

B. $\Sigma=\{0,1\}$ 또는 $\Sigma=\{\mathtt{a},\mathtt{b}\}$ 일 때, 다음 언어들은 $L(M_1)\cap L(M_2)$ 또는 $L(M_1)\cup L(M_2)$ 로 표 현될 수 있다. 수업시간에 배운 내용 -강의자료(p14)-을 참고하여 다음 언어들을 인식하는 DFA의 State diagram을 그리고, transition function 테이블을 만드시오. **1.6(l')** $\{w: w \text{ contains an even number of 0s and contains exactly two 1s.}$ M; $L(M_1) \rightarrow (($ **1.6(j')** $\{w: w \text{ contains at least two 0s } or \text{ at most one 1.}\}$ M: -> P.82) 21 **1.4(g)** $\{w: w \text{ has even length and an odd number of a's.}$ Pi2 1.4(g') $\{w: w \text{ has even length } or \text{ an odd number of a's.}\}$ M:

$L(M) = L_1 \cup L_2$ $L(M_1) L(M_2)$					
L(M) L(M)					
M,(Q,, 5, E,, Po, F,)					
$M_1(Q_2, \overline{5}, \delta_2, g_0, \overline{\epsilon}_1)$					
$= M(Q_1 \times Q_2, \Sigma_1 \delta_1(P_0, G_0), F_1 \times G_1$	R ₂ U	$Q_{i}x$	(F2)		
$S: Q, \times Q, \times \Sigma \rightarrow Q, \times Q_2$					
$\mathcal{E}((P_{\lambda}, g_{\lambda}, \sigma)) = (\mathcal{E}_{\lambda}(P_{\lambda}, \sigma), \mathcal{E}_{\lambda}(g_{\lambda}, \sigma))$					