

ETL-0532

Spatial Target Location
Errors Derived from
Measurements Collected
from Sixteen Satellite
Constellations

Michael A. Crombie

March 1989

Approved for public release; distribution is unlimited.

U.S. Army Corps of Engineers Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

REP	ORT DOC	UMENTATIO	N PAGE			Form App OMB No. (roved 0704-0188
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		,	16 RESTRICTIVE MARKINGS				
2a. SECURITY CLASSIFICATION AUTHORI	ITY		3 DISTRIBUTION	/AVAILABILITY OF	REPOR	Ť	
26. DECLASSIFICATION / DOWNGRADING	SCHEDULE		DE Hard shouldell to	miled to U.S. Government of this document of this document Director Fort Be	must	petreferred \	, ,
4. PERFORMING ORGANIZATION REPORT	T NUMBER(S)		5 MONITORING	ORGANIZATION RE	PORT N	IUMBER(S)	
ETL-0532			Ì				
6a. NAME OF PERFORMING ORGANIZAT		OFFICE SYMBOL	7a. NAME OF M	ONITORING ORGAN	VIZATIO	N	المكنيون سندرس
U.S. Army Engineer Topograph	hic	(If applicable)	j				
Laboratories 6c. ADDRESS (City, State, and ZIP Code)		EETL-SL-C	7b. ADDRESS (Ci	ty, State, and ZIP C	ode)		
Fort Belvoir, Virginia 22060-5	5546						
8a. NAME OF FUNDING / SPONSORING ORGANIZATION		OFFICE SYMBOL f applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICA	TION NUMBER	R
8c. ADDRESS (City, State, and ZIP Code)			10 SOURCE OF	UNDING NUMBERS	ς		
, , , , , , , , , , , , , , , , , , ,			PROGRAM	PROJECT	TASK		ORK UNIT
			ELEMENT NO.	NO.	NO.	ACC	CESSION NO.
11. TITLE (Include Security Classification)	i)		4A762707A	822	L		
Spatial Target Location Errors l		n Measuremer	nts Collected fro	om Sixteen Sate	llite C	Constellation	15
12 PERSONAL AUTHOR(S) Crombie, Michael A.		•					
Cromoto, infondor in							
13a. TYPE OF REPORT 13b	TIME COVERE	D Nov 87	14. DATE 95.85	Narchar, Month, I	Day)	15. PAGE COU	NT
13a. TYPE OF REPORT 13b	TIME COVEREROM Sep 87	о то <u>Nov</u> 87	14. DATE 95.85,	Narch Month, (Day)		NT
13a. TYPE OF REPORT 13b Technical FR	TIME COVERE	D Nov 87	14. DATE 95.850	RT (Year, Month, I	Day)		NT
13a. TYPE OF REPORT 13b Technical FR	COINI	_ 10	14. DATE OF REPO			161	
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION	18.	SUBJECT TERMS	(Continue on revers	e if necessary and	identif	161 y by block nur	mber)
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES	18.	SUBJECT TERMS		e if necessary and	identif	161 y by block nur	mber)
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GR	ROUP 18.	SUBJECT TERMS Satellite Co	(Continue on revers	e if necessary and	identif	161 y by block nur	mber)
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES	ROUP 18.	SUBJECT TERMS Satellite Co	(Continue on revers	e if necessary and	identif	161 y by block nur	mber)
13a. TYPE OF REPORT Technical FR 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if n	ROUP 18.	Subject terms Satellite Co to Target	(Continue on reversionstellations, M	ie if necessary and inimum PDOP	identify Value	161 y by block nur s, Shortest I	mber) Distance
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if notation in this report, tables of sample o	ROUP 18. necessary and in	Subject terms Satellite Co to Target dentify by block of	(Continue on reversionstellations, Monumber)	in in necessary and inimum PDOP	identifi Value	y by block nur s, Shortest I	mber) Distance
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if notation in this report, tables of sample of distances between target and tar	necessary and in cumulative present trackers	Satellite Co to Target dentify by block of probability dis were develop	(Continue on reversionstellations, Monumber) tributions of med, where the tri	inimum PDOP	Value	y by block nurs, Shortest I	mber) Distance st the target
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if notation in this report, tables of sample o	necessary and in cumulative present trackers one of 16 sa	Subject terms Satellite Co to Target dentify by block of probability dis were develop tellite constell	(Continue on reversionstellations, Monumber) tributions of middle, where the trations. Shortest	inimum PDOP inimum PDOP arget is a spatia	Value values	y by block nurs, Shortest Is and shorter and where a paramete.	mber) Distance st the target r in this
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not this report, tables of sample of distances between target and tartrackers are constrained to any of the continue on reverse if not the continue	necessary and in cumulative proget trackers one of 16 sarors involving	Subject terms Satellite Co to Target dentify by block of probability dis were develop tellite constell ag direction to	continue on reversions tellations, M number) tributions of med, where the trations. Shortest target increases	inimum PDOP arget is a spatia distance was us	Values values al one sed as target	y by block nur s, Shortest I and shorte and where a paramete increases.	mber) Distance st the target r in this The
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not a light of the continue on the contin	necessary and incumulative graget trackers one of 16 sarors involving and third 3, 4, or 5 tar	Subject terms Satellite Co to Target centify by block of probability dis were develop tellite constell g direction to shortest dista get trackers. T	continue on reversionstellations, Monumber) tributions of mided, where the trations. Shortest target increases and to minables of expect	inimum PDOP arget is a spatia distance was us as distance to imum PDOP's ed values of m	values values sed as target compu	y by block nurs, Shortest Is and shorter and where a parameter increases. Sited from slm PDOP's a	mber) Distance st the target r in this The lant
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not a light of the continue on the continue on reverse if not a light of the continue on the continue on reverse if not a light of the continue on re	necessary and in cumulative present trackers one of 16 sarors involving id, and third 3, 4, or 5 tarded. Values	Subject terms Satellite Co to Target corobability dis were develop tellite constell g direction to shortest dista get trackers. I	continue on reversionstellations, M number) tributions of mied, where the trations. Shortest target increases nices and to mingables of expect	inimum PDOP arget is a spatia distance was us as distance to imum PDOP's ed values of mances are also pr	values values il one sed as target compti	and shorter a parameter increases. Sited from sland. Values in the control of the	mber) Distance st the target r in this The lant and the
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not this report, tables of sample of distances between target and tartrackers are constrained to any own work because target location error tables pertain to the first, second range observations taken from 3 shortest distances are also provintables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first tables of shortest distances can be constrained to the first tables of tables.	necessary and in cumulative present trackers one of 16 sa rors involvined, and third 3, 4, or 5 tar ded. Values be combined	Subject terms Satellite Co to Target dentify by block of probability dis were develop tellite constell tellite constell tellite chest dista get trackers. I in the tables of with a prior	continue on reversionstellations, Monumber) tributions of mided, where the tractions. Shortest target increases and to minimables of expect of shortest distarter analysis to	inimum PDOP arget is a spatial distance was us as distance to imum PDOP's ed values of minces are also pro determine 99	values values il one sed as target compti inimus ovideo percei	and shorter a parameter increases. Ited from sland Values in the confidence of the c	st the target r in this The lant and the ce sphere
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if notation in this report, tables of sample of distances between target and tartrackers are constrained to any own work because target location error tables pertain to the first, second range observations taken from 3 shortest distances are also provious tables of shortest distances can be radii about estimated target location and the stimated target location and the shortest distances can be radii about estimated target location.	necessary and in cumulative present trackers one of 16 sarors involvined, and third 3, 4, or 5 tarded. Values be combined ations. Value	Subject terms Satellite Co to Target dentify by block of probability dis were develop tellite constell g direction to shortest dista get trackers. The in the tables of with a prior es in the tables in the tables	continue on reversionstellations, Monumber) tributions of mided, where the trations. Shortest target increases and to minimables of expect of shortest distarter analysis to of minimum P	inimum PDOP arget is a spatial distance was us as distance to imum PDOP's ed values of minces are also pro determine 99 DOP's can be us	values values il one sed as target compu	s, Shortest Is and shorter and where a parameter increases. Interest Intere	st the target r in this The lant and the ce sphere
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not this report, tables of sample of distances between target and tartrackers are constrained to any own work because target location error tables pertain to the first, second range observations taken from 3 shortest distances are also provintables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first, second tables of shortest distances can be constrained to the first tables of shortest distances can be constrained to the first tables of tables.	necessary and in cumulative present trackers one of 16 sarors involvined, and third 3, 4, or 5 tarded. Values be combined ations. Value	Subject terms Satellite Co to Target dentify by block of probability dis were develop tellite constell g direction to shortest dista get trackers. The in the tables of with a prior es in the tables in the tables	continue on reversionstellations, Monumber) tributions of mided, where the trations. Shortest target increases and to minimables of expect of shortest distarter analysis to of minimum P	inimum PDOP arget is a spatial distance was us as distance to imum PDOP's ed values of minces are also pro determine 99 DOP's can be us	values values il one sed as target compu	s, Shortest Is and shorter and where a parameter increases. Interest Intere	st the target r in this The lant and the ce sphere
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if notation in this report, tables of sample of distances between target and tartrackers are constrained to any own work because target location error tables pertain to the first, second range observations taken from 3 shortest distances are also provious tables of shortest distances can be radii about estimated target location and the stimated target location and the shortest distances can be radii about estimated target location.	necessary and in cumulative present trackers one of 16 sarors involvined, and third 3, 4, or 5 tarded. Values be combined ations. Value	Subject terms Satellite Co to Target dentify by block of probability dis were develop tellite constell g direction to shortest dista get trackers. The in the tables of with a prior es in the tables in the tables	continue on reversionstellations, Monumber) tributions of mided, where the trations. Shortest target increases and to minimables of expect of shortest distarter analysis to of minimum P	inimum PDOP arget is a spatial distance was us as distance to imum PDOP's ed values of minces are also pro determine 99 DOP's can be us	values values il one sed as target compu	s, Shortest Is and shorter and where a parameter increases. Interest Intere	st the target r in this The lant and the ce sphere
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not this report, tables of sample of distances between target and tartrackers are constrained to any owner work because target location error tables pertain to the first, second range observations taken from 3 shortest distances are also provide tables of shortest distances can be radii about estimated target location error and about estimated target locati	cumulative precessary and in cumulative precessary and in cumulative precessary and in cumulative precessary and in constant of 16 sarors involving and third and third and third ded. Values be combined ations. Value about target	Subject terms Satellite Co to Target corobability dis were develop tellite constell g direction to shortest dista get trackers. T in the tables of with a prior es in the tables t locations esti	continue on reversionstellations, Monumber) tributions of mit ed, where the trations. Shortest target increases and to min ables of expect of shortest distant error analysis to of minimum P mated from 3, and all all all all all all all all all al	inimum PDOP arget is a spatia distance was us as distance to imum PDOP's ed values of mances are also pro determine 99 DOP's can be us 4, or 5 slant ran	values va	and shorter a parameter increases. Ited from sland Values in the confidence of determine servations.	st the target r in this The lant and the ce sphere
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not like the continue on reverse if not l	necessary and in cumulative greet trackers one of 16 sa rors involvined, and third 3, 4, or 5 tarded. Values be combined ations. Value about target	Subject terms Satellite Co to Target dentify by block of probability dis were develop tellite constell g direction to shortest dista get trackers. The in the tables of with a prior es in the tables in the tables	continue on reversionstellations, Monumber) tributions of mit ed, where the trations. Shortest target increases and to min ables of expect of shortest distancer analysis to of minimum P mated from 3, and all all all all all all all all all al	inimum PDOP inimum PDOP arget is a spatial distance was us as distance to imum PDOP's ed values of mances are also pro o determine 99 DOP's can be us 4, or 5 slant ran	values values il one sed as target compu inimum ovidec percen ised to	and shorter a parameter increases. Ited from sland tonfidence of determine servations.	mber) Distance st the target r in this The lant and the ce sphere 99
13a. TYPE OF REPORT Technical 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GR 19. ABSTRACT (Continue on reverse if not this report, tables of sample of distances between target and tartrackers are constrained to any owner work because target location error tables pertain to the first, second range observations taken from 3 shortest distances are also provide tables of shortest distances can be radii about estimated target location error and about estimated target locati	necessary and in cumulative greet trackers one of 16 sa rors involvined, and third 3, 4, or 5 tarded. Values be combined ations. Value about target	Subject terms Satellite Co to Target corobability dis were develop tellite constell g direction to shortest dista get trackers. T in the tables of with a prior es in the tables t locations esti	continue on reversionstellations, Monumber) tributions of mit ed, where the trations. Shortest target increases and to min ables of expect of shortest distancer analysis to of minimum P mated from 3, and all all all all all all all all all al	inimum PDOP inimum PDOP arget is a spatial distance was us as distance to imum PDOP's ed values of mances are also pro o determine 99 DOP's can be us 4, or 5 slant ran	values values values il one sed as target compt inimum ovidec percei used to	and shorter a parameter increases. Ited from sland tonfidence of determine servations.	st the target r in this The lant and the ce sphere

PREFACE

This study was conducted under DA Project 4A762707A855, "Topographic Mapping Technology."

The study was conducted during the autumn of 1987 under the supervision of Donald R. Barnes, Chief, Space Concepts Division; and Dr. Joseph J. Del Vecchio, Director, Space Programs Laboratory.

Col. David F. Maune, EN, was Commander and Director, and Walter E. Boge was Technical Director of the U.S. Army Engineer Topographic Laboratories during the report preparation.

Distribution Statment A
Per. Mr. E. James Books (CEETL-IM-T
U. S. Army Engineer Topgraphic

4-19-89 HP

Acces	sion	For		"
NTIS	GRA8	ιI		
DTIC	TAB		ā	
Upann	ounce	: d		
Just1	ficat	.1 on		
Distr	i but i		Codes	<u>. </u>
		់កាល់		
Dist		scial		
A-1				

CONTENTS

TITLE	PAGE
PREFACE	iii
ILLUSTRATIONS	vi
TABLES	vi
INTRODUCTION	1
NUMERICAL EXPERIMENT	2
Constellation Definition Ballistic Trajectory Valid Observations Least Distance and PDOP	2 3 3 3
SAMPLE PROBABILITIES	5
NUMERICAL RESULTS	6
Probability Distributions Expected Values	6 6
DISCUSSION	8
CONCLUSIONS	16
APPENDIXES	17
A. Cumulative Probability Tables of Minimum PDOP Values	17
B. Cumulative Probability Tables of Shortest Target Tracker to Target Distances	55
C. Expected Values of Minimum PDOP Values	93
D. Expected Values of Shortest Target Tracker to Target Distances	125

ILLUSTRATIONS

TITLE

PAGE

FIGURE

1	Ballistic Missile Trajectories	4
	TABLES	
TABLE	TITLE	PAGE
i	Constellation Definition	2
2	SP(99%) Errors Derived From One Case III Target Tracker	9
3	Expected Values of Shortest Distances to Target	11
4	Expected Values of Minimum PDOP From Three Observations	13
5	SP(99%) Position Errors	14
A-1 ~ A-20	Cumulative Probability Tables of Minimum PDOP Values	19
B-1 - B-20	Cumulative Probability Tables of Shortest Target Tracker to Target Distances	57
C-1 - C-20	Expected Values of Minimum PDOP Values	95
D-1 - D-20	Expected Values of Shortest Target Tracker to Target Distances	127

SPATIAL TARGET LOCATION ERRORS DERIVED FROM MEASUREMENTS COLLECTED FROM SIXTEEN SATELLITE CONSTELL SIONS

INTRODUCTION

Tabular results of spherical errors in computed target positions derived from a hypothetical target tracking system' are extended to include sample probabilities of minimum PDOP (Position Dilution of Precision) values and shortest distances to targets associated with target trackers reterenced to 16 constellations of satellite platforms. The target in this case is located at specific heights and latitudes of an intercontinental ballistic missile launched over the North Pole. A ballistic missile trajectory was chosen merely to provide a set of spatial target points that had a counterpart in the real world. A similar study is underway to determine ground location errors of fixed and moving targets. The target region in that work will be constrained to a Corps-sized region and the target tracker platforms will include satellites of shorter periods than those considered in this work. Results given in the referenced work pertain to symmetric target-target tracker models where each target tracker is equidistant from the target and adjacent target trackers are equidistant from one another. More general target-target tracker configurations are examined here by constraining the target trackers to any one of the 16 constellations and by constraining the target to a ballistic trajectory.

Data derived in this experiment can be used in a comparative analysis of target position errors derived by a single target tracker and errors derived from 3, 4, or 5 slant range only observations. The single target tracker is the hypothetical target tracker system described in the referenced work and is comprised of a range-to-target measuring capability, a real-time attitude and position capability and an automatic target sensor. Since target position errors in this case are greatly dependent on distance to target, the comparative analysis considers only those platforms of the several platforms having line-of-sight (LOS) with the target that are closest to the target. Target position errors calculated from slant range observations are independent of distance to target, but are heavily dependent on the geometric arrangement of the N≥3 platforms having LOS with the target. The best geometric arrangement is defined by minimum PDOP, which is the square root of the trace of the estimated position covariance matrix.

The purpose of this report is to apply and extend the results given in the referenced report to a more realistic situation not involving ideal geometric models. Another study will extend the results to positional errors of moving and stationary ground targets observed from lower orbits as well as from the 16 constellations described in this work.

¹ Crombie, M., "Target Location Errors Derived From a Hypothetical Target Tracking System." U.S. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia 22060-5846. Report ETL-0631, February 1989.

NUMERICAL EXPERIMENT

All of the computer runs were performed on the Zenith 248-PC desktop computer. Specific orbit configurations were defined and then used to describe target-tracker positions at given times. The three shortest distances to the target and the set of 3, 4, or 5 platform positions producing the best PDOP values were determined at a given time. Time was incremented by one minute and the process repeated. In this way, histograms of shortest distances to target and least PDOP values were developed. Sample probability distribution functions were calculated from the histograms. Should the problem be turned around and the objective be to determine the best constellation that met geometric and cost restraints, then a micro computer approach would be entirely unsatisfactory. The results of this work pertain only to the 16 constellations defined below. Although the target was regarded as an intercontinental ballistic missile in this work, any target located at the given positions is applicable.

Constellation Definition. Each of the 16 constellations have the following elements in common:

- 1. Three satellites per orbital plane.
- 2. Equal spacing of satellites in the orbital plane.
- 3. Circular orbits.

In general, there are four kinds of constellations concerning the number of satellites per constellation. The four kinds are defined below in table 1:

Table 1. Constellation Definition

Const.	No. of Planes	No. of Satellites			Longitud Ascendin			
1	3	9	0°	120°	240°			
2	4	12	0°	90°	180°	270°		
3	5	15	0°	72°	144°	216°	288°	
4	6	18	0°	60°	120°	180°	240°	300°

Associated with each of the four kinds are two periods, namely 6-hour periods and 3-hour periods. Finally, associated with each of the eight kinds of definitions are two inclinations, namely 60° inclination and 90° inclination. Satellite positions were calculated in an earth-fixed coordinate reference system. Each experiment was started at time equal 0 and allowed to run for at least one period in increments of one minute.

Ballistic Trajectory. The two minimum energy ICBM trajectories described in figure 1 are examples of 9000 kilometer lofted and depressed trajectories.² The lofted trajectory is in flight for about 42 minutes and impacts the ground at a 40° angle. The depressed trajectory is in flight for about 24 minutes and impacts the ground at a 15° angle. The maximum altitude of the lofted trajectory is about 2750 kilometers.

Valid Observations. Before a particular target tracker can be regarded as a possible candidate for inclusion in the probability calculations, there must be a clear LOS between it and the target. For targets above 500 km, LOS was defined such that the ray between target and target tracker was above the upper reaches of the ionosphere (400 km). In this way, unpredictable errors in round trip times caused by the ionosphere can be ignored. For ground targets, LOS was defined such that the angle of the ray between target and target tracker was more than 5 degrees above the earth target plane at the target so as to avoid ground clutter.

Least Distance and PDOP. Suppose there are M valid observations on the target at time t. The M slant range distances between the target and target trackers are calculated, and the three shortest distances are determined by a sorting algorithm. Determination of the three minimum PDOP values is more difficult. PDOP is defined to be the square root of the trace of the sample position covariance matrix derived by least squares adjustment. If d₁ is the column vector of direction cosines between the target and the ith target tracker, then

PDOP² = Trace
$$\left(\sum_{i=1}^{N} d_{i} \cdot d_{i}^{T}\right)^{-1}$$

If there are M valid observations, then $C_{M,N}$ sets of N observations must be tested to determine the minimum PDOP. For example, if at a specific time t, M = 10 then $(C_{10,3} + C_{10,4} + C_{10,5}) = 582$ sample covariances must be formed to determine the three minimum traces for N=3, 4, and 5 observations.

² David Pines, Editor - "Soviet Ballistic Missile Threat: Current and Responsive," Chapter 2. Review of Modern Physics, Volume 59, Number 3, Part II, July 1987.

Figure 1. Ballistic Missile Trajectories.

SAMPLE PROBABILITIES

Three tables of PDOP-bins were defined, beginning at 1.0 and extending to 20.4 in increments of 0.2. The first bin pertains to PDOP values less than 1.0, and the last bin pertains to PDOP values greater than 20.4. There is a total of 99 bins for each of the three observational types. As PDOP values were constituted, counts were built up in the appropriate bins. Relative frequencies were then computed for each bin and from the relative frequencies cumulative probabilities were generated.

Expected values were computed from the sample probability data. The expected value of a particular PDOP is

E(PDOP) =
$$p_1 * 0.5 + \sum_{i=1}^{97} p_{i+1} * (0.9 + 0.2 * i)$$

Note that the last bin is not included in the calculation. P₁ is the relative frequency associated with the ith bin. The expected value of PDOP² is

$$E(PDOP^2) = p_1 * 0.25 + \sum_{i=1}^{97} p_{i+1} * (0.9 + 0.2 * i)^2$$

The variance associated with a specific PDOP is

$$\sigma^2$$
 PDOP = E (PDOP²) - E² (PDOP)

Cumulative probability distribution tables were generated for the three shortest distances in the same way as in the PDOP calculations. In this case, the bins were defined beginning at 0.5 and extending to 21.5 in increments of 0.5. The last of the 44 bins pertained to distance values greater than 21.5. The distance values are 10⁻⁶ times the true distance in meters. Expected values of distance were computed in a manner similar to the PDOP values.

NUMERICAL RESULTS

Probability Distributions. Two sets of cumulative distributions were generated, and reduced versions of those distributions are presented in appendixes A and B. In both sets, three values appear in the title. The first value is the latitude of the target; the longitude for all targets was 100°. The second value is the inclination of the orbital plane and the last value is the satellite period. A 6-hour period translates into a semimajor axis of 16763428.6 meters. A 3-hour period translates into a semimajor axis of 10560298.3 meters. The tables in both appendixes are organized by target elevation. Note that the tables pertaining to latitude 30° extend only to a target elevation of 1000 km and to 2000 km for a latitude of 45°. The ballistic trajectories are below these heights for all practical launch sites. Finally, tables in both appendixes are organized by numbers of satellites. The values under CONST=1, 2, 3, or 4 pertain to 9, 12, 15, or 18 satellites, respectively.

The tabular entries in appendix A pertain to minimum PDOP values. In all cases, the PDOP argument goes from PDOP=2 to PDOP=10. The cumulative probability values are organized by number of observations. For example, consider table A-1. If the target is at latitude 30° and elevation 500 km, then 95 percent of expected minimum PDOP values are less than 3.0 when three observations are made from 18 satellites (CONST=4) orbiting at 60° inclinations and in 6-hour periods. If four observations are made, then 96.7 percent of the expected PDOP values are less than 3.0, and 97.5 percent when five observations are made.

The tabular entries in appendix B pertain to the expected value of the shortest distances to the target. The distance arguments (DIST) vary from table to table. The lowest value of the argument was chosen to match that value in the larger set that had a probability of occurring. The headings, FIRST, SECOND, and THIRD pertain to the shortest, next shortest, and third shortest distance respectively.

Expected Values. Two sets of expected values were generated and are presented in appendixes C and D. The values in the titles are exactly like those described above, and the results are organized by target elevation exactly as before.

The tabular entries in appendix C are expected values of minimum PDOP, standard deviations of the expected values, and probabilities that the relevant event occurred. For example, consider table C-1, which pertains to a target at latitude 30°, observed by satellites in 60° orbital planes and orbiting in 6-hour periods. Suppose the target was at 500 km elevation and there were 12 satellites (CONST=2) in the constellation, then if 4 target trackers were used to compute target position, the expected minimum PDOP would be 2.03. The standard deviation associated with this value is 0.45, which says that minimum PDOP's would not vary greatly over time. However, the event probability is 0.73, which says that four valid observations could not be made 27 percent of the time.

The tabular entries in appendix D are expected values of shortest distances, associated standard deviations, and event probabilities. Consider table D-4, which pertains to a target at latitude 30°, observed by satellites in 90° orbital planes and orbiting in 3-hour periods. Suppose the target was at ground level, and there were nine satellites (CONST=1) in the constellation. Then, the expected value of the shortest distance to the target would be 5840 km with a standard deviation 1040 km. The event probability is 0.78, which says that the target would not be in LOS with any of the satellites 22 percent of the time. Note that if the automatic target sensor operated in the visible range, then the event probability would be lower because the target would be in darkness part of the time. The expected value of the second shortest distance is 7020 km with a standard deviation

610 km. The event probability here is 0.43, which says that the target would not be in LOS with a pair of satellites simultaneously 57 percent of the time. The same comment pertains here if the target sensors operated in the visible range. The event probability associated with the third shortest distance is zero which means that the target would never be in LOS with three satellites simultaneously. This says that target coordinates computed from 3, 4, or 5 slant range only observations is impossible. This result is restated in the first line of results in table C-4.

DISCUSSION

The extension of the previous work³ to include target trackers in orbit was performed for two reasons. The first reason is that the overall work effort is in support of an ETL-initiated, USACE-approved NASA shuttle experiment intended to validate the concept of precision real-time attitude keyed to a digital image stellar camera operating in space. The second reason is that orbiting platforms provide a more realistic configuration of target tracker positions than the ideal geometric configurations described in the referenced work.

The selection of a family of intercontinental ballistic missiles as targets was used mainly to develop positions in space that relate to realistic targets. The situation is not entirely realistic since the target longitude was kept at 100° for all cases. One reason for this simplification was to reduce the amount of compute time and another was that the expected values of PDOP and distance over time are mainly functions of latitude and elevation, not longitude.

A combination of the tables given in the referenced work and those presented in this work can be used in a variety of comparative analyses. For example, suppose there was a requirement to evaluate the performance, in the first case, of a single target tracker and, in the second case, of three slant range only target trackers operating in any one of the 16 satellite configurations. Suppose targets are at 60° latitude and located at 0 km, 500 km, and 2000 km elevation. In both cases, assume that the target tracker position errors are negligible. In the first case, let the system attitude error be either 0.5 seconds or 2.0 seconds, and let the slant range error be 10 meters. Finally, assume that the target error is 1.0 second, 3.0 seconds, or 5.0 seconds. The SP(99%) errors presented in table 2 were taken from table H-1 of the referenced work. Note that the errors were taken from the group where GPS=1.0 meter, which is regarded here as a negligible error.

³ Crombie, M., "Target Location Errors Derived From A Hypothetical Target Tracking System." U.S. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia 22060-5546. Report ETL-0531, February 1989.

Table 2. SP(99%) Errors Derived From One Case III Target Tracker

	σ _α σ _π σ _{αν}	= 10 Meters	
		σ_{t}	
DIST (km)	1.0	3.0	5.0
500	21	28	39
1000	25	45	70
5000	81	205	336
10000	158	409	672
	σ _α σ _R σ _{GP}	= 10 Meters	
		$\sigma_{\scriptscriptstyleT}$	
DIST (km)	1.0	3.0	5.0
500	27	33	42
1000	40	55	77
5000	178	259	372

The expected shortest distances given in table 3 are taken from tables D-9, D-10, D-11, and D-12 of this work. A quick glance at the results in table 3 show that the expected distances are almost double for 6-hour periods compared to 3-hour periods. This result is not unexpected since the 3-hour period satellites are much closer to the three targets than are the 6-hour period targets. An equally obvious observation is that the expected distances decrease as the target elevation increases. With respect to orbit inclination, there does not appear to be much difference between i=60° and i=90°, whereas there is an appreciable decrease in expected shortest distance to target as the number of satellites increases. In any case, from a pure numbers point of view the best selection would be an 18-satellite configuration orbiting in 90° planes in 3-hour periods. The expected SP(99%) error can be estimated by interpolating in table 2. For example, suppose, for reasons other than purely geometric ones, that the 15-satellite configuration was selected and, suppose too, that the primary target of interest was on the ground. From table 3 the expected minimum distance to target is 5040 km. Then, from table 2 (where the target error is 1.0 second) the corresponding SP(99%) is 81 meters or 178 meters depending on whether the attitude error of the target tracking system was 0.5 second or 2.0 seconds.

Table 3. Expected Values of Shortest Distances to Target

φ	=	60)*
Н	=	0	km

	P = 3	3 hours	P = 6 hours		
No. of Satellites	i = 60°	i = 90°	i = 60°	i = 90°	
9	5380	5320	11330	11230	
12	5200	5150	11110	11080	
15	5050	5040	11010	11000	
18	4980	4940	10930	10930	

$$\phi = 60^{\circ}$$

$$H = 500 \text{ km}$$

	P = 1	3 hours	P = 6 hours		
No. of Satellites	i = 60°	i = 90°	i = 60°	i = 90°	
9	5100	5050	10930	10820	
12	4890	4820	10700	10670	
15	4710	4710	10580	10580	
18	4630	4600	10500	10490	

 $\phi = 60^{\circ}$ H = 2000 km

P = 6 hours

No. of Satellites	P = 3 hours		P = 6 hours	
	i = 60°	i = 90°	i = 60°	i = 90°
9	4380	4320	9850	9670
12	4070	4000	9530	9470
15	3810	3830	9380	9330
18	3700	3660	9260	9220

In the second case, where observations on the target are collected from three slant range only target trackers, the measuring errors are $\sigma_R=10$ meters, $\sigma_R=15$ meters or $\sigma_R=20$ meters. The expected minimum PDOP values given in table 4 were taken from tables C-9, C-10, C-11 and C-12 of this work. A comparison of the results in table 4 show that the expected minimum PDOP values are smaller for 6-hour periods (H=0 km and H=500 km) and smaller for 3-hour periods when H=2000 km. In all cases, minimum PDOP values are smaller for satellites in 60° inclined planes. Expected minimum PDOP values can be converted into SP(99%) errors by interpolating in table 5. Values in table 5 were calculated from the following formula:

SP (99%) = 3 • 368 •
$$\frac{\text{PDOP}}{\sqrt{3}}$$
 • σ_{R}

A direct comparison with the numerical example given above can be made by estimating the ground target error when a 15-satellite configuration orbiting in 90 planes in 3-hour periods is used. In this case, the expected minimum PDOP from table 4 is found to be 3.6. From table 5, this value translates into SP(99%)=70 meters, 104 meters, and 139 meters, depending on whether $\sigma_R=10$ meters, 15 meters, or 20 meters. A direct comparison with expected errors in the first case [SP(99%)=81 meters to 178 meters] can be made by noting SP(99%)=70 meters when $\sigma=10$ meters in this case.

The results of this work can only be used to evaluate one or more aspects of a proposed target tracking system. System and environmental distortions were not considered, nor were system costs, or the complex communication and control problems when two or more target trackers are used. Even the one number comparison used in the example above requires deeper investigation than developed so far.

For example from table C-12 the standard deviation associated with the expected value of minimum PDOP=3.60 is almost as large as the value itself (σ PDOP=2.84). Furthermore, from the same table the event probability is 0.92, which says the system cannot observe the target 8 percent of the time. Proponents of the complete target tracking system might point out (see table D-12) that the expected value of the shortest distance (5040 km) has a standard deviation of 570 km with an event probability of 1.0. In fact, if two such target trackers are used, then the expected value of the second shortest distance is 5930 km with a standard deviation of 670 km. Again, the event probability is 1.0.

Table 4. Expected Values of Minimum PDOP from Three Observations

φ	*	60	•
Н	=	0	km

	P = 3 i	nours	P = 6	= 6 hours	
No. of Satellites	i = 60°	i = 90°	i = 60°	i = 90°	
9		3.91	2.83	3.47	
12	3.63	3.99	2.56	4.05	
15	2.97	3.60	2.75	3.58	
18	3.62	3.62	2.65	3.20	

 $\phi = 60^{\circ}$ H = 500 km

	P = 3 h	ours	P = 6 hours				
No. of Satellites	i = 60°	i = 90°	i = 60°	i = 90°			
9	3.25	3.78	2.63	3.08			
12	2.81	3.65	2.54	3.53			
15	3.08	3.31	2.50	3.30			
18	2.68	3.75	2.38	2.97			

 $\phi = 60^{\circ}$ H = 2000 km

	P = 3	hours	P = 6 hours			
No. of Satellites	i = 60°	i = 90°	i = 60°	i = 90°		
9	2.19	2.92	2.84	3.23		
12	2.00	2.77	2.66	3.34		
15	1.99	2.60	2.85	2.83		
18	1.91	2.55	2.63	2.82		

Table 5. SP(99%) Position Errors

Slant Range Error

PDOP	$\sigma_{\rm R} = 10$	$\sigma_{\rm R}$ = 15	$\sigma_{\rm R} = 20$
1.00	19	29	40
1.50	29	43	59
2.00	40	59	78
2.50	48	73	97
3.00	59	88	116
3.50	68	102	137
4.00	78	116	155
4.50	88	132	175
5.00	97	145	194

Results from this work can be used, within the parametric bounds of the observation mode and target tracker models, to evaluate proposed target tracker configurations. Many conditions must be met in any target tracker configuration development. For example, a requirement might exist for organizing the satellite platforms so that there are no missing regions in observation space. The tables in this work can be used to identify missing regions by noting where the event probabilities are less than 1.0. Another analyst may be less concerned with single points measured at discrete times and more concerned with a continuous "look" at the target over a given amount of time, where in that time span minimum PDOP does not exceed a given value or perhaps the shortest distances to the target remain under a given value. Determining which platforms provide minimum PDOP is not an easy problem. Maintaining minimum PDOP over time where the target and target trackers are in motion will be equally difficult. Determining minimum PDOP on the fly is a problem being addressed in the GPS community.

CONCLUSIONS

- 1. Tables were developed that will allow analysts to predict target location accuracies from observations collected from a variety of satellite platforms.
- 2. More efficient methods must be developed for determining minimum PDOP.

APPENDIX A.

Cumulative Probability Tables of Minimum PDOP Values

Tabular entries are cumulative probability values of minimum PDOP. The values in parentheses in each of the titles define the latitude of the target, the inclination of the orbital plane, and the satellite period. The data is organized by target elevation, by number of observations, and by constellation number. The number of observations pertains to the number of instantaneous slant range measurements made on the target. CONST=1, 2, 3, or 4 corresponds to 9, 12, 15, or 18 satellites.

TABLE A-1 (30 DEG, 60 DEG, 6 HRS)

		V K.LGIL.LKG	
	3 OBS	4 OBS	5 088
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
ruor	, , ,	, , ,	, ,
2	.000 .441 .269 .404	.000 .509 .573 .713	.000 .000 .594 .744
3	.404 .806 .806 .883	.000 .839 .823 .908	.000 .000 1.000 .878
4	.623 .887 .856 .967	.000 1.000 .873 1.000	.000 .000 1.000 1.000
5	.712 .913 .887 1.000	.000 1.000 .873 1.000	.000 .000 1.000 1.000
	.750 .925 .911 1.000	.000 1.000 .910 1.000	.000 .000 1.000 1.000
6 7	.773 .934 .926 1.000	.000 1.000 .930 1.000	.000 .000 1.000 1.000
		.000 1.000 .930 1.000	.000 .000 1.000 1.000
8	.804 .943 .935 1.000		.000 .000 1.000 1.000
9	.827 .943 .944 1.000	.000 1.000 .950 1.000	
10	.846 .949 .951 1.000	.000 1.000 .990 1.000	.000 .000 1.000 1.000
		500 KILOMETERS	
	3 OBS	4 OBS	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.000 .464 .463 .450	.000 .597 .724 .808	.000 .862 .915 .863
3	.324 .921 .900 .950	.355 .949 .929 .967	.000 1.000 1.000 .975
4	.598 .968 .932 .992	.717 .998 .946 1.000	.000 1.000 1.000 1.000
5	.663 .986 .944 1.000	.822 1.000 .957 1.000	1.000 1.000 1.000 1.000
6	.756 .989 .957 1.000	1.000 1.000 .962 1.000	1.000 1.000 1.000 1.000
7		1.000 1.000 .971 1.000	
8	.803 .992 .968 1.000	1.000 1.000 .974 1.000	1.000 1.000 1.000 1.000
9		1.000 1.000 .979 1.000	
10	.805 .994 .976 1.000	1.000 1.000 .979 1.000	1.000 1.000 1.000 1.000
		750 KILOMETERS	
	3 OBS	4 OBS	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.057 .496 .519 .471	.163 .667 .832 .838	.408 .916 .910 .913
3	.426 .961 .968 1.000	.486 .963 .976 1.000	.508 1.000 1.000 1.000
4	.647 .992 .976 1.000	.724 1.000 .982 1.000	.638 1.000 1.000 1.000
5	.711 1.000 .982 1.000	.794 1.000 .987 1.000	.746 1.000 1.000 1.000
6	.785 1.000 .985 1.000	.905 1.000 .987 1.000	.915 1.000 1.000 1.000
7	.857 1.000 .987 1.000	1.000 1.000 .990 1.000	1.000 1.000 1.000 1.000
8	.886 1.000 .990 1.000	1.000 1.000 .990 1.000	1.000 1.000 1.000 1.000
9	.899 1.000 .990 1.000	1.000 1.000 .993 1.000	1.000 1.000 1.000 1.000
10	.903 1.000 .993 1.000	1.000 1.000 .993 1.000	1.000 1.000 1.000 1.000
		1000 KILOMETERS	
	3 OBS	4 OB\$	5 08\$
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.125 .550 .575 .660	.245 .778 .888 .872	.357 .921 .912 .917
3	.532 .961 .990 1.000	.623 .965 .990 1.000	.527 1.000 1.000 1.000
4	.731 .994 .990 1.000	.791 1.000 .990 1.000	.643 1.000 1.000 1.000
5	.796 1.000 .990 1.000	.853 1.000 .990 1.000	.746 1.000 1.000 1.000
6	.857 1.000 .990 1.000	.909 1.000 .990 1.000	.846 1.000 1.000 1.000
7	.919 1.000 .990 1.000	.973 1.000 .992 1.000	.966 1.000 1.000 1.000
8	.968 1.000 .992 1.000	1.000 1.000 .993 1.000	1.000 1.000 1.000 1.000
9	.968 1.000 .992 1.000	1.000 1.000 .993 1.000	1.000 1.000 1.000 1.000
10	.974 1.000 .993 1.000	1.000 1.000 .993 1.000	1.000 1.000 1.000 1.000

TABLE A-2 (30 DEG, 90 DEG, 6 HRS)

0 KILOMETERS

	3 OBS					4	280		5 OBS			
		CC	MST			C	TRIC			CC	WST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.347	.000	.267	.444	.000	.237	.438	.508	.000	.000	.597	.690
3	.577	.294	.631	.717	.000	.430	.625	. 750	.000	.000	.758	.857
4	.689	.512	.753	.803	.000	.541	.734	.811	.000	.000	.758	.872
5	.740	.621	.797	.833	.000	.593	.772	.850	.000	.000	.766	.872
6	.786	.682	.822	.861	.000	.644	.809	.867	.000	.000	.782	.872
7	.811	.724	.858	.878	.000	.681	.831	.883	.000	.000	.790	.880
8	.837	.755	.875	.889	.000	.696	.861	.906	.000	.000	.806	.903
9	.852	.773	.894	.906	.000	.741	.876	.908	.000	.000	.831	.907
10	.852	.803	.900	.908	.000	.756	. 903	.922	.000	.000	.839	.911

500 KILOMETERS

3 08S						4 (08 S		5 OBS				
		C	ONST			CO	NST		CONST				
PDOP	1	2	3	4	1	2	3	4	1	2	3	4	
2	.262	.047	.386	.497	.073	.275	.525	.608			.578	.650	
3	.526	.497	.781	.814	.299	.586	.797	.842	.265	.437	.814	.853	
4	.655	.650	.842	.864	.496	.708	.864	.875	.449	.603	. 883	.881	
5	.727	.733	.906	.881	.584	.775	.925	.892	.612	.689	.939	.903	
6	.774	.783	.944	.903	.657	.822	.961	.914	.714	.762	.983	.925	
7	.816	.814	.978	.914	.715	.850	1.000	.931	.776	.781	1.000	.942	
8	.841	.836	1.000	.925	.752	.878	1.000	.942	.816	.821	1.000	.942	
9	.861	.856	1.000	.942	.796	.883	1.000	.947	.878	.848	1.000	.958	
10	.875	.881	1.000	.942	.825	.900	1,000	.958	.918	.861	1.000	.958	

750 KILOMETERS

	3 08\$					4 (DBS		5 OBS				
		C	ONST			CO	NST		CONST				
POOP	1	2	3	4	1	2	3	4	1	2	3	4	
2	.336	. 233	.390	.497	.359	.403	.631	.639	. 197	.505	.661	.675	
3	.644	.561	.825	.917	.591	.647	.839	.936	.451	.703	.853	.942	
4	.772	.686	.922	.947	.751	.744	.928	.956	.730	.792	.933	.958	
5	.864	.756	.950	.958	.835	.797	.944	.964	.770	.837	.953	.969	
6	.897	.811	.961	.967	.886	.844	.967	.975	.828	.883	.967	.975	
7	.919	.847	.972	.972	.911	.875	.975	.975	.861	.908	.981	.978	
8	.939	.869	.986	.975	.937	.892	1.000	.981	.910	.929	1.000	.986	
9	.950	.892	1.000	.981	.958	.914	1.000	.992	.926	.933	1.000	.992	
10	.964	.908	1.000	.986	.962	.925	1.000	.992	.934	.954	1.000	.992	

		3	088			4	OBS		5 OBS				
		C	DNST			a	ONST		CONST				
PDOP	1	2	3	4	1	2	3	4	1	2	3	4	
2	.328	. 286	.394	.517	.437	.458	.672	.700	.290	.581	.735	.761	
3	.733	.617	.844	.919	.706	.703	.867	.936	.627	.752	.877	.942	
4	.861	.747	.947	.947	.896	.808	.964	.953	.852	.842	.967	.958	
5	.942	.828	.969	.958	.932	.867	.975	.964	.888	.891	.978	.969	
6	.953	.875	.975	.964	.946	.900	.981	.972	.911	.916	. 983	.975	
7	.961	.906	.981	.969	.953	.922	.986	.975	.923	.941	.969	.981	
8	.967	.922	.986	.975	.961	.939	.989	.981	.935	.953	.992	.981	
9	.969	.936	.989	.981	.961	.953	.992	.981	.941	.969	.997	.986	
10	.975	.944	.994	.981	.968	.958	1,000	.986	.947	.975	1.000	.966	

TABLE A-3 (30 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

		3	085			4	OBS		5 OBS			
		CC	MST			C	DNST			CON	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.000	.186	.000	.406	.000	.000	.060	.531	.000	.000	.000	.000
3	.000	.722	.549	.768	.000	.000	.640	.823	.000	.000	.000	.000
4	.000	.835	.817	.906	.000	.000	.780	.896	.000	.000	.000	.000
5	.000	.887	.872	.924	.000	.000	.780	.927	.000	.000	.000	.000
6	.000	.897	.927	.964	.000	.000	.880	.979	.000	.000	.000	.000
7	.000	.918	.933	.971	.000	.000	.880	1.000	.000	.000	.000	.000
8	.000	.938	.945	.971	.000	.000	.880	1.000	.000	.000	.000	.000
9	.000	.938	.951	.978	.000	.000	.880	1.000	.000	.000	.000	.000
10	.000	.938	.963	.978	.000	.000	.920	1.000	.000	.000	.000	.000

500 KILOMETERS

		3	OBS			4 (280		5 OBS			
		CC	ONST		CONST				CONST			
PDOP	1	2	3	4	1	5	3	4	1	2	3	4
2	.000	.046	.023	. 286	.000	.000	.120	. 395	.000	.000	.000	.578
3	.000	.500	.466	.650	.000	.696	.627	.762	.000	.000	.000	.867
4	.000	.666	.686	.872	.000	.957	.765	.910	.000	.000	.000	1.000
5	.270	.755	.797	.889	.000	1.000	.843	.940	.000	.000	.000	1.000
6	.405	.815	.870	.919	.000	1.000	.876	.961	.000	.000	.000	1.000
7	.486	.861	.904	.931	.000	1.000	.899	.973	.000	.000	.000	1.000
8	.595	.871	.938	.944	.000	1.000	.940	.994	.000	.000	.000	1.000
9	.649	.881	.949	.969	.000	1.000	.954	1.000	.000	.000	.000	1.000
10	.649	.884	.960	.992	.000	1.000	.954	1.000	.000	.000	.000	1.000

750 KILOMETERS

		3	OBS			4 0	3S		5 OBS				
		CC	DNST			CONS	ST			CONST			
PDOP	1	2	3	4	1	2	3	4	1	2	3	4	
2	.000	.058	.111	.269	.000	.125	.207	.392	.000	.269	.385	.479	
3	.105	.522	.592	.703	.607	.630	.718	.836	.000	.846	.993	.857	
4	.491	.725	.781	.975	1.000	.880	.810	.983	.000	1.000	1.000	.991	
5	.620	.842	.850	.992	1.000	.924	.872	1.000	.000	1.000	1.000	1.000	
6	.713	.867	.903	1.000	1.000	.935	.916	1.000	.000	1.000	1.000	1.000	
7	.760	.900	.914	1.000	1.000	.957	.925	1.000	.000	1.000	1.000	1.000	
8	.801	.914	.933	1.000	1.000	.973	.941	1.000	.000	1.000	1.000	1.000	
9	.819	.931	.942	1.000	1.000	1.000	.947	1.000	.000	1.000	1.000	1.000	
10	.860	.939	.950	1.000	1.000	1.000	.958	1.000	.000	1.000	1,000	1.000	

		3	088			4 0	35					
		C	ONST			CONS	ST			CONST		
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.000	.089	.131	.231	.000	.230	.250	.400	.000	.635	.396	.533
3	.250	.633	.697	.844	.911	.747	.836	.942	.000	1.000	.965	.947
4	.568	.828	.875	.975	.987	.922	.933	.983	.000	1.000	1.000	.992
5	.725	.903	.942	.992	1.000	.973	.956	1.000	.000	1.000	1.000	1.000
6	.831	.922	.967	1.000	1.000	1.000	.972	1.000	.000	1.000	1.000	1.000
7	.873	.950	.969	1.000	1.000	1.000	.975	1.000	.000	1.000	1.000	1.000
8	.903	.961	.978	1.000	1.000	1.000	.978	1.000	.000	1.000	1.000	1.000
9	.949	.969	.978	1.000	1,000	1.000	.983	1.000	.000	1.000	1.000	1.000
10	05A	060	. 083	1.000	1.000	1.000	.983	1.000	.000	1.000	1.000	1.000

