

UNISOC Android 9.0 Camera ABL Tuning Guide

修改历史

版本号	日期	注释
V1.0	2020/04/02	初稿

Unisoc Confidential For hiar

文档信息

适用产品信息	适用版本信息	关键字
SC9863A/SC9832E/SC7731E/UMS312/ UDS710_UDX710	Android 9.0	ABL

Unisoc Confidential For hiar

- 1 原理介绍
- 2 调试流程
- 3 功能确认
- 4 调试案例
- 5 附: param list

ABL (anti back light)是自动检测背光,并进行AE矫正和gamma矫正的算法。

主要针对高动态范围的背光场景,会输出abl_offset 和 abl_weight 等参数。前者主要用来改变AE的目标亮度,后者则用于smart gamma和 abl gamma插值。

按照如下规则使用

- 1. faceID unlock 模式,正常输出 abl weight 和 abl offset。
- 2. Normal 模式,AI开启,abl weight正常输出但背光gamma不起作用,abl offset为0。
- 3. Normal 模式,AI关闭,有人脸,abl weight正常输出,abl offset为0。(tuning参数可控)
- 4. Normal 模式, AI关闭, 无人脸, abl weight正常输出, abl offset为0。(tuning 参数可控)可侦测场景(外圈的平均亮度要高于内圈平均亮度 即蓝色大于橙+踪+黑)

原理介绍

ABL_offset计算

```
center_tar_lum = 50; /*图像中心区域的期望亮度*/
target_limit_low = 20; /*offset可调整得最小程度,20代表最终target最大可调整为base target的0.2倍*/
target_limit_high = 120; /* offset可调整得最大程度,120代表最终target最大可调整为base target的1.2倍*/
weight_inner_o = 20; /*内部外围窗口所占的权重*/
weight_inner_d = 20; /*内部下侧窗口所占的权重*/
```

weight_inner_c = 60; /*内部中心窗口所占的权重*/

center_luma = weight_inner_o* 橘色块+ weight_inner_d* 棕色块+ weight_inner_c* 黑色块 abl_target = cur_lum * (center_tar_lum / center_luma) abl_offset = abl_target - real_target

target_limit_low * real_target /100 < abl_offset < target_limit_high * real_target /100

原理介绍

ABL模块使能之后,根据当前图像的bv和evd得到bv_strength 和 evd_strength

建议:ABL模块全部使用默认参数

计算公式如下:

bv_prob = bv_strength , evd_prob = evd_strength
abl_prob = (bv_prob * evd_prob) / 100
final_abl_weight = (abl_prob * abl_weight) / 100* face_weight
final_abl_weight = (abl_prob * abl_weight) / 100

//有人脸时(其中abl_weight指参数设的值)

//无人脸时

abl 可輸出abl_weight,用于smart gamma和第七组gamma 插值。

Gamma = Smart_gamma*(1-abl_weight)+ (第七组gamma)*abl_weight

调试流程— ABL 基础角度定标(前后摄)

确认base_angle 参数设置值

方法为:

拍摄raw图,通过raw图物体的成像方向来确定base_angle;(raw旋转多少度之后跟实际吻合)遵循以下规则设置参数。

- <u>≡</u> enable	0x01	1
– <u> </u>	0x02	2
- <u>□</u> target_limit_ratio_low	0x3C	60
- <u>□</u> target_limit_ratio_high	0x8C	140
⊢ <u>≡</u> base_angle	0x00	0
− <u>≡</u> bv_cfg_info[0].bv	0x1E	30
−∭ bv_cfg_info[0].bv_strength	0x00	0
–∭ bv_cfg_info[1].bv	0x03E8	1000
⊢i≌l by cfa info[1].by strenath	0x64	100

RAW图物体成像方向与base_angle对应关系如下:

ABL_weight计算

主要包含四个因素:base_abl_weight/bv_prob/evd_prob/face_lum。

Bv_prob: 根据当前场景所处的bv范围,结合设置的参数,计算得到对应的BV权重。

Face_lum:根据人脸统计得到的lum,后台会计算得到对应的face权重,无可调参数(内部设定face lum thrd大小)。

确定EVD参数选 择单组还是插值

Evd_thrd[0]

Evd_thrd[1]

Evd_prob:

根据当前场景所处的bv范围,确定要使用的evd参数表,再由统计的evd数据在对应的evd参数表上计算得到对应的evd权重系数。

调试流程—ABL默认参数

参数位置:

ISP->AE->ABL

- in_piecewise.samples[1].y

建议:ABL模块全部使用默认参数

	□ 🚉 abl_param				
	– <u>≡</u> enable		0x01		1
	− <u>≡</u> num		0x02		2
	- <u>□</u> target_limit_low		0x14		20
	– <u>≡</u> target_limit_high		0xA0		160
	-∭ base angle		0x00		0
	−[≌] cfa info[0].lv		0xC8		200
	−∭ cfg_info[0].evd_thrd[0]		0x00		0
	_ <u>□□ cfg_info[0].evd_thrd[1]</u>		0x0258		600
	- <u>≡</u> cfg_info[0].strength_lv		0x00		0
	−∭ cfg_info[0].strength_evd[0]		0x00		0
	-(≡) cfg info(0).strength evd(1)		0x64		100
	- cfg_info[1].lv-or hial		0x0320		800
	☐ cfg_info[1].evd_thrd[0]		0x00		0
Unisoc	cfg_info[1].evd_thrd[1]		0x0320		800
	−∭ cfg_info[1].strength_lv		0x64		100
	−∭ cfg_info[1].strength_evd[0]	0x00		0
	−∭ cfg_info[1].strength_evd[1	.]	0x64		100
	- <u>□</u> in_piecewise.num		0x02		2
	in_piecewise.samples[0].x		0xC8	2	00
	- <u>□</u> in_piecewise.samples[0].y		0x00		0
	- <u>≡</u> in_piecewise.samples[1].x	0:	x0320	8	00

