Rappels d'analyse factorielle

François Husson

Département de statistique et informatique - Institut Agro - Rennes

https://husson.github.io/

Rappels d'analyse factorielle

1 Décomposition en valeurs singulières (SVD)

2 SVD et images

3 Lien SVD et ACP, AFC, ACM

Qu'est-ce qu'une matrice de rang 1?

1	2	3	4
2	4	6	8
5	10	15	20
-1	-2	-3	-4
-10	-20	-30	-40

Qu'est-ce qu'une matrice de rang 1?

	1	2	3	4
1	1	2	3	4
2	2	4	6	8
5	5	10	15	20
-1	-1	-2	-3	-4
-10	-10	-20	-30	-40

Qu'est-ce qu'une matrice de rang 1?

	1	2	3	4
1	1	2	3	4
2	2	4	6	8
5	5	10	15	20
-1	-1	-2	-უ	-4
-10	-10	-20	-30	-40

1	2	3	4	
2	4	6	8	
5	10	15	20	=
-1	-2	-3	-4	
-10	-20	-30	-40	

Qu'est-ce qu'une matrice de rang 1?

	1	2	3	4
1	1	2	3	4
2	2	4	6	8
5	5	10	15	20
-1	-1	-2	-3	-4
-10	-10	-20	-30	-40

5*4 = 20 valeurs

5+4 = 9 valeurs

Toutes les matrices sont-elles de rang 1?

Toutes les matrices sont-elles de rang 1? Non, mais ...

Toutes les matrices sont-elles de rang 1? Non, mais ...elles peuvent toutes s'écrire comme une somme de matrices de rang 1

Toutes les matrices sont-elles de rang 1? **Non**, mais ...elles peuvent toutes s'écrire comme une **somme** de matrices de rang 1

Normer les vecteurs bleu et vert en multipliant par une constante rouge

$$X = U \Lambda V'$$
 avec $U' U = Id_n$ et $V' V = Id_p$

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

La SVD d'une matrice $X_{(n,p)}$ donne les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U' U = Id_n$ et $V' V = Id_p$

Avec les 2 premières dimensions, on a une approximation de X de rang 2, avec $2 \times (n+1+p)$ valeurs au lieu de $n \times p$

2	4	-1	-5
-2	-4	1	7
1	-2	0	-4
0	-6	3	8
1	0	0	-4

2	4	-1	-5
-2	-4	1	7
1	-2	0	-4
0	-6	3	8
1	0	0	-4

-0,43	0,11	0,59	0,54	15,4			
0,54	0,09	-0,40	0,41		4,7		
-0,16	-0,80	-0,25	0,47		,	2 1	
0,66	-0,35	0,65	-0,06			۷,1	0.26
-0,23	-0,46	0,00	-0,56	ļ			0,36

-0,15 -0,49 0,19 0,84 -0,26 0,81 -0,23 0,48 0,82 0,27 0,45 0,20				
	-0,15	-0,49	0,19	0,84
0.03 0.37 0.45 0.30	-0,26	0,81	-0,23	0,48
0,82 0,27 0,45 0,20	0,82	0,27	0,45	0,20
0,48 -0,19 -0,84 0,17	0,48	-0,19	-0,84	0,17

2	4	-1	-5
-2	-4	1	7
1	-2	0	-4
0	-6	3	8
1	0	0	-4

	-0,43	0,11	0,59	0,54	15,4			
	0,54	0,09	-0,40	0,41		4.7		
•	-0,16	-0,80	-0,25	0,47			2 1	
	0,66	-0,35	0,65	-0,06			2,1	0.20
	-0,23	-0,46	0,00	-0,56				0,36

	-0,49		
-0,26	0,81	-0,23	0,48
0,82	0,27	0,45	0,20
0,48	-0,19	-0,84	0,17

-0,4

15,4 -0,16 -0,15 -0,49 0,19 0,84 0,66

	1.01	3.27	-1.28	-5.55
	-1.26	-4.09	1.61	6.94
	0.38	1.23	-0.48	-2.10
	-1.55	-5.02	1.97	8.53
	0.53	1.72	-0.67	-2.92

Approximation acceptable

2	4	-1	-5
-2	-4	1	7
1	-2	0	-4
0	-6	3	8
1	0	n	-/1

	-0,43	0,11	0,59	0,54
	0,54	0,09	-0,40	0,41
=	-0,16	-0,80	-0,25	0,47
	0,66	-0,35	0,65	-0,06
	-0,23	-0,46	0,00	-0,56

_				
ļ	15,4			
L		4,7		
7			2,1	
2				0,36
1				

-0,15	-0,49	0,19	0,84
-0,26	0,81	-0,23	0,48
0,82	0,27	0,45	0,20
0,48	-0,19	-0,84	0,17

	-0,43						
	0,54						
15.4	-0.16	-0,15	-0.49	0.19	0.84	+	47
/	0.66						-,-
	0,00						
	-0,23						

