Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client:

UnionTrust

Certificate No: Z18-60054

CALIBRATION CERTIFICATE

Object

DAE3 - SN: 420

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

March 22, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	27-Jun-17 (CTTL, No.J17X05859)	June-18

Name

Function

Signature

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: March 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z18-60054

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range =

-1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Υ	Z
High Range	405.296 ± 0.15% (k=2)	404.925 ± 0.15% (k=2)	404.775 ± 0.15% (k=2)
Low Range	3.93767 ± 0.7% (k=2)	3.99920 ± 0.7% (k=2)	3.97215 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	162.5° ± 1 °
---	--------------

Certificate No: Z18-60054

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

BTL

Certificate No: Z18-60131

CALIBRATION CERTIFICATE

Object

EX3DV4 - \$N:7396

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

May 29, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standard	ls	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter	NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor	NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor	NRP-Z91	101548	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Reference10dB/	Attenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dB/	Attenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe	e EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19
DAE4		SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Dec -18
Secondary Stand	dards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator	rMG3700A	6201052605	27-Jun-17 (CTTL, No.J17X05858)	Jun-18
Network Analyze	er E5071C	MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19
	1	Name	Function	Signature
Calibrated by:		Yu Zongying	SAR Test Engineer	A COL
Reviewed by:		Lin Hao	SAR Test Engineer	MM
Approved by:		Qi Dianyuan	SAR Project Leader	2.003

Issued: May 31, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-60131 Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 7396

Calibrated: May 29, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z18-60131 Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^A	0.54	0.49	0.51	±10.0%
DCP(mV) ^B	98.2	103.6	102.7	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	174.5	±2.9%
		Υ	0.0	0.0	1.0		162.3	
		Z	0.0	0.0	1.0		166.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G	Unct.
, [iaii iz]	Permittivity ^F	(S/m) ^F	JOHN X		OGIIVI E	Дірііц	(mm)	(k=2)
750	41.9	0.89	10.06	10.06	10.06	0.40	0.85	±12.1%
835	41.5	0.90	9.88	9.88	9.88	0.17	1.47	±12.1%
900	41.5	0.97	9.85	9.85	9.85	0.14	1.71	±12.1%
1750	40.1	1.37	8.64	8.64	8.64	0.30	0.94	±12.1%
1900	40.0	1.40	8.18	8.18	8.18	0.26	1.01	±12.1%
2100	39.8	1.49	8.32	8.32	8.32	0.39	0.82	±12.1%
2300	39.5	1.67	8.10	8.10	8.10	0.50	0.70	±12.1%
2450	39.2	1.80	7.80	7.80	7.80	0.55	0.74	±12.1%
2600	39.0	1.96	7.50	7.50	7.50	0.40	0.96	±12.1%
3500	37.9	2.91	7.27	7.27	7.27	0.48	1.12	±13.3%
5200	36.0	4.66	5.70	5.70	5.70	0.40	1.52	±13.3%
5300	35.9	4.76	5.35	5.35	5.35	0.40	1.38	±13.3%
5600	35.5	5.07	4.94	4.94	4.94	0.40	1.25	±13.3%
5800	35.3	5.27	5.05	5.05	5.05	0.40	1.40	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z18-60131 Page 5 of 11

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.30	10.30	10.30	0.40	0.80	±12.1%
835	55.2	0.97	9.89	9.89	9.89	0.28	1.15	±12.1%
900	55.0	1.05	9.88	9.88	9.88	0.23	1.26	±12.1%
1750	53.4	1.49	8.20	8.20	8.20	0.25	1.03	±12.1%
1900	53.3	1.52	7.91	7.91	7.91	0.19	1.20	±12.1%
2100	53.2	1.62	8.35	8.35	8.35	0.29	1.06	±12.1%
2300	52.9	1.81	7.91	7.91	7.91	0.57	0.79	±12.1%
2450	52.7	1.95	7.70	7.70	7.70	0.37	1.14	±12.1%
2600	52.5	2.16	7.30	7.30	7.30	0.61	0.74	±12.1%
3500	51.3	3.31	6.79	6.79	6.79	0.48	1.12	±13.3%
5200	49.0	5.30	5.30	5.30	5.30	0.40	1.82	±13.3%
5300	48.9	5.42	5.05	5.05	5.05	0.55	1.17	±13.3%
5600	48.5	5.77	4.38	4.38	4.38	0.57	1.18	±13.3%
5800	48.2	6.00	4.50	4.50	4.50	0.50	1.60	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z18-60131 Page 7 of 11

