DEFINITE INTEGRALS AND APPLICATION OF INTEGRALS

CONCEPT

Class XII

DEFINITE INTEGRALS

For any two values a and b, we have $\int_a^b f(x) dx = [F(x) + c]_a^b = F(b) - F(a)$

Limit of Sum

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} h[f(a) + f(a+h) + \dots + f(a+(n-1)h)],$$
where $h = \frac{b-a}{n} \to 0$ as $n \to \infty$

Fundamental Theorem of Calculus

- First Fundamental Theorem: Let f(x) be a continuous function in the closed interval [a, b] and let A(x) be the area function. Then A'(x) = f(x), for all x ∈ [a, b].
- Second Fundamental Theorem: Let f(x) be a continuous function in the closed interval [a, b] and F(x) be an integral of f(x), then b
 ∫ f(x)dx = [F(x)]_a^b = F(b) F(a)

Solving by Substitution

When definite integral is to be found by substitution, change the lower and upper limits of integration. If substitution is t = f(x) and lower limit of integration is a and upper limit is b, then new lower and upper limits will be f(a) and f(b) respectively.

Properties

- $\int_a^b f(x)dx = \int_a^b f(t)dt$
- $\int_a^b f(x)dx = -\int_b^a f(x)dx$. In particular $\int_a^a f(x)dx = 0$
- $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$ where a < c < b
- $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$ $\int_0^a f(x)dx = \int_0^a f(a-x)dx$
- $\int_{-a}^{a} f(x)dx = \begin{cases} 0 & \text{if } f(-x) = -f(x) \\ 2\int_{0}^{a} f(x)dx & \text{if } f(-x) = f(x) \end{cases}$
- $\int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^a f(2a x)dx$
- $\int_{0}^{2a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx, & \text{if } f(2a-x) = f(x) \\ 0, & \text{if } f(2a-x) = -f(x) \end{cases}$

APPLICATION OF INTEGRALS

Area Under Simple Curves

• Area = $\int_{a}^{b} y dx$ = $\int_{a}^{b} f(x) dx$ (where b > a)

• Area = $\int_a^b x dy$ = $\int_a^b g(y)dy$ (where b > a)

• Area = $\left| \int_{a}^{c} f(x) dx \right| + \int_{c}^{b} f(x) dx$

Area Between Two Curves

• Area = $\int_{a}^{b} [f(x) - g(x)] dx,$ $f(x) \ge g(x) \text{ in } [a, b]$

where $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b]

• Area =
$$\int_{a}^{c} f(x)dx + \int_{c}^{b} g(x)dx$$

