# Classification using PyCaret

- It is used for Binary or Multi-class classification problems
- It has over 18 algorithms and 14 plots to analyze the performance of models.
- It has hyper-parameter tuning, ensembling or advanced techniques like stacking

### Steps:

- 1. Data Acquisition: import data from PyCaret or any other repository
- 2. **Setting up Environment**: How to setup an experiment in PyCaret and get started with building classification models
- 3. **Model Creation**: How to create a model, perform stratified cross validation and evaluate classification metrics
- 4. Model Tuning: How to automatically tune the hyper-parameters of a classification model
- 5. **Performance Analysis**: How to analyze model performance using various plots
- 6. **Finalize Model**: How to finalize the best model at the end of the experiment
- 7. **Predict Model**: How to make predictions on new / unseen data
- 8. Save / Load Model: How to save / load a model for future use

#### ▼ Install PyCaret

```
!pip install pycaret
```

```
Bullaing wheel for alembic (setup.py) ... done
 Created wheel for alembic: filename=alembic-1.4.1-py2.py3-none-any.whl size=1581
 Stored in directory: /root/.cache/pip/wheels/be/5d/0a/9e13f53f4f5dfb67cd8d245bb7
 Building wheel for databricks-cli (setup.py) ... done
 Created wheel for databricks-cli: filename=databricks cli-0.16.2-py3-none-any.wh
 Stored in directory: /root/.cache/pip/wheels/f4/5c/ed/e1ce20a53095f63b27b4964abb
 Building wheel for pyLDAvis (setup.py) ... done
 Created wheel for pyLDAvis: filename=pyLDAvis-3.2.2-py2.py3-none-any.whl size=13
 Stored in directory: /root/.cache/pip/wheels/f8/b1/9b/560ac1931796b7303f7b517b949
 Building wheel for pyod (setup.py) ... done
 Created wheel for pyod: filename=pyod-0.9.5-py3-none-any.whl size=132699 sha256=
 Stored in directory: /root/.cache/pip/wheels/3d/bb/b7/62b60fb451b33b0df1ab800669
 Building wheel for umap-learn (setup.py) ... done
 Created wheel for umap-learn: filename=umap learn-0.5.2-py3-none-any.whl size=82
 Stored in directory: /root/.cache/pip/wheels/84/1b/c6/aaf68a748122632967cef4dffe-
 Building wheel for pynndescent (setup.py) ... done
 Created wheel for pynndescent: filename=pynndescent-0.5.5-py3-none-any.whl size=
 Stored in directory: /root/.cache/pip/wheels/af/e9/33/04db1436df0757c42fda8ea679
Successfully built htmlmin imagehash alembic databricks-cli pyLDAvis pyod umap-lea
Installing collected packages: threadpoolctl, tangled-up-in-unicode, smmap, scipy,
 Attempting uninstall: scipy
    Found existing installation: scipy 1.4.1
    Uninstalling scinv-1 4 1.
```

```
OHITHS CALLTING SCIPY I.T.I.
      Successfully uninstalled scipy-1.4.1
  Attempting uninstall: scikit-learn
    Found existing installation: scikit-learn 0.22.2.post1
    Uninstalling scikit-learn-0.22.2.post1:
      Successfully uninstalled scikit-learn-0.22.2.post1
  Attempting uninstall: requests
    Found existing installation: requests 2.23.0
    Uninstalling requests-2.23.0:
      Successfully uninstalled requests-2.23.0
  Attempting uninstall: PyYAML
    Found existing installation: PyYAML 3.13
    Uninstalling PyYAML-3.13:
      Successfully uninstalled PyYAML-3.13
  Attempting uninstall: yellowbrick
    Found existing installation: yellowbrick 0.9.1
    Uninstalling yellowbrick-0.9.1:
      Successfully uninstalled yellowbrick-0.9.1
  Attempting uninstall: pandas-profiling
    Found existing installation: pandas-profiling 1.4.1
    Uninstalling pandas-profiling-1.4.1:
      Successfully uninstalled pandas-profiling-1.4.1
  Attempting uninstall: mlxtend
    Found existing installation: mlxtend 0.14.0
    Uninstalling mlxtend-0.14.0:
      Successfully uninstalled mlxtend-0.14.0
  Attempting uninstall: lightgbm
    Found existing installation: lightgbm 2.2.3
    Uninstalling lightgbm-2.2.3:
      Successfully uninstalled lightgbm-2.2.3
  Attempting uninstall: imbalanced-learn
    Found existing installation: imbalanced-learn 0.4.3
    Uninstalling imbalanced-learn-0.4.3:
      Successfully uninstalled imbalanced-learn-0.4.3
ERROR: pip's dependency resolver does not currently take into account all the pack
google-colab 1.0.0 requires requests~=2.23.0, but you have requests 2.26.0 which i
datascience 0.10.6 requires folium==0.2.1. but vou have folium 0.8.3 which is inco

▼
```

