

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO		
Disciplina:				Código da Disciplina:
Materiais para Alimentos				EAL508
Course:				
Food Materials				
Materia:				
Materiales para Alimentos				
Periodicidade: Semestral	Carga horária total:	40	Carga horária sema	nal: 00 - 02 - 00
Curso/Habilitação/Ênfase:	•		Série:	Período:
Engenharia de Alimentos			5	Diurno
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação
Edmilson Renato de Castro	Engenheiro Químico		Doutor	
Professores:	Titulação - Graduação		Pós-Graduação	
Edmilson Renato de Castro	Engenheiro Químico Doutor			

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Desenvolver conhecimento sobre:

C1: as estruturas e propriedades das várias classes de materiais;

C2: o processamento e desempenho das várias classes de materiais;

C3: os tipos de caracterização dos materiais;

C4: os tipos e análises de falhas nos materiais;

C5: o processo de seleção dos materiais.

Desenvolver habilidades de:

H1: correlacionar propriedades mecânicas com microestruturas;

H2: tratar dados e interpretar resultados;

H3: realizar ensaios mecânicos, metalográficos nos materiais;

H4: identificar, analisar e interpretar fenômenos destrutivos em materiais;

H5: selecionar corretamente materiais em projetos.

Desenvolver atitudes quanto ao(a):

Al: compreensão fundamentada sobre a constituição dos materiais, suas propriedades, aplicações e limitações;

A2: análise crítica sobre análise de falhas em materiais;

A3: análise crítica sobre o processo de seleção de materiais;

A4: trabalho em equipe.

A5: determinação em solucionar problemas;

2020-EAL508 página 1 de 9

EMENTA

Tipos de materiais, concorrência entre os materiais, avanços recentes na tecnologia dos materiais e suas tendências futuras. Materiais inteligentes, nanomateriais e principais aplicações na indústria de alimentos. Materiais metálicos ferrosos de engenharia: aço carbono, aços ligas, aços inoxidáveis e ferro fundido. Materiais metálicos não ferrosos de engenharia: cobre, alumínio, zinco, níquel, chumbo, titânio, magnésio e suas respectivas ligas. Tratamentos térmicos, mecânicos, termoquímicos, mecanismos de aumento de resistência, influência nas propriedades dos materiais metálicos e análise da correlação entre propriedades. Corrosão: tipos e controle. Materiais poliméricos: termoplásticos, termorrígidos e elastômeros. Materiais cerâmicos: cerâmicas tradicionais e de engenharia. Materiais Compósitos: materiais, processos, propriedades e aplicações.

SYLLABUS

Types of materials, competition among materials, recent advances in materials technology and their future trends. Intelligent materials, nanomaterials and major applications in the food industry. Ferrous metal engineering materials: carbon steel, alloy steels, stainless steels and cast iron. Non-ferrous metal engineering materials: copper, aluminum, zinc, nickel, lead, titanium, magnesium and their respective alloys. Thermal, mechanical, thermochemical treatments, mechanisms of resistance increase, influence on the properties of metallic materials and analysis of the correlation between properties. Corrosion: types and control. Polymeric materials: thermoplastics, thermosets and elastomers. Ceramic materials: traditional and engineering ceramics. Composite materials: materials, processes, properties and applications.

TEMARIO

Tipos de materiales, competencia entre los materiales, avances recientes en la tecnología de los materiales y sus tendencias futuras. Materiales inteligentes, nanomateriales y principales aplicaciones en la industria de alimentos. Materiales metálicos ferrosos de ingeniería: acero al carbono, aceros aleados, aceros inoxidables y hierro fundido. Materiales metálicos no ferrosos de ingeniería: cobre, aluminio, cinc, níquel, plomo, titanio, magnesio y sus respectivas aleaciones. Tratamientos térmicos, mecánicos, termoquímicos, mecanismos de aumento de resistencia, influencia en las propiedades de los materiales metálicos y análisis de la correlación entre propiedades. Corrosión: tipos y control. Materiales poliméricos: termoplásticos, termorresos y elastómeros. Materiales cerámicos: cerámicas tradicionales y de ingeniería. Materiales compuestos: materiales, procesos, propiedades y aplicaciones.

2020-EAL508 página 2 de 9

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida
- Gamificação

METODOLOGIA DIDÁTICA

A disciplina tem como principal estratégia a participação ativa do estudante individualmente ou em equipes de trabalho visando a discussão dos temas abordados. O curso será dividido em aulas teóricas expositivas, aulas de laboratório e aulas para resolução de exercícios. Nas aulas de teoria serão apresentados os conceitos fundamentais através de aulas expositivas usando recursos audio-visuais, metodologias de aprendizagem ativa e exercícios para reforçar os conceitos apresentados. Nas aulas práticas serão realizados experimentos laboratoriais em grupo sob supervisão do professor. Haverá listas de exercícios para estimular o raciocínio e treinar o aluno nos assuntos abordados em sala de aula. Exercícios de autoavaliação serão disponibilizados por meio eletrônico (Moodlerooms). Os conceitos serão apresentados procurando relacioná-los com situações do cotidiano, estudos de casos, de modo a facilitar o aprendizado.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Física-

- habilidade de visão espacial;
- noções básicas de tensão e deformação;
- conceitos de dilatação térmica, densidade, condutibilidade térmica e elétrica, unidades de medida, análise dimensional, algarismos significativos;
- noções básicas de escalas e construção de gráficos.

