

第五章存储系统

第九讲虚拟存储器

谢长生

武汉光电国家研究中心 华中科技大学计算机科学与技术学院

虚拟存储器基本原理

- 1. 虚拟存储器的特点
 - 多个进程可以共享主存空间
 - 程序员不必做存储管理工作
 - 采用动态再定位,简化了程序的装入
- 2. 虚拟存储器可以分为两类: 页式和段式
- 3. 有关虚拟存储器的四个问题
 - 映象规则: 全相联
 - 查找算法: 页表, 段表, TLB
 - 替换算法: LRU
 - 写策略: 写回法

用页表实现虚拟地址到物理地址的映射

快表 TLB

1. TLB

- TLB是一个专用的高速缓冲器,用于存放 近期经常使用的页表项;
- TLB中的内容是页表部分内容的一个副本;
- TLB也利用了局部性原理。
- 2. Alpha AXP 21064的地址转换过程(图5.26)
- 3. TLB一般比Cache的标识存储器更小、更快

Alpha AXP 21064的地址转换过程

进程:程序呼吸所需的空气及生存的空间。

进程保护

1. 界地址寄存器 基地址,上界地址 检测条件: (基地址+地址)≤上界地址

- 虚拟存储器
 给每个页面增加访问权限标识
- 3. 环形保护
- 4. 加锁和解锁

页式虚存举例: Alpha AXP的存储管理和21064的TLB

Alpha AXP体系结构采用段页相结合的方式。

1. Alpha的地址空间分为3段:

kseg(地址最高两位: 10) (内核)

sego(最高位:

0) (用户)

seg1(最高两位:

11) (用户)

Alpha采用三级页表(地址变换过程见图5.28)

3. Alpha的页表项(PTE)

PTE的前32位为物理页帧号,而后32位则包含

以下5个保护域:

- 有效域: 为"1"表示该页帧号有效,可被硬件用于地址变换。
- 用户读许可域: 为"1"表示允许用户程序读该页内的数据。
- 内核读许可域: 为"1"表示允许内核进程读该页内的数据。
- 用户写许可域: 为"1"表示允许用户程序将数据写入该页。
- 内核写许可域: 为"1"表示允许内核程序将数据写入该页。

4. Alpha Axp21064TLB的参数

表5.11 Alpha AXP 21064 TLB的存储层次参数

参数	描述
块大小	1 PTE (8B)
命中时间	1个时钟周期
平均失效开销	20个时钟周期
TLB容量	指令TLB: 8个PTE用于大小为8KB的页, 4个PTE用于大小为4MB的页(共96B) 数据TLB: 32个PTE用于大小分别为8KB、64KB、 512KB和4MB的页(共256B)
块替换策略	随机法(但不替换刚用过的)
写策略	不适用
块映象策略	全相联

1. 工作过程

谢谢大家!

