术语

阶段

反映某一阶段的信息。(同阶段的状态可有多个)

记为 $x_k^{(i)}$ 表示第k阶、第i个状态。 状态变量

从一个状态演变到下一个状态的选择。 $u_k(x_k)$

决策变量的取值范围。 D_k(x_k) 允许决策集合

 $\mathbf{x}_{k+1} = \mathbf{T}_k(\mathbf{x}_k, \mathbf{u}_k)$

由每阶段决策 $u_k(x_k)$, k=1,...,n 所组成的决策 策略 序列, 称为全过程策略。记为

 $p_{1,n}(x_1) = \{u_1(x_1), u_2(x_2), \dots, u_n(x_n)\}$

状态转移方程

k后部子过程策略

从第k阶段至终了状态的过程,称为k后部子过程,相应的决策序列称为k后部子过程策略。记为

$$p_{k,n}(x_k) = \{u_k(x_k), u_{k+1}(x_{k+1}), \dots, u_n(x_n)\}$$

阶段效益函数

反映某阶段决策变量取值后的局部效益。记为

$$g_k = g_k(x_k, u_k)$$

最优指标函数

在第k阶段采取最优策略,k后部子过程的总效益。

$$f_k(x_k) = Opt_{u_k \in D_k(x_k)} \{g_k(x_k, u_k)\Theta...\Theta g_n(x_n, u_n)\}$$

Bellman 最优性原理

作为整个过程的最优策略应具有如此性质:无论过去的 状态和决策如何,相对于以往决策所形成的状态而言, 余下的决策序列必然构成最优子策略。

多阶段决策过程的马尔科夫性

马尔科夫性也称为无后效性。即系统从某个阶段往后的发展、演变,仅取决于系统在该阶段所具有的状态及所作的决策,而与系统在该阶段之前的状态和决策无关。

多阶段决策过程示意图

建模步骤

- (1) 划分阶段;
- (2) 确定状态变量x_k及其取值范围; (应满足无后效性)
- (3) 确定决策变量uk及其允许策略集合;
- (4) 建立状态转移方程 $x_{k+1} = T(x_k, u_k)$;
- (5) 确定阶段效益函数 $g_k = g_k(x_k, u_k)$;
- (6) 建立阶段最优指标函数; (应满足可分离性和递推关系)
- (7) 给出基本方程。

$$f_k(x_k) = Opt_{uk \in D_k(x_k)} \{g_k(x_k, u_k) \Theta f_{k+1}(x_{k+1})\}, k = n, n-1, ..., 1$$

$$f_{n+1}(x_{n+1})=0$$

逆序与顺序

	逆序	顺序		
计算过程	由终点向起点逐段前推	由起点开始逐段向后递推		
状态方程	$\mathbf{x}_{k+1} = \mathbf{T}_{k}(\mathbf{x}_{k}, \mathbf{u}_{k})$	$\mathbf{x}_{k-1} = \mathbf{T}_{k}(\mathbf{x}_{k}, \mathbf{u}_{k})$		
基本方程	$\begin{cases} f_k(x_k) = Opt \{g_k(x_k, u_k) \Theta f_{k+1}(x_{k+1})\} \\ f_{n+1}(x_{n+1}) = 0 \end{cases}$	$\begin{cases} f_k(x_k) = Opt \{g_k(x_k, u_k) \Theta f_{k-1}(x_{k-1})\} \\ f_0(x_0) = 0 \end{cases}$		
最优目标值	$f_1(x_1)$	$f_n(x_n)$		
选择准则	初始状态已知	终了状态已知		

海盗分金问题

这是一道很有趣的推理题。据统计, 在美国20分钟内能回答出这道题的人, 平均年薪在8万美金以上。 5个海盗抢到了100颗宝石,每一颗都一样大,价值连城。 他们决定这样分:

- 1. 抽签决定自己的号码(1、2、3、4、5)
- 2. 首先,由1号提出分配方案,然后大家(5人)进行表决,而且只有半数或超过半数的人同意时,按照他的提案进行分配,否则他将被扔进大海喂鲨鱼。
- 3. 如果1号死后,再由2号提出分配方案,然后大家(4人)进行表决,而且只有半数或超过半数的人同意时,按照他的提案进行分配,否则他将被扔入大海喂鲨鱼。
 - 4. 依此类推.....

条件:每个海盗都是很聪明的人,都能很理智地判断得失, 从而做出选择。

问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化?

解析:

先说4、5号。如果仅仅剩下这两个人。

4号肯定选"100:0"这个提案,因为即使5号不同意,按照规则,4号自己同意自己的提案,也算达到半数(原话是:而且只有半数或超过半数同意时,通过提案)。

这样,5号,看似被动,再仔细分析,5号其实非常主动,因为他可以冷眼旁观前三个人的提案,根据是否对自己有利的原则来选择是否同意。也就是说,5号肯定不会等到4号来表决,他必须支持前三个提案中给自己最多的一个提案,因为到了4号提案的时候,他肯定什么也得不到了.

