Ch3. Linear Regression ST4240, 2014/2015 Version 0.3

Alexandre Thiéry

Department of Statistics and Applied Probability

Outline

1 Ordinary Least Square theory

2 Variables selection

3 Shrinkage methods

Linear Regression

- Response $y \in \mathbb{R}$
- Covariates (explanatory variables) $x = (x_0, x_1, \dots, x_p) \in \mathbb{R}^p$
- Linear regression model

$$y = \beta_0 + \sum_{i=1}^p x_i \,\beta_i + \text{(noise)}$$

- Training examples $\{(y_i, x_i)\}_{i=1}^n$ with $x_i = (x_{i,1}, \dots, x_{i,p})$
- It is common to set $x_{i,0} = 1$ for the intercept β_0 .

Linear Regression

One dimensional example

■ Coefficients $\beta = (\beta_0, \beta_1)$ minimise

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - [\beta_0 + \beta_1 x_i])^2$$

■ [Exercise] Setting the partial derivative of the function yields that

$$\begin{cases} \beta_0 + \beta_1 \, \overline{x} &= \overline{y} \\ \beta_0 \, \overline{x} + \beta_1 \, \overline{x} \overline{x} &= \overline{x} \overline{y} \end{cases}$$

with $\overline{x}=n^{-1}\sum x_i$ and $\overline{y}=n^{-1}\sum y_i$ and $\overline{xx}=n^{-1}\sum x_i^2$ and $\overline{xy}=n^{-1}\sum x_iy_i$.

General case

- Training examples $\{(y_i, x_i)\}_{i=1}^n$.
- $\beta = (\beta_0, \beta_1, \dots, \beta_p) \in \mathbb{R}^{p+1}$ minimises

$$RSS(\beta) = \sum_{i=1}^{n} \{ y_i - [\beta_0 + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p}] \}^2.$$

Figure: Residual Sum of Square (RSS)

OLS

lacktriangle Ordinary Least Square (OLS) estimate \widehat{eta} :

$$\widehat{\beta} = \operatorname{\mathbf{argmin}} \left\{ \operatorname{\mathsf{RSS}}(\beta) : \beta \in \mathbb{R}^{p+1} \right\}.$$
 (1)

OLS: closed form expression

One could numerically optimise RSS.

$$RSS(\beta) = \|y - X\beta\|^2 = \langle y - X\beta, y - X\beta \rangle$$

■ There is a closed form expression

$$\partial_{\beta} RSS = -2X^{T} (y - X \beta)$$

 $\partial_{\beta,\beta}^{2} RSS = 2 X^{T} X.$

- [Exercise] the matrix $X^T X$ is positive semi-definite; if X has full rank, it is positive definite.
- \blacksquare [Exercise] if X has full rank,

$$\widehat{\beta} = (X^T X)^{-1} X^T y$$

the hat matrix

lacktriangle we have ${\sf RSS} = \sum_i (y_i - \widehat{y}_i)^2$ where the fitted values are

$$\widehat{y} = \widehat{H} y$$
 with $\widehat{H} \equiv X (X^T X)^{-1} X^T$.

lacktriangle the hat matrix \widehat{H} is a projection

$$\hat{H}^2 = \hat{H}$$
.

- lacksquare \widehat{eta} well defined only $X^T\,X\in\mathbb{R}^{p+1,p+1}$ is invertible
- [Exercise] it is never the case if $n \le p$ i.e. when there is more covariates than observations

Some remarks

The OLS estimate is not necessarily a sensible thing to consider if:

- lacktriangle the relationship covariates / responses is not pprox linear
- the covariates are highly correlated
- the variance of the noise is not (approximately) constant
- high correlation between the error terms
- presence of outliers (square loss is highly sensitive to outliers)

Properties of $\hat{\beta}$

Consider the Gaussian model

$$y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p} + \mathbf{N} (0, \sigma^2)$$

for unknown parameter $\beta_{\star} = (\beta_0, \dots, \beta_p)$.

■ [**Exercise**] $\hat{\beta}$ is an unbiased estimate of β_{\star} and

$$\widehat{\boldsymbol{\beta}} \sim \mathbf{N} \left(\boldsymbol{\beta}_{\star}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \right).$$

- if (X^TX) is almost singular then the variance of $\widehat{\beta}$ is very high and thus $\widehat{\beta}$ is an unreliable estimate of β . This is for example the case if:
 - the covariates are highly correlated.
 - the number of covariate is if the same order as the number of observations.

