

$\mathrm{ET}660$ - Séries Temporais para Atuária - Prova02 - 2020/2

Profa. Francyelle L. Medina

Questões:

1 - Seja $\{w_t; t=0,1,\ldots\}$ um processo de ruído branco, com variância σ_w^2 e seja uma constante $|\phi|<1$. Considere $x_0=w_0$ e o processo

$$x_t = \phi x_{t-1} + w_t, \quad t = 1, 2, \dots$$

- (a) **(0,5 pto)** Mostre que $x_t = \sum_{j=0}^t \phi^j w_{t-j}$, para $t = 0, 1, \dots$
- (b) (1 pto) Mostre que para t = 0, 1, ...,

$$var(x_t) = \frac{\sigma_w^2}{1 - \phi^2} \left(1 - \phi^{2(t+1)} \right).$$

(c) (1 pto) - Encontre uma representação simplificada para a função de autocovariância da série x_t , denotada por $\gamma_x(h)$, para $h \geq 0$. e mostre que

$$\gamma_x(h) = \phi^h var\left(x_{t+h}\right).$$

- (d) (0,5 pto) O processo x_t é estacionário?
- (e) (1 pto) Argumente que, quando $t \to \infty$, o processo se torna estacionário, então de certa forma, x_t é "assintoticamente estacionário".
- (f) (1 pto) Suponha que

$$x_0 = \frac{w_0}{\sqrt{1 - \phi^2}}.$$

Sob esta condição, x_t é estacionário?

2 - (2 ptos) Seja o processo

$$x_t = 0, 2x_{t-1} + 0, 35x_{t-2} - 0, 7w_{t-1} + w_t,$$

em que $w_t \sim RB(0, \sigma_w^2)$.

Verfique se o processo é causal e/ou invertível. Justifique teoricamente sua resposta.

- **3** Considere o processo MA(5), definido por $x_t = \theta(B)a_t$, em que $a_t \sim RB(0, \sigma_a^2)$.
 - (a) (1 pto) Encontre uma representação simplificada para a função de autocovariância da série x_t , denotada por $\gamma_x(h)$, para $h \ge 0$.
 - (b) (1 pto) Encontre a função de autocorrelação da série x_t e comente os resultados obtidos no item (a) e (b).
 - 4 Considere o processo AR(2) dado por

$$x_t = 0, 5x_{t-1} - 0, 4x_{t-2} + w_t,$$

em que $w_t \sim RB(0, \sigma_w^2)$.

- (a) (1 **pto**) O processo x_t é estacionário? Justifique sua resposta.
- (b) (1 pto) Obtenha os valores de $\rho_x(h)$, para h = 1, 2, 3.