

Teória obvodov

Semestrálny projekt – riešenie obvodov

22. decembra 2013

Autor: Filip Gulán, <u>xgulan00@stud.fit.vutbr.cz</u> Fakulta Informačných Technológií

Vysoké Učenie Technické v Brne

Obsah

Príklad 1 Varianta C	3
Príklad 2 Varanta B	6
Príklad 3 Varianta F	9
Príklad 4 Varianta C	12
Príklad 5 Varianta B	15
Príklad 6 Varianta F	18
Súhrn výsledkov	21

Príklad 1 Varianta C

Stanovte napätie U_{R7} a prúd I_{R7}. Použite metódu postupného zjednodušovania obvodu.

U [V]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	$R_4[\Omega]$	$R_5 [\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	R ₈ [Ω]
100	450	810	190	220	220	720	260	180

Najprv som urobil v časti obvodu nasledujúce úpravy.

Transformoval som trojuholník na hviezdu .

A nakoniec som postupne zjednodušoval celý obvod aby som dostal vzorec pre Rekv.

$$\begin{split} R_{ekv} &= \frac{R_1 * R_2}{R_1 + R_2 + R_3} + \frac{\left(\frac{R_1 * R_3}{R_1 + R_2 + R_3} + R_4\right) * \left(\frac{R_2 * R_3}{R_1 + R_2 + R_3} + R_5\right)}{\left(\frac{R_1 * R_3}{R_1 + R_2 + R_3} + R_4\right) + \left(\frac{R_2 * R_3}{R_1 + R_2 + R_3} + R_5\right)} \\ &+ \frac{\left(\frac{R_6 * R_7}{R_6 + R_7}\right) * R_8}{\left(\frac{R_6 * R_7}{R_6 + R_7}\right) + R_8} \end{split}$$

$$R_{ekv} = 499,25988737 \, \Omega$$

Vďaka R_{ekv} som si vypočítal celkový prúd v obvode.

$$I = U/R_{ekv}$$

$$I = 0,20226 A$$

Pomocou I som si vypočítal U_{r7} . Keďže viem, že R_6 , R_7 a R_8 sú zapojené paralelne, teda majú rovnaký napätie tak môžem napísať, že $U_{r678} = U_{r7}$.

$$U_{r7} = I * \frac{\left(\frac{R_6 * R_7}{R_6 + R_7}\right) * R_8}{\left(\frac{R_6 * R_7}{R_6 + R_7}\right) + R_8}$$

$$U_{r7} = 0.20226 * \frac{\left(\frac{720 * 260}{720 + 260}\right) * 180}{\left(\frac{720 * 260}{720 + 260}\right) + 180}$$

$$U_{r7} = 18,7441 V$$

A teda pre I_{r7} platí nasledovný vzťah.

$$I_{r7} = U_{r7}/R_7$$

$$I_{r7} = 18.744095/260$$

$$I_{r7} = 0.0721 A$$

Príklad 2 Varianta B

Stanovte napätie U_{R5} a prúd I_{R5} . Použite metódu Thevenivovej vety.

U [V]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	R ₄ [Ω]	$R_5[\Omega]$
100	310	610	220	120	200

Prekreslil som si obvod a odpojil rezistor medzi svorkami A, B.

Zostavil som si rovnice pre smyčku I_a a I_b.

$$R_1I_a + R_2I_a - R_2I_b - U = 0$$

$$R_3I_b + R_4I_b + R_2I_b - R_2I_a = 0$$

Vyjadril som si la z druhej rovnice a dosadil do prvej rovnice.

$$Ia = \frac{R_3 + R_4 + R_2}{R_2} I_b$$

$$R_{1}\left(\frac{R_{3}+R_{4}+R_{2}}{R_{2}}I_{b}\right)+R_{2}\left(\frac{R_{3}+R_{4}+R_{2}}{R_{2}}I_{b}\right)-R_{2}*I_{b}-U=0$$

$$310\left(\frac{950}{610}I_{b}\right)+610\left(\frac{950}{610}I_{b}\right)-610*I_{b}-100=0$$

Keďže na R₄ a R₅ je rovnaké napätie môžeme napísať vzťah pre výpočet U_i.

$$U_i = I_b *R_4$$

 $I_b = 0.121538 A$

$$U_i = 0.121538 * 120$$

$$U_i = 14,584578 V$$

Pri ďalšom výpočte som si obvod prekreslil bez R₅.

