

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Lecture 16 - Thevenin's Theorem

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Need for Thevenin's Theorem

Usually, in a given network we are interested in the response in a particular element.

In such cases, remaining part of the network can be replaced with a simple two element series equivalent.

In power amplifier circuits, impedance matching helps in maximum power transfer to the load.

Thevenin's Theorem - Statement

It can be stated as follows:

"A linear network with a large number of independent and dependent sources and resistors between two terminals can be replaced with a simple two element series equivalent in which a voltage source called 'Thevenin's Equivalent Voltage'(V_{TH})is in series with a resistance called 'Thevenin's Equivalent Resistance' (R_{TL})."

PES

Steps to find Thevenin's Voltage & Thevenin's Resistance

Steps to find V_{TH} :

Step 1: Remove the load resistance.

Step 2: Mark voltage across open load terminals and designate it as V_{TH} .

Step 3: Find V_{TH} using KVL or any other technique.

Steps to find R_{TH}:

Step 1: Remove the load resistance.

Step 2: Replace all independent voltage sources with short circuit & all independent current sources with open circuit

Step 3: Looking into the open load terminals find the equivalent resistance.

Numerical Example 1

Question:

Using Thevenin's Theorem, calculate the range of current flowing through the resistance R, as it varies from 6Ω and 36Ω .

Numerical Example 1

Solution:

Finding V_{TH}:

$$I_1 = \frac{90V}{90\Omega} = 1A$$
; $I_2 = \frac{100V}{100\Omega} = 1A$

By KVL (DABCD),
$$+50 - V_{TH} - 60*I_2 + 30*I_1 = 0$$

$$V_{TH} = 20V$$

Numerical Example 1

Solution (Continued..):

Finding R_{TH}:

$$R_{TH} = (60\Omega \text{ II } 30\Omega) + (60\Omega \text{ II } 30\Omega) = 44\Omega$$

Numerical Example 1

Solution (Continued..):

$$I_{L} = \frac{V_{TH}}{R_{TH} + R}$$

When
$$R = 6\Omega$$
, $I_L = 0.4A$

When R =
$$36\Omega$$
, $I_L = 0.25A$

Hence, current through 'R' ranges from 0.25A to 0.4A

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu