

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: Gayatri Shridhar Kapse Mobile No: 8623916561

Roll Number: B20199 Branch:EE

1 a.

	Prediction	o Outcome
Label	93	25
True	19	200

Figure 1 KNN Confusion Matrix for K = 1

	Prediction	Outcome
Label	92	26
True	9	210

Figure 2 KNN Confusion Matrix for K = 3

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction	Outcome
Label	92	26
True	10	209

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

К	Classification Accuracy (in %)
1	86.9436
3	89.6142
5	89.3175

Inferences:

- 1. The highest classification accuracy is obtained with K =.3
- 2. Increasing the value of K at first it increases and then decreases again.
- 3. By increasing the value of K we are actually considering the Euclidian distances of K points from the test point that's why we get high accuracy on increasing the K value.
- 4. As the classification accuracy increases with the increase in value of K the number of diagonal elements increase.
- 5. The reason for increase in the number of diagonal element is because as the accuracy increase more number of predicted values are equal to the actual value or we can say our prediction is right.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2 a.

	Prediction	Outcome
Label	111	7
True	6	213

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction	Outcome
Label	113	5
True	4	215

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction	n Outcome
Label	109	9
True	4	215

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

b.

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	96.1424
3	97.3293
5	96.1424

Inferences:

- 1. Normalization increases classification accuracy.
- 2. There is an increase in classification accuracy after normalization because as we are scaling the values of the attributes so that their will not be any data point that will be dominating the output.
- 3. The highest classification accuracy is obtained with K = 3.
- 4. The classification accuracy first increases and the decreases with the increase in value of K.
- 5. By increasing the value of K we are actually considering the Euclidian distances of K points from the test point that's why we get high accuracy on increasing the K value thereby calculating the eulcidian distance between the test data point and K number of train data points.

3

	Prediction	o Outcome
Label	105	13
True	6	213

Figure 7 Confusion Matrix obtained from Bayes Classifier

The classification accuracy obtained from Bayes Classifier is 94.4%.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 3 Mean for class 0 and class 1

S. No.	Attribute Name	Me	ean
		Class 0	Class 1
1.	X_Minimum		
2.	X_Maximum	273.418	723.656
3.	Y_Minimum		
4.	Y_Maximum	1583169.659	1431588.690
5.	Pixels_Areas	7779.663	585.967
6.	X_Perimeter	393.835	54.491
7.	Y_Perimeter	273.183	45.658
8.	Sum_of_Luminosity	843350.275	62191.126
9.	Minimum_of_Luminosity	53.326	96.236
10.	Maximum_of_Luminosity	135.762	130.452
11.	Length_of_Conveyer	1382.762	1480.018
12.	TypeOfSteel_A300		
13.	TypeOfSteel_A400		
14.	Steel_Plate_Thickness	40.073	104.214
15.	Edges_Index	0.123	0.385
16.	Empty_Index	0.459	0.427
17.	Square_Index	0.592	0.513
18.	Outside_X_Index	0.108	0.020
19.	Edges_X_Index	0.550	0.608
20.	Edges_Y_Index	0.523	0.831
21.	Outside_Global_Index	0.288	0.608
22.	LogOfAreas	3.623	2.287
23.	Log_X_Index	2.057	1.227
24.	Log_Y_Index	1.848	1.318
25.	Orientation_Index	-0.314	0.136
26.	Luminosity_Index	-0.115	-0.116
27.	SigmoidOfAreas	0.925	0.543

