FINAL REPORT

Solar Powered Remediation and pH Control

ESTCP Project ER-201033

APRIL 2017

David Lippincott, PG CB&I Federal Services

Distribution Statement AThis document has been cleared for public release

This report was prepared under contract to the Department of Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB

control number. PLEASE DO NO	T RETURN YOU	R FORM TO TH	E ABOVE ORGANIZATIO	ON.				
	TE (DD-MM-YY	<i>YY)</i> 2. REPO	RT TYPE	,			3. DATES COVERED (From - To)	
	-04-2017		Final R	leport	l = -	001	March 2010 - September 2015	
4. TITLE AND SUBTITLE Solar Powered Remediation and pH Control					CON	W912-HQ-10-C-0021		
						`		
5b. GRAN						ANT NUMBER		
	NA						- 1	
					5c.	PRO	OGRAM ELEMENT NUMBER	
	NA							
6. AUTHOR(S)					5d.	PRC	DJECT NUMBER	
	ivid R. (CB&I) rt J. (retired, fo						ER-201033	
Hatzinger, Par		imerry CB&I)			5e.	TAS	SK NUMBER	
C ,	, ,						NA	
					5f.	WOI	rk unit number	
							NA	
7. PERFORMIN	IG ORGANIZATI	ON NAME(S) AN	ID ADDRESS(ES)				8. PERFORMING ORGANIZATION	
	Services, LLC						REPORT NUMBER	
17 Princess Ro							NA	
Lawrenceville	, NJ 08648							
9. SPONSORIN	IG/MONITORING	AGENCY NAM	E(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
			cation Program				ESTCP	
4800 Mark Ce	enter Drive, Sui	ite 17D08	C					
Alexandria, V	A 22350-3605						11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
							NA	
12. DISTRIBUT	ION/AVAILABILI	TY STATEMENT						
Distribution S	tatement A: Ap	proved for Pub	olic Release, Distribution	on is Unlimite	ed			
40 011001 5845	NITA DV. NOTEO							
13. SUPPLEME None	NIAKY NOTES							
None								
14. ABSTRACT								
							PRT) as a sustainable approach for treating sed electrodes inserted into PVC wells	
							the electrodes to generate elemental	
hydrogen to	support biodeg	gradation, and	to consume dissolved	l hydrogen id	ons	and	produce hydroxide to increase aquifer	
							-down. The contaminated aquifer was	
							nlorinating bacteria were present to mels and deep cycle 12 V batteries.	
							low pH aquifer can potentially be	
supported by	PRT, but, un	der the condit	ions of the demonstra	ation, TCE d	lech	lorina	ation was not complete. The lack of	
15. SUBJECT T		s likely due to	o the borderline pH	and reducing	COI	nditic	ons achieved in the aquifer.	
		1.2-dichlorethy	dene vinvlichloride et	hene proton	redu	ction	n, electrolysis, hydrolysis,	
							v pH, solar power, Joint Base MDL	
							* * *	
	CLASSIFICATIO		17. LIMITATION OF ABSTRACT	18. NUMBER OF			ME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT			PAGES			R. Lippincott	
U	U	U	UU	19b. TELEPHONE NUMBER (Include area code) 133 609-895-5380				

FINAL REPORT

Project: ER-201033

TABLE OF CONTENTS

				Page
EXE	ECUTI	VE SU	MMARY	ES-1
1.0	INTE	RODUC	CTION	1
	1.1		KGROUND	
	1.2		CTIVE OF THE DEMONSTRATION	
	1.3		JLATORY DRIVERS	
2.0			OGY	
2.0	2.1		NOLOGY DESCRIPTION	
	2.1	2.1.1	Role of H ₂	
		2.1.2	Electrochemical Reactions in Soil	
		2.1.3	Hydrolysis-driven pH adjustment	
	2.2		HNOLOGY DEVELOPMENT	
	2.3		ANTAGES AND LIMITATIONS OF THE TECHNOLOGY	
3.0			ANCE OBJECTIVES	
3.0	3.1		EASE AND MAINTAIN NEUTRAL AQUIFER PH	
	3.1	3.1.1	Data Requirements	
		3.1.1	Success Criteria	
	3.2		DUCTION OF H ₂ AT THE CATHODE	
	3.2	3.2.1	Data Requirements	
		3.2.2	Success Criteria	
	3.3		RIBUTION OF H ₂ TO 1 METER DOWNGRADIENT OF THE CATE	
	3.3	3.3.1	Data Requirements	
		3.3.2	Success Criteria	
	3.4		JCTION OF TCE AND <i>CIS</i> -DCE IN THE TEST PLOT	
		3.4.1	Data Requirements	
		3.4.2	Success Criteria	
	3.5	COM	PLETE AND PROLONGED BIODEGRADATION OF TCE TO ETH	ENE 17
		3.5.1	Data Requirements	17
		3.5.2	Success Criteria	
	3.6	DIST	RIBUTION AND GROWTH OF ADDED DHC	17
		3.6.1	Data Requirements	17
		3.6.2	Success Criteria	18
	3.7	ELEC	TRODE STABILITY FOR >1 YEAR	18
		3.7.1	Data Requirements	18
		3.7.2	Success Criteria	18
	3.8	SYST	EM RELIABILITY AND EASE OF OPERATION	18

TABLE OF CONTENTS (Continued)

				Page
		3.8.1	Data Requirements	18
		3.8.2	Success Criteria	
	3.9	SUST	TAINED SOLAR OUTPUT TO OPERATE THE PRT SYSTEM	19
		3.9.1	Data Requirements	
		3.9.2	Success Criteria	
	3.10	NO S	AFETY HAZARDS OR INCIDENTS DURING SYSTEM OPERATI	ON 19
		3.10.1	Data Requirements	19
			Success Criteria	
4.0	SITE	DESC	RIPTION	21
	4.1		LOCATION AND HISTORY	
	4.2		GEOLOGY/HYDROGEOLOGY	
	4.3		TAMINANT DISTRIBUTION	
5 0				
5.0			GN	
	5.1		CEPTUAL EXPERIMENTAL DESIGN	
	5.2		ELINE CHARACTERIZATION	
		5.2.1	Direct-Push Investigation	
		5.2.2	Monitoring Well Installation and Sampling	
		5.2.3	Hydrogeologic Testing	
		5.2.4	Groundwater and Soil Geochemical Characterization	
		5.2.5	Geochemical Modeling	
	5.3		ATABILITY AND LABORATORY STUDY RESULTS	
		5.3.1	Buffer Testing	
		5.3.2	Treatability Testing	
		5.3.3	2D Flow Cell Testing	
		5.3.4	Electrode Testing	
	5.4		GN AND LAYOUT OF TECHNOLOGY COMPONENTS	
		5.4.1	Conceptual Site Model	
		5.4.2	Design Calculations	
		5.4.3	Groundwater Modeling	
		5.4.4	Demonstration Layout	
		5.4.5	Electrode Installation	
		5.4.6	Extraction & Injection Well Installation	
		5.4.7	Multi-Level Monitoring Well Installation	
		5.4.8	Groundwater Recirculation System	
		5.4.9	Solar Power PRT System	
	5.5		D TESTING	
		5.5.1	Baseline Sampling	
		5.5.2	System Startup and Testing	
		5.5.3	System Operation.	
		5.5.4	Bioaugmentation	80

TABLE OF CONTENTS (Continued)

				Page
		5.5.5	Decommissioning	80
	5.6	SAMI	PLING METHODS	
		5.6.1	Groundwater Sampling	
		5.6.2	Groundwater Analysis	
		5.6.3	Numbers and Types of Samples Collected	
		5.6.4	Quality Assurance for Groundwater Sampling and Analysis	86
	5.7	SAMI	PLING RESULTS	89
		5.7.1	Tracer Testing	89
		5.7.2	pH Adjustment	93
		5.7.3	Hydrogen Production and Distribution	96
		5.7.4	Oxidation-Reduction Potential	98
		5.7.5	Electron Acceptor Concentrations	100
		5.7.6	cVOC Treatment	102
		5.7.7	DHC Distribution and Growth	
		5.7.8	PRT System Operation	105
6.0	PERI	FORMA	ANCE ASSESSMENT	107
	6.1	INCR	EASE AND MAINTAIN NUETRAL AQUIFER PH	107
	6.2	PROD	DUCTION OF H2 AT THE CATHODE	108
	6.3	DIST	RIBUTION OF H ₂ TO 1 METER DOWNGRADIENT OF THE	
	6.4	REDI	JCTION OF TCE AND CIS-DCE IN THE TEST PLOT	
	6.5	COM	PLETE AND PROLONGED BIODEGRADATION OF TCE TO	O ETHENE
	6.6		RIBUTION AND GROWTH OF ADDED DHC	
	6.7		CTRODE STABILITY FOR >1 YEAR	
	6.8	SYST	EM RELIABILITY AND EASE OF OPERATION	110
	6.9	SUST	AINED SOLAR OUTPUT TO OPERATE THE PRT SYSTEM	111
	6.10	NO S	AFETY HAZARDS OR INCIDENTS DURING SYSTEM OPERA	TION 111
7.0	COS	T ANA	LYSIS	113
	7.1	COST	「MODEL	113
		7.1.1	Capital Costs	113
		7.1.2	O&M Costs	113
		7.1.3	Demonstration-Specific Costs	113
	7.2	COST	「DRIVERS	115
		7.2.1	General Considerations	115
		7.2.2	Competing Treatment Technologies	115
	7.3	COST	T ANALYSIS	116
		7.3.1	Base Case Template	117
		7.3.2	Proton Reduction Barrier	118
		7.3.3	Passive Trench ZVI PRB	121

TABLE OF CONTENTS (Continued)

			Page
	7.3.4	Active Pump and Treat	123
		Air Sparge/Soil Vapor Extraction	
8.0	IMPLEMEN	NTATION ISSUES	127
9.0	REFERENC	CES	129
API	PENDIX A	POINTS OF CONTACT	A-1
API	PENDIX B	PUMP AND RECOVERY TEST DATA	B-1
API	PENDIX C	PROPERTIES OF ELGARD 150	C-1
API	PENDIX D	ANALYTICAL DATA	D-1
API	PENDIX E PROJECT 5	SEPTEMBER 2016 BI-MONTHLY PROJECT STATUS 501	

LIST OF FIGURES

	Page
Figure 1.1.	Schematic Representation of Traditional in situ Bioremediation Technologies 2
Figure 1.2.	Schematic Representation of the Proton Reduction Technology (PRT) 3
Figure 2.1.	Effect of pH on PCE Dehalogenation by the DHC-Containing Culture SDC-9 6
Figure 2.2.	Data from Microcosm Study with Low pH Aquifer Samples
Figure 2.3.	Proposed Microcapacitor Structure Generated in Clay Soils Exposed to an Electrical Field
Figure 2.4.	Field-Scale PR Pilot System at a Tronox Site in Oklahoma
Figure 4.1.	Location of JB MDL in New Jersey
Figure 4.2.	Map of the TCE Plume Extending Downgradient from Building 2305 in the SS-36 Area
Figure 4.3.	Generalized Subsurface Stratigraphy at Site SS-36
Figure 5.1.	Location of Initial Soil & Groundwater Sampling Locations within SS-36 Plume
Figure 5.2.	Direct-Push Boring and Monitoring Well Pair Locations in the Selected Demonstration Area
Figure 5.3.	Geologic Cross Section of Demonstration Area Showing Soil Borings and Groundwater Sampling Intervals
Figure 5.4.	Geologic Cross Section Showing Shallow/Deep Paired Monitoring Wells 37
Figure 5.5.	Examples of Geochemical Modeling Performed to Evaluate Potential Mineral Precipitation
Figure 5.6.	Analysis of Buffering Capacity of Groundwater Collected from Two Demonstration Area Wells at JB MDL
Figure 5.7.	Analysis of Buffering Capacity of JB MDL Aquifer Samples
Figure 5.8.	Results of Laboratory Treatability Testing at Low pH on Samples from the JB MDL Aquifer
Figure 5.9.	Results of Laboratory Treatability Testing at Neutral pH on Samples from the JB MDL Aquifer
Figure 5.10.	Acetate and Methane Formation during Laboratory Treatability Testing on Samples from the JB MDL Aquifer
Figure 5.11.	Representation and Photos of a 2D Flow Cell to Evaluate Microcapacitor-Generated H2
Figure 5.12.	Hydrogen Production and pH Changes in the 2D Proton Reduction Flow Cell 52
Figure 5.13.	Photographs of Two Tested Electrode Materials

LIST OF FIGURES

	Page
Figure 5.14.	Schematic of Test System Used to Evaluate Electrode Performance
Figure 5.15.	Photos of Electrode Test Cell (left) and Close-up of Elgard 150 Electrode during Testing (right)
Figure 5.16.	Results of Elgard 150 Electrode Material Testing
Figure 5.17.	Graphs of Calculated H2 and OH- Production
Figure 5.18.	Demonstration Site Groundwater Modeling Results
Figure 5.19.	Plan View of the Proton Reduction Demonstration Plots in Area SS-36
Figure 5.20.	Cross Sectional View of the Proton Reduction Demonstration Test Plot 63
Figure 5.21.	Photo of Elgard Mixed Metal Oxide-Coated Titanium Electrode Material 66
Figure 5.22.	Photographs of Wells Heads Designed for Connecting Electrodes
Figure 5.23.	Photos of the Solinst CMT Multi-level Wells Used in the Demonstration 68
Figure 5.24.	Multi-level Monitoring Well Construction Diagram
Figure 5.25.	Photographs of the Conex Box and Groundwater Recirculation System72
Figure 5.26.	Process Flow Diagram of the Groundwater Recirculation System
Figure 5.27.	Photograph of Extraction Well Vaults, Trenches and Conduits
Figure 5.28.	Photographs of the Front (left) and Inside (right) of the PRT Control Panel 74
Figure 5.29.	Plan View of the Proton Reduction Test Plot Used During Phase 4 of the Demonstration
Figure 5.30.	Example Groundwater Parameter Stabilization Form
Figure 5.31.	Chain of Custody (COC) Form Used by CB&I's Laboratory
Figure 5.32.	Day 14 Bromide Distribution in the Shallow, Intermediate and Deep Zones during the First Tracer Test
Figure 5.33.	Day 8 Bromide Distribution in the Shallow, Intermediate and Deep Zones during the Second Tracer Test
Figure 5.34.	Day 4 Bromide Distribution in the Shallow, Intermediate and Deep Zones during the Third Tracer Test
Figure 5.35.	Groundwater pH Measured in Cathode Wells
Figure 5.36.	Groundwater pH Measured in MLS Monitoring Well PMW-795
Figure 5.37.	Groundwater pH Measured in MLS Monitoring Well PMW-896
Figure 5.38.	Dissolved Hydrogen Concentrations Measured in Cathode Wells
Figure 5.39.	Dissolved Hydrogen Concentrations Measured in MLS Monitoring Well PMW-7
	97

LIST OF FIGURES

	Page
Figure 5.40.	Dissolved Hydrogen Concentrations Measured in MLS Monitoring Well PMW-8
Figure 5.41.	ORP Measurements in MLS Monitoring Well PMW-7
Figure 5.42.	ORP Measurements in MLS Monitoring Well PMW-8
Figure 5.43.	Dissolved Iron Concentrations in MLS Wells PMW-7 and PMW-8 100
Figure 5.44.	Dissolved Manganese Concentrations in MLS Wells PMW-7 and PMW-8 101
Figure 5.45.	Sulfate Concentrations in MLS Wells PMW-7 and PMW-8 102
Figure 5.46.	TCE Concentrations in MLS Wells PMW-7 and PMW-8, and Background Well BMW-1S
Figure 5.47.	cDCE Concentrations in MLS Wells PMW-7 and PMW-8, and Background Well BMW-1S
Figure 5.48.	Ethene Concentrations in MLS Wells PMW-7 and PMW-8, and Background Well BMW-1S
Figure 5.49.	Photographs of Electrode Fouling
Figure 7.1.	Base Case Plume Characteristics. 117
Figure 7.2.	Proton Reduction Barrier Alternative for Plume Cutoff
Figure 7.3.	Passive Permeable Reactive Barrier Alternative Utilizing ZVI for Plume Cutoff
Figure 7.4.	Pump and Treat Alternative for Plume Cutoff
Figure 7.5.	Air Sparge/Soil Vapor Extraction Alternative for Plume Cutoff

Page Intentionally Left Blank

LIST OF TABLES

	Page
Table 2.1.	CB&I Field-Scale Applications of Proton Reduction Technology
Table 3.1.	Performance Objectives Evaluated
Table 4.1.	Analysis of Direct-Push Groundwater Samples Collected in the SS-36 Area of JB MDL
Table 5.1.	Summary of Initial SS-36 Direct-Push Characterization Soil Sampling Data 31
Table 5.2.	Summary of Initial SS-36 Direct-Push Characterization Groundwater Sampling Data
Table 5.3.	Summary of Demonstration Area Direct-Push Soil Sampling Data
Table 5.4.	Summary of Demonstration Area Direct-Push Groundwater Sampling Data 35
Table 5.5.	Summary of As-Built Characterization Monitoring Well Construction Details 36
Table 5.6.	Analysis of Groundwater Collected from Three Monitoring Wells
Table 5.7.	Summary of JB MDL Slug Test Results and Estimated Groundwater Velocities 39
Table 5.8.	Analysis of Aquifer Soils Collected from Three Wells Installed During Site Characterization
Table 5.9.	Treatments Evaluated During Microcosm Testing
Table 5.10.	Description of Stratigraphic Layers Used to Construct the Demonstration Area Groundwater Model
Table 5.11.	Summary of As-Built Electrode, Extraction, and Injection Well Construction Details
Table 5.12.	Target Multi-level Monitoring Well Screen Intervals
Table 5.13.	Summary of As-Built Multi-Level Monitoring Well Construction Details70
Table 5.14.	Summary of Proton Reduction Demonstration Major Activities and Phases75
Table 5.15.	Analytical Methods for Groundwater Samples Collected During the Field Demonstration
Table 5.16.	Total Number and Types of Samples Collected During the Demonstration 85
Table 5.17.	Enumeration of Dehalococcoides sp. Bacteria in Groundwater during Phase 4 105
Table 7.1.	Demonstration Cost Components
Table 7.2.	Summary of Base Case Site Characteristics and Design Parameters
Table 7.3.	Cost Comparison of PRT System Electric Supply Options
Table 7.4.	Cost components for PRT System
Table 7.5.	Cost Components for ZVI PRB
Table 7.6	Cost Components for Pump and Treat

LIST OF TABLES

	Pa	age
Table 7.7.	Cost Components for Air Sparge/Soil Vapor Extraction	25
Table 7.8.	Summary of Costs for Treatment Alternatives	26

ACRONYMS AND ABBREVIATIONS

2D Two dimensional

AC/DC Alternating current/direct current

AFB Air Force Base AW Anode Well

Ba Barium

BaCl₂ Barium chloride

BMW Background Monitoring Well

°C Degrees Celsius

Ca Calcium

CaCO₃ Calcium carbonate
CB&I CB&I Federal Services
CEC Cation exchange capacity

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CF chloroform CH₄ Methane

cis-DCE cis-1,2-Dichloroethene

Cl Chloride
cm Centimeter(s)

cm³ Cubic centimeter(s)

CMT Continuous multichannel tubing

CO₂ Carbon dioxide COC Chain of custody

cVOCs Chlorinated volatile organic compounds

CW Cathode/injection well

DC Direct current
1,1-DCE 1,1-Dichloroethene
DHC Dehalococcoides sp.

DMW Demonstration Monitoring Well DNAPL Dense Non-Aqueous Phase Liquid

DO Dissolved oxygen

DOD United States Department of Defense

EPA Environmental Protection Agency

ESTCP Environmental Security Technology Certification Program

EVO Emulsified Vegetable Oil

EW Extraction well

Fe Iron

gpm Gallons per minute

GWQS Ground Water Quality Standards

H⁺ Free protons

H2 Molecular hydrogen HCl Hydrochloric acid

HMX Her Majesty's Explosive; Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

HPT Hydraulic profile testing

hr Hours

HSA Hollow Stem Auger

ICP Inductively coupled plasma
IDW Investigation Derived Waste
IPR Interim Progress Report

IW Injection well

JB MDL Joint Base McGuire-Dix-Lakehurst

L Liter(s)
lb Pound(s)

m Meter mA Milliamp

meq Milliequivalent of hydrogen per 100 grams

Mg Magnesium

mg/hr Milligrams per hour mg/L Milligrams per liter

Mg(OH)₂ Brucite

MgSO₄ Magnesium sulfate MLS Multi-level sampler

mL Milliliters mM Millimolar mmoles Millimoles Mn Manganese

Mn(OH)₂ Manganese (II) hydroxide

mV Millivolts

N Nitrogen or Normal Na₂CO₃ Sodium carbonate NaHCO₃ Sodium bicarbonate NaOH Sodium hydroxide

N.J.A.C. New Jersey Administrative Code

NJDEP New Jersey Department of Environmental Protection NJPDES New Jersey Pollutant Discharge Elimination System

NTU Nephelometric Turbidity Units

O₂ Oxygen

OH Hydroxide ion

O&M Operation & Maintenance

PCE Tetrachloroethene pH Activity of hydrogens

P&ID Piping & Instrumentation Diagram

P&T Pump & Treat

PID Photo-ionization detector PMW Performance Monitoring Well

PO₄³- Phosphate

ppm Parts per million

ppmv Parts per million by volume PQL Practical Quantitation Level

PR Proton Reduction

PRB Permeable Reactive Barrier
PRT Proton Reduction Technology

PVC Polyvinyl chloride

QA Quality Assurance

qPCR Quantitative polymerase chain reaction

RDX Royal Demolition Explosive; 1,3,5-Trinitroperhydro-1,3,5-triazine

SDC-9 Shaw Dechlorinating Consortium

SERDP Strategic Environmental Research and Development Program

SM Standard method

SO₄²- Sulfate

SU Standard units

SVE Soil Vapor Extraction

SVOC Semi-volatile organic compound

TCE Trichloroethene

TDS Total dissolved solids

TNT Trinitrotoluene

TOC Total organic carbon
TSS Total suspended solids

USEPA United States Environmental Protection Agency

V Volts

VC Vinyl chloride VFA Volatile fatty acid

VOA Volatile organic analysis VOC Volatile organic carbon

wt Weight

XRD X-ray diffraction

yr Year

ZVI Zero-valent iron

ACKNOWLEDGEMENTS

We wish to thank the environmental staff at Joint Base McGuire-Dix-Lakehurst, NJ for their support during this demonstration. In particular, special thanks to Curtis Frye and Michael Brown for their dedication to the project and its success. We also wish to thank ESTCP for their financial support, and Dr. Andrea Leeson, the Environmental Restoration Program Manager at ESTCP, for her guidance. Finally, we wish to acknowledge the capable staff at CB&I that conducted site assessment, laboratory studies, well installation, system design and installation, system operation, data management, and analytical support. In particular, Robert Steffan, Randi Rothmel, Sheryl Streger, Antonio Soto, Paul Hedman, Jeff Cook, and Matt Sieger of CB&I were vital to project success. Their efforts ultimately lead to the quality experimental results and findings demonstrated during this project.

Page Intentionally Left Blank

EXECUTIVE SUMMARY

Chlorinated volatile organic compounds (cVOCs), such as trichloroethylene (TCE) and perchloroethylene (PCE) represent one of the largest remediation challenges and costs at Department of Defense (DoD) sites. Anaerobic bioremediation via organic carbon source addition (with or without bioaugmentation with dechlorinating bacteria) is a commonly used approach to remediate cVOCs *in situ*. One significant issue with this approach is that reductive dechlorination processes are typically inhibited at pH values < ~ 5.5. Aquifers with lower pH values are common, especially in the eastern United States. Raising the groundwater pH is often not feasible because of the large amount of buffer needed, the large size of many plumes, and the need for long-term treatment and repeated reinjections. For these sites, an inexpensive and long-term source of electron donor to support *in situ* bioremediation is desirable.

Biological reductive dechlorination of cVOCs relies on the activity of dechlorinating bacteria, including members of the genus *Dehalococcoides* (DHC), that use hydrogen (H₂) as an electron donor and the cVOC as an electron acceptor. H₂ can also support the production of acetate, which DHC can use as a carbon source, by homoacetogenic bacteria. Proton Reduction Technology (PRT) generates H₂ by electrolysis, with concurrent reduction of protons (H⁺) on the surface of cathodes powered by an impressed current. In addition to producing H₂, PRT consumes protons, thereby raising the pH of groundwater around and downgradient of the cathode. Thus, during this project, PRT technology was evaluated for its ability to foster dechlorination through *in situ* H₂ generation while also raising the groundwater pH to favorable levels. In addition, we evaluated whether the technology was suitable for low cost prolonged treatment of sites where a persistent source of contaminant promises to create a long-term remediation problem (e.g., DNAPL sources or low permeability consolidated sediments), and for treating remote contaminant plumes where electrical power is not readily available or where long treatment times are expected. In addition, PRT can also support biological remediation of several other common DoD contaminants, including RDX, Cr(VI), and perchlorate.

The primary goal of this project was to demonstrate a solar-powered technology to generate hydrogen *in situ* and reduce aquifer acidity to promote reductive dechlorination. During operation, Proton Reduction Technology (PRT) uses a low voltage potential applied across electrodes installed within an aquifer to impress a direct current in the subsurface. PRT was tested in a low pH cVOC-contaminated aquifer at Joint Base McGuire-Dix-Lakehurst, NJ (JB MDL). A successful demonstration was expected to result in sustainable aquifer pH control and contaminant degradation at significantly lower cost than conventional approaches requiring additions of buffers and organic electron donors. Successful application of this technology would allow the DOD to economically treat contaminated low pH aquifers and remote contaminant plumes where electrical power is not readily available or where long treatment times are expected.

Detailed site characterization data were used to create a conceptual site model and to construct a numerical three dimensional groundwater model. Groundwater velocities were determined to be too slow (approximately 2-6 ft per month in the highest permeability layer) to allow for effective short-term monitoring during the course of the demonstration. Therefore, a groundwater recirculation system was installed and operated to force the groundwater gradient through the test plot and control plot, thereby speeding up groundwater velocities and allowing for more effective performance monitoring.

This field demonstration project used electrodes inserted into PVC wells within the cVOC-contaminated low pH aquifer. The electrodes (3 cathodes and 2 anodes) were operated to generate H₂ to support biodegradation, and consume H⁺ to increase aquifer pH. The PRT system was operated for a total of 507 days from start-up to shut-down. The demonstration was divided into four distinct phases of operation, which included PRT only operation, and PRT operation with varying groundwater recirculation configurations. The contaminated aquifer was inoculated with a bioaugmentation culture (SDC-9) to ensure that the appropriate dechlorinating bacteria were present to support biodegradation. Electricity to operate the system was provided by solar panels and deep cycle 12 V batteries. During the demonstration, we monitored groundwater pH, contaminant concentrations, H₂ production, distribution and utilization, and electrode performance.

Performance objectives were established for this demonstration to provide a basis for evaluating the use of solar-powered PRT to increase the pH of a naturally-acidic, TCE-contaminated aquifer at JB MDL, and to use the H₂ produced by proton reduction to support TCE dechlorination by dechlorinating bacteria. Performance criteria were selected based on factors that would likely be considered when bringing the proposed technology to full-scale application. These criteria included; increasing and maintaining a neutral aquifer pH, production and distribution of H₂, reduction of cVOCs, and PRT system reliability and ease of operation.

Although a significant pH increase (to pH 11.5 SU) was achieved in the cathode wells during Phases 1 and 2 of the demonstration, the pH impact was not observed in any of the downgradient monitoring wells, including multi-level sampling (MLS) well PMW-4, located only 2.5 ft down gradient of cathode CW-2. While increases in groundwater pH to above 6 SU were observed at some of the MLS well intervals during Phase 4 of the demonstration, the PRT system (as configured) was unable to maintain a consistent pH between 6.0 and 8.0 SUs within the designed treatment area.

Hydrogen in the cathode well groundwater remained saturated during Phase 1 and Phase 2 of the demonstration, reaching concentrations up to ~ 1,200 μ g/L. During Phase 3 and Phase 4 of the demonstration, H₂ concentrations in the cathode well(s) decreased because the addition of extracted water to the cathode well (i.e., injection well) continually diluted H₂ concentrations and forced the H₂-containing groundwater into the aquifer. H₂ concentrations occasionally exceeded the target concentration of 0.010 μ g/L at the MLS wells closest to the cathode wells. However, H₂ concentrations were more typically below the detection level (<0.008 μ g/L) at these wells. Furthermore, dissolved H₂ concentrations at the MLS wells PMW-7 and PMW-8 monitored during Phase 4 of the demonstration were typically below 0.010 μ g/L. Considering that the H₂ concentration at well CW-2 (cathode/injection well) was often >50 μ g/L during this Phase, this suggests that there was a substantial sink for H₂ between CW-2 (cathode/injection well) and the MLS wells (located 2.5 ft and 5.0 ft away, and within the recirculation loop). Possible sinks for hydrogen include Fe and Mn reduction, sulfate reduction, acetogenesis, and methanogenesis, as well as dechlorination of TCE.

The concentration of TCE decreased notably in 5 of the 6 treatment zone monitoring MLS wells during Phase 4 of the demonstration, with decreases ranging from 31 percent to 89 percent. Additionally, notable transient increases in cDCE concentrations (up to an order of magnitude) were observed in the treatment zone monitoring wells during the last ~100 days of the demonstration. These data suggest that partial dechlorination of TCE was occurring within the treatment zone.

However, the lack of observed vinyl chloride and/or ethene concentrations at these wells indicated that complete reductive dechlorination was not occurring at a significant rate. This is likely due (at least partially) to the face that optimal pH and ORP levels were not achieved within the treatment zone.

The PRT system was completely powered via an off-the-grid solar power system. The system consisted of four 85 watt photovoltaic solar panels, and four deep discharge 80 amp hour 12V batteries to provide consistent 24-hour operation of the PRT system. Field observations and system operating records indicated that the solar powered PRT system operated >95% of the time over a 2 year period, with minimal O&M required.

The expected cost drivers for installation and operation of a PRT system, and those that will determine the cost/selection of this technology over other options include the following:

- Depth of the plume below ground surface;
- Width, length, and thickness of the plume;
- Aquifer lithology and hydrogeology;
- Regulatory considerations concerning secondary groundwater impacts (i.e. metals mobilization, sulfate reduction, etc.);
- Length of time for clean-up (e.g., necessity for accelerated clean-up);
- The presence of indigenous bacteria capable of degrading chlorinated VOCs;
- Concentrations of contaminants and alternate electron acceptors (e.g., NO₃-, SO₄²- and O₂); and
- Presence of co-contaminants.

Based on a cost analysis for treatment of a shall groundwater plume (~10-50 ft bgs) of ~400 ft in width, a PRT barrier was determined to be the most cost effective option to treat a low pH, cVOC plume, compared to current alternatives. These alternatives included pump-and-treat, installation of a zero-valent iron permeable reactive barrier, and air-sparge with soil vapor extraction. Under this scenario, and assuming a 30 year operation period with equivalent cost for groundwater monitoring, the PRT barrier approach was estimated to be 20% to 60% less expensive than the other 3 alternatives. The PRT barrier alternative had both the lowest capital and O&M cost of the 4 alternatives that were evaluated.

PRT resulted in partial reductive dechlorination of cVOCs in the low pH aquifer at JB MDL, but TCE dechlorination was not complete, at least not under the conditions of the demonstration. The lack of complete dechlorination, even after bioaugmentation, was likely due to the borderline pH and reducing conditions achieved in the aquifer. It is possible that dechlorination activity could have been improved if a higher pH (e.g., pH 6.5 to 7) and/or more reducing conditions (e.g., ORP < -100 mV) were consistently achieved.

PRT was only partially successful in this test, but the results suggest it may be a useful component of an overall treatment system for remediating an acidic aquifer. However, additional treatments/amendments may be needed to better address and overcome the significant soil buffering capacity of many aquifers. For example, a large dose of buffer and a carbon substrate could be applied to a biobarrier at the start of treatment, to overcome the initial acidity of the aquifer sediments and to produce a low ORP before applying current, and PRT could then be used as a long term source of electron donor (H₂) and OH⁻ to maintain aquifer pH.

Although this study showed that PRT can have significant limitations, it also has provided valuable guidance for the ongoing development of the technology. One recently-demonstrated strategy to overcome the limitations observed in this project is to use more closely-spaced electrodes, and to install the electrodes with metallurgical soil contact material (Coke Breeze) as backfill. This approach was tested successfully in the field under the U.S. Navy's Environmental Sustainability Development to Integration (NESDI) program, during NESDI Project 501. This demonstration was conducted within a low pH cVOC-contaminated aquifer at Marine Corps Base Quantico, in Quantico, Virginia. During this 1-year field demonstration, eight closely-spaced cathodes and two downgradient anodes were installed in a barrier configuration, and concentrations of *cis*-DCE (the primary contaminant of concern) were reduced by 88 to 99 percent across the barrier.

1.0 INTRODUCTION

1.1 BACKGROUND

Chlorinated volatile organic compounds (cVOCs), such as trichloroethylene (TCE) and perchloroethylene (PCE) represent one of the largest remediation challenges and costs at Department of Defense (DoD) sites. Anaerobic bioremediation via carbon source addition (with or without bioaugmentation with dechlorinating bacteria) is a commonly used approach to remediate cVOCs *in situ*. One significant issue with this approach is that reductive dechlorination processes are typically inhibited at pH values < ~ 5.5 (e.g., Vainberg et al., 2009).

Low pH aquifers are common throughout the coastal plain aquifer of the eastern United States. For example, low pH groundwater is known to have affected bioremediation efforts at Joint Base McGuire-Dix-Lakehurst (JB MDL), NJ, Raritan Arsenal, NJ, Moody AFB, GA, Hunter Army Airfield, GA, Indian Head Naval Surface Warfare Center, MD, Marine Corp Base Quantico and Ft. Stewart, GA, among other facilities. Aquifer buffering has been attempted in some instances (e.g., Hatzinger et. al., 2006; Schaefer et al., 2010), but the amount of buffer required makes this process cost prohibitive for other than very small sites.

As depicted in **Figure 1.1,** biological reductive dechlorination of chlorinated solvent contaminants relies on the activity of dechlorinating bacteria, including members of the genus *Dehalococcoides* (DHC), that use hydrogen (H₂) as an electron donor (He et al., 2002) and the cVOC as an electron acceptor. H₂ can also support the production of acetate by homoacetogenic bacteria, which DHC can use as a carbon source. During typical *in situ* remediation treatments, a carbon source such as vegetable oil, fatty acids, carbohydrates, etc., are added to the subsurface, and they are subsequently fermented by other members of the microbial community to produce the H₂ and acetate necessary for growth and activity of the dechlorinating bacteria.

Proton Reduction Technology (PRT) (**Figure 1.2**) generates H₂ by electrolysis, with concurrent reduction of protons (H⁺) on the surface of cathodes powered by an impressed current. In addition to producing H₂, PRT consumes protons, thereby raising the pH of groundwater around and downgradient of the cathode. Thus, during this project, PRT technology was evaluated for its ability to foster dechlorination through *in situ* H₂ generation while also raising the groundwater pH to favorable levels. In addition, we evaluated whether the technology was suitable for low cost prolonged treatment of sites where a persistent source of contaminant promises to create a long-term remediation problem (e.g., DNAPL sources or low permeability consolidated sediments), and for treating remote contaminant plumes where electrical power is not readily available.

1.2 OBJECTIVE OF THE DEMONSTRATION

The objective of this project was to demonstrate PRT as a sustainable approach for treating low pH aquifers that are contaminated with cVOCs. The approach may also be suitable for treating a range of other contaminants of concern to the DOD, such as perchlorate and Cr(VI) among others. As described in the introduction, the PRT demonstrated during this project utilized solar powered electrodes inserted into the subsurface to increase groundwater pH and produce H₂ that can be used as an electron donor by DHC and other dechlorinating bacteria (**Figure 1.1**).

The reduction of hydrogen ions occurs at low voltage (<2 V) and current (tens to hundreds of milliamps) which can economically be supplied by using a solar system, thereby allowing the technology to be applied in remote areas or to be operated for extended periods at low cost and low environmental impact. At higher voltages and current the system can split water (i.e., electrolysis) to produce OH⁻ ions and H₂ and consume great amounts of acid to allow neutralization of aquifers.

The primary goal of this project was to demonstrate application of PRT to treat a low pH cVOC-contaminated aquifer at JB MDL. A successful demonstration was expected to result in sustainable aquifer neutralization and contaminant degradation at treatment costs that are significantly lower than approaches that require addition of buffers and carbon-based electron donor. Successful application of this technology would allow the DOD to economically treat contaminated low pH aquifers and remote contaminant plumes where an electrical source is not readily available or where long treatment times are expected.

Figure 1.1. Schematic Representation of Traditional in situ Bioremediation Technologies

Figure 1.2. Schematic Representation of the Proton Reduction Technology (PRT)

1.3 REGULATORY DRIVERS

The JB MDL environmental restoration project, which includes the groundwater beneath the selected demonstration area, is operated under the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). JB MDL is under the jurisdiction of the United States Air Force (USAF) and the United States Environmental Protection Agency (USEPA) is the lead regulatory agency for JB MDL restoration activities, with some review by the New Jersey Department of Environmental Protection (NJDEP). In the State of New Jersey, groundwater cleanup standards protective of groundwater classifications are based on the primary receptors within that class as established pursuant to the New Jersey Ground Water Quality Standards (GWQS) (N.J.A.C. 7:9-6). As such, NJDEP has established natural groundwater quality as the cleanup standard for all contaminants in Class IA and I-Pinelands (Preservation Area) groundwater, which includes the groundwater at JB MDL. The numerical criterion for any organic contaminant discovered at a contaminated site that is not the result of natural processes is zero.

Since zero can only be measured with a certain degree of certainty, the Practical Quantitation Levels (PQLs) for groundwater have been selected for use in determining whether organic contaminant concentrations observed in groundwater meet the groundwater standard/criteria. The main contaminants of concern in the JB MDL groundwater plume are TCE and *cis*-1,2-dichloroethylene (*cis*-DCE). Based upon the New Jersey criteria, the groundwater standard for TCE is 1 microgram per liter (μg/L) and the standard for *cis*-DCE is 2 μg/L. Based on USEPA National Primary Drinking Water Regulations (USEPA, 2009), the Maximum Contaminant Level in groundwater for TCE and *cis*-DCE are 5 μg/L and 70 μg/L, respectively.

2.0 TECHNOLOGY

2.1 TECHNOLOGY DESCRIPTION

CVOCs have been widely used for an array of industrial applications, including as solvents for cleaning aircraft, machinery, and parts. Improper use, handling, and disposal of these compounds have ultimately led to them becoming common groundwater contaminants in the United States and elsewhere. Remediation techniques for groundwater contaminated with these compounds have evolved over the last twenty years from traditional pump and treat technologies, air sparging, and soil vapor extraction, to the wide-spread use of bioremediation technologies. In many cases, bioremediation can be facilitated by naturally-occurring consortia of microorganisms, but in some such cases, remediation practitioners have resorted to adding exogenous bacterial cultures that have been selected and cultured for their ability to completely degrade the chlorinated pollutants to support *in situ* bioremediation. This process of bioaugmentation has proven successful in numerous field applications (Harkness et al., 1999; Lendvay, et al., 2003; Major et al., 2002; Steffan et al., 1999) and its use as a remedial approach has increased greatly over the past several years.

Most successful bioremediation applications have been performed in aquifers with circumneutral pH, or, less frequently, where pH has been adjusted by adding a buffering agent. Bioremediation in low pH aquifers, however, is usually ineffective, presumably because dehalogenating organisms do not dechlorinate well below pH~5.5 (Figure 2.1; McCarty et al., 2007; Sung et al., 2003; Vainberg et al., 2009; Zhuang and Pavlostathis; 1995). In many cases, low pH is a function of the natural site geochemistry, but low pH conditions also can occur as a result of substrate fermentation and reductive dechlorination of target cVOCs (Adamson et al., 2004; Amos et al., 2008; Chu et al., 2004; Lee et al. 1998). In fact, many low pH aquifers appear to exhibit classic cis-DCE or VC stalls, leading to the accumulation of these daughter products that are more toxic than the parent PCE or TCE. Figure 2.2 shows the results of a treatability test performed with samples from a low pH aquifer in the eastern US. Biostimulation with lactate or lactate with pH adjustment did not support complete dehalogenation of TCE. Likewise, bioaugmentation without pH adjustment resulted in incomplete destruction of the target contaminants. Only pH adjustment with bioaugmentation resulted in complete dehalogenation of the target contaminants.

Aquifer buffering, while effective at small scale, is typically impractical for full-scale remedial efforts due to the quantity of buffer required to overcome the aquifer acidity and the necessity to distribute this buffer throughout the aquifer. For example, during an *in situ* demonstration conducted in Indian Head, MD, nearly 4500 L of a 6.7 % solution of carbonate buffer solution was required to increase the pH of groundwater in a small pilot site (3.7 m sq. area x 3 m of groundwater depth deep) from an average of ~ 4.7 to ~ 6.3 SU (Hatzinger et al., 2006). This equates to 357,000 gal of a similar concentrated buffer for a 1 acre remedial site with only 3 m of saturated zone. During a bioaugmentation demonstration at Fort Dix, NJ (ESTCP project ER-0515) 6800 lb of sodium bicarbonate and 9600 lb of sodium carbonate were needed to sustain a suitable pH in a 40' x 40' x 10' thick pilot test plot in a naturally-low pH aquifer. Clearly, standard buffering approaches can be both expensive and impractical for a large-scale remediation.

Figure 2.1. Effect of pH on PCE Dehalogenation by the DHC-Containing Culture SDC-9

(from Vainberg et al., 2009)

The reason that low pH inhibits dechlorination by DHC is unknown, but the effect of low pH on other bacteria has been extensively studied (Lowe et al., 1993; Olson, 1983). Furthermore, some low pH aquifers have resident DHC populations, but these organisms generally appear unable to dechlorinate TCE or PCE past *cis*-DCE. For example, molecular analyses performed in groundwater at JB MDL, NJ, which has a pH of ~ 4, demonstrated that DHC were present in the aquifer (Steffan et al., 2010). Nonetheless, the aquifer exhibited a *cis*-DCE stall. Studies in our laboratory (**Figure. 2.1**; Vainberg et al., 2009) demonstrated that DHC in our SDC-9 culture do not dehalogenate PCE well at pH <5.5, although the culture is viable at this pH. It is anticipated that most low pH cVOC contaminated aquifers will require both pH adjustment and bioaugmentation to facilitate complete reductive dechlorination.

Figure 2.2. Data from Microcosm Study with Low pH Aquifer Samples

TCE and cis-DCE were not degraded at pH 6 until after SDC-9 was added (A). pH adjustment alone did not allow complete dehalogenation (B), but a combination of pH adjustment and bioaugmentation allowed rapid and complete dehalogenation of TCE (C).

2.1.1 Role of H₂

Molecular hydrogen (H₂) is an important energy source and electron donor in anaerobic metabolism, including dehalorespiration (Holliger et al., 1999; Maymó-Gatell et al., 1995). This knowledge has resulted in the development of remediation strategies that attempt to stimulate dehalogenation *in situ* by applying carbon sources that can be fermented to H₂. Application of carbon to large or low permeability aquifers can be costly or result in poor electron donor distribution, respectively. Direct in situ H₂ generation by electrical reduction of free protons (H⁺) is a novel alternative to carbon source addition. Yang and McCarty (1998) and Ballapragada and colleagues (1997) have demonstrated that cVOC degrading bacteria have a high affinity for H₂, and that even H₂ concentrations as low as 2 nM (4 ng/L) can support reductive dechlorination.

The direct addition of H₂ has been used to support reductive dechlorination *in situ* (Fisher et al. 1997, Ma et al., 2003) and in bioreactors (Carr and Hughes, 1998; Chung et al., 2008). H₂ can support the biological reduction of other important contaminants including explosives (RDX, HMX, TNT; Adrian et al., 2003), perchlorate (Nerenberg et al., 2006; Hatzinger, 2005; Hatzinger et al., 2006), and Cr(VI) (Wang and Shen, 1995), so the technology is expected to be widely applicable.

Proton reduction refers to the production of elemental hydrogen (H_2) by direct electrical reduction of dissolved hydrogen ions (H^+) in a soil/water solution (**Figure 1.2**) in the absence of oxygen. This process has been exploited recently for efficient H_2 production in microbial fuel cells, without electrolysis of water (Call and Logan, 2008; Cheng and Logan, 2007). Proton reduction occurs at a potential of \sim -0.5 V which can be supplied easily with solar powered batteries. In addition, the polarity of the proton reduction system can be periodically alternated (i.e., the anode becomes a cathode) to increase the size of the treatment area, to control the production of H_2 to minimize methane production, and to control changes in pH that can occur if necessary. The technology was recently demonstrated in laboratory studies for supporting the biodegradation of cVOCs (Lohner and Tiehm, 2009; Lohner et al., 2011).

2.1.2 Electrochemical Reactions in Soil

Rahner et al. (2002) demonstrated that applying a low direct current to soils resulted in the production of "microcapacitors" that acted as diluted electric chemical solid bed reactors. The theory states that electrochemical reactions can be induced in wet soils if the soil matrix contains particles or films with electronic conducting properties (Rahner et al., 2002). In effect, soil particles can act as capacitors that store enough energy, even if charged with a low energy current, to perform high energy chemical reactions. These microcapacitors could reduce mobile oxidized chemicals in water, and reactive materials in soils that could potentially support this activity included graphite and some iron minerals. In follow-on studies by the same group (Röhrs et al., 2002), they showed that electrical current could be used to reduce chlorinated hydrocarbons in soils from an industrial site, and they concluded that these "microconductors" in the soil probably play a role in the reactions. In a more recent study, electrical current was used to reduce cVOCs in clay soils at low electrical potential (Jin and Fallgren, 2010). These researchers described the process as involving the formation of "microcapacitors" (Figure 2.3), whereby hydrated clay particles become redox reactive particles and form a reactive matrix on which these redox reactions (e.g., electrolysis) can occur. They postulated that an induced electrical field in soils is created with the soil particles acting as capacitors that discharge and recharge electricity that can perform electrolysis of water, thereby generating H₂. In addition, they reported up to 90% reduction in TCE concentrations in the clays over 7 days under an applied current of only 6 V/m, and suggested that the decrease was due to electrically induced reduction, and not due to electrokinetic ion migration or electrophoresis. Decreases in TCE correlated with an increase in chloride concentration, and no biological daughter products were reported. The application of this process to generate H₂ in low permeability soils to enhance biodegradation of cVOCs was evaluated in the field during this project.

Figure 2.3. Proposed Microcapacitor Structure Generated in Clay Soils Exposed to an Electrical Field.

Electrically induced reduction of TCE (and presumably H^+) is believed to occur as the capacitor charges and discharges electricity (derived from Jin and Fallgren, 2010).

2.1.3 Hydrolysis-driven pH adjustment

In addition to H₂ production, electrical current can be used to increase aguifer pH. At an electrical potential of ~ -2 V, water molecules are split into hydrogen ions (H⁺; proton) and hydroxide ions (OH⁻). This process is commonly referred to as electrolysis or hydrolysis. The produced protons will then be reduced to H₂, thereby increasing aquifer pH. In theory, any amount of H⁺ can be consumed using this process; allowing neutralization of even very low alkalinity groundwater, like that present at JB MDL. Again, the relatively low electrical potential required for this process can be generated by a solar/battery direct current system. Because of the relatively slow movement of groundwater at many sites, operation of this process using solar panels without batteries (which would provide continuous operation) would allow for operation during daylight hours, and still have the potential to control pH and drive reductive dechlorination. CVOCs and energetic materials also can be directly reduced on the cathode surface via electrolytic reduction as demonstrated during ESTCP project ER-0519 (Sale et al., 2010). The greatest limitation to both hydrolysis and direct reduction of contaminants on electrodes is that the reductive processes occur primarily (if not solely) on the electrode (i.e., cathode) surfaces, so contact between water/protons (PRT) or the contaminants and the electrodes is required. In the case of direct contaminant reduction, large cathode surface areas are required for effective in situ treatment. However, natural groundwater flow can be used to distribute the hydroxide ions via diffusion and convection, and provide a mechanism for increasing pH downgradient of the cathode(s), thus effectively neutralizing a portion of the aguifer (i.e. treatment zone).

2.2 TECHNOLOGY DEVELOPMENT

CB&I has used proton reduction for H₂-driven bioremediation of cVOCs at multiple sites, but the overall success of the approach was always difficult to determine because either other technologies s were also applied (e.g., carbon source addition plus PRT) or because only limited sampling was performed (Table 2.1; Figure 2.4). At one site, three electrodes were successfully operated by using two 12V automotive batteries with an inexpensive solar charger. At another site in the Southwest, a 750 ft permeable reactive barrier was created by using electrodes to prevent off-site migration of mixed cVOCs including chloroform. The system operated successfully for more than 1 year with the original electrodes. Electrode (0.1" x 30' NiTi) costs for this system were only \$130 each. To further prolong electrode life, electrodes in the system were ultimately replaced with the mixed metal oxide-coated titanium mesh electrodes evaluated during this project. Another application performed by CB&I utilized a circular array of electrodes to remediate a dry cleaner site. The polarity of the electrodes could be reversed to generate H₂ throughout the treatment zone. During operation of these other systems high pH values (to pH 12) were periodically measured in cathode wells during system operation optimization, leading to the hypothesis that this process could also be used to neutralize acidic groundwater. In addition, Gent et al. (2009) demonstrated that electrical current could be used to increase the pH of groundwater to a level sufficient to hydrolyze RDX. Those experiments, however, were performed at much higher voltages (to 600V) than those used during this PRT demonstration.

Table 2.1. CB&I Field-Scale Applications of Proton Reduction Technology

Site	Contaminant	Facility Type	State	Outcome
Westinghouse	PCE/TCE	Transformer Maintenance Facility	WI	Solar powered; risk based closure after 4 yrs of operation
Mirro	PCE/TCE	Aluminum Manufacturer	WI	Operated 4 yrs; site closure achieved
Tronox	Chloroform/PCE	Chemical Manufacturer	OK	Ongoing >9 yr; ~700-ft PRB preventing off site contaminant migration
Tronox	Chloroform/PCE	Chemical Manufacturer	OK	Ongoing >9yr, 80-ft source zone barrier, significant CF reductions
Carroll College	PCE/TCE	Industrial Dry Cleaner	WI	Operated 4 yrs, site closure approved

Figure 2.4. Field-Scale PR Pilot System at a Tronox Site in Oklahoma.

The permeable reactive barrier created by PRT extends ~600 ft. and is composed of 42 electrodes. It has been operated successfully for >10 years.

2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

Treatment of low pH sites with buffers to increase groundwater pH is often not practical because of the large amount of buffer needed and the large size of many of the affected plumes. In other cases contaminants accumulate in low permeability matrices or as free product (e.g., DNAPL) and become long term sources of contamination that require prolonged and costly treatment. For these sites, an inexpensive and long-term source of electron donor and pH buffering to support *in situ* bioremediation is desirable. A potential advantage of PRT is that it would be suitable for use in most cVOC-contaminated aquifers, for treating low pH aquifers, and potentially for treating any contaminant that can be remediated by H₂-driven bioremediation (e.g., CVOCs, energetic compounds, and perchlorate). It also was has the potential to be suitable for prolonged treatment at sites where a persistent source of contaminant will lead to long-term remediation challenges (e.g., DNAPL sources or consolidated sediments), and for treating remote sites where accessing or maintaining electrical feeds is cost prohibitive.

One potential limitation of this process is the production of H⁺ and O₂ at the system anode(s). O₂ will inhibit dechlorinating organisms, and the produced H⁺ can reduce aquifer pH. Also, previous studies that have attempted to use hydrogen injection technologies to stimulate *in situ* reductive dechlorination have demonstrated that competition for H₂ by methanogenic and other microorganisms can limit its availability for DHC and other dechlorinating bacteria in some

instances (Clapp et al., 2004; Ma et al., 2006). We anticipated that some of these limitations might be ameliorated by controlling the operation of the PRT system and by appropriate in-field configuration. First, the polarity of the electrodes can be periodically switched so that the electrodes are alternatively used as anodes or cathodes. Upon switching the anode to a cathode, any oxygen near the electrode will be reduced rapidly to water, and protons present will subsequently be reduced to H₂. This approach has proven successful in other applications of this technology by CB&I. Another advantage of this approach is that periodic production of O₂ may actually inhibit methanogens that are very sensitive to oxygen and that compete for H₂. Call and Logan (2008) demonstrated that periodic additions of air to a H₂-generating microbial fuel cell improved H₂ yields by inhibiting methanogens. We have observed that dehalogenating bacteria are less sensitive to dissolved oxygen than often reported (unpublished data). depending on the cathode configuration, the anodes can potentially be placed in a side-gradient position so that anode-produced O₂ and H⁺ does not interfere with the treatment process. Testing by CB&I at one site has demonstrated that sufficient current can be maintained between electrodes spaced more than 250 ft apart. This spacing, however, will depend on aquifer geochemistry and electrical conductivity of subsurface materials.

Poor distribution of H₂ within the designed treatment zone could limit the remedial performance of the electrolysis system. As discussed in **Section 2.1.2**, the potential for generation of H₂ between inserted electrodes via the electrolysis of water on clay surfaces that are acting as microcapacitors was evaluated in the field during this project. These potential microcapacitor processes could have significant impacts on the required spacing between cathodes, and the effectiveness of hydrogen distribution. If these microcapacitor processes could be shown to occur at the field scale, then H₂ generation may not be limited to the inserted cathode surface, and its distribution in the subsurface could be greatly increased. Alternatively, H₂ generation solely at the inserted cathode surface would limit its distribution in the subsurface primarily to advection and dispersion mechanisms.

Finally, scale formation on or corrosion of inserted electrodes could limit the performance of the electrolysis system. Degradation of the electrode surface could reduce the amount of current generated at a given voltage, thereby reducing hydrogen and hydroxide generation at the cathodes, and the overall efficiency of the proton reduction system. As discussed in **Section 5.3.4**, several electrode materials were tested for effectiveness and longevity in the lab prior to design of the field demonstration.

3.0 PERFORMANCE OBJECTIVES

The performance objectives for this project are listed in **Table 3.1**. An *in situ* field demonstration was performed in an effort to attain these objectives using electrodes inserted into the aquifer for generation of H₂ at the cathode (**Figure 1.1**), and potentially on soil particles between the anode and cathode (**Figure 2.3**). The consumption of H⁺ during proton reduction was expected to increase the pH of the groundwater and the H₂ generated would be used as an electron donor to support *in situ* bioremediation. The main objective of the demonstration was to effect sustainable aquifer neutralization and contaminant degradation at treatment costs that are significantly lower than common treatment approaches that require addition of buffers and exogenous electron donor compounds.

Table 3.1. Performance Objectives Evaluated

TYPE OF OBJECTIVE	PRIMARY PERFORMANCE METRICS	EXPECTED PERFORMANCE METRICS	ACTUAL PERFORMANCE	WAS PERFORMANCE METRIC ACHIEVED?
Quantitative	Effectiveness	Increase and maintain pH to between 6 and 8 SUs within the designed treatment zone	pH was not successfully increased downgradient of the cathodes, but after the creation of a second recirculation loop, some pH increases were observed approximately 5 ft. from the system cathode.	Partially
Quantitative	Effectiveness	Measured H ₂ concentrations >160 µg/L (10% solubility) at cathode wells	H ₂ consistently measured >160 μg/L during Phase 1 and 2 of the demo.	Yes
Quantitative	Effectiveness	Measurable H_2 one meter down gradient of cathode.	Sporadic detections of hydrogen at monitoring wells.	Partial
Quantitative	Effectiveness	95% reduction of TCE and cis-DCE (2 μg/) in test plot	TCE and cis-DCE degradation was achieved, but we did not achieve 95% reduction, nor consistent treatment	No
Quantitative	Effectiveness	Complete and prolonged biodegradation of TCE and cis-DCE to ethene	Although some ethene was measured, we could not confirm sustainable VC degradation	No
Quantitative	Effectiveness	Distribution and growth of added DHC to >10 ⁷ DHC/L	No evidence of growth or distribution of DHC was demonstrated.	No
Quantitative	Effectiveness	Electrode stability (performance and physical) for >1 yr of field operation.	Electrodes performed for 2 years without measurable loss of performance	Yes
Qualitative	Implementable	Design and implementation of a field demo. system	System allowed flexible operation and sufficient monitoring	Yes
Qualitative	Implementable	Sustained solar-power output sufficient to promote pH increase and H ₂ production.	Sustained solar output for 2 years	Yes
Qualitative	Safety	No safety hazard/incidents	No safety incidents or hazardous conditions occurred.	Yes

3.1 INCREASE AND MAINTAIN NEUTRAL AQUIFER PH

In order for successful bioremediation to occur, the groundwater pH in the treatment zone must be increased to a pH of approximately 6 or greater. In this demonstration, the objective was to achieve this increase in pH via the use of electrodes inserted into the subsurface to consume H⁺ and produce OH⁻.

3.1.1 Data Requirements

The collection of numerous complete and reliable sets of groundwater pH data at different time points throughout the demonstration was required to evaluate this performance objective. Two baseline sampling events were performed in which groundwater samples were obtained and analyzed on site using a YSI field meter to determine the initial pH of the groundwater in the test plot and control plot prior to system start-up. Groundwater samples were collected and analyzed on site for pH forty times during the Period of Operation, which continued for 2 years, and the data collected was used to determine whether the groundwater pH in the test plot and control plot had increased above 6 SUs.

3.1.2 Success Criteria

Data collected during the Period of Operation was compared to the data collected during baseline sampling and system startup to determine the increase in pH during operation of the proton reduction system. For this performance objective to be considered successful, the pH of the groundwater in test plot monitoring wells immediately downgradient of the cathodes (i.e. treatment zone) needed to be increased and maintained to between 6 and 8 SUs. As detailed in Section 5.7.2, no significant increases in aquifer pH were observed at the monitoring wells located downgradient of the cathodes during Phase 1 through Phase 3 of the demonstration. Upon initiating operation of a small recirculation system on day 233 (Phase 4), groundwater pH at some of the multi-level sampling (MLS) well intervals (particularly PMW-7S) began to increase, and pH levels near pH 6 were achieved. Because pH is a log scale, the increase in pH at PMW-7S indicated an approximately 10-fold reduction in acidity at this location. However, consistent and significant pH increases throughout the designed treatment zone were not observed during Phase 4 of the demonstration. It is likely that the degree of electrolysis occurring at the cathode during Phase 4 was not sufficient to substantially increase the pH of acidic groundwater being continually re-circulated into the injection/cathode well, as the high pH levels observed in the electrode/cathode wells during Phase 1-3 of operation were not observed during Phase 4.

3.2 PRODUCTION OF H₂ AT THE CATHODE

The primary goal of this performance objective was to confirm that H₂ was being generated at the cathodes.

3.2.1 Data Requirements

The collection of numerous complete and reliable sets of groundwater dissolved H₂ data at different time points throughout the demonstration was required to evaluate this performance objective.

Two baseline sampling events were performed in which groundwater samples were obtained and analyzed to determine the initial dissolved H₂ concentrations of the groundwater in the demonstration plots prior to system start-up. Groundwater samples were collected and analyzed for dissolved H₂ 35 times during the Period of Operation, which continued for 2 years. H₂ data collected from wells within the test plot were compared to data collected from within the control plot, as well as data collected from a MLS background well. The data collected was used to determine the concentrations of H₂ being generated at the electrode/cathode wells.

3.2.2 Success Criteria

This performance objective was to be considered successful if groundwater dissolved H2 concentrations of >130 $\mu g/L$ (approximately 10 percent of solubility) were measured at each of the three cathode wells. Once operation of the proton reduction system was optimized, H2 concentrations in the demonstration plot cathode wells consistently exceeded 160 $\mu g/L$ and reached concentrations up to approximately 1,200 $\mu g/L$ (>90 percent of solubility). H2 concentrations in the cathode wells groundwater remained high during Phases 1 and 2 of the demonstration. During Phase 3 and 4 of the demonstration, H2 concentrations in the cathode well(s) decreased because the addition of extracted water to the cathode wells (i.e., injection wells) continually diluted H2 concentrations and forced the H2-containing groundwater into the aquifer.

3.3 DISTRIBUTION OF H₂ TO 1 METER DOWNGRADIENT OF THE CATHODE

In order for H₂ to be effective as an electron donor to support biological reductive dechlorination, it must be adequately distributed throughout the treatment zone. The goal of this performance objective was to confirm that H₂ was present in adequate concentrations at least 1 meter downgradient of the cathodes where it was formed. The extent to which dissolved H₂ migrates downgradient of the cathode is largely dependent upon the groundwater velocity and the site-specific H₂ utilization rate. Additionally, we attempted to evaluate the potential for generation of H₂ between inserted electrodes via the electrolysis of water on clay surfaces that may act as microcapacitors (as discussed in **Section 2.1.2**).

3.3.1 Data Requirements

The collection of numerous complete and reliable sets of groundwater dissolved H₂ data at different time points throughout the demonstration was required to evaluate this performance objective. Two baseline sampling events were performed in which groundwater samples were obtained and analyzed to determine the initial dissolved H₂ concentrations of the groundwater in the test plots prior to system start-up. Groundwater samples were collected and analyzed for dissolved H₂ 35 times during the Period of Operation, which continued for 2 years. H₂ data collected from wells within the test plot were compared to data collected from within the control plot, as well as data collected from a MLS background well. The data collected were used to determine the concentrations of H₂ at the MLS monitoring wells installed between the electrodes and throughout the test plots, and to establish whether the H₂ concentrations were adequate for reductive dechlorination (>4 ng/L, as discussed in **Section 2.1.1**).

3.3.2 Success Criteria

This performance objective was to be considered successful if groundwater H_2 concentrations of >0.010 µg/L (2.5 times the concentration required to support reductive dechlorination) for were present at least 1 meter downgradient of the cathode wells. During the demonstration, H_2 concentrations occasionally exceeded 0.010 µg/L at the MLS wells closest to the cathode wells. However, H_2 concentrations were more typically below the detection level (<0.008 µg/L) at these wells. Furthermore, dissolved H_2 concentrations at the two MLS wells monitored during Phase 4 (operation of a small groundwater recirculation loop) of the demonstration were typically below 0.010 µg/L. Considering H_2 concentrations at well CW-2 (cathode/injection well) were typically >50 µg/L during this Phase, this suggests that there was a substantial sink for hydrogen between CW-2 (cathode/injection well) and the MLS wells (located 2.5 ft and 5.0 ft away, and within the recirculation loop). Possible sinks for hydrogen include iron and manganese reduction, sulfate reduction, acetogenesis, and methanogenesis, as well as dechlorination of TCE.

3.4 REDUCTION OF TCE AND cis-DCE IN THE TEST PLOT

The main contaminants of concern in the JB MDL groundwater plume at Area SS-36 are TCE and *cis*-DCE. The goal of this performance objective was to achieve >95% reduction in groundwater TCE and *cis*-DCE concentrations within the test plot.

3.4.1 Data Requirements

The collection of numerous complete and reliable sets of groundwater VOC data at different time points throughout the demonstration was required to evaluate this performance objective. Two baseline sampling events were performed in which groundwater samples were obtained and analyzed to determine the initial dissolved VOC concentrations in the groundwater in the test and control plots prior to system start-up. Groundwater samples were collected and analyzed for VOCs 14 times during the Period of Operation, which continued for 2 years. VOC data collected from wells within the test plot were compared to data collected from within the control plot, as well as data collected from a MLS background well. The data collected were used to determine the extent of TCE and *cis*-DCE reduction and daughter product formation in the test plot.

3.4.2 Success Criteria

This performance objective was to be considered successful if TCE and *cis*-DCE concentrations in the test plot monitoring wells were reduced by >95%. Measureable reductions in TCE concentrations, ranging between 31 and 89 percent, were observed at 5 of the 6 MLS well intervals monitored throughout the course of the demonstration. Biodegradation was apparent in the treatment zone following the first bioaugmentation as indicated by the transient increase of the dechlorination daughter product *cis*-DCE at some locations. However, we did not measure reductions in TCE and *cis*-DCE concentrations >95% at any of the monitoring wells during the demonstration.

3.5 COMPLETE AND PROLONGED BIODEGRADATION OF TCE TO ETHENE

The goal of this performance objective was to achieve sustainable TCE and *cis*-DCE biodegradation *in situ* for a minimum of eight months, and to demonstrate that these compounds were reduced completely to ethene.

3.5.1 Data Requirements

The collection of numerous complete and reliable sets of groundwater VOC and reduced gases data at different time points throughout the demonstration was required to evaluate this performance objective. Two baseline sampling events were performed in which groundwater samples were obtained and analyzed to determine the initial dissolved VOC and reduced gases concentrations in the groundwater in the test and control plots prior to system start-up. Groundwater samples were collected and analyzed for VOCs and reduced gases 14 times during the Period of Operation, which continued for 2 years. VOC and reduced gases data collected from wells within the test plot were compared to data collected from within the control plot, as well as data collected from a MLS background well. The data collected was used to establish the extent of TCE reduction and daughter product formation in the test plot.

3.5.2 Success Criteria

This performance objective was to be considered successful if reductive dechlorination of TCE and *cis*-DCE were prolonged throughout the Period of Operation, and if TCE degradation proceeded completely to ethene without stalling at *cis*-DCE or VC. It was expected that *cis*-DCE and VC would be produced as transient intermediates of TCE degradation and also would be rapidly degraded. While some substantial transient increases in *cis*-DCE were observed at some of the test plot MLS wells, only traces of vinyl chloride were observed. Furthermore, while some low levels of ethene were observed, the source of the measured ethene is not certain. These data suggest that partial dechlorination of TCE was occurring during the demonstration, and that complete reductive dechlorination was limited.

3.6 DISTRIBUTION AND GROWTH OF ADDED DHC

The goal of this performance objective was to achieve adequate distribution and growth of bioaugmented DHC downgradient of the cathodes and throughout the test plot treatment zone, through stimulation with $\rm H_2$ produced by the proton reduction system. A measured aqueous cell density of >1.0 x $\rm 10^7$ cells/liter in the test plot treatment zone was required for this performance objective to be considered successful.

3.6.1 Data Requirements

The collection of groundwater DHC data at different time points throughout the demonstration was required to evaluate this performance objective. Pre-bioaugmentation and post-bioaugmentation sampling events were performed in which groundwater samples were obtained from select wells and analyzed using quantitative polymerase chain reaction (qPCR) to determine DHC groundwater concentrations. DHC data collected from wells within the test plot were compared to data collected from one of the MLS background well intervals. The data collected was used to determine the distribution and growth of DHC within the test plot.

3.6.2 Success Criteria

This performance objective was to be considered successful if qPCR data indicated that DHC were distributed downgradient of the injection point, and that DHC concentrations increases *in situ* to $>1.0 \times 10^7$ cells/liter as cVOCs were reduced. DHC data collected during the demonstration indicated a lack of distribution and growth of the bioaugmentation culture during the demonstration.

3.7 ELECTRODE STABILITY FOR >1 YEAR

In order for the treatment system to be successful, consistent and sustained proton reduction and production of H₂ at the cathode needed to be achieved. This required that the electrodes perform continuously, without measureable loss in performance.

3.7.1 Data Requirements

The collection of system operating voltages and currents, and visual observations of the electrode material at multiple time points throughout the demonstration was required to evaluate this performance objective. System operating parameters were recorded at least twice per month, and the electrodes were removed from the wells for inspection approximately once every six months. The data collected was used to determine the operating efficiency of the electrodes during the demonstration.

3.7.2 Success Criteria

This performance objective was to be considered successful if the electrodes operated effectively, without measurable loss of performance for >1 year. Additionally, electrode corrosion observed during inspections must be minimal. Regular system operation measurements collected during the demonstration indicated that there was no significant decrease in electrode performance (i.e. loss of current at a given voltage) during two years of operation. Some fouling of the cathodes was observed during inspections. However, this did not appear to significantly impact electrode performance.

3.8 SYSTEM RELIABILITY AND EASE OF OPERATION

The goal of this performance objective was to assess and maximize the reliability and ease of operation of the solar-powered proton reduction system.

3.8.1 Data Requirements

This performance objective is qualitative, and thus was evaluated using the observations of field personnel and project management. These include logged data collected from the solar power system, and system operating parameters recorded during regular site inspections.

3.8.2 Success Criteria

This performance objective was to be considered successful if the solar-powered proton reduction system operated continually (i.e., for a minimum of 12 months) with minimal downtime and supervision (i.e., less than 8 hours of manpower per month required to successfully operate the system). Field observations and system operating records indicate that the system operated >95% of the time over a 2 year period, with minimal O&M required.

3.9 SUSTAINED SOLAR OUTPUT TO OPERATE THE PRT SYSTEM

The goal of this performance objective was to assess and maximize the reliability and ease of operation of the off-the-grid solar-power system that powered the proton reduction system.

3.9.1 Data Requirements

This performance objective is qualitative, and thus was evaluated by using the observations of field personnel and project management. These include logged data collected from the solar power system, and system operating parameters recorded during regular site inspections.

3.9.2 Success Criteria

This performance objective was to be considered successful if the electrical output derived from the solar power was sufficient to power the proton reduction system for the course of the demonstration (i.e., a minimum of 12 months) with no additional external power required. Field observations and system operating records indicate that the solar power system operated >95% of the time over a 2 year period, with minimal O&M required.

3.10 NO SAFETY HAZARDS OR INCIDENTS DURING SYSTEM OPERATION

The goal of this performance objective was to assess and maximize the safety of operating the solar-power proton reduction system.

3.10.1 Data Requirements

This performance objective is qualitative, and thus was evaluated by using the observations of field personnel and project management. These include safety observations and measurements made during regular site inspections and field activities.

3.10.2 Success Criteria

This performance objective was to be considered successful if there were no observed or recorded safety incidents or hazardous conditions during system operation and monitoring over the course of the demonstration. Safety observations and records indicated that there were no safety incidents or injuries that occurred during the demonstration. A build-up of hydrogen gas was measured in the sealed cathode wells during early operation of the PRT system. Hydrogen buildup was mitigated by opening the valves on the cathode well heads, and drilling holes in the lids of the well vaults to allow hydrogen to dissipate from the wells. No explosive conditions were measured (via combustible gas meter) during the demonstration.

Page Intentionally Left Blank

4.0 SITE DESCRIPTION

A key to the success of any field demonstration project is the selection of an appropriate demonstration site. After reviewing and analyzing data from several potential sites, Area SS-36 at JB MDL, New Jersey (**Figure 4.1**) was selected as the demonstration site for this project. A site selection memorandum was prepared and submitted to ESTCP detailing the following positive characteristics that made Area SS-36 at JB MDL a suitable location for the demonstration:

- TCE or *cis*-DCE in the range of 0.1 to 10 mg/L,
- No or incomplete (i.e., cis-DCE stall) dehalogenation of TCE occurring,
- < 100 DHC/mL based on qPCR,
- Low natural groundwater pH (i.e., pH<6),
- A shallow aquifer (<30 ft bgs),
- Relatively permeable soils,
- Available site characterization data,
- Sufficient space for the demonstration plots,
- Potential for full-scale implementation upon successful demonstration,
- Receptive interested parties and regulators,
- Located close to CB&I's Lawrenceville, NJ laboratory, and
- Ongoing remedial activities being performed by CB&I at the site.

Figure 4.1. Location of JB MDL in New Jersey

4.1 SITE LOCATION AND HISTORY

The SS-36 area is located in a developed portion of JB MDL, and includes buildings, parking lots, and paved roads. A large open grassy area that appeared suitable for this demonstration lies down gradient of building 2305 (Figure 4.2). Historical site investigations identified soil contamination (PAHs and pesticides) and groundwater contamination (VOCs, SVOCs, and metals). Area SS-36 includes a partial grouping of industrial facilities that encompasses many of the buildings shown in Figure 4.2. Some of the industrial activities performed in this area involve aircraft maintenance and ground equipment support. These facilities use and/or generate large quantities of waste oils and hydraulic fluids, solvents, spent batteries and cells, neutralized lead-acid, and waste paints and thinner. Little is known regarding the former disposal practices. The 2300 industrial facilities (Figure 4.2), including Buildings 2305, 2311, and 2315, are associated with structural repair operations where large quantities of waste oil, waste hydraulic fluids, waste solvent, waste Alodine solution, waste thinner, sandblasting material (potentially containing metals), and water curtain sludge (from the filtration system in Building 2315) are used and generated. The 2300 Area also includes the Hazardous Waste Storage Yard (Building 2310), which is the collection point for the hazardous waste program on base. Waste paints, spent batteries, asbestos, PCB transformers, spent solvents, corrosives, waste oils, and waste fuels are collected and stored at Building 2310 before being transported off base.

4.2 SITE GEOLOGY/HYDROGEOLOGY

McGuire AFB is underlain by a succession of aquifers and confining layers. The shallow aquifers are the Cohansey Sand/Kirkwood Formation aquifer system and the Vincentown Formation. The two aquifers are believed to be hydraulically connected, forming a shallow aquifer system that is about 75 ft thick. The Cohansey Sand/Kirkwood Formation aquifer system is the principal water table aquifer of the New Jersey Coastal Plain and covers an area of about 3,000 square miles. These formations generally have unconfined conditions, although confined conditions may occur locally. The Cohansey Sand/Kirkwood Formation aquifer system has total dissolved solids of 500 milligrams per liter (mg/L) or less and is suitable for potable, industrial, or agricultural water supply after conventional water treatment (New Jersey Class GW-2 aquifer). Aquifer recharge mainly occurs through precipitation falling on exposed portions of the two formations.

The shallowest stratigraphic unit at Area 36, and the formation that was targeted for this demonstration, is the Kirkwood Formation. This unit forms the uppermost aquifer system where groundwater occurs under unconfined conditions. The Cohansey Formation, observed in other portions of the base, is not present at this location. The Kirkwood Formation, consisting of a gray to yellow-brown, fine micaceous quartz sand with local beds of clay and silt, reaches a thickness of approximately 29 ft in the demonstration location.

The Vincentown Formation underlies the Kirkwood Formation and is up to 50 ft thick (based on previous site characterization activities) in the JB MDL area. It consists of locally fossiliferous greenish-gray, sometimes clayey, glauconitic quartz sand. The Vincentown Formation has an upper calcarenite member that consists mostly of shell fragments, and a lower glauconite sand member. The presence of glauconite (green to blue-green clay mineral) and fossils, where present, distinguishes the Vincentown Formation from the overlying basal Kirkwood Formation.

Figure 4.2. Map of the TCE Plume Extending Downgradient from Building 2305 in the SS-36 Area.

The orange area identifies TCE in upper portion of the Kirkwood Formation and the red indicates TCE in the lower portion of the Kirkwood Formation at concentrations $>1 \mu g/L$.

On a regional scale, the shallow groundwater at McGuire AFB flows to the east-southeast. On the basis of detailed groundwater information collected from five sites across the Base, the average groundwater flow rate is estimated to be about 0.098 ft/day, or about 36 ft/year. As discussed in **Section 5.2.3**, the estimated linear groundwater velocity in the demonstration area ranged from 0.06 to 0.22 ft/day, or 22 to 80 ft/year. Locally, the groundwater flow direction is typically toward streams and drainage channels, forming complex local flow patterns. Groundwater flow within the Kirkwood Formation in Area SS-36 was determined to be generally to the east, as shown in **Figure 4.2**. Once water infiltrates the hydraulic regime, it flows under water table conditions toward zones of decreasing hydraulic head. The shallow water table system possesses a fairly short flow path. It is estimated that 85 percent of the precipitation that infiltrates to the surficial aquifer system follows a shallow flow path and discharges to a surface water body as base flow. Preliminary groundwater sampling performed by CB&I in August 2010 demonstrated that groundwater pH throughout most of the proposed test area was <6 SU.

Groundwater depth was generally between 7 and 9 ft of the ground surface in the demonstration area during the demonstration. Water levels at JB MDL generally decline during the growing season due to increased evapotranspiration rates. There may be a monthly lag in water level changes, making effects of pumping and precipitation not immediately apparent. Water levels generally reflect seasonal and climatic changes rather than single precipitation events (Tetra Tech, 2008).

