

SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-03-11

DEL A

1. De tre planen med ekvationerna x-2y+z=4, x+y+z=2 och x+z=6 skär varandra parvis i tre olika linjer i rummet.

(a) Bestäm parameterformen för minst två av dessa linjer. (2 p)

(b) Avgör om de tre linjerna skär varandra i en punkt. (2 p)

Lösningsförslag. a)

Skärningspunkter mellan planen x-2y+z=4 och x+y+z=2 för vi genom att lösa systemet

$$\begin{cases} x - 2y + z = 4 \\ x + y + z = 2 \end{cases}$$

Med hjälp av Gaussmetoden får vi

$$\begin{cases} x-2y+z &= 4 \\ x+y+z &= 2 \end{cases} \Leftrightarrow \begin{cases} x-2y+z &= 4 \\ 3y &= -2 \end{cases} \Leftrightarrow \begin{cases} x-2y+z &= 4 \\ y &= -2/3 \end{cases}$$

Vi har två ledande variabler x och y och en fri variabel z. Vi betecknar z=t och får ekvationen för linjen L1 på parameterform:

$$(x, y, z) = (8/3 - t, -2/3, t)$$
 (L1)

På samma sätt löser vi

$$\begin{cases} x - 2y + z &= 4 \\ x + z &= 6 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z &= 4 \\ 2y &= 2 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z &= 4 \\ y &= 1 \end{cases}$$

Vi betecknar z = s och får ekvationen för linjen L2 på parameterform:

$$(x, y, z) = (6 - s, 1, s)$$
 (L2)

Den tredje linjen fås som lösningsmängd till ekvationssystemet

$$\begin{cases} x+y+z &= 2\\ x+z &= 6 \end{cases}$$

Denna linje L3 kan skrivas på parameterform som

$$(x, y, z) = (6 - t, -4, t)$$
 (L3).

b) Metod 1: För varje punkt på L1 är y= konstant=-2/3 och varje punkt på L2 har y=1. Därför finns det ingen skärningspunkt för L1 och L2. Alltså, de tre linjerna skär INTE varandra i en punkt.

Metod 2: En punkt som ligger på de tre linjerna måste också satisfiera planens ekvationer. Systemet

$$\begin{cases} x - 2y + z &= 4 \\ x + y + z &= 2 \\ x + z &= 6 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z &= 4 \\ 3y &= -2 \\ 2y &= 2 \end{cases} \Leftrightarrow \begin{cases} x - 2y + z &= 4 \\ y &= -2/3 \\ y &= 1 \end{cases}$$

saknar lösning. Alltså har de tre givna planen ínga gemensamma punkter och därmed har de tre linjerna ingen skärningspunkt.

- (a) -
- (b) Nej

2. Låt de tre vektorerna \vec{u} , \vec{v} och \vec{w} i \mathbb{R}^3 vara givna av

$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \text{och} \quad \vec{w} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}.$$

- (a) Visa att $\mathfrak{B} = (\vec{u}, \vec{v}, \vec{w})$ är en bas för \mathbb{R}^3 .
- (b) Bestäm koordinaterna för vektorn

$$\vec{e}_x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

med avseende på basen B.

(2 p)

Lösningsförslag. Det är nog att kolla att vektorerna \vec{u} , \vec{v} och \vec{w} är linjärt oberoende. Vi kollar vilka lösningar som finns till ekvationen

$$x\vec{u} + y\vec{v} + z\vec{w} = 0.$$

Denna vektorekvation ger ekvationssystemet som har totalmatris

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ -2 & 1 & -2 \end{bmatrix}$$

Vi andvänder elementära radoperationer för att bestämma lösningsmängden.

