Kryptografie 1. Úvod

Osnova

- Informace o výuce https://moodle.vutbr.cz/
- Předpokládané znalosti
- Kryptografické systémy
- Služby bezpečnosti,...

Kryptografický systém - formální definice

Kryptografický systém pro šifrování zpráv je pětice $(\mathcal{M}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$, kde

- M je prostor otevřených zpráv,
- C prostor šifrových zpráv,
- K prostor klíčů,
- \mathcal{E}, \mathcal{D} je dvojice zobrazení, které každému klíči $k \in \mathcal{K}$ přiřazují transformaci pro zašifrování zpráv E a transformaci pro dešifrování zpráv D, přičemž pro každé $k \in \mathcal{K}$ a $m \in \mathcal{M}$ platí D(k(E(k,m)) = m.

Definice šifer

- Symetrická šifra je taková šifra, kde pro každé $k \in \mathcal{K}$ lze z transformace zašifrování E_k určit transformaci dešifrování D_k a naopak.
- Asymetrická šifra je taková šifra, kde pro skoro všechna $k \in \mathcal{K}$ nelze z transformace pro zašifrování E_k určit transformaci pro dešifrování D_k . V praxi je u asymetrických šifer klíč k tajným nastavením, ze kterého se vhodnou transformací G vygeneruje dvojice parametrů (e, d), které se nazývají **veřejný** $(k_{pub} = e)$ a **privátní** $(k_{pr} = d)$ klíč. Ty potom parametrizují transformace zašifrování a dešifrování, takže pro jednoduchost nepíšeme E_k a D_k , ale přímo E_e a D_d .

Upřesnění pojmů

Šifra - algoritmus, zobrazení, funkce (E, D)

- *E* encryption function, ("pravděpodobnostní" polynomiální algoritmus)
- D decryption function, (deterministický polynomiální algoritmus)
- otevřený text m message = zpráva Z, někdy P plain text, OT,...
- šifrový text c cipher text = šifrovaný text (ŠT)

$$c = E(k_1, m)$$

 $m = D(k_2, c) = D(k_2, E(k_1, m))$

- klíč $k k_1 = k_2$
- klíč k k₁≠ k₁
- symetrické algoritmy tajný klíč, secret key
- asymetrické algoritmy
- $k_1 = k_{\text{pub}}$ public key, veřejný klíč, slouží k šifrování
- $k_2 = k_{prv}$ private key, soukromý klíč, slouží k dešifrování

Používané algoritmy - šifry

Tajný algoritmus, omezený algoritmus (restricted algorithm)

- bezpečnost algoritmu založena na jeho utajení
- je nemožné algoritmus utajit na delší dobu
- používá se v systémech s nízkým stupněm zabezpečení
- v komunikačních systémech se nepoužívají

Algoritmy s využitím klíčů

- Kerckhoffsův princip (Auguste Kerckhoffs 1835 1903)
- bezpečnost šifrovacího systému má záviset pouze na utajení klíče
- algoritmy jsou většinou známé
- bezpečnost je zaručena použitím klíčů

Základní typy kryptografických prostředků

Symetrické šifry

proudové a blokové šifry, (AES, A5, RC5, CAST, 3DES, IDEA, Blowfish,...)

Asymetrické šifry

- pro šifrování (výměnu klíčů), (RSA, DH, ECC,...)
- pro digitální podpis, (RSA, DSA, ECDSA,...)

Hašovací funkce, (SHA-1, SHA-2, SHA-3,...)

Kvantová kryptografie

• přenos klíčů, (BB84,...), generátory náhodných čísel,

Další techniky

generátory náhodných čísel (FIPS PUB 140-2,...)

Úrovně kryptografických prostředků

Aplikace

Kryptosystémy a protokoly

 Primitiva a základní algoritmy

 Matematické a implementační základy

Bezpečnost IT

- Pod pojmem bezpečnost IT obvykle rozumíme ochranu odpovídajících systémů a informací, které jsou v nich uchovávány, zpracovávány a přenášeny.
- Pro zajištění bezpečnosti je třeba
 - o Bezpečnostní model identifikace rizik.
 - Bezpečnostní politika definice aktiv, která chceme chránit.
 - o Bezpečnostní prostředky určení konkrétních nástrojů pro ochranu.
- Prostředky zajišťující bezpečnost
 - Administrativní
 - Elektronické kryptografické, ...
 - Fyzické
 - O ..

