SALINE SOLUBLE INORGANIC FIRRES

This invention relates to saline soluble, non-metallic, amorphous, inorganic oxide, refractory fibrous materials.

Inorganic fibrous materials are well known and widely used for many purposes (e.g. as thermal or acoustic insulation in bulk, mat, or blanket form, as vacuum-formed shapes, as vacuum formed boards and papers, and as ropes, yarns or textiles; as a reinforcing fibre for building materials; as a constituent of brake blocks for vehicles). In most of these applications the properties for which inorganic fibrous materials are used require resistance to heat, and often resistance to aggressive chemical environments.

Inorganic fibrous materials can be either glassy or crystalline. Asbestos is an inorganic fibrous material one form of which has been strongly implicated in respiratory disease.

It is still not clear what the causative mechanism is that relates some asbestos with disease but some researchers believe that the mechanism is mechanical and size related. Asbestos of a critical size can pierce cells in the body and so, through long and repeated cell injury, have a bad effect on health.

Whether this mechanism is true or not regulatory agencies have indicated a desire to categorise any inorganic fibre product that has a respiratory fraction as 'hazardous', regardless of whether there is any evidence to support such categorisation. Unfortunately for many of the applications for which inorganic fibres are used, there are no realistic substitutes.

Accordingly there is a demand for inorganic fibres that will pose as little risk as possible (if any) and for which there are objective grounds to believe them safe.

A line of study has proposed that if inorganic fibres were made that were sufficiently soluble in physiological fluids that their residence time in the human body was short; then damage would not occur or at least be minimised. As the risk of asbestos-linked disease appears to depend very much on the length of exposure this idea appears reasonable. Asbestos is extremely insoluble.

As intercellular fluid is saline in nature the importance of fibre solubility in saline solution has long been recognised. If fibres are soluble in physiological saline solution then, provided the dissolved components are not toxic, the fibres should be safer than fibres which are not so soluble. The shorter the time a fibre is resident in the body the less damage it can do. H. Förster in 'The behaviour of mineral fibres in physiological solutions' (Proceedings of 1982 WHO IARC Conference, Copenhagen, Volume 2, pages 27-55(1988)) discussed the behaviour of commercially produced mineral fibres in physiological saline solutions. Fibres of widely varying solubility were discussed.

International Patent Application No. WO87/05007 disclosed that fibres comprising magnesia, silica, calcia and less than 10 alumina wt& are soluble in saline solution. The solubilities of the fibres disclosed were in terms of parts per million of silicon (extracted from the silica-containing material of the fibre) present in a saline solution after 5 hours of exposure. The highest value revealed in the examples had a silicon level of 67 ppm. In contrast, and adjusted to the same regime of measurement, the highest level disclosed in the Förster paper was equivalent to approximately 1 ppm. Conversely if the highest value revealed in the International Patent Application was converted to the same measurement

regime as the Förster paper it would have an extraction rate of 901,500 mg Si/kg fibre - i.e. some 69 times higher than any of the fibres Förster tested, and the fibres that had the highest extraction rate in the Förster test were glass fibres which had high alkali contents and so would have a low melting point. This is convincingly better performance even taking into account factors such as differences in test solutions and duration of experiment.

International Patent Application No. WO89/12032 disclosed additional fibres soluble in saline solution and discusses some of the constituents that may be present in such fibres.

European Patent Application No. 0399320 disclosed glass fibres having a high physiological solubility.

Further patent specifications disclosing selection of fibres for their saline solubility are European 0412878 and 0459897, French 2662687 and 2662688, PCT WO86/04807 and WO90/02713.

The refractoriness of the fibres disclosed in these various prior art documents varies considerable. The maximum service temperature of any of these disclosed fibres (when used as refractory insulation) is up to 815°C (1500°F).

Service temperature for refractory insulation is definable in many ways but to be consistent with the above mentioned International Patent Applications this application shall mean by service temperature that temperature at which the fibre shows acceptable shrinkage (maximum of 5% linear shrinkage after exposure to temperature for 24 hours) and at which the fibre has not appreciably suffered through excessive sintering or softening.

There is a demand for physiologically soluble fibres having a service temperature of greater than 815°C,

particularly for such fibres having a service temperature above 900°C.

Testing for physiological solubility and safety can be done by inhalation studies on, e.g. rats. However such studies are extremely time consuming and costly. A study can take of the order of $2\frac{1}{2}$ years from start and can easily cost f1 million per study. A cheaper alternative is to test for solubility in physiological or like fluids in vitro.

Testing of an inorganic fibre for solubility in physiological solutions is not so time consuming, but there is currently no way of predicting which systems will produce such soluble fibres. Therefore anyone seeking to find such soluble fibres has to work on a trial and error basis assisted by what is commonly known as 'chemical intuition' but is equally commonly known as 'a hunch'. Such trial and error testing is laborious and time consuming. Further, once a fibre is found that is soluble there is no guarantee that it will be usable at useful service temperatures.

Accordingly there is a demand for a method of predicting whether a fibre will have a reasonable solubility in physiological solutions, and further there is a demand that such a test should preferably give an indication as to expected service temperature.

Shrinkage of inorganic refractory fibres occurs through two mechanisms; the first is viscous flow of the fibre material. Most inorganic refractory fibres are glasses and so may be defined as liquids having an exceedingly high viscosity (but still liable to flow). By their nature fibres are elongate and so have a high surface area per unit volume. As the reduction of surface area is a means of reducing the surface energy of a material, when the glass becomes fluid enough it will flow so as to reduce surface area. This flow results in a coarsening and shortening of the fibres and so to

shrinkage, and in the extreme results in disruption of the fibres into separate particles.

The second mechanism leading to shrinkage is that at elevated temperatures glasses may crystallise to form one or more crystal phases. Usually these crystal phases have a smaller molar volume than the glasses from which they crystallise and so shrinkage results. Some fibres are known for which the molar volume of the crystalline form exceeds that of the glass (for example Al₂O₃/SiO₂ glassy fibres may crystallise to form mullite crystals). In these cases the expansion due to crystallisation may oppose the shrinkage caused by viscous flow.

If shrinkage through viscous flow occurs at a much lower temperature than crystallisation then the crystallisation may not be able to compensate for such shrinkage.

There is a demand for a fibre in which both viscous flow and crystallisation occur at as high and as similar a temperature as possible, and preferably in which the expansion due to crystallisation closely matches the shrinkage due to viscous flow so that the net effect is as close to zero shrinkage as possible.

When used as refractory insulation inorganic refractory fibres are used in several forms. The fibres may be supplied as a bulk material, but in this form the fibres are difficult to handle for many applications. Alternatively the fibre may be supplied as a blanket. Blanket fibre is generally made by a process of sucking fibre from air onto a conveyor to form a blanket. Because the fibres tend to be aligned parallel to the conveyor surface they can separate easily. Accordingly the blanket fibres are secured together by adding a binder to lock the fibres together, or by needling the blanket, or both. In needling needles are passed through the thickness of the blanket to push and draw fibres to lie transverse to the

planket and so tie the fibres together. Because binders are usually resins, such as phenolic resins, they burn off on first firing. There is a desire to reduce the amount of such binders used both because of possible health implications in handling, and because the combustion products may affect the strength of the fibres. Thus needled blanket is usually preferred.

The fibres may also be supplied as blocks, generally made from assembled layers of inorganic fibre blanket.

For some fibres needling is not possible. Crystalline fibres—are generally too brittle to stand the stresses involved. For the fibres known in the industry as glass fibres (which are generally used for low temperature applications) the amount of 'shot' (unfiberised glass particles) present is generally too high to allow needling as the shot damages the needles. There is no needled blanket on the market that has a maximum service temperature in the range 900°C-1200°C. There are needled blankets having a higher maximum service temperature but these use expensive fibres in comparison with other fibres usable (with the aid of binders) as blanket in the temperature range 900°C-1200°C.

Accordingly there is a demand for needled fibre blanket formed from inexpensive materials, being soluble in saline solutions, and having a maximum service temperature in the range 900°C-1200°C.

As stated previously refractory oxide fibres are made by several methods all of which involve the formation of a melt of oxides and the subsequent fiberisation of the melt by e.g. spinning or blowing.

The melt of oxide material is often formed by electrical discharge melting of the constituent raw materials. The applicants, in manufacture of a CaO/MgO/SiO₂ refractory oxide

fibre encountered problems due to the necessity of handling CaO. These problems were discovered to be due to the moisture content of CaO as commercially available. One of the problems of use of CaO is the outgasing that results upon melting and this led at the least to a porous melt pool which caused fluctuations in the melt current; in the extreme the outgasing was explosive. Additionally use of CaO appeared to cause accelerated attack on the melt electrodes. Also CaO is a difficult and corrosive material to handle.

Accordingly there is a need for a process that minimises the use of CaO.

Accordingly the present invention provides the following features both independently and in combination:-

- Use of a vitreous inorganic fibre in the knowledge that A. it has a composition meeting the criteria either: - that the calculated sum of the free energies of hydration of compounds that would or could be present at equilibrium (on the basis of knowledge, informed belief or reasonable assumption) is more negative than -10 kcal/100grams (-418.4kJ/kg) of composition; or that the percentage of nonbridging oxygens is more than 30%. Such compositions tend to be saline soluble.
- B. Use of such a vitreous inorganic fibre in the knowledge that it has a composition meeting the criterion that the ratio of glass modifiers to network formers is less than a critical value (for SiO_2 based compositions the critical value is 1). Such compositions tend to be glass formers.
- C. The invention also encompasses fibres selected by adopting such criteria as a test for solubility and glass formation.
- Q. Use as saline soluble fibres having a shrinkage of less

than 3.5% when exposed to 1000'C for 24 hours and/or 800'C for 24 hours, of vitreous fibres having a composition comprising (in weight %):-

```
SiO_2 >58% - (for MgO =< 10%) and SiO_2 >58% + 0.5(%MgO -10) - (for MgO >= 10%) (SiO<sub>2</sub> preferably being below 70%) CaO 0% - 42% MgO 0% - 31.33% Al<sub>2</sub>O<sub>3</sub> 0% - <3.97%
```

and being essentially free of fluxing components such as alkali metals and boron oxide.

E. In one such usage the first crystalline material resulting on crystallisation has the crystal structure of diopside and has the composition consisting essentially of:-

Component	Composition A			
	Weight percent			
SiO ₂	59-64			
A1 ₂ 0 ₃	0-3.5			
CaO	19-23			
MgO	14-17			

<u>F</u>. In a second such usage the first crystalline material resulting on crystallisation has the crystal structure of wollastonite/pseudowollastonite and has the composition consisting essentially of:-

Component	Composition B
	Weight percent
SiO ₂	60-67
Al ₂ O ₃	0-3.5
CaO	26 - 35
MgO	4-6

- G. The fibres used in such manner may further be used as needled blankets.
- H. Preferably the fibres of the general composition and compositions A and B mentioned above have a SiO_2 content (expressed as a weight percentage of the constituents SiO_2 , CaO and MgO) of greater than 60%.
- I. The present invention further provides a method for the manufacture of refractory oxide fibres containing calcium and silicon by the formation of an oxide melt containing calcium and silicon characterised in that all or part of the calcium and all or part of silicon is provided by a calcium silicate.

The invention is illustrated by way of example in the following description and with reference to the drawings in which:-

Fig.1 is a three-axis phase diagram indicating the crystalline phases in the system SiO₂/CaO/MgO (Phase Diagrams for Ceramists, The American Ceramic Society, 1964) a key to this diagram is at the end of the specification;

- Fig.2 is a three-axis composition plot of the projection onto the ${\rm SiO}_2/{\rm CaO/MgO}$ phase field of compositions comprising ${\rm SiO}_2$, CaO, MgO and ${\rm Al}_2{\rm O}_3$;
- Fig.3 is a temperature/time plot of the firing regime used in a series of cyclic exposure tests of experimental

compositions;

Fig.4 is a plot of log (total solubility) v calculated free energy of hydration for a series of fibres.

