Similar Matrices and Similarity Transformation

- A and M-1AM are said to be similar where M is any invertible matrix.
- $M^{-1}AM$ is called similarity transformation of A and vice versa
- Two similar matrices share the same eigenvalues
- If $B = M^{-1}AM$ then A and B have the same eigenvalues and an eigenvector x of A corresponds to an eigenvector $M^{-1}x$ of B

Proof: since $A = MBM^{-1}$

$$Ax = \lambda x \Rightarrow MBM^{-1}x = \lambda x \Rightarrow B(M^{-1}x) = \lambda(M^{-1}x)$$

Or we can look at the two determinants:

$$\det(B - \lambda I) = \det(M^{-1}AM - \lambda I) = \det(M^{-1}(A - \lambda I)M)$$
$$= \det M^{-1} \det(A - \lambda I) \det M = \det(A - \lambda I)$$

Example: $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ with eigenvalues 1 and 0

If
$$M = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$
 then $B = M^{-1}AM = \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$: triangular with eigenvalues 1 and 0

If
$$M = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 then $B = M^{-1}AM = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$: projection with eigenvalues 1 and 0

If
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $B = M^{-1}AM$ = an arbitrary matrix with eigenvalues 1 and 0

Similarity Transformation = Change of Basis

Recall that

- Every linear transformation is represented by a matrix
- The transformation matrix depends on the choice of basis
- Similar matrices represent the same transformation with respect to different bases
- Let a transformation be T and a basis be $v_1, ..., v_n$. The jth column of the transformation A comes from applying T to v_j :

 Tv_j =combination of the v's= $a_{1j}v_1+\cdots+a_{nj}v_n$

Similarly, let the basis be $V_1, ..., V_n$ Then a new transformation matrix B can be constructed:

 TV_j =combination of the V's= $b_{1j}V_1$ + \cdots + $b_{nj}V_n = \sum_{i=1}^n b_{ij}V_i$ In the mean time, V_j = $m_{1j}V_1$ + \cdots + $m_{nj}V_n = \sum_{i=1}^n m_{ij}V_i$

- The matrices A and B that represent the same linear transformation T with respect to two different bases v and V are similar: $\begin{bmatrix} T \end{bmatrix}_{V \text{ to } V} = \begin{bmatrix} I \end{bmatrix}_{V \text{ to } V} \begin{bmatrix} I \end{bmatrix}_{V \text{ to } V} \begin{bmatrix} I \end{bmatrix}_{V \text{ to } V}$ $B = M^{-1} \qquad A \qquad M$
- Transformation that changes only the basis is called *Identity Transformation*.

Change of Basis Example – Projection

- Transformation T is projection onto the line L at angle θ .
- Two bases: $v_1=(1,0)$ $v_2=(0,1)$ and $V_1=(c,s)$ $V_2=(-s,c)$
- $\bullet \quad B = [T]_{V \text{ to } V} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- $\bullet \quad A = [T]_{v \text{ to } v} = MBM^{-1} = \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix}$
- While Elimination preserves the null space and row space, similarity transformation preserves the eigenvalues.

A and Λ are similar by changing the basis to the eigenvectors because $S^{-1}AS=\Lambda$

 Numerically, eigenvalues are actually calculated by a sequence of simple similarities. The matrix gradually becomes triangular to find the eigenvalues on the diagonal (Chapter 7).

Symmetric Matrix with Complex Numbers

- Expressing u_0 as a linear combination of eigenvectors, how?
- What if the eigenvectors are orthogonal to one another?
- Our interest is symmetric matrices: Spectral Theorem
 - 1. symmetric matrix has real eigenvalues
 - 2. Its eigenvectors can be chosen orthonormal
- General case: "symmetric" (Hermitian) complex matrices

Three properties of complex numbers and conjugates:

1.
$$\overline{(a+ib)(c+id)} = (ac-bd)-i(bc+ad) = \overline{(a+ib)(c+id)}$$

2.
$$\overline{(a+c)+i(b+d)}=(a+c)-i(b+d)=\overline{(a+ib)}+\overline{(c+id)}$$

3.
$$(a+ib)(a-ib) = a^2 + b^2 = r^2$$
 and r is called $|a+ib|$

If
$$a = r \cos \theta$$
 and $b = r \sin \theta$, $a + ib = r(\cos \theta + i \sin \theta) = re^{i\theta}$