TABLE A-4 (30 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

		3	OBS			4	OBS			5 (28 S	
		CC	CONST			CC	NST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.000	.000	.256	.113	.000	.000	.000	.566	.000	.000	.000	.000
3	.000	.000	.744	.621	.000	.000	.600	.811	.000	.000	.000	.000
4	.000	.149	.860	.778	.000	.526	1.000	.811	.000	.000	.000	.000
5	.000	.319	.894	.857	.000	.632	1.000	.887	.000	.000	.000	.000
6	.000	.468	.918	.877	.000	.737	1.000	.887	.000	.000	.000	.000
7	.000	.617	.952	.897	.000	.737	1.000	.887	.000	.000	.000	.000
8	.000	.723	.952	.911	.000	.842	1.000	.943	.000	.000	.000	.000
9	.000	.809	.952	.916	.000	.842	1.000	.962	.000	.000	.000	.000
10	.000	.851	.952	.951	.000	.842	1.000	.962	.000	.000	.000	.000

500 KILOMETERS

		088			4	OBS			5 (280		
		C	DNST			C	TRIC			CO	IST	
PDOP	1	1 2 3 4				2	3	4	1	2	3	4
2	.000	.000	.188	.125	.000	.000	.344	.305	.000	.000	. 143	.647
3	.326	.000	.474	.445	.000	.000	.677	.534	.000	.000	.490	.850
4	.438	.071	.622	.561	.000	.100	.817	.621	.000	.000	.796	.895
5	.493	.185	.676	.657	.000	.375	.871	.687	.000	.000	1,000	1.000
6	.535	.287	.719	.708	.000	.538	.898	.718	.000	.000	1,000	1.000
7	.562	.327	.761	.708	.000	.638	.952	.747	.000	.000	1.000	1.000
8	.583	.386	.790	.737	.000	.675	.984	.770	.000	.000	1.000	1.000
9	.604	.433	.793	.756	.000	.737	.995	.784	.000	.000	1.000	1.000
10	.632	.504	.801	.779	.000	.737	1.000	.807	.000	.000	1.000	1.000

750 KILOMETERS

	3 OBS CONST		4 OBS CONST	5 OBS CONST
PDOP	1 2 3	4 1	2 3 4	1 2 3 4
2	.000 .003 .211	• •	.015 .279 .344	
3	.269 .070 .531	• • • • • • • • • • • • • • • • • • • •	.070 .547 .603	
4	.367 .194 .711	.674 .057	.170 .769 .736	1.000 .019 .828 .770
5	.448 .322 .831	.799 .075	.306 .865 .844	1.000 .074 .887 .884
6	.503 .432 .897	.872 .113	.480 .958 .900	1.000 .296 .945 .930
7	.577 .557 .961	.930 .264	.609 .979 .925	1.000 .370 .973 .930
8	.654 .629 .981	.930 .415	.679 .979 .931	1.000 .519 .973 .936
9	.717 .684 .981	.930 .491	.716 .979 .953	1.000 .593 .988 .953
10	.769 .722 .981	.953 .491	.760 .991 .953	1.000 .667 .988 .953

		3	085			4 (DBS			5 QE	35	
		C	TRIC			CO	IST			CONS	ST .	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.003	.045	.198	.173	.049	.060	.278	.397	.036	.049	.339	.448
3	.324	. 235	.685	.719	.324	.257	.733	.806	1.000	.314	.751	.857
4	.474	.387	.872	.875	.451	.391	.928	.914	1.000	.422	.954	.922
5	.577	.465	.950	.919	.578	.517	.986	.919	1.000	.588	.988	.927
6	.676	.557	.992	.925	.647	.580	.997	.919	1.000	.627	.997	.944
7	.747	.630	1.000	.942	.706	.651	1.000	.936	1.000	.676	1.000	.944
8	.790	.667	1.000	.942	.775	.683	1.000	.942	1.000	.706	1.000	.955
9	.830	.700	1.000	.942	.794	.726	1.000	.964	1.000	.765	1.000	.966
10	.849	.748	1.000	.964	.794	.786	1.000	.964	1.000	.804	1.000	.966

TABLE A-5 (45 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

	3 08\$					4 0	35			5 OBS	•	
		C	DNST			CONS	ST			CONST	ſ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.000	.505	.222	.426	.000	.487	.718	.596	.000	.000	.696	.688
3	.545	.829	.833	.842	.933	. 782	.850	.872	.000	.000	.922	.817
4	.687	.876	.890	.917	1.000	.859	.905	.923	.000	.000	1.000	.882
5	.721	.906	.914	.950	1.000	.923	.918	.949	.000	.000	1.000	.921
6	.755	.937	.929	.975	1.000	1.000	.932	.983	.000	.000	1.000	1.000
7	.773	.950	.939	1.000	1.000	1.000	.945	1.000	.000	.000	1.000	1.000
8	. 785	.952	.947	1.000	1.000	1.000	.945	1.000	.000	.000	1.000	1.000
9	.807	.961	.954	1.000	1.000	1.000	.960	1.000	.000	.000	1.000	1.000
10	.824	.964	.960	1.000	1.000	1.000	.960	1.000	.000	.000	1.000	1.000

500 KILOMETERS

	3 OBS					4 (280			5 OE	BS	
		CO	IST			COI	VST			CONS	ST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	. 139	.540	.371	.522	.542	.763	.808	.783	1.000	.870	.848	.842
3	.631	.883	.894	.904	.830	.887	.914	.933	1.000	.949	.942	.942
4	.718	.944	.953	.975	.906	.962	.975	1.000	1.000	1.000	.993	1.000
5	.784	.981	.982	1.000	1.000	.978	.985	1.000	1.000	1.000	1.000	1.000
6	.806	.992	.985	1.000	1.000	.991	.987	1.000	1.000	1.000	1.000	1.000
7	.818	1.000	.987	1.000	1.000	1.000	.990	1.000	1.000	1.000	1.000	1.000
8	.826	1.000	.990	1.000	1.000	1.000	.990	1.000	1.000	1.000	1.000	1.000
9	.832	1.000	.990	1.000	1.000	1.000	.993	1.000	1.000	1.000	1.000	1.000
10	.848	1.000	.990	1.000	1.000	1.000	.993	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

	3 OBS					4 0	38			5 OBS	3	
		COI	IST			CONS	ST			CONST	ſ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.374	.542	.529	.538	.713	.786	.825	.808	1.000	.838	.839	.858
3	.835	.894	.892	.904	.877	.906	.933	.929	1.000	.947	.936	.933
4	.903	.942	.967	.967	.950	.969	.993	1.000	1.000	1.000	1.000	1.000
5	.940	.978	1.000	1.000	1.000	.981	1.000	1.000	1.000	1.000	1.000	1.000
6	.962	.989	1.000	1.000	1.000	.992	1.000	1.000	1.000	1.000	1.000	1.000
7	.967	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	.971	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	.974	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	.974	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

	3 OBS					4 0	38			5 089	\$	
		COL	IST			CONS	ST			CONST	ſ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.471	.542	.586	.575	.741	.803	.831	.817	.938	.823	.847	.872
3	. 865	.918	.888	.921	. 893	.926	.940	.946	1.000	.940	.947	.967
4	.924	.972	.961	.986	.943	.996	.982	1.000	1.000	1.000	1.000	1.000
5	.954	.996	1.000	1.000	.992	.996	1.000	1.000	1.000	1.000	1.000	1.000
6	. 989	.996	1.000	1.000	1.000	.996	1.000	1.000	1.000	1.000	1.000	1.000
7	.996	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000
8	.996	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	.999	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE A-5 (45 DEG, 60 DEG, 6 HRS) (continued)

1500 KILOMETERS

	3 OBS					4 0	35			5 089	;	
		COI	IST			CONS	ST			CONST	•	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.489	.567	.696	.668	.746	.800	.825	.817	.855	.817	.843	.871
3	.861	.908	.885	.900	.868	.922	.939	.933	.946	.925	.950	.954
4	.932	.967	.944	.967	.936	.992	.981	.992	1.000	1.000	.992	1.000
5	.967	1.000	.983	1.000	.975	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1,000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000

		3 (COI	OBS AST			4 OF	_			5 089 CONS1		
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.533	.614	.700	.733	.739	.793	.808	.808	.796	.806	.842	.842
3	.874	.883	.879	.888	.879	.903	.925	.917	.927	.911	.931	.942
4	.931	.942	.928	.942	.935	.958	.975	.963	.975	.961	.975	.988
5	.958	.975	.965	.975	.967	.992	.992	.992	1.000	1.000	1.000	1.000
6	.978	.997	.989	1.000	.983	1,000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000
10	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE A-6 (45 DEG, 90 DEG, 6 HRS)

0 KILOMETERS

		3	OBS			4	OBS			5 (28 (
		C	CONST			CC	DNST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.311	.033	.242	.406	.000	.312	.389	.481	.000	.000	.467	.511
3	.550	.467	.636	.678	.636	.540	.657	,719	.000	.875	.667	.751
4	.666	.619	.736	.778	1.000	.641	.758	.792	.000	1.000	.759	.822
5	.738	.689	.783	.825	1.000	.707	.816	.842	.000	1.000	.805	.856
6	.775	.739	.825	.853	1.000	.764	.853	.858	.000	1.000	.851	.873
7	.808	.767	.858	.875	1.000	.786	.870	.892	.000	1.000	.874	.890
8	.838	.817	.875	.892	1.000	.826	.888	.892	.000	1.000	.874	.907
9	.858	.817	.892	.908	1.000	.826	.905	.908	.000	1.000	.897	.924
10	.864	.844	.892	.908	1.000	.848	.905	.925	.000	1.000	.897	.924

500 KILOMETERS

	3 085					4	08\$			5	OBS	
		CC	MST			C	CHECK			CC	MST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.357	.253	.383	.447	.448	.464	.511	.613	1.000	.590	.586	.631
3	.660	.589	.725	.719	.762	.672	.761	.766	1.000	.768	.792	.794
4	.763	.708	.819	.839	.838	.761	.842	.872	1.000	-852	.858	.878
5	.816	.772	.864	.878	.876	.811	.875	.894	1.000	.897	.892	.900
6	.858	.814	.889	.900	.914	.844	.906	.916	1.000	.941	.908	.911
7	.875	.842	.908	.911	.933	.861	.922	.930	1.000	.959	.925	.925
8	.897	.864	.925	.925	.948	.883	.925	.930	1.000	.959	.939	.942
9	.903	.878	.925	.931	.948	.889	.939	.947	1.000	.974	.939	.942
10	.911	.883	.939	.942	.962	.897	.939	.947	1.000	.974	.942	.953

750 KILOMETERS

	3 OBS CONST				4 OBS					5 08\$		
						CO	NST			CONS	ST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.365	.319	.422	.450	.396	.489	.586	.633	.732	.608	.653	.686
3	.735	.642	. 792	.825	.730	.717	.808	.847	.856	.770	.819	.853
4	.808	.753	.839	.858	.805	.800	.853	.869	.876	.832	.875	.881
5	.852	.811	.883	.886	.840	.839	.906	.897	.897	.867	.931	,908
6	.883	.850	.931	.908	.868	.872	.961	.919	.897	.897	.986	.925
7	.900	.872	.978	.925	.887	.889	.994	.942	.918	.906	.9 97	.942
8	.925	.894	.994	.942	.912	.906	.997	.947	.948	.920	1.000	.958
9	.939	.897	.997	.942	.928	.917	1.000	.958	.969	.938	1.000	,958
10	.947	.911	1.000	.958	.947	.925	1.000	.958	1.000	.938	1.000	.972

		3 08S CONST 1 2 3 4				4 (DBS			5 OI	38	
						CO	NST			CON	57	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.376	.339	.444	.486	.466	.508	.606	.632	.638	.591	.669	.689
3	.730	.667	.797	.819	.754	.731	.811	.880	.736	.780	.825	.878
4	.808	.761	.856	.886	.828	.797	.869	.914	.804	.846	.886	.919
5	.861	.814	.903	.925	.870	.844	.919	.947	.853	.880	.931	.947
6	.886	.847	.939	.947	.893	.872	.956	.961	.871	.900	.961	.956
7	.911	.872	.961	.956	.915	.889	. 983	.967	.908	.917	.994	.961
8	.925	.894	.994	.961	.929	.911	1.000	.972	.933	.929	1.000	.967
9	.947	.906	1.000	.961	.944	.919	1.000	.972	.957	.940	1.000	.967
10	.958	.911	1.000	.967	.955	928	1.000	. 972	. 969	.044	1.000	.972

TABLE A-6 (45 DEG, 90 DEG, 6 HRS) (continued)

1500 KILOMETERS

		3	088			4	OBS		5 OBS			
		C	DNST			C	DNST			CC	MST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.347	.325	.486	.469	.492	.503	.622	.619	.569	.578	.689	.708
3	.697	.697	.808	.825	.769	.758	.844	.936	.797	.797	.858	.942
4	.831	.786	.911	.942	.897	.836	.950	.953	.904	.858	.953	.958
5	.914	.847	.961	.958	.928	.886	.967	.964	.922	.906	.967	.969
6	.944	.889	.967	.964	.953	.928	.972	.969	.947	.928	.972	.975
7	.956	.922	.972	.969	.964	.944	.978	.975	.957	.947	.978	.981
8	.967	.942	.981	.975	.967	.964	.981	.981	.968	.964	.986	.981
9	.975	.956	.983	.975	.975	.967	.989	.981	.968	.972	.989	.981
10	.975	.964	.989	.981	.981	.978	.994	.981	.975	.981	.997	.986

		3	OBS		4 OBS 5 OBS							
		C	DNST			COI	IST			CON	T 2	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.319	.372	.439	.475	.461	.536	.589	.622	.520	.600	.717	.717
3	.728	.722	.833	.889	.817	.806	.900	.942	.866	.833	.917	.944
4	.928	.856	.953	.947	.942	.886	.994	.958	.941	.903	.997	.964
5	.950	.897	.997	.964	.953	.931	1.000	.969	.953	.939	1.000	.975
6	.958	.928	1.000	.969	.964	.950	1.000	.981	.963	.961	1.000	.981
7	.964	.944	1.000	.981	.969	.964	1.000	.986	.969	.969	1.000	.986
8	.969	.958	1.000	.981	.975	.969	1.000	.986	.972	.969	1.000	.986
9	.975	.975 .964 1.000 .986				.975	1.000	.992	.978	.975	1.000	.992
10	.978	.969	1.000	.986	.981	.975	1.000	.992	.981	.978	1.000	.992

TABLE A-7 (45 DEG, 60 DEG, 3 HRS)

0 KILONETERS

3 OBS 4 OBS 5 OBS											
	CONST	CONST	CONST								
PDOP	1 2 3 4	1 2 3 4	1 2 3 4								
2	.000 .239 .098 .309	.000 .000 .133 .422	.000 .000 .000 1.000								
3	.000 .682 .738 .821	.000 .000 .333 .663	.000 .000 .000 1.000								
4	.000 .784 .835 .860	.000 .000 .533 .771	.000 .000 .000 1.000								
5	.000 .852 .890 .900	.000 .000 .600 .771	.000 .000 .000 1.000								
6	.000 .852 .902 .914	.000 .000 .767 .880	.000 .000 .000 1.000								
7	.000 .898 .915 .940	.000 .000 .767 .880	.000 .000 .000 1.000								
8	.000 .920 .945 .940	.000 .000 .767 .880	.000 .000 .000 1.000								
9	.000 .920 .945 .940	.000 .000 .767 .880	.000 .000 .000 1.000								
10	.000 .920 .945 .940	.000 .000 .767 .880	.000 .000 .000 1.000								
		500									
		500 KILOMETERS									
	3 08\$	4 OBS	5 OBS								
	CONST	CONST	CONST								
PDOP	1 2 3 4	1 2 3 4	1 2 3 4								
2	.000 .244 .200 .347	.000 .320 .627 .745	.000 .000 .000 .692								
3	.000 .753 .823 .850	.000 .640 .787 .863	.000 .000 .333 .805								
4	.000 .851 .876 .897	.000 .720 .861 .907	.000 .000 .500 .865								
5	.000 .885 .910 .917	.000 .800 .881 .907	.000 .000 .500 .887								
6	.259 .915 .915 .942	.000 .800 .918 .944	.000 .000 .667 .925								
7	.556 .925 .938 .950	.000 .880 .930 .944	.000 .000 .667 .925								
8	.741 .925 .949 .950	.000 .880 .930 .944	.000 .000 .667 .925								
9	.778 .939 .949 .950	.000 .880 .930 .944	.000 .000 .667 .947								
10	.815 .953 .949 .950	.000 .880 .934 .953	.000 .000 .833 .962								
		750 KILOMETERS									
	3 OBS	4 08S	5 OBS								
	CONST	CONST	CONST								
PDOP	1 2 3 4	1 2 3 4	1 2 3 4								
2	.022 .280 .222 .419	.375 .529 .669 .783	.000 1.000 .761 .792								
3	.050 .768 .828 .861	.375 .778 .850 .875	.000 1.000 .883 .875								
4	.210 .868 .878 .897	.875 .862 .896 .917 .958 .889 .919 .933	.000 1.000 .929 .911 .000 1.000 .939 .938								
5	.431 .899 .906 .917		_								
6	.514 .930 .922 .947 .569 .944 .947 .950	.958 .926 .937 .950	.000 1.000 .959 .947 .000 1.000 .975 .964								
7 8	.591 .944 .958 .950	1.000 .937 .957 .950 1.000 .947 .963 .975	.000 1.000 .973 .934								
9	.657 .961 .964 .975	1.000 .968 .963 .983	.000 1.000 .990 .991								
10	.713 .966 .964 .983	1.000 .984 .971 .992	.000 1.000 1.000 .991								
	., 13 1,00 1,04 1,05	11000 1704 1711 1772									
		1000 KILOMETERS									
	3 085	4 08S	5 OBS								
	CONST	CONST	CONST								
PDOP	1 2 3 4	1 2 3 4									
2	.069 .325 .283 .508	.533 .618 .742 .769									
3	.248 .806 .828 .864	.589 .841 .864 .881									
4	.445 .889 .892 .903	.933 .890 .919 .917									
5	.588 .922 .919 .925	.956 .924 .939 .950									
6	.686 .939 .958 .950	.967 .944 .958 .983									
7	.745 .958 .961 .986	1.000 .967 .983 1.000									
8	.770 .975 .978 1.000	1.000 .987 .983 1.000									
9	.796 .994 .983 1.000	1.000 1.000 .983 1.000									
10	.821 .994 .983 1.000	1.000 1.000 .983 1.000	, 1000 1.000 1.000 1.000								

TABLE A-7 (45 DEG, 60 DEG, 3 HRS) (continued)

1500 KILOMETERS

		3 (CO				4 OF			5 OBS CONST				
PDOP	1	2	3	4	1	2	3	4	1	2	3	4	
2	. 184	. 283	.453	.497	.668	.646	.728	.758	1.000	.839	.767	.808	
3	.588	.861	.875	.864	.842	.869	.906	.914	1.000	.940	.922	.947	
4	.749	.939	.972	.950	.960	.958	.978	.997	1.000	1.000	1.000	1.000	
5	.805	.978	1.000	1.000	1.000	.989	1.000	1.000	1.000	1.000	1.000	1.000	
6	.836	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
7	.850	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
8	.859	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
9	.864	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
10	.873	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

		3 (DBS			4 0	DBS			5 O	35	
		COL	IST			CO	IST			CONS	ST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.275	.422	.475	.614	.701	.711	.797	.756	.982	.817	.833	.856
3	.744	.917	.953	.942	.894	.967	.992	1.000	1.000	1.000	1.000	1.000
4	.861	.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	.883	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	.900	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	.919	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000
8	.931	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	.939	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	.947	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE A-8 (45 DEG, 90 DEG, 3 HRS)

	3 088	4 OBS	5 08 S
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.015 .000 .293 .023	.000 .000 .233 .495	000.000.000.
3	.585 .069 .543 .410	.000 .152 .350 .619	000.000.000.000.
4	.662 .466 .612 .516	.000 .273 .383 .638	.000 .000 .000
5	.692 .519 .661 .601	.000 .273 .417 .695	.000 .000 .000 .000
6	.692 .557 .688 .658	.000 .333 .417 .714	000. 000. 000. 000.
7	.692 .618 .753 .704	.000 .333 .450 .714	.000 .000 .000
8	.692 .664 .753 .746	.000 .333 .450 .733	
9	.692 .664 .789 .772	.000 .333 .533 .771	
10	.692 .664 .789 .795	.000 .333 .533 .771	.000.000.000.000.
		500 KILOMETERS	
	3 08\$	4 OBS	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.004 .042 .233 .086	.000 .091 .255 .361	.000 .000 .314 .355
3	.219 .241 .492 .522	.000 .361 .568 .628	.000 .000 .507 .636
4	.426 .500 .647 .681	.000 .587 .674 .728	.000 .000 .657 .744
5	.577 .610 .767 .761	.000 .683 .761 .800	.000 .000 .715 .783
6	.672 .687 .808 .800	.000 .765 .786 .828	.000 .000 .787 .853
7	.717 .750 .811 .861	.000 .765 .832 .861	
8	.766 .798 .867 .861	.000 .817 .851 .861 .000 .826 .888 .900	.000 .000 .850 .891
9	.777 .807 .867 .861	.000 .826 .888 .900	
10	.823 .821 .886 .894	.000 .852 .891 .900	.000 .000 .855 .904
		750 KILOMETERS	
	3 OBS CONST	4 OBS CONST	5 OB\$
PDOP	1 2 3 4	1 2 3 4	CONST 1 2 3 4
2	.011 .128 .192 .128		1.000 .165 .441 .474
3	.244 .387 .561 .572	.500 .507 .619 .642	
4	.494 .571 .689 .678	.806 .685 .714 .739	
5	.663 .682 .775 .761	.944 .775 .789 .817	
6	.733 .749 .806 .822	1.000 .811 .814 .822	
7	.787 .797 .814 .822		1.000 1.000 .850 .869
8	.809 .819 .867 .833	1.000 .839 .867 .867	
9	.820 .836 .867 .867	1.000 .885 .900 .900	
10	.874 .852 .886 .900		1.000 1.000 .898 .903
		1000 KILOMETERS	
	3 08S	4 08s	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.042 .136 .211 .211	.246 .303 .408 .433	1.000 .439 .483 .517
3	.293 .461 .611 .617	.614 .528 .631 .672	1.000 .731 .683 .694
4	.492 .597 .703 .692	.784 .694 .728 .744	1.000 .863 .761 .794
5	.673 .703 .797 .789	.865 .783 .833 .833	1.000 .920 .833 .844
6	.749 .786 .833 .833	.912 .828 .856 .867	1.000 .958 .856 .867
7	.791 .828 .856 .867	.947 .856 .856 .867	1.000 .958 .856 .878
8	.827 .844 .856 .867	.947 .861 .875 .917	1.000 .986 .906 .922
9	.841 .872 .894 .900	.971 .894 .919 .922	1.000 .986 .919 .922
10	.872 .883 .908 .917		1.000 .986 .919 .922

TABLE A-8 (45 DEG, 90 DEG, 3 HRS) (continued)

1500 KILOMETERS

		3 OBS CONST		4 OBS CONST				5 OBS CONST				
	_											
PDOP	1	2 3	4	1	2	3	4	1	2	3	4	
2	.089 .1	119 .234	.356	.201	.417	.403	.439	.946	.517	.531	.511	
3	.359 .5	672 .694	.761	.555	.622	.719	. 794	1.000	.718	.753	.800	
4	.532 .6	553 .813	.797	.728	.711	.844	.833	1.000	.806	.844	.844	
5	.624 .7	756 .900	.856	.795	.772	.897	.861	1.000	.853	.897	.883	
6	.682 .7	794 .916	.883	.837	.819	.919	.886	1.000	.890	.919	.903	
7	.727 .8	331 .922	.883	.852	.875	.950	.917	1.000	.906	.956	.939	
8	.780 .8	381 .955	.919	.866	.894	.969	.939	1.000	.922	.969	.939	
9	.813 .8	392 .972	. 9 39	.901	.906	.969	.939	1.000	.947	.969	.939	
10	.872 .9	906 .972	.939	.919	.917	.969	.939	1.000	.947	.969	.939	

		3 OBS Const				4 (280			5 08	35	
		CC	CHECK			COI	IST			CONS	T	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	. 187	.117	.278	.464	.252	.517	.503	.558	.677	.578	.631	.631
3	.550	.661	.808	.839	.664	.708	.828	.894	.962	.761	.842	.911
4	.715	.783	.919	.906	.824	.808	.947	.944	.977	.865	.969	.944
5	.816	.853	.978	.939	.891	.861	.978	.944	.992	.899	1.000	.961
6	.846	.875	.992	.944	.939	.889	1.000	.961	1.000	.922	1.000	.961
7	.877	.892	1.000	.958	.945	.892	1.000	.961	1,000	.922	1.000	.967
8	.880	.903	1.000	.967	.945	.903	1.000	.967	1.000	.948	1.000	.967
9	.894	.903	1.000	.967	.961	.914	1.000	.967	1,000	.948	1.000	.967
10	.902	.914	1.000	.967	.964	.917	1.000	.967	1.000	.948	1.000	.967

TABLE A-9 (60 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

		3 OBS CONST				4	OBS		5 OBS			
		CC	MST			Ct	TRIC			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.556	.408	.347	.565	.091	.764	.742	.739	.000	.143	.822	.769
3	.817	.827	.819	.833	.227	.842	.856	.858	.000	1.000	.919	.864
4	.873	.880	.869	.892	.727	.909	.890	.904	.000	1.000	.956	.905
5	.895	.905	.904	.921	.909	.938	.923	.933	.000	1.000	.981	.927
6	.906	.925	.919	.942	1.000	.953	.946	.946	.000	1.000	.994	.941
7	.913	.933	.936	.950	1.000	.964	.956	.958	.000	1.000	1.000	.955
8	.920	.947	.950	.958	1.000	.974	.960	.958	.000	1.000	1.000	.955
9	.929	.953	.954	.975	1.000	.984	.960	.975	.000	1.000	1.000	.973
10	.944	.964	.961	.975	1.000	.995	.971	.983	.000	1.000	1.000	.982

500 KILOMETERS

		3	OBS		4 OBS 5 OBS							
		CC	MST			C	ONST			COL	TZV	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.661	.471	.564	.690	.678	.742	.772	. 750	.680	.737	.789	.812
3	.817	.853	.835	.846	.817	.867	.883	.875	1.000	.857	.883	.900
4	.874	.903	.894	.917	.869	.908	.928	.925	1.000	.912	.931	.929
5	.908	.928	.944	.942	.912	.933	.947	.950	1.000	.944	.947	.958
6	.926	.947	.961	.967	.937	.953	.962	.975	1.000	.968	.976	1.000
7	.940	.964	.975	.983	.955	.975	.987	1.000	1.000	1.000	.997	1.000
8	.944	.981	.993	.992	.970	.986	1.000	1.000	1.000	1.000	1.000	1.000
9	.961	.986	1.000	1.000	.985	.986	1.000	1.000	1.000	1.000	1.000	1.000
10	.972	.986	1.000	1.000	1.000	.992	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

	3 OBS					4 (28 0		5 OBS Const			
		CO	NST		CONST							
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.667	.547	.629	.675	.666	.758	.758	.758	.554	.752	.803	.808
3	.842	.842	.833	.858	.828	.867	.892	.878	.837	.865	.892	.900
4	.886	.908	.906	.917	.880	.919	.936	.933	.886	.917	.936	.950
5	.918	.942	.936	.950	.912	.953	.964	.958	.918	.948	.964	.975
6	.944	.975	.956	.975	.935	.975	.981	.983	.951	.991	.981	.992
7	.961	.992	.975	.992	.963	1.000	.992	1.000	1.000	1.000	. 992	1.000
8	.978	.997	.986	1.000	.976	1.000	.997	1.000	1.000	1.000	1.000	1.000
9	.979	1.000	.997	1.000	.981	1.000	.997	1.000	1.000	1.000	1.000	1.000
10	.985	1.000	.997	1.000	.990	1.000	1.000	1.000	1.000	1.000	1.000	1,000

		3	OBS			4 0	BS						
		CC	TRIK			CON	ST		CONST				
PDOP	1	2	3	4	1	2	3	4	1	2	3	4	
2	.650	.578	.642	.658	£86.	.742	.742	.742	.509	.758	.792	.792	
3	.838	.825	.839	.842	.836	.875	.875	.875	.754	.875	.892	.892	
4	.899	.892	.903	.904	.901	.919	.925	.925	.871	.919	.931	.942	
5	.933	.925	.931	.942	.931	.950	.958	.950	.925	.950	.958	.958	
6	.949	.958	.956	.958	.947	.964	.975	.975	.949	.964	.975	.975	
7	.962	.975	.972	.975	.961	.978	.992	.979	.970	.992	.992	.992	
8	.975	.975	.975	.988	.974	.992	.992	.992	1.000	1.000	1.000	1.000	
9	.978	.992	.992	.992	.981	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
10	.986	.997	.994	1.000	.986	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

TABLE A-9 (60 DEG, 60 DEG, 6 HRS) (continued)

1500 KILOMETERS

	3 08\$	4 08\$ CONST 1 2 3 4 .678 .708 .732 .713	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.611 .636 .618 .625	.678 .708 .732 .713	.633 .747 .758 .775
3	.004 .000 .000 .000	.021 .042 .042 .042	./73 .000 .000
4	.869 .867 .875 .875		
5	.907 .897 .908 .908	.908 .925 .925 .925	
6	.925 .925 .925 .925	.925 .942 .942 . 9 42	.904 .942 .958 .958
7	.942 .942 .942 .942	.942 .958 .958 .958	.926 .958 .958 .958
8	.958 .956 .958 . 9 58	.958 .958 .958 .958	.947 .958 .975 .975
9	.958 .958 .958 .958	.958 .975 .975 .975	.947 .975 .975 .975
10	.975 .975 .975 .975	.975 .975 .975	.968 .975 .992 .992
		2000 KILOMETERS	
	3 OBS CONST 1 2 3 4	4 OBS	5 08s CONST 1 2 3 4
	CONST	CONST	CONST
		1 2 3 4	1 2 3 4
2	.575 .653 .590 .621	.657 .697 .725 .713	.689 . (42 . /42 . / 38
3	.782 .806 .775 .808	.803 .825 .842 .825	.814 .842 .842 .858
4	.850 .858 .842 .858	.861 .875 .875 .875	.867 .889 .892 .892
5	.883 .892 .875 .892	.892 .900 .908 .908	
6	.900 .908 .899 .908		
	.917 .925 .911 .925		
	.925 .936 .925 .942		
	.936 .942 .936 .942		
10	.942 .942 .942 .942	.942 .958 .958 .958	.956 .958 .958 .958
		2500 KILOMETERS	
	3 OBS	4 OBS CONST	5 OBS CONST
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
	.557 .647 .568 .629		.711 .742 .756 .758
	.792 .806 .792 .808	.813 .831 .842 .833	.832 .842 .858 .858
4		.871 .892 .892 .892	.879 .892 .908 .908
5	.896 .892 .901 .900	.904 .925 .925 .925	
6	.925 .925 .925 .925	.925 .942 .942 .942	
7	.942 .942 .942 .942	.942 .958 .958 .958	
	054 043 058 058	05/ 058 058 058	OSR OSR 075 075

.954 .942 .958 .958

.958 .958 .958 .958 .971 .964 .975 .975

.954 .958 .958 .958

.958 .975 .975 .975 .971 .975 .975 .975

.958 .958 .975 .975

.958 .975 .975 .975 .971 .975 .975 .992

TABLE A-10 (60 DEG, 90 DEG, 6 HRS)

O KILOMETERS

		3	OBS			4	085			5 (DBS	
		CC	MST			CC	MST			CON	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.314	.203	.194	.311	1.000	.450	.401	.444	.000	1.000	.530	.497
3	.614	.500	.586	.633	1.000	.625	.646	.667	.000	1.000	.713	.700
4	.709	.622	.722	.750	1.000	.713	.758	.783	.000	1.000	.800	.800
5	.769	.700	.800	.817	1.000	.777	.852	.850	.000	1.000	.870	.875
6	.811	.750	.839	.867	1.000	.825	.872	.875	.000	1.000	.887	.892
7	.840	.783	.875	.892	1.000	.845	.891	.892	.000	1.000	.904	.908
8	.866	.811	.892	.908	1.000	.862	.908	.908	.000	1.000	.922	.925
9	.869	.833	.892	.908	1.000	.880	.925	.925	.000	1.000	.922	.925
10	.886	.850	.908	.925	1.000	.880	.925	.925	.000	1.000	.939	.942

500 KILOMETERS

	3 08\$					4	OBS			5 (DBS	
		CC	MST			CC	DNST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.387	.250	.344	.419	.723	.519	.519	.536	.891	.793	.597	.589
3	.643	.656	.644	.689	.864	.725	.722	.733	1.000	1.000	.775	.792
4	.813	.742	.775	.808	1.000	.794	.825	.825	1.000	1.000	.842	.842
5	.847	.781	.825	.842	1.000	.833	.858	.858	1.000	1.000	.875	.875
6	.880	.811	.858	.875	1.000	.872	.875	.892	1.000	1.000	.908	.892
7	.897	.850	.875	.892	1.000	.889	.892	.908	1.000	1.000	.908	.908
8	.914	.867	.892	.908	1.000	.894	.908	.908	1.000	1.000	.925	.925
9	.914	.872	.908	.908	1.000	.911	.925	.925	1.000	1.000	.942	.925
10	.930	.889	.908	.925	1.000	.928	.925	.925	1.000	1.000	.942	.942

750 KILOMETERS

		3	085			4	085			5 ()BS	
		CC	WST			C	DNST			CO	IST	
PDOP	1	1 2 3 4 .403 .269 .464 .432				2	3	4	1	2	3	4
2	.403	.269	.464	.432	.599	.539	.556	.583	.664	.672	.633	.650
3	.694	.686	.694	.758	.863	.772	.769	. 789	.969	.926	.822	.828
4	.828	.831	.833	.850	.973	.847	.853	.856	1.000	.981	.869	.867
5	.853	.858	.864	.872	.986	.881	.878	.881	1.000	.994	.886	.897
6	.886	.867	.881	.903	1.000	.897	.886	.903	1.000	1.000	.908	. 903
7	.897	.886	.886	.908	1.000	.908	.894	.908	1.000	1.000	.908	.908
8	.908	.897	.894	.914	1.000	.925	.908	.908	1.000	1.000	.925	.925
9	.908	.897	.908	.914	1.000	.925	.925	.925	1.000	1.000	.942	.925
10	.925	.908	.908	.930	1.000	.942	.925	.925	1.000	1.000	.942	.942

	3 OBS					4	OBS			5	08\$	
		CC	WST			C	ONST			CC	MST	
PDOP	1	2	3	4	1	2	3	4	i	2	3	4
2	.392	.283	.461	.411	.517	.539	.572	.619	.665	.615	.650	.672
3	.714	.661	.733	.750	.815	. 783	.794	.806	.918	.822	.833	.839
4	.822	.817	.839	.861	.917	.858	.867	.881	1.000	.913	.878	.892
5	.864	.875	.881	.892	.942	.892	.892	.903	1.000	.936	.908	.914
6	.892	.906	.906	.914	.960	.908	.919	.925	1.000	.965	.925	.925
7	.908	.919	.925	.925	.972	.925	.925	.925	1.000	.971	.939	.942
8	.919	.931	.931	.931	.972	.936	.939	.942	1.000	.983	.939	.953
9	.925	.936	.939	.942	.982	.936	.939	.942	1.000	.983	.953	.953
10	.933	.942	.939	.942	.982	.947	.950	.953	1.000	.988	.953	.953

TABLE A-10 (60 DEG, 90 DEG, 6 HRS) (continued)

1500 KILOMETERS

		3	OBS			4	OBS			5 (285	
		C	TRIC			CC	TRIC			COL	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.364	.281	.428	.406	.456	.506	.556	.582	.612	.564	.631	.656
3	. 689	.650	.753	.767	.717	.742	.786	.827	.824	.764	.817	.844
4	.806	.786	.847	.886	.828	.850	. 883	.916	.940	.861	.900	.914
5	.867	.864	.900	.917	.892	.892	.939	.936	.964	.897	.961	.931
6	.908	.897	.958	.931	.914	.908	. 989	.942	.972	.919	.994	.947
7	.925	.914	. 992	.942	.936	.925	.994	.953	.992	.925	.997	.958
8	.939	.931	.994	.947	.947	.931	.997	.967	1.000	.942	.997	.961
9	.950	.933	.997	.958	.956	.942	.997	.967	1.000	.942	1.000	.972
10	.956	.947	.997	.961	.961	.947	1.000	.978	1.000	.958	1.000	.972

2000 KILOMETERS

		3	08S			4 (280			5 Q	35	
		C	CHECK			COI	IST			CONS	ST	
PDOP 2	1	2	3	4	1	2	3	4	1	2	3	4
2	.328	.314	.394	.397			.536	.556	.542	.542	.622	.628
3	.653	.636	.722	.714	.683	.714	.775	.789	.732	.744	.797	.833
4	.769	.756	.828	. 883	.794	.817	.856	.911	.831	.828	.886	.928
5	.856	.814	.906	.928	.889	.867	.925	.950	.912	.894	.942	.956
6	.914	.878	.944	.953	.925	.900	.956	.961	.953	.919	.967	.969
7	.928	.900	.969	.956	.944	.925	.981	.981	.959	.925	.989	.981
8	.947	.925	.992	.981	.947	.931	1.000	.986	.969	.942	1.000	.992
9	.961	.931	1.000	.986	.969	.942	1.000	.992	. 983	.942	1.000	.992
10	.969	.942	1.000	.992	.972	.947	1.000	.997	.986	.958	1.000	.997

PDOP		_	OBS OWST				OBS TSMC			-	OBS ONST	
	_	-										
PDOP	1	2	3	4	1	4	3	4	1	2	3	4
2	.323	.353	.375	.400	.433	.494	.503	.556	.516	.544	.606	.625
3	.627	.619	.722	.689	.678	.692	.758	.756	.708	.719	.786	.853
4	.766	.736	.811	.858	.819	.783	.867	.900	.839	.806	.878	.906
5	.869	.800	.906	.903	.883	.850	.936	.928	.882	.864	.936	.950
6	.914	.847	.936	.928	.914	.897	.958	.950	.910	.900	.958	.956
7	.944	.889	.958	.950	.944	.919	.964	.961	.941	.931	.981	.972
8	.953	.911	.964	.956	.967	.942	.981	.972	.966	.953	.981	.978
9	.975	.942	.981	,972	.972	.956	.986	.978	.978	.969	.994	.986
10	.975	.956	.983	.972	.981	.969	.994	.986	.978	.975	.994	.986

TABLE A-11 (60 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

		3	OBS			4	OBS			5	OBS	
		CC	TRIK			CC	MST			CC	MST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.000	.608	.000	.009	.000	.000	.100	.808	.000	.000	.000	.000
3	.000	.649	.765	.591	.000	.000	.100	.808	.000	.000	.000	.000
4	.000	.730	.866	. 783	.000	.000	.100	.846	.000	.000	.000	.000
5	.000	.784	.899	.839	.000	.000	.300	.885	.000	.000	.000	.000
6	.000	.838	.908	.854	.000	.000	.300	.885	.000	.000	.000	.000
7	.000	.838	.945	.904	.000	.000	.300	.885	.000	.000	.000	.000
8	.000	.838	.945	.904	.000	.000	.500	.885	.000	.000	.000	.000
9	.000	.919	.945	.916	.000	.000	.500	. 885	.000	.000	.000	.000
10	.000	.919	.968	.938	.000	.000	.500	.885	.000	.000	.000	.000

500 KILOMETERS

		3	OBS			4 (DBS			5 (DBS	
		C	ONST			CO	IST			CO	IST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.438	.436	.208	.428	.000	.656	.588	.634	.000	.000	.878	.649
3	.656	.734	.761	.808	.000	.817	.773	.813	.000	.000	.939	.774
4	.734	.813	.833	.892	.000	.903	.837	.891	.000	.000	.939	.872
5	.797	.857	.881	.925	.000	.946	.875	.925	.000	.000	1.000	.928
6	.828	.898	.894	.933	.000	.989	.920	.941	.000	.000	1.000	.958
7	.836	.915	.928	.969	.000	1.000	.920	.989	.000	.000	1.000	1.000
8	.867	.933	.931	.989	.000	1.000	.952	.989	.000	.000	1.000	1.000
9	.875	.933	.939	.989	.000	1.000	.952	.989	.000	.000	1.000	1.000
10	.875	.933	.944	.994	.000	1.000	.952	.994	.000	.000	1.000	1.000

750 KILOMETERS

		3	OBS			4	OBS			5	OBS	
		CO	XIST			CO	WST			C	DNST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	. 193	.467	.539	.617	.627	.686	.672	.697	.000	.605	.727	.739
3	.636	.789	.767	.825	.831	.858	.861	.861	.000	.974	.932	.906
4	.715	.903	.922	.975	.983	.947	.958	.975	.000	1.000	1.000	.975
5	.801	.936	.958	.983	1.000	.972	.964	.983	.000	1.000	1.000	.989
6	. 835	.972	.964	.983	1.000	1.000	.972	1.000	.000	1.000	1.000	1.000
7	.861	.978	.969	1.000	1.000	1.000	.972	1.000	.000	1.000	1.000	1.000
8	.883	.978	.972	1.000	1.000	1.000	.978	1.000	.000	1.000	1.000	1.000
9	.896	.983	.972	1.000	1.000	1.000	.983	1.000	.000	1.000	1.000	1.000
10	.915	.983	.978	1.000	1.000	1.000	.983	1.000	.000	1.000	1.000	1.000

		3 (OBS			4 0	35			5 OBS	\$	
		CO	NST			CONS	ST			CONST	7	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	. 166	.458	.533	.608	.422	.650	.678	.697	1.000	.670	.731	.769
3	.688	.833	.814	.853	.878	.921	.942	.983	1.000	1.000	.964	.986
4	.792	.936	1.000	1.000	1.000	.958	1.000	1.000	1.000	1,000	1.000	1.000
5	. 834	.978	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	. 857	.997	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	.888	.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	.902	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	.904	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	921	1 000	1 000	1 000	1 000	1 000	1 000	1 000	1.000	1 000	1.000	1.000

TABLE A-11 (60 DEG, 60 DEG, 3 HRS) (continued)

1500 KILOMETERS

	3 OBS CONST 1 2 3 4					•	OBS WST			5 OE CONS		
PDOF	1	2	3	4	1	2	3	4	1	2	3	4
2	.253	.372	.542	.656	.529	.747	.861	.850	.847	.800	.892	.925
3	.853	1.000	1.000	1.000	.905	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4	.947	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	.950	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	.956	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	.956	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	.961	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	.961	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	.964	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		3 (DBS			4 08	BS			5 OBS	•	
		CO	IST			CONS	ST .			CONST	ľ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.406	.561	.611	.781	.766	.950	.992	1.000	1.000	1.000	1.000	1.000
3	.933	1.000	1.000	1.000	.997	1,000	1,000	1.000	1.000	1.000	1.000	1.000
4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	1,000	1.000	1.000	1.000	1.000	1,000	1,000	1.000	1.000	1.000	1.000	1.000
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		3 (DBS			4 06	38			5 089	3	
		COI	NST			CONS	ST			CONST	•	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.592	.742	.792	.931	.957	1.000	1.000	1.000	1.000	1.000	1.000	1.000
3	.958	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4	1,000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE A-12 (60 DEG, 90 DEG, 3 HRS)

	3 OBS CONST	4 OBS CONST	5 OBS CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.007 .129 .030 .000	.000 .032 .155 .346	.000 .000 .105 .261
3	.327 .452 .563 .554	.000 .323 .466 .580	.000 .000 .421 .522
4	.533 .613 .675 .699	.000 .516 .640 .710	.000 .000 .526 .609
5	.627 .673 .747 .761	.000 .621 .714 .755	.000 .000 .632 .696
6	.707 .700 .798 .801	.000 .734 .727 .784	.000 .000 .737 .783
7	.800 .756 .819 .852	.000 .734 .801 .844	.000 .000 .737 .783
8	.800 .774 .855 .869	.000 .734 .801 .844	.000 .000 .842 .783
9	.800 .839 .855 .869	.000 .831 .801 .844	.000 .000 .842 .870
10	.813 .839 .855 .869	.000 .831 .876 .888	.000 .000 .842 .870
		500 KILOMETERS	
	3 OBS	4 OBS	5 OBS
20.00	CONST	CONST	CONST
PDOP	1 2 3 4 .109 .228 .342 .253	1 2 3 4	1 2 3 4
2 3		.000 .426 .464 .467	.000 .000 .492 .496
3 4	.525 .564 .600 .578 .659 .695 .717 .711	.000 .629 .648 .667	.000 .000 .698 .700
5	.731 .764 .769 .778	.000 .794 .797 .817	.000 .000 .776 .770
6	.778 .815 .833 .817	.000 .754 .757 .817	.000 .000 .803 .822
7	.850 .815 .842 .878	.000 .855 .871 .894	.000 .000 .871 .869
8	.850 .872 .875 .894	.000 .855 .871 .894	
9		.000 .894 .897 .894	.000 .000 .929 .898 .000 .000 .939 .948
10	.856 .877 .908 .894		
10	.020 .077 .700 .074	.000 .074 .740 .742	.000 .000 .739 .740
		750 KILOMETERS	
	3 OBS CONST	4 OBS CONST	5 OBS CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2			770 745 500 522
_	.092 .214 .347 .261	.283 .408 .450 .478	.778 .765 .508 .522
3	.486 .558 .600 .594	.906 .628 .661 .667	1.000 .912 .700 .703
4	.486 .558 .600 .594 .644 .686 .733 .728	.906 .628 .661 .667 .934 .747 .783 .803	1.000 .912 .700 .703 1.000 .963 .783 .806
4 5	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842
4 5 6	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903
4 5 6 7	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917
4 5 6 7 8	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917
4 5 6 7 8 9	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950
4 5 6 7 8	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917
4 5 6 7 8 9	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950
4 5 6 7 8 9	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950
4 5 6 7 8 9	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950
4 5 6 7 8 9 10	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950
4 5 6 7 8 9 10	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST 1 2 3 4	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4
4 5 6 7 8 9 10	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST 1 2 3 4 .243 .389 .447 .490	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .629 .676 .517 .531
4 5 6 7 8 9 10	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917 .917 .917 .917 .917 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST 1 2 3 4 .243 .389 .447 .490 .862 .667 .689 .705	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .629 .676 .517 .531 .943 .900 .733 .739
4 5 6 7 8 9 10 PDOP 2 3 4	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917 .917 .917 .917 .917 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST 1 2 3 4 .243 .389 .447 .490 .862 .667 .689 .705 .967 .797 .825 .827	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .629 .676 .517 .531 .943 .900 .733 .739 1.000 1.000 .839 .833
4 5 6 7 8 9 10 PDOP 2 3 4 5	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917 .917 .918 .918 .918 .918 .918 .918 .918 .918	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .903 .903 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST 1 2 3 4 .243 .389 .447 .490 .862 .667 .689 .705 .967 .797 .825 .827 1.000 .844 .881 .880	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .629 .676 .517 .531 .943 .900 .733 .739 1.000 1.000 .839 .833 1.000 1.000 .843 .883 1.000 1.000 .917 .917
4 5 6 7 8 9 10 PDOP 2 3 4 5 6	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917 .917 .917 .917 .917 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST 1 2 3 4 .243 .389 .447 .490 .862 .667 .689 .705 .967 .797 .825 .827 1.000 .878 .881 .886 1.000 .878 .883 .886	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .629 .676 .517 .531 .943 .900 .733 .739 1.000 1.000 .839 .833 1.000 1.000 .843 .883 1.000 1.000 .917 .917 1.000 1.000 .917 .917
4 5 6 7 8 9 10 PDOP 2 3 4 5 6 7	.486 .558 .600 .594 .644 .686 .733 .728 .725 .769 .783 .800 .786 .817 .861 .869 .822 .822 .869 .903 .839 .858 .903 .903 .856 .869 .917 .917 .867 .875 .917 .917 .867 .875 .917 .917 .917 .917 .917 .917 .917 .917	.906 .628 .661 .667 .934 .747 .783 .803 .991 .819 .844 .839 1.000 .856 .861 .869 1.000 .875 .917 .917 1.000 .908 .917 .917 1.000 .908 .950 .950 1000 KILOMETERS 4 OBS CONST 1 2 3 4 .243 .389 .447 .490 .862 .667 .689 .705 .967 .797 .825 .827 1.000 .878 .883 .886 1.000 .878 .883 .886 1.000 .878 .917 .919	1.000 .912 .700 .703 1.000 .963 .783 .806 1.000 1.000 .861 .842 1.000 1.000 .894 .903 1.000 1.000 .917 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .629 .676 .517 .531 .943 .900 .733 .739 1.000 1.000 .839 .833 1.000 1.000 .843 .883 1.000 1.000 .917 .917