Architektura bezpečnosti v RM OSI

doporučení ITU-T X.800, ISO 7498-2 ISO/OSI Security Architecture

Obsahuje

- služby bezpečnosti security services,
 - o definované postupy pro zabezpečení informačních systémů,
- mechanismy bezpečnosti security mechanism,
- útoky na bezpečnost security attacks.

Implementace bezpečnostních funkcí ve vrstvách RM OSI

- Pro implementaci bezpečnostní funkce je nejvhodnější
 - 7. vrstva aplikační protokoly
 - 4. vrstva transport dat
 - 3. vrstva směrování
- Bezpečnostní mechanismy jsou zpravidla zabudovány do
 - o aplikačních programů a operačních systémů (7. a 4. vrstva)
 - propojovacích zařízení 3. vrstvy (směrovače)
- existují řešení využívající i ostatních vrstev

Služba realizovaná protokolem příslušné vrstvy RM datové komunikace.

5 kategorií služeb

- 1. autentizace authentication
- 2. řízení přístupu access control
- 3. zabezpečení důvěrnosti dat data confidentiality
- 4. zabezpečení integrity dat data integrity
- 5. ochrana proti odmítnutí původu zprávy non-repudiation

Vysvětlení pojmů

Autentizace (authentication)

proces ověřování identity uživatele (entity).

Autorizace (authorization)

- přiřazení oprávnění pro práci v systému, specifikuje činnosti,
- autorizovaný uživatel uživatel s oprávněním provést určitou operaci.

Kontrola přístupu (access control)

- možnost povolit nebo odepřít použití určitého zdroje určitému subjektu,
 řízení přístupu k materiálním, logickým, nebo digitálním zdrojům,
- často bývá tento pojem zaměňován za autorizaci.

- 1. autentizace authentication
- uživatelů peer entity authentication
 - neeliminují útoky zopakováním zpráv
- zdroje dat data origin authentication
 - o provádí autentizaci všech dat
 - eliminují útoky zopakováním zpráv

2. řízení přístupu - access control

- přístup do systému, k službám, ...
- ochrana před neautorizovaným přístupem (nejobvyklejší je implementace v operačním systému nebo v aplikačním programu)

- 3. zabezpečení důvěrnosti dat data confidentiality
- ochrana informačního obsahu dat, ochrana toku dat při přenosu proti analýze (zjištění odesilatele, adresáta, ...)
 - služby pro důvěrnost přenosu zpráv
 - služby pro důvěrnost spojení ochrana důvěrnosti v rámci navázaného spojení
 - služby pro důvěrnost toku dat (chrání informace na základě atributů toku dat)
 - o služby selektivní důvěrnosti ochrana pouze určených částí informace

- 4. zabezpečení integrity dat data integrity
- zabezpečení proti neautorizované modifikaci
 - služby integrity přenosu zpráv (ochrana integrity všech přenášených zpráv)
 - o služba integrity spojení (ochrana přenosů v rámci určitého navázaného spojení)
 - o služby selektivní integrity spojení a selektivní integrity zpráv
- "slabá" integrita pro objektivní útoky (modifikace zprávy šumem, náhodná změna pořadí paketů, náhodná duplicita...) aplikace kontrolních součtů, CRC, pořadová čísla paketů apod.
- "silná" integrita subjektivní (úmyslné, aktivní útoky) podvržené zprávy, úmyslně pozměněné zprávy - prostředky pro zajištění slabé integrity + kryptografické prostředky
 - služba integrity bez oprav (detekce porušení integrity)
 - služba integrity s opravami obnova integrity po detekci ztráty integrity

- 5. ochrana proti odmítnutí původu zprávy nonrepudation
- zajišťuje důkaz o původu dat
- prokázání původu (příjemce/odesílatel)
- prokázání doručení (odeslání/přijetí)

Autentizace a nepopiratelnost

- autentizace vím s kým komunikuji
- nepopiratelnost vím s kým komunikuji a lze mu to dokázat

