Problem Set 3

Tate Mason

2025-03-09

Question 1 - Hansen 3.16

For the first regression, let's first show that residuals such that $\tilde{e}=Y-X_1\tilde{\beta}_1$. Further, for the second, $\hat{e}=Y-X_1\hat{\beta}_1-X_2\hat{\beta}_2$. Since the total sum of squares does not depend on the beta's, we will focus on the squared sum of residuals. $SSR_1=\tilde{e}^T\tilde{e}$ and $SSR_2=\hat{e}^T\hat{e}$. Further, $R_i^2=1-(\frac{SSR_i}{SST})$. Because the second model includes the explanatory power of the first in the case of $\hat{\beta}_2=0$, as well as more when $\hat{\beta}_2\neq 0$, $SSR_2\leq SSR_1$. Because of this, $R_2^2=1-(\frac{SSR_2}{SST})\geq 1-(\frac{SSR_1}{SST})=R_1^2$. The two are equal in the case when $\hat{\beta}_2=0$, or there is no omitted variable in the first regression.

Question 2 - Hansen 3.24

```
library(haven)
library(dplyr)
```

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

```
dat <- read_dta('~/SchoolWork/Sem2/Metrics/PSets/PS3/cps09mar.dta')
sample <- (dat[,11]==4)&(dat[,12]==7)&(dat[,2]==0)
df <- dat[sample,]
y <- as.matrix(log(df[,5]/(df[,6]*df[,7])))
exp <- df[,1]-df[,4]-6
exp2 <- (exp^2)/100
x_df <- data.frame(
   education = df[,4],
   experience = exp,
   exp_squared = exp2,
   intercept = 1
)
x <- as.matrix(x_df)
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)</pre>
```

Part A

```
fit <- x %*% beta
resid <- y - fit
SST <- sum((y - mean(y))^2)
SSE <- sum(resid^2)
R2 <- 1 - (SSE/SST)
cat("Part (a):\n")

Part (a):

cat("R^2:", R2, "\n")

R^2: 0.3875804

cat("Sum of squared errors:", SSE, "\n\n")</pre>
```

Part B

```
x1_df <- data.frame(</pre>
  experience = exp,
  exp_squared = exp2,
  intercept = 1
x1 <- as.matrix(x1_df)</pre>
xx1 <- t(x1)%*%x1
xy1 <- t(x1)%*%y
beta1 <- solve(xx1,xy1)</pre>
fitted1 <- x1%*%beta1
resid_lwage <- y - fitted1</pre>
edu <- as.matrix(df[,4])</pre>
xx2 <- t(x1) %*% x1
xy2 <- t(x1) %*% edu
beta2 <- solve(xx2,xy2)
fitted2 <- x1 %*% beta2
resid_edu <- edu - fitted2</pre>
x3 <- cbind(resid_edu, rep(1,nrow(df)))
xx3 <- t(x3)%*%x3
xy3 <- t(x3)%*%resid_lwage</pre>
betab <- solve(xx3, xy3)</pre>
fittedb <- x3 %*% betab
residb <- resid_lwage - fittedb</pre>
SSTb <- sum((resid_lwage - mean(resid_lwage))^2)</pre>
SSEb <- sum(residb^2)</pre>
R2b \leftarrow 1 - (SSEb/SSTb)
cat("Part (b):\n")
```

```
Part (b):
```

```
cat("R^2:", R2b, "\n")
```

R^2: 0.3651369

```
cat("Sum of squared errors:", SSEb, "\n\n")
```

Sum of squared errors: 83.01622

Part C

While the SSE is equal in both approaches, the R^2 differs slightly. This is because in the first part, we are using R^2 to measure how much education, experience, and experience squared explain total variation in log wage. In the second, we are using residuals which will have smaller variation than the raw variable.

