DSC 255: Machine learning

Week 1 — Worksheet

Nearest neighbor classification

- 1. Casting an image into vector form. A 10×10 greyscale image is mapped to a d-dimensional vector, with one pixel per coordinate. What is d?
- 2. The length of a vector. The Euclidean (or L_2) length of a vector $x \in \mathbb{R}^d$ is

$$||x|| = \sqrt{\sum_{i=1}^d x_i^2},$$

where x_i is the *i*th coordinate of x. This is the same as the Euclidean distance between x and the origin. What is the length of the vector which has a 1 in every coordinate? Your answer may be a function of d.

3. Euclidean distance. What is the Euclidean distance between the following two points in \mathbb{R}^3 ?

4. Accuracy of a random classifier. A particular data set has 4 possible labels, with the following frequencies:

Label	Frequency
\overline{A}	50%
B	20%
C	20%
D	10%

- (a) What is the error rate of a classifier that picks a label (A,B,C,D) at random, each with probability 1/4?
- (b) One very simple type of classifier just returns the same label, always.
 - What label should it return?
 - What will its error rate be?
- 5. In the picture below, there are nine training points, each with label either square or star. These will be used to guess the label of a query point at (3.5, 4.5), indicated by a circle.

1

Suppose Euclidean distance is used.

- (a) How will the point be classified by 1-NN? The options are square, star, or ambiguous.
- (b) By 3-NN?
- (c) By 5-NN?
- 6. We decide to use 4-fold cross-validation to figure out the right value of k to choose when running k-nearest neighbor on a data set of size 10,000. When checking a particular value of k, we look at four different training sets. What is the size of each of these training sets?
- 7. An extremal type of cross-validation is n-fold cross-validation on a training set of size n. If we want to estimate the error of k-NN, this amounts to classifying each training point by running k-NN on the remaining n-1 points, and then looking at the fraction of mistakes made. It is commonly called leave-one-out cross-validation (LOOCV).

Consider the following simple data set of just four points:

What is the LOOCV error for 1-NN? For 3-NN?

Distance functions for ML

- 8. Consider the two points x = (-1, 1, -1, 1) and x' = (1, 1, 1, 1).
 - (a) What is the L_2 distance between them?
 - (b) What is the L_1 distance between them?
 - (c) What is the L_{∞} distance between them?
- 9. For the point x = (1, 2, 3, 4) in \mathbb{R}^4 , compute the following.
 - (a) $||x||_1$
 - (b) $||x||_2$
 - (c) $||x||_{\infty}$

- 10. For each of the following norms, consider the set of points with length ≤ 1 . In each case, state whether this set is shaped like a *ball*, a *diamond*, or a *box*.
 - (a) ℓ_2
 - (b) ℓ_1
 - (c) ℓ_{∞}
- 11. List all points in \mathbb{R}^2 with $||x||_1 = ||x||_2 = 1$.
- 12. Which of these distance functions is a *metric*? If it is not a metric, state which of the four metric properties it violates.
 - (a) Let $\mathcal{X} = \mathbb{R}$ and define d(x, y) = x y.
 - (b) Let Σ be a finite set and $\mathcal{X} = \Sigma^m$. The Hamming distance on \mathcal{X} is d(x,y) = # of positions on which x and y differ.
 - (c) Squared Euclidean distance on \mathbb{R}^m , that is, $d(x,y) = \sum_{i=1}^m (x_i y_i)^2$. (It might be easiest to consider the case m = 1.)