Http://www.chinattl.cn

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z18-60131

Page 9 of 11

Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	39.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z18-60131 Page 11 of 11

In Collaboration with

S D B B G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z18-60183

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 919

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 11, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	tandards ID# Cal Date(Calibrated by, Certificate No.)		Scheduled Calibration
Power Meter NRVD	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Reference Probe EX3DV4	SN 7464	12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Sep-18
DAE4	SN 1525	02-Oct-17(SPEAG,No.DAE4-1525_Oct17)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

Name

Function

Signature

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 13, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60183

Page 1 of 8

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60183

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.10.1.1476	
Extrapolation	Advanced Extrapolation		
Phantom	Triple Flat Phantom 5.1C		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	2450 MHz ± 1 MHz	- 1/81-	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.1 mW /g ± 18.8 % (k=2)
SAR averaged over 10 $^{ extstyle cm^3}$ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.6 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.8 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.93 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60183 Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0Ω+ 2.85jΩ	
Return Loss	- 27.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9Ω+ 4.74jΩ	
Return Loss	- 26.5dB	

General Antenna Parameters and Design

Florida B. L. (consultantia)	4.000
Electrical Delay (one direction)	1.022 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z18-60183

in Collaboration with

S D C A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 40.36$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

 Probe: EX3DV4 - SN7464; ConvF(7.89, 7.89, 7.89) @ 2450 MHz; Calibrated: 9/12/2017

Date: 06.11.2018

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 102.2 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.17 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Certificate No: Z18-60183

Impedance Measurement Plot for Head TSL

In Collaboration with

S D E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.977 \text{ S/m}$; $\varepsilon_r = 54.12$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

 Probe: EX3DV4 - SN7464; ConvF(8.09, 8.09, 8.09) @ 2450 MHz; Calibrated: 9/12/2017

Date: 06.08.2018

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.30 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.93 W/kg

Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg

Certificate No: Z18-60183

Impedance Measurement Plot for Body TSL

Asset No. : Environmental		Dipolo ilitorilai (Calibration Record		
nvironmental	E-434	Model No. :	D2450V2	Serial No. :	919
	23.6°C, 54 %	Original Cal. Date:	June 11, 2018	Next Cal. Date :	June 11, 2021
ì			lard List		
1	IEEE Std 1528-2013		d Practice for Determining an Head from Wireless Co June	•	•
2	IEC 62209-2		the Specific Absorption Rate to the human body(frequents)	, ,	
3	KDB865664	S	AR Measurement Require	ments for 100 MHz to 6 G	iHz
			t Information		
Equipment :	Manufacturer :	Model No. :	Serial No. :	Cal.Organization:	Cal. Date :
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	NA	March 9, 2018
DC Source	Iteck	OT6154	M00157	NA	October 12, 2018
P-series power meter	Agilent	N1911A	MY45100473	NA	August 11, 2018
ideband power sensor	Agilent	N1921A	MY51100041	NA	August 11, 2018
power Meter	Anritsu	ML2495A	1128009	NA	Mar. 11, 2018
Pulse Power Sensor	Anritsu	MA 2411B	1027500	NA	Mar. 11, 2018
oual directional coupler	Woken	TS-PCC0M-05	107090019	NA	Mar. 11, 2018
MXG Analog Signal Generator	Agilent	N5181A	MY49060710	NA	August 11, 2018
ENA Network Analyzer	Agilent	E5071C	MY46102965	NA	March 11, 2018
Model No			For Head Tissue		
	Item	Originak Cal. Result	Verified on 2018/12/24	Deviation	Result
	Impedance, transformed to feed point	53Ω+2.85jΩ	51.5Ω+1.29jΩ	<5Ω	Pass
	Return Loss(dB)	-27.9	-24.962	-10.5%	Pass
	SAR Value for				
	1g(mW/g)	13.1	12.5	-4.6%	Pass
	SAR Value for	0.47	F 74	7.50/	D
	10g(mW/g)	6.17	5.71	-7.5%	Pass
D2450V2			For Body Tissue		
	Item	Originak Cal. Result	Verified on 2018/12/24	Deviation	Result
	Impedance, transformed to feed point	49.9Ω+4.74jΩ	50.2Ω+4.51jΩ	<5Ω	Pass
	Return Loss(dB)	-26.5	-25	-5.7%	Pass
	SAR Value for	10.7	40.4	0.40/	
	1g(mW/g)	12.7	13.1	3.1%	Pass
	SAR Value for	5.93	6.01	1.3%	Pass
	10g(mW/g)	5.95	0.01	1.5%	Pass
	Impedance Test-Head			Return Loss-Head	
E5071C Network Analyzer ctive Ch/Trace 2 Response 3 Stimulus 4 Mir/Analysis 5 Instr			E5071C Network Analyzer		
rl Sl1 Smith (R+jX) Scale 1.000U [Fl]	State	Format	1 Active CtyTrace 2 Response 3 Stimulus 4 Mir/Analysis 5 In Marker 1 2,450000000 GHz	istr State	********* Marko
>1 2.4500000 GHz 51.534 0 1.2860 0 8	3-138 рн	Smith (R+pX) Log Mag	Tr1 511 Log Mag 10.00dB/ Ref -20.00dB [1)	↓ Marke
			30.00 >1 2.4500000 GHz -24.962 dB		Marks
		Phase	20.00		
		Group Delay	10.00		Marko
		• Smith R + yX			Marki
		Polar	0.000		More M
	Lin Mag SWR		-10.00		RefM
					Clear M
			-20.00	1	Marke Ref M
		Real			Ref Marke
			×30.00		
		Imagnary			OF
		Imaginary Expand Phase	-40.00		OF
		Expand			Retu
		Expand Phase Positive	-40.00 -50.00		OF
		Expand Phase Positive Phase	÷40.00		OF
Strt 2.25 Gre	IFEW TO be	Expand Phase Positive Phase	-40.00 -50.00	PRW 70 Mc	OF

Calibrator: Rot - Liang

Approver: Yerbart Liv

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z18-60185

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1160

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 20, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRP-Z91	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
ReferenceProbe EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19
DAE4	SN 1525	02-Oct-17(SPEAG,No.DAE4-1525_Oct17)	Oct-18
DAE4	SN 777	15-Dec-17(SPEAG,No.DAE4-777_Dec17	Dec-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzerE5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	J an-1 9
·			

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60185

Page 1 of 16

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60185 Page 2 of 16

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.1.1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.6 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	75.3 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.7 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.1 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperatur <i>e</i>	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.85 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.6 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.25 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.24 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.78 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	77.9 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.21 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.1 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.8 ± 6 %	5.32 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.99 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	69.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	1.92 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	19.2 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.38 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.25 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	72.3 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.04 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.3 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.56 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.63 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	76.2 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.13 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.78 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.7 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.0 ± 6 %	6.07 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.66 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	76.6 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.15 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.5 mW /g ± 24.2 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	53.5Ω - 8.96jΩ
Return Loss	- 20.7dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.1Ω - 3.00jΩ
Return Loss	- 30.5dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	51.4Ω - 5.39jΩ
Return Loss	- 25.2dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.5Ω - 2.95ϳΩ
Return Loss	- 22.5dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.5Ω - 1.38jΩ
Return Loss	- 26.9dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.1Ω - 7.52jΩ
Return Loss	- 22.1dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.3Ω - 2.06jΩ		
Return Loss	- 33.1dB		