Instability

Figure : Left: no correlation. Right: high correlation

MLE connection

■ Consider the Gaussian model

$$y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p} + \mathbf{N} \left(0, \sigma^2 \right)$$

■ the log-likelihood is given by

$$\ell(\beta) = -\frac{1}{2\sigma^2} \|y - X\beta\|^2 + \text{(irrelevant additive constants)}$$

■ [Exercise] the least square estimate is also the MLE.

Outline

1 Ordinary Least Square theory

2 Variables selection

3 Shrinkage methods

Issues with the OLS estimate

- If $p \ge n$ there is not unique solution for the minimisation of the **RSS** and the OLS estimate is not well defined.
- this large p small n situation is extremely important in practice.
- if $p \le n-1$ but still large, even if the OLS is well-defined, it may be extremely unstable.
- When p is large, one may want to find a solution with as many zero coefficient as possible. Typically, all the coefficients of $\widehat{\beta}$ are non-zero.

- Let \mathcal{M}_0 the *null* model that simply predicts the mean.
- More generally, let \mathcal{M}_k the best model that uses only k covariates

$$\begin{split} \widehat{\beta}^{(k)} & \equiv \mathbf{argmin} \; \Big\{ \mathsf{RSS}(\beta) \; : \\ \beta & \in \mathbb{R}^{p+1} \; \mathrm{has \; at \; most} \; (k+1) \; \mathrm{nonzero \; coordinate} \Big\}. \end{split}$$

■ Choose the best k_0 by optimising a measure of fit that takes into account the complexity of the model

$$\mathbf{AIC} = \frac{1}{n\,\widehat{\sigma}^2} \left(\mathsf{RSS} + 2 \times (\mathrm{dimension}) \times \widehat{\sigma}^2 \right)$$
$$\mathbf{BIC} = \frac{1}{n} \left(\mathsf{RSS} + \log(n) \times (\mathrm{dimension}) \times \widehat{\sigma}^2 \right)$$

Best Subset Selection

Best Subset Selection

Greedy approach

- To find $\widehat{\beta}^{(k)}$, one has to run a $\binom{k+1}{p+1} = (p+1)!/[(k+1)!(p-k)!]$ regressions!
- \blacksquare This can quickly become prohibitively expensive if k is large.
- Instead, one can use a more greedy approach in order to only look at much less options

Forward Stepwise Selection

- **1** Let \mathcal{M}_0 be the *null* model
- 2 For k = 0, ..., p 1
 - lacksquare consider all the (p-k) covariates that are not in \mathcal{M}_k
 - 2 choose the best among these (p-k) models and call it \mathcal{M}_{k+1}
- \blacksquare Finally, choose the best model among $\mathcal{M}_0,\ldots,\mathcal{M}_p$.

Forward Selection

Forward Selection

Outline

1 Ordinary Least Square theory

2 Variables selection

3 Shrinkage methods

Penalization

- Directly penalization of the size of the coefficients
- lacksquare For a regularization parameter $\lambda>0$

$$\widehat{\beta}(\lambda) \ = \ \mathbf{argmin} \left\{ \ \mathsf{RSS}(\beta) + \lambda \times \Omega(\beta) \ : \ \beta \in \mathbb{R}^{p+1} \right\}.$$

The quantity $\Omega(\beta)$ penalises large coefficients

- Estimate $\widehat{\beta}(\lambda)$ is similar to the OLS, with the important difference that a penalization term $\lambda \times \Omega(\beta)$ is added.
- lacksquare $\lambda>0$ is quantifies the amount of regularization.

LASSO and Ridge Penalization

$$\Omega_{\text{Ridge}}(\beta) \equiv \sum_{j=1}^{p} \beta_j^2 \equiv \|\beta\|_2^2$$

$$\Omega_{\text{Lasso}}(\beta) \equiv \sum_{j=1}^{p} |\beta_j| \equiv \|\beta\|_1.$$

■ Recall the definition of the *p*-norm

$$||v||_p = (|x_1|^p + \ldots + |x_n|^p)^{1/p}$$

Normalization

- typically, the intercept coefficient β_0 is not penalized; this is because we do not want the procedures to be dependent on the location of the covariates
- shrinkage procedures do depend on the scale of the covariates
- In practice, the responses/covariates are centred/normalized

$$x_i \mapsto \frac{x_i - \bar{x}_i}{\widehat{\sigma}(x)}$$
 and $y \mapsto y - \bar{y}$

Dual view of regularisation

• One can show that $\widehat{\beta}(\lambda)$ is also solution of the following constrained optimization problem

$$\begin{cases} \text{Minimise} & \text{RSS}(\beta) \\ \text{Subject to} & \Omega(\beta) \leq T(\lambda) \end{cases}$$
 (2)

for some threshold $T(\lambda)$ that depends on λ .