#### Dataset source

https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records

#### Upload dataset from user-system

```
from google.colab import files
files.upload()
```

```
Choose files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving heart_failure_dataset.csv to heart_failure_dataset.csv {'heart_failure_dataset.csv': b'age,anaemia,creatinine_phosphokinase,diabetes,ejec
```

#### Read dataset

```
import pandas as pd
dataset = pd.read_csv('heart_failure_dataset.csv')
dataset.head()
```

|   | age  | anaemia | creatinine_phosphokinase | diabetes | ejection_fraction | high_bloo |
|---|------|---------|--------------------------|----------|-------------------|-----------|
| 0 | 75.0 | 0       | 582                      | 0        | 20                |           |
| 1 | 55.0 | 0       | 7861                     | 0        | 38                |           |
| 2 | 65.0 | 0       | 146                      | 0        | 20                |           |
| 3 | 50.0 | 1       | 111                      | 0        | 20                |           |
| 4 | 65.0 | 1       | 160                      | 1        | 20                |           |

### Upload dataset to google drive,

### mount google drive and read dataset

```
from google.colab import drive
drive.mount('/content/drive')
Dataset = pd.read_csv('/content/heart_failure_dataset.csv')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
```

# Load Datasets from PyCaret

- 1. from pycaret.datasets import get\_data
- 2. datasets = get\_data('index')
- 3. dataset = get\_data("diabetes")

# import all classification methods

from pycaret.classification import \*

# **▼** Setup function initializes the training environment

s= setup(data=dataset, target='DEATH\_EVENT', train\_size=0.75, silent=True)

|    | Description                            | Value            |
|----|----------------------------------------|------------------|
| 0  | session_id                             | 8441             |
| 1  | Target                                 | DEATH_EVENT      |
| 2  | Target Type                            | Binary           |
| 3  | Label Encoded                          | None             |
| 4  | Original Data                          | (291, 13)        |
| 5  | Missing Values                         | False            |
| 6  | Numeric Features                       | 6                |
| 7  | Categorical Features                   | 6                |
| 8  | Ordinal Features                       | False            |
| 9  | High Cardinality Features              | False            |
| 10 | High Cardinality Method                | None             |
| 11 | Transformed Train Set                  | (218, 26)        |
| 12 | Transformed Test Set                   | (73, 26)         |
| 13 | Shuffle Train-Test                     | True             |
| 14 | Stratify Train-Test                    | False            |
| 15 | Fold Generator                         | StratifiedKFold  |
| 16 | Fold Number                            | 10               |
| 17 | CPU Jobs                               | -1               |
| 18 | Use GPU                                | False            |
| 19 | Log Experiment                         | False            |
| 20 | Experiment Name                        | clf-default-name |
| 21 | USI                                    | f80e             |
| 22 | Imputation Type                        | simple           |
| 23 | Iterative Imputation Iteration         | None             |
| 24 | Numeric Imputer                        | mean             |
| 25 | Iterative Imputation Numeric Model     | None             |
| 26 | Categorical Imputer                    | constant         |
| 27 | Iterative Imputation Categorical Model | None             |
| 28 | Unknown Categoricals Handling          | least_frequent   |
| 29 | Normalize                              | False            |
| 30 | Normalize Method                       | None             |

