Outline of the chapter 2

- 2.1 Binomial model (repeated experiment with binary outcome)
- 2.2 Posterior as compromise between data and prior information
- 2.3 Posterior summaries
- 2.4 Informative prior distributions (skip exponential families and sufficient statistics)
- 2.5 Gaussian model with known variance
- 2.6 Other single parameter models
 - the normal distribution with known mean but unknown variance is the most important
 - glance through Poisson and exponential
- 2.7 glance through this example, which illustrates benefits of prior information, no need to read all the details (it's quite long example)
- 2.8–2.9 Noninformative and weakly informative priors

Outline of the lecture 2

- Binomial model is the simplest model
 - useful to discuss likelihood, posterior, prior, integration, posterior summaries
 - very commonly used as a building block
 - examples:
 - coin tossing
 - chips from bag
 - · covid tests and vaccines
 - classification / logistic regression

• Probability of event 1 in trial is θ

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is 1θ

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is 1θ
- Probability of several events in independent trials is e.g. $\theta\theta(1-\theta)\theta(1-\theta)(1-\theta)\dots$

- Probability of event 1 in trial is θ
- Probability of event 2 in trial is 1θ
- Probability of several events in independent trials is e.g. $\theta\theta(1-\theta)\theta(1-\theta)(1-\theta)\dots$
- If there are n trials and we don't care about the order of the events, then the probability that event 1 happens y times is

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

• Observation model (function of *y*, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

• Observation model (function of *y*, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.5$, n=1

Observation model (function of y, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.5$, n=10

Observation model (function of y, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.5$, n=10

 $p(y|n = 10, \theta = 0.5)$: 0.00 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.00

Observation model (function of y, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.9$, n=10

 $p(y|n = 10, \theta = 0.9)$: 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.19 0.39 0.35

Observation model (function of y, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.5$, n=10

 $p(y = 6|n = 10, \theta = 0.5)$: 0.00 0.01 0.04 0.12 0.21 0.25 **0.21** 0.12 0.04 0.01 0.00

Observation model (function of y, discrete)

$$p(\mathbf{y}|\theta,n) = \binom{n}{\mathbf{y}} \theta^{\mathbf{y}} (1-\theta)^{n-\mathbf{y}}$$

Binomial distribution with $\theta = 0.9$, n=10

 $p(y = 6|n = 10, \theta = 0.9)$: 0.00 0.00 0.00 0.00 0.00 **0.01** 0.06 0.19 0.39 0.35

• Likelihood (function of θ , continuous)

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

 $p(y = 6|n = 10, \theta)$: 0.00 0.00 0.01 0.04 0.11 **0.21** 0.25 0.20 0.09 **0.01** 0.00

• Likelihood (function of θ , continuous)

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

we can compute the value for any θ , but in practice can evaluate only finite times

• Likelihood (function of θ , continuous)

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

with sufficient many evaluations, linearly interpolated plot looks smooth

• Likelihood (function of θ , continuous)

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

looks smooth, and we'll get back to later to computational cost issues

• Likelihood (function of θ , continuous)

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

likelihood function describes uncertainty, but is not normalized distribution

• Likelihood (function of θ , continuous)

$$p(y|\theta,n) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

where
$$p(y|n) = \int p(y|\theta, n)p(\theta|n)d\theta$$

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

where $p(y|n) = \int p(y|\theta, n)p(\theta|n)d\theta$

Start with uniform prior

$$p(\theta|n) = p(\theta|M) = 1$$
, when $0 \le \theta \le 1$

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

where $p(y|n) = \int p(y|\theta, n)p(\theta|n)d\theta$

Start with uniform prior

$$p(\theta|n) = p(\theta|M) = 1$$
, when $0 \le \theta \le 1$

Then

$$p(\theta|y,n) = \frac{p(y|\theta,n)}{p(y|n)} = \frac{\binom{n}{y}\theta^{y}(1-\theta)^{n-y}}{\int_{0}^{1}\binom{n}{y}\theta^{y}(1-\theta)^{n-y}d\theta}$$
$$= \frac{1}{Z}\theta^{y}(1-\theta)^{n-y}$$