同样倒推,可以推导到3号:

如果3号选择给自己99个,4号0个,5号1个,那么5号就不得不同意了,因为这样他至少能得到一个,比最后由4号提案,他什么都得不到强。也就是说,轮到3号提案时,他肯定提交"99:0:1"这个提案。

可见,如果轮到3号选择,4号肯定什么都得不到了。 这一点4号是很清楚的。他要在前二个提案里,选择一 个让自己获益最多的提案。这时,焦点就集中到了2号 身上。

2号只要在3、4、5号中赢得一个支持者,就足够获得最终胜利。

2号的提案可以有两种:

"99: 0: 1: 0"和 "99: 0: 0: 1"。(为何不考虑3号?)

显然,前一个提案,4号可得1个,比3号提案好,4号没得选择,他必须同意2号的提案,否则3号提案时,他什么也分不到。

后一个提案是针对5号的,把握不大,因为5号在3号提案里 也可得一个,所以百分之一百的把握是:

"99: 0: 1: 0"

不难看出,3号在2号的提案里,得不到任何好处,那么也就是说,只要在前一个提案里,3号能得到好处,他就会支持,绝对不会让2号有提案权。

于是,在1号的提案里,要顾及3号的利益,而2号的利益 绝对可以忽略,因为无论如何,2号都不会同意1号的分配方 案(1号提案里1号得到的钻石一定比2号得到的钻石多,当然, 除非1号分配2号99个钻石,这是不可能通过的)。

现在,3号只要能获得1个或1个以上的钻石,就可以支持提案,4号只要获得2个或2个以上的钻石(2号的提案里,4号可获得1个),5号只要获得2个或2个以上的钻石(3号的提案里,5号可获得1个),就可以支持提案。在这种情况下,对1号,而言,如果3、4号(或3,5号)都同意,加上自己的一票.

于是,1号兼顾自己利益最大化和确保提案通过的分配方法就产生了: "97:0:1:2:0","97:0:1:0:2"

1号97个; 2号0个; 3号1个; 4号2(0)个; 5号0(2)个。

改:

5个海盗抢到了100颗宝石,每一颗都一样大,价值连城。 他们决定这样分:

- 1. 抽签决定自己的号码(1、2、3、4、5)
- 2. 首先,由1号提出分配方案,然后大家(5人)进行表决,而且超过半数的人同意时,按照他的提案进行分配,否则他将被扔进大海喂鲨鱼。
- 3. 如果1号死后,再由2号提出分配方案,然后大家(4人)进行表决,而且超过半数的人同意时,按照他的提案进行分配,否则他将被扔入大海喂鲨鱼。
 - 4. 依此类推.....

条件:每个海盗都是很聪明的人,都能很理智地判断得失,从而做出选择。

问题: 第一个海盗提出怎样的分配方案才能够使自己的收益最大化?

- *推理过程:从后向前推,如果1-3号强盗都喂了 鲨鱼,只剩4号和5号的话,5号一定投反对票让4 号喂鲨鱼,以独吞全部金币。所以,4号惟有支持 3号才能保命。
- * 3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票(否则,到4号提案时,自己只能被喂鲨鱼),再加上自己一票,他的方案即可通过。

- *不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。
- *不过,2号的方案会被1号所洞悉,1号并将提出 (97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号 (或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了。

§ 2 资源分配问题

资源分配问题是一个离散最优化问题。按问题所含资源种类的数目,分别称之为一维资源分配问题、二维资源分配问题等等。

一维资源分配问题

有一种资源,其数量为a。若将其分配给n个使用者,试问哪种方案的总收益最大?

设分配给第i个使用者的资源数量是 u_i , i=1,...,n。若由此产生的收益是 $g_i(u_i)$,则数学模型为

Max
$$\sum_{i=1}^{n} g_i(u_i)$$
s.t.
$$\sum_{i=1}^{n} u_i = a$$

$$u_i \ge 0, i = 1,...,n$$

【例1】(投资问题)某部门现有技术改造资金600万元,下属诸厂关于技术改造的投资与效益如下表所示。该部门应如何确定各厂的技术改造拨款,使总效益最大?

				E 7 0/ 0
万元	A	В	C	D
0	0	0	0	0
100	40	40	50	50
200	100	80	120	80
300	130	100	170	100
400	160	110	200	120
500	170	120	220	130
600	170	130	230	140

【解】用逆序法

设 x_k 表示第k阶段可供分配的资金, u_k 表示分配给第k厂的资金。则

允许状态集合:
$$0 \le x_k \le 600$$
;

允许决策集合:
$$0 \le u_k \le x_k$$
;

状态转移方程:
$$x_{k+1} = x_k - u_k$$
, $k = 4, 3, 2, 1$; 且 $x_1 = 600$, $x_5 = 0$;

