Sum and Xor

Given a integer N, find the number of positive integers X such that $X \le N$ and $N + X = N^X$ (N xor X).

Input Format

First line of input contains T - number of test cases. Its followed by T lines, each line contains a single integer N.

Constraints

30 points $1 \le T \le 10^3$ $0 \le N \le 10^3$ 70 points $1 \le T \le 10^4$ $0 \le N \le 10^{18}$

Output Format

For each test case, print the count of X's, separated by new line.

Sample Input 0

2 5 10

Sample Output 0

1 3

Explanation 0

Test Case 1

Possible values: $5+2 = 5^2$.

Test Case 2

Possible values: $10+1 = 10^1$, $10+4=10^4$, $10+5=10^5$