	Vrstva, kde může být služba zajištěna								
Bezpečnostní služba	1	2	3	4	5	6	7		
Autentizace spojení			Α	Α			Α		
Autentizace odesilatele			Α	Α			Α		
Řízení přístupu	8		Α	Α			Α		
Důvěrnost spojení	Α	Α	Α	Α		Α	Α		
Důvěrnost přenosu zpráv		Α	Α	Α		Α	Α		
Selektivní důvěrnost						Α	Α		
Důvěrnost toku dat	Α		Α				Α		
Integrita spojení s opravou				Α			Α		
Integrita spojení bez opravy			Α	Α			Α		
Selektivní integrita spojení							Α		
Integrita přenosu zpráv	×		Α	Α			Α		
Selektivní integrita zpráv				3			Α		
Nepopiratelnost odesílatele							Α		
Nepopiratelnost doručení							Α		

Mechanismy bezpečnosti - ISO 7498-2

- **šifrování** encipherment
- digitální podpis digital signature
- řízení přístupu access control
- integrita dat data integrity
- výměna autentizační informace authentication exchange
- "výplň" traffic padding
- řízení směrování routing control
- ověření třetím subjektem notarization

	Bezpečnostní mechanismy								
Bezpečnostní služba	Šifr.	EP	Ř. příst.	Int. mech.	Aut.	Zar.	Ř. přen.	Not. sl.	
Autentizace spojení	Α	Α			Α				
Autentizace odesilatele	Α	Α			1				
Řízení přístupu			Α						
Důvěrnost spojení	Α	27.							
Důvěrnost přenosu zpráv	Α	3.51					Α		
Selektivní důvěrnost	Α						Α		
Důvěrnost toku dat	Α					Α	Α		
Integrita spojení s opravou	Α			Α					
Integrita spojení bez opravy	Α			Α					
Selektivní integrita spojení	Α	2.51		Α					
Integrita přenosu zpráv	Α	Α		Α					
Selektivní integrita zpráv	Α	Α		Α					
Nepopiratelnost odesílatele	Α	Α		Α				Α	
Nepopiratelnost doručení	Α	Α		Α				Α	

Bezpečná komunikace podle ISO 7498-2

- Komunikující strany věří na základě **vzájemné autentizace**, že komunikují s oznámeným partnerem nebo že přijali zprávu z **autentizovaného zdroje**,
- přenášená informace nemůže být odposlouchávána, neboť je zajištěna její důvěrnost,
- přenášená informace není změněna, neboť je zajištěna její integrita,
- komunikace je umožněna pouze autorizované straně, neboť je uplatněno řízení přístupu,
- komunikace nemůže být popřena, neboť je zajištěna nepopiratelnost odeslání i příjmu zpráv.

Bezpečná komunikace podle ISO 7498-2

Bezpečná spojovaná relace zahrnuje kroky

- navázání spojení s autentizací prostřednictvím asymetrického kryptografického algoritmu
- 2. výměna symetrických klíčů pro zajištění **integrity a důvěrnosti** následné výměny zpráv
- bezpečná výměna zpráv
- 4. zrušení spojení včetně všech zbytkových informací
- 5. ověření autentičnosti, integrity a důvěrnosti přijaté informace

Model hrozeb dle ITU-T X.800

- 1. **Destruction** (útok na dostupnost): Zničení dat či síťových zdrojů.
- 2. Corruption (útok na integritu): Neautorizovaná modifikace aktiv/dat.
- 3. Removal (útok na dostupnost): Krádež, odebrání či ztráta informací nebo jiných zdrojů.
- 4. **Disclosure** (útok na důvěrnost): Neautorizovaný přístup k aktivům/datům.
- 5. Interruption (útok na dostupnost): Přerušení služeb. Spojení začne být nepoužitelné.

"Bezpečnostní vrstvy" Three Security Layers

"Bezpečnostní roviny" Three Security Planes

- Bezpečnostní roviny reprezentují jednotlivé činnosti v síti.
- Každá bezpečnostní rovina je aplikovaná na každou síťovou vrstvu a celkově tvoří 9 bezpečnostních perspektiv (3 x 3).
- Každá bezpečnostní perspektiva má unikátní zranitelnosti a hrozby.