Note 1 (Systems of Linear Equations)

• Linear Function:

$$f(\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \dots, \alpha x_n + \beta y_n)$$

$$\Rightarrow \alpha f(x_1, x_2, \dots, x_n) + \beta f(y_1, y_2, \dots, y_n)$$

• If $f: \mathbb{R}^n \to \mathbb{R}$ is linear, then

$$f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Affine function:

$$g(x_1, x_2, \dots, x_n) = f(x_1, x_2, \dots, x_n) + c_0$$

for a linear function $f: \mathbb{R}^n \to \mathbb{R}$ and constant $c_0 \in \mathbb{R}$.

Note 2 (Vectors/Matrices)

- Vectors $\vec{x} \in \mathbb{R}^n$
 - each x_i = component/element
 - size = # of elements (n)
 - vectors are equal if same size and elements are equal
- Standard unit vector: all elements 0 except one 1
- Vector multiplication:
 - $-\vec{y}^T\vec{x} = \text{dot product}; \ \sum x_i y_i$

$$- \vec{x}\vec{y}^T = \text{matrix:} \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots \\ x_2y_1 & \ddots & \vdots \\ \vdots & \cdots & x_ny_n \end{bmatrix}$$

- Matrix multiplication:
 - AB: for each row of A, multiply and sum for each col of B
 - Associative, not commutative:

$$(AB)C = A(BC); AB \neq BA$$

• Identity matrix: I; 1's along diagonal, 0's everywhere else

Note 3 (Linear Independence/Span)

- Set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is linearly dependent (LD) if $\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \cdots + \alpha_n \vec{v}_n = \vec{0}$, where some $\alpha_i \neq 0$
- Or, LD if v_i can be written as $\sum \alpha_i v_i$, where some $\alpha_i \neq 0$
- Linearly independent (LI) if $\sum \alpha_i \vec{v}_i = \vec{0}$ only if all $\alpha_i = 0$
- Span: set of all linear combinations of the vectors

Note 5 (Water Pumps)

• Transition matrix (flow from cols to rows):

• Columns sum to $1 \implies$ conservative system (everything goes somewhere)

Note 6 (Matrix Inversion)

- A is invertible if there exists a \mathbf{B} s.t. $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{I}$
- Finding inverse: Gaussian elimination, like solving AX = I; i.e. reduce $[\mathbf{A} \mid \mathbf{I}] \rightarrow [\mathbf{I} \mid \mathbf{A}^{-1}]$
- If invertible, then: (baby version of IMT)
 - rows and cols LI
 - $A\vec{x} = \vec{b}$ has a unique solution for all \vec{b}
 - has a trivial nullspace
 - det $\mathbf{A} \neq 0$

Note 7 (Vector Spaces)

- V is a vector space if:
 - $-\mathbf{0} \in V$
 - $-\vec{x}, \vec{y} \in V$ implies $\alpha \vec{x} + \beta \vec{y} \in V$ for all $\alpha, \beta \in \mathbb{R}$; i.e.
 - * closed under vector addition (if \vec{x} , $\vec{y} \in V$ then $\vec{x} + \vec{y} \in V$)
 - * closed under scalar multiplication (if $\vec{x} \in V$ then $\alpha \vec{x} \in V$ for all $\alpha \in \mathbb{R}$)
 - (among other things, but these are the most important)
- Basis of a vector space:
 - LI vectors, can express any $\vec{v} \in V$ as a linear combination of basis vectors, and is a minimum set of vectors that does so (implied by being LI)
- Dimension of a vector space = # of basis vectors
- All equivalent bases of a vector space must have the same dimension

Note 8 (Matrix subspaces)

- U is a subspace if it satisfies the 3 points in Note 7 (a subspace is a subset of a vector space)
- Column space: range(A) = span(A) = C(A) = span of cols of A
- $rank(\mathbf{A}) = dim(span(\mathbf{A}))$
- Nullspace: Null(A) = N(A) = set of all \vec{x} s.t. $A\vec{x} = \vec{0}$
- $\operatorname{nullity}(\mathbf{A}) = \dim(\mathbf{N}(\mathbf{A}))$
- rank-nullity theorem: rank(A) + nullity(A) = # of columns of A

Note 9 (Eigenvalues/Eigenvectors)

