

http://al9ahira.com/

Itinéraire d'accès à Al9ahira (point B sur la carte) en partant de la Place Ibéria

Corrigé Filière PSI Bé

Première Partie

- Le rang de la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est $\begin{cases} 0 \text{ si } (a,b,c,d) = 0 \\ 1 \text{ si } ad bc = 0, \text{ et } (a,b,c,d) \neq 0 \\ 2 \text{ si } ad bc \neq 0 \end{cases}$
- $\mathbf{2} \quad \mathbf{A} = \left(a_{ij}\right) \in \mathcal{M}_n(\mathbb{R}).$
 - 2.a. De la définition du rang d'une matrice, rg(A) = 0 si, et seulement si, le sous-espace véctoriel engendré par ses vecteurs colonnes est nul et cela équivaut á dire que A = 0; par contre-apposée A n'est pas nulle $rg(A) \ge 1$.
 - **2.b.** Si A est inversible, les vecteurs colonnes $C_1(A), \ldots, C_n(A)$ forment une base de $\mathcal{M}_{n,1}(\mathbb{R})$ donc dim $vect\left(C_1(A), \ldots, C_n(A)\right) = n$ c'est à dire $\operatorname{rg}(A) = n$. Réciproquement, si $\operatorname{rg}(A) = n$ la famille $(C_1(A), \ldots, C_n(A))$ est une base de $\mathcal{M}_{n,1}(\mathbb{R})$ donc A est inversible.
- On note f_A l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A. On a $\operatorname{rg}(f_A) = \dim(\operatorname{Im}(f_A))$ et comme $\operatorname{Im}(f_A) = \operatorname{vect}(C_1(A), \ldots, C_n(A))$ alors $\operatorname{rg}(A) = r \operatorname{g}(f_A)$.
- **4 4.** *a*. On a A = U. ${}^tV = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \cdot (v_1 \dots v_n)$; en notant A = $(a_{i,j})$ et en effectuant le produit matriciel U. tV , on voit que $a_{k,\ell} = u_k v_\ell$ pour tout $(k,\ell) \in \{1,\dots,n\}^2$.

4.b. Avec les notations de la question précèdente, on a :

$$Tr(A) = \sum_{i=1}^{n} a_{i,i} = \sum_{i=1}^{n} u_{i}v_{i} = {}^{t}VU$$

- **4.c.** D'aprés la question (4.a), la $j^{i \grave{e} m e}$ colonne de A est $C_i(A) = v_i U$.
- **4.d.** $V \neq 0$ donc il existe j_0 tel que $v_{j_0} \neq 0$; ainsi $C_{j_0}(A) = v_{j_0}U \neq 0$ puisque $U \neq 0$; on en déduit que $rg(A) \geqslant 1$. D'autre part, pour tout $j \in \{1, ..., n\}$, $C_j(A) = v_jU = \frac{v_j}{v_{j_0}}C_{j_0}(A)$ cela montre que $rg(A) \leqslant 1$; d'où rg(A) = 1.
- 5 5.a. La matrice A est de rang 1, donc non nulle d'où l'existence d'un i_0 tel que $C_{i_0}(A) \neq 0$.
 - **5.b.** On a $\operatorname{rg}(A) = \dim \operatorname{vect}\left(\left(C_1(A), \ldots, C_n(A)\right)\right) = 1$, donc les colonnes de la matrice A sont toutes proportionnelles à la colonne $C_{i_0}(A)$; ainsi, pour tout $j \in \{1, \ldots, n\}$, il existe un réel λ_j tel que $C_j(A) = \lambda_j C_{i_0}(A)$.
 - 5.c. D'aprés la question (I.4.b) les vecteurs colonnes de A sont

$$\lambda_1 C_{i_0}(A), \dots, \lambda_n C_{i_0}(A)$$

le calcul éffectué à la question (4.*a*) montre alors que $A = C_{i_n}(A) \cdot (\lambda_1 \dots \lambda_n)$,

c'est à dire que
$$A = X$$
. Y avec $X = C_{i_0}(A)$ et $Y = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$.

