Somme de sous-espaces vectoriels

Dans tout ce chapitre E désigne un espace-vectoriel.

Introduction et motivation

• Si F et G sont deux sous-espaces vectoriels de E, alors $F \cap G$ est aussi un sous-espace vectoriel de E.

Exemple

On considère les deux plans suivants dans \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\} = Vect((1, 0, 0), (0, 1, 0)), \quad G = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0\} = Vect((1, 0, 0), (0, 0, 1)).$$

Leur intersection est la droite

 $F\cap G=\{(x,y,z)\in\mathbb{R}^3\;|z=0\text{ et }y=0\}$

c'est à dire : F = Vect((1,0,0)).

✓ Dessin :

• En revanche, (à moins que $F \subset G$ ou $G \subset F$), la réunion $F \cup G$ n'est pas un sous-espace vectoriel de E!

Exemple

On considère les deux droites suivantes dans \mathbb{R}^2 : F = Vect((1,0)) et G = Vect((1,1)).

 $F \cup G$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 .

✓ Dessin :

Par exemple : $(1,0) \in F \cup G$ et $(1,1) \in F \cup G$ mais $(1,0)+(1,1)=(2,1) \notin F \cup G$

On aimerait donc définir une opération "similaire à l'union" qui préserve la structure d'espace vectoriel...

Exemple

Dans \mathbb{R}^3 , si on dispose des deux droites F = Vect((1,0,0)) et G = Vect((1,1,0)), on voudrait un moyen simple de désigner le plan H = Vect((1,0,0),(1,1,0)).

H est ce que l'on va appeler la somme de F et G, notée H=F+G.

✓ Dessin :

1 Somme de deux sous-espaces vectoriels

1.1 Somme, somme directe, S.E.V supplémentaires

■ Définition 1 (Somme de deux S.EV)

Soient F et G deux sous-espaces vectoriels de E.

On appelle somme de F et G et on note F+G l'ensemble :

$$F + G = \{v_1 + v_2, (v_1, v_2) \in F \times G\}.$$

Proposition 1 (La somme est un S.E.V)

La somme F + G est également un sous-espace vectoriel de E.

Preuve:

- F et G sont des S.E.V de E, donc contiennent 0_E . Ainsi, $0_E = \underbrace{0_E}_{\in F} + \underbrace{0_E}_{\in G} \in F + G$.
- Soient $v, v' \in F + G$ et $\lambda \in \mathbb{R}$. Vérifions que $v + \lambda v' \in E$.

Par définition, on peut écrire $v = v_1 + v_2$ et $v' = v'_1 + v'_2$ avec $v_1, v'_1 \in F$ et $v_2, v'_2 \in G$.

Ainsi,
$$v + \lambda v' = v_1 + v_2 + \lambda v_1' + \lambda v_2' = \underbrace{\left(v_1 + \lambda v_1'\right)}_{\in F} + \underbrace{\left(v_2 + \lambda v_2'\right)}_{\in G} \in F + G.$$

Exemples

• Dans \mathbb{R}^2 , considérons les droites

$$F = Vect((1,0)) = \{(x,0), x \in \mathbb{R}\}\$$
et $G = Vect((0,1)) = \{(0,y), y \in \mathbb{R}\}.$

Alors $F + G = \{(x, 0) + (0, y), x \in \mathbb{R}, y \in \mathbb{R}\} = \{(x, y), x \in \mathbb{R}, y \in \mathbb{R}\} = \mathbb{R}^2$.

• Dans $\mathbb{R}[X]$, considérons les S.E.V :

$$F = Vect(1, X, X^3) = \{a + bX + cX^3, \ (a, b, c) \in \mathbb{R}^3\} \ \text{ et } \ G = Vect(X, X^2) = \{\alpha X + \beta X^2, \ (\alpha, \beta) \in \mathbb{R}^2\}.$$

Alors
$$F + G = \left\{ a + bX + cX^3 + \alpha X + \beta X^2, (a, b, c, \alpha, \beta) \in \mathbb{R}^5 \right\} = \mathbb{R}_3[X].$$

Remarque 1

Un vecteur $v \in F + G$ ne se décompose pas nécessairement <u>de manière unique</u> comme $v = \underbrace{v_1}_{\in F} + \underbrace{v_2}_{\in G}!$

Pour le deuxième exemple : on a $X \in F + G$, mais on peut le décomposer de multiples manières :

$$X = \underbrace{X}_{\in F} + \underbrace{0}_{\in G}, \qquad X = \underbrace{2X}_{\in F} + \underbrace{(-X)}_{\in G}, \qquad X = \underbrace{3X}_{\in F} + \underbrace{(-2X)}_{\in G} \quad \text{etc...}$$

Définition 2 (Somme directe)

Soient F et G deux sous-espaces vectoriels de E.

On dit que la somme F + G est directe, ou que "F et G sont en somme directe" lorsque :

$$\forall v \in F + G, \ \exists!(v_1, v_2) \in F \times G, \ v = v_1 + v_2.$$

Pour signifier que la somme F + G est directe, on la note : $F \oplus G$.

Exemple

 $\text{Tout } (x,y) \in \mathbb{R}^2 \text{ s'écrit } (x,y) = \underbrace{x(1,0)}_{\in Vect((1,0))} + \underbrace{y(0,1)}_{\in Vect((0,1))} \text{ et cette décomposition est clairement unique.}$

On a donc la somme directe : $\mathbb{R}^2 = Vect((1,0)) \oplus Vect((0,1))$.

On dispose en fait d'une caractérisation plus simple des sommes directes :

ightharpoonup Théorème 1 (Caractérisation d'une somme directe par l'intersection $F \cap G$)

Soient F et G deux sous-espaces vectoriels de E. On a l'équivalence suivante :

La somme F + G est directe $\iff F \cap G = \{0_E\}.$

Preuve:

• Supposons que la somme F + G est directe, montrons que $F \cap G = \{0_E\}$.

Soit
$$v \in F \cap G$$
, alors on peut écrire : $v = \underbrace{v}_{\in F} + \underbrace{0_E}_{\in G}$ et $v = \underbrace{0_E}_{\in F} + \underbrace{v}_{\in G}$.

