Human-Computer Interaction COMS21301

Design Thinking

Dr. Mike Fraser fraser@cs.bris.ac.uk

References

- Lawson, B., How Designers Think, 1980,
 Architectural Press
- Buchanan, R., Wicked Problems in Design Thinking, Design Issues, vol 8 no 2, 1992, MIT Press.
- Plattner, H., Meinel, C. and Leifer, L. (eds.),
 Design Thinking: Understand-Improve-Apply,
 2011, Springer Press.
- Kneale, W. and Kneale, M., The Development of Logic, 1985, OUP

Logic and reasoning

- Reasoning is the process of using existing knowledge to draw conclusions, make predictions, or construct explanations
 - Deductive Reasoning
 - A true premise and a sound argument provide a true conclusion
 - Inductive Reasoning
 - Gathered evidence leads to most likely conclusion
 - Abductive Reasoning
 - Partial evidence leads to best guess conclusion

Reasoning through known problems

- Deductive > Inductive > Abductive?
 - Most game-changing work is the result of creative leaps
 - E.g. Einstein's work is empirically verified but was reasoned through thought experiments
- Strictly speaking, even abductive reasoning is only possible for well-known problems
 - What if it is unclear which problems are most important?

Lawson's Architects vs Scientists (1979)

- Given more blocks than required
- Single storey arrangement of three by four modular bays
- Vertical faces coloured red and blue
- Make perimeter wall as red or blue as possible
- 'hidden' rules governing allowed relationships blocks; rules were changed for each problem
- Over 6000 possible answers (i.e. simple!)

Lawson's Architects vs Scientists (1979)

Scientists

- test designs using as many different combinations of blocks as quickly as possible
- discover the rule governing which combinations of blocks were allowed

Architects

- select blocks in order to achieve appropriately coloured perimeter; then test
- try next most favourably-coloured block combination substituted until an acceptable solution discovered

Lawson's Architects vs Scientists (1979)

- Scientists focus attention on understanding underlying rules
- Architects focus on achieving desired result

What is Design Thinking?

- Solution-based design vs Problem-based design
 - Finding good solutions for 'known' problems
 - What about those problems is really well-known?
 - Are those problems important?
 - Finding good problems for 'known' solutions
 - What about those solutions is really well-known?
 - Are those solutions useful?
- Keeping your eye on the goal
- 'Systems Thinking'

Holistic Design

- Designing the whole rather than the parts
- Beyond 'bottom-up' or 'top-down' design
- What is 'the whole'?
 - Context sensitive
 - Context renewing
 - Accepting ambiguity and change
 - Accepting that innovations are 'made at home' and appropriated

Stanford dSchool 'Mindsets'

Focus on Human Values

 Empathy for the people you are designing for and feedback from these users is fundamental to good design.

Show, Don't Tell

 Communicate your vision in an impactful and meaningful way by creating experiences, using illustrative visuals, and telling good stories.

Craft Clarity

Produce a coherent vision out of messy problems.
 Frame it in a way to inspire others and to fuel ideation.

Stanford dSchool 'Mindsets'

Embrace Experimentation

 Prototyping is not simply a way to validate your idea; it is an integral part of your innovation process. We build to think and learn.

Be Mindful of Process

 Know where you are in the design process, what methods to use in that stage, and what your goals are.

Stanford dSchool 'Mindsets'

Radical Collaboration

 Bring together innovators with varied backgrounds and viewpoints. Enable breakthrough insights and solutions to emerge from the diversity.

Bias Toward Action

 Design thinking is a misnomer; it is more about doing than thinking. Bias toward doing and making over thinking and meeting.

- 1. All design is social
 - Human-centred point of view
 - Focusing on the real world
 - 'In the wild'
 - Observe and satisfy real needs
 - Acknowledge human factors

2. Preserve Ambiguity

- Chance discoveries are impossible in well-defined settings
- Fear of failure is not a reason for creating constraints
- Freedom to fail is the basis of good design
- It is not necessary to fully understand an idea to try it

- 3. All design is re-design
 - Human needs remain broadly the same
 - Current solutions are usually rather good
 - Conditions change and require forecasting
 - Changes are social and technical

- 4. Tangibility improves Communication
 - Prototypes are suggestions, not stages of implementation
 - A physical demonstration expresses and facilitates imaginations
 - Editing text improves the clarity of ideas; editing prototypes improves the clarity of designs

Practical design thinking methods

- What? How? Why?
- Interview
- Extreme users
- Saturate and group
- I like, I wish, What if?
- ...
- See, e.g., dschool bootcamp bootleg:
- http://dschool.stanford.edu/use-our-methods/

An example: the LED

What can you do with an LED?

An example: the LED

- What can you do with an LED?
- Switch it on and off
- Set its rate of flashing
- Change its rate of flashing
- Crowdsource a network
- Deliberately blow it up within a timeframe
- Wear it as jewellery
- Give someone a massage with it
- Kill someone with it

Conclusions

- Are you trying to make something or discover something?
- Design Thinking is a solution-based design activity
- You need to concentrate on what people want or need, not what you can give them
- Prototyping matters to explore design spaces, not (just?) to iterate development
- Making ideas tangibility helps designers think individually and collectively
- Next time: Tangible Interfaces