Common experimental designs that favour analytical variation

Processing and interpretation of neuroscience data: Module 1 – Data overview and single cell sequencing

Dr. Kaja Moczulska & Dr. Łukasz Piszczek

Univ.-Prof. Dr. Wulf Haubensak Department of Neuronal Cell Biology

Center For Brain Research (Zentrum für Hirnforschung)

Overview

Resources needed:

- Laptop
- Internet access
- Materials:
 - VM Machine
 - https://github.com/HugoMalagon/NeuroData 860.053-MUW

21.10

- Introduction to R, basics
- Visual analytics
- Grammar of graphics

28.10

- dimensional reduction: PCA, UMAP
- Normalization/scaling
- · clustering: k-means, knn

4.11

- Intro to Seurat
- Single cell RNA seq
- Dataset merging and preprocessing

11.11

- clustering in Seurat
- DEG interpretation

"Exam": 2-3 questions during classes, collected for the final

Day 3

Intro to Seurat

Preprocessing of scRNAseq

How to measure gene expression?

Method	Throughput	Quantitative	Sensitivity	Main Limitation
Northern Blotting	Low	Semi-quant	Moderate	Low throughput, laborious
qPCR	Low-Medium	Quantitative	High	Target-specific, limited multiplexing
Microarray	High	Quantitative	Moderate	Lower sensitivity than RNA- Seq
RNA-Seq	Very High	Quantitative	Very High	Expensive, computational load
In Situ Hybridization	Low	Qualitative	Moderate	Labor-intensive
SAGE	High	Quantitative	High	Largely replaced by RNA- Seq
Reporter Assays	Variable	Quantitative	Variable	Requires reporter construct
Digital PCR (dPCR)	Low	Quantitative	Very High	Specialized equipment

How to measure gene expression?

Single cell experiments workflow

Dataset integration

Why we should integrate the data?

- compare gene expression patterns between different conditions
- identify common and rare cell types
- build a large reference atlas
- ...

What the source of data variation?

- technical factors
 - assays
 - platform
 - Protocol...
- biological variation
 - distinct tissue sampling regions
 - different genotype
 - different genetic background

Data integration methods

- Promote cell type identity over background identity
 - in similar datasets
 - in different datasets
- The datasets should contain analogous cell types
- Popular algorithms applied
 - principal component analysis (PCA)
 - singular value decomposition (SVD)
 - canonical correlation analysis (CCA)

Table 6	Representative methods	for single-cell and	snatial transc	rintomics integration

Tool	Input Data Demonstrated	scRNA-seq Data Preprocessing	Methods/Algorithms	Application/Output
Mapping				
scVI	scRNA-seq <-> scRNA-seq	Raw count matrix	Probabilistic modeling, neural networks, variational inference	scRNA-seq cell level and gene level batch correction scRNA-seq mapping
scANVI	scRNA-seq <-> scRNA-seq	Raw count matrix for UMI counts, gene length normalized count for read counts	Probabilistic modeling, neural networks, variational inference	scRNA-seq cell level and gene level batch correction scRNA-seq mapping annotation of single cells from annotated reference cells
MNN/fastMNN	scRNA-seq <-> scRNA-seq	Normalized with the library size, log transformed	Randomized SVD, MNN, weighted average of correction vectors	scRNA-seq cell level and gene level batch correction scRNA-seq mapping
Scanorama	scRNA-seq <-> scRNA-seq	L2-normalized for each cell	Randomized SVD, MNN, weighted average of correction vectors	scRNA-seq cell level and gene level batch correction scRNA-seq mapping
Seurat V3	scRNA-seq <-> scRNA-seq scRNA-seq <-> HPRI scRNA-seq <-> CITE-seq scRNA-seq <-> scATAC- seq	Normalized with the library size, log transformed, gene scaled	CCA, MNN, anchor scoring and weighting	scRNA-seq cell level and gene level batch correction scRNA-seq mapping Multimodal data mapping
Harmony	scRNA-seq <-> scRNA-seq scRNA-seq <-> HPRI	Normalized with the library size, log transformed, gene scaled, PCs from PCA	Maximum batch diversity soft k-means clustering, linear mixture model correction	scRNA-seq cell level batch correction scRNA-seq mapping Multimodal data mapping
LIGER	scRNA-seq <-> scRNA-seq scRNA-seq <-> HPRI scRNA-seq <-> single cell DNA methylation	Normalized with the library size, gene scaled but not centered	Integrative non-negative matrix factorization, shared factor neighborhood clustering	scRNA-seq cell level batch correction scRNA-seq mapping Multimodal data mapping
SpaGE	scRNA-seq <-> HPRI	Normalized with the library size, log transformed, gene scaled	SVD on the cosine similarity matrix of PCs from each modality	Multimodal data mapping
gimVI	scRNA-seq <-> HPRI	Raw count matrix	Probabilistic modeling, neural networks, variational inference	Multimodal data mapping (for gene imputation)
Tangram	scRNA-seq <-> spatial barcoding and HPRI	Normalized with the library size	Direct minimization of a Kullback–Leibler divergence and cosine distances	Multimodal data mapping
Cobolt	Unimodal data sets and multimodal data set	Raw count matrix	Probabilistic modeling, neural networks, variational inference	Multimodal data mapping
MultiVI	Unimodal data sets and multimodal data set	Raw count matrix	Probabilistic modeling, neural networks, variational inference	Multimodal data mapping
Seurat V5	Unimodal data sets and multimodal data sets	Depends on the mapping method in the first mapping step	Dictionary learning, Laplacian eigen- decomposition, sketching	Multimodal data mapping
Deconvolution				
Cell2location	scRNA-seq <-> spatial barcoding data	Raw count matrix	Bayesian negative binomial models, approximate variational inference	Estimate the absolute cell type abundance for each spo of spatial data
RCTD	scRNA-seq <-> spatial barcoding data	Raw count matrix	Poisson-lognormal models	Estimate the proportion of cell types for each spot of spatial data
stereoscope	scRNA-seq <-> spatial barcoding data	Raw count matrix	Negative binomial models	Estimate the proportion of cell types for each spot of spatial data
SpatialDWLS	scRNA-seq <-> spatial barcoding data	Normalized with the library size, log transformed	Enrichment analysis, dampened weighted least squares	Estimate the proportion of cell types for each spot of spatial data
SPOTlight	scRNA-seq <-> spatial barcoding data	Gene scaled	A seeded non-negative matrix factorization (NMF) regression and non-negative least squares	Estimate the proportion of cell types for each spot of spatial data
DestVI	scRNA-seq <-> spatial barcoding data	Raw count matrix	Probabilistic modeling, negative binomial models, neural networks, variational inference	Estimate both the proportion of cell types and the variations within each cell type for each spot of spatial

