SUITES ET SÉRIES DE FONCTIONS

- **1.** Soit (f_n) une suite de fonctions continues sur \mathbb{R} , convergeant uniformément vers f. Étudier la convergence simple puis la convergence uniforme de la suite $(f_n \circ f_n)$.
- **2. a.** Soit (f_n) une suite de fonctions k-lipschitziennes, convergeant simplement sur [a,b] vers une fonction f. Prouver que f est k-lipschitzienne, et que la convergence est uniforme.
 - **b.** Le résultat précédent subsiste-t-il si les fonctions f_n sont juste supposées lipschitziennes ?
- 3. <u>Théorème de Dini</u>: Soit K un compact d'un espace vectoriel normé E, et (f_n) une suite croissante de fonctions numériques continues sur K, convergeant simplement vers une fonction continue f. Le théorème de Dini affirme que cette convergence est uniforme.
 - a. Prouver qu'une intersection décroissante de fermés non vides inclus dans K est non vide.
- **b.** On fixe $\varepsilon > 0$, et on pose $K_n = \{x \in K \mid f_n(x) \le f(x) \varepsilon\}$. Prouver que la suite (K_n) est une suite décroissante de fermés, d'intersection vide.
 - c. Conclure.
- **4.** On note E l'espace des fonctions continues sur [0,1] à valeurs dans \mathbb{C} , que l'on munit de la norme $\|\cdot\|_{\infty}$ de la convergence uniforme. Soit (f_n) une suite de Cauchy d'éléments de E.
 - **a.** Prouver que la suite (f_n) converge simplement sur [0,1] vers une certaine fonction f.
 - **b.** Prouver que la convergence de la suite (f_n) est uniforme.
 - **c.** Prouver que *E* est complet.
- 5. Soit (f_n) une suite de fonctions périodiques de $\mathbb R$ dans $\mathbb C$, convergeant simplement vers une certaine fonction f.
 - a. On suppose toutes les f_n T-périodiques. Prouver que f est T-périodique.
- **b.** On suppose que, pour tout entier n, la fonction f_n est T_n -périodique, et que la suite (T_n) converge vers une certaine limite non nulle T. Quelles sont les hypothèses naturelles à imposer permettant d'affirmer que f est T-périodique?
- **c.** On suppose que l'on se place sous les hypothèses inventées dans la question **b.**, mais on ne suppose plus la suite (T_n) convergentes. En revanche, on suppose que les T_n sont toutes dans un même segment [a,b] de \mathbb{R} , avec a>0. Prouver que f est périodique.
- **d.** Prouver que la conclusion de la question **c.** reste vraie en supposant que les T_n sont toutes dans un même intervalle de la forme]0,b].
 - **e.** On pose, pour *x* réel :

$$S_N(x) = \sum_{n=1}^N \frac{\cos \frac{x}{n}}{2^n}$$
 et $S(x) = \sum_{n=1}^{+\infty} \frac{\cos \frac{x}{n}}{2^n}$.

Prouver que chaque fonction S_N est périodique, que la suite $(S_N)_N$ converge uniformément vers la fonction continue S, mais que S n'est pas périodique.

6. On définit par récurrence sur $I = [-\frac{1}{2}, \frac{1}{2}]$ une suite de fonctions en posant $f_0 = 0$ et, pour $n \ge 0$:

$$f_{n+1}(x) = \frac{x^3}{3} + \int_0^x f_n^2(t) dt$$
.

- **a.** Prouver que $|f_n(x)| \le \frac{5}{6}$ pour tout x de I.
- **b.** Prouver que pour tout $n \ge 1$, on a $||f_{n+1} f_n||_{\infty} \le \frac{5}{6} ||f_n f_{n-1}||_{\infty}$
- **c.** Qu'en déduire concernant la série de fonctions $\sum (f_{n+1} f_n)$? Prouver que la suite (f_n) converge uniformément sur I. Soit f sa limite.
- **d.** Prouver que f est une solution sur I de l'équation différentielle $y' = x^2 + y^2$ satisfaisant à f(0) = 0.
- 7. Soit $\sum c_n z^n$ une série entière de rayon de convergence R > 0, f sa fonction somme définie sur le disque D(0,R) du plan complexe. Soit a un élément de D(0,R), et r un réel tel que |a| < r < R.
 - **a.** Pour θ dans $[0,2\pi]$, représenter $f(re^{i\theta})$ et $\frac{1}{1-\frac{a}{r}e^{-i\theta}}$ sous forme de séries et en déduire un développement en série

de
$$g(\theta) = \frac{f(re^{i\theta})}{1 - \frac{a}{r}e^{-i\theta}}$$
.

