

Módulo 1



















### Semáforo [Carros] AULA





### GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

### SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

### DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

### COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

### Produção de Conteúdo

Cleiton Rosa Simone Sinara de Souza

### Revisão Textual

Adilson Carlos Batista

### Leitura Crítica e Normalização Bibliográfica

Ricardo Hasper

### Projeto Gráfico e Diagramação

Edna do Rocio Becker

### Ilustração

Jocelin Vianna (Educa Play)

2021



### Sumário

| Introdução                                      | 2  |
|-------------------------------------------------|----|
| Objetivos desta Aula                            | 2  |
| Competências Gerais Previstas na BNCC           | 3  |
| Habilidades do Século XXI a Serem Desenvolvidas | 4  |
| Lista de Materiais                              | 4  |
| Roteiro da Aula                                 | 5  |
| 1. Contextualização                             | 5  |
| 2. Montagem e Programação                       | 5  |
| 3. Feedback e Finalização                       | 13 |
| Videotutorial                                   | 14 |
| Referências                                     | 15 |

### AULA O SEMÁFORO DE CARROS



### Introdução

Os semáforos são dispositivos de sinalização formados por sistemas de luzes com cores (vermelho, amarelo e verde) com o objetivo de informar aos usuários de trânsito - sejam motoristas, pedestres, ciclistas, entre outros - o momento permitido à circulação, à espera e à transição entre uma ou outra circunstância.

Nesta aula, você terá a oportunidade de prototipar um semáforo de veículos e entender, via programação, seu funcionamento.



### Objetivos desta Aula

- Entender o funcionamento dos semáforos de carros;
- Montar protótipo que simule o funcionamento de um semáforo de carros;
- Realizar a programação em código e em blocos para o funcionamento do protótipo de semáforo de carros;



### Competências Gerais Previstas na BNCC

**[CG02]** - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

**[CG04]** - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

**[CG05]** - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

**[CG09]** - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.

**[CG10]** - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.







### Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.



### Lista de Materiais

- 01 Placa Protoboard:
- 01 Placa Arduino Uno R3:
- 01 Cabo USB;
- 04 Jumpers macho-macho;
- 03 Resistores 220 Ohms;
- 01 LED vermelho 5mm;
- 01 LED verde 5mm:
- 01 LED amarelo 5mm;
- 01 Notebook;
- Software mBlock ou Arduino IDE.



Robótica



### 1. Contextualização (15min):

O semáforo é um dispositivo de controle e segurança, criado no século XIX, visando auxiliar na organização do tráfego em vias públicas. Qual a importância de organizarmos o sincronismo das luzes de um semáforo de veículos?

O semáforo de veículos é composto por sequência de três cores (verde, amarelo e vermelho), adotada pela maioria dos países, que sinalizam ao motorista o momento permitido à circulação, à espera e à transição entre uma ou outra circunstância. A luz verde permite a mobilidade do veículo, na via pública. A luz amarela informa ao motorista que o período de travessia está terminando, logo, ele deve reduzir a velocidade do veículo, caso esteja distante do cruzamento, tendo assim, tempo hábil para parar o veículo com segurança. Já a luz vermelha indica ao motorista que ele deve aguardar o momento ideal para a travessia da via pública, ou seja, a sinalização do semáforo na cor verde.

Nesta aula, você terá a oportunidade de prototipar um semáforo de veículos e entender, via programação, seu funcionamento.

### 2. Montagem e Programação (60min):

Encaixe na Protoboard os LEDs das cores verde, amarelo e vermelho, respectivamente, com seus terminais negativos (terminal mais curto) na linha lateral azul e seus terminais positivos (terminal mais longo) na região central da protoboard, como mostra a figura 1.



Figura 1 - Inserção de LEDs na Protoboard

Fonte: Fritzing

5

## AULA 09

Insira os Resistores, conectando um de seus terminais na mesma coluna de furos dos terminais positivos dos LEDs e o outro terminal na parte central inferior da Protoboard, de acordo com a figura 2.

Figura 2 - Inserindo Resistores na Protoboard

Fonte: Fritzing

Conecte 1 Jumper entre a porta GND do Arduino e a linha azul da Protoboard em que estão conectados os terminais negativos dos LEDs, como mostra a figura 3.



Figura 3 - Conectando a placa Arduino à Protoboard



Fonte: Fritzing

Interligue, com Jumpers, os 3 Resistores às 3 portas digitais do Arduino (neste exemplo, escolhemos as portas 8 para o LED vermelho, a porta 9 para o LED amarelo e a porta 10 para o LED verde), conforme apresentado na figura 4.