- 5.d. Si $A = X_0.^t Y_0 = X_1.^t Y_1$ et rg(A) = 1, alors les vecteurs X_0, X_1, Y_0 et Y_1 sont non nuls. Posons $Y_0 = {}^t (y_1, ..., y_n)$, $Y_1 = {}^t (z_1, ..., z_n)$. Il existe un indice i_0 tel que $C_{i_0}(A) \neq 0$; or $C_{i_0}(A) = y_{i_0} X_0 = z_{i_0} X_1$ donc $X_1 = \lambda X_0$ avec $\lambda = \frac{y_{i_0}}{z_{i_0}} \neq 0$. Par ailleurs, pour tout $j \in \{1, ..., n\}, C_j(A) = y_j X_0 = z_j X_1 = \lambda z_j X_0$ donc $z_j = \frac{1}{\lambda} y_j$ et $Y_1 = \frac{1}{\lambda} Y_0$. Réciproquement, si $\lambda \neq 0$ alors on a bien $(\lambda X_0).^t (\frac{1}{\lambda} Y_0) = X_0.^t Y_0 = A$. Ainsi, les couples cherchés sont de la forme $(\lambda X_0, \frac{1}{\lambda} Y_0)$ avec $\lambda \in \mathbb{R}^*$.
- Soit $A \in \mathcal{M}_n(\mathbb{R})$ avec $\operatorname{rg}(A) = r > 0$; La matrice $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, où I_r est la matrice identité d'ordre r, est de même rang r que A, alors les deux matrices sont dites équivalentes ce qui signifie que $A = \operatorname{PJ}_r Q$ avec P, Q des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$. Notons E_{ij} la matrice de terme général $e_{k,l}$ avec $e_{k,l} = 1$ si (k,l) = (i,j) et

$$e_{kl} = 0$$
 sinon; alors $J_r = \sum_{i=1}^r E_{ii}$ et par suite $A = P\left(\sum_{i=1}^r E_{ii}\right) Q = \sum_{i=1}^r PE_{ii}Q$, de plus $1 = rg\left(E_{ii}\right) = rg\left(PE_{ii}Q\right)$. puisque ces deux matrices sont équivalentes.

7.a. Si les vecteurs $Z_1, ..., Z_n$ sont tous nuls alors $\sum_{i=1}^n Y_i \cdot {}^t Z_i = 0$. Réciproquement, si $\sum_{i=1}^n Y_i \cdot {}^t Z_i = 0$ alors, pour $j \in \{1, ..., n\}$, on a

$$0 = \left(\sum_{i=1}^{n} Y_{i}.^{t} Z_{i}\right).Z_{j} = \sum_{i=1}^{n} Y_{i}.\left(^{t} Z_{i}.Z_{j}\right) = \sum_{i=1}^{n} (^{t} Z_{j}Z_{j})Y_{i},$$

et comme les vecteurs Y_1,\ldots,Y_n sont indépendants, on obtient $||Z_j||^2={}^tZ_jZ_j=0$, pour tout $j\in\{1,\ldots,n\}$; donc les vecteurs Z_1,\ldots,Z_n sont tous nuls.

7.b. Soit $(\lambda_{ij})_{1 \le i,j \le n}$ une famille de réels tels que $\sum_{1 \le i,j \le n} \lambda_{ij} X_i \cdot Y_j = 0$ alors

$$0 = \sum_{i=1}^{n} X_{i} \cdot \left(\sum_{j=1}^{n} \lambda_{ij} \cdot {}^{t}Y_{j} \right) = \sum_{i=1}^{n} X_{i}^{t} \left(\sum_{j=1}^{n} \lambda_{ij} \cdot Y_{j} \right).$$

La question précédente montre alors que, pour tout $i \in \{1, ..., n\}$, $\sum_{j=1}^{n} \lambda_{ij}$. ${}^{t}Y_{j} = 0$.

Par transposition on obtient $\sum_{j=1}^{n} \lambda_{ij}$. $Y_j = 0$, pour tout $i \in \{1, ..., n\}$.

