

Programación Matemática. Relación 4 Curso 2016/17.

Problema 1

Construye un poliedro no vacío sin direcciones extremas ni puntos extremos.

Problema 2

Construye, si es posible, un problema de progración lineal factible

- 1. con valor objetivo acotado, pero sin soluciones óptimas
- 2. con exactamente una solución óptima
- 3. con exactamente dos soluciones óptimas
- 4. con exactamente un segmento de soluciones óptimas
- 5. con toda la región factible como solución óptima

Problema 3

Sean dos conjuntos no vacíos $A := \{a_1, \dots, a_p\}, B := \{b_1, \dots, b_q\} \subset \mathbb{R}^n$.

- 1. Escribe un problema de programación lineal que es factible sii $co(A) \cap co(B) \neq \emptyset$.
- 2. Usando el lema de Farkas, demuestra que $co(A) \cap co(B) = \emptyset$ sii existe $u \in \mathbb{R}^n$ tal que $u^{\top}a_i > u^{\top}b_j \ \forall i = 1, \dots, p, \ j = 1, \dots, q.$

Problema 4

Representa el conjunto factible y las líneas de nivel del siguiente problema de *Programación Lineal*. Resuelve el problema usando el método simplex en formato tabla.

Determina las soluciones óptimas para la nueva función objetivo $2x_1 + \frac{1}{2}x_2$. ¿Qué tipo de solución óptima obtienes?

Problema 5

Representa el conjunto factible del siguiente problema y resuélvelo usando el *método de las dos fases* del simplex en formato tabla.

Problema 6

El siguiente problema es infactible. Aplica el método de las dos fases del simplex.

Problema 7

Aplica el método de las dos fases del simplex.

Problema 8

El siguiente problema posee una restricción redundante. Comprueba que en la primera fase del método simplex se detecta esta situación y que en la segunda fase se certifica que el problema no tiene solución óptima acotada.

Problema 9

Para cada uno de los siguientes problemas de programación lineal,

- 1. Hallar la solución óptima.
- 2. Hallar el rango de valores del coeficiente de la variable x_1 en la función objetivo para los que su base asociada sigue siendo óptima.
- 3. Idem para x_2 .

a)
$$\max 3x_1 + 4x_2 + x_3$$
 b) $\max x_1 + 2x_2 + 5x_3 - 3x_4$ $s.a: x_1 + x_2 + x_3 \le 50$ $s.a. x_1 + 2x_2 + 4x_3 - x_4 \le 6$ $2x_1 - x_2 + x_3 \ge 15$ $2x_1 + 3x_2 - x_3 + x_4 \le 4$ $x_1 + x_2 = 10$ $x_1, x_2, x_3 \ge 0$ c) $\min 3x_1 - x_2$ d) $\max x_1 + 3x_2$ $s.a. x_1 - 3x_2 \ge -3$ $s.a. x_1 - 2x_2 \le 4$ $2x_1 + x_2 \ge -2$ $-x_1 + x_2 \le 16$ $x_1 + x_2 \le 8$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$

Problema 10

Resuelve el siguiente sistema de ecuaciones

$$2x_1 - x_2 + x_3 = -1$$
, $x_1 + 2x_2 = 0$, $3x_1 + x_2 + 2x_3 = 3$,

mediante el algoritmo del simplex.

Programación Matemática. Soluciones: Relación 4. Solución del problema 4:

	x_1	x_2	x_3	x_4	x_5	x_6	$_{ m LD}$
x_3	1	-2	1	0	0	0	1
x_4	-3	1	0	1	0	0	1
x_5	4	1	0	0	1	0	13
x_6	-1	1	0	0	0	1	3
-z	1	1	0	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_1	1	-2	1	0	0	0	1
x_4	0	-5	3	1	0	0	4
x_5	0	9	-4	0	1	0	9
x_6	0	-1	1	0	0	1	4
-z	0	3	-1	0	0	0	-1

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_1	1	0	$\frac{1}{9}$	0	$\frac{2}{9}$	0	3
x_4	0	0	$\frac{7}{9}$	1	$\frac{5}{9}$	0	9
x_2	0	1	$\frac{-4}{9}$	0	$\frac{1}{9}$	0	1
x_6	0	0	$\frac{5}{9}$	0	$\frac{1}{9}$	1	5
-z	0	0	$\frac{1}{3}$	0	$\frac{-1}{3}$	0	-4

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_1	1	0	0	0	$\frac{1}{5}$	$\frac{-1}{5}$	2
x_4	0	0	0	1	$\frac{2}{5}$	$\frac{-7}{5}$	2
x_2	0	1	0	0	$\frac{1}{5}$	$\frac{4}{5}$	5
x_3	0	0	1	0	$\frac{1}{5}$	$\frac{9}{5}$	9
-z	0	0	0	0	$\frac{-2}{5}$	$\frac{-3}{5}$	-7

Resuelva el problema de nuevo con la función objetivo $2x_1 + \frac{1}{2}x_2$. Calculando los costes reducidos respecto de la nueva función objetivo y pivotando se obtiene:

	x_1	x_2	x_3	x_4	x_5	x_6	L_{D}
x_1	1	0	$\frac{1}{9}$	0	$\frac{2}{9}$	0	3
x_4	0	0	$\frac{7}{9}$	1	$\frac{5}{9}$	0	9
x_2	0	1	$\frac{-4}{9}$	0	$\frac{1}{9}$	0	1
x_6	0	0	$\frac{5}{9}$	0	$\frac{1}{9}$	1	5
-z	0	0	0	0	$\frac{-1}{2}$	0	$\frac{-13}{2}$

Solución del problema 5:

En la FASE I se resuelve el problema auxiliar

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_6	1	1	-1	0	0	1	0	2
x_7	1	0	0	-1	0	0	1	1
x_5	1	2	0	0	1	0	0	4
-z	2	1	-1	-1	0	0	0	3

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_6	0	1	-1	1	0	1	-1	1
x_1	1	0	0	-1	0	0	$-1 \\ 1$	1
x_5	0	2	0	1	1	0	-1	3
-z	0	1	-1	1	0	0	-2	1

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_2	0	1	-1	1	0	$1\\0\\-2$	-1	1
x_1	1	0	0	-1	0	0	1	1
x_5	0	0	2	-1	1	-2	1	1
-z	0	0	0	0	0	-1	-1	0

Ahora comienza la FASE II, se eliminan las variables artificiales x_6 y x_7 y se calcula el renglón z de acuerdo a la formulación del problema original.

	x_1	x_2	x_3	x_4	x_5	LD
x_2	0	1	-1	1	0	1
x_1	1	0	0	-1	0	1
x_5	0	0	2	-1	1	1
-z	0	0	3	-2	0	-4

	x_1	x_2	x_3	x_4	x_5	LD
x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$
x_1	1	0	0	-1	0	1
x_3	0	0	1	$\frac{-1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
-z	0	0	0	$\frac{-1}{2}$	$\frac{-3}{2}$	$\frac{-11}{2}$

Solución del problema 6:

Ejemplo de problema infactible.

Solución:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	LD
x_7	-1	2	-1	-1	0	0	1	0	5
x_8	1	1	2	0	-1	0	0	1	2
x_6	0			0					3
z	0	3	1	-1	-1	0	0	0	7

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	LD
x_7	-1	0	$\frac{-5}{3}$	-1	0	$\frac{-2}{3}$	1	0	3
$ x_8 $	1	0			-1	$\frac{-1}{3}$	0	1	1
x_2	0	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0	0	1
z	0	0	0	-1	-1	-1	0	0	4

Solución del problema 7:

En la FASE I se resuelve el problema auxiliar

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_3	-3	1	1	0	0	0	1
x_4	2	3	0	1	0	0	5
x_6	1	2	0	0	-1	1	3
-z	1	2	0	0	-1	0	3

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_2	-3	1	1	0	0	0	1
x_4	11	0	-3	1	0	0	2
x_6	7	0	-2		-1	1	1
-z	7	0	-2	0	-1	0	1

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_2	0	1	$\frac{1}{7}$	0	$\frac{-3}{7}$	$\frac{3}{7}$	$\frac{10}{7}$
x_4	0	0	$\frac{1}{7}$	1	$\frac{11}{7}$	$\frac{-11}{7}$	$\frac{3}{7}$
x_1	1	0	$\frac{-2}{7}$	0	$\frac{-1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$
-z	0	0	0	0	0	-1	0

Ahora comienza la FASE II, se elimina la variable artificial x_6 y se calcula el renglón z de acuerdo a la formulación del problema original.

	x_1	x_2	x_3	x_4	x_5	$_{ m LD}$
x_2	0	1	$\frac{1}{7}$	0	$\frac{-3}{7}$	$\frac{10}{7}$
x_4	0	0	$\frac{1}{7}$	1	$\frac{11}{7}$	$\frac{3}{7}$
x_1	1	0	$\frac{-2}{7}$	0	$\frac{-1}{7}$	$\frac{1}{7}$
-z	0	0	$\frac{1}{7}$	0	$\frac{4}{7}$	$\frac{-11}{7}$

	x_1	x_2	x_3	x_4	x_5	L_{D}
x_2	0	1	$\frac{2}{11}$	$\frac{3}{11}$	0	$\frac{17}{11}$
x_5	0	0	$\frac{1}{11}$	$\frac{7}{11}$	1	$\frac{3}{11}$
x_1	1	0	$\frac{-3}{11}$	$\frac{1}{11}$	0	$\frac{2}{11}$
-z	0	0	$\frac{1}{11}$	$\frac{-4}{11}$	0	$\frac{-19}{11}$

	x_1	x_2	x_3	x_4	x_5	$_{ m LD}$
x_2	0	1	0	-1	-2	1
x_3	0	0	1	7	11	3
x_1	1	0	0	2	3	1
-z	0	0	0	-1	-1	-2

Solución del problema 8:

Ejemplo de restricción redundante (eliminada en la FASE I) y problema sin solución óptima (la función objetivo crece indefinidamente a lo largo de una de las aristas no acotadas del poliedro factible).