基本方程
$$f_k(x_k) = \max_{0 \le u_k \le x_k} \{g_k(x_k, u_k) + f_{k+1}(x_{k+1})\}, k = 4,3,2,1$$

$$f_5(x_5) = 0$$

$$f_k(x_k) = \max_{0 \le u_k \le x_k} \{g_k(x_k, u_k) + f_{k+1}(x_k - u_k)\}, k = 4,3,2,1$$

$$f_5(x_5) = 0$$

$f_4(x_4) = \max_{0 \le u \le x_4} g_4(x_4, u_4)$

ſ	u				$g_4(u_4)$				f (v.)	$\mathbf{u}_{\scriptscriptstyle{A}}$
	x	0	100	200	300	400	500	600	f ₄ (x ₄)	u_4
ĺ	0	0							0	0
	100		50						50	100
	200			80					80	200
	300				100				100	300
	400					120			120	400
I	500						130		130	500
	600							140	140	600

k = 3

600

140

									16 /
u		$g_3(u_3) + f_4(x_3 - u_3)$							11.
x	0	100	200	300	400	500	600	$f_3(x_3)$	u_3
0	0							0	0
100	50	50						50	0,100
200	80	50+50	120					120	200
300	100	50+80	120+50	170				170	200 300
400	120	50+100	120+80	170+50	200			220	300
500	130	50+120	120+100	170+80	200+50	220		250	300 400

50+130 | 120+120 | 170+100 | 200+80 | 220+50 | 230

280

400

k = 2 $f_2(x_2) = \max \{g_2(u_2) + f_3(x_2 - u_2)\}, 0 \le u_2 \le x_2$

u		$g_2(u_2) + f_3(x_2 - u_2)$						f (v.)	11
x	0	100	200	300	400	500	600	$f_2(x_2)$	\mathbf{u}_2
0	0							0	0
100	50	40						50	0
200	120	40+50	80					120	0
300	170	40+120	80+50	100				170	0
400	220	40+170	80+120	100+50	110			220	0
500	250	40+220	80+170	100+120	110+50	120		260	100
600	280	40+250	80+220	100+170	110+120	120+50	130	300	200

k = 1 $f_1(x_1) = \max \{g_1(u_1) + f_2(x_1 - u_1)\}, 0 \le u_1 \le x_1$

u	$g_1(u_1) + f_2(x_1 - u_1)$								11
X	0	100	200	300	400	500	600	f ₁ (x ₁)	u ₁
600	300	40+260	100+220	130+170	160+120	170+50	170	320	200

最优分配方案: A厂, 200万元; B厂, 0万元;

C厂,300万元;D厂,100万元。

总效益: 320万元。

【例2】(负荷问题) 某种机床,可以在高低二种不同的负荷下进行生产。若u表示投入机床的数量,s表示相应的产量,具体工况如下

	高负荷	低负荷
产量	$s_1 = 8u_1$	$s_2 = 5u_2$
当年机床完好率	a = 0.7	b = 0.9

假定起始时完好机床数量为1000台,试制定一个五年的生产计划, 于每年开始时如何在二种不同的负荷下重新分配完好机床使五年 的总产量最高。

【解】用逆序法

设 x_k 表示第k年初拥有的完好机床数量; u_k 表示第k年度在高负荷下运转的机床数。则

允许状态集合: $0 \le x_k \le 1000$;

允许决策集合: $0 \le u_k \le x_k$;

状态转移方程: $x_{k+1} = 0.7u_k + 0.9(x_k - u_k)$, k = 5,...,1; 且 $x_1 = 1000$ 。

基本方程: $\begin{cases}
f_k(x_k) = \max_{0 \le u_k \le x_k} \{8u_k + 5(x_k - u_k) + f_{k+1}(x_{k+1})\}, k = 5, ..., 1 \\
f_6(x_6) = 0
\end{cases}$

$$k = 5,$$

$$f_5(x_5) = \max_{0 \le u_5 \le x_5} \{8u_5 + 5(x_5 - u_5)\}$$

$$= \max\{3u_5 + 5x_5\}$$

 $0 \le \mu \le x \le$

这时,取
$$u_5 = x_5$$
, $f_5(x_5) = 8x_5$

$$k = 4, \qquad f_4(x_4) = \max_{\substack{0 \le u_4 \le x_4 \\ 0 \le u_4 \le x_4}} \{8u_4 + 5(x_4 - u_4) + f_5(x_5)\}$$

$$= \max_{\substack{0 \le u_4 \le x_4 \\ 0 \le u_4 \le x_4}} \{3u_4 + 5x_4 + 8[0.7u_4 + 0.9(x_4 - u_4)]\}$$

$$= \max_{\substack{0 \le u_4 \le x_4 \\ 0 \le u_4 \le x_4}} \{1.4u_4 + 12.2x_4\}$$

这时,取 $u_4 = x_4$, $f_4(x_4) = 13.6x_4$

$$k = 3$$
, $f_3(x_3) = \max_{0 \le u_3 \le x_3} \{8u_3 + 5(x_3 - u_3) + f_4(x_4)\}$
 $= \max_{0 \le u_3 \le x_3} \{3u_3 + 5x_3 + 13.6[0.7u_3 + 0.9(x_3 - u_3)]\}$
 $= \max_{0 \le u_3 \le x_3} \{0.28u_3 + 17.24x_3\}$
这时,取 $u_3 = x_3$, $f_3(x_3) = 17.52x_3$

$$k = 2, \quad f_2(x_2) = \max_{0 \le u_2 \le x_2} \{8u_2 + 5(x_2 - u_2) + f_3(x_3)\}$$

$$= \max_{0 \le u_2 \le x_2} \{3u_2 + 5x_2 + 17.52[0.7u_2 + 0.9(x_2 - u_2)]\}$$

$$= \max_{0 \le u_2 \le x_2} \{20.768x_2 - 0.504u_2\}$$

这时,取
$$u_2 = 0$$
, $f_2(x_2) = 20.768x_2$
$$k = 1$$
, $f_1(x_1) = \max_{0 \le u_1 \le x_1} \{8u_1 + 5(x_1 - u_1) + f_2(x_2)\}$
$$= \max_{0 \le u_1 \le x_1} \{23.6912x_1 - 1.1536u_1\}$$

