Государственное бюджетное образовательное учреждение высшего образования Московской области

ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

имени дважды Героя Советского Союза, летчика-космонавта А. А. Леонова

Колледж космического машиностроения и технологий

ОТЧЕТ

по производственной практике ПП.03.01.

по профессиональному модулю ПМ.02.01 Монтаж, программирование и пуско-наладка мехатронных систем

Специальность «15.02.10 Мехатроника и мобильная робототехника (по отраслям)»

Студента 4 курса группы МР-19 очной формы обучения

Фамилия Имя Отчество

Место прохождения практики: «ККМТ МГОТУ» Срок прохождения практики с 09.03.2023 по 05.04.2023

Руководители практики

от организации (при наличии)	
` - / _	жность подпись
от колледжа: преподаватель	Маткин Д. Е.
1	Подпись
Итоговая опенка по практике	

СОДЕРЖАНИЕ

BI	ВЕДЕНІ	ИЕ	3
1	TEXH	ИКА БЕЗОПАСНОСТИ	11
	1.1	Меры безопасности при работе с пневматической системой	11
	1.2	Меры безопасности при работе с электрической системой	12
2	ОЗНА	КОМЛЕНИЕ С УСТАНОВКОЙ DISYS MT-SC-1	13
	2.1	Комплектность	14
	2.2	Технические характеристики	14
3	ОЗНА	КОМЛЕНИЕ С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ	15
	3.1	Описание интерфейса	16
	3.2	Принцип выполнения программы	16
4	ВЫПС	ОЛНЕНИЕ ЗАДАНИЯ	17
	4.1	Виртуальная панель оператора	17
	4.2	Описание клавиш панели оператора	18
	4.3	Условия запуска установки	18
	4.4	Аварийный останов	18
	4.5	Автоматический режим	20
	4.6	Ручной режим	22
5	УСТРА	АНЕНИЕ НЕИСПРАВНОСТЕЙ	24
34	кпюч	ЕНИЕ	25

введение

Практика по профессиональному модулю **ПМ.02.01 Монтаж, программирование и пуско-наладка мехатронных систем** направлена на формирование у обучающегося общих компетенций:

Код	Наименование общих компетенций	
ОК 01.	Выбирать способы решения задач профессиональной дея-	
OK 01.	тельности, применительно к различным контекстам.	
	Осуществлять поиск, анализ и интерпретацию информа-	
ОК 02.	ции, необходимой для выполнения задач профессиональ-	
	ной деятельности.	
ОК 03.	Планировать и реализовывать собственное профессиональ-	
OK 03.	ное и личностное развитие.	
	Осуществлять устную и письменную коммуникацию на го-	
ОК 05.	сударственном языке с учетом особенностей социального	
	и культурного контекста.	
	Использовать средства физической культуры для сохране-	
OK 08.	ния и укрепления здоровья в процессе профессиональной	
OK 00.	деятельности и поддержание необходимого уровня физи-	
	ческой подготовленности.	
OK 09.	Использовать информационные технологии в профессио-	
OR 07.	нальной деятельности.	
OK 10.	Пользоваться профессиональной документацией на госу-	
OK 10.	дарственном и иностранном языке.	

профессиональных компетенций:

Код	Наименование общих компетенций	
ВД 1	Монтаж, программирование и пуско-наладка мехатронных	
рді	систем и мобильных робототехнических комплексов.	
	Выполнять монтаж компонентов и модулей мехатронных	
ПК 1.1.	систем и мобильных робототехнических комплексов в	
	соответствии с технической документацией.	
	Осуществлять настройку и конфигурирование программи-	
ПК 1.2.	руемых логических контроллеров и микропроцессорных	
11K 1.2.	систем в соответствии с принципиальными схемами подк-	
	лючения.	
	Разрабатывать управляющие программы мехатронных си-	
ПК 1.3.	стем и мобильных робототехнических комплексов в соот-	
	ветствии с техническим заданием.	
	Выполнять работы по наладке компонентов и модулей ме-	
ПК 1.4.	хатронных систем и мобильных робототехнических ком-	
	плексов в соответствии с технической документацией.	

[–] и приобретение практического опыта по виду профессиональной деятельности по профессиональному модулю ПМ.02.01 Монтаж, программирование и пуско-наладка мехатронных систем.

