# LIDO KSM SMART CONTRACT AUDIT

February 08, 2022



# **CONTENTS**

| 1.INTRODUCTION                                    | 2  |
|---------------------------------------------------|----|
| DISCLAIMER                                        | 2  |
| SECURITY ASSESSMENT METHODOLOGY                   | 7  |
| PROJECT OVERVIEW                                  | 5  |
| PROJECT DASHBOARD                                 |    |
| 2.FINDINGS REPORT                                 | 7  |
| 2.1.CRITICAL                                      | 7  |
| CRT-1 Possible underflow                          | 7  |
| CRT-2 Possible overflow on cast to uint           |    |
| 2.2.MAJOR                                         |    |
| MJR-1 Public access to all functions              | 9  |
| MJR-2 Controller can be initialized several times |    |
| MJR-3 Incorrect condition                         |    |
| MJR-4 Possible burn of zero shares                | 12 |
| MJR-5 Possible division by zero                   |    |
| MJR-6 Insufficient xcKSm balance on Lido          | 14 |
| MJR-7 Possible zero balance on Lido               | 15 |
| MJR-8 Possible underflow                          | 16 |
| 2.3.WARNING                                       |    |
| WRN-1 Possible free tokens on Ledger              |    |
| WRN-2 Rewards can be lost                         |    |
| 2.4.COMMENT                                       |    |
| CMT-1 Unusable variable                           | 19 |
| 3.ABOUT MTXBYTES                                  | 20 |

# 1.INTRODUCTION

# 1.1 DISCLAIMER

The audit makes no statements or warranties about utility of the code, safety of the code, suitability of the business model, investment advice, endorsement of the platform or its products, regulatory regime for the business model, or any other statements about fitness of the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes only. The information presented in this report is confidential and privileged. If you are reading this report, you agree to keep it confidential, not to copy, disclose or disseminate without the agreement of Lido KSM. If you are not the intended recipient(s) of this document, please note that any disclosure, copying or dissemination of its content is strictly forbidden.

# 1.2 SECURITY ASSESSMENT METHODOLOGY

A group of auditors are involved in the work on the audit who check the provided source code independently of each other in accordance with the methodology described below:

- 01 Project architecture review:
  - > Reviewing project documentation
  - > General code review
  - > Reverse research and study of the architecture of the code based on the source code only
  - > Mockup prototyping

#### Stage goal:

Building an independent view of the project's architecture and identifying logical flaws in the code.

- 02 Checking the code against the checklist of known vulnerabilities:
  - > Manual code check for vulnerabilities from the company's internal checklist
  - > The company's checklist is constantly updated based on the analysis of hacks, research and audit of the clients' code
  - > Checking with static analyzers (i.e Slither, Mythril, etc.)

#### Stage goal:

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flashloan attacks, etc.)

- 03 Checking the code for compliance with the desired security model:
  - > Detailed study of the project documentation
  - > Examining contracts tests
  - > Examining comments in code
  - > Comparison of the desired model obtained during the study with the reversed view obtained during the blind audit
  - > Exploits PoC development using Brownie

#### Stage goal:

Detection of inconsistencies with the desired model

- 04 Consolidation of interim auditor reports into a general one:
  - > Cross-check: each auditor reviews the reports of the others
  - > Discussion of the found issues by the auditors
  - > Formation of a general (merged) report

#### Stage goal:

Re-check all the problems for relevance and correctness of the threat level and provide the client with an interim report.

