高雄中學一○六學年度第二學期期末考數學科試題卷(二年級自然組)

二年組號 姓名:	
----------	--

一、填充題:共13題,滿分100分,請勿以鉛筆作答。

- 1. 以下選項當中那些是正確的?____(多選題)
 - (A) 坐標平面上,方程式 $\frac{|x+2y+3|}{\sqrt{5}} = \sqrt{(x+1)^2 + (y+1)^2}$ 所代表的軌跡圖形為拋物線。
 - (B) 坐標平面上,方程式 $|x+3| = \sqrt{(x+1)^2 + (y+1)^2}$ 所代表的軌跡圖形為拋物線。
 - (C) 坐標平面上,方程式 $|2y+3|=\sqrt{(x+1)^2+(y+1)^2}$ 所代表的軌跡圖形為拋物線。
 - (D) 坐標平面上,方程式 $\frac{|x+2y+3|}{\sqrt{5}} = \sqrt{x^2+y^2}$ 所代表的軌跡圖形為拋物線。
 - (E) 坐標平面上,方程式 $\frac{x+2y+3}{\sqrt{5}} = \sqrt{x^2+y^2}$ 所代表的軌跡圖形為一組對稱的拋物線。
- 2. 坐標平面上,一橢圓 Γ 之中心為(2,-1)且對稱軸平行坐標軸。若 Γ 之正焦弦長為8且兩焦點間的距離為 $4\sqrt{15}$,則 Γ 之方程式為_____。(請以標準式表示)
- 3. 坐標平面上,拋物線 Γ 之對稱軸為x軸且拋物線 Γ 通過點(0,-2)以及點(-6,-4)。在 Γ 與y軸所構成之封閉區域中置入一正方形,並使正方形之一邊在y軸上且另一邊之兩頂點在 Γ 上,則此正方形之面積為_____。(請以 $a-b\sqrt{c}$ 之型態表示)
- 4. 坐標平面上,曲線 Γ 之方程式為 $(1-2k)(x+2)^2+(2+3k)(y+3)^2=(1-2k)(2-k)$,則能使 Γ 之軌跡圖形為雙曲線 之 k 值範圍為_____。
- 5. 坐標平面上,曲線 $x^2 + y^2 2|x| 3 = 0$ 所圍成的區域面積為_____。
- 6. 坐標平面上,若過點 A(-5,6) 的直線 L 與圓 $C: x^2 + y^2 2x + 6y + 1 = 0$ 有交點,令直線 L 的斜率為 m,則 m 之範圍為_____。
- 7. 坐標平面上有一拋物線 $\Gamma:8x+y^2=0$, ΔABC 為以x軸為對稱軸的線對稱圖形且 ΔABC 的三頂點均落在 Γ 上。若拋物線 Γ 的焦點亦為 ΔABC 的重心,則 ΔABC 的外接圓方程式為_____。(答案請以一般式 $x^2+y^2+dx+ey+f=0$ 的型態表示)
- 8. 雙曲線 $\left| \sqrt{(x+2)^2 + (y+4)^2} \sqrt{(x-4)^2 + (y-4)^2} \right| = 8$,已知 F_1 為該雙曲線位於第一象限之焦點,則通過 F_1 之正焦弦的兩端點坐標為_____。
- 9. 已知橢圓 Γ_1 : $\frac{x^2}{21-3t} + \frac{y^2}{36+2t} = 1$ 與雙曲線 Γ_2 : $\frac{x^2}{1-8t} + \frac{y^2}{t^2+t+4} = 1$ 的焦點位置相同,令兩焦點分別為 F_1 與 F_2 。 若 Γ_1 與 Γ_2 在第一象限的交點為P點,則 $\Delta F_1 P F_2$ 的面積為______。
- 10. 坐標平面上,由點P(2,3)分別作圓 $C_1:4x^2+4y^2+8x+8y-17=0$ 之兩條切線,兩條切線與圓 C_1 分別切於A、B兩點。若 ΔPAB 的外接圓為 C_2 ,則 C_1 與 C_2 重疊的區域面積為_____。
- 11. 坐標平面上,點 A(1,1) 與 B(3,-2) 位於橢圓 $\frac{(x-1)^2}{4} + \frac{(y+2)^2}{9} = 1$ 之圖形上,C 點亦位於此橢圓圖形上且使A,B,C 三點構成 三角形,令 ΔABC 的面積為 a ,則 a 值满足不等式

- 12. 坐標平面上,P點為方程式 Γ : $2x = \sqrt{y^2 + 4}$ 軌跡圖形上任意一點,點 $E(0,\sqrt{5})$ 與點 $F(-\sqrt{5},0)$ 位於 Γ 的同一側,則 $\overline{PE} + \overline{PF}$ 的最小值為_____。
- 13. 坐標平面上有一橢圓 Γ ,其軌跡方程式為 $11x^2-4xy+14y^2=30$,令 F_1 與 F_2 為橢圓 Γ 的兩焦點,且已知直線 F_1F_2 與直線x-2y+2018=0平行,則橢圓 Γ 的長軸長度為_____。

高雄中學一〇六學年度第二學期期末考數學科答案卷(二年級自然組)

二年____组____號 姓名:_____

答對題數	1	2	3	4	5	6	7	8	9	10	11	12	13
配分	10	20	30	40	48	56	64	72	78	84	90	96	100

一、填充題:共13題,滿分100分,請勿以鉛筆作答。

:共13題,注	あ分 100 分,請勿以鉛筆作答。	
1.	$(\mathbf{B})(\mathbf{D})$	2. $\frac{(x-2)^2}{100} + \frac{(y+1)^2}{40} = 1 \text{Re} \frac{(x-2)^2}{40} + \frac{(y+1)^2}{100} = 1$
3.	$48 - 32\sqrt{2}$	4. $k < -\frac{2}{3} \text{或} k > \frac{1}{2} \text{但} k \neq 2$
5.	$\frac{16\pi}{3} + 2\sqrt{3}$	6. $-2 - \frac{2\sqrt{3}}{3} \le m \le -2 + \frac{2\sqrt{3}}{3}$
7.	$x^2 + 11x + y^2 = 0$	8. $(\frac{29}{5}, \frac{53}{20}) $
9.	15	10. $\frac{25\pi}{6} - \frac{25\sqrt{3}}{8}$
11.	$0 < a \le 3\sqrt{2} + 3$	12. $2 + \sqrt{10}$
13.		$2\sqrt{3}$