

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Homework

- 1. Determine whether $A = \{a^{2n} | n \ge 0\}$ is regular.
- 2. Let $\Sigma = \{a,b\}$ and let $D = \{w \mid w \text{ contains an equal number of occurrences of the substring 01 and 10} . Thus <math>101 \subseteq D$ because 101 contains a single 01 and a single 10, but $1010 \notin D$ because 1010 contains two 10s and only one 01. Show that D is a regular language.
- 3. Determine whether each of the following languages is regular.
 - a. $\{a^n a^n a^n \mid n>0\}$
 - b. $\{www \mid w \in \{x,y,z\}^*, |w| < 10^{100}\}$
 - c. $\{vw \mid v,w \in \{a,b\}^*\}$
 - d. $\{ww \mid w \in \{a\}^*\}$
- 4. The pumping lemma says that every regular language has a pumping length p, such that every string in the language can be pumped if it has length p or more. If p is a pumping length for the language A,so is any length p' >= p. The minimum pumping length for A is the smallest p that is a pumping length for A. For example, if $A = 01^*$, the minimum pumping length is 2. The reason is that the string s=0 is in A and has length 1 yet s cannot be pumped, but any string in A of length 2 or more contain a 1 and hence can be pumped by dividing it so that x = 0, y=1 and z is the rest. For each of the following languages, give the minimum pumping length and justify your answer.
 - a. ε
 - b. Σ^*
 - c. 10(11*0)*0
- 5. Are the following languages regular? Prove your results.
 - (a) same number of 0s and 1s
 - (b) same number of 01s and 10s
 - (c) same number of 00s and 11s
- 6. When using the pumping lemma, for which of the following we can make our own choices (\exists), and for which of the following we have to consider *all* cases (\forall)?
 - (a) pumping length p
 - (b) string s
 - (c) the decomposition s = xyz

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

- (d) the pumping factor i
- 7. Use the pumping lemma to prove that they are not regular. (In (a) and (c), the alphabet is $\{a, b\}$.)
 - (a) { $a^{l} b^{m} | l \le m \le 2l$ }.
 - (b) { $ww \mid w \in \{0, 1\}*$ }.
 - (c) { $a^{kl}b^{\perp}$ | k and l are non-negative integers }.
- 8. . Use the pumping lemma to show that the following languages are not regular.
- a) $A = \{0^n 1^m 0^{n+m} : n, m \ge 0\}$
- b) $B = \{0^a 1^b 0^{a-b} : a,b >= 0\}$