Gnowee Benchmark Results

James Bevins¹ and Rachel Slaybaugh¹

¹University of California - Berkeley, Department of Nuclear Engineering

ABSTRACT

This is a comprehensive listing of all of the benchmark results in tabular format. The associated plots can be found at https://github.com/SlaybaughLab/Gnowee/tree/development/Benchmarks/plots. The results are organized by benchmark type (continuous, mixed-integer, and combinatorial). The continuous benchmarks are further subdivided into constrained and unconstrained problems. In each section, the parameters used are listed first, followed by the individual problem detailed results, and rounded off with function evaluation and FOM summary tables. Each algorithm was run for 100 iterations against each benchmark shown to compile sufficient statistics. A select subset of these problems can be found in: "Gnowee: A Metaheuristic Optimization Algorithm for Constrained, Black Box, Combinatorial Mixed-Integer Engineering Design Problems."

Gnowee Optimized Settings

From the hyper-optimization results, available at https://github.com/SlaybaughLab/Gnowee/tree/development/Benchmarks/plots/HyperOptimization, these were found to be the best settings across the range of problem types considered. They may not be the best for any given type, but they are the most likely to be best given a generic problem that combines multiple variable types.

Table 1. Gnowee algorithm settings.

Parameter	Gnowee
\overline{P}	25
S_i	NOLH-CDR
α	0.5
γ	1
β	10
f_1	1.0
f_d	0.2
f_e	0.2

Continuous Design Benchmarks

The convergence criteria used for the continuous benchmarks is shown in Table 2. Additionally, a 1% of optimal fitness convergence criteria was used for all problems and algorithms.

Table 2. Control settings for the continuous optimization algorithms.

Algorithm	F_{max}	F_{stall}	P
GA[1]	200,000	10,000	50
SA[1]	200,000	10,000	1
PSO[1]	200,000	10,000	100
CS[2]	200,000	10,000	25
MCS[3]	200,000	10,000	20
MEIGO[4]	200,000	10,000	50
Gnowee	200,000	10,000	25

Unconstrained Functions

Functions considered:

- 1. 3D Ackley [5]
- 2. 4D De Jong [5]
- 3. 2D Easom [5]
- 4. 6D Greiwank
- 5. 5D Rastrigin
- 6. 5D Rosenbrock

Table 3. Three dimensional Ackley optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 0.0.

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	$\textbf{-0.000142} \pm \textbf{0.13784}$	-0.0000005 ± 0.00210	0.000189 ± 0.00171	0.000168 ± 0.00188	$\textbf{-0.001334} \pm 0.01217$	$\underline{0.000154 \pm 0.00114}$	-0.000202 ± 0.00201
x_2^{avg}	$\textbf{-0.010039} \pm \textbf{0.25649}$	-0.000065 ± 0.00204	0.000301 ± 0.00186	-0.000011 ± 0.00186	$\textbf{0.000669} \pm \textbf{0.01164}$	$\underline{0.000054 \pm 0.00119}$	-0.000069 ± 0.00175
x_3^{avg}	0.018987 ± 0.19196	-0.000009 ± 0.00272	0.000098 ± 0.00171	0.000077 ± 0.00192	$\textbf{-0.000824} \pm 0.01333$	-0.000050 ± 0.00111	0.000093 ± 0.00175
$f_{avg}(\overrightarrow{x})$	0.178450 ± 0.72239	0.008015 ± 0.00587	0.006896 ± 0.00220	0.007394 ± 0.00227	$\textbf{0.052226} \pm \textbf{0.03022}$	$\underline{0.006551 \pm 0.00232}$	0.007264 ± 0.00200
$N_{f(ec{x})}^{avg}$	2411 ± 2310	3692 ± 3332	2945 ± 648	8445 ± 1056	19053 ± 6129	$\underline{618\pm431}$	1898 ± 269
FOM_{avg}	1666.8	109.7	33.7	85.9	1955.5	12.5	19.7
x_1^{best}	-0.000118	0.000246	0.000057	-0.000484	0.000142	0.000286	-0.000581
x_2^{best}	-0.000175	-0.000043	0.000130	0.000041	-0.001033	-0.000179	-0.000203
x_3^{best}	-0.000119	-0.000874	0.000772	-0.000038	-0.000798	-0.000079	-0.000268
$f_{best}(\overrightarrow{x})$	0.000561	0.002113	0.001824	0.001129	0.003063	0.001134	0.001558
$N_{f(\overrightarrow{x})}^{best}$	2000	3587	2700	8175	10845	266	1680
FOM_{best}	1.1	7.6	4.9	9.2	33.2	0.6	2.6

Table 4. Four dimensional DeJong optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 0.0.

0.007030 \pm 0.03815 0.001011 \pm 0.04421 -0.001355 \pm 0.03941 0.003892 \pm 0.04043 0.001925 \pm 0.04607 -0.005754 \pm 0.04030 0.004782 \pm 0.03706 -0.006971 \pm 0.04613 -0.000697 \pm 0.03578 0.006332 \pm 0.0472 0.005013 \pm 0.04613 -0.000697 \pm 0.03578 946 \pm 248 1714 \pm 1683 1833 \pm 300 -0.001593 -0.019614 -0.007134 -0.005017 0.017816 -0.007134 0.014303 0.005006 -0.014717 0.005449 -0.030062 0.006252 0.000262 0.0001631 0.0000319 1200 142 2300	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11 ± 0.04421	-0.001355 ± 0.03941	-0.001043 ± 0.04236	0.008158 ± 0.03965	-0.005668 ± 0.03503	-0.000338 ± 0.04201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25 ± 0.04607	-0.005754 ± 0.04030	0.002235 ± 0.04028	0.005167 ± 0.03935	-0.007166 ± 0.03545	-0.001091 ± 0.03982
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.04227	0.002082 ± 0.03578	-0.004713 ± 0.03947	-0.002679 ± 0.04141	$\underline{0.001778 \pm 0.03410}$	0.0000343 ± 0.03779
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13 ± 0.04613		-0.008977 ± 0.04188	-0.003806 ± 0.03883	$\underline{-0.000570 \pm 0.02998}$	-0.000592 ± 0.03963
f_{avg} 1714 ± 1683 1833 ± 300 f_{avg} 10.7 53.7 15.2 -0.001593 -0.019614 -0.007134 -0.005017 0.017816 -0.003572 0.014303 0.005006 -0.014717 (0.005449) -0.030062 0.006252 (0.0001631) 0.000319 (0.0001631) (0.000319) (0.000319) (0.000319)		42 ± 0.00165	0.005547 ± 0.00238	0.006769 ± 0.00225	0.006394 ± 0.00245	$\underline{0.005705 \pm 0.00265}$	0.006287 ± 0.00239
I_{avg} 10.7 53.7 15.2 -0.001593 -0.019614 -0.007134 -0.005017 0.017816 -0.003572 0.014303 0.005006 -0.014717 0.005449 -0.030062 0.006252 \overrightarrow{x} 0.000262 0.001631 0.000319 \overrightarrow{x} 1200 142 2300		14 ± 1683	1833 ± 300	3033 ± 488	1100 ± 291	396 ± 70	892 ± 173
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.7	53.7	15.2	30.5	12.6	3.5	8.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).019614	-0.007134	0.017529	-0.006102	-0.010734	0.006149
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.017816	-0.003572	0.012948	0.006524	0.005440	-0.016879
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9002007	-0.014717	-0.004303	-0.004873	-0.014811	-0.008211
0.000262 0.001631 0.000319 1200 142 2300).030062	0.006252	0.015140	-0.019086	-0.001821	-0.021813
1200 142 2300		.001631	0.000319	0.000723	0.000468	0.000368	0.000866
	1200	<u>142</u>	2300	3025	1364	345	840
$\frac{0.2}{0.7}$	0.3	0.2	0.7	2.2	9.0	0.1	0.7