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ -2 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 3 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Vi ser nu att den enda lösningen till vektorekvationen är med x=y=z=0. Detta visar att våra tre kolonnvektorer är linjärt oberoende. Med andra ord är \vec{u}, \vec{v} och \vec{w} tre linjärt oberoende vektorer i R^3 och därför bildar vektorerna en bas i R^3 .

b) Koordinaterna som vi betecknar med x, y och z satisfierar vektorekvationen

$$x\vec{u} + y\vec{v} + z\vec{w} = \vec{e}$$

som vi kan skriva som ekvationssystem

$$\begin{cases} x+y-z &= 1 \\ -x &+z &= 0 \\ -2x+y-2z &= 0 \end{cases} \sim \begin{cases} x+y-z &= 1 \\ y &+ &= 1 \\ 3y-4z &= 2 \end{cases} \sim \begin{cases} x+y-z &= 1 \\ y &= 1 \\ -4z &= -1 \end{cases}$$

Härav får vi koordinaterna x = 1/4, y = 1 och z = 1/4.

4

Svar.

- (a) -
- (b) Koordinatmatrisen är

$$\begin{bmatrix} 1/4 \\ 1 \\ 1/4 \end{bmatrix}$$

•

3. Betrakta följande matris:

$$A = \left[\begin{array}{cc} 2 & 3 \\ -1 & -2 \end{array} \right]$$

(a) Bestäm en
$$2 \times 2$$
-matris S så att $S^{-1}AS$ är en diagonalmatris. (2 p)

(b) Bestäm A^{999} . (2 p)

Lösningsförslag. En matris av typ 2×2 kan diagonaliseras om och endast om matrisen har två st linjärt oberoende egenvektorer (se kursboken). Först bestämmer vi matrisens egenvärden och egenvektorer. Vi börjar med att bestämma nollställen till det karakteristiska polynomet $\det(A - \lambda I)$. Vi har

$$\det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -1 & (-2 - \lambda) \end{vmatrix} = \lambda^2 - 1 = 0 \Rightarrow (\lambda_1 = -1, \lambda_2 = 1)$$

Motsvarande egenvektorer till $\lambda_1 = -1$ får vi ur ekvationen

$$(A - \lambda I)\vec{v} = \vec{0} \Rightarrow \begin{bmatrix} 3 & 3 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \vec{v} = t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

En egenvektor som svarar mot $\lambda_1 = -1$ är t ex

$$\vec{v}_1 = \left[\begin{array}{c} -1\\1 \end{array} \right]$$

På samma sätt finner vi att

$$\vec{v}_2 = \begin{bmatrix} -3\\1 \end{bmatrix}$$

är en egenvektor som svarar mot $\lambda_2 = 1$. Matrisen A har två styck linjärt oberoende egenvektorer och därmed kan diagonaliseras. Egenvektorer är kolonner i den sökta matrisen S. Alltså

$$S = \left[\begin{array}{cc} -1 & -3 \\ 1 & 1 \end{array} \right]$$

Vi kan även kontrollera att

$$S^{-1}AS = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right] = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right]$$

b) Vi betecknar

$$D = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right]$$

Från $S^{-1}AS = D$ har vi $A = SDS^{-1}$. Därför

$$A^{999} = (SDS^{-1})^{999} = SDS^{-1}SDS^{-1} \cdots SDS^{-1} = SD^{999}S^{-1}$$

$$A^{999} = \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^{999} \cdot \frac{1}{2} \begin{bmatrix} 1 & 3 \\ -1 & -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ -1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$$

- (a) En lösning är matrisen $S = \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix}$ Anmärkning. Korrekt lösning är varje matris S vars kolonner är egenvektorer till matrisen A.
- (b) Vi har att $A^{999} = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$

DEL B

4. Betrakta de linjära avbildningarna $S: \mathbb{R}^4 \to \mathbb{R}^3$ och $T: \mathbb{R}^3 \to \mathbb{R}^2$ som ges av

$$S\left(\left[\begin{array}{c} x \\ y \\ z \\ w \end{array}\right]\right) = \left[\begin{array}{c} x - y \\ y + z \\ w \end{array}\right] \quad \text{och} \quad T\left(\left[\begin{array}{c} x \\ y \\ z \end{array}\right]\right) = \left[\begin{array}{c} x + 3y \\ y - 4z - x \end{array}\right].$$

- (a) Vilken av de båda sammansättningarna $S \circ T$ och $T \circ S$ är definierad? (1 p)
- (b) Bestäm standardmatrisen för den sammansättning F som är defininerad enligt del (a).
 - (2 p) (1 p)

(c) Bestäm dimensionen av bildrummet im(F).

