OVERVIEW - SCHEMATIC AND COMMUNICATION PROTOCOL

Wiring Schematic

Items	Model	Quantity	Power Supply	
NodeMCU ESP8266	ESP8266-12E	3	4.5 to 9 VDC	
Raspberry Pi (RPi)	RPi 5	1	5 to 15 VDC (27W)	
Photoresistor		3	With resistors	
Light Emitting Diode	RGB LEDs	4	With resistors	
LED Bar Graph	10 segments	1	3.3 to 5 VDC	
LED Matrix	MAX7219	1	5 VDC	
Resistor	220 Ω	10		
Resistor	10k Ω	3		
Push Button	Bread-board Mount	1		

Table 1. Equipment list

Figure 1. Wiring schematic for RPi5

- Raspberry Pi 5
 - \circ 3.3V → Button (+)
 - \circ GPIO 22 → Button (-)
 - \circ GPIO 26 \rightarrow Yellow LED (+)
 - \circ 5V → LED Matrix (VCC)
 - o GPIO10 (MOSI) → LED Matrix (DIN)
 - o GPIO11 (SCLK) → LED Matrix (CLK)
 - o GPIO8 (CE0) → LED Matrix (CS)

Figure 2. Wiring schematic for ESP8266

- ESP8266:
 - \circ 3.3V → Photoresistor (+)
 - o A0 → Photoresistor (+)
 - \circ D1 → RGB Led (+)
 - \circ D2, D3, D5, D6, D7, D8 → LED Bar Graph (1 → 6)

Communication Protocol/Message Description

Protocol Overview

- The system uses broadcast UDP messages over a mobile hotspot network to facilitate communication among multiple ESP8266 devices and a Raspberry Pi. Each message follows a specific format, allowing the devices to identify the type of message, sender, and content.

Message Format

- Each message contains:
 - o Start Bit: Identifies the beginning of a message.
 - o Payload: Contains specific information (e.g., sensor readings, commands).
 - o End Bit: Marks the end of a message.
- General Message Structure:
 - \circ Start Bit: "+++" | "~~~" → indicates the start of the message.
 - \circ End Bit: "***" | "---" → indicates the end of the message.
 - Payload: Content varies depending on the message type (sensor data or control command).
- For example: +++"<PAYLOAD>"***

Communication Flow

- Communication Between ESP8266 Modules:

- Each ESP8266 device broadcasts its Swarm ID and analog sensor reading periodically over UDP.
- All ESP8266 devices listen to these broadcasts to compare their sensor readings and determine if they should be the Master based on the highest reading.
- Sensor Data Broadcast from ESP8266 to Raspberry Pi:
 - Each ESP8266 sends its Swarm ID (self-assigned from the last digit of its IP address) and analog sensor reading (from a light sensor) to the Raspberry Pi.
 - The RPi5 listens to incoming messages and processes each one by logging the data and triggering LED feedback based on the analog reading.
- System Reset Broadcast from RPi5 to ESP8266:
 - When the RPi5's button is pressed, it broadcasts a reset command "RESET_REQUESTED" to all ESP8266 devices.
 - ESP8266 devices, upon receiving this command, reset their internal state as required (not explicitly coded here, but implied for the reset functionality).

Detailed Message Descriptions

- Sensor Data Message (ESP8266 to ESP8266):
 - o Start Bit: "~~~"
 - o Payload: "<Swarm ID>,<Analog Reading>"
 - Swarm ID: Unique identifier for each ESP8266 (based on the last digit of its IP address).
 - Analog Reading: Light sensor reading as an integer, used to compare against other modules' readings.
 - o End Bit: "---"
 - Example: If an ESP8266 with Swarm ID 4 has an analog reading of 750, the message would look like: "~~~4,750---"
- Sensor Data Message (from ESP8266 Master to RPi5):
 - o Start Bit: "+++"
 - o Payload: "<Swarm ID>,<Analog Reading>"
 - o End Bit: "***"
- Reset Request Message (from RPi5 to all ESP8266): When the button connected to the RPi5 is pressed, it broadcasts a reset request message to all ESP8266 devices. This message has the following structure:
 - o Start Bit: "+++"

o Payload: "RESET_REQUESTED"

o End Bit: "***"

Message Type	Direction	Start Bit	Payload	End Bit
Sensor Data	ESP <> ESP	"~~~"	" <swarmid>,<analogreading>"</analogreading></swarmid>	""
Master Data	ESP → RPi	"+++"	" <swarmid>,<analogreading>"</analogreading></swarmid>	"***n
Reset Request	RPi → ESP	"+++"	"RESET_REQUESTED"	"***"

PART 1 - RASPBERRY PI WIFI SETUP AND PACKET DELIVERY

Flowchart

Main Functionality of Raspberry Pi Code

i. Thread Descriptions

- o listen_for_messages:
 - Listens for incoming UDP messages, processes analog readings from swarm devices, and logs the data.
 - Updates master tracking and publishes readings to the MQTT broker at regular intervals.

- Filters outdated readings and assign colors to swarm IDs for plotting.
- o ledMatrix_display:
 - Displays a real-time bar graph of averaged analog readings on an LED matrix.
 - Updates every 4 seconds, managing a buffer of recent readings to maintain a consistent display.
- o monitor_button:
 - Continuously monitors the state of a physical button.
 - Triggers a reset of the system, clears logs, and creates new log files when the button is pressed.
- o plot_graph:
 - Generates and updates real-time plots of analog readings and master durations using Matplotlib.
 - Visualizes the last 30 seconds of data for analog readings and cumulative durations for master devices.

