Отчёт по лабораторной работе №3

Шифрование Гаммированием

Студент: Гонсалес Ананина Луис Антонио, 1032175329

Группа: НФИмд-02-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цель работы	4
2	Теоретические сведения	5
3	Выполнение работы	7
4	Выводы	9
Сп	писок литературы	10

List of Figures

2.1	Таблица .																	5
2.2	Таблица2							•						•			•	6
3.1	Код																	7
3.2	Код1																	8
3 3	Кол2																	8

1 Цель работы

Цель данной лабораторной работы- изучить теорию и реализовать алгоритм шифрования гаммированием с конечной гаммой.

2 Теоретические сведения

Шифры гаммирования (аддитивные шифры) являются самыми эффективными с точки зрения стойкости и скорости преобразований. Для зашифрования и дешифрования используются элементарные арифметические операции — открытое/зашифрованное сообщение и гамма, представленные в числовом виде, складываются друг с другом по модулю (mod). Напомним, что результатом сложения двух целых чисел по модулю является остаток от деления (например, $5+10 \mod 4 = 15 \mod 4 = 3$).

В шифрах гаммирования может использоваться сложение по модулю N (общий случай) и по модулю 2 (частный случай, ориентированный на программно-аппаратную реализацию).

Сложение по модулю N. В 1888 г. француз маркиз де Виари в одной из своих научных статей, посвященных криптографии, доказал, что при замене букв исходного сообщения и ключа на числа справедливы формулы:

 $Ci = (Pi + Ki) \mod N$

 $Pi = (Ci + N - Ki) \mod N$

где Pi, Ci - i-ый символ открытого и шифрованного сообщения; N - количество символов в алфавите; Ki - i-ый символ гаммы (ключа).

Α	Б	В	Γ	Д	Е	Ë	Ж	3	И	Ň	К	Л	М	I	0	П	Р	О	Т	У	Φ	Х	Ц	Т	Е	E	Ъ	Ы	Ъ	Э	Ю	Я
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

Figure 2.1: Таблица

Например, для шифрования используется русский алфавит (N = 33), открытое

сообщение – «АБРАМОВ», гамма – «ЖУРИХИН». При замене символов на числа буква А будет представлена как 0, Б-1, ..., Я-32. Результат шифрования показан в следующей таблице [1].

	открытого	Α	Б	Р	Α	М	0	В
С	сообщения, Р _і	0	1	17	0	13	15	2
И М	гаммы, K _i	Ж	У	Р	И	Χ	И	I
В		7	20	17	9	22	9	14
о Л	шифрограммы, С _і	Ж	Φ	Б	И	В	Ч	П
	шифрограмимы, О	7	21	1	9	2	24	16

Figure 2.2: Таблица2

3 Выполнение работы

Figure 3.1: Код

Figure 3.2: Код1

```
'a': 33)

In [30]: def gamma(message,password,m):
    message=[index[i] for i in message.lower()]
    password=[index[i] for i in password.lower()]
    print("Message: ",message)
    print("Password: ", password)

    gamma_message=[]
    for idx,char in enumerate(message):
        cod= char + password[idxklen(password)]%m
        gamma_message + [cod]

    text_gamma - ''.join([alphabet[i-1] for i in gamma_message]).upper()
    return gamma_message, text_gamma

In [35]: gamma_message= gamma('npwka3', 'ramwa', 33)

    Message: [17, 18, 10, 12, 1, 9]
    Password: [4, 1, 14, 14, 1]

In [36]: gamma_message

Out[36]: ([21, 19, 24, 26, 2, 13], 'YCLUMEA'))

In []:
```

Figure 3.3: Код2

4 Выводы

В итоге в данной лабораторной работы я изучил теорию и реализовал алгоритм шифрования гаммированием с конечной гаммой.

Список литературы

1. Шифры гаммирования [Электронный ресурс]. Википедия, 2021. URL: http s://sites.google.com/site/anisimovkhv/learning/kripto/lecture/tema6.