CSU22022 Computer Architecture I

Fiveteenth Lecture - Datapath

Michael Manzke

2023-2024

Trinity College Dublin

Controlling a Datapath

- Figure 1 on the next slide depicts a simplified datapath.
- The destination decoder and the A and B bus MUX require three-bit select inputs (addresses).
- The Function Unit requires five bits to select ALU/Shift micro-ops.
- Three more bits are required to control the datapath:
 - Writing to the registers (RW)
 - MUX B (MB)
 - MUX D (MD)

Simplified Datapath

Figure 1: This simplified datapath has a register file with four registers.

Simplified Datapath with Memory

Figure 2: This figure shows how memory is connected to the simplified datapath.

Full Datapath VHDL Implementation

Figure 3: This figure depicts the full datapath implementation for our processor.

Datapath in the Context of the Processor

The schematic on the next slide identifies all these control inputs and arranges them in a 17-bit vector called the Control Word

Control Word for Simplified Datapath

The Control Word selects a Micro-operation

Figure 4: Note that for the Function Select **FS** we need to make explicit the relationship between its value and the micro-ops.

Function Unit Micro-operations

FS	MF	G	Н		
00000	0	0000	XX	G=A	TRANSFER
00001	0	0001	XX	G=A+1	INCREMENT
00010	0	0010	XX	G=A+B	ADD
00011	0	0011	XX	G=A+B+1	ADD WITH C
00100	0	0100	XX	$G=A\overline{B}$	A plus 1's COMPLEMENT
00101	0	0101	XX	$G=A\overline{B}+1$	SUBTRACT
00110	0	0110	XX	G=A-1	DECREMENT
00111	0	0111	XX	G=A	TRANSFER
01000	0	1000	XX	G=A∧B	AND
01010	0	1010	XX	G=A∨B	OR
01100	0	1100	XX	G=A⊕B	XOR
01110	0	1110	XX	$G=\overline{A}$	NOT
10000	1	XXXX	00	G=B	TRANSFER
10100	1	XXXX	01	G=srB	SHIFT RIGHT
11000	1	XXXX	10	G=sIB	SHIFT LEFT

FS, MF, G, and H

Figure 5: This figure show how FS, MF, G, and H determine the micro-ops of the Function Unit.

$FS(0) = C_{in}$

$FS(2) = S_1$, $FS(1) = S_0$

$FS(3) = S_2$

$FS(4) = S_3 = MF$

15/15