```
# 로지스틱 함수 의 정의
def logit(z):
    return 1 / (1+np.exp(-z))
#relu 함수의 정의
def relu(z):
    return np.maximum(0,z)
# 각 활성 함수들의 미분
def derivative(f, z, eps=0.000001):
    return (f(z+eps)-f(z-eps))/(2*eps)
z = np.linspace(-5,5,200) # -5~5 200개의 간격 생성
plt.figure(figsize=(11,4))
plt.subplot(121)
# 활성함수로 계단함수
plt.plot(z,np.sign(z),"r-",linewidth=2,label="step")
# 활성함수로 로지스틱함수
plt.plot(z,logit(z),"g--",linewidth=2,label="sigmoid")
# 활성함수로 하이퍼블릭 탄젠트
plt.plot(z,np.tanh(z),"b--",linewidth=2,label="tanh")
# 활성함수로 relu함수
plt.plot(z,relu(z),"m--",linewidth=2,label="ReLU")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.title("activastion fuction: g(z)", fontsize=14)
plt.axis([-5,5,-1.2,1.2])
plt.show()
```


흔히 쓰이는 활성함수 4가지를 나타내주었다. 계단함수는 -1과 1의 범위를 가지고, 로지스틱 시그모이드는 (0,1) 하이퍼블릭 탄젠트는 (-1,1)

relu함수는 [0,inf] 의 값을 가진다. 계단함수는 딱딱한 의사결정을 이를 다른 함수들은 부드러운 의사결정으로 확장하였다.

로지스틱 시그모이드나 하이퍼볼릭 탄젠트 시그모이드는 매끄러운 곡선 모양이며 모든 구간에서 미분 할 수 있다. 매개변수에 따라 기울기가 결정되며 이 매개 변수가 클수록 가파르며 무한대이 면 계단함수가 된다

```
plt.subplot(122)
#1차 도함수를 이용하여 계단함수, 로지스틱 시그모이드, 하이퍼볼릭 탄젠트, reLu 함수를 그래프로 나타냈다.
plt.plot(z,derivative(np.sign,z),"r-",linewidth=2,label="step")
plt.plot(0,0,"ro",markersize=5)
plt.plot(0,0,"rx",markersize=10)
plt.plot(z,derivative(logit,z),"g--",linewidth=2,label="sigmoid")
plt.plot(z,derivative(np.tanh,z),"b--",linewidth=2,label="tanh")
plt.plot(z,derivative(relu,z),"m--",linewidth=2,label="ReLU")
plt.grid(True)
plt.title("gradient: g'(z)", fontsize=14)
plt.legend(loc="center right", fontsize=14)
plt.axis([-5,5,-0.2,1.2])
plt.show()
```


퍼셉트론은 계단함수를 사용하였고 다층 퍼셉트론은 로지스틱 시그모이드나 하이퍼볼릭 탄젠트를 사용하였다. Relu 함수는 딥러닝에 주로 이용되는데, 그래디언트 소멸 문제 완화에 크게 도움이된다. 또한 relu의 그래디언트는 비교 연산 한 번으로 계산 가능하여 속도가 빠르다.

