Part-of-speech tagging and Hidden Markov Models

Jeremy Barnes HAP/LAP Master 14.01.2022

Definition

 A basic syntactic concept that refers to the syntactic role of each word in a sentence.

- A basic syntactic concept that refers to the syntactic role of each word in a sentence.
- Parts-of-speech can help to disentangle or explain various linguistic problems.

- A basic syntactic concept that refers to the syntactic role of each word in a sentence.
- Parts-of-speech can help to disentangle or explain various linguistic problems.
- Intuitively, what is the difference between the first sentence which is grammatically acceptable and the second that is not?

- A basic syntactic concept that refers to the syntactic role of each word in a sentence.
- Parts-of-speech can help to disentangle or explain various linguistic problems.
- Intuitively, what is the difference between the first sentence which is grammatically acceptable and the second that is not?
- (a) Colorless green ideas sleep furiously.
- (b) *Ideas colorless furiously green sleep.

- (a) Colorless green ideas sleep furiously.
- (b) *Ideas colorless furiously green sleep.

- (a) Colorless green ideas sleep furiously.
- (b) *Ideas colorless furiously green sleep.

The first sentence contains normal transitions for English (ADJ NOUN) (NOUN VERB), while the second contains unnatural transitions (NOUN ADJ), (ADJ VERB).

- (a) Colorless green ideas sleep furiously.
- (b) *Ideas colorless furiously green sleep.

The first sentence contains normal transitions for English (ADJ NOUN) (NOUN VERB), while the second contains unnatural transitions (NOUN ADJ), (ADJ VERB).

- Vocabulary: V = {colorless, green, ideas, person, dog, ...}
- Tag set: $T = \{DET, NOUN, VERB, ADJ, ...\}$
- Task: given a sequence of tokens, assign the corresponding labels (POS tags):

- (a) Colorless green ideas sleep furiously.
- (b) *Ideas colorless furiously green sleep.

The first sentence contains normal transitions for English (ADJ NOUN) (NOUN VERB), while the second contains unnatural transitions (NOUN ADJ), (ADJ VERB).

Definition

- Vocabulary: V = {colorless, green, ideas, person, dog, ...}
- Tag set: $T = \{DET, NOUN, VERB, ADJ, ...\}$
- Task: given a sequence of tokens, assign the corresponding labels (POS tags):

Colorless/ADJ green/ADJ ideas/NOUN sleep/VERB furiously/ADV ./PUNCT

What purpose do they have?

- Part-of-speech tags are morpho-syntactic in nature.
- They do not describe semantic categories.
- pos_tag("... the howling of the shrieking storm") =

What purpose do they have?

- Part-of-speech tags are morpho-syntactic in nature.
- They do not describe semantic categories.
- pos_tag("... the howling of the shrieking storm") =

 $\ldots \ \mathsf{the/DET} \ \mathsf{howling/NOUN} \ \mathsf{of/ADP} \ \mathsf{the/DET} \ \mathsf{shrieking/ADJ} \\ \mathsf{storm/NOUN}$

What purpose do they have?

- Part-of-speech tags are morpho-syntactic in nature.
- They do not describe semantic categories.
- pos_tag("... the howling of the shrieking storm") =

 $\ldots \ \, the/DET \ \, \frac{howling/NOUN}{howling/NOUN} \ \, of/ADP \ \, the/DET \ \, \frac{shrieking/ADJ}{storm/NOUN}$

Penn Treebank tagset

- Penn treebank was one of the first large-scaled tagged corpora.
- Penn treebank tagset was most popular for English.
- 36 tags, many specific for English
- https://aclanthology.org/J93-2004/

Penn Treebank tagset

- Penn treebank was one of the first large-scaled tagged corpora.
- Penn treebank tagset was most popular for English.
- 36 tags, many specific for English
- https://aclanthology.org/J93-2004/

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Universal Dependencies

- Attempt at a language-invariant tagset.
- Data available in 100+ languages.
- 17 tags.
- https://universaldependencies.org/

Universal Dependencies

- Attempt at a language-invariant tagset.
- Data available in 100+ languages.
- 17 tags.
- https://universaldependencies.org/

