刚体位姿

三维空间物体的位姿

位置

位置描述

三维空间任意一点 P 在直角坐标系 $\{A\}$ 中的位置可用位置矢量表示:

$${}^Aec{P} = egin{bmatrix} p_x & p_y & p_z \end{bmatrix}^T$$

式中, $p_x p_y p_z$ 是点 P 在坐标系 $\{A\}$ 中的三个坐标分量。

单次位置变换

现已知点 P 在坐标系 $\{A\}$ 中的位置描述为 $^A\vec{P}$,若坐标系 $\{A\}$ 的原点在坐标系 $\{B\}$ 中的位置矢量为 $^B_A\vec{P}$,则点 P 在坐标系 $\{B\}$ 中的位置描述 为:

$${}^B\vec{P}=^A\vec{P}+_A^B\vec{P}$$

连续位置变换

现已知点 P 在坐标系 $\{A\}$ 中的位置描述为 $^A\vec{P}$,若坐标系 $\{A\}$ 的原点在坐标系 $\{B\}$ 中的位置矢量为 $^B_A\vec{P}$,坐标系 $\{B\}$ 的原点在坐标系 $\{C\}$ 中的位置矢量为 $^B_C\vec{P}$,则点 P 在坐标系 $\{C\}$ 中的位置描述为:

$${}^{C}\vec{P} = {}^{B}\vec{P} + {}^{C}_{B}\vec{P} = {}^{A}\vec{P} + {}^{B}_{A}\vec{P} + {}^{C}_{B}\vec{P}$$

点 P 本身没有移动,只是参考坐标系不同,其坐标表示也不同。

姿态

姿态描述

为描述三维空间中某刚体 P 的姿态,建立与该物体固连的直角坐标系 $\{P\}$,坐标系 $\{P\}$ 的三个单位主矢量 $\vec{x_P}$ 、 $\vec{y_P}$ 、 $\vec{z_P}$ 相对于参考坐标系 $\{A\}$ 的方向余弦构成旋转矩阵,用于描述刚体 P 相对于坐标系 $\{A\}$ 的姿态:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} ar{x}_P & ar{x}_A & ar{y}_P \cdot ar{x}_A & ar{z}_P \cdot ar{x}_A \ ar{x}_P \cdot ar{y}_A & ar{y}_P \cdot ar{y}_A & ar{z}_P \cdot ar{y}_A \ ar{x}_P \cdot ar{z}_A & ar{y}_P \cdot ar{z}_A & ar{z}_P \cdot ar{z}_A \end{aligned} \end{aligned}$$

- 旋转矩阵是正交矩阵, ${}^A_PR^T={}^A_PR^{-1}={}^P_AR$
- 旋转矩阵的行列式为1, $|{}^A_PR|=1$
- $(m \times m)$ 旋转矩阵属于特殊正交群 SO(m)

单次姿态变换

现已知向量 P 在坐标系 $\{A\}$ 中的位置描述为 $^A\vec{P}$,若坐标系 $\{A\}$ 在坐标系 $\{B\}$ 中的姿态描述为 B_AR ,则向量 P 在坐标系 $\{B\}$ 中的位置描述为:

$${}^B\vec{P} = {}^B_A R^A \vec{P}$$

连续姿态变换

现已知向量 P 在坐标系 $\{A\}$ 中的位置描述为 $^A\vec{P}$,若坐标系 $\{A\}$ 在坐标系 $\{B\}$ 中的姿态描述为 B_AR ,坐标系 $\{B\}$ 在坐标系 $\{C\}$ 中的姿态描述为 C_BR ,则向量 P 在坐标系 $\{C\}$ 中的位置描述为:

$$^{C}\vec{P}=^{C}_{B}R^{B}\vec{P}=^{C}_{B}R^{B}R^{A}\vec{P}$$

姿态变换次序

• 绕固定坐标系变换

若坐标系 $\{A\}$ 固定不动,坐标系 $\{B\}$ 与坐标系 $\{A\}$ 的姿态重合。坐标系 $\{B\}$ 先绕坐标系 $\{A\}$ 的 x 轴旋转 α ,到位后再绕坐标系 $\{A\}$ 的 y 轴旋转 β ,到位后再绕坐标系 $\{A\}$ 的 x 轴旋转 α ,则旋转变换为单个旋转矩阵的依次左乘

$$_{A}^{B}R = _{A}^{B}R_{z,\gamma} \cdot _{A}^{B}R_{y,\beta} \cdot _{A}^{B}R_{x,\alpha}$$

