Solutions to Assignment 2

Sol-Problem 1 (Problem 2.4 from Textbook)

In open circuit, the voltage at the output port is given simply by the voltage-divider equation (in the frequency domain):

$$v_{oc} = \frac{\left[R_2 + \frac{1}{j\omega C}\right]}{\left[R_1 + R_2 + j\omega L + \frac{1}{j\omega C}\right]} v = v_{eq}$$
 (i)

Note: Equivalent source v_{eq} is expressed here as a function of frequency. Its corresponding time function $v_{eq}(t)$ is obtained by using inverse Fourier transform. Alternatively, first replace $j\omega$ by

the Laplace variable s: $v_{eq}(s) = \frac{\left[R_2 + \frac{1}{sC}\right]}{\left[R_1 + R_2 + sL + \frac{1}{sC}\right]}$ v(s). Then obtain the inverse Laplace

transform, for a given v(s), using Laplace transform tables.

Now, in order to determine Z_{eq} , note from Figure P2.4(c) that when the voltage source is shorted, the resulting circuit has the two branches of impedance $(R_1 + j\omega L)$ and $\left[R_2 + \frac{1}{j\omega C}\right]$ in parallel. Their equivalent impedance is given by: $\frac{1}{Z_{eq}} = \frac{1}{(R_1 + j\omega L)} + \frac{1}{\left[R_2 + \frac{1}{j\omega C}\right]}$

Or,
$$Z_{eq} = \left[\frac{\left[R_2 + \frac{1}{j\omega C} \right] \left[R_1 + j\omega L \right]}{\left[R_1 + R_2 + j\omega L + \frac{1}{j\omega C} \right]} \right]$$

Sol-Problem 2 (Problem 2.7 from Textbook)

(a) The input impedance of the amplifier = 500 M Ω .

Estimated error =
$$\frac{10}{(500+10)} \times 100\% = 2\%$$

(b) Impedance of the speaker = 4Ω .

Estimated error =
$$\frac{0.1}{(4+0.1)} \times 100\% = 2.4\%$$

Sol-Problem 3 (Problem 2.10 from Textbook)

For the given system, $\omega_n = \sqrt{\frac{1 \times 10^6}{100}}$ rad/s = 100 rad/s and $\omega \ge 200$ rad/s. Hence, we have the frequency ratio $r \ge 2.0$.

For
$$r = 2.0$$
 and $\left| T_f \right| = 0.5$ we have $0.5 = \sqrt{\frac{1 + 16\zeta^2}{9 + 16\zeta^2}}$ or, $\zeta = \sqrt{\frac{5}{48}}$. Hence,

$$b = 2\zeta \omega_n m = 2\sqrt{\frac{5}{48}} \times 100 \times 100 \text{ N.s/m} \rightarrow b = 6.455 \times 10^3 \text{ N.s/m}.$$

With this damping constant, for $r \ge 2$, we will have $\left|T_f\right| \le 0.5$. Decreasing b will decrease $\left|T_f\right|$ in this frequency range.

To plot the Bode diagram using MATLAB, first note that:

$$2\zeta\omega_n = b / m = 6.455 \times 10^3 / 100 = 64.55 \text{ rad/s} \text{ and } \omega_n^2 = 10^4 \text{ (rad/s)}^2$$

The corresponding transmissibility function is $T_f = \frac{64.55s + 10^4}{s^2 + 64.55s + 10^4}$ with $s = j\omega$

The following MATLAB script will plot the required Bode diagram:

% Plotting of transmissibility function clear; m=100.0; k=1.0e6; b=6.455e3; sys=tf([b/m k/m],[1 b/m k/m]); bode(sys);

The resulting Bode diagram is shown in Figure S2.10. A transmissibility magnitude of 0.5 corresponds to $20\log_{10} 0.5$ dB = -6.02 dB.

Note from the Bode magnitude curve in Figure S2.10.4 that at the frequency 200 rad/s the transmissibility magnitude is less than -6 dB and it decreases continuously for higher frequencies. This confirms that the designed system meets the design specification.

Figure S2.10: Transmissibility magnitude and phase curves of the designed system.

Sol-Problem 4 (Problem 2.17 from Textbook) Slew rate: $s = 2\pi f_b a$ (i)

where, a = output amplitude, $f_b = \text{bandwidth}$ (Hz).

The rise time T_r is inversely proportional to f_b . Hence, $f_b = \frac{k}{T_a}$ where, k = constant.

Substitution gives:
$$s = \frac{2\pi ka}{T_r}$$
 (ii)

From (i): For constant s, bandwidth decreases as a is increased.

For a sine signal, substitute the given values in (i): $f_b = \frac{0.5}{2\pi \times 2.5}$ MHz = 31.8 kHz

Next, for a step input, use
$$s = \frac{\Delta y}{\Delta t}$$

where, $\Delta y = \text{final output value}$, $\Delta t = \text{time to reach the final output value}$

Substitute numerical values:
$$\Delta t = \frac{\Delta y}{s} = \frac{5.0}{0.5} \text{ } \mu \text{s} = 10 \text{ } \mu \text{s}.$$

Sol-Problem 5 (Problem 2.25 from Textbook)

Op-amp properties: 1. Voltages at input leads are equal; 2. Currents through input leads = 0

$$v_B = v_P = v_a$$

(iii)

Current Balance at Node A:
$$\frac{(v_i - v_A)}{Z_c} = \frac{(v_A - v_B)}{Z_c} + \frac{(v_A - v_P)}{R}$$
 (ii)