Puisque cette décomposition doit être unique, on a forcément $v = 0_E$ et $0_E = v$. Ainsi $v = 0_E$! Ceci montre l'inclusion $F \cap G \subset \{0_E\}$, l'inclusion réciproque est évidente.

• Supposons que $F \cap G = \{0_E\}$, montrons que la somme F + G est directe.

Soit
$$v \in F + G$$
, on suppose qu'il s'écrit à la fois : $v = \underbrace{v_1}_{\in F} + \underbrace{v_2}_{\in G}$ et $v = \underbrace{v_1'}_{\in F} + \underbrace{v_2'}_{\in G}$.

Montrons qu'en fait $v_1 = v_1'$ et $v_2 = v_2'$ (donc la décomposition sera unique).

On a
$$v_1 + v_2 = v'_1 + v'_2$$
, donc : $\underbrace{v_1 - v'_1}_{\in F} = \underbrace{v'_2 - v_2}_{\in G}$

On a
$$v_1 + v_2 = v_1' + v_2'$$
, donc : $\underbrace{v_1 - v_1'}_{\in F} = \underbrace{v_2' - v_2}_{\in G}$.
Ainsi, $v_1 - v_1'$ et $v_2' - v_2$ appartiennent à la fois à F et à G , c'est à dire à $F \cap G = \{0_E\}$.
On a donc $v_1 - v_1' = 0_E$ et $v_2' - v_2 = 0_E$, ce qui donne bien $v_1 = v_1'$ et $v_2 = v_2'$.

On verra, dans la suite, d'autres caractérisation équivalentes pour vérifier qu'une somme est directe.

Bien souvent, on cherchera en fait à décomposer l'espace vectoriel E tout entier comme somme directe de deux sous-espace vectoriels : si l'on montre que $E = F \oplus G$, n'importe quel élément de E se décompose de manière unique comme somme d'un vecteur de F et d'un vecteur de G.

Définition 3 (S.E.V supplémentaires)

On dit que deux sous-espaces vectoriels F et G de E sont **supplémentaires** lorsque $E = F \oplus G$. Autrement dit:

- 1 La somme F + G est directe (on la note donc $F \oplus G$)
- Le sous-espace vectoriel F + G est égal à l'espace vectoriel E tout entier

Attention!

Ne pas confondre "supplémentaire" et "complémentaire"! On ne considèrera jamais le complémentaire $\overline{F} = E \setminus F$ d'un SEV F de E. $(\overline{F} \text{ n'est même pas un sous-espace vectoriel de } E...)$

Exercice 1

Dans l'espace vectoriel $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on définit les S.E.V des fonctions paires et impaires :

$$\mathcal{P} = \Big\{ f \in E \mid \forall x \in \mathbb{R}, \ f(-x) = f(x) \Big\}, \quad \mathcal{I} = \Big\{ f \in E \mid \forall x \in \mathbb{R}, \ f(-x) = -f(x) \Big\}.$$

Montrer que \mathcal{P} et \mathcal{I} sont supplémentaires dans E.

On souhaite montrer que $E = \mathcal{P} \oplus \mathcal{I}$, c'est à dire que toute fonction $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ s'écrit de manière unique comme somme d'une fonction paire et d'une fonction impaire. Soit $f \in E$ fixée.

• Analyse: Supposons qu'il existe $f_1 \in \mathcal{P}$ et $f_2 \in \mathcal{I}$ telles que: $\forall x \in \mathbb{R}, f(x) = f_1(x) + f_2(x)$.

Par parité/imparité, on obtient aussi : $\forall x \in \mathbb{R}, \ f(-x) = f_1(x) - f_2(x)$.

Ainsi on note que pour tout $x \in \mathbb{R}$: $f(x) + f(-x) = 2f_1(x)$ et $f(x) - f(-x) = 2f_2(x)$.

On en déduit que les fonctions f_1 et f_2 sont forcément données par :

$$f_1: x \mapsto \frac{f(x) + f(-x)}{2}$$
 et $f_2: x \mapsto \frac{f(x) - f(-x)}{2}$.

• Synthèse: Définissons les fonctions $f_1: x \mapsto \frac{f(x) + f(-x)}{2}$ et $f_2: x \mapsto \frac{f(x) - f(-x)}{2}$.

On vérifie très facilement que : $f_1 \in \mathcal{P}$, $f_2 \in \mathcal{I}$ et $f = f_1 + f_2$.

On a bien montré que $E = \mathcal{P} \oplus \mathcal{I}$.

1.2 Concaténation des bases

On travaille à présent avec des sous-espaces vectoriels de dimension finie.

Proposition 2 (Famille génératrice de F + G)

Soient F et G deux sous-espaces vectoriels de dimension finie de E.

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G.

Alors la famille $\mathcal{F} = (f_1, \dots, f_p, g_1, \dots, g_q)$ obtenue en **concaténant** (c'est à dire en "fusionnant") ces deux bases est une famille génératrice de F + G.

Preuve:

Par définition, tout $v \in F + G$ s'écrit $v = \underbrace{v_1}_{\in F} + \underbrace{v_2}_{\in G}$.

On a $v_1 \in F = Vect(f_1, \dots, f_p)$, donc en particulier $v_1 \in Vect(f_1, \dots, f_p, g_1, \dots, g_q)$.

On a $v_2 \in G = Vect(g_1, \ldots, g_q)$, donc en particulier $v_2 \in Vect(f_1, \ldots, f_p, g_1, \ldots, g_q)$.

Ainsi, on a $v = v_1 + v_2 \in Vect(f_1, ..., f_p, g_1, ..., g_q)$.

Tout $v \in F + G$ s'écrit donc comme combinaison linéaire de $(f_1, \ldots, f_p, g_1, \ldots, g_q)$.

Remarque 2

• En fait, il n'est pas nécessaire de considérer des "bases" : il suffit que (f_1, \ldots, f_p) (resp. (g_1, \ldots, g_q)) soit une famille génératrice de F (resp. G) pour avoir la conclusion de la Proposition 2.