Fig.5 is a plot of log (total solubility) v % non-bonding oxygens for a series of fibres (see below).

A series of fibres were made of the compositions shown in Table 1. These fibres were melt spun by using a vertical spinning system of the type known for making inorganic fibres. Also shown in Table 1 are the compositions of some comparative commercially available inorganic oxide fibres and glass fibres.

Τ'n	RI	Æ	1

MgO

Zro2

 sio_2

CaO

Al₂O₃

SW-A	3.3	59.3 € ≦	20.5	15.5	_	
SW-A1	1.1	63.766	20.5	15.2	_	
SW-A2	0.8	60.8 6. t	21.4	15.4	_	
SW-B1	2.3	65.3	26.8	5.7	-	
SW-B2	1.3	66.9	27.5	5.2	-	
SW-B3	1.0	60.0	34.0	4.4	-	
			COMPARI	MTTE =	VIVDI DE	
	31 0	SiO			XAMPLES	
	A1 ₂ 0 ₃	sio ₂	CaO	MgO	zro ₂	MST
CRBT	46.5	53	0.04	0.01	_	1260°C
CWBT	40.6	49.5	5.50	4.00	-	870°C
CHBT	49.7	35.1	0.04	0.01	14.7	1425°C
Glass	15.2/	53.7/	21.1/	1.3/		+ 5.9-6.2% B ₂ O ₃
Fibre	15.5	57.5 [°]	21.8	1.6		0.11-0.12% TiO2
						0.46% Na ₂ O
						0.32-0.33% K ₂ 0
Needled	3.7	60.5/	8.1	4.0		+ 2.85-2.95% B ₂ O ₃
Glass		60.0	7.9		-	13.5% Na ₂ O
Fibre						1.0% K ₂ 0
						· · · · · · · · · · · · · · · · · · ·

[MST = Maximum Service Temperature (oxidising atmosphere)]

The fibres SW-A, SW-A1, SW-A2, SW-B1, SW-B2 and SW-B3 were tested for solubility by the following method.

The fibre was first chopped in the following manner. 2.5 g of fibre (deshotted by hand) was liquidised with 250 cm³ of distilled water in a domestic Moulinex (Trade Mark) food blender for 20 seconds. The suspension was then transferred to a 500 cm³ plastic beaker and allowed to settle after which as much liquid as possible was decanted and the remaining liquid removed by drying in an oven at 110°C.

The solubility test apparatus comprised a shaking incubator water bath, and the test solution had the following composition:-

Compound	Name	Grams
NaCl	Sodium chloride	6.780
NH ₄ Cl	Ammonium chloride	0.540
NaHCO ₃	Sodium bicarbonate	2.270
Na ₂ HPO ₄ .H ₂ O	Disodium hydrogen	0.170
	phosphate	
Na3C6H5O7P.2H2O	Sodium citrate	0.060
	dihydrate	
H2NCH2CO2H	Glycine	0.450
H ₂ SO ₄ s.g. 1.84	Sulphuric acid	0.050

The above materials were diluted to 1 litre with distilled water to form a physiological-like saline solution.

0.500 grams \pm 0.0003 grams of chopped fibre was weighed into a plastic centrifuge tube and 25 cm³ of the above saline solution added. The fibre and saline solution was shaken well and inserted into the shaking incubator water bath maintained at body temperature (37°C \pm 1°C). The shaker speed was set at 20 cycles/minute.

After the desired period (usually 5 hours or 24 hours)

the centrifuge tube was removed and centrifuged at ≈ 4500 revs/minute for approximately 5 minutes. Supernatant liquid was then drawn off using a syringe and hypodermic needle. The needle was then removed from the syringe, air expelled from the syringe, and the liquid passed through a filter (0.45 micron cellulose nitrate membrane filter paper [WCN type from Whatman Labsales Limited]) into a clean plastic bottle. The liquid was then analysed by atomic absorption using a Thermo Jarrell Ash Smith - Hiefje II machine.

The operating conditions were:-

ELEMENT	WAVELENGTH(nm)	BAND WIDTH	CURRENT (MA)	FLAME (Nitrous Oxide + Acetylene)
Al	309.3	1.0	8	Fuel Rich
${\tt SiO}_2$	251.6	0.3	12	11 11
CaO	422.7	1.0	7	Fuel Lean
MgO	285.2	1.0	3	H 11

The procedure and standards adopted for determining the above elements were as set out below.

 SiO_2 can be determined without dilution up to 250 ppm concentration (1 ppm = lmg/Litre). Above this concentration an appropriate dilution was made volumetrically. A 0.1% KCl solution (0.1g in 100 cm³) was added to the final dilution to prevent ionic interference. NB If glass apparatus is used, prompt analysis is necessary.

From a stock solution of 1000 ppm pure ignited silica (99.999%) (fused with Na_2CO_3 at 1200°C for 20 minutes in a platinum crucible (0.2500g $SiO_2/2g$ Na_2CO_3) and dissolved in dilute hydrochloric acid (4 molar) made up to 250cm³ with distilled water in a plastic volumetric flask) the following

standards were produced:-

STANDARD (PPM SiO ₂)	STOCK SOLUTION (cm ³)
10.0	1.0
20.0	2.0
30.0	3.0
50.0	5.0
100.0	10.0
250.0	25.0

Add 0.1% KC1 to each standard before making to 100cm3.

Aluminium may be measured directly from the sample without dilution. Standards of 1.0, 5.0 and 10.0 ppm Al may be used. For calibration readings are multiplied by 1.8895 to convert from Al to ${\rm Al}_2{\rm O}_3$.

A standard Al atomic absorption solution (e.g. BDH 1000 ppm Al) was bought and diluted using an accurate pipette to the desired concentration. 0.1% KCl was added to prevent ionic interference.

Calcium may require dilutions on the sample before determination can be carried out (i.e. \times 10 and \times 20 dilutions). Dilutions must contain 0.1% KC1.

A standard Ca atomic absorption solution (e.g. BDH 1000 ppm Ca) was diluted with distilled water and an accurate pipette to give standards of 0.5, 4.0 and 10.0 ppm. 0.1% KC1 is added to prevent ionic interference. To convert readings obtained from Ca to CaO a factor of 1.4 was used.

Magnesium may require dilutions on the sample before determinations can be made (i.e. \times 10 and \times 20). Add 0.1% KC1 to each dilution. To convert Mg to MgO multiply by 1.658.

A standard Mg atomic absorption solution (e.g. BDH 1000 ppm Mg) was diluted with distilled water and an accurate

pipette to give standards of 0.5, 1.0 and 10.0 ppm Mg. 0.1% KCl was added to prevent ionic interference.

All stock solutions were stored in plastic bottles.

The results of the tests are indicated in Table 2.

BODY FLUIDS SOLUBILITY
(ppm)

		SiO ₂		CaO		MgO	
	5h	24h	5h	24h	5 h	24h	
SW-A	98	120	63	56	33	66	
SW-A1	83	141	32	70	21	70	
SW-A2	130	202	43	73	100	177	
SW-B1	58	77	10	38	5	9	
SW-B2	64	121	27	55	5	10	
SW-B3	138	192	80	46	8	21	

Fibres with the best solubility (SW-A2 and SW-B3) were then tested, after annealing at varying temperatures, and compared with the comparative examples of Table 1. The results are shown in Table 3.

It can be seen that for the SW-A2 fibre, with increasing annealing temperature, the silica solubility drops progressively. In contrast the SW-B3 composition shows no loss in solubility up to 800°C and although a reduction in solubility is shown above that temperature it is not as dramatic as for SW-A2. Despite this difference in solubility it is to be noted that only the needled GF fibre shows a

comparable silica solubility and that material melts at 700°C.

TABLE 3

<u>Fibre</u>	Condition	<u>S</u>	olubili	ty Anal	lyses		
		CaO	(ppm)	MgO	(ppm)	Sio	(ppm)
		5hrs	24hrs	5hrs	24hrs	-	24hrs
			· <u> </u>				
SW-A2	As received	58	37	37	3	8 9	130
SW-A2	600°C, 48hrs	33	56	27	43	60	108
SW-A2	800°C, 48hrs	35	53	17	30	43	87
SW-A2	1000°C, 48hrs	7	3	3	2	11	21
SW-B3	As received	35	69	7	22	22	100
SW-B3	600°C, 48hrs	61	150	12	22	55	130
SW-B3	800°C, 48hrs	41	90	3	7	24	144
SW-B3	1000°C, 48hrs	18	40	3	3	17	60
CRBT	As received	10	8	6	3	5	3
CHBT	As received	16	10	7	3	4	0.3
Glass Fibr	e As received	14	17	5	3	5	7
	As received	17	34	8	15	6 6	85
Needled GF	600°C, 48 hrs	11	26	7	10	19	37
Mineral Fi	bre As received	16	16	7	6	. 8	9

[The Glass Fibre and Needled Glass Fibre had the compositions shown in Table 1.]

The user is primarily concerned with the solubility of the fibre as received as it is in this condition that most handling occurs; as received both SW-A2 and SW-B3 fibres have extremely high solubility. Even after exposure to 800°C and 1000°C these fibres have solubilities much higher than other high temperature use fibres.

To investigate the reasons underlying the difference in solubilities after high temperature annealing between the SW-A2 and SW-B3 fibres qualitative X-ray diffraction was done on the fibres. The results are indicated in Table 4 and it can be seen that the SW-B3 fibre forms pseudowollastonite and wollastonite, whereas the SW-A2 fibre forms diopside. appears therefore that the crystalline diopside has a lower solubility in physiological saline solution than crystalline pseudowollastonite and wollastonite material precipitated from the SW-B3 fibre.

TABLE 4

<u>Sample</u>	<u>Condition</u>	Oualitative XRD
SW-A2	600°C, 48 hours	Amorphous
SW-A2	800°C, 48 hours	Amorphous with small amount Diopside
SW-A2	1000°C, 48 hours	Diopside
SW-B3	600°C, 48 hours	Amorphous
SW-B3	800°C, 48 hours	Amorphous
SW-B3	1000°C, 48 hours	Pseudowollastonite & Wollastonite

Various of the fibres were then tested for their shrinkage characteristics. Table 5 shows the results of Shrinkage tests on all the test fibres and on some of the comparative fibres. These results were obtained by proposed ISO standard ISO/TC33/SC2/N220 (equivalent to British Standard

BS 1920, part 6,1986) with some modifications to account for small sample size. The method in summary comprises the manufacture of vacuum cast preforms, using 75g of fibre in 500cm³ of 0.2% starch solution, into a 120 x 65mm tool. Platinum pins (approx 0.1-0.3mm diameter) were placed 100 x 45mm apart in the 4 corners. The longest lengths (L1 & L2) and the diagonals (L3 & L4) were measured to an accuracy of ±0.01mm using a travelling microscope attached to a steel rule with a vernier scale. The samples were placed in a furnace at temperature and left for 24 hours. The shrinkage values are given as an average of the 4 measurements.

TABLE 5
LINEAR SHRINKAGE (%)

(24h at	temperature)
---------	--------------

Temp.°C	SW-A	SW-Al	SW-A2	SW-B1	SW-B2	SW-B3
730	1.45		1.43	1.02	0.22	
870				0.41		
900			1.07			1.07
1000		1.04	1.3	0.51	0.6	1.1
1100		0.71	1.8		0.73	2.2
Maximum						
Service Temperatur	850 re	1050	1050	1050	1050	1000

It can be seen that in SW-A, SW-A1, SW-A2, SW-B1, SW-B2 and SW-B3, owing to the increase in molar volume on crystallisation, the linear shrinkage at the maximum service temperature is less than 3.5%.

