered as a function of θ .

The MLE of θ is that value of θ that maximizes the likelihood

$$\hat{\theta} = \arg\max_{\theta} L(\theta),$$

-that is, makes the observed data "most likely".

If X_i is iid,

$$L(\theta = \prod_{i=1}^n f(X_i|\theta).$$

Log likelihood function

$$\ell(\theta) = \log\{L(\theta)\} = \sum_{i=1}^{n} \log\{f(X_i|\theta)\},\,$$

and $\hat{\theta} = \arg\max \ell(\theta)$.

For understanding "most likely", we take an example.

Example 6: Consider X_1, \dots, X_n are iid Exponential distribution $Exp(\lambda)$ with parameter λ and pdf

$$f(x|\lambda) = \lambda e^{-\lambda x}$$
 if $x \ge 0$, otherwise 0.

$$\ell(\lambda) = n \log \lambda - \lambda n \bar{X}$$

$$\frac{d\ell(\lambda)}{d\lambda} = n/\lambda - n\bar{X} \begin{cases} > 0 & \text{if } \lambda < 1/X \\ = 0 & \text{if } \lambda = 1/\bar{X} \\ < 0 & \text{if } \lambda > 1/\bar{X}. \end{cases}$$

MLE estimate: $\hat{\lambda} = 1/\bar{X}$.

Example 7: Consider X_1, \dots, X_n are iid Poisson distribution $Pois(\lambda)$ with parameter λ and pdf

$$P(X = x | \lambda) = \lambda^x e^{-\lambda} / x!.$$

$$\ell(\lambda) = \sum_{i=1}^{n} X_i \log \lambda - \lambda n - \sum_{i=1}^{n} \log(X_i!)$$

$$\frac{d\ell(\lambda)}{d\lambda} = \sum_{i=1}^{n} X_i/\lambda - n = 0$$

MLE estimate: $\hat{\lambda} = \bar{X}$.

Example 8: Consider X_1, \dots, X_n are iid Normal distribution $N(\mu, \sigma^2)$.

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu)^2$$

$$\frac{\partial \ell}{\partial \mu} = \frac{2}{2\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \sum_{i=1}^n (X_i - \mu)^2 / (2\sigma^4) = 0$$

MLE estimate: $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

Question: What's the distribution of $\hat{\sigma}^{\hat{2}}$.

Example 9: Consider X_1, \dots, X_n are iid Gamma distribution $G(\alpha, \lambda)$ with pdf

$$f(x|\alpha,\lambda) = \frac{1}{\Gamma(\alpha)}\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}, \quad 0 \le x < \infty.$$

$$\ell(\alpha, \lambda) = n\alpha \log \lambda + (\alpha - 1) \sum \log X_i - \lambda \sum X_i - n \log \{\Gamma(\alpha)\}$$

$$\frac{\partial \ell}{\partial \alpha} = n \log \lambda + \sum_{i} \log(X_i) - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} = 0$$

$$\frac{\partial \ell}{\partial \lambda} = \frac{n\alpha}{\lambda} - \sum_{i} X_i = 0$$

MLE estimate: $\hat{\lambda} = \hat{\alpha}/\bar{X}$ and

$$n\log \hat{\alpha} - n\log \bar{X} + \sum \log X_i - n\frac{\Gamma'(\hat{\alpha})}{\Gamma(\hat{\alpha})} = 0.$$

 $\hat{\alpha}$ can note be solved in closed form, and then obtaining their exact sampling distribution would appear to be intractable.

- Give initial estimates α_0 and λ_0 by method of moment.
- Use an iterative method to solve $\hat{\alpha}$ and $\hat{\lambda}$ by method of maximum likelihood.
- Use Bootstrap/Simulation method to obtain an approximation of sample distribution of $\hat{\alpha}$ and $\hat{\lambda}$. See Example 2.

Example 10: Consider X_1, \dots, X_n are iid Laplace distribution $Lap(\theta)$ with pdf

$$f(x|\theta) = \frac{1}{2}e^{-|x-\theta|}, -\infty < x < \infty.$$

$$\ell(\theta) = -n\log 2 - \sum_{i=1}^{n} |X_i - \theta|$$

$$\ell'(\theta) = \sum_{i=1}^n \operatorname{sgn}(X_i - \theta)$$

where sgn(t) = 1, 0, -1 depending on whether t > 0, t = 0, or t < 0.

MLE estimate: $\hat{\theta} = \text{median}(X_1, X_2, \cdots, X_n)$ because the median will make half the terms of the sum in $\ell'(\theta)$ nonpositive and half nonnegative.

