Further Discussion of Absolute Continuity.

Problem 4: Let
$$f: [a, b] \longrightarrow IR$$
 be increasing and $f'(x)$ exists with finite value for $\forall x \in [a, b]$.

Then f is a.c. on $(a, b]$.

Pf: We know that
$$\int_a^b f'(t)dt \leq f(b) - f(a).$$
and also if
$$\int_a^b f'(t)dt = f(b) - f(a)$$
then
$$\int_a^x f'(t)dt = f(x) - f(a), \forall x \in [a,b].$$

and hence f is a.c. on [a,b].

So it suffices to show that
$$\int_a^b f'(x) dx = f(b) - f(a).$$

Given $\varepsilon > 0$, we prove that $f(b) - f(a) \leq \int_a^b f(x) dx + \varepsilon (b-a).$

Since
$$f'$$
 exists on $[a,b]$, \Rightarrow f is cont. on $[a,b]$.

and hence
$$f(a) = \min_{\{a,b\}} f$$

$$f(b) = \max_{\{a,b\}} f$$

$$\Rightarrow f([a,b]) = [f(a), f(b)]$$

· Ex are disjoint

' On Ek:

(k-1) E & f'(k) < kc.

Recall we proved for increasing function:

If
$$f' \leq p(p>0)$$
 on $E \subset \{a,b\}$

then $|f(E)|_{e} \leq p|E|_{e}$.

$$\begin{array}{ccc}
& \text{Note} & \text{(a,b]} = \text{UEK} \\
& \text{([a,b])} = \text{f([a,b])} = \text{f([a,b])} \\
& = \text{0 f(E_K)} \\
& = \text{0 f(E_K)}
\end{array}$$

$$= \text{(b)-f(a)} = |\text{f([a,b])}| = |\text{0 f(E_K)}|$$

$$\leq \sum_{k=1}^{\infty} |f(E_k)|_e \leq \sum_{k=1}^{\infty} |k \in |E_k|$$

$$\begin{aligned}
&= \sum_{k=1}^{\infty} (k-1) \, \epsilon \, |E_{k}| + \epsilon |E_{k}| \\
&= \sum_{k=1}^{\infty} (k-1) \, \epsilon \, |E_{k}| + \epsilon \sum_{k=1}^{\infty} |E_{k}| \\
&= \sum_{k=1}^{\infty} \int_{k=1}^{\infty} |E_{k}| + \epsilon \sum_{k=1}^{\infty} |E_{k}| \\
&= \int_{k=1}^{\infty} \int_{k=1}^{\infty} |E_{k}| + \epsilon |E_{k}| + \epsilon |E_{k}| \\
&= \int_{k=1}^{\infty} \int_{k=1}^{\infty} |E_{k}| + \epsilon |E_{k}| + \epsilon |E_{k}| + \epsilon |E_{k}| \\
&= \int_{k=1}^{\infty} \int_{k=1}^{\infty} |E_{k}| + \epsilon |E_{k}$$

Femma: let
$$f: [a, h] \rightarrow IR$$
 and let $E\subseteq [a, h]$.

If $f'(k) \in K$ ists $\forall K \in E$ and

If $|f'(k)| \subseteq p$ for some $p > 0$,

 $\forall K \in E$

Hen

 $|f(E)|_{e} \leq p |E|_{e}$.

W Null - function

tens

W Null-function

Def: (N-function) let $f: [a,b] \rightarrow IR$, Then f is said to be a N-function of $Y \in C[a,b]$ when $I \in E[a,b]$. Then $I \in E[a,b]$ when $I \in E[a,b]$ and $I \in E[a,b]$.

Thus. Let f: [a,b] > IR be continuous. Then
f is a N-function () for \(\forall \) \(\(\(\text{C} \) \) \(\text{A} \) \(\text{B} \) \(\text{C} \) \(\text{A} \) \(\text{B} \) \(\text{C} \) \(\

Proof (=) let EC(a, b) be m'ble. Then

We can write E = HUZ,

where H is a Forset and 121=0.

Write $H = \bigcup_{K = 1}^{\infty} F_K$, where F_K are closed.

We may also assume that Fx are compact.

(First we assume trust Fx M. then

Fx = Fx N {|x| \(\xi \xi \) \(\Rightarrow \) H= UFx.)

Hences f(E) = f(HUZ) = f(H) Uf(Z) $= f(\bigcup_{k=1}^{\infty} F_{k}) Uf(Z)$ $= (\bigcup_{k=1}^{\infty} f(F_{k})) Uf(Z).$

Note:
$$f(F_K)$$
 is compact. $\Rightarrow f(F_K)$ is mibble. $f(F_K) \Rightarrow f(F_K) = 0 \Rightarrow f(F_K)$ is mibble. $f(F_K) \Rightarrow f(F_K) \Rightarrow$

Thun. let f: [a, h] -> IR. Then f is

a.c. on [a, h] if and only if the
following if conditions hold:

(1) f is continuous;

(a) f' exists a.e.;

(b) f'EL[a, h];

(4) f is a N-function.

(4) can be replaced by:
(4'): f(x) = f(a) + \int a f'(4) dt \text{ \text{\tex

Proof: (=>). (1)-(3) have been proved before.

(4) is proved from a HW problem.

(\Leftarrow) Assume $\{1\} - (4)$. Let $A = \{x \in (a, b]: f(x) \text{ does not } cxist \}$. Then |A| = 0 from $(2) \Rightarrow |f(A)| = 0$

Let
$$\{[a_n, b_k]^2\}_{k=1}^k$$
 be a finite $\{a_n, b_k\}^2\}_{k=1}^k$ be a finite $\{a_n, b_n\}$ $\{a_n, b_n\}$ $\{a_n, b_n\}$ $\{a_n, b_n\}$ and hence on $\{a_n, b_n\}$, $\{a_n, b_n\}$ $\{a_$

$$= \int |f'(x)| dx$$

$$\bigcup [a_k, b_k]$$

Then from the absolute continuity of the integral

[4.16] dx

We conclude that f is a.c. on [a,6].

Covollary: Let $f: [a,b] \rightarrow 1R$ be continuous.

Assume that f' Exists except on a countable set of [a,b], and $f' \in L[a,b]$. Then: f is a.c. on [a,b] and hence $f(x) = f(a) + \int_a^{\infty} f(t) dt \quad \forall x \in [a,b]$.