В ходе освоения программы учебной практики студент должен: иметь практический опыт:

Иметь практический опыт

- Выполнять сборку узлов и систем, монтажа, наладки оборудования, средств измерения и автоматизации, информационных устройств мехатронных систем;
- составлять документацию для проведения работ по монтажу оборудования мехатронных систем;
- программировать мехатронные системы с учетом;
- программировать мехатронные системы с учетом специфики технологических процессов;
- программировать мехатронные системы с учетом специфики технологических процессов;
- проводить контроль работ по монтажу оборудования мехатронных систем с использованием контрольно-измерительных приборов;
- осуществлять пуско-наладочные работы и испытания мехатронных систем;
- распознавание сложных проблемных ситуаций различных контекстах;
- проведение анализа сложных ситуаций при решении задач профессиональной деятельности;
- определение этапов решения задачи;
- определение потребности в информации;
- осуществление эффективного поиска;
- выделение всех возможных источников нужных ресурсов, в том числе неочевидных;
- разработка детального плана действий;
- оценка рисков на каждом шагу;
- оценка плюсов и минусов полученного результата, своего плана и его реализации, предложение критериев оценки и рекомендации по улучшению плана;
- планирование информационного поиска из широкого набора источников, необходимого для выполнения профессиональных задач;
- проведение анализа полученной информации, выделение в ней главных

аспектов;

- структурирование отобранной информации в соответствии с параметрами поиска;
- интерпретация полученной информации в контексте профессиональной деятельности;
- использование актуальной нормативно-правовой документации по профессии (специальности);
- применение современной научной профессиональной терминологии;
- определение траектории профессионального развития и самообразования;
- грамотно устно и письменно излагать свои мысли по профессиональной тематике на государственном языке;
- проявление толерантность в рабочем коллективе;

Уметь

- применять технологии бережливого производства при организации и выполнении работ по монтажу и наладке мехатронных систем;
- читать техническую документацию на производство монтажа;
- читать принципиальные структурные схемы, схемы автоматизации, схемы соединений и подключений;
- готовить инструмент и оборудование к монтажу;
- осуществлять предмонтажную проверку элементной базы мехатронных систем;
- осуществлять монтажные работы гидравлических, пневматических, электрических систем и систем управления;
- контролировать качество проведения монтажных работ мехатронных систем;
- настраивать и конфигурировать ПЛК в соответствии с принципиальными схемами подключения;
- читать принципиальные структурные схемы, схемы автоматизации, схемы соединений и подключений;
- методы непосредственного, последовательного и параллельного программирования;
- алгоритмы поиска ошибок управляющих программ ПЛК;
- разрабатывать алгоритмы управления мехатронными системами;

- программировать ПЛК с целью анализа и обработки цифровых и аналоговых сигналов и управления исполнительными механизмами мехатронных систем;
- визуализировать процесс управления и работу мехатронных систем;
- применять специализированное программное обеспечение при разработке управляющих программ и визуализации процессов управления и работы мехатронных систем;
- проводить отладку программ управления мехатронными системами и визуализации процессов управления и работы мехатронных систем;
- использовать промышленные протоколы для объединения ПЛК в сеть;
- производить пуско-наладочные работы мехатронных систем;
- выполнять работы по испытанию мехатронных систем после наладки и монтажа;
- распознавать задачу и/или проблему в профессиональном и/или социальном контексте;
- анализировать задачу и/или проблему и выделять её составные части;
- правильно выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
- составлять план действия;
- определять необходимые ресурсы;
- владеть актуальными методами работы в профессиональной и смежных сферах;
- реализовать составленный план;
- оценивать результат и последствия своих действий (самостоятельно или с помощью наставника);
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска;
- структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- оформлять результаты поиска;
- определять актуальность нормативно-правовой документации в профессиональной деятельности;

- выстраивать траектории профессионального и личностного развития;
- излагать свои мысли на государственном языке;
- оформлять документы;
- использовать физкультурно-оздоровительную деятельность для укрепления здоровья, достижения жизненных и профессиональных целей;
- применять рациональные приемы двигательных функций в профессиональной деятельности;
- пользоваться средствами профилактики перенапряжения, характерными для данной профессии (специальности);
- применять средства информационных технологий для решения профессиональных задач;
- использовать современное программное обеспечение;
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые);
- понимать тексты на базовые профессиональные темы;
- участвовать в диалогах на знакомые общие и профессиональные темы;
- строить простые высказывания о себе и о своей профессиональной деятельности;
- кратко обосновывать и объяснить свои действия (текущие и планируемые);
- писать простые связные сообщения на знакомые или интересующие профессиональные темы.

