Exercícios de Fixação >< Aula 7 (percursos em matrizes) e Aula 8 (gerando arrays)

051) Programa mais_percursos

Submeta como 051-2X115XXXX.c, seguindo as intruções de praxe.

Faça um programa que realiza a seguinte sequência de ações:

- Lê o tamanho da matriz quadrada (N), que deve estar entre 3 e 16, inclusive;
- lê as $N \times N$ entradas da matriz, que devem ser números inteiros quaisquer;
- se todos os elementos nas colunas ímpares acima da diagonal principal forem positivos, imprime a média truncada (isto é, o mesmo que o quociente da divisão inteira) dos elementos pares da diagonal secundária; senão, imprime a soma da última coluna.

061) Programa maximos_locais

Submeta como 061-2X115XXXX.c, seguindo as intruções de praxe.

(Essa foi questão de prova em 2018)

Dado um *array* de inteiros, gerar um novo array os máximos locais do vetor. Um máximo local é um valor que é maior que o seu antecessor e maior que o seu sucessor dentro do *array* original. Há dois casos especiais: o primeiro elemento é um máximo local se ele for maior que o segundo elemento; e o último elemento é um máximo local se ele é maior que o penúltimo elemento. Considere que o usuário informa a quantidade de dados do *array*, e que ela não ultrapassa 1024 valores.

Exemplos:

062) Programa mult_matrizes

Submeta como 062-2X115XXXX.c, seguindo as intruções de praxe.

Faça um programa que realiza a seguinte sequência de ações:

- lê as dimensões de uma matriz não quadrada $(M \times N)$;
- lê as entradas da matriz;
- lê as dimensões de uma segunda matriz não quadrada $(N \times P)$;
- lê as entradas da segunda matriz;
- imprime a matriz obtida da multiplicação das duas matrizes de entrada, e cujas dimensões são $M \times P$; o algoritmo de multiplicação é conhecido em Matemática.

Esse é o exemplo clássico de programa com matrizes. É fácil encontrá-lo pronto nos livros. Tente implementá-lo por seus próprios esforços:

- Comece considerando o caso das matrizes $1 \times N$ e $N \times 1$, de forma a obter um resultado de um só elemento.
- Em seguida, aumente o número de linhas da primeira matriz, de forma a ter $M \times N$ e $N \times 1$, obtendo um array $M \times 1$;
- Por fim, chegue ao caso geral do enunciado.

Exercícios de Fixação >< Aula 7 (percursos em matrizes) e Aula 8 (gerando arrays)

063) Programa resumo

Submeta como 063-2X115XXXX.c, seguindo as intruções de praxe.

(Essa foi questão de prova em 2018)

Dada uma matriz qualquer de dimensões $M \times N$, gerar uma matriz resumo, linha a linha, a partir do maior elemento da linha e seus dois elementos consecutivos. Se o maior elemento estiver na última ou penúltima linha, completar com zeros. Logicamente, a matriz resultante tem dimensões $M \times 3$.

Exemplo:

4	3	9	8	2	5		9	8	2
10	7	8	0	-1	7	\	10	7	8
5	4	3	6	1	2	/	6	1	2
8	7	0	2	9	5		9	5	0
9	0	3	1	6	10		10	0	0