Example:
$$x=3+4i \Rightarrow x\bar{x} = (3+4i)(3-4i) = 25 = |x|^2 = r^2$$
 and

$$\frac{2+i}{3+4i} = \frac{2+i}{3+4i} \cdot \frac{3-4i}{3-4i} = \frac{10-5i}{25}$$

4

Complex Matrices: Lengths and Inner Products

• Space C^n : all vectors x with n complex entries

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad x_j = a_j + ib_j$$

- Complex vectors $v_1,...,v_k$ are dependent if there exists nontrivial $(c_1,...,c_k)$ that produces $c_1v_1+\cdots c_kv_k=0$
- Length of complex vectors:

$$||x||^2 = |x_1|^2 + \dots + |x_n|^2$$

• Inner product of two complex vectors:

$$\overline{x}^{\mathsf{T}} y = \overline{x}_1 y_1 + \dots + \overline{x}_n y_n$$

Example: x=(1+i, 3i) and y=(4, 2-i)

$$x^{T}y = (1-i)4 + (-3i)(2-i) = 1-10i$$

$$\bar{x}^{T}x = \overline{(1+i)}(1+i) + \overline{(3i)}(3i) = 2+9 = ||x||^{2} = (\text{length of } x)^{2}$$

Hermitian Transpose and Hermitian Matrices

• Definition: Hermitian Transpose

$$A^{H} = \overline{A}^{T} = A^{H}$$
 with entries $(A^{H})_{ij} = \overline{A_{ji}}$

Example:
$$\begin{bmatrix} 2+i & 3i \\ 4-i & 5 \\ 0 & 0 \end{bmatrix}^{H} = \begin{bmatrix} 2-i & 4+i & 0 \\ -3i & 5 & 0 \end{bmatrix}$$

- Inner products of complex vectors x and y: $\bar{x}^T y = x^H y$
- Complex vectors x and y are orthogonal if $x^Hy=0$
- Length of $x = ||x|| = (x^H x)^{1/2}$
- Since $(AB)^{T}=B^{T}A^{T}$, $(AB)^{H}=B^{H}A^{H}$
- Hermitian matrix: "symmetric" complex matrix

$$A=A^{\mathrm{H}}$$

Example:
$$A = \begin{bmatrix} 2 & 3-3i \\ 3+3i & 5 \end{bmatrix} = A^{H}$$
 that is, $a_{ij} = \overline{a}_{ji}$

- A real symmetric matrix is also Hermitian
- ⇒ A real symmetric matrix is a special case of Hermitian matrices

Three Properties of Hermitian Matrices

• Property 1: If $A=A^H$, then x^HAx is real

Proof: $(x^HAx)^H = x^HA^Hx^{HH} = x^HAx$ only a real number's conjugate equals to itself.

Example: $x^{H}Ax = \begin{bmatrix} \bar{u} & \bar{v} \end{bmatrix} \begin{bmatrix} 2 & 3-3i \\ 3+3i & 5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$ is real (?) = 2uu + 5vv + (3-3i)uv + (3+3i)uv

• Property 2: Every eigenvalue of Hermitian matrix is real

Proof: $Ax = \lambda x \Rightarrow x^H Ax = \lambda x^H x \Rightarrow x^H x$ real and positive $\Rightarrow \lambda$ real

Example:
$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 3 - 3i \\ 3 + 3i & 5 - \lambda \end{vmatrix} = \lambda^2 - 7\lambda + 10 - |3 - 3i|^2$$

= $\lambda^2 - 7\lambda - 8 = (\lambda - 8)(\lambda + 1)$

 Property 3: The eigenvectors, from different eigenvalues, of a Hermitian matrix are orthogonal to one another.

