Office européen des brevets

EP 0 874 052 A2

(12)

Parasi.

3

FUROPEAN PATENT APPLICATION

(43) Date of publication: 28.10.1998 Bulletin 1998/44 (51) Int. Cl.6: C12N 15/55, C12N 9/16.

(21) Application number: 98107346.3

A61K 38/46, C07K 16/40.

G01N 33/577

(22) Date of filing: 22.04.1998

(84) Designated Contracting States AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States AL LT LV MK RO SI

(30) Priority: 22.04.1997 EP 97106658

(71) Applicant: BIOPHARM GESELLSCHAFT ZUR BIOTECHNOLOGISCHEN ENTWICKLUNG VON PHARMAKA mbH 69115 Heidelberg (DE)

(72) Inventors: · Hanke, Michael, Dr. 67454 Hassloch (DE) · Paulista, Michael

69181 Leimen (DE)

· Pohl, Jens, Dr. 76707 Hambrücken (DE)

(74) Representative:

Müller-Boré & Partner Patentanwälte Grafinger Strasse 2 81671 München (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

Nucleic acid encoding a human protein phosphatase (54)

(57) The present invention relates to nucleic acids encoding a novel human protein phosphatase of the family of protein serine/threonine phosphatases. In particular, it relates to novel DNA sequences encoding serine/threonine protein phosphatase, to expression plasmids containing said nucleic acids, to host organisms transformed by said expression plasmids, to the production of said protein by culturing said transformant, to antibodies specifically binding to said phosphatase and to agonists and/or antagonists for said protein, and to antisense MP-19 nucleic acid. Furthermore, the invention relates to serine or threonine residues and epitopes comprising said residues dephosphorylated by said protein and pharmaceutical compositions comprising said protein or agonists or antagonists thereof for the treatment of diseases influenced by changes in phosphorylation which controls e.g. cell proliferation and/or differentiation, to diagnostic kits and to in vitro diagnostic methods for the detection of phosphorylation dependent diseases such as e.g. cancer

Description

The present invention relates to nucleic acids encoding a novel human protein phosphatase of the protein serine/threonice phosphatase stamily in particular, it relates to novel DNA sequences encoding a serime/threonine protein
phosphatase, to expression plasmids containing said nucleic acids, to host organisms transformed by said expression
plasmids, to the production of said protein by culturing said transformant, to antibodies specifically binding to said phosphatase and to agonists and/or antiagonists for said protein. Furthermore, the invention relates to serine or threonine
residues and epitopes comprising said residues dephosphorylated by said protein and pharmaceutical compositions
comprising said protein or agonists or analognists thereof for the treatment of diseases influenced by changes in phosphocyation which controls e.g. cell proliferation and/or differentiation, to diagnostic kits and to in vitro diagnostic methods for the detection of phosphorylation decendent diseases such as e.g. cancer.

Protein phosphorylation-dephosphorylation is a universal mechanism by which different cellular events are regulated. The serine/threonine-specific phosphatases have been classified into four main types according to their in vitro specificity for selected substrates and sensitivity to activators and inhibitors (ingebritisen, T.S. and Cohen, P. (1983) Eur. J. Biochem. 182, 255-261). Sequence analysis revealed that they can be classified into two major gene families. The first one includes type t (PPI), type 2A (PP2A), and type 2B (PP2B) phosphatases, which share 37 to 59 sequence identity (Barton, G.J. et al., (1994) Eur. J. Biochem. 220, 225-237) in their catalytic domains and are inhibited by okadaic acid (Bialojan, C., and Takai, A. (1988) Biochem. J. 256, 283-290). The second family, the M_2^{3-4} -dependent phosphatases, also designated type 2C (PP2C), share little sequence similarity with the first family and are insensitive to okadaic acid. CDNA sequences of PP2C α and β from mammalian sources showed > 50 % identity, PP2Cs have been implicated in the regulation of fatty acid and cholesterol biosphrhesis (Moore, F et al. (1991) Eur. J. Biochem. 199, 651-697) and heat shock response (Maeda et al. (1993) Mol. Cell. Biol. 113, 5408-5417, Shiozaki, K. et al. (1994) Mol. Cell. Giol. 113, 5408-5417, Shiozaki, K. et al. (1994) Mol. Cell. Giol. 113, 5408-5417, Shiozaki, K. et al. (1994) Mol. Cell.

The technical problem underlying the present invention is to provide a new human PP2C-like protein phosphatase which is distinct from the other PP2Cs.

The solution to the above technical problem is achieved by providing the embodiments characterized in the claims. Other features and advantages of the invention will be apparent from the description of the preferred embodiments and drawings.

The sequence listings and drawings will now be briefly described.

SEQ ID NO. 1 shows the nucleotide sequence of MP-19, a DNA sequence derived from human placenta.

SEQ ID NO. 2 shows the amino acid sequence of MP-19 as deduced from SEQ ID NO. 1.

35 SEQ ID NO. 3 shows the nucleotid sequence of MP-19 full-length cDNA derived from human placenta.

SEQ ID NO. 4 shows the amino acid sequence of MP-19 as deduced from SEQ ID NO. 3.

The figures show:

30

Figure 1 shows the alignment of the amino acid sequence of MP-19 with some related proteins of the PP2C family. The asterisk (*) indicates the position of identical amino acids of the compared amino acid sequences.

MP19-PCR. amino acid sequence of MP-19 (SEQ ID NO. 2)

PP2C-Human: human protein phosphatase 2C alpha (Accession No. S87759)

PP2C-Rabbit: rabbit protein phosphatase 2C alpha (Accession No. S87757)

PP2C-Rat: rat protein phosphatase 2C (Accession No. J04503)

Figure 2 is a human RNA master blot. The RNA-dot blot analysis shows hybridization of MP-19 PCR probe with different human RNA samples.

A1 whole brain, A2 amygdala, A3 caudate nucleus, A4 cerebellum, A5 cerebral cortex, A6 frontal lobe, A7 hippocampus, A6 medulia oblongata, E1 occipiral lobe, E2 primamen, B3 substantian larga, B4 temporal tobe, B5 thalamus, B6 substantian larga, B4 temporal tobe, B5 thalamus, B6 substantian lorga, B4 temporal tobe, B5 thalamus, C6 uterus, C7 prostate, C8 stomach, D1 tests, D2 ovary, D3 pancreas, D4 pituitary gland, D5 adrenal gland, D6 thyroid gland, D7 salivary gland, D8 mammary gland, E1 kidney, E2 liver, E3 small intestine, E4 spleen, E5 thymus, E6 peripheral leukocyte, E7 lymch node, E8 bone marrow, F1 appendix, F2 lung, F3 trachea, F4 placenta, F5-F8 blank, G1 fetal brain, C2 fetal heart, C3 fetal kidney, G4 fetal liver, G5 fetal spleen, G6 fetal thymus, G7 fetal lung, G8 blank, H1 vesat total RNA, H2 coli NDA, H5 colv r/O1, H6-H8 human DNA.

NA

Figure 3 shows the detection of MP-19 after IMAC. The Western analysis was performed after purification of MP-19 using Immobilized Metal Ion Affinity Chromatography (IMAC). Positive signals were obtained from fraction 16 to fraction 22.

The amino acid sequence alignment of MP-19 with sequences of different PP2Cs (shown in Figure 1) demonstrates the homology of MP-19 to the PP2C laminy but implicate also that MP-19 belongs to a new protein phosphatase group. The homology of the derived MP-19 amino acid sequence (aa 1 - aa 289) to PP2C from human, rabbit and rat displays a sequence homology of 21.2 %. Moreover a partial sequence for HP-19 (amino acid sequence 15 - 25) which is in the shown alignment not disrupted by gaps indicates a sequence homology of 39.1 % to the compared page.

The present invention relates particularly to a novel serine/threonine protein phosphatase and, preferably, provides DNA sequences contained in the corresponding gene.

Such sequences include nucleotide sequences as illustrated in SEQ ID NO.1 and SEQ ID NO.2, alletic derivatives of said sequences and DNA sequences degenerated as a result of the genetic occle. It also includes DNA sequences hybridizing under stringent conditions with the DNA sequence mentioned above. It further includes an insense nucleic acid preferably artiserse by P1.9 nucleic acid, directed to the above defined nuclear. The church runder includes an insense nucleic acid sequence and "nucleotide sequence" refers to DNA or RNA or heteroologomeric sequences, which may be double or significantly an independent of the properties of the

Although said allelse, degenerate and hybridizing sequences may have structural divergences due to naturally occurring mutations, such as small deletions or substitutions, they will usually still exhibit essentially the same useful properties, allowing their use in basically the same medical or diagnostic applications.

According to the present invention, the term "hybridization" means conventional hybridization conditions, preferably conditions with a salt concentration of 6 x SSC at 62°C to 66°C followed by a one-hour wash with 0.6 x SSC, 0.1% SDS at 62°C to 66°C.

Important biological embodiments of the present invention are DNA sequences of the above and obtainable from vertebrates, preferably mammals such as pig and from rodents such as rat, and in particular from primates such as humans.

Particularly preferred embodiments of the present invention are the DNA sequence termed MP-19 which are shown in SEQ ID NO. 1 and SEQ ID NO. 3. The protein sequence of rabbit and homology to the PP2C proteins (shown in Figure 1 deduced from SEQ ID NO. 1). The protein sequence of rabbit and human PP2C a and rat and rabbit PP2C a are described in Marin et al. (1992) Biochim. Biophys. Ada 1130, 100-104. Some typical sequence homologies, which are specific for the known PP2Cs, were also found in the MF-19 sequence. In the present invention, cloning was carried out according to the method described below. Once the DNA sequence has been cloned, the preparation of host cells capable of producing the PP2C-like protein MP-19 and the production of said protein can be easily accomplished using nown recombinant DNA techniques comprising constructing the expression plasmids encoding said protein and transforming a host cell with said expression plasmid, cultivating the transformant in a suitable culture medium, and recovering the product harway PP2C-like activity.

Thus, the invention also relates to recombinant molecules comprising DNA sequences as described above, optionally linked to an expression control sequence. Such vectors may be useful in the production of the PP2C-like protein in stable or transiently transformed cells. Several animal, plant, fungal and bacterial systems may be employed for the transformation and subsequent cultivation process. Preferably, expression vectors which can be used in the invention contain sequences necessary for the replication in the host cell and are autonomously replicable. It is also preferable to use vectors containing selectable marker genes which can be easily selected for transformed cells. The necessary operation is well-known to those skilded in the at

It is another object of the invention to provide a host cell transformed by an expression plasmid of the invention and it is another object of producing a protein of the serinethreonic phosphatase family. Examples of suitable host cells include various eucarvoids and procarvoids cells such as £. col/, insect cells, plant cells, mammalian cells, and fungi such as yeast.

Another object of the present invention is to provide a PP2C-like protein or a biologically active fragment thereof encoded by the sequences described above and displaying biological features such as dependency of Mp2** (or Mn²*) for activity. Furthermore, the phosphatase catalyzes dephosphorylation of phosphoserylthreonyl residues of proteins and peptides phosphorylated by cAMP-dependent protein kinases and protein kinase C. It is insensitive to inhibitors like okadaic acid and calyculin A, hepam and PP1 inhibitors 1 and 2. It does not attack phosphorylate a. It is inhibitor like polycations and F ions. A preferred substrate for the PP2C-like protein is the SET protein, suggesting capacities possible relevant to therapeutically treatment of leukemia. Furthermore, the PP2C-like protein prefers basic substrates such as histories, and MIPP phosphorylated by cAMP-dependent protein kinase, suggesting a special function for this phosphatase in the brain. The amino acid sequences of especially preferred PP2C-like proteins (MP-19) are shown in SEQ II IN O.2 and SEQ II DN O.4.

24

9.15.W.

It is another object of the present invention to provide pharmaceutical compositions containing a therapeutically-effective amount of a PP2C-like protein of the present invention and, optionally, a pharmaceutically acceptable carrier and/or diluent, and/or againsts and/or antagonists thereof. Such a therapeutic composition can be used for the teatment of cancer such as leukemia, brain cancer, breast cancer and prostate cancer. The pharmaceutical composition according to the present invention can also be therapeutically applied for degenerative disorders of the CNS, e.g. Alzheimer's disease, Humingdons diseases, Parkinson's disease, and spillepsy, and disorders of the CNS, e.g. Alzheimer's diseases, diabetes, and cystic fibrosis. The pharmaceutical composition comprising the protein of the present
invention can also be used for treatment of microbial or viral infections. Another application of the pharmaceutical composition of the present invention can is the usage of the protein in the regulation of spermatogenesis or the maturation of mammalian garm cells, e.g. for centraceptions.

Furthermore, the application of the composition is not limited to humans but can include animals, in particular domestic animals, as well.

Finally, another object of the present invention is an antibody or antibody fragment, which is capable of specifically binding to the proteins of the present invention. Methods to raise such specific antibody are known in the art. Such an antibody is preferably a monoclonal antibody. Such antibodies or antibody fragments might be useful for diagnostic methods.

The following examples illustrate in more detail the present invention, but should not be construed as limiting the invention.

Example 1

30

30

*

Isolation of MP-19

For the reverse transcription reaction, 5 μg total RNA (0.5 μg/μl) derived from human placenta tissue was heated for 5 minutes and cooled rapidly on ice for 5 minutes. The reverse transcription reagent mixture containing 5 μg total RNA, 38 μ or RNA guard (Pharmacia), 2 5 μg oligomer d(T)12-18 (Boehringer Mannheim), δε reaction buffer (250 mM Tris/HCl pH 8.5; 50 mM MgCl₂; 50 mM DTT; 600 mM KCl), 10 mM of each dNTP (Pharmacia), 37.5 μ of avian myob-slosis visus reverse transcriptase (AMV, Boehringer Mannheim). The reaction mixture (20 μl) was incubated for 90 minutes at 42°C. The resulting placenta cDNA pool was stored at 42°C.

For the primary polymerase chain reaction (PCR), a placenta-derived cDNA pool was used as template in a 50 µl reaction mixture. The PCR reaction was carried out in a RoboCycler Gradient 96 (Stratagene). The amplification was performed in 1x PCR-buffer (10 mM TisrHC1pt 18.3; 5 mM KC1, 0.001 % gelatine), 1 mM of each on MTP (Pharmacia), 100 pmol of each oligonucleotide (ALK6-N2, 5' - TT(CI)(AG)C(AGCT)AT(AGCT)ATAGAGAAGAGTGA - 3' and ALK6-R2, 5' - CC(AGCT)TT(AGCT)CGCATCGA - 3') and 1.5 u Taq polymerase (Perkin Elmer). The PCR reaction contained cDNA corresponding to 30 ing of total RNA as starting material. The reaction mixture was overlaid by 40 µl paraffir incubated for 180s/94*C and subjected to 30 cycles (50s/94*C, 90s/48 *C, 60s/72 *C) with an additional extension for 44s08/72*C in the Thermocycler.

A second round of amplification was performed as described above with exception that 5 µl from the frst PCR reaction was used as template DNA for the PCR. A 10 µl sample from the second PCR amplification was fractionated by electrophoresis using a 2 % agarose gel in TSE buffer. After electrophoresis amplified DNA corresponding to a molecular weight of about 600-800 by was existed from the gel and isolated by 3x freezethav cycles (20°C/+3°C) and using the DNA purification Kit "Easy Pure" (Bosyme, Cat. no. 38001) following the instructions of the manufacturer.

The eluted DNA was amplified a third time as described in the primary PCR with exception that 3 µl of the eluted DNA, resulted from the second round of amplification, was used as template for PCR and the annealing temperature was 5.6 °C instead of 4.8 °C After electrophoresis using a 2% agarose gel in TBE buffer, a distinct DNA band that corresponds to a molecular weight of about 700 bp was eluted with the extraction method described before. After than an additionally purification using the OlAquick 8 PCR Purification Kit (Olagen, Cat. no. 28144) following the instructions of the manufacturer, was carried out.

Cloning of the purified DNA was established using the Original TA Cloning Kit (Invitrogen, Cat. no. K2000-40). Plasmid N from positive clones was isolated with the Olawell 8 Plus Plasmid Kit (Clagen, Cat. no. 16142) and sequenced with an automatic DNA sequence (ALFexpress, Pharmacia). The resulting DNA sequence was analyzed by a homology search with the blast program.

Example 2

1

37

Isolation of MP-19 full-length cDNA

Isolation of a full-length cDNA clone of MP-19 was performed with a commercial available Human Placental Lambda CDNA Library (Stritagene, Cat. no 93725). For screening, a labeled PCR probe was generated from MP-19 DNA (SEC ID NO. 1). The amplification was performed in 1x PCR-buffer (Xiagen, Germany), 1 mM of dATP, 1 mM of 102 dCTP, 1 mM of dCTP, 0 mM of dTTP (Pharmacia, Germany), 0 nf mM of Dioposigenin-11-dIDP (Boebringer) nehemin, 100 pmot of each oligonucleotide PL19-N1 (5'-GGBCAGAACTGTCACAACGGG-3) and PL19-R1 (5'-CATCCAT-GGTGACCTTGCACCG-3) and 1 u Tag DNA-polymerase (Diagen). The PCR mx was overlated by 40 uli particular, includated for 180s/94 "C and subjected to 30 cycles (60s/94 "C, 60s/58 "C, 60s/72 "C) with an additional extension for 180s/72 "C).

Prehybridization of plaque lift filters from cDNA library were done at 58 °C for 4 h in 0.25 M Na₂HPO₄, 7 % SDS, 1 % BSA, 1 mM EDTA, pH 7.2. Hybridization was carried out with 50 ng labeled MP19 PCR probe for 15 h under same buffer conditions as prehybridization was done. Filter washed 3 times (5 min, 10 min and 15 min) with 30 mM Na₂HPO₄, 0,1 % SDS at 60 °C. Detection of signals were performed with DIG Luminescent detection kit from Boehringer, Mannheim (Cat. no. 1363514). Proceed from a positive signal, clone 39-1 was isolated and sequenced. The resulting DNAsequence from clone 39-1 conform to Bp. 387-1641 in SEQ ID NO. 3. To generate the 5'cDNA end of MP-19 full-lenght cDNA, 1 µg of a Lambda-DNA preparation from Human Placenta Lambda cDNA Library was subjected to PCR. The amplification was performed in 1x PCR-buffer (Qiagen), 1 mM of each dNTP (Pharmacia), 100 pmol of each oligonucieotide MP19-E5 (5'-GGATCCATGGGTGCCTACCTCTCCCAGCCC-3') which was derived from an EST sequence (accession no. AA115688) and MP19-3 (5'-GCCTGTGTAGGCCTTGGCTGTGGGGCC-3') and 1 u Taq DNA-polymerase (Qiagen). The reaction was overlaid by 40 µl paraffin incubated for 180s/94 °C and subjected to 30 cycles (60s/94 °C, 60s/74 °C, 60s/72 °C) with an additional extension for 300s/72 °C. The resulting PCR fragment was subcloned in vector pCR 2.1 (Clontech, Germany). Corresponding DNA was digested with restriction endonucleases Barn HI and Stu I. After that MP-19 Barn HI/Stu I fragment was inserted into clone 39-1. The resulted clone was named 28-9 which DNA-sequence present the full-lenght cDNA-sequence of MP-19 as shown in SEQ ID NO. 3. The corresponding amino 30 acid sequence of MP-19 is shown in SEQ ID NO. 4.