A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication

by Changde Cheng 1,† ☑, Wenan Chen 2,† ☑, Hongjian Jin 2,† ☑ and Xiang Chen 1,* ☑ ⑤

Comparing different data sets – data integration

Which outcome do you prefer?

Comparing different data sets – data integration

Which clusters represent better cell types?

Table 6	Representative methods	for single-cell and	snatial transc	rintomics integration

Tool	Input Data Demonstrated	scRNA-seq Data Preprocessing	Methods/Algorithms	Application/Output
Mapping				
scVI	scRNA-seq <-> scRNA-seq	Raw count matrix	Probabilistic modeling, neural networks, variational inference	scRNA-seq cell level and gene level batch correction scRNA-seq mapping
scANVI	scRNA-seq <-> scRNA-seq	Raw count matrix for UMI counts, gene length normalized count for read counts	Probabilistic modeling, neural networks, variational inference	scRNA-seq cell level and gene level batch correction scRNA-seq mapping annotation of single cells from annotated reference cells
MNN/fastMNN	scRNA-seq <-> scRNA-seq	Normalized with the library size, log transformed	Randomized SVD, MNN, weighted average of correction vectors	scRNA-seq cell level and gene level batch correction scRNA-seq mapping
Scanorama	scRNA-seq <-> scRNA-seq	L2-normalized for each cell	Randomized SVD, MNN, weighted average of correction vectors	scRNA-seq cell level and gene level batch correction scRNA-seq mapping
Seurat V3	scRNA-seq <-> scRNA-seq scRNA-seq <-> HPRI scRNA-seq <-> CITE-seq scRNA-seq <-> scATAC- seq	Normalized with the library size, log transformed, gene scaled	CCA, MNN, anchor scoring and weighting	scRNA-seq cell level and gene level batch correction scRNA-seq mapping Multimodal data mapping
Harmony	scRNA-seq <-> scRNA-seq scRNA-seq <-> HPRI	Normalized with the library size, log transformed, gene scaled, PCs from PCA	Maximum batch diversity soft k-means clustering, linear mixture model correction	scRNA-seq cell level batch correction scRNA-seq mapping Multimodal data mapping
LIGER	scRNA-seq <-> scRNA-seq scRNA-seq <-> HPRI scRNA-seq <-> single cell DNA methylation	Normalized with the library size, gene scaled but not centered	Integrative non-negative matrix factorization, shared factor neighborhood clustering	scRNA-seq cell level batch correction scRNA-seq mapping Multimodal data mapping
SpaGE	scRNA-seq <-> HPRI	Normalized with the library size, log transformed, gene scaled	SVD on the cosine similarity matrix of PCs from each modality	Multimodal data mapping
gimVI	scRNA-seq <-> HPRI	Raw count matrix	Probabilistic modeling, neural networks, variational inference	Multimodal data mapping (for gene imputation)
Tangram	scRNA-seq <-> spatial barcoding and HPRI	Normalized with the library size	Direct minimization of a Kullback–Leibler divergence and cosine distances	Multimodal data mapping
Cobolt	Unimodal data sets and multimodal data set	Raw count matrix	Probabilistic modeling, neural networks, variational inference	Multimodal data mapping
MultiVI	Unimodal data sets and multimodal data set	Raw count matrix	Probabilistic modeling, neural networks, variational inference	Multimodal data mapping
Seurat V5	Unimodal data sets and multimodal data sets	Depends on the mapping method in the first mapping step	Dictionary learning, Laplacian eigen- decomposition, sketching	Multimodal data mapping
Deconvolution				
Cell2location	scRNA-seq <-> spatial barcoding data	Raw count matrix	Bayesian negative binomial models, approximate variational inference	Estimate the absolute cell type abundance for each spot of spatial data
RCTD	scRNA-seq <-> spatial barcoding data	Raw count matrix	Poisson-lognormal models	Estimate the proportion of cell types for each spot of spatial data
stereoscope	scRNA-seq <-> spatial barcoding data	Raw count matrix	Negative binomial models	Estimate the proportion of cell types for each spot of spatial data
