Diagonais

Faça um programa que leia uma matriz NxN de inteiros, troque os elementos da diagonal principal e da diagonal secundária, e inverta os elementos da primeira linha. Depois imprima a matriz.

Exemplo:

n=4

recebe matriz

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

troca diagonal principal pela secundária

4	2	3	1
5	7	6	8
9	11	10	12
16	14	15	13

inverte a primeira linha e imprime a matriz

1		2	4
5	7	6	8
9	11	10	12
16	14	15	13

ENTRADA: inteiro N>=2 (pode acreditar) seguidos por N*N inteiros que irão compor a matriz (primeiros N elementos são a primeira linha, os próximos N elementos são a segunda, ...)

SAIDA: matriz de inteiros transformada (formato padrão do python)

EXEMPLO:

ENTRADA

4
1
2
3
4
5
6
7
8
9
10
11
13

14 15

16

SAÍDA

[[1, 3, 2, 4], [5, 7, 6, 8], [9, 11, 10, 12], [16, 14, 15, 13]]

* No exemplo acima (em azul) temos o exemplo descrito no enunciado da questão.

ENTRADA

- 3
- 0 -1
- 0
- 1
- 1
- 22
- 24

SAÍDA

[[0, -1, 0], [1, 1, 1], [24, 23, 22]]

Os exercícios de vetores devem ser feitos com o pequeno python, isto é, usando apenas as funções vistas em sala de aula, sem usar funções prédefinidas na linguagem que podem facilitar a programação (porém dificultar o aprendizado)