Práctica 1

- 1. Sea $n \in \mathbb{N}$ y sea $G_n = \{z \in \mathbb{C} \mid z^n = 1\}$.
 - (a) Probar que (G_n, \cdot) es un grupo abeliano y hallar z^{-1} para cada $z \in G_n$.
 - (b) Probar que G_n es cíclico, es decir, que existe $w \in G_n$ que satisface: $\forall z \in G_n \ \exists k \in \mathbb{Z}$ tal que $z = w^k$.
- 2. Sea $S^1 = \{z \in \mathbb{C} : |z| = 1\}.$
 - (a) Probar que (S^1, \cdot) es un grupo abeliano y hallar z^{-1} para cada $z \in S^1$.
 - (b) Determinar si S^1 es cíclico.
- 3. En cada uno de los siguientes casos determinar si (G,*) es un grupo y, en caso afirmativo, determinar si es abeliano:
 - (a) $G = \mathbb{Q}_{>0}$ $a * b = a \cdot b$.
 - (b) $G = M_3(\mathbb{Z})$ $a * b = a \cdot b$.
 - (c) $G = M_n(\mathbb{R})$ a * b = a + b.
 - (d) $G = SL_n(\mathbb{R}) = \{a \in M_n(\mathbb{R}) \mid det \ a = 1\}$ $a * b = a \cdot b$.
 - (e) $G = End_K(V)$, con V un K-espacio vectorial $f * g = f \circ g$.
 - (f) $G = \{ f \in End_{\mathbb{R}}(\mathbb{R}^n) \mid d(f(x), f(y)) = d(x, y) \ \forall x, y \in \mathbb{R}^n \}$ $f * g = f \circ g.$
 - (g) $G = \mathbb{S}(X) = \{f : X \longrightarrow X \mid f \text{ es biyectiva}\}$, donde X es un conjunto no vacío y $f * g = f \circ g$.

Notación: Cuando $X = \{1, ..., n\}$, S(X) será notado S_n .

- (h) $G = \mathbb{S}(\mathbb{Z})$ $f * g = f \circ g^{-1}$.
- 4. Probar que todos los grupos de 4 elementos son abelianos.

(Sugerencia: hacer todas las posibles tablas de operaciones).

5. Dado $n \in \mathbb{N}$, sea,

$$\mathcal{U}_n := \{k \in \mathbb{N} : k \le n, (k : n) = 1\}.$$

Probar que U_n , considerado con el producto de número enteros módulo n como operación, es un grupo.

- 6. Sea G un grupo. Sea (G^{op}, \cdot) tal que $G^{op} = G$ como conjunto, y el producto está dado por $g \cdot h = hg$. Mostrar que G^{op} es un grupo. Llamamos a G^{op} el grupo opuesto de G.
- 7. Sean G y H dos grupos. Consideremos la operación \cdot sobre el conjunto $K = G \times H$ dada por $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$. Mostrar que K es un grupo. Llamamos a K el *producto directo de* G y H y lo notamos $G \times H$.
- 8. (a) Sea $G = \{g_1, \dots, g_n\}$ un grupo abeliano finito. Probar que

$$\sum_{i=1}^{n} g_i = \sum_{g \in G: 2g = 0} g.$$

(b) Calcular $\sum_{a \in \mathbb{Z}_n} a$.

- (c) Calcular $\prod_{w \in G_n} w$.
- 9. Sea (G,*) un grupo finito y sea $S \subset G$ un subconjunto no vacío. Probar que S es un subgrupo si y sólo si $xy \in S$, $\forall x, y \in S$.
- 10. Sea G un grupo y sean H_1 y H_2 dos subgrupos de G.
 - (a) Probar que $H_1 \cap H_2$ es un subgrupo.
 - (b) Probar que $H_1 \cup H_2$ es un subgrupo si y sólo si $H_1 \subset H_2$ o $H_2 \subset H_1$.
 - (c) ¿Es cierto que si $H_1 \cup H_2 \cup H_3$ es un subgrupo de G, entonces $\exists i,j$ con $i \neq j$ tal que $H_i \subset H_i$?
- 11. Hallar todos los subgrupos cíclicos de: \mathbb{Z}_2 , \mathbb{Z}_5 , \mathbb{Z}_6 , \mathbb{S}_3 , $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ y $\mathbb{Z}_2 \oplus \mathbb{Z}_3$.
- 12. Probar que

$$\mathcal{H} = \left\{ \pm \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \pm \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right), \pm \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \pm \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right) \right\}$$

es un subgrupo de $GL_2(\mathbb{C})$.

