

SELECCIÓN DE GRUPO ELÉCTROGENO1

	Datos requeridos para la selección de un grupo electrógeno						
1	Altura de trabajo (m.s.n.m.)	9	Clase de aislamiento del generador y calentamiento				
2	Temperatura ambiente máxima y mínima (°C)	10	Niveles de armónicos (THD V, THD A)				
3	Tensión de trabajo (V)	11	Nivel de ruido requerido Encapsulado dB(A)				
4	Cuadro de cargas Nivel de carga mínimo Secuencia de arranque Diagramas unifilares	12	Autonomía del tanque de combustible				
5	Tipo de combustible (Diésel o GLP o GN)	13	Nivel de emisiones requeridas por regulaciones				
6	Factor de carga Horas anuales de trabajo Sobrecarga	14	Trabajo en paralelo con la red Trabajo en paralelo con otros grupos o Trabajo en Isla				
7	Aplicación – Localización de funcionamiento.	15	Nivel de carga monofásica				
8	Grado de protección IP	16	Tiempo deseado de arranque.				

Efecto de la altitud sobre el motor del grupo electrógeno

La altitud de la instalación y la temperatura producen una corrección (derrateo) de la potencia del grupo electrógeno debido que disminuyen la densidad del aire utilizado para el enfriamiento.

En general, el fabricante debe proporcionar las tablas de corrección para cada modelo que ofrece, pero de no tener acceso a ellas se puede utilizar la siguiente regla general: "A una altitud por encima de 1 000 m.s.n.m. se produce una reducción del 3% por cada 100 m de altitud". La Gráfica No.1 muestra una gráfica de corrección en función de la altitud y la temperatura de funcionamiento genérica.

El valor real del factor de corrección puede variar en función del calentamiento admisible, la contaminación, la presencia de polvo, humedad en el ambiente en donde está instalado el grupo electrógeno.

¹ El texto ha sido elaborado sobre la base de la presentación "Aplicaciones y selección de grupos electrógenos" elaborada y presentada por el Ing. Jorge Tanaka, se agradece que autorice su uso en los cursos de "Instalaciones de Baja Tensión y Sistemas eléctricos.

Altitude/Ambient Temperature Derate Factors for Generators

Gráfica No.1 – Factor de corrección por altitud y temperatura ambiente de la potencia del grupo

Efecto del arranque de los motores eléctricos sobre el generador del grupo

El arranque de un motor eléctrico requiere una corriente mucho mayor que la nominal dependiendo del tipo de motor, las condiciones de la carga que moverá y el tiempo transcurrido hasta que llegue a la velocidad de giro de operación. Esta corriente produce una caída de tensión en el generador lo cual lleva a una disminución del torque de arranque impidiendo que el motor complete el arranque.

El grupo electrógeno deberá tener suficiente capacidad para entregar los kVA requeridos en el momento de arranque, denominados skVA, y con ello limitar la caída de tensión momentánea inicial. Estos datos de los motores y del grupo electrógeno son proporcionados por el fabricante en ambos casos.

Si se carece de estos datos se puede usar la información proporcionada por NEMA en la Tabla No.2 que identifica a los motores NEMA con letras desde la A hasta la U y un rango de skVA/HP para cada tipo de motor.

Si el motor es IEC, la Tabla No. 3 proporciona los skVA aproximados correspondientes a cada potencia normalizada de motores IEC trabajando con 50 Hz. El valor exacto en cada caso debe ser proporcionado por el fabricante, especialmente cuando se trabaja con motores IEC a 60 Hz como ocurren en nuestro país. Véase en este caso el Anexo de esta separata tomado de la empresa WEG.