SpatialDWLS	scRNA-seq <-> spatial barcoding data	Normalized with the library size, log transformed	Enrichment analysis, dampened weighted least squares	Estimate the proportion of cell types for each spot of spatial data
SPOTlight	scRNA-seq <-> spatial barcoding data	Gene scaled	A seeded non-negative matrix factorization (NMF) regression and non-negative least squares	Estimate the proportion of cell types for each spot of spatial data
DestVI	scRNA-seq <-> spatial barcoding data	Raw count matrix	Probabilistic modeling, negative binomial models, neural networks, variational inference	Estimate both the proportion of cell types and the variations within each cell type for each spot of spatial

A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication

by Changde Cheng 1,† ☑, Wenan Chen 2,† ☑, Hongjian Jin 2,† ☑ and Xiang Chen 1,* ☑ ⑤

Choice of methods to integrate datasets in Seurat

- RPCA reciprocal PCA
- CCA canonical correlation analysis
- Harmony iterative clustering
- scVI neural network model

What influences the choice of method

- How similar are 2 datasets
- How big is the data
- Scalability of method
- Size differences between the datasets
- Batch effect

Examples of available data sets

Datasets (Showing 58 datasets)	Product	Species	Sample type	Cells or nuolei	Preservation
320k scFFPE From 8 Human Tissues 320k, 16-Plex	Flex Gene Expression v1.0	Human	Brain, Colon, Lung, Breast, Lymph node, Kidney, Skin, Cervix	N/A	Fixed
10k Mouse E18 Combined Cortex, Hippocampus and Subventricular Zone Cells, Chromium NextGEM Single Cell 3'	Universal 3' Gene Expression v3.1	Mouse	Brain	Cells	NA
10k Mouse E18 Combined Cortex, Hippocampus and Subventricular Zone Cells, Chromium GEM-X Single Cell 3'	Universal 3' Gene Expression v4	Mouse	Brain	Cells	NA
10k Adult Mouse Brain Nuclei Isolated with Chromium Nuclei Isolation Kit, Chromium NextGEM Single Cell 3'	Universal 3' Gene Expression v3.1	Mouse	Brain	Nuclei	Fresh Frozen
10k Adult Mouse Brain Nuclei Isolated with Chromium Nuclei Isolation Kit, Chromium GEM-X Single Cell 3'	Universal 3' Gene Expression v4	Mouse	Brain	Nuclei	Fresh Frozen
10k Mouse Forebrain FFPE Tissue Dissociated using gentleMACS Dissociator, Singleplex Sample (Next GEM)	Flex Gene Expression v1.0	Mouse	brain	Cells	FFPE
Mouse Brain Nuclei Isolated with Chromium Nuclei Isolation Kit, SaltyEZ Protocol, and 10x Complex Tissue DP (CT Sorted and CT Unsorted)	Epi Multiome ATAC + Gene Expression v1.0	Mouse	brain	Nuclei	Fresh Frozen
Mixture of Lung Cancer and Glioblastoma FFPE Tissues Dissociated Manually or using gentleMACS Dissociator, Multiplexed Samples, 4 Probe Barcodes (Next GEM)	Flex Gene Expression v1.0	∯ Human	lung, brain	Cells	FFPE
5k Adult Mouse Brain Nuclei Isolated with Chromium Nuclei Isolation Kit	Universal 3' Gene Expression v3.1	Mouse	brain	Nuclei	Fresh Frozen
8k Adult Mouse Cortex Cells, ATAC v2, Chromium Controller	Epi ATAC v2	Mouse	brain	Nuclei	N/A
8k Adult Mouse Cortex Cells, ATAC v2, Chromium X	Epi ATAC v2	Mouse	brain	Nuclei	N/A
8k Adult Mouse Cortex Cells, ATAC v1.1, Chromium X	Epi ATAC v1.1	Mouse	brain	Nuclei	N/A
Multiomic Integration Neuroscience Application Note: Single Cell Multiome RNA + ATAC Alzheimer's Disease Mouse Model Brain Coronal Sections from One Hemisphere Over a Time Course	Epi Multiome ATAC + Gene Expression v1.0	Mouse	brain	Nuclei	Fresh Frozen, FFPE
Mouse E18 Combined Cortex, Hippocampus and Subventricular Zone Nuclei Multiplexed, 12 CMOs: 3'v3.1 Targeted, Custom Neuroscience Panel	Universal 3' Gene Expression v3.1	Mouse	brain, cortex, hippocampus, subventricular zone	Nuclei	N/A
Flash-Frozen Human Healthy Brain Tissue (3k)	Epi Multiome ATAC + Gene Expression v1.0	💃 Human	brain, cerebellum	Nuclei	Frozen
Fresh Embryonic E18 Mouse Brain (5k)	Epi Multiome ATAC + Gene Expression v1.0	Mouse	cortex, hippocampus, ventricular zone, brain	Nuclei	Fresh