La famille $(Y_1, ..., Y_n)$ étant libre, on déduit de ce qui prééde que $\lambda_{ij} = 0$. pour tout $(i, j) \in \{1, ..., n\}^2$; cela montre que la famille $(X_i.^tY_j)_{i,j}$ est libre et comme $\mathcal{M}_n(\mathbb{R})$ est de dimension n^2 , cette famille en constitue une base.

8 8.a. La bilinéarité découle de la linéarité de la trace. Par ailleurs, on sait que, pour tout $M, N \in \mathcal{M}_n(\mathbb{R}), \langle M, N \rangle = \operatorname{Tr}({}^tM.N) = \operatorname{Tr}({}^t(M.N)) = \operatorname{Tr}({}^tN.M) = \langle N, M \rangle$; cela montre que la symétrie de la forme bilinéaire. Enfin, pour tout $M \in \mathcal{M}_n(\mathbb{R}), \langle M, M \rangle = \operatorname{Tr}({}^tM.M) = \sum_{1 \leq i,j \leq n} M_{ij}^2 \geqslant 0$, en plus

$$\langle M, M \rangle = 0 \iff \sum_{1 \le i, j \le n} M_{ij}^2 = 0 \iff M = 0.$$

Cela prouve que l'application $(M,N) \longmapsto \langle M,N \rangle$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

8.b. Si X, X', Y et Y' sont des éléments de $\mathcal{M}_{n,1}(\mathbb{R})$, alors $\left\langle X.^tY, X'.^tY' \right\rangle = \operatorname{Tr}\left({}^t(X.^tY).\left(X'.^tY'\right)\right) = \operatorname{Tr}\left(Y.^tX.X'.^tY'\right),$ et comme ${}^tX.X' \in \mathbb{R}$ alors $\operatorname{Tr}\left({}^tX.X'.Y.^tY'\right) = {}^tX.X'\operatorname{Tr}\left(Y.^tY'\right) = ({}^tX.X').({}^tY.Y').$

Ainsi

$$\langle X.^tY, X'.^tY' \rangle = 0 \iff^t X.X' = 0 \text{ ou } {}^tY.Y' = 0.$$

On en déduit que les matrices X. tY et X'. ${}^tY'$ sont orthogonales si et seulement si les vecteurs X, X' ou les vecteurs Y, Y' sont orthogonaux dans $\mathcal{M}_{n,1}(\mathbb{R})$ muni de son produit scalaire canonique.

8.c. Si $(X_1,...,X_n)$, $(Y_1,...,Y_n)$ sont deux systèmes de vecteurs de $\mathcal{M}_{n,1}(\mathbb{R})$, alors la famille $(X_i.^tY_j)_{i,j}$ est orthonormée si et seulement si

$$\left\langle \mathbf{X}_{i}.^{t}\mathbf{Y}_{j}, \mathbf{X}_{k}.^{t}\mathbf{Y}_{l} \right\rangle = \left\{ \begin{array}{ccc} 1 & \mathrm{si} & (i,j) = (k,l) \\ \mathbf{0} & \mathrm{si} & (i,j) \neq (k,l) \end{array} \right.$$

Or d'aprés le calcul précédent, on a $\left\langle \mathbf{X}_{i}.^{t}\mathbf{Y}_{j}\right\rangle$, $\mathbf{X}_{k}.^{t}\mathbf{Y}_{l}\right\rangle = {}^{t}\mathbf{X}_{i}.\mathbf{X}_{k}.^{t}\mathbf{Y}_{j}$, $\mathbf{Y}_{l}.$ Donc, pour que la famille $\left(\mathbf{X}_{i}.^{t}\mathbf{Y}_{j}\right)_{i,j}$ soit orthonormée dans $\left(\mathcal{M}_{n}(\mathbb{R}),<,>\right)$, il suffit que les deux familles $\left(\mathbf{X}_{1},...,\mathbf{X}_{n}\right)$, $\left(\mathbf{Y}_{1},...,\mathbf{Y}_{n}\right)$ soient orthonormées dans $\mathcal{M}_{n,1}(\mathbb{R})$, muni de son produit scalaire canonique.

