N° Examen =

Apellidos Nombre C.I.

- 1) a) En un pueblo viven 5000 personas, se van de vacaciones un cierto número de ellas. De las que quedan sabemos que exactamente 7 / 11 utilizan lentes y que exactamente 273 / 296 no tienen licencia de conductor. ¿ Cuántos se van de vacaciones ?
 - b) Hallar los números enteros x, y, z que verifican:

$$x + y + z = 100$$

 $x + 20y + 100z = 745$
 $x \ge 10$, $y \ge 50$

- 2) Sea G un grupo finito tal que |G| = m. Sea n un natural primo con m.
 - a) Probar que si $x, y \in G$ y si $x^n = y^n$ entonces x = y
 - b) Probar que para todo $a \in G$, hay un único $w \in G$ tal que $w^n = a$
- 3) Sea G el conjunto de todas las matrices de la forma $\begin{pmatrix} 2^k & p(x) \\ 0 & 1 \end{pmatrix}$ donde k es un entero y p(x) es un polinomio en x con coeficientes racionales.
 - a) Mostrar que G es un grupo bajo la multiplicación de matrices
 - b) Sea H el subconjunto de G consistente en todas las matrices de G con k=0 y p(x) tiene coeficientes enteros. Probar que H es un sugrupo de G. ¿ Es H subgrupo normal de G?
- 4) a) Mostrar que el polinomio $x^5 + 1$ es reducible en Z_7
 - b) Ver si el polinomio $x^4 + x + 2$ es reducible en Z_3 . Justificar.
- 5) En un algebra de Boole se recuerda que se define $x \le y$ si x.y = x Supongamos que $x \le y$, $u \le w$

a) Probar que : $x + u \le y + w$ (Justificar los pasos que se den)

b) Probar que : $x.u \le y.w$ (Justificar los pasos que se den)

Puntajes: 1) 25 : a) 10 b) 15

2) 20 : a) 10 b) 10

3) 20: a) 10 b) 10

4) 20: a) 8 b) 12

5) 15: a) 8 b) 7