Certificate No: Z18-60185 Page 9 of 16

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.9Ω - 4.94jΩ
Return Loss	- 26.1dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.5Ω - 0.79jΩ		
Return Loss	- 22.1dB		

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.3Ω + 0.12jΩ		
Return Loss	- 27.6dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.065 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG	

Certificate No: Z18-60185

E-mail: cttl@chinattl.com

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz,

Date: 06.20.2018

Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz,

Medium parameters used: f = 5200 MHz; $\sigma = 4.633$ S/m; $\epsilon r = 36.62$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5300 MHz; $\sigma = 4.754$ S/m; $\epsilon r = 36.31$; $\rho =$ 1000 kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.942 \text{ S/m}$; $\epsilon r = 35.58$; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; $\sigma = 4.984 \text{ S/m}$; $\epsilon r = 35.81$; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.241 S/m; ϵ r = 35.58; $\rho = 1000 \text{ kg/m}3$,

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(5.57, 5.57, 5.57) @ 5200 MHz; Calibrated: 1/25/2018, ConvF(5.34, 5.34, 5.34) @ 5300 MHz; Calibrated: 1/25/2018, ConvF(4.91, 4.91, 4.91) @ 5500 MHz; Calibrated: 1/25/2018, ConvF(4.73, 4.73, 4.73) @ 5600 MHz; Calibrated: 1/25/2018, ConvF(4.9, 4.9, 4.9) @ 5800 MHz; Calibrated: 1/25/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 12/15/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.38 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.5 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.70 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: Z18-60185 Page 11 of 16

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.94 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 36.4 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.08 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.16 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 37.2 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Certificate No: Z18-60185 Page 12 of 16

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz,

Date: 06.19,2018

Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz,

Medium parameters used: f = 5200 MHz; $\sigma = 5.317$ S/m; $\epsilon r = 48.78$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5300 MHz; $\sigma = 5.381$ S/m; $\epsilon r = 48.35$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5500 MHz; $\sigma = 5.56$ S/m; $\epsilon r = 48.36$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5600 MHz; $\sigma = 5.795$ S/m; $\epsilon r = 48.14$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5800 MHz; $\sigma = 6.065$ S/m; $\epsilon r = 48.03$; $\rho = 1000$ kg/m3,

Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(5.15, 5.15, 5.15) @ 5200 MHz; Calibrated: 1/25/2018, ConvF(5.04, 5.04, 5.04) @ 5300 MHz; Calibrated: 1/25/2018, ConvF(4.46, 4.46, 4.46) @ 5500 MHz; Calibrated: 1/25/2018, ConvF(4.36, 4.36, 4.36) @ 5600 MHz; Calibrated: 1/25/2018, ConvF(4.51, 4.51, 4.51) @ 5800 MHz; Calibrated: 1/25/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Electronics: DAE4 Sn777; Calibrated: 12/15/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.32 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 6.99 W/kg; SAR(10 g) = 1.92 W/kg

Maximum value of SAR (measured) = 16.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.59 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.25 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

Certificate No: Z18-60185 Page 14 of 16

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.72 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.49 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 37.4 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 41.04 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Impedance Measurement Plot for Body TSL