Table 5. Two dimensional Easom optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = -1.0.

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	2.869975 ± 2.20867	3.224050 ± 2.1422	3.145620 ± 0.03864	3.146342 ± 0.04087	3.138960 ± 0.04199	3.141590 ± 0.00009	3.141648 ± 0.03949
x_2^{avg}	$\bf 2.865983 \pm 1.77447$	3.057748 ± 2.29850	3.145847 ± 0.03396	3.141920 ± 0.04075	3.143228 ± 0.03854	3.141591 ± 0.00008	3.140957 ± 0.03939
$f_{avg}(\overrightarrow{x})$	-0.617519 \pm 0.48584	$\textbf{-0.228645} \pm \textbf{0.31523}$	-0.996029 ± 0.00270	$-0.995035 \pm 0.00269 -0.995176 \pm 0.00297$	-0.995176 ± 0.00297	-0.996433 ± 0.00294	-0.995393 ± 0.00289
$N_{f(\overrightarrow{x})}^{avg}$	$\textbf{4459} \pm \textbf{4448}$	$\boldsymbol{13831 \pm 5076}$	2088 ± 307	7040 ± 1601	3747 ± 2510	464 ± 140	828 ± 193
FOM_{avg}	6809.3	22415.2	11.9	58.8	54.4	3.2	6.5
x_1^{best}	3.131134	3.135441	3.138883	3.148398	3.146351	3.141674	3.144702
χ_2^{best}	3.137317	3.144053	$\underline{3.150349}$	3.147757	3.146351	3.141387	3.145677
$f_{best}(\overrightarrow{x})$	-0.999809	-0.999934	-0.999874	-0.999874	-0.999932	9666660-	096666'0-
$N_{f(\overrightarrow{x})}^{best}$	1050	18461	$\overline{2200}$	7575	185	<u>560</u>	1140
FOM_{best}	0.2	1.2	0.0	1.0	0.3	0.0	$\overline{0.0}$

Table 6. Six dimensional Griewank optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 0.0.

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	0.201159 ± 1.88417	1.398034 ± 14.43923	1.378999 ± 5.22680	$\textbf{-0.565628} \pm \textbf{8.15575}$	1.493224 ± 10.15150	0.253461 ± 2.66910	$\textbf{-0.249655} \pm 3.90880$
x_2^{avg}	0.366524 ± 2.49624	$\boldsymbol{1.586266 \pm 14.05641}$	0.033644 ± 4.95374	$\textbf{-0.349229} \pm \textbf{7.21675}$	1.848447 ± 11.77585	$\bf 0.088039 \pm 3.27772$	$\textbf{0.309768} \pm 3.04246$
x_3^{avg}	0.116993 ± 0.76640	0.409451 ± 15.88555	$\bf 0.216585 \pm 6.41644$	$\bf 0.499912 \pm 7.80187$	1.991870 ± 10.94855	$\bf 0.153182 \pm 3.03737$	$\textbf{-0.268980} \pm \textbf{3.12493}$
x_4^{avg}	-0.054621 ± 0.63482	$\bf 0.599289 \pm 17.37281$	$\textbf{-0.138224} \pm \textbf{5.97189}$	$\bf 0.464491 \pm 8.57921$	1.168596 ± 12.17359	$\textbf{-0.185988} \pm \textbf{3.01119}$	$\bf 0.508842 \pm 4.42702$
x_5^{avg}	-0.003029 ± 0.10780	$\bf 0.784290 \pm 14.00737$	0.580790 ± 5.53637	$ -1.234143 \pm 7.51511 $	0.365900 ± 11.69798	$\textbf{-0.633978} \pm \textbf{3.31817}$	$\textbf{-0.206882} \pm \textbf{4.04043}$
x_6^{avg}	-0.046531 ± 0.78031	$\textbf{-1.892031} \pm 16.97844$	$\textbf{-0.831285} \pm \textbf{6.70667}$	$\textbf{-0.487097} \pm \textbf{8.80328}$	$\bf 0.723274 \pm 10.68837$	0.237986 ± 3.17676	$\textbf{0.612019} \pm \textbf{4.83796}$
$f_{avg}(\overrightarrow{x})$	0.009721 ± 0.01310	$\bf 0.687428 \pm 0.18887$	0.055998 ± 0.04546	$\textbf{0.171407} \pm \textbf{0.06900}$	$\textbf{0.380347} \pm \textbf{0.09967}$	$\boldsymbol{0.016864 \pm 0.00962}$	0.022621 ± 0.01468
$N_{f(\overrightarrow{x})}^{avg}$	1951 ± 2507	20419 ± 6603	$\textbf{29043} \pm \textbf{12138}$	${\bf 37820} \pm {\bf 14534}$	21559 ± 7489	68392 ± 28540	${\bf 31535} \pm {\bf 12324}$
FOM_{avg}	92.1	27654.5	3665.4	13956.8	16746.4	2597.3	1549.7
χ_1^{best}	-0.014629	9.267509	0.002698	3.123689	2.856185	-3.140023	0.073978
x_2^{best}	$\frac{0.027934}{}$	-17.667665	-0.018476	4.312563	4.696731	-4.438444	-0.008706
x_3^{best}	-0.010507	-0.338062	0.081153	-5.272732	-0.143986	-0.000000	-0.043893
x_4^{best}	-0.027760	-5.927008	-0.167562	5.921846	-18.690699	0.000000	0.044161
χ_{S}^{best}	0.015453	6.907948	-0.007364	-0.013710	0.111012	0.000000	0.004432
χ_6^{best}	0.126265	-7.423495	-0.001446	-0.074905	-7.710662	-0.000000	0.017419
$f_{best}(\vec{x})$	0.001773	0.190155	0.004704	0.048529	0.173032	0.008251	0.003347
$N_{f(\overrightarrow{x})}^{best}$	<u>1200</u>	14484	18100	46725	19395	19419	23901
FOM_{best}	2.1	2754.2	85.1	2267.5	3356.0	160.2	80.0

