Introduction to Mathematical Analysis Homework 6 Due October 17 (Friday), 2025 Please submit your homework online in PDF format.

1. (20 pts)

Definition (Totally ordered set). A totally ordered set (or linearly ordered set) is a pair (X, \leq) consisting of a nonempty set X together with a binary relation \leq on X satisfying the following properties:

- 1. Reflexivity: For all $x \in X$, $x \le x$.
- 2. **Antisymmetry:** For all $x, y \in X$, if $x \leq y$ and $y \leq x$, then x = y.
- 3. **Transitivity:** For all $x, y, z \in X$, if $x \le y$ and $y \le z$, then $x \le z$.
- 4. Totality (or Comparability): For all $x, y \in X$, either $x \leq y$ or $y \leq x$.

A relation \leq satisfying only (1)–(3) is called a *partial order*. If, in addition, (4) holds, the order is said to be *total*, meaning that any two elements of X can be compared.

Definition (Hausdorff space). A topological space (X, \mathcal{F}) is called a *Hausdorff space* (or T_2 space) if for every pair of distinct points $x, y \in X$ there exist neighborhoods $U, V \in \mathcal{F}$ such that

$$x \in U$$
, $y \in V$, and $U \cap V = \emptyset$.

- (a) Given any totally ordered set X with order relation \leq , declare a set $V \subseteq X$ to be open if for every $x \in V$ there exists a set I, which is an interval $\{y \in X : a < y < b\}$ for some $a, b \in X$, or $\{y \in X : a < y\}$ for some $a \in X$, or $\{y \in X : y < b\}$ for some $b \in X$, or the whole space X, which contains x and is contained in V. Let \mathcal{F} be the set of all open subsets of X. Show that (X, \mathcal{F}) is a topology (this is the *order topology* on the totally ordered set (X, \leq) which is Hausdorff in the sense of Definition 2.5.4-2 or the definition above).
- (b) Show that on the real line \mathbb{R} (with the standard ordering \leq), the order topology matches the standard topology (i.e., the topology arising from the standard metric).
- (c) If instead one defines V to be open if the extended real line $\mathbb{R} \cup \{\pm \infty\}$ has an open set with boundary $\{\pm \infty\}$, then (X, \mathcal{F}) is a sequence of numbers in \mathbb{R} (and hence in \mathbb{R}), show that $x_n \to +\infty$ if and only if $\inf_{n\geq N} x_n \to +\infty$, and $x_n \to -\infty$ if and only if $\sup_{n\geq N} x_n \to -\infty$.

2. (15 pts)

Definition (Metrizable space). A topological space (X, \mathcal{F}) is said to be *metrizable* if there exists a metric $d: X \times X \to [0, \infty)$ such that the topology \mathcal{F} coincides with the topology \mathcal{F}_d induced by d. That is,

$$\mathcal{F} = \mathcal{F}_d := \{ U \subseteq X : \forall x \in U, \exists \varepsilon > 0 \text{ such that } B_d(x, \varepsilon) \subseteq U \},$$

where $B_d(x,\varepsilon) := \{ y \in X : d(x,y) < \varepsilon \}$ denotes the open ball centered at x with radius ε .

If no such metric d exists, then (X, \mathcal{F}) is said to be *not metrizable*. In other words, its topology cannot arise from any metric on X.

- (a) Let X be an uncountable set, and let \mathcal{F} be the collection of all subsets E in X which are either empty or cofinite (which means that $X \setminus E$ is finite). Show that (X, \mathcal{F}) is a topology (this is called the *cofinite topology* on X) which is not Hausdorff and is compact.
- (b) Show that if $\{V_i : i \in I\}$ is any countable collection of open sets containing x, then $\bigcap_i V_i \neq \emptyset$. Use this to show that the cofinite topology cannot be derived from any metric (i.e., (X, \mathcal{F}) is not metrizable). (Hint: what is the set $\bigcap_{n=1}^{\infty} B(x, 1/n)$ equal to in a metric space?)
- 3. (15 pts) Let (X, \mathcal{F}) be a compact topological space. Assume that this space is first countable, which means that for every $x \in X$ there exist countable collections of open sets V_1, V_2, \ldots of neighborhoods of x, such that every neighborhood of x contains one of the V_n . Show that every sequence in X has a convergent subsequence (see Exercise 1.5.11).