TABLE A-12 (60 DEG, 90 DEG, 3 HRS) (continued)

1500 KILOMETERS

		3	088			4	OBS			5 (XBS	
		CC	MST			CC	XIST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.109	.186	.331	.309	.231	.403	.500	.500	.528	.597	.575	.611
3	.610	.719	.678	.713	.899	.789	.783	. 783	1.000	.986	.817	.817
4	.808	.803	.817	.819	1.000	.847	.850	.850	1.000	1.000	.850	.850
5	.841	.847	.850	.852	1.000	.881	.883	.883	1.000	1.000	.883	.883
6	.875	.861	.883	.886	1.000	.881	.883	.883	1.000	1.000	.917	.917
7	.877	.881	.883	.891	1.000	.914	.917	.917	1.000	1.000	.917	.917
8	.908	.897	.917	.919	1.000	.914	.917	.917	1.000	1.000	.917	.917
9	.911	.914	.917	.919	1.000	.914	.917	.917	1.000	1.000	.950	.950
10	.911	.914	.917	.919	1.000	.947	.950	.950	1.000	1.000	.950	.950

2000 KILOMETERS

		3	OBS			4	085			5 (18 S	
		CC	WST			C	ONST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.128	.214	.328	.362	.266	.575	.611	.578	.660	.719	.711	.725
3	.741	.774	.775	.786	.914	.806	.806	.825	1.000	.941	.844	.850
4	.838	.855	.875	.886	.977	.869	.881	.883	1.000	.978	.900	.914
5	.872	.883	.900	.916	1,000	.903	.903	.914	1.000	1.000	.903	.914
6	.903	.894	.903	.916	1,000	.903	.908	.914	1.000	1.000	.922	.917
7	.903	.905	.908	.916	1.000	.917	.922	.917	1.000	1.000	.922	.917
8	.922	.905	.922	.919	1.000	.917	.922	.917	1.000	1.000	.922	.917
9	.922	.919	.922	.919	1.000	.917	.922	.917	1.000	1.000	.950	.950
10	922	.919	.922	.919	1.000	.950	.950	.950	1.000	1.000	.950	.950

	2 .242 .281 .372 .517 3 .756 .788 .836 .860 4 .853 .875 .889 .893 5 .883 .911 .917 .923			4	088			5	5 OBS CONST 2 3 4 779 .792 .794 879 .867 .894 925 .917 .917 948 .922 .942			
	C	ONST		C	ONST			C	WST			
PDOP	1 2	3 4	1	2	3	4	1	2	3	4		
2	.242 .281	.372 .517	.475	.706	.733	. 703	1.000	.779	.792	.794		
3	.756 .788	.836 .860	.866	. 839	.867	.872	1.000	.879	.867	.894		
4	.853 .875	.889 .899	.922	.883	.917	.917	1.000	.925	.917	.917		
5	.883 .911	.917 .922	.946	.917	.917	.917	1.000	.948	.922	.942		
6	.906 .930	.933 .955	.958	.928	.950	.950	1.000	.971	.950	.950		
7	.917 .933	.950 .955	.970	.939	.950	.950	1.000	.971	.950	.950		
8	.933 .942	.950 .955	.970	.939	.950	.950	1.000	.971	.950	.950		
9	.933 .942	.950 .955	.970	.939	.950	.950	1.000	.971	.950	.972		
10	.933 .942	.950 .955	.970	.939	.950	.972	1.000	.971	.972	.983		

TABLE A-13 (75 DEG, 60 DEG, 6 HRS)

	3 OBS	4 08S	5 08S
	CONST		201127
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.788 .185 .446 .671	.000 .851 .726 .725	.000 .000 .894 .772
3	.857 .803 .806 .808	.000 .913 .841 .842	.000 .000 .925 .865
4	.896 .869 .872 .875	.000 .934 .888 .896	.000 .333 .947 .903
5	.918 .900 .907 .904	.000 .944 .913 .917	.000 1.000 .965 .928
6	.936 .914 .919 .929	.000 .948 .925 .929	.000 1.000 .972 .941
7		.375 .958 .940 .942	.000 1.000 .982 .941
8		.750 .969 .954 .954	
9		.875 .972 .954 .954	
10	.959 .956 .951 .954	.875 .979 .959 .967	.000 1.000 1.000 .966
		500 KILOMETERS	
	3 OBS	4 OBS	5 08\$
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.625 .354 .551 .625	.304 .725 .706 .708	.072 .476 .758 .758
3	.808 .789 .808 .808	.625 .842 .842 .842	.406 .713 .875 .875
4	.875 .858 .875 .875	.732 .908 .892 .908	.601 .814 .925 .908
5		.804 .925 .925 .925	.746 .848 .939 .942
6	.938 .925 .933 .942	.866 .953 .942 .950	.812 .904 .947 .958
7	.950 .942 .942 .958	.893 .953 .958 .958	
8	.954 .958 .958 .958	.902 .964 .975 .975	.877 .927 .975 .975
9	.964 .958 .975 .975	.902 .964 .975 .975 .975 .975 .975 .975 .975 .983	.928 .949 .989 .983
10	.968 .975 .975 .975	.932 .975 .992 .983	.949 .961 .992 .992
		750 KILOMETERS	
	3 OBS	4 OBS	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.608 .426 .565 .608	.453 .700 .692 .692	.257 .577 .742 .742
3	.792 .781 .789 .792	.693 .825 .825 .825	.543 .756 .858 .842
4	.858 .842 .858 .858	.800 .892 .875 .875	.674 .833 .892 .892
5	.892 .875 .892 .892	.847 .908 .908 .908	.761 .876 .925 .925
6	.925 .908 .908 .925	.880 .925 .925 .925	.804 .910 .942 .942
7	.942 .925 .925 .942	.907 .942 .942 .942 .907 .958 .958 .958	.848 .910 .958 .958 .848 .936 .958 .958
8 9	.958 .942 .958 .958	.933 .958 .958 .958	
10	.958 .958 .958 .958	.933 .975 .975 .975	.891 .962 .975 .975
	1,30 1,30 1,30	1000 KILOMETERS	
	_		
	3 OBS CONST	4 OBS CONST	5 OBS
0000		1 2 3 4	CONST 1 2 3 4
PDOP	1 2 3 4 .592 .506 .551 .592		
2	.396 .300 .331 .392	.512 .675 .692 .675	.385 .635 .725 .742
3	.775 .775 .768 .775	.714 .808 .808 .808	.641 .768 .842 .842 744 834 875 875
4	.775 .775 .768 .775 .842 .842 .842 .842	.806 .858 .865 .858	.744 .834 .875 .875
4 5	.775 .775 .768 .775 .842 .842 .842 .842 .875 .875 .875 .875	.806 .858 .865 .858 .851 .892 .892 .892	.744 .834 .875 .875 .778 .878 .908 .908
4 5 6	.775 .775 .768 .775 .842 .842 .842 .842 .875 .875 .875 .875 .892 .892 .892 .892	.806 .858 .865 .858 .851 .892 .892 .892 .874 .908 .908 .908	.744 .834 .875 .875 .778 .878 .908 .908 .812 .900 .925 .925
4 5 6 7	.775 .775 .768 .775 .842 .842 .842 .842 .875 .875 .875 .875 .875 .892 .892 .892 .908 .908	.806 .858 .865 .858 .851 .892 .892 .892 .874 .908 .908 .908 .897 .925 .925 .925	.744 .834 .875 .875 .778 .878 .908 .908 .812 .900 .925 .925 .846 .900 .942 .942
4 5 6 7 8	.775 .775 .768 .775 .842 .842 .842 .842 .875 .875 .875 .875 .892 .892 .892 .908 .908 .908 .925 .925 .925	.806 .858 .865 .858 .851 .892 .892 .892 .874 .908 .908 .908 .897 .925 .925 .925 .897 .942 .942 .942	.744 .834 .875 .875 .778 .878 .908 .908 .812 .900 .925 .925 .846 .900 .942 .942 .880 .923 .942 .942
4 5 6 7	.775 .775 .768 .775 .842 .842 .842 .842 .875 .875 .875 .875 .875 .892 .998 .908 .908 .925 .925 .925 .942 .942	.806 .858 .865 .858 .851 .892 .892 .892 .874 .908 .908 .908 .897 .925 .925 .925	.744 .834 .875 .875 .778 .878 .908 .908 .812 .900 .925 .925 .846 .900 .942 .942

TABLE A-13 (75 DEG, 60 DEG, 6 HRS) (continued)

1500 KILOMETERS

		3	088			4	OBS			5	OBS	
		CC	MST			C	TRIK			α	WST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.550	.592	.538	.575	.581	.675	.692	.658	.525	.692	.725	.733
3	.775	.775	.758	.775	.770	.825	.814	.808	.729	.804	.842	.842
4	.842	.842	.842	.842	.837	.875	.875	.875	.806	.860	.892	.892
5	.892	.875	.892	.892	.876	.908	.908	.908	.858	.897	.925	.925
6	.908	.903	.908	.908	.909	.925	.925	.925	.884	.916	.942	.942
7	.925	.925	.925	.925	.914	.942	.942	.942	.910	.935	.958	.958
8	.942	.931	.942	.942	.933	.958	.958	.958	.910	.953	.958	.958
9	.958	.942	.958	.958	.952	.958	.958	.958	.935	.953	.975	.975
10	.958	.958	.958	.958	.952	.975	.968	.975	.935	.972	.975	.975

2000 KILOMETERS

		3	088			4 (280			5 OBS		
		CC	MST			COI	IST			CONST		
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.574	.589	.553	.592	.649	.708	.692	.692	.616	.723	.758	.742
3	.808	.781	.806	.808	.820	.858	.842	.850	.792	.858	.875	.875
4	.892	.858	.875	.892	.889	.908	.908	.908	.857	.908	.925	.925
5	.925	.908	.925	.925	.923	.942	.942	.942	.901	.941	.958	.958
6	.946	.942	.942	.950	.957	.958	.958	.958	.945	.975	.975	.975
7	.971	.958	.958	.975	.974	.975	.975	.975	.967	.992	.992	.992
8	.975	.975	.975	.975	.986	.992	.992	.992	.989	.992	.992	.992
9	.992	.975	.992	.992	.991	.994	.992	1.000	1.000	1.000	1.000	1.000
10	.992	.992	.992	.992	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		3 (DBS			4 OBS			5 (28 S		
		COI	NST			CONST			COI	IST		
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
Z	.621	.586	.572	.625	. 683	.742	.708	.725	.694	.758	.792	.792
3	.842	.808	.842	.842	.858	.892	.875	.892	.843	.892	.908	.908
4	.925	.908	.922	.925	.925	.942	.942	.942	.917	.958	.975	.958
5	.958	.942	.958	.958	.975	.975	.975	.975	.972	.992	.992	.992
6	.992	.975	.992	.992	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		3 (280			4 OBS			5 (X8S		
		COI	VST			CONST			COI	IST		
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.642	.583	.575	.642	.692	.758	.725	.742	.712	.775	.808	.808
3	.871	.831	.858	.875	.875	.908	.897	.908	.869	.908	.942	.925
4	.942	.925	.942	.942	.942	.975	.958	.975	.956	.975	.992	.992
5	.975	.968	.975	.975	.996	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000
7	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000
9	1.000	1,000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000
10	1.000	1,000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1,000

TABLE A-14 (75 DEG, 90 DEG, 6 HRS)

0 KILOMETERS

		3	085			4	085			5 (DBS	
		C	MST			C	CONST			COL	IST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.381	.097	.234	.387	.595	.492	.478	.501	.000	.653	.556	.557
3	.617	.602	.613	.655	.738	.708	.669	.721	.000	.878	.728	.755
4	.733	.713	.735	.777	.976	.783	.781	.811	.000	1.000	.817	.827
5	.819	.766	.799	.827	1.000	.822	.836	.844	.000	1.000	.869	.844
6	.844	.811	.850	.855	1.000	.844	.878	.872	.000	1.000	.894	.889
7	.861	.827	.872	.872	1.000	.867	.906	.905	.000	1.000	.925	.922
8	.886	.850	.894	.905	1.000	.883	.908	.922	.000	1.000	.925	.930
9	.903	.872	.914	.922	1.000	.889	.925	.930	.000	1.000	.942	.947
10	.911	.872	.914	.930	1.000	.906	.925	.947	.000	1.000	.942	.947

500 KILOMETERS

		3	085			4	085			5 (288	
		CC	TRIC			C	DNST			COL	TZ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.367	. 142	.242	.374	.599	.521	.467	.504	.308	.712	.600	.567
3	.683	.600	.632	.693	.843	.738	.717	.738	.703	.915	.800	.767
4	.800	.750	.772	.810	.948	.838	.833	.838	1.000	1.000	.858	.858
5	.858	.817	.847	.866	1.000	.880	.875	.880	1.000	1.000	.892	.892
6	. 892	.858	.864	.899	1.000	.914	.892	.897	1.000	1.000	.908	.908
7	.908	.875	.897	.916	1.000	.914	.908	.914	1.000	1.000	.925	.925
8	.908	.892	.897	.916	1.000	.930	.925	.930	1.000	1.000	.942	.925
9	.925	.908	.914	.933	1.000	.947	.925	.930	1.000	1.000	.942	.942
10	.925	.925	.930	.933	1.000	.947	.942	.947	1.000	1.000	.942	.942

750 KILOMETERS

	3 085					4	088			5 (DBS	
		C	TRIC			C	DNST			CO	TZ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.383	.186	.281	.429	.654	.517	.467	.487	.511	.750	.600	.571
3	.667	.589	.621	.671	.848	.733	.700	.721	.766	.908	. 783	.772
4	. 783	.733	.755	.788	.931	.833	.817	.822	.936	.987	.867	.855
5	.850	.817	.838	.855	1.000	.875	.875	.880	1.000	1.000	.892	.897
6	.892	.850	.880	.897	1.000	.908	.892	.897	1.000	1.000	.908	.914
7	.908	.892	.897	.914	1.000	.925	.908	.914	1.000	1.000	.925	.930
8	.908	.892	.914	.914	1.000	.925	.925	.930	1.000	1.000	.942	.930
9	.925	.908	.914	.930	1.000	.942	.925	.930	1.000	1.000	.942	.947
10	.925	.925	.930	.930	1.000	.942	.942	.947	1.000	1.000	.942	.947

		3	OBS			4	085			5 (DBS	
		CC	NST			C	DNST			CO	IST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.408	.245	.360	.421	.647	.531	.489	.517	.596	.749	.592	.575
3	.667	.604	.631	.671	.843	.733	.700	.717	.781	.896	.767	.761
4	.767	.721	.760	.772	.916	.817	.800	.800	.882	.942	.850	.833
5	.833	.805	.827	.838	.964	.883	.864	.867	.983	.988	.883	.883
6	.883	.855	.877	.889	1.000	.908	.892	.908	1.000	1.000	.908	.908
7	.908	.889	.902	.914	1.000	.925	.908	.908	1.000	1.000	. 925	.925
8	.925	.914	.919	.930	1.000	.925	.925	.925	1.000	1.000	.942	.925
9	.925	.914	.919	.930	1.000	.942	.925	.942	1.000	1.000	.942	.942
10	.942	.930	.936	.947	1.000	.942	.942	.942	1.000	1.000	.942	.942

TABLE A-14 (75 DEG, 90 DEG, 6 HRS) (continued)

1500 KILOMETERS

			4	OBS			5 (38 S				
		CC	TRIC			C	TRIC			CO	lST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.393	.242	.411	.398	.567	.528	.525	.540	.656	.659	.600	.597
3	.671	.650	.653	.688	.833	,725	.719	.735	.802	.864	.756	.758
4	.760	.731	.756	.766	.887	.783	.778	.788	.881	.930	.817	.817
5	.822	.772	.800	.822	.928	,850	.833	.855	.907	.950	.883	.850
6	.855	.833	.833	.855	.949	.883	.883	.889	.934	.970	.900	.883
7	.889	.850	.867	.889	.969	.917	.883	.922	.960	.990	.917	.917
8	.922	.883	.883	.922	.990	.917	.917	.922	.987	.990	.933	.933
9	.922	.900	.917	.922	.990	.933	.933	.939	1.000	1.000	.942	.942
10	.939	.917	.917	.939	1.000	.942	.942	.947	1.000	1.000	.958	.942

2000 KILOMETERS

	3 OBS					4	OBS			5	OBS	
		CC	WST			C	TRIC			CC	TRIK	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.361	.258	.378	.367	.492	.508	.528	.560	.645	.589	.597	.611
3	.650	.631	.675	.689	.740	.703	.717	.735	.803	.780	.744	.753
4	.750	.750	.747	.781	.835	.800	.783	.813	.849	.857	.817	.819
5	.806	.811	.817	.819	.878	.847	.847	.855	.896	.908	.867	.867
6	.836	.847	.850	.850	.905	.869	.875	.883	.919	.932	.894	.878
7	.864	.869	.878	.878	.930	.889	.894	.900	.919	.949	.906	.906
8	.889	.875	.894	.894	.948	.906	.900	.911	.942	.955	.922	.928
9	.894	.894	.900	.906	.954	.922	.914	.933	.942	.973	.922	.928
10	.906	.894	.900	.911	.963	.922	.922	.933	.965	.973	.933	.933

2500 KILOMETERS

	3 08\$	4 06	BS	5 OBS
	CONST	CONS	ST	CONST
POOP	1 2 3	4 1 2	3 4 1	2 3 4
2	.361 .303 .358 .3	67 .460 .497 .5	603 .547 .621	.556 .583 .592
3	.633 .614 .717 .6	97 .693 .717 .7	742 .772 .796	.743 .767 .778
4	.744 .736 .797 .1	06 .778 .794 .8	322 .833 .860	.799 .842 .850
5	.800 .786 .831 .8	8. 888. 888. 88	358 .856 .884	.855 .875 .872
6	.839 .833 .867 .8	.866 .867 .8	383 .883 .905	.888 .900 .900
7	.861 .867 .883 .8	. 885 . 883 . 881	900 .900 .926	.888 .911 .911
8	.878 .883 .900 .9	9. 717. 895	911 .928 .926	.922 .928 .928
9	.894 .900 .911 .9	923 .917 .9	28 .928 .947	.922 .928 .939
10	.911 .911 .928 .	28 .923 .917 .9	28 .928 .947	.922 .958 .956

				4	OBS			5	OBS			
		CC	CONST			C	ONST			C	DWST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.353	.306	.367	.356	.453	.503	.497	.549	.612	.564	.586	.600
3	.644	.614	.711	.711	.683	.717	.747	.772	.786	.739	.786	.806
4	.750	.756	.808	.828	.783	.825	.839	.855	.839	.831	.867	.872
5	.819	.819	.861	.872	.828	.861	.906	.897	.906	.861	.922	.908
6	.861	.861	.906	.892	.878	.886	.928	.914	.926	.886	.944	. 925
7	.894	.886	.928	.908	.894	.903	.944	.930	.930	.903	.953	.931
8	.911	.906	.944	.925	.911	.933	.953	.953	.950	.933	.969	.947
9	.922	.917	.953	.931	.925	.933	.969	.953	.950	.933	.969	.958
10	.942	.925	.969	.947	.942	.933	.969	.953	.970	.933	.992	.975

TABLE A-15 (75 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

	3 OBS					4	OBS			5	OBS	
		COL	IST			CC	WST			CC	MST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.957	.557	.448	.500	.000	1.000	.980	.697	.000	.000	1.000	1.000
3	1.000	.977	.706	.726	.000	1.000	1.000	.959	.000	.000	1.000	1.000
4	1.000	1.000	.891	.786	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
5	1.000	1.000	.941	.810	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
6	1.000	1.000	.977	.831	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
7	1.000	1.000	.977	.863	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
8	1.000	1.000	.995	.895	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
9	1.000	1.000	.995	.927	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
10	1.000	1.000	1.000	.927	.000	1.000	1.000	1.000	.000	.000	1.000	1.000

500 KILOMETERS

		3	OBS			4	OBS			5	OBS	
		CC	MST			CC	DNST			CC	DWST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.315	.183	.223	.244	.000	.550	.397	.359	.000	.000	.685	.526
3	.685	.479	.486	.483	.000	.812	.587	.530	.000	.000	.904	.695
4	.780	.592	.553	.550	.000	.926	.662	.618	.000	.000	.959	.786
5	.827	.633	.620	.644	.000	.965	.760	.689	.000	.000	.991	.839
6	.866	.686	.665	.736	.000	.974	.814	.764	.000	.000	1.000	.919
7	.870	.710	.726	.767	.000	.996	.864	.835	.000	.000	1.000	.968
8	.913	.760	.746	.825	.000	.996	.864	.846	.000	.000	1.000	.968
9	.913	.766	.774	.825	.000	.996	.864	.846	.000	.000	1.000	.993
10	.913	.796	.774	.825	.000	.996	.886	.846	.000	.000	1.000	.993

750 KILOMETERS

	3 08S					4	OBS			5 (DBS	
		CC	TZK			CC	DNST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	. 123	.086	.167	.167	.000	.318	.317	.317	.000	.000	.383	.383
3	.522	.567	.589	.656	.736	.698	.753	.794	.000	1.000	.786	.831
4	.701	.783	.864	.875	.917	.821	.869	.889	.000	1.000	.903	.908
5	.765	.856	.903	.908	1.000	.860	.903	.908	.000	1.000	.936	.942
6	.804	.881	.936	.942	1.000	.927	.936	.947	.000	1.000	.936	.947
7	.804	.922	.936	.947	1.000	.961	.969	.981	.000	1.000	.969	.981
8	.835	.922	.958	.975	1.000	.961	.969	.981	.000	1.000	.969	.981
9	.849	.956	.969	.981	1.000	.961	.969	.981	.000	1.000	.969	.981
10	.860	.956	.969	.981	1.000	.961	.969	.981	.000	1.000	.994	1.000

		3	OBS			4	OBS			5 (DBS	
		C	CHECK			C	ONST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.000	.000	.053	.022	.021	.261	. 281	.331	.297	.384	.639	.667
3	.747	.794	.819	.844	.904	.858	.858	.878	1.000	1.000	.900	.911
4	.817	.892	.900	.911	.959	.925	.933	.944	1.000	1.000	.967	.978
5	.911	.925	.967	.978	1.000	.958	.967	.978	1.000	1.000	.992	1.000
6	.922	.958	.967	.978	1.000	.986	.992	1.000	1.000	1.000	.992	1.000
7	.950	.986	.992	1.000	1.000	.986	.992	1.000	1.000	1.000	1.000	1.000
8	.950	.986	.992	1.000	1.000	.997	1.000	1.000	1.000	1.000	1.000	1.000
9	.967	.997	1.000	1.000	1.000	.997	1.000	1.000	1.000	1.000	1.000	1.000
10	.969	.997	1.000	1.000	1.000	.997	1.000	1.000	1.000	1.000	1.000	1.000

TABLE A-15 (75 DEG, 90 DEG, 6 HRS) (continued)

1500 KILOMETERS

		3 (280			4 ()8 \$			5 (18 \$	
		COI	IST			COL	IST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.061	.019	.058	.142	.569	.519	.639	.678	1.000	.887	.772	.825
3	.828	.861	.881	.892	1.000	.906	.914	.925	1.000	1.000	.947	.958
4	.917	.939	.958	.969	1.000	.972	.981	.992	1.000	1.000	.997	1.000
5	.961	.992	.997	1.000	1.000	.992	.997	1.000	1.000	1.000	1.000	1.000
6	.972	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	.983	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	.989	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	.994	1.000	1.000	1.000	1.000	1.060	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		3 (280			4 06	3S			5 (X8 S	
		COL	IST			CONS	ST			CO	IST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.353	.344	.350	.544	.769	.631	.697	.711	1.000	1.000	.697	.711
3	.678	.764	.806	.789	1.000	.864	.881	.894	1.000	1.000	.914	.928
4	.889	.917	.944	.953	1.000	.964	.981	.994	1.000	1.000	.981	.994
5	.944	.975	.981	.994	1.000	.992	.997	1.000	1.000	1.000	.997	1.000
6	.967	.992	.997	1.000	1.000	.997	1.000	1.000	1.000	1.000	1.000	1.000
7	.983	.997	1.000	1.000	1.000	.997	1.000	1.000	1.000	1.000	1.000	1.000
8	.983	.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		3	08\$			BS			5 ()8 \$		
		C	TZWC			CON	ST			COI	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.508	.614	.550	.669	1.000	.764	.778	.781	1.000	1.000	.778	.781
3	.733	.764	.778	.781	1.000	.764	.778	.781	1.000	1.000	.778	.781
4	,733	.764	.778	.781	1.000	.764	.778	.797	1.000	1.000	.861	.883
5	.753	.842	.861	.864	1,000	.892	.928	.931	1.000	1.000	.933	.964
6	.858	.914	.928	.931	1,000	.947	.961	.964	1.000	1.000	.994	.997
7	.900	.947	.961	.964	1.000	.981	.994	.997	1.000	1.000	.994	.997
8	.933	.981	.994	.997	1.000	.981	1.000	1.000	1.000	1.000	1.000	1.000
9	.950	.981	.994	.997	1.000	.994	1.000	1.000	1.000	1.000	1.000	1.000
10	.956	.994	1.000	1.000	1.000	.994	1.000	1.000	1.000	1.000	1.000	1.000

		3	08\$			4	OBS			5 (28 5	
		C	MST			C	TRIC			COI	tS T	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.572	.672	.578	.694	1.000	.800	.811	.817	1.000	1.000	.811	.817
3	.767	.800	.811	.817	1.000	.800	.811	.817	1.000	1.000	.811	.817
4	.767	.800	.811	.817	1.000	.800	.811	.817	1.000	1.000	.811	.817
5	.767	.800	.811	.817	1.000	.800	.811	.817	1.000	1.000	.811	.817
6	.767	.800	.811	.817	1.000	.800	.811	.817	1.000	1.000	.811	.850
7	.767	.800	.811	.817	1.000	.828	.861	.900	1.000	1.000	.894	.922
8	.775	.850	.883	.872	1.000	.894	.928	.933	1.000	1.000	.928	.933
9	.822	.889	.928	.919	1.000	.917	.928	.967	1.000	1.000	.961	.967
10	.864	.917	.928	. 933	1.000	.950	.961	.967	1.000	1.000	.961	.967

TABLE A-16 (75 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

	3 OBS	4 OBS	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2 3	.445 .297 .273 .309	.000 .561 .545 .538	.000 .000 .616 .649
4	.703 .671 .578 .588 .818 .776 .723 .672	.000 .737 .766 .771	.000 .000 .734 .757 .000 .000 .793 .811
5	.818 .829 .798 .688	.000 .773 .878 .830	
6	.876 .829 .862 .749	.000 .854 .870 .877	.000 .000 .852 .865
7	.876 .878 .879 .775	.000 .912 .870 .925	.000 .000 .911 .919
8	.933 .878 .879 .849	.000 .912 .922 .925	.000 .000 .911 .919
9	.933 .878 .922 .849	.000 .912 .922 .925	.000 .000 .911 .919
10	.933 .927 .926 .881	.000 .912 .922 .925	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.000 .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000 1000 1711 1717
		500 KILOMETERS	
	3 OBS CONST	4 OBS CONST	5 OBS CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.258 .195 .233 .270	.000 .411 .368 .367	.000 .000 .448 .439
3	.513 .485 .519 .532	.000 .566 .554 .586	.000 .000 .655 .690
4	.635 .630 .669 .705	.000 .731 .738 .761	.000 .000 .793 .806
5	.728 .735 .789 .827	.000 .791 .825 .844	.000 .000 .853 .856
6	.759 .791 .842 .883	.000 .849 .858 .883	.000 .000 .928 .935
7	.790 .841 .886 .905	.000 .883 .942 .933	.000 .000 .948 .949
8	.824 .841 .906 .939	.000 .900 .942 .947	.000 .000 .948 .949
9	.853 .875 .944 .950	.000 .906 .947 .947	
10	.881 .891 .944 .950	.000 .906 .947 .947	.000 .000 .948 .949
		750 KILOMETERS	
	3 OBS	4 OBS	5 OBS
Pti/OP	CONST	4 OBS	CONST
PUOP 2	CONST 1 2 3 4	4 OBS CONST 1 2 3 4	CONST 1 2 3 4
2	CONST 1 2 3 4 .228 .194 .233 .237	4 OBS CONST 1 2 3 4 .000 .383 .367 .451	CONST 1 2 3 4 .000 .056 .500 ,539
	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883
2	CONST 1 2 3 4 .228 .194 .233 .237	4 OBS CONST 1 2 3 4 .000 .383 .367 .451	CONST 1 2 3 4 .000 .056 .500 ,539
2 3 4	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917
2 3 4 5	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917
2 3 4 5 6	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950
2 3 4 5 6 7	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8 9	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8 9	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8 9 10	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8 9 10	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST 1 2 3 4	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8 9 10	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST 1 2 3 4 .064 .433 .467 .533	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .104 .319 .575 .633
2 3 4 5 6 7 8 9 10	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 3 OBS CONST 1 2 3 4 .223 .200 .300 .259 .648 .656 .792 .833	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .996 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST 1 2 3 4 .064 .433 .467 .533 .865 .872 .850 .850	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .104 .319 .575 .633 1.000 1.000 .883 .883
2 3 4 5 6 7 8 9 10	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST 1 2 3 4 .064 .433 .467 .533 .865 .872 .850 .850 1.000 .917 .883 .906	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 5 OBS CONST 1 2 3 4 .104 .319 .575 .633 1.000 1.000 .883 .883 1.000 1.000 .917 .917
2 3 4 5 6 7 8 9 10	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST 1 2 3 4 .064 .433 .467 .533 .865 .872 .850 .850 1.000 .917 .883 .906 1.000 .917 .917 .917	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8 9 10 PDOP 2 3 4 5 6	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .906 .917 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST 1 2 3 4 .064 .433 .467 .533 .865 .872 .850 .850 1.000 .917 .883 .906 1.000 .917 .917 .917 1.000 .950 .917 .950	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950
2 3 4 5 6 7 8 9 10	CONST 1 2 3 4 .228 .194 .233 .237 .560 .572 .658 .694 .838 .839 .881 .886 .883 .872 .881 .919 .889 .906 .914 .919 .922 .906 .917 .953 .922 .906 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953 .922 .939 .950 .953	4 OBS CONST 1 2 3 4 .000 .383 .367 .451 .527 .742 .769 .805 1.000 .872 .881 .886 1.000 .906 .914 .919 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 .939 .950 .953 1.000 KILOMETERS 4 OBS CONST 1 2 3 4 .064 .433 .467 .533 .865 .872 .850 .850 1.000 .917 .883 .906 1.000 .917 .917 .917	CONST 1 2 3 4 .000 .056 .500 .539 1.000 .802 .864 .883 1.000 1.000 .914 .917 1.000 1.000 .914 .917 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950 1.000 1.000 .950 .950

.961 .950 .950 .953 1.000 .950 .950 1.000 1.000 .950 .950 .961 .950 .950 .953 1.000 .950 .950 .950 1.000 1.000 .950 .950

TABLE A-16 (75 DEG, 90 DEG, 3 HRS) (continued)

1500 KILOMETERS

	3 OBS					4	OBS			5 (XBS	
		CC	WST			CO	XIST			CON	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.241	.273	.392	.446	.391	.644	.689	.767	.785	.932	.800	.800
3	.866	.852	.850	.852	1.000	.883	.883	.883	1.000	1.000	.883	.883
4	.899	.886	.883	.886	1.000	.917	.917	.917	1.000	1.000	.917	.917
5	.933	.919	.917	.919	1.000	.917	.917	.917	1.000	1.000	.950	.917
6	.933	.919	.917	.919	1.000	.950	.950	.950	1.000	1.000	.950	.950
7	.966	.919	.942	.953	1,000	.950	.950	.950	1.000	1.000	.950	.950
8	.966	.953	.950	.953	1.000	.950	.950	.950	1.000	1.000	.950	.950
9	.966	.953	.950	.953	1.000	.950	.950	.950	1.000	1.000	.950	.950
10	.966	.953	.950	.953	1,000	.950	.950	.950	1.000	1.000	.983	.950

2000 KILOMETERS

	3 OBS					4	280			5 (DBS	
		C	TRIC			CC	DNST			COI	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.306	.373	.581	.638	.830	.817	.817	.814	1.000	1.000	.839	.817
3	.855	.852	.850	.852	1.000	.883	.883	.883	1,000	1.000	.883	.883
4					1.000							
5	.922	.919	.917	.919	1.000	.917	.917	.917	1,000	1.000	.950	.950
6	.922	.919	.917	.919	1.000	.950	.950	.950	1,000	1.000	.950	.950
7	.955	.942	.950	.953	1,000	.950	.950	.950	1.000	1.000	.950	.950
8	.955	.953	.950	.953	1.000	.950	.950	.950	1.000	1.000	.950	.950
9	.955	.953	.950	.953	1.000	.950	.950	.950	1.000	1.000	.950	.950
10					1.000							

2500 KILOMETERS

		3	OBS			4	088			5 (280	
		CC	NST			CC	MST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.451	.499	.683	.743	.796	.813	.817	.817	1.000	1.000	.850	.850
3	.855	.852	.850	.855	1.000	.886	.883	.883	1.000	1.000	.883	.883
4	.889	.886	.883	.888	1.000	.919	.917	.917	1.000	1.000	.917	.917
5	.922	.919	.917	.922	1.000	.919	.917	.917	1.000	1.000	.950	.950
6	.922	.919	.917	.922	1.000	.953	.950	.950	1.000	1.000	.950	.950
7	.955	.942	.950	.955	1.000	.953	.950	.950	1.000	1.000	.950	.950
8	.955	.953	.950	.955	1.000	.953	.950	.950	1.000	1.000	.950	.950
9	.955	.953	.950	.955	1.000	.953	.950	.950	1.000	1.000	.950	.950
10	.955	.953	.950	.955	1.000	.953	.950	.950	1.000	1.000	.983	.983

		3 08S				4	OBS			5 (DBS	
		C	TRIC			CC	MST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.563	.560	.769	.777	.822	.808	.817	.817	1.000	1.000	.836	.850
3	.855	.852	.850	. 855	1.000	.886	.883	.883	1.000	1.000	.883	.883
4	. 889	. 886	.883	.888	1.000	.919	.917	.917	1.000	1.000	.917	.917
5	.922	.919	.917	.922	1.000	.919	.917	.917	1.000	1.000	.950	.950
6	.922	.919	.917	.922	1.000	.953	.950	.950	1.000	1.000	.950	.950
7	.955	.930	.950	.955	1.000	.953	.950	.950	1.000	1.000	.950	.950
8	.955	.953	.950	.955	1.000	.953	.950	.950	1.000	1.000	.950	.950
9	.955	.953	.950	.955	1.000	.953	.950	.950	1.000	1.000	.950	.950
10	.955	.953	.950	.955	1.000	.953	.950	.950	1.000	1,000	.983	.983

TABLE A-17 (90 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

		3 (DBS			4 (28 S			5 (280	
		CO	NST			COI	NST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.658	.000	.222	.658	.000	.761	.709	.726	.000	.000	.795	.778
3	.846	.778	.829	.846	.000	.897	.863	.880	.000	.000	.915	.897
4	.915	.880	.915	.915	.000	.949	.932	.949	.000	.000	.966	.949
5	.949	.932	.949	.949	.000	. 983	.966	. 983	.000	.000	.983	.983
6	.983	.949	.983	.983	.000	1.000	.983	1.000	.000	.000	1.000	1.000
7	1.000	.966	1.000	1.000	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
8	1.000	. 983	1.000	1.000	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
9	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
10	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000	.000	.000	1.000	1.000

500 KILOMETERS

		3 08S			4	085			5	OBS	
		CONST			CO	DNST			CC	TZK	
PDOP	1 2	3	4	1	2	3	4	1	2	3	4
2	.608 .00	0 .217 .	.608	.000	.692	.642	.675	.000	.000	.742	.725
3	.792 .72	5 .775 .	.792	.148	.825	.808	.825	.222	.296	.858	.842
4	.858 .82	5 .858	.858	.370	.875	.875	.875	.444	.519	.892	.892
5	.892 .85	8 .892	.892	.519	.908	.908	.908	.593	.593	.925	.925
6	.925 .89	2 .908 .	.925	.667	.925	.925	.925	.667	.741	.942	.942
7	.942 .90	8 .925 .	.942	.741	.942	.942	.942	.741	.741	.958	.958
8	.942 .92	5 .942 .	.942	.741	.958	.958	.958	.741	.815	.958	.958
9	.958 .94	2 .958	.958	.815	.958	.958	.958	.815	.815	.975	.975
10	958 94	2 .958	.958	.815	-975	.958	.975	.815	.889	-975	.975

750 KILOMETERS

		3	OBS			4	OBS			5	OBS	
		CC	MST			CC	NST			C	CHECK	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.592	.000	.233	.592	.085	.675	.658	.658	.213	.255	.725	.708
3	.775	.758	.758	.775	.468	.808	.792	.808	.511	.553	.825	.825
4	.842	.825	.825	.842	.638	.858	.858	.858	.638	.681	.875	.875
5	.875	.858	.875	.875	.723	.892	.892	.892	.723	.766	.908	.908
6	.892	.892	.892	.892	.766	.908	.908	.908	.766	.809	.925	.925
7	.908	.908	.908	.908	.809	.925	.925	.925	.809	.809	.942	.925
8	. 925	.908	.925	.925	.809	.942	.925	.942	.851	.851	.942	.942
9	.942	.925	.942	.942	.851	.942	.942	.942	.851	.851	.958	.942
10	.942	.925	.942	.942	.851	.958	.942	.958	.894	.894	.958	.958

3 OBS				4	OBS			5	OBS			
		C	DNST			C	CONST			CC	MST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.575	.017	.283	.575			.642	.658	.373	.373	.708	.708
3	. 758	.742	.758	.758	.576	.792	.792	.792	.610	.644	.825	.825
4	.825	.825	.825	.825	.678	.858	.842	.858	.712	.746	.875	.875
5	.875	.858	.858	.875	.746	.892	.875	.892	.780	.780	.908	.892
6	.892	.892	.892	.892	.814	.908	.908	.908	.814	.814	.925	.925
7	.908	.908	.908	.908	.847	.925	.925	.925	.847	.847	.942	.925
8	.925	.908	.925	.925	.847	.942	.925	.942	.881	.881	.942	.942
9	.942	.925	.925	.942	.881	.942	.942	.942	.881	.881	.958	.942
10	.942	.925	.942	.942	.881	.958	.942	.958	.881	.915	.958	.958

TABLE A-17 (90 DEG, 60 DEG, 6 HRS) (continued)

1500 KILOMETERS

	3 OBS					4	OBS			5	OBS	
		CC	MST			CC	WST			C	WST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.575	. 150	.467	.575	.427	.692	.642	.658	.507	.533	.742	.708
3	.792	.742	.775	.792	.693	.842	.808	.825	.720	.747	.858	.842
4	.875	.825	.858	.875	.800	.892	.875	.892	.800	.827	.908	.908
5	.908	.875	.908	.908	.853	.925	.908	.925	. 853	.880	.942	.942
6	.925	.908	.925	.925	.880	.942	.942	.942	.907	.907	.958	.958
7	.942	.925	.942	.942	.907	.958	.958	.958	.933	.933	.975	.975
8	.958	.942	.958	.958	.933	.975	.975	.975	.933	.960	.975	.975
9	.975	.958	.975	.975	.960	.975	.975	.975	.960	.987	.992	.992
10	.975	.958	.975	.975	.960	.992	.992	.992	.987	.987	.992	.992

2000 KILOMETERS

	3 OBS					4 08	3 S			5 OBS	\$	
		COI	NST			CONS	ST			CONST	ľ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.625	.250	.558	.625	.562	.725	.658	.692	.607	.652	.775	.758
3	.825	.758	.808	.825	.787	.875	.842	.875	.787	.831	.892	.892
4	.908	.858	.892	.908	.876	.925	.908	.925	.876	.921	.958	.942
5	.942	.908	.942	.942	.921	.958	.958	.958	.921	.966	.975	.975
6	.975	.942	. 958	.975	.966	.992	.975	.992	.989	.989	.992	.992
7	.992	.958	.992	.992	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	.992	.992	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	1.000	1.000	1.000	7.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		3 (OBS			4 00	38			5 (DBS	
		COI	NST			CONS	ST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.658	.333	.575	.658	.626	.758	.692	.725	.667	.727	.808	.792
3	.875	.792	.858	.875	.848	.908	.892	.908	.848	.889	.942	.925
4	.942	.892	.942	.942	.949	.975	.958	.975	.949	.970	.992	.975
5	.992	.942	.975	.992	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

	3 OBS					4 0	3\$			5 (DBS	
		COI	IST			CONS	ST			COL	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.675	.350	.592	.675	.660	.775	.708	.742	.699	.757	.825	.808
3	.892	.808	.875	.892	.874	. 925	.908	. 925	.893	.932	.958	.942
4	.958	.908	.958	.958	.971	.992	.975	.992	1.000	1.000	1.000	1.000
5	1.000	.992	.992	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
6	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10	1,000	1.000	1,000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE A-18 (90 DEG, 90 DEG, 6 HRS)

0 KILOMETERS

				4	OBS			5 (BS			
		CC	MST			CC	MST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.383	.003	.117	.397	.000	.517	.450	.497	.000	.000	.600	.597
3	.700	.571	.633	.719	.000	.750	.717	.769	.000	.400	.817	.792
4	.817	.738	.767	.819	1.000	.842	.825	.856	1.000	1.000	.858	.878
5	.858	.819	.825	.878	1.000	.875	.875	.878	1.000	1.000	.892	.900
6	.892	.861	.858	.900	1.000	.908	.892	.900	1.000	1.000	.908	.922
7	.908	.877	.875	.922	1.000	,908	.908	.922	1.000	1.000	.925	.922
8	.908	.894	.892	.922	1.000	.925	. 925	.922	1.000	1.000	.942	.944
9	.925	.911	.908	.922	1.000	.942	.925	.944	1.000	1.000	.942	.944
10	.925	.911	.925	.944	1.000	.942	.942	.944	1.000	1.000	.942	.944

500 KILOMETERS

		3	OBS			4	OBS			5 (DBS	
		CC	WST			C	DNST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.383	.068	.117	.473	.242	.500	.433	.467	.303	.424	.600	.567
3	.683	.641	.600	.766	.667	.750	.700	.717	.667	.788	.783	.750
•	.783	.786	.750	.847	.848	.833	.800	.817	.909	.909	.867	.850
ز	.867	.864	.817	.934	1.000	.892	.875	.875	1.000	1.000	.892	.892
6	.892	.908	.875	.961	1.000	.908	.892	.892	1.000	1.000	.908	.908
7	.908	.953	.892	.979	1.000	.925	.908	.908	1.000	1.000	.925	.925
8	.925	.953	.908	.997	1.000	.925	.925	.925	1.000	1.000	.942	.925
9	.925	.970	.908	.997	1.000	.942	.925	.942	1.000	1.000	.942	.942
10	.942	.988	.925	1.000	1.000	.942	.942	.942	1.000	1.000	.942	.942

750 KILOMETERS

		3 (280			4 0	38			5 OBS	\$	
		CO	12V			CONS	ST			CONST	٢	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.367	. 188	.117	.560	.449	.517	.417	.450	.490	.571	.583	.550
3	.667	.672	.600	.867	.735	.733	.700	.700	.735	.816	.767	.750
4	. 783	.819	.750	.980	.857	.817	.783	.817	.857	.898	.850	.850
5	.850	.897	.817	1.044	.939	.883	.850	.867	.939	.980	.900	.883
6	.883	.959	.867	1.000	1.000	.908	.892	.908	1.000	1.000	.925	.908
7	.908	.994	.892	1.000	1.000	.925	.908	.908	1.000	1.000	.925	.925
8	. 925	1.000	.908	1.000	1.000	.925	.925	.925	1.000	1.000	.942	.942
9	.925	1.000	.908	1.000	1.000	.942	.925	.942	1.000	1.000	.942	.942
10					1.000	.942	.942	.942	1.000	1.000	,958	.942

3 OBS					4 (08\$			5 00	38		
	CONST					CO	NST			CONS	ST .	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.367	.225	. 133	.569	.508	.500	.417	.467	.576	.610	.583	.550
3	.650	.652	.583	.841	.746	.717	.683	.700	.780	.814	.767	.733
4	.767	.781	.733	.973	.847	.800	.783	.800	.847	.881	.833	.833
5	.833	.859	.800	1.000	.915	.867	.833	.867	.915	.949	.883	.867
6	.867	.913	.850	1.000	.949	.900	.883	.900	.949	. 983	.917	.900
7	.900	.946	. 883	1.000	. 983	.917	.900	.917	1.000	1.000	.925	.925
8	.917	.964	.900	1.000	1.000	.925	.925	.925	1.000	1.000	.942	.942
9	.925	.973	.925	1.000	1.000	.942	.942	.942	1.000	1.000	.942	.942
10	042	001	025	1 000	1 000	042	042	942	1 000	1 000	05R	942

TABLE A-18 (90 DEG, 90 DEG, 6 HRS) (continued)

1500 KILOMETERS

		3	088			4 (DBS			5 (38 S	
		CC	MST			CO	IST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.350	.245	.217	.521	.575	.483	.417	.450	.630	.658	.550	.517
3	.633	.573	.567	.795	.767	.700	.667	.683	.767	.795	.733	.717
4	.733	.729	.700	.886	.822	.783	.767	.767	.849	.877	.817	.800
5	.800	.810	. 783	.937	.877	.833	.817	.833	.877	.904	.850	.850
6	.850	.853	.817	.981	.904	.867	.850	.867	.904	.932	.883	.883
7	.867	.882	.850	1.000	.932	.883	.883	.883	.932	.932	.917	.900
8	.883	.911	.867	1.000	.932	.917	.900	.900	.932	.959	.917	.917
9	.917	.928	.900	1.000	.959	.917	.917	.917	.959	.959	.933	.933
10	.917	.942	.900	1.000	. 9 59	.933	.917	.933	.959	.986	.950	.950
					2000	KILO	4E T E D (2				