# ▼ Run and Compare all ML models

cm = compare\_models()

|          | Model                                    | Accuracy | AUC    | Recall | Prec.  | F1     | Карра  | MCC    | (Se |
|----------|------------------------------------------|----------|--------|--------|--------|--------|--------|--------|-----|
| rf       | Random<br>Forest<br>Classifier           | 0.8530   | 0.8942 | 0.6238 | 0.8614 | 0.7143 | 0.6206 | 0.6407 | 0.4 |
| lightgbm | Light<br>Gradient<br>Boosting<br>Machine | 0.8258   | 0.8605 | 0.6548 | 0.7556 | 0.6880 | 0.5703 | 0.5818 | 0.0 |
| gbc      | Gradient<br>Boosting<br>Classifier       | 0.8115   | 0.8783 | 0.6071 | 0.7302 | 0.6523 | 0.5264 | 0.5379 | 0.0 |
| lr       | Logistic<br>Regression                   | 0.8071   | 0.8283 | 0.5952 | 0.7414 | 0.6506 | 0.5206 | 0.5331 | 0.3 |
| ada      | Ada Boost<br>Classifier                  | 0.8024   | 0.8260 | 0.5929 | 0.7073 | 0.6404 | 0.5070 | 0.5130 | 0.0 |
| ridge    | Ridge<br>Classifier                      | 0.7883   | 0.0000 | 0.5881 | 0.6630 | 0.6045 | 0.4655 | 0.4797 | 0.0 |
| nb       | Naive<br>Bayes                           | 0.7840   | 0.8131 | 0.4738 | 0.7267 | 0.5597 | 0.4291 | 0.4522 | 0.0 |
| 49       | Tria                                     | tures    | False  |        |        |        |        |        |     |

# ▼ Create a model - Random Forest model

m = create\_model('rf')
print (m)

|   | Accuracy | AUC    | Recall | Prec.  | F1     | Карра  | MCC    |
|---|----------|--------|--------|--------|--------|--------|--------|
| 0 | 0.9091   | 0.9688 | 0.6667 | 1.0000 | 0.8000 | 0.7442 | 0.7698 |
| 1 | 0.9091   | 0.8857 | 0.8571 | 0.8571 | 0.8571 | 0.7905 | 0.7905 |
| 2 | 0.8182   | 0.8571 | 0.5714 | 0.8000 | 0.6667 | 0.5464 | 0.5610 |
| 3 | 0.8636   | 0.8667 | 0.5714 | 1.0000 | 0.7273 | 0.6452 | 0.6901 |
| 4 | 0.7727   | 0.8905 | 0.4286 | 0.7500 | 0.5455 | 0.4086 | 0.4370 |
| _ |          |        |        |        |        | · ·    |        |