	Tag	Description	Example
Open Class	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
	VERB	words for actions and processes	draw, provide, go
ŏ	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by, under
S		spacial, temporal, or other relation	
Dic.	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
🗟	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
 	NUM	Numeral	one, two, first, second
Se	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
<u>ا۾</u>	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
~	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
н	PUNCT	Punctuation	;,0
Other	SYM	Symbols like \$ or emoji	\$, %
٦	X	Other	asdf, qwfg

Let's start with a naïve approach

Let's start with a naïve approach

- Assign the most likely POS tag to each token independently.
- pos_tag("Colorless green ideas sleep furiously") =

Let's start with a naïve approach

- Assign the most likely POS tag to each token independently.
- pos_tag("Colorless green ideas sleep furiously") =
- pos_tag("Colorless") → ADJ
- pos_tag("green") → ADJ
- pos_tag("ideas") → NOUN
- pos_tag("sleep") → VERB
- pos_tag("furiously") → ADV

Let's start with a naïve approach

- Assign the most likely POS tag to each token independently.
- pos_tag("Colorless green ideas sleep furiously") =
- pos_tag("Colorless") → ADJ
- pos_tag("green") → ADJ
- pos_tag("ideas") → NOUN
- pos_tag("sleep") → VERB
- pos_tag("furiously") → ADV

What problems are there with this model?

Assign tags sequentially from left to right:

• Previously predicted tags can be taken into account.

- Previously predicted tags can be taken into account.
- Includes a bounded dependency.

- Previously predicted tags can be taken into account.
- Includes a bounded dependency.
- pos_tag("Colorless green ideas sleep furiously") =

- Previously predicted tags can be taken into account.
- Includes a bounded dependency.
- pos_tag("Colorless green ideas sleep furiously") =
- pos_tag(*, "Colorless") → ADJ

- Previously predicted tags can be taken into account.
- Includes a bounded dependency.
- pos_tag("Colorless green ideas sleep furiously") =
- pos_tag(*, "Colorless") → ADJ
- pos_tag(ADJ, "green") → ADJ

- Previously predicted tags can be taken into account.
- Includes a bounded dependency.
- pos_tag("Colorless green ideas sleep furiously") =
- pos_tag(*, "Colorless") → ADJ
- pos_tag(ADJ, "green") → ADJ
- pos_tag(ADJ, "ideas") → NOUN

- Previously predicted tags can be taken into account.
- Includes a bounded dependency.
- pos_tag("Colorless green ideas sleep furiously") =
- pos_tag(*, "Colorless") → ADJ
- pos_tag(ADJ, "green") → ADJ
- pos_tag(ADJ, "ideas") → NOUN
- $pos_tag(NOUN, "sleep") \rightarrow VERB$

- Previously predicted tags can be taken into account.
- Includes a bounded dependency.
- pos_tag("Colorless green ideas sleep furiously") =
- pos_tag(*, "Colorless") → ADJ
- pos_tag(ADJ, "green") → ADJ
- pos_tag(ADJ, "ideas") → NOUN
- pos_tag(NOUN, "sleep") → VERB
- pos_tag(VERB, "furiously") → ADV

Two types of constraints

- Local: the word sleep is more commonly used as a VERB, rather than NOUN.
- Contextual: the tag VERB often follows ADJ NOUN

• Imagine we have a set of sentences X and tag sequences Y.

- Imagine we have a set of sentences X and tag sequences Y.
- Each sentence is a sequence of words: $X_i = w_1, w_2, \dots, w_n$
- and tag sequences: $Y_i = t_1, t_2, \dots, t_n$

- Imagine we have a set of sentences X and tag sequences Y.
- Each sentence is a sequence of words: $X_i = w_1, w_2, \dots, w_n$
- and tag sequences: $Y_i = t_1, t_2, \dots, t_n$
- We need a function to map sentences to tag sequences f(x) = y

- Imagine we have a set of sentences X and tag sequences Y.
- Each sentence is a sequence of words: $X_i = w_1, w_2, \dots, w_n$
- and tag sequences: $Y_i = t_1, t_2, \dots, t_n$
- We need a function to map sentences to tag sequences f(x) = y

How could we incorporate the two constraints (local and contextual) into a tagging model?