Question 3 - Hansen 3.25

```
rm(list=ls())
library(haven)
dat <- read_dta('~/SchoolWork/Sem2/Metrics/PSets/PS3/cps09mar.dta')</pre>
sample <- (dat[,11]==4) \& (dat[,12]==7) \& (dat[,2]==0)
df <- dat[sample,]</pre>
y \leftarrow as.matrix(log(df[,5]/(df[,6]*df[,7])))
\exp <- df[,1]-df[,4]-6
\exp 2 < - (\exp^2)/100
x_df <- data.frame(</pre>
  education = df[,4],
  experience = exp,
  exp_squared = exp_2,
  intercept = 1
x <- as.matrix(x_df)</pre>
xx <- t(x)%*%x
xy <- t(x)%*%y
beta <- solve(xx,xy)</pre>
fitted <- x %*% beta
resid <- y - fitted
```

```
x1 <- as.matrix(df[,4])
x2 <- as.matrix(exp)
x1_sq <- x1^2
x2_sq <- x2^2</pre>
```

Part A

```
sum_resid <- sum(resid)
cat("(a) Sum of residuals:", sum_resid, "\n")</pre>
```

(a) Sum of residuals: -2.207123e-13

Part B

```
sum_x1_resid <- sum(x1*resid)
cat("(b) Sum of X1*residuals:", sum_x1_resid, "\n")</pre>
```

(b) Sum of X1*residuals: -6.975753e-12

Part C

```
sum_x2_resid <- sum(x2*resid)
cat("(c) Sum of X2*residuals:", sum_x2_resid, "\n")</pre>
```

(c) Sum of X2*residuals: -6.394885e-13

Part D

```
sum_x1sq_resid <- sum(x1_sq*resid)
cat("(d) Sum of X1^2*residuals:", sum_x1sq_resid, "\n")</pre>
```

(d) Sum of X1^2*residuals: 142.528

Part E

```
sum_x2sq_resid <- sum(x2_sq*resid)
cat("(e) Sum of X2^2*residuals:", sum_x2sq_resid, "\n")</pre>
```

(e) Sum of X2^2*residuals: 7.560175e-12

Part F

```
sum_fit_resid <- sum(fitted*resid)
cat("(f) Sum of fitted values*residuals:", sum_fit_resid, "\n")</pre>
```

(f) Sum of fitted values*residuals: -1.167733e-12

Part G

```
sum_resid_sq <- sum(resid^2)
cat("(f) Sum of squared residuals:", sum_resid_sq, "\n")</pre>
```

(f) Sum of squared residuals: 83.01622

Question 4 - Hansen 4.6

By the given constraint of linear estimators, $\tilde{\beta} = CY$ such that C is a txp matrix of all constants. Variance can be computed via the following $var[\tilde{\beta}|X] = var[CY|X] = Cvar[Y|X]C^T = C\sigma^2CXC^T = \sigma^2CC^T$, following that CX = I in the case of unbiasedness (Hansen 105). Now, using the Gauss-Markov theorem, $\hat{\beta} = (X^TX)^{-1}X^TY$ and $D = C - (X^TX)^{-1}X^t$. Via the definition CX = I, multiplying $D \times X$ yields $I = (X^TX)^{-1}X^TX$ and DX = 0. Now, we can infer $\tilde{\beta} = CY = [(X^TX)^{-1}X^T + D]Y = \hat{\beta} + DY$. Let's go back to variance: $var[\tilde{\beta}|X] = var[\hat{\beta}|X] + [DY|X] + 2cov[\hat{\beta}, DY|X]$. This can be expanded as follows $cov[\hat{\beta}, DY|X]cov[(X^TX)^{-1}X^TY, DY|X] = (X^TX)^{-1}X^Tcov[Y, DY|X]$. Expanding further, $cov[Y, DY|X] = cov[X\beta + \epsilon, D(X\beta + \epsilon)|X] = Dcov[\epsilon, \epsilon|X] = D\sigma^2$. Thus, $cov[\hat{\beta}, DY|X] = \sigma^2(X^TX)^{-1}X^TD$. Since, as found before, DX = 0 it follows that $X^TD^T = 0$. Thus, $cov[\hat{\beta}, DY|X] = 0$. Therefore, $var[\tilde{\beta}|X] = var[\hat{\beta}|X] + var[DY|X] = \sigma^2(X^TX)^{-1} + \sigma^2DD^T$. DD^T is positive semi-definite, therefore $var[\tilde{\beta}|X] \geq \sigma^2(X^TX)^{-1} = \sigma^2(X^T\Sigma^{-1}X)^{-1}$. In the text, in the case of linear estimation, $\Sigma = I$, thus our findings prove the given inequality.