Dataset we will analyse today

- Alzheimer's disease model: ApoE knock out
- Single nucleus data
- 7 pooled hippocampi samples from 9month-old C57BL/6 J wild type (WT) mice (ID GSM5067107)
- 7 pooled hippocampi samples from 9month-old *Apoe* knockout (EKO) mice (ID GSM5067109)

differences in specific cell types.

All analyses were performed on GEO dataset GSE166261 [dataset] (Shi et al., 2021a, b) comprised of snRNAseq data generated by droplet-based Chromium Single Cell 3' Reagent Kit (10x Genomics) on 7 pooled hippocampi samples from 9-month-old C57BL/6 J wild type (WT) mice (Sample GSM5067107) and 7 pooled hippocampi samples from 9-month-old Apoe knockout (EKO) mice (Sample GSM5067109). The initial EKO mouse was generated using the 129P2/OlaHsd-derived E14Tg2a ES cell line (Piedrahita et al., 1992). The mice used to generate the samples for the snRNAseq data for this study were produced by backcrossing at least 10 generations to C57BL/6 J inbred mice.

Short Communication

Analysis of differential gene expression and transcript usage in hippocampus of *Apoe* null mutant mice: Implications for Alzheimer's disease

Andrew E. Weller*, Glenn A. Doyle, Benjamin C. Reiner, Richard C. Crist, Wade H. Berrettini

Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United State

General workflow

- Data import and Seurat object generation (already done)
- QC for mitochondrial genes, nr of genes and expression level
- Normalization: normalizing gene expression level for each cell
- Integration of data sets (AD and WT mice)
- Feature selection of variable genes
- Scaling: scaling expression for each gene to avoid overrepressentation of highly expressed genes
- Linear dimensional reduction: PCA
- Clustering: k-means for cluster selection
- Non-linear dimensional reduction: UMAP
- Feature selection and cluster annotation: looking at cluster specific markers
- (optional) Cell mapping, subclustering

How to find the data (example: GEO Gene Expression Omnibus)

differences in specific cell types.

All analyses were performed on GEO dataset GSE166261 [dataset] (Shi et al., 2021a, b) comprised of snRNAseq data generated by droplet-based Chromium Single Cell 3' Reagent Kit (10x Genomics) on 7 pooled hippocampi samples from 9-month-old C57BL/6 J wild type (WT) mice (Sample GSM5067107) and 7 pooled hippocampi samples from 9-month-old Apoe knockout (EKO) mice (Sample GSM5067109). The initial EKO mouse was generated using the 129P2/OlaHsd-derived E14Tg2a ES cell line (Piedrahita et al., 1992). The mice used to generate the samples for the snRNAseq data for this study were produced by backcrossing at least 10 generations to C57BL/6 J inbred mice.

