

2017级

《物联网数据存储与管理》课程

实验报告

 姓
 名
 王潇逸

 学
 号
 U201714584

 班
 号
 物联网 1701 班

日期 2020.06.06

目 录

– ,	实验目的	1
=,	实验背景	1
三、	实验环境	1
四、	实验内容	2
	4.1 对象存储技术实践	2
	4.2 对象存储性能分析	2
五、	实验过程	2
六、	实验总结	. 10
参老	· 文献	. 10

一、实验目的

- 1. 熟悉对象存储技术,代表性系统及其特性;
- 2. 实践对象存储系统, 部署实验环境, 进行初步测试;
- 3. 基于对象存储系统,架设实际应用,示范主要功能。

二、实验背景

物联网的应用随着移动互联网的兴起而蓬勃发展,快速增长的物联网数据带来了存储挑战:

- 1. 庞大:以几何级数不断增长的数据量,对存储和处理带来挑战。
- 2. 复杂:数据内容多样性带来的数据异构,使得数据结构越来越复杂。

因此,需要一个高可用、可扩展的海量数据存储系统来满足物联网存储需求。面向对象存储技术提供了一种解决方案。对象存储同兼具 SAN 高速直接访问磁盘特点及 NAS 的分布式共享特点。将数据通路(数据读或写)和控制通路(元数据)分离,并且基于对象存储设备构建存储系统,每个对象存储设备具有一定的智能,能够自动管理其上的数据分布。

三、实验环境

由于本次实验均在虚拟机中运行,故此处直接用属性截图展示实验具体环境,如图 1 所示。

图 1 实验所使用的虚拟机环境配置

由于本次实验中所采用的一些模块需要使用 GO 环境,本实验所使用的 GO 环境版本如图 2 所示。

sak16046401@sak16046401-VirtualBox:~\$ go version
go version go1.6.2 linux/amd64

图 2 实验所使用的 GO 环境版本

四、实验内容

根据给出的实验教程,自主选择合适的对象存储服务端、对象存储客户端、对象存储评测工具进行实验。

4.1 对象存储技术实践

- 1. 搭建对象存储服务端,选择使用 Minio。
- 2. 搭建对象存储客户端,选择使用 osm,作为 Go 的一个模块进行安装。
- 3. 测试对象存储基本功能是否正常。

4.2 对象存储性能分析

- 1. 搭建对象评测工具环境,选择 S3 Bench,作为 Go 的一个模块进行安装。
- 2. 调整对象存储评测参数,包括客户端数量、对象数量、对象大小,观察数据存储性能。
- 3. 编写 shell 脚本实现数据批量测试,并重定向 bash 终端将结果输出到文本文件,以便进一步分析处理。
 - 4. 整理和分析不同参数下存储性能数据。

五、实验过程

5.1 搭建对象存储服务端

1. Minio 服务端是拆箱即用的,只需下载二进制可执行文件到本地后修改执行权限即可。执行参考资料中的运行脚本,以指定的访问密钥和安全密钥运行服务端,如图 3 所示。

图 3 本地运行 minio 服务端

5.2 搭建对象存储客户端

1. 将 osm 作为一个 Go 模块加载,在此之前需要先安装 GO 环境。然后从 github 获取到代码包,并将其放到 GOPATH 目录下的 src/github.com 文件夹中,之后使用

go install 命令进行模块安装。

- 2. 安装完成后在 GOPATH 目录的 bin 目录下会出现 osm 的可执行文件。
- 3. 运行 config-osm.sh 脚本配置 osm 参数。
- 4. 输入 osm -h 测试是否安装配置成功,如图 4 所示。