2000 KILOMETERS

		3	OBS			4	088			5	OBS	
		CC	MST			CO	NST			CC	MST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.383	.233	.300	.383	.588	.467	.417	.433	.635	.659	.533	.500
3	.617	.500	.550	.617	.753	.667	.633	.667	.776	.800	.717	.700
4	.717	.650	.683	.717	.824	.750	.733	.750	.847	.847	.783	.783
5	.783	.717	.750	.783	.871	.817	.800	.800	.871	.871	.833	.817
6	.817	.783	.800	.817	.894	.850	.833	.833	.894	.894	.850	.850
7	.850	.817	.833	.850	.894	.867	.850	.867	.918	.918	.883	.883
8	.867	.833	.833	.867	.918	.883	.883	.883	.918	,918	.883	.883
9	.883	.850	.867	.883	.918	.883	.883	.883	.941	.941	.917	.900
10	.883	.867	.883	.883	.941	.917	.900	.900	.941	.941	.917	.917

2500 KILOMETERS

	3 OBS	4 08S	5 OBS
	CONST	CONST	CONST
PDOP	1 2 3 4	1 2 3 4	1 2 3 4
2	.417 .186 .283 .478	.602 .500 .450 .467	.667 .688 .550 .533
3	.633 .582 .583 .704	.774 .700 .650 .667	.796 .817 .733 .717
4	.733 .719 .717 .809	.860 .800 .767 .783	.860 ,882 .817 .800
5	.800 .822 .783 .867	.903 .833 .817 .833	.903 .903 .867 .850
6	.850 .857 .817 .901	.925 .867 .850 .867	.925 .925 .883 .883
7	.867 .883 .850 .919	.946 .900 .883 .883	.946 .946 .917 .900
8	.900 .914 .883 .948	.946 .917 .900 .917	.946 .968 .917 .917
9	.917 .920 .883 .962	.968 .917 .917 .917	.968 .968 .933 .933
10	.917 .937 .917 .962	.968 .933 .933 .933	.968 .968 .950 .950

	3 08S					4 (280			5 0	3S	
		C	TRAC			CO	NST			CONS	ST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.450	. 162	. 250	.568	.639	.550	.500	.517	.680	.701	.600	.567
3	.667	.647	.617	. 793	.804	.717	.667	.700	. 825	.845	.750	.733
4	.767	.766	. 733	.874	.887	.817	.783	.800	.887	.907	.850	.817
5	.817	.850	.800	.916	.907	.850	.850	.850	.907	.928	.883	.867
6	.867	.882	.833	.958	.948	.883	.883	.883	.948	.948	.917	.900
7	.883	.908	.867	.976	.969	.917	.900	.917	.969	.969	.933	.917
8	.917	.942	.900	.994	.969	.933	.917	.933	.969	.990	.950	,933
9	.933	.945	.900	1.000	.990	.950	.933	.933	.990	.990	.950	.950
10	.933	.962	.933	1.000	.990	.950	.950	.950	1.000	1.000	.958	.958

TABLE A-19 (90 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

		3 (DBS			4 (28 S			5 (285	
		COI	VST			COI	NST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.436	.000	.000	.436	.000	.641	.538	.590	.000	.000	.692	.692
3	.795	.692	.744	.795	.000	.846	. 795	.846	.000	.000	.897	.846
4	.897	.846	.897	.897	.000	.949	.897	.949	.000	.000	.949	.949
5	.949	.897	.949	.949	.000	1.000	.949	1.000	.000	.000	1.000	1.000
6	1.000	.949	1.000	1.000	.000	1,000	1.000	1.000	.000	.000	1.000	1.000
7	1.000	1.000	1.000	1.000	.000	1.000	1.COO	1.000	.000	.000	1.000	1.000
8	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
9	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000	.000	.000	1.000	1.000
10	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000	.000	.000	1.000	1.000

500 KILOMETERS

	3 OBS					4	088			5	OBS	
		CC	DNST			Ct	DNST			CC	DNST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.164	.000	.000	.164	.000	.345	.236	.273	.000	.000	.382	.382
3	.455	.382	.455	.455	.000	.491	.491	.491	.000	.000	.564	.527
4	.564	.491	.564	.564	.000	.636	.600	.636	.000	.000	.673	.673
5	.673	.600	.673	.673	.000	.709	.673	.709	.000	.000	.745	.745
6	.745	.673	.709	.745	.000	.782	.745	.782	.000	.000	.782	.782
7	.782	.709	.745	.782	.000	.782	.782	.782	.000	.000	.818	.818
8	.782	.745	.782	.782	.000	.818	.818	.818	.000	.000	.855	.855
9	.818	.782	.818	.818	.000	.855	.818	.855	.000	.000	.855	.855
10	.855	.818	.818	.855	.000	.855	.855	.855	.000	.000	.891	.855

750 KILOMETERS

	3 OBS					4	OBS			5 (DBS	
		C	ONST			C	TRIC			COI	IST	
POOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.000	.000	.000	.000	.000	.283	.150	. 183	.400	1,000	.400	.367
3	.467	.367	.433	.467	1.000	.533	.467	.533	1.000	1,000	.600	.533
4	.600	.500	.600	.600	1.000	.667	.600	.667	1.000	1.000	.700	.667
5	.667	.600	.667	.667	1.000	.733	.733	.733	1.000	1.000	.733	.733
6	.733	.667	.733	.733	1.000	.800	.733	.800	1.000	1.000	.800	.800
7	.800	.733	.800	.800	1.000	.800	.800	.800	1.000	1.000	.833	.800
8	.800	.767	.800	.800	1.000	.867	.800	.867	1.000	1,000	.867	.867
9	.800	.800	.800	.800	1.000	.867	.867	.867	1.000	1.000	.867	.867
10	.867	.800	.867	.867	1.000	.867	.867	.867	1.000	1.000	.867	.867

	3 OBS					4	088			5 (28 S	
		C	ONST			C	ONST			COI	NST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.033	.000	.000	.033	.545	.317	.100	.217	1.000	1.000	.433	.400
3	.500	.400	.467	.500	1.000	,533	.533	.533	1,000	1.000	.567	.567
4	.600	.533	.567	.600	1.000	.633	.600	.633	1.000	1.000	.700	.667
5	.667	.600	.667	.667	1.000	.733	.700	.733	1,000	1.000	.767	.733
6	.733	.667	.733	.733	1.000	.767	.767	.767	1.000	1.000	.800	.800
7	.767	.733	.767	.767	1.000	.800	.800	.800	1.000	1.000	.833	.833
8	.800	.767	.800	.800	1,000	.833	.833	.833	1,000	1.000	.833	.833
9	.833	.800	.833	.833	1.000	.833	.833	.833	1,000	1.000	.867	.867
10	.833	.800	.833	.833	1.000	.867	.867	.867	1.000	1.000	.867	.867

TABLE A-19 (90 DEG, 60 DEG, 3 HRS) (continued)

1500 KILOMETERS

		3	OBS			4	08 S			5 (18 5	
		C	MST			CC	TZMC			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.233	.000	.033	.233	1.000	.317	.300	.317	1.000	1.000	.317	.317
3	.467	.317	.433	.467	1.000	.533	.500	.533	1.000	1.000	.600	.567
4	.600	.533	.567	.600	1.000	.633	.600	.633	1.000	1.000	.667	.633
5	.667	.600	.633	.667	1.000	.700	.667	.700	1.000	1.000	.733	.733
6	.733	.633	.700	.733	1.000	.733	.733	.733	1.000	1.000	.800	.767
7	.767	.700	.733	.767	1.000	.800	.767	.800	1.000	1.000	.800	.800
8	.800	.733	.800	.800	1.000	.800	.800	.800	1.000	1.000	.833	.833
9	.800	.767	.800	.800	1.000	.833	.800	.833	1.000	1.000	.867	.867
10	.833	.800	.833	.833	1.000	.867	.833	.867	1.000	1.000	.867	.867

2000 KILOMETERS

	3 088					4	088			5 (OBS	
		CC	TRIC			C	ONST			COI	NST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.417	.000	.200	.417	1.000	.417	.417	.417	1.000	1.000	.417	.417
3	.417	.417	.417	.417	1.000	.417	.417	.417	1.000	1.000	.417	.417
4	.417	.417	.417	.417	1.000	.533	.500	.533	1.000	1.000	.600	.567
5	.567	. 433	.567	.567	1.000	.667	.600	.667	1.000	1.000	.667	.667
6	.667	.567	.667	.667	1.000	.700	.667	.700	1.000	1.000	.733	.733
7	.700	.667	.700	,700	1.000	.767	.733	.767	1.000	1.000	.767	.767
8	.767	.700	.733	.767	1,000	.767	.767	.767	1.000	1.000	.833	.800
9	.767	.733	.767	.767	1.000	.833	.800	.833	1.000	1.000	.833	.833
10	800	.767	.800	.800	1.000	.833	.833	.833	1,000	1.000	.833	.833

2500 KILOMETERS

	3 OBS					4	088			5 (280	
		CC	TRIC			C	TRIC			COI	NST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.517	. 283	.367	.517	1.000	.517	.517	.517	1.000	1.000	.517	.517
3	.517	.517	.517	.517	1.000	.517	.517	.517	1.000	1,000	.517	.517
4	.517	.517	.517	.517	1.000	.517	.517	.517	1.000	1,000	.517	.517
5	.517	.517	.517	.517	1.000	.550	.550	.550	1.000	1,000	.583	.550
6	.550	.517	.550	.550	1.000	.583	.583	.583	1.000	1.000	.617	.583
7	.583	.550	.583	.583	1.000	.617	.583	.617	1.000	1.000	.617	.617
8	.617	.583	.617	.617	1.000	.617	.617	.617	1.000	1.000	.650	.650
9	.617	.583	.617	.617	1.000	.650	.617	.650	1.000	1.000	.733	.700
10	.650	.617	.617	.650	1.000	.700	.650	.700	1.000	1.000	.733	.733

		3	085			4	OBS			5 (X8S	
		CC	WIST			CC	MST			CO	IST	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.550 .	483	.500	.550	1.000	.550	.550	.550	1.000	1.000	.550	.550
3	.550 .	550	.550	.550	1.000	.550	.550	.550	1.000	1.000	.550	.550
4	.550 .	550	.550	.550	1.000	.583	.550	.583	1.000	1.000	.617	.583
5	.583 .	550	.583	.583	1.000	.617	.617	.617	1.000	1.000	.650	.650
6	.650 .	583	.617	.650	1.000	.650	.650	.650	1.000	1.000	.683	.683
7	.650 .	617	.650	.650	1.000	.683	.683	.683	1.000	1.000	.717	.717
8	.683 .	650	.683	.683	1.000	.717	.683	.717	1.000	1.000	.717	.717
9	.717 .	683	.717	.717	1.000	.717	.717	.717	1.000	1.000	.750	.750
10	.717 .	683	.717	.717	1.000	.750	.717	.750	1.000	1.000	. 750	.750

TABLE A-20 (90 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

CONST CONST CONST CONST		3 OBS	4 08S	5 OBS
2 .367 .000 .122 .367 .000 .490 .408 .449 .000 .000 .571 .531 .612 .653 .000 .694 .694 .694 .000 .000 .776 .776 .776 .776 .694 .775 .776 .000 .816 .776 .776 .000 .000 .857 .857 .857 .857 .776 .816 .857 .000 .857 .857 .857 .857 .000 .000 .857 .857 .857 .857 .857 .857 .857 .857		CONST		
3 .653 .531 .612 .653 .000 .694 .694 .694 .000 .000 .776 .776 .476 .776 .476 .476 .000 .816 .776 .776 .000 .857 .857 .000 .857 .857 .000 .857 .857 .000 .000 .857 .857 .857 .857 .857 .857 .857 .857	PDOP	1 2 3 4	1 2 3 4	1 2 3 4
4	2	.367 .000 .122 .367	.000 .490 .408 .449	.000 .000 .571 .531
5 .857 .776 .816 .857 .000 .857 .857 .857 .000 .000 .857 .857 .857 6 .857 .857 .857 .857 .000 .939 .857 .898 .000 .000 .939 .939 7 .939 .857 .898 .939 .000 .939 .939 .000 .000 .939 .939	3	.653 .531 .612 .653	.000 .694 .694 .694	.000 .000 .776 .776
6 .857 .857 .857 .857 .857 .000 .939 .857 .898 .000 .000 .939 .939 7 .939 .857 .898 .935 .857 .898 .939 .000 .000 .939 .939 8 .939 .893 .898 .939 .939 .000 .939 .939 .939 .000 .000	4	.776 .694 .735 .776	.000 .816 .776 .776	.000 .000 .857 .857
7	5	.857 .776 .816 .857	.000 .857 .857 .857	
8 .939 .898 .939 .939 .000 .939 .939 .000 .000 .000	6	.857 .857 .857 .857	.000 .939 .857 .898	.000 .000 .939 .939
9 .939 .939 .939 .939 .939 .000 .939 .939	7	.939 .857 .898 .939	.000 .939 .939 .939	.000 .000 .939 .939
10 .939 .939 .939 .939 .000 .939 .939 .000 .000 .939 .939 .939 .939 .000 .000 .939 .939 .939 .939 .000 .000 .939 .939 .939 .939 .000 .000 .939 .939 .939 .939 .000 .000 .939 .939 .939 .939 .000 .000 .000 .000 .000 .000 .000 .	8	.939 .898 .939 .939	.000 .939 .939 .939	.000 .000 .939 .939
3 OBS	9	.939 .939 .939 .939	.000 .939 .939 .939	
3 08s	10	.939 .939 .939	.000 .939 .939 .939	.000 .000 .939 .939
PDOP 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			500 KILOMETERS	
PDOP 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		3 088	4 OBS	5 08S
2 .267 .000 .100 .270 .000 .400 .333 .333 .000 .000 .433 .400 3 .500 .400 .433 .504 .000 .567 .533 .533 1.000 1.000 .583 .583 4 .583 .533 .583 .585 1.000 .683 .617 .683 1.000 1.000 .683 .685 5 .683 .617 .683 .685 1.000 .717 .683 .717 1.000 1.000 .783 .783 6 .783 .683 .717 .786 1.000 .783 .783 1.000 1.000 .817 .783 7 .783 .717 .750 .786 1.000 .817 .783 .817 1.000 1.000 .817 .817 8 .817 .783 .817 .819 1.000 .817 .817 1.000 1.000 .850 .850 9 .817 .783 .817 .819 1.000 .850 .850 .850 1.000 1.000 .850 .850 10 .850 .817 .850 .852 1.000 .850 .850 .850 1.000 1.000 .883 .883 750 KILOMETERS 3 OBS		CONST	CONST	CONST
3 .500 .400 .433 .504 .000 .567 .533 .533 1.000 1.000 .583 .583 .4 .583 .533 .583 .585 1.000 .683 .617 .683 1.000 1.000 .683 .683 .5 .683 .617 .683 .685 1.000 .717 .683 .717 1.000 1.000 .783 .783 .6 .783 .683 .717 .786 1.000 .783 .783 .783 1.000 1.000 .817 .783 .7 .783 .717 .750 .786 1.000 .817 .783 .817 1.000 1.000 .817 .817 .8 .817 .783 .817 .819 1.000 .817 .817 .817 1.000 1.000 .850 .850 .850 .817 .850 .852 1.000 .850 .850 .850 1.000 1.000 .850 .850 .850 .850 .817 .850 .852 1.000 .850 .850 .850 1.000 1.000 .883 .883 .833 .633 .648 .567 .656 1.000 .683 .650 .683 1.000 1.000 .717 .683 .633 .648 .567 .656 1.000 .683 .650 .683 1.000 1.000 .717 .683 .750 .776 .750 .774 1.000 .817 .750 .750 .750 .750 .750 .750 .750 .75	PDOP	1 2 3 4		
4	2	.267 .000 .100 .270		.000 .000 .433 .400
5	_			
6 .783 .683 .717 .786 1.000 .783 .783 1.000 1.000 .817 .783 7 .783 .717 .750 .786 1.000 .817 .783 .817 1.000 1.000 .817 .817 8 .817 .783 .817 .819 1.000 .817 .817 1.000 1.000 .850 .850 9 .817 .783 .817 .819 1.000 .850 .850 .850 1.000 1.000 .850 .850 10 .850 .817 .850 .852 1.000 .850 .850 .850 1.000 1.000 .833 .883 750 KILOMETERS 3 OBS	-			
7 .783 .717 .750 .786				
8	-			
9				
750 KILOMETERS 3 OBS	_			
750 KILOMETERS 3 OBS				
3 OBS CONST CONST CONST PDOP 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 .267 .040 .100 .307 .000 .400 .300 .333 .000 .222 .533 .433 3 .633 .468 .567 .656 1.000 .683 .650 .683 1,000 1,000 .717 .683 4 .717 .676 .683 .739 1.000 .750 .750 .750 1,000 1.000 .750 .750 5 .750 .746 .750 .774 1.000 .817 .750 .783 1.000 1.000 .817 .817 6 .817 .780 .783 .842 1.000 .817 .817 .817 1.000 1.000 .817 .817 7 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .850 9 .850 .850 .817 .871 1.000 .850 .851 1.000 1.000 .850 .850 9 .850 .850 .817 .877 1.000 .850 .850 .850 1.000 1.000 .883 .883 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883	10	.850 .817 .850 .852	1.000 .850 .850 .850	1.000 1.000 .883 .883
CONST CONST CONST CONST CONST PDOP 1 2 3 4 1 2 3 4 1 2 3 4 2 .267 .040 .100 .307 .000 .400 .300 .333 .000 .222 .533 .433 3 .633 .468 .567 .656 1.000 .683 .650 .683 1.000 1.000 .717 .683 4 .717 .676 .683 .739 1.020 .750 .750 .750 1.000 1.000 .750 .750 5 .750 .746 .750 .774 1.000 .817 .750 .783 1.000 1.000 .817 .817 6 .817 .780 .783 .842 1.000 .817 .817 .817 1.000 1.000 .817 .817 7 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .850 .857 .850 1.000 1.000 .850 .850 9 .850 .850 .817 .877 1.000 .850 .850 .850 1.000 1.000 .883 .883 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883			750 KILOMETERS	
PDOP 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 2 3 4 2 2 267 .040 .100 .307 .000 .400 .300 .333 .000 .222 .533 .433 3 .633 .468 .567 .656 1.000 .683 .650 .683 1.000 1.000 .717 .683 4 .717 .676 .683 .739 1.090 .750 .750 .750 1.000 1.000 .750 .750 5 .750 .746 .750 .774 1.000 .817 .750 .783 1.000 1.000 .817 .817 6 .817 .780 .783 .842 1.000 .817 .817 .817 1.000 1.000 .817 .817 7 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .850 .817 .817 1.000 1.000 .850 .850 9 .850 .817 .842 1.000 .850 .850 .850 .850 .850 .850 .850				
2 .267 .040 .100 .307 .000 .400 .300 .333 .000 .222 .533 .433 3 .633 .468 .567 .656 1.000 .683 .650 .683 1.000 1.000 .717 .683 4 .717 .676 .683 .739 1.090 .750 .750 .750 1.000 1.000 .750 .750 5 .750 .746 .750 .774 1.000 .817 .750 .783 1.000 1.000 .817 .817 6 .817 .780 .783 .842 1.000 .817 .817 .817 1.000 1.000 .817 .817 7 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .850 .817 .850 1.000 1.000 .850 .850 9 .850 .850 .817 .877 1.000 .850 .850 .850 1.000 1.000 .883 .883 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883	2000			
3 .633 .468 .567 .656 1.000 .683 .650 .683 1.000 1.000 .717 .683 4 .717 .676 .683 .739 1.090 .750 .750 1.000 1.000 .750 .750 5 .750 .746 .750 .774 1.000 .817 .750 .783 1.000 1.000 .817 .817 6 .817 .780 .783 .842 1.000 .817 .817 .817 1.000 1.000 .817 .817 7 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .850 .817 .850 1.000 1.000 .850 .850 9 .850 .850 .817 .877 1.000 .850 .850 .850 1.000 1.000 .883 .883 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883 1000 KILOMETERS				
4 .717 .676 .683 .739 1.090 .750 .750 1.000 1.000 .750 .750 5 .750 .746 .750 .774 1.000 .817 .750 .783 1.000 1.000 .817 .817 6 .817 .780 .783 .842 1.000 .817 .817 .817 1.000 1.000 .817 .817 .817 .817 .850 .817 .842 1.000 .817 .817 .817 1.000 1.000 .850 .817 .8 .817 .850 .817 .850 .817 .842 1.000 .850 .817 .850 1.000 1.000 .850 .850 9 .850 .850 .817 .877 1.000 .850 .850 .850 .850 .850 .850 .850				
5				
6 .817 .780 .783 .842 1.000 .817 .817 1.000 1.000 .817 .817 7 .817 .850 .817 .842 1.000 .817 .817 1.000 1.000 .850 .817 8 .817 .850 .817 .842 1.000 .850 .817 .850 1.000 1.000 .850 .850 9 .850 .850 .817 .877 1.000 .850 .850 1.000 1.000 .850 .853 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883				
7				
8				· · · · · · · · · · · · · · · · · · ·
9 .850 .850 .817 .877 1.000 .850 .850 1.000 1.000 .883 .883 10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883 1000 KILOMETERS 3 OBS				
10 .850 .850 .850 .877 1.000 .883 .850 .883 1.000 1.000 .883 .883 1000 KILOMETERS 3 OBS				
1000 KILOMETERS 3 OBS 4 OBS 5 OBS CONST CONST	-			
CONST CONST CONST				
CONST CONST CONST		3 OBS	4 08S	5 08s
	PDOP			

.300 .050 .067 .379

.750 .612 .717 .806

.783 .682 .783 .842

.850 .717 .817 .913

.850 .787 .850 .913

.850 .822 .850 .913 .883 .822 .883 .949

3

5

10

.308 .367 .367 .433

1.000 .683 .783 .783

1.000 .783 .817 .850

1.000 .783 .850 .850

1.000 .783 .850 .850

.883 .822 .883 .949 1.000 .883 .917 .917 1.000 1.000 .917 .917

1.000 .850 .883 .883 1.000 1.000 .917 .883 1.000 .883 .883 .883 1.000 1.000 .917 .917

.683 .499 .650 .734 1.000 .617 .683 .717

.462 .286 .567 .567

1.000 1.000 .750 .750

1.000 1.000 .817 .783

1.000 1.000 .850 .850

1.000 1.000 .850 .850 1.000 1.000 .883 .883

TABLE A20 (90 DEG, 90 DEG, 3 HRS) (continued)

1500 KILOMETERS

			4 06	35			5 OBS	3				
		COI	IST			CONS	T			CONST	Γ	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.467	. 193	.100	.522	.762	.638	.533	.600	1.000	1.000	.717	.717
3	.750	.801	.750	.833	1.000	.819	.783	.817	1.000	1.000	.817	.817
4	.817	.913	.817	.907	1.000	.886	.850	.850	1.000	1.000	.883	.883
5	.883	.950	.850	.981	1.000	.919	.883	.917	1.000	1.000	.917	.917
6	.917	.988	.917	1.000	1.000	.919	.917	.917	1.000	1.000	.917	.917
7	.917	1.000	.917	1.000	1.000	.919	.917	.917	1.000	1.000	.983	.983
8	.917	1.000	.917	1.000	1.000	.986	.950	.983	1.000	1.000	.983	.983
9	.983	1.000	.950	1.000	1.000	.986	.983	.983	1.000	1.000	.983	.983
10	.983	1.000	.950	1.000	1.000	.986	.983	.983	1.000	1.000	.983	.983

2000 KILOMETERS

3 OBS						4 0	35			5 OBS	3	
		COI	NST			CONS	ST			CONST	1	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.567	.340	.333	.645	1,000	.719	.683	.717	1.000	1.000	.750	.750
3	.817	.841	.783	.925	1.000	.852	.817	.850	1.000	1.000	.883	.883
4	.883	.953	.850	1.000	1.000	.919	.917	.917	1.000	1.000	.917	.917
5	.917	1.000	.917	1.000	1.000	.953	.917	.950	1.000	1.000	.950	.950
6	.950	1.000	.950	1.000	1.000	.953	.950	.950	1.000	1.000	.983	.983
7	.950	1.000	.950	1.000	1.000	.986	.983	.983	1.000	1.000	.983	.983
8	.983	1.000	.950	1,000	1.000	.986	.983	.983	1.000	1.000	.983	.983
9	.983	1.000	.983	1.000	1.000	.986	.983	.983	1.000	1.000	.983	.983
10	.983	1.000	.983	1,000	1.000	.986	.983	.983	1.000	1.000	.983	.983

2500 KILOMETERS

		3 (280			4 06	38			5 089	•	
		CO	IST			CONS	T			CONST	•	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.667	.403	.500	.772	1.000	.750	.717	.750	1.000	1.000	.783	.783
3	.850	.868	.817	.981	1.000	.883	.850	.850	1.000	1.000	.883	.883
4	.883	.942	.883	1.000	1.000	.917	.883	.917	1.000	1.000	.917	.917
5	.917	.978	.917	1.000	1.000	.950	.917	.950	1.000	1.000	.983	.950
6	.950	1.000	.917	1.000	1.000	.983	.983	. 983	1.000	1.000	.983	.983
7	.983	1.000	.983	1.000	1.000	.983	.983	.983	1.000	1.000	.983	.983
8	.983	1.000	.983	1.000	1.000	.983	.983	.983	1.000	1.000	.983	.983
9	.983	1.000	.983	1.000	1.000	.983	.983	.983	1.000	1.000	.983	.983
10	.983	1.000	.983	1.000	1.000	.983	.983	.983	1.000	1.000	.983	.983

		3 (OBS			4 0	35			5 OBS	5	
		COI	NST			CONS	ST .			CONST	1	
PDOP	1	2	3	4	1	2	3	4	1	2	3	4
2	.683	.455	.801	.600	1.000	.752	.750	.750	1.000	1.000	.783	.783
3	.850	.884	.997	. 783	1.000	.852	.850	.850	1.000	1.000	.883	.883
4	.883	.959	1.000	.883	1.000	.886	.883	.883	1.000	1.000	.950	.950
5	.950	.997	1.000	.917	1.000	.953	.950	.950	1,000	1,000	.950	.950
6	.950	1.000	1.000	.950	1.000	.953	.950	.950	1.000	1.000	.983	. 983
7	.950	1.000	1.000	.950	1.000	.986	.983	.983	1.000	1.000	.983	.983
8	.983	1.000	1.000	.983	1.000	.986	.983	.983	1.000	1.000	.983	.983
9	.983	1,000	1.000	.983	1.000	.986	.983	.983	1.000	1,000	.983	.983
10	.983	1.000	1.000	.983	1.000	.986	.983	.983	1.000	1.000	.983	.983

APPENDIX B.

Cumulative Probability Tables of Shortest Target Tracker to Target Distances

Tabular entries are cumulative probability values of shortest distances to target. The values in parentheses in each of the tables define the latitude of the target, the inclination of the orbital lane, and the satellite period. The data is organized by target elevation, by shortest, second shortest, and third shortest distances and by constellation number. CONST=1, 2, 3, or 4 corresponds to 9, 12, 15, or 18 satellites.

TABLE 8-1 (30 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

		F1F COI				SEC	COND			THIRD CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.075	.096	.076	.144	.000	.000	.014	.000	.000	.000	.000	. 000
11.5	.410	.594	.592	.675	.126	.086	.278	.306	.000	.000	.000	.036
12.5	.821	.961	1.000	1.000	.299	.521	.669	.771	.000	.022	.124	.486
13.5	1.000	1.000	1.000	1.000	.522	.799	.940	1.000	.000	.270	.529	.829
14.5	1.000	1.000	1.000	1.000	.935	.976	1.000	1.000	.469	. 787	. 989	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		F11	RST			SEC	COND			THIRD		
		COL	VST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.207	.282	.254	.396	.017	.000	.107	.025	.000	.000	.000	.000
11.5	.590	.774	.844	.904	. 174	.235	.390	.418	.000	.000	.011	. 190
12.5	.865	.997	1.000	1.000	.353	.572	.758	.846	.000	.069	.215	.571
13.5	1.000	1.000	1.000	1.000	.579	.824	.957	1.000	.000	.301	.594	.868
14.5	1.000	1,000	1.000	1.000	.958	.982	1.000	1.000	.263	.774	.993	1.000
15.5	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	.791	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17,5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FII	RST			SE	COND			THIRD		
		COI	IST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.264	.406	.367	.518	.054	.000	. 160	.093	.000	.000	.000	.000
11.5	.653	.840	.894	.963	.190	.290	.453	.488	.000	.000	.032	.242
12.5	.885	1.000	1.000	1.000	.375	.610	.789	.879	.000	.089	.247	.597
13.5	1.000	1.000	1.000	1.000	.610	. 836	.967	1.000	.000	.329	.622	. 883
14.5	1.000	1.000	1.000	1.000	.967	.986	1.000	1.000	. 194	.788	.994	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.564	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.688	1.000	1.000	1.000
17.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.996	1.000	1.000	1.000

		F10	RST			SE	COND			THIRD		
		COI	VST			COL	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
9.5	.065	.083	.067	.125	.000	.000	.007	.000	.000	.000	.000	.000
10.5	.296	.501	.435	.588	.089	.000	.217	. 165	.000	.000	.000	.000
11.5	.270 .501 .435 .500 .707 .882 .932 .983 .900 1.000 1.000 1.000				.203	.340	.500	.567	.000	.000	.044	. 282
12.5	.900	1.000	1.000	1.000	.394	. 639	.814	.904	.000	.107	.278	.619
13.5	1.000	1.000	1.000	1,000	.642	.844	.974	1.000	.004	.383	.646	.900
14.5	1.000	1.000	1.000	1,000	.974	.990	1.000	1.000	. 197	.793	.994	1.000
15.5	1.000	1,000	1.000	1.000	1.000	1.000	1,000	1.000	.558	1,000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.686	1.000	1.000	1.000
17,5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.986	1.000	1.000	1.000

TABLE B-2 (30 DEG. 90 DEG. 6 HRS)

0 KILOMETERS

		FII					COND NST			THIRD CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.000	.000	.081	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.5	.411	.278	.442	.419	.000	.261	.178	.397	.000	.000	.000	.000
12.5	.633	.583	.639	.633	. 173	.492	.533	.619	.000	.003	.258	. 258
13.5	.814	.797	.817	.814	.588	.728	.742	.808	.000	. 203	.639	.656
14.5	.975	.975	.975	.975	.848	.956	.956	.975	.474	.552	.919	.925
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.5	1.000	.000 1.000 1.000 1.000 .000 1.000 1.000 1.000				1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FI	RST			SE	COND			THIRD			
		CO	NST			CO	NST			CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4	
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
10.5	.233	. 156	.286	.242	.000	.144	.000	.225	.000	.000	.000	.000	
11.5	.486	.325	.508	.492	.000	.311	.342	.472	.000	.000	.022	.000	
12.5	.678	.642	.681	.678	.272	.556	.586	.664	.000	.056	.356	. 389	
13.5	.833	.819	.836	.833	.567	.756	.769	.828	.000	.203	.681	.694	
14.5	.986	.981	.986	.986	. 781	.975	.969	.986	.269	.522	.944	.944	
15.5	1.000	1.000	1.000	1.000	.981	1.000	1.000	1.000	.764	1.000	1.000	1.000	
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
17.5	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	

750 KILOMETERS

		FII	RST			SE	COND			THIRD		
		COI	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.303	. 203	.342	.311	.000	. 189	.050	.292	.000	.000	.000	.000
11.5	.522	.347	.536	.531	.000	.328	. 392	.503	.000	.000	.047	.000
12.5	.694	.661	.697	.694	.319	.581	.606	.681	.000	.081	.386	.433
13.5	.850	.836	.850	.850	.581	.769	.786	.844	.000	.211	.694	.714
14.5	.992	.992	.992	.992	.781	.981	.975	.992	.278	.528	.958	.947
15.5	1.000	1.000	1.000	1.000	.981	1.000	1.000	1.000	.758	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.5	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SEC	COND			THIRD		
		CO	491			CO	191			COMO		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
9.5	.000	.000	.069	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.347	.233	.381	.356	.000	.217	.094	.333	.000	.000	.000	.000
11.5	.550	.550 .408 .561 .556			.000	.344	.431	.531	.000	.000	.064	.044
12.5	.711	.681	.714	.711	.353	.600	.622	.700	.000	.100	.414	.464
13.5	.853	.844	.853	.853	.592	.775	.789	.850	.000	.217	.717	.728
14.5	.992	.992	.992	.992	.786	.981	.983	.992	.286	.581	.967	.947
15.5	1.000	1.000	1.000	1.000	.978	1.000	1.000	1.000	.756	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE 8-3 (30 DEG. 60 DEG. 3 HRS)

0 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	4ST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.117	.114	. 100	. 150	.000	.000	.028	.000	.000	.000	.000	.000
5.5	.444	.444 .478 .475 .569				.073	.275	.247	.000	.000	.000	.000
6.5	.749 .883 .942 .986				.545	.436	.572	.593	.000	.000	.018	.370
7.5	.932	1.000	1.000	1.000	.880	.868	.911	.947	.000	.588	.652	.833
8.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
9.5	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
10.5	1.000 1.000 1.000 1.000				1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
11.5	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000			

500 KILOMETERS

		FII	RST			SE	COND			THIRD			
		COI	IST			CO	NST			CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4	
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
4.5	.239	.236	. 228	.314	.017	.020	.111	.056	.000	.000	.000	.000	
5.5	.517	.517 .592 .608 .711				.101	.306	.342	.000	.000	.000	.011	
6.5	.756	.908	.975	1.000	.326	.377	.558	.622	.000	.000	.040	.336	
7.5	.919	1.000	1.000	1.000	.494	.679	.836	.944	.000	.212	.319	.656	
8.5	1.000	1.000	1.000	1.000	.782	.888	.989	1.000	.081	.599	. <i>7</i> 57	.917	
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
10.5	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
11.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

750 KILOMETERS

		FII	RST			SEC	COND			THIRD		
		COI	IST			CONST						
TRIG	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.019	.019	.028	.033	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.300	.303	.292	.389	.033	.031	. 139	.103	.000	.000	.000	.000
5.5	.556	.625	.650	.736	.164	. 131	.331	.386	.000	.000	.000	.053
6.5	.764	. 925	.986	1.000	.331	.394	.575	.653	.000	.000	.061	.361
7.5	.919	1.000	1.000	1.000	.481	.681	.842	.944	.000	.181	.322	.658
8.5	1.000	1.000	1.000	1.000	.744	.883	.989	1.000	.018	.497	.739	.917
9.5	1.000	1.000	1.000	1.000	.989	1.000	1.000	1.000	.310	.914	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD			
		CO	NST			CO	VST			CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4	
3.5	.078	.081	.047	.103	.000	.000	.014	.000	.000	.000	.000	.000	
4.5	.333	.350	.331	.431	.053	.039	. 158	.142	.000	.000	.000	.000	
5.5	.572	.639	.686	.756	.178	. 158	.344	.403	.000	.000	.000	.083	
6.5	.767	.928	.989	1.000	.333	.403	.586	.658	.000	.000	.072	.372	
7.5	.919	1.000	1.000	1.000	.481	.681	.842	.944	.000	. 181	.325	.658	
8.5	1.000	1.000	1.000	1.000	.736	. 883	.989	1.000	.008	.492	. 725	.917	
9.5	1.000	1.000	1.000	1.000	.983	1.000	1.000	1.000	.199	.900	1.000	1.000	
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	. 780	1.000	1.000	1.000	
11.5	1.000	1.000	1.000	1.000	1.000	1,000	1,000	1.000	1.000	1.000	1.000	1.000	

TABLE B-4 (30 DEG. 90 DEG. 3 HRS)

0 KILOMETERS

			RST				COND			THIRD		
		COI	IST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.079	.040	. 169	.078	.000	.043	.000	.079	.000	.000	.000	.000
5.5	.418	.279	.504	.436	.000	.273	.170	.412	.000	.000	.000	.000
6.5	.704	.576	.725	.720	. 156	.557	.606	.697	.000	.000	.179	.118
7.5	.936	.920	.937	.943	.727	.897	.900	.928	.000	.447	.749	.680
8.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
11.5	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000

500 KILOMETERS

		FII	RST			SE	CCOND			THIR)	
		COI	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	. 195	.121	.257	.201	.000	.110	.006	. 186	.000	.000	.000	.000
5.5	.393	.297	.444	.412	.024	.254	.192	.387	.000	.000	.000	.020
6.5	.585	.492	.610	.599	.115	.424	.475	.576	.000	.000	.136	.113
7.5	.746	.720	.754	.751	.402	.658	.669	.740	.000	.083	.477	.395
8.5	.893	.887	.898	.898	.773	.845	.833	.887	.299	.465	.767	.816
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

	FIRST	SECOND	THIRD	
	CONST	CONST	CONST	
DIST	1 2 3 4	1 2 3 4	1 2 3 4	
3.5	.028 .014 .022 .028	.000 .014 .000 .025	.000.000.000.000	
4.5	.225 .136 .289 .228	.000 .131 .025 .219	.000.000.000.000	
5.5	.417 .317 .461 .433	.028 .275 .219 .414	.000 .000 .000 .028	
6.5	.586 .500 .606 .600	.103 .428 .481 .575	.000 .000 .142 .128	
7.5	.733 .711 .742 .739	.320 .647 .658 .728	.000 .064 .469 .392	
8.5	.878 .872 .883 .883	.607 .828 .814 .872	.147 .336 .744 .797	
9.5	1.000 1.000 1.000 1.0	00 .864 1.000 1.000	1.000 .601 .843 1.000	1.000
10.5	1.000 1.000 1.000 1.0	00 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000
11.5	1.000 1.000 1.000 1.0	00 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000

		FI	RST			SE	COND			THIRD		
		COI	NST			CO	HST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.050	.025	.089	.050	.000	.025	.000	.050	.000	.000	.000	.000
4.5	.250	.153	.314	.256	.000	.144	.033	.244	.000	.000	.000	.000
5.5	.425	.331	.469	.442	.033	. 286	.247	.419	.000	.000	.000	.033
6.5	.589	.508	.606	.600	. 108	.433	.494	.581	.000	.000	.147	. 139
7.5	.736	.714	.742	.742	. 322	.647	.658	.728	.000	.064	.475	. 392
8.5	.878	.872	.883	.883	.606	.828	.808	.872	.113	.319	.739	.797
9.5	1.000	1.000	1.000	1.000	.844	1.000	1.000	1.000	.462	.787	1.000	1,000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.850	.972	1.000	1,000
11.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-5 (45 DEG. 60 DEG. 6 HRS)

0 KILOMETERS

	FIRST CONST					SEC	COND			THIRD CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.067	.065	.119	.099	.000	.000	.000	.000	.000	.000	.000	.000
11.5	.611	.854	.971	1.000	.029	.007	.140	.282	.000	.000	.000	.007
12.5	.993	1.000	1.000	1.000	.178	.499	.785	.981	.000	.048	.064	.336
13.5	1.000	1.000	1.000	1.000	.554	.849	1.000	1.000	. 103	.273	.550	.825
14.5	1.000	1.000	1.000	1.000	.919	1.000	1.000	1.000	.670	. 823	.949	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FII	RST			SE	COND			THIRD		
		COL	NST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.374	.511	.619	.767	.000	.000	.000	.000	.000	.000	.000	.000
11.5	.775	.999	.985	1.000	.069	.119	.379	.575	.000	.000	.000	.094
12.5	1.000	1.000	1.000	1.000	.264	.586	.885	1.000	.000	.079	.174	.482
13.5	1.000	1.000	1.000	1.000	.614	.894	1.000	1.000	.041	.313	.615	.886
14.5	1.000	1,000	1.000	1.000	.933	1.000	1.000	1.000	.238	.790	.971	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.559	.994	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.999	1.000	1.000	1.000

750 KILOMETERS

		FI	RST			SEC	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	1 2 3 4				2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.460	.629	.757	.929	.000	.000	.014	.014	.000	.000	.000	.000
11.5	.835	1.000	1.000	1.000	. 085	.218	.483	.682	.000	.000	.000	. 142
12.5	1.000	1.000	1.000	1.000	.307	.625	.924	1.000	.000	.094	. 203	.542
13.5	1.000	1.000	1.000	1.000	.632	.906	1.000	1.000	.042	.332	.638	.907
14.5	1.000	1.000	1.000	1.000	.946	1.000	1.000	1.000	.228	.806	.975	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.529	.993	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.938	1.000	1.000	1.000

		FI	RST			SE	COND			THIRD		
		COI	VST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.044	.042	.096	. 065	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.521	.715	.899	.988	.001	.000	.032	.086	.000	.000	.000	.000
11.5	.881	1.000	1.000	1.000	.100	.301	.572	.769	.000	.000	.006	.179
12.5	1.000	1.000	1.000	1.000	. 339	.657	.951	1.000	.000	. 106	.224	.588
13.5	1.000	1.000	1.000	1.000	.651	.918	1.000	1.000	.058	.364	.663	.922
14.5	1.000	1.000	1.000	1.000	.949	1.000	1.000	1.000	.231	.813	.979	1.000
15,5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.526	.992	1.000	1.000
16.5	1,000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	.915	1.000	1.000	1.000

TABLE 8-5 (45 DEG. 60 DEG. 6 HRS) (continued)

1500 KILOMETERS

		FII	RST			SE	COND			THIRD		
		COI	NST			COL	est			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.310	.418	.506	.631	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.636	.882	.972	1.000	.036	.015	. 165	.322	.000	.000	.000	.022
11.5	.954	1.000	1.000	1.000	. 122	.411	.689	.901	.000	.014	.026	.233
12.5	1.000	1.000	1.000	1.000	. 393	.708	.979	1.000	.000	.124	.300	.660
13.5	1.000	1.000	1.000	1.000	. 683	.946	1.000	1.000	.104	.431	.715	.951
14.5	1.000	1.000	1.000	1.000	.957	1.000	1.000	1.000	.236	.828	.983	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.513	.992	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.856	1.000	1.000	1.000

	FIRST					SE	COND			THIRD		
		COI	NST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.004	.000	.065	.004	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.450	.615	.746	.915	.000	.000	.011	.008	.000	.000	.000	.000
10.5	.732	.979	.982	1.000	.061	.067	.308	.503	.000	.000	.000	.056
11.5	.990	1.000	1.000	1.000	. 157	.478	.761	.975	.000	.039	.049	.299
12.5	1.000	1.000	1.000	1.000	.426	.738	.992	1.000	.000	. 136	.361	.703
13.5	1.000	1.000	1.000	1.000	.704	.958	1.000	1.000	.121	.451	.743	.964
14.5	1.000	1.000	1.000	1.000	.958	1.000	1.000	1.000	.236	.832	.989	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.494	.985	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.822	1.000	1.000	1.000

			TAI	BLE B-6	(45 DE	EG. 90	DEG.	S HRS)				
					0 1	(ILOME	TERS					
		FIF	RST			SE	COND			THIRD		
		CO	IST			COI	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.031	.031	.083	.061	.000	.000	.000	.000	.000	.000	.000	.000
11.5	.453	.514	.664	.689	.000	.106	.108	.225	.000	.000	.000	.000
12.5	.858	.892	.894	.903	.221	.514	.650	.814	.000	.022	.256	.381
13.5	1.000	1.000	1.000	1.000	.714	1.000	1.000	1.000	.262	.419	.881	.989
14.5	1.000	1.000	1.000	1.000	.958	1.000	1.000	1.000	.768	.942	1.000	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
					500 (CI LOME.	TERS					
		FIG	RST			SE	COND			THIRD		
		CO					NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.253	.328	.331	.506	.000	.008	.000	.017	.000	.000	.000	.000
11.5	.589	.681	.750	.761	.003	. 156	.300	.447	.000	.000	.053	.019
12.5	.919	.933	.939	.939	.367	.672	.800	.897	.003	.047	.322	.628
13.5	1.000	1.000	1.000	1.000	.756	1.000	1.000	1.000	.281	.528	.939	1.000
14.5	1.000	1.000	1.000	1.000	.958	1.000	1.000	1.000	.683	.956	1.000	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.981	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
					7 50 I	(I LOME:	rers					
		FII	RST			SE	COND			THIRD		
		CO	NST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.331	.381	.497	.583	.000	.039		.067	.000	.000	.000	.000
11.5	.661	.736	. 783	.794	.039	.236	.383	.519	.000	.000	.100	.081
12.5	.944	.956	.956	.958	.417	.733	.864	.928	.011	.056	.350	.697
13.5	1.000	1.000	1.000	1.000			1.000		.308	.569	961	1.000
14.5	1.000	1.000	1,000	1.000	.958	1.000	1.000	1.000	.694	.964	1.000	1.000
15.5	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	.978	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
					1000 K	LOMET	ERS					
		FII	RST			SE	COND			THIRD		
			NST				NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	-	.000	.000	_	-	.000	_	.000	.000
0.5	022	022	075	044	000			000	000		000	000

.022

.383

.697

.964

9.5

10.5

11.5

12.5 13.5

14.5 15.5

16.5

.022

.414 .783

.975

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

.075

.592

.808

.975

.044

.631

.817

.975

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

.000

.000

.064

.456

.000

.067

.272

.775

.000

.033

.467

.908

.792 1.000 1.000 1.000

.964 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

.000

.106

.572

.953

.000

.000

.000

.019

.328

.000

.000

.000

.069

.606

.703 .967 1.000 1.000

.975 1.000 1.000 1.000

.000

.000

.133

.378

.000

.000

.122

.747

.975 1.000

TABLE B-6 (45 DEG. 90 DEG. 6 HRS) (continued)

1500 KILOMETERS

		FIF					COND			THIRD		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	. 194	.269	.247	.419	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.486	.542	.675	.694	.000	.117	.142	.281	.000	.000	.008	.000
11.5	.789	.844	.847	.853	. 139	.411	.572	.725	.000	.000	. 183	.261
12.5	.992	.992	.992	.992	.497	.825	.975	.992	.044	.097	.558	.792
13.5	1.000	1.000	1.000	1.000	.814	1.000	1.000	1.000	.361	.653	.989	1.000
14.5	1.000	1.000	1.000	1.000	.967	1.000	1.000	1.000	.714	.972	1.000	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.969	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		F19	RST			SEC	COND			THIRD		
		CO	TZV			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.011	.014	.067	.025	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.319	.378	.475	.578	.000	.033	.000	.053	.000	.000	.000	.000
10.5	.569	.656	.733	.744	.000	.150	.275	.428	.000	.000	.039	.008
11.5	.842	.878	.881	.886	. 186	.489	.619	. 797	.000	.011	.236	.331
12.5	1.000	1.000	1.000	1.000	.569	.922	1.000	1.000	.078	. 186	.678	.894
13.5	1.000	1.000	1.000	1.000	.828	1.000	1.000	1.000	.383	.681	.994	1.000
14.5	1.000	1.000	1.000	1.000	.967	1.000	1.000	1.000	.719	.975	1.000	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.961	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE 8-7 (45 DEG. 60 DEG. 3 HRS)

0 KILOMETERS

		FII					COND			THIRD			
		COI				COI				CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4	
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
4.5	. 156	. 156	.214	.219	.000	.000	.000	.000	.000	.000	.000	.000	
5.5	.642	.767	.917	1.000	.020	.014	.056	. 167	.000	.000	.000	.000	
6.5	.917	.917 1.000 1.000 1.000				.366	.578	.797	.000	.011	.000	.206	
7.5	1.000	1.000	1.000	1.000	.776	.842	.986	1.000	.000	.682	.457	.811	
8.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000	
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000	
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1,000	
					500 1	KILOME.	TERS						
		E 7 6	et			SE!	מעמי			TUIDO			

