

ASCON: Analisi prestazionale del nuovo standard internazionale per la crittografia lightweight

Laurea Triennale in Informatica

Mattia Oldani (966668)

18 Aprile 2024

Indice1 Introduzione al problema

- ► Introduzione al problema
- ► Testing e analisi dei risultat
- **▶** Conclusion

1 Introduzione al problema

 Raccolta di (1) tempi di esecuzione e (2) spazio utilizzato degli algoritmi lightweight proposti nella famiglia ASCON

- Raccolta di (1) tempi di esecuzione e (2) spazio utilizzato degli algoritmi lightweight proposti nella famiglia ASCON
- Analisi dei dati raccolti per mostrare quali algoritmi sono i migliori e, per ogni algoritmo, quali implementazioni sono le migliori

- Raccolta di (1) tempi di esecuzione e (2) spazio utilizzato degli algoritmi lightweight proposti nella famiglia ASCON
- Analisi dei dati raccolti per mostrare quali algoritmi sono i migliori e, per ogni algoritmo, quali implementazioni sono le migliori

- Raccolta di (1) tempi di esecuzione e (2) spazio utilizzato degli algoritmi lightweight proposti nella famiglia ASCON
- Analisi dei dati raccolti per mostrare quali algoritmi sono i migliori e, per ogni algoritmo, quali implementazioni sono le migliori

- Raccolta di (1) tempi di esecuzione e (2) spazio utilizzato degli algoritmi lightweight proposti nella famiglia ASCON
- Analisi dei dati raccolti per mostrare quali algoritmi sono i migliori e, per ogni algoritmo, quali implementazioni sono le migliori

(a) Arduino Due.

(b) Adafruit ItsyBitsy Mo Express.

(c) Raspberry Pi 3 Model B.

Workflow

Indice

2 Testing e analisi dei risultati

- Introduzione al problema
- ► Testing e analisi dei risultati

Conclusion

Sotto-famiglie di ASCON

2 Testing e analisi dei risultati

Hash

Algoritmi hash e XOF

AEAD

Algoritmi di cifratura autenticata

Auth

Algoritmi MAC e PRF

Per ogni sotto-famiglia qui citata è stato scelto un algoritmo e analizzato per tempi di esecuzione e spazio utilizzato; i risultati di tale analisi sono riportati in due tipi di grafico

Tempi di esecuzione

Contiene gruppi di tre colonne che rappresentano, per ogni implementazione, le misurazioni minima, media e massima

Spazio utilizzato

Contiene una sola colonna per ogni implementazione e ognuna indica la dimensione dell'eseguibile

AEAD: ascon128a

Hash: asconhasha

Auth: asconmaca

Migliori implementazioni per ogni dispositivo

Dispositivo	Ottimizzazione proposta		
	Tempo	Spazio	Ibrida
Adafruit	armv6m	lowsize	armv6m
Arduino	armv7m_small	armv7m_small	armv7m_small
Raspberry	opt64	opt64_lowsize	opt64

Indice 3 Conclusioni

- ► Testing e analisi dei risultat
- **▶** Conclusioni

1. **Ottimi tempi di esecuzione** — Gli algoritmi analizzati sono molto veloci considerando l'ambiente limitato nel quale sono eseguiti

- 1. Ottimi tempi di esecuzione Gli algoritmi analizzati sono molto veloci considerando l'ambiente limitato nel quale sono eseguiti
- 2. **Poco spazio utilizzato** Alcune implementazioni riducono drasticamente la grandezza dell'eseguibile, rendendoli ottimi in ambiti dove la memoria è limitata

- 1. Ottimi tempi di esecuzione Gli algoritmi analizzati sono molto veloci considerando l'ambiente limitato nel quale sono eseguiti
- Poco spazio utilizzato Alcune implementazioni riducono drasticamente la grandezza dell'eseguibile, rendendoli ottimi in ambiti dove la memoria è limitata
- 3. **Duttilità** Ci sono implementazioni che ottimizzano o avvicinano all'ottimo entrambi gli aspetti analizzati, come la armv7m_small del dispositivo Arduino

1. Raccolta dati — Analisi dei cicli della CPU

- 1. Raccolta dati Analisi dei cicli della CPU
- 2. **Board** Architetture IoT non testate (ARMv6, ARM neon, ESP32, AVR, eccetera)

- 1. Raccolta dati Analisi dei cicli della CPU
- 2. **Board** Architetture IoT non testate (ARMv6, ARM neon, ESP32, AVR, eccetera)
- 3. Plaintext File di grandezza maggiore di 1024 byte (immagini o video)

- 1. Raccolta dati Analisi dei cicli della CPU
- 2. **Board** Architetture IoT non testate (ARMv6, ARM neon, ESP32, AVR, eccetera)
- 3. Plaintext File di grandezza maggiore di 1024 byte (immagini o video)
- 4. **Testing automatico** Realizzazione di script che automatizzino il testing usando, ad esempio, l'Arduino IDE dal terminale e non tramite la GUI

Grazie per l'attenzione!

Processo di standardizzazione

3 Conclusioni

