

National Math Olympiad (3rd Round) 2012

-	
_	Special Lesson's Exam (First Part)
1	Prove that the number of incidences of n distinct points on n distinct lines in plane is $\mathcal{O}(n^{\frac{4}{3}})$. Find a configuration for which $\Omega(n^{\frac{4}{3}})$ incidences happens.
2	Consider a set of n points in plane. Prove that the number of isosceles triangles having their vertices among these n points is $\mathcal{O}(n^{\frac{7}{3}})$. Find a configuration of n points in plane such that the number of equilateral triangles with vertices among these n points is $\Omega(n^2)$.
3	Prove that if n is large enough, among any n points of plane we can find 1000 points such that these 1000 points have pairwise distinct distances. Can you prove the assertion for n^{α} where α is a positive real number instead of 1000?
4	Prove that from an $n \times n$ grid, one can find $\Omega(n^{\frac{5}{3}})$ points such that no four of them are vertices of a square with sides parallel to lines of the grid. Imagine yourself as Erdos (!) and guess what is the best exponent instead of $\frac{5}{3}$!
_	Special Lesson's Exam (Second Part)
1	Prove that for each coloring of the points inside or on the boundary of a square with 1391 colors, there exists a monochromatic regular hexagon.
2	Suppose $W(k,2)$ is the smallest number such that if $n \geq W(k,2)$, for each coloring of the set $\{1,2,,n\}$ with two colors there exists a monochromatic arithmetic progression of length k . Prove that $W(k,2) = \Omega(2^{\frac{k}{2}})$.
3	Prove that if n is large enough, then for each coloring of the subsets of the set $\{1, 2,, n\}$ with 1391 colors, two non-empty disjoint subsets A and B exist such that A , B and $A \cup B$ are of the same color.
4	Prove that if n is large enough, in every $n \times n$ square that a natural number is written on each one of its cells, one can find a subsquare from the main square such that the sum of the numbers is this subsquare is divisible by 1391.

_	Number Theory Exam
1	$P(x)$ is a nonzero polynomial with integer coefficients. Prove that there exists infinitely many prime numbers q such that for some natural number n , $q 2^n + P(n)$.
	Proposed by Mohammad Gharakhani
2	Prove that there exists infinitely many pairs of rational numbers $(\frac{p_1}{q}, \frac{p_2}{q})$ with $p_1, p_2, q \in \mathbb{N}$ with the following condition:
	$ \sqrt{3} - \frac{p_1}{q} < q^{-\frac{3}{2}}, \sqrt{2} - \frac{p_2}{q} < q^{-\frac{3}{2}}.$
	Proposed by Mohammad Gharakhani
3	p is an odd prime number. Prove that there exists a natural number x such that x and $4x$ are both primitive roots modulo p .
	Proposed by Mohammad Gharakhani
4	$P(x)$ and $Q(x)$ are two polynomials with integer coefficients such that $P(x) Q(x)^2-1$.
	a) Prove that there exists polynomials $A(x)$ and $B(x)$ with rational coefficients and a rational number c such that $P(x) = c(A(x)^2 + B(x)^2)$.
	b) If $P(x)$ is a monic polynomial with integer coefficients, Prove that there exists two polynomials $A(x)$ and $B(x)$ with integer coefficients such that $P(x)$ can be written in the form of $A(x)^2 + B(x)^2$.
	Proposed by Mohammad Gharakhani
5	Let p be a prime number. We know that each natural number can be written in the form $\sum_{i=1}^t a_i p^i(t,a_i \in \mathbb{N} \cup \{0\}, 0 \leq a_i \leq p-1)$
	i=0
	Uniquely.
	Now let T be the set of all the sums of the form
	$\sum_{n=1}^{\infty} a_i n^i (0 < a_i < n-1)$
	$\sum_{i=0}^{\infty} a_i p^i (0 \le a_i \le p-1).$

Art of Problem Solving

2012 Iran MO (3rd Round)

(This means to allow numbers with an infinite base p representation). So numbers that for some $N \in \mathbb{N}$ all the coefficients $a_i, i \geq N$ are zero are natural numbers. (In fact we can consider members of T as sequences $(a_0, a_1, a_2, ...)$ for which $\forall_{i \in \mathbb{N}} : 0 \leq a_i \leq p-1$.) Now we generalize addition and multiplication of natural numbers to this set so that it becomes a ring (it's not necessary to prove this fact). For example:

$$1+(\sum_{i=0}^{\infty}(p-1)p^i)=1+(p-1)+(p-1)p+(p-1)p^2+\ldots=p+(p-1)p+(p-1)p^2+\ldots=p^2+(p-1)p^2+(p-1)p^3+\ldots=p^3+(p-1)p^3+\ldots=\ldots$$

So in this sum, coefficients of all the numbers $p^k, k \in \mathbb{N}$ are zero, so this sum is zero and thus we can conclude that $\sum_{i=0}^{\infty} (p-1)p^i$ is playing the role of -1 (the additive inverse of 1) in this ring. As an example of multiplication consider

$$(1+p)(1+p+p^2+p^3+...) = 1+2p+2p^2+\cdots$$

Suppose p is 1 modulo 4. Prove that there exists $x \in T$ such that $x^2 + 1 = 0$. Proposed by Masoud Shafaei

