EASWARI ENGINEERING COLLEGE, CHENNAI-600 089 <u>DEPARTMENT OF INFORMATION TECHNOLOGY</u> LESSON PLAN

SUBJECT CODE : CS6403

SUBJECT TITLE : SOFTWARE ENGINEERING

HOURS DISTRIBUTION : (LTPC 3 0 0 3)

COURSE/ BRANCH : B.Tech (IT)

SEMESTER : IV

ACADEMIC YEAR : 2014 - 2015

FACULTY NAME : Mrs. M. MOHANA / Mrs. S. GNANAPRIYA

OBJECTIVE OF COURSE:

· Understand the phases in a software project

- · Understand fundamental concepts of requirements engineering and Analysis Modeling.
- · Understand the major considerations for enterprise integration anddeployment.
- · Learn various testing and maintenance measures

OUTCOME OF COURSE:

At the end of the course, the student should be able to

- · Identify the key activities in managing a software project.
- \cdot Compare different process models.
- · Concepts of requirements engineering and Analysis Modeling.
- · Apply systematic procedure for software design and deployment.
- · Compare and contrast the various testing and maintenance

PREREQUISTE: Student must have a basic knowledge in Data structures and Object oriented programming

UNITS	TOPIC NO	ТОРІС	PERIOD	BOOKS REFERRED	PAGE NO									
	UNIT - I (9)													
	SOFTWARE PROCESS AND PROJECT MANAGEMENT													
	OBJECTIVE: To make the students understand the phases in software project and aware of various available process models													
1	1	Introduction to Software Engineering	1	T1	03 - 14									
	2	Software Process		T1	14 - 17									
	3	Perspective Process Models	1	T1	38 - 50									

	4	Specialized Process Models	1	T1	50 - 53		
	5	Software Project Management	1	T1	646 - 662		
	6	Estimation – LOC and FP Based Estimation	1	T1	697 - 703		
	7	COCOMO Model	1	R6	hand out		
	8	Project Scheduling : - Scheduling	1	R1	626 - 631		
	9	Earned Value Analysis	1	T1	739 - 741		
	10	Risk Management	1	R1	595 - 602		
		UNIT - II (9)					
		REQUIREMENTS ANALYSIS AND SP	ECIFICATIO)N			
		FIVE: To make the students Understand the fundamental Modeling	concepts of r	equirements er	ngineering and		
	1	Software Requirements: Functional and Non-Functional	1	R1	84 - 91		
	2	User requirements		R1			
II	3	System requirements	1	R1	82-84		
	4	Software Requirements Document	1	R1	91-94		
	5	Requirement Engineering Process : Feasibility Studies	1	R1	99-100		
	6	Requirements elicitation and analysis	1	R1	100-109		
	7	Requirements validation		R1			
	8	Requirements management	1	R1 110-111			
	9	Classical analysis: Structured system Analysis	1	han	dout		
	10	Petri Nets	1	han	dout		
	11	Data Dictionary	1	han	dout		
		UNIT - III (9)	-				
		SOFTWARE DESIGN					
	OBJECT	ΓΙVE: To make the students understand the systematic pro-	cedure for soft	tware design			
	1	Design proces – Design Concepts	1	T1	219 - 232		
III	2	Design Model		T1	233 - 238		
	3	Design Heuristic	1	Т1	hand out		
	4	Architectural Design – Architectural styles	1	T1	249 - 255		
	5	Architectural Design,	1	T1	255 - 261		
	1		1	1			

	6	Architectural Maping using Data Flow	1		265 - 273		
	7	User Interface Design: Interface analysis	1	T1	320 - 328		
	8	Interface Design	1	T1	328 - 335		
	9	Component level Design: Designing Class based components,	1	T1	282 - 289		
	10	Component level Design: Traditonal Components.	1	T1	298 - 303		
		UNIT - IV (9)	•		1		
		TESTING AND IMPLEMENTA	TION				
	OBJECT	TVE: To make the students Learn about various testing and	maintenance	e measures			
	1	Software testing fundamentals - Internal and external views of Testing	1	T1	482 - 484		
	2	white box testing - basis path testing	1	T1	485 – 492		
	3	control structure testing	1	T1	492 - 494		
IV	4	Black box testing	1	T1	495 - 501		
	5	Regresion Testing	_	T1	462 -463		
	6	Unit Testing – Integration Testing	1	T1	456 - 462		
	7	Validation Testing – System Testing	1	T1	467 - 472		
	8	Debuging	1	T1	473 - 478		
	9	Software Implementation Techniques: Coding practices	1	hand out			
	10	Refactoring	1	T1	229 - 230		
		UNIT - V (9)					
		PROJECT MANAGEMENT	Γ				
	OBJECT	TVE: To make the students Understand the major consideration	s for enterpris	e integration an	d deployment		
	1	Estimation – FP Based, LOC Based	1	T1	701 - 703		
	2	Make/Buy Decision, COCOMO II	1	T1	709 - 711		
V	3	Planning – Project Plan, Planning Process,	1	R1	623 - 626		
	4	RFP Risk Management – Identification, Projection	1	T1	747 - 754		
	5	RMMM	1	T1 7			
	6	Scheduling and Tracking	1	T1	732 - 739		
	7	Relationship between people and effort, Task Set & Network,	1	T1	725 - 731		
	i .				1		

