BumbleBee: Secure Two-party Inference Framework for Large Transformers

今天介绍的是来自蚂蚁密码学实验室的Wen-jie Lu等人的安全两方大模型推理工作BumbleBee,论文链接如下:

https://eprint.iacr.org/2023/1678

1. 背景介绍

针对Transformer模型的安全推理工作,尤其是两方推理还需要大量的通信和计算开销。本文聚焦 Transformer模型安全推理中的大模型矩阵乘法和复杂激活函数计算,提出了多个高效两方计算计算协议 和优化技术。具体来说,本文的主要贡献如下:

- 1. 本文提出了基于HE的高效矩阵乘法协议,和已有方案相比减少了80% 99.%的通信量,并且本文 提出的矩阵乘法耗时也很少;
- 2. 本文针对Transformer模型中的复杂激活函数,比如GeLU和SiLU,提出了高效而准确的近似计算算法。和已有的简单方式相比,本文的方法不需要针对已有的模型进行任何的fine-tuning或者post-training;
- 3. 本文在SPU的基础上进行了实现,和已有的方案相比,本文将通信开销减少了60%-83%。且 BumbleBee可以直接针对HuggingFace上已有的模型直接加载进行安全预测,架构如下图所示:

Figure 2: Overview of BumbleBee's private transformer inference. The dash arrows indicate secretly shared messages.

4. 如下图所示,本文的方案在通信开销和时间开销上都优于之前的相关工作。

Figure 1: The overall bandwidth improvements of the proposed optimizations on the BERT-base model with 128 input tokens. The baseline consists of many SOTA 2PC protocols that are already communication-friendly.

2. 基础知识

本文使用如下Notations: $\langle x \rangle$ 表示两方加法秘密分享; $1\{\mathcal{P}\}$ 表示当条件为 \mathcal{P} 为真时返回1; \hat{a} 表示多项式,其中 $\hat{a}[j]$ 表示多项式 \hat{a} 的第j个系数, $\hat{a} \cdot \hat{b}$ 表示多项式乘法; $x \equiv_{\ell} y$ 表示 $x \equiv y \pmod{2^{\ell}}$;对于N(N是2的幂次)和q>0, $\mathbb{A}_{N,q}$ 表示整数多项式集合 $\mathbb{A}_{N,q}=\mathbb{Z}_q[X]/(X^N+1)$; \mathbf{a} 和 \mathbf{M} 分别表示向量和矩阵,其中 $\mathbf{a}[j]$ 表示第j个向量元素, $\mathbf{M}[j,i]$ 表示第(j,i)个矩阵元素。Hadamard积表示为 $\mathbf{a} \odot \mathbf{b}$ 。

本文主要用到加法秘密分享,茫然传输和基于RLWE的加法同态加密技术构造高效两方计算协议。本文调用了多个已有协议,理想功能如下:

Ideal Functionalities	Descriptions		
$\llbracket \tilde{x}; f \rrbracket \leftarrow \mathcal{F}_{\mathrm{trunc}}^f(\llbracket \tilde{x}; 2f \rrbracket)$	Truncation [17, 29]		
$\llbracket c?x:y rbracket \leftarrow \mathcal{F}_{ ext{mux}}(\llbracket c rbracket^B, \llbracket x rbracket, \llbracket y rbracket)$	Multiplexer		
$\llbracket 1/\sqrt{\tilde{x}};f \rrbracket \leftarrow \mathcal{F}_{\mathrm{rsqrt}}(\llbracket \tilde{x};f \rrbracket;f)$	Reciprocal Sqrt [39]		
$\llbracket 1\{x < y\} bracket^B \leftarrow \mathcal{F}_{\mathrm{lt}}(\llbracket x bracket, \llbracket y bracket)$	Less-then [56]		
$\llbracket \mathbf{x} rbracket \leftarrow \mathcal{F}_{\mathrm{H2A}}(RLWE(\mathbf{x}))$	HE to share [29, 57]		

3. 安全两方矩阵乘法

针对矩阵乘法,本文提出了基于OLE的mOLE(Matrix OLE)来计算两个秘密分享矩阵乘法中涉及到的交叉项相乘。即,给定矩阵 $\langle \mathbf{Q} \rangle$ 和 $\langle \mathbf{V} \rangle$,计算 $\langle \mathbf{Q}_0 \mathbf{V}_1 \rangle$ 和 $\langle \mathbf{Q}_1 \mathbf{V}_0 \rangle$ 。

3.1 KRDY方案

KRDY方案提出了两种编码方法($\pi_{
m lhs}$ 和 $\pi_{
m rhs}$)来实现基于RLWE的高效矩阵乘法:

ParseError: KaTeX parse error: {split} can be used only in display mode.

