Homework

Question 5:

Use the definition of Θ in order to show the following:

a.
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

Solution:

In order to prove that $f = \Theta(g)$, we must first prove that f = O(g) and $f = \Omega(g)$:

Proof of f = O(g):

$$f(n) = 5n^3 + 2n^2 + 3n$$

 $g(n) = n^3$

First, we will use c=10 and n_0 =1.

We will show that for any $n \ge 1$, $f(n) \le c*g(n)$.

For $n \ge 1$, it is clear that $n \le n^2 \le n^3$:

$$f(n) = 5n^3 + 2n^2 + 3n \le f(n) = 5n^3 + 2n^3 + 3n^3$$

 $f(n) = 5n^3 + 2n^2 + 3n^3 \le f(n) = 10n^3 = 10 * g(n)$

The result after combining the inequalities is:

$$f(n)=5n^3 + 2n^2 + 3n \le 10n^3 = 10 * g(n)$$

We have come to the conclusion that $f \le 10 * g(n)$ and therefore f = O(g).

Proof of $f = \Omega(g)$:

$$f(n) = 5n^3 + 2n^2 + 3n$$

 $g(n) = n^3$

First, we will use c=5 and n_0 =1.

We will show that for any $n \ge 1$, $f(n) \ge c*g(n)$.

For $n \ge 1$, it is clear that $n \ge 1, 2n^2 + 3n \ge 0$:

When adding $5n^3$ to both sides, we get the following:

$$5n^3 + 2n^2 + 3n \ge 5n^3 = 5n^3 + 2n^2 + 3n \ge 5 * g(n)$$

We have come to the conclusion that $f \ge 5 * g(n)$ and therefore $f = \Omega(g)$.

Both f = O(g) and $f = \Omega(g)$ have been proven and, as a result, we have proved that f = O(g).

b.
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

Solution:

In order to prove that $f = \Theta(g)$, we must first prove that f = O(g) and $f = \Omega(g)$:

Proof of f = O(g):

$$f(n) = \sqrt{7n^2 + 2n - 8}$$

First, we will use c=10 and n_0 =1.

We will show that for any $n \ge 1$, $f(n) \le c * g(n)$.

Since f(n) is included, we know the following:

$$7n^2 + 2n - 8 \le 7n^2 + 2n^2 = 7n^2 + 2n - 8 \le 9n^2$$

In order to get our f(n), we can take the square root of both sides:

We solve for c*g(n) as $\sqrt{9n^2} = 3n$.

It has also been shown that $7n^2 + 2n - 8 \le 9n^2$

And,
$$\sqrt{7n^2 + 2n - 8} \le 3n$$

In other words, $f(n) \le 3 * n$.

Therefore, it has been proven that f = O(g).

Proof of $f = \Omega(g)$:

$$f(n) = \sqrt{7n^2 + 2n - 8}$$

 $g(n) = \sqrt{7n^2}$

First, we will use c = 2 and $n_0 = 4$.

We will show that for any $n \ge 4$, $f(n) \ge c*g(n)$.

Because f(n) must be greater than g(n), we can go ahead and begin to eliminate expressions:

In $f(n) = \sqrt{7n^2 + 2n - 8}$, it is understood that $7n^2 \ge 7n^2$, $2n \ge 2n$ and $0 \ge -8$.

We can go ahead and add that $g(n) = \sqrt{7n^2}$

Because $2n-8 \ge 0$, it is understood that $n \ge 4$.

The bound must be less than $\sqrt{7}$ and, consequently, we are left with c = 2. Therefore, it has been proven that $f = \Omega(g)$.

Both f = O(g) and $f = \Omega(g)$ have been proven and, as a result, we have proved that f = O(g).