The series of aquifers and low permeability confining units underlying JB MDL minimizes the impact of shallow groundwater contamination to the deeper aquifers. Likewise the artesian conditions and upward vertical gradients for the deeper aquifers beneath JB MDL restrict the downward migration of surface contamination.

Site characterization activities, including continuous soil core collection, were performed by CB&I as part of baseline characterization activities (**Section 5.2**). The soil cores collected during these activities were used in the generation of a cross section (**Figure 4.3**) showing the generalized subsurface stratigraphy of the demonstration area, and in the development of the Conceptual Site Model (CSM) (**Section 5.4.1**). The general subsurface stratigraphy is summarized as follows:

- <u>Layer 1</u>: Dark gray silty fine sand with sandy/silty clay and silt interbeds from ground surface to approximately 19 ft bgs,
- <u>Layer 2</u>: Medium gray, medium to coarse sand from approximately 19 to 20 ft bgs (this layer ranged from approximately 6 to 24 inches in thickness),
- <u>Layer 3</u>: Dark gray silt and very fine sand from approximately 20 to 22 ft bgs,
- Layer 4: Dark Gray clayey silt/sand from approximately 22 to 29 ft bgs, and
- <u>Layer 5</u>: Dark greenish gray fine sand below 29 to 30 ft bgs.

Layers 1 through 4 were determined to be part of the Kirkwood Formation, while Layer 5 is presumed to be the uppermost portion of the Vincentown Formation.

4.3 CONTAMINANT DISTRIBUTION

The nature and extent of subsurface soil and groundwater contaminants (e.g., VOCs, SVOCs, metals, pesticides, and PCBs), including potential VOC source areas, were not fully delineated at the SS-36 area prior to the demonstration. **Figure 4.2** provides a 2009 map of the TCE plume extending down gradient from building 2305 in the SS-36 area of JB MDL. The area shaded orange in the figure identifies TCE at measured concentrations >1 μ g/L in the upper portion (generally above 19 ft bgs) of the Kirkwood Formation. This portion of the aquifer generally includes Layer 1, as detailed above. The area shaded in red indicates TCE at measured concentrations >1 μ g/L in the lower portion (approximately 19-25 ft bgs) of the Kirkwood Formation. This portion of the aquifer generally includes Layers 2, 3, and the upper portion of Layer 4.

As part of ongoing remedial investigations at the site, a direct-push groundwater sampling program was conducted in September 2009 by CB&I (formerly Shaw Environmental) under a separate contract. Results from the sampling program performed in the SS-36 area in the general vicinity of the demonstration location are provided in **Table 4.1**. The results indicated that TCE concentrations in the lower portion of the Kirkwood ranged from approximately 2,000 μ g/L to >120,000 μ g/L, with the highest concentrations observed towards the centerline of the plume. The existence of *cis*-DCE and small amounts of vinyl chloride suggested that some biological dechlorination may be occurring at this site.

These data, along with site hydrogeologic and geochemical data collected during demonstration site characterization activities (Section 5.2) were used to construct the CSM. The CSM indicates that groundwater and dissolved contaminants flow preferentially in an eastern horizontal direction (Figure 4.2) through the high permeability medium-coarse sand layer (Layer 2, Figure 4.3). Some of these contaminants have diffused (or continue to diffuse) into the underlying silt and very fine sand layer (Layer 3), and the upper portion of the lower permeability clayey silt/sand layer (Layer 4). The direction of vertical diffusion is dependent on the concentration gradient between these layers. However, based on the soil VOC data collected, it is likely that, in addition to upgradient sources, Layer 3 and the upper portion of Layer 4 act as continuing sources of contamination to Layer 2 (i.e., back-diffusion is occurring). Site characterization data indicate that Layer 1 has low levels of contamination, when compared to Layers 2 and 3, and Layer 5 exhibits no contamination in the demonstration area. Therefore, *in situ* treatment during this demonstration focused on Layers 2 and 3. However, the upper portion of Layer 4 was also monitored to determine if hydrogen can be distributed or produced within this clayey silt/sand material

Figure 4.3. Generalized Subsurface Stratigraphy at Site SS-36

Table 4.1. Analysis of Direct-Push Groundwater Samples Collected in the SS-36 Area of JB MDL

Sample ID	Compound	Concentration (µg/L)	GWQC (μg/L)
GW28A (10-15')	TCE	586	1.0
	cis-DCE	266	70
	VC	5.8	1.0
	1,1-DCE	1.2	1.0
GW28B (21-26')	TCE	2,230	1.0
	cis-DCE	322	70
	1,1-DCE	2.0	1.0
GW29A (10-15')	TCE	23.1	1.0
GW29B (19-24')	TCE	17,500	1.0
	cis-DCE	368	70
	VC	3.0	1.0
	1,1-DCE	6.9	1.0
GW30A (8-13')	TCE	76.7	1.0
GW30B (20-25')	TCE	121,000	1.0
	cis-DCE	3,000	70
	VC	4.4	1.0
	1,1-DCE	22.5	1.0
	Benzene	5.2	1.0
GW31A (8-13')	TCE	157	1.0
GW31B (20-25')	TCE	79,000	1.0
	cis-DCE	6,920	70
	VC	18.5	1.0
	1,1-DCE	3.1	1.0
	Benzene	9.6	1.0
GW32A (9-14')	TCE	74.3	1.0

Page Intentionally Left Blank

5.0 TEST DESIGN

5.1 CONCEPTUAL EXPERIMENTAL DESIGN

This field demonstration project used electrodes inserted into PVC wells in a CVOC-contaminated, low pH, aquifer. The electrodes were operated in an effort to generate H₂ to support biodegradation, and consume H⁺ and produce OH⁻ to increase aquifer pH. The contaminated aquifer was inoculated with a bioaugmentation culture to ensure that the appropriate dechlorinating bacteria were present to support biodegradation. Electricity to operate the system was provided by solar panels and deep cycle 12 V batteries. During the demonstration, we monitored groundwater pH, contaminant concentrations, H₂ production, distribution and utilization, and electrode performance.

5.2 BASELINE CHARACTERIZATION

Baseline testing and site characterization were performed to generate the data needed to design the field system. Testing included a direct-push site investigation to evaluate aquifer geology and contaminant distribution, monitoring well installation and hydrogeologic testing to evaluate site hydrogeology, geochemical characterization of site groundwater and soils, and geochemical modeling. The results of these activities are summarized in the following subsections. Final system conceptual design was based on results of these baseline characterization activities, as well as laboratory testing activities detailed in **Section 5.3**.

5.2.1 Direct-Push Investigation

A direct-push investigation was conducted to identify the optimal location for the field demonstration, improve delineation of the stratigraphy in the field demonstration test area, and to further evaluate the vertical and lateral contaminant distribution. Information obtained from this investigation was used to optimize/verify well screen intervals for the injection/extraction and monitoring wells, and confirm that the test plot and control plot are located within the TCE plume. Thus, data collected during the direct-push investigation were used to improve the conceptual site geologic model (**Section 5.4.1**), to determine the layout of the demonstration test and control plots, and to verify the depth of the selected treatment interval.

During the direct-push investigation, four soil borings (DP-01-SB through DP-04-SB) and four discrete interval groundwater sampling borings (DP-01-GW through DP-04-GW) were advanced at four separate locations within the Site SS-36 plume (**Figure 5.1**). Continuous soil cores collected from the soil borings were characterized in the field by a geologist, and two discrete soil samples were collected for VOC analysis. Additionally, two discrete interval groundwater samples were collected for VOC analysis at each of the groundwater sampling borings. VOC samples were hand delivered to CB&I's laboratory and analyzed within 24 hrs to determine the best location for further characterization. Analytical results from the soil and groundwater analysis are provided in **Tables 5.1** and **5.2**, respectively. Based on the contaminant concentration data and observed geology, the area where borings DP-02-SB and DP-02-GW were advanced was selected as the location for demonstration. As shown in **Figure 5.1**, a 25 ft x 30 ft area was identified as the demonstration area. Additional detailed characterization activities were performed within this area.

Figure 5.1. Location of Initial Soil & Groundwater Sampling Locations within SS-36 Plume

Table 5.1. Summary of Initial SS-36 Direct-Push Characterization Soil Sampling Data

Sample Location ID	D	P-0	1-SB		D	P- 0	2-SB		D	P-0	3-SB		D	P-0	4-SB	
Sample Depth (ft. bgs)	20.5	•	22.5	•	20.25	5'	21.0	1	21.0)	21.5	1	20.0)	22.0	•
Layer	2		3		2		3		2		3		2		3	
VOCS (GC/MS)	mg/k	g	mg/kg	g	mg/kg	g	mg/kg	3	mg/kg	<u> </u>	mg/kg	3	mg/kg	3	mg/kg	00
chloromethane	539	U	97.9	J	426	U	554	U	92.3	J	525	U	441	U	455	U
bromomethane	539	U	462	U	426	U	554	U	448	U	109	J	441	U	455	U
cis-1,2-dichloroethylene	539	U	462	U	426	U	554	U	448	U	717	D	441	U	1173	D
1,1,1-trichloroethane	175	J	462	U	426	U	554	U	448	U	525	U	441	U	455	U
trichloroe thyle ne	2330	D	971	D	184	J	19200	D	7060	D	64300	D	3610	D	15710	D
acetone	1078	U	924	U	851	U	3120	D	896	U	1049	U	883	U	2467	D
Soil moisture	%		%		%		%		%		%		%		%	
% moisture	21.61		11.56		11.10		23.18		12.59		24.19		13.35		20.72	

U - The compound was not detected at the indicated concentration.

Table 5.2. Summary of Initial SS-36 Direct-Push Characterization Groundwater Sampling Data

Sample Location ID	DP-0	1-GW	DP-0	2-GW	DP-0	3-GW	DP-0	4-GW
Sample Interval (ft. bgs)	17-20'	21-24'	15-18'	19-21'	15-18'	20-23'	15-18'	19.5-21.5'
Layer	2	3	2	3	2	3	2	3
VOCs (GC/MS)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
cis-1,2-dichloroethylene	178 J	30.7 J	<5	158	<5	1540	<5	3450
trichloroethylene	4510	789	<5	9202	1.3 J	58600	6.7	55700
Field Parameters								
Temperature (°C)	25.83	24.58	24.15	21.35	20.39	19.59	27.87	20.44
Conductivity (mS/cm)	0.322	0.345	0.210	0.248	0.170	0.223	0.002	0.279
pH (SU)	4.70	4.72	4.12	4.67	4.46	4.76	4.72	4.57
ORP (mV)	103.4	99.7	260.1	127.3	248.7	40.7	196.5	47.1
Turbidity (NTU)	113.1	177.2	1394.4	1364.6	1354.0	1046.5	NS	1050
DO (mg/L)	1.88	2.21	1.22	1.79	3.28	3.79	6.53	3.47

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

D - Sample was diluted prior to analysis.

A total of four continuous soil cores (DP-02-SB, DP-05-SB, DP-06-SB and DP-07-SB) were collected to a total depth between 25 and 30 ft bgs within the selected demonstration location (**Figure 5.2**). The soil cores were logged by a Shaw geologist to determine subsurface stratigraphy. The observed stratigraphy within the upper 30 ft of the demonstration area has been segregated into 5 distinct layers, as described in **Section 4.2**, and as shown in the generalized geologic cross section provided in **Figure 5.3**.

Two cVOC soil samples were collected from each of the four borings within the demonstration area, based on measured photoionization detector (PID) readings. PID data suggested that cVOC concentrations were the greatest [generally between 2 and 60 ppm] in Layers 2 and 3. PID readings in the stratigraphic layers overlying and underlying these layers (Layers 1 and 4, respectively) were generally zero ppm. Analytical data collected from the soil samples indicated that the highest cVOC concentrations (primarily TCE) were found in Layer 3. Soil TCE concentrations in Layer 3 ranged from 19.2 mg/kg to 92.2 mg/kg, while soil TCE concentrations in Layer 2 ranged from 0.18 mg/kg to 1.95 mg/kg. A summary of soil cVOC data (detected compounds only) is provided in **Table 5.3**. These data indicate that, while a significant mass of TCE is present within the higher permeability medium to coarse sand (Layer 2), the bulk of the TCE mass resides within the underlying lower permeability silt and very find sand (Layer 3).

Table 5.3. Summary of Demonstration Area Direct-Push Soil Sampling Data

Sample Location ID	D	P-0	2-SB		D	P- 0	5-SB		D	P-0	6-SB		D	P-0	7-SB	
Sample Depth (ft. bgs)	20.25	5'	21.0	•	19.5	•	22'		19.5	•	20.5	•	19.5	•	20.5	•
Layer	2		3		2		3		2		3		2		3	
VOCS (GC/MS)	mg/k	g	mg/kg	g	mg/kį	g	mg/kg	7	mg/kg	g	mg/kį	9	mg/k	g	mg/kg	g
chloromethane	426	U	554	U	463	U	107	J	463	U	512	U	501	U	565	U
bromomethane	426	U	554	U	463	U	121	J	112	J	120	J	501	U	565	U
cis-1,2-dichloroethylene	426	U	554	U	463	U	484	U	463	U	512	U	501	U	565	U
trichloroethylene	184	J	19200	D	1580	D	92200	D	1930	D	31200	D	1950	D	56400	D
bromodichloromethane	426	U	554	U	463	U	484	U	463	U	512	U	501	U	362	J
acetone	851	U	3120	D	2610	D	967	U	926	U	2590	D	2690	D	1131	U
Soil moisture	%		%		%		%		%		%		%		%	
% moisture	11.10		23.18		15.78		20.63		15.03		24.15		16.15		25.55	

 $[\]boldsymbol{U}$ - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

D - Sample was diluted prior to analysis.

Figure 5.2. Direct-Push Boring and Monitoring Well Pair Locations in the Selected Demonstration Area

Figure 5.3. Geologic Cross Section of Demonstration Area Showing Soil Borings and Groundwater Sampling Intervals

Two discrete interval groundwater cVOC samples were collected at locations adjacent to each of the four continuous soil coring locations using direct-push methods. These locations (DP-02-GW, DP-05-GW, DP-06-GW, AND DP-07-GW) are shown on **Figure 5.1**. Field parameters (temperature, specific conductivity, pH, oxidation-reduction potential, and dissolved oxygen) were also collected with each sample. Each discrete groundwater sample was collected over a 3 ft interval. The upper sample was collected within the lower portion of Layer 1, and the lower sample was collected across Layers 2 and 3. Analytical and field parameter data are summarized in **Table 5.4**. Groundwater TCE concentrations in the upper samples ranged from non-detect (<5 μ g/L) to 189 μ g/L, while concentrations in the lower samples ranged from 5,180 μ g/L to 13,300 μ g/L. These data are in agreement with the soil analytical and PID data, indicating that Layer 1 is relatively uncontaminated, and that the bulk of the TCE mass reside within layers 2 and 3 (primarily Layer 3). Groundwater pH levels in these samples ranged from 4.12 to 5.05 SU. Groundwater samples were also collected for geochemical analysis, as detailed in **Section 5.2.4**.

Six addition soil borings (DP-08-SS through DP-13-SS) were advanced to collected discrete zone soil cores for analysis of soil geochemical properties (**Section 5.2.4**) and/or use in the various laboratory testing detailed in **Section 5.3**. Three additional direct-push borings (HPT-01 through HPT-03) were advanced for hydraulic profile testing (HPT) to evaluate subsurface permeability with depth (**Figure 5.2**). However, problems with the HPT equipment during advancement of the probe made the data obtained unreliable. Therefore, these data are not presented.

Utility clearances, Health & Safety procedures, and decontamination of drilling and sampling equipment during the direct-push investigation activities were all conducted in accordance with procedures detailed in the Demonstration Work Plan (Shaw, 2012).

Table 5.4. Summary of Demonstration Area Direct-Push Groundwater Sampling Data

Sample Location ID	DP-02	2-GW	DP-0	5-GW	DP-0	6-GW]	DP-07-GW	7
Sample Interval (ft. bgs)	15-18'	19-21'	18-20'	21-23'	18.5-20'	21-24'	15.5-18.5	19-20.5	21-24
Layer	2	3	2	3	2	3	1	2	3
VOCs (GC/MS)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
cis-1,2-dichloroethylene	<5	158	<5	242	<5	108	<5	12.9	129
trichloroe thyle ne	<5	9202	189	13300	101	5180	8.5	792	7900
Field Parameters									
Temperature (°C)	24.15	21.35	21.41	18.88	21.91	21.99	22.31	21.05	20.41
Conductivity (mS/cm)	0.210	0.248	0.378	0.518	0.376	0.566	0.405	0.357	0.437
pH (SU)	4.12	4.67	4.98	4.24	4.31	5.03	4.97	4.90	4.47
ORP (mV)	260.1	127.3	52.9	32.6	250.7	100.6	131.5	107.2	35.7
Turbidity (NTU)	1394.4	1364.6	236.8	1067.6	649	228	1408.4	1395.1	850.3
DO (mg/L)	1.22	1.79	3.09	2.58	2.11	2.80	3.31	1.71	4.55

5.2.2 Monitoring Well Installation and Sampling

Four monitoring wells (DMW-1S, DMW-1D, DMW-2S, and DMW-2D) were installed using direct-push drilling methods within the demonstration area in October, 2010 (**Figure 5.2**). Based on data collected during the direct-push investigation, monitoring wells DMW-1S and DMW-2S were screened across Layers 1 and 2, while monitoring wells DMW-1D and DMW-2D were intended to be screened across Layers 3 and 4 (**Figure 5.4**, **Table 5.5**). Groundwater samples were collected from three of the four wells on November 8, 2010 using low flow sampling methods. Monitoring well DMW-2D could not be sampled, due to extremely low recharge.

Table 5.5. Summary of As-Built Characterization Monitoring Well Construction Details

WELL ID	GROUND SURFACE ELEVATION (FT MSL)	TOP OF CASING ELEVATION (FT MSL)	WELL DIAMETER (IN)	BOREHOLE DIAMEIER (IN)	TOP OF SCREEN (FT BGS)	BOTTOM OF SCREEN (FT BGS)	TOP OF FILTER PACK (FT BGS)	BOTTOM OF FILTER PACK (FT BGS)	TOP OF SEAL (FT BGS)	BOTTOM OF SEAL (FT BGS)
DMW-1S	114.94	114.71	2.0	5.0	15.2	20.2	15.2	20.2	1.0	15.2
DMW-1D	114.97	114.61	2.0	5.0	20.6	25.6	19.6	25.6	1.0	19.6
DMW-2S	115.06	114.71	2.0	5.0	14.5	19.5	13.5	19.5	1.0	13.5
DMW-2D	115.06	114.64	2.0	5.0	20.6	25.6	24.8	25.6	1.0	24.8

A summary of groundwater cVOC data (detected compounds only) and field parameter data are provided in **Table 5.6**. Groundwater TCE concentrations ranged from 7,610 μ g/L to 9,450 μ g/L, which is consistent with the groundwater TCE data collected during the direct-push investigation. Groundwater pH levels ranged from 4.01 to 5.15 SU.

As discussed in **Section 5.2.3**, it appears that the filter pack and/or screen interval for monitoring well DMW-1D was installed at least partially into the medium to coarse sand layer (layer 2), and that the majority of the groundwater collected during the sampling of this well most likely from Layer 2 (which has a much higher hydraulic conductivity than layers 3 and 4).

5.2.3 Hydrogeologic Testing

Rising head and falling head slug tests were performed at the four demonstration area monitoring wells in December, 2010. A summary of slug testing results is provided in **Table 5.7**. The results indicate estimated hydraulic conductivity (K) values range between 1.3 ft/day and 5.0 ft/day in wells DMW-1S, DMW-1D, and DMW-2S, and an estimated K of 0.02 ft/day (approximately 2 orders of magnitude lower) in well DMW-2D. These data suggest that that the filter pack and/or screen interval for monitoring well DMW-1D was installed at least partially into the medium to coarse sand layer (Layer 2), and that monitoring well DMW-2D is screened entirely within the underlying silt and very fine sand and clayey silt/sand layers (Layers 3 and 4). These K values are consistent with literature values for the identified stratigraphy (medium to coarse sand and clayey silt, respectively) identified during site characterization activities (Fetter, 1994).

Figure 5.4. Geologic Cross Section Showing Shallow/Deep Paired Monitoring Wells

Table 5.6. Analysis of Groundwater Collected from Three Monitoring Wells.

				Wells	
Parameter	Method	Unit	DMW-1S	DMW-2S	DMW-1D
pH open system	YSI Field Meter	SU	5.91	4.51	4.84
pH closed system	EPA 150.1	SU	4.5	NA	4.31
Redox potential (Eh)	YSI Field Meter	mV	-113.2	50.7	-69.8
Temperature	YSI Field Meter	$^{\circ}\mathrm{C}$	15.5	16	16.1
Dissolved oxygen (DO)	YSI Field Meter	mg/L	0.25	0.35	0.27
Dissolved Hydrogen	EPA 3810, RSK-175m	μg/L	0.027	0.081	0.822
Dissolved Nitrogen	EPA 3810, RSK-175m	mg/L	14.7	15.6	13.3
Alkalinity as CaCO ₃	EPA 310.1	mg/L	82.8	5.24	6.5
Contents of anions:	EPA 300.0	_			
Chloride		mg/L	18	25.2	18.3
Sulfate		mg/L	83.3	100	99.1
Phosphate as P, ortho		mg/L	< 0.2 (U)	< 0.2 (U)	< 0.2 (U)
Nitrate as N		mg/L	< 0.2 (U)	< 0.2 (U)	< 0.2 (U)
Nitrite as N		mg/L	< 0.2 (U)	< 0.2 (U)	< 0.2 (U)
Bromide		mg/L	0.41	0.67	0.46
Sulfide		mg/L	< 0.2 (U)	< 0.2 (U)	< 0.2 (U)
Contents of metals/cations:	EPA 6010/200.7	υ	, ,	,	, ,
Iron, Ferric		μg/L	770	770	< 500
Iron, Ferrous		μg/L	5900	8200	7000
Aluminum		μg/L	1290	1770	1720
Cadmium		μg/L	< 3.0 (U)	<3.0 (U)	< 3.0 (U)
Calcium		μg/L	< 5000 (U)	<5000 (Ú)	<5000 (U)
Copper		μg/L	< 10 (Ù)	< 10 (Ù)	< 10 (U)
Lead		μg/L	< 3.0 (U)	< 3.0 (U)	< 3.0 (U)
Magnesium		μg/L	6260	8520	6430
Manganese		μg/L	74.7	98.1	68.8
Nickel		μg/L	15.6	23.1	16.3
Potassium		μg/L	<10000 (U)	<10000 (U)	<10000 (U)
Sodium		μg/L	19100	14900	14300
Zinc		μg/L	<20 (U)	29.7	<20 (U)
Total dissolved solids (TDS)	EPA 160.1	mg/L	170	164	147
Total suspended solids (TSS)	EPA 160.2	mg/L	23	6 (J)	7 (J)
Total organic carbon (TOC)	EPA 415.1	mg/L	2.81	2.79	2.76
Ammonia as NH ₃ -N	EPA 350.2	mg/L	0.32 (J)	0.26 (J)	0.26 (J)
Methane	EPA 3810, RSK-175	μg/L	119	284	77
Ethane	EPA 3810, RSK-175	μg/L	<4.0 (U)	<4.0 (U)	<4.0 (U)
Ethene	EPA 3810, RSK-175	μg/L	<5.0 (U)	<5.0 (U)	<5.0 (U)
Trichloroethylene (TCE)	SW846 8260b	μg/L	7610	9370	9450
<i>cis-1,2-</i> Dichloroethene (<i>cis-DCE</i>)	SW846 8260b	μg/L	153	212	156
Vinyl Chloride (VC)	SW846 8260b	μg/L	<42 (U)	<42 (U)	<42 (U)
Acetate	EPA 300.0m	mg/L	<1.0 (U)	<1.0 (U)	<1.0 (U)
VFA	EPA 300.0m	mg/L	<1.0 (U)	<1.0 (U)	<1.0 (U)

⁽U), Compound not detected above the indicated PQL.

⁽J), Compound detected above the calculated MDL but below the method PQL.

NA, Not Applicable.

Table 5.7. Summary of JB MDL Slug Test Results and Estimated Groundwater Velocities

	Falling	Head Tes	t (ft/day)	Rising Head Test (ft/day)			Average of	Estimated	Estimated Groundwater	Estimated Groundwater
Well	Hvorslev	Bouwer- Rice	Average	Hvorslev	Bouwer- Rice	Average	Both Tests (ft/day)	Groundwater Gradient	Velocity (ft/day)	Velocity (ft/month)
DMW-1S	1.729	1.353	1.541	1.180	0.949	1.065	1.303	0.0066	0.057	1.72
DMW-1D	NA	NA	NA	4.542	3.667	4.105	4.105	0.0066	0.181	5.42
DMW-2S	5.736	4.528	5.132	5.595	4.294	4.945	5.038	0.0066	0.222	6.65
DMW-2D	0.020	0.017	0.019	NA	NA	NA	0.019	0.0066	0.001	0.02

NA - Not Applicable

Additionally, a short-term (~3 hr) constant rate pump test was performed at monitoring well DMW-2S to further evaluate K values, as well as to estimate aquifer transmissivity (T) and storativity (S). Analyses of the pumping and recovery test data are provided in **Appendix B**. With the exception of monitoring well DMW-2D, the K values are comparable to those determined during slug testing, ranging from 4.8 ft/day to 8.7 ft/day. The K value for well DMW-2D calculated from the pump test was 4.2 ft/day, which is significantly higher than the K value estimated from the slug testing. This is most likely due to the fact that the software used to analyze the pumping test data (*Aquifer Test*) is not designed for solving pump tests in heterogeneous aquifers. With the pumping well screened above DMW-2D, and in a more conductive zone, the program/equation likely interpreted this as artificially high conductivity. The minimal amount of drawdown and the slow recovery observed at well DMW-2D, along with data collected during slug testing and well development, indicate that this well is screened within a low permeability unit. These data together suggest that the K value estimated for well DMW-2D from the slug testing is more reasonable than that determined from the pump testing software.

Historical data collected from numerous monitoring wells surrounding the demonstration area indicate that the groundwater gradient of the unconfined aquifer is relatively flat (approximately 0.0066). Using the hydraulic conductivity and groundwater gradient information collected, and an estimated effective porosity of 0.15, linear groundwater velocities for each of the four monitoring wells were calculated (**Table 5.7**). These data indicate an estimated linear groundwater velocity ranging from 0.06 and 0.22 ft/day at well DMW-1S, DMW-1D, and DMW-2S, and an estimated linear velocity of 0.001 ft/day at well DMW-2D.

The hydrogeologic testing results, along with vertical contaminant distribution data collected during the direct-push investigation, were used to select the most appropriate screen intervals for the field demonstration injection/extraction and monitoring wells. These data were also used to refine the CSM (Section 5.4.1), and in the building of a three-dimensional groundwater flow model for the demonstration area (Section 5.4.3).

5.2.4 Groundwater and Soil Geochemical Characterization

As discussed in **Section 5.2.1**, soil samples were collected from continuous soil cores for geochemical analysis. Three grab samples were collected from select intervals from soil cores DP-08-SS and DP-09-SS (**Figures 5.2 and 5.3**). Samples were analyzed for numerous parameters, as summarized in **Table 5.8**. As expected, the soil pH was acidic, ranging from pH 4.3 to 4.5 across the depth intervals, and there was no clear pH gradient or differences across the different depth profiles. The soils were relatively low in chloride and sulfate, and devoid of nitrate, nitrite, phosphate, and carbonate. Dissolved iron concentrations also were relatively low. The cation exchange capacities measured for the soils were within typical ranges for sandy or silty soils, with the highest values measured in the more permeable layers of the cores. Total organic carbon content of the soils analyzed ranged from 739 mg/kg to 26,200 mg/kg, with higher concentrations generally corresponding to the lower permeability layers, which are likely to contain more naturally occurring organic carbon than the higher permeability sand units.

Groundwater samples were collected from newly installed monitoring wells DMW-1S, DMW-2S and DMW-1D for geochemical characterization. Samples were collected in anaerobic (nitrogen purged) 18-liter sterile stainless steel closed kegs to prevent escape of carbon dioxide. The kegs were refrigerated (4°C) upon arrival at CB&I's Analytical Laboratory (Lawrenceville, NJ). Samples were analyzed for numerous parameters, as summarized in **Table 5.6**. The pH of the groundwater ranged from 4.51 to 5.91, with alkalinity ranging from 5.24 mg/L to 82.8 mg/L. The pH of 5.91 and alkalinity of 82.8 mg/L measured in DMW-1S groundwater are both significantly higher than other samples collected at the site. It is suspected that the bentonite seal or cement/bentonite grout came into contact with the well screen interval during the construction of this well, thus leading to an increase in pH and alkalinity of groundwater samples collected at this well. The pH and alkalinity measurements collected from wells DMW-2S and DMW-1D are considered more typical for this aquifer.

The groundwater samples had chloride concentrations ranging from 18.0 mg/L to 25.2 mg/L, and sulfate concentrations ranging from 88.3 mg/L to 100 mg/L. The samples were devoid of nitrate, nitrite, and phosphate. Ferrous iron concentrations ranged from 5,900 µg/L to 8,200 µg/L, while ferric iron concentrations were relatively low, ranging from non-detect (<500 µg/L) to 770 µg/L. Total organic carbon concentrations were low, ranging from 2.76 mg/L to 2.81 mg/L. Groundwater DO measured in the field ranged from 0.25 mg/L to 0.35 mg/L, and ORP ranged from -113.2 mV to +50.7 mV, respectively. These field data suggest that the aquifer is moderately reducing.

5.2.5 Geochemical Modeling

As part of the work at JB MDL, we applied the groundwater and mineralogy characterization data that were collected to geochemical models to predict how groundwater pH can be increased and to assess the impact of the pH increase on mineral precipitation. The goal of the modeling was to 1) determine at what pH the cathode water should be maintained to limit precipitation, and 2) to assess the potential for aquifer plugging as a result of mineral precipitation. Specifically, we evaluated groundwater compositions from three wells (DMW-1S, DMW-2S, and DMW-1D) with a focus on determining the pH at which mineral precipitation was predicted to occur. These computer simulations, performed using Geochemist's Workbench software

(Rockware, Golden, Colorado), computationally titrated 0.005 moles H_2 and 0.001 moles goethite into one liter of groundwater to simulate the generation of elemental hydrogen at the electrode. Increases in pH were observed in each case due to the reduction of sulfate to sulfide. Mineral precipitation results were:

- DMW-1S Pyrite precipitation starts immediately. Magnesite, calcite, and rhodochrosite precipitation start at ~ pH 8.8.
- DMW-2S Pyrite precipitation starts immediately. Brucite, calcite, and rhodochrosite precipitation start at ~ pH 10.0.
- DMW-1D Pyrite precipitation starts immediately. Brucite, calcite, rhodochrosite, and Mn(OH)₂ precipitation start at ~ pH 10.2.

Table 5.8. Analysis of Aquifer Soils Collected from Three Wells Installed During Site Characterization

					Sample Locati	ion and Dept	h	
Parameter	Method	Units	DP-08-SS 20'	DP-08-SS 20'10"	DP-08-SS 21'3"	DP-09-SS 19'6"	DP-09-SS 20'4"	DP-09-SS 20'8"
pН	EPA SW-846 9045D	SU	4.3	4.4	4.5	4.4	4.5	4.4
% Solids	SM2540B	%	88.6	74.5	76.6	87.6	74.8	76.9
Chloride	EPA SW-846 9056A	mg/kg	2.32	5.09	5.79	4.59	6.11	6.75
Sulfate	EPA SW-846 9056A	mg/kg	57.8	86.6	73.1	61.8	82.9	87.2
Nitrate as N	EPA SW-846 9056A	mg/kg	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U
Nitrite as N	EPA SW-846 9056A	mg/kg	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U
Phosphate as P, ortho	EPA SW-846 9056A	mg/kg	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U	<(0.4)U
Carbonate as CaCO ₃ *	SM2320B	mg/kg	<(2)U	<(2)U	<(2)U	<(2)U	<(2)U	<(2)U
Total Carbon	EPA SW-846 9060	mg/kg	1270	24400	16300	2820	16300	11700
Total Organic Carbon (TOC)	EPA SW-846 9060	mg/kg	739	26200	13000	3540	16600	12900
Total Inorganic Carbon**	EPA SW-846 9060	mg/kg	531	<186 (U)	3300	<182(U)	<480(U)	<154(U)
Cation Exchange Capacity (CEC)	Procedure 8-4.3 (Page, 1982)	mEq/100g	10.6	19.7	17.3	13.9	21.7	14.3
Total Fe	EPA SW-846 3050B	wt %	0.29	1.6	1.26	0.13	1.43	1.52
Fe(II)	EPA SW-846 6010C	wt %	0.12	1.26	0.95	0.04	0.57	0.65
Fe(III)	Procedure 17-3.2 (Page, 1982)	wt %	0.18	0.34	0.31	0.09	0.86	0.88
Trichloroethylene	EPA SW-846 5035B/8260	μg/kg	1560	52200	36700	918	26700	23900
Chloromethane	EPA SW-846 5035B/8260	μg/kg	149 (J)	115 (J)	123 (J)	115 (J)	97.5(J)	<1066
Minerals			Quartz	Quartz	Quartz	Quartz	Quartz	Quartz
			Biotite (Ferrian)	0 1	Wollastonite	Arsenopyrite	1 -	Sideropfyllite
			Pyrite	Lepidolite	Phlogopite	Goethite	Lepidocrocite	Cuprite
			Goethite	Pyrite	Lepidocrocite		Sideropfyllite	Cubanite
					Pyrite		Goethite	Pyrite
**C 1					Wustite		Arsenopyrite	

^{*}Carbonate alkalinity could not be determined because pH of sample was < 4.5.

^{**}Total inorganic carbon was determined by subtraction of TOC from total carbon

⁽U), Compound not detected above the indicated PQL.

⁽J), Estimated value above the calculated MDL and less than the method PQL.

Precipitation was predicted by the model to start at a lower pH with DMW-1S (i.e., shallow zone) because of the relatively higher alkalinity in this composition. However, as discussed in Section 5.2.4, the high alkalinity (82.8 mg/L) measured in DMW-1S groundwater is significantly higher than other samples collected at the site, and it is suspected that the bentonite seal or cement/bentonite grout came into contact with the well screen interval during the construction of this well, thus leading to an increase in pH and alkalinity of groundwater samples collected at this well. Additionally, precipitation of calcite in the model was probably overestimated because calcium concentrations in all three samples were non-detectable, so a surrogate concentration equal to the reporting limit of 2 mg/L was assumed in the simulations. Lower calcium concentrations would put off calcite precipitation until pH conditions higher than the values shown above are established. Magnesium and manganese concentrations were detectable, so magnesite, brucite, and rhodochrosite were predicted to become oversaturated at the pH values The graphs presented below (Figure 5.5) show the onset and cumulative precipitation of each mineral (in cm³) as a function of pH, on a per-liter of groundwater basis. These results suggested that attempts should be made to maintain the pH of water leaving the cathode well at pH <9 to minimize precipitation.

Even if precipitation did occur in the JB MDL aquifer, however, the modeling showed that the volume of precipitates would be fairly low because the Ca, Mg, and Mn concentrations in the groundwaters are low. For higher permeability zones of the aquifer, reasonable amounts of precipitation could occur without a significant decrease in permeability. However, for areas of the formation that had low permeability, a small amount of precipitation could have a greater effect on reducing the permeability. The precipitation of pyrite (or other iron sulfides) would be favorable for the abiotic degradation of the cVOCs, but the precipitation of carbonate and hydroxide minerals would reduce the formation porosity and provide no benefit. Based on these results, we attempted to operate the proton reduction system so that groundwater within the cathode well remained at pH <9. This was controlled by adjusting the current to the cathode.

Figure 5.5. Examples of Geochemical Modeling Performed to Evaluate Potential Mineral Precipitation

5.3 TREATABILITY AND LABORATORY STUDY RESULTS

5.3.1 Buffer Testing

Laboratory studies were performed to analyze the aquifer soils and groundwater to evaluate the amount of H⁺ consumption or base addition required to adjust the aquifer pH and then maintain it at circumneutral. These data were then used to estimate the potential impact of proton reduction technology on the aquifer pH, and to estimate the amount of time that would be required to increase the pH of the aquifer downgradient of the proton reduction system cathodes (location of proton reduction and OH⁻ production).

Buffering tests were conducted using groundwater alone as well as groundwater-soil slurries in closed bottles to avoid changes of pH due to loss of carbon dioxide gas. groundwater were added to 125 mL bottles, and the bottles were immediately closed with a rubber septa and plastic cap that had a hole for insertion of a pH probe. Buffering capacity tests were performed by titration. For soil and sediment slurries, samples of soil and groundwater at a soil:water ratio of 1:6 (w/w) were added to 250 mL glass bottles. The bottles were closed and slurry was mixed and stored at 15°C for three weeks to allow equilibration of the slurry. The neutralizing agents (i.e., titrants), including NaOH, NaHCO3 and KHCO3 at 2, 8, and 20%, respectively, were used as the titrants and added stepwise to bottles containing groundwater or slurry using a syringe and needle inserted through the septa. The samples were titrated with continuous mixing to the required pH value. The buffering demand per liter of groundwater expressed either as equivalents of OH- or as the amount of required buffering agent to reach the required pH value was determined. The soil buffering demand per kg of dry soil was calculated by subtracting the groundwater demand from the slurry demand. Soil samples were also analyzed for soil moisture and calculation of the dry weight to further aid in calculating buffering capacity.

Results of representative groundwater and soil titrations are shown in **Figures 5.6** and **5.7.** Some variability was identified between samples, and even in triplicate samples from the same location (**Figure 5.7**, left graph), especially if there was a difference in turbidity. Samples with trace amounts of suspended soils (i.e., turbidity) had measurably greater acidity. The addition of soil to the groundwater to create a slurry reduced the initial pH of the sample by approximately one pH unit, and required greater base addition to neutralize the pH. Testing results indicated that approximately 16-24 mM bicarbonate was required to adjust the pH in the aquifer to 6.5 SUs.

Figure 5.6. Analysis of Buffering Capacity of Groundwater Collected from Two Demonstration Area Wells at JB MDL.

The results demonstrate that approximately 4 mM of OH was required to increase the groundwater pH to 6.5. This experiment did not take into account the impact of site soil in pH buffering.

Figure 5.7. Analysis of Buffering Capacity of JB MDL Aquifer Samples.

The left graph shows the results of titrating triplicate samples of groundwater collected from well DMW-1D with sodium bicarbonate. The graph on the right shows the results of a similar titration where 168 g of site soil collected from different depth intervals was added to the same groundwater.

5.3.2 Treatability Testing

A laboratory treatability test was performed with anaerobic soil and groundwater samples collected during site characterization activities (Section 5.2.1). The objective of the treatability testing was to demonstrate that the contaminants can be degraded under site, or modified site, conditions, and to evaluate the need to augment the site with an exogenous cVOC-degrading culture. The study involved a serum vial (i.e., microcosm) test that compared dehalogenation under ambient and circumneutral pH. Microcosms were constructed from site soil and groundwater. pH adjustment was performed by adding potassium carbonate. The study evaluated dehalogenation, homoacetogenesis, methanogenesis, and H₂ consumption, and also compared the activity of indigenous microbes to the indigenous population supplemented with a bioaugmentation culture. The microcosms were fed H₂ to mimic the use of cathodic hydrogen. Previous attempts to mimic electrolytic H₂ production in laboratory systems have proved challenging because of electrolytic destruction of VOCs by the electrodes even in poisoned control microcosms. pH adjustment by electrolysis and PR was performed during electrode testing (Section 5.3.4).

5.3.2.1 Treatability Study Methods

Soil Preparation. Cores were stored at 4°C until study set up. At the time of set up, cores were placed in a Coy anaerobic chamber with a 100% nitrogen gas headspace. Inside the chamber the end caps were removed from each core. Two slits were then cut down the length of each core on opposite sides, and the core was opened by removing one piece of the acetate sleeve. Soil was separated into three categories: medium-coarse sand, clay/fine sand above the medium-coarse sand, and clay/fine sand below the medium-coarse sand. The sand from each category was homogenized manually using a modified cone and quarter technique.

Microcosm Setup. Soil used for treatability testing consisted of a 50/50 mixture of medium-coarse sand and clay/fine sand from below the medium-coarse sand layer. Twenty grams of this soil mixture was placed anaerobically into each of 40 serum bottles (total volume = 160 mL). Amendments were added as detailed in **Table 5.9.** Eight different treatments were prepared. Site groundwater was added to fill the bottles completely, assuring that no headspace was present. One mL of groundwater was then removed from each bottle to yield a 1 mL headspace. Microcosms were sealed with Teflon-lined butyl rubber stoppers and aluminum crimp seals, and were placed on their sides with gentle shaking at 14°C.

Microcosm Sampling. Microcosms were removed from the shaker and placed upright in the anaerobic chamber. The bottle contents were given sufficient time to settle, usually 30 min., prior to sampling. To sample, the crimp seal was removed from triplicate bottles. The septa were then briefly removed, and groundwater samples were removed and pipetted into glass vials preserved with hydrochloric acid for VOC, reduced gas, and hydrogen analysis. Glass beads were added to the bottle to replace the liquid volume removed, i.e., to keep the bottles consistently at 1 mL headspace. Samples from a fourth bottle were removed in the same manner and immediately analyzed for pH and ORP via a probe and meter. A 5 mL sample was filter sterilized by passing through a 0.2 μ M nylon syringe filter and analyzed for volatile fatty acids (VFAs) and anions. Bottles were sampled weekly for the first five weeks of incubation, and at selected timepoints thereafter.

Table 5.9. Treatments Evaluated During Microcosm Testing

	Treatment	Additions	Evaluation
1	Hydrogen gas	H_2	Dehalogenation and methanogenesis by native bacteria
2	Killed control	H ₂ , formaldehyde (1%)	Abiotic losses
3	Bioaugmentation + pH adjustment	SDC-9 (final OD ₆₆₀ = 0.01), carbonate (to achieve pH \sim 6.7), H ₂	Dehalogenation and methanogenesis with pH adjustment and bioaugmentation
4	Hydrogen gas + pH adjustment	carbonate, H ₂	Acetogenesis, methanogenesis and dehalogenation by native bacteria
5	Bioaugmentation + H ₂ + acetate + pH adjustment	SDC-9, carbonate, H ₂ , acetate (1000 mg/L)	Need for acetate addition for DHC growth
6	Bioaugmentation + lactate + pH adjustment	SDC-9, carbonate, lactate (1000 mg/L)	Carbon source vs. H ₂
7	No VOCs	SDC-9, carbonate, H ₂ . VOCs were removed from the groundwater used for this treatment by sparging the water with nitrogen gas for 30 minutes	Acetate and methane production
8	No Additions (Live Control)	None	Changes in natural population

5.3.2.2 Treatability Study Results

Results of the treatability study are summarized in **Figures 5.8** to **5.10**. Microcosm results demonstrated that H₂ addition and pH adjustment can support reductive dehalogenation of TCE in JB MDL aquifer samples provided a bioaugmentation culture is applied. Furthermore, H₂ was able to support the production of acetate needed for growth of dechlorinating bacteria.

TCE was not degraded in microcosms that received no additives, and only a very small amount of *cis*-DCE was produced in microcosms that received only H₂ as an electron donor with no pH adjustment (**Figure 5.8**). Likewise, TCE was not effectively degraded in microcosms that received H₂ as an electron donor and were adjusted to pH 7 (**Figure 5.8**). These results suggest that the indigenous bacteria at the test site were unable to efficiently dechlorinate TCE, even after pH adjustment. We have previously demonstrated that dehalogenation activity of a *Dehalococcoides*-containing culture was almost completely inhibited below pH 5.5 (Vainberg et al. 2009), but existing site data, including the existence of some *cis*-DCE, suggests that some residual dechlorination activity might be expected in the aquifer samples. Lacroix et al. (2014) observed partial dechlorination of PCE to *cis*-DCE, due to the apparent activity of a *Sulfurospirillum* strain in the tested culture, at pH 5. Complete dechlorination in that study, however, was only was observed in samples incubated at >pH 6. Thus, although some microbes capable of partial TCE dechlorination likely reside in the JB MDL test site, organisms capable of complete TCE dechlorination are absent or in very low numbers.

Figure 5.8. Results of Laboratory Treatability Testing at Low pH on Samples from the JB MDL Aquifer.

The results demonstrate that the native microbial population is unable to completely dehalogenate TCE, even with pH adjustment and H_2 addition. Symbols represent the mean of triplicate samples, and error bars represent the standard error.

TCE was dechlorinated to ethene in microcosms that were adjusted to pH 7, bioaugmented with the SDC-9 culture, and fed H₂ as an electron donor (**Figure 5.9**). TCE was rapidly biodegraded to below the method detection limit (MDL) by 4 weeks of incubation in the bottles that received hydrogen gas and SDC-9. The TCE breakdown products cis-DCE, vinyl chloride (VC), and ethene also were generated. Cis-DCE was formed transiently, before also being biodegraded to below the MDL. VC was partially degraded to ethene before degradation ceased.

The fact that ethene was generated indicates that SDC-9 is capable of degrading TCE completely to ethene under site conditions following pH adjustment, although the reason for the decrease in degradation activity near the end of the incubation period is unclear. Possible reasons include nutrient limitations or bottle effects (e.g., buildup of toxic products in the microcosm bottles that would normally be diluted and dispersed in the groundwater of an open system). The addition of a nutrient solution after 6 weeks of incubation appeared to enhance VC dechlorination slightly, and VC dehalogenation in microcosms that received acetate as a carbon source for DHC produced slightly more ethene than bottles that did not receive acetate. This increase in ethene production, however, was probably not directly related to the added acetate because acetate was produced in microcosms augmented with SDC-9 (**Figure 5.10**).

Figure 5.9. Results of Laboratory Treatability Testing at Neutral pH on Samples from the JB MDL Aquifer.

The results demonstrate that complete dehalogenation of TCE to ethene can be achieved with bioaugmentation, pH adjustment, and H₂ addition. The microcosm study was terminated after 7 weeks due to significant depletion of microcosm volume from sampling. Symbols represent the mean of triplicate samples and error bars represent the standard error.

The ability to produce acetate is critical when H₂ is used as a sole electron donor source because acetate is an obligate carbon source for DHC growth (Maymó-Gatell et al., 1997; Löffler et al., 2013). Homoacetogenic bacteria are able to generate acetate during growth on H₂ (Conrad and Wetter, 1990), hence, acetate production also was evaluated during the microcosm tests. Acetate was not generated in microcosms receiving only H₂, with or without pH adjustment (**Figure 5.10**).

Acetate was produced, however, in microcosms that received pH adjustment and the SDC-9 bioaugmentation culture. This suggests that the SDC-9 culture contains homoacetogenic bacteria and that these organisms could be expected to provide acetate to support the growth of DHC *in situ*. The presence of cVOCs in the aquifer samples was not inhibitory to acetate production.

Figure 5.10. Acetate and Methane Formation during Laboratory Treatability Testing on Samples from the JB MDL Aquifer.

Microcosms designated "no VOCs" were identical to the " H_2 + Bioaug.+ pH adjustment" microcosms, except that they were stripped with nitrogen prior to incubation to evaluate the impact of high VOC concentrations in the samples on acetogenesis and methanogenesis. The results demonstrate that acetate can be formed via homoacetogenesis by members of the SDC-9 consortium used for bioaugmentation. Only trace amounts of acetate were produced by the native microbial population.

We also evaluated methane production in the microcosms. Methanogenesis is a redox indicator that can confirm that sufficiently low redox potentials are being achieved to support complete reductive dechlorination of cVOCs. Methanogenesis, however, also can be a sink for H₂ and acetate, and previous studies investigating the injection of H₂ gas into aquifers to support cVOC dechlorination have observed that the consumption of H₂ by methanogens can result in poor hydrogen distribution (Ma et al., 2006) and competition for dehalogenating bacteria, especially if H₂ concentrations *in situ* exceed 100 nM (Ballapragada et al., 1997; Löffler et al., 1999; Yang and McCarty, 1998). During the microcosm study, high concentrations of methane were produced in microcosms augmented with SDC-9, even in the presence of the high cVOC concentrations in the aquifer samples (**Figure 5.10**). These levels of methane production were not unexpected, as the H₂ concentration was at saturation levels due to the presence of H₂ gas in the microcosm headspaces, and because the SDC-9 culture is known to contain methanogenic bacteria (Vainberg et al., 2009).

Overall, the microcosm tests provided several valuable pieces of information to assist in the performance of the field demonstration. They demonstrated that both pH adjustment and bioaugmentation were required to support complete TCE dechlorination under the site conditions present in the JB MDL aquifer. They also demonstrated that the addition of H2 alone could support complete TCE dechlorination through its use in the production of acetate by homoacetogens in the SDC-9 culture and as an electron donor for reductive dechlorination by DHC. H2 addition and consumption also supported the generation of sufficiently low redox potentials needed for complete dechlorination as indicated by the production of methane in the microcosms. Importantly, neither TCE dechlorination nor acetogenesis appeared to be inhibited by the high cVOC concentrations present in the aquifer. The microcosm tests also demonstrated that methanogenesis, and presumably competition for H2 by methanogens, might be expected during the field demonstration, especially if H2 concentrations become elevated.

5.3.3 2D Flow Cell Testing

In addition to microcosm studies, a simple 2D flow cell was constructed to evaluate cathodic and micro-capacitor proton reduction (**Section 2.1.2**) and to evaluate the transport of cathodic and micro-capacitor H₂ and changes in soil pH (**Figure 5.11**). The flow cell was constructed with Lexan and had dimensions of ~50 cm x 50 cm x 3 cm, with a cover to prevent escape of gases. Plenums were constructed at the influent and effluent ends (bottom and top, respectively) of the cell to generate even distribution of groundwater flow through the cell. The cell was filled with low permeability soils collected from the demonstration site during site characterization activities (**Section 5.2.1**). Two electrodes (0.1" NiTi wire) were installed near the bottom corners of the cell, as shown in **Figure 5.11**. The electrode on the left side of the cell was operated as a cathode, and the electrode on the right side was operated as an anode. Twenty sampling ports were installed throughout the flow cell for collection of H₂, pH, and tracer samples. Five of these sampling ports (D1 through D5) were installed directly between the electrodes to monitor for possible reactions occurring on the soil between the electrodes. Additionally, samples were collected and analyzed for acetylene, an indicator of abiotic degradation of VOCs.

Results of the study are shown in **Figure 5.12**. The cell was operated at 20 V and 4 mA. Calculated H_2 production was 0.15 mg/hr H_2 , and calculated OH^- production was 1.5 x 10^{-4} mg/hr OH^- . This proton consumption and OH^- production resulted in changes in groundwater pH that allowed neutralization of soil and groundwater acidity near and downgradient (upward in the 2-D cell) of the cathode. Likewise, H_2 generated at the cathode was transported downgradient of the cathode, with concentrations as high as 217 μ g/L being measured at one of the sample ports downgradient of the cathode. There was no clear evidence that H_2 was being produced at locations in the test cell other than at the cathode. There were periodic detections of low levels of H_2 throughout the cell, but the source of this H_2 is not known.

The amount of current generated in the test cell (4 mA) was considerably lower than was expected in the field (~250 mA) because of the greater electrode surface area in the field and better conductivity in naturally-packed soils. Because the amount of current produced determines the amount of protons that can be reduced, these results suggested that even greater acid consumption and soil neutralization might be expected in the field. Thus, based on the results of this laboratory experiment, we anticipated that we would be able to consume enough acid and produce sufficient base to create a neutralized downgradient treatment area.

The creation of this treatment area *in situ*, however, would still partially rely on the adequate distribution of OH⁻ from the cathode well, which is dependent primarily on groundwater transport.

Figure 5.11. Representation and Photos of a 2D Flow Cell to Evaluate Microcapacitor-Generated H2.

The cell is filled with aquifer soil from the JB MDL site, and groundwater is being passed through the cell while a current is applied between the electrodes.

Figure 5.12. Hydrogen Production and pH Changes in the 2D Proton Reduction Flow Cell.

The cell was operated at 20 V and 4 mA. Calculated H_2 production was 0.15 mg/hr H_2 , and calculated OH^- production was 1.5 x 10^{-4} mg/hr OH^- . Red numbers in the boxes on the figure indicate hydrogen concentration (µg/L). The pH contours were drawn by hand.

5.3.4 Electrode Testing

A key component of the PR system is the electrode material used in the subsurface for electrochemical reactions. Previous field scale applications of the proton reduction technology have relied on the use of a variety of electrodes including copper wire, titanium filings, and nickel/titanium wires. Corrosion and failure of the electrodes has been a limitation of the technology, and the most recently used electrodes (0.1 in. NiTi wires) have exhibited failure after 6 to 12 months of operation.

Just prior to the start of this project, Gilbert and co-workers (2008) submitted an addendum to their SERDP final report (CU-0112) in which they report the results of extensive electrode testing. In addition, significant work on cathode development has been performed in recent years for the production of H₂ in microbial fuel cells (c.f., Cheng and Logan, 2007; Selembo et al., 2009). Several electrode options are available, including: 1) carbon steel Geoprobe rods; 2) 0.1" diam. titanium nickel wire as used in in some early CB&I systems; 3) A625 wire as used in microbial fuel cells (Selembo et al., 2009); 4) stainless steel wire/rod; 5) carbon cloth, 6) graphite felt (**Figure 5.13**), 7) steel cable, and 8) mixed metal oxide-coated titanium wire and mesh (MMO electrodes) (**Figure 5.13**).

Figure 5.13. Photographs of Two Tested Electrode Materials.

Top, Elgard 150 mixed metal oxide coated titanium mesh. Bottom, graphite felt.

Carbon steel direct-push rods have an advantage in that they can be easily installed and/or moved between locations, and do not require well installation. However, carbon steel has been shown to corrode faster during use than some other metals. Titanium/nickel and A625 wire resist corrosion and are likely to require less frequent replacement. Stainless steel wire and steel cable are inexpensive, but may need frequent replacement. Gilbert et al. (2008) tested several of these options and concluded that MMO electrodes had many advantages, including cost, that make them well suited for *in situ* applications.

Laboratory testing of several of the materials listed above was performed by CB&I to aid in electrode material selection. The design of tests was incorporated in a treatability study plan submitted to ESTCP. The laboratory tests involved constructing a laboratory test cell for evaluating electrode performance (**Figures 5.14** and **5.15**). The system had 2 electrode chambers connected by an agarose salt bridge. Each electrode chamber was connected to Tedlar bags for capturing gas produced by the electrodes, and ports for collecting the contained water for measuring pH and dissolved gas. The electrodes were connected to a power supply that allowed maintenance of a constant DC voltage or current.

Figure 5.14. Schematic of Test System Used to Evaluate Electrode Performance

Figure 5.15. Photos of Electrode Test Cell (left) and Close-up of Elgard 150 Electrode during Testing (right)

To test the electrodes, each electrode material was cut into suitable sized pieces, weighed, attached to the electrode lead, and suspended into the electrode chamber. Artificial groundwater was placed in the electrode chambers and the chamber covers with gas collection ports were emplaced. The electrodes were generally operated at 5V DC. Changes in voltage and current were monitored daily, and pH of the ground water was measured at least weekly. H₂ in the cathode chamber collection bag was estimated by removing the gas with a calibrated syringe.

Dissolved H₂ in the water was measured by gas chromatography. The transparency of the electrode chambers (**Figure 5.15**) allowed for monitoring of precipitates/scale forming on the electrode surfaces. After ~60 days of operation, the electrodes were removed, soaked in a weak acid solution to remove scale, dried, and weighed to evaluate % corrosion of the electrodes. Electrodes used for field demonstration would be those that 1) provide sufficient H₂ throughout the tests, 2) exhibit the least corrosion during the test period, and 3) are most cost effective in terms of initial purchase price, expected period of performance, and ease of deployment and replacement.

The two materials that performed the best during testing were the mixed metal oxide-coated titanium (Elgard 150) and the graphite felt. Both of these materials resisted corrosion, provided sufficient H₂ during testing, and exhibited excellent current density at a given potential. While the graphite felt material is most cost effective (~ \$1.00/linear ft), it requires manual cutting to the desired width, may not be available in sufficient lengths for field application, and is likely to be harder to install in the field. Additionally, this material was shown during testing to create a "wicking" action which saturated the entire length of the felt above the water column, and lead to corrosion of the wire used to connect to the top of the graphite felt electrode. Therefore, based on the results of the testing (**Figure 5.16**), and prior work by Gilbert and colleagues (2008), it was determined that the Elgard 150 material was most suitable for long term proton reduction field application. The properties and specifications of Elgard 150 are provided in **Appendix C**. The material is also cost effective (~\$2.00/linear ft) and is easy to handle in the field.

Figure 5.16. Results of Elgard 150 Electrode Material Testing

5.4 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS

5.4.1 Conceptual Site Model

The Site hydrogeologic and geochemical data collected during site characterization activities (Section 5.2) were used to construct the CSM. The CSM indicates that groundwater and dissolved contaminants flow preferentially in an eastern horizontal direction (Figure 4.2) through the high permeability medium-coarse sand layer (Layer 2, Figure 4.3). Some of these contaminants have diffused (or continue to diffuse) into the underlying silt and very fine sand layer (Layer 3), and the upper portion of the lower permeability clayey silt/sand layer (Layer 4). The direction of vertical diffusion is dependent on the concentration gradient between these layers. However, based on the soil VOC data collected, it is likely that, in addition to upgradient sources, Layer 3 and the upper portion of Layer 4 act as continuing sources of contamination to Layer 2 (i.e., back-diffusion is occurring). Site characterization data indicate that Layer 1 has low levels of contamination, when compared to Layers 2 and 3, and Layer 5 exhibits no contamination in the demonstration area. Therefore, *in situ* treatment during this demonstration focused on Layers 2 and 3. However, the upper portion of Layer 4 was also monitored to determine if H₂ can be distributed or produced within this clayey silt/sand material.

5.4.2 Design Calculations

The amount of electrical current needed to increase aquifer pH and to produce sufficient amounts of H₂ for biological reductive dechlorination of cVOCs was calculated by applying Faraday's law (**Figure 5.17**). Assuming a current of 500 mA, and applying Faraday's Law, the rate of H₂ production at each cathode was calculated to be 9.5 mmoles per hour (approximately 0.22 L per hour). This rate of H₂ production was estimated to exceed the molar quantity needed to treat the expected flux of chlorinated ethenes migrating adjacent to the cathode. Yang and McCarty (1998) and Ballapragada and colleagues (1997) have demonstrated that cVOC degrading bacteria have a high affinity for H₂, and that even H₂ concentrations as low as 2 nM can support reductive dechlorination. In addition, this rate of H₂ production is approximately equal to the rate of hydrogen consumption measured in a test aquifer volume of 750 ft³ (5400 gallons) during a hydrogen biosparging test for treatment of PCE (Aziz, 2003). Thus, the H₂ generation rate provided by the cathode was expected to be sufficient to stimulate microbially-enhanced reductive dechlorination of TCE.

The extent to which dissolved H₂ migrates downgradient of the cathode is dependent upon the groundwater velocity and the site-specific H₂ utilization rate. Both of these parameters was estimated (via bench scale testing and measurement of hydraulic gradients/conductivities) prior to final design of an *in situ* system. Based on reported rates of *in situ* dissolved H₂ consumption (0.8 mM H2 per day) (Ma et al., 2006) and the *in situ* solubility of H₂, H₂ was expected to persist in groundwater (downgradient of the cathode) for approximately 2 to 3 days. If groundwater velocity is slow at a selected site, H₂ will not be distributed far during this period of time. Thus, use of groundwater re-circulation to enhance flow may be required to facilitate the downgradient migration/distribution of dissolved H₂.

The rate of hydroxide production, assuming 500mA and applying Faraday's Law, was calculated to be 19 mmoles per hour (**Figure 5.17**). Based on the measured buffering capacity of the groundwater and soils in the target aquifer and the groundwater velocity in the aquifer, the amount of time needed to neutralize a portion of the aquifer downgradient of the cathodes, i.e., the treatment zone, was estimated. Using data obtained from the groundwater modeling and laboratory buffering capacity testing, it was estimated that 8 to 16 weeks of system operation would be required to raise the groundwater pH within a 5-ft zone downgradient of the cathode to greater than pH 6 (assuming a sufficient groundwater flow velocity).

Figure 5.17. Graphs of Calculated H2 and OH- Production.

Calculated maximum amount of H_2 and OH that could be produced at the electrode at a given current (top), and the corresponding equivalent amount of NaOH represented by the OH produced (bottom).

5.4.3 Groundwater Modeling

As discussed in **Section 5.2.3**, the linear groundwater velocity in the demonstration area was estimated between 22 to 80 ft/year. This groundwater velocity was determined to be too slow to effectively evaluate the technology during the planned demonstration period of approximately one year. Therefore, it was decided to increase groundwater velocity by performing groundwater recirculation within the demonstration area. The demonstration test and control plots would be installed inside the groundwater recirculation zone. Groundwater modeling was performed to determine the optimal number of injection and extraction wells, well spacing and screen intervals, and optimal pumping rates.

Preliminary modeling for the conceptual system design was based on a MODFLOW/RT3D simulation using data from the preliminary site characterization. The recirculation model consisted of a six layer model based on the 5 layer site stratigraphy. The top layer was split into 2 layers to improve the model's functionality. The layers are summarized in **Table 5.10**. Model simulations were run with both 1 and 2 extraction and injection wells spaced at 25 and 30 ft apart. The model was run in both steady state or transient mode, and total system extraction and injection rates were varied between 0.5 gpm, 0.75 gpm and 1 gpm. The MODPATH module was used to perform particle tracking and to establish groundwater travel times between the injection and extraction wells.

Preliminary system design includes the following:

- Location and screen intervals for injection and extraction wells
- Injection/extraction well flow rates
- Location of additional monitoring wells
- Location of electrodes.

Table 5.10. Description of Stratigraphic Layers Used to Construct the Demonstration Area Groundwater Model.

Layer	Top of Layer Elevation (ft MSL)	Layer Thickness (ft)	Estimated Hydraulic Conductivity (ft/day)	Geologic Description
1	115	16.8	1	Silty fine sand w sandy/silty clay and silt interbeds
2	98.2	2	1	Silty fine sand w sandy/silty clay and silt interbeds
3	96.2	1.2	5	Medium to coarse sand
4	95	2	0.03	Silt and very fine sand
5	93	7.5	0.003	Clayey silt/sand
6	85.5	5.5	1	Fine sand

Results of the preliminary modeling demonstrated that the use of two extraction and injection wells provided the most even flow across the test plot area and the best ability to capture the test plot groundwater to prevent pushing the treated water away from the test site.

A groundwater extraction rate of 0.5 gpm split between two extraction wells provided better groundwater distribution than using one extraction well. Groundwater travel times between the extraction and injection wells could be varied between 15 and 50 days depending on the groundwater extraction rates and well configuration. Some of the results of the groundwater modeling are presented in **Figure 5.18**.

Figure 5.18. Demonstration Site Groundwater Modeling Results.

The top figure represents the site without groundwater recirculation, and the bottom panel shows the results of particle tracking under a flow rate of 0.5 gpm using 2 extraction wells and 2 injection wells spaced 30 ft apart. The distance between the arrows represent ~10 days of travel.

5.4.4 Demonstration Layout

As discussed above, groundwater velocities were determined to be too slow (approximately 2-6 ft per month in the highest permeability layer) to allow for effective short-term monitoring during the course of the demonstration. Therefore, a groundwater recirculation system was installed and operated to force the groundwater gradient through the test plot and control plot, thereby speeding up groundwater velocities and allowing for more effective performance monitoring. Results from the groundwater model were used to determine spacing between extraction and injection wells and an estimated groundwater recirculation rate to achieve a travel time through the plots of approximately 50 days (**Figure 5.18**). Based on CB&I's experience, including bioaugmentation work performed at JB MDL during ESTCP project ER-0515, 50 days of residence time was determined to be more than sufficient for complete dechlorination of TCE to occur.

Two extraction wells (EW-1 and EW-23) and two injection wells (IW-1 and IW-2) were installed as part of a groundwater recirculation system designed to increase groundwater velocity through the demonstration test plot. Additionally, one extraction well (EW-3) and one injection well (IW-3) were also installed to increase groundwater velocity through the demonstration control plot. The test plot and control plot were both the same length, with 30 ft between injection and extraction wells (**Figure 5.19**). However, the test plot was approximately twice the width of the control plot, to allow for additional monitoring locations, and to allow for the monitoring of treatment effectiveness between cathode wells. Submersible pumps were installed in each of the extraction wells, and the extracted groundwater was pumped upgradient to the corresponding injection well (i.e. EW-1 to IW-1) in a closed loop, for a total of three recirculation loops. As discussed in **Section 5.5.3** (System Operation), modifications were made to the system configuration and operation during the demonstration.

Multiple monitoring well screen intervals were selected based on data collected during the site characterization activities discussed above. These intervals are shown in **Figure 5.20**, and include Layers 2 and 3, which contain the bulk of the contaminant mass. Layer 4 was also monitored to determine if hydrogen could be distributed or produced within this clayey silt/sand material, as distribution via groundwater flow is expected to be negligible. Solinst Continuous Multichannel Tubing (CMT) wells were installed at each location, so that two to three discrete zones could be monitored at each horizontal location. As shown on **Figure 5.19**, eleven MLS monitoring wells ("PMW" identifier), constructed with either two or three discrete one-ft screen intervals, were installed for performance monitoring. Additionally, upgradient MLS well BMW-1S/I/D was installed for monitoring untreated groundwater moving into the demonstration area (background well).

As shown on **Figure 5.19**, most of the MLS monitoring wells were spaced at varying distances between the injection and extraction wells (generally 7.5, 15, and/or 22.5 ft downgradient of the injection well). This was intended to provide performance data at varying groundwater travel times from the cathodes. MLS monitoring well PMW-3S/I/D was used to monitor the middle of the test plot to determine if pH adjustment and contaminant reduction was occurring downgradient and between the cathode wells (CW-1 and CW-2). MLS monitoring wells PMW-7S/I/D and PMW-8S/I/D, (spaced 2.5 and 5 ft side-gradient of cathode well CW-2, respectively), were used to determine if H₂ production and pH control was occurring between the cathode and anode wells. MLS monitoring well PMW-9S/I/D was intended to monitor the effects on aquifer geochemistry (particularly pH levels) downgradient of cathode well AW-2.

As exhibited on **Figure 5.19**, the anode and cathode wells were spaced approximately 10 ft apart, and perpendicular to groundwater flow. For this demonstration we spaced the electrodes and monitoring wells so that we could collect sufficient biodegradation, pH, and H₂ distribution data during an approximately 50 day flow time through the test plot. The demonstration consisted of a test plot comprised of 2 cathode wells (CW-1 and CW-2) and 2 anode wells (AW-1 and AW-2), and a control plot comprised of 1 cathode well (CW-3) that shared an anode well with one of the test plot anodes (AW-2) (**Figure 5.19**). The anodes were placed approximately 3 ft further to the east (downgradient) of the cathodes to prevent possible influence on a subsurface natural gas line located approximately 50 ft west (upgradient) of the demonstration plots during system operation.

In this system, acid was consumed and OH⁻ was generated at the cathodes, and high pH water would flow from the cathode wells into the test plot. The proton reduction approach allows for electrodes to be "turned down" or off in order to reduce acid consumption and OH⁻ generation. Additionally, the polarity of the electrodes can be switched to control spatial variability in pH. That is, the cathodes can temporarily become anodes to produce some acid to prevent very high pH levels. In fact, in our previous field applications of this technology, electrode polarity was changed regularly to control pH swings in the aquifers because adjusting the groundwater pH was not the objective of the treatment, but rather an undesirable consequence. Conceptually, this approach equates to controlling base addition rates. Additionally, with proton reduction, groundwater flow distributes the dissolved H₂ needed for reductive dechlorination. Therefore, like any other enhanced *in situ* anaerobic bioremediation technology, the distribution of the electron donor is controlled by groundwater flow and aquifer geology.

Although the proton reduction system was operated using solar power, it was determined that the groundwater recirculation system would require too much power to operate economically via solar power. Therefore, electrical service was obtained from Building 2304, located adjacent to the demonstration area. As discussed above, the groundwater recirculation system was only used to force the groundwater gradient through the test plot and control plot, because groundwater velocities were determined to be too slow to allow for effective short-term monitoring during the course of the demonstration. It should be noted that a groundwater recirculation system would not be required during full scale (longer term) operation of a proton reduction system.

Figure 5.19. Plan View of the Proton Reduction Demonstration Plots in Area SS-36

Figure 5.20. Cross Sectional View of the Proton Reduction Demonstration Test Plot

5.4.5 Electrode Installation

The five electrode wells were installed using the Hollow Stem Auger (HSA) drilling method. These wells served as both monitoring wells and electrodes, and were constructed as a typical monitoring well. These wells were constructed with flush-threaded, 2-inch diameter, Schedule 40, PVC riser and 15 ft of 0.010-inch slotted PVC well screen. Wells screen intervals were from approximately 13.5' to 28.5' bgs and transected Layers 1 through 4 (**Figure 5.20**). The filter pack for each well consisted of #1 Morie sand extending to 3.0 ft above the top of screen. The remaining annular space was filled with bentonite chips emplaced to within 2 ft of the surface. A summary of the as-built well construction details are provided in **Table 5.11**.

Based on the work of Gilbert and colleagues (2008) and in our own laboratory (Section 5.3.4), the electrodes installed in our field demonstration system were mixed metal oxide coated Elgard mesh electrodes (Figure 5.21). The electrodes were cut to length in the field so that they extended from a lead (16 gauge copper wire) near the bottom of the well cap to the bottom of the electrode well. The electrical lead was coiled at the top of the mesh electrode and wrapped with electrical tape to relieve stress on the lead connection, and to prevent loss of the electrode if the lead corroded (Figure 5.22). A large, stainless steel nut was attached to the bottom of the electrode to provide weight during installation and to insure that the electrode rested on the bottom of the well. The connection between the lead and the electrode, and any exposed wire, was painted with Plasticoat to prevent exposure to moisture and prevent corrosion of the lead or connection.

The electrode wells were capped with custom made well caps (**Figure 5.22**) that have a pass through for the electrode lead and sampling ports and that allow sampling of groundwater and gasses without removing the cap and electrode. A junction box was installed above the cap to allow safe connection of the electrode lead to the power source. The wells were completed in covered, rectangular plastic flush-mount vaults (**Figure 5.22**).

All well installations were performed by a New Jersey licensed driller and supervised by a CB&I geologist. Upon completion, all wells were thoroughly developed to remove fines. Well installations and development were performed between August 11 and September 16, 2011. All investigation-derived waste (IDW) was containerized and staged in the demonstration area, characterized, and disposed of off-site. Each completed well was surveyed by a licensed surveyor to determine its horizontal location to within ± 1 ft, and the elevation of the top of the inner PVC well casing to a ± 0.01 ft precision.

Table 5.11. Summary of As-Built Electrode, Extraction, and Injection Well Construction Details

WELL ID	GROUND SURFACE ELEVATION (FT MSL)	TOP OF CASING ELEVATION (FT MSL)	WELL DIAMETER (IN)	BOREHOLE DIAMETER (IN)	TOP OF SCREEN (FT BGS)	BOTTOM OF SCREEN (FT BGS)	TOP OF FILTER PACK (FT BGS)	BOTTOM OF FILTER PACK (FT BGS)	TOP OF SEAL (FT BGS)	BOTTOM OF SEAL (FT BGS)
EXTRACTIO	N WELLS									
EW-1	115.49	114.89	4.0	10.0	18.0	28.0	15.0	28.0	3.0	15.0
EW-2	115.37	114.85	4.0	10.0	18.0	28.0	15.0	28.0	3.0	15.0
EW-3	115.49	114.83	4.0	10.0	17.8	27.8	14.5	27.8	3.0	14.5
INJECTION	WELLS									
IW-1	115.12	114.54	4.0	10.0	18.2	28.2	15.0	28.2	3.0	15.0
IW-2	115.08	114.70	4.0	10.0	17.8	27.8	14.8	27.8	3.0	14.8
IW-3	114.94	114.31	4.0	10.0	18.3	28.3	15.0	28.3	3.0	15.0
ELECTRODI	E WELLS									
CW-1	115.28	114.71	2.0	8.0	12.9	27.9	10.0	27.9	2.3	12.9
CW-2	115.08	114.62	2.0	8.0	12.8	27.8	9.5	27.8	2.0	9.5
CW-3	115.09	114.35	2.0	8.0	13.0	28.0	10.0	28.0	2.5	10.0
AW-1	115.55	114.99	2.0	8.0	13.3	28.3	10.0	28.3	2.4	10.0
AW-2	115.03	114.45	2.0	8.0	13.3	28.3	9.5	28.3	2.0	9.5

Figure 5.21. Photo of Elgard Mixed Metal Oxide-Coated Titanium Electrode Material.

This material was selected for use in the field demonstration system.

Figure 5.22. Photographs of Wells Heads Designed for Connecting Electrodes.

An external view of well head attached to an electrode monitoring well. B, attachment of the electrode to an electrical lead. Exposed connections were painted with Plasticote to minimize corrosion. C, view of the uncapped well head showing sampling tube and electrode lead extending into the well.

5.4.6 Extraction & Injection Well Installation

These wells were constructed with flush-threaded, 4-inch diameter, Schedule 40, PVC riser and 10 ft of 0.010-inch slotted PVC well screen. Groundwater modeling indicated that the wells should be screened across Layers 2 through 4, and just above Layer 2 (the high permeable layer) of the aquifer to maximize groundwater flow through the contaminated portions of the aquifer. Based on this, well screen intervals were set from approximately 18 ft to 28 ft bgs, as shown on **Figure 5.20**. The filter pack for each well consisted of #1 Morie sand extending to 3.0 ft above the top of screen. The remaining annular space was filled with cement chips emplaced to within 3 ft of the surface. The wells were completed in covered, rectangular plastic flush-mount vaults. A summary of the as-built well construction details are provided in **Table 5.11**.

All well installations were performed by a New Jersey licensed driller and supervised by a CB&I geologist. Upon completion, all wells were thoroughly developed to remove fines. Well installations and development were performed between August 11 and September 16, 2011. All IDW was containerized and staged in the demonstration area, characterized, and disposed of offsite. Each completed well was surveyed by a licensed surveyor to determine its horizontal location to within ± 1 ft, and the elevation of the top of the inner PVC well casing to a ± 0.01 ft precision.

5.4.7 Multi-Level Monitoring Well Installation

As described in **Section 5.4.4**, a total of twelve Solinst CMT wells were installed in the demonstration area. As shown on **Figure 5.19**, eleven performance MLS monitoring wells ("PMW" identifier) were installed within the Test Plot and Control Plot, and one upgradient background MLS monitoring well (BMW-1S/I/D) was installed for monitoring untreated groundwater moving into the test and control plots. These wells were installed using the HSA drilling method, and each well was constructed with either two or three discrete one-ft screen intervals as shown in **Table 5.12**:

Table 5.12. Target Multi-level Monitoring Well Screen Intervals

Interval	Approx. Screen Interval (ft bgs)	Stratigraphic Layer
Shallow	20.0 – 21.0	2 – Medium to coarse Sand
Intermediate	22.5 – 23.5	3 – Silt and very fine Sand
Deep	26.0 – 27.0	4 – Clayey Silt/Sand

Multilevel sampling systems (continuous multichannel tubing, or CMT 403, manufactured by Solinst) were used to screen these 2-3 depths within a single well. The CMT system uses continuous polyethylene multichannel tubing that was custom-built on site with screened intervals at the designated sampling intervals (**Figure 5.23**). The single tube design allows reliable seals between zones. Samples are taken from different zones through each channel using small dedicated tubing and peristaltic pumps.