Question 5 - Hansen 7.7

Part A

 $\beta = [\mathbb{E}(XX^T)]^{-1}\mathbb{E}(XY). \text{ Substituting in the given } Y, \ \beta_{LP} = [\mathbb{E}(XX^T)]^{-1}\mathbb{E}(X(X^T\beta + e + u)). \text{ Distributing the expectation, } \beta_{LP} = [\mathbb{E}(XX^T)]^{-1}(E(XX^T)\beta + \mathbb{E}(Xe) + \mathbb{E}(Xu)). \text{ Given } \mathbb{E}(Xe), \ \mathbb{E}(Xu) = 0, \ \beta_{LP} = [\mathbb{E}(XX^T)]^{-1}\mathbb{E}(XX^T)\beta = \beta \text{ so, we can conclude that it is the true coefficient from the linear projection.}$

Part B

 $plim(\hat{\beta})=plim((X^TX)^{-1}X^TY)$. As before, substituting for $Y,plim(\hat{\beta})=plim((X^TX)^{-1}X^T(X^T\beta+e+u))$. Again, we can distribute and simplify such that $plim(\hat{\beta})=\beta+plim((X^TX)^{-1}X^Te)+plim((X^TX)^{-1}X^Tu)$. By law of large numbers, we can use the assumption in expectation the same way in this case, $plim((X^TX)^{-1}X^Te), \ plim((X^TX)^{-1}X^Tu)=0$. Thus, $plim(\hat{\beta})=\beta$. This states that as n gets sufficiently large, $\hat{\beta}$ is consistent for β .

Part C

We will go about this much the same way as above. $\sqrt{n}(\hat{\beta}-\beta)=\sqrt{n}((X^TX)^{-1}X^T(X^T\beta+e+u)-\beta)$. This can be expanded as such $\sqrt{n}((X^TX)^{-1}X^Te+(X^TX)^{-1}X^Tu)$. As in the book, let $Q=plim(\frac{X^TX}{n})$. By central limit theorem, $\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\to} N(0,Q^{-1}\Omega Q^{-1})$ s.t. $\Omega=plim(\frac{1}{n}X^T(e+u)(e+u)^TX)$. Since e and u are i.i.d error terms, we can say that $var(u)=\sigma_u^2$ and $var(e)=\sigma_e^2$. Simplifying our Ω term, we have that $\Omega=plim(\frac{1}{n}X^t(ee^T+uu^T)X)=Q(\sigma_e^2+\sigma_u^2)$. So, $\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\to} N(0,Q^{-1}(\sigma_e^2+\sigma_u^2))$. Thus, the distribution of $\sqrt{n}(\hat{\beta}-\beta)$ as n approaches ∞ is normal with mean 0 and variance $Q^{-1}(\sigma_e^2+\sigma_u^2)$.

Question 6 - Hansen 7.14

Part A

 $\hat{\theta} = \hat{\beta}_1 \hat{\beta}_2$ given $\theta = \beta_1 \beta_2$. This is appropriate as $\hat{\beta}_1, \hat{\beta}_2$ are the OLS estimators of Y on X_1, X_2 , respectively.

Part B

Under standard conditions, $\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\rightarrow} N(0,\Sigma)$ s.t. $\hat{\beta}=(\hat{\beta}_1,\hat{\beta}_2)^T, \beta=(\beta_1,\beta_2)^T$ and Σ is the asymptotic covariance matrix of the OLS estimators. Using the delta method s.t. $g(\beta_1,\beta_2)=\beta_1\beta_2$, we have that $\nabla g(\beta)=(\frac{\partial g}{\partial \beta_1},\frac{\partial g}{\partial \beta_2})=(\beta_2,\beta_1)$. Further, the asymptotic distribution of estimator $\hat{\theta}$ is $\sqrt{n}(\hat{\theta}-\theta) \stackrel{d}{\rightarrow} N(0,\nabla g(\beta)^T \Sigma \nabla g(\beta))$. Now, substituting in, $\sqrt{n}(\hat{\theta}-\theta) \stackrel{d}{\rightarrow} N(0,\beta_2^2\sigma_{11}+2\beta_1\beta_2\sigma_{12}+\beta_1^2\sigma_{22})$. Such that $\sigma_{11},\sigma_{22},\sigma_{12}$ are the asymptotic variance of $\hat{\beta}_1,\hat{\beta}_2$, and covariance between $\hat{\beta}_1,\hat{\beta}_2$. Therefore, $\hat{\theta}$ is asymptotically normal with mean 0 and variance $\frac{1}{n}(\beta_2^2\sigma_{11}+2\beta_1\beta_2\sigma_{12}+\beta_1^2\sigma_{22})$.

