

Algebra Komputerowa

Rozkład Wielomianu nad Ciałem Skończonym [1, 2]

Filip Zieliński

2025

Spis Treści

1. Wstęp

2. Distinct-degree factorization

3. Equal degree factorization

Ciało skończone liczności q oznaczmy przez \mathbb{F}_q . Oczywiście $q=p^m$ dla pewnego p będącego liczbą pierwszą i dla dodatniego całkowitego wykładnika m. Zachodzi $char(\mathbb{F}_q)=p$.

Algorytm dzielenia wielomianów nad ciałem skończonym dzielimy na trzy etapy,

- 1. Squarefree factorization (rozkład ze względu na krotność).
- 2. Distinct-degree factorization (podział ze względu na stopień)
- 3. Equal degree factorization (ostateczny rozkład)

Algorytm dzielenia wielomianów nad ciałem skończonym dzielimy na trzy etapy,

- 1. Squarefree factorization (rozkład ze względu na krotność).
- 2. Distinct-degree factorization (podział ze względu na stopień)
- 3. Equal degree factorization (ostateczny rozkład)

Temat rozkładu bezkwadratowego wielomianu poruszała poprzednia prezentacja. Dzięki temu możemy rozważać problem rozkładu wielomianu g, który jest bezkwadratowy.

Definicja

Distinct-degree factorization

Rozważmy bezkwadratowy unormowany wielomian $g \in \mathbb{F}_q[x]$ o rozkładzie

$$g = p_1 \cdot \cdot \cdot p_m$$
.

Oznaczmy $s = \max\{\deg p_i \mid i \leqslant m\}$. Pogrupujmy czynniki g względem stopnia, znaczy się

$$h_k = \prod_{\deg p_i = k} p_i \quad \mathsf{dla} \ k \leqslant s.$$

Definicja

Rozkładem distinct-degree wielomianu g nazywamy wyrażenie

$$g = h_1 \cdots h_s$$
.

Kluczowe twierdzenie Distinct-degree factorization

Twierdzenie

Ustalmy liczbę całkowitą $d\geqslant 1$ oraz niech $p_1,\ldots,p_t\in\mathbb{F}_q[X]$ będą **wszystkimi** unormowanymi nierozkładalnymi wielomianami o współczynnikach z \mathbb{F}_q o takim stopniu, że $\deg(p_i)\mid d$ dla każdego i. Zachodzi

$$p_1\cdots p_t=x^{q^d}-x.$$

Algorytm

Distinct-degree factorization

Założenia: $g \in \mathbb{F}_q[x]$ – wielomian unormowany bezkwadratowy.

Wejście: Wielomian $g \in \mathbb{F}_q[x]$.

Wyjście: Wielomiany $h_1,\ldots,h_s\in\mathbb{F}_q[x]$, takie że

$$g = h_1 h_2 \cdots h_s$$
,

gdzie każdy h_i jest iloczynem nierozkładalnych czynników stopnia dokładnie i.

Kroki:

- 1. Przypisz $f_0 := x, g_1 := g, k := 1$.
- 2. Dopóki g_k jest wielomianem niebędącym stałą, wykonuj:
 - Oblicz $f_k := f_{k-1}^q \mod g_k$.
 - Oblicz $h_k := \text{nwd}(g_k, f_k x)$.
 - Zwiększ k := k + 1.
 - Przypisz $g_k := \frac{g_{k-1}}{h_{k-1}}$.
- 3. Zwróć h_1, \ldots, h_k .

Pozostałości

Equal degree factorization

Musimy teraz rozłożyć wielomian f stopnia n o współczynnikach z ciała \mathbb{F}_a , o rozkładzie

$$f = p_1 \cdots p_m$$

gdzie $deg(p_i) = d$ dla każdego p.

Musimy teraz rozłożyć wielomian f stopnia n o współczynnikach z ciała \mathbb{F}_a , o rozkładzie

$$f = p_1 \cdots p_m$$

gdzie $\deg(p_i)=d$ dla każdego p. Oznaczmy sobie $R=\mathbb{F}_q[x]/\langle f\rangle$ oraz $K_i=\mathbb{F}_q/\langle p_i\rangle$.

Zauważmy, że K_i jest rozszerzeniem ciała \mathbb{F}_q stopnia d dla każdego K_i . Tak więc $K_i \cong K_j$ dla każdego i, j.

Dodatkowo, zauważmy, że $R \cong \mathbb{F}_q[x]_{\leqslant n-1}$.

Equal degree factorization

Obserwacja

Z chińskiego twierdzenia o resztach wynika istnienie izomorfizmu Φ, takiego, że

$$\Phi: R \leftarrow K_1 \times \ldots \times K_m$$
.

Algortym Cantora - Zassenhausa (198

Rozważmy g względnie pierwsze z f. Oznaczmy $\tilde{g} = g \pmod{f}$. Mamy

$$\Phi(\tilde{g}) = (\tilde{g_1}, \dots, \tilde{g}_m)$$

ustalmy
$$e = \frac{q^d - 1}{2}$$
. Zauważmy, że

$$\Phi(\tilde{g}^e) = (\tilde{g_1}^e, \dots, \tilde{g}_m^e) = (\pm 1, \dots, \pm 1)$$

Algortym Cantora - Zassenhausa (198

Rozważmy g względnie pierwsze z f. Oznaczmy $\tilde{g} = g \pmod{f}$. Mamy

$$\Phi(\tilde{g}) = (\tilde{g_1}, \dots, \tilde{g}_m)$$

ustalmy $e = \frac{q^d - 1}{2}$. Zauważmy, że

$$\Phi(\tilde{g}^e) = (\tilde{g_1}^e, \dots, \tilde{g}_m^e) = (\pm 1, \dots, \pm 1)$$

Twierdzenie

Niech h będzie resztą z dzielenia g^e-1 przez f. Jeżeli jest takie $i\neq j$, że $\tilde{g_i}^e=1$ oraz $\tilde{g_j}^e=-1$, to $\mathrm{NWD}(\mathrm{h},\mathrm{f})$ jest nietrywialnym dzielnikiem f.

Equal degree factorization

- [1] Joachim Von Zur Gathen and Jurgen Gerhard. *Modern Computer Algebra*. Cambridge University Press, 1999.
- [2] Przemysław Koprowski. Lectures on Computational Mathematics. 2022.

Pytania, wątpliwości, uwagi?