

Rádiové věže

V Jakartě je N rádiových věží. Všechny věže leží na jedné přímce a jsou očíslované od 0 do N-1 v pořadí zleva doprava. Věž i (kde $0 \le i \le N-1$) má výšku H[i] a navíc jsou výšky věží **po dvou různé**, tedy $H[i] \ne H[j]$ pro $i \ne j$.

Interferenční hodnota δ je kladné celé číslo. Dvojice věží i a j (kde $0 \le i \le j \le N-1$ spolu může komunikovat pravě tehdy, když existuje věž k (věži k budeme říkat prostředník) splňující obě následující podmínky:

- Věž i je nalevo od věže k a věž j je napravo od věže k, tedy i < k < j.
- Věže i i j mají obě výšku nejvýše $H[k] \delta$.

 $Pak\ Dengklek\$ si chce pronajmout několik rádiových věží pro svoji novou stanici. Vaším úkolem odpovědět na Q otázek. Otázky jsou následujícího tvaru: kolik nejvýše věží si $Pak\ Dengklek\$ může pronajmout, má-li dané L, R a D ($0 \le L \le R \le N-1$ a D>0) a musí splnit následující podmínky:

- Pak Dengklek si může pronajmout pouze stanice s indexem mezi L a R (včetně), tedy s indexem i splňujícím $L \leq i \leq R$.
- Interferenční hodnota δ je rovna D.
- Všechny dvojice pronajatých věží spolu mohou komunikovat.

Pronajaté věže i a j spolu mohou komunikovat za pomoci věže k jako prostředníka i když si Pak Dengklek vež k nepronajme.

Implementační detaily

Implementujte následující funkce:

void init(int N, int[] H)

- N: počet rádiových věží.
- *H*: pole délky *N* obsahující výšky věží.
- Tato funkce bude zavolána právě jednou, a to před prvním voláním funkce max_towers.

int max_towers(int L, int R, int D)

- L, R: hranice úseku, ve kterém může Pak Dengklek věže pronajmout.
- D: hodnota δ .
- Tato funkce by měla frátit vrátit maximální počet věží, které si Pak Dengklek může pronajmout pokud může pronajímat pouze věže mezi L a R (včetně) a hodnota δ je D.
- Tato funkce bude volána právě *Q*-krát

Příklady

Uvažme následující posloupnost volání funkcí:

Pak Dengklek si může pronajmout věže 1, 3, a 5. Tento přilkad je ilustrován na následujícím obrázku, kde šedivé lichoběžníky značí pronajaté věže.

Věže 3 a 5 mohou komunikovat za pomoci věže 4 jako prostředníka, protože $40 \le 50-10$ a $30 \le 50-10$. Věže 1 a 3 mohou komunikovat za pomoci věže 2 jako prostředníka. Věže 1 a 5 mohou komunikovat za pomoci věže 3 jako prostředníka. Není možné si pronajmout více než 3 věže, takže funkce by měla vrátit 3.

max_towers(2, 2, 100)

V zadaném rozsahu je jenom jedna věž, takže *Pak Dengklek* si může pronajmout nejvýše jednu věž. Funkce by tedy měla vrátit 1.

```
max_towers(0, 6, 17)
```

 $\it Pak\ Dengklek\$ si může pronajmout věže 1 a 3. Věže 1 a 3 mohou komunikovat za pomoci věže 2 jako prostředníka, protože $20 \le 60-17$ a $40 \le 60-17$. Není možné si pronajmout více než 2 věže, takže funkce by měla vrátit 2.

Omezení

- $1 \le N \le 100\ 000$
- $1 \le Q \le 100\ 000$
- $1 \le H[i] \le 10^9$ (pro každé i splňující $0 \le i \le N-1$)
- H[i]
 eq H[j] (pro každé i a j splňující $0 \le i < j \le N-1$)
- $0 \le L \le R \le N-1$
- $1 < D < 10^9$

Podúlohy

- 1. (4 body) Existuje k ($0 \le k \le N-1$) takové, že H[i] < H[i+1] (pro každé i splňující $0 \le i \le k-1$) a H[i] > H[i+1] (pro každé i splňující $k \le i \le N-2$).
- 2. (11 bodů) Q=1, $N\leq 2000$
- 3. (12 bodů) ${\cal Q}=1$
- 4. (14 bodů) D=1
- 5. (17 bodů) L=0, R=N-1
- 6. (19 bodů) Hodnota D je stejná ve všech voláních funkce max_towers.
- 7. (23 bodů) Žádná další omezení.

Ukázkový grader

Ukázkový grader načítá vstup v následujícím formátu:

- řádek 1: NQ
- řádek $2: H[0] H[1] \dots H[N-1]$
- řádek 3+j ($0 \le j \le Q-1$): L R D pro j-tou otázku.

Ukázkový grader vypíše vaše odpovědi v následujícím formátu:

• řádek 1+j ($0 \le j \le Q-1$): návratová hodnota j-tého volání funkce max_towers