(Talk with partners for 5 minutes)

Generative model

• We want to find p(x, y)

Generative model

- We want to find p(x, y)
- Again, we use the refactoring available from probability theory:
- p(x,y) = p(y)p(x|y)

- We want to find p(x, y)
- Again, we use the refactoring available from probability theory:
- p(x,y) = p(y)p(x|y)
- Models that apply this method are called generative models

- We want to find p(x, y)
- Again, we use the refactoring available from probability theory:
- p(x,y) = p(y)p(x|y)
- Models that apply this method are called generative models
 - First, we generate y with probability p(y): called hidden state

- We want to find p(x, y)
- Again, we use the refactoring available from probability theory:
- p(x,y) = p(y)p(x|y)
- Models that apply this method are called generative models
 - First, we generate y with probability p(y): called hidden state
 - Next, given y, we generate x with probability p(x|y): we generate the observed data from our current hidden state

- We want to find p(x, y)
- Again, we use the refactoring available from probability theory:
- p(x,y) = p(y)p(x|y)
- Models that apply this method are called generative models
 - First, we generate y with probability p(y): called hidden state
 - Next, given y, we generate x with probability p(x|y): we generate the observed data from our current hidden state
 - Note that this does not model p(y|x), i.e. 'given our input, what should be the output'...

- We want to find p(x, y)
- Again, we use the refactoring available from probability theory:
- p(x,y) = p(y)p(x|y)
- Models that apply this method are called generative models
 - First, we generate y with probability p(y): called hidden state
 - Next, given y, we generate x with probability p(x|y): we generate the observed data from our current hidden state
 - Note that this does not model p(y|x), i.e. 'given our input, what should be the output'...
 - instead it answers the counterintuitive question 'If we were going to generate y, how likely is it that the model will be x?'

Noisy Channel

decoding rule:

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} p(\boldsymbol{y} \mid \boldsymbol{x}) = \arg \max_{\boldsymbol{y}} p(\boldsymbol{x} \mid \boldsymbol{y}) \times p(\boldsymbol{y})$$

Generative model

• After training, these models can also be used to "generate" random instances (outcomes), either of an observation and target (x, y), or of an observation x given a target value y (x|y).

- After training, these models can also be used to "generate" random instances (outcomes), either of an observation and target (x, y), or of an observation x given a target value y (x|y).
- Given a model of one conditional probability, and estimated probability distributions for the variables x and y, denoted P(x) and P(y), one can estimate the opposite conditional probability using Bayes' rule:
- P(x|y)P(y) = P(y|x)P(x)

- After training, these models can also be used to "generate" random instances (outcomes), either of an observation and target (x, y), or of an observation x given a target value y (x|y).
- Given a model of one conditional probability, and estimated probability distributions for the variables x and y, denoted P(x) and P(y), one can estimate the opposite conditional probability using Bayes' rule:
- P(x|y)P(y) = P(y|x)P(x)
- If we make the same simplifying assumption about the conditional probability as we did with n-grams (Markov assumption), these models are called Hidden Markov Models.

- p(x,y) = p(y)p(x|y)
- $\mathbf{x} = w_1, w_2, \dots, w_n$
- $y = t_1, t_2, \dots, t_n$

- p(x,y) = p(y)p(x|y)
- $\mathbf{x} = w_1, w_2, \dots, w_n$
- $y = t_1, t_2, \ldots, t_n$
- We want $\max_{y \in Y} p(x, y) = \max_{y \in Y} p(y)p(x|y)$

- p(x,y) = p(y)p(x|y)
- $x = w_1, w_2, \dots, w_n$
- $y = t_1, t_2, \dots, t_n$
- We want $\max_{y \in Y} p(x, y) = \max_{y \in Y} p(y) p(x|y)$
- Unlike with N-grams, we want the most likely sequence of tags, not the probability itself.
- $argmax_{y \in Y} p(x, y) = argmax_{y \in Y} p(y) p(x|y)$

- p(x,y) = p(y)p(x|y)
- $x = w_1, w_2, \dots, w_n$
- $y = t_1, t_2, \dots, t_n$
- We want $\max_{y \in Y} p(x, y) = \max_{y \in Y} p(y) p(x|y)$
- Unlike with N-grams, we want the most likely sequence of tags, not the probability itself.
- $argmax_{y \in Y} p(x, y) = argmax_{y \in Y} p(y) p(x|y)$
- Example:
- $f(\text{the best food}) = argmax_{y \in Y} p(x, y) =$ $argmax_{y \in Y} p(y) p(x|y) = \text{DET ADJ NOUN}$

Formalization

- a set of N states $Q = q_1, q_2, \dots, q_N$
- a sequence of T observations $O = o_1, o_2, \dots, o_T$
- a transition probability matrix $A = a_{11} \dots a_{ij} \dots a_{NN}$
- a sequence of observation likelihoods $B = b_i(o_t)$
- and an initial probability distribution over states $\pi = \pi_1, \pi_2, \dots, \pi_N$

Formalization

Two simplifying assumptions

Formalization

- Two simplifying assumptions
- Markov assumption: $P(q_i|q_1,q_2,\ldots,q_{i-1})=P(q_i|q_{i-1})$
 - That is, the probability of a particular state only depends on the previous state.