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2 X Maximu	46733.77351	-60848696.53	-320672.3293	-15750.50812	-12943.76426	-32609924.84	3686.072923	2040.904937	1237.643908	16.734	25.36021	-6.929295	4.696193	-1.515867	16.65354	22.50463	30.83904	-76.31962	-47.78156	-31.14733	27.67876	18.08286	-30.0931
3 Y Maximu	-60848696.53	1.82181E+12	1027980976	83317353.38	160209448.9	48997689854	-5669890.139	-6007837.24	-7505510.38	-114611.2	47711.37	21948.27	-59251.28	4294.736	-19165.63	-35306.43	-86404.07	168069.8	111447.7	73014.36	-82046.9	-50711.2	73811.61
4 Pixels_Are	-320672.3293	1027980976	104771842.6	6692648.9	10371695.26	9008476632	-154934.0074	6294.463585	10070.20623	547.0101	-492.1134	585,2306	200.1953	223.0561	-1121,193	-354.5732	556.0752	3456.879	1427.026	2840.741	980.3329	-300.211	575.0404
5 X_Perimet	-15750.50812	83317353.38	6692648.9	442770.572	706256.5009	557116030.4	-7764.04533	769.5856092	771.6039916	31.92388	-24.09284	38.16111	10.59581	10.99425	-67.82369	-13.28403	45.34169	183.0575	68.41173	169.1286	72.43566	-15.7026	28.52111
6 Y_Perimet	-12943.76426	160209448.9	10371695.26	706256.5009	1206390.51	807551258.1	-6894.471693	1492.073179	-1364.1952	10.20712	-17.5711	44.18238	-16.55017	6.495981	-65.41729	13.41058	63.25045	176.6405	44.05484	207.7917	105.1195	-21.062	19.50566
7 Sum_of_L	-32609924.84	48997689854	9008476632	557116030.4	807551258.1	8.19346E+11	-16498427.92	777671.2936	2214134.327	49759.91	-53267.33	58474.64	44601.85	25470.52	-123180.8	-50984.93	60033.13	361544.8	157340.8	278177.3	96509.49	-22290.5	62063.26
8 Minimum	3686.072923	-5669890.139	-154934.0074	-7764.04533	-6894.471693	-16498427.92	1458.213181	439.2359944	-153.833859	-1.972501	3.931511	-1.750045	1.077743	-1.455289	3.738841	4.623318	4.758855	-22.18673	-12.86067	-10.74723	3.816648	4.448267	-6.55741
9 Maximum	2040.904937	-6007837.239	6294.463585	769.5856092	1492.073179	777671.2936	439.2359944	333.3806022	2.285014006	-0.791317	1.768683	-0.221586	2.057703	-0.352958	-0.142446	1.57515	4.206583	-5.859388	-4.35841	-1.529243	4.136383	2.716174	-2.7371
10 Length_of	1237.643908	-7505510.376	10070.20623	771.6039916	-1364.195203	2214134.327	-153.8338585	2.285014006	2521.557073	-1.820728	1.321957	0.806365	3,925976	-0.192474	-2.696655	-0.534206	4.535627	2.03005	-0.001872	2.644925	4.369843	-0.4847	0.21099
11 Steel_Plat	16.73400129	-114611.1882	547.0100733	31.92388494	10.20712131	49759.90627	-1.972500539	-0.79131653	-1.82072829	0.729907	-0.008741	0.0147	-0.015494	0.019054	0.003184	-0.01538	-0.021143	0.041098	0.041366	0.019269	-0.02246	-0.0077	0.005483
12 Edges_Ind	25.36020808	-47711.36683	-492.1134083	-24.09283898	-17.57109505	-53267.33043	3.931510572	1.768682791	1.321956688	-0.008741	0.029323	-0.009277	0.007154	-0.006048	0.014692	0.022417	0.026357	-0.084016	-0.053519	-0.037595	0.024297	0.015975	-0.02755
