数理统计

Didnelpsun

目录

1	统计	量	1	
2	三大分布			
	2.1	χ^2 分布 \dots	1	
	2.2	t 分布	2	
	2.3	F 分布	2	
	2.4	函数分布	3	
3	参数估计			
	3.1	矩估计	3	
		3.1.1 一阶矩	3	
		3.1.2 二阶矩	3	
	3.2	最大似然估计	3	
4	置信区间			
	4.1	方差已知	4	
	4.2	方差未知	4	
5	假设检验			
6	两类错误 两类错误			

1 统计量

利用期望和方差等数学特征之间的关系进行计算统计量,往往以 $\sum\limits_{i=1}^{n}X_{i}$ 或类似的形式。

例题: 已知总体 X 的期望为 EX=0,方差 $DX=\sigma^2$ 。从总体抽取容量为 n 的简单随机样本,其均值和方差分别为 \overline{X} , S^2 。记 $S_k^2=\frac{n}{k}\overline{X}^2+\frac{1}{k}S^2$ (k=1,2,3,4),则 ()。

例题: 设 X_i 为来自总体 $E(\lambda)$ $(\lambda > 0)$ 的简单随机样本,记统计量 $T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$,求 ET。

$$\mathfrak{M}: ET = E \frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} EX_i^2 = \frac{1}{n} \sum_{i=1}^{n} (DX_i + E^2 X_i) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^2} \right) \\
= \frac{1}{n} \cdot \frac{2n}{\lambda^2} = \frac{2}{\lambda^2} \circ$$

例题:设 X_i 为来自总体 X 的简单随机样本,而 $X \sim B\left(1,\frac{1}{2}\right)$ 。记 $\overline{X} =$

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \Re P\left\{\overline{X} = \frac{k}{n}\right\} \circ (0 \leqslant k \leqslant n)$$

$$\Re \colon : X \sim B\left(1, \frac{1}{2}\right), \quad : \sum_{i=1}^{n} X_{i} \sim B\left(n, \frac{1}{2}\right) \circ$$

$$P\left\{\overline{X} = \frac{k}{n}\right\} = P\left\{\frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{k}{n}\right\} = P\left\{\sum_{i=1}^{n} X_{i} = k\right\} = C_{n}^{k} \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k}$$

$$= C_{n}^{k} \cdot \left(\frac{1}{2}\right)^{n} \circ$$

2 三大分布

2.1 χ^2 分布

例题: 设 X_1, X_2, X_3, X_4 是来自正态总体 N(0,4) 的简单随机样本,记 $X = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$ 。求 X 服从 χ^2 分布下的参数与自由度。

解:若 X_1, X_2, X_3, X_4 同一个正态分布,所以 $EX_1 = EX_2 = EX_3 = EX_4 = 0$, $DX_1 = DX_2 = DX_3 = DX_4 = 4$ 。

$$E(X_1 - 2X_2) = EX_1 - 2EX_2 = 0$$
, $D(X_1 - 2X_2) = DX_1 - 4DX_2 = 20$

$$\therefore X_1 - 2X_2 \sim N(0,20)$$
,同理 $3X_3 - 4X_4 \sim N(0,100)$ 。
对其标准化: $\frac{X_1 - 2X_2 - 0}{\sqrt{20}} \sim N(0,1)$, $\frac{3X_3 - 4X_4 - 0}{\sqrt{100}} \sim N(0,1)$ 。
若要让 X 满足 χ^2 分布,则要将 $a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$ 两项标准化。
 $\therefore \frac{(X_1 - 2X_2)^2}{20} + \frac{(3X_3 - 4X_4)^2}{100} \sim \chi^2(2)$,所以 $a = \frac{1}{20}$, $b = \frac{1}{100}$ 。