Example 11: Consider X_1, \dots, X_n are iid Uniform distribution $U(0,\theta)$ with pdf

$$f(x|\theta) = \frac{1}{\theta}$$
, if $0 \le x \le \theta$, otherwise 0.

$$L(\theta) = \theta^{-n} \mathbf{1}(\max\{X_1, X_2, \cdots, X_n\}, \theta)$$

where $\mathbf{1}(a,b)$ is 1 or 0 if $a \leq b$ or a > b, respectively. The function is a decreasing function of θ for all $\theta \geq \max\{X_1, X_2, \cdots, X_n\}$ and is 0, otherwise. Hence the maximum occurs at the smallest value of θ ; i.e. MLE estimate: $\hat{\theta} = \max\{X_1, X_2, \dots, X_n\}$.

Question: What's the pdf of $\max\{X_1, X_2, \cdots, X_n\}$ or $\min\{X_1, X_2, \cdots, X_n\}.$

 X_1, \dots, X_m the counts in cells $1, \dots, m$, follow a multinomial distribution with a total count of n, cell prob. p_1, \dots, p_m (we wish to estimate) and pdf

$$f(x_1, \dots, x_m | p_1, \dots, p_m) = \frac{n!}{\prod_{i=1}^m x_i!} \prod_{i=1}^m p_i^{x_i},$$

where $\sum_{i=1}^{m} X_i = n, \sum_{i=1}^{m} p_i = 1.$

Multinomial distribution is a generalization of the Binomial distribution $B(p_1)$ (m=2) with

$$f(x_1,x_2|p_1,p_2)=\frac{n!}{x_1!(n-x_1)!}p_1^{x_i}(1-p_1)^{n-x_1}.$$

$$\ell(p_1, \dots, p_m) = \log(n!) - \sum_{i=1}^m \log(X_i!) + \sum_{i=1}^m X_i \log(p_i).$$

To solve p_1, \dots, p_m , we introduce a Lagrange multiplier. Since there is a constraint on p_1, \dots, p_m : $\sum p_i = 1$,

$$La(p_1, \cdots, p_m, \lambda) = \ell(p_1, \cdots, p_m) + \lambda(\sum p_i - 1).$$

$$\frac{\partial La}{\partial p_j} = X_j/p_j + \lambda = 0$$

We have $p_j=-X_j/\lambda$ for $j=1,\cdots,m$ and sum both sides of this equation, then $1=\sum p_j=\sum X_j/\lambda$, i.e. $\lambda=-n$. MLE estimate: $\hat{p}_j=X_j/n$.

Example 12:

Blood Type M MN N Total Frequency 342 500 187 1029
$$X_1$$
 X_2 X_3 n Suppose $p_1 = (1-\theta)^2$ $p_2 = 2\theta(1-\theta)$ $p_3 = \theta^2$ 1 What's the MI F of θ ?

$$\ell(\theta) = \ell(p_1, p_2, p_3) = \log n! - \sum_{i=1}^{n} \log X_i! + X_1 \log(1 - \theta)^2 + X_2 \log\{2\theta(1 - \theta)\} + X_3 \log \theta^2.$$

$$\ell'(\theta) = \frac{-2X_1}{1-\theta} + \frac{2X_2}{\theta} + \frac{-X_2}{1-\theta} + \frac{2X_3}{\theta} = 0$$

MLE estimate:
$$\hat{\theta} = \frac{X_2 + 2X_3}{2X_1 + 2X_2 + 2X_3} = \frac{X_2 + 2X_3}{2n} = \frac{500 + 2 \times 187}{2 \times 1029} = 0.4247.$$

 X_1, \dots, X_n are iid with pdf $f(X_i|\theta_0)$ and $\ell(\theta) = \sum_{i=1}^n \log f(X_i|\theta)$.

MLE estimate: $\hat{\theta} = \arg \min_{\theta} \ell(\theta)$.

- $\hat{\theta}$ converges to θ_0 in probability.
- $\sqrt{nI(\theta_0)}(\hat{\theta}-\theta_0)$ converges to standard normal distribution N(0,1) in distribution, where

$$I(\theta) = E\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2 = -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right]$$
$$= Var\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]$$

is called as Fisher information.

• since θ_0 is unknown, we will use $I(\hat{\theta})$ in place of $I(\theta_0)$.

Proof of Part I: Show that $\ell(\theta_0) > \ell(\theta)$ in probability for all $\theta \neq \theta_0$. Since $\ell(\hat{\theta})$ reaches the maximum of $\ell(\theta)$, $\hat{\theta} \to \theta_0$ in probability.

Proof of Part II: From a Taylor series expansion, $0 = \ell'(\theta) \approx \ell'(\theta_0) + (\hat{\theta} - \theta_0)\ell''(\theta_0)$ by Part I.

$$\sqrt{nI(\theta_0)}(\hat{\theta} - \theta_0) \approx \frac{\sqrt{I(\theta_0)/n}}{-\ell''(\theta_0)/n} \sum_{i=1}^n \frac{f'(X_i|\theta_0)}{f(X_i|\theta_0)}$$

where $-\ell''(\theta_0)/n \to I(\theta_0)$ by the law of large number. The remaining part is proved by **CLT**.