2-1

15번 문제와 동일한 연산임으로 이를 통해 보이고자 한다. 처음 x,y,z의 값이 검은색과 같이 연산이 된다. 그 후 오른쪽에서 왼쪽으로 오류역전을 통해 gradient가 갱신이 된다.

```
np.random.seed(0)
N.D = 3.4
#3x4행렬 생성
x = np.random.randn(N,D)
y = np.random.randn(N,D)
z = np.random.randn(N,D)
a = x^*y
b = a + z
c = np.sum(b)
# 출력에서 의 gradient는 1로 임의로 설정
grad c = 1.0
grad_b = grad_c * np.ones((N,D))
# 미분에서 연쇄법칙을 이용하기에 grad_b를 복사한다.
grad_a = grad_b.copy()
grad_z = grad_b.copy()
# 최종적인 x와 y의 gradient이다. 이는 연산을 모두 수행후 다시 되돌아가는 오류역전파 이다.
grad x = grad a*v
grad v = grad a*x
print("grad_c: ",grad_c,"\ngrad_b: ",grad_b,"\ngrad_a: ",grad_a,"\ngrad_z: ",grad_z,"\ngrad_x: ",grad_x,"\ngrad_y: ",grad_y)
 grad_c: 1.0
 grad_b: [[ 1. 1. 1. 1.]
   [ 1. 1. 1.
                      1.]
   [ 1. 1. 1.
                      1.]]
 grad_a: [[ 1. 1.
                             1.
                                   1.]
   [ 1. 1. 1.
                      1.]
   [ 1. 1. 1.
                      1.]]
 grad_z: [[ 1. 1.
                             1.
                                   1.]
   [ 1. 1. 1.
                      1.]
   [ 1. 1. 1.
                      1.11
 grad_x: [[ 0.76103773  0.12167502  0.44386323  0.33367433]
   [ 1.49407907 -0.20515826  0.3130677 -0.85409574]
   [-2.55298982 0.6536186 0.8644362
                                                       -0.74216502]]
 grad_y: [[ 1.76405235  0.40015721  0.97873798  2.2408932 ]
   [ 1.86755799 -0.97727788  0.95008842 -0.15135721]
   [-0.10321885 0.4105985 0.14404357 1.45427351]]
2-3
import torch
N_D = 3.4
#tensor를 생성하고 연산을 추적하기 위해 requires_grad=True로 설정, gradient를 자동으로 계산해준다.
x = torch.randn(N,D,requires_grad=True)
y = torch.randn(N,D,requires_grad=True)
z = torch.randn(N,D,requires_grad=True)
a = x^*y
b = a+z
c = torch.sum(b)
print(c.backward)
print(x.backward,"\n",y.backward)
<bound method Tensor.backward of tensor(-0.5948, grad_fn=<SumBackward0>)>
<bound method Tensor.backward of tensor([[-0.1727, 2.2792, 1.1866, 0.5243],</pre>
       [-0.2176, -1.5115, 1.0111, -0.3339],
[ 0.3056, -1.2726, -1.2117, 0.1414]], requires_grad=True)>
 <bound method Tensor.backward of tensor([[-0.8094, -1.0744, 0.6850, 1.6515],</pre>
       [-0.1589, -1.5817, -0.0858, -0.3532],
```

[-0.1780, -0.2835, 0.2819, -0.5667]], requires_grad=True)>

처음에는 왼쪽에서 오른쪽으로 검정색을 따라 forward 연산이 진행이 된다. 그 후 loss를 계산하고 그 후 backward 연산이 수행된다.(빨간색) backward 연산에서 gradient들을 구하고 이에 따라가중치 w가 갱신이 된다.

3-2

```
#3
import torch
x = torch.randn(1,10)
prev_h = torch.randn(1,20)
w_h = torch.randn(20,20)
w_x = torch.randn(20,10)
# mm은 행렬의 곱셈 i2h와 h2h를 구함
i2h = torch.mm(w_x,x.t())
h2h = torch.mm(w_h, prev_h.t())
next_h = i2h + h2h
# 활성함수로 하이퍼볼릭 탄젠트 사용, next_h에 적용
next_h = next_h.tanh()
loss = next_h.sum()
# gradient 계산 Loss부터(마지막) 처음까지 역방향으로 계산
loss.backward
# 처음 일차적으로 계산이 이뤄 진 후 다시 뒤에서 부터 처음으로 gradient를 구하게 되고 이에 따라 Loss가 갱신이 된다.
```

