# PC3242 Part II Lectures 3

| Topic                                                                        | Text Book (Zhen Cui '05)                                                | Lectures              |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|
| Optical lithography                                                          | Chapter 2                                                               | 1, 2 & <mark>3</mark> |
| Electron Beam Lithography                                                    | Chapter 3                                                               | 4 & 5                 |
| Focused Ion Beam Technology Low Energetic Ions (keV) SIMS FIB in Lithography | Chapter 4  Extra material provided Chapter 4                            | 6, 7 & 8              |
| High Energetic Ions (MeV)<br>RBS<br>Light ions in lithography                | Extra material provided Extra material provided Extra material provided | 9<br>10<br>11         |
| Nano Imprint Lithography                                                     | Chapter 7                                                               | 12                    |
| 3DP Three Dimensional Printing                                               | Extra material provided                                                 | 13                    |
| Etching                                                                      | Chapter 6                                                               | 14                    |

## **Optical Lithography**

# Masked processes (electromagnetic)

- Light (Coherent)
- ·X-rays, UV

# Contact $w = k\sqrt{\lambda z}$



#### **Projection printing**

$$R = l_m = k_1 \frac{\lambda}{NA}$$



$$DOF = k_2 \frac{\lambda}{(NA)^2}$$

Coherence  $\sigma$  is a critical parameter here to achieve ultimate resolution

#### **Direct write processes**

Charged particles



# **Optical Lithography** Chemical development



# **Optical Lithography**

### Grey-scale

Optical lithography can also produce curved resist profiles;

How?



(a) Sensitivity and contrast for positive photoresists

→ Using grey scale lithography

In electron beam you can vary the energy deposition per unit area in combination with a low contrast resist this give nice control over resist thickness.

In optical lithography we need grey scale masks + low contrast resist. Mask requirements:

Opaque pixels in transparent area or transparent pixels in opaque areas Here the pixel size < resolution

→ Transparency modulation

# **Optical Lithography**

#### Grey-scale

Application of grey scale lithography can be found in the area of integrated

optics:



Micro lens array made by photo lithography through a grey scale mask

### Particle/wave interaction with material



2 MeV protons: Well defined path + Dose homogeneity

(Focused ion beam FIB): Surface atoms removed by sputtering 50 keV electrons: beam broadening below the surface X-Rays need mask, well defined path: dose exp decay with depth

- •Nanolithography using particles or waves can be planned if we understand the physics of the interactions.
- E.g. like in Optical lithography, Electron Beam Writing, FIB and Proton Beam Writing.

# Electron Beam Lithography / Microscopy

Other books on electron microscopy:

Scanning Electron Microscopy and X-ray Microanalysis Joseph Goldstein, Dale E Newbury, David C Joy, Charles E Lyman, Patrick Echlin, Eric Lifshin, LC Sawyer, JR Michael

Transmission Electron Microscopy: A Textbook for Materials Science DB Williams and C Barry Carter

#### Introduction

**Electron** means we use electrons to form our image. Electrons behave as waves just like light, but have a much shorter wavelength.

Microscopy means we are looking at small things

What is electron microscopy?

$$\lambda_{light} = \frac{hc}{E} \ge 157nm$$

#### Why use electrons not light?

Electrons have a much shorter wavelength than light. You cannot see anything smaller than half the wavelength of the radiation you are using

$$\lambda_e = \frac{1.226}{\sqrt{V}}(nm)$$

$$= h/p = \frac{h}{m_e v} = \frac{h}{\sqrt{2em_e U}} = \frac{6.63 \times 10^{-34}}{\sqrt{2x9.1 \times 10^{-31} \times 10^3 \times 1.6 \times 10^{-19}}} = \frac{6.63 \times 10^{-34}}{1.71 \times 10^{-23}} = 3.86 \times 10^{-11} m$$

### E-Beam Techniques and acronyms

**EM:** Electron microscopy. Covers TEM, SEM, STEM, etc

**SEM:** Scanning electron microscopy. Collect the secondary electrons emitted from the surface.

**TEM:** Transmission electron microscopy

**STEM:** Scanning transmission electron microscopy. Like TEM, but scan a finely focused beam of electrons across the specimen rather than image using a broad beam

E-beam (e-beam) lithography



Optical microscopy: Resolution limited by wavelength of light to ~300nm Other radiation (X-rays, y-rays) cannot be focused.

