

BOOLEAN FUNCTIONS AND DIGITAL CIRCUITS

Canonical Forms

4.1.1 Canonical Sum-of-Products

Table 4.1 (a) A truth table for two variables. (b) Conversion of of (a) to a table for AND.

(a)			(b)	
A B	F		A X	F
0 0	0	X = B'	0 1	0
0 1	0		0 0	0
1 0	1		1 1	1
1 1	0		1 0	0

$$F = AX = AB$$

Table 4.2 (a) A truth table for three variables. (b) Conversion of of (a) to a table in comparison with AND.

(a)			(b)	
A B C	F	_	XYC	F
0 0 0	0		1 1 0	0
0 0 1	1	X = A', Y = B'	1 1 1	1
0 1 0	0		1 0 0	0
0 1 1	0		1 0 1	0
1 0 0	0		0 1 0	0
1 0 1	0		0 1 1	0
1 1 0	0		0 0 0	0
1 1 1	0		0 0 1	0

$$F = XYC = A'B'C$$

Canonical (standard) sum-of-products

Table 4.3 Truth table for prime number detector.

A B C	F(A,B,C)
0 0 0	0
0 0 1	1
0 1 0	1
0 1 1	1
1 0 0	0
1 0 1	1
1 1 0	0
1 1 1	1

Figure 4.1 Block diagram for prime number detector.

$$F(A,B,C) = A'B'C + A'BC' + A'BC + AB'C + ABC$$

Minterm (Canonical product) Minterm list representation

Table 4.4 List of canonical products for the prime number detector.

A B C		Canonical	N #*	
Decimal	Binary	product	Minterm	
1	0 0 1	A' B' C	m_1	
2	0 1 0	A' B C'	m_2	
3	0 1 1	A' B C	m_3	
5	1 0 1	A B' C	m_5	
7	1 1 1	АВС	m_7	
	Į .			

$$F(A,B,C) = m_1 + m_2 + m_3 + m_5 + m_7$$

$$F(A,B,C) = \Sigma m(1, 2, 3, 5, 7)$$

4.1.2 Canonical Product-of-Sums

Table 4.5 Truth table for prime number detector.

A B C	F'(A,B,C)	Minterm for F'
0 0 0	1	m_0
0 0 1	0	
0 1 0	0	
0 1 1	0	
1 0 0	1	m_4
1 0 1	0	
1 1 0	1	m_6
1 1 1	0	

Canonical sum Maxterm

Canocical (standard) product-of-sums Product-of-maxterms Maxterm list representation

$$F'(A,B,C) = m_{0} + m_{4} + m_{6}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F(A,B,C) = (m_{0} + m_{4} + m_{6})'$$

$$= m_{0}' \bullet m_{4}' \bullet m_{6}'$$

$$= (A'B'C')' \bullet (AB'C')' \bullet (ABC')'$$

$$= (A + B + C) \bullet (A' + B + C) \bullet (A' + B' + C)$$

$$= M_{0} \bullet M_{4} \bullet M_{6}$$

$$= \pi M(0, 4, 6)$$

* F

Example 4.1

$$F(A,B,C,D) = \Sigma m(1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 15)$$

minterm and maxterm numbers for an n-variable function from 0 to 2ⁿ⁻¹.

$$F(A,B,C,D) = \pi M(0, 3, 9, 11, 14)$$

Order of Variables

F(A,B,C,D)	$=\Sigma m(1,$	2, 4,	5, 6,	7, 8,	10,	12,	13, 13	5)
------------	----------------	-------	-------	-------	-----	-----	--------	------------

		•	
	ABCD	ACBD	
1	0001	0001	1
2	0010	0100	4
4	0100	0010	2
5	0101	0011	3
6	0110	0110	6
7	0111	0111	7
8	1000	1000	8
10	1010	1100	12
12	1100	1010	10
13	1101	1011	11
15	1111	1111	15

