VERSUCH 353

Relaxation eines RC-Kreises

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 07.12.2021 Abgabe: 14.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziels	setzung	3
2	Theorie		3
	2.1	Allgemeine Relaxationsgleichung	3
	2.2	Entladevorgang eines Kondensators	3
	2.3		4
		2.3.1 Phasenverschiebung	4
	2.4	Integrationsverhalten eines RC-Kreises	
3	Durchführung		
	3.1	Messung der Zeitkonstanten	5
	3.2	Messung der Amplitude der Kondensatorspannung	5
	3.3	Messung der Phasenverschiebung	5
	3.4	Messung zur Bestätigung der Integratorfunktion	6
4	Auswertung		6
5	5 Diskussion		7
Lit	Literatur		

1 Zielsetzung

Es soll das Relaxationsverhalten des Entladevorgangs eines RC-Kreises untersucht werden.

2 Theorie

2.1 Allgemeine Relaxationsgleichung

Es handelt sich um Relaxationverhalten, wenn ein System aus einem Ausgangszustand ausgelenkt wird und ohne Oszillation in denselben Zustand zurückkehrt. Allgemein lässt sich eine Differentialgleichung der Form

$$\frac{\mathrm{d}A}{\mathrm{d}t} = c[A(t) - A(\infty)]\tag{1}$$

für die Änderungsgeschwindigkeit der Größe A aufstellen. Diese lässt sich durch Umformung lösen zu

$$A(t) = A(\infty) + [A(t) - A(\infty)]e^{ct}.$$
(2)

2.2 Entladevorgang eines Kondensators

Die Spannung U_C , die auf einem Kondensator mit der Ladung Q und Kapazität C, anliegt bestimmt sich durch

$$U_C = \frac{Q}{C}.$$

Wegen des Widerstands R fließt nach dem Ohm'schen Gesetz ein Strom

$$I = \frac{U_C}{R},$$

der für einen Ladungsausgleich sorgt. Die Ladungsänderung auf dem Kondensator ist durch

$$\mathrm{d}Q = -I\mathrm{d}t$$

gegeben. Aus diesen Zusammenhängen erhält man die DGL

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = -\frac{Q(t)}{RC},\tag{3}$$

die eine hohe Ähnlichkeit zu (1) aufweist. Da der Grenzwert $Q(\infty)$ nicht erreichbar ist, wird er vernachlässigt und die Lösung der DGL ist durch

$$Q(t) = Q(0)e^{-\frac{t}{RC}} \tag{4}$$

gegeben.

2.3 Relaxationsverhalten bei angelegter Wechselspannung

Wechselspannung lässt sich im Allgemeinen durch die Funktion

$$U(t) = U_0 \cdot \cos(\omega t)$$

beschreiben. Da sich eine Phasenverschiebung zwischen der eingehenden Spannung des Sinusgenerators und der verzögerten Spannung des Kondensators bildet, ergibt sich für die ausgehende Spannung

$$U_C(t) = A(\omega) \cdot cos(\omega t + \varphi),$$

mit der Kondensatorspannungsamplitude A. Weiterhin gilt

$$I(t) = \frac{\mathrm{d}Q}{\mathrm{d}t} = C\frac{\mathrm{d}U_C}{\mathrm{d}t}.\tag{5}$$

Aus den Kirchhoffschen Gesetzen ergibt sich für den RC-Kreis

$$U(t) = U_R(t) + U_C(t). (6)$$

Aus Formeln (3), (5) und (6) und weiteren Umformungen erhält man

$$A(\omega) = \frac{U_0}{\sqrt{1 + \omega^2 R^2 C^2}}. (7)$$

2.3.1 Phasenverschiebung

Die Phasenverschiebung φ lässt sich aus dem Abstand der Nullstellen ader beiden Wellen und der Wellenlänge b in Bogenmaß durch

$$\varphi = \frac{a}{b} \cdot 2\pi \tag{8}$$

ausdrücken.

Abbildung 1: Skizze zur Phasenverschiebung [1].

2.4 Integrationsverhalten eines RC-Kreises

Damit ein RC-Kreis als Integrator funktionieren kann, muss $\omega >> \frac{1}{RC}$ gelten. Gleichung (6) lässt sich umschreiben zu

$$\begin{split} U(t) &= R \cdot I(t) + U_C(t) \\ &= RC \cdot \frac{\mathrm{d}U_C(t)}{dt} + U_C(t). \end{split}$$

Unter der Bedingung $\omega >> \frac{1}{RC}$ löst sich die Gleichung zu

$$U_C(t) = \frac{1}{RC} \int_0^t U(t') dt'. \tag{9}$$

3 Durchführung

3.1 Messung der Zeitkonstanten

Es soll die Zeitkonstante des RC-Kreises bestimmt werden. Dazu wird die in Abbildung 2 gezeigte Schaltung verwendet. Es wird ein Kondensator mit der Kapazität C und ein Widerstand R verwendet. Weiterhin wird durch einen Spannungsgenerator eine Rechtecksspannung angelegt und die Entladekurve kann durch das Oszillokop betrachtet werden.

Abbildung 2: Schaltung zur Messung der Zeitkonstanten [1].

3.2 Messung der Amplitude der Kondensatorspannung

Bei dieser Messung bleibt der Versuchsaufbau unverändert. Es wird lediglich am Spannungsgenerator eine Sinusspannug eingestellt. Die Frequenz f der Spannung wird im Bereich von $250\,\mathrm{Hz}$ bis $60\,\mathrm{kHz}$ gemessen. Die Kondensatorspannungsamplitude A kann wieder am Oszilloskop abgelesen werden.

3.3 Messung der Phasenverschiebung

Nun wird die Schaltung zu der in Abbildung 3 gezeigten Schaltung geändert. Das Oszilloskop zeigt nun die Spannungsverläufe des Kondensators $U_C(t)$ und des Generators

 $U_G(t)$ an. Die Spannungsverläufe sind in Abbildung 1 skizziert. Dabei wird der Abstand der Nullstellen a gemessen und die Wellenlänge b von $U_G(t)$. Der Messbereich ist der gleiche wie in Abschnitt 3.2.

Abbildung 3: Schaltung zur Messung der Phasenverschiebung [1].

3.4 Messung zur Bestätigung der Integratorfunktion

Nun wird die in Abbildung 4 gezeigte Schaltung verwendet. Auf dem Zweikanal-Oszillographen ist nun die generierte Spannung und die integrierte Spannung zu sehen. Es werden jeweils Rechtsecks-, Sinus- und Dreiecksspannung am Generator eingestellt und von jeder Einstellung ein Bild gemacht.

Abbildung 4: Schaltung zur Überprüfung des Integrators [1].

4 Auswertung

Siehe Abbildung 5!

Abbildung 5: Plot.

5 Diskussion

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuch Nr. 353 - Das Relaxations verhalten eines RC-Kreises. 2014.}$