图 4 osm 安装和配置

5.3 测试对象存储功能

1. 运行 minio 服务端,在浏览器打开图形管理界面,访问 127.0.0.1:9000,输入密钥,即可查看服务端情况,如图 5 所示。

图 5 minio 服务端图形界面

2. 在终端窗口内利用 osm 上传文件,如图 6 所示。

图 6 本地终端利用 osm 上传文件

3. 本地上传成功后,刷新 minio 服务端,查看文件上传情况,如图 7 所示。可以看到建立的仓库中有了对应文件,即上传成功。

图 7 minio 服务端的文件上传情况

5.4 对象存储性能分析

1. S3 Bench 作为 GO 模块加载, 先下载 aws-sdk-go 和 go-jmespath 依赖包进行 安装, 再安装 s3bench。安装完成后在 GOPATH 的 bin 目录下会出现 s3bench 可执行文件, 如图 8 所示。

图 8 GOPATH 的 bin 目录下的可执行文件

- 2. 由于 S3 Bench 没有批量测试和输出数据为文件的功能,故通过编写 shell 脚本进行批量测试,并将 bash 的输出重定向到文本文件,具体测试步骤如下:
- ①对象存储大小从 1KB 增加到 1MB, 并发客户端数量为 1, 对象数量为 100, 观察对象大小对存储性能的影响。

- ②并发客户端从 1 增加到 100,对象数量为 100,对象大小为 1KB,观察并发客户端数量对存储性能的影响。
- ③并发客户端从 1 增加到 100,对象数量为 100,对象大小为 100KB,与测试 2 的内容进行比较。
- ④并发客户端数量为 1,对象数量从 5 增加到 1280,对象大小为 1KB,观察对象数量对存储性能的影响。

由于所使用脚本文件多大同小异,仅通过修改相关参数的方式改变功能,故将4个脚本文件(s3bench1,s3bench2,s3bench3 和 s3bench4)均存放在附件中,此处不再赘述。

