MODELOS SEMÂNTICOS E NOÇÕES DE REFINAMENTO PARA CSP, MODELO DE TRACES

Alexandre Mota & Augusto Sampaio

Modelos Semânticos

- Representação abstrata da semântica (comportamento) dos processos
- Sintaxe versus Semântica
 - notação *versus* modelo
- Estabelece noções de igualdade e refinamento de processos:
 - através do modelo verificam-se propriedades dos processos

Modelos Semânticos e Igualdade

Modelos Semânticos de CSP

Vários modelos:

Traces $(\mathcal{T}) \to \text{Failures } (\mathcal{F}) \to \text{Failures-divergences } (\mathcal{FD})$

Grau de precisão do modelo

Aspectos Capturados pelos Modelos

- □ Traces (T)
 - Propriedades específicas simples (possibilidade)
- □ Failures (𝓕)
 - Não-determinismo e deadlock (impasse)
- □ Failures-divergences (FD)
 - Livelock (divergência)

Igualdade e Refinamento

Várias noções de igualdade:

e várias noções de refinamento:

Refinamento

□ Trata-se de uma relação de satisfação

Propriedades Importantes

Relação de refinamento deve ser uma ordem parcial:

1.
$$\forall S \bullet S \sqsubseteq S$$

2.
$$\forall$$
 S, T \bullet S \sqsubseteq T \land T \sqsubseteq S \Rightarrow S = T

3.
$$\forall$$
 S, T, U \bullet S \sqsubseteq T \land T \sqsubseteq U \Rightarrow S \sqsubseteq U

4.
$$\forall$$
 S, T \bullet S \sqsubseteq T \Rightarrow C[S] \sqsubseteq C[T]

(Reflexiva)

(Anti-Simétrica)

(Transitiva)

(Monotônica)

Relação entre Igualdade e Refinamento

Trace

Lista de eventos realizados por um processo:

```
<> <a,a,a> <a,b,a>
```

 A semântica de um processo pode ser dada pelo conjunto de todos os seus traces

Traces

□ traces(P) é o conjunto de todas as histórias (traces) do processo P:

```
traces(STOP) = {<>}
traces(a -> b -> STOP) =
    {<>, <a>, <a, b>}
traces(a -> STOP [] b -> STOP) =
    {<>, <a>, <b>}
traces(\mu X.a -> X) =
    {<>, <a>, <a>, <a, a>, <a, a>, ...}
```

Definição de Traces

```
traces(a -> P) =
        \{<>\} \cup \{<a>^s \mid s \in traces(P)\}
traces (c?x:A -> P) =
  {<>} ∪
  \{<c.a>^s \mid a\in A, s \in traces(P[a/x])\}
traces(P[]Q) = traces(P) \cup traces(Q)
traces(P \sim Q) =
   traces(P) ∪ traces(Q)
```

Traces

```
traces(µX.F(X)) =
traces(STOP) ∪
traces(F(STOP)) ∪
traces(F(F(STOP))) ∪
traces(F(F(STOP))) ∪
```

Se a recursão em F for guardada!

Traces e Igualdade

Traces e Refinamneto

Traces e Refinamneto

Para provar que Q não refina P basta achar um trace de Q que não seja um trace de P

Traces

- Não descreve completamente os processos:
 - traces(P[]Q) = traces(P|~|Q)
 - □ P[]Q =T P|~|Q mas P[]Q ≠F P|~|Q
- Útil para verificar se um processo não realiza nenhum evento que não deveria realizar (redução de não-determinismo):
 - não diz nada sobre que eventos o processo tem que realizar (P [T= STOP)

Traces, Igualdade e os outros Modelos

- \square P = F Q \Rightarrow P = T Q
- □ P = Q é uma abreviação para P = FD Q
- As leis algébricas de CSP consideram o modelo de failures-divergences:
 - há processos com o mesmo conjunto de traces mas que não podem ser provados iguais através das leis

Exercício

□ Mostre que os seguintes refinamentos são válidos:

$$lue{}$$
 (a $ightarrow$ b $ightarrow$ STOP) \sqsubseteq (a $ightarrow$ STOP)

Exercício

□ Como mostro que um dado processo P não é capaz de descrever o comportamento ⟨a, b, c⟩ usando apenas o modelo de traces?