这时,取 $u_1 = 0$, $f_1(x_1) = 23.6912x_1$

结论

年份	年初完好机床	高负荷运转	低负荷运转
1	1000	0	1000
2	900	0	900
3	810	810	0
4	567	567	0
5	396.9	397	0

第5年末尚有完好机床278台, 五年总产量 23691.2 单位。

【例3】(人员调拨问题) 某项目由三个小组用不同的途径进行研究。他们的失败概率分别为0.4, 0.6, 0.8。为了减少三个小组都失败的可能性,计划增派二名高级研究人员参加该项目的研究。这两名高级研究人员参加后,各小组的失败概率如下表所示:

高级研究 人 员	I	II	III
0	0.4	0.6	0.8
1	0.2	0.4	0.5
2	0.15	0.2	0.3

应如何调配专家,可使该项目最终失败的概率为最小?

【解】用逆序法

设x_k表示第k阶段可分配的专家数,u_k表示第k阶段分配的专家数。

允许状态集合: $0 \le x_k \le 2$;

允许决策集合: $0 \le u_k \le x_k$;

状态转移方程: $x_{k+1} = x_k - u_k$, k = 3, 2, 1; 且 $x_1 = 2$, $x_4 = 0$;

第k阶段效益函数: $g_k=p_k(u_k)$, 其中 $p_k(u_k)$ 表示第k阶段的失败概率;

基本方程:

$$\begin{cases} f_k(x_k) = \min_{0 \le u_k \le x_k} \{ p_k(u_k) \bullet f_{k+1}(x_{k+1}) \}, k = 3, 2, 1 \\ f_4(x_4) = 1 \end{cases}$$

k = 3

\mathbf{x}_3	$f_3(x_3)$	u_3
0	0.8	0
1	0.5	1
2	0.3	2

k = 2

 \mathbf{X}_2

 \mathbf{u}_2

0	0.6×0.8			0.48	0
1	0.6×0.5	0.4×0.8		0.3	0
2	0.6×0.3	0.4×0.5	0.2×0.8	0.16	2
k = 1					A A
u_1	$f_1(x_1)$	$= p_1(u_1) \cdot f_2$	$(\mathbf{x}_1 - \mathbf{u}_1)$	f (w)	17
\mathbf{x}_1	0	1	2	$f_1(x_1)$	u ₁
2	0.4×0.16	0.2×0.3	0.15×0.48	0.06	1

 $f_2(x_2)$

 \mathbf{u}_2

 $f_2(x_2) = p_2(u_2) \cdot f_3(x_2 - u_2)$

结论 第Ⅰ、III两组各派一位高级研究人员,第Ⅱ组不派,最终失败概率为0.06。

§ 3 可靠性问题

问题的由来

某系统由若干部件构成。只要其中一个发生故障,整个系统即不能正常工作。为了提高系统工作的可靠性,可以在系统内安装能自动投入工作的备用件。备用件多了,系统的可靠程度也就越大,但系统的成本、重量、体积将增加,有时反而会使得工作效率降低。因此,在若干约束条件下,如何使整个系统的可靠性达到最大是一个优化问题。

模型的导出

设部件i (i = 1,...,n)上装有 z_i 个备用元件时,正常工作的概率是 $p_i(z_i)$ 。则整个系统工作的可靠性就是这n个部件正常工作的概率,即

$$p = \prod_{i=1}^n p_i(z_i)$$

若第i个部件备用元件的费用为 c_i ,重量为 w_i ; 且规定系统装备用元件总费用的限额为C,总重量的限额为W,则数学模型为:

Max
$$p = \prod_{i=1}^{n} p_i(z_i)$$
s.t. $\sum_{i=1}^{n} c_i z_i \leq C$

$$\sum_{i=1}^{n} w_i z_i \leq W$$
 $z_i \geq 0, \ i = 1, ..., n;$ 且为整

这是一个非线性整数规划问题,用整数规划方法求解较困难,若用动态规划方法求解,则较易。

求解步骤

用逆序法

阶段: n(每个阶段考虑一个部件应装多少备用元件);

状态变量: x_k --- 从部件k至部件n容许使用的总费用,

y_k --- 从部件k至部件n容许具有的总重量;

决策变量: u_k --- 部件k所装备用元件的数目;

允许决策集合: $D_k(x_k, y_k) = \{u_k | 0 \le u_k \le \min\{[x_k/c_k], [y_k/w_k]\}\}$

状态转移方程: $x_{k+1} = x_k - c_k u_k$, $y_{k+1} = y_k - w_k u_k$, $x_{n+1} = y_{n+1} = 0$

基本方程:

$$\begin{cases} f_k(x_k, y_k) = \max_{u_k \in Dk} \{ p_k(u_k) \bullet f_{k+1}(x_{k+1}, y_{k+1}) \}, k = n, ..., 1 \\ f_{n+1}(x_{n+1}, y_{n+1}) = 1 \end{cases}$$

