CS 33

Data Representation, Part 1

Representing Data in Memory

- x is a 4-byte integer
 - how do the 32 bits represent its value?

4294967294: 4294967295:

Unsigned Integers

$$\begin{vmatrix} b_{w-1} & b_{w-2} & b_{w-3} \end{vmatrix}$$
 ... $\begin{vmatrix} b_2 & b_1 & b_0 \end{vmatrix}$

$$value = \sum_{i=0}^{w-1} b_i \cdot 2^i$$

Sign-magnitude

value =
$$(-1)^{b_{W-1}} \cdot \sum_{i=0}^{W-2} b_i \cdot 2^i$$

- two representations of zero!
 - computer must have two sets of instructions
 - one for signed arithmetic, one for unsigned

- Ones' complement
 - negate a number by forming its bit-wise complement

$$b_{w-1} = 0 \Rightarrow$$
 non-negative number

value =
$$\sum_{i=0}^{w-2} b_i \cdot 2^i$$

 $b_{w-1} = 1 \Rightarrow$ negative number

value =
$$\sum_{i=0}^{w-2} (b_i-1)\cdot 2^i$$

two zeros!

Two's complement

 $b_{w-1} = 0 \Rightarrow$ non-negative number

value =
$$\sum_{i=0}^{w-2} b_i \cdot 2^i$$

 $b_{w-1} = 1 \Rightarrow$ negative number

value =
$$(-1) \cdot 2^{w-1} + \sum_{i=0}^{w-2} b_i \cdot 2^i$$

one zero!

Example

• w = 4

0000: 0

0001: 1

0010: 2

0011: 3

0100: 4

0101: 5

0110: 6

0111: 7

1000: -8

1001: -7

1010: -6

1011: -5

1100: -4

1101: -3

1110: -2

1111: -1

Negating two's complement

$$value = -b_{w-1}2^{w-1} + \sum_{i=0}^{w-2} b_i 2^i$$

– how to compute –value? (~value)+1

Negating two's complement (continued)

$$value + (\sim value + 1)$$

$$= (value + \sim value) + 1$$

$$= (2^{w}-1) + 1$$

$$= 2^{w}$$

$$= 1 0 0 0 \dots 0 0$$

Quiz 1

- We have a computer with 4-bit words that uses two's complement to represent negative numbers. What is the result of subtracting 0010 (2) from 0001 (1)?
 - a) 0111
 - b) 1001
 - c) 1110
 - d) 1111

Signed vs. Unsigned in C

- char, short, int, and long
 - signed integer types
 - right shift (>>) is arithmetic
- unsigned char, unsigned short, unsigned int, unsigned long
 - unsigned integer types
 - right shift (>>) is logical

Numeric Ranges

Unsigned Values

$$- UMin = 0$$

$$000...0$$

$$- UMax = 2^{w} - 1$$

$$111...1$$

Two's Complement Values

$$- TMin = -2^{w-1}$$

$$100...0$$

$$- TMax = 2^{w-1} - 1$$

$$011...1$$

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary		
UMax	65535	FF FF	11111111 11111111		
TMax	32767	7F FF	01111111 11111111		
TMin	-32768	80 00	10000000 00000000		
-1	-1	FF FF	11111111 11111111		
0	0	00 00	00000000 00000000		

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

$$|TMin| = TMax + 1$$

» Asymmetric range
 $UMax = 2 * TMax + 1$

C Programming

- #include imits.h>
- declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- values platform-specific

Quiz 2

- What is –TMin (assuming two's complement signed integers)?
 - a) TMin
 - b) TMax
 - c) 0
 - d) 1

4-Bit Computer Arithmetic

Signed vs. Unsigned in C

Constants

- by default are considered to be signed integers
- unsigned if have "U" as suffix 0U, 4294967259U

Casting

explicit casting between signed & unsigned

```
int tx, ty;
unsigned ux, uy; // "unsigned" means "unsigned int"
tx = (int) ux;
uy = (unsigned int) ty;
```

- implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

- Expression evaluation
 - if there is a mix of unsigned and signed in single expression,
 signed values implicitly cast to unsigned
 - including comparison operations <, >, ==, <=, >=
 - examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int)2147483648U	>	signed

Quiz 3

What is the value of

```
(long)ULONG_MAX - (unsigned long)-1
???
```

- a) -1
- b) 0
- c) 1
- d) ULONG_MAX

Sign Extension

- Task:
 - given w-bit signed integer x
 - convert it to w+k-bit integer with same value
- Rule:
 - make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011		

- Converting from smaller to larger integer data type
 - C automatically performs sign extension

Does it Work?

$$val_{w} = -2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$val_{w+1} = -2^{w} + 2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$= -2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$val_{w+2} = -2^{w+1} + 2^{w} + 2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$= -2^{w} + 2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$= -2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

Unsigned Multiplication

Discard w bits: w bits

- Standard multiplication function
 - ignores high order w bits
- Implements modular arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed Multiplication

Standard multiplication function

- ignores high order w bits
- some of which are different from those of unsigned multiplication
- lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $-u \ll k gives u * 2^k$
- both signed and unsigned

operands: w bits

Examples

- most machines shift and add faster than multiply
 - » compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - $-u \gg k \text{ gives } \lfloor u / 2^k \rfloor$
 - uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of signed by power of 2
 - $-x \gg k \text{ gives } \lfloor x / 2^k \rfloor$
 - uses arithmetic shift
 - rounds wrong direction when x < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of negative number by power of 2
 - want $\lceil x / 2^k \rceil$ (round toward 0)
 - compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - » in C: (x + (1 << k) -1) >> k
 - » biases dividend toward 0

Case 1: no rounding

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: rounding

Biasing adds 1 to final result

Why Should I Use Unsigned?

- Don't use just because number nonnegative
 - easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
   a[i] += a[i+1];
```

can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- Do use when performing modular arithmetic
 - multiprecision arithmetic
- Do use when using bits to represent sets
 - logical right shift, no sign extension