HOJA DE EJERCICIOS 1: Lógica proposicionalEDyL 2013-2014

[Fecha de publicación : 2013/09/17] [Fecha de entrega: 2013/09/26, 09:00] [Resolución en clase: 2013/09/26]

EJERCICIO 1: Transforma las siguientes FBFs a forma normal conjuntiva (FNC) indicando las reglas de equivalencia utilizadas. Una vez en FNC, determina cuáles son UNSAT, tautologías o SAT sin ser tautología.

```
[(p\Rightarrow(q\land r))\Rightarrow \neg r] \equiv \neg(\neg p\lor(q\land r))\lor \neg r \equiv (\neg \neg p\land \neg(q\land r))\lor \neg r \equiv (p\land \neg q)\lor (p\land \neg r))\lor \neg r \equiv (p\lor \neg r)\land (\neg q\lor p\lor \neg r)\land (\neg q\lor \neg r)
SAT, \text{ pero no tautologia}
[(q\land r)\Rightarrow p]\Leftrightarrow (p\lor \neg r\lor \neg q)\equiv [(q\land r)\Rightarrow p]\Rightarrow (p\lor \neg r\lor \neg q)]\land [(p\lor \neg r\lor \neg q)\Rightarrow [(q\land r)\Rightarrow p]]\equiv [\neg[\neg(q\land r)\lor p]\lor (p\lor \neg r\lor \neg q)]\land [\neg(p\lor \neg r\lor \neg q)\lor (\neg(q\land r)\lor p]]\equiv [[q\land r\land \neg p]\lor p\lor \neg r\lor \neg q]\land [(\neg p\land r\land q)\lor \neg q\lor \neg r\lor p]\equiv [[q\land r\land \neg p]\lor p\lor \neg r\lor \neg q]\equiv [q\lor p\lor \neg r\lor \neg q]\land [r\lor p\lor r\lor \neg q]\land [\neg p\lor p\lor \neg r\lor \neg q]
SAT, \text{ tautologia}
```

EJERCICIO 2: Utilizando directamente tablas de verdad (no está permitido utilizar reglas de equivalencia), determinar

- (1) Determinar el número de interpretaciones posibles
- (2) Determinar el número de interpretaciones que son modelo
- (3) Especificad todas las interpretaciones, indicando las que son modelo

para las siguientes fórmulas bien formadas

	N° de	Nº de
	interpretaciones	modelos
	8	5
$[(p \Rightarrow (q \land r)) \Rightarrow \neg r]$		
	8	8
$[(q\land r)\Rightarrow p]\Leftrightarrow (p\lor \neg r\lor \neg q)$		

Interpretaciones y modelos:

$$[(p \Rightarrow (q \land r)) \Rightarrow \neg r]$$

p	q	r	(q∧r)	p⇒(q∧r)≡ ¬p ∨ (q∧r)	$[p\Rightarrow (q\land r)] \Rightarrow \neg r$ \equiv $\equiv \neg [p\Rightarrow (q\land r)] \lor \neg r$	
F	F	F	F	V	V	Modelo
F	F	V	F	V	F	
F	V	F	F	V	V	Modelo
F	V	V	V	V	F	
V	F	F	F	F	V	Modelo
V	F	V	F	F	V	Modelo
V	V	F	F	F	V	Modelo
V	V	V	V	V	F	

$[(q \land r) \Rightarrow p] \Leftrightarrow (p \lor \neg r \lor \neg q)$

p	q	r	(q∧r)	(q∧r)⇒	(pv¬rv¬q)		
				p ≡		p]⇔(pv¬rv¬q)	
				¬(q∧r)∨p			
F	F	F	F	V	V	V	Modelo
F	F	V	F	V	V	V	Modelo
F	V	F	F	V	V	V	Modelo
F	V	V	V	F	F	V	Modelo
V	F	F	F	V	V	V	Modelo
V	F	V	F	V	V	V	Modelo
V	V	F	F	V	V	V	Modelo
V	V	V	V	V	V	V	Modelo

