10

15

20

CLAIMS

- 1. A method of finding the time offset between signals transmitted by at least one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the method comprising the steps of
 - (a) creating at the terminal a section of a representation of the signals from the transmitters received by the receiver;
 - (b) creating a first section of a representation of the signal transmitted by a first of said transmitters, and creating a second section of a representation of the signal transmitted by a second of said transmitters, each of which sections overlaps in time with the section created at the terminal;
 - (c) creating a first function dependent on the first section and the section created at the terminal in step (a), and convolving the first section with the first function to form a blurred estimate of the signal received at the terminal from the first transmitter;
 - (d) creating a second function dependent on the first section and the section created at the terminal in step (a), and convolving the terminal section with the second function to form a blurred terminal section;
 - (e) subtracting the blurred estimate from the blurred terminal section to produce a blurred residual representation; and
 - (f) estimating the time offset between the blurred residual representation and the second section.
- 2. A method according to claim 1, wherein the first function, which is used to create the blurred estimate, is a convolution of the first section of a representation of the signal transmitted by a first of said transmitters (the 'first section') with a cross-correlation of the section of a representation of the signals from the transmitters received by the receiver (the 'terminal section') and the first section.
- 30 3. A method according to claim 2, wherein the cross-correlation is a windowed cross-correlation created by enhancing the significant components of the cross-correlation function.
- 4. A method according to any of claims 1 to 3, wherein the second function, which is used to create the blurred terminal section, is a convolution of the terminal section with the auto-correlation profile of the first section.

15

20

25

30

- A method according to any of claims 1 to 4, wherein the blurred residual 5. representation is cross-correlated with the second section of a representation of the signal transmitted by a second of said transmitters (the 'second section') to estimate the time offset.
- A method according to any of claims 1 to 5, wherein the first and second 6. sections are created at the respective first and second transmitters.
- A method according to any of claims 1 to 5, wherein the first and second 7. sections are created in one or more sampling devices attached to the respective 10 transmitters or located elsewhere.
 - A method according to any of claims 1 to 5, wherein the first and second 8. sections are created by computer programs running anywhere in the communications network, or elsewhere, using information supplied from the network about the transmitted signals.
 - A method of finding the time offset relative to a reference within the terminal of 9. a component of a signal transmitted by one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the method comprising the steps of
 - (a) creating at the terminal a section of a representation of the signals from the transmitters received by the receiver (a "terminal section");
 - (b) creating a section of a representation of the signal transmitted by an other transmitter (a "transmitter section"), which section overlaps in time with the section created at the terminal;
 - (c) creating a first function dependent on the terminal section and the transmitter section created in steps (a) and (b), and convolving the terminal section with the first function to form a blurred estimate of the signal received at the terminal from the other transmitter;
 - (d) creating a second function dependent on the terminal section and the transmitter section created in steps (a) and (b), and convolving the terminal section with the second function to form a blurred terminal section;
 - (e) subtracting the blurred estimate from the blurred terminal section to produce a blurred residual representation; and
 - (f) estimating the time offset between the blurred residual representation and the signal component.

20

30

- A method according to claim 9, wherein the first function, which is used to 10. create the blurred estimate, is a convolution of the transmitter section with a crosscorrelation of the terminal section and the transmitter section.
- A method according to claim 10, wherein the cross-correlation is a windowed 11. cross-correlation created by enhancing the significant components of the crosscorrelation function.
- A method according to any of claims 9 to 11, wherein the second function, 12. 10 which is used to create the blurred terminal section, is a convolution of the terminal section with the auto-correlation profile of the transmitter section.
- A method according to any of claims 9 to 12, wherein the known components · 13. of the transmitted signals in the second aspect of the invention are pilot codes. 15
 - A method according to any of claims 9 to 13, wherein, before the time offset is 14. estimated, the known signal components are blurred by convolution with another function.
 - A method according to any of claims 9 to 14, wherein the section of the 15. representation of the signals transmitted by a transmitter is created at that transmitter.
- A method according to any of claims 9 to 14, wherein the section of the 16. representation of the signals transmitted by a transmitter is created in one or more 25 sampling devices attached to the respective transmitters or located elsewhere.
 - A method according to any of claims 9 to 14, wherein the section of the 17. representation of the signals transmitted by a transmitter is created by a computer program running anywhere in the communications network, or elsewhere, using information supplied from the network about the transmitted signals.
 - A method according to any of claims 1 to 14, wherein the section of the 18. representation of the signals received by the receiver at the terminal is recorded in the terminal before being sent to a computing device.