使得

 $\hat{q} := \pi_{ ext{lhs}}(\mathbf{Q}), \hat{v} := \pi_{ ext{rhs}}(\mathbf{V})$ x

其中,多项式 \hat{q} , \hat{v} 的系数编码如下:

ParseError: KaTeX parse error: {split} can be used only in display mode.

而 \hat{q} 和 \hat{v} 的其他系数设为0。图示如下:

Toy example over \mathbb{Z}_{2^5} .

$$\mathbf{Q} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}, \mathbf{V} = \begin{bmatrix} 9 & 10 \\ 11 & 12 \end{bmatrix} \Rightarrow \mathbf{QV} \equiv \begin{bmatrix} 31 & 2 \\ 7 & 14 \\ 15 & 26 \\ 23 & 6 \end{bmatrix} \mod 2^5$$

Compute **QV** with
$$\hat{q} := \pi_{\text{lhs}}(\mathbf{Q})$$
 and $\hat{v} := \pi_{\text{rhs}}(\mathbf{V})$.
$$\hat{q} = 1X^0 - 2X^{15} + 3X^4 + 4X^3 + 5X^8 + 6X^7 + 7X^{12} + 8X^{11}$$

$$\hat{v} = 9X^0 + 11X^1 + 10X^2 + 12X^3$$

$$\psi \, \hat{q} \cdot \hat{v} \, \text{mod} \, (X^{16} + 1, 2^5)$$

$$\hat{q} \cdot \hat{v} \equiv \mathbf{31}X^0 + 31X^1 + \mathbf{2}X^2 + 16X^3 + \mathbf{7}X^4 + 9X^5 + 14X^6 + 26X^7 + \mathbf{15}X^8 + 19X^9 + \mathbf{26}X^{10} + 4X^{11} + 2\mathbf{3}X^{12} + 29X^{13} + \mathbf{6}X^{14} + 2X^{15}$$

Figure 3: Example for π_{lhs} and π_{rhs} with N=16 and $\ell=5$.

根据上述编码,当 $1 \leq k_w \cdot m_w \cdot n_w \leq N$ 的时候, $\mathbf{U} \equiv_{\ell} \mathbf{Q} \cdot \mathbf{V}$ 可以通过计算 $\hat{u} = \hat{q} \cdot \hat{v}$ 得到,且 $\mathbf{U}[i,k] = \hat{u}[i \cdot m_w \cdot n_w + k \cdot m_w]$ 而当 $k_w \cdot m_w \cdot n_w > N$ 时,可以使用分块矩阵技术将矩阵分为不同的小块,分别处理。

3.2 密文打包与交叉

为了进一步优化通信和计算代价,本文用了密文打包(Ciphertext Packing)和密文交叉存储(Ciphertext Interleaving)两种技术来压缩密文。

3.2.1 密文打包

根据前文提到的KRDY方案,结果多项式中的系数有N个但是结果只编码在其中的 $k \cdot n$ 个系数中。本文可以使用PackLWEs技术将多个多项式中的任意系数提取出来,然后编码到一个新的密文中,从而减少密文传输量。不过这样做的代价是增加了同态自同构(homomorphic automorphisms)计算时间。

3.2.2 密文交叉存储

本文提出了比PackLWEs快20倍的的密文交叉存储技术(Ciphertext Interleaving)。该技术基于同态加密下的 ${\sf Auto}(\hat{a},N+1)$ 实现,核心思想是计算 $\hat{a}+{\sf Auto}(\hat{a},N+1)$ 来实现密文压缩。以N=

 $8,\hat{a}(X)=\sum_{i=0}^7 a_i x^i$ 为例,Auto $(\hat{a},9)$ 得到: $\sum_{i=0}^7 \hat{a}_i X^{i\cdot 9}=\sum_{i=0}^3 a_{2i} X^{2i}-\sum_{i=0}^3 a_{2i+1} X^{2i+1}\pmod{X^8+1}$

其中奇数位置的系数符号被反转,因此 $\hat{a}+\mathsf{Auto}(\hat{a},N+1)$ 使得奇数位置的系数完全抵消,偶数位置的系数变为原来的2倍。