A vypočítal R_i.

$$R_{i} = \frac{\left(\frac{R_{1} * R_{2}}{R_{1} + R_{2}} + R_{3}\right) * R_{4}}{\left(\frac{R_{1} * R_{2}}{R_{1} + R_{2}} + R_{3}\right) + R_{4}}$$

$$R_i = \frac{\left(\frac{310 * 610}{310 + 610} + 220\right) * 120}{\left(\frac{310 * 610}{310 + 610} + 220\right) + 120}$$

$$R_i = 93,604304 \Omega$$

Nakoniec som si zostavil nasledovný obvod.

A vypočítal som si I_{r5} a U_{r5}.

$$I_{r5} = \frac{U_i}{R_i + R_5}$$

$$I_{r5} = 0.0497 A$$

$$U_{r5} = R_5 * I_{r5}$$

$$U_{r5} = 9,9348 V$$

Príklad 3 Varianta F

Stanovte napätie U_{R4} a prúd I_{R4} . Použite metódu uzlových napätí (U_A , U_B , U_C).

U [V]	I ₁ [A]	I ₂ [A]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	R ₄ [Ω]	$R_5[\Omega]$
145	75	0,85	480	440	530	360	255

Vytvoril som si jednotlivé rovnice pre uzly A,B,C.

$$I_{r1} = I_{r2} + I_{r4}$$

$$I_{r4} = I_{r5} + I_2$$

$$I_1 + I_{r3} = I_{r5} + I_2$$

Zostavil som si rovnice pre jednotlivé prúdy.

$$R_1I_{r1}+U_a-U=0$$

$$R_2Ir_2 - U_a = 0$$

$$R_4I_{r4} + U_b - U_a = 0$$

$$R_5I_{r5}+U_c-U_b=0$$

$$R_3I_{r3}+U_c=0$$

Vyjadril som si jednotlivé prúdy.

$$I_{r1} = \frac{U - U_a}{R_1}$$

$$I_{r2} = \frac{U_a}{R_2}$$

$$I_{r3} = \frac{U_c}{R_3}$$

$$I_{r4} = \frac{U_a - U_b}{R_4}$$

$$I_{r5} = \frac{U_b - U_c}{R_5}$$

Dosadil som si prúdy do jednotlivých rovníc pre uzly.

$$\frac{U-U_a}{R_1} = \frac{U_a}{R_2} + \frac{U_A - U_B}{R_4}$$

$$\frac{U_a - U_b}{R_4} = I_2 + \frac{U_A - U_B}{R_4}$$

$$\frac{U_c}{R_3} + I_1 = I_2 + \frac{U_b - U_c}{R_5}$$

Rovnice som si zjednodušil.

$$R_2R_4(U - U_a) = R_1R_4(U_a) + R_1R_2(U_a - U_b)$$

$$R_5(U_a - U_b) = R_5R_4I_2 + R_4(U_b - U_c)$$

$$R_5U_c + R_3R_5I_1 = R_3R_5I_2 + R_3(U_b - U_c)$$

Dosadil som si konkrétne hodnoty a vypočítal.

$$5425U_a - 2112U_b = 229680$$

 $-255U_a + 615U_b - 360U_c = -78030$
 $530U_b - 785U_c = 10021372,5$

Zostavil som si maticu a získal hodnoty.

$$U_c = -24313,02 \text{ V}$$

 $U_b = -17102,55 \text{ V}$

 $U_a = -6617,05 \text{ V}$

Vďaka získaným hodnotám som dosadil do rovnice I_{r4} konkrétne hodnoty.

$$I_{r4} = \frac{U_a - U_b}{R_4}$$

$$I_{r4} = \frac{-6617,05 - (-17102,55)}{360}$$

$$I_{r4} = 29,1264 A$$

Pomocou I_{r4} som vypočítal U_{r4}.

$$U_{r4} = I_{r4} * R_4$$

 $U_{r4} = 29,1264 * 360$
 $U_{r4} = 10485.4968 V$

Príklad 4 Varianta C

Pre napájacie napätie platí: $u = U * sin(2\pi ft)$. Vo vzťahu pre napätie na kondenzátore C_1 : $u_{c1} = U_{c1} * sin(2\pi ft + \phi_{c1})$ určte $|U_{c1}|$ a ϕ_{c1} . Použite metódu zjednodušovania obvodu.

Poznámka: Pomocné smery šípok napájacích zdrojov platí pre špeciálny časový okamžik ($t = \pi/2\omega$)

U [V]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	L ₁ [mH]	L ₂ [mH]	C ₁ [uF]	C ₂ [uF]	f [Hz]
55	180	175	410	450	370	110	185	80

Obvod som si prekreslil, aby sa tam nachádzali iba rezistory, ktoré reprezentujú impedancie jednotlivých vetiev.