Gene expression of MP-19 in human tissues

Relative excression of the MP-19 gene was determined by Northern blot analyses. A commercial available Human RNA Master Blot (Clontech, Germany, Cat. no. 7770-1, Lot no. 7990716) was hybridized with the digoxigenin labeled MP-19 PCR probe as described in Isolation of MP-19 full-length cDNA. So different human tissues samples were investigated for MP-19 gene expression. Additionally 8 different negative controls from E. coli, yeast and human genomo DNA were applied.

Main expression of MP-19 was detected in human tests which is stown in figure 2. Lown appression of MP-19 was detected in human pitulary gland, Ymrus, small intestine and fetal liver. Basal expression of MP-19 was found in all other human RNA samples. No hybridization signals were detected in negative controls.

Expression of MP-19 cDNA in E. coli

Immunolonical Detection of MP-19

Sec. 10.

20

25

40

45

Immunological detection of recombinant MP-19 was performed by western blotting using a commercial available monoclonal mouse antibody against histidine-tag (Dianova, Germany, Cat. no. dia900) in combination with Western Light chemolyminescent detection system using the coat anti-mouse-AP antibody (Tropix, U.S.A.).

Activity assay for recombinant MP-19

A Serine/Tirecenine Prosphatase Assay System (Promega, Germany, Cat. no. V2460) was used to determine enzymatic activity of recombinant MP-19. This assay use a chemically synthesized phosphotepatide RRA(pT)VA which is a functional substrate for MP-19 prosphatase. The amount of free phosphate which is generated by MP-19 enzymatic reaction was measured by the absorbency of a motybodie-malalactir green-phosphate complex (Ekman P and Jager O. (1993), Anal. Biochem 214, 1384-14), Deana A. D. et al. (1990), Biochimica et Biophysica Act at 1051, 199-202), Assays were performed as described by the manufacturer in PPTase-2C buffer (50 mM imidazole, pH 7.2, 0,2 mM EGTA, 5 mM MgCl₂, 0,0 2%, Pemercaphothanol, 0,1 mgml BSA). To determine background of this assay, clone pGE-16-dhfr (Qlagen, Germany) was used, which is identical to pGE-MP-19 with exception that vector pQE-16 inserted a mouse diff one instead of MP-19 phosphatase gene.

Results of activity assay of MP-19 shown in table 1 MP-19 has a significant activity in a MgCl₂ containing buffer, which shows the requirement to Mg² inhibitors like obtactiac and of 100 shows the requirement to Mg² inhibitors like obtactiac and of 100 shows no significant reduction of MP-19 activity. Control expression of the mouse drift gene shows no activity in the Serine/Thresonine Phosphatase Assay System.

EP 0 874 052 A2

	A	В	С	D (Average A-C)
1	0.000	0.006	-0.006	0.000
2	0.024	0.029	0.023	0.025
3	0.304	0.291	0.298	0.298
4	0.612	0.594	0.597	0.601
5	1.080	1.140	1.137	1.119
6	0.021	0.006	0.018	0.015
7	0.025	0.043	0.018	0.029
8	0.038	0.020	0.018	0.025
9	0.030	0.012	0.013	0.018
10	0.151	0.108	0.174	0.144
11	0.146	0.147	0.139	0.144

Table 1: Activity test of MP-19

	A1-D1:	Phosphate standard O pmol
	A2-D2:	Phosphate standard 100 pmol
35	A3-D3:	Phosphate standard 500 pmol
	A4-D4:	Phosphate standard 1000 pmol
	A5-D5:	Phosphate standard 2000 pmol
	A6-D6:	mouse dhfr gene with substrate (negative control)
	A7-D7:	mouse dhfr gene without substrate (negative control)
40	A8-D8:	MP-19 with modified PPTase-2C buffer (5mM MgCl ₂ is replaced by 5 mM CaCl ₂) and substrate
	A9-D9:	MP-19 with PPTase-2C buffer without substrate
	A10-D10:	MP-19 with PPTase-2C buffer and substrate

A11-D11: MP-19 with PPTase-2C buffer, substrate and 10 μM okadaic acid

(1) GENERAL INFORMATION:

43

SEQUENCE LISTING

10	(i)	APPLICANT: (A) NAME: Biopharm GmbH (B) STREET: Czernyring 22 (C) CITY: Heidelberg (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): 69115	
	(ii)	TITLE OF INVENTION: Nucleic acid encoding a novel human prote phosphatase	in
15	(iii)	NUMBER OF SEQUENCES: 4	
20	(iv)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SISTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)	
	(v)	CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 98107346.3	
	(2) INFOR	MATION FOR SEQ ID NO: 1:	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 678 base pairs (8) TYPE: nucleic acid (C) STRANDENESS: double (D) TOPOLOGY: linear	
30	(ii)	MOLECULE TYPE: cDNA	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
35	(vi)	ORIGINAL SOURCE: (F) TISSUE TYPE: human placenta	
40	(xi)	SEQUENCE DRSCRIPTION: SEQ ID NO: 1:	
	TACGGGCAG	A ACTGTCACAA GGGCCCTCCC CACAGCAAAT CTGGAGGTGG GACAGGCGAG	60
	GAACCAGGG	T CCCAGGGCCT CAATGGGGAG GCAGGACCTG AGGACTCAAC TAGGGAAACT	120
45			
50			

	CTTCACAAG AAAATGGCCC CACAGCCAAG GCCTACACAG GCTTTTCCTC CAACTCGGAA	.80
	GTGGGAÇTG AAGCAGGCCA AGTTGGTGAG CCTGGCATTC CCACTGGTGA GGCTGGGCCT	40
5	CCTGCTCTT CAGCCTCTGA CAAGCTGCCT CGAGTTGCTA AGTCCAAGTT CTTTGAGGAC	00
	GTGAGGATG AGTCAGATGA GGCGGAGGAA GAAGAGGAAG ACAGTGAGGA ATGCAGCGAG	60
	AAGAGGATG GCTACAGCAG TGAGGAGGCA GAGAATGAGG AAGATGAGGA TGACACCGAG	20
10	AGGCTGAAG AGGACGATGA AGAAGAAGAA GAAGAGATGA TGGTGCCAGG GATGGAAGGC	80
	AAGAGGAGC CTGGCTCTGA CAGTGGTACA ACAGCGGTGG TGGCCCTGAT ACGAGGGAAG	40
	AGTTGATTG TAGCCAACGC AGGAGACTCT CGCTGTGTGG TATCTGAGGC TGGCAAAGCT	00
15	TAGACATGT CCTATGATCA CAAACCAGAG GATGAAGTAG AACTAGCACG CATCAAGAAT	60
	CTGGTGGCA AGGTCACC	78
	2) INFORMATION FOR SEQ ID NO: 2:	
20	(i) SROUBNCE CHARACTERISTICS: (a) LENGTH: 226 amino acids (b) TYPE: amino acid (c) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (F) TISSUE TYPE: human placenta	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Tyr Gly Gln Asn Cys His Lys Gly Pro Pro His Ser Lys Ser Gly Gly 1 5 10 15	
40	Gly Thr Gly Glu Glu Pro Gly Ser Gln Gly Leu Asn Gly Glu Ala Gly 20 25 30	
	Pro Glu Asp Ser Thr Arg Glu Thr Pro Ser Gln Glu Asn Gly Pro Thr 35 40 45	
45	Ala Lys Ala Tyr Thr Gly Phe Ser Ser Asn Ser Glu Arg Gly Thr Glu	

35

50

			50					55					60				
	5	Ala 65	Gly	Gln	Val	Gly	Glu 70	Pro	Gly	Ile	Pro	Thr 75	Gly	Glu	Ala	Gly	Pro 80
		Ser	Сув	Ser	Ser	Ala 85	Ser	Asp	Lys	Leu	Pro 90	Arg	Val	Ala	Lys	Ser 95	Lys
	10	Phe	Phe	G1u	Asp 100	ser	Glu	Asp	Glu	Ser 105	Asp	Glu	Ala	Glu	Glu 110	Glu	Glu
		Glu	Asp	Ser 115	Glu	Glu	Cys	Ser	Glu 120	Glu	Glu	Asp	Gly	Tyr 125	Ser	Ser	G1u
	15	Glu	Ala 130	Glu	Asn	Glu	Glu	Asp 135	Glu	Asp	Asp	Thr	Glu 140	Glu	Ala	Glu	Glu
		Asp 145	Asp	Glu	Glu	Glu	Glu 150	Glu	Glu	Met	Met	Val 155	Pro	Gly	Met	Glu	Gly 160
	20	Lys	Glu	Glu	Pro	Gly 165	Ser	Asp	Ser	Gly	Thr 170	Thr	Ala	Val	Val	Ala 175	Leu
		Ile	Arg	Gly	Lys 180	Gln	Leu	Ile	Val	Ala 185	Asn	Ala	Gly	Asp	Ser 190	Arg	Сув
	25	Val	Val	Ser 195	Glu	Ala	Gly	Lys	Ala 200	Leu	Asp	Met	Ser	Tyr 205	Asp	His	Lys
		Pro	Glu 210	Asp	Glu	Val	Glu	Leu 215	Ala	Arg	Ile	Lys	Asn 220	Ala	Gly	Gly	Lys
	30	Val 225	Thr														
		(2) INFO	RMATI	ON F	OR S	EQ I	D NO	: 3:									
	(i) SEQUENCE CHARACTERISTICS: (A) LENOTH: 1641 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS; double (D) TOPOLOGY; linear																
		(ii)	MOLE	CULE	TYF	E: c	DNA										
	40	(iii)	HYPO	THET	CAL	: NC)										
		(iv)	ANTI	-SEN	ISE:	NO											
	45	(vi)					: hu	man	plac	enta							

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID NO	: 3:
------	----------	--------------	-----	-------	------

60	GGTCGGCGCC	CCGGGGACGG	GTGAAGTGCT	GCCCAACACG	ACCTCTCCCA	ATGGGTGCCT
120	CTCCATGGAG	GCTGGCGCGT	GCCATGCAAG	CGGCTTCTCC	CGCTGCCCTA	CCGCGCCTGC
180	TGTCTACGAT	CCATGTTTTC	AGTGAGACAG	TGAGCTGGAC	ACTGTATTCC	GATGCTCACA
240	TATCATCAAA	ATCTTCCTGA	TGTGCCAAAT	TGCCTTGTAC	GGGAGGAAGT	GGACATGGAG
300	CTTCTTGGCT	TAGAAGATGC	CAGAAGGCTT	AGGCAAGCTA	CCTACAAGGA	GATCAGAAGG
360	TGCAGGGCGA	TGGCACAGAT	ATTAAAGAGC	TGAAGAAGTC	AATTGACCAC	ATTGACGCCA
420	GGACAATGAG	AAGATGATGT	GTAGCTGATG	AAAAGAAAAA	ATGAAGATGA	CCCACTGAGG
480	GACACGCTAC	AAGAGCTGCT	ATGACTATTG	AGAGGCTACC	TGCTGCATGA	GAGGCTGCAC
540	AGGCGAGGAA	GAGGTGGGAC	AGCAAATCTG	CCCTCCCCAC	GTCACAAGGG	GGGCAGAACT
600	GGAAACTCCT	ACTCAACTAG	GGACCTGAGG	TGGGGAGGCA	AGGGCCTCAA	CCAGGGTCCC
660	CTCGGAACGT	TTTCCTCCAA	TACACAGGCT	AGCCAAGGCC	ATGGCCCCAC	TCACAAGAAA
720	TGGGCCTTCC	CTGGTGAGGC	GGCATTCCCA	TGGTGAGCCT	CAGGCCAAGT	GGGACTGAGG
780	TGAGGACAGT	CCAAGTTCTT	GTTGCTAAGT	GCTGCCTCGA	CCTCTGACAA	TGCTCTTCAG
840	CAGCGAGGAA	GTGAGGAATG	GAGGAAGACA	ggaggaagaa	CAGATGAGGC	GAGGATGAGT
900	CACCGAGGAG	ATGAGGATGA	AATGAGGAAG	GGAGGCAGAG	ACAGCAGTGA	GAGGATGGCT
960	GGAAGGCAAA	TGCCAGGGAT	GAGATGATGG	AGAAGAAGAA	ACGATGAAGA	GCTGAAGAGG
1020	AGGGAAGCAG	CCCTGATACG	GCGGTGGTGG	TGGTACAACA	GCTCTGACAG	GAGGAGCCTG
1080	CAAAGCTTTA	CTGAGGCTGG	TGTGTGGTAT	AGACTCTCGC	CCAACGCAGG	TTGATTGTAG
1140	CAAGAATGCT	TAGCACGCAT	GAAGTAGAAC	ACCAGAGGAT	ATGATCACAA	GACATGTCCT
1200	CAGAGCCATT	TCAACCTCTC	AACGGGGGCC	TGGGCGAGTC	TCACCATGGA	GGTGGCAAGG
1260	GATTTCAGCC	AGGAACAGAT	CTGCCACCTG	AAACAAGAAC	TCTATAAGAG	GGGGACCACT
1320	CATTGCCTGT	AATTCATGGT	GACGACCATG	GACTCTCACT	TCAAGGTGCT	CTTCCTGACA
1380	ATCAAAGATC	ATTTCATTCA	GAAGTTGTAG	GAGCAGCCAG	GGAATGTGAT	GATGGCATCT

11

	AGCCAGCG'	rg A	TGAA	AATG	g GG.	AGCT"	rcgg	TTA	rigi	CAT	CCAT	rgtg	GA A	GAGC	rgct	3	1440
	GATCAGTG	CC. TO	GGCA	CAG	A CA	CTTC	rggg	GAT	GTA	CAG	GGTG	rgac.	AA C	ATGA	CCTG	C	1500
5	ATCATCAT	rr G	CTTC	AAGC	c co	GAAA	CACA	GCA	GAGC	rcc .	AGCC	AGAG.	AG T	GCA	AGCG	A	1560
	AAACTAGA	GG A	GGTG	TCT	TA	CTGA	GGG	GCT	GAAG	AAA .	ATGG	CAAC	AG C	GACA	AGAA	3	1620
	AAGAAGGC	CA A	GCGA	SACT	A G												1641
10	(2) INFO	RMAT	ION I	FOR S	SEQ	ID N	o: 4	:									
15	(i)	(A (B (C) LE	NGTH PE: 8 RANDI	: 54 amin BDNE:	6 am 5 ac SS:	sing.	acid	3								
	(ii)	MOL	ECULI	E TY	PE:]	pept	ide										
	(iii)	HYP	OTHE	ricai	. N	0											
20	(iv)	ANT:	I-SE	ISE:	NO												
	(vi)						uman	pla	centa	a							
25																	
	(xi)	SEQ	UENC	DES	SCRI:	PTIO	1: S	EQ II	010	4:							
	Met 1	Gly	Ala	Tyr	Leu 5	Ser	Gln	Pro	Asn	Thr 10	Val	Lys	Cys	Ser	Gly 15	Asp	
30	Gly	Val	Gly	Ala 20	Pro	Arg	Leu	Pro	Leu 25	Pro	Tyr	Gly	Phe	Ser 30	Ala	Met	
	Gln	Gly	Trp 35	Arg	Val	Ser	Met	Glu 40	Asp	Ala	His	Asn	Cys 45	Ile	Pro	Glu	
35	Leu	Asp 50	Ser	Glu	Thr	Ala	Met 55	Phe	Ser	Val	Tyr	Asp 60	Gly	His	Gly	Gly	
	Glu 65	Glu	Val	Ala	Leu	Tyr 70	Cys	Ala	Lys	туг	Leu 75	Pro	Asp	Ile	Ile	Lys 80	
40	Asp	Gln	Lys	Ala	Tyr 85	Lys	Glu	Gly	Lys	Leu 90	Gln	Lys	Ala	Leu	Glu 95	Asp	
	Ala	Phe	Leu	Ala 100	ıle	Asp	Ala	Lys	Leu 105	Thr	Thr	Glu	Glu	Val	Ile	Lys	

Claims

- A nucleic acid comprising a nucleotide sequence encoding a human serine/threonine phosphatase or a functional fragment thereof that is capable of dephosphorylating serine or threonine residues, wherein the nucleotide sequence comprises:
- 55 (a) the nucleotides as shown in SEQ ID NO. 1 or SEQ ID NO. 3; or
 - (b) a DNA sequence which is degenerate as a result of the genetic code to the DNA sequence of (a); or

(c) an allelic derivative of the sequences of (a) or (b); or

(d) a DNA sequence which is capable of hybridizing to the sequences in (a), (b) and (c), and encoding a protein containing the amino acid sequence as depicted in SEQ ID NO. 2 or SEQ ID NO. 4; or

(e) a nucleotide sequence which is capable of hybridizing to the DNA sequences in (a), (b), (c) and (d), and encoding a protein having essentially the same biological properties as the protein defined in (d).

- 2. The nucleic acid according to claim 1, wherein the nucleotide sequence is a vertebrate DNA sequence, a mammalian sequence, preferably a primate, human, porcine, or rodent, preferably a rat or rabbit, DNA sequence
 - 3. A recombinant molecule comprising a nucleic acid according to claim 1 or 2.
- The recombinant molecule according to claim 3, wherein said nucleic acid sequence is functionally linked to an expression-control sequence.
- 5. A host containing the nucleic acid according to claim 1 or 2, or the recombinant molecule according to claim 3 or 4.
- 6. The host according to claim 5, which is a bacterium, a fungus, a plant cell, an animal or a human cell.
- A process for the production of a PP2C-like protein comprising cultivating a host according to claim 5 or 6 and recovering said PP2C-like protein from the culture.
- A PP2C-like protein or a biologically active fragment thereof encoded by a nucleic acid according to claim 1 or 2 or by a recombinant molecule according to claim 3 or 4.
- 9. The protein according to claim 8, comprising the amino acid sequence of SEQ ID NO. 2 or SEQ ID NO. 4.
- 10. An agonist as a substitute for the protein of claim 8 or 9.
- 11. An antagonist directed to the protein of claim 8 or 9.
- A pharmaceutical composition containing the protein or a biologically active fragment thereof according to claim 8
 and 9 or the agonist according to claim 10 or the antagonist according to claim 11, and optionally, a pharmaceutically acceptable carrier and/or diluent.
- 13. The pharmaceutical composition according to claim 12 for the treatment of leukemia, brain cancer, breast cancer, prostate cancer, Alzheimer's disease, Huntingdon's disease, Parknison's disease, and epitiepsy, and disorders of the reproductive system, or for the regulation of sperimsdopenesis or the maturation of mammalian period.
- 14. An antibody or antibody fragment which is capable of specifically binding to the protein of claim 8 and 9 or to the appoints of claim 10 or to the antiponist of claim 11.
- 15. The antibody according to claim 14, which is a monoclonal antibody.
- 16. Use of an antibody or antibody fragment according to claim 14 or 15 for detecting the protein or a biologically active fragment thereof as defined in claim 8 or 9.
- 17. A diagnostic kit containing the agonist according to claim 10 or the antagonist according to claim 11 or the antibody or antibody fragment according to claim 14 or 15.

.

