Error Detection and Correction using Record Embeddings

Manjunath Shettar
Meghana Moorthy Bhat
Yogesh Chockalingam

Agenda

- Motivation
- Problem Statement
- Background
- Approach
- Results
- Conclusion

Motivation

- Error detection and correction of large datasets is laborious.
- Current solutions use graphical models for databases which are computationally expensive and memory hungry to perform any analysis in the ecosystem.

Background

- Structure2vec
 - Embedding latent variable models into feature spaces.
 - Performs sequence of function mappings similar to graphical model inference procedures.
- Fast.ai
 - Deep Learning applied on structured data.

Problem Statement

Devise an end to end pipeline incorporating embeddings to perform error detection and error correction.

Approach

Step 1

Error Detection

- Randomly sample 30% of the total records for labeling.
- Convert the record to a comma separated string and feed it into the model.

Data Imputation using Word2vec

10022	CHEROKEE MEDICAL CENTER	400 NORTHWOOD DR	CENTRE	35960	CHEROKEE	2569275531	Voluntary non- profit - Private	Pneumonia	20 patients
10022	CHEROKEE MEDICAL CENTER	400 NORTHWOOD DR	CENTRE	35960	CHEROKEE	2569275531	Voluntary non- profit - Private	Pneumonia	31 patients
10022	CHEROKEE MEDICAL CENTER	400 NORTHWOOD DR	CENTRE	35960	CHEROKEE	2569275531	Voluntary non- profit - Private	Pneumonia	33 patients
10022	CHEROKEE MEDICAL CENTER	400 NORTHWOOD DR	CENTRE	35960	CHEROKEE	2569275531	Voluntary non- profit - Private	Heart Failure	35 patients

model.most_similar("CHEROKEE")

```
('2569275531', 0.762696385383606),

('35960', 0.757010817527771),

('CENTRE', 0.7564683556556702),

('400 NORTHWOOD DR', 0.7488652467727661),

('CHEROKEE MEDICAL CENTER', 0.6274447441101074),

('10022', 0.5803501605987549),

('20 patients', 0.5598365068435669),

('35 patients', 0.4954341650009155),

('31 patients', 0.4659847915172577),

('CLANTON', 0.46123188734054565)
```

Word2vec captures information across the row!

Attribute Classifier

"Madison" -> AttributeClassifier -> City

"abc@xyz.com" -> AttributeClassifier -> Email

Algorithm for Imputation

- 1. Feed in each attribute of the row with one or more missing values to the word2vec model.
- 2. For each match returned, use the attribute classifier to detect only values of the same attribute as the missing cell.
- 3. Pick the match with the highest confidence, if multiple matches are returned.

Data Cleaning using fastText


```
model.most similar("BUNTERVILLE")
                      Erroneous cell value
    [('GUNTERSVILLE', 0.9831987619400024),
                                                             "GUNTERSVILLE" -> AttributeClassifier -> 'CountyName'
      ('THOMASVILLE', 0.7798212766647339),
      ('HUNTSVILLE', 0.7334578037261963),
      ('RUSSELLVILLE', 0.7136012315750122),
       ('PRATTVILLE', 0.7130258083343506),
       ('HARTSELLE', 0.4626261591911316),
      ('2565718000', 0.3078015148639679),
         ('36116', 0.2716265916824341),
         ('36467', 0.2487492710351944),
         ('BOAZ', 0.24434436857700348)]
```

FastText top 10 predictions -> Captures syntactically closer words!

Algorithm for data cleaning using fastText

- Detect misspelt cell and column index by checking against ground truth.
- Run fastText algorithm to predict top 10 predictions.
- For each match, use attribute classifier to detect values of the same attribute as the misspelt word.
- Pick the match with highest confidence.

Results

Hospital Dataset

Schema

ProviderNumber : Integer

HopsitalName : String

Address1: String

•City: String

•ZipCode : String

CountyName: String

PhoneNumber: Integer

HospitalOwner : String

Condition : String

•Sample: Integer

Туре	Count
Positive Samples	827
Negative Samples	825
Total data size	1652

Errors	Count
Empty cell rows	275
Misspelt cell rows	275
Column wise shuffled rows	275

Error Detection

Negative Samples detected- 748/825

	Precision	Recall	F1-Score	Support
Negative samples	0.95	0.86	0.91	825
Positive samples	0.88	0.96	0.92	827
Total	0.91	0.91	0.91	1652

Attribute Classifier

- model.predict("10022") -> 'ProviderNumber'
- model.predict("36278") -> 'ZipCode'

Accuracy 98.68%

Data Imputation

Detected	275/275
Imputed	190/275
Accuracy	69.09%

Error Analysis of Data Imputation

df['HospitalOwner'].value_counts()

Proprietary	384
Voluntary non-profit - Private	372
Government - Hospital District or Authority	360
Voluntary non-profit - Other	195
Voluntary non-profit - Church	140
Government - State	81
Government - Federal	61
Government - Local	28

df['Condition'].value_counts()

Surgical Infection Prevention	458
Pneumonia	444
Heart Attack	406
Heart Failure	312
Children s Asthma Care	6

df['Sample'].value_counts()

0 patients	126
1 patients	31
3 patients	27
2 patients	25
4 patients	25
5 patients	22
10 patients	20
15 patients	19
6 patients	18
14 patients	18
8 patients	16
19 patients	16
16 patients	16
85 patients	15
125 patients	14
101 patients	12
34 patients	12
77 patients	12
25 patients	12
7 patients	12
37 patients	12
69 patients	12

Error Cleaning using FastText

Precision	96.89%
Corrected	187/193

Error Analysis of Data Cleaning

- Incorrect Predictions
 - fastTextModel.most similar("MONTOMARY")

```
[('MONTGOMERY', 0.9795540571212769),
('1300 SOUTH MONTGOMERY AVENUE', 0.4560515582561493),
('2105 EAST SOUTH BOULEVARD', 0.42764002084732056),
('JACKSON HOSPITAL & CLINIC INC', 0.36702218651771545),
('36106', 0.31643322110176086),
('ONEONTA', 0.2884874641895294),
('3342882100', 0.26676562428474426),
('36116', 0.26303714513778687),
('BUTLER', 0.2594197392463684),
('3342938000', 0.25250470638275146)]
```

Error Analysis (contd.)

City	ZipCode	CountyName
MONTGOMERY	36116	MONTGOMERY

- predictAttribute("MONTGOMERY") ->'City'
- Ambiguous attribute values made it hard to pick the right match.

Future Work

- Improvise error detector module to categorize different kinds of errors.
- Data cleaning module to handle errors due to attribute shuffling.
- Overall improvement of the workflow to handle less correlated attributes or complex relationships.