Observações

- 1. As questões 1, 2 e 3 exigem vetores e repetição(ões) simples
- 2. As questões 4 e 5 exigem funções com passagem de vetores como parâmetros
- 3. As questões 6, 7 e 8 exigem vetores e repetições aninhadas (embora a 6 também possa ser resolvida com vetores e repetição simples)

Questões

1. Escreva um programa que leia um número inteiro \mathbf{n} representando uma quantidade de meses $(1 \le n \le 20)$. Em seguida faça a leitura de \mathbf{n} inteiros, representando a quantidade de dias que choveu em cada um desses meses (do mês 1 até o mês n). O programa deve em seguida escrever na tela o número do mês em que mais teve dias de chuva e a respectiva quantidade. Se houver empate entre mais de um mês, escreva-os todos. Assuma que choveu em pelo menos algum dia.

Exemplos:

Input	Output
4	1 2 3 4 9
9 9 9 9	
5	2 5
2 5 3 4 1	

2. \triangleright O MEC precisa de sua ajuda para automatizar a correção das provas objetivas do ENEM! Escreva um programa que leia um número inteiro **n** representando o número de questões ($1 \le n \le 20$). Em seguida leia as **n** respostas do gabarito e, em seguida, as **n** respostas do aluno. Assuma que as respostas estão sempre entre 1 e 5. Depois o programa deve escrever na tela quantas questões o aluno acertou e a string "acertos" ou "acerto" (para 1 acerto), conforme exemplo abaixo.

Exemplos:

Input	Output
4	2 acertos
1 2 3 4	
1 5 3 5	
7	1 acerto
$1\ 2\ 3\ 2\ 1\ 5\ 4$	
3 3 3 3 3 3 3	

3. Um professor de ITP quer saber quantos alunos ficaram com a nota acima da média de todas as notas (literalmente a média de todas as notas e não a média 7). Escreva um programa que leia um número inteiro \mathbf{n} (assuma $1 \le n \le 30$) e, em seguida, \mathbf{n} números reais representando as notas dos \mathbf{n} alunos. Depois o programa deve escrever na tela quantos alunos tiveram nota acima da média (a média deve ser calculada).

Exemplo:

Input	Output
28	15
$7.00\ 7.60\ 4.21\ 0.28\ 7.57\ 3.75\ 9.25\ 5.64$	
9.75 2.93 7.02 7.04 6.31 2.37 6.19	
$9.47\ 8.00\ 4.79\ 5.44\ 2.47\ 1.15\ 9.42\ 9.69$	
5.98 5.64 9.47 8.46 2.04	

4. Crie uma função que receba dois vetores como parâmetro que representam os coeficientes (real) e os expoentes (inteiros) de um polinômio, assim como um inteiro **n** representando os tamanhos desses dois vetores e um número real **x**. A função deve retornar a avaliação do polinômio em **x**.

A assinatura da função deve ser a seguinte:

float avaliarPolinomio(float coef[], int exp[], int n);

Por exemplo, suponha que o vetor dos coeficientes seja [2.03, 3.84, 1.72], o vetor de expoentes seja [4, 2, 0] e x = 3.14, então a função deverá retornar o valor de:

$$2.03x^4 + 3.84x^2 + 1.72x^0$$

para x = 3.14, o que resulta em 236.9206396848.

5. \triangleright Escreva a seguinte função que recebe como parâmetro um vetor \mathbf{v} de \mathbf{n} números reais:

A função deve retornar a norma euclidiana dada por:

$$\sqrt{v_0^2 + v_1^2 + \dots + v_{n-1}^2}$$

A função main deve ler do usuário um inteiro \mathbf{n} (assuma $1 \le n \le 30$), \mathbf{n} números reais e escrever na tela, com duas casas decimais de precisão, a norma de \mathbf{u} fazendo uso da função norma.

6. Escreva um programa em C que leia um número inteiro \mathbf{n} (assuma $1 \le n \le 10$) e, em seguida, \mathbf{n} números inteiros. O programa deve escrever \mathbf{S} se esses \mathbf{n} números são uma permutação dos números entre 1 e n e \mathbf{N} caso contrário. Por exemplo, se n = 5, então $\begin{bmatrix} \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{2} & \mathbf{5} \end{bmatrix}$ e $\begin{bmatrix} \mathbf{5} & \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{4} \end{bmatrix}$ são permutações de $\begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \end{bmatrix}$, enquanto não são: $\begin{bmatrix} \mathbf{1} & \mathbf{6} & \mathbf{4} & \mathbf{3} & \mathbf{2} \end{bmatrix}$ (pois falta o 5) e $\begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{3} & \mathbf{3} \end{bmatrix}$ (pois falta o 4).

Exemplos:

Input	Output
4 1 4 3 7	N
$4\ 1\ 4\ 3\ 2$	S

7. Um raio nunca cai duas vezes no mesmo lugar, é o que dizem. Você foi contratado por um instituto de pesquisas para verificar se isso é verdade ou não, ao menos com os dados disponíveis. Crie um programa que leia um número inteiro \mathbf{n} representando a quantidade de raios registrados (assuma $n \leq 20$), seguido de \mathbf{n} coordenadas (\mathbf{x},\mathbf{y}) (em metros) representando o local onde cada raio atingiu o solo. Dois raios caem no mesmo lugar se a distância euclidiana entre as coordenadas for menor ou igual a 1 metro:

$$\sqrt{\Delta x^2 + \Delta y^2} \le 1$$

onde Δx é a diferença entre as abscissas e Δy é a diferença entre as ordenadas.

O programa deve escrever na tela caso haja dois raios que cairam no mesmo local e caso contrário. Exemplo 1 (vide imagens):

Input	Output
3	sim
3.2 4.4	
3.3 5.1	
9.1 4.2	
3	nao
3.2 4.4	
5.2 5.1	
$9.1\ 4.2$	

Figure 1: Localização de cada um dos raios do exemplo 1. A distância euclidiana entre o primeiro raio (3.2, 4.4) e o segundo (3.3, 5.1) é menor ou igual a 1.

Figure 2: Localização de cada um dos raios do exemplo 2. Não há dois raios cuja distância euclidiana é menor ou igual a 1.

8. \triangleright Escreva um programa em C que leia um número n $(n \le 50)$, leia n números inteiros $v_0 \dots v_{n-1}$, um número \mathbf{x} e, em seguida, escreva na tela quantas são as possibilidades em que a soma de dois números v_i e v_j $(i \ne j)$ dos \mathbf{n} números digitados resulta em \mathbf{x} .

Exemplo:

Input	Output
13	4
6 4 11 -4 12 -5 2 -1 7 -2 -3 1 8 7	

 $\label{eq:comentario:nesse} Comentário: nesse exemplo, as possibilidades são: (6, 1), (-1, 8), (11, -4) e (12, -5).$