MArefSetup

Emma Cliffe

2017

CONTENTS ii

Contents

1	Qua	dratic equations	1
	1.1	Solutions to a quadratic equation	1
	1.2	The discriminant	3
2	The	scalar product	4
	2.1	Vectors in cartesian form	8
3	Usir	ng Matlab	12
Li	ist d	of Figures	
	1	Examples of quadratic functions with zero, one and two real roots	5
	2	Two vectors with angle between them.	6

LIST OI	- TABLES	
3	A triangle is formed by two vectors	

and their difference.

iii

9

List of Tables

2	Number of real roots of a quadratic	
	equation, given the discriminant	4

Test

This section should be in the contents page for the PDF but not the web or word.

1 Quadratic equations

A quadratic equation is an equation with the form $ax^2 + bx + c = 0$ where x represents an unknown and a, b and c are known numbers with $a \neq 0$.

1.1 Solutions to a quadratic equation

A solution to a quadratic equation is a value of x such that the equation balances. The solutions to quadratic equations can be found by using the

2

quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\tag{1}$$

Example.

For instance, the solutions to $x^2 + 2x - 3 = 0$ are:

$$x = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times -3}}{2 \times 1}$$

$$=\frac{-2\pm\sqrt{4+12}}{2}$$

$$=\frac{-2\pm\sqrt{16}}{2}$$

$$=\frac{-2\pm4}{2}$$

Hence, x = 1 or x = -3.

3

1.2 The discriminant

Definition 1.1 (Discriminant).

The **discriminant** of a quadratic equation with coefficients $a, b, c \in \mathbb{R}$ is:

$$\Delta = b^2 - 4ac.$$

Remark 1.2.

Note that this is the expression beneath the square root symbol in the quadratic formula (1).

We can use the discriminant to determine the number of real roots of a quadratic equation. The number depends on the value of Δ as in table 2.

Figure 1 shows an example of each possibility¹.

¹The image is due to Olin, CC-BY-AS 3.0 downloaded from Wikimedia Commons

Value of Δ	Real roots
$\Delta > 0$	Two, distinct
$\Delta = 0$	One, repeated
$\Delta < 0$	Zero

Table 2: Number of real roots of a quadratic equation, given the discriminant

2 The scalar product

Consider two vectors a and b drawn so their tails are at the same point.

We define the scalar product of a and b as follows.

Definition 2.1 (Scalar product).

Figure 1: Examples of quadratic functions with zero, one and two real roots.

The scalar product of a and b is

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where

- ullet |a| is the modulus of a,
- $\bullet \ |\mathbf{b}|$ is the modulus of $\, \mathbf{b} \, ,$ and

Figure 2: Two vectors with angle between them.

• θ is the angle between a and b.

Remark 2.2.

It is important to use the dot symbol for the scalar product (also called the dot product). You must not use a \times symbol as this denotes the vector product which is defined differently.

Example 2.3.

Let

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

The angle between these vectors is $\theta=45^\circ$. Then $|{\bf a}|=\sqrt{8}$ and $|{\bf b}|=4$. So,

$$\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix} = |\mathbf{a}||\mathbf{b}|\cos\theta$$

$$= \sqrt{8} \times 4 \times \cos 45^{\circ}$$

$$= 4\sqrt{8} \times \frac{1}{\sqrt{2}} = 4\frac{\sqrt{8}}{\sqrt{2}} = 4\sqrt{4} = 8.$$

Note that the result is a scalar, not a vector.

2.1 Vectors in cartesian form

When vectors are given in cartesian form there is an alternative formula for calculating the scalar product.

Proposition 2.4.

If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j}$ then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2.$$

Proof. Consider the vector
$$\mathbf{b} - \mathbf{a} = \begin{bmatrix} b_1 - a_1 \\ b_2 - a_2 \end{bmatrix}$$
.

The modulus of this is

$$|\mathbf{b} - \mathbf{a}| = \sqrt{(b_1 - a_2)^2 + (b_2 - a_2)^2}.$$

Note from figure 3 that the vectors ${\bf a}$, ${\bf b}$ and ${\bf b}-{\bf a}$ form a triangle:

Let θ denote the angle between ${\bf a}$ and ${\bf b}$. Then,

Figure 3: A triangle is formed by two vectors and their difference.

the cosine rule yields:

$$|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta.$$
 (2)

Substituting the definition of the scalar product of a and b into equation 2 gives:

$$|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2(\mathbf{a} \cdot \mathbf{b}).$$

10

Rearranging:

$$(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2} (|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{b} - \mathbf{a}|^2).$$

Writing this in terms of components produces:

$$(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - (b_1 - a_1)^2 - (b_2 - a_2)^2 \right)$$

$$= \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - b_1^2 + 2b_1 a_1 - a_1^2 - b_2^2 + 2b_2 a_2 - a_2^2 \right)$$

$$= \frac{1}{2} \left(2b_1 a_1 + 2b_2 a_2 \right)$$

as required.

 $= a_1b_1 + a_2b_2$

Example 2.5.

Consider again the vectors

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

Calculating the scalar product using the components:

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 = 2 \times 4 + 2 \times 0 = 8.$$

Note that if we are given vectors in this form, the scalar product may be used to calculate the angle between them. Since $\mathbf{a} \cdot \mathbf{b} = 8$ and we have:

$$|\mathbf{a}| = \sqrt{8}$$

$$|\mathbf{b}| = 4.$$

Hence,

$$8 = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$=4\sqrt{8}\cos\theta.$$

Rearranging:

$$\theta = \cos^{-1}\left(\frac{8}{4\sqrt{8}}\right) = 45^{\circ}.$$

3 Using Matlab

Two calculate the scalar product in Matlab the dot function is used.

Create two vectors:

$$> A = [4 -1 2];$$

 $> B = [2 -2 -1];$

Calculate the scalar product:

$$> C = dot(A,B)$$

$$C = 8$$