Solución:

	x_1	x_2	x_3	x_4	x_5	x_6	$_{ m LD}$
x_4	-1	2	-1	1	0	0	5
x_5	-1	1	-1 1	0	1	0	2
x_6	-2	3	0	0	0	1	7
-z	-4	6	0	0	0	0	14

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_4	1	0	-3	1	-2	0	1
x_2	-1	1	1	0	1	0	2
x_6	1	0	-3	0	-3	1	1
-z	2	0	-6	0	-6	0	2

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_1	1	0	-3	1	-2	0	1
x_2	0	1	-2	1	-1	0	3
x_6	0	0	0	-1	-1	1	0
-z	0	0	0	-2	-2	0	0

	x_1	x_2	x_3	LD
x_1	1	0	-3	1
x_2	0	1	-2	3
-z	0	0	6	-4

Teniendo en cuenta que la variable x_3 verifica $c_3-z_3=6>0$ y $y_{\bullet 3}=\begin{bmatrix} -3\\ -2 \end{bmatrix} \leq 0$ se tiene que la función objetivo crece indefinidamente a lo largo de la arista no acotada del poliedro factible dada por el punto extremo asociado a la tabla final y al vector de dirección $\begin{bmatrix} d_B\\ d_N \end{bmatrix}=$

$$\left[\begin{array}{c} -y_{\bullet 3} \\ 1 \end{array}\right] = \left[\begin{array}{c} 3 \\ 2 \\ 1 \end{array}\right]. \text{ Por tanto la arista de ilimitación es}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}; \quad \lambda \ge 0.$$

Solución del problema 9:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_4	1	1	1	1	0	0	0	50
x_6	2	-1	1	0	-1	1	0	15
x_7	1	1	0	0	0	0	1	10
-z	3	0	1	0	-1	0	0	25

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_4	0	$\frac{3}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{-1}{2}$	0	$\frac{85}{2}$
x_1	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{1}{2}$	0	$\frac{15}{2}$
x_7	0	$\frac{3}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$\frac{5}{2}$
-z	0	$\frac{3}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{-3}{2}$	0	$\frac{5}{2}$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	L_{D}
x_4	0	0	1	1	0	0	-1	40
x_1	1	0	$\frac{1}{3}$	0	$\frac{-1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{25}{3}$
x_2	0	1	$\frac{-1}{3}$	0	$\frac{1}{3}$	$\frac{-1}{3}$	$\frac{2}{3}$	$\frac{5}{3}$
-z	0	0	0	0	0	-1	-1	0

	x_1	x_2	x_3	x_4	x_5	LD
x_4	0	0	1	1	0	40
x_1	1	0	$\frac{1}{3}$	0	$\frac{-1}{3}$	$\frac{25}{3}$
x_2	0	1	$\frac{-1}{3}$	0	$\frac{1}{3}$	$\frac{5}{3}$
-z	0	0	$\frac{4}{3}$	0	$\frac{-1}{3}$	$\frac{-95}{3}$

	x_1	x_2	x_3	x_4	x_5	LD
x_4	-3	0	0	1	1	15
x_3	3	0	1	0	-1	25
x_2	1	1	0	0	0	10
-z	-4	0	0	0	1	-65

	x_1	x_2	x_3	x_4	x_5	LD
x_5	-3	0	0	1	1	15
x_3	0	0	1	1	0	40
x_2	1	1	0	0	0	10
-z	-1	0	0	-1	0	-80

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_5	1	2	4	-1	1	0	6
x_6	2	3	-1	1	0	1	4
z	1	2	5	-3	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_3	$\frac{1}{4}$	$\frac{1}{2}$	1	$\frac{-1}{4}$	$\frac{1}{4}$	0	$\frac{3}{2}$
x_6	$\frac{9}{4}$	$\frac{7}{2}$	0	$\frac{3}{4}$	$\frac{1}{4}$	1	$\frac{11}{2}$
z	$\frac{-1}{4}$	$\frac{-1}{2}$	0	$\frac{-7}{4}$	$\frac{-5}{4}$	0	$\frac{-15}{2}$

