Variation and Randomness

Understanding Political Numbers

Feb 20, 2019

Essay 1

Overall great!

Feedback:

- Commit to a measure
- Direction of relationship
- Avoid "proving" and "disproving"
- Contamination of the

D۷

• Please proofread!

My bad:

• Latent probability vs incidence (e.g. of war)

Essay 1

R Exercise 1

Overall great!

Feedback:

- Commit to a measure
- Direction of relationship
- Avoid "proving" and "disproving"
- Contamination of the

D۷

• Please proofread!

My bad:

• Latent probability vs incidence (e.g. of war)

Installing vs. loading ("librarying") packages

Folder names

Data file name

Let's talk about papers

Original research question

- Does *X* affect *Y*?
- What other things might affect Y (at least two other potential explainers)? Use theoretical reasoning

Collect data (at least 50 cases)

Write a 12-page paper (not counting graphics)

- What's the question
- Theory and hypotheses
- Explain your data and method

Let's talk about papers

What to do:

Original research question

- Does *X* affect *Y*?
- What other things might affect Y (at least two other potential explainers)? Use theoretical reasoning

Research question due March 11 (a Monday)

- Variables, hypotheses, and (proposed) data sources
- Before then: 15-minute meeting w/ Michael or me
- Extra office hours

Collect data (at least 50 cases)

Write a 12-page paper (not counting graphics)

- What's the question
- Theory and hypotheses
- Explain your data and method

Dataset due after spring break

More info coming soon

- Watch for email about scheduling meetings!
 You must meet with us
- Formal assignment sheet soon!

https://mikedecr.github.io/p 270/

Will we ever use this in the real world?

Where were we?

The "real world"	Your data
"Population"	Sample
Theoretical mean	Sample mean
Expectation	Estimate
Parameter	Statistic

 μ x

Remember:

Observed data = Truth

+ Bias + Noise

Where were we?

The "real world"	Your data
"Population"	Sample
Theoretical mean	Sample mean
Expectation	Estimate
Parameter	Statistic

- In a given sample, I am randomly inaccurate, and that is to be expected.
 - Every time I call someone, there's a 54% chance they support A, so there's Remamberess
 - When randomness is at play, you get uncertainty

- Observed data = Truth

 It looks like it's getting wider, but it isn't.

 That's just random variation

Which is random?

Flip a coin. Probability of heads is 0.5.

Flip a coin. Probability of heads is 0.5.

Flip a coin twice. Probability of two heads in a row is $0.5 \times 0.5 = 0.25$

Flip a coin. Probability of heads is 0.5.

Flip a coin twice. Probability of two heads in a row is $0.5 \times 0.5 = 0.25$

Flip a coin n times. Probability of n heads in a row is 0.5^n .

Flip a coin. Probability of heads is 0.5.

Flip a coin twice. Probability of two heads in a row is $0.5 \times 0.5 = 0.25$

Flip a coin n times. Probability of n heads in a row is 0.5^n .

I flip a coin 1000 times. What's the longest sequences of heads I get?

Flip a coin. Probability of heads is 0.5.

Flip a coin twice. Probability of two heads in a row is $0.5 \times 0.5 = 0.25$

Flip a coin n times. Probability of n heads in a row is 0.5^n .

I flip a coin 1000 times. What's the longest sequences of heads I get?

```
# I run this simulation in R
max(one_thousand_flips$heads_in_a_row)
```

[1] 10

Wow! The probability of getting that many heads in a row is $0.5^{10} = 0.0009766!$

Flip a coin. Probability of heads is 0.5.

Flip a coin twice. Probability of two heads in a row is $0.5 \times 0.5 = 0.25$

Flip a coin n times. Probability of n heads in a row is 0.5^n .

I flip a coin 1000 times. What's the longest sequences of heads I get?

```
# I ran this simulation in R
max(one_thousand_flips$heads_in_a_row)
```

[1] 10

Wow! The probability of getting that many heads in a row is $0.5^{10} = 0.0009766!$

Unlikely things aren't always unusual.

When you have lots of data, unlikely things are common.

Who will win the presidency?

Chance of winning

Time for something amazing

10,000 Independent Polls

Why 10,000?

- reality is clumpy
- but it's clumpy when you look up close
- when you zoom out really far, clumpiness cancels out (randomly)

10,000 Independent Polls

Why 10,000?

- reality is clumpy
- but it's clumpy when you look up close
- when you zoom out really far, clumpiness cancels out (randomly)

bee swarm

- if we were to zoom in, we would see that every poll is different
- Every poll is off a little bit
- but overall, they're close to the truth
- It looks like the farther you get from the truth, the fewer polls are out there

10,000 Independent Polls

Why 10,000?

- reality is clumpy
- but it's clumpy when you look up close
- when you zoom out really far, clumpiness cancels out (randomly)

bee swarm

- if we were to zoom in, we would see that every poll is different
- Every poll is off a little bit
- but overall, they're close to the truth
- It looks like the farther you get from the truth, the fewer polls are out there

The normal distribution

If some variable Y is affected (at least in part) by an accumulation of random fluctuations, then *the distribution of Y* will be approx. normal

A "draw" from a

normal distribution:

Any *individual*observation of *y* is just one number, but the probability of observing that value (relative to the mean) is given by the normal distribution

What do "accumulating fluctuations" have to do with the mean

or, "Why are means normally distributed?"

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

What do "accumulating fluctuations" have to do with the mean

or, "Why are means normally distributed?"

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Summing the data is "adding up fluctuations." Cool, huh!

"Order arising from disorder" or just *pure chaos*?

Most likely babies

Most likely babies

How we use the normal distribution in statistics

"The sampling distribution of \bar{x} is normal"

```
This means "the
                                   Data x where \bar{x} = 10
    sample mean is a
                                   ## # A tibble: 100 x 3
    normal draw from the
                                                  x \cdot x - xbar \cdot (x - xbar)^2
    true mean".
                                                             <dbl>
                                            <int>
                                                                                   <dbl>
                                   ##
    How accurate is the
                                                                                        81
    mean?
                                   ##
                                                 10
                                                 14
• nowhaltdrawmendispegrsion single number, bugit's more likely go appear in the
                                                                                        81
   center of the diagraphic and less likely to appear in the tail _4
                                                                                        16
• We don't know where the true mean is but we know enough about the properties of the Normal distribution that we can build an informed guess 10
    deviation with datas at:
                                                                                        36
                                                                                        81
   s(x) = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \bar{x})^2}{n-1}} ## # ... with 90 more rows
```

"The sampling distribution of \bar{x} is normal"

Standard error is

"average error between \bar{x} and the true mean μ "

Standard error of \bar{x} :

Rules for averages:

 $se(\bar{x}) =$

 ~ 68% of estimates are within ± 1 std. error from "true" value

Statistics is about dealing with uncertainty in real data

Here is how most people do statistics

Every sample is an *imperfect* representation of the Lots of statistics depend on assumptions about the "distribution" of our data underlying population

- a lot of these assumptions are like, assuming that our estimate of the mean is normal(Valistributed sample estimate (such as a mean) and its
 or assuming that our data are normally distributed
 Standard error

It often feels like this is a tenuous assumption, that could easily be broken Most of the time, your estimate is within ± 2 standard errors

it is actually hard to break, because it isn't fragile

true value"

The normal distribution is just what happens when you add lots of fluctuations

- together
- and lots of things are influenced by lots of small fluctuations