Formalization

- Two simplifying assumptions
- Markov assumption: $P(q_i|q_1,q_2,\ldots,q_{i-1})=P(q_i|q_{i-1})$
 - That is, the probability of a particular state only depends on the previous state.
- Output independence:

$$P(o_i|q_1, q_2, \ldots, q_T, o_1, o_2, \ldots, o_T) = P(o_i|q_i)$$

 That is, the probability of an output observation depends only on the current state.

Let's look at a concrete example:

- Given a sequence of observed words "It will be"
- and a current tag only for 'it will' DET AUX

Let's look at a concrete example:

- Given a sequence of observed words "It will be"
- and a current tag only for 'it will' DET AUX
- 1. What is the probability that the current tag is VERB?

•
$$P(t_i|t_{i-1}) = \frac{count(AUX, VERB)}{count(AUX)} = \frac{10471}{13124} = .80$$

2. What is the probability of 'be', given VERB?

•
$$P(w_i|t_i) = \frac{count(VERB,'be')}{count(VERB)} = \frac{4046}{13126} = .31$$

Let's look at a concrete example:

- Given a sequence of observed words "It will be"
- and a current tag only for 'it will' DET AUX
- 1. What is the probability that the current tag is VERB?

•
$$P(t_i|t_{i-1}) = \frac{count(AUX, VERB)}{count(AUX)} = \frac{10471}{13124} = .80$$

2. What is the probability of 'be', given VERB?

•
$$P(w_i|t_i) = \frac{count(VERB,'be')}{count(VERB)} = \frac{4046}{13126} = .31$$

• $P(t_i|t_{i-1}) \times P(w_i|t_i) = .80 * .31 = .248$

Summary

•
$$f(x_1, x_2, ..., x_n) =$$

 $argmax_{y \in Y} p(x_1, x_2, ..., x_n, y_1, y_2, ..., y_{n+1}) =$
 $argmax_{y \in Y} \prod_{i=1}^{n+1} p(y_i|y_{i-1}) \prod_{i=1}^{n} p(x_i|y_i)$

Full example

```
• p("it will be", DET AUX VERB) = q(DET|*) \times q(AUX|DET) \times q(VERB|AUX) \times \\q(STOP|VERB) \times b(it|DET) \times b(will|AUX) \times b(be|VERB)
```

Full example

- p("it will be", DET AUX VERB) = $q(DET|*) \times q(AUX|DET) \times q(VERB|AUX) \times q(STOP|VERB) \times b(it|DET) \times b(will|AUX) \times b(be|VERB)$
- $y_o = *, y_{n+1} = STOP$

Digression: generative vs. discriminative models

Different views

• generative models: p(x, y)

• discriminative: p(y|x)

Digression: generative vs. discriminative models

Different views

- generative models: p(x, y)
 - Language models
 - Hidden Markov Models
 - Naive Bayes
- discriminative: p(y|x)

Digression: generative vs. discriminative models

Different views

- generative models: p(x, y)
 - Language models
 - Hidden Markov Models
 - Naive Bayes
- discriminative: p(y|x)
 - MaxEntropy model
 - Conditional Random Fields
 - Support Vector Machines

Same as with language models

- $q(VERB|AUX) = \frac{count(AUX, VERB)}{count(AUX)}$
- A typical tagset has between 20-60 tags.
- If a tagset has 20 tags, how many possible bigrams?

Same as with language models

- $q(VERB|AUX) = \frac{count(AUX, VERB)}{count(AUX)}$
- A typical tagset has between 20-60 tags.
- If a tagset has 20 tags, how many possible bigrams?
- Again, many paramaters would be zero.