Table 7. Five dimensional Rastrigin optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 0.0.

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MCS[4]	Gnowee
x_1^{avg}	0.059971 ± 0.34112	0.128445 ± 0.73054	$\textbf{-0.059811} \pm 0.39477$	0.009766 ± 0.54304	0.129483 ± 0.67286	$\bf 0.010135 \pm 0.17291$	$ -0.000037 \pm 0.00239 $
x_2^{avg}	$\boldsymbol{0.010147 \pm 0.38716}$	0.109002 ± 0.74688	$\textbf{-0.029804} \pm \textbf{0.45724}$	$\textbf{-0.087902} \pm \textbf{0.51953}$	$\textbf{-0.028690} \pm \textbf{0.72844}$	$\boldsymbol{0.000636 \pm 0.14297}$	$ -0.000118 \pm 0.14144 $
x_3^{avg}	$\boldsymbol{0.050058 \pm 0.29575}$	0.039757 ± 0.76083	$\textbf{-0.019501} \pm \textbf{0.31564}$	$\textbf{-0.092107} \pm 0.50942$	$\textbf{0.099634} \pm \textbf{0.65522}$	$\textbf{-0.020182} \pm \textbf{0.19898}$	$\textbf{-0.010414} \pm 0.09948$
x_4^{avg}	$\bf 0.049819 \pm 0.45551$	$\textbf{-0.059536} \pm 0.75964$	$\boldsymbol{0.010146 \pm 0.36051}$	$\textbf{-0.017504} \pm 0.52925$	$\textbf{0.059926} \pm \textbf{0.70538}$	$\textbf{-0.030188} \pm 0.26285$	$\underline{0.000230 \pm 0.00256}$
x_5^{avg}	0.070279 ± 0.35357	0.010283 ± 0.80608	$\textbf{-0.041048} \pm \textbf{0.31722}$	0.077687 ± 0.56729	$\textbf{0.098970} \pm \textbf{0.71294}$	$\textbf{-0.019731} \pm 0.24429$	$\textbf{-0.009626} \pm 0.09958$
$f_{avg}(\overrightarrow{x})$	0.700755 ± 1.25056	2.938346 ± 1.24507	0.727492 ± 1.16489	2.003227 ± 1.88113	$\pmb{2.475966 \pm 1.50516}$	$\textbf{0.233308} \pm \textbf{0.43974}$	0.046677 ± 0.19456
$N_{f(ec{x})}^{avg}$	6869 ± 5247	$\textbf{18730} \pm \textbf{7638}$	16709 ± 7918	${\bf 54486 \pm 27535}$	${\bf 30959 \pm 10655}$	$\textbf{18272} \pm \textbf{10361}$	$\overline{17455\pm6700}$
FOM_{avg}	15843	122362	29436	274627	155804	11514.8	$\underline{1753.0}$
x_1^{best}	0.001626	0.000272	-0.001102	0.001539	0.001879	-0.000334	-0.000047
x_2^{best}	-0.000293	-0.000114	0.000834	0.000695	-0.002179	-0.000307	0.000830
x_3^{best}	0.000268	-0.000060	0.001411	0.000208	0.000568	-0.000172	-0.000916
x_4^{best}	0.001571	-0.994495	0.001792	-0.001619	0.004230	-0.000634	0.000049
x_5^{best}	0.000950	-0.000333	0.000570	-0.002458	0.003963	-0.000023	-0.000199
$f_{best}(\overrightarrow{x})$	0.001225	0.995042	0.001476	0.002293	0.008371	0.000744	0.000312
$N_{f(\overrightarrow{x})}^{best}$	2750	12850	0099	86125	41017	9604	18180
FOM_{best}	3.4	12786.3	6.7	198	343	7.1	5.7

Table 8. Five dimensional Rosenbrock optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 0.0.

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	$\boldsymbol{0.664163 \pm 0.74193}$	0.913465 ± 0.24200	$\textbf{0.930016} \pm \textbf{0.33490}$	0.958113 ± 0.03493	$\textbf{0.670798} \pm \textbf{0.74108}$	0.999510 ± 0.00063	0.996755 ± 0.00587
x_2^{avg}	$\bf 0.987771 \pm 0.05248$	$\bf 0.892751 \pm 0.18282$	$\textbf{0.976758} \pm \textbf{0.03037}$	$\textbf{0.919281} \pm \textbf{0.06734}$	0.995704 ± 0.13957	0.999007 ± 0.00126	0.993776 ± 0.01133
x_3^{avg}	$\bf 0.979232 \pm 0.10844$	$\bf 0.830949 \pm 0.22824$	$\textbf{0.955287} \pm 0.05926$	$\bf 0.852081 \pm 0.12937$	1.011265 ± 0.28502	0.998055 ± 0.00246	0.977659 ± 0.02125
x_4^{avg}	$\textbf{0.970839} \pm \textbf{0.23840}$	0.742486 ± 0.28736	$\textbf{0.916683} \pm \textbf{0.12106}$	0.743928 ± 0.23910	1.104951 ± 0.62274	0.996133 ± 0.00488	0.975512 ± 0.04473
x_5^{avg}	$\bf 0.998742 \pm 0.61122$	$0.998742 \pm 0.61122 0.632370 \pm 0.35765$	0.854708 ± 0.27400	0.609654 ± 0.46952	1.604654 ± 1.71378	0.992275 ± 0.00970	$\underline{0.953105 \pm 0.08908}$
$f_{avg}(\overrightarrow{x})$	$\bf 0.732415 \pm 1.48960$	$0.732415 \pm 1.48960 0.341593 \pm 0.77527$	0.148894 ± 0.67298	0.228330 ± 0.19906	1.176830 ± 1.70477	0.008955 ± 0.00121	$\underline{0.007585\pm0.00210}$
$N_{f(ec{x})}^{avg}$	92171 ± 51761	15837 ± 6841	76826 ± 32339	69941 ± 45990	${\bf 41264 \pm 26915}$	11743 ± 4440	11560 ± 2834
FOM_{avg}	181239	12420	25884	47472	143587	224.4	152.2
χ_1^{best}	0.995179	0.994959	0.993468	0.996795	0.993286	0.999108	0.996602
x_2^{best}	0.988557	0.988849	0.987842	0.997276	0.987204	0.998287	0.994582
x_3^{best}	0.981532	0.980139	0.970684	0.993203	0.968473	0.997278	0.990845
x_4^{best}	0.962683	0.959798	0.942644	0.991269	0.936557	0.994757	0.979425
x_5^{best}	0.926854	0.918535	0.885976	0.988646	0.870901	0.989218	0.959626
$f_{best}(\overrightarrow{x})$	0.004111	0.003610	0.007758	0.007634	0.013065	0.003514	0.001572
$N_{f(\overrightarrow{x})}^{best}$	3950	187	72300	34975	33664	11296	12369
FOM_{best}	16	$\overline{0.7}$	561	1399	440	39.7	19.4