Proof: Let $Ax = \lambda_1 x$ and $Ay = \lambda_2 y$

$$(\lambda_1 x)^{\mathrm{H}} y = (Ax)^{\mathrm{H}} y = x^{\mathrm{H}} A y = x^{\mathrm{H}} (\lambda_2 y); \quad \because \lambda_1 \neq \lambda_2 \therefore x^{\mathrm{H}} y = 0$$

Example:
$$(A-8I)x = \begin{bmatrix} -6 & 3-3i \\ 3+3i & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad x = \begin{bmatrix} 1 \\ 1+i \end{bmatrix}$$

$$(A+I)y = \begin{bmatrix} 3 & 3-3i \\ 3+3i & 6 \end{bmatrix} \begin{bmatrix} y_1 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad y = \begin{bmatrix} 1-i \\ -1 \end{bmatrix}$$

And
$$x^{\mathrm{H}}y = \begin{bmatrix} 1 & 1 & -i \end{bmatrix} \begin{bmatrix} 1-i \\ -1 \end{bmatrix} = 0$$

Diagonalization of Real Symmetric Matrices

- Multiples of eigenvectors are eigenvectors ⇒ orthogonal eigenvectors can be chosen to be orthonormal eigenvectors by choosing the multiplier 1/||x||
- If A=A^T, the diagonalizing matrix S can be an orthogonal matrix O
- A real symmetric matrix A can be factored into $A=Q\Lambda Q^{T}$ even with repeated eigenvalues (to be proven later; we only prove the case with distinct eigenvalues)

$$A = QAQ^{T} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} & x_1^{T} & \\ & \vdots & \\ & & x_n^{T} \end{bmatrix}$$
$$= \lambda_1 x_1 x_1^{T} + \lambda_2 x_2 x_2^{T} + \cdots + \lambda_n x_n x_n^{T}$$

 \Rightarrow a combination of one-dimensional <u>projections</u>: $x_i x_i^T$'s

Example:
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 3 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
 with $\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$ to project onto $x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ to project onto $x_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Unitary Matrices – Complex Orthogonal Matrices

• U is called a Unitary Matrix if

$$U^{\mathrm{H}}U=I$$

• $U^{H}U=I \Rightarrow UU^{H}=I \text{ or } U^{H}=U^{-1}$

Three properties of unitary matrices

- 1. $(Ux)^H(Uy)=x^HU^HUy=x^Hy$ and (by choosing y=x) lengths are preserved: $||Ux||^2=||x||^2$
- 2. Every eigenvalue of U has absolute value $|\lambda|=1$

$$\therefore Ux = \lambda x \Rightarrow ||Ux|| = ||x|| \Rightarrow ||Ux|| = |\lambda| ||x|| \therefore |\lambda| = 1$$

3. Eigenvectors from different eigenvalues are orthogonal

Proof: Let $Ux = \lambda_1 x$ and $Uy = \lambda_2 y$

$$\lambda_{1}x^{H}y = \lambda_{1}(Ux)^{H}(Uy) = \lambda_{1}(\lambda_{1}x)^{H}(\lambda_{2}y) = \lambda_{1}\overline{\lambda}_{1}\lambda_{2}x^{H}y \Rightarrow$$

$$\lambda_1 x^H y = \lambda_2 x^H y \ \overline{\lambda_1} \lambda_2 = 1$$
 since $\lambda_1 \overline{\lambda_1} = 1$ and $\lambda_1 \neq \lambda_2 \implies x^H y = 0$

Example: $U = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$ with eigenvalues e^{it} and e^{-it}

$$\begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{it} & \\ & e^{-it} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}$$

Unitary Matrices and Skew-Hermitian Matrices

- There exists a unitary U such that $U^{-1}AU=U^{H}AU=\Lambda$ where A is Hermitian and Λ is a matrix with real eigenvalues λ_{i} 's as its diagonal entries.
- Skew-Hermitian Matrices:

$$K^{\mathrm{H}} = -K$$

• If A is Hermitian then K=iA is skew-Hermitian

Example:
$$K = iA = \begin{bmatrix} 2i & 3+3i \\ -3+3i & 5i \end{bmatrix} = -K^{\mathrm{H}}$$

