Chapitre 12 : Matrices symétriques et Coniques

Plan du chapitre

	$\begin{array}{lll} \textbf{D\'efinition des coniques par foyer, directrice et excentricit\'e} \\ 1. A & Parabole \mathscr{P}: e=1 \\ 1. B & Ellipse \mathscr{E}: 0 < e < 1 \\ 1. C & Hyperbole \mathscr{H}: e > 1 \\ \end{array}$				
2	2 Matrices symétriques 3 Réduction des équations algébriques des coniques				
3					
	3.A Diagonalisation de A : élimination du terme $2\beta xy$				
	3.B Mise sous forme canonique : élimination de la partie linéaire				
	3.C Classification des équations réduites des coniques				

Introduction et motivations de ce chapitre : les coniques comme section d'un cône par un plan

1 - Définition des coniques par foyer, directrice et excentricité

Dans ce paragraphe $[\mathscr{R}_0 = \left(O, \overrightarrow{i}, \overrightarrow{j}\right)]$ désigne le repère orthonormé direct usuel. Dans ce repère, les coordonnées d'un point M sont notées $M(x_0; y_0)$ et les coordonnées du vecteur $\overrightarrow{OM} = \left(\begin{array}{c} x_0 \\ y_0 \end{array} \right) = X_0(M)$.

Définition 1

On appelle conique \mathscr{C} de foyer F, de directrice (D) et d'excentricité e>0 l'ensemble des points M tels que

$$d(M,F) = e \times d(M,(D))$$
 (*) où d désigne l'application distance.

- Si 0 < e < 1, $\mathscr C$ est appelé ellipse.
- Si e = 1, $\mathscr C$ est appelé parabole.
- Si e > 1, \mathscr{C} est appelé hyperbole.

Exemple

Ci-dessus, on a $(D): x_0-y_0=1$ et F(1;1). Une équation cartésienne de la conique $\mathscr C$ dans le repère $\mathscr R_0=\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ est donc (en élevant au carré la relation (*)):

$$(x_0 - 1)^2 + (y_0 - 1)^2 = e^2 \frac{|x_0 - y_0 - 1|^2}{\sqrt{2}^2}.$$

L'objectif est de déterminer un repère plus adapté afin d'obtenir une équation réduite.

Remarques

La droite Δ perpendiculaire à la directrice D et passant par le foyer F est un axe de symétrie. En effet, si M' est le symétrique de $M \in (\mathscr{C})$ par rapport à l'axe Δ alors d(M', F) = d(M, F) et d(M', (D)) = d(M, (D)) donc $M' \in (\mathscr{C})$. Cette axe des symétrie est appelé **axe focal.**

On va alors définir un repère orthonormé direct $\mathcal{R}_1 = (F, \overrightarrow{u}, \overrightarrow{v})$ centré en le foyer F avec \overrightarrow{u} vecteur directeur unitaire de l'axe de symétrie Δ

On note d = d(F, (D)) > 0.

En mettant la directrice à la verticale et l'axe de symétrie à l'horizontale, on obtient le schéma suivant :

Dans le repère $|\mathscr{R}_1 = (F, \overrightarrow{u}, \overrightarrow{v})|$ l'égalité

$$d(M,F) = ed(M,(D))$$

donne, au carré:

$$x_1^2 + y_1^2 = e^2(x_1 + d)^2$$
.

1.A - Parabole \mathscr{P} : e=1

L'équation de $\mathscr{E} x_1^2 + y_1^2 = (x_1 + d)^2$ donne successivement :

$$\begin{aligned} x_1^2 + y_1^2 &= (x_1^2 + 2dx_1 + d^2) \Longleftrightarrow y_1^2 = 2dx_1 + d^2 \\ &\iff y_1^2 = 2d\left(x_1 + \frac{d}{2}\right) \quad (**) \text{ en posant : } \left\{ \begin{array}{cc} x_2 &=& x_1 + \frac{d}{2} \\ y_2 &=& y_1 \end{array} \right. \\ &\iff y_2^2 = 2dx_2 \quad (**) \end{aligned}$$

Définition 2

Le point S intersection de \mathscr{P} et de l'axe de symétrie $\Delta:y_2=0$ est appelé **sommet** de la parabole. Le sommet a pour coordonnées $X_2(S) = (0,0)$ dans $\left| \mathscr{R}_2 = (S,\overrightarrow{u},\overrightarrow{v}) \right|$ ou encore $X_1(S) = \left(-\frac{d}{2},0 \right)$ dans $\mathscr{R}_1 = (F, \overrightarrow{u}, \overrightarrow{v}).$

On peut remonter aux coordonnées dans le repère initial $\mathcal{R}_0 = \left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ en utilisant les formules de changement de repère.