Table 6 shows the results of a further series of shrinkage tests made in the same way.

TABLE 6

Sample	Measurement Direction c.f. Roll Direction	Test Temperatures °C	Linear Shrinka Range	
SW-A2	Parallel	850	1.1-1.4	1.2
SW-A2	Perpendicular	850	0.7-1.5	1.3
SW-A2	Parallel	900	0.5-1.1	0.9
SW-A2	Perpendicular	900	1.9-4.5	3.0
SW-A2	Parallel	1000	0.5-2.9	1.3
SW-A2	Perpendicular	1000	1.7-2.9	2.2
SW-A2	Parallel	1100	0.7-1.5	1.0
SW-A2	Perpendicular	1100	1.0-2.6	1.8
SW-B3	Parallel	900	1.6-1.8	1.7
SW-B3	Perpendicular	900	1.4-2.4	2.1
SW-B3	Parallel	1000	1.6-2.3	1.9
SW-B3	Perpendicular	1000	1.0-2.3	1.7
SW-B3	Parallel and	1100	Complete	Melting
	Perpendicular		(Lantern remnant	

To ascertain the applicability of these tests to long term usage a series of cyclic shrinkage tests were undertaken on the materials and the heating schedule used for these cyclic

tests is shown in Figure 3.

The results of the tests are shown in Tables 7 & 8 (the two figures given for SW-B3 are due to slight differences in chemical analysis [the fibre at the end of a production run of fibre tends to have slightly differing composition to that at the beginning of a production run of fibre]).

As a further comparison with the above discussed materials a melt was made comprising 55% SiO₂, 29.9% CaO and 18.6% MgO. Fibres made using this composition had a maximum service temperature of 700°C and melted at 800°C.

As these results were encouraging the applicants conducted a further and extensive series of tests, concentrating on the SW-A2 and SW-B3 compositions, to ascertain the reproducibility of these results and the boundaries of the useful compositions.

Table 9 (three pages) below gives the compositions of a series of melts, ranked on silica content, and showing the shrinkage figure after exposure to 1000°C for 24 hours (1st column) and 800°C for 24 hours (2nd column). shrinkages were measured by the same method as the shrinkages given above but measurements were made with a travelling microscope with a digital linear scale accurate to \pm 5 μ m. can clearly be seen that all fibres with a silica content of less than 58% have a shrinkage at 1000°C of greater than 3.5% save two (B3-3 and 708). These fibres, together with some fibres with a silica content of greater than 58% although showing a reasonable figure at 1000°C, show a very poor figure at 800°C. Compositions with an SiO2 content of greater than 70% appear to fiberise poorly. This may be because such compositions have two liquids in the melt as appreciated from Fig.1

TABLE 7

CYCLIC SHRINKAGE (LINEAR)

(왕)

Product	1000°C	1100°C	24h at
			1000°C
No. cycles	58	42	
CRBT	2.0	2.7	1.9
CWBT	15.0	13.3	12.1
SW-A2	0.33	2.0	1.3
SW-B3	1.00	1.67	1.1
SW-B3	0.33	0.67	1.1

Accuracy: + or - 0.33%

TABLE 8
CYCLIC SHRINKAGE

(%)

-		LINEAR SHRINKAGE		THICK SHRIN	
PRODUCT	1000°C	1100°C	24 h at 1000°C	1000°C	1100°C
No. cycles	104	100		104	100
CRBT CWBT SW-A2 SW-B3 SW-B3	1.47 14.4 1.5 1.73 1.47	3.1 15.2 2.1 1.63 1.77	1.9 12.1 1.3 1.1	0.47 38.63 8.58 7.24 7.02	11.19 32.14 8.75 7.57 7.16

Accuracy: + or - 0.3%(%)

TABI.E 9

ised	% Mg0%	1,7	9 10 5	5		12	16	22	0 20.	4 7	0 15.	7 23.	1 3.	6 13.	2 1.	4 20.	7 7.	7 12.	0 17.	6 22.	0	3.	9 1.	2 16.	9.	5 16.	5 1.	8.	1 14.		5 14 x
ional posit	Cao]	i G	4		_ ნ		•	6	•	4	4		9	ω,	1.	7	_	8	9	_	7.	5.	2	9	0	5.	9		7.7
Rati	Sio ₂ %	ا ا	76.6	· ~	S	4.	m	N	ď	<u>.</u>	<u>ر</u>	<u>.</u>	ς.	_;	ς.	_:	_:	<u>~</u>			<u>.</u>	<i>:</i>	÷	~	<u>.</u>				•		67 7
ıkage °C	800		*			*	*	•	Ξ.	*	*				•	•	•	•	1.0	•					0.8	•			•	1.0	
Shrinka at °C	1000	•	0.7			•	1.1	•	•	•	•		•	•	•	•	•	•		2.3	•		•		•	_	_	_	_	_	
	Zro28	1 "	2.23	(r)			φ,	4	٠.		ຜ	•	4		0	σ.		0	٥	9	0	9	κi	ď	N	0	S	0	4	N	_
	Fe2038	7	0.11		(4		Ġ	Ξ.	٦.	٦.	Τ:	٦.	7	<u>.</u>	7	~	٦.	۳.	~		7	4	7	⁻;	۲,	0	٦	7	~	7	_
cions	K208	0.0	<0.05	0.0		0	0.0	0.	0.0	0.	٠.	0.0	•	0.	7	•	٠.	•	0.	<0.05	~	•	7	•	•	0	0.	0	0	٦.	C
Compositions ht %)	Na 20%	0.0	<0.05	0		0	٦.	•	•	7	•	٦.	۳.	7.	۳.	•	۳.	7	7	•	4	۳.	4.	0	۳.	0	4	7	7	2	_
Analysed Cor (Weight	A12038		0.19	7	۳.	Τ.	۳.	∵.	?	4.	۲.	?	4.	۰.	9.	7		•	4.	۳.	4.	4.		Τ.	ა.	4.	4.	•	۲.	0.	C
Anal	Mg0&	7.1	10.09	9.6	9.0	۳.	6.3	2.3	9.6	7.0	٠ د	2.8	3.7	.7	1.7	7	7.0	2.6	3	1.7	4.	9.	1.8	0	9.3	₩.	.,	٦.	.7	4.8	C
	ca0%	2.0	12.40	6.3	3.4	2.6	9.3	4.4	6.7	8.7	1.5	4.6	3.2	5.1	4.9	8.1	6.0	7.4	1.5	4.	7.7	4.9	9.9	4.8	1.2	6.2	9.8	5.6	8.7	5.8	8
	$\sin_2 x$	8.0	73.43	3.0	2.3	2.2	1.4	1.2	1.1	0.8	0.4	0.0	9.4	9.5	8.7	8.6	8.5	8.3	8.1	7.6	7.5	7.5	7.2	9.9	6.1	6.1	5.8	5.7	5.6	5.5	5
	Melt	2-2	A2-16	2-3	3-3	2-1	2-2	2-2	2-2	3-2	2-1	2-3	3-1	2-6	3-1	2-	3-2	29	2-2	2	3-3	3-1	3-1	2-1	3-2	2-1	3-1	~	2	3	2-B

TABLE 9 (continued)

			Anal	yse (We	d Compositight %)	itions			Shri	nkage °C	Rati Comp	tionali ompositi	sed
Melt	$\sin_2 x$	CaO%	Mg0&	A12038	Na208	K20%	Fe2038	Zro28	1000	800	Sio,	Ca0%	Mq0%
_	5.2	27.1		`.	``	~			9			,	
רו	5.1	24.9		٠.	7	` `	•	•	٠ ر		/	27.3	7.0
$^{\prime\prime}$	5.0	27.2	(*)	٠.	, ``			•	→ 		, c	، ف	•
2-3	4.8	6.6	9		. `		•	•	ء د —	•	· •		2
$^{\circ}$	4.1	13.7					•	•	າ ເ	ى د ئ	ف ر	9	•
3-3	4.1	31.9			•		•	•	7	•	ب	•	0
2-3	4.1	8		•	•	•	• `		ر د		9 1	ر	0
3-2	0.4	23.2	. 0	• •	• "	•	•	•	` '	7.1	2	6	•
נו נו נו	יי ייי	7 10 0			•	ٔ ب	•	•	_		9	•	
ה ה	\ • • •	6.07	4.0	٠,		Ξ.	•	-:	7	•			
2-2	9.0	16.0	7	7	ς.	٠.	7	٦.	7	•	ي	9	α
2 - 2	9.	21.4	2.9	4	٠,	Ξ.	ς.	~	٦	•	4		, ,
2	ລ. ນ	16.5	8.0	C.	Ξ.	٠.	٠.	٠.		•	64.8	16.9	7.01
3-6	3.2	24.8	ທ		C	Γ.	Ξ.		21	•	:	•	
23	2.6	29.7	5.4	9	٦.	0	Ξ.	0.0	0	0.5	7	_	
57	2.6	20.9	5.2	7	0	0	Ξ.	_	٦	2.9	,	· –	د
2	2.3	10.9	4.1	۳.	٦.	0	Ξ.	_	9	<u> </u>	, ~	•	• .
3-1	2.3	30.6	2.0	ຜ	9	0		01	0	0.9	2	• 0	r c
\sim	6.1	23.3	ď	4.	Ŋ	0		1	-		, ~	, 4	•
25	1.8	28.1	7.5	7	'n	0	7	O	0			α	: ^
~	1.7	33.2	e,	ø	ຜ	7	N	T.	o		63.4	34.2	0
3-2	1.6	25.5	9.7	ശ	m	_	7	0	Ή.	7	<u>.</u>	9	
2-2	1.3	13.6	7	ů.	7	0	7	0	m m	12.3	ς.	<u>ر</u>	
\sim	1.3	31.0	N	Ö	N	0	4	0	Ή.	_	2	Ξ.	ິທ
24	1.3	19.7	ശ	ഗ	0	0	0	9	•	0.	٠	ď	
3-2	8.0	32.3	4	_	m	7	~	7	7.	3.3			
2	0.7	25.3	9	2	7	0	~	7	1.	<u> </u>	62.2	25.9	11.9
3-1	0.3	32.2	ف	7	m	7	7	0	2	•	٠		
2-1	0.3	24.2	N	N	-	0	0	0	٦.	۲.	1.	4	•
B3-9	60.28	34.49	2.50	0.76	0.50	0.13	0.28	0.49	1.6	7	62.0	35.4	2.6
2	0.2	18.5	7	4	_	0	~	0	18.9	. 7	7	6	•
									1	<u></u>			

TABLE 9 (continued)

