# Auto-encodeur

Réduction de dimension et visualisation

Ricco Rakotomalala

Université Lumière Lyon 2

# Plan

- 1. Auto-encodeur Principe
- 2. Pratique des auto-encodeurs
- 3. Traitement d'images
- 4. Conclusion
- 5. Références

Réseaux de neurones

### PRINCIPE DES AUTO-ENCODEURS

#### Auto-encodeur?

Dans sa forme la plus simple, un auto-encodeur est une sorte de <u>perceptron</u> à une couche cachée où les entrées et les sorties sont identiques. Nous sommes dans le cadre de l'apprentissage non-supervisé.



Critère possible à optimiser (MSE)

$$E = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} (x_{ij} - \hat{x}_{ij})^{2}$$

Et apprentissage des « poids synaptiques » par descente de gradient (cf. cours <u>Perceptron</u>).

Possibilité d'utilisation différentes fonctions d'activation pour chaque couche.

Possibilité de rajouter un biais.

#### Auto-encodeur – Quel intérêt?



« code » qui permet de compresser (avec perte) l'information portée par les données, d'où le terme « auto-encodeur » En sortie de la couche centrale, nous disposons d'une représentation des données dans un espace de dimension réduite.

Ex. Si fonction de transfert sigmoïde

$$v_1 = a_{1,0} + a_{1,1}x_1 + \dots + a_{1,6}x_6$$

$$v_2 = a_{2,0} + a_{2,1}x_1 + \dots + a_{2,6}x_6$$

$$u_1 = \frac{1}{1 + e^{-v_1}}$$
  $u_2 = \frac{1}{1 + e^{-v_2}}$ 

(u<sub>1</sub>,u<sub>2</sub>) constitue un espace de représentation
 réduit préservant au mieux (au sens du critère MSE,
 d'autres critères sont possibles) les informations
 portées par les données : les « <u>pattern</u> ».

#### Un exemple

#### Fonction de transfert linéaire

Fonction de transfert sigmoïde

| Modele          | CYL  | PUISS | LONG | LARG | POIDS | V.MAX |
|-----------------|------|-------|------|------|-------|-------|
| Alfasud TI      | 1350 | 79    | 393  | 161  | 870   | 165   |
| Audi 100        | 1588 | 85    | 468  | 177  | 1110  | 160   |
| Simca 1300      | 1294 | 68    | 424  | 168  | 1050  | 152   |
| Citroen GS Club | 1222 | 59    | 412  | 161  | 930   | 151   |
| Fiat 132        | 1585 | 98    | 439  | 164  | 1105  | 165   |
| Lancia Beta     | 1297 | 82    | 429  | 169  | 1080  | 160   |
| Peugeot 504     | 1796 | 79    | 449  | 169  | 1160  | 154   |
| Renault 16 TL   | 1565 | 55    | 424  | 163  | 1010  | 140   |
| Renault 30      | 2664 | 128   | 452  | 173  | 1320  | 180   |
| Toyota Corolla  | 1166 | 55    | 399  | 157  | 815   | 140   |
| Alfetta 1.66    | 1570 | 109   | 428  | 162  | 1060  | 175   |
| Princess 1800   | 1798 | 82    | 445  | 172  | 1160  | 158   |
| Datsun 200L     | 1998 | 115   | 469  | 169  | 1370  | 160   |
| Taunus 2000     | 1993 | 98    | 438  | 170  | 1080  | 167   |
| Rancho          | 1442 | 80    | 431  | 166  | 1129  | 144   |
| Mazda 9295      | 1769 | 83    | 440  | 165  | 1095  | 165   |
| Opel Rekord     | 1979 | 100   | 459  | 173  | 1120  | 173   |
| Lada 1300       | 1294 | 68    | 404  | 161  | 955   | 140   |





(Données « Autos » -- Saporta, 2006; page 428)

Dans cette configuration (une seule couche cachée sigmoïde), la solution produite par l'auto-encodeur est apparentée à celle d'une analyse en composantes principales.