		FIF	RST			SEC	COND			THIRD		
		COI	IST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.358	.414	.539	.606	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.714	.872	.981	1.000	.040	.022	.150	.350	.000	.000	.000	.000
6.5	.950	1.000	1.000	1.000	. 167	.350	.658	.869	.000	.014	.003	.200
7.5	1.000	1.000	1.000	1.000	.470	.703	.994	1.000	.000	.224	.248	.708
8.5	1.000	1.000	1.000	1.000	.778	.967	1.000	1.000	.630	.566	.763	.994
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF	RST			SEC	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.025	.025	.042	.025	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.419	.497	.656	.725	.000	.000	.000	.000	.000	.000	.000	.000
5.5	. 733	.897	.992	1.000	.044	.025	.211	.392	.000	.000	.000	.000
6.5	.964	1.000	1.000	1.000	.172	.378	.681	.900	.000	.014	.006	.217
7.5	1.000	1.000	1.000	1.000	.453	.706	.994	1.000	.000	. 185	. 253	.708
8.5	1.000	1.000	1.000	1.000	.744	.958	1.000	1.000	.094	.459	.753	.992
9.5	1.000	1.000	1.000	1.000	.989	1.000	1.000	1.000	. 298	. 885	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD		
		COI	TZV			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.097	.097	. 133	. 136	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.481	.569	.731	.842	.000	.000	.003	.000	.000	.000	.000	.000
5.5	. 756	.933	.997	1.000	.050	.033	.247	.453	.000	.000	.000	.006
6.5	.969	1.000	1.000	1.000	. 175	. 386	. 700	.911	.000	.014	.022	.222
7.5	1.000	1.000	1.000	1.000	.453	.706	. 994	1.000	.000	. 183	.256	.708
8.5	1.000	1.000	1.000	1.000	.736	.953	1.000	1.000	.058	.439	.747	.986
9.5	1.000	1.000	1,000	1.000	.983	1.000	1.000	1.000	.172	.869	.997	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.715	1.000	1.000	1.000

TABLE B-7 (45 DEG. 60 DEG. 3 HRS) (continued)

1500 KILOMETERS

		FIF				SEC	COND			THIRD CONST		
DIST	•	2	3	4	1	2	3	4	1	2	3	4
		_		•		_				_	_	-
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.261	.261	.336	.394	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.578	.692	.847	.983	.003	.000	.019	.047	.000	.000	.000	.000
5.5	.781	.972	1.000	1.000	.064	.058	.322	.522	.000	.000	.000	.022
6.5	.981	1.000	1.000	1.000	. 181	.403	.722	.936	.000	.014	.047	.231
7.5	1.000	1.000	1.000	1.000	.453	.706	.994	1.000	.000	. 183	.247	.708
8.5	1.000	1.000	1.000	1.000	.719	.944	1.000	1.000	.042	.422	.725	.986
9.5	1.000	1.000	1.000	1.000	.964	1.000	1.000	1.000	.076	.817	.986	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.497	.986	1.000	1.000

		FIR	RST			SEC	COND			THIRD)	
		CO	IST			CO	IST			CONST	ſ	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.061	.061	.081	.078	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.339	.386	.475	.567	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.617	.736	.883	.997	.006	.006	.033	.117	.000	.000	.000	.000
5.5	.806	.983	1.000	1.000	.072	.086	.347	.550	.000	.000	.000	.058
6.5	.986	1.000	1.000	1.000	.181	.406	.733	.942	.000	.019	.050	.231
7.5	1.000	1.000	1.000	1.000	.439	.692	.989	1.000	.000	.175	.219	.686
8.5		1.000			.697	.917	1.000	1.000	.036	.386	.686	.958
9.5		1.000			.936	1.000	1.000	1.000	.072	.764	.961	1.000
10.5		1.000			1.000			1.000			1.000	1.000

TABLE 8-8 (45 DEG. 90 DEG. 3 HRS)

0 KILOMETERS

		FII	RST			SE	COND			THIRD		
		COI	IST			COL	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.083	.108	. 142	. 183	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.406	.478	.594	.628	.000	.070	.950	.186	.000	.000	.000	.000
6.5	.711	.794	.814	.822	. 131	.314	.483	.597	.000	.000	. 148	. 145
7.5	.983	.983	.983	.983	.696	. 838	.981	. 983	.333	.305	.586	.792
8.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FII	RST			SE	COND			THIRD		
		COI	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.208	.242	.319	.403	.000	.008	.000	.017	.000	.000	.000	.000
5.5	.489	.561	.669	.700	.000	.092	. 183	.253	.000	.000	.008	.000
6.5	.775	.833	.842	.850	.113	.375	.525	.694	.000	.000	. 153	. 181
7.5	.983	. 983	.983	.983	.512	.900	.983	.983	.098	.128	.564	.833
8.5	1.000	1.000	1.000	1.000	.858	1.000	1.000	1.000	.575	.762	.994	1.000
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FI	RST			SE	COND			THIRD		
		CO	NST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.022	.022	.011	.044	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.236	.278	.386	.456	.000	.017	.000	.031	.000	.000	.000	.000
5.5	.511	.594	.683	.706	.006	.106	.211	.303	.000	.000	.014	.008
6.5	.797	.836	.844	.850	.117	.408	.544	.742	.000	.000	.175	. 194
7.5	1.000	1.000	1.000	1,000	.511	.922	1.000	1.000	.090	. 136	.594	.861
8.5	1.000	1.000	1.000	1.000	.819	1.000	1.000	1,000	.427	.705	.994	1.000
9.5	1.000	1.000	1.000	1,000	.972	1.000	1.000	1.000	.798	.958	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1,000

			SECOND				THIRD					
		CONST				CONST						
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	. 053	.064	.108	.117	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.261	.322	.428	.517	.000	.025	.000	.042	.000	.000	.000	.000
5.5	.539	.628	.700	.728	.006	.117	. 231	.347	.000	.000	.031	.008
6.5	.819	.853	.864	.872	. 125	.425	.553	.764	.000	.000	. 183	.203
7.5	1.000	1.000	1.000	1.000	.514	.925	1.000	1.000	.092	. 142	.603	.864
8.5	1.000	1.000	1.000	1.000	.814	1.000	1.000	1.000	.392	.686	.994	1.000
9.5	1.000	1.000	1.000	1.000	.967	1.000	1.000	1.000	.769	.956	1.000	1.000
10.5	1.000	1.000	1,000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1,000	1.000

TABLE 8-8 (45 DEG. 90 DEG. 3 MRS) (continued)

1500 KILOMETERS

	FIRST CONST						COND		THIRD			
						1 2 3 4				1 2 3		
DIST	,	~	3	•	•	2	3	•	•	~	3	4
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.144	.175	. 203	.297	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.319	.392	.478	.575	.000	.044	.017	.097	.000	.000	.000	.000
5.5	.561	.661	.719	.742	.011	.133	.256	.383	.000	.000	.039	.014
6.5	.836	.867	.872	.881	. 128	.442	.564	.786	.000	.000	.189	.214
7.5	1.000	1.000	1.000	1.000	.511	.922	1.000	1.000	.083	.136	.592	.861
8.5	1.000	1.000	1.000	1.000	.800	1.000	1.000	1.000	.372	.661	.978	1.000
9.5	1.000	1.000	1.000	1.000	.961	1.000	1.000	1.000	.731	.936	1.000	1,000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.983	.997	1.000	1.000

FIRST					SECOND				THIRD			
	CONST				CONST				CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.5	.042	.042	.075	.083	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.189	. 228	.283	.381	.000	.003	.000	.006	.000	.000	.000	.000
4.5	.378	.450	.561	.617	.000	.058	.028	.147	.000	.000	.000	.000
5.5	.575	.681	.733	.747	.019	.150	.275	.414	.000	.000	.050	.022
6.5	.839	.869	.872	.881	.133	.447	.569	.792	.000	.000	. 197	.219
7.5	.963	.963	.963	.983	.472	.867	.983	.983	.064	.114	.539	.806
8.5	1.000	1.000	1.000	1.000	.781	1.000	1.000	1,000	.350	.625	.975	1.000
9.5	1.000	1.000	1.000	1.000	.942	1.000	1.000	1.000	.664	.914	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1,000	1,000	1,000	.953	.989	1.000	1.000

TABLE B-9 (60 DEG. 60 DEG. 6 HRS)

0 KILOMETERS

		FI	RST			SEC	COND			THIRD		
		COI	IST			COI	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.389	.528	.608	.657	.000	.000	.039	. 138	.000	.000	.000	.000
12.0	.839	.893	.925	.942	.069	.296	.507	.721	.000	.000	.000	.119
13.0	.992	1.000	1.000	1,000	.371	.751	.964	.983	.000	.042	.310	.667
14.0	1.000	1.000	1.000	1.000	.808	1.000	1.000	1.000	. 145	.538	.904	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FI	RST			SE	COND			THIRD		
		COI	NST			COI	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.086	. 133	.165	.200	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.550	.686	.743	.782	.000	.050	. 190	.324	.000	.000	.000	.000
12.0	.901	.967	.974	.996	. 133	.386	.628	.803	.000	.000	.033	.229
13.0	.999	1.000	1.000	1.000	.483	.851	.987	1.000	.000	.119	.467	.832
14.0	1.000	1.000	1.000	1.000	.844	1.000	1.000	1.000	.115	.621	.929	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.667	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.974	1.000	1.000	1.000

750 KILOMETERS

		FI	RST			SE	COND			THIRD		
		COL	NST			COL	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.171	. 256	.376	. 386	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.604	.726	.801	.825	.000	.078	. 265	. 383	.000	.000	.000	.000
12.0	.922	.989	.985	1.000	. 165	.431	.713	.850	.000	.000	.054	.281
13.0	1.000	1.000	1.000	1.000	.533	. 885	.992	1.000	.000	. 156	.535	. 885
14.0	1.000	1.000	1.000	1.000	.854	1.000	1.000	1.000	. 122	.651	.935	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.668	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.971	1.000	1.000	1.000

		FI	RST			SE	COND			THIRD		
		COI	NST			COL	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.318	.435	.544	.596	.000	.000	.001	.057	.000	.000	.000	.000
11.0	. 703	.786	.844	. 863	.006	. 135	.318	.511	.000	.000	.000	.008
12.0	.933	.997	.989	1.000	. 196	.475	. 763	.875	.000	.000	.089	.336
13.0	1.000	1.000	1.000	1.000	.568	.908	.994	1.000	.000	. 178	.582	.918
14.0	1.000	1.000	1.000	1.000	.869	1.000	1.000	1.000	. 138	.689	.944	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.669	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.961	1.000	1.000	1.000

TABLE B-9 (60 DEG. 60 DEG. 6 HRS) (continued)

1500 KILOMETERS

		FIF					COND			THIRD		
DIST	•	2	131 Z	4	•	2	3	4	1	2	3	4
	200		2		000	_	-	.000	.000	.000	2	.000
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.072	.114	. 125	.171	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.467	.626	.672	.721	.000	.007	.099	.228	.000	.000	.000	.000
11.0	.813	.865	.903	.921	.050	.261	.461	.686	.000	.000	.000	.081
12.0	.954	1.000	.999	1.000	.246	.565	.851	.913	.000	.000	. 161	.436
13.0	1.000	1.000	1.000	1.000	.626	.937	1.000	1,000	.004	.238	.647	.958
14.0	1.000	1.000	1.000	1.000	.885	1.000	1.000	1.000	. 146	.715	.956	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.668	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.950	1.000	1.000	1.000

2000 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	IST			COI	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.236	.332	.439	.493	.000	.000	,000	.008	.000	.000	.000	.000
10.0	.564	.697	.761	.796	.000	.058	.214	.338	.000	.000	.000	.000
11.0	.861	.918	.946	.958	.092	.329	.556	.750	.000	.000	.004	.160
12.0	.968	1.000	1.000	1.000	.286	.624	.913	.940	.000	.010	.214	.494
13.0	1.000	1.000	1.000	1.000	.657	.958	1.000	1.000	.017	.275	.685	.979
14.0	1.000	1.000	1.000	1.000	.896	1.000	1,000	1.000	.178	.758	.963	1.000
15.0	1.000	1.000	1,000	1.000	1,000	1.000	1.000	1.000	.663	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.936	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD		
		CO	rs7			COI	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.060	.097	. 103	. 144	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.401	.543	.614	.667	.000	.000	.046	. 150	.000	.000	.000	.000
10.0	.674	.769	.828	.850	.000	.117	.297	.476	.000	.000	.000	.000
11.0	.900	.958	.968	.992	.125	.381	.611	.796	.000	.000	.028	.222
12.0	.981	1.000	1.000	1.000	.332	.704	.944	.962	.000	.022	.264	.601
13.0	1.000	1.000	1.000	1.000	.674	.964	1.000	1.000	.022	.300	.707	.988
14.0	1.000	1.000	1.000	1.000	.900	1.000	1.000	1.000	. 192	.774	.965	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.650	1,000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.921	1.000	1.000	1.000

TABLE B-10 (60 DEG. 90 DEG. 6 HRS)

0 KILOMETERS

			RST				COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.356	.508	.564	.614	.000	.000	.039	.106	.000	.000	.000	.000
12.0	.919	.950	.997	1.000	.292	.569	.731	.847	.077	. 147	.275	.456
13.0	1.000	1.000	1.000	1.000	.717	.961	.978	1.000	. 293	.431	.742	.944
14.0	1.000	1.000	1.000	1.000	.942	1.000	1.000	1,000	.635	.869	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FII	RST			SE	COND			THIRD		
		CO	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.056	.069	.078	.125	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.611	.744	.789	.822	.000	. 103	.325	.422	.000	.000	.000	.000
12.0	.989	.972	1.000	1.000	.381	.697	.839	.975	. 139	. 236	.394	.542
13.0	1.000	1.000	1.000	1.000	.775	.992	1.000	1.000	.333	.492	.833	.986
14.0	1.000	1.000	1.000	1.000	.956	1.000	1.000	1.000	.653	.900	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.986	1.000	1.000	1.000
16.0	1 000	1 000	1 000	1 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF					COND			THIRD		
		COI	IST			COI	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.200	.233	.261	.372	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.739	. 828	.861	.900	.081	. 258	. 483	.594	.000	.000	.000	. 161
12.0	1.000	.978	1.000	1.000	.425	.742	.867	1.000	.158	.264	.453	.592
13.0	1.000	1.000	1.000	1.000	.794	.997	1.000	1.000	.361	.531	.881	.992
14.0	1.000	1.000	1.000	1.000	.964	1.000	1.000	1.000	.672	.911	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.989	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		F11	RST			SEC	COND			THIRD		
		COI	VST			COL	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.297	.378	.464	.525	.000	.000	.000	.036	.000	.000	.000	.000
11.0	.825	.892	.928	.961	. 139	.358	.614	.700	.000	.000	.058	.278
12.0	1.000	.989	1.000	1.000	.481	.786	.892	1.000	. 189	. 294	.500	.669
13.0	1.000	1.000	1.000	1.000	.814	1.000	1,000	1.000	.392	.567	.906	.997
14.0	1.000	1.000	1.000	1.000	.967	1.000	1.000	1.000	.689	.922	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.989	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-10 (60 DEG. 90 DEG. 6 HRS) (continued)

1500 KILOMETER

		FII	RST			SECON)		TH	IRD		
		COI	NST			CONST			CO	NST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.047	.058	.067	.106	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.436	-636	.678	.725	.000	.000	. 156	.175	.000	.000	.000	.000
11.0	.897	.944	.986	1.000	. 261	.522	.697	.806	.056	.119	.236	.428
12.0	1.000	.997	1.000	1.000	.561	.847	.933	1.000	.217	.336	.583	.772
13.0	1.000	1.000	1.000	1.000	.836	1.000	1.000	1.000	.428	.622	.936	1.000
14.0	1.000	1.000	1.000	1.000	.972	1.000	1.000	1.000	.706	.931	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.989	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		FI	RST			SE	COND			THIRD			
		CO	NST			CO	VST			CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4	
8.0	.000	.000	ംവാ	.000	.000	.000	.000	.000	.000	.000	.000	.000	
9.0	.250	. 289	.361	.450	.000	.000	.000	.000	.000	.000	.000	.000	
10.0	.658	.775	.819	.853	.022	.158	.356	.489	.000	.000	.000	.047	
11.0	.947	.958	1.000	1.000	.331	.622	.778	.897	.100	. 186	.317	.492	
12.0	1.000	1.000	1.000	1.000	.633	.914	.950	1.000	.247	.367	.653	.867	
13.0	1.000	1.000	1.000	1.000	.856	1.000	1.000	1.000	.461	.664	.956	1.000	
14.0	1.000	1.000	1.000	1.000	.978	1.000	1.000	1.000	.717	.939	1.000	1.000	
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.986	1.000	1.000	1.000	
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

		FI	RST			SE	COND			THIRD		
		CO	NST			COL	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.036	.047	.056	.083	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.369	.528	.583	.636	.000	.000	.044	.117	.000	.000	.000	.000
10.0	.800	.875	.906	.947	.119	.328	.569	.672	.000	.000	.000	.239
11.0	.975	.969	1.000	1.000	.375	.683	.828	.958	. 133	.228	.383	.533
12.0	1.000	1.000	1.000	1.000	.681	.939	.967	1.000	.264	.403	.703	.922
13.0	1.000	1.000	1.000	1.000	.864	1.000	1.000	1.000	.483	.694	.969	1.000
14.0	1.000	1.000	1.000	1.000	.978	1.000	1.000	1.000	.725	.942	1.000	1.000
15.0	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	.983	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-11 (60 DEG. 60 DEG. 3 HRS)

0 KILOMETERS

		F1F CO	-			SE(COND			THIRD CONST		
TRIG	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.361	.469	.575	.611	.000	.000	.011	.081	.000	.000	.000	.000
6.0	.772	.808	.850	.875	.020	. 162	.356	.542	.000	.000	.000	.015
7.0	.975	.997	1.000	1.000	.434	.592	.775	.906	.000	.000	.189	.455
8.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
9.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.000	1.000	1.000	1.000

500 KILOMETERS

		FIF					COND			THIRD		
		CO	121			CO	NST			COMPI		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.106	. 167	.211	.272	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.469		.669	.689	.000	.006	.086	. 183	.000	.000	.000	.000
6.0	.831	.853	.894	.914	.039	.214	.442	.636	.000	.000	.000	.056
7.0	.983	1.000	1.000	1.000	.266	.586	.822	.928	.000	.000	.136	.469
8.0	1.000	1.000	1.000	1.000	.588	.922	1,000	1,000	.016	.275	.658	.933
9.0		1.000			.936	1.000	1.000	1.000	.531	.886	.983	1.000
10.0		1.000			1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FII	RST				COND NST			THIRD		
			131	4		2	3	4	4	2	3	4
DIST	,	2	3	4	•	2	_	•		_	_	•
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	. 194	.272	.344	.417	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.519	.644	.717	.711	.000	.019	. 136	. 253	.000	.000	.000	.000
6.0	.861	.872	.917	.931	.050	.242	.481	.681	.000	.000	.000	.075
7.0	.983	1.000	1.000	1.000	.275	.608	.828	.942	.000	.000	.142	.486
8.0	1.000	1.000	1.000	1.000	.583	.922	1.000	1.000	.006	. 261	.658	.933
9.0	1.000	1.000	1.000	1.000	.917	1.000	1.000	1.000	. 187	.817	. 983	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.877	1.000	1.000	1.000

		FIF	RST			SEC	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.247	.342	.431	.500	.000	.000	.000	.014	.000	.000	.000	.000
5.0	.581	.697	.744	.750	.000	.036	. 161	.325	.000	.000	.000	.000
6.0	.869	.881	.925	. 936	.058	.261	.494	.700	.000	.000	.000	.092
7.0	.983	1.000	1.000	1.000	. 294	.631	.842	.944	.000	.000	.150	.517
8.0	1.000	1.000	1.000	1.000	.581	.914	1.000	1.000	.006	. 256	.647	.933
9.0	1.000	1.000	1.000	1.000	.903	1.000	1.000	1.000	. 149	.794	.969	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.747	1.000	1.000	1.000

TABLE 8-11 (60 DEG. 60 DEG. 3 HRS) (continued)

1500 KILOMETERS

			RST				COND			THIRD		
		COI	451			COI	151			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.100	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.083	. 133	.150	.217	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.344	.456	.567	.592	.000	.000	.011	.075	.000	.000	.000	.000
5.0	.644	.731	.772	.789	.000	.067	.197	.397	.000	.000	.000	.000
6.0	.886	.903	.942	.953	.081	.283	.519	.717	.000	.000	.000	.128
7.0	.983	1.000	1.000	1.000	. 294	. 633	.850	.947	.000	.000	. 161	.517
8.0	1.000	1.000	1.000	1.000	.575	.911	1.000	1.000	.003	.244	.639	.931
9.0	1.000	1.000	1.000	1.000	.881	1.000	1.000	1.000	.111	.736	.950	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.681	1.000	1.000	1.000

2000 KILOMETERS

		FII	RST			SE	COND			THIR)	
		COI	IST			CO	NST			CONS	r	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	. 175	.247	.317	.383	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.406	.528	.608	.636	.000	.000	.044	. 128	.000	.000	.000	.000
5.0	.678	.750	.800	.806	.000	.089	.242	.444	.000	.000	.000	.000
6.0	.903	.914	.953	.969	. 086	. 292	.531	.728	.000	.000	.000	.136
7.0	.983	1.000	1.000	1.000	. 294	.631	.844	.944	.000	.000	. 158	.517
8.0	1.000	1.000	1.000	1.000	.556	.894	1.000	1.000	.000	.222	.611	.911
9.0	1,000	1.000	1.000	1.000	. 858	.997	1.000	1.000	.092	.697	.919	1.000
10.0	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.586	.997	1.000	1.000

		FIF	RST			SEC	COND			THIRD)	
		CO	IST			COI	NST			CONST	r	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.047	.085	.100	. 133	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.225	.314	.400	.475	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.436	,564	.619	.664	.000	.000	.067	. 153	.000	.000	.000	.000
5.0	.700	.764	.806	.825	.000	.097	.244	.464	.000	.000	.000	.000
6.0	.903	.914	.956	.969	.089	.294	.533	.728	.000	.000	.000	.139
7.0	.983	1,000	1.000	1.000	. 272	.606	. 828	. 936	.000	.000	. 139	.486
8.0	1.000	1.000	1.000	1.000	.522	.878	1.000	1.000	.000	.178	.544	.875
9.0	1.000	1.000	1.000	1.000	.831	.986	1.000	1.000	.058	.625	.900	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.478	.978	1.000	1.000

TABLE B-12 (60 DEG. 90 DEG. 3 HRS)

0 KILOMETERS

		FIF					COND			THIRD		
		CO	191			COI	191			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.328	.442	.514	.578	.000	.000	.053	.067	.000	.000	.000	.000
6.0	.850	.919	.950	.975	.215	.419	.628	.731	.040	.028	.114	.344
7.0	1.000	.994	1.000	1.000	.657	.817	.914	1.000	.444	.502	.572	. 733
8.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FII	RST				COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.111	. 125	.136	.217	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.453	.631	.681	.719	.000	.014	.136	. 203	.000	.000	.000	.000
6.0	.886	.944	.983	.992	.266	.508	.681	. 783	.056	.094	.217	.428
7.0	1.000	.997	1.000	1.000	.573	.842	.936	1.000	.236	.335	.567	.753
8.0	1.000	1.000	1.000	1.000	.850	1.000	1.000	1.000	.509	.688	.956	.992
9.0	1.000	1.000	1.000	1.000	.983	1.000	1.000	1.000	.863	.969	1.000	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	IST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.178	.217	.275	.353	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.531	.681	.717	.756	.000	.061	.225	.319	.000	.000	.000	.000
6.0	.897	.950	.989	.992	.286	.533	.706	808.	.061	.122	.244	.450
7.0	1.000	.997	1.000	1.000	.575	.850	.936	1.000	.214	.336	.581	.769
8.0	1.000	1.000	1.000	1.000	.836	1.000	1.000	1.000	.456	.672	.956	.992
9.0	1.000	1.000	1.000	1,000	.967	1.000	1.000	1.000	. 758	.944	1.000	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FI					COND			THIRD		
		CO	IST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.211	. 283	.331	.442	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.600	.722	.767	.797	.000	.103	.272	.414	.000	.000	.000	.000
6.0	.906	.956	.997	. 99 2	.303	.556	.725	.822	.067	. 131	.267	.475
7.0	1.000	.997	1,000	1.000	.583	.867	.942	1.000	.217	.342	.592	.786
8.0	1.000	1.000	1.000	1.000	.836	1.000	1.000	1.000	.453	.664	.953	.992
9.0	1.000	1.000	1.000	1.000	.967	1.000	1.000	1.000	.753	.939	1.000	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-12 (60 DEG. 90 DEG. 3 HRS) (continued)

1500 KILOMETERS

		F16	RST			SEC	COND			THIRD)	
		CO	IST			CO	VST			CONST	ľ	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.069	.078	.100	. 147	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.322	.428	.506	.575	.000	.000	.039	.056	.000	.000	.000	.000
5.0	.686	.792	.825	.864	.000	. 144	.339	.522	.000	.000	.000	.000
6.0	.928	.964	1.000	.997	.331	.597	.747	.864	.092	. 161	.294	.497
7.0	1.000	.997	1.000	1.000	.594	.869	.944	1.000	.222	.347	.594	.797
8.0	1.000	1.000	1.000	1.000	.819	1.000	1.000	1.000	.436	.636	.936	.986
9.0	1.000	1.000	1.000	1.000	.956	1.000	1.000	1.000	.725	.928	1.000	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.997	.997	1.000	1.000

2000 KILOMETERS

		FII	RST			SEC	COND			THIRD)	
		CO	IST			COI	VST			CONST	r	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.161	. 186	.236	.308	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.378	.531	.583	.644	.000	.000	.081	.114	.000	.000	.000	.000
5.0	.717	.817	.847	.872	.025	. 186	.431	.569	.000	.000	.000	.050
6.0	.931	.967	1.000	.997	.336	.606	.761	.869	.094	.167	.303	.506
7.0	1.000	.997	1.000	1.000	.583	.867	.942	1.000	.217	.342	.594	.789
8.0	1.000	1.000	1.000	1.000	.808	1.000	1.000	1.000	.422	.614	.928	.981
9.0	1.000	1.000	1.000	1.000	.944	1.000	1.000	1.000	.678	.897	1.000	1.000
10.0	1.000	1.000	1.000	1.000	.997	1.000	1.000	1.000	.969	.997	1.000	1.000

		FIF	RST			SE	COND			THIRD)	
		CO	IST			CO	NST			CONST	r	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
2.0	.039	. 047	.069	.086	.000	.000	.000	.000	.000	.000	.000	.000
3.0	.206	. 264	.314	-422	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.403	.578	.625	.667	.000	.000	.100	. 147	.000	.000	.000	.000
5.0	.756	.839	.867	.903	.058	.242	.489	.617	.000	.000	.000	.119
6.0	.931	.967	1.000	.997	.336	.606	.767	.869	. 094	. 167	.306	.508
7.0	1.000	.997	1.000	1.000	.575	.850	.936	1.000	.211	.333	.581	.767
8.0	1.000	1.000	1.000	1.000	.800	.992	1.000	1.000	.394	.586	.908	.975
9.0	1.000	1.000	1.000	1.000	.928	1.000	1.000	1.000	.650	.869	1.000	1.000
10.0	1.000	1.000	1.000	1.000	.992	1.000	1.000	1.000	.939	.992	1.000	1.000

TABLE 8-13 (75 DEG. 60 DEG. 6 HRS)

0 KILOMETERS

		F1F CO				SE(COND			THIRD		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.5	.429	.478	.500	.508	.022	. 108	.221	.338	.000	.000	.000	.033
12.5	.731	.754	.768	.779	.364	.532	.625	.678	.000	.178	.386	.471
13.5	.939	.965	.972	.975	.644	.782	.851	.897	.419	.514	.642	.746
14.5	1.000	1.000	1.000	1.000	.943	1.000	1.000	1.000	.768	.863	.972	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	. 106	. 167	.200	.242	.000	.000	.000	.008	.000	.000	.000	.000
11.5	.547	.576	.594	.613	.132	.300	.408	.471	.000	.000	.051	.231
12.5	.783	.808	.822	.829	.433	.601	. 683	.733	.018	. 258	.456	.553
13.5	.965	.992	.993	1.000	.682	.813	.892	.929	.401	.550	.676	.778
14.5	1,000	1.000	1.000	1.000	.957	1.000	1.000	1.000	.669	.894	.986	1.000
15.5	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	.988	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF	RST				COND			THIRD		
		CO	IST			COI	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	. 186	.275	.336	.333	.000	.000	.047	.083	.000	.000	.000	.000
11.5	.592	.614	.632	.650	.172	.372	.456	.526	.000	.000	.087	.307
12.5	.804	.828	.840	.846	.458	.626	.706	.757	.035	.296	.486	.579
13.5	.968	1.000	.996	1.000	.706	.831	.917	.942	.417	.565	.689	.804
14.5	1.000	1.000	1.000	1.000	.960	1.000	1.000	1.000	.683	.901	.989	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.983	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD		
		CO	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.324	.392	.414	.413	.000	.044	. 133	.242	.000	.000	.000	.000
11.5	.625	.647	.667	.679	.204	.407	.496	.565	.000	.018	. 161	.336
12.5	.821	.844	.857	.863	.482	.649	.722	.772	.083	.333	.507	.604
13.5	.975	1.000	.999	1.000	.714	.843	.932	.950	,429	.575	.699	.814
14.5	1.000	1.000	1.000	1.000	.965	1.000	1.000	1.000	.694	.914	.992	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	.979	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000

TABLE B-13 (75 DEG. 60 DEG. 6 HRS) (continued)

1500 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	(ST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.029	.058	.076	.087	.000	.000	.000	.000	.000	.000	.000	.000
10.5	.444	.494	.515	.525	.028	.119	.267	.354	.000	.000	.000	.042
11.5	.681	.700	.719	.729	.263	.460	.561	.625	.000	.067	. 293	.388
12.5	.850	.876	.883	.892	.525	.683	.757	.806	.144	.389	.542	.640
13.5	.983	1.000	1.000	1.000	.746	.881	.963	.967	.450	.594	.718	. 854
14.5	1.000	1.000	1.000	1.000	.968	1.000	1.000	1.000	.696	.919	.994	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.976	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		F19	RST			SEC	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.165	. 254	.332	.326	.000	.000	.039	.056	.000	.000	.000	.000
10.5	.522	.558	.578	.596	.107	.250	.375	.439	.000	.000	.026	.178
11.5	.718	.739	.754	.763	.340	.514	.613	.668	.000	. 157	.369	.449
12.5	.874	.900	.908	.917	.554	.706	. 781	.825	.229	.422	.567	.667
13.5	.987	1.000	1.000	1.000	.763	.901	.978	.979	.468	.608	.735	.872
14.5	1.000	1.000	1.000	1.000	.971	1.000	1.000	1.000	.701	.926	.994	1.000
15.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.968	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		FIF	RST			SEC	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.353	.410	.435	.433	.000	.061	. 153	.272	.000	.000	.000	.000
10.5	.583	.606	.626	.642	.161	.357	.443	.517	.000	.000	.079	.286
11.5	.750	.772	.786	.796	. 389	.557	.644	.697	.006	.206	.408	.500
12.5	.888	.914	.925	.929	.576	.725	.799	.842	. 265	.447	.585	.688
13.5	.992	1.000	1,000	1.000	.772	.911	.985	.983	.476	.617	.750	.888
14.5	1.000	1.000	1,000	1.000	.969	1.000	1.000	1.000	.697	.924	.994	1.000
15.5	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	.960	1.000	1.000	1.000
16.5	1.000	1.000	1,000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FIF	RST			SEC	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.5	.042	.083	.089	.125	.000	.000	.000	.000	.000	.000	.000	.000
9.5	.401	.450	.471	.478	.008	.087	.189	.315	.000	.000	.000	.013
10.5	.604	.625	.643	.658	.181	.382	.468	.542	.000	.008	. 114	.311
11.5	.761	. 785	.796	.806	.401	.575	.658	.713	.010	.222	.422	.518
12.5	.899	.925	.933	.938	.586	.731	.804	.854	. 278	.456	.596	.692
13.5	.992	1.000	1.000	1.000	.774	.911	.986	. 983	.481	.621	.751	.888
14.5	1.000	1.000	1.000	1.000	.968	1.000	1.000	1.000	.696	.918	. 994	1.000
15.5	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	.954	1.000	1.000	1.000
16.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-14 (75 DEG. 90 DEG. 6 HRS)

O KILOMETERS

		FIF	RST			SEC	COND			THIRD		
		CO	IST			COI	NST			CONST		
TRIO	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.497	.542	.553	.564	.228	.331	.417	.442	.097	. 153	.222	.311
12.0	.756	.781	.789	.806	.511	.617	.678	.714	.342	.425	.506	.581
13.0	.942	.958	.972	.983	.711	.811	.867	.897	.514	.614	.706	.775
14.0	1.000	1.000	1.000	1.000	.936	1.000	1.000	1.000	.728	.861	.989	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		COI	IST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.108	.111	. 158	. 189	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.611	.644	.653	.667	.350	.461	.536	.567	.200	.272	.353	.436
12.0	.808	.831	.839	.856	.578	.675	.733	.767	.394	.481	.567	.639
13.0	.969	.981	.997	1.000	.744	.850	.900	.939	.547	.644	.739	.808
14.0	1.000	1.000	1.000	1.000	.953	1.000	1.000	1.000	.761	.906	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF				SE	COND			THIRD		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.347	.406	.417	.436	.033	.094	. 189	.242	.000	.000	.000	.067
11.0	.650	.681	.694	.706	.392	.506	.572	.606	. 239	.314	.394	.481
12.0	.831	.850	.867	.875	.600	.700	.753	.789	.419	.500	.594	.661
13.0	.986	.986	1.000	1.000	.758	.878	.919	.972	.561	.656	.758	.825
14.0	1.000	1.000	1,000	1.000	.961	1.000	1.000	1.000	.767	.919	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII					COND			THIRD		
		COI	VST			COI	₩ST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.464	.506	.514	.531	.172	.272	.367	.392	.050	.094	. 156	. 253
11.0	. 683	.711	.719	.733	.428	.542	.608	.642	.272	.350	.433	.508
12.0	.847	.867	. 883	.892	.622	.719	.775	.806	.436	.519	.614	.683
13.0	.994	.989	1.000	1.000	.769	.892	.939	.992	.572	.672	.769	.833
14.0	1.000	1.000	1.000	1.000	.967	1.000	1.000	1.000	. 783	.928	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.900	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-14 (75 DEG. 90 DEG. 6 HRS) (continued)

1500 KILOMETERS

		FII	RST			SE	COND			THIRD		
		COI	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.086	.086	. 122	. 158	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.553	.592	.600	.614	. 292	.400	.478	.511	. 150	.217	.292	.375
11.0	.736	.764	.772	.786	.492	.597	.661	.692	.325	.408	.489	.564
12.0	.881	.900	.914	925	, 653	.753	.806	.839	.467	.550	.647	.717
13.0	1.000	.997	1.000	1.000	.806	.925	.961	1.000	.589	. 689	.808	.886
14.0	1.000	1.000	1.000	1.000	.978	1.000	1.000	1.000	.797	.942	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1,000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		FI	RST			SE	COND			THIRD		
		COI	NST			COI	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	. 425	.464	.478	.492	.111	.211	.317	.344	.008	.031	.081	. 189
10.0	.625	.656	.667	.678	.364	.475	.544	.583	.217	. 289	.364	.447
11.0	.772	.797	.806	.822	.533	.636	.697	.731	.361	.444	.531	.603
12.0	.906	.928	.939	.950	.681	.772	.831	.861	.489	.583	.669	.739
13.0	1.000	1.000	1.000	1.000	.833	.950	.978	1.000	.606	.706	.839	.925
14.0	1.000	1.000	1.000	1.000	.981	1.000	1.000	1.000	.806	.950	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	NST			COL	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.061	.061	.081	. 122	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.511	.550	.564	.578	. 239	.344	.428	.450	.108	. 164	.231	.322
10.0	.669	.697	.717	.722	.414	.528	.594	.625	.267	.339	.419	.497
11.0	.806	.828	.839	.853	.575	.672	.731	.764	.394	.478	.564	.639
12.0	.928	.944	.956	.969	.700	.800	.850	.886	.506	.600	.689	.764
13.0	1.000	1.000	1.000	1.000	.847	.967	.978	1.000	.617	.711	.856	.947
14.0	1.000	1.000	1,000	1.000	.983	1.000	1.000	1.000	.819	.953	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FI	RST			SE	COND			THIRD		
		CO	NST			COI	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.211	. 289	.306	.328	.000	.000	.031	.078	.000	.000	.000	.000
9.0	.539	.578	.592	.600	. 275	.381	.461	.492	.139	.200	.272	.358
10.0	.689	.717	.733	.744	.439	.553	.611	.644	. 283	.361	.439	.517
11.0	.817	.836	.853	.864	.586	.683	.742	.772	.406	.489	.578	.644
12.0	.931	.950	.958	.975	. 703	.806	.856	.889	.508	.603	.697	.769
13.0	1.000	1.000	1.000	1.000	.856	.969	.983	1.000	.617	.719	.864	.953
14.0	1.000	1.000	1.000	1.000	.983	1.000	1.000	1.000	.822	.953	1.000	1.000
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE 8-15 (75 DEG. 60 DEG. 3 HRS)

0 KILOMETERS

		FIR				SE(COND			THIRD CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.110	. 183	.213	.266	.000	.000	.000	.019	.000	.000	.000	.000
6.0	.560	.578	.589	.595	. 139	.279	.426	.494	.000	.000	.023	.173
7.0	.830	.826	.831	.829	.606	.740	.770	.806	.000	.385	.652	.726
8.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FIF					COND			THIRD		
		CO	ist			COI	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.236	.328	.364	.386	.000	.008	.067	. 128	.000	.000	.000	.000
6.0	.575	.594	.614	.611	.160	.303	.431	.492	.000	.000	.070	.256
7.0	.781	.786	.800	.808	.374	.578	.653	.714	.000	.228	.430	.519
8.0	.953	.961	.972	.975	.629	.772	.847	.900	.500	.553	.648	.719
9.0	1.000	1.000	1.000	1.000	.931	.994	1.000	1.000	.866	.861	.966	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	IST			COI	IST			CONST		
TRIG	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.292	.367	.406	.417	.000	.028	.114	. 183	.000	.000	.000	.000
6.0	.600	.614	.628	.633	.178	.331	.453	.517	.000	.000	.089	.289
7.0	.789	.794	.808	.817	.372	.581	.664	.719	.000	.225	.433	.525
8.0	.953	.961	.972	.975	.611	.772	.847	.900	.355	.517	.644	.719
9.0	1.000	1.000	1.000	1.000	.894	.989	1.000	1.000	.606	.797	.950	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.961	1.000	1.000	1.000
11.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FIF	RST			SE	COND			THIRD		
		CO	IST			COI	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.000	.028	.025	.025	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.350	.408	.431	.444	.000	.058	.142	.239	.000	.000	.000	.000
6.0	.617	.625	.642	.644	. 194	.353	.467	.533	.000	.000	. 106	.319
7.0	. 803	.806	.817	.828	.381	.592	.667	.731	.000	.233	.444	.536
8.0	.953	.961	.972	.975	.608	.772	.844	.900	.353	.514	.644	.719
9.0	1.000	1.000	1.000	1.000	.886	.983	1.000	1.000	.592	. 783	. 928	1.000
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.939	1.000	1.000	1.000
11.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000

TABLE B-15 (75 DEG. 60 DEG. 3 HRS) (continued)

1500 KILCHETERS

		FIF				SECONO			TH!			
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.083	. 144	. 181	.228	.000	.000	.000	.000	.000	.000	.000	.000
5.0	.406	.456	.481	.492	.008	.086	. 197	. 283	.000	.000	.000	.008
6.0	.631	.639	.656	.658	.214	.375	.483	.556	.000	.008	.142	.333
7.0	.806	.808	.822	.831	.386	.597	.669	.731	.003	.242	.450	.542
8.0	.947	.956	.972	.975	.597	.772	.836	.892	.350	.503	.642	.717
9.0	1.000	1.000	1.000	1.000	.861	.978	1.000	1.000	.564	.744	.906	.992
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.903	1.000	1.000	1.000
11.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	IST			COL	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	. 136	.219	.275	.297	.000	.000	.006	.050	.000	.000	.000	.000
5.0	.431	.469	.492	.497	.022	.119	.250	.328	.000	.000	.000	.025
6.0	.644	.650	.664	.672	.222	.383	.497	.569	.000	.014	. 158	.339
7.0	.806	.808	.822	.831	.381	.594	.667	.731	.000	.233	.447	.539
8.0	.939	.947	.969	.969	.581	.753	.828	.872	.325	.489	.617	.697
9.0	1,000	1.000	1.000	1.000	.825	.958	1.000	1.000	.542	.706	.850	.967
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.831	1.000	1.000	1.000
11.0	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	IST			COI	YST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.192	.281	.325	.347	.000	.000	.028	.089	.000	.000	.000	.000
5.0	.464	.492	.511	.525	.033	. 144	. 269	.361	.000	.000	.000	.042
6.0	.644	.650	.664	.672	.222	.383	.503	.569	.000	.014	.161	.339
7.0	.786	.792	.803	.811	.372	.581	.664	.719	.000	.225	.433	.522
8.0	.925	.933	.944	.950	.569	.739	.808	.867	.300	.475	.597	.686
9.0	1.000	1.000	1.000	1.000	.792	. 936	.997	1.000	.517	.667	.806	.933
10.0	1.000	1.000	1.000	1.000	.997	1.000	1.000	1.000	.761	.986	1.000	1.000
11.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.994	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD		
		COI	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.0	.000	.017	.019	.017	.000	.000	.000	.000	.000	.000	.000	.000
4.0	.206	.300	.333	.353	.000	.000	.047	.108	.000	.000	.000	.000
5.0	.469	.494	.514	.531	.033	.147	.269	.367	.000	.000	.000	.044
6.0	.644	.650	.664	.672	.222	.383	.494	.569	.000	.014	. 158	.339
7.0	.781	.786	.800	.808	.367	.578	.653	.714	.000	.219	. 428	.519
8.0	.917	.925	.939	.942	.553	,731	.808	.858	. 286	.464	.597	.675
9.0	.997	1.000	1,000	1.000	.767	,925	.992	.994	.497	.644	.781	.908
10.0	1.000	1.000	1,000	1.000	.986	1,000	1.000	1.000	.733	. 958	.994	1.000
11.0	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	.986	1.000	1.000	1.000

TABLE B-16 (75 DEG. 90 DEG. 3 HRS)

0 KILOMETERS

		FIF					COND			THIRD		
DIST	1	2	131 T	4	1	2	3	4	1	2	7	4
	000	_	2	-	000	_	_		,	200	200	-
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.226	.312	.328	.361	.000	.000	.064	.079	.000	.000	.000	.000
5.5	609	.635	.644	.656	.431	.495	.547	.562	.318	.374	.429	.489
6.5	.779	.805	.822	.825	.689	. 708	.740	.739	.635	.654	.681	.711
7.5	.941	.964	.969	.978	.912	.898	.912	.907	.896	.907	.904	.913
8.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FI	RST			SE	COND			THIRD		
		COL	NST			COI	TZ			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.461	.494	.517	.522	.168	.272	.361	.394	.051	.084	.147	.239
5.5	.642	.678	.689	. 703	.399	.500	.572	.594	.240	.309	.386	.478
6.5	.800	.828	.836	.844	.575	.667	.725	.758	.393	.476	.561	.642
7.5	.944	.964	.983	.983	.729	.819	.878	.906	.542	.632	.714	.794
8.5	1.000	1.000	1.000	1.000	.927	1.000	1.000	1.000	.726	.841	.983	.997
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		F14	RST			SE	COND			THIRD		
		COI	VST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.036	.036	.047	.075	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.492	.528	.550	.556	.211	.317	.397	.428	.083	.125	.203	.292
5.5	.667	.692	.703	.711	.414	.519	.586	.619	.250	.328	.406	.494
6.5	.808	.833	.850	.856	.578	.672	.733	.764	.403	.481	.569	.650
7.5	.944	.967	.983	.986	.728	.819	.881	.906	.536	.633	.717	.797
8.5	1.000	1.000	1.000	1.000	.917	1.000	1.000	1.000	.706	.825	.972	.997
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD		
		COI	NST			COL	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.161	.203	. 239	. 286	.000	.000	.008	.017	.000	.000	.000	.000
4.5	.517	.553	.558	.578	.247	. 356	.431	.458	. 100	. 158	.239	.331
5.5	.672	.706	.722	.728	.428	.533	.603	.625	. 269	.344	.422	.508
6.5	.811	.839	.856	.861	.586	.681	.747	.767	.408	.494	.575	.656
7.5	.947	.969	.989	.989	.731	.825	.883	.906	.536	.633	.717	.800
8.5	1.000	1.000	1.000	1.000	.911	1.000	1.000	1.000	.700	.819	.967	.989
9.5	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-16 (75 DEG. 90 DEG. 3 HRS) (continued)

1500 KILOMETERS

		FII					COND			THIRD	-	
		COI	421			COI	421			CONS	J	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.381	.419	.433	.453	.017	.106	.225	.300	.000	.000	.000	.033
4.5	.558	.589	.600	.611	.297	.403	.475	.511	. 147	.214	. 289	.375
5.5	.700	.725	.733	.744	.450	.558	.625	.656	. 283	.361	.447	.528
6.5	.825	.853	.858	.878	.597	.692	.758	.775	.411	.503	.586	.667
7.5	.944	.967	.983	.986	.725	.819	.881	.906	.536	.633	.714	.794
8.5	1.000	1.000	1.000	1.000	.900	.994	1.000	1.000	.683	.800	.953	.983
9.5	1.000	1.000	1.000	1.000	.994	1.000	1.000	1.000	.983	.997	1.000	1.000

2000 KILOMETERS

		FII	RST			SE	COND			THIR)	
		CO	NST			CO	NST			CONST	T	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.108	. 128	. 153	. 206	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.447	.483	.492	.511	.142	. 253	.339	.378	.028	.061	.128	.222
4.5	.578	.614	.622	.639	.328	.431	.506	.525	. 169	.236	.319	.408
5.5	.706	.733	.750	.756	.464	.567	.631	.658	.300	.375	.458	.542
6.5	.831	.858	.861	.878	.600	.692	.758	. 783	.411	.506	.592	.667
7.5	.939	.961	.975	.978	.722	.817	.878	.900	.528	.625	.711	.794
8.5	1.000	1.000	1.000	1.000	.894	.994	.997	1.000	.669	.786	.931	.983
9.5	1.000	1.000	1.000	1,000	.992	1.000	1.000	1.000	.917	. 983	1.000	1.000

2500 KILOMETERS

		FII	RST			SE	COND			THIRD)	
		COI	NST			CO	NST			CONST	ľ	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.200	.278	.300	. 325	.000	.000	.050	.064	.000	.000	.000	.000
3.5	.475	.514	.522	.539	. 192	.297	.378	.411	.061	.111	.178	. 269
4.5	.597	.625	.639	.644	.339	.447	.517	.550	. 183	.256	.333	.422
5.5	.708	.736	.756	.758	.467	.569	.636	.664	.306	.381	-464	.542
6.5	.825	.853	. 858	.878	.597	.692	.758	.775	.411	.500	.586	.667
7.5	.936	.961	.969	.978	.711	.808	.858	.897	.519	.614	.708	.783
8.5	1.000	1.000	1.000	1.000	.858	.978	.992	1.000	.642	.736	.886	.944
9.5	1.000	1.000	1.000	1.000	. 983	1.000	1.000	1.000	.886	.978	1.000	1.000