13 Empty_Inc	-6.929295253	21948.26811	585.2306148	38.1611117	44.18237773	58474.64332	-1.750044594	-0.22158645	0.806365021	0.0147	-0.009277	0.015302	0.00472	0.004944	-0.017655	-0.011599	0.003021	0.051673	0.030409	0.036164	0.005163	-0.00347	0.015267
14 Square_In	4.696192938	-59251.27802	200.1953395	10.59581308	-16.55016707	44601.84544	1.077743384	2.057702924	3.925975718	-0.015494	0.007154	0.00472	0.064486	-0.004106	-0.036326	-0.000653	0.070297	0.001334	-0.019666	0.023186	0.068654	0.016339	-0.0097
15 Outside_X	-1.51586711	4294.736092	223.0561229	10.9942463	6.495980628	25470.51969	-1.455288857	-0.35295772	-0.19247353	0.019054	-0.006048	0.004944	-0.004106	0.004743	-0.002219	-0.007306	-0.009753	0.029154	0.020886	0.01388	-0.00952	-0.00376	0.007482
16 Edges_X_I	16.65353756	-19165.62798	-1121.192855	-67.82368627	-65,41729197	-123180.7703	3.738841272	-0.14244573	-2.69665455	0.003184	0.014692	-0.017655	-0.036326	-0.002219	0.056908	0.022848	-0.038558	-0.098413	-0.039256	-0.073084	-0.04451	0.002776	-0.02567
17 Edges_Y_I	22.50462672	-35306.42553	-354.5731798	-13.28402598	13.41058397	-50984.93259	4.623318004	1.57515014	-0.53420574	-0.01538	0.022417	-0.011599	-0.000653	-0.007306	0.022848	0.030681	0.024941	-0.099278	-0.062596	-0.044652	0.023024	0.014378	-0.0311
18 Outside_6	30.83904331	-86404.06896	556.0751993	45.34168956	63.25045114	60033.13395	4.758854503	4.206582633	4.535626751	-0.021143	0.026357	0.003021	0.070297	-0.009753	-0.038558	0.024941	0.202859	-0.057832	-0.072752	0.019258	0.138071	0.033017	-0.03252
19 LogOfArea	-76.31961832	168069.821	3456.878751	183.05747	176.6404729	361544.7547	-22.18673088	-5.85938831	2.030050298	0.041098	-0.084016	0.051673	0.001334	0.029154	-0.098413	-0.099278	-0.057832	0.471457	0.266901	0.246904	-0.04394	-0.06701	0.135218
20 Log_X_Ind	-47.78156352	111447.6991	1427.025894	68.411727	44.05483883	157340.8395	-12.86066842	-4.35840986	-0.00187236	0.041366	-0.053519	0.030409	-0.019666	0.020886	-0.039256	-0.062596	-0.072752	0.266901	0.167866	0.124113	-0.06631	-0.04408	0.081643
21 Log Y Ind	-31.14733373	73014.3565	2840.741336	169.1285737	207.7916999	278177.3419	10.74722963	-1.52924345	2.644925298	0.019269	-0.037595	0.036164	0.023186	0.01388	-0.073084	-0.044652	0.019258	0.246904	0.124113	0.156846	0.029178	-0.02546	0.064575
22 Orientatic	27.67876208	-82046.87983	980.3328791	72.43565577	105,1195171	96509,49238	3.816647634	4.136382598	4.369842525	-0.022463	0.024297	0.005163	0.068654	-0.009525	-0.044513	0.023024	0.138071	-0.043944	-0.066308	0.029178	0.133168	0.030895	-0.02766
23 Luminosit	18.08285838	-50711.211	-300.2109746	-15.70264171	-21.06203908	-22290.54261	4.4482667	2.716173704	-0.4847024	-0.007703	0.015975	-0.003468	0.016339	-0.003762	0.002776	0.014378	0.033017	-0.067013	-0.044084	-0.025463	0.030895	0.027438	-0.02644
24 SigmoidO	-30.09314133	73811.60519	575.0403684	28.52110558	19.50566072	62063.2628	-6.55740735	-2.73710077	0.210989671	0.005483	-0.02755	0.015267	-0.009701	0.007482	-0.02567	-0.031098	-0.032521	0.135218	0.081643	0.064575	-0.02766	-0.02644	0.049322