**1897:** JJ Thompson discovers the electron

**1925:** de Broglie proposes electrons are waves with small wavelength

**1927:** Electron diffraction demonstrated by CH Davisson and Lh Germer (reflection) and GP Thompson and A Reid (transmission)

incident electrons 54 eV,  $\lambda = 1.67 \text{ Å}$ Polar Plot intensity vs reflection angle intensity maximum



JJ Thompson, Cavendish Labs



**Davisson and Germer** 

Electron diffraction from Ni surface Davisson and Germer

1931: M Knoll and E Ruska build first electron microscope

M Knoll and E Ruska, Das Elektronenmikroskop. Z. Physik 78 (1932) 318–339



Ruska & Knoll, 1931



First TEM image, magnification 17.4×, 50kV



Ruska's sketch of first TEM

http://ernst.ruska.de/daten\_e/library/documents/999.nobellecture/lecture.html

**1934:** Resolution of electron microscope better than light microscope – Driest & Muller

1936: First commercial TEM – Metropolitan-Vickers AEI EM1

1938: First practical commercial TEM – von Borries & Ruska, Siemens. 10 nm

resolution. M von Ardenne builds first STEM

1940: RCA TEM, 2.4 nm resolution

**1941:** First electron micrographs of viruses

1942: First SEM built by Zworykin et al

1945: Resolution 1 nm



Luria and Anderson, first TEM image of a bacteriophage, 1942



Siemens TEM

#### **Electron microscope resolution**



#### Ultimate resolution

#### Secondary electron scattering

Types:

- Forward & Backward by primary beam
  - → Proximity effects

#### **1983 STEM (2-3 nm beam spot)**

was used to write in 10 nm thick resist with 300 keV electron beam
This gave **10 nm features** 

Low energy electrons are needed for lithography, they break the bonds in the resist chains!

Radius: 5 nm Diameter: 10 nm

#### **Solution Resist Processing**

4 nm line width has been achieved through ultrasonic resist development. Use energy close to minimum exposure dose.

Low energy secondary electrons 80% <200 eV



## Electron scattering and proximity effect

Besides the system resolution and resist performance the **scattering of the electrons** in the resist is of crucial importance for the final resolution

Through what mechanism will the incoming electron beam lose its energy?

Electronic and Nuclear scattering

Which one is more important for lithography?

Electronic because of large cross section (ie high likely hood)

### How do electrons interact with matter?

Inelastic scattering on atomic orbital electrons 

Excitations + Ionization of Atoms

Collision Stopping Power

Il Elastic scattering on atoms without significant energy exchange

Larger atoms (with a greater atomic number, Z) have a higher probability of producing an elastic collision because of their greater cross-sectional area

Inelastic nuclear scattering. This results in radiation which is known as Bremsstrahlung Radiative Stopping Power







# E-Beam / X-rays X-ray spectroscopy

When an electron hits a material X-rays are formed by 2 processes:

- 1) Bremsstrahlung
- 2) Characteristic X-rays/photons <sub>X-ray</sub>

#### **Bremsstrahlung process**

Caused by electrons being decelerated. Contains all energies from 0 to beam energy Intensity given by Kramers law

$$I = \frac{iZ(E_0 - E)}{E}$$

where

*i* = beam current

Z = average atomic number

 $E_0$  = incident electron beam energy



Why does the observed X-ray intensity drop?

# E-Beam / X-rays

## X-ray spectroscopy (Characteristic X-rays)

Primary electron removes electron from inner shell of target atom putting an ion in an excited state

Ion loses energy by outer shell electron falling into vacancy

Excess energy emitted as either an X-ray or an Auger Electron

Probability of X-ray emission given by fluorescence yield,  $\omega_k$ ,  $\omega_l$ ,  $\omega_m$ 

ω small for low Z





K, L and M characteristic lines for Au

# E-Beam / X-rays

### Energy dispersive X-ray spectroscopy (EDX)

Typical limits of detection 0.1%