Previedol som si jednotky do jednotiek SI sústavy.

$$C_1 = 110 \text{ uF} = 0.00011 \text{ F}$$

$$C_2 = 185 \text{ uF} = 0.000185 \text{ F}$$

$$L_1 = 450 \text{ mH} = 0.45 \text{ H}$$

$$L_2 = 370 \text{ mH} = 0.37 \text{ H}$$

Vypočítal som si jednotlivé impedancie a nakoniec celkovú impedanciu.

$$\omega = 2\pi f = 2\pi * 80 = 502,65482 \text{ rad/s}$$

$$Z_1 = R_1 = 180 \Omega$$

$$Z_2 = R_2 - j \frac{1}{\omega C_1} = (175 - j18,085789) \Omega$$

$$Z_3 = R_3 + j\omega L_2 = (410 + j185,9789534) \Omega$$

$$Z_4 = -j\frac{1}{\omega C_2} = -j10,753717 \Omega$$

$$Z_5 = j \omega L_1 = j226,194669 \Omega$$

Obvod som zjednodušil a vypočítal celkovú impedanciu.

$$1/Z_{234} = 1/Z_2 + 1/Z_3 + 1/Z_4$$

$$Z_{234} = (1.302643 + j10,79239956) \Omega$$

$$Z = Z_1 + Z_{234} + Z_5 = (181,302643 + j236,98706854) \Omega$$

Vďaka Z som si vypočítal prúd v obvode.

$$I = U/Z = (0.111998778 + j0.146397547) A$$

Vďaka I som si vypočítal napätie na Uz234.

$$U_{z234} = Z_{234} * I = (-1,4340858 + j1,3994389) V$$

Keďže v R₂ , R₃ a R₄ je rovnaké napätie môžeme napísať nasledujúci vzťah.

$$I_{z2} = U_{z234}/Z_2 = (-0.008925889 + j0.0070743266) A$$

So získanými hodnotami som si vypočítal U_{c1} .

$$\begin{split} U_{c1} &= -j\frac{1}{\omega C_1} = (0.127945 - j0.161432)V \\ |U_{c1}| &= \sqrt{0.127945^2 + 0.161432^2} = 0.0665 \, V \\ &\Phi_{c1} = \arctan\left(-\frac{0.161432}{0.127945}\right) = -51.6^{\circ} \end{split}$$

Príklad 5 Varianta B

Pre napájacie napätie platí: $u_1 = U_1 * \sin(2\pi ft)$, $u_2 = U_2 * \sin(2\pi ft)$. Vo vzťahu pre napätie na cievke L_2 : $u_{12} = U_{12} * \sin(2\pi ft + \phi_{12})$ určte $|U_{12}|$ a ϕ_{12} . Použite metódu smyčkových prúdov.

Poznámka: Pomocné smery šípok napájacích zdrojov platí pre špeciálny časový okamžik (t = $\pi/2\omega$)

U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	L ₁ [mH]	L ₂ [mH]	C ₁ [uF]	C ₂ [uF]	f [Hz]
25	40	115	150	130	100	85	220	95	80

Previedol som si jednotky do jednotiek SI sústavy.

$$C_1 = 220 \text{ uF} = 0.00022 \text{ F}$$

$$C_2 = 95 \text{ uF} = 0.000095 \text{ F}$$

$$L_1 = 100 \text{ mH} = 0.1 \text{ H}$$

$$L_2 = 85 \text{ mH} = 0.085 \text{ H}$$

$$\omega = 2\pi f = 2\pi * 80 = 502,65482 \text{ rad/s}$$

$$X_L = \omega L$$

$$X_C = 1/(\omega C)$$

Zostavil som si 3 rovnice s 3 neznámymi podľa obrázka.

$$I_{a}: -jX_{C1} * I_{a} + R_{1} * I_{a} + jX_{L2} * I_{a} - jX_{L2} * I_{c} + R_{2} * I_{a} - R_{2} * I_{b} + jX_{L1} * I_{a} - jX_{L1} * I_{b} = 0$$

$$I_{b}: jX_{L1} * I_{b} - jX_{L1} * I_{a} + R_{2} * I_{b} - R_{2} * I_{a} - jX_{C2} * I_{b} + jX_{C2} * I_{c} - u_{1} = 0$$

$$I_{c}: -jX_{C2} * I_{c} + jX_{C2} * I_{b} + jX_{L2} * I_{c} - jX_{L2} * I_{a} + R_{3} * I_{c} - u_{2} = 0$$

Zjednodušil som rovnice a vypočítal prúdy Ia, Ib a Ic.