Table 9. Summary of function evaluation results for continuous unconstrained optimization benchmarks. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run.

	Ackley (3-D)	Ackley (3-D) De Jong (4-D)	Easom (2-D)	Griewank (6-D)	Rastrigin (5-D)	Rastrigin (5-D) Rosenbrock (5-D)
GA[1]	$\textbf{2411} \pm \textbf{2310}$	968 ± 248	$\textbf{4459} \pm \textbf{4448}$	1951 ± 2507	6869 ± 5247	92171 ± 51761
SA[1]	3692 ± 3332	1714 ± 1683	13831 ± 5076	$\textbf{20419} \pm \textbf{6603}$	$\textbf{18730} \pm \textbf{7638}$	15837 ± 6841
PSO[1]	2945 ± 648	1833 ± 300	2088 ± 307	29043 ± 12138	$\textbf{16709} \pm \textbf{7918}$	76826 ± 3.2339
CS[2]	8445 ± 1056	3033 ± 488	7040 ± 1601	37820 ± 14534	${\bf 54486 \pm 27535}$	69941 ± 45990
MCS[3]	19053 ± 6129	1100 ± 291	3747 ± 2510	$\textbf{21559} \pm \textbf{7489}$	30959 ± 10655	${\bf 41264 \pm 26915}$
MEIGO[4]	618 ± 431	369 ± 70	464 ± 140	68392 ± 28540	18272 ± 10361	11743 ± 4440
Gnowee	1898 ± 269	892 ± 173	828 ± 193	${\bf 31535} \pm 12324$	17455 ± 6700	11560 ± 2834

Table 10. Summary of FOM results for continuous unconstrained optimization benchmarks. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best min

	Ackley (3-D)	Ackley (3-D) De Jong (4-D)	Easom (2-D)	Griewank (6-D)	Rastrigin (5-D)	Easom (2-D) Griewank (6-D) Rastrigin (5-D) Rosenbrock (5-D)
GA[1]	1666.8	10.7	6809.3	92.1	15843	181239
SA[1]	109.7	53.7	22415.2	27654.5	122362	12420
PSO[1]	33.7	15.2	11.9	3665.4	29436	25884
CS[2]	85.9	30.5	58.8	13956.8	274627	47472
MCS[3]	1955.5	12.6	54.4	16746.4	155804	143587
MEIGO[4]	12.5	3.5	3.2	2597.3	11514.8	224.4
Gnowee	19.7	8.9	6.5	1549.7	$\underline{1753.0}$	152.2

Constrained Functions

Functions considered:

- 1. Welded Beam [5]
- 2. Pressure Vessel [5]
- 3. Speed Reducer [5]
- 4. Spring [5]

The Pressure Vessel problem used was generally the same between the MI and continuous case. For the continuous case, the thickness of shell and head were made to be continuous variables. Everything else was left the same between the two cases. The optimal found was 5885.33285347.

Table 11. Welded Beam optimization results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 1.724852 [5].

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	$\bf 0.535380 \pm 0.27754$	$\textbf{0.159921} \pm 0.03097$	0.203742 ± 0.00440	0.203259 ± 0.00302	0.206113 ± 0.02361	0.205698 ± 0.00004	0.203344 ± 0.00255
x_2^{avg}	2.430234 ± 1.31992	5.454721 ± 1.42779	3.533882 ± 0.08177	3.551189 ± 0.06770	3.602632 ± 0.57210	3.471443 ± 0.00082	3.539995 ± 0.05569
x_3^{avg}	5.244808 ± 1.20508	$\boldsymbol{9.064175 \pm 0.37189}$	9.040988 ± 0.07305	9.053524 ± 0.03750	8.913393 ± 0.31918	9.036835 ± 0.00053	9.049939 ± 0.04067
x_4^{avg}	0.707833 ± 0.28695	$\textbf{0.211915} \pm 0.01399$	0.206968 ± 0.00282	0.206465 ± 0.00080	0.213877 ± 0.01599	$\underline{0.205741 \pm 0.00001}$	0.206546 ± 0.00090
$f_{avg}(\overrightarrow{x})$	3.268729 ± 0.75854	1.938610 ± 0.12968	1.740241 ± 0.00813	1.740365 ± 0.00420	$\boldsymbol{1.775602 \pm 0.06015}$	1.738767 ± 0.00253	1.738984 ± 0.00255
$N_{f(\overrightarrow{x})}^{avg}$	21786 ± 32462	$\textbf{18648} \pm \textbf{7571}$	7895 ± 9676	29307 ± 6633	35775 ± 21311	1803 ± 844	5910 ± 1311
FOM_{avg}	106667.6	5125.8	329.4	442.6	2933.8	35.0	9.08
x_1^{best}	0.210064	0.205379	0.205379	0.205390	0.204258	$\underline{0.205700}$	0.205479
x_2^{best}	3.477943	3.513764	3.479932	3.487902	3.500719	3.470942	3.533783
x_3^{best}	8.782271	9.063732	9.065610	9.072675	9.049050	9.037137	9.042888
x_4^{best}	0.217819	0.206069	0.205654	0.205737	0.205855	0.205731	0.205732
$f_{best}(\overrightarrow{x})$	1.778071	1.737478	1.730026	1.732982	1.729743	1.731085	1.730380
$N_{f(\overrightarrow{x})}^{best}$	11850	6074	3600	23825	26083	1074	8440
FOM_{best}	365.6	44.5	10.8	112.3	74.0	3.9	27.1

Table 12. Pressure Vessel optimization results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 5885.332800.