GSE166261 Overexpressing low-density lipoprotein receptor reduces tau-Series (1)

associated neurodegeneration via apoE-dependent and

independent mechanisms

Relations

SAMN17812771 BioSample SRA SRX10038115

Supplementary file	Size	Download	File type/resource
GSM5067109_EKO_barcodes.tsv.gz	23.9 Kb	(ftp)(http)	TSV
GSM5067109_EKO_genes.tsv.gz	212.7 Kb	(ftp)(http)	TSV
GSM5067109_EKO_matrix.mtx.gz	14.7 Mb	(ftp)(http)	MTX

SRA Run Selector 2

Raw data are available in SRA

Processed data provided as supplementary file

Download all 3 files

old EKO mice

old P301S mice

old P301S/LDLR mice

old P301S/EKO mice

GSM5067110 Isolated single nuclei from 8 pooled hippocampi of 9-month

GSM5067111 Isolated single nuclei from 7 pooled hippocampi of 9-month

GSM5067112 Isolated single nuclei from 7 pooled hippocampi of 9-month

Seurat 5.2.0 Install Get started Vignettes → Extensions FAQ News F

Introductory Vignettes

PBMC 3K guided tutorial

Data visualization vignette

SCTransform, v2 regularization

Using Seurat with multi-modal data

Seurat v5 Command Cheat Sheet

Seurat v5

Data Integration

Introduction to scRNA-seq integration

https://satijalab.org/seurat/

ıta

Introduction into Seurat

- What it is
- Why we use it

SEURAT OBJECT

https://biostatsquid.com/seurat-objects-explained/

Introduction into Seurat

- What it is
- Why we use it

SEURAT OBJECT

EACH LAYER STORES A VERSION OF THE GENE EXPRESSION DATA

https://biostatsquid.com/seurat-objects-explained/

General workflow

- Data import and Seurat object generation (already done)
- QC for mitochondrial genes, nr of genes and expression level
- Normalization: normalizing gene expression level for each cell
- Integration of data sets (AD and WT mice)
- Feature selection of variable genes
- Scaling: scaling expression for each gene to avoid overrepressentation of highly expressed genes
- Linear dimensional reduction: PCA
- Clustering: k-means for cluster selection
- Non-linear dimensional reduction: UMAP
- Feature selection and cluster annotation: looking at cluster specific markers
- (optional) Cell mapping, subclustering

Part 1: Data import

```
library(dplyr)
library(Seurat)
library(patchwork)

# Load the PBMC dataset
pbmc.data <- Read10X(data.dir = "/brahms/mollag/practice/filtered_gene_bc_matrices/hg19/")

# Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
pbmc

## An object of class Seurat
## 13714 features across 2700 samples within 1 assay
## Active assay: RNA (13714 features, 0 variable features)
## 1 layer present: counts</pre>
```

https://satijalab.org/seurat/articles/pbmc3k_tutorial

Part 2: Data filter

```
# Visualize QC metrics as a violin plot
VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
```


Part 2: Data filter

FeatureScatter is typically used to visualize feature-feature relationships, but can be used for anything calculated by th e object, i.e. columns in object metadata, PC scores etc.

FeatureScatter(obj, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")

obj <- subset(obj, subset = nFeature_RNA > 400 & nFeature_RNA < 6000)
FeatureScatter(obj, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")</pre>

Normalization

	Cell 1	Cell 2	Cell 3
Total reads	3	300	100

R	A	W	

Gene A	1	100	50
Gene B	2	200	50

NORMALISED

Gene A	8.11	8.11	8.52
Gene B	8.81	8.81	8.52

Gene A cell 1: log₂(1/3*10000 + 1)

Normalization: This step addresses differences between cells by adjusting for sequencing depth or other technical variations, ensuring that gene expression values are comparable across cells.

Part 2: Data normalization

Normalizing the data

After removing unwanted cells from the dataset, the next step is to normalize the data. By default, we employ a global-scaling normalization method "LogNormalize" that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in <code>obj[["RNA"]]\$data</code>.

```
#obj <- NormalizeData(obj, normalization.method = "LogNormalize", scale.factor = 1e4)</pre>
```

For clarity, in this previous line of code (and in future commands), we provide the default values for certain parameters in the function call. However, this isn't required and the same behavior can be achieved with:

```
obj <- NormalizeData(obj)
```

Compare Normalization with Counts


```
# We then visualize normalized data
VlnPlot(obj, features = c("Sox10", "Slc17a7", "Aif1"), ncol = 3, layer = "data", alpha = 0.1)
```


Part 3: Find variable features (feature selection)

```
obj <- FindVariableFeatures(obj)
# Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(obj), 10)

# plot variable features with and without labels
plot1 <- VariableFeaturePlot(obj)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
plot1 + plot2</pre>
```


Scaling

RAW		Cell 1	Cell 2	Cell 3	
	Gene A	1	100	50	

100	50
200	50
	-

NORMALISED

Gene B

Gene A	8.11	8.11	8.52		
Gene B	Gene B 8.81		8.52		

SCALED

Gene A	-0.57	-0.57	+1.19
Gene B	+0.58	+0.58	-1.16

Scaling: This step addresses differences between genes by adjusting for varying ranges in expression levels across genes, making sure that no single gene with very high expression dominates the analysis.

