CS5100 Foundations of Artificial Intelligence

Module 0

Administrative details

Text: Artificial Intelligence: A Modern Approach (3rd edition), Stuart Russell and Peter Norvig

Lecturer: Sarita Singh

Email:s.singh@northeastern.edu

Office hours timings: 9.00 am (Tuesdays)

Introduction

- What is artificial intelligence?
 - '... effort to make computers think ... '(Haugeland, 1985)
 - '[The automation of] activities that we associate with human thinking ...'
 (Bellman, 1978)
 - 'The study of mental faculties through the use of computer models.' (Charniak and McDermott, 1985)

Introduction

- 'The study of the computations that make it possible to perceive, reason, and act.' (Winston, 1992)
- '... creating machines that perform functions that require intelligence when performed by people.' (Kurzweil, 1990)
- '... how to make computers do things at which, at the moment, people are better.' (Rich and Knight, 1991)
- ' ... the study of the design of intelligence agents.' (Poole et al., 1998)
- '... intelligence behaviour in artifacts.' (Nilsson, 1998)

Goal of Al

- ▶ to understand and replicate human thought processes through computational modelling (Cognitive Science: Inter-disciplinary field (AI, psychology, linguistics, philosophy, anthropology) that tries to form computational theories of human cognition).
- Alan Turing's famous 'Turing test' for intelligence
 - in which a program is judged intelligent if its behaviour cannot be differentiated from that of a human.

Turing's Test

If the human cannot tell whether the responses from the other side of a wall are coming from a human or computer, then the computer is intelligent.

The major subfields of Artificial Intelligence are as follows:

Problem solving:

- o an agent is given a problem setting and a goal and
- must determine how to realize that goal.

Problem Solving

Find a sequence of operations to produce the expected output from the initial input.

- Knowledge representation and reasoning studies :
 - how an agent can represent knowledge it has about the environment
 - uses it to derive further knowledge,
 - either using a logic-based representation (when the knowledge is certain)
 - or a probabilistic

Knowledge representation and reasoning

- Al agents deal with knowledge (data)
 - Facts (believe & observe knowledge)
 - Procedures (how to knowledge)
 - Meaning (relate & define knowledge)
- Right representation is crucial
 - Wrong choice can lead to project failure
- Examples
 - First order theorem proving... first order logic
 - Inductive logic programming... logic programs
 - Neural networks learning... neural networks

Planning:

- an agent is given knowledge of an environment and
- formulates a plan for interacting with it to achieve its goals.

What is planning?

- A plan is a collection of actions for performing some task. e.g. assembling your new IKEA cupboard.
- Many programs are available to help humans formulate plans.
- However it is difficult to generate plans automatically.

- Machine Learning :
- An agent improves its performance through experience.
 - ability to distinguish between categories of objects(supervised learning),
 - learning structure from raw data (unsupervised learning),
 - learning to maximise reward (or minimise cost) in an environment

MachineLearning

- Learning denotes changes in a system that will enable the system to do the same task more efficiently next time.
- For example, a machine learning system could be trained on email messages to learn to distinguish between spam and non-spam messages.
- After learning, it can then be used to classify new email messages into spam and non-spam folders.

Computer Vision

- an agent interprets or processes raw visual images
- Computer Vision is the science and technology of obtaining models, meaning and control information from visual data.
- The Robocup tournament and ASIMO are examples of Artificial Intelligence using Computer Vision to its greatest extent.

Natural language Processing:

- an agent must process input in a natural language (e.g. English), or generate it.
- NLP is the branch of computer science focused on developing systems that allow computers to communicate with people using everyday language.
- Many challenges in NLP involve natural language understanding that is, enabling computers to derive meaning from human or natural language input.

Reading advice and Resources

Read all chapters as indicated in the essential reading

Prescribed text : Artificial Intelligence: A Modern Approach (3rd edition), Stuart Russell and Peter Norvig