Linear interpolation

•
$$q(VERB|AUX) = \lambda_1 \frac{count(AUX, VERB)}{count(AUX)} + \lambda_2 \frac{count(VERB)}{count()}$$

Unseen words

• What happens if we find a word that we haven't seen in training?

Unseen words

- What happens if we find a word that we haven't seen in training?
- Same as before, 0 probability.

Unseen words

- What happens if we find a word that we haven't seen in training?
- Same as before, 0 probability.
- Solution: replace all infrequent words with a single UNK token.

Example

 Hawke indicated Djokovic had his visa restored only on " procedural fairness grounds"

Example

- Hawke indicated Djokovic had his visa restored only on " procedural fairness grounds"
- UNK indicated UNK had his visa restored only on "UNK fairness grounds"

Example

- Hawke indicated Djokovic had his visa restored only on " procedural fairness grounds"
- UNK indicated UNK had his visa restored only on "UNK fairness grounds"
- Unfortunately, this conflates a lot of information.

Example

- Hawke indicated Djokovic had his visa restored only on " procedural fairness grounds"
- UNK indicated UNK had his visa restored only on " UNK fairness grounds"
- Unfortunately, this conflates a lot of information.
- Can you think of a simple way of augmenting this approach to differentiate KINDS of unseen words?

Parameter estimation

Example

- Hawke indicated Djokovic had his visa restored only on " procedural fairness grounds"
- UNK indicated UNK had his visa restored only on " UNK fairness grounds"
- Unfortunately, this conflates a lot of information.
- Can you think of a simple way of augmenting this approach to differentiate KINDS of unseen words?
- UNK-NAME indicated UNK-NAME had his visa restored only on "UNK-al fairness grounds"

• So far, we've examined:

- So far, we've examined:
 - The problem of POS tagging
 - HMMs and how they are parameterized

- So far, we've examined:
 - The problem of POS tagging
 - HMMs and how they are parameterized
- but we are still missing how to apply the model to a new sentence

Example

1	suspect	the	present	forecast	is	pessimistic	
CD	IJ	DT	ΙΙ	NN	NNS	'n	
NN	NN	IJ	NN	VB	VBZ		
NNP	VB	NN	RB	VBD			
PRP	VBP	NNP	VB	VBN			
		VBP	VBP	VBP			
4	4	5	5	5	2	1	1

4,000 possible state sequences!

Naïve solutions

- 1. List all possible sequences
 - Correct, but inefficient.
- 2. Move left to right through trellis and greedily choose best state t_i based t_{i-1} and w_i .
 - Fast, but not ensured to give argmax p(x, y)

What if...

• If I knew the score of every sequence t_1, \ldots, t_{n-1} , I could reason easily about t_n

- If I knew the score of every sequence t_1, \ldots, t_{n-1} , I could reason easily about t_n
- BUT my decision about t_n would only really depend on t_{n-1} !

- If I knew the score of every sequence t_1, \ldots, t_{n-1} , I could reason easily about t_n
- BUT my decision about t_n would only really depend on t_{n-1} !
- So I really only need to know the score of the single best sequence ending in each t_{n-1} .

- If I knew the score of every sequence t_1, \ldots, t_{n-1} , I could reason easily about t_n
- BUT my decision about t_n would only really depend on t_{n-1} !
- So I really only need to know the score of the single best sequence ending in each t_{n-1} .
- Recurrence!

- If I knew the score of every sequence t_1, \ldots, t_{n-1} , I could reason easily about t_n
- BUT my decision about t_n would only really depend on t_{n-1} !
- So I really only need to know the score of the single best sequence ending in each t_{n-1} .
- Recurrence!
- We can precalculate everything before and keep the best scores.

Algorithm

Instead of enumerating all possible tag sequences

Algorithm

- Instead of enumerating all possible tag sequences
- Viterbi makes use of the Markov assumption in the HMM.

Algorithm

- Instead of enumerating all possible tag sequences
- Viterbi makes use of the Markov assumption in the HMM.
- $argmax_{y \in Y} \prod_{i=1}^{n+1} \frac{p(y_i|y_{i-1})}{p(y_i|y_{i-1})} \prod_{i=1}^{n} p(x_i|y_i)$
- This fact will make calculations faster.

