Introduction to Neural Networks

Iván Moreno (ivan@nieveconsulting.com)

Table of Contents

- 1. What is a Neural Network?
- 2. Perceptrons
- 3. Multilayer Perceptrons (MLPs)
- 4. Forward Propagation
- 5. Backpropagation
- 6. Activation Functions
- 7. Conclusion

What is a Neural Network?

- Input Layer: Receives the input data.
- Hidden Layer: Processes inputs through weights and biases.
- Output Layer: Produces the final output.

Perceptrons

- The simplest form of a neural network is the **perceptron**.
- A perceptron *models a single neuron* with multiple inputs and one output (binary classification).
- It takes a weighted sum of inputs, adds a bias, and applies an activation function.

Perceptron Mathematics

$$\hat{y} = \varphi \left(\sum_{i=1}^{n} w_i x_i + b \right)$$

Where:

• $\phi(z)$ is the activation function, and in the case of a perceptron, it is typically the Heaviside step function H(x).

$$H(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

- x_i are the input features,
- w_i are the corresponding weights,
- b is the bias,
- yîs the output of the perceptron.

Why the bias term?

The bias term allows the perceptron to learn a decision boundary that does not pass through the origin (0,0).

(i) Limitations of Perceptrons

Perceptrons can only model linearly separable functions (AND, OR, NOT), but not XOR.

XOR is not linearly separable, requiring a more complex model.

Multilayer Perceptrons (MLPs) can model complex functions, including XOR.

In a MLP, multiple perceptrons are connected in layers, allowing for non-linear transformations. The hidden layer creates a new feature space where the data becomes linearly separable.

Implementing a Perceptron in Python

Write a Python function to implement a basic perceptron:

```
import numpy as np

def perceptron(inputs, weights, bias):
    z = np.dot(inputs, weights) + bias
    return 1 if z > 0 else 0

# Test with sample inputs
inputs = np.array([2, 3])
weights = np.array([0.5, -0.6])
bias = 0.1
output = perceptron(inputs, weights, bias)
output
```

(i)

Why dot product?

The dot product of inputs and weights is a linear combination that captures the relationship between inputs and weights.

$$w \cdot x = w_1 x_1 + w_2 x_2 + ... + w_n x_n$$

Multilayer Perceptrons (MLP)

- Multilayer Perceptrons (MLPs) are a type of neural network with one or more hidden layers.
- Each layer is fully connected to the next.
- MLPs can approximate any continuous function given enough neurons and layers (*universal approximation theorem*), making them powerful function approximators.

Forward Propagation

- Forward propagation calculates the output of the network by passing data from input to output layers.
- For each layer:
 - 1. Compute the weighted sum of inputs.
 - 2. Apply the activation function.

$$a^{(l+1)} = f(W^{(l)}a^{(l)} + b^{(l)})$$

Where:

- a⁽¹⁾ is the activations of the previous layer.
- W^(l) and b^(l) are the weights and biases of the current layer.
- f is the activation function.

Implementing Forward Propagation in Python

Implement forward propagation for an n-layer neural network:

```
import numpy as np

def forward_propagation(X, W, b):

A = X

for i in range(len(W)):

Z = np.dot(W[i], A) + b[i]

A = sigmoid(Z) if i < len(W) - 1 else softmax(Z)

return A</pre>
```

- X: Input data.
- W: List of weight matrices.
- b: List of bias vectors.
- sigmoid: Sigmoid activation function.
- softmax: Softmax activation function.

(i) Why softmax?

The softmax function is used in the output layer of a neural network for multi-class classification tasks. It converts raw scores into probabilities (summing to 1).

Backpropagation

- Backpropagation is the algorithm used to train neural networks.
- It calculates the gradient of the loss function with respect to each weight by the chain rule.
- Gradient Descent updates weights to minimize the loss function.

Backpropagation Mathematics

1. Compute the error at the output layer:

$$\delta^{(L)} = \nabla_a L \odot f'(z^{(L)})$$

2. Propagate the error backward through the network:

$$\delta^{(l)} = ((\mathbf{W}^{(l+1)})^{\mathrm{T}} \delta^{(l+1)}) \odot f'(\mathbf{z}^{(l)})$$

3. Update weights:

$$W^{(l)} = W^{(l)} - \eta \cdot \delta^{(l)} \cdot (a^{(l-1)})^{T}$$

Where:

- L is the loss function.
- η is the learning rate.
- $\delta^{(l)}$ is the error at layer 1.
- $a^{(l)}$ is the activation of layer 1.

Implementing Backpropagation in Python

Extend the forward propagation function to include backpropagation (with learning rate η):

```
1 def forward propagation(X, W, b):
       A = X
       activations = [A]
       for i in range(len(W)):
           Z = np.dot(W[i], A) + b[i]
           A = sigmoid(Z) if i < len(W) - 1 else softmax(Z)
           activations.append(A)
       return A, activations
 8
 9
   def backpropagation(X, Y, W, b, eta):
       A, activations = forward propagation(X, W, b)
11
12
       deltas = [A - Y]
       for i in range(len(W) - 1, 0, -1):
13
           delta = np.dot(W[i].T, deltas[0]) * sigmoid derivative(activations[i])
14
           deltas.insert(0, delta)
15
       for i in range(len(W)):
16
           W[i] -= eta * np.dot(deltas[i], activations[i].T)
17
           b[i] -= eta * deltas[i]
18
```

Intuition:

Activation Functions

- Activation functions introduce non-linearity to the network.
- Why non-linearity?
 - Allows the network to model complex relationships.
 - Without activation functions, the network would collapse to a linear model.
- Common activation functions:
 - Sigmoid (Logistic)
 - tanh (Hyperbolic Tangent)
 - ReLU (Rectified Linear Unit)

Activation Function Details Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Sigmoid function squashes the output between 0 and 1.
- Used in the output layer for binary classification.
- Prone to vanishing gradient problem.

What's the vanishing gradient problem?

In deep networks, gradients can become very small during backpropagation, leading to slow learning or convergence issues.

Tanh

$$tanh(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

- Similar to the sigmoid function but centered at 0.
- Output ranges from -1 to 1.
- Helps with zero-centered data.

\overline{i}

What does it mean for data to be zero-centered?

Zero-centered data has a mean of 0, which can help with convergence during training, especially when using gradient-based optimization methods.

In non-zero-centered data, the gradients can be biased in a particular direction, leading to **slower convergence**. Think of it as if every step you take is always leaning towards one side.

ReLU

- Rectified Linear Unit (ReLU) is widely used in deep learning.
- It is simple and computationally efficient.
- When z > 0, the derivative is 1, avoiding the vanishing gradient problem (unlike sigmoid and tanh).

$$ReLU(z) = max(0, z)$$

Conclusion

- Neural networks are powerful tools for modeling complex relationships.
- Key components include layers, activation functions, forward propagation, and backpropagation.
- Understanding the math behind these processes is crucial for designing and debugging neural networks.