Lösningsförslag. a) Sammansättning $T \circ S$ är definierad eftersom värdemängden till S är en delmängd av T:s definitionsmängd \mathbb{R}^3 .

Sammansättningen $S \circ T$ är **inte** definierad eftersom T:s värdemängden \mathbb{R}^2 är inte en delmängd av S:s definitionsmängden \mathbb{R}^4 .

b) Om vi betecknar med A_S och A_T standardmatriser för S och T då är $A_T A_S$ den standardmatrisen för sammansättningen F. Eftersom

$$A_T = \begin{bmatrix} 1 & 3 & 0 \\ -1 & 1 & -4 \end{bmatrix} \text{ och } A_S = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

har vi att

$$A_F = A_T A_S = \left[\begin{array}{rrr} 1 & 2 & 3 & 0 \\ -1 & 2 & 1 & -4 \end{array} \right]$$

är standardmatrisen för F.

En alternativ lösning för b-delen:

Vi direkt beräkna sammansättningen $F = T \circ S$:

$$F\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = T\left(S\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right)\right) = T\left(\begin{bmatrix} x-y \\ y+z \\ w \end{bmatrix}\right)$$
$$= \begin{bmatrix} (x-y) + 3(y+z) \\ (y+z) - 4w - (x-y) \end{bmatrix} = \begin{bmatrix} x+2y+3z \\ -x+2y+z-4w \end{bmatrix}.$$

Härav ser vi att standardmatrisen för F är $A_F = \begin{bmatrix} 1 & 2 & 3 & 0 \\ -1 & 2 & 1 & -4 \end{bmatrix}$.

c) Dimensionen av bildrummet im(F) är lika med standardmatrisens kolonnrang (maximala antalet linjärt oberoende kolonnvektorer)

Eftersom

$$\left[\begin{array}{cccc} 1 & 2 & 3 & 0 \\ -1 & 2 & 1 & -4 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & 2 & 3 & 0 \\ 0 & 4 & 4 & -4 \end{array}\right] \sim \left[\begin{array}{cccc} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & -1 \end{array}\right]$$

ser vi att kolonnrangen är 2 (två ledande ettor i matrisens trappform) dvs dimensionen av bildrummet im(F) är 2.

- (a) Sammansättningen $T \circ S$.
- (b) Standardmatrisen är $\begin{bmatrix} 1 & 2 & 3 & 0 \\ -1 & 2 & 1 & -4 \end{bmatrix}$ (c) Bildrummet har dimension 2.

5. Betrakta föliande delrum i \mathbb{R}^3 .

$$U_1 = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}, U_2 = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

- (a) Bestäm en nollskild vektor som ligger i både U_1 och U_2 . (1 p)
- (b) Bestäm en vektor i U_1 som inte ligger i U_2 . (2 p)
- (c) Visa att skärningen av de båda delrummen är en linje genom origo. (1 p)

Lösningsförslag. a) Varje vektor är en linjärkombination av basvektorerna för delrummet. I U_2 betyder det att första och tredje koordinaten måste vara lika för varje vektor i U_2 eftersom den andra basvektorn är noll och den första basvektorn 1 för båda koordinaterna. I U_1 har den första basvektorn denna egenskap, men inte den andra basvektorn. Det betyder att en varje vektor i skärningen av de två rummen är en multipel av den första basvektorn i U_1 .

Ett alternativt sätt att lösa en sådan uppgift är att först genomföra elementära (kolumn-)operationer för att sedan lättare se hur en gemensam vektor kan se ut.

