EXISTENCE OF POSITIVE SOLUTIONS FOR A THREE-POINT INTEGRAL BOUNDARY VALUE PROBLEM

FAOUZI HADDOUCHI, SLIMANE BENAICHA

ABSTRACT. In this paper, by using the Krasnosel'skii's fixed-point theorem, we study the existence of at least one or two positive solutions to the three-point integral boundary value problem

$$u''(t) + a(t)f(u(t)) = 0, \ 0 < t < T,$$

 $u(0) = \beta u(\eta), \ u(T) = \alpha \int_0^{\eta} u(s)ds,$

where $0<\eta< T,\, 0<\alpha<\frac{2T}{\eta^2},\, 0\leq\beta<\frac{2T-\alpha\eta^2}{\alpha\eta^2-2\eta+2T}$ are given constants.

1. Introduction

We are interested in the existence of positive solutions of the following threepoint integral boundary value problem (BVP):

$$u''(t) + a(t)f(u(t)) = 0, \ t \in (0, T), \tag{1.1}$$

$$u(0) = \beta u(\eta), \ u(T) = \alpha \int_0^{\eta} u(s)ds, \tag{1.2}$$

where $0 < \eta < T$ and $0 < \alpha < \frac{2T}{\eta^2}$, $0 \le \beta < \frac{2T - \alpha \eta^2}{\alpha \eta^2 - 2\eta + 2T}$, and

- (B1) $f \in C([0,\infty), [0,\infty))$;
- (B2) $a \in C([0,T],[0,\infty))$ and there exists $t_0 \in [\eta,T]$ such that $a(t_0) > 0$. Set

$$f_0 = \lim_{u \to 0^+} \frac{f(u)}{u}, \ f_\infty = \lim_{u \to \infty} \frac{f(u)}{u}.$$
 (1.3)

The study of the existence of solutions of multi-point boundary value problems for linear second-order ordinary differential equations was initiated by II'in and Moiseev [6, 7]. Since then, by applying the Leray-Schauder continuation theorem, nonlinear alternative of Leray-Schauder, or coincidence degree theory, many authors studied more general nonlinear multi-point BVPs, for example, [1, 2, 3, 4, 10, 11, 12, 13], and references therein.

Tariboon and Sitthiwirattham [14] proved the existence of at least one positive solution on the condition that f is either superlinear or sublinear for the following BVP

$$u''(t) + a(t)f(u(t)) = 0, \ t \in (0,1), \tag{1.4}$$

$$u(0) = 0, \ u(1) = \alpha \int_0^{\eta} u(s)ds,$$
 (1.5)

²⁰⁰⁰ Mathematics Subject Classification. 34B15, 34C25, 34B18.

Key words and phrases. Positive solutions; Krasnoselskii's fixed point theorem; Three-point boundary value problems; Cone.

where $0 < \eta < 1$ and $0 < \alpha < \frac{2}{\eta^2}$, $f \in C([0,\infty),[0,\infty))$, $a \in C([0,1],[0,\infty))$ and there exists $t_0 \in [\eta,1]$ such that $a(t_0) > 0$. Very recently, Haddouchi and Benaicha [5], investigated the following three-point BVP

$$u''(t) + a(t)f(u(t)) = 0, \ t \in (0, T), \tag{1.6}$$

$$u(0) = \beta u(\eta), \ u(T) = \alpha \int_0^{\eta} u(s)ds, \tag{1.7}$$

where $0 < \eta < T$ and $0 < \alpha < \frac{2T}{\eta^2}, \ 0 \le \beta < \frac{2T - \alpha \eta^2}{\alpha \eta^2 - 2\eta + 2T}, \ f \in C([0, \infty), [0, \infty)), \ a \in C([0, T], [0, \infty))$ and there exists $t_0 \in [\eta, T]$ such that $a(t_0) > 0$, and improved the results in [14].

In [5], the authors used the Krasnoselskii's theorem to prove the following result:

Theorem 1.1 (See [5]). Assume (B1) and (B2) hold, and $0 < \alpha < \frac{2T}{\eta^2}$, $0 \le \beta < \frac{2T - \alpha \eta^2}{\alpha \eta^2 - 2\eta + 2T}$. If either

- (D1) $f_0 = 0$ and $f_{\infty} = \infty$ (f is superlinear), or
- (D2) $f_0 = \infty$ and $f_\infty = 0$ (f is sublinear)

then problem (1.6),(1.7) has at least one positive solution.

