Air Quality Analysis And Prediction In Tamil Nadu

Rapid industrialization, vehicular emissions, and natural factors contribute to deteriorating air quality, affecting the well-being of residents. We aim to develop a comprehensive air quality analysis and prediction system for Tamil Nadu, leveraging machine learning and environmental data.

INOVATIVE SOLUTION

Developing innovative solutions for air pollution analysis and prediction in Tamil Nadu, or any region, is crucial for addressing the growing environmental and health challenges associated with poor air quality.

Here are some innovative ideas and technologies that can be implemented:

- Air Quality Monitoring Network Expansion: Expanding the existing air quality monitoring network in Tamil Nadu by deploying more sensors across urban and rural areas. These sensors can provide real-time data, which can be used for accurate pollution analysis.
- Satellite Data Integration: Incorporate satellite data and remote sensing technology to monitor air quality on a broader scale. Satellite imagery can provide valuable insights into regional and seasonal trends in air pollution.

 Community Engagement: Encourage community involvement in air quality monitoring and solutions. Establish local committees or organizations dedicated to addressing air pollution issues.

• Early Warning Systems: Create an early warning system that can alert residents and authorities to upcoming periods of poor air quality, allowing people to take preventive measures.

• Collaborative Research: Foster collaboration between government agencies, research institutions, and private companies to develop and implement innovative solutions for air quality analysis and prediction.

Data Visualization Tools: Develop user-friendly data visualization tools that make air quality information easily accessible to the public, enabling individuals and communities to make informed decisions.

Implementing a combination of these strategies and technologies can significantly improve air pollution analysis and prediction in Tamil Nadu, leading to better-informed decisions and a healthier environment for its residents.

DATA SET: https://www.kaggle.com/datasets/seshupavan/air-pollution-data-of-india-2020-2023/

TEAM DETAILS

- Project Manager: Kanishka.V
- Data Analyst: Dhrasika.R
- Data Engineer: Kanishka.M
- Data Scientist: Krishnaveni.N
- Visualization specialist: Harini.M

Steps in Data Preprocessing Step 1: Import the necessary libraries

```
# importing libraries
import pandas as pd
import scipy
import numpy as np
from \ sklearn.preprocessing \ import \ MinMaxScaler
import seaborn as sns
import matplotlib.pyplot as plt
```

Step 2: Load the dataset

```
from google.colab import drive
drive.mount('/content/gdrive')
```

Mounted at /content/gdrive

Load the dataset

df = pd.read_csv('/content/gdrive/MyDrive/ADS_PHASE 3.csv')

print(df.head())

	Benzene	F+h_R	enzene	MP-Xvl	ono	ВР	O Xvlen	o DM	10 PM:	2.5	RH \
		LCII D		,			,	-		2.5	1411 (
0	1.08		0.04	0	.00	754.05	2.5	0 140.	23 90	.62 42	.51
1	0.83		0.03	0	.00	754.28	1.7	4 124.	91 61	.11 28	.34
2	1.38		0.27	0	.06	754.49	2.3	9 114.	27 70	.89 36	.48
3	1.97		0.47	0	.12	754.28	3.5	1 128.	1 5 78	.52 43	.68
4	1.80		0.75	0	.20	754.00	4.0	0 122.	36 70	.48 51	.57
	SR	Temp	WD	WS	CC	NH3	NO	NO2	NOx	Ozone	S02
0	125.03	17.90	119.19	0.97	0.51	20.53	4.29	22.95	27.24	44.36	4.97
1	148.95	20.04	71.50	1.21	0.53	17.37	2.80	25.59	28.38	53.04	5.59
2	131.87	18.31	147.10	1.00	0.78	18.45	6.85	30.91	37.75	41.94	10.22
3	129.32	18.56	182.79	1.06	0.81	. 22.52	7.36	29.05	36.41	44.15	30.99
4	145.73	18.81	183.47	0.91	0.96	19.14	13.15	28.60	41.74	37.13	15.78

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 298 entries, 0 to 297 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Benzene	298 non-null	float64
1	Eth-Benzene	298 non-null	float64
2	MP-Xylene	298 non-null	float64
3	BP	298 non-null	float64
4	O Xylene	298 non-null	float64
5	PM10	298 non-null	float64
6	PM2.5	298 non-null	float64
7	RH	298 non-null	float64
8	SR	298 non-null	float64
9	Temp	298 non-null	float64
10	WD	298 non-null	float64
11	WS	298 non-null	float64
12	CO	298 non-null	float64
13	NH3	298 non-null	float64
14	NO	298 non-null	float64
15	NO2	298 non-null	float64
16	NOx	298 non-null	float64
17	Ozone	298 non-null	float64
18	S02	298 non-null	float64
1.1	63 164/4	a \	

dtypes: float64(19) memory usage: 44.4 KB

df.head()

	Benzene	Eth- Benzene	MP- Xylene	ВР	0 Xylene	PM10	PM2.5	RH	SR	Temp	WD	WS	со	NH3	NO	NO2	NOx
0	1.08	0.04	0.00	754.05	2.50	140.23	90.62	42.51	125.03	17.90	119.19	0.97	0.51	20.53	4.29	22.95	27.24
1	0.83	0.03	0.00	754.28	1.74	124.91	61.11	28.34	148.95	20.04	71.50	1.21	0.53	17.37	2.80	25.59	28.38
2	1.38	0.27	0.06	754.49	2.39	114.27	70.89	36.48	131.87	18.31	147.10	1.00	0.78	18.45	6.85	30.91	37.75
3	1.97	0.47	0.12	754.28	3.51	128.15	78.52	43.68	129.32	18.56	182.79	1.06	0.81	22.52	7.36	29.05	36.41
4	1.80	0.75	0.20	754.00	4.00	122.36	70.48	51.57	145.73	18.81	183.47	0.91	0.96	19.14	13.15	28.60	41.74

df.tail()

	Benzene	Eth- Benzene	MP- Xylene	ВР	0 Xylene	PM10	PM2.5	RH	SR	Temp	WD	WS	со	NH3	NO	NO2	NOx
293	1.31	0.22	0.08	757.14	2.57	178.71	81.02	29.44	207.84	28.43	210.70	1.01	1.01	23.42	6.62	32.33	38.13
294	0.64	0.01	0.00	756.64	2.24	158.81	76.39	32.40	214.16	28.21	132.54	1.20	0.62	21.50	8.26	25.42	33.68
295	0.71	0.07	0.03	756.01	2.03	138.19	63.19	30.18	202.04	28.75	172.23	1.18	0.72	19.76	8.66	27.63	36.29
296	0.89	0.10	0.04	755.72	2.51	144.54	58.81	29.82	206.48	29.82	214.90	1.36	0.83	19.35	9.01	27.79	36.80
297	1.10	0.20	0.08	756.84	2.82	152.39	62.50	34.85	167.95	28.89	169.89	0.97	0.91	17.60	8.92	33.32	42.24

STEP 3: check the null values

```
df.isnull().sum()
```

Benzene Eth-Benzene MP-Xylene O Xylene 0 PM10 0 PM2.5 0 RH 0 0 0 SR Temp 0 WD WS 0 CO 0 NH3 NO NO2 0 NOx 0 Ozone 0 S02 0 dtype: int64

df.describe()

SR	Temp	
298.000000	298.00000	2
208.083020	30.42802	1
50.891946	5.45345	
69.960000	16.67000	
168.785000	28.14250	1
210.255000	30.86500	2
249.402500	34.15250	2
309.610000	40.07000	2

Step 5: Check the outliers

```
# Box Plots
fig, axs = plt.subplots(9,1,dpi=95, figsize=(7,17))
i = 0
for col in df.columns:
    axs[i].boxplot(df[col], vert=False)
    axs[i].set_ylabel(col)
    i+=1
plt.show()
```


STEP 1: create visualization for SO2

```
import matplotlib.pyplot as plt
import pandas as pd
# Sample data (replace this with your actual SO2 dataset)
data = {
    'Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'],
    'SO2_Level': [15, 18, 12, 14, 16] # Replace with your SO2 data
}
# Create a DataFrame from the data
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date']) # Convert Date column to datetime format
# Plot the SO2 levels
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['SO2_Level'], marker='o', linestyle='-', color='b')
plt.title('SO2 Levels Over Time')
plt.xlabel('Date')
plt.ylabel('SO2 Level')
plt.grid(True)
# Format the x-axis to display dates nicely
plt.xticks(rotation=45)
# Show the plot
plt.tight_layout()
plt.show()
```


STEP 2: create visualization for NO2

```
import matplotlib.pyplot as plt
import pandas as pd

# Sample data (replace this with your actual NO2 dataset)
data = {
    'Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'],
    'NO2_Level': [20, 22, 18, 24, 19] # Replace with your NO2 data
}
```

```
# Create a DataFrame from the data
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date'])  # Convert Date column to datetime format

# Plot the NO2 levels
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['NO2_Level'], marker='o', linestyle='-', color='g')
plt.title('NO2 Levels Over Time')
plt.xlabel('Date')
plt.ylabel('Date')
plt.ylabel('NO2 Level')
plt.grid(True)

# Format the x-axis to display dates nicely
plt.xticks(rotation=45)

# Show the plot
plt.tight_layout()
plt.show()
```


STEP 3: create visualization for RSPM/PM10

```
import matplotlib.pyplot as plt

# Sample data (replace this with your actual RSPM/PM10 dataset)
categories = ['City A', 'City B', 'City C', 'City D']
rspm_pm10_levels = [45, 38, 52, 29]  # Replace with your RSPM/PM10 data

# Create a bar chart to visualize RSPM/PM10 levels
plt.figure(figsize=(10, 6))
plt.bar(categories, rspm_pm10_levels, color='skyblue')
plt.title('RSPM/PM10 Levels by City/Area')
plt.xlabel('City/Area')
plt.ylabel('RSPM/PM10 Level (µg/m³)')

# Add data labels above each bar
for i, level in enumerate(rspm_pm10_levels):
    plt.text(i, level + 1, str(level), ha='center', va='bottom')

# Show the plot
plt.tight_layout()
```

plt.show()


```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

STEP 4: grouping data

```
import pandas as pd
```

```
# Load your data into a Pandas DataFrame (replace 'data.csv' with your data file)
df = pd.read_csv('/content/drive/MyDrive/Excel_ 4.csv')
```

Group the data by the desired column (e.g., 'City' or 'Monitoring Station')
grouped_data = df.groupby('CITIES')

STEP 5: calculating average

```
# Calculate the average SO2, NO2, and RSPM/PM10 levels for each group averages = grouped_data[['SO2', 'NO2', 'RSPM/PM10']].mean()
```

Display the calculated averages
print(averages)

	S02	NO2	RSPM/PM10
CITIES			
Chennai	9.433333	23.036667	145.640000
Dindigul	22.880000	23.753333	129.780000
Erode	18.900000	27.065000	165.580000
Kanniyakumari	27.790000	34.330000	148.680000
Kodaikanal	12.130000	38.050000	171.910000
Madurai	13.897500	26.727500	156.572500
Salem	11.100000	30.060000	160.976667
Thanjavur	3.650000	30.790000	145.180000
Vellore	16.726667	23.116667	141.240000
madurai	10.220000	30.910000	114.270000
salem	30.990000	29.050000	128.150000

Calculate the average SO2, NO2, and RSPM/PM10 levels for each group averages = grouped_data[['RSPM/PM10']].mean()

Display the calculated averages
print(averages)

	RSPM/PM10
CITIES	
Chennai	145.640000
Dindigul	129.780000
Erode	165.580000
Kanniyakumari	148.680000
Kodaikanal	171.910000
Madurai	156.572500
Salem	160.976667
Thanjavur	145.180000
Vellore	141.240000
madurai	114.270000
salem	128.150000