<bound method Tensor.backward of tensor(4.1723)>

여기서 각 matrix를 생성 할 때, **requires_grad** 옵션을 true로 설정해 주지 않았기 때문에 backward과정에서 gradient값들이 자동으로 저장되지는 않는다. 여기서 보여주고자 하는 것은 간단한 예로부터 backward 연산에따라 gradient 나아가 weight가 변함을 보여준다.

```
N,D_{in}, H, D_{out} = 64, 1000, 100, 10
# requires_grad=False gradient가 자동적으로 저장되지 않는다.
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D out)
learning rate = 1e-6
k = []
for t in range(500):
   # Forward pass, y이 예측값을 구한다.
   h = x.mm(w1)
   #relu 함수정의. h의 값들은 0이상이다.
   h relu = h.clamp(min=0)
   #relu 와 w2 의 곱은 y pred
   y_pred = h_relu.mm(w2)
   # MSE로 Loss를 구한다.
   loss = (y pred - y).pow(2).sum()
   k.append(loss.data[0])
```

```
# 경사하강법(Gradient Descent)을 사용하여 가중치를 수동으로 갱신
w1 = w1-learning_rate * grad_w1
w2 = w2-learning_rate * grad_w2
# 2개의 층을 이용하여 신경망 학습을 진행, 이때 autogradient 를 하지 않고 수동으로 갱신.
plt.plot(k,"r--",linewidth=2,label="loss")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.show()
# 학습이 잘 이루어 지지 않는다. 왜냐하면 학습률이 너무 높기 때문이다. 학습률을 낮출 필요가 있다.
# 활성함수로 LELU를 사용 하였고, LOSS 함수로 MSE를 사용 하였으며 gradient는 경사하강법을 이용하여 구하였다,
```


4-2

학습이 잘 이루어 지지 않는다. 왜냐하면 학습률이 너무 높기 때문이다. 학습률을 낮추어야 필요가 있다. Forward 과정 후 backward과정이 이루어 지는데 이때, gradient값이 계속해서 초기화 되기 때문에 누적이 이루어 지지 않기 때문이다. 학습을 할 때, RELU 활성함수로 이용하였고 손실함수로 MSE를 사용하였다. 특히 backward과정이 수동으로 이루어 지기 때문에, 그에 따른 weight 또한 매 수행마다 갱신이 된다.

```
#5
N, D_in, H, D_out = 64, 1000, 100, 10
# 가중치를 저장하기 위해 무작위 값을 갖는 Tensor를 생성
#requires_grad=False gradient를 계산할 필요가 없다.
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# requires_grad=True로 설정하여 역전파 중에 이 Tensor들에 대한 gradient를 계산 함.
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning_rate = 10e-6
k = []
```

```
for t in range(500):
   # fowarad 연산을 사용하여 y 값을 예측
   # 4번과 같이 foward 단계가 완전히 동일하지만, backward는 직접 구현 하지 않음.
   #4번과 동일한 y_pred 값
   y_pred = x.mm(w1).clamp(min=0).mm(w2)
   # Tensor 연산을 사용하여 손실을 계산하고 출력
   # Loss.data[0]은 손실(Loss)의 스칼라 값
   loss = (y_pred - y).pow(2).sum()
   k.append(loss.data[0])
   # autograde를 사용하여 역전파 단계를 계산. 이는 requires_grad=True를 w1, w2에 대하여 모두 행해진다.
   loss.backward()
   # requires_grad flag 를 false로 만들고 가중치를 갱신, 이 때는 gradient가 자동으로 계산되지 않는다.
   # 경사하강법(Gradient Descent)을 사용하여 가중치를 수동으로 갱신
   with torch.no_grad():
      w1 -= learning_rate * w1.grad
      w2 -= learning_rate * w2.grad
```

```
# 가중치 갱신 후에는 수동으로 변화도를 6으로 만든다. 가중치의 누적을 막기 위해서이다.
w1.grad.zero_()
w2.grad.zero_()
plt.plot(k,"r--",linewidth=2,label="loss")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.show()
# 4번과 동일한 역활을 하지만 다르게 구현하였다. 5번의 경우 weight의 gradient 계산을 torch의 autograd 를 이용한 점
# (이는 연산 gradient를 추적하여 저장해준다)이 가장 큰 차이점이다.
# 나아가 5번에서는 가중치 갱신을 할 때, grad 값이 자동으로 자되지 않도록 grad flag를 false로 변경해 준다. 4번에서는 backward과정을
# 직접 점의하여 수행했다면, 5번에서는 backward과정을 torch 에서 점의 된 함수를 이용 하였다. 학습 결과는 동일하다.
# 마찬가지로 학습률이 너무 높기 때문에 올바르게 학습이 되지 않고 있다.
```