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	$\boldsymbol{0.864415 \pm 0.04369}$	0.940023 ± 0.02975	$\boldsymbol{0.864334 \pm 0.06945}$	0.787252 ± 0.00918	$\bf 0.858054 \pm 0.05374$	$\textbf{0.799934} \pm \textbf{0.02224}$	0.786637 ± 0.00659
x_2^{avg}	0.427522 ± 0.02125	0.464654 ± 0.01471	0.428286 ± 0.03319	0.393513 ± 0.00557	0.425774 ± 0.02601	$\textbf{0.395689} \pm \textbf{0.01113}$	0.393452 ± 0.00392
x_3^{avg}	$\textbf{44.774889} \pm \textbf{2.28465}$	48.705831 ± 1.54145	44.208110 ± 3.52936	40.689886 ± 0.49253	44.167221 ± 2.73328	41.438960 ± 1.15286	40.673817 ± 0.35776
x_4^{avg}	147.679491 ± 24.28765	112.457234 ± 14.98499	150.432099 ± 38.31871	195.452603 ± 6.49264	153.122188 ± 29.85924	185.551070 ± 14.24299	195.630753 ± 4.94062
$f_{avg}(\overrightarrow{x})$	6056.931682 ± 89.12492	$6318.467444 \pm 201.83904$	$6071.894010 \pm 138.45163$	5937.014124 ± 13.89697	$6068.109699 \pm 110.82856$	5950.171681 ± 29.31413	5934.575903 ± 7.93851
$N_{f(\overrightarrow{x})}^{avg}$	$\textbf{12900} \pm \textbf{4412}$	${\bf 38069 \pm 25758}$	14420 ± 7912	24348 ± 11980	$\textbf{211091} \pm \textbf{8775}$	34464 ± 35935	$\underline{5132\pm2608}$
FOM_{avg}	762.0	8488.6	1209.5	529.4	1472.6	1567.4	108.4
x_1^{best}	0.791185	0.819423	0.782836	0.780368	0.780094	0.780903	0.787062
x_2^{best}	0.392003	0.405041	0.390073	0.388495	0.388176	0.386011	0.389085
χ_3^{best}	40.899704	42.457133	40.542649	40.426503	40.395892	40.459183	40.760369
x_4^{best}	192.096828	172.316973	197.503497	198.768809	199.407274	198.080156	194.157149
$f_{best}(\overrightarrow{x})$	5923.533202	5961.436530	5917.675018	198.768809	5909.301443	5907.774153	5907.938547
$N_{f(\overrightarrow{x})}^{best}$	3300	157259	3300	16500	6686	<u>827</u>	3270
FOM_{best}	21.4	2033.5	18.1	50.9	40.3	3.2	14.3

Table 13. Speed Reducer optimization results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 2996.348165 [5].

	GA[1]	SA[1]	PSO[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	3.523479 ± 0.01115	$\boldsymbol{3.505564 \pm 0.00781}$	3.524163 ± 0.01931	3.515357 ± 0.00987	3.512536 ± 0.00950	3.500023 ± 0.00002	3.516265 ± 0.01256
x_2^{avg}	0.701443 ± 0.00096	$\textbf{0.700006} \pm \textbf{0.00003}$	0.700172 ± 0.00031	0.700121 ± 0.00034	0.700315 ± 0.00047	0.700000 ± 0.00000	0.700154 ± 0.00029
χ_3^{avg}	17.014020 ± 0.01545	17.093946 ± 0.08501	17.001355 ± 0.00383	17.001275 ± 0.00620	17.006690 ± 0.01137	17.000019 ± 0.00003	17.006133 ± 0.01393
χ_4^{avg}	7.388391 ± 0.12907	$\textbf{7.820906} \pm \textbf{0.26983}$	7.739903 ± 0.35150	7.670151 ± 0.34593	7.835118 ± 0.37921	7.300106 ± 0.00030	7.706041 ± 0.34363
χ_5^{avg}	7.836127 ± 0.04244	8.030792 ± 0.12827	7.975181 ± 0.16944	7.982819 ± 0.15050	8.067321 ± 0.17831	7.800107 ± 0.00031	7.977768 ± 0.15026
χ_6^{avg}	3.362148 ± 0.01162	$\boldsymbol{3.358619 \pm 0.01043}$	3.365029 ± 0.01253	3.371809 ± 0.01829	3.367024 ± 0.01393	3.350250 ± 0.00004	3.369766 ± 0.01646
x_7^{avg}	5.293224 ± 0.00673	5.289101 ± 0.00359	5.292234 ± 0.00513	5.295841 ± 0.00725	5.293021 ± 0.00596	5.286697 ± 0.00001	5.294405 ± 0.00572
$f_{avg}(ec{x})$	3023.396151 ± 2.76750	3023.396151 ± 2.76750 3028.255983 ± 11.74571	3021.959120 ± 4.06056	3021.876766 ± 4.17776	3022.858369 ± 2.93269	3018.674196 ± 5.01003	3021.984575 ± 3.34277
$N_{f(\overrightarrow{x})}^{avg}$	3323 ± 977	${\bf 38725} \pm {\bf 32075}$	2255 ± 1673	3538 ± 826	1439 ± 501	830 ± 247	2113 ± 454
FOM_{avg}	56.5	1437.1	62.2	51.3	26.0	11.7	29.7
χ_1^{best}	3.507376	3.500246	3.502503	3.501448	3.505454	3.500002	3.513615
x_2^{best}	0.700978	0.700000	0.700002	0.700000	0.700000	0.700000	0.700365
χ_3^{best}	17.010740	17.058220	17.000000	17.000000	17.000000	17.000024	17.022727
x_4^{best}	7.318865	8.120390	7.559614	7.996768	7.300000	7.301175	7.333132
χ_5^{best}	7.854669	7.845934	7.818193	7.800000	7.988013	7.801708	7.831905
χ_6^{best}	3.369326	3.358398	3.361828	3.358396	3.366356	3.350309	3.361983
x_7^{best}	5.291011	5.289320	5.291013	5.294357	5.297392	5.286691	5.290604
$f_{best}(\overrightarrow{x})$	3014.563118	3018.564074	3005.772033	3010.066122	3013.589560	3005.867843	3013.796361
$N_{f(\overrightarrow{x})}^{best}$	3200	21205	2400	4525	1687	<u>763</u>	1980
FOM_{best}	19.5	157.2	7.5	20.7	7.6	2.4	11.5

Table 14. Spring optimization results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 0.012665 [5].

