Machine Learning Autoencoder Applied to Communication Channels

Eduardo Dadalto Camara Gomes

Prof. Meryem Benammar, Ph.D

Department of Electronics, Optronics and Signal Processing (DEOS)

Summary

- Introduction
 - Point to point communication system
 - Binary symmetric channel
 - Channel decoding: Maximum A Posteriori Decoder (MAP)
- Problem Statement
- Related Work
- Future Work

Introduction

• Point to point communication system

Introduction

• Binary symmetric channel

- Cross over probability $0 \le p \le 1/2$
- Result in *corrupted* information

Introduction

- Channel decoding: Maximum A Posteriori Decoder (MAP) Rule
- 1. Given the channel output code word $y^n \in \{0,1\}^n$
- 2. Assume a joint distribution between the input and the output
- 3. Choose a value for the input code word that maximizes the probability of having the observed output

$$f(y) = \underset{x \in \mathcal{X}}{\arg \max} P_{X|Y}(x|y)$$

Problem Statement

• Proposed solution: Deep Neural Network (DNN) based Autoencoder

Related Work

• O'Shea et al. develop a fundamental new way to think about communications system design as an **end-to-end** reconstruction optimization task that seeks to jointly optimize transmitter and receiver components in a single process, by interpreting a communications system as an autoencoder. ¹

• T. Gruber et al. proved that a deep learning-based channel decoder could actually learn a decoding algorithm rather than just being a simple classifier. ²

Future Work

- Machine Learning
 - DNN basics ✓
 - TensorFlow library familiarization -
 - DNN channel decoder X
 - DNN channel autoencoder X
- Results X
- Analysis X
- Conclusions X

- Communication System
 - Hamming source code √
 - MAP channel decoder ✓
 - BER x SNR graphics X

