线性代数 homework (第三周)

PB20000113 孔浩宇

April 13, 2022

1 周二

1.1 习题五

17. 设向量组 α_1,\ldots,α_r 线性无关,且 α_1,\ldots,α_r 可以由向量组 β_1,\ldots,β_r 线性表示,则 β_1,\ldots,β_r 也线性无 关.

Proof.

$$r = \operatorname{rank}(\alpha_1, \dots, \alpha_r) \leqslant \operatorname{rank}(\beta_1, \dots, \beta_r) \leqslant r \Rightarrow \operatorname{rank}(\beta_1, \dots, \beta_r) = r.$$

19. 求下列向量组的极大无关组与秩:

(3)
$$\overrightarrow{a_1} = (0, 1, 2, 3), \quad \overrightarrow{a_2} = (1, 2, 3, 4), \quad \overrightarrow{a_3} = (3, 4, 5, 6), \quad \overrightarrow{a_4} = (4, 3, 2, 1), \quad \overrightarrow{a_5} = (6, 5, 4, 3).$$

解:记极大无关组为S.

- (a) $S_1 = \{\alpha_1\}.$
- (b) 假设存在 x 使得 $x \cdot \alpha_1 = \alpha_2$, 则 $0 \cdot x = 1$, 显然无解, 故取 $S_2 = S_1 \cup \{\alpha_2\} = \{\alpha_1, \alpha_2\}$.
- (c) 假设存在 x, y 使得 $x \cdot \alpha_1 + y \cdot \alpha_2 = \alpha_3$, 则有

$$\begin{cases} y = 3, \\ x + 2y = 4, \\ 2x + 3y = 5, \end{cases} \Rightarrow \begin{cases} x = -2 \\ y = 3. \end{cases} \Rightarrow S_3 = S_2 = \{\alpha_1, \alpha_2\}.$$

(d) 假设存在 x, y 使得 $x \cdot \alpha_1 + y \cdot \alpha_2 = \alpha_4$, 则有

$$\begin{cases} y = 4, \\ x + 2y = 3, \\ 2x + 3y = 2, \end{cases} \Rightarrow \begin{cases} x = -5 \\ y = 4. \end{cases} \Rightarrow S_4 = S_3 = \{\alpha_1, \alpha_2\}.$$

$$3x + 4y = 1.$$

(e) 假设存在 x, y 使得 $x \cdot \alpha_1 + y \cdot \alpha_2 = \alpha_5$, 则有

$$\begin{cases} y = 6, \\ x + 2y = 5, \\ 2x + 3y = 4, \end{cases} \Rightarrow \begin{cases} x = -7 \\ y = 6. \end{cases} \Rightarrow S_5 = S_4 = \{\alpha_1, \alpha_2\}.$$

综上, 极大无关组 $S = \{\alpha_1, \alpha_2\}$, $\operatorname{rank}(\alpha_1, \dots, \alpha_6) = 2$.

22. 设向量组 $\alpha_1, \ldots, \alpha_m$ 的秩为 r, 则其中任何 r 个线性无关的向量构成 $\alpha_1, \ldots, \alpha_m$ 的极大无关组.

Proof. 设有任何 r 个线性无关的向量 $\alpha_{i1}, \ldots, \alpha_{ir}$ 构成一个向量组 $S_1, \forall \alpha_j \notin S_1, S_2 = S_1 \cup \{\alpha_j\}$. $r+1 > r = \operatorname{rank}(\alpha_1, \ldots, \alpha_m) \Rightarrow S_2$ 线性相关, 又 S_1 线性无关 $\Rightarrow S_1$ 构成 $\alpha_1, \ldots, \alpha_m$ 的极大无关组.

23. 设向量组 α_1,\dots,α_m 的秩为 r, 如果 α_1,\dots,α_m 可以由它的 r 个向量线性表示, 则这 r 个向量构成 α_1,\dots,α_m 的极大无关组.

Proof. 将这 r 个向量记为 $\alpha_{i1}, \ldots, \alpha_{ir}$.

$$r = \operatorname{rank}(\alpha_1, \dots, \alpha_m) \leqslant \operatorname{rank}(\alpha_{i1}, \dots, \alpha_{ir}) \leqslant r \Rightarrow \operatorname{rank}(\alpha_{i1}, \dots, \alpha_{ir}) = r$$

$$\underline{\text{T22 结论}}_{\text{rank}}(\alpha_{i1}, \dots, \alpha_{ir}) \text{构成}\alpha_1, \dots, \alpha_m \text{的极大无关组}.$$

2 周四

2.1 习题五

2