¥

Fig. 1

MP19-PCR	YGQNCHKGPP	HSKSGGGTGE	EPGSQGLNGE	AGPEDSTRET	PSQENGPTAK		50
PP2C-Human	MGAFT, DKPKM	EKHNAQGQG-	NGLRYG	LSSMOGWRVE	MEDAHTAVIG		4.5
PP2C-Rabbit	MGAFLDKPKM	EKHNAQGQG-	NGLRYG	LSSMQGWRVE	MEDAHTAVIG		4.5
PP2C-Rat	MGAFLDKPKM	EKHNAQGQG-	NGLRYG	LSSMQGWRVE	MEDARTAVIG		4.5
			**				
MP19-PCR	AYTGFSSNSE	RGTEAGQVGE	PGIPTGEAGP	SCSSASDKLP	RVAKSKFFED		100
PP2C-Human	LPSGLESWSF	FAVYDGHAG-	SQVAX	YCC~-EHLLD	HITNNODFKG		87
PP2C-Rabbit	LPSGLETWSF	FAVYDGHAG-	SQVAX	YCCEHLLD	HITNNODFKG		87
PP2C-Rat	LPSGLETWSF	FAVYDGHAG-	SQVAK	YCCEHLLD	HITNNODFKG		81
		•					
MP19-PCR	SEDESDEAEE	EEEDSEECSE	EEDGYSSEEA	ENEEDEODTE	EASEDDEEES		150
PP2C-Human	SAGAP-SVEN	VKNGI	-RTGF		LEID		109
PP2C-Rabbit	SAGAP-SVEN	VKNGI	-RTGF		LEID		109
PP2C-Rat	SAGAP-SVEN	VKNGI	-RTGF		LEID		109
	•						
MP19~PCR	EEMMVPGMEG	KEEPGSDSGT	TAVVALIRGE	QLIVANAGDS	RCVVSEAGKA		200
PP2C-Human	EHMRVMSE	KKHGADRSGS	TAVGVLISPQ	HTYFINCGDS	RGLLCRNRKV		157
PP2C-Rabbit	EHMRVMSE	KKHGADRSGS	TAVGVLISPQ	HTYFINCGDS	RGLLCRNRKV		157
PP2C-Rat	EHMRV MSE	KKHGADRSGS	TAVGVLISPO	HTYFINCGDS	RGLLCRNRKV		157
		•	**	•••			
MP19~PCR	LDMSYDHKPE	DEVELARIKN	AGGKVT				226
PP2C-Human	HFFTQDHKPS	NPLEKERION	AGGSVM				163
PP2C-Rabbit	HFFTQDHKPS	NPLEKERION	AGGSVM				183
PP2C-Rat	HFFTQDHKPS	NPLEKERION	AGGSVM				183

Figure 2

Figure 3

(11)

(12)

200

大大大学 大学

1

(43) Date of publication: 28.10.1998 Bulletin 1998/44

- (21) Application number: 98107346.3
- (22) Date of filing: 22.04.1998

(51) Int. Cl.6: C12N 15/55, C12N 9/16, A61K 38/46, C07K 16/40, G01N 33/577

- (84) Designated Contracting States AT BE CHICY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States: AL LT LV MK RO SI
- (30) Priority: 22.04.1997 EP 97106658
- (71) Applicant: BIOPHARM GESELLSCHAFT ZUR BIOTECHNOLOGISCHEN ENTWICKLUNG VON PHARMAKA mbH 69115 Heidelberg (DE)
- (72) Inventors · Hanke, Michael, Dr. 67454 Hassloch (DE)

- · Paulista, Michael 69181 Leimen (DE)
- · Pohl, Jens, Dr. 76707 Hambrücken (DE) (74) Representative
- Müller-Boré & Partner Patentanwäite Grafinger Strasse 2 81671 München (DE)

Remarks:

EUROPEAN PATENT APPLICATION

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54)Nucleic acid encoding a human protein phosphatase

(57) The present invention relates to nucleic acids encoding a novel human protein phosphatase of the family of protein serine/threonine phosphatases. In particular, it relates to novel DNA sequences encoding serine/threonine protein phosphatase, to expression plasmids containing said nucleic acids, to host organisms transformed by said expression plasmids, to the production of said protein by culturing said transformant, to antibodies specifically binding to said phosphatase and to agonists and/or antagonists for said protein, and to antisense MP-19 nucleic acid. Furthermore, the invention relates to serine or threonine residues and epitopes comprising said residues dephosphorylated by said protein and pharmaceutical compositions comprising said protein or agonists or antagonists thereof for the treatment of diseases influenced by changes in phosphorylation which controls e.g. cell proliferation and/or differentiation, to diagnostic kits and to in vitro diagnostic methods for the detection of phosphorylation dependent diseases such as e.g. cancer

CORRIGENDUM

(bibliography updates Included) -

on 10.03.1999

Description

Sec. 35.

di

Park.

169

The present invention relates to nucleic acids encoding a novel human protein phosphatase of the protein serinethrecinine phosphatase, family in particular, it relates to novel DNA sequences encoding a serinenthrecinine protein phosphatase, to expression plasmids containing said nucleic acids, to host organisms transformed by said expression plasmids, to the production of said protein by culturing said transforment, to antibodies specifically binding to said phospphatase and to agonists and/or antagonists for said protein. Furthermore, the invention relates to serine or theconine residues and epitices comprising said residues dephosphorylated by said protein and pharmaceutical compositions comprising said protein or agonists or antiopants thereof for the treatment of diseases influenced by changes in phosto-phylation which controls e.g. cell proliferation and/or differentiation, to diagnostic tist and to in whito diagnostic methods for the detection of a hospshorylation dependent diseases such as e.g. cancer.

Protein phosphorylation-dephosphorylation is a universal mechanism by which different cellular events are regulated. The semethreonine-specific phosphatases have been classified into four main types according to their in vitro specificity for selected substrates and sensitivity to activators and inhibitors (ingelvitisen, T.S. and Cohen, P. (1983) Eur. J. Biochem. 182, 255-261). Sequence analysis revealed that they can be classified into two major gene families. The first one includes type 1 (PP1), type 2A (PP2A), and type 2B (PP2B) phosphatases, which share 37 to 59 sequence identity (Barton, G.) et al., (1994) Eur. J. Biochem. 220, 225-237) in their catalytic domains and are inhibited by okadaic acid (Bialojan, C.) and Takai, A. (1988) Biochem. 220, 225-237) in their catalytic domains and are inhibited by okadaic acid (Bialojan, C.) and Takai, A. (1988) Biochem. 256, 283-290). The second family, the Mg²⁺-dependent phosphatases, also designated type 2C (PP2C), share little sequence similarity with the first family and are insensitive to okadaic acid. cDNA sequences of PP2C a and β from mammalian sources showed > 50 % identity. PP2Cs have been implicated in the regulation of fatty acid and cholested oblosynthesis (Moore, F. et al. (1991) Eur. J. Biochem. 199, 691-697) and heat shock response (Maeda et al. (1993) Mol. Cell. Biol. 113, 5408-5417, Shozaki, K. et al. (1994) Mol. Cell. Siol. 113, 2408-5417, Shozaki, K. et al. (1994) Mol. Cell. Siol. 113, 2408-5417, Shozaki, K. et al. (1994) Mol. Cell.

The technical problem underlying the present invention is to provide a new human PP2C-like protein phosphatase which is distinct from the other PP2Cs

The solution to the above technical problem is achieved by providing the embodiments characterized in the claims. Other features and advantages of the invention will be apparent from the description of the preferred embodiments and drawings.

The sequence listings and drawings will now be briefly described.

SEQ ID NO. 1 shows the nucleotide sequence of MP-19, a DNA sequence derived from human placenta.

SEQ ID NO. 2 shows the amino acid sequence of MP-19 as deduced from SEQ ID NO. 1.

35 SEQ ID NO. 3 shows the nucleotid sequence of MP-19 full-lenght cDNA derived from human placenta.

SEQ ID NO. 4 shows the amino acid sequence of MP-19 as deduced from SEQ ID NO. 3.

The figures show:

Figure 1 shows the alignment of the amino acid sequence of MP-19 with some related proteins of the PP2C family. The asterisk (') indicates the position of identical amino acids of the compared amino acid sequences.

MP19-PCR: amino acid sequence of MP-19 (SEQ ID NO. 2)
PP2C-Human: human protein phosphatase 2C alpha (Accession No. S87757)
PP2C-Rat: ratpotein phosphatase 2C (Accession No. J04503)

Figure 2 is a human RNA master blot. The RNA-dot blot analysis shows hybridization of MP-19 PCR probe with different human RNA samples.

A1 whole brain. A2 amygdala, A3 caudate nucleus, A4 cerebellum, A5 creebral cortex, A6 frontal lobe, A7 hippocampus, A8 medulla obiongata, B1 occipital lobe, B2 putamen, B3 substantia nigra, B4 temporal lobe, B5 thatamus, B6 subthalamic nucleus, B7 spinal cord, B8 blank, C1 heart, C2 aorta, C3 skeletal muscle, C4 colon, C5 badder, C6 uterus, C7 prostate, C8 stomach, D1 tests, D2 ovary, D3 pancreas, D4 pitultary gland, D5 adrenal gland, D6 thyroid gland, D7 salivary gland, D8 mammary gland, E1 kiden, E2 liver, E3 parall intestine, E4 spleen, E5 thyroid, E6 peripheral leukocyte, E7 lymph node, E8 bone marrow, F1 appendix, F2 lung, F3 trachea, F4 placenta, F5-F8 blank, G1 tetal brain, C3 tetal heart, M3 E4 coli rRNA, H4 E5 coli rR

The amino acid sequence alignment of MP-19 with sequences of different PP2Cs (shown in Figure 1) demonstrates the homology of MP-19 to the PP2C family but implicate also that MP-19 belongs to a new protein phosphatase group. The homology of the derived MP-19 amino and sequence (aa 1 - aa 226) to PP2C from human, rabbit and rat displays a sequence homology of 21.2 %. Moreover a partial sequence of MP-19 (amino and sequence 155 - 225) which is in the shown alignment not disrupted by gaps indicates a sequence homology of 39.1 % to the compared PP2Cs.

The present invention relates particularly to a novel serine/threonine protein phosphatase and, preferably, provides DNA sequences contained in the corresponding gene.

Such sequences include nucleotide sequences as illustrated in SEQ ID NO. 1 and SEQ ID NO. 3, alletic derivatives of said sequences and DNA sequences degenerated as a result of the genetic code for said sequences. It also includes DNA sequences hybridising under stringent conditions with the DNA sequence mentioned above. If turther includes antisense nucleic acid, preferably antisense MP-19 nucleic acid, directed to the above defined nucleic acid. The terms "nucleic acid sequence" and "nucleotide sequence" refers to DNA or RNA or heterooligomeric sequences, which may be double or single-stranded.

Although said allelic, degenerate and hybridizing sequences may have structural divergences due to naturally occurring mutations, such as small deletions or substitutions, they will usually still exhibit essentially the same useful properties, allowing their use in basically the same medical or diagnostic applications.

According to the present invention, the term "hybridization" means conventional hybridization conditions, preferably conditions with a salt concentration of 6 x SSC at 62°C to 66°C followed by a one-hour wash with 0.6 x SSC, 0.1% SDS at 62°C to 66°C.

Important biological embodiments of the present invention are DNA sequences of the above and obtainable from vertebrates, preferably mammals such as pig and from rodents such as rat, and in particular from primates such as humans.

Particularly preferred embodiments of the present invention are the DNA sequence termed MP-19 which are shown in SEG ID NO.1 and SEG ID NO.3. The corresponding transcripts of MP-19 were obtained from hump placenta sits use and code for a protein showing considerable amino acid homology to the PP2C proteins (shown in Figure 1 deduced from SEQ ID NO.1). The protein sequence of rabbit and human PP2C a and rat and rabbit PP2C are described in Mann et al. (1992) Blochim. Biophys. Acta 1130, 100-104. Some typical sequence homologies, which are specific for the known PP2Cs, were also found in the MP-19 sequence. In the present invention, cloning was carried out according to the method described below. Once the DNA sequence has been cloned, the preparation host cells capable of producing the PP2C-like protein MP-19 and the production of said protein can be easily accomplished using known recombinant DNA techniques comprising constructing the expression plasmids encoding said protein and transforming a host cell with said expression plasmid, cultivating the transformant in a suitable culture medium, and recovering the product having PP2C-like activity.

Thus, the invention also relates to recombinant molecules comprising DNA sequences as described above, optionally linked to an expression control sequence. Such vectors may be useful in the production of the PP2C-like protein in stable or transiently transformed cells. Several animal, plant, fungal and bacterial systems may be employed for the transformation and subsequent cultivation process. Preferably, expression vectors which can be used in the invention contain sequences necessary for the replication in the host cell and are autonomously replicable. It is also preferable to use vectors containing selectable marker genes which can be easily selected for transformed cells. The necessary operation is well-known to those skilled in the art.

It is another object of the invention to provide a host cell transformed by an expression plasmid of the invention and capable of producing a protein of the serine/threonine phosphatase family. Examples of suitable host cells include various eucaryotic and procaryotic cells, such as £. coli, insect cells, plant cells, mammalian cells, and fungi such as yeast.

Another object of the present invention is to provide a PP2C-like protein or a biologically active fragment thereof encoded by the sequences described above and displaying biological features such as dependency of Mg²⁺ (or Mn²⁺) for activity. Furthermore, the phosphatase catalyzes dephosphorylation of phosphosery/threonyl residues of proteins and peptides phosphorylated by cAMP⁴-dependent protein kinases and protein kinase. C. It is insensitive to inhibitors like oxidatic acid and calyculin A. heparin and PP1 inhibitors 1 and 2. It does not attack phosphorylase c. It is inhibited by polycations and F ions. A preferred substrate for the PP2C-like protein is the SET protein, suggesting capacities possible relevant to therapeutically treatment of leukema. Furthermore, the PP2C-like protein prefers basic substrates such as histones, and MBP phosphorylated by cAMP-dependent protein kinase, suggesting a special function for this phosphatase in the brain. The amino acid sequences of especially preferred PP2C-like proteins (MP-19) are shown in SEQ IO NO. 2 and SEQ ID NO. 4

de Section

It is a further aspect of the invention to provide a process for the production of PP2C-like proteins. Such a process comprises cultivating a host cell being transformed with a nucleic acid sequence of the present invention in a suitable culture medium and puritying the PP2C-like protein produced. Thus, this process allows the production of the sufficient amount of the desired protein for use in medical treatments. The host cell is obtainable from bacteria such as *Bacillus spec. or Escherichia coli*, from fungi such as yeast, from plants such as tobacco, potato, or *Arabidopsis*, and from animals, in particular vertebrate cell lines such as the Mo-COS or CHO cell lines.

It is another object of the present invention to provide pharmaceutical compositions containing a therapeutically effective amount of a PP2C-like protein of the present invention and, optionally a pharmaceutically acceptable carrier and/or diluent, and/or agoinsts and/or antagonists thereof. Such a therapeutic composition can be used for the treatment of cancer such as teukema, brain cancer, breast cancer and prostate cancer. The pharmaceutical composition according to the present invention can also be therapeutically applied for degenerative disorders of the CNS, a Alzheimer's disease, Huntingdon's disease, Parkinson's disease, and epilepsy, and disorders of the reproductive system et griefitly disorders or testicular cancer. Another possible clinical application of a PP2C-like protein is the use for treatment of liver diseases, diabetes, and cystic fibrosis. The pharmaceutical composition comprising the protein of the present invention as also be used for treatment of microbial or viral infections. Another application of the pharmaceutical composition of the present invention is the usage of the protein in the regulation of spermatogenesis or the maturation of mammalian germ cells e.g. to coernizaception.

Furthermore, the application of the composition is not limited to humans but can include animals, in particular domestic animals, as well.

Finally, another object of the present invention is an antibody or antibody fragment, which is capable of specifically bridging to the proteins of the present invention. Methods to raise such specific antibody are known in the art. Such an antibody is preferably a monoclonal antibody. Such antibodies or antibody fragments might be useful for diagnostic methods.

The following examples illustrate in more detail the present invention, but should not be construed as limiting the

Example 1

30

STATE OF THE PARTY OF THE PARTY

Isolation of MP-19

For the reverse transcription reaction. 5 µg total RNA (0.5 µg/µl) derived from human placenta tissue was heated for 5 minutes and cooled rapidly on ice for 5 minutes. The reverse transcription reagent mixture containing 5 µg total RNA, 38 u of RNA-guard (Pharmacia), 2.5 µg oligomer of (7)12-18 (Boehringer Mannheim). 5x reaction buffer (250 mM Trist/HCl pH 8.5; 50 mM MgCl₂; 50 mM DTT; 600 mM KCl), 10 mM of each dNTP (Pharmacia), 37.5 u of avian myobalistics in vitus reverse transcriptises (AMV, Boehringer Mannheim). The reaction mixture (20 µl) was incubated for 90 minutes at 42°C. The resulting placenta cDNA pool was stored at 42°C.

For the primary polymerase chain reaction (PCR), a placenta derived cDNA pool was used as template in a 50 µl reaction mixture. The PCR reaction was carried out in a Robo-Cycler Graddent 96 (Stratagene). The amplification was performed in 1x PCR-Duffer (10 mM TristPCJ HB 3: 50 mM KCl; 0 001 % gelatine), 1 mM of each dMTP (Pharmacia), 40 100 pmol of each oligonucleotide (ALK6-N2, 5' - TT(CT)(AS)C(ASCT)AT(ASCT)ATAGAAGAAGTGA - 3' and ALK6-R2, 5' - CC(AGCT)CGCCACCCA - 3') and 1.5 u pa polymerase (Perinti Eimer). The PCR reaction contained cDNA corresponding to 30 ng of total RNA as starting material. The reaction mixture was overlaid by 40 µl paraffin incubated for 180e/94°C and subjected to 30 cycles (50s/94°C, 90s/48 °C, 60s/72 °C) with an additional extension for 480s/72 °C in the Thermocycler.

A second round of amplification was performed as described above with exception that 5 µ from the first PCR reaction was used as template DNA for the PCR. A 10 µl sample from the second PCR amplification was fractionated by electrophoresis using a 2 % agarose gel in TBE buffer. After electrophoresis amplified DNA corresponding to a molecular weight of about 800-800 by was excised from the gel and isolated by 3x freezethaw cycles (-20 °C/ + 37 °C) and using the DNA purification fix "Easy Pure" (Bozyme, Cat no. 38001) following the instructions of the manufacturer.

The eluted DNA was amplified a third time as described in the primary PCR with exception that 3 µl of the eluted DNA, resulted from the second round of amplification, was used as template for PCR and the annealing temperature was 55 °C instead of 48 °C. After electrophoresis using a 2% agarose gel in TBE buffer, a distinct DNA band that corresponds to a molecular weight of about 700 pp was eluted with the extraction method described before After than an additionally purification using the OlAquick 8 PCR Purification Kit (Qiagen, Cat no. 28144) following the instructions of the manufacturer, was carried out.

Cloning of the purified DNA was established using the Original TA Cloning Kil (Invitrogen, Cat. no. K2000-40). Plasmid DNA from positive clones was isolated with the OlAwell 8 Plus Plasmid Kit (Claigen, Cat. no. 16142) and sequenced with an automatic DNA sequencer (ALFevpress, Pharmaca). The resulting DNA sequence was analyzed by a homol-

ogy search with the blast program.