- Three properties of skew-Hermitian matrices
 - 1. For any x, $x^H K x$ is pure imaginary
 - 2. Every eigenvalue of K is pure imaginary
 - 3. Eigenvectors corresponding to different eigenvalues are orthogonal
- There is a unitary U such that $U^{-1}KU=A$

Real vs. Complex

 R^n = space of vectors with \leftrightarrow C^n = space of vectors with *n* complex components

Length:
$$||x||^2 = x_1^2 + \dots + x_n^2 \iff ||x||^2 = |x_1|^2 + \dots + |x_n|^2$$

$$\iff$$
 $||x||^2 = |x_1|^2 + \dots + |x_n|^2$

Transpose:
$$A_{ij}^T = A_{ji}$$

Transpose: $A_{ij}^T = A_{ji}$ \longleftrightarrow **Hermitian transpose:** $A_{ii}^H = \overline{A_{ii}}$

$$(AB)^T = B^T A^T$$

$$\leftrightarrow$$
 $(AB)^H = B^H A^H$

Inner product:

$$x^{T}y = x_{1}y_{1} + \dots + x_{n}y_{n} \qquad \longleftrightarrow \qquad x^{H}y = \overline{x_{1}y_{1}} + \dots + \overline{x_{n}y_{n}}$$

$$(Ax)^T y = x^T (A^T y)$$

$$(Ax)^T y = x^T (A^T y)$$
 \iff $(Ax)^H y = x^H (A^H y)$

Orthogonality:
$$x^T y = 0$$
 \iff $x^H y = 0$

$$\leftrightarrow$$
 $x^H v = 0$

Symmetric matrices: $A^T = A \leftrightarrow \text{Hermitian matrices}$: $A^H = A$

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^{T} (\text{real }\Lambda) \leftarrow$$

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^{T} (\text{real }\Lambda) \iff A = U\Lambda U^{-1} = U\Lambda U^{H} (\text{real }\Lambda)$$

$$K \leftrightarrow$$

Skew-symmetric: $K^T = -K$ \leftrightarrow Skew-Hermitian: $K^H = -K$

Schur's Lemma – Trianglizing by a Unitary M

• For any matrix A, there is a unitary matrix M=U such that $U^{-1}AU=T$ is upper triangular. The eigenvalues of A, shared by the similar matrix T, appear along its diagonal.

Proof: Take 4 by 4 matrix A as an example. There is at least one eigenvalue λ_1 . Unitary matrix U_1 can be constructed by the corresponding eigenvector x_1 as the first vector and by Gram-Schmidt process for the subsequent 3 vectors. Then,

$$AU_{1} = U_{1} \begin{bmatrix} \lambda_{1} & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{bmatrix} \text{ or } U_{1}^{-1} A U_{1} = \begin{bmatrix} \lambda_{1} & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{bmatrix}$$

Second step: look at the lower right 3 by 3 matrix and there exists at least one eigenvalue λ_2 so that its corresponding eigenvector and two perpendicular vectors (Gram-Schmidt) can form M_2 and

$$U_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & & & \\ 0 & & M_2 & \\ 0 & & & \end{bmatrix} \quad \text{such that} \quad U_2^{-1} \left(U_1^{-1} A U_1 \right) U_2 = \begin{bmatrix} \lambda_1 & * & * & * \\ 0 & \lambda_2 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

Last step:
$$U_3^{-1} (U_2^{-1} U_1^{-1} A U_1 U_2) U_3 = \begin{bmatrix} \lambda_1 & * & * & * \\ 0 & \lambda_2 & * & * \\ 0 & 0 & \lambda_3 & * \\ 0 & 0 & 0 & * \end{bmatrix} = T$$

• The product $U=U_1U_2U_3$ is still unitary (exercise)

Schur's Lemma and Spectral Theorem

- Schur's lemma can be used to check the stability without diagonalizing A:
 - 1. The powers A^k approach zero when all $|\lambda_i| < 1$
 - 2. The exponentials e^{At} approach zero when all Re $\lambda_i < 0$