							_		_								_		_						
sed	Mg0%	1 .	16.1	2	•	9.5	0.7	•	6.4	•	4	•	•	•	•	•	•	•	ب	17.7	7.	7.	•	•	20.0
nali	Ca0%	-	22.3	4	,	6	7	2	2	6	•	3	•	5	Э.	9	8	7	7.	24.4	4.	<u>ي</u>	7.	43.3	4.
Ratio	Sio28	2	61.6	0		61.4	Ξ.	9	-	•	0	6	9	9	9	6	6	8	9	57.9	œ	7.	8	ა.	5.
kage °c	800				15.3			٠	1.4		9.	1.9				3.4		26.6					.7	==	
Shrinkag at °C	1000	•	•	•	•	•	•	•	•	•	•		4	•	0	•	•	•	9	41.7		4			
	$2ro_2$ %	80	0.11		0.41	0	0.17	<0.05	7	<0.05	•	0.17	0	0	<0.05	<0.05	•	<0.05	•	0.05	0.05	0.	4.	<0.05	• 0
	Fe2038	.2		0.	.2	۲.	7	4.	•	۲.		7	.2		.2			•	۲.	0.14			Ġ.		. 2
tions	K20\$		•	•	0.15	•		•	•	0	<0.05	0.	0.	•	٦.	•				<0.05	0	0	•	<0.05	0.
mposi %)	Na208	ა.	0.		0.33	۳.	4.	.2	:	.2		.2	0.	.2	.5		r.	4.	3	0.18	0.	0	0.45	٠,	0.17
ysed (Weig	A12038	.7	3			4.	6.	•		ა.		7	7	۲.	σ.	•	.7	•	9.	0.74	0	<u>د</u>	'n	0	
Anal	MgO&	8	9.	4.	9		9			. 7	6.	0.	0.	8	0.	•	4.	4.	0.	17.36	•	æ	4.	.7	19.66
	CaO%	2.5	1.6	4.3	9	8.1	6.0	2.0	0.9	8.4	5.0	3.1	9.6	4.6	2.7	S. D.	9.9	0.5	6.2	23.92	3.6	4.4	0.9	2.7	4.0
	\$201		φ.	Φ,	S.	<u>্</u>	4	<u>.</u>	&	-	9	ر	-:		S.	വ	<u>ო</u>	<u>o</u>	⊙ .	6.82	ര	_:	<u>o</u> .	~	•
	Si																			2					
	Melt	m	\sim	92	3-3	3-	3-2	~	96	2	œ	g	9	9	3	12	C	3-2	2-1	971	3	7	\mathbf{c}	0	

*Poor fibres containing a lot of shot. All other constituents < 0.1%. Too poor to test for solubility or shrinkage

PABLE 10

			Anal	ysed (Weigh	composit t %)	ions			Solubil ppm	it	ies	Ratio Compo	nali siti	sed
Melt	$\sin_2 \xi$	Ca0%	Mg0&	A12038	Na208	K20%	Fe2038	ZrO28	\sin_2	CaO	Мдо	$\sin 0.8$	Ca0%	Mg0%
2-28	9.0	2.0	7.1	٦.	0.	0.0	7	.7	~			0	٠.	7.
91-7	3.4	12.4	0.	7	0.0	0.		.2	113	45	55	9	•	•
2-32	3.0	6.3	9.6	7	0.	0.0		۳.				د	9	9.
3-32	2.3	23.4	9.	۳.	ε.	0.	.2	.7	•			5.	4	0
2-15	2.2	12.6	2.3	4	0.	0.0		.2	0			4.	•	2
2-22	1.4	9.3		.	۲.	0.0	7	8	126	36	75	<u>ب</u>	9.	•
2-29	1.2	4.4	2.3	۲.	0.	•	۲.	.2	9			2	•	2
2-27	1.1	6.7	9.6	7	0.	0.	۲.	0.	0			2	•	0
3-28	8.0	18.7	7.0	4.	7	0.	۲.	.7				3.	9.	7.
2-17	4.0	11.5			0.	0.	۲.	.5	σ			3	•	5.
2-33	0.0	4.6	2.8	7		0.		0.				;	4.	•
3-18	9.4	23.2	3.7	4.	ų.	0.		4.	4	99	17	ک	4.	щ
9-2	9.2	15.1	. 7	0	7	0.		۲.	2	48	70	Ή.	•	•
3-16	8.7	24.9	.7	9.	Э.		?	0.	\sim	72	10	2	9	1.
2-26	9.8	8.1	7	Ň	0.	0.	?	6.	œ	31	97	÷.	ж •	•
3-27	8.5	20.9	0.	.7	.	0.	۲.	.7	2	54	20	1.	i.	7.
69	8.3	17.4	2.6	0	۲.	0.	٠,	•	~	38	40	6	7	2
2-20	8.1	11.5	υ.	4	۲.	0.		9	9	31	69	0	•	•
2-31	7.6	8	$\ddot{}$		0.09	<0.05	0.15	0.64	103	26	72	69.2	8.6	22.2
3-31	7.5	27.7	4.	4	4.		7	0	_	20	4	0	9	•
3-19	7.5	24.9	9.	4.	۳.	0	7	9.	9	44	21	0	•	•
3-17	7.2	26.6	ω.	.7	4.	۲.	7	r.	9	49	13	0	7.	1.
2-13	9.9	14.8	6.0	۲.	0	0	~	9	S	47	70	ж •	5	
2-10	6.1	16.2	æ	4.	0.	0.	0.	0.	2	42	52	7.	9	9
3-22	6.1	21.2	9.3	.5	۳.	0.		.5	7	62	57	8	5	
3-15	5.8	29.8		4.	4.	0.	٦.	S.	Ω	38		7	0	•
19	5.7	25.6	٦.	0	.2	0.	7.	0	_	51		•	<u>ي</u>	8
2-5	5.6	18.7	.7	٦.		0.	۲.	۲.	2	48	09	9	6	
3-4A	5.5	25.8	4.8	0.		.1	۲.	7	82	25				
8	65.33	16.8	7		-	٠.		٦.	181	54		67.7	17.5	14.8
											7	7	-	-

TABLE 10 (continued)

9th #) 14 Na_20t K_20t Fe_20_3t ZrO_2t SiO_2 Cao Mgo SiO_2t Cao& 5 0.24 <0.05 0.20 0.49 107 47 20 65.7 27.3 6 0.17 <0.05 0.08 <0.05 153 68 20 66.6 27.9 7 0.06 <0.05 0.10 0.01 10.13 160 28 56 65.6 14.0 8 0.17 <0.05 0.11 0.13 160 28 56 65.6 14.0 9 0.10 <0.05 0.11 0.13 160 28 56 65.6 14.0 9 0.10 <0.05 0.11 0.12 10.1 119 66.4 6.8 9 0.11 <0.05 0.11 0.12 10.1 119 66.1 65.9 10 0.12 0.13 0.14 11 119 66.1 6.8 10 0.13 0.05 0.15 0.05 110 44 11 119 66.1 6.8 10 0.14 0.05 0.15 0.05 110 44 11 11 119 66.1 6.8 10 0.15 0.05 0.15 0.05 110 44 11 11 119 66.1 6.8 10 0.17 <0.05 0.18 0.05 110 47 66 64.9 11.0 10 0.17 <0.05 0.18 0.05 110 47 66 64.9 11.0 10 0.17 <0.05 0.18 0.05 110 47 66 64.9 11.0 10 0.17 <0.05 0.18 0.05 110 47 66 64.9 11.0 10 0.17 <0.05 0.18 0.05 110 47 65 64.9 11.0 10 0.10 0.05 0.10 0.05 1187 62 17 64.0 11.0 10 0.10 0.05 0.10 0.02 118 57 63 63.9 11.3 10 0.10 0.10 0.11 <0.05 118 76 35 63.4 28.9 10 0.10 0.11 <0.05 118 76 35 63.9 11.3 10 0.10 0.10 0.10 0.10 0.10 11.0 11.0			646	1,000	+; 00000	9			1.6		١.		;	
Barrow B				(We	. &)	911011		,	or no	n i i i i	ıes	Katic Compo	111 iti	sed
19	elt sio	% Cao	MgO	1203	a ₂ 0	20	e ₂ 0 ₃	ro_2	io	G	ָס	102	aO	go
1.14 65.11 24.91 5.54 0.58 0.43 0.09 0.019 0.01 153 68.2 20.6 66.5 20.8 6.018	18 65.	3 27.	4 6.9	<0.0>	.2	0.	.2	4.	0	47	20	ك	/:	
2.1 65.08 5.7.26 5.33 0.06 0.017 <0.08 <0.05 153 66.4 6.6 5.7.9 5.7.0 </td <td>3-14 65.</td> <td>1 24.</td> <td>1 5.5</td> <td>0.5</td> <td>4.</td> <td>0</td> <td>٦.</td> <td>9.</td> <td>വ</td> <td>67</td> <td>27</td> <td>8</td> <td>9</td> <td>•</td>	3-14 65.	1 24.	1 5.5	0.5	4.	0	٦.	9.	വ	67	27	8	9	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 65.	8 27.	6 5.3	0.0		0.0	•	0	S	68	20	9	7	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-34 64.	5 6.	3 26.2	0.2	•	0.0	7	8	39	11	7	9	9	9
3.0 64.11 31.93 0.37 0.64 0.45 0.09 0.14 0.28 163 81 166 65.5 31.1 0.0 2-35 64.12 8.88 24.88 0.29 0.10 6.013 0.47 61 18 10 65.5 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1 25. 9.1	2-21 64.	6 13.	4 19.9	0.3		0.0		.1	9	28	Ω	ა.	4	0
2-35 64.12 8.88 24.88 0.29 0.10 <0.05 0.13 0.47 61 18 106 55 9.1 25.0 3-23 64.09 23.26 9.36 0.09 0.16 0.30 101 44 31 66.3 24.0 9.1 2-30 63.68 16.06 18.21 0.40 0.11 0.07 0.15 <0.05	3-30 64.	3 31.	3 0.3	0.6	4.	0.		.2	9	83	3	9	ب	0
3.5 6 (4.09) 23.2 6 (4	2-35 64.	2 8.	8 24.8	0.2		0.	۲.	4.	61	18	0	5.	9.	5.
2-36 6.3.74 25.41 4.68 3.97 0.26 0.12 0.17 0.58 48 43 11 1.6 18.1 1.6 18.2 1.6 1.6 18.2 1.6 18.2 1.6 1.6 1.6 18.2 1.6	3-23 64.	9 23.	6 9.3	0.5	۳.	0.	7	.3	0	44	31	9	4.	6
2-30 63.68 16.06 18.21 0.40 0.11 0.07 0.15 <0.05 195 67 66 64.9 21.9 13. 2-9 63.66 21.44 12.96 1.49 0.32 0.10 0.11 <0.05	3-5A 63.	4 25.	1 4.6	φ 6	7.	۲.	٦.	.5	48	43	11			
2-9 63.66 21.44 12.96 1.49 0.32 0.10 0.11 <0.05 195 67 66 64.9 21.9 13.9 2-12 63.56 16.55 18.00 0.33 0.11 <0.05	2-30 63.	8 16.	6 18.2	0.4	٦.	0.		0.0	0	33	52	5	9	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-9 63.	6 21.	4 12.9	1.4	.3	۲.		0.0	9	67	99	4.	7	۳.
3-6A 63.24 24.83 4.59 5.70 0.27 0.11 0.15 0.15 26 7 26 7 26 7 26 7 26 10.0 10.1 10.15 0.13 60.05 10.11 0.00 11.1 62 17 64.0 30.4 15.1 15.2 0.00 0.17 <0.05 0.16 <0.05 0.16 <0.07 160 17 64.0 30.4 17.3 24.2 25.2 17 64.0 30.4 27.2 15.2 10.0 0.00 0.00 160 0.00 160 0.00 160 0.00 17 60.00 160 0.00 17 60.00 17 60.00 17 60.00 17 60.00 17 60.00 17 60.00 17 18 18 18 18 18 18 18 18 18 18 18 19 18 19 18 19 19 19 19 <td>2-12 63.</td> <td>6 16.</td> <td>5 18.0</td> <td>0.3</td> <td>۲.</td> <td>0.</td> <td>0.</td> <td>0.</td> <td>9</td> <td>47</td> <td>99</td> <td>4.</td> <td>9</td> <td>8</td>	2-12 63.	6 16.	5 18.0	0.3	۲.	0.	0.	0.	9	47	99	4.	9	8
23 62.61 29.79 5.44 <0.05 0.17 <0.05 0.13 <0.05 141 62 73 64.0 30.4 5.7 22-25 62.60 20.92 15.22 0.20 <0.05	3-6A 63.	4 24.	3 4.5	5.7	7	۲.			N	7	26			
57 62.60 20.92 15.22 0.20 <0.05 0.16 <0.05 187 62 73 63.4 21.2 15.2 2-25 62.36 10.99 24.18 0.33 0.10 0.05 0.16 0.07 160 35 105 63.9 11.3 24.2 3-13 62.33 2.06 0.05 0.07 0.07 160 35 105 63.9 11.3 24.2 2-7 61.98 23.37 11.98 0.44 0.25 <0.05	23 62.	1 29.	9 5.4	<0.0×	٦.	0.0	۲.	0.0	4	62	17	4.	o.	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57 62.	0 20.	2 15.2	0.2	•	0.0	۲.	0.0	œ	62	73	.	;	5.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-25 62.	6 10.	9 24.1	0.3		•		0.	9	35	0	.	1:	4.
2-7 61.98 23.37 11.98 0.44 0.25 <0.05 0.10 0.23 178 59 63 63.7 24.0 12.0 25 61.83 28.13 7.54 0.10 0.36 <0.05	3-13 62.	3 30.	2 2.0	0.5	9.	•		6.	ည	41		5.	5	•
25 61.83 28.13 7.54 0.10 0.36 <0.05 0.17 <0.05 186 76 35 63.4 28.9 7.7 3-11 61.71 33.25 2.33 0.69 0.52 0.12 0.25 0.59 162 28 15 63.4 34.2 2. 3-24 61.62 25.53 9.73 0.58 0.10 0.17 <0.05	2-7 61.	8 23.	7 11.9	0.4	.2	0.0		.2	7	59		ъ.	4.	۲,
3-11 61.71 33.25 2.33 0.69 0.52 0.12 0.25 0.59 162 28 15 63.4 34.2 2 2 3-24 61.62 25.53 9.73 0.58 0.38 0.10 0.17 <0.05	25 61.	3 28.	3 7.5	0.1	د .	0.0		•	œ	92			8	•
3-2461.6225.539.730.580.380.100.17<0.05	3-11 61.	1 33.	5 2.3	9.0	3	۲.	7	S.	9	28		ن	4	۲,
2-24 61.38 13.62 22.74 0.31 0.16 <0.05 0.14 0.08 136 27 87 62.8 13.9 23.2 22 61.33 31.08 5.25 0.05 0.20 <0.05	3-24 61.	2 25.	3 9.7	0.5	۳.	۲.	۲.	•	œ	37		Э.	•	0
22 61.33 31.08 5.25 0.05 0.20 <0.05 0.16 <0.05 185 81 23 62.8 31.8 5. 24 61.32 19.78 14.54 2.57 <0.05	2-24 61.	8 13.	2 22.7	0.3	٦,	0.0		•	m	27		5	ن	ب
24 61.32 19.78 14.54 2.57 <0.05 <0.09 0.66 77 36 37 64.1 20.7 15.3 3-2A 60.83 32.30 0.48 4.15 0.35 0.15 0.19 0.12 58 61 5 43 62.2 25.9 11. 2-14 60.74 25.30 11.66 0.28 0.18 0.05 0.13 0.16 127 57 43 62.2 25.9 11. 3-1A 60.32 32.27 3.99 1.74 0.32 0.10 0.15 0.09 119 72 16 2-11 60.32 24.28 13.24 0.25 0.18 <0.09	22 61.	3 31.	8 5.2	0.0	7	0.0	۲.	0	œ	81		?	1.	5.
3-2h60.8332.300.484.150.350.150.190.12586154362.225.911.2-1460.7425.3011.660.280.180.050.130.150.16127574362.225.911.3-1A60.3232.273.991.740.320.100.150.0911972162-1160.3224.2813.240.250.18<0.050.090.090.08149545161.724.813.3-960.2834.492.500.760.500.130.280.0491758562.035.42.2-2360.2018.5918.780.480.190.080.150.05192354761.719.119.1	24 61.	2 19.	8 14.5	2.5	0.0	0.0	•	9.	7	36		4.	0	ე.
2-14 60.74 25.30 11.66 0.28 0.18 0.05 0.13 0.16 127 57 43 62.2 25.9 11. 3-1A 60.32 32.27 3.99 1.74 0.32 0.10 0.15 0.09 119 72 16 2-11 60.32 24.28 13.24 0.25 0.18 < 0.05 0.09 0.08 149 54 51 61.7 24.8 13.33	3-2A 60.	3 32.	0 0.4	4.1	٤.	۲.	٦.	۲.	S	61	S			
3-1A 60.32 32.27 3.99 1.74 0.32 0.10 0.15 0.09 119 72 16 24.8 13.24 0.25 0.18 < 0.05 0.09 0.08 149 54 51 61.7 24.8 13.3	2-14 60.	4 25.	0 11.6	0.2	٦.	0			7	57		5.	5.	٠ ٦
2-11 60.32 24.28 13.24 0.25 0.18 <0.05 0.09 0.08 149 54 51 61.7 24.8 13. 3-9 60.28 34.49 2.50 0.76 0.50 0.13 0.28 0.49 175 8 5 62.0 35.4 2. 2-23 60.20 18.59 18.78 0.48 0.19 0.08 0.15 0.05 192 35 47 61.7 19.1 19.	3-1A 60.	2 32.	7 3.9	1.7	۳.			0	~	72				
3-9 60.28 34.49 2.50 0.76 0.50 0.13 0.28 0.49 175 8 5 62.0 35.4 2. 2-23 60.20 18.59 18.78 0.48 0.19 0.08 0.15 0.05 192 35 47 61.7 19.1 19.	2-11 60.	2 24.	8 13.2	0.2		•	0.	0	4	54		1.	4.	۳.
2-23 60.20 18.59 18.78 0.48 0.19 0.08 0.15 0.05 192 35 47 61.7 19.1 19.	3-9 60.	8 34.	9 2.5	0.7	٠.	٦.	.2	4	1		ည	5	ე.	2
	2-23 60.	0 18.	9 18.7	0.4	۲.	0	۲.	0.	9			Ή.	9	9.

