Homework #02 Answers and Hints (MATH4052 Partial Differential Equations)

Xiaoyu Wei*

September 19, 2016

Problem 1. (Page 27, Q3). Solve the boundary problem u'' = 0 for 0 < x < 1 with u'(0) + ku(0) = 0 and $u'(1) \pm ku(1) = 0$. Do the + and - cases separately. What is special about the case k = 2?

Solution. Integrating the equation twice, we have

$$u'(x) = C, (1)$$

$$u(x) = Cx + D, (2)$$

where C, D are constants.

First we consider the + case. In this case the two boundary conditions become

$$C + kD = 0 (3)$$

$$C + k(C + D) = 0, (4)$$

solving C=0, D=0 if $k\neq 0$. If k=0, we still have C=0, but D can take any value. Therefore, the solution to the + case is:

$$u(x) = \begin{cases} 0, & if \quad k \neq 0, \\ D, & D \in \mathbb{R}, \quad if \quad k = 0. \end{cases}$$
 (5)

On the other hand, for the - case, the two boundary conditions become

$$C + kD = 0, (6)$$

$$C - k(C + D) = 0, (7)$$

solving

$$u(x) = \begin{cases} 0, & if \quad k \neq 0, 2, \\ D, & if \quad k = 0, \\ -2Dx + D, & if \quad k = 2, \end{cases}$$
 (8)

where $D \in \mathbb{R}$. So only when k = 2 does the problem have nontrivial solution.

^{*}For any issues, email me at xweiaf@connect.ust.hk.

Problem 2. (Page 31, Q1). What is the type of each of the following equations?

1.
$$u_{xx} - u_{xy} + 2u_y + u_{yy} - 3u_{yx} + 4u = 0$$
.

2.
$$9u_{xx} + 6u_{xy} + u_{yy} + u_x = 0$$
.

Solution. Denote the (second order) principle part as $a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy}$. For the first equation, the determinant $\mathscr{D} = a_{12}^2 - a_{11}a_{22} = (-2)^2 - 1 \times 1 = 3$. So it is hyperbolic.

Similarly, for the second equation, $\mathcal{D}=3^2-9\times 1=0$; therefore it is parabolic. \Box

Problem 3. (Page 32, Q6). Consider the equation $3u_y + u_{xy} = 0$.

- 1. What is its type?
- 2. Find the general solution. (Hint: Substitute $v = u_y$.)
- 3. With the auxiliary conditions $u(x,0) = e^{-3x}$ and $u_y(x,0) = 0$, does a solution exist? Is it unique?

Solution. From the equation,

- 1. $\mathcal{D} = \left(\frac{1}{2}\right)^2 0 > 0$. So it is hyperbolic.
- 2. Substituting $v = u_y$, the equation becomes

$$3v + v_x = 0. (9)$$

Here we im-

plicitly change the order of

differentiation.

The price we

have to pay is

Thus

$$v(x,y) = v(0,y)e^{-3x}. (10)$$

Substitute back and we have

$$u_y = C(y)e^{-3x}, \quad C(y) \in \mathcal{C}(\mathbb{R}),$$
 (11)

solving

$$u(x,y) = e^{-3x} \left[\int C(y)dy \right] + D(x).$$
 that our solution should sit in $C^2(\mathbb{R})$.

Therefore, the general solution is

$$u(x,y) = e^{-3x} f(y) + D(x), \quad f(y), D(x) \in \mathcal{C}^2(\mathbb{R}).$$
 (13)

3. To have $u(x,0) = e^{-3x}$, we can let

$$f(0) = 1, (14)$$

$$D(x) = 0, (15)$$

then from $u_y(x,0) = 0$, we have

$$f'(y) = 0. (16)$$

Obviously such a solution exists, for example,

$$u(x,y) = e^{-3x}. (17)$$

However, the solution above is not the only one. Another example is

$$u(x,y) = e^{-3x} (1+y^2).$$
 (18)

Therefore, solution exists, but is not unique.