Solutions for Exercise Sheet 14

Handout: December 17th — Deadline: December 24th, 4pm

Question 14.1 (0.25 marks)

Perform a depth-first search on the following graph visiting nodes in alphabetical order. Assume that all adjacency lists are sorted alphabetically. Write down the timestamps and the π -value of each node.

Solution.

	d	f	π
a	1	8	NIL
b	2	7	a
\mathbf{c}	3	4	b
d	5	6	b
e	9	10	NIL

Question 14.2 (0.5 marks))

Prove or refute the following claim: if some depth-first search on a directed graph yields precisely one back edge, then all depth-first searches on this graph yield precisely one back edge.

Solution.

In the following graph, searching from 2 yields one backward edge; searching from 4 yields two.

This refutes the claim.

Question 14.3 (0.25 marks)

Run Topological-Sort on the following directed acyclic graph. Assume that depth-first search visits nodes in alphabetical order and that adjacency lists are sorted alphabetically.

Solution.

Here's the output of depth-first search, processing nodes and adjacency lists in alphabetical order as stated in the instructions:

	d	f
a	1	6
b	7	8
\mathbf{c}	2	5
d	3	4
e	9	22
f	10	15
g	16	21
h	11	14
i	17	20
j	12	13
k	23	24
1	18	19

This yields the list (k, e, g, i, l, f, h, j, b, a, c, d).

Question 14.4 (0.5 marks)

Recall from the lecture that DFS can be used to check whether a directed graph G = (V, E) is acyclic or not, and that DFS runs in time $\Theta(|V| + |E|)$.

Give an algorithm that checks whether or not an undirected graph G = (V, E) is acyclic and that runs in time only O(|V|).

Solution.

Run DFS and check whether you get a back edge (undirected graphs only have tree and back edges anyway). This is the case when you explore an edge (u, v) with v gray. Now G has no cycles at all if and only if there can be at most |V|-1 edges. Otherwise, just stop after exploring |V| edges (a counter can be added for this).

Question 14.5 (1 mark)

Implement TOPOLOGICAL-SORT(G) for a given directed graph G(V, E). The algorithm should return a topological sort if the graph is acyclic or that no topological sort exists if the graph contains a cycle. The input will be:

- first line: N M (the number of vertices and edges).
- M lines each containing a pair $v_i v_j$ meaning there is an edge $v_i \to v_j$.

You have to first build the adjacency list representing the graph with the required attributes (colour, .d, .f $.\pi$).

The algorithm should run in time O(V+E).