Normalization term Z (constant given y)

$$Z = p(y|n) = \int_0^1 \frac{\theta^y}{(1-\theta)^{n-y}} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

Normalization term Z (constant given y)

$$Z = p(y|n) = \int_0^1 \frac{\theta^y}{(1-\theta)^{n-y}} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

• Evaluate with y = 6, n = 10y<-6; n<-10;

```
integrate(function(theta) theta^y*(1-theta)^(n-y), 0, 1) \approx 0.0004329 gamma(6+1)*gamma(10-6+1)/gamma(10+2) \approx 0.0004329
```

Normalization term Z (constant given y)

$$Z = p(y|n) = \int_0^1 \frac{\theta^y}{(1-\theta)^{n-y}} d\theta = \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

• Evaluate with y = 6, n = 10

```
integrate(function(theta) theta^y*(1-theta)^(n-y), 0, 1) \approx 0.0004329 gamma(6+1)*gamma(10-6+1)/gamma(10+2) \approx 0.0004329 usually computed via log \Gamma(\cdot) due to the limitations of floating point presentation
```

Posterior is

$$p(\theta|y,n) = \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)} \theta^{y} (1-\theta)^{n-y},$$

Posterior is

$$p(\theta|y,n) = \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)}\theta^{y}(1-\theta)^{n-y},$$

which is called Beta distribution

$$\theta|y,n\sim \text{Beta}(y+1,n-y+1)$$

Binomial: computation

- R
 - density dbeta
 - CDF pbeta
 - quantile qbeta
 - random number rbeta
- Python
 - from scipy.stats import beta
 - density beta.pdf
 - CDF beta.cdf
 - prctile beta.ppf
 - random number beta.rvs

Binomial: computation

- Beta CDF not trivial to compute
- For example, pbeta in R uses a continued fraction with weighting factors and asymptotic expansion
- Laplace developed normal approximation (Laplace approximation), because he didn't know how to compute Beta CDF

Placenta previa

- Probability of a girl birth given placenta previa (BDA3 p. 37)
 - 437 girls and 543 boys have been observed
 - is the ratio 0.445 different from the population average 0.485?

Placenta previa

- Probability of a girl birth given placenta previa (BDA3 p. 37)
 - 437 girls and 543 boys have been observed
 - is the ratio 0.445 different from the population average 0.485?

Sometimes conditioning on the model M is explicitly shown

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y, n, M) = \frac{p(y|\theta, n, M)p(\theta|n, M)}{p(y|n, M)}$$

where $p(y|n, M) = \int p(y|\theta, n, M)p(\theta|n, M)d\theta$

Sometimes conditioning on the model *M* is explicitly shown

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y, n, M) = \frac{p(y|\theta, n, M)p(\theta|n, M)}{p(y|n, M)}$$

where $p(y|n, M) = \int p(y|\theta, n, M)p(\theta|n, M)d\theta$

- makes it more clear that likelihood and prior are both part of the model
- makes it more clear that there is no absolute probability for p(y|n), but it depends on the model M
- in case of two models, we can evaluate marginal likelihoods $p(y|n, M_1)$ and $p(y|n, M_2)$ (more in Ch 7)

Sometimes conditioning on the model *M* is explicitly shown

• Posterior with Bayes rule (function of θ , continuous)

$$p(\theta|y, n, M) = \frac{p(y|\theta, n, M)p(\theta|n, M)}{p(y|n, M)}$$

where
$$p(y|n, M) = \int p(y|\theta, n, M)p(\theta|n, M)d\theta$$

- makes it more clear that likelihood and prior are both part of the model
- makes it more clear that there is no absolute probability for p(y|n), but it depends on the model M
- in case of two models, we can evaluate marginal likelihoods $p(y|n, M_1)$ and $p(y|n, M_2)$ (more in Ch 7)
- usually dropped to make the notation more concise

Predictive distribution – Effect of integration

• Predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{y} = 1 | \theta, y, n, M)$$

• Predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{y} = 1|y, n, M) = \int_0^1 p(\tilde{y} = 1|\theta, y, n, M) p(\theta|y, n, M) d\theta$$

• Predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{\mathbf{y}} = \mathbf{1}|\mathbf{y}, n, \mathbf{M}) = \int_0^1 p(\tilde{\mathbf{y}} = \mathbf{1}|\theta, \mathbf{y}, n, \mathbf{M}) p(\theta|\mathbf{y}, n, \mathbf{M}) d\theta$$
$$= \int_0^1 \theta p(\theta|\mathbf{y}, n, \mathbf{M}) d\theta$$

• Predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{y} = 1|y, n, M) = \int_0^1 p(\tilde{y} = 1|\theta, y, n, M)p(\theta|y, n, M)d\theta$$
$$= \int_0^1 \theta p(\theta|y, n, M)d\theta$$
$$= E[\theta|y]$$

• Predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{y} = 1|y, n, M) = \int_0^1 p(\tilde{y} = 1|\theta, y, n, M)p(\theta|y, n, M)d\theta$$
$$= \int_0^1 \theta p(\theta|y, n, M)d\theta$$
$$= E[\theta|y]$$

With uniform prior

$$\mathsf{E}[\theta|y] = \frac{y+1}{n+2}$$

• Predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{y} = 1|y, n, M) = \int_0^1 p(\tilde{y} = 1|\theta, y, n, M)p(\theta|y, n, M)d\theta$$
$$= \int_0^1 \theta p(\theta|y, n, M)d\theta$$
$$= E[\theta|y]$$

With uniform prior

$$\mathsf{E}[\theta|y] = \frac{y+1}{n+2}$$

Extreme cases

$$p(\tilde{y} = 1 | y = 0, n, M) = \frac{1}{n+2}$$
$$p(\tilde{y} = 1 | y = n, n, M) = \frac{n+1}{n+2}$$

cf. maximum likelihood

Benefits of integration

Example: n = 10, y = 10

Posterior of θ of Binomial model with y=10, n=

Predictive distribution

• Prior predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{y} = 1|M) = \int_0^1 p(\tilde{y} = 1|\theta, M)p(\theta|M)d\theta$$

• Posterior predictive distribution for new \tilde{y} (discrete)

$$p(\tilde{y}=1|y,n,M)=\int_0^1 p(\tilde{y}=1|\theta,y,n,M)p(\theta|y,n,M)d\theta$$

Justification for uniform prior

- $p(\theta|M) = 1$ if
 - 1) we want the prior predictive distribution to be uniform

$$p(y|n, M) = \frac{1}{n+1}, \quad y = 0, \dots, n$$

nice justification as it is based on observables y and n

Justification for uniform prior

- $p(\theta|M) = 1$ if
 - 1) we want the prior predictive distribution to be uniform

$$p(y|n,M) = \frac{1}{n+1}, \quad y = 0,...,n$$

- nice justification as it is based on observables y and n
- 2) we think all values of θ are equally likely

Priors

- Conjugate prior (BDA3 p. 35)
- Noninformative prior (BDA3 p. 51)
- Proper and improper prior (BDA3 p. 52)
- Weakly informative prior (BDA3 p. 55)
- Informative prior (BDA3 p. 55)
- Prior sensitivity (BDA3 p. 38)

Conjugate prior

- Prior and posterior have the same form
 - only for exponential family distributions (plus for some irregular cases)
- Used to be important for computational reasons, and still sometimes used for special models to allow partial analytic marginalization (Ch 3)
 - with dynamic Hamiltonian Monte Carlo used e.g. in Stan no computational benefit

Prior

Beta
$$(\theta | \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Posterior

$$p(\theta|y, n, M) \propto \theta^{y} (1-\theta)^{n-y} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

Prior

Beta
$$(\theta | \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Posterior

$$p(\theta|y, n, M) \propto \theta^{y} (1 - \theta)^{n - y} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$
$$\propto \theta^{y + \alpha - 1} (1 - \theta)^{n - y + \beta - 1}$$

Prior

Beta(
$$\theta | \alpha, \beta$$
) $\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$