		FII	RST			SE	COND			THIR)	
		CO	NST			CO	NST			CONST	r	
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.011	.017	.022	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.200	.336	.356	. 383	.000	.011	.089	.106	.000	.000	.000	.000
3.5	.475	.517	.525	.544	. 192	.311	.397	.422	.061	.117	. 192	.281
4.5	.597	.633	.644	.656	.339	.450	.519	.558	. 183	.258	.336	.422
5.5	.708	.736	.756	.758	.467	.569	.636	.664	.306	.381	.464	.542
6.5	.825	.850	.856	.872	.597	.692	. 753	.775	.411	.500	.578	.667
7.5	.936	.958	.967	.978	.711	.803	.858	.889	.519	.608	.697	.781
8.5	1.000	1.000	1.000	1.000	.858	.972	.992	1.000	.642	.728	.869	.944
9.5	1.000	1.000	1.000	1.000	.983	1.000	1.000	1.000	.886	.964	1.000	1.000

TABLE B-17 (90 DEG. 60 DEG. 6 HRS)

0 KILOMETERS

		FII				SEC	COND			THIRD		
TRIG	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
12.0	.282	.282	. 282	.282	. 282	. 282	.282	. 282	. 282	.282	.28 2	.282
13.0	.590	.590	.590	.590	.590	.590	.590	.590	.590	.590	.590	.590
14.0	.812	.812	.812	.812	.812	.812	.812	.812	.812	.812	.812	.812
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
18.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		.000 .000 .000 .00 .375 .375 .375 .37 .625 .625 .625 .62 .808 .808 .808 .80 .975 .975 .975 .97				SE	COND			THIRD		
	CONST T 1 2 3 4 0 .000 .000 .000 .000 0 .000 .000 .00					CO	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
12.0	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375
13.0	.625	.625	.625	.625	.625	.625	.625	.625	.625	.625	.625	.625
14.0	.808	.808	.808	.808	.808	.808	.808	.808	.808	.808	.808	.808
15.0	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975
16.0	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
18.0	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	ist			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
12.0	.408	.408	.408	.408	.408	.408	.408	.408	.408	.408	.408	.408
13.0	.642	.642	.642	.642	.642	.642	.642	.642	.642	+2	.642	.642
14.0	.808	.808	.808	.808	.808	.808	.808	.808	.808	80٤	.808	.808
15.0	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000
18.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD		
		COI	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
12.0	.442	.442	.442	.442	.442	.442	.442	.442	.442	.442	.442	.442
13.0	.658	.658	.658	.658	.658	.658	.658	.658	.658	.658	.658	.658
14.0	.825	. 825	.825	.825	.825	.825	. 825	.825	.8∠১	. 825	.825	.825
15.0	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975
16.0	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
18 N	1 000	1 000	1 000	1 000	1 000	1 000	1.000	1.000	1 000	1.000	1.000	1.000

TABLE B-17 (90 DEG. 60 DEG. 6 HRS) (continued)

1500 KILOMETERS

		FIF COA				SE	COND			THIRD CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.225	.225	. 225	.225	. 225	.225	.225	. 225	.225	.225	.225	.225
12.0	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492
13.0	.675	.675	.675	.675	.675	.675	.675	.675	.675	.675	.675	.675
14.0	.825	.825	.825	.825	.825	.825	.825	.825	.825	.825	.825	.825
15.0	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	. 975
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
18.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		F16	RST			SE	COND			THIRD		
		COI	IST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.308	.308	.308	.308	.308	.308	.308	.308	.308	.308	.308	.308
12.0	.525	.525	.525	.525	. 525	.525	.525	.525	.525	.525	.525	.525
13.0	.692	.692	.692	.692	.692	.692	.692	.692	.692	.692	.692	.692
14.0	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842
15.0	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
18.0	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		F19	RST			SE	COND			THIRD		
		CO	IST			COL	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375
12.0	.558	.558	.558	.558	.558	.558	.558	.558	.558	.558	.558	.558
13.0	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708	. 708
14.0	.842	.842	.842	-842	.842	.842	.842	.842	.842	.842	.842	.842
15.0	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975
16.0	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
18.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FI	RST			SE	COND			THIRD		
		CO	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
10.0	.075	.075	.075	.075	.075	.075	.075	.075	.075	.075	.075	.075
11.6	.392	.392	.392	.392	. 392	.392	.392	.392	. 392	.392	.392	.392
12.0	.558	.558	.558	.558	.558	.558	.558	.558	.558	.558	.558	.558
13.0	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708
14.0	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842
15.0	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975	.975
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
17.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
18.0	1,000	1,000	1,000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1,000	1.000

TABLE B-18 (90 DEG. 90 DEG. 6 HRS)

O KILOMETERS

		FII				SECONO)		THI	IRD		
			131	,			-		4		-	,
TRIO	ī	2	•	4	1	2	3	4	,	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
11.0	.325	.325	.325	.300	.325	.325	.325	.300	.325	.325	.325	.300
12.0	.558	.558	.558	.514	.558	.558	.558	.514	.558	.558	.558	.514
13.0	.742	.742	.742	.708	.742	.742	.742	.708	.742	.742	.742	.708
14.0	.892	.892	.892	.875	.892	.892	.892	.875	.892	.892	.892	.875
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	. 125	.125	. 125	.125	.125	. 125	.125	. 125	.125	.125	.125	. 125
11.0	.425	.425	.425	.425	.425	.425	.425	.425	.425	.425	.425	.425
12.0	.608	.608	.608	.608	.608	.608	.608	.608	.608	.608	.608	.608
13.0	.775	.775	.775	.775	.775	.775	.775	.775	.775	.775	.775	.775
14.0	.908	.908	.908	.908	.908	.908	.908	.908	.908	.908	.908	.908
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FII	RST			SEC	COND			THIRD		
		CO	NST			COL	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.225	.225	.225	.225	. 225	.225	.225	.225	. 225	. 225	.225	.225
11.0	.458	.458	.458	.458	.458	.458	.458	.458	.458	.458	.458	. 458
12.0	.642	.642	.642	.642	.642	.642	.642	.642	.642	.642	.642	.642
13.0	.775	.775	.775	.775	.775	.775	.775	.775	.775	.775	.775	.775
14.0	.925	.925	.925	.925	.925	,925	.925	.925	.925	.925	.925	.925
15.0	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SEC	COND			THIRD		
		COL	VST			CO	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
10.0	.292	.292	. 292	. 292	.292	.292	.292	. 292	. 292	. 292	.292	.292
11.0	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492
12.0	.658	.658	.658	.658	.658	.658	.658	.658	.658	.658	.658	.658
13.0	.792	.792	.792	. 792	.792	.792	.792	.792	.792	.792	.792	.792
14.0	.925	.925	.925	.925	.925	.925	.925	.925	. 925	.925	.925	.925
15.0	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1,000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000

TABLE 8-18 (90 DEG. 90 DEG. 6 HRS) (continued)

1500 KILOMETERS

		FII	RST NST			SEC	COND			THIRD		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.108	.108	.108	.108	.108	.108	. 108	.108	.108	.108	.108	.108
10.0	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375
11.0	.542	.542	.542	.542	.542	.542	.542	.542	.542	.542	.542	.542
12.0	.692	.692	.692	.692	.692	.692	.692	.692	.692	.692	.692	.692
13.0	.808	.808	.808	.808	.808	.808	.808	.808	.808	.808	.808	.808
14.0	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		FI	RST			SE	COND			THIRD		
		50	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
9.0	.258	. 258	.258	.258	. 258	.258	. 258	.258	.258	. 258	. 258	.258
10.0	.442	.442	.442	.442	.442	.442	.442	.442	.442	.442	.442	.442
11.0	.575	.575	.575	.575	.575	.575	.575	.575	.575	.575	.575	.575
12.0	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708	.708
13.0	.825	.825	.825	.825	.825	.825	.825	.825	.825	.825	.825	.825
14.0	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000

2500 KILOMETERS

		FII	RST			SE	COND			THIRD		
		CO	NST			CO	NST			CONST		
DIST	1	2	3	4	1	5	3	4	1	2	3	4
8.0	.092	.092	.092	.092	.092	.092	.092	.092	.092	.092	.092	.092
9.0	.342	.342	.342	.342	.342	.342	.342	.342	.342	.342	.342	.342
10.0	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492	.492
11.0	.608	.608	.608	.608	.608	.608	.608	.608	.608	.608	.608	.608
12.0	.725	.725	.725	.725	.725	.725	.725	.725	.725	.725	. 725	.725
13.0	.842	.842	.842	842	.842	.842	.842	.842	.842	.842	.842	.842
14.0	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942
15.0	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

		FII	RST			SE	COND			THIRD		
		COI	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
8.0	.175	.175	. 175	.175	.175	.175	.175	.175	.175	.175	.175	.175
9.0	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375	.375
10.0	.508	.508	.508	.508	.508	.508	.508	.508	.508	.508	.508	.508
11.0	.625	.625	.625	.625	.625	.625	.625	.625	.625	.625	.625	.625
12.0	.725	.725	.725	.725	. 725	. 725	.725	.725	.725	.725	.725	.725
13.0	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842	.842
14.0	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942	.942
15.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
16.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-19 (90 DEG. 60 DEG. 3 HRS)

0 KILOMETERS

		F11 COI				SEC	COND			THIRD		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
6.5	.487	. 487	.487	.487	.487	.487	.487	.487	.487	.487	.487	.487
7.5	.897	.897	.897	.897	.897	.897	.897	.897	.897	.897	.897	.897
8.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.063	1.000	1.000	1.000

500 KILOMETERS

		F18	RST			SE	COND			THIRD		
		CO	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
6.5	.382	.382	.382	.382	.382	.382	.382	.382	.382	.382	.382	.382
7.5	.636	.636	.636	.636	.636	.636	.636	.636	.636	.636	.636	.636
8.5	.855	.855	.855	.855	.855	.855	.855	.855	.855	.855	.855	. 855
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000
19.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

		FIF	RST			SEC	COND			THIRD		
		CON	IST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
6.5	.383	.383	.383	.383	.383	.383	.383	.383	.383	. 383	. 383	. 383
7.5	.583	.583	.583	.583	.583	.583	.583	.583	. 583	.583	. 583	. 583
8.5	.783	.783	. 783	. 783	. 783	.783	. 783	.783	.783	.783	. 783	. 783
9.5	.950	.950	.950	.950	.950	.950	.950	.950	.950	.950	.950	.950
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

	FIRST Const					SE	COND			THIRD		
		COI	VST			CO	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
6.5	.383	.383	.383	.383	. 383	.383	.383	. 383	. 383	. 383	. 383	. 383
7.5	.583	.583	.583	.583	. 583	. 583	. 583	.583	. 583	.583	. 583	. 583
8.5	. 783	. 783	. 783	.783	. 783	.783	.783	.783	. 783	. 783	. 783	. 783
9.5	.917	.917	.917	.917	.917	.917	.917	.917	.917	.917	.917	.917
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-19 (90 DEG. 60 DEG. 3 HRS) (continued)

1500 KILOMETERS

		FIF	RST			SEC	COND			TEIRO		
		CO	IST			COI	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	,000	.000	.000
5.5	.083	.083	.083	.083	.083	.083	.083	.083	. 083	.083	.083	. 083
6.5	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417
7.5	.583	.583	.583	.583	.583	.583	.583	.583	.583	.583	.583	.523
8.5	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750
9.5	.917	.917	.917	.917	.917	.917	.917	.917	.917	.917	.917	.917
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2000 KILOMETERS

		FI	RST			SE	COND			THIRD		
		COI	NST			COL	IST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.150	.150	.150	. 150	.150	.150	.150	.150	.150	.150	. 150	.150
6.5	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417
7.5	.583	.583	.583	.583	.583	.583	. 583	.583	.583	.583	.583	.583
8.5	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750
9.5	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883
10.5	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

2500 KILOMETERS

		FIF	RST			SE	COND			THIRD		
		COL	IST			COI	VST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.150	.150	. 150	.150	. 150	.150	.150	. 150	. 150	. 150	. 150	. 150
6.5	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417	.417
7.5	.583	.583	.583	.583	.583	.583	.583	.583	.583	.583	.583	.583
8.5	.717	.717	.717	.717	.717	.717	.717	.717	.717	.717	.717	.717
9.5	.883	. 883	. 883	.883	.883	.883	.883	. 883	. 883	.883	.883	.883
10.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
11.5	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000

		FI	RST			SE	COND			THIRD		
		CO	NST			CO	NST			CONST		
DIST	1	2	3	4	1	2	3	4	1	2	3	4
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
5.5	.150	. 150	.150	. 150	. 150	.150	.150	. 150	. 150	.150	. 150	.150
6.5	.383	.383	.383	.383	. 383	.383	.383	.383	.383	.383	.383	.383
7.5	.550	.550	.550	.550	.550	.550	.550	.550	.550	.550	.550	.550
8.5	.717	.717	.717	.717	.717	.717	.717	.717	.717	.717	.717	.717
9.5	.850	.850	.850	.850	.850	.850	.850	.850	.850	.850	.850	.850
10.5	.983	. 983	. 983	.983	. 983	.983	.983	.983	.983	.983	.983	. 983
11.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE 8-20 (90 DEG. 90 DEG. 3 HRS)

O KILOMETERS

	FIRST					SECOND				THIRD		
		CO	IST			COI	IST		CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	.224	.224	.224	.224	.224	.224	.224	.224	.224	.224	.224	.224
5.5	.510	.510	.510	.510	.510	.510	.510	.510	.510	.510	.510	.510
6.5	.714	.714	.714	.714	.714	.714	.714	.714	.714	.714	.714	.714
7.5	.918	.918	.918	.918	.918	.918	.918	.918	.918	.918	.918	.918
8.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

500 KILOMETERS

		SECOND				THIRD						
		CO	IST			COI	IST					
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
4.5	. 283	.283	.283	.283	.283	.283	. 283	. 283	. 283	. 283	. 283	. 283
5.5	.450	.450	.450	.450	.450	.450	.450	.450	.450	.450	.450	.450
6.5	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617
7.5	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750
8.5	.883	.883	.883	. 883	.883	.883	.883	.883	.883	.883	.883	.883
9.5	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

750 KILOMETERS

	FIRST					SECOND				THIRD		
		CO	4ST			COI	IST		CONST			
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050	.050
4.5	.317	.317	.317	.317	.317	.317	.317	.317	.317	.317	.317	.317
5.5	.483	.483	.483	.483	.483	.483	. 483	. 483	.483	.483	.483	.483
6.5	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617
7.5	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750	.750
8.5	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883
0.5	1_000	1.000	1,000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000

		SECOND				THIRD						
			CO	ist								
DIST	1	2	3	4	1	2	3	4	1	2	3	4
1.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.5	.150	. 150	. 150	.150	. 150	. 150	. 150	. 150	. 150	. 150	.150	.150
4.5	.350	.350	.350	.350	.350	.350	.350	.350	.350	.350	.350	.350
5.5	.483	.483	.483	.483	.483	.483	.483	.483	.483	.483	. 483	.483
6.5	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617	.617
7.5	.750	.750	.750	.750	.750	.750	.750	.750	.750	. 750	.750	.750
8.5	. 883	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883	.883
9.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE B-20 (90 DEG. 90 DEG. 3 HRS) (continued)

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5	FIRST CONST 1 2 3 4 .000 .000 .000 .000 .000 .000 .000 .0	SECOND CONST 1 2 3 4 .000 .000 .000 .000 .000 .000 .000	THIRD COW;T 1 2 3 4 .000 .000 .000 .000 .000 .000 .000 .0
DIST 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5	FIRST CONST 1 2 3 4 .000 .000 .000 .000 .117 .117 .117 .117 .283 .283 .283 .283 .417 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850 .983 .983 .983	SECOND CONST 1 2 3 4 .000 .000 .000 .000 .117 .117 .117 .117 .283 .283 .283 .417 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850	THIRD CONST 1 2 3 4 .000 .000 .000 .000 .117 .117 .117 .117 .283 .283 .283 .283 .417 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850 .850 .983 .983 .983 .983
DIST 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5	FIRST COMST 1 2 3 4 .000 .000 .000 .000 .183 .183 .183 .183 .317 .317 .317 .317 .417 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850 .850 .950 .950 .950	2500 KILOMETERS SECOND CONST 1 2 3 4 .000 .000 .000 .000 .183 .183 .183 .183 .317 .317 .317 .317 .417 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850 .850 .950 .950 .950 .950	THIRD CONST 1 2 3 4 .000 .000 .000 .000 .183 .183 .183 .183 .317 .317 .317 .317 .417 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850 .950 .950 .950
DIST 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5	FIRST CONST 1 2 3 4 .050 .050 .050 .050 .183 .183 .183 .183 .317 .317 .317 .317 .417 .417 .417 .517 .517 .517 .517 .617 .750 .750 .750 .750 .850 .850 .850 .950 .950 .950	SECOND CONST 1 2 3 4 .050 .050 .050 .050 .183 .183 .183 .183 .317 .317 .317 .317 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850 .950 .950 .950	THIRD CONST 1 2 3 4 .050 .050 .050 .050 .183 .183 .183 .183 .317 .317 .317 .317 .417 .417 .417 .417 .517 .517 .517 .517 .617 .617 .617 .617 .750 .750 .750 .750 .850 .850 .850 .950 .950 .950

APPENDIX C.

Expected Values of Minimum PDOP Values

Three sets of results are presented, namely expected value of minimum PDOP, standard deviation of the minimum PDOP, and the event probability. The event probability is the relative frequency of the occurrence of the pertinent observation set. The values in parentheses in each of the titles define the latitude of the target, the inclination of the orbital plane, and the satellite period. The data is organized by target elevation, by number of slant range observations used to calculate PDOP, and by CONST. CONST=1, 2, 3, or 4 correspond to 9, 12, 15, or 18 satellites.

TABLE C-1 (30 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	4.45	.00	.00	3.69	.00	.00	.36	.00	.00
2	2.55	2.25	.00	1.86	.67	.00	.95	.22	.00
3	2.93	2.57	1.84	2.49	2.48	.29	1.00	.83	.04
4	2.29	1.97	1.90	.59	.61	.71	1.00	1.00	. 75

500 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)			
CONST	3	4	5	3	4	5	3	4	5	
1	3.89	3.60	4.70	3.47	.98	.00	.71	.38	.00	
2	2.26	2.03	1.80	.89	.45	.19	1.00	.73	.31	
3	2.44	2.08	1.65	1.73	1.57	.24	1.00	1.00	.81	
4	2.15	1.85	1.69	.44	.44	.45	1.00	1.00	1.00	

750 KILOMETERS

		E (PDOP	')	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.76	3.48	3.34	2.72	1.43	1.69	1.00	.70	.18
2	2.12	1.95	1.72	.42	.39	.20	1.00	.98	.78
3	2.15	1.84	1.64	.89	.78	.23	1.00	1.00	.97
4	2.07	1.76	1.58	.30	.25	.24	1.00	1.00	1.00

		E(PDOP)	s	IG(PDO	P)	PROB(EVENT)			
CONST	3	4	5	3	4	5	3	4	5	
1	3.54	3.16	3.49	2.08	1.50	1.86	1.00	.92	.44	
2	2.10	1.88	1.66	.42	.41	.20	1.00	1.00	.91	
3	2.05	1.83	1.59	.73	1.20	.24	1.00	1.00	.99	
4	1.97	1.70	1.53	.30	.25	.24	1.00	1.00	1.00	

TABLE C-2 (30 DEG, 90 DEG, 6 HRS)

O KILOMETERS

		E(PDOP)		SIG	(POOP)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.57	.00	.00	3.66	.00	.00	.54	.03	.00
2	4.79	4.14	8.15	3.98	4.18	***	.92	.38	.02
3		3.72		3.41	3.76	4.18	1.00	.74	.34
4	3.16	2.84	2.39	3.15	2.79	2.69	1.00	1.00	.72

500 KILOMETERS

		EC	PDOP)		SIG	(PDOP)		PROB(EVENT)		
CONST	3	4		3	4	5	3	4	5	
1	3.88	4.69	5.04	3.34	3.41	2.69	1.00	.38	.14	
2	3.93	3.54	4.20	3.25	3.17	3.77	1.00	1.00	.42	
3	2.73	2.48	2.31	1.38	1.25	1.18	1.00	1.00	1.00	
4	2.90	2.57	2.39	2.80	2.45	2.15	1.00	1.00	1.00	

750 KILOMETERS

		E	PDOP)		SIG	(PDOP)		PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5	
1	3.29	3.51	4.17	2.47	2,74	3.23	1.00	.66	.34	
2	3.84	3.25	3.02	3.18	2,80	2.70	1.00	1.00	.79	
3	2.54	2.33	2.16	1.27	1,23	1.21	1.00	1.00	1.00	
4		2.20		1.49	1.56	1.48	1.00	1.00	1.00	

		EC	PDOP)		SIG	(PDOP)	PROB(EVENT)		
CONST	3		5			5		4	5
1	2.72	2.69	2.94	1.64	1.74	2.08	1.00	.78	.47
2		2.93		2.67	2.34	2.27	1.00	1.00	.89
3		2.16		1.18	1.11	1.10	1.00	1.00	1.00
Ž		2.08		1.46	1.47	1.73	1.00	1.00	1.00

TABLE C-3 (30 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

CONST		E(PDOP))	S	IG(PDO	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	3.10	.00	.00	2.47	.00	.00	.27	.00	.00
3	3.45	3.26	.00	1.91	2.31	.00	.46	. 14	.00
4	2.62	2.46	.00	1.48	1.14	.00	.77	.27	.00

500 KILOMETERS

	E(PDOP)			S	IG(PDO	?)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	6.07	.00	.00	3.95	.00	.00	.10	.00	.00
2	3.54	2.66	.00	2.66	.68	.00	.84	.06	.00
3	3.78	3.25	.00	2.21	1.96	.00	.98	.60	.00
4	3.10	2.63	2.10	1.84	1.24	.65	1.00	.92	.38

750 KILOMETERS

		E(PDOP	')	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	5.20	2.94	.00	3.10	.20	.00	.48	.08	.00
2	3.46	3.00	2.25	2.21	1.48	.49	1.00	.51	.07
3	3.45	3.13	2.15	2.16	2.14	.45	1.00	.99	.40
4	2.61	2.34	2.17	.68	.60	.60	1.00	1.00	.93

	E(PDOP)			S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	4.35	2.73	.00	2.26	.30	.00	.66	.22	.00
2	3.12	2.57	1.95	1.82	.86	.37	1.00	.71	.24
3	2.94	2.58	2.13	1.36	1.20	.46	1.00	1.00	.72
4	2.49	2.21	2.06	.60	.53	.49	1.00	1.00	1.00

TABLE C-4 (30 DEG, 90 DEG, 3 HRS)

O KILOMETERS

		E(POOP)	S	1G(PDO)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	.00	.00	.00	.00	.00	.00	.00	.00	.00
Ž	6.53	5.11	.00	3.57	3.47	.00	.13	.05	.00
3	3.38	2.66	.00	3.44	.46	.00	.58	.01	.00
4	3.36	2.51	.00	2.24	1.73	.00	.56	.29	.00

500 KILOMETERS

	E(PDOP)			\$	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	· 5	3	4	5	3	4	5
1	4.70	.00	.00	4.43	.00	.00	.40	.00	.00
2	7.23	6.05	.00	5.26	4.03	.00	.71	.22	.00
3	3.89	3.03	3.04	3.99	1.63	.92	.98	.52	. 14
Ā	4.74	4.36	2.15	4.14	3.96	.99	.98	.97	.37

750 KILOMETERS

CONST		E (POOP)	\$	IG(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	5.21	5.35	2.50	4.02	4.31	.00	.79	. 15	.01
2	5.88	6.18	7.82	4.21	4.28	4.94	.96	.75	. 15
3	3.54	3.24	3.26	2.21	2.03	2.03	1.00	.93	.71
4	3.76	3.34	3.11	2.92	2.86	2.64	1.00	1.00	.96

	E(PDOP)			S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	4.67	4.20	2.34	3,26	3.02	.18	.98	. 28	.08
2	5.30	5.42	5.64	4.38	4.49	4.88	.99	. 9 7	.28
3		2.59		,99	.84	.80	1.00	1.00	.96
Ā		2.80	-	2.81	2.57	2.30	1.00	1.00	.99

TABLE C-5 (45 DEG, 60 DEG, 6 HRS)

	E(PDOP)	SIGO	PDOP)	PRO	B(EVEN	7)
CONST	E(PDOP) 3 4 4.49 2.66 .	5 3	4 5	3	4	`´ 5
1	4.49 2.66 .	00 4.16 .	19 .00	.32	.02	.00
ż	2.57 2.53 .	00 1 98 1.	15 .00	.02	.22	.00
3	2.57 2.53 . 2.78 2.23 1. 2.50 2.18 2.	RQ 2 00 1.	RZ 43	1 00	87	14
4	2.70 2.23 1.	17 1 1 12 1	03 .03	1.00	.03	4/
4	2.30 2.10 2.	17 1.02 1.	02 1.25	1.00	. 70	.04
		500 VI	- CMETERS			
		200 K1	LOMETERS			
	E/0000)	6164	0000	200	B(EVEN	T.
COMET	E(PDOP) 3 4 3.52 2.39 1. 2.24 2.05 1. 2.32 1.94 1. 2.18 1.86 1.	210(/ F	7	O(EAEW	'''
CONST	7 52 2 70 4	00 7 / 0	4 J	~	70	04
1	3.32 2.39 1.	90 3.48 . 71	00.00	. 77	.30	.01
2	2.24 2.05 1.	74 .80 .	82 .44	1.00	.88	.60
3	2.32 1.94 1.	71 1.06 .	92 ,52	1.00	1.00	.96
4	2.18 1.86 1.	67 .56 .	51 .50	1.00	1.00	1.00
		750 KI	LOMETERS			
	E(PDOP)	\$1G(5 3	PDOP)	PRO	B(EVEN	Τ)_
CONST	3 4	5 3	4 5	3	4	5
1	2.54 2.19 1.	78 1.56 .	73 .15	1.00	.81	.23
2	2.54 2.19 1. 2.22 1.97 1.	76 .83 <i>.</i> .	80 .48	1.00	1.00	.94
3	2.22 1.86 1.	71 .60 .	56 .54	1.00	1.00	1.00
4	2.22 1.97 1. 2.22 1.86 1. 2.15 1.84 1.	64 .58 .	53 .50	1.00	1.00	1.00
		1000 KI	LOMETERS			
	_ E(PDOP)			PRO	B(EVEN	τ) _
CONST	E(PDOP) 3 4	\$1G(PDOP)	PRO 3	B(EVEN 4	T) 5
1	E(PDOP) 3 4 2.40 2.15 1.	\$1G(PDOP)	PRO 3 1.00	B(EVEN 4 .92	T) 5 .49
1 2	E(PDOP) 3 4 2.40 2.15 1. 2.14 1.88 1.	\$1G(PDOP)	PRO 3 1.00 1.00	B(EVEN 4 .92 1.00	T) 5 .49 1.00
1 2 3	E(PDOP) 3 4 2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1.	\$160 5 3 78 .98 . 79 .62 .	PDOP) 4 5 77 .22 61 .51 55 .54	1.00 1.00 1.00	B(EVEN 4 .92 1.00 1.00	T) 5 .49 1.00
1 2	E(PDOP) 3 4 2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1.	\$160 5 3 78 .98 . 79 .62 .	PDOP)	1.00 1.00 1.00	B(EVEN 4 .92 1.00 1.00	.49 1.00 1.00
1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1.	\$160 5 3 78 .98 . 79 .62 .	PDOP) 4 5 77 .22 61 .51 55 .54	1.00 1.00 1.00	.92 1.00 1.00	.49 1.00 1.00
1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1.	SIG() 5 3 78 .98 . 79 .62 . 67 .66 . 61 .51 .	PDOP) 4 5 77 .22 61 .51 55 .54	1.00 1.00 1.00	.92 1.00 1.00	.49 1.00 1.00
1 2 3 4	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1.	SIG() 5 3 78 .98 . 79 .62 . 67 .66 . 61 .51 .	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45	1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00	1.00 1.00 1.00
1 2 3 4	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1.	SIG() 5 3 78 .98 . 79 .62 . 67 .66 . 61 .51 .	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45	1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00	1.00 1.00 1.00
1 2 3 4	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1.	SIG() 5 3 78 .98 . 79 .62 . 67 .66 . 61 .51 .	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45	1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00	1.00 1.00 1.00
1 2 3 4	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1.	SIG() 5 3 78 .98 . 79 .62 . 67 .66 . 61 .51 .	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45	1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00	1.00 1.00 1.00
1 2 3 4	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1.	SIG() 5 3 78 .98 .79 .62 .67 .66 .61 .51 1500 KI SIG() 5 3 86 .85	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45	1.00 1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00	1.00 1.00 1.00 1.00
1 2 3 4 4 CONST 1	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 59 .57	1.00 1.00 1.00 1.00 1.00 PRO 3 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00
1 2 3 4 CONST 1 2	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 59 .57	1.00 1.00 1.00 1.00 1.00 PRO 3 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 59 .57	1.00 1.00 1.00 1.00 1.00 PRO 3 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 59 .57	1.00 1.00 1.00 1.00 1.00 PRO 3 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 59 .57	1.00 1.00 1.00 1.00 1.00 PRO 3 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61 68 .77 63 .62	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 59 .57	1.00 1.00 1.00 1.00 1.00 PRO 3 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61 68 .77 63 .62	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 57 .49	1.00 1.00 1.00 1.00 1.00 PRO 3 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1. 2.14 1.82 1.	SIG(1) 5 3 78 .98 .79 .62 .67 .66 .61 .51 1500 KI SIG(1) 5 3 86 .85 78 .61 68 .77 63 .62 2000 KI	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 59 .57 .49 LOMETERS	1.00 1.00 1.00 1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00 8(EVEN 4 1.00 1.00	.49 1.00 1.00 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1. 2.14 1.82 1.	SIG() 5 3 78 .98 .79 .62 67 .66 61 .51 1500 KI SIG() 5 3 86 .85 78 .61 68 .77 63 .62	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 57 .49 LOMETERS	1.00 1.00 1.00 1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00 1.00 1.00 1.00	.49 1.00 1.00 1.00 1.00 1.00
1 2 3 4 CONST 1 2 3 4	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1. 2.14 1.82 1.	SIG(1) 5 3 78 .98 .79 .62 .67 .66 .61 .51	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 57 .49 LOMETERS PDOP) 4 5 84 .63	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00	.49 1.00 1.00 1.00 1.00 1.00 1.00
1 2 3 4 CONST 1 2 3 4 CONST	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1. 2.14 1.82 1. E(PDOP) 3 4 2.35 2.17 1. 2.22 1.92 1.	SIG(1) 5 3 78 .98 .79 .62 .67 .66 .61 .51	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 57 .49 LOMETERS PDOP) 4 5 84 .63	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00 1.00 1.00 1.00	.49 1.00 1.00 1.00 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3 4 CONST 1	2.40 2.15 1. 2.14 1.88 1. 2.19 1.84 1. 2.11 1.81 1. E(PDOP) 3 4 2.34 2.17 1. 2.16 1.87 1. 2.19 1.84 1. 2.14 1.82 1. E(PDOP) 3 4 2.35 2.17 1. 2.22 1.92 1.	SIG(1) 5 3 78 .98 .79 .62 .67 .66 .61 .51	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 57 .49 LOMETERS PDOP) 4 5 84 .63	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3 4 CONST 1 2 2 3 4	E(PDOP) E(PDOP)	SIG(1) 5 3 78 .98 .79 .62 .67 .66 .61 .51 1500 KI SIG(1) 5 3 86 .85 78 .61 68 .77 63 .62 2000 KI SIG(1) 5 3 69 .96 79 .79 .79 .79 .79 .93	PDOP) 4 5 77 .22 61 .51 55 .54 49 .45 LOMETERS PDOP) 4 5 82 .45 60 .57 57 .49 LOMETERS	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TABLE C-6 (45 DEG, 90 DEG, 6 HRS)

0 KILOMETERS

		E (PDOP)	S	IG(PD0	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.76	2.88	.00	3.49	.30	.00	.84	.03	.00
2	4.02	3.56	2.58	3.32	3,22	.31	1.00	.77	.04
3		3.17		2.77	2,87	2.61	1.00	.96	.73
4		2.90		2.99	2.71	2.46	1.00	1.00	.98

500 KILOMETERS

	E(PDOP)			S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.35	2.83	1.55	3.10	2.39	.09	1.00	.58	.05
Ž		2.93		2.81	2.73	2.00	1.00	1.00	.75
3	2.94	2.69	2.45	2.47	2,45	2.22	1.00	1.00	1.00
4		2.59		2.63	2.36	2.04	1.00	1.00	1.00

750 KILOMETERS

	E(PDOP)			S	SIG(PDOP) PROB(EVE			B(EVEN	T)
CONST	3	4	5	3	4	5	3	4	5
1	3.28	3.15	2.44	2.90	2.85	2.02	1.00	.88	.27
ż	3.30	2.99	2.68	2.76	2.93	2.64	1.00	1.00	.94
3		2.42		1.48	1.36	1.28	1.00	1.00	1.00
4		2.45		2.47	2.16	1.92	1.00	1.00	1.00

1000 KILOMETERS

		E(PDOP)			IG(PDO	P)	PROB(EVENT)			
CONST	3	4	5	3	4	5	3	4	5	
1	3.14	2.95	2.94	2.53	2,60	2.54	1.00	.98	.45	
2	3.21	2.93	2.63	2.67	2.81	2.52	1.00	1.00	.97	
3	2.70	2.40	2.21	1.47	1.38	1.33	1.00	1.00	1.00	
4	2.60	2.21	2.06	2.08	1.67	1.66	1.00	1.00	1.00	

1500 KILOMETERS

	E(PDOP)			S	IG(PDC	P)	PROB(EVENT)		
CONST		4	_		4		3	4	5
1	2.93	2.64	2.50	2.02	2.00	2.14	1.00	1.00	.78
2	3.22	2.74	2.53	2.36	2.10	2.02	1.00	1.00	1.00
3	2.57	2.27	2.10	1.45	1.34	1.33	1.00	1.00	1.00
4	2.50	2.16	1.94	1.72	1.44	1.27	1.00	1.00	1.00

		E(PDOP)			IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.88	2.54	2.42	1.97	1.79	1.81	1.00	1.00	.89
2	2.88	2.55	2.35	1.99	2.08	1.95	1.00	1.00	1.00
3		2.04		.70	.61	.60	1.00	1.00	1.00
4	2.48	2.13	1.94	1.61	1.35	1.30	1.00	1.00	1.00

TABLE C-7 (45 DEG, 60 DEG, 3 HRS)

	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1	.00 .00 .00	.00 .00 .00 2.91 .00 .00	.00 .00 .00 .24 .00 .00
2	3.36 .00 .00	2.91 .00 .00	.24 .00 .00
3	3.15 4.58 .00	2.49 3.49 .00	.46 .08 .00
4	2.87 3.27 1.57	2.06 2.70 .12	.84 .23 .01
		500 KILOMETERS	
	E(PDOP)	\$IG(PDOP) 3 4 5 2.99 .00 .00 1.96 2.62 .00	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1	6.34 .00 .00	2.99 .00 .00	.08 .00 .00
2	2.79 3.34 .00	1.96 2.62 .00 2.38 2.36 5.14 1.70 1.75 3.29	.82 .07 .00
3	2.95 2.68 6.63	2.38 2.36 5.14	.99 .68 .02
4	2.61 2.33 2.86	1.70 1.75 3.29	1.00 .89 .37
		750 KILOMETERS	
	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5 4.58 1.09 .00	3 4 5
1	6.17 2.94 .00	4.58 1.09 .00	.50 .07 .00
2	2.96 2.79 1.53	2.20 2.06 .09 2.17 1.83 1.34	.99 .53 .10
3	2.86 2.42 2.19	2.17 1.83 1.34	1.00 .96 .55
4	2.66 2.33 2.21	1.75 1.65 1.65	1.00 1.00 .94
		1000 KILOMETERS	
	E(000P)		PROB(EVENT)
CONST	E(PDOP) 3 4 5	SIG(POOP)	3 4 5
CONST 1	E(PDOP) 3 4 5 4.85 2.61 .00	SIG(PDOP) 3 4 5 4.07 1.05 .00	3 4 5 .76 .25 .00
CONST 1 2	E(PDOP) 3 4 5 4.85 2.61 .00 2.75 2.46 1.86	SIG(PDOP) 3 4 5 4.07 1.05 .00	3 4 5 .76 .25 .00
1	4.85 2.61 .00 2.75 2.46 1.86	\$IG(PDOP) 3 4 5 4.07 1.05 .00 1.63 1.42 .79	3 4 5 .76 .25 .00 1.00 .84 .33
1 2	4.85 2.61 .00 2.75 2.46 1.86	\$IG(PDOP) 3 4 5 4.07 1.05 .00 1.63 1.42 .79	3 4 5 .76 .25 .00 1.00 .84 .33
1 2 3	4.85 2.61 .00 2.75 2.46 1.86	\$IG(PDOP) 3 4 5 4.07 1.05 .00 1.63 1.42 .79	3 4 5 .76 .25 .00 1.00 .84 .33
1 2 3	4.85 2.61 .00 2.75 2.46 1.86 2.69 2.26 1.97 2.44 2.14 1.97	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00
1 2 3	4.85 2.61 .00 2.75 2.46 1.86 2.69 2.26 1.97 2.44 2.14 1.97 E(PDOP) 3 4 5	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5
1 2 3 4 4 CONST 1	4.85 2.61 .00 2.75 2.46 1.86 2.69 2.26 1.97 2.44 2.14 1.97 E(PDOP) 3 4 5 3.61 2.25 1.64	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5
1 2 3 4 4 CONST 1 2	4.85 2.61 .00 2.75 2.46 1.86 2.69 2.26 1.97 2.44 2.14 1.97 E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 .83
1 2 3 4 4 CONST 1 2 3	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 .83 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2	4.85 2.61 .00 2.75 2.46 1.86 2.69 2.26 1.97 2.44 2.14 1.97 E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 .83 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 .83 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.24 1.94 1.77	SIG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 .83 1.00 1.00 1.00
1 2 3 4 CONST 1 2 3 4	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.24 1.94 1.77	SIG(PDOP) 3 4 5 4.07 1.05 .00 1.63 1.42 .79 1.76 1.48 .85 1.19 1.06 1.01 1500 KILOMETERS SIG(PDOP) 3 4 5 3.54 .71 .09 .74 .74 .49 .63 .59 .55 .70 .58 .52 2000 KILOMETERS SIG(PDOP)	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 .83 1.00 1.00 1.00 1.00 1.00 1.00
1 2 3 4 CONST 1 2 3 4 CONST	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.24 1.94 1.77	SIG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 2 3 4 CONST 1 2 3 4	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.24 1.97	\$IG(PDOP) 3 4 5 4.07 1.05 .00 1.63 1.42 .79 1.76 1.48 .85 1.19 1.06 1.01 1500 KILOMETERS SIG(PDOP) 3 4 5 3.54 .71 .09 .74 .74 .49 .63 .59 .55 .70 .58 .52 2000 KILOMETERS SIG(PDOP) 3 4 5 2000 KILOMETERS	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 2 3 4 4 CONST 1 2 3 4 CONST 1	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.24 1.94 1.77 E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.21 1.94 1.77	\$IG(PDOP) 3	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 2 3 4 CONST 1 2 3 4 CONST 1 2 2 3 4	E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.24 1.94 1.77 E(PDOP) 3 4 5 3.61 2.25 1.64 2.41 2.17 1.80 2.28 2.01 1.86 2.24 1.94 1.77	\$IG(PDOP) 3 4 5 4.07 1.05 .00 1.63 1.42 .79 1.76 1.48 .85 1.19 1.06 1.01 1500 KILOMETERS SIG(PDOP) 3 4 5 3.54 .71 .09 .74 .74 .49 .63 .59 .55 .70 .58 .52 2000 KILOMETERS SIG(PDOP) 3 4 5 2000 KILOMETERS	3 4 5 .76 .25 .00 1.00 .84 .33 1.00 1.00 .86 1.00 1.00 1.00 PROB(EVENT) 3 4 5 .98 .70 .06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TABLE C-8 (45 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

	E(POOP)			S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.63	.00	.00	3.02	.00	.00	.15	.00	.00
2	5.25	1.74	.00	4.63	2.81	.00	.36	.09	.00
3	4.55	3.98	.00	4.60	4.67	.00	.84	.17	.05
4	4.75	3.36	3.42	3.90	3.56	5.48	.98	.58	.07

500 KILOMETERS

	E(POOP)			S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	4.95	.00	.00	3.58	.00	.00	.74	.00	.00
2	4.82	3.90	.00	3.57	2.83	,00	.93	.64	.00
3	3.84	3.55	3,24	3.20	2.90	2,57	1.00	.89	.58
4	3.71	3.11	2.99	2.84	2.52	2.32	1.00	1.00	.87

750 KILOMETERS

	E(POOP)			\$	IG(PDC	P)	PROB(EVENT)			
CONST	3	4	5	3	4	5	3	4	5	
1	4.70	3.14	1.50	3.61	1.06	.00	.99	.20	.00	
2	4.26	3.43	2.69	3.38	2.54	.80	1.00	.99	.27	
3	3.81	3.34	3.03	3.41	2.93	2.68	1.00	1.00	.98	
Ā	3.76	3.17	2.90	3.34	2.90	2.54	1.00	1.00	1.00	

		E(PDOP)	\$	IG(PDO	P)	PRO	PROB(EVENT		
CONST	3	4	5	3	4	5	3	4	5	
1	4.43	3.29	1.42	3.21	2.27	.10	.99	.48	.04	
2	3.94	3.31	2.80	3.19	2.56	1.78	1.00	1.00	.59	
3	3.37	2.99	2.74	2.78	2.45	2.23	1.00	1.00	1.00	
4	3.34	2.86	2.63	2.61	2.31	2.11	1.00	1.00	1.00	

TABLE C-8 (45 DEG, 90 DEG, 3 HRS) (continued)

1500 KILOMETERS

	E(PDOP)			S	IG(PDO	P)	PROB(EVENT)			
CONST	3	4	5	3	4	5	3	4	5	
1	5.08	3.96	1.54	3.98	3.50	.21	1.00	.79	.16	
2	3.90	3.56	3.12	3.35	3.21	2.81	1.00	1.00	.89	
3	3.25	2.93	2.71	2.46	2.22	2.07	1.00	1.00	1.00	
4	3.35	2.91	2.67	3.06	2.67	2.37	1.00	1.00	1.00	

	E(PDOP)			S	IG(PDC	P)	PROB(EVENT)			
CONST	3	4	5	3	4	5	3	4	5	
1	3.46	3.21	1.90	2.88	2.55	.66	.99	.92	.36	
2	3.31	3.21	2.80	3.32	3.50	2.66	1.00	1.00	.97	
3	2.51	2.26	2.11	.87	.80	.76	1.00	1.00	1.00	
4	2.69	2.32	2.13	2.16	1.93	1.69	1.00	1.00	1.00	

TABLE C-9 (60 DEG, 60 DEG, 6 HRS)

		O KILUMETERS	
	E(PDOP)	PROB(EVENT)	
CONST	3 4 5	\$1G(PDOP) 3 4 5	3 4 5
1		2.65 .90 .00	
ż	2.56 2.28 2.13	1.77 1.56 .14	.62 .03 .00 1.00 .53 .01
3	2.75 2.25 1.82	2.22 1.81 .84	1.00 .97 .44
4	2.65 2.37 2.21	1.86 1.81 1.87	1.00 .97 .44 1.00 1.00 .92
-			
		500 KILOMETERS	
	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1		2.09 1.66 .39	1.00 .55 .03 1.00 1.00 .70
2	2.54 2.23 2.10	1.66 1.62 1.17	1.00 1.00 .70
3		1.25 1.19 1.15	1.00 1.00 1.00
4	2.38 2.09 1.88	1.24 1.09 1.04	1.00 1.00 1.00
		750 KILOMETERS	
	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1	2.54 2.50 2.40	1.04 1.70 1.24	1.00 .86 .26
2	2.40 2.08 2.05	1.18 1.10 1.09	1.00 1.00 .91
3	2.47 2.07 1.88	1.30 1.12 1.09	1.00 1.00 1.00
4	2.35 2.06 1.83	1.13 1.04 .92	1.00 1.00 1.00
		1000 KILOMETERS	
	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	E(POOP) 3 4 5	3 4 5	3 4 5
1	2.58 2.47 2.57	1.80 1.78 1.41	1.00 .96 .46
ż	2 50 2 17 2 06	1 /5 1 28 1 22	1.00 1.00 1.00
3	2.51 2.12 1.91	1.44 1.21 1.15	1.00 1.00 1.00
4	2.45 2.12 1.89	1.37 1.23 1.08	1.00 1.00 1.00
		1500 KILOMETERS	
	E(PDOP) 3 4 5	\$1G(PDOP) 3 4 5	PROB(EVENT) 3 4 5
CONST		3 4 5 2.48 2.37 2.52	1.00 1.00 .78
1	2.87 2.68 2.80 2.83 2.42 2.33	2.56 2.15 2.06	1.00 1.00 1.00
2 3	2.84 2.42 2.17	2.47 2.16 1.93	1.00 1.00 1.00
4	2.81 2.41 2.15	2.48 2.13 1.91	1.00 1.00 1.00
		2000 KILOMETERS	
	F 4 00 00 \	SIG(PDOP)	PROB(EVENT)
CONST	E(PDOP) 3 4 5	3 4 5	3 4 5
1	2.84 2.57 2.44	2.59 2.33 2.20	1.00 1.00 .94
2	7 44 7 74 7 77	סד כי כי מדי כי	1.00 1.00 1.00
3	2.85 2.29 2.11	2.08 2.07 1.90	1.00 1.00 1.00
4	2.63 2.31 2.06	2.28 2.15 1.87	1.00 1.00 1.00
		2500 KILOMETERS	
			DOOR (EVENT)
C04-57	E(PDOP) 3 4 5	SIG(PDOP) 3 4 5	PROB(EVENT) 3 4 5
CONST 1	2.95 2.73 2.56	2.52 2.40 2.31	1.00 1.00 1.00
2	2.85 2.46 2.36		1.00 1.00 1.00
3	2.90 2.42 2.19	2.49 2.18 1.96	1.00 1.00 1.00
4	2.83 2.42 2.17	2.51 2.16 1.94	
•			

TABLE C-10 (60 DEG, 90 DEG, 6 HRS)