8	Scheduling	1	Т1	724 - 725
9	EVA	1	T1	739 - 741
10	Process and Project Metrics	1	T1	667 - 684

ASSIGNMENT TOPICS

Sl. NO	ASSIGNMENT TOPICS	SUBMISSION DATE
1	From sample SRS documents identify the various functional and non functional user and system requirements	30/01/2015
2	For the given sample source codes write the test cases that can perform exhaustive testing	28/02/2015
3	Use COCOMO II Model to estimate the effort required to build software with the specified functions	27/03/2015

CONTENT BEYOND SYLLABUS

UNIT No	TOPIC
1	Software process improvement
2	Software Quality Assurance

TEXT BOOK

1. Roger S. Pressman, "Software Enginering – A Practioner's Aproach", Seventh Editon, Mc Graw-Hil International Editon, 2010

REFERENCES

- 1. Ian Sommerville, "Software Engineering", 9th Edition, Pearson Education Asia, 2011.
- 2. Rajib Mall, "Fundamentals of Software Engineering", Third Edition, PHI Learning Private Limited, 2009.
- 3. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 2010.
- 4. Kelkar S.A., "Software Engineering", Prentice Hall of India Pvt Ltd, 2007.
- 5. Stephen R.Schach, "Software Engineering", Tata McGraw-Hill Publishing Company Limited, 2007.
- 6. http://nptel.ac.in/.

FACULTY INCHARGE

HOD

Program Educational Outcomes

- 1. Graduates will be proficient in utilizing the fundamental knowledge of basic sciences and mathematics to the applications relevant to various streams of Engineering and Technology.
- Graduates will possess core competencies necessary for application of knowledge of computers and telecommunications equipment to store, retrieve, transmit, manipulate and analyze data in the context of business enterprise.
- 3. Graduates will be capable of thinking logically, pursue lifelong learning and will have the capacity to understand technical issues related to computing systems and design optimal solutions.
- 4. Graduates will be able to develop hardware and software systems by understanding the importance of social, business and environmental needs in the human context.
- 5. Graduates will gain employment in organizations and establish themselves as professionals by applying their technical skills to solve real world problems and meet the diversified needs of industry, academia and research.
- 6. Graduates will be aware of professional ethics of the software industry and equip themselves with communication skills essential for working in community.

Program Outcomes

- (a) Ability to apply knowledge of computing and mathematics appropriate to Information Technology
- (b) Ability to analyze a problem, and identify computing requirements appropriate to its solution
- (c) Ability to design, implement, and evaluate a system, process, component, or program to meet specific requirements
- (d) Ability to interpret and synthesis data to provide valid conclusions
- (e) Ability to function effectively as a team member to achieve a common goal
- (f) Ability to understand professional, ethical and social issues and responsibilities
- (g) Ability to communicate effectively with a diverse groups
- (h) Ability to analyze the local and global impact of Information Technology on society
- (i) Ability to recognize and engage in continuing professional development and life long learning
- (j) Ability to use current techniques, skills, and tools necessary to accomplish projects related to Information Technology.
- (k) Ability to understand the impact of the professional engineering solutions in societal and environmental contexts for sustainable development.
- (l) Ability to understand engineering and management principles to manage projects in multidisciplinary environment.

Units	Course outcome	PE O1	PE O2	PE O3	PE O4	PE O5	PE O6	P O	P O	P O	P O	P O	P Of	P O	P O	P O	P O	P O	P O
To make the students	At the end of this unit,	W	M	S	S	S	W	a W	S	W	d S	e S	M	g S	h S	i S	W	k S	W
understa nd the phases in software	the student should be able																		
project and aware of various	to: compare different																		
available process models	process models and able to																		
	determin e the best																		
	model for the given applicati																		
To make	on domain At the	W	S	S	S	S	S	W	M	W	S	M	S	S	S	S	W	W	W
the students Understa	end of this unit, the	,,	5	5	S			,,	1,1				ז	٥	2		••	••	
nd the fundame ntal	student should be able																		
concepts of requirem	to: apply the Concept																		
ents engineeri ng and	s of requirem ents																		
Analysis Modelin g	engineer ing and Analysis Modelin																		
To make the	g At the end of	M	S	S	S	S	S	W	М	S	S	S	M	S	S	S	S	S	W
students understan d the	this unit, the student																		
systemati c procedure	should be able to : Apply																		
for software design	systemati c procedur e for																		
	software design and																		

	deployme nt																		
To make the students Learn about various testing and maintena nce measures	At the end of this unit, the student should be able to: Compare and contrast the various testing and maintena nce measures	M	M	S	W	S	S	M	S	S	S	S	S	S	S	S	8	8	8
To make the students Understa nd the major considera tions for enterprise integration and deployment	At the end of this unit, the student should be able to: Identify and apply the various key activities in managing a software projects to carry out reliable and economic software development	W	S	S	М	S	S	W	>	W	W	S	S	S	8	S	8	V	S

MAPPING OF COURSE OUTCOMES WITH PEO & THE PROGRAMME OUTCOME - SOFTWARE ENGINEERING (CS6403)

STRONG	S
MEDIUM	М
WEAK	W