Знать

- правила техники безопасности при проведении монтажных и пусконаладочных работ и испытаний мехатронных систем;
- концепцию бережливого производства;
- перечень технической документации на производство монтажа мехатронных систем;
- нормативные требования по проведению монтажных работ мехатронных систем;
- порядок подготовки оборудования к монтажу мехатронных систем;
- технологию монтажа оборудования мехатронных систем;
- принцип работы и назначение устройств мехатронных систем;
- теоретические основы и принципы построения, структуру и режимы

- работы мехатронных систем;
- правила эксплуатации компонентов мехатронных систем;
- принципы связи программного кода, управляющего работой ПЛК, с действиями исполнительных механизмов;
- промышленные протоколы для объединения ПЛК в сеть;
- языки программирования и интерфейсы ПЛК;
- технологии разработки алгоритмов управляющих программ ПЛК;
- языки программирования и интерфейсы ПЛК;
- технологии разработки алгоритмов управляющих программ ПЛК;
- основы автоматического управления;
- методы визуализации процессов управления и работы мехатронных систем;
- методы отладки программ управления ПЛК;
- методы организации обмена информацией между устройствами мехатронных систем с использованием промышленных сетей;
- последовательность пуско-наладочных работ мехатронных систем;
- технологию проведения пуско-наладочных работ мехатронных систем;
- нормативные требования по монтажу, наладке и ремонту мехатронных систем;
- технологии анализа функционирования датчиков физических величин, дискретных и аналоговых сигналов;
- правила техники безопасности при отладке программ управления мехатронными системами;
- актуальный профессиональный и социальный контекст, в котором приходится работать и жить;
- основные источники информации и ресурсы для решения задач и проблем в профессиональном и/или социальном контексте;
- алгоритмы выполнения работ в профессиональной и смежных областях;
- методы работы в профессиональной и смежных сферах;
- структура плана для решения задач;
- порядок оценки результатов решения задач профессиональной деятельности;
- номенклатура информационных источников, применяемых в профес-

- сиональной деятельности;
- приемы структурирования информации;
- формат оформления результатов поиска информации;
- содержание актуальной нормативно-правовой документации;
- современная научная и профессиональная терминология;
- возможные траектории профессионального развития и самообразования;
- особенности социального и культурного контекста;
- правила оформления документов;
- роль физической культуры в общекультурном, профессиональном и социальном развитии человека;
- основы здорового образа жизни;
- условия профессиональной деятельности и зоны риска физического здоровья для профессии (специальности);
- средства профилактики перенапряжения;
- современные средства и устройства информатизации;
- порядок их применения и программное обеспечение в профессиональной деятельности;
- правила построения простых и сложных предложений на профессиональные темы;
- основные общеупотребительные глаголы (бытовая и профессиональная лексика);
- лексический минимум, относящийся к описанию предметов, средств и процессов профессиональной деятельности особенности произношения;
- правила чтения текстов профессиональной направленности.

1 ТЕХНИКА БЕЗОПАСНОСТИ

К работе с моделями промышленных механизмов допускаются только лица, ознакомленные с их устройством, принципом действия, программным обеспечением и мерами безопасности в соответствии с требованиями, изложенными в настоящем разделе.

Для подключения модулей ручного управления и программируемых логических модулей должны использоваться только кабели, входящие в комплект поставки.

При обнаружении повреждений изоляции соединительных проводов необходимо работу с моделями прекратить и отключить их от питающей сети. Повторное включение разрешается только после устранения повреждений изоляции проводов или их замены.

Техническое обслуживание и ремонтные работы производить только после полного отключения моделей от питающей сети переменного тока 220В и при отсутствии давления сжатого воздуха в пневмосистеме.

Во время работы установка находится под высоким давлением и электрическим напряжением, что может являться потенциально опасным и причинить травмы.

1.1 Меры безопасности при работе с пневматической системой

Все манипуляции с пневматической системой производить только при отключенной подачи давления. Перед включением проверить исправность, правильность, надежность и герметичность всех соединений пневматической магистрали, чтобы исключить утечки воздуха. Если не работаете с установкой, отключите подачу давления.

Периодически проверяйте надежность соединений пневматической магистрали, так как при эксплуатации возможно ослабление креплений. Не пользуйтесь устройствами, в которых отсутствуют какие-либо части.