• 绕运动坐标系变换

若坐标系 $\{A\}$ 固定不动,坐标系 $\{B\}$ 与坐标系 $\{A\}$ 的姿态重合。坐标系 $\{B\}$ 先绕当前自身的 x 轴旋转 α ,到位后再绕当前自身的 y 轴旋转 β ,到位后再绕当前自身的 z 轴旋转 γ ,则旋转变换为单个旋转矩阵的依次右乘

$$_{A}^{B}R = _{A}^{B}R_{x,\alpha} \cdot _{A}^{B}R_{y,\beta} \cdot _{A}^{B}R_{z,\gamma}$$

位姿

为完全描述刚体 P 在空间的位姿,将坐标系 $\{P\}$ 的原点 O 取在刚体特征点上,用矢量 $_P^A\vec{P}$ 描述坐标系 $\{P\}$ 的原点在参考坐标系 $\{A\}$ 中的位置,用旋转矩阵 $_P^AR$ 描述坐标系 $\{P\}$ 在参考坐标系 $\{A\}$ 中的姿态,刚体 P 的位姿可描述为 $\begin{bmatrix} A & A \\ P & A \end{bmatrix}$ 。

- 仅表示位置时,有 $^{A}_{p}R = I$;
- 仅表示方位时,有 $\stackrel{A}{P}\vec{P}=0$ 。

为方便后续数学运算,将上述位姿描述扩充为齐次矩阵形式:

$$_{P}^{A}T=egin{bmatrix} _{P}^{A}R & _{P}^{A}ec{P} \ 0 & 1 \end{bmatrix}$$

单次位姿变换

已知向量 P 在坐标系 $\{A\}$ 中的位置矢量为 $^Aec{P}$,若坐标系 $\{A\}$ 在坐标系 $\{B\}$ 中的姿态表示为 B_AT ,则向量P在坐标系 $\{B\}$ 中的描述为

$${}^B\vec{P} = ^B_A T^A\vec{P}$$

连续位姿变换

已知向量 P 在坐标系 $\{A\}$ 中的位置矢量为 $^A\vec{P}$,若坐标系 $\{A\}$ 在坐标系 $\{B\}$ 中的姿态表示为 B_AT ,坐标系 $\{B\}$ 在坐标系 $\{C\}$ 中的姿态表示为 C_BT ,则向量 P 在坐标系 $\{C\}$ 中的描述为

$$^{C}\vec{P} = ^{C}_{B}T^{B}\vec{P} = ^{C}_{B}T^{B}T^{A}\vec{P}$$

位姿逆变换

$${}^P_AT = \begin{bmatrix} {}^P_AR & {}^P_A\vec{P} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} {}^A_PR^T & -{}^A_PR^T{}^A_P\vec{P} \\ 0 & 1 \end{bmatrix}$$

补充

向量乘法

已知两向量, $ec{a} = \begin{bmatrix} x_a, y_a, z_a \end{bmatrix}$, $ec{b} = \begin{bmatrix} x_b, y_b, z_b \end{bmatrix}$

向量点乘:

$$ec{a}\cdotec{b}=x_ax_b+y_ay_b+z_az_b$$

- 点乘又称内积, 其结果是一个标量
- 点乘具有交換性 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- 点乘可计算两向量的夹角或某向量在另一向量方向上的投影长度 $ec{a}\cdotec{b}=|ec{a}||ec{b}|\cos heta$

向量叉乘:

$$ec{a} imesec{b}=egin{array}{ccc} ec{a}&ec{b}&=egin{array}{ccc} ec{i}&ec{j}&k\ x_a&y_a&z_a\ x_b&y_b&z_b \end{array} = (y_az_b-y_bz_a)i-(x_az_b-x_bz_a)j+(x_ay_b-x_by_a)k$$