Bipole Internal Calibration Record						
Asset No. :	E-436	Model No. :	D5GHzV2	Serial No. :	1160	
Environmental	22.3°C, 55 %	Original Cal. Date:	June 20, 2018	Next Cal. Date :	June 20, 2021	
		Standa	ard List			
1	IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpiton Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013				
2	IEC 62209-2	Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2010				
3	KDB865664	SA	AR Measurement Require	ments for 100 MHz to 6 G	Hz	
		Equipment	Information			
Equipment :	Manufacturer :	Model No. :	Serial No. :	Cal.Organization:	Cal. Date :	
Power Amplifier	Mini-Circuits	ZVE-8G+	520701341	NA	March 9, 2018	
DC Source	Iteck	OT6154	M00157	NA	October 12, 2018	
P-series power meter	Agilent	N1911A	MY45100473	NA	August 11, 2018	
wideband power sensor	Agilent	N1921A	MY51100041	NA	August 11, 2018	
power Meter	Anritsu	ML2495A	1128009	NA	Mar. 11, 2018	
Pulse Power Sensor	Anritsu	MA 2411B	1027500	NA	Mar. 11, 2018	
Dual directional coupler	Woken	TS-PCC0M-05	107090019	NA	Mar. 11, 2018	
MXG Analog Signal						
Generator	Agilent	N5181A	MY49060710	NA	August 11, 2018	
ENA Network Analyzer	Agilent	E5071C	MY46102965	NA	March 11, 2018	
,	-		For Head Tissue			
Model No	Item	Originak Cal. Result	Verified on 2018/12/25	Deviation	Result	
	Impedance, transformed	Originak Cal. Result	Verified 011 20 10/ 12/23	Deviation	Nesuit	
	to feed point	53.5Ω-8.96jΩ	56.5Ω-6.47jΩ	<5Ω	Pass	
DECH=\/2/E 2CH=\	Return Loss(dB)	-20.7	-24.8	19.8%	Pass	
D5GHzV2(5.2GHz)	SAR Value for 1g(mW/g)	7.5	7.27	-3.1%	Pass	
	SAR Value for 10g(mW/g)	2.16	2.07	-4.2%	Pass	
	Impedance, transformed to feed point	50.1Ω-3jΩ	49.6Ω-2.8jΩ	<5Ω	Pass	
	Return Loss(dB)	-30.5	-30.7	0.7%	Pass	
D5GHzV2(5.3GHz)	SAR Value for 1g(mW/g)	7.66	7.34	-4.2%	Pass	
	SAR Value for 10g(mW/g)	2.2	2.07	-5.9%	Pass	
	Impedance, transformed to feed point	51.4Ω-5.39jΩ	50.2Ω-3.01jΩ	<5Ω	Pass	
	Return Loss(dB)	-25.2	-28.8	14.3%	Pass	
D5GHzV2(5.5GHz)	SAR Value for 1g(mW/g)	8.08	8.32	3.0%	Pass	
	SAR Value for 10g(mW/g)	2.3	2.33	1.3%	Pass	
	Impedance, transformed to feed point	57.5Ω-2.95jΩ	54.9Ω-1.65jΩ	<5Ω	Pass	
	Return Loss(dB)	-22.5	-25.8	14.7%	Pass	
D5GHzV2(5.6GHz)	SAR Value for 1g(mW/g)	7.85	7.84	-0.1%	Pass	
	SAR Value for 10g(mW/g)	2.25	2.2	-2.2%	Pass	
	Impedance, transformed to feed point	54.5Ω-1.38jΩ	55.2Ω+1.97jΩ	<5Ω	Pass	
	Return Loss(dB)	-26.9	-26.1	-3.0%	Pass	
D5GHzV2(5.8GHz)	SAR Value for 1g(mW/g)	7.78	7.89	1.4%	Pass	
	SAR Value for 10g(mW/g)	2.21	2.21	0.0%	Pass	