5-2

4번과 동일한 역할을 하지만 다르게 구현하였다. 5번의 경우 weight의 gradient 계산을 torch의 autograd 를 이용한 점(이는 연산 gradient를 추적하여 저장해준다)이 가장 큰 차이점이다.

나아가 5번에서는 가중치 갱신을 할떄, grad 값이 자동으로 저장되지 않도록 grad flag를 false로

변경해 준다. 4번에서는 backward과정을직접 정의하여 수행했다면, 5번에서는 backward과정을 torch 에서 정의 된 함수를 이용 하였다. 학습 결과는 동일하다. 마찬가지로 학습률이 너무 높기때문에 올바르게 학습이 되지 않고 있다. 학습률을 낮춘다면 학습이 더 잘될 것이다. 복잡한 코드를 간소화 했다.

```
#autograd 함수를 정의
class MyReLU(torch.autograd.Function):
   # torch.autograd.Function을 상속받아 사용자 정의 autograd 함수를 구현하고, fowarad 와 backward를 구현
 @staticmethod
 def forward(ctx, x):
      fowarad 단계에서는 입력을 갖는 Tensor를 받아 출력을 갖는 Tensor를 반환한다.
      ctx는 역전파 연산을 위한 정보를 저장하기 위해 사용하는 Context Object이다.
      ctx.save_for_backward method를 사용하여 역전파 단계에서 사용할 어떠한
      객체(object)도 저장해 둘 수 있다.
  ctx.save_for_backward(x)
  #x 의 값은 0이상이다 relu를 사용
   return x.clamp(min=0)
 def backward(ctx, grad_output):
      역전파 단계에서는 출력에 대한 손실의 변화도를 갖는 Tensor를 받고, 입력에
      대한 손실의 변화도를 계산한다다
   #foward 에서 저장한 값을 backward에서 받아온다. 3번의 backward과정과 동일하다.
   #이때 값은 0이상이다.
   x, = ctx.saved_tensors
   grad_x = grad_output.clone()
   grad_x[x < 0] = 0
   return grad_x
```

```
N, D_in, H, D_out = 64, 1000, 100, 10

# 가중치를 저장하기 위해 무작위 값을 갖는 Tensor를 생성
#requires_grad=False gradient를 계산할 필요가 없다.

x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# requires_grad=True로 설정하여 역전파 중에 이 Tensor들에 대한 gradient를 계산 함.
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
k = []
learning_rate = 10e-6
```

```
for t in range(500):
 ###Forward 과정 y의 예측치를 계산하는데, 이때 위에서 정의한 MyReLu를 이용한다
   y_pred = MyReLU.apply(x.mm(w1)).mm(w2)
 # mse 를 비용함수로 Loss를 구해준다.
   loss = (y_pred - y).pow(2).sum()
   k.append(loss.data[0])
#a = Loss.item()
   \#k = np.append(k,a)
   #t1 = np.append(t1,t)
# autograde를 사용하여 backward 를 계산
   loss.backward()
# requires_grad flag 를 false로 만들고 가중치를 갱신
   with torch.no_grad():
# 경사하강법을 이용하여 가중치(w) 를 갱신
      w1 -= learning_rate * w1.grad
      w2 -= learning_rate * w2.grad
# 가중치 갱신 후에는 수동으로 변화도를 0으로 만든다. backward 연산시 누적이 되기 때문.
   w1.grad.zero_()
   w2.grad.zero_()
plt.plot(k,"r--",linewidth=2,label="loss")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
```


plt.show()

