사이킷런으로 시작하는 머신러닝

류영표

머신러닝 프로세스

사이킷런 이란?

learn Install User Guide API Examples More ▼

scikit-learn

Machine Learning in Python

Getting Started Release Highlights for 0.24 GitHub

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to

Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, meanshift, and more...

Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: k-Means, feature selection, non-negative matrix factorization, and more...

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tun-

Algorithms: grid search, cross validation, metrics,

Preprocessing

Feature extraction and normalization

Applications: Transforming input data such as text for use with machine learning algorithms.

Algorithms: preprocessing, feature extraction, and

- 파이썬 기반의 다른 머신러닝 패키지도 사 이킷런 스타일의 API를 지향할 정도로 쉽고 파이썬스러운 API를 제공
- 머신러닝을 위한 매우 다양한 알고리즘과 개발을 위한 편리한 프레임워크와 API를 제 공
- 오랜 기간 실전 ghksruid에서 검증됐으며, 매우 많은 환경에서 성숙한 라이브러리입니 다.
- 주로 Numpy와 Scipy 기반 위에서 구축된 라이브러리.

Scipy

- 과학, 분석 그리고 엔지니어링을 위한 과학적 영역의 여러 기본 적인 작업을 위한 라이브러리
- 수치 적분과 미분방정식 해석기, 방정식의 근을 구하는 알고리 즉, 표준 연속/이산 확률분포와 다양한 통계관련 도구 등을 제 공

사이킷런을 이용한 붓꽃 데이터 분류

- 첫 번째의 머신러닝 모델 : 붓꽃의 품종을 예측
- 붓꽃 데이터 세트로 붓꽃의 품종을 분류(Classification) 하는 것.
- 붓꽃 데이터 세트는 꽃잎의 길이와 너비, 꽃받침의 길이와 너비 피쳐

(Feature)를 기반으로 꽃의 품종

머신러닝을 위한 용어정리

- 피쳐(Feature)? 속성(attribute)?
 - 피쳐는 데이터 세트의 일반 속성
 - 머신러닝은 2차원 이상의 다차원 데이터에서도 많이 사용되므로 타겟값을 제외한 나머지 속성을 모두 피처로 지칭.
- 레이블, 클래스, 타겟(값), 결정(값)
 - 타겟값 또는 결정값은 지도 학습 시 데이터의 학습을 위해 주어지는 정답 데이터
 - 지도 학습 중 분류의 경우에는 이 결정값을 레이블 또는 클래스로 지칭

지도학습-분류(Classification)

분류(Classification)는 대표적인 지도학습 (Supervised learning) 방법의 하나. 지도학습은 학습을 위한 다양한 피쳐와 결정값인 레이블(Label) 데이터로 모델을 학습한 뒤, 별도의 데이터 세트에서 미지의 레이블을 예측

즉, 지도학습은 명확한 정답이 주어진 데이터를 먼저 학습한 뒤 미지의 정답을 예측하는 방식. 이 때 학습을 위해 주어진 데이터 세트를 학습 데이 터 세트, 머신러닝 모델의 예측 성능을 평가하기 위해 별도로 주어진 데이터 세트를 테스트 데이 터 세트로 지칭

붓꽃 데이터 분류 예측 프로세스

데이터를 학습 데이터와 테스트 데이터로 분리

학습 데이터를 기반으로 ML 알고리즘을 적용해 모델을 학습

학습된 ML 모델을 이용해 테스트 데이터의 분류(즉, 붓꽃 종류)를 예측

이렇게 예측된 결괏값과 테스트 데이터의 실제 결괏값을 비교해 ML 모델 성능을 평가.