Steps		

Steps

Initialize a path probability matrix viterbi[N, T]

Steps

- Initialize a path probability matrix viterbi[N, T]
- Initialization step:
 - $viterbi[s,1] = \pi_s * b_s(o_1)$

Steps

- Initialize a path probability matrix viterbi[N, T]
- Initialization step:
 - $viterbi[s, 1] = \pi_s * b_s(o_1)$
- Recursion step:
 - for each timestep t from 2 to T do for each state s from 1 to S do $viterbi[s,t] = max\ viterbi[s',t-1]*a_{s',s}*b_s(o_t)$

Steps

- Initialize a path probability matrix viterbi[N, T]
- Initialization step:
 - $viterbi[s, 1] = \pi_s * b_s(o_1)$
- Recursion step:
 - for each timestep t from 2 to T do for each state s from 1 to S do $viterbi[s,t] = max\ viterbi[s',t-1]*a_{s',s}*b_s(o_t)$
- Termination step:
 - bestPathProb = $\max_{s=1}^{N} viterbi[s, T]$

	I	suspect	the	present	forecast	is	pessimistic	
CD	3E-7							
DT			3E-8					
IJ		1E-9	1E-12	3E-12			7E-23	
NN	4E-6	2E-10	1E-13	6E-13	4E-16			
NNP	1E-5		4E-13					
NNS						1E-21		
PRP	4E-3							
RB				2E-14				
VB		6E-9		3E-15	2E-19			
VBD					6E-18			
VBN					4E-18			
VBP		5E-7	4E-14	4E-15	9E-19			
VBZ						6E-18		
								2E-24
	1	2	3	4	5	6	7	8

However, this only gets us the best probability :/

	ı	suspect	the	present	forecast	is	pessimistic	•
CD	3E-7							
DT			3E-8					
JJ		1E-9	1E-12	3E-12			7E-23	
NN	4E-6	2E-10	1E-13	6E-13	4E-16			
NNP	1E-5		4E-13					
NNS						1E-21		
PRP	4E-3							
RB				2E-14				
VB		6E-9		3E-15	2E-19			
VBD					6E-18			
VBN					4E-18			
VBP		5E-7	4E-14	4E-15	9E-19			
VBZ						6E-18		
								2E-24
	1	2	3	4	5	6	7	8

To get best path

• Initialize a path probability matrix viterbi[N, T]

To get best path

- Initialize a path probability matrix viterbi[N, T]
- Initialization step:
 - $viterbi[s,1] = \pi_s * b_s(o_1)$
 - $backpointer[s, 1] \leftarrow 0$

To get best path

- Initialize a path probability matrix viterbi[N, T]
- Initialization step:
 - $viterbi[s, 1] = \pi_s * b_s(o_1)$
 - $backpointer[s, 1] \leftarrow 0$
- Recursion step:
 - for each timestep t from 2 to T do
 for each state s from 1 to S do $viterbi[s,t] = max \ viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow argmax \ viterbi[s',t-1] * a_{s',s} * b_s(o_t)$

To get best path

- Initialize a path probability matrix viterbi[N, T]
- Initialization step:
 - $viterbi[s, 1] = \pi_s * b_s(o_1)$
 - $backpointer[s, 1] \leftarrow 0$
- Recursion step:
 - for each timestep t from 2 to T do for each state s from 1 to S do $viterbi[s,t] = max \ viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow argmax \ viterbi[s',t-1] * a_{s',s} * b_s(o_t)$
- Termination step:
 - bestPathProb = $\max_{s=1}^{N} viterbi[s, T]$
 - bestPathPointer $\leftarrow argmax_{s=1}^{N} viterbi[s, T]$

To get best path

- Initialize a path probability matrix viterbi[N, T]
- Initialization step:
 - $viterbi[s,1] = \pi_s * b_s(o_1)$
 - $backpointer[s, 1] \leftarrow 0$
- Recursion step:
 - for each timestep t from 2 to T do for each state s from 1 to S do $viterbi[s,t] = max \ viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow argmax \ viterbi[s',t-1] * a_{s',s} * b_s(o_t)$
- Termination step:
 - bestPathProb = $\max_{s=1}^{N} viterbi[s, T]$
 - bestPathPointer $\leftarrow argmax_{s=1}^{N} viterbi[s, T]$

For best path, start at bestPathPointer and follow backpointer[].

Tagging using HMMs

- Easy to train (A and B parameters)
- Relatively good results.