TABLE 10 (continued)

			Ana]	nalysed Co (Weight	Compositi	cions			Solubilit ppm	oilit opm	ies	Rationa Composit		sed
Melt S	Sio ₂ %	Ca0%	Mg0&	A12038	Na ₂ 0%	K20%	Fe2038	Zro28	sio ₂	CaO	Mgo	Sio ₂ %	Ca0%	Mg0%
3-1	0.1	2.5	8	.7	.5	. 1	.2	®	146	84	17	2	, e	1 .
32	9.8	1.6	9.	3	•	0.		٦.	92	41	43	61.6	22.3	16.1
92	9.8	4.3	4.	۲.	۲.	•	•	Τ.	140	67	23	0	4	ک
3-3A	9.5	1.6	•	9	۳.	٦.		4.	30	25	10			
B3-25 E	59.53	28.15	9.25	0.48	0.39	0.08	0.14	<0.05	133	48	33	۲,	9	•
3-29	9.4	6.0	•	6	4.	۲.	7	Ξ.	0	59	വ	ij.	7.	•
14	9.0	2.0	7	0.	?	•	4.	0	4	73	30	9	2	•
96	8.8	0.9	6.1	7	۲.	•	•	?	9	48	37	Ξ.	2	•
2-19	8.7	8.4	. 7	3	7	0.	۲.	٠.	$^{\circ}$	42	99	0	•	•
86	8.6	5.0	6.	۲.	7	•		0.	œ	54	19	0	5	•
94	8.3	3.1	0.9			•	٠,		m	99	27	9	۳,	•
65	7.7	3.9	0.		•	0.	7	•	0	16	169	9	4.	•
09	7.7	•	8	•	.2	•	٦.	0	152	69	23	59.4	35.6	5.0
3-20	7.5	2.7	0	6.	.5		7	•	æ	59	40	9.	ω,	•
12	7.5	5.3	9.	0		•		۰.	9	24	22	9	6.	•
3-21	7.3	9.9	4.	.7	S.	٦.		•	^	25	16	9.	8	
3-26	6.9	0.5	4.	•	4.	. 1	0.	0.	4	64	41	œ.	٦.	
2-18	6.9	6.2	0	•	٠.	٦.	٦.	0	o	47	57	6	7.	ъ.
71	6.8	ي. ق	7.3	. 7		•		0	4	52	73	7.	4.	
34	6.5	3.6	7.0	•	0	•		0	\sim	25	99	8	4.	7.
73	6.1	4.4	6.8	.5	0.	0		0	0	42	47	7	5.	7.
3-3	5.9	0.9	4.4	.5	4.	0	۳.	4	α	14	18	α	7.	
80	5.2	2.7	0.7	0	۳.	0.	۲.	0	ത	31	7	ي	3.	
٦	4.6	4.0	9.		۲.	0.	. 2	0	\sim	55	62	2	4.	
							T	# · · · · · · · · · · · · · · · · · · ·	1	1	1	1		

There are several anomalies, namely compositions B3-6A, A2-25, A2-24, A2-23, B3-2A, B3-3A, A2-19, and 932. All of these have an SiO_2 content of > 58% but a high shrinkage.

On the assumption that the minimum silica level for satisfactory shrinkage varies with MgO content the applicants have determined that fibres with a silica content (in weight percent) that fail to meet the following expression do not have satisfactory shrinkages at either or both 800°C and 1000°C:-

$$5iO_2$$
 >58% - (for MgO =< 10%) and $5iO_2$ >58% + 0.5(%MgO -10) - (for MgO >= 10%)

The applicants have further found that the ${\rm Al}_2{\rm O}_3$ content is important. From their studies it appears that the maximum ${\rm Al}_2{\rm O}_3$ content lies somewhere between 2.57% and 3.97%. The applicants have found that with increasing alumina levels the first material to crystallise is calcium aluminate and this possibly forms a liquid phase that assists flow and hence shrinkage.

Table 10 shows, for the same compositions as Table 9, 24 hour solubilities for each major constituent. It can be seen that all of the compositions have high solubilities.

As mentioned above use of CaO in forming calcium containing fibres is inconvenient and can be hazardous. The applicants investigated use of mixed oxide materials that would avoid the handling of CaO. A fibre was made by admixture of magnesia with silica and wollastonite (CaSiO₃).

The raw materials used to make the melt comprised:-

Pennine Darlington Heavy Magnesia (#200)

MgO	-	92.60%
CaO	-	1.75%
Fe ₂ O ₃	-	0.04%
SiO ₂	-	0.20%
Cl	-	0.25%
so ₃	-	0.70%
LOI	-	4.50%

Partek's Finnish Low Iron Wollastonite (#200) (U.K. agent - Cornelius Chemical Co., Romford, Essex)

sio_2	-	51.80%
CaO	-	44.50%
MgO	-	0.80%
Al_2O_3	-	0.60%
Fe_2O_3	-	0.30%
Na ₂ O	_	0.10%
к ₂ 0	-	0.05%
TiO ₂	-	0.05%
S	-	0.02%
MnO	-	0.01%
P	-	0.01%
F	-	0.01%
LOI	-	1.70%

Hepworth Mineral's Redhill T washed silica sand

SiO₂ - 99.0% min.

These constituents were mixed as 78.65% Wollastonite; 19.25% SiO₂; and 3.6% MgO. This gave 0.4-0.5% of the final melt as Al_2O_3 .

It was surprisingly found that in producing a melt using these constituents the current requirements were only two-thirds that for the use of the raw oxides.

Fibre was produced by blowing (although spinning and other methods can be used). 2 runs were performed with different blowing conditions.

Chemical analysis was undertaken by the Analytical Department at the applicant's subsidiary Morgan Materials Technology (hereinafter called M^2T) using wet chemical techniques. Fibre diameters were measured using M^2T 's Galai particle analyser, with shape analysis software. Typically 40,000 fibres were analysed for each run.

The first result of note was the speed of melt reaction when using wollastonite as compared with lime. Also the current was seen to be very stable throughout the growth of the melt. If the current was lost whilst pulling the electrodes apart the current could be restored simply by pushing them back together again. This was not possible with the runs using lime.