On pourra donc retenir: $Vect(f_1, ..., f_p) + Vect(g_1, ..., g_q) = Vect(f_1, ..., f_p, g_1, ..., g_q)$

\blacksquare Méthode : Déterminer l'espace vectoriel F+G

• Pour déterminer explicitement le SEV F+G, on peut revenir à la définition

$$F + G = \{v_1 + v_2, (v_1, v_2) \in F \times G\}.$$

 \bullet On peut aussi déterminer des familles génératrices de F et G, de sorte que

 $F = Vect(f_1, \ldots, f_p)$ et $G = Vect(g_1, \ldots, g_q)$ et on a alors $F + G = Vect(f_1, \ldots, f_p, g_1, \ldots, g_q)$.

Exercice 2

On considère les deux plans de \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y = 0\}.$

Montrer que $F + G = \mathbb{R}^3$.

On détermine une famille génératrice (en fait une base) de F et de G :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid z = -x - y\} = \{(x, y, -x, -y), (x, y) \in \mathbb{R}^2\} = Vect((1, 0, -1), (0, 1, -1)).$$

$$G = \{(x, y, z) \in \mathbb{R}^3 \mid y = 2x\} = \{(x, 2x, z), (x, z) \in \mathbb{R}^2\} = Vect((1, 2, 0), (0, 0, 1)).$$

On a donc

$$F+G=Vect((1,0,-1),(0,1,-1),(1,2,0),(0,0,1))=Vect((1,0,0),(0,1,0),(1,2,0),(0,0,1))\\=Vect((1,0,0),(0,1,0),(0,0,1))=\mathbb{R}^3.$$

A Attention!

Comme on vient de le voir, la famille obtenue par concaténation d'une base de F et d'une base de G n'est pas forcément une base de F + G!

Dans l'exercice précédent, on avait $\mathcal{B}_F = ((1, 0, -1), (0, 1, -1))$ et $\mathcal{B}_G = ((1, 2, 0), (0, 0, 1))$.

La concaténation de ces deux bases donne une famille génératrice de $F + G = \mathbb{R}^3$, mais ce n'est pas une famille libre!

En fait, le cas où la concaténation des deux bases donne une base de F + G est exactement le cas d'une somme directe, ce qui donne une nouvelle caractérisation!

<u>★</u> Théorème 2 (Caractérisation d'une somme directe par concaténation des bases)

Soient F et G deux sous-espaces vectoriels de dimension finie de E.

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G.

On a l'équivalence suivante :

La somme F + G est directe $\iff \mathcal{B} = (f_1, \dots, f_p, g_1, \dots, g_q)$ est une base de F + G.

Preuve (facultative):

On a déjà vu en Proposition 2 que $\mathcal B$ est une famille génératrice de F+G. Il reste donc à montrer :

La somme F + G est directe $\iff \mathcal{B} = (f_1, \dots, f_p, g_1, \dots, g_q)$ est une famille libre.

• Supposons que la somme F+G est directe, c'est à dire $F\cap G=\{0_E\}$ d'après le Théorème 1.

Montrons que \mathcal{B} est libre. Soient $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ et $\mu_1, \ldots, \mu_q \in \mathbb{R}$ tels que $\sum_{i=1}^p \lambda_i f_i + \sum_{i=1}^q \mu_i g_i = 0_E$ et montrons que tous ces scalaires sont nuls.

On a
$$\sum_{i=1}^{p} \lambda_i f_i = -\sum_{i=1}^{q} \mu_i g_i$$
 donc ces vecteurs appartiennent à $F \cap G = \{0_E\}$.

Ainsi, on en déduit que $\sum_{i=1}^{p} \lambda_i f_i = 0_E$ et $\sum_{i=1}^{q} \mu_i g_i = 0_E$. Enfin, comme les familles (f_1, \ldots, f_p) et (g_1, \ldots, g_q) sont libres, on en déduit que $\lambda_1 = \ldots = \lambda_p = 0$ et $\mu_1 = \ldots = \mu_q = 0$, d'où le résultat.

• Inversement, supposons que \mathcal{B} est libre.

Montrons que la somme F + G est directe, c'est à dire que $F \cap G = \{0_E\}$ d'après le Théorème 1.

Soit $v \in F \cap G$. Puisque $v \in F$, on peut écrire $v = \sum_{i=1}^{p} \lambda_i f_i$. Puisque $v \in G$, on peut écrire $v = \sum_{i=1}^{q} \mu_i g_i$.

On en déduit que $\sum_{i=1}^p \lambda_i f_i - \sum_{i=1}^q \mu_i g_i = v - v = 0_E$. Puisque la famille $\mathcal{B} = (f_1, \dots, f_p, g_1, \dots, g_q)$

est libre, il en résulte que $\lambda_1 = \ldots = \lambda_p = \mu_1 = \ldots = \mu_q = 0$. On obtient donc $v = \sum_{i=1}^p \lambda_i v_i = 0_E$.

On conclut que $F \cap G \subset \{0_E\}$. L'inclusion réciproque est évidente.

Cette caractérisation nous donne ainsi une nouvelle façon de montrer qu'une somme est directe.

ℰ Exercice 3

Dans \mathbb{R}^3 , on considère le plan $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ et la droite G = Vect((1, 1, 1)). Montrer que F et G sont supplémentaires dans \mathbb{R}^3 (c'est à dire que $\mathbb{R}^3 = F \oplus G$.)

On a déjà vu qu'une base de F était $\mathcal{B}_F = ((1,0,-1,),(0,1,-1)).$

Une base de G est $\mathcal{B}_G = ((1,1,1))$.

On sait donc que F + G = Vect((1, 0, -1), (0, 1, -1), (1, 1, 1)).

De plus, $\mathcal{B} = ((1,0,-1),(0,1,-1),(1,1,1))$ est une famille libre : c'est donc une base de F + G!

En effet, $rg(\mathcal{B}) = rg((1,0,-1),(0,1,-1),(0,1,2)) = rg((1,0,-1),(0,1,-1),(0,0,3)) = 3.$

D'après le théorème de concaténation des bases (Théorème 2), on en déduit que la somme est directe : on peut donc l'écrire $F+G=F\oplus G$.

Puisque $Card(\mathcal{B})=3,\,F\oplus G$ est un S.E.V de \mathbb{R}^3 de dimension 3, c'est donc que $F\oplus G=\mathbb{R}^3$.

Une conséquence importante du Théorème de concaténation des bases est la suivante :

Ocorollaire 1 (Existence d'un supplémentaire en dimension finie)

Soit E un espace vectoriel de dimension finie.