 $F(A,C,B,D) = \Sigma m(1, 4, 2, 3, 6, 7, 8, 12, 10, 11, 15)$

= Σ m(1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 15)

4.1.3 Conversion to Canonical Forms

***** Example 4.2

$$F(A,B,C,D) = A'B'C + BC' + AC'D + ABCD'$$

$$A'B'C = A'B'C(D' + D) = A'B'CD' + A'B'CD = m_2 + m_3$$

$$AC'D = AC'D(B' + B) = AB'C'D + ABC'D = m_9 + m_{13}$$

BC' = BC'(A' + A)(D' + D) = A'BC'D' + A'BC'D + ABC'D' + ABC'D
=
$$m_4 + m_5 + m_{12} + m_{13}$$

ABCD' =
$$m_{14}$$

$$F(A,B,C,D) = (m_2 + m_3) + (m_9 + m_{13}) + (m_4 + m_5 + m_{12} + m_{13}) + m_{14}$$
$$= \Sigma m(2, 3, 4, 5, 9, 12, 13, 14)$$

$$F(A,B,C,D) = A'B'C + BC' + AC'D + ABCD'$$

Table 4.6 Conversion of products to minterms.

Product	Variable A B C D	Minterm number
ABCD'	1 1 1 0	14
A' B' C	0 0 1 0	2
A D C	0 0 1 1	3
A C' D	1 0 0 1	9
AC D	1 1 0 1	13
	0 1 0 0	4
ВС'	0 1 0 1	5
	1 1 0 0	12
	1 1 0 1	13

***** Example 4.3

To find the maxterm list representation

$$F(A,B,C,D) = (B'+C+D)(A+B')(A'+D')$$

AB'D' =
$$m_8 + m_{10}$$

$$ACD' = m_{10} + m_{14}$$

A'B' =
$$m_0 + m_1 + m_2 + m_3$$

$$F(A,B,C,D) = \Sigma m(0, 1, 2, 3, 8, 10, 14)$$

$$F(A,B,C,D) = \pi M(4, 5, 6, 7, 9, 11, 12, 13, 15)$$

Example 4.3 (Alternative approach)

To find the maxterm list representation

$$F(A,B,C,D) = (B' + C + D) (A + B') (A' + D')$$

$$B' + C + D = A'A + B' + C + D = (A' + B' + C + D) (A + B' + C + D) = M_{12} M_4$$

$$A + B' = A + B' + C'C + D'D = (A + B' + C' + D'D) (A + B' + C + D'D)$$

$$= (A + B' + C' + D')(A + B' + C' + D)(A + B' + C + D')(A + B' + C + D)$$

$$= M_7 M_6 M_5 M_4$$

$$A' + D' = A + B'B + C'C + D' = (A' + B' + C'C + D') (A' + B + C'C + D')$$

$$= (A' + B' + C' + D')(A' + B' + C + D')(A' + B + C' + D')(A' + B + C + D')$$

$$= M_{15} M_{13} M_{11} M_{9}$$

$$F(A,B,C,D) = (M_{12} M_4) (M_7 M_6 M_5 M_4) (M_{15} M_{13} M_{11} M_9)$$

= $\pi M(4, 5, 6, 7, 9, 11, 12, 13, 15)$

$$F(A,B,C,D) = (B' + C + D) (A + B') (A' + D')$$

Table 4.7 Conversion of sums to maxterm numbers.