Эксплуатируйте установку согласно температурному режиму во избежании поломок пневматической системы, обеспечьте подогрев компрессора и используйте смазку в соответствии с температурным режимом при необходимости.

Всегда производите техническое обслуживайте, ремонт и монтаж установки согласно инструкции. Своевременная смазка, чистка и обслуживание установки увеличивает его ресурс и уменьшает вероятность поломки.

1.2 Меры безопасности при работе с электрической системой

Все манипуляции с электрической системой производить только при отключенном питании. Перед включением проверить правильность, надежность и полярность соединений, чтобы исключить короткое замыкание или выход из строя электрических приборов. Если не работаете с электрическими устройствами долгое время, отключите питание.

Не прикасайтесь к не изолированным контактам переменного тока 220В и не производите их подключение под напряжением.

Не подключайте устройства с низковольтным питанием и логикой к сети переменного тока 220B.

2 ОЗНАКОМЛЕНИЕ С УСТАНОВКОЙ DISYS MT-SC-1

Комплект «Основы мехатроники» модели DISYS MT-SC-1 предназначен для изучения структуры, принципов построения и основной элементной базы автоматических линий и мехатронных систем. Комплект представляет собой набор из четырех действующих моделей промышленных механизмов с пневматическими и электрическими приводами, а также устройств их ручного и программного управления. Возможность комбинирования различного количества механизмов для совместной работы позволяет изучать в режиме «от простого к сложному» большое количество технологических операций и алгоритмов управления промышленными объектами. Комплект представлен на рисунке 2.1.

Модели механизмов позволяют изучать:

- Пневмоприводные системы и их элементную базу
- Электрические приводы
- Типы и области применения бесконтактных путевых выключателей
- Устройства ввода электрических сигналов
- Аппаратные и программные средства программируемых логических контроллеров

Рисунок 2.1 — Комплект «Основы мехатроники» модели DISYS MT-SC-1

2.1 Комплектность

- Гравитационный магазин
- Пневматический перекладчик
- Пневматический манипулятор
- Ленточный конвейер
 - Оптический датчик с разнесенной оптикой (1шт.)
 - Оптоволоконный датчик (1шт.)
 - Индуктивный датчик (1шт.)
- Информационная платформа
 - Оптоволоконный датчик (не менее 2 шт.)
 - Индуктивный датчик
- Приемный лоток (не менее 4 шт.)
- Блок подготовки воздуха
- Герконовый датчик положения (не менее 13 шт.)
- Модуль ручного управления (не менее 4 шт.)
- Программируемый логический модуль (не менее 2 шт.)
- Монтажная плита (не менее 4 шт.) размер одной плиты не менее (ШхДхВ), мм 180х500х15
- Набор деталей; (пластиковый цилиндр, пластиковый стакан, металлический цилиндр и металлический стакан.3 шт.каждого типа)

2.2 Технические характеристики

Масса, не более, кг	10
Габаритные размеры, мм (ШхГхВ)	600x600x350
Напряжение питания, В/Гц	220/50
Рабочее напряжение, пост. ток, В	24
Рабочее давление, МПа	0,4

Условия эксплуатации компонентов набора - в помещении при температурах от + 10 до + 35° C и относительной влажности воздуха до 80 % при 25° C.

3 ОЗНАКОМЛЕНИЕ С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ

OWEN Logic — среда программирования, предназначенная для создания алгоритмов работы коммутационных приборов, программируемых логических контроллеров, относящихся к классу программируемых реле, в частности, приборов серий ПР1хх, ПР200 и панели ИПП120 производства компании ОВЕН. Программируемые логические контроллеры (далее ПЛК) — это свободно программируемое устройство. Алгоритм работы ПЛК формируется непосредственно пользователем, что делает прибор универсальным и дает возможность широко использовать его в различных областях.

OWEN Logic позволяет пользователю разработать программу автоматизации системы по собственному алгоритму и записать ее в энергонезависимую память прибора. Для составления программы используется графический язык FBD, который применяется в цифровых электрических схемах. Также присутствует возможность создания блоков-макросов на языке ST или FBD.

Для работы OWEN Logic требуется операционная система Windows XP/7/8/10 и программная платформа «.NET Framework» версии 4.0. или выше.