Liu [9] used the fixed-point index theorem to prove the existence of at least one or two positive solutions to the three-point boundary value problem BVP

$$u''(t) + a(t)f(u(t)) = 0, \ t \in (0,1), \tag{1.8}$$

$$u(0) = 0, \ u(1) = \beta u(\eta),$$
 (1.9)

where $0 < \eta < 1$ and $0 < \beta < \frac{1}{\eta}$.

Motivated by the results of [9, 5] the aim of this paper is to establish some simple criterions for the existence of positive solutions of the BVP (1.1),(1.2), under $f_0 = f_{\infty} = \infty$ or $f_0 = f_{\infty} = 0$. We also obtain some existence results for positive solutions of the BVP (1.1),(1.2) under $f_0, f_{\infty} \notin \{0, \infty\}$.

The key tool in our approach is the following Krasnosel'skii's fixed point theorem in a cone [8].

Theorem 1.2 ([8]). Let E be a Banach space, and let $K \subset E$ be a cone. Assume Ω_1 , Ω_2 are open bounded subsets of E with $0 \in \Omega_1$, $\overline{\Omega}_1 \subset \Omega_2$, and let

$$A: K \cap (\overline{\Omega}_2 \backslash \Omega_1) \longrightarrow K$$

be a completely continuous operator such that either

- (i) $||Au|| \le ||u||$, $u \in K \cap \partial \Omega_1$, and $||Au|| \ge ||u||$, $u \in K \cap \partial \Omega_2$; or
- (ii) $||Au|| \ge ||u||$, $u \in K \cap \partial \Omega_1$, and $||Au|| \le ||u||$, $u \in K \cap \partial \Omega_2$

hold. Then A has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

2. Preliminaries

To prove the main existence results we will employ several straightforward lemmas.

Lemma 2.1 (See [5]). Let $\beta \neq \frac{2T - \alpha\eta^2}{\alpha\eta^2 - 2\eta + 2T}$. Then for $y \in C([0,T],\mathbb{R})$, the problem

$$u''(t) + y(t) = 0, \ t \in (0, T), \tag{2.1}$$

$$u(0) = \beta u(\eta), \ u(T) = \alpha \int_0^{\eta} u(s)ds \tag{2.2}$$

has a unique solution

$$u(t) = \frac{\beta(2T - \alpha\eta^{2}) - 2\beta(1 - \alpha\eta)t}{(\alpha\eta^{2} - 2T) - \beta(2\eta - \alpha\eta^{2} - 2T)} \int_{0}^{\eta} (\eta - s)y(s)ds + \frac{\alpha\beta\eta - \alpha(\beta - 1)t}{(\alpha\eta^{2} - 2T) - \beta(2\eta - \alpha\eta^{2} - 2T)} \int_{0}^{\eta} (\eta - s)^{2}y(s)ds + \frac{2(\beta - 1)t - 2\beta\eta}{(\alpha\eta^{2} - 2T) - \beta(2\eta - \alpha\eta^{2} - 2T)} \int_{0}^{T} (T - s)y(s)ds - \int_{0}^{t} (t - s)y(s)ds.$$

Lemma 2.2 (See [5]). Let $0 < \alpha < \frac{2T}{\eta^2}, \ 0 \le \beta < \frac{2T - \alpha \eta^2}{\alpha \eta^2 - 2\eta + 2T}$. If $y \in C([0,T],[0,\infty))$, then the unique solution u of (2.1)-(2.2) satisfies $u(t) \ge 0$ for $t \in [0,T]$.

Remark 2.3. In view of Lemma 2.3 of [5], if $\alpha > \frac{2T}{\eta^2}$, $\beta \geq 0$ and $y \in C([0,T],[0,\infty))$, then (2.1)-(2.2) has no positive solution. Hence, in this paper, we assume that $\alpha\eta^2 < 2T$ and $0 \leq \beta < \frac{2T - \alpha\eta^2}{\alpha\eta^2 - 2\eta + 2T}$.