- If $A\vec{x} = \lambda \vec{x}$, then \vec{x} is an eigenvector, λ is an eigenvalue of A
- Calculating eigenvalues: solve $det(\mathbf{A} \lambda \mathbf{I}) = 0$ for λ
- Calculating eigenvectors: solve $(\mathbf{A} \lambda \mathbf{I})\vec{v} = \mathbf{0}$ for \vec{v}
- · Repeated eigenvalues: multiple eigenvectors, same eigenvalue; forms an eigenspace
- If (λ_1, \vec{v}_1) , (λ_2, \vec{v}_2) are two distinct eigenpairs, then \vec{v}_1, \vec{v}_2 are LI.
- Characteristic polynomial: $det(\mathbf{A} \lambda I)$
- Steady states (water pumps): \vec{x} s.t. $A\vec{x} = \vec{x}$ (i.e. eigenspace for $\lambda = 1$)
- $\lim \mathbf{A}^n \vec{x} = \lim \lambda^n \vec{x}$ if (λ, \vec{x}) is an eigenpair of **A**

Note 10 (Change of Basis/Diagonalization)

• If $T\vec{u} = \vec{v}$, and \vec{u}_A and \vec{v}_B are vectors in the **A** and **B** bases respectively (i.e. columns of A and B are basis vectors in the new coordinate system), then arrows represent consecutive left-multiplication:

$$\begin{array}{ccc}
\vec{u} & \xrightarrow{T} & \vec{v} \\
A^{-1} & & A & B \\
\vec{u}_A & \xrightarrow{B^{-1}TA} & \vec{v}_B
\end{array}$$

• Diagonalization: $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$; $\mathbf{P} = \text{matrix of eigenvectors}$, $\mathbf{D} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ diagonal matrix of eigenvalues such that $\mathbf{A}\vec{\mathbf{v}}_i = \lambda_i \vec{\mathbf{v}}_i$

$$\mathbf{P} = \begin{bmatrix} | & & | \\ \vec{v}_1 & \cdots & \vec{v}_n \\ | & & | \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$$

· Only diagonalizable if eigenvalues are linearly independent (i.e. if all eigenvalues are distinct)

Other

- $\bullet (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$
- rotation matrix by θ counterclockwise: $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

•
$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

- $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$
- $\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$
- det(A) = product along diagonal if A is triangular
 - eigenvalues of a triangular matrix are the values along its diagonal

Note 11 (Circuits)

• Ohm's law: V = IR

• KCL: $I_{in} = I_{out}$

• KVL: $\sum_{\text{loop}} V_k = 0; - \rightarrow + = \text{add}, + \rightarrow - = \text{subtract}$

- NVA:
 - Label everything
 - Passive sign convention: current goes into +, out of -

- Write KCL at each unknown node
- Substitute Ohm's law for each current
- Solve for desired values

Note 12 (Resistive Touchscreen)

· Voltage divider:

· Current divider:

- $R = \rho \frac{L}{A} = \rho \frac{\text{length}}{\text{area}}$, where $\rho = \text{resistivity}$ Resistive touchscreen: touch splits resistor

Note 13 (Power)

- Power: $P = VI = \frac{V^2}{R} = I^2 R$
- Voltmeter: connected in parallel to element to measure voltage drop
- Ammeter: embedded in the circuit in series to measure current

Note 14 (2D Resistive Touchscreen)

· 2D resistive touchscreen

• Powering $u_1 \rightarrow u_4$: measure y

$$V_{out} = V_s \frac{L_{touch, vertical}}{L}$$

position
$$V_{out} = V_s \frac{L_{touch,horizontal}}{L}$$

Note 15 (Superposition, Equivalences)

- · Dependent sources:
- Superposition:
 - for each independent source:
 - * replace voltage source with wire, current source with open cir-
 - * leave everything alone, find value (keep the same signs!)
 - sum up everything
- · Resistor equivalences:

 - Parallel: $R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$ Series: $R_{eq} = R_1 + R_2$
- · Voltage drop is equal through parallel branches (adjacent to same
- Current is equal through elements in series (by KCL)

Note 16 (Capacitors)

- · Capacitors:
 - charge (on positive plate) = Q = CV; C = capacitance

 - if constant current, then $I = C \frac{\Delta V}{\Delta t}$ and It = C(V(t) V(0))
- Capacitor equivalences:
 - Parallel: $C_{eq} = C_1 + C_2$
 - Series: $C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$
- $C = \varepsilon \frac{A}{d} = \varepsilon \frac{\text{area}}{\text{distance}}$, where $\varepsilon = \text{permittivity}$
- Energy: $E = \frac{1}{2}CV^2$

Note 17 (Capacitive Touchscreen)

· Capacitive touch screen:

• Touch adds parallel capacitors $(C_1, C_2) \Longrightarrow$ increased capacitance

Note 17B (Charge Sharing)

- · Charge sharing steps:
 - Draw/label phases, keep polarity/signs for elements consistent through phases
- For all floating nodes in phase 2, use charge conservation; find total charge on adjacent plates (keep + and - plates in mind!)
- Equate with the total charge on the same plates in phase 1

Other

- Capacitive divider:
- · Charging a capacitor:

$$V_{out} = V_{in} \frac{C_1}{C_1 + C_2}$$

$$V_{out} = \frac{I_s}{C}$$

Note 18/19 (Op Amps)