Posterior

$$p(heta|y,n,M) \propto heta^y (1- heta)^{n-y} heta^{lpha-1} (1- heta)^{eta-1} \ \propto heta^{y+lpha-1} (1- heta)^{n-y+eta-1}$$
 ormalization

after normalization

$$p(\theta|y, n, M) = \text{Beta}(\theta|\alpha + y, \beta + n - y)$$

Prior

Beta(
$$\theta | \alpha, \beta$$
) $\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$

Posterior

$$p(\theta|y, n, M) \propto \theta^y (1-\theta)^{n-y} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
 $\propto \theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1}$

after normalization

$$p(\theta|y, n, M) = \text{Beta}(\theta|\alpha + y, \beta + n - y)$$

- $(\alpha 1)$ and $(\beta 1)$ can considered to be number of prior observations
- Uniform prior when $\alpha = 1$ and $\beta = 1$

Placenta previa

Beta prior centered on population average 0.485

Placenta previa

Beta prior centered on population average 0.485

Placenta previa

Beta prior centered on population average 0.485

Benefits of integration and prior

Example: n = 10, y = 10 - uniform vs Beta(2,2) prior

p(
$$\theta \mid y=10, n=10, M=binom$$
) + unif. prior

Benefits of integration and prior

Example: n = 10, y = 10 - uniform vs Beta(2,2) prior

p(
$$\theta \mid y=10, n=10, M=binom$$
) + unif. prior

p($\theta \mid y=10, n=10, M=binom$) + Beta(2,2) prior

Posterior

$$p(\theta|y, n, M) = \text{Beta}(\theta|\alpha + y, \beta + n - y)$$

Posterior mean

$$\mathsf{E}[\theta|\mathbf{y}] = \frac{\alpha + \mathbf{y}}{\alpha + \beta + \mathbf{n}}$$

- combination prior and likelihood information
- when $n \to \infty$, $\mathsf{E}[\theta|y] \to y/n$

Posterior

$$p(\theta|y, n, M) = \text{Beta}(\theta|\alpha + y, \beta + n - y)$$

Posterior mean

$$\mathsf{E}[\theta|y] = \frac{\alpha + y}{\alpha + \beta + n}$$

- combination prior and likelihood information
- when $n \to \infty$, $\mathsf{E}[\theta|y] \to y/n$
- Posterior variance

$$Var[\theta|y] = \frac{E[\theta|y](1 - E[\theta|y])}{\alpha + \beta + n + 1}$$

- decreases when n increases
- when $n \to \infty$, $Var[\theta|y] \to 0$

Noninformative prior, proper and improper prior

- Vague, flat, diffuse, or noninformative
 - try to "to let the data speak for themselves"
 - flat is not non-informative
 - flat can be stupid
 - making prior flat somewhere can make it non-flat somewhere else
- Proper prior has $\int p(\theta) = 1$
- Improper prior density doesn't have a finite integral
 - the posterior can still sometimes be proper

Weakly informative priors

- Weakly informative priors produce computationally better behaving posteriors
 - quite often there's at least some knowledge about the scale
 - useful also if there's more information from previous observations, but not certain how well that information is applicable in a new case uncertainty

Weakly informative priors

- Weakly informative priors produce computationally better behaving posteriors
 - quite often there's at least some knowledge about the scale
 - useful also if there's more information from previous observations, but not certain how well that information is applicable in a new case uncertainty
- Construction
 - Start with some version of a noninformative prior distribution and then add enough information so that inferences are constrained to be reasonable.
 - Start with a strong, highly informative prior and broaden it to account for uncertainty in one's prior beliefs and in the applicability of any historically based prior distribution to new data.
- Stan team prior choice recommendations https://github.com/ stan-dev/stan/wiki/Prior-Choice-Recommendations

 The percentage of girl births is remarkably stable at about 48.8% girls, rarely varying by more than 0.5% from this rate

- The percentage of girl births is remarkably stable at about 48.8% girls, rarely varying by more than 0.5% from this rate
- There was a study on the percentage of girl births among parents in attractiveness categories 1–5 (assessed by interviewers in a face-to-face survey)