Sum	Variable A B C D	Maxterm number
D2+ G+D	0 1 0 0	4
B'+C+D	1 1 0 0	12
	0 1 0 0	4
A+B'	0 1 0 1	5
	0 1 1 0	6
	0 1 1 1	7
	1 0 0 1	9
A'+D'	1 0 1 1	11
	1 1 0 1	13
	1 1 1 1	15

$$F(x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0) = \sum_{i=0}^{2^n - 1} a_i m_i$$
minterm coefficient $a_i \varepsilon (0, 1)$

$$a_i = 1 \text{ if } i \text{ is a minterm number.}$$

$$(4.1)$$

$$F(A,B,C,D) = \Sigma m(0, 1, 2, 3, 8, 10, 14)$$

$$a_0 = a_1 = a_2 = a_3 = a_8 = a_{10} = a_{14} = 1$$

$$a_4 = a_5 = a_6 = a_7 = a_9 = a_{11} = a_{12} = a_{13} = a_{15} = 0$$

4.2 Incompletely Specified Functions

Table 4.8 Truth table for the prime number detector in Figure 4.2.

Figure 4.2 Block diagram for prime number detector.

W	X	y	Z	F(w,x,y,z)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	d
1	0	1	1	d
1	1	0	0	d
1	1	0	1	d
1	1	1	0	d
1	1	1	1	d
				1

$$F(w,x,y,z) = \Sigma m(1, 2, 3, 5, 7) + d(10, 11, 12, 13, 14, 15)$$

$$F(w,x,y,z) = \pi M(0, 4, 6, 8, 9) \bullet D(10, 11, 12, 13, 14, 15)$$

$$F(w,x,y,z) = \Sigma m(1, 2, 3, 5, 7) + d(10, 11, 12, 13, 14, 15)$$

$$F(w,x,y,z) = \sum m(1, 2, 3, 5, 7)$$

$$= w'x'y'z + w'x'yz' + w'x'yz + w'xy'z + w'xyz$$

$$= w'x'y'z + w'x'yz' + w'x'yz + w'x'yz + w'xy'z + w'xyz$$

$$= (w'x'y'z + w'x'yz) + (w'x'yz' + w'x'yz) + (w'xy'z + w'xyz)$$

$$= w'x'z + w'x'y + w'xz$$

$$= w'x'y + w'z$$

$$F(w,x,y,z) = \Sigma m(1, 2, 3, 5, 7, 10, 11)$$

$$= w'x'y + w'z + wx'yz' + wx'yz$$

$$= w'x'y + w'z + wx'y$$

$$= x'y + w'z$$

4.3 Expansion of Boolean Functions

Shannon's expansion theorem

$$F(X_{n-1}, X_{n-2}, ..., X_{i+1}, X_i, X_{i-1}, ..., X_2, X_1, X_0) = X_i' F_{X_i} = 0 + X_i F_{X_i} = 1$$
 (4.2)

where
$$F_{x_i=0} = F(x_{n-1}, x_{n-2}, ..., x_{i+1}, x_i=0, x_{i-1}, ..., x_2, x_1, x_0)$$
 (4.3a)

and
$$F_{x_i} = 1 = F(x_{n-1}, x_{n-2}, ..., x_{i+1}, x_i = 1, x_{i-1}, ..., x_2, x_1, x_0)$$
 (4.3b)

are called sub-functions of F and \mathbf{x}_{i} is called an expansion variable.

x _i	Left-hand-side of (4.2)	Right-hand-side of (4.2)
0	$F(x_{n-1}, x_{n-2},, x_{i+1}, x_i = 0, x_{i-1},, x_2, x_1, x_0) = F_{x_i = 0}$	$(0)^{i}F_{x_{i}} = 0 + (0)F_{x_{i}} = 1 = F_{x_{i}} = 0$
1	$F(x_{n-1}, x_{n-2},, x_{i+1}, x_i = 1, x_{i-1},, x_2, x_1, x_0) = F_{x_i = 1}$	$(1)^{2}F_{x_{i}}=0+(1)F_{x_{i}}=1=F_{x_{i}}=1$

Binary Tree

Figure 4.3 A binary tree for the expansion of a Boolean function.