Рисунок 3.1 — Интерфейс программы Owen Logic

3.1 Описание интерфейса

Главное окно содержит:

- Главное меню: Файл, Вид, Прибор, Сервис, Расширения, Помощь
- Панели инструментов
- Панели Библиотека компонентов, Свойства и Переменные (до открытия или создания проекта в них нет информации)
- Рабочую область проекта поле редактирования программы (до открытия или создания проекта пустое)
- Строку состояния в нижней части главного окна, показывающую информация о доступных ресурсах прибора и подключении к OWEN Logic
- Менеджер экранов

3.2 Принцип выполнения программы

Программа для прибора составляется с учетом количества имеющихся у него входов, выходов и наличия часов реального времени.

Работу прибора можно представить в виде последовательно выполняемых шагов (рабочий цикл):

- 1. Логическое состояние входов автоматически записывается в ячейки памяти входов (количество ячеек равно числу входов I1... In).
- 2. Программа считывает значения из ячеек памяти входов и выполняет над ними логические операции в соответствии с алгоритмом работы.
- 3. После обработки всей программы результаты записываются на физические выходы прибора (для включения выходных элементов Q1...Q4).
- 4. Переход к Шагу 1 (после выполнения всех предыдущих шагов обработки программы цикл работы прибора повторяется с первого шага).

Время выполнения всех шагов зависит от сложности алгоритма программы.

4 ВЫПОЛНЕНИЕ ЗАДАНИЯ

Необходимо разработать программу для ПЛК для управления автоматизированной установкой в соответствии с описанием ее работы.

Цель — Сделать программу для управления автоматизированной установкой в соответствии с описанием ее работы.

При выполнении ставятся следующие задачи:

- 1. Внимательно ознакомиться с заданием
- 2. Изучить алгоритм работы установки
- 3. Изучить электрическую схему подключения
- 4. Изучить пневматическую схему подключения
- 5. Определить сигналы для выполнения исполнительных элементов
- 6. Создать программу для управления установкой

Автоматическая установка состоит из трех пневматических цилиндров, шести датчиков положения (герконы), одного двигателя постоянного тока и световой колонны. Всеми перемещениями механизмов и индикацией световой колонны управляет ПЛК (программируемый логический контроллер/программируемое реле). Используется ПЛК ОВЕН ПР200-24 1.Х. Для реализации панели оператора используется встроенный scada система.

4.1 Виртуальная панель оператора

Виртуальная панель оператора в scada системе представлена на рисунке 4.1.

Рисунок 4.1 — Виртуальная панель оператора

4.2 Описание клавиш панели оператора

- 1. F1 аварийный останов (1 активация)
- 2. F2 ручной/авто (0 ручной, 1 автоматический)
- 3. F3 старт (авто) / движение выбранного цилиндра (ручной)
- 4. F4 движение выбранного цилиндра (ручной)
- 5. С1 выбор цилиндра 1 (ручной)
- 6. С2 выбор цилиндра 2 (ручной)
- 7. С3 выбор цилиндра 3 (ручной)
- 8. С4 включение двигателя (ручной)

Из кнопок F1, F2, C1, C2, C3, C4 необходимо сделать переключатели программным способом.

4.3 Условия запуска установки

- Штекер вставлен в розетку и ручной пневматический клапан открыт для подачи воздуха в систему.
- Все компоненты должны оставаться в своих стартовых позициях, цилиндры 1, 2 и 3 втянуты, двигатель выключен.
- Выбор режима работы автоматический/ручной может быть осуществлен переключателем F2.
- Установка начинает свою работу только если кнопка аварийного останова F1 не активирована.

4.4 Аварийный останов

В любой момент, при нажатии кнопки аварийного останова F1 прерывается работа всех механизмов (цилиндры 1 и 2 втягиваются, цилиндр 3 остается в текущем положении, двигатель выключается), механизмы не реагируют на нажатия кнопок F2, F3, F4, C1, C2, C3, C4. Непрерывно горит красный сигнал световой колонны. На виртуальном экране ПЛК отображается актуальная информация о режиме и состояниях (ON/OFF) программных переключателей F1, F2, C1, C2, C3, C4 на мигающем с частотой 1 Гц красном фоне в формате, представленном на рисунке 4.3. Реализация режима представлена на рисунке 4.2.

Рисунок 4.2 — Программа режима останова

Рисунок 4.3 — Экран режима аварийного останова

4.5 Автоматический режим

Начальные условия: Цилиндры 1, 2 и 3 в стартовых позициях, двигатель выключен. Переключатель F2 включен. Готовность системы к работе в автоматическом режиме отображается миганием зеленого сигнала световой колонны (1 Гц).

