Национална олимпиада по Информационни технологии 2024/2025

Проект 227: "Манос Футури"

1. Тема:

Разработка и внедряване на интелигентна система за автоматизирано управление на роботизирани крайници, базирана на компютърно зрение

2. Автори:

Имена: Момчил Стоянов Инджов

ΕΓΗ: 0741290486

Адрес: гр.Бургас, ул. Левски №27 **E-mail:** momchilindzov@gmail.com

Училище: ППМГ "Акад. Никола Обрешков" – гр. Бургас

Имена: Ивайла Георгиева Христова

ΕΓΗ: 0648050518

Адрес: гр. Бургас, ж.к. "Братя Миладинови" блок 66

E-mail: ighristova5@gmail.com

Училище: ППМГ "Акад. Никола Обрешков" – гр. Бургас

3. Ръковолител:

Име: д-р Александър Иванов

Телефон: 0988378335 **E-mail:** alex.ivanov@bfu.bg

Длъжност: Старши учител по Информатика и ИТ

4. Описание на проекта

4.1. Цели

Проектът Manos Futuri има за цел разработката на усъвършенствана система за управление на роботизирани крайници чрез компютърно зрение. Потенциални приложения системата може да намери в следните области:

- Медицина Роботизираните ръце могат да бъдат използвани за извършване на операции от разстояние, като анализират предварително записано видео или работят в реално време под контрола на хирург. Това би позволило извършване на животоспасяващи процедури в труднодостъпни или рискови зони.
- Фабрики и индустрия Системата може да бъде интегрирана в автоматизирани производствени линии, където роботизираните ръце възпроизвеждат заучени

движения с висока точност. Това би оптимизирало производствените процеси и би намалило нуждата от човешка намеса в опасни или повторяеми задачи.

• Военна индустрия — Manos Futuri може да се използва в армията за обезвреждане на експлозиви, работа в опасни зони и дистанционно управление на тактически роботи, което би минимизирало риска за човешкия живот.

•

4.2. Основни етапи в реализирането на проекта

Проектът преминава през няколко ключови етапа, гарантиращи надеждност и ефективност.

4.2.1. Избор на концепция и технологии

Изследване на съществуващи системи за управление на роботизирани ръце.

Определяне на целите – използване на компютърно зрение за разпознаване ивъзпроизвеждане на движения.

Избор на технологии

4.2.2. Разработка на модули

А) Разпознаване на движения

Заснемане на видео и обработка на кадри.

Разпознаване на ръце и пръсти чрез ключови точки.

Анализ на движенията и тяхната точност.

Б) Запис и съхранение на видео

Заснемане на видео от уебкамера.

Оптимизация на кадрите и компресиране.

Автоматично именуване и организиране на файловете.

4.2.3. Интеграция на системата

Свързване на модула за разпознаване на движения с видеозаписа.

Създаване на интерфейс за контрол (старт/стоп, индикатори).

4.2.4. Тестване и оптимизация

Проверка на точността на разпознаване.

Тестване при различни условия (осветление, честота на кадрите).

Оптимизация за по-ниско натоварване на хардуера.

4.2.5. Финална подготовка и внедряване

Дизайн на графичен интерфейс (GUI).

Създаване на документация.

Провеждане на тестове и демонстрация на възможностите на Manos Futuri

4.3. Ниво на сложност:

В проекта се използват популярни технологии, което улеснява писането на програмен код. Въпреки това проектът е с висока степен на персонализация, което го класифицира като средно ниво на сложност.

4.4. Логическо и функционално описание

4.4.1. Функционално описание

Проектът е реализиран чрез код на езика Python. Програмата може да записва определени пози на ръцете чрез камерата и да ги запазва като изображения. След това, при стартиране на друг режим, роботизираните ръце трябва да могат да възпроизведат заснетите пози. Основните функционалности включват:

- Визуализация на камерата: Програмата улавя видео поток от уеб камера и го показва в графичен интерфейс.
- **Графичен интерфейс:** Използва се библитеката *Tkinter* за създаване на прозорец с бутони за управление.
- Записване на пози на ръцете: При стартиране на записа, потребителят трябва да задържи дадена поза за 5 секунди. След това се запазва изображение със заснетата поза.
- **Автоматично заснемане на кадри:** На всеки 5 секунди, докато записът е активен, се заснема нова поза.
- **Съхранение на изображения:** Заснетите изображения се запазват в папка "screenshots".
- Спиране на записа: При натискане на бутон "Stop", програмата спира да прави снимки
- Закриване на приложението: Програмата може да бъде затворена чрез специален бутон.
- Избиране на записани пози за възпроизвеждане: В бъдеща версия ще бъде добавена възможност ръцете да възпроизвеждат записаните пози.

