Outline

- 1 Problem Overview
- 2 Selection Sort
- **3** Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

	7	2	5	3	7	13	1	6
--	---	---	---	---	---	----	---	---

MergeSort(A[1...n])

if
$$n=1$$
:
return A

 $m \leftarrow |n/2|$

 $A' \leftarrow \text{Merge}(B, C)$

 $B \leftarrow \text{MergeSort}(A[1 \dots m])$

return A'

 $C \leftarrow \text{MergeSort}(A[m+1...n])$

Merging Two Sorted Arrays

Merge(B[1...p], C[1...q])

```
\{B \text{ and } C \text{ are sorted}\}
D \leftarrow \text{empty array of size } p + q
while B and C are both non-empty:
  b \leftarrow the first element of B
  c \leftarrow the first element of C
  if b < c:
    move b from B to the end of D
  else:
    move c from C to the end of D
move the rest of B and C to the end of D
return D
```


Lemma

The running time of MergeSort(A[1...n]) is $O(n \log n)$.

Lemma

The running time of MergeSort(A[1...n]) is $O(n \log n)$.

Proof

- The running time of merging B and C is O(n).
 - Hence the running time of MergeSort(A[1...n]) satisfies a recurrence $T(n) \le 2T(n/2) + O(n)$.

work:

Total: $cn \log_2 n$