

Novel Solutions for Transmission Controllability and Expansion Planning in Colombia and Brazil

Ricardo Perez*
Joaquim Garcia**

*ricardo@psr-inc.com

**joaquim@psr-inc.com

Introduction

Novel Solutions for Capacity Expansion Planning

- ▶ **Planning 1.0**: economic efficiency + energy policy guidelines
 - BAU: Business as Usual
 - Minimize expected total costs (investment + expected value of the operating costs) under uncertainty (variability of hydro, wind, solar, biomass production, and demand)
- ▶ **Planning 2.0**: (1.0) + reliability & resource adequacy
 - Security of supply considering the "known unknowns" (equipment failure, composite generation and transmission reliability)
- ▶ **Planning 3.0**: (2.0) + co-optimization with flexibility (= dynamic probabilistic reserve)
 - · Contemplating: intermittency of renewables, demand fluctuations and failure of the largest generating unit
 - Considers that reserve requirements vary over time → better dimensioned requirements and, consequently, the costs for the provision of these services are optimized
- **▶ Planning 4.0**: (3.0) + resilience
 - Feasible supply considering the "unknown unknowns" (stochastic models are not suitable for extreme events)
 - Application examples: Geopolitical disruptions of fuel supply, very severe droughts, wind disruptions, effects of climate changes, etc.

Novel Solutions for Capacity Expansion Planning

G&T Expansion Planning

G&T Expansion Planning

Decision-making under Uncertainty using Different Multistage Stochastic Optimization Approaches

PES GM 2017

Panel: Transmission Planning for Non-**Synchronous Variable Resources**

July 18th 2017

*ricardo@psr-inc.com

Ricardo Perez*

21, rue d'Artois, F-75008 PARIS

Study Committee C1

CIGRE 2014

http://www.cigre.org

PS2 - New System Solutions and Planning Techniques

FACTS and D-FACTS: The Operational Flexibility Demanded by the Transmission Expansion Planning Task with Increasing RES

R. C. Perez*, G. C. Oliveira, M. V. Pereira, D. M. Falcão, F. Kreikebaum, S. M. Ramsay

PSR PSR **PSR**

UFRJ

SWG

SWG

Brazil and USA

SUMMARY

There are seven reasons include: different dispate biomass, wind transmission sy

POWER FLOW CONTROLLABILITY AND FLEXIBILITY IN THE TRANSMISSION EXPANSION PLANNING PROBLEM: A MIXED-INTEGER LINEAR PROGRAMMING APPROACH

Ricardo Cunha Perez

Novel Solutions for Transmission Controllability and Expansion

Process Flow

SDDP

 Stochastic operating policy calculation and dispatch simulation

OptGen

- TransmissionExpansion planning
- Power transfer capacity increase between areas

OptFlow

- AC OPF for VaR expansion planning
- Voltage control

Organon

• Dynamic stability assessment

1

2

3

Linearized Power Flow

AC OPF

Stability Analysis

In this presentation we will focus on Part 1

▶ Transmission reinforcements:

- Power transfer capacity increase between areas
- Series compensation FACTS devices are contemplated (active power flow control through equivalent impedance variation)

Expansion Candidates:

- Transmission line / transformer (conventional)
- Phase-shifter (conventional)
- TSSC, TCSC, SSSC (flexible technology)
- D-FACTs (flexible technology)
- Flexibility Aggregators at the Distribution Level
- Dynamic Line Rating (DLR)
- Battery

	Active Power Control	Voltage Control	Reactive Power Control	Frequency Control	Subsync. Resonance Control		
SVC		X	X				
STATCOM		Х	Χ				
TSSC '	X						
TCSC	X				X		
SSSC	X		X		X		
UPFC	Х	Х	Χ				
LCC-HVDC	X			X	X		
VSC-HVDC	X	Х	Χ	Χ	X		
Battery	Х	Х	X	X			

For FACTS and Batteries, we use screening models to reduce the number of candidates