#### Auto-encodeur – Quel intérêt ? (bis)



Agit comme un goulot d'étranglement permettant de filtrer le signal « bruité » contenu dans les données. En output de la couche de sortie, nous disposons d'une représentation dans l'espace initial expurgée du « bruit » et autres perturbations contenues dans les données.

Ex. Si fonction de transfert linéaire

$$\hat{x}_j = b_{j,0} + b_{j,1}u_1 + b_{j,2}u_2$$

On a une forme de nettoyage des données (filtrage) où seules les informations « utiles » (basées sur les « pattern ») sont conservées.

Si forts écarts, alors peut-être problèmes (points atypiques, ...) ou caractéristiques particulières, spécifiques.

#### Un exemple (bis)

#### **Données « Autos »**

#### Mises en évidence ici les différences supérieures à (1.1 x écart-type)

#### Données initiales

| Modele          | CYL    | PUISS | LONG | LARG | POIDS | V.MAX |
|-----------------|--------|-------|------|------|-------|-------|
| Alfasud TI      | 1350   | 79    | 393  | 161  | 870   | 165   |
| Alfetta 1.66    | 1570   | 109   | 428  | 162  | 1060  | 175   |
| Audi 100        | 1588   | 85    | 468  | 177  | 1110  | 160   |
| Citroen GS Club | 1222   | 59    | 412  | 161  | 930   | 151   |
| Datsun 200L     | 1998   | 115   | 469  | 169  | 1370  | 160   |
| Fiat 132        | 1585   | 98    | 439  | 164  | 1105  | 165   |
| Lada 1300       | 1294   | 68    | 404  | 161  | 955   | 140   |
| Lancia Beta     | 1297   | 82    | 429  | 169  | 1080  | 160   |
| Mazda 9295      | 1769   | 83    | 440  | 165  | 1095  | 165   |
| Opel Rekord     | 1979   | 100   | 459  | 173  | 1120  | 173   |
| Peugeot 504     | 1796   | 79    | 449  | 169  | 1160  | 154   |
| Princess 1800   | 1798   | 82    | 445  | 172  | 1160  | 158   |
| Rancho          | 1442   | 80    | 431  | 166  | 1129  | 144   |
| Renault 16 TL   | 1565   | 55    | 424  | 163  | 1010  | 140   |
| Renault 30      | 2664   | 128   | 452  | 173  | 1320  | 180   |
| Simca 1300      | 7 1294 | 68    | 424  | 168  | 1050  | 152   |
| Taunus 2000     | 1993   | 98    | 438  | 170  | 1080  | 167   |
| Toyota Corolla  | 1166   | 55    | 399  | 157  | 815   | 140   |

Eu égard à ses dimensions (plutôt bien approximées), la Renault 30 possède un gros moteur, elle est de ce fait puissante et rapide (par rapport à ce qu'on pouvait attendre)

Données reconstituées

| Modele          | CYL  | PUISS | LONG | LARG | POIDS | V.MAX |
|-----------------|------|-------|------|------|-------|-------|
| Alfasud TI      | 1336 | 67    | 423  | 163  | 948   | 151   |
| Alfetta 1.66    | 1745 | 91    | 437  | 168  | 1124  | 160   |
| Audi 100        | 1734 | 91    | 439  | 168  | 1140  | 162   |
| Citroen GS Club | 1334 | 67    | 422  | 163  | 945   | 151   |
| Datsun 200L     | 2000 | 105   | 445  | 170  | 1225  | 165   |
| Fiat 132        | 1779 | 92    | 438  | 168  | 1134  | 160   |
| Lada 1300       | 1340 | 67    | 422  | 163  | 947   | 151   |
| Lancia Beta     | 1450 | 74    | 428  | 165  | 1009  | 155   |
| Mazda 9295      | 1748 | 91    | 438  | 168  | 1127  | 160   |
| Opel Rekord     | 1922 | 101   | 444  | 170  | 1201  | 164   |
| Peugeot 504     | 1816 | 95    | 440  | 168  | 1154  | 162   |
| Princess 1800   | 1781 | 93    | 439  | 168  | 1149  | 162   |
| Rancho          | 1558 | 80    | 430  | 165  | 1038  | 156   |
| Renault 16 TL   | 1387 | 70    | 424  | 164  | 968   | 152   |
| Renault 30      | 2003 | 105   | 446  | 170  | 1227  | 165   |
| Simca 1300      | 1380 | 70    | 425  | 164  | 972   | 153   |
| Taunus 2000     | 1833 | 96    | 441  | 169  | 1170  | 163   |
| Toyota Corolla  | 1322 | 66    | 422  | 163  | 938   | 151   |