3.执行测试脚本,输出重定向文件。此处以步骤 1 的输出文件内容为例,如图 9 所示。

图 9 重定向文件内容

4. 整理数据。将输出的结果文件中的数据整理到 Excel 表格中以便进一步处

理,如图10所示。

NO.	Clients-Samples-Size(MB)	W_Throughtput(MB/S)	W_Doration(S)	W_99th(S)	W_90th(S)	R_Throughtput (MB/S)	R_Doration(S)	R_99th(S)	R_90th(S)
1-1	1-100-0.0010	0.07	1.401	0.268	0.029	0. 23	0.419	0.103	0.006
1-2	1-100-0.0020	0.21	0.917	0.078	0.011	1.20	0.163	0.019	0.002
1-3	1-100-0.0039	0.49	0. 798	0.035	0.01	4.04	0.097	0.004	0.001
1-4	1-100-0, 0098	1, 25	0.779	0.018	0.01	7. 73	0.126	0.009	0.002
1-5	1-100-0.0195	2.49	0. 784	0.019	0.01	20.87	0.094	0.003	0.001
1-6	1-100-0.0391	4.83	0.808	0.044	0.01	30.9	0.126	0.008	0.002
1-7	1-100-0.0977	12.22	0. 799	0.03	0.01	88.69	0.110	0.005	0.002
1-8	1-100-0, 1953	12, 48	1.565	0.734	0.01	141.09	0.138	0.006	0.002
1-9	1-100-0, 3906	24. 24	1.612	0.668	0.013	279.73	0.14	0.004	0.002
1-10	1-100-1	30.86	3. 241	0.493	0.038	46.38	2, 156	0.284	0.032
2-1	1-100-0.0010	0.11	0.894	0.082	0.1	0.47	0.207	0.062	0.003
2-2	2-100-0,0010	0.13	0.746	0.053	0,018	0.84	0.117	0.046	0.003
2-3	4-100-0,0010	0.29	0.336	0.072	0.026	1.00	0.098	0.030	0.006
2-4	8-100-0,0010	0.42	0.231	0.036	0.025	0. 95	0.103	0.072	0.012
2-5	16-100-0.0010	0.49	0.198	0.057	0.054	0.64	0.153	0.150	0.134
2-6	32-100-0.0010	0.53	0.185	0.124	0.079	0. 78	0.126	0, 121	0.116
2-7	64-100-0,0010	0.60	0.163	0.142	0.122	0, 58	0.168	0.131	0.124
2-8	70-100-0,0010	0.75	0.131	0.106	0.094	0. 78	0.125	0.117	0.107
2-9	80-100-0,0010	0.39	0.247	0.239	0.232	0.81	0.120	0.115	0.103
2-10	90-100-0,0010	0, 61	0.160	0.154	0.144	0. 78	0.125	0.118	0.109
2-11	100-100-0.0010	0.52	0.189	0.179	0.175	0. 75	0.129	0.122	0.115
3-1	1-100-0.0977	12.61	0. 775	0.016	0.010	83.31	0.117	0.005	0.002
3-2	2-100-0.0977	21,50	0.454	0.026	0.012	92.63	0.105	0.031	0.002
3-3	4-100-0.0977	26, 44	0.369	0.040	0.025	92, 73	0, 105	0.044	0.08
3-4	8-100-0.0977	31.94	0.306	0.050	0.035	68. 60	0.142	0.056	0.033
3-5	16-100-0, 0977	33.15	0.295	0.101	0.066	83, 13	0.117	0.093	0.025
3-6	32-100-0.0977	37.82	0, 258	0.145	0.132	86, 25	0, 113	0.107	0.1
3-7	64-100-0, 0977	33.17	0.294	0, 232	0.203	74.89	0.130	0.115	0.104
3-8	70-100-0.0977	36.42	0.268	0, 235	0.195	72.34	0.135	0.125	0.096
3-9	80-100-0.0977	35.03	0.279	0.265	0.228	71.97	0.136	0.129	0.12
3-10	90-100-0.0977	35, 80	0.273	0.256	0.245	70.54	0.138	0.127	0.116
3-11	100-100-0.0977	33, 90	0.288	0.273	0.260	68, 53	0.142	0.134	0.126
4-1	1-5-0.0010	0.03	0.145	0.116	0.116	1. 15	0.004	0.001	0.001
4-2	1-10-0.0010	0.15	0.055	0.009	0.009	0.50	0.02	0.006	0.006
4-3	1-20-0.0010	0.13	0.147	0.011	0.010	0. 76	0.026	0.004	0.002
4-4	1-40-0,0010	0.13	0.298	0.010	0,009	0.94	0.042	0.004	0.002
4-5	1-80-0.0010	0.12	0.640	0.037	0,010	1.00	0.078	0.004	0.002
4-6	1-160-0.0010	0.13	1.245	0.016	0.015	1, 05	0.149	0.003	0.001
4-7	1-320-0.0010	0.12	2, 538	0.023	0.010	1	0.312	0.003	0.001
4-8	1-640-0.0010	0.12	5. 109	0.025	0.010	1.04	0.601	0.003	0.001
4-9	1-1280-0.0010	0.12	10.507	0.029	0.010	0.97	1, 290	0.004	0.001

图 10 整理后的数据

5. 分析结果

对本次实验的结果,从性能和传输速率两方面进行分析。性能方面:

依据图 10 分别作出对象大小、并发客户端数量、对象数量对性能影响的 折线图,分别如图 11、12、13、14 所示。

图 11 对象大小对性能的影响

从图 11 可知, 读取延迟无较大的变化, 而写入延迟随对象大小增大呈现先减小

再增大的变化。

根据上述分析,可知对象大小越大时,吞吐率越大,且延迟在对象较小和较大时比较高。

图 12 并发客户端数量对性能的影响-1KB

图 13 并发客户端数量对性能的影响-100KB

从图 12 和图 13 可看出,在两种不同条件下,随着并发客户端的增加,吞吐率也在增加。且相比 1KB 大小的测试对象,100KB 大小的测试对象有着更大的吞吐率。