4.4.2. Логическо описание

4.4.2.1. Основни модули и тяхната роля

Следва описание на програмния код.

Стартиране и настройка

```
self.root = root
self.root.geometry("800x600")
```

- Отваря графичен прозорец и стартира уеб камерата.

Визуализация на видео потока

```
ret, frame = self.cap.read()
if ret:
    frame = cv2.cvtColor(cv2.flip(frame, 1), cv2.COLOR_BGR2RGB)
```

- Чете кадър от камерата, обръща го хоризонтално и го конвертира в RGB.

Записване на пози на ръцете

```
if elapsed_time >= self.pose_duration:
    self.take_screenshot(frame_resized)
```

- На всеки 5 секунди програмата прави снимка и я записва.

Съхранение на изображения

```
screenshot_path = os.path.join(self.save_dir, f"{self.pose_count + 1}.png")
image_to_save = Image.fromarray(frame)
image_to_save.save(screenshot_path)
```

- Снимките се запазват в папка със сериен номер.

Спиране на записа

```
def stop_recording(self):
    self.is_recording = False
    self.start_button.config(state="normal")
```

- Спира записа и активира отново бутона за старт.

Закриване на програмата

```
def close(self):
    self.cap.release()
    self.root.destroy()
```

- Затваря камерата и унищожава прозореца.

4.4.2.2 Планирано развитие

В бъдеща версия ще има възпроизвеждане на записаните движения. Роботизираните ръце ще анализират изображенията и ще изпълняват запазените пози.

4.5. Реализация:

4.5.1. Използвани технологии

Софтуерна част

Python – основен програмен език.

OpenCV – библиотека за обработка на видео потока и заснемане на кадри.

Tkinter – библиотека за създаване на графичен интерфейс.

PIL (Pillow) – библиотека за работа с изображения.

NumPy – библиотека за математичекси операции, използва се за обработка на пикселни данни.

OS – библиотека за управление на файлове и папки.

Хардуерна част

Уеб камера – използва се за запис на движения.

Роботизирани ръце – контролирани чрез платка Arduino

Arduino – платка за управление на роботизираните ръце

4.5.2. Архитектура на системата

Модул за видео обработка – заснема и обработва видео в реално време.

Модул за запис на движения – прави снимки на всеки 5 секунди.

Модул за съхранение – организира файловете в папки.

Модул за възпроизвеждане (бъдещо разширение) – анализира и изпраща команди към роботизираните ръце.

4.5.3. Обосновка на избора на технологии

OpenCV – осигурява бърза и ефективна обработка на видео.

Tkinter – лек и удобен инструмент за графичен интерфейс.

Arduino – широко използвани за управление на роботизирани системи.

PIL и NumPy – необходими за обработка и запазване на изображения.

4.5.4. Текущо състояние и бъдещо развитие

В момента проектът поддържа запис и съхранение на движения.

В бъдеще може да се разработи функция за възпроизвеждане, където роботизираните ръце ще пресъздават записаните пози.

4.6. Описание на приложението:

4.6.1. Отваряне на програмата

Появява се основният графичен прозорец с видео поток от камерата.

4.6.2. Стартиране на записа

Натиска се бутон "Start Recording", което активира режима на запис. Показва се съобщение: "Hold a pose for 5 seconds".

4.6.3. Запазване на първата поза

Потребителят задържа ръцете в желаната конфигурация.

След **5 секунди** приложението прави **скрийншот** и го записва в папката screenshots/.

4.6.4. Смяна на позата

Извежда се съобщение: "Next pose, please".

След 2 секунди записът продължава и потребителят трябва да промени позицията на ръцете.

Този процес се повтаря, докато потребителят натисне "Stop Recording".

4.6.5. Спиране и излизане от програмата

При натискане на "Stop Recording", записът приключва. Появява се съобщение: "Recording stopped. Poses complete.". Потребителят може да затвори приложението чрез бутон "X".

4.6.6. Преглед на записаните кадри

Папката screenshots/ съдържа последователност от изображения, запазени в хронологичен ред (1.png, 2.png и т.н.).

В бъдеще тези изображения ще могат да се използват за възпроизвеждане на движенията чрез роботизирани ръце.

4.7. Заключение

Проектът Manos Futuri предлага функционалност за запис на движенията на ръцете. Чрез използването на компютърно зрение и графичен интерфейс, приложението позволява автоматично заснемане и съхранение на позиции на ръцете, което е основата за бъдещото му разширяване.

Източници:

https://www.arduino.cc/

https://opencv.org/

https://docs.python.org/3/library/tkinter.html

https://realpython.com/python-gui-tkinter/

Лого на проекта