- 13. Sean G un grupo y $a \in G$. Probar que $C_G(a) = \{x \in G; xa = ax\}$ es un subgrupo de G.
- 14. Probar que si H es un subgrupo de \mathbb{Z} entonces existe $n \in \mathbb{N}_0$ tal que $H = n \cdot \mathbb{Z}$.
- 15. Probar que si H es un subgrupo finito de \mathbb{C}^{\times} entonces existe $n \in \mathbb{N}_0$ tal que $H = G_n$.
- 16. Dado $n \in \mathbb{N}$, sean $r \in GL_2(\mathbb{R})$ la matriz que representa la rotación en sentido antihorario de ángulo $2\pi/n$ y s la simetría alrededor del eje x. Llamamos n-grupo Diedral al subgrupo de $GL_2(\mathbb{R})$ que generan r y s y lo denotamos con \mathbb{D}_n . Calcular el orden de \mathbb{D}_n .
- 17. Hallar ord(x) en los casos:
 - (a) $G = \mathbb{S}_8$ $x = (1\ 2)(5\ 6\ 7)$; $x = (1\ 2\ 3\ 5)(1\ 3\ 7\ 8)$.
 - (b) $G = \mathbb{Z}_{12}$ x = 2 ; x = 3 ; x = 4.

(c)
$$G = \mathcal{H}$$
 $x = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.
(d) $G = S^1$ $x = \cos(\frac{2\pi}{n}) + i \operatorname{sen}(\frac{2\pi}{n})$.

- (e) $G = \mathbb{D}_4$ $x = r^2 s$; $x = r^3$.
- (f) G un grupo cualquiera y $x = a^d$, donde $a \in G$ es un elemento de orden $n \vee d$ es un número natural.
- 18. Sea $x \in \mathbb{Z}_n$. Probar que ord(x) = n si y sólo si (x, n) = 1.
- 19. (a) Calcular el orden de todos los elementos de \mathbb{S}_3 .
 - (b) Sea $\sigma = (132)$, encontrar el subgrupo $C_{\mathbb{S}_3}(\sigma) = \{r \in \mathbb{S}_3 \mid r\sigma = \sigma r\}$.
 - (c) Hallar, si existe, un $\sigma \in \mathbb{S}_3$ tal que el subgrupo $C_{\mathbb{S}_2}(\sigma)$ tenga orden 1, 2, 3, 6.
- 20. Probar que si G_1 y G_2 son grupos y $g_1 \in G_1, g_2 \in G_2$ son elementos de orden finito, entonces el orden de (g_1,g_2) en $G_1 \times G_2$ es el mínimo común múltiplo entre los órdenes
- 21. Sea p un número primo, $m \in \mathbb{N}$ y sea G un grupo de orden p^m . Probar que existe un elemento de orden p en G.
- 22. Sean (G, \cdot) un grupo y $a, b \in G$
 - (a) Probar que las siguientes aplicaciones de G en G son biyectivas y encontrar sus inversas

i.
$$x \mapsto a \cdot x$$

iii.
$$x \mapsto a \cdot x \cdot a^{-1}$$

v.
$$x \mapsto a \cdot x^{-1} \cdot a^{-1}$$

ii.
$$x \mapsto a \cdot x \cdot b$$

iv
$$r \mapsto r^{-1}$$

- (b) Determinar cuáles de estas aplicaciones son morfismos.
- (c) Idem en el caso en que *G* sea abeliano.
- 23. Dados los grupos:

$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$
 $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ $\mathbb{Z}_2 \oplus G_4$ \mathbb{Z}_8

$$\mathbb{Z}_2 \oplus \mathbb{Z}_2$$

$$\mathbb{Z}_2 \oplus G_4$$

$$\mathbb{Z}_8$$

$$\mathbb{D}_{2}$$

$$G_8$$

$${\cal H}$$
 ${\cal K}$

donde
$$K = \{\pm 1, \pm i, \pm j, \pm k\}$$
, $|K| = 8$, $i^2 = j^2 = k^2 = -1$, $i \cdot j = k = -j \cdot i$ y $(-1)x = -x$, $x \in \{-1, i, j, k\}$.

Decidir cuáles son abelianos, cuáles son cíclicos y cuáles son isomorfos entre sí.

