Optimization

Emil Joseph (ES15BTECH11009), Akhil Ahsref (EE15BTECH11003)

IITH

Feb 21, 2019

Problem Statement

Minimize,

$$x_1 + x_2$$

Subject to,

$$2x_1+x_2\geq 8$$

$$2x_1 + 5x_2 \ge 10$$

$$x_1, x_2 \geq 0$$

Using Simplex.

Solution

Coc

e Result

Since this problem is not in standard form, (i.e constraints $Ax \leq b$, with $b \geq 0$), This problem has to be solved using Two-Phase simplex method. The above problem statement can be written as, Minimize,

$$x_1 + x_2$$

Subject to,

$$2x_1 + x_2 - s_1 + a_1 = 8$$
$$2x_1 + 5x_2 - s_2 + a_2 = 10$$
$$x_1, x_2, s_1, s_2, a_1, a_2 \ge 0$$

where, s_1, s_2 are slack variables and a_1, a_2 are artificial variables.

Phase 1

Minimize,

$$a_1 + a_2$$

Subject to,

$$2x_1 + x_2 - s_1 + a_1 = 8$$
$$2x_1 + 5x_2 - s_2 + a_2 = 10$$
$$x_1, x_2, s_1, s_2, a_1, a_2 \ge 0$$

		X ₁	x ₂	s_1	s_2	a_1	a ₂ 1	
	С	0	0	0	0	1	1	
1	a ₁ a ₂	2	1	-1	0	1	0	8
1	a_2	2	5	0	-1	0	1	10
	Z	4	6	-1	-1	1	1	
	z c - z	-4	-6	1	1	0	0	

		x ₁	x_2	s_1	s_2	a_1	a_2	
	С	0	0	0	0	1	1	
1	a_1	8/5	0	-1	1/5	1	-1/5 1/5	6
0	x_2	2/5	1	0	-1/5	0	1/5	2
	Z	8/5	0	-1	1/5	1	-1/5 4/5	
	c - z	-8/5	0	1	1/5	0	4/5	

			x ₁	x_2	s ₁ 0	s_2	a_1	a_2	
		С	0	0	0	0	1	1	
-	0	x ₁	1	0	-5/8	1/8	5/8	-1/8 1/4	30/8
	0	x_2	0	1	1/4	-1/4	-1/4	1/4	1/2
_		Z	0	0	0	0	0	0	
		C - Z	0	0	0	0	1	1	

Since the cost functions are all positive, feasible solution exists and this will be the table for Phase 2.

Phase 2

		x ₁	X2	s_1	s_2	
	С	1	1	0	0	
1	× ₁	1	0	-5/8 1/4	1/8	15/4
1	x_2	0	1	1/4	-1/4	1/2
	Z	1	1	-3/8	-1/8	
	c - z	0	0	3/8	1/8	

Since the values in c-z row are all positive, the feasible solution is $x_1=3.75, x_2=0.5.$

The minimum value = 4.25

Code

```
import cvxpy as cp
2
   import numpy as np
3
4
   x = cp.Variable(2)
5
6
   constraints = [
7
                     2*x[0] + x[1] >= 8,
8
                     2*x[0] + 5*x[1] >= 10,
9
                     x >= 0
10
11
   objective = cp.Minimize(x[0] + x[1])
12
13
14
   problem = cp.Problem(objective, constraints)
15
16
   problem.solve()
17
   print((problem.value))
18
```

Result

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3.75 \\ 0.50 \end{bmatrix}$$

Minimum Value is, $x_1 + x_2 = 3.75 + 0.50 = 4.25$.