- La relation de Chasles donne : $\overrightarrow{OM} = \overrightarrow{OF} + \overrightarrow{FM}$.

 Par ailleurs, $\overrightarrow{FM} = x_1 \overrightarrow{u} + y_1 \overrightarrow{v} = \alpha \overrightarrow{i} + \beta \overrightarrow{j}$: on a noté (α, β) les coordonnées de M dans $(F, \overrightarrow{i}, \overrightarrow{j})$ et on rappelle que (x_1, y_1) sont les coordonnées de M dans $\mathscr{R}_1 = (F, \overrightarrow{u}, \overrightarrow{v})$.
- Les formules de changement de base donnent : $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = P \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ avec $P = P_{(\overrightarrow{i}, \overrightarrow{j}) \to (\overrightarrow{i} \overrightarrow{i})}$ d'où

$$X_0(M) = X_0(F) + P \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = X_0(F) + PX_1(M).$$

On peut (entre autres) retrouver les coordonnées de S dans le repère $\mathcal{R}_0 = \left(O, \overrightarrow{i}, \overrightarrow{j}\right)$:

$$X_0(S) = X_0(F) + P \left(\begin{array}{c} -\frac{d}{2} \\ 0 \end{array} \right).$$

Théorème 3

Si \mathscr{P} est une parabole (e=1) il existe un repère orthonormé direct $\mathscr{R}_2=(S,\overrightarrow{u},\overrightarrow{v})$ dans lequel \mathscr{P} a pour équation cartésienne $y^2=2dx$ avec d>0. Cette équation est dite **réduite**. Dans ce repère,

- Le sommet de \mathscr{P} est l'origine du repère $X_2(S) = (0,0)$.
- Le foyer de \mathscr{P} a pour coordonnées $X_2(F) = \left(\frac{d}{2}; 0\right)$.
- La directrice a pour ${\rm \'equation\ cart\'esienne}:(D):x=-\frac{d}{2}.$
- Une paramétrisation $f:\mathbb{R}\to\mathbb{R}^2$ de \mathscr{P} est donnée par $f(t)=\left(egin{array}{c} t^2 \\ \frac{2d}{t} \\ t \end{array}\right)$.

Exercice 4

Déterminer une équation réduite de la parabole de foyer F dont les coordonnées sont F(1,1) dans $\mathcal{R}_0 = \left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ et de directrice (D) d'équation cartésienne $(D): x_0 - y_0 = 1$ dans \mathcal{R}_0 . Donner les coordonnées dans \mathcal{R}_0 du sommet de la parabole.

1.B - **Ellipse** \mathscr{E} : 0 < e < 1

On repart de l'équation de la conique dans $\mathscr{R}_1 = (F, \overrightarrow{u}, \overrightarrow{v})$:

$$x_1^2 + y_1^2 = e^2(x_1 + d)^2 \iff x_1^2(1 - e^2) - 2dx_1e^2 + y_1^2 = e^2d^2 \iff (1 - e^2)\left[x_1^2 - \frac{2de^2}{1 - e^2}x_1\right] + y_1^2 = e^2d^2$$
$$\iff (1 - e^2)\left[\left(x_1 - \frac{de^2}{1 - e^2}\right)^2 - \frac{d^2e^4}{(1 - e^2)^2}\right] + y_1^2 = e^2d^2$$

En développant et en isolant le terme constant dans le membre de droite, il vient :

$$(1 - e^2) \left(x_1 - \frac{de^2}{1 - e^2} \right)^2 + y_1^2 = \frac{e^2 d^2 (1 - e^2) + d^2 e^4}{1 - e^2} \iff (1 - e^2) \left(x_1 - \frac{de^2}{1 - e^2} \right)^2 + y_1^2 = \frac{e^2 d^2}{1 - e^2}$$

$$\iff \left(\frac{x_1 - \frac{de^2}{1 - e^2}}{1 - e^2} \right)^2 + \frac{y_1^2}{\left(\frac{ed}{\sqrt{1 - e^2}} \right)^2} = 1.$$