Example 2

Isolation of MP-19 full-length cDNA

Isolation of a full-length cDNA clone of MP-19 was performed with a commercial available Human Placentia LandbackDNA Library (Stratagene, cat. no 937225) For screening, a labeled PCR probe was generated from MP-19 DNA (SSC ID NO. 1) The amplification was performed in 1x PCR-buffer (Diagen, Germany), 1 mM of dATP, 1 mM of dCTP, 100 pm of dCTP,

Prehybridization of plaque lift filters from cDNA library were done at 58 °C for 4 h in 0.25 M Na₂HPO₄, 7 % SDS, 1 % BSA, 1 mM EDTA, pH 7.2. Hybridization was carried out with 50 ng labeled MP19 PCR probe for 15 h under same buffer conditions as prehybridization was done. Filter washed 3 times (5 min, 10 min and 15 min) with 30 mM Na₂HPO₄, 0,1 % SDS at 60 °C. Detection of signals were performed with DIG Luminescent detection kit from Boehringer, Mannheim (Cat. no. 1363514). Proceed from a positive signal, clone 39-1 was isolated and sequenced. The resulting DNAsequence from clone 39-1 conform to Bp. 387-1641 in SEQ ID NO. 3. To generate the 5'cDNA end of MP-19 full-length cDNA, 1 µg of a Lambda-DNA preparation from Human Placenta Lambda cDNA Library was subjected to PCR. The amplification was performed in 1x PCR-buffer (Qiagen), 1 mM of each dNTP (Pharmacia), 100 pmol of each oligonucleotide MP19-E5 (5'-GGATCCATGGGTGCCTACCTCTCCCAGCCC-3') which was derived from an EST sequence (accession no. AA115688) and MP19-3 (5'-GCCTGTGTAGGCCTTGGCTGTGGGGCC-3') and 1 u Taq DNA-polymer-25 ase (Qiagen). The reaction was overlaid by 40 µl paraffin incubated for 180s/94 °C and subjected to 30 cycles (60s/94 °C, 60s/74 °C, 60s/72 °C) with an additional extension for 300s/72 °C. The resulting PCR fragment was subcloned in vector pCR 2.1 (Clontech, Germany). Corresponding DNA was digested with restriction endonucleases Barn HI and Stu I. After that MP-19 Barn HI/Stu I fragment was inserted into clone 39-1. The resulted clone was named 28-9 which DNA-sequence present the full-lenght cDNA-sequence of MP-19 as shown in SEQ ID NO. 3. The corresponding amino 30 acid sequence of MP-19 is shown in SEQ ID NO. 4.

Gene expression of MP-19 in human tissues

Relative expression of the MP-19 gene was determined by Northern blot analyses. A commercial available Human RNA Master Blot (Clontech, Germany, Cat. no. 7770-1, Lot no. 7090716) was hybridized with the digoxigenn labeled MP-19 PCR probe as described in: Isolation of MP-19 full-length CDNA. So different human tissues samples were investigated for MP-19 gene expression. Additionally 8 different negative controls from *E. coli*, yeast and human genomic DNA were apolied.

Main expression of MP-19 was detected in human testis which is shown in figure 2. Lower expression of MP-19 was detected in human pituitary gland, thyrnus, small intestine and fetal liver. Basel expression of MP-19 was found in all other human RNA samples. No hybridization signals were detected in negative controls.

Expression of MP-19 cDNA in E. coli

The cDNA of clone 28-9 was subcloned into the expression plasmid pQE-16 (Giagen, Germany). This cloning strategy constituted an additional tag of 6 histodine residues at the C-terminus of MP-19 pCE-16 was digested with Bam HI and BgI. II. The 5 part of MP-19 was excised from clone 28-9 with Bam HI and Bac. I. To constitute a compatible 3'end of MP-19 for cloning into plasmid pQE-16, a PCR was performed with primer MP19N-Sac. I (5'-ACAGCAGAGCTC-CAGCCAGAG-3) and MP19R-BgI II (5'-ACATCTGTCTGCTTGTGCTTCTGCTTCTG-3) and template DNA of clone 28-9.5 and 3'end of MP-19 DNA was ligated into pQE-16 to establish MP-19 with His-tag, which was expressed in E. coh stain M15 (Giagen). For recombinant expression of MP-19, cells were grown in a 5 I termenter (Bio Console ADI 1035, Applikon, Netherlands) at 37°C in LE-Medium until an OD₆₀₀ of 2.5 was reached. After induction with 1 mM IP-0-thingation at 10.000 x g for 30 min, washed once in 500 m 1 x PBS buffer (30 min at 10.000 x) g and were frozen in aliquots at 80°C, for preparation of MP-19 protein, 10 g cells were lysed in 100 m lysis buffer (50 mM NaH₂PO₄, pH 8.0, 300 mM NaCl, 10 mM imidazole, 100 mg lyscoyme (Serva, Germany) and 50 u Benzonase (Merck, Germany) for 3 min at 5 kWsec¹ in an ice-water bath. Cell debrie was removed by centrifugation for 3 min at 4 5 kWsec¹.

Purification of recombinant MP-19

Recombinant expressed MP-19 was purified using immobilized Metal Ion Affinity Chromatography (IMAC) and Reverse Phase Liquid Chromatographs (PRLC). The chromatographs purification was realized using the AKTA-Explorer system (Pharmacia Biotech, Germany). For IMAC, a 1 ml Hi-Trap cheating column (Pharmacia Biotech) is used. Hi-Trap column was activated with 5 column volumes (cv) of 100 mM NiSO₄, afterwards the column washed with 5 cv water to remove unbound Ni². Column equilibration was performed with 5 cv of yeigs buffer (50 mM NaH₂-PQ₄, 300 mM NaCl, 10 mM imdazole, pH 8.0). Cell lysat results from 1 g. E. coli cells was loaded onto column. Afterwards the column washed with hijss buffer to remove unbound protein Protein were eluted using the following gradient program. To start the start of th

Immunolonical Detection of MP-19

March Collection

25

40

45

50

55

Immunological detection of recombinant MP-19 was performed by western blotting using a commercial available monoclonal mouse antibody against histidine-lag (Dianova, Germany, Cat. no. dia900) in combination with Western Light chemoluminescent detection system using the goat artit-mouse-AP antibody (Tropix, U.S.A.).

Activity assay for recombinant MP-19

A Serine/Threorine Phosphatase Assay System (Fromega, Germany, Cat. no. V2460) was used to determine enzymatic activity of recombinant MP-19. This assay use a chemically synthesized phosphotepede RRA(pT)VA which is a functional substrate for MP-19 phosphatase. The amount of free phosphate which is generated by MP-19 enzymatic reaction was measured by the absorbency of a molyddate-malachit green-phosphate complex (Ehran P and Jager C. 1993), Anal. Biochemit 24, 138-141, Deana A. D. et al. (1990), Biochimica et Biophysica Act at 1051, 199-202). Assays were performed as described by the manufacturer in PPTase-2C buffer (50 mM imidazole, pH 7.2, 0.2 mM EGTA, 5 mM MQCl₂, 0.0 × 9.5 -mercaptotehand, 0.1 mgml BSA). To determine background of this assay, clone pGE-16 drift (Clagen, Germany) was used, which is identical to pQE-MP-19 with exception that vector pQE-16 inserted a mouse drift gene instead of MP-19 phosphatase gene.

Results of activity assay of MP-19 shown in table 1. MP-19 has a significant activity in a MgCl₂ containing buffer, but no activity in a CaCl₂ containing buffer, which shows the requirement to Mg²⁺ inhibitors like okadaic acid (10 μM) shows no significant reduction of MP-19 activity. Control expression of the mouse dhfr gene shows no activity in the Serine/Threonine Phosphatase Assay System.

	В	В	С	D (Average A-C)
1	0.006	0.006	-0.006	0.000
2	0.024	0.029	0.023	0.025
3	0.304	0.291	0.298	0.298
4	0.612	0.594	0.597	0.601
5	1.080	1.140	1.137	1.119
6	0.021	0.006	0.018	0.015
7	0.025	0.043	0.018	0.029
8	0.038	0.020	0.018	0.025
9	0.030	0.012	0.013	0.018
10	0.151	0.108	0.174	0.144
11	0.146	0.147	0.139	0.144

Table 1: Activity test of MP-19

	AI-UI:	riospirate standard O prilor
35	A2-D2:	Phosphate standard 100 pmol
	A3-D3:	Phosphate standard 500 pmol
	A4-D4:	Phosphate standard 1000 pmol
	A5-D5:	Phosphate standard 2000 pmol
	A6-D6:	mouse dhfr gene with substrate (negative control)
40	A7-D7:	mouse dhfr gene without substrate (negative control)
	A8-D8:	MP-19 with modified PPTase-2C buffer (5mM MgCl ₂ is replaced by 5 mM CaCl ₂) and substrate
	A9-D9:	MP-19 with PPTase-2C buffer without substrate
	A10-D10:	MP-19 with PPTase-2C buffer and substrate
	A44 D44	MP to with PPTage-2C buffer substrate and 10 uM okadaic acid

50

55

15

Annex to the description

Sequence listing

SEO		

TACGGGCAGA	ACTGTCACAA	GGGCCCTCCC	CACAGCAAAT	CTGGAGGTGG	50
GACAGGCGAG	GAACCAGGGT	CCCAGGGCCT	CAATGGGGAG	GCAGGACCTG	100
AGGACTCAAC	TAGGGAAACT	CCTTCACAAG	AAAATGGCCC	CACAGCCAAG	150
GCCTACACAG	GCTTTTCCTC	CAACTCGGAA	CGTGGGACTG	AAGCAGGCCA	200
AGTTGGTGAG	CCTGGCATTC	CCACTGGTGA	GGCTGGGCCT	TECTGETETT	250
CAGCCTCTGA	CAAGCTGCCT	CGAGTTGCTA	AGTCCAAGTT	CTTTGAGGAC	300
AGTGAGGATG	AGTCAGATGA	GGCGGAGGAA	GAAGAGGAAG	ACAGTGAGGA	350
ATGCAGCGAG	GAAGAGGATG	GCTACAGCAG	TGAGGAGGCA	GAGAATGAGG	400
AAGATGAGGA	TGACACCGAG	GAGGCTGAAG	AGGACGATGA	AGAAGAAGAA	450
GAAGAGATGA	TGGTGCCAGG	GATGGAAGGC	AAAGAGGAGC	CTGGCTCTGA	500
CAGTGGTACA	ACAGCGGTGG	TGGCCCTGAT	ACGAGGGAAG	CAGTTGATTG	550
TAGCCAACGC	AGGAGACTCT	CGCTGTGTGG	TATCTGAGGC	TGGCAAAGCT	600
TTAGACATGT	CCTATGATCA	CAAACCAGAG	GATGAAGTAG	AACTAGCACG	650
CATCAAGAAT	GCTGGTGGCA	AGGTCACC			678

30 SEQ ID NO. 2

15

20

35

40

YGQNCHKGPP	HSKSGGGTGE	EPGSQGLNGE	AGPEDSTRET	PSQENGPTAK	50
AYTGFSSNSE	RGTEAGQVGE	PGIPTGEAGP	SCSSASDKLP	RVAKSKFFED	100
SEDESDEAEE	EEEDSEECSE	EEDGYSSEEA	ENEEDEDDTE	EAEEDDEEEE	150
EEMMVPGMEG	KEEPGSDSGT	TAVVALIRGK	QLIVANAGDS	RCVVSEAGKA	200
LDMSYDHKPE	DEVELARIKN	AGGKVT			226

SEQ ID NO. 3

ATGGGTGCCTACCTCTCCCAGCCCAACACGGTGAAGTGCTCCGGGGACGGGTCGGCGCC SCGCCTSCCSCTSCCCTACGGCTTCTCCGCCATGCAAGGCTGGCGCGCTCTCCATGGAGGATG CTCACAACTSTATTCCTGAGCTGGACAGTGAGACAGCCATGTTTTCTGTCTACGATGGACAT GGAGGGGAGGAAGTTGCCTTGTACTGTGCCAAATATCTTCCTGATATCATCAAAGATCAGAA GGCCTACAAGGAAGGCAASCTACAGAAGGCTTTAGAAGATGCCTTCTTGGCTATTGACGCCA AATTGACCACTGAAGAAGTCATTAAAGAGCTGGCACAGATTGCAGGGCGACCCACTGAGGAT GAAGATGAAAAAGAAAAGTAGCTGATGAAGATGATGTGGACAATGAGGAGGCTGCACTGCT GCATGAAGAGGCTACCATGACTATTGAAGAGCTGCTGACACGCTACGGGCAGAACTGTCACA AGGGCCCTCCCCACAGCAAATCTGGAGGTGGGACAGGCGAGGAACCAGGGTCCCAGGGCCTC AATGGGGAGGCAGGACCTGAGGACTCAACTAGGGAAACTCCTTCACAAGAAAATGGCCCCAC AGCCAAGGCCTACACAGGCTTTTCCTCCAACTCGGAACGTGGGACTGAGGCAAGGCCAAGTTG GTGAGCCTGGCATTCCCACTGGTGAGGCTGGGCCTTCCTGCTCTTCAGCCTCTGACAAGCTG COTTOGAGTTGCTAAGTCCAAGTTCTTTGAGGACAGTGAGGATGAGTCAGATGAGGCGGAGGA AGAAGAGGAAGACAGTGAGGAATGCAGCGAGGAAGAGGATGGCTACAGCAGTGAGGAGGCAG AGAATGAGGAAGATGAGGATGACACCGAGGAGGCTGAAGAGGACGATGAAGAAGAAGAAGAA GAGATGATGGTGCCAGGGATGGAAGGCAAAGAGGGGCCTGGCTCTGACAGTGGTACAACAGC GGTGGTGGCCCTGATACGAGGGAAGCAGTTGATTGTAGCCAACGCAGGAGACTCTCGCTGTG TGGTATCTGAGGCTGGCAAAGCTTTAGACATGTCCTATGATCACAAACCAGAGGATGAAGTA CCTCAACCTCTCCAGAGCCATTGGGGACCACTTCTATAAGAGAAACAAGAACCTGCCACCTG AGGAACAGATGATTTCAGCCCTTCCTGACATCAAGGTGCTGACTCTCACTGACGACCATGAA TTCATGGTCATTGCCTGTGATGGCATCTGGAATGTGATGAGCAGCCAGGAAGTTGTAGATTT CATTCAATCAAAGATCAGCCAGCGTGATGAAAATGGGGAGCTTCGGTTATTGTCATCCATTG TGGAAGAGCTGCTGGATCAGTGCCTGGCACCAGACACTTCTGGGGATGGTACAGGGTGTGAC TGGCAAGCGAAAACTAGAGGAGGTGCTCTCTACTGAGGGGGCTGAAGAAAATGGCAACAGCG ACAAGAAGAAGAAGGCCAAGCGAGACTAG

SEQ ID NO. 4

MGATISCPHT VESSIGNUM PRIPERFORS AMOGRAPISHE DARKETPELD SETAMFSYND GROGEFERING CANTIDETHE NOORAMEERI. OKALEDATHA INDAKLITERY LEGALIAGE PEDEBEREK VADEDOVONE EAALIREEM MISELLERY GOMENGEPH SKOGGUIEK POSOGLUMBA GEDSTRETH SCHOMPTAKA YNTESSMERT GERGOVERE GETORAGRES CSSASOKIER VAKSKFEDS DESDEAREE EEDSESEESEE BOTSSEER MEDDEDITER ABEDDEDTEE EAVEDDEDEE ERVORDENSE EEROSEDSEESEE BOTSSEER MEDDEDITER DAT DE STANDEN OF THE STANDEN OF THE

15

20

25

30

35

45

50

55

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: (A) NAME: Biopharm GmbH (B) STREET: Czernyring 22 (C) CITY: Heidelberg (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): 69115
	(ii) TITLE OF INVENTION: Nucleic acid encoding a novel human protein phosphatase
15	(iii) NUMBER OF SEQUENCES: 4
20	(IV) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTMARE: Patentin Release #1.0, Version #1.30 (EPO)
	(v) CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 98107346.3
	(2) INFORMATION FOR SEO ID NO: 1:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 678 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
30	(ii) MOLECULE TYPE: cDNA
	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
35	(vi) ORIGINAL SOURCE: (F) TISSUE TYPE: human placentà
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
	TACGGGCAGA ACTGTCACAA GGGCCCTCCC CACAGCAAAT CTGGAGGTGG GACAGGCGAG 60
	GAACCAGGGT CCCAGGGCCT CAATGGGGAG GCAGGACCTG AGGACTCAAC TAGGGAAACT 120
45	

	CCTTCACAAG AAAATGGCCC CACAGCCAAG GCCTACACAG GCTTTTCCTC CAACTCGGAA
5	CGTGGGACTG AAGCAGGCCA AGTTGGTGAG CCTGGCATTC CCACTGGTGA GGCTGGGCCT
,	TCCTGCTCTT CAGCCTCTGA CAAGCTGCCT CGAGTTGCTA AGTCCAAGTT CTTTGAGGAC
	AGTGAGGATG AGTCAGATGA GGCGGAGGAA GAAGAGGAAG ACAGTGAGGA ATGCAGCGAG
10	GAAGAGGATG GCTACAGCAG TGAGGAGGCA GAGAATGAGG AAGATGAGGA TGACACCGAG
	GAGGCTGAAG AGGACGATGA AGAAGAAGAA GAAGAGATGA TGGTGCCAGG GATGGAAGGC
	AAAGAGGAGC CTGGCTCTGA CAGTGGTACA ACAGCGGTGG TGGCCCTGAT ACGAGGGAAG
15	CAGTTGATTG TAGCCAACGC AGGAGACTCT CGCTGTGTGG TATCTGAGGC TGGCAAAGCT
15	TTAGACATGT CCTATGATCA CAAACCAGAG GATGAAGTAG AACTAGCACG CATCAAGAAT
	GCTGGTGGCA AGGTCACC
20	(2) INFORMATION FOR SEQ ID NO: 2:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 226 amino acids (B) TYPE: amino acid (C) STRANDENNESS: single (D) TOPOLOGY: linear
-	(ii) MOLECULE TYPE: peptide
	(iii) HYPOTHETICAL: NO
30	(iv) ANTI-SENSE: NO
	(vi) ORIGINAL SOURCE: (F) TISSUE TYPE: human placenta
35	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
	Tyr Gly Gln Asn Cys His Lys Gly Pro Pro His Ser Lys Ser Gly Gly 1 10 15
40	$G_{\pm}y$ Thr Gly Glu Glu Pro Gly Ser Gln Gly Leu Asn Gly Glu Ala Gly 20 25 30
	Pro Glu Asp Ser Thr Arg Glu Thr Pro Ser Gln Glu Asn Gly Pro Thr 35 40 45
45	Ala Lys Ala Tyr Thr Gly Phe Ser Ser Asn Ser Glu Arg Gly Thr Glu

		50					55					60				
5	Ala 65	Gly	Gln	Val	Gly	Glu 70	Pro	Gly	Ile	Pro	Thr 75	Gly	Glu	Ala	Gly	Pro 80
	Ser	Cys	Ser	Ser	Ala 85	ser	Asp	Lys	Leu	Pro 90	Arg	Val	Ala	Lys	Ser 95	Lys
10	Phe	Phe	Glu	Asp 100	Ser	Glu	Asp	Glu	Ser 105	Asp	Glu	Ala	Glu	Glu 110	Glu	Glu
	Glu	Asp	Ser 115	Glu	Glu	Cys	Ser	Glu 120	Glu	Glu	Asp	Gly	Tyr 125	Ser	Ser	Glu
15	Glu	Ala 130	Glu	Asn	Glu	Glu	Asp 135	Glu	Asp	Asp	Thr	Glu 140	Glu	Ala	Glu	Glu
	Asp 145	Asp	Glu	Glu	Glu	Glu 150	Glu	Glu	Met	Met	Val 155	Pro	Gly	Met	Glu	Gly 160
20	Lys	Glu	Glu	Pro	Gly 165	Ser	Asp	Ser	Gly	Thr 170	Thr	Ala	Val	Val	Ala 175	Leu
	Ile	Arg	Gly	Lys 180	Gln	Leu	Ile	Val	Ala 185	Asn	Ala	Gly	Asp	Ser 190	Arg	Cys
25	Val	Val	Ser 195	Glu	Ala	Gly	Lys	Ala 200	Leu	Asp	Met	Ser	Tyr 205	Asp	His	Lys
30	Pro	Glu 210	Asp	Glu	Val	Glu	Leu 215	Ala	Arg	Ile	Lys	Asn 220	Ala	Gly	Gly	Lys
30	Val 225	Thr														
	(2) INFOR	ITAM	ON F	OR S	EQ I	D NC	: 3:									
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1641 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS; double															
40					Y: 1		r									
	(ii)					DNA										
	(iii)	HYPO'	THET	ICAL	: N O											
45	(iv)	ANTI	-SEN	SE:	NO											
	(vi)				RCE:	; hu	man p	place	enta							

(V) 1	SECUENCE	DESCRIPTION -	SEO	TO NO.	2 .