Lemma 2.4 (See [5]). Let $0 < \alpha < \frac{2T}{\eta^2}, \ 0 \le \beta < \frac{2T - \alpha \eta^2}{\alpha \eta^2 - 2\eta + 2T}$. If $y \in C([0,T],[0,\infty))$, then the unique solution u of (2.1)-(2.2) satisfies

$$\min_{t \in [n,T]} u(t) \ge \gamma ||u||, \ ||u|| = \max_{t \in [0,T]} |u(t)|, \tag{2.3}$$

where

$$\gamma := \min \left\{ \frac{\eta}{T}, \frac{\alpha(\beta+1)\eta^2}{2T}, \frac{\alpha(\beta+1)\eta(T-\eta)}{2T - \alpha(\beta+1)\eta^2} \right\} \in (0,1).$$
 (2.4)

In the rest of this article, we assume that $0 < \alpha < \frac{2T}{\eta^2}$, $0 \le \beta < \frac{2T - \alpha \eta^2}{\alpha \eta^2 - 2\eta + 2T}$. Let $E = C([0,T],\mathbb{R})$, and only the sup norm is used. It is easy to see that the BVP (1.1),(1.2) has a solution u = u(t) if and only if u is a fixed point of operator A, where A is defined by

$$Au(t) = \frac{\beta(2T - \alpha\eta^{2}) - 2\beta(1 - \alpha\eta)t}{(\alpha\eta^{2} - 2T) - \beta(2\eta - \alpha\eta^{2} - 2T)} \int_{0}^{\eta} (\eta - s)a(s)f(u(s))ds + \frac{\alpha\beta\eta - \alpha(\beta - 1)t}{(\alpha\eta^{2} - 2T) - \beta(2\eta - \alpha\eta^{2} - 2T)} \int_{0}^{\eta} (\eta - s)^{2}a(s)f(u(s))ds + \frac{2(\beta - 1)t - 2\beta\eta}{(\alpha\eta^{2} - 2T) - \beta(2\eta - \alpha\eta^{2} - 2T)} \int_{0}^{T} (T - s)a(s)f(u(s))ds - \int_{0}^{t} (t - s)a(s)f(u(s))ds.$$
 (2.5)

Denote

$$K = \left\{ u \in E : u \ge 0, \min_{t \in [\eta, T]} u(t) \ge \gamma ||u|| \right\}, \tag{2.6}$$

where γ is defined in (2.4). It is obvious that K is a cone in E. Moreover, by Lemma 2.2 and Lemma 2.4, $AK \subset K$. It is also easy to check that $A: K \to K$ is completely continuous.

In what follows, for the sake of convenience, set

$$\Lambda_1 = \frac{(2T - \alpha \eta^2) - \beta(\alpha \eta^2 - 2\eta + 2T)}{[2(\beta + 1) + T^{-1}\beta\eta(\alpha \eta + 2) + \alpha\beta T] \int_0^T T(T - s)a(s)ds}$$

$$\Lambda_2 = \frac{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)}{2\gamma\eta \int_{\eta}^{T} (T - s)a(s)ds}.$$

3. The existence results of the BVP (1.1),(1.2) for the case: $f_0=f_\infty=\infty \ \ {\rm or} \ \ f_0=f_\infty=0$

Now we establish conditions for the existence of positive solutions for the BVP (1.1),(1.2) under $f_0 = f_{\infty} = \infty$ or $f_0 = f_{\infty} = 0$.

Theorem 3.1. Assume that the following assumptions are satisfied.

- (H1) $f_0 = f_{\infty} = \infty$.
- (H2) There exist constants $\rho_1 > 0$ and $M_1 \in (0, \Lambda_1]$ such that $f(u) \leq M_1 \rho_1$, for $u \in [0, \rho_1]$.

Then, the problem (1.1)-(1.2) has at least two positive solutions u_1 and u_2 such that

$$0 < ||u_1|| < \rho_1 < ||u_2||.$$

Proof. Since, $f_0 = \infty$, then for any $M_{\star} \in [\Lambda_2, \infty)$, there exists $\rho_{\star} \in (0, \rho_1)$ such that $f(u) \geq M_{\star}u$, $0 < u \leq \rho_{\star}$.

Set $\Omega_{\rho_{\star}} = \{u \in E : ||u|| < \rho_{\star}\}$. By (2.5) and in view of the proof of Theorem 3.1 in [5], for any $u \in K \cap \partial \Omega_{\rho_{\star}}$, we obtain

$$Au(\eta) \ = \ \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T (T - s)a(s)f(u(s))ds$$

$$- \frac{\alpha\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^{\eta} (\eta^2 - 2\eta s + s^2)a(s)f(u(s))ds$$

$$- \frac{2T - \alpha\eta^2}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^{\eta} (\eta - s)a(s)f(u(s))ds$$

$$= \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^T (T - s)a(s)f(u(s))ds$$

$$+ \frac{2(T - \eta)}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^{\eta} sa(s)f(u(s))ds$$

$$+ \frac{\alpha\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^{\eta} s(\eta - s)a(s)f(u(s))ds$$

$$\geq \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^T (T - s)a(s)f(u(s))ds$$

$$\geq \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^T (T - s)a(s)f(u(s))ds$$

$$\geq \rho_\star \gamma M_\star \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^T (T - s)a(s)ds$$

$$= \rho_\star M_\star \Lambda_2^{-1}$$

$$\geq \rho_\star = ||u||.$$

Thus

$$||Au|| \ge ||u||, \text{ for } u \in K \cap \partial\Omega_{\rho_{\star}}.$$
 (3.1)