- 05 Bug fixing & re-check:
  - > Client fixes or comments on every issue
  - > Upon completion of the bug fixing, the auditors double-check each fix and set the statuses with a link to the fix

#### Stage goal:

Preparation of the final code version with all the fixes

06 Preparation of the final audit report and delivery to the customer.

Findings discovered during the audit are classified as follows:

# FINDINGS SEVERITY BREAKDOWN

| Level    | Description                                                                                                                                       | Required action                                             |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Critical | Bugs leading to assets theft, fund access locking, or any other loss funds to be transferred to any party                                         | Immediate action to fix issue                               |
| Major    | Bugs that can trigger a contract failure.<br>Further recovery is possible only by manual<br>modification of the contract state or<br>replacement. | Implement fix as soon as possible                           |
| Warning  | Bugs that can break the intended contract logic or expose it to DoS attacks                                                                       | Take into consideration and implement fix in certain period |
| Comment  | Other issues and recommendations reported to/acknowledged by the team                                                                             | Take into consideration                                     |

Based on the feedback received from the Customer's team regarding the list of findings discovered by the Contractor, they are assigned the following statuses:

| Status       | Description                                                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fixed        | Recommended fixes have been made to the project code and no longer affect its security.                                                                                               |
| Acknowledged | The project team is aware of this finding. Recommendations for this finding are planned to be resolved in the future. This finding does not affect the overall safety of the project. |
| No issue     | Finding does not affect the overall safety of the project and does not violate the logic of its work.                                                                                 |

# 1.3 PROJECT OVERVIEW

Lido KSM is a Liquid staking protocol on the Kusama network (Polkadot) deployed in the Moonriver parachain network. Its purpose is to let users receive income from KSM (DOT) staking without restrictions imposed by the Kusama network, such as blocking liquidity for a long time. Lido is a set of EVM-compatible smart contracts operating in the Moonriver/Moonbeam environment and relay-chain (Kusama/Polkadot) XCMP messages. Lido.sol contract is the core contract which acts as a liquid staking pool.

The contract is responsible for xCKSM deposits and withdrawals, minting and burning stKSM, delegating funds to node operators, applying fees, and accepting updates from the oracle contract. The smart contracts reviewed in this audit are designed wherein Lido also acts as an ERC20 token which represents staked xCKSM, stKSM. Tokens are minted upon deposit and burned when redeemed. stKSM tokens are pegged 1:1 to the xCKSM ones that are held by Lido. stKSM tokens balances are updated when the oracle reports change in total stake every era.

# 1.4 PROJECT DASHBOARD

| Client              | Lido KSM                                                                                                                         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Audit<br>name       | LIDO KSM                                                                                                                         |
| Initial<br>version  | 76a10efa5f223c4c613f26794802b8fb9bb188e1<br>130bdc416933cb57ff5bf279e74d3f48decf224e<br>30b1f028f7e73075845c07f69c70c1cd0926055b |
| Final<br>version    | 2f2725faa0bc371e4d1ddfceacd8c45d8f0905f8                                                                                         |
| Date                | November 09, 2021 - February 08, 2022                                                                                            |
| Auditors<br>engaged | 3 auditors                                                                                                                       |

#### FILES LISTING

| AuthManager.sol | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/AuthManager.sol |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
| Controller.sol  | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/Controller.sol  |
| Ledger.sol      | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/Ledger.sol      |

| Lido.sol           | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/Lido.sol                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
| OracleMaster.sol   | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/OracleMaster.sol          |
| Oracle.sol         | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/Oracle.sol                |
| stKSM.sol          | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/stKSM.sol                 |
| LedgerUtils.sol    | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/utils/LedgerUtils.s<br>ol |
| ReportUtils.sol    | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/contracts/utils/ReportUtils.s<br>ol |
| IAuthManager.sol   | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/IAuthManager.sol         |
| IController.sol    | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/IController.sol          |
| ILedger.sol        | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/ILedger.sol              |
| ILido.sol          | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/ILido.sol                |
| IOracleMaster.sol  | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/IOracleMaster.sol        |
| IOracle.sol        | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/IOracle.sol              |
| IRelayEncoder.sol  | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/IRelayEncoder.sol        |
| IXcmTransactor.sol | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/IXcmTransactor.sol       |
| IxTokens.sol       | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/IxTokens.sol             |
| Types.sol          | https://github.com/mixbytes/lido-dot-ksm/blob/76a10efa5f22<br>3c4c613f26794802b8fb9bb188e1/interfaces/Types.sol                |
| LedgerFactory.sol  | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/contracts/LedgerFactory.sol             |

