# **Instance Based Learning**

AIML/ BDA

### Topics covered

- K-Nearest Neighbors (K-NN) concept
- Distance metrics
- K-NN for classification

#### **Machine Learning Classification**



# Instances Based Learning

- Training instances are stored in memory
- For a test (unseen) instances
- Compare test instances with instances seen in training and gives result
- Also known as Memory based learning



### Instances Based Learning

IBL methods learn by storing the training data.

 When a new query instance is encountered, a set of similar related instances is retrieved from memory and used to classify the new query instance.

- For each distinct query, IBL construct different approximation to the target function.
- These are *local* rather than *global* approximations.

### Advantages and Disadvantages of IBL

#### **Advantage:**

Suitable for problems with very complex target functions.

#### **Disadvantage:**

- The cost of classifying new instances high.
- Considered all attributes of the instances dimension increase



# What K-NN does for you



## How did it do that?

STEP 1: Choose the number K of neighbors



STEP 2: Take the K nearest neighbors of the new data point, according to the Euclidean distance



STEP 3: Among these K neighbors, count the number of data points in each category



STEP 4: Assign the new data point to the category where you counted the most neighbors



Your Model is Ready





STEP 2: Take the K = 5 nearest neighbors of the new data point, according to the Euclidean distance



STEP 2: Take the K = 5 nearest neighbors of the new data point, according to the Euclidean distance



STEP 3: Among these K neighbors, count the number of data points in each category



STEP 4: Assign the new data point to the category where you counted the most neighbors



### Example

• A company produce tissues (used by biological labs).

• The company's objective is to predict how well their products are accepted by their clients.

• They conducted a survey with their clients to find the acceptance of the product. Quality is based on acid durability and strength parameter.

### Example

• The data set pertains to a company that produces tissues for use in biological labs.

| Name   | Acid<br>Durability | Acid<br>Strength | Acceptability |
|--------|--------------------|------------------|---------------|
| Type-1 | 7                  | 7                | Low           |
| Type-2 | 7                  | 4                | Low           |
| Type-3 | 3                  | 4                | High          |
| Type-4 | 1                  | 4                | High          |

**Test data:** Type-5 Acid Durability = 3 Strength = 7

• Built a classifier to predict a new type of tissue

 Apply the Euclidian distance measure for the data to find the distances from the new data Type-5.

| Name   | Acid<br>Durability | Strength | Distance                                        | NeighorR<br>ank |
|--------|--------------------|----------|-------------------------------------------------|-----------------|
| Type-1 | 7                  | 7        | $Sqrt((7-3)^2+(7-7)^2)=4$                       | 3               |
| Type-2 | 7                  | 4        | Sqrt((7-3) <sup>2</sup> +(4-7) <sup>2</sup> )=5 | 4               |
| Type-3 | 3                  | 4        | Sqrt((3-3) <sup>2</sup> +(4-7) <sup>2</sup> )=3 | 1               |
| Type-4 | 1                  | 4        | $Sqrt((1-3)^2+(4-7)^2)=3.6$                     | 2               |

- If k = 1, ONE immediate neighbor Type 3 Good (new type is = High)
- If k = 2, TWO immediate neighbor Type 3, Type 4 = High; (new type is = High)
- If k = 3, THREE immediate neighbor Type 3, Type 4 = High & Type 1 = Low (but the probability of High is high so, consider new type is classified as High)

### Example 2

- Assume a Boolean target function and a 2-dimensional instance space (shown in figure).
- Determine how the k-Nearest Neighbour Learning algorithm would classify the new instance  $x_q$  for k = 1,3,5 and 7.
- The + and signs in the instance space refer to positive and negative examples respectively.

| Distance   | Classification |
|------------|----------------|
| from query |                |
| instance   |                |
| 1.00       | +              |
| 1.35       | _              |
| 1.40       | _              |
| 1.60       | _              |
| 1.90       | +              |
| 2.00       | +              |
| 2.20       | -              |
| 2.40       | +              |
| 2.80       | _              |

| Distance   | Classification |
|------------|----------------|
| from query |                |
| instance   |                |
| 1.00       | +              |
| 1.35       | _              |
| 1.40       | _              |
| 1.60       | _              |
| 1.90       | +              |
| 2.00       | +              |
| 2.20       | _              |
| 2.40       | +              |
| 2.80       | -              |



| 1-NN | + |
|------|---|
| 3-NN | - |
| 5-NN | - |
| 7-NN | - |

#### Selection of K value?

- Try many different values for K and see what works best for your problem.
- K value should be an odd number (3, 5, 7, 9, etc.).

# How does the efficiency and accuracy of k-NN search change as k increases?

- If we have sufficiently large number of training experiences the accuracy should increase
- The computational complexity of KNN increases with the size of the training dataset.
  - The time to calculate the prediction will also increase.
  - In that sense less efficient

#### KNN is a Lazy Learning algorithm – why?

No learning of the model/ algorithm

It "memorizes" the training dataset

DT algorithm learns its model during training time

#### KNN is a Non-Parametric algorithm – why?

 It makes no assumptions about the functional form of the problem being solved. Is KNN supervised or unsupervised learning algorithm?

 KNN is a supervised learning algorithm, uses labeled data for classification problem.

 Note: K-means is an unsupervised learning algorithm used for clustering problem