Shannon's expansion theorem

$$F(X_{n-1}, X_{n-2}, ..., X_{i+1}, X_i, X_{i-1}, ..., X_2, X_1, X_0) = X_i, F_{X_i} = 0 + X_i, F_{X_i} = 1$$
(4.2)

$$F(A,B,C,D) = A'B'C + BC' + AC'D + ABD'$$
 (4.4)

B : expansion variable

$$F_{B=0} = F(A, B = 0, C, D)$$

$$= A'(0)'C + (0)C' + AC'D + A(0)D' = A'C + AC'D$$
(4.5a)

$$F_{B=1} = F(A, B = 1, C, D)$$

= A'(1)'C + (1)C' + AC'D + A(1)D' = C' + AC'D + AD' = C' + AD (4.5b)

$$F(A,B,C,D) = B'(A'C + AC'D) + B(C' + AD')$$
 (4.6)

$$F(A,B,C,D) = B'(A'C + AC'D) + B(C' + AD')$$
(4.6)

Sub-functions of $F_{B=0} = A'C + AC'D$ are

$$F_{BC=00} = F(A, B=0, C=0, D) = A'(0) + A(0)'D = AD$$
 (4.7a)

$$F_{BC=01} = F(A, B=0, C=1, D) = A'(1) + A(1)'D = A'$$
 (4.7b)

$$F_{B=0} = A'C + AC'D = C'(AD) + C(A')$$
 (4.8)

Sub-functions of $F_{B=1} = C' + AD'$ are

$$F_{BC=10} = F(A, B = 1, C = 0, D) = (0)' + AD' = 1$$
 (4.9a)

$$F_{BC=11} = F(A, B=1, C=1, D) = (1)' + AD' = AD'$$
 (4.9b)

$$F_{B=1} = C' + AD' = C'(\underline{1}) + C(\underline{AD'})$$
 (4.10)

$$F(A,B,C,D) = B'(\underline{A'C + AC'D}) + B(\underline{C' + AD'})$$

$$= B' [C' (\underline{AD}) + C (\underline{A'})] + B [C'(\underline{1}) + C(\underline{AD'})]$$

$$= B'C' (\underline{AD}) + B'C (\underline{A'}) + BC'(\underline{1}) + BC(\underline{AD'})$$

$$= B'C' \underline{F}_{BC=00} + B'C \underline{F}_{BC=01} + BC' \underline{F}_{BC=10} + BC \underline{F}_{BC=11}$$
(4.11)

4.4 Functionally Complete Set

Functionally complete set: AND, OR, NOT

$$F(x,y) = (x y)'$$

Table 4.9 Truth table for NAND.

<u>x</u> y	F(x,y)
0 0	1
0 1	1
1 0	1
1 1	0

Figure 4.4 Logic symbol for NAND gate.

$$x' = (x x)'$$
 $x y = [(x y)']'$ $x + y = (x' y')'$

$$x + y = (x' y')'$$

Figure 4.5 Implementation of NOT, AND, OR using NAND gates.

$$F(x,y) = (x + y)'$$

Table 4.10 Truth table for NOR.

x y	F(x,y)
0 0	1
0 1	0
1 0	0
1 1	0

Figure 4.6 Logic symbol for NOR gate.

$$x' = (x + x)'$$
 $x + y = [(x + y)']'$ $x y = (x' + y')'$

Figure 4.7 Implementation of NOT, OR, AND using NOR gates.

4.5 Exclusive-OR and Exclusive-NOR

EXCLUSIVE-OR (XOR)

$$F(x, y) = x \oplus y$$

Table 4.11 Truth table for EXCLUSIVE-OR.

x y	F(x,y)
0 0	0
0 1	1
1 0	1
1 1	0

Figure 4.8 Logic symbol for EXCLUSIVE-OR gate.

EQUIVALENCE, Exclusive-NOR (XNOR)

$$F(x, y) = (x \oplus y)' = x \odot y$$

Table 4.12 Truth table for EXCLUSIVE-NOR.

x y	F(x,y)
0 0	1
0 1	0
1 0	0
1 1	1

Figure 4.9 Logic symbol for EXCLUSIVE-NOR gate.