【例】某电器设备由3个部件串联组成。为增强设备的可靠性,须在每个部件上安装1-3个备件。若部件i配备j个备件后的可靠性 r_{ii} 和所需费用 c_{ii} (百元)如下表所示:

部件	j=1 (一备件)		j=2 (_	j=2 (二备件)		j=3 (三备件)	
口口十	c _{i1}	r _{i1}	c _{i2}	r_{i2}	c _{i3}	r _{i3}	
Ι	2	0.92	4	0.94	5	0.96	
II	3	0.75	5	0.94	6	0.98	
III	1	0.80	2	0.95	3	0.99	

若总费用限额为1000元,应如何配备各部件的备用元件, 使得该设备的可靠性最大?

【解】用逆序法

分三个阶段。

设 x_k 表示从部件k至部件n容许使用的总费用, u_k 表示部件k所装备用元件的数目。

则

状态转移方程
$$x_{k+1} = x_k - c_{k,u_k}$$
, $k = 3, 2, 1$; $x_1 = 1000$, $x_4 = 0$ 。

基本方程

$$\begin{cases}
f_k(x_k) = \max_{u_k \in D_k} \{r_{k, u_k} \bullet f_{k+1}(x_{k+1})\}, k = 3, 2, 1 \\
f_4(x_4) = 1
\end{cases}$$

K = 3, $f_3(x_3) = \max\{r_3, u_3\}$,因每个部件至少要有一个配件,则 x_3 的取值范围是 [100, 500]。

\mathbf{X}_3	的取值范围是	[100, 500]。		
	X_3	u_3	$\{r_3, u_3\}$	$f_3(x_3)$
	100	1	0.8	0.8
m'	200	1	0.8	
		2	0.95	0.95
	300	1	0.8	
		2	0.95	/
		3	0.99	0.99
	400	1	0.8	1
200		2	0.95	
		3	0.99	0.99
4	500	1	0.8	
		2	0.95	- 0.
		3	0.99	0.99

K = 2, $f_2(x_2) = \max \{r_2, u_2, f_3(x_3)\} = \max \{r_2, u_2, f_3(x_2 - u_2c_2, u_2)\}$, x_2 的取值范围: [500, 800]。

\mathbf{x}_2	u_2	$r_{2}, u_{2} f_{3}(x_{3})$	$f_2(x_2)$	
500	1	$0.75 \times 0.95 = 0.7125$	0.7125	
	2	不可能		
600	1	$0.75 \times 0.99 = 0.7425$		
	2	$0.94 \times 0.8 = 0.752$	0.752	
	3	不可能		
700	1	$0.75 \times 0.99 = 0.7425$		
	2	$0.94 \times 0.95 = 0.893$	0.893	
	3	$0.98 \times 0.8 = 0.784$		
800	1	$0.75 \times 0.99 = 0.7425$		
	2	$0.94 \times 0.99 = 0.9306$		
	3	$0.98 \times 0.95 = 0.931$	0.931	

K = 1,

$$f_1(x_1) = \max \{r_1, f_2(x_2)\} = \max \{r_1, f_2(x_1 - u_1c_1, u_1)\}$$

\mathbf{x}_1	\mathbf{u}_1	$r_{1}, u_{1} f_{2}(x_{2})$	$f_1(x_1)$
1000	1	$0.92 \times 0.931 = 0.85652$	0.85652
	2	$0.94 \times 0.752 = 0.70688$	
	3	$0.96 \times 0.7125 = 0.684$	

结论

部件 I 配备1个备件; 部件 II 配备3个备件; 部件III配备2个备件, 该设备的可靠性为0.85652。

§ 4 生产-库存问题

问题的由来

在生产成本、库存费用和市场需求已知的条件下,如何合理地安排生产计划、采购计划、库存计划、销售计划,使得计划内的总效益最优。

模型的导出

经预测,某厂全年四个季度的市场需求分别为 d_k 单位, k = 1,...,4; 该厂第k季度生产此产品的能力为 b_k 单位; 每季度生产此产品的固定成本为G万元; 每单位产品的追加成本为c万元; 若某季度生产的产品滞销,则需放进仓库储存。每季度单位产品的库存费是h万元,仓库最大储存量为E单位。若年初、末的库存量是零,该厂应如何制定全年的生产计划,在确保市场需求的前提下,使生产和存储的总费用最小。

用逆序法

阶段: n =4;

状态变量: x_k表示第k季度初仓库的库存量;

决策变量: u_k表示第k季度的产量;

允许决策集合: $D_k(x_k, y_k) = \{u_k | 0 \le u_k \le b_k\};$

状态转移方程: $x_{k+1} = x_k + u_k - d_k$, $x_1 = 0$, $x_5 = 0$, $0 \le x_k \le E$;

阶段效益函数:

$$g_k(x_k, u_k) = \begin{cases} hx_k, & u_k = 0 \\ \\ G + cu_k + hx_k, & u_k > 0 \end{cases}$$

基本方程:

$$\begin{cases} f_k(x_k) = \min_{u_k \in Dk} \{g_k(x_k, u_k) + f_{k+1}(x_{k+1})\}, k = 4,3,2,1 \\ f_5(x_5) = 0 \end{cases}$$