Ejemplo:

- Motor NEMA de 25 HP tipo F en la tabla No. 2, skVA = 5 5.59 kVA/HP
 tomando el punto medio del rango skVA = 5,3 x 25 = 132,5 kVA
- Motor IEC de 18,5 kW en la Tabla No. 3 => skVA ≈ 171 kVA

Tabla No.2 Letra Código de motores CA				
Letra código NEMA	kVA en arranque skVA			
Α	0,00 - 3,14			
В	3,16 - 3,64			
С	3,55 - 3,99			
D	4,00 - 4,49			
Е	4,50 - 4,89			
F	5,00 - 5,59			
G	5,60 - 6,29			
Н	6,30 - 7,09			
J	7,10 - 7,99			
К	8,00 - 8,99			
L	9,00 - 9,99			
М	10,00 - 11,19			
N	11,20 - 12,19			
Р	12,50 - 13,99			
R	14,00 - 15,99			
S	16,00 - 17,99			
Т	18,00 - 19,99			
U	20,00 - 22,39			
V	22,40			
-	-			
-	-			
-	-			
-	-			
-	-			
-	-			
-	-			
-	-			

Tabla No.3 Motores IEC					
Potencia kW	kVA en arranque skVA				
0.37	N/A				
0.55	4.9				
0.75	6.9				
1.1	9.5				
1.5	13.4				
2.2	19.8				
3	29.7				
4	41.4				
5.5	53.8				
7.5	73.1				
11	103				
15	143				
18.5	171				
22	204				
30	254				
37	322				
45	378				
55	502				
75	721				
90	906				
110	1 049				
132	1 255				
160	1 557				
200	1 940				
250	2 476				
315	3 113				
356	3 421				

Si se tienen los datos del fabricante de los motores, se puede usar la corriente de rotor bloqueado del motor (LRA) que se obtiene del ensayo o de la hoja de especificaciones del motor y estimar la potencia aparente de arranque skVA mediante la siguiente expresión:

$$skVA = \frac{1{,}732\;x\;LRA\;x\;U_{operación}}{1000}$$

Si se desconoce la corriente rotor bloqueado (LRA), esta se puede asumir por la siguiente expresión:

$$LRA = 6.0 x I_{PLENA CARGA}$$

El factor de potencia en el arranque de los motores eléctricos

El factor de potencia en el momento del arranque es muy bajo, si no se tienen datos del fabricante del motor se puede utilizar la Gráfica No.2 para determinar el factor de potencia en el arranque

Factor de potencia en el arranque aproximado Motores de Jaula de ardilla 0,6 0,4 0,2 20 75 150 200 300 500 700 1000 10 15 30 50 100

Figura No. 3

Por lo tanto:

kW = skVA x FP arranque

Eficiencia de los motores eléctricos conectados

La eficiencia de los motores eléctricos debe ser tomada de la placa de características del motor (datos de placa) o de las hojas de especificaciones técnicas del fabricante. Si no están disponibles esos datos, la Tabla No. 4 proporciona valores que pueden ser utilizados para estimaciones preliminares de la selección del grupo electrógeno.

Tabla No. 4 Eficiencias aproximadas de los motores de inducción de jaula de ardilla *					
Potencia Potencia HP kW		Eficiencia a plena carga			
5 a 7,5	4 a 6	0.83			
10	7,5	0.85			
15	11	0.86			
20 a 25	15 a 19	0.89			
30 a 50	22 a 37	0.90			
60 a 75 45 a 56 0.91					
100 a 300	74,6 a 224	0.92			
350 a 600	261 a 448	0.93			
 Las eficiencias están influenciadas significativamente por la clase de motor. 					

Efecto del tipo de arranque utilizado en los motores eléctricos

El tipo de arranque utilizado en un motor eléctrico determina los kVA requeridos que el Grupo Electrógeno al ser puesto en marcha. Los tipos o métodos de arranque de los motores aplican una tensión de alimentación menor que la tensión nominal, lo que se traduce en una menor corriente en el arranque y un menor par de arranque (torque de arranque) consecuentemente.