The filter packs consisted of #1 Morie sand extending to six inches above and below each discrete 1-ft screen interval, for a total of two ft per monitoring interval. One-quarter inch coated bentonite chips were emplaced between filter pack intervals to create a seal between monitoring intervals. An additional six inches of coated bentonite chips were emplaced above the uppermost filter pack, and the remaining annular space was filled with standard 3/8-inch bentonite chips emplaced to within 2 ft of the surface. Each well was completed in covered, round plastic flush-mount vault. A construction diagram for the MLS monitoring wells is provided in **Figure 5.24**, and a summary of the as-built well construction details are provided in **Table 5.13**. All well installations were performed by a New Jersey licensed driller and supervised by a CB&I geologist. Upon completion, all wells were thoroughly developed to remove fines. Well installations and development were performed between August 11 and September 16, 2011. All IDW was containerized and staged in the demonstration area, characterized, and disposed of off-site. Each completed well was surveyed by a licensed surveyor to determine its horizontal location to within ±1 ft, and the elevation of the top of the inner PVC well casing to a ±0.01 ft precision.

Figure 5.23. Photos of the Solinst CMT Multi-level Wells Used in the Demonstration.

Top left, slots cut in the wells at the desired depth interval. Bottom left, screens installed over the slots cut in the well channel. Right, completed wells showing the well anchors in the foreground and the screen placement at various depth intervals.

Figure 5.24. Multi-level Monitoring Well Construction Diagram

 Table 5.13.
 Summary of As-Built Multi-Level Monitoring Well Construction Details

	Ground	Top of			S	hallow Scr	een Interv	al			Inte	rme diate S	Screen Inte	rval]	Deep Scre	en Interval	l	
	Surface Elevation	Casing Elevation (ft. MSL)	Total Depth	Top of Screen (ft bgs)	Bottom of Screen (ft. bgs)	Top of Sand (ft. bgs)	Bottom of Sand (ft. bgs)	Top of Seal (ft. bgs)	Bottom of Seal (ft. bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft. bgs)	Top of Sand (ft. bgs)	Bottom of Sand (ft. bgs)	Top of Seal (ft. bgs)	Bottom of Seal (ft. bgs)	Top of Screen (ft bgs)	Bottom of Screen (ft. bgs)	Top of Sand (ft. bgs)	Bottom of Sand (ft. bgs)	Top of Seal (ft. bgs)	Bottom of Seal (ft. bgs)
BMW-1	115.62	114.78	28.6	20.8	21.8	20.3	22.3	2.8	20.3	23.3	24.3	22.8	24.8	22.3	22.8	26.8	27.8	26.3	28.6	24.8	26.3
PMW-1	115.59	114.71	25.0	20.3	21.3	19.8	21.8	2.2	19.8	22.8	23.8	22.3	25.0	21.8	22.3	NA	NA	NA	NA	NA	NA
PMW-2	115.46	114.74	24.7	20.0	21.0	19.5	21.5	2.0	19.5	22.5	23.5	22.1	24.7	21.5	22.1	NA	NA	NA	NA	NA	NA
PMW-3	115.51	114.62	28.0	20.2	21.2	19.7	21.7	2.2	19.7	22.7	23.7	22.2	24.2	21.7	22.2	26.2	27.2	25.7	28.0	24.2	25.7
PMW-4	115.2	114.43	27.7	19.9	20.9	19.4	21.4	2.3	19.4	22.4	23.4	21.9	23.9	21.4	21.9	25.9	26.9	25.4	27.7	23.9	25.4
PMW-5	115.5	114.71	28.1	20.3	21.3	19.8	21.8	2.3	19.8	22.8	23.8	22.3	24.3	21.8	22.3	26.3	27.3	25.8	28.1	24.3	25.8
PMW-6	115.56	114.9	28.0	20.2	21.2	19.7	21.7	2.2	19.7	22.7	23.7	22.2	24.2	21.7	22.2	26.2	27.2	25.7	28.0	24.2	25.7
PMW-7	115.08	114.08	27.8	20.0	21.0	19.5	21.5	2.5	19.5	22.5	23.5	22.0	24.0	21.5	22.0	26.0	27.0	25.5	27.8	24.0	25.5
PMW-8	114.96	114.3	27.3	19.5	20.5	19.0	21.0	2.1	19.0	22.0	23.0	21.5	23.5	21.0	21.5	25.5	26.5	25.0	27.3	23.5	25.0
PMW-9	115.07	114.4	27.4	19.6	20.6	19.1	21.1	2.2	19.1	22.1	23.1	21.6	23.6	21.1	21.6	25.6	26.6	25.1	27.4	23.6	25.1
PMW-10	114.99	113.65	24.9	20.2	21.2	19.7	21.7	2.8	19.7	22.7	23.7	22.2	24.9	21.7	22.2	NA	NA	NA	NA	NA	NA
PMW-11	115.51	114.76	24.9	20.2	21.2	19.7	21.7	2.3	19.7	22.7	23.7	22.2	24.9	21.7	22.2	NA	NA	NA	NA	NA	NA

5.4.8 Groundwater Recirculation System

The majority of the groundwater recirculation and system was installed during the weeks of October 11 and October 18, 2011. The groundwater recirculation system was constructed within a 20-ft long Conex box, located within the demonstration area (**Figure 5.19**) during the weeks of October 11 and October 18, 2011. Photographs of the Conex box and system are provided in **Figure 5.25**. A process flow diagram (PFD) showing the general design of the system, including extraction and injection wells and the associated equipment, is provided in **Figure 5.26**.

Submersible variable-speed pumps set in the center of the well screens were installed in each of the extraction wells to extract groundwater from the aquifer. Three-ft deep trenches were excavated from each of the extraction and injection wells to the 20-ft Conex box. Piping and conduit were connected to each of the wells, installed within the trenches, and passed through the bottom of the Conex box (**Figure 5.27**). Electrical conduits were installed within the trenches for pump power supply wires, level control probe wires for the extraction wells, and pressure transducers cables for the injection wells. Valves, gauges, and fittings were installed as necessary to complete the piping runs and connections. The trenches were backfilled after leak testing was performed on the piping and all wires and cables were successfully installed.

As discussed above, although the proton reduction system was operated using solar power, it was determined that the groundwater recirculation system would require too much power to operate economically via solar power. Therefore, electrical service was obtained from Building 2304, located adjacent to the demonstration area. CB&I coordinated installation of single-phase, 240 volt, 80 amp electrical service and a wireless connection to the 20-ft Conex box. subcontracted Calcon Systems, Inc. to update a process controls system within the Conex box (the Conex box and controls system were used during previous bioremediation projects). The controls system consisted of a Programmable Logic Controller (PLC) panel connected to a desktop computer, and a Supervisory Control and Data Acquisition (SCADA) system (Figure **5.26**). The PLC panel was connected to flow meters/totalizers and level control probes within the extraction wells, and pressure transducers within the injection wells. The SCADA system collected data from various sensors and sent the data to the computer for recording and storage. The SCADA system with wireless communication allowed for remote real-time monitoring and control of the system operating conditions. Parameters measured and recorded during operation included extraction well pump run times, flow rates, and speed, and water levels within the injection wells. By remotely monitoring these parameters, system operating problems could be quickly identified and resolved. Also included in the system were three dosing pumps and a bromide solution tank for adding sodium bromide tracer to each of the three injection wells during tracer testing.

Once installed, the groundwater recirculation system was tested to insure proper operation of pumps and controls. Each of the three groundwater recirculation loops were operated at approximately 0.5 gpm during the testing. During this process, steps were taken to simulate various operating and alarm conditions and all equipment and sensors were checked for proper calibration. Equipment and sensors were monitored to insure all data was being communicated and logged accurately.

Figure 5.25. Photographs of the Conex Box and Groundwater Recirculation System

Figure 5.26. Process Flow Diagram of the Groundwater Recirculation System

Figure 5.27. Photograph of Extraction Well Vaults, Trenches and Conduits

5.4.9 Solar Power PRT System

The PRT system was completely powered via an off-the-grid solar power system. The system consisted of four 85 watt photovoltaic solar panels, and four deep discharge 80 amp hour 12V batteries. The batteries were connected in parallel, with two batteries in each series, providing a 24V DC power supply. A solar charge controller regulated the charging of the batteries when there was sufficient sunlight, and the system operated off of stored battery power when there was not sufficient sunlight to operate the system and/or charge the batteries. Wire leads (16 gauge wire) were run from the five electrodes and connected to a commercially-constructed control panel (**Figure 5.28**). The control panel was powered by the 24V DC power supply. Rheostats on the control panel were used to control voltage to each of the anodes. The maximum voltage at each anode was limited to 16 volts, and the voltage to each anode could be turned off independently of the other anodes. Voltage and current (in milliAmps) measured at the anodes were displayed on digital meters located on the front of the control panel (**Figure 5.28**). Polarity to the electrodes could be reversed via a selector switch on the control panel.

Figure 5.28. Photographs of the Front (left) and Inside (right) of the PRT Control Panel

5.5 FIELD TESTING

As summarized in **Table 5.14**, field testing activities included two baseline sampling events, tracer testing, four different phases of system operation with performance monitoring, and two bioaugmentation injection events. Each of these activities is discussed in detail in the following subsections.

5.5.1 Baseline Sampling

Prior to the startup of the PRT and groundwater recirculation systems, two baseline groundwater sampling events were performed. Baseline groundwater samples were collected from all 11 MLS performance monitoring wells (PMW-1 through PMW-11), and from MLS background monitoring well BMW-1 in October and November of 2011 (**Table 5.14**). Samples were collected from each of the 2-3 discrete sample intervals within these wells, for a total of 32 sample points. Samples were collected using peristaltic pumps, and dedicated Teflon tubing installed within the individual channels of the CMT MLS wells using low-flow sampling methods, as detailed in **Section 5.6.1**.

Samples from both events were analyzed for VOCs, reduced gases, anions, and dissolved H₂ (see **Sections 5.6.2** and **5.6.3**). Additionally, all samples from the second baseline event were analyzed for dissolved Fe and Mn. Baseline groundwater elevation data were also collected during these two events.

Table 5.14. Summary of Proton Reduction Demonstration Major Activities and Phases

Activity/Demonstration Phase	Start Date	Completion Date	Demonstration Timeline	Duration (Days)
Baseline Sampling Event #1	10/26/2011	10/27/2011	Days -47 and -46	2
Baseline Sampling Event #2	11/9/2011	11/10/2011	Days -33 and -32	2
Tracer Testing	11/14/2011	11/28/2011	Days -28 through -14	15
Phase 1-Proton Reduction Only (no groundwater recirculation)	12/12/2011	4/3/2012	Days 0 through 113	114
Phase 2-Proton Reduction & Groundwater Recirculation (extraction & injection wells)	4/4/2012	6/26/2012	Days 114 through 197	84
Phase 3-Proton Reduction & Groundwater Recirculation (extraction wells, re-injecting in cathode wells)	6/27/2012	7/31/2012	Days 198 through 232	35
Phase 4-Proton Reduction & Operation of Small Recirculation Loop (extracting from AW-2, injecting in CW-2)	8/1/2012	12/20/2013	Days 233 through 739	507

5.5.2 System Startup and Testing

Once the second round of baseline sampling was complete, the recirculation system was started and operated for two weeks prior to operation of the PRT system. Groundwater was pumped from each of the three extraction wells at a rate of 0.4 gpm, and re-injected into each corresponding injection well at the same rate. The system was operated continuously between November 14, 2011 and November 28, 2011 (**Table 5.14**).

During this two-week testing period, injection of the conservative tracer bromide (in the form of sodium bromide) was performed in the test plot to evaluate/verify local hydrogeologic characteristics, including hydraulic conductivity, heterogeneity, and vertical components of groundwater flow, and to determine the travel time between the injection and extraction wells. Tracer injection occurred continuously at the two Test plot injection wells (IW-1 and IW-2) for the entire two-week period. The tracer solution was prepared from sodium bromide and site groundwater water in a 30-gallon polyethylene tank. A final concentration of ~ 25.0 g/L as bromide was prepared in a tank, and then metered into the two injection wells at approximately 3 mL/min, thereby attaining a final bromide injection concentration of approximately 50 mg/L. Based on model simulations (**Figure 5.18**), this tracer delivery rate was expected to distribute bromide at concentrations >10 mg/L within the test plot monitoring wells and the two corresponding extraction wells (located 30 feet downgradient of the injection wells) within approximately 30-40 days. The tracer testing results, discussed in **Section 5.7.1**, showed groundwater velocities consistent with the groundwater model. A total of approximately 3.9 kg (8.6 lbs.) of sodium bromide was injected during this two week period.

Groundwater samples were collected for bromide analysis at five time points during the 2-week startup period using low flow sampling methods, as detailed in **Section 5.6.1**.

Samples were collected from all 11 MLS well monitoring wells (29 sample points) within the Test and Control plots, as well as the three extraction wells during each event to determine the vertical and horizontal distribution of the bromide tracer with time. Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and bromide testing results are provided in **Section 5.7.1**.

Additionally, groundwater elevation data were collected within the demonstration monitoring well network during system startup and testing to monitor changes in groundwater elevations within the test plots, and in and around the extraction and injection wells during their operation.

5.5.3 System Operation

After system start-up and tracer testing, system operation during the demonstration was divided into the following four distinct stages (**Table 5.14**).

5.5.3.1 Phase 1 – Proton Reduction Only

Phase 1 began on December 12, 2011 (day zero), and involved operation of the PRT system for 114 days without the groundwater recirculation system operating. This initial operational phase was used to optimize operation of the PRT system, as well as to monitor geochemical changes within the electrode wells and nearby performance monitoring wells. This phase allowed for assessment of H₂ production and changes in groundwater pH within the cathode wells. It also allowed for evaluation of any potential generation of H₂ between cathodes and anodes, and transport of H₂ and/or downgradient changes of pH under natural groundwater gradients. At startup, the PRT system was operated at approximately 1 V, before being increased incrementally to 16 V on January 16, 2012 (day 35). Currents between approximately 250 mA and 300 mA were measured in the Test Plot while operating at 16 V.

Groundwater samples were collected for H₂ analysis and field parameters at eight time points during this 114-day period using low flow sampling methods, as detailed in **Section 5.6.1**. Samples were collected from each level of the MLS monitoring wells located closest to the electrode wells (PMW-4, 5, 7, 9, and 10) within the test and control plots, as well as the three cathode wells and two anode wells to evaluate hydrogen generation and distribution, and changes in groundwater geochemistry. Groundwater samples were also collected on day 105 for analysis of VOCs, reduced gases, anions, and dissolved hydrogen. Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and results from Phase 1 testing are provided in **Section 5.7**. System operating parameters were monitored by field personnel approximately 1 to 2 times per week during Phase 1. These parameters included solar power system operational parameters and PRT system voltages and currents.

5.5.3.2 Phase 2 – Proton Reduction & Groundwater Recirculation Using Extraction and Injection Wells

Phase 2 of system operation began on April 4, 2012, and consisted of an 84-day period during which groundwater recirculation was performed using the three recirculation loops, and the PRT system was in continuous operation. Groundwater was recirculated at a rate of 0.25 gpm for 15 days, and at a rate of 0.4 gpm for the remaining 69 days at each of the three loops. The PRT system was operated between approximately 10 and 16 V, with currents between approximately 140 mA and 250 mA measured in the test plot. These were the approximate designed operational settings, and were intended to be the normal operating conditions for the remainder of the demonstration.

Although high pH groundwater (up to pH 11.5) and elevated H₂ concentrations were achieved in the cathode wells during Phases 1 and 2 of the demonstration, the impact of the treatment was not observed in any of the downgradient MLS monitoring wells, including PMW-4S/I/D located 2.5 feet down gradient of cathode CW-2. The lack of observed impact at this MLS monitoring well was thought to be possibly due to a lack of hydraulic connection between the cathode well and the monitoring well that prevented water from the cathode well from being transported to the monitoring well (e.g., no flow through the cathode well or no flow between cathode well and the monitoring well).

In order to determine if groundwater leaving cathode CW-2 was migrating downgradient to MLS monitoring well PMW-4S/I/D during active groundwater recirculation, a second tracer test was performed. This test involved injecting bromide tracer at the three cathode wells in small slugs over four consecutive days and monitoring distribution of the tracer. A one liter solution of distilled water containing 250 grams of sodium bromide was added to each of the three cathode wells each day from June 11, 2012 through June 14, 2012 (days 182 through 185). Groundwater samples were collected for bromide analysis and field geochemical parameters immediately prior to the first bromide addition (day 182), and at three time points during the 8-day test. Samples were collected from all 11 MLS well monitoring wells (29 sample points) within the test and control plots, as well as the three cathode wells and three extraction wells during each event to determine the vertical and horizontal distribution of the bromide tracer with time. Sample analysis and quantities are summarized in Sections 5.6.2 and 5.6.3, respectively, and bromide testing results are provided in Section 5.7.1.

Groundwater samples were also collected for dissolved H₂ analysis and field geochemical parameters at five time points during this phase of operation. These samples were collected at select wells, as summarized in **Sections 5.6.2** and **5.6.3**. System operating parameters were monitored by field personnel approximately one to two times per week during active recirculation. These parameters included injection/extraction well flow rates, solar power system operational parameters, and PRT system voltages and currents.

The objective of this phase of operation was to enhance groundwater transport in order to evaluate H₂ transport and increase groundwater pH downgradient of the cathodes. However, because of apparent groundwater flow paths, and the lack of dissolved H₂ distribution and pH increases observed at test plot wells during this 84-day period, the performance period of this operational phase was shortened and modifications were made as described in Phase 3 below.

5.5.3.3 Phase 3 – Proton Reduction & Groundwater Recirculation Using Extraction and Cathode Wells

Phase 3 of system operation began on June 27, 2012, and lasted 35 days. To better distribute the H₂ and OH⁻ being generated in the cathode wells, the groundwater recirculation system was reconfigured so that the extracted groundwater was re-injected directly into the three cathode wells, rather than the three injection wells. Groundwater recirculation rates were reduced to 0.1 gpm at each loop during this phase of the demonstration. This approach was performed specifically to ensure that water within the cathode well, which contained elevated H₂ concentration and high pH, was transported into the test plot. Dissolved H₂ and pH data collected during this phase of the demonstration indicated that groundwater being re-injected into the cathode wells was still not reaching nearby downgradient MLS monitoring wells. Thus, additional changes to the plot configuration were made as described in Phase 4 below.

5.5.3.4 Phase 4 – Proton Reduction & Operation of Small Recirculation Loop

Phase 4 of system operation began on August 1, 2012, and lasted 507 days. To adjust for the limitations observed during Phases 2 and 3, and to take advantage of the observed connection between cathode well CW-2 and MLS monitoring well PMW-7S/I/D, the groundwater recirculation system was modified to create a small recirculation loop (**Figure 5.29**) to move groundwater between AW-2 (which served as the extraction well) and CW-2 (which served as both a cathode and an injection well). The electrode in AW-2 was removed, and well CW-1 was converted into an anode for the remainder of the demonstration. A submersible air-driven bladder pump was installed in well CW-2, and a small air compressor and a solar-powered pump controller were installed to operate the bladder pump. MLS monitoring wells PMW-7S/I/D and PMW-8S/I/D served as performance monitoring wells during this final phase of the demonstration. This 507-day operation phase was where most of the useful project data were derived.

During Phase 4, groundwater was recirculated at a rate of approximately 80 mL/min for the first 61 days, and at a rate of approximately 400-500 mL/min for the remaining 446 days within the new groundwater recirculation loop. The PRT system was operated continuously at 16 V, with currents between approximately 350 mA and 450 mA measured in the new test plot area.

In order to determine connectivity of MLS monitoring wells PMW-7S/I/D and PMW-8S/I/D and groundwater travel times within the new groundwater recirculation loop, a third tracer test was performed. On October 1, 2012, when the recirculation rate was increased to 500 mL/min, a 2 liter solution containing 500 grams of sodium bromide was added to injection well CW-2. Groundwater samples were collected for bromide analysis and field geochemical parameters immediately prior to the bromide addition (day 294), and at three time points during the 8-day test. Samples were collected from MLS monitoring wells PMW-4S/I/D, PMW-7S/I/D, and PMW-8S/I/D, and wells CW-2 and AW-2 during each event to determine the vertical and horizontal distribution of the bromide tracer with time. Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and bromide testing results are provided in **Section 5.7.1**.

A new round of baseline groundwater samples were collected at MLS monitoring wells PMW-4S/I/D, PMW-7S/I/D, and PMW-8S/I/D, and wells CW-2 and AW-2 two days prior to Phase 4 startup. Groundwater samples were collected for VOCs, reduced gases, anions, and dissolved H₂ analysis and field geochemical parameters during this event. An additional ten performance sampling events were performed during Phase 4 that included the PMW-7 and PMW-8 MLS monitoring well intervals, and at times MLS monitoring well PMW-4 and/or wells CW-2 and AW-2. Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and results are provided in **Section 5.7**. System operating parameters were monitored by field personnel approximately one to two times per week during active re-circulation. These parameters included injection/extraction well flow rates, solar power system operational parameters, and PRT system voltages and currents.

Figure 5.29. Plan View of the Proton Reduction Test Plot Used During Phase 4 of the Demonstration.

The blue arrows show the orientation of the recirculation loop constructed using AW-2 (extraction) and CW-2 (injection).

5.5.4 Bioaugmentation

Based on laboratory studies performed at the beginning of the project (Section 5.3.2), a microbial population capable of completely dechlorinating of TCE was not detected in site samples, presumably because of the low natural groundwater pH. Consequently, bioaugmentation injections with CB&I's SDC-9 dechlorination culture were performed at well CW-2 on January 17, 2013 and October 10, 2013 (days 402 and 668, respectively). The culture was grown in CB&I's fermentation facility in Lawrenceville, NJ, and transferred to a soda keg with a nitrogen headspace. The keg was placed in a cooler with ice packs, and driven directly to the site. Once the bioaugmentation culture was on site, groundwater was pumped from well CW-2 into 5-gallon buckets to be used as chase water. Tubing was lowered down to the bottom of well CW-2, and connected to the pressurized soda keg. A valve on the keg was opened, forcing the culture through the tubing and into the well. The tubing was raised and lowered across the well screen during the SDC-9 injection period, which lasted less than one minute. Following is a summary of bioaugmentation culture injection volumes and cell density, as well as chase water volumes:

- Bioaugmentation #1: 0.7 Liters of SDC-9 culture at a concentration of $10E^{11}$ cells/L, with 5 gallons of chase water.
- Bioaugmentation #2: 2.0 Liters of SDC-9 culture at a concentration of $10E^{11}$ cells/L, with 15 gallons of chase water.

Groundwater samples for DHC quantification (via qPCR) were collected during Phase 4 from MLS monitoring wells PMW-7S/I/D and PMW-8S/I/D within the small recirculation loop immediately prior to and approximately two months after the first bioaugmentation event. Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and qPCR results are provided in **Section 5.7.7**.

Additionally, diammonium phosphate (nutrients) was added to well CW-2 on October 15, 2013, five days after the second bioaugmentation event. Groundwater was pumped from well CW-2 into 5-gallon buckets to be used as mix and chase water. A total of 1.8 kg (4 lbs.) of diammonium phosphate was mixed into 5 gallons of groundwater, and pumped into well CW-2 using a sump pump. An additional 7 gallons of chase water was pumped into the well to further distribute the nutrients within the aquifer.

5.5.5 Decommissioning

At the conclusion of the demonstration, the groundwater recirculation and PRT systems were disconnected and removed from the site with all associated surface materials. The groundwater recirculation system was shipped to Edwards Air Force Base, CA, to be used on ESTCP project ER-201210. The PRT system was modified, and shipped to Marine Corps Base Quantico, Quantico, VA, to be used on AFCEC project Number 501. With the exception of site characterization wells DMW-1S and DMW-1D, all of the wells installed the demonstration were abandoned in accordance with relevant state regulations. The MLS monitoring wells were overdrilled, pulled, and the borehole sealed with cement-bentonite grout. The extraction, injection, and electrode wells were sealed with cement-bentonite grout, and the casing cut approximately 1-foot below grade. All surface completions were removed, and the well locations were re-graded and seeded as necessary. System decommissioning activities were performed in April, 2014, and well decommissioning was completed in October 2014.

5.6 SAMPLING METHODS

5.6.1 Groundwater Sampling

Groundwater samples were collected by CB&I personnel utilizing low-flow purging in general accordance with NJDEP Low Flow Purging and Sampling Guidance (NJDEP, 2003). Prior to each sampling event, the well ID and sample interval were checked and recorded on a field sheet. Groundwater elevation measurements were then collected using an electronic water level probe (Solinst 101 water level meter, or equivalent) prior to purging and collecting groundwater samples. Measurements were obtained from the top-of-casing and recorded to the nearest 0.01-ft, and were recorded on field sampling sheets. Groundwater elevation data were used to determine water table elevations and hydraulic gradient within the demonstration area.

Dedicated Teflon tubing was used to sample each of the wells/intervals, and therefore did not require decontamination. A peristaltic pump with dedicated tubing was used to withdraw water from the MLS well intervals at a typical flow rate between 0.1 to 0.25 L/min. Water level in the well was monitored and recorded during purging. It was desirable, although not always achievable, that <0.3 ft of drawdown occur in the well during purging. Pumping rates were adjusted accordingly if drawdown was observed to be too great. For some of the demonstration wells, drawdown was greater than 0.3 feet even at 0.1 L/min due to low groundwater yield. The extent of drawdown in each well was recorded during stabilization.

Purged water was pumped through a flow cell connected to an in-line multi-parameter groundwater meter (YSI 6820 or equivalent). Parameters, including temperature, conductivity, dissolved oxygen, oxidation-reduction potential (ORP), turbidity, and pH were measured as a function of pumping time, and the values recorded on a field sheet approximately every 5 minutes. An example field sheet is provided in **Figure 5.30.** Water was purged from the well until all parameters were stable for three consecutive readings, or for a maximum of 30 minutes (to minimize the volume of groundwater removed from the formation in the closely-spaced MLS well intervals). Stability was defined as variation of <1% for pH, <3% for temperature and specific conductivity, and <10% for dissolved oxygen, ORP, and turbidity. When parameters were stable according to the above guidelines, sampling time was recorded and all samples were collected. The final data collected on each field sheet was recorded in the project database as the measured readings in each well.

The procedures used in collecting groundwater samples during the demonstration are described below. After well parameters were stabilized during low flow sampling, or the well had been purged for 30 minutes (whichever came first), samples were collected in the following order (as applicable), using the following procedures:

• <u>Dissolved H2</u>: One (1) 160-mL glass serum bottle preserved in the field with HCl (pH <2) preservative and crimp-sealed with a Teflon-lined septum and aluminum crimp cap was filled directly from the groundwater purge stream. The bottles were completely filled, with zero headspace (the bottle was filled to the top resulting in a convex meniscus). The vial was then crimp-sealed and placed on adequate ice for shipment.

MONITORING Well Depth (it Depth to Wate Well Casing C Start Time (pu	-bloc): er Prior to Pu liameter [in]:	urging (ft-bloc):		- 2_ 7' Toc		Sampling Sampler(s Sampling Weather C): Device:	8-30-12 P. Hamon Portstatto Pump Svmy, 75°		
			/	FIELD PARA	METERS					
			Dissolved	Redox	Specific		Depth To	Volume	Approximat	
Time	pН	Temperature	Oxygen	Potential	Conductance	Turbidity	Water	Purged	Purge Rate	
[hh:mm]	[std]	[°C]	[mg/l]	[mV]	[µS/cm]	[ntu]	[ft-btoc]	[liters]	[ml/mln]	
Stabilization Criteria	+/- 1%	+/-3%	+/-10%	+/-10mV	+/-3%	+/-10%	not to exceed 0.3 feet drawdown		50 to 200 mL/mln	
0909	5.27	19.59	1.37	-329.8	238		8.32'		~200	
0914	5.21	19.34	0.80	-326.3	239		8.48'		~180	
0919	5.28	14.25	0.73	-323.7	242		8,31"		V	
ample Time: naiyles Samplo plume Purged	_	Hz,	Anion	5			,			

Figure 5.30. Example Groundwater Parameter Stabilization Form

- <u>VOCs</u>: Three (3) 40 mL glass VOA vials with HCl (pH <2) preservative and with Teflonlined caps were filled directly from the groundwater purge stream. The bottles were completely filled, with zero head-space (the bottles were filled to the top resulting in a convex meniscus). The vials were then capped and placed on adequate ice for shipment.
- Reduced gases: Two (2) 40 mL glass VOA vials with HCl (pH <2) preservative and with Teflon-lined caps were filled directly from the groundwater purge stream. The bottles were completely filled, with zero head-space (the bottles were filled to the top resulting in a convex meniscus). The vials were then capped and placed on adequate ice for shipment.

- Anions and VFAs: One (1) 100 mL sample jar (plastic, no chemical preservatives) was filled to the top with water. The jar was then capped and placed on adequate ice for shipment. This sample was used for analysis of anions (nitrate, nitrite, sulfate, chloride, bromide) and VFAs (lactic acid, acetic acid, propionic acid, formic acid, butyric acid, pyruvic acid, and valeric acid).
- <u>DHC</u>: One (1) 1 Liter sample jar (glass, no chemical preservatives) was filled to the top with water. The jar was then capped and placed on adequate ice for shipment.
- <u>Dissolved metals</u>: One (1) 500 mL amber glass jar preserved with nitric acid was filled with water that was filtered in the field using a 0.45 micron in-line filter. The jar was then capped and placed on adequate ice for shipment. The samples were used for analysis of dissolved iron and manganese.

5.6.2 Groundwater Analysis

Groundwater samples were submitted to CB&I's Analytical and Testing Laboratory in Lawrenceville, NJ for analysis of VOCs, reduced gases, anions, dissolved hydrogen, VFAs, and for quantification of DHC via qPCR. Dissolved Fe and Mn analyses were performed by Chemtech, located in Mountainside, NJ. The analytical methods for groundwater samples collected during the field demonstration are summarized in **Table 5.15**. Field geochemical parameters, including pH, DO, specific conductivity, ORP and turbidity were measured at the site during well purging using a field meter, as described in **Section 5.6.1**.

5.6.3 Numbers and Types of Samples Collected

The numbers and types of groundwater samples collected during the demonstration are provided in **Table 5.16**. Just prior to the start of field testing, 5 bromide sampling events were performed at 32 wells as part of a bromide tracer test that occurred over 13 days (See **Section 5.5.2**). Two rounds of baseline groundwater sampling were conducted from the 12 MLS monitoring wells on Days -46 and -43 before system start-up (Day 0) (See **Section 5.5.1**). Performance samples were collected during four separate phases of system operations that lasted 507 days, as summarized in **Table 5.14** (See **Section 5.5.1**).

Table 5.15. Analytical Methods for Groundwater Samples Collected During the Field Demonstration.

Analyte ¹	Method/ Laboratory	Preservative	Bottle	Hold time	
VOCs	EPA 8260 CB&I	4°C with HCl	40 mL VOA vial x 2, no headspace	14 days	
Anions	EPA 300.0 CB&I	4°C	100 mL polyethylene screw-cap	2 days (NO ₃ , PO ₄); 28 days all others	
Volatile Fatty Acids (VFAs)	EPA 300.0m CB&I	4°C	100 mL polyethylene screw-cap	14 days	
Dehalococcoides (DHC)	qPCR CB&I ²	4°C	950 mL sterile screw-cap	NA^3	
Reduced Gases	EPA 3810, RSK175 CB&I ²	4°C with HCl	40 mL VOA vial x 2 No headspace	14 days	
Dissolved Hydrogen	EPA 3810, RSK175 CB&I ²	4°C with HCl	125 mL serum bottle, Teflon- lined butyl rubber septa and crimp seal, No headspace	7 days	
Metals	EPA 200.7 Chemtech	4°C with HNO ₃	250 mL polyethylene screw-cap	6 months	
Redox Potential	Field Meter			NA	
Dissolved Oxygen	Field Meter			NA	
pН	Field Meter	l Meter		NA	
Conductivity	Field Meter			NA	

¹All analyses are in groundwater

²Not a standard EPA Method.

³NA, Not applicable

Table 5.16. Total Number and Types of Samples Collected During the Demonstration

Phase	Event	Occurrence	Number of Samples	Analyte	Location		
Baseline	Baseline Sampling #1	Day -46	32	VOCs, reduced gases, dissolved hydrogen, anions	Every interval at all 11 PMWs and BMW-1		
Sampling	Baseline Sampling #2	Day -33	32	VOCs, reduced gases, dissolved hydrogen, anions, dissolved Fe and Mn	Every interval at all 11 PMWs and BMW-1		
Recirculation System Startup and Testing	Bromide Tracer Testing #1	5 Events (Days -26, -24, -21, - 19, and -14)	32 sample points; 160 total samples	Anions (bromide)	Every interval at all 11 PMWs, all 3 EWs		
Phase 1	Dissolved Hydrogen Sampling	8 Events (Days 0,16, 24, 28, 31, 35, 57, and 113)	19 sample points; 152 total samples	Dissolved hydrogen	PMW-4, 5, 7, 9, 10 (all depths), all 3 CWs, both AWs		
	Performance Sampling	Day 105	32	VOCs, reduced gases, dissolved hydrogen, anions	All 11 PMWs, all 3 BMWs		
		Day 128	25		PMWs 4, 5, 6, 7, 10, 11 (all depths), All 3 BMWs, All 3 CWs, All 3 EWs		
		Day 135	3		PMW 4 (all depths).		
	Dissolved Hydrogen	Day 142	9	Dissolved hydrogen	PMWs 4S, 4I, 4D, 5S, 5I, All 3 BMWs, CW-2		
Phase 2	Sampling	Day 170	21	Dissolved flydiogen	PMWs 4, 5, 7, 8, 10 (all depths), All 3 EWs, All 3 CWs, AW-2		
		Day 178	19		PMWs 4S, 4I, 4D, 5S, 5D, 7S, 7I, 7D, 8S, 8I, 8D, 10S, 10I, All 3 EWs, All 3 CWs		
	Bromide Tracer Testing #2	4 Events (Days 182, 184, 186, and 190)	33 sample points; 132 total samples	Anions (bromide)	PMWs 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 (all depths), All 3 EWs, All 3 CWs		
Phase 3	Performance Sampling Event	Day 231	9	VOCs, reduced gases, dissolved hydrogen, anions	PMWs 4, 7, and 8 (all depths)		
	Bromide Tracer Testing #3	4 Events (Days 294, 295, 296, and 298)	11 sample points; 44 total samples	Dissolved hydrogen, anions	PMWs 4, 7, and 8 (all depths), CW-2, AW-2		
	Performance Sampling Event #1	Day 316	12	VOCs, reduced gases, dissolved hydrogen, anions, dissolved metals, alkalinity	PMWs 4, 7, and 8 (all depths), BMW-1S, CW 2, AW-2		
	Dissolved Hydrogen	Day 339	11	D' 1 11 1	PMWs 4, 7, and 8 (all depths), CW-2, AW-2		
	Sampling	Day 547	10	Dissolved hydrogen	PMWs 4, 7, and 8 (all depths), CW-2		
	Dissolved Hydrogen & Anion Sampling	Day 358	11	Dissolved hydrogen, anions	PMWs 4, 7, and 8 (all depths), CW-2, AW-2		
Phase 4	Performance Sampling Event #2	Day 372	7	VOCs, reduced gases, dissolved hydrogen, anions, dissolved and total metals	PMWs 7 and 8 (all depths), CW-2		
	Performance Sampling Events #3 (pre-	2 Events (Days 402 and 423)	7	VOCs, reduced gases, dissolved hydrogen, anions,	PMWs 7 and 8 (all depths), BMW-1S.		
	bioaugmentation), 4, 5, and	2 Events (Days 458 and 499)	8	TOC	PMWs 7 and 8 (all depths), BMW-1S, CW-2		
	Performance Sampling Event #7	Day 568	6	VOCs, reduced gases, dissolved hydrogen, anions, dissolved metals	PMWs 7 and 8 (all depths)		
		Day 645	6		PMWs 7 and 8 (all depths).		
	Performance Sampling Events #8, 9, and 10	2 Events (Days 701, and 737)	7 sampling points; 14 total samples	VOCs, reduced gases, dissolved hydrogen, anions	PMWs 7 and 8 (all depths), BMW-1S		

 $PM\,W-M\,ulti\text{-level Performance }M\,onitoring\,Well$

BMW – Multi-level Background Monitoring Well

 $EW-Extraction\ Well$

CW - Cathode Well

AW – Anode Well

5.6.4 Quality Assurance for Groundwater Sampling and Analysis

Calibration Procedures and Frequency. Calibration refers to the checking of physical measurements of both field and laboratory instruments against accepted standards. It also refers to determining the response function for an analytical instrument, which is the measured net signal as a function of the given analyte concentration. These determinations have a significant impact on data quality and are performed regularly. In addition, preventative maintenance is important to the efficient collection of data. For preventative maintenance purposes, critical spare parts were obtained from the instrument manufacturer.

All field and laboratory instruments were calibrated according to manufacturers' specifications. All CB&I laboratory instruments were calibrated in accordance with established Standard Operating Procedures. Calibration was performed prior to initial use, during periods of extended use, and after periods of non-use. Certified standards were used for all calibrations and calibration check measurements. A calibration logbook was maintained by CB&I field and laboratory QA personnel.

Quality Control Samples. Internal QC data provides information for identifying and defining qualitative and quantitative limitations associated with measurement data. Analysis of the following types of QC samples provided the primary basis for quantitative evaluation of field data quality:

Field QC Samples:

- Trip blanks to evaluate the presence of contamination from handling errors or cross-contamination during transport;
- Field duplicates to assess the homogeneity of samples received by the laboratory as well as the homogeneity of contaminants in the matrix.

Trip Blanks. Trip blanks were prepared by the analytical laboratory with purified water for groundwater samples. The water was sent to the site in the same containers to be used for collection of the samples. Trip blanks were submitted at a frequency of one trip blank per shipment of samples for VOC analysis. For non-VOC analyses, no trip blanks were deemed necessary and none were submitted.

Field Duplicate Samples. Field duplicate samples were analyzed for all parameters to evaluate the accuracy of the analytical process. Each duplicate was run at a frequency of at least 5 percent of the total number of environmental samples. A comparison of the detected concentrations in the duplicate samples was performed to evaluate precision.

Sample Documentation. CB&I Lawrenceville, NJ project staff coordinated shipment and receipt of sample bottles, coolers, ice packs, chain of custody (COC) forms, and custody seals. Upon completion of sampling, the COC was filled out and returned with the samples to the CB&I and Chemtech laboratories. An electronic copy of each COC form was placed in the project database. An important consideration for the collection of environmental data is the ability to demonstrate that the analytical samples have been obtained from predetermined locations and that they have reached the laboratory without alteration. Evidence of collection, shipment, laboratory receipt, and laboratory custody until disposal must be documented to accomplish this. Documentation was accomplished through a COC Record that recorded each sample and the names of the individuals responsible for sample collection, transport, and receipt. A sample is considered in custody if it is:

- in a person's actual possession;
- in view after being in physical possession;
- sealed so that no one can tamper with it after having been in physical custody; or
- in a secured area, restricted to authorized personnel.

Sample custody was initiated by field personnel upon collection of samples. Samples were packaged appropriately to prevent breakage or leakage during transport, and shipped to the laboratory via either hand delivery or commercial carrier.

Sample Identification. A discrete well number was assigned to each sample. This discrete identifier was placed on each bottle and was recorded, along with other pertinent data in a field notebook dedicated to the project. The sample identification number designated the sample location (e.g., "PMW-2S" for this specific monitoring well). The bottle label also contained the site name, the sampling date and time, any preservatives added to the bottle, and the initials of the sampler.

Chain-of Custody Forms. The COC Record used by CB&I's laboratory is shown in **Figure 5.31**. All samples collected for off-site analysis were physically inspected by the Field Engineer prior to shipment.

Each individual who had sample in their possession signed the COC Record. Preparation of the COC Record was as follows:

- The COC Record was initiated in the field by the person collecting the sample, for every sample. Every sample was assigned a unique identification number entered on the COC Record.
- The record was completed in the field to indicate project, sampling person, etc.
- If the person collecting the samples did transport the samples to the laboratory or ship the samples directly, the first block for "Relinquished By ______, Received By _____" was completed in the field.
- The person transporting the samples to the laboratory or delivering them for shipment signed the record for as "Relinquished By ______".
- The original COC Record was sealed in a watertight container, taped to the top (inside) of the shipping container, and the shipping container sealed prior to being given to the commercial carrier.

The commercial waybill served as an extension of the COC Record between the final field custodian and receipt by the off-site laboratory.

- Upon receipt by the off-site laboratory, the laboratory QC Coordinator, or designated representative, opened the shipping container(s), compared the contents with the COC Record, and signed and dated the record. Any discrepancies were noted on the COC Record.
- COC Records were maintained with the records for the project, and became part of the data package.

Figure 5.31. Chain of Custody (COC) Form Used by CB&I's Laboratory

Laboratory Sample Receipt. Following sample receipt, the Laboratory Manager or qualified personnel:

- Examined all samples and determined if proper temperature has been maintained during transport. If samples had been damaged during transport, the remaining samples were carefully examined to determine whether they were affected. Any samples affected were considered damaged. It was noted on the COC record that specific samples were damaged and that those samples were removed from the sampling program.
- Compared samples received against those listed on the COC record.
- Verified that sample holding times were not exceeded.
- Signed and dated the COC record.
- Recorded samples in the laboratory sample log-in book containing, at a minimum, the following information:
 - Project identification number

- Sample numbers
- Type of samples
- Date and time received.

The COC Record was placed in the project file.

Other Documentation. Following sample receipt at the laboratory, the Laboratory Manager or sample custodian clearly documented the processing steps applied to the sample. The analytical data from laboratory QC samples were identified with each batch of related samples. The laboratory log book includes the time, date, and name of the person who logged each sample into the laboratory system. This documentation is thorough enough to allow tracking of the sample analytical history without aid from the analyst. At a minimum, laboratory documentation procedures provide the following:

- Recording in a clear, comprehensive manner using indelible ink.
- Corrections to data and logbooks made by drawing a single line through the error and initialing and dating the correction.
- Consistency before release of analytical results by assembling and cross-checking the information on the sample tags, custody records, bench sheets, personal and instrument logs, and other relevant data to verify that data pertaining to each sample are consistent throughout the record.
- Observations and results identified with the project number, date, and analyst and reviewer signatures on each line, page, or book as appropriate.
- Data recorded in bound books or sheaf of numbered pages, instrument tracings or hard copy, or computer hard copy.
- Data tracking through document consolidation and project inventory of accountable documents: sample logbook, analysis data book, daily journal, instrument logbook, narrative and numerical final reports, etc.

5.7 SAMPLING RESULTS

The results from tracer testing and performance monitoring performed during the four operations phases are summarized in the following subsections. As discussed in **Section 5.5.3**, and as summarized in **Table 5.16**, the majority of the performance sampling was performed during Phase 4 of the demonstration. The results for the each well for each parameter are provided in **Appendix D** on a well-by-well basis.

5.7.1 Tracer Testing

As detailed in **Section 5.5**, a total of three bromide tracer tests were performed during the field demonstration. The first test was performed during groundwater recirculation system start up and testing, prior to startup of the PRT system (**Tables 5.14** and **5.16**). Tracer testing was also performed during each of the operational phases that involved groundwater recirculation (Phases 2 through 4, respectively). Procedures and sampling schedules for each of the tracer tests are detailed in **Section 5.5**. The following summarizes the results from each test.

5.7.1.1 Tracer Test #1

Tracer test #1 was performed during the 2-week groundwater recirculation system startup and testing period. During tracer testing, groundwater was pumped from each of the three extraction wells at a constant rate of 0.4 gpm, and re-injected into each corresponding injection well at the same rate. Bromide was being introduced to the injection stream at a concentration of approximately 50 mg/L, and groundwater samples were collected for bromide analysis at 5 time points during the 14-day test. Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and analytical data are presented in **Appendix D**.

Based on groundwater modeling simulations (**Section 5.4.3**), the peak concentrations of the bromide tracer was expected to reach the two corresponding extraction wells (located 30 feet downgradient of the injection wells) within approximately 30-40 days (0.75 to 1.0 ft/day). As shown on **Figure 5.32**, bromide at concentrations >1 mg/L were observed in all three monitoring intervals throughout most of the test plot within 14 days. The bulk of the bromide tracer concentration front (>10 mg/L) lagged behind the more dilute concentrations observed throughout the test plot. As expected, bromide was transported the fastest within the shallow zone (Layer 2, as shown in **Figures 4.3** and **5.20**), which consists of medium to coarse sand. Based on the distribution of the bromide, it is estimated that the bulk of the tracer was traveling through Layer 2 at a linier velocity of approximately 1.6 ft/day during active groundwater recirculation. The bromide tracer was traveling at a slower velocity of approximately 0.4 to 0.8 ft/day within the intermediate and shallow zones (Layers 3 and 4), which consist of lower permeability material (fine sand to sandy clay). These values are consistent with the groundwater velocities observed in the groundwater modeling simulations.

The sampling data showed fairly good distribution of the tracer in all three zones, with some exceptions. Unfortunately, one of our key MLS monitoring wells (PMW-4S/I/D) located 2.5 ft downgradient of cathode well CW-2, exhibited low tracer concentrations (<5 mg/L) in both the shallow and intermediate zones. These data suggested that these intervals were not well connected to the flow field within the test plot.

Figure 5.32. Day 14 Bromide Distribution in the Shallow, Intermediate and Deep Zones during the First Tracer Test

5.7.1.2 Tracer Test #2

Tracer test #2 was performed during Phase 2 of the demonstration to determine if groundwater leaving cathode CW-2 was migrating downgradient to MLS monitoring well PMW-4S/I/D during active groundwater recirculation. During tracer testing, groundwater was recirculated at a rate of 0.25 gpm at each of the three recirculation loops. As detailed in **Section 5.5.3**, this test involved injecting bromide tracer at the three cathode wells (located downgradient of the injection wells) in small slugs over four consecutive days and monitoring distribution of the tracer at the MLS wells. Groundwater samples were collected for bromide analysis at three time points during the 8-day test. Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and analytical data are presented in **Appendix D**.

As shown on **Figure 5.33**, the bromide tracer was observed in more narrow plumes than during the first tracer test, because the tracer was added within the flow field, and not to the injection stream. This tracer test was designed to more accurately simulate the path that H₂ and OH⁻ being generated within the cathode wells would take. The sampling data showed that tracer flowing out of cathode well CW-2 was not reaching any of the three PMW-4 monitoring zones at relevant concentrations. However, tracer was detected in the deep zone of MLS well PMW-7 (which is located nearly perpendicular to the measured groundwater gradient) at concentrations >400 mg/L during the test. Overall, these tracer testing results showed unexpected flow paths and distribution of the bromide, and forced us to re-evaluate the operating conditions of the demonstration, as well as the sampling and monitoring program. These results, along with the lack of pH increases and dissolved H₂ distribution observed at test plot MLS wells during phase 2 (**Sections 5.7.2** and **5.7.3**, respectively), lead us to shorten this operational phase. As detailed in **Section 5.5.3**, modifications were made to the groundwater recirculation for Phase 3 of the demonstration to try to improve distribution of H₂ and OH⁻ being generated at the cathode wells.

Figure 5.33. Day 8 Bromide Distribution in the Shallow, Intermediate and Deep Zones during the Second Tracer Test

5.7.1.3 Tracer Test #3

The third and final tracer test was performed at the beginning of Phase 4 of the demonstration, after modifications were made to the groundwater recirculation and PRT systems. As detailed in **Section 5.5.3**, the groundwater recirculation system was modified to create a small recirculation loop (**Figure 5.29**) to move groundwater between well AW-2 (which served as the extraction well) and CW-2 (which served as both a cathode and an injection well). The electrode in AW-2 was removed, and well CW-1 was converted into an anode for the remainder of the demonstration. A submersible air-driven bladder pump was installed in well CW-2, and groundwater was recirculated at a rate of approximately 400-500 mL/min for most of Phase 4.

Tracer Test #3 was conducted in order to determine connectivity of MLS monitoring wells PMW-7S/I/D and PMW-8S/I/D and groundwater travel times within the new groundwater recirculation loop. A 2 liter solution containing 500 grams of sodium bromide was added to injection well CW-2, and groundwater samples were collected for bromide analysis at three time points during the 8-day test (Section 5.5.3). Samples were collected from MLS monitoring wells PMW-4S/I/D, PMW-7S/I/D, and PMW-8S/I/D, and wells CW-2 and AW-2 during each event to determine the vertical and horizontal distribution of the bromide tracer with time. Sample analysis and quantities are summarized in Sections 5.6.2 and 5.6.3, respectively, and analytical data are presented in Appendix D.

As shown on **Figure 5.34**, the bromide tracer was well distributed throughout all three layers of the revised treatment zone. Bromide concentrations >10 mg/L were observed in all three intervals of MLS wells PMW 7 and PMW-8 during the test. Groundwater velocities were estimated between approximately 0.3 and 0.6 ft/day. These results indicated that H₂ and OH-generated at well CW-2 had the potential to be well distributed within the treatment zone.

5.7.2 pH Adjustment

One of the primary goals of this demonstration was to use PRT to increase aquifer pH via electrolysis and proton reduction. **Figure 5.35** shows groundwater pH measured in the three cathode wells. During Phase 1 of the demonstration, when only the PRT system was operating (no groundwater recirculation), the pH in the cathode wells increased to >10. During Phase 2 of the demonstration, the PRT system was operated at varying voltages/currents. As shown on **Figure 5.35**, even with active groundwater recirculation, pH in the cathode wells could be maintained at >10 when system voltage was ~16V and the measured current was >250 mA. However, during Phases 3 and 4, when groundwater was recirculated directly into the cathode wells, pH measured in the wells was only slightly higher than the pH of the recirculated groundwater.

Although high pH (to pH 11.5) was achieved in the cathode well groundwater (**Figure 5.17**) during Phases 1 and 2 of the demonstration, the impact of the treatment was not observed in any of the downgradient MLS monitoring wells, including PMW-4S/I/D located 2.5 feet down gradient of cathode CW-2. The lack of observed impact at this MLS monitoring well was possibly due to a lack of hydraulic connection between the cathode well and the monitoring well (as confirmed during tracer testing) that prevented water from the cathode well from being transported to this monitoring well.

Figure 5.34. Day 4 Bromide Distribution in the Shallow, Intermediate and Deep Zones during the Third Tracer Test

Figures 5.36 and 5.37 show pH changes within the small Phase 4 recirculation loop at MLS monitoring wells PMW-7 and PMW-8, respectively. No significant increases in aquifer pH were observed at the PMW-7 and PMW-8 intervals during Phase 1 through Phase 3 of the demonstration. Upon initiating operation of the small recirculation system on day 233 (Phase 4), groundwater pH at some of the PMW-7 and PMW-8 intervals (especially in the PMW-7S) began to increase, and pH values near pH 6 were achieved. Because pH is a log scale, the increase in pH at some of these sample intervals indicated an approximately 10-fold reduction in acidity at this location. However, we were unable to consistently maintain pH > 6 throughout much of the treatment zone, which likely would have improved biological degradation of TCE. pH measurement locations and quantities are summarized in **Section 5.6.3**, and field measurement data are presented in **Appendix D**.

Figure 5.35. Groundwater pH Measured in Cathode Wells

Figure 5.36. Groundwater pH Measured in MLS Monitoring Well PMW-7

Figure 5.37. Groundwater pH Measured in MLS Monitoring Well PMW-8

5.7.3 Hydrogen Production and Distribution

 H_2 concentrations in the demonstration plot cathode wells reached concentrations up to approximately 1,200 μ g/L (**Figure 5.38**). H_2 concentrations in the cathode well groundwater remained saturated during Phase 1 and Phase 2 of the demonstration. During Phase 3 and Phase 4 of the demonstration, H_2 concentrations in the cathode well(s) decreased because the addition of extracted water to the cathode well (i.e., injection well) continually diluted H_2 concentrations and forced the H_2 -containing groundwater into the aquifer.

Hydrogen concentrations measured at MLS monitoring wells PMW-7 and PMW-8 during the demonstration are shown in **Figures 5.39 and 5.40**, respectively. During the demonstration, H_2 concentrations occasionally exceeded the target concentration of $0.010~\mu g/L$ at the MLS wells closest to the cathode wells. However, H_2 concentrations were more typically below the detection level ($<0.008~\mu g/L$) at these wells. Furthermore, dissolved H_2 concentrations at the MLS wells PMW-7 and PMW-8 monitored during Phase 4 of the demonstration were typically below $0.010~\mu g/L$. Considering H_2 concentrations at well CW-2 (cathode/injection well) were often $>50~\mu g/L$ during this Phase, this suggests that there was a substantial sink for hydrogen between CW-2 (cathode/injection well) and the MLS wells (located 2.5 ft and 5.0 ft away, and within the recirculation loop). Possible sinks for hydrogen include iron and manganese reduction, sulfate reduction, acetogenesis, and methanogenesis, as well as dechlorination of TCE.

Figure 5.38. Dissolved Hydrogen Concentrations Measured in Cathode Wells.

Cathodes CW-1 and CW-3 were taken off line during operation of the small recirculation system (Phase 4).

Figure 5.39. Dissolved Hydrogen Concentrations Measured in MLS Monitoring Well PMW-7

Figure 5.40. Dissolved Hydrogen Concentrations Measured in MLS Monitoring Well PMW-8

5.7.4 Oxidation-Reduction Potential

The ORP measured at the MLS monitoring wells PMW-7 and PMW-8 fluctuated significantly during the demonstration, but did occasionally reach levels sufficient to support complete reductive dechlorination of TCE (< -100 mV) (**Figures 5.41** and **5.42**). However, the ORP conditions were unfavorable through much of the demonstration. The ORP temporarily decreased to desirable levels in all of the PMW-7 and PMW-8 sample intervals immediately after both bioaugmentation injections. However, the ORP slowly increased again after both injections. The data show that we were unable to maintain target ORP levels within the treatment zone during most of the demonstration. While not presented, the DO concentrations measured in MLS wells PMW-7 and PMW-8 where typically below 1.0 mg/L during Phase 4 of the demonstration. Baseline DO concentrations at these wells were between ~0.5 and 2.5 mg/L.

Figure 5.41. ORP Measurements in MLS Monitoring Well PMW-7

Figure 5.42. ORP Measurements in MLS Monitoring Well PMW-8

5.7.5 Electron Acceptor Concentrations

Factors that could have limited distribution of H₂ in situ include competition for H₂ by microorganisms that used other electron acceptors. In situ competition for H₂ has been well documented (Löffler, et al.,1999). Competing electron acceptor processes could have included iron reduction, manganese reduction, sulfate reduction, and methanogenesis. Homoacetogenesis also could have contributed to competition for the produced H₂ (Yang and McCarty, 1998).

During Phase 4 of operation, dissolved iron concentrations in MLS wells PMW-7 and PMW-8 did not exhibit a consistent concentration increase, and some of the measured differences in Fe concentrations may have been due to mixing (**Figure 5.43**). In particular, during the initial operation of the Phase 4 recirculation system, oxygenated water was continuously pumped from well AW-2, which had previously been used as an anode well. The influence of this water on Fe concentrations is not certain, but it is likely that some Fe oxidation may have occurred thereby leading to uncertainty about the role of Fe reduction in H₂ consumption.

Figure 5.43. Dissolved Iron Concentrations in MLS Wells PMW-7 and PMW-8

Unlike dissolved Fe, increases in dissolved Mn concentrations appeared more conclusive within three of the monitoring intervals (PMW-7I, PMW-8S, and PMW-8I), with dissolved Mn concentrations being about three times greater at the end of the demonstration than during baseline sampling (**Figure 5.44**). However, Mn concentrations were 1 to 2 orders of magnitude less than Fe concentrations. Similar to the dissolved Fe results, the amount of manganese reduction that could be attributable to biological activity and consumption of the produced H₂ could not be confirmed.

Figure 5.44. Dissolved Manganese Concentrations in MLS Wells PMW-7 and PMW-8

Sulfate reduction could not be ruled out as a sink for H_2 produced during this demonstration. With the exception of PMW-7S, sulfate concentrations at MLS wells PMW-7 and PMW-8 (**Figure 5.45**) decreased significantly (between 60 and 85 percent) during the course of the demonstration, and these reductions were likely due to biological sulfate reduction. During Phase 4 of the demonstration sulfate concentrations in PMW-7D, which was the portion of the aquifer with the greatest cVOC degradation, were reduced by approximately 40 mg/L (0.42 mM). Because 4 moles of H_2 are needed to reduce 1 mole of sulfate to sulfide ($SO_4^{2^-} + 4H_2 + H^+ \rightarrow HS^{1^-} + 4H_2O$), this represents a potential H_2 consumption of 1.7 mmole per liter of groundwater (i.e., 3.4 mg H_2/L). Maximum potential H_2 production, based on a current of 250 mA was about 100 mmoles/day. Thus, sulfate reduction may have been a significant potential sink for the produced H_2 . The advantage of sulfate reduction in an acidic aquifer is that the process does consume some acidity (i.e., H^+).

Figure 5.45. Sulfate Concentrations in MLS Wells PMW-7 and PMW-8

5.7.6 cVOC Treatment

Based on laboratory studies performed at the beginning of the project (**Section 5.3.2**), a microbial population capable of complete dechlorination of TCE did not exist at the site, presumably because of the low natural pH. Consequently, bioaugmentation injections with the SDC-9 dechlorination culture were performed at well CW-2 on days 402 and 668 of the demonstration (**Section 5.5.4**).

With the exception of well PMW-7D, the concentration of TCE decreased notably in treatment zone monitoring MLS wells PMW-7 and PMW-8 during the demonstration (**Figure 5.46**). These decreases ranged from 31 percent (PMW-7S) to 89 percent (PMW-8I). As shown on **Figure 5.47**, notable transient increases in cDCE concentrations were observed in the treatment zone monitoring wells during the last ~100 days of the demonstration. Increases up to an order of magnitude were observed during this period. These data suggest that partial dechlorination of TCE was occurring within the treatment zone. However, the lack of observed vinyl chloride (not presented) and/or ethene concentrations (**Figure 5.48**) at these wells indicated that complete reductive dechlorination was not occurring at a significant rate. This is likely due (at least partially) to the sub-optimal pH and ORP levels that had been achieved within the treatment zone.

Figure 5.46. TCE Concentrations in MLS Wells PMW-7 and PMW-8, and Background Well BMW-1S

Figure 5.47. cDCE Concentrations in MLS Wells PMW-7 and PMW-8, and Background Well BMW-1S

Figure 5.48. Ethene Concentrations in MLS Wells PMW-7 and PMW-8, and Background Well BMW-1S

5.7.7 DHC Distribution and Growth

Groundwater samples for DHC quantification (via qPCR) were collected during Phase 4 from MLS monitoring wells PMW-7 and PMW-8 within the small recirculation loop immediately prior to and approximately two months after the first bioaugmentation event (**Table 5.16**). Sample analysis and quantities are summarized in **Sections 5.6.2** and **5.6.3**, respectively, and qPCR results are provided in **Table 5.17**. Some of the DHC data collecting prior to bioaugmentation showed what we believe to be false positives due to cross-contamination from the ambient and ubiquitous presence of SDC-9 from our fermentation production center, which is located within the same facility as our analytical lab. DHC data collected after the first bioaugmentation injection during Phase 4 indicated a lack of distribution and growth of the bioaugmentation culture during the demonstration.

Table 5.17. Enumeration of Dehalococcoides sp. Bacteria in Groundwater during Phase 4

Well	Day 402 DHC/L	Day 458 (DHC/L		
PMW-7S	2.49E+05*	3.20E+01 U		
PMW-7I	9.50E+03*	3.20E+01 U		
PMW-7D	1.02E+03*	3.20E+01 U		
PMW-8S	3.40E+01 U	3.20E+01 U		
PMW-8I	3.40E+01 U	ND		
PMW-8D	1.54E+05*	3.20E+01 U		

U - The compound was not detected at the indicated concentration.

5.7.8 PRT System Operation

As described in **Section 5.4.9**, the PRT system was completely powered via an off-the-grid solar power system. The system initially consisted of two 85 watt photovoltaic solar panels, and two deep discharge 80 amp hour 12V batteries. However, this power source was determined to be insufficient to provide continuous 24-hour operation when we began running the system at the maximum voltage (16V) and amperage (>300 mA) that the PRT panel was capable of providing. Site inspections during the first two weeks of Phase 1 indicated that the batteries would at times drain during the evening to the point where the PRT system would shut down. The addition of two additional solar panels and two more batteries to the PRT system were sufficient to provide continuous 24-hour operation >95 percent of the time. Once the solar power system was upgraded, the PRT system operated as designed during the remainder of the demonstration. The operational current at each of the cathodes was typically measured to be within the range of 250 mA to 350 mA during weekly site visits.

The PRT system was designed so that the polarity of the proton reduction system could be periodically switched (i.e., the cathodes become anodes, and the anodes become cathodes) to control pH increases at the cathode wells, or to minimize fouling of the mixed metal oxide electrodes. We did not reverse the polarity during the demonstration, as the system was unable to sufficiently increase pH and lower ORP within the treatment zone. Switching the polarity would have generated low pH, oxygenated water within and around the cathode wells during the demonstration, which, on even a short-term basis, would likely have negatively impacted the aquifer geochemistry.

ND - No data.

DHC/L - Dehalococcoides cells per liter

^{*}Positive results are believed to be the result of cross-contamination from the CB&I Fermentation facility.

As shown in the photographs in **Figure 5.49**, iron oxide deposits were observed on the electrode ribbon removed from the anode wells, and mineral deposits (likely calcite) were observed on the electrode ribbon removed from the cathode wells. The majority of these deposits were easily removed from the mesh ribbon using water and a scrub brush. There was no corrosion observed on the electrode surface once the deposits were removed. It is likely that the buildup of these deposits could be mitigated if the polarity of the PRT system were occasionally reversed for short periods of time.

Figure 5.49. Photographs of Electrode Fouling.

Iron oxide deposits on the electrode from an anode well (left) and mineral deposits (likely calcite) on the electrode from a cathode well.

6.0 PERFORMANCE ASSESSMENT

Performance objectives were established for this demonstration to provide a basis for evaluating the use of solar-powered PRT to increase the pH of a naturally-acidic, TCE-contaminated aquifer at JB MDL, and to use the H₂ produced by proton reduction to support TCE dechlorination by dechlorinating bacteria. Performance criteria were selected based on factors that would likely be considered when bringing the proposed technology to full-scale application. The performance objectives are provided in **Table 3.1**, and discussed in **Sections 3.1** to **3.10** in this document. The data for each given objective are provided in **Section 5.7** and **Appendix D**.

The main objective of the demonstration was to effect sustainable aquifer neutralization and contaminant degradation. As summarized in **Sections 3.0** and **5.7**, not all of the critical performance objectives for this demonstration were achieved. The following subsections provide a summary and assessment of the data supporting performance objectives.

6.1 INCREASE AND MAINTAIN NUETRAL AQUIFER PH

In order for successful bioremediation to occur, the groundwater pH in the treatment zone must be increased to a pH of approximately 6 or greater. In this demonstration, the objective was to achieve this increase in pH via the use of electrodes inserted into the subsurface to consume H⁺ and produce OH⁻.

In order to evaluate this performance objective, groundwater samples were collected and analyzed on site for pH during two baseline sampling events, and forty times during the Period of Operation, which continued for approximately 2 years. Data collected during the Period of Operation was compared to the data collected during baseline sampling and system startup to determine the increase in pH during operation of the proton reduction system. For this performance objective to be considered successful, the pH of the groundwater in test plot monitoring wells immediately downgradient of the cathodes (i.e. treatment zone) needed to be increased and maintained to between 6 and 8 SUs.

As detailed in **Section 5.7.2**, no significant increases in aquifer pH were observed at the monitoring wells located downgradient of the cathodes during Phase 1 through Phase 3 of the demonstration. Upon initiating operation of a small recirculation system on day 233 (Phase 4), groundwater pH at some of the MLS well intervals (particularly PMW-7S) began to increase, and pH levels near pH 6 were achieved. Because pH is a log scale, the increase in pH at PMW-7S indicated an approximately 10-fold reduction in acidity at this location. However, consistent and significant pH increases throughout the designed treatment zone were not observed during Phase 4 of the demonstration. It is likely that the degree of electrolysis occurring at the cathode during Phase 4 was not sufficient to substantially increase the pH of acidic groundwater being continually re-circulated into the injection/cathode well, as the high pH levels observed in the electrode/cathode wells during Phase 1-3 of operation were not observed during Phase 4.

While increases in groundwater pH levels at or above 6 SUs were observed at some of the MLS well intervals during the demonstration, the PRT system (as configured) was unable to maintain a consistent pH between 6.0 and 8.0 SUs within the designed treatment area. Therefore, this performance metric was only partially achieved.

6.2 PRODUCTION OF H₂ AT THE CATHODE

The primary goal of this performance objective was to confirm that H_2 was being generated at the cathodes. In order to evaluate H_2 production at the cathodes, groundwater samples were collected from the cathode wells and analyzed for dissolved H_2 immediately prior to PRT system startup, and numerous times during the 2-year Period of Operation. These data were also used to determine the concentrations of H_2 being generated at the electrode/cathode wells.

This performance objective was to be considered successful if groundwater dissolved H_2 concentrations of >130 μ g/L (approximately 10 percent of solubility) were measured at each of the three cathode wells. As detailed in **Section 5.7.3**, once operation of the proton reduction system was optimized, H_2 concentrations in the demonstration plot cathode wells consistently exceeded 160 μ g/L and reached concentrations up to approximately 1,200 μ g/L (>90 percent of solubility). H_2 concentrations in the cathode well groundwater remained high during Phases 1 and 2 of the demonstration. During Phase 3 and 4 of the demonstration, H_2 concentrations in the cathode well(s) decreased because the addition of extracted water to the cathode wells (i.e., injection wells) continually diluted H_2 concentrations and forced the H_2 -containing groundwater into the aquifer.

During operating phases where groundwater was not being re-injected in to cathode wells (Phases 1 and 2), dissolved H_2 concentrations of >130 μ g/L were consistently measured in the groundwater within the three cathode wells. Therefore, this performance metric was achieved.

6.3 DISTRIBUTION OF H₂ TO 1 METER DOWNGRADIENT OF THE CATHODE

In order for H₂ to be effective as an electron donor to support biological reductive dechlorination, it must be adequately distributed throughout the treatment zone. The goal of this performance objective was to confirm that H₂ was present in adequate concentrations at least 1 meter downgradient of the cathodes, where it was formed. The extent to which dissolved H₂ migrates downgradient of the cathode is largely dependent upon the groundwater velocity and the site-specific H₂ utilization rate. Additionally, we attempted to evaluate the potential for generation of H₂ between inserted electrodes via the electrolysis of water on clay surfaces that may act as microcapacitors (as discussed in **Section 2.1.2**). The data collected were used to determine the concentrations of H₂ at the MLS monitoring wells installed between the electrodes and throughout the test plots, and to establish whether the H₂ concentrations were adequate for reductive dechlorination (>4 ng/L, as discussed in **Section 2.1.1**).

This performance objective was to be considered successful if groundwater H₂ concentrations of >0.010 µg/L (2.5 times the concentration required to support reductive dechlorination) were present at least 1 meter downgradient of the cathode wells. As discussed in **Section 5.7.3**, H₂ concentrations occasionally exceeded 0.010 µg/L at the MLS wells closest to the cathode wells during the demonstration. However, H₂ concentrations were more typically below the detection level (<0.008 µg/L) at these wells. Furthermore, dissolved H₂ concentrations at the two MLS wells monitored during Phase 4 of the demonstration were typically below 0.010 µg/L. Considering H₂ concentrations at well CW-2 (cathode/injection well) were typically >50 µg/L during this Phase, this suggests that there was a substantial sink for hydrogen between CW-2 (cathode/injection well) and the MLS wells (located 2.5 ft and 5.0 ft away, and within the recirculation loop). As previously discussed, possible sinks for H₂ include Fe and Mn reduction, sulfate reduction, acetogenesis, and methanogenesis, as well as dechlorination of TCE.

While occasional detections of H_2 concentrations of >0.010 μ g/L were observed at some of the MLS well intervals during the demonstration, H_2 was not consistently observed at or above the target concentration within the designed treatment area. Therefore, this performance metric was not achieved.

6.4 REDUCTION OF TCE AND CIS-DCE IN THE TEST PLOT

The main contaminants of concern in the JB MDL groundwater plume at Area SS-36 are TCE and *cis*-DCE. In order to evaluate treatment of cVOCs in the test plot, groundwater samples were collected and analyzed for VOCs during two baseline sampling events and 12 times during the 2-year Period of Operation. The data collected were used to determine the extent of TCE and *cis*-DCE reduction and daughter product formation in the test plot.

This performance objective was to be considered successful if TCE and *cis*-DCE concentrations in the test plot monitoring wells were reduced by >95%. As discussed in **Section 5.7.6**, measureable reductions in TCE concentrations, ranging between 31 and 89 percent, were observed at 5 of the 6 MLS well intervals monitored throughout the course of the demonstration. Notable transient increases in cDCE concentrations were observed in the treatment zone monitoring wells during the last ~100 days of the demonstration, with increases of up to an order of magnitude detected. These data suggest that partial dechlorination of TCE was occurring within the treatment zone. However, the lack of observed vinyl chloride and/or ethene concentrations at these wells indicated that complete reductive dechlorination was not occurring at a significant rate. This was likely due (at least partially) to the sub-optimal pH and ORP levels that had been achieved within the treatment zone. While significant reduction in TCE concentrations were achieved, complete reductive dechlorination was not observed, and reductions of TCE and cis-DCE by >95% were not achieved.

6.5 COMPLETE AND PROLONGED BIODEGRADATION OF TCE TO ETHENE

The goal of this performance objective was to achieve sustainable TCE and *cis*-DCE biodegradation *in situ* for a minimum of eight months, and to demonstrate that these compounds were reduced completely to ethene. In order to evaluate prolonged treatment of cVOCs in the test plot, groundwater samples were collected and analyzed for VOCs and reduced gases during two baseline sampling events and 12 times during the 2-year Period of Operation. These data collected was used to establish the extent of TCE reduction and daughter product formation in the test plot.

This performance objective was to be considered successful if reductive dechlorination of TCE and *cis*-DCE were prolonged throughout the Period of Operation, and if TCE degradation proceeded completely to ethene without stalling at *cis*-DCE or VC. It was expected that *cis*-DCE and VC would be produced as transient intermediates of TCE degradation and also would be rapidly degraded. As discussed in **Section 5.7.6**, while some substantial transient increases in *cis*-DCE were observed at some of the test plot MLS wells, only traces of vinyl chloride were observed. Furthermore, while some low levels of ethene were observed, the source of the measured ethene is not certain. These data suggest that partial dechlorination of TCE was occurring during the demonstration, and that complete reductive dechlorination was limited. Therefore, this performance metric was not achieved.

6.6 DISTRIBUTION AND GROWTH OF ADDED DHC

The goal of this performance objective was to achieve adequate distribution and growth of bioaugmented DHC downgradient of the cathodes and throughout the test plot treatment zone through stimulation with H₂ produced by the proton reduction system. In order to evaluate these objectives, pre-bioaugmentation and post-bioaugmentation sampling events were performed in which groundwater samples were obtained from select wells and analyzed using quantitative polymerase chain reaction (qPCR) to determine DHC groundwater concentrations. The data collected was used to determine the distribution and growth of DHC within the test plot.

This performance objective was to be considered successful if qPCR data indicated that DHC were distributed downgradient of the injection point, and that DHC concentrations increases *in situ* to $>1.0 \times 10^7$ cells/liter as cVOCs were reduced. As discussed in **Section 5.7.7**, DHC data collected during the demonstration indicated a lack of distribution and growth of the bioaugmentation culture during the demonstration.

6.7 ELECTRODE STABILITY FOR >1 YEAR

In order for the treatment system to be successful, consistent and sustained proton reduction and production of H₂ at the cathode needed to be achieved. This required that the electrodes perform continuously, without measureable loss in performance. The collection of system operating voltages and currents, and visual observations of the electrode material at multiple time points throughout the demonstration was required to evaluate this performance objective. System operating parameters were recorded at least twice per month, and the electrodes were removed from the wells for inspection approximately once every six months. The data collected was used to determine the operating efficiency of the electrodes during the demonstration.

This performance objective was to be considered successful if the electrodes operated effectively, without measurable loss of performance for >1 year. Additionally, electrode corrosion observed during inspections must be minimal. Regular system operation measurements collected during the demonstration indicated that there was no significant decrease in electrode performance (i.e. loss of current at a given voltage) during two years of operation. Also, as discussed in **Section 5.7.8**, some fouling of the cathodes was observed during inspections. However, this did not appear to significantly impact electrode performance. Therefore, this performance metric was achieved.

6.8 SYSTEM RELIABILITY AND EASE OF OPERATION

The goal of this performance objective was to assess and maximize the reliability and ease of operation of the solar-powered proton reduction system. This performance objective was qualitative, and thus was evaluated using the observations of field personnel and project management. These include logged data collected from the solar power system, and system operating parameters recorded during regular site inspections.

This performance objective was to be considered successful if the solar-powered proton reduction system operated continually (i.e., for a minimum of 12 months) with minimal downtime and supervision (i.e., less than 8 hours of manpower per month required to successfully operate the system). As discussed in **Section 5.7.8**, field observations and system

operating records indicated that the system operated >95% of the time over a 2 year period, with minimal O&M required. Therefore, this performance metric was achieved.

6.9 SUSTAINED SOLAR OUTPUT TO OPERATE THE PRT SYSTEM

The goal of this performance objective was to assess and maximize the reliability and ease of operation of the off-the-grid solar-power system that powered the proton reduction system. This performance objective is qualitative, and thus was evaluated by using the observations of field personnel and project management. These include logged data collected from the solar power system, and system operating parameters recorded during regular site inspections.

This performance objective was to be considered successful if the electrical output derived from the solar power was sufficient to power the proton reduction system for the course of the demonstration (i.e., a minimum of 12 months) with no additional external power required. As discussed in **Section 5.7.8**, additional solar panels and batteries were added to the solar power system near the beginning of the demonstration to provide consistent 24-hour operation of the PRT system. Field observations and system operating records indicate that the solar power system operated >95% of the time over a 2 year period, with minimal O&M required. Therefore, this performance metric was achieved.

6.10 NO SAFETY HAZARDS OR INCIDENTS DURING SYSTEM OPERATION

The goal of this performance objective was to assess and maximize the safety of operating the solar-power PRT system. This performance objective is qualitative, and thus was evaluated by using the observations of field personnel and project management. These include safety observations and measurements made during regular site inspections and field activities.

This performance objective was to be considered successful if there were no observed or recorded safety incidents or hazardous conditions during system operation and monitoring over the course of the demonstration. Safety observations and records indicated that there were no safety incidents or injuries that occurred during the demonstration. A build-up of H₂ gas was measured in the sealed cathode wells during early operation of the PRT system. H₂ buildup was mitigated by opening the valves on the cathode well heads, and drilling holes in the lids of the well vaults to allow H₂ to dissipate from the wells. No explosive conditions were measured (via combustible gas meter) during the demonstration. Therefore, this performance metric was achieved.

Page Intentionally Left Blank

7.0 COST ANALYSIS

7.1 COST MODEL

In order to evaluate the cost of a potential full-scale PRT system, and compare it against other remedial approaches, costs associated with various aspects of the demonstration were tracked throughout the course of the project. **Table 7.1** summarizes the various cost elements and total cost of the demonstration project. The costs have been grouped by categories as recommended in the Federal Remediation Technologies Roundtable Guide to Documenting Cost and Performance for Remediation Projects (FRTR, 1998). Many of the costs shown on this table are a product of the innovative and technology validation aspects of this project, and would not be applicable to a typical site application. Therefore, a separate "discounted costs" column that excludes or appropriately discounts these costs has been included in **Table 7.1** to provide a cost estimate for implementing this technology at the same scale as the demonstration (i.e., pilot scale).

Costs associated with the demonstration were tracked from March 2010 to September 2015. The total cost of the demonstration was \$1,031,800 which included \$339,487 in capital costs, \$209,445 in operation and maintenance (O&M) costs, and \$482,868 in demonstration-specific costs (cost related to ESTCP requirements, site selection and characterization).

