

Architectures des Systèmes de Bases de Données

I/O Process State Address Space

Computer Physical Architecture

Source MOS: MODERN OPERATING SYSTEMS ANDREW S. TANENBAUM (A.S.T)

A.S.T: IT DMA, device driver

Network Ressource Multiplexing

Multiplexing: Virtual Channels

Transport Multiplexing

A.S.T: Process

The Process Model

A.S.T: Process

The Process Model

Two points of view

A.S.T: Process

Two points of view

Memory Space

Time Space

The Multi-Process model

The process model

Third point of view

The Design of the UNIX Operating System Maurice J. Bach

Maurice J. Bach

No contact information provided yet.

THE DESIGN OF THE UNIX® OPERATING SYSTEM

Maurice J. Bach

The Design of the UNIX Operating System Maurice J. Bach-

I/O Time and State process

Two points of view

asleep

A.S.T: Process State Machine

Process States

- 1. Process blocks for input
- 2. Scheduler picks another process
- 3. Scheduler picks this process
- 4. Input becomes available

	User Mode	
		<u>User Buffer</u>
	<u>Kernel Mode</u>	

I/O

A.S.T : I/O IT

I/O Devices

A.S.T: Hard IT

I/O Devices

Figure 1-11. (b) Interrupt processing involves taking the interrupt, running the interrupt handler, and returning to the user program.

A.S.T: IT

A.S.T : System call = Trap = Soft IT System Calls (1)

Figure 1-17. The 11 steps in making the system call read(fd, buffer, nbytes).

N process : Multi-process

I/O

User Mode P1	Süser Buffer	
User Mode P2		
Kernel Mode		

CPU waiting queue

Ready Queue

Process Context

CPU waiting queue

Disk Controller

asleep

A.S.T: IT DMA, device driver