$$I_{a} * (R_{1} + R_{2} + jX_{L2} + jX_{L1} - jX_{C1}) - I_{b} * (R_{2} + jX_{L1}) - I_{c} * jX_{L2} = 0$$

$$-I_{a} * (R_{2} + jX_{L1}) + I_{b} * (R_{2} + jX_{L1} - jX_{C2}) + I_{c} * jX_{C2} = u_{1}$$

$$-I_{a} * jX_{L2} + I_{b} * jX_{C2} + I_{c} * (R_{3} + jX_{L2} - jX_{C2}) = u_{2}$$

$$I_a = (0.159884 - j0.0516333) A$$

$$I_b = (0.26073 - j0.162614) A$$

$$I_c = (0.239977 + j0.0674413) A$$

Vypočítané hodnoty som dosadil do rovnice pre výpočet I₂.

$$I_2 = I_a - I_c$$

$$I_2 = (-0.080009 - j0.119075) A$$

Vďaka I_2 som si ľahko vyrátal $|U_{I2}|$.

$$U_{l2}=jX_{l2}*I_2$$

$$U_{12} = (-5,08756 + j3,41844) V$$

$$|U_{l2}| = \sqrt{5,08756^2 + 3,41844^2} = 6,1294 V$$

$$L_2 = arctan\left(\frac{-3,41844}{5,08756}\right) = 146,1^{\circ}$$

Príklad 6 Varianta F

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie $u_c = f(t)$. Urobte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

C [F]	R [Ω]	u _c (0) [V]
35	15	7

Podľa druhého Kirhofovho zákona som si vytvoril rovnicu.

$$uc + ur = 0$$

Podľa ohmovho zákona som si zostavil rovnicu.

$$ur = R * I$$

$$uc + R * I = 0$$

$$I = -\frac{u_c}{R}$$

Použil som axiom a dosadil som.

$$u'_c = \frac{1}{C} * I_c$$

$$\mathbf{u'}_{c} = \frac{1}{C} * \left(-\frac{\mathbf{u}_{c}}{R} \right)$$

$$R * C * u'_{c} = - u_{c}$$

$$R * C * u'_c + u_c = 0$$

$$525u'_{c} + u_{c} = 0$$

$$525\lambda + 1 = 0$$

$$\lambda = -1/525$$

Do očakávaného tvaru riešenia som dosadil hodnotu λ.

$$u_c = c(t) * e^{\lambda t}$$

$$u_c = c(t) * e^{-\frac{1}{525}t}$$

Zderivoval som u_c.

$$u'_{c} = c'(t) * e^{\frac{-1}{525}t} + c(t) * e^{\frac{-1}{525}t} * \frac{-1}{525}$$

Zderivovaný tvar u´c a očakávaný tvar som vložil do pôvodnej rovnice a zjednodušíme.

$$525\left(c'(t) * e^{\frac{-1}{525}t} + c(t) * e^{\frac{-1}{525}t} * \frac{-1}{525}\right) + c(t) * e^{\frac{-1}{525}t} = 0$$

$$525c'(t) * e^{\frac{-1}{525}t} = 0$$

Derivácia 0 je práve vtedy keď derivujeme konštantu.

$$\int c(t)dt = 0$$

$$c(t) = K$$

Hodnotu dosadíme do očakávaného tvaru.

$$u_c(t) = c(t) * e^{-\frac{1}{525}t}$$

$$u_c(t) = K * e^{-\frac{1}{525}t}$$

$$7 = K * e^{-\frac{1}{525} * 0}$$

$$K = 7$$

A nakoniec som dostal výsledok.

$$u_c(t) = 7 * e^{-\frac{1}{525}t}$$

Skúška správnosti:

$$525 * u_c'(t) + u_c(t) = 0$$

$$525\left(7*e^{\frac{-1}{525}t}*\frac{-1}{525}\right) + 7*e^{\frac{-1}{525}t} = 0$$

$$-7 * e^{\frac{-1}{525}t} + 7 * e^{\frac{-1}{525}t} = 0$$

$$\theta = 0$$

Súhrn výsledkov

Číslo príkladu	Varianta	Výsledky
Príklad 1	С	I _{r7} = 0.0721 A
		U _{r7} = 18,7441 V
Príklad 2	В	I _{r5} = 0,0497 A
		U _{r5} = 9,9348 V
Príklad 3	F	I _{r4} = 29,1264 A
		U _{r4} = 10485,4968 V
Príklad 4	С	U _{c1} = 0,0665 V
		φ _{c1} = -51,6 °
Príklad 5	В	U ₁₂ = 6,1293 V
		φ _{l2} = 146,1 °
Príklad 6	F	$u_c(t) = 7 * e^{\frac{-1}{525}t}$