	ATGGGTGCC	r accrerecea	GCCCAACAC	G GTGAAGTGC	CCGGGGACGG	GGTCGGCGCC	6
5	CCGCGCCTG	C CGCTGCCCTA	CGGCTTCTCC	GCCATGCAAC	GCTGGCGCGT	CTCCATGGAG	12
	GATGCTCAC	A ACTGTATTCC	TGAGCTGGAG	AGTGAGACAG	CCATGTTTTC	TGTCTACGAT	180
	GGACATGGAG	g gggaggaagt	TGCCTTGTAC	TGTGCCAAAT	ATCTTCCTGA	TATCATCAAA	240
10	GATCAGAAGG	G CCTACAAGGA	AGGCAAGCTA	CAGAAGGCTI	TAGAAGATGO	CITCTTGGCT	300
	ATTGACGCCA	AATTGACCAC	TGAAGAAGTO	ATTAAAGAGO	TGGCACAGAT	TGCAGGGCGA	360
	CCCACTGAGG	ATGAAGATGA	AAAAGAAAAA	GTAGCTGATG	AAGATGATGT	GGACAATGAG	420
15	GAGGCTGCAC	TGCTGCATGA	AGAGGCTACC	ATGACTATTG	AAGAGCTGCT	GACACGCTAC	480
	GGGCAGAACT	GTCACAAGGG	CCCTCCCCAC	AGCAAATCTG	GAGGTGGGAC	AGGCGAGGAA	540
20	CCAGGGTCCC	AGGGCCTCAA	TGGGGAGGCA	GGACCTGAGG	ACTCAACTAG	GGAAACTCCT	600
20	TCACAAGAAA	ATGGCCCCAC	AGCCAAGGCC	TACACAGGCT	TTTCCTCCAA	CTCGGAACGT	660
	GGGACTGAGG	CAGGCCAAGT	TGGTGAGCCT	GGCATTCCCA	CTGGTGAGGC	TGGGCCTTCC	720
25	TGCTCTTCAG	CCTCTGACAA	GCTGCCTCGA	GTTGCTAAGT	CCAAGTTCTT	TGAGGACAGT	780
	GAGGATGAGT	CAGATGAGGC	GGAGGAAGAA	GAGGAAGACA	GTGAGGAATG	CAGCGAGGAA	840
	GAGGATGGCT	ACAGCAGTGA	GGAGGCAGAG	AATGAGGAAG	ATGAGGATGA	CACCGAGGAG	900
30	GCTGAAGAGG	ACGATGAAGA	agaagaagaa	GAGATGATGG	TGCCAGGGAT	GGAAGGCAAA	960
	GAGGAGCCTG	GCTCTGACAG	TGGTACAACA	GCGGTGGTGG	CCCTGATACG	AGGGAAGCAG	1020
	TTGATTGTAG	CCAACGCAGG	AGACTCTCGC	TGTGTGGTAT	CTGAGGCTGG	CAAAGCTTTA	1080
35	GACATGTCCT	ATGATCACAA	ACCAGAGGAT	GAAGTAGAAC	TAGCACGCAT	CAAGAATGCT	1140
	GGTGGCAAGG	TCACCATGGA	TGGGCGAGTC	AACGGGGGCC	TCAACCTCTC	CAGAGCCATT	1200
	GGGGACCACT	TCTATAAGAG	aaacaagaac	CTGCCACCTG	AGGAACAGAT	GATTTCAGCC	1260
40	CTTCCTGACA	TCAAGGTGCT	GACTCTCACT	GACGACCATG	AATTCATGGT	CATTGCCTGT	1320
	GATGGCATCT	GGAATGTGAT	GAGCAGCCAG	GAAGTTGTAG	ATTTCATTCA	ATCAAAGATC	1380

AGCCAGC	GTG .	ATGA.	AAAT	GG G	GAGC	rrcg	3 TT	TTG	CAT	CCA	TTGT	GA A	AGAG	TTGCT	G	1440
GATCAGT	GCC '	TGGC	ACCA	GA C	ACTT	CTGG	G GAT	GGT	ACAG	GGT	STGA	CAA (ATG	CCTC	C	1500
ATCATCA	TTT	GCTT	CAAG	cc c	CGAA	ACAC	A GC/	GAG	CTCC	AGC	AGAC	AG 7	rggcz	AAGCC	A.	1560
AAACTAG	AGG A	AGGT	GCTC"	C T	ACTG	AGGGG	G GCT	GAAG	GAAA	ATGO	CAAC	CAG (GAC	AGA#	ıG	1620
AAGAAGG	CCA A	AGCG	AGAC1	A G												1641
(2) INF	ORMAT	LION	FOR	SEQ	ID 1	10: 4	i :									
(i	(E	A) LE B) TY C) ST	CE CH ENGTH PE: PRANE OPOLO	amir EDNE	6 an no ac	nino id sing	acid	ls								
(ii.	MOI	ECUL	E TY	PE:	pept	ide										
(111	HYF	OTHE	TICA	L: N	10											
(iv)	ANT	'I-SE	NSE:	NO												
	ORI (F) TI	SSUE	TYP	E: h											
Met 1	Gly	Ala	Tyr	Leu 5	ser	Gln	Pro	Asn	Thr	Val	Lys	Cys	Ser	Gly 15	Asp	
Gly	Val	Gly	Ala 20	Pro	Arg	Leu	Pro	Leu 25	Pro	Tyr	Gly	Phe	Ser 30	Ala	Met	
Gln	Gly	Trp 35	Arg	Val	Ser	Met	Glu 40	Asp	Ala	His	Asn	Cys 45	Ile	Pro	Glu	
Leu	Asp 50	Ser	Glu	Thr	Ala	Met 55	Phe	Ser	Val	Tyr	Asp 60	Gly	His	Gly	Gly	
G1u 65	Glu	Val	Ala	Leu	Tyr 70	Cys	Ala	Lys	Tyr	Leu 75	Pro	Asp	Ile	Ile	Lys 80	
Asp	Gln	Lys	Ala	Tyr 85	Lys	Glu	Gly	Lys	Leu 90	Gln	Lys	Ala	Leu	Glu 95	Asp	
Ala	Phe	Leu	Ala 100	Ile	Asp	Ala	Lys	Leu 105	Thr	Thr	Glu	Giu	Val 110	Ile	Lys	

なって

	Gl	ı Lei	u Ala 115		n Ile	e Ala	e Gly	/ Arg		Thi	Glu	Asp	Glt 125		Glu	Lys
5	Gli	1 Lys 130		L Ala	a Asp	Glu	1 Asp 135		val	Asp	Asn	Glu 140		ı Ala	a Ala	Leu
10	Let 145		s Glu	ı Glu	Ala	Thr 150		Thr	Ile	Glu	1 Glu 155		Leu	Thi	Arg	Tyr 160
10	Gly	/ Glr	n Asr	. Cys	His 165		Gly	Pro	Pro	His 170		Lys	Ser	Gly	/ Gly	Gly
15	Thr	Gly	/ Glu	Glu 180		Gly	Ser	Gln	Gly 185		Asn	Gly	Glu	190		Pro
	Glu	Asp	Ser 195		Arg	Glu	Thr	Pro 200	Ser	Gln	Glu	Asn	Gly 205		Thr	Ala
20	Lys	Ala 210		Thr	Gly	Phe	Ser 215		Asn	Ser	Glu	Arg 220		Thr	Glu	Ala
	Gly 225		Val	Gly	Glu	Pro 230	Gly	Ile	Pro	Thr	Gly 235	Glu	Ala	Gly	Pro	Ser 240
25	Cys	Ser	Ser	Ala	Ser 245	Asp	Lys	Leu	Pro	Arg 250	Val	Ala	Lys	Ser	Lys 255	Phe
	Phe	Glu	Asp	Ser 260	Glu	Asp	Glu	Ser	Asp 265	Glu	Ala	Glu	Glu	Glu 270	Glu	Glu
30	Asp	Ser	Glu 275	Glu	Cys	Ser	Glu	Glu 280	Glu	Asp	Gly	Tyr	Ser 285	Ser	Glu	Glu
35	Ala	Glu 290	Asn	Glu	Glu	Asp	Glu 295	Asp	Asp	Thr	Glu	Glu 300	Ala	Glu	Glu	Asp
	Asp 305	Glu	Glu	Glu	Glu	Glu 310	Glu	Met	Met	Val	Pro 315	Gly	Met	Glu	Gly	Lys 320
40	Glu	Glu	Pro	Gly	Ser 325	Asp	Ser	Gly	Thr	Thr 330	Ala	Val	Val	Ala	Leu 335	Ile
	Arg	Gly	Lys	Gln 340	Leu	Ile	Val	Ala	Asn 345	Ala	Gly	Asp	Ser	Arg 350	Cys	Val
45	Val	Ser	Glu 355	Ala	Gly	Lys	Ala	Leu 360	Asp	Met	Ser	Tyr	Asp 365	His	Lys	Pro
		Asp 370	Glu	Val	Glu		Ala 375					Ala 380	Gly	Gly	Lys	Val

	Thr 385		Asp	Gly	Arg	Val 390	Asn	Gly	Gly	Leu	Asn 395	Leu	Ser	Arg	Ala	11e 400
5	Gly	Asp	His	Phe	Tyr 405	Lys	Arg	Asn	Lys	Asn 410	Leu	Pro	Pro	Glu	Glu 415	Gln
10	Met	Ile	Ser	Ala 420	Leu	Pro	Asp	Ile	Lys 425	Val	Leu	Thr	Leu	Thr 430	Asp	Asp
	His	Glu	Phe 435	Met	Val	Ile	Ala	Cys 440	Asp	Gly	Ile	Trp	Asn 445	Val	Met	Ser
15	Ser	Gln 450	Glu	Val	Val	Asp	Phe 455	Ile	Gln	Ser	Lys	Ile 460	Ser	Gln	Arg	Asp
	Glu 465	Asn	Gly	Glu	Leu	Arg 470	Leu	Leu	Ser	Ser	Ile 475	Val	Glu	Glu	Leu	Leu 480
20	Asp	Gln	Cys	Leu	Ala 485	Pro	Asp	Thr	Ser	Gly 490	Asp	Gly	Thr	Gly	Cys 495	Asp
	Asn	Met	Thr	Cys 500	Ile	Ile	Ile	Cys	Phe 505	Lys	Pro	Arg	Asn	Thr 510	Ala	Glu
25	Leu	Gln	Pro 515	Glu	Ser	Gly	Lys	Arg 520	Lys	Leu	Glu	Glu	Val 525	Leu	Ser	Thr
30		Gly 530	Ala	Glu	Glu		Gly 535	Asn	Ser	Asp	Lys	Lys 540	Lys	Lys	Ala	Lys
	Arg 545	Asp														

Claims

- 40 1. A nucleic act comprising a nucleotide sequence encoding a human serine/threonine phosphatase or a functional fragment thereof that is capable of dephosphorylating serine or threonine residues, wherein the nucleotide sequence comprises:
 - (a) the nucleotides as shown in SEQ ID NO. 1 or SEQ ID NO. 3; or
 - (b) a DNA sequence which is degenerate as a result of the genetic code to the DNA sequence of (a); or
 - (c) an allelic derivative of the sequences of (a) or (b); or
- (d) a DNA sequence which is capable of hybridizing to the sequences in (a), (b) and (c), and encoding a protein containing the amino acid sequence as depicted in SEQ ID NO. 2 or SEQ ID NO. 4; or
 - (e) a nucleotide sequence which is capable of hybridizing to the DNA sequences in (a), (b), (c) and (d), and encoding a protein having essentially the same biological properties as the protein defined in (d).
 - The nucleic acid according to claim 1, wherein the nucleotide sequence is a vertebrate DNA sequence, a mammalian sequence, preferably a primate, human, porcine, or rodent, preferably a rat or rabbit, DNA sequence.

- 3. A recombinant molecule comprising a nucleic acid according to claim 1 or 2
- The recombinant molecule according to claim 3, wherein said nucleic acid sequence is functionally linked to an expression-control sequence.
- 5. A host containing the nucleic acid according to claim 1 or 2, or the recombinant molecule according to claim 3 or 4
- 6. The host according to claim 5, which is a bacterium, a fungus, a plant cell, an animal or a human cell.
- A process for the production of a PP2C-like protein comprising cultivating a host according to claim 5 or 6 and recovering said PP2C-like protein from the culture.
 - A PP2C-like protein or a biologically active fragment thereof encoded by a nucleic acid according to claim 1 or 2 or by a recombinant molecule according to claim 3 or 4.
 - 9. The protein according to claim 8, comprising the amino acid sequence of SEQ ID NO. 2 or SEQ ID NO. 4.
 - 10. An agonist as a substitute for the protein of claim 8 or 9.
- 20 11. An antagonist directed to the protein of claim 8 or 9.
 - 12. A pharmaceutical composition containing the protein or a biologically active fragment thereof according to claim 8 and 9 or the agonist according to claim 10 or the antagonist according to claim 11, and optionally, a pharmaceutically acceptable carrier and/or diluent.
 - 13. The pharmaceutical composition according to claim 12 for the treatment of leukemia, brain cancer, breast cancer, prostate cancer. Albeimer's disease, Huntingdon's disease, Parkinson's disease, and epitepsy, and of disorders of the reproductive system, or for the regulation of spermatogenesis or the maturation of mammalian parties.
- 30 14. An antibody or antibody fragment which is capable of specifically binding to the protein of claim 8 and 9 or to the agonist of claim 10 or to the antagonist of claim 11.
 - 15. The antibody according to claim 14, which is a monoclonal antibody.
- 35 16. Use of an antibody or antibody fragment according to claim 14 or 15 for detecting the protein or a biologically active fragment thereof as defined in claim 8 or 9
 - 17. A diagnostic kit containing the agonist according to claim 10 or the antagonist according to claim 11 or the antibody or antibody fragment according to claim 14 or 15.

46

SECTION.

Fig. 1

MP19-PCR	YGONCHKGPP	HSKSGGGTGE	EPGSQGLNGE	AGPEDSTRET	PSOENGPTAK		50
PP2C~Human	MGAFLDKPKM	EKHNAQGQG=	~ NGLR YG	LSSMOGWRVE	MEDAHTAVIG		45
PP2C-Rabbit	MGAFLDKPKM	EKHNAQGQG-	NGLRYG	LSSMOGWRVE	MEDAHTAVIS		45
PP2C-Rat	MGAFLDKPKM	EKHNAQGQG-	NGLRYG	LISSMOGWRVE	MEDARTAVIG		45
			••				
MP19-PCR	AYTGFSSNSE	RGTEAGGVGE	PGIPTGEAGP	SCSSASDKLP	RVAKSKFFED		100
PP2C-Human	LPSGLESWSF	FAVYDGHAG-	SQVAK	YCCEHLLD	HITNNODFKG		87
PP2C-Rabbit	LPSGLETWSF	FAVYDGHAG~	SQVAK	ACCEHTTD	HITNNODFKG		87
PP2C-Rat	LPSGLETWSF	FAVYDGHAG-	SQVAK	ACCEHTTD	HITHNODFKG		87
	•	•			•	•	•
MP19-PCR	SEDESDEAGE	EEEDSEECSE	EEDGYSSEEA	ENEEDEDDTE	EAEEDDEEEE		150
PP2C-Human	SAGAP-SVEN	VKNGI	-RTGF		LEID		109
PP2C-Rabbit	SAGAP-SVEN	VKNGI	-RTGF		LEID		109
PP2C-Rat	SAGAP-SVEN	VKNGI	-RTGF		LEID		109
	•	•		•			•
MP19-PCR	EEMMVPGMEG	KEEPGSDSGT	TAVVALIRGE	QLIVANAGDS	RCVVSEAGKA		200
PP2C-Human	EHMRVMSE	KKHGADRSGS	TAVGVLISPQ	HTYFINCODS	RGLLCRNRKV		157
PP2C-Rabbit	EHMRVMSE	KKHGADRSGS	TAVGVLISPO	HTYFINCGDS	RGLLCRNRKV		157
PP2C-Rat	EHMRVMSE	KKHGADRSGS	TAVGVLISPQ	HTYFINCGDS	RGLLCRNRKV		157
		•	••	*** **			•
MP19-PCR	LDMSYDHKPE	DEVELARIKN	AGGKVT				226
PP2C-Human	HFFTQDHKPS						183
PP2C-Rabbit	HFFTQDHKPS	NPLEKERION	AGGSVM				183
PP2C-Rat	HFFTODHKPS	NPLEKERION	AGGSVM				183

Figure 2

	1	2	3	4	5	6	7	8
Α				å				
В	•	•	٠	•		•	*	
С		•	•	•	>	•	•	•
D	•	. •	•	•	•	•	•	•
Ε	•	•	•	•	•	٠	•	•
F	•	•	•	•				
G	•	•	•	•	•	•	•	
Н								

Figure 3

28 -

(12)

(bibliography updates included) - See p.8-1

issued on 10.03.