- 叉乘又称外积, 其结果是一个向量
- 叉乘具有反称性 $\vec{a} imes \vec{b} = -\vec{b} imes \vec{a}$
- 叉乘具有线性 $(\lambda \vec{a} + \mu \vec{b}) \times \vec{c} = \lambda (\vec{a} \times \vec{c}) + \mu (\vec{b} \times \vec{c})$
- 叉乘可计算两向量所在平面的法向量,法向量方向遵循右手法则 $ec{a} imesec{b}=|ec{a}||ec{b}|\sin heta$

等效旋转

欧拉角

使用三个分离的旋转角,把一个旋转分解成绕三个正交轴的旋转,默认采用右手坐标系。

合法旋转顺序: xzx、 xyx、 yxy 、 yzy 、 zyz 、 zxz 、 xzy 、 xyz 、 yxz 、 yzx 、 zyx 、 zxy 外旋,绕固定参考坐标系的旋转,旋转矩阵应左乘。举例来说,按 zyx 顺序外旋 $\alpha\beta\gamma$, $R=R_x(\gamma)R_y(\beta)R_z(\alpha)$ 。 内旋,绕自身当前坐标系的旋转,旋转矩阵应右乘。举例来说,按 zyx 顺序内旋 $\alpha\beta\gamma$, $R=R_z(\alpha)R_y(\beta)R_x(\gamma)$ 。 同序同角度做正旋和外旋得到的姿态不同。举例来说,按 zyx 顺序正旋 $\alpha\beta\gamma$ 不等价于按 zyx 顺序逆旋 $\alpha\beta\gamma$ 。 内旋正序和外旋逆序同角度得到的姿态相同。举例来说,按 zyx 顺序正旋 $\alpha\beta\gamma$ 等价于按 xyz 顺序逆旋 $\gamma\beta\alpha$ 。 特殊的,机器人行业中惯用 zyx 顺序,也称为rpy角。 欧拉角存在万向锁问题。

绕
$$x$$
 轴旋转 α 角, $R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$ 绕 y 轴旋转 β 角, $R_y(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$ 绕 z 轴旋转 γ 角, $R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$

记忆规律:

- 若绕 x 轴旋转, $r_{11}=1$,同行同列其他元素均是0
- 若绕 y 轴旋转, $r_{22}=1$,同行同列其他元素均是0
- 若绕 z 轴旋转, $r_{33}=1$,同行同列其他元素均是0
- 剩余4个元素, 主对角线都填充sin, 副对角线都填充cos
- 元素1所在的(循环)前一列的sin要加负号
- 已知欧拉角, 求旋转矩阵