7.1.1 Capital Costs

Capital costs (primarily system design and installation) accounted for \$339,487 (or 33 percent) of the total demonstration costs. As indicated in **Table 7.1**, these costs exceed what would be expected during a typical remediation project due partially to the large number of performance monitoring wells (12 multi-level wells) installed within the relatively small (40' x 40') demonstration area.

7.1.2 O&M Costs

O&M costs accounted for \$209,425 (or 20 percent) of the total demonstration cost. These costs consisted primarily of groundwater monitoring (including analytical), system O&M, and reporting costs. System O&M costs were \$32,100, or 3 percent of total demonstration costs. Extensive performance monitoring activities were conducted to effectively validate this technology; including 2 baseline, 12 performance monitoring, 16 dissolved hydrogen, and 13 tracer testing groundwater sampling events.

7.1.3 Demonstration-Specific Costs

Other demonstration-specific costs (those costs not expected to be incurred during non-research-oriented remediation projects) accounted for \$482,900 (or 47 percent) of the total demonstration cost. These costs included site selection, laboratory treatability studies, laboratory buffer testing, laboratory electrode testing, hydrogeologic testing, tracer tests, ESTCP demonstration reporting and meeting (IPR) requirements, and preparation of extensive technical and cost and performance reports.

Table 7.1. Demonstration Cost Components

Cont Flores	Datalla	Tracked Demonstration	Discounted Costs ¹			
Cost Element Details Costs						
CAPITAL COSTS Groundwater Modeling Labor \$8,265 \$4,132						
Groundwater Modeling	Labor	· /	\$4,132			
System Design	****	\$32,661				
W. H H	Labor	\$51,978	\$25,989			
Well Installation, Development & Surveying ²	Materials	\$4,888	\$2,444			
	Subcontracts (driller/surveyor)	\$67,129	\$33,565			
System Installation (electrical service, control	Labor	\$88,559	\$88,559			
panel, trenching, system materials)	Equipment & Materials	\$83,020	\$83,020			
	Subcontracts	\$0	\$0			
Bioaugmentation	Labor and Materials	\$2,987	\$2,987			
	Subtotal	\$339,487	\$257,027			
OPE	RATION AND MAINTENANCE COSTS					
Groundwater Sampling	Labor	\$73,384	\$36,692			
Oromio wito sampang	Materials	\$5,001	\$2,500			
Analytical	In-House Labor	\$88,219	\$44,110			
2 shary tear	Outside Labs	\$4,878	\$2,439			
System O&M (including testing & start-up)	Labor	\$32,110	\$16,055			
System Octivi (including testing & start-up)	Materials	\$0	\$0			
Reporting & Data Management	Labor	\$4,280	\$4,280			
Travel		\$1,573	\$1,573			
	Subtotal	\$209,445	\$107,649			
OTE	IER TECHNOLOGY-SPECIFIC COSTS					
Site Selection	Labor	\$33,317	\$0			
Site Characterization (drilling investigation,	Labor (including in-house analytical)	\$48,749	\$0			
depth-dependent sampling, slug tests, pump	Materials	\$0	\$0			
tests)	Subcontractor (driller)	\$8,900	\$0			
Total Transfer	Labor (including in-house analytical)	\$55,120	\$0			
Treatability Studies and Column Testing	Outside Lab	\$0	\$0			
Lab Buffer Testing	Labor (including in-house analytical)	\$21,072	\$0			
Lab Electrode Testing	Labor (including in-house analytical)	\$58,677	\$0			
Hydrogeologic Testing	Labor & Travel	\$10,249	\$0			
Tracer Testing	Labor & Travel	\$21,108	\$0			
IPR Meeting & Reporting	Labor & Travel	\$31,335	\$0			
Monthly and Quarterly Reports	Labor & Travel	\$33,081	\$0			
Technology Transfer (presentations, papers)	Labor & Travel	\$33,196	\$0			
Demonstration Plan/Work Plan	Labor	\$42,104	\$21,052			
nal Report Labor		\$65,732	\$32,866			
Cost and Performance Report	Labor	\$20,225	\$0			
	Subtotal	\$482,868	\$53,918			
	TOTAL COSTS	\$1,031,800	\$418,594			

Notes:

¹Discounted costs are defined as estimated costs to implement this technology at the same scale as the demonstration. These costs do not include the technology validation apects of this ESTCP demonstrations, such as site selection, treatability studies, extensive groundwater sampling, ESTCP demonstration reporting and meeting (IPR) requirements, and preparation of technical and cost and performance reports.

7.2 COST DRIVERS

7.2.1 General Considerations

The expected cost drivers for installation and operation of a PRT system, and those that will determine the cost/selection of this technology over other options include the following:

- Depth of the plume below ground surface;
- Width, length, and thickness of the plume;
- Aquifer lithology and hydrogeology;
- Regulatory considerations concerning secondary groundwater impacts (i.e. metals mobilization, sulfate reduction, etc.);
- Length of time for clean-up (e.g., necessity for accelerated clean-up);
- The presence of indigenous bacteria capable of degrading chlorinated VOCs;
- Concentrations of contaminants and alternate electron acceptors (e.g., NO₃-, SO₄²- and O₂); and
- Presence of co-contaminants.

7.2.2 Competing Treatment Technologies

Other technologies that have been proven to treat chlorinated ethenes in groundwater to below regulatory levels at the field scale include:

- 1. Pump and treat (P&T) with air stripping and/or carbon adsorption;
- 2. Zero valent iron permeable reactive barriers (ZVI PRBs);
- 3. Biostimulation with or without bioaugmentation;
- 4. In-Situ Chemical Oxidation (ISCO); and
- 5. Air sparge/soil vapor extraction.

Pump and treat technologies provide capture of contaminated groundwater, and above-ground treatment of the extracted water prior to discharge or re-injection into the subsurface. While these systems can provide protection to downgradient receptors if designed properly, they are inefficient at removing contaminant mass from a plume and/or source zone, and often require operation for decades, leading to high overall costs.

ZVI PRBs and biobarriers treat contaminated groundwater as it flows through the wall/barrier. While these approaches can provide protection to downgradient receptors, they are even less effective than P&T at removing contaminant mass from the plume and/or source zone. They may also require regular replacement as the materials (ZVI and organic substrate) are used up or begin to clog, leading to contaminated groundwater flowing around or beneath the wall/barrier.

Bioremediation (active, passive, or semi-passive approaches) can be utilized to treat source areas and diffuse plumes or as a barrier to protect downgradient receptors, whereas the two technologies discussed above (P&T and ZVI PRBs) are typically used as barriers to protect downgradient receptors.

ISCO is most often used in well-defined source areas of limited extent rather than as a barrier application, due to the high cost of chemicals. Air sparging is used to drive volatile contaminant into the vapor phase and into the unsaturated zone. Soil Vapor Extraction (SVE) is often required to remove and treat the volatile contaminants to prevent exposure to vapors.

The plume characteristics and those of the local aquifer will play an important role in the cost and applicability of the above technologies for remediation of VOC-contaminated groundwater. For shallow groundwater plumes (< 50 ft bgs), passive *in situ* options, such as installation of a PRB consisting of either injection well or direct-push applied slow-release substrates (like EVO) are likely to be cost effective options, providing the selected substrate(s) have been shown to stimulate indigenous microorganisms capable of degrading target contaminants at the treatment site. ZVI PRBs may also provide cost-effective options for passively treating contaminants at the downgradient edge of groundwater plumes. These passive systems require little O&M after installation, and have the ability to prevent plumes from spreading or leaving a site. However, they may be less suitable at sites where concerns about secondary groundwater contaminants (e.g. reduction and mobilization of Fe, Mn, and As, sulfide from sulfate reduction, etc.) exist. Additionally, trench-installed barrier technologies may require regular ZVI replacement (ZVI PRBs) to remain effective.

For deeper plumes (e.g. >50 ft. bgs) or those that are large or very thick, passive approaches are often not technically feasible and are cost-prohibitive (e.g., injecting passive substrates at closely spaced intervals to >50 ft bgs). Active or semi-passive treatment systems may be technically and economically more attractive under these conditions. Active treatment approaches may also be better suited for heterogeneous geologies or sites where pH adjustment is required, as groundwater recirculation improves mixing and distribution of injected amendments within the subsurface. Longer treatment time frames, high contaminant concentrations, and secondary reactions may also present conditions favorable for utilizing an active approach, since amendment addition and mixing rates can be adjusted more easily than with passive approaches, which often utilize less frequent injection of amendments at high concentrations. However, these approaches may be limited where re-injection of contaminated water with amendments is either prohibited or subject to regulatory injection permits.

7.3 COST ANALYSIS

A cost analysis of PRT and three traditional cVOC groundwater treatment approaches was performed. Cost estimates for full scale applications were developed for the following technologies:

- 1. Proton reduction barrier;
- 2. Passive trench ZVI PRB;
- 3. Active pump and treat; and
- 4. Air Sparge/SVE.

The above technologies were selected for comparison because they are applicable for low pH aquifers. Bioremediation can also be effective in low pH aquifers when pH controls are added, but this technology was not included in the cost evaluation in order to provide a comparison of stand-alone technologies for low pH situations. The cost analyses comparing the above approaches are presented below based on a 30-year operating scenario.

7.3.1 Base Case Template

The base case presented in Krug et al., (2009) is used as a template for the cost analysis of the above technologies/approaches. The base case presents a situation where a shallow aquifer, consisting of homogeneous silty sands, is contaminated with TCE. The contaminated groundwater extends from 10 to 50 feet bgs, along the direction of groundwater flow for 800 feet, and is 400 feet in width (**Figure 7.1**). The specific base case site characteristics, including aquifer characteristics and design parameters for each of the remedial approaches analyzed are summarized in **Table 7.2**. The costing for the template site assumes that the source zone has been treated and that there is no continuing source of groundwater contamination.

Figure 7.1. Base Case Plume Characteristics.

The following subsections provide cost estimates for implementation of each of the four treatment approaches for the base case. The cost estimates provide insight into the comparative capital, O&M, and long term monitoring costs to better identify cost drivers for each technology/approach. Total costs and the Net Present Value (NPV) of future costs were calculated for each of the treatment approaches. Future costs (O&M and long term monitoring costs) are discounted using a 1.5% real discount rate to determine the NPV estimates of these costs (OMB Circular A-94, 2016). Specifically excluded from consideration are the costs of pre-remedial investigations and treatability studies, assuming the costs for these activities would be similar for each alternative. The cost estimates for each of the alternatives also assumes the long-term performance monitoring costs are identical for each alternative. Monitoring is assumed to be at a quarterly frequency for the first 5 years and an annual frequency thereafter.

Table 7.2. Summary of Base Case Site Characteristics and Design Parameters

		Alternative			
Design Parameter	Units	Proton Reduction Barrier	ZVI PRB	Pump and Treat	Sparge / SVE
Width of Plume	feet	400	400	400	400
Length of Plume	feet	800	800	800	800
Depth to Water	feet	10	10	10	10
Vertical Saturated Thickness	feet	40	40	40	40
Porosity	dimensionless	0.25	0.25	0.25	0.25
Gradient	dimensionless	0.008	0.008	0.008	0.008
Hydraulic Conductivity	ft/day	2.8	2.8	2.8	2.8
Groundwater Seepage Velocity	ft/year	33	33	33	33
Nitrate Concentration	mg/L	15	15	15	15
Dissolved Oxygen Concentration	mg/L	5	5	5	5
Number of Barriers	each	1	1	1	1
Number of Monitoring Wells	each	10	10	10	10
Number of Sparge Wells	each	0	0	0	28
Number of SVE Wells	each	0	0	0	14
Number of Extraction/Injection Wells	each	0	0	9	0

7.3.2 Proton Reduction Barrier

The PRT barrier alternative assumes that a series of electrodes will be installed at the downgradient edge and perpendicular to the axis of the plume (**Figure 7.2**). The system will include 200 cathodes installed with a 2-foot spacing across the 400-foot wide plume. A system of 40 anodes will installed downgradient of the cathodes. The electrodes will be installed by direct-push drilling methods, and consist of metal mesh electrode ribbon and coke breeze to provide electrical contact with the formation. A one-inch diameter PVC well will be installed with every fifth cathode.

Several electrical supply options for powering the PRT barrier were evaluated including the following:

- 1. off-grid solar with daytime only operation;
- 2. off-grid solar with 24 hour per day operation;
- 3. solar tied to grid; and
- 4. non-solar grid only.

Each of these options is described below and a cost comparison for the electrical supply components is provided in **Table 7.3**. The cost estimates assume other cost elements remain the same for system design, well and electrode installation, system installation, operations and maintenance, and long term monitoring.

Figure 7.2. Proton Reduction Barrier Alternative for Plume Cutoff

Table 7.3. Cost Comparison of PRT System Electric Supply Options

Alternative	Capital Costs	NPV of 30 Years of O&M Costs	Total 30-Year Electrical Costs
Off-Grid Solar, Daytime-Only Operation	\$31	\$0	\$31
Off-Grid Solar, 24-Hour Operation	\$180	\$260	\$440
Solar Tied to Grid, 24-Hour Operation	\$150	\$0	\$150
Non-Solar Grid-Only, 24-Hour Operation	\$30	\$205	\$235

Notes:

All costs are in thousands of dollars

NPV - Net Present Value; current value of future costs based on a 1.4% annual discount rate

O&M - Operation and Maintenance

7.3.2.1 Off-Grid Solar, Daytime-Only Operation

This option includes a solar power array consisting of 40 200-watt solar panels to produce approximately 8 kilowatts of power. The system would operate only during daylight hours, thereby avoiding the need for battery storage of electricity. Cabling to each of the electrodes would be installed in conduit within utility trenches, and a control panel would regulate the power provided to each electrode.

This system is assumed to operate for 30 years with no other costs for electricity supply, and no additional O&M costs are associated with this option. This power-supply option has the lowest total cost of \$31k. The major limitation associated with this option is that the operating time is limited to daytime hours when there is sufficient sunlight. This could greatly reduce the ability of the PRT system to adjust aquifer pH, and to produce sufficient H₂.

7.3.2.2 Off-Grid Solar, 24-Hour Operation

This option includes battery storage and additional solar panels to provide the required power to operate the PRT system 24 hours per day with a totally off-grid solar power system. The capital costs for this option assume installation of 160 200-watt solar panels and 106 storage batteries to provide the 24-hour power requirements. Because of the batteries, this option has the highest capital costs at \$180K. The O&M costs assume the batteries are replaced every 5 years. Because of this, the 30-year NPV O&M costs are the highest of the options at \$260K. While this power-supply option is completely off-the-grid, it has the highest total 30-year cost at \$440K.

7.3.2.3 Solar Tied-to-Grid, 24-Hour Operation

This option assumes the solar power system is tied to the grid and excess solar power generated during peak hours is fed back to the grid to offset costs. The system is powered by solar panels during daylight hours and powered by the electrical grid during non-daylight hours. The system is designed to provide the necessary power by solar panels with no net cost for use of the grid. In this case the grid provides electrical storage similar to a battery. This option assumes installation of 160 200-watt solar panels. The primary capital cost includes the solar panels and installation of an electrical supply from a nearby source on the power grid. The cost for the grid power supply will be site-specific based on the distance to existing power lines. A cost of \$30,000 was used for cost estimating purposes. This option has no O&M costs because the solar panels offset the electrical consumption cost from the grid. This option has the second lowest total cost at \$150k, and provides the benefit of 24-hour system operations which is likely preferable for system optimization.

7.3.2.4 Non-Solar Grid-Only, 24-Hour Operation

This alternative assumes electrical power is derived entirely from the existing power grid and solar energy technology is not used. The primary capital cost includes installation of an electrical supply from a nearby power supply and installation of an AC/DC converter. The cost for the grid power supply will be site-specific based on the distance to existing power lines. A cost of \$30,000 was used for cost estimating purposes. Ongoing O&M costs include electricity consumption. A cost of \$8,410 per year is estimated to provide the 8 kW PRT system requirement 24-hours per day and 365 days per year, at a rate of \$0.12 per kW-hour. This alternative has the second highest total 30-year NPV cost of \$235K.

The electrical supply option chosen for our cost estimate to provide a comparison to the other remedial technologies was solar tied-to-grid with 24-hour operation. As summarized in **Table 7.4**, the estimated total costs for this alternative over 30 years are \$2,907K with a total NPV of lifetime costs of \$2,523K. The capital cost including design, work plan, installation of electrodes and monitoring wells in addition to the electrical supply costs described above are approximately \$642K. The NPV of the O&M is estimated at approximately \$1,061K for the 30 years of treatment. The O&M costs primarily include the labor and material costs associated with weekly inspections.

The costs for material and other consumables are negligible with this alternative. The NPV of the 30 years of monitoring and reporting costs is estimated to be \$820K.

Table 7.4. Cost components for PRT System

			Year	Cost is Incu	urred			NPV of	Total Costs
	1	2	3	4	5	6	6 to 30	Costs*	Total Costs
CAPITAL COSTS									
System Design	70,000	-	-	-	-	-		70,000	70,000
Well Installation	214,735	-	-	-	-	-		214,735	214,735
System Installation	338,807	-	-	-	-	-		338,807	338,807
Start-up and Testing	17,978	-	-	-	-	-		17,978	17,978
SUBCOST (\$)	641,520	-	-	-	-	-		641,520	641,520
OPERATION AND MAINTENANCE COSTS									
System Operation and Maintenance	32,227	33,227	33,227	33,227	33,227	33,227	32,227 every year	1,061,326	1,305,824
SUBCOST (\$)	32,227	33,227	33,227	33,227	33,227	33,227		1,061,326	1,305,824
LONG TERM MONITORING COSTS Sampling/Analysis/Reporting (Quarterly through 5 years then Annually)	74,500	74,500	74,500	74,500	74,500	23,500	23,500 every year	820,411	960,000
SUBCOST (\$)	74,500	74,500	74,500	74,500	74,500	23,500		820,411	960,000
TOTAL COST (\$)	748,248	107,727	107,727	107,727	107,727	56,727		2,523,258	2,907,344

Notes:

NPV - Net Present Value

This alternative ranks lowest in estimated total remedy cost and lowest in NPV of lifetime costs (see **Table 7.8**). The estimated capital cost for this approach is the second lowest of the four alternatives because of the limited infrastructure required. The estimated long-term O&M costs are the lowest of the four alternatives, which helps make this the least expensive of the alternatives. As with the other alternatives, total remedy costs will increase if the treatment needs to extend beyond 30 years.

7.3.3 Passive Trench ZVI PRB

The passive trench ZVI PRB alternative assumes an initial installation of a ZVI PRB in a trench at the downgradient edge and perpendicular to the axis of the plume (**Figure 7.3**). The PRB will consist of 25% ZVI filings and 75% coarse sand fill mixture (v/v). The PRB will be installed using the one-pass trenching/installation method, and will be 400 feet long, 2 feet wide, and extend down to 50 feet bgs. Pricing for this alternative assumes the PRB will need to be replaced every 10 years due to decline in ZVI reactivity and/or plugging. The PRB will be maintained for a period of 30 years, with replacements occurring in years 10 and 20. This alternative also assumes 30 years of associated O&M and long term monitoring costs.

As summarized in **Table 7.5**, the estimated total costs for this alternative over 30 years are \$3,648K with a total NPV of lifetime costs of \$3,205K. The capital cost including design, work plan, ZVI PRB installation, and installation of monitoring wells are approximately \$1,001K. The NPV of the O&M is estimated at approximately \$1,383K, which is the NPV associated with the replacement of the PRB every 10 years. The NPV of the 30 years of monitoring and reporting costs is estimated to be \$820K.

^{* -} NPV calculated based on a 1.5% discount rate

This alternative ranks second in estimated total remedy cost and NPV of lifetime costs (**Table 7.8**). The estimated capital costs for this approach are the second highest, due largely to the relatively high cost of the initial PRB installation. The long term O&M costs associated with this alternative are the second lowest due to the lack of O&M requirements between PRB replacements. The total remedy costs for this alternative would increase significantly if the PRB lifespan was less than 10 years or if treatment extended beyond 30 years.

Figure 7.3. Passive Permeable Reactive Barrier Alternative Utilizing ZVI for Plume Cutoff

Table 7.5. Cost Components for ZVI PRB

			,	Year Cost i	s Incurred				NPV of	Total Costs
	1	2 to 5	6	7	8	9	10	11 to 30	Costs*	Total Costs
CAPITAL COSTS										
System Design	70,000		-	-	-	-	-		70,000	70,000
Well Installation	54,495		-	-	-	-	-		54,495	54,495
Trench Installation	876,554		-	-	-	-	-		876,554	876,554
Start-up and Testing**	-		-	-	-	-	-		0	0
SUBCOST (\$)	1,001,049		-	-	-	-	-		1,001,049	1,001,049
OPERATION AND MAINTENANCE COSTS										
ZVI Replacement Cost	-		-	-	-	-	843,647	843,647 year 20	1,383,162	1,687,294
SUBCOST (\$)				-	-		843,647		1,383,162	1,687,294
LONG TERM MONITORING COSTS Sampling/Analysis/Reporting (Quarterly through 5 years then Annually)	74,500	74,500 years 2 to 5	23,500	23,500	23,500	23,500	23,500	23,500 every year	820,411	960,000
SUBCOST (\$)	74,500		23,500	23,500	23,500	23,500	23,500		820,411	960,000
TOTAL COST (\$)	1,075,549		23,500	23,500	23,500	23,500	867,147		3,204,622	3,648,342

Notes:

NPV - Net Present Value

^{* -} NPV calculated based on a 1.5% discount rate

^{** -} No "Start-up and Testing" costs are included because no operating equipment is left behind following PRB installation

7.3.4 Active Pump and Treat

The groundwater extraction and treatment (pump and treat) system alternative is similar to the other technologies in that a downgradient barrier is installed (**Figure 7.4**). The system includes a row of four extraction and five injection wells, which would be used to create a groundwater capture zone at the downgradient edge perpendicular to the axis of the plume (**Figure 7.1**). The extracted groundwater would be treated above ground by air stripping followed by treatment with granular activated carbon (GAC). The treated groundwater would be re-injected providing hydraulic control and mass removal at the downgradient edge of the plume. The pump and treat system would be maintained for a period of 30 years. This alternative also assumes 30 years of associated O&M and long term monitoring costs.

Figure 7.4. Pump and Treat Alternative for Plume Cutoff

As summarized in **Table 7.6**, the estimated total costs for this alternative over 30 years are \$7,049K with a total NPV of lifetime costs of \$6,093K. The capital cost including design, work plan, installation of extraction/injection and monitoring wells, construction of the groundwater treatment system, and system start up and testing are approximately \$1,737K. The NPV of the O&M is estimated at approximately \$3,535K. The O&M costs include the labor costs associated with system O&M, costs for equipment repair and replacement, electrical costs, and cost for the replacement and disposal of the GAC. The NPV of the 30 years of monitoring and reporting costs is estimated to be \$820K.

This alternative ranks highest in both estimated total remedy cost and NPV of lifetime costs (**Table 7.8**). The estimated capital costs for this alternative are higher than the other three alternatives because of the higher costs associated with constructing a groundwater treatment system. The high O&M costs associated with operating the pump and treat system are what makes this alternative one of the least attractive of the alternatives. As with the other approaches, total remedy costs will increase if the treatment needs to extend beyond 30 years.

Table 7.6. Cost Components for Pump and Treat

			Year (Cost is Incu	rred			NPV of	Total Costs
	1	2	3	4	5	6	6 to 30	Costs*	Total Costs
CAPITAL COSTS									
System Design	90,352	-	-	-	-	-		90,352	90,352
Well Installation	128,350	-	-	-	-	-		128,350	128,350
System Installation	1,492,333	-	-	-	-	-		1,492,333	1,492,333
Start-up and Testing	26,250	-	-	-	-	-		26,250	26,250
SUBCOST (\$)	1,737,284	-	-	-	-	-		1,737,284	1,737,284
OPERATION AND MAINTENANCE COSTS									
System Operation and Maintenance	139,744	145,244	145,244	145,244	145,244	145,244	145,244 every year	3,534,990	4,351,834
SUBCOST (\$)	139,744	145,244	145,244	145,244	145,244	145,244		3,534,990	4,351,834
LONG TERM MONITORING COSTS Sampling/Analysis/Reporting	74,500	74,500	74,500	74,500	74,500	23,500	23,500 every year	820,411	960,000
(Quarterly through 5 years then Annually)	- 4 - 0 0	- 4 - 00	- 4 - 0 0	-400	-400			000 444	0.00.000
SUBCOST (\$)	74,500	74,500	74,500	74,500				820,411	960,000
TOTAL COST (\$)	1,951,529	219,744	219,744	219,744	219,744	168,744		6,092,685	7,049,118

Notes:

NPV - Net Present Value

7.3.5 Air Sparge/Soil Vapor Extraction

The Air Sparge/SVE alternative assumes that a series of sparge wells will be installed at the downgradient edge perpendicular to the axis of the plume shown in **Figure 7.5**. Spacing for the sparge wells is assumed to be 15 feet with both shallow and deep sparge wells installed at each of 27 locations for a total of 54 sparge wells. A sparge system will be constructed including a compressor, controls, and associated piping. A SVE system will be constructed to remove volatile organic compounds from the unsaturated zone. The system will include SVE wells at a spacing of 30 feet for a total of 14 SVE wells. The SVE system will also include a blower to remove the vapors and vapor-phase granular GAC. An enclosure will be installed to contain the above ground components. The sparge barrier will be operated for a period of 30 years, and this alternative assumes 30 years of associated O&M and long term monitoring costs.

As summarized in **Table 7.7**, the estimated total costs for this alternative over 30 years are \$4,717K with a total NPV of lifetime costs of \$3,999K. The capital cost is approximately \$673K including design, work plan, installation of sparge wells and construction of the SVE system along with startup and testing. The NPV of the O&M is estimated at approximately \$2,505K for the 30 years of treatment. The O&M costs include the labor costs associated with system O&M, costs for equipment repair and replacement, and cost for GAC replacement and disposal. The NPV of the 30 years of monitoring and reporting costs is estimated to be \$820K.

This alternative ranks second highest in estimated total remedy cost and NPV of lifetime costs, compared to the other alternatives (see **Table 7.8**). While the capital costs of this alternative are the second lowest, the high O&M costs, including electrical consumption and change-out of GAC, make this a less attractive remedial alternative.

^{* -} NPV calculated based on a 1.5% discount rate

Figure 7.5. Air Sparge/Soil Vapor Extraction Alternative for Plume Cutoff

Table 7.7. Cost Components for Air Sparge/Soil Vapor Extraction.

			Year	Cost is Incu	ırred			NPV of	Total Costs
	1	2	3	4	5	6	6 to 30	Costs*	Total Costs
CAPITAL COSTS									
System Design	36,580	-	-	-	-	-		36,580	36,580
Well Installation	330,060	-	-	-	-	-		330,060	330,060
System Installation	238,774	-	-	-	-	-		238,774	238,774
Start-up and Testing	17,978	-	-	-	-	-		17,978	17,978
SUBCOST (\$)	623,392	-	-	-	-	-		623,392	623,392
OPERATION AND MAINTENANCE COSTS									
System Operation and Maintenance	101,812	102,812	102,812	102,812	102,812	102,812	102,812 every year	2,505,164	3,083,374
SUBCOST (\$)	101,812	102,812	102,812	102,812	102,812	102,812		2,505,164	3,083,374
LONG TERM MONITORING COSTS									
Sampling/Analysis/Reporting	74,500	74,500	74,500	74,500	74,500	23,500	23,500 every year	820,411	960,000
(Quarterly through 5 years then Annually)									
SUBCOST (\$)	74,500	74,500	74,500	74,500	74,500	23,500		820,411	960,000
TOTAL COST (\$)	799,704	177,312	177,312	177,312	177,312	126,312		3,948,967	4,666,765

Notes:

NPV - Net Present Value

* - NPV calculated based on a 1.5% discount rate

Table 7.8. Summary of Costs for Treatment Alternatives.

Alternative	Capital Costs	NPV of 30 Years of O&M Costs	NPV of 30 Years of Monitoring Costs	NPV of 30 Years of Total Remedy Costs	Total 30-Year Remedy Costs
Proton Reduction Barrier	\$642	\$1,061	\$820	\$2,523	\$2,907
ZVI PRB	\$1,001	\$1,383	\$820	\$3,205	\$3,648
Pump and Treat	\$1,737	\$3,535	\$820	\$6,093	\$7,049
Air Sparge / SVE	\$673	\$2,505	\$820	\$3,999	\$4,717

notes:

All costs are in thousands of dollars

NPV - Net Present Value; current value of future costs based on a 1.4% annual discount rate

O&M - Operation and Maintenance

8.0 IMPLEMENTATION ISSUES

Results of the demonstration showed that proton reduction technology can elevate the pH of groundwater, but that the process is slow because it depends on effective distribution of the high pH groundwater that accumulated in the cathode well. During this demonstration, even the recirculation of groundwater through the cathode well resulted in slow pH increases. The primary source of pH buffering in the system was clearly the aquifer sediments. Thus, pH adjustments using proton reduction alone is likely to require extensive treatment times. An alternative approach for using the technology for pH adjustment might involve an initial injection of base or buffer to overcome the soil buffering capacity, followed by proton reduction technology to maintain the elevated pH. This approach requires further testing and demonstration.

In addition to pH adjustment, the study also evaluated H2 production and distribution. Evaluation of groundwater in the cathode wells at the site demonstrated that high levels of H2 can be generated in situ, but distribution of this H2 in the aquifer remains a challenge. Results of the demonstration suggested that the aquifer contained many potential sinks for H2, including the reduction of Fe, Mn and sulfate that may need to be overcome to achieve high levels of sustained reductive dechlorination. The fact that dechlorination can be performed even with very low levels of H2 (2 nM) suggests that even if distribution is not great, there may be sufficient H2 in situ to support significant TCE dechlorination under better geochemical conditions (i.e., higher pH).

Results of the demonstration also showed that reductive dechlorination can potentially be supported by proton reduction technology, but, under the conditions of the demonstration, TCE dechlorination was not complete. The lack of complete dechlorination, even after bioaugmentation, was likely due to the borderline pH and reducing conditions achieved in the aquifer. It is possible that dechlorination activity could have been improved if a higher pH (e.g., pH 6.5 to 7) and/or more reducing conditions (e.g., ORP < -100 mV) were consistently achieved.

Overall, the results of this demonstration show that achieving elevated pH levels in naturally acidic aquifers like those at JB MDL remains a significant challenge. Although proton reduction showed some potential for increasing pH and lowering ORP, the configuration of the PRT system during this demonstration was not sufficient for achieving and maintaining optimal geochemical conditions extended periods. Because a circum-neutral pH and highly-reducing conditions could not be achieved, efficient dechlorination of TCE also could not be achieved. Proton reduction technology, therefore, may be a useful component of a treatment system for remediating an acidic aquifer, with additional treatments/amendments needed to better address and overcome the significant soil buffering capacity of such aquifers. Or, PRT could be reconfigured to better address the shortcoming observed during this demonstration.

The results of the study, however, have provided some guidance for future development and application of this technology. Clearly, the distribution of H₂ in situ is challenged by both competitive H₂ consumption by non-dechlorinating bacteria, and also by the relatively low solubility of H₂. Likewise, the distribution of high pH groundwater from around the cathodes is limited, especially if groundwater flow is determined by natural flow gradients. One approach that has recently been shown to mitigate these limitations is using more closely-spaced electrodes. This approach has been successfully tested in the field under the U.S. Navy's Environmental Sustainability Development to Integration (NESDI) program, and is designated NESDI Project 501.

This demonstration was conducted within a low pH cVOC-contaminated aquifer at the southern end of the Russell Road Landfill, located at Marine Corps Base Quantico, in Quantico, Virginia. During this 1-year field demonstration, eight closely-spaced cathodes and two downgradient anodes were installed in a barrier configuration to provide greater aquifer pH adjustment and H₂ delivery to contaminated groundwater passing through the barrier. As detailed in the September 2016 Bi-Monthly Project Status Report (provided in **Appendix E**), decreases in cis-DCE (the primary contaminant of concern) ranging from 88 to 99 percent have been observed in the 5 treatment zone wells during this demonstration.

Furthermore, we have determined through lab and field testing at Quantico that the current through the aquifer can be increased, if better contact is achieved between the electrodes and the soils. This results in greater rates of hydrolysis, acid consumption and H₂ production. That is, placing electrodes within a PVC monitoring well with acidic, low conductivity, groundwater is equivalent to suspending the electrode in a resistor. Improved soil contact can be achieved by using metallurgical soil contact material like Coke Breeze (Loresco, Hattisburg, MS) as a backfill around the mixed metal oxide coated Elgard mesh electrodes used during this demonstration. These backfill materials are engineered to have low resistance and to improve contact between electrodes and soils. They are inexpensive and used primarily in corrosion prevention systems. The use of this material also should eliminate the need for the installation of a monitoring/electrode well with each electrode. This approach was used successfully during AFCEC Project 501, and has been shown to reduce electrode installation costs so that electrodes can be closely spaced. It is also believed that this electrode installation method (which includes a bentonite seal above the backfill) may reduce the loss of H₂ (as H₂ gas) that was observed through the top of the well casings during this project.

9.0 REFERENCES

- Adamson, D.T., D.Y. Lyon, and J.B. Hughes. 2004. Flux and product distribution during biological treatment of tetrachloroethene dense non-aqueous-phase liquid. *Environ. Sci. Technol.* 38:2021-2028.
- Adrian, N.R., C.M. Arnett, and R.F. Hickey. 2003. Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. U.S. Army Corps of Engineers, Washington DC. ERDC/CERL MP-03-3.
- Amos, B.K., E.J. Suchomel, K.D. Pennell, and F.E. Löffler. 2008. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone. Water Res. 42:2963-2974.
- Aziz, C.E., S.K. Farhat, J.M. McDade, and C.J. Newell. 2003. Low-volume hydrogen biosparging in a controlled release system. Paper B-03 in V.S. Magar and M.E. Kelly (eds) Proceedings of the seventh international in situ and on-site Bioremediation symposium. Battelle Press. Columbus, OH.
- Ballapragada, B.S., H.D. Stensel, J.A. Puhakka, and J.F. Ferguson. 1997. Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ. Sci. Technol. 31:1728–1734
- Call, D., and B.E. Logan. 2008. Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ. Sci. Technol. 42:18871-18873.
- Carr, C.S., and J.B. Hughes. 1998. Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity. Environ. Sci. Technol. 32:1817-1824.
- Cheng, S., and B.E. Logan. 2007. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. 104:18871-18873.
- Chu, M., P.K. Kitanidis, and P.L. McCarty. 2004. Possible factors controlling the effectiveness of bioenhanced dissolution of non-aqueous phase tetrachloroethene. Adv. Water Resour. 27:601-615.
- Chung, J., R. Krajmalnik-Brown, and B.E. Rittmann. 2008. Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol. 42:477-483.
- Clapp, L.W., M.J. Semmens, P.J. Novak, and R.M. Hozalski. 2004. Model for in situ perchloroethene dechlorination via membrane-delivered hydrogen. J. Environ. Eng. 130:1367-1381.
- Conrad, R. and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94-98.

- Eaton, A.D., Clesceri, E.W. Rice, and A. E. Greenberg (eds). 2005. Standard Methods for the Examination of Water and Wastewater, 21st Edition. Port City Press, Baltimore, MD.
- Fetter, C.W. 1994. Applied Hydrogeology, 3rd Edition. Prentice Hall, Upper Saddle River, NJ.
- Fisher, R.T., J.B. Hughes, and C.J. Newell. 1997. Process for in-situ bidegradation of chlorinated aliphatic hydrocarbons by subsurface hydrogen injection. US Patent 5,602,296.
- FRTR (Federal Remediation Technologies Roundtable). 1998. Guide to Documenting and Managing Cost and Performance Information for Remediation Projects, Revised version. EPA 542-B-98-007. October.
- Gent, D.B., A.H. Wani, J.L. Davis, and A. Alshawabkeh. 2009. Electrolytic redox and electrochemical generated alkaline hydrolysis of hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) in sand columns. Environ. Sci. Technol. 43:6301-6307.
- Gilbert, D., T. Sale, and M. Peterson. 2008. Final Report Addendum, Electrically Induced Redox Barriers for Treatment of Groundwater, ESTCP Project ER-0112. December. Online: https://www.serdp-estcp.org/content/search?cqp=Standard&SearchText=cu-0112&x=0&y=0.
- Harkness, M. R., A.A. Bracco, M.J. Brennan, Jr., K.A. DeWeerd, and J.L. Spivack. 1999. Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ. Sci. Technol. 33:1100-1109.
- Hatzinger., P.B. 2005. Perchlorate biodegradation for water treatment. Environ. Sci. Technol. 39:239A-247A.
- Hatzinger, P.B., J. Diebold, C.A. Yates, and R.J. Cramer. 2006. Chapter 14: Field demonstration of in situ perchlorate bioremediation in groundwater. In Perchlorate: Environment Occurrence, Interactions, and Treatment, B. Gu and J. C. Coates (ed.). Springer, New York. pp. 311-341.
- He, J., Y. Sung, M.E. Dollhopf, B.Z. Fathepure, J.M. Tiedje, and F.E. Löffler. 2002. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ. Sci. Technol. 36:3945-3952.
- Holliger, C., G. Wahlfarth, and G. Diekert. 1999. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22:383-398.
- Jin S., and P. Fallgren. P. 2010. Electrically induced reduction of tricholoroethene in clay. J. Hazard Mater. 173: 200-204.
- Krug, T.A., C. Wolfe, R.D. Norris, and C.J. Winstead. 2009. Cost Analysis of In Situ Perchlorate Bioremediation Technologies. In In Situ Remediation of Perchlorate in Groundwater. H.F. Stroo and C.H. Ward, Eds. SERDP/ESTCP Environmental Remediation Technology.

- Lacroix, E., A. Brovelli, D.A. Barry, and C. Holliger. 2014. Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia. Appl. Environ. Microbiol. 80:3858-3867.
- Lee, M.D., J.M. Odom, and R.J. Buchman. 1998. New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Ann. Rev. Microbiol. 52:423-452.
- Lendvay, J.M., F.E. Löffler, M. Dollhopf, M.R. Aiello, G. Daniels, B.Z. Fathepure, M. Gebhard, R. Heine, R. Helton, J. Shi, R. Krajmalnik-Brown, C.L. Major, Jr., M.J. Barcelona, E. Petrovskis, R. Hickey, J.M. Tiedje, and P. Adriaens. 2003. Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ. Sci. Technol. 37:1422-1431.
- Lohner, S.T. and A. Tiehm. 2009. Application of electrolysis to stimulate microbial reductive dechlorination and oxidative VC biodegradation. Environ. Sci. Technol. 43:7098-7104.
- Lohner, S.T., D. Becker, K.-M. Mangold, and A. Tiehm. 2011. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environ. Sci Technol. 45:6191-6197.
- Löffler, F.E., J.M. Tiedje, and R.A. Sanford. 1999. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl. Environ. Microbiol. 65:4049-4056.
- Löffler, F.E., J. Yan, K.M. Ritalahti, L. Adrian, E.A. Edwards, K.T. Konstantinidis, J.A. Müller, H. Fullerton, S.H. Zinder and A.M. Spormann. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligate organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia clasis nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63:625-635.
- Lowe, S.E., M.K. Jain, and J.G. Zeikus. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity or substrates. Microbiol. Rev. 57:451-509.
- Ma, X., P.J. Novak, L.W. Clapp, M.J. Semmens, and R.M. Hozalski. 2003. Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column. Water. Res. 37:2905-2918.
- Ma, X., P.J. Novak, M.J. Semmens, L.W. Clapp, and R.M. Hozalski. 2006. Comparison of pulsed and continuous addition of H2 gas via membranes for stimulating PCE biodegradation in soil columns. Water Res. 40:1155-1166.
- Major, D.W., M.L. McMaster, E.E. Cox, E.A. Edwards, S.M. Dworatzek, E.R. Hendrickson, M.G. Starr, J.A. Payne, and L.W. Buonamici. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ. Sci. Technol. 36:5106-5116.

- Maymó-Gatell, X., V. Tandoi, J.M. Gossett, and S.H. Zinder. 1995. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl. Environ. Microbiol. 61:3928-3933.
- Maymó-Gatell, X., Y.-T Chien, J.M. Gossett, and S.H Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568-1571.
- McCarty, P.L., M.Y. Chu, and P.K. Kitanidis. 2007. Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. Eur. J. Soil Biol. 43:276-282.
- Nerenberg, R., Y. Kawagoshi, and B.E. Rittman. 2006. Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium. Water Res. 40:3290-3296.
- New Jersey Department of Environmental Protection. 2003. Low-flow Purging and Sampling Guidance.
- Olson, E.R. 1983. Influence of pH on bacterial gene expression. Mol. Microbiol. 8:5-15.
- Page, A.L., R.H. Miller, and D.R. Keeney (eds). 1982. Method of Soil Analyses. Part 2: Chemical and Microbiological Properties. Second Edition. American Society of Agronomy, Inc. Madison WI. ISBN 0-89118-072-9.
- Rahner D., G. Ludwig, and J. Röhrs, J. 2002. Electrochemically induced reactions in soils—a new approach to the in-situ remediation of contaminated soils? Part 1: The microconductor principle. Electrochim. Acta. 47:1395-1403.
- Ritalahti, K.M., J.K. Hatt, V. Lugmayr, K. Henn, E.A. Petrovskis, D.M. Ogles, G.A. Davis, C.M. Yeager, C.A. Lebron, and F.E. Loeffler. 2010. Comparing on-site to off-site biomass collection for Dehalococcoides biomarker gene quantification to predict in situ chlorinated ethene detoxification potential. Environ. Sci. Technol. 44:5127–5133.
- Röhrs J., G. Ludwig, and D. Rahner. 2002. Electrochemically induced reactions in soils—a new approach to the in-situ remediation of contaminated soils? Part 2: remediation experiments with a natural soil containing highly chlorinated hydrocarbons. Electrochim. Acta. 47:1405-1414.
- Sale, T., M. Olson, D. Gilbert, and M. Petersen. 2010. Final Report: Field Demonstration/Validation of Electrolytic barriers for Energetic Compounds at Pueblo Chemical Depot, ESTCP Project ER-0519. January.
- Schaefer, C.E., Lippincott, D.R., Steffan, R.J., 2010. Field-Scale Evaluation of Bioaugmentation Dosage for Treating Chlorinated Ethenes. Groundwater Monit. Remed. 30:113-124.
- Selembo, P.A., M.D. Merrill, and B.E. Logan. 2009. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources. 190:271-278.

- Shaw Environmental, Inc. 2012. Draft Field Demonstration Plan for Solar Powered Remediation and pH Control. Project ER-201033. March.
- Steffan, R.J., K.L. Sperry, M.T. Walsh, S. Vainberg, and C.W. Condee. 1999. Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ. Sci. Technol. 33:2771-2781.
- Steffan, R., C. Schaefer, and D. Lippincott. 2010. Final Report: Bioaugmentation for Groundwater Remediation, ESTCP Project ER-0515. Prepared for Environmental Security Technology Certification Program. February.
- Sung, Y., K.M. Ritalahti, R.A. Sanford, J.W. Urbance, S.J. Flynn, J.M. Tiedje, and F.E. Löffler. 2003. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganenisis sp. nov. Appl. Environ. Microbiol. 69:2964-2974.
- Tetra Tech, Inc., 2008. Final Environmental Accelerated Investigation and Due Diligence Report, McGuire Air Force Base, New Jersey, May.
- USEPA. 2009. National Primary Drinking Water Regulations. EPA 816-F-09-004. May. Online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulation-table.
- Vainberg, S., C.W. Condee, and R.J. Steffan. 2009. Large scale production of Dehalococcoides sp.-containing cultures for bioaugmentation. J. Indust. Microbiol. Biotechnol. 36:1189-1197.
- Wang, Y.-T., and H. Shen. 1995. Bacterial reduction of hexavalent chromium. J. Indust. Microbiol. 14:159-163.
- Yang, Y., and P.L. McCarty. 1998. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32: 3591–3597.
- Zhang, XH, G.W. Sewell, and S.Y. Cui. 2001. An improved method of hydrogen production as electron donor for anaerobic bioremediation. J. Environ. Sci. Health, Part A. 36:1661-1670.
- Zhuang, P., and S.G. Pavlostathis. 1995. Effect of temperature, pH, and electron donor on the microbial reductive dechlorination of chloroalkenes. Chemosphere. 31:3537-3548.

Page Intentionally Left Blank

APPENDIX A POINTS OF CONTACT

Point of Contact Name	Organization Name Address	Phone Fax Email	Role in Project		
David Lippincott	CB&I Federal Services 17 Princess Road Lawrenceville, NJ 08648	609-895-5380 direct 609-605-0883 cell david.lippincott@cbifederalservices.com	Principal Investigator		
Robert Steffan	Formerly CB&I Federal Services (Retired) 17 Princess Road Lawrenceville, NJ 08648 267-337-2005 cell drrjs@comcast.net		Former Principal Investigator (Retired)		
Andrea Leeson	SERDP/ESTCP 901 N Stuart Street, Suite 303 Arlington VA 22203	703-696-2118 direct 703-696-2114 fax andrea.leeson@osd.mil	ESTCP Environmental Restoration Program Manager		
Curtis Frye	Joint Base McGuire-Dix- Lakehurst Environmental Restoration Program 2403 Vandenberg Avenue Joint Base McGuire-Dix- Lakehurst, NJ 08641	609-754-4952 direct curtis.frye@us.af.mil	Environmental Restoration Chief – Joint Base McGuire-Dix-Lakehurst		

Page Intentionally Left Blank

APPENDIX B PUMP AND RECOVERY TEST DATA

Shaw Environmental Inc.

185 Berry St. San Francisco Phone 415.512.2400

McGuire Air Force Base Project:

Number: 138914

Client: **US Air Force**

Pumping Test:

DMW-2S recovery test

Analysis Method: Theis Recovery

Analysis Results: Transmissivity:

1.01E+2 [ft²/d]

Mean Error (ME):

0.00E+0

Sum of Squares Error (SSE):

0.00E+0

Conductivity:

5.25E+0 [ft/d]

Variance (VAR):

0.00E+0

Standard Deviation (SDEV):

0.00E+0

Note: Analysis results are averaged from all active observation wells.

Analysis Details:

Well Name	T ft²/d	S	K ft/d	ME ft	SSE ft	VAR ft	SDEV ft
DMW-1D	1.455E+02	5.473E-04	7.529E+00	-7.79E-04	1.85E-01	1.16E-03	3.40E-02
DMW-1S	1.677E+02	3.668E-04	8.680E+00	-1.86E-03	1.24E-01	7.73E-04	2.78E-02
DMW-2D	8.100E+01	1.535E+00	4.192E+00	-1.43E-02	1.32E-02	8.26E-05	9.09E-03
DMW-2S	9.312E+01	6.336E-06	4.820E+00	7.96E-04	1.72E+01	1.08E-01	3.28E-01

Test Details:

Saturated Aquifer Thickness: 19.32 ft

Pumping Well:	X ft	Y ft	TOC Elev.	L ft	R ft	r ft	Q U.S. gal/min	Well Screen
DMW-2S	465988.85	436972.17	114.71		0.21	0.1	Variable	Fully Penetrating

Shaw Environmental Inc.

185 Berry St. San Francisco Phone 415.512.2400 **Pumping Test Analysis Report**

Project: McGuire Air Force Base

Number: 138914

Client: US Air Force

Pumping Test:

DMW-2S Pump Test

Analysis Method: Theis (1935) - Forward Solution

Analysis Results: Transmissivity:

1.22E+2 [ft²/d]

Mean Error (ME):

-4.02E-3

DMW-1S

DMW-1D DMW-2D DMW-2S

Storativity:

3.84E-1

Sum of Squares Error (SSE):

4.39E+0

Conductivity:

2.74E-2

6.31E+0 [ft/d]

Variance (VAR):

Standard Deviation (SDEV): 9.98E-2

Note: Analysis results are averaged from all active observation wells.

Analysis Details:

rinary oro De	uno.						
Well Name	T ft²/d	S	K ft/d	ME ft	SSE ft	VAR ft	SDEV ft
DMW-1D	1.455E+02	5.473E-04	7.529E+00	-7.79	E-04 1.85E-01	1.16E-03	3.40E-02
DMW-1S	1.677E+02	3.668E-04	8.680E+00	-1.86	E-03 1.24E-01	7.73E-04	2.78E-02
DMW-2D	8.100E+01	1.535E+00	4.192E+00	-1.43	E-02 1.32E-02	8.26E-05	9.09E-03
DMW-2S	9.312E+01	6.336E-06	4.820E+00	7.96E	-04 1.72E+01	1.08E-01	3.28E-01

Test Details:

Saturated Aquifer Thickness: 19.32 ft

Pumping Well:	X ft	Y ft	TOC Elev.	L ft	R ft	r ft	Q U.S. gal/min	Well Screen
DMW-2S	465988.85	436972.17	114.71		0.21	0.1	Variable	Fully Penetrating

Page Intentionally Left Blank

APPENDIX C PROPERTIES OF ELGARD 150

MIXED METAL OXIDE ELGARD 150 RIBBON MESH

REVISION 1

ELGARD™ Anode ribbon mesh is composed of a precious metal oxide catalyst sintered to an expanded Titanium mesh substrate. The Anode Ribbon Mesh is used as a key component in the Cathodic Protection of Reinforced Concrete Structures.

MATERIAL SPECIFICATIONS

ANODE PERFORMANCE					
Current rating @ 110 mA/m ² (10 mA/ft ²)	5.28 mA/m (1.61 mA/ft)				
Expected life (NACE Standard TM02944-94)	75 Years				
Catalyst	Iridium Based Mixed Metal Oxide				
Maximum anode concrete interface current density					
FHWA limit	110 mA/m² (10 mA/ft²)				
Short-term limit	220 mA/m² (20 mA/ft²)				
NOMINAL DIMENSIONS					
Width	19 mm (0.75 ")				
Coil length	76m (250 ft)				
Actual anode surface per unit length of anode	0.048 m ² /m (0.157 ft ² /ft)				
Expanded thickness	1.30 mm (0.051 ")				
Diamond dimensions	2.5 x 4.6 x 0.6 mm (0.10 " x 0.18 " x 0.025 ")				
Shipping weight per coil	2.7 kg (6 lbs)				
SUBSTRATE	•				
Composition	Titanium, Grade 1 per ASTM B265				
Coefficient of thermal expansion	8.7 x 10 ⁻⁵ /°K (0.0000048/in/in/°K)				
Thermal conductivity @ 20°C	15.6W/ m² - °K (9.0BTU/hr/ft²/°F/ft)				
Electrical resistivity	0.000056 0hm-cm (0.000022 0hm-in)				
Modulus of elasticity	105 GPa (14,900,000 PSI) minimum				
Tensile strength	245 MPa (35,000 PSI) minimum				
Yield strength	175 MPa (25,000 PSI) minimum				
Elongation	24% minimum				
CURRENT DISTRIBUTOR					
Width	12.70 mm (0.5 ")				
Thickness	0.90 mm (0.035 ")				
Coil length	76 m (250 ft)				
Shipping weight per coil	3.9 kg (8.6 lbs)				
ELECTRICAL PROPERTIES					
Anode ribbon mesh resistance lengthwise	0.26 Ohm/m (0.08 Ohm/ft)				
Current distributor resistance lengthwise	0.049 Ohm/m (0.015 Ohm/ft)				

Page Intentionally Left Blank

APPENDIX D ANALYTICAL DATA

DATABASE QUALIFIERS

BOLD indicates the compound was detected above the reporting limit.

Values highlighted in yellow indicate that the compound was detected above the PQL/GWQC.

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the sample.

NS - Not Sampled.

Values shaded in green indicate a shortened (15 minute) purge time.

- ND No Data. This indicates that a sample was collected but no data resulted from that sample.
- NR- No Reading, equipment interference.
- D Sample was diluted prior to analysis.
- E Estimated value, beyond linear range.

Table D.1. BMW-1S: Analytical and Field Parameter Results

Sample ID	NJ Higher of	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S	BMW-1S
Lab Sample No. Sampling Date	PQLs and GW Quality	8534-8 10/27/2011	8539-12 11/10/2011	8649-15 3/27/2012	8665-18 4/18/2012	8678-4 5/2/2012	5/9/2012	8852-12 10/23/2012	8896-1 1/17/2013	8905-1 2/7/2013	8929-8 3/14/2013	8954-2 4/24/2013	9040-1 11/12/2013	9051-7 12/18/2013
Time (day) Matrix	2005 Criteria	-45 Water	-32 Water	106 Water	128 Water	142 Water	149 Water	316 Water	402 Water	423 Water	458 Water	499 Water	701 Water	737 Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μg/L 50.0 U	μg/L 25.0 U	μg/L 105 U	μg/L NS	μg/L NS	μg/L NS	μg/L 42.0 U	μg/L 5.0 U	μg/L 25.0 U	μg/L 25.0 U	μg/L 25.0 U	μg/L 5.0 U	μg/L 5.0 U
chloromethane	-	50.0 U	25.0 U 25.0 U	105 U	NS	NS	NS NS	42.0 U	5.0 U	25.0 U 25.0 U	25.0 U	25.0 U	5.0 U	5.0 U
vinyl chloride bromomethane	10	50.0 U	25.0 U	105 U	NS	NS NS	NS	42.0 U	5.0 U	25.0 U	25.0 U	25.0 U	5.0 U	5.0 U
chloroethane trichlorofluoromethane	2000	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U	25.0 U	5.0 U	5.0 U 5.0 U
1,1-dichloroethylene methylene chloride	3	50.0 U	3.0 J 25.0 U	105 U		NS NS	NS NS	42.0 U 42.0 U	1.7 J 5.0 U	25.0 U 25.0 U				4.06 J 5.0 U
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	50.0 U 50.0 U	25.0 U 25.0 U	105 U		NS NS	NS NS	42.0 U 42.0 U	1.9 J 5.0 U	25.0 U 25.0 U				2.67 J 5.0 U
2,2-dichloropropane		50.0 U	25.0 U	105 U	NS	NS	NS	42.0 U	5.0 U	25.0 U	25.0 U	25.0 U	5.0 U	5.0 U
cis 1,2- dichloroethylene bromochloromethane	70	50.0 U	25.0 U	105 U	NS	NS NS	NS NS	42.0 U	145 5.0 U	25.0 U	25.0 U	25.0 U	5.0 U	291 5.0 U
chloroform 1,1,1-trichloroethane	70 30	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U	5.0 U	5.0 U 5.0 U
carbon tetrachloride 1,1-dichloropropene	1	50.0 U 50.0 U	25.0 U 25.0 U	105 U		NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U		5.0 U 5.0 U
benzene 1,2-dichloroethane	1	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U	5.0 U	5.0 U
trichloroethylene	1	8970 D	9580 D	4980 D	NS	NS	NS	4440 D	3550 D	3260 D	3900 D	4170 D	9170 D	5060 ED
1,2-dichloropropane dibromomethane	1	50.0 U 50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U	5.0 U	5.0 U 5.0 U
bromodichloromethane cis-1,3-dichloropropene	1	50.0 U 50.0 U	25.0 U 25.0 U	105 U		NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U		5.0 U 5.0 U
toluene trans-1,3-dichloropropene	600	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U	5.0 U	5.0 U
1,1,2-trichloroethane	3	50.0 U	25.0 U	105 U	NS	NS NS	NS NS	42.0 U	5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U	5.0 U	5.0 U
tetrachloroethylene 1,3-dichloropropane		50.0 U	25.0 U	105 U	NS	NS	NS	42.0 U	5.0 U	25.0 U	25.0 U	25.0 U	5.0 U	5.0 U
dibromochloromethane 1,2-dibromoethane	1	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U	5.0 U	5.0 U 5.0 U
chlorobenzene 1,1,1,2-tetrachloroethane	50 1	50.0 U 50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U	25.0 U	5.0 U	5.0 U 5.0 U
ethylbenzene xylenes (m/p)	700 1000	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U	25.0 U	5.0 U	5.0 U 5.0 U
o-xylene		50.0 U	25.0 U	105 U	NS	NS	NS	42.0 U	5.0 U	25.0 U	25.0 U	25.0 U	5.0 U	5.0 U
styrene bromoform	100 4	50.0 U 50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U	5.0 U	5.0 U
isopropyl benzene (cumene) bromobenzene	700	50.0 U 50.0 U	25.0 U 25.0 U	105 U		NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U		5.0 U 5.0 U
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	1 0.03	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U	5.0 U	
n-propyl benzene	0.00	50.0 U	25.0 U	105 U	NS	NS	NS	42.0 U	5.0 U	25.0 U	25.0 U	25.0 U	5.0 U	5.0 U
2-chlorotoluene 4-chlorotoluene		50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U	5.0 U	5.0 U
1,3,5-trimethylbenzene tert-butylbenzene		50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U	5.0 U	5.0 U 5.0 U
1,2,4-trimethylbenzene sec-butylbenzene		50.0 U 50.0 U	25.0 U 25.0 U	105 U		NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U 25.0 U	25.0 U 25.0 U		5.0 U 5.0 U
1,3-dichlorobenzene 4-isopropyltoluene	600	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	25.0 U	25.0 U 25.0 U	5.0 U	5.0 U
1,4-dichlorobenzene	75 600	50.0 U	25.0 U	105 U	NS	NS	NS NS	42.0 U	5.0 U	25.0 U	25.0 U 25.0 U	25.0 U	5.0 U	5.0 U
1,2-dichlorobenzene n-butylbenzene		50.0 U	25.0 U	105 U	NS	NS NS	NS	42.0 U	5.0 U	25.0 U	25.0 U	25.0 U	5.0 U	5.0 U
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	0.02 9	50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U	25.0 U	5.0 U	5.0 U 5.0 U
hexachlorobutadiene naphthalene	1 300	50.0 U 50.0 U	25.0 U 25.0 U	105 U		NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U		25.0 0		5.0 U 5.0 U
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	50.0 U 50.0 U	25.0 U 25.0 U	105 U	NS	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	25.0 U	25.0 U	5.0 U	5.0 U 5.0 U
Acetone	6000	100.0 U	50.0 U	210 U	NS	NS	NS	84.0 U	10.0 U	50.0 U	50.0 U	50.0 U	10.0 U	10.0 U
carbon disulfide 2-butanone (MEK)	700 300	50.0 U 100.0 U	25.0 U 50.0 U	105 U	NS	NS NS	NS NS	42.0 U 84.0 U	5.0 U 10.0 U	25.0 U 50.0 U	25.0 U 50.0 U	50.0 U	10.0 U	10.0 U
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	100.0 U 100.0 U	50.0 U 50.0 U	210 U		NS NS	NS NS	84.0 U 84.0 U	10.0 U 10.0 U	50.0 U	50.0 U 50.0 U	50.0 U		10.0 U
2-hexanone 2-chloroethyl vinyl ether		100.0 U 100.0 U	50.0 U 50.0 U	210 U	NS	NS NS	NS NS	84.0 U 84.0 U	10.0 U 10.0 U	50.0 U 50.0 U	50.0 U 50.0 U	50.0 U	10.0 U	10.0 U 10.0 U
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NA NA	242 4.0 U	203 4.0 U	82.7 4.0 U	NS NS	NS NS	NS NS	260 4.0 U	226 4.0 U	96.7 4.0 U	72.1 4.0 U	56.4 4.0 U	2.0 U	254 2.0 U
Ethene OTHER GASES	NA μg/L	5.0 U μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	5.0 U μg/L	5.0 U μg/L	5.0 U μg/L	5.0 U μg/L	5.0 U μg/L	2.5 U μg/L	2.5 U μg/L
Hydrogen METALS (DISSOLVED)	NA μg/L	0.004 J μg/L	0.003 J	0.01 U		0.0083 J	NS μg/L	0.009 U	0.03 U μg/L	0.0020 J μg/L	0.008 U	0.008 U μg/L	0.0039 J	0.0040 J μg/L
Iron	300	NS	μg/L 6220 D	μg/L NS	NS	μg/L 5640 D	NS	μg/L 6520 D	NS	NS	μg/L NS	NS	μg/L NS	NS
Manganese Arsenic	50	NS NS	74.6 D NS	NS NS	NS NS	56.2 D NS	NS NS	82.1 D 2.5 U		NS NS	NS NS	NS NS	NS NS	NS NS
METALS (TOTAL) Iron	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 5210	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese CATIONS	μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	51.5 μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Calcium	μg/L	NS	NS	NS	NS	3290	NS	NS	NS	NS	NS	NS	NS	NS
Magnesium GROUNDWATER CHEMISTRY	mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	4910 mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Total Organic Carbon (TOC) Alkalinity as CaCO3	NA NA	NS NS	NS NS	NS NS	NS NS	NS 2.0 U	NS NS	NS 2.57	2.37 NS	2.82 NS	2.01 NS	2.34 NS	NS NS	NS NS
Sulfide ANIONS	NA mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	1.6 mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	0.2 U	0.23	0.16	0.2 U	0.2 U	0.2 U	0.2 U
Chloride Nitrite as N	250 1	24.5 0.2 U	19.7 0.2 U	20.3 0.2 U		10.2 0.2 U	NS NS	44.8 0.2 U	39.5 0.2 U	29.4 0.2 U	29.9 0.2 U	28.9 0.2 U		28.6 D 0.2 U
Sulfate as SO ₄ Bromide	250 NA	77.5 E 0.77	76.2 E 0.71	74.4 D	NS NS	53.9 E 1.07	NS NS	74.9 E 0.44	91.3 E 0.2 U	69.7 E				67.0 D
Nitrate as N O-Phosphate as P	10	0.2 U 0.2 U	0.2 U	0.2 U	NS	0.2 U	NS	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VOLATILE FATTY ACIDS	NA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid Acetic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U		1.0 U		NS	NS NS
Propionic Acid Formic Acid	NA NA	NS NS	1.0 U 1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U 1.0 U		1.0 U	1.0 U	NS	NS NS
Butyric Acid Pyruvic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS NS
Valeric Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	1.0 U	1.0 U			NS NS
pH (SU)	NA	4.73	4.52	4.51	4.12	9.50	4.44	4.69	4.78	4.74	4.60	4.85	4.30	4.78
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	16.69 0.48	16.91 1.88	13.90 0.28	13.60 0.65	13.77 0.88	14.10 0.88	16.77 0.17	15.42 0.25	13.52 0.72	13.75 0.22	14.35 0.51	15.74 0.37	15.63 0.32
Redox Potential (ORP; mV) Conductivity (µS/cm)	NA NA	10.7	31.9 235	64.8 265	79.5 250	-199.1 334	11.4 214	32.5	-21.0 311	-59.2 328	62.5	78.1 296	86.5	24.9
Depth to Water (ft-btoc)	NA NA	296 6.60	6.83	7.36	7.71	7.35	7.45	335 8.25	NS	7.40	278 6.92	7.00	292 8.12	379 7.88
qPCR DHC	NA	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL 1.65E+06	cells/mL NS	cells/mL 3.20E+01 U	cells/mL NS	cells/mL NS	cells/mL NS
	-	-	•		•		•			•		•	•	

Table D.2. BMW-1I: Analytical and Field Parameter Results

Sample ID	NJ Higher of	BMW-1I	BMW-1I	BMW-1I	BMW-1I	BMW-1I
Lab Sample No. Sampling Date	PQLs and GW Quality	8534-10 10/27/2011	8539-13 11/10/2011	8649-16 3/27/2012	8665-19 4/18/2012	8678-5 5/2/2012
Time (days)		-45	-32	106	128	142
Matrix VOCS (GC/MS)	2005 Criteria μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L
dichlorodifluoromethane	1000	500 U	25.0 U	5.0 U	NS	NS
chloromethane vinyl chloride	1	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
bromomethane	10	500 U	25.0 U	5.0 U	NS	NS
chloroethane trichlorofluoromethane	2000	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
1,1-dichloroethylene	1	500 U	25.0 U	1.1 J	NS	NS
methylene chloride trans-1,2-dichloroethylene	3 100	500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
1,1-dichloroethane	50	500 U	25.0 U	5.0 U	NS NS	NS NS
2,2-dichloropropane cis 1,2- dichloroethylene	70	500 U 105 J	25.0 U 9.9 J	5.0 U	NS NS	NS NS
cis 1,2- dichloroethylene bromochloromethane	70	500 U	25.0 U	50.3 5.0 U	NS NS	NS NS
chloroform	70	500 U	25.0 U	5.0 U	NS	NS
1,1,1-trichloroethane carbon tetrachloride	30 1	500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
1,1-dichloropropene		500 U	25.0 U	5.0 U	NS	NS
benzene 1,2-dichloroethane	1 2	500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
trichloroethylene	1	2650 D	2560 D	1140 D	NS	NS
1,2-dichloropropane dibromomethane	1	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
bromodichloromethane	1	500 U	25.0 U	5.0 U	NS	NS
cis-1,3-dichloropropene toluene	1 600	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
trans-1,3-dichloropropene	1	500 U	25.0 U	5.0 U	NS	NS
1,1,2-trichloroethane tetrachloroethylene	3	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
1,3-dichloropropane		500 U	25.0 U	5.0 U	NS	NS
dibromochloromethane 1,2-dibromoethane	1	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
chlorobenzene	50	500 U	25.0 U	5.0 U	NS	NS
1,1,1,2-tetrachloroethane ethylbenzene	1 700	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
xylenes (m/p)	1000	500 U	25.0 U	5.0 U	NS	NS
o-xylene styrene	100	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
bromoform	4	500 U	25.0 U	5.0 U	NS	NS
isopropyl benzene (cumene) bromobenzene	700	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
1,1,2,2-tetrachloroethane	1	500 U	25.0 U	5.0 U	NS NS	NS NS
1,2,3-trichloropropane	0.03	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
n-propyl benzene 2-chlorotoluene		500 U	25.0 U	5.0 U	NS NS	NS NS
4-chlorotoluene		500 U	25.0 U	5.0 U	NS	NS
1,3,5-trimethylbenzene tert-butylbenzene		500 U	25.0 U 25.0 U	5.0 U	NS NS	NS NS
1,2,4-trimethylbenzene		500 U	25.0 U	5.0 U	NS	NS
sec-butylbenzene 1,3-dichlorobenzene	600	500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
4-isopropyltoluene		500 U	25.0 U	5.0 U	NS	NS
1,4-dichlorobenzene 1,2-dichlorobenzene	75 600	500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
n-butylbenzene		500 U	25.0 U	5.0 U	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	0.02 9	500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
hexachlorobutadiene	1	500 U	25.0 U	5.0 U	NS	NS
naphthalene 1,2,3-trichlorobenzene	300	500 U 500 U	25.0 U 25.0 U	5.0 U 5.0 U	NS NS	NS NS
Methyl tertiary butyl ether	70	500 U	25.0 U	5.0 U	NS	NS
Acetone carbon disulfide	6000 700	1000 U 500 U	50.0 U 25.0 U	10.0 U 5.0 U	NS NS	NS NS
2-butanone (MEK)	300	1000 U	50.0 U	10.0 U	NS	NS
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	1000 U 1000 U	50.0 U 50.0 U	10.0 U	NS NS	NS NS
2-hexanone		1000 U	50.0 U	10.0 U	NS	NS
2-chloroethyl vinyl ether REDUCED GASES (GC)		1000 U	50.0 U	10.0 U	NS	NS
Methane	μg/L NA	μg/L 239	μg/L 279	μg/L 43.7	μg/L NS	μg/L NS
Ethane Ethene	NA NA	0.56 J 0.46 J	0.43 J 5.0 U	4.0 U 5.0 U	NS NS	NS NS
OTHER GASES	NA μg/L	μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	NS μg/L
Hydrogen	NA	0.005 J	0.006 J	0.012	0.008 U	0.0086 U
METALS (DISSOLVED) Iron	μg/L 300	μg/L NS	μg/L 18200 D	μg/L NS	μg/L NS	μg/L 8930 D
Manganese	50	NS	156 D	NS	NS	76.9 D
METALS (TOTAL) Iron	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 8600
Manganese		NS	NS	NS	NS	76.5
CATIONS Calcium	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 19500
Magnesium		NS	NS	NS	NS	5320
GROUNDWATER CHEMISTRY	mg/L NA	mg/L	mg/L NS	mg/L	mg/L	mg/L 2.0 U
Alkalinity as CaCO3 Sulfide	NA NA	NS NS	NS NS	NS NS	NS NS	2.0 U
ANIONS Eluorido	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	2 250	0.2 U 21.8	0.2 U 35.7	NS 15.4	NS NS	NS 18.4
Nitrite as N	1	0.2 U	0.2 U	0.2 U	NS	0.2 U
Sulfate as SO ₄ Bromide	250 NA	96.9 E 1.81	262 E 1.08	84.5 D 0.53	NS NS	63.1 E 0.95
Nitrate as N	10	0.2 U	0.2 U	0.2 U	NS	0.2 U
O-Phosphate as P	NA	0.2 U	0.2 U	0.2 U	NS mg/l	0.2 U
VOLATILE FATTY ACIDS Lactic Acid	NA	mg/L NS	mg/L 1.0 U	mg/L NS	mg/L NS	mg/L NS
Acetic Acid	NA	NS	1.28	NS	NS	NS
Propionic Acid Formic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS
FIELD PARAMETERS						
pH (SU) Temperature (°C)	NA NA	5.86	5.97	6.18	6.10	6.16
Dissolved Oxygen (DO; mg/L)	NA NA	16.39 0.39	16.95 10.51	13.72 0.51	14.58 0.50	14.17 0.68
Redox Potential (ORP; mV)	NA	-52.3	-89.6	-26.3	-42.3	-28.8
Conductivity (µS/cm) Depth to Water (ft-btoc)	NA NA	1206 16.05	863 14.8	9.1	572 8.14	874 12.30
· · · · · · · · · · · · · · · · · · ·						

Table D.3. BMW-1D: Analytical and Field Parameter Results

Sample ID	NJ Higher of	BMW-1	D	BMW-	1D	BMW-1	D	BMW-1D	BMW-1D
Lab Sample No. Sampling Date	PQLs and GW Quality	8534-9 10/27/20	111	8539-14 11/9/20	11	8649-17 3/27/20	12	8665-20 4/18/2012	8678-6 5/2/2012
Time (days) Matrix	2005 Criteria	-45 Water		-33 Water		106 Water		128 Water	142 Water
VOCS (GC/MS)	μg/L	μg/L		νν ater μg/L		νν ater μg/L		μg/L	μg/L
dichlorodifluoromethane chloromethane	1000	5.0 5.0	U	5.0 5.0	СС	5.0 5.0	U	NS NS	NS NS
vinyl chloride	1	5.0	U	5.0	U	5.0	U	NS	NS
bromomethane chloroethane	10	5.0 0.7	J	5.0	U	5.0 5.0	U	NS NS	NS NS
trichlorofluoromethane	2000	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
1,1-dichloroethylene methylene chloride	3	5.0	U	5.0	U	5.0	U	NS NS	NS NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	5.0 5.0	U	5.0	U	5.0 5.0	U	NS NS	NS NS
2,2-dichloropropane		5.0	U	5.0	U	5.0	Ü	NS	NS
cis 1,2- dichloroethylene bromochloromethane	70	1.8 5.0	J	1.8 5.0	J	5.5 5.0	U	NS NS	NS NS
chloroform	70	5.0	U	5.0	U	5.0	U	NS	NS
1,1,1-trichloroethane carbon tetrachloride	30 1	5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
1,1-dichloropropene benzene	1	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
1,2-dichloroethane	2	5.0	U	5.0	U	5.0	U	NS	NS
trichloroethylene 1,2-dichloropropane	1	12.1 5.0	U	20.7 5.0	U	50.1 5.0	U	NS NS	NS NS
dibromomethane		5.0	U	5.0	U	5.0	U	NS	NS
bromodichloromethane cis-1,3-dichloropropene	1	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
toluene	600	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	5.0	U	5.0	U	5.0	U	NS	NS
tetrachloroethylene 1,3-dichloropropane	1	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
dibromochloromethane	1	5.0	U	5.0	U	5.0	U	NS	NS
1,2-dibromoethane chlorobenzene	50	5.0 5.0	U	5.0	U	5.0 5.0	U	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	5.0	U	5.0	U	5.0	U	NS	NS
ethylbenzene xylenes (m/p)	700 1000	5.0 5.0	U	5.0	U	5.0 5.0	U	NS NS	NS NS
o-xylene		5.0	U	5.0	U	5.0	U	NS	NS
styrene bromoform	100 4	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
isopropyl benzene (cumene)	700	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
bromobenzene 1,1,2,2-tetrachloroethane	1	5.0	U	5.0	U	5.0	U	NS	NS
1,2,3-trichloropropane n-propyl benzene	0.03	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
2-chlorotoluene		5.0	U	5.0	U	5.0	U	NS	NS
4-chlorotoluene 1,3,5-trimethylbenzene		5.0	U	5.0	U	5.0 5.0	U	NS NS	NS NS
tert-butylbenzene		5.0	U	5.0	U	5.0	U	NS	NS
1,2,4-trimethylbenzene sec-butylbenzene		5.0	U	5.0	U	5.0 5.0	U	NS NS	NS NS
1,3-dichlorobenzene	600	5.0	U	5.0	U	5.0	U	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	75	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
1,2-dichlorobenzene	600	5.0	U	5.0	U	5.0	U	NS	NS
n-butylbenzene 1,2-dibromo-3-chloropropane	0.02	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
1,2,4-trichlorobenzene hexachlorobutadiene	9	5.0 5.0	U	5.0 5.0	U	5.0 5.0	U	NS NS	NS NS
naphthalene	300	5.0	U	5.0	U	5.0	U	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	5.0	U	5.0	U	5.0 5.0	U	NS NS	NS NS
Acetone	6000	2.0	J	10.0	U	10.0	U	NS	NS
carbon disulfide 2-butanone (MEK)	700 300	5.0 4.9	J	5.0 10.0	U	5.0 10.0	U	NS NS	NS NS
tetrahydrofuran (THF)	10	2.0	J	10.0	U	10.0	U	NS	NS
4-methyl-2-pentanone (MIBK) 2-hexanone		10.0	U	10.0	U	10.0	U	NS NS	NS NS
2-chloroethyl vinyl ether REDUCED GASES (GC)		10.0	U	10.0	С	10.0	U	NS 	NS
Methane	μg/L NA	μg/L 612	D	μg/L 389	D	μg/L 197	D	μg/L NS	μg/L NS
Ethane Ethene	NA NA	0.48 5.0	J	4.0 5.0	C C	4.0 5.0	U	NS NS	NS NS
OTHER GASES	μg/L	μg/L		μg/L		μg/L		μg/L	μg/L
Hydrogen METALS (DISSOLVED)	NA μg/L	0.004 μg/L	J	0.002 μg/L	U	0.01 μg/L	U	0.008 U μg/L	0.0086 U μg/L
Iron	300	NS		9800	D	NS		NS	23000 D
Manganese METALS (TOTAL)	50 μ g/L	NS μg/L		96.1 μg/L	D	NS μg/L		NS μg/L	126 D μg/L
Iron		NS		NS		NS		NS	23500
Manganese CATIONS	μg/L	NS μg/L		NS μg/L		NS μg/L		NS μg/L	129 μg/L
Calcium Magnesium		NS NS		NS NS		NS NS		NS NS	23700 5400
GROUNDWATER CHEMISTRY	mg/L	mg/L		mg/L		mg/L		mg/L	mg/L
Alkalinity as CaCO3 Sulfide	NA NA	NS NS		NS NS		NS NS		NS NS	2.0 U
ANIONS	mg/L	mg/L		mg/L		mg/L		mg/L	mg/L
Fluoride Chloride	2 250	0.2 42.3	U	0.2 18.0	U	NS 21.9		NS NS	NS 22.9
Nitrite as N	1	0.2	U	0.2	U	0.2	U	NS	0.2 U
Sulfate as SO ₄ Bromide	250 NA	321 1.04	ED	97.8 1.07	ED	91.9 1.43	D	NS NS	81.8 ED 1.92
Nitrate as N	10	0.2	U	0.2	U	0.2	U	NS	0.2 U
O-Phosphate as P VOLATILE FATTY ACIDS	NA	0.2 mg/L	U	0.2 mg/L	С	0.2 mg/L	U	NS mg/L	0.2 U mg/L
Lactic Acid	NA	NS		1.0	U	NS		NS	NS
Acetic Acid Propionic Acid	NA NA	NS NS	-1	1.0	СС	NS NS		NS NS	NS NS
Formic Acid	NA	NS		1.0	U	NS		NS	NS
Butyric Acid Pyruvic Acid	NA NA	NS NS	-	1.0	U	NS NS		NS NS	NS NS
Valeric Acid	NA NA	NS		1.0	Ü	NS		NS	NS
pH (SU)	NA	5.63		5.92		5.62		5.26	5.72
Temperature (°C)	NA	16.16		16.27		15.05		14.60	14.36
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA	0.27 39.2		7.25 -41.3	_	0.79 32.4		0.73 7.8	0.93 48.2
Conductivity (µS/cm)	NA	507		462		487		397 NS	752
Depth to Water (ft-btoc)	NA	9.98		9.81		9.79		IND	10.35

