INSTITUTO FEDERAL Bahia Campus Santo Antônio de Jesus

Instituto Federal de Educação, Ciência e Tecnologia da Bahia

Campus: Santo Antônio de Jesus	Data://
Curso:	
Disciplina : Tópicos Avançados em WEB I	Docente : Felipe Silva
Discente:	

Desafio Integrador: Arquitetura Completa e Modular de Ecossistema IoT com Nuvem, Borda e Visualização Dinâmica

Objetivo Geral

Desenvolver um ecossistema completo e modular de IoT com foco em arquitetura distribuída, múltiplos protocolos, segurança avançada, padrões de interoperabilidade, redes de sensores, processamento na borda, fog e nuvem, e visualização reativa, utilizando práticas de engenharia voltadas a sistemas embarcados e ambientes conectados heterogêneos.

Cenário Proposto

Crie um sistema (em grupos de até 4 pessoas) para monitoramento ambiental integrado a predições climáticas externas, combinando sensores locais e fontes públicas externas (ex: API do OpenWeather ou INMET), aplicando conceitos de:

- Sensoriamento físico (temperatura, umidade, luminosidade, gás)
- Comunicação híbrida com múltiplos protocolos (MQTT + CoAP ou LoRaWAN)
- Interoperabilidade entre sensores físicos, simulações, e APIs públicas
- Visualização e alertas contextuais (ex: diferença entre dados locais e externos)
- Processamento descentralizado com decisão na borda (Edge), análise preditiva na nuvem e filtragem na Fog

Componentes Obrigatórios

1. Sensores

- o Simular pelo menos 3 sensores físicos ou virtuais
- o Deve conter sensores com coleta periódica e tratamento de anomalias

INSTITUTO FEDERAL Bahia Campus Santo Antônio de Jesus

Instituto Federal de Educação, Ciência e Tecnologia da Bahia

Campus: Santo Antônio de Jesus	Data://
Curso:	
Disciplina : Tópicos Avançados em WEB I	Docente : Felipe Silva
Discente:	

2. Protocolos de Comunicação

- o Implementar pelo menos 3 protocolos diferentes entre:
 - MQTT
 - CoAP
 - AMQP
 - HTTP REST
 - LoRaWAN (simulado)
- Justificar a escolha de cada um com base em latência, consumo, confiabilidade

3. Arquitetura Híbrida

- Implementar processamento local (Edge), intermediário (Fog) e remoto (Cloud)
- o Utilizar brokers locais e/ou nuvem gratuita
- Adotar modelo de publish/subscribe para sensores e request/response para APIs externas

4. Interoperabilidade e Padrões

- o Integrar com pelo menos 1 API externa pública
- o Criar conversores, gateways ou bridges
- o Padronizar dados via JSON + documentação das APIs internas e externas

INSTITUTO FEDERAL Bahia Campus Santo Antônio de Jesus

Instituto Federal de Educação, Ciência e Tecnologia da Bahia

Campus: Santo Antônio de Jesus	Data://
Curso:	
Disciplina : Tópicos Avançados em WEB I	Docente : Felipe Silva
Discente:	

5. Segurança e Privacidade

- o Implementar pelo menos dois dos seguintes mecanismos:
 - TLS/DTLS
 - OAuth2 ou JWT
 - Criptografia ponto a ponto
 - Logs de tentativas inválidas e auditoria
- o Criar breve seção sobre LGPD e boas práticas adotadas

6. Interface Web

- o Painel em tempo real com:
 - Gráficos (Chart.js ou outro)
 - Alertas visuais se diferença entre previsão e dado local for alta
 - Dados com tags de origem (sensor local vs API externa)

7. Redes de Sensores e Edge/Fog

- Diferenciar o tratamento dos sensores com base na região (simular sensores remotos com LoRaWAN ou HTTP + sensores locais com MQTT)
- Decidir se o dado deve ser processado na borda, na fog ou enviado à nuvem

INSTITUTO FEDERAL Bahia Campus Santo Antônio de Jesus

Instituto Federal de Educação, Ciência e Tecnologia da Bahia

Campus: Santo Antônio de Jesus	Data://
Curso:	
Disciplina : Tópicos Avançados em WEB I	Docente : Felipe Silva
Discente:	

Entregáveis

- Relatório PDF (min. 6 páginas) com:
 - o Introdução, arquitetura, diagrama técnico
 - o Tabela de protocolos utilizados e justificativas
 - o Explicações das camadas Edge, Fog e Cloud
 - o Segurança e medidas de interoperabilidade
 - o Considerações sobre privacidade e confiabilidade
- Códigos-fonte dos sensores, simulações, API e frontend
- Capturas de tela (gráficos, logs, API externa, etc)
- Dockerfile (para backend)

Critérios de Avaliação (Peso: 1,5 ponto)

Critério	Peso
Documentação e justificativas técnicas	0,2
Arquitetura com múltiplas camadas e protocolos	0,3
Implementação de segurança e integração com API externa	
Visualização em tempo real e alertas reativos	0,3
Simulação robusta e tratamento distribuído (Edge, Fog, Cloud)	0,4

Instituto Federal de Educação, Ciência e Tecnologia da Bahia

Campus: Santo Antônio de Jesus	Data://
Curso:	
Disciplina : Tópicos Avançados em WEB I	Docente : Felipe Silva
Discente:	

Recursos Sugeridos

- Simulação: Node-RED, Python, Wokwi, Tinkercad, HiveMQ
- Backend: Flask, Express, FastAPI
- Frontend: HTML + JS + Chart.js ou D3.js
- Broker MQTT: Mosquitto local ou HiveMQ Cloud
- CoAP: aiocoap (Python), Copper plugin (Firefox)
- Infraestrutura: Docker, Render, Railway, Oracle Free Tier

Data de Entrega:

• 19/08/2025 até as 23:59h

Respostas contendo o código-fonte do sistema e documentação devem ser enviadas exclusivamente via email: felipe_silva@ifba.edu.br com a devida identificação do aluno, disciplina e turma.

Página 5|5