The 3n±p Conjecture: A Generalization of Collatz Conjecture

Article · February 2017 DOI: 10.22147/jusps-A/290207 CITATION READS 104 1 3 authors: W. B. Vasantha Kandasamy Ilanthenral Kandasamy VIT University VIT University 66 PUBLICATIONS 237 CITATIONS 410 PUBLICATIONS 1,685 CITATIONS SEE PROFILE SEE PROFILE Florentin Smarandache University of New Mexico - Gallup 2,518 PUBLICATIONS 11,110 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

JUSPS-A Vol. 29(2), 83-88 (2017). Periodicity-Monthly

Section A

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES

An International Open Free Access Peer Reviewed Research Journal of Mathematics website:- www.ultrascientist.org

The $3n \pm p$ Conjecture: A Generalization of Collatz Conjecture

W.B. VASANTHA KANDASAMY*, ILANTHENRAL KANDASAMY** and FLORENTIN SMARANDACHE**

*Department of Mathematics, IIT Madras, Chennai, India **School of Computer Science and Engineering, VIT University, Vellore, India ***Department of Mathematics, University of New Mexico, USA Corresponding Author E-mail: vasanthakandasamy@gmail.com http://dx.doi.org/10.22147/jusps-A/290207

Acceptance Date 18th Jan., 2017, Online Publication Date 2nd Feb., 2017

Abstract

The Collatz conjecture is an open conjecture in mathematics named so after Lothar Collatz who proposed it in 1937. It is also known as 3n+1 conjecture, the Ulam conjecture (after Stanislaw Ulam), Kakutanis problem (after Shizuo Kakutani) and so on. Several various generalization of the Collatz conjecture has been carried. In this paper a new generalization of the Collatz conjecture called as the $3n \pm p$ conjecture; where p is a prime is proposed. It functions on 3n+p and 3n-p, and for any starting number p, its sequence eventually enters a finite cycle and there are finitely many such cycles. The $3n\pm 1$ conjecture, is a special case of the $3n\pm p$ conjecture when p is 1.

Key word: Collatz Conjecture; Kakutani's Conjecture; 3n+1 Conjecture; $3n \pm p$ Conjecture.

1 Introduction

The Collatz conjecture is long standing open conjecture in number theory. Paul Erdos had commented about the Collatz conjecture that "Mathematics may not be ready for such problems". The Collatz conjecture has been extensively studied by several researchers^{1,2,3,4,5}. A novel theoretical framework was formulated for information discovery using the Collatz conjecture data by Idowu⁶. Generalizing the odd part of the Collatz conjecture was studied by⁷. Several various generalization of the Collatz conjecture was studied by⁸. Various generalization are listed and given in number theory website of Keith Matthews⁹.

This paper proposes a new conjecture which is a generalization of the Collatz conjecture. This new conjecture is called as the $3n \pm p$ conjecture, where p is a prime. This paper is organised into four sections. First section is introductory in nature. Section two recalls the Collatz conjecture and its various generalizations so that the paper is self contained. Section three proposes the new $3n \pm p$ conjecture and illustrates it by examples. The conclusions and future study are given in the last section.

2 Collatz's Conjecture and its various generalizations:

2.1 Collatz Conjecture:

The 3n+1 conjecture or the Collatz conjecture is summarized as follows:

Take any positive integer n. If n is even divide it by 2 to get n/2. If n is odd multiply it by 3 and add 1 to obtain 3n+1. Repeat the process (which has been called "Half Or Triple Plus One" or HOTPO) indefinitely. The conjecture states that no matter what number you start with you will always eventually reach 1.

Consider the following operation on an arbitrary positive integer: If the number is even divide it by two, if the number is odd, triple it and add one. This is illustrated by example of taking numbers from 4 to 10 and the related sequence is obtained:

- n = 4; related sequence is 4, 2, 1.
- n = 5, related sequence is 5, 16, 8, 4, 2, 1.
- n = 6, related sequence is 6, 3, 10, 5, 16, 8, 4, 2, 1.
- n = 7, related sequence is 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
- n = 8, related sequence is 8, 4, 2, 1.
- n = 9, related sequence is 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
- n = 10, related sequence is 10, 5, 16, 8, 4, 2, 1.

In simple modular arithmetic notation the Collatz conjecture can be represented as

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{2}, \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \pmod{2}, \end{cases}$$
 (1)

Note: Only powers of two converge to one quickly.

2.2 Various generalization of the Collatz Conjecture:

Several researchers have studied and generalized the Collatz conjecture. Some generalize by taking different values for 2 as 3, 5, etc 9 . Keith Matthew 9 has studied for 3n+371 and so on. Some natural generalizations of the Collatz Problem was done by Carnielli 8 . Lu Pei has given a generalization of 3x-1 mapping in 9 .

The generalization of the 3n-1 mapping due to Lu Pei is given verbatim from 9.

