Modeling θ_T as a Double Mean-Reverting Process in SVI Parameterization

In the context of the **Stochastic Volatility Inspired (SVI)** parameterization, θ_T represents the total variance up to maturity T. When modeling θ_T as a **double mean-reverting process**, we're considering a stochastic volatility model where the variance itself mean-reverts to a stochastic long-term mean, which also mean-reverts to a constant level. This adds an extra layer of dynamics to capture more complex market behaviors.

Double Mean-Reverting Process

First Mean Reversion (Variance to Stochastic Mean Level):

The instantaneous variance v_t mean-reverts to a stochastic mean level m_t :

$$dv_t = \kappa_v (m_t - v_t) dt + \sigma_v \sqrt{v_t} dW_t^v$$

- v_t : Instantaneous variance at time t.
- κ_v : Speed of mean reversion of v_t toward m_t .
- σ_v : Volatility of the variance process.
- dW_t^v : Brownian motion driving v_t .

Second Mean Reversion (Mean Level to Constant Level):

The mean level m_t mean-reverts to a constant long-term mean θ :

$$dm_t = \kappa_m(\theta - m_t)dt + \sigma_m dW_t^m$$

- m_t : Stochastic mean level at time t.
- κ_m : Speed of mean reversion of m_t toward θ .
- σ_m : Volatility of the mean level process.
- dW_t^m : Brownian motion driving m_t .
- θ : Constant long-term mean level.

Computing θ_T Under Double Mean Reversion

The total variance θ_T up to time T is given by the expected integrated variance:

$$\theta_T = \mathbb{E}\left[\int_0^T v_t \, dt\right]$$

To derive θ_T under the double mean-reverting process, follow these steps:

1. Compute the Expected Mean Level $\mathbb{E}[m_t]$

Solve the stochastic differential equation (SDE) for m_t :

$$\mathbb{E}[m_t] = m_0 e^{-\kappa_m t} + \theta (1 - e^{-\kappa_m t})$$

• m_0 : Initial mean level at t = 0.

2. Compute the Expected Variance $\mathbb{E}[v_t]$

Given the dependency of v_t on m_t , the expected variance is:

$$\mathbb{E}[v_t] = v_0 e^{-\kappa_v t} + \kappa_v \int_0^t e^{-\kappa_v (t-s)} \mathbb{E}[m_s] \, ds$$

• v_0 : Initial variance at t = 0.

Substitute $\mathbb{E}[m_s]$ into the integral:

$$\mathbb{E}[v_t] = v_0 e^{-\kappa_v t} + \kappa_v \int_0^t e^{-\kappa_v (t-s)} \left[m_0 e^{-\kappa_m s} + \theta (1 - e^{-\kappa_m s}) \right] ds$$

3. Integrate $\mathbb{E}[v_t]$ Over Time to Find θ_T

Compute θ_T by integrating $\mathbb{E}[v_t]$ from 0 to T:

$$\theta_T = \int_0^T \mathbb{E}[v_t] \, dt$$

This results in:

$$\theta_T = \int_0^T \left[v_0 e^{-\kappa_v t} + \kappa_v \int_0^t e^{-\kappa_v (t-s)} \left(m_0 e^{-\kappa_m s} + \theta [1 - e^{-\kappa_m s}] \right) ds \right] dt$$

4. Simplify the Expression

While the integral may seem complex, it can be simplified using standard integration techniques and properties of exponential functions. The key steps involve:

- Evaluating the double integral.
- Applying the convolution of exponential functions.
- Simplifying the resulting expressions.

Note: Due to the complexity, the final expression may not be closed-form but can be computed numerically.

Final Formula for θ_T

An approximate expression for θ_T is:

$$\theta_T = \left(\frac{v_0}{\kappa_v}\right) \left(1 - e^{-\kappa_v T}\right) + \left(\frac{\kappa_v m_0}{\kappa_v - \kappa_m}\right) \left(\frac{1 - e^{-\kappa_m T}}{\kappa_m} - \frac{1 - e^{-\kappa_v T}}{\kappa_v}\right) + \theta \left(T - \frac{1 - e^{-\kappa_m T}}{\kappa_m}\right)$$

This formula assumes $\kappa_v \neq \kappa_m$. If $\kappa_v = \kappa_m$, the expression needs adjustment to avoid division by zero.

Considerations

- Correlation Between Brownian Motions: If dW_t^v and dW_t^m are correlated, this affects the variance of v_t but not the expectation $\mathbb{E}[v_t]$.
- Parameter Estimation: Estimating the parameters κ_v , κ_m , σ_v , σ_m , v_0 , and m_0 requires calibration to market data.
- Numerical Methods: In practice, numerical integration or simulation may be necessary to compute θ_T accurately.

Conclusion

By modeling θ_T as a double mean-reverting process, you capture richer dynamics in the implied volatility surface. The formula involves integrating the expected variance over time, accounting for both layers of mean reversion.

Key Formula:

$$\theta_T = \int_0^T \mathbb{E}[v_t] dt$$

with $\mathbb{E}[v_t]$ computed based on the mean-reverting processes of v_t and m_t .

References

- Gatheral, J. (2006). The Volatility Surface: A Practitioner's Guide. Wiley.
- Christoffersen, P., Heston, S., & Jacobs, K. (2009). The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well. Management Science.

These references provide deeper insights into stochastic volatility models and the implementation of double mean-reverting processes in financial modeling.