更一般化, $\hat{a}+\mathsf{Auto}(\hat{a},N/2^j+1)$ 会使得 2^j 的奇数倍位置的系数抵消,而偶数倍位置系数变成2倍(而其他 $i\nmid 2^j$ 的位置系数为0)。因此,计算

 $\hat{a} + \mathsf{Auto}(\hat{a}, N/2^j + 1), j = 0, 1, \ldots, r-1$

最终只会得到位置在 2^r 倍数位置的系数。同时,上文的两种编码方案 $\pi_{
m lhs}$ 和 $\pi_{
m rhs}$ 可以选择适当的 m_w 以满足该技术位置间距要求。上述方法形式化为 ${\sf ZeroGap}$ 如下:

Input: $\hat{a} \in \mathbb{A}_{N,q}$ for an odd q and $1 \leq 2^r \leq N$. Output: $\hat{b} \in \mathbb{A}_{N,q}$ such that $\hat{b}[i]$ is zero if $0 \not\equiv i \mod 2^r$. Also $\hat{b}[i] = \hat{a}[i] \mod q$ for all $0 \equiv i \mod 2^r$.

1: Compute $\hat{a}_0 := h \cdot \hat{a} \mod q$ for $h \equiv 2^{-r} \mod q$.

2: for $j \in [r]$ do

3: $\hat{a}_{j+1} := \hat{a}_j + \mathsf{Auto}(\hat{a}_j, \frac{N}{2^j} + 1).$

4: end for

5: return \hat{a}_r .

Figure 4: ZeroGap: Zero-out a given gap of polynomial.

基于ZeroGap,本文提出了IntrLeave,将 2^r 个多项式编码为一个多项式,其中输入多项式系数之间间距为 2^r 。

Input: $\{\hat{a}_j \in \mathbb{A}_{N,q}\}_{j \in [2^r]}$ for an odd q and $1 \leq 2^r \leq N$. Output: $\hat{c} \in \mathbb{A}_{N,q}$ such that $\hat{c}[i] = \hat{a}_{i \mod 2^r}[\lfloor i/2^r \rfloor \cdot 2^r]$.

1: for $\forall j \in [2^r]$ in parallel do

2: $\hat{b}_j := \operatorname{ZeroGap}(\hat{a}_j, 2^r) \triangleright \operatorname{zero-out}$ the 2^r gap

3: $\hat{b}_j := \hat{b}_j \cdot X^j \in \mathbb{A}_{N,q} \triangleright \operatorname{right-shift}$ by j unit

4: end for

5: return the sum of polynomials $\sum_{j=0}^{2^r-1} \hat{b}_j$.

Figure 5: IntrLeave: Coefficients interleaving.

基于上述技术,本文提出了矩阵安全OLE协议如下:

Algorithm 1 Proposed Matrix OLE Protocol Π_{mOLE}

Private Inputs: Sender $S: \mathbf{Q} \in \mathbb{Z}_{2^{\ell}}^{k \times m}$ and secret key sk.

Receiver $R: \mathbf{V} \in \mathbb{Z}_{2^{\ell}}^{m \times n}$.

Output: $\llbracket \mathbf{U} \rrbracket$ such that $\mathbf{U} \equiv_{\ell} \mathbf{Q} \cdot \mathbf{V}$.

Public Params: $pp = (HE.pp, pk, (k_w, m_w, n_w))$

- The size $m_{\rm w}$ is a 2-power value, and $1 \le k_{\rm w} m_{\rm w} n_{\rm w} \le N$.
- $k' = \lceil \frac{k}{k_w} \rceil$, $m' = \lceil \frac{m}{m_w} \rceil$, $n' = \lceil \frac{n}{n_w} \rceil$, and $\tilde{m} = \lceil \frac{k'n'}{m_w} \rceil$.
- Note: If k' > n' then flip the role of sender and receiver.
 - 1: S first partitions the matrix \mathbf{Q} into block matrices $\mathbf{Q}_{\alpha,\beta} \in \mathbb{Z}_{\ell}^{k_{\mathrm{w}} \times m_{\mathrm{w}}}$. Then S encodes each block matrices as a polynomial $\hat{q}_{\alpha,\beta} := \pi_{\mathrm{lhs}}(\mathbf{Q}_{\alpha,\beta})$ for $\alpha \in [k']$ and $\beta \in [m']$. After that S sends $\{\mathrm{ct}'_{\alpha,\beta} := \mathrm{RLWE}^{N,q,2^{\ell}}_{\mathrm{sk}}(\hat{q}_{\alpha,\beta})\}$ to R.
 - 2: R first partitions the matrix \mathbf{V} into block matrices $\mathbf{V}_{\beta,\gamma} \in \mathbb{Z}_{\ell}^{m_{\mathrm{w}} \times n_{\mathrm{w}}}$. Then R encodes each block matrices as a polynomial $\hat{v}_{\beta,\gamma} := \pi_{\mathrm{rhs}}(\mathbf{V}_{\beta,\gamma})$ for $\beta \in [m']$ and $\gamma \in [n']$.
 - 3: On receiving $\{ct'_{\alpha,\beta}\}$ from S, R computes a vector of RLWE ciphertexts, denoted as \mathbf{c} , where