【例】设某厂全年四个季度的市场需求d_k分别为2000件,3000件,2000件,4000件;每季度的最大生产能力为6000件,固定成本为3仟元;追加成本为2元/件;库存费是1元/件;仓储量无限制。若年初、末的库存量是零,该厂应如何制定全年的生产计划(千件/批),在确保市场需求的前提下,使生产和存储的总费用最小。

【解】用逆序法

K=4,

 x_4 、 u_4 的取值范围: 由 $x_5 = x_4 + u_4 - d_4$, $x_5 = 0$ 得 $x_4 + u_4 = 4000$ 。 故

X_4	u_4	g_4	$f_4(x_4)$
0	4000	11000	11000
1000	3000	10000	10000
2000	2000	9000	9000
3000	1000	8000	8000
4000	0	4000	4000

K=3, x_3 的取值范围:

由 $x_4 = x_3 + u_3 - 2000$,及 $0 \le x_4 \le 4000$,故 $2000 \le x_3 + u_3 \le 6000$

X_3	0	1000	2000	3000	4000	5000	6000
	2000	1000	0	0	0	0	0
	3000	2000	1000	1000	1000	1000	
u_3	4000	3000	2000	2000	2000		
	5000	4000	3000	3000			
	6000	5000	4000				

X ₃	u_3	g_3	X_4	$f_4(x_4)$	$f_3(x_3)$
0	2000	7000	0	11000	18000
	3000	9000	1000	10000	
	4000	11000	2000	9000	
	5000	13000	3000	8000	
	6000	15000	4000	4000	

N/	11	~	***	f (v)	f(x)
X ₃	u_3	g_3	X_4	$f_4(x_4)$	$f_3(x_3)$
1000	1000	6000	0	11000	17000
	2000	8000	1000	10000	
	3000	10000	2000	9000	
	4000	12000	3000	8000	
	5000	14000	4000	4000	
2000	0	2000	0	11000	13000
	1000	7000	1000	10000	
	2000	9000	2000	9000	
	3000	11000	3000	8000	
	4000	13000	4000	10000	

X_3	u_3	g_3	X_4	$f_4(x_4)$	$f_3(x_3)$
3000	0	3000	1000	10000	13000
	1000	8000	2000	9000	
	2000	10000	3000	8000	
	3000	12000	4000	4000	
4000	0	4000	2000	9000	13000
	1000	9000	3000	8000	
	2000	11000	4000	4000	
5000	0	5000	3000	8000	13000
	1000	10000	4000	4000	
6000	0	6000	4000	4000	10000

K=2,

 x_2 的取值范围: 由 $x_2 = x_1 + u_1 - 2000$, $x_1 = 0$, $u_1 \le 6000$,得 $0 \le x_2 \le 4000$ 。

另一方面, u_2 应满足 $0 \le x_3 = x_2 + u_2 - 3000$ 和 $u_2 \le 6000$ 。

\mathbf{x}_2	u_2	g_2	X_3	$f_3(x_3)$	$f_2(x_2)$
0	3000	9000	0	18000	
	4000	11000	1000	17000	
	5000	13000	2000	13000	26000
	6000	15000	3000	13000	
1000	2000	8000	0	18000	
	3000	10000	1000	17000	
	4000	12000	2000	13000	25000
	5000	14000	3000	13000	
	6000	16000	4000	13000	

				C ()	C ()
\mathbf{x}_2	\mathbf{u}_2	g_2	X_3	$f_3(x_3)$	$f_2(x_2)$
2000	1000	7000	0	18000	
	2000	9000	1000	17000	
	3000	11000	2000	13000	24000
	4000	13000	3000	13000	
	5000	15000	3000	13000	
	6000	17000	5000	13000	
3000	0	3000	0	18000	21000
	1000	8000	1000	17000	
	2000	10000	2000	13000	
	3000	12000	3000	13000	
	4000	14000	4000	13000	
	5000	16000	5000	13000	
	6000	18000	6000	10000	

\$000 00

用

1

	\mathbf{x}_2	u_2	g_2	\mathbf{x}_3	$f_3(x_3)$	$f_2(x_2)$
	4000	0	4000	1000	17000	21000
I		1000	9000	2000	13000	
I		2000	11000	3000	13000	
I		3000	13000	4000	13000	
I		4000	15000	5000	13000	
		5000	17000	6000	10000	

$$x_2 = x_1 + u_1 - 2000$$
,

$$x_1 = 0$$
,

$$0 \le x_2 \le 4000$$
,

$$u_1 \leq 6000$$
,

得

$2000 \le u_1 \le 6000 \, \circ$

\mathbf{x}_1	\mathfrak{u}_1	g_1	\mathbf{X}_2	$f_2(x_2)$	$f_1(x_1)$
0	2000	7000	0	26000	33000
	3000	9000	1000	25000	
	4000	11000	2000	24000	
	5000	13000	3000	21000	
	6000	15000	4000	21000	

结论

第1季度生产2000件,费用7000元; 第2季度生产5000件,费用13000元; 第3季度不生产,费用2000元; 第4季度生产4000件,费用11000元;

全年总费用: 33000元。

§ 5 设备更新问题

问题的由来

实践中,一台设备应使用多少年更新最合算是一个常见的问题。即已知设备的效益函数、维修费用函数和更新费用函数,如何制定设备在某个时期内使用、维修和报废的最佳计划?