Tagging using HMMs

- Easy to train (A and B parameters)
- Relatively good results.
- Limited on types of elements that are used for prediction
 - Previous n-1 tags
 - The current word, given its tag

Tagging using HMMs

- Easy to train (A and B parameters)
- Relatively good results.
- Limited on types of elements that are used for prediction
 - Previous n-1 tags
 - The current word, given its tag
- Difficulty modeling b(word|tag)
 - Difficult for unknown words
 - This becomes even more of a problem for morphologically complex languages
 - Etxe, etxea, etxeak, etxearen, etxeen, etxetik, etxeetatik, etc.

Discriminative models are less constrained:

- Conditional Random Fields (CRF)
- Perceptron Tagger
- Neural networks

General idea (CRF, Perceptron)

General idea (CRF, Perceptron)

- Can easily use as context:
 - Three previous tags
 - Two previous words
 - morphological tag of two previous words
 - lemma of two previous words

General idea (CRF, Perceptron)

- Can easily use as context:
 - Three previous tags
 - Two previous words
 - morphological tag of two previous words
 - lemma of two previous words
- $p(t_i|t_{i-2},t_{i-1},w_{i-2},w_{i-1},m_{i-2},m_{i-1},l_{i-2},l_{i-1})$ instead of $p(t_i|t_{i-1})*p(w_i|t_i)$

Feature engineering		

Feature engineering

- The selection of features in discriminative models in the late 90's/early 2000's was equivalent to hyperparameter tuning with today's neural networks.
- Important for results → lots of time devoted but also a bit of a black art.

Feature engineering

- The selection of features in discriminative models in the late 90's/early 2000's was equivalent to hyperparameter tuning with today's neural networks.
- Important for results → lots of time devoted but also a bit of a black art.
- Common features:

Feature engineering

- The selection of features in discriminative models in the late 90's/early 2000's was equivalent to hyperparameter tuning with today's neural networks.
- Important for results → lots of time devoted but also a bit of a black art.
- Common features:
 - current, previous, next words
 - previous POS tags
 - For rare words: first and last character sequences
 - Whether the word contains a number, uppercase, or hyphen

Neural approaches

Many, many proposed models

■ RNNs, CNNs, Transformers, etc.

Neural approaches

Many, many proposed models

- RNNs, CNNs, Transformers, etc.
- The state-of-the-art models generally have the following ideas:

Neural approaches

Many, many proposed models

- RNNs, CNNs, Transformers, etc.
- The state-of-the-art models generally have the following ideas:
 - Some kind of RNN for contextualization
 - Some kind of character-level information for unseen words
 - CRF layer at the end, to better model the interdependencies between output labels

Figure 7: A BI-LSTM-CRF model.

Exercises in class (from "Natural Language Processing" J. Eisenstein)

- Given the following tables of emission and transition scores
- Calculate the best POS sequence for They can fish.

	they	can	fish
N	-2	-3	-3
V	-10	-1	-3

(a) Weights for emission features.

	N	V	♦
\Diamond	-1	-2	$-\infty$
N	-3	-1	-1
V	-1	-3	-1

(b) Weights for transition features. The "from" tags are on the columns, and the "to" tags are on the rows.

Table 7.1: Feature weights for the example trellis shown in Figure 7.1. Emission weights from \Diamond and \blacklozenge are implicitly set to $-\infty$.

Exercises in class

- Given the following tables of emission and transition scores (note that these are log probabilities)
- Calculate the best POS sequence for They can fish.

Exercise 2 in class

Assuming a bigram transition model, calculate the most likely tag sequence for the aged bottle flies fast.

Emission probabilities:

	the	aged	bottle	flies	fast	
ADJ	-inf	-2	-inf	-inf	-2	
ADV	-inf	-inf	-inf	-inf	-1	
DET	-1	-inf	-inf	-inf	-inf	
NOUN	-inf	-inf	-2	-3	-5	
VERB	-inf	-5	-2	-3	-2	

Transition probabilities:

	ADJ	ADV	DET	NOUN	VERB	STOP
*	-1	-3	-3	-4	-4	-inf
ADJ	-3	-4	-inf	-2	-3	-3
ADV	-3	-3	-4	-4	-3	-3
DET	-2	-4	-inf	-0.5	-4	-inf
NOUN	-4	-4	-4	-3	-2	-3
VERB	-3	-2	-4	-3	-inf	-3