On obtient alors une équation réduite de $\mathscr E$ dans un nouveau repère $\mathscr R_2:\left|\frac{x_2^2}{a^2}+\frac{y_2^2}{b^2}=1\right|$ en posant

$$\begin{cases} x_2 = x_1 - \frac{de^2}{1 - e^2} \\ y_2 = y_1 \end{cases} \text{ et } \begin{cases} a = \frac{de}{1 - e^2} \\ b = \frac{de}{\sqrt{1 - e^2}} \end{cases}.$$

On note $\mathscr{R}_2=(\Omega,\overrightarrow{u},\overrightarrow{v})$ où $X_2(\Omega)=(0,0)$ dans \mathscr{R}_2 c'-à-d $X_1(\Omega)=\left(\frac{de^2}{1-e^2};0\right)$ dans \mathscr{R}_1 .

Définition 5

On se place dans le repère $\mathcal{R}_2 = (\Omega, \overrightarrow{u}, \overrightarrow{v})$.

Les nombres $\begin{cases} a = \frac{de}{1 - e^2} \\ b = \frac{de}{\sqrt{1 - e^2}} \end{cases}$ sont appelés **demi-grand axe et demi-petit axe**.

Les axes $x_2 = 0$ et $y_2 = 0$ sont des axes de symétries donc leur intersection Ω est un centre de symétrie appelé centre de l'ellipse.

Les quatre points d'intersection $S_1(a;0), S_2(-a;0), S_3(0;b), S_4(0;-b)$ de l'ellipse et de ses axes de symétries sont appelés sommets.

Théorème 6

Si $\mathscr E$ est une ellipse d'excentricité 0 < e < 1, il existe un repère orthonormé direct $\mathscr R_2 = (\Omega, \overrightarrow{u}, \overrightarrow{v})$ dans lequel

 $\mathscr E$ a pour équation $\left|\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\right|$ avec a > b > 0. Cette équation est dite **réduite**.

Dans ce repère,

- Le centre de \mathscr{E} , est l'origine du repère $X_2(\Omega) = (0; 0)$.
- Le foyer de ℰ a pour coordonnées $X_2(F) = \left(-\frac{de^2}{1 - e^2}; 0\right) = (-ae; 0).$
- Les sommets ont pour coordonnées
- $(\pm a; 0)$ et $(0; \pm b)$.
- Une paramétrisation est donnée par

Remarques

* Les caractéristiques géométriques seront sont à retrouver en partant des définitions des 1/2-axes :

$$\begin{cases} a = \frac{de}{1 - e^2} \\ b = \frac{de}{\sqrt{1 - e^2}} \end{cases} \text{ qui donne } \frac{b^2}{a^2} = 1 - e^2 \text{ donc } e^2 = 1 - \frac{b^2}{a^2} = \frac{a^2 - b^2}{a^2}.$$

* L'équation de la directrice est donné $x_1=-d$ dans $\mathscr{R}_1=(F,\overrightarrow{u},\overrightarrow{v})$ ce qui donne :

$$x_2 = -d - \frac{de^2}{1 - e^2} = -\frac{d}{1 - e^2}$$

puis avec $a = \frac{de}{1 - e^2}$ et $e = \frac{\sqrt{a^2 - b^2}}{a}$ on trouve effectivement $x_2 = -\frac{a^2}{\sqrt{a^2 - b^2}}$ dans \mathcal{R}_2 .

* Notons que le point F'(ae,0) et la droite $D': x_2 = \frac{a^2}{\sqrt{a^2 - b^2}}$ forment un second couple de foyer et directrice de l'ellipse.

Exercice 7

Déterminer une équation réduite de l'ellipse de foyer F dont les coordonnées sont F(1,1) dans $\mathscr{R}_0 = \left(O,\overrightarrow{i},\overrightarrow{j}\right)$, de directrice (D) d'équation cartésienne $(D): x_0-y_0=1$ dans \mathscr{R}_0 et d'excentricité $e=\frac{1}{2}$. Donner les coordonnées dans \mathscr{R}_0 du centre et des sommets de l'ellipse.