Example:
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
 has the eigenvalue $\lambda = 1$ (twice)

$$U^{-1}AU = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

• (Spectral theorem) Every real symmetric matrix can be diagonalized by an orthogonal matrix and every Hermitian matrix can be diagonalized by a unitary matrix: (real case) $Q^{T}AQ=\Lambda$ (complex case) $U^{H}AU=\Lambda$

The columns of ${\it Q}$ (or ${\it U}$) contain a complete set of orthonormal eigenvectors

Proof:

1. If A is Hermitian then so is $U^{-1}AU$:

$$(U^{-1}AU)^{H} = U^{H}A^{H}(U^{-1})^{H} = U^{-1}AU$$

2. If a symmetric or Hermitian matrix is also triangular, it must be diagonal

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Repeated eigenvalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = -1$ with eigenvectors (also columns of an orthogonal matrix Q and $A = QAQ^T$)

$$x_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix} \qquad x_{2} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \qquad x_{3} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$

A becomes:

$$A = \sum \lambda_i x_i x_i^{\mathrm{T}} = \lambda_1 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\therefore \lambda_1 = \lambda_2$ the first two projections can be combined:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \lambda_1 P_1 + \lambda_3 P_3 = (+1) \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} + (-1) \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 P_1 : projection onto the plane spanned by x_1 and x_2

 P_2 : projection onto the line with the same direction as x_3

• Every Hermitian matrix with k different eigenvalues has its own "spectral decomposition" into $A = \lambda_1 P_1 + \cdots + \lambda_k P_k$, where P_i is the projection onto the eigensapce for λ_i .

Diagonalizing Normal Matrices

- The matrix N is *normal* if it commutes with N^{H} : $NN^{H}=N^{H}N$.
- For normal matrices, and no others, the triangular $T=U^{-1}NU$ is the diagonal matrix Λ . Normal matrices are exactly those that possess a complete set of orthonormal eigenvectors.

Proof:

1. If N is normal then so is $T=U^{-1}NU$

$$TT^{\text{H}} = U^{-1}NUU^{\text{H}}N^{\text{H}}U = U^{-1}NN^{\text{H}}U = U^{-1}N^{\text{H}}NU = U^{\text{H}}N^{\text{H}}UU^{-1}NU = T^{\text{H}}T$$

2. A triangular *T* that is normal must be diagonal (exercises 5.6.19-20)

Diagonalizing General Matrices – Jordan Form

- Goal: make $M^{-1}AM$ as nearly diagonal as possible
- If A has s independent eigenvectors, it is similar to a matrix with s blocks:

Each Jordan block J_i is a triangular matrix with only a single eigenvalue λ_i and only one eigenvector.

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_i & 1 & & & \ & \cdot & \cdot & & \ & & \cdot & 1 \ & & & \lambda_i \end{aligned} \end{aligned}$$

- When the block has order m>1, the eigenvalue λ_i is repeated m times and there are m-1 1's above the diagonal.
- The same eigenvalue λ_i may appear in several blocks, if it corresponds to several independent eigenvectors.
- Two matrices, shared the same Jordan form, are similar

Jordan Form - Examples

Example 1:
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ share

$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$M^{-1}TM = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J \quad (2 \to 1)$$

$$U^{-1}AU = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = T$$
 and then $M^{-1}TM = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J$ (make

triangular and then $2\rightarrow 1$)

$$P^{-1}BP = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J$$
 (permutations)

Example 2:
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Eigenvalue 0 repeats 3 times \Rightarrow three possibilities:

1. a single 3×3 block; 2. one 2×2 and one 1×1 ; 3. three 1×1

$$J_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad J_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad J_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

For A, there is only one eigenvector (1, 0, 0): J_1

For B, there is an additional eigenvector (0, 1, 0): J_2

Applications of Jordan Form to Difference and Differential Equations

• For solution to a difference equation:

$$A^{k} = (MJM^{-1})(MJM^{-1})\cdots(MJM^{-1}) = MJ^{k}M^{-1}$$
 and

$$J_i^n = egin{bmatrix} \lambda & 1 & 0 \ 0 & \lambda & 1 \ 0 & 0 & \lambda \end{bmatrix}^n = egin{bmatrix} \lambda^n & n\lambda^{n-1} & n(n-1)\lambda^{n-2} \ 0 & \lambda^n & n\lambda^{n-1} \ 0 & 0 & \lambda^n \end{bmatrix}$$