Tout sous-espace vectoriel F de E admet un sous-espace supplémentaire G dans E, c'est à dire qu'il existe un sous-espace vectoriel G de E tel que $E = F \oplus G$.

Preuve:

Notons n = dim(E) et p = dim(F) (avec donc $p \le n$).

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F.

 \mathcal{B}_F est une famille libre de vecteurs de F, donc une famille libre de vecteurs de E.

D'après le Théorème de la base incomplète, on sait qu'on peut rajouter n-p vecteur pour la compléter en une base $\mathcal{B} = (f_1, \dots, f_p, g_1, \dots, g_{n-p})$ de E!

Posons alors $G = Vect(g_1, \ldots, g_{n-p})$.

- On a: $E = Vect(f_1, ..., f_p, g_1, ..., g_{n-p}) = Vect(f_1, ..., f_p) + Vect(g_1, ..., g_{n-p}) = F + G.$
- De plus, la famille $\mathcal{B}_G = (g_1, \dots, g_{n-p})$ est libre, donc c'est une base de G.

(si \mathcal{B}_G était liée, alors \mathcal{B} serait également liée, ce qui est exclu!)

Ainsi, en concaténant les bases \mathcal{B}_F de F et \mathcal{B}_G de G, on obtient la base \mathcal{B} de E = F + G.

D'après le théorème de concaténation des bases (Théorème 2), la somme F+G est directe.

On a donc bien montér que $E = F \oplus G : F$ et G sont supplémentaires dans E.

A Attention!

Il n'y a pas unicité du supplémentaire!

Pour cette raison, on dit toujours qu'on introduit "un supplémentaire" et non pas "le supplémentaire".

Exemple : Vérifier (à l'aide du critère que vous préférez!) que

$$Vect((1,0)) \oplus Vect((0,1)) = \mathbb{R}^2$$
 et aussi $Vect((1,0)) \oplus Vect((1,1)) = \mathbb{R}^2$.

G = Vect((0,1)) et G = Vect((1,1)) sont donc des supplémentaires de F = Vect((1,0)) dans $E = \mathbb{R}^2$.

Ξ Méthode : Déterminer un supplémentaire de F dans E

Si on souhaite déterminer un supplémentaire d'un sous-espace vectoriel F de E:

- | 1 | On détermine une base $\mathcal{B}_F = (f_1, \ldots, f_p)$ de F.
- 2 On complète cette famille en une base $\mathcal{B} = (f_1, \ldots, f_p, g_1, \ldots, g_q)$ de E.
- 3 On sait alors qu'en posant $G = Vect(g_1, \ldots, g_q)$, on a un supplémentaire de F dans E, c'est à dire que $F \oplus G = E$.

Exercice 4

Déterminer un supplémentaire de $F = Vect(X^2 - 2X + 1, -X + 2)$ dans $\mathbb{R}_3[X]$.

 $\mathcal{B}_F = (X^2 - 2X + 1, -X + 2)$ est une base de F. On cherche à la compléter en une base de $\mathbb{R}_3[X]$.

Par exemple : $(X^2 - 2X + 1, -X + 2, 1, X^3)$ est une base de $\mathbb{R}_3[X]$

(famille libre car polynômes de degrés échelonnés, de cardinal $4 = \dim(R_3[X])$.)

On peut donc affirmer que $G = Vect(1, X^3)$ est un supplémentaire de F dans $\mathbb{R}_3[X] : F \oplus G = \mathbb{R}_3[X]$.

Dimension d'une somme, dimension d'une somme directe 1.3

On travaille toujours avec des sous-espaces vectoriels de dimension finie.

ightharpoonup Théorème 3 (Formule de Grassmann : dimension de la somme F+G)

Soient F et G deux sous-espaces vectoriels de dimension finie de E.

Alors F + G est de dimension finie et $\dim(F + G) = \dim(F) + \dim(G) - \dim(F \cap G)$.

Conséquence : On a toujours $\dim(F+G) \leq \dim(F) + \dim(G)$.

Remarque 3

Cette formule n'est pas sans rappeler $Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$!

Preuve du Théorème 3 (facultative) :

- Montrons d'abord que la formule est vraie pour les sommes directes $F + G = F \oplus G$. Supposons $F \cap G = \{0_E\}$ donc $\dim(F \cap G) = 0$. On veut donc montrer $\dim(F \oplus G) = \dim(F) + \dim(G)$. Soient $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G. Puisque la somme $F \oplus G$ est directe, on sait d'après le Théorème de concaténation des bases que $\mathcal{B}=(f_1,\ldots,f_p,g_1,\ldots,g_q)$ est une base de $F \oplus G$. C'est donc que $\dim(F+G) = p+q = \dim(F) + \dim(G)$, d'où le résultat.
- Revenons à présent au cas général où la somme n'est pas directe : $F \cap G \neq \{0_E\}$.

Puisque $F \cap G$ est un SEV de F, d'après le Corollaire 1, on peut introduire F' un supplémentaire de $F \cap G$ dans F: c'est à dire que F' est un SEV de F tel que $F = F \cap G \oplus F'$.

Cette somme étant directe, on sait que $\dim(F) = \dim(F \cap G) + \dim(F')$,

- et donc $\dim(F') = \dim(F) \dim(F \cap G)$. Montrons à présent que $F + G = F' \oplus G$:
 - D'abord comme la somme $F \cap G \oplus F'$ est directe, on sait que $(F \cap G) \cap F' = \{0_E\}$, c'est à dire $G \cap F' = \{0_E\}$. Ceci montre que la somme F' + G est directe.
 - Justifions que F + G = F' + G. Puisque $F' \subset F$, on a bien-sûr $F' + G \subset F + G$.

- Justifions que F+G=F+G. I uneque F - G. Comme F - G. I uneque F - G. Comme F - G. I uneque F - G. Comme F - Comm

Pour finir : $\dim(F+G) = \dim(F' \oplus G) = \dim(F') + \dim(G) = \dim(F) - \dim(F \cap G) + \dim(G)$. \square

En conséquence, on obtient une dernière caractérisation des sommes directes :

★ Théorème 4 (Caractérisation d'une somme directe par la dimension)

Soient F et G deux sous-espaces vectoriels de dimension finie de E. On a l'équivalence :

La somme
$$F + G$$
 est directe $\iff dim(F + G) = dim(F) + dim(G)$.