Model No	For Body Tissue				
Wodel No	Item	Originak Cal. Result	Verified on 2018/12/25	Deviation	Result
D5GHzV2(5.2GHz)	Impedance, transformed to feed point	53.1Ω-7.52jΩ	55.1Ω-7.96jΩ	<5Ω	Pass
	Return Loss(dB)	-22.1	-26.1	18.1%	Pass
	SAR Value for 1g(mW/g)	6.99	7.28	4.1%	Pass
	SAR Value for 10g(mW/g)	1.92	2.06	7.3%	Pass
	Impedance, transformed to feed point	49.3Ω-2.06jΩ	52.7Ω-1.73jΩ	<5Ω	Pass
	Return Loss(dB)	-33.1	-30.3	-8.5%	Pass
D5GHzV2(5.3GHz)	SAR Value for 1g(mW/g)	7.25	7.16	-1.2%	Pass
	SAR Value for 10g(mW/g)	2.04	2	-2.0%	Pass
	Impedance, transformed to feed point	50.9Ω-4.94jΩ	48.2Ω-3.03jΩ	<5Ω	Pass
	Return Loss(dB)	-26.1	-24.8	-5.0%	Pass
D5GHzV2(5.5GHz)	SAR Value for 1g(mW/g)	7.63	7.72	1.2%	Pass
	SAR Value for 10g(mW/g)	2.13	2.16	1.4%	Pass
	Impedance, transformed to feed point	58.5Ω-0.79jΩ	57.6Ω-0.43jΩ	<5Ω	Pass
	Return Loss(dB)	-22.1	-23.2	5.0%	Pass
D5GHzV2(5.6GHz)	SAR Value for 1g(mW/g)	7.78	7.92	1.8%	Pass
	SAR Value for 10g(mW/g)	2.14	2.2	2.8%	Pass
D5GHzV2(5.8GHz)	Impedance, transformed to feed point	54.3Ω+0.12jΩ	52.2Ω+0.43jΩ	<5Ω	Pass
	Return Loss(dB)	-27.6	-24.1	-12.7%	Pass
	SAR Value for 1g(mW/g)	7.66	7.79	1.7%	Pass
	SAR Value for 10g(mW/g)	2.15	2.16	0.5%	Pass
Impedance Test-Head			Return Loss-Head		
■ E5071C Network Analyzer			E5071C Network Analyzer		

Validation Report for Head TSL of 5.5GHz Validation Report for Head TSL of 5.6GHz Test Laboratory: BTL Inc. Date: 2018/12/25+ Test Laboratory: BTL Inc. Date: 2018/12/25+ System Check_H5600_7396+ System Check_H5500_7396+ DUT: Dipole D5GHzV2; \$N;1160; DUT: Dipole D5GHzV2; \$N;1160; Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1+ Communication System: UID 0, CW (0); Frequency: 5500 MHz; Duty Cycle: 1:1+ Medium parameters used: f = 5600 MHz; σ = 5.235 S/m; & = 34.669; p = 996 kg/m³ + Medium parameters used: f = 5500 MHz; $\sigma = 5.112$ S/m; $\varepsilon_c = 34.912$; $\rho = 996$ kg/m³ +Ambient Temperature : 23.2 °C; Liquid Temperature : 22.5 °C+/ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.5 °C+ DASY Configuration: ₽ DASY Configuration: Probe: EX3DV4 - SN7396; ConvE(4.94, 4.94, 4.94) @ 5600 MHz; Calibrated: 2018/5/29 ↔ Probe: EX3DV4 - SN7396; ConvE(4.94, 4.94, 4.94) @ 5500 MHz; Calibrated: 2018/5/29 → Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0 ↔ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0 ↔ Electronics: DAE4 Sn1390; Calibrated: 2018/5/11 ₽ Electronics: DAE4 Sn1390: Calibrated: 2018/5/11 ↔ Phantom: SAM Right; Type: Twin SAM; Serial: 1896 ↔ Phantom: SAM Right; Type: Twin SAM: Serial: 1896 ↔ DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ✓ DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) Area Scan (6x6x1): Interpolated grid: dx=10 mm, dy=10 mm Area Scan (6x6x1): Interpolated grid: dx=10 mm, dy=10 mm+ Maximum value of SAR (interpolated) = 18.5 W/kg + Maximum value of SAR (interpolated) = 17.4 W/kg + Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm+ Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm+ Reference Value = 42.15 V/m; Power Drift = -0.07 dB + Reference Value = 40.04 V/m; Power Drift = -0.09 dB+ Peak SAR (extrapolated) = 38.9 W/kg+ Peak SAR (extrapolated) = 37.1 W/kg+ SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.33 W/kg + SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.2 W/kg+ Maximum value of SAR (measured) = 17.9 W/kg Maximum value of SAR (measured) = 17.0 W/kg W/kg 17.900 W/kg 17.000 14.320 13,600 10.741 10.200 7.161 6.800 3.581 3.400

