2020——2021 第一学期《泛函分析》期末考试

命题人: 王日生

2021年1月7日

- .	(15分)	设 A1 和	A_2 是度	量空间 🛭	中的两个	集合,	记 $d(A_1, A_2)$	$(2) = \inf$	$x \in A_1, y \in A_2$	d(x,y).	证明存在	\dot{X}
	中的不交升								-70 -			

二. (15 分) 设 $\{x_n\}$ 是 Banach 空间中的数列, $\forall f \in X^*$,数列 $\{f(x_n)\}$ 是 \mathbb{R} 中的 Cauchy 列,证明 $\{x_n\}$ 是有界数列。

三. (15 分) 设 f 是 C[0,1] 上的线性泛函,且 $f(x) = \int_0^{\frac{1}{2}} x(t) dt - \int_{\frac{1}{2}}^1 x(t) dt$ 。证明 f 是连续的并求 $\|f\|$ 。

四. (15 分) 设 $(X,\|\cdot\|)$ 是可分赋范空间, 证明存在可数子集 $\Phi\subset X^\star$,使得对于每一个 $x\in X$,使得 $\|x\|=\sup_{f\in\Phi}|f(x)|$ 。

五. (15 分) 设 $S \neq l^2 \rightarrow l^2$ 上的线性算子,且满足

$$Sx(k) = x(k+2)$$
 $k = 1, 2, \dots$ $\{x(k)\} \in l^2$.

试求 $\lim_{n\to\infty} ||S^n||$ 。

六. (15 分) 设 f 是 Banach 空间 X 到 $\mathcal R$ 上的线性泛函, f 是不是常数函数,试证 f 是开映射。(PS: 我确信没有有界这个条件)

七. (10 分) 设 H 是 Hibert 空间, H_0 是 H 的闭子空间, 设 $x_0 \in H$, 证明:

$$\inf_{x \in H_0} \lVert x - x_0 \rVert = \max_{y \in H_0^{\perp}, \lVert y \rVert = 1} |(x_0, y)|.$$

(回忆人: 物化 defector)