CS57300 PURDUE UNIVERSITY NOVEMBER 8, 2021

DATA MINING

DESCRIPTIVE MODELING

DATA MINING COMPONENTS

- Task specification: Description
- Knowledge representation
- Learning technique
- Evaluation and interpretation

PARTITION-BASED CLUSTERING

- Partition data instances into a fixed number of groups
- Representative algorithm:
 K-means

Model space:

all possible assignments of data instance to group

HIERARCHICAL CLUSTERING

- Build a hierarchy of clusters given the data
- Can be agglomerative ("bottom-up") or divisive ("top-down")

Model space:

all possible hierarchies

PROBABILISTIC MODEL-BASED CLUSTERING

Model space:

 w_k and $f_k(x; \theta)$

DATA MINING COMPONENTS

- Task specification
- Knowledge representation
- Learning technique
- Evaluation and interpretation

LEARNING DESCRIPTIVE MODELS

- Select a knowledge representation (a "model")
 - Defines a **space** of possible models $M=\{M_1, M_2, ..., M_k\}$
- Define scoring functions to "score" different models
- Use search to identify "best" model(s)
 - Search the space of models
 - Evaluate possible models with scoring function to determine the model which best fits the data

DESCRIPTIVE SCORING FUNCTIONS

- Clustering: What makes a good cluster?
 - High intra-group similarity, low inter-group similarity
 - Scoring function is often a function of within-cluster similarity and between-cluster similarity
- Example scoring functions

cluster centroid:

$$r_k = \frac{1}{n_k} \sum_{x(i) \in C_k} x(i)$$

between-cluster distance:

$$bc(C) = \sum_{1 \le j \le k \le K} d(r_j, r_k)^2$$

within-cluster distance:
$$wc(C) = \sum_{k=1}^K wc(C_k) = \sum_{k=1}^K \sum_{x(i) \in C_k} d(x(i), r_k)^2$$

DESCRIPTIVE SCORING FUNCTIONS

- Structure learning and density estimation: Does the model representation capture the observed data well?
 - Likelihood of the observed data is often used as the scoring function
 - Also applicable to probabilistic model-based clustering

SEARCHING OVER MODELS

- Search over the model space to find the model structure / parameters that optimize the scoring function
- Discrete model space example: partition-based clustering
 - Find k clusters among n data instances: k^n possible allocations
 - Exhaustive search is intractable
 - Most approaches use iterative improvement algorithms to search the model space heuristically

SEARCHING OVER MODELS

- Continuous model space example: probabilistic model-based clustering
 - Searching for the cluster weight (i.e., w_k) and cluster parameters (i.e., $f_k(x, \theta)$) that gives the highest likelihood of observing the current data
 - Solution: Expectation-maximization to iteratively infer cluster member and estimate cluster parameters

DATA MINING COMPONENTS

- Task specification
- Knowledge representation
- Learning technique
- Evaluation and interpretation

DESCRIPTIVE MODEL EVALUATION

- Clustering evaluation
 - Supervised: Measures the extent to which clusters match external class label values, e.g., how likely a cluster contains only data instances of a particular class?
 - Unsupervised: Measures goodness of fit without class labels, e.g., how closely related instances within each cluster are and distinct instances across different clusters are?

DESCRIPTIVE MODEL EVALUATION

- Describe the current data precisely vs. Generalize to new data
- Example: in partition-based clustering, the model captures the data the best when k=n
- Strike a balance between between how well the model fits and the data and the simplicity of the model

PARTITION-BASED CLUSTERING

PARTITION-BASED

- Input: data $D=\{x(1),x(2),...,x(n)\}$
- Output: k clusters $C=\{C_1,...,C_k\}$ such that each $\mathbf{x}(i)$ is assigned to a unique C_i
- Evaluation: Score(C,D) is maximized/minimized
 - Combinatorial optimization: search among kⁿ allocations of n objects into k classes to maximize score function
 - Exhaustive search is intractable
 - Most approaches use iterative improvement algorithms

EXAMPLE: K-MEANS

- Algorithm idea:
 - Start with k randomly chosen centroids
 - Repeat until no changes in assignments
 - Assign instances to closest centroid
 - Recompute cluster centroids

Algorithm 2.1 The k-means algorithm

```
Input: Dataset D, number clusters k
Output: Set of cluster representatives C, cluster membership vector m
   /* Initialize cluster representatives C */
   Randomly choose k data points from D
5: Use these k points as initial set of cluster representatives C
   repeat
      /* Data Assignment */
      Reassign points in D to closest cluster mean
      Update m such that m_i is cluster ID of ith point in D
      /* Relocation of means */
10:
      Update C such that c_i is mean of points in jth cluster
   until convergence
```

SCORING FUNCTION OF K-MEANS

What scoring function is K-means trying to optimize for?

Score function:
$$wc(C) = \sum_{k=1}^K wc(C_k) = \sum_{k=1}^K \sum_{x(i) \in C_k} d(x(i), r_k)^2$$

- An alternating optimization approach
 - Fix r_k , optimize for membership of C(x(i)): $min \sum_{i=1}^{N} (x(i) r_{C(x(i))})^2$
 - Fix C(x(i)), optimize for r_k : $min_{r_k} \sum_{i=1}^{N} (x(i) r_{C(x(i))})^2 = \sum_{k=1}^{K} \sum_{x \in C_k} (x r_k)^2$
 - Take derivative with respect to r_k and set to 0 leads to $r_k = \frac{1}{|C_k|} \sum_{x \in C_k} x$

ALGORITHM DETAILS

- Does it terminate?
 - Yes, the objective function decreases on each iteration. It usually converges quickly.
- Does it converge to an optimal solution?
 - No, the algorithm terminates at a local optima which depends on the starting seeds.

DESCRIPTIVE MODELING 28

K-MEANS IS SENSITIVE TO INITIAL SEEDS

A local optimum:

Would be better to have one cluster here

K-MEANS

- Strengths:
 - \triangleright Relatively efficient (time complexity is O(K·N·i), where i is the number of iterations)
 - Finds spherical clusters
- Weaknesses:
 - Terminates at local optimum (sensitive to initial seeds)
 - Applicable only when mean is defined
 - Need to specify K
 - Susceptible to outliers/noise