

Department of Computer Science and Engineering School of Electrical and Computer Sciences IIT Bhubaneswar

Date: 25-04-2025

Deep Learning Project on

Street View House Number Recognition

•••

By
Sourav Makal-24AI06005
Dibyajyoti Nayak-24AI06012
Puvvula Nikhileswari-24AI06017
Polasani Likhitha Reddy-S25EC08002

Contents

- Problem Statement
- Dataset Description
- Pre-processing
- CNN Models
 - Custom Architecture
 - ResNet18
- Results

Problem Statement

- Recognition of street-level house numbers is a critical task for urban mapping, navigation systems, and infrastructure assessment.
- In this project, we aim to develop a deep learning model that can accurately recognize multi-digit house numbers from real-world images using the Street View House Numbers (SVHN) dataset.

Goal

The goal is to automate visual number recognition in complex environments.

Dataset Description

- The **SVHN** dataset is a real-world image dataset for developing models that recognize digits from street view imagery.
- Images are in .png format with variable resolution and real-world distortions.
- Each digit in the image is labeled and has a bounding box stored in a .mat file.

File	Description	No of Digits
train.zip	Labeled training Digits	73,257
test.zip	Labeled test Digits	26,032

Dataset Description(Cont.)

Fig 1: Sample Images

Labels

- 10 classes for digits: '1' → 1, '9' → 9, '0' → 10 (not 0).
- Each image may contain multiple digits.

Annotation Format

- digitStruct.mat: Contains bounding box info per digit:
 - name: Image filename
 - bbox: Array of structs → height,
 width, label, top, left

Preprocessing

- 1. Extracted Data from .tar.gz archives (train/test).
- 2. Parsed digitStruct.mat for filenames, bounding boxes, and digit labels.
- 3. Converted labels (10 \rightarrow 0) and created structured CSV files.
- 4. Filled missing digits with -1 for consistency.

Visualizations

- Digit length distribution.
- Digit frequency.

Output: Clean CSVs ready for model training.

CNN Architectures

Architecture 1 - Custom Architecture

Architecture 2 - Modified Pretrained Architecture

Results

Loss over Epochs Train Loss 1200 Validation Loss 1000 800 400 200 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 Epoch

Custom Architecture's Epoch vs Loss Curve

ResNet Architecture's Epoch vs Loss Curve

Test Accuracy: 72.36%

Test Accuracy: 86.33%