$$\mathbf{c}[\alpha n' + \gamma] := \boxplus_{\beta \in [m']} \left(\mathsf{ct}'_{\alpha,\beta} \boxtimes \hat{v}_{\beta,\alpha} \right).$$

for $\alpha \in [k'], \gamma \in [n']$,

4: To compress the the vector \mathbf{c} of k'n' ciphertexts into \tilde{m} ciphertexts without touching the needed coefficients, R runs IntrLeave on subvectors of \mathbf{c} . For example

$$ilde{\mathbf{c}}[heta] := ext{IntrLeave}([\underbrace{\mathbf{c}[heta \cdot m_{ ext{w}}], \mathbf{c}[heta \cdot m_{ ext{w}} + 1], \cdots}_{m_{ ext{w}}}]),$$

for $\theta \in [\tilde{m}]$. \triangleright Pad with zero(s) when $k'n' \nmid m_w$.

5. S and R iointly call $\hat{c}_{i,0}$, $\hat{c}_{i,1} \leftarrow \mathcal{F}_{\text{TDA}}(\tilde{\mathbf{c}}[i])$ on each

ciphertext in $\tilde{\mathbf{c}}$, where S obtains $\hat{c}_{i,0} \in \mathbb{A}_{N,2^{\ell}}$ and R obtains $\hat{c}_{i,1} \in \mathbb{A}_{N,2^{\ell}}$, respectively. After that both S and R can derive their share using a local procedure $[\![\mathbf{U}]\!]_l := \mathsf{ParseMat}(\hat{c}_{0,l},\hat{c}_{1,l},\cdots)$ in Appendix.

3.4 其他优化

基于上述算法,本文基于开销模型选择了合适参数(例如 $m_w=\sqrt{N}$),并提出了批量矩阵乘法,动态压缩策略,和对称加密和模数约减等技术进一步优化系统效率。

4. 基于RLWE的批量OLE

批量OLE(Batch OLE,bOLE)适用于两方各自持有一个私有向量,安全计算秘密分享下的矩阵 Hamadard乘积。和之前的方法不一样,本文提出了基于更小的RLWE参数的带误差的批量OLE(bOLE with Error,bOLEe)。该方法会引入最低有效位1比特的误差,但是在定点数表示下该误差可以通过后 续的截断操作去除。

和基于RLWE的bOLE类似,本文也需要利用SIMD技术来均摊开销。该技术需要使用掩码 $\mathbf{r}\in\mathbb{Z}^N$ 保证安全性。而为了保证 σ 统计安全性,需要在 $\mathbb{Z}^N_{2^{2\ell+\sigma}}$ 内采样 \mathbf{r} ,进而在RLWE中需要选择明文模数 $t>2^{2\ell+\sigma+1}$ 。为了避免这额外的 σ 比特开销,本文引入了如下两个函数:

ParseError: KaTeX parse error: {split} can be used only in display mode.

基于上述函数,本文可以选取与 σ 无关的掩码 $\mathbf{r}\in\mathbb{Z}_t^N$ 。且当 $t\nmid 2^\ell$ 时也可以直接实现模数为 2^ℓ 的算术运算。具体协议如下:

Algorithm 2 bOLE with Error Protocol Π_{bOLEe}

Input: Sender $S: \mathbf{x} \in \mathbb{Z}_{2^\ell}^N$, secret key sk. Receiver $R: \mathbf{y} \in \mathbb{Z}_{2^\ell}^N$. Public parameters $\mathsf{pp} = \{N, t\}$ such that $t = 1 \mod 2N$ is a prime and $t > 2^{2\ell}$ and the public key pk . Output: $[\![\mathbf{z}]\!] \in \mathbb{Z}_{2^\ell}^N$ such that $\|\mathbf{z} - \mathbf{x} \odot \mathbf{y} \mod 2^\ell\|_{\infty} \le 1$.