Química

- noções de ligações químicas e estrutura atômica;

Gerais

- a interpretação de textos e a capacidade de redação;
- o uso do Excel;

CONTRIBUIÇÃO DA DISCIPLINA

A contribuição da disciplina é fornecer ao futuro engenheiro de alimentos uma compreensão mais profunda, diversificada e atualizada das questões relacionadas aos materiais em vista dos avanços em ciência e tecnologia. Possibilitará também ao aluno, compreender a constituição dos materiais mais utilizados em engenharia, envolvendo sua composição química, seu processamento, sua microestrutura e as relações dessas com as propriedades físicas e mecânicas dos materiais. Ao final do curso, os alunos terão desenvolvido uma visão crítica sobre seleção, aplicação e interações entre materiais selecionados e produtos, maximizando o desempenho do projeto final.

2020-EAL508 página 3 de 9

BIBLIOGRAFIA

Bibliografia Básica:

ASHBY, Michael F. Materials selection in mechanical design. 4. ed. Amsterdam: Elsevier/Butterworth-Heinemann, 2011. 646 p. ISBN 9781856176637.

CALLISTER JR., William D. Ciência e engenharia de materiais: uma introdução. SOARES, Sérgio Murilo Stamile (trad.), d'ALMEIDA, José Roberto Moraes de (Rev.). 7. ed. Rio de Janeiro, RJ: LTC, 2007. 705 p. ISBN 9788521615958.

SILVA, André Luiz V. da Costa e; MEI, Paulo Roberto. Aços e ligas especiais. 2. ed. rev. e ampl. São Paulo: Edgard Blücher, c2006. 646 p. ISBN 9788521203827.

Bibliografia Complementar:

ASHBY, Michael F; JONES, David R. H. Engenharia de materiais. Trad. da 3 ed. americana por Arlete Simille Marques. Rio de Janeiro , RJ: Elsevier, 2007. v. 1. 371 p. ISBN 9788535223620.

ASHBY, Michael F; JONES, David R. H. Engineering materials 2: an introduction to microstructures, processing and design. 3. ed. Amsterdan: Elsevier, 2009. 451 p. ISBN 0750663812.

LEVY NETO, Flamínio; PARDINI, Luiz Claudio. Compósitos estruturais: ciência e tecnologia. 2. ed. rev. e ampl.. São Paulo: Blücher, 2016. 417 p. ISBN 9788521210788.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos.

Pesos dos trabalhos:

 k_1 : 2,0 k_2 : 3,0 k_3 : 2,0 k_4 : 3,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Os trabalhos efetuados na disciplina serão os seguintes:

Exercícios de avaliação on-line (Moodlerooms) serão efetuados ao longo do semestre letivo com periodicidade, no máximo, bimestral. Os tópicos de avaliação serão aqueles abordados nas aulas teóricas, de laboratório e de exercícios (T1 e T3).

Atividades efetuadas em sala de aula e em laboratório, serão feitas a partir de roteiros colocados à disposição dos alunos no site da disciplina (Moodlerooms) além de notas de aulas. A média obtida nesses trabalhos será lançada como uma

2020-EAL508 página 4 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

nota de trabalho, a cada	semestre (T2 e	т4).		
RESUMO DOS TRABALHOS DA D	ISCIPLINA E PES	OS CORRESPONDENTE	ES:	
T1: Média dos exercícios T2: Média dos exercício 1ºbimestre (peso 3);	s efetuados e	m sala de aula	e em laboratório	do
T3: Média dos exercícios T4: Média dos exercício 2ºbimestre (peso 3);				do

2020-EAL508 página 5 de 9

OUTRAS INFORMAÇÕ	DES

2020-EAL508 página 6 de 9

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
CES	EduPack	

2020-EAL508 página 7 de 9

2020-EAL508 página 8 de 9

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana		
1 E	Apresentação da disciplina: objetivos, critérios de avaliação,	0
	cronograma de aulas e norma de segurança para uso dos	
	laboratórios. Plano de ensino. Palestra: A história, importância	
	e evolução dos materiais na engenharia.	
2 E	Apresentação do software CES Edupack. Objetivos e regras dos	0
	trabalhos.	
3 E	Introdução à engenharia dos materiais: tipos de materiais,	11% a 40
	concorrência entre os materiais, avanços recentes na tecnologia	
	dos materiais e suas tendências futuras. Exercícios.	
4 E	Introdução à engenharia dos materiais: materiais inteligentes,	0
	nanomateriais e principais aplicações na indústria de alimentos.	
	Exercícios.	
5 E	Materiais metálicos ferrosos de engenharia: aço carbono, aços	11% a 40
	ligas, aços inoxidáveis e ferro fundido. Exercícios.	
6 E	Materiais metálicos não ferrosos de engenharia: cobre, alumínio,	0
	zinco, níquel, chumbo, titânio, magnésio e suas respectivas	
	ligas. Exercícios.	
7 E	Tratamentos térmicos, mecânicos, termoquímicos, mecanismos de	11% a 40
	aumento de resistência, influência nas propriedades dos materiais	
	metálicos e análise da correlação entre propriedades. Exercícios	
8 E	Laboratório. Exercícios.	0
9 E	Exercícios.	0
10 E	Semana de provas (P1)	0
11 E	Corrosão: tipos e controle. Estudo de caso.	0
12 E	Corrosão: tipos e controle. Estudo de caso.	11% a 40
13 E	Corrosão: exercícios. Estudo de caso.	0
14 E	Corrosão: exercícios. Estudo de caso.	11% a 40
15 E	Materiais poliméricos: termoplásticos, termorrígidos e	0
	elastômeros. Exercícios.	
16 E	Materiais cerâmicos: cerâmicas tradicionais e de engenharia.	11% a 40
	Exercícios.	
17 E	Materiais Compósitos: materiais, processos, propriedades e	11% a 40
	aplicações. Exercícios.	
18 E	Laboratório. Exercícios.	0
19 E	Exercícios.	0
20 E	Semana de provas (P2)	0
21 E	Semana de provas (PSub)	0
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2020-EAL508 página 9 de 9