EJERCICIO 3 [Adaptado de Rosen, sec. 1.1, ej. 58]:

Cinco amigos están jugando a "los lobisomes de Castronegro"¹. Para determinar quién o quiénes de ellos, son lobisomes, contamos con la siguiente información: Rosa o Pilar o ambas son lobisome. O Xavier o Biktor, pero no ambos, son lobisome. Si Alberto es lobisome, también lo es Xavier. O bien Biktor y Rosa son lobisome o ninguno de los dos lo es. Si Pilar es lobisome también lo son Alberto y Rosa.

Utilizad los átomos

R: "Rosa es lobisome"

B: "Biktor es lobisome"

P: "Pilar es lobisome"

X: "Xavier es lobisome"

A: "Alberto es lobisome"

La adivinanza se puede resolver mediante cualquier método de demostración válido (por prueba directa, mediante refutación, etc.) No se puede emplear razonamiento semiformal, tablas de verdad o razonamiento por casos. Se debe utilizar únicamente inferencia, incluyendo resolución. Identifica la regla de inferencia empleada en cada paso.

SOLUCIÓN:

Base de conocimiento

$R \vee P$		[1]
$(X \land \neg B) \lor (\neg X \land B)$		[2]
$A\RightarrowX$	$\equiv \neg A \lor X$	[3]
$(B \land R) \lor (\neg B \land \neg R)$		[4]
$P \Rightarrow (A \land R)$	$\equiv \neg P \lor (A \land R)$	[5]

Base de conocimiento en forma normal conjuntiva

$R \vee P$	[1]
X ∨B	[2.1]
$\neg B \lor \neg X$	[2.2]
$\neg A \lor X$	[3]
B∨¬R	[4.1]
$R \vee \neg B$	[4.2]
$\neg P \lor A$	[5.1]
$\neg P \lor R$	[5.2]

-

¹ La tradición del "lobisome", aunque algo oscura, se refiere a transformaciones de humanos en "lobo" según determinadas circunstancias.

Resolución directa

[1] + [5.2] R	[6]
[6] + [4.1] B	[7]
$[7] + [2.2] \neg X$	[8]
$[8] + [3] \neg A$	[9]
[9] + [5.1] ¬P	[10]

Rosa y Biktor son lobisome. Pilar, Xavier y Alberto no lo son.

EJERCICIO 4 [Adaptado de "Introducción a la Lógica Formal", A. Deaño, ej. 4]: Vamos a utilizar lógica formal para determinar la validez de la siguiente argumentación de Platón, muy simplificada a partir del original.

"Si lo Uno está en movimiento, éste habrá de ser, o de movimiento sin cambio en el estado, o de alteración. No puede tratarse de un movimiento de alteración, porque entonces lo Uno dejaría de ser Uno. Si se tratara de lo primero, tendría que ser, o bien rotación de lo Uno sobre sí mismo en el propio lugar en que se encuentra, o bien cambio de un lugar a otro. Ninguna de las dos cosas ocurre, sin embargo. Luego lo Uno no está sujeto a ningún tipo de movimiento."

Para determinar la validez de la argumentación anterior, se utilizarán los siguientes átomos:

p = 'lo Uno está en movimiento'

q = 'lo Uno sufre un movimiento sin cambio en el estado'

r = 'lo Uno sufre un movimiento de alteración'

s = 'lo Uno rota sobre sí mismo'

t = 'lo Uno cambia de un lugar a otro'

Se pide:

- (a) Formulad la base de conocimiento.
- (b) Determinad mediante inferencia si la base de conocimiento es satisfacible. No se puede emplear razonamiento semiformal, tablas de verdad o razonamiento por casos. Se debe utilizar únicamente inferencia, incluyendo resolución. Identifica la regla de inferencia empleada en cada paso.
- (c) Interpretando el resultado de (b), determinad la validez de la argumentación de Platón.