class_0

						Sum_of_Lumin																	
X_Maximu						-2334975.575																	
Y_Maximu	111783525			E di de la Loca	10020000111					-36154262.6								2022000	64300.3	00 12010		********	10.000
-	-22254.6237			21010101	ACP INSTITUTE	488874179.5							5010000		2021010	2010000	00181100	000000		0001220	001180	0010000	
X_Perimet	1101.07865	20351188	178492.15	9807.2032	5546.89855	18662200.1	-570.11602	30.14967	-1446.8768	282.1131174	-1.33167	4.155596	-7.3181	3.971901	-4.84985	-9.17608	-2.1516	36.6199	23.5571	16.8636	-3.75763	-1.11861	15.5083
Y_Perimet	-1973.56461	4659662	129451.11	5546.8985	5000.64669	13453352.78	-557.42319	-79.1464	-1139.3109	438.5595695	-2.24421	2.951694	-6.49605	1.204469	-8.61151	-2.36737	7.109846	29.02755	10.6809	21.0247	11.0455	-1.55636	13.014
Sum_of_L	-2334975.57	3.3E+10	488874179	18662200	13453352.8	50945346301	-1463160.7	84723.03	-2735155.1	343512.3962	-4688.9	3985.075	-9652.58	5577.969	-10534.6	-10271.9	5462.295	67782.66	34740.3	36734.8	6364.12	-2282.38	22864.8
Minimum_	-1224.80855	-3631825	-15631.976	-570.11602	-557.423186	-1463160.736	733.908876	348.0448	-993.31126	-204.836019	1.066368	0.591072	0.775182	-0.15145	0.427209	-0.83326	-2.22434	-5.04259	-1.29929	-3.28658	-2.50299	3.68376	-1.98355
Maximum	-744.043156	-43295.9	-300.30378	30.149672	-79.146408	84723.02772	348.044835	406.4608	-381.09265	-205.3942	0.429118	-0.02454	-0.26703	0.04392	0.877571	-1.08968	-2.01841	-1.50427	0.67825	-2.16518	-2.8738	2.78648	-0.96
0 Length_of	13220.0789	3999506	-23834.665	-1446.8768	-1139.31087	-2735155.116	-993.31126	-381.093	23100.7694	1243.443056	-0.09047	-5.15952	2.468171	-0.69776	6.591052	1.97125	-3.13774	-7.95323	-1.43972	-10.5673	-7.4308	4.54679	-5.96676
1 Steel_Plat	-1932.61914	-36154263	4262.208	282.11312	438.559569	343512.3962	-204.83602	-205.394	1243.44306	5645.306414	-1.3306	0.699194	-1.13384	-0.16545	-3.44259	2.058128	6.623469	3.626633	-1.37643	5.40272	7.84601	-1.6621	2.39033
2 Edges_Ind	8.91391616	23556.3	-47.645532	-1.3316684	-2.24420986	-4688.897042	1.06636816	0.429118	-0.0904651	-1.33060088	0.08965	-0.00063	0.010929	6.45E-05	0.008301	-0.00333	-0.01658	-0.01211	0.00465	-0.01652	-0.02434	0.00464	-0.00405
3 Empty_Inc	-3.80639693	-19251	35.619499	4.1555961	2.95169386	3985.075354	0.59107157	-0.02454	-5.1595223	0.699193586	-0.00063	0.020283	-0.00202	0.001242	-0.01249	-0.01101	-0.00752	0.026336	0.02169	0.02161	-0.00415	0.0021	0.02383
4 Square_In	10.8926577	-38009.67	-90.633582	-7.3180958	-6.49604556	-9652.577328	0.77518161	-0.26703	2.46817139	-1.13384014	0.010929	-0.00202	0.082373	-0.00291	0.019744	0.014881	-0.01558	-0.05315	-0.02053	-0.03335	-0.02057	0.00137	-0.02827
5 Outside X	1.50432796	13457.3	52.908645	3.9719011	1.20446853	5577.969289	-0.1514525	0.04392	-0.6977556	-0.16545127	6.45E-05	0.001242	-0.00291	0.002467	0.001752	-0.00529	-0.0052	0.011616	0.0115	0.00132	-0.00839	-0.00022	0.00464
