

Verifiable Weighted Secret Sharing

Kareem Shehata

Crypto Valley Conference, 6 June 2025

Joint work with Han Fangqi, National University of Singapore and Sri AravindaKrishnan Thyagarajan, University of Sydney

Secret Sharing

Secret Sharing

Secret Sharing Security

What about the Dealer?

What about the Dealer?

Verifiable Secret Sharing

Why care about Secret Sharing?

- Fundamental concept that underpins many other protocols
- Distributed Key Generation, Threshold Signatures, Consensus, many others...

Proof of Stake Blockchain

Implicit Assumption: Equal Weights

 What happens if all parties don't have the same level of importance or "weight"?

11 Ethereum Stake

Fig. 2: Distribution of Ethereum Stakes for pools other than Lido and Coinbase. Note that the x-axis is logarithmic.

Virtualisation

- Naïve solution: give parties with more weight more shares.
- Convert all weights to integers, give each party a number of shares equal to their weight.
- Very inefficient: have to do communication and computation that grows with at least $\mathcal{O}(w)$!

"Virtualized Shares"

Linear vs CRT Secret Sharing

- Linear (SSS):
 - Equal Weights
 - Easy and flexible
 - Verifiable constructions
 - Single group

- CRT (non-linear):
 - Weighted constructions
 - Non-linearity makes it more difficult to work with
 - No verifiable constructions with a single group

Chinese Remainder Theorem

Let $p_1, ..., p_n$ be arbitrary integers, all co-prime

Chinese Remainder Theorem:

Given $a_1, ..., a_n, a_i \in [p_i]$,

The system of equations $\{a_i = a \mod p_i\}$

Has a unique solution $a \in [0, p_1 \cdots p_n]$

16 CRT-Based Secret Sharing

- Uses Chinese Remainder Theorem instead of polynomials
- Divisor p_i determines "weight"
- Non-linear, only known verifiable version requires strong RSA assumption and unknown order groups, not good for blockchain.

17 CRT Deal Proof

To prove a correct deal starting from a secret s to a share s_i with "weight" value p_i , we just need to prove that:

$$s_i = s + kp_i$$

For some $k < p_i$,

Why not R1CS / Bulletproofs?

- We can easily prove $s_i = s + kp_i$ using R1CS proofs
- ... but only if all the values live in one group.
- For the security of any practical system, we'll want the base secret to be in the group, and the rest of the values much much larger than the group.

19 Problems with Cyclic Groups

If we use the same cyclic group for commitments as the desired crypto system, then:

1.
$$s = s_0 + up_0 = s_0 \mod p_0$$

2. Can always find k' such that $s = s_i + k'p_i \mod p_0$ for any s, s_i !

Either we need to use another, much larger group (previous solutions), change our setup, or be a lot more clever.

Wraparound $\mod p_0$

Let
$$p_0 = qp_1 + t, 0 \le t < p_1$$

$$p_1 \qquad p_1 \qquad p_1 \qquad p_1 \qquad p_2 \qquad p_1 \qquad p_2 \qquad p_1 \qquad p_2 \qquad p_3 \qquad p_4 \qquad p_4 \qquad p_5 \qquad p_6 \qquad$$

If $a = b + kp_1$, and $a < p_0$ then, either:

- k < q and b can be any value in p_1 , OR
- k = q and b < t

"Proof of Mod" $b = a \mod p_1, a, b \in \mathbb{Z}_p$

Prover has a, b, sends verifier $A = \text{Com}(a; r_a), B = \text{Com}(b; r_b)$

Let
$$p_0 = qp_1 + t$$
, where $0 \le t < p_1$

- 1. Prover sends $V = Com(k; r_k)$
- 2. Prover sends proof that $b + kp_1 = a \mod p_0$
- 3. Use disjunctive proof strategy on following statements:

A.
$$(0 \le k < q) \land (0 \le b < p_1)$$
 OR

$$B. (0 \le k \le q) \land (0 \le b < t)$$

Both A and B above are just range proofs, can use Bulletproofs or others

With these in place, have a proof-of-mod, since $b + kp_1 < p_0$

Proof of mod for values $< p_0^2$

Intuitive idea: use the "proof of mod" several times in a row to progressively bring things in range to show:

$$s_1 = s_0 + ap_0 \mod p_1$$

$$s_1 = (s_0 \mod p_1) + (a \mod p_1) \cdot (p_0 \mod p_1) \mod p_1$$

CRT-VSS using a single DL group

If
$$p_i < < p_0$$
 and $p_0 < P_{max} < < p_0^m < P_{min}$

Then the dealer can:

- 1. Distribute shares as in CRT-SS
- 2. Provide commitments to all shares
- 3. Use the expanded proof-of-mod to prove correct dealing for each share

CRT-VSS using a single DL group

Participants:

- 1. Check that shares match commitments
- 2. Verify the proof-of-mod for all shares

Performance Improvement of WR-VSS

- 100x improvement in broadcast bw on current implementation
- 20x improvement in broadcast bw vs virtualized VSS
- 5x improvement in private bw vs virtualised VSS

Design	Broadcast			Private	
	G	$\mid \mathbb{Z}_{p_0}$	Total (B)	\mathbb{Z}_{p_0}	Total (B)
Current	28,000		1,344,000		
Feldman	6,850		219,200	4,110	131,520
WR VSS	389	6	12,640	~ 892	28,528

Proof Size and Running Time

27 Summary

- Shown how to construct the first <u>verifiable</u> and <u>weighted</u> secret sharing scheme that uses only a <u>single discrete-log</u> <u>group</u>.
- WR-VSS produces much smaller proofs than using even the simplest non-weighted VSS.
- <u>But</u> current R1CS proof systems have high overhead in proving time, not yet practical for use.