#### Tune the Model

```
tuned_m = tune_model(m,n_iter = 50)
print(tuned_m)
```

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Карра  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.9091   | 0.9583 | 0.6667 | 1.0000 | 0.8000 | 0.7442 | 0.7698 |
| 1    | 0.9091   | 0.8857 | 0.8571 | 0.8571 | 0.8571 | 0.7905 | 0.7905 |
| 2    | 0.7273   | 0.8476 | 0.2857 | 0.6667 | 0.4000 | 0.2584 | 0.2973 |
| 3    | 0.8636   | 0.8952 | 0.5714 | 1.0000 | 0.7273 | 0.6452 | 0.6901 |
| 4    | 0.7273   | 0.9048 | 0.2857 | 0.6667 | 0.4000 | 0.2584 | 0.2973 |
| 5    | 0.9545   | 0.9714 | 0.8571 | 1.0000 | 0.9231 | 0.8911 | 0.8964 |
| 6    | 0.9545   | 1.0000 | 1.0000 | 0.8750 | 0.9333 | 0.8991 | 0.9037 |
| 7    | 0.7273   | 0.8381 | 0.4286 | 0.6000 | 0.5000 | 0.3196 | 0.3281 |
| 8    | 0.8571   | 0.9111 | 0.5000 | 1.0000 | 0.6667 | 0.5882 | 0.6455 |
| 9    | 0.8571   | 0.7778 | 0.5000 | 1.0000 | 0.6667 | 0.5882 | 0.6455 |
| Mean | 0.8487   | 0.8990 | 0.5952 | 0.8665 | 0.6874 | 0.5983 | 0.6264 |
| SD   | 0.0862   | 0.0635 | 0.2333 | 0.1550 | 0.1898 | 0.2336 | 0.2253 |
|      |          |        |        |        |        |        |        |

# Performance Analysis

evaluate\_model(tuned\_m)



#### RandomForestClassifier Confusion Matrix



Double-click (or enter) to edit

# Predict using Tunned Model

predict\_model(tuned\_m);

|   | Model                    | Accuracy | AUC    | Recall | Prec.  | F1     | Карра  | MCC    |
|---|--------------------------|----------|--------|--------|--------|--------|--------|--------|
| 0 | Random Forest Classifier | 0.8493   | 0.9226 | 0.5652 | 0.9286 | 0.7027 | 0.6096 | 0.6433 |

# Finalize the Model

final\_m = finalize\_model(tuned\_m)

### Save the Model

```
save model(final m, 'Final-Model')
     Transformation Pipeline and Model Successfully Saved
     (Pipeline(memory=None,
               steps=[('dtypes',
                       DataTypes_Auto_infer(categorical_features=[],
                                             display_types=False, features_todrop=[],
                                             id_columns=[],
                                             ml usecase='classification',
                                             numerical_features=[],
                                             target='DEATH_EVENT', time_features=[])),
                      ('imputer',
                       Simple_Imputer(categorical_strategy='not_available',
                                      fill_value_categorical=None,
                                      fill value numerical=None,
                                       numeric...
                       RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                               class_weight={}, criterion='gini',
                                               max_depth=7, max_features='log2',
                                               max leaf nodes=None, max samples=None,
                                               min_impurity_decrease=0.0005,
                                               min impurity split=None,
                                               min_samples_leaf=4, min_samples_split=5,
                                               min_weight_fraction_leaf=0.0,
                                               n_estimators=170, n_jobs=-1,
                                               oob_score=False, random_state=8441,
                                               verbose=0, warm_start=False)]],
               verbose=False), 'Final-Model.pkl')
```

#### Download Pickle File

```
from google.colab import files
files.download('Final-Model.pkl')
```

## Upload Pickle File

#### Load the Model

```
saved_final_m = load_model('Final-Model')
```

Transformation Pipeline and Model Successfully Loaded

# Predict using unseen data

files.upload()

new\_prediction.head()

|   | age | anaemia | <pre>creatinine_phosphokinase</pre> | diabetes | ejection_fraction | high_blood |
|---|-----|---------|-------------------------------------|----------|-------------------|------------|
| 0 | 70  | 1       | 125                                 | 0        | 25                |            |
| 1 | 48  | 1       | 582                                 | 1        | 55                |            |
| 2 | 65  | 1       | 52                                  | 0        | 25                |            |
| 3 | 65  | 1       | 128                                 | 1        | 30                |            |
| 4 | 68  | 1       | 220                                 | 0        | 35                |            |

Basic Level: https://www.pycaret.org/tutorials/html/CLF101.html

Intermediate Level: <a href="https://www.pycaret.org/tutorials/html/CLF102.html">https://www.pycaret.org/tutorials/html/CLF102.html</a>

Double-click (or enter) to edit

• ×