Now, since $f_{\infty} = \infty$, then for any $M^* \in [\Lambda_2, \infty)$, there exists $\rho^* > \rho_1$ such that $f(u) \geq M^*u$, for $u \geq \gamma \rho^*$.

Set $\Omega_{\rho^*} = \{u \in E : ||u|| < \rho^*\}$. Then, for any $u \in K \cap \partial \Omega_{\rho^*}$, we have

$$Au(\eta) \geq \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)f(u(s))ds$$

$$\geq \rho^* \gamma M^* \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)ds$$

$$= \rho^* M^* \Lambda_2^{-1}$$

$$\geq \rho^* = ||u||.$$

Which implies

$$||Au|| \ge ||u||, \text{ for } u \in K \cap \partial\Omega_{\rho^*}.$$
 (3.2)

Finally, set $\Omega_{\rho_1} = \{u \in E : ||u|| < \rho_1\}$. From (H2), (2.5) and the proof of Theorem 3.1 in [5], for any $u \in K \cap \partial \Omega_{\rho_1}$, we have

$$Au(t) \leq \frac{2\beta T + \alpha\beta\eta^{2}}{(2T - \alpha\eta^{2}) - \beta(\alpha\eta^{2} - 2\eta + 2T)} \int_{0}^{\eta} (\eta - s)a(s)f(u(s))ds$$

$$+ \frac{\alpha\beta T}{(2T - \alpha\eta^{2}) - \beta(\alpha\eta^{2} - 2\eta + 2T)} \int_{0}^{\eta} (\eta - s)^{2}a(s)f(u(s))ds$$

$$+ \frac{2\beta\eta + 2T}{(2T - \alpha\eta^{2}) - \beta(\alpha\eta^{2} - 2\eta + 2T)} \int_{0}^{T} (T - s)a(s)f(u(s))ds$$

$$\leq \frac{2T(\beta + 1) + \beta\eta(\alpha\eta + 2)}{(2T - \alpha\eta^{2}) - \beta(\alpha\eta^{2} - 2\eta + 2T)} \int_{0}^{T} (T - s)a(s)f(u(s))ds$$

$$+ \frac{\alpha\beta T}{(2T - \alpha\eta^{2}) - \beta(\alpha\eta^{2} - 2\eta + 2T)} \int_{0}^{T} T(T - s)a(s)f(u(s))ds$$

$$= \frac{2(\beta + 1) + T^{-1}\beta\eta(\alpha\eta + 2) + \alpha\beta T}{(2T - \alpha\eta^{2}) - \beta(\alpha\eta^{2} - 2\eta + 2T)} \int_{0}^{T} T(T - s)a(s)f(u(s))ds$$

$$\leq M_{1}\rho_{1} \frac{2(\beta + 1) + T^{-1}\beta\eta(\alpha\eta + 2) + \alpha\beta T}{(2T - \alpha\eta^{2}) - \beta(\alpha\eta^{2} - 2\eta + 2T)} \int_{0}^{T} T(T - s)a(s)ds$$

$$= \rho_{1}M_{1}\Lambda_{1}^{-1} \leq \rho_{1} = ||u||.$$

Which yields

$$||Au|| \le ||u||, \text{ for } u \in K \cap \partial\Omega_{\rho_1}.$$
 (3.3)

Hence, since $\rho_{\star} < \rho_{1} < \rho^{\star}$ and from (3.1), (3.2), (3.3), it follows from Theorem 1.2 that A has a fixed point u_{1} in $K \cap (\overline{\Omega}_{\rho_{1}} \backslash \Omega_{\rho_{\star}})$ and a fixed point u_{2} in $K \cap (\overline{\Omega}_{\rho^{\star}} \backslash \Omega_{\rho_{1}})$. Both are positive solutions of the BVP (1.1),(1.2) and $0 < ||u_{1}|| < \rho_{1} < ||u_{2}||$. The proof is therefore complete.

