Introduction to Dynamic Causal Modelling (DCM)

Dr. Edda Bilek

Central Institute for Mental Health Heidelberg University Germany

Learning objectives

- ► What is dynamic causal modelling (DCM)?
- ► How do we model task related fMRI data (forward model)?
- ► How are parameters estimated and model evidence inferred
- ► How is a subject DCM specified in SPM? Demo & practical sessions!

Structural, functional & effective connectivity

Sporns, 2007, Scholarpedia

Structural connectivity

Presence of axonal connections / white matter tracks (e.g., DWI)

Functional connectivity

Statistical dependencies between regional time series (e.g., ICA)

Effective connectivity

 Causal (directed) influences between neuronal populations (e.g., DCM; based on explicit network models)

Neural model basics

Neural model basics

- Which regions?
 - \triangleright Z
- Which connections in network?
 - ► A
- U = all input (driving, modulating)
- Where does driving input enter the network?
 - \triangleright C
- Which connections are modulated e.g. by conditions
 - **▶** B

Task (for demo and practicals)

Subject-level GLM (analysis of brain activity)

- Factor 1: Semantic (match meaning of the stimulus) vs. perceptual (match similar looking stimulus)
- Factor 2: simulus pictures vs. words

Task (for demo and practicals)

Subject-level factors

- Factor 1: Semantic (match meaning of the stimulus) vs. perceptual (match similar looking stimulus)
- Factor 2: simulus pictures vs. words

Group-level hypothesis

Hypothesis: In semantic, some people use left/right hemisphere more. What is the underlying connectivity that causes lateralization?

Group-level factor

Laterlization index (one value for each subject)

Task (for demo and practicals)

Driving (external) input

Semantic: pictures and words ("task")

Modulators

- Task condition "pictures"
- Task condition "words"

Group-level (lateralization index) -> Group-level analysis (PEB)

Experimental Condition

Neural model specification

U = task, conditions, covariates (subject level)

from

Z = ROI1, ROI2, ROI3, ROI4

$$A = 9 \begin{bmatrix} R1 & R2 & R3 & R4 \\ R1 & 1 & 1 & 0 \\ R2 & 1 & 1 & 1 & 0 \\ R3 & 1 & 0 & 1 & 1 \\ R4 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$R1 \quad R2 \quad R3 \quad R4$$

$$B_1 = \begin{bmatrix} R1 & 0 & 0 & 0 & 0 \\ R2 & 0 & 0 & 0 & 0 \\ R3 & 0 & 0 & 0 & 0 \\ R4 & 0 & 0 & 0 & 0 \end{bmatrix}$$

task pic words
$$\begin{array}{c|cccc}
R1 & 0 & 0 & 0 \\
R2 & R3 & 0 & 0 \\
R3 & R4 & 0 & 0
\end{array}$$

$$B_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$B_3 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Experimental Condition

Forward model

- ▶ Different forward models depending on the data
- ► Enables data simulation
- ► Bayesian model inversion, Bayesian model comparison

Bayesian inference: forward and inverse model

Bilinear state equation

Neural and non-neural sources

$$\dot{z} = f(z, U, \theta^{(n)})$$

$$y = g(z, \theta^{(h)}) + X_0 \beta_0 + \varepsilon$$

Neuronal state equation

$$\dot{z} = (A + \sum_{j=1}^{m} u_j B^j)z + Cu$$

Bilinear state equation

state changes connectivity modulation of system direct mexternal connectivity state inputs inputs
$$\begin{bmatrix} \dot{z}_1 \\ \vdots \\ \dot{z}_n \end{bmatrix} = \left\{ \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} + \sum_{j=1}^m u_j \begin{bmatrix} b_{11}^j & \cdots & b_{1n}^j \\ \vdots & \ddots & \vdots \\ b_{n1}^j & \cdots & b_{nn}^j \end{bmatrix} \right\} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} + \begin{bmatrix} c_{11} & \cdots & c_{1m} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nm} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}$$

Parameter estimation

- Which model (parameters) best explains y?
- Bayesian inference to quantify uncertainty

Priors

- Connection on: expected = 0, variance ≠ 0
- Connection off: expected = 0, variance = 0

Model inversion

- Maximize log evidence $\ln p(y|m)$
- Approximation by negative variational free energy $\ln p \ (y|m) \cong F = accuracy \ (y|m) complexity(m)$
- Probability density over possible parameter values

Bayesian model comparison

Overfitting

- construct complex models with excellent or perfect fit, which are mechanistically meaningless and do not generalize
- ► Bayesian model selection mandatory

Bayes factor

$$\log p(y|m) = accuracy(m) - complexity(m)$$

$$B_{ij} = \frac{p(y|m_i)}{p(y|m_i)}$$
 Bayes Factor

Reading

Introduction and tutorials

- K.J. Friston, L. Harrison, and W.D. Penny. Dynamic Causal Modelling. NeuroImage, 19(4):1273–1302, 2003.
- Tutorial papers (Zeidman et al., 2019ab, Neuroimage)
 - DCM: doi:10.1016/j.neuroimage.2019.06.031
 - PEB: doi:10.1016/j.neuroimage.2019.06.032
- Resources: papers, step-by-step guide, data: https://github.com/pzeidman/dcm-peb-example

Other

https://en.wikibooks.org/wiki/SPM/Parametric Empirical Bayes (PEB)

Thank you

DCM functions in SPM: Practical example

DCM in SPM

- Visually presented dots (static, moving; with/out attention)
- 3 conditions:
 - photic: all conditions with visual input
 - motion: all conditions with moving dots
 - attention: attention-to-motion condition only
- **3** ROIs:
 - V1: visual stimulation
 - V5: motion (e.g. V5)
 - V5 and superior parietal cortex (SPC)

SPM: Choose SPM.mat

SPM: Select input from SPM.mat & options

SPM: fixed connections (A-matrix)

SPM: driving input and modulators (B- and C-matrices)

SPM: DCM model

DCM 💥				
1x1 struct with 12 fields				
Field 📤	Value			
■ xY	1x3 struct			
⊞ n	3			
₩v	360			
■ Y	1x1 struct			
⊞ U	1x1 struct			
delays	[1.6100;1.6100;1.6100]			
⊞ TE	0.0400			
🔳 options	1x1 struct			
⊞ a	[1,1,0;1,1,1;0,1,1]			
⊞ b	3x3x3 double			
⊞ c	[1,0,0;0,0,0;0,0,0]			
⊞ d	[]			
	.::			

```
>> DCM.b
                          >> DCM.c
>> DCM.a
               ans(:,:,1) =
ans =
                 0 0 0
   0
               ans(:,:,2) =
                           0
                   0 0
                          0
               ans(:,:,3) =
                      0
                           0
                           1
                      0
                           0
```

```
ans =
 0 0 0
>> DCM.U
ans =
  struct with fields:
    dt: 0.2013
   name: {'Photic' 'Motion' 'Attention'}
      u: [5760×3 double]
```

SPM: DCM estimate