Version « épurée » des données traduisant les caractéristiques communes aux véhicules.

Eu égard à leurs caractéristiques (cylindrée notamment), ces voitures italiennes des années 70 sont rapides.

#### Plus loin avec les auto-encodeurs

Il est possible d'ajouter des couches pour appréhender différents niveaux d'abstractions des données. Permet également de capter les « pattern » non-linéaires régissant les données.



Habituellement, nous plaçons des couches aux caractéristiques miroirs de la partie encodeur (ex. « Autos » : [6, 3, 2, 3, 6]).

Individus illustratifs, interprétation, variables illustratives

## PRATIQUE DES AUTO-ENCODEURS

#### Positionner les individus supplémentaires

#### Comment les positionner par rapport aux véhicules actifs ?

| Modele        | CYL  | PUISS | LONG | LARG | POIDS | V.MAX |
|---------------|------|-------|------|------|-------|-------|
| Peugeot 604   | 2664 | 136   | 472  | 177  | 1410  | 180   |
| Peugeot 304 S | 1288 | 74    | 414  | 157  | 915   | 160   |



#### Appliquer le réseau sur ces individus





Le positionnement des véhicules se comprend aisément (si on connaît un peu les véhicules des années 70)

11

#### Identifier le rôle des variables

# Valide que si les « pattern » ne sont pas (trop) non-linéaires

Calculer les corrélations des variables  $(X_{ij})$  (i = 1, ..., n ; j = 1,...,p) avec les coordonnées « factorielles »  $(F_{ik})$  (k = 1,2)

On peut imaginer une sorte de « cercle des corrélations ».









# Traitement des variables supplémentaires

Interpréter les résultats à l'aune des variables illustratives

| Modele          | FINITION | PRIX  | RPOIDPUIS |
|-----------------|----------|-------|-----------|
| Alfasud TI      | 2_B      | 30570 | 11.01     |
| Audi 100        | 3_TB     | 39990 | 13.06     |
| Simca 1300      | 1_M      | 29600 | 15.44     |
| Citroen GS Club | 1_M      | 28250 | 15.76     |
| Fiat 132        | 2_B      | 34900 | 11.28     |
| Lancia Beta     | 3_TB     | 35480 | 13.17     |
| Peugeot 504     | 2_B      | 32300 | 14.68     |
| Renault 16 TL   | 2_B      | 32000 | 18.36     |
| Renault 30      | 3_TB     | 47700 | 10.31     |
| Toyota Corolla  | 1_M      | 26540 | 14.82     |
| Alfetta-1.66    | 3_TB     | 42395 | 9.72      |
| Princess-1800   | 2_B      | 33990 | 14.15     |
| Datsun-200L     | 3_TB     | 43980 | 11.91     |
| Taunus-2000     | 2_B      | 35010 | 11.02     |
| Rancho          | 3_TB     | 39450 | 14.11     |
| Mazda-9295      | 1_M      | 27900 | 13.19     |
| Opel-Rekord     | 2_B      | 32700 | 11.20     |
| Lada-1300       | 1_M      | 22100 | 14.04     |

#### Variables quantitatives : calculer les corrélations est une solution simple

Ou encore un graphique (teinte des points en fonction du PRIX)





#### Variables qualitatives :

calculer les moyennes

conditionnelles

Ou encore un graphique (couleur des points en fonction de FINITION)





Spécificité du traitement d'images avec les auto-encodeurs

14

# TRAITEMENT D'IMAGES

#### Format des données en entrée – Opérateurs spécifiques

Les auto-encodeurs, comme toutes méthodes de deep learning, se prêtent bien au traitement d'images.

