

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – AVIATION & MISSILE CENTER

Architecture Centric Virtual Integration Process Overview

Alex Boydston, MSEE

JMR MSAD S&T Project Engineer

Aviation Development Directorate JMR Technology Demonstrator (TD) Program

DISTRIBUTION A: APPROVED FOR PUBLIC

~9,553
FY18 Strength

2,943
Civilian

23 Military 6,587
Contractor

FY18 Funding

\$3.4B

7%

Aviation S&T

8%

Missile S&T

58%

Army

27%

Other

<u>Core</u> <u>Competencies</u>

- Life Cycle Engineering
- Research, Technology
 Development and Demonstration
- Design and Modification
- Software Engineering
- Systems Integration
- Test and Evaluation
- Qualification
- Aerodynamics/ Aeromechanics
- Structures
- Propulsion
- Guidance/Navigation
- · Autonomy and Teaming
- Radio Frequency (RF) Technology
- Fire Control Radar Technology
- Image Processing
- Models and Simulation
- Cyber Security

#1: Readiness

Provide aviation and missile systems solutions to ensure victory on the battlefield today.

#2: Future Force

Develop and mature Science and Technology to provide technical capability to our Army's (and nation's) aviation and missile systems.

#3: Soldiers and People

Develop the engineering talent to support both Science and Technology and the aviation and missile materiel enterprise

ARCHITECTURE CENTRIC VIRTUAL INTEGRATION PROCESS (ACVIP)

Early Discovery through Virtual System Integration

- Leverages research from the AVSI SAVI consortium which used virtual integration to draw down costs in commercial aviation systems
- Utilizes architecture models to perform virtual integration focusing on software-intensive parts of realtime safety- and security-critical computing systems to identify issues early before integration
- Process (from ACVIP Modeling & Analysis Handbook)
 - 1) Develop ACVIP Management Plan
 - 2) Establish Model Structure
 - 3) Define Model Content Needed for Analysis
 - 4) Incrementally Execute Analyses, Resolve
 - 5) Build System in Conformance to Models
 - 6) Support Certification and Readiness Reviews
- Supports architecture-based compositional modeling and analysis of computing system properties
- Analytical results support increasing assurance confidence and compliments testing
- Provides an "Authoritative Source of Truth" embedded systems architectural model

Virtual Integration of Software, Hardware, and System supporting verification, airworthiness, safety and cybersecurity certification

SAE International

Core AADL language standard [V1 2004, V2 2012, V2.2 2017]

- Focused on embedded & cyberphysical software system modeling, analysis, and generation
- Strongly typed language with well-defined semantics for execution of threads, processes on partitions and processor, sampled/queued communication, modes, end-to-end flows
- Textual and graphical notation
- Revision V3 in progress: interface composition, system configuration, binding, type system unification

Standardized AADL Annex Extensions

- Error Model language for safety, reliability, security analysis [2006, 2015]
- ARINC653 extension for partitioned architectures [2011, 2015]
- Behavior Specification Language for modes and interaction behavior [2011, 2017]
- Data Modeling extension for interfacing with data models (UML, ASN.1, ...) [2011]
- AADL Runtime System & Code Generation [2006, 2015]

AADL Annexes in Progress

- Cyber Security Annex
- **FACE Annex**
- **Network Specification Annex**
- **Requirements Definition and Assurance Annex**
- Synchronous System Specification Annex

MULTIPLE LANGUAGES NAD TOOLS TO MEET USERS NEEDS

Filling the Modeling and Analysis Gap for Embedded Software System

ANALYSIS OF SYSTEM PROPERTIES VIA ARCHITECTURE MODEL A CONTRIBUTION TO AUTHORITATIVE SOURCE OF TRUTH

Capstone Demo & DEWG

OSD DEWG Overview

Modeling & Analysis

Acquisition Management

ACVIP GUIDANCE & TOOLS

AADL Based Tools Available for Capstone Demo as ACVIPv1.0

- Architecture Led Integrated System Assurance (ALISA)
- Architecture Topology Analysis
- ARINC 653 Analysis & Generation Tools
- Behavior Analysis
- Computer Resource Analysis
- Continuous Virtual Integration Test
- Functional Integration Analysis
- Model Based Testing
- Open Source AADL Tool Environment (OSATE)
- Security Analysis (MILS, RMF)
- Safety Analysis Support (MIL-STD-882, SAE ARP 4761 & STPA)
- Structural, Compositional and Formal Method Analyses
- System of Systems Simulation
- Translators and Translation Guidance (FACE-AADL, SysML-AADL)
- Timing, Latency and Scheduling Analysis

Plus new tools from multiple Sources: * SBIRs * DARPA

Europe * etc..

https://www.adventiumlabs.com/ourwork/products-services/model-basedengineering-mbe-tools

ACVIP guidance and tools are exercised, evaluated and matured on JMR MSAD to support legacy and future aviation systems

AADL REFERENCES & AVAILABLE TRAINING

SEI Course on AADL:

https://www.sei.cmu.edu/educationoutreach/courses/course.cfm?courseCode=P72

Adventium CAMET SITE www.camet-library.com

Georgia Tech Class on Cyber Physical Systems

https://www.udacity.com/course/cyber-physicalsystems-design-analysis--ud9876

BACKUP CHARTS

© 2018 Carnegie Mellon University

OPEN SOURCE AADL TOOL ENVIRONMENT (OSATE)

- Intended for open source environment for R&D purposes
- Allows creation of AADL models using a syntax-aware text editor and synchronized graphical editor.
- AADL models are organized in separate projects in a workspace.
- The tool supports validation of AADL models according to all naming and legality rules defined in the AADL standard.
- The text editor provides code templates, real-time syntax checking, code completion, and proposals to fix errors.
- In addition to the core language, models may contain elements from the AADL Standard Annexes (e.g., error model, requirements definition and analysis, ARINC653, and behavior annexes).

AADL Model Text and Graphics auto-generated from FACE 3.0 model by FACE-AADL Translator

Reference: Rockwell Collins "SysML to AADL Translator User's Manual" v1.1

SYSML & AADL COMPARISON

Reference: https://hal.archives-ouvertes.fr/hal-00669391/document page 5

Modeling Language	SysML	AADL
Standards Org	OMG	SAE International AS 5506
Purpose	Larger Systems Modeling & Analysis	Embedded Software Systems Modeling & Analysis
Constructs/ Views	Use-Case, Block Diagrams, Internal Block Diagrams, Rqmts, Sequence, Activity, State Machine, Parametric	RT Components (Abstract, Processor, Memory, Bus, System, Threads), State Machines (Modes, Behavior, Error) Flows, Bindings, connections
Practice / Methodology	Object Oriented Systems Engineering Methodology (OOSEM)	Architecture Centric Virtual Integration Practice (ACVIP)
Tools (Examples)	Rhapsody, SCADE, Sparx EA, MagicDraw, Papyrus, Modelio, etc.	OSATE, Adventium, ANSYS SCADE, ElliDiss, Dassault, WW Technology Group, SBIR produced tools
Practitioners	Commercial and Government Users	Commercial R&D, Government S&T, commercial tools becoming available