Deuxième Partie

Soit A = U.^tV une matrice de rang 1, $\alpha = {}^{t}$ V.U et W = (t VV).U

- 1 On a : $A^2 = (U.^tV).(U.^tV) = U.(^tV.U).^tV = \alpha A$
- Une récurrence permet de conclure que $A^k = \alpha^{k-1}A$ pour tout $k \in \mathbb{N}^*$; on en déduit que la matrice A est nilpotente si et seulement s'il existe $k \in \mathbb{N}^*$ tel que $A^k = 0$ c'est à dire si et seulement si $\alpha = 0$ puisque A est non nulle.
- Si A n'est pas nilpotente, d'après la question précédente $\alpha \neq 0$ et on a

$$\left(\frac{1}{\alpha}A\right)^2 = \frac{1}{\alpha^2}A^2 = \frac{1}{\alpha^2}\alpha A = \frac{1}{\alpha}A,$$

donc la matrice $\frac{1}{\alpha}$ A est celle d'un projecteur.

4. 4. *a.* la matrice A est de rang 1 et comme *n* ≥ 2 alors A n'est pas inversible et 0 est une valeur propre de A ; le sous-espace propre de A associée à la valeur propre 0, qui n'est rien d'autre que son noyau noté KerA, est par définition égal à

$$\left\{ \mathbf{Y} \in \mathcal{M}_{n,1}(\mathbb{R}) \ / \ \mathbf{A}\mathbf{Y} = \mathbf{0} \right\} = \left\{ \mathbf{Y} \in \mathcal{M}_{n,1}(\mathbb{R}) \ / \ \mathbf{U}^t \mathbf{V} \mathbf{Y} = \mathbf{0} \right\}$$

Or, comme U \neq 0 on a l'équivalence U^tVY = (^tVY).U = 0 \iff VY = 0; on en déduit que KerA = $\{Y \in \mathcal{M}_{n,1}(\mathbb{R}) / {}^tVY = 0\}$ et d'aprés le théorème du rang dim KerA = n - rg(A) = n - 1.

4.b. On a AU = $U^tVU = ({}^tVU) . U = \alpha U$, et comme U $\neq 0$ alors α est une valeur propre de A. Par ailleurs, le fait que la somme des dimensions des sous-espaces

- propres d'une matrice est toujours inférieure ou égale à son ordre, adjoint au fait que dim KerA = n-1 permet d'affirmer que le sous-espace propre de A associé à la valeur propre α est de dimension 1 et ce sous-espace propre vaut $\mathbb{R}U$.
- 4.c. Si α = 0, la matrice A est nilpotente et 0 est son unique valeur propre.
 Si α ≠ 0, la matrice A admet deux valeurs propres qui sont 0 et α puisque la somme des dimensions des sous-espaces propres associés est égale à n.
- si α ≠ 0, d'aprés la question (4), 0 et α sont les valeurs propres de A et la somme des dimensions de leur sous-espaces propres est égale à l'ordre de A, donc A est diagonalisable.
 En prenant une base (U₁,...,U_{n-1}) de Ker(A) et une base (U_n) de Ker (A − αI_n), la matrice de l'endomorphisme f dans la base (U₁,...,U_n) est diag(0,...,0,α). Donc

endomorphisme f.

6 On suppose que $\alpha = 0$.

6.a. Comme 0 est la seule valeur propre de A, la matrice A est diagonalisable si et seulement si elle est nulle. Comme $A \neq 0$ alors A n'est pas diagonalisable.