Methodology for optimal transmission expansion

Optimal siting & sizing of batteries

Step 1 – BATSCREEN Screening of battery candidates

Optimization Problem

- Objective Function: $R_{jd}^{ns} = Max \sum_{\tau=1}^{24} \pi_{jd\tau}^{s} \cdot g_{jd\tau}^{s}$
- Subject to:
 - \longrightarrow $e_{jd,\tau+1}^s = e_{jd\tau}^s g_{jd\tau}^s$ Energy balance equation
 - \longrightarrow $0 \le e_{id,\tau+1}^s \le \bar{e}_{id\tau}^s$ Storage constraint
 - $\longrightarrow \underline{g}_n \le g_{jd\tau}^s \le \overline{g}_n$ Generation constraint

Battery siting and sizing – Step 2

PES DEEE

▶ 80 candidate batteries

Best sites:

- Areas with higher demand
- Areas with concentrated VRE resources
 - Bahia
 - Coast of Northeast region
- Regional tie-lines
 - North-South
 - Northeast-Southeast

A similar procedure is used for the siting of FACTs candidates (FACTSCREEN)

Colombia

Optimal siting & sizing of series comp. FACTS

Step 2 – FACTSCREEN
Screening of FACTS candidates

Given the solution of the dispatch problem:

$$z(\gamma) = Min \sum_{i} c_i \times g_i$$

s.a.

Multipliers

$$Sf + g = D$$

 π

$$f_{i,j} - \gamma_{i,j} \times (\theta_i - \theta_j) = 0 \quad \pi_{\gamma,i,j}$$

 $|f| \leq \bar{f}$

 $\pi_{\bar{f}}$

Sensitivity of the variation in the LMC in relation to the variation in the susceptance of the circuit:

$$\frac{\partial z(\gamma)}{\partial \gamma_{i,j}} = -\pi_{\gamma,i,j} \times \left(-\left(\theta_i - \theta_j\right)\right)$$

For each circuit [k = 1, ..., K]:

For each type of FACTS [n = 1, ..., N]:

For each scenario [s = 1, ..., S]:

For each day [d = 1, ..., 365]:

Marginal Benefit Calculation of the Circuit Susceptance Variation

Sum of Benefits

EV (Benefits)

Benefit Classification by Circuit & FACTS **Total**

Comparison of Conventional versus Flexible Expansion

Comparison of Conventional versus Flexible Expansion

Example of the effects related to Dynamic Line Rating (DLR)

9/20₂₆-00₁ 00₄₁ 00₈₁ 0₁/20 0₂/20₂₆-02₁₆ 0₂/20 0₂/2

SDDP

 Stochastic operating policy calculation and dispatch simulation

OptGen

- TransmissionExpansion planning
- Power transfer capacity increase between areas

OptFlow

- AC OPF for VaR expansion planning
- Voltage control

Organon

Dynamic stability assessment

Linearized Power Flow

AC OPF

Stability Analysis

Expansion Candidates:

- SVC (flexible technology)
- STATCOM (flexible technology)
- UPFC (flexible technology)

	Active Power Control	Voltage Control	Reactive Power Control	Frequency Control	Subsync. Resonance Control				
SVC		X	X	5					
STATCOM		Х	X						
TSSC	Х								
TCSC	Х			ì	X				
SSSC	Х		X		X				
UPFC	Х	Х	X						
LCC-HVDC	Х			Х	X				
VSC-HVDC	Х	X	X	X	X				
Battery	Х	Х	X	X					

SDDP

 Stochastic operating policy calculation and dispatch simulation

OptGen

- Transmission **Expansion planning**
- Power transfer capacity increase between areas

OptFlow

- AC OPF for VaR expansion planning
- Voltage control

Organon

 Dynamic stability assessment

Linearized Power Flow

AC OPF

Stability Analysis

Conclusions

Conclusions

- Each technology is a piece of the "puzzle" of the energy transition / decarbonization process
- Flexibility resources for the transmission network include FACTs, batteries, DLR and flexibility aggregators
- The proposed planning scheme allows economic valuation of transmission flexibility that is vital for high penetration of intermittent renewables

Energy Report as Bonus

ENERGYREPORT

Planning transmission for a net zero future

ENERGY REPORT

APRIL 2023 — ISSUE 196

Questions? Thanks!

PSR

Ricardo Perez*

Joaquim Garcia**

*ricardo@psr-inc.com

**joaquim@psr-inc.com