CSC338. Homework 5

baibizhe

June 14, 2020

q1b

(b) $||x||_A = (x^T A x)^{\frac{1}{2}}$

- (I) $\forall v \in V, ||v|| \ge 0$ and ||v|| = 0 if and only if v = 0
- (II) $\forall v \in V, \forall a \in \mathbb{R}, ||av|| = |a|||v||$
- (III) $\forall v, w \in V, ||v + w|| \le ||v|| + ||w||$
- (1) : A 7's positive diffinite : $\forall \vec{V} \in IR^{n}$. $\vec{V} \neq 0$ $VAV^{T} > 0$: $x^{T}AX \ge 0$, $(x^{T}AX)^{\frac{1}{2}} \ge 0$,

 if $x = 0 \rightarrow (x^{T}AX)^{\frac{1}{2}} = 0$ if $(x^{T}AX)^{\frac{1}{2}} = 0 \rightarrow x^{T}AX = 0$. because A 1's positive diffinite x = 0So (I) holds
- (II) WTS: $\forall \alpha \in \mathbb{R}$ $\|\alpha x\|_{A^{=}} = \alpha \|x\|_{A}$ $\Rightarrow (\alpha x^{\dagger} A \alpha x)^{\frac{1}{2}} = \alpha (x^{\dagger} A x)^{\frac{1}{2}}$ $(\alpha x^{\dagger} A \alpha x)^{\frac{1}{2}} = (\alpha^{2} x^{\dagger} A x)^{\frac{1}{2}} = \alpha (x^{\dagger} A x)^{\frac{1}{2}} \text{ as needed}$ $\underline{\text{So (II) holds}}$
- (II) WTS: $||x+y||_A \leq ||x||_A + ||y||_A$ Let $f(x) = x^T Ax$, A is positive difficite matrix WTS: f(x) is convex: $f(x) \times (1-x) \cdot y(x) + (1-x) \cdot y(y)$ $f(x) \times (1-x) \cdot y(x) = (xx + (1-x)y)^T A(xx + (1-x)y)$

don't know

 \oplus

Q2. b.

because the I-VTAu is nearly 0, then the bottom part of

Sherman-Morrison formular We used in solve_rark_update() is 0.

q3a

Q3 GO
$$(A - UV^{7})^{-1} = A^{-1} + A^{-1} U (I - V^{7}A^{-1}U)^{-1} V^{7}A^{-1}$$

$$W(S): (A - UV^{7}) (A^{-1} + A^{-1}U(I - V^{7}A^{-1}U)^{-1} V^{7}A^{-1} = I$$

$$I + I: U(I - V^{7}A^{-1}U)^{-1} V^{7}A^{-1} - UV^{7}A^{-1} + UV^{7}A^{-1}U (I - V^{7}A^{-1}U)^{-1} V^{7}A^{-1} + I$$

$$= [U(I - V^{7}A^{-1}U)^{-1} - I + V^{7}A^{-1}U (I - V^{7}A^{-1}U)^{-1}] V^{7}A^{-1} + I$$

$$= U[I - (I - V^{7}A^{-1}U)^{-1} + (I - V^{7}A^{-1}U)^{-1}] (I - V^{7}A^{-1}U)^{-1} V^{7}A^{-1} + I$$

$$= U[O](I - V^{7}A^{-1}U)^{-1} V^{7}A^{-1} + I$$

$$= I$$

(b)
$$\bigcirc A - B = xy^{T} \iff \bigcirc B^{-1} - B^{-1} = vv^{T}$$

 x,y,u,v are column vectors, $A - B$ are non-singular

(I)
$$0 \rightarrow 0$$

W(5: $A - B = Xy^{7} \rightarrow A^{-1} - B^{-1} = uv^{7}$
 $A - B = Xy^{7} \Rightarrow A - xy^{7} = B \Rightarrow (A - xy^{7})^{-1} = B^{-1}$
 $\Rightarrow A^{-1} + A^{-1} \times (1 - y^{7} A^{-1} \times)^{-1} y^{7} A^{-1} = B^{-1}$
 $\Rightarrow A^{-1} \times (1 - y^{7} A^{-1} \times)^{-1} y^{7} A^{-1} = B^{-1} - A^{-1}$
 $\Rightarrow A^{-1} \times (1 - y^{7} A^{-1} \times)^{-1} y^{7} A^{-1} = A^{-1} - B^{-1}$
constant

A'x: Assume A' is a mxn matrix
then A'x is a column vector denote y

Y'A': is a row vector; denot y'

(I-y'A'x): is a constant denote as a

then $-A^{-1}x(1-y^{T}A^{-1}x)^{-1}y^{T}A^{-1}=A^{-1}-B^{-1}$ $\Rightarrow A^{-1}-B^{-1}=-U\cdot\alpha V^{T}$ the $A^{-1}-B^{-1}$ can be written as a column vector dot or row vector, then $A^{-1}-B^{-1}$ is rank one as needed D

next page.

 $(\mathbb{J}) \ \Theta \to 0$

WTS: $A^{-1} - B^{-1} = uv^7 \longrightarrow A - B = xy^7$

 $A^{-1} - B^{-1} = uv^{7} \longrightarrow (A^{-1} - (uv^{7}))^{-1} = B^{-1}$

-> A+ An ((- VTAn) + VTA=B

-> -Au (1-V^TAn)⁻¹ V^TA= A-B

a column
Vector

then A-B can be written as a column vector dot a row vector, then $A^{-1}-B^{-1}$ is rank one as needed D