La Tabla No. 5 muestra valores típicos de la tensión de línea en el arranque, la corriente de línea en el arranque y del par de arranque como porcentajes de los valores que ocurren a tensión nominal. Y se muestran como información para verificar que sea posible usar un método de arranque de tensión reducida que pueda vencer el par de arranque requerido por la maquina a ser movida.

	Tabla No. 5 Arranque de motores a tensión reducida						
Tipo de arranque del motor	Tensión del motor como % de la tensión de línea	Corriente de línea del motor como % de la corriente de arranque a tensión nominal	Par de arranque como % del par de arranque de tensión nominal				
Arranque de motor a tensión nominal	100	100	100				
Autotransformador a Toma 80 % Toma 65 % Toma 50 %	80 65 50	* 68 * 46 * 29	64 42 25				
Arranque de motor con resistencia Paso simple (ajustado para que a tensión en el motor sea el 80% de la tensión de línea)	65	80	64				
Reactor (bobina) Toma 50 % Toma 45 % Toma 37,5 %	50 45 37,5	50 45 37,7	8 20 14				
Devanado parcial (solo motores de velocidad baja) Devanado de 75 % Devanado de 50 %	100 100	75 50	75 50				
Conexión en estrella Estado sólido	57 Ajustable	33	33				

El porcentaje de la corriente de línea es 64 %, 42 % y 24 % antes de la adición de la corriente de magnetización del autotransformador.

Efecto del tipo de arranque en los skVA requeridos por los motores eléctricos

Al usarse un método de arranque de tensión reducida, los skVA requeridos disminuyen al reducirse la corriente de arranque del motor. La Tabla No. 6 nos proporciona el factor de corrección de los skVA para los tipos de arranque más utilizados. Los *skVA*_{tensión reducida} se calculan con la siguiente expresión:

$$skVA_{tensi\'on\ reducida} = FC_{TR}\ x\ skVA$$

Tabla No. 5 Factor de corrección de los skVA debido al arranque de tensión reducida					
Tipo de arranque	Factor de Corrección (FC _{TR})				
Resistencia, reactor (bobina), impedancia					
Toma de 80 %	0.80				
Toma de 65 %	0.65				
Toma de 50 %	0.50				
Toma de 45 %	0.45				
Autotransformador					
Toma de 80 %	0.68				
Toma de 65 %	0.46				
Toma de 50 %	0.29				
Arranque YΔ, funcionamiento	0.33				
Estado sólido: Ajustable, consultar al fabricante o calcular usando el 300% de					
los kVA de operación a tensión nominal					
NOTA: Si no se usan métodos de arranque de tensión reducida, se usa el valor 1.					

Factor de multiplicación de la carga previa

El multiplicador de carga previa se haya mediante la fórmula siguiente:

$$\% \ de \ carga \ del \ motor = \frac{en \ funcionamiento}{Potencia \ de \ todos \ los \ motores} x \ 100 \ \%$$

$$en \ funcionamiento \ y \ de \ los \ que$$

$$estan \ arrancando$$

Si el porcentaje de carga del generador está por debajo del 40%, el multiplicador es 1,0, cuando es mayor del 40 % se debe utilizar el valor de la gráfica No.3 como multiplicador de carga.

EJEMPLO DE SELECCIÓN DE GRUPO ELECTROGENO

En una planta de procesamiento de mineral, la maquinaria instalada tiene la siguiente secuencia de arranque

- Una primera bomba de 100 HP clase NEMA código B con arranque directo
- Un segundo motor de 100 HP clase NEMA código G con arranque por autotransformador con 80% de reducción de tensión en el arranque y
- Una tercera bomba de 90 kW con arrancador suave con 60% de la potencia de un arranque directo, tipo IEC con corriente nominal 167 A una relación de corriente de corriente de rotor bloqueado (I_L/I_N = 7.2) y eficiencia de 95.6%,

Todos los motores trabajan a 440 V, dependiendo de la demanda pueden trabajar dos o tres de los motores indicados en la secuencia anterior.

La caída admisible de tensión en el arranque en todos los casos es 25%

Se tiene además entre una carga de luminarias y cargas varias de 10 kW.

