

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПРОГРАММЫ НА ОСНОВЕ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ДИАГНОСТИКИ БОЛЕЗНИ ПАРКИНСОНА НА НЕСБАЛАНСИРОВАННОМ НАБОРЕ ДАННЫХ HANDPD

Выполнил: студент 4 курса, группы 589-3

Пахомов Максим Владимирович

Руководитель работы: доцент кафедры КСУП, к.т.н. Бардамова Марина Борисовна

Цель и задачи

Цель: разработать программу для выявления болезни Паркинсона (БП) по оцифрованным изображениям рукописных рисунков и выполнить проверку её эффективности на наборе данных HandPD.

Задачи:

- изучение предметной области и исследование набора данных HandPD;
- разработка программы для выявления БП по оцифрованным изображениям;
- апробация программы на наборе данных HandPD.

Актуальность

БП — это дегенеративное заболевание нервной системы, которое приводит к нарушению координации движений, снижению когнитивных функций и другим серьезным проблемам. Согласно данным Всемирной организации здравоохранения, более 10 миллионов человек страдают от болезни Паркинсона в мире.

Существующие в настоящий момент методы диагностики БП неэффективны на ранних стадиях, когда пациенты еще не проявляют сильных симптомов, что может привести к задержки диагностики и лечения заболевания. Кроме того, эти методы являются дорогостоящими и могут быть не доступны для большинства людей. В связи с этим разработка программы для диагностики БП средствами машинного обучения является важной задачей в медицинской практике.

Набор данных HandPD

Пустой бланк с шаблонами

Бланк заполненный пациентом с БП

Результаты извлечения шаблонного и рукописного следа

Блок-схема разработанной программы для диагностики БП

Блок схема программы

Блок-схема разработанной программы для диагностики БП

Блок схема программы

Нормализация данных

Данные до нормализации

Методы нормализации данных:

- Min-Max нормализация
- Z-score нормализация

Данные после нормализации

Отбор признаков

Отбор признаков - это процесс выбора наиболее значимых признаков из набора данных для использования в модели машинного обучения. Этот процесс позволяет улучшить качество модели, сократить время обучения и снизить риск переобучения.

```
def show_best_k_value(
    filtering alg: Any,
    x: pd.DataFrame,
    y: pd.Series,
    classifiers: list[Any]
) -> pd.DataFrame:
   y_copy = y.copy(deep=True)
   x_copy = x.copy(deep=True)
   max balanced accuracy = {}
    best parameters count = {}
    for clf in classifiers:
        max balanced accuracy[clf] = 0
        best parameters count[clf] = 0
    features_after_selection = None
    for k in np.arange(1, x.shape[1]):
        print(f"Parameters count {k}")
        features after_selection = get_features_after_selection(filtering_alg, k, x_copy, y_copy)
        for clf in classifiers:
            balanced_accuracy = cross_validating_score(clf, features_after_selection, y_copy)[0]
            if max_balanced_accuracy[clf] < balanced_accuracy:</pre>
                max_balanced_accuracy[clf] = balanced_accuracy
                best_parameters_count[clf] = k
        print('\n')
    for key in max balanced accuracy.keys():
        print(f'Parameters count {best_parameters_count[key]} \n Classificator: {key} \n value = {max_balanced_accuracy[key]}
```

Код отвечающий за отбор признаков

Балансировка данных

Пример работы метода добавления данных (over-sampling)

Пример работы метода удаления данных (under-sampling)

Оценка точности

Результаты экспериментов

Classifier	BA, %	Accuracy, %	F1, %	FP, %	FN, %
LogisticRegression	90,02	92,35	87,05	4, 05	15,56
DecisionTreeClassifer	84,08	88,45	78,72	4,05	27,78
MLPClassifier	89,14	91,31	85,42	5,05	16,67
MultinominalNB	84,09	86,02	77,58	10,71	21,11
SVC	91,75	91,98	87,72	7,69	8, 89

Результаты полученные с помощью разработанной программы

Classifier	Control group, Accuracy %	Patient group, Accuracy %	Global, Accuracy %
OPF	64,96 ± 16,27	60,23 <u>+</u> 4,73	55,86 ± 3,63
NB	27,30 ± 37,36	70,36 ± 39,08	45, 79 ± 4, 15
SVM,	12,50 ± 25,00	96,49 <u>+</u> 2,50	58, 61 ± 2, 84

Classifier	Accuracy, %
ГП	72,36
AdaBoost + chisquare	76,44
CNN	79,62
LR, SVM	Меандры: 72,16 Спирали: 77,45

Результаты из исследования (А)

Результаты из исследования (Б)

Пример прогнозов выдаваемых программой

	Α	В
1	0	0
2	1	1
3	2	1
4	3	1
5	4	1
6	5	1
7	6	1
8	7	1
9	8	1
10	9	1
11	10	1
12	11	1
13	12	1
14	13	0
15	14	1
16	15	1
17	16	1

Участок кода отвечающий за выдачу прогнозов

Результаты прогнозов

Заключение

Разработанная программа позволяет:

Увеличить точность предсказаний пациентов с БП минимум на **12,39%** по сравнению с аналогами.