(54)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 28.10.1998 Bulletin 1998/44
- (21) Application number: 98107346.3
- (22) Date of filing: 22.04.1998

(51) Int. Cl.6: C12N 15/55. C12N 9/16. A61K 38/46, C07K 16/40. G01N 33/577

- (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States: AL LT LV MK RO SI
- (30) Priority: 22.04.1997 EP 97106658
- (71) Applicant: BIOPHARM GESELLSCHAFT ZUR BIOTECHNOLOGISCHEN ENTWICKLUNG VON PHARMAKA mbH 69115 Heidelberg (DE)
- (72) Inventors: · Hanke, Michael, Dr. 67454 Hassloch (DE)

- · Paulista, Michael
- 69181 Leimen (DE)

(11)

- · Pohl. Jens. Dr. 76707 Hambrücken (DE)
- (74) Representative Müller-Bore & Partner Patentanwälte Grafinger Strasse 2 81671 München (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new mat

Nucleic acid encoding a human protein phosphatase

The present invention relates to nucleic acids encoding a novel human protein phosphatase of the family of protein serine/threonine phosphatases. In particular, it relates to novel DNA sequences encoding serine/threonine protein phosphatase, to expression plasmids containing said nucleic acids, to host organisms transformed by said expression plasmids, to the production of said protein by culturing said transformant, to antibodies specifically binding to said phosphatase and to agonists and/or antagonists for said protein, and to antisense MP-19 nucleic acid. Furthermore, the invention relates to serine or threonine residues and epitopes comprising said residues dephosphorylated by said protein and pharmaceutical compositions comprising said protein or agonists or antagonists thereof for the treatment of diseases influenced by changes in phosphorylation which controls e.g. cell proliferation and/or differentiation, to diagnostic kits and to in vitro diagnostic methods for the detection of phosphorylation dependent diseases such as e.g. cancer

Description

The present invention relates to nucleic acids encoding a novel human protein phosphatase of the protein serine/threorine phosphatase family. In particular, it relates to novel DNA sequences encoding a semesthreonine protein
sphatase, to expression plasmids containing said nucleic acids, to host organisms transformed by said expression
plasmids, to the production of said protein. Furthermore, the invention relates to serine or theonorphatase and to agonists and/or antagonists for said protein. Furthermore, the invention relates to serine or theonorresidues and epitopes comprising said residues dephosphorylated by said protein and pharmacetural compositions
comprising said protein or agonists or antagonists thereof for the treatment of diseases influenced by changes in phosphorylation which controls e.g. cell proliferation and/or differentiation, to diagnostic kits and to in vitro diagnostic methods for the detection of phosphorylation dependent diseases such as e.g. cancer.

Protein phosphorylation-dephosphorylation is a universal mechanism by which different cellular events are regulated. The sennenthreonine-specific phosphatases have been classified into four main types according to their in vitro specificity for selected substrates and sensitivity to activators and inhibitors (Ingebritsen, T.S. and Cohen, P. (1983) Eur 5. Biochem. 182, 255-261). Sequence analysis revealed that they can be classified into two major gene families. The first one includes type 1 (PPP2), and type 28 (PP2B) phosphatases, which share 37 to 59 sequence identity (Barton G.J. et al., (1994) Eur. J. Biochem. 220, 225-237) in their catalytic domains and are inhibited by okadatic acid (Bialojan, C., and Takai, A. (1989) Blochem. J. 256, 283-290). The second family, the Mg²⁺ dependent phosphatases, also designated type 2C (PP2C), share little sequence similarity with the first tamily and are insensitive to okadatic acid. cDNA sequences of PP2C a and β from mammalian sources showed > 90 % identity, PP2Cs have been implicated in the regulation of fatty acid and chotesterol biosynthesis (Moors, F. et al. (1991) Eur. J. Biochem. 199 691-697) and heat shock response (Maeda et al. (1993) Mol. Cell. Biol. 113, 5408-5417, Shiozaki, K. et al. (1994) Mol. Cell. Biol. 114, 374-2375).

The technical problem underlying the present invention is to provide a new human PP2C-like protein phosphatase which is distinct from the other PP2Cs.

The solution to the above technical problem is achieved by providing the embodiments characterized in the claims. Other features and advantages of the invention will be apparent from the description of the preferred embodiments and drawings.

The sequence listings and drawings will now be briefly described.

SEQ ID NO. 1 shows the nucleotide sequence of MP-19, a DNA sequence derived from human placenta.

SEQ ID NO. 2 shows the amino acid sequence of MP-19 as deduced from SEQ ID NO. 1.

SEQ ID NO. 3 shows the nucleotid sequence of MP-19 full-lenght cDNA derived from human placenta.

SEQ ID NO. 4 shows the amino acid sequence of MP-19 as deduced from SEQ ID NO. 3.

The figures show:

30

35

40

<u>Figure 1</u> shows the alignment of the amino acid sequence of MP-19 with some related proteins of the PP2C family. The asterisk (*) indicates the position of identical amino acids of the compared amino acid sequences.

MP19-PCR: amino acid sequence of MP-19 (SEQ ID NO. 2)

PP2C-Human: human protein phosphatase 2C alpha (Accession No. S87759)

PP2C-Rabbit: rabbit protein phosphatase 2C alpha (Accession No. S87757)

PP2C-Rat: rat protein phosphatase 2C (Accession No. J04503)

Figure 2 is a human RNA master blot. The RNA-dot blot analysis shows hybridization of MP-19 PCR probe with different human RNA samples.

A1 whole brain, A2 amygdala, A3 caudate nucleus, A4 cerebellum, A5 cerebral cortex, A6 frontal lobe, A7 hippocampus, A8 medulla oblongata, B1 occipital lobe, B2 putamen, B3 substantia nigra, B4 temporal lobe, B5 thalamus, B6 subhalamic nucleus, B7 spinal cord, B8 blank, C1 heart, C2 aorta, C3 skeletal muscle, C4 colon, C5 bladder, C6 uterus, C7 prostate, C8 stomach, D1 tests, D2 ovary, D3 pancreas, D4 pituitary gland, D5 adrenal gland, D6 thyroid gland, D7 salivary gland, D8 mammary gland, E1 kidney, E2 liver, B3 maall intestine, E4 spleen, E5 flyes, E6 peripheral leukocyte, E7 lymph node, E8 bone marrow, F1 appendix, F2 lung, F3 trachea, F4 placenta, F5-F8 blank, G1 fetal brain, G2 fetal heart, G3 fetal kidney, G4 fetal fiver, G5 fetal spleen, G6 fetal thymus, G7 fetal lung, G8 blank, H1 pds tyt A1, H6-H8 human D1 A1, E5 c. dir (RAN, H4 E. c. dir (RAN, H5 pdy t/A), H6-H8 human D1

<u>Eigure 3</u> shows the detection of MP-19 after IMAC. The Western analysis was performed after purification of MP-19 using Immobilized Metal Ion Affinity Chromatography (IMAC). Positive signals were obtained from fraction 16 to fraction 20.

The amino acid sequence alignment of MP-19 with sequences of different PP2Cs (shown in Figure 1) demonstrates the homology of MP-19 to the PP2C tamily but implicate also that MP-19 beforgs to a new protein phosphatase group. The homology of the derived MP-19 amino acid sequence (as 1 - as 226) to PP2C from human, rabit and rat displays a sequence homology of 21.2 %. Moreover a partial sequence of MP-19 (ammo acid sequence 155 - 226) which is in the shown alignment not disrupted by gaps indicates a sequence homology of 39.1 % to the compared PP2Cs.

The present invention relates particularly to a novel serine/threonine protein phosphatase and, preferably, provides DNA sequences contained in the corresponding gene.

Such sequences include nucleotide sequences as illustrated in SEQ ID NO. 1 and SEQ ID NO. 3, allelic derivatives of said sequences and DNA sequences depentated as a result of the genetic code for said sequences. It also includes 19 DNA sequences hybridizing under stringert conditions with the DNA sequence mentioned above. It further includes an antisense nucleic acid, reterated ynatisense MP-19 nucleic acid, directed to the above defined nucleic acid. The terms "nucleic acid sequence" and "nucleocide sequence" reters to DNA or RNA or heterooligomeric sequences, which may be double or single-strander.

Although said allelic, degenerate and hybridizing sequences may have structural divergences due to naturally occurring mutations, such as small deletions or substitutions, they will usually still exhibit essentially the same useful properties, allowing their use in basically the same medical or diagnostic applications.

According to the present invention, the term "hybridization" means conventional hybridization conditions, preferably conditions with a sait concentration of 6 x SSC at 62°C to 66°C followed by a one-hour wash with 0.6 x SSC, 0.1% SDS at 62°C to 66°C.

Important biological embodiments of the present invention are DNA sequences of the above and obtainable from vertebrates, preferably mammals such as pig and from rodents such as rat, and in particular from primates such as humans.

Particularly preferred embodiments of the present invention are the DNA sequence termed MP-19 which are shown in SEQ ID NO. 3 not SEQ ID NO. 3

Thus, the invertion also relates to recombinant molecules comprising DNA sequences as described above, optionally linked to an expression control sequence. Such vectors may be useful in the production of the PP2C-like protein in
stable or transiently transformed cells. Several animal, plant, fungal and bacterial systems may be employed for the
transformation and subsequent cultivation process. Preferably, expression vectors which can be used in the invention
contain sequences necessary for the replication in the host cell and are autonomously replicable. It is also preterable
to use vectors containing selectable marker genes which can be easily selected for transformed cells. The necessary
operation is well-known to those skilled in the art.

It is another object of the invention to provide a host cell transformed by an expression plasmid of the invention and capable of producing a protein of the serine/threonine phosphatase family. Examples of suitable host cells include various eucaryotic and procaryotic cells, such as £ coli, insect cells, land reclist, and procisis, and tunnis such as veast.

Another object of the present invention is to provide a PP2C-like protein or a biologically active fragment thereof encoded by the sequences described above and displaying biological features such as dependency of Mg²⁺ (or Mn²⁺) for activity. Furthermore, the phosphatase catalyzes dephosphorylation of phosphoserylthreonyl residues of proteins and peptides phosphorylated by cAMP-dependent protein kinases and protein kinase. C. It is insensitive to inhibitors like okadac acid and calyculin. A, heparin and PP1 inhibitors 1 and 2. It does not attack phosphorylase a. It is inhibited by polycations and F1 ions. A preferred substrate for the PP2C-like protein is the SET protein, suggesting capacities possible relevant to therapeutically treatment of leukema. Furthermore, the PP2C-like protein prefers basic substrates such as histones, and MBP phosphorylated by cAMP-dependent protein kinase, suggesting a special function for this phosphatase in the brain. The amino acid sequences of especially preferred PP2C-like proteins (MP-19) are shown in SEQ II NO. 2 and SEQ I NO. 2.

It is a further aspect of the invention to provide a process for the production of PP2C-like proteins. Such a process comprises cutivating a host cell being transformed with a nucleic acid sequence of the present invention in a suitable cutture medium and puritying the PP2C-like protein produced. Thus, this process allows the production of the sufficient amount of the desired protein for use in medical treatments. The host cell is obtainable from bacteria such as Bacillus spec. or Escherichia covii, from fungi such as yeast. From plants such as tobacco, potato, or Arabidopsis, and from animals, in particular vertebrate cell lines such as the Mo-, COS- or CHO cell lines.

It is another object of the present invention to provide pharmaceutical compositions containing a therapeutically-effective amount of a PP2C-like protein of the present invention and, optionally, a pharmaceutically acceptable carrier and/or diluent, and/or agonists and/or antagonists thereof. Such a therapeutic composition can be used for the treator ment of cancer such as leukemia, brain cancer, breast cancer and prostate cancer. The pharmaceutical composition according to the present invention can also be therapeutically applied for degenerative disorders of the CNS, e.g. Alzheimer's disease, Huntingdon's disease, Parlinson's disease, and spilepsy, and disorders of the reproductive system cyfertility disorders or testicular cancer. Another possible dirical application of a PP2C-like protein is the use for treatment of liver diseases, diabetes, and cystic fibrosis. The pharmaceutical composition comprising the protein of the present invention can also be used for treatment of microbial or viral infections. Another application of the pharmaceutical composition of the present invention is the usage of the protein in the regulation of spermatogenesis or the maturation of
mammalian germ cells, e.g. for centraception.

Furthermore, the application of the composition is not limited to humans but can include animals, in particular domestic animals, as well.

Finally, another object of the present invention is an antibody or antibody fragment, which is capable of specifically binding to the proteins of the present invention. Methods to raise such specific antibody are known in the art. Such an antibody is preferably a monoclonal antibody. Such antibodies or antibody fragments might be useful for diagnostic methods.

The following examples illustrate in more detail the present invention, but should not be construed as limiting the invention.

Example 1

Isolation of MP-19

For the reverse transcription reaction, 5 μ g total RNA (0.5 μ g/ μ l) derived from human placenta tissue was heated for 5 minutes and cooled rapidly on ice for 5 minutes. The reverse transcription reagent mixture containing 5 μ g total RNA, 38 μ 0 f RNA quard (Pharmacia), 2.5 μ 0 glogner of (7)12-18 (Bochringer Mannheim). So reaction buffer (250 mM Tris/HCl pH 8.5; 50 mM MgCl₂: 50 mM DTT; 600 mM KCl), 10 mM of each dNTP (Pharmacia), 37.5 μ 0 of axian myoblastosis virus reverse transcriptase (AMV, Bochringer Mannheim). The reaction mixture (20 μ 1) was incubated for 90 minutes at 42°C. The resulting placenta CNPA pool was stored at 20°C.

For the primary polymerase chain reaction (PCR), a placenta-derived cDNA pool was used as template in a 50 µL reaction mixture. The PCR reaction was carried out in a RoboCycler Gradient 96 (Stratagene). The amplification was performed in 1x PCR-buffer (10 mM TrisHCl pH 8.3; 50 mM KCl; 0.001 % gelatine), 1 mM of each dNTP (Pharmacia), 100 pmol of each disponucleotide (ALK6-N2, 5' - TT(CT)/AG)C(AGCT)AT(AGCT)ATAGAAGAAGATGA - 3' and ALK6-R2, 5' - CT(AGCT)GCACGA-10' and 1.5 u Tag opymerase (Perfine Elmer). The Pcaction contained cDNA corresponding to 30 ng of total RNA as starting material. The reaction mixture was overlaid by 40 µL parafflir incubated for 1805/94°C and subjected to 30 cycles (50s/94°C, 90s/48 °C, 60s/72 °C) with an additional extension for 480s/72 °C in the Thermocycler.

A second round of amplification was performed as described above with exception that 5 μ from the first PCR reaction was used as template DNA for the PCR. A 10 μ I sample from the second PCR amplification was fractionated by electrophoresis using a 2 % agarose gel in TBE buffer. After electrophoresis amplified DNA corresponding to a molecular weight of about 600-800 by was excised from the gel and isolated by 3x freeze/thaw cycles (-20 °C) + 37 °C) and using the DNA purification fix "Easy Pure" (Bozyme, Cat no, 39001) following the instructions of the manufacturer.

50 The eluted DNA was amplified a third time as described in the primary PCR with exception that 3 µl of the eluted DNA, resulted from the second round of amplification, was used as template for PCR and the annealing temperature was 55 °C instead of 48 °C. After electrophoresis using a 2% agarose gel in TBE buffer, a distinct DNA band that corresponds to a molecular weight of about 700 bp was eluted with the extraction method described before. After than an additionally purification using the QIAquick 8 PCR Purification Kit (Qiagen, Cat. no. 28144) following the instructions of the manufacturer, was carried out.

Cloning of the purified DNA was established using the Original TA Cloning Kii (Invitrogen, Cat. no. K200-40). Plasmid DNA from positive clones was isolated with the ClAwell 8 Plus Plasmid Kii (Qlagen, Cat. no. 16142) and sequenced with an automatic DNA sequence (ALFexpress, Pharmacia). The resulting DNA sequence was analyzed by a homological control of the Control

Example 2

5 Isolation of MP-19 full-length cDNA

Isolation of a full-length cDNA clone of MP-19 was performed with a commercial available Human Plat. Lambda cDNA Library (Stratagene, Cat. no. 937225). For screening, a liabeted PCR probe was generated from M DNA (SEC ID NO. 1). The amplification was performed in 1x PCR-buffer (Qiagen. Germany), 1 mM of dGTP. 0 for M of dTP. 1 nr dCTP. 1 mM of dGTP. 0 for M of dGTP. 10 for more consistent of the depth of dGTP. 10 for dCTP. 1 mM of dGTP. 0 for M of dGTP. 10 for M of dGTP. 10 for M of dGTP. 10 for M of dGTP. 0 f

Prehybridization of plaque lift filters from cDNA library were done at 58 °C for 4 h in 0.25 M Na₂HPO₄, 7 % SI % BSA, 1 mM EDTA, pH 7.2. Hybridization was carried out with 50 ng labeled MP19 PCR probe for 15 h under s buffer conditions as prehybridization was done. Filter washed 3 times (5 min, 10 min and 15 min) with 30 mM Na₂H 0.1 % SDS at 60 °C. Detection of signals were performed with DIG Lyminescent detection kit from Boehringer, I nheim (Cat. no. 1363514). Proceed from a positive signal, clone 39-1 was isolated and sequenced. The resulting [sequence from clone 39-1 conform to Bp. 387-1641 in SEQ ID NO. 3. To generate the 5'cDNA end of MP-19 full-le cDNA, 1 µg of a Lambda-DNA preparation from Human Placenta Lambda cDNA Library was subjected to PCR. amplification was performed in 1x PCR-buffer (Qiagen), 1 mM of each dNTP (Pharmacia), 100 pmol of each oligons otide MP19-E5 (5'-GGATCCATGGGTGCCTACCTCTCCCAGCCC-3') which was derived from an EST sequi-(accession no. AA115688) and MP19-3 (5'-GCCTGTGTAGGCCTTGGCTGTGGGGCC-3') and 1 u Taq DNA-poly 25 ase (Qiagen). The reaction was overlaid by 40 µl paraffin incubated for 180s/94 °C and subjected to 30 cycles (60 °C, 60s/74 °C, 60s/72 °C) with an additional extension for 300s/72 °C. The resulting PCR fragment was subclone vector pCR 2.1 (Clontech, Germany). Corresponding DNA was digested with restriction endonucleases Barn HI Stu I. After that MP-19 Barn Hi/Stu I fragment was inserted into clone 39-1. The resulted clone was named 28-9 w DNA-sequence present the full-lenght cDNA-sequence of MP-19 as shown in SEQ ID NO. 3. The corresponding an 30 acid sequence of MP-19 is shown in SEQ ID NO. 4.

Gene expression of MP-19 in human tissues

Relative expression of the MP-19 gene was determined by Northern blot analyses. A commercial available Hu.
RNA Master Blot (Clontech, Germany, Cat no. 7770-1, Lot no. 7997-19) was hybridized with the digoxigenin labMP-19 PCR probe as described in: Isolation of MP-19 full-length cbNA. 50 different human tissues samples were in
tigated for MP-19 gene expression. Additionally 8 different negative controls from E. coli, yeast and human genc
DNA were applied.

Main expression of MP-19 was detected in human testis which is shown in figure 2. Lower expression of MP-19 detected in human pituitary gland, thymus, small intestine and fetal liver. Basal expression of MP-19 was found in other human RNA samples. No hybridization signals were detected in negative controls.

Expression of MP-19 cDNA in E. coli

Purification of recombinant MP-19

Recombinant expressed MP-19 was purified using Immobilized Metal Ion Affinity Chromatography (IMAC) and Reverse Phase Liquid Chromatography (PPLC). The chromatographic purification was realized using the AKTA5 Explorer system (Pharmacia Biotech, Germany). For IMAC, a 1 mil H-Trap cheating column (Pharmacia Biotech) is used. Hi-Trap column was activated with 5 column volumes (cv) of 100 mM NiSO₄, afterwards the column washed with 5 col vities to remove unbound Ni²⁺. Column exploration was performed with 5 col vities buffer for PMAP₄, 300 mM NaCl, 10 mM Imidazole, pH 8.0). Cell lysat results from 1 g E. coli cells was loaded onto column. Afterwards the column sehed with lysis buffer for Pmove unbound protein. Protein were eluted using the following grather program.