Table D.4. PMW-1S: Analytical and Field Parameter Results

Table D.4.					<u>cai a</u>		<u>ieiu i</u>		Herei	1/69	
Sample ID Lab Sample No.	NJ Higher of	PMW-1S 8534-6	PMW-1S 8538-1	PMW-1S 8543-1	PMW-1S 8546-1	PMW-1S 8547-1	PMW-1S	PMW-1S 8551-1	PMW-1S 8647-4	PMW-1S 8708-15	PMW-1S 8713-18
Sampling Date	PQLs and GW Quality	10/27/2011	11/9/2011	11/16/2011	11/18/2011	11/21/2011	8550-1 11/23/2011	11/28/2011	3/26/2012	6/7/2012	6/11/2012
Time (days)	GW Quality	-45	-33	-26	-24	-21	-19	-14	105	178	182
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
chloromethane		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
vinyl chloride	1	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
bromomethane	10	50.0 U	21.0 U 21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
chloroethane trichlorofluoromethane	2000	50.0 U 50.0 U	21.0 U 21.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U	NS NS	NS NS
1,1-dichloroethylene	1	50.0 U	3.6 J	NS	NS	NS	NS NS	NS	4.1 J	NS	NS
methylene chloride	3	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
trans-1,2-dichloroethylene	100	50.0 U	21.0 U		NS	NS	NS	NS	1.5 J	NS	NS
1,1-dichloroethane	50	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
2,2-dichloropropane		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U		NS
cis 1,2- dichloroethylene	70	132 D	125 D	NS	NS	NS	NS	NS	156	NS	NS
bromochloromethane		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
chloroform	70	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,1,1-trichloroethane carbon tetrachloride	30 1	50.0 U	21.0 U 21.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U	NS NS	NS NS
1,1-dichloropropene	<u> </u>	50.0 U	21.0 U		NS	NS	NS	NS	5.0 U		NS
benzene	1	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,2-dichloroethane	2	50.0 U	21.0 U		NS	NS	NS	NS	5.0 U	NS	NS
trichloroethylene	1	11800 D	9990 D	NS	NS	NS	NS	NS	8920 D	NS	NS
1,2-dichloropropane	1	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
dibromomethane		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
bromodichloromethane	1	50.0 U	21.0 U		NS	NS	NS	NS	5.0 U	NS	NS
cis-1,3-dichloropropene	1 000	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
toluene	600	50.0 U	21.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	5.0 U	NS NC	NS NC
trans-1,3-dichloropropene	1	50.0 U	21.0 U 21.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	5.0 U 5.0 U	NS NC	NS NC
1,1,2-trichloroethane tetrachloroethylene	3	50.0 U 50.0 U	21.0 U 21.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U	NS NS	NS NS
1,3-dichloropropane	 	50.0 U	21.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS
dibromochloromethane	1	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,2-dibromoethane	 	50.0 U	21.0 U		NS	NS	NS	NS	5.0 U		NS
chlorobenzene	50	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,1,1,2-tetrachloroethane	1	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
ethylbenzene	700	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
xylenes (m/p)	1000	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
o-xylene		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
styrene	100	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
bromoform	4	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
isopropyl benzene (cumene)	700	50.0 U	21.0 U 21.0 U	NS	NS	NS	NS	NS	5.0 U 5.0 U		NS
bromobenzene 1,1,2,2-tetrachloroethane	1	50.0 U	21.0 U 21.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U	NS NS	NS NS
1,2,3-trichloropropane	0.03	50.0 U	21.0 U		NS	NS	NS	NS	5.0 U		NS
n-propyl benzene	0.00	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
2-chlorotoluene		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
4-chlorotoluene		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,3,5-trimethylbenzene		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
tert-butylbenzene		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,2,4-trimethylbenzene		50.0 U	21.0 U		NS	NS	NS	NS	5.0 U	NS	NS
sec-butylbenzene	000	50.0 U 50.0 U	21.0 U 21.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U	NS NC	NS NS
1,3-dichlorobenzene 4-isopropyltoluene	600	50.0 U	21.0 U 21.0 U	NS NS	NS NS	NS	NS NS	NS	5.0 U 5.0 U	NS NS	NS NS
1,4-dichlorobenzene	75	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,2-dichlorobenzene	600	50.0 U	21.0 U		NS	NS	NS	NS	5.0 U		NS
n-butylbenzene		50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,2-dibromo-3-chloropropane	0.02	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,2,4-trichlorobenzene	9	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
hexachlorobutadiene	1	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
naphthalene	300	50.0 U	21.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS
1,2,3-trichlorobenzene	70	50.0 U	21.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	5.0 U	NS NC	NS NC
Methyl tertiary butyl ether Acetone	70 6000	50.0 U 100.0 U	21.0 U 42.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U 10.0 U		NS NS
carbon disulfide	700	50.0 U	21.0 U		NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS
2-butanone (MEK)	300	100.0 U	42.0 U		NS	NS	NS	NS	10.0 U	NS	NS
tetrahydrofuran (THF)	10	100.0 U	42.0 U		NS	NS	NS	NS	10.0 U		NS
4-methyl-2-pentanone (MIBK)		100.0 U	42.0 U	NS	NS	NS	NS	NS	10.0 U	NS	NS
2-hexanone		100.0 U	42.0 U	NS	NS	NS	NS	NS	10.0 U	NS	NS
2-chloroethyl vinyl ether		100.0 U	42.0 U		NS	NS	NS "	NS	10.0 U		NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	77.8	87.2	NS	NS	NS	NS	NS	94.6	NS	NS
Ethane Ethene	NA NA	1.05 J 0.46 J	4.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	4.0 U 5.0 U	NS NS	NS NS
OTHER GASES	NA μg/L	0.46 J μg/L								NS μg/L	
Hydrogen	μg/L NA	μg/L 0.004 J	μg/L 0.009 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 0.01 U	μg/L 0.003 J	μg/L NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	300	NS	μg/L 5900 D	NS	NS	NS	NS	NS	NS	NS	NS NS
Manganese	50	NS	58.8 D	NS	NS	NS	NS	NS	NS	NS	NS
Arsenic		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS
Chloride	250	17.3	17.5	NS	NS	NS	NS	NS	15.8	11.4	12.1
Nitrite as N	1	0.2 U	0.2 U	NS	NS	NS	NS	NS	0.2 U	0.2 U	0.2 U
Sulfate as SO ₄	250	68.0 E	66.9 E	NS	NS	NS	NS	NS	61.8 E	59.5 E	58.2 E
Bromide	NA	0.52	0.47	9.92	12.6	12.5	0.48	12.9	1.59	1.43	1.70
Nitrate as N	10	0.2 U	0.2 U	NS	NS	NS	NS	NS	0.2 U	0.2 U	0.2 U
O-Phosphate as P	NA	0.2 U	0.2 U	NS	NS	NS	NS	NS	0.2 U	0.2 U	0.2 U
FIELD PARAMETERS		40:	10:	NC	NC	NC	NC	NC	4.76	471	4.00
pH (SU)	NA NA	4.64	4.34	NS NC	NS NC	NS NC	NS NC	NS NC	4.76	4.74	4.86
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	16.25 0.14	16.24 0.7	NS NS	NS NS	NS NS	NS NS	NS NS	13.76 0.81	15.19 0.70	15.54 2.21
Redox Potential (ORP; mV)	NA NA	102.4	-19.3	NS NS	NS NS	NS NS	NS NS	NS NS	72.1	51.7	3.9
Conductivity (µS/cm)	NA NA	240	232	NS NS	NS NS	NS	NS NS	NS	242	205	199
Depth to Water (ft-btoc)	NA NA	6.85	6.6	NS	NS	NS	NS	NS	7.17	NS	7.66
	1										

Table D.4. PMW-1S: Analytical and Field Parameter Results

Sample ID	PMW-1S	PMW-1S	PMW-1S
Lab Sample No.	8717-1		
Sampling Date	6/13/2012	6/15/2012	6/19/2012
Time (days) Matrix	184 Water	186 Water	190 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L
dichlorodifluoromethane	NS	NS	NS
chloromethane	NS	NS	NS
vinyl chloride	NS	NS	NS
bromomethane	NS NC	NS NS	NS NC
chloroethane trichlorofluoromethane	NS NS	NS	NS NS
1,1-dichloroethylene	NS	NS	NS
methylene chloride	NS	NS	NS
trans-1,2-dichloroethylene	NS	NS	NS
1,1-dichloroethane	NS	NS	NS
2,2-dichloropropane	NS NS	NS NS	NS
cis 1,2- dichloroethylene bromochloromethane	NS NS	NS NS	NS NS
chloroform	NS	NS	NS NS
1,1,1-trichloroethane	NS	NS	NS
carbon tetrachloride	NS	NS	NS
1,1-dichloropropene	NS	NS	NS
benzene	NS	NS	NS
1,2-dichloroethane	NS NS	NS	NS
trichloroethylene	NS NC	NS NC	NS NC
1,2-dichloropropane dibromomethane	NS NS	NS NS	NS NS
bromodichloromethane	NS	NS	NS NS
cis-1,3-dichloropropene	NS	NS	NS
toluene	NS	NS	NS
trans-1,3-dichloropropene	NS	NS	NS
1,1,2-trichloroethane	NS	NS	NS
tetrachloroethylene	NS	NS	NS
1,3-dichloropropane dibromochloromethane	NS NS	NS NS	NS NS
1.2-dibromoethane	NS	NS	NS
chlorobenzene	NS	NS	NS NS
1,1,1,2-tetrachloroethane	NS	NS	NS
ethylbenzene	NS	NS	NS
xylenes (m/p)	NS	NS	NS
o-xylene	NS	NS	NS
styrene	NS	NS	NS
bromoform isopropyl benzene (cumene)	NS NS	NS NS	NS NS
bromobenzene	NS	NS	NS NS
1,1,2,2-tetrachloroethane	NS	NS	NS
1,2,3-trichloropropane	NS	NS	NS
n-propyl benzene	NS	NS	NS
2-chlorotoluene	NS	NS	NS
4-chlorotoluene	NS	NS	NS
1,3,5-trimethylbenzene	NS	NS	NS NS
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	NS NS	NS NS
sec-butylbenzene	NS	NS	NS NS
1,3-dichlorobenzene	NS	NS	NS
4-isopropyltoluene	NS	NS	NS
1,4-dichlorobenzene	NS	NS	NS
1,2-dichlorobenzene	NS	NS	NS
n-butylbenzene	NS	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS	NS NS	NS NS
hexachlorobutadiene	NS	NS	NS NS
naphthalene	NS	NS	NS
1,2,3-trichlorobenzene	NS	NS	NS
Methyl tertiary butyl ether	NS	NS	NS
Acetone	NS	NS	NS
carbon disulfide	NS NC	NS NC	NS NC
2-butanone (MEK) tetrahydrofuran (THF)	NS NS	NS NS	NS NS
4-methyl-2-pentanone (MIBK)	NS NS	NS NS	NS NS
2-hexanone	NS	NS	NS
2-chloroethyl vinyl ether	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L
Methane	NS	NS	NS
Ethane	NS	NS	NS
Ethene CASES	NS	NS	NS
OTHER GASES Hydrogen	μg/L NS	μg/L NS	μg/L NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L
Iron	NS NS	NS	NS
Manganese	NS	NS	NS
Arsenic	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L
Fluoride	NS	NS	NS
Chloride Nitrito as N	NS NC	NS NC	NS NC
Nitrite as N Sulfate as SO ₄	NS NC	NS NC	NS NC
•	NS	NS	NS
Bromide Nitrate as N	1.41 NS	1.77 NS	1.64 NS
O-Phosphate as P	NS NS	NS NS	NS NS
FIELD PARAMETERS			
pH (SU)	4.86	4.89	4.86
Temperature (°C)	15.31	15.85	15.53
Dissolved Oxygen (DO; mg/L)	3.91	2.18	0.94
Redox Potential (ORP; mV)	-47.5	-30.7	-41.4
Conductivity (µS/cm)	203	204	204
Depth to Water (ft-btoc)	7.60	7.67	7.67

Table D.5. PMW-11: Analytical and Field Parameter Results

I abi	C D.	<u> </u>			arytic	ai ai	id i i	CIG I	aram	ICICI	11034	113	
Sample ID	NJ Higher of	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I	PMW-1I
Lab Sample No.	PQLs and	8534-7	8538-2	8546-2	8547-2	8550-2	8551-2	8647-5	8708-16	8713-19	8717-2		
Sampling Date	GW Quality	10/27/2011	11/9/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/26/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time (days)		-45	-33	-24	-21	-19	-14	105	178	182	184	186	190
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	50.0 U	10.0 U	NS	NS	NS	NS	105 U		NS	NS	NS	NS
chloromethane	1000	50.0 U		NS	NS	NS	NS	105 U		NS NS	NS	NS	NS
vinyl chloride	1	50.0 U		NS	NS	NS NS	NS	105 U		NS	NS	NS	NS
bromomethane	10	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
chloroethane		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
trichlorofluoromethane	2000	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,1-dichloroethylene	1	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
methylene chloride	3	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene	100	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,1-dichloroethane	50	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
2,2-dichloropropane		50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	149 D	67.2 D	NS	NS	NS	NS	91.1 JD		NS	NS	NS	NS
bromochloromethane		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
chloroform	70	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,1,1-trichloroethane	30	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
carbon tetrachloride	1	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,1-dichloropropene		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
benzene	1	50.0 U	10.0 U	NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,2-dichloroethane	2	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
trichloroethylene	1	6730 D	2810 D	NS	NS	NS	NS	5270 D		NS	NS	NS	NS
1,2-dichloropropane	1	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
dibromomethane	<u> </u>	50.0 U	10.0 U	NS	NS	NS	NS	105 U		NS	NS	NS	NS
	1	50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	105 U		NS NS	NS NS	NS NS	NS NS
bromodichloromethane	1												
cis-1,3-dichloropropene	1 000	50.0 U		NS	NS	NS NC	NS NC	105 U		NS NS	NS NO	NS	NS NO
toluene	600	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
trans-1,3-dichloropropene	1	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,1,2-trichloroethane	3	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
tetrachloroethylene	1	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,3-dichloropropane		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
dibromochloromethane	1	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1.2-dibromoethane	· ·	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS NS	NS
	EC												
chlorobenzene	50	50.0 U		NS NO	NS NO	NS NC	NS NC	105 U		NS NS	NS NO	NS NS	NS NO
1,1,1,2-tetrachloroethane	1	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
ethylbenzene	700	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
xylenes (m/p)	1000	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
o-xylene		50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
styrene	100	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
bromoform	4	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
isopropyl benzene (cumene)	700	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
	700												
bromobenzene				NS	NS	NS	NS			NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,2,3-trichloropropane	0.03	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
n-propyl benzene		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
2-chlorotoluene		50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
4-chlorotoluene		50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
tert-butylbenzene		50.0 U	10.0 U	NS	NS	NS	NS	105 U		NS	NS	NS	NS
				NS	NS		NS			NS	NS	NS	NS NS
1,2,4-trimethylbenzene						NS NC							
sec-butylbenzene		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
4-isopropyltoluene		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,4-dichlorobenzene	75	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,2-dichlorobenzene	600	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
n-butylbenzene		50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	0.02	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,2,4-trichlorobenzene	9	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
hexachlorobutadiene				NS	NS	NS	NS			NS	NS	NS	NS
naphthalene	1 200	50.0 U											
	300			NS NO	NS NO	NS NC	NS NC			NS NS	NS NO	NS NS	NS NO
1,2,3-trichlorobenzene		50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
Methyl tertiary butyl ether	70	50.0 U		NS	NS	NS	NS	105 U		NS	NS	NS	NS
Acetone	6000	100.0 U	20.0 U	NS	NS	NS	NS	210 U		NS	NS	NS	NS
carbon disulfide	700	50.0 U	10.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
2-butanone (MEK)	300	100.0 U	20.0 U	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	10	100.0 U	20.0 U	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)		100.0 U		NS	NS	NS	NS	210 U		NS	NS	NS	NS
2-hexanone		100.0 U		NS	NS	NS	NS	210 U		NS	NS	NS	NS
2-chloroethyl vinyl ether		100.0 U		NS	NS	NS	NS	210 U		NS	NS	NS	NS
				μg/L									
REDUCED GASES (GC)					μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	μg/L	μg/L	μg/L		110		116				NS	NS	NS
	NA	130	46.2	NS	NS	NS	NS	452	NS	NS			
Ethane	NA NA	130 0.53 J	46.2 4.0 U	NS NS	NS	NS	NS	452 4.0 U	NS	NS	NS	NS	NS
Ethene	NA	130	46.2	NS NS NS	NS NS		NS NS	452	NS NS	NS NS	NS NS	NS NS	NS NS
	NA NA	130 0.53 J	46.2 4.0 U	NS NS	NS	NS	NS	452 4.0 U	NS	NS			
Ethene OTHER GASES	NA NA NA	130 0.53 J 0.52 J μg/L	46.2 4.0 U 5.0 U	NS NS NS	NS NS	NS NS	NS NS	452 4.0 U 5.0 U	NS NS μg/L	NS NS μg/L	NS	NS	NS
Ethene OTHER GASES Hydrogen	NA NA NA μg/L NA	130 0.53 J 0.52 J μg/L 0.055	46.2 4.0 U 5.0 U μg/L 0.009 U	NS NS NS µg/L NS	NS NS µg/L NS	NS NS µg/L NS	NS NS µg/L NS	452 4.0 U 5.0 U μg/L 0.01 U	NS NS μg/L 0.009 U	NS NS µg/L NS	NS μg/L NS	NS μg/L NS	NS μg/L NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED)	NA NA NA μg/L NA μg/L	130 0.53 J 0.52 J μg/L 0.055 μg/L	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L	NS NS NS µg/L NS µg/L	NS NS μg/L NS μg/L	NS NS μg/L NS μg/L	NS NS μg/L NS μg/L	452 4.0 U 5.0 U μg/L 0.01 U μg/L	NS NS μg/L 0.009 U μg/L	NS NS μg/L NS μg/L	NS µg/L NS µg/L	NS μg/L NS μg/L	NS μg/L NS μg/L
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron	NA NA NA NA μg/L NA μg/L 300	130 0.53 J 0.52 J μg/L 0.055 μg/L NS	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D	NS NS NS µg/L NS µg/L NS	NS NS µg/L NS µg/L	NS NS μg/L NS μg/L	NS NS μg/L NS μg/L	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS	NS NS μg/L 0.009 U μg/L NS	NS NS μg/L NS μg/L	NS μg/L NS μg/L NS	NS μg/L NS μg/L NS	NS μg/L NS μg/L NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese	NA NA NA NA μg/L NA μg/L 300	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D	NS NS NS µg/L NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS	NS NS μg/L 0.009 U μg/L NS NS	NS NS µg/L NS µg/L NS NS	NS µg/L NS µg/L NS µg/L NS	NS µg/L NS µg/L NS NS	NS µg/L NS µg/L NS µg/L NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS	NA NA NA µg/L NA µg/L 300 50 mg/L	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS mg/L	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L	NS NS NS µg/L NS µg/L NS µg/L NS ng/L NS	NS NS µg/L NS µg/L NS µg/L NS nS NS mg/L	NS NS µg/L NS µg/L NS µg/L NS mg/L	NS NS µg/L NS µg/L NS µg/L NS mg/L	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS mg/L	NS NS μg/L 0.009 U μg/L NS NS mg/L	NS NS µg/L NS µg/L NS µg/L NS mg/L	NS µg/L NS µg/L NS µg/L NS mg/L	NS µg/L NS µg/L NS µg/L NS mg/L	NS µg/L NS µg/L NS µg/L NS mg/L
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganes ANIONS Fluoride	NA NA NA NA μg/L NA μg/L 300	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS mg/L 0.2 U	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L	NS NS NS NS µg/L NS µg/L NS NS NS NS NS NS	NS NS µg/L NS µg/L NS µg/L NS NS NS mg/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS NS	NS NS µg/L NS µg/L NS µg/L NS NS NS NS	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS mg/L NS	NS NS μg/L 0.009 U μg/L NS NS NS mg/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS NS	NS µg/L NS µg/L NS NS NS mg/L NS	NS µg/L NS µg/L NS NS NS mg/L NS	NS µg/L NS µg/L NS NS NS mg/L NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS	NA NA NA µg/L NA µg/L 300 50 mg/L	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS mg/L	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L	NS NS NS µg/L NS µg/L NS µg/L NS ng/L NS	NS NS µg/L NS µg/L NS µg/L NS nS NS mg/L	NS NS µg/L NS µg/L NS µg/L NS mg/L	NS NS µg/L NS µg/L NS µg/L NS mg/L	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS mg/L	NS NS μg/L 0.009 U μg/L NS NS mg/L	NS NS µg/L NS µg/L NS µg/L NS mg/L	NS µg/L NS µg/L NS µg/L NS mg/L	NS µg/L NS µg/L NS µg/L NS mg/L	NS µg/L NS µg/L NS µg/L NS mg/L
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganes ANIONS Fluoride	NA NA NA μg/L NA μg/L S S S S S S S S S S S S S S S S S S S	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS mg/L 0.2 U	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27	NS NS NS NS µg/L NS µg/L NS NS NS NS NS NS	NS NS µg/L NS µg/L NS µg/L NS NS NS mg/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS NS	NS NS µg/L NS µg/L NS µg/L NS NS NS NS	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS mg/L NS	NS NS µg/L 0.009 U µg/L NS NS NS mg/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS NS	NS µg/L NS µg/L NS NS NS mg/L NS	NS µg/L NS µg/L NS NS NS mg/L NS	NS µg/L NS µg/L NS NS NS mg/L NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N	NA NA NA µg/L NA µg/L S00 50 mg/L 2 250	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS mg/L 0.2 U 14.9 0.2 U	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U	NS NS NS NS NS µg/L NS µg/L NS NS NS NS NS Mg/L NS NS	NS NS µg/L NS µg/L NS µg/L NS NS NS NS Mg/L NS NS	NS NS µg/L NS µg/L NS µg/L NS NS NS MS/L NS NS NS	NS NS	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS NS mg/L NS 12.1 0.2 U	NS NS µg/L 0.009 U µg/L NS NS NS 16.5	NS NS µg/L NS µg/L NS NS NS NS 16.3	NS µg/L NS µg/L NS µg/L NS NS NS MS NS NS NS	NS µg/L NS µg/L NS µg/L NS NS NS mg/L NS NS NS	NS µg/L NS µg/L NS µg/L NS NS MS MS/L NS NS NS NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄	NA NA NA NA μg/L NA μg/L 300 50 mg/L 2 250 1	130 0.53 J 0.52 J µg/L 0.055 µg/L NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E	46.2 4.0 U 5.0 U µg/L 0.009 U µg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E	NS NS NS NS Hg/L NS Hg/L NS NS NS NS Mg/L NS NS Mg/L NS NS	NS NS Hg/L NS Hg/L NS NS NS NS NS Mg/L NS NS NS NS NS	NS NS Hg/L NS Hg/L NS NS NS NS NS NS Mg/L NS NS NS NS NS NS	NS NS Hg/L NS Hg/L NS NS NS NS NS Mg/L NS NS NS NS NS NS NS	452 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS NS NS 12.1 0.2 U 57.9 E	NS NS µg/L 0.009 U µg/L NS NS NS NS Mg/L NS NS Mg/L NS O.2 U 56.7 E	NS NS Hg/L NS NS NS NS NS NS NS NS Mg/L NS S S S S S S S S S S S S S S S S S S	NS µg/L NS µg/L NS NS NS MS NS NS NS NS	NS µg/L NS µg/L NS NS NS MS/L NS NS MS/L NS NS NS NS	NS µg/L NS µg/L NS NS NS NS MS/L NS NS NS NS NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide	NA NA NA NA µg/L NA µg/L 300 50 mg/L 2 250 1 250 NA	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E	46.2 4.0 U 5.0 U µg/L 0.009 U µg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E	NS NS NS NS NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS MS/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS mg/L NS	452 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS mg/L NS 12.1 0.2 U 57.9 E 1.34	NS N	NS NS µg/L NS µg/L NS µg/L NS NS 16.3 16.3 16.3 15.63 E	NS	NS µg/L NS µg/L NS NS NS NS NS NS NS NS NS N	NS µg/L NS µg/L NS NS NS NS NS NS NS NS NS N
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N	NA NA NA NA NA μg/L NA μg/L 300 50 mg/L 2 250 1 250 NA 10	130 0.53 J 0.52 J 0.52 J µg/L 0.055 µg/L NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U	NS NS NS NS µg/L NS µg/L NS	NS NS NS PG/L NS NS PG/L NS	NS NS µg/L NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS mg/L NS 12.1 0.2 U 57.9 E 1.34 0.2 U	NS NS µg/L 0.009 U µg/L NS NS NS NS NS NS NS 16.5 0.2 U 56.7 E 1.26 0.2 U 0.2 U 0.2 U	NS NS	NS	NS Hg/L NS Hg/L NS NS NS Mg/L NS NS NS NS NS NS NS NS NS N	NS µg/L NS µg/L NS NS NS Mg/L NS NS NS NS NS NS NS NS NS N
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P	NA NA NA NA µg/L NA µg/L 300 50 mg/L 2 250 1 250 NA	130 0.53 J 0.52 J μg/L 0.055 μg/L NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U	NS NS NS NS NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS MS/L NS	NS NS µg/L NS µg/L NS µg/L NS NS NS mg/L NS	452 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS mg/L NS 12.1 0.2 U 57.9 E 1.34	NS NS µg/L 0.009 U µg/L NS NS NS NS NS NS MS 16.5 0.2 U 1.26 0.2 U	NS NS	NS	NS µg/L NS µg/L NS NS NS NS NS NS NS NS NS N	NS µg/L NS µg/L NS NS NS NS NS NS NS NS NS N
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS	NA NA NA NA NA μg/L NA μg/L 300 50 mg/L 2 250 1 250 NA 10	130 0.53 J 0.52 J 0.52 J µg/L 0.055 µg/L NS NS NS 14.9 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U 0.2 U	NS NS NS µg/L NS NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS	NS NS NS µg/L NS µg/L NS	NS NS NS Hg/L NS Hg/L NS NS NS NS NS Mg/L NS	4.52 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS NS 12.1 0.2 U 5.7.9 E 1.34 0.2 U 0.2 U	NS NS NS µg/L 0.009 U µg/L NS NS mg/L 16.5 0.2 U 56.7 E 1.26 0.2 U 0.2 U	NS NS NS µg/L NS µg/L NS NS NS 16.3 0.2 U 56.3 E 1.53 0.2 U 0.2 U	NS	NS	NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P	NA NA NA NA NA μg/L NA μg/L 300 50 mg/L 2 250 1 250 NA 10	130 0.53 J 0.52 J 0.52 J µg/L 0.055 µg/L NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U	NS NS NS NS µg/L NS µg/L NS	NS NS NS PG/L NS NS PG/L NS	NS NS µg/L NS µg/L NS µg/L NS	NS NS µg/L NS µg/L NS µg/L NS	452 4.0 U 5.0 U μg/L 0.01 U μg/L NS NS mg/L NS 12.1 0.2 U 57.9 E 1.34 0.2 U	NS NS µg/L 0.009 U µg/L NS NS NS NS NS NS NS 16.5 0.2 U 56.7 E 1.26 0.2 U 0.2 U 0.2 U	NS NS	NS	NS Hg/L NS Hg/L NS NS NS Mg/L NS NS NS NS NS NS NS NS NS N	NS µg/L NS µg/L NS NS NS Mg/L NS NS NS NS NS NS NS NS NS N
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU)	NA NA NA NA µg/L NA µg/L 300 50 mg/L 2 250 1 1 250 NA 10 NA	130 0.53 J 0.52 J µg/L 0.055 µg/L NS NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U 0.5.67	46.2 4.0 U 5.0 U µg/L 0.009 U µg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U 0.2 U 0.2 U	NS NS NS NS µg/L NS µg/L NS NS µg/L NS	NS NS NS PG NS	NS NS NS Hg/L NS Hg/L NS	NS NS NS Hg/L NS Hg/L NS	4.52 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS mg/L NS 12.1 0.2 U 5.7.9 E 1.34 0.2 U 5.95	NS NS NS NS µg/L 0.009 U µg/L NS NS NS mg/L 16.5 0.2 U 56.7 E 1.26 0.2 U 5.83	NS N	NS	NS	NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C)	NA NA NA µg/L NA µg/L 300 50 mg/L 2 250 1 250 NA NA NA NA	130 0.53 J 0.52 J µg/L 0.055 µg/L NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U 5.67	46.2 4.0 U 5.0 U µg/L 0.009 U µg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U 0.2 U 5.83 16.13	NS NS NS	NS NS NS µg/L NS µg/L NS	NS NS NS µg/L NS µg/L NS	NS NS NS µg/L NS µg/L NS	4.52 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS NS NS 12.1 0.2 U 57.9 E 1.34 0.2 U 0.2 U 5.95 13.99	NS NS NS µg/L 0.009 U µg/L NS NS NS 16.5 0.2 U 56.7 E 1.26 0.2 U 5.83	NS NS NS µg/L NS µg/L NS NS NS NS NS 16.3 0.2 U 56.3 E 1.53 0.2 U 5.90 16.03	NS	NS	NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA NA NA µg/L NA µg/L 300 50 mg/L 2 250 NA 10 NA NA NA NA	130 0.53 J 0.52 J µg/L 0.055 µg/L NS NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U 0.5 G 16.47 0.26	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U 92.1 E 0.34 0.2 U 5.83 16.13 5.1	NS NS NS NS µg/L NS µg/L NS	NS N	NS NS NS µg/L NS µg/L NS	NS NS NS Hg/L NS Hg/L NS	4.52 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS Mg/L NS 12.1 0.2 U 57.9 E 1.34 0.2 U 0.2 U 0.2 U 0.80	NS NS NS Hg/L 0.009 U µg/L NS NS mg/L NS 16.5 0.2 U 1.26 0.2 U 0.2 U 5.83	NS NS NS µg/L NS µg/L NS NS ng/L NS 0.2 U 56.3 0.2 U 5.63 0.2 U 5.63 1.53	NS	NS	NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA NA Hg/L NA Hg/L 300 50 Tg/L 2 250 1 1 250 NA	130 0.53 J 0.52 J µg/L 0.055 µg/L NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U 5.67 16.47 0.26 37.10	46.2 4.0 U 5.0 U µg/L 0.009 U µg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U 0.2 U 5.83 16.13 5.1	NS NS NS µg/L NS NS µg/L NS	NS N	NS NS NS Hg/L NS	NS NS NS NS Hg/L NS	4.52 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS mg/L NS 10.2 U 5.7.9 E 1.34 0.2 U 0.2 U 5.95 13.99 0.80 25.2	NS NS NS μg/L 0.009 U μg/L NS NS NS 16.5 0.2 U 56.7 E 1.26 0.2 U 0.2 U 5.83 15.89 0.62 -3.6	NS NS µg/L NS µg/L NS NS µg/L NS NS NS 16.3 0.2 U 56.3 E 1.53 0.2 U 0.2 U 5.90 16.03 1.83 2.3	NS	NS µg/L NS µg/L NS NS NS MS/L NS NS NS NS NS NS NS NS NS N	NS µg/L NS µg/L NS NS MS/ NS NS NS NS NS NS NS NS NS
Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved (DX); mg/L)	NA NA NA NA µg/L NA µg/L 300 50 mg/L 2 250 NA 10 NA NA NA NA	130 0.53 J 0.52 J µg/L 0.055 µg/L NS NS NS mg/L 0.2 U 14.9 0.2 U 93.3 E 0.69 0.2 U 0.5 G 16.47 0.26	46.2 4.0 U 5.0 U μg/L 0.009 U μg/L 3210 D 61.2 D mg/L 0.27 6.04 0.2 U 92.1 E 0.34 0.2 U 92.1 E 0.34 0.2 U 5.83 16.13 5.1	NS NS NS NS µg/L NS µg/L NS	NS N	NS NS NS µg/L NS µg/L NS	NS NS NS Hg/L NS Hg/L NS	4.52 4.0 U 5.0 U µg/L 0.01 U µg/L NS NS Mg/L NS 12.1 0.2 U 57.9 E 1.34 0.2 U 0.2 U 0.2 U 0.80	NS NS NS Hg/L 0.009 U µg/L NS NS mg/L NS 16.5 0.2 U 1.26 0.2 U 0.2 U 5.83	NS NS NS µg/L NS µg/L NS NS ng/L NS 0.2 U 56.3 0.2 U 5.63 0.2 U 5.63 1.53	NS	NS	NS

Table D.6. PMW-2S: Analytical and Field Parameter Results

Sample ID	NJ Higher of	PMW-2S	PMW-2S	PMW-2S	PMW-2S	PMW-2S	PMW-2S	PMW-2S	PMW-2S	PMW-2S	PMW-2S	PMW-2S
Lab Sample No.	PQLs and	8534-2	8538-3	8546-3	8547-3	8550-3	8551-3	8647-6	8713-7	8717-3		
Sampling Date	GW Quality	10/27/2011	11/9/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/26/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time (days)		-45	-33	-24	-21	-19	-14	105	182	184	186	190
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
chloromethane		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
vinyl chloride	1	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
bromomethane	10	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
chloroethane		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
trichlorofluoromethane	2000	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,1-dichloroethylene	1	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
methylene chloride	3	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
trans-1,2-dichloroethylene	100	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,1-dichloroethane	50	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
2,2-dichloropropane		50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	157 D		NS	NS	NS	NS	107 D	NS	NS	NS	NS
bromochloromethane		50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
chloroform	70	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,1,1-trichloroethane	30	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
carbon tetrachloride	1	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,1-dichloropropene		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
benzene	1	50.0 U	42.0 U	NS	NS NS	NS	NS	105 U	NS	NS	NS	NS NS
1,2-dichloroethane	2	50.0 U	42.0 U		NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
trichloroethylene	1	13100 D	12000 D	NS NC	NS NC	NS NC	NS	9340 D	NS NC	NS NC	NS NC	NS
1,2-dichloropropane	1	50.0 U	42.0 U		NS NC	NS NC	NS	105 U	NS NC	NS NC	NS NC	NS
dibromomethane		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
bromodichloromethane	1	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
cis-1,3-dichloropropene	1	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
toluene	600	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
trans-1,3-dichloropropene	1	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
1,1,2-trichloroethane	3	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
tetrachloroethylene	1	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,3-dichloropropane		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
dibromochloromethane	1	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dibromoethane		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
chlorobenzene	50	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	1	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
ethylbenzene	700	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
xylenes (m/p)	1000	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
o-xylene		50.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS
styrene	100	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
bromoform	4	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
isopropyl benzene (cumene)	700	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
bromobenzene		50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
1,2,3-trichloropropane	0.03	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
n-propyl benzene	0.00	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
2-chlorotoluene		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
4-chlorotoluene		50.0 U	42.0 U		NS NS	NS	NS	105 U	NS NS	NS NS	NS NS	NS NS
		50.0 U	42.0 U		NS NS	NS	NS	105 U	NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene												
tert-butylbenzene				NS NC	NS NC	NS NC	NS	105 U	NS NC	NS NC	NS NC	NS NS
1,2,4-trimethylbenzene		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
sec-butylbenzene		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
4-isopropyltoluene		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
1,4-dichlorobenzene	75	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dichlorobenzene	600	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
n-butylbenzene		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	0.02	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2,4-trichlorobenzene	9	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
hexachlorobutadiene	11	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
naphthalene	300	50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
1,2,3-trichlorobenzene		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
Methyl tertiary butyl ether	70	50.0 U	.=		NS	NS	NS	105 U	NS	NS	NS	NS
Acetone	6000	100.0 U	84.0 U	NS	NS	NS	NS	210 U	NS	NS	NS	NS
carbon disulfide	700	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
2-butanone (MEK)	300	100.0 U		NS	NS	NS	NS	210 U	NS	NS	NS	NS
tetrahydrofuran (THF)	10	100.0 U		NS	NS	NS	NS	210 U	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)		100.0 U			NS	NS	NS	210 U	NS	NS	NS	NS
2-hexanone		100.0 U	84.0 U		NS	NS	NS	210 U	NS	NS	NS	NS
2-chloroethyl vinyl ether	-	100.0 U	84.0 U		NS	NS	NS	210 U	NS	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA NA	92.3	89.8	NS	NS NS	NS	NS	84.2	NS	NS	NS	NS
Ethane	NA NA	4.0 U	4.0 U	NS	NS	NS	NS NS	4.0 U	NS NS	NS	NS	NS NS
Ethene	NA NA	5.0 U			NS NS	NS	NS	5.0 U	NS	NS	NS	NS NS
OTHER GASES	μg/L	5.0 U μg/L	5.0 U μg/L	μg/L	μg/L	μg/L	μg/L	5.0 U μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	μg/L NA	0.006 J	0.002 J		μg/L NS	μg/L NS	NS NS	μg/L 0.01 U	NS	NS NS	NS	NS
METALS (DISSOLVED)												
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	300	NS	5560 D	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	50	NS	55.1 D		NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U		NS	NS	NS	NS	NS	NS	NS	NS
Chloride	250	21.0	18.6	NS	NS	NS	NS	14.6	12.0	NS	NS	NS
Nitrite as N	1	0.2 U	0.2 U		NS	NS	NS	0.2 U	0.2 U	NS	NS	NS
Sulfate as SO ₄	250	79.0 E	75.9 E	NS	NS	NS	NS	60.1 E	62.3 E	NS	NS	NS
Bromide	NA	0.54	0.48	12.3	11.7	4.53	12.1	1.49	1.89	1.46	1.71	1.99
Nitrate as N	10	0.2 U	0.48 0.2 U		NS	NS NS	NS	0.2 U	0.2 U	NS	NS	NS
O-Phosphate as P	NA	0.2 U	0.2 U		NS NS	NS	NS	0.2 U	0.2 U		NS NS	NS NS
FIELD PARAMETERS	INA	U.E U	V.E U	140	140	140	140	U.2 U	U.E U	110	140	140
pH (SU)	N. A	4.60	4.42	NC	NC	NC	NIC	462	4.22	4.44	4.44	4.40
	NA	4.66	4.43	NS	NS	NS	NS	4.63	4.33		4.41	4.49
Temperature (°C)	NA	16.51	16.44	NS	NS	NS	NS	13.76	15.30	14.67	15.08	14.90
Dissolved Oxygen (DO; mg/L)	NA	0.38	4.64	NS	NS	NS	NS	0.86	3.92	4.81	5.06	2.31
Redox Potential (ORP; mV)	NA	-14.0	51.3	NS	NS	NS	NS	65.2	-1.1	8.0	-34.0	-10.8
Conductivity (µS/cm)	NA	281	236	NS	NS	NS	NS	228	197	198	199	201.00
Depth to Water (ft-btoc)	NA	6.79	6.91	NS	NS	NS	NS	7.32	7.74	7.65	8.86	7.83

Table D.7. PMW-2I: Analytical and Field Paramter Data

I able		. FIVI	VV-ZI	. ,	arytic	Jai a	14	<u> </u>	aran		Jala	
Sample ID	NJ Higher of	PMW-2I	PMW-2I	PMW-2I	PMW-2I	PMW-2I	PMW-2I	PMW-2I	PMW-2I	PMW-2I	PMW-2I	PMW-2I
Lab Sample No.	PQLs and	8534-5	8538-4	8546-4	8547-4	8550-4	8551-4	8647-7	8713-8	8717-4	0/45/0040	0/40/0040
Sampling Date	GW Quality	10/27/2011	11/9/2011 -33	11/18/2011 -24	11/21/2011	11/23/2011	11/28/2011 -14	3/26/2012	6/11/2012 182	6/13/2012 184	6/15/2012	6/19/2012 190
Time Matrix	2005 Criteria	-45 Water	-33 Water	-24 Water	-21 Water	-19 Water	-14 Water	105 Water	182 Water	184 Water	186 Water	190 Water
VOCS (GC/MS)	ug/L	ug/L	ug/L	μg/L	μg/L	μg/L	ug/L	μg/L	μg/L	ug/L	ug/L	μg/L
dichlorodifluoromethane	1000	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
chloromethane		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
vinyl chloride	11	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
bromomethane	10	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
chloroethane	2000	50.0 U			NS NC	NS NC	NS NC	105 U	NS NC	NS NC	NS NC	NS NC
trichlorofluoromethane 1,1-dichloroethylene	2000	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS
methylene chloride	3	50.0 U		NS	NS NS	NS	NS	105 U	NS	NS	NS NS	NS
trans-1,2-dichloroethylene	100	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,1-dichloroethane	50	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
2,2-dichloropropane		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	223 D	203 D	NS	NS	NS	NS	183 D	NS	NS	NS	NS
bromochloromethane		50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
chloroform 1.1.1-trichloroethane	70	50.0 U 50.0 U			NS NS	NS NS	NS NC	105 U 105 U	NS NS	NS NS	NS NC	NS NS
carbon tetrachloride	30 1	50.0 U			NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
1,1-dichloropropene	<u> </u>	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
benzene	1	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dichloroethane	2	50.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS
trichloroethylene	1	16400 D	16000 D	NS	NS	NS	NS	14100 D	NS	NS	NS	NS
1,2-dichloropropane	1	50.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS
dibromomethane		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
bromodichloromethane	1	50.0 U	42.0 U		NS NC	NS NC	NS NC	105 U	NS NC	NS NC	NS NC	NS NC
cis-1,3-dichloropropene toluene	600	50.0 U		NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene	1	50.0 U	12.0		NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
1,1,2-trichloroethane	3	50.0 U			NS	NS	NS	105 U	NS NS	NS	NS NS	NS NS
tetrachloroethylene	1	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,3-dichloropropane		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
dibromochloromethane	1	50.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dibromoethane	<u> </u>	50.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS
chlorobenzene	50	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS NS
1,1,1,2-tetrachloroethane	1 700	50.0 U		NS NS	NS	NS	NS	105 U	NS	NS NS	NS	NS
ethylbenzene xylenes (m/p)	700 1000	50.0 U 50.0 U			NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS
o-xylene	1000	50.0 U			NS	NS	NS	105 U	NS NS	NS NS	NS NS	NS NS
styrene	100	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS NS
bromoform	4	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
isopropyl benzene (cumene)	700	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
bromobenzene		50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,2,3-trichloropropane	0.03	50.0 U			NS NS	NS	NS NS	105 U 105 U	NS NS	NS	NS NS	NS NS
n-propyl benzene 2-chlorotoluene		50.0 U	42.0 U	NS NS	NS NS	NS NS	NS NS	105 U	NS	NS NS	NS NS	NS NS
4-chlorotoluene		50.0 U			NS	NS	NS	105 U	NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene		50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
tert-butylbenzene		50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2,4-trimethylbenzene		50.0 U	42.0 U		NS	NS	NS	105 U	NS	NS	NS	NS
sec-butylbenzene		50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	75	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS
1,2-dichlorobenzene	600	50.0 U			NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
n-butylbenzene	000	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	0.02	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
1,2,4-trichlorobenzene	9	50.0 U	42.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS
hexachlorobutadiene	1	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS
naphthalene	300	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS NS
1,2,3-trichlorobenzene Methyl tertiany butyl ether	70	50.0 U 50.0 U			NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS
Methyl tertiary butyl ether Acetone	6000	100.0 U			NS NS	NS NS	NS NS	105 U 210 U	NS NS	NS NS	NS NS	NS NS
carbon disulfide	700	50.0 U			NS	NS	NS	105 U	NS NS	NS	NS NS	NS NS
2-butanone (MEK)	300	100.0 U	84.0 U	NS	NS	NS	NS	210 U	NS	NS	NS	NS
tetrahydrofuran (THF)	10	100.0 U			NS	NS	NS	210 U	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)		100.0 U			NS	NS	NS	210 U	NS	NS	NS	NS
2-hexanone	 	100.0 U		NS NC	NS NC	NS NC	NS NC	210 U	NS NC	NS NC	NS NG	NS NC
2-chloroethyl vinyl ether REDUCED GASES (GC)		100.0 U	01.0		NS a/l	NS a/I	NS a/I	210 U	NS a/l	NS a/l	NS ug/l	NS a/l
Methane	μg/L NA	μg/L 174	μg/L 176	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 223	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Ethane	NA NA	4.0 U		NS NS	NS NS	NS NS	NS NS	0.36 J	NS NS	NS NS	NS NS	NS NS
Ethene	NA NA	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	0.016	0.004 J	NS	NS	NS	NS	0.01 U	NS	NS	NS	NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	300	NS	11600 D	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	50	NS	131 D	NS	NS	NS	NS	NS "	NS	NS	NS	NS.
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	2 250	0.2 U 21.0	0.2 U 21.5	NS NS	NS NS	NS NS	NS NS	NS 16.2	NS 16.3	NS NS	NS NS	NS NS
Nitrite as N	250	0.2 U			NS NS	NS NS	NS NS	0.2 U	16.3	NS NS	NS NS	NS NS
Sulfate as SO ₄	250	88.4 E			NS	NS	NS	71.4 E	62.4 E	NS	NS	NS
Bromide	NA NA	0.78	0.71	2.86	3.06	2.31	3.32	1.13	2.22	2.05	2.43	2.43
Nitrate as N	10	0.78 0.2 U		NS NS	NS NS	NS NS	NS NS	0.2 U	0.2 U	NS NS	NS NS	NS NS
O-Phosphate as P	NA NA	0.2 U			NS	NS	NS	0.2 U	0.2 U		NS	NS
FIELD PARAMETERS												
pH (SU)	NA	5.37	5.18	NS	NS	NS	NS	5.47	4.99	4.99	4.96	4.99
Temperature (°C)	NA	16.31	16.16	NS	NS	NS	NS	13.97	15.42	14.93	15.55	15.06
Dissolved Oxygen (DO; mg/L)	NA	0.36	2.44	NS	NS	NS	NS	0.85	2.96	3.84	3.54	1.60
Redox Potential (ORP; mV)	NA NA	-60.6	-24.5	NS NC	NS NC	NS NC	NS	-11.8	-74.2	-61.7	-81.8	-75.5
Conductivity (µS/cm) Depth to Water (ft-btoc)	NA NA	387 8.36	319 8 30	NS NS	NS NS	NS NS	NS NS	379	9.40	9.61	9.40	9.33
Doptii to water (II-DIOC)	NA	8.36	8.39	INO	ING	INO	INO	9.11	3.40	5.01	J.4U	3.33

Table D.8. PMW-3S: Analytical and Field Parameter Results

Table D.o.		VV- 33			Cai a		<u>ieiu i</u>		HELEI	1/62	
Sample ID	NJ Higher of PQLs and	PMW-3S	PMW-3S	PMW-3S	PMW-3S	PMW-3S	PMW-3S	PMW-3S	PMW-3S	PMW-3S	PMW-3S
Lab Sample No. Sampling Date	GW Quality	8533-2 10/26/2011	8538-5 11/9/2011	8543-2 11/16/2011	8546-5 11/18/2011	8547-5 11/21/2011	8550-5 11/23/2011	8551-5 11/28/2011	12/6/2011	8647-8 3/26/2012	8713-15 6/11/2012
Time	GW Quality	-46	-33	-26	-24	-21	-19	-14	-6	105	182
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
chloromethane		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
vinyl chloride	1	1.0 J	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
bromomethane	10	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
chloroethane	2000	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NC	NS NS	NS NS	NS NS	NS NC	105 U 105 U	NS NS
trichlorofluoromethane 1,1-dichloroethylene	1	4.2 J	5.0 U 4.6 J	NS	NS NS	NS	NS	NS	NS NS	105 U	NS
methylene chloride	3	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS NS	105 U	NS
trans-1,2-dichloroethylene	100	2.0 J	1.6 J	NS	NS	NS	NS	NS	NS NS	105 U	NS
1,1-dichloroethane	50	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
2,2-dichloropropane		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
cis 1,2- dichloroethylene	70	126	125	NS	NS	NS	NS	NS	NS	70.4 JD	NS
bromochloromethane		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
chloroform	70	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,1,1-trichloroethane	30	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
carbon tetrachloride	1	5.0 U	5.0 U 5.0 U	NS	NS NC	NS	NS NC	NS	NS NC	105 U 105 U	NS
1,1-dichloropropene benzene	1	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS
1,2-dichloroethane	2	5.0 U	5.0 U	NS	NS NS	NS	NS	NS	NS NS	105 U	NS
trichloroethylene	1	6090 D	5680 D	NS	NS	NS	NS	NS	NS NS	6980 D	NS
1.2-dichloropropane	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS NS	105 U	NS
dibromomethane		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
bromodichloromethane	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
cis-1,3-dichloropropene	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
toluene	600	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
trans-1,3-dichloropropene	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,1,2-trichloroethane	3	5.0 U	5.0 U	NS	NS NC	NS NC	NS NC	NS NC	NS NC	105 U	NS
tetrachloroethylene	1	5.0 U 5.0 U	5.0 U 5.0 U	NS	NS NC	NS NC	NS NC	NS NC	NS NS	105 U 105 U	NS NS
1,3-dichloropropane dibromochloromethane	1	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS
1.2-dibromocnioromethane	<u>'</u>	5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS
chlorobenzene	50	5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS
1,1,1,2-tetrachloroethane	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS NS	105 U	NS
ethylbenzene	700	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
xylenes (m/p)	1000	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
o-xylene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
styrene	100	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
bromoform	4	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
isopropyl benzene (cumene)	700	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
bromobenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,1,2,2-tetrachloroethane	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,2,3-trichloropropane n-propyl benzene	0.03	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS
2-chlorotoluene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS NS	105 U	NS
4-chlorotoluene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,3,5-trimethylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
tert-butylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,2,4-trimethylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
sec-butylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,3-dichlorobenzene	600	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
4-isopropyltoluene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,4-dichlorobenzene 1,2-dichlorobenzene	75 600	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS
n-butylbenzene	600	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS NS	105 U	NS
1,2-dibromo-3-chloropropane	0.02	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS NS	105 U	NS
1,2,4-trichlorobenzene	9	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
hexachlorobutadiene	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
naphthalene	300	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
1,2,3-trichlorobenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
Methyl tertiary butyl ether	70	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	105 U	NS
Acetone	6000	10.0 U	10.0 U	NS	NS NC	NS NC	NS NC	NS NC	NS NC	210 U	NS
carbon disulfide 2-butanone (MEK)	700 300	5.0 U 1.6 J	5.0 U 10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 210 U	NS NS
tetrahydrofuran (THF)	10	2.0 J	10.0 U	NS	NS NS	NS	NS	NS	NS NS	210 U	NS
4-methyl-2-pentanone (MIBK)		10.0 U	10.0 U	NS	NS NS	NS	NS	NS	NS NS	210 U	NS
2-hexanone		0.9 J	10.0 U	NS	NS	NS	NS	NS	NS	210 U	NS
2-chloroethyl vinyl ether		10.0 U	10.0 U	NS	NS	NS	NS	NS	NS	210 U	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	81.9	56.4	NS	NS	NS	NS	NS	NS	67.7	NS
Ethane	NA	0.77 J	4.0 U	NS	NS	NS	NS	NS	NS	4.0 U	NS
Ethene	NA	0.74 J	5.0 U	NS	NS "	NS	NS	NS	NS	5.0 U	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA ua/l	0.003 J	0.003 J	NS ug/l	NS a/l	NS ug/l	NS a/l	NS ug/l	NS ug/l	0.01 U	NS a/l
Iron	μ g/L 300	μg/L NS	μg/L 5600 D	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 4580 D	μg/L NS	μg/L NS
Manganese	300 50	NS NS	71 D	NS NS	NS NS	NS NS	NS NS	NS NS	55.3 D	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	mg/L 2	0.2 U	0.2 U	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS
Chloride	250	18.3	17.7	NS	NS	NS	NS	NS	NS NS	11.4	10.9
Nitrite as N	1	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	0.2 U	0.2 U
Sulfate as SO ₄	250	109 E	90.4 E	NS	NS	NS	NS	NS	NS	50.6 E	65.2 E
Bromide	NA NA	0.42	0.55	12.7	16.6	9.55	13.4	20.7	NS	1.59	2.80
Nitrate as N	10	0.2 U	0.2 U	NS	NS NS	NS	NS	NS	NS NS	0.2 U	0.2 U
O-Phosphate as P	NA	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	0.2 U	0.2 U
FIELD PARAMETERS											
pH (SU)	NA	5.49	4.80	NS	NS	NS	NS	NS	NS	5.12	4.50
Temperature (°C)	NA	16.65	16.62	NS	NS	NS	NS	NS	NS	13.73	15.51
Dissolved Oxygen (DO; mg/L)	NA	0.39	0.24	NS	NS	NS	NS	NS	NS	0.74	3.43
Redox Potential (ORP; mV)	NA	-113.3	-76.8	NS	NS	NS	NS	NS	NS	21.8	45.7
Conductivity (μS/cm)	NA	411	358	NS	NS	NS	NS	NS	NS	223	204
Depth to Water (ft-btoc)	NA	6.78	7.02	NS	NS	NS	NS	NS	NS	7.30	7.80

Sample ID	PMW-3S	PMW-3S	PMW-3S
Lab Sample No.	8717-5	PIVIVV-35	PIVIVV-35
Sampling Date	6/13/2012	6/15/2012	6/19/2012
Time	184	186	190
Matrix	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L
dichlorodifluoromethane	NS	NS	NS
chloromethane	NS	NS	NS
vinyl chloride	NS	NS	NS
bromomethane	NS	NS	NS
chloroethane	NS	NS	NS
trichlorofluoromethane	NS	NS	NS
1,1-dichloroethylene	NS	NS	NS
methylene chloride	NS	NS	NS
trans-1,2-dichloroethylene	NS	NS	NS
1,1-dichloroethane	NS	NS	NS
2,2-dichloropropane	NS	NS	NS
cis 1,2- dichloroethylene	NS	NS	NS
bromochloromethane	NS	NS	NS
chloroform	NS	NS	NS
1,1,1-trichloroethane	NS	NS	NS
carbon tetrachloride	NS	NS	NS
1,1-dichloropropene	NS	NS	NS
benzene	NS	NS	NS
1,2-dichloroethane	NS	NS	NS
trichloroethylene	NS	NS	NS
1,2-dichloropropane	NS	NS	NS
dibromomethane	NS	NS	NS
bromodichloromethane	NS	NS	NS
cis-1,3-dichloropropene	NS	NS	NS
toluene	NS	NS	NS
trans-1,3-dichloropropene	NS	NS	NS
1,1,2-trichloroethane	NS	NS	NS
tetrachloroethylene	NS	NS	NS
1,3-dichloropropane	NS	NS	NS
dibromochloromethane	NS	NS	NS
1,2-dibromoethane	NS	NS	NS
chlorobenzene	NS	NS	NS
1,1,1,2-tetrachloroethane	NS	NS	NS
ethylbenzene	NS	NS	NS
xylenes (m/p)	NS	NS	NS
o-xylene	NS	NS	NS
styrene	NS	NS	NS
bromoform	NS	NS	NS
isopropyl benzene (cumene)	NS	NS	NS
bromobenzene	NS	NS	NS
1,1,2,2-tetrachloroethane	NS	NS	NS
	NS NS	NS	NS
1,2,3-trichloropropane	NS	NS	NS
n-propyl benzene	NS NS	NS	NS NS
2-chlorotoluene 4-chlorotoluene	NS NS	NS NS	NS NS
	NS	NS	NS
1,3,5-trimethylbenzene	NS NS	NS	NS NS
tert-butylbenzene			
1,2,4-trimethylbenzene	NS	NS	NS
sec-butylbenzene	NS	NS	NS
1,3-dichlorobenzene	NS	NS	NS
4-isopropyltoluene	NS	NS	NS
1,4-dichlorobenzene	NS	NS	NS
1,2-dichlorobenzene	NS	NS	NS
n-butylbenzene	NS	NS	NS
1,2-dibromo-3-chloropropane	NS	NS	NS
1,2,4-trichlorobenzene	NS	NS	NS
hexachlorobutadiene	NS	NS	NS
naphthalene	NS	NS	NS
1,2,3-trichlorobenzene	NS	NS	NS
Methyl tertiary butyl ether	NS	NS	NS
Acetone	NS	NS	NS
carbon disulfide	NS	NS	NS
2-butanone (MEK)	NS	NS	NS
tetrahydrofuran (THF)	NS	NS	NS
4-methyl-2-pentanone (MIBK)	NS	NS	NS
2-hexanone	NS	NS	NS
2-chloroethyl vinyl ether	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L
Methane	NS	NS	NS
Ethane	NS	NS	NS
Ethene	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L
Hydrogen	NS	NS	NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L
Iron	NS	NS	NS
Manganese	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L
Fluoride	NS NS	NS	NS
Chloride	NS	NS	NS
Nitrite as N	NS	NS	NS
Sulfate as SO ₄	NS	NS	NS
·			
Bromide	2.54	3.07	3.63
Nitrate as N	NS NC	NS	NS
O-Phosphate as P	NS	NS	NS
FIELD PARAMETERS			
pH (SU)	4.33	4.27	4.30
Temperature (°C)	15.09	15.65	15.60
Dissolved Oxygen (DO; mg/L)	2.41	2.23	1.03
Redox Potential (ORP; mV)	44.3	31.0	26.0
Conductivity (µS/cm)	211	215	217
Depth to Water (ft-btoc)	7.65	7.73	7.64

Table D.9. PMW-3I: Analytical and Field Results

0I- ID	T	D1 01 01	Daniel of	D1 (14 / 0)	DATE OF	-	Branco.	DI ULI OL	Daniel of	Daniel of	DIAM OF	DAMA OF	D181/ 01
Sample ID	NJ Higher of	PMW-3I 8533-1	PMW-3I 8538-6	PMW-3I 8546-6	PMW-3I 8547-6	PMW-3I 8550-6	PMW-3I 8551-6	PMW-3I	PMW-3I 8647-9	PMW-3I 8713-16	PMW-3I 8717-6	PMW-3I	PMW-3I
Lab Sample No. Sampling Date	PQLs and GW Quality	10/26/2011	11/9/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	12/6/2011	3/26/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time	GW Quanty	-46	-33	-24	-21	-19	-14	-6	105	182	184	186	190
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μq/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	5.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
chloromethane		5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
vinyl chloride	1	1.6 J	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
bromomethane chloroethane	10	5.0 U		NS NC	NS	NS	NS	NS	105 U 105 U	NS NS	NS NC	NS NG	NS NS
trichlorofluoromethane	2000	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethylene	1	17.5	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS NS	NS NS
methylene chloride	3	5.0 U			NS	NS	NS NS	NS	105 U	NS	NS	NS NS	NS NS
trans-1,2-dichloroethylene	100	2.1 J	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,1-dichloroethane	50	5.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
2,2-dichloropropane		5.0 U	25.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	238	245	NS	NS	NS	NS	NS	257 D	NS	NS	NS	NS
bromochloromethane		5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
chloroform	70	5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,1,1-trichloroethane carbon tetrachloride	30 1	5.0 U			NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS
1,1-dichloropropene		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS NS	NS
benzene	1	9.7	8.1 J	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dichloroethane	2	5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
trichloroethylene	1	4150 D	5770 D	NS	NS	NS	NS	NS	8050 D	NS	NS	NS	NS
1,2-dichloropropane	1	5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
dibromomethane		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
bromodichloromethane	1	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
cis-1,3-dichloropropene	1 000	5.0 U			NS NC	NS NC	NS	NS	105 U	NS NS	NS NC	NS NC	NS NC
toluene trans-1 3-dichloropropene	600	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	5.0 U			NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
tetrachloroethylene	1	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,3-dichloropropane		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
dibromochloromethane	1	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dibromoethane		5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
chlorobenzene	50	5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	1	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
ethylbenzene	700	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
xylenes (m/p)	1000	5.0 U			NS NC	NS NC	NS NC	NS	105 U	NS NC	NS	NS NC	NS NC
o-xylene styrene	100	5.0 U			NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS
bromoform	4	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS NS	NS NS
isopropyl benzene (cumene)	700	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
bromobenzene		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	5.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2,3-trichloropropane	0.03	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
n-propyl benzene		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
2-chlorotoluene		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
4-chlorotoluene		5.0 U		NS NS	NS NS	NS NC	NS NS	NS NS	105 U	NS NC	NS	NS NS	NS NS
1,3,5-trimethylbenzene tert-butylbenzene		5.0 U			NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
1,2,4-trimethylbenzene		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS NS	NS
sec-butylbenzene		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,3-dichlorobenzene	600	5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
4-isopropyltoluene		5.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,4-dichlorobenzene	75	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
1,2-dichlorobenzene	600	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
n-butylbenzene	0.00	5.0 U			NS NC	NS NC	NS NC	NS	105 U	NS NS	NS	NS NG	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	0.02 9	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS
hexachlorobutadiene	1	5.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS NS	NS NS
naphthalene	300	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS NS	NS
1,2,3-trichlorobenzene		5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
Methyl tertiary butyl ether	70	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
Acetone	6000	3.7 J			NS	NS	NS	NS	210 U	NS	NS	NS	NS
carbon disulfide	700	5.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS
2-butanone (MEK)	300	3.9 J	50.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	210 U 210 U	NS NC	NS NC	NS NC	NS NC
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	3.6 J			NS NS	NS NS	NS NS	NS NS	210 U	NS NS	NS NS	NS NS	NS NS
2-hexanone		9.7	50.0 U		NS NS	NS NS	NS NS	NS NS	210 U	NS NS	NS NS	NS NS	NS NS
2-chloroethyl vinyl ether		10.0 U			NS	NS	NS	NS	210 U	NS	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	197	176	NS	NS	NS	NS	NS	86.2	NS	NS	NS	NS
Ethane	NA	0.83 J	4.0 U	NS	NS	NS	NS	NS	0.31 J	NS	NS	NS	NS
Ethene	NA	1.03 J	5.0 U	110	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA all	0.005 J	0.005 J	NS ugf	NS all	NS a/l	NS a/l	NS a/l	0.01 U	NS all	NS a/l	NS all	NS all
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	11300 D 130 D	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	nig/L 2	0.2 U		NS NS	NS NS	NS NS	NS NS	NS NS					
Chloride	250	22.7	23.4	NS	NS	NS	NS	NS	21.7	22.2 E	NS	NS NS	NS NS
Nitrite as N	1	0.2 U			NS	NS	NS	NS	0.2 U	0.2 U		NS NS	NS NS
	1 1		117 E	NS	NS	NS	NS	NS	88.7 E	74.3 E	NS	NS	NS
Sulfate as SO ₄		125 E	117 E				0.93	NS	0.71	0.92	0.93		
	250 NA	125 E	117 E 0.94	1.01	0.89	1.07						1.15	1.24
Sulfate as SO ₄	250		0.94		0.89 NS	NS	NS	NS	0.2 U	0.2 U	NS NS	1.15 NS	1.24 NS
Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P	250 NA	0.78	0.94 0.2 U	NS									
Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS	250 NA 10 NA	0.78 0.2 U 0.2 U	0.94 0.2 U 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U 0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS
Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU)	250 NA 10 NA	0.78 0.2 U 0.2 U 5.35	0.94 0.2 U 0.2 U 4.65	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U 0.2 U 5.21	0.2 U 0.2 U 5.41	NS NS 5.47	NS NS 5.47	NS NS 5.43
Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C)	250 NA 10 NA NA	0.78 0.2 U 0.2 U 5.35 16.20	0.94 0.2 U 0.2 U 4.65 16.98	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS	0.2 U 0.2 U 5.21 14.35	0.2 U 0.2 U 5.41 16.00	NS NS 5.47 15.47	NS NS 5.47 16.10	NS NS 5.43 16.24
Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L)	250 NA 10 NA NA NA	0.78 0.2 U 0.2 U 5.35 16.20 0.25	0.94 0.2 U 0.2 U 4.65 16.98 0.52	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	0.2 U 0.2 U 5.21 14.35 0.87	0.2 U 0.2 U 5.41 16.00 2.63	NS NS 5.47 15.47 2.27	NS NS 5.47 16.10 2.11	NS NS 5.43 16.24 0.96
Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO: mg/L) Redox Potential (ORP; mV)	250 NA 10 NA NA NA NA	0.78 0.2 U 0.2 U 5.35 16.20 0.25 32.7	0.94 0.2 U 0.2 U 4.65 16.98 0.52 -45.1	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	0.2 U 0.2 U 5.21 14.35 0.87 15.7	0.2 U 0.2 U 5.41 16.00 2.63 -18.2	NS NS 5.47 15.47 2.27 -38.7	NS NS 5.47 16.10 2.11 -62.5	NS NS 5.43 16.24 0.96 -57.9
Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L)	250 NA 10 NA NA NA	0.78 0.2 U 0.2 U 5.35 16.20 0.25	0.94 0.2 U 0.2 U 4.65 16.98 0.52	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	0.2 U 0.2 U 5.21 14.35 0.87	0.2 U 0.2 U 5.41 16.00 2.63	NS NS 5.47 15.47 2.27	NS NS 5.47 16.10 2.11	NS NS 5.43 16.24 0.96

Sample ID	NJ Higher of	PMW-3D	PMW-3D	PMW-3D	PMW-3D	PMW-3D	PMW-3D	PMW-3D	PMW-3D	PMW-3D	PMW-3D	PMW-3D
Lab Sample No.	PQLs and	8533-4	8538-7	8546-7	8547-7	8550-7	8551-7	8647-10	8713-17	8717-7		
Sampling Date Time	GW Quality	10/26/2011 -46	11/9/2011 -33	11/18/2011 -24	11/21/2011 -21	11/23/2011 -19	11/28/2011 -14	3/26/2012 152	6/11/2012 229	6/13/2012 231	6/15/2012 233	6/19/2012 237
Matrix	2005 Criteria	-46 Water	Water	-24 Water	-21 Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	1000	5.0 U 5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS
vinyl chloride	1	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS NS	NS	NS	NS
bromomethane	10	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
chloroethane trichlorofluoromethane	2000	5.0 U 5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
1,1-dichloroethylene	1	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
methylene chloride	3	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	5.0 U 5.0 U	5.0 U 5.0 U		NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
2,2-dichloropropane		5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
cis 1,2- dichloroethylene bromochloromethane	70	2.0 J 5.0 U	1.6 J 5.0 U	NS NS	NS NS	NS NS	NS NS	3.9 J 5.0 U	NS NS	NS NS	NS NS	NS NS
chloroform	70	5.0 U			NS	NS	NS	5.0 U		NS	NS	NS
1,1,1-trichloroethane	30	5.0 U			NS	NS	NS	5.0 U		NS	NS	NS
1,1-dichloropropene	1	5.0 U 5.0 U	5.0 U		NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
benzene	1	5.0 U			NS	NS	NS	5.0 U		NS	NS	NS
1,2-dichloroethane	2	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
trichloroethylene 1,2-dichloropropane	1	15.3 5.0 U	10.4 5.0 U	NS NS	NS NS	NS NS	NS NS	73.3 5.0 U	NS NS	NS NS	NS NS	NS NS
dibromomethane	·	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
bromodichloromethane	1	5.0 U 5.0 U	5.0 U 5.0 U		NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
cis-1,3-dichloropropene toluene	600	5.0 U	5.0 U		NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS	NS NS
trans-1,3-dichloropropene	1	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
1,1,2-trichloroethane tetrachloroethylene	3	5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS	NS NS
1,3-dichloropropane	<u> </u>	5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS	NS NS
dibromochloromethane	1	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
1,2-dibromoethane chlorobenzene	50	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
ethylbenzene xylenes (m/p)	700 1000	5.0 U 5.0 U	5.0 U 5.0 U		NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
o-xylene	1000	5.0 U	5.0 U		NS NS	NS	NS NS	5.0 U		NS NS	NS NS	NS
styrene	100	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
bromoform isopropyl benzene (cumene)	700	5.0 U 5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
bromobenzene	700	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
1,1,2,2-tetrachloroethane	1	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
1,2,3-trichloropropane n-propyl benzene	0.03	5.0 U 5.0 U	5.0 U		NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
2-chlorotoluene		5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
4-chlorotoluene		5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
1,3,5-trimethylbenzene tert-butylbenzene		5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
1,2,4-trimethylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
sec-butylbenzene 1,3-dichlorobenzene	600	5.0 U 5.0 U	5.0 U 5.0 U		NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
4-isopropyltoluene	600	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
1,4-dichlorobenzene	75	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	600	5.0 U 5.0 U	5.0 U 5.0 U		NS NS	NS NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U		NS	NS	NS
1,2,4-trichlorobenzene	9	5.0 U	5.0 U 5.0 U		NS NS	NS NS	NS NS	5.0 U		NS NC	NS NS	NS NS
hexachlorobutadiene naphthalene	300	5.0 U 5.0 U	5.0 U 5.0 U		NS NS	NS	NS NS	5.0 U 5.0 U		NS NS	NS NS	NS
1,2,3-trichlorobenzene		5.0 U	5.0 U	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS
Methyl tertiary butyl ether Acetone	70 6000	5.0 U 10.0 U	5.0 U 83.6	NS NS	NS NS	NS NS	NS NS	5.0 U 10.0 U		NS NS	NS NS	NS NS
carbon disulfide	700	5.0 U	5.0 U	NS	NS	NS	NS	5.0 U		NS	NS	NS
2-butanone (MEK)	300	5.0 U	1850 D	NS NC	NS NC	NS NC	NS NC	10.0 U		NS NC	NS Ne	NS NC
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	10.0 U			NS NS	NS NS	NS NS	10.0 U 10.0 U		NS NS	NS NS	NS NS
2-hexanone		10.0 U	10.0 U	NS	NS	NS	NS	10.0 U	NS	NS	NS	NS
2-chloroethyl vinyl ether REDUCED GASES (GC)		10.0 U	10.0 U		NS ug/l	NS ug/l	NS ug/l	10.0 U	_	NS ug/l	NS ug/l	NS ug/l
Methane	μg/L NA	μg/L 400	μg/L 328	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 151	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Ethane	NA	0.65 J	4.0 U	NS NS	NS	NS	NS	4.0 U	NS	NS	NS NS	NS
Ethene OTHER GASES	NA μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Hydrogen	μg/L NA	0.007 J		NS	NS NS	NS NS	NS	0.01 U		NS	NS	NS NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	20600 D 137 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite as N	250 1	25.7 0.2 U	21.3 0.2 U	NS NS	NS NS	NS NS	NS NS	17.4 0.2 U	20.1 0.2 U	NS NS	NS NS	NS NS
Sulfate as SO ₄	250	98.0 E			NS	NS	NS	81.7 E		NS	NS	NS
Bromide	NA	1.27	1.31	1.41	1.20	1.35	1.23	0.96	1.25	1.30	1.46	1.36
Nitrate as N O-Phosphate as P	10 NA	0.2 U 0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS	NS NS	0.2 U 0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	NA NA	NS NS	6.04 2.68	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA NA	NS NC	1.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS												
pH (SU)	NA	5.30	4.66	NS	NS	NS	NS	5.34	5.49	5.50	5.48	5.54
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	15.99 0.29	16.22 0.37	NS NS	NS NS	NS NS	NS NS	14.65 0.74	15.83 2.38	15.43 2.15	15.81 1.93	15.55 0.79
Redox Potential (ORP; mV)	NA	25.0	-77.7	NS	NS	NS	NS	3.8	-40.3	-50.5	-62.4	-66.1
Conductivity (µS/cm)	NA NA	473	446	NS NC	NS NC	NS NC	NS NC	400	305	300	297	308
Depth to Water (ft-btoc)	NA	8.84	7.62	NS	NS	NS	NS	7.22	8.13	7.98	7.99	7.96

Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-4S 8533-3	PMW-4S 8538-8	PMW-4S 8543-3	PMW-4S 8546-8	PMW-4S 8547-8	PMW-4S 8550-8	PMW-4S 8551-8	PMW-4S 8556-7	PMW-4S 8561-1	PMW-4S 8581-4	PMW-4S 8596-1	PMW-4S 8647-13	PMW-4S 8652-8
Sampling Date	GW Quality	10/26/2011	11/9/2011	11/16/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	12/6/2011	12/12/2011	1/12/2012	2/7/2012	3/26/2012	4/3/2012
Time Matrix	2005 Criteria	-46 Water	-33 Water	-26 Water	-24 Water	-21 Water	-19 Water	-14 Water	-6 Water	0 Water	31 Water	57 Water	105 Water	113 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	25.0 U			NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
chloromethane vinyl chloride	1	25.0 U 25.0 U	0.0		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
bromomethane	10	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
chloroethane trichlorofluoromethane	2000	25.0 U 25.0 U	0.0		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,1-dichloroethylene	1	25.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS
methylene chloride	3	25.0 U	0.0		NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
2,2-dichloropropane		25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
cis 1,2- dichloroethylene bromochloromethane	70	39.1 25.0 U	40.5 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	26.9 25.0 U	NS NS
chloroform	70	25.0 U	0.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,1,1-trichloroethane	30	25.0 U			NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
carbon tetrachloride 1,1-dichloropropene	1	25.0 U 25.0 U	0.0		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
benzene	1	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,2-dichloroethane	2	25.0 U 1030	5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 1080	NS NS
trichloroethylene 1,2-dichloropropane	1	25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS
dibromomethane		25.0 U			NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
bromodichloromethane cis-1,3-dichloropropene	1	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
toluene	600	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
trans-1,3-dichloropropene	1	25.0 U			NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	25.0 U	NS NC
1,1,2-trichloroethane tetrachloroethylene	3 1	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,3-dichloropropane		25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
dibromochloromethane 1,2-dibromoethane	1	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
chlorobenzene	50	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,1,1,2-tetrachloroethane	1 700	25.0 U	5.0 U	NS NC	NS	NS	NS NC	NS NC	NS NC	NS NC	NS	NS NC	25.0 U	NS NC
ethylbenzene xylenes (m/p)	700 1000	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
o-xylene		25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
styrene bromoform	100	25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
isopropyl benzene (cumene)	700	25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS
bromobenzene		25.0 U			NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	0.03	25.0 U 25.0 U	0.0		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
n-propyl benzene		25.0 U			NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
2-chlorotoluene 4-chlorotoluene		25.0 U 25.0 U	0.0 0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,3,5-trimethylbenzene		25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS
tert-butylbenzene		25.0 U			NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,2,4-trimethylbenzene sec-butylbenzene		25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,3-dichlorobenzene	600	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS NS	25.0 U	NS
4-isopropyltoluene	75	25.0 U			NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	25.0 U	NS
1,4-dichlorobenzene 1,2-dichlorobenzene	75 600	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
n-butylbenzene		25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	0.02 9	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
hexachlorobutadiene	1	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
naphthalene	300	25.0 U 25.0 U			NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	25.0 U	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
Acetone	6000	50.0 U			NS	NS	NS	NS	NS	NS	NS	NS	50.0 U	NS
carbon disulfide 2-butanone (MEK)	700 300	25.0 U 50.0 U	0.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 50.0 U	NS NS
tetrahydrofuran (THF)	10	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	50.0 U	NS
4-methyl-2-pentanone (MIBK) 2-hexanone		50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	50.0 U 50.0 U	NS NS
2-chloroethyl vinyl ether		50.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	50.0 U	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NA NA	22.5 2.47 J	23.7 2.39 J	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	6.49 4.0 U	NS NS
Ethene	NA.	1.42 J	1.28 J	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS
OTHER GASES	μg/L	μg/L 0.0049 J	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L 0.008 U	μg/L 0.008 U	μg/L	μg/L 0.008 U
Hydrogen METALS (DISSOLVED)	NA μg/L	0.0049 J μg/L	0.0042 J μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	0.0040 U μg/L	0.008 U μg/L	0.008 U μg/L	4.33 μg/L	0.008 U μg/L
Iron	300	NS	NS	NS	NS	NS	NS	NS	1230	NS	NS	NS	NS	NS
Manganese Arsenic	50	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	44.1 NS	NS NS	NS NS	NS NS	NS NS	NS NS
METALS (TOTAL)	μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Iron		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese CATIONS	μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Calcium	μg/L	μg/L NS	NS	μg/L NS	NS NS	NS NS	μg/L NS	NS NS	NS NS	μg/L NS	NS	μg/L NS	μg/L NS	μg/L NS
Magnesium		NS	NS	NS	NS	NS	NS.	NS	NS.	NS 	NS.	NS	NS	NS
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L NA	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 10.3	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Dissolved Organic Carbon (DOC)	NA	NS	NS	NS	NS	NS	NS	NS	10.2	NS	NS	NS	NS	NS
Alkalinity as CaCO3 Sulfide	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	MA mg/L	MS mg/L	mg/L	MS mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite as N	250 1	22.6 0.2 U	20.3 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	8.88 0.2 U	NS NS
Sulfate as SO ₄	250	233 E			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	58.0 E	NS NS
Bromide	NA	0.2 U	0.36	0.94	1.73	1.42	1.56	1.85	2.03	NS	NS	NS	5.78	NS
Nitrate as N O-Phosphate as P	10 NA	0.2 U 0.2 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U 0.2 U	NS NS
VOLATILE FATTY ACIDS	INA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS	NS NC	NS	NS	NS	NS	NS	NS	NS NC
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS														
pH (SU)	NA NA	5.51	5.57	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	5.81	5.90	6.16	5.87	5.86
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	17.05 0.41	17.52 5.23	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	15.44 NS	14.01 0.33	11.29 4.01	13.39 0.33	13.07 0.12
Redox Potential (ORP; mV)	NA	-103.5	-65.2	NS	NS	NS	NS	NS	NS	-138.7	-164.2	2.1	-71.8	-30.8
Conductivity (µS/cm)	NA NA	744	598 7.05	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	654	319	324	341	323
Depth to Water (ft-btoc)	NA	7.35	7.95	NS	NS	NS	NS	NS	NS	7.23	7.38	6.51	6.90	7.12

and heaper file.	labit		I. FN	/I V V - 	J. AI	- 7	cai a					17 C 2U		
Seminate Control Con	Sample ID											PMW-4S	PMW-4S	
March Marc	Sampling Date											6/15/2012	6/19/2012	
Color	Time Matrix													
Page	VOCS (GC/MS)													
Columbia	dichlorodifluoromethane													
Selection	vinyl chloride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
	bromomethane chloroethane													
unique cardina	trichlorofluoromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
1.	methylene chloride													
Descriptions	trans-1,2-dichloroethylene													
Secondary	2,2-dichloropropane													
Part	cis 1,2- dichloroethylene						NS NS				NS NS			
and the properties of the control of	chloroform	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
1.4 celebrate 1.5														
	1,1-dichloropropene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
Proceedings	benzene 1.2-dichloroethane													
March Marc	trichloroethylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	575
series of the control	1,2-dichloropropane dibromomethane													
SAMPLE	bromodichloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
press And Performance														
Seed Seed Seed Seed Seed Seed Seed Seed	trans-1,3-dichloropropene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
Reconstruction No.	1,1,2-trichioroethane tetrachloroethylene													
Additional Content	1,3-dichloropropane	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS		
Procedure	1,2-dibromoethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
with the formation of the control of	chlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
Antique	ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
1999 1999	xylenes (m/p) o-xylene													
Second Interview (Columnic No. 1972 NO.	styrene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
Secretarization Sec. 185	isopropyl benzene (cumene)													
12.54 referencement MS	bromobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
1999 1999														
Colorotopics Colo	n-propyl benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
1.3.6 printerphenemen														
12.4-interhylecurene	1,3,5-trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
According														
High-proprietation	sec-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
No. NS	1,4-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
1.2.4 Instructionsfunctione	n-butylbenzene													
New Control	1,2-dibromo-3-chloropropane													
1.2.3-Interhorberement NS NS NS NS NS NS NS N	hexachlorobutadiene													
Methyletentary.toth/ether	naphthalene													
authors Auth	Methyl tertiary butyl ether	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		5.0 U
Accordance March	Acetone carbon disulfide													
	2-butanone (MEK)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	10.0 U
2-bitsepanone														
NEDICED 1974	2-hexanone	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	10.0 U
Methane														
Effence	Methane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	76.0
DTHER ASES	Ethane Ethene													
METALS (ORSCLVED)	OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Instruction														
Arsenic NS	Iron	NS	NS	987	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
METALS (TOTAL)	Manganese Arsenic													
Manganese	METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
CATIONS	Iron Manganese													
Magnesium	CATIONS													
Total Organic Carbon (TOC) NS NS NS NS NS NS NS NS NS N	Magnesium													
Dissolved Organic Carbon (DOC) NS	GROUNDWATER CHEMISTRY													
Alkelainty as CaCQ3 NS NS NS 2.0 U NS														
ANIONS mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Alkalinity as CaCO3		NS	2.0 U			NS	NS	NS	NS	NS	NS	NS	
Fluoride NS	ANIONS													
NS NS 0.2 U NS NS NS NS NS TA4 Fromide NS NS NS 77.7 13.4 10.0 5.98 3.36 £ 61.4 £ 62.3 £ 62.6 £ NS	Fluoride	NS		NS			NS		NS	NS			NS	0.2 U
Sulfate as SQ ₄ NS NS 7.8 E 56.3 E 64.5 E 61.3 E 61.4 E 62.3 E 62.6 E NS NS NS 73.4 Ebromide NS NS NS 7.77 113.4 10.0 5.98 3.36 2.53 2.18 2.19 2.73 2.13 4.44 11.50 1	Nitrite as N	NS	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		NS		
NIS NS	Sulfate as SO ₄	NS	NS	57.8 E	56.3 E	64.5 E	61.3 E	61.4 E	62.3 E	62.6 E	NS	NS	NS	73.4 E
O-Phosphate as P NS NS NS 0.2 U NS NS NS NS NS O.2 U 0.2 U NS	Bromide Nitrate as N	NS	NS	0.2 U							NS		NS	
Lactic Acid NS	O-Phosphate as P	NS	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS	0.2 U
Acetic Acid NS	VOLATILE FATTY ACIDS Lactic Acid													
Formic Acid NS	Acetic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid NS	Propionic Acid Formic Acid													
Valeric Acid NS	Butyric Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
FIELD PARAMETERS bH (SU) 5.70 6.02 6.28 5.61 5.88 5.48 5.56 5.56 5.71 5.64 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.67 5.66 5.84 5.87 5.66 5.88 5.8	Pyruvic Acid Valeric Acid													
Temperature (°C) 13.43 13.37 13.54 14.44 15.01 14.63 15.35 15.78 16.75 16.12 16.20 16.79 17.99 1	FIELD PARAMETERS													
Dissolved Oxygen (DO; rng/L) 0.51 0.14 0.70 0.85 0.24 0.27 2.81 0.69 1.82 0.03 0.76 0.10 0.17 (Redox Potential (ORP; mV) -2.8 1.5 -223.0 -27.2 -20.3 -6.7 -142.5 -36.6 20.8 18.7 22.0 17.1 -212.8 (Conductivity (Ls/Crm) 286 296 583 313 282 289 295 278 287 290 294 303 350														
Conductivity (µS/cm) 286 296 583 313 282 289 295 278 287 290 294 303 350	Dissolved Oxygen (DO; mg/L)	0.51	0.14	0.70	0.85	0.24	0.27	2.81	0.69	1.82	0.03	0.76	0.10	0.17
	Redox Potential (ORP; mV) Conductivity (uS/cm)													
	Depth to Water (ft-btoc)													

Table D.11. PMW-4S: Analytical and Field Parameter Results

		O. A.							
Sample ID Lab Sample No.	PMW-4S 8837-5	PMW-4S 8839-1	PMW-4S 8840-2	PMW-4S 8850-2	PMW-4S 8852-3	PMW-4S 8869-2	PMW-4S 8876-2	PMW-4S 8954-3	PMW-4S 8977-3
Sampling Date	10/1/2012	10/2/2012	10/3/2012	10/5/2012	10/23/2012	11/15/2012	12/4/2012	4/24/2013	6/11/2013
Time Matrix	294 Water	295 Water	296 Water	298 Water	316 Water	339 Water	358 Water	499 Water	547 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
vinyl chloride	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
bromomethane chloroethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
trichlorofluoromethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,1-dichloroethylene methylene chloride	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
trans-1,2-dichloroethylene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,1-dichloroethane 2,2-dichloropropane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
cis 1,2- dichloroethylene	NS	NS	NS	NS	64.6	NS	NS	54.1	NS
bromochloromethane chloroform	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,1,1-trichloroethane	NS	NS	NS	NS	42.0 U 42.0 U	NS	NS	25.0 U	NS
carbon tetrachloride 1,1-dichloropropene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
benzene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,2-dichloroethane trichloroethylene	NS NS	NS NS	NS NS	NS NS	42.0 U 1130	NS NS	NS NS	25.0 U 1920	NS NS
1,2-dichloropropane	NS NC	NS	NS NC	NS NC	42.0 U 42.0 U	NS NC	NS	25.0 U 25.0 U	NS NC
dibromomethane bromodichloromethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
cis-1,3-dichloropropene	NS NO	NS	NS	NS	42.0 U	NS	NS	25.0 U	
toluene trans-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,1,2-trichloroethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
tetrachloroethylene 1,3-dichloropropane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
dibromochloromethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,2-dibromoethane chlorobenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,1,1,2-tetrachloroethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
ethylbenzene xylenes (m/p)	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
o-xylene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
styrene bromoform	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
isopropyl benzene (cumene)	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,1,2,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS	NS NS	25.0 U	NS NS
1,2,3-trichloropropane n-propyl benzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
2-chlorotoluene	NS NS	NS	NS NS	NS NS	42.0 U	NS NS	NS NS	25.0 U	NS NS
4-chlorotoluene 1,3,5-trimethylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
tert-butylbenzene	NS	NS NS	NS	NS	42.0 U	NS	NS NS	25.0 U	NS
1,2,4-trimethylbenzene sec-butylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	
1,3-dichlorobenzene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2-dichlorobenzene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
n-butylbenzene 1,2-dibromo-3-chloropropane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,4-trichlorobenzene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
hexachlorobutadiene naphthalene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,3-trichlorobenzene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Methyl tertiary butyl ether Acetone	NS NS	NS NS	NS NS	NS NS	42.0 U 84.0 U	NS NS	NS NS	25.0 U 50.0 U	NS NS
carbon disulfide	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
2-butanone (MEK) tetrahydrofuran (THF)	NS NS	NS NS	NS NS	NS NS	84.0 U 84.0 U	NS NS	NS NS	50.0 U	NS NS
4-methyl-2-pentanone (MIBK)	NS NO	NS	NS NS	NS	84.0 U 84.0 U	NS	NS	50.0 U 50.0 U	NS
2-hexanone 2-chloroethyl vinyl ether	NS NS	NS NS	NS NS	NS NS	84.0 U	NS NS	NS NS	50.0 U	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NS NS	NS NS	NS NS	NS NS	226 2.0 J	NS NS	NS NS	44.4 4.0 U	NS NS
Ethene	NS	NS	NS	NS	3.8 J	NS	NS	5.0 U	
OTHER GASES Hydrogen	μg/L 0.009 U	μg/L 0.0055 J	μg/L 0.009 U	μg/L 0.009 U	μg/L 0.0136	μg/L 0.0073 J	μg/L 0.009 U	μg/L 0.0056 J	μg/L 0.0016 J
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	NS NS	NS NS	NS NS	NS NS	815 62.1	NS NS	NS NS	NS NS	NS NS
Arsenic	NS	NS	NS	NS	2.5 U	NS	NS	NS	NS
METALS (TOTAL) Iron	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	NS	NS	NS	NS	NS	NS	NS	NS	NS
CATIONS Calcium	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Magnesium	NS	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 1.36 J	mg/L NS
Dissolved Organic Carbon (DOC)	NS	NS	NS	NS	NS	NS	NS	NS	NS
Alkalinity as CaCO3 Sulfide	NS NS	NS NS	NS NS	NS NS	55.4 NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	1.0 U 14.7	1.0 U 14.3	1.0 U 16.3	1.0 U 14.0	0.12 J 16.2	NS NS	0.18 J 18.8	0.2 U 17.8	NS NS
Nitrite as N	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	NS
Sulfate as SO ₄ Bromide	74.2 D	65.3 D	71.2 D 297	67.5 D	51.4 E 38.2 D	NS NS	47.3 E 10.6	46.9 E 2.72	NS NS
Nitrate as N	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	NS
O-Phosphate as P VOLATILE FATTY ACIDS	1.0 U mg/L	1.0 U mg/L	1.0 U mg/L	1.0 U mg/L	0.2 U mg/L	NS mg/L	0.2 U mg/L	0.2 U mg/L	NS mg/L
Lactic Acid	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS
Acetic Acid Propionic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U 1.0 U	NS NS
Formic Acid	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS
Butyric Acid Pyruvic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	NS NS
Valeric Acid	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS
FIELD PARAMETERS pH (SU)	5.86	5.67	NS	5.62	5.89	5.97	5.69	5.70	NS
Temperature (°C)	18.27	17.96	18.08	18.10	17.11	13.63	16.13	12.62	NS
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	0.64 -14.7	7.46 26.6	0.62 81.2	0.18 4.5	0.12 -102.3	0.61 45	0.15 -156.0	0.59 -6.6	NS NS
Conductivity (µS/cm)	369	347	104.5	295	345	258	334	265	NS
Depth to Water (ft-btoc)	8.97	9.07	5.60	7.80	8.15	7.25	9.30	7.84	NS

Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-4I 8533-6	PMW-4I 8538-9	PMW-4I 8543-4	PMW-4I 8546-9	PMW-4I 8547-9	PMW-4I 8550-10	PMW-4I 8551-9	PMW-4I 8556-8	PMW-4I 8561-2	PMW-4I 8581-5	PMW-4I 8596-2	PMW-4I 8647-15
Sampling Date	GW Quality	10/26/2011	11/9/2011	11/16/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	12/6/2011	12/12/2011	1/12/2012	2/7/2012	3/26/2012
Time Matrix	2005 Criteria	-46 Water	-33 Water	-26 Water	-24 Water	-21 Water	-19 Water	-14 Water	-6 Water	0 Water	31 Water	57 Water	105 Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μg/L 50.0 U	μg/L 10 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 25.0 U
chloromethane vinvl chloride	1	50.0 U 50.0 U	10.0 U 10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
bromomethane	10	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
chloroethane trichlorofluoromethane	2000	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
1,1-dichloroethylene	1 3	50.0 U	4.0 JD 10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
methylene chloride trans-1,2-dichloroethylene	100	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
1,1-dichloroethane 2,2-dichloropropane	50	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
cis 1,2- dichloroethylene	70	90.5 D 50.0 U	93.7 D	NS	NS NS	NS	NS	NS	NS NS	NS NS	NS	NS NS	129 D 25.0 U
bromochloromethane chloroform	70	50.0 U	10.0 U	NS NS	NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS	25.0 U
1,1,1-trichloroethane carbon tetrachloride	30	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
1,1-dichloropropene	1	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
benzene 1,2-dichloroethane	2	50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
trichloroethylene 1,2-dichloropropane	1	4970 D 50.0 U	4720 D 10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	7490 D 25.0 U
dibromomethane		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
bromodichloromethane cis-1,3-dichloropropene	1	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
toluene trans-1,3-dichloropropene	600	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
1,1,2-trichloroethane	3	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
tetrachloroethylene 1,3-dichloropropane	1	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
dibromochloromethane 1,2-dibromoethane	1	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
chlorobenzene	50	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
1,1,1,2-tetrachloroethane ethylbenzene	1 700	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
xylenes (m/p)	1000	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
o-xylene styrene	100	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
bromoform isopropyl benzene (cumene)	4 700	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
bromobenzene		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	0.03	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
n-propyl benzene 2-chlorotoluene		50.0 U 50.0 U	10.0 U 10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
4-chlorotoluene		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
1,3,5-trimethylbenzene tert-butylbenzene		50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
1,2,4-trimethylbenzene		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
sec-butylbenzene 1,3-dichlorobenzene	600	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
4-isopropyltoluene 1,4-dichlorobenzene	75	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
1,2-dichlorobenzene	600	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
n-butylbenzene 1,2-dibromo-3-chloropropane	0.02	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
1,2,4-trichlorobenzene	9	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U
hexachlorobutadiene naphthalene	300	50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	50.0 U 50.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U
Acetone	6000	100.0 U	20.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	50.0 U
carbon disulfide 2-butanone (MEK)	700 300	50.0 U 100.0 U	10.0 U 20.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 50.0 U
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	100.0 U 100.0 U	20.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	50.0 U
2-hexanone		100.0 U	20.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	50.0 U
2-chloroethyl vinyl ether REDUCED GASES (GC)	μg/L	100.0 U μg/L	20.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	50.0 U μg/L
Methane Ethane	NA NA	74.6 0.85 J	65.4 1.31 J	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	62.8 4.0 U
Ethene	NA	0.85 J	0.87 J	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U
OTHER GASES Hydrogen	μg/L NA	μg/L 0.009 U	μg/L 0.0049 J	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 0.0026 J	μg/L 0.0016 J	μg/L 0.008 U	μg/L 0.060
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	7920 D 104 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
CATIONS Calcium	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Magnesium		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L NA	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 11.0	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NA	NS	NS	NS	NS NS	NS	NS	NS	10.7	NS	NS	NS	NS
Sulfide	NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS Fluoride	mg/L	mg/L 0.2 U	mg/L 0.2 U	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Chloride	250	24.5	23.2	NS	NS	NS	NS	NS	NS	NS	NS	NS	14.8
Nitrite as N Sulfate as SO ₄	1 250	0.2 U 211 E	0.2 U 209 E	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U 63.2 E
Bromide	NA	0.44	0.54	0.76	2.21	3.52	4.19	3.53	5.81	NS	NS	NS	1.66
Nitrate as N O-Phosphate as P	10 NA	0.2 U 0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U 0.2 U
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid Acetic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Propionic Acid Formic Acid	NA NA	NS NS	1.0 U 1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS													
pH (SU) Temperature (°C)	NA NA	5.45 16.39	5.55 17.16	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.81 16.08	5.99 14.14	5.86 12.56	NS 14.12
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA	0.41 -80.0	6.81	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS -146.3	0.28 -186.5	3.51	0.23 -9.0
Conductivity (µS/cm)	NA	630	-77.6 685	NS	NS	NS	NS	NS	NS	868	410	27.2 357	253
Depth to Water (ft-btoc)	NA	9.3	9.91	NS	NS	NS	NS	NS	NS	9.48	10.60	7.58	8.50

Sample ID Lab Sample No.	PMW-4I 8652-7	PMW-4I 8665-2	PMW-4I 8672-3	PMW-4I 8678-2	PMW-4I 8685-3	PMW-4I 8689-3	PMW-4I 8690-6	PMW-4I 8698-3	PMW-4I 8708-3	PMW-4I 8713-2	PMW-4I 8717-9	PMW-4I	PMW-4I
Sampling Date	4/3/2012	4/18/2012	4/25/2012	5/2/2012	5/11/2012	5/16/2012	5/21/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time	113	128	135	142	151	156	161	170	178	182	184	186	190
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromomethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichlorofluoromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2,2-dichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
toluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2-trichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrachloroethylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromochloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromoform	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
sec-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	NS	NS	NS NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS NS	NS NS	NS NS
1,2,4-trichlorobenzene hexachlorobutadiene	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS	NS	NS
naphthalene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide 2-butanone (MEK)	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS
tetrahydrofuran (THF)	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS
4-methyl-2-pentanone (MIBK)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES Hydrogen	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	0.008 U	0.008 U	0.008 U	0.0086 U	NS	NS	NS	0.022 U	0.009 U	NS	NS	NS	NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	NS	NS	NS	3930 D	NS	NS	NS						
Manganese	NS	NS	NS	61.5 D	NS	NS	NS						
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	NS	NS	NS	4170 D	NS	NS	NS						
Manganese	NS	NS	NS	62.1 D μg/L	NS	NS	NS						
CATIONS	μg/L	μg/L	μg/L		μg/L	μg/L	μg/L						
Calcium	NS	NS	NS	6600	NS	NS	NS						
Magnesium	NS	NS	NS	3060	NS	NS	NS						
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Alkalinity as CaCO3	NS	NS	NS	2.0 U	NS	NS	NS						
Sulfide	NS	NS	NS	1.44	NS	NS	NS						
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride	NS	NS	NS	11.9	12.3	13.1	12.2	12.2	11.7	11.1	NS	NS	NS
Nitrite as N	NS	NS	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS
Sulfate as SO ₄	NS	NS	NS	62.8 E	63.5 E	65.6 E	62.9 E	62.4 E	62.8 E	61.6 E	NS	NS	NS
Bromide	NS	NS	NS	3.89	4.00	3.95	4.06	4.36	3.82	3.51	3.43	3.42	6.45
Nitrate as N O-Phosphate as P	NS NS	NS NS	NS NS	0.2 U 0.2 U			0.2 U	0.2 U				NS NS	NS NS
VOLATILE FATTY ACIDS Lactic Acid	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid FIELD PARAMETERS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)	6.00	5.86	5.82	5.92	5.51	5.78	5.53	5.63	5.62	5.75	5.72	5.77	5.75
Temperature (°C) Dissolved Oxygen (DO; mg/L)			13.82	14.01	14.78	15.22	14.95	15.90	13.53	17.05	16.10	16.22	16.79
	13.45 0.13	13.88 0.62	0.17	0.83	0.97	0.24	0.33	5.93	0.79	1.10	0.25	0.68	0.10
Redox Potential (ORP; mV) Conductivity (µS/cm)													

Table D.12. PMW-4I: Analytical and Field Parameter Results

Section 1972	Sample ID	PMW-4I	PMW-4I	PMW-4I	PMW-4I	PMW-4I	PMW-4I	PMW-4I	PMW-4I	PMW-4I	PMW-4I
Time	Lab Sample No.	8767-2		8839-2	8840-4					8954-4	8977-4 6/11/2013
Visit Visi	Time	231	294	295	296	298	316	339	358	499	547
Schoenful processor											Water ug/l
and chances 1, 10, 11, 11, 11, 11, 11, 11, 11, 11,	dichlorodifluoromethane	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Secretary 1.50 1.											NS NS
Company											NS NC
Institute 1965 1975 19	trichlorofluoromethane	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Content content											NS NS
2.5		1.2 J	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Semont-Prince 1.50 U. N.S. N.S. N.S. N.S. 1.50 U. N.S. N.S. 2.50 U. N.S. N.S	2,2-dichloropropane	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Propose											NS NS
Gebon Lambringhors	chloroform	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Segment 1,9											NS NS
1. Contrologemen 1.0 V. Mol. Mol											NS NS
Controllergement Column	1,2-dichloroethane	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Second Content											NS NS
2013-3-000-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-											NS
September Sept		5.0 U	NS		NS		42.0 U				NS NS
11.22-Interpretament											NS NS
1.5-discharpequare	1,1,2-trichloroethane	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Abstraction continues											
Protection S. P. U. N. S. S. S. U. N. S. N. S. N. S. N. S. N. S. N. S. S. S. U. N. S.	dibromochloromethane	5.0 U	NS	NS	NS	NS		NS	NS	25.0 U	NS
ethydencere	chlorobenzene	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
owieres (mip)											NS NS
September Sept	xylenes (m/p)	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Source S											NS NS
	bromoform	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
12.3 britishopprograme		5.0 U	NS		NS	NS					NS NS
Participation Participatio											NS NS
Actividentipularierane	n-propyl benzene	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Berkburgbergeren											NS NS
12.4-trienty-benzene											NS NS
13-definition/benzerine	1,2,4-trimethylbenzene	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
4-socroprophotherene										20.0	
12-defichrobenzene	4-isopropyltoluene	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
12-definore-charboropropane											
12.4-th-chrochenzene											
Page	1,2,4-trichlorobenzene	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
12,3±1-(hordebruzene											NS NS
Acetone	1,2,3-trichlorobenzene	5.0 U	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
2-butanne (MEK)					NS						NS NS
Interhydrofurance (THF)											NS NS
2-hexanone	tetrahydrofuran (THF)	10.0 U	NS	NS	NS	NS	84.0 U	NS	NS	50.0 U	NS
2-chloroterly vinyl ether											NS NS
Methane		10.0 U			NS		84.0 U	NS		50.0 U	NS
Ethene	Methane										μg/L NS
OTHER GASES											NS NS
	OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron											0.0087 μg/L
	Iron	NS	NS	NS	NS	NS	3950 D	NS	NS	NS	NS
Manganese NS	METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Page											NS NS
Magnesium	CATIONS	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
GROUNDWATER CHEMISTRY mg/L mg/L											NS NS
Dissolved Organic Carbon (DOC) NS	GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Alkalinity as CaCO3 NS Sulfide NS	Dissolved Organic Carbon (DOC)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	Alkalinity as CaCO3	NS	NS	NS	NS	NS	57.6	NS	NS	NS	NS
Chloride 11.6 9.49 10.5 20.20 11.5 13.2 NS 17.2 10.4 NS Nitrite as N 0.2 U 1.0 U 1.0 U 1.0 U 0.2 U NS 0.2	ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Nitrite as N											NS NS
Bromide	Nitrite as N	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	NS
Nitrate as N	7										NS NS
VOLATILE FATTY ACIDS mg/L	Nitrate as N	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	NS
Lactic Acid											MS mg/L
Propinic Acid		NS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS
Butyric Acid	Propionic Acid	NS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS
Pyrtuvic Acid											NS NS
FIELD PARAMETERS	Pyruvic Acid	NS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS
pH (SU) 5.66 5.62 5.65 5.45 5.60 5.91 5.87 5.75 5.83 NS Temperature (°C) 17.82 17.97 17.71 18.12 17.74 17.01 13.59 16.08 13.17 NS Dissolved Oxygen (DC; mg/L) 0.16 0.63 6.44 0.32 0.24 0.19 0.40 0.25 0.49 NS Redox Potential (ORP; mV) -209.4 0.6 33.0 72.5 17.5 -98.4 -42 -127.8 -16.1 NS Conductivity (IS/cm) 316 276 292 361 270 306 251 368 189 NS		NS.				NS.	NS	NS		1.0 U	NS
Dissolved Oxygen (DO: mg/L) 0.16 0.63 6.44 0.32 0.24 0.19 0.40 0.25 0.49 NS Redox Potential (ORP; mV) -209.4 0.6 33.0 72.5 17.5 -98.4 -42 -127.8 -16.1 NS Conductivity (uS/cm) 316 276 292 361 270 306 251 368 189 NS	pH (SU)										NS
Redox Potential (ORP; mV) -209.4 0.6 33.0 72.5 17.5 -98.4 -42 -127.8 -16.1 NS Conductivity (uS/cm) 316 276 292 361 270 306 251 368 189 NS											NS NS
	Redox Potential (ORP; mV)	-209.4	0.6	33.0	72.5	17.5	-98.4	-42	-127.8	-16.1	NS
Depth to water (it-btoc) NS 11.80 11.20 7.4 7.78 12.00 7.28 10.37 10.82 NS	Depth to Water (ft-btoc)	NS NS	11.80	11.20	7.4	7.78	12.00	7.28	10.37	10.82	NS NS

Table D.13. PMW-4D: Analytical and Field Parameter Results

	ne D									rame				
Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-4D 8533-8	PMW-4D 8538-10	PMW-4D 8543-5	PMW-4D 8546-10	PMW-4D 8547-10	PMW-4D 8550-11	PMW-4D 8551-10	PMW-4D 8556-9	PMW-4D 8561-3	PMW-4D 8581-6	PMW-4D 8596-3	PMW-4D 8647-14	PMW-4D 8652-6
Sampling Date Time	GW Quality	10/26/2011 -46	11/9/2011 -33	11/16/2011 -26	11/18/2011 -24	11/21/2011 -21	11/23/2011 -19	11/28/2011 -14	12/6/2011 -6	12/12/2011 0	1/12/2012 31	2/7/2012 57	3/26/2012 105	4/3/2012 113
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μg/L 50.0 L	μg/L J 25.0 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μ g/L 25.0 U	μg/L NS
chloromethane		50.0 L	J 25.0 U		NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
vinyl chloride bromomethane	10	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
chloroethane	0000	50.0 L 50.0 L			NS	NS	NS NS	NS	NS	NS NS	NS	NS	25.0 U	NS
trichlorofluoromethane 1,1-dichloroethylene	2000 1	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
methylene chloride	3 100	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
trans-1,2-dichloroethylene 1,1-dichloroethane	50	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS
2,2-dichloropropane cis 1,2- dichloroethylene	70	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 37.7 D	NS NS
bromochloromethane		50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
chloroform 1,1,1-trichloroethane	70 30	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS
carbon tetrachloride	1	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,1-dichloropropene benzene	1	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2-dichloroethane	2	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
trichloroethylene 1,2-dichloropropane	1	9730 E		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1900 D 25.0 U	NS NS
dibromomethane		50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
bromodichloromethane cis-1,3-dichloropropene	1	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
toluene	600	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
tetrachloroethylene	1	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,3-dichloropropane dibromochloromethane	1	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2-dibromoethane	FO	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
chlorobenzene 1,1,1,2-tetrachloroethane	50 1	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
ethylbenzene	700 1000	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NC
xylenes (m/p) o-xylene		50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	25.0 U	NS NS
styrene bromoform	100	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
isopropyl benzene (cumene)	700	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
bromobenzene 1,1,2,2-tetrachloroethane	1	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,3-trichloropropane	0.03	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
n-propyl benzene 2-chlorotoluene		50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
4-chlorotoluene		50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,3,5-trimethylbenzene tert-butylbenzene		50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,4-trimethylbenzene		50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
sec-butylbenzene 1,3-dichlorobenzene	600	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
4-isopropyltoluene		50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,4-dichlorobenzene 1,2-dichlorobenzene	75 600	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
n-butylbenzene 1,2-dibromo-3-chloropropane	0.02	50.0 L 50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,4-trichlorobenzene	9	50.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS
hexachlorobutadiene naphthalene	1 300	50.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,3-trichlorobenzene		50.0 L		NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS	25.0 U	NS NS
Methyl tertiary butyl ether Acetone	70 6000	50.0 L			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 50.0 U	NS NS
carbon disulfide	700	50.0 L	J 25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
2-butanone (MEK) tetrahydrofuran (THF)	300 10	100.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	50.0 U 50.0 U	NS NS
4-methyl-2-pentanone (MIBK)		100.0 L	J 50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	50.0 U	NS
2-hexanone 2-chloroethyl vinyl ether		100.0 L	J 50.0 U J 50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	50.0 U 50.0 U	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NA NA	174 0.79	168 I 0.66 J	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	12.9 4.0 U	NS NS
Ethene	NA	0.59	5.0 U		NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS
OTHER GASES Hydrogen	μ g/L NA	μg/L 0.0063	μg/L 0.0046 J	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 0.0037 J	μg/L 0.008 U	μg/L 0.008 U	μg/L 88.3	μg/L 0.008 U
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	12700 D 104 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
METALS (TOTAL) Iron	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
CATIONS Calcium	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Magnesium CROUNDWATER CHEMISTRY		NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L NA	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 3.63	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3.72	NS NS	NS NS	NS NS	NS NS	NS NS
Sulfide	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS Fluoride	mg/L	mg/L 0.2 L	mg/L J 0.2 U	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Chloride	250	19.3	19.6	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.30	NS
Nitrite as N Sulfate as SO ₄	1 250	0.2 L 91.3 E		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U 46.1 E	NS NS
Bromide	250 NA	91.3 E	91.4 E	9.36	NS 11.8	5.76	NS 3.96	NS 15.1	9.03	NS NS	NS NS	NS NS	46.1 E	NS NS
Nitrate as N	10	0.2 L	J 0.2 U	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	0.2 U	NS
O-Phosphate as P VOLATILE FATTY ACIDS	NA	0.2 L	0.2 U	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	MS mg/L	NS mg/L	0.2 U mg/L	MS mg/L
Lactic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid Pyruvic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Valeric Acid FIELD PARAMETERS	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)	NA	4.84	4.68	NS	NS	NS	NS	NS	NS	4.60	4.70	4.84	ND	4.82
Temperature (°C)	NA.	15.99	16.97	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	15.57	14.06	12.08	13.56	13.94
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA	0.36 -49.7	2.60 14.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	-9.0	0.30 -98.0	3.87 69.1	0.22 -286.2	0.16 13.1
Conductivity (µS/cm)	NA NA	297	292	NS	NS	NS	NS	NS	NS	506	251	231	417	261
Depth to Water (ft-btoc) ND - No data; Recorded data was	NA n obvious	10.2	9.52	NS database	NS	NS	NS	NS	NS	8.04	8.44	7.31	7.56	9.6

Table D.13. PMW-4D: Analytical and Field Parameter Results

	ו.ע פּ				naiyti								
Sample ID Lab Sample No.	PMW-4D 8665-3	PMW-4D 8672-2	PMW-4D 8678-3	PMW-4D 8685-4	PMW-4D 8689-4	PMW-4D 8690-7	PMW-4D 8698-4	PMW-4D 8708-4	PMW-4D 8713-31	PMW-4D 8717-10	PMW-4D	PMW-4D	PMW-4D 8767-3
Sampling Date	4/18/2012	4/25/2012	5/2/2012	5/11/2012	5/16/2012	5/21/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012	7/30/2012
Time Matrix	128 Water	135 Water	142 Water	151 Water	156 Water	161 Water	170 Water	178 Water	182 Water	184 Water	186 Water	190 Water	231 Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 105 U
chloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
vinyl chloride bromomethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
chloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
trichlorofluoromethane 1,1-dichloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
methylene chloride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
trans-1,2-dichloroethylene 1,1-dichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
2,2-dichloropropane	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NC	NS NS	NS	NS NS	NS NS	NS NS	105 U
cis 1,2- dichloroethylene bromochloromethane	NS	NS	NS	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS	105 U
chloroform 1,1,1-trichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U
carbon tetrachloride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,1-dichloropropene benzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,2-dichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
trichloroethylene 1,2-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3930 D 105 U
dibromomethane bromodichloromethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
cis-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U
toluene trans-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,1,2-trichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
tetrachloroethylene 1,3-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
dibromochloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,2-dibromoethane chlorobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,1,1,2-tetrachloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
ethylbenzene xylenes (m/p)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
o-xylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U
styrene bromoform	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
isopropyl benzene (cumene) bromobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,1,2,2-tetrachloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,2,3-trichloropropane n-propyl benzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
2-chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
4-chlorotoluene 1,3,5-trimethylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
tert-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,2,4-trimethylbenzene sec-butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,3-dichlorobenzene	NS	NS NS	NS	NS	NS	NS	NS NS	NS	NS	NS NS	NS NS	NS	105 U
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,2-dichlorobenzene n-butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,2-dibromo-3-chloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U
1,2,4-trichlorobenzene hexachlorobutadiene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
naphthalene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,2,3-trichlorobenzene Methyl tertiary butyl ether	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
Acetone	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	210 U
carbon disulfide 2-butanone (MEK)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 210 U
tetrahydrofuran (THF)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	210 U
4-methyl-2-pentanone (MIBK) 2-hexanone	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	210 U 210 U
2-chloroethyl vinyl ether REDUCED GASES (GC)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	210 U
Methane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 116
Ethane Ethene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	4.0 U 5.0 U
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	0.008 U μg/L	0.008 U μg/L	0.0086 U μg/L	NS μg/L	NS μg/L	NS μg/L	0.022 U μg/L	0.003 J μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	0.009 U μg/L
Iron	NS	NS	5820 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese Arsenic	NS NS	NS NS	69.5 D NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	NS NS	NS NS	5830 D 72.1 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
CATIONS	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Calcium Magnesium	NS NS	NS NS	7040 4800	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Alkalinity as CaCO3 Sulfide	NS NS	NS NS	2.0 U 1.44	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	NS NS	NS NS	NS 12.2	NS 11.9	NS 11.0	NS 10.4	NS 11.0	NS 10.5	NS 11.2	NS NS	NS NS	NS NS	0.2 U
Nitrite as N	NS	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS	0.2 U
Sulfate as SO ₄	NS NC	NS NC	81.9 E 2.16			70.9 E		68.5 E		NS 2.09	NS 2.67	NS 4.04	74.7 E
Bromide Nitrate as N	NS NS	NS NS	0.2 U			4.29 0.2 U		2.54 0.2 U	2.59 0.2 U	3.08 NS	3.67 NS	4.04 NS	11.5 0.2 U
O-Phosphate as P VOLATILE FATTY ACIDS	NS	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS	0.2 U
Lactic Acid	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Acetic Acid Propionic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid Pyruvic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Valeric Acid	NS	NS NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS	NS NS	NS	NS NS
pH (SU)	4.70	4.78	4.90	4.24	4.46	4.23	4.30	4.44	4.63	4.57	4.65	4.68	4.72
Temperature (°C)	14.68	14.09	13.87	15.07	15.47	15.15	13.53	15.70	17.05	15.70	16.81	16.55	17.89
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	0.67 70.8	0.21 71.1	0.74 -76.4	1.06 34.9	0.31 40.3	0.34 57.4	5.85 -65.8	0.75 39.1	0.15 67.4	0.00 57.4	0.87 73.6	0.23 62.9	0.19 -137.0
Conductivity (µS/cm)	257	232	497	231	219	224	237	223	230	228	227	238	241
Depth to Water (ft-btoc) ND - No data; Recorded data was	7.88	NS	NS	NS	NS	NS	NS	NS	9.12	9.62	9.51	9.17	NS

ND - No data; Recorded data was

Table D.13. PMW-4D: Analytical and Field Parameter Results

			iaiyu			iciu i			VC2
Sample ID Lab Sample No.	PMW-4D 8837-7	PMW-4D 8839-3	PMW-4D 8840-3	PMW-4D 8850-3	PMW-4D 8852-5	PMW-4D 8869-3	PMW-4D 8876-4	PMW-4D 8954-5	PMW-4D 8977-5
Sampling Date Time	10/1/2012 294	10/2/2012 295	10/3/2012 296	10/5/2012 298	10/23/2012 316	11/15/2012 339	12/4/2012 358	4/24/2013 499	6/11/2013 547
Matrix VOCS (GC/MS)	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L
dichlorodifluoromethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
chloromethane vinyl chloride	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U	
bromomethane chloroethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U 25.0 U	
trichlorofluoromethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,1-dichloroethylene methylene chloride	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS	NS NS	25.0 U 25.0 U	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U 25.0 U	
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	NS NS	NS NS	NS NS	42.0 U		NS NS	25.0 U	NS
bromochloromethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
chloroform 1,1,1-trichloroethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U	
carbon tetrachloride 1,1-dichloropropene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	
benzene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,2-dichloroethane trichloroethylene	NS NS	NS NS	NS NS	NS NS	42.0 U 4200 D	NS NS	NS NS	25.0 U	NS
1,2-dichloropropane dibromomethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	
bromodichloromethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
cis-1,3-dichloropropene toluene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS	NS NS	25.0 U 25.0 U	NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U	
tetrachloroethylene 1,3-dichloropropane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
dibromochloromethane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U 25.0 U	
1,2-dibromoethane chlorobenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U 25.0 U	
1,1,1,2-tetrachloroethane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
ethylbenzene xylenes (m/p)	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS	NS NS	25.0 U 25.0 U	NS
o-xylene styrene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U	
bromoform	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
isopropyl benzene (cumene) bromobenzene	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS	NS NS	25.0 U 25.0 U	NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U	
n-propyl benzene 2-chlorotoluene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS	NS NS	25.0 U 25.0 U	NS
4-chlorotoluene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,3,5-trimethylbenzene tert-butylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U	
1,2,4-trimethylbenzene sec-butylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS	NS NS	25.0 U 25.0 U	NS
1,3-dichlorobenzene	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U	
1,2-dichlorobenzene n-butylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	25.0 U 25.0 U	
1,2-dibromo-3-chloropropane	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
1,2,4-trichlorobenzene hexachlorobutadiene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U 25.0 U	
naphthalene 1,2,3-trichlorobenzene	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	25.0 U	
Methyl tertiary butyl ether	NS	NS	NS	NS	42.0 U	NS	NS	25.0 U	NS
Acetone carbon disulfide	NS NS	NS NS	NS NS	NS NS	84.0 U 42.0 U		NS NS	50.0 U 25.0 U	
2-butanone (MEK) tetrahydrofuran (THF)	NS NS	NS NS	NS NS	NS NS	84.0 U 84.0 U	NS NS	NS NS	50.0 U	
4-methyl-2-pentanone (MIBK) 2-hexanone	NS NS	NS NS	NS NS	NS NS	84.0 U 84.0 U	NS NS	NS NS	50.0 U	NS
2-chloroethyl vinyl ether	NS	NS	NS	NS	84.0 U	NS	NS	50.0 U	NS
REDUCED GASES (GC) Methane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 157	μg/L NS	μg/L NS	μg/L 30.3	μg/L NS
Ethane Ethene	NS NS	NS NS	NS NS	NS NS	1.9 J 3.5 J	NS NS	NS NS	4.0 U 5.0 U	
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	0.009 U μg/L	0.0033 J μg/L	0.009 U μg/L	0.0059 J μg/L	0.009 U μg/L	0.012 μg/L	0.0095 μg/L	0.0044 J μg/L	0.0076 J μg/L
Iron Manganese	NS NS	NS NS	NS NS	NS NS	7380 D 64.7 D	NS NS	NS NS	NS NS	NS NS
Arsenic	NS	NS	NS	NS	2.5 U	NS	NS	NS	NS
METALS (TOTAL) Iron	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese CATIONS	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Calcium	NS	NS	NS	NS	NS	NS	NS	NS	NS
Magnesium GROUNDWATER CHEMISTRY	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Total Organic Carbon (TOC)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.41 J	NS NS
Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NS	NS	NS	NS	8.32	NS	NS	NS	NS
Sulfide ANIONS	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Fluoride Chloride	1.0 U 14.5	1.0 U 13.5	1.0 U 8.51	1.0 U 13.0	0.07 J 14.0	NS NS	0.10 J 17.2	0.2 U 10.8	NS NS
Nitrite as N	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	NS
Sulfate as SO ₄ Bromide	54.2 D 4.81	65.0 D	29.2 D 83.3	60.5 D 66.1	37.0 E 51.3	NS NS	35.7 E 14.3	30.5 E	NS NS
Nitrate as N	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	NS
O-Phosphate as P VOLATILE FATTY ACIDS	1.0 U mg/L	1.0 U mg/L	1.0 U mg/L	1.0 U mg/L	0.2 U mg/L	NS mg/L	0.2 U mg/L	0.2 U mg/L	mg/L
Lactic Acid Acetic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	NS
Propionic Acid	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS
Formic Acid Butyric Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	
Pyruvic Acid Valeric Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	NS
FIELD PARAMETERS									
pH (SU) Temperature (°C)	4.64 17.45	4.70 17.55	NS 17.13	4.51 17.32	5.00 16.75	5.10 13.28	4.97 16.22	5.21 14.16	NS NS
Dissolved Oxygen (DO; mg/L)	0.55	5.42	0.21	0.26	0.17	0.47	0.23	0.48	NS
Redox Potential (ORP; mV) Conductivity (μS/cm)	21.4 206	54.7 217	62.2 49.2	38.7 255	-40.5 249	19.8 154	-91.0 202	35.2 136	NS NS
Depth to Water (ft-btoc) ND - No data: Recorded data was	9.90	9.40	7.52	7.78	10.51	7.32	9.95	9.19	NS

ND - No data; Recorded data was

Table D	<u>. 14.</u>	PIVIV	7-33.		ytice				aiiic	FLCI I		ເວ
Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-5S 8533-5	PMW-5S 8538-11	PMW-5S 8543-6	PMW-5S 8546-11	PMW-5S 8547-11	PMW-5S 8550-13	PMW-5S 8551-11	PMW-5S 8647-11	PMW-5S 8652-5	PMW-5S 8665-4	PMW-5S 8678-8
Sampling Date	GW Quality	10/26/2011	11/9/2011	11/16/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/26/2012	4/3/2012	4/18/2012	5/2/2012
Time		-46	-33	-26	-24	-21	-19	-14	105	113	128	142
Matrix VOCS (GC/MS)	2005 Criteria μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water µg/L	Water μg/L
dichlorodifluoromethane	1000	50.0 U	25.0 U	NS	NS	NS	NS NS	NS NS	21.0 U	NS	NS	NS NS
chloromethane		50.0 U			NS	NS	NS	NS	21.0 U	NS	NS	NS
vinyl chloride	1	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
bromomethane chloroethane	10	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U		NS NS	NS NS
trichlorofluoromethane	2000	50.0 U			NS	NS	NS	NS	21.0 U	NS	NS	NS
1,1-dichloroethylene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	21.0 U	NS	NS	NS
methylene chloride	3	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U		NS NS	NS NS
2,2-dichloropropane	30	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
cis 1,2- dichloroethylene	70	135 D		NS	NS	NS	NS	NS	61.6 D		NS	NS
bromochloromethane		50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
chloroform 1,1,1-trichloroethane	70 30	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U		NS NS	NS NS
carbon tetrachloride	1	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
1,1-dichloropropene		50.0 U	25.0 U	NS	NS	NS	NS	NS	21.0 U	NS	NS	NS
benzene	1	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
1,2-dichloroethane	1	50.0 U 8070 D			NS NS	NS NS	NS NS	NS NS	21.0 U 3800 D	NS NS	NS NS	NS NS
trichloroethylene 1,2-dichloropropane	1	50.0 U			NS	NS	NS	NS	21.0 U	NS	NS	NS
dibromomethane	 	50.0 U			NS	NS	NS	NS	21.0 U	NS	NS	NS
bromodichloromethane	1	50.0 U			NS	NS	NS	NS	21.0 U	NS	NS	NS
cis-1,3-dichloropropene	1 000	50.0 U			NS NC	NS NC	NS NC	NS NC	21.0 U		NS NC	NS
toluene trans-1,3-dichloropropene	600	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U		NS NS	NS NS
1,1,2-trichloroethane	3	50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U	NS NS	NS NS	NS NS
tetrachloroethylene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	21.0 U	NS	NS	NS
1,3-dichloropropane	\bot	50.0 U			NS	NS	NS	NS NS	21.0 U		NS	NS
dibromochloromethane	1	50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U		NS NS	NS NS
1,2-dibromoethane chlorobenzene	50	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U	NS NS	NS NS	NS
ethylbenzene	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	21.0 U	NS	NS	NS
xylenes (m/p)	1000	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
o-xylene	100	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U	NS NS	NS NS	NS NS
styrene bromoform	4	50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U		NS NS	NS
isopropyl benzene (cumene)	700	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
bromobenzene		50.0 U	25.0 U		NS	NS	NS	NS	21.0 U		NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U			NS	NS	NS	NS	21.0 U	NS	NS	NS
1,2,3-trichloropropane n-propyl benzene	0.03	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U		NS NS	NS NS
2-chlorotoluene	+	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
4-chlorotoluene		50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
1,3,5-trimethylbenzene		50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
tert-butylbenzene	 	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U	NS NS	NS NS	NS NS
1,2,4-trimethylbenzene sec-butylbenzene	+	50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U		NS NS	NS
1,3-dichlorobenzene	600	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
4-isopropyltoluene		50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
1,4-dichlorobenzene	75	50.0 U			NS NC	NS NC	NS NC	NS NC	21.0 U	NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	600	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U		NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	50.0 U			NS NS	NS	NS NS	NS	21.0 U		NS	NS
1,2,4-trichlorobenzene	9	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
hexachlorobutadiene	1	50.0 U		NS	NS	NS	NS	NS	21.0 U		NS	NS
naphthalene 1,2,3-trichlorobenzene	300	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	21.0 U 21.0 U	NS NS	NS NS	NS NS
Methyl tertiary butyl ether	70	50.0 U			NS	NS	NS	NS	21.0 U		NS	NS
Acetone	6000	100.0 U	50.0 U	NS	NS	NS	NS	NS	42.0 U	NS	NS	NS
carbon disulfide	700	50.0 U			NS	NS	NS	NS	21.0 U	NS	NS	NS
2-butanone (MEK) tetrahydrofuran (THF)	300 10	63.6 J 100.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	NS NS
4-methyl-2-pentanone (MIBK)	10	100.0 U			NS NS	NS NS	NS NS	NS NS	42.0 U		NS NS	NS
2-hexanone		100.0 U	50.0 U	NS	NS	NS	NS	NS	42.0 U	NS	NS	NS
2-chloroethyl vinyl ether		100.0 U			NS	NS	NS	NS	42.0 U		NS	NS
REDUCED GASES (GC) Methane	μ g/L NA	μg/L 99.1	μg/L 73.7	μ g/L NS	μg/L NS	μ g/L NS	μg/L NS	μg/L NS	μg/L 30.8	μg/L NS	μg/L NS	μg/L NS
Ethane	NA NA	99.1 0.35 J	4.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	4.0 U	NS NS	NS NS	NS NS
Ethene	NA NA	0.36 J	5.0 U		NS	NS	NS	NS	5.0 U		NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	0.280	0.003 J		NS	NS	NS	NS	0.01 U			
METALS (DISSOLVED) Iron	μg/L 300	μg/L NS	μg/L 5960 D	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	300 50	NS NS	95.7 D		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U		NS	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite on N	250	18.1	14.1	NS NS	NS NC	NS NS	NS NC	NS NC	9.40	NS NC	NS NC	NS
Nitrite as N Sulfate as SO ₄	1 250	0.2 U 85.3 E			NS NS	NS NS	NS NS	NS NS	0.2 U 42.0 E	NS NS	NS NS	NS NS
Bromide	NA	0.47	0.44	19.4	25.8	10.2	20.2	28.3	1.93	NS NS	NS NS	NS
Nitrate as N	10	0.47 0.2 U			NS NS	NS NS	NS NS	NS NS	0.2 U		NS	NS
O-Phosphate as P	NA	0.2 U		NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid Acetic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Propionic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA NA	NS NS	1.0 U		NS	NS	NS	NS NS	NS NS	NS	NS	NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NA	NS NC	1.0 U		NS NC	NS NC	NS NC	NS NC	NS NC	NS	NS	NS
Valeric Acid FIELD PARAMETERS	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)	NA NA	5.12	4.32	NS	NS	NS	NS	NS	5.13	5.25	4.93	5.16
Temperature (°C)	NA NA	16.43	16.71	NS	NS	NS	NS	NS	14.00	13.28	13.81	13.46
Dissolved Oxygen (DO; mg/L)	NA	0.19	0.04	NS	NS	NS	NS	NS	0.75	0.15	0.54	0.66
Redox Potential (ORP; mV)	NA	53.6	-24.5	NS	NS	NS	NS	NS	42.1	9.8	92.5	14.0
Conductivity (µS/cm) Depth to Water (ft-btoc)	NA NA	330 7.08	271 7.26	NS NS	NS NS	NS NS	NS NS	NS NS	199 7.62	220 7.91	237 7.87	436 NS
popiii io vvalei (ii-bi00)	INA	1.00	1.20	ONI	INO	ONI	INO	INO	1.02	1.31	7.87	INO

Sample ID	PMW-5S						
Lab Sample No.	8690-8	8698-5	8708-5	8713-12	8717-11	PIVIVV-55	PIVIVV-55
Sampling Date	5/21/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time	161	170	178	182	184	186	190
Matrix	Water						
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS						
chloromethane	NS						
vinyl chloride	NS						
bromomethane	NS						
chloroethane	NS						
trichlorofluoromethane 1,1-dichloroethylene	NS NS						
methylene chloride	NS	NS	NS NS	NS	NS	NS NS	NS
trans-1,2-dichloroethylene	NS						
1,1-dichloroethane	NS						
2,2-dichloropropane	NS						
cis 1,2- dichloroethylene	NS						
bromochloromethane chloroform	NS NS						
1,1,1-trichloroethane	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS
carbon tetrachloride	NS						
1,1-dichloropropene	NS						
benzene	NS						
1,2-dichloroethane	NS NS						
trichloroethylene 1,2-dichloropropane	NS NS						
dibromomethane	NS						
bromodichloromethane	NS						
cis-1,3-dichloropropene	NS						
toluene	NS						
trans-1,3-dichloropropene	NS	NS	NS	NS	NS	NS NC	NS
1,1,2-trichloroethane tetrachloroethylene	NS NS						
1,3-dichloropropane	NS NS						
dibromochloromethane	NS						
1,2-dibromoethane	NS						
chlorobenzene	NS						
1,1,1,2-tetrachloroethane	NS	NS	NS	NS	NS	NS NC	NS
ethylbenzene xylenes (m/p)	NS NS						
o-xylene	NS NS						
styrene	NS						
bromoform	NS						
isopropyl benzene (cumene)	NS						
bromobenzene	NS						
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	NS NS						
n-propyl benzene	NS	NS	NS	NS	NS	NS NS	NS
2-chlorotoluene	NS						
4-chlorotoluene	NS						
1,3,5-trimethylbenzene	NS						
tert-butylbenzene	NS						
1,2,4-trimethylbenzene	NS NS						
sec-butylbenzene 1,3-dichlorobenzene	NS						
4-isopropyltoluene	NS	NS NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	NS						
1,2-dichlorobenzene	NS						
n-butylbenzene	NS						
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS						
hexachlorobutadiene	NS						
naphthalene	NS	NS	NS	NS	NS	NS NS	NS
1,2,3-trichlorobenzene	NS						
Methyl tertiary butyl ether	NS						
Acetone	NS						
carbon disulfide 2-butanone (MEK)	NS NS						
tetrahydrofuran (THF)	NS NS						
4-methyl-2-pentanone (MIBK)	NS						
2-hexanone	NS						
2-chloroethyl vinyl ether	NS						
REDUCED GASES (GC)	μg/L						
Methane Ethane	NS NS						
Ethane Ethene	NS NS						
OTHER GASES	μg/L						
Hydrogen	NS	0.590	0.002 J	NS	NS NS	NS	NS
METALS (DISSOLVED)	μg/L						
Iron	NS						
Manganese	NS						
ANIONS Fluoride	mg/L NS						
Chloride	10.5	10.8	10.5	10.8	NS NS	NS NS	NS NS
Nitrite as N	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS
Sulfate as SO ₄	71.4 E	71.6 E	66.4 E	68.7 E	NS	NS	NS
Bromide	1.42	1.56	2.71	1.70	1.65	2.80	2.75
Nitrate as N	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS
O-Phosphate as P	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS
VOLATILE FATTY ACIDS	mg/L						
Lactic Acid Acetic Acid	NS NS						
Propionic Acid	NS						
Formic Acid	NS						
Butyric Acid	NS						
Pyruvic Acid	NS						
Valeric Acid	NS						
FIELD PARAMETERS	4.24	4.40	4.02	4 00	4.70	4.60	4.62
pH (SU) Temperature (°C)	4.21 14.63	4.40 14.62	4.03 15.45	4.89 15.58	4.70 15.30	4.60 15.85	4.62 15.59
Dissolved Oxygen (DO; mg/L)	0.46	4.35	0.65	2.38	2.83	2.63	1.21
Redox Potential (ORP; mV)	111.3	16.2	94.0	16.5	50.6	30.1	33.4
Conductivity (µS/cm)	214	226	208	224	220	220	222
Depth to Water (ft-btoc)	NS	NS	NS	7.94	7.85	7.92	7.86

<u> I abie D</u>	<u>'. 13.</u>	LIAIA	¥-Ji.	Anai	ytica	<u>i aiiu</u>	1 101	u i a	anno	toi it	CSun	.5
Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-5I 8533-9	PMW-5I 8538-12	PMW-5I 8543-7	PMW-5I 8546-12	PMW-5I 8547-12	PMW-5I 8550-14	PMW-5I 8551-12	PMW-5I 8647-12	PMW-5I 8652-3	PMW-5I 8665-5	PMW-5I 8678-9
Sampling Date	GW Quality	10/26/2011	11/9/2011	11/16/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/26/2012	4/3/2012	4/18/2012	5/2/2012
Time		-46	-33	-26	-24	-21	-19	-14	105	113	128	142
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μg/L 50.0 U	μg/L 42.0 L	μg/L I NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 350 U	μg/L NS	μg/L NS	μg/L NS
chloromethane	1000	50.0 U			NS	NS	NS	NS	350 U		NS	NS
vinyl chloride	1	50.0 U			NS	NS	NS	NS	350 U		NS	NS
bromomethane chloroethane	10	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
trichlorofluoromethane	2000	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS
1,1-dichloroethylene	1	50.0 U			NS	NS	NS	NS	350 U		NS	NS
methylene chloride	3	50.0 U			NS	NS	NS	NS	350 U		NS	NS
trans-1,2-dichloroethylene	100 50	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
1,1-dichloroethane 2,2-dichloropropane	30	50.0 U			NS	NS	NS	NS	350 U		NS	NS
cis 1,2- dichloroethylene	70	208 D			NS	NS	NS	NS	222 JE	NS NS	NS	NS
bromochloromethane		50.0 U			NS	NS	NS	NS	350 U		NS	NS
chloroform 1,1,1-trichloroethane	70 30	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
carbon tetrachloride	1	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS
1,1-dichloropropene		50.0 U			NS	NS	NS	NS	350 U		NS	NS
benzene	1	50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,2-dichloroethane	2	50.0 U			NS	NS	NS	NS	350 U		NS	NS
trichloroethylene	1	12500 D 50.0 U			NS NS	NS NS	NS NS	NS NS	16900 D 350 U	NS NS	NS NS	NS NS
1,2-dichloropropane dibromomethane	+-'-	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS
bromodichloromethane	1	50.0 U			NS	NS	NS	NS	350 U		NS	NS
cis-1,3-dichloropropene	1	50.0 U	42.0 L	NS NS	NS	NS	NS	NS	350 U	NS	NS	NS
toluene	600	50.0 U			NS NC	NS NC	NS	NS NC	350 U		NS	NS
trans-1,3-dichloropropene 1.1.2-trichloroethane	3	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
tetrachloroethylene	1	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS
1,3-dichloropropane		50.0 U	42.0 L	l NS	NS	NS	NS	NS	350 U	NS	NS	NS
dibromochloromethane	1	50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,2-dibromoethane	En	50.0 U			NS NS	NS NS	NS	NS NS	350 U		NS NS	NS NS
chlorobenzene 1,1,1,2-tetrachloroethane	50 1	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
ethylbenzene	700	50.0 U			NS	NS	NS	NS	350 U		NS	NS
xylenes (m/p)	1000	50.0 U	42.0 L		NS	NS	NS	NS	350 U		NS	NS
o-xylene		50.0 U			NS	NS	NS	NS	350 U		NS	NS
styrene bromoform	100	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
isopropyl benzene (cumene)	700	50.0 U			NS	NS	NS	NS	350 U		NS	NS
bromobenzene	7.00	50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,2,3-trichloropropane	0.03	50.0 U			NS	NS	NS	NS	350 U		NS	NS
n-propyl benzene 2-chlorotoluene	-	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
4-chlorotoluene		50.0 U			NS NS	NS NS	NS	NS NS	350 U		NS NS	NS
1,3,5-trimethylbenzene		50.0 U	42.0 L	NS NS	NS	NS	NS	NS	350 U	NS	NS	NS
tert-butylbenzene		50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,2,4-trimethylbenzene sec-butylbenzene	+	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
1,3-dichlorobenzene	600	50.0 U			NS	NS	NS	NS NS	350 U		NS	NS
4-isopropyltoluene		50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,4-dichlorobenzene	75	50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,2-dichlorobenzene n-butylbenzene	600	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	50.0 U			NS	NS	NS	NS	350 U		NS	NS
1,2,4-trichlorobenzene	9	50.0 U			NS	NS	NS	NS	350 U		NS	NS
hexachlorobutadiene	1	50.0 U			NS	NS	NS	NS	350 U		NS	NS
naphthalene	300	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U 350 U		NS NS	NS NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	50.0 U 50.0 U			NS	NS NS	NS	NS NS	350 U 350 U		NS	NS
Acetone	6000	100.0 U	84.0 L	l NS	NS	NS	NS	NS	700 U	NS	NS	NS
carbon disulfide	700	50.0 U			NS	NS	NS	NS	350 U		NS	NS
2-butanone (MEK) tetrahydrofuran (THF)	300 10	100.0 U 100.0 U			NS NS	NS NS	NS NS	NS NS	700 U 700 U		NS NS	NS NS
4-methyl-2-pentanone (MIBK)	10	100.0 U			NS NS	NS NS	NS NS	NS NS	700 U		NS NS	NS NS
2-hexanone		100.0 U	84.0 L	I NS	NS	NS	NS	NS	700 U	NS	NS	NS
2-chloroethyl vinyl ether		100.0 U	84.0 L	I NS	NS	NS	NS	NS	700 U	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NA NA	186 0.44 J	193 4.0 L	NS NS	NS NS	NS NS	NS NS	NS NS	87.9 4.0 U	NS NS	NS NS	NS NS
Ethene	NA NA	0.44 J	5.0 L		NS NS	NS NS	NS	NS NS	5.0 U		NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	0.145	0.026	NS	NS	NS	NS	NS	0.02	0.0603	0.034	0.0129
METALS (DISSOLVED)	μg/L	μg/L	μg/L 8630 Γ	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	8630 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 L		NS	NS	NS	NS	NS	NS	NS	NS
Chloride	250	21.7	22.2	NS NS	NS NS	NS NC	NS NS	NS NC	18.3	NS	NS NC	NS
Nitrite as N Sulfate as SO ₄	1 250	0.2 U 110 E			NS NS	NS NS	NS NS	NS NS	0.2 U 70.0 E		NS NS	NS NS
Bromide	NA	0.73	0.76	0.78	1.08	1.37	1.50	1.89	1.49	NS NS	NS NS	NS NS
Nitrate as N	10	0.73 0.2 U			NS NS	NS	NS	NS NS	0.2 U		NS	NS
O-Phosphate as P	NA	0.2 U		NS NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA NA	NS NS	1.0 L	110	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.0 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA NA	NS	1.0 L		NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA NA	NS	1.0 L	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NA	NS	1.0 L		NS	NS	NS	NS NS	NS	NS	NS	NS
Valeric Acid	NA	NS	1.0 L	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)	NA.	5.51	4.78	NS	NS	NS	NS	NS	5.48	5.57	5.25	5.44
Temperature (°C)	NA NA	16.24	16.72	NS NS	NS NS	NS NS	NS NS	NS NS	14.14	13.73	14.34	13.83
Dissolved Oxygen (DO; mg/L)	NA NA	0.26	0.31	NS	NS	NS	NS	NS	0.92	0.13	0.68	0.59
Redox Potential (ORP; mV)	NA	39.8	-38.5	NS	NS	NS	NS	NS	-14.9	-34.4	49.1	-78.7
Conductivity (µS/cm)	NA	499	487	NS	NS	NS NS	NS	NS NC	370	360	310	501 NO
Depth to Water (ft-btoc)	NA	8.75	9.4	NS	NS	NS	NS	NS	9.15	NS	7.95	NS

Sample ID	PMW-5I	PMW-5I	PMW-5I	PMW-5I	PMW-5I	PMW-5I	PMW-5I
Lab Sample No.	8690-9	8698-6	8708-6	8713-13	8717-12	PIVIVV-5I	PIVIVV-5I
Sampling Date	5/21/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time	161	170	178	182	184	186	190
Matrix	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NC
vinyl chloride	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromomethane	NS	NS	NS	NS	NS	NS	NS
chloroethane	NS	NS	NS	NS	NS	NS	NS
trichlorofluoromethane	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene	NS	NS	NS	NS	NS	NS	NS
methylene chloride	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane	NS	NS	NS	NS	NS	NS NS	NS
cis 1.2- dichloroethylene	NS	NS	NS	NS	NS	NS	NS
bromochloromethane	NS	NS	NS	NS	NS	NS	NS
chloroform	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene benzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichloroethane	NS NS	NS	NS	NS	NS	NS NS	NS
trichloroethylene	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	NS	NS	NS	NS	NS	NS	NS
dibromomethane	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane	NS	NS	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
toluene trans-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2-trichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrachloroethylene	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane	NS	NS	NS	NS	NS	NS	NS
dibromochloromethane	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane	NS	NS	NS	NS	NS	NS	NS
chlorobenzene	NS NS	NS	NS NC	NS NC	NS NC	NS NC	NS NC
1,1,1,2-tetrachloroethane ethylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
xylenes (m/p)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
o-xylene	NS	NS	NS	NS	NS	NS	NS
styrene	NS	NS	NS	NS	NS	NS	NS
bromoform	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	NS	NS	NS	NS	NS	NS	NS
bromobenzene	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
n-propyl benzene	NS	NS	NS	NS	NS	NS	NS NS
2-chlorotoluene	NS	NS	NS	NS	NS	NS	NS
4-chlorotoluene	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene	NS NS	NS	NS	NS	NS NC	NS NG	NS NG
1,2,4-trimethylbenzene sec-butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-dichlorobenzene	NS	NS	NS	NS	NS	NS NS	NS
4-isopropyltoluene	NS	NS	NS	NS	NS	NS	NS NS
1,4-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	NS	NS	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene hexachlorobutadiene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
naphthalene	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS
1,2,3-trichlorobenzene	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	NS	NS	NS	NS	NS	NS	NS
Acetone	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	NS NC	NS	NS NC	NS	NS NC	NS NC	NS NC
2-butanone (MEK)	NS	NS	NS NC	NS	NS NC	NS NC	NS NC
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-hexanone	NS	NS	NS	NS	NS	NS NS	NS
2-chloroethyl vinyl ether	NS	NS	NS	NS	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NS	NS	NS	NS	NS	NS	NS
Ethane	NS NC	NS	NS NC	NS	NS NC	NS NC	NS NC
OTHER GASES	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Hydrogen	μg/L NS	μg/L 0.030	μg/L 0.009 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	NS	NS	NS	NS	NS	NS NS	NS
Manganese	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite as N	17.7 0.2 U	17.7 0.2 U	22.1 E 0.2 U	16.9 0.2 U	NS NS	NS NS	NS NS
Sulfate as SO ₄	62.4 E		0.2 U 80.1 E	0.2 U 59.4 E	NS NS	NS NS	NS NS
Bromide	62.4 ⊨ 1.74	62.7 E	80.1 E 0.82	59.4 ⊨ 2.03	NS 2.04	NS 2.16	NS 2.41
Nitrate as N	1.74 0.2 U	1.91 0.2 U	0.82 0.2 U	0.2 U	2.04 NS	2.16 NS	2.41 NS
O-Phosphate as P	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS
VOLATILE FATTY ACIDS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NS	NS	NS	NS	NS	NS	NS
Acetic Acid	NS	NS	NS	NS	NS	NS	NS
Propionic Acid	NS	NS	NS	NS	NS	NS	NS
Formic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid Pyruvic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Valeric Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS							
pH (SU)	4.78	4.87	5.25	5.16	5.16	5.15	5.15
Temperature (°C)	14.63	14.85	15.49	15.50	15.40	15.68	15.52
Dissolved Oxygen (DO; mg/L)	0.31	2.03	1.20	2.12	2.67	2.41	1.24
Redox Potential (ORP; mV)	12.6	-35.9	-5.8	-44.9	-46.2	-63.6	-56.5
Conductivity (µS/cm)	238	231	347	244	243	243	243
Depth to Water (ft-btoc)	NS	NS	NS	9.96	9.65	9.85	9.27

Table D	.16.	PMW	-5D:	Anai	ytıca	ı anc	l Fiel	d Pa	rame	ter R	esult	iS
Sample ID	NJ Higher of	PMW-5D	PMW-5D	PMW-5D	PMW-5D	PMW-5D	PMW-5D	PMW-5D	PMW-5D	PMW-5D	PMW-5D	PMW-5D
Lab Sample No. Sampling Date	PQLs and GW Quality	8533-10 10/26/2011	8538-13 11/9/2011	8543-8 11/16/2011	8546-13 11/18/2011	8547-13 11/21/2011	8550-15 11/23/2011	8551-13 11/28/2011	8649-1 3/27/2012	8652-4 4/3/2012	8690-10 5/21/2012	8698-7 5/30/2012
Time	OVV Quality	-46	-33	-26	-24	-21	-19	-14	106	113	161	170
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μ g/L 5.0 U	μ g/L 5.0 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 25.0 U	μg/L NS	μg/L NS	μg/L NS
chloromethane	1000	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
vinyl chloride	1	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
bromomethane chloroethane	10	5.0 U 5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
trichlorofluoromethane	2000	5.0 U			NS	NS	NS NS	NS	25.0 U		NS	NS
1,1-dichloroethylene	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
methylene chloride	3	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
trans-1,2-dichloroethylene 1.1-dichloroethane	100 50	5.0 U 5.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
2,2-dichloropropane		5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
cis 1,2- dichloroethylene	70	11.3	20.5	NS	NS	NS	NS	NS	36.9 D		NS	NS
bromochloromethane chloroform	70	5.0 U 5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,1,1-trichloroethane	30	5.0 U			NS	NS	NS NS	NS	25.0 U		NS NS	NS
carbon tetrachloride	1	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
1,1-dichloropropene	1	5.0 U 5.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
benzene 1,2-dichloroethane	2	5.0 U			NS	NS	NS NS	NS	25.0 U		NS	NS
trichloroethylene	1	49.1	94.2	NS	NS	NS	NS	NS	1460 D	NS	NS	NS
1,2-dichloropropane	1	5.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
dibromomethane bromodichloromethane	1	5.0 U 5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
cis-1,3-dichloropropene	1	5.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
toluene	600	5.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	5.0 U			NS NS	NS NS	NS NS	NS	25.0 U 25.0 U		NS NS	NS NS
1,1,2-trichloroethane tetrachloroethylene	1	5.0 U 5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
1,3-dichloropropane		5.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
dibromochloromethane	1	5.0 U	5.0 U		NS NC	NS	NS	NS	25.0 U		NS	NS NC
1,2-dibromoethane chlorobenzene	50	5.0 U 5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	5.0 U			NS NS	NS NS	NS	NS	25.0 U		NS	NS NS
ethylbenzene	700	5.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
xylenes (m/p)	1000	5.0 U 5.0 U			NS NS	NS NC	NS NS	NS	25.0 U 25.0 U		NS NS	NS NS
o-xylene stvrene	100	5.0 U 5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
bromoform	4	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
isopropyl benzene (cumene)	700	5.0 U	5.0 U		NS	NS	NS	NS	25.0 U	NS	NS	NS
bromobenzene 1,1,2,2-tetrachloroethane	1	5.0 U 5.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,2,3-trichloropropane	0.03	5.0 U			NS	NS	NS NS	NS	25.0 U		NS	NS
n-propyl benzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
2-chlorotoluene		5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
4-chlorotoluene 1,3,5-trimethylbenzene		5.0 U 5.0 U			NS NS	NS NS	NS NS	NS	25.0 U		NS NS	NS NS
tert-butylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
1,2,4-trimethylbenzene		5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
sec-butylbenzene 1,3-dichlorobenzene	600	5.0 U 5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
4-isopropyltoluene	000	5.0 U			NS NS	NS	NS NS	NS	25.0 U		NS	NS
1,4-dichlorobenzene	75	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
1,2-dichlorobenzene n-butylbenzene	600	5.0 U 5.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	5.0 U			NS NS	NS	NS NS	NS	25.0 U		NS	NS
1,2,4-trichlorobenzene	9	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
hexachlorobutadiene	1 200	5.0 U	5.0 U		NS NC	NS NC	NS NS	NS NS	25.0 U		NS	NS
naphthalene 1.2.3-trichlorobenzene	300	5.0 U 5.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
Methyl tertiary butyl ether	70	5.0 U			NS	NS	NS	NS	25.0 U		NS	NS
Acetone	6000	10.0 U	10.0 U	NS	NS	NS	NS	NS	50.0 U	NS	NS	NS
carbon disulfide 2-butanone (MEK)	700 300	5.0 U 2.0 J	5.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	25.0 U 50.0 U		NS NS	NS NS
tetrahydrofuran (THF)	10	6.3	10.0 U		NS	NS	NS	NS	50.0 U		NS	NS
4-methyl-2-pentanone (MIBK)		10.0 U			NS	NS	NS	NS	50.0 U		NS	NS
2-hexanone 2-chloroethyl vinyl ether		10.0 U 10.0 U			NS NS	NS NS	NS NS	NS NS	50.0 U 50.0 U		NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	372	341	NS	NS	NS	NS	NS	336	NS	NS	NS
Ethane	NA NA	1.05 J	4.0 U		NS NC	NS NC	NS NS	NS	0.63 J	NS NS	NS	NS NC
OTHER GASES	NA μg/L	0.46 J μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L
Hydrogen	μg/L NA	0.003 J			NS	NS	NS	NS	0.01 U			0.022 U
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300	NS NS	20300 D 110 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	50 mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite as N	250	19.5	20.7	NS NC	NS NC	NS NC	NS NC	NS	15.7	NS NC	15.1	14.9
Nitrite as N Sulfate as SO ₄	1 250	0.2 U 108 E			NS NS	NS NS	NS NS	NS NS	0.2 U 61.3 D		0.2 U 63.5 E	
Bromide	250 NA	108 E	82.9 E	1.03	1.13	0.95	0.69	1.21	2.65	NS NS	2.01	2.19
Nitrate as N	10	0.2 U	0.2 U	NS	NS NS	NS	NS	NS	0.2 U	NS NS	0.2 U	
O-Phosphate as P	NA	0.2 U	0.2 U	NS	NS	NS	NS	NS	0.2 U	NS	0.2 U	0.2 l
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid Acetic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Propionic Acid	NA NA	NS	1.0 U		NS	NS	NS NS	NS	NS	NS NS	NS	NS
Formic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA NA	NS NS	1.0 U		NS NC	NS NC	NS NS	NS	NS NS	NS NS	NS NS	NS NS
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS												
pH (SU)	NA	5.48	4.89	NS	NS	NS	NS	NS	5.72	5.71	5.45	5.54
Temperature (°C)	NA NA	15.98	15.60	NS NC	NS NC	NS	NS NC	NS	13.70	13.91	14.77	14.91
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA	0.18 7.7	0.18 -55.5	NS NS	NS NS	NS NS	NS NS	NS NS	1.13 -19.5	0.14 -40.2	0.26 -47.0	0.46 -117.7
Conductivity (µS/cm)	NA NA	494	375	NS	NS	NS	NS	NS	353	343	352	329
Depth to Water (ft-btoc)	NA	6.91	6.78	NS	NS	NS	NS	NS	8.5	9.2	NS	NS