Proper Euler angles	Tait-Bryan angles
$X_lpha Z_eta X_\gamma = egin{bmatrix} c_eta & -c_\gamma s_eta & s_eta s_\gamma \ c_lpha s_eta & c_lpha c_eta c_\gamma - s_lpha s_\gamma & -c_\gamma s_lpha - c_lpha c_eta s_\gamma \ s_lpha s_eta & c_lpha s_\gamma + c_eta c_\gamma s_lpha & c_lpha c_\gamma - c_eta s_lpha s_\gamma \end{bmatrix}$	$X_lpha Z_eta Y_\gamma = egin{bmatrix} c_eta c_\gamma & -s_eta & c_eta s_\gamma \ s_lpha s_\gamma + c_lpha c_\gamma s_eta & c_lpha c_eta & c_lpha s_eta s_\gamma - c_\gamma s_lpha \ c_\gamma s_lpha s_eta - c_lpha s_\gamma & c_eta s_lpha & c_lpha c_\gamma + s_lpha s_eta s_\gamma \end{bmatrix}$
$X_lpha Y_eta X_\gamma = egin{bmatrix} c_eta & s_eta s_\gamma & c_\gamma s_eta \ s_lpha s_eta & c_lpha c_\gamma - c_eta s_lpha s_\gamma & -c_lpha s_\gamma - c_eta c_\gamma s_lpha \ -c_lpha s_eta & c_\gamma s_lpha + c_lpha c_eta s_\gamma & c_lpha c_\gamma - s_lpha s_\gamma \end{bmatrix}$	$X_lpha Y_eta Z_\gamma = egin{bmatrix} c_eta c_\gamma & -c_eta s_\gamma & s_eta \ c_lpha s_\gamma + c_\gamma s_lpha s_eta & c_lpha c_\gamma - s_lpha s_eta s_\gamma & -c_eta s_lpha \ s_lpha s_\gamma - c_lpha c_\gamma s_eta & c_\gamma s_lpha + c_lpha s_eta s_\gamma & c_lpha c_eta \end{bmatrix}$
$Y_lpha X_eta Y_\gamma = egin{bmatrix} c_lpha c_\gamma - c_eta s_lpha s_\gamma & s_lpha s_eta & c_lpha s_\gamma + c_eta c_\gamma s_lpha \ s_eta s_\gamma & c_eta & -c_\gamma s_eta \ -c_\gamma s_lpha - c_lpha c_eta s_\gamma & c_lpha s_eta & c_lpha c_eta c_\gamma - s_lpha s_\gamma \end{bmatrix}$	$Y_lpha X_eta Z_\gamma = egin{bmatrix} c_lpha c_\gamma + s_lpha s_eta s_\gamma & c_\gamma s_lpha s_eta - c_lpha s_\gamma & c_eta s_lpha \ c_eta s_\gamma & c_eta c_\gamma & -s_eta \ c_lpha s_eta s_\gamma - c_\gamma s_lpha & c_lpha c_\gamma s_eta + s_lpha s_\gamma & c_lpha c_eta \end{bmatrix}$
$Y_{lpha}Z_{eta}Y_{\gamma} = egin{bmatrix} c_{lpha}c_{eta}c_{\gamma}-s_{lpha}s_{\gamma} & -c_{lpha}s_{eta} & c_{\gamma}s_{lpha}+c_{lpha}c_{eta}s_{\gamma} \ c_{\gamma}s_{eta} & c_{eta} & s_{eta}s_{\gamma} \ -c_{lpha}s_{\gamma}-c_{eta}c_{\gamma}s_{lpha} & s_{lpha}s_{eta} & c_{lpha}c_{\gamma}-c_{eta}s_{lpha}s_{\gamma} \end{bmatrix}$	$Y_lpha Z_eta X_\gamma = egin{bmatrix} c_lpha c_eta & s_lpha s_\gamma - c_lpha c_\gamma s_eta & c_\gamma s_lpha + c_lpha s_eta s_\gamma \ s_eta & c_eta c_\gamma & -c_eta s_\gamma \ -c_eta s_lpha & c_lpha s_\gamma + c_\gamma s_lpha s_eta & c_lpha c_\gamma - s_lpha s_eta s_\gamma \end{bmatrix}$
$Z_lpha Y_eta Z_\gamma = egin{bmatrix} c_lpha c_eta c_\gamma - s_lpha s_\gamma & -c_\gamma s_lpha - c_lpha c_eta s_\gamma & c_lpha s_eta \ c_lpha s_\gamma + c_eta c_\gamma s_lpha & c_lpha c_\gamma - c_eta s_lpha s_\gamma & s_lpha s_eta \ -c_\gamma s_eta & s_eta s_\gamma & c_eta \end{bmatrix}$	$Z_lpha Y_eta X_\gamma = egin{bmatrix} c_lpha c_eta & c_lpha s_eta s_\gamma - c_\gamma s_lpha & s_lpha s_\gamma + c_lpha c_\gamma s_eta \ c_eta s_lpha & c_lpha c_\gamma + s_lpha s_eta s_\gamma & c_\gamma s_lpha s_eta - c_lpha s_\gamma \ -s_eta & c_eta s_\gamma & c_eta c_\gamma \end{bmatrix}$
$Z_{lpha}X_{eta}Z_{\gamma} = egin{bmatrix} c_{lpha}c_{\gamma}-c_{eta}s_{lpha}s_{\gamma} & -c_{lpha}s_{\gamma}-c_{eta}c_{\gamma}s_{lpha} & s_{lpha}s_{eta} \ c_{\gamma}s_{lpha}+c_{lpha}c_{eta}s_{\gamma} & c_{lpha}c_{eta}c_{\gamma}-s_{lpha}s_{\gamma} & -c_{lpha}s_{eta} \ s_{eta}s_{\gamma} & c_{\gamma}s_{eta} & c_{eta} \end{bmatrix}$	$Z_lpha X_eta Y_\gamma = egin{bmatrix} c_lpha c_\gamma - s_lpha s_eta s_\gamma & -c_eta s_lpha & c_lpha s_\gamma + c_\gamma s_lpha s_eta \ c_\gamma s_lpha + c_lpha s_eta s_\gamma & c_lpha c_eta & s_lpha s_\gamma - c_lpha c_\gamma s_eta \ -c_eta s_\gamma & s_eta & c_eta c_\gamma \end{bmatrix}$

