

Traitement d'images Ch. 4 : Détection de contours

s.idbraim@uiz.ac.ma

Master Spécialisé Offshoring des Technologies de l'Information A.U. 2017 – 2018

Qu'est-ce qu'un contour ?

Un contour est une variation brusque d'intensité

Qu'est-ce qu'un contour?

- Par définition, un contour est la frontière qui sépare deux objets dans une image.
 - Une discontinuité de l'image
- Dans notre cas, nous détecterons toutes les lignes marquant des changements d'intensité
 - Pas seulement les contours!
 - Abus de langage sur la notion de contours!

Lignes/contours dans une image

· Exemples de détection des discontinuités

Différents types de contours

Rampe

Marche d'escalier

Toit

Contour avec un peu de bruit

Contour avec beaucoup de bruit

Dérivation

- · Comportement des dérivés
 - Régions de tons de gris constants
 - Avant et après les discontinuités
 - Rampes croissantes et décroissantes de tons de gris
- · Ce qu'elles décrivent
 - Bruits, points, contours (edges)

- Taux de changement d'une fonction
- Approximation:
 Pente de la tangente à un point
- · Réaliste?

$$pente = \frac{y_2 - y_1}{x_2 - x_1}$$

Un seul point de contact ?

$$- y_2 = y_1 & x_2 = x_1$$

Х

- Dérivé première
- · Pente d'une sécante?

· Pour une valeur infinitésimale de "h"

pente =
$$f'(x) = \lim_{h\to 0} \left[\frac{f(x+h) - f(x)}{h} \right]$$

= 0 si aucun changement de tons

≠ 0 si changement de

tons

 Compare deux pixels

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

 $1^{\text{ère}}$ dérivée f'(x)

|f'(x)|

Pixels contours: |f'(x)| > Seuil

Dérivée seconde

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

- Compare trois pixels
- · Nulle
 - Dérivée première maximale
 - Point d'inflexion de la dérivée première
- Maximale
 - Passage par zéro de la dérivée seconde
 Points d'inflexion de la dérivée
 première

Dérivée seconde

Profile de l'image

$$\frac{\partial^2 f}{\partial x^2}$$

Dérivée première

Dérivée seconde

Le gradient de f au point (x,y)
 est un vecteur à deux dimensions

$$\nabla F = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

 En imagerie, on s'intéresse à la norme (magnitude) du gradient et à son orientation

$$\|\nabla f\| = \sqrt{G_x^2 + G_y^2}$$

$$= \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\phi(G) = \arctan\left(\frac{G_y}{G_x}\right)$$

- La norme du Gradient est souvent appelé le Gradient
 - Pour simplifier l'opération:

$$\nabla f \approx |G_x| + |G_y|$$

 $\frac{\partial f}{\partial x}$ Contours verticaux

 $\frac{\partial f}{\partial y}$

Contours horizontaux

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

Norme

· Selon Roberts (1965)

$$G_{-45} = (Z_9 - Z_5)$$
 et $G_{45} = (Z_8 - Z_6)$

· Le Gradient:

$$\nabla f = \left[(Z_9 - Z_5)^2 + (Z_8 - Z_6)^2 \right]^{1/2}$$

$$\nabla f \approx \left| Z_9 - Z_5 \right| + \left| Z_8 - Z_6 \right|$$

z_1	z_2	Z ₃
z ₄	z_5	z_6
z ₇	z_8	Z ₉

· L'opérateur Roberts (cross-gradient)

$$\nabla f \approx \left| Z_9 - Z_5 \right| + \left| Z_8 - Z_6 \right|$$

z_1	z_2	Z ₃
Z4	z ₅	Z ₆
z ₇	z_8	Z9

Masque de 3x3 → Opérateur Sobel

$$\nabla f \approx \left| (Z_7 + 2z_8 + Z_9) - (z_1 + 2z_2 + z_3) \right| + \left| (Z_3 + 2z_6 + Z_9) - (z_1 + 2z_4 + z_7) \right|$$

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

z_1	z_2	Z ₃
Z4	z ₅	Z ₆
z ₇	z_8	Z9

Masque de 3x3 → Opérateur Prewitt

$$\nabla f \approx \left| (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3) \right| + \left| (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7) \right|$$

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

z_1	z_2	Z ₃
Z ₄	Z ₅	Z ₆
z ₇	z_8	Z9

Le Gradient : seuillage

Détection avec Sobel sans seuillage

Seuillage avec 5=60

Filtre de Prewitt: Moyenneur + Dérivée

$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} * (-1 & 0 & 1)$$

$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} * (-1 & 0 & 1) \qquad \qquad \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} * (1 & 1 & 1)$$

Filtre de Sobel : Gaussienne + Dérivée

$$\begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} * (-1 & 0 & 1)$$

$$\begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} * (-1 & 0 & 1) \qquad \qquad \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} * (1 & 2 & 1)$$

Détection des contours moins sensible au bruit

- · Améliorer l'image
 - Formulation d'une version discrète
 - Création d'un masque basé sur cette formulation
 - Invariance à la rotation (isotropie)

- Le Laplacien est le plus simple opérateur dérivatif isotropique
 - C'est un scalaire

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

· Le Laplacien est un opérateur linéaire

- Dérivé partielle seconde de f(x,y) dans la direction de x
 - version discrète

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

- Dérivé partielle seconde de f(x,y) dans la direction de y
 - version discrète

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

· Le Laplacien à deux dimension

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- Version discrète

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1)] - 4f(x,y)$$

Masque

0	1	0
1	-4	1
0	1	0

Isotropique pour rotation de 90°

Masque

1	1	1
1	-8	1
1	1	1

Isotropique pour rotation de 45°

- · Intensifie les discontinuité de tons
- · Amenuise les changements lents
- Résulte en des images avec des arêtes et des discontinuités grises sur fond noir sans détails

Fin