20

25

30

- 19. A method according to any of claims 1 to 14, wherein the section of the representation of the signals received by the receiver at the terminal is transferred in real time to the computing device and a recording made there.
- 5 20. A method according to any of claims 1 to 19, wherein the representation of the signals received by the receiver attached to the terminal may be a digitised version of the received signals converted first to baseband in the receiver.
- 21. A method according to any of claims 1 to 20, wherein the representation of the signals transmitted by a transmitter may be a digitised version of the transmitted signals converted first to baseband.
 - 22. Apparatus including a processing means arranged to carry out the method of any of claims 1 to 21.
 - 23. Apparatus for finding the time offset between signals transmitted by at least one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the apparatus comprising
 - (a) processing means arranged to create at the terminal a section of a representation of the signals from the transmitters received by the receiver;
 - (b) processing means arranged to create a first section of a representation of the signal transmitted by a first of said transmitters, and to create a second section of a representation of the signal transmitted by a second of said transmitters, each of which sections overlaps in time with the section created at the terminal;
 - (c) processing means arranged to create a first function dependent on the first section and the section created at the terminal in step (a), and convolve the first section with the first function to form a blurred estimate of the signal received at the terminal from the first transmitter;
 - (d) processing means arranged to create a second function dependent on the first section and the section created at the terminal in step (a), and convolve the terminal section with the second function to form a blurred terminal section;
 - (e) processing means arranged to subtract the blurred estimate from the blurred terminal section to produce a blurred residual representation; and
 - (f) processing means arranged to estimate the time offset between the blurred residual representation and the second section.

10

15

20

25

30

- 24. Apparatus for finding the time offset relative to a reference within the terminal of a component of a signal transmitted by one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the apparatus comprising
- (a) processing means arranged to create at the terminal a section of a representation of the signals from the transmitters received by the receiver (a "terminal section");
- (b) processing means arranged to create a section of a representation of the signal transmitted by an other transmitter (a "transmitter section");
- (c) processing means arranged to create a first function dependent on the terminal section and the transmitter section created in steps (a) and (b), and convolve the terminal section with the first function to form a blurred estimate of the signal received at the terminal from the other transmitter;
- (d) processing means arranged to create a second function dependent on the terminal section and the transmitter section created in steps (a) and (b), and convolve the terminal section with the second function to form a blurred terminal section;
- (e) processing means arranged to subtract the blurred estimate from the blurred terminal section to produce a blurred residual representation; and
- (f) processing means arranged to estimate the time offset between the blurred residual representation and the signal component.
- 25. A telecommunications terminal including apparatus for finding the time offset between signals transmitted by at least one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the apparatus comprising
- (a) processing means arranged to create at the terminal a section of a representation of the signals from the transmitters received by the receiver;
- (b) processing means arranged to create a first function dependent on a first section of a representation of the signal transmitted by a first of said transmitters which overlaps in time with the section created at the terminal and which is sent to the terminal and the section created at the terminal in step (a), and convolve the first section with the first function to form a blurred estimate of the signal received at the terminal from the first transmitter;
- (c) processing means arranged to create a second function dependent on the first section and the section created at the terminal in step (a), and convolve the section created at the terminal with the second function to form a blurred terminal section;

10

15

20

25

-30

- (d) processing means arranged to subtract the blurred estimate from the blurred terminal section to produce a blurred residual representation; and
- (e) processing means arranged to estimate the time offset between the blurred residual representation and a second section of a representation of the signal transmitted by a second of said transmitters which overlaps in time with the section created at the terminal and which is sent to the terminal.
- 26. A telecommunications terminal including apparatus for finding the time offset relative to a reference within the terminal of a component of a signal transmitted by one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the apparatus comprising
 - (a) processing means arranged to create at the terminal a section of a representation of the signals from the transmitters received by the receiver (a "terminal section");
- (b) processing means arranged to create a first function dependent on the terminal section and a section of a representation of the signal transmitted by another transmitter (a "transmitter section") which is sent to the terminal, and convolve the terminal section with the first function to form a blurred estimate of the signal received at the terminal from theother transmitter;
- (c) processing means arranged to create a second function dependent on the transmitter section and the terminal section created at the terminal, and convolve the terminal section with the second function to form a blurred terminal section;
- (d) processing means arranged to subtract the blurred estimate from the blurred terminal section to produce a blurred residual representation; and
- (e) processing means arranged to estimate the time offset between the blurred residual representation and the signal component.
- 27. A communications network for finding the time offset between signals transmitted by at least one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the network comprising
 - (a) a computing device or devices;
 - (b) a terminal having a radio receiver attached to the terminal, means for creating a section of a representation of the signals, received by the radio receiver, from the transmitters of the communications network, and means for sending the section to the computing device or devices;
 - (c) sampling devices associated with respective first and second of said transmitters for creating respective first and second sections of