A est semblable à diag $(0,...,0,\alpha)$ puisque ces deux matrices représentent le même

- 6.b. $AU = \alpha U = 0$ donc $U \in Ker f$ et comme le vecteur W est colinéaire à U et $W \neq 0$, le théorème de la base incomplète permet de compléter W en une base (E_1, \dots, E_{n-2}, W) de Ker f qui est de dimension n-1.
- **6.c.** On a AV = $U^tVV = {}^tVV.U = W \neq 0$ donc $W \notin \operatorname{Ker} f$ et par suite la famille $(E_1, \ldots, E_{n-2}, W, V)$ est libre, c'est donc une base de $\mathcal{M}_{n,1}(\mathbb{R})$. La matrice de f dans la base $(E_1, \ldots, E_{n-2}, W, V)$ est

$$\begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & 0 \\
0 & \cdots & 0
\end{pmatrix}$$

6.d. Soit A une matrice de rang 1, d'après les questions (1.5.c) et (1.4.b), on peut écrire A sous la forme $A = U^tV$ où U, V sont deux vecteurs non nuls de $\mathcal{M}_{n,1}(\mathbb{R})$, avec $Tr(A) = {}^tVU$; si plus A est de trace nulle, alors d'après la question (2.6.c), A est semblable à la matrice

$$\begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0
\end{pmatrix}$$

La transitivité de la relation de similitude permet enfin de conclure que deux matrices de rang 1 et de tarce nulle sont semblables.

Troisième Partie

$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$$
, on note A^c sa comatrice et on rappelle la relation $A.^tA^c = {}^tA^c.A = \det A.I.$ (1)

- 11.a. rg(A) = n, donc A est inversible (d'aprés la question (1.2.b)) et $\det A \neq 0$, puis en multipliant l'égalité (1) précédente à droite par A^{-1} , on obtient ${}^tA^c = \det A.A^{-1}$. On en déduit que $rg(A^c) = rg({}^tA^c) = rg(A^{-1}) = n$ et enfin que $A^{-1} = \frac{1}{\det A} {}^tA^c$.
 - 1.b. Si A est de rang n-2 alors comme les cofacteurs de A sont tous des déterminants d'ordre n-1, il découle du deuxième résultat admis que tous ces cofacteurs sont nuls, c'est à dire $A^c = 0$.
- 2 Si rg(A) = n 1.
 - **2.a.** D'aprés le premier résultat admis, on peut extraire de A une sous-matrice inversible A_1 qui soit d'ordre n-1; cette sous-matrice A_1 est obtenue à partir de A en éliminant une ligne i et une colonne j, donc $(A^c)_{ij} = (-1)^{i+j} \det A_1 \neq 0$. On en déduit que la matrice A^c est non nulle et par conséquent $\operatorname{rg}(A^c) \geqslant 1$.
 - **2.b.** On note f (resp g) l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A (resp à ${}^t A^c$); d'aprés la relation (1) on a $f \circ g = g \circ f = \det A.Id = 0$ et cette dernière relation montre que Img \subset Kerf.

On peut donc conclure que $rg(A^c) = rg({}^tA^c) = \dim Img \le \dim Kerf = 1$ et comme $rg(A^c) \ge 1$ on a bien $rg(A^c) = 1$.

On rappelle que si I un intervalle de \mathbb{R} et $\varphi_1, \dots, \varphi_n$ sont des applications dérivables de I vers $\mathcal{M}_{n,1}(\mathbb{R})$, alors l'application $\phi: t \longmapsto \det (\varphi_1(t), \dots, \varphi_n(t))$ est dérivable, avec

$$\phi'(t) = \sum_{k=1}^{n} \det \left(\varphi_1(t), \dots, \varphi_{k-1}(t), \varphi'_k(t), \varphi_{k+1}(t), \dots, \varphi_n(t) \right)$$

3.*a*. On déduit ainsi que l'application $P_A: t \longmapsto \det (C_1(A) - te_1, ..., C_n(A) - te_n)$ est dérivable sur $\mathbb R$ et sa dérivée est donnée par :

$$P'_{A}(t) = \sum_{k=1}^{n} \det \left(C_{1}(A) - t e_{1}, \dots, C_{k-1}(A) - t e_{k-1}, -e_{k}, C_{k+1}(A) - t e_{k+1}, \dots, C_{n}(A) - t e_{n} \right)$$