1.C - Hyperbole $\mathcal{H}: e > 1$

On reprend les calculs effectués pour l'ellipse, la fin diffère en raison du signe de $1-e^2$:

$$x_1^2 + y_1^2 = e^2(x_1 + d)^2 \iff (1 - e^2) \left(x_1 - \frac{de^2}{1 - e^2} \right)^2 + y_1^2 = \frac{e^2 d^2}{1 - e^2}$$

$$\iff \frac{\left(x_1 - \frac{de^2}{1 - e^2} \right)^2}{\left(\frac{ed}{e^2 - 1} \right)^2} - \frac{y_1^2}{\left(\frac{ed}{\sqrt{e^2 - 1}} \right)^2} = 1 \iff \frac{x_2^2}{a^2} - \frac{y_2^2}{b^2} = 1,$$

en posant:

$$\begin{cases} x_2 &= x_1 - \frac{de^2}{1 - e^2} = x_1 + \frac{de^2}{e^2 - 1} \\ y_2 &= y_1 \end{cases} \quad \text{et} \quad \begin{cases} a &= \frac{ed}{e^2 - 1} \\ b &= \frac{ed}{\sqrt{e^2 - 1}} \end{cases}.$$

Définition 8

On se place dans le repère $\mathcal{R}_2 = (\Omega, \overrightarrow{u}, \overrightarrow{v})$.

Les axes $x_2 = 0$ et $y_2 = 0$ sont des axes de symétries donc leur intersection Ω est un centre de symétrie appelé centre de l'ellipse.

Les points d'intersection $S_1(a;0), S_2(-a;0)$ de l'hyperbole et de l'axe focal $y_2=0$ sont appelés **sommets.** (l'intersection de l'hyperbole et de l'axe de symétrie $x_2=0$ est vide)

Théorème 9

Si \mathscr{H} est une hyperbole d'excentricité e>1, il existe un repère orthonormé direct $\mathscr{R}_2=(\Omega,\overrightarrow{u},\overrightarrow{v})$ dans lequel \mathscr{H} a pour équation $\boxed{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1}$. Cette équation est dite **réduite**.

Dans ce repère.

- Le centre de \mathcal{H} ,
 - est l'origine du repère $X_2(\Omega) = (0;0)$.
- Le foyer de ${\mathscr H}$ a pour coordonnées

$$X_2(F) = \left(\frac{de^2}{e^2 - 1}; 0\right) = (ae; 0).$$

- Les sommets ont pour coordonnées $(\pm a; 0)$.
- Une paramétrisation de chaque branche de ${\mathscr H}$

est donnée par
$$f(t) = \left(\begin{array}{c} \pm a \operatorname{ch} t \\ b \operatorname{sh} t \end{array} \right)$$
.

Corollaire 10

Dans le repère $\mathscr{R}_2=(\Omega,\overrightarrow{u},\overrightarrow{v})$ les asymptotes de l'hyperbole ont pour équation $y=\pm\frac{b}{a}x$.

Démonstration. Lorsque $t\to +\infty$, on a : $\frac{b \sinh t}{a \cosh t}\to \frac{b}{a}$ et $b \sinh t - \frac{b}{a} \times a \cosh t = -be^{-t} \to 0$. On utilise alors les propriétés de symétrie de l'hyperbole pour obtenir la second asymptote.

Exercice 11

Déterminer une équation réduite de l'hyperbole de foyer F dont les coordonnées sont F(1,1) dans $\mathscr{R}_0 = \left(O, \overrightarrow{i}, \overrightarrow{j}\right)$, de directrice (D) d'équation cartésienne $(D): x_0 - y_0 = 1$ dans \mathscr{R}_0 et d'excentricité e = 2. Donner les coordonnées dans \mathscr{R}_0 , du centre et des sommets de l'hyperbole.

Remarques

Comme dans le cas de l'ellipse, le centre de symétrie permet de définir un second couple de foyer et de directrice de l'hyperbole.

2 - Matrices symétriques

Définition 12: Matrice symétrique réelle

Une matrice $M \in \mathscr{M}_n(\mathbb{R})$ est dite symétrique si $M^{\top} = M$.

On note $\mathscr{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de taille n à coefficients réels.

Proposition 13

Soit $S \in \mathscr{S}_n(\mathbb{R})$.