En particulier, pour une somme directe, on pourra écrire $dim(F \oplus G) = dim(F) + dim(G)$.

Preuve:

Avec la formule de Grassmann (Théorème 3), on voit directement que

$$\dim(F+G)=\dim(F)+\dim(G)\Longleftrightarrow\dim(F\cap G)=0\Longleftrightarrow F\cap G=\{0_E\}\Longleftrightarrow\ F+G\ \mathrm{est\ directe}.$$

1.4 Récapitulatif : montrer qu'une somme de deux S.E.V est directe

Ξ Méthode : Montrer que deux S.E.V F et G sont en somme directe

Soit E un espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E. Toutes les affirmations suivantes sont équivalentes :

- (a) La somme F + G est directe (on l'écrit alors $F \oplus G$).
- (b) $F \cap G = \{0_E\}$
- (c) La concaténation d'une base de F et d'une base de G donne une base de F + G.
- (il suffit de vérifier que c'est une famille libre, car c'est toujours une famille génératrice de F + G!)
- (d) $\dim(F+G) = \dim(F) + \dim(G)$.

1.5 Récapitulatif : montrer que deux S.E.V sont supplémentaires

Rappel : (Définition 3) On dit que F et G sont supplémentaires dans E lorsque $F \oplus G = E$, c'est à dire :

La somme
$$F + G$$
 est directe $\underline{\mathbf{et}}$ $F + G = E$

★ Théorème 5 (Caractérisations des S.E.V supplémentaires)

Soit E un espace vectoriel de dimension finie. Soient F et G deux sous-espaces vectoriels de E.

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G.

L'affirmation "F et G sont supplémentaires dans E" (c'est à dire $F \oplus G = E$) est équivalente à chacune des affirmation suivantes :

- (a) Avec la définition : $\forall v \in E, \exists !(v_1, v_2) \in F \times G, v = v_1 + v_2.$
- (b) Avec l'intersection : F + G = E et $F \cap G = \{0_E\}$.
- (c) Avec les bases : La concaténation $\mathcal{B} = [\mathcal{B}_F, \mathcal{B}_G] = (f_1, \dots f_p, g_1, \dots g_q)$ est une base de E.
- (d) Avec les dimensions (version 1): F + G = E et dim(F) + dim(G) = dim(E).
- (e) Avec les dimensions (version 2): $F \cap G = \{0_E\}$ et dim(F) + dim(G) = dim(E).

Preuve:

- (a) est simplement la définition de $E = F \oplus G$.
- \bullet L'équivalence (a) \Longleftrightarrow (b) découle de la caractérisation du Théorème 1 :

$$(a) \Longleftrightarrow E = F \oplus G \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{et la somme } F + G \text{ est directe} \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{et } F \cap G = \{0_E\} \end{array} \right. \Longleftrightarrow (b)$$

• L'équivalence (a) \iff (c) découle de la caractérisation du Théorème 2.

$$(a) \iff E = F \oplus G \iff \left\{ \begin{array}{l} F + G = E \\ \text{et la somme } F + G \text{ est directe} \end{array} \right. \iff \left\{ \begin{array}{l} F + G = E \\ \text{et } \mathcal{B} = [\mathcal{B}_E, \mathcal{B}_F] \end{array} \right. \text{est une base de } F + G$$

$$\iff \left\{ \begin{array}{l} F + G = E \\ \text{et } \mathcal{B} = [\mathcal{B}_E, \mathcal{B}_F] \end{array} \right. \iff (c)$$

• L'équivalence (a) \iff (d) découle de la caractérisation du Théorème 4 :

$$\begin{split} (a) &\iff E = F \oplus G \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{et la somme } F + G \text{ est directe} \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{et } \dim(F + G) = \dim(F) + \dim(G) \end{array} \right. \\ &\iff \left\{ \begin{array}{l} F + G = E \\ \text{et } \dim(E) = \dim(F) + \dim(G) \end{array} \right. \Longleftrightarrow (d) \end{split}$$

• L'équivalence (a) \iff (e) découle de la formule de Grassman (Théorème 3) :

$$(a) \iff (b) \iff \begin{cases} F + G = E \\ \text{et } F \cap G = \{0_E\} \end{cases} \iff \begin{cases} \dim(F + G) = \dim(E) \\ \text{et } F \cap G = \{0_E\} \end{cases}$$
$$\iff \begin{cases} \dim(F) + \dim(G) - \dim(F \cap G) = \dim(E) \\ \text{et } F \cap G = \{0_E\} \end{cases}$$
$$\iff \begin{cases} \dim(F) + \dim(G) = \dim(E) \\ \text{et } F \cap G = \{0_E\} \end{cases} \iff (e)$$

ℰ Exercice 5

On rappelle que $S_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid {}^t\!A = A \}$ et $A_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid {}^t\!A = -A \}$

- 1. En utilisant la définition, montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$. (c'est à dire $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$).
- 2. En utilisant le critère "le plus simple", re-démontrer très rapidement ce résultat.
- 1. Montrons que : $\forall M \in \mathcal{M}_n(\mathbb{R}), \ \exists ! (A, B) \in \mathcal{S}_n(\mathbb{R}) \times \mathcal{A}_n(\mathbb{R}), \ M = A + B.$ Soit $M \in \mathcal{M}_n(\mathbb{R})$ fixé.
- Analyse : Supposons qu'il existe $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$ telles que M = A + B.

On donc également : ${}^{t}M = {}^{t}A + {}^{t}B = A - B$.

On remarque donc que $M + {}^t M = 2A$ et $M - {}^t M = 2B$.

On en déduit qu'on a nécessairement : $A = \frac{1}{2}(M + {}^t\!M)$ et $B = \frac{1}{2}(M - {}^t\!M)$.

• Synthèse: Posons $A = \frac{1}{2}(M + {}^{t}M)$ et $B = \frac{1}{2}(M - {}^{t}M)$.

On a évidemment M = A + B.

On vérifie très facilement que ${}^tA=A$ donc $A\in\mathcal{S}_n(\mathbb{R})$ et ${}^tB=-B$ donc $B\in\mathcal{A}_n(\mathbb{R})$.