- b) Här kan man, enligt resonemanget i a) ta vilken vektor som helst i U_1 som har olika första och redje koordinat. T.ex. den andra basvektorn för U_1 .
- c) Notera att $\dim(U_1) = \dim(U_2) = 2$. Eftersom de har en gemensam vektor enligt a) så är $\dim(U_1 \cap U_2) \geq 1$ men eftersom det finns en vektor i U_1 som inte tillhör U_2 enligt b) så är $\dim(U_1 \cap U_2) < 2$ alltså måste $\dim(U_1 \cap U_2) = 1$. Skärningen är alltså en linje och eftersom origo tillhör båda delrummen så går den linjen genom origo.

Svar.

(c)

(a) En sådan vektor är
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
.

(b) En sådan vektor är $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$

- 6. En ljusstråle som går genom punkten P(3,3,5), parallellt med vektorn $\vec{v} = \begin{bmatrix} -1 \\ -1 \\ -4 \end{bmatrix}$ reflekteras i planet x+y+z=5. Den reflekterade strålen skär planet x+y=50 i punkten Q. Bestäm koordinaterna till punkten Q.
- **Lösningsförslag.** Linjen (ljustrålen) L_1 genom punkten P med riktningsvektorn $\vec{v} = (-1, -1, -4)$ har ekvationen

$$(x, y, z) = (3, 3, 5) + t(-1, -1, -4)$$

och skär planet x+y+z=5 i punkten A(2,2,1). Låt L_n vara linjen som går genom punkten A vinkelrät mot planet x+y+z=5 dvs med riktningsvektor $\vec{n}=(1,1,1)$. En riktningsvektor för den reflekterade strålen är \overrightarrow{AC} som är spegelbilden av \overrightarrow{AP} i linjen L_n . Först bestämmer vi projektionen av vektorn \overrightarrow{AP} på linjen L_n ,

$$\overrightarrow{AB} = proj_{\vec{n}}(\overrightarrow{AP}) = \frac{\overrightarrow{AP} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n} = (2, 2, 2)$$

Nu beräknar vi riktningsvektor för den reflekterade strålen

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{PB} = \overrightarrow{AB} + (\overrightarrow{AB} - \overrightarrow{AP}) = 2\overrightarrow{AB} - \overrightarrow{AP} = (3, 3, 0)$$

Därmed har den reflekterade strålen följande parameter representation

$$(x, y, z) = (2, 2, 1) + t(3, 3, 0).$$
 (L₂)

Vi substituerar

$$x = 2 + 3t,$$
 $y = 2 + 3t,$ $z = 1$

i ekvationen x+y=50, får t=13/3 och därefter x=25,y=25,z=1 . Linjen L_2 skär alltså planet x+y=50 i punkten Q(25,25,1).

Anmärkning. Punkterna P och Q ligger på sama sidan av planet x+y+z=5 eftersom $\vec{AP}\cdot\vec{n}$ och $\vec{AQ}\cdot\vec{n}$ har samma tecken.

Svar.

(a) Den sökta punkten är (25, 25, 1).

DEL C

7. Låt A vara en symmetrisk 3×3 -matris som har följande vektorer som egenvektorer:

$$\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad \text{och} \quad \vec{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

Visa att A bara har ett egenvärde.

(4 p)

Lösningsförslag. Metod 1. En 3×3 matris kan diagonaliseras om och endast om den har 3 st linjärt oberoende egenvektorer. De tre givna egenvektorerna

$$\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ och } \vec{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

3 st linjärt oberoende egement $\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ och } \vec{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ är linjärt oberoende eftersom $\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 1 \neq 0.$ Därför kan matrisen A diagonalise-

$$A = PDP^{-1}$$

Kolonner i

$$P = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{array} \right]$$

är matrisens egenvektorer \vec{u}, \vec{v} och \vec{w} . Inversen blir (kontrollera själv)

$$P^{-1} = \left[\begin{array}{rrr} 1 & -1 & 1 \\ 0 & 1 & -1 \\ -1 & 2 & -1 \end{array} \right]$$

 $D = \left[\begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right]$ är den diagonalmatris vars diagonalen består av egenvärden tillhörande

 \vec{u} , \vec{v} och \vec{w} som vi betecknar med $\lambda_1 = a$, $\lambda_2 = b$ och $\lambda_3 = c$.

