Notes on Physics from Symmetry

Author: Juvid Aryaman Last compiled: May 16, 2021

This document contains my personal notes on Jakob Schwichtenberg's Physics from Symmetry (Schwichtenberg, 2015), with a sprinkling of notes from my undergraduate physics course in quantum field theory (and, to a lesser extent, general relativity).

1. Special relativity

1.1. Definitions and postulates

In special relativity, **inertial frames of reference** are coordinate systems moving with constant velocity relative to each other. Special relativity has two basic postulates:

- 1. The principal of relativity: The laws of physics are the same in all inertial frames of reference.
- 2. The invariance of the speed of light: The velocity of light has the same value c in all inertial frames of reference.

Theorem 1.1 (Invariant of special relativity). Consider two events A and B in an inertial observer O's frame of reference. Let the time interval measured by O between the two events be (Δt) , and the three spatial intervals be (Δx) , (Δy) , (Δz) . Then, the quantity

$$(\Delta s)^2 := (\Delta ct)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta y)^2 \tag{1.1}$$

is invariant between all frames of reference. I.e.

$$(\Delta s') = (\Delta s) \tag{1.2}$$

for any inertial frame of reference O'.

Theorem 1.1 follows directly from the invariance of the speed of light (consider a pair of mirrors, for two observers with relative velocity).

Definition 1.1 (Proper time). Proper time, τ , is the time measured by an observer in the special frame of reference where the object in question is at rest. In this frame of reference,

$$(\Delta s)^2 = (c\Delta \tau)^2. \tag{1.3}$$

In the infinitesimal limit

$$(\mathrm{d}s)^2 = (c\,\mathrm{d}\tau)^2. \tag{1.4}$$

Physically, Defn. 1.1 means that all observers agree on the time interval between events for an observer who travels with the object in question. However, different observers **do not** in general agree on the time interval between events generally: $(\Delta t) \neq (\Delta t')$ – this is called **time dilation**.

1.2. c is an upper speed limit

All observers agree on the value of $(\mathrm{d}s)^2=(c\,\mathrm{d}\tau)^2$. Furthermore, we commonly assume that there exists a minimal proper time of $\tau=0$ for two events if $\Delta s^2=0$. We can therefore write that when $\tau=0$

$$c^{2} = \frac{(\mathrm{d}x)^{2} + (\mathrm{d}y)^{2} + (\mathrm{d}z)^{2}}{(\mathrm{d}t)^{2}}$$
(1.5)

between two events with an infinitesimal distance. We can equate the right-hand side with a squared velocity, and hence

$$\tau = 0 \implies c^2 = v^2 \tag{1.6}$$

so

$$(\mathrm{d}s)^2 \ge 0 \implies c^2 \ge v^2 \tag{1.7}$$

for **any** pair of events (which are causally connected, although how this follows is not immediately clear to me right now).

1.3. Tensor notation

Definition 1.2 (Four-vector (contravariant)). A position four-vector is defined as

$$x^{\mu} = \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \equiv \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}. \tag{1.8}$$

Definition 1.3 (Minkowski metric). The Minkowski metric is defined as

$$\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1).$$
(1.9)

We define $\eta^{\mu\nu}$ through the relation

$$\eta^{\mu\nu}\eta_{\nu\sigma} = \delta^{\mu}_{\ \sigma} \tag{1.10}$$

where we have appled the **Einstein summation convention**, where a repeated Greek index implies a summation from 0 to 3 (where the zeroth index is time), and a repeated Roman index is summed from 1 to 3. Hence, for a matrix multiplication between two 3×3 matricies A and B, $(AB)_{ij}=A_{ik}B_{kj}$, and $(A^T)_{ij}=A_{ji}$.