5번과 비교하자면, 유사한 결과를 보여준다. 하지만 학습을 할 때, 제공되는 것이 아닌 직접 forward 연산과 backward 연산을 정의하였다. 이를 정의한 클래스는 myRelu이다. 결론적으로 말하자면 4,5,6번의 경우 동일한 학습결과를 보여준다. 여전히 학습률 때문에 학습이 잘 이루어 지지 않는다.

```
N, D_in, H, D_out = 64, 1000, 100, 10
# 가중치를 저장하기 위해 무작위 값을 갖는 Tensor를 생성
# requires_grad=False gradient를 계산할 필요가 없다.
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# 클래스를 생성해서 모델을 구성한다.
model = TwoLayerNet(D_in, H, D_out)
# 손실향수와 Optimizer를 만든다. SGD 생성자에서 model.parameters()를 호출하면
# 모델의 멤버인 2개의 nnLinear 모듈의 학습 가능한 매개변수들이 포함된다.
# 손실 함수를 nn에서 호출하여 사용한다.
# 스토캐스틱 경사 하강법을 사용. 램덤하게 추출한 일부 데이터에 대해 가중치를 조절. 뿐만아니라 학습률이 다르다.
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
```

```
k = []
for t in range(500):
#Forwardr과정, 앞서 정의한 TwoLayerNet을 이용한다.
y_pred = model(x)

# Loss를 계산한다.
loss = loss_fn(y_pred, y)
k.append(loss.data[0])

# 갱신할 Variable들에 대한 모든 변화도를 0으로 만든다. backward 연산을 수행 할 때마다 변화도가 누적되기 때문이다.
optimizer.zero_grad()
# backward 단계: 모델의 매개변수에 대한 손실의 변화도를 계산
loss.backward()
# backward 과정에서 얻은 gradient에 따라 parameter를 업데이트 해준다.
optimizer.step()
```

```
plt.plot(k,"r--",linewidth=2,label="loss")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.show()
```


7-2

6번과는 다른 방식으로 학습을 수행했다. 우선 TwoLayerNet이라는 클래스를 정의하여 앞에서는 backward과정을 위해 context를 저장 하는 것이 있었다면 여기서는 존재하지 않는다. 가장 큰 차이점은 다른 학습률과, weight를 조정할 때 스토캐스틱 경사 하강법을 사용 하여 그 결과가 다를 수 있다는 것이다. 다만 스토캐스틱 경사하강법을 사용했기에 속도는 더 빠르다. 즉 많은 학습데이터를 처리할 때 더 효율적이다. 6번에 비하여 학습률을 높였기 때문에 loss가 원하는 방향으로향하고 있다. 따라서 학습이 6번에 비하여 잘 되고 있다고 할 수 있다. 하지만 더 높인 다면 원하

는 방향에 더 가까워 질 것이다.

```
#8
from torch.utils.data import TensorDataset, DataLoader
N, D_in, H, D_out = 64, 1000, 100, 10

x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# 랜덤으로 생성한 배열들을 DataLoader 를 이용하여 학습시킬 준비를함. 이때 배치 사이즈는 8
loader = DataLoader(TensorDataset(x,y),batch_size=8)
# 7번에서 정의한 TwoLayerNet을 모델로 사용
model = TwoLayerNet(D_in,H,D_out)
# 스토캐스틱 하강범 사용, 학습률은 1e-2, 배치사이즈는 위에서 정의한 8
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
```

```
k = []
for epoch in range(20):
# y예측 값을 7번에서 정의한 모델로 구한다.
   for x_batch, y_batch in loader:
       y_pred = model(x_batch)
# Loss를 mse를 이용하여 구함.
       loss = torch.nn.functional.mse_loss(y_pred,y_batch)
# backward 과정(gradient 를 자동으로 계산해준다.)
       loss.backward()
# backward과정에서 얻은 gradient에 따라 parameter를 업데이트 해준다.
# step을 진행 시마다 gradient가 누적되기 때문에, step 진행후에 gradient를 zero_grad()를 호출 해주어야 한다.
       optimizer.step()
       optimizer.zero_grad()
   k.append(loss.data[0])
plt.plot(k,"r-",linewidth=2,label="loss")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.show()
```


