

نظريه محاسبه

خرداد ۱۳۹۵

تمرین سری پنجم

نام استاد: محمدهادی فروغمند اعرابی

۱ سوال یک

برای تابع یک به یک $\mathbb{N} \to \mathbb{N}$ وارون آن به صورت زیر تعریف می شود:

$$f^{-1}(n) = \begin{cases} m+1 & f(m) = n \\ 0 & \forall m \in \mathbb{N} : f(m) \neq n \end{cases}$$

نشان دهید تابع یک به یک و بازگشتی ${\bf F}:\mathbb{N}\to\mathbb{N}$ وجود دارد که ${\bf F}(n)$ یک تابع بازگشتی مقدماتی ${\bf F}:\mathbb{N}\to\mathbb{N}$ نیست ولی ${\bf F}^{-1}(n)$ یک تابع بازگشتی مقدماتی است.

۲ سوال دو

الف) نشان دهید تابع $\mathbf{OT}:\mathbb{N}^3 o \mathbf{OT}:\mathbb{N}^3 o \mathbf{OT}$ که به صورت زیر تعریف می شود بازگشتی است: $\mathbf{OT}(m,n,t)=v$ اگر و تنها اگر خروجی ماشین تورینگ با کد m بر روی ورودی n بعد از t مرحله برابر با v باشد.

ب) نشان دهید تابعی مثل ${f F}:{\Bbb N} o{\Bbb N}$ که به صورت زیر تعریف می شود، بازگشتی است:

$$\mathbf{F}(n) = \begin{cases} 1 & \sum_{i=0}^{2n} \mathbf{OT}(\langle \mathbf{F} \rangle, i, 2^i) \mod 2 = 0 \\ 0 & o.w. \end{cases}$$

کد ماشین تورینگی است که ${f F}$ را محاسبه می کند.

Recursive\

Primitive Recersive⁷

٣ سوال سه

نشان دهید تابع بازگشتی $\mathbb{N} \to \mathbb{N}$ وجود دارد به طوری که مجموعه نقاط ثابت آن تصمیم ناپذیر است.

$$Fix_f = \{e \in \mathbb{N} | \Phi_{f(e)} \simeq \Phi_e \}$$

$$W_a^{(n)} = \left\{ (x_1,...,x_n) \in \mathbb{N}^n | \Phi_a^{(n)}(x_1,...,x_n) \downarrow
ight\}$$
تعریف ۱ تعریف

عدد ثابت $1 \geq n$ را در نظر بگیرید. نشان دهید تابع محاسبهپذیر s وجود دارد به طوری که:

$$W_{s(x)}^{(n)} = \{(y_1, ..., y_n) \in \mathbb{N}^n | y_1 + ... + y_n = x\}$$

۵ سوال امتیازی

 $\mathbf{S}(n) = n+1$ ، $\mathbf{Z}(n) = 0$ نشان دهید کلاس توابع بازگشتی جزیی تکوچکترین کلاس توابعی می باشد که شامل $\mathbf{p}=(m,n)$, $\times (m,n)=m\times n$, +(m,n)=m+n, \mathbf{P}_i^k , $\mathbf{Fib}(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ \mathbf{Fib}(n-1) + \mathbf{Fib}(n-2) & n > 1 \end{cases}$

Partial Recursive^r Composition^{*}

 $[\]mu$ -Operator^{δ}