b. Prouver que la convergence de la série obtenue est normale sur $[0,2\pi]$, et en déduire la formule intégrale de Cauchy

$$f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(re^{i\theta})}{1 - \frac{a}{r}e^{-i\theta}} d\theta.$$

c. Soit réciproquement une fonction continue f sur D(0,R), qui pour tous a et r vérifiant |a| < r < R, satisfait à la formule intégrale précédente.

Grâce au développement en série de $\frac{1}{1-\frac{a}{r}e^{-i\theta}}$, puis à une intégration terme à terme bien justifiée, prouver que f est déve-

loppable en série entière sur D(0, R).

- **d.** Soit (f_n) une suite de fonctions définies sur D(0,R), développables en série entière sur ce disque, et convergeant uniformément sur tout disque D(0,r) avec r < R, vers une fonction f. Prouver que f est définie et continue sur D(0,R), et qu'elle vérifie, pour tous a et r vérifiant |a| < r < R, la formule intégrale de Cauchy. Conclure.
- **e.** Le résultat obtenu à la question **d.** subsiste-t-il si les fonctions f_n sont développables en série entière sur l'intervalle]-R,R[de $\mathbb R$ et convergent uniformément vers une fonction f sur tout segment [-r,r] inclus dans]-R,R[?

8. Division des fonctions \mathcal{C}^{∞}

- **a.** Soit f une fonction de classe \mathcal{C}^{∞} sur un voisinage de 0 dans \mathbb{R} à valeurs dans \mathbb{C} , vérifiant f(0) = 0. On pose, pour $x \neq 0$, $g(x) = \frac{f(x)}{x}$. Prouver que, convenablement prolongée en 0, la fonction g est de classe \mathcal{C}^{∞} (on écrira f(x) sous forme d'une intégrale).
- **b.** Pour des fonctions telles que $f(x) = \sin x$, $f(x) = \ln(1+x)$ ou $f(x) = e^x 1$, comment peut-on justifier ce résultat de manière beaucoup plus élémentaire?

9. Théorème de Poincaré

f et g désignent deux fonctions de classe C^1 sur \mathbb{R}^2 à valeurs dans \mathbb{R} .

- a. On suppose l'existence d'une fonction h de classe C^1 vérifiant $\frac{\partial h}{\partial x} = f$ et $\frac{\partial h}{\partial y} = g$ (je rappelle que, dans ce cas, on dit que la forme différentielle $\omega = f \, dx + g \, dy$ est exacte). Prouver que $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$ sur \mathbb{R}^2 .
- **b.** On suppose réciproquement que $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$ sur \mathbb{R}^2 . Prouver l'existence d'une fonction h de classe \mathcal{C}^1 vérifiant $\frac{\partial h}{\partial x} = f$ et $\frac{\partial h}{\partial y} = g$.

10. Formule de Stirling pour la fonction Gamma

- **a.** Grâce au changement de variable $y = x + t\sqrt{x}$ dans l'expression $\Gamma(x+1) = \int_0^{+\infty} e^{-y} y^x dy$, donner une expression pour x > 0 de $\Gamma(x+1)$ sous la forme $\left(\frac{x}{e}\right)^x \sqrt{x} \int_0^{+\infty} f(t,x) dt$ où f est la fonction nulle pour $t \le -\sqrt{x}$ et à préciser sinon.
 - **b.** Étudier, à t fixé, la limite de f(t,x) quand x tend vers $+\infty$.
 - **c.** Étudier la fonction $u \mapsto \frac{\ln(1+u)-u}{u^2}$.
 - **d.** Si $x \ge 1$, prouver que $0 \le f(t, x) \le (1+t)e^{-t}$ pour tout réel positif t.
 - **e.** Montrer que pour tout t de $]-\sqrt{x}$, 0], on a $0 < f(t,x) \le e^{-t^2/2}$.
 - **f.** En déduire la formule de Stirling :

$$\Gamma(x+1) \sim \left(\frac{x}{e}\right)^x \sqrt{2\pi x}$$
.