Theorem 3.2. Assume that the following assumptions are satisfied.

- (H3) $f_0 = f_\infty = 0$.
- (H4) There exist constants $\rho_2 > 0$ and $M_2 \in [\Lambda_2, \infty)$ such that $f(u) \ge M_2 \rho_2$, for $u \in [\gamma \rho_2, \rho_2]$.

Then, the problem (1.1)-(1.2) has at least two positive solutions u_1 and u_2 such that

$$0 < ||u_1|| < \rho_2 < ||u_2||.$$

Proof. Firstly, since $f_0 = 0$, for any $\epsilon \in (0, \Lambda_1]$, there exists $\rho_{\star} \in (0, \rho_2)$ such that $f(u) \leq \epsilon u$, for $u \in (0, \rho_{\star}]$. Let $\Omega_{\rho_{\star}} = \{u \in E : ||u|| < \rho_{\star}\}$, then, for any $u \in K \cap \partial \Omega_{\rho_{\star}}$, we obtain

$$Au(t) \leq \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T - s)a(s)f(u(s))ds$$

$$\leq \rho_{\star}\epsilon \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T - s)a(s)ds$$

$$= \rho_{\star}\epsilon \Lambda_1^{-1} \leq \rho_{\star} = ||u||,$$

which implies

$$||Au|| \le ||u||, \text{ for } u \in K \cap \partial\Omega_{\rho_{\star}}.$$
 (3.4)

Secondly, in view of $f_{\infty} = 0$, for any $\epsilon_1 \in (0, \Lambda_1]$, there exists $\rho_0 > \rho_2$ such that

$$f(u) \le \epsilon_1 u, \text{ for } u \in [\rho_0, \infty).$$
 (3.5)

We consider two cases:

Case (i). Suppose that f(u) is unbounded. Then from $f \in C([0, \infty), [0, \infty))$, we know that there is $\rho^* > \rho_0$ such that

$$f(u) \le f(\rho^*), \text{ for } u \in [0, \rho^*].$$
 (3.6)

Since $\rho^* > \rho_0$, then from (3.5), (3.6), one has

$$f(u) \le f(\rho^*) \le \epsilon_1 \rho^*, \text{ for } u \in [0, \rho^*].$$
 (3.7)

For $u \in K$ and $||u|| = \rho^*$, from (3.7), we obtain

$$Au(t) \leq \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T - s)a(s)f(u(s))ds$$

$$\leq \rho^* \epsilon_1 \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T - s)a(s)ds$$

$$= \rho^* \epsilon_1 \Lambda_1^{-1} \leq \rho^* = ||u||,$$

Case (ii). Suppose that f(u) is bounded, say $f(u) \leq L$ for all $u \in [0, \infty)$. Taking $\rho^* \geq \max\left\{\frac{L}{\epsilon_1}, \rho_0\right\}$. For $u \in K$ with $||u|| = \rho^*$, we have

$$Au(t) \leq \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T-s)a(s)f(u(s))ds$$

$$\leq L \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T-s)a(s)ds$$

$$\leq \rho^* \epsilon_1 \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T-s)a(s)ds$$

$$= \rho^* \epsilon_1 \Lambda_1^{-1} \leq \rho^* = ||u||.$$

Hence, in either case, we always may set $\Omega_{\rho^*} = \{u \in E : ||u|| < \rho^*\}$ such that

$$||Au|| \le ||u||, \text{ for } u \in K \cap \partial\Omega_{\rho^*}.$$
 (3.8)

Finally, set $\Omega_{\rho_2} = \{u \in E : ||u|| < \rho_2\}$. By (H4), for any $u \in K \cap \partial \Omega_{\rho_2}$, we can get

$$Au(\eta) \geq \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)f(u(s))ds$$

$$\geq \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)M_2\rho_2 ds$$

$$\geq \frac{2\eta M_2\gamma}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)ds$$

$$= \rho_2 M_2 \Lambda_2^{-1}$$

$$\geq \rho_2 = ||u||,$$

which implies

$$||Au|| \ge ||u||, \text{ for } u \in K \cap \partial\Omega_{\rho_2}.$$
 (3.9)

Hence, since $\rho_{\star} < \rho_{2} < \rho^{\star}$ and from (3.4), (3.8) and (3.9), it follows from Theorem 1.2 that A has a fixed point u_{1} in $K \cap (\overline{\Omega}_{\rho_{2}} \setminus \Omega_{\rho_{\star}})$ and a fixed point u_{2} in $K \cap (\overline{\Omega}_{\rho^{\star}} \setminus \Omega_{\rho_{2}})$. Both are positive solutions of the BVP (1.1),(1.2) and $0 < ||u_{1}|| < \rho_{2} < ||u_{2}||$. The proof is therefore complete.

4. The existence results of the BVP (1.1),(1.2) for the case: $f_0,f_\infty\not\in\{0,\infty\}$

In this section, we discuss the existence for the positive solution of the BVP (1.1),(1.2) assuming $f_0, f_\infty \notin \{0,\infty\}$.

Now, we shall state and prove the following main result.

Theorem 4.1. Suppose (H2) and (H4) hold and that $\rho_1 \neq \rho_2$. Then, the BVP (1.1),(1.2) has at least one positive solution u satisfying $\rho_1 < ||u|| < \rho_2$ or $\rho_2 < ||u|| < \rho_1$.

Proof. Without loss of generality, we may assume that $\rho_1 < \rho_2$. Let $\Omega_{\rho_1} = \{u \in E : ||u|| < \rho_1\}$. By (H2), for any $u \in K \cap \partial \Omega_{\rho_1}$, we obtain

$$Au(t) \leq \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T - s)a(s)f(u(s))ds$$

$$\leq M_1\rho_1 \frac{2(\beta+1) + T^{-1}\beta\eta(\alpha\eta+2) + \alpha\beta T}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_0^T T(T - s)a(s)ds$$

$$= \rho_1 M_1 \Lambda_1^{-1} \leq \rho_1 = ||u||,$$

which yields

$$||Au|| \le ||u||, \ u \in K \cap \partial\Omega_{o_1}. \tag{4.1}$$

Now, set $\Omega_{\rho_2} = \{u \in E : ||u|| < \rho_2\}$. By (H4), for any $u \in K \cap \partial \Omega_{\rho_2}$, we can get

$$Au(\eta) \geq \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)f(u(s))ds$$

$$\geq \frac{2\eta}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)M_2\rho_2 ds$$

$$\geq \frac{2\eta M_2\gamma}{(2T - \alpha\eta^2) - \beta(\alpha\eta^2 - 2\eta + 2T)} \int_{\eta}^{T} (T - s)a(s)ds$$

$$= \rho_2 M_2 \Lambda_2^{-1}$$

$$\geq \rho_2 = ||u||,$$

which implies

$$||Au|| \ge ||u||$$
, for $u \in K \cap \partial \Omega_{\rho_2}$. (4.2)

Hence, since $\rho_1 < \rho_2$ and from (4.1) and (4.2), it follows from Theorem 1.2 that A has a fixed point u in $K \cap (\overline{\Omega}_{\rho_2} \setminus \Omega_{\rho_1})$. Moreover, it is a positive solution of the BVP (1.1),(1.2) and

$$\rho_1 < ||u|| < \rho_2.$$

The proof is therefore complete.

Corollary 4.2. Assume that the following assumptions hold.

(H5)
$$f_0 = \alpha_1 \in [0, \theta_1 \Lambda_1)$$
, where $\theta_1 \in (0, 1]$.

(H6)
$$f_{\infty} = \beta_1 \in \left(\frac{\theta_2}{\gamma}\Lambda_2, \infty\right)$$
, where $\theta_2 \geq 1$.

Then, the BVP (1.1),(1.2) has at least one positive solution.

Proof. In view of $f_0 = \alpha_1 \in [0, \theta_1 \Lambda_1)$, for $\epsilon = \theta_1 \Lambda_1 - \alpha_1 > 0$, there exists a sufficiently large $\rho_1 > 0$ such that

$$f(u) \le (\alpha_1 + \epsilon)u = \theta_1 \Lambda_1 u \le \theta_1 \Lambda_1 \rho_1$$
, for $u \in (0, \rho_1]$.