但与此同时,随着并发客户端的增加,延迟也呈现增加的趋势。总结下来, minio 在并发客户端增加的情况下,虽然吞吐率在提高,但延迟也提高了,因此其 总体性能是在下降的。

图 14 对象数量对性能的影响

从图 14 中可以看出,当并发客户端数量固定为 1 时,虽然对象数量从 5 到 1280 成倍的增加,但服务端的吞吐率和延迟变化并不大。这是因为因为此时只有一个客户端,所以其数据是串行到达,对象数量只是影响处理时间,对吞吐率和延迟无几乎没有影响。

传输速率方面:

依据图 10 分别作出对象大小、并发客户端数量、对象数量对读/写速率影响的 折线图,分别如图 15、16、17 所示。

图 15 对象大小对传输速率的影响

从图 15 中可以看出,当对象大小增加时,写入速率与读取速率均整体增加,且可发现同等条件下读取速率要显著高于写入速率。而上图中的异常数据可能是网络波动导致的。

图 16 并发客户端数量对传输速率的影响

从图 16 中可看出,当并发客户端数量增加时,写入速率与读取速率均先增加然后整体趋于平稳。

图 17 对象数量对传输速率的影响

从图 17 中可以看出,当对象数量增加时,写入速率与读取速率均先增加然后整体趋于平稳。且写入速率要显著高于读取速率。

6. 结论

依据以上三个测试的结果,可知 I/O 延迟主要的影响因素如下:

- ①对象的大小。对象大小越大,延迟也就越大。是因为对象越大时需要从磁盘中读取的数据越大,耗时也就越长。
- ②并发客户端数量,并发客户端越多,延迟越大。是因为过多的连接同时请求时会产生拥塞,需要排队处理请求。

六、实验总结

总的来说,本次实验整体上的难度并不算很大,老师所提供的实验指导更是 进一步的为实验过程提供了大量的参考经验,整体的实验过程还是比较顺利的。

在这次实验中,在老师的指导下,我学习并接触了很多新的知识和技术,比如通过命令行使用 GIT,学习使用 minio 和 GO 的一些相关模块。尤其是在安装使用 GO 模块时,经常会发生找不到相应文件或文件夹的情况,后来才知道是 GOPATH 没有设置正确。经过查阅相关资料,才很好的解决了问题。

在实验过程中,老师提供的脚本给予了我很大的帮助。尤其是实验中所采用的 S3 Bench 并没有批量测试和输出结果文件的功能,利用 shell 脚本才实现了批量测试和终端输出的重定向。由于此前很少接触过脚本文件的编辑和操作,通过阅读老师提供的脚本的内容,也进一步学习了脚本文件的相关知识。

本次实验中老师和同学给我提供了莫大的帮助,同时我也参考了相关的资料。在实验过程中虽然经常遇到困难与挫折,但成功完成后也使我受益颇多。

参考文献

- [1] ARNOLD J. OpenStack Swift[M]. O' Reilly Media, 2014.
- [2] ZHENG Q, CHEN H, WANG Y 等. COSBench: A Benchmark Tool for Cloud Object Storage Services[C]//2012 IEEE Fifth International Conference on Cloud Computing. 2012: 998-999.
- [3] WEIL S A, BRANDT S A, MILLER E L 等. Ceph: A Scalable, High-per formance Distributed File System[C]//Proceedings of the 7th Sympos ium on Operating Systems Design and Implementation. Berkeley, CA, USA: USENIX Association, 2006: 307-320.
- [4] URL: https://gitee.com/shi zhan/obs-tutorial
- [5] URL: https://github.com/cs-course/iot-storage-experiment-assig nment-2019
- [6] URL: https://blog.csdn.net/code_segment/article/details/781956 30
- [7] URL: https://blog.csdn.net/szj_huhu/article/details/77541345
- [8] URL: https://blog.csdn.net/weixin_30412167/article/details/96778212