- 1: S sends $\mathsf{RLWE}^{N,q,t}_{\mathsf{sk}}(\hat{x})$ to S, where $\hat{x} := \mathsf{SIMD}(\mathsf{Lift}(\mathbf{x}))$.
- 2: R computes $\hat{y} := SIMD(\mathbf{y})$.
- 3: On receiving the ciphertexts $\mathsf{RLWE}^{N,q,t}_{\mathsf{sk}}(\hat{x})$, R computes $\mathsf{ct} := \mathsf{RLWE}^{N,q,t}_{\mathsf{sk}}(\hat{x}) \boxtimes \hat{y}$.
- 4: Call $[\![\hat{u}]\!] \leftarrow \mathcal{F}_{H2A}(\mathsf{ct})$ to convert to arithmetic share where R inputs ct and S inputs its secret key sk. Suppose S's share is $[\![\hat{u}]\!]_0 \in \mathbb{A}_{N,t}$ and R's share is $[\![\hat{u}]\!]_1 \in \mathbb{A}_{N,t}$.
- 5: S outputs $\overline{\mathsf{Down}}(\mathtt{SIMD}^{-1}(\llbracket \hat{u} \rrbracket_0))$.
- 6: R outputs $Down(SIMD^{-1}([[\hat{u}]]_1))$.

可以证明,上述协议的结果和真实乘积 $x \cdot y$ 之间的误差 $e \in \{0, \pm 1\}$ 。

5. 安全激活函数协议

在Transformer模型中,需要调用大量的复杂激活函数,比如GeLU/SiLU和Softmax等。这些激活函数远远比ReLU等简单的激活函数复杂,因此需要设计高效的安全计算协议。

5.1 GeLU安全计算

GeLU函数的数学表达式如下:

 $\mathsf{GeLU}(x) = 0.5x(1 + \tanh(\sqrt(2/\pi)(x + 0.044715x^3))).$

本文提出了如下分度多项式函数Seg4GeLU来近似计算:

$$\mathsf{Seg4GeLU}(x) = \begin{cases} -\epsilon, & x < -5 \\ P^3(x) = \sum_{i=0}^3 a_i x^i, & -5 < x \le -1.97 \\ P^6(x) = \sum_{i=0}^6 b_i x^i, & -1.97 < x \le 3 \\ x - \epsilon, & x > 3 \end{cases}$$

其中, $\epsilon = 10^{-5}$, 系数为:

ParseError: KaTeX parse error: {split} can be used only in display mode.

如下图所示,本文所提出的方法误差非常小:

Figure 7: (Left) The maximum absolute error between Seg4GeLU and GeLU within the interval [-5,3] is about 1.5×10^{-2} . (Right) We use a wider range for the polynomial fitting which gives $P^3(x) \approx P^6(x)$ for x around the pivot.

为了进一步优化安全协议的计算效率,本文在设计针对**Seg4GeLU**的安全协议的时候,进一步提出了如下优化:

- 1. **近似分段选择:** 为了减少选择分段的比较协议开销,本文舍去f'比特(其中f' < f),而只提取 $\ell f'$ 比特的输入的最高有效位来实现分段选择。基于本文提出的分段近似函数对于分段点具有非常好的容忍(即相邻的两段对于分段点附近的值计算结果非常接近),这样做引入的误差是非常小的。从而减少8%的通信开销。
- 2. **批量(近似)分段选择:** 在选择分段多项式的时候,两方需要交互计算 $1\{2^{\ell-1}-\langle x\rangle_1<\langle x\rangle_0\}$, 这需要调用 $1次\binom{M}{1}-\mathsf{OT}_2$ 。因此,一共需要调用 $3次\binom{M}{1}-\mathsf{OT}_2$ 。不过,由于这三次调用的选择比特都是一样的,可以将3次调用合并为一次 $\binom{M}{1}-\mathsf{OT}_6$,从而减少20%的计算时间。
- 3. **多项式计算优化: Seg4GeLU**中的多项式 $P^3(x)$ 和 $P^6(x)$ 比较稀疏,同时,本文在计算x的幂次的 过程中复用中间结果来节省开销。

详细的计算协议如下所示:

Algorithm 3 Private GeLU protocol Π_{GeLU}

Input: $[\![\tilde{x};f]\!]$ with f-bit fixed-point precision. The polynomial coefficients $\{a_0,a_1,a_2,a_3\}$ in $P^3(x)$ and the coefficients $\{b_0,b_1,b_2,b_4,b_6\}$ in $P^6(x)$.

