

版本信息

更改时间	更改人	内容
2016-06-06	HCJ	V1.0: 对外发布版本;
2016-11-24	HCJ	V1.01: 修订电压有效值输出脉冲计算公式描述

BL0937 应用指南

BL0937 是我公司开发的一款用于智能家居领域进行电能测量的专用芯片。 具有体积小(SOP8 封装),外围电路简单,成本低廉的优点。

芯片功能特点:

	BL0937			
测量范围	5mA~20A (1W~2500W)			
跳动	0.1%			
功耗	1.7mA			
信号响应时间	<300ms			
防潜值	1.7mA			
启动电流	2mA,可测量			
工作电压	3.3V			
工作电压跌落保护	$2.7\mathrm{V}\pm50\mathrm{mV}$			
有效值切换等待时间	<10uS			

芯片管脚说明:

管脚号	符号	说明				
1	VDD	芯片电源(+3.3V),正常工作时电压应保持在+3.0V~3.6V之间。				
2, 3	IP, IN	电流通道的模拟输入,管脚的最大差分电压±50mV。				
4	VP	电压信号正输入端,最大差分电压±200mV。				
5	GND	芯片地。				
6	CF	1) 有功功率高频脉冲输出,输出脉宽固定为38uS,频率与功率值成正比				
		2) 过流指示脚。当过流时,输出 6.78KHz 的脉冲				
7	CF1	SEL=0 时,输出电流有效值,输出脉宽固定为 38uS,频率与电流值成正比				
		SEL=1 时,输出电压有效值,输出脉宽固定为 38uS,频率与电压值成正比				
8	SEL	配置有效值输出引脚,带下拉。				

应用电路图:

考虑插座的容许电流最大为 16A, 电流采用使用合金电阻 1 毫欧, 电压采样通道使用电阻分压方式将 220V 电压降低到 110mV rms 由芯片的 Vp 管脚进行采样。

BL0937 与 MCU 的连接电路非常简单,系统电平一致的情况下只需 3 个 IO 与 CF, CF1, SEL 直连即可。MCU 通过测量 CF, CF1 的脉冲周期,计算功率,电压,电流,进而统计电量。与 SEL 相连的只需普通 IO 即可,切换 SEL 高低电平,测量电压或电流。

在 PCB 布线时需要注意:

- 1) 电流采样的电阻、电容尽量靠近 BL0937 管脚,防止引线过长,PCB 板上其他信号线的干扰;(电流采样信号 5uV~16mV)
- 2) 电流采样 IP、IN 的外接电路参数尽量平衡,走线应保持平行,并尽可能短;
- 3) 由于负载电流是流过合金电阻,因此需要注意负载电流最大可能到 16A,在 PCB 板上连接合金采样电阻的走线尽量粗(大电流走线);

关于校准

BL0937 在定义产品时考虑到智能插座类产品厂家不是专业计量器具厂家,没有专业昂贵的校准设备,对电能计量精度要求也相对较低,只是提供用电参考信息,不作计费标准。智能插座只需要读取功率,电压,电流,并根据功率计量累积电量,所以BL0937 与 MCU 间不要复杂的通讯协议去实时的读取计量芯片寄存器,计量精度校准也相对简单,只需在额定功率负载时校准系数,也不需要复杂的校准设备。

BL0937对输入的电压和电流两个通道的输入电压求乘积,并通过信号处理,把获取的有功功率信息转换成频率;在这个过程中,同时通过运算计算出电压有效值和电流有效值并转换成频率。有功功率、电压和电流有效值分别以高电平有

效的方式从CF、CF1输出相关的频率信号。

理论计算公式如下:

(1) 有功功率的输出脉冲频率计算公式:

$$F_{CF} = 1721506 * \frac{V(V) * V(I)}{V_{ref}^2}$$

(2) 电压有效值输出脉冲计算公式:

$$F_{CFU} = 15397 * \frac{V(V)}{V_{ref}}$$

(3) 电流有效值输出脉冲计算公式:

$$F_{CFI} = 94638 * \frac{V(I)}{V_{ref}}$$

V(V)——电压通道管脚的输入电压有效值

V(I)——电流通道管脚的输入电压有效值

Vref——基准电压(1.218V)

在实际应用中由于外围电路的合金采样电阻、电压采样网络电阻误差、计量芯片基准偏差等会带来一定的偏差,使得计量芯片输出的脉冲频率与理论计算频率有偏差,所以我们需要进行计量校准。

推荐使用单点校准方式,BL0937 在校准时可以在智能插座施加额定电压 U0,电流 I0,有功功率 P0 时 MCU 测得的对应脉冲频率 U_Freq0、I_Freq0、P_Freq0,换算出对应的转换系数:

电压转换系数
$$Ku = \frac{U0}{U_freq0}$$
 电流转换系数 $Ki = \frac{I0}{I_Freq0}$ 有功功率转换系数 $Kp = \frac{P0}{P_Freq0}$

并在系统中保存这些系数,校准后在实际测量点计量芯片输出的频率值系统软件 应该与对应系数相乘以获得正确的测量值。

测量脉冲的频率就是测量两个脉冲的间隔时间(周期),那么只要测定两个脉冲的相同边沿(上升或下降沿)时间间隔。可以使用 MCU 的定时器捕捉功能来测量两个脉冲间的中断间隔获得脉冲频率。

关于电能计量:

根据校准时所加负载对应的有功功率 P0(瓦),检测到的 CF 脉冲频率 Freq0 (Hz),可以推算出对应于 1 个 CF 脉冲的电能为多少,这样通过对 CF 脉冲进行计数就可以得到电能数据。

1度电=1千瓦每小时,即有功功率 1000W,持续1小时,用电为1度电;

1 个 CF 对应电量 =
$$\frac{P0}{Freq0 * 3600000}$$

BL0937设计的BOM表(计量部分外围相关电路)

序号	类别	规格	封装	数量		代号		备注
1	贴片电容	0.1uF	0603	1	C22			去耦
2		33nF	0603	3	C31	C32	C24	
3	贴片电阻	1K	0603	3	R14	R15	R45	
4		330K	0603	6	R16	R17	R18	
					R20	R46	R47	
5	IC	BL0937	SPO8	1	U4			
		1毫欧						
6	合金电阻	/SMA25A3FR001T	2512	1	R13			南京萨特
7	安规电容	680nF/275V	C-2610	1	C7			
8	功率电阻	220/3W	R0120H	1	R6			
9	二极管	IN4007	DIODE	1	D2			阻容降压
10	稳压管	8.2V/1W	DW	1	D3			供电方式
11	稳压器	78L33	TO-92	1	U16			
12	电解电容	470uF/10V	C-10	1	CD3			_

参考文献: BL0937_Datasheet_V1.01.pdf