CS570 Analysis of Algorithms Spring 2008 Exam II

Name:	
Student ID:	

	Maximum	Received
Problem 1	20	
Problem 2	15	
Problem 3	15	
Problem 4	15	
Problem 5	20	
Problem 6	15	
Total	100	

Note: The exam is closed book closed notes.

1) 20 pts

Mark the following statements as **TRUE**, **FALSE**. No need to provide any justification.

True [TRUE/FALSE]

If all capacities in a network flow are rational numbers, then the maximum flow will be a rational number, if exist.

False [TRUE/FALSE]

The Ford-Fulkerson algorithm is based on the greedy approach.

False [TRUE/FALSE]

The main difference between divide and conquer and dynamic programming is that divide and conquer solves problems in a top-down manner whereas dynamic-programming does this bottom-up.

False [TRUE/FALSE]

The Ford-Fulkerson algorithm has a polynomial time complexity with respect to the input size.

True [TRUE/FALSE]

Given the Recurrence, $T(n) = T(n/2) + \theta(1)$, the running time would be $O(\log(n))$

True [TRUE/FALSE]

If all edge capacities of a flow network are increased by k, then the maximum flow will be increased by at least k.

True [TRUE/FALSE]

A divide and conquer algorithm acting on an input size of n can have a lower bound less than $\Omega(n \log n)$.

True [TRUE/FALSE]

One can actually prove the correctness of the Master Theorem.

True [TRUE/FALSE]

In the Ford Fulkerson algorithm, choice of augmenting paths can affect the number of iterations.

False [TRUE/FALSE]

In the Ford Fulkerson algorithm, choice of augmenting paths can affect the min cut.

2) 15 pts

Present a divide-and-conquer algorithm that determines the minimum difference between any two elements of a sorted array of real numbers.

3) 15 pts
You are given the following directed network with source O and sink T.

a) Find a maximum flow from O to T in the network.

b) Find a minimum cut. What is its capacity?

The Capacity is 9.

4) 15 pts
Solve the following recurrences

a) T (n) = 2T (n/2)+ n
$$\log n$$

By the master theorem, $T(n) = n\log^2 n$

b) $T(n) = 2T(n/2) + \log n$

c)
$$T(n) = 2T(n-1) - T(n-2)$$
 for $n \ge 2$; $T(0) = 3$; $T(1) = 3$

$$T(n) = 2T(n-1) - T(n-2) = 2(2T(n-2) - T(n-3)) - T(n-2) = 3T(n-2) - 2T(n-3) = 4T(n-3) - 3T(n-4) = nT(1) - (n-1)T(0) = 3$$

5) 20 pts

You are given a flow network with integer capacity edges. It consists of a directed graph G = (V, E), a source s and a destination t, both belong to V. You are also given a parameter k. The goal is to delete k edges so as to reduce the maximum flow in G as much as possible. Give a efficient algorithm to find the edges to be deleted. Prove the correctness of your algorithm and show the running time.

6) 15 pts

Six men and six women are at a dance. The goal of the matchmaker is to match each woman with a man in a way that maximizes the number of people who are matched with compatible mates. The table below describes the compatibility of the dancers.

	Ann	Cindy	Erin	Liz	Mary	Nancy
Bob	C	C	1	-	-	-
Dave	ı	1	C	-	-	-
John	-	C	C	С	-	-
Kevin	-	-	С	-	C	-
Ron	1	1	ı	С	-	C
Sam	-	-	-	-	C	-

Note: C indicates compatibility.

a) Determine the maximum number of compatible pairs by reducing the problem to a max flow problem.

All edges have capacity of one.

b) Find a minimum cut for the network of part (a).

c) Give the list of pairs in the maximum pairs set.

(B, A), (J, C), (K, E), (R, N), (S, M)