제공받은 데이터에는 14개의 거치대 주변 인구 관련 변수가 존재한다. (6개의 변수는 연령별 거주 인구, 8개의 변수는 연령별 유동인구)

본 EDA에서는 인구 관련 변수 간에 유의미한 상관성이 존재하는지를 알아보고, 주성분분석을 진행하였다.

또한 일평균 대여량과 반납량은 비례하는 경향이 나타났기 때문에, 대여량만을 고려하여 거치대 이용량에 대한 분석을 진행하였다.

거치대 이용량과 주변 거주인구, 유동인구

거치대 이용량은 특히 거치대 근방 유동인구와 연관성이 높다.

또한 거주인구와 유동인구 사이의 유의미한 상관계수가 나타나는 것을 확인할 수 있다.

연령대별 거치대 주변 거주인구

연령대별 거치대 주변 유동인구

거치대 인근 연령별 거주인구와 유동인구에 대한 변수들은 총 14개이고, 변수간 유의미한 상관성이 나타났다.

따라서 차원 축소와 모형 적합에서 발생할 수 있는 다중 공선성문제 해결을 위해, 주성분 분석을 진행하였다.

인구 관련 변수들에 대한 주성분

주성분 분석 이전과 이후의 모형 비교

주거_40대

-0.0025872

유동30대

주거_50대

-0.0057382

유동40대

9.101681

유동60대 유동70대이

5.980942

```
Call:
lm(formula = 대여 ~ . - 반납, data = age_notna)
Coefficients:
(Intercept)
            주거_10대
                     주거_20대 주거_30대
21.0579943
            0.0031348
                      0.0066307
                                 0.0048798
주거 60대
           유동10대미
                     유동10대
                               유동20대
-0.0076451
           0.0006841
                     0.0073543
                                -0.0004906 0.0093756 -0.0176699
  유동50대
          유동60대
                     유동70대이
 0.0196638
           -0.0192449
                      0.0075538
> vif(fit2)
주거 10대
                                         주거_50대 주거_60대_ 유동10대미
          주거 20대
                    주거_30대
                              주거_40대
 6.422413
          11.380615
                    10.252485
                               17.005026
                                         24.501002
 유동10대
           유동20대
                     유동30대
                               유동40대
                                        유동50대
11.062720 14.668422
                    63.660398
                              82.765698
                                        73.682511 69.188789 22.246297
Call:
lm(formula = CHCH \sim p1 + p2 + p3, data = pca r)
Coefficients:
(Intercept)
                  р1
                             p2
                                        рЗ
            2.128e-03 8.395e-04
  3.224e+01
                                  1.724e-03
> vif(fit1)
     р1
             p2
1.000109 1.000215 1.000195
```

adj $R^2 = 0.135$

adj $R^2 = 0.1043$