_	Geometry Exam
1	Fixed points B and C are on a fixed circle ω and point A varies on this circle. We call the midpoint of arc BC (not containing A) D and the orthocenter of the triangle ABC , H . Line DH intersects circle ω again in K . Tangent in A to circumcircle of triangle AKH intersects line DH and circle ω again in L and M respectively. Prove that the value of $\frac{AL}{AM}$ is constant. Proposed by Mehdi E'tesami Fard
2	Let the Nagel point of triangle ABC be N . We draw lines from B and C to N so that these lines intersect sides AC and AB in D and E respectively. M and C are midpoints of comments DE and CD respectively. D is the ground

Let the Nagel point of triangle ABC be N. We draw lines from B and C to N so that these lines intersect sides AC and AB in D and E respectively. M and T are midpoints of segments BE and CD respectively. P is the second intersection point of circumcircles of triangles BEN and CDN. l_1 and l_2 are perpendicular lines to PM and PT in points M and T respectively. Prove that lines l_1 and l_2 intersect on the circumcircle of triangle ABC.

Proposed by Nima Hamidi

Cosider ellipse ϵ with two foci A and B such that the lengths of it's major axis and minor axis are 2a and 2b respectively. From a point T outside of the ellipse, we draw two tangent lines TP and TQ to the ellipse ϵ . Prove that

$$\frac{TP}{TQ} \ge \frac{b}{a}.$$

www.artofproblemsolving.com/community/c3499

Contributors: goodar2006

3

	Proposed by Morteza Saghafian
4	The incircle of triangle ABC for which $AB \neq AC$, is tangent to sides BC, CA and AB in points D, E and F respectively. Perpendicular from D to EF intersects side AB at X , and the second intersection point of circumcircles of triangles AEF and ABC is T . Prove that $TX \perp TF$.
	Proposed By Pedram Safaei
5	Two fixed lines l_1 and l_2 are perpendicular to each other at a point Y . Points X and O are on l_2 and both are on one side of line l_1 . We draw the circle ω with center O and radius OY . A variable point Z is on line l_1 . Line OZ cuts circle ω in P . Parallel to XP from O intersects XZ in S . Find the locus of the point S .
	Proposed by Nima Hamidi
_	Combinatorics Exam
1	We've colored edges of K_n with $n-1$ colors. We call a vertex rainbow if it's connected to all of the colors. At most how many rainbows can exist?
	Proposed by Morteza Saghafian
2	Suppose $s, k, t \in \mathbb{N}$. We've colored each natural number with one of the k colors, such that each color is used infinitely many times. We want to choose a subset \mathcal{A} of \mathbb{N} such that it has t disjoint monochromatic s -element subsets. What is the minimum number of elements of A ?
	Proposed by Navid Adham
3	In a tree with n vertices, for each vertex x_i , denote the longest paths passing through it by $l_i^1, l_i^2,, l_i^{k_i}$. x_i cuts those longest paths into two parts with $(a_i^1, b_i^1), (a_i^2, b_i^2),, (a_i^{k_i}, b_i^{k_i})$ vertices respectively. If $\max_{j=1,,k_i} \{a_i^j \times b_i^j\} = p_i$, find the maximum and minimum values of $\sum_{i=1}^n p_i$. Proposed by Sina Rezaei
4	a) Prove that for all $m, n \in \mathbb{N}$ there exists a natural number a such that if we color every 3-element subset of the set $\mathcal{A} = \{1, 2, 3,, a\}$ using 2 colors red and green, there exists an m -element subset of \mathcal{A} such that all 3-element subsets of it are red or there exists an n -element subset of \mathcal{A} such that all 3-element subsets of it are green.

Art of Problem Solving

2012 Iran MO (3rd Round)

b) Prove that for all $m, n \in \mathbb{N}$ there exists a natural number a such that if we color every k-element subset (k > 3) of the set $\mathcal{A} = \{1, 2, 3, ..., a\}$ using 2 colors red and green, there exists an m-element subset of \mathcal{A} such that all k-element subsets of it are red or there exists an n-element subset of \mathcal{A} such that all k-element subsets of it are green.

- Algebra Exam

Suppose $0 < m_1 < ... < m_n$ and $m_i \equiv i \pmod{2}$. Prove that the following polynomial has at most n real roots. $(\forall 1 \leq i \leq n : a_i \in \mathbb{R})$.