2.2 t 分布

例题: 设 X_1, X_2, \cdots, X_8 是来自正态总体 $N(0, 3^2)$ 的简单随机样本,则统计 例题: $\[egin{aligned} & \mathbf{M} \boxtimes : \[egin{aligned} & \mathbf{M} \boxtimes : \[\mathbf{X}_1, \mathbf{X}_2, & \mathbf{Y}_3 & \mathbf{X}_4 \\ & & \mathbf{X}_1 + X_2 + X_3 + X_4 \\ & & \sqrt{X_5^2 + X_6^2 + X_7^2 + X_8^2} \] \[\mathbb{R} \mathbb{M} \text{ 什么分布?} \\ & \mathbb{R}: \[& : X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 36). \] \\ & \mathbb{R}: \[& : X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 36). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 36). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 36). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 36). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 36). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 36). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 9). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 9). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 9). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 9). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 9). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_8 \sim N(0, 9), \[:: X_1 + X_2 + X_3 + X_4 \sim N(0, 9). \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_1 \sim N(0, 9), \[:: X_1 \sim N(0, 9), \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1, \cdots, X_1 \sim N(0, 9), \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0, 9), \] \\ & \mathbb{R}: \[:: X_1 \sim N(0,$ $\therefore \frac{X_1 + X_2 + X_3 + X_4 - 0}{6} \sim N(0, 1).$ $\frac{X_5^2 + X_6^2 + X_7^2 + X_8^2}{9} = \left(\frac{X_5 - 0}{3}\right)^2 + \left(\frac{X_6 - 0}{3}\right)^2 + \left(\frac{X_7 - 0}{3}\right)^2 + \left(\frac{X_8 - 0}{3}\right)^2$ $\sim \chi^{2}(4) \frac{X_{1} + X_{2} + X_{3} + X_{4} - 0}{6} \frac{X_{1} + X_{2} + X_{3} + X_{4}}{\sqrt{X_{5}^{2} + X_{6}^{2} + X_{7}^{2} + X_{8}^{2}}} = \frac{X_{1} + X_{2} + X_{3} + X_{4}}{\sqrt{X_{5}^{2} + X_{6}^{2} + X_{7}^{2} + X_{8}^{2}}} \sim t(4).$

2.3 F 分布

 $_2,\cdots,X_1$ 5 是来自正态总体 $N(0,3^2)$ 的简单随机样本,则统 计量 $Y = \frac{X_1^2 + X_2^2 + \dots + X_{10}^2}{2X_{11}^2 + X_{12}^2 + \dots + X_{15}^2}$ 服从什么分布?

$$\mathfrak{M}: : \frac{X_{i} - 0}{3} \sim N(0, 1), \quad \left(\frac{X_{i} - 0}{3}\right)^{2} = \frac{x_{i}^{2}}{9} \sim \chi^{2}(1).$$

$$\therefore \frac{X_{1}^{2} + X_{2}^{2} + \dots + X_{10}^{2}}{9} \sim \chi^{2}(10), \quad \frac{X_{11}^{2} + X_{12}^{2} + \dots + X_{15}^{2}}{9} \sim \chi^{2}(5).$$

$$\therefore \frac{X_{1}^{2} + X_{2}^{2} + \dots + X_{10}^{2}}{9} / 10}{\frac{X_{11}^{2} + X_{12}^{2} + \dots + X_{10}^{2}}{9}} = \frac{X_{1}^{2} + X_{2}^{2} + \dots + X_{10}^{2}}{2X_{11}^{2} + X_{12}^{2} + \dots + X_{15}^{2}} = Y \sim F(10, 5).$$

例题: 已知 (X,Y) 的概率分布函数为 $f(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2-2y+1)}$, $x,y \in R$, 求 $\frac{X^2}{(Y-1)^2}$ 的分布。

解: $f(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2-2y+1)} = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+(y-1)^2)}$, 所以根据二维正态分布 的形式,得到 $(X,Y) \sim (0,1;1,1;0)$ 。

 $\mathbb{P}[X \sim \Phi(x), Y - 1 \sim \Phi(x), :: X^2 \sim \chi^2(1), (Y - 1)^2 \sim \chi^2(1), :: \frac{X^2}{(Y - 1)^2} \sim$ F(1,1).