	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1	3.47 1.65 .00	3.18 .09 .00 3.70 2.72 .00	.97 .06 .00
2	4.05 3.05 1.50	3.70 2.72 .00	1.00 .97 .07
3	3.58 3.01 2.87	3.05 2.47 2.89	1.00 1.00 .96
4	3.20 2.90 2.98	2.61 2.36 2.98	1.00 1.00 1.00
•	3,120 6.70 2.70	2.0. 2.00 2.00	
		500 KILOMETERS	
	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	SIG(PDOP) 3 4 5	PROB(EVENT) 3 4 5
1	3.08 2.01 1.67	2.54 .60 .21	
ż		7 70 7 10 76	4 00 4 00 48
3	3 30 2 73 2.65	2.98 2.41 2.78	1.00 1.00 1.00
4	2.97 2.64 2.70	2.53 2.30 2.93	1.00 1.00 1.00
4	2,,, 2,04 2,14	750 KILOMETERS	
	E(PDOP)	SIG(PDOP) 3 4 5	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1	2.92 2.16 1.92	2.44 .74 .48 2.95 3.05 .66	1.00 .81 .36
2	3.19 2.86 1.96	2.95 3.05 .66	1.00 1.00 .86
3	3.02 2.55 2.53	2.95 3.05 .66 2.88 2.31 2.74	1.00 1.00 1.00
4	2.80 2.46 2.53	2.41 2.19 2.86	1.00 1.00 1.00
		1000 KILOMETERS	
	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	SIG(PDOP) 3 4 5	3 4 5
1	2.91 2.48 1.94	2.37 1.66 .53	1.00 .90 .51
2	3.01 2.72 2.30	2.41 2.67 1.52	1.00 1.00 .95
3	2.79 2.45 2.34	2.41 2.67 1.52 2.29 1.99 2.25	1.00 1.00 1.00
4	2.74 2.49 2.26	2.21 2.39 2.10	1.00 1.00 1.00
		1500 KILOMETERS	
		SIG(PDOP) 3 4 5	D200451471
	E(PDOP)	_ SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5	1.00 1.00 .69
1	3.08 2.84 2.24	2.32 2.19 1.11	1.00 1.00 .09
2	3.20 2.71 2.52	2.52 2.33 2.13 1.38 1.23 1.15	1.00 1.00 1.00
3	2.72 2.42 2.19	1.38 1.23 1.15	1.00 1.00 1.00 1.00 1.00 1.00
4	2.74 2.37 2.15	1.99 1.74 1.54	1.00 1.00 1.00
		2000 KILOMETERS	
	E(PDOP)	SIG(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1		2.22 2.11 1.81	1.00 1.00 .82
2	3.34 2.81 2.59		1.00 1.00 1.00
3	2.83 2.52 2.30	1.49 1.36 1.30	1.00 1.00 1.00
4	2.82 2.43 2.21	1.69 1.44 1.33	1.00 1.00 1.00
		2500 KILOMETERS	
	E(PDOP)	\$1G(PDOP)	PROB(EVENT)
CONST	3 4 5	3 4 5	3 4 5
1	3.20 2.92 2.74		1.00 1.00 .89
ź	3.55 2.99 2.77	2.66 2.29 2.17	1.00 1.00 1.00
3	2.93 2.58 2.35	1.76 1.56 1.48	1.00 1.00 1.00
4		1.88 1.61 1.86	1.00 1.00 1.00
4	2.88 2.48 2.30	1,00 1,01 1.00	1.00 1.00 1.00

TABLE C-11 (60 DEG, 60 DEG, 3 HRS)

	E(PDOP)	SIG(PDOP)	PROB(EVENT)							
CONST	3 4 5	3 4 5	3 4 5							
1	.00 .00 .00	.00 .00 .00	.00 .00 .00							
2	3.63 .00 .00	3.81 .00 .00 2.31 5.89 .00	.21 .00 .00 .60 .03 .00							
3	2.97 6.92 .00	2.31 5.89 .00								
4	3.62 3.17 .00	2.59 3.69 .00	.90 .22 .00							
		500 KILOMETERS								
	E(PDOP)	SIG(PDOP)	PROB(EVENT)							
CONST	3 4 5	3 4 5								
1	3.25 .00 .00	3.21 .00 .00	.36 .00 .00							
2	2.81 2.27 .00	2.10 1.15 .00	.95 .26 .00 1.00 .87 .14							
3	3.08 2.74 1.60	2.71 2.66 .71	1.00 .87 .14 1.00 .99 .74							
4	2.68 2.38 2.25	1.53 1.51 1.39	1.00 .99 .74							
		750 KILOMETERS								
	E(PDOP)	SIG(PDOP)	PROB(EVENT)							
CONST	3 4 5	3 4 5	3 4 5							
1	3.48 2.22 .00	3.03 .66 .00	.88 .16 .00							
2	2.56 2.14 1.99	1.55 .87 .45 1.99 1.70 .61	1.00 .88 .21							
3	2.60 2.22 1.87	1.99 1.70 .61 .85 .81 .77	1.00 1.00 .89 1.00 1.00 1.00							
4	2.29 2.01 1.86	1.99 1.70 .61 .85 .81 .77	1.00 1.00 1.00							
	1000 KILOMETERS									
	E(PDOP)	SIG(PDOP)	PROB(EVENT)							
CONST	3 4 5	3 4 5 2.90 .57 .00	3 4 5							
1	3.28 2.27 1.70	2.90 .57 .00	.99 .41 .00							
2	2.40 2.10 1.91	.82 .71 .39 .62 .52 .50	1.00 .98 .56							
3	2.25 1.94 1.83	.62 .52 .50 .56 .50 .44	1.00 1.00 1.00							
4	2.17 1.87 1.71	.56 .50 .44	1.00 1.00 1.00							
		1500 KILOMETERS								
	E(PDOP)	SIG(PDOP)	PROB(EVENT)							
CONST	3 4 5	3 4 5	3 4 5							
1	2.62 2.11 1.83	1.97 .45 .16	1.00 .73 .16							
2	2.14 1.88 1.75	.33 .28 .27	1.00 1.00 .85							
3	2.06 1.77 1.63	.35 .28 .24	1.00 1.00 1.00							
4	1.98 1.72 1.56	.29 .28 .22	1.00 1.00 1.00							
		2000 KILOMETERS								
	E(PDOP)	SIG(PDOP)	PROB(EVENT)							
. CONST	3 4 5	3 4 5	3 4 5							
1	2.19 1.90 1.70	.39 .29 .12	1.00 .89 .36							
2	2.00 1.75 1.59	.19 .16 .14	1.00 1.00 .96 1.00 1.00 1.00							
3	1.99 1.68 1.52 1.91 1.64 1.47	.20 .14 .12 .16 .14 .12	1.00 1.00 1.00							
4	1.91 1.64 1.47	.10 .14 .12	1.00 1.00 1.00							
		2500 KILOMETERS								
	E(PDOP)	SIG(POOP)	PROB(EVENT)							
CONST	3 4 5	3 4 5	3 4 5							
1	2.02 1.77 1.63	.36 .15 .09	1.00 .97 .51							
2	1.94 1.66 1.51	.11 .12 .11	1.00 1.00 1.00							
3	1.93 1.64 1.47	.13 .09 .09	1.00 1.00 1.00							
4	1.85 1.61 1.44	.11 .10 .10	1.00 1.00 1.00							

TABLE C-12 (60 DEG, 90 DEG, 3 HRS)

	E(PDOP)	SIG(PDOP)	PROB(EVENT)		
CONST	3 4 5	\$1G(PDOP) 3 4 5	3 4 5		
1	3.91 .00 .00	2.67 .00 .00	.42 .00 .00		
2	3.99 5.31 .00	3.25 4.72 .00			
3	3.60 4.75 4.78	2.84 4.66 4.29	.60 .34 .00 .92 .45 .32		
4	3.62 3.91 4.39		.98 .75 .38		
		500 KILOMETERS			
CONST	E(PDOP) 3 4 5	\$1G(PDOP) 3 4 5	PROB(EVENT) 3 4 5		
1	3.78 .00 .00	3 15 00 00	.89 .00 .00		
ź	7 45 7 44 00	7 45 7 7/ 00	.98 .86 .00		
3	3.31 3.62 3.22	2.62 3.69 3.19	.98 .86 .00 1.00 .97 .82		
4	3.75 3.40 3.12	3.44 3.46 3.09			
		750 KILOMETERS			
	E(PDOP)	\$IG(PDOP) 3 4 5	PROB(EVENT)		
CONST	3 4 5	3 4 5	3 4 5 1.00 .29 .03		
1	3.72 2.30 1.81	3.10 .68 .20	1.00 .29 .03		
2	3.63 3.54 1.91	3.19 3.54 .71	1.00 1.00 .38		
3	3.63 3.54 1.91 3.09 3.35 3.00 3.08 3.23 2.04	2.23 3.38 2.85	1.00 1.00 1.00		
4	3.08 3.23 2.96	2.04 3.29 2.94	1.00 1.00 1.00		
		1000 KILOMETERS			
	E(PDOP)	SIG(PDOP)	PROB(EVENT)		
CONST	3 4 5	3 4 5	3 4 5		
1	3.50 2.39 1.97	3 4 5 2.66 .61 .47	3 4 5 .99 .50 .10		
2	3.45 3.43 2.00	3.02 3.47 .61	1.00 1.00 .61		
3	2.97 3.22 2.86	2.10 3.33 2.81	1.00 1.00 1.00		
4	2.93 3.11 2.84	1.92 3.27 2.91	1.00 1.00 1.00		
		1500 KILOMETERS			
			000000		
TOMOS	E(PDOP) 3 4 5	\$1G(PDOP)	PROB(EVENT) 3 4 5		
CONST 1	3 4 5 3.14 2.39 1.96	3 4 5 2.06 .48 .45	1.00 .74 .25		
ż	3.00 3.12 1.97	2.22 3.30 .41	1.00 1.00 .80		
3	2.84 3.08 2.74	2.07 3.39 2.92	1.00 1.00 1.00		
4	2.79 3.01 2.71		1.00 1.00 1.00		
		2000 KILOMETE	RS		
	E(PDOP)	SIG(PDOP)	PROB(EVENT)		
CONST	3 4 5	3 4 5	3 4 5		
1	2.92 2.30 1.80		1.00 .84 .42		
5	2.77 3.01 1.96	2.18 3.45 .54	1.00 1.00 .89		
3	2.60 2.88 2.62		1.00 1.00 1.00		
4	2.55 2.84 2.54	1.83 3.46 3.10	1.00 1.00 1.00		
		2500 KILOMETERS			
	E(PDOP)	SIG(PDOP)	PROB(EVENT)		
CONST	3 4 5	3 4 5	3 4 5		
1	2.88 2.41 1.65	2.13 1.56 .17	1.00 .93 .51		
Ž	2.70 2.35 2.15	2.12 1.89 1.54	1.00 1.00 .97		
3	2.46 2.13 2.19	1.63 1.52 2.27	1.00 1.00 1.00		
4	2.54 2.23 1.99	1.81 1.67 1.49	.99 1.00 1.00		

TABLE C-13 (75 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

CONST		E(PDOP)	SIG(PDOP)			PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	2.34	7.45	.00	1.92	1.65	.00	.84	.01	.00
2	2.89	2.14	4.17	2.49	2.23	.45	1.00	.80	.01
3	2.82	2.38	1.71	2.58	2.06	1.22	1.00	.99	.76
4	2.74	2.46	2,28	2.59	2.47	2.50	1.00	1.00	.99

500 KILOMETERS

	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.64	3.67	4.34	2.24	3.25	2.46	1.00	.47	. 19
2	2.91	2.33	3.05	2.13	1.88	2.30	1.00	1.00	.49
3	2.78	2.40	2.05	1.99	1.75	1.65	1.00	1.00	1.00
4	2.64	2.34	2.11	2.00	1.75	1.59	1.00	1.00	1.00

750 KILOMETERS

	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.75	3,48	4.33	2.31	3.33	3.77	1.00	.63	.38
ż	2.98	2.54	2.97	2.58	2.55	2.87	1.00	1.00	.65
3	2.89	2.63	2.25	2.33	2.60	2.28	1.00	1.00	1.00
4		2.57		2.30	2.54	2.29	1.00	1.00	1.00

CONST	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
	3	4	· 5	3	4	5	3	4	5
1	2.73	2.93	3.24	2.41	2.59	2.86	1.00	.73	.49
2	-	2.38		2.61	2.09	2.23	1.00	1.00	.75
3		2.42		2.41	2.15	2.87	1.00	1.00	1.00
4		2.39		2.41	2.09	2.90	1.00	1.00	1.00

TABLE C-13 (75 DEG, 60 DEG, 6 HRS) (continued)

1500 KILOMETERS

	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.85	2.87	3.33	2.44	2.53	3.40	1.00	.87	.65
2	2,97	2.46	2.65	2.74	2.11	2.69	1.00	1.00	.89
3	2.97	2.50	2.34	2,45	2.20	2.42	1.00	1.00	1.00
4	2.83	2.48	2.35	2.44	2.10	2.45	1.00	1.00	1.00

2000 KILOMETERS

	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.54	2.45	2.48	1.52	1.47	1.58	1.00	.97	.76
2	2,67	2.20	2.12	1.70	1.32	1.26	1.00	1.00	.99
3	2,65	2.23	1.95	1.52	1.38	1.20	1.00	1.00	1,00
4	2.52	2.22	1.95	1,53	1.32	1.20	1.00	1.00	1.00

2500 KILOMETERS

CONST	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	2.30	2,19	2.09	.98	.93	.97	1.00	1.00	.90
2	2.42	1.98	1.92	1.10	.85	.80	1.00	1.00	1.00
3	2.40	2.02	1.75	.97	.89	.76	1,00	1.00	1.00
4	2.27	2.01	1.77	.98	.85	.78	1.00	1.00	1.00

	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.21	2.11	1.98	.80	.76	.78	1.00	1.00	.95
2	2.33	1.90	1.84	.92	.70	.67	1.00	1.00	1.00
3	2.32	1.95	1.69	.80	.74	.63	1.00	1.00	1.00
4	2 10	1 03	1.71	. 82	. 71	. 65	1.00	1.00	1.00

TABLE C-14 (75 DEG, 90 DEG, 6 HRS)

O KILOMETERS

	E(P00P)			SIG(PDOP)			PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.20	2.33	.00	2.64	.83	.00	1.00	.12	.00
2	3.62	3.00	2.01	3.35	3.10	-64	1.00	1.00	.14
3	3.46	3.21	2.73	2.83	3.17	2.61	1.00	1.00	1.00
4	3.10	3.14	2.85	2.47	3.10	2.80	1.00	1.00	1.00

500 KILOMETERS

CONST	E(PDOP)			(POOP)			PROB(EVENT)		
	3	4	5	3		5	3	4	5
1	2.92	2.15	2.52	2.22	.76	.73	1.00	.48	. 25
2	3.39	2.84	1.91	2.71	2.73	.63	1.00	1.00	.49
3		3.03		2.65	2.98	2.44	1.00	1.00	1.00
4			2.63	2.21	2.88	2.57	.99	1.00	1.00

750 KILOMETERS

		E (PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.27	2.14	2.33	3.09	.83	.90	1.00	.60	.39
2	3.38	2.83	1.87	2.65	2.67	.70	1.00	1.00	.63
3	3.28	3.02	2.52	2.61	2.93	2.39	1.00	1.00	1.00
4		2.93		3.11	2.82	2.51	1.00	1.00	1.00

		E (PDOP	•)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	· 5	3	4	5	3	4	5
1	3.28	2.21	2.27	3.04	.96	1.05	1.00	.69	.49
ż		2.83		2.66	2.63	.83	1.00	1.00	.72
3		3.00		2.55	2.87	2.36	.99	1.00	1.00
4		2.91		3.05	2.76	2.49	1.00	1.00	1.00

TABLE C-14 (75 DEG, 90 DEG, 6 HRS) (continued)

1500 KILOMETERS

		E(PDOP	')	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.37	2.45	2.40	3.04	1.43	1.55	1.00	.81	.63
2	3.40	2.90	2.15	2.73	2.63	1.25	1.00	1.00	.84
3	3.23	3.03	2.57	2.61	2.85	2.35	1.00	1.00	1.00
4	3.34	2.94	2.65	3.04	2.76	2.48	1.00	1.00	1.00

2000 KILOMETERS

CONST		E(PDOF)	S	IG(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	3.45	2.88	2.61	3.21	2.36	2.49	1.00	.91	.72
2	3.33	2.96	2.52	2.89	2.78	2.04	1.00	1.00	.93
3	3.13	3.00	2.61	2.68	2.94	2.47	1.00	1.00	1.00
4	3.31	2.87	2.59	3.12	2.78	2.52	1.00	1.00	1.00

2500 KILOMETERS

CONST		E(PDOP	')	S	IG(PDC)P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	3.54	3.17	2.77	3.41	3.14	3.09	1.00	.98	.79
2	3.26	2.98	2.83	2.53	2.84	2.81	1.00	1.00	.99
3	3.33	3.10	2.81	3.16	3.18	3.00	1.00	1.00	1.00
4	3.25	2.78	2.72	3.08	2.66	2.81	1.00	1.00	1.00

		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.41	3.18	2.72	2.87	2.74	2.46	1.00	1.00	.83
2	3.30	2.97	2.81	2.48	2.82	2.77	1.00	1.00	1.00
3	3.25	2.85	2.53	2.59	2.29	2.04	1.00	1.00	1.00
4	3.11	2.92	2.62	2 65	2 91	2 54	1 00	1.00	1.00

TABLE C-15 (75 DEG, 60 DEG, 3 HRS)

O KILOMETERS

		E(PDOP)	S	IG(PDOI	P)	PROS(EVENT)		
CONST	3	4	· 5	3	4	5	3	4	5
1	1.89	.00	.00	.07	.00	.00	.32	.00	.00
2	2.09	1.53	.00	.33	.07	.00	.48	.29	.00
3	2.70	1.64	1.37	1.26	. 15	.09	.61	.41	.28
4	3.24	1.87	1.43	2.71	.49	.11	.69	.54	.37

500 KILOMETERS

	E(PDOP)			S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.09	.00	.00	2.32	.00	.00	.71	.00	.00
2	4.38	2.39	.00	4.26	1.16	.00	.94	.64	.00
3		3.64		4.04	3.53	.79	.99	.88	.61
4		3.78		4.29	3.59	2.30	1.00	.98	.79

750 KILOHETERS

		E(PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3		. 5	3	4	5	3	4	5
1	3.88	3.04	.00	3.45	.48	.00	.99	.20	.00
ż		2.97	2.62	2.16	1.79	.16	1.00	.99	.26
3		2.87		1.98	1.72	1.54	1.00	1.00	1.00
4		2.79		1.83	1.59	1.41	1.00	1.00	1.00

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.13	2.58	2.04	1.94	.51	.09	1.00	.41	.10
ž		2.49		1.30	1.08	.25	1.00	1.00	.44
3	2.73	2.38	2.14	.99	.88	.79	1.00	1.00	1.00
Ĭ.	2.64	2.30	2.05	.82	.72	.63	1.00	1.00	1.00

TABLE C-15 (75 DEG, 60 DEG, 3 HRS) (continued)

1500 KILOMETERS

		E(PDOP	')	S	IG(PDOI)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.73	2.03	1.76	1.17	. 19	.09	1.00	.56	.30
2	2.51	2.18	1.77	.67	.55	.15	1.00	1.00	.59
3	2.46	2.11	1.89	.56	.51	.46	1.00	1.00	1.00
4	2.38	2.05	1.83	.53	.46	.41	1.00	1.00	1.00

2000 KILOMETERS

CONST		E(PDOP)	S	IG(PDO	²)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	2.79	1.84	1.64	1.45	. 16	.09	1.00	.66	.42
2	2.52	2.19	1.62	.91	.79	.14	1.00	1.00	.69
3	2.45	2.15	1.93	.79	.69	.65	1.00	1.00	1.00
4	2.39	2.06	1.86	.76	.62	.57	1.00	1.00	1.00

2500 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.21	1.75	1.50	2.56	.11	.03	1.00	.73	.51
2	2.92	2.53	1.52	1.94	1.73	.11	1.00	1.00	.76
3	2.76	2.39	2.16	1.61	1.46	1.35	1.00	1.00	1.00
4	2.70	2.30	2.10	1.64	1.41	1.26	1.00	1.00	1.00

		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.43	1.72	1.50	3.67	.13	.00	1.00	.77	.55
2	3.52	3.06	1.49	3.51	3.15	. 13	1.00	1.00	.80
3	3.40	2.91	2.64	3.21	2.86	2.69	1.00	1.00	1.00
4	3.23	2.77	2.53	3.08	2.64	2.39	1.00	1.00	1.00

TABLE C-16 (75 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

		E(POOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	· 5	3	4	5	3	4	5
1	3.45	.00	.00	3.31	.00	.00	.58	.00	.00
2	3.70	2.95	.00	3.83	2.95	.00	.68	.57	.00
3	3.72	3.01	2.66	3.48	3.04	2.63	.78	.64	.56
4	4.16	2.86	2.65	3.94	2.80	2.68	.86	.70	.62

500 KILOMETERS

		E (PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	· 5	3	4	5	3	4	5
1	4.37	.00	.00	4.06	.00	.00	.98	.00	.00
2	4.32	3.44	.00	3.99	3.05	.00	1.00	.97	.00
3	3.83	3.34	2.89	2.98	2.48	2.10	1.00	1.00	.97
4		3.18		2.55	2.36	2.13	1.00	1.00	.99

750 KILOMETERS

		E (PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	· 5	3	4	5	3	4	5
1	3.23	3.05	2.56	2.40	.51	.18	1.00	.31	.08
ż		2.77		2.77	2.22	.41	1.00	1.00	.35
3		2.75		2.65	2.15	1.77	1.00	1.00	1.00
4		2.61			2.04		1.00	1.00	1.00

	E(PDOP)			SIG(PDOP)			PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.09	2.55	2.32	2.15	.38	.21	.99	.43	.21
2		2.52		2.64	1.89	.28	1.00	1.00	.45
3		2.53		2.55	2.06	1.69	1.00	1.00	1.00
4		2.47		2.18	1.97	1.77	1.00	1.00	1.00

TABLE C-16 (75 DEG, 90 DEG, 3 HRS) (continued)

1500 KILOMETERS

		E(PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.86	2.08	1.88	2.04	.23	.16	.99	.55	.34
2	2.90	2.32	1.76	2.47	1.78	.17	1.00	1.00	.57
3	2.71	2.34	2.06	2,36	1,92	1.59	1.00	1.00	1.00
4	2.63	2.25	2.07	2.05	1.85	1.67	1.00	1.00	1.00

2000 KILOMETERS

		E(PDOP	')	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.69	1.88	1.66	2.00	. 19	.08	1.00	.64	.43
2	2.75	2.21	1.58	2.35	1.72	.10	1.00	1.00	.66
3	2.56	2.22	1.97	2.22	1.84	1.55	1.00	1.00	1.00
4	2.51	2.16	1.97	1.99	1.76	1.61	1.00	1.00	1.00

2500 KILOMETERS

		E(PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.63	1.78	1.54	2.05	.19	.09	1.00	.71	.50
2	2.68	2.16	1.53	2.33	1.77	.08	1.00	1.00	.73
3	2.50	2.17	1.92	2.16	1.82	1.57	1.00	1.00	1.00
4	2.45	2.10	1.92	2.04	1.78	1.60	.99	1.00	1.00

		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.59	1.75	1.51	2.06	.21	.09	1.00	.77	.57
2	2.68	2.17	1.50	2.39	1.85	.04	1.00	1.00	.77
3	2.48	2.17	1.93	2.21	1.86	1.65	1.00	1.00	1.00
4	2.45	2.11	1.92	2.12	1.86	1.65	.99	1.00	1.00

TABLE C-17 (90 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

		E (PDOP)	S	G(PDO	>)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.28	.00	.00	1.05	.00	.00	.98	.00	.00
2	2.80	1.96	.00	1.26	.89	.00	.98	. 98	.00
3	2.52	2.18	1.75	1.02	.97	.81	.98	.98	.98
4	2.28	2.07	1.91	1.05	.89	.84	.98	.98	.98

500 KILOMETERS

		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.73	6.34	6.09	2.31	4.29	4.16	1.00	.23	. 23
2			5.48	2.82	2.53	3.76	1.00	1.00	.23
3	2.98	2.79	2.25	2.31	2.65	2.27	1.00	1.00	1.00
4		2.62		2.31	2.50	2.32	1.00	1.00	1.00

750 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.74	4.03	3.75	2.45	3.25	3.11	1.00	.39	.39
2		2.38		2.90	2.11	2.83	1.00	1.00	.39
3		2.61		2.45	2.29	2.90	1.00	1.00	1.00
4	2.74	2.46	2.63	2.45	2.09	3.04	1.00	1.00	1.00

		E (PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.81	3.66	3.36	2.52	3.15	2.97	1.00	.49	.49
2	3.22	2.46	3.19	2.97	2.19	2.74	1.00	1.00	.49
3		2.64		2.57	2.36	3.03	1.00	1.00	1.00
4	2.81	2.50	2.31	2.52	2.18	2.05	1.00	1.00	1.00

TABLE C-17 (90 DEG, 60 DEG, 6 HRS) (continued)

1500 KILOMETERS

		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.70	3.16	2.96	2.00	2.26	2.21	1.00	.63	.63
2	3.17	2.34	2.74	2.38	1.73	1.97	1.00	1.00	.63
3	2.88	2.56	2.08	2.03	1.83	1.55	1.00	1.00	1.00
4	2.70	2.39	2.24	2.00	1,72	1.59	1.00	1.00	1.00

2000 KILOMETERS

		E(PDOP)			IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.36	2.46	2.35	1.19	1.25	1.24	1.00	.74	.74
2	2.79	2.05	2.15	1.41	1.02	1.10	1.00	1.00	.74
3	2.52	2,24	1.82	1,20	1.10	.91	1.00	1.00	1.00
4	2.36	2.10	1.95	1.19	1.03	.93	1.00	1.00	1.00

2500 KILOMETERS

		E (PDOP)	S	G(PDO	?)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.17	2.15	2.06	.79	.83	.81	1.00	.83	.83
2	2.57	1.89	1.88	.98	.68	.74	1.00	1.00	.83
3	2.32	2.04	1.68	.81	.74	.62	1.00	1.00	1.00
4	2.17	1.94	1.79	.79	.69	.64	1.00	1.00	1.00

		E (PDOP)	S	G (PDOI	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.11	2.05	1.95	.68	.72	.67	1.00	.86	.86
2	2.49	1.84	1.78	.82	.59	.60	1.00	1.00	.86
3	2.25	1.98	1.63	.70	.64	.53	1.00	1.00	1.00
4	2,11	1.89	1.73	.68	.59	.54	1.00	1.00	1.00

TABLE C-18 (90 DEG, 90 DEG, 6 HRS)

O KILOMETERS

		E(PDOP)	S	1G(PD0	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.88	3.58	3.26	2.21	.25	. 15	1.00	.04	.04
2	3.53	2.80	3.10	2.74	2.74	.23	1.00	1.00	.04
3	3.33	3.07	2.50	2.67	2.99	2.45	1.00	1.00	1.00
4	2.88	2.62	2.37	2.26	2.06	1.85	1.00	1.00	1.00

500 KILOMETERS

		E (PDOP)	S	1G(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.24	2.77	2.68	2.99	.92	.88	1.00	.28	. 28
2	3.59	2.80	2.42	2.66	2.59	.82	.94	1.00	.28
3	3.33	3.08	2.50	2.54	2.83	2.32	1.00	1.00	1.00
4	3.32	2.93	2.66	3.06	2.73	2.44	.93	1.00	1,00

750 KILOMETERS

		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.25	2.58	2.46	2.93	1.12	1.11	1.00	.41	.41
Ž	3.66	2.82	2.25	2.65	2.54	1.00	.89	1.00	.41
3	3.34	3.09	2.52	2.49	2.78	2.27	1.00	1.00	1.00
4	3.57	2.96	2.67	3.08	2.68	2.39	.81	1.00	1.00

		E (PDOP	•)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.30	2.58	2.46	2.90	1.37	1.35	1.00	.49	.49
2	3.58	2.87	2.26	2.64	2.50	1.23	.93	1.00	.49
3	3.39	3.12	2.56	2.48	2.74	2.26	1.00	1.00	1.00
4	3.57	2.99	2.70	3.02	2.62	2.36	.82	1.00	1.00

TABLE C-18 (90 DEG, 90 DEG, 6 HRS) (continued)

1500 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.51	2.85	2.75	3.15	2.40	2.35	1.00	.61	.61
2	3.73	3.05	2.50	3.00	2.72	2.14	.96	1.00	.61
3	3.60	3.30	2.73	2.84	2.95	2.45	1.00	1.00	1.00
4	3.51	3.15	2.85	3.18	2.82	2.56	.88	1.00	1.00

2000 KILOMETERS

CONST		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	3.46	2.67	2.49	3.24	2.54	2.31	1.00	.71	.71
2	4.18	3.00	2.34	3.99	2.79	2.24	1.00	1.00	.71
3	3.87	3.22	2.66	3.64	2.97	2.51	1.00	1.00	1.00
4	3.46	3.08	2.79	3.24	2.87	2.59	1.00	1.00	1.00

2500 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.44	2.75	2.62	3.05	2.40	2.35	1.00	.78	.78
2	3.84	2.98	2.42	3.29	2.63	2.14	.97	1.00	.78
3	3.82	3.26	2.65	3.42	2.84	2.36	1.00	1.00	1.00
4	3.33	3.07	2.80	2.98	2.71	2.45	.96	1.00	1.00

CONST	E(PDOP)			S	IG(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	3.16	2.48	2.35	2.59	1.67	1.65	1.00	.81	.81
2	3.70	2.75	2.18	3.09	2.24	1.49	.96	1,00	.81
3	3.55	3.02	2.44	2.98	2.44	2.01	1.00	1.00	1.00
4	3.07	2.85	2.61	2.56	2.33	2.10	.93	1.00	1.00

TABLE C-19 (90 DEG, 60 DEG, 3 HRS)

O KILOMETERS

		E(PDOP)	S	G(PDO	?)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.53	.00	.00	.97	.00	.00	.65	.00	.00
2	3.09	2.18	.00	1,18	. 85	.00	.65	.65	.00
3	2.75	2.37	1.95	.96	.92	.73	.65	.65	.65
4	2.53	2.26	2.04	.98	.83	.81	.65	.65	.65

500 KILOMETERS

		E (PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	•		3	4	5	3	4	5
1	4.25	.00	.00	3.76	.00	.00	.92	.00	.00
2	4.44	3.69	.00	3.54	3.26	.00	.92	.92	.00
3	4.43	4.03	3.28	3.84	3.56	2.91	.92	.92	.92
4		3.73		3.76	3.25	3.09	.92	.92	.92

750 KILOMETERS

		E (PDOP	')	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	4.21	2.22	2.02	3.56	.10	.10	1.00	.08	.08
2	5.14	3.65	1.90	4.38	3.10	.00	1.00	1.00	.08
3	4.41	3.99	3,26	3.64	3.38	2.76	1.00	1.00	1.00
4	4.21	3.71	3.44	3.56	3.07	2.89	1.00	1.00	1.00

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	· 5	3	4	5	3	4	5
1	4.30	1.99	1.83	3.93	.10	.10	1.00	. 18	. 18
2	4.47	3.72	1.75	3.58	3.38	.09	1.00	1.00	. 18
3	4.50	4.06	3.33	4.01	3.71	3.04	1.00	1.00	1.00
4	4.30	3.76	3.50	3.93	3.36	3.21	1.00	1.00	1.00

TABLE C-19 (90 DEG, 60 DEG, 3 HRS) (continued)

1500 KILOMETERS

CONST		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	4.44	1.77	1.62	4.12	.10	.10	1.00	.32	.32
2	4.66	3.83	1.55	4.08	3.58	.09	1.00	1.00	.32
3	4.65	4.22	3.44	4.19	3.91	3.21	1.00	1.00	1.00
4	4.44	3.92	3.64	4.12	3.56	3.37	1.00	1.00	1.00

2000 KILOMETERS

CONST		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	4.28	1.66	1.52	3.81	.10	.07	1.00	.42	.42
2	5.18	3.71	1.47	4.68	3.29	.07	1.00	1.00	.42
3	4.49	4.06	3.31	3.89	3.62	2.97	1.00	1.00	1.00
4	4.28	3.75	3.49	3.81	3.27	3.12	1.00	1.00	1.00

2500 KILOMETERS

CONST		E(PDOP)	S	G(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	4.18	1.60	1.49	4.64	.10	.05	1.00	.52	.52
2	5.04	4.89	1.41	5.72	5.39	.10	1.00	1.00	.52
3	4.39	4.63	4.35	4.74	5.23	4.81	1.00	1.00	1.00
4	4.18	4.92	4.60	4.64	5.38	5.08	1.00	1.00	1.00

		E(POOP	')	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.50	1.58	1.46	4.53	.10	.08	1.00	.55	.55
2	3.36	3.04	1.39	4.14	3.94	.10	1.00	1.00	.55
3	2.99	3.31	2.71	3.42	4.32	3.54	1.00	1.00	1.00
4	3.50	3.06	2.87	4.53	3,93	3.72	1.00	1.00	1.00

TABLE C-20 (90 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.23	.00	.00	2.54	.00	.00	.82	.00	.00
2	3.95	2.80	.00	3.06	2.20	.00	.82	.82	.00
3	3.65	3.06	2.50	2.97	2.38	1.97	.82	.82	.82
4	3.23	2.93	2.65	2.54	2.29	2.04	.82	.82	.82

500 KILOMETERS

		E(PDOP)	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.73	3.10	2.90	3.16	.00	.00	1.00	.02	.02
2	4.56	3.82	2.90	3.89	3.84	.00	1.00	1.00	.02
3	4.10	3.53	3.42	3.41	3.00	3.43	1.00	1.00	1.00
4	3.72	3.93	3.63	3,15	3.84	3.61	1.00	1.00	1.00

750 KILOMETERS

		E(PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3		· 5	3	4	5	3	4	5
1	3.96	2.46	2.32	4.12	.27	. 15	1.00	. 15	.15
2	4.16	3.44	2.14	3.82	3.58	.18	.96	1.00	. 15
3	4.31	3.75	3.07	4.31	3.90	3.22	1.00	1.00	1.00
4	4.03	3.55	3.27	4.16	3.58	3.37	.97	1.00	1.00

		E(PDOP	')	S	IG(PDO	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	3.39	2.16	2.05	3.34	.23	.16	1.00	.22	.22
2	4.48	3.62	2.07	4.02	3.50	.13	. 95	1.00	.12
3	3.72	3.22	2.62	3.55	3.14	2.59	1.00	1.00	1.00
4	3.52	3.02	2.78	3.43	2.91	2.73	.93	1.00	1.00

TABLE C-20 (90 DEG, 90 DEG, 3 HRS) (continued)

1500 KILOMETERS

		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
CONST	3	4	5	3	4	5	3	4	5
1	2.71	1.85	1.71	1.74	.16	.16	1.00	.35	.35
2	3.44	2.37	1.61	2.20	1.54	.15	.89	1.00	.35
3	3.03	2.59	2.12	1.96	1.65	1.36	1.00	1.00	1.00
4	2.87	2.47	2.23	1.74	1.56	1.42	.90	1.00	1.00

2000 KILOMETERS

CONST	E(PDOP)			5	IG(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	2.37	1.71	1.58	1.25	.14	.10	1.00	.45	.45
2	2.95	2.07	1.51	1.51	1.08	.12	.89	1.00	.45
3	2.62	2.24	1.84	1.41	1.19	.97	1.00	1.00	1.00
4	2.52	2.13	1.92	1.20	1.09	1.01	.88	1.00	1.00

2500 KILOMETERS

CONST		E(PDOP	')	S	IG(PDO	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	2.26	1.63	1.52	1.17	.11	.09	1.00	.52	.52
2	2.81	1.99	1.43	1.45	1.01	.11	.90	1.00	.52
3	2.49	2.13	1.77	1.26	1.10	.92	1.00	1.00	1.00
4	2.43	2.05	1.84	1.10	1.02	.95	.87	1.00	1.00

CONST		E (PDOP)	S	IG(PDC	P)	PROB(EVENT)		
	3	4	5	3	4	5	3	4	5
1	2.27	1.60	1.46	1.23	.10	.08	1,00	,55	.55
2	2.80	1.98	1.40	1.56	1.06	.10	.89	1.00	.55
3	2.46	2.03	1.83	1.16	1.06	1.01	.85	1.00	1.00
4	2.48	2.13	1.75	1.31	1.18	.97	1.00	1.00	1.00

APPENDIX D.

Expected Values of Shortest Target Tracker to Target Distances

Three sets of results are presented, namely expected value of shortest distance, standard deviation of the shortest distance, and the event probability. The event probability is the relative frequency of the occurrence of a shortest, next shortest, or third shortest distance. The values in parentheses in each of the titles define the latitude of the target, the inclination of the orbital plane, and the satellite period. The data is organized by target elevation, by first, second, and third shortest distances, and by CONST. CONST=1, 2, 3, or 4 correspond to 9, 12, 15, or 18 satellites.

TABLE D-1 (30 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	151	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	11.69	13.12	14.48	.83	1.11	.31	1.00	1.00	.36
2	11.34	12.63	13.87	.63	.93	.67	1.00	1.00	.95
3	11.31	12.09	13.37	.55	.88	.71	1.00	1.00	1.00
4	11.14	11.97	12.65	.56	.67	.79	1.00	1.00	1.00

500 KILOMETERS

		E(DIST)		S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	151	2ND	3RD
1	11.35	12.91	14.97	.93	1.22	.66	1.00	1.00	.71
2	10.94	12.39	13.83	.70	1.02	.77	1.00	1.00	1.00
3	10.91	11.79	13.21	.59	.97	.79	1.00	1.00	1.00
4	10.71	11.66	12.41	.60	.75	.87	1.00	1.00	1.00

750 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	11.19	12.81	15.57	.95	1.27	1.12	1.00	1.00	1.00
2	10.77	12.26	13.77	.72	1.06	.79	1.00	1.00	1.00
3	10.75	11.64	13.12	.61	1.02	.82	1.00	1.00	1.00
4	10.54	11.51	12.30	.62	.78	.91	1.00	1.00	1.00

E(DIST)				S	IG(DIS	T)	PROB(EVENT)			
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD	
1	11.04	12.73	15.59	1.01	1.31	1.15	1.00	1.00	1.00	
2	10.59	12.17	13.71	.78	1.09	.84	1.00	1.00	1.00	
3	10.56	11.50	13.05	.66	1.06	.85	1.00	1.00	1.00	
4	10.36	11.37	12.19	.70	.80	.93	1.00	1.00	1.00	

TABLE D-2 (30 DEG, 90 DEG, 6 HRS)

O KILOMETERS

E(DIST)				S	IG(DIS	Γ)	PROB(EVENT)		
CONST		2ND			2ND			2ND	3RD
		13.37	14.44	1.24	.85	.36	1.00	.90	.54
		12.56					1.00	1.00	.92
		12.60					1.00	1.00	1.00
		12.17					1.00	1.00	1.00

500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST		2ND			2ND	3RD		2ND	
		13.42	14.91	1.37	1.08	.72	1.00	1.00	1.00
		12.31					1.00	1.00	1.00
		12.34				.91	1.00	1.00	1.00
		11.86				.88	1.00	1.00	1.00

750 KILOMETERS

		E(DIST)		S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	-	3RD			3RD		2ND	
		13.34	14.90	1.44	1.14	.73	1.00	1.00	1.00
ż	11.95	12.18	14.09	1.34	1.43	.86	1.00	1.00	1.00
		12.22				.95	1.00	1.00	1.00
		11.71				.92	1.00	1.00	1.00

E(DIST)				s	IG(DIS	T)	PROB(EVENT)		
CONST		2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
		13.28	14.90	1.51	1.18	.75	1.00	1.00	1.00
		12.06				.87	1.00	1.00	1.00
3	11.42	12.11	12.82	1.59	1.33	.97	1.00	1.00	1.00
4	11.51	11.57	12.81	1.52	1.51	.98	1.00	1.00	1.00

TABLE D-3 (30 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

	I	E(DIST)		SIG(DIST)				PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	1ST	2ND	3RD	
1	5.75	6.37	.00	1.05	.88	.00	.98	.53	.00	
2	5.52	6.59	7.41	.79	.78	.31	1.00	.76	.27	
3	5.47	6.21	7.25	.69	.98	.43	1,00	.91	.46	
4	5.29	6.20	6.76	.68	.87	.65	1.00	.99	.77	

500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1\$1	2ND	3RD	1 S T	2ND	3RD	1 S T	2ND	3RD
1	5.55	7.24	8.87	1.21	1.41	.30	1.00	.96	.10
2	5.24	6.92	8.21	.89	1.17	.71	1.00	.99	.84
3	5.19	6.21	7.86	.78	1.21	.78	1.00	1.00	.98
4	4.97	6.03	7.03	.76	.99	.96	1.00	1.00	1.00

750 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	5.45	7.29	9.69	1.28	1.50	.53	1.00	1.00	.47
2	5.12	6.89	8.42	.94	1.23	.83	1.00	1.00	1.00
3	5.04	6.13	7.87	.86	1.28	.82	1.00	1.00	1.00
4	4.85	5.94	6.98	.82	1.03	1.01	1.00	1.00	1.00

	E(DIST)			S	1G(D1S	(T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	1ST	2ND	3RD
1	5.34	7.27	10.01	1.35	1.57	.62	1.00	1.00	.66
2	5.00	6.85	8.44	1.01	1.27	.86	1.00	1.00	1.00
3	4.93	6.06	7.87	.88	1.35	.85	1.00	1.00	1.00
4	4.72	5.87	6.96	.88	1.09	1.05	1.00	1.00	1.00

TABLE D-4 (30 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

	E(DIST)			SIG(DIST)			PROB(EVENT)		
CONST	1ST	1ST 2ND		151	2ND	3RD	157	2ND	3RD
1	5.84	7.02	.00	1.04	.61	.00	.78	.43	.00
2	6.14	6.18	7.43	.99	1.03	.40	.77	.70	. 13
3	5.68	6.32	7.10	1.12	.82	.52	.79	.72	.57
4	5.81	5.86	7.07	1.03	1.05	.59	.78	.77	.56

500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	151	ZND	3RD
1	6.19	7.66	8.75	1.61	1.00	.39	.98	.79	.40
2	6.49	6.71	8.49	1.49	1.56	.69	.98	.98	.71
3	6.03	6.81	7.64	1.69	1.38	.94	.98	.98	.98
4	6.15	6.23	7.61	1.60	1.61	.96	.98	.98	.98

750 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	6.17	8.06	9.28	1.71	1.24	.64	1.00	1.00	.79
2	6.47	6.70	8.78	1.58	1.65	.78	1.00	1.00	.96
3	5.99	6.80	7.67	1.79	1.46	.98	1.00	1.00	1.00
4	6.12	6.20	7.62	1.71	1.72	1.00	1.00	1.00	1.00

	1	E(DIST)		S	SIG(DIST)			PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	151	2ND	3RD	
1	6.08	8.07	9.58	1.79	1.28	.80	1.00	1.00	.98	
ż	6.41	6.64	8.87	1.65	1.71	.86	1.00	1.00	.99	
3	5.90	6.76	7.66	1.88	1.50	1.01	1.00	1.00	1.00	
4	6.03	6.12	7.61	1.79	1.80	1.02	1.00	1.00	1.00	

TABLE D-5 (45 DEG, 60 DEG, 6 HRS)

0 KILOMETERS

		E(DIST)		S	G(DIS	Γ)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	CNS	3RD	1ST	2ND	3RD
1	11.28	13.31	14.14	.61	.89	.51	1.00	.99	.32
2	11.01	12.62	13.85	.41	.72	.68	1.00	1.00	.92
3	10.86	12.04	13.44	.34	.52	.64	1.00	1.00	1.00
4	10.78	11.76	12.78	. 25	.40	.67	1.00	1.00	1.00

500 KILOMETERS

		E(DIST)		S	G(DIS	T)	PROB(EVENT)		
CONST	151	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	10.90	13.14	15.18	.67	.97	.91	1.00	1.00	.95
2	10.58	12.37	13.85	.45	.77	.81	1.00	1.00	1.00
3	10.42	11.75	13.25	.39	.56	.71	1.00	1.00	1.00
4	10.33	11.44	12.54	.27	.43	.72	1.00	1.00	1.00

750 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)			
CONST	151	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD	
1	10.69	13.05	15.26	.72	1.02	.97	1.00	1.00	1.00	
2	10.35	12.26	13.80	.49	.82	.85	1.00	1.00	1.00	
3	10.22	11.59	13.18	.41	.60	.73	1.00	1.00	1.00	
4	10.07	11.27	12.43	.30	.45	.76	1.00	1.00	1.00	

1000 KILOMETERS

		E(DIST)		S	IG(DIS	T)	PROB(EVENT)		
CONST	151	2ND	3RD	1ST	2ND	3RD	1st	2ND	3RD
1	10.51	12.97	15.27	.75	1.06	1.01	1.00	1.00	1.00
2	10.16	12.15	13.75	.50	.85	.88	1.00	1.00	1.00
3	9.99	11.46	13.12	.43	.61	.75	1.00	1.00	1.00
4	9.87	11,12	12.33	.29	.48	.80	1.00	1.00	1.00

1500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	10.13	12.82	15.28	.82	1.14	1.13	1.00	1.00	1.00
2	9.75	11.92	13.63	.54	.93	.95	1.00	1.00	1.00
3	9.57	11.17	12.97	.48	.68	.83	1.00	1.00	1.00
4	9.43	10.80	12.13	.31	.52	.87	1.00	1.00	1.00

	E(DIST)				IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	1ST	SND	3RD
1	9.80	12.70	15.31	.89	1.23	1.19	1.00	1.00	1.00
2	9.37	11.74	13.58	.60	.99	1.01	1.00	1.00	1.00
3	9.15	10.92	12.86	.52	.73	.88	1.00	1.00	1.00
4	9.01	10.52	11.97	.33	.55	.92	1.00	1.00	1.00

TABLE D-6 (45 DEG, 90 DEG, 6 HRS)

0 KILOMETERS

E(DIST)				S	G(DIS	r)	PROB(EVENT)		
CONST		2ND	3RD		ZND				3RD
1	11.61	13.10	13,97	.74	.74	.59	1.00	.99	.84
2	11.48	12.41	13.65	.72	.63	.54	1.00	1.00	1.00
3	11.34	12.20	12.87	.74	.55	.59	1.00	1.00	1.00
4	11.26	11.96	12.63	.74	.56	.46	1.00	1.00	1.00

500 KILOMETERS

		E(DIST)		S	IG(DIS	()	PROB(EVENT)		
CONST		2ND	_	157		3RD		2ND	
			14.07	.83	.83	.79	1.00	1.00	1.00
2	11.11	12.12	13.49	.81	.68	.60	1.00	1.00	1.00
			12.65			.63	1.00	1.00	1.00
4	10.87	11.62	12.35	.84	.63	.48	1.00	1.00	1.00

750 KILOMETERS

E(DIST)				S	SIG(DIST)			PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD	
1	11.07	12.82	14.02	.88	.87	.83	1.00	1.00	1.00	
2	10.93	11.97	13.42	.86	.73	.61	1.00	1.00	1.00	
3	10.76	11.75	12.55	.87	.64	.66	1.00	1.00	1.00	
4	10.66	11.47	12.24	.90	.67	.51	1.00	1.00	1.00	

1000 KILOMETERS

E(DIST)				S	IG(DIS	(1	PROB(EVENT)		
CONST	151	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	10.91	12.73	13.99	.92	.89	. 85	1.00	1.00	1.00
2	10.75	11.88	13.36	.89	.75	.65	1.00	1.00	1.00
3	10.58	11.60	12.47	.91	.69	.70	1.00	1.00	1.00
4	10.47	11.33	12.15	.92	.69	.52	1.00	1.00	1.00

1500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)			
CONST	1ST	2ND	3RD	1ST		3RD		2ND		
1	10.56	12.57	13.92	1.00	.97	.91	1.00	1.00	1.00	
		11.63				.67	1.00	1.00	1.00	
3	10.22	11.34	12.26	1.01	.74	.75	1.00	1.00	1.00	
4	10.10	11.02	11.92	1.03	.75	.61	1.00	1.00	1.00	