• Op amp:

- · Ideal op amp:
 - $-A \rightarrow \infty$
 - No current through u_+, u_-
 - $-u_{+}-u_{-}=0$
- Inverting Amplifier: $V_{out} = V_{in} \left(-\frac{R_f}{R_c} \right)$

• Noninverting Amplifier: $V_{out} = V_{in} \left(1 + \frac{R_1}{R_2}\right)$

• Inverting Amplifier w/ reference: $V_{out} = V_{in} \left(-\frac{R_f}{R_s} \right) + V_{ref} \left(1 + \frac{R_f}{R_s} \right)$

• Noninverting Amplifier w/ reference: $V_{out} = V_{in} \left(1 + \frac{R_1}{R_2} \right) - V_{ref} \left(\frac{R_1}{R_2} \right)$

• Unity Gain Buffer: $V_{in} = V_{out}$

• Inverting Summing Amplifier: $V_{out} = -R_f \left(\frac{V_{in1}}{R_1} + \frac{V_{in2}}{R_2} \right)$

• Voltage Summer: $V_{out} = V_1 \left(\frac{R_2}{R_1 + R_2} \right) + V_2 \left(\frac{R_1}{R_1 + R_2} \right)$

Note 21 (Inner Products)

- (Euclidean) Inner product: $\langle \vec{x}, \vec{y} \rangle = \vec{x} \cdot \vec{y} = \vec{x}^T \vec{y} = \sum x_i y_i$
- \vec{x} , \vec{y} are orthogonal if $\langle \vec{x}, \vec{y} \rangle = 0$
- $\langle a\vec{x}, \vec{y} \rangle = a\langle \vec{x}, \vec{y} \rangle$ and $\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$
- Norm: $\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle} = \text{length/magnitude of vector}$
- Alternate definition: $\langle \vec{x}, \vec{y} \rangle = ||\vec{x}|| ||\vec{y}|| \cos \theta$
- Cauchy-Schwarz inequality: $|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| ||\vec{y}||$

Note 22 (Correlation)

- Cross-correlation: $\operatorname{corr}_{\vec{x}}(\vec{y})[k] = \sum_{i=-\infty}^{\infty} x[i]y[i-k]$
- $\vec{x}[i], \vec{y}[i] = 0$ outside of defined range
- $\operatorname{corr}_{\vec{\mathbf{v}}}(\vec{\mathbf{y}})[k] = \operatorname{corr}_{\vec{\mathbf{v}}}(\vec{\mathbf{x}})[-k]$; they're mirrored
- Autocorrelation: $corr_{\vec{x}}(\vec{x})$
- Circular correlation:

$$\operatorname{circcorr}(\vec{x}, \vec{y}) = \begin{bmatrix} --- & \text{rows are all} & --- \\ --- & \text{circular shifts} & --- \\ --- & \text{of } \vec{y} & --- \end{bmatrix} \vec{x}$$

Note 23 (Projection/Least Squares)

- Projection of \vec{b} onto \vec{a} : $\text{proj}_{\vec{a}}(\vec{b}) = \frac{\langle \vec{b}, \vec{a} \rangle}{\langle \vec{a}, \vec{a} \rangle} \vec{a}$
- Scalar projection of \vec{b} onto \vec{a} : $\frac{\langle \vec{b}, \vec{a} \rangle}{\langle \vec{a}, \vec{a} \rangle}$
- Projection onto subspace: if columns of **A** are orthogonal, then $\operatorname{proj}_{\mathbf{A}}(\vec{b}) = \sum \operatorname{proj}_{\vec{a}_i}(\vec{b})$ where \vec{a}_i are columns of **A**; if not, use least squares
- Least squares: to minimize the error $e = \|\mathbf{A}\vec{x} \vec{b}\|$, we have

$$\hat{\vec{x}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \vec{\boldsymbol{b}}$$

- Setting up least squares:
 - A = matrix of known values/coefficients
 - $-\vec{x}$ = vector of variables
 - $-\vec{b}$ = vector of constants
- **A**^T**A** is invertible if **A** has LI columns (i.e. can only apply least squares if **A** has LI columns)

Other

- Trilateration:
 - n variables ⇒ n equations if linear, n + 1 equations if nonlinear (subtract from one equation to linearize)
 - in space: n dimensions $\implies n+1$ equations for circles/spheres; one is sacrificed to linearize
 - if delays are unknown, need n + 2 equations; sacrifice one for reference, sacrifice another to linearize
- Units (good to double check calculations)
 - Current: A = C/s = charge/time
 - Voltage: V = J/C = energy/charge
- Resistance: $\Omega = V/A$
- Power: W = J/s = energy/time
- Capacitance: F = C/V = charge/volt