2.4 函数分布

例题: 设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$, 常数 C 使得 $P\{X > C\} = 0.6$, 求 $P\{Y > C^2\}$ 。

解:
$$X \sim t(n)$$
, 则 $X = \frac{X_1}{\sqrt{Y_1/n}} \sim t(n)$, 其中 $X_1 \sim N(0,1)$, $Y_1 \sim \chi^2(n)$ 。
$$\therefore X^2 = \frac{X_1^2}{Y_1/n} = \frac{X_1^2/1}{Y_1/n} \sim \frac{\chi^2(1)/1}{\chi^2(n)/n} = F(1,n)$$
又 $P\{Y > C^2\} = 1 - P\{Y \le C^2\}$ 。 $P\{X^2 > C^2\} = 1 - P\{X^2 \le C^2\}$ 。
又 $P\{X^2 \le C^2\} = P\{-C \le X \le C\}$,根据偶函数性质 = 0.2。
$$\therefore P\{X^2 > C^2\} = 0.8$$
。

3 参数估计

3.1 矩估计

基本方法就是 $EX = \frac{1}{n} \sum_{i=1}^{n} X_i$ 。

3.1.1 一阶矩

3.1.2 二阶矩

例题: 设 X_i 为来自区间 [-a,a] 上均匀分布的总体 X 的简单随机样本,求 a 的矩估计量。

解: 首先矩估计就是
$$E(X^k) = \frac{1}{n} \sum_{i=1}^n X_i^k$$
。
又对于均匀分布 $X_i \sim U(-a,a)$, $EX = \frac{a+b}{2} = 0$, $DX = \frac{(b-a)^2}{12} = \frac{a^2}{3}$ 。
所以 EX 不含有 a ,使用二阶矩 $EX^2 = DX + E^2X = \frac{a^2}{3} = \frac{1}{n} \sum_{i=1}^n X_i^2$ 。
解得 $a = \sqrt{\frac{3}{n} \sum_{i=1}^n X_i^2}$ 。

3.2 最大似然估计

步骤:写出概率函数或密度函数;写出似然函数(代入观测值 x_i 并连乘);两边取对数;求导数并令为 0。

例题:设随机变量 X 在区间 $[0,\theta]$ 上服从均匀分布, X_1,X_2,\cdots,X_n 是来自 X 的简单随机样本,求 θ 的最大似然估计量 $\hat{\theta}$

解:
$$X \sim U(0,\theta)$$
, $f(x) = \begin{cases} \frac{1}{\theta}, & 0 < x < \theta \\ 0, & 其他 \end{cases}$, $L(\theta) = \begin{cases} \frac{1}{\theta^n}, & 0 < x_i < \theta \\ 0, & 其他 \end{cases}$.

求 $\hat{\theta}$ 即求 $L(\theta)$ 的最大值, θ 的最小值。又必然 $0 < x_i < \theta$ 。

所以 $\hat{\theta} = \max x_i$, 即 θ 的最大似然估计为 $\max_{1 \leq i \leq n} X_i$ 。

(取最大值而不是最小值是因为为保证所有 x_i 都在定义域上, $0 < x_i < \theta$,所以要求 $\theta > \max x_i$)

例题: 设 $X_1, X_2, \dots X_n$ 是来自总体 X 的简单随机样本,X 的概率密度函数 $f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}$, $x \in R$, $\lambda > 0$,求 λ 的最大似然估计量 $\hat{\lambda}$ 。

4 置信区间

4.1 方差已知

例题:一批零件的长度服从正态分布 $N(\mu, \sigma^2)$,其中 μ, σ^2 均未知。现从中随机抽取 16 个零件,测得样本均值 $\overline{x}=20cm$,样本标准差为 s=1cm,求 μ 的置信水平为 0.90 的置信区间。

解: σ 未知, 所以使用 s 来求置信空间。

置信空间为
$$(\overline{X} - t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}})$$
。
已知 $\overline{x} = 20$, $s = 1$, $n = 16$, $\alpha = 1 - 0.90 = 0.1$ 。
所以置信空间为 $\left(20 - \frac{1}{4}t_{0.05}(15), 20 + \frac{1}{4}t_{0.05}(15)\right)$ 。