U.14U.UV.4.UUT

10

15

20

25

30

35

representations of the signal transmitted by the respective transmitter which overlap in time with the section created at the terminal, and for sending the sections of the representations created at said transmitters to said computing device or devices;

- 5 the computing device or devices being adapted to perform
 - 1 creation of a first function dependent on the first section and the section created at the terminal, and a convolution of the first section with the first function to provide a blurred estimate of the signal received at the terminal from the first transmitter;
 - 2 creation of a second function dependent on the first section and the section created at the terminal, and a convolution of the section created at the terminal with the second function to provide a blurred terminal section;
 - a subtraction of said blurred estimate from the blurred terminal section to produce a blurred residual representation;
 - 4 a calculation of the time offset between the blurred residual representation and said second section.
 - 28. A communications network for finding the time offset relative to a reference within the terminal of a component of a signal transmitted by one of a plurality of transmitters of a communications network and received by a receiver attached to a terminal, the network comprising
 - (a) a computing device or devices;
 - (b) a terminal having a radio receiver attached to the terminal, means for creating a section of a representation of the signals, received by the radio receiver, from the transmitters of the communications network (a "terminal section"), and means for sending the section to the computing device or devices;
 - (c) a sampling device associated with an other transmitter for creating a section of a representation of the signal transmitted by the other transmitter (a "transmitter section") which overlaps in time with the section created at the terminal, and for sending the section of the representations created at the other transmitter to said computing device or devices;

the computing device or devices being adapted to perform

1 creation of a first function dependent on the transmitter section and the terminal section, and a convolution of the transmitter section with the first function to provide a blurred estimate of the signal received at the terminal from the other transmitter;

- 2 creation of a second function dependent on the transmitter section and the terminal section, and a convolution of the terminal section with the second function to provide a blurred terminal section;
- 3 a subtraction of said blurred estimate from the blurred terminal section to produce a blurred residual representation;
- 4 a calculation of the time offset between the blurred residual representation and the signal component.
- A computing device or devices for use in a communications network 29. comprising a terminal having a radio receiver attached to the terminal, means for creating a section of a representation of the signals, received by the radio receiver, from the transmitters of the communications network, and means for sending the section to the computing device or devices; and sampling devices associated with respective first and second of said transmitters for creating respective first and second sections of representations of the signal transmitted by the respective transmitter which overlap in time with the section created at the terminal, and for sending the sections of the representations created at said transmitters to said computing device or devices,

the computing device or devices being adapted to perform

20

5

10

15

creation of a first function dependent on the first section and the section created at the terminal, and a convolution of the first section with the first function to provide a blurred estimate of the signal received at the terminal from the first transmitter;

25

2 creation of a second function dependent on the first section and the section created at the terminal, and a convolution of the section created at the terminal with the second function to provide a blurred terminal section;

3 a subtraction of said blurred estimate from the blurred terminal section to produce a blurred residual representation;

30

35

a calculation of the time offset between the blurred residual representation and said second section.

A computing device or devices for use in a communications network 30. comprising a terminal having a radio receiver attached to the terminal, means for creating a section of a representation of the signals, received by the radio receiver, from the transmitters of the communications network (a "terminal section"), and means for sending the section to the computing device or devices; and a sampling device associated with an other transmitter for creating a section of a representation

of the signal transmitted by the other transmitter (a "transmitter section") which overlaps in time with the section created at the terminal, and for sending the section of the representations created at the other transmitter to said computing device or devices.

5 the computing device or devices being adapted to perform

- 1 creation of a first function dependent on the transmitter section and the terminal section, and a convolution of the transmitter section with the first function to provide a blurred estimate of the signal received at the terminal from the other transmitter;
- 10 2 creation of a second function dependent on the transmitter section and the terminal section, and a convolution of the terminal section with the second function to provide a blurred terminal section;
 - a subtraction of said blurred estimate from the blurred terminal section to produce a blurred residual representation;
- 4 a calculation of the time offset between the blurred residual representation and the signal component.
 - 31. A computer program or programs comprising computer program code means adapted to perform the steps of the computing device of claim 29.
 - 32. A computer program or programs comprising computer program code means adapted to perform the steps of the computing device of claim 30.
- 33. A method of calculating the position of a mobile terminal in a communications network which includes the method of any of claims 1 to 21.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.