Probabilisitc Computing Lab Belhal KARIMI

The need for augmented intelligence

Policy advocate

"What are the comparable countries to Kenya in terms of everything we

know about the malnutrition rate of infants?"

Domain expert

"Recent work in development economics suggests sanitation standards

influence growth stunting in India but not in Africa."

Field researcher

"Here is new data on ~10,000 children in Bangladesh. Please update

all

relevant models and inform stakeholders."

Statistician

"Despite what the economists think, the p-value for this hypothesis

test

indicates that my mixed-effects model's finding of two different country clusters with respect to longitudinal variation in sanitation standards is not actually significant."

Main Research: Convergence accuracy of an inference program

- Inference program
- Which algorithm?
- Measure of accuracy:
 - ΚI $D_{KL}(Q_a(X)||P(X|y)) + \mathcal{L}(Q_a) = \log P(y)$
 - FI BO

$$\mathcal{L}(Q_a) = \mathrm{E}_{x \sim Q_a} \left[\log rac{ ilde{P}(x|y)}{Q_a(x)}
ight]$$

Even if log P is not known, this holds:

Algorithm 1 Single-particle MCMC algorithm

```
Require: K_1, \ldots, K_{T-1} are MCMC kernels and Q_1^{aug}, \ldots, Q_T^{aug} are aug-
    mentation distributions compatible with problem instance defined by
    P(\theta, z_{1:T}, y_{1:T})
```

- 1: $w \leftarrow 1$
- 2: $\theta^{(0)} \sim P(\Theta)$

 \triangleright Sample θ from the prior

▶ Augment the state space

- 3: $z_1^{(0)} \sim Q_1^{aug}(z_1|\theta^{(0)},y_1)$
- 4: for $t \leftarrow 1$ to T-1 do 5: $(\theta^{(t)}, z_{1:t}^{(t)}) \sim K_t(\theta, z_{1:t} | \theta^{(t-1)}, z_{1:t}^{(t-1)})$
- \triangleright Run the MCMC kernel K_t
- $z_{t+1}^{(t)} \sim Q_{t+1}^{aug}(z_{t+1}| heta^{(t)}, z_{1:t}^{(t)}, y_{1:t+1})$
- 7: $w \leftarrow w \cdot \frac{P(z_{t+1}^{(t)}, y_{t+1} | \theta^{(t)}, z_{1:t}^{(t)}, y_{1:t})}{Q_{sug}^{aug}(z_{t}^{(t)}, | \theta^{(t)}, z_{t}^{(t)}, y_{1:t+1})}$
- 8: end for
- 9: return $(\theta^{(T-1)}, z_{1:T}^{(T-1)}), w \triangleright \text{Return the sample } (\theta^{(T-1)}, z_{1:T}^{(T-1)}) \sim Q_a \text{ and }$ the weight w

$$\mathcal{L}(Q_{a_1}) \geq \mathcal{L}(Q_{a_2}) \implies \mathrm{D_{KL}}(Q_{a_1}(X)||P(X|y)) \leq \mathrm{D_{KL}}(Q_{a_2}(X)||P(X|y))$$

Main Research: Convergence accuracy of an inference program

- Two proofs
 - KL does not increase by applying Kernel
 - Log weight is a good estimate of lower bound on ELBO
- Result
 - Independent Metropolis Hastings
 - Random walk Metropolis Hastings

Gates Foundation Case

- Setting: UCS Satellites Database
 - 1167 rows (satellites) and 23 columns
 - Illustrations using 150 row subsample
 - Variables include, electrical, geopolitical, kinematic characteristics
 - Engineering note:
 - Schematics come from cleaned 'lovecat' states
 - Predictions come from 'gpmcc' states
- BayesDB capabilities illustrated:
 - Representing high-dimensional, incomplete, heterogeneously typed data
 - Estimating pairwise dependence probabilities from multiple GPMS
 - Generating simulations conditioned on hypotheticals

<u>UCS Satellites Database</u>: Raw Data

Data for Compass M4

	0
Name	Compass M4 (Beidou 2-13)
Country_of_Operator	China (PR)
Operator_Owner	Chinese Defense Ministry
Users	Military
Purpose	Navigation/Global Positioning
Class_of_Orbit	MEO
Type_of_Orbit	NaN
Perigee_km	21452
Apogee_km	21603
Eccentricity	0.00271
Period_minutes	773.21
Launch_Mass_kg	2200
Dry_Mass_kg	NaN
Power_watts	NaN
Date_of_Launch	41027
Anticipated_Lifetime	8
Contractor	Space Technology Research Institute (part of C
Country_of_Contractor	China (PR)
Launch_Site	Xichang Satellite Launch Center
Launch_Vehicle	Long March 3B
Source_Used_for_Orbital_Data	ZARYA
longitude_radians_of_geo	NaN
Inclination_radians	0.961676