SOLUCIÓN:

a.Base de conocimiento (FNC), incluyendo la negación de la conclusión de la argumentación $(\neg(\neg p)\equiv p)$

```
[1] p \Rightarrow (q \lor r)

\neg p \lor (q \lor r)

[1.1] \neg p \lor q \lor r

[2] \neg r
```

[3]
$$q \Rightarrow (s \lor t)$$

 $\neg q \lor (s \lor t)$
 $[3.1] \neg q \lor s \lor t$
[4] $\neg (s \lor t)$
 $\neg s \land \neg t$
 $[4.1] \neg s$
 $[4.2] \neg t$
[5] p
b.Resolución
Res on p [1.1] + [5]: $q \lor r$ [6]
Res on r [2] + [6]: q [7]
Res on q [3.1] + [7]: $s \lor t$ [8]
Res on s [4.1] + [8]: t [9]

c.Dado que la base de conocimiento original era SAT y que, al incluir la negación de la conclusión se convierte en UNSAT, la argumentación de

Res ont [4.2]+[9]: \square Base de conocimiento UNSAT

Platón es válida (refutación).

EJERCICIO 5:

Determinar si las siguientes aseveraciones sobre FBFs en lógica proposicional son coherentes con la definición de $\Delta \models$ w ("w es consecuencia lógica de Δ ")

a.
$$\{\text{True}\} \models \text{False}$$
b. $\{\text{False}\} \models \text{True}$
c. $\{P \lor Q\} \models P$
d. $\{P \land Q\} \models P$
e. Si $\{P\} \models \mathbf{V} = Q \text{ entonces } \{P\} \models \neg Q$

donde P, Q son átomos distintos.

Justifica las respuestas. Las respuestas sin explicación se considerarán incompletas y no recibirán puntos.

SOLUCIÓN:

Usando la definición de $\Delta \models w$ (los modelos de Δ son también modelos de w):

Todas las interpretaciones son modelos de $\Delta = \{True\}$ No hay ningún modelo para w = False

No hay modelos para $\Delta = \{False\}$. Obviamente, todos los modelos de $\Delta = \{False\}$ (es decir, ninguno) son modelos de cualquier w

interpretación	Р	Q	$P \vee Q$	Р
11	F	F	F (no es un	_
			modelo)	
12	F	Т	Т	F
13	Т	F	Τ	Т
14	Т	Т	Τ	Т

12 es un modelo de $[\Delta = \{P \lor Q\}]$, que no es un modelo de

d.
$$\{P \land Q\} \models P$$

d. $\{P \land Q\} \models P$ Correcto: $\{P \land Q\} \models P$

interpretación	Р	Q	$P \wedge Q$	Р
11	F	F	F (no es un	1
			modelo)	
12	F	Т	F (no es un	-
			modelo)	
13	Т	F	F (no es un	-
			modelo)	
14	Т	Т	Τ	Т

14 es el único modelo de $\Delta = \{P \land Q\}$ y es también un modelo de P

e. Si $\{P\} \models Q$ entonces $\{P\} \models \neg Q$

Incorrecto.

Átomos		Base de conocimiento $\Delta = \{P\}$	W
P	Q	P	Q
F	F	F	_
F	Т	F	-
Т	F	Т	F
Т	Т	Т	T (no es modelo de ¬C

Q no es consecuencia lógica de P porque existe una interpretación que es modelo de P que no es modelo de Q (en concreto P = T, Q = F)

Átomos		(Base de conocimiento $\Delta = \{P\}$	W
P	D		Р	¬Q
F	F		F	-
F	Т		F	-
Т	F		Τ	T
Т	Т	-	Т	F (no es modelo de ¬Q)

 $\neg Q$ tampoco es consecuencia lógica de P porque existe una interpretación que es modelo de P que no es modelo de $\neg Q$ (en concreto P = T, Q = T)

Por lo tanto, $\{P\} \models Q y \{P\} \models \neg Q$.