Alors toute valeur propre de S est réelle : $Sp(S) \subset \mathbb{R}$.

De plus le polynôme caractéristique de S est scindé sur \mathbb{R} .

 $\label{eq:definition} \textit{D\'{e}monstration}. \ \ -- \ \ \text{Soit} \ \lambda \in \mathbb{C} \ \text{une valeur propre de } S.$

On note $X \in \mathcal{M}_{n1}(\mathbb{C})$ un vecteur propre associé : $X \neq \overrightarrow{0}_{\mathcal{M}_{n1}(\mathbb{C})}$ et $SX = \lambda X$.

On multiple par \overline{X}^{\top} et on obtient :

 $\overline{X}^{\top} S X = \overline{X}^{\top} \lambda X = \lambda \overline{X}^{\top} X.$

On a d'autre part:

$$\overline{X}^{\top} S X = \left(X^{\top} S^{\top} \overline{X} \right)^{\top} = \left(X^{\top} S \overline{X} \right)^{\top} = \left(X^{\top} \overline{S} \overline{X} \right)^{\top} = \left(X^{\top} \overline{\lambda} \, \overline{X} \right)^{\top} = \overline{\lambda} \overline{X}^{\top} X.$$

Ainsi, $\overline{\lambda X}^{\top}X = \lambda \overline{X}^{\top}X$. Notons enfin que $\overline{X}^{\top}X = \sum_{k=1}^{n} |x_k|^2 \neq 0$ car $X \neq 0$. Il vient donc $\overline{\lambda} = \lambda \in \mathbb{R}$.

— La polynôme caractéristique de $S \in \mathscr{S}_n(\mathbb{R})$ est scindé sur \mathbb{C} : $\chi_S(X) = \prod_{k=1}^n (X - \lambda_k)$ avec pour tout $k \in [\![1,n]\!]$: $\lambda_k \in Sp(S) \subset \mathbb{R}$. Ainsi, $\chi_S \in \mathbb{R}[X]$ est scindé sur \mathbb{R} .

Proposition 14: Espaces propres orthogonaux

Les sous-espaces propres d'une matrice symétrique réelle sont orthogonaux.

Démonstration. Soient $\lambda \neq \mu$ des valeurs propres distinctes de $S \in \mathscr{S}_n(\mathbb{R})$ associés à des vecteurs propres $X,Y\in \mathscr{M}_{n1}(\mathbb{R}).$

Alors
$$SX = \lambda X$$
 donc $Y^{\top}SX = \lambda Y^{\top}X$.

Mais
$$Y^{\top}SX = Y^{\top}S^{\top}X = (SY)^{\top}X = \mu Y^{\top}X$$

Alors
$$SX = \lambda X$$
 donc $Y + SX = \lambda Y + X$.
Mais $Y^{\top}SX = Y^{\top}S^{\top}X = (SY)^{\top}X = \mu Y^{\top}X$.
On obtient $\lambda Y^{\top}X = \mu Y^{\top}X \iff (\lambda - \mu)Y^{\top}X = 0 \iff Y^{\top}X = 0 = (Y|X)$.

Par conséquent $E_{\lambda}(S)$ et $E_{\mu}(S)$ sont orthogonaux

Théorème 15: Théorème spectral

Toute matrice symétrique réelle $S \in \mathscr{S}_n(\mathbb{R})$ est diagonalisable dans une base orthonormée de vecteurs propres :

$$\exists P \in O_n(\mathbb{R}) : S = PDP^{-1} = PDP^{\top}$$
 avec D diagonale.

Remarques

On dit que S est orthogonalement diagonalisable.

Exemple

Attention le résultat précédent ne s'applique pas si M est à coefficients complexes.

$$M=\left(egin{array}{cc} i & 1 \ 1 & -i \end{array}
ight)\in\mathscr{S}_n(\mathbb{C})$$
 a pour polynôme caractéristique $\chi_M(X)=(X-i)(X+i)-1=X^2.$

Ainsi, $Sp(M) = \{0\}$. La matrice M n'est pas diagonalisable (sinon elle serait nulle).

Exemple

La matrice $M = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$ est symétrique réelle donc diagonalisable dans une base orthonormée de

vecteurs propres.

On trouve $\chi_M(X) = (X - 3)(X - 6)(X - 9)$.

