

LhARA linear optics documentation

A.N. Other

1 Introduction

Introduction to the documentation!

2 Coordinate systems

- 2.1 Laboratory coordinate system
- 5 2.2 Reference particle local coordinate system

Figure 1: Reference particle local coordinate system

References

Introduction

This document summarises the steps needed to set-up and run LhARA_Beamline linear optics simulation of the LhARA beamine. A summary of the tasks that LhARA_Beamline software suite performs will be documented in due course. LhARA_Beamline has been developed in python; python 3 is assumed.

Getting the code

LhARA_Beamline is maintained using the GitHub version-control system. The latest release can be downloaded from the ... should we moce to the LhARA repository ... its git, but, bespoke to CCAP/LhARA.

Dependencies and required packages

- 15 LhARA_Beamline requires the following packages:
 - Python modules: scipy, matplotlib, pandas, and iminuit;
 - CERN programme library: pyroot (which may be installed using the standard root installers, see the documentation at https://root.cern/install/).

It may be convenient to run LhARA_Beamline in a "virtual environment". To set this up, after updating your python installation to python 3.9.2, and installing root, execute the following commands:

- 1. python3 -m venv --system-site-packages venv
 - This creates the director venv that contains files related to the virtual environment.
- 2. source venv/bin/activate
- 3. python -m pip install pandas scipy matplotlib iminuit
- To exit from the virtual environment, execute the command deactivate.

The command source venv/bin/activate places you back into the virtual environment.

Unpacking the code, directories, and running the tests

After downloading the package from GitHub, or cloning the repositiry, you will find a "README.md" file which provides some orientation and instructions to run the code. In particular, a bash script "startup.bash" is provided which:

- Sets the "LhARAOpticsPATH" environment variable so that the files that hold constants etc. required by the code can be located; and
- Adds "01-Code" (see below) to the PYTHONPATH. The scripts in "02-Tests" (see below) may then be run with the command "python 02-Tests/< filename >.py".
- 35 Below the top directory, the directory structure in which the code is presented is:
 - 01-Code: contains the python implementation as a series of modules. Each module contains a single class or a related set of methods.
 - 02-Tests: contains self-contained test scripts that run the various methods and simulation packages defined in the code directory.
- 11-Parameters: contains the parameter set used in 02-Tests/RunSimulation.py to generate muon decays in the production straight.

The instruction in the README . md file should be followed to set up and run the code.

Running the code

The file in 02-Tests/RunSimulation.py - will run the code.

- The file **RunSimulation.py** contains:
 - The definition of csv input file to control the running of the Simulation; and
 - The call to the Simulation class with; the number of events to generate; the central energy to generate; and the filenames.