Juni 2011

- 1. a) m = 0.0022kg
 - b) Hiervoor moet je een assenstelsel kiezen. Met de x-as positief naar rechts zijn de twee lopende golven gegeven door

$$y_{\pm}(x,t) = A\cos(kx \pm \omega t + \delta_{\pm}) = A\cos\left(2\pi \frac{x}{\lambda} \pm 2\pi f t + \delta_{\pm}\right).$$

Door de juiste keuze van de onbekende grootheden (in het bijzonder de faseconstanten) worden dit de correcte uitdrukkingen. Ik heb gekozen voor $\delta_+ = +\pi/2$ en $\delta_- = -\pi/2$. De staande golf wordt gegeven door

$$y(x,t) = -2A\cos\left(2\pi\frac{x}{\lambda}\right)\sin\left(2\pi ft\right).$$

- 2. a) m = 2,53kg
 - b) Er is evenwicht wanneer $(\ell \ell_0) = 0,0155m$.
 - c) A = 0.048m
- 3. De auto rijdt $21, 0\frac{m}{s}$ of $76\frac{\text{km}}{\text{h}}$.
- 4. —

Juni 2012

- 1. a) $k = 1240 \frac{N}{m}$
 - b) $\ell_0 = 0,240m$
 - c) $v_{\text{max}} = 0, 4\frac{m}{s}$
- 2. a) f = 2269Hz en f' = 3176Hz
 - b) Het gaat om de 5^e en 7^e harmoniek. (Voor alle duidelijkheid: daar het gaat over trillingen met een vrij uiteinde betekent dit de op twee na laagste en de op drie na laagste harmoniek.)
 - c) $f_1 = 453,7$ Hz
- 3. a) De andere wagen rijdt $25, 0\frac{m}{s} = 90, 0\frac{km}{h}$.
 - b) P = 0.0126W.
- 4. —

Juni 2013

- 1. a) $k = 98, 1\frac{N}{m}$
 - b) m = 0,120 kg
 - c) U = 0,157J
- 2. a) $\lambda = 1,31$ m
 - b) F = 897N
 - c) $\ell = 0.11$ m
- 3. a) $\Delta s = 80,08$ m
 - b) $v = 0.81 \frac{\text{m}}{\text{s}}$
 - c) De walvis is dieper aan het duiken.