Consider the mapping $T_d: Z \leftarrow Z$. Let $d \geq 2$. Then

$$T_d(n) = \begin{cases} \frac{n}{d} & \text{if } n \equiv 0 \pmod{2}.\\ \frac{(d+1)n-i}{2} & \text{if } n \equiv i \pmod{2}. \end{cases}$$
 (2)

where $-d/2 \le i \le d/2; i \ne 0$.

In case, d = 2 it gives the 3n-1 mapping:

$$T_2(n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{2}.\\ \frac{3n-1}{2} & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$

$$(3)$$

This is a special case of a version of a mapping studied by Herbert Moller¹⁰ and is also an example of a relatively prime mapping, in the language of Matthews and Watts, where $m_0 = 1$ and $m_i = d+1$ for $1 \le i < d$ and where we have the inequality

$$m_0 m_1 \dots m_d = (d+1)^{d-1} < d^d$$

So it seems certain that the sequence of iterates

$$n, T_d(n), T_d^2(n), \dots$$

always eventually enters a cycle and that there are only finitely many such cycles.

Clearly $T_d(n) = n$ for $-d/2 < n \le d/2$. For d = 3, 6 and 10, there appears to be no other cycles. By replacing 2 by d, it given the 3x-1 conjecture will eventually enter a cycle. It is showed that the 3n+1 collatz conjecture when n is negative has finite cycles which terminates in -1 or -5 or -17^{-9} .

Thus if for every non zero $n \in \mathbb{Z}$ the 3n+1 Collatz conjecture converges to $\{-17,-5,-1,1\}$ and the 3n-1 collatz conjecture converges to $\{-1,1,5,17\}$. The 3n-1 conjecture is a special case of the Lu Pei's generalization of the Collatz conjecture. The 3n-1 conjecture is described here for clarity.

2.3 The 3n-1 Conjecture:

The 3n-1 conjecture which is akin to the Collatz conjecture is proposed in this section. The 3n-1 conjecture is as follows:

Take any arbitrary positive integer n. If n is even divide it by two and get n/2 if n is odd multiply it by 3 and subtract 1 and obtain 3n-1, repeat this process indefinitely. We call this process as "Half Or Triple Minus One" or HOTMO. The conjecture states that immaterial of which number you begin with, you will eventually reach 1 or 5 or 17.

2.3.1 Statement of the Problem/Conjecture:

On any arbitrary positive integer, consider the operation

- If the number is even, divide it by two
- Else triple it and subtract one

continue this process recursively. The 3n-1 conjecture is that this process which will eventually reach either 1 or 5 or 17, regardless of which positive integer is selected at the beginning.

The smallest i such that $a_i = 1$ or 5 or 17 is called as the total stopping time of n. The 3n-1 conjecture asserts that every n has a well defined total stopping time i. If for some n (any positive integer) such i (total stopping time) doesn't exist, then n has an infinite total stopping time then the conjecture is false. It can happen only because there is some starting number which gives a sequence that does not contain 1, 5 or 17. Such a sequence may have a repeating cycle that does not contain 1, 5 or 17 or it might increase without bounds. Till now such a sequence or number has not been found.

In simple modular arithmetic notation the 3n-1 conjecture can be represented as

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{2}, \\ \frac{3n-1}{2} & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$
 (4)

A sequence is formed by performing this operation repeatedly, it starts with any arbitrary positive integer and takes the result each step as the input for the next.

$$a_{i} = \begin{cases} n & \text{if } i \equiv 0, \\ f(a_{i-1}) & \text{if } i \neq 0. \end{cases}$$

$$(5)$$

 $a_i = f^i(n)$ that is a_i is the value of f applied to n recursively i times; n is the starting number and i at the end of the sequence is called the total stopping time.

2.3.2 Examples:

The conjecture states that the sequence will reach 1, 5 or 17. The following repeated sequences / cycles happen for 1, 5 or 17.

- 1. n = 1; the repeated sequence is 4, 2, 1.
- 2. n = 5; the repeated sequence is 14, 7, 20, 10, 5.
- 3. n = 17; the repeated sequence is 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 68, 34, 17.

We will illustrate this conjecture by some examples using the 3n-1 formula and taking numbers from 4 to 10. It is tabulated in Table 1.

Table 1: Illustration of the $3n-1$ conjecture				
n	Sequence	i	Ends in	
4	4, 2, 1	3	1	
5	5, 14, 7, 20, 10, 5	1	5	
6	6, 3, 8, 4, 2, 1	6	1	
7	7, 20, 10, 5	4	5	
8	8, 4, 2, 1	4	1	
9	9, 26, 13, 38, 19, 56, 28, 14, 7, 20, 10, 5	12	5	
10	10.5	2	5	

Similar to 3n+1 conjecture in 3n-1 conjecture also the powers of 2, converge quickly. Figure 1 gives the scatter plot that takes the starting number n from 1 to 1000 along the x-axis and the total stopping number i along the y-axis. Depending on which number the sequence ends, the colour is given. If the sequence ends in 1, then blue colour is given, if it ends in 5 then red colour is given and if it ends in 17 green colour is given.