Definición: Notamos con \mathbb{A}_n al subgrupo de \mathbb{S}_n formado por las permutaciones pares (es decir, con signo 1).

24. Determinar si *G* y *K* son isomorfos en los casos:

(a)
$$G = \mathbb{Z}_4$$
 $K = \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

(b)
$$G = \mathbb{Z}_n$$
 $K = G_n$.

(c)
$$G = \mathbb{Z}_{10}$$
 $K = \mathbb{Z}_2 \oplus \mathbb{Z}_5$.

(d)
$$G = \mathbb{Q}$$
 $K = \mathbb{R}$.

(e)
$$G = U_{16}$$
 $K = \mathcal{H}$.

(f)
$$G = \mathcal{U}_{16}$$
 $K = \mathbb{Z}_2 \oplus \mathbb{Z}_4$.

(g)
$$G = \mathbb{S}_3$$
 $K = \mathbb{D}_3$.

(h)
$$G = \mathbb{A}_4$$
 $K = \mathbb{D}_6$.

- 25. Sea $f: G \longrightarrow G$ un morfismo de grupos. Probar que ord(f(x)) divide a ord(x) si ord(x) es finito.
- 26. Sea $f: G \longrightarrow L$ un epimorfismo. Decidir para cuáles P_i vale:

"G verifica $P_i \Rightarrow L$ verifica P_i "

 (P_1) tener *n* elementos.

 (P_5) ser cíclico.

 (P_2) ser finito.

 (P_6) todo elemento tiene orden finito.

 (P_3) ser conmutativo. (P_4) ser no conmutativo.

- (P_7) todo elemento tiene orden infinito.
- 27. Sea $f: G \longrightarrow L$ un monomorfismo. Decidir para cuáles P_i del ejercicio anterior vale: "L verifica $P_i \Rightarrow G$ verifica P_i ".
- 28. (a) Probar que $Aut(\mathbb{Z}) \simeq G_2$.
 - (b) Hallar $Hom(G_n, \mathbb{Z})$.
 - (c) Hallar $Hom(G, \mathbb{Z})$ para G un grupo de orden finito.

29. Sea
$$G = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & a \end{array} \right) / a, b \in \mathbb{Z}_7, \ \mathrm{con} \ a \neq 0 \right\}.$$

- (a) Hallar el orden de G.
- (b) Para cada primo p que divide al orden de G hallar todos los elementos de G que tengan orden p.

30. Sea p un número primo mayor que 2. Se considera el conjunto

$$G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z}_p \right\}$$

Probar que G es un grupo no abeliano tal que todo elemento distinto de la identidad tiene orden p. ¿Qué pasa si p=2?

- 31. (a) Sean $a,b \in \mathbb{Z}$. Probar que $\{a,b\}$ es un sistema de generadores de \mathbb{Z} si y sólo si (a,b)=1.
 - (b) Probar que \mathbb{Z} tiene sistemas de generadores minimales de n elementos $\forall n \in \mathbb{N}$.
- 32. Sea $G=M_2(\mathbb{Z}_2)$. Hallar |G| y encontrar subgrupos de G de orden 2, 4, 8.
- 33. (a) Probar que son equivalentes:
 - i. *G* es abeliano.
 - ii. La aplicación $f: G \longrightarrow G$ definida por $f(x) = x^{-1}$ es un morfismo de grupos.
 - iii. La aplicación $f: G \longrightarrow G$ definida por $f(x) = x^2$ es un morfismo de grupos.
 - (b) Probar que si $x^2 = 1$ para todo $x \in G$ entonces G es abeliano.
- 34. Probar que
 - (a) $Hom(\mathbb{Z}, \mathbb{Z}_n) \neq 0$.
 - (b) $Hom(\mathbb{Z}_5, \mathbb{Z}_7) = 0.$
 - (c) $Hom(\mathbb{Q}, \mathbb{Z}) = 0$.
 - (d) No existe un epimorfismo de \mathbb{Z} en $\mathbb{Z} \oplus \mathbb{Z}$.
- 35. Hallar dos grupos G y K no isomorfos tales que $Aut(G) \simeq Aut(K)$.
- 36. Sea $G = \left\{ \begin{pmatrix} 1 & b \\ 0 & a \end{pmatrix} / a, b \in \mathbb{Z}_4, \text{ con } (a,4) = 1 \right\}$. Probar que G es un grupo no abeliano de orden 8. ¿Es $G \simeq \mathcal{H}$? ¿Es $G \simeq \mathbb{D}_4$?