Since $\theta_1 \in (0,1]$, then $\theta_1 \Lambda_1 \in (0,\Lambda_1]$. By the inequality above, (H2) is satisfied. Since $f_{\infty} = \beta_1 \in \left(\frac{\theta_2}{\gamma} \Lambda_2, \infty\right)$, for $\epsilon = \beta_1 - \frac{\theta_2}{\gamma} \Lambda_2 > 0$, there exists a sufficiently large $\rho_2(>\rho_1)$ such that

$$\frac{f(u)}{u} \ge \beta_1 - \epsilon = \frac{\theta_2}{\gamma} \Lambda_2, \text{ for } u \in [\gamma \rho_2, \infty),$$

thus, when $u \in [\gamma \rho_2, \rho_2]$, one has

$$f(u) \ge \frac{\theta_2}{\gamma} \Lambda_2 u \ge \theta_2 \Lambda_2 \rho_2.$$

Since $\theta_2 \geq 1$, $\theta_2 \Lambda_2 \in [\Lambda_2, \infty)$, then from the above inequality, condition (H4) is satisfied. Hence, from Theorem 4.1, the desired result holds.

Corollary 4.3. Assume that the following assumptions hold.

(H7)
$$f_0 = \alpha_2 \in \left(\frac{\theta_2}{\gamma}\Lambda_2, \infty\right)$$
, where $\theta_2 \ge 1$.

(H8)
$$f_{\infty} = \beta_2 \in [0, \theta_1 \Lambda_1)$$
, where $\theta_1 \in (0, 1]$.

Then, the BVP (1.1),(1.2) has at least one positive solution.

Proof. Since $f_0 = \alpha_2 \in \left(\frac{\theta_2}{\gamma}\Lambda_2, \infty\right)$, for $\epsilon = \alpha_2 - \frac{\theta_2}{\gamma}\Lambda_2 > 0$, there exists a sufficiently small $\rho_2 > 0$ such that

$$\frac{f(u)}{u} \ge \alpha_2 - \epsilon = \frac{\theta_2}{\gamma} \Lambda_2$$
, for $u \in (0, \rho_2]$.

Thus, when $u \in [\gamma \rho_2, \rho_2]$, one has

$$f(u) \ge \frac{\theta_2}{\gamma} \Lambda_2 u \ge \theta_2 \Lambda_2 \rho_2.$$

which yields the condition (H4) of Theorem 3.2.

In view of $f_{\infty} = \beta_2 \in [0, \theta_1 \Lambda_1)$, for $\epsilon = \theta_1 \Lambda_1 - \beta_2 > 0$, there exists a sufficiently large $\rho_0(> \rho_2)$ such that

$$\frac{f(u)}{u} \le \beta_2 + \epsilon = \theta_1 \Lambda_1, \text{ for } u \in [\rho_0, \infty).$$
 (4.3)

We consider the following two cases:

Case (i). Suppose that f(u) is unbounded. Then from $f \in C([0, \infty), [0, \infty))$, we know that there is $\rho_1 > \rho_0$ such that

$$f(u) \le f(\rho_1), \text{ for } u \in [0, \rho_1].$$
 (4.4)

Since $\rho_1 > \rho_0$, then from (4.3), (4.4), one has

$$f(u) \le f(\rho_1) \le \theta_1 \Lambda_1 \rho_1$$
, for $u \in [0, \rho_1]$.

Since $\theta_1 \in (0,1]$, then $\theta_1 \Lambda_1 \in (0,\Lambda_1]$. By the inequality above, (H2) is satisfied. Case (ii). Suppose that f(u) is bounded, say

$$f(u) \le L$$
, for all $u \in [0, \infty)$ (4.5)

In this case, taking sufficiently large $\rho_1 > \frac{L}{\theta_1 \Lambda_1}$, then from (4.5), we know

$$f(u) \le L \le \theta_1 \Lambda_1 \rho_1$$
, for $u \in [0, \rho_1]$.

Since $\theta_1 \in (0,1]$, then $\theta_1 \Lambda_1 \in (0,\Lambda_1]$. By the inequality above, (H2) is satisfied. Hence, from Theorem 4.1, we get the conclusion of Corollary 4.3.

Corollary 4.4. Assume that the previous hypotheses (H2), (H6) and (H7) hold. Then, the BVP (1.1),(1.2) has at least two positive solutions u_1 and u_2 such that

$$0 < ||u_1|| < \rho_1 < ||u_2||.$$

Proof. From (H6) and the proof of Corollary 4.2, we know that there exists a sufficiently large $\rho_2 > \rho_1$, such that

$$f(u) \geq \theta_2 \Lambda_2 \rho_2 = M_2 \rho_2$$
, for $u \in [\gamma \rho_2, \rho_2]$,

where $M_2 = \theta_2 \Lambda_2 \in [\Lambda_2, \infty)$.