Vi ska bevisa att a = b = c med hjälp av antagandet att matrisen A är en symmetrisk matris.

Först beräknar vi

$$A = PDP^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} a & -a & a \\ 0 & b & -b \\ -c & 2c & -c \end{bmatrix}$$

$$= \begin{bmatrix} a & (-a+b) & (a-b) \\ (a-c) & (-a+2c) & (a-c) \\ (a-c) & (-a-b+2c) & (a+b-c) \end{bmatrix}$$

Eftersom A är en symmetrisk matris har vi följande tre villkor:

$$a - c = -a + b \qquad \text{(ekv1)}$$

$$a - c = a - b$$
 (ekv2)

$$-a - b + 2c = a - c \qquad \text{(ekv3)}$$

Från (ekv2) har vi b=c som vi substituerar i (ekv1) och (ekv3) och får a=b Alltså a=b=c. Med andra ord $\lambda_1=\lambda_2=\lambda_3=c$, dvs A har ett egenvärde (av multipliciteten 3), vad skulle bevisas.

Anmärkning: Matrisen A blir då $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$

Metod 2. Två egenvektorer till en symmetrisk matris som tillhör olika egenvärden måste vara ortogonala (Sats 8.1.2. i kursboken). Med andra ord, om två egenvektorer till den **symmetriska matrisen** A **inte är ortogonala** då tillhör egenvektorerna **samma egenvärde**.

Låt λ_1, λ_2 och λ_3 vara egenvärden som svarar mot de linjärt oberoende vektorerna \vec{u}, \vec{v} resp. \vec{w} .

Eftersom $\vec{u} \cdot \vec{w} = 2 \neq 0$ drar vi slutsats att vektorerna \vec{u} och \vec{w} tillhör samma egenvärde , dvs

$$\lambda_1 = \lambda_3 \tag{*}$$

Från $\vec{v} \cdot \vec{w} = -1 \neq 0$ följer att vektorerna \vec{v} och \vec{w} tillhör samma egenvärde , dvs

$$\lambda_2 = \lambda_3 \tag{**}$$

Från (*) och (**) har vi att

$$\lambda_1 = \lambda_2 = \lambda_3$$

vad skulle bevisas.

Svar.

(a) -

8. Ett delrum av \mathbb{R}^4 som ges av en enda nollskild ekvation

$$ax_1 + bx_2 + cx_3 + dx_4 = 0,$$

kallas ett **hyperplan**. Vektorn $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}^T$ och dess nollskilda multipler utgör hyperplanets **nor-**

malvektorer. Vi säger att två hyperplan är **vinkelräta** mot varandra om deras normalvektorer är ortogonala.

Bestäm två hyperplan i \mathbb{R}^4 som är vinkelräta mot varandra och mot hyperplanen som ges av ekvationerna x+w=0 och 2x+y+z+2w=0.

Lösningsförslag. De två givna hyperplanen har normalvektorerna

$$\vec{n}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \text{ och } \vec{n}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

Först bestämmer vi alla vektorer $\vec{n} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ som är ortogonala mot både \vec{n}_1 och \vec{n}_2 ge-

nom att lösa systemet

$$\begin{cases} \vec{n}_1 \cdot \vec{n} &= 0 \\ \vec{n}_2 \cdot \vec{n} &= 0 \end{cases}$$

dvs

$$\begin{cases} a+d &= 0 \\ 2a+b+c+2d &= 0 \end{cases} \sim \begin{cases} a+d &= 0 \\ b+c &= 0 \end{cases} \sim \begin{cases} a &= -d \\ b &= -c \end{cases}$$

där c och d är fria variabler. Alltså

$$\vec{n} = \begin{bmatrix} -d \\ -c \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ -c \\ c \\ 0 \end{bmatrix} + \begin{bmatrix} -d \\ 0 \\ 0 \\ d \end{bmatrix} = c \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

ger vektorer som är ortogonala mot både \vec{n}_1 och \vec{n}_2 . Bland de kan vi välja två t ex

$$\vec{n}_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$
 och $\vec{n}_4 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ som är dessutom ortogonala sinsemellan. Motsvarande hyperplan är $-u + z = 0$ och $-x + w = 0$

Svar.

