QFII A 2018 - Aula de Problemas de Cinética Química

1) Prove que a reação N_2O_2 (g) \rightarrow 2 NO (g) é de 1ª ordem em relação a N_2O_2 sabendo que no instante inicial t=0 já existem 0.25 bar de NO no reator. A pressão total varia da seguinte maneira em função do tempo:

t / min	1	2	3	5	20	100
p _t / bar	2.30	2.62	2.85	3.14	3.45	3.45

2) Moelwyn-Hughes et al. estudaram a hidrólise¹ do acetato de etilo em solução

t/horas	mM	aquosa, catalisada por ácido clorídrico de concentração 0,05 M.
0	39.8	Os resultados, à temperatura de 15 °C, da evolução da
4	38.88	
15.5	35.88	concentração do reagente acetato com o tempo são
27	33.18	apresentados na tabela ao lado.
40	30.47	

- a) Comprove que a reação é de pseudo-primeira ordem e calcule a constante de velocidade k₁.
- b) Explique porque é que se utiliza o termo "pseudo" neste caso e calcule $\,$ a constante de velocidade k_2 .
- 3) A dimerização de butadieno em 3-vinil-ciclohexeno, 2 $C_4H_6 \rightarrow C_8H_{12}$, tem uma constante de velocidade k_2 que se pode exprimir em função da temperatura T da seguinte forma:

$$k_2 = 9.2 \times 10^6 \text{ exp (} - 11.965 / \text{ T)} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$

- a) Calcule a energia de ativação da reação.
- b) Admitindo que a reação é de segunda ordem, calcule a concentração de produto obtido ao fim de 2 minutos de dimerização, quando a concentração inicial de reagente for 0,5 M e a temperatura 600 K.
- 4) O mecanismo proposto para a bromação do dicianometano:

$$CH_2(CN)_2 + Br_2 \rightarrow BrCH(CN)_2 + H^+ + Br^-$$

é uma sucessão dum equilíbrio e duma reação com bromo

$$CH_2(CN)_2 \stackrel{k_1}{\longleftrightarrow} CH(CN)_2 + H^+$$

¹ Hidrólise é uma reação com a água, que, neste caso, é o solvente

$$CH(CN)_2$$
 + $Br_2 \rightarrow BrCH(CN)_2$ + $Br_2 \rightarrow BrCH(CN)_2$

- a) Deduza a equação de velocidade de formação do dicianobromometano, $d[BrCH(CN)_2]/dt$, aplicando a aproximação do estado estacionário ao anião $CH(CN)_2$.
- b) Mostre que, quando a concentração de bromo é muito superior à concentração do ião H^+ , é possível simplificar a equação de velocidade deduzida em a), tornando-se numa cinética de 1ª ordem onde o passo determinante da velocidade é a ionização do $CH_2(CN)_2$.
- 5) No trabalho referido em 2), os autores apresentam resultados da constante de

T/°C	10 ⁶ k ₁ /s ⁻¹	velocidade obtida nas mesmas condições de concentração, mas
15	1.87	a outras temperaturas.
20	3.16	a) Calcule a energia de ativação da reação
30	8.52	a) Galouic a chergia de alivação da reação
50	50.13	b) Calcule a entropia de ativação da reação, utilizando a fórmula
60	114.1	ΔS^{\dagger} = R [ln(A/B) - 2], em que B= 1,732x10 ⁹ T ² M ⁻¹ s ⁻¹ e A é o fator

pré exponencial da equação de Arrhenius. Relacione o valor obtido com a estrutura e organização do complexo ativado.

6) La Mer (JACS 1929, 51, 3341-3347) estudou a reação de 2ª ordem entre os iões de bromoacetato e tiossulfato, provenientes de sais de sódio:

$$BrCH_2COO^- + S_2O_3^2 \rightarrow S_2O_3CH_2COO^2 + Br^-$$

Em soluções diluídas (concentrações milimolares) dos iões reagentes, obtiveram-se as constantes de velocidade indicadas na tabela

[TioS]/mM	[BrAc]/mM	k/M ⁻¹ min ⁻¹
0.250	0.500	0.298
0.333	0.666	0.304
0.500	1.000	0.317

- a) Verifique se a lei limite de Debye-Huckel para os coeficientes de atividade de iões se aplica a esta reação no contexto da teoria do complexo ativado.
- b) Porque é que a velocidade da reação é favorecida pelo aumento da força iónica?

RESOLUÇÃO

1)

	N ₂ O ₂ (g) [\rightarrow	2 NO ₂ (g)
t=0	p_0		0.25
t	p ₀ -x		0.25+2x
t=∞	0		3.45

t / min	0	1	2	3	5	20	100
p _t / bar	1.85	2.3	2.62	2.85	3.14	3.45	3.45
х		0.45	0.77	1	1.29	1.6	1.6
p N ₂ O ₂	1.6	1.15	0.83	0.6	0.31	0	0
p NO	0.25	1.15	1.79	2.25	2.83	3.45	3.45
In p N ₂ O ₂		0.139762	-0.18633	-0.51083	-1.17118		

In $p(N_2O_2) = -0.3277 t(min) + 0.4691$ Reacção de 1ª ordem

A linearidade do gráfico $[\ln(\text{concentração de reagente})] = f(t)$ demonstra que a reação é de 1^a ordem em relação ao acetato de etilo.