Basic laws for XOR

$$x \oplus 0 = x$$

$$x \oplus 1 = x$$

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y = y \oplus x$$

$$x \oplus y = x'y + xy' = (x' + y')(x + y)$$

$$x \odot y = (x \oplus y)' = x'y' + xy = (x' + y)(x + y')$$

$$(x \oplus y)' = x \oplus y' = x' \oplus y$$

4.6 Timing Diagram and Propagation Delay

Figure 4.10 Timing diagrams for a 2-input AND gate with propagation delay.

Figure 4.11 Timing diagram for a 2-input AND gate without propagation delay.

Timing diagrams

$$F(A,B,C) = \Sigma m(1, 2, 3, 5, 7)$$

Figure 4.12 Timing diagram for prime number detector.

4.6 Analysis of Combinational Circuits

$$P_{1} = BC' + D'$$

$$P_{2} = (BD)' = B' + D'$$

$$P_{3} = (A P_{1})' = [A (BC' + D')]'$$

$$P_{4} = (C P_{2})' = [C (B'D + BD')]'$$

$$F(A,B,C,D) = (P_{3} P_{4})'$$

$$= \{[A (BC' + D')]' \bullet [C (B' + D')]'\}'$$

$$= A (BC' + D') + C (B' + D')$$

$$= ABC' + AD' + B'C + CD'$$

Figure 4.13 Circuit for Example 4.4.

Eliminating of internal inversions by gate equivalencies

- (a) $(x_1 \bullet x_2 \bullet x_3 \bullet \dots \bullet x_{n-1} \bullet x_n)' = x_1' + x_2' + x_3' + \dots + x_{n-1}' + x_n'$
- (b) $(x_1+x_2+x_3+....+x_{n-1}+x_n)'=x_1'\bullet x_2'\bullet x_3'+....\bullet x_{n-1}'\bullet x_n'$

Figure 4.14 Gate equivalencies using DeMorgan's theorem.

Figure 4.15 Circuit for Example 4.5

$$F = A(D + BC') + A'D'(B + C') = AD + ABC' + A'BD' + A'C'D'$$

***** Example 4.5

Example 4.5 (continued)

Figure 4.15 Circuit for Example 4.5

$$F = A(D + BC') + A'D'(B + C') = AD + ABC' + A'BD' + A'C'D'$$

Figure 4.16 Circuit for Example 4.6.

Figure 4.16 Circuit for Example 4.6.

 $F_1 = AB' + (B + D')C = AB' + BC + CD'$

$$F_2 = (AB')'C + C'D = (A' + B)C + C'D = A'C + BC + C'D$$

Asserted Condition: True Operation: Executed

De-asserted Condition: False Operation: Not executed

Active-high signal Asserted High (1)

De-asserted Low (0)

Active-low signal Asserted Low (0)

De-asserted High (1)

•

Table 4.13 Truth table for providing service by a printer.

(a)

	· /	
Idle R	equest	Print
0	0	0
0	1	0
1	0	0
1	1	1

(b)

Idle Reques	st /Print
0 0	1
0 1	1
1 0	1
1 1	0

(c)

/Idle	· /Request	Print
(0	1
(1	0
1	0	0
1	1	0

(d)

/Idle	/Request	/Print
0	0	0
0	1	1
1	0	1
1	1	1
1	1	1

- (a) Print = Idle Request
- (b) /Print = (Idle Request)'
- (c) $Print = (/Idle)' \bullet (/Request)'$
- (d) $/Print = (/Idle) + (/Request) = [(/Idle)' \bullet (/Request)']'$

- (a) $Print = Idle \bullet Request$
- (b) /Print = (Idle Request)'
- (c) Print = (/Idle)' (/Request)'
- (d) $/\text{Print} = (/\text{Idle}) + (/\text{Request}) = [(/\text{Idle})' \bullet (/\text{Request})']'$

Figure 4.17 Implementation of the truth tables in Table 4.13.