MACHINE_LEARNING_FOR_ SOCIAL_SCIENCE from scratch

Ana Valdivia

Data Scientist (Trilateral)
PhD in Computer Science (UGR)
Mathematician (UPC)

@ana_valdi

What is Artificial Intelligence?

What is Artificial Intelligence?

Intelligence (AI)
refers to software
technologies that
make a robot or
computer act and
think like a human.

McCarthy, 1995.

What is Machine Learning?

What is Machine Learning?

Machine Learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead.

Vida real

Real Application

Real Application

Name	Gender	Age	Race	Juv_misd_c ount
Miguel	Male	34	Hispanic	Aggravated Assault
Benjamin	Male	47	Caucasian	Grand Theft in the 3rd Degree

True_outcome Positive Negative

Historical data

(training data set)

Name	Gender	Age	Race	Juv_misd_ count
Darrious	Male	27	African- American	Kidnapping
Claire	Female	23	Caucasian	Possess Cannabis

New data (testing data set)

Prediction

Positive

Positive

Real Application

Name	Gender	Age	Race	Juv_misd_c ount
Miguel	Male	34	Hispanic	Aggravated Assault
Benjamin	Male	47	Caucasian	Grand Theft in the 3rd Degree

Super important to understand!

How to evaluate the model?

0
•
4
Ü
•H
0
e
C C
Δ

Name	Gender	Age	Race	Juv_misd_c ount
Miguel	Male	34	Hispanic	Aggravated Assault
Benjamin	Male	47	Caucasian	Grand Theft in the 3rd Degree

Super important to understand!

Confusion matrix

True Outcome

	Positive	Negative
Positive	TP	FP
Negative	FN	TN

Let's practice!

Confusion matrix

Prediction

Greens

True Outcome

	Sick (P)	Health (N)
Test (+)	60 ^a	20 ^b
Test (-)	6 ^c	14 ^d

Blues

True Outcome

	Sick (P)	Health (N)
Test (+)	16 ^a	5 ^b
Test (-)	22 ^c	57 ^d

Confusion matrix

Prediction

Greens

True Outcome

	Sick (P)	Health (N)
Test (+)	60 ^a	20 ^b
Test (-)	6 ^c	14 ^d

"Based on this data, the probability that a **Green** person is sick if she has tested positive for the Disease is (a/a+b, 60/60+20) or 0.75."

"The probability that a **Green is healthy if she tests negative** for the disease is (d/c+d), 14/14+6) or 0.70."

Confusion matrix

Prediction

Blues

True Outcome

	Sick (P)	Health (N)
Test (+)	1 6 ^a	5 ^b
Test (-)	22 ^c	57 ^d

"Based on this data, the probability that a Blue person is sick if she has tested positive for the Disease is (a/a+b, 16/16+5) or 0.76."

"The probability that a **Blue is healthy if she tests negative** for the disease is (d/c+d), 57/57+22) or 0.72.

"Rather than ask what the probability is that a Blue or Green person is sick, given her test result, we might ask instead what the probability is that a sick Blue or a sick Green will get an accurate (i.e. positive) test result."

Confusion matrix

Prediction

Greens

True Outcome

	Sick (P)	Health (N)
Test (+)	60 ^a	20 ^b
Test (-)	6 ^c	14 ^d

"Based on this data, the probability that a **Green**person gets a positive
result if she is sick is
(a/a+c, 60/60+6) or 0.91."

"The probability that a Green person gets a negative result if she is healthy is (d/b+d), 14/14+20) or 0.41."

Confusion matrix

Prediction

Blues

True Outcome

	Sick (P)	Health (N)
Test (+)	1 6 ^a	5 ^b
Test (-)	22 ^c	57 ^d

```
"Based on this data, the probability that a Blue person gets a positive result if she is sick is (a/a+c, 16/16+22) or 0.42."
```

"The probability that a Blue person gets a negative result if she is healthy is (d/b+d), 57/57+5) or 0.91."

What the probability is that a Blue or Green person is sick?

sick & test + 0.75

health & test - 0.70

0.76

0.72

What the probability is that a sick Blue or a sick Green will get an accurate test result?

test + & sick 0.91

test - & health 0.41

0.42

0.91

Donate

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.

Confusion matrix

Prediction

Blacks

True Outcome

	Will Recidivate	Will not Recidivate
High Risk	60 ^a	20 ^b
Low Risk	6 ^c	14 ^d

Whites

True Outcome

Prediction

	Will Recidivate	Will not Recidivate
High Risk	1 6 ^a	5 ^b
Low Risk	22 ^c	57 ^d

True Outcome

Blacks	Will Recidivate	Will not Recidivate
High Risk	60 ^a	20 ^b
Low Risk	6 ^c	14 ^d

Whites	Will Recidivate	Will not Recidivate
High Risk	1 6 ^a	5 ^b
Low Risk	22 ^c	57 ^d

- Does this hypothetical risk assessment tool treat blacks fairly as compared to how it treats whites?
- Which solution you propose to address this situation?