- The percentage of girl births is remarkably stable at about 48.8% girls, rarely varying by more than 0.5% from this rate
- There was a study on the percentage of girl births among parents in attractiveness categories 1–5 (assessed by interviewers in a face-to-face survey)

 The percentage of girl births is remarkably stable at about 48.8% girls, rarely varying by more than 0.5% from this rate

- Gabry et al (2019). Visualization in Bayesian workflow.
 - Estimation of human exposure to air pollution from particulate matter measuring less than 2.5 microns in diameter (PM_{2.5})
 - A recent report estimated that PM_{2.5} is responsible for three million deaths worldwide each year (Shaddick et al, 2017)

Gabry et al (2019). Visualization in Bayesian workflow.

• Gabry et al (2019). Visualization in Bayesian workflow.

Prior predictive distribution with vague prior

Prior predictive distribution with weakly informative

Effect of incorrect priors?

- Introduce bias, but often still produce smaller estimation error because the variance is reduced
 - bias-variance tradeoff

Structural information in predicting future

Structural information in predicting future

Structural information - Prophet by Facebook

Sufficient statistics*

• The quantity t(y) is said to be a *sufficient statistic* for θ , because the likelihood for θ depends on the data y only through the value of t(y).

Posterior visualization and inference demos

• demo2_3: Simulate samples from Beta(438,544), and draw a histogram of θ with quantiles.

Posterior visualization and inference demos

demo2_4: Compute posterior distribution in a grid.

Posterior visualization and inference demos

demo2_4: Sample using the inverse-cdf method.

Algae Assignment

Algae status is monitored in 274 sites at Finnish lakes and rivers. The observations for the 2008 algae status at each site are presented in file algae.mat ('0': no algae, '1': algae present). Let π be the probability of a monitoring site having detectable blue-green algae levels.

- Use a binomial model for observations and a beta(2,10) prior.
- What can you say about the value of the unknown π ?
- Experiment how the result changes if you change the prior.

Normal / Gaussian

- Observations y real valued
- Mean θ and variance σ^2 (or deviation σ) This week assume σ^2 known (preparing for the next week)

$$\begin{split} p(\mathbf{y}|\theta) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \theta)^2\right) \\ \mathbf{y} &\sim \mathsf{N}(\theta, \sigma^2) \end{split}$$

Reasons to use Normal distribution

- Normal distribution often justified based on central limit theorem
- More often used due to the computational convenience or tradition

Central limit theorem*

- De Moivre, Laplace, Gauss, Chebysev, Liapounov, Markov, et al.
- Given certain conditions, distribution of sum (and mean) of random variables approach Gaussian distribution as $n \to \infty$
- Problems
 - does not hold for distributions with infinite variance, e.g., Cauchy

Central limit theorem*

- De Moivre, Laplace, Gauss, Chebysev, Liapounov, Markov, et al.
- Given certain conditions, distribution of sum (and mean) of random variables approach Gaussian distribution as $n \to \infty$
- Problems
 - does not hold for distributions with infinite variance, e.g., Cauchy
 - may require large n,
 e.g. Binomial, when θ close to 0 or 1

Central limit theorem*

- De Moivre, Laplace, Gauss, Chebysev, Liapounov, Markov, et al.
- Given certain conditions, distribution of sum (and mean) of random variables approach Gaussian distribution as $n \to \infty$
- Problems
 - does not hold for distributions with infinite variance, e.g., Cauchy
 - may require large n,
 e.g. Binomial, when θ close to 0 or 1
 - does not hold if one the variables has much larger scale

• Assume σ^2 known

Likelihood
$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right)$$

Prior
$$p(\theta) \propto \exp\left(-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2\right)$$

• Assume σ^2 known

Likelihood
$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right)$$

Prior
$$p(\theta) \propto \exp\left(-\frac{1}{2\tau_0^2}(\theta-\mu_0)^2\right)$$

$$\exp(a)\exp(b)=\exp(a+b)$$

• Assume σ^2 known

Likelihood
$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right)$$

Prior
$$p(\theta) \propto \exp\left(-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2\right)$$

$$\exp(a)\exp(b)=\exp(a+b)$$

Posterior
$$p(\theta|y) \propto \exp\left(-\frac{1}{2}\left[\frac{(y-\theta)^2}{\sigma^2} + \frac{(\theta-\mu_0)^2}{\tau_0^2}\right]\right)$$