Definition 1.4 (One-form (covariant vector)). We define a one-form as

$$x_{\mu} = \eta_{\mu\nu} x^{\nu}.\tag{1.11}$$

Thus,

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}. \tag{1.12}$$

Definition 1.5 (Scalar product). A scalar product between four-vectors x and y is defined as

$$x \cdot y := x^{\mu} y^{\nu} \eta_{\mu\nu} = x_{\mu} y_{\nu} \eta^{\mu\nu} = x^{\mu} y_{\mu} = x_{\nu} y^{\nu}$$
 (1.13)

due to the symmetry of the metric: $\eta_{\mu\nu} = \eta_{\nu\mu}$.

Ordering (spacing) of indicies In order to be able to freely raise/lower indicies (without repeatedly writing the metric tensor), we can impose an ordering upon indicies of tensor fields – which we can represent typographically with spacing between tensor indicies. A metric g_{ij} (or g^{ij}) has the effect of lowering (or raising) a repeated index. For example,

$$g_{iq}T^{abcd}_{efgh}^{ijkl}_{mnop} = T^{abcd}_{efghq}^{jkl}_{mnop}. {(1.14)}$$

(Proof of this, I imagine, requires background in differential geometry?)

1.4. Lorentz transformations

From the invariant of SR (Theorem 1.1), we have

$$ds'^{2} = dx'_{\mu} dx'_{\nu} \eta^{\mu\nu} = dx_{\mu} dx_{\nu} \eta^{\mu\nu}$$
(1.15)

for all reference frames. We denote Λ as a (1,1) tensor field, which transforms a four-vector from one reference frame to another:

$$\mathrm{d}x^{\prime\mu} = \Lambda^{\mu}{}_{\nu}\,\mathrm{d}x^{\nu} \tag{1.16}$$

which leaves the ds^2 invariant, i.e. $ds'^2 = ds^2$. It follows that

$$\eta_{\mu\nu} = \Lambda^{\sigma}{}_{\mu}\Lambda^{\delta}{}_{\nu}\eta_{\sigma\delta}$$

$$\eta = \Lambda^{T}\eta\Lambda.$$
(1.17)

The physical meaning of Eq.(1.17) is that Lorentz transformations leave the scalar product of Minkowski spacetime invariant: i.e. changes between frames of reference that respect the two postualtes of special relativity (Section 1.1). Conservation of the scalar product is analogous to rigid rotation (O) in Euclidean space $(a \cdot b = a' \cdot b' = a^T O^T O b \implies O^T 1 O = 1)$, which preserves orientation $(\det(\Lambda) = 1)$.

Note that $\Lambda^{\mu}_{\ \nu} \neq \Lambda^{\mu}_{\nu}$. Beginning with Eq.(1.17),

$$\Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}\eta_{\mu\nu} = \eta_{\rho\sigma}$$

we can raise one index, and lower one index, of Λ^{ν}_{σ}

$$\Lambda^{\mu}{}_{\rho}\eta_{\mu\nu}\Lambda^{\nu}{}_{\sigma}\eta_{\nu\mu}\eta^{\sigma\lambda} = \eta_{\rho\sigma}\eta_{\nu\mu}\eta^{\sigma\lambda}$$

$$\Lambda^{\mu}{}_{\rho}\Lambda_{\mu}{}^{\lambda}\eta_{\mu\nu} = \eta_{\mu\nu}\delta_{\rho}{}^{\lambda}$$

$$\Lambda^{\mu}{}_{\rho}\Lambda_{\mu}{}^{\lambda} = \delta_{\rho}{}^{\lambda}$$
(1.18)

so we see that Λ_{ν}^{μ} is the inverse of Λ^{μ}_{ν} .

2. Invariance, symmetry, and covariance

We call a quantity **invariant** if it does not change under transformations. E.g. if we transform $A, B, C, ... \rightarrow A', B', C', ...$ and we have

$$F(A', B', C', ...) = F(A, B, C, ...)$$
(2.1)

then we say F is invariant under this transformation. **Symmetry** is defined as invariance under a transformation (or class of transformations). An equation is covariant if it takes the same form when objects in it are transformed. *All physical laws must be covariant under Lorentz transformations*.

References

Schwichtenberg, J., 2015 Physics from symmetry. Springer.