## NETWORK COMPRESSION

#### Smaller Model

Less parameters





Deploying ML models in resourceconstrained environments





Lower latency, Privacy, etc.



#### Outline

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

We will not talk about hard-ware solution today.

# **Network Pruning**

## Network can be pruned

 Networks are typically over-parameterized (there is significant redundant weights or neurons)



## Network Pruning

- Importance of a weight: absolute values, life long ...
- Importance of a neuron:
   the number of times it wasn't zero on a given data set ......
- After pruning, the accuracy will drop (hopefully not too much)
- Fine-tuning on training data for recover
- Don't prune too much at once, or the network won't recover.



## Network Pruning - Practical Issue

Weight pruning

The network architecture becomes irregular.



Hard to implement, hard to speedup ......

## Network Pruning - Practical Issue

Weight pruning



https://arxiv.org/pdf/1608.03665.pdf

## Network Pruning - Practical Issue

Neuron pruning

The network architecture is regular.



Easy to implement, easy to speedup ......

## Why Pruning?

- How about simply train a smaller network?
- It is widely known that smaller network is more difficult to learn successfully.
  - Larger network is easier to optimize?
     https://www.youtube.com/watch?v=\_VuWvQU
     MQVk
- Lottery Ticket Hypothesis

https://arxiv.org/abs/1803.03635



## Why Pruning?

#### **Lottery Ticket Hypothesis**



Why Pruning?
Lottery Ticket Hypothesis



Random Init weights

Trained weight

Another random Init weights



## Why Pruning?

#### **Lottery Ticket Hypothesis**

Different pruning strategy



"sign-ificance" of initial weights: Keeping the sign is critical

0.9, 3.1, -9.1, 8.5 ..... 
$$+\alpha$$
,  $+\alpha$ ,  $-\alpha$ ,  $+\alpha$  .....

Pruning weights from a network with random weights

Weight Agnostic Neural Networks https://arxiv.org/abs/1906.04358

## Why Pruning?

#### Rethinking the Value of Network Pruning

| Dataset  | Model      | Unpruned      | Pruned Model | Fine-tuned    | Scratch-E            | Scratch-B            |
|----------|------------|---------------|--------------|---------------|----------------------|----------------------|
| CIFAR-10 | VGG-16     | 93.63 (±0.16) | VGG-16-A     | 93.41 (±0.12) | 93.62 (±0.11)        | <b>93.78</b> (±0.15) |
|          | ResNet-56  | 93.14 (±0.12) | ResNet-56-A  | 92.97 (±0.17) | 92.96 (±0.26)        | <b>93.09</b> (±0.14) |
|          |            |               | ResNet-56-B  | 92.67 (±0.14) | 92.54 (±0.19)        | <b>93.05</b> (±0.18) |
|          | ResNet-110 | 93.14 (±0.24) | ResNet-110-A | 93.14 (±0.16) | <b>93.25</b> (±0.29) | 93.22 (±0.22)        |
|          |            |               | ResNet-110-B | 92.69 (±0.09) | 92.89 (±0.43)        | <b>93.60</b> (±0.25) |
| ImageNet | ResNet-34  | 73.31         | ResNet-34-A  | 72.56         | 72.77                | 73.03                |
|          |            |               | ResNet-34-B  | 72.29         | 72.55                | 72.91                |

- New random initialization, not original random initialization in "Lottery Ticket Hypothesis"
- Limitation of "Lottery Ticket Hypothesis" (unstructured)

Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf



Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf



Temperature for softmax

$$y_i' = \frac{exp(y_i)}{\sum_j exp(y_j)} \qquad \qquad y_i' = \frac{exp(y_i/T)}{\sum_j exp(y_j/T)}$$

$$y_1 = 100$$
  $y'_1 = 1$   
 $y_2 = 10$   $y'_2 \approx 0$   
 $y_3 = 1$   $y'_3 \approx 0$ 

$$y_1/T = 1$$
  $y'_1 = 0.56$   
 $y_2/T = 0.1$   $y'_2 = 0.23$   
 $y_3/T = 0.01$   $y'_3 = 0.21$ 

## Parameter Quantization

### Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

weights in a network

| 0.5  | 1.3  | 4.3  | -0.1 |
|------|------|------|------|
| 0.1  | -0.2 | -1.2 | 0.3  |
| 1.0  | 3.0  | -0.4 | 0.1  |
| -0.5 | -0.1 | -3.4 | -5.0 |

Clustering

### Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

**Table** 1.3 4.3 -0.1 0.5 -0.4-0.2 -1.2 0.3 0.1 weights in 0.4a network 1.0 3.0 -0.4 0.1 2.9 -0.1 -3.4 -0.5 -5.0 -4.2 Clustering Only needs 2 bits

- 3. Represent frequent clusters by less bits, represent rare clusters by more bits
  - e.g. Huffman encoding

## Binary Weights

Your weights are always +1 or -1

Binary Connect

network with real

value weights

**Binary Connect:** 

https://arxiv.org/abs/1511.00363

Binary Network:

https://arxiv.org/abs/1602.02830

XNOR-net:

https://arxiv.org/abs/1603.05279

network with binary weights



Update direction (compute on real weights)

## Binary Weights

| Method                 | MNIST             | CIFAR-10 | SVHN  |
|------------------------|-------------------|----------|-------|
| No regularizer         | $1.30 \pm 0.04\%$ | 10.64%   | 2.44% |
| BinaryConnect (det.)   | $1.29 \pm 0.08\%$ | 9.90%    | 2.30% |
| BinaryConnect (stoch.) | $1.18 \pm 0.04\%$ | 8.27%    | 2.15% |
| 50% Dropout            | $1.01 \pm 0.04\%$ |          |       |
|                        |                   |          |       |