Figure 2. Real-time graphs

ii. Functionality

The RPi code facilitates the coordination of a swarm of ESP8266 devices and visualizes data.

- o Input:
 - Receives UDP messages from ESP8266 devices containing sensor readings and device statuses.
 - Reads button states and accepts reset commands.
- o Process:

- Logs, filters, and analyzes sensor data, determining the master device based on the highest reading.
- Maintains and displays a time-based graph on an LED matrix.
- Publishes sensor data and reset statuses to an MQTT broker for external monitoring on a NodeRED dashboard.

Figure 3. Sample data sent to MQTT broker HiveMQ

Figure 4. Flows in NodeRED

Figure 5. NodeRED dashboard

\circ Output:

- Displays real-time data graphs on an LED matrix.
- Saves system logs to files and publishes updates to MQTT topics.
- Indicates reset events through a yellow LED.

Data Structures/Log Files

- Key Data Structures and Fields:
 - MASTER_LOG_TRACK (dict):
 - Stores logs of data received from each device (IP-based).
 - Fields: IP address, log entry (timestamp, swarm_id, analog reading).
 - o MASTER_DURATION_TRACK (defaultdict):

- Tracks the duration (in seconds) each Swarm ID has been the master.
- Fields: swarm_id, total duration (seconds).
- SWARM_COLORS (dict):
 - Assigns a color to each Swarm ID.
 - Fields: swarm_id, assigned color (red, green, yellow).
- o ANALOG_READINGS (deque):
 - Stores the last 30 analog readings from the devices.
 - Field: analog reading value.

• Log File:

- LOG_FILE (str): The current log file name, dynamically generated based on the timestamp of file creation.
- Log Content: Includes a summary of all devices that became masters (IP addresses), how long each device was a master (from the beginning), and raw data from each master.

```
n.py × 🖹 master_log_2024-11-22_20-35-06.txt ×
                                                                          Time: 2024-11-22 20:35:10.394412, Swarm ID: 4, Reading: 202
ster log 2024-11-22 20-35-06.txt
                                                                          Time: 2024-11-22 20:35:10.495166, Swarm ID: 4, Reading: 181
 Log File Created: 2024-11-22 20:35:17.117582
                                                                         Time: 2024-11-22 20:35:12.318173, Swarm ID: 4, Reading: 149
Time: 2024-11-22 20:35:13.105833, Swarm ID: 4, Reading: 216
 Masters Summary:
                                                                         Time: 2024-11-22 20:35:13.784238, Swarm ID: 4, Reading: 224
 Swarm ID: 7, Total Master Duration: 45 seconds
 Swarm ID: 4, Total Master Duration: 19 seconds
                                                                         Time: 2024-11-22 20:35:13.808395, Swarm ID: 4, Reading: 226
                                                                         Time: 2024-11-22 20:35:13.818458, Swarm ID: 4, Reading: 252
                                                                         Time: 2024-11-22 20:35:13.840650, Swarm ID: 4, Reading: 244
 Raw Data Logs:
                                                                          Time: 2024-11-22 20:35:13.885384, Swarm ID: 4, Reading: 248
 IP: 172.20.10.7
                                                                         Time: 2024-11-22 20:35:13.981895, Swarm ID: 4, Reading: 253
 Time: 2024-11-22 20:35:07.121484, Swarm ID: 7, Reading: 326
                                                                         Time: 2024-11-22 20:35:14.107132, Swarm ID: 4, Reading: 256
                                                                         Time: 2024-11-22 20:35:14.281694, Swarm ID: 4, Reading: 260
 Time: 2024-11-22 20:35:07.308627, Swarm ID: 7, Reading: 326
 Time: 2024-11-22 20:35:07.430942, Swarm ID: 7, Reading: 328
                                                                         Time: 2024-11-22 20:35:14.552487, Swarm ID: 4, Reading: 256
Time: 2024-11-22 20:35:15.946563, Swarm ID: 4, Reading: 230
 Time: 2024-11-22 20:35:07.532515, Swarm ID: 7, Reading: 327
 Time: 2024-11-22 20:35:07.650436, Swarm ID: 7, Reading: 326
 Time: 2024-11-22 20:35:07.750493, Swarm ID: 7, Reading: 328
 Time: 2024-11-22 20:35:07.861018, Swarm ID: 7, Reading: 327
                                                                         Time: 2024-11-22 20:35:10.626422, Swarm ID: 6, Reading: 197
 Time: 2024-11-22 20:35:07.986091, Swarm ID: 7,
                                                      Reading: 326
                                                                         Time: 2024-11-22 20:35:10.990807, Swarm ID: 6, Reading: 202
 Time: 2024-11-22 20:35:08.088231, Swarm ID: 7, Reading: 325
                                                                         Time: 2024-11-22 20:35:11.036464, Swarm ID: 6, Reading: 194
 Time: 2024-11-22 20:35:08.195056, Swarm ID: 7, Reading: 326
                                                                          Time: 2024-11-22 20:35:11.104917, Swarm ID: 6, Reading: 211
 Time: 2024-11-22 20:35:08.302682, Swarm ID: 7, Reading:
                                                                               2024-11-22 20:35:11.422212, Swarm ID: 6,
```

Figure 6. Log content example

• Data Flow:

- o Input: Messages received from devices (IP address, Swarm ID, analog reading).
- Process: Log the data, assign a color to Swarm IDs, track the master device, update readings.
- o Output:
 - Log file containing master durations and raw data logs.
 - Real-time plots with updated readings and master durations.