SOR

 $T = T_w = (D - wL)^{-1} [(1 - w)D + wU]$ שיטת מוגדרת מוגדרת האיטרטיבית האיטרטיבית י"י :SOR שיטת .

. נתון, פרמטר נתון, כאן
$$\overline{c} = \overline{c}_w = w(D - wL)^{-1}\overline{b}$$

הגדרה: מטריצה A נקראה מוגדרת חיובית אם כל מינורים הראשים שלה חיובים, כלומר

$$.1 \le k \le n , \begin{vmatrix} a_{1,1} & \dots & a_{1,k} \\ \vdots & \ddots & \vdots \\ a_{k,1} & \dots & a_{k,k} \end{vmatrix} > 0$$

 $.\big|i-j\big|\!>\!1$, $a_{i,j}=0$ אם אלכסונית חלת נקראה (נקראה מטריצה מטריצה אזרה: מטריצה אלכסונית ו

מתכנסת. SOR משפט: אם מטריצה איטרטיבית וו-0 < w < 2 אז חיובית משרטה מטריצה אם מטריצה A

משפט: אם מטריצה $w=\frac{2}{1+\sqrt{1-\left[\rho(T_{_{\!J}})\right]^2}}$ מוגדרת חיובית ותלת אלכסונית אז מטריצה אופטימלי

. $\rho(T_w) = w - 1$ הזה ביותר); מהירה מהיכה SOR שיטת של האיטרטיבית של תבנית של התכנסות האיטרטיבית האיטרטיבית האיטרטיבית מהירה איטרטיבית של האיטרטיבית של האיטרטיבית האיטרטיבית של הייטרטיבית של הייטרטיבית של הייטרטיבית של הייטר

Ax=b זוהי וריאציה של שיטת גאוס זיידל לפתרון משוואות ליניאריות $S \cdot w = S \cdot w$, ואז מהירות קיבלנן $S \cdot w = S \cdot w$, ואז מהירות אפשר להקטין את הנורמה של מטריצה SOR $S \cdot w$, ואז מהירות ההתכנסות גבוהה הרבה יותר.

. הכי פחות מדויק, אחריו Jacoby, ו-Seidel הכי פחות מדויק.