Elements of Mechanical Engineering

Autonomous

[2018 Syllabus]

Subject code: 18ME1ICEME/18ME2ICEME

		I SEMI	ESTER B.E./I	B.Tech (PHY	SICS	GROU	P)					
			t t	Su Su		Teach Hours /	0					
Course and Course Code Course Title		Course Title	Teaching Department	Paper Settin Board	Theory Lecture	Lecture Tutorial Practical/ Drawing		uration in hours			otal Marks	Credits
					L	T	P	Ω		SEE	Ţ	
ESC	18ME1ICE ME	Elements of Mechanical Engineering	ME, Auto & IEM Engineering	Mechanical Engineering	2	2		03	50	50	100	3

Course outcomes: At the end of the semester, students will be able to

CO.1	Identify the various sources of energy, comprehend the properties of steam &working of
	boilers and turbines
CO.2	Understand the working of Internal combustion engines and refrigeration concepts.
CO.3	Understand various machine tools, their specifications and modern manufacturing systems
CO.4	Understand various metal joining processes
CO.5	Understand the fundamentals of various power transmission systems
CO.6	Understand and appreciate significance of mechanical engineering in different fields of
	engineering

CO-PO matrices

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO.1	3	3											3	2	
CO.2	3	3											3	2	
CO.3	3				3								3	2	
CO.4	3												3	2	
CO.5	3	3				·							3	2	
CO.6	3												3	2	

Unit	Contents	Hours	COs
1	Steam: Formation of steam, Types of steam, Steam properties-Enthalpy,		
	dryness fraction, wetness fraction, latent heat, sensible heat, Internal		
	energy, Specific volume, External work of evaporation, degree of		
	superheat, amount of superheat, saturated and superheated temperature,		
	Numericals on steam.		
	Boilers: Classification of Boilers, Babcock and Wilcox Boiler,		
	Lancashire Boiler, Boiler mountings and accessories (no sketches)		
	Steam Turbines: Classification, Principle operation of Impulse and		
	reaction turbines, Delaval's turbine, Parson's turbine		
	Water turbines: Classification, Principles and operations of Pelton		
	wheel, Francis turbine, Kaplan turbine.	7	
	Demonstration of Boiler models and working of Water Turbines in Heat		1,6
	Transfer Laboratory and Fluid Machinery Laboratory	1	
2	Internal combustion (I.C) engines:I.C. Engines parts, 2 Stroke and 4		
	stroke petrol engines, 4 stroke diesel engines. P-V diagrams of Otto and		
	Diesel cycles, Numericals on indicated power, brake power, indicated		
	thermal efficiency, brake thermal efficiency, mechanical efficiency and specific fuel consumption.		
	Refrigeration: Definitions –Refrigeration, Ton of Refrigeration, Unit of		
	Refrigeration, Refrigerating effect, Ice making capacity, COP, Relative		
	COP, Properties of refrigerants, list of commonly used refrigerants,		
	Principle and working of Vapour Compression Refrigeration and Vapour		
	Absorption Refrigeration	7	
	Demonstration of working of I.C Engines and Vapour Compression		2,6
	Refrigeration test rig in Energy Conversion and Heat Transfer Laboratory	1	
3	Lathe: Components of Lathe, Classification, Principle of operation, lathe		
	specification, Lathe operations: Turning, facing, knurling, thread cutting,		
	Taper Turning by swiveling compound rest.		