10 Step 1: 20 mM Imidazole to 300 mM imidzole within 20 minutes, step 2: 300 mM imidazol to 500 mM imidazol minutes, step 2: 300 mM imidazole (500 mM Tins, 300 mM NaCl, 20 mM imidzole, pH 6.0) and buffer 8 (50 mM Tins, 300 mM NaCl, 500 mM imidzole, pH 6.0) and buffer 8 (50 mM Tins, 300 mM NaCl, 500 mM imidzole, pH 6.0) and buffer 8 (50 mM Tins, 300 mM NaCl, 500 mM imidzole, pH 6.0). The protein selection were performed at 280 nm. Fractions were analyzed by immunological detection, shown in Figure 3. For further purification, positive fractions containing MP-19 were pooled and loaded onto a Resource RPC (3m) column (Pharmacia Biotech). Column was equalized with 18 linear gradient of buffer 8 (0.1 % trifuor acetic acid) and protein eluted with a linear gradient of buffer B (0.1 % TFA-90 % acetontrie). Flow rate of chromatography were 3 m² m² m², determined at 215 m.

Immunolonical Detection of MP-19

immunological detection of recombinant MP-19 was performed by western blotting using a commercial available monoclonal mouse antibody against histidine-tag (Dianova, Germany, Cat. no. dia900) in combination with Western Light chemoluminescent detection system using the goat artil-mouse-AP antibody (Tropix, U.S.A.).

Activity assay for recombinant MP-19

25

40

55

A Serine/Threonine Phosphatase Assay System (Promega, Germany, Cat. no. V2460) was used to determine enzymatic activity of recombinant MP-19. This assay use a chemically synthesized phosphopeptide RRA(pT)VA which is a functional substrate for MP-19 phosphatase. The amount of free phosphate which is generated by MP-19 enzymatic reaction was measured by the absorbency of a molybdate malachit green phosphate complex (Ekman P. and Jager O. (1993), Anal. Biochem 24. 1, 138-141, Deana A. D. et al. (1990), Biochimica et Biophysica Acta 1051, 199-202). Assays were performed as described by the manufacturer in PPTase-2C buffer (50 mM imidazole, pH 7.2, 0.2 mM CETA, 5 mM MQC), 0.02 % permerapite hand, 0, 1 mg/ml BAS). To determine background of this assay, clone pQE-16-dhfr (Olagen, Germany) was used, which is identical to pQE-MP-19 with exception that vector pQE-16 inserted a mouse thirt gene instead of MP-19 phosphatase gene.

Results of activity assay of MP-19 shown in table 1. MP-19 has a significant activity in a MgCl₂ containing buffer, but no activity in a CaCl₂ containing buffer, which shows the requirement to Mg²⁺ Inhibitors like okadaic acid (10 µM) shows no significant reduction of MP-19 activity. Control expression of the mouse dthr gene shows no activity in the Serine/Threonine Phosphatase Assay System

	A	В	С	D (Average A-C)
1	0.000	0.006	-0.006	0.000
2	0.024	0.029	0.023	
3	0.304	0.291	0.298	0.025
4	0.612	0.594	0.597	0.298
5	1.080	1.140	1.137	0.601
6	0.021	0.006	0.018	1.119
7	0.025	0.043	0.018	0.015
8	0.038	0.020	0.018	0.029
9	0.030	0.012	0.013	0.025
10	0.151	0.108	0.174	0.018
11	0.146	0.147	0.174	0.144

Table 1: Activity test of MP-19

	A1-D1:	Phosphate standard O pmoi
35	A2-D2:	Phosphate standard 100 pmol
	A3-D3:	Phosphate standard 500 pmol
	A4-D4:	Phosphate standard 1000 pmoi
	A5-D5:	Phosphate standard 2000 pmoi
	A6-D6:	mouse dhir gene with substrate (negative control)
40	A7-D7.	mouse dhir gene without substrate (negative control)
	A2-D8:	MP-19 with modified PRT-s- OC (negative control)
	A9-D9:	MP-19 with modified PPTase-2C buffer (SmM MgCl ₂ is replaced by 5 mM CaCl ₂) and substrate MP-19 with PPTase-2C buffer without substrate
	A10-D10:	MP-19 with PPTase-2C buffer and substrate
	A11-D11:	MP-19 with PPTase-2C buffer, substrate and 10 μM okadaic acid
45		10 mility Flase-2C burrer, substrate and 10 µM okadaic acid

Annex to the description

Sequence listing

SEQ	ID	NO.	1

10	TACGGGCAGA	ACTGTCACAA	GGGCCCTCCC	CACAGCAAAT	CTGGAGGTGG	50
	GACAGGCGAG	GAACCAGGGT	CCCAGGGCCT	CAATGGGGAG	GCAGGACCTG	100
	AGGACTCAAC	TAGGGAAACT	CCTTCACAAG	AAAATGGCCC	CACAGCCAAG	150
	GCCTACACAG	GCTTTTCCTC	CAACTCGGAA	CGTGGGACTG	AAGCAGGCCA	200
15	AGTTGGTGAG	CCTGGCATTC	CCACTGGTGA	GGCTGGGCCT	TCCTGCTCTT	250
15	CAGCCTCTGA	CAAGCTGCCT	CGAGTTGCTA	AGTCCAAGTT	CTTTGAGGAC	300
	AGTGAGGATG	AGTCAGATGA	GGCGGAGGAA	GAAGAGGAAG	ACAGTGAGGA	350
	ATGCAGCGAG	GAAGAGGATG	GCTACAGCAG	TGAGGAGGCA	GAGAATGAGG	400
	AAGATGAGGA	TGACACCGAG	GAGGCTGAAG	AGGACGATGA	AGAAGAAGAA	450
20	GAAGAGATGA	TGGTGCCAGG	GATGGAAGGC	AAAGAGGAGC	CTGGCTCTGA	500
	CAGTGGTACA	ACAGCGGTGG	TGGCCCTGAT	ACGAGGGAAG	CAGTTGATTG	550
	TAGCCAACGC	AGGAGACTCT	CGCTGTGTGG	TATCTGAGGC	TGGCAAAGCT	600
	TTAGACATGT	CCTATGATCA	CAAACCAGAG	GATGAAGTAG	AACTAGCACG	650
25	CATCAAGAAT	GCTGGTGGCA	AGGTCACC			678

SEQ ID NO. 2

ACONCHKC bb	HSKSGGGTGE	EPGSQGLNGE	AGPEDSTRET	PSQENGPTAK	Si
AYTGFSSNSE	RGTEAGQVGE	PGIPTGEAGP	SCSSASDKLP	RVAKSKFFED	100
SEDESDEAEE	EEEDSEECSE	EEDGYSSEEA	ENEEDEDDTE	EAEEDDEEEE	150
EEMMVPGMEG	KEEPGSDSGT	TAVVALIRGK	QLIVANAGDS	RCVVSEAGKA	200
LDMSYDHKPE	DEVELARIKN	AGGKVT			221

SEQ ID NO. 3

5

10

15

20

30

34

40

45

50

3

332752

188

ATGGGTGCCTACCTCTCCCAGCCCAACACGGTGAAGTGCTCCGGGGGACGGGTCGGCGCCCC GCGCCTGCCGCTACGGCTTCTCCGCCATGCAAGGCTGGCGCGTCTCCATGGAGGATG CTCACAACTGTATTCCTGAGCTGGACAGTGAGACAGCCATGTTTTCTGTCTACGATGGACAT GGAGGGGAGGAAGTTGCCTTGTACTGTGCCAAATATCTTCCTGATATCATCAAAAGATCAGAA GGCCTACAAGGAAGGCAAGCTACAGAAGGCTTTAGAAGATGCCTTCTTGGCTATTGACGCCA AATTGACCACTGAAGAAGTCATTAAAGAGCTGGCACAGATTGCAGGGCGACCCACTGAGGAT GAAGATGAAAAAGAAAAGTAGCTGATGAAGATGATGTGGACAATGAGGAGGCTGCACTGCT GCATGAAGAGGCTACCATGACTATTGAAGAGCTGCTGACACGCTACGGGCAGAACTGTCACA AGGGCCCTCCCCACAGCAAATCTGGAGGTGGGACAGGCGAGGAACCAGGGTCCCAGGGCCTC AATGGGGAGGCAGGACCTGAGGACTCAACTAGGGAAACTCCTTCACAAGAAAATGGCCCCAC GTGAGCCTGGCATTCCCACTGGTGAGGCTGGGCCTTCCTGCTCTTCAGCCTCTGACAAGCTG CCTCGAGTTGCTAAGTCCAAGTTCTTTGAGGACAGTGAGGATGAGTCAGATGAGGCGGAGGA AGAAGAGGAAGACAGTGAGGAATGCAGCGAGGAAGAGGATGGCTACAGCAGTGAGGAGGCAG AGAATGAGGAAGATGAGGATGACACCGAGGAGGCTGAAGAGGACGATGAAGAAGAAGAAGAA GAGATGATGGTGCCAGGGATGGAAGGCCAAAGAGGCCTGGCTCTGACAGTGGTACAACAGC GGTGGTGGCCCTGATACGAGGGAAGCAGTTGATTGTAGCCAACGCAGGAGACTCTCGCTGTG TGGTATCTGAGGCTGGCAAAGCTTTAGACATGTCCTATGATCACAAACCAGAGGATGAAGTA CCTCAACCTCTCCAGAGCCATTGGGGACCACTTCTATAAGAGAACAAGAACCTGCCACCTG AGGAACAGATGATTTCAGCCCTTCCTGACATCAAGGTGCTGACTCTCACTGACGACCATGAA TTCATGGTCATTGCCTGTGATGGCATCTGGAATGTGATGAGCAGCCAGGAAGTTGTAGATTT CATTCAATCAAAGATCAGCCAGCGTGATGAAAATGGGGGAGCTTCGGTTATTGTCATCCATTG TGGCAAGCGAAAACTAGAGGAGGTGCTCTCTACTGAGGGGGCTGAAGAAAATGGCAACAGCG acaagaagaagaccaagcgagactag

SEQ ID NO. 4

MAXISORNY WKSSODURA PELEPYSTS AMGGWRYSME DARNCIPELD SETAMFSYNO GRGEERIAL CARYLPRIK OKALEDATA IDAKLITEV KRELACIAGA GRGEERIAL CARYLPRIK OKALEDATA IDAKLITEV KRELACIAGA GROGOLORIA GROENE PARALLEREAT MITEELLITY GONGKROPPS SENGGGTORE GROGOLORIA GROENE PARALLEREAT MITEELLITY GONGKROPPS SENGGGTORE CSSADKLEP VAKKIFERE DESSECARE FENSER GREAGOVEP GIFTERADE CSSADKLEP VAKKIFERE DESSECARE FENSER GREAGOVEP GROENE GROENE

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	· (i) APPLICANT: (A) NAME: Blopharm GmbH (B) STREET: Czernyring 22 (C) CITY: Heidelberg (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): 69115
	(ii) TITLE OF INVENTION: Nucleic acid encoding a novel human protein phosphatase
15	(iii) NUMBER OF SEQUENCES: 4
20	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-ODS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPG)
	(V) CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 98107346.3
	(2) INFORMATION FOR SEQ ID NO: 1:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 678 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
30	(ii) MOLECULE TYPE: cDNA
	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
35	(vi) ORIGINAL SOURCE: (P) TISSUE TYPE: human placenta
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
	TACGGGCAGA ACTGTCACAA GGGCCCTCCC CACAGCAAAT CTGGAGGTGG GACAGGCGAG 60
	GAACCAGGGT CCCAGGGCCT CAATGGGGAG GCAGGACCTG AGGACTCAAC TAGGGAAACT 120
45	

50

	CCTTCACAAG AAAATGGCCC CACAGCCAAG GCCTACACAG GCTTTTCCTC CAACTCGGAA	180
5	CGTGGGACTG AAGCAGGCCA AGTTGGTGAG CCTGGCATTC CCACTGGTGA GGCTGGGCCT	240
,	TCCTGCTCTT CAGCCTCTGA CAAGCTGCCT CGAGTTGCTA AGTCCAAGTT CTTTGAGGAC	300
	AGTGAGGATG AGTCAGATGA GGCGGAGGAA GAAGAGGAAG ACAGTGAGGA ATGCAGCGAG	360
10	GAAGAGGATG GCTACAGCAG TGAGGAGGCA GAGAATGAGG AAGATGAGGA TGACACCGAG	420
	GAGGCTGAAG AGGACGATGA AGAAGAAGAA GAAGAGATGA TGGTGCCAGG GATGGAAGGC	480
	AAAGAGGAGC CTGGCTCTGA CAGTGGTACA ACAGCGGTGG TGGCCCTGAT ACGAGGGAAG	540
15	CAGTTGATTG TAGCCAACGC AGGAGACTCT CGCTGTGTGG TATCTGAGGC TGGCAAAGCT	600
-	TTAGACATGT CCTATGATCA CAAACCAGAG GATGAAGTAG AACTAGCACG CATCAAGAAT	660
	GCTGGTGGCA AGGTCACC	678
20	(2) INFORMATION FOR SEQ ID NO: 2:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 226 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (F) TISSUE TYPE: human placenta	
	(F) 113508 FFFE: Indikan placenca	
5	(x1) SEQUENCE DESCRIPTION: SEO ID NO: 2:	
	Tyr Gly Gln Asn Cys His Lys Gly Pro Pro His Ser Lys Ser Gly Gly	
	1 5 10 15	
o	Gly Thr Gly Glu Glu Pro Gly Ser Gln Gly Leu Asn Gly Glu Ala Gly 25 30	
	Pro Glu Asp Ser Thr Arg Glu Thr Pro Ser Gln Glu Asn Gly Pro Thr 35 40 45	
5	Ala Lys Ala Tyr Thr Gly Phe Ser Ser Asn Ser Glu Arg Gly Thr Glu	

		50					55					60				
5	A1. 65	a Gly	/ Gln	Val	Gly	Glu 70	Pro	Gly	Ile	Pro	Thr 75	Gly	Glu	Ala	Gly	Pro 80
	Se	r Cys	Ser	Ser	Ala 85	Ser	Asp	Lys	Leu	Pro 90	Arg	Val	Ala	Lys	Ser 95	Lys
10	Phe	Phe	Glu	Asp 100	Ser	Glu	Asp	Glu	Ser 105	Asp	Glu	Ala	Glu	Glu 110	Glu	Glu
	Glu	. Asp	Ser 115	Glu	Glu	Cys	Ser	Glu 120	Glu	Glu	Asp	Gly	Tyr 125	Ser	Ser	Glu
15	Glu	Ala 130	Glu	Asn	Glu	Glu	Asp 135	Glu	Asp	Asp	Thr	Glu 140	Glu	Ala	Glu	Glu
	Asp 145	Asp	Glu	Glu	Glu	Glu 150	Glu	Glu	Met	Met	Val 155	Pro	Gly	Met	Glu	Gly 160
20	Lys	Glu	Glu	Pro	Gly 165	Ser	Asp	Ser	Gly	Thr 170	Thr	Ala	Val	Val	Ala 175	Leu
	Ile	Arg	Gly	Lys 180	Gln	Leu	Ile	Val	Ala 185	Asn	Ala	Gly	Asp	Ser 190	Arg	Cys
25	Val	Val	Ser 195	Glu	Ala	Gly		Ala 200	Leu	Asp	Met	Ser	Tyr 205	Asp	His	Lys
30	Pro	Glu 210	Asp	Glu	Val		Leu 215	Ala	Arg	Ile		Asn 220	Ala	Gly	Gly	Lys
30	Val 225	Thr														
	(2) INFOR	MATI	ON F	OR S	EQ I	D NO	: 3:									
35	(i)	(B)	TYPI STR	STH: E: ni ANDEI	RACTI 164: ucle: DNES: Y: 1:	l bas ic ad 3: do	se pa cid ouble	airs								
10							-									
	(ii)					ANC										
	(iii)															
15	(iv)	ANTI-	SENS	E: N	10											
	(vi)				CE:	hum	an p	lace	nta							

(x1)	SEQUENCE	DESCRIPTION:	SEO	ID :	NO:	3 :
------	----------	--------------	-----	------	-----	-----

	ATGGGTGCCT ACCTCTCCCA GCCCAACACG GTGAAGTGCT CCGGGGACGG GGTCGGCGCC	60
5	CCGCGCCTGC CGCTGCCCTA CGGCTTCTCC GCCATGCAAG GCTGGCGCGT CTCCATGGAG	120
	GATGCTCACA ACTGTATTCC TGAGCTGGAC AGTGAGACAG CCATGTTTTC TGTCTACGAT	180
	GGACATGGAG GGGAGGAAGT TGCCTTGTAC TGTGCCAAAT ATCTTCCTGA TATCATCAAA	240
10	GATCAGAAGG CCTACAAGGA AGGCAAGCTA CAGAAGGCTT TAGAAGATGC CTTCTTGGCT	300
	ATTGACGCCA AATTGACCAC TGAAGAAGTC ATTAAAGAGC TGGCACAGAT TGCAGGGCGA	360
	CCCACTGAGG ATGAAGATGA AAAAGAAAAA GTAGCTGATG AAGATGATGT GGACAATGAG	420
15	GAGGCTGCAC TGCTGCATGA AGAGGCTACC ATGACTATTG AAGAGCTGCT GACACGCTAC	480
	GGGCAGAACT GTCACAAGGG CCCTCCCCAC AGCAAATCTG GAGGTGGGAC AGGCGAGGAA	540
	CCAGGGTCCC AGGGCCTCAA TGGGGAGGCA GGACCTGAGG ACTCAACTAG GGAAACTCCT	600
20	TCACAAGAAA ATGGCCCCAC AGCCAAGGCC TACACAGGCT TTTCCTCCAA CTCGGAACGT	660
	GGGACTGAGG CAGGCCAAGT TGGTGAGCCT GGLATTCCCA CTGGTGAGGC TGGGCCTTCC	720
25	TGCTCTTCAG CCTCTGACAA GCTGCCTCGA GTTGCTAAGT CCAAGTTCTT TGAGGACAGT	780
23	GAGGATGAGT CAGATGAGGC GGAGGAAGAA GAGGAAGACA GTGAGGAATG CAGCGAGGAA	840
	GAGGATGGCT ACAGCAGTGA GGAGGCAGAG AATGAGGAAG ATGAGGATGA CACCGAGGAG	900
30	GCTGAAGAGG ACGATGAAGA AGAAGAAGAA GAGATGATGG TGCCAGGGAT GGAAGGCAAA	960
50	GAGGAGCCTG GCTCTGACAG TGGTACAACA GCGGTGGTGG CCCTGATACG AGGGAAGCAG	1020
	TTGATTGTAG CCAACGCAGG AGACTCTCGC TGTGTGGTAT CTGAGGCTGG CAAAGCTTTA	1080
35	GACATGTCCT ATGATCACAA ACCAGAGGAT GAAGTAGAAC TAGCACGCAT CAAGAATGCT	1140
	GGTGGCAAGG TCACCATGGA TGGGCGAGTC AACGGGGGCC TCAACCTCTC CAGAGCCATT	1200
	GGGGACCACT TCTATAAGAG AAACAAGAAC CTGCCACCTG AGGAACAGAT GATTTCAGCC	1260
40	CTTCCTGACA TCAAGGTGCT GACTCTCACT GACGACCATG AATTCATGGT CATTGCCTGT	1320
	GATGGCATCT GGAATGTGAT GAGGAGCCAG GAAGTTCTAG ACCTACATCA ATCAAAGATC	1200

