

Parshvanath Charitable Trust's

A. P. STIATI INSTITUTED OF TEXTS TOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Parameters	RNN	LSTM	GRU
Structure	Simple	More complex	Simpler than LSTM
Training	Can be difficult	Can be more difficult	Easier than LSTM
Performance	Good for simple tasks	Good for complex tasks	Can be intermediate between simple and complex tasks
Hidden state	Single	Multiple (memory cell)	Single
Ability to retain long-term dependencies	Limited	Strong	Intermediate between RNNs and LSTMs
Gates	None	Input, output, forget	Update, reset
Gates Function	None	The input gate and target gate are coupled by an update gate which takes responsibility of reset gate	The reset gate is applied directly to the previous hidden state
Type of Gate	None	LSTM has three gates: Input Gate, Forget Gate and Output Gate	GRU has two gates: reset and update gates

Parameters	RNN	LSTM	GRU
Design	RNN are designed to remember or "store" information from previous inputs.	Special Type of RNN. Both LSTMs and GRUs are designed to address the problem of "vanishing gradients" in RNNs.	Special Type of RNN. Both LSTMs and GRUs are designed to address the problem of "vanishing gradients" in RNNs. VGs occurs when the gradients of weights become very small and has difficulty learning.
Memory	RNNs remember information from previous inputs but may struggle with long-term dependencies.	LSTM do not store information as it has output gate.	GRUs do not store information like the LSTMs do and this is due to the missing output gate.
Type of Input Data	DL used for processing sequential data, such as text, audio, or time series data.	DL answer for problems involving sequences and time series.	DL answer for problems involving sequences and time series.
Learning Type	They can be used for both supervised and unsupervised learning.	They can be used for both supervised and unsupervised learning.	They can be used for both supervised and unsupervised learning.
Activation Function	Use sigmoid or tanh function for hidden layers. The tanh has better performance. Only the identity AF is considered linear. All other AFs are non-linear.	in LSTM sigmoid is used as the gating function and the tanh is used as the output AFs, which o/p values bet. O and 1. We can use ReLU or LeakyReLU.	tanh or sigmoid. If you pass None, no activation is applied (ie. "linear" activation.
Application	useful for tasks such as language translation, speech recognition, and time series forecasting.	useful for tasks such as language translation, speech recognition, and time series forecasting.	useful for tasks such as language translation, speech recognition, and time series forecasting.

Parshvanath Charitable Trust's

A. P. SHAH INSTRUME OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