Output: $[Seg4GeLU(\tilde{x}); f]$. See (3) for definition.

- 1: Jointly compute the powers $[\![\tilde{x}^2]\!] \leftarrow \Pi_{\text{square}}([\![\tilde{x}]\!]), [\![\tilde{x}^4]\!] \leftarrow \Pi_{\text{square}}([\![\tilde{x}^2]\!]), [\![\tilde{x}^3]\!] \leftarrow \Pi_{\text{mul}}([\![\tilde{x}^2]\!], [\![\tilde{x}]\!]), \text{ and } [\![\tilde{x}^6]\!] \leftarrow \Pi_{\text{square}}([\![\tilde{x}^3]\!]).$ The truncations are implicitly called.
- 2: Jointly evaluate $[P^3(\tilde{x}) + \epsilon; f] \leftarrow \mathcal{F}_{\text{trunc}}^f(\lfloor (\epsilon + a_0) \cdot 2^{2f} \rfloor + \sum_{k=1}^3 [\tilde{x}^k] \cdot \lfloor a_k \cdot 2^f \rfloor)$, and $[P^6(\tilde{x}) + \epsilon; f] \leftarrow \mathcal{F}_{\text{trunc}}^f(\lfloor (\epsilon + b_0) \cdot 2^{2f} \rfloor + \sum_k [\tilde{x}^k; f] \cdot \lfloor b_k \cdot 2^f \rfloor)$.
- 3: Jointly compute the comparisons for segement selection

$$[b_{0}]^{B} \leftarrow \mathcal{F}_{lt}([\tilde{x}], -5) \qquad \rhd b_{0} = \mathbf{1}\{\tilde{x} < -5\}$$

$$[b_{1}]^{B} \leftarrow \mathcal{F}_{lt}([\tilde{x}], T) \qquad \rhd b_{1} = \mathbf{1}\{\tilde{x} < -1.97\}$$

$$[b_{2}]^{B} \leftarrow \mathcal{F}_{lt}(3, [\tilde{x}]) \qquad \rhd b_{2} = \mathbf{1}\{3 < \tilde{x}\}$$

Locally sets $[\![z_0]\!]_l^B := [\![b_0]\!]_l^B \oplus [\![b_1]\!]_l^B, [\![z_1]\!]_l^B := [\![b_1]\!]_l^B \oplus [\![b_2]\!]_l^B \oplus l$ and $[\![z_2]\!]_l^B := [\![b_2]\!]_l^B$. Note $z_0 = \mathbf{1}\{-5 < \tilde{x} \le -1.97\}, z_1 = \mathbf{1}\{-1.97 < \tilde{x} \le 3\}$, and $z_2 = \mathbf{1}\{3 < \tilde{x}\}$.

4: Jointly compute the multiplexers $[z_0 \cdot (P^3(\tilde{x}) + \epsilon)]$, $[z_1 \cdot (P^6(\tilde{x}) + \epsilon)]$, and $[z_2 \cdot \tilde{x}]$ using the \mathcal{F}_{mux} functionality. Then P_l locally aggregates them and outputs as the share of $[\text{Seg4GeLU}(\tilde{x}); f]_l$ after subtracting $[\epsilon \cdot 2^f]$.

5.2 Softmax安全计算

给定向量 \mathbf{x} ,Softmax的安全计算中需要首先计算最大值 $\bar{x} = \mathsf{Max}(\mathbf{x})$,进而计算 $\mathsf{Softmax}(\mathbf{x})[i] = \frac{\exp(\mathbf{x}[i] - \bar{x})}{\sum_i \exp(\mathbf{x}[i] - \bar{x})}$

其中难点在于高效计算exp函数。本文提出了如下近似计算方法:

$$\exp(x)pproxegin{array}{l} 0, & x < T_{ ext{exp}}\ (1+rac{x}{2^n})^{2^n}, & x \in [T_{ ext{exp}},0] \ \\$$
由于本文 $f=18$,因此满足 $\exp(T_{ ext{exp}}) < 2^{-18}$ 即可。故令 $T_{ ext{exp}}=-13$ 。

本文实验中, $(n=6,T_{
m exp}=-13)$ 可以令误差小于 2^{-10} 。在协议实现中 $rac{x}{2^n}$ 可以调用截断协议截断最 后n比特,而幂次计算可以多次调用安全平方协议。另外,由于Softmax计算紧跟在矩阵乘法之后,所 以截断n比特操作和乘法中的截断f比特操作可以合并为截断n+f比特操作节省开销。具体协议如下 所示:

Algorithm 4 Private Softmax Protocol Π_{softmax}

Input: $[\![\tilde{\mathbf{x}}; 2f]\!] \in \mathbb{Z}_{2\ell}^d$ with double-precision.