	AGCCAGG	GTG	ATGA	LAAAT	GG G	GAGC	TTCG	G TI	ATTG	TCAT	CCA	TTGT	GGA	AGAG	CTGC	TG	1440
	GATCAGT	GCC	TGGC	ACCA	GA C	ACTI	CTGG	G GA	TGGT	ACAG	GGT	GTGA	CAA	CATG	ACCT	GC	1500
5	ATCÁTCA	TTT	GCTI	'CAAG	cc c	CGAA	ACAC	A GC	AGAG	crcc	AGC	CAGA	GAG	TGGC	AAGC	GA	1560
	AAACTAG	AGG	AGGT	GCTC	тс т	ACTG	aggg	G GC	TGAA	gaaa	ATG	GCAA	CAG	CGAC	AAGA	AG	1620
	AAGAAGG	CCA	AGCG	AGAC	TA G												1641
10	(2) INF	orma	TION	FOR	SEQ	ID	NO :	4 :									
15	(i	(; ()	A) L B) T C) S	ENGT: YPE : TRAN	HARA H: 5- ami: DEDNI DGY:	46 a no a ESS:	mino cid sin	aci	ds								
	(ii) MOI	LECU	LE T	PE:	pep	ide										
	(ili	HYH	POTH	ETIC	L: N	10											
20	(iv	ANT	rı-sı	NSE:	по												
	(vi)				URCE		umar	pla	cent	a							
25																	
	(xi)	SEC	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC	: 4:							
30	Met 1	Gly	Ala	Tyr	Leu 5	Ser	Gln	Pro	Asn	Thr 10	Val	Lys	Cys	Ser	Gly 15	Asp	
	Gly	Val	Gly	Ala 20	Pro	Arg	Leu	Pro	Leu 25	Pro	Tyr	Gly	Phe	Ser 30	Ala	Met	
35	Gln	Gly	Trp 35	Arg	Val	Ser	Met	Glu 40	Asp	Ala	His	Asn	Cys 45	Ile	Pro	Glu	
35	Leu	Asp 50	Ser	Glu	Thr	Ala	Met 55	Phe	Ser	Val	Tyr	Asp 60	Gly	His	Gly	Gly	
40	Glu 65	Glu	Val	Ala	Leu	Туг 70	Cys	Ala	Lys	Tyr	Leu 75	Pro	Asp	Ile	Ile	Lys 80	
40	Asp	Gln	Lys	Ala	Tyr 85	Lys	Glu	Gly	Lys	Leu 90	Gln	Lys	Ala	Leu	Glu 95	Asp	
45	Ala	Phe	Leu	Ala 100	Ile	Asp	Ala	Lys	Leu 105	Thr	Thr	Glu	Glu	Val 110	Ile	Lys	

	Gl	u Le	u Ala 119		ı Ile	e Ala	a Gl	y Arg		o Thi	r Glu	ı Asp	Gl:		Glu	ı Lys
5	Gli	130		L Ala	a Asp	Glu	1 Asp		Va:	l Asp) Asr	1 Glu 140		ı Ala	a Ala	Leu
	Le:		s Glu	ı Glu	ı Ala	150		Thi	: Ile	e Glu	1 Glt 159		Lev	1 Thr	Arg	Tyr 160
10	Gly	/ Glr	Asr	Cys	His 165		Gly	/ Pro	Pro	170		Lys	Ser	Gly	Gly 175	Gly
15	Thi	Gl _y	/ Glu	Glu 180		Gly	Ser	Glr	185		ı Asn	Gly	Glu	Ala 190		Pro
	Glu	Asp	Ser 195		Arg	Glu	Thr	200		Gln	Glu	Asn	Gly 205		Thr	Ala
20	Lys	Ala 210	Tyr	Thr	Gly	Phe	Ser 215		Asn	Ser	Glu	Arg 220	Gly	Thr	Glu	Ala
	Gly 225		Val	Gly	Glu	Pro 230		Ile	Pro	Thr	Gly 235	Glu	Ala	Gly	Pro	Ser 240
25	Cys	Ser	Ser	Ala	Ser 245	Asp	Lys	Leu	Pro	Arg 250	Val	Ala	Lys	Ser	Lys 255	Phe
30	Phe	Glu	Asp	Ser 260	Glu	Asp	Glu	Ser	Asp 265	Glu	Ala	Glu	Glu	Glu 270	Glu	Glu
••	Asp	Ser	Glu 275	Glu	Cys	Ser	Glu	Glu 280	Glu	Asp	Gly	Tyr	Ser 285	Ser	Glu	Glu
35	Ala	Glu 290	Asn	Glu	Glu	Asp	Glu 295	Asp	Asp	Thr	Glu	Glu 300	Ala	Glu	Glu	Asp
	Asp 305	Glu	Glu	Glu	Glu	Glu 310	Glu	Met	Met	Val	Pro 315	Gly	Met	Glu	Gly	Lys 320
40	Glu	Glu	Pro	Gly	Ser 325	Asp	Ser	Gly	Thr	Thr 330	Ala	Val	Val	Ala	Leu 335	Ile
	Arg	Gly	Lys	Gln 340	Leu	Ile	Val	Ala	Asn 345	Ala	Gly	Asp	Ser	Arg 350	Cys	Val
45	Val	Ser	Glu 355	Ala	Gly	Lys	Ala	Leu 360	Asp	Met	Ser		Asp 365	His	Lys	Pro
	Glu	Asp 370	Glu	Val	Glu		Ala 375	Arg	Ile	Lys		Ala 380	Gly	Gly	Lys	Val

	Thr 385		Asp	Gly	Arg	Val 390	Asn	Gly	Gly	Leu	Asn 395	Leu	Ser	Arg	Ala	11e 400
5	Gly	Asp	His	Phe	Tyr 405	Lys	Arg	Asn	Lys	Asn 410		Pro	Pro	Glu	Glu 415	Gln
10	Met	Ile	Ser	Ala 420	Leu	Pro	Asp	Ile	Lys 425	Val	Leu	Thr	Leu	Thr 430	Asp	Asp
	His	Glu	Phe 435	Met	Val	Ile	Ala	Cys 440	Asp	Gly	Ile	Trp	Asn 445	Val	Met	Ser
15	Ser	Gln 450	Glu	Val	Val	Asp	Phe 455	Ile	Gln	Ser	Lys	Ile 460	Ser	Gln	Arg	Asp
	Glu 465	Asn	Gly	Glu	Leu	Arg 470	Leu	Leu	Ser	Ser	Ile 475	Val	Glu	Glu	Leu	Leu 480
20	Asp	Gln	Cys	Leu	Ala 485	Pro	Asp	Thr	Ser	Gly 490	Asp	Gly	Thr	Gly	Cys 495	Asp
	Asn	Met	Thr	Cys 500	Ile	Ile	Ile	Cys	Phe 505	Lys	Pro	Arg	Asn	Thr 510	Ala	Glu
25	Leu	Gln	Pro 515	Glu	Ser	Gly	Lys	Arg 520	Lys	Leu	Glu	Glu	Val 525	Leu	Ser	Thr
30	Glu	Gly 530	Ala	Glu	Glu		Gly 535	Asn	Ser	Asp		Lys 540	Lys	Lys	Ala	Lys
	Arg 545	Asp														

Claims

35

- 40 1. A nucleic acid comprising a nucleotide sequence encoding a human serine/threonine phosphatase or a functional fragment thereof that is capable of dephosphorylating serine or threonine residues, wherein the nucleotide sequence comprises:
 - (a) the nucleotides as shown in SEQ ID NO. 1 or SEQ ID NO. 3; or
 - (b) a DNA sequence which is degenerate as a result of the genetic code to the DNA sequence of (a); or
 - (c) an allelic derivative of the sequences of (a) or (b); or
 - (d) a DNA sequence which is capable of hybridizing to the sequences in (a), (b) and (c), and encoding a protein containing the amino acid sequence as depicted in SEQ ID NO. 2 or SEQ ID NO. 4, or
 - (e) a nucleotide sequence which is capable of hybridizing to the DNA sequences in (a), (b), (c) and (d), and encoding a protein having essentially the same biological properties as the protein defined in (d).
 - The nucleic acid according to claim 1, wherein the nucleotide sequence is a vertebrate DNA sequence, a mammalian sequence, preferably a primate, human, porcine, or rodent, preferably a rat or rabbit, DNA sequence.

- 3. A recombinant molecule comprising a nucleic acid according to claim 1 or 2.
- The recombinant molecule according to claim 3, wherein said nucleic acid sequence is functionally linked to an
 expression-control sequence.
- 5. A host containing the nucleic acid according to claim 1 or 2, or the recombinant molecule according to claim 3 or 4.
- 6. The host according to claim 5, which is a bacterium, a fungus, a plant cell, an animal or a human cell.
- 7. A process for the production of a PP2C-like protein comprising cultivating a host according to claim 5 or 6 and recovering said PP2C-like protein from the culture.
 - A PP2C-like protein or a biologically active fragment thereof encoded by a nucleic acid according to claim 1 or 2 or by a recombinant molecule according to claim 3 or 4.
 - 9. The protein according to claim 8, comprising the amino acid sequence of SEQ ID NO. 2 or SEQ ID NO. 4.
 - 10. An agonist as a substitute for the protein of claim 8 or 9.
- 20 11. An antagonist directed to the protein of claim 8 or 9.
 - 12. A pharmaceutical composition containing the protein or a biologically active fragment thereof according to claim 8 and 9 or the apoinst according to claim 10 or the antiagonist according to claim 11, and optionally, a pharmaceutically acceptable carrier and/or diulent.
 - 13. The pharmaceutical composition according to claim 12 for the treatment of leukemia, brain cancer, breast cancer, prostate cancer, Alzheimer's disease, Huntingdon's disease, Parkinson's disease, and epilepsy, and old disorders of the reproductive system, or for the regulation of spermatogenesis or the maturation of mammalian cells.
- 30 14. An antibody or antibody fragment which is capable of specifically binding to the protein of claim 8 and 9 or to the agonist of claim 10 or to the antagonist of claim 11.
 - 15. The antibody according to claim 14, which is a monoclonal antibody.
- 35 16. Use of an antibody or antibody fragment according to claim 14 or 15 for detecting the protein or a biologically active fragment thereof as defined in claim 8 or 9.
 - A diagnostic kit containing the agonist according to claim 10 or the antagonist according to claim 11 or the antibody
 or antibody fragment according to claim 14 or 15.

" " 我 我 说

15

25

45

50

Fig. 1

MP19-PCR	YGONCHKGPP	HSKSGGGTGE	SPGSQGLNGE	AGPEDSTRET	PSQENGPTAK		50
PP2C-Human	MGAFLDKPKM	EKHNAQGQG-	NGLRYG	LSSHQGWRVE	HEDAHTAVIG		45
PP2C-Rabbit	MGAFLDKPKM	EKHNAQGQG-	NGLRYG	LSSMOGWRVE	MEDAHTAVIG		45
PP2C-Rat	MGAFLDKPKM	EKHNAQGQG-	NGLRYG	LSSMOGWRVE	MEDAHTAVIG		45
		• •	••	•			
MP19-PCR	AYTGFSSNSE	RGTEAGQVGE	PGIPTGEAGP	SCSSASDKLP	RVAKSKFFED		100
PP2C-Human	LPSGLESWSF	FAVYDGHAG-	SQVAK	YCCEHLLD	HITHNODFKG		97
PP2C-Rabbit	LPSGLETWSF	FAVYDGHAG-	SOVAK	YCCEHLLD	HITNNODFKG		87
PP2C-Rat	LPSGLETWSF	FAVYDGHAG-	SQVAK	YCCEHLLD	HITNNODFKG		87
	•	•			•	•	•
MP19-PCR		EEEDSEECSE					150
PP2C-Human		VKNGI					109
PP2C-Rabbit							109
PP2C-Rat	SAGAP-SVEN	VKNGI	-RTGF		LEID		109
	•	•		•			•
MP19-PCR	PENNIVACHEC	KEEPGSDSGT	TANNAL TROY	OT TURNAGES	BCVVSFAGKA		200
PP2C-Human		KKHGADRSGS					157
PP2C-Rabbit							157
Pr2C-Rebuil		KKHGADRSGS					157
Pro-Nac		•	**	•••			
HP19-PCR	LDMSYDHKPE	DEVELARIKN	AGGKVT				226
PP2C-Human	HFFTQDHKPS	MPLEKERION	AGGSVM				193
PP2C-Rabbit	HFFTQDHKPS	NPLEKERION	AGGSVM				183
PP2C-Rat	HEFTODHKPS	NPLEKERION	AGGSVM				183

(45

WANTED TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN

Figure 2

Figure 3

A61K 38/46. C07K 16/40. G01N 33/577

(51) Int. Cl.6: C12N 15/55, C12N 9/16,

(12)

12

1

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 24.02.1999 Bulletin 1999/08
- (43) Date of publication A2: 28.10.1998 Bulletin 1998/44
- (21) Application number: 98107346.3
- (22) Date of filing: 22.04.1998
- (84) Designated Contracting States. AT BE CHICY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States: AL LT LV MK RO SI
- (30) Priority: 22.04.1997 EP 97106658
- (71) Applicant: BIOPHARM GESELLSCHAFT ZUR BIOTECHNOLOGISCHEN ENTWICKLUNG VON PHARMAKA mbH 69115 Heidelberg (DE)
- (72) Inventors:
 - · Hanke, Michael, Dr.
 - 67454 Hassloch (DE)
 - · Paulista, Michael 69181 Leimen (DE)
 - · Pohl, Jens, Dr. 76707 Hambrücken (DE)
- (74) Representative: Müller-Bore & Partner Patentanwälte Grafinger Strasse 2 81671 München (DE)

(54) Nucleic acid encoding a human protein phosphatase

(57)The present invention relates to nucleic acids encoding a novel human protein phosphatase of the family of protein serine/threonine phosphatases. In particular, it relates to novel DNA sequences encoding serine/threonine protein phosphatase, to expression plasmids containing said nucleic acids, to host organisms transformed by said expression plasmids, to the production of said protein by culturing said transformant, to antibodies specifically binding to said phosphatase and to agonists and/or antagonists for said protein, and to antisense MP-19 nucleic acid. Furthermore, the invention relates to serine or threonine residues and epitopes comprising said residues dephosphorylated by said protein and pharmaceutical compositions comprising said protein or agonists or antagonists thereof for the treatment of diseases influenced by changes in phosphorylation which controls e.g. cell proliferation and/or differentiation, to diagnostic kits and to in vitro diagnostic methods for the detection of phosphorylation dependent diseases such as e.g. cancer.

European Pelent Office

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 98 10 7346 shall be considered, for the purposes of subsequent proceedings, as the European search report

	DOCUMENTS CONSID	ERED TO BE RELEVANT		1
Category	Ottation of document with in of relevant passas	dication, where appropriate,	Pelevant to claim	CLASSIFICATION OF THE APPLICATION (INJCLS)
x	EMBL DATABASE ENTRY NUMBER 142383,8 Jun* * abstract *	e 1996, XP002085147 7 AL: "Induction of h related genes by oblasts" March 1996, pages	1-8	C12N15/55 C12N9/16 A61K38/46 C07K16/40 G01N33/577
- 1	"Database EMBL, En number U81159 29.De EMBL NUCLEOTIDE SEQ ** abstract * * a Y. WANG ET AL: Ca2+- inhibitable S phosphatase from bo JOURNAL OF BIOLOGIC.	Try BTUB1159, Accession cember.1996* UNCE. XP002035695 "A Mg2+-dependent, erine/threonine protein vine brain" AL CHEMISTRY., 7 October 1995, pages	1-8	
	MD US			TECHNICAL FIELDS SEARCHED (InLCLS)
	APLETE SEARCH In Division considers that the present a with the EPC to work an extent that a dut, or can only be corried out partially	pphasiton, or one or more of its visitos, closely matchight warry into the state of the six as , for these claims.	Anot	
1-9 Chairm san 12-1 Chairm not	searched :			
Rema are an a	rk: Claims 10-11 cor not searchable becau	mpletely and 12-17 parti use neither an antagonis serine/threonine phosph	t nor	
	THE HAGUE	28 November 1998	LE	CORNEC N.D.R.
X : parki	TEGORY OF CITED DOCUMENTS builarly relevant If taken alone builarly relevant if combined with enoting meet of the same category beinginal healing thind	T: Westery or principle E: earlier petent describer the Riving date or D: document alled in L: describer delad for	meloriting the i umont, but public the application; rather reasons	hondon, or

European Patent

PARTIAL EUROPEAN SEARCH REPORT

Application Number

<i>iji</i>	Dillos		CLASSIFICATION OF THE APPLICATION (IMCC.S)	1
	AND THE RELEVANT	1	APTENA	1
	Cealion of document with infloation, where appropriate,	Reisvent to slaim	1	1
	as lies of document with state		1	1
degory	WO 97 10796 A (RAMOT-UNIVERSITY AUTHORITY)	12-17		1
. '	WO 97 18796 A (KAPIO)		1	1
	27 March 1997	1	1	1
		1-9	1	1
	B.J. MANN ET AL: "Mammalian protection of the serine of th	. 1	1	- 1
Α, C	serine/threonine phospha tanalysis of amino	, /		- 1
		1		- 1
		1	1	1
	BIOCHIMICA ET BIOPHYSICA DE 184, vol. 1130, 1992, pages 100-184,	1	1	- 1
	XP002085180	1	\	_
		1-9	TECHNICAL PIELDIE SEARCHED (IN.C.)	. 1
1			BEARCHEU (III.O.	
P,X		.		1
l	domain"	1		- 1
1	FEBS LETTERS., A August 1997, pages	- 1	1	1
1	domain' FEBS LETTERS., vol. 412, no. 3, 4 August 1997, pages	1	1	į
1	415-419, AFOOLUS	1	1	- 1
1		i	1	- 1
1	* the whole document * the whole document * S.M. TRAVIS: EMBL DABASE ENTRY -& S.M. TRAVIS: EMBL DABASE ENTRY	- 1	ì	1
1	HSY13936, ACCESSION NO.150	1	1	1
-		1-9	•_ \	
- 1	A 35018 A (NEW YORK UNIVERSITY)	12-	17	
P	.X WO 97 35018 7 1997 25 September 1997	. 1		
- 1	.X W0 9/ 3000 1997 25 September 1997 * see the whole document especially * see the whole document especially example 4 page 81 and sequence id no 1	• 1	1	
- 1		. 11-4	8	
- 1	AUTHOLOGE TE AL: "FINLS, ALMOOR	ine l		
- 11	M.A. GUTHRIDGE TE AL: "FINI3, a meeting growth factor-inducible serine-three phosphatage which can inhibit cell compositions" and the serious	ycle	1	
- 1		1	1	
- 1	progression MOLECULAR AND CELLULAR BIOLOGY, MOLECULAR AND September 1997, page	. \	1	
- 1	MOLECULAR AND September 1997, page		1	
1	progression AND CELLULAR BIGLOGY, MOLECULAR AND CELLULAR BIGLOGY, page vol. 17, no. 9, September 1997, page vol. 17, no. 9, September 1997, page vol. 17, no. 9, September 1997, page vol. 19, page vol. 1997,	1	1	
	* the whole document *	1	1	
	1	1	1	
	1 1	1	1	
	i	1	ì	
		1	1	
	1 1	1	. 1	
1	£ \			
	Con and the control of the control o		l	
	<u> </u>		1 1	
	i l		1 1	
	1		1	
	P			