La secuencia de arranque es siempre fija

Se pide:

- a. Se requiere dimensionar el grupo electrógeno Diésel para alimentar dichas bombas sólo para trabajar como respaldo de la red eléctrica.
- b. Defina la potencia nominal del grupo electrógeno y el régimen de trabajo según ISO 8528.1

SOLUCION

I. DATOS GENERALES DE LA APLICACIÓN

Tipo	PRIME
Tensión (V)	440
No. fases	3
Frecuencia (Hz)	60

II. CARGAS

A. Luminarias y generales (kW)							10.0
B. Otros (kW)							0.0
C. Motores eléctricos							
Secuencia	Potencia HP o kW	Corriente plena carga	Corriente de rotor bloqueado LRA	Tipo de arranque	Caída de tensión Adm. (%)	Eficiencia motor (%)	Potencia mecánica
Motor de bomba (HP)	100	-	-	Directo	25%	92.0%	81.1
Motor de molino (HP)	100	-	-	Autotransf.	25%	92.0%	81.1
Motor de bomba (kW)	90	167	1202.4	Soft starter	25%	95.6%	94.1

Potencia requerida para el motor de combustión				266.3
Corrección por altitud y temperatura	Altitud (m)	Temperatur a (C)	Factor de corrección	
Potencia requerida para el motor de combustión	1100	40	0.99	269.0

III. DIMENSIONAMIENTO DEL GENERADOR

A. kVA de arranque (skVA)		Motor 1	motor 2	motor 3
1. Potencia		100	100	-
2. Código NEMA		В	G	-
3. skVA/HP		3.64	6.29	-
4. skVA		364	629	916.4
B. kVA de arranque efectivo				
1. Todos los motores funcionando		0	100	200
2. Todos los motores funcionando y uno arrancando		100	200	320.6
3. (B1/B2)*100		0%	50%	62%
4. Compensación de motores en funcionamiento		1	1.08	1.15
5. (A.4 * B4)		364	679.3	1053.8
6. Factor de tensión reducida por método de arranque		1	68%	60%
7. skVA efectivo (B.5 x B.6)		364	461.9	632.3
8. Caída de tensión aceptable (%)		25%	25%	25%
C. Selección del Generador	3406	300 kW	480 V	< 25 %

FACULTAD DE CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica **AREA DE ELECTRICIDAD**

Selected Model

Engine: 3406 Generator Frame: LC5034J Genset Rating (kW): 300.0 Line Voltage: 480

Fuel: Diesel Generator Arrangement: 2377184 Genset Rating (kVA): 375.0 Phase Voltage: 277

Frequency: 60 Excitation Type: Permanent Magnet Pwr. Factor: 0.8 Rated Current: 451.1

Duty: STANDBY Connection: SERIES STAR Application: EPG Status: Current

- Version: 40840 /40476 /39521 /6047

Starting Capability & Current Decrement Motor Starting Capability (0.6 pf)

SKVA	Percent Volt Dip
49	2.5
100	5.0
154	7.5
212	10.0
272	12.5
336	15.0
404	17.5
476	20.0
553	22.5
635	25.0
722	27.5
816	30.0
917	32.5
1,025	35.0
1,143	37.5
1,270	40.0

Engine: C9 Generator Frame: LC5014J
Fuel: Diesel Generator Arrangement: 4490575
Frequency: 60 Excitation Type: Self Excited
Duty: STANDBY Connection: SERIES STAR

Selected Model
Genset Rating (kW): 300.0
Genset Rating (kVA): 375.0
Pwr. Factor: 0.8
Application: EPG

Line Voltage: 480 Phase Voltage: 277 Rated Current: 451.1 Status: Current

-Version: 41764/40476/41661/8821

Starting Capability & Current Decrement Motor Starting Capability (0.6 pf)

Agradecimientos: Ing. Jorge Tanaka y Caterpillar