b) A reação é catalisada por ácidos. Como a concentração do ácido não varia (é catalisador), [HCl] vai manter-se constante e igual a 0,05 M ao longo da reação. Como o enunciado da pergunta indica que a constante de velocidade da reação é k_2 , podemos admitir que a ordem global é 2 e, sendo 1 em relação ao acetato de etilo, será também 1 em relação ao ácido. Dos gráficos da alínea a), podemos concluir que $k_1 = k_2 \times 0.05 = 1.87 \times 10^{-6} \text{ s}^{-1} = 6.73 \times 10^{-3} \text{ h}^{-1}$. Donde $k_2 = 3.74 \times 10^{-5} \text{ M}^{-1} \text{s}^{-1} = 1.37 \times 10^{-1} \text{ M}^{-1} \text{h}^{-1}$.

a) Ea =
$$11965 \times R = 99.5 \text{ kJ mol}^{-1}$$
.

b)
$$k_2(600 \text{ K}) = 9.2 \text{ x } 10^6 \text{ exp}(-11\ 965\ /\ 600) = 0.0201 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$
.

$$2 C_4H_6 \rightarrow C_8H_{12}$$

$$v = -\frac{1}{2} \frac{d \left[C_4 H_6 \right]}{dt} = k_2 [C_4 H_6]^2$$

$$\frac{1}{[C_4 H_6]} - \frac{1}{[C_4 H_6]_0} = 2k_2 t$$

$$1/x = 1/0.5 + 2x0.0201 \text{ x } 120 = 6.824 \rightarrow x = 0.1465 \text{ M}$$

A concentração do produto
$$(x_0-x)/2=0.177M$$

1) a)
$$\frac{d?}{dt} = K_{z} \left(eH(cN)_{z} \right) \left(b_{1} \right)$$

$$\frac{d\left(cH(cN)_{z} \right)}{dt} = o = K_{1} \left(cH_{z} \left(cN \right)_{z} - K_{-1} \left(cH(cN)_{z} \right) \left(H^{+} \right) - K_{z} \left(cH(cN)_{z} \right) \left(b_{1} \right)$$

$$\left(cH(cN)_{z} \right) = \frac{K_{1} \left(cH_{z} \left(cN_{z} \right) \right)}{K_{-1} \left(H^{+} \right) + d_{2} \left(b_{1} \right)}$$

$$\frac{d?}{dt} = \frac{K_{1} K_{z} \left(cH_{z} \left(cN \right)_{z} \right) \left(B_{1} \right)}{K_{-1} \left(H^{+} \right) + K_{2} \left(B_{1} \right)}$$

5)

T/°C	$10^6 \mathrm{k}$	1/T	ln k
15	1.87	0.003472	-13.1896
20	3.16	0.003413	-12.6649
30	8.52	0.0033	-11.6731
50	50.13	0.003096	-9.90089
60	114.1	0.003003	-9.07844

Ea= $8746 \times 8,314 = 72,7 \text{ kJ mol}^{-1}$.

b) O gráfico representa ln (k_1), a constante aparente de 1ª ordem. Se representássemos $k_2 = k_1/0,05 = 20 \ k_1$, o declive da reta não seria afetado, mas a ordenada na origem seria ln A = 17,183 + ln(20).

Admitimos T = 25 °C = 298 K

In(20) In A A
2.995732 20.17873 5.8011E+08
B* T2 1.5381E+14
$$\Delta$$
 S* -120.5 J K-1 mol-1

6)

Na teoria do complexo ativado $k_2 = 1,732 \times 10^9 \times T^2 \ \text{K}^{\ddagger} \ dm^3 \text{mol}^{-1} \text{s}^{-1}, \qquad K^{0 \neq} = \frac{a_{\text{C}^{\neq}}}{a_{\text{A}} a_{\text{B}}} = \frac{\left[\text{C}^{\neq}\right]}{\left[\text{A}\right] \left[\text{B}\right]} \frac{\gamma_{\text{C}^{\neq}}}{\gamma_{\text{A}} \gamma_{\text{B}}} = K^{\neq} \frac{\gamma_{\text{C}^{\neq}}}{\gamma_{\text{A}} \gamma_{\text{B}}}$ Solução de iões, temos que ter em conta os coeficientes de atividade

Lei limite de Debye-Huckel (iões em solução muito diluída)

$$\log_{10} \gamma_i = -0.5 \cdot (I)^{\frac{1}{2}} \cdot Z_i^2$$

$$log_{10}k_2 = log_{10} k_2^0 - log_{10} \gamma_{C^{\ddagger}} + log_{10} \gamma_A + log_{10} \gamma_B = log_{10} k_2^0 + 0.5 \text{ (I)}^{1/2} (z_{C^{\ddagger}}^2 - z_A^2 - z_B^2)$$

Como
$$z_{C} = z_A + z_B$$
, e $z_{BrAc} = -1$ e $z_{TioS} = -2$

$$\log_{10}k_2 = \log_{10} k_2^0 + 2 (I)^{\frac{1}{2}}$$

 $(k_2^0$ constante de velocidade a diluição infinita, $\gamma_i=1$)

No cálculo da força iónica, temos que ter em consideração que os iões negativos reagentes vão ter como contra ião positivo o sódio (Na⁺), cuja concentração também entra nos cálculos.

$$[Na+] = 2x[TioS] + [BrAc]$$

$$I=\frac{1}{2} \times \Sigma (m_i z_i^2)$$

em que os m_i são molalidades (=M em soluções diluídas) e z_i as cargas iónicas) $I = \frac{1}{2} ([TioS] \times 6 + [BrAc] \times 2)$

[TioS]/mM	[BrAc]/mM	k	log10 k	SQRT I	I
0.250	0.500	0.298	-0.525784	0.035355	0.00125
0.333	0.666	0.304	-0.517126	0.040804	0.001665
0.500	1.000	0.317	-0.498941	0.05	0.0025

Representando $log_{10}(k_2)$ em função de \sqrt{I} , o declive é ~ 2