Снизить стоимость диагностики БП и тем самым повысить доступность для большинства людей.

Внести вклад в будущие исследования. Так как исследователи могут продолжить совершенствование и развитие этой технологии, для повышения точности и доступности диагностики.

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

СПАСИБО ЗА ВНИМАНИЕ!

Выполнил: студент 4 курса, группы 589-3

Пахомов Максим Владимирович

Руководитель работы: доцент кафедры КСУП, к.т.н. Бардамова Марина Борисовна

Признаки в наборе данных (1)

Признак a_0 — Среднеквадратичное отклонение (СКО) разницы между рукописный следом (НТ) и радиусом экзаменационного шаблона (ЕТ):

$$a_0 = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (r_{HT}^i - r_{ST}^i)^2}$$

где n — количество случайно выбранных точек на линии рисунка,

i – точка на рукописной и шаблонной линиях,

 r_{HT}^i — расстояние (радиус) от центра рисунка и до точки i на рукописном рисунке,

 r_{ST}^i — расстояние от точки i на шаблонной линии до центра рисунка.

Признаки в наборе данных (2)

Признаки a_1 и a_2 – максимальное и минимальное различие между радиусами r_{HT}^i и r_{ST}^i .

$$a_1 = \max(\{|r_{HT}^1 - r_{ST}^1|, ..., |r_{HT}^n - r_{ST}^n|\}), a_2 = \min(\{|r_{HT}^1 - r_{ST}^1|, ..., |r_{HT}^n - r_{ST}^n|\})$$

Признак a3 – стандартное отклонение различий между радиусами r_{HT}^i и r_{ST}^i .

Признак a_4 — Средний относительный тремор (MRT), определяемый как средняя разница между радиусом данного образца и его d ближайших соседей слева.

•
$$a_4 = \frac{1}{n-d} \sum_{i=d}^{n} |r_{HT}^i - r_{HT}^{i-d+1}|$$

Признаки a_5 и a_6 — максимальное и минимальное значение радиуса HT, a_7 — стандартное отклонение значений HT.

Признак a_8 — количество раз, когда разница между HT и ET радиусом меняется с отрицательного на положительный, или наоборот.

Точность экспериментов до балансировки

Результаты экспериментов без балансировки и подбора гиперпараметров

				_	_
Classifier	BA, %	Accuracy, %	F1, %	FP, %	FN, %
LogisticRegression	53,83	81,92	89,9	92,33	0
DecisionTreeClassifer	61, 18	76,44	85,41	63,67	13,97
MLPClassifier	57,65	82,59	90,1	83,33	1,36
MultinominalNB	50	80,45	89,16	100	0
SVC	56,27	82,63	90,23	87	0,45

Результаты экспериментов с подборанными гиперпараметрами, но без балансировки

Classifier	BA, %	Accuracy, %	F1, %	FP, %	FN, %
LogisticRegression	67,85	84,38	90,71	59,33	4,96
DecisionTreeClassifer	68,53	77,58	85,63	46,33	16,6
MLPClassifier	70,17	84,39	90,53	53,33	6,32
MultinominalNB	68,37	73,9	82,43	40,67	22,59
SVC	72,77	78,94	86,18	37,33	17,33

Балансировщики

Добавление экземпляров (Over-sampling)

RandomOverSampler, SMOTE, ADASYN

Удаление экземпляров (Under-sampling)

 RandomUnderSampler, CondensedNearestNeighbour, TomekLinks, ClusterCentroids

Комбинирование подходов:

• SMOTEENN, SMOTETomek

Формулы для оценки точности

$$BA = \frac{TP_{rate} + TN_{rate}}{2}$$

Accuracy (Точность) =
$$\frac{TP}{TP + TN + FP + FN}$$

$$F1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$

$$Precision (Точность) = \frac{TP_{rate}}{TP_{rate} + FP_{rate}}$$

Recall (Полнота) =
$$\frac{TP_{rate}}{TP_{rate} + FN_{rate}}$$

Методы отбора признаков

Хи-квадрат (chi2) - $X^2 = \sum \frac{(O-E)^2}{E}$,

Где О – наблюдаемая частота,

Е – ожидаемая частота

Взаимная информация (mutual_info_classif)

Статистический тест F-оценки (f_classif)

Нормализация

$$MinMax = \frac{x - x_{min}}{x_{max} - x_{min}}$$

$$Z_{score} = \frac{x - \mu}{\sigma}$$
,

Где x — исходное значение признака,

 μ — среднее значение признака,

 σ – стандартное отклонение признака