TICEPE LESS AND LESS

Figura 4 - Interligando Resistores às portas digitais da placa Arduino

Fonte: Fritzing



### Agora, vamos programar!

Com os componentes eletrônicos montados, vamos programar, por codificação e por blocos, o protótipo de um semáforo de veículos.

### i. Linguagem de programação por código

Para iniciar a programação, conecte a placa Arduino ao computador, através de um cabo USB, para que ocorra a comunicação entre a placa microcontroladora e o software Arduino IDE.

No software IDE, crie um sketch e lembre-se de selecionar a porta que o computador atribuiu ao Arduino; então, escreva ou copie e cole o código-fonte de programação, conforme apresentado no quadro 1.

Quadro 1 - Código-fonte da programação na linguagem do Arduino (Wiring)

```
/* Código de operação para um Semáforo */
#define LED Vermelho 8 /* Define o pino 8 como "LED Vermelho" */
#define LED_Amarelo 9 /* Define o pino 9 como "LED_Amarelo" */
#define LED_Verde 10  /* Define o pino 10 como "LED_Verde" */
void setup() {
 pinMode(LED Vermelho, OUTPUT);/* Define o Led Vermelho como
 pinMode(LED Amarelo, OUTPUT); /* Define o Led Amarelo como
Saída */
 pinMode(LED Verde, OUTPUT);/* Define o Led Verde como
Saída */
void loop() { /* Primeiro estágio: Aberto (5 segundos) */
 digitalWrite(LED Vermelho, LOW);
  digitalWrite(LED Amarelo, LOW);
 digitalWrite(LED_Verde, HIGH);
 delay(5000);
  /* Segundo estágio: Atenção (3 segundos) */
 digitalWrite(LED Vermelho, LOW);
 digitalWrite(LED Amarelo, HIGH);
 digitalWrite(LED Verde, LOW);
 delay(3000);
  /* Terceiro estágio: Fechado (5 segundos) */
  digitalWrite(LED_Vermelho, HIGH);
  digitalWrite(LED_Amarelo, LOW);
  digitalWrite(LED Verde, LOW);
  delay(5000);
```

Observe que no código-fonte há repetição do comando **#de-fine**. Esta função permite determinar um nome ou valor constante na programação. O compilador irá substituir referências a essas constantes pelo valor definido no tempo de compilação.

A seguir, compile o programa pressionando o botão **Verificar** para averiguar se não há erros de sintaxe. Estando o código correto, o próximo passo é realizar a transferência do programa para o Arduino. Pressione o botão **Carregar** para realizar upload do programa para o Arduino.



### Robótica

Após a transferência do programa para o Arduino os LEDs presentes na placa Protoboard devem acender conforme a sequência programada, simulando o funcionamento do semáforo de veículos.

### ii. Linguagem de programação por blocos

Outra forma de simular o funcionamento do semáforo é por meio da linguagem de programação que utiliza blocos de funções prontas, os quais representam comandos de programação. Vamos utilizar o software mBlock.

Para conectar o mBlock ao Arduino, você deve clicar no ícone **Adicionar**, localizado no campo **Dispositivos**, e selecionar o Arduino, na biblioteca de dispositivos do mBlock, clicando, na sequência, no botão **OK**.

Uma vez selecionado, o Arduino Uno é visualizado no campo **Dispositivos** (figura 5) do mBlock e já é possível iniciar a programação em blocos.



Figura 5 - Conectando mBlock ao Arduino Uno

Fonte: site mBlock oficial.



# AULA O 9

Monte os blocos, arrastando e soltando, de acordo com a programação de funcionamento do semáforo, como mostra a figura 6.

Figura 6 - Programação em blocos para funcionamento do semáforo



Fonte: site mBlock oficial.

Assim que os blocos estiverem montados, clique no botão **Conectar** (figura 5) para iniciar a comunicação entre o software mBlock com a placa de Arduino Uno. Ao clicar sobre o botão **Conectar**, aparecerá um Tooltip solicitando a confirmação da conexão entre os dois dispositivos, conforme mostra a figura 7.



Figura 7 - Confirmar conexão entre mBlock e Arduino Uno



Fonte: site mBlock oficial.

Uma vez realizada a conexão entre os dispositivos, será ativado, na interface do mBlock, o botão **Upload**, o qual, ao ser clicado, o software irá verificar se não há erros na estrutura do programa e, então, compilará para enviar o programa à placa Arduino (figura 8).