Ridge regression

The coefficients are penalized by

$$\Omega_{\text{Ridge}}(\beta) \equiv \sum_{j=1}^{p} \beta_j^2.$$

■ The ridge estimate $\beta_{\text{Ridge}}(\lambda)$ is

$$\beta_{\text{Ridge}}(\lambda) = \left\{ \sum_{i=1}^{n} \left(y_i - \left[\beta_0 + \beta_1 \, x_{i,1} + \ldots + \beta_p \, x_{i,p} \right] \right)^2 + \lambda \times \sum_{j=1}^{p} \beta_j^2 : \beta \in \mathbb{R}^{p+1} \right\}$$

■ In practice, the covariates are first normalized; one can thus suppose $\beta_0 = 0$. For $X \in \mathbb{R}^{n,p}$ and $\beta \in \mathbb{R}^p$ the estimate $\beta_{\text{Ridge}}(\lambda)$ minimizes the function

$$\beta \mapsto \|y - X\beta\|^2 + \lambda \|\beta\|_2^2$$

Ridge regression

■ The estimate $\beta_{Ridge}(\lambda)$ minimizes the function

$$\beta \mapsto \|y - X\beta\|^2 + \lambda \|\beta\|_2^2$$

■ [Exercise] The gradient of this function reads

$$-2X^{T}\left(y-X\,\beta\right) +2\lambda\,\beta$$

■ [Exercise] Setting this gradient to zero yields that

$$\widehat{\beta}(\lambda) = (X^T X + \lambda I)^{-1} X^T y.$$

- The matrix $(X^T X + \lambda I)$ is invertible if $\lambda > 0$.
- Ridge regression is well defined even for $p \ge n + 1$.

Ridge path

Ridge Cross Validation

Ridge v.s. OLS

Ridge Regression (lambda.min)

Is it worth it?

Least Absolute Shrinkage and Selection Operator (LASSO)

■ The coefficients are penalized by

$$\Omega_{\text{Lasso}}(\beta) \equiv \sum_{j=1}^{p} |\beta_j|.$$

■ The LASSO estimate $\beta_{Lasso}(\lambda)$ is

$$\beta_{\text{Lasso}}(\lambda) = \left\{ \sum_{i=1}^{n} \left(y_i - \left[\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} \right] \right)^2 + \lambda \times \sum_{j=1}^{p} |\beta_j| : \beta \in \mathbb{R}^{p+1} \right\}$$

■ In practice, the covariates are first normalized; one can thus suppose $\beta_0 = 0$. For $X \in \mathbb{R}^{n,p}$ and $\beta \in \mathbb{R}^p$ the estimate $\beta_{\text{Ridge}}(\lambda)$ minimizes the function

$$\beta \mapsto \|y - X\beta\|^2 + \lambda \|\beta\|_1$$

Least Absolute Shrinkage and Selection Operator (LASSO)

■ The estimate $\beta_{Lasso}(\lambda)$ minimizes the function

$$\beta \mapsto \|y - X\beta\|^2 + \lambda \|\beta\|_1$$

- there is no closed form
- the objective function is not differentiable
- [Exercise] the objective function is convex
- LASSO regression is well defined even for $p \ge n + 1$.

LASSO path

LASSO and sparsity

LASSO and sparsity

Why not a p-norm with p < 1 ?

$$\beta \mapsto \|y - X\beta\|^2 + \lambda \|\beta\|_p^p$$

Ridge Cross Validation

Ridge v.s. OLS

Is it worth it?

Case of orthogonal design

- \blacksquare observation $y = X\beta_{\star} + \varepsilon$
- \blacksquare after normalisation: $1^T y = 0$ and $\sum_i X_{i,j} = 0$ and $\sum_i X_{i,j}^2 = 1$
- lacksquare one can assume that $eta_0=0$ and forget about the intercept
- lacksquare for tractability, let us assume that $X^TX=I_p$
- \blacksquare [Exercise] we have $\beta_{\text{OLS}} = X^T y$

Case of orthogonal design

■ [Exercise] ridge regression estimate $\beta_{Ridge}(\lambda)$ minimises

$$\beta \mapsto \|\beta\|^2 - 2 \langle \beta_{\text{OLS}}, \beta \rangle + \lambda \|\beta\|_2^2$$

■ [Exercise] the ridge estimate is given by

$$\beta_{\text{Ridge}} = \beta_{\text{OLS}}/(1+\lambda).$$

one can show that the LASSO estimate is

$$\beta_{\rm Lasso} = T(\beta_{\rm OLS}, \lambda/2)$$

with the soft thresholding operator

$$T(x,\lambda) = \operatorname{sign}(x) (|x| - \lambda)^+$$

Case of orthogonal design