Chemical Analysis

	<u>Others</u>	<u>CaO</u>	MgO	<u>Al</u> 203	<u>sio</u> 2	zro ₂	<u>Na</u> 20	Total
Run1	0.7	32.6	3.8	0.8	60.1	0.8	0.5	99.3
Run2	0.7	32.5	3.8	0.8	60.1	0.8	0.6	99.3

Runs 1 and 2 indicate the respective x-ray fluorescence analyses for each run.

Shrinkage Results (1000°C for 24 hours)

	_ <u>L1</u>	<u>L2</u>	<u>L3</u>	<u>L4</u>	<u>Av.</u>	Std.Dev.
Run 1	0.9	0.2	0.4	0.6	0.5	0.3
Run 2(A)	1.0	-0.2	0.7	0.6	0.5	0.5
Run 2(B)	0.5	0.2	0.0	0.4	0.2	0.2

Solubility Results (ppm)

		<u>Ca0</u>	<u>MgO</u>	SiO ₂
Run	1(5 hr)	67	10	95
Run	1(24hr)	84	17	146
Run	2(5hr)	39	7	72
Run	2(24hr)	73	17	186

Fibre diameters

	<u>Mean</u>	<u>Median</u>	100%<	<u>%>5µm</u>	%<1um
Run 1	5.1 μ m	3.4 μ m	· 30µm	33%	13%
Run 2	$4.1 \mu \mathrm{m}$	$2.7 \mu \mathrm{m}$	25µm	25%	19%

Accordingly it appears to be the case that by using what are cheaper ingredients than the pure oxides one can obtain a fibre that has as high a performance as using purer oxides and at much improved energy costs and safety. It is to be noted that this feature of the invention is not limited to saline soluble fibres and any oxide fibre that contains both calcium and silicon can advantageously be made with a calcium silicate, wollastonite being merely an example of such a silicate.

The previous description is directed towards high temperature usage of particular saline soluble fibres. The following is directed towards the prediction and use of saline soluble fibres. A series of fritted glass melts were made of the compositions shown in Tables 11A and 11B and quenched in water. Solubilities of the various components of the quenched melt were measured by the previously described method of atomic absorption. The solubilities were normalised to a specific surface area of 0.25m²/gram of fibre.

The free energy of hydration was calculated by normalising the chemical analysis to 100 weight %; making the assumption that simple silicates (MSiO $_3/M_2$ SiO $_3$) are present

and calculating the free energy of hydration contribution of each species; and summing to get the total free energy of hydration. The data in Tables 11A & 11B is also presented in Fig.4. It can be seen that the fibres lie on a generally straight line bar four groups of materials that will be explained below.

Table 11 shows in each column the following:-

Fibre reference
Composition
Molar ratios
Moles/100 grams of melt
Species assumed (see below)
Calculated free energy of hydration of assumed species
(kcal/100 grams)(see below)
Calculated free energy of hydration of assumed species
(kJ/kg) (see below)
Solubility data (# indicates not measured [see below])
Specific surface area
Normalised solubility data
log normalised solubility

The base data on which calculation of the free energy of hydration was done is set out in Tables 12 which indicates free energies of hydration taken from the literature in the units kcal/mol and kJ/mol.

lable of free finersy of Hydration Values for Silicate Helts

_
_
<u>ن</u>
Ξ
2
⋖
÷

[!	.!						_						1							_	٠,	2					و				<u>.</u>			ا				\ <u>\</u>			j
1 000,000	_	1	-			-	-			-	-			78	-			2.40	_		2.21	: 		0.00				06.0				0.78	_			_			2.45			_
Normal Land	Solvetility	17	;			1	3			1				89				6%			165			-				60				•			-) 			280			
\$.5.A		0 30	}			01 0				0 36				0,.0				0.57			0.45			0.56				0.62				0.52			0.50				0.41			
lity	(E)	3	•	~	51	18	-	**	103	55	; =	\$	110	77	0	57	Ξ	~	795	369	17	25.5	262	-	•	<u>~</u>	۰	=	.	٠ ;	2	` '	•	٠ :	0	~		. 2	2	g	355	760
Solubility	Oxide	040	A1 203	Sio2	lutal	CaO	A1203	5102	lotal	CaO	A1203	2018	Total	C a O	Ji i u Z	5102	ניויון	210	2005	lotal	Coo	Sin	Testail	02°K	A1203	Siaz	lotal	Qe J	A1203	2005	lotal	06.5	C COLO		929	A1203	Sign	Total	210	Ć.	5102	fotal
free Energy of	Mydration (k1/kg)	-304.0	31.6	.219.7	-492.1	.322.8	30.6	- 198.9	1.165-	.307.3	30.8	-225.0	5.665.	-476.5	-45.5	110.4	9.115	7.709.	-21.7	1.929	-563.5	11.2	-552.5	.367.5	20.7	7.60	7.122	-251.4	6.72		77.55	0.631.	2.5	0 07	300.2	9.07	27.0	-181.7	.346.1	7.853.4	3.3	-596.2
free Energy of	Hydration (kcal/100g)	-7.3	9.0	-5.3	-11.0	7.7.	0.7	-4.8	-11.8	.7.3	. 2.0	-5.3	-11.9	-11.4	1.1.	2.6	6.6-	7.71-	è.0.	6.21-	-13.5	0.3	-15.2	.8.8	1.2	2.1	-5.5	0.9-		2.0	-2.9	9.7.			-7.2	! •			.6.3	-6.1	0.1	-16.3
Moles	In 1kg	4.51	2.43	4.01		6.7	2.35	3.63		4.56	2.37	4.07		7.07	0.83	1.65		5.92	0.30		8.36	0.48		3.05	8.5	3.62		3.73	3.45	7.31		\$.50	7.7	?	70 0	2	: =	}	3.30	3.78	9. ¥	
Species		Casio3	A1203	Q.		Casio3	A1203	O. O		CaSiO3	A1203	Ge 3		CaSi03	Cid	1102		SrSio3	S ₁ 0		Casio	\$ i02		Ma2Si03	A1203	\$ i02		CaSiO3	AI 203	2015		Mg5103	(S)	<u> </u>	Sec. 03	10014	Cois	<u> </u>	\$15103	Casio3	\$102	
Holes	in 1009	0.451	0.243	0.401		0.479	0.235	0.363		0.456	0.237	707.0		0.707	0.083	0.165		0.592	0.030		0.836	0.048		0.305	0.390	0.382		0.373	0.345	0.358		6.20	9.55	3	702 0	212			0.330	0.376	910.0	
Holes		0.852	0.243	0.451		0.642	0.235	0.479		0.863	0.237	0.456		0.790	0.165	0.707		0.622	0.592		0.836	0.884		0.305	0.390	0.687		0.373	0.345	0.751		0.20	6.3%		70%			3	0.339	0.376	0.729	
	Rational ized	47.0	24.8	27.4	100.0	47.2	0. %	28.8	100.0	7.87	2.2	27.4	100.0	44.3	13.2	42.5	100.0	4.4	35.6	100.0	6.95	53.1	100.0	16.9	39.B	41.3	100.0 0.00	6.02	35.2	6.5.9	100.0	10.5		5	2 5				15.1	21.1	43.8	100.0
8	1	7.75	×.5	27.1	88.8	\$.99	23.7	28.4	9.06	67.8	23.9	23.1	98.8	42.7	12.7	9.5	7.96	63.1	34.9	98.0	46.1	52.3	2.86	8.8	20.7	41.1	9.8	21.0	35.6	7.7	9.00	9 ;		2.50	2 2			2 20.0	2	27.0	43.6	8
3		3	A1203	\$ i02	1010	9	A1203	Si02	lotal	3	A1203	sio2	lotal	9	102	2015	lotal	Sro	2015	lotal	040	Si02	le la l	M:120	A1203	Si02	Total	ŝ	A1203	2015	e loi	06	(((((((((((((((((((30.00		2001	2075	3 T	1	3	2015	Total
Helt Code		CAS10(8) - A			- 1	CAS10(8) - 8				CAS10(B) · C				CISCA)				Srsio3			CaSi03			MAS(A)				CAS¢				MAS(B)			1000				(A) SC			

lable of free tiergy of Hydration Values for Silicate Helts

TABLE 11 Continued

	_		_					_					_		_								_	_	3.5)		<u> </u>					1	_		_					_
	Loughand		1.58					85	:					2.35					1.72	-			=	:				-					100	. 70				<u>:</u>			
	Not sul 1 ted	Solidality	3.6					ક					ļ	212					25				75					110	•				6	.			7.	:			
	S.S.A	_						0.39						د. در					0.38				0.30					0.48					07 0	?			72.0	?	-		
	1117	(E E)	25	~	<u>-</u>	<u>~</u>	69	91	~	_	. 22	: :	-	<u>`</u>	- -	-	521	=	₹	-	•	2	=	~	_	•	2	2	23	0	118	228	107	-	. 2	17	-	•	-	- - =	:
	Solubility		Sro	OS I	A1205	2015	Total	Sro	Hijo	A1203	2105	lost		-	000	A1 203	2015	7	210	A1205	2015	Test and	Cio	MgC	A1203	2015	lotat	0,0	M ₉ 0	A1205	5102	lotal	200	A1205	2005	Intal	2	Q	A1203	2018	
cancaline.	free Energy of	Mydration (k1/kg)	2.206.	7-9-	1.15	0.101.	- 400.3	7.607-	-33.2	19.2	6.0	-523.3	1 761:	7 081	7.00	-	9.70	0.755	4.005	25.1	1.201	, the . t	-197.5	-29.6	55.4	.111.6	- 349.3	.260.8	-226.4	9.0	29.0	-421.2	-421.7	22.9	7.101	-500.2	-305.4	188.0	22.9	204.8	
	-	mydrafilm (KCal/100g)	3:1	7.0	117			8.4.	9.0.	6.5	-2.4	-12.5	.7.8	1.7-	0.0	5	¥ 01.	a 0.		9 5	4.4	0		-0.7	1.5	4.2	-0.3	-6.2	-5.4	0.0	1.4	-10.2	10.1	0.5	-2.4	.12.0	.7.3	-2.1	0.5	2.1	
20104	in the	90 2	2 2	2 30	2.50		1.0		× :		- 38 - 38		3.18	3.10	0.10	2.64		10.7			;	200	6.73	60.1	¢.26	3.24		3.87	3.89	0.0	2.52		4.13	1.76	1.40		1.3	3.23	1.76	8.72	
Species		Srsios	Ç	A1203	Sro		Section			(n2)4	Sro		Srsio3	Musios	A12u3	5 102		Srsios	ALZON	510)	Cacint		3	A1205	3		CaSi03	MgSio3	A1203	2015		Srsio3	A1203	Sro		K25i03	MgSio3	A1203	S i 02	
Moles	in 1000	0.296	0.030	0.239	0.250		107 0				9.138		0.316	0.310	0.010	97.0		0.401	101	0.141	:	207 0		. 10¢	927.0	0.324		0.387	0.389	0.008	0.252		0.413	9.176	0.140		0.175	0.323	0.176	0.377	
Holes		0.546	0.030	0.239	962.0		02.5	6,10	971				0.318	0.310	0.010	0.892		0.542	0.193	0.401		0 617	9	À :	0.470	0.293		0.387	0.589	90.0	1.020		0.553	0.176	0.413		0.175	0.323	0.176	0.675	-
	Rationalized			-	-	100.0	<u> </u>					3	32.9	_		53.6	100.0	56.2			100.0	34.6	7.7			17.6	20.00	23.7		9	9.19	100.0	57.3	6.71	24.B	100.0	16.5	13.0	17.9	.52.6	25
Composition		Ī	1.2	23.7	2.5	97.2	55.0	8.4	8.3	_~		200	22.0	5.5	<u> </u>	53.8	100.3	56.0	10.7	24.0	2.66	35.0	5 7	, ,	;	2 2		7 7	2.6	2 :	5	9	\$6.5	17.6	→	98.5	16.5	13.0	9.9	52.B	. 000
Coa	Onide	Sro	R g0	A1203	Si02	lotal	Sro	Orie	A1203	Cois			2	9	A1203	S i 02	letal	210	A1205	S i 02	lotal	Cao	Unw	306		7014		3 3	3	A1203	70.	100	o s	A1203	20is	lotal	02.X	06 M	A1 203	S i 02	
Melt Code	1	SMAS(A)					SMAS(B)					10000	(A) che					SAS(C)				CMAS(A)						ZVAC					\$45(D)				KHAS(A)				