• For solution to a differential equation:

$$e^{J_i t} = egin{bmatrix} e^{\lambda t} & te^{\lambda t} & rac{1}{2}t^2e^{\lambda t} \ 0 & e^{\lambda t} & te^{\lambda t} \ 0 & 0 & e^{\lambda t} \end{bmatrix}$$

Remember: $I + J_i t + (J_i t)^2 / 2! + \cdots \Rightarrow \text{e.g. } 1 + \lambda t + (\lambda t)^2 / 2! + \cdots = e^{\lambda t}$ on the diagonal.

Example:
$$\begin{bmatrix} du_1/dt \\ du_2/dt \\ du_3/dt \end{bmatrix} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 starting from $u_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Back-substitution: $u_3=e^{\lambda t}$ then $du_2/dt=\lambda u_2+u_3 \Rightarrow u_2=te^{\lambda t}$

$$du_1/dt = \lambda u_1 + u_2 \Rightarrow u_3 = t^2 e^{\lambda t}/2$$

• General solutions:

if
$$u_{k+1} = Au_k$$
 then $u_k = A^k u_0 = MJ^k M^{-1} u_0$
if $du/dt = Au$ then $u = e^{At} u_0 = Me^{Jt} M^{-1} u_0$

Quadratic Function: $f=ax^2+2bxy+cy^2$

What do we know about $f=ax^2+2bxy+cy^2$?

- f=0 at the point $(0, 0) \Rightarrow$ stationary point
- Stationary point: the point at which $\partial f / \partial x = 0$ and $\partial f / \partial y = 0$

$$f = ax^{2} + 2bxy + cy^{2} = a\left(x + \frac{b}{a}y\right)^{2} + \left(c - \frac{b^{2}}{a}\right)y^{2}$$

• f is strictly positive (negative) except at (0, 0) if a>0 (a<0) and $ac>b^2$ $(c>b^2/a$ if a>0 or $c<b^2/a$ if a<0):

Algebraically: Positive (Negative) Definite

Geometrically: a (upside down) bowl

• f is nonnegative (none-positive) if $a \ge (\le) 0$ and $ac \ge b^2$:

Algebraically: Positive (Negative) Semidefinite

Geometrically: a (upside down) trough, degenerated from a (upside down) bowl

Are there other possibilities?

Indefinite and Saddle Point

• f is ambiguous if $ac-b^2$ is negative

Algebraically: Indefinite

Geometrically: a saddle

Example:
$$f_1 = 2xy$$
 and $f_2 = x^2 - y^2 \Rightarrow ac - b^2 = -1$

 f_2 : the stationary point is minimum along x-axis and is the maximum along the y-axis \Rightarrow saddle point

 f_1 : turn f_2 45°

Example: $f(x, y) = 2x^2 + 4xy + y^2$

Quadratic Function and General Function

• The quadratic form is positive definite if and only if a>0 and $ac-b^2>0$. Correspondingly, F has a (local) minimum at x=y=0 if and only if its *first derivatives are zero* and

$$\frac{\partial^2 F}{\partial x^2}(0,0) > 0 \quad \left[\frac{\partial^2 F}{\partial x^2}(0,0)\right] \left[\frac{\partial^2 F}{\partial y^2}(0,0)\right] > \left[\frac{\partial^2 F}{\partial x \partial y}(0,0)\right]^2$$

Example: $F(x, y) = 7 + 2(x + y)^2 - y \sin y - x^3$

$$f(x, y) = 2x^2 + 4xy + y^2$$

First derivative:

$$\frac{\partial F}{\partial x} = 4(x+y) - 3x^2 = 0 \quad \text{and} \quad \frac{\partial F}{\partial y} = 4(x+y) - y\cos y - \sin y = 0$$
$$\frac{\partial f}{\partial x} = 4x + 4y = 0 \quad \text{and} \quad \frac{\partial f}{\partial y} = 4x + 2y = 0$$

