Estudio de las Vibraciones Mecánicas y su impacto ambiental

1. Agente contaminante –Ámbito normativo

 Dinámica y Cinemática de las Vibraciones Mecánicas

3. Medida y evaluación de las vibraciones

4. Inspección e impacto ambiental

- 41. Puestos de trabajo
- 42. Edificios
- 43. Maquinaria
- 44. Actividades

1. Agente contaminante - Ámbito normativo

- Identificar las fuentes generadoras de molestia.
- si se puede hacer medición interna para determinar que niveles de vibración hay.
- Establecer plan de acción y marco normativo

- Medir v&r
- Analizar los valores medidos si cumplen Evaluación incumplen el marco normativo.
 - Dictaminar:

FAVORABLE

DESFAVORABLE

- PROYECTO de Control de vibraciones
- aislamiento correctoras de vibroacústico:

Certificación • Validación de las medidas adoptadas

Rafael Torres del Castillo (2ª Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

Certificación de vibraciones

Evaluación

.....Never guess when you can calculate, never calculate when you can measure.

Ejecución:

Rudolf Boentgen (linkedin 6/6/2011)

Certificación final:

- El Estado del Arte de las vibraciones no se ha desarrollado tanto como el de los ruidos a nivel de confort de los individuos.
- 2. Las vibraciones no tienen clara identidad en el marco normativo internacional...."lo que no está escrito de forma clara..no existe.."-
- No existe al día de hoy un parámetro de medida evaluación consensuado.

Rafael Torres del Castillo (2ª Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

El paseo de Maragall se moviliza

2. <u>Dinámica y Cinemática de las Vibraciones</u> <u>Mecánicas</u>

Al variar K ò m

Vibración libre no amortiguada

Ref: Bruel&Kjaer. Paco-pulse 2003

Al variar K ò m

Vibración libre no amortiguada

Ref: Bruel&Kjaer. Paco-pulse 2003

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k_1}{m}}$$

Fuerza y vibración

Ref: Bruel&Kjaer. Paco-pulse 2008

 $= \frac{V_{(m/s)}}{F_{(N)}}$

$$\mathsf{FT} = \frac{\mathsf{f}_{\mathsf{S}}}{\mathsf{f}_{\mathsf{e}}} \left(\frac{\mathsf{Salida}}{\mathsf{Entrada}} \right)$$

F0: Fuerza dinámica perturbadora (excitatriz)

FT: Fuerza transmitida al suelo

T: Transmisibilidad de la fuerza.

Puente por donde pasan los coches

Apoyo elástico de neopreno

Pilar del puente

Nivel medido encima del puente	Señal de entrada (Se)	1 m/s ²	120 dB
Nivel medido encima en el pilar	Señal de salida(Ss)	0.1 m/s ²	100 dB

$$FT = \frac{S_s}{S_e} = \frac{0.1 \text{ m/}^2}{10 \text{ m/}^2} = 0.01 \text{ m/}^2 \longrightarrow \frac{\text{Atenuación}}{(FT < 1)} \quad dB_{FT} = dB_{Ss} - dB_{Se} = 100 - 120 = -20 dB$$

Nivel medido encima del puente	Señal de entrada (f0)	1 m/s ²	120 dB
Nivel medido encima en el pilar	Señal de salida(fp)	10 m/s ²	140 dB

$$FT = \frac{S_s}{S_s} = \frac{10 \text{ m/}^2}{1 \text{ m/}^2} = 10 \text{ m/}^2 \longrightarrow \text{Amplificació}$$
(FT<1)

Rafael Torres del Castillo (2ª Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

EJEMPLO: Transmisibilidad de la Fuerza

Material	Velocidad del sonido en m/s
Aire	340
Ladrillo	2.500
Hormigón	3.500
Acero	5.010

Aéreo

$$c_P = \sqrt{\frac{E}{\delta}}$$

Estructural por paredes

B = módulo a flexión

Método 1: analítico

$$D_{inmisión} = Le - Lr$$

$$D_{a\acute{e}reo} = Le - Lr$$

$$D_{inmisi\acute{o}n} <<< D$$
aéreo

1º Desacoplar: Control-Aislamiento vibraciones.

2º Opcional: Mejora de aislamiento acústico

$$D_{inmisi\acute{o}n}>>> D$$
aéreo

1º Aislamiento acústico de paramentos verticales y horizontales

Método 2: analítico

10

$$D = L_{1(e)} - L_{2(r)}$$
 $L_2' = L_2 - L_{BN}$

x1/3 octava

D:64,6dB

20

Fuente en emisor 1 (e)	Nivel promedio
L1(e) bombas ON L1(e) bombas ON	75,6 dBA

30

Datos que tenemos

D:64,6dB

Fuente en receptor 2 (r)	Nivel promedio
L'2(r) bombas ON	25,3 dBA
Fuente en emisor 1 (e)	Nivel promedio
L2(r) bombas ON	75,6 dBA

Calculamos el nivel teórico de inmisión de las bombas en el receptor (2) si no existiese transmisión inducida x vib. Solamente transmisión aérea. Se ha de calcular a partir de las f de 1/3 oct.