On trouve $E_3 = \operatorname{Vect} \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$ et $E_6 = \operatorname{Vect} \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$: les vecteurs générateurs sont orthogonaux (car $E_3 \perp$

On les normalise
$$\varepsilon_1 = \frac{1}{3} \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$ et on pose $\varepsilon_3 = \varepsilon_1 \wedge \varepsilon_2 = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$.

Ce dernier vecteur unitaire ε_3 est directement orthogonal au plan $\mathrm{Vect}(\varepsilon_1, \varepsilon_2)$.

Le vecteur ε_3 engendre donc E_9 et la famille $\mathscr{B} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base orthonormée directe de $\mathscr{M}_{31}(\mathbb{R})$.

La matrice de passage $P=rac{1}{3}\left(egin{array}{ccc} -2 & 1 & 2 \\ -2 & -2 & -1 \\ 1 & -2 & 2 \end{array}
ight) \in SO_3(\mathbb{R})$ entre les deux base orthonormées directes \mathscr{B}_c et

$$\mathcal{B}$$
 est donc orthogonale (une rotation) et \mathcal{B} est une base orthonormée de vecteurs propres pour M . Ainsi, $M = PDP^{\top}$ avec $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix}$.

Réduction des équations algébriques des coniques

On rapporte le plan euclidien au repère orthonormé directe $\mathcal{R} = (O, i, j)$ avec $\mathcal{B} = (i, j)$ la base canonique de \mathbb{R}^2 .

Définition 16: Équation cartésienne d'une conique

On appelle conique l'ensemble des points du plan dont les coordonnées (x, y) vérifient :

$$(\mathscr{C}): \alpha x^2 + 2\beta xy + \gamma y^2 + dx + ey + f = 0 \quad \text{ avec } \underbrace{\alpha, \beta, \gamma}_{\text{non tous nuls}}, d, e, f \in \mathbb{R}.$$

Remarques

- Si l'on pose $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$ alors $\alpha x^2 + 2\beta xy + \gamma y^2 = X^\top AX$ avec $X = \begin{pmatrix} x \\ y \end{pmatrix}$.
- On effectue des changements de bases successifs pour simplifier l'expression et identifier la nature de la
- On commence par diagonaliser la matrice symétrique réelle A dans une b.o.n.d. Cette étape correspond à effectuer une rotation sur le repère initial \mathcal{R} .

Diagonalisation de A : élimination du terme $2\beta xy$

La matrice $A \in \mathscr{S}_2(\mathbb{R})$ est symétrique réelle.

A est diagonalisable dans une base orthonormée directe de vecteurs propres (on note $Sp(A) = \{\lambda, \mu\}$):

$$\exists P \in SO_2(\mathbb{R}) : A = PDP^\top \text{ avec } D = \left(\begin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array} \right).$$

Ainsi:

$$\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} = \boldsymbol{X}^{\top} \boldsymbol{P} \boldsymbol{D} \boldsymbol{P}^{\top} \boldsymbol{X} = (\boldsymbol{P}^{\top} \boldsymbol{X})^{\top} \boldsymbol{D} (\boldsymbol{P}^{\top} \boldsymbol{X}) = (\boldsymbol{X}')^{\top} \boldsymbol{D} \boldsymbol{X}' \text{ avec } \boldsymbol{X}' = \boldsymbol{P}^{\top} \boldsymbol{X}.$$

On pose $X' = P^{\top}X = \begin{pmatrix} x' \\ y' \end{pmatrix}$ et l'équation (\mathscr{C}) devient alors

$$(\mathscr{C}'): \lambda x'^2 + \mu y'^2 + \delta x' + \zeta y' + f = 0.$$

La matrice $P \in SO_2(\mathbb{R})$ s'interprète également comme matrice de passage entre deux b.o.n.d de \mathbb{R}^2 .

On a effectué une rotation sur le repère initial $\mathcal{R} = (O, i, j)$.

On a obtenu un nouveau repère $\mathcal{R}' = (O, i', j')$ dans lequel l'expression de la conique est plus simple.

3.B - Mise sous forme canonique : élimination de la partie linéaire

Puisque $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ la matrice A est non nulle.

Ses valeurs propres ne sont pas toutes deux nulles : $(\lambda, \mu) \neq (0, 0)$.