7번과 비교 했을 때, 동일한 모델을 사용하여 예측값을 만들었고, 동일한 gradient algoritm(SGD)를 사용했다. 다만 배치 사이즈를 정의 해주었고 학습이 수행되는 횟수와, 학습률이 다르다. 결론적으로 배치 사이즈와 더 적절한 학습률 덕분에 loss가 점점 0으로 수렴해 가는 모습을 볼 수 있다. 따라서 학습이 잘 되어가고 있다고 말할 수 있다.

9.

```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import matplotlib.pyplot as plt
%matplotlib inline
# cuda의 사용 여부를 나타낸다.
is_cuda=False
if torch.cuda.is_available():
   is_cuda = True
# Compose 함수를 이용하여 입력데이터를 텐서로 변환 시키고 정규화 시킨다.
transformation = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])
# 훈련과 평가에 쓰일 MNIST데이터를 다운받고
# 훈련과 평가에 쓰일 데이터 셋을 정의 한다. 이때, 데이터를 앞서 정의한 transformation에 따라 변환시킨다.
train_dataset = datasets.MNIST('data/',train=True,transform=transformation,download=True)
test_dataset = datasets.MNIST('data/',train=False,transform=transformation,download=True)
# dataLoader를 이용하여 data를 Load 한다.
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=32,shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset,batch_size=32,shuffle=True)
```

```
# 무작위로 data를 추출한다.
sample_data = next(iter(train_loader))

def plot_img(image):
    image = image.numpy()[0]
    mean = 0.1307
    std = 0.3082
# mean 과 std를 이용하여 image를 정규화
    image = ((mean * image) + std)
# 이미지를 뿌려준다.
    plt.imshow(image,cmap='gray')

plot_img(sample_data[0][2])
```