Variable	Туре
Country_of_Operator	categorical
Operator_Owner	categorical
Users	categorical
Purpose	categorical
Class_of_Orbit	categorical
Type_of_Orbit	categorical
Perigee_km	normal
Apogee_km	normal
Eccentricity	normal
Period_minutes	normal
Launch_Mass_kg	normal
Dry_Mass_kg	normal
Power_watts	normal
Date_of_Launch	normal
Anticipated_Lifetime	normal
Contractor	categorical
Country_of_Contractor	categorical
Launch_Site	categorical
Launch_Vehicle	categorical
Source_Used_for_Orbital_Data	categorical
longitude_radians_of_geo	normal
Inclination_radians	normal

Red are nans

<u>UCS Satellites Database</u>: Relation between Dependence Probability Heatmap and clustering

ESTIMATE DEPENDENCE PROBABILITY FROM PAIRWISE COLUMNS OF generator

BACKUP

Machine learning requires many decisions

Machine learning results are unstable

Approach 1

drop missing, no coding, random forest, separate classifiers

Probably Egypt, definitely science

Approach 2

impute missing, binary coding, svm, joint classification

Approach 3

impute missing, no coding, random forest, separate classifiers

Probably India, probably science

STATISTICIAN

MML

"Use the data from this .CSV file."

"Choose whatever data types you think are reasonable --- I don't have any knowledge about that."

"Build me a quick-and-dirty ensemble of models that gives me some ability to quantify uncertainty." CREATE POPULATION satellites
FROM ucs_satellites.csv

CREATE METAMODEL ON satellites
USING default_metamodel(GUESS(*));

INITIALIZE 16 GENERATIVE POPULATION MODELS
FOR satellites;
ANALYZE satellites FOR 4 MINUTES;

Log weight is an estimate of ELBO

Since first proof

$$\begin{aligned} \mathrm{D_{KL}}(\mathbf{Q}^{mcmc}(X^{(T)})||P_{y_{1:T}}) &\leq \mathrm{D_{KL}}(\mathbf{Q}^{mcmc}(X^{(T-1)})||P_{y_{1:T}}) \\ \log p(y) - \mathcal{L}_{P_y}(\mathbf{Q}_K^{mcmc}(X^{(T)})) &\leq \log p(y) - \mathcal{L}_{P_y}(\mathbf{Q}_K^{mcmc}(X^{(T-1)})) \\ \mathcal{L}_{P_y}(\mathbf{Q}_K^{mcmc}(X^{(T-1)})) &\leq \mathcal{L}_{P_y}(\mathbf{Q}_K^{mcmc}(X^{(T)})) \end{aligned}$$

Note that $\mathbf{Q}_{K}^{mcmc}(X^{(T-1)})$ and $P_{y}(X^{(T-1)})$ are the marginal distributions of $X^{(T-1)}$ for \mathbf{Q}_{K}^{mcmc} and $\mathbf{P}_{y,K}^{mcmc}$, respectively. Therefore: $D_{\mathrm{KL}}(\mathbf{Q}_{K}^{mcmc}(X^{(T-1)})||P_{y}) \leq D_{\mathrm{KL}}(\mathbf{Q}_{K}^{mcmc}||\mathbf{P}_{y,K}^{mcmc})$

$$\begin{aligned} & \log p(y) - \mathcal{L}_{P_y}(\mathbf{Q}_K^{smc}(X^{(T-1)}) \leq \log p(y) - \mathcal{L}_{\mathbf{P}_y^{smc}}(\mathbf{Q}_K^{smc}) \\ & \mathcal{L}_{\mathbf{P}_y^{smc}}(\mathbf{Q}_K^{smc}) \leq \mathcal{L}_{P_y}(\mathbf{Q}_K^{smc}(X^{(T-1)})) \end{aligned} \quad \text{and finally}$$

$$\begin{aligned} & \mathcal{E}_{x^{(0:T-1)} \sim \mathbf{Q}_K^{smc}} \left[\log \frac{\tilde{\mathbf{p}}_{y,K}^{smc}(x^{(0:T-1)})}{\mathbf{q}_K^{smc}(x^{(0:T-1)})} \right] \leq \mathcal{L}_{P_y}(\mathbf{Q}_K^{smc}(X^{(T-1)})) \end{aligned} \quad \underbrace{ \begin{aligned} & \mathbf{E}\left[\log w\right] \leq \mathcal{L}_{P_y}(\mathbf{Q}_K^{smc}(X^{(T-1)})) \leq \mathcal{L}_{P_y}(\mathbf{Q}_K^{smc}(X^{(T-1)})) \\ & & \mathbf{E}\left[\log w\right] \leq \mathcal{L}_{P_y}(\mathbf{Q}_K^{smc}(X^{(T-1)})) \end{aligned}} \end{aligned} } \end{aligned}$$