- 4. (15 pts) Let (X, \mathcal{F}) be a compact topological space and (Y, \mathcal{G}) be a Hausdorff topological space. If $f: X \to Y$ is continuous, then f is a *closed map*; i.e., for every closed subset $F \subseteq X$, the image f(F) is closed in Y.
- 5. (20 pts) Let $\{f_n\}$ be a sequence of continuous functions real-valued defined on a compact metric space S and assume that $\{f_n\}$ converges pointwise on S to a limit function f. Prove that $f_n \to f$ uniformly on S if, and only if, the following two conditions hold:
 - (i) The limit function f is continuous on S.
 - (ii) For every $\varepsilon > 0$, there exist m > 0 and $\delta > 0$ such that n > m and

$$|f_k(x) - f(x)| < \delta \implies |f_{k+n}(x) - f(x)| < \varepsilon$$

for all $x \in S$ and all $k = 1, 2, \ldots$

Hint. To prove the sufficiency of (i) and (ii), show that for each $x_0 \in S$ there is a neighborhood $B(x_0, R)$ and an integer k (depending on x_0) such that

$$|f_k(x) - f(x)| < \delta$$
 if $x \in B(x_0, R)$.

By compactness, a finite set of integers, say $A = \{k_1, \ldots, k_r\}$, has the property that for each $x \in S$, some $k \in A$ satisfies $|f_k(x) - f(x)| < \delta$. Uniform convergence is an easy consequence of this fact.

6. (15 pts) The purpose of this exercise is to demonstrate a concrete relationship between continuity and pointwise convergence, and between uniform continuity and uniform convergence.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function. For any $a \in \mathbb{R}$, let $f_a: \mathbb{R} \to \mathbb{R}$ be the shifted function defined by

$$f_a(x) := f(x - a).$$

- (a) Show that f is continuous if and only if, whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to zero, the shifted functions f_{a_n} converge pointwise to f.
- (b) Show that f is uniformly continuous if and only if, whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to zero, the shifted functions f_{a_n} converge uniformly to f.

You can do the following problems to practice. You don't have to submit the following problems.

1. Let (X, \mathcal{F}) be a topological space and let B be a subsets of X. Prove the following set equality:

$$\overline{X \backslash B} = X \backslash Int(B).$$

- 2. Let (X, \mathcal{F}) be a topological space and (Y, \mathcal{G}) be a Hausdorff topological space. Suppose $f, g: X \to Y$ are continuous maps. Show that the set $Z = \{x \in X | f(x) = g(x)\}$ is closed in X. Give a counterexample if Y is not Hausdorff. Hint: Show $X \setminus Z$ is open.
- 3. Suppose X is a topological space, and for every $p \in X$ there exists a continuous function $f: X \to \mathbb{R}$ such that $f^{pre}(0) = \{p\}$. Show that X is Hausdorff.
- 4. Define two sequences $\{f_n\}$ and $\{g_n\}$ as follows:

$$f_n(x) = x\left(1 + \frac{1}{n}\right), \quad x \in \mathbb{R}, \quad n = 1, 2, \dots$$

and

$$g_n(x) = \begin{cases} \frac{1}{n}, & \text{if } x = 0 \text{ or } x \text{ is irrational,} \\ b + \frac{1}{n}, & \text{if } x \text{ is rational, say } x = \frac{a}{b}, \ b > 0. \end{cases}$$

Let $h_n(x) = f_n(x)g_n(x)$.

- (a) Prove that both $\{f_n\}$ and $\{g_n\}$ converge uniformly on every bounded interval.
- (b) Prove that $\{h_n\}$ does not converge uniformly on any bounded interval.
- 5. Let (X, d_X) be a metric space, and for every integer $n \ge 1$, let $f_n : X \to \mathbb{R}$ be a real-valued function. Suppose that f_n converges pointwise to another function $f : X \to \mathbb{R}$ on X (in this question we give \mathbb{R} the standard metric d(x, y) = |x - y|).

Let $h: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that the functions $h \circ f_n$ converge pointwise to $h \circ f$ on X, where $h \circ f_n: X \to \mathbb{R}$ is defined by $h \circ f_n(x) := h(f_n(x))$, and similarly for $h \circ f$.

6. (a) Use Problem 5 in the first part to prove the following theorem of Dini:

Dini's Theorem. If $\{f_n\}$ is a sequence of real-valued continuous functions converging pointwise to a continuous limit function f on a compact set S in a metric space, and if

$$f_n(x) \ge f_{n+1}(x)$$
 for each $x \in S$ and every $n = 1, 2, \dots$

then $f_n \to f$ uniformly on S.

(b) Let

$$f_n(x) = \frac{1}{nx+1}, \quad 0 < x < 1, \quad n = 1, 2, \dots$$

Prove that $\{f_n\}$ converges pointwise but not uniformly on (0,1).

(c) Use the sequence in part (b) to show that compactness of S is essential in Dini's theorem.