6 Edges X I	6.69478626	64532.97	-101.64279	-4.8498518	-8.61151492	-10534.58498	0.42720931	0.877571	6.59105182	-3.44259272	0.008301	-0.01249	0.019744	0.001752	0.065074	-0.01386	-0.06755	-0.06618	0.01098	-0.08629	-0.10253	0.00434	-0.04488
7 Edges Y I	-5.01836115	-22198.76	-96.056608	-9.1760789	-2.36736536	-10271.86462	-0.8332641	-1.08968	1.97124953	2.058128085	-0.00333	-0.01101	0.014881	-0.00529	-0.01386	0.049202	0.064322	-0.02518	-0.05805	0.02378	0.08641	-0.00723	-0.01687
8 Outside 6	-16.5641543	-74705.16	55.177829	-2.1516019	7.10984561	5462.295442	-2.2243437	-2.01841	-3.1377411	6.623468512	-0.01658	-0.00752	-0.01558	-0.0052	-0.06755	0.064322	0.227474	0.047656	-0.07282	0.11336	0.22928	-0.01479	0.02182
9 LogOfArea	-13,7813062	15298.09	653.05134	36.619899	29.0275535	67782.6552	-5.0425887	-1.50427	-7.9532299	3,626632766	-0.01211	0.026336	-0.05315	0.011616	-0.06618	-0.02518	0.047656	0.270784	0.11641	0.17702	0.0729	-0.01936	0.14744
0 Log X Ind	5.30599098	64300.31	330,77912	23,55709	10.6809231	34740.28603	-1.2992892	0.678254	-1.4397173	-1.37642645	0.004646	0.021686	-0.02053	0.011505	0.010977	-0.05805	-0.07282	0.116409	0.11864	0.01736	-0.10068	-0.0004	0.06466
STATE OF STREET	-21.2042167			16.863627	21.0246531	36734.77789	-3.2865781	-2.16518	-10.567281	5.402715518	-0.01652	0.021607	-0.03335	0.001317	-0.08529	0.023781	0.113361	0.177016	0.01736	0.17785	0.16863	-0.01723	0.1025
State on	-25.8956548			-3.757626	11.0454571		-2.502995			7.846013411				-0.00839	-0.10253	0.086409	0.229284	0.072903	-0.10068	0.16863	0.30151	-0.01872	0.0412
3 Luminosite	-8.4519527	22000011			*****	-2282.381369		210100			0.100	0100 100	0102001	0100000	0.004337	01400 100	0,000	-0.01936	-0.0004	-0.01723	-0.01872	0102012	-0.00898
4 SigmoidOl		2 11 2 1 1 2 1				22864.84792				2.39033055	0.00.00.00		0.000000						010001	0.1025	0102012	-0.00898	0100030

Class_1

Inferences:

- 1. The accuracy of bayes classifier is 94.4% and it is lesser than previous classification approach because the previous KNN Classifier used Normal distribution.
- 2. The nature of values along the diagonal for some attribute is high and for some other its low because some attribute follow standard normal distribution.
- 3. The off-diagonal values have varied values. The two pair of attributes having maximum covariance is (Y_Maximum, Sum of Luminosity) and (Y_Maximum,Pixel_Area). The two pair of attribute with minimum covariance is (Outside_X,Edges_X) and (Outside_X, Empty_index).

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	89.6
2.	KNN on normalized data	97.3
3.	Bayes	94.4

Inferences:

- 1. KNN classifier with normalized data has highest accuracy and KNN classifier has the lowest accuracy.
- 2. KNN< Bayes< KNN on normalized data.
- 3. Usually Bayes classifier has higher accuracy but in this case the KNN classifier used is using Normalised data points that is why its accuracy is high.