| Withdrawal.sol      | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/contracts/Withdrawal.sol            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|
| wstKSM.sol          | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/contracts/wstKSM.sol                |
| LedgerBeacon.sol    | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/contracts/proxy/LedgerBeacon.sol    |
| LedgerProxy.sol     | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/contracts/proxy/LedgerProxy.sol     |
| WithdrawalQueue.sol | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/contracts/utils/WithdrawalQueue.sol |
| IWithdrawal.sol     | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/interfaces/IWithdrawal.sol          |
| ILedgerFactory.sol  | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/interfaces/ILedgerFactory.sol       |
| IvKSM.sol           | https://github.com/mixbytes/lido-dot-ksm/blob/da1accb85e028b0d5e1e5ed1c10622e852d9b43b/interfaces/IvKSM.sol                |

## FINDINGS SUMMARY

| Level    | Amount |
|----------|--------|
| Critical | 2      |
| Major    | 8      |
| Warning  | 2      |
| Comment  | 1      |

# CONCLUSION

The smart contracts have been audited and several suspicious places were found. During the audit 2 critical and 7 major issues were identified. Several issues were marked as warnings. Havig worked on the audit report, all issues were fixed by the client. Thus, the contracts are assumed as secure to use according to our security criteria. Final commit identifier with all fixes: 2f2725faa0bc371e4d1ddfceacd8c45d8f0905f8

# 2.FINDINGS REPORT

# 2.1 CRITICAL

| CRT-1    | Possible underflow |
|----------|--------------------|
| File     | Lido.sol           |
| Severity | Critical           |
| Status   | Fixed at 130bdc41  |

#### **DESCRIPTION**

If a ledger's stake drammaticaly decreases due to rebalance and after that the ledger receives a huge slash, then underflow can occur: Lido.sol#L608

#### **RECOMMENDATION**

We recommend distributing slashes across all the ledgers.

#### CLIENT'S COMMENTARY

Fixed

| CRT-2    | Possible overflow on cast to uint |
|----------|-----------------------------------|
| File     | Lido.sol                          |
| Severity | Critical                          |
| Status   | Fixed at 130bdc41                 |

If newStake is a negative number, then overflow can occur: Lido.sol#L730

## **RECOMMENDATION**

We recommend checking overall diff in order to exclude such scenarios.

## CLIENT'S COMMENTARY

Fixed

# 2.2 MAJOR

| MJR-1    | Public access to all functions |
|----------|--------------------------------|
| File     | Controller.sol                 |
| Severity | Major                          |
| Status   | Fixed at 130bdc41              |

## **DESCRIPTION**

In contract <code>Controller</code> all functions have public access which can be exploited: <code>Controller.sol</code>

#### **RECOMMENDATION**

We recommend adding access modificators.

# CLIENT'S COMMENTARY

Fixed

| MJR-2    | Controller can be initialized several times |
|----------|---------------------------------------------|
| File     | Controller.sol                              |
| Severity | Major                                       |
| Status   | Fixed at 130bdc41                           |

In contract  ${\tt Controller}$  the  ${\tt initialize}$  function can be called several times: Controller.sol#L140

## **RECOMMENDATION**

We recommend adding the initializer modifier.

# CLIENT'S COMMENTARY

Fixed

| MJR-3    | Incorrect condition |
|----------|---------------------|
| File     | Lido.sol            |
| Severity | Major               |
| Status   | Fixed at 130bdc41   |

The condition is incorrect here that can lead to an infinite loop: Lido.sol#L748

# **RECOMMENDATION**

We recommend changing  $|\cdot|$  into  $\delta_{\delta}\delta_{\delta}$ .

## CLIENT'S COMMENTARY

Fixed

| MJR-4    | Possible burn of zero shares |
|----------|------------------------------|
| File     | Lido.sol                     |
| Severity | Major                        |
| Status   | Fixed at 130bdc41            |

Due to rounding errors a user can burn zero shares: Lido.sol#L522

# **RECOMMENDATION**

We recommend adding a check so that a user couldn't burn zero shares.