Output: $[softmax(\tilde{\mathbf{x}}); f] \in \mathbb{Z}_{2^{\ell}}^d$. See (4) for definition.

- 1: Jointly compute $[\![\mathbf{b}]\!]^B \leftarrow \mathcal{F}_{\mathrm{lt}}([\![\tilde{\mathbf{x}}; 2f]\!], \lfloor T_{\mathrm{exp}} \cdot 2^f \rfloor).$
- 2: Jointly compute the maximum $[\![\bar{x}; 2f]\!] \leftarrow \mathcal{F}_{\max}([\![\tilde{\mathbf{x}}; 2f]\!])$.
- 3: P_l locally computes $[\![\tilde{\mathbf{y}} = \tilde{\mathbf{x}} \bar{x}; 2f]\!]$. 4: Jointly compute $[\![\tilde{\mathbf{z}}_0; f]\!] \leftarrow 1 \cdot 2^f + \mathcal{F}_{\mathrm{trunc}}^{n+f}([\![\tilde{\mathbf{y}}; 2f]\!])$.
- 5: for $i = 1, 2, \dots, n$ sequentially do
- $\llbracket \tilde{\mathbf{z}}_i; f \rrbracket \leftarrow \Pi_{\text{square}}(\llbracket \tilde{\mathbf{z}}_{i-1}; f \rrbracket) \rhd \tilde{\mathbf{z}}_i = (\tilde{\mathbf{z}}_{i-1})^2$
- 7: end for
- 8: P_l locally aggregates $[\![\tilde{z};f]\!]_l \in \mathbb{Z}_{2\ell} \leftarrow \sum_{i \in [d]} [\![\tilde{\mathbf{z}}_n[i]]\!]_l$.
- 9: Jointly compute $[1/\tilde{z}; f] \in \mathbb{Z}_{2^{\ell}} \leftarrow \mathcal{F}_{\text{recip}}([\tilde{z}; f])$.
- 10: Joint compute $[\![\tilde{\mathbf{z}}_n/\tilde{z};f]\!] \leftarrow \Pi_{\mathrm{mul}}([\![\tilde{\mathbf{z}}_n]\!],[\![1/\tilde{z}]\!]).$
- 11: Output $[\![\mathbf{b} \odot (\tilde{\mathbf{z}}_n/\tilde{z}); f]\!]$ using the \mathcal{F}_{mux} functionality.

6. 实验评估

本文对模型性能、各个协议模块、和end-to-end安全预测的开销都进行了详细的开销测试。部分实验结 果如下:

TABLE 3: Prediction accuracy on the GLUE benchmarks using BERT-base, and classification accuracy on the ImageNet-1k dataset using ViT-base. We report Matthews correlation (higher is better) for CoLA and Top-1 accuracy for the ImageNet-1k dataset.

Dataset	Size	Class Distribution	Plaintext	BumbleBee
RTE	277	131/146	0.7004	0.7004
QNLI	1000	519/481	0.9030	0.9020
CoLA	1043	721/322	0.6157	0.6082
ImageNet-1k	985	one img one class	0.8944	0.8913

TABLE 2: Comparison of proposed protocols with SOTA in terms of running time and communication costs. Each machine was tested with 25 threads. Timing results are averaged from 20 runs.