TABLE 12

~		
C1L		_3
$-\Pi$	v	а

			nya	
Relev	ant oxides		(kcal/mole)	(kJ/mol)
-	+ H ₂ O>	H ₂ SiO ₃	5.6	23.4
	eous silica)	•		
	+ 3H ₂ O>	-	3.1	13.0
	+ H ₂ O>	-	-6.5	-27.2
CaO	+ H ₂ O>	Ca(OH) ₂	-13.1	-54.8
sro	+ H ₂ O>	Sr(OH) ₂	-17.3	-72.4
Na ₂ 0	+ H ₂ O>	2NaOH	-33.5	-140.2
к ₂ 0	+ H ₂ O>	2KOH	-46.1	-192.9
TiO ₂	+ H ₂ O>	Ti(OH) ₂ O	16.0	66.9
P205	+ 3H ₂ O>	2H ₃ PO ₄	-55.9	-233.9
B ₂ O ₃	+ 3H ₂ O>	2H ₃ BO ₃	-9.8	-41.0
Zro ₂	+ H ₂ O>	Zr(OH) ₂ O	-7.1	-29.7
Relevant S:	ilicates			
Na ₂ SiO ₃ +2H	⁺ (aq)> H ₂ S	iO ₃ +2Na ⁺ (aq)	-28.8	-120.5
$K_2SiO_3 + 2H^4$	⁺ (aq)> H ₂ S	iO ₃ +2K ⁺ (aq)	-41.7	-174.5
MgSiO ₃ +2H	(aq)> H ₂ S	iO ₃ +Mg ²⁺ (aq)	-13.9	-58.2
CaSiO ₃ +2H	$f(aq) \longrightarrow H_2S$	iO ₃ +Ca ²⁺ (aq)	-16.1	-67.4
			-24.4	-102.1
	$(aq) \longrightarrow H_2S$	_		-156.1
_	$(aq) \longrightarrow H_2S$	-		-10.0
Disilicates	<u>.</u>			

Disil

$Ca_2SiO_4+3H^+(aq)>-H_2SiO_3+2Ca_2++OH^-$	-30.3	-126.8
$Sr_2Sio_4+3H^+(aq) \longrightarrow H_2Sio_3+2Sr^{2+}+OH^-$		-210.5
$Mg_2SiO_4 + 3H^+(aq) \longrightarrow H_2SiO_3 + 2Mg^{2+} + OH^-$		-74.9

Although calculations were undertaken assuming the presence of the simplest silicates choice of other silicates (such as disilicates) does not appear to change the calculations much. For example given below is the calculation for an assumed composition which shows only minor differences for the free energy of hydration calculated.

Compos	sition (m	oles/	100g)	0.76	7 CaO			
				0 41	7 Mg O			
				0.669	9 SiO ₂			
0.384	Ca ₂ SiO ₄	=	-11.6	or	0.433	CaSiO ₃	=	-7.0
	MgSiO ₃		- 4.0			MgSiO ₃		
0.132	MgO	=	- 0.9		0.334	CaO	=	-4.4
			-16.5		0.181	MgO	=	- <u>1.2</u>
								-15.9
•								
				or	0.384	Ca_2SiO_4	=	-11.6
					0.132	${\rm Mg_2SiO_4}$	=	- 2.4
					0.153	$MgSiO_3$	=	- 2.1
								-16.1

The applicants have found that when the free energy of hydration is more negative than -10kcal/100 grams (-418.4kJ/kg) of composition the composition showed high solubility. The compositions where this relationship broke down were those for which the total solubility was not available (for example those materials containing sodium, where any dissolved sodium would be swamped by the sodium in the saline solution) or where the free energy of hydration of the most likely species present was not available from the literature.

As a test of this technique the two examples of European Patent No. 0399320 were examined. The disclosed examples had the compositions:-

Component	Composition 1	Composition 2
	Weight percent	Weight percent
sio ₂	60.7	58.5
Al ₂ O ₃	-	5.8
CaO	16.5	3.0
MgO	3.2	-
B ₂ O ₃	3.3	11.0
Na ₂ O	15.4	9.8
к ₂ 0	0.7	2.9
Iron oxide	0.2	0.1
BaO	-	5.0
ZnO	-	3.9

Using the above method of calculation Composition 1 had a free energy of hydration of -11.6kcal/100grams (-485.3kJ/kg) whereas Composition 2 had a free energy of hydration of -5.8kcal/100grams (-242.6kJ/kg). This would suggest that Composition 1 would be a saline soluble fibre, and hence physiologically safer than an insoluble fibre; Composition 2 would be predicted to be a relatively insoluble fibre and hence less safe. This is what is disclosed in EP 0399320, the fibres of Composition 2 having a longer lifetime studies in which the fibres were introduced interperitoneally into rats.

As mentioned above this predictive test can fail under some circumstances. To avoid these difficulties the applicants looked to a different predictive technique, namely the assessment of the amount of non-bridging oxygens present. This is calculated by normalising the chemical analysis to 100 weights; calculating the molar percentage of each oxide; summing the oxygen-weighted contribution of each oxide to get the total number of oxygens; summing the weighted contribution of each oxide of non-bridging oxygens (see below); and taking the ratio of non-bridging oxygens to the total number of oxygens. The applicants have found that when this figure exceeds 30% the fibres are soluble.

To explain the term non-bridging oxygen one must look to the structure of glasses. Glasses are very stiff liquids and to form usually require the presence of a material that can form a network (usually an oxygen-bridged network). The network may be modified by constituents that contribute non-bridging parts to the network and open the structure of the network and so prevent crystallisation. These materials are usually referred to as network-formers and modifiers respectively.

The terms modifier and network former are well known in the glass industries. Network formers are materials such as SiO_2 , $\mathrm{P}_2\mathrm{O}_5$, $\mathrm{B}_2\mathrm{O}_3$ and GeO_2 which can form an interconnected network to form the glassy phase. Modifiers are substances such as CaO , $\mathrm{Na}_2\mathrm{O}$, and $\mathrm{K}_2\mathrm{O}$ which alter the network and have effects on such properties as viscosity and melting point. There are some intermediate materials (such as $\mathrm{Al}_2\mathrm{O}_3$, TiO_2 , PbO , ZnO and BeO) which can act as both network formers and modifiers depending on the environment and on the amount present.

In the above mentioned test, for calculating the non-bridging oxygens, one ignores the network formers and calculates the contribution of each other oxide. The contribution of each oxide depends on the geometry and charge of each cation in the glass. As examples typical contributions are as follows:-

 $^{{\}rm Ca}^{2+}, {\rm Mg}^{2+}, {\rm Sr}^{2+}$ and other divalent network modifier cations contribute 2 non-bridging oxygens

K⁺,Na⁺ and other monovalent network modifier cations contribute 1 non-bridging oxygen

Al³⁺,Ti³⁺ and other intermediate cations contribute -1 non-bridging oxygen (i.e these oxides <u>reduce</u> the number of non-bridging oxygens)

 $^{(\}mathrm{Ti}^{4+}\ \mathrm{is}\ \mathrm{reduced}\ \mathrm{to}\ \mathrm{Ti}^{3+}\ \mathrm{in}\ \mathrm{most}\ \mathrm{glasses}\ \mathrm{when}\ \mathrm{present}\ \mathrm{in}\ \mathrm{relatively}\ \mathrm{small}\ \mathrm{quantities})$

38
TABLE 13

Helt Code	Composition	tion	Holes	Mol.X	Oxygen	N.B.0.	2N.B.O	Solubility	lity	S.S.A	Normal ized	Loginorm
	0xide	X. 72			Total			0xide	(bcd)	m2/9	Solubillity	solida)
CAS10(8) - A	9 2	47.2	0.842	54.9	160.8	78.4	8.87	C90	75	0.30	43	1.63
	\$ 105 \$ 102	2.7	0.451	20.6				\$100 Si02	o ^			
		lotal	1.533	100.0				Total	. 12			
CAS10(8) - 8	Oe O	46.5	0.829	54.0	160.9	77.8	48.4	CaO	58	0.39	8	1.82
	A1203	23.7	0.232	15.1				A1203	-			
	S i 02	28.4	0.473	30.8				sio2	3			
		Iotal	1.534	100.0				Iotal	103			
CAS10(B) - C	3	47.8	0.852	55.4	159.6	80.4	50.4	Ca0	\$\$	0.36	76	1.88
	A1203	53.9	0.234	15.2				A1203	0			
	S i 02	17.1	0.451	29.3		-		Si02	\$			
		Total	1.537	100.0				Total	110			
(A)S13	CaO	42.7	192.0	5.72	152.5	85.1	55.8	CaO	62	0.40	69	18
	1102	12.7	0.159	6.6				1102	0			
	\$ i02	41.0	0.682	42.6				S i 02	67			
		Total	1.602	100.0				Total	111			
Srsio3	Sro	63.1	609.0	51.2	148.8	102.4	8.89	SrO	~	0.37	549	2.40
	Si02	34.9	0.581	48.8				Si02	367			
		Total	1.190	100.0				Iotal	369			
CaSi03	C:0	46.1	0.822	9.85	151.4	57.5	64.2	CaO	17	0.45	163	12.21
	2015	52.3	0.870	51.4				S i 02	253			
		lotal	1.692	100.0				lotal	294			
MAS(A)	Na20	18.8	0.303	22.0	228.3	-12.6	-5.5	Na20	*	0.56	4	09.0
	A1 203	39.7	0.389	28.3				A1203	4			
	2015	41.1	0.684	49.7				Si02	'n			
		lotal	1.376	100.0				Total	٥			
CAS4	Ca0	21.0	0.374	25.7	198.1	3.8	1.9	CaO		0.62	89	06.0
	A1203	35.4	0.347	23.8				A1 203	4			
	Si02	7.75	0.736	50.5				sio2	~ ;			
		lotal	1.457	100.0				lotal	90			
HAS(B)	06H .	0.0	0.248	17.0	505.6	-11.2	-5.4	N ₉ 0	~	0.52	•	0.78
	A1203	33.7	0.331	22.6				A1203	~			
	2015	55.0	0.882	60.4			•	zors ;	• :			
		totat	1.661	100.0				10101	2	١	ļ	
SAS(A)	S.O	8. S	0.288	23.9	201.4	-2.6	•	Sro	م 	0.50	3	06.00
	A1203	51.1	0.305	25.3			_	A1205	,			
	2015	36.8	0.612	50.8				2015	^ ;			
		lotal	1.205	100.0			,	lotal	إه		1	ļ
SCS(A)	Sro	35.0	0.338	23.5	150.5	o. &	8.69	SrO	د د	0.41	280	2.45
	C.50	21.0	0.374	26.0				000	02 ;			
	2015	43.6	0.726	50.5	_			2005	555			
		lotat	1.438	100.0	-			101.01	400			

TABLE13 (continued)