Part 4: scale the data

Scaling the data

Next, we apply a linear transformation ('scaling') that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The ScaleData() function:

- . Shifts the expression of each gene, so that the mean expression across cells is 0
- Scales the expression of each gene, so that the variance across cells is 1
 - This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate
- The results of this are stored in obj[["sketch"]]\$scale.data
- · By default, only variable features are scaled.
- You can specify the features argument to scale additional features

obj <- ScaleData(obj)

Part 5: PCA

For the first principal components, Seurat outputs a list of genes with the most positive and negative loadings, representing modules of genes that exhibit either correlation (or anti-correlation) across single-cells in the dataset.

```
obj <- RunPCA(obj, features = VariableFeatures(object = obj))
```

Seurat provides several useful ways of visualizing both cells and features that define the PCA, including VizDimReduction(), DimPlot(), and DimHeatmap()

```
# Examine and visualize PCA results a few different ways
print(obj[['pca']], dims = 1:5, nfeatures = 5)
```

```
## PC 1
## Positive: Tubala, Sox11, Cd24a, Tubb3, Nnat
## Negative: Igfbp7, Esam, Gng11, Sparc, Col4a2
## PC_ 2
## Positive: Clqc, Clqb, Tyrobp, Clqa, Fcerlg
## Negative: Tmsb10, Tuba1a, Tsc22d1, Sparcl1, Serpinh1
## PC_ 3
## Positive: Tubb3, Tmsb10, Mllt11, Stmn2, Stmn3
## Negative: Hmgb2, Dbi, Phgdh, Fabp7, Cks2
## PC_ 4
## Positive: Vtn, Ndufa412, Kcnj8, Higd1b, Abcc9
## Negative: Cldn5, Vwa1, Cd34, Pglyrp1, Ctla2a
## PC_ 5
## Positive: Birc5, Ube2c, Ccna2, Nusap1, Spc25
## Negative: Cimap3, Clu, Foxj1, Pierce1, Rsph1
```

```
VizDimLoadings(obj, dims = 1:2, reduction = 'pca')
```

DimHeatmap(obj, dims = 1, cells = 500, balanced = TRUE)

PC_1

Sparc Col4a2 Cldn5 Ecscr Egf17 Col4a1 Vwa1 Slc7a5 Cd34 Stmn4 Stmn2 Gria2 Dpysl3 MIIt11 Map1b Basp1 Stmn3 Igfbpl1 Nnat Tubb3 Cd24a Sox11 Tuba1a

Part 5: PCA

Part 6: Clustering

```
obj <- FindNeighbors(obj,reduction = "pca", dims = 1:50)
obj <- FindClusters(obj, resolution = 2) # the higher the number the higher the clusters
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## Number of nodes: 49451
## Number of edges: 1969041
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8779
## Number of communities: 54
## Elapsed time: 13 seconds
# Look at cluster IDs of the first 5 cells
head(Idents(obj), 5)
## AAACCTGAGATAGGAG-1 AAACCTGAGCGGCTTC-1 AAACCTGAGGAATCGC-1 AAACCTGAGGACACCA-1
## AAACCTGAGGCCCGTT-1
## 54 Levels: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 53
```

Part 7: Non-linear dimensional reduction (UMAP)

```
"``{r, UMAP}
Seurat_AD_WT <- RunUMAP(Seurat_AD_WT, reduction = "integrated.cca", dims = 1:13, reduction.name = "umap.cca")
DimPlot(Seurat_AD_WT, label = F, label.size = 3, reduction = 'umap.cca', split.by = 'condition') |</pre>
```


