EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 16 — March 11, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Finish up proof of Lagrange's theorem
- Cyclic Groups

2 Lagrange's Theorem

- Lagrange's Theorem: If H is a subgroup of a finite group G, then |H| divides |G|.
- Lemma: Two right cosets of a subgroup are either equal or disjoint.
- Lemma: If H is a finite subgroup, then all its right cosets have the same cardinality.
- The proof of Lagrange's theorem follows from these two lemmas.

3 Cyclic Groups

- **Proposition:** Let G be a finite group. Assume multiplicative notation for the group operation. For $g \in G$, the set $\langle g \rangle = \{g, g^2, g^3, \ldots\}$ is a subgroup of G.
- $\langle g \rangle$ is called the *subgroup generated by g*. If the order of the subgroup is i, then i is called the order of g.
- **Definition:** Let G be a finite group and $g \in G$. The *order of* g is the smallest positive integer k with $g^k = 1$ where 1 is the identity of G.
- **Proposition:** Let G be a finite group of order m and let $g \in G$ have order k. Then $k \mid m$.
- **Definition:** A cyclic group is a finite group G such that there exists a $g \in G$ with $\langle g \rangle = G$. We say that g is a generator of G.
- **Proposition:** If G is a group of prime order p, then G is cyclic. Furthermore, all elements of G except the identity are generators of G.
- **Definition:** Groups G and H are isomorphic if there exists a bijection $\phi: G \to H$ such that

$$\phi(\alpha \star \beta) = \phi(\alpha) \otimes \phi(\beta)$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H.

- Example of group isomorphism
 - $-\mathbb{Z}_2 = \{0,1\}$ is a group under modulo 2 addition
 - $-R = \{1, -1\}$ is a group under multiplication

- Theorem: Every cyclic group G of order n is isomorphic to \mathbb{Z}_n with addition modulo n as the operation.
- Corollary: Every cyclic group is abelian.
- **Definition:** The Euler phi function $\phi(n)$ is defined on the positive integers as follows. We define $\phi(1) = 1$. For n > 1, the value of $\phi(n)$ is the number of integers in $\{1, 2, ..., n-1\}$ which are relatively prime to n, i.e. which satisfy $\gcd(i, n) = 1$.
- **Theorem:** A cyclic group of order n has $\phi(n)$ generators.
 - Examples
 - * $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ has four generators 1, 2, 3, 4
 - * $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ has two generators 1, 5
 - * $\mathbb{Z}_{10} = \{0, 1, 2, \dots, 9\}$ has four generators 1, 3, 7, 9
 - Proof
 - * Let $G = \langle q \rangle$.
 - * If g^i is also a generator of G, then $(g^i)^n = e$ and $(g^i)^k \neq e$ for all positive integers k < n.
 - * Since $g^n = e$, ik cannot be a multiple of n unless k = n. In other words, lcm(i, n) = in. This implies that gcd(i, n) = 1.

4 References and Additional Reading

- Section 8.3 from Katz/Lindell
- Section 7.3 of lecture notes of MIT's Principles of Digital Communication II, Spring 2005.
 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-readings-and-lecture-notes/MIT6_451S05_FullLecNotes.pdf
- Section 2.4 of Topics in Algebra, I. N. Herstein, 2nd edition