Figura 8 - Botão **Upload** para compilação da programação em blocos



Fonte: site mBlock oficial.



## AULA 0 9

Com a transferência do código para o dispositivo Arduino Uno, inicia-se o funcionamento do semáforo de veículos, ou seja, os LEDs começam a acender e a apagar de acordo com a ordem e o tempo definido na programação em blocos.

### Desafios:

- i. Que tal alterar o valor das variáveis de tempo para mudar as luzes, observando e testando os resultados obtidos?
- **ii.** Que tal também projetar uma maquete do semáforo? Isto é, a construção fora da placa de prototipagem, simulando um semáforo real?



### E se...?

- i. O projeto não funcionar, se atente a alguns dos possíveis erros:
  - **1.** Verifique se os Jumpers estão nos pinos certos, se estão na mesma coluna dos terminais dos componentes, fazendo assim as conexões:
  - **2.** Verifique se os LEDs estão conectados corretamente e não invertidos;
  - **3.** Verifique se a programação está adequada a cada porta digital.

### 3. Feedback e Finalização (15min):

- **a.** Confira, compartilhando seu projeto com os demais colegas, se o objetivo foi alcançado.
- **b.** Analise seu projeto desenvolvido, de modo a atender aos requisitos para funcionamento de um semáforo: sequência correta do acendimento das cores verde, amarelo e vermelho para os veículos.
  - c. Reflita se as seguintes situações ocorreram:
  - i. Colaboração e Cooperação: você e os membros de sua equipe interagiram entre si, compartilhando ideias que promoveram a aprendizagem e o desenvolvimento deste projeto?
  - **ii.** Pensamento Crítico e Resolução de Problemas: você conseguiu identificar os problemas, analisar informações e tomar decisões de modo a contribuir para o projeto desenvolvido?
- **d.** Reúna todos os componentes utilizados nesta aula e os organize juntamente aos demais, no kit de robótica.







Com o intuito de auxiliar na montagem e na programação desta aula, apresentamos um videotutorial, disponível em:



https://rebrand.ly/a9robotica

Acesse, também, pelo QRCode:







BRASIL. Ministério da Educação. **Base Nacional Comum Curricular**. Brasília, 2018. Disponível em: <a href="http://basenacionalcomum.mec.gov.br/images/BNCC\_El\_EF\_110518\_versaofinal\_site.pdf">http://basenacionalcomum.mec.gov.br/images/BNCC\_El\_EF\_110518\_versaofinal\_site.pdf</a>. Acesso em: 18 out. 2021.

JORNAL DA USP. Semáforos melhoram convivência entre motoristas e pedestres. Disponível em: <a href="https://jornal.usp.br/atualidades/semaforos-melhoram-convivencia-entre-motoristas-e-pedestres/">https://jornal.usp.br/atualidades/semaforos-melhoram-convivencia-entre-motoristas-e-pedestres/</a>. Acesso em: 15 nov. 2021.

MAKEBLOCK. mBlock. **Download mBlock**. Disponível em: <a href="https://mblock.makeblock.com/en-us/download/">https://mblock.makeblock.com/en-us/download/</a>. Acesso em: 15 out. 2021.

MAKEBLOCK. mBlock. **Programação em blocos**. Disponível em: <a href="https://ide.mblock.cc/">https://ide.mblock.cc/</a>. Acesso em: 15 out. 2021.

### AULA OS



### DIRETORIA DE TECNOLOGIAS E INOVAÇÃO (DTI) COORDENAÇÃO DE TECNOLOGIAS EDUCACIONAIS (CTE)

### **EQUIPE ROBÓTICA PARANÁ**

Adilson Carlos Batista
Cleiton Rosa
Darice Alessandra Deckmann Zanardini
Edna do Rocio Becker
Marcelo Gasparin
Michelle dos Santos
Ricardo Hasper
Simone Sinara de Souza

Os materiais, aulas e projetos da "Robótica Paraná", foram produzidos pela Coordenação de Tecnologias Educacionais (CTE), da Diretoria de Tecnologia e Inovação (DTI), da Secretaria de Estado da Educação e do Esporte do Paraná (Seed), com o objetivo de subsidiar as práticas docentes com os estudantes por meio da Robótica.

Este material foi produzido para uso didático-pedagógico exclusivo em sala de aula.



Este trabalho está licenciado com uma Licença Creative Commons – CC BY-NC-SA <u>Atribuição - NãoComercial - Compartilhalgual 4.0</u>





