Modelos de sistemas de control mediante bloqueos funcionales

Capitulo 5

Libro: Teoría de Control para Informáticos

Sistema de control compuesto por varios elementos

Elementos de un diagrama en bloques

Bloque en un sitema de lazo abierto

Bloques en un sistema de lazo cerrado

Donde:
$$E(s) = S_i(s) - R(s) \cdot S_o$$

R(s) Función transferencia del lazo de realimentación

Resulta:
$$S_o(s) = E(s) \cdot T(s)$$

$$S_o(s) = [S_i(s) - R(s) \cdot S_o] \cdot T(s)$$

$$S_o(s) + S_o(s)R(s)T(s) = S_i(s)T(s)$$

$$\frac{S_o(s)}{S_i(s)} = \frac{T(s)}{1 + T(s)R(s)} = T_G \qquad \text{(Función transferencia global para realimentación negativa)}$$

Si la realimentación es positiva será:

$$T_G = \frac{S_o(s)}{S_i(s)} = \frac{T(s)}{1 - T(s) \cdot R(s)}$$

Bloques en serie

Operaciones básicas con bloques funcionales

- Eliminación de un lazo de realimentación.
- Eliminación de un bloque perteneciente a un lazo de realimentación.
- Eliminación de un bloque perteneciente a un lazo de prealimentación.
- Eliminación de un lazo de prealimentación.
- Cambio de la ubicación de los comparadores.
- Traslado de un comparador a una posición anterior a un bloque.
- Traslado de un comparador a una posición posterior a un bloque.
- Movimiento de un punto de separación.

Eliminación de un lazo de realimentación

Eliminación de un bloque perteneciente a un lazo de realimentación

Eliminación de un bloque perteneciente a un lazo de prealimentación.

Cambio de la ubicación de un comparador a una posicion anterior a un bloque

Cambio de la ubicación de un comparador a una posicion posterior a un bloque

Movimiento de un punto de separacion antes y despues de un bloque

Movimiento de un punto de separacion antes de un comparador

Movimiento de un punto de separacion despues de un comparador

Ejemplo de simplificacion de diagramas en bloques

La combinación de los bloques en serie es el producto de las funciones transferencia de cada uno de ellos.

Paso 1: Combinamos los bloques en serie T,(s) y T,(s).

Ejemplo de simplificacion de diagramas en bloques

Paso 2: Eliminación el lazo de prealimentación T₄(s).

Paso 3: Eliminación el lazo de realimentación R,(s).

Ejemplo de simplificacion de diagramas en bloques

Paso 4: Combinamos los bloques en serie en el trayecto directo.

Paso 5: Eliminación el lazo de realimentación R₂(s).

Si denominamos
$$G_{(s)} = \frac{(T_{1(s)} + T_{2(s)}) \cdot (T_{3(s)} + T_{4(s)})}{1 - (T_{1(s)} + T_{2(s)}) R_{1(s)}}$$
 entonces queda el segmento bloque
$$\frac{S_{1(s)}}{1 + G_{(s)} \cdot R_{2(s)}} \xrightarrow{S_{0(s)}} S_{0(s)}$$

La señal de salida del sistema será:

$$S_{0|\mathcal{S}|} = \frac{\frac{(T_{1|\mathcal{S}|} + T_{2|\mathcal{S}|}) \cdot (T_{3|\mathcal{S}|} + T_{4|\mathcal{S}|})}{1 - (T_{1|\mathcal{S}|} + T_{2|\mathcal{S}|}) R_{1|\mathcal{S}|}}}{1 + \frac{(T_{1|\mathcal{S}|} + T_{2|\mathcal{S}|}) \cdot (T_{3|\mathcal{S}|} + T_{4|\mathcal{S}|})}{1 - (T_{1|\mathcal{S}|} + T_{2|\mathcal{S}|}) R_{1|\mathcal{S}|}} \cdot R_{2|\mathcal{S}|}}$$

Sistemas con entradas multiples

- 1. Considerar de a una las entradas, haciendo todas nulas menos una; se puede comenzar por cualquiera.
- 2. Transformar el diagrama de bloques resultante a uno que contenga una trayectoria directa y una de realimentación.
- 3. Hallar la salida del sistema que se debe a la entrada que hemos elegido en el paso 1.
- 4. Repetir los pasos 1, 2 y 3 para cada una de las señales de entrada.
- Calcular la salida final del sistema como la suma algebraica de las salidas individuales debido a cada una de las señales de entrada.