3.b. On a

$$P'_{A}(0) = \sum_{k=1}^{n} \det \left(C_{1}(A), \dots, C_{k-1}(A), -e_{k}, C_{k+1}(A), \dots, C_{n}(A) \right)$$

En développant, pour chaque k le déterminant

$$\det\left(\mathsf{C}_{1}(\mathsf{A}),\ldots,\mathsf{C}_{k-1}(\mathsf{A})\,,\,-e_{k}\,,\,\mathsf{C}_{k+1}(\mathsf{A}),\ldots,\mathsf{C}_{n}(\mathsf{A})\right)$$

par rapport à la k-ième colonne on trouve l'opposé du cofacteur $\Delta_{k,k}$ de la matrice

A. D'où
$$P'_{A}(0) = -\sum_{k=1}^{n} \Delta_{k,k} = -\text{Tr}(A^{c}).$$

- A et B deux matrices semblables de $\mathcal{M}_n(\mathbb{R})$; soit P une matrice inversible telle que $A = PBP^{-1}$.
 - 4.a. On a $\operatorname{Tr}(A) = \operatorname{Tr}\left(PBP^{-1}\right) = \operatorname{Tr}\left(P^{-1}PB\right) = \operatorname{Tr}(B),$ $\operatorname{rg}(A) = \operatorname{rg}\left(P^{-1}BP\right) = \operatorname{rg}(BP) = \operatorname{rg}(B) \text{ (car P est inversible)}$ $P_{A}(t) = \det\left(A tI_{n}\right) = \det\left(PBP^{-1} tI_{n}\right) = \det\left(P\left(B tI_{n}\right)P^{-1}\right)$ $= \det\left(B tI_{n}\right) = P_{B}(t)$
 - **4.b.** D'après la question (3.3.b), $Tr(A^c) = -P_A(0) = -P_B(0) = Tr(B^c)$.
 - **4.c.** Si A est de rang n, alors inversible, il en est de même pour B de plus

$$\mathbf{A}^{c} = \det \mathbf{A}^{t} \left(\mathbf{A}^{-1} \right) = \det \mathbf{A}^{t} \left(\mathbf{P} \mathbf{B}^{-1} \mathbf{P}^{-1} \right) = \det \mathbf{A}^{t} \left(\mathbf{P}^{-1} \right)^{t} \mathbf{B}^{-1} {}^{t} \mathbf{P}$$

et comme det $A = \det B$, ${}^tP^{-1} = ({}^tP)^{-1}$ et $B^c = \det B.{}^tB^{-1}$ alors $A^c = {}^tP.(B^c).({}^tP)^{-1}$ donc A^c et B^c sont semblables.

- **4.d.** Si $rg(A) \le n 2$, alors, puisque rg(A) = rg(B), d'après la question (3.1.*b*), $A^c = B^c = 0$ donc les matrices A^c et B^c sont égales donc semblables.
- **4.e.** Si rg(A) = n 1, alors d'après la question (3.2.b), $rg(A^c) = rg(B^c) = 1$. Posons $\alpha = Tr(A^c) = Tr(B^c)$.
 - i) Si $\alpha \neq 0$, alors on déduit de la question (2.5), que A^c est semblable à la matrice diag $(0, ..., 0, \alpha)$; de même B^c est semblable à la matrice diag $(0, ..., 0, \alpha)$, donc les matrices A^c et B^c sont semblables.
 - ii) Si $\alpha = 0$, alors les matrices A^c et B^c sont de rang 1 et de trace nulle donc semblables d'après la question (2.6.*d*).

FIN DU CORRIGÉ

Rien ne saurait remplacer un livre en papier

Des livres de prépas très joliment imprimés à des prix très accessibles

La qualité est notre point fort.

Vos commentaires sont importants pour nous Pour toute information, n'hésitez pas à nous contacter

> mailto:al9ahira@gmail.com http://al9ahira.com/ Tél: 0539/34 33 20

> > 7, rue Égypte. Tanger