0,09 -0,80 -0,26 0,81 -0,23 0,48 -0,35 -0,46

1.01	3.27	-1.28	-5.55
-1.26	-4.09	1.61	6.94
0.38	1.23	-0.48	-2.10
-1.55	-5.02	1.97	8.53
0.53	1.72	-0.67	-2.92

0.87	3.70	-1.41	-5.29
-1.37	-3.74	1.51	7.15
1.36	-1.82	0.38	-3.92
-1.12	-6.38	2.36	7.72
1.09	-0.04	-0.18	-3.97

Approximation bonne

Approximation très bonne

On retrouve X

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X'X = (U\Lambda V')'(U\Lambda V') = (V\Lambda U')(U\Lambda V') = V\Lambda I_d\Lambda V' = V\Lambda^2 V'$$

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X'X = (U\Lambda V')'(U\Lambda V') = (V\Lambda U')(U\Lambda V') = V\Lambda I_d\Lambda V' = V\Lambda^2 V'$$

$$\Rightarrow X'XV = V\Lambda^2 V'V = V\Lambda^2 = \Lambda^2 V$$

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X'X = (U\Lambda V')'(U\Lambda V') = (V\Lambda U')(U\Lambda V') = V\Lambda I_d \Lambda V' = V\Lambda^2 V'$$

$$\Rightarrow X'XV = V\Lambda^2 V'V = V\Lambda^2 = \Lambda^2 V$$

 $\Rightarrow \Lambda^2$ valeurs propres et V vecteurs propres de la matrice de covariance X'X

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X'X = (U\Lambda V')'(U\Lambda V') = (V\Lambda U')(U\Lambda V') = V\Lambda I_d\Lambda V' = V\Lambda^2 V'$$

$$\Rightarrow X'XV = V\Lambda^2 V'V = V\Lambda^2 = \Lambda^2 V$$

 $\Rightarrow \Lambda^2$ valeurs propres et V vecteurs propres de la matrice de covariance X'X

$$XX' = (U\Lambda V')(U\Lambda V')' = (U\Lambda V')(V\Lambda U') = U\Lambda I_d\Lambda U' = U\Lambda^2 U'$$

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X'X = (U\Lambda V')'(U\Lambda V') = (V\Lambda U')(U\Lambda V') = V\Lambda I_d\Lambda V' = V\Lambda^2 V'$$

$$\Rightarrow X'XV = V\Lambda^2 V'V = V\Lambda^2 = \Lambda^2 V$$

 $\Rightarrow \Lambda^2$ valeurs propres et V vecteurs propres de la matrice de covariance X'X

$$XX' = (U \wedge V')(U \wedge V')' = (U \wedge V')(V \wedge U') = U \wedge I_d \wedge U' = U \wedge^2 U'$$

$$\Rightarrow XX' U = U \wedge^2 U' U = U \wedge^2 = \Lambda^2 U$$

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X'X = (U\Lambda V')'(U\Lambda V') = (V\Lambda U')(U\Lambda V') = V\Lambda I_d\Lambda V' = V\Lambda^2 V'$$

$$\Rightarrow X'XV = V\Lambda^2 V'V = V\Lambda^2 = \Lambda^2 V$$

 $\Rightarrow \Lambda^2$ valeurs propres et V vecteurs propres de la matrice de covariance X'X

$$XX' = (U \wedge V')(U \wedge V')' = (U \wedge V')(V \wedge U') = U \wedge I_d \wedge U' = U \wedge^2 U'$$

$$\Rightarrow XX' U = U \wedge^2 U' U = U \wedge^2 = \Lambda^2 U$$

 $\Rightarrow \Lambda^2$ valeurs propres et U vecteurs propres de la matrice des produits scalaires XX'

Soit $X_{(n,p)}$ une matrice, comment faire la SVD de X, i.e. obtenir les matrices $U_{(n,r)}$, $\Lambda_{(r,r)}$ et $V_{(p,r)}$ telles que :

$$X = U \Lambda V'$$
 avec $U'U = Id_n$ et $V'V = Id_p$

$$X'X = (U\Lambda V')'(U\Lambda V') = (V\Lambda U')(U\Lambda V') = V\Lambda I_d \Lambda V' = V\Lambda^2 V'$$

$$\Rightarrow X'XV = V\Lambda^2 V'V = V\Lambda^2 = \Lambda^2 V$$

 \Rightarrow Λ^2 valeurs propres et V vecteurs propres de la matrice de covariance X'X

$$XX' = (U \wedge V')(U \wedge V')' = (U \wedge V')(V \wedge U') = U \wedge I_d \wedge U' = U \wedge^2 U'$$

$$\Rightarrow XX' U = U \wedge^2 U' U = U \wedge^2 = \Lambda^2 U$$

 \Rightarrow Λ^2 valeurs propres et U vecteurs propres de la matrice des produits scalaires XX'

Les valeurs singulières sont les racines carrées des valeurs propres de la matrice de covariance (= valeurs propres de la matrice des produits scalaires)