Day 4

Clustering of cells in Seurat

DEG and its interpretation

General workflow

- Data import and Seurat object generation (already done)
- QC for mitochondrial genes, nr of genes and expression level
- Normalization: normalizing gene expression level for each cell
- Integration of data sets (AD and WT mice)
- Feature selection of variable genes
- Scaling: scaling expression for each gene to avoid overrepressentation of highly expressed genes
- Linear dimensional reduction: PCA
- Clustering: k-means for cluster selection
- Non-linear dimensional reduction: UMAP
- Feature selection and cluster annotation: looking at cluster specific markers
- (optional) Cell mapping, subclustering


```
'``{r,fig.height = 7, fig.width = 10}
FeaturePlot(
  object = Seurat_AD_WT,
  features = c(
    "slc1a3", #Astrocytes
    "wfs1", # Glut Neurons or slc17a7
    "Gad2", # GABA neurons
    "c1qa", # Microglia
    "Trf", # Myelin-forming mature oligodendrocytes
    "cldn5"), # Endothelial cells
    ncol = 3)
```

Differential gene expression

VlnPlot(obj, 'Dlx2')


```
'``{r, fig.height = 7, fig.width = 14}
VlnPlot(Seurat_AD_WT, 'Wfs1')
VlnPlot(Seurat_AD_WT, 'Wfs1', split.by = 'condition')
VlnPlot(Seurat_AD_WT, 'Apoe', group.by = 'condition') # check knockout
'``
```


AD WT

```
```{r, fig.height = 7, fig.width = 14}
DotPlot(Seurat_AD_WT, features= all_genes)
DotPlot(Seurat_AD_WT, features= all_genes, group.by = "condition")
```







```
`{r, fig.height = 7, fig.width = 14}
Idents(Seurat_AD_WT) <- "seurat_clusters"</pre>
cluster13.markers <- FindMarkers(Seurat_AD_WT, ident.1 = "13", only.pos = TRUE)</pre>
head(cluster13.markers, n = 10)
 Idents(Seurat AD WT) <- "seurat clusters"</pre>
cluster13.conserved <- FindConservedMarkers(Seurat_AD_WT, ident.1 = "13", grouping.var = "condition", verbose = FALSE)</pre>
Seurat_AD_WT$cluster_cond <- paste(Seurat_AD_WT$seurat_clusters,</pre>
 Seurat_AD_WT$condition, sep = "_")
Idents(Seurat AD WT) <- "cluster cond"</pre>
cluster13.markers.cond <- FindMarkers(Seurat AD WT, ident.1 = "13 WT", ident.2 = "13 AD")</pre>
Plot the markers
 `{r, fig.height = 7, fig.width = 14}
cluster13.markers %>%
 dplyr::filter(avg_log2FC > 2 & p_val < 0.05) %>%
 slice_max(avg_log2FC, n = 10) -> top10
Idents(Seurat AD WT) <- "seurat clusters"</pre>
DotPlot(Seurat AD WT, features = rownames(top10))
DotPlot(Seurat_AD_WT, features = rownames(top10), group.by = "condition")
```

### **Markers**

^	p_val ‡	avg_log2FC <sup>‡</sup>	pct.1 <sup>‡</sup>	pct.2 ‡	p_val_adj <sup>‡</sup>
Cpne7	3.795059e-113	1.6148848	0.939	0.440	1.062541e-108
Pex51	6.549430e-80	1.3841500	0.867	0.414	1.833709e-75
Man1a	1.168222e-55	1.7415038	0.408	0.123	3.270787e-51
Grin2b	6.088627e-55	0.6456170	1.000	0.913	1.704694e-50
Kcnn2	1.985708e-46	1.3211142	0.589	0.252	5.559586e-42
3110035E14Rik	1.610460e-42	1.1141428	0.614	0.279	4.508965e-38
Ntm	1.879055e-40	0.7167477	0.956	0.618	5.260977e-36
Chrd	8.107074e-40	1.0820214	0.683	0.354	2.269819e-35
Fam19a1	3.278474e-37	0.6712845	0.917	0.568	9.179072e-33
Fibcd1	4.322958e-37	1.6778961	0.267	0.076	1.210342e-32
Zeb2	6.237067e-33	0.7754559	0.853	0.579	1.746254e-28
Arhgef28	8.172101e-31	1.3445675	0.294	0.099	2.288025e-26
Mpped1	4.221407e-29	1.0897637	0.481	0.220	1.181910e-24
Brd9	7.888922e-28	0.7317513	0.836	0.619	2.208740e-23
Cadps2	6.051534e-27	1.3831535	0.256	0.086	1.694308e-22
Atp2b1	1.206030e-26	0.5222782	0.939	0.733	3.376643e-22
Grm5	2.330329e-26	0.5810710	0.939	0.721	6.524456e-22

### **Conserved Markers**

*	WT_p_val ‡	WT_avg_log2FC ‡	WT_pct.1 ‡	WT_pct.2 ‡	WT_p_val_adj ‡	AD_p_val <sup>‡</sup>	AD_avg_log2FC ‡	AD_pct.1 ‡	AD_pct.2 ‡	AD_p_val_adj ‡	max_pval ‡	minimump_p_val ‡
Cpne7	1.896286e-53	1.5667888	0.921	0.475	5.309222e-49	3.859953e-62	1.6734406	0.959	0.406	1.080710e-57	1.896286e-53	7.719906e-62
Man1a	4.180960e-17	1.4020101	0.372	0.149	1.170585e-12	7.693521e-47	2.1012876	0.450	0.097	2.154032e-42	4.180960e-17	1.538704e-46
Pex5l	2.917237e-40	1.4236271	0.859	0.435	8.167680e-36	2.128116e-41	1.3607309	0.876	0.395	5.958298e-37	2.917237e-40	4.256231e-41
Grin2b	7.679557e-37	0.7202418	1.000	0.929	2.150122e-32	1.357831e-20	0.5502120	1.000	0.896	3.801656e-16	1.357831e-20	1.535911e-36
Kcnn2	1.643295e-19	1.3106818	0.571	0.288	4.600898e-15	6.643690e-30	1.3249140	0.609	0.216	1.860100e-25	1.643295e-19	1.328738e-29
Fam19a1	6.108650e-26	0.7810839	0.942	0.578	1.710300e-21	6.415784e-14	0.5597053	0.888	0.557	1.796291e-09	6.415784e-14	1.221730e-25
Arhgef28	8.345182e-10	1.1449230	0.262	0.114	2.336484e-05	1.180007e-25	1.5509784	0.331	0.085	3.303784e-21	8.345182e-10	2.360014e-25
Ntm	6.855173e-18	0.6564655	0.953	0.702	1.919311e-13	2.629994e-25	0.7718903	0.959	0.536	7.363456e-21	6.855173e-18	5.259987e-25
3110035E14Rik	7.409298e-20	0.9887040	0.660	0.348	2.074455e-15	3.045912e-25	1.2567730	0.562	0.212	8.527944e-21	7.409298e-20	6.091824e-25
Chrd	1.333034e-18	1.0821957	0.660	0.375	3.732227e-14	4.238994e-23	1.0950006	0.710	0.334	1.186834e-18	1.333034e-18	8.477988e-23
Zeb2	4.148900e-21	0.8652456	0.853	0.613	1.161609e-16	1.146133e-13	0.6508298	0.852	0.546	3.208944e-09	1.146133e-13	8.297800e-21
Fibcd1	1.303896e-18	1.7561711	0.277	0.088	3.650649e-14	4.053777e-20	1.5887512	0.254	0.065	1.134977e-15	1.303896e-18	8.107554e-20
Col5a2	4.191867e-10	2.1711345	0.110	0.029	1.173639e-05	1.079825e-19	2.5414465	0.107	0.014	3.023293e-15	4.191867e-10	2.159649e-19
Dcn	3.779572e-05	1.1004743	0.141	0.066	1.000000e+00	1.467456e-19	1.2494377	0.243	0.061	4.108582e-15	3.779572e-05	2.934911e-19
Brd9	1.091491e-10	0.5859223	0.806	0.663	3.055958e-06	1.828784e-19	0.8828290	0.870	0.575	5.120229e-15	1.091491e-10	3.657568e-19

### **Condition Markers**











# MapMyCells