 $max -3x_1 +3x_2$ $+x_3$ $-x_4$ $sa: -x_1 +x_2 +3x_3$ $-3x_4 \leq 3$ $-2x_1 +2x_2$ $+x_4 \leq$ 2 $-x_3$ $-x_4 \leq$ 8 x_1 $-x_2$ $+x_3$ $+x_4 \leq 16$ $4x_1 - 4x_2$ $-x_3$ x_4, \geq x_1 , x_2 , x_3 ,

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	LD
x_5	-1	1	3	-3	1	0	0	0	3
x_6	-2	2	-1	1	0	1	0	0	2
x_7	1	-1	1	-1	0	0	1	0	8
x_8	4	-4	-1	1	0	0	0	1	3 2 8 16
-z	-3	3	1	-1	0	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	$_{ m LD}$
x_5	0		$\frac{7}{2}$	$\frac{-7}{2}$	1	$\frac{-1}{2}$	0	0	2
x_2	-1	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	1
x_7	0	0	$\frac{1}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	1	0	9
x_8	0	0	-3	3	0	2	0	1	20
-z	0	0	$\frac{5}{2}$	$\frac{-5}{2}$	0	$\frac{-3}{2}$	0	0	-3

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	LD
x_3	0	0	1	-1	$\frac{2}{7}$	$\frac{-1}{7}$	0	0	$\frac{4}{7}$
x_2	-1	1	0	0	$\frac{1}{7}$	$\frac{3}{7}$	0	0	$\frac{9}{7}$
x_7	0	0	0	0	$\frac{-1}{7}$	$\frac{4}{7}$	1	0	$\frac{61}{7}$
x_8	0	0	0	0	$\frac{6}{7}$	$\frac{11}{7}$	0	1	$\frac{152}{7}$
-z	0	0	0	0	$\frac{-5}{7}$	$\frac{-8}{7}$	0	0	$\frac{-31}{7}$

	x_1	x_2	x_3	x_4	LD
x_3	1	-2	1	0	4
x_4	-1	1	0	1	16
z	1	3	0	0	0

	x_1	x_2	x_3	x_4	$_{ m LD}$
x_3	-1	0	1	2	36
x_2	-1	1	0	1	16
z	4	0	0	-3	-48

Solución del problema 10:

0 max $sa: -2x_1 +2x_2$ $+x_3$ $-x_4$ $-x_5$ $+x_6 = 1$ $-x_2 +2x_3$ $-2x_4$ = 0 x_1 $-x_4$ $+2x_5 -2x_6 = 3$ $3x_1 - 3x_2$ $+x_3$ x_1 , x_2 , x_3 , x_4 , x_5 , $x_6, \geq 0$

				x_4						
x_7				-1						
x_8	1	-1	2	-2	0	0	0	1	0	0
x_9	3	-3	1	-1	2	-2	0	0	1	3
z	2	-2	4	-4	1	-1	0	0	0	4

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	LD
x_7	$\frac{-5}{2}$	$\frac{5}{2}$	0	0	-1	1	1	$\frac{-1}{2}$	0	1
x_3	$\frac{1}{2}$	$\frac{-1}{2}$	1	-1	0	0	0	$\frac{1}{2}$	0	0
x_9	$\frac{5}{2}$	$\frac{-5}{2}$	0	0	2	-2	0	$\frac{-1}{2}$	1	3
z	0	0	0	0	1	-1	0	-2	0	4

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	LD
x_7	$\frac{-5}{4}$	$\frac{5}{4}$	0	0	0	0	1	$\frac{-3}{4}$	$\frac{1}{2}$	$\frac{5}{2}$
x_3	$\frac{1}{2}$	$\frac{-1}{2}$	1	-1	0	0	0	$\frac{1}{2}$	0	0
x_5	$\frac{5}{4}$	$\frac{-5}{4}$	0	0	1	-1	0	$\frac{-1}{4}$	$\frac{1}{2}$	$\frac{3}{2}$
z	$\frac{-5}{4}$	$\frac{5}{4}$	0	0	0	0	0	$\frac{-7}{4}$	$\frac{-1}{2}$	$\frac{5}{2}$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	LD
x_2	-1	1	0	0	0	0	$\frac{4}{5}$	$\frac{-3}{5}$	$\frac{2}{5}$	2
x_3	0	0	1	-1	0	0	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	1
x_5	0	0	0	0	1	-1	1	-1	1	4
z	0	0	0	0	0	0	-1	-1	-1	0

	x_1	x_2	x_3	x_4	x_5	x_6	LD
x_2	-1	1	0	0	0	0	2
x_3	0	0	1	-1	0	0	1
x_5	0	0	0	0	1	-1	4
z	0	0	0	0	0	0	0