Table D.16. PMW-5D: Analytical and Field Parameter Results

Sample ID	PMW-5D	PMW-5D	PMW-5D	PMW-5D
Lab Sample No.	8713-14	8717-13		
Sampling Date Time	6/11/2012 182	6/13/2012 184	6/15/2012 186	6/19/2012 190
Matrix	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	NS	NS	NS	NS
chloromethane	NS NS	NS NS	NS NS	NS NS
vinyl chloride bromomethane	NS NS	NS NS	NS NS	NS NS
chloroethane	NS	NS	NS	NS
trichlorofluoromethane	NS	NS	NS	NS
1,1-dichloroethylene	NS	NS	NS	NS
methylene chloride	NS	NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane	NS	NS	NS	NS
cis 1,2- dichloroethylene	NS	NS	NS	NS
bromochloromethane	NS	NS	NS	NS
chloroform	NS	NS	NS	NS
1,1,1-trichloroethane	NS	NS	NS	NS
carbon tetrachloride	NS NC	NS NS	NS NC	NS NS
1,1-dichloropropene benzene	NS NS	NS NS	NS NS	NS NS
1,2-dichloroethane	NS	NS	NS	NS
trichloroethylene	NS	NS	NS	NS
1,2-dichloropropane	NS	NS	NS	NS
dibromomethane	NS	NS	NS	NS
bromodichloromethane	NS NC	NS	NS NC	NS NS
cis-1,3-dichloropropene toluene	NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS
1,1,2-trichloroethane	NS	NS	NS	NS
tetrachloroethylene	NS	NS	NS	NS
1,3-dichloropropane	NS	NS	NS	NS
dibromochloromethane	NS NC	NS	NS	NS NS
1,2-dibromoethane chlorobenzene	NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS
ethylbenzene	NS	NS	NS	NS
xylenes (m/p)	NS	NS	NS	NS
o-xylene	NS	NS	NS	NS
styrene	NS	NS	NS	NS
bromoform	NS NC	NS	NS	NS NS
isopropyl benzene (cumene) bromobenzene	NS NS	NS NS	NS NS	NS NS
1,1,2,2-tetrachloroethane	NS	NS	NS	NS
1,2,3-trichloropropane	NS	NS	NS	NS
n-propyl benzene	NS	NS	NS	NS
2-chlorotoluene	NS	NS	NS	NS
4-chlorotoluene	NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene tert-butylbenzene	NS NS	NS NS	NS NS	NS NS
1,2,4-trimethylbenzene	NS	NS	NS	NS
sec-butylbenzene	NS	NS	NS	NS
1,3-dichlorobenzene	NS	NS	NS	NS
4-isopropyltoluene	NS	NS	NS	NS
1,4-dichlorobenzene 1,2-dichlorobenzene	NS NS	NS NS	NS NS	NS NS
n-butylbenzene	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	NS	NS	NS	NS
1,2,4-trichlorobenzene	NS	NS	NS	NS
hexachlorobutadiene	NS	NS	NS	NS
naphthalene	NS	NS	NS	NS
1,2,3-trichlorobenzene	NS NS	NS	NS	NS
Methyl tertiary butyl ether Acetone	NS NS	NS NS	NS NS	NS NS
carbon disulfide	NS	NS	NS	NS
2-butanone (MEK)	NS	NS	NS	NS
tetrahydrofuran (THF)	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)	NS	NS	NS	NS
2-hexanone	NS NC	NS	NS NC	NS NS
2-chloroethyl vinyl ether REDUCED GASES (GC)	NS ug/l	NS ug/l	NS ug/l	NS ug/l
Methane	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Ethane	NS	NS	NS	NS
Ethene	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L
Hydrogen	NS - a	NS -//	NS -//	NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L
	NS NS	NS NS	NS NS	NS NS
Manganese				ma/L
	mg/L	mg/L	mg/L	
ANIONS	mg/L NS	mg/L NS	Mg/L NS	NS
ANIONS Fluoride Chloride	NS 15.0	NS NS	NS NS	NS NS
ANIONS Fluoride Chloride Nitrite as N	NS 15.0 0.2 U	NS NS NS	NS NS NS	NS NS NS
ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄	NS 15.0 0.2 U 62.6 E	NS NS NS NS	NS NS NS NS	NS NS NS NS
ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide	NS 15.0 0.2 U 62.6 E 2.63	NS NS NS NS S	NS NS NS NS S 3.14	NS NS NS NS 2.91
ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N	NS 15.0 0.2 U 62.6 E 2.63 0.2 U	NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS
ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitritate as N O-Phosphate as P	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS 2.91 NS
ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS	NS 15.0 0.2 U 62.6 E 2.63 0.2 U	NS NS NS NS S 3.05	NS NS NS NS NS NS NS NS	NS NS NS NS NS
ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L	NS NS NS NS 3.05 NS NS NS	NS N	NS NS NS NS 2.91 NS NS mg/L
ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L NS NS NS	NS N	NS N	NS N
ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Formic Acid Formic Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U 0.2 U mg/L NS NS NS NS	NS N	NS N	NS N
Manganese ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Butyric Acid Butyric Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L NS NS NS NS NS NS NS	NS N	NS N	NS N
ANIONS Fluoride Chloride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Formic Acid Butyric Acid Pyruvic Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L NS NS NS NS NS NS NS NS	NS N	NS N	NS N
ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Formic Acid Butyric Acid Valeric Acid Valeric Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L NS NS NS NS NS NS NS	NS N	NS N	NS N
ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Formic Acid Propionic Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L NS	NS N	NS N	NS N
ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Formic Acid Butyric Acid Pyruvic Acid Valeric Acid Valeric Acid FIELD PARAMETERS OH (SU)	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L NS NS NS NS NS NS NS NS	NS N	NS N	NS N
ANIONS Fluoride Chloride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Fromic Acid Butyric Acid Valeric Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U mg/L NS	NS N	NS N	NS N
ANIONS Fluoride Chloride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Formic Acid Butyric Acid Pyruvic Acid	NS 15.0 0.2 U 62.6 E 2.63 0.2 U 0.2 U mg/L NS 15.83	NS N	NS N	NS N

Lish Sample No. 1971 and 1983-31 1000-41 1000-41 11000-41	Table D.		I IVIV	/-03.	Alla					Iaiiie			
Semanting No. Proceeding	Sample ID	NJ Higher of		PMW-6S	PMW-6S	PMW-6S	PMW-6S	PMW-6S	PMW-6S	PMW-6S	PMW-6S	PMW-6S	PMW-6S
Trans. The common													
Washing		GW Quality											
Content		2005 Criteria											
Schendingeriantening													
Occording													
Secondarian 19													
Accordance	vinyl chloride	1	25.0 U				NS		NS	25.0 U	NS	NS	NS
Second complete		10											
1.1-defermentations													
Compressed and Compre													
rear Defendence 1													
1. Lednomano 69													
2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1													
State 2 April 1995 1997		- 00											
All Continues 17		70											
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	bromochloromethane		25.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
orden even production													
Security 1		1											
1.3ed-tenerate													
Institute 1													
12-64TRENOPERIOR													
Second content													
Second content		- '-											
Section 1		1											
Selection													
Table 1				5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
stractionarylane													
13-defendengegemen													
desented contention	,	1											
12-stomonomemane		.											
## ethics contained 97 250 U 50 U NS NS NS NS NS 250 U NS NS NS NS NS NS NS		1											
1.11 2-to-endrodendered		EO											
### of the control of													
Systems (mys)													
Page													
Secretary 190 250 U 95 V													
	styrene	100											
	bromoform	4	25.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
11.22-bitschloroperame	isopropyl benzene (cumene)	700											
12.3-Introdeprograme													
Propose													
2-deforteduene		0.03											
Actividatione													
13.5-timethybenzene													
Institution		†											
12.4-timeImplemenane													
1.3deIntrohenomene													
4-bapproproplemene	sec-butylbenzene					NS	NS	NS	NS			NS	NS
14-de-inforbenzeme		600											
12-delinforbeprene													
Publisherizere													
12-districtoropanene		600											
12.4-trichlorobenzene		0.02											
Inexach/ordurdariene													
Imaghthalene													
12.3-Inchlorobenzene		300											
Acetone			25.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U		NS	NS
Carbon disulfide	Methyl tertiary butyl ether						NS						
2-butanone (MEK)													
Interhydrodroman (THF)													
Amethyd-Zpentanone (MIBK)													
2-hexanone		10											
2-chlorotethyl vinyl ether													
REDUCED GASES (GC)													
Methane		μq/L											
Ethane NA 2.74 J 2.04 J NS													
Ethene	Ethane	NA	2.74 J	2.04 J	NS	NS	NS	NS	NS	0.95 J	NS	NS	NS
Hydrogen	Ethene												
METALS (DISSOLVED)													
Iron													
Manganese 50 NS 63 D NS NS NS NS NS NS NS													
ANIONS mg/L													
Fluoride													
Chloride													
Nitrite as N 1 0.2 U 0.2 U NS NS NS NS NS NS NS		 											
Sulfate as SO ₄ 250 320 E 273 E NS NS NS NS NS NS 75.2 D NS 58.1 E 56.5 E													
Bromide													
Nitrate as N													
O-Phosphate as P NA 0.2 U 0.2 U NS NS NS NS 0.2 U 0.2 0.2 U													
VOLATILE FATTY ACIDS mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L													
Lactic Acid NA NS 1.0 U NS			mg/L										
Propionic Acid NA NS 1.0 U NS			NS		NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid NA NS 1.0 U NS													
Butyric Acid													
Pyrtuvic Acid NA NS 1.0 U NS													
Valeric Acid NA NS 1.0 U NS													
FIELD PARAMETERS NA 5.87 5.61 NS NS NS NS 6.35 6.11 6.27 6.48 Temperature (°C) NA 16.80 16.39 NS NS NS NS 12.91 13.99 14.78 15.24 Dissolved Oxygen (DO; mg/L) NA 0.53 1.27 NS NS NS NS 0.94 0.56 0.41 2.87 Redox Potential (ORP; mV) NA 13.0 -99.1 NS NS NS NS -50.8 -8.4 -64.1 -58.9 Conductivity (μS/cm) NA 1328 1069 NS NS NS NS 572 534 482 427													
pH (SU) NA 5.87 5.61 NS NS NS NS NS 6.35 6.11 6.27 6.48 Temperature (°C) NA 16.80 16.39 NS NS NS NS NS NS 12.91 13.99 14.78 15.24 Dissolved Οχγgen (DO; mg/L) NA 0.53 1.27 NS		IVA	140	1.0 0	140	140	140	140	140	140	140	ING	140
Temperature (°C) NA 16.80 16.39 NS NS NS NS NS 12.91 13.99 14.78 15.24 Dissolved Oxygen (DO; mg/L) NA 0.53 1.27 NS NS NS NS NS NS 0.94 0.56 0.41 2.87 Redox Potential (ORP; mV) NA 13.0 -99.1 NS NS NS NS NS -50.8 -8.4 -64.1 -58.9 Conductivity (μS/cm) NA 1328 1069 NS NS NS NS NS S7Z 534 482 427		NΑ	5.87	5.61	NS	NS	NS	NS	NS	6,35	6.11	6.27	6.48
Dissolved Oxygen (DO; mg/L) NA 0.53 1.27 NS NS NS NS NS 0.94 0.56 0.41 2.87 Redox Potential (ORP; mV) NA 13.0 -99.1 NS NS NS NS NS NS -50.8 -8.4 -64.1 -58.9 Conductivity (μS/cm) NA 1328 1069 NS NS NS NS NS NS 572 534 482 427													
Redox Potential (ORP; mV) NA 13.0 -99.1 NS NS NS NS -50.8 -8.4 -64.1 -58.9 Conductivity (μS/cm) NA 1328 1069 NS NS NS NS 572 534 482 427													
Conductivity (μS/cm) NA 1328 1069 NS NS NS NS NS 572 534 482 427													
Depth to Water (ft-bloc) NA 9.94 10.52 NS NS NS NS 9.35 9.75 NS 11.69	Conductivity (µS/cm)		1328		NS	NS	NS	NS	NS	572	534	482	427
	Depth to Water (ft-btoc)	NA	9.94	10.52	NS	NS	NS	NS	NS	9.35	9.75	NS	11.69

	PMW-6S PMW-6S PMW-6S
Marix	8717-14 6/13/2012 6/15/2012 6/19/2012
VOCS (GCMS) Jug/L Jug/L Jug/L Chloromethane NS NS NS Chloromethane NS NS NS Vinyl chlorida NS NS NS Vinyl chlorida NS NS NS Vinyl chlorida NS NS NS Inchorothane NS NS NS Inchorothane NS NS NS Inchorothylene NS NS NS Introlociforothylene NS NS NS Introlociforothylene NS NS NS Introlociforothylene NS NS NS Introlociforothylene NS NS NS Introlocorpopane NS NS NS	184 186 190
dichlorodifluoromethane NS NS NS chloromethane NS NS NS viny chloride NS NS NS brommethane NS NS NS chloroethane NS NS NS trichlorofluoromethane NS NS NS 1,1-dichloroethylene NS NS NS methylene chloride NS NS NS trans-12-dichloroethylene NS NS NS int-dichloroethylene NS NS NS is 1,2-dichloroethylene NS NS NS is 1,2-dichloroethylene NS NS NS is 1,1-dichloroethylene NS NS NS is 1,1-dichloroethylene NS NS NS is 1,1-dichloroethylene NS NS NS is 1,2-dichloroethylene NS NS NS is 1,2-dichloropropane NS NS NS is 1,2-dichloroethylene	
chloromethane	
Demonmethane	NS NS NS
Chioroethane	
uinhiordivormethane NS NS NS In-dichlorosthylene NS NS NS methylene chloride NS NS NS irans-12-zidichlorosthylene NS NS NS Irans-13-zidichlorospropene NS NS NS Irans-13-zidichlorospropene NS NS NS Irans-13-zidichlorospropene NS NS NS Irans-12-zidichlorospropene NS <td< td=""><td></td></td<>	
methylene chloride	
trans-1,2-dichloroethylene NS NS NS 1,1-dichloroethane NS NS NS 2,2-dichloroptopane NS NS NS 0s1,2-dichloroethylene NS NS NS bromochloromethane NS NS NS chloroform NS NS NS chloroform NS NS NS chloroform NS NS NS carbon tetrachloride NS NS NS carbon tetrachloride NS NS NS carbon tetrachloride NS NS NS benzene NS NS NS l-dichloroptopene NS NS NS dibromochidoromethane NS NS NS dibromochidoromethane NS NS NS toluene NS NS NS NS toluene NS NS NS NS toluene NS NS	
1.1-dichloroethane	
cis 1,2-dichloroethylene NS NS NS bromochloromemethane NS NS NS chloroform NS NS NS NS darbon tertachloride NS NS NS NS 1,1-dichloropropene NS NS NS NS 1,2-dichloropropane NS NS NS NS distrans-1,3-dichloropropene NS NS NS NS tetrachloroethylene NS NS NS NS dibromochloromethane NS NS NS NS dibromobergene NS	
Demonchloromethane	
Chloroform	
Carbon tetrachloride	
1.1-dichloropropene	
Denzene	
1.2-dichloroethylene	
1.2-dichloropropane	NS NS NS
Missing	
Discondichloromethane	
toluene	NS NS NS
Irans-1,3-dichloropropene	
1.1.2-trichloroethane	
tetrachloroethylene NS NS NS 1,3-dichloropropane NS NS NS NS dibromochloromethane NS NS NS NS 1,2-dibromoethane NS NS NS NS 6-thylbenzene NS NS NS NS 1,1,1,2-tetrachloroethane NS NS NS NS 4-thylbenzene NS NS NS NS 5-yelene NS NS NS NS	
dibromochloromethane NS NS NS 1,2-dibromoethane NS NS NS chlorobenzene NS NS NS thlorobenzene NS NS NS chlorobenzene NS NS NS thlybenzene NS NS NS sylene NS NS NS sylene NS NS NS sylene NS NS NS bromoform NS NS NS bromoform NS NS NS bromoform NS NS NS sopropyl benzene (cumene) NS NS NS bromoform NS NS NS sopropyl benzene NS NS NS 1,1,2,2-trichloropropane NS NS NS 1,2,2-trichloropropane NS NS NS 1,3-dichlorobenzene NS NS NS 1,3-dichlorobenzene	NS NS NS
1,2-dibromoethane NS NS NS chlorobenzene NS NS NS stylenes (m/p) NS NS NS chlydbenzene NS NS NS sylenes (m/p) NS NS NS cyvenee NS NS NS styrene NS NS NS bromoform NS NS NS bromobenzene NS NS NS bromobenzene NS NS NS isopropyl benzene (cumene) NS NS NS bromobenzene NS NS NS indictionopropane NS NS NS indictionopropane NS NS NS indictionotoluene NS NS NS indictionotoluene NS NS NS indictionotoluene NS NS NS indictionotoluene NS NS NS indictionotopropoluen	
chlorobenzene NS NS NS 1,1,1,2-tetrachloroethane NS NS NS ethylbenzene NS NS NS xylenes (m/p) NS NS NS xylene NS NS NS Styrene NS NS NS Styrene NS NS NS Styrene NS NS NS bromoform NS NS NS sopropyl benzene (cumene) NS NS NS bromobenzene NS NS NS 1,1,2,2-tetrachloroethane NS NS NS 1,1,2,2-trimetholoroethane NS NS NS propyl benzene NS NS NS chlorotoluene NS NS NS NS NS NS NS 1,3-trimbylbenzene NS NS NS 1,3-trimbylbenzene NS NS NS 1,3-trimbylbenzene <td></td>	
ethylbenzene NS NS NS xylenes (m/p) NS NS NS NS oxylene NS NS NS NS bromoform NS NS NS NS bromobenzene NS NS NS NS bromobenzene NS NS NS NS isopropyl benzene (cumene) NS NS NS NS i-1,2,2-tertachloroethane NS NS NS NS 1,2,2-trichloropropane NS NS NS NS n-propyl benzene NS NS NS NS 2-chlorotoluene NS NS NS NS 1,3-trimethylbenzene NS NS NS NS tert-burlylbenzene NS NS NS NS tert-burlylbenzene NS NS NS NS sec-butylbenzene NS NS NS NS 1,2-dirimothylbenzene NS	
xylenes (m/p) NS NS NS 0-xylene NS NS NS NS styrene NS NS NS NS promobenzene NS NS NS NS promobenzene NS NS NS NS propyl benzene NS NS NS NS	
0-xylene NS NS NS styrene NS NS NS NS bromoform NS NS NS NS bromobenzene NS NS NS NS isopropyl benzene (cumene) NS NS NS NS incombenzene NS NS NS NS 2-chlorotoluene NS NS NS NS 2-chlorotoluene NS NS NS NS 4-chlorotoluene NS NS NS NS 2-chlorotoluene NS NS NS NS 4-chlorotoluene NS NS NS NS 1,2-dibromorachene NS NS NS NS 1,3-dichlorobenzene NS NS NS	
Styrene	
Isopropyl benzene (cumene) NS	NS NS NS
Dromobenzene	
1,1,2,2-tetrachloroethane	
n-propyl benzene NS NS NS NS 1,3-5-trimethylbenzene NS	
2-chlorotoluene NS NS NS 4-chlorotoluene NS NS NS NS 1-3,3-frimethylbenzene NS NS NS NS 1-2,4-trimethylbenzene NS NS NS NS 1-2,4-trimethylbenzene NS NS NS NS 1-2,4-trimethylbenzene NS NS NS NS 1-3-dichlorobenzene NS NS NS NS 1,3-dichlorobenzene NS NS NS NS 1,4-dichlorobenzene NS NS NS NS 1,2-dibromo-3-chloropropane NS NS NS NS NS 1,2-dibromo-1-chloropropane NS NS	
4-chlorotoluene NS NS NS 1,3,5-trimethylbenzene NS NS NS 1,2,4-trimethylbenzene NS NS NS sec-butylbenzene NS NS NS 1,3-dichlorobenzene NS NS NS 1,3-dichlorobenzene NS NS NS 1,3-dichlorobenzene NS NS NS 1,2-dichlorobenzene NS NS NS 1,2-dichlorobenzene NS NS NS 1,2-dichlorobenzene NS NS NS NS NS NS NS	
tert-buty/benzene NS NS NS 1,2,4-trimethylbenzene NS NS NS 1,2,4-trimethylbenzene NS NS NS 1,3-dichlorobenzene NS NS NS 1,3-dichlorobenzene NS NS NS 1,4-dichlorobenzene NS NS NS 1,2-dichlorobenzene NS NS NS 1,2-dibromo-3-chloropropane NS NS NS 1,2,4-trichlorobenzene NS NS NS hexachlorobutadiene NS NS NS naphthalene NS NS NS 1,2,3-trichlorobenzene NS NS NS Methyl tertiary butyl ether NS NS NS Acetone NS NS NS 2-butanone (MEK) NS NS NS 2-bexanone NS NS NS 2-bexanone NS NS NS 2-butanone (MIBK) NS NS	
1,2,4-trimethylbenzene NS NS NS sec-butylbenzene NS NS NS NS 1,3-dichlorobenzene NS NS NS NS 4-isopropyltoluene NS NS NS NS 1,4-dichlorobenzene NS NS NS NS 1,2-dichlorobenzene NS NS NS NS 1,2-dibriorobenzene NS NS NS NS 1,2-dibriorobenzene NS NS NS NS 1,2,4-trichlorobenzene NS NS NS NS hexachlorobutadiene NS NS NS NS naphthalene NS NS NS NS 1,2,3-trichlorobenzene NS NS NS NS Methyl tertiary butyl ether NS NS NS NS Acetone NS NS NS NS NS carbon disulfide NS NS NS NS NS	
sec-butylbenzene NS NS NS 1,3-dichlorobenzene NS NS NS 4-disopropytioluene NS NS NS 1,4-dichlorobenzene NS NS NS 1,2-dichlorobenzene NS NS NS n-butylbenzene NS NS NS 1,2-dichlorobenzene NS NS NS 1,2-dirichlorobenzene NS NS NS 1,2-dirichlorobenzene NS NS NS NS NS NS NS hexachlorobutadiene NS NS NS naphthalene NS NS NS 1,2-3-trichlorobenzene NS NS NS NS NS NS NS Methyl tertiary butyl ether NS NS NS Acetone NS NS NS 2-butanone (MEK) NS NS NS 4-methyl-2-pentanone (MIBK) NS NS NS <td></td>	
1.3-dichlorobenzene NS NS NS 4-isopropytłoluene NS NS NS 1.2-dichlorobenzene NS NS NS 1.2-dichlorobenzene NS NS NS n-butylbenzene NS NS NS 1.2-dichlorobenzene NS NS NS n-butylbenzene NS NS NS 1.2-dirichlorobenzene NS NS NS NS NS NS NS naphthalene NS NS NS Acetone NS NS NS Acetone NS NS NS 2-butanone (MEK) NS	
1.4-dichlorobenzene	
1,2-dichlorobenzene NS NS NS n-butylbenzene NS NS NS NS 1,2-ditromo-3-chloropropane NS NS NS NS 1,2-ditromo-3-chloropropane NS NS NS NS hexachlorobutadiene NS NS NS NS naphthalene NS NS NS NS Acetone NS NS NS NS Acetone NS NS NS NS Acatone NS NS NS NS Abetanone NS NS NS NS A-methyl-2-pentanone (MIBK) NS NS NS NS 2-chloroethyl vinyl ether NS NS NS NS REDUCED GASES (GC) µg/L <t< td=""><td></td></t<>	
n-butybenzene NS	
1.2.4-trichlorobenzene	
hexachlorobutadiene NS NS NS naphthalene NS NS NS NS naphthalene NS NS NS NS 1,2,3-trichlorobenzene NS NS NS NS Methyl tertiary butyl ether NS NS NS NS Acetone NS NS NS NS Carbon disulfide NS NS NS NS 2-butanone (MEK) NS NS NS NS 2-butanone (MEK) NS NS NS NS 2-bexanone NS NS NS NS 2-hexanone NS NS NS NS 2-chloroethyl vinyl ether NS NS NS NS REDUCED GASES (GC) µg/L	
naphthalene NS NS NS 1,2,3-trichlorobenzene NS NS NS NS Methyl tertiary butyl ether NS NS NS NS Acetone NS NS NS NS Acetone NS NS NS NS Acetone NS NS NS NS 2-butanone (MEK) NS NS NS NS 2-butanone (MIBK) NS NS NS NS 4-methyl-2-pentanone (MIBK) NS NS NS NS 2-bexanone NS NS NS NS NS 2-cholrorethyl vinyl ether NS NS <t< td=""><td></td></t<>	
1.2.3-trichlorobenzene	
Acetone NS NS NS Carbon disulfide NS NS NS NS 2-butanone (MEK) NS NS NS NS 4-methyl-2-pentanone (MIBK) NS NS NS NS 2-hexanone NS NS NS NS 2-hexanone NS NS NS NS 2-chloroethyl vinyl ether NS NS NS NS REDUCED GASES (GC) µg/L µg/L <td< td=""><td></td></td<>	
carbon disulfide NS NS NS 2-butanone (MEK) NS NS NS NS Letrahydrofuran (THF) NS NS NS NS 4-methyl-2-pentanone (MIBK) NS NS NS NS 2-hexanone NS NS NS NS 2-hexanone NS NS NS NS Z-chloroethyl vinyl ether NS NS NS NS REDUCED GASES (GC) µg/L µg/L <td></td>	
2-butanone (MEK) NS NS NS NS NS NS (MS tetrahydrofuran (THF) NS	
Internative of the content of the	NS NS NS
2-hexanone	
2-chloroethyl vinyl ether NS NS NS REDUCED GASES (GC)	
Methane NS NS NS Ethane NS NS NS Ethane NS NS NS Ethene NS NS NS Stehene NS NS NS NS NS NS NS NS NS NS NS Metalogen NS NS NS Metalogen NS NS NS Manganese NS NS NS Anions mg/L mg/L mg/L mg/L Manganese NS NS NS NS Anions mg/L mg/L mg/L mg/L mg/L Manganese NS NS NS NS NS NS Allows NS	
Ethane NS NS NS Ethene NS NS NS NS OTHER GASES µg/L NS	
Ethene NS NS NS OTHER GASES μg/L NS NS <t< td=""><td></td></t<>	
OTHER GASES μg/L	
METALS (DISSOLVED) μg/L μg/L μg/L Iron NS NS NS NS NS NS NS NS	μ g/L μ g/L μ g/L
Iron	
Manganese NS NS NS ANIONS mg/L NS NS<	
MAIONS mg/L mg/L mg/L mg/L	
Chloride NS NS NS Nitrite as N NS NS NS Nitrite as N NS NS NS Sulfate as SO ₄ NS NS NS Bromide 1.37 1.53 1.57 Nitrate as N NS NS NS NS NS NS NS NS NS NS NS VOLATILE FATTY ACIDS mg/L mg/L mg/L mg/L Lactic Acid NS NS NS NS Acetic Acid NS NS NS NS Formic Acid NS NS NS NS Butyric Acid NS NS NS NS Pyruvic Acid NS NS NS NS FIELD PARAMETERS PH (SU) 6.48 6.43 6.45	
Nitrite as N NS NS Sulfate as SO ₄ NS NS NS Bromide 1.37 1.53 1.57 Nitrate as N NS NS NS O-Phosphate as P NS NS NS VOLATILE FATTY ACIDS mg/L mg/L mg/L mg/L mg/L ng/L ng/L NS <	
Sulfate as SO ₄ NS NS NS Bromide 1.37 1.53 1.57 Nitrate as N NS NS NS O-Phosphate as P NS NS NS VOLATILE FATTY ACIDS mg/L mg/L mg/L Lactic Acid NS NS NS Acetic Acid NS NS NS Propionic Acid NS NS NS Formic Acid NS NS NS Pyruvic Acid NS NS NS Valeric Acid NS NS NS FIELD PARAMETERS PH (SU) 6.48 6.43 6.45	
Nitrate as N NS NS NS O-Phosphate as P NS NS NS VOLATILE FATTY ACIDS mg/L mg/L mg/L Lactic Acid NS NS NS Acetic Acid NS NS NS Propionic Acid NS NS NS Formic Acid NS NS NS Putyric Acid NS NS NS Valeric Acid NS NS NS Valeric Acid NS NS NS PIELD PARAMETERS pH (SU) 6.48 6.43 6.45	
O-Phosphate as P NS NS NS NS VOLATILE FATTY ACIDS mg/L mg/L mg/L mg/L Lactic Acid NS NS NS NS Acetic Acid NS	
VOLATILE FATTY ACIDS mg/L mg/L mg/L Lactic Acid NS NS NS Acetic Acid NS NS NS Propionic Acid NS NS NS Formic Acid NS NS NS Sutyric Acid NS NS NS Pyruvic Acid NS NS NS Valeric Acid NS NS NS FIELD PARAMETERS PH (SU) 6.48 6.43 6.45	
Lactic Acid NS NS NS Acetic Acid NS NS NS Propionic Acid NS NS NS Formic Acid NS NS NS Butyric Acid NS NS NS Pyruvic Acid NS NS NS Valeric Acid NS NS NS PH (SU) 6.48 6.43 6.45	
Propionic Acid NS NS NS Formic Acid NS NS NS Butyric Acid NS NS NS Pyruvic Acid NS NS NS Valeric Acid NS NS NS FIELD PARAMETERS PH (SU) 6.48 6.43 6.45	NS NS NS
Formic Acid	
Butyric Acid NS NS NS Pyruvic Acid NS NS NS Valeric Acid NS NS NS FIELD PARAMETERS PH (SU) 6.48 6.43 6.45	
Pyruvic Acid NS NS NS Valeric Acid NS NS NS FIELD PARAMETERS PH (SU) 6.48 6.43 6.45	
FIELD PARAMETERS 6.48 6.43 6.45	NS NS NS
pH (SU) 6.48 6.43 6.45	NS NS NS
	6.48 6.43 6.45
Dissolved Oxygen (DO; mg/L) 3.75 3.27 1.66	3.75 3.27 1.66
Redox Potential (ORP; mV) -90.7 -109.4 -111.9	
Conductivity (μS/cm) 403 387 396 Depth to Water (ft-btoc) 11.50 11.47 10.95	

Sample ID	NJ Higher of	PMW-6I	PMW-6I	PMW-6I	PMW-6I	PMW-6I	PMW-6I	PMW-6I	PMW-6I	PMW-6I	PMW-6I	PMW-6I
Lab Sample No.	PQLs and	8533-14	8538-16	8543-10	8546-15	8547-15	8550-17	8551-15	8649-4	8665-7	8690-12	8713-10
Sampling Date	GW Quality	10/26/2011	11/9/2011	11/16/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/27/2012	4/18/2012	5/21/2012	6/11/2012
Time Matrix	2005 Criteria	-46 Water	-33 Water	-26 Water	-24 Water	-21 Water	-19 Water	-14 Water	106 Water	128 Water	161 Water	182 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	50.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
chloromethane vinyl chloride	1	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
bromomethane	10	50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS
chloroethane		50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
trichlorofluoromethane	2000	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,1-dichloroethylene methylene chloride	3	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
trans-1,2-dichloroethylene	100	50.0 U		NS	NS	NS	NS	NS	25.0 U	NS	NS	NS NS
1,1-dichloroethane	50	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
2,2-dichloropropane	70	50.0 U			NS	NS NC	NS NC	NS NO	25.0 U 85.2 D	NS NO	NS NS	NS NO
cis 1,2- dichloroethylene bromochloromethane	70	121 D 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	85.2 D 25.0 U	NS NS	NS NS	NS NS
chloroform	70	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,1,1-trichloroethane	30	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
carbon tetrachloride 1,1-dichloropropene	1	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
benzene	1	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS NS
1,2-dichloroethane	2	50.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
trichloroethylene	1	7910 D	10100 D		NS	NS	NS	NS	6280 D	NS	NS	NS
1,2-dichloropropane dibromomethane	1	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
bromodichloromethane	1	50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS
cis-1,3-dichloropropene	1	50.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
toluene	600	50.0 U			NS	NS NC	NS NC	NS NC	25.0 U	NS NC	NS NC	NS NC
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
tetrachloroethylene	1	50.0 U			NS	NS NS	NS	NS	25.0 U	NS	NS	NS
1,3-dichloropropane		50.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
dibromochloromethane	1	50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS
1,2-dibromoethane chlorobenzene	50	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS
ethylbenzene	700	50.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
xylenes (m/p) o-xylene	1000	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
styrene	100	50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS
bromoform	4	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
isopropyl benzene (cumene)	700	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
bromobenzene	1	50.0 U 50.0 U			NS NS	NS NC	NS NS	NS NO	25.0 U 25.0 U	NS	NS	NS NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	0.03	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
n-propyl benzene	0.00	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
2-chlorotoluene		50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
4-chlorotoluene		50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene tert-butylbenzene		50.0 U			NS NS	NS NS	NS NS	NS	25.0 U	NS	NS NS	NS NS
1,2,4-trimethylbenzene		50.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
sec-butylbenzene		50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,3-dichlorobenzene 4-isopropyltoluene	600	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,4-dichlorobenzene	75	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS NS
1,2-dichlorobenzene	600	50.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
n-butylbenzene	0.00	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	0.02 9	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
hexachlorobutadiene	1	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS NS	NS
naphthalene	300	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,2,3-trichlorobenzene	70	50.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
Methyl tertiary butyl ether Acetone	6000	100.0 U			NS NS	NS NS	NS NS	NS NS	50.0 U	NS NS	NS NS	NS NS
carbon disulfide	700	50.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
2-butanone (MEK)	300	100.0 U	10.0 U	NS	NS	NS	NS	NS	50.0 U	NS	NS	NS
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	100.0 U 100.0 U			NS NS	NS NS	NS NS	NS NS	50.0 U	NS NS	NS NS	NS NS
2-hexanone		100.0 U			NS NS	NS NS	NS NS	NS	50.0 U	NS	NS NS	NS
2-chloroethyl vinyl ether		100.0 U			NS	NS	NS	NS	50.0 U	NS	NS	NS
REDUCED GASES (GC) Methane	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L NS	μg/L	μg/L	μg/L	μg/L	μ g/L NS
Ethane	NA NA	84.2 0.85 J	94.4 4.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	77.6 4.0 U	NS NS	NS NS	NS NS
Ethene	NA	0.83 J	5.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	NA ug/l	0.002 U			NS ug/l	NS ug/l	NS ug/l	NS ug/l	0.01 U	0.008 U		NS ug/l
METALS (DISSOLVED) Iron	μ g/L 300	μg/L NS	μg/L 6330 D	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	50	NS	59.7 D		NS	NS NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U			NS NS	NS NS	NS NS	NS NS	NS 10.9	NS NS	NS 12.2	NS 12.2
Chloride Nitrite as N	250 1	18.6 0.2 U	17.4 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	10.8 0.2 U	NS NS	12.3 0.2 U	12.3 0.2 U
Sulfate as SO ₄	250	102 E			NS	NS	NS	NS	50.4 D	NS	67.6 E	70.6 E
Bromide	NA	0.55	0.52	5.83	15.3	11.4	9.05	19.8	1.54	NS	1.79	1.60
Nitrate as N	10	0.2 U			NS	NS	NS	NS	0.2 U	NS	0.2 U	
O-Phosphate as P VOLATILE FATTY ACIDS	NA	0.2 U			NS mg/l	NS mg/l	NS mg/l	NS mg/l	0.2 U	NS mg/l	0.2 U	
Lactic Acid	NA	mg/L NS	mg/L 1.0 U	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Acetic Acid	NA NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Propionic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid Butyric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Pyruvic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Valeric Acid	NA NA	NS	1.0 U		NS	NS	NS	NS	NS	NS	NS	NS
FIELD PARAMETERS												
pH (SU)	NA NA	4.71	4.27	NS NS	NS NS	NS NC	NS NS	NS NC	4.51	4.08	4.11	4.48
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	16.60 0.16	16.03 0.34	NS NS	NS NS	NS NS	NS NS	NS NS	13.19 0.96	14.08 0.75	14.48 0.22	15.41 2.75
Redox Potential (ORP; mV)	NA NA	77.7	-33.4	NS	NS	NS	NS	NS	71.8	112.3	74.7	8.5
Conductivity (µS/cm)	NA	346	248	NS	NS	NS	NS	NS	174	213	214	219
Depth to Water (ft-btoc)	NA	7.14	7.35	NS	NS	NS	NS	NS	7.60	8.10	NS	8.13

Table D.18. PMW-6I: Analytical and Field Parameter Results

Sample ID	PMW-6I	PMW-6I	PMW-6I
Lab Sample No.	8717-15	0/45/0040	0/40/0040
Sampling Date Time	6/13/2012 184	6/15/2012 186	6/19/2012 190
Matrix	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS	μg/L NS	μg/L NS
chloromethane	NS	NS	NS
vinyl chloride bromomethane	NS NS	NS NS	NS NS
chloroethane	NS	NS	NS
trichlorofluoromethane 1,1-dichloroethylene	NS NS	NS NS	NS NS
methylene chloride	NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	NS NS	NS NS	NS NS
2,2-dichloropropane	NS	NS	NS
cis 1,2- dichloroethylene bromochloromethane	NS NS	NS NS	NS NS
chloroform	NS	NS	NS
1,1,1-trichloroethane carbon tetrachloride	NS NS	NS NS	NS NS
1,1-dichloropropene	NS	NS	NS
benzene 1,2-dichloroethane	NS NS	NS NS	NS NS
trichloroethylene	NS	NS	NS
1,2-dichloropropane dibromomethane	NS NS	NS NS	NS NS
bromodichloromethane	NS	NS NS	NS NS
cis-1,3-dichloropropene	NS NS	NS NS	NS NS
toluene trans-1,3-dichloropropene	NS NS	NS NS	NS NS
1,1,2-trichloroethane	NS NS	NS	NS
tetrachloroethylene 1,3-dichloropropane	NS NS	NS NS	NS NS
dibromochloromethane	NS	NS	NS
1,2-dibromoethane chlorobenzene	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	NS	NS	NS
ethylbenzene xylenes (m/p)	NS NS	NS NS	NS NS
o-xylene	NS	NS	NS
styrene bromoform	NS NS	NS NS	NS NS
isopropyl benzene (cumene)	NS	NS NS	NS
bromobenzene	NS NS	NS	NS NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	NS NS	NS NS	NS NS
n-propyl benzene	NS	NS	NS
2-chlorotoluene 4-chlorotoluene	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene	NS	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	NS NS	NS NS
sec-butylbenzene	NS	NS	NS
1,3-dichlorobenzene 4-isopropyltoluene	NS NS	NS NS	NS NS
1,4-dichlorobenzene	NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	NS	NS	NS
1,2,4-trichlorobenzene hexachlorobutadiene	NS NS	NS NS	NS NS
naphthalene	NS	NS	NS
1,2,3-trichlorobenzene	NS NS	NS NS	NS NS
Methyl tertiary butyl ether Acetone	NS	NS NS	NS NS
carbon disulfide	NS NC	NS NS	NS NS
2-butanone (MEK) tetrahydrofuran (THF)	NS NS	NS NS	NS NS
4-methyl-2-pentanone (MIBK)	NS	NS	NS
2-hexanone 2-chloroethyl vinyl ether	NS NS	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L
Methane Ethane	NS NS	NS NS	NS NS
Ethene	NS	NS	NS
OTHER GASES Hydrogen	μg/L NS	μg/L NS	μ g/L NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L
Iron	NS NS	NS NS	NS NS
Manganese ANIONS	MS/L	NS mg/L	MS mg/L
Fluoride	NS	NS	NS
Chloride Nitrite as N	NS NS	NS NS	NS NS
Sulfate as SO ₄	NS	NS	NS
Bromide Nitrate as N	1.59	2.09	2.92
Nitrate as N O-Phosphate as P	NS NS	NS NS	NS NS
VOLATILE FATTY ACIDS	mg/L	mg/L	mg/L
Lactic Acid Acetic Acid	NS NS	NS NS	NS NS
Propionic Acid	NS	NS	NS
Formic Acid Butyric Acid	NS NS	NS NS	NS NS
Pyruvic Acid	NS	NS	NS
Valeric Acid FIELD PARAMETERS	NS	NS	NS
pH (SU)	4.49	4.48	4.60
Temperature (°C)	14.94	15.59	15.36
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	3.20 5.8	2.87 -14.7	1.43 -5.1
Conductivity (µS/cm)	220	221	223
Depth to Water (ft-btoc)	8.01	8.18	8.11

<u> ו abie D</u>	<u>. 1 J.</u>	I IVIV	<u> </u>	Anai	ytica	i alla			lanic	toi it		
Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-6D 8533-16	PMW-6D 8538-17	PMW-6D 8543-11	PMW-6D 8546-16	PMW-6D 8547-16	PMW-6D 8550-18	PMW-6D 8551-16	PMW-6D 8649-5	PMW-6D 8690-13	PMW-6D 8713-11	PMW-6D 8717-16
Sampling Date	GW Quality	10/26/2011	11/9/2011	11/16/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/27/2012	5/21/2012	6/11/2012	6/13/2012
Time		-46	-33	-26	-24	-21	-19	-14	106	161	182	184
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μg/L 25.0 U	μ g/L 5.0 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 25.0 U	μg/L NS	μg/L NS	μg/L NS
chloromethane	1000	25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
vinyl chloride	1	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
bromomethane	10	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
chloroethane trichlorofluoromethane	2000	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS
1,1-dichloroethylene	1	25.0 U		NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
methylene chloride	3	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
trans-1,2-dichloroethylene	100 50	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
1,1-dichloroethane 2,2-dichloropropane	50	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
cis 1,2- dichloroethylene	70	39.8 D		NS	NS	NS	NS	NS	89.9 D	NS	NS	NS
bromochloromethane		25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
chloroform 1,1,1-trichloroethane	70 30	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
carbon tetrachloride	1	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
1,1-dichloropropene		25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
benzene	1	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
1,2-dichloroethane	2	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
trichloroethylene 1,2-dichloropropane	1	352 D 25.0 U			NS NS	NS NS	NS NS	NS NS	1790 D 25.0 U	NS NS	NS NS	NS NS
dibromomethane	<u>'</u>	25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
bromodichloromethane	1	25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
cis-1,3-dichloropropene	1	25.0 U	5.0 U		NS	NS	NS	NS	25.0 U	NS	NS	NS
toluene	600	25.0 U			NS NC	NS NS	NS	NS NC	25.0 U		NS	NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
tetrachloroethylene	1	25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U		NS NS	NS NS
1,3-dichloropropane		25.0 U	5.0 U	NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
dibromochloromethane	1	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
1,2-dibromoethane chlorobenzene	50	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS
ethylbenzene	700	25.0 U			NS	NS	NS	NS NS	25.0 U		NS	NS
xylenes (m/p)	1000	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
o-xylene		25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
styrene bromoform	100	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS
isopropyl benzene (cumene)	700	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
bromobenzene	7.00	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
1,1,2,2-tetrachloroethane	1	25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,2,3-trichloropropane	0.03	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
n-propyl benzene 2-chlorotoluene		25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
4-chlorotoluene		25.0 U			NS	NS NS	NS	NS	25.0 U		NS NS	NS
1,3,5-trimethylbenzene		25.0 U		NS	NS	NS	NS	NS	25.0 U	NS	NS	NS
tert-butylbenzene		25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,2,4-trimethylbenzene sec-butylbenzene		25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
1,3-dichlorobenzene	600	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
4-isopropyltoluene		25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
1,4-dichlorobenzene	75	25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,2-dichlorobenzene	600	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NC	25.0 U 25.0 U		NS NS	NS NS
n-butylbenzene 1,2-dibromo-3-chloropropane	0.02	25.0 U 25.0 U			NS NS	NS	NS	NS NS	25.0 U 25.0 U		NS	NS
1,2,4-trichlorobenzene	9	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
hexachlorobutadiene	1	25.0 U			NS	NS	NS	NS	25.0 U		NS	NS
naphthalene	300	25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS
Acetone	6000	50.0 U	10.0 U	NS	NS	NS	NS	NS	50.0 U	NS	NS	NS
carbon disulfide	700	25.0 U			NS	NS	NS	NS	25.0 U	NS	NS	NS
2-butanone (MEK)	300	29.9 J		NS	NS NC	NS NS	NS	NS NC	50.0 U		NS	NS
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	50.0 U 50.0 U		NS NS	NS NS
2-hexanone		50.0 U			NS NS	NS NS	NS	NS NS	50.0 U		NS	NS
2-chloroethyl vinyl ether		50.0 U	10.0 U	NS	NS	NS	NS	NS	50.0 U	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NA NA	284 1.24 J	278 0.85 J	NS NS	NS NS	NS NS	NS NS	NS NS	341 0.46 J	NS NS	NS NS	NS NS
Ethene	NA NA	0.89 J	5.0 U		NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	0.005 J	0.004 J	NS	NS	NS	NS	NS	0.01 U	NS	NS	NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	19200 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U			NS	NS	NS NS	NS	NS	NS	NS	NS
Chloride	250	21.9	26.2	NS	NS	NS	NS	NS	20.8	23.0 E	23.0 E	
Nitrite as N	1 050	0.2 U			NS NC	NS NS	NS	NS NC	0.2 U	0.2 U		
Sulfate as SO ₄ Bromide	250	109 E			NS 4.07	NS 2.09	NS 4.44	NS 4.43	103 D			
Nitrate as N	NA 10	0.98 0.2 U	0.97 0.2 U	0.97 NS	1.07 NS	3.08 NS	1.11 NS	1.13 NS	1.90 0.2 U	1.69 0.2 U	1.76 0.2 U	1.41 NS
O-Phosphate as P	NA NA	0.2 U			NS	NS	NS	NS	0.2 U			
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS	1.0 U	110	NS NC	NS	NS	NS NC	NS NC	NS	NS NC	NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NA NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)	NA.	4.96	4.76	NS	NS	NS	NS	NS	5.28	4.91	5.23	5.23
Temperature (°C)	NA NA	4.96 15.84	15.50	NS NS	NS NS	NS NS	NS NS	NS NS	13.41	14.91	15.67	15.30
Dissolved Oxygen (DO; mg/L)	NA NA	0.17	0.57	NS	NS	NS	NS	NS	0.99	0.32	2.37	3.01
Redox Potential (ORP; mV)	NA	76.4	-49.1	NS	NS	NS	NS	NS	1.1	17.3	-27.0	-27.3
Conductivity (µS/cm)	NA	442	406	NS	NS	NS	NS	NS	448	322	309	299
Depth to Water (ft-btoc)	NA	9.65	9.89	NS	NS	NS	NS	NS	7.81	NS	9.95	9.68

Sample ID Lab Sample No.	PMW-6D	PMW-6D
Sampling Date	6/15/2012	6/19/2012
Time Matrix	186 Weter	190 Water
VOCS (GC/MS)	Water μg/L	Water μg/L
dichlorodifluoromethane	NS NS	NS NS
chloromethane	NS	NS NC
vinyl chloride bromomethane	NS NS	NS NS
chloroethane	NS	NS
trichlorofluoromethane 1,1-dichloroethylene	NS	NS
methylene chloride	NS NS	NS NS
trans-1,2-dichloroethylene	NS	NS
1,1-dichloroethane 2,2-dichloropropane	NS NS	NS NS
cis 1,2- dichloroethylene	NS	NS
bromochloromethane	NS	NS
chloroform 1,1,1-trichloroethane	NS NS	NS NS
carbon tetrachloride	NS	NS
1,1-dichloropropene	NS	NS NC
benzene 1,2-dichloroethane	NS NS	NS NS
trichloroethylene	NS	NS
1,2-dichloropropane	NS NS	NS NS
dibromomethane bromodichloromethane	NS NS	NS NS
cis-1,3-dichloropropene	NS	NS
toluene trans-1,3-dichloropropene	NS NS	NS NS
1,1,2-trichloroethane	NS NS	NS NS
tetrachloroethylene	NS	NS
1,3-dichloropropane dibromochloromethane	NS NS	NS NS
1,2-dibromoethane	NS	NS
chlorobenzene	NS NS	NS NS
1,1,1,2-tetrachloroethane ethylbenzene	NS NS	NS NS
xylenes (m/p)	NS	NS
o-xylene styrene	NS NS	NS NS
bromoform	NS	NS
isopropyl benzene (cumene)	NS	NS
bromobenzene 1,1,2,2-tetrachloroethane	NS NS	NS NS
1,2,3-trichloropropane	NS	NS
n-propyl benzene	NS	NS
2-chlorotoluene 4-chlorotoluene	NS NS	NS NS
1,3,5-trimethylbenzene	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	NS NS
sec-butylbenzene	NS	NS
1,3-dichlorobenzene	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	NS NS
1,2-dichlorobenzene	NS	NS
n-butylbenzene	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS	NS NS
hexachlorobutadiene	NS	NS
naphthalene	NS NS	NS NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	NS	NS
Acetone	NS	NS
carbon disulfide 2-butanone (MEK)	NS NS	NS NS
tetrahydrofuran (THF)	NS NS	NS NS
4-methyl-2-pentanone (MIBK)	NS	NS
2-hexanone 2-chloroethyl vinyl ether	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L
Methane	NS NC	NS NC
Ethane Ethene	NS NS	NS NS
OTHER GASES	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	NS μg/L	NS μg/L
Iron	μg/L NS	μg/L NS
Manganese	NS	NS
ANIONS Fluoride	mg/L NS	mg/L NS
Fluoride Chloride	NS NS	NS NS
Nitrite as N	NS	NS
Sulfate as SO ₄	NS 4.70	NS 4.50
Bromide Nitrate as N	1.79 NS	1.56 NS
O-Phosphate as P	NS	NS
VOLATILE FATTY ACIDS	mg/L	mg/L
Lactic Acid Acetic Acid	NS NS	NS NS
Propionic Acid	NS	NS
Formic Acid	NS NS	NS NS
Butyric Acid Pyruvic Acid	NS NS	NS NS
Valeric Acid	NS	NS
FIELD PARAMETERS	5.40	E 40
pH (SU) Temperature (°C)	5.18 15.82	5.18 15.35
Dissolved Oxygen (DO; mg/L)	2.83	1.16
Redox Potential (ORP; mV)	-46.6	-41.8 200
Conductivity (µS/cm) Depth to Water (ft-btoc)	294 9.60	290 9.60

Sample ID	NJ Higher of POLs and	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S	PMW-7S
Lab Sample No. Sampling Date	GW Quality	8533-11 10/26/2011	8538-18 11/9/2011	8543-12 11/16/2011	8546-17 11/18/2011	8547-17 11/21/2011	8550-19 11/23/2011	8551-17 11/28/2011	8556-1 12/6/2011	8561-4 12/12/2011	8573-3 12/28/2011	8576-7 1/5/2012	8577-7 1/9/2012	8581-7 1/12/2012
Time	OW Quality	-46	-33	-26	-24	-21	-19	-14	-6	0	16	24	28	31
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride bromomethane	10	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
chloroethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichlorofluoromethane	2000	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene	1	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride	3	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane	30	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS
cis 1,2- dichloroethylene	70	130 D	142 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform	70	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	30 1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride 1,1-dichloropropene	1	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
benzene	1	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS
1,2-dichloroethane	2	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene	1	8860 D	10700 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	1	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane		50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane cis-1,3-dichloropropene	1	50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
toluene	600	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene	1	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2-trichloroethane	3	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrachloroethylene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane	—	50.0 U	25.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS NC	NS NC	NS
dibromochloromethane	1	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromoethane chlorobenzene	50	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	50.0 U		NS	NS	NS	NS	NS	NS NS	NS	NS	NS NS	NS NS	NS
ethylbenzene	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	1000	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene bromoform	100 4	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
isopropyl benzene (cumene)	700	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromobenzene	700	50.0 U	25.0 U	NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	0.03	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-chlorotoluene		50.0 U 50.0 U		NS NC	NS NC	NS NS	NS NC	NS NS	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS
1,3,5-trimethylbenzene tert-butylbenzene		50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS
1,2,4-trimethylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS
sec-butylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	75	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	600	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS
1,2,4-trichlorobenzene	9	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
hexachlorobutadiene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
naphthalene	300	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	70 6000	50.0 U 100.0 U	25.0 U 50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Acetone carbon disulfide	700	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS
2-butanone (MEK)	300	100.0 U	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	10	100.0 U	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)		100.0 U	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone		100.0 U	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether REDUCED GASES (GC)		100.0 U	50.0 U	NS	NS 	NS.	NS	NS	NS	NS	NS 	NS 	NS	NS
Methane	μg/L NA	μg/L 115	μg/L 120	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μ g/L NS	μg/L NS	μg/L NS
Ethane	NA NA	4.0 U	4.0 U	NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
Ethene	NA.	5.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA.	0.0045 J	0.0062 J	NS	NS	NS	NS	NS	NS	0.0027 J	0.0080 U	0.0049 J	0.0061 J	0.008
METALS (DISSOLVED)	μg/L	μg/L NS	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L	μ g/L NS	μg/L NS	μg/L NS
Iron Manganese	300 50	NS NS	6590 D 73.7 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic	30	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	2.48 3.18	NS NS	NS NS	NS NS	NS NS	NS NS
Alkalinity as CaCO3	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3.18 NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride	250	17.8	18.8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Nitrite as N	1	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Sulfate as SO ₄	250	63.0 E		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Bromide	NA	0.56	0.55	27.4	34.7	8.49	22.3	33.5	NS	NS	NS	NS	NS	NS
Nitrate as N O-Phosphate as P	10 NA	0.2 U 0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
VOLATILE FATTY ACIDS	INA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS NS	1.0 U	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Acetic Acid	NA.	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Propionic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA.	NS	1.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS	NS NC	NS NC
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS	1974	.40	0	.40	.40	.10	.40	.40	.40	.40	.40	.10	.40	140
pH (SU)	NA	4.88	4.81	NS	NS	NS	NS	NS	NS	4.67	4.59	4.59	4.57	4.77
Temperature (°C)	NA.	16.67	17.36	NS	NS	NS	NS	NS	NS	15.64	15.01	14.6	14.8	14.38
Dissolved Oxygen (DO; mg/L)	NA	0.35	1.10	NS	NS	NS	NS	NS	NS	0.33	0.01	0.11	0.11	0.24
Redox Potential (ORP; mV)	NA	-37.8	12.4	NS	NS	NS	NS	NS	NS	21.6	99.5	121.8	196.9	-56.5
Conductivity (µS/cm)	NA NA	234	244 6.25	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	401 5.82	203	187.5 5.85	187.4 6.13	194 5.96
Depth to Water (ft-btoc) qPCR	NA	6.2 cells/mL	6.25 cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	5.82 cells/mL	5.81 cells/mL	5.85 cells/mL	6.13 cells/mL	5.96 cells/mL
DHC	NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS

CI- ID	_	D184/ 70	D181/ 70	D181/ 70	9. AII		Jui ui	D1011 70	DMM 70	D101/ 70	DI 111 70	D1844 70	DI 814 70	D1844 70
Sample ID Lab Sample No.	t	PMW-7S 8583-1	PMW-7S 8596-4	PMW-7S 8647-17	PMW-7S 8652-19	PMW-7S 8665-8	PMW-7S 8690-2	PMW-7S 8698-8	PMW-7S 8708-7	PMW-7S 8713-6	PMW-7S 8717-17	PMW-7S	PMW-7S	PMW-7S 8767-4
Sampling Date	!	1/16/2012	2/7/2012	3/26/2012	4/3/2012	4/18/2012	5/21/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012	7/30/2012
Time Matrix	-	35 Water	57 Water	105 Water	113 Water	128 Water	161 Water	170 Water	178 Water	182 Water	184 Water	186 Water	190 Water	231 Water
VOCS (GC/MS)		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
vinyl chloride	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	105 U
bromomethane chloroethane	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
trichlorofluoromethane	Ħ	NS	NS	25.0 U	NS	NS NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	105 U
1,1-dichloroethylene	\vdash	NS	NS	4.8 JD	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
methylene chloride trans-1,2-dichloroethylene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,1-dichloroethane	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
2,2-dichloropropane cis 1,2- dichloroethylene	H	NS NS	NS NS	25.0 U 184 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 76.9 JD
bromochloromethane	Ħ	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
chloroform	\vdash	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,1,1-trichloroethane carbon tetrachloride	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,1-dichloropropene	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
benzene 1,2-dichloroethane	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
trichloroethylene	Ħ	NS	NS NS	9870 D	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS	2880 D
1,2-dichloropropane	Н	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
dibromomethane bromodichloromethane	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
cis-1,3-dichloropropene	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
toluene trans-1,3-dichloropropene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,1,2-trichloroethane	Ħ	NS	NS NS	25.0 U	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS	105 U
tetrachloroethylene	H	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,3-dichloropropane dibromochloromethane	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,2-dibromoethane	Ħ	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
chlorobenzene 1,1,1,2-tetrachloroethane	${}^{+}$	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
ethylbenzene	Ħ	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	105 U
xylenes (m/p)	A	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
o-xylene styrene	${}^{+}$	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
bromoform	Ц	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
isopropyl benzene (cumene) bromobenzene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,1,2,2-tetrachloroethane	Ħ	NS	NS NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	105 U
1,2,3-trichloropropane	Н	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
n-propyl benzene 2-chlorotoluene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
4-chlorotoluene	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,3,5-trimethylbenzene tert-butylbenzene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,2,4-trimethylbenzene	Ħ	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U
sec-butylbenzene	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,3-dichlorobenzene 4-isopropyltoluene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,4-dichlorobenzene	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
1,2-dichlorobenzene n-butylbenzene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,2-dibromo-3-chloropropane	H	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U
1,2,4-trichlorobenzene	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
hexachlorobutadiene naphthalene	H	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U
1,2,3-trichlorobenzene	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
Methyl tertiary butyl ether	П	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	105 U
Acetone carbon disulfide	H	NS NS	NS NS	50.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	210 U 105 U
2-butanone (MEK)	П	NS	NS	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	210 U
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	H	NS NS	NS NS	50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	210 U 210 U
2-hexanone	П	NS	NS	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	210 U
2-chloroethyl vinyl ether	Ц	NS	NS	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	210 U
REDUCED GASES (GC) Methane		μg/L NS	μg/L NS	μg/L 76.0	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 70.2
Ethane		NS	NS	4.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	4.0 U
Ethene OTHER GASES		NS μg/L	NS μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	5.0 U μg/L
Hydrogen	U	μg/L 0.008 U	μg/L 0.008 U	μg/L 0.084	μg/L 0.008 U			μg/L 0.057	μg/L 0.009 U		μg/L NS	μg/L NS	μg/L NS	μg/L 0.009 U
METALS (DISSOLVED)		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	\dashv	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
METALS (TOTAL) Iron	4	μ g/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	_+	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
GROUNDWATER CHEMISTRY		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	\dashv	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Alkalinity as CaCO3		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS Eluorido		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	_+	NS NS	NS NS	NS 16.6	NS NS	NS NS	NS 10.5	NS 10.8	NS 10.9	NS 11.9	NS NS	NS NS	NS NS	0.2 U 10.6
Nitrite as N	1	NS	NS	0.2 U	NS	NS	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS	0.2 U
Sulfate as SO ₄	_	NS	NS	55.9 E	NS	NS NC	66.6 E	70.8 E	70.7 E		NS 4.00	NS 2.22	NS 2.44	80.8 E
Bromide Nitrate as N	\dashv	NS NS	NS NS	1.29 0.2 U	NS NS	NS NS	1.89 0.2 U	1.27 0.2 U	1.28 0.2 U	1.40 0.2 U	1.88 NS	3.23 NS	2.44 NS	2.93 0.2 U
O-Phosphate as P	コ	NS	NS	0.2 U	NS	NS	0.2 U	0.2 U	0.2 U	0.2 U	NS	NS	NS	0.2 U
VOLATILE FATTY ACIDS Lactic Acid	-	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Acetic Acid	_†	NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS NS	NS
Propionic Acid	I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid Butyric Acid	\dashv	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Pyruvic Acid		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid FIELD PARAMETERS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)		4.88	4.51	4.61	4.64	3.99	3.75	3.85	4.11	4.23	4.17	4.24	4.24	4.12
Temperature (°C)		13.31	14.13	13.38	13.88	13.25	15.13	15.95	16.57	16.75	16.68	16.53	16.61	18.58
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)		0.93	3.89	0.15	0.61 -65.4	0.75 172.6	0.41 148.2	0.73 -7.3	1.15 122.5	0.35	0.17 150.5	1.30 121.2	0.62	0.12 -75.1
Conductivity (µS/cm)		-30.8 206	96.1 176	44.9 237	-65.4 195	172.6 225	148.2 224	-7.3 233	122.5 223	147.8 229	150.5 229	121.2 230	117.1 230	-75.1 213
Depth to Water (ft-btoc)	I	6.05	6.15	6.60	6.90	6.95	NS	NS	NS	7.10	6.76	6.95	6.85	NS
gPCR DHC	4	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS
5.10		110	140	140	110	110	110	110	INU	INU	110	140	140	140

Committee ID	D144 70	D1 84 70	PMW-7S	PMW-7S	Diany C	D1 81/ 70	PMW-7S	PMW-7S	PMW-7S	D184/ 70	PMW-7S	D144/70	D1411 70
Sample ID Lab Sample No.	PMW-7S	PMW-7S 8807-2	8818-2	8837-1	PMW-7S 8839-5	PMW-7S 8840-5	8850-5	8852-5	8869-5	PMW-7S 8876-5	8883-1	PMW-7S 8896-2	PMW-7S 8905-2
Sampling Date	8/16/2012	8/30/2012	9/12/2012	10/1/2012	10/2/2012	10/3/2012	10/5/2012	10/23/2012	11/15/2012	12/4/2012	12/18/2012	1/17/2013	2/7/2013
Time Matrix	248 Water	262 Water	275 Water	294 Water	295 Water	296 Water	298 Water	316 Water	339 Water	358 Water	372 Water	402 Water	423 Water
VOCS (GC/MS)	μg/L												
dichlorodifluoromethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
chloromethane	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
vinyl chloride bromomethane	NS NS	42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U	25.0 U						
chloroethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
trichlorofluoromethane 1,1-dichloroethylene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
methylene chloride	NS NS	42.0 U	NS NS	NS NS	5.0 U	5.0 U	25.0 U						
trans-1,2-dichloroethylene	NS	42.0 U	NS	NS	0.6 J	5.0 U	25.0 U						
1,1-dichloroethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	42.0 U 73.1 D	NS NS	NS NS	5.0 U 84.7	5.0 U 82.2	25.0 U 55.1 D						
bromochloromethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
chloroform	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,1,1-trichloroethane carbon tetrachloride	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
1,1-dichloropropene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
benzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,2-dichloroethane trichloroethylene	NS NS	42.0 U 2990 D	NS NS	NS NS	5.0 U 3060 D	5.0 U 3230 D	25.0 U 2280 D						
1,2-dichloropropane	NS	42.0 U	NS	NS	5.0 U		25.0 U						
dibromomethane	NS	42.0 U	NS	NS	5.0 U		25.0 U						
bromodichloromethane cis-1,3-dichloropropene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
toluene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
trans-1,3-dichloropropene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,1,2-trichloroethane tetrachloroethylene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
1,3-dichloropropane	NS NS	42.0 U	NS NS	NS NS	5.0 U	5.0 U	25.0 U						
dibromochloromethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,2-dibromoethane chlorobenzene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
1,1,1,2-tetrachloroethane	NS NS	42.0 U	NS NS	NS NS	5.0 U	5.0 U	25.0 U						
ethylbenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
xylenes (m/p) o-xylene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
styrene	NS NS	42.0 U	NS NS	NS NS	5.0 U	5.0 U	25.0 U						
bromoform	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
isopropyl benzene (cumene)	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
bromobenzene 1,1,2,2-tetrachloroethane	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
1,2,3-trichloropropane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
n-propyl benzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
2-chlorotoluene 4-chlorotoluene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
1,3,5-trimethylbenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
tert-butylbenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,2,4-trimethylbenzene sec-butylbenzene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
1,3-dichlorobenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
4-isopropyltoluene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,4-dichlorobenzene 1,2-dichlorobenzene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
n-butylbenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,2-dibromo-3-chloropropane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,2,4-trichlorobenzene hexachlorobutadiene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U						
naphthalene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
1,2,3-trichlorobenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
Methyl tertiary butyl ether Acetone	NS NS	42.0 U 84.0 U	NS NS	NS NS	5.0 U 10.0 U	5.0 U 10.0 U	25.0 U 50.0 U						
carbon disulfide	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U						
2-butanone (MEK)	NS	84.0 U	NS	NS	10.0 U	10.0 U	50.0 U						
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS NS	84.0 U 84.0 U	NS NS	NS NS	10.0 U	10.0 U 10.0 U	50.0 U 50.0 U						
2-hexanone	NS	NS	NS	NS	NS	NS NS	NS NS	84.0 U	NS	NS	10.0 U	10.0 U	50.0 U
2-chloroethyl vinyl ether	NS	84.0 U	NS	NS	10.0 U	10.0 U	50.0 U						
REDUCED GASES (GC) Methane	μg/L NS	μg/L 231	μg/L NS	μg/L NS	μg/L 258	μg/L 200	μg/L 93.4						
Ethane	NS	2.0 J	NS	NS	3.02 J	2.19 J	4.0 U						
Ethene	NS	4.5 J	NS	NS	10.4	5.58	2.89 J						
OTHER GASES Hydrogen	μg/L 0.009 U	μg/L 0.009 U	μg/L 0.009 U	μg/L 0.009 U	μg/L 0.0077 J	μg/L 0.0042 J	μg/L 0.009 U	μg/L 0.009 U	μg/L 0.0034 J	μg/L 0.0042 J	μg/L 0.0029 J	μg/L 0.03 U	μg/L 0.0016 J
METALS (DISSOLVED)	0.009 U μg/L	0.009 U μg/L	0.009 U μg/L	0.009 U μg/L	0.0077 J μg/L	0.0042 J μg/L	0.009 U μg/L	0.009 U μg/L	0.0034 J μg/L	0.0042 J μg/L	0.0029 J μg/L	0.03 U μg/L	0.0016 J μg/L
Iron	NS	6930 D	NS	NS	6440 D	NS	NS						
Manganese Arsenic	NS NS	55.7 D 2.5 U	NS NS	NS NS	63.3 D NS	NS NS	NS NS						
METALS (TOTAL)	μg/L												
Iron	NS	6400 D	NS	NS									
Manganese GROUNDWATER CHEMISTRY	NS mg/L	63.1 D mg/L	NS mg/L	NS mg/L									
Total Organic Carbon (TOC)	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS NS	1.26 J	2.07
Dissolved Organic Carbon (DOC)	NS												
Alkalinity as CaCO3 ANIONS	NS mg/L	4.16 mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L						
Fluoride	Mg/L NS	0.14 J	mg/L 0.14 J	1.0 U	1.0 U	1.0 U	1.0 U	0.15 J	Mg/L NS	0.29	0.2 U	0.2 U	0.2 U
Chloride	NS	24.2	23.0	30.7	19.1	9.77	15.9	16.8	NS	19.5	19.7	20.1	16.7
Nitrite as N	NS NC	0.2 U	0.2 U		1.0 U	1.0 U 28.3 D	1.0 U	0.2 U	NS NC	0.2 U 47.0 F	0.2 U	0.2 U	0.2 U
Sulfate as SO ₄ Bromide	NS NS	76.6 E	66.5 E	109 D 0.55 J	87.8 D	28.3 D 42.1	56.7 D	49.4 E 10.10	NS NS	47.0 E 10.1	47.5 E 5.80	62.2 E 4.64	40.8 E 3.11
Nitrate as N	NS	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS NS	0.2 U	0.2 U	0.2 U	0.2 U
O-Phosphate as P	NS	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U
VOLATILE FATTY ACIDS	mg/L NS	0.009 U NS	mg/L	mg/L NS	0.2 U	mg/L 1.0 U	mg/L						
Lactic Acid Acetic Acid	NS NS	NS NS	1.0 U 0.24 J	NS NS	1.0 U	1.0 U	1.0 U 1.0 U						
Propionic Acid	NS	NS	1.0 U	NS	1.0 U	1.0 U	1.0 U						
Formic Acid	NS	NS NC	1.0 U		NS NC	NS	NS	NS	NS NC	NS NC	1.0 U	1.0 U	1.0 U
Butyric Acid Pyruvic Acid	NS NS	NS NS	1.0 U 1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	1.0 U	1.0 U 1.0 U
Valeric Acid	NS	NS	1.0 U		NS	NS	NS	NS	NS	NS	1.0 U		1.0 U
FIELD PARAMETERS													
pH (SU) Temperature (°C)	4.24 18.08	4.35 17.96	4.88 18.32	4.53 18.07	4.50 18.07	17.79	4.86 18.14	4.94 17.08	5.09 13.62	5.00 16.24	4.77 15.82	5.10 14.25	5.17 12.24
Dissolved Oxygen (DO; mg/L)	0.30	0.50	3.46	0.74	7.79	0.13	0.19	0.26	0.56	0.13	0.52	0.40	0.78
Redox Potential (ORP; mV)	-53.4	-58.1	34.1	62.9	68.4	42.4	25.4	-52.8	25	-106.1	43.0	-48.7	-127.8
Conductivity (µS/cm) Depth to Water (ft-btoc)	264 7.30	266 7.48	257 7.29	288 7.48	734 7.48	232 7.80	322 7.38	225 7.61	157 7.04	240 7.41	220 7.26	213 NS	230 8.05
qPCR	7.30 cells/mL	7.48 cells/mL	7.29 cells/mL	7.48 cells/mL	7.48 cells/mL	7.80 cells/mL	7.38 cells/mL	7.61 cells/mL	7.04 cells/mL	7.41 cells/mL	7.26 cells/mL	cells/mL	ells/mL
DHC	NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	2.49E+05	NS NS

