MINISTERE DE L'EDUCATION

NATIONALE DIRECTION REGIONALE DE MANOUBA

MATHÉMATIQUES

LYCEE SECONDAIRE **OUED ELLIL**

ANNEE SCOLAIRE 2017 - 2018

PROF: MR BELLASSOUED

Durée :45 minutes

DATE: DÉCEMBRE 2017

BAREME

EXERCICE 1: 5.5 POINTS

Soit les deux réels x et y tels que : $x = 2 + \sqrt{27} - \sqrt{12}$; $y = |3 - \sqrt{3}| + |1 - \sqrt{2}| - \sqrt{2}$

- 1- a- Montrer que $x = 2 + \sqrt{3}$ et $y = 2 \sqrt{3}$.
 - **b**~ En déduire que : x est l'inverse de y et $x^6 \times y^7 = y$
- 2~ a~ Calculer x² et y².
 - **b**~ En déduire que $\frac{x}{y} + \frac{y}{x} = 14$

2

EXERCICE 2: 6.5 POINTS

Les quatre questions sont indépendantes

1-On considère les deux expression suivantes : $a = \frac{(\sqrt{6})^{-4}}{4^{-2} \times (\sqrt{3})^{-2}}$; $b = \frac{(25)^4 \times 1000^3 \times 4^4 \times (10^{-6})^2}{(0,01)^7 \times 10^9}$

Montrer que $a = \frac{4}{3}$ et $b = 10^{10}$

2-Montrer que $\frac{30}{6\sqrt{6}} + \frac{\sqrt{6}}{\sqrt{3}\sqrt{2}} - \frac{6}{3\sqrt{2}} = 6 + \sqrt{6}$

1

3-soit x un angle aigu . Montrer que $\sqrt{\frac{1-\sin x}{1+\sin x}} = \frac{1-\sin x}{\cos x}$

4-a- soit x un angle aigu. Vérifier que $1 + \tan^2 x = \frac{1}{\cos^2 x}$

b- On suppose que $\frac{1}{3} \leqslant \cos x \leqslant \frac{1}{2}$. Montrer que $\sqrt{3} \leqslant \tan x \leqslant 2\sqrt{2}$

1.5

EXERCICE 3: 8 POINTS

- ABCD est un trapèze de bases [AB] et [CD]
- E le projeté orthogonal de B sur la droite (CD)
- $\hat{BCD} = 30^{\circ} : \hat{ADC} = 60^{\circ} : BE = 6$
- Les droites (AE) et (BC) sont parallèles

- 1-Montrer que CE = $6\sqrt{3}$ et BC = 12
- 2-a-Vérifier que ABCE est un parallélogramme
 - b~ Montrer que le triangle ADE est rectangle en A
 - c-En déduire que DE = $8\sqrt{3}$ et AD = $4\sqrt{3}$
 - d-Déterminer alors l'aire du trapèze ABCD
- 3-On désigne par H le projeté orthogonal de E sur la droite (BC) a-Calculer la valeur exacte de la distance HE

x	30°	45°	60°
sinx	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cosx	<u>√3</u> 2	$\frac{\sqrt{2}}{2}$	1/2
tanx	<u>√3</u> 3	1	√3

0.25 0.75

0.5