9-2

plot_img(sample_data[0][1])


```
class Net(nn.Module):
  def __init__(self):
super().__init__()
# 2D convolution으로 conv1, conv2를 만들어 준다. weight 혹은 bias는 자동으로 처리해준다.
# 커널의 사이즈는 5X5로 생성을 한다.
     self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
# dropout을 설정해 준다. 입력 텐서의 전체 채널을 무작위로 0으로 만든다.
     self.conv2_drop = nn.Dropout2d()
      self.fc1 = nn.Linear(320, 50)
      self.fc2 = nn.Linear(50, 10)
   def forward(self, x):
# 컨볼루션 층을 지난 후 maxpooling을 2x2 사이즈로 진행하고(이때 최대 값을 뽑아냄), 이를 relu함수로 처리한다
      x = F.relu(F.max_pool2d(self.conv1(x), 2))
# 더 정교하게 진행 하기 위하여, drop out maxpooling을 2x2 사이즈로 진행하고(이때 최대 값을 뽑아냄), 이를 relu함수로 처리한다
      x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
# x를 다른 사이즈의 텐서로 생성. -1은 n*320 형태의 사이즈로 해줌을 의미. n은 자동으로 계산된다.
     x = x.view(-1, 320)
      x = F.relu(self.fc1(x))
      \#x = F.dropout(x,p=0.1, training=self.training)
x = self.fc2(x) 
# 그 후 얻은 값을 소프트맥스 함수를 이용하여 출력 값을 정규화
     return F.log_softmax(x,dim=1)
 model = Net()
 if is cuda:
       model.cuda()
 # 스토캐스틱 경사하강법을 0.01의 학습률적용 하는 optimizer 선언
 optimizer = optim.SGD(model.parameters(), lr=0.01)
 # 학습데이터를 불러온다.
 data , target = next(iter(train_loader))
 # model을 적용
 output = model(Variable(data))
 output.size()
 torch.Size([32, 10])
9-4
 target.size()
 torch.Size([32])
```

```
# model을 training 하기 위해서 정의한다.
 def fit(epoch,model,data_loader,phase='training',volatile=False):
           if phase == 'training':
                   model.train()
           if phase == 'validation':
 # test를 하기 위해 eval함수를 호출, train을 fale로 변경 시킨다.
                   model.eval()
                    volatile=True
           running_loss = 0.0
           running_correct = 0
           for batch_idx , (data,target) in enumerate(data_loader):
                    if is_cuda:
                             data,target = data.cuda(),target.cuda()
                    data , target = Variable(data, volatile), Variable(target)
 # training의 경우 gradient를 초기화 해준다.
                    if phase == 'training':
                             optimizer.zero_grad()
                   output = model(data)
 # Loss를 구한다. 분류 문제를 훈련시킬 때 많이 사용.nll 방식을 적용
                   loss = F.nll_loss(output,target)
 # batch Loss 를 더한다.
                    running_loss = running_loss+F.nll_loss(output,target,size_average=False).data[0]
 # max log-probability 를 구한다.
                   preds = output.data.max(dim=1,keepdim=True)[1]
 # 예측하여 얻은 값과 주어진 데이터가 얼마나 같은지를 비교하여 이를 누적해준다.
             running_correct = running_correct+preds.eq(target.data.view_as(preds)).cpu().sum()
 # training 의 경우 backpropogation 과정이 필요하다. 테스트의 경우에는 분류를 실제로 하기때문에 불필요하다.
             if phase == 'training':
                   loss.backward()
                   optimizer.step()
 # Loss를 구해준
       loss = running_loss/len(data_loader.dataset)
       accuracy = 100. *running_correct/len(data_loader.dataset)
 # {accuracy:{10}.{4}} 는 애러때문에 출력이 되지 않아서, 임시로 다른 방법을 사용했습니다. 그러나 Loss와
# accuacy는 정확하게 구해졌습니다.
       print(F'\{phase\}\ loss\ is\ \{loss:\{5\},\{2\}\}\ and\ \{phase\}\ accuracy\ is\ \{running\_correct\}/\{len(data\_loader.dataset)\}',format(accuracy,dataset)\}', format(accuracy,dataset), f
       return loss,accuracy
9-6
   plt.plot(range(1,len(train_losses)+1),train_losses,'bo',label = 'training loss')
  plt.plot(range(1,len(val_losses)+1),val_losses,'r',label = 'validation loss')
  plt.legend()
   <matplotlib.legend.Legend at 0x1d90470dd68>
     0.065
                                                                                                     training loss
                                                                                                     validation loss
     0.060
```


Epoch 가 수행될 때마다 loss의 변화를 보이는 그래프이다.

학습 초기에는 loss가 비교적 크지만, 학습이 진행에 따라 loss의 값이 0으로 수렴함을 볼 수 있다. 학습 이후에 테스트 시행 결과, validation loss 더 작아 진 것이 보인다. 이는 테스트시 분류를 잘고, 학습이 잘 수행되었음을 보인다.