	$\Pi_{\mathbf{r}}$	$_{ ext{mOLE}}(\mathbf{X},\mathbf{Y})$						
(k,m,n)		Comm.	LAN	WAN				
(15) 115)	[59]	9.41GB	96.22s	217.03s				
(1 50057 760)	KRDY	20.84MB	0.45s	0.73s				
(1,50257,768)	\mathtt{KRDY}^+	1.38MB	0.46s	0.46s				
	Ours*	1.38MB	0.46s	0.46s				
	[59]	18.41GB	159.98s	397.83s				
(199 769 769)	KRDY	30.16MB	0.66s	1.06s				
(128, 768, 768)	\mathtt{KRDY}^+	5.02MB	7.07s	7.85s				
	Ours	5.02MB	0.82s	0.84s				
	Π	$I_{ ext{bOLE}}(\mathbf{x},\mathbf{y})$						
		Comm.	LAN	WAN				
ll ll 015	[57]	7.54MB	0.07s	0.17s				
$ \mathbf{x} = \mathbf{y} = 2^{15}$	Ours	5.78MB	0.05s	0.14s				
$ \mathbf{x} = \mathbf{y} = 2^{20}$	[57]	241.26MB	2.39s	5.33s				
$ \mathbf{x} - \mathbf{y} - 2$	Ours	184.46MB	1.71s	4.02s				
$\Pi_{ m GeLU}({f x})$								
		Comm.	LAN	WAN				
	[55]	16.06GB	141.52s	353.76s				
$ \mathbf{x} =2^{20}$	[48]	3.54GB	66.50s	103.68s				
$ \mathbf{X} - 2$	Ours [†]	0.77GB	10.73s	17.84s				
	Ours [‡]	0.75GB	8.21s	15.71s				
	Ours	0.69GB	6.89s	13.77s				
	П	$s_{ m softmax}({f W})$						
$ \mathbf{W} $		Comm.	LAN	WAN				
	[55]	1697.86MB	16.39s	40.84s				

(960, 180)	[39, 48]	435.14MB	9.28s	14.53s
	Ours	162.24MB	2.11s	5.79s

^{*} Ours is identical to KRDY⁺ in this case due to the dynamic strategy.

TABLE 4: Performance breakdown of BumbleBee on two transformers. The input to the GPT2 model and LLaMA-7B model consist of 128 and 8 tokens, respectively. Both model generate 1 token. The LAN setting was used.

Operation	Used by	GPT	2-base ($B=1$	12, $D = 768$,	H = 12)	LLaN	$AA-7B \ (B=3)$	B2, D = 4096	H = 32
Operation Used by	Osca by	#Calls	Time (sec)	Sent (MB)	Recv (MB)	#Calls	Time (sec)	Sent (MB)	Recv (MB)
i_equal	token-id to one-hot	128	9.08	98.24	61.44	8	3.76	11.10	9.64
mixed_mmul	embedding lookup	128	38.06	229.01	180.71	8	30.89	18.31	16.39
$f_{\tt mmul}$	linear projections	49	75.95	740.10	693.35	225	747.25	1303.14	1272
f_batch_mmul	multi-head attention	24	15.05	165.72	156.02	64	10.94	403.26	400.21
$f_{ exttt{less}}$	max / argmax	131	3.17	157.88	30.01	117	0.73	6.08	1.31
multiplixer	max / argmax	411	0.55	19.71	19.71	155	0.30	1.20	1.20
f_exp	softmax	12	12.14	805.49	663.88	32	2.27	39.33	36.08
f_reciprocal	softmax	12	2.54	29.55	18.45	32	1.36	12.87	7.95
f_mul	layer norm, softmax	174	8.68	779.62	749.68	356	10.53	758.30	730.10
f_rsqrt	layer norm	25	1.88	5.31	2.90	65	1.14	0.81	0.58
f_seg4_act	GeLU / SiLU	12	30.79	1951.34	1226.35	32	17.99	1175.45	745.04
		Total	3.41min	4.87GB	3.71GB	Total	13.87min	3.66GB	3.16GB

[†] We call 3 $\binom{M}{1}$ -OT₂ without approximated less-than in this run. [‡] We call 1 $\binom{M}{1}$ -OT₆ without approximated less-than in this run.

TABLE 5: End-to-end comparisons with two existing private inference frameworks and a baseline built from SPU. The numbers of Iron are estimated from their paper. GPT2 models generated 1 token.

Model	Framework	Time	Comm.	
		LAN	WAN	(GB)
	MPCFormer	4.52	9.81	32.58
BERT-large	Iron	≈ 100	_	≈ 200
128 input tokens	Artificial basline	11.88	18.37	52.14
	BumbleBee	6.74	9.88	20.85
GPT2-base	MPCFormer	0.72	1.96	4.98
GP12-base	Artificial basline	1.52	2.64	6.36
32 input tokens	BumbleBee	0.92	1.32	1.94
GPT2-base	MPCFormer	1.10	2.85	7.32
GP12-base	Artificial basline	2.74	4.45	11.55
64 input tokens	BumbleBee	1.55	2.53	3.90

可以看到,BumbleBee取得了和明文相当的准确率,且在通信和计算时间等方面比现有工作取得了长足的提升。