

Never Stand Still



# Week 2 Velocity, acceleration and relative motion

- Graphing displacement and velocity
- Acceleration changing velocity but not necessarily changing speed
- Kinematics equations relating acceleration, velocity and displacement
- Relative motion and frames of reference

#### Vectors and scalars



## Any change in velocity is an acceleration



## Average velocity



Lesson 2.1 3.29

## Change in velocity over change in time



Lesson 2.1 4.09

## Average velocity



Lesson 2.1 5.39

## From displacement to velocity and back





# Defining acceleration



## Constant acceleration



#### Collected terms

If 
$$a = constant$$
 (with calculus)  
 $v = v_0 + at$  =  $\int a dt$   
 $x = x_0 + v_0 t + \frac{1}{2}at^2 = \int v dt$ 

## Negative acceleration



Lesson 2.2 6.30

## Useful equations



# Relating acceleration, displacement and final velocity

(1) 
$$v = v_0 + at \longrightarrow t = \frac{v - v_0}{a}$$
  
Substitute in (2):  $x = x_0 + v_0 t + \frac{1}{2}at^2$   
 $x - x_0 = v_0 \frac{v - v_0}{a} + \frac{a}{2} \left( \frac{v - v_0}{a} \right)^2$   
 $2a(x - x_0) = 2v_0(v - v_0) + (v - v_0)^2$   
 $= 2vv_0 - 2v_0^2 + v^2 - 2vv_0 + v_0^2$   
 $2a(x - x_0) = v^2 - v_0^2$ 

Lesson 2.3 2.07

## Equations to memorise



## Relative velocity



Lesson 2.4 1.39

## Relative displacement



## Notes

## Notes