Нажатие кнопки F3 запускает автоматический цикл:

- 1. Зеленый сигнал световой колонны загорается непрерывно, включается двигатель и запускается таймер на 4 секунды
- 2. Через 4 секунды цилиндр 3 выдвигается (засверливание первого отверстия)
- 3. Когда цилиндр 3 выдвинут (3В2) цилиндр 1 выдвигается
- 4. Когда цилиндр 1 выдвинут (1В2) цилиндр 3 втягивается
- 5. Когда цилиндр 3 втянут (3В1) цилиндр 2 выдвигается
- 6. Когда цилиндр 2 выдвинут (2B2) цилиндр 3 выдвигается (засверливание второго отверстия)
- 7. Когда цилиндр 3 выдвинут (3В2) цилиндр 1 втягивается
- 8. Когда цилиндр 1 втянут (1В1) цилиндр 3 втягивается
- 9. Когда цилиндр 3 втянут (3В1) двигатель выключается, цилиндр 2 втягивается
- 10. Когда цилиндр 2 втянут (2В1) зеленый сигнал световой колонны начинает мигать (1 Гц). Автоматический цикл закончен.

На виртуальном экране ПЛК отображается актуальная информация о режиме и состояниях (ON/OFF) программных переключателей F1, F2, C1, C2, C3, C4 на белом фоне в формате, представленном на рисунке 4.5. Реализация режима представлена на рисунке 4.4.

Рисунок 4.4 — Программа автоматического режима

Рисунок 4.5 — Экран автоматического режима

4.6 Ручной режим

Начальные условия: Цилиндры 1, 2 и 3 в стартовых позициях, двигатель выключен. Переключатель F2 выключен. Готовность системы к работе в ручном режиме отображается непрерывно горящем желтым сигналом световой колонны. В данном режиме перемещения механизмов независимы друг от друга и не связаны циклической последовательностью действий.

- Условие: переключатель С1 включен. При нажатии кнопки F3 цилиндр 1 выдвигается.
- Условие: переключатель С1 включен. При нажатии кнопки F4 цилиндр 1 втягивается.
- Условие: переключатель C2 включен. При нажатии кнопки F3 цилиндр 2 выдвигается.
- Условие: переключатель C2 включен. При нажатии кнопки F4 цилиндр 2 втягивается.
- Условие: переключатель С3 включен. При нажатии кнопки F3 цилиндр 3 выдвигается.
- Условие: переключатель С3 включен. При нажатии кнопки F4 цилиндр 3 втягивается.
- При включении переключателя С4 включается двигатель. К желтому сигналу светофора добавляется мигающий зеленый сигнал (1 Гц). Выключение переключателя С4 выключает двигатель.

На виртуальном экране ПЛК отображается актуальная информация о режиме и состояниях (ON/OFF) программных переключателей F1, F2, C1, C2, C3, C4 на желтом фоне в формате, представленном на рисунке 4.7. Реализация режима представлена на рисунке 4.6.

Рисунок 4.6 — Программа ручного режима

Рисунок 4.7 — Экран ручного режима

5 УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Неисправность	Возможные причины	Устранение
Утечки воздуха в местах присоединения пневматических трубок	Трубка вставлена не до упора	Вставить трубку до упора
к устройству Не работает один	Недостаточное давление сжатого воздуха в пневмосистеме	Настроить давление с помощью БПВ (давление на входе в БПВ
из пневматических исполнительных механизмов	Сдвинуты датчи- ки, фиксирующие	должно быть не менее 4 бар)
	положение выходного звена	Установить датчики в требуемое положение
На информационной платформе оба оптических датчика работают одинаково	Сбились настройки оптического датчика	Настроить работу одного датчика на фиксацию дна стакана, второго – на фиксацию отверстия
Детали не сползают в приемный лоток	Нарушено взаимное расположение лотка и подающего механизма	Выставить лоток относительно механизма требуемым образом

ЗАКЛЮЧЕНИЕ

Во время прохождения учебной практики по профессиональному модулю ПМ.02.01 Монтаж, программирование и пуско-наладка мехатронных систем мною была реализована программа практики в полном объёме. Общие и профессиональные компетенции по профессиональному модулю получили развитие.

Прохождение практики прошло организованно, эффективно и, в целом, оказало большую социальную значимость для моей будущей специальности.