Discrete random variables — Expectation and variance

MTH382 Probability Theory for Finance and Actuarial Science

Parin Chaipunya

KMUTT

^LMathematics @ Faculty of Science

Overview

This lecture is bears the most important tools in probability, which are expectation and variance of a r.v. Expectation could be thought of as the *mean* (or *average*) of all possible values produced by a random variable.

Expectation

Definition

Always consider a probability space (Ω, \mathcal{F}, P) .

Definition 1.

Let X be a discrete r.v. with values in $E \subset \mathbb{R}$ with the condition that

either
$$E \subset \mathbb{R}_+$$
 or $\sum_{x \in F} |x| P(X = x) < \infty$. (1)

Then the **expectation** (or **expected value**) of X, denoted with $\mathbb{E}X$ (or $\mathbb{E}[X]$), is defined by

$$\mathbb{E}X := \sum_{x \in E} x P(X = x).$$

Remark.

The condition (1) is only to gurantee that the summation in the definition of $\mathbb{E}X$ is well-defined. Note that an expectation could takes an infinite value.

Examples

We begin with the simplest examples.

Example 2.

Compute $\mathbb{E}X$ where X represents the following situtations.

- (1) X is the result of tossing a fair dice.
- (2) X is the result of tossing an unfair dice with

$$P(\mathbf{O}) = 0.2, \quad P(\mathbf{O}) = 0.1, \quad P(\mathbf{O}) = 0.2, \quad P(\mathbf{O}) = 0.1, \quad P(\mathbf{O}) = 0.3, \quad P(\mathbf{O}) = 0.1.$$

Example

Now we move to a more complicate example.

Example 3.

Consider S_n which is the number of heads appearing in tossing a coin n times.

Calculate the expected value $\mathbb{E}[S_n]$.

Example

The next example shows that even a r.v. *X* has finite values, its expectation could be infinite.

Example 4.

Let X be a r.v. taking values in $E = \mathbb{N}$ with the distribution

$$P(X=n)=\frac{1}{cn^2}$$

for each $n \in \mathbb{N}$, where $c = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$.

- (a) Show that *P* is a probability measure.
- (b) Show that $\mathbb{E}X = +\infty$

Expectation

Properties of ${\mathbb E}$

Properties of \mathbb{E}

Theorem 5.

The following properties hold.

(a) The expectation is linear, i.e.

$$\mathbb{E}[\lambda_1 X_1 + \dots + \lambda_n X_n] = \lambda_1 \mathbb{E} X_1 + \dots \lambda_n \mathbb{E} X_n$$

for any $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, where $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ are discrete r.v.s.

(b) The expectation is monotone, i.e. for any discrete r.v.s $X_1, X_2: \Omega \to \mathbb{R}$ such that $X_1 \leq X_2$, then

$$\mathbb{E}X_1 \leq \mathbb{E}X_2$$
.

(c) The expectation satisfies the triangle inequality, i.e.

$$|\mathbb{E}X| \leq \mathbb{E}|X|$$

Variance

Definition

Take a discrete r.v. X taking values in $E \subset \mathbb{R}$. We say that it is **integrable** if $\mathbb{E}[|X|] < \infty$ and **square integrable** if $\mathbb{E}[X^2] < \infty$.

Definition 6.

Let X be a discrete r.v. with values in $E \subset \mathbb{R}$ which is square integrable, and let $\mu := \mathbb{E}X$. The **variance** of X is defined by

$$var(X) := \mathbb{E}[(X - \mu)^2] = \sum_{x \in E} (x - \mu)^2 P(X = x).$$

A lot of times, we use the notation $\sigma^2 := var(X)$.

A better formula

Proposition 7.The variance also has the following expression

$$\sigma^2 = \mathbb{E}[X^2] - \mu^2.$$

Examples

Example 8.

Consider two r.v.s X and Y, where we express them with their distribution functions

$$\pi_X(x) := \begin{cases} 0.5 & \text{if } x = 10, \\ 0.5 & \text{if } x = -10, \\ 0 & \text{otherwise,} \end{cases} \qquad \pi_Y(y) := \begin{cases} 1 & \text{if } y = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Compare and explain between their expectations $\mathbb{E}X$ and $\mathbb{E}Y$ and also their variances σ_X^2 and σ_Y^2 .

Example 9.

Compute the variances of r.v.s in the previous examples.

Variance

Propoerties of var

Properties of var

Theorem 10.

Let X be a discrete r.v. and $a, b \in \mathbb{R}$, then

$$var(aX + b) = a^2 var(X).$$

Theorem 11.

If X_1, \ldots, X_n are independent discrete r.v.s, then

$$var(X_1 + \cdots + X_n) = var(X_1) + \cdots + var(X_n).$$

Example

Example 12.

Consider repeatedly tossing a weighted coin with P(H) = p and P(T) = 1 - p, with $p \in (0, 1)$. Find the expected value and variance of S_n representing the number of heads appearing in the n tosses.

Moments

Moments

We have studied $\mathbb{E}X$ and var(X), which is related to $\mathbb{E}[X^2]$. One might be curious about $\mathbb{E}[X^k]$ for larger $k \in \mathbb{N}$ and in fact, some of them has special meanings. For examples, $\mathbb{E}[X^3]$ is the **skewness** (the lack of symmetry) and $\mathbb{E}[X^4]$ is the **kurtosis** (the fatness of the tail).

In fact, $\mathbb{E}[X^k]$ is called the k^{th} moment of X.

One could also consider the moment generating function $M_X(s) := e^{sX}$, since this function captures *all* the moments of X from the fact that

$$\left. \frac{d^k M_X}{ds^k} \right|_{s=0} = \mathbb{E}[X^k]$$

for all $k \in \mathbb{N}$.

Takeaways

Takeaways

- Independence of random variables is stronger than that of events It includes independence of all the events caused by different values of the involved random variables.
- An i.i.d. sequence is heavily used in stochastic processes that describes a sequence of random experiments or sequence of events that occur over time.