En niveau de gris, l'image peut être linéarisé en un vecteur de valeurs (compris entre 0 et 255 habituellement). On est dans le cadre habituel.

| chiffre | pix1 | pix2 | pix3 | pix4 | <br>pix61 | pix62 | pix63 | pix64 |
|---------|------|------|------|------|-----------|-------|-------|-------|
| CO      | 0    | 1    | 6    | 15   | <br>7     | 1     | 0     | 0     |
| C0      | 0    | 0    | 10   | 16   | <br>15    | 3     | 0     | 0     |
| C7      | 0    | 0    | 8    | 15   | <br>0     | 0     | 0     | 0     |
| C4      | 0    | 0    | 0    | 3    | <br>15    | 2     | 0     | 0     |









Ex. Optical handwritten digits, images (8 x 8)

En couleur, elle se présente sous une forme matricielle avec 3 canaux. Les librairies spécialisées (ex. Keras) savent les appréhender.

```
#libraire pour IO Image
import imageio
#charger l'image
chat = imageio.imread("cat 1.jpg")
print(chat.shape) #(300, 300, 3)
#librairie pour graphiques
import matplotlib.pyplot as plt
#affichage de l'objet
plt.imshow(chat)
```



Ex. Cats and Dogs, images (300 x 300 x 3)



On peut appliquer les opérateurs que l'on retrouve dans les réseaux de neurones convolutifs : convolution, pooling, subsampling...

#### Auto-encodeur débruiteur

On peut aussi voir un auto-encodeur sous l'angle d'un apprentissage multi-supervisé (plusieurs variables cibles). On peut améliorer la robustesse du « modèle » en perturbant (en ajoutant du bruit) les entrées tout en conservant une sortie de référence sans bruit (pour calculer la fonction de perte, ex. MSE).



Images de référence pour l'entrée

Images de référence pour la sortie, à confronter avec l'output du réseau et calculer le MSE.

16



Les propriétés de « nettoyage » de l'auto-encodeur joue à plein pour extraire l'information essentielle.

# **CONCLUSION**

17

#### **Auto-encodeur - Conclusion**

- L'auto-encodeur est une technique de deep learning pour la réduction de la dimensionalité et la représentation des données
- Il se présente comme un perceptron multicouches non-supervisé (ou multi-supervisé, c'est selon le point de vue)
- Dans certaines configurations, il produit des résultats similaires à ceux de l'ACP (analyse en composantes principales)
- Mais, à la différence de l'ACP, il peut proposer différents niveaux d'abstraction et est capable de restituer des « pattern » non-linéaires
- Amélioration de la robustesse par utilisation de données sciemment « bruitées »
- Il est adapté au traitement d'images en sachant appréhender les données matricielles en entrée (via des librairies spécialisées).

# RÉFÉRENCES

19

#### Références

- Wikipédia, « <u>Autoencoder</u> », consulté le 27.11.2019.
- Dertat A., « <u>Applied Deep Learning Part 3 : Autoencoders</u> », Towards Data Science, Oct. 2017.
- Cohen O., « <u>PCA vs Autoencoders</u> », Towards Data Science, Avr. 2018.
- Cholet F., « <u>Building Autoencoders in Keras</u> », The Keras Blog, Mai 2016.
- Rakotomalala R., « <u>Perceptrons simples et multicouches</u> », Nov. 2018.