4.2 方差未知

例题: 设某群人的年龄 $X \sim N(\mu, \sigma^2)$,随机了解到五个人的年龄: 39, 54, 61, 72, 59, 求均值 μ 的置信度为 0.95 的置信区间。

解:由于
$$\sigma$$
 未知,所以使用样本方差, $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$ 。
其中置信区间为 $\left(\overline{X} - \frac{S}{\sqrt{n}}t_{0.025}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{0.025}(n-1)\right)$ 。

又
$$\overline{x} = \frac{1}{5}(39 + 54 + 61 + 72 + 59) = 57$$
, $S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{5}(x_i - \overline{x})} = 12$ 。
其中 $t_{0.025}(n-1) = t_{0.025}(4) = 2.7764$,所以代入得到 $(42.13, 71, 87)$ 。

5 假设检验

例题:设考试成绩服从正态分布,随机抽取 36 位考生成绩,平均分为 66.5分,标准差为 15 分。在显著性水平 0.05 下是否可以认为这次考试的平均水平为 70 分。

解: 首先提出假设 $H_0: \mu = 70$, $H_1: \mu \neq 70$ 。 将 X 使用样本标准差进行标准化: $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$ 。 给定显著性水平 0.05,写出拒绝域 $T < -t_{\frac{\alpha}{2}}(n-1)$ 或 $T > t_{\frac{\alpha}{2}}(n-1)$ 。 代入计算统计量, $|T| = \left|\frac{\overline{X} - \mu}{S/\sqrt{n}}\right| = \left|\frac{66.5 - 70}{15/6}\right| = 1.4$ 。 又 $t_{\frac{\alpha}{2}}(n-1) = t_{0.05}(35) = 2.0301 > 1.4$ 不在拒绝域内,所以接受原假设。即可以认为平均水平为 70 分。

例题: 已知某机器生产出来的零件长度 X (单位:cm) 服从正态分布 $N(\mu, \delta^2)$,现从中随意抽取容量为 16 的一个样本,测得样本均值 $\overline{x}=10$,样本方差 $s^2=0.16$, $t_{0.025}(15)=2.132$ 。

- (1) 求总体均值 μ 置信水平为 0.95 的置信区间。
- (2) 在显著性水平 0.05 下检验假设 $H_0: \mu = 9.7, H_1: \mu \neq 9.7$ 。
- (1) 解:根据公式直接解出置信空间 $(10-0.1t_{0.025}(15), 10+0.1t_{0.025}(15)) = (9.7868, 10.2132)$ 。
 - (2) 解:根据假设 H_0 ,得到拒绝域 $(-\infty, 9.4868] \cup [9.9132, +\infty)$ 。 又 $\overline{X} = 10$ 在拒绝域 $[9.9132, +\infty)$ 上,所以假设 H_0 拒绝。

6 两类错误

例题: 假定 X 是连续型随机变量, U 是对 X 的一次观测值, 关于其概率密度 f(x) 有如下假设:

$$H_0: f(x) = \begin{cases} \frac{1}{2}, & 0 \le x \le 2\\ 0, & \text{ 其他} \end{cases}, H_1: f(x) = \begin{cases} \frac{x}{2}, & 0 \le x \le 2\\ 0, & \text{ 其他} \end{cases}.$$

检验规则:当事件 $V=\left\{U>\frac{3}{2}\right\}$ 出现时,否定假设 H_0 ,接受 H_1 ,求犯第一类错误概率和第二类错误概率 $\alpha\beta$ 。

解:
$$\alpha = P\left\{U > \frac{3}{2} \middle| H_0\right\} = \int_{\frac{3}{2}}^{2} \frac{1}{2} dx = \frac{1}{4}$$
。
$$\beta = P\left\{U \leqslant \frac{3}{2} \middle| H_1\right\} = \int_{0}^{\frac{3}{2}} \frac{x}{2} dx = \frac{9}{16}$$
。