Contributeurs

MAS-II: Modern Actuarial Statistics II

aut., cre. Alec James van Rassel

Référence (manuels, YouTube, notes de cours) En ordre alphabétique :

Contributeurs

Contents

A Introduction to Credibility	3
Basic Framework of Credibility	:
Full Credibility	•
Claim Frequency	٤
Aggregate Loss	4
Partial Credibility	4
Bühlmann Credibility	Ę
Basic framework	ţ
Variance components	Ę
Credibility factors	ţ
Bayesian Credibility	6
Basic framework	(
Premium	(
Conjugate distributions	(
Tronparametric empirical Dayes inclined	,
B Linear Mixed Models	7
C Bayesian Analysis and Markov Chain Monte Carlo	8
D Statistical Learning	ę
K-Nearest Neighbors	ę
Decision Trees	10
Principal Components Analysis (PCA)	11
Clustering	12

A

Introduction to Credibility

Basic Framework of Credibility

Context

The *limitation fluctuation credibility* approach, or *classical credibility* approach, calculates an updated prediction (U) of the **loss measure** as a weighted (Z) average of recent claim experience (D) and a rate (M) specified in the manual. Thus, we calculate the *premium* paid by the *risk group* as U = ZD + (1-Z)M.

Notation

M Predicted loss based on the "manual".

D Observed losses based on the recent experience of the risk group.

Z Weight assigned to the recent experience D called the *credibility factor* with $Z \in [0,1]$.

U Updated prediction of the premium.

Terminology

Risk group block of insurance policies, covered for a period of time upon payment of a *premium*.

Claim frequency The number of claims denoted N.

Claim severity The amount of the i^{th} claim denoted X_i .

Aggregate loss The total loss denoted S where $S = X_1 + X_2 + ... + X_N$.

Pure premium The pure premium denoted P where P = S/E with E denoting the number of exposure units.

Exam tips

Typical questions about this involve being given 3 of M, D, Z, and U then finding the missing one.

Context

With $\min\{D, M\} \le U \le \max\{D, M\}$, we can see that the credibility factor determines the relative importance of the claim experience of the risk group D relative to the manual rate M.

If Z=1, we obtain $\overline{Full\ Credibility}$ where the predicted premium depends only on the data $\overline{(U=D)}$. It follows that with Z<1, we obtain $Partial\ Credibility$ as the weighted average of both D and M.

Full Credibility

Contexte

The classical credibility approach determines the $minimum\ data\ size$ required for the experience data (D) to be given $full\ credibility$. The minimum data size, or $standard\ for\ full\ credibility$, depends on the loss measure.

Claim Frequency

The claim frequency random variable N has mean μ_N and variance σ_N^2 . If we assume $N \approx \mathcal{N}(\mu_N, \sigma_N^2)$, then the probability of observing claim frequency

within
$$k$$
 of the mean is $\Pr(\mu_N - k\mu_N \le N \le \mu_N + k\mu_N) = 2\Phi\left(\frac{k\mu_N}{\sigma_N}\right) - 1$.

We often assume that the claim frequency $N \sim \text{Pois}(\lambda_N)$ and then apply the normal approximation to find the standard for full credibility for claim frequency λ_F . First, we impose that the probability of the claim being with k of the mean must

be at least $1 - \alpha$. Then, we rewrite $\frac{k\mu_N}{\sigma_N} = k\sqrt{\lambda_N}$ and set $\lambda_N \ge \left(\frac{z_{1-\alpha/2}}{k}\right)^2$ where

$$\lambda_F = \left(\frac{z_{1-\alpha/2}}{k}\right)^2$$

Claim Severity

We assume that the loss amounts $X_1, X_2, ..., X_N$ are independent and identically distributed random variables with mean μ_X and variance σ_X^2 . Full credibility is

attributed to
$$D = \bar{X}$$
 if $2\Phi\left(\frac{k\mu_X}{\sigma_N/\sqrt{N}}\right) - 1 \ge 1 - \alpha$

Similarly to claim frequency, we apply the normal approximation with

$$\bar{X} \approx \mathcal{N}\left(\mu_X, \sigma_X^2/N\right)$$
. Then, we find $N \geq \left(\frac{z_{1-\alpha/2}}{k}\right)^2 \cdot \left(\frac{\sigma_X}{\mu_X}\right)^2 = \lambda_F C V_X^2$ where the

standard for full credibility for claim severity is $\lambda_F CV_X^2$.

Aggregate Loss

For the aggregate loss $S = X_1 + X_2 + ... + X_N$, we have $\mu_S = \mu_N \mu_X$ and

$$\sigma_S^2 = \mu_N \sigma_X^2 + \mu_X^2 \sigma_N^2 \ .$$

With the same normality assumptions for the Poisson distributed N, we find

$$\lambda_N \geq \left(\frac{z_{1-\alpha/2}}{k}\right)^2 \cdot \left(\frac{\mu_X^2 + \sigma_X^2}{\mu_X^2}\right) = \lambda_F (1 + CV_X^2)$$
 where the **standard for full cred**-

ibility for claim severity is $\lambda_F(1+CV_X^2)$.

Note The conditions are the same for the $\it Pure \ Premium$ as for the aggregate loss.

Partial Credibility

The $\boldsymbol{credibility\ factor}$ for :

Claim Frequency is
$$Z = \sqrt{\frac{\lambda_N}{\lambda_F}}$$

Claim Severity is
$$Z = \sqrt{\frac{N}{\lambda_F C V_X^2}}$$

Aggregate Loss and Pure Premium is
$$Z = \sqrt{\frac{\lambda_N}{\lambda_F(1+CV_X^2)}}$$

Bühlmann Credibility

Basic framework
Variance components

Credibility factors

Bayesian Credibility

Basic framework

Premium

Conjugate distributions

Nonparametric empirical Bayes method

 \mathbf{B}

Linear Mixed Models

 \mathbf{C}

Bayesian Analysis and Markov Chain Monte Carlo

 \mathbf{D}

Statistical Learning

K-Nearest Neighbors

Decision Trees

Principal Components Analysis (PCA)

Clustering