The 3n-1 conjecture creates a sequence that ends in 3 different numbers with the sequence having a repeated sequence of

- 1. for any negative n the sequence ends in -1.
- 2. n = 1; the repeated sequence is 4, 2, 1.
- 3. n = 5; the repeated sequence is 14, 7, 20, 10, 5.
- 4. n = 17; the repeated sequence is 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 68, 34, 17.

The 3n-1 conjecture and 3n+1 conjecture are mirror functions. The $3n \pm p$ conjecture is defined in the next section.

Figure 1: The scatter plot of first 1000 numbers and their stopping times

3 The $3n \pm p$ conjecture

The 3n + p and 3n - p conjecture (or simply the $3 \pm p$ conjecture) is given in the following:

$$T(n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{2}, \\ \frac{3n \pm p}{2} & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$
 (6)

In simple modular arithmetic notation the 3n + p conjecture can be represented as

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{2}, \\ \frac{3n+p}{2} & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$
 (7)

and the 3n - p conjecture can be represented as

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{2}, \\ \frac{3n - p}{2} & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$
 (8)

It is clearly seen when p=1, we see the sequence converges to $\{-17,-5,-1,0,1\}$ and when p=-1, the sequence converges to $\{-1,0,1,5,17\}$. When p is 1, it is Collatz conjecture and when p is -1 it is 3n-1 conjecture. We show for 3n+5 the sequence converges to $\{-85,-25,-5,-1,0,1,5,19,23,187,407\}$ for any n in Z. For 3n-5 we get $\{-407,-187,-23,-19,-5,-1,0,1,5,25,85\}$. 3n+5 and 3n-5 act like mirror functions.

In Table 2 some $3n \pm p$ conjecture and their minimum cycle elements are listed.

It is conjectured that for every prime p the $3n \pm p$ sequence will result in a finite cycle and there are finite number of such cycles.

Sequence	Ends in	
3n + 3	{-51, -5, -3, 0, 1, 3}	
3n - 3	{-3, -1, 0, 3.5, 51}	
3n + 5	{-85, -25, -5, -1, 0, 1, 5, 19, 23, 187, 407}	
3n - 5	$\{-407, -187, -23, -19, -5, -1, 0, 1, 5, 25, 85\}$	
3n + 7	{-119, -35, -7, -1, 0, 1, 5, 7}	
3n - 7	{-7, -5, -1, -0, 1, 7, 35, 119}	
3n + 11	{-187, -55, -19, -11, -3, -1, 0, 1, 11, 13}	
3n - 11	{-13, -11, -1, 0, 1, 3, 11, 19, 55, 187}	
3n + 13	{-221, -65, -13, -1, 0, 1, 13, 131, 211, 227, 251, 259, 283, 287, 319}	
3n - 13	{-319, -287, -283, -259, -251, -227, 211, 131, 13, 1, 0, 1, 13, 65, 221}	

Table 2. Illustration of the $3n \pm p$ conjecture

$4\ Results$ and further study:

The proposed $3n \pm p$ conjecture is a new generalization of the 3n+1 conjecture or the Collatz conjecture. Given any starting number n, the conjecture states that the sequence will result in a finite cycle and there are finite number of such cycles. Cycles related to the $3n \pm p$, resulting hailstone numbers and parity sequence are left open for study.

References

- 1. J.C. Lagarias, The 3x+1 problem and its generalizations. The American Mathematical Monthly 92(1), 3-23 (1985).
- 2. J.P. Van Bendegem, The collatz conjecture, a case study in mathematical problem solving. Logic and Logical Philosophy

JUSPS Vol. 29(2)A, (2017).

14(1), 7-23 (2005).

- 3. S. Andrei, C. Masalagin, About the collatz conjecture, Acta Informatica 35(2), 167-179 (1998).
- 4. L.E. Garner, On the collatz 3n+1 algorithm, Proceeding of the American Mathematical Society 82 (1), 19-22 (1981).
- 5. K. La Tourette, et al., Explorations of the collatz conjecture, Moravian College Senior Honors Thesis.
- 6. M.A. Idown, A novel theoretical framework formulated for information discovery from number system and collatz conjecture data, Procedia Computer Science *61*, 105-111 (2015).
- 7. R.M. Zavislak, Collatz conjecture: Generalizing the odd part, PhD. Thesis (2013).
- 8. W. Carnielli. Some natural generalizations of the collatz problem.
- 9. K. Matthew, Bcmath programs for some generalized 3x+1 mapping sequences (2016). URL http://www.numbertheory.org/php/collatz.html
- 10. H. Möller, Über hasses verallgemeinerung des syracuse-algorithmus (kakutanis problem), Acta Arith 34, 219-226 (1978).