E(DIST)				SIG(DIST)			PROB(EVENT)			
CONST		2ND		157		3RD		2ND		
1	10.26	12.42	13.86	1.11	1.03	.98	1.00	1.00	1.00	
		11.40					1.00	1.00	1.00	
3		11.10			.78		1.00	1.00	1.00	
Ž	9.73	10.77	11.73	1.13	.82	.60	1.00	1,00	1.00	

TABLE 0-7 (45 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

		E(DIST)		S	IG(DIS	Γ)	PROB(EVENT)		
CONST	151	2ND	3RD	157	2ND	3RD	1ST	SND	3RD
1	5.30	6.95	.00	.76	.66	.00	1.00	.56	.00
2	5.06	6.80	7.31	.53	.61	.36	1.00	.81	.24
3	4.87	6.37	7.40	.44	.60	.42	1.00	1.00	.46
4	4.79	6.02	7.02	.36	.51	.53	1.00	1.00	.84

500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	1ST	2ND	3RD
1	4.97	7.55	8.53	.86	1.06	.40	1.00	.96	.08
2	4.70	6.97	8.22	.61	.88	.78	1.00	1.00	.82
3	4.48	6.20	7.92	.49	.67	.70	1.00	1.00	.99
4	4.36	5.81	7.10	.38	.57	.72	1.00	1.00	1.00

750 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1 \$T	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	4.82	7.60	9.60	.93	1.13	.56	1.00	1.00	.50
2	4.55	6.94	8.48	.67	.91	.92	1.00	1.00	.99
3	4.31	6.13	7.94	.54	.70	.73		1.00	
4	4.19	5.72	7.07	.42	.60	.74	1.00	1.00	1.00

1000 KILOMETERS

	(E(DIST)			IG(DIS	r)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	4.69	7.60	10.00	.98	1.17	.68	1.00	1.00	.76
2	4.39	6.91	8.52	.71	.96	.95	1.00	1.00	1.00
3	4.15	6.07	7.94	.57	.72	.76	1.00	1.00	1.00
4	4.01	5.64	7.06	.46	.62	.77	1.00	1.00	1.00

1500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	151	2ND	3RD	1ST	2ND	3RD
1	4.43	7.61	10.48	1.10	1.25	.86	1.00	1.00	.98
2	4.10	6.88	8.60	.79	1.01	1.02	1.00	1.00	1.00
3	3.83	5.95	7.98	.67	.79	.83	1.00	1.00	1.00
4	3.67	5.50	7.03	.51	.67	.81	1.00	1.00	1.00

E(DIST)				S	IG(DIS	T)	PROB(EVENT)			
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD	
1	4.20	7.65	10.68	1.23	1.32	.94	1.00	1.00	1.00	
2	3.85	6.88	8.69	.91	1.09	1.07	1.00	1.00	1.00	
3	3.55	5.90	8.07	.75	.83	.87	1.00	1.00	1.00	
4	3.37	5.40	7.06	.61	.73	.89	1.00	1.00	1.00	

TABLE D-8 (45 DEG, 90 DEG, 3 HRS)

O KILOMETERS

		E(DIST)		S	G(DIS	r)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	380	151	2NO	3RD
1	5.82	7.17	7.58	.94	.52	.24	1.00	.66	.18
2	5.65	6.79	7.58	.92	.73	.28	1.00	.99	.36
3	5.48	6.54	7.21	.95	.66	.58	1.00	1.00	.84
4	5.39	6.23	7.10	.96	.71	.49	1.00	1.00	.98

500 KILOMETERS

E(DIST)				S	IG(DIS	7)	PROB(EVENT)		
CONST	157	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	5.57	7.52	8.33	1.06	. 83	.64	1.00	.96	.74
2	5.39	6.64	8.08	1.04	.78	.57	1.00	1.00	.93
3	5.20	6.37	7.27	1.08	.74	.68	1.00	1.00	1.00
4	5.08	6.04	7.02	1,10	.78	.54	1.00	1.00	1.00

750 KILOMETERS

	E(DIST)			S	IG(DIS	Γ)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	ZND	3RD	1\$1	2ND	3RD
1	5.43	7.58	8.69	1.12	.95	.87	1.00	1.00	.99
2	5.25	6.57	8.18	1.11	.81	.70	1.00	1.00	1.00
3	5.07	6.29	7.23	1.12	.74	.71	1.00	1.00	1.00
4	4.93	5.93	6.98	1,18	.80	.57	1.00	1.00	1.00

1000 KILOMETERS

E(DIST)				S	G(DIS	(1	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	157	2ND	3RD
1	5.32	7.58	8.75	1.16	.97	.90	1.00	1.00	1.00
2	5.13	6.53	8.20	1.15	.85	.72	1.00	1.00	1.00
3	4.92	6.23	7.22	1.18	.77	.74	1.00	1.00	1.00
4	4.76	5.86	6.96	1.21	.84	.58	1.00	1.00	1.00

1500 KILOMETERS

E(DIST)				S	IG(DIS	τ)	PROB(EVENT)		
CONST	157	2ND	3RD	157	2ND	3RD	157	2ND	3RD
1	5.16	7.59	8.84	1.29	1.03	.94	1.00	1.00	1.00
2	4.93	6.48	8.26	1.27	.91	.76	1.00	1.00	1.00
3	4.70	6.14	7.22	1.31	.86	.79	1.00	1.00	1.00
4	4.52	5.77	6.93	1.34	.90	.61	1.00	1.00	1.00

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	157	2ND	3RD	157	2ND	3RD
1	5.01	7.64	8.96	1.44	1.10	.99	1.00	1.00	1.00
2	4.76	6.47	8.34	1.43	1.00	.80	1.00	1.00	1.00
3	4.50	6.10	7.25	1.46	.92	.84	1.00	1.00	1.00
4	4.31	5.70	6.95	1.51	1.00	.67	1.00	1.00	1.00

TABLE D-9 (60 DEG, 60 DEG, 6 HRS)

	E(DIST)			•	1G(D1S	r	PROB(EVENT)			
CONST	151	SND	3R0	157	2ND	3RD	157	2ND	3RD	
1	11.33	13.22	14.44	.70	.77	.38	1.00	1.00	.62	
2	11.11	12.48	13.88	.61	.68	.52	1.00	1.00	1.00	
3	11.01	11.99	13.27	.59	.62	.56	1.00	1.00	1.00	
4	10.93	11.71	12.70	.56	.62	.53	1.00	1.00	1.00	
				500	KILOM	ETERS				
		E(DIST)		s	IG(DIS	Γ)	PR	OB (EVE	NT)	
CONST	1ST	2ND	3RD	157	ZND	3RD	1ST	2ND	3RD	
1	10.93	13.03	14.76	.77	.84	.65	1.00	1.00	1.00	
2	10.70	12.21	13.74	.68	.75	.57	1.00	1.00	1.00	
3	10.58	11.69	13.07	.65	.68	.62	1.00	1.00	1.00	
4	10.50	11.35	12.47	.62	.69	.55	1.00	1.00	1.00	
				75	0 KILO	METERS				
		E(DIST)		s	IG(DIS	-		OB(EVE	-	
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD	
1	10.78	12.95	14.75	.79	.88	.67	1.00	1.00	1.00	
2	10.53	12.11	13.69	.68	.77	.59	1.00	1.00	1.00	
3 4	10.39 10.33	11.52 11.21	12.98 12.37	.67 .62	.71 .70	.63 .59	1.00	1.00	1.00	
•	.0.55	*****		.02	•••	•••				
				1000	KILOM	ETERS				
		E(DIST)		S	IG(DIS	Γ)	PR	OB(EVE	NT)	
CONST	1ST	2ND	3RD	1ST	SND	3RD	1ST	SND	3RD	
1	10.56	12.86	14.73	.85	.91	.70	1.00	1.00	1.00	
2	10.29	11.97	13.63	.75	.81	.60	1.00	1.00	1.00	
3 4	10.17 10.07	11.40 11.03	12.90 12.24	.72 .69	.72 .75	.65 .61	1.00	1.00	1.00	
4	10.07	11.03	12.24	.09	./3	.61	1.00	1.00	1.00	
				1500	KI LOME.	TERS				
		E(DIST)		s	IG(DIS		PR	OB (EVE	-	
CONST	1ST	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD	
1	10.21	12.71	14.73	.93	.98	.73	1.00	1.00	1.00	
2	9.90	11.75	13.54	.82	.88	.65	1.00	1.00	1.00	
3 4	9.77 9.65	11.11 10.74	12.75 12.05	.78 .74	.81 .81	.71 .67	1.00	1.00	1.00	
•	7.03	10.74	12.03	.,,		.07	7.00	7.00	,,,,,	
				200	0 KILO	ETERS				
		E(DIST)		S	IG(DIS	(1	PR	OB(EVE	NT)	
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD	
1	9.85	12.57	14.72	1.02	1.06	.80	1.00	1.00	1.00	
2	9.53	11.53	13.46	.90	.95	.69	1.00	1.00	1.00	
3	9.38	10.84	12.62	.86	.88	.76	1.00	1.00	1.00	
4	9.26	10.43	11.86	.83	.89	.71	1.00	1.00	1.00	
				250	O KILO	4ETERS				
		E(DIST)		s	IG(DIS	r)	PR	OB(EVE	NT)	
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD	
1	9.49	12.45	14.73	1.11	1.13	.85	1.00	1.00	1.00	
2	9.15	11.32	13.40	.98	1.03	.73	1.00	1.00	1.00	
3	8.98	10.60	12.51	.95	.96	.81	1.00	1.00	1.00	
4	8.85	10.11	11.67	.90	.97	.76	1.00	1.00	1.00	

TABLE D-10 (60 DEG, 90 DEG, 6 HRS)

		E/DIST\		e i	G(DIS	r >	PROB(EVENT)			
CONST	1ST	E(DIST) 2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD	
1	11.23	12.58	13.50	.52	.82	.93	1.00	1.00	.98	
ż	11.08	11.98	13.06	.50	.57	.83	1.00	1.00	1.00	
3	11.00	11.72	12.52	.43	.56	.61	1.00	1.00	1.00	
4	10.93	11.49	12.15	.43	.44	.57	1.00	1.00	1.00	
				500 K	(I LOME:	TERS				
		E(DIST)		SI	G(DIS	Γ)	PR	OB (EVE	NT)	
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD	
1	10.82	12.35	13.39	.57	.88	1.04	1.00	1.00	1.00	
2	10.67	11.68	12.87	.55	.61	.91	1.00	1.00	1.00	
3 4	10.58	11.35 11.13	12.24 11.88	.48 .47	.60 .47	.70 .59	1.00	1.00	1.00	
4	10.49	11.13	11.00	•••	. 41	. 37	1.00	1.00	1.00	
				750 k	(I LOME.	TERS				
		E(DIST)	_		G(DIS			OB (EVE		
CONST	157	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD	
1	10.62	12.22	13.31	.60	.94 .64	1.08 .95	1.00	1.00	1.00 1.00	
2 3	10.46	11.52 11.19	12.77 12.13	.59 .50	.65	.69	1.00	1.00	1.00	
4	10.38 10.27	10.96	11.72	.50	.47	.66	1.00	1.00	1.00	
	-			1000	CILOME	TERS				
		E(DIST)		S	(G(D15	7)	PR	OB (EVE	NT)	
CONST	157	2ND	3RD	157	2ND	3RD	157	ZND	3RD	
1	10.44	12.10	13.24	.64	.96	1.12	1.00	1.00	1.00	
2	10.26	11.38	12.69	.61	.66	.97	1.00	1.00	1.00	
3	10.15	11.01	12.01	.53	.68	.72	1.00	1.00	1.00	
4	10.06	10.80	11.57	.52	.51	.67	1.00	1.00	1.00	
				1500 1	CILOME	TERS				
		E(DIST)			IG(DIS			OB (EVE		
CONST	1ST	2ND	3RD	151	SND	3RD	151	2ND	3RD	
1	10.06	11.88	13.11	.70	1.06	1.21	1.00	1.00	1.00	
2	9.86	11.09	12.50	.68 .59	.73 .74	1.07 .80	1.00	1.00	1.00	
3 4	9.74 9.64	10.70 10.46	11.79	.58	.54	.76	1.00	1.00	1.00	
•				200	O KILO	METERS				
		E(DIST)		s	IG(DIS	T)	PS	OB (EVE	MT)	
CONST	157	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD	
1	9.67	11.66	13.00	.77	1.12	1.30	1.00	1.00	1.00	
2	9.47	10.80	12.35	.74	. 78	1.15	1.00	1.00	1.00	
3	9.33	10.39	11.56	.64	.80	. 88	1.00	1.00	1.00	
4	9.22	10.11	11.06	.63	.60	.79	1.00	1.00	1.00	
				2500	KILOME	TERS				
		E(DIST)		s	IG(DIS	T)	PF	OB(EVE	NT)	
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD	
1	9.32	11.48	12.91	.86	1.21	1.39	1.00	1.00	1.00	
2	9.08	10.57	12.22	.82	.85	1.23	1.00	1.00	1.00	
3 4	8.95 8.81	10.09 9.81	11.40 10.83	.70 .69	.88 .66	.91 .85	1.00	1.00	1.00	
*	0.01	7.01	10.03	.07	.~	. 43				

TABLE D-11 (60 DEG, 60 DEG, 3 HRS)

		E(DIST)		S	1G(D1S	T)	PROB(EVENT)		
CONST	151	2ND	3RD	151	2ND	3RD	157	2ND	3RD
1	5.38	7.06	.00	.79	.56	.00	1.00	.54	.00
2			7.59		.69	.23		.89	.21
_	5.20	6.76		.77			1.00		
3	5.05	6.34	7.37	.73	.74	.39	1.00	1.00	.60
4	4.98	5.96	7.04	.72	.73	.54	1.00	1.00	.90
				500	KILOM	ETERS			
		E(DIST)		S	IG(DIS	Γ)	PR	OB (EVE	
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	5.10	7.66	8.93	.88	.93	.35	1.00	.99	.36
2	4.89	6.79	8.33	.87	.89	.56	1.00	1.00	.95
3	4.71	6.16	7.72	.82	.81	.65	1.00	1.00	1.00
4	4.63	5.75	7.06	.81	.81	.66	1.00	1.00	1.00
				750	KILOME	ETERS			
		E(DIST)		S	IG(DIS	r)	PR	OB(EVE	NT)
CONST	151	2ND	3RD	151	2ND	3RD	157	2ND	3RD
1	4.95	7.66	9.42	.93	.97	.50	1.00	1.00	.88
ż		6.74	8.41		.93	.62	1.00	1.00	1.00
	4.73			.93					1.00
3 4	4.55 4.47	6.08 5.63	7.72 7.02	.88 .86	.85 .85	.67 .68	1.00	1.00	1.00
•	7.71	7.03	7.02		.05		1.00	1.00	1.00
				1000	KILOME	ETERS			
		E(DIST)		S	IG(DIS	(1	PR	OB(EVE	NT)
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	4.81	7.66	9.60	1.00	1.01	.61	1.00	1.00	.99
ž	4.57	6.71	8.44	1.00	.97	.63	1.00	1.00	1.00
3	4.39	6.00	7.72	.95	.90	.70	1.00	1.00	1.00
4	4.28	5.53	7.01	.94	.90	.71	1.00	1.00	1.00
								-	
				1500	KILOME1	TERS			
		E(DIST)		S	IG(DIS	r)	PR	OB(EVE	NT)
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	4.58	7.67	9.76	1.13	1.09	.66	1.00	1.00	1.00
2	4.30	6.66	8.51	1.12	1.03	.67	1.00	1.00	1.00
3	4.09	5.90	7.73	1.07	.96	.74	1.00	1.00	1.00
4	3.97	5.40	6.97	1.07	.97	.77	1.00	1.00	1.00
				2000	KILOMET	TERS			
		E(DIST)			1G(D1S)	rs	DB	OB(EVE	NT \
CONST	1ST	2ND	3RD	157	ZND	3RD	151	OB(EVE 2ND	3RD
	4.38	7.73	9.92	1.25	1.15	.71	1.00	1.00	1.00
1									
5	4.07	6.65	8.60	1.25	1.10	.69	1.00	1.00	1.00
3	3.81	5.82	7.78	1.20	1.06	.77	1.00	1.00	1.00
4	3.70	5.28	6.98	1.20	1.07	.81	1.00	1.00	1.00
				2500	KILOMET	TERS			
		E(DIST)		s	IG(DIS	Γ)	PR	OB(EVE	NT)
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	4.22	7.81	10.08	1.38	1.21	.73	1.00	1.00	1.00
ż	3.87	6.67	8.73	1.38	1.16	.72	1.00	1.00	1.00
3	3.60	5.81	7.88	1.34	1.12	.81	1.00	1.00	1.00
4	3.45	5.22	7.03	1.34	1.14	.86	1.00	1.00	1.00
~	5.75	7.LL			, , , , ¬	~			

TABLE D-12 (60 DEG, 90 DEG, 3 HRS)

O KILOMETERS

	1	E(DIST)		S	G(DIS	1)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	5.32	6.65	7.03	.68	.67	.60	1.00	.80	.42
2	5.15	6.29	6.97	.63	.68	.62	1.00	1.00	.60
3	5.04	5.93	6.83	.57	.67	.65	1.00	1.00	.92
4	4.94	5.71	6.48	.57	.55	.67	1.00	1.00	.98

500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	151	2ND	3RD
1	5.05	6.87	7.83	.78	.99	1.04	1.00	.98	.89
ż		6.15		.72	.72	.97	1.00	1.00	.98
3	4.71	5.74	6.80	.65	.71	.77	1.00	1.00	1.00
4	4.60	5.49	6.40	.67	.61	.73	1.00	1.00	1.00

750 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	SND	3RD
1	4.90	6.86	8.00	.82	1.09	1.14	1.00	1.00	1.00
ż	4.67	6.06	7.45	.75	.78	1.04	1.00	1.00	1.00
3	4.53	5.60	6.77	.69	.79	.78	1.00	1.00	1.00
4	4.43	5.36	6.31	.69	.65	.79	1.00	1.00	1.00

1000 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	151	2ND	3RD
1	4.76	6.83	8.01	.87	1.12	1.16	1.00	1.00	1.00
2	4.52	5.99	7.45	.81	.80	1.06	1.00	1.00	1.00
3	4.39	5.52	6.74	.74	.81	.81		1.00	
4	4.25	5.25	6.25	.76	.68	.82	1.00	1.00	1.00

1500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	4.51	6.78	8.04	.98	1.21	1.24	1.00	1.00	1.00
ż	4.23	5.87	7.45	.92	.86	1.15	1.00	1.00	1.00
3	4.08	5.40	6.67	.84	,88	.91	1.00	1.00	1.00
4	3.92	5.08	6.16	.85	.73	.87	1.00	1.00	1.00

	E(DIST)			s	1G(D1S	T)	PROB(EVENT)		
CONST	1ST	2ND	3RO	1ST	ZND	3RD	157	2ND	3RD
1	4.32	6.79	8.13	1.12	1.28	1.31	1.00	1.00	1.00
ż	4.00	5.81	7.49	1.04	.92	1.22	1.00	1.00	1.00
3	3.84	5.27	6.66	.98	.96	.96	1.00	1.00	1.00
Ž.	3.66	4.95	6.13	.99	.82	.93	1,00	1.00	1.00

TABLE D-12 (60 DEG, 90 DEG, 3 HRS) (continued)

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	4.14	6.80	8.22	1.23	1.36	1.38	1.00	1.00	1.00
2	3.81	5.77	7.55	1.15	1.00	1.27	1.00	1.00	1.00
3	3.63	5.20	6.69	1.09	1.03	1.01	1.00	1.00	1.00
4	3.42	4.85	6.11	1.10	.88	1.00	1.00	1.00	1.00

TABLE 0-13 (75 DEG, 60 DEG, 6 HRS)

O KILOMETERS

E(DIST)				SIG(DIST)			PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	157	2ND	3RD
1	11.91	13.02	13.79	.89	.96	.70	1.00	1.00	.84
2	11.80	12.55	13.47	.88	.92	.87	1.00	1.00	1.00
			13.04			.90		1.00	
4	11.71	12.11	12.70	.88	.89	. 88	1.00	1.00	1.00

500 KILOMETERS

		E(DIST)		S	IG(DIS	T)	PROS(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	11.58	12.82	13.90	.99	1.05	.91	1.00	1.00	1.00
2	11.46	12.30	13.31	.97	1.03	.93	1.00	1.00	1.00
			12.82						
4	11.35	11.80	12.46	.97	.99	.97	1.00	1.00	1.00

750 KILOMETERS

		E(DIST)			IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	157	ZND	3RD
1	11.45	12.72	13.85	1.02	1.09	.94	1.00	1.00	1.00
		12.18					1.00	1.00	1.00
		11.86					1.00	1.00	1.00
		11.67					1.00	1.00	1.00

1000 KILOMETERS

E(DIST)			S	SIG(DIST)			PROS(EVENT)		
CONST		SND						2ND	
1	11,28	12.62	13.80	1.09	1.14	.98	1.00	1.00	1.00
2	11.14	12.06	13.15	1.07	1.11	1.02	1.00	1.00	1.00
		11.72					1.00	1.00	1.00
		11 51					1.00	1.00	1.00

		E(DIST)		S	1G(D1S	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	1ST	2NO	3RD
1	11.00	12.45	13.72	1.17	1.23	1.05	1.00	1.00	1.00
2	10.85	11.84	13.03	1.15	1.19	1.09	1.00	1.00	1.00
		11.47					1.00	1.00	1.00
4	10.74	11.25	12.02	1.14	1.18	1.14	1.00	1.00	1.00

TABLE D-13 (75 DEG, 60 DEG, 6 HRS) (continued)

2000 KILOMETERS

	E(DIST)			SIG(DIST)			PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	157	2ND	3RD
1	10.72	12.28	13.65	1.27	1.33	1.12	1.00	1.00	1.00
2	10.56	11.62	12.91	1.25	1.30	1.17	1.00	1.00	1.00
3	10.47	11.23	12.30	1.25	1.27	1.24	1.00	1.00	1.00
4	10.43	11,00	11.83	1.23	1.27	1.24	1.00	1.00	1.00

2500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	ZND	3RD	157	ZND	3RD
1	10.44	12.16	13.60	1.38	1.41	1.21	1,00	1.00	1.00
2	10.27	11.44	12.82	1.36	1.40	1.23	1.00	1.00	1.00
3	10.19	11.00	12.17	1,35	1.38	1.33	1.00	1.00	1.00
4	10.14	10.74	11.67	1.34	1.40	1.30	1.00	1,00	1.00

		E(DIST)		S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	10.31	12.09	13.58	1.43	1.47	1.24	1.00	1.00	1.00
2	10.13	11.35	12.77	1.41	1.45	1.29	1.00	1.00	1.00
3	10.04	10.91	12.10	1.42	1.42	1.37	1.00	1.00	1.00
4	9.99	10.62	11.59	1.40	1.43	1.37	1.00	1.00	1.00

TABLE D-14 (75 DEG, 90 DEG, 6 HRS)

O KILOMETERS

		E(DIST)		SIG(DIST)			PROB(EVENT)		
CONST	1ST		3RD		2ND			ZNO	
1	11.34	12.15	12.82	.88	1.16	1.33	1.00	1.00	1.00
2	11.27	11.79	12.47	.86	1.01	1.25	1.00	1.00	1.00
3	11.22	11.62	12.13	.84	.95	1.11	1.00	1.00	1.00
4	11.18	11.52	11.89	.83	.89	1.06	1.00	1.00	1.00

500 KILOMETERS

		E(DIST)		SIG(DIST)			PROB(EVENT)		
CONST	151		3RD		2ND			2ND	
1	10.95	11.84	12.59	.98	1.28	1.45	1.00	1.00	1.00
2	10.88	11.44	12.20	.94	1.12	1.37	1.00	1.00	1.00
3	10.82	11.24	11.82	.93	1.07	1.23	1.00	1.00	1.00
4	10.77	11.14	11.54	.91	.99	1.16	1.00	1.00	1.00

750 KILONETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST		2ND						2ND	
		11.71	12.49	1.04	1.32	1,52	1.00	1.00	1.00
		11.28					1.00	1.00	1.00
		11.05					1.00	1.00	1.00
		10.91					1.00	1.00	1.00

1000 KILOMETERS

		E(DIST)			SIG(DIST)			PROB(EVENT)		
CONST		2ND		157				2ND		
1	10.57	11.54	12.37	1.08	1.41	1.59	1.00	1.00	1.00	
2	10,49	11.11	11.95	1.05	1.24	1.50	1.00	1.00	1.00	
		10.88					1.00	1.00	1.00	
4	10 37	10.76	11.23	1.01	1.08	1.30	1.00	1.00	1.00	

		E(DIST)		SIG(DIST)			PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	10.19	11.26	12.17	1,19	1.53	1.72	1.00	1.00	1.00
		10.78					1.00	1.00	1.00
		10.53					1.00	1.00	1.00
		10 40					1.00	1.00	1.00

TABLE D-14 (75 DEG, 90 DEG, 6 HRS) (continued)

2000 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	151	2ND	3RD	1st	2ND	3RD	151	2ND	3RD
1	9.83	11.00	11.98	1.31	1.67	1.85	1.00	1.00	1.00
2	9.72	10.48	11.48	1.26	1.50	1.75	1.00	1.00	1.00
3	9.67	10.20	11.00	1.23	1.44	1.59	1.00	1.00	1.00
4	9.59	10.05	10.62	1.21	1.35	1.55	1.00	1.00	1.00

2500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	9.47	10.76	11.80	1,43	1.79	1.99	1.00	1.00	1.00
2	9.36	10.19	11.28	1,38	1.61	1.88	1.00	1.00	1.00
3	9.29	9.88	10.77	1.34	1,58	1.70	1.00	1.00	1.00
4	9.22	9.72	10.34	1.33	1,46	1.67	1.00	1.00	1.00

		E(DIST)			IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	ZND	3RD	151	2ND	3RD
1	9.31	10.64	11.71	1.49	1.86	2.08	1.00	1.00	1.00
2	9.16	10.07	11.17	1.47	1.66	1.98	1.00	1.00	1.00
3	9.09	9.76	10.63	1.42	1.61	1.80	1.00	1.00	1.00
4	9.03	9.57	10.23	1.38	1.52	1.74	1.00	1.00	1.00

TABLE D-15 (75 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

E(DIST)				S	G(DIS	T)	PROB(EVENT)		
CONST	151	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	6.00	6.76	7.57	.89	.66	.24	.93	.58	.32
2	5.93	6.49	7.14	.94	.72	.42	.94	.75	.48
3	5.89	6.31	6.82	.95	.79	.53	.95	.82	.61
4	5.86	6.16	6.59	.98	.83	.63	.96	.87	.69

500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	5.96	7,41	8.12	1.12	1.15	.67	1.00	.97	.71
2	5.85	6.83	7.86	1.17	1.14	.93	1.00	1.00	.94
3	5.77	6.48	7.43	1.16	1.14	1.04	1.00	1.00	.99
4	5.74	6.25	7.03	1.17	1.12	1.10	1.00	1.00	1.00

750 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST		ZND	3RD		2ND	3RD		2ND	
		7.44	8.57	1.18	1.23	.94	1.00	1.00	.99
		6.78					1.00	1.00	1.00
3		6.41					1.00	1.00	1.00
4		6.18					1.00	1.00	1.00

1000 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	151	2ND	3RD
1	5.78	7.43	8.61	1.21	1.27	.97	1.00	1.00	1.00
2	5.66	6.74	7.95	1.27	1.25	1.03	1.00	1.00	1.00
3	5.58	6.37	7.40	1.27	1.23	1.12	1.00	1.00	1.00
Ž.	5.54	6.10	6.96	1.26	1.24	1.19	1.00	1.00	1.00

	E(DIST)				IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND		151		3RD		2ND	
1	5.64	7.44	8.68	1.33	1.35	1.03	1.00	1.00	1.00
2	5.51	6.70	7.99	1.39	1.31	1.10	1.00	1.00	1.00
3	5.41	6.29	7.38	1.38	1.34	1.20		1.00	
4	5.36	6.01	6.94	1.41	1.32	1.25	1.00	1.00	1.00

TABLE D-15 (75 DEG, 60 DEG, 3 HRS) (continued)

2000 KILOMETERS

	1	SIG(DIST)				PROB(EVENT)			
CONST	151	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	5.55	7.48	8.81	1.42	1.43	1.07	1.00	1.00	1.00
2	5.40	6.70	8.06	1.50	1.41	1.16	1.00	1.00	1.00
3	5.29	6.24	7.42	1.50	1.44	1.29	1.00	1.00	1.00
4	5.25	5.94	6.96	1.51	1.43	1.33	1.00	1.00	1.00

2500 KILOMETERS

	E(DIST)			Ş	IG(DIS	T)	PROB(EVENT)		
CONST	151	2ND	3RD	1\$1	2ND	3RD	1ST	2ND	3RD
1	5.49	7.52	8.93	1.54	1.50	1.12	1.00	1.00	1.00
2	5.34	6.72	8.14	1.62	1.50	1.20	1.00	1.00	1.00
3	5.24	6.23	7.48	1.62	1.53	1.35	1.00	1.00	1.00
4	5.17	5.91	6.99	1.62	1.53	1.40	1.00	1.00	1.00

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	151	2ND	3RD	1ST	ZND	3RD
1	5.48	7.58	9.00	1.58	1.54	1.15	1.00	1.00	1.00
2	5.32	6.74	8.21	1.66	1.53	1.25	1.00	1.00	1.00
3	5.22	6.25	7.53	1.66	1.57	1.38	1.00	1.00	1,00
4	5.15	5.92	7.02	1.67	1.58	1.43	1.00	1.00	1,00

TABLE D-16 (75 DEG, 90 DEG, 3 HRS)

O KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	5.44	5.92	6.15	1.11	1.01	.95	.99	.79	.59
2	5.32	5.82	6.04	1.08	1.06	.98	1.00	.90	.68
3	5.29	5.67	5.94	1.07	1.08	1.02	1.00	.95	.78
4	5.23	5.65	5.82	1.06	1.10	1.04	1.00	.99	.86

500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1st	2ND	3RD	1ST	2ND	3RD
1	5.15	6.23	7.05	1.27	1.52	1.61	1.00	.99	.98
2	5.02	5.79	6.66	1.24	1.38	1.56	1.00	1.00	1.00
3	4.96	5.51	6.24	1.22	1.34	1.46	1.00	1.00	1.00
4	4.91	5.39	5.90	1.21	1.28	1.42	1.00	1.00	1.00

750 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1st	2ND	3RD	1ST	2ND	3RD
1	5.01	6.19	7.05	1.35	1.58	1.70	1.00	1.00	1.00
2	4.89	5.70	6.62	1.30	1.45	1.63	1.00	1.00	1.00
3	4.82	5.40	6.18	1.27	1.41	1.52	1.00	1.00	1.00
4	4.76	5.25	5.84	1.27	1.37	1.45	1.00	1.00	1.00

1000 KILOMETERS

	1	E(DIST)			1G(D1S	T)	PROB(EVENT)		
CONST	157	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	4.87	6.10	7.01	1,44	1.68	1.76	1.00	1.00	1.00
2	4.73	5.57	6.56	1.39	1.54	1.70	1.00	1.00	1.00
3	4.64	5.27	6.10	1.35	1.48	1.61	1.00	1.00	1.00
4	4.59	5.14	5.70	1.36	1.44	1.58	1.00	1.00	1.00

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	4.60	5.99	6.97	1.59	1.81	1.89	1.00	1.00	1.00
2	4.46	5.42	6.47	1.53	1.68	1.85	1.00	1.00	1.00
3	4.40	5.06	6.00	1.52	1.63	1.72	1.00	1.00	1.00
4	4.31	4.90	5.59	1.51	1.60	1.69	1.00	1.00	1.00

TABLE D-16 (75 DEG, 90 DEG, 3 HRS) (continued)

2000 KILOMETERS

	E(DIST)			S	IG(DIS	(1)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	SND	3RD	1ST	2ND	3RD
1	4.40	5.89	6.97	1,75	1.95	2.04	1.00	1.00	1.00
2	4.22	5.28	6.43	1,71	1.82	1.98	1.00	1.00	1.00
3	4.16	4.90	5.89	1.68	1.78	1.88	1.00	1.00	1.00
4	4.06	4.74	5.44	1.69	1.74	1.83	1.00	1.00	1.00

2500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	SND	3RD
1	4.22	5.87	6.99	1.90	2.10	2.15	1.00	1.00	1.00
2	4.03	5.20	6.43	1.87	1.95	2.11	1.00	1.00	1.00
3	3.95	4.78	5.87	1.84	1.94	1.98	1.00	1.00	1.00
4	3.86	4.59	5.38	1.85	1.87	2.00	1.00	1.00	1.00

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	ZND	3RD	157	2ND	3RD	157	ZND	3RD
1	4.22	5.87	6.99	1.90	2.10	2.15	1.00	1.00	1.00
2	3.95	5.17	6.44	1.95	2.02	2.16	1.00	1.00	1.00
3	3.86	4.74	5.86	1.94	2.00	2.07	1.00	1.00	1.00
4	3.76	4.56	5.35	1.94	1.93	2.05	1.00	1.00	1.00

TABLE D-17 (90 DEG, 60 DEG, 6 HRS)

O KILOMETERS

	E(DIST)			SIG(DIST)			PROB(EVENT)		
CONST		2ND			2ND			2ND	3RD
1	12.87	12.87	12.87	1.01	1.01	1.01	.98	.98	.98
2	12.87	12.87	12.87	1.01	1.01	1.01	.98	.98	.98
3	12.87	12.87	12.87	1.01	1.01	1.01	.98	.98	.98
4	12.87	12.87	12.87	1.01	1.01	1.01	.98	.98	.98

500 KILOMETERS

E(DIST)				\$	IG(DIS	T)	PROB(EVENT)		
CONST		2ND						2ND	
1	12.72	12.72	12.72	1.19	1.19	1.19	1.00	1.00	1.00
2	12.72	12.72	12.72	1.19	1.19	1.19	1.00	1.00	1.00
3	12.72	12.72	12.72	1.19	1.19	1.19	1.00	1.00	1.00
4	12.72	12.72	12.72	1.19	1.19	1.19	1.00	1.00	1.00

750 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1\$1	2ND	3RD	151	2ND	3RD
1	12.63	12.63	12.63	1.22	1.22	1.22	1.00	1.00	1.00
2	12.63	12.63	12.63	1.22	1.22	1.22	1.00	1.00	1.00
3	12.63	12.63	12.63	1.22	1.22	1.22	1.00	1.00	1.00
4	12.63	12.63	12.63	1.22	1.22	1.22	1.00	1.00	1.00

1000 KILOMETERS

	E(DIST)			SIG(DIST)			PROB(EVENT)		
CONST		2ND	3RD			3RD		2ND	3RD
1	12.54	12.54	12.54	1.24	1.24	1.24	1.00	1.00	1.00
ż	12.54	12.54	12.54	1.24	1.24	1.24	1.00	1.00	1.00
3	12.54	12.54	12.54	1.24	1.24	1.24	1.00	1.00	1.00
4	12 54	12 54	12.54	1.24	1.24	1.24	1.00	1.00	1.00

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	12.34	12.34	12.34	1.38	1.38	1.38	1.00	1.00	1.00
2	12.34	12.34	12.34	1.38	1.38	1.38	1.00	1.00	1.00
3	12.34	12.34	12.34	1.38	1.38	1.38	1.00	1.00	1.00
4	12.34	12.34	12.34	1.38	1.38	1.38	1.00	1.00	1.00

TABLE D-17 (90 DEG, 60 DEG, 6 HRS) (continued)

2000 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	151	2ND	3RD	1ST	2ND	3RD
1	12.16	12.16	12.16	1.49	1.49	1.49	1.00	1.00	1.00
2	12.16	12.16	12.16	1.49	1.49	1.49	1.00	1.00	1.00
3	12.16	12.16	12.16	1.4ዮ	1.49	1.49	1.00	1.00	1.00
4	12.16	12.16	12.16	1.49	1.49	1.49	1.00	1.00	1.00

2500 KILOMETERS

		E(DIST)		S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	12.01	12.01	12.01	1.57	1.57	1.57	1.00	1.00	1.00
2	12.01	12.01	12.01	1.57	1,57	1.57	1.00	1.00	1.00
3	12.01	12.01	12.01	1.57	1.57	1.57	1.00	1.00	1.00
4	12.01	12.01	12.01	1.57	1.57	1.57	1.00	1.00	1.00

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
	1ST	ZND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	11.94	11.94	11.94	1.64	1.64	1.64	1.00	1.00	1.00
2	11.94	11.94	11.94	1.64	1.64	1.64	1.00	1.00	1.00
3	11.94	11.94	11.94	1.64	1.64	1.64	1.00	1.00	1.00
4	11.94	11.94	11.94	1.64	1.64	1.64	1.00	1.00	1.00

TABLE D-18 (90 DEG, 90 DEG, 6 HRS)

O KILOMETERS

E(DIST)				S	SIG(DIST)			PROB(EVENT)		
CONST		ZND			2ND			2ND		
1	11.97	11.97	11.97	1.33	1.33	1.33	1.00	1.00	1.00	
2	11.97	11.97	11.97	1.33	1.33	1.33	1.00	1.00	1.00	
3	11.97	11.97	11.97	1.33	1.33	1.33	1.00	1.00	1.00	
4	12.08	12.08	12.08	1.35	1.35	1.35	1.00	1.00	1.00	

500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	ZND	3RD	157	2ND	3RD
1	11.65	11.65	11.65	1.47	1.47	1.47	1.00	1.00	1.00
		11.65					1.00	1.00	1.00
3	11.65	11.65	11.65	1.47	1.47	1.47	1.00	1.00	1.00
4	11.65	11.65	11.65	1.47	1.47	1.47	1.00	1.00	1.00

750 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST		2ND			2ND			2ND	
1	11.50	11.50	11.50	1.52	1.52	1.52	1.00	1.00	1.00
2	11.50	11.50	11.50	1.52	1.52	1.52	1.00	1.00	1.00
3	11.50	11.50	11.50	1.52	1.52	1.52	1.00	1.00	1.00
		11.50					1.00	1.00	1.00

1000 KILOMETERS

E(DIST)				S	SIG(DIST)			PROB(EVENT)		
CONST		2ND		151				2ND		
1	11.34	11.34	11,34	1.61	1.61	1.61	1.00	1.00	1.00	
2	11.34	11.34	11.34	1.61	1.61	1.61	1.00	1.00	1.00	
3	11.34	11.34	11.34	1.61	1.61	1.61	1.00	1.00	1.00	
4	11.34	11.34	11.34	1.61	1.61	1.61	1.00	1.00	1.00	

E(DIST)				s	SIG(DIST)			PROB(EVENT)		
CONST		2ND		1ST				2ND		
1	11.03	11.03	11.03	1.76	1.76	1.76	1.00	1.00	1.00	
		11.03					1.00	1.00	1.00	
3	11.03	11.03	11.03	1.76	1.76	1.76	1.00	1.00	1.00	
		11 03					1.00	1.00	1.00	

TABLE D-18 (90 DEG, 90 DEG, 6 HRS) (continued)

2000 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	10.74	10.74	10.74	1.91	1.91	1.91	1.00	1.00	1.00
2	10.74	10.74	10.74	1.91	1.91	1.91	1.00	1.00	1.00
3	10.74	10.74	10.74	1.91	1.91	1.91	1.00	1.00	1.00
4	10.74	10.74	10.74	1.91	1.91	1.91	1.00	1.00	1.00

2500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)			
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD	
1	10.47	10.47	10.47	2.07	2.07	2.07	1.00	1.00	1.00	
2	10.47	10.47	10.47	2.07	2.07	2.07	1.00	1.00	1.00	
3	10.47	10.47	10.47	2.07	2.07	2.07	1.00	1.00	1.00	
4	10.47	10.47	10.47	2.07	2.07	2.07	1.00	1.00	1.00	

	E(DIST)				IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	157	2ND	3RD	1ST	2ND	3RD
1	10.33	10.33	10.33	2.15	2.15	2.15	1.00	1.00	1.00
2	10.33	10.33	10.33	2.15	2.15	2.15	1.00	1.00	1.00
3	10.33	10.33	10.33	2.15	2.15	2.15	1.00	1.00	1.00
4	10.33	10.33	10.33	2.15	2.15	2.15	1.00	1.00	1.00

TABLE D-19 (90 DEG, 60 DEG, 3 HRS)

0 KILOMETERS

	E(DIST)			S	IG(DIS	Γ)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	2ND	3RD
1	6.65	6.65	6.65	.60	.60	.60	.65	.65	.65
2	6.65	6.65	6.65	.60	.60	.60	.65	.65	.65
3	6.65	6.65	6.65	.60	.60	.60	.65	.65	.65
4	6.65	6.65	6.65	.60	.60	.60	.65	.65	.65

500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	157	2ND	3RD
1	7.10	7.10	7.10	1.13	1.13	1.13	.92	.92	.92
2	7.10	7.10	7.10	1.13	1.13	1.13	.92	.92	.92
3	7.10	7.10	7.10	1.13	1.13	1.13	.92	.92	.92
4	7.10	7.10	7.10	1.13	1.13	1.13	.92	.92	.92

750 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	157	2ND	3RD
1	7.27	7.27	7.27	1.31	1.31	1.31	1.00	1.00	1.00
2	7.27	7.27	7.27	1.31	1.31	1.31	1.00	1.00	1.00
3	7.27	7.27	7.27	1.31	1.31	1.31	1.00	1.00	1.00
4	7.27	7.27	7.27	1.31	1.31	1.31	1.00	1.00	1.00

1000 KILOMETERS

E(DIS1				SIG(DIST)			PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	7.28	7.28	7.28	1.34	1.34	1.34	1.00	1.00	1.00
2	7.28	7.28	7.28	1.34	1.34	1.34	1.00	1.00	1.00
3	7.28	7.28	7.28	1.34	1.34	1.34	1.00	1.00	1.00
4	7.28	7.28	7.28	1.34	1.34	1.34	1.00	1.00	1.00

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	157	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	7.22	7.22	7.22	1.45	1.45	1.45	1.00	1.00	1.00
2	7.22	7.22	7.22	1.45	1.45	1.45	1.00	1.00	1.00
3	7.22	7,22	7.22	1.45	1.45	1.45	1.00	1.00	1.00
4	7.22	7.22	7.22	1.45	1.45	1.45	1.00	1.00	1.00

TABLE D-19 (90 DEG, 60 DEG, 3 HRS) (continued)

2000 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	7.23	7.23	7.23	1.58	1.58	1.58	1.00	1.00	1.00
2	7.23	7.23	7.23	1.58	1.58	1.58	1.00	1.00	1.00
3	7.23	7.23	7.23	1.58	1.58	1.58	1.00	1.00	1.00
4	7.23	7.23	7.23	1.58	1.58	1.58	1.00	1.00	1.00

2500 KILOMETERS

	E(DIST)			SIG(DIST)			PROB(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	151	2ND	3RD
1	7.28	7.28	7.28	1.61	1.61	1.61	1.00	1.00	1.00
2	7,28	7.28	7.28	1.61	1.61	1.61	1.00	1.00	1.00
3	7.28	7.28	7.28	1.61	1.61	1.61	1.00	1.00	1.00
4	7.28	7.28	7.28	1.61	1.61	1.61	1.00	1.00	1.00

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	151	2ND	3RD
1	7.38	7.38	7.38	1.66	1.66	1.66	1.00	1.00	1.00
2	7.38	7.38	7.38	1.66	1.66	1.66	1.00	1.00	1.00
3	7.38	7.38	7.38	1.66	1.66	1.66	1.00	1.00	1.00
4	7.38	7.38	7.38	1.66	1.66	1.66	1.00	1.00	1.00

TABLE D-20 (90 DEG, 90 DEG, 3 HRS)

0 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	1ST	2ND	3RD
1	5.66	5.66	5.66	1.18	1.18	1.18	.82	.82	.82
2	5.66	5.66	5.66	1.18	1.18	1.18	.82	.82	.82
3	5.66	5.66	5.66	1.18	1.18	1.18	.82	.82	.82
4	5.66	5.66	5.66	1.18	1.18	1.18	.82	.82	.82

500 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST		2ND	3RD		2ND	3RD		2ND	3RD
1	5.98	5.98	5.98	1.78	1.78	1.78	1.00	1.00	1.00
ż	5.98	5.98	5.98	1.78	1.78	1.78	1.00	1.00	1.00
3	5.98		5.98				1.00	1.00	1.00
_		5.98	5.98	1.78	1.78	1.78	1.00	1.00	1.00

750 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	1ST	2ND	3RD
1	5.88	5.88	5.88	1.86	1.86	1.86	1.00	1.00	1.00
2	5.88	5.88	5.88	1.86	1.86	1.86	1.00	1.00	1.00
3	5.88	5.88	5.88	1.86	1.86	1.86	1.00	1.00	1.00
4	5.88	5.88	5.88	1.86	1.86	1.86	1.00	1.00	1.00

1000 KILOMETERS

E(DIST)				S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	1ST	2ND	3RD
1	5.80	5.80	5.80	1.95	1.95	1.95	1.00	1.00	1.00
ż	5.80	5.80	5.80	1.95	1.95	1.95	1.00	1.00	1.00
3	5.80	5.80	5.80	1.95	1.95	1.95	1.00	1.00	1.00
4	5.80	5.80	5.80	1.95	1.95	1.95	1.00	1.00	1.00

E(DIST)				s	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	1ST 2ND		157	2ND	3RD	1ST	2ND	3RD
1	5.58	5.58	5,58	2.16	2.16	2.16	1.00	1.00	1.00
2	5.58	5.58	5.58	2.16	2.16	2.16	1.00	1.00	1.00
3	5.58	5.58	5.58	2.16	2.16	2.16	1.00	1.00	1.00
4	5.58	5.58	5.58	2.16	2.16	2.16	1.00	1.00	1.00

TABLE D-20 (90 DEG, 90 DEG, 3 HRS) (continued)

2000 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROS(EVENT)		
CONST	1ST	2ND	3RD	151	2ND	3RD	1\$7	2ND	3RD
1	5.47	5.47	5.47	2.35	2.35	2.35	1.00	1.00	1.00
2	5.47	5.47	5.47	2.35	2.35	2.35	1.00	1.00	1.00
3	5.47	5.47	5.47	2.35	2.35	2.35	1.00	1.00	1.00
4	5.47	5.47	5.47	2.35	2.35	2.35	1.00	1.00	1.00

2500 KILOMETERS

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	157	2ND	3RD	151	2ND	3RD
1	5.37	5.37	5.37	2.55	2.55	2.55	1.00	1.00	1.00
2	5.37	5.37	5.37	2.55	2.55	2.55	1.00	1.00	1.00
3	5.37	5.37	5.37	2.55	2.55	2.55	1.00	1.00	1.00
4	5.37	5.37	5.37	2.55	2.55	2.55	1.00	1.00	1.00

	E(DIST)			S	IG(DIS	T)	PROB(EVENT)		
CONST	1ST	2ND	3RD	1ST	2ND	3RD	157	SNO	3RD
1	5.34	5.34	5.34	2.63	2.63	2.63	1.00	1.00	1.00
2	5.34	5.34	5.34	2.63	2.63	2.63	1.00	1,00	1.00
3	5.34	5.34	5.34	2.63	2.63	2.63	1.00	1.00	1,00
4	5.34	5.34	5.34	2.63	2.63	2.63	1.00	1.00	1.00