• 已知旋转矩阵,求欧拉角

	Proper Euler angles	Ta	ait-Bryan angles
$X_{lpha}Z_{eta}X_{\gamma}$		$X_{lpha}Z_{eta}Y_{\gamma}$	$lpha = rctanigg(rac{R_{32}}{R_{22}}igg) \ eta = rcsin(-R_{12}) \ egin{pmatrix} eta_{12} & eta_{12} \ eta_{12} & eta_{12} \ $
	$\gamma = \arctan\left(rac{R_{13}}{-R_{12}} ight)$		$\gamma = \arctan\left(\frac{R_{13}}{R_{11}}\right)$
$X_{lpha}Y_{eta}X_{\gamma}$	$lpha = \arctan\left(\frac{R_{21}}{-R_{31}}\right)$		$lpha = \arctan\left(rac{-R_{23}}{R_{33}} ight)$
	$\beta = \arccos(R_{11})$	$X_{lpha}Y_{eta}Z_{\gamma}$	(-)
	$\gamma = rctanigg(rac{R_{12}}{R_{13}}igg)$		$\gamma = \arctan\left(rac{-R_{12}}{R_{11}} ight)$
$Y_{lpha}X_{eta}Y_{\gamma}$	$lpha = rctanigg(rac{R_{12}}{R_{32}}igg)$		$lpha=rctanigg(rac{R_{13}}{R_{33}}igg)$
	$eta=rccos(R_{22})$	$Y_{lpha}X_{eta}Z_{\gamma}$	$eta=rcsin(-R_{23})$
	$\gamma = rctanigg(rac{R_{21}}{-R_{23}}igg)$		$\gamma = rctanigg(rac{R_{21}}{R_{22}}igg)$
	$lpha = rctanigg(rac{R_{32}}{-R_{12}}igg)$		$lpha=rctanigg(rac{-R_{31}}{R_{11}}igg)$
$Y_{lpha}Z_{eta}Y_{\gamma}$	$eta=rccos(R_{22})$	$Y_{lpha}Z_{eta}X_{\gamma}$	
	$\gamma = \arctan \left(rac{R_{23}}{R_{21}} ight)$		$\gamma = \arctan\left(rac{-R_{23}}{R_{22}} ight)$
$Z_{lpha}Y_{eta}Z_{\gamma}$	$lpha = rctanigg(rac{R_{23}}{R_{13}}igg)$	$Z_{lpha}Y_{eta}X_{\gamma}$	R_{21}
	$\int \sqrt{1-R_{33}^2}$		$\alpha = \arctan\left(\frac{R_{11}}{R_{11}}\right)$
	$eta = rctan \Biggl(rac{\sqrt{1-R_{33}^2}}{R_{33}} \Biggr)$		$\beta = \arcsin(-R_{31})$
	$\gamma = rctan\Bigl(rac{R_{32}}{-R_{31}}\Bigr)$		$lpha = rctanigg(rac{R_{21}}{R_{11}}igg) \ eta = rcsin(-R_{31}) \ \gamma = rctanigg(rac{R_{32}}{R_{33}}igg)$
$Z_{lpha}X_{eta}Z_{\gamma}$	$\alpha = \arctan\left(\frac{R_{13}}{-R_{23}}\right)$		$lpha = rctanigg(rac{-R_{12}}{R_{22}}igg)$
	$eta=rccos(R_{33})$	$Z_{lpha}X_{eta}Y_{\gamma}$	$eta=rcsin(R_{32})$
	$\gamma = rctanigg(rac{R_{31}}{R_{32}}igg)$		$\gamma = rctanigg(rac{-R_{31}}{R_{33}}igg)$