	GA[1]	SA[1]	PS0[1]	CS [2]	MCS[3]	MEIGO[4]	Gnowee
x_1^{avg}	$\textbf{0.060063} \pm \textbf{0.00558}$	0.050810 ± 0.00090	$\bf 0.052298 \pm 0.00314$	0.051703 ± 0.00127	$\textbf{0.058462} \pm \textbf{0.00592}$	0.052817 ± 0.00133	0.051620 ± 0.00119
x_2^{avg}	$\bf 0.610416 \pm 0.18392$	0.335680 ± 0.02133	$\textbf{0.375903} \pm \textbf{0.08398}$	0.357026 ± 0.03064	$\textbf{0.560899} \pm \textbf{0.18946}$	0.385194 ± 0.03386	0.355059 ± 0.02874
x_3^{avg}	5.461663 ± 3.19803	5.461663 \pm 3.19803 12.840958 \pm 1.32526	11.363353 ± 3.39514	11.560822 ± 1.83294	$\textbf{6.573904} \pm 3.75091$	9.997362 ± 1.53760	$\underline{11.648626 \pm 1.72111}$
$f_{avg}(\overrightarrow{x})$	$\bf 0.014398 \pm 0.00161$	0.012778 ± 0.00002	$\textbf{0.012890} \pm \textbf{0.00030}$	0.012771 ± 0.00004	0.014068 \pm 0.00156 0.012785 \pm 0.00006	0.012785 ± 0.00006	$\underline{0.012763 \pm 0.00002}$
$N_{f(\overrightarrow{x})}^{avg}$	16947 ± 6379	5820 ± 5085	$\textbf{7959} \pm \textbf{10523}$	16948 ± 7174	19013 ± 13684	10279 ± 9835	4738 ± 1836
FOM_{avg}	4938	188.3	702.9	323.2	6654	376.7	<u>79.0</u>
x_1^{best}	0.051341	0.050318	0.052021	0.051230	0.051768	0.052121	0.051092
x_2^{best}	0.348240	0.324492	0.364483	0.345779	0.358488	0.367169	0.342205
χ_3^{best}	11.878832	13.476806	10.886333	11.987921	11.224128	10.703094	12.210091
$f_{best}(\overrightarrow{x})$	0.012740	0.012715	0.012711	0.012694	0.012705	0.012691	0.012694
$N_{f(\overrightarrow{x})}^{best}$	7900	835	27900	5225	4328	1090	3813
FOM_{best}	47	3.3	100.3	12.1	13.5	2.2	8.7

Table 15. Summary of FOM results for continuous constrained optimization benchmarks. Bold values indicate average fitness greater than 1% convergence criteria. Underlined values indicate the best average performance.

	Welded Beam [5]	Pressure Vessel [5]	Speed Reducer [5]	Spring [5]
GA[1]	106667.6	762.0	56.5	4938
SA[1]	5125.8	8488.6	1437.1	188.3
PSO[1]	329.4	1209.5	62.2	702.9
CS[2]	442.6	529.4	51.3	323.2
MCS[3]	2933.8	1472.6	26.0	6654
MEIGO[4]	<u>35.0</u>	1567.4	<u>11.7</u>	355.3
Gnowee	80.6	108.4	29.7	<u>79.0</u>

Table 16. Summary of function evaluation results for continuous constrained optimization benchmarks. Bold values indicate average fitness greater than 1% convergence criteria. Underlined values indicate the best average performance.

	Welded Beam [5]	Pressure Vessel [5]	Speed Reducer [5]	Spring [5]
GA[1]	21786 ± 32462	$\textbf{12900} \pm \textbf{4412}$	3323 ± 977	16947 ± 6379
SA[1]	$\textbf{18648} \pm \textbf{7571}$	38069 ± 25758	38725 ± 32075	5820 ± 5085
PSO[1]	7895 ± 9676	$\textbf{14420} \pm \textbf{7912}$	2255 ± 1673	$\textbf{7959} \pm \textbf{10523}$
CS [2]	29307 ± 6633	24348 ± 11980	3538 ± 826	16948 ± 7174
MCS [3]	35775 ± 21311	$\textbf{211091} \pm \textbf{8775}$	1439 ± 501	19013 ± 13684
MEIGO[4]	1803 ± 844	34464 ± 35935	830 ± 247	11424 ± 10230
Gnowee	5910 ± 1311	5132 ± 2608	2113 ± 454	4738 ± 1836

Mixed-Integer Design Benchmarks

Functions considered:

- 1. Mixed-Integer Pressure Vessel [5]
- 2. Mixed-Integer Spring [6]
- 3. Mixed-Integer Chemical Process [7]

Table 17. Control settings for the mixed-integer optimization algorithms.

Algorithm	F_{max}	F_{stall}	P
GA[1]	200,000	10,000	50
MEIGO[4]	200,000		50
Gnowee	200,000		25

Table 18. Mixed-integer pressure vessel optimization results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 6059.714335 [5].

	GA [1]	MEIGO[4]	Gnowee
$\overline{x_1^{avg}}$	45.405737 ± 2.07552	43.917185 ± 2.02390	42.307067 ± 1.08568
x_2^{avg}	140.963636 ± 21.46900	156.687582 ± 21.86685	$\underline{175.252438 \pm 12.48958}$
x_3^{avg}	$\textbf{0.88063} \pm \textbf{0.03982}$	$\textbf{0.848750} \pm \textbf{0.03890}$	$\underline{0.820000 \pm 0.02041}$
x_4^{avg}	$\textbf{0.451250} \pm \textbf{0.02602}$	$\textbf{0.442500} \pm \textbf{0.01704}$	$\underline{0.437500 \pm 0.00000}$
$f_{avg}(\overrightarrow{x})$	$6177.813265 \pm 118.36124$	6130.653499 ± 73.23186	6103.390699 ± 13.10013
$N_{f(\overrightarrow{x})}^{avg}$	14131 ± 10646	$\textbf{4896} \pm \textbf{8570}$	3385 ± 739
FOM_{avg}	897.9	358.3	40.4
x_1^{best}	41.817039	42.054521	42.028546
x_2^{best}	180.299557	<u>177.184811</u>	177.507680
x_3^{best}	0.812500	0.812500	0.812500
x_4^{best}	0.437500	0.437500	0.437500
$f_{best}(\overrightarrow{x})$	6097.653041	6070.873710	6068.342344
$N_{f(\overrightarrow{x})}^{best}$	3401	<u>1473</u>	3875
FOM_{best}	21.3	<u>2.7</u>	5.5

Table 19. Mixed-integer spring optimization results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 2.65872 [6].