On a bien montré que toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ s'écrit de manière unique comme somme d'une matrice symétrique et d'une matrice anti-symétrique.

On a même la décomposition explicite : $M = \underbrace{\frac{1}{2}(M + {}^t\!M)}_{\in \mathcal{S}_n(\mathbb{R})} + \underbrace{\frac{1}{2}(M - {}^t\!M)}_{\in \mathcal{A}_n(\mathbb{R})}.$

2. On peut faire beaucoup plus rapide avec le critère (e) du Théorème 5 :

•
$$\dim(\mathcal{S}_n(\mathbb{R})) + \dim(\mathcal{A}_n(\mathbb{R})) = \frac{n(n+1)}{2} + \frac{n(n-1)}{2} = \frac{n^2 + n + n^2 - n}{2} = n^2 = \dim(\mathcal{M}_n(\mathbb{R})).$$

• $S_n(\mathbb{R}) \cap A_n(\mathbb{R}) = \{0\}$

(car si $A \in \mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R})$, on a ${}^tA = A$ et ${}^tA = -A$ donc A = -A d'où A = 0.)

On en déduit directement que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.

2 Projecteurs

Définition 4 (Projecteurs associés à deux S.E.V supplémentaires)

Soient F et G deux sous-espaces vectoriels supplémentaires de E: $E=F\oplus G$. Ainsi tout vecteur $v\in E$ s'écrit de manière unique $v=v_1+v_2$ avec $v_1\in F$ et $v_2\in G$. On introduit les applications suivantes :

- $p: \begin{array}{ccc} E & \to & E \\ v & \mapsto & v_1 \end{array}$ est appelé projecteur sur F parallèlement à G.
- $\bullet~q: \begin{array}{ccc} E & \to & E \\ v & \mapsto & v_2 \end{array}$ est appelé projecteur sur G parallèlement à F.

On dit que p et q sont des projecteurs associés .

• Dans $E = \mathbb{R}^2$, soient F et G deux-droites non-parallèles. On a alors $F \oplus G = E$:

✓ Dessin:

Tout vecteur $v \in \mathbb{R}^2$ peut s'écrire $v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$.

• Dans $E = \mathbb{R}^3$, soit F un plan et G une droite non-incluse dans F. On a alors $F \oplus G = E$:

✓ Dessin :

Tout vecteur $v \in \mathbb{R}^3$ peut s'écrire $v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$.

Exemple

On a vu que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$ et que tout $M \in \mathcal{M}_n(\mathbb{R})$ s'écrivait :

$$M = \underbrace{\frac{1}{2}(M + {}^{t}M)}_{\in \mathcal{S}_{n}(\mathbb{R})} + \underbrace{\frac{1}{2}(M - {}^{t}M)}_{\in \mathcal{A}_{n}(\mathbb{R})}.$$

Les projecteurs associés sont donc : $\forall M \in \mathcal{M}_n(\mathbb{R}), \quad p(M) = \frac{1}{2}(M + {}^t\!M) \quad q(M) = \frac{1}{2}(M - {}^t\!M).$

Ξ Méthode : Déterminer les projecteurs associés à $E=F\oplus G$

On suppose que $E=F\oplus G.$ On souhaite déterminer les projecteurs p et q associés.

 $\boxed{1}$ Déterminer des bases $\mathcal{B}_F = (f_1, \ldots, f_p)$ de F et $\mathcal{B}_G = (g_1, \ldots, g_q)$ de G.

 $\boxed{2}$ Introduire un vecteur $v \in E$ quelconque et déterminer sa décomposition dans la base $\mathcal{B} = (f_1, \ldots, f_p, g_1, \ldots, g_q)$ de E, c'est à dire déterminer des scalaires λ_i , μ_i tels que :

$$v = \underbrace{\lambda_1 f_1 + \ldots + \lambda_p f_p}_{p(v) \in F} + \underbrace{\mu_1 g_1 + \ldots + \mu_q g_q}_{q(v) \in G}$$

3 Reconnaître p(v) et q(v) dans cette décomposition.

Exercice 6

On a vu dans l'exercice 3 que $\mathbb{R}^3 = F \oplus G$ avec F = Vect((1, 0, -1), (0, 1, -1)) et G = Vect((1, 1, 1)).

Déterminer les projecteurs associés.

Soit $(x, y, z) \in \mathbb{R}^3$ fixé. Cherchons les scalaires $a, b, c \in \mathbb{R}$ tels que

$$(x,y,z) = \underbrace{a(1,0,-1) + b(0,1,-1)}_{\in F} + \underbrace{c(1,1,1)}_{\in G}$$

Cela donne le système (d'inconnues a, b, c):

$$\begin{cases} a + c = x \\ b + c = y \\ -a - b + c = z \end{cases} \iff \begin{cases} a + c = x \\ b + c = y \\ -b + 2c = x + z \end{cases} \iff \begin{cases} a + c = x \\ b + c = y \\ 3c = x + y + z \end{cases}$$

et on trouve l'unique solution : $c = \frac{x+y+z}{3}, \ b = \frac{-x+2y-z}{3}, \ a = \frac{2x-y-z}{3}$

Ainsi, tout $(x, y, z) \in \mathbb{R}^3$ se décompose (de manière unique) comme :

$$(x,y,z) = \underbrace{\frac{2x-y-z}{3}(1,0,-1) + \frac{-x+2y-z}{3}(0,1,-1)}_{\in F} + \underbrace{\frac{x+y+z}{3}(1,1,1)}_{\in G}.$$

On reconnait ainsi les projections :

$$p((x,y,z)) = \frac{2x - y - z}{3}(1,0,-1) + \frac{-x + 2y - z}{3}(0,1,-1) = \left(\frac{2x - y - z}{3}, \frac{-x + 2y - z}{3}, \frac{-x - y + 2z}{3}\right)$$
$$q((x,y,z)) = \frac{x + y + z}{3}(1,1,1) = \left(\frac{x + y + z}{3}, \frac{x + y + z}{3}, \frac{x + y + z}{3}\right).$$

Proposition 3 (Propriétés élémentaires des projecteurs)

Soient F et G deux sous-espaces vectoriels supplémentaires de E: $E = F \oplus G$.

On note p et q les projecteurs associés, de sorte que : $\forall v \in E, \ v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$.