轴角/旋转向量

任何姿态都可以通过绕某一个轴旋转特定的角度得到。

轴角使用四个元素表达旋转,前三个元素构成单位向量 n 描述旋转轴,最后一个元素描述旋转角

$$r = \llbracket x, y, z, heta
rbrace$$

旋转向量使用三个元素表达旋转,向量方向与旋转轴一致,向量长度等于旋转角

$$ec{r_v} = ig[x* heta,y* heta,z* hetaig]$$

从旋转向量到旋转矩阵的转换过程由罗德里格斯公式表明

$$R = \cos \theta I + (1 - \cos \theta) n n^T + \sin \theta \hat{n}$$

• 已知轴角, 求旋转矩阵

$$r = \begin{bmatrix} x, y, z, \theta \end{bmatrix} \Rightarrow R = \begin{bmatrix} x^2(1 - \cos \theta) + \cos \theta & xy(1 - \cos \theta) - z\sin \theta & xz(1 - \cos \theta) + y\sin \theta \\ xy(1 - \cos \theta) + z\sin \theta & y^2(1 - \cos \theta) + \cos \theta & yz(1 - \cos \theta) - x\sin \theta \\ xz(1 - \cos \theta) - y\sin \theta & yz(1 - \cos \theta) + x\sin \theta & z^2(1 - \cos \theta) + \cos \theta \end{bmatrix}$$

• 已知旋转矩阵, 求轴角

$$R = egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{11} & r_{12} & r_{13} \ r_{11} & r_{12} & r_{13} \end{bmatrix} \Rightarrow egin{bmatrix} x = rac{1}{2\sin heta}(r_{32} - r_{23}) \ y = rac{1}{2\sin heta}(r_{13} - r_{31}) \ z = rac{1}{2\sin heta}(r_{21} - r_{12}) \ heta = rccos(rac{r_{11} + r_{22} + r_{33} - 1}{2}) \end{pmatrix}$$

四元数

使用四维超复数表示旋转。一个四元数由一个实部 $s=q_0\in\Re$ 和三个虚部 $\nu=[q_1,q_2,q_3]^T\in\Re^3$ 构成

$$q = q_0 + q_1 i + q_2 j + q_3 k = [s,
u]^T \ egin{cases} i^2 = j^2 = k^2 = 1 \ ij = k, \ ji = -k \ jk = i, \ kj = -i \ ki = j, \ ik = -j \end{cases}$$

四元数常用运算

$$egin{cases} q_a = w_a + x_a i + y_a j + z_a k = [w_a,
u_a]^T \ q_b = w_b + x_b i + y_b j + z_b k = [w_b,
u_b]^T \end{cases}$$

加减法

$$q_a \pm q_b = (w_a \pm w_b) + (x_a \pm x_b)i + (y_a \pm y_b)j + (z_a \pm z_b)k$$

• 乘法

$$egin{aligned} q_a q_b &= \left[w_a w_b -
u_a{}^T
u_b, w_a
u_b + w_b
u_a +
u_a imes
u_b
ight]^T \ &= \left(w_a w_b - x_a x_b - y_a y_b - z_a z_b
ight) + \ &\left(w_a x_b + x_a w_b + y_a z_b - z_a y_b
ight) i + \ &\left(w_a y_b - x_a z_b + y_a w_b + z_a x_b
ight) j + \ &\left(w_a z_b + x_a y_b - y_a x_b + z_a w_b
ight) k \end{aligned}$$