	GA[1]	MEIGO[4]	Gnowee
$\overline{x_1^{avg}}$	$\pmb{1.879815 \pm 0.35586}$	1.445495 ± 0.21823	1.365593 ± 0.20183
x_2^{avg}	$\textbf{4.370000} \pm \textbf{1.58691}$	6.960000 ± 2.00967	7.720000 ± 1.87530
x_3^{avg}	$\textbf{0.317080} \pm \textbf{0.01642}$	0.295240 ± 0.01206	$\underline{0.290680 \pm 0.01125}$
$f_{avg}(\overrightarrow{x})$	$\pmb{2.844345 \pm 0.22113}$	2.683470 ± 0.01694	2.678752 ± 0.01505
$N_{f(\overrightarrow{x})}^{avg}$	$\textbf{13330} \pm \textbf{3656}$	13504 ± 7319	7821 ± 7015
FOM_{avg}	1697.9	330.1	<u>219.2</u>
x_1^{best}	1.226427	1.223043	1.223160
x_2^{best}	9.000000	9.000000	9.000000
x_3^{best}	0.283000	0.283000	0.283000
$f_{best}(\overrightarrow{x})$	2.665920	2.658563	2.658818
$N_{f(\overrightarrow{x})}^{best}$	<u>101</u>	<u>5826</u>	<u>1172</u>
FOM_{best}	0.3	0.3	0.2

Table 20. Mixed-integer chemical process optimization results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 4.579582 [7].

	GA[1]	MEIGO[4]	Gnowee
$\overline{x_1^{avg}}$	$\textbf{0.531959} \pm \textbf{0.35574}$	0.199985 ± 0.00001	0.191423 ± 0.00586
x_2^{avg}	$\textbf{0.898655} \pm \textbf{0.24141}$	0.799988 ± 0.00001	$\underline{0.795269 \pm 0.00408}$
x_3^{avg}	$\pmb{1.703999 \pm 0.21540}$	1.907865 ± 0.00001	$\underline{1.902400 \pm 0.00430}$
x_4^{avg}	$\textbf{0.350000} \pm \textbf{0.47937}$	1.000000 ± 0.00000	$\underline{1.0000000\pm0.000000}$
x_5^{avg}	$\textbf{0.720000} \pm \textbf{0.45126}$	1.000000 ± 0.00000	$\underline{1.000000 \pm 0.00000}$
x_6^{avg}	$\pmb{0.510000 \pm 0.50242}$	0.000000 ± 0.00000	$\underline{0.000000 \pm 0.00000}$
x_7^{avg}	$\textbf{0.340000} \pm \textbf{0.47610}$	1.000000 ± 0.00000	$\underline{1.0000000\pm0.000000}$
$f_{avg}(\vec{x})$	$\pmb{6.084888 \pm 0.88504}$	4.610416 ± 0.01027	4.616823 ± 0.00737
$N_{f(\overrightarrow{x})}^{avg}$	$\textbf{20088} \pm \textbf{12461}$	3436 ± 3566	6269 ± 1684
FOM_{avg}	18890.9	95.2	92.1
x_1^{best}	0.190610	0.199997	0.199530
x_2^{best}	0.799945	0.799997	0.796747
x_3^{best}	1.902600	1.907841	1.907393
x_4^{best}	1.000000	1.000000	1.000000
x_5^{best}	1.000000	1.000000	1.000000
x_6^{best}	0.000000	0.000000	0.000000
x_7^{best}	1.000000	1.000000	1.000000
$f_{best}(\vec{x})$	4.606384	4.584077	4.589212
$N_{f(\overrightarrow{x})}^{best}$	10651	<u>5999</u>	7875
FOM_{best}	62.3	<u>5.9</u>	16.6

Table 21. Summary of FOM results for constrained mixed-integer optimization benchmarks. Bold values indicate average fitness greater than 1% convergence criteria. Underlined values indicate the best average performance.

	Pressure Vessel [5]	Spring [6]	Chemical Process [7]
GA[1]	897.9	1697.9	18890.1
MEIGO[4]	358.3	330.1	95.2
Gnowee	<u>40.4</u>	219.2	<u>92.1</u>

Table 22. Summary of function evaluation results for constrained mixed-integer optimization benchmarks. Bold values indicate average fitness greater than 1% convergence criteria. Underlined values indicate the best average performance.

	Pressure Vessel [5]	Spring [6]	Chemical Process [7]
GA[1]	14131 ± 10646	13330 ± 3656	$\textbf{20088} \pm \textbf{12461}$
MEIGO[4]	$\textbf{4896} \pm \textbf{8570}$	13504 ± 7319	3436 ± 3566
Gnowee	3385 ± 739	7821 ± 7015	6269 ± 1684

Combinatorial Design Benchmarks

Functions considered:

- 1. Mixed-Integer Pressure Vessel [5]
- 2. Mixed-Integer Spring [6]
- 3. Mixed-Integer Chemical Process [7]

Table 23. Control settings for the combinatorial optimization algorithms.