In view of (H7) and the proof of Corollary 4.3, we see that there exists a sufficiently small $\rho_2^* \in (0, \rho_1)$ such that

$$f(u) \ge \theta_2 \Lambda_2 \rho_2^* = M_2 \rho_2^*, \text{ for } u \in [\gamma \rho_2^*, \rho_2^*],$$

where $M_2 = \theta_2 \Lambda_2 \in [\Lambda_2, \infty)$.

Using this and (H2), we know by Theorem 4.1 that the BVP (1.1),(1.2) has two positive solutions u_1 and u_2 such that

$$\rho_2^{\star} < \|u_1\| < \rho_1 < \|u_2\| < \rho_2.$$

Thus, the proof is complete.

Corollary 4.5. Assume that the previous hypotheses (H4), (H5) and (H8) hold. Then, the BVP (1.1),(1.2) has at least two positive solutions u_1 and u_2 such that

$$0 < ||u_1|| < \rho_2 < ||u_2||.$$

Proof. By (H5) and the proof of Corollary 4.2, we obtain that there exists sufficiently small $\rho_1 \in (0, \rho_2)$ such that

$$f(u) \leq \theta_1 \Lambda_1 \rho_1 = M_1 \rho_1$$
, for $u \in (0, \rho_1]$,

where $M_1 = \theta_1 \Lambda_1 \in (0, \Lambda_1]$.

In view of (H8) and the proof of Corollary 4.3, there exists a sufficiently large $\rho_1^{\star} > \rho_2$ such that

$$f(u) \le \theta_1 \Lambda_1 \rho_1^* = M_1 \rho_1^*, \text{ for } u \in [0, \rho_1^*],$$

where $M_1 = \theta_1 \Lambda_1 \in (0, \Lambda_1]$.

Using this and (H4), we see by Theorem 4.1 that the BVP (1.1),(1.2) has two positive solutions u_1 and u_2 such that

$$\rho_1 < ||u_1|| < \rho_2 < ||u_2|| < \rho_1^*.$$

This completes the proof.

References

- [1] W. Feng and J.R.L. Webb, Solvability of a three-point nonlinear boundary value problem at resonance, Nonlinear Analysis TMA **30** (6) (1997), 3227-3238.
- [2] W. Feng and J.R.L. Webb, Solvability of a m-point boundary value problem with nonlinear growth, J. Math. Anal. Appl. 212 (1997), 467-480.
- [3] C. P. Gupta; Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations, J. Math. Anal. Appl. 168 (1992), 540-551.
- [4] C.P. Gupta, A sharper condition for solvability of a three-point nonlinear boundary value problem, J. Math. Anal. Appl. 205 (1997), 586-597.
- [5] F. Haddouchi, S. Benaicha, Positive solutions of nonlinear three-point integral boundary value problems for second-order differential equations, preprint. URL http://arxiv.org/abs/1205.1844
- [6] V. A. Il'in, E. I. Moiseev; Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23 (7) (1987), 803-810.
- [7] V.A. Il'in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm Liouvile operator, Differential Equations 23 (8) (1987), 979-987.
- [8] M. A. Krasnosel'skii; Positive Solutions of Operator Equations, Noordhoof, Groningen, 1964.
- [9] B. Liu; Positive solutions of a nonlinear three-point boundary value problem, Comput. Math. Appl. 44 (2002), 201-211.
- [10] S.A. Marano, A remark on a second order three-point boundary value problem, J. Math. Anal. Appl. 183 (1994), 581-522.
- [11] R. Ma, Existence theorems for a second order three-point boundary value problem, J. Math. Anal. Appl. 212 (1997), 430-442.
- [12] R. Ma, Existence theorems for a second order m-point boundary value problem, J. Math. Anal. Appl.211 (1997), 545-555.
- [13] R. Ma, Positive solutions for a nonlinear three-point boundary value problem, Electron. J. Diff. Eqns. 34 (1999), 1-8.
- [14] J. Tariboon, T. Sitthiwirattham; Positive solutions of a nonlinear three-point integral boundary value problem, Bound. Val. Prob. 2010 (2010), ID 519210, 11 pages, doi:10.1155/2010/519210.

Faouzi Haddouchi, Department of Physics, University of Sciences and Technology of Oran, El Mnaouar, BP 1505, 31000 Oran, Algeria

 $E\text{-}mail\ address{:}\ \texttt{fhaddouchi@gmail.com}$

SLIMANE BENAICHA, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ORAN, ES-SENIA, 31000ORAN, ALGERIA

E-mail address: slimanebenaicha@yahoo.fr