Posterior (see ex 2.14a)

$$egin{split} p(heta|y) &\propto \exp\left(-rac{1}{2}\left[rac{(y- heta)^2}{\sigma^2} + rac{(heta-\mu_0)^2}{ au_0^2}
ight]
ight) \ &\propto \exp\left(-rac{1}{2 au_1^2}(heta-\mu_1)^2
ight) \end{split}$$

$$\propto \exp\left(-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2\right)$$

$$\otimes \left(\frac{1}{2\tau_1^2}(\theta-\mu_1)^2\right)$$

$$\theta|y\sim N(\mu_1,\tau_1^2), \quad \text{where} \quad \mu_1=\frac{\frac{1}{\tau_0^2}\mu_0+\frac{1}{\sigma^2}y}{\frac{1}{\tau_0^2}+\frac{1}{\sigma^2}} \quad \text{and} \quad \frac{1}{\tau_1^2}=\frac{1}{\tau_0^2}+\frac{1}{\sigma^2}$$

Posterior (see ex 2.14a)

$$p(\theta|y) \propto \exp\left(-rac{1}{2}\left[rac{(y- heta)^2}{\sigma^2} + rac{(heta-\mu_0)^2}{ au_0^2}
ight]
ight) \ \propto \exp\left(-rac{1}{2 au_1^2}(heta-\mu_1)^2
ight)$$

$$\theta|y \sim N(\mu_1, \tau_1^2), \quad \text{where} \quad \mu_1 = \frac{\frac{1}{\tau_0^2}\mu_0 + \frac{1}{\sigma^2}y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}} \quad \text{and} \quad \frac{1}{\tau_1^2} = \frac{1}{\tau_0^2} + \frac{1}{\sigma^2}$$

- 1/variance = precision
- Posterior precision = prior precision + data precision
- Posterior mean is precision weighted mean

Normal distribution - example

Normal distribution - example

Normal distribution - example

Several observations – use chain rule

• Several observations $y = (y_1, \dots, y_n)$

$$p(\theta|y) = N(\theta|\mu_n, \tau_n^2)$$

where
$$\mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}}$$
 ja $\frac{1}{\tau_n^2} = \frac{1}{\tau_0^2} + \frac{n}{\sigma^2}$

• If $\tau_0^2 = \sigma^2$, prior corresponds to one virtual observation with value μ_0

• Several observations $y = (y_1, \dots, y_n)$

$$p(\theta|y) = N(\theta|\mu_n, \tau_n^2)$$

where
$$\mu_n = \frac{\frac{1}{\tau_0^2} \mu_0 + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}}$$
 ja $\frac{1}{\tau_n^2} = \frac{1}{\tau_0^2} + \frac{n}{\sigma^2}$

- If $\tau_0^2 = \sigma^2$, prior corresponds to one virtual observation with value μ_0
- If $\tau_0 \to \infty$ when n fixed or if $n \to \infty$ when τ_0 fixed

$$p(\theta|y) \approx N(\theta|\bar{y}, \sigma^2/n)$$

Posterior predictive distribution

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta$$

$$p(\tilde{y}|y) \propto \int \exp\left(-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2\right) \exp\left(-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2\right)d\theta$$

$$\tilde{y}|y \sim N(\mu_1, \sigma^2 + \tau_1^2)$$

• Predictive variance = observation model variance σ^2 + posterior variance τ_1^2

Normal model

- Gets more interesting when both mean and variance are unknown
 - next week

Normal model

- Gets more interesting when both mean and variance are unknown
 - next week
- The mean can be also a function of covariates
 - normal linear regression

Some other one parameter models

- Poisson, useful for count data (e.g. in epidemiology)
- Exponential, useful for time to an event (e.g. particle decay)