Algorithm	F_{max}	F_{stall}	P
GA[1]	200,000	· ·	100
DCS[8] Gnowee	200,000 200,000	· ·	100 25

Table 24. Eil51 TSP optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 426.0

	GA[1]	DCS [8]	Gnowee
$f_{avg}(\vec{x})$	452.470708 ± 9.11127	428.890000 ± 1.13614	434.640000 ± 3.97345
$N_{f(\overrightarrow{x})}^{avg}$	$\bf 103415 \pm 24218$	104341 ± 39398	$\underline{9294 \pm 6033}$
FOM_{avg}	10940.4	1509.7	<u>555.6</u>
$f_{best}(\vec{x})$	432.941007	427.000000	427.000000
$N_{f(\overrightarrow{x})}^{best}$	103700	112745	<u>3639</u>
FOM_{best}	1689.6	264.7	<u>8.5</u>

Table 25. St70 TSP optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 675.0

	GA[1]	DCS [8]	Gnowee
$f_{avg}(\vec{x})$	742.166695 ± 21.86713	683.910000 ± 3.36078	695.720000 ± 12.01353
$N_{f(\overrightarrow{x})}^{avg}$	$157455 \pm 3.042629\text{e+}04$	174362 ± 37953	$\underline{16238 \pm 9823}$
FOM_{avg}	27452.0	3804.6	<u>1403.1</u>
$f_{best}(\overrightarrow{x})$	695.738869	<u>675.000000</u>	676.000000
$N_{f(\overrightarrow{x})}^{best}$	200000	<u>126881</u>	4740
FOM_{best}	6145.2	0.0	7.0

Table 26. Pr107 TSP optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 44303.0

	GA[1]	DCS [8]	Gnowee
$f_{avg}(\vec{x})$	$\textbf{50228.032262} \pm \textbf{1786.57531}$	$45402.500000 \pm 503.76310$	$\underline{46275.720000 \pm 1320.43734}$
$N_{f(\overrightarrow{x})}^{avg}$	159692 \pm 3.790020e+04	198006 ± 15497	27447 ± 16157
FOM_{avg}	36563.1	6067.9	<u>3380.5</u>
$f_{best}(\vec{x})$	46926.395272	44679.000000	44566.000000
$N_{f(\overrightarrow{x})}^{best}$	200000	175768	<u>26143</u>
FOM_{best}	11842.95	1491.7	<u>155.2</u>

Table 27. Bier127 TSP optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 118282.0

	GA[1]	DCS [8]	Gnowee
$f_{avg}(\vec{x})$	$144124.296501 \pm 4196.67351.$	$122257.960000 \pm 1183.97614$	$\underline{123335.690000 \pm 1867.54089}$
$N_{f(\overrightarrow{x})}^{avg}$	197340 ± 10306	$\textbf{228991} \pm \textbf{6345}$	37483 ± 18077
FOM_{avg}	49869.9	8337.3	<u>3918.6</u>
$f_{best}(\overrightarrow{x})$	133399.493454	119359.000000	119785.000000
$N_{f(\overrightarrow{x})}^{best}$	200000	230030	<u>38043</u>
FOM_{best}	25561.8	2094.5	<u>483.4</u>

Table 28. Ch150 TSP optimization detailed results. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run. Optimum fitness = 6528.0

	GA[1]	DCS [8]	Gnowee
$f_{avg}(\vec{x})$	$10128.421320 \pm 298.53102$	6907.260000 ± 87.74741	$\underline{6807.390000 \pm 91.98374}$
$N_{f(\overrightarrow{x})}^{avg}$	$\textbf{199603} \pm \textbf{3276}$	$\textbf{231786} \pm \textbf{5338}$	48757 ± 24725
FOM_{avg}	115495.0	14396.6	<u>5261.4</u>
$f_{best}(\overrightarrow{x})$	6793.691618	6696.000000	6663.000000
$N_{f(\overrightarrow{x})}^{best}$	200000	232480	90289
FOM_{best}	8140	5982.9	<u>1867.2</u>

Table 29. Summary of function evaluation results for TSP optimization benchmarks. Bold results indicate fitness greater than 1% convergence criteria. Underlined results indicate the best performance for the average and the overall best run

	GA[1]	DCS[8]	Gnowee
Eil51	103415 ± 24218	104341 ± 39398	9294 ± 6033
St70	157455 ± 30426	174362 ± 37953	$\underline{16238 \pm 9823}$
Pr107	159692 ± 37900	198006 ± 15497	27447 ± 16157
Bier127	197340 ± 10306	228991 ± 6345	37483 ± 18077
Ch150	$\textbf{199603} \pm \textbf{3276}$	$\textbf{231786} \pm \textbf{5338}$	48757 ± 24725

Table 30. Summary of FOM results for optimization benchmarks. Bold indicates fitness greater than 1% convergence criteria. Underlined indicates the best average performance.

	GA[1]	DCS[8]	Gnowee
Eil51	10940.4	1509.7	555.6
St70	27452.0	3804.6	<u>1403.1</u>
Pr107	36563.1	6067.9	<u>3380.5</u>
Bier127	49869.9	8337.3	<u>3918.6</u>
Ch150	115495.0	14396.6	<u>5261.4</u>

References

- [1] Mathworks, "MatLab: Global Optimization Toolbox User's Guide R2015b", 2015.
- [2] X.-S. Yang, *NATURE-INSPIRED OPTIMIZATION ALGORITHMS*, 1st. London: Elsevier, 2014, ISBN: 9780124167438.
- [3] S. Walton, O. Hassan, K. Morgan, and M. R. Brown, "Modified Cuckoo Search: A New Gradient Free Optimisation Algorithm", *Chaos, Solitons and Fractals*, vol. 44, no. 9, pp. 710–718, 2011. DOI: 10.1016/j.chaos.2011.06.004.
- [4] J. A. Egea, D. Henriques, T. Cokelaer, A. F. Villaverde, A. MacNamara, D.-P. Danciu, J. R. Banga, and J. Saez-Rodriguez, "MEIGO: An Open-Source Software Suite Based on Metaheuristics for Global Optimization in Systems Biology and Bioinformatics", *BMC Bioinformatics*, vol. 15, p. 136, 2014, ISSN: 1471-2105. DOI: 10.1186/1471-2105-15-136. arXiv: arXiv:1311.5735v1. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4025564%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract.
- [5] L. C. Cagnina, S. C. Esquivel, and C. a. Coello Coello, "Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer", *Informatica (Ljubljana)*, vol. 32, no. 3, pp. 319–326, 2008, ISSN: 03505596.
- [6] J. Lampinen and I. Zelinka, "Mixed Integer-Discrete-Continuous Optimization by Differential Evolution", in *MENDEL'99*, Brno, 1999.
- [7] L. Yiqing, Y. Xigang, and L. Yongjian, "An Improved PSO Algorithm for Solving Non-convex NLP/MINLP Problems with Equality Constraints", *Computers and Chemical Engineering*, vol. 31, no. 3, pp. 153–162, 2007, ISSN: 00981354. DOI: 10.1016/j.compchemeng.2006.05.016.
- [8] Y. Zhou, X. Ouyang, and J. Xie, "A Discrete Cuckoo Search Algorithm for Travelling Salesman Problem", *International Journal of Collaborative Intelligence*, vol. 1, no. 1, pp. 68–84, 2014.