F (HZ)	Nivel emisión en (1) sala bombas	D	Lx Nivel teórico a ruido aéreo.
50	56,2 dB	35,2dB	21,0 dB
63etc	52,7 dBetc	44,1 dBetc	21,0 dBetc
1,6Ketc	66,5 dBetc	83,8 dBetc	-17,3dBetc
Global dBA	75,6dBA		6,9dBA (suma NO algebraica)

La transmisión aérea es

 $\Delta L_{a\acute{e}reo} = 7dB$

5°

CONCLUSIÓN

D:64,6dB

Fuente en receptor 2 (r)	Nivel promedio
D bombas	25,3 dBA

Fuente en emisor 1 (e)	Nivel promedio
BOMBAS ON	75,6 dBA

$$\Delta L_{a\acute{e}reo} = 7dB$$

$$\Delta L_{estruc} = ?dBA$$

$$25,3dBA = L_{rT} = 10\log(10^{\frac{7}{10}} + 10^{\frac{x}{10}})$$

$$L_{estruc} = 10\log(10^{L_{rT}/10} - 10^{L_{a\acute{e}reo}/10})$$

$$L_{estruc} = 10\log(10^{25/10} - 10^{L_7/10})$$

Medida y evaluación de vibraciones mecánicas

Descripción numérica del sonido y las vibraciones

Ref: Bruel&Kjaer. 2003

Señales temporales LARGAS

Señales espectrales CORTAS

Señales temporales CORTAS

Señales espectrales LARGAS

Rafael Torres del Castillo (2ª Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

Dominio temporal & frecuencial

TRANSDUCTOR ACELEROMETRO

$$a = A$$

$$V=\int a dt = -\frac{a}{\omega} \cos \omega t$$

$$V = \frac{a}{\omega} = \frac{a}{2\pi f}$$

$$d=\iint a dt dt = -\frac{a}{\omega^2} sen \omega t$$

$$d = \frac{a}{\omega^2} = \frac{a}{4\pi^2 f^2}$$

Ref: Bruel&Kjaer. 2003

$$d = A \cdot \sin \omega t$$

$$d = A$$

$$v = \dot{d} = A\omega \cdot \cos \omega t = >$$
 $v = A\omega \cdot A \sin(\omega t + \pi/2)$

$$v = A\omega$$
 $v = d\omega$

$$\mathbf{a} = \ddot{\mathbf{d}} = \dot{\mathbf{v}} = -\mathbf{A}\boldsymbol{\omega}^2 \cdot \sin \boldsymbol{\omega} t$$

$$a = |A\omega^2|$$
 $a = |d\omega^2|$

Rafael Torres del Castillo (2ª Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

Parámetros de media

SENSIBILIDAD: cantidad de señal eléctrica generada por unidad de aceleración de la vibración que actúa sobre él.

- Un acelerómetro piezoeléctrico puede ser descrito como una fuente de carga o una fuente de tensión (con impedancia muy alta):
 - Sensibilidad de tensión → [mV/g] o [mV/ms⁻²]
 - Sensibilidad de carga → [pC/g] o [pC/ms⁻²]
- Cuanto mayor es la masa sísmica (peso) mayor es su sensibilidad

Menor		
IAIC	711	
Mayor		

Sensibilidad del acelerómetro recomendable	Utilización
10mV/g	En carcasa de Motores
100mV/g	Base de maquinaria: Evalución vib. cuerpo humano
500mV/g	Semi sismico: Metro; residual.
10V/g	Sísmico: Vibraciones de muy baja amplitud. (<10 ⁻¹⁶)

Una aceleración instantánea pico de 1 ms⁻² tiene un valor eficaz de aceleración de 0,707 ms⁻²

$$a_{rms} = \frac{a_{pico}}{\sqrt{2}}$$

$$a_{rms} = \frac{a_{pico-pico}}{2\sqrt{2}}$$

$$a_{pico-pico} = 2a_{pico}$$

$$a_{rms} = \frac{a_i}{\sqrt{2}}$$

Fuente: Marcal CESVA ¹ Ed.:6/2015) Profesor externo de la Salle URL. Codirector del MAAM.

Los acelerómeteros: realizan lecturas en aceleración instantánea (a+ y a-)

¿pero qué valor global de aceleración tenfo dentro del tiempo de medida realizado?

Los acelerómeteros: realizan lecturas en aceleración instantánea (a+ y a-)

Suma de aceleraciones instantáneas

$$a_{Total} = a_1(t) + a_2(t) + \dots + a_n(t)$$

¿pero qué valor global de aceleración tenfo dentro del tiempo de medida realizado?

Los acelerómeteros: realizan lecturas en aceleración instantánea pero se procesa en valores cuadráticos (a²)

Suma de valores cuadráticos) (ejemplo: valor rms)

$$a_{rmsTotal}^2 = a_{rms1}^2(t) + a_{rms2}^2 + a_{rmsn}^2$$

$$a_{rmsTotal} = \sqrt{a_{rms1}^2(t) + a_{rms2}^2 + a_{rmsn}^2}$$

$$L_a = 10\log\left(\frac{a}{a_0}\right)^2$$

$$L_a = 20\log\frac{a}{a_0}$$

$$a_0 = 10^{-6} \, m/s^2$$

Niveles de vibración

$$L_{v} = 10\log\left(\frac{v}{v_{0}}\right)^{2}$$

$$L_{v} = 20\log\frac{v}{v_{0}}$$

Valores de referencia

$$v_0 = 10^{-9} \, m/s$$

$$L_d = 10\log\left(\frac{d}{d_0}\right)^2$$

$$L_d = 20\log\frac{d}{d}$$

$$d_0 = 10^{-12} m$$

Nivel de aceleración en dB ref. a₀: 10⁻⁶ m/s²

200101	COLOR	Non m	104
aceler	atator		15
		. •	

Escala lineal en m/s ²	Escala logarítmica en dB
Un factor multiplicativo de 2	Es un factor aditivo de +6 dB
Un factor multiplicativo de 10	Es un factor aditivo de +20 dB

El cuerpo reacciona logarítmicamente:

- -la variación de 1 a 2 m/s² (x2) se nota mucho más que de 10 a 11 m/s2 (x1,1)
- -Es a efecto multiplicativo físico sentimos un aumento de una cantidad constante

