Aula 03 – Computadores

Norton T. Roman & Luciano A. Digiampietri

Computadores

 Problema: construir uma máquina que nos ajude a completar tarefas.

- Problema: construir uma máquina que nos ajude a completar tarefas.
 - Deve ser capaz de executar a tarefa toda, sozinho seguir um algoritmo.

- Problema: construir uma máquina que nos ajude a completar tarefas.
 - Deve ser capaz de executar a tarefa toda, sozinho seguir um algoritmo.
- Como fazê-lo?

- Problema: construir uma máquina que nos ajude a completar tarefas.
 - Deve ser capaz de executar a tarefa toda, sozinho seguir um algoritmo.
- Como fazê-lo?
 - Deve ter um módulo que efetivamente processe cada passo da tarefa – UCP (O par cozinheiro-forno)

UCP/CPU

- Problema: construir uma máquina que nos ajude a completar tarefas.
 - Deve ser capaz de executar a tarefa toda, sozinho seguir um algoritmo.
- Como fazê-lo?
 - Deve ter um módulo que efetivamente processe cada passo da tarefa – UCP (O par cozinheiro-forno)
 - Como sabe que instruções (passos da receita) processar?

- Problema: construir uma máquina que nos ajude a completar tarefas.
 - Deve ser capaz de executar a tarefa toda, sozinho seguir um algoritmo.
- Como fazê-lo?
 - Deve ter um módulo que efetivamente processe cada passo da tarefa – UCP (O par cozinheiro-forno)
 - Como sabe que instruções (passos da receita) processar?
 - Temos que fornecer essas instruções módulo de entrada

 Fornecemos apenas instruções? Que mais havia na receita?

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita...

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita... nesse caso, dados e o próprio programa...

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita... nesse caso, dados e o próprio programa...
- E onde armazená-los?

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita... nesse caso, dados e o próprio programa...
- E onde armazená-los? (uma mesa para nossos ingredientes)

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita... nesse caso, dados e o próprio programa...
- E onde armazená-los? (uma mesa para nossos ingredientes)
 - Memória primária

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita... nesse caso, dados e o próprio programa...
- E onde armazená-los? (uma mesa para nossos ingredientes)
 - Memória primária
- E agora? Como vemos o resultado?

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita... nesse caso, dados e o próprio programa...
- E onde armazená-los? (uma mesa para nossos ingredientes)
 - Memória primária
- E agora? Como vemos o resultado? Cadê o bolo?

- Fornecemos apenas instruções? Que mais havia na receita?
 - Ingredientes e a receita... nesse caso, dados e o próprio programa...
- E onde armazená-los? (uma mesa para nossos ingredientes)
 - Memória primária
- E agora? Como vemos o resultado? Cadê o bolo?

• A memória primária é um local de rápido acesso

- A memória primária é um local de rápido acesso
 - Contudo, tem que ser limpa quando a máquina desliga...

- A memória primária é um local de rápido acesso
 - Contudo, tem que ser limpa quando a máquina desliga...
 Limpamos a mesa após fazer o bolo

- A memória primária é um local de rápido acesso
 - Contudo, tem que ser limpa quando a máquina desliga...
 Limpamos a mesa após fazer o bolo
- E onde podemos armazenar por mais tempo?

- A memória primária é um local de rápido acesso
 - Contudo, tem que ser limpa quando a máquina desliga...
 Limpamos a mesa após fazer o bolo
- E onde podemos armazenar por mais tempo?
 - Memória secundária

• UCP:

UCP:

UCP:

- Responsável pelo processamento de toda instrução passada ao computador
- Pode ser subdividida em:

UCP:

- Pode ser subdividida em:
 - Unidade Lógico-Aritmética (ULA): executa operações lógicas e aritméticas

UCP:

- Pode ser subdividida em:
 - Unidade Lógico-Aritmética (ULA): executa operações lógicas e aritméticas
 - Unidade de controle: Controla o fluxo de informação da CPU, comandando a ULA.

UCP:

- Pode ser subdividida em:
 - Unidade Lógico-Aritmética (ULA): executa operações lógicas e aritméticas
 - Unidade de controle: Controla o fluxo de informação da CPU, comandando a ULA.
- Instrução? Como assim? Receita de bolo?

Instruções:

 A máquina só entende zeros e uns

Instruções:

- A máquina só entende zeros e uns
- Uma instrução é um código composto por zeros e uns, que diz à UCP o que deve ser feito, resultando em uma ação.

 Entrada: tudo que usamos para abastecer o computador com dados e instruções

- Entrada: tudo que usamos para abastecer o computador com dados e instruções
- Saída: aquilo que nos permite ver ou receber o resultado do processamento

 Memória secundária: armazena dados e instruções por mais tempo

- Memória secundária: armazena dados e instruções por mais tempo
- Memória primária: RAM (Random Access Memory)

- Memória secundária: armazena dados e instruções por mais tempo
- Memória primária: RAM (Random Access Memory)
 - Também armazena dados e instruções

- Memória secundária: armazena dados e instruções por mais tempo
- Memória primária: RAM (Random Access Memory)
 - Também armazena dados e instruções
 - A memória primária é "limpa" toda vez que o computador é desligado (ou o programa termina)

Tamanho de memória:

- Tamanho de memória:
 - Medida em bit (Binary digIT) – um zero ou um

- Tamanho de memória:
 - Medida em bit (Binary digIT) – um zero ou um
 - Byte (B): 8 bits
 - QuiloByte (KB): 1024 B
 - MegaByte (MB): 1024 KB
 - GigaByte (GB): 1024 MB
 - TeraByte (TB): 1024 GB

Composta por:

• UCP (com ULA e controle)

Composta por:

- UCP (com ULA e controle)
- Entrada

Composta por:

- UCP (com ULA e controle)
- Entrada
- Saída

Composta por:

- UCP (com ULA e controle)
- Entrada
- Saída
- Memória

Idealizada por John von Neumann

Aula 03 – Computadores

Norton T. Roman & Luciano A. Digiampietri