Bench drilling machine, Radial drilling machine, Operations on drilling machine-Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter boring and Spot facing. Introduction to Advanced Manufacturing Systems		
boring and Spot facing.		
Introduction to Advanced Manufacturing Systems		
Computer Numerical Control (CNC): Introduction, Components of		
CNC, open loop and closed loop systems, advantages and disadvantages of CNC.		
Robotics: Introduction, Classification based on robot configuration:		
Polar, Cylindrical, Cartesian and jointed arm configuration. Application,		
Advantages and disadvantages of robots		
	7	
Demonstration of Lathe operations(Turning, Taper Turning) and Drilling		
operations(Drilling, Boring), C.N.C machine in Machine shop	1	3,6
Laboratory and R &D Centre respectively		
4 Joining process		
Soldering: Principle of soldering, Surface preparation, Methods of		
soldering, Applications		
Brazing: Principle of brazing, methods of brazing, Applications		
Adhesive Bonding: Principle of Adhesive bonding, Adhesive types,		
Surface preparation and application methods, Applications of Adhesive bonding, Advantages and limitations		
Welding: Definition, Classification, Applications of welding, Flux and		
its functions, Description of arc welding, Electrodes used in arc welding,		
Description of oxyacetylene welding, Types of flames produced in gas		
welding, Comparison between welding, soldering and Brazing, Welding		
Defects.	8	4,6
Hands on practice on welding and soldering facilities in		
the Workshop Practice Laboratory		
5 Power Transmission		
Belt drives-Terminology of a belt drive, open and cross belt drives,		
Derivations on length of open and cross belt, Angle of contact, Ratio of		
belt tensions (no derivation), Centrifugal tension, Power transmitted by a		
belt drive, Maximum Tension in the Belt, Condition for Maximum		

PowerTransmission (no derivation), Initial Tension in the Belt, Steppe	d	
pulley, Jockey pulley, Fast and Loose pulley. Definitions-Slip, Creep	ρ,	
velocity ratio. Applications, Advantages and Disadvantages of flat bell	lt	
drive, Numericals on belt drives.		
Gear Drives: Types of Gears and applications, Advantages and	d	
disadvantages of gear drive, Gear Tooth Nomenclature, Velocity ratio of	of	
simple and compound gear train, Numericals on Gear drives		
	7	
Demonstration of Belt & Gear drives in the Machine shop Laboratory	1	5,6

Note:

- 1. Questions for CIE and SEE not to be set from self-study component
- 2. Assignment questions should be from self-study component only

Self-study component

- Unit 1: Solar energy, wind energy, bio energy, Environmental issues like global warming, ozone depletion
- Unit 2: Room Air-conditioner, Hybrid Engines
- Unit 3: Principle of Casting, forging, extrusion, rolling and milling
- Unit 4: TIG welding, MIG welding, Friction welding
- Unit 5: Differential Gear Drives, Gearbox, Timing belts

Text Books

- 1. Elements of Mechanical Engineering, K. R. Gopalakrishna, Subhas Publications, Bangalore, 2008.
- 2. Elements of Mechanical Engineering, Vol.-1 & 2, HajraChoudhury, Media Promoters, New Delhi, 2001.

Reference Books

- Mikell P. Groover, "Fundamentals of Modern Manufacturing" Fourth Edition, JOHN WILEY & SONS, INC.
- 2. Bharat VinjamuriManjunathShettar, "Computer Integrated Manufacturing" Sunstar Publisher, 2016

COMPUTER AIDED ENGINEERING DRAWING

Course Code: **18ME1ICCED/18ME2ICCED** Credits: 3 **L: P: T: S: 1: 3: 0: 0** CIE Marks: 50

Exam Hours: 03 SEE Marks: 50

			ıt	පි		Teacl Hours	_					
Course and Course Code		Course Title	Teaching Departmen	Paper Settii Board	Theory Lecture Tutorial		Practical/ Drawing	uration in hours	TE Marks	SEE Marks	otal Marks	Credits
					L	T	P		0	S	T	
ESC	18ME2ICEGR	Engineering Graphics	ME, Auto & IEM Engineering	Mechanical Engineering	2		2	03	50	50	100	3

Course Outcomes: At the end of the semester Students will be able to

CO.1	Make use of drafting tools in creating engineering drawing.	1
CO.2	Know and understand the conventions and the methods of engineering drawing.	2
CO.3	The student will be able to identify the position of the object and draw the views using orthographic projection technique in their respective quadrants.	3
CO.4	Construct the appropriate drawing satisfying the constraints given.	3
CO.5	Apply the knowledge of isometric projection to show pictorial view of an object	4
CO.6	Improve their visualization skills so that they can apply these skills in design and developing new products.	4