1 Supposons $\lambda \neq 0$ et $\mu \neq 0$.

L'équation (\mathscr{C}') s'écrit alors :

$$\lambda \left(x' + \frac{\delta}{2\lambda} \right)^2 + \mu \left(y' + \frac{\zeta}{2\mu} \right)^2 + \left(f - \frac{\delta^2}{4\lambda} - \frac{\zeta^2}{4\mu} \right) = 0.$$

On pose $X'' = \begin{pmatrix} x'' \\ y'' \end{pmatrix} = \begin{pmatrix} x' + \frac{\delta}{2\lambda} \\ y' + \frac{\zeta}{2\mu} \end{pmatrix} = X' + \begin{pmatrix} \frac{\delta}{2\lambda} \\ \frac{\zeta}{2\mu} \end{pmatrix}$ et on obtient l'équation réduite :

$$(\mathscr{C}''): \lambda x''^2 + \mu y''^2 = q.$$

On a obtenu un nouveau repère $\mathscr{R}''=(\Omega,i',j')$ par translation du vecteur de coordonnées $\begin{pmatrix} \frac{\delta}{2\lambda} \\ \frac{\zeta}{2\mu} \end{pmatrix}$ dans $\mathscr{R}'=(O,i',j')$.

Le centre Ω de ce nouveau repère a pour coordonnées $X'_{\Omega}=\left(\begin{array}{c} -\frac{\delta}{2\lambda}\\ -\frac{\zeta}{2\mu} \end{array}\right)$ dans \mathscr{R}' .

Pour retrouver ses coordonnées dans le repère initial \mathscr{R} , on utilise les formules de changement de bases/de repères $(X''_{\Omega}=0)$:

$$X'' = X' + \left(\begin{array}{c} \frac{\delta}{2\lambda} \\ \frac{\zeta}{2\mu} \end{array}\right) = P^\top X + \left(\begin{array}{c} \frac{\delta}{2\lambda} \\ \frac{\zeta}{2\mu} \end{array}\right) \text{ donc } X_\Omega = P \left(\begin{array}{c} -\frac{\delta}{2\lambda} \\ -\frac{\zeta}{2\mu} \end{array}\right) = P X'_\Omega.$$

2 Supposons $\lambda \neq 0$ et $\mu = 0$. On obtient alors de manière analogue une équation réduite :

$$(\mathscr{C}''): \lambda x''^2 + \zeta y'' = g.$$

3 Supposons $\mu \neq 0$ et $\lambda = 0$. On obtient alors de manière analogue une équation réduite :

$$(\mathscr{C}''): \mu y''^2 + \delta x'' = g.$$

3.C - Classification des équations réduites des coniques

On a obtenu après rotation et translation du repère initial les équations réduites suivantes :

$$\lambda, \mu \neq 0 \qquad \lambda \neq 0, \mu = 0 \qquad \lambda = 0, \mu \neq 0$$
$$(\mathscr{C}_1'') : \lambda x^2 + \mu y^2 = g \quad (\mathscr{C}_2'') : \lambda x^2 + \zeta y = g \quad (\mathscr{C}_3'') : \mu y^2 + \delta x = g$$

- **0** Si $\lambda > 0$ et $\mu > 0$, les trois situations suivantes se présentent :
 - Si g > 0 alors l'équation réduite (\mathscr{C}_1'') peut s'écrire :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

La courbe obtenue est appelée ellipse.

— Si g = 0 alors le seul point solution de l'équation (\mathcal{C}''_1) est (0,0).

La conique est réduite au centre du repère.

- Si g < 0 alors l'équation (\mathscr{C}_1'') n'a pas de solution : l'ensemble des points vérifiant (\mathscr{C}_1'') est vide. Le cas $\lambda < 0$ et $\mu < 0$ est similaire.
- **2** Si $\lambda > 0$ et $\mu < 0$, deux situations peuvent se présenter :

— Si $g \neq 0$ alors l'équation (\mathscr{C}''_1) peut s'écrire :

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1.$$

La conique obtenue est appelée hyperbole.

— Si g = 0 alors l'équation (\mathscr{C}''_1) peut s'écrire

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 \Longleftrightarrow \left(\frac{x}{a} - \frac{y}{b}\right) \left(\frac{x}{a} + \frac{y}{b}\right) = 0.$$

La conique obtenue est la réunion de deux droites sécantes.