Second derivative:

$$\frac{\partial^2 F}{\partial x^2} = 4 - 6x = 4 = 2a$$

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 4 = 2b$$

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 4 = 2b$$

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 4 = 2b$$

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 4 = 2b$$

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 4 = 2b$$

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 2 = 2c$$

For stationary point at (α, β) : Check

$$f(x,y) = \underbrace{\frac{1}{2} \frac{\partial^2 F}{\partial x^2} (\alpha, \beta) x^2}_{a} + \underbrace{\frac{\partial^2 F}{\partial x \partial y} (\alpha, \beta) xy}_{2b} + \underbrace{\frac{1}{2} \frac{\partial^2 F}{\partial y^2} (\alpha, \beta) y^2}_{c}$$

$$ax^{2} + 2bxy + cy^{2} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Power of linear algebra (or mathematics): extension to something hard to envision:

$$x^{\mathsf{T}} A x = \begin{bmatrix} x_1 & x_2 & \cdot & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot & a_{2n} \\ \cdot & \cdot & \cdot & \cdot \\ a_{n1} & a_{n2} & \cdot & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ x_n \end{bmatrix}$$

$$\Rightarrow = a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_2x_1 + \dots + a_{nn}x_n^2$$
$$= \sum_{i=1}^n \sum_{j=1}^n a_{ij}x_ix_j$$

 $\Rightarrow f = x^{T}Ax$ where A is a symmetric matrix

Example:
$$f = 2x_1^2 - 2x_1x_2 + 2x_2^2 - 2x_2x_3 + 2x_3^2$$

 $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \rightarrow \text{minimum}$

• Matrix A with entries: $a_{ij} = \frac{\partial F}{\partial x_i \partial x_j}$ (Hessian Matrix) for any

function $F(x_1,...,x_n) \Rightarrow F$ has a minimum when the pure quadratic $f=x^TAx$ is positive. Think of Taylor series:

$$F(x) = F(0) + x^{\mathrm{T}} (\operatorname{grad} F) + \frac{1}{2} x^{\mathrm{T}} A x + 3 \operatorname{rd} - \operatorname{order terms}$$
where grad $\mathbf{F} = (\partial F / \partial x_1, ..., \partial F / \partial x_n)$

Test for Positive Definiteness

if
$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
 we need $a > 0$ $ac - b^2 > 0$

- 1. both eigenvalues are positive
- 2. $\det [a] > 0$ and $\det A > 0$

$$ax^{2} + 2bxy + cy^{2} = a\left(x + \frac{b}{a}y\right)^{2} + \frac{ac - b^{2}}{a}y^{2}$$

- 3. pivots a>0 and $(ac-b^2)/a>0$
- \bullet Tests for a real symmetric matrix A to be positive definite:
- (I) $x^{T}Ax>0$ for all nonzero vectors x (definition)
- (II) All the eigenvalues of $A: \lambda_i > 0$
- (III) All the upper left submatrices \mathbf{A}_k have positive determinants Remember:

$$A_{1} = \begin{bmatrix} a_{11} \end{bmatrix} \quad A_{2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad A_{3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdots \quad A_{n} = A$$

- (IV) All the pivots $d_i > 0$
- (V) There exists a matrix R with independent columns such that $A=R^{T}R$

Proof: Positive Definiteness Tests

• (I) \rightarrow (II): A symmetric

Choose unit eigenvectors x_i 's with corresponding eigenvalues λ_i 's

then
$$Ax_i = \lambda_i x_i$$
 so $x_i^T A x_i = x_i^T \lambda_i x_i = \lambda_i > 0$