Mapping of Course Outcomes to Program Outcomes

C	P C 1	P O 2	P C 3	P O 4	P O 5	P O 6	P O 7	P O 8	P C 9	P O 1 0	P O 1 1	P O 1 2	P S O 1	P S O 2	P S O 3
C O	3	-	_	-	2	-	-	1	1	-	-	-	-	2	-
C O	3	-	-	-	-	-	-	-	-	-	-	-	2	1	-
C O	3	3	2	-	2	-	-	1	1	-	-	-	3	2	-
C O	3	3	2	-	2	-	-	-	-	-	-	-	3	2	-

. 4															
C O	3	3	2		2	-	-	-	-	-	-	-	3	2	1
C O	3	3	2	-	2	-	-	-	-	-	-	-	2	2	-

U	Contents of Course	Hours	COs
n			
i t			
1	Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. Definitions of HP, VP, RPP & LPP. Creation of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly- lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering.	3	CO1 CO2
2	Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection Only) Introduction, Definitions—projections of plane surfaces—triangle, square, rectangle, pentagon, hexagon and circle, planes in different positions by change of position method only (No problems on punched plates and composite plates).	08	CO3 CO4

3	Projections of Solids (First angle Projection only) Introduction, Definitions — Projections of right regular prisms, pyramids, cylinders and cones in different positions (No problems on tetrahedron, cube, octahedron, combination of solids and suspended solids).	12	CO3 CO4 CO6
4	Sections and Development of Lateral Surfaces of Solids Introduction, Section planes, Sections, Sections of right regular prisms, pyramids, cylinders and cones resting with base on HP. (No problems on sections of solids) Development of lateral surfaces of above solids, their frustums and truncations. (No problems on lateral surfaces of trays, tetrahedrons, spheres and transition pieces).	08	CO4 CO6
5	Isometric Projection Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron(cube), right regular prisms, pyramids, cylinders, cones, spheres, cut spheres and combination of solids (Maximum of two solids).	08	CO4 CO5

Text Books:

- 1) N.D. Bhatt & V.M. Panchal, **Engineering Drawing**, Charotar Publishing House, Gujarat, 48th edition, 2005.
- 2) A Primer on Computer Aided Engineering Drawing, Published by VTU, Belgaum, 2006

Reference Books:

- 1) K.R. Gopalakrishna, **Engineering Graphics**, Subash Publishers Bangalore, 32nd edition, 2005.
- 2) Primer Solution Book, Published by VTU, Belgaum, 2006

CIE for 50 marks

1. Assignment/sketch book/Print out	25 Marks
2. Surprise test/Mid semester test	10 Marks
3. Test conducted towards the end of semester	15Marks

Question paper pattern for SEE:

- 1. Module -1 is only for practice and not for examination.
- 2. Question paper for each batch of students will be set separately by the examination authority. The answer sheets will have to be jointly evaluated by the Internal & External examiners.
- 3. A maximum of THREE questions will be set as per the following pattern (No mixing of questions from different Modules).

Q. No.	From Chapters		Marks Allotted
1	Module 2		30
2	M	40	
3	Module 4 & 5		30
Total			100
Q. No.	Solutions and Sketching in the Graph Book	Computer Display and Printout	Total Marks

Total Marks	50	50	100
3	15	15	30
2	20	20	40
1	15	15	30

Students have to submit the computer printouts and the sketches drawn on the graph sheets at the end of the examination. Both Internal & External examiners have to jointly evaluate the solutions (sketches) and computer display & printouts of each student for 100 marks (50 marks for solutions & sketches + 50 marks for computer display and printouts) and submit the marks list along with the solution (sketches) on graph sheets & computer printouts in separate covers.

- 4. Each batch must consist of a minimum of 10 students and a maximum of 12 students.
- 5. Examination can be conducted in parallel batches, if necessary.