

Prof. Dr. Peter Thiemann Manuel Geffken 29.01.2016 Abgabe bis spätestens Freitag 05.02.2016, 10 Uhr in die Briefkästen in Gebäude 51

11. Übungsblatt zur Vorlesung Theoretische Informatik

Aufgabe 1: Entscheidbarkeit

2+2+2 Punkte

Welche der folgenden Sprachen L_a, L_b, L_c sind entscheidbar? Beweisen Sie Ihre Behauptungen. Verwenden Sie Reduktion, um die Unentscheidbarkeit einer Sprache zu zeigen. Wenn Sie in Ihren Beweisen Turingmaschinen konstruieren, genügt jeweils eine präzise natürlichsprachliche Beschreibung.

- (a) $L_a := \{ \lceil M \rceil w \mid M \text{ akzeptiert } w \}$
- (b) $L_b := \{ \lceil M \rceil \mid M \text{ hält angesetzt auf alle Eingaben} \}$
- (c) $L_c := \{ \lceil M \rceil \mid M \text{ ist für alle Eingaben nach 7 Berechnungsschritten}$ in einer Endkonfiguration $\}$

Aufgabe 2: Reduktion auf das Komplement

3 Punkte

Sei L eine rekursiv aufzählbare Sprache. Zeigen Sie: Wenn L sich auf ihr Komplement reduzieren lässt (d.h. $L \leq \overline{L}$), dann ist L entscheidbar.

Aufgabe 3: Satz von Rice

1+1+1 Punkte

(a) Ist die folgende Sprache für ein gegebenes w entscheidbar? Beweisen Sie Ihre Behauptung.

$$L_a := \{ \lceil M \rceil \mid f_M(w) = 42 \}$$

Dabei ist f_M die von M berechnete Funktion.

(b) Ist die folgende Sprache entscheidbar? Beweisen Sie Ihre Behauptung.

$$L_b := \{ \lceil M \rceil \mid M \text{ entscheidet } H_0 \text{ nicht} \}$$

(c) Ist der Satz von Rice auf die Sprache aus Aufg. 1 c) anwendbar? Begründen Sie Ihre Behauptung.

Aufgabe 4: PCP auf einelementigem Alphabet

3 Punkte

Sei Σ ein Alphabet mit $|\Sigma|=1$. Zeigen Sie: Das Postsche Korrespondenzproblem ist entscheidbar, wenn alle Wörter aus Σ^+ sind.

Aufgabe 5: Reduktion auf reguläre Sprache

3 Bonuspunkte

Sei L_2 eine reguläre Sprache und L_1 eine auf L_2 reduzierbare Sprache (also $L_1 \leq L_2$). Zeigen oder widerlegen Sie: L_1 ist stets ebenfalls regulär.