Validation Report for Head TSL of 5.8GHz Validation Report for Body TSL of 5.2GHz Test Laboratory: BTL Inc. Date: 2018/12/25₽ Test Laboratory: BTL Inc. Date: 2018/12/25⊬ System Check_H5800_7396+ System Check_B5200_7396 DUT: Dipole D5GHzV2; SN;1160; DUT: Dipole D5GHzV2; SN;1160; Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:14 Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:14 Medium parameters used: f = 5800 MHz; $\sigma = 5.479$ S/m; $\varepsilon = 34.208$; $\rho = 996$ kg/m³ +Medium parameters used: f = 5200 MHz; $\sigma = 5.372 \text{ S/m}$; g = 47.807; $\rho = 996 \text{ kg/m}^3 +$ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.5 °C↔ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.5 °C₽ DASY Configuration: DASY Configuration: Probe: EX3DV4 - SN7396; ConvE(5.05, 5.05, 5.05) @ 5800 MHz; Calibrated: 2018/5/29 ↔ Probe: EX3DV4 - SN7396; ConvE(5.3, 5.3, 5.3) @ 5200 MHz; Calibrated: 2018/5/29 ₽ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0 ₽ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0 ↔ Electronics: DAE4 Sn1390; Calibrated: 2018/5/11 ✓ Electronics: DAE4 Sn1390: Calibrated: 2018/5/11 ₽ Phantom: SAM Right; Type: Twin SAM; Serial: 1896 ₽ DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ✓ DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) Area Scan (6x6x1): Interpolated grid: dx=10 mm, dy=10 mm + Area Scan (6x5x1): Interpolated grid: dx=10 mm, dy=10 mm + Maximum value of SAR (interpolated) = 17.5 W/kg + Maximum value of SAR (interpolated) = 15.9 W/kg + Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm4 Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm+ Reference Value = 39.17 V/m; Power Drift = -0.06 dB + Reference Value = 35.81 V/m; Power Drift = 0.06 dB + Peak SAR (extrapolated) = 37.5 W/kg+ Peak SAR (extrapolated) = 31.3 W/kg + SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.21 W/kg+ SAR(1 g) = 7.28 W/kg; SAR(10 g) = 2.06 W/kg+ Maximum value of SAR (measured) = 17.0 W/kg Maximum value of SAR (measured) = 15.5 W/kg W/kg 15.500 W/kg 17.000 12.400 13.600 9.300 10.200 6.200 6.800 3.400 3.100