• (II) \rightarrow (I): all $\lambda_i > 0$

A is real symmetric \Rightarrow orthonormal eigenvectors

Any x can be written as a combination $c_1x_1+...+c_nx_n$

$$Ax = c_1 A x_1 + \dots + c_n A x_n = c_1 \lambda_1 x_1 + \dots + c_n \lambda_n x_n$$

$$\Rightarrow x^{\mathrm{T}} A x = \left(c_1 x_1^{\mathrm{T}} + \dots + c_n x_n^{\mathrm{T}}\right) \left(c_1 \lambda_1 x_1 + \dots + c_n \lambda_n x_n\right)$$

$$= c_1^2 \lambda_1 + \dots + c_n^2 \lambda_n > 0$$

● (I)→(III):

$$\det A = \lambda_1 \lambda_2 \cdots \lambda_n > 0$$

$$x^{\mathrm{T}} A x = \begin{bmatrix} x_k^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} A_k & * \\ * & * \end{bmatrix} \begin{bmatrix} x_k \\ 0 \end{bmatrix} = x_k^{\mathrm{T}} A_k x_k > \mathbf{0}$$

• (III)
$$\rightarrow$$
(IV): $d_k = \frac{\det A_k}{\det A_{k-1}} > 0$

- (IV)→(I): A is symmetric ⇒ A=LDL^T
 ⇒ pivots are coefficients of square terms
- (V): $x^{T}Ax = x^{T}R^{T}Rx = ||Rx||^{2}$

Ellipsoids in *n* Dimensions

Ellipse and Ellipsoids: $x^{T}Ax=1$

Example:

for
$$A = \begin{bmatrix} 4 \\ 1 \\ \frac{1}{9} \end{bmatrix}$$
 the equation is $x^{T}Ax = 4x_1^2 + x_2^2 + \frac{1}{9}x_3^2 = 1$

Example:
$$A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$
 and $x^{T}Ax = 5u^{2} + 8uv + 5v^{2} = 1$

$$5u^{2} + 8uv + v^{2} = \left(\frac{u}{\sqrt{2}} - \frac{v}{\sqrt{2}}\right)^{2} + 9\left(\frac{u}{\sqrt{2}} + \frac{v}{\sqrt{2}}\right)^{2} = 1$$

Eigenvalues/vectors: 1, $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ and 9, $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

Major axis: direction $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$; length 1

Minor axis: direction $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$; length $1/\sqrt{9} = 1/3$

Ellipsoids and Eigenvalues/Eigenvectors

$$x^{\mathrm{T}}Ax = (x^{\mathrm{T}}Q)\Lambda(Q^{\mathrm{T}}x) = y^{\mathrm{T}}\Lambda y = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$$

• $x \rightarrow y = Q^T x$: rotate the axes to match axes of the ellipsoid

Example:

$$x^{T}Ax=5u^{2}+8uv+5v^{2}=1 \Rightarrow A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$
 eigenvalues: 1, 9
 $\Rightarrow y_{1}^{2}+9y_{2}^{2}=1$

• Suppose A is positive definite: $A=Q\Lambda Q^{T}$ with $\lambda_{i}>0$. Then the rotation $y=Q^{T}x$ simplifies $x^{T}Ax=1$ to

$$x^{\mathrm{T}}Q\Lambda Q^{\mathrm{T}}x = 1$$
 or $y^{\mathrm{T}}\Lambda y = 1$ or $\lambda_1 y_1^2 + \dots + \lambda_n y_n^2 = 1$

This is the equation of an ellipsoid. Its axes have lengths $1/\sqrt{\lambda_1},...,1/\sqrt{\lambda_n}$ from the center. And in the original x-space they point along the eigenvectors.

Semidefinite Tests

- For A to be positive semidefinite
- (I') $x^T A x \ge 0$ for all nonzero vectors x (definition)
- (II') All the eigenvalues of $A: \lambda_i \ge 0$
- (III') All principal submatrices have nonnegative determinants
- (IV') All the pivots $d_i \ge 0$
- (V') There exists a matrix R, possibly with dependent columns such that $A=R^{T}R$

Example:

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

- (I') $x^{T}Ax = (x_1-x_2)^2 + (x_1-x_3)^2 + (x_2-x_3)^2 \ge 0$
- (II') eigenvalues: 0, 3, 3
- (III') determinate of principal submatrices: $2(1\times1)$, $3(2\times2)$, 0

(IV')
$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & -\frac{3}{2} \\ 0 & -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$