模型的导出

- 设r(t)是效益函数,w(t)是维修费用函数,c(t)是更新费用函数。若 t 表示某设备已使用过的年限(机龄);
- $r_k(t)$ 表示机龄为t的设备在第k年再使用一年的效益;
- $w_k(t)$ 表示机龄为t的设备在第k年再使用一年的维修费用;
- $c_k(t)$ 表示在第k年卖掉一台机龄为t的设备,再买进一台新设备的更新净费用;
- α 是折扣因子($0 \le \alpha \le 1$),它表示一年以后的单位收入相当于今年的α单位。

则该设备n年更新计划的动态规划模型如下:

用逆序法

阶段 k(k = 1,...,n): 表示计划使用该设备的年限数;

状态变量 x_k:表示第k年初该设备的机龄;

决策变量 uk:表示第k年初该设备被更新(Replacement),还是继

续使用(Keep);

允许决策集合: $D_k(x_k) = \{u_k | u_k = R 或 K\};$

状态转移方程:
$$x_{k+1} = \begin{cases} x_k + 1, & \text{当 } u_k = K; \\ \\ 1, & \text{当 } u_k = R. \end{cases}$$

阶段效益函数:

$$g_k(x_k, u_k) = \begin{cases} r_k(x_k) - w_k(x_k), & \stackrel{\text{def}}{=} u_k = K; \\ \\ r_k(0) - w_k(0) - c_k(x_k), & \stackrel{\text{def}}{=} u_k = R. \end{cases}$$

基本方程:

$$\begin{cases} f_k(x_k) = \max_{u_k \in Dk} \{g_k(x_k, u_k) + \alpha f_{k+1}(x_{k+1})\}, k = n, ..., 1 \\ f_{n+1}(x_{n+1}) = 0 \end{cases}$$

事实上,

$$f_{k}(x_{k}) = \max_{u_{k} \in D^{k}} \begin{cases} r_{k}(x_{k}) - w_{k}(x_{k}) + \alpha f_{k+1}(x_{k}+1), & \text{if } u_{k} = K; \\ r_{k}(0) - w_{k}(0) - c_{k}(x_{k}) + \alpha f_{k+1}(1), & \text{if } u_{k} = R. \end{cases}$$

【例】某新设备的年收益、年均维修费、净更新费用如下表所示。 试确定今后5年内的更新策略,使总收益最大。

机龄	0	1	2	3	4	5
收益 (万元)	5	4.5	4	3.75	3	2.5
维修费(万元)	0.5	1	1.5	2	2.5	3
更新费(万元)	0.5	1.5	2.2	2.5	3	3.5

【解】用逆序法

K=5,

$$f_5(x_5) = \max \{g_5(x_5, u_5)\} = \max \begin{cases} r_5(x_5) - w_5(x_5), & \stackrel{\text{def}}{=} u_5 = K \\ \\ r_5(0) - w_5(0) - c_5(x_5), & \stackrel{\text{def}}{=} u_5 = R \end{cases}$$

 x_5 的取值范围是 1, 2, 3, 4

X ₅		$g_5(x_5,u_5)$			
1	$u_5 = K$	$r_5(1) - w_5(1) = 4.5 - 1 = 3.5$	3.5	K	
1	$u_5 = R$	$r_5(0)-w_5(0)-c_5(1) = 5-0.5-1.5 = 3$	3.3	K	
2	$u_5 = K$	$r_5(2) - w_5(2) = 4 - 1.5 = 2.5$	2.5	K	
2	$u_5 = R$	$r_5(0)-w_5(0)-c_5(2) = 5-0.5-2.2 = 2.3$	2.3	K	
3	$u_5 = K$	$r_5(3) - w_5(3) = 3.75 - 2 = 1.75$	2	D	
3	$u_5 = R$	$r_5(0)-w_5(0)-c_5(3) = 5-0.5-2.5 = 2$	2	R	
1	$u_5 = K$	$r_5(4) - w_5(4) = 3 - 2.5 = 0.5$	1.5	D	
4	$u_5 = R$	$r_5(0)-w_5(0)-c_5(4) = 5-0.5-3 = 1.5$	1.3	R	

5.8 R $u_{4} = R$ $r_4(0)-w_4(0)-c_4(2)+f_5(1)=5.8$ $u_4 = K$ $r_4(3) - w_4(3) + f_5(4) = 3.25$

 $r_4(0)-w_4(0)-c_4(3)+f_5(1)=5.5$

 $u_{4} = R$

5.5

R

$$K=3,$$

$$f_3(x_3) = \max$$

 $u_3 = K$

 $u_3 = R$

 $u_3 = K$

 $u_3 = R$

 X_3

$$r_3(x_3) - w_3(x_3) + f_4(x_3+1)$$
, $\stackrel{\text{def}}{=} u_3 = K$

$$r_3(0) - w_3(0) - c_3(x_3) + f_4(1)$$
, $\stackrel{\text{def}}{=} u_3 = R$

 $f_3(x_3)$

9.5

8.8

 u_3

R

	ALL CONTRACTOR	417

 $r_3(1) - w_3(1) + f_4(2) = 9.3$

 $r_3(0)-w_3(0)-c_3(1)+f_4(1)=9.5$

 $r_3(2) - w_3(2) + f_4(3) = 8$

 $r_3(0)-w_3(0)-c_3(2)+f_4(1)=8.8$

 $g_3(x_3,u_3) + f_4(x_4)$

K=2,

$$f_2(x_2) = \max \begin{cases} r_2(x_2) - w_2(x_2) + f_3(x_2+1), & \stackrel{\text{def}}{=} u_2 = K \\ r_2(0) - w_2(0) - c_2(x_3) + f_3(1), & \stackrel{\text{def}}{=} u_2 = R \end{cases}$$