Le cas $\lambda < 0$ et $\mu > 0$ est analogue.

- **3** Si $\lambda \neq 0$ et $\mu = 0$. Alors :
 - Si $\zeta \neq 0$ alors l'équation (\mathscr{C}''_2) peut s'écrire $x^2 = 2py$. La conique obtenue est appelée parabole.
 - Si $\zeta = 0$ alors l'équation (\mathscr{C}_2'') devient $\lambda x^2 = g$.

Suivant le signe de $r = \frac{g}{\lambda}$ on obtient

- * la réunion de deux droites parallèles $(r > 0 : x = \pm \sqrt{r})$
- * une droite (r = 0 : x = 0)
- * ou bien l'ensemble vide (r < 0).
- **4** Si $\lambda = 0$ et $\mu \neq 0$. Alors :
 - Si $\delta \neq 0$ alors l'équation (\mathscr{C}_3'') peut s'écrire : $y^2 = 2px$. La conique obtenue est une parabole.
 - Si $\delta=0$ alors l'équation (\mathscr{C}_3'') devient $\mu y^2=g$. La nature dépend du signe de $r=\frac{g}{\mu}$.

Théorème 17: Classification des coniques

On considère la conique d'équation (\mathscr{C}) : $\alpha x^2 + 2\beta xy + \gamma y^2 + dx + ey + f = 0$ avec $(a, b, c) \neq (0, 0, 0)$.

On note $\Delta = \alpha \gamma - \beta^2 = \lambda \mu = \det(A)$ où λ, μ sont les valeurs propres de $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$.

- Si $\Delta > 0$ alors \mathscr{C} est une ellipse, un point ou l'ensemble vide.
- **2** Si $\Delta = 0$ alors \mathscr{C} est une parabole, une droite, la réunion de deux droites parallèles ou l'ensemble vide.
- **3** Si $\Delta < 0$ alors \mathscr{C} est une hyperbole ou la réunion de deux droites sécantes.

Exercice 18

Déterminer les axes de symétries d'une ellipse, d'une hyperbole et d'une parabole et les relier aux espaces propres de la matrice A associée à la conique \mathscr{C} .

Solution. — Si \mathscr{E} est une ellipse alors les valeurs propres λ, μ de A sont de même signe.

* Si $\lambda = \mu$ alors \mathscr{E} est un cercle et $A = \lambda I_2$.

Tout vecteur de $\mathcal{M}_{21}(\mathbb{R})$ est propre et toute droite vectorielle est un axe de symétrie.

O est un centre de symétrie de \mathscr{E} .

* Si $\lambda \neq \mu$ alors \mathscr{E} est une ellipse mais n'est pas un cercle.

Dans un rep. ortho. (O, u, v) avec $\operatorname{Vect}(u) = E_{\lambda}$ et $\operatorname{Vect}(v) = E_{\mu} = E_{\lambda}^{\perp} : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Dans ce cas les espaces propres Vect(u) et Vect(v) sont des axes de symétries de \mathscr{E} .

En effet, si
$$\begin{pmatrix} x \\ y \end{pmatrix} \in \mathscr{E}$$
 alors $\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix} \in \mathscr{E}.$

 $\text{De même, si} \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathscr{E} \text{ alors } \left(\begin{array}{c} -1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} -x \\ y \end{array} \right) \in \mathscr{E}.$

réflexion d'axe Vect(v)

— Si \mathcal{H} est une hyperbole alors Vect(u) et Vect(v): axes de symétrie. O centre de symétrie.

Réduction des équations algébriques des coniques					
— Si \mathscr{P} est une parabole alors A possède une valeur propre nulle et une valeur propre non nulle λ . Alors E_0 est un axe de symétrie. Il n'y a pas de centre de symétrie.					

Nature	Équation réduite	Paramétrage	Représentation
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$	
Hyperbole	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\begin{cases} x = \pm a \operatorname{ch} t \\ y = b \operatorname{sh} t \end{cases}$	$y = \frac{b}{a}x$ $-a$ $-b$ a x
Parabole	$y^2 = 2px$	$\begin{cases} x = \frac{t^2}{2p} \\ y = t \end{cases}$	