Helt Code	Coaposition	ition	Holes	Mol.X	Oxygen	N. B. O.	ZM R O	Colishilian	7			
	Oxide	M. X			Total			30100	, , ,	8-S.A	Normalized	Log(norm
SHAS(A)	Sro	55.0	0.531	49.1	169.6	8 09	35.0	20100	(blue)	6/24	Solubility	(drilos
	8	1.2	0.030	2.8		?	9.77	0 %	> '	97.0	38	1.58
	A1203	23.7	0.232	21.5	-			Mgd 1204	^ ^			
	S i 0 2	17.3	0.288	26.6				Si02	v v			
		lotal	1.081	100.0			}	Total	69			
SHAS(B)	Sro	55.0	0.531	9.75	157.6	84.8	53.8	Sro	110	01.0	30	
	M ₉₀	4.8	0.119	10.0				Q X	5 5	6.53	Ş	1.98
	A1203	14.8	0.145	12.2				A1203	` -			
-	Si02	23.7	0.394	33.2				Sin	• 66			
		lotal	1.189	100.0				Total	77 B			
SMS(A)	Sro	33.0	0.318	20.7	159.5	80.6	50.5	Sco	271	02.0	1	
	Н90	12.5	0.310	20.2				9	į	0.39	717	2.33
	A1203	1.0	0.010	9.0				A1203	<u> </u>			
	Si02	53.8	0.895	58.4				Sin	201			
		lotal	1.533	100.0				Ioral				
SAS(C)	Sro	26.0	0.540	47.7	169.3	61.4	36.3	Sro	2	92.0		
	A1203	19.7	0.193	17.0				A1203	? -		76 .	7/-1
	2015	24.0	0.399	35.3				5102	- 00			
		Total	1.132	100.0				lotat	2			-
CHAS(A)	Oe Oe	35.0	0.624	42.6	179.3	41.4	23.1	CaO	=	02.0	1,6	0.0
	06 M	4.5	0.112	7.6				051		2	٤	1.38
	A1203	64.0	0.432	29.5				A1203	· · • · ·			
	2015	17.8	0.296	20.3				5 102	60			
		lotal	1.464	100.0				lotal	\$			
SMAZ	0 2	21.7	0.387	21.4	157.5	85.0	54.0	CaO	2	0.48	119	2.08
	2001	2.0	0.389	راغ ب				MgO	25			
	Sio	9 5	0.000 E	, , ,				A1203	•			
		lotal	1.812	100.0				2018	91.6			
SAS(D)	Sro	5.95	0.545	48.5	166.9	66.2	30.7	200	107	0, 0	6	
	A1203	17.6	0.173	15.4				A1203		,	2,	96: -
	S i 02	54.4	907.0	36.1				Si02	۾ .			
		lotal	1.124	100.0				lotal	147			
KMAS(A)	83	16.5	0.175	11.3	179.5	41.4	23.1	K20		3,0	71	1 10
	M ₉₀	13.0	0.323	20.8				06#	•		2	:
	A1203	18.0	0.177	11.4			•	A1203	_	•		
	Si02	52.8	0.879	56.6				Si02	:=			
		10191	*66:1	0.001				lotal	50			

Table 13 shows, for the compositions of Table 11, the calculated figure for non-bonding oxygens and these figures are reproduced in Fig.5. It can be seen that the plot of Fig.5 is more linear than that of Fig.4. Compositions with greater than 30% non-bridging oxygens show high solubility.

To illustrate the method the calculation for one example (the first shown in Table 13) is given below:-

	Mols/	Total <u>Oxygen</u>	Non-bridging Oxygens
CaO Al ₂ O ₃	0.549 0.157	0.549 0.471 (0.157*3)	1.098 (2*0.549) -0.314 (-1*0.157*2Al)
SiO ₂	0.294	0.588	0.000
	1.000	1.608	0.784

% non-bridging oxygens (0.784/1.608)*100 = 48.8%

As an example one can look to European Patent Specification No. 0399320 referred to above. Using this method in relation to that specification Composition 1 has a non-bridging oxygen percentage of 48.2% whereas Composition 2 has a non-bridging oxygen percentage of 19.6%, again predicting that Composition 1 is more soluble than Composition 2.

There is a further criterion which a composition must meet for it to form vitreous fibres, namely that it be capable of forming a glass. The applicants have found a simple test. If the ratio of modifiers to network formers is less than a critical value (for SiO₂ based glasses, 1) the composition will generally form a glass. For the purpose of this test reasonable results are obtained if such intermediate materials are treated as networkers. Table 14 shows for a series of compositions in each column:-

Fibre reference (N.B. these are not the same fibres as shown in tables 9 & 10)

Composition

Molar ratios

Ratio of glass modifiers to network formers

Free energy of hydration of raw oxides

Melting Point

X-ray diffraction results

Solubility data (# indicates not measured)

Specific surface area

Normalised solubility data

Arbitrary ranking as to solubility and glass forming ability

Indication as to whether melting point above 1500°C

It should be emphasised that this test is a screening one rather than a wholly predictive one as there are several circumstances that may lead to its failure. Among these circumstances are compound formation and inability to quench fast enough to form glass.

Having adopted these tests as a screening method there follows a further step to ascertain whether the composition will form a vitreous fibre. This last step is best examined experimentally as fibre forming ability is a complex function of many physical characteristics, e.g. viscosity, which are often difficult to measure.

Key to Fig.1

CR	Cristobalite	FO	Forsterite
TR	Tridymite	PR	Protoenstatite
PS	Pseudowollastonite		Diopside
WO	Wollastonite	AK	Akermanite
RA	Rankinite	ME	Merwinite
LI	Lime	MO	Monticellite
PΕ	Periclase	•	

									
TO STATE OF THE ST									
10 Rating							5 2		-
(Priterior) (Priterior)	1			u		9			1
75 €2/91 787 78.	מנים	2013	721	111	3	7	* *		Ē.
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		34.	E. C.	15th	řŘZ .		-	~ }	2
S.S.A. (#2/9) (#2/9) (#2/9)	78:0_ 88:0_	0.53 0.83	-0.81 -2.5.	21.T	<u>ال</u> ال	1.tk		9.9	ر. کر ا
16131 187	\$6¢	ر ا ا ا	_ !	%	S ≅	٦ ٦	2 2	<u> </u>	8
242 2 434 2 43 43 43 43 43 43 43 43 43 43 43 43 43	25.		183	188	23 22	2 32	222-2	2×29	285
101 (101 (101 (101 (101 (101 (101 (101	2 2	1287	. 1	ig 7	700 700	ا ۾ ا	% %	2 3	5
	2,2,2	12.36	292	220	252	2 22	-27-9	7-78=8	222
SGLUDILI SPECTES COD S102 CSD CSD CSD CSD CSD CSD CSD CSD CSD	A 201	2005 8:02 8:02 1:02	8 102 8 102 5 102 7 1 2 103	150 250 250 250 150 150 150	2220 2502 2502 2502 2502 2502	7205 7205 71205 71205 5102	A1205 S102 C30 A1205 S102	8102 8102 8102 8102 8103 8103 8103	0.00
11 as e	٥	Cercong) +	(iong) 1						100
NBD 0515 Aprilation: 1 115 (5 shall peaks) Aprilations (No peaks)	ا تقاد تا د	or files of the second	#12 5 E	(rystalting to the store glass Strong cryst.) come crystal. S smell peaks)		No peaks)	Mo peaks)	designous Tria
	50 Amilians 1 (2 small per 75 (1) 31 at 1 inc (Glassy 11 at	1365 (FFS181(1102 110) (No pless) 1365 Amoi ploud (51) 111) Some Crystel.	Crystall heats SCTYSTALL heats Some glass (st Mamoi Mods T. Li (Mod. cryst.)		Some of	S C C C C C C C C C C C C C C C C C C C	50 6 6 6	5 ~ S	(Rul Americalisment)
7. Pt.	(1400 C) (2 smill per (1400 C) (2 smill per (1407 C) (1) 31 B(11) 4 (141.)	2 12 10	(3 small peaks Crystalline (3 some glass (st Amoi [Alous 1] [(fut.) some gl. (fut.) (Strong (fut.) (Strong (fut.) some cr.		3.0	3	1) Astractions
(heal/mot (C) 1547.h.	3.0 (14:00 C) (2 san14 per 7 p	\$351 (mg) (***).	(1450 C) (3 small peaks (141) some glass (st (141) studio [151] (141) (some glass (st (141) (some glass (st	1575 (TFTER (CLIL) (NO 91a) (TFTER (CLIL) (NO 91a) (CLIL) (NO 91a)	6.7 (fut.) 5.00eg 51.00eg 51.0	Fad on) (-1113) y.	.2.7 (test.)	3.4 (1400 C)	(fut) (2 spall
Hudilier)	3.0 (1400 C) (2 san14 prous 7 (1400 C) (2 san14 per 7 (2 san14 per	25(1 m3) (2.2.	0.01 (14.00 C) (2.00	.4.3 (fm.) (wo gie	0.7 ((141.) 5.00er 91. (100.)	Fad on) (-1113) y.	-2.7 (tu.) -1550 -1500 C)	3.4 (1400 C)	3.6 (Lut) (2 small
First Good First	8 A1203 0 A1203 0 C1400 C) (2 San14 per 5 A1203 0	0.6 P205 1.0 P205 1.1 P207		1.0 Ng0 1.4 Sin2 1.0 Cid 1.0 C	8 5.02 2 1 5.02 5 1 5	2 P205 1.0 P205 1.	4 A1201 1.4 A1205 2.7 (ft.al.) 1 8102 1.0 8102 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0	1 2 0 4 203 1 0 8 102 1 0 8 102 2 0 8 102 3 1 0 8 102 3 1 0 8 102 4 0 8 102 5 0 8 102 6 10 8 102 7 0 8 102 8 1 0	3.6 (tut) (2 small
	1.0 A[03] 1.0 A[50.6 P205 1.0 P205 1.0 P205 1.5 P205 1.0 P205 1.	7 8 800 1.0 800 0.00 0.00 0.1	16.6 Hg0 1.0 Hg0 4.3 (fint.) (two glassing 18.7 (FF) (FF) (FF) (FF) (FF) (FF) (FF) (FF	15.8 Cad 1.9 Cad 1.9 Cad 1.0 Cat 1.0 Cat 1.0 Cat 1.0 Cat 1.0 Cat 1.0 Cad 1.0 Cat 1.0 C	(6.2 P 205 1.0 P	10 4 A1203 1 4 A1203 2 2 7 (ttm.) 5 (4.6 18102 1 18 CM.) 11 CM. 18 (18 18 18 18 18 18 18 18 18 18 18 18 18 1	15.9 A 201 2.0 A	1.1 Sid 2.0 Cad 2.3 Sid 2.3 Sid 3.0 Ctut) (2 Small)

Half Half High was half live High Half Table Table Half Half

Lelei circo

SCS(C)

SAS(B) Ho. 40 SMAS(B)

SMS(A)-

THAS(A)

10. 47 5021 10. 48

HASKEY. 5A5(0)

KRASEAF 40. 51

KRASTAJ HO. 52

43 TABLE 14 (continued) 30, 2 ž 22 2 50.0 18.0 79:0 U.61. 5 3 0.0 0.63 IOTAL 256 = 7. 249 4.9 222-222 22 \$ 453 <u>2</u> 777 3 3 Selection 1 ty Data of the control o 15.2 1,5 Il deoi pious i toto di sono la sono gias (1 sono 1) sono gias son (fut) | Some glass (med) | 1500 | Mmoi fibbus (med) | (fut) | Amoritious (Strong) T 1560 C) (1 small peut) Amiridious 7 Trace (1 small peaks) (2 peaks) (No peaks) (No glass) (No prats) (No peaks) Amoi janis (No peaks) (No peaks) Amoi ithous RRO DSLS (tcol/mol (C) 1600 1500 C) 15 to 52 I C ...) 150 ווווא (Eur) (fut) (teat) 300 (fut.) (Eul.) 3 (Eut) : 3 ÷.9 C.01-17.0 EC.P 6.0 <u>Ş</u> 78.0 35.P SHAS (8)