Alors on a les propriétés suivantes :

- (a) p et q sont des applications linéaires : $p \in \mathcal{L}(E)$ et $q \in \mathcal{L}(E)$.
- (b) $p + q = Id_E$ et donc $q = Id_E p$.
- (c) Si $v \in F$, alors p(v) = v. Si $v \in G$, alors p(v) = 0.

Preuve:

(a) Soient $v, v' \in E$ et $\lambda \in \mathbb{R}$. Montrons que $p(v + \lambda v') = p(v) + \lambda p(v')$ et $q(v + \lambda v') = q(v) + \lambda q(v')$.

(a) Soient $v, v' \in E$ et $A \in \mathbb{R}$. Monorous que F.

Par définition des projecteurs, l'"unique décomposition" de v dans $E = F \oplus G$ est : $v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$.

De même, l'"unique décomposition" de v' dans $E = F \oplus G$ est : $v' = \underbrace{p(v')}_{\in F} + \underbrace{q(v')}_{\in G}$.

On obtient donc : $v + \lambda v' = p(v) + q(v) + \lambda(p(v') + q(v')) = \underbrace{p(v) + \lambda p(v')}_{\in F} + \underbrace{q(v) + \lambda q(v')}_{\in G}$.

Il s'agit de l'unique décomposition de $v + \lambda v'$ dans $E = F \oplus G!$

Par définition des projecteurs, c'est donc que $p(v + \lambda v') = p(v) + \lambda p(v')$ et $q(v + \lambda v') = q(v) + \lambda q(v')$. On a ainsi montré que $p \in \mathcal{L}(E)$ et $q \in \mathcal{L}(E)$.

(b) Par définition, pour tout $v \in E$, v = p(v) + q(v).

Autrement dit : $\forall v \in E, \ p(v) + q(v) = v = Id_E(v)$. On a donc bien $p + q = Id_E$.

(c) Si $v \in F$, sa décomposition est $v = v + 0_E$. On a donc p(v) = v et $q(v) = 0_E$.

Si $v \in G$, sa décomposition est $v = \underbrace{0_E}_{\in F} + \underbrace{v}_{\in G}$. On a donc $p(v) = 0_E$ et q(v) = v.

Proposition 4 (Noyau et image d'un projecteur)

On suppose toujours que $E = F \oplus G$. Soit p le projecteur sur F parallèlement à G.

Ker(p) = GIm(p) = F. Alors: et

Preuve:

- Montrons que Ker(p) = G par double inclusion :
- Si $v \in G$, alors on peut écrire $v = \underbrace{0_E}_{\in F} + \underbrace{v}_{\in G}$ donc $p(v) = 0_E$, i.e $v \in Ker(p)$.
- Si $v \in Ker(p)$, alors on peut écrire $v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$ mais $p(v) = 0_E$, donc on a $v = q(v) \in G$.
- Montrons que Im(p) = F par double inclusion :
- Si $v \in F$, alors on peut écrire $v = \underbrace{v}_{\in F} + \underbrace{0_E}_{\in G}$, donc p(v) = v, et donc $v = p(v) \in Im(p)$.
- Si $v \in Im(p)$, on peut écrire v = p(u) pour un $u \in E$.

Par définition des projecteurs, u = p(u) + q(u), donc $v = p(u) \in F$.

Pour terminer, donnons une autre façon de voir les projecteurs :

Théorème 6 (Caractérisation des projecteurs)

Soit f un endomorphisme de E quelconque. Alors :

f est un projecteur $\iff f^2 = f$ (c'est à dire $f \circ f = f$)

Plus précisément, si f est un endomorphisme satisfaisant $f \circ f = f$, alors :

- On a $E = Im(f) \oplus Ker(f)$
- f est le projecteur sur F = Im(f), parallèlement à G = Ker(f).

Preuve:

• Supposons que f est un projecteur : notons le donc p. Il existe ainsi deux sous-espace vectoriels supplémentaires F et G, de sorte que p soit le projecteur sur F parallèlement à G.

Pour tout $v \in E$, on sait que $p(v) \in F$, donc sa décomposition est p(v) = p(v)

Par définition, on a donc p(p(v)) = p(v), i.e $(p \circ p)(v) = p(v)$.

C'est valable pour tout $v \in E$, ceci montre donc que $p \circ p = p$.

- Inversement, supposons que $f \circ f = f$. Posons F = Im(f) et G = Ker(f).
- Montrons que E = F + G.

Tout vecteur $v \in E$ peut se décomposer sous la forme $v = f(v) + (v - f(v)) = v_1 + v_2$.

On a évidemment $v_1 = f(v) \in Im(f)$ donc $v_1 \in F$.

On a $f(v_2) = f(v - f(v)) = f(v) - (f \circ f)(v) = 0$ par hypothèse donc $v_2 \in Ker(f)$ i.e $v_2 \in G$.

Ceci montre que E = F + G.

- Vérifions que la somme F + G est directe, c'est à dire que $F \cap G = \{0_E\}$.

Soit $v \in F \cap G$. On a donc $v \in Im(f)$ et $v \in Ker(f)$.

Puisque $v \in Im(f)$, on peut écrire v = f(u) avec un $u \in E$.

On obtient alors $v = f(u) = (f \circ f)(u) = f(f(u)) = f(v) = 0_E$ car $v \in Ker(f)$!

Ainsi $v = 0_E$. Ceci montre que $F \cap G \subset \{0_E\}$, et l'inclusion réciproque est évidente.

- Finalement, montrons que que f est bien le projecteur sur F parallèlement à G.

On a vu que $E = F \oplus G$, donc chaque $v \in E$ se décompose de manière <u>unique</u> comme $v = \underbrace{v_1}_{\in F} + \underbrace{v_2}_{\in G}$.

Or on a vu (cf. premier tiret) que l'on pouvait écrire la décomposition $v = \underbrace{f(v)}_{\in F} + \underbrace{(v - f(v))}_{\in G}$.

Par définition, f(v) est donc bien la projection de v sur F, parallèlement à G.

ℰ Exercice 7

On considère l'endomorphisme $f \in \mathcal{L}(\mathbb{R}^3)$ défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ f((x, y, z)) = (2x + 3y - z, -x - 2y + z, -x - 3y + 2z).$$

Montrer que f est un projecteur. Préciser sur quoi, parallèlement à quoi.