- 11. Soient (a_n) et (b_n) deux suites de complexes telles que la suite $(a_n \cos nx + b_n \sin nx)$ tende vers 0 pour tout réel x.
 - **a.** Prouver que la suite (a_n) tend vers 0.
- **b.** On pose $I_n = \int_0^{\pi} \left| b_n \sin nt \right|^2 dt$ et on suppose la suite (b_n) bornée. Déterminer la limite de la suite (I_n) , et en déduire que (b_n) tend vers 0.
 - c. Dans le cas général, on pose $\beta_n = \inf(|b_n|, 1)$. Prouver que la suite (β_n) tend vers 0 et conclure.
- **d.** Quelle raison mathématique profonde explique que le résultat à prouver soit nettement plus délicat pour la suite (b_n) que pour la suite (a_n) ?
- 12. On rappelle que l'on définit une norme sur l'espace E des fonctions continues sur [0,1] à valeurs dans \mathbb{R} en posant, pour $f \in E$:

$$n_{\infty}(f) = \sup_{t \in [0,1]} |f(t)|.$$

On désigne par E_1 le sous-espace de E constitué des fonctions de classe \mathcal{C}^1 sur [0,1] à valeurs dans \mathbb{R} .

Pour $f \in E_1$, on pose :

$$||f|| = |f(0)| + n_{\infty}(f')$$
.

On rappelle par ailleurs que pour $f \in E_1$, la longueur de la courbe représentative de f est donnée par la formule intégrale suivante :

$$L(f) = \int_{0}^{1} \sqrt{1 + f'^{2}(t)} \, dt.$$

- **a.** Prouver que l'application $f \mapsto ||f||$ définit une norme sur E_1 .
- **b.** Prouver que l'on a $n_{\infty}(f) \le ||f||$ pour tout élément f de E_1 .
- **c.** Prouver que les normes n_{∞} et $\| \ \|$ ne sont pas équivalentes sur E_1 (envisager les applications $p_n: t \mapsto t^n$).

Soit, pour $n \in \mathbb{N}^*$, la fonction f_n définie sur [0,1] par $f_n(x) = \frac{1}{\sqrt{n}} \sin(n\pi x)$.

- **d.** Prouver que la suite (f_n) converge vers la fonction nulle au sens de la norme n_{∞} .
- e. On note l_n la longueur de la courbe représentative de f_n . Prouver l'inégalité $l_n \ge \sqrt{n} \, \frac{\pi}{2}$ (on pourra utiliser l'inégalité $|\cos u| \ge \cos^2 u$).
 - **f.** En déduire que si l'on munit l'espace E_1 de la norme n_{∞} , l'application $f \mapsto L(f)$ n'est pas continue.

Soit f_0 un élément fixé de E_1 .

g. Prouver que pour tout élément f de E_1 vérifiant $||f - f_0|| \le 1$, on a :

$$|L(f) - L(f_0)| \le (2||f_0|| + 1)||f - f_0||.$$

h. Que peut-on en déduire concernant l'application $f \mapsto L(f)$ si l'on munit E_1 de la norme $\| \cdot \| \|$?

On pose, pour t élément de]0,1], $g(t) = \frac{1}{t} \sin \frac{1}{t}$.

- i. Prouver que l'intégrale $\int_{0}^{+\infty} \frac{\sin u}{u} du$ est convergente sans être absolument convergente.
- **j.** Prouver que g n'est pas sommable sur]0,1].
- **k.** On pose, pour x élément de]0,1], $f(x) = \int_{x}^{1} g(t)dt$. Prouver que f possède une limite finie en 0. On peut donc prolonger f par continuité en 0, et ce prolongement sera encore noté f.
 - 1. Prouver que f est continue sur [0,1] et de classe \mathcal{C}^{∞} sur [0,1].
 - m. Prouver que malgré l'extrême régularité de f, son graphe possède une longueur infinie.