Control Systems и задача стабилизации

Control system

Контроллер выполняет вычисление моментов силы (и других параметров) для движения по построенной траектории.

Feedback control system выполняет корректировку сигнала, используюя данные:

- -тахометр (измерение частоты вращения)
- -гироскоп
- -акселерометр

•••

Velocity-control model

Требуемое положение в момент времени t: $\theta_d(t)$

Текущее положение задается функцией: $\theta(t)$

Необходимо минимизировать ошибку:

Feedforward Control

Требуемое положение в момент времени t: $\theta_d(t)$.

Open loop control condition:

$$\dot{\theta}(t) = \dot{\theta}_d(t)$$

Feedback Control

P Control condition:

$$\dot{\theta}(t) = K_p(\theta_d(t) - \theta(t)) = K_p\theta_e(t)$$

$$K_p > 0$$

This controller is called a proportional controller, or P coneroller. It creates a corrective control proportional to the position error.

Setpoint control

Если,
$$\theta_d(t) = const$$
, $\dot{\theta}_d(t) = 0$

P Control condition:

$$\dot{\theta}(t) = K_p(\theta_d(t) - \theta(t)) = K_p\theta_e(t)$$

Ошибка задается уравнением:

$$\dot{\theta}_e(t) + K_p \theta_e(t) = 0$$

Имеет решение:

$$\theta_e(t) = \theta_e(0) \, e^{-K_p t}$$

P Control

Случай движения с постоянной скоростью: $\dot{\theta}_d(t) = c$

P Control condition:

$$\dot{\theta}(t) = K_p(\theta_d(t) - \theta(t)) = K_p\theta_e(t)$$

Ошибка задается уравнением:

$$\dot{\theta}_e(t) + K_p \theta_e(t) = c$$

Имеет решение:

$$\theta_e(t) = \frac{c}{K_p} + \left(\theta_e(0) - \frac{c}{K_p}\right) e^{-K_p t}$$

Всегда есть запаздывание.

PI Control

PI Control condition:

$$\dot{\theta}(t) = K_p \theta_e(t) + K_i \int_0^t \theta_e(t) dt$$

PI Control

Случай движения с постоянной скоростью: $\dot{\theta}_d(t) = c$

PI Control condition:

$$\dot{\theta}(t) = K_p \theta_e(t) + K_i \int_0^t \theta_e(t) dt$$

Ошибка задается уравнением:

$$\dot{\theta}_e(t) + K_p \theta_e(t) + K_i \int_0^t \theta_e(t) dt = c$$

$$\ddot{\theta}_e(t) + K_p \dot{\theta}_e(t) + K_i \theta_e(t) = 0$$

P and PI Control

При $\dot{\theta}_d(t) = c$

Feedforward-Feedback Controller

Feedforward Plus Feedback control condition:

$$\dot{\theta}(t) = \dot{\theta}_d(t) + K_p \theta_e(t) + K_i \int_0^t \theta_e(t) dt$$

Motion Control with Torque or Force Inputs

Закон движения:

$$\tau = M\ddot{\theta} + \mathfrak{m}gr\cos\theta + b\dot{\theta}$$

PID Control

PID control condition:

$$\tau = K_p \theta_e + K_i \int \theta_e(t) dt + K_d \dot{\theta}_e$$

PID Control

Дискретная формула:

$$U(n) = K_p E(n) + K_p K_{ip} T \sum_{k=0}^n E(k) + rac{K_p K_{dp}}{T} (E(n) - E(n-1))$$

Balancing robot

Уравнение для угла отклонения:

$$A_1C_L + A_2C_R = -(B_1\ddot{\theta}_P + B_2\theta_P + B_3)$$

ГДЕ
$$A_{1} = \left(1 + \frac{M_{RR}RL}{J_{RR}}\right)$$

$$A_{2} = \left(1 + \frac{M_{RL}RL}{J_{RL}}\right)$$

$$B_{1} = J_{P\theta}$$

$$B_{2} = (V_{TR} + V_{TL} - (M_{RR} + M_{RL}))gL$$

$$B_{3} = \mu_{S}L\left(V_{TR}\left(1 + \frac{R^{2}M_{RL}}{J_{RL}}\right) + V_{TL}\left(1 + \frac{R^{2}M_{RR}}{J_{RR}}\right)\right)$$