Rappels d'analyse factorielle

1 Décomposition en valeurs singulières (SVD)

2 SVD et images

3 Lien SVD et ACP, AFC, ACM

Exercice: SVD et compression d'image

1 Importer l'image (Léna) et la transformer en matrice

library(raster) # raster et rgdal à installer
photo <- raster("https://husson.github.io/img/Lena.png")
photo <- as.matrix(photo)
dim(photo)</pre>

- 2 Faire la SVD sur les données définissant cette image
- 3 Reconstruire l'image en utilisant la reconstruction de rang 5 (faire de même avec les rangs 20, 50 puis 100)
- 4 Pour chaque rang, donner le nombre de données qu'il est nécessaire de stocker (et le pourcentage de données par rapport au nombre de données de l'image originale)

SVD pour la reconnaissance faciale : eigenfaces

400 images de visages sur photo 64×64 pixels

Les images sont disponibles ici :

https://github.com/lloydmeta/Olivetti-PNG/tree/master/images Transformation de chaque image en un vecteur de taille $64\times64=4096$

Création d'une matrice 4096×400 puis on fait la SVD

Reconnaissance faciale: eigenfaces

Voici les 8 premiers vecteurs propres mis sous 60 forme d'image (les valeurs ne sont pas comprises entre 0 et 1)

Reconnaissance faciale: eigenfaces

Voici les 8 premiers vecteurs propres mis sous forme d'image (les valeurs ne sont pas comprises entre 0 et 1)

On peut reconstruire une image :

SVD pour le débruitage d'images

On peut débruiter cette image

l'aime la science des données

SVD pour le débruitage d'images

On peut débruiter cette image

Reconstitution par SVD en ne conservant que les premières dimensions (ce qui revient à éliminer le bruit sur les dernières dimensions)

J'aime la science des données

r= 20 , 7.8 %

l'aime la science des données

r= 100 . 39.1 %

l'aime la science des données r= 60 . 23.5 %

l'aime la science des données

r= 200, 78.2 %

l'aime la science des données

Rappels d'analyse factorielle

① Décomposition en valeurs singulières (SVD)

2 SVD et images

3 Lien SVD et ACP, AFC, ACM

Lien SVD et ACP, AFC, ACM

- ACP est une SVD sur données centrées ou centrées-réduites si l'ACP est normée Plus précisément, avec $M=diag(\frac{1}{\sigma_1^2},\frac{1}{\sigma_2^2},...\frac{1}{\sigma_p^2})$ et N la matrice diagonale des poids des lignes (1/n), la SVD de $N^{1/2}XM^{1/2}$ donnent les résultats de l'ACP normée (i.e. les valeurs propres et vecteurs propres de XMX'N et X'NXM)
- AFC est une SVD de la matrice $S=D_r^{-1/2}(P-rc')D_c^{-1/2}$ avec P=X/n, D_r et D_c les matrices diagonales des marges lignes et colonnes de P Les coordonnées des lignes sont : $F=D_r^{-1/2}U\Lambda$ Les coordonnées des colonnes sont : $G=D_c^{-1/2}V\Lambda$
- ACM est une AFC sur le tableau disjonctif de X, et donc une SVD.

Fiche récapitulative de l'ACP

- Quels tableaux de données? Quels objectifs?
- Comment interpréter?
- Comment considérer des individus supplémentaires, variables qualitatives, variables quantitatives supplémentaires?
- Quelle différence entre ACP normée et non normée?
- Dans un tableau avec 1 variable qualitative, les axes de l'ACP obtenus sur le tableau individus × variables quantitatives sont-ils identiques à ceux obtenus à partir des moyennes par modalité, moyennes pondérées par l'effectif de la modalité?
 Donner un contre-exemple, expliciter les différences d'objectif OU démontrer l'égalité.

Fiche récapitulative sur l'AFC

- Quels types de tableaux de données? Quels jeux de données?
 Quels objectifs?
- Comment interpréter?
- Considérer le jeu de données Nobel avec le code suivant :
 fichier <- "https://husson.github.io/MOOC_AnaDo/AnaDo_JeuDonnees_Nobel_avecMaths.csv"
 Nobel <- read.table(fichier, header=TRUE, sep=";", row.names=1, check.names=FALSE)
 Nobel (<- Nobel[1:8,])

Comparer les objectifs et les résultats de l'ACP et ceux de l'AFC sur ce jeu de données. Bien expliciter la différence.

Fiche récapitulative sur l'ACM

- Quels tableaux de données? Quels objectifs? Comment interpréter?
- Prendre le jeu tea du package FactoMineR et faire l'ACM sur le tableau avec uniquement les variables 14 et 18. Puis faire l'AFC sur le tableau de contingence croisant ces 2 variables.

```
library(FactoMineR)
data(tea)
don <- tea[, c(14,18)] ; MCA(don)
TabCont <- table(don) ; CA(TabCont)
```

Comparer objectifs et résultats de l'ACM et l'AFC sur ce jeu de données. Expliciter les différences (dimensionalité et inertie notamment)