```
Export data to MapMyCells
We will export the count matrix and map the cells with Allen Brain atlas
see: https://portal.brain-map.org/atlases-and-data/bkp/mapmycells
use: https://knowledge.brain-map.org/mapmycells/process/
Extract the Count Matrix

```{r,fig.height = 7, fig.width = 10}
mat <- GetAssayData(object = subset(Seurat_AD_WT, downsample = 1000, subset = seurat_clusters %in% c(13)), assay = "RNA", slot = "counts")
# we need to transpose the matrix, as MapMyCells expects matrix in which rows are "cells" and columns are genes!
mat_t <- t(mat)
write.csv(mat_t, "./output/count_matrix_cluster13.csv")
```

MapMyCells

Thank you for the attention

CCA (canonical correlation analysis)

RPCA (reciprocal PCA)

Harmony

Article | Published: 18 November 2019

Fast, sensitive and accurate integration of single-cell data with Harmony

Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner, Po-ru Loh & Soumya Raychaudhuri ⊠

Nature Methods 16, 1289–1296 (2019) Cite this article

scVI (single-cell variational inference) neural networks model

Article | Published: 30 November 2018

Deep generative modeling for single-cell transcriptomics

Romain Lopez, Jeffrey Regier, Michael B. Cole, Michael I. Jordan & Nir Yosef

Nature Methods 15, 1053–1058 (2018) | Cite this article

117k Accesses | 2133 Citations | 186 Altmetric | Metrics