Validation Report for Body TSL of 5.3GHz Validation Report for Body TSL of 5.5GHz Date: 2018/12/25+ Test Laboratory: BTL Inc. Date: 2018/12/25# Test Laboratory: BTL Inc. System Check_B5300_7396+ System Check_B5500_7396 DUT: Dipole D5GHzV2; SN;1160; DUT: Dipole D5GHzV2; SN;1160; Communication System: UID 0, CW (0); Frequency: 5300 MHz; Duty Cycle: 1:1+ Communication System: UID 0, CW (0); Frequency: 5500 MHz; Duty Cycle: 1:1+ Medium parameters used: f = 5300 MHz; σ = 5.507 S/m; g_e = 47.625; ρ = 996 kg/m³ \pm Medium parameters used: f = 5500 MHz: $\sigma = 5.797 \text{ S/m}$: $\varepsilon_r = 47.264$: $\rho = 996 \text{ kg/m}^3 + 10.00 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.5 °C+/ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.5 °C+ DASY Configuration: DASY Configuration: Probe: EX3DV4 - SN7396; ConvE(5.05, 5.05, 5.05) @ 5300 MHz; Calibrated: 2018/5/29 Probe: EX3DV4 - SN7396; ConvE(4.38, 4.38, 4.38) @ 5500 MHz; Calibrated: 2018/5/29 ↔ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0 ↔ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0 ✓ Electronics: DAE4 Sn1390; Calibrated: 2018/5/11 ₽ Phantom: SAM Right; Type: Twin SAM; Serial: 1896 ↔ Phantom: SAM Right; Type: Twin SAM; Serial: 1896 ₽ DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ✓ Area Scan (5x5x1): Interpolated grid: dx=10 mm, dv=10 mm + Area Scan (5x5x1): Interpolated grid: dx=10 mm, dy=10 mm + Maximum value of SAR (interpolated) = 14.7 W/kg + Maximum value of SAR (interpolated) = 16.4 W/kg + Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm+ Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm+ Reference Value = 34.45 V/m; Power Drift = 0.06 dB+ Reference Value = 38.51 V/m; Power Drift = -0.17 dB + Peak SAR (extrapolated) = 30.9 W/kg+ Peak SAR (extrapolated) = 33.9 W/kg + SAR(1 g) = 7.16 W/kg; SAR(10 g) = 2 W/kg \downarrow SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.16 W/kg+ Maximum value of SAR (measured) = 15.5 W/kg Maximum value of SAR (measured) = 16.6 W/kg W/kg 15.500 W/kg 16.600 13.280 12,400 9.960 9.300 6.200 6.640 3.100 3.320

Validation Report for Body TSL of 5.6GHz Validation Report for Body TSL of 5.8GHz Test Laboratory: BTL Inc. Date: 2018/12/25+ Test Laboratory: BTL Inc. Date: 2018/12/25+ System Check B5600 7396+ System Check_B5800_7396+ DUT: Dipole D5GHzV2: SN:1160: DUT: Dipole D5GHzV2; SN;1160; Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1+ Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1+ Medium parameters used: f = 5600 MHz; σ = 5.947 S/m; ε = 47.073; ρ = 996 kg/m³ \downarrow Medium parameters used: f = 5800 MHz: $\sigma = 6.239 \text{ S/m}$: $\epsilon_r = 46.673$: $\rho = 996 \text{ kg/m}^3 + 10.000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.5 °C√ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.5 °C+ DASY Configuration: DASY Configuration: Probe: EX3DV4 - SN7396; ConvE(4.38, 4.38, 4.38) @ 5600 MHz; Calibrated: 2018/5/29 ✓ Probe: EX3DV4 - SN7396; ConvF(4.5, 4.5, 4.5) @ 5800 MHz; Calibrated: 2018/5/29 ₽ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0 ↔ Electronics: DAE4 Sn1390; Calibrated: 2018/5/11 ↔ Electronics: DAE4 Sn1390; Calibrated: 2018/5/11 +/ Phantom: SAM Right; Type: Twin SAM; Serial: 1896 ₽ DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)+ DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) Area Scan (6x6x1): Interpolated grid: dx=10 mm, dy=10 mm+ Area Scan (6x5x1): Interpolated grid: dx=10 mm, dy=10 mm+ Maximum value of SAR (interpolated) = 16.5 W/kg+ Maximum value of SAR (interpolated) = 16.6 W/kg + Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm+ Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm+ Reference Value = 38.11 V/m; Power Drift = -0.17 dB+ Reference Value = 37.07 V/m: Power Drift = -0.19 dB + Peak SAR (extrapolated) = 35.4 W/kg+ Peak SAR (extrapolated) = 35.6 W/kg+ SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.2 W/kg+ SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.16 W/kg+ Maximum value of SAR (measured) = 17.2 W/kg Maximum value of SAR (measured) = 16.9 W/kg W/kg 16.900 W/kg 17.200 13.760 13.520 10.320 10.140 6.880 6.760 3.380 3.440

Calibrator: 2 ot - Liano

Approver: Herbert Lin