• 模长

$$|q_a| = \sqrt{w_a^2 + x_a^2 + y_a^2 + z_a^2} \ |q_a q_b| = |q_a||q_b|$$

• 共轭

$$q_a^* = [w_a, -
u_a]^T = w_a - x_a i - y_a j - z_a k \ q_a^* q_a = q_a q_a^* = [w_a^2 +
u_a^T
u_a, 0]^T$$

• 逆

$$q_a^{-1} = rac{q_a^*}{|q_a|^2} \ q_a q_a^{-1} = q_a^{-1} q_a = 1$$

特别的,单位四元数的逆等于其共轭,且其乘积的逆具有如下性质

$$(q_a q_b)^{-1} = q_b^{-1} q_a^{-1}$$

• 数乘

$$\lambda q_a = [\lambda w_a, \lambda
u]^T = \lambda w_a + \lambda x_a i + \lambda y_a j + \lambda z_a k$$

• 旋转

三维点 $p=[x,y,z]\in\Re^3$, 经过 q_a 指定的旋转变换后,得到 p' 取虚四元数来描述三维点 $p=[0,x,y,z]^T$

$$p^\prime = q_a p q_a^{-1}$$

• 已知四元数, 求旋转矩阵

$$q=w+xi+yj+zk\Rightarrow R=egin{bmatrix} 1-2(y^2+z^2) & 2(xy-wz) & 2(xz+wy) \ 2(xy+wz) & 1-2(x^2+z^2) & 2(yz-wx) \ 2(xz-wy) & 2(yz+wx) & 1-2(x^2+y^2) \end{bmatrix}$$

• 已知旋转矩阵,求四元数

$$R = egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{11} & r_{12} & r_{13} \ r_{11} & r_{12} & r_{13} \end{bmatrix} \Rightarrow egin{bmatrix} w = rac{1}{2}\sqrt{r_{11} + r_{22} + r_{33} + 1} \ x = rac{1}{4w}(r_{32} - r_{23}) \ y = rac{1}{4w}(r_{13} - r_{31}) \ z = rac{1}{4w}(r_{21} - r_{12}) \end{pmatrix}$$

TODO

上述转换仅提供了一个引子,其中存在一些取值范围或临界结果等多种情况还需分类讨论,有待补充

旋转描述对比

类型	有无先后顺序	两个元素之间是否 可使用线性插值	是否可直接使用 元素进行运算	优缺点
欧拉角	有(有很多顺序 组合,常用例如 RPY,ZYZ···)	可以(类比直线线性插值)	可以,直接当作 欧式空间向量计 算	优点: 观多多径也读为法的 管理解解转是 法信; 所 我是为 我是为 我是有 我是有 我是是,是一个。 我是是一个。 我是是一个。 我是是一个。 我是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是一个。 我是是是是一个。 我是是是是一个。 我是是是是一个。 我是是是是是一个。 我是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是
旋转矩阵	无(直接表示了 动系各轴在参考 系各轴上的方向 余弦)	不可以 (矩阵元素 都是三角函数)	可以,旋转矩阵 乘法	优点:解唯一 朴素 缺点:无法直 接进行线性插 值
固定轴角	无(旋转运动矢 量)	可以(轴固定,角度线性插值)	不可以,旋转矢量[0×, 0·y, 0·z] 不能直接做加法 乘法等运算,不 具备变换意义	优点: 可度值 无接要阵位
四元数	无(采用高维超 复数表示三维旋 转的形式,与轴 角存在转换形 式)	可以,使用 Slerp 插值,具有三角函 数形式和指数形 式,本质和轴角线 性插值过程是对应 的	可以,每个四元 数可以表示状态 也可以表示过 程,且存在一套 变换运算定律	优点: 度 角速接运角,可指重整体。 可插通算,的 。 理对点。 。 要对。 。 要对。 。 要对。 。 要对。 。 要是。 。 数基。 。 数基。 。 数基。 。 数基。 。 数基。 。 数基。 。 数基。