Current Balance at Node B:
$$\frac{(v_A - v_B)}{Z} = \frac{v_B}{R}$$

Note:
$$Z_c = \frac{1}{Cs}$$
 = impedance of capacitor

Substitute (i) and (iii) in (ii):
$$\frac{(v_i - v_A)}{Z_c} = \frac{v_o}{R} + \frac{(v_A - v_o)}{R} = \frac{v_A}{R} \Rightarrow v_i = (1 + \frac{1}{\tau s})v_A \text{ (iv)}$$

Substitute (i) in (iii):
$$\frac{(v_A - v_o)}{Z_c} = \frac{v_o}{R} \rightarrow v_A = (1 + \frac{1}{\tau s})v_o$$
 (v)

Note: $\tau = RC$ = time constant

Substitute (iv) in (v):
$$G(s) = \frac{v_o}{v_i} = \frac{(\tau s)^2}{(\tau s + 1)^2}$$

This is a 2nd order transfer function \rightarrow 2-pole filter

(b)

With
$$s = j\omega$$
 in $G(s)$, we have $G(j\omega) = \frac{-\tau^2 \omega^2}{\left(1 + \tau j\omega\right)^2}$

$$|G(j\omega)| = \frac{\tau^2 \omega^2}{(1 + \tau^2 \omega^2)}$$

The magnitude of the filter transfer function is sketched in Figure S2.25. This represents a high-pass filter.

(c)

When,
$$\omega \ll \frac{1}{\tau}$$
: $|G(j\omega)| \cong \tau^2 \omega^2$

When,
$$\omega \gg \frac{1}{\tau}$$
: $|G(j\omega)| \cong \frac{\tau^2 \omega^2}{\tau^2 \omega^2} = 1$

Hence, we may use $\omega_c = \frac{1}{\tau}$ as the cutoff frequency.

Note:
$$|G(j\omega)| \to 1$$
 as $\omega \to \infty$

For small ω : Roll-up slope of $|G(j\omega)|$ curve is = $20\log_{10}(\omega^2) = 40$ dB/decade

Figure S2.25: Filter transfer function magnitude.

Sol-Problem 6 (Problem 2.40 from Texth

From equation (2.80) we get
$$\delta v_o = \frac{\left[(R + \delta R)R - R(R - \delta R) \right]}{(R + \delta R + R)(R - \delta R + R)} v_{ref} - 0$$

This simplifies to
$$\frac{\delta v_o}{v_{ref}} = \frac{2\delta R/R}{4 - (\delta R/R)^2}$$
 which is nonlinear.

Similarly, it can be shown from equation (2.80) that the pair of changes: $R_2 \to R + \delta R$ and $R_4 \to R$ - δR will result in a nonlinear relation that is the same as before, except for the change in sign:

$$\frac{\delta v_o}{v_{ref}} = \frac{-2\delta R / R}{4 - (\delta R / R)^2}$$

Sol-Problem 7 (Problem 2.41 from Textbook)

From equation (2.87) we get
$$\delta v_o = \frac{\left[(R + \delta R)R - (R - \delta R)R \right]}{(R + \delta R + R - \delta R + R + R)} i_{ref} - 0$$

On simplification we get the linear relation:
$$\frac{\delta v_o}{Ri_{ref}} = \frac{\delta R/R}{2}$$

If R_4 and R_3 are the active elements, with R_4 in tension and R_3 in compression, it is clear from equation (2.87) that we get an identical linear result (not even a sign change).

Sol-Problem 8 (Problem 2.48 from Textbook)

From the bridge circuit we have:
$$v_o = \left[\frac{R_1}{\left(R_1 + R_2 \right)} - \frac{R_3}{\left(R_3 + R_4 \right)} \right] v_{ref}$$
 (neglect load current)

If R_1 is changed to $R_1 + \delta R_1$ we have

$$\begin{split} &\delta v_o = \left[\frac{R_1 + \delta R_1}{\left(R_1 + \delta R_1 + R_2 \right)} - \frac{R_3}{\left(R_3 + R_4 \right)} - \frac{R_1}{\left(R_1 + R_2 \right)} + \frac{R_3}{\left(R_3 + R_4 \right)} \right] v_{ref} \\ &= \left[\frac{R_1 + \delta R_1}{\left(R_1 + R_2 + \delta R_1 \right)} - \frac{R_1}{\left(R_1 + R_2 \right)} \right] v_{ref} \\ &= \left[\frac{R + \delta R}{2R + \delta R} - \frac{1}{2} \right] v_{ref} \\ &\text{Hence,} \quad \delta v_o = \frac{\delta R}{2(2R + \delta R)} v_{ref} \end{split}$$

We can write this in Taylor series expansion as:

$$\delta v_o = \frac{\delta R}{4R \left(1 + \frac{\delta R}{2R}\right)} v_{ref} = \frac{\delta R}{4R} v_{ref} \left(1 + \frac{\delta R}{2R}\right)^{-1} = \frac{\delta R}{4R} v_{ref} \left(1 - \frac{\delta R}{2R} + O(2)\right)$$

If we neglect O(2) terms, which are small compared to $\frac{\delta R}{2R}$, we have: $\delta v_o' = \frac{\delta R}{4R} v_{ref}$

$$\frac{\delta R}{\delta v_o} = \frac{\left(\delta v_o' - \delta v_o\right)}{\delta v_o} \times 100 = \frac{\left[\frac{\delta R}{4R} - \frac{\delta R}{2(2R + \delta R)}\right]}{\frac{\delta R}{2(2R + \delta R)}} \times 100$$

$$= \left[\frac{4R + 2\delta R}{4R} - 1\right] \times 100 = \frac{\delta R}{2R} \times 100$$
For $\frac{\delta R}{R} = 0.05$: % error $= \frac{0.05}{2} \times 100\% = 2.5\%$