Part C

 $\hat{\theta} \pm 1.96 \times \sqrt{\hat{\beta}_2^2 \hat{\sigma}_{11} + 2\hat{\beta}_1 \hat{\beta}_2 \hat{\sigma}_{12} + \hat{\beta}_1 \hat{\sigma}_{22}}$. This provides a range of plausible values for true parameter $\theta = \beta_1 \beta_2$ based on the estimated variances of $\hat{\beta}_1, \hat{\beta}_2, \hat{\sigma}_{11}, \hat{\sigma}_{22}$ and covariance $\hat{\sigma}_{12}$.

Question 7 - Hansen 7.28 (part (a) only)

```
rm(list = ls())
library(haven)
dat <- read_dta('~/SchoolWork/Sem2/Metrics/PSets/PS3/cps09mar.dta')</pre>
sample <- (dat[,11]==9)&(dat[,2]==0)
df <- dat[sample,]</pre>
y \leftarrow as.matrix(log(df[,5]/(df[,6]*df[,7])))
\exp <- df[,1]-df[,4]-6
\exp 2 < - (\exp^2)/100
x_df <- data.frame(</pre>
  education = df[,4],
  experience = exp,
  exp_squared = exp_2,
  intercept = 1
x <- as.matrix(x_df)</pre>
xx \leftarrow t(x)%*%x
xy <- t(x)%*%y
```

```
beta <- solve(xx,xy)</pre>
fitted <- x %*% beta
resid <- y - fitted
n \leftarrow nrow(x)
k \leftarrow ncol(x)
xx_inv \leftarrow solve(t(x)%*%x)
df \leftarrow n-k
hc0 <- matrix(0, nrow=k, ncol=k)</pre>
for (i in 1:n) {
 xi <- matrix(x[i,], nrow=k)</pre>
 hc0 \leftarrow hc0 + resid[i]^2 * (xi %*% t(xi))
cov_hc0 <- xx_inv %*% hc0 %*% xx_inv
se_hc0 <- sqrt(diag(cov_hc0))</pre>
# Calculate HC1 (small sample correction)
cov_hc1 \leftarrow cov_hc0 * (n/(n-k))
se_hc1 <- sqrt(diag(cov_hc1))</pre>
# Calculate HC2 (leverage adjustment)
# Compute the hat matrix diagonal (leverage values)
h \leftarrow rep(0, n)
for (i in 1:n) {
 h[i] <- x[i,] %*% xx_inv %*% x[i,]
# Calculate HC2
hc2 <- matrix(0, nrow=k, ncol=k)</pre>
for (i in 1:n) {
  xi <- matrix(x[i,], nrow=k)</pre>
  hc2 \leftarrow hc2 + (resid[i]^2/(1-h[i])) * (xi %*% t(xi))
}
cov_hc2 <- xx_inv %*% hc2 %*% xx_inv</pre>
se_hc2 <- sqrt(diag(cov_hc2))</pre>
# Calculate HC3 (more conservative leverage adjustment)
hc3 <- matrix(0, nrow=k, ncol=k)</pre>
for (i in 1:n) {
```

```
xi <- matrix(x[i,], nrow=k)
hc3 <- hc3 + (resid[i]^2/((1-h[i])^2)) * (xi %*% t(xi))
}
cov_hc3 <- xx_inv %*% hc3 %*% xx_inv
se_hc3 <- sqrt(diag(cov_hc3))

var_labels <- c("Education", "Experience", "Experience Squared", "Intercept")
result <- function(coef, se) {
  formatted <- sprintf("%.4f (%.4f)", coef, se)
  return(formatted)
}

for (i in 1:k) {
  cat(var_labels[i], "\n")
  cat(" Coefficient: ", sprintf("%.6f", beta[i]), "\n")
  cat(" Std. Error: ", sprintf("%.6f", se_hc3[i]), "\n")
}</pre>
```

Education

Coefficient: 0.046560 Std. Error: 0.066523

Experience

Coefficient: 0.047109 Std. Error: 0.036276

Experience Squared

Coefficient: -0.090884 Std. Error: 0.084480

Intercept

Coefficient: 2.031521 Std. Error: 0.874656