0x01

红框部分是针对 BV_prob相关参数的 设置,最多可分8段

绿框部分是针对EVD 参数表相关参数的设 置

– <u> abl_weig</u> ht	0x5A	90
– <u> </u> center_tar_lum	0x46	70
− weight_inner_o	0x00	0
– weight_inner_d	0x00	0
─ <u> </u>	0x00	0

Target相关参数

黄框部分是EVD_prob 需要根据BV做的分段 设置,最多可分16段

1. 通过log确认

3172: 01-23 07:45:33.865 346 12233 D ae_sprd_adpt: 6090, ae_calculation: abl_enable=1 3172: 01-23 07:45:33.865 346 12233 D ae_sprd_adpt: 6090, ae_calculation: abl_enable=1

- 2. Mlog ae部分会显示ABL的输出数据以及部分中间统计数据
- 3. Exif信息确认
 fd_param00.face_avg_lum1表征当前环境的最终输出abl_weight,如果有值说明工作

调试案例

应用案例(逆光人脸场景)

- face		
current_linear_lum	0x51	81
−ੰ fd_param00.cnt_linear	0x0AA4	2724
−ੰ fd_param00.face_num	0x01	1
−≡ fd_param00.face_avg_lum1	0x00	0
−∭ fd_param00.face_avg_lum2	0x42	66
−∭ fd_param00.face_avg_lum3	0x42	66
−∭ fd_param00.to_img_lum	0x5E	94
−∭ fd_param00.to_img_linear_lum	0x51	81
−∭ fd_param00.face_roi_linear_lum	0x43	67
−∭ fd_param00.face_roi_finally_lum	0x43	67
−∭ fd_param00.to_face_offset	0x20	32

∃ ⊜ face		
– <u> </u>	0x51	81
−∭ fd_param00.cnt_linear	0x0AA5	2725
−∭ fd_param00.face_num	0x01	1
−≡ fd_param00.face_avg_lum1	0x39	57
−∭ fd_param00.face_avg_lum2	0x41	65
−∭ fd_param00.face_avg_lum3	0x41	65
−∭ fd_param00.to_img_lum	0x5E	94
−∭ fd_param00.to_img_linear_lum	0x51	81
−∭ fd_param00.face_roi_linear_lum	0x42	66
− fd_param00.face_roi_finally_lum	0x42	66
− fd_param00.to_face_offset	0x21	33

bv	ct_mean	ct_final	tint_mean	tint_final
650	5481	5412	-3	4
650	5481	5412	-3	4

有无ABL,场景的bv,色温色调是一致的。

Gamma7 在检测到是逆光 场景且ABL weight输出不 为0才起作用。

fd_param00.face_avg_lum1表征当前环境的最终输出abl_weight

附: param list

Parameters	Description	Range	Default
center_tar_lum	图像中心区域的亮度target	[0,255]	60
abl_weight	基础的abl weight	[0,100]	90
weight_inner_o	内围外沿区域权重	[0,100]	20
weight_inner_d	内围下方区域权重	[0,100]	20
weight_inner_c	内围中心区域权重	[0,100]	60
	abl_offset可调整得最小程度,代表最终target最小可调整为base target的0.2倍*/		20
target_limit_high	offset可调整得最大程度,20代表最终target最大可调整为 base target的0.2倍*/	[0,200]	160
target_limit_high base_angle base_angle	输入和输出图像的翻转角度	(0/90/180/270)	0
cfg_info[0].lv	根据LV做的分段数0,用于选择BV的权重	[0,1600]	200
cfg_info[0].strength_lv	根据LV做的分段数,用于设置BV参与的强度	[0,100]	0
cfg_info[1].lv	根据LV做的分段数1,用于选择BV的权重	[0,1600]	800
cfg_info[1].strength_lv	根据LV做的分段数,用于设置BV参与的强度	[0,100]	[0,100]

附: param list

Parameters	Description	Range	Default
in_piecewise.num	根据LV做的分段数,分段数量代表EVD参数表的组数	[2,16]	2
in_piecewise.samples[0].x	根据LV对环境分段,用于选择EVD参数表,需要和samples[]括 号内数据对应	[0,1600]	0
in_piecewise.samples[0].y	根据LV对环境分段,EVD参数表的index	[0,15]	0
in_piecewise.samples[1].x	根据LV对环境分段,用于选择EVD参数表,需要和samples[]括 号内数据对应	[0,1600]	800
in_piecewise.samples[1].y	根据LV对环境分段,EVD参数表的index	[0,15]	1
cfg_info[0].evd_thrd[0]	Index0对应的low evd thrd	TBD	TBD
cfg_info[0].evd_thrd[1]niar cfg_info[0].strength_evd[0]	Index0对应的high evd thrd	TBD	TBD
cfg_info[0].strength_evd[0]	Index0对应的low evd 强度	TBD	TBD
cfg_info[0].strength_evd[1]	Index0对应的high evd 强度	TBD	TBD
cfg_info[1].evd_thrd[0]	Index1对应的low evd thrd	TBD	TBD
cfg_info[1].evd_thrd[1]	Index1对应的high evd thrd	TBD	TBD
cfg_info[1].strength_evd[0]	Index1对应的low evd 强度	TBD	TBD
cfg_info[1].strength_evd[1]	Index1对应的high evd 强度	TBD	TBD

THANKS

本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技