We will discuss three methods for forming CI for MLE:

- Exact method for sample distribution of MLE.
- Large Sample Theory for MLE.
- Bootstrap method. See Example 2 for simulations. After simulations, the empirical distribution can be used to approximate the sample distribution. Hence, CI will be constructed based on empirical quantiles.

Example 3 continued: We wish to find $1 - \alpha$ CI for parameters μ and σ^2 .

Exact Method: Let $S^2 = \sum (X_i - \bar{X})^2 / (n-1)$.

$$\frac{\sqrt{n}(\bar{X}-\mu)}{S}\sim t_{n-1}.$$

$$P\left(-t_{n-1}(\alpha/2)\leq \frac{\sqrt{n}(\bar{X}-\mu)}{S}\leq t_{n-1}(\alpha/2)\right)=1-\alpha,$$

 $1 - \alpha$ CI for μ : $\bar{X} \pm t_{n-1}(\alpha/2)S/\sqrt{n}$.

$$\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2.$$

$$P\left(\chi_{n-1}^2(1-\alpha/2)\leq \frac{n\hat{\sigma}^2}{\sigma^2}\leq \chi_{n-1}^2(\alpha/2)\right)=1-\alpha,$$

$$1-lpha$$
 CI for σ^2 : $\left(\frac{n\hat{\sigma}^2}{\chi^2_{n-1}(lpha/2)}, \frac{n\hat{\sigma}^2}{\chi^2_{n-1}(1-lpha/2)}\right)$.

Large Sample Theory for MLE:

$$\sqrt{nI(\bar{X}, \hat{\sigma}^2)(\bar{X} - \mu)} \to N(0, 1).$$

$$P\left(-z(\alpha/2) \le \sqrt{nI(\bar{X}, \hat{\sigma}^2)}(\bar{X} - \mu) \le z(\alpha/2)\right) = 1 - \alpha,$$

$$1 - \alpha \text{ CI for } \mu: \ \bar{X} \pm z(\alpha/2)/\sqrt{nI(\bar{X}, \hat{\sigma}^2)}. \text{ where}$$

$$I(\mu, \sigma^2) = -E\left[\frac{\partial^2}{\partial \mu^2}\log f(X|\theta)\right] \tag{2.2}$$

$$=1/\sigma^2.$$
 Compare it with CI by Exact Method: $S\sim\hat{\sigma}$ and

Compare it with CI by Exact Method: $S \sim \hat{\sigma}$ and $t_{n-1}(\alpha/2) \sim z(\alpha/2)$ when n is large; for example $z(\alpha/2) = 1.96$ with $\alpha = 0.05$ and $t_{n-1}(\alpha/2)$ is 2.093 or 1.980 if n = 20 or n = 121, respectively.

Question: What's $1 - \alpha$ CI for σ^2 ?

Let's take another two examples to show how to calculate Fisher information.

Example 7 continued: $Pois(\lambda)$

$$\ell(\lambda) = X \log \lambda - \lambda - \log(X!)$$

$$\frac{\partial^2}{\partial \lambda^2} \ell(\lambda) = -X/\lambda^2$$

$$I(\lambda) = -E(-X/\lambda^2) = 1/\lambda. \tag{2.3}$$

Since $\hat{\lambda} = \bar{X}$, $I(\hat{\lambda}) = 1/\bar{X}$.

Example 13: Fisher information for a Bernoulli r.v. Let X be Bernoulli $B(1, \theta)$. Thus

$$\ell(\theta) = X \log \theta + (1 - X) \log(1 - \theta)$$

$$\frac{\partial^2}{\partial \theta^2} \ell(\theta) = \frac{-X}{\theta^2} + \frac{X - 1}{(1 - \theta)^2}$$

$$I(\theta) = -\frac{-\theta}{\theta^2} - \frac{\theta - 1}{(1 - \theta)^2} = \frac{1}{\theta(1 - \theta)}.$$

MLE estimate: $\hat{\theta} = 0.4247$.

STA261H1S: First quiz

The first quiz will be held in tutorial sessions on this Wednesday, 6:30-7:00pm. Make sure you show up to write the quiz, which weights 10% of this course.

(Time: **30 minutes**, Wednesday, July 10, 2013, 6:30 - 7:00pm)

Three questions will be contained.

The last names A-Ke go to room SS2135 TA: Tadeu. The last names Ki-Por go to room RW229 TA: Qin. The last names Qiu-Zou go to room MP137 TA: Becky. You must write your quiz in your tutorial session.

Since I have not received the confirmation of the TA Qin, if there is no TA in room RW229, please go to room SS2135.