 $g_2(x_2,u_2) + f_3(x_3)$

 \mathbf{X}_2

 $\mathbf{u}_1 = \mathbf{R}$

 $f_2(x_2)$

 u_2

t ₁	$(\mathbf{x}_1) = \mathbf{m}$	$ \begin{cases} r_1(0) - w_1(0) - c_1(x_1) + f_2(1), & \triangleq u_1 \end{cases} $	= R	91 9V ·
\mathbf{x}_1		$g_1(x_1,u_1) + f_2(x_2)$	$f_1(x_1)$	\mathbf{u}_1
0	$u_1 = K$	$r_1(0) - w_1(0) + f_2(1) = 17$	17	K
U			1/	17

 $r_1(0)-w_1(0)-c_1(0)+f_2(1)=16.5$

结论

第1年继续使用; 第2年初更新设备; 第3年初更新设备; 第4年初更新设备; 第5年继续使用。

总效益: 17万元。

§6背包问题

问题的由来

某人携带背包去旅游,已知他所能承受的背包重量限额为a千克,现有n种物品可供他选择装入背包,第i种物品的单件重量为 a_i 千克。若这些物品的重要性指标由价值多少来体现,且它们是携带数量 x_i 的函数 $c_i(x_i)$, i=1,...,n。此人应如何选择携带物品,使总价值最大?

模型的导出

背包问题本质上是一个装载问题。设x_i表示第i种物品装入的件数,则其数学模型为

$$\max z = \sum_{i=1}^{n} c_i(x_i)$$
s.t.
$$\sum_{i=1}^{n} a_i x_i \le a$$

$$x_i \ge 0, i = 1, ..., n 且为整$$

求解步骤

用逆序法

阶段 n: 每阶段只装一种物品;

状态变量 x_k: 第k阶段开始时,背包中允许装入物品的总重量;

决策变量 uk: 在第k阶段,包中装入第k种物品的数目;

允许决策集合: $D_k(x_k) = \{u_k | 0 \le u_k \le [x_k/a_k]\};$

状态转移方程: $x_{k+1} = x_k - a_k u_k$;

基本方程: $f_k(x_k) = \max_{u_{k \in Dk}} \{ c_k(u_k) + f_{k+1}(x_{k+1}) \}, k = 1, ..., n$ $f_{n+1}(x_{n+1}) = 0$

【例】某卡车的最大载重量为10吨。现用其装载三种货物,货物的具体情况如下表所示。应如何装载可使总价值最大?

	货物编号	1	2	3
Ì	单位重量 (吨)	3	4	5
	单位价值(万)	4	5	6

【解】用逆序法

K=3, 由 $0 \le u_3 \le [x_3/5]$, $f_3(x_3) = \max\{6u_3\}$, 故

	\mathbf{x}_3	0	1	2	3	4	4	5	(5	,	7	{	3	Ç)		10	
	u_3	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0	1	2
I	$c_3(u_3)$	0	0	0	0	0	0	6	0	6	0	6	0	6	0	6	0	6	12
	$f_3(x_3)$	0	0	0	0	0	(5	(5	(5	(5	(5		12	
	u_3^*	0	0	0	0	0	1	1		1		1	1	1]			2	

K=2, 由 $0 \le u_2 \le [x_2/4]$, $f_2(x_2) = \max \{5(u_2) + f_3(x_3)\}$, 故

\mathbf{X}_2	0	1	2	3	۷	1	4	5		5	,	7		8			9			10	
\mathbf{u}_2	0	0	0	0	0	1	0	1	0	1	0	1	0	1	2	0	1	2	0	1	2
$c_2 + f_3$	0	0	0	0	0	5	6	5	6	5	6	5	6	5	10	6	11	10	12	11	10
f ₂ (x ₂)	0	0	0	0	4	5	(6		5	(5		10			11			12	
$\mathbf{u_2}^*$	0	0	О	0]	1	(0)	()		2			1			0	

K=1, 由 $0 \le u_1 \le [10/3]$, $f_1(x_1) = \max \{4u_1 + f_2(x_2)\}$, 故

\mathbf{x}_1	\mathbf{u}_1	$c_1(u_1)$	$c_1 + f_2$	$f_1(x_1)$	${f u_1}^*$
	0	0	0 + 12		
10	1	4	4+6	12	2
10	2	8	8 + 5	13	2
	3	12	12 + 0		

结论

货物 I 装2吨;货物 II 装1吨;货物III不装载。

总效益: 13万元。