9-7

```
plt.plot(range(1,len(train_accuracy)+1),train_accuracy,'bo',label = 'train accuracy')
plt.plot(range(1,len(val_accuracy)+1),val_accuracy,'r',label = 'val accuracy')
plt.legend()
```

<matplotlib.legend.Legend at 0x1d903cc2ac8>

Epoch 수행시의 정확도를 나타낸 그래프이다. 처음 학습부터 피팅이 잘되어 있어서 우수한 적중율을 보인다. 나아가 학습을 통하여 정확도를 더 높여주었고, 이에 따라 테스트에서 더 우수한 적중률을 보여준다.

10.

11.

1) 가중치 행렬

2) 로지스틱 시그모이드 함수 사용

```
def logit(z):
   return 1 / (1+np.exp(-z)) # 로지스틱 함수 의 정의
def relu(z):
   return np.maximum(0,z) #relu 함수의 정의
def derivative(f, z, eps=0.000001):
    return (f(z+eps)-f(z-eps))/(2*eps) #
z = np.array([1.0,1.0,0])
x = np.array([],float)
#로지스틱 시그모이드 함수를 활성함수로 사용
for k in u1:
   for t in k:
      temp = np.dot(z,t.T)
      x = np.append(x,logit(temp))
   z = []
  z = np.append(1.0,x)
   x = np.array([],float)
print(z[1],z[2])
```

0.7202129099819784 0.6080707687639114

3) Relu 함수 사용

```
for k in u1:
    for t in k:
        temp = np.dot(z,t.T)
        x = np.append(x,relu(temp))
    z = []
    z = np.append(1.0,x)
    x = np.array([],float)
print(z[1],z[2])
```

0.949 1.095

- 4) weight 가 변했을 때
- 1)로지스틱 시그모이드 함수

```
#로지스틱 시그 모이드 함수를 활성함수로 사용
#가중치 u3의 12를 0.9로변경
u1 = np.array([[[-0.3, 1.0, 1.2], [1.6, -1.0, -1.1]], [[1.0, 1.0, -1.0], [0.7, 0.5, 1.0]], [[0.5, -0.8, 0.9], [-0.1, 0.3, 0.4]], [[1.0, 0.1, -0.1, 0.3, 0.4]], [-0.1, 0.3, 0.4]], [-0.1, 0.3, 0.4]]
z = np.array([1.0,1.0,0])
for k in u1:
    for t in k:
        temp = np.dot(z,t.T)
        x = np.append(x,logit(temp))
    z = []
    z = np.append(1.0.x)
    x = np.array([],float)
o1_pred = (0-z[1])*(0-z[1])
o2_pred = (1-z[2])*(1-z[2])
loss_1 = o1_pred + o2_pred
print(loss 1)
0.6763389205358228
```

MSE를 이용하여 손실을 구하였다. 변경 전에는 0.6723151580020207 이고, 변경 후에는 0.6763389205358228 이다. 가중치가 작아졌을 때, 손실이 소폭 작아졌다.

2) Relu 함수를 이용

0.9096259999999998

Relu를 적용했을 때도 동일하다. 손실 값이 0.9096259999999999 에서 0.8838365으로 작아진 것이 보인다. 따라서 가중치를 변경 한다면, 오류의 값에 영향을 줌을 알 수 있다. 이를 이용하여 backward 과정에서 loss 값을 이용하여 weight를 조정하는데 이는 타당함을 알수 있다.

12. 계산과정은 다음과 같다.

```
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
2 & 2 & 2
\end{pmatrix}
\begin{pmatrix}
0 & 2 & 0 \\
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0
```

결과는 다음과 같다.

13.

1) w2 = (32-5+2*2)/2+1

H2 = (32-5+2*2)/2+1

D2 = 10

출력의 크기 = 32*32*10=10,240

매개변수의 수 = (5*5*3)*10+10 = 760

2) w2 = (32-3+2)/1+1

H2 = (32-3+2)/1+1

D2 = 64

출력의 크기 = 32*32*64 = 65,536

매개변수의 수 = (3*3*3)*64+64 = 1792

14.

$$\frac{2}{3} + \frac{4}{3} + \frac{4}$$