$$a_0 + a_1 x^{m_1} + a_2 x^{m_2} + \dots + a_n x^{m_n}.$$

- Suppose $N \in \mathbb{N}$ is not a perfect square, hence we know that the continued fraction of \sqrt{N} is of the form $\sqrt{N} = [a_0, \overline{a_1, a_2, ..., a_n}]$. If $a_1 \neq 1$ prove that $a_i \leq 2a_0$.
- **3** Suppose p is a prime number and $a,b,c\in\mathbb{Q}^+$ are rational numbers;
 - **a)** Prove that $\mathbb{Q}(\sqrt[p]{a} + \sqrt[p]{b}) = \mathbb{Q}(\sqrt[p]{a}, \sqrt[p]{b}).$
 - **b)** If $\sqrt[p]{b} \in \mathbb{Q}(\sqrt[p]{a})$, prove that for a nonnegative integer k we have $\sqrt[p]{\frac{b}{a^k}} \in \mathbb{Q}$.
 - c) If $\sqrt[p]{a} + \sqrt[p]{b} + \sqrt[p]{c} \in \mathbb{Q}$, then prove that numbers $\sqrt[p]{a}$, $\sqrt[p]{b}$ and $\sqrt[p]{c}$ are rational.
- Suppose $f(z) = z^n + a_1 z^{n-1} + ... + a_n$ for which $a_1, a_2, ..., a_n \in \mathbb{C}$. Prove that the following polynomial has only one positive real root like α

$$x^{n} + \Re(a_{1})x^{n-1} - |a_{2}|x^{n-2} - \dots - |a_{n}|$$

and the following polynomial has only one positive real root like β

$$x^{n} - \Re(a_1)x^{n-1} - |a_2|x^{n-2} - \dots - |a_n|.$$

And roots of the polynomial f(z) satisfy $-\beta \leq \Re(z) \leq \alpha$.

5 Let p be an odd prime number and let $a_1, a_2, ..., a_n \in \mathbb{Q}^+$ be rational numbers. Prove that

$$\mathbb{Q}(\sqrt[p]{a_1} + \sqrt[p]{a_2} + ... + \sqrt[p]{a_n}) = \mathbb{Q}(\sqrt[p]{a_1}, \sqrt[p]{a_2}, ..., \sqrt[p]{a_n}).$$

_	Final Exam
1	Let G be a simple undirected graph with vertices $v_1, v_2,, v_n$. We denote the number of acyclic orientations of G with $f(G)$.
	a) Prove that $f(G) \leq f(G - v_1) + f(G - v_2) + + f(G - v_n)$.
	b) Let e be an edge of the graph G . Denote by G' the graph obtained by omiting e and making it's two endpoints as one vertex. Prove that $f(G) = f(G - e) + f(G')$.
	c) Prove that for each $\alpha > 1$, there exists a graph G and an edge e of it such that $\frac{f(G)}{f(G-e)} < \alpha.$ Proposed by Morteza Saghafian
2	Suppose S is a convex figure in plane with area 10. Consider a chord of length 3 in S and let A and B be two points on this chord which divide it into three equal parts. For a variable point X in $S - \{A, B\}$, let A' and B' be the intersection points of rays AX and BX with the boundary of S . Let S' be those points X for which $AA' > \frac{1}{3}BB'$. Prove that the area of S' is at least 6. Proposed by Ali Khezeli
3	Prove that for each $n \in \mathbb{N}$ there exist natural numbers $a_1 < a_2 < < a_n$ such that $\phi(a_1) > \phi(a_2) > > \phi(a_n)$. Proposed by Amirhossein Gorzi
4	We have n bags each having 100 coins. All of the bags have 10 gram coins except one of them which has 9 gram coins. We have a balance which can show weights of things that have weight of at most 1 kilogram. At least how many times shall we use the balance in order to find the different bag? Proposed By Hamidreza Ziarati
5	We call the three variable polynomial P cyclic if $P(x, y, z) = P(y, z, x)$. Prove that cyclic three variable polynomials P_1, P_2, P_3 and P_4 exist such that for each cyclic three variable polynomial P , there exists a four variable polynomial Q such that $P(x, y, z) = Q(P_1(x, y, z), P_2(x, y, z), P_3(x, y, z), P_4(x, y, z))$. Solution by Mostafa Eynollahzade and Erfan Salavati
6	a) Prove that $a > 0$ exists such that for each natural number n , there exists a convex n -gon P in plane with lattice points as vertices such that the area of P is less than an^3 .

Art of Problem Solving

2012 Iran MO (3rd Round)

- **b)** Prove that there exists b > 0 such that for each natural number n and each n-gon P in plane with lattice points as vertices, the area of P is not less than bm^2 .
- c) Prove that there exist $\alpha, c > 0$ such that for each natural number n and each n-gon P in plane with lattice points as vertices, the area of P is not less than $cn^{2+\alpha}$.

Proposed by Mostafa Eynollahzade

7

The city of Bridge Village has some highways. Highways are closed curves that have intersections with each other or themselves in 4-way crossroads. Mr.Bridge Lover, mayor of the city, wants to build a bridge on each crossroad in order to decrease the number of accidents. He wants to build the bridges in such a way that in each highway, cars pass above a bridge and under a bridge alternately. By knowing the number of highways determine that this action is possible or not

Proposed by Erfan Salavati

8

- a) Does there exist an infinite subset S of the natural numbers, such that $S \neq \mathbb{N}$, and such that for each natural number $n \notin S$, exactly n members of S are coprime with n?
- **b)** Does there exist an infinite subset S of the natural numbers, such that for each natural number $n \in S$, exactly n members of S are coprime with n?

Proposed by Morteza Saghafian