USAF Academy Department of Electrical and Computer Engineering ECE 332 – Electrical Circuits and Systems II

Spring 2017

RLC Circuit Design – Prelab

(Due at beginning of class IAW syllabus. Make a copy for yourself)

Authorized Resources: 1) ECE332 course documents; and 2) course text.

Collaboration Policy: None. This is individual effort.

(25 pts) Theory

1. Develop and solve the ODE for the series RLC circuit due to a step input of amplitude of V_A . Be sure to account for the signal resistance $R_{\rm sig}$ and inductor's parasitic resistance R_L as part of your total circuit resistance R_T .

2. Develop and write down the governing equations relating damping factor ζ and undamped natural frequency [Hz], f_0 , to part values R, L, and C.

Spring 2017 page 1 of 2

(25 pts) Design

Through hand calculations using the governing equations above, design your circuit for R, L, C, and V_A to meet Specifications given in the lab handout. Ensure you use standard parts available in the lab as listed on the course website.

(25 pts) Simulation

Attach your MultiSim <u>simulation</u> (circuit schematic and graph) and Matlab <u>simulation</u> (graph). Fill in the table below showing your MultiSim values for the Specifications.

Parameter	Specifications	Calculation	% Error	Simulation	% Error
ζ (dimensionless)					
f_0 (kHz)					
Final Value (V)					
Rise Time t_r (ms)	Not given				
Overshoot (%)	Not given				

(25 pts) Procedure/Test Plan

Describe how will you <u>measure</u>, <u>collect</u> and <u>analyze</u> data. Describe the test equipment you will use. Draw a schematic showing how your test equipment is connected to your circuit.

Spring 2017 page 2 of 2