

Big Mountain Ski Resort

- The objective of this project is to develop a pricing model for ski resorts tickets based on available market data.
- Big Mountain Ski Resort management believes that it may not be maximizing revenue from ticket sales, in relation to its market position.
- The goal is to build a predictive model for ticket prices based on market data.

Model Results

- The model provides insight as what Big Mountain's ideal ticket price could/should be, and how that might change under various scenarios.
- The actual ticket price is \$81.00. And the model result price is \$94.22. This suggests that there is room for an increase, with an expected mean absolute error of \$10.39 and standard deviation of \$1.47.
- Features that came up as important in the random forest modeling:
 - vertical drop
 - Snow Making_ac
 - o total chairs,
 - Runs
 - SkiableTerrain ac

Ticket Price (national distribution)

 Big Mountain is on the higher end of the ticket prices distribution nationally.

Ticket Price (Montana distribution)

 Big Mountain has the most expensive ticket prices in Montana.

Distribution of key features: Skiable terrain (acres), Longest run (miles).

Distribution of key features: Total number of runs, Number of fast quads.

Distribution of key features: Total number of chairlifts, area covered by snow makers (acres)

Modeling scenarios

- We model two scenarios with feature modification
- Scenario One:
 - Close up to 10 of the least used runs. The number of runs is the only parameter varying.
- Scenario Two:
 - Big Mountain is adding a run, increasing the vertical drop by 150 feet, and installing an additional chair lift.

Modeling scenarios one Results

the model suggest to close up to 5 most least popular runs, without impacting visitor's attendance.

Modeling scenarios two results

- This scenario increases support for ticket price by \$1.99
- Over the season, this could be expected to amount to \$3474638

When we repeat scenario two with the addition of two additional acres of snowmaking, the result is the same.

Conclusions

- Raise ticket price to range from \$88-\$96
- Adding one chair, one run and 150 vertical feet increases support for ticket price by 2.19, which leads to increased revenue 3.83 million over the course of a season. (given the assumption of 350,000 customers buying 5 tickets).
 Operating cost for the new chairlift is given at 1.43 million. Thus, the projected net profit 2.29 million.

Next Steps

- add to our dataset with more quantitative data from the alpine resort industry like prices for hotels, equipment rentals, and ski or snowboard lesson.
- This model can be used as the backend of a Tableu or Power Bi dashboard to allow business executives to test new combinations of parameters.