SIN 251 – Organização de Computadores (PER-3 2021-1)

Aula 02 – Códigos Binários

Prof. João Fernando Mari joaof.mari@ufv.br

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A
- ICEA, Sistemas Numéricos e Códigos.
 - Disponível em:
 - http://www.icea.gov.br/ead/anexo/21401.htm
 - Acesso em: Mar/2011.

Roteiro

- · Códigos Binários
- Código BCD 8421
 - Conversão binário para BCD
- Código ASCII
 - Conversão em ASCII
- Exercícios

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

Códigos Binários

- Conversão de um número decimal em seu equivalente binário
 - Codificação
- Sistema numérico binário como conhecemos
 - Aula anterior!!!
 - Código Binário PURO
 - Diferenciar dos outros códigos binários

Códigos Binários

- Sistema numérico decimal
 - Conveniente para os seres humanos.
- Sistema numérico binário
 - Conveniente para computadores.
 - (BEM) menos conveniente para os seres humanos.
- Exemplo:
 - 1010011₂ em decimal ???
 - Processo de conversão simples, porém tedioso → consome muito tempo.
- BCD Forma especial de código binário MAIS compatível com o sistema decimal.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

Código BCD 8421

- BCD Binary Coded Decimal
 - Binário Codificado em Decimal.
 - Representa os dígitos decimais de 0 a 9 com um código binário de 4 dígitos.
 - Usa o sistema de pesos posicionais 8421 do código binário puro
 - $d_B \times 2^3 + d_B \times 2^2 + d_B \times 2^1 + d_B \times 2^0$
 - $d_B \times 8 + d_B \times 4 + d_B \times 2 + d_B \times 1$
 - Exemplo: Decimal → BCD
 - 834₁₀ em BCD= 1000 0011 0100
 - 0.764 em BCD = 0.0111 0110 0100
 - Exemplos: BCD → Decimal
 - 0110 0010 1000.1001 0101 0100 = 628.954

- Vantagens BCD
 - Simples manipulação e conversão
- Desvantagens
 - Menos eficiente que o código binário puro. Utiliza maior número de bits.
 - Maior complexidade dos circuitos, maior consumo de energia, ...
 - As operações aritméticas consomem mais tempo.

 ${\sf UFV-Campus\ Rio\ Paranaíba-Prof.\ João\ Fernando\ Mari-joaof.mari@ufv.br-SIN\ 251\ (PER\ 3-2021-1) }$

Código BCD 8421

DECIMAL 0	BCD 8421 0000	BINÁRIO 0000	
1	0001	0001	
2	0010	0010	
3	0011	0011	
4	0100	0100	
5	0101	0101	
6	0110		
7	0111	0111	
8	1000	1000	
9	1001	1001	
	0001 0000		
11	0001 0001	1011	
12	0001 0010	1100	
13	0001 0011	1101	
14	0001 0100	1110	
15	0001 0101	1111	

Conversão BCD -> Binário

- Converte de BCD para Binário puro
 - 1) Converte BCD para decimal
 - 2) Decimal é convertido para binário
 - Exemplo:
 - 1001 0110.0110 0010 0101 = 96,625

Inteiro	Resto	Posição	Fração	Inteiro	Posição
96 ÷ 2 = 48	0	-> LSB	$0,625 \times 2 = 1,25 = 0,25$	1	<- MSB
48 ÷ 2 = 24	0		$0,250 \times 2 = 0,50 = 0,50$	0	
24 ÷ 2 = 12	0		$0,500 \times 2 = 1,00 = 0$	0	<- LSB
12 ÷ 2 = 06	0				
$06 \div 2 = 03$	0				
$03 \div 2 = 01$	1				
$01 \div 2 = 00$	1	<- MSB			
$96_{10} = 1100000_2$		$0,625_{10} = 0.101_2$			

 $96,625_{10} = 96_{10} + 0,625_{10} = 1100000_2 + 0.101_2 = 1100000.101_2$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

Código ASCII

- "American Standart Code for Information Interchange" ASCII
 - Forma especial de código binário.
 - Largamente utilizado.
 - 7 bits pode-se representar um total de 2^7 = 128 caracteres diferentes.
 - Números decimais de 0 até 9
 - Letras maiúsculas e minúsculas do alfabeto
 - Outros caracteres especiais usados para pontuação e controle de dados.

Tabela ASCII completo ou ASCII estendido

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1)

4.

Conversão em ASCII

- Composto por 2 grupos:
 - Um de 4 bits e outro de 3 bits.
- O grupo de 4 bits está a direita e o bit 1 é o LSB.
 - LSB: Bit Menos Significativo. MSB: Bit Mais Significativo

- Exemplo: Código ASCII para a letra L é 1001100.
 - Localizado na coluna 4, linha 12.
 - O grupo de 3 bits é 100 e o grupo de 4 bits é 1100.
 - Código ASCII: 100 1100.

Conversão em ASCII

- No código ASCII de 7 bits,
- O oitavo bit é geralmente usado como um bit de paridade.
 - Para determinar se o dado (caractere) foi transmitido corretamente.
 - Determinado pelo tipo de paridade desejado.
 - Paridade par → a soma de todos os 1's, incluindo o bit de paridade, é um número par.
 - EXEMPLO:
 - Caractere G código ASCII é 1000111
 - 4 bits UM O bit de paridade é 0 \rightarrow 01000111

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251 (PER 3 – 2021-1) – SIN392 (PER 2020)

1:

FIM – Aula 02