(a) Hyperplanen ges av ekvationerna y-z=0 och x-w=0

- 9. Låt \vec{u} , \vec{v} och \vec{w} vara tre linjärt oberoende vektorer i rummet och låt A vara matrisen som har dessa vektorer som kolonner. Bilda matrisen B genom att låta dess rader bestå av vektorerna $\vec{v} \times \vec{w}$, $\vec{w} \times \vec{u}$ och $\vec{u} \times \vec{v}$.
 - (a) Visa att BA är en multipel av identitetsmatrisen I_3 . (2 p)
 - (b) Använd detta till att beräkna inversmatrisen till

$$\begin{bmatrix} 1 & 7 & 1 \\ 1 & 6 & -2 \\ 1 & 5 & 1 \end{bmatrix}.$$

(2 p)

Lösningsförslag. a) Vi börjar med att notera att då vektorerna \vec{u}, \vec{v} och \vec{w} är linjärt oberoende, vill talet $p = \vec{v} \times \vec{w} \cdot \vec{u}$ vara nollskilld. Fördi, $\vec{v} \times \vec{w}$ är noll-skilld, och vinkelrät på \vec{v} och \vec{w} . Vi har att \vec{u} inte är ortogonal på $\vec{v} \times \vec{w}$, och det följer att $\vec{v} \times \vec{w} \cdot \vec{u} = p \neq 0$.

Låt
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
 och $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$, och slutligen att $\vec{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Vi har att

$$\vec{v} \times \vec{w} \cdot \vec{u} = (v_2 w_3 - w_2 v_3) a + (w_1 v_3 - v_1 w_3) b + (v_1 w_2 - v_2 w_1) c.$$

Detta kan vi skriva som

$$(v_3b - v_2c)w_1 + (v_1c - v_3a)w_2 + (v_2a - v_1b)w_3 = \vec{u} \times \vec{v} \cdot \vec{w}$$

Det följer nu att

$$(\vec{v} \times \vec{w}) \cdot \vec{u} = (\vec{u} \times \vec{v}) \cdot \vec{w} = (\vec{w} \times \vec{u}) \cdot \vec{v}.$$

Om vi använder identiteten ovan, samt att kryssprodukten av två vektorer är vinkelrät på dessa vektorer, så har vi att matrisenprodukten BA = p1.

b)

Från

$$BA = pI_3$$

får vi

$$(\frac{1}{p}B)A = I_3.$$

Enligt definitionen för inversmatris har vi

$$A^{-1} = \frac{1}{p}B,$$
 $d\ddot{a}rp = (\vec{v} \times \vec{w}) \cdot \vec{u}$

Vi betecknar
$$\vec{u} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 7\\6\\5 \end{bmatrix} \text{ och } \vec{w} = \begin{bmatrix} 1\\-2\\1 \end{bmatrix}$$
 och beräknar

$$\vec{v} \times \vec{w} = (16, -1, -20)$$
 (rad 1 i B)
 $\vec{w} \times \vec{u} = (-3, 0, 3)$ (rad 2 i B)

$$\vec{u} \times \vec{v} = (-1, 2, -1) \qquad \text{(rad 3 i B)}$$
 och
$$p = p = (\vec{v} \times \vec{w}) \cdot \vec{u} = -6.$$
 Härav
$$A^{-1} = \frac{1}{p}B = \frac{-1}{6} \begin{bmatrix} 16 & -2 & -20 \\ -3 & 0 & 3 \\ -1 & 2 & -1 \end{bmatrix} = \begin{bmatrix} -8/3 & 1/3 & 10/3 \\ 1/2 & 0 & -1/2 \\ 1/6 & -1/3 & 1/6 \end{bmatrix}$$

(b) Inversen är
$$A^{-1} = \begin{bmatrix} -8/3 & 1/3 & 10/3 \\ 1/2 & 0 & -1/2 \\ 1/6 & -1/3 & 1/6 \end{bmatrix}$$