On vérifie par le calcul que $f \circ f = f$: pour tout $(x, y, z) \in \mathbb{R}^3$,

$$f(f(x,y,z)) = f(2x + 3y - z, -x - 2y + z, -x - 3y + 2z) = \dots = (x,y,z)$$
 (vérifiez-le!)

En vertu du Théorème 6, on sait que f est le projecteur sur F = Im(f), parallèlement à G = Ker(f). On explicite ces espaces :

$$F = Im(f) = \left\{ f((x, y, z)), \ (x, y, z) \in \mathbb{R}^3 \right\} = \left\{ (2x + 3y - z, -x - 2y + z, -x - 3y + 2z), \ (x, y, z) \in \mathbb{R}^3 \right\} = Vect((2, -1, -1), (3, -2, -3), (-1, 1, 2)) = Vect((2, -1, -1), (-1, 1, 2)).$$

$$G = Ker(f) = \left\{ (x, y, z) \in \mathbb{R}^3 \mid f((x, y, z)) = (0, 0, 0) \right\}$$
$$= \left\{ (x, -x, -x), \ x \in \mathbb{R} \right\} \quad \text{(après résolution du système associé...)}$$
$$= Vect((1, -1, -1)).$$

À savoir faire à l'issue de ce chapitre : -

Au minimum

- \bullet Connaître la définition de F+G et celle d'une somme directe.
- Connaître la définition de deux SEV supplémentaires.
- Savoir calculer explicitement le SEV F + G.
- Connaître les critères permettant de montrer qu'une somme est directe. (avec l'intersection, avec les bases, avec la dimension)

Pour suivro

- Repérer le critère "le plus simple" pour monter que $E=F\oplus G$.
- Définir et éventuellement déterminer les projecteurs associés à $E = F \oplus G$.
- Connaître et appliquer le Théorème de "Caractérisation des projecteurs"

- Manipuler des sommes de 3 SEV ou plus.
- Avoir lu et bien compris les preuves "facultatives".

Pour les ambitieux

3 HORS PROGRAMME : Somme de r sous-espaces vectoriels

3.1 Définitions

Définition 5 (Somme de r S.EV)

Soient F_1, \ldots, F_r des sous-espaces vectoriels de E.

On appelle somme de F_1, \ldots, F_r et on note $F_1 + \ldots + F_r$ ou bien $\sum_{i=1}^r F_i$ l'ensemble :

$$F_1 + \ldots + F_r = \{v_1 + \ldots + v_r, (v_1, \ldots v_r) \in F_1 \times \ldots \times F_r\}.$$

Proposition 5 (La somme est un S.E.V)

La somme $F_1 + \ldots + F_r$ est une sous-espace vectoriel de E.

Définition 6 (Somme directe)

Soient F_1, \ldots, F_r des sous-espaces vectoriels de E.

La somme $\sum_{i=1}^r F_i$ est dite directe si tout vecteur $v \in \sum_{i=1}^r F_i$ s'écrit de manière <u>unique</u> comme $v = v_1 + \ldots + v_r$ avec $(v_1, \ldots, v_r) \in F_1 \times \ldots \times F_r$.

Dans ce cas, la somme est notée $F_1 \oplus \ldots \oplus F_r$ ou bien $\bigoplus_{i=1}^r F_i$.

A Attention !

On n'a plus de caractérisation simple avec l'intersection... En particulier, il n'est pas suffisant de vérifier que $F_1 \cap \ldots \cap F_r = \{0_E\}$, ni même que $F_i \cap F_j = \{0_E\}$ pour $i \neq j$ pour avoir une somme directe! Les autres caractérisations peuvent néanmoins se généraliser :

Proposition 6 (Famille génératrice de la somme)

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

Pour tout $k \in [1, r]$, on introduit \mathcal{B}_k une base de F_k .

La famille (notée $[\mathcal{B}_1, \dots, \mathcal{B}_r]$) obtenue par concaténation des vecteurs de $\mathcal{B}_1, \dots, \mathcal{B}_r$ est une famille génératrice de $F_1 + \dots + F_r$.

★ Théorème 7 (Caractérisation d'une somme directe par les bases)

Soient $F_1,...,F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

Pour tout $k \in [1, r]$, on introduit \mathcal{B}_k une base de F_k .

La somme $F_1 + \ldots + F_r$ est directe $\iff \mathcal{B} = [\mathcal{B}_1, \ldots, \mathcal{B}_r]$ est une base de $F_1 + \ldots + F_r$.

La base $\mathcal{B} = [\mathcal{B}_1, \dots, \mathcal{B}_r]$ obtenue par concaténation est alors appelée

"base adaptée" à la somme directe $\bigoplus_{i=1}^{r} F_i$.

★ Théorème 8 (Dimension de la somme)

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

Alors $\sum_{i=1}^r F_i$ est de dimension finie et $dim\left(\sum_{i=1}^r F_i\right) \leqslant \sum_{i=1}^r dim(F_i)$.

业 Théorème 9 (Caractérisation d'une somme directe par la dimension)

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

La somme
$$F_1 + \ldots + F_r$$
 est directe $\iff dim\left(\sum_{i=1}^r F_i\right) = \sum_{i=1}^r dim(F_i)$.

Pour une somme de r sous-espaces, on ne parle plus vraiment d'espaces "supplémentaires". On peut tout de même énoncé un résultat similaire à celui vu précédemment :

★ Théorème 10 (Caractérisations des S.E.V supplémentaires)

Soit E un espace vectoriel de dimension finie.

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de E. $(r \ge 2)$

Pour tout $k \in [1, r]$, on introduit \mathcal{B}_k une base de F_k .

L'affirmation " $E = \bigoplus_{k=1}^r F_i$ " est équivalent à chacune des affirmations suivantes :

- (a) $\forall v \in E, \exists !(v_1, ..., v_r) \in F_1 \times ... \times F_r, v = v_1 + ... + v_r.$
- (b) La concaténation $\mathcal{B} = [\mathcal{B}_1, \dots, \mathcal{B}_r]$ est une base de E.
- (c) $E = \sum_{i=1}^{r} F_i \text{ et } \sum_{i=1}^{r} dim(F_i) = dim(E).$