## CLIENT'S COMMENTARY

Fixed

| MJR-5    | Possible division by zero |
|----------|---------------------------|
| File     | Lido.sol                  |
| Severity | Major                     |
| Status   | Fixed at 130bdc41         |

In some cases division by zero can take place here:

- Lido.sol#L658
- Lido.sol#L708

## **RECOMMENDATION**

We recommend to set a stake to zero if the overall shares amount is equal to zero.

# CLIENT'S COMMENTARY

Fixed

| MJR-6    | Insufficient xcKSm balance on Lido |
|----------|------------------------------------|
| File     | Lido.sol                           |
| Severity | Major                              |
| Status   | Fixed at 130bdc41                  |

It is possible that  ${\tt Lido}$  can have less than  ${\tt \_readyToClaim}$  :  ${\tt Lido.sol\#L563}$ 

## **RECOMMENDATION**

We recommend to add a requirement that Lido would have enough tokens to transfer.

## CLIENT'S COMMENTARY

Fixed

| MJR-7    | Possible zero balance on Lido |
|----------|-------------------------------|
| File     | Lido.sol                      |
| Severity | Major                         |
| Status   | Fixed at 130bdc41             |

It is possible that Lido can have zero balance on reward distribution: Lido.sol#L588

## **RECOMMENDATION**

We recommend to add a check for the case when  ${\tt Lido}$  has zero balance on reward distribution.

# CLIENT'S COMMENTARY

Fixed

| MJR-8    | Possible underflow |
|----------|--------------------|
| File     | Ledger.sol         |
| Severity | Major              |
| Status   | Fixed at 130bdc41  |

It is possible that free balance from the report can be less than free balance from the previous era: Ledger.sol#L297

## **RECOMMENDATION**

We recommend to add a variable to control which amount should be bonded on the next era.

# CLIENT'S COMMENTARY

Fixed

# 2.3 WARNING

| WRN-1    | Possible free tokens on Ledger |
|----------|--------------------------------|
| File     | Ledger.sol                     |
| Severity | Warning                        |
| Status   | Fixed at 130bdc41              |

## **DESCRIPTION**

If someone sends xcKSM to Ledger: Ledger.sol#L282

## **RECOMMENDATION**

We recommend sendig excess in funds to treasury.

# CLIENT'S COMMENTARY

Fixed

| WRN-2    | Rewards can be lost |
|----------|---------------------|
| File     | Lido.sol            |
| Severity | Warning             |
| Status   | Fixed at 130bdc41   |

If these addresses have been set to 0, then the rewards can be lost:

Lido.sol#L218 Lido.sol#L225 Lido.sol#L318 Lido.sol#L328

## **RECOMMENDATION**

We recommend adding a zero address check.

# CLIENT'S COMMENTARY

Fixed

# 2.4 COMMENT

| CMT-1    | Unusable variable |
|----------|-------------------|
| File     | Lido.sol          |
| Severity | Comment           |
| Status   | Fixed at 130bdc41 |

## **DESCRIPTION**

The variable is defined and initialized, but not used in the smart contract: Lido.sol#L201

#### **RECOMMENDATION**

We recommend removing this variable.

# CLIENT'S COMMENTARY

Fixed

# 3.ABOUT MIXBYTES

MixBytes is a team of blockchain developers, auditors and analysts keen on decentralized systems. We build open-source solutions, smart contracts and blockchain protocols, perform security audits, work on benchmarking and software testing solutions, do research and tech consultancy.

#### **BLOCKCHAINS**

#### TECH STACK



Ethereum



Cosmos



Python



Solidity



EOS



Substrate



Rust



#### **CONTACTS**



https://github.com/mixbytes/audits\_public



www https://mixbytes.io/



hello@mixbytes.io



https://t.me/MixBytes



https://twitter.com/mixbytes