Table D.20. PMW-7S: Analytical and Field Parameter Results

		\ I	D1414.70			D104/ 70		D1 04/ 7/	-	G. G.		PMW-79	<u>:</u>
Sample ID Lab Sample No.	PMW-7S 8929-2		PMW-7S 8954-6	_	PMW-7S 8977-6	PMW-75 8993-1	,	PMW-75 9017-1	,	PMW-7 9040-2	3	9051-1	<u>></u>
Sampling Date	3/14/2013	3	4/24/2013	3	6/11/2013	7/2/2013	_	9/17/201	3	11/12/20	13	12/18/201	13
Time Matrix	458 Water	+	499 Water		547 Water	568 Water		645 Water		701 Water	-	737 Water	_
VOCS (GC/MS)	μg/L		μg/L		μg/L	μg/L		μg/L		μg/L		μg/L	
dichlorodifluoromethane chloromethane	25.0 25.0	U	21.0 21.0	U	NS NS	42.0 42.0	U	5.0	U	5.0	U	5.0 5.0	l
vinyl chloride	25.0	U	21.0	U	NS	42.0	U	5.0 5.0	U	5.0 5.0	U	1.27	_
bromomethane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	_
chloroethane trichlorofluoromethane	25.0 25.0	U	21.0 21.0	U	NS NS	42.0 42.0	U	5.0 5.0	U	5.0	U	5.0	- 1
1,1-dichloroethylene	25.0	Ü	2.8	JD	NS	3.7	JD	3.8	J	4.0	J	5.27	
methylene chloride	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0 1.1	J	5.0 1.59	U	5.0	_
trans-1,2-dichloroethylene 1,1-dichloroethane	25.0	U	21.0	U	NS NS	42.0	U	5.0	U	5.0	J	3.02 5.0	
2,2-dichloropropane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
cis 1,2- dichloroethylene bromochloromethane	60.1 25.0	D U	106 21.0	D	NS NS	186 42.0	D	209 5.0	U	267 5.0	U	637 5.0	-
chloroform	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
1,1,1-trichloroethane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
carbon tetrachloride 1,1-dichloropropene	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0	U	5.0	U	5.0	
benzene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
1,2-dichloroethane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
trichloroethylene 1,2-dichloropropane	2420 25.0	D U	4240 21.0	D	NS NS	4880 42.0	U	2440 5.0	U	2430 5.0	D U	6110 5.0	
dibromomethane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
bromodichloromethane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
cis-1,3-dichloropropene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
toluene trans-1,3-dichloropropene	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0 5.0	U	5.0 5.0	U	5.0 5.0	
1,1,2-trichloroethane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
tetrachloroethylene	25.0 25.0	U	21.0 21.0		NS NS	42.0 42.0	\subset	5.0 5.0	СС	5.0 5.0	U	5.0 5.0	_
1,3-dichloropropane dibromochloromethane	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0	U	5.0	U	5.0	
1,2-dibromoethane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
chlorobenzene	25.0	U	21.0	= C	NS NC	42.0	= C	5.0	= =	5.0	U	5.0	
1,1,1,2-tetrachloroethane ethylbenzene	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0	U	5.0 5.0	U	5.0 5.0	
xylenes (m/p)	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
o-xylene	25.0	U	21.0	: C	NS NC	42.0	: C	5.0	: 0	5.0	U	5.0	
styrene bromoform	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0 5.0	U	5.0 5.0	U	5.0	
isopropyl benzene (cumene)	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
bromobenzene 1,1,2,2-tetrachloroethane	25.0 25.0	U	21.0 21.0	U	NS NS	42.0 42.0	Ω	5.0 5.0	= =	5.0 5.0	U	5.0 5.0	
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	25.0	U	21.0	U	NS NS	42.0	IJ	5.0	U	5.0	IJ	5.0	
n-propyl benzene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
2-chlorotoluene	25.0	U	21.0		NS	42.0		5.0		5.0	U	5.0	
4-chlorotoluene 1,3,5-trimethylbenzene	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0 5.0	U	5.0 5.0	U	5.0 5.0	
tert-butylbenzene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
1,2,4-trimethylbenzene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
sec-butylbenzene 1,3-dichlorobenzene	25.0 25.0	U	21.0 21.0	U	NS NS	42.0 42.0	U	5.0 5.0	U	5.0 5.0	U	5.0 5.0	
4-isopropyltoluene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
1,4-dichlorobenzene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
1,2-dichlorobenzene n-butylbenzene	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0	U	5.0 5.0	U	5.0	_
1,2-dibromo-3-chloropropane	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
1,2,4-trichlorobenzene	25.0	U	21.0		NS	42.0		5.0	Ω	5.0	U	5.0	
hexachlorobutadiene naphthalene	25.0 25.0	U	21.0	U	NS NS	42.0 42.0	U	5.0 5.0	U	5.0 5.0	U	5.0 5.0	
1,2,3-trichlorobenzene	25.0	U	21.0	U	NS	42.0	U	5.0	U	5.0	U	5.0	
Methyl tertiary butyl ether	25.0	U	21.0		NS	42.0		5.0		5.0	U	5.0	
Acetone carbon disulfide	50.0 25.0	U	42.0 21.0	U	NS NS	84.0 42.0	U	10.0 5.0	U	10.0 5.0	U	10.0 5.0	
2-butanone (MEK)	50.0	U	42.0	U	NS	84.0	U	10.0	U	10.0	U	10.0	
tetrahydrofuran (THF)	50.0	U	42.0	U	NS	84.0	U	10.0	U	10.0	U	10.0	
4-methyl-2-pentanone (MIBK) 2-hexanone	50.0 50.0	U	42.0 42.0	U	NS NS	84.0 84.0	U	10.0	U	10.0	U	10.0	
2-chloroethyl vinyl ether	50.0	U	42.0	U	NS	84.0	U	10.0	U	10.0	U	10.0	
REDUCED GASES (GC)	μg/L		μg/L		μg/L	μg/L		μg/L		μg/L		μg/L	
Methane Ethane	88.3 4.0	U	55.7 4.0	U	NS NS	40.0 4.0	U	64.3 2.0	U	30.1 2.0	U	242 2.0	
Ethene	2.55	J	5.0	U	NS	5.0	U	3.74		2.5	U	2.5	
OTHER GASES	μg/L	Ţ	μg/L		μg/L 0.0036 J	μg/L		μg/L	J	μg/L		μg/L	
Hydrogen METALS (DISSOLVED)	0.008 μg/L	U	0.008 μg/L	U	0.0036 J μg/L	0.0012 μg/L	J	0.0038 μg/L	J	0.0151 μg/L		0.0025 μg/L	
Iron	NS		NS		NS	6350	D	NS		NS		NS	-
Manganese Areonic	NS NC		NS		NS NC	94.0 NS	D	NS	_	NS NS	_	NS NS	_
Arsenic	NS μg/L	۲	NS μg/L		NS μg/L	NS μg/L		NS μg/L		NS μg/L		NS μg/L	
METALS (TOTAL)		_		-65			-65		-	NS NS		NS	_
Iron	NS	_	NS		NS	NS		NS				NS	
Iron Manganese	NS NS		NS NS		NS	NS NS		NS		NS			
Iron Manganese GROUNDWATER CHEMISTRY	NS		NS	J		NS						mg/L NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NS NS mg/L 2.59 NS		NS NS mg/L 1.40 NS	J	NS mg/L NS NS	NS NS mg/L NS NS		NS mg/L NS NS		NS mg/L NS NS		NS NS	_
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NS NS mg/L 2.59 NS NS		NS NS mg/L 1.40 NS	J	NS mg/L NS NS	NS NS mg/L NS NS		NS mg/L NS NS NS		NS mg/L NS NS NS		NS NS NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS	NS NS mg/L 2.59 NS NS mg/L	U	NS NS mg/L 1.40 NS NS ng/L	J	NS mg/L NS NS NS mg/L	NS NS mg/L NS NS NS NS mg/L	LI.	NS mg/L NS NS NS NS	U	NS mg/L NS NS NS ng/L	U	NS NS NS mg/L	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride	NS NS mg/L 2.59 NS NS mg/L 0.2	Ĭ	NS NS mg/L 1.40 NS NS mg/L 0.2 23.4	U	NS mg/L NS NS NS NS mg/L NS	NS NS mg/L NS NS NS NS 21.4	U	NS mg/L NS NS NS NS mg/L 0.2	Ĭ	NS mg/L NS NS NS mg/L 0.2 11.8		NS NS NS mg/L 0.2 25.0	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Chloride Nitrite as N	NS NS mg/L 2.59 NS NS mg/L 0.2 17.5	U	NS NS mg/L 1.40 NS NS NS NS CO.2 23.4 0.2	U	NS mg/L NS NS NS NS mg/L NS	NS NS mg/L NS NS NS NS 21.4	U	NS mg/L NS NS NS NS 10.2 15.8 0.2	U	NS mg/L NS NS NS NS mg/L 0.2 11.8 0.2	U	NS NS NS mg/L 0.2 25.0 0.2	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄	NS NS mg/L 2.59 NS NS mg/L 0.2 17.5 0.2 40.3	Ĭ	NS NS mg/L 1.40 NS NS NS mg/L 0.2 23.4 0.2 65.5	U	NS mg/L NS NS NS NS mg/L NS NS	NS NS mg/L NS NS NS o.2 21.4 0.2 53.1		NS mg/L NS NS NS NS 15.8 0.2 51.9	Ĭ	NS mg/L NS NS NS NS MS/L 0.2 11.8 0.2 43.7		NS NS NS mg/L 0.2 25.0 0.2 56.1	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide	NS NS mg/L 2.59 NS NS mg/L 0.2 17.5	U	NS NS mg/L 1.40 NS NS NS NS CO.2 23.4 0.2	U	NS mg/L NS NS NS NS mg/L NS	NS NS mg/L NS NS NS NS 21.4	U	NS mg/L NS NS NS NS 10.2 15.8 0.2	U	NS mg/L NS NS NS NS mg/L 0.2 11.8 0.2	U	NS NS NS mg/L 0.2 25.0 0.2	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitirae as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P	NS NS mg/L 2.59 NS NS NS mg/L 0.2 17.5 0.2 40.3 3.66 0.2 0.2	U	NS NS mg/L 1.40 NS NS NS NS NS 0.2 23.4 0.2 65.5 0.64 0.2 0.2	UDUE	NS mg/L NS NS NS NS NS NS NS MS NS NS NS NS NS NS NS NS NS	NS NS mg/L NS NS NS 0.2 21.4 0.2 53.1 1.57 0.2 2.80	U	NS mg/L NS NS NS NS mg/L 0.2 15.8 0.2 51.9 1.90 0.2	U	NS mg/L NS NS NS NS O.2 11.8 O.2 43.7 1.4 O.2 0.30	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N ONDER ORGANIC CONTROL ORGANIC C	NS NS mg/L 2.59 NS NS NS mg/L 0.2 17.5 0.2 40.3 3.66 0.2 0.2 mg/L	U E U	NS NS mg/L 1.40 NS NS NS mg/L 0.2 23.4 0.2 65.5 0.64 0.2 0.2 mg/L	UDUE	NS mg/L NS	NS NS Mg/L NS NS NS NS Mg/L 0.2 21.4 0.2 53.1 1.57 0.2 2.80 mg/L	U	NS mg/L NS NS NS NS mg/L 0.2 15.8 0.2 51.9 1.90 0.2 0.2 mg/L	U	NS mg/L NS NS NS NS mg/L 0.2 11.8 0.2 43.7 1.4 0.2 0.30 mg/L	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid	NS NS NS mg/L 2.59 NS NS NS NS MS 17.5 0.2 40.3 3.66 0.2 0.2 mg/L 1.0	U E U	NS NS mg/L 1.40 NS NS NS NS NS NS NS NS Mg/L 0.2 65.5 0.64 0.2 0.2 mg/L 1.0	U D U	NS mg/L NS	NS NS Mg/L 0.2 21.4 0.2 53.1 1.57 0.2 2.80 Mg/L NS	U	NS mg/L NS NS NS NS NS NS 15.8 0.2 15.8 0.2 51.9 1.90 0.2 0.2 mg/L NS	U	NS mg/L NS NS NS NS O.2 11.8 O.2 43.7 1.4 O.2 O.30 mg/L	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid	NS NS mg/L 2.59 NS NS mg/L 0.2 17.5 0.2 40.3 3.66 0.2 0.2 mg/L 1.0 1.0 1.0	U E U U	NS NS mg/L 1.40 NS NS NS mg/L 23.4 0.2 65.5 0.64 0.2 0.2 mg/L 1.0 1.0 1.0 1.0		NS mg/L NS	NS N	U	NS mg/L NS NS NS NS NS 15.8 0.2 51.9 1.90 0.2 0.2 mg/L NS NS NS NS	U	NS mg/L NS NS NS mg/L 0.2 11.8 0.2 43.7 1.4 0.2 0.30 mg/L NS	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid	NS NS mg/L 2.59 NS NS mg/L 0.2 17.5 0.2 40.3 3.66 0.2 0.2 1.0 1.0 1.0 1.0 1.0	U U U U U U	NS NS mg/L 1.40 NS		NS mg/L NS N	NS NS NS Mg/L NS	U	NS mg/L NS NS NS NS NS 15.8 0.2 15.9 1.90 0.2 0.2 mg/L NS NS NS NS	U	NS mg/L NS NS NS NS NS 11.8 0.2 11.8 0.2 43.7 1.4 0.2 0.30 mg/L NS NS	U	NS N	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 AMIONS Fluoride Chloride Chloride Sulfate as N Sulfate as SO ₄ Beromide Nitrite as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Propionic Acid Formic Acid Propionic Acid Formic Acid Butyric Acid	NS NS mg/L 2.59 NS NS NS mg/L 0.2 17.5 0.2 40.3 3.66 0.2 0.2 mg/L 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U	NS NS mg/L 1.40 NS NS NS mg/L 0.2 23.4 0.2 65.5 0.64 0.2 0.2 1.0 1.0 1.0		NS mg/L NS	NS N	U	NS mg/L NS N	U	NS mg/L NS N	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS NS NS NS NS NS NS NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitride as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Propionic Acid Propionic Acid Propionic Acid Butyric Acid Butyric Acid Butyric Acid Valeric Acid	NS NS mg/L 2.59 NS NS mg/L 0.2 17.5 0.2 40.3 3.66 0.2 0.2 1.0 1.0 1.0 1.0 1.0	U U U U U U	NS NS mg/L 1.40 NS		NS mg/L NS N	NS NS NS Mg/L NS	U	NS mg/L NS NS NS NS NS 15.8 0.2 15.9 1.90 0.2 0.2 mg/L NS NS NS NS	U	NS mg/L NS NS NS NS NS 11.8 0.2 11.8 0.2 43.7 1.4 0.2 0.30 mg/L NS NS	U	NS N	
METALS (TOTAL) Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalainty as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Propionic Acid Formic Acid Butyric Acid Pyruvic Acid Pyruvic Acid Valeric Acid FIELD PARAMETERS	NS NS mg/L 2.59 NS NS NS MS NS Mg/L 0.2 40.3 3.66 0.2 0.2 17.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U	NS NS NS mg/L 1.40 NS NS NS mg/L 0.2 23.4 0.2 65.5 0.64 0.2 0.2 mg/L 1.0 1.0 1.0 1.0 1.0		NS mg/L NS	NS N	U	NS mg/L NS N	U	NS mg/L NS	U	NS NS NS Mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS NS NS NS NS NS	
Iron Manqanese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Pyruvic Acid Valeric Acid	NS NS mg/L 2.59 NS mg/L 2.59 NS NS mg/L 0.2 40.3 3.66 0.2 40.3 3.66 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U	NS NS NS mg/L 1.40 NS NS mg/L 0.2 23.4 0.2 65.5 0.64 0.2 0.2 1.0 1.0 1.0 1.0 1.0 4.74		NS mg/L NS	NS NS NS mg/L NS NS NS NS Mg/L 0.2 21.4 0.2 23.1 1.57 0.2 2.80 mg/L NS	U	NS mg/L NS	U	NS mg/L NS	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Chloride Similar as N Sulfate as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Propionic Acid Propionic Acid Propionic Acid Formic Acid Formic Acid Frey Cacid Frey	NS NS mg/L 2.59 NS NS NS MS NS Mg/L 0.2 40.3 3.66 0.2 0.2 17.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U	NS NS NS mg/L 1.40 NS NS NS mg/L 0.2 23.4 0.2 65.5 0.64 0.2 0.2 mg/L 1.0 1.0 1.0 1.0 1.0		NS mg/L NS	NS N	U	NS mg/L NS N	U	NS mg/L NS	U	NS NS NS Mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS NS NS NS NS NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SQ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Formic Acid Butyric Acid Byrric Acid Byrric Acid Byrric Acid Formic Colin Butyric Acid Field PARAMETERS Pot (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L) Dissolved Oxygen (DO; mg/L) Dissolved (DRP; my/L)	NS NS mgt 2.59 NS mgt 0.2 17.5 0.2 17.5 0.2 40.3 3.66 0.2 0.2 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U	NS NS mg/L 1.40 NS nS mg/L 1.40 NS NS mg/L 0.2 23.4 0.2 0.2 0.54 0.2 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		NS mg/L NS	NS NS mg/L NS NS mg/L 0.2 21.4 0.2 23.4 0.2 2.80 MS NS	U	NS mg/L NS	U	NS mg/L NS NS NS NS NS O.2 11.8 NS	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 AMIONS Fluoride Chloride Chloride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrite as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Propionic Acid Formic Acid Butyric Acid Pyruvic Acid Pyruvic Acid Pyruvic Acid Pyruvic Acid Pyruvic Acid Temperature (*C) Dissolved Oxygen (DO; mg/L) Redox Potential (ORF; m/V) Conductivity (JS/cm)	NS NS mgL 2.59 NS mgL 0.2 17.5 0.2 40.3 3.66 0.2 0.2 40.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U	NS NS mg/L 1.40 NS NS mg/L 1.40 NS NS NS mg/L 0.2 0.2 65.5 0.64 0.2 0.2 mg/L 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		NS mg/L NS	NS NS NS mg/L NS	U	NS mg/L NS NS NS NS NS O-2 51.9 1.90 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	U	NS mg/L NS NS NS NS NS O.2 43.7 1.4 0.2 0.30 Mg/L NS N	U	NS NS NS MS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 ma/L NS NS NS NS NS NS NS NS NS 14.67 1.45 45.0 378	
Iron Manganese GROUNDWATER CHEMISTRY Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC) Alkalinity as CaCO3 ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P VOLATILE FATTY ACIDS Lactic Acid Acetic Acid Formic Acid Every Color (Acid Color	NS NS mgt 2.59 NS mgt 0.2 17.5 0.2 17.5 0.2 40.3 3.66 0.2 0.2 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U	NS NS mg/L 1.40 NS nS mg/L 1.40 NS NS mg/L 0.2 23.4 0.2 0.2 0.54 0.2 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		NS mg/L NS	NS NS mg/L NS NS mg/L 0.2 21.4 0.2 23.4 0.2 2.80 MS NS	U	NS mg/L NS	U	NS mg/L NS NS NS NS NS O.2 11.8 NS	U	NS NS NS mg/L 0.2 25.0 0.2 56.1 1.54 0.2 0.32 mg/L NS	

Sample ID	NJ Higher of	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I
Lab Sample No.	PQLs and	8533-12	8538-19	8543-13	8546-18	8547-18	8550-20	8551-18	8556-3		8573-4	8576-8	8577-8
Sampling Date Time	GW Quality	10/26/2011 -46	11/9/2011 -33	11/16/2011 -26	11/18/2011 -24	11/21/2011 -21	11/23/2011 -19	11/28/2011 -14	12/6/2011 -6	12/12/2011	12/28/2011 16	1/5/2012 24	1/9/2012 28
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	1000	50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
vinyl chloride	1	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS
bromomethane	10	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroethane trichlorofluoromethane	2000	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethylene	1	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS
methylene chloride	3	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane	50	50.0 U		NS NS	NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS
cis 1,2- dichloroethylene	70	141 D	127 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane chloroform	70	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,1-trichloroethane	30	50.0 U		NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS NS
carbon tetrachloride	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene	1	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
benzene 1,2-dichloroethane	2	50.0 U		NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS NS
trichloroethylene	1	7090 D	8940 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	1	50.0 U		NS NC	NS NS	NS NS	NS NS	NS NC	NS NC	NS	NS NS	NS NC	NS
dibromomethane bromodichloromethane	1	50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
cis-1,3-dichloropropene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
toluene	600	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrachloroethylene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane		50.0 U		NS NC	NS	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS	NS
dibromochloromethane 1,2-dibromoethane	1	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
chlorobenzene	50	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	1 700	50.0 U		NS NC	NS	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS	NS
ethylbenzene xylenes (m/p)	700 1000	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
o-xylene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene	100	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromoform isopropyl benzene (cumene)	4 700	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromobenzene	700	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
1,1,2,2-tetrachloroethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	0.03	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS
n-propyl benzene 2-chlorotoluene		50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
4-chlorotoluene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene		50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene		50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
sec-butylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	75	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichlorobenzene	600	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene		50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	0.02 9	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
hexachlorobutadiene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
naphthalene	300	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Acetone	6000	100.0 U	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	700	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-butanone (MEK) tetrahydrofuran (THF)	300 10	100.0 U 100.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
4-methyl-2-pentanone (MIBK)	.,	100.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone		100.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether REDUCED GASES (GC)	μg/L	100.0 U μg/L		NS ug/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS ug/L	NS ug/L
Methane	NA	149	μg/L 151	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethane	NA NA	0.48 J	4.0 U	NS NC	NS	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS	NS
Ethene OTHER GASES	NA μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Hydrogen	μg/L NA	μg/L 0.004 J			μg/L NS	NS NS	NS NS	NS NS	μg/L NS	NS NS	0.0080 U	0.0044 J	μg/L 0.0040
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	6630 D 66.8 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic		NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	-	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC)	NA	NS	NS	NS	NS	NS	NS	NS	4.61	NS	NS	NS	NS
Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	4.62 NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite as N	250	20.2 0.2 U	19.6 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Sulfate as SO ₄	250	83.2 E		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bromide	NA	0.66	0.64	1.39	8.00	13.5	7.65	12.7	NS	NS	NS	NS	NS
Nitrate as N	10	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
O-Phosphate as P VOLATILE FATTY ACIDS	NA	0.2 U		NS mg/l	NS mg/L	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/L	NS mg/L	NS mg/L
Lactic Acid	NA	mg/L NS	mg/L 1.0 U	mg/L NS	MS/L	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	MS NS	MS/L	MS/L
Acetic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Propionic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid Butyric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Pyruvic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
FIELD PARAMETERS pH (SU)	NA	5.85	5.80	NS	NS	NS	NS	NS	NS	5.99	5.95	5.88	5.86
Temperature (°C)	NA NA	16.63	17.42	NS NS	NS	NS	NS	NS	NS	14.97	13.99	14.5	14.9
Dissolved Oxygen (DO; mg/L)	NA	0.43	2.47	NS	NS	NS	NS	NS	NS	0.62	0.10	0.15	0.14
Redox Potential (ORP; mV) Conductivity (µS/cm)	NA NA	-32.4 505	-71.4 412	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	-87.6 798	-43.5 393	-22.8 409.0	34.3 394.8
Depth to Water (ft-btoc)	NA NA	10.8	14.35	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	12.05	8.85	5.90	8.11
qPCR DHC		cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

iasi	e D.Z	. I. F	V V V - 1		iai y ti	oai ai		J. G	aram	0.0.	V62n	110	
Sample ID	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I
Lab Sample No. Sampling Date	8581-8 1/12/2012	8583-2 1/16/2012	8596-5 2/7/2012	8647-18 3/26/2012	8652-16 4/3/2012	8665-9 4/18/2012	8690-3 5/21/2012	8698-9 5/30/2012	8708-8 6/7/2012	8713-3 6/11/2012	8717-18 6/13/2012	6/15/2012	6/19/2012
Time	31	35	57	105	113	128	161	170	178	182	184	186	190
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS	μg/L NS	μg/L NS	μg/L 25.0 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
chloromethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromomethane chloroethane	NS NS	NS	NS	25.0 U	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	NS NS
trichlorofluoromethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene methylene chloride	NS NS	NS NS	NS NS	7.5 JD 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trans-1,2-dichloroethylene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	NS NS	NS NS	25.0 U 184 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromochloromethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform 1,1,1-trichloroethane	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
carbon tetrachloride	NS NS	NS	NS	25.0 U	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	NS NS
1,1-dichloropropene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
benzene 1,2-dichloroethane	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trichloroethylene	NS	NS	NS	8750 D	NS NS	NS NS	NS	NS	NS	NS	NS	NS	NS NS
1,2-dichloropropane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane bromodichloromethane	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
cis-1,3-dichloropropene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
toluene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrachloroethylene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromochloromethane 1,2-dibromoethane	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
chlorobenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ethylbenzene xylenes (m/p)	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
o-xylene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene bromoform	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
isopropyl benzene (cumene)	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
n-propyl benzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene 4-chlorotoluene	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene	NS	NS	NS	25.0 U	NS NS	NS NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene sec-butylbenzene	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-dichlorobenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichlorobenzene	NS	NS	NS	25.0 U	NS NS	NS	NS	NS	NS	NS	NS	NS	NS NS
n-butylbenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
hexachlorobutadiene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
naphthalene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Acetone	NS	NS	NS	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide 2-butanone (MEK)	NS NS	NS NS	NS NS	25.0 U 50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrahydrofuran (THF)	NS	NS	NS	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK) 2-hexanone	NS NS	NS NS	NS NS	50.0 U 50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-chloroethyl vinyl ether	NS NS	NS	NS	50.0 U	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NS NS	NS NS	NS NS	81.2 4.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Ethene	NS	NS	NS	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	0.008 U μg/L	0.008 U μg/L	0.008 U μg/L	0.030 μg/L	0.008 U μg/L	0.008 U μg/L	NS μg/L	0.022 U μg/L	0.009 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese Arsenic	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic METALS (TOTAL)	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	μg/L	NS μg/L	NS μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese GROUNDWATER CHEMISTRY	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Total Organic Carbon (TOC)	MS/L NS	NS	Mg/L NS	MS/L NS	MS/L	MS/L NS	Mg/L NS	MS/L	Mg/L NS	NS	MS/L	MS/L	NS NS
Dissolved Organic Carbon (DOC)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Alkalinity as CaCO3 ANIONS	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Fluoride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite as N	NS NS	NS NS	NS NS	15.9 0.2 U	NS NS	NS NS	11.5 0.2 U	10.7 0.2 U	10.8 0.2 U	11.6 0.2 U	NS NS	NS NS	NS NS
Sulfate as SO ₄	NS NS	NS NS	NS NS	53.2 E	NS NS	NS NS	0.2 U 59.3 E	0.2 U 60.4 E	0.2 U 64.1 E	65.4 E		NS NS	NS NS
Bromide	NS	NS	NS	1.27	NS	NS	4.22	5.60	4.93	3.97	4.63	4.72	4.81
Nitrate as N O-Phosphate as P	NS NS	NS NS	NS NC	0.2 U 0.2 U	NS NS	NS NS	0.2 U	0.2 U 0.2 U		0.2 U 0.2 U		NS NS	NS NS
VOLATILE FATTY ACIDS	NS mg/L	mg/L	NS mg/L	mg/L	NS mg/L	NS mg/L	0.2 U mg/L	0.2 U mg/L	0.2 U mg/L	0.2 U mg/L	NS mg/L	NS mg/L	mg/L
Lactic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Propionic Acid Formic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid Valeric Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS	140	140	140	140	140	140	140	140	140	140	110	140	140
pH (SU)	6.02	6.07	5.86	5.96	6.00	5.54	5.73	5.95	6.00	6.13	5.97	6.02	6.05
Temperature (°C) Dissolved Oxygen (DO; mg/L)	14.57 0.28	12.92 1.01	13.23 3.81	14.13 0.24	14.28 0.75	13.82 0.94	15.11 0.68	16.05 0.11	16.71 1.30	18.05 0.46	16.31 0.29	16.62 1.20	16.44 0.57
Redox Potential (ORP; mV)	-115.2	-82.5	51.1	-31.1	-90.4	15.6	-39.3	-94.3	-37.4	-0.7	-18.4	-8.7	-33.3
Conductivity (µS/cm)	401	399	356	428	347	351	354	37.5	371	395	376	372	367
Depth to Water (ft-btoc)	7.51	8.45	11.12	7.35	10.00 cells/mL	11.6	NS	NS cells/mL	NS cells/mL	10.90 cells/mL	12.75 cells/mL	13.45	13.01
qPCR	cells/mL	cells/mL	cells/mL	cells/mL	cells/ml	cells/mL	cells/mL					cells/mL	cells/mL

	e D.2	. I. P	IVI V V - /	/		oui ui		eiu F	ai ai i	0.0.	Nesu		
Sample ID	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I	PMW-7I
Lab Sample No.	8767-5		8807-3	8818-3	8837-2	8839-6	8840-7	8850-7	8852-7	8869-7	8876-6	8883-2	8896-3
Sampling Date	7/30/2012	8/16/2012	8/30/2012	9/12/2012	10/1/2012	10/2/2012	10/3/2012	10/5/2012	10/23/2012	11/15/2012	12/4/2012	12/18/2012	1/17/2013
Time Matrix	231 Water	248 Water	262 Water	275 Water	294 Water	295 Water	296 Water	298 Water	316 Water	339 Water	358 Water	372 Water	402 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
chloromethane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
vinyl chloride	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
bromomethane chloroethane	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
trichlorofluoromethane	105 U	NS NS	NS NS	NS	NS	NS NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,1-dichloroethylene	105 U	NS	NS	NS	NS	NS	NS	NS	4.9 JD	NS	NS	3.9 J	5.0 U
methylene chloride	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
trans-1,2-dichloroethylene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,1-dichloroethane 2,2-dichloropropane	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
cis 1,2- dichloroethylene	117 D	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	118 D	NS	NS	112	137
bromochloromethane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
chloroform	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,1,1-trichloroethane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
carbon tetrachloride 1,1-dichloropropene	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
benzene	105 U	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	42.0 U	NS	NS	5.0 U	5.0 U
1,2-dichloroethane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
trichloroethylene	5490 D	NS	NS	NS	NS	NS	NS	NS	5240 D	NS	NS	4940 D	4190 D
1,2-dichloropropane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	
dibromomethane bromodichloromethane	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
cis-1,3-dichloropropene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
toluene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
trans-1,3-dichloropropene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,1,2-trichloroethane	105 U	NS NC	NS NC	NS	NS NC	NS NC	NS NC	NS NC	42.0 U	NS NC	NS NC	5.0 U	5.0 U
tetrachloroethylene 1,3-dichloropropane	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
dibromochloromethane	105 U	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS	NS NS	5.0 U	5.0 U
1,2-dibromoethane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
chlorobenzene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,1,1,2-tetrachloroethane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
ethylbenzene xylenes (m/p)	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
o-xylene	105 U	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	42.0 U	NS	NS NS	5.0 U	5.0 U
styrene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
bromoform	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
isopropyl benzene (cumene)	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
bromobenzene 1,1,2,2-tetrachloroethane	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
1,2,3-trichloropropane	105 U	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	42.0 U	NS	NS NS	5.0 U	5.0 U
n-propyl benzene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
2-chlorotoluene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
4-chlorotoluene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,3,5-trimethylbenzene tert-butylbenzene	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
1,2,4-trimethylbenzene	105 U	NS NS	NS NS	NS	NS	NS NS	NS	NS	42.0 U	NS	NS NS	5.0 U	5.0 U
sec-butylbenzene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,3-dichlorobenzene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
4-isopropyltoluene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,4-dichlorobenzene 1,2-dichlorobenzene	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
n-butylbenzene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,2-dibromo-3-chloropropane	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
1,2,4-trichlorobenzene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
hexachlorobutadiene	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
naphthalene 1,2,3-trichlorobenzene	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U
Methyl tertiary butyl ether	105 U	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	42.0 U	NS	NS NS	5.0 U	5.0 U
Acetone	210 U	NS	NS	NS	NS	NS	NS	NS	84.0 U	NS	NS	10.0 U	10.0 U
carbon disulfide	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS	NS	5.0 U	5.0 U
2-butanone (MEK)	210 U	NS	NS	NS	NS	NS	NS	NS	84.0 U	NS	NS	10.0 U	10.0 U
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	210 U 210 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	84.0 U 84.0 U	NS NS	NS NS	10.0 U	10.0 U
2-hexanone	210 U	NS	NS	NS	NS	NS	NS	NS	84.0 U	NS	NS	10.0 U	10.0 U
2-chloroethyl vinyl ether	210 U	NS	NS	NS	NS	NS	NS	NS	84.0 U	NS	NS	10.0 U	10.0 U
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	88.2	NS	NS	NS	NS	NS	NS	NS	188	NS	NS	241	200
Ethane Ethene	4.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.9 J 4.3 J	NS NS	NS NS	2.98 J 8.33	2.47 J 6.89
OTHER GASES	5.0 U μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	4.3 J μg/L	μg/L	μg/L	e.ss μg/L	6.69 μg/L
Hydrogen	0.009 U	0.009 U		0.0021 J	0.009 U		0.0036 J	0.009 U			0.009 U	0.0040 J	0.03 U
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganoso	NS NC	NS NC	NS NC	NS	NS NC	NS NS	NS NC	NS NS	4140 D	NS NS	NS NC	5430 D	NS NC
Manganese Arsenic	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	168 D 2.5 U	NS NS	NS NS	176 D NS	NS NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5400 D	NS
Manganese	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	179 D	NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.55 J NS
Alkalinity as CaCO3	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	36.4	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	0.2 U	NS	0.10 J	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.12 J	0.2 U	0.2 U
Chloride	9.8	NS	17.4	7.61	20.6	21.6	17.8	16.6	15.2	NS	15.9	19.7	20.7
Nitrite as N	0.2 U	NS NC	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS NC	0.2 U	0.2 U	0.2 U
Sulfate as SO ₄ Bromide	60.7 E	NS NC	62.3 E	40.9	63.2 D	52.9 D			41.3 E	NS NC	36.2 E	41.8 E	
Nitrate as N	7.83 0.2 U	NS NS	5.05 0.2 U	35.4 0.2 U	1.89 1.0 U	9.04 1.0 U	162 1.0 U	162 1.0 U	32.3 0.2 U	NS NS	14.1 0.2 U	9.61 0.2 U	5.81 0.2 U
O-Phosphate as P	0.2 U	NS	0.2 U	0.2 U							0.2 U	0.2 U	
VOLATILE FATTY ACIDS	mg/L	mg/L	0.0054 J	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	0.2 U	
Lactic Acid	NS	NS	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	1.0 U	1.0 U
Acetic Acid	NS	NS	NS	1.0 U		NS	NS	NS	NS	NS	NS	1.0 U	
Propionic Acid	NS NC	NS NC	NS NC	1.0 U		NS NC	NS NC	NS NC	NS NC	NS NS	NS NC	1.0 U	
Formic Acid Butyric Acid	NS NS	NS NS	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	
Pyruvic Acid	NS NS	NS NS	NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	
Valeric Acid	NS	NS	NS	1.0 U		NS	NS	NS	NS	NS	NS	1.0 U	
FIELD PARAMETERS													
pH (SU)	5.32	5.66	5.69	5.89	5.55	5.42	5.45	5.40	5.70	5.47	5.30	5.48	5.65
Temperature (°C)	18.32	18.14	17.92	17.45	17.88	17.64	17.64	17.74	16.88	13.63	16.35	15.90	14.37
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	0.20 -156.5	0.22 -152.8	0.65 -128.4	3.49 -47.1	0.66 41.0	0.37 71.9	0.20 44.3	0.28 35.1	0.12 -92.9	0.21 -9.1	0.24 -118.5	0.48 -15.8	0.36 -93.0
Conductivity (µS/cm)	285	336	324	292	310	309	431	420	287	174	216	268	222
Depth to Water (ft-btoc)	NS	12.80	12.86	7.10	10.20	10.22	7.70	7.44	10.85	6.85	10.51	10.75	NS
qPCR	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
DHC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	9.50E+03

D.ZI. PIVIV	V-/ I.	Allai	yticai	anu	rieiu	ı aı		i ne
Sample ID Lab Sample No.	PMW-7I 8905-3	PMW-7I 8929-3	PMW-7I 8954-7	PMW-7I 8977-7	PMW-7I 8993-2	PMW-7I 9017-2	PMW-7I 9040-3	PMW-7I 9051-2
Sampling Date	2/7/2013	3/14/2013	4/24/2013	6/11/2013	7/2/2013	9/17/2013	11/12/2013	12/18/2013
Time Matrix	423 Water	458 Water	499 Water	547 Water	568 Water	645 Water	701 Water	737 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
inyl chloride	25.0 L		25.0 U	NS	42.0 U	5.0 U	3.69 J	1.48 J
chloroethane	25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
richlorofluoromethane	25.0 L 25.0 L		25.0 U 4.3 JD	NS NS	42.0 U 3.5 JD	5.0 U	5.0 U 5.66	5.0 U
1,1-dichloroethylene methylene chloride	25.0 L		25.0 U	NS NS	42.0 U	5.0 U	5.0 U	5.72 5.0 U
rans-1,2-dichloroethylene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	3.0 J 5.0 U	2.16 J 5.0 U	2.95 J 5.0 U
1,1-dichloroethane 2,2-dichloropropane	25.0 L		25.0 U	NS NS	42.0 U	5.0 U	5.0 U	5.0 U
cis 1,2- dichloroethylene promochloromethane	89.4 25.0	95.2 D J 25.0 U	120 D 25.0 U	NS NS	234 D 42.0 U	764 D 5.0 U	430 5.0 U	604 5.0 U
chloroform	25.0 L		25.0 U	NS NS	42.0 U	5.0 U	5.0 U	5.0 U
1,1,1-trichloroethane	25.0 L		25.0 U	NS NC	42.0 U	5.0 U	5.0 U	5.0 U
1,1-dichloropropene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
penzene	25.0 L		25.0 U	NS NC	42.0 U	5.0 U	5.0 U	5.0 U
richloroethane	25.0 L 4010 E		25.0 U 5440 D	NS NS	42.0 U 4070 D	5.0 U 2270 D	5.0 U 2470	5.0 U
,2-dichloropropane	25.0 L		25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
dibromomethane promodichloromethane	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
cis-1,3-dichloropropene	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
oluene rans-1,3-dichloropropene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
1,1,2-trichloroethane	25.0 L		25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
etrachloroethylene 1,3-dichloropropane	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
dibromochloromethane	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
1,2-dibromoethane chlorobenzene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
1,1,1,2-tetrachloroethane	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
othylbenzene rylenes (m/p)	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
o-xylene	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
styrene promoform	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
sopropyl benzene (cumene)	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
romobenzene 1,1,2,2-tetrachloroethane	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
1,2,3-trichloropropane	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
n-propyl benzene P-chlorotoluene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
l-chlorotoluene	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
,3,5-trimethylbenzene ert-butylbenzene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
,2,4-trimethylbenzene	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
sec-butylbenzene I,3-dichlorobenzene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
l-isopropyltoluene	25.0 L	J 25.0 U	25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
I,4-dichlorobenzene I,2-dichlorobenzene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
n-butylbenzene	25.0 L		25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
I,2-dibromo-3-chloropropane I,2,4-trichlorobenzene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
nexachlorobutadiene	25.0 L		25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
naphthalene I,2,3-trichlorobenzene	25.0 L 25.0 L		25.0 U 25.0 U	NS NS	42.0 U 42.0 U	5.0 U	5.0 U 5.0 U	5.0 U
Methyl tertiary butyl ether	25.0 L		25.0 U	NS	42.0 U	5.0 U	5.0 U	5.0 U
Acetone carbon disulfide	50.0 L 25.0 L		50.0 U 25.0 U	NS NS	84.0 U 42.0 U	10.0 U	10.0 U 5.0 U	10.0 U
2-butanone (MEK)	50.0 L		50.0 U	NS	84.0 U	10.0 U	10.0 U	10.0 U
etrahydrofuran (THF) 1-methyl-2-pentanone (MIBK)	50.0 L		50.0 U 50.0 U	NS NS	84.0 U 84.0 U	10.0 U	10.0 U	10.0 U
2-hexanone	50.0 L		50.0 U	NS	84.0 U	10.0 U	10.0 U	10.0 U
2-chloroethyl vinyl ether REDUCED GASES (GC)	50.0 L μg/L	J 50.0 U μα/L	50.0 U μg/L	NS μg/L	84.0 U μg/L	10.0 U μg/L	10.0 U μg/L	10.0 U μg/L
Methane	67.7	70.7	60.4	NS	37.2	54.2	31.8	191
Ethane Ethene	4.0 L 3.29 J		4.0 U 5.0 U	NS NS	4.0 U 5.0 U	2.0 U 2.35 J	2.0 U 2.5 U	2.0 U 2.5 U
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	0.0039 μg/L	0.0063 J μg/L	0.008 U μg/L	0.0362 μg/L	0.0063 J μg/L	0.0035 J μg/L	0.0024 J μg/L	0.0013 J μg/L
ron	NS	NS	NS	NS	3410 D	NS	NS	NS
Manganese Arsenic	NS NS	NS NS	NS NS	NS NS	81.2 D NS	NS NS	NS NS	NS NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
ron Manganese	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	2.23 NS	2.99 NS	1.94 J NS	NS NS	NS NS	NS NS	NS NS	NS NS
Alkalinity as CaCO3	NS	NS	NS NS	NS	NS NS	NS	NS NS	NS
ANIONS	mg/L 0.2	mg/L J 0.2 U	mg/L 0.2 U	mg/L NS	mg/L 0.2 U	mg/L 0.2 U	mg/L 0.2 U	mg/L 0.2 U
Fluoride Chloride	0.2 L 16.6	16.6	19.8	NS NS	0.2 U 14.5	0.2 U	15.0	18.2
litrite as N	0.2 L	J 0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U
Sulfate as SO ₄	38.2 E	35.1 E	54.3 E 0.94	NS NS	35.2 E 0.96	32.9 D	41.0 D	33.2 D
litrate as N	0.2 L	J 0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U
O-Phosphate as P	0.2 L mg/L	0.2 U	0.2 U mg/L	NS mg/L	0.49 mg/L	0.2 U mg/L	0.41 mg/L	0.22 mg/L
actic Acid	1.0 L	J 1.0 U	1.0 U	NS	NS	NS	NS	NS
Acetic Acid	1.0 L	J 1.0 U	1.0 U	NS	NS	NS	NS	NS
Propionic Acid Formic Acid	1.0 L		1.0 U 1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	1.0 L	J 1.0 U	1.0 U	NS	NS	NS	NS	NS
Pyruvic Acid /aleric Acid	1.0 L		1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS								
DH (SU)	5.56 12.85	5.47 12.94	5.72 13.65	5.33 14.34	5.47	5.83 16.89	5.49 15.33	5.78 14.46
Femperature (°C) Dissolved Oxygen (DO; mg/L)	0.68	0.17	0.31	0.08	15.14 0.24	0.12	0.16	0.88
Redox Potential (ORP; mV)	-133.0	-6.5	-2.2	7.1	11.2	-48.6	-136.7	-34.0
Conductivity (µS/cm) Depth to Water (ft-btoc)	254 9.83	214 NR	269 NR	169 NR	199 8.09	7.81	201 8.60	198 8.06
PCR	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
OHC	NS	3.20E+01 U	NS	NS	NS	NS	NS	NS

Sample ID	NJ Higher of	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D
Lab Sample No.	PQLs and	8533-15	8538-20	8543-14	8546-19	8547-19	8550-21	8551-19	8556-5	8561-5	8573-5	8576-9	8577-9
Sampling Date Time	GW Quality	10/26/2011 -46	11/9/2011 -33	11/16/2011 -26	11/18/2011 -24	11/21/2011 -21	11/23/2011 -19	11/28/2011 -14	12/6/2011 -6	12/12/2011 0	12/28/2011 16	1/5/2012 24	1/9/2012 28
Matrix VOCS (GC/MS)	2005 Criteria	Water	Water	Water	Water	Water	Water μg/L	Water	Water	Water μg/L	Water μg/L	Water	Water
dichlorodifluoromethane	μg/L 1000	µg/L 5.0 U	μg/L 5.0 U	μg/L NS	μg/L NS	μg/L NS	NS NS	μg/L NS	μg/L NS	μg/L NS	NS NS	μg/L NS	μg/L NS
chloromethane vinyl chloride	1	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromomethane	10	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroethane triablarafluaramethana	2000	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trichlorofluoromethane 1,1-dichloroethylene	1	5.0 U		NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS
methylene chloride trans-1,2-dichloroethylene	3 100	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethane	50	5.0 U	5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane cis 1,2- dichloroethylene	70	5.0 U 8.6	5.0 U 16.8	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromochloromethane	70	5.0 U	5.0 U	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS NS	NS
chloroform 1,1,1-trichloroethane	70 30	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
carbon tetrachloride	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene benzene	1	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichloroethane	2	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene 1,2-dichloropropane	1 1	332 5.0 U	877 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromomethane		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane cis-1,3-dichloropropene	1 1	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
toluene	600	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrachloroethylene	1	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane dibromochloromethane	1	5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromoethane		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chlorobenzene 1,1,1,2-tetrachloroethane	50 1	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ethylbenzene	700	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p) o-xylene	1000	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
styrene	100	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromoform isopropyl benzene (cumene)	700	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromobenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	0.03	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
n-propyl benzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene 4-chlorotoluene		5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene		5.0 U 5.0 U	5.0 U 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
sec-butylbenzene		5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene 4-isopropyltoluene	600	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,4-dichlorobenzene	75	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	600	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene hexachlorobutadiene	9	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
naphthalene	300	5.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Acetone	6000	10.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide 2-butanone (MEK)	700 300	5.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrahydrofuran (THF)	10	10.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK) 2-hexanone		10.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-chloroethyl vinyl ether		10.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
REDUCED GASES (GC) Methane	μg/L NA	μg/L 139	μg/L 131	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Ethane	NA	4.0 U	4.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	NA μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Hydrogen	NA	0.0056 J	0.0038 J	NS	NS	NS	NS	NS	NS	0.0063	0.0029 J	0.0080 U	0.0035 U
METALS (DISSOLVED) Iron	μg/L 300	μg/L NS	μg/L 15900 D	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	50	NS	96 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Arsenic METALS (TOTAL)	μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Iron		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese GROUNDWATER CHEMISTRY	mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Total Organic Carbon (TOC)	NA	NS	NS	NS	NS	NS	NS	NS	3.97	NS	NS	NS	NS
Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3.36 NS	NS NS	NS NS	NS NS	NS NS
ANIONŚ	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	2 250	0.2 U 11.1	0.2 U 11.3	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Nitrite as N	1	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Sulfate as SO ₄ Bromide	250 NA	86.0 E 0.56	84.3 E 0.53	NS 0.95	NS 1.58	NS 2.72	NS 2.32	NS 3.47	NS NS	NS NS	NS NS	NS NS	NS NS
Nitrate as N	10	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
O-Phosphate as P VOLATILE FATTY ACIDS	NA	0.2 U mg/L	0.2 U mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Lactic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.0 U 1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid Pyruvic Acid	NA NA	NS NS	1.0 U 1.0 U	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Valeric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
pH (SU)	NA	5.42	5.79	NS	NS	NS	NS	NS	NS	5.98	5.82	5.88	5.84
	NA NA	15.79	16.03	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	15.03	14.86	14.6	14.8
Temperature (°C)	INA			NS	NS	NS	NS	NS	NS	0.27	0.00	0.09	0.09
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA	0.32	2.54						NIC	EE 0	E7.0		2.2
Temperature (°C) Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV) Conductivity (μS/cm)	NA NA NA	12.2 316	2.54 -67.8 387	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	-55.0 674	-57.8 287	-41.4 360.1	2.2 353.9
Temperature (°C) Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA	12.2	-67.8	NS	NS	NS	NS	NS				-41.4	

Sample ID	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D
Lab Sample No. Sampling Date	8581-9 1/12/2012	8583-3 1/16/2012	8596-6 2/7/2012	8647-16 3/26/2012	8652-18 4/3/2012	8665-10 4/18/2012	8690-4 5/21/2012	8698-10 5/30/2012	8708-9 6/7/2012	8713-4 6/11/2012	8717-19 6/13/2012	6/15/2012	6/19/2012
Time	31	35	57	105	113	128	161	170	178	182	184	186	190
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloromethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromomethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
chloroethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
trichlorofluoromethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
2,2-dichloropropane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	NS	NS	NS	31.1 D		NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
benzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloroethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene	NS	NS	NS	1220 D	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
toluene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,1,2-trichloroethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
tetrachloroethylene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromochloromethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
chlorobenzene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
o-xylene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
styrene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
bromoform	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
4-chlorotoluene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
sec-butylbenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
hexachlorobutadiene	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
naphthalene	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	NS	NS	NS	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	NS	NS	NS	25.0 U		NS	NS	NS	NS	NS	NS	NS	NS
2-butanone (MEK)	NS	NS	NS	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	NS	NS	NS	50.0 U		NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)	NS	NS	NS	50.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone 2-chloroethyl vinyl ether	NS NS	NS NS	NS NS	50.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
REDUCED GASES (GC) Methane	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	NS	NS	NS	81.9	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethane	NS	NS	NS	4.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethene	NS	NS	NS	0.65 J	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	0.008 U μg/L	0.008 U μg/L			0.0075 μg/L	0.008 U μg/L	NS μg/L	0.022 U μg/L	0.009 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Arsenic	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese GROUNDWATER CHEMISTRY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total Organic Carbon (TOC)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Dissolved Organic Carbon (DOC)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Alkalinity as CaCO3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride	NS	NS	NS	7.83	NS	NS	10.5	9.71	9.74	10.8	NS	NS	NS
Nitrite as N	NS	NS	NS	0.2 U	NS	NS	0.2 U	0.2 U	1.0 U	0.2 U	NS	NS	NS
Sulfate as SO ₄	NS	NS	NS	44.2 E	NS	NS	54.5 E	51.1 E	55.1 E	58.8 E	NS	NS	NS
Bromide	NS	NS	NS	0.64	NS	NS	77.1	113	37.5	12.0	99.1	402	173
Nitrate as N O-Phosphate as P	NS NS	NS NS	NS NS	0.2 U 0.2 U		NS NS	0.2 U 0.2 U		1.0 U 0.2 U	0.2 U 0.2 U		NS NS	NS NS
VOLATILE FATTY ACIDS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Propionic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
FIELD PARAMETERS pH (SU)	5.98	6.01	5.90	5.94	5.98	5.63	5.75	5.84	5.95	5.97	5.98	5.91	6.01
Temperature (°C)	14.49	14.21	14.64	14.52	14.40	13.98	14.95	15.42	16.07	16.35	16.24	16.22	15.99
Dissolved Oxygen (DO; mg/L)	0.21	0.99	1.38	5.94	0.55	0.63	0.38	0.46	0.98	0.36	0.48	0.66	0.99
Redox Potential (ORP; mV)	-111.5	-101.4	40.5	-42.4	-111.2	25.7	-28.9	-36.3	-23.7	4.7	-12.2	14.7	-20.0
Conductivity (µS/cm) Depth to Water (ft-btoc)	340	346	283	295	207	255	413	466	379	372	410	859	507
	6.30	6.24	6.78	6.85	7.10	7.20	NS	NS	NS	7.25	7.31	7.21	7.25
qPCR	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
DHC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Company	Sample ID	PMW-7D												
The color			8/16/2012											8896-4 1/17/2013
Control Cont	Time	231	248	262	275	294	295	296	298	316	339	358	372	402
Change C	VOCS (GC/MS)	μg/L												
Commentation Comm	chloromethane	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Content														
Content	chloroethane		NS		NS		NS	NS	NS		NS			
TOTAL 1-Conference	1,1-dichloroethylene	105 U	NS	42.0 U	NS	NS	2.4 J	5.0 U						
2	trans-1,2-dichloroethylene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Secretaring														
Handbard 19														
SOOD ENTSTANDEN NO. 10	chloroform		NS	42.0 U	NS	NS		5.0 U						
Section	carbon tetrachloride	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Content Cont		105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Second content of the content of t	1,2-dichloropropane		NS		NS	NS								
State	bromodichloromethane	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
1.1	toluene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
September 100 10 10 10 10 10 10														
Second processor 190 10 10 10 10 10 10 1	tetrachloroethylene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Secretaries 199 U 162 175	dibromochloromethane	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
entylemene	chlorobenzene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
American 195														
Section	xylenes (m/p)	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Session placement (amentary) 195 U MS	styrene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
11.22 2.22	isopropyl benzene (cumene)	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
George Content Conte														
2-photosphares														
1.5.5-times/bencered	2-chlorotoluene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
12.4-demonstratemen	1,3,5-trimethylbenzene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
13-definitional content														
Assertion-professione 195 U NS														
12-definitional control of the production of t	4-isopropyltoluene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
12-destron-descriptopropageme	1,2-dichlorobenzene	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Possibility	1,2-dibromo-3-chloropropane													
Imaginate 105 U NS														
Methyletriary turkyl ether	naphthalene		NS	NS	NS		NS	NS	NS		NS			
Carbon disulficide	Methyl tertiary butyl ether	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
Interdeption (HIPF)	carbon disulfide	105 U	NS	42.0 U	NS	NS	5.0 U	5.0 U						
2-berannene														
Exchange														
Methane		210 U	NS	84.0 U	NS	NS	10.0 U	10.0 U						
Ethene	Methane	163	NS	231	NS	NS	259	87.8						
Hydrogen	Ethene	5.0 U	NS	22.9	NS	NS	62.2	13.9						
Manganese	METALS (DISSOLVED)	μg/L												
METALS (TOTAL)	Manganese	NS	113 D	NS	NS	118 D	NS							
Manganese	METALS (TOTAL)	μg/L												
GROUNDWATER CHEMSTRY mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L														
Dissolved Organic Carbon (DOC) NS NS NS NS NS NS NS N	GROUNDWATER CHEMISTRY	mg/L												
Nitrate as N	Dissolved Organic Carbon (DOC)	NS												
Chloride	ANIONS	mg/L												
Nitrite as N		0.2 U		0.2 U		1.0 U	1.0 U	1.0 U		0.2 U		0.2 U		0.2 U
Bromide	Nitrite as N	0.2 U	NS	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS	0.2 U	0.2 U	0.2 U
O-Phosphate as P 0.2 U NS 0.2 U 0.2 U 1.0 U 1.0 U 1.0 U 1.0 U 0.2 U NS 0.2 U	Bromide	121	NS	38.6	1.31	21.4	50.4	4.21	109	114	NS	13.5	7.83	3.30
VOLATILE FATTY ACIDS mg/L mg/L	O-Phosphate as P													
Acetic Acid	VOLATILE FATTY ACIDS	mg/L	0.2 U	mg/L										
Formic Acid	Acetic Acid	NS	NS	NS	1.0 U	NS	1.0 U	1.0 U						
Pyruvic Acid	Formic Acid	NS	NS	NS	1.0 U	NS	1.0 U	1.0 U						
Valeric Acid														
pH (SU) 5.53 5.73 5.95 5.98 5.84 5.80 5.80 5.63 6.10 5.89 5.80 5.82 6.04 Temperature (°C) 17.67 17.82 17.12 17.95 17.40 17.48 17.21 17.32 16.50 13.42 16.49 16.22 14.48 Dissolved Oxygen (DC; mg/L) 0.14 0.21 0.41 3.46 0.55 0.35 0.16 0.25 0.08 0.34 0.33 0.46 0.25 Redox Potential (ORP; mV) -144.3 -132.6 -19.0 -23.7 12.5 49.2 31.6 29.1 47.5 47 -105.9 -15.2 -19.0 Conductivity (µS/cm) 430 389 348 119 293 316 256 335 553 193 306 287 160 Depth to Water (ff-btoc) NS 7.51 7.74 7.19 7.64 7.65 7.85 7.55 7.91 7.12 7.70 7.56	Valeric Acid													
Dissolved Oxygen (DO; mg/L)	pH (SU)													
Redox Potential (ORP; mV) -144.3 -132.6 -19.0 -23.7 12.5 49.2 31.6 29.1 -87.5 -47 -105.9 -15.2 -19.0 Conductivity (µS/cm) 430 389 348 119 293 316 256 335 353 193 306 287 160 Depth to Water (ft-bloc) NS 7.51 7.74 7.19 7.64 7.65 7.85 7.55 7.91 7.12 7.70 7.56 NS qPCR cels/mL	Dissolved Oxygen (DO; mg/L)	0.14	0.21	0.41	3.46	0.55	0.35	0.16	0.25	0.08	0.34	0.33	0.46	0.21
Depth to Water (ft-btoc) NS 7.51 7.74 7.19 7.64 7.65 7.85 7.55 7.91 7.12 7.70 7.56 NS qPCR cells/mL					-23.7		49.2				-47			
	Depth to Water (ft-btoc)	NS	7.51	7.74	7.19	7.64	7.65	7.85	7.55	7.91	7.12	7.70	7.56	NS
110 110 110 110 110 110 110 110 110	DHC	cells/mL NS	1.02E+03											

Sample ID	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D	PMW-7D
Lab Sample No.	8905-4	8929-4	8954-8	8977-8	8993-3	9017-3	9040-4	9051-3
Sampling Date Time	2/7/2013 423	3/14/2013 458	4/24/2013 499	6/11/2013 547	7/2/2013 568	9/17/2013 645	11/12/2013 701	12/18/2013 737
Matrix VOCS (GC/MS)	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L
dichlorodifluoromethane	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
chloromethane vinyl chloride	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 6.62	5.0 U 2.68 J
bromomethane	25.0 U 25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
chloroethane trichlorofluoromethane	25.0 U	5.0 U	25.0 U	NS	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U
1,1-dichloroethylene methylene chloride	25.0 U 25.0 U		3.0 JD 25.0 U		2.2 J 5.0 U	5.5 5.0 U	4.24 J 5.0 U	2.02 J 5.0 U
trans-1,2-dichloroethylene	25.0 U	5.0 U	25.0 U	NS	5.0 U	3.5 J	2.64 J	2.61 J
1,1-dichloroethane 2,2-dichloropropane	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
cis 1,2- dichloroethylene bromochloromethane	93.0 25.0 U	119 5.0 U	129 D 25.0 U		322 5.0 U	537 5.0 U	483 5.0 U	248 5 U
chloroform	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5 U
1,1,1-trichloroethane carbon tetrachloride	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5 U
1,1-dichloropropene	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5 U
benzene 1,2-dichloroethane	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5 U
trichloroethylene 1,2-dichloropropane	927 25.0 U	1020 5.0 U	1280 D 25.0 U		566 5.0 U	623 5.0 U	751 5.0 U	394 5.0 U
dibromomethane	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
bromodichloromethane cis-1,3-dichloropropene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
toluene trans-1,3-dichloropropene	25.0 U 25.0 U		25.0 U		5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
1,1,2-trichloroethane	25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U		5.0 U
tetrachloroethylene 1,3-dichloropropane	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
dibromochloromethane	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,2-dibromoethane chlorobenzene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
1,1,1,2-tetrachloroethane ethylbenzene	25.0 U 25.0 U	5.0 U	25.0 U 25.0 U	NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U
xylenes (m/p)	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
o-xylene styrene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
bromoform	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
isopropyl benzene (cumene) bromobenzene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
n-propyl benzene	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
2-chlorotoluene 4-chlorotoluene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
1,3,5-trimethylbenzene	25.0 U 25.0 U		25.0 U		5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
tert-butylbenzene 1,2,4-trimethylbenzene	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
sec-butylbenzene 1,3-dichlorobenzene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
4-isopropyltoluene	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,4-dichlorobenzene 1,2-dichlorobenzene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
n-butylbenzene 1,2-dibromo-3-chloropropane	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
1,2,4-trichlorobenzene	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
hexachlorobutadiene naphthalene	25.0 U 25.0 U		25.0 U 25.0 U		5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
1,2,3-trichlorobenzene	25.0 U		25.0 U		5.0 U	5.0 U		5.0 U 5.0 U
Methyl tertiary butyl ether Acetone	25.0 U 50.0 U		25.0 U 50.0 U		5.0 U 10.0 U	5.0 U 10.0 U		10.0 U
carbon disulfide 2-butanone (MEK)	25.0 U 50.0 U		25.0 U 50.0 U		5.0 U 10.0 U	5.0 U 10.0 U		5.0 U 10.0 U
tetrahydrofuran (THF)	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U	10.0 U	10.0 U
4-methyl-2-pentanone (MIBK) 2-hexanone	50.0 U 50.0 U		50.0 U 50.0 U		10.0 U	10.0 U		10.0 U
2-chloroethyl vinyl ether	50.0 U				10.0 U	10.0 U μg/L		10.0 U
REDUCED GASES (GC) Methane	μg/L 66.6	μg/L 81.3	μg/L 56.0	μg/L NS	μg/L 29.2	88.8	μg/L 38.2	μg/L 63.7
Ethane Ethene	2.37 J 13.7	2.70 J 11.8	4.0 U 5.90	NS NS	4.0 U 2.21 J	2.0 U 3.20	2.0 U 2.5 U	2.0 U 2.5 U
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	0.0016 J μg/L	0.008 U μg/L	0.008 U μg/L	0.0590 J μg/L	0.008 U μg/L	0.0040 J μg/L	0.0079 J μg/L	0.008 U μg/L
Iron Manganese	NS NS	NS	NS	NS NS	4790 D 67.1 D	NS	NS	NS NS
Arsenic	NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS NS
METALS (TOTAL) Iron	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L 1.62 J	mg/L 1.88 J	mg/L 1.00 J	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	0.2 U 15.7		0.2 U 13.8		0.2 U 9.09	0.2 U 9.33	0.2 U 12.6	0.2 U 6.94
Nitrite as N	0.2 U	0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U
Sulfate as SO ₄ Bromide	20.9 3.57	19.9 3.27	21.6 2.06	NS NS	20.6 1.51	14.8	33.1 D 1.53	16.2 0.74
Nitrate as N	0.2 U	0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U
O-Phosphate as P VOLATILE FATTY ACIDS	0.2 U mg/L	0.2 U mg/L	0.2 U mg/L	NS mg/L	0.19 mg/L	0.2 U mg/L	0.2 U mg/L	0.20 mg/L
Lactic Acid	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	1.0 U	1.0 U	1.0 U 1.0 U	NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS	NS
Butyric Acid Pyruvic Acid	1.0 U	1.0 U	1.0 U 1.0 U	NS	NS NS	NS NS	NS NS	NS NS
Valeric Acid FIELD PARAMETERS	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS	NS
pH (SU)	5.96	5.90	5.99	5.79	5.87	5.97	5.83	6.14
Temperature (°C) Dissolved Oxygen (DO; mg/L)	13.35 0.67	13.52 0.17	14.23 0.45	14.69 0.22	15.48 0.25	16.88 0.13	14.92 0.11	14.50 0.33
Redox Potential (ORP; mV)	-138.3	-36.1	-31.5	17.9	-20.0	-55.5	-183.2	-32.9
Conductivity (µS/cm) Depth to Water (ft-btoc)	296 7.38	242 NR	271 NR	212 NR	189 6.30	197 7.15	221 7.83	7.56
qPCR	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
DHC	NS	3.20E+01 U	NS	NS	NS	NS	NS	NS

March Marc	Sample ID	NJ Higher of	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S
TROM	Lab Sample No.	PQLs and	8533-17	8539-1	8546-20	8547-20	8550-22	8551-20	8556-2	8561-6	8583-4	8596-7	8647-19	8652-12
March Marc		GW Quality												
anteendemokenses 1	Matrix	2005 Criteria												
Section														
## Add Carbon 1		1000												
## Properties 1.5		1												
International Section 1975		10												
1.4. Advantable		2000												
Teach 1.5 1.														
1.464545866666666666666666666666666666666	methylene chloride		50.0 U		NS			NS	NS		NS		25.0 U	
as A. Just Anderson Programs of the Computer o		50												
Content	cis 1,2- dichloroethylene	70	117 D	75.5	NS	225 D	NS							
1.1.1.4.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		70												
system semination 1														
Section		1	50.0 U	5.0 U							NS		25.0 U	
1.4 - 1.5		4												
Treatment of the control of the cont														
Billion	trichloroethylene	1	5610 D	4380 D	NS	5520 D	NS							
Transcriptionshipses 1		1												
Call - Descriptions contents of the content of the		1												
Table 1 - 1 - 502 - 0 102 - 0 103 - 0 10		1												
1.1. de centre company	toluene	600												
		3												
Accordance 1	tetrachloroethylene	1	50.0 U	5.0 U	NS	25.0 U	NS							
1.2 determinations														
Princepterane 60 50 50 W 19 10 10 10 10 10 10 10 10 10 10 10 10 10		1												
1.1.1.2 betterprisensembers 1. 600 U 5.0 U 10.5 U	chlorobenzene	50	50.0 U	5.0 U	NS	25.0 U	NS							
Application 1000 200 U 5.0														
20														
### Commonwealth			50.0 U	5.0 U	NS	25.0 U	NS							
Second Personal Comments 1700 100 10 10 10 10 10	styrene		50.0 U	5.0 U					NS		NS		25.0 U	
1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		700					NS							
	1,1,2,2-tetrachloroethane	1	50.0 U	5.2	NS	25.0 U	NS							
2-electronispieme		0.03												
4-descriptions 9.00 0.00 0.00 0.00 0.00 0.00 0.0														
No.	4-chlorotoluene		50.0 U	5.0 U	NS	25.0 U	NS							
12.4 demonshehenzene		-												
See-bedythesizene														
4-legeroptoblemen	sec-butylbenzene		50.0 U	5.0 U	NS	25.0 U	NS							
1.4.definite/potentamen		600												
12-decinptodenageme		75												
12-dethorophyserane	1,2-dichlorobenzene		50.0 U	5.0 U	NS	25.0 U	NS							
1,24-Infoltocherzene		0.02												
12,3-inchiopdescence	hexachlorobutadiene	1	50.0 U	5.0 U	NS	25.0 U	NS							
Methyle tellary buff ether		300												
Acestone 6000 100.0 U 100.0 U NS NS NS NS NS NS NS NS S 50.0 U NS 2-butanone (MEK) 300 100.0 U 100.0 U NS		70												
2-butance (MEK)	Acetone	6000	100.0 U	10.0 U	NS	50.0 U	NS							
Internative/function of Market 100														
#-methyl-2-pentanone (MBK) 100.0 U 100.0 U NS NS NS NS NS NS NS														
2-chlorodethyl whyle ether	4-methyl-2-pentanone (MIBK)		100.0 U	10.0 U	NS	50.0 U	NS							
REDUCED GASES (GC) 1914 1915		-												
Methane	REDUCED GASES (GC)	μα/L												
The companies	Methane	NA	95.3	60.0	NS	49.8	NS							
OTHER GASES sight														
Hydrogen														
METALS (DISSOLVED)	Hydrogen					NS		NS		0.0043				
Manganese 50	METALS (DISSOLVED)													
Arsenic														
If NS	Arsenic													
Manganese		μg/L												
GROUNDWATER CHEMISTRY mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		-												
Total Organic Carbon (TOC) NA NS	GROUNDWATER CHEMISTRY	mg/L												
Alkalinity as CaCO3	Total Organic Carbon (TOC)	NA	NS	NS	NS	NS	NS	NS	8.19	NS	NS	NS	NS	NS
ANIONS mg/L														
Fluoride														
Nitrite as N 1 0.2 U 0.2 U NS NS NS NS NS NS NS	Fluoride	2	0.2 U	0.2 U	NS	NS								
Sulfate as SO ₄ 250 90.1 E 35.4 E NS NS NS NS NS NS NS		250												
Bromide		250												
Nirrate as N 10 0.2 U 0.2 U NS NS NS NS NS NS NS														
VOLATILE FATTY ACIDS	Nitrate as N	10	0.2 U	0.2 U	NS	0.2 U	NS							
Lactic Acid		NA												
Acetic Acid		NA												
Formic Acid	Acetic Acid	NA	NS	1.0 U	NS	NS								
Butyric Acid NA NS 1.0 U NS														
Pyruvic Acid														
Valeric Acid NA			NS	1.0 U	NS	NS	NS	NS	NS	NS		NS		NS
PH (SU) NA 5.72 6.06 NS NS NS NS NS 6.27 6.37 6.14 5.98 6.01 Temperature (°C) NA 16.58 16.26 NS NS NS NS NS NS 15.06 14.31 13.71 13.61 13.88 Dissolved Oxygen (DC; mg/L) NA 0.32 5.77 NS NS NS NS NS NS 0.13 0.35 2.01 0.07 0.58 Redox Potential (QRP; mV) NA 4-7.2 15.1 NS NS NS NS NS -29.7 -106.1 5.0 -77.5 -138.5 Conductivity (µS/cm) NA 441 232 NS NS NS NS NS NS 133 285 316 366 301 Depth to Water (ft-bloc) NA 8.53 7.50 NS	Valeric Acid													
Temperature (°C) NA 16.58 16.26 NS NS NS NS NS 15.06 14.31 13.71 13.61 13.88 Dissolved Oxygen (DO; mg/L) NA 0.32 5.77 NS NS NS NS 0.13 0.35 2.01 0.07 0.58 Redox Potential (ORP; mV) NA -67.2 15.1 NS NS NS NS -29.7 -106.1 5.0 -77.5 -138.5 Conductivity (µS/cm) NA 441 232 NS NS NS NS NS 133 285 316 366 301 Depth to Water (ft-btoc) NA 8.53 7.50 NS NS NS NS NS 6.70 6.29 6.32 6.71 7.05 qPCR cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL cells/mL		NA	5.72	6.06	NS	NIC	NC	NC	NS	6.27	6.37	614	5.08	6.01
Dissolved Oxygen (DO: mg/L)														
Redox Potential (ORP; mV) NA 67.2 15.1 NS NS NS NS -29.7 -106.1 5.0 -77.5 -138.5	Dissolved Oxygen (DO; mg/L)	NA	0.32	5.77	NS	NS	NS	NS	NS	0.13	0.35	2.01	0.07	0.58
Depth to Water (ft-btoc) NA 8.53 7.50 NS NS NS NS NS 6.70 6.29 6.32 6.71 7.05 qPCR cells/mL			-67.2		NS		NS	NS			-106.1		-77.5	
qPCR cells/mL cells/m														
	qPCR		cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
	DHC	NA												

Sample ID	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S
Lab Sample No.	8698-11	8708-10	8713-21	8717-20	1 11111 00	1 11111 00	8767-7	1 11111 00	8807-5	8818-5	8837-8	8839-8	8840-8
Sampling Date	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012	7/30/2012	8/16/2012	8/30/2012	9/12/2012	10/1/2012	10/2/2012	10/3/2012
Time Matrix	170 Water	178 Water	182 Water	184 Water	186 Water	190 Water	231 Water	248 Water	262 Water	275 Water	294 Water	295 Water	296 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
chloromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
vinyl chloride bromomethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
chloroethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
trichlorofluoromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene methylene chloride	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trans-1,2-dichloroethylene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,1-dichloroethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 148 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromochloromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
chloroform	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane carbon tetrachloride	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloropropene	NS	NS NS	NS	NS NS	NS	NS	105 U	NS NS	NS	NS	NS	NS	NS NS
benzene	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
1,2-dichloroethane trichloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 2090 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichloropropane	NS	NS NS	NS	NS NS	NS	NS	105 U	NS NS	NS	NS	NS	NS	NS NS
dibromomethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
bromodichloromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
cis-1,3-dichloropropene toluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,1,2-trichloroethane	NS	NS	NS NC	NS NC	NS NC	NS NC	105 U	NS NC	NS	NS	NS NC	NS NC	NS
tetrachloroethylene 1,3-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromochloromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,2-dibromoethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
chlorobenzene 1,1,1,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ethylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
xylenes (m/p)	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
o-xylene	NS NC	NS NS	NS NS	NS NC	NS NS	NS NS	105 U	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC
styrene bromoform	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
isopropyl benzene (cumene)	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
bromobenzene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
n-propyl benzene	NS	NS NS	NS	NS NS	NS	NS	105 U	NS NS	NS	NS	NS	NS	NS NS
2-chlorotoluene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
4-chlorotoluene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene tert-butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,4-trimethylbenzene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
sec-butylbenzene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene 4-isopropyltoluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,4-dichlorobenzene	NS	NS NS	NS	NS	NS	NS	105 U	NS NS	NS	NS	NS	NS	NS NS
1,2-dichlorobenzene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
n-butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
hexachlorobutadiene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
naphthalene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Acetone	NS	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS
carbon disulfide	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
2-butanone (MEK) tetrahydrofuran (THF)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	210 U 210 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
4-methyl-2-pentanone (MIBK)	NS	NS NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS NS
2-hexanone	NS	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether	NS	NS ""	NS	NS "	NS	NS	210 U	NS	NS	NS	NS	NS	NS
REDUCED GASES (GC) Methane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 149	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Ethane	NS	NS	NS	NS	NS	NS	4.0 U	NS	NS	NS	NS	NS	NS
Ethene	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS	NS	NS	NS
OTHER GASES Hydrogen	μg/L 0.0086 U	μg/L 0.009 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 0.009 U	μg/L NS	μg/L 0.009 U	μg/L 0.0165	μg/L 0.0051 J	μg/L 0.0045 J	μg/L 0.0035 J
METALS (DISSOLVED)	μg/L	0.009 U μg/L	μg/L	μg/L	μg/L	μg/L	0.009 U μg/L	μg/L	0.009 U μg/L	0.0165 μg/L	0.0051 J μg/L	μg/L	μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese Arsenic	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
METALS (TOTAL)	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	NS.	NS	NS.	NS.	NS	NS	NS	NS.	NS	NS	NS	NS.	NS
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Dissolved Organic Carbon (DOC)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Alkalinity as CaCO3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L 1.0 U	mg/L	mg/L 1.0 U
Fluoride Chloride	NS 10.0	NS 10.3	NS 11.5	NS NS	NS NS	NS NS	0.2 U 14.2	NS NS	0.11 J 20.0	0.12 J 7.07	1.0 U 10.1	1.0 U 10.0	1.0 U
Nitrite as N	0.2 U	0.2 U	0.2 U	NS	NS	NS	0.2 U	NS	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U
Sulfate as SO ₄	47.9 E		59.0 E		NS	NS	65.2 E	NS	67.4 D	15.7 D	18.8 D	24.3 D	26.8 D
Bromide Nitrate on N	3.39	2.46	2.30	2.11	2.66	2.83	2.11	NS NC	1.56	0.44	1.0 U	0.58 J	82.5
Nitrate as N O-Phosphate as P	0.2 U 0.2 U		0.2 U 0.2 U		NS NS	NS NS	0.2 U 0.2 U	NS NS	0.2 U	0.2 U 0.2 U	1.0 U	1.0 U	1.0 U 1.0 U
VOLATILE FATTY ACIDS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS
Acetic Acid Propionic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.79 J 1.0 U	NS NS	NS NS	NS NS
Formic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	NS NS	NS NS	NS NS
Butyric Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS
Pyruvic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS
Valeric Acid FIELD PARAMETERS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS
pH (SU)	5.90	5.93	6.01	5.93	5.87	5.91	5.64	5.82	5.89	6.17	5.95	5.92	5.78
Temperature (°C)	15.38	16.08	16.42	16.01	16.27	16.14	17.50	17.73	17.57	18.01	18.11	17.94	18.07
Dissolved Oxygen (DO; mg/L)	0.45	0.82	5.42	0.01	0.89	0.18	0.08	0.16	0.37	3.45	0.74	0.23	0.17
Redox Potential (ORP; mV) Conductivity (µS/cm)	-89.1 311	-35.2 337	-22.8 333	-38.7 326	-16.9 315	-45.1 317	-181.9 367	-169.4 397	-112.1 380	-72.0 185	25.5 229	26.7 224	37.1 265
Depth to Water (ft-btoc)	NS	NS	7.36	7.04	7.21	7.50	NS	7.44	-7.60	7.50	7.90	7.99	7.6
qPCR	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
DHC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Sample ID	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S	PMW-8S
Lab Sample No.	8850-8	8852-9	8869-8	8876-8	8883-4	8896-5	8905-5	8929-5	8954-9	8977-9	8993-4	9017-4	9040-5
Sampling Date Time	10/5/2012 298	10/23/2012 316	11/15/2012 339	12/4/2012 358	12/18/2012 372	1/17/2013 402	2/7/2013 423	3/14/2013 458	4/24/2013 499	6/11/2013 547	7/2/2013 568	9/17/2013 645	11/12/2013 701
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS	μg/L 42.0 U	μg/L NS	μg/L NS	μg/L 5.0 U	μ g/L 5.0 U	μg/L 25.0 U	μg/L 5.0 U	μg/L 25.0 U	μg/L NS	μg/L 5.0 U	μg/L 5.0 U	μg/L 5.0 U
chloromethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
vinyl chloride bromomethane	NS NS	42.0 U 42.0 U		NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		11.5 5.0 U
chloroethane	NS	42.0 U		NS	5.0 U	5.0 U	25.0 U		25.0 U		5.0 U		5.0 U
trichlorofluoromethane 1,1-dichloroethylene	NS NS	42.0 U 42.0 U	NS NS	NS	5.0 U 2.1 J	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 1.8 J	25.0 U 25.0 U	NS	5.0 U 1.1 J	5.0 U 7.2	5.0 U
methylene chloride	NS NS	42.0 U	NS NS	NS NS	5.0 U	5.0 U 5.0 U	25.0 U	5.0 U	25.0 U	NS NS	5.0 U		5.0 U
trans-1,2-dichloroethylene	NS	42.0 U		NS	5.0 U	5.0 U	25.0 U		25.0 U	NS	5.0 U		3.67 J
1,1-dichloroethane 2,2-dichloropropane	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
cis 1,2- dichloroethylene	NS	153 D	NS	NS	102	28.1	51.3 D		72.1 D	NS	137	264	247
bromochloromethane chloroform	NS NS	42.0 U 42.0 U		NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
1,1,1-trichloroethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U		5.0 U
carbon tetrachloride	NS NC	42.0 U	NS NS	NS NC	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U		5.0 U 5.0 U		5.0 U 5.0 U
1,1-dichloropropene benzene	NS NS	42.0 U 42.0 U		NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U		25.0 U 25.0 U	NS NS	5.0 U		5.0 U
1,2-dichloroethane	NS	42.0 U		NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
trichloroethylene 1,2-dichloropropane	NS NS	1240 D 42.0 U	NS NS	NS NS	1450 D 5.0 U	306 5.0 U	740 D 25.0 U	843 5.0 U	1410 D 25.0 U	NS NS	674 5.0 U	1290 D 5.0 U	2020 D 5.0 U
dibromomethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
bromodichloromethane	NS NS	42.0 U 42.0 U		NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
cis-1,3-dichloropropene toluene	NS NS	42.0 U		NS NS	5.0 U	5.0 U	25.0 U		25.0 U	NS	5.0 U		5.0 U
trans-1,3-dichloropropene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
1,1,2-trichloroethane tetrachloroethylene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
1,3-dichloropropane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
dibromochloromethane 1,2-dibromoethane	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
chlorobenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
1,1,1,2-tetrachloroethane	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
ethylbenzene xylenes (m/p)	NS NS	42.0 U 42.0 U		NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
o-xylene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
styrene bromoform	NS NS	42.0 U 42.0 U		NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
isopropyl benzene (cumene)	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
bromobenzene 1,1,2,2-tetrachloroethane	NS NC	42.0 U		NS NC	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U		25.0 U 25.0 U		5.0 U 5.0 U		5.0 U 5.0 U
1,2,3-trichloropropane	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U		25.0 U	NS NS	5.0 U		5.0 U
n-propyl benzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
2-chlorotoluene 4-chlorotoluene	NS NS	42.0 U 42.0 U		NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
1,3,5-trimethylbenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
sec-butylbenzene	NS	42.0 U		NS NS	5.0 U	5.0 U	25.0 U		25.0 U		5.0 U		5.0 U
1,3-dichlorobenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U		5.0 U
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	42.0 U 42.0 U	NS NS	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
1,2-dichlorobenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
n-butylbenzene 1,2-dibromo-3-chloropropane	NS NS	42.0 U 42.0 U		NS NS	5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
1,2,4-trichlorobenzene	NS	42.0 U	NS	NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
hexachlorobutadiene naphthalene	NS NS	42.0 U 42.0 U		NS NS	5.0 U 5.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U		5.0 U 5.0 U
1,2,3-trichlorobenzene	NS	42.0 U		NS	5.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U		5.0 U
Methyl tertiary butyl ether	NS	42.0 U 84.0 U		NS	5.0 U	5.0 U	25.0 U		25.0 U		5.0 U		5.0 U
Acetone carbon disulfide	NS NS	84.0 U 42.0 U	NS NS	NS NS	10.0 U 5.0 U	10.0 U 5.0 U	50.0 U 25.0 U	10.0 U 5.0 U	50.0 U 25.0 U	NS NS	10.0 U 5.0 U		10.0 U 5.0 U
2-butanone (MEK)	NS	84.0 U	NS	NS	10.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U	10.0 U
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS NS	84.0 U 84.0 U	NS NS	NS NS	10.0 U	10.0 U 10.0 U	50.0 U	10.0 U	50.0 U	NS NS	10.0 U 10.0 U		10.0 U 10.0 U
2-hexanone	NS	84.0 U	NS	NS	10.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U	10.0 U
2-chloroethyl vinyl ether REDUCED GASES (GC)	NS ug/l	84.0 U		NS ug/l	10.0 U	10.0 U	50.0 U			_	10.0 U		10.0 U
Methane	μg/L NS	μg/L 153	μg/L NS	μg/L NS	μg/L 223	μg/L 40.6	μg/L 47.4	μg/L 76.6	μg/L 43.8	μg/L NS	μg/L 38.8	μg/L 159	μg/L 71.4
Ethane	NS NS	4.0 U 1.8 J		NS Ne	4.0 U	4.0 U	4.0 U	4.0 U		NS	4.0 U		2.0 U
Ethene OTHER GASES	NS μg/L	1.8 J μg/L	NS μg/L	NS μg/L	5.0 U μg/L	5.0 U μg/L	5.0 U μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	5.0 U μg/L	2.5 U μg/L	2.5 U μg/L
Hydrogen	0.0042 J	0.013	0.0048 J	0.0035 J	0.01 U	0.03 U	0.0033 J	0.008 U	0.0056 J	0.0099	0.0819	0.0051 J	0.0042 J
METALS (DISSOLVED) Iron	μg/L NS	μg/L 4110	μg/L NS	μg/L NS	μg/L 4540	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 1660	μg/L NS	μg/L NS
Manganese	NS	129	NS	NS	174	NS	NS	NS	NS	NS	75.3	NS	NS
Arsenic METALS (TOTAL)	NS ug/l	2.05 J	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l
Iron	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 4390	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	NS	NS	NS	NS	165	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 2.76	mg/L 2.29	mg/L 2.61	mg/L 2.04	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Dissolved Organic Carbon (DOC)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Alkalinity as CaCO3 ANIONS	NS mg/l	62.6	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l	NS mg/l
Fluoride	mg/L 1.0 U	mg/L 0.2 U	mg/L NS	mg/L 0.2 U	mg/L 0.2 U	mg/L 0.2 U	mg/L 0.2 U	mg/L 0.2 U	mg/L 0.2 U	mg/L NS	mg/L 0.2 U	mg/L 0.2 U	mg/L 0.2 U
Chloride	10.0	13.6	NS	15.4	20.2	4.30	13.4	15.8	15.3	NS	8.45	11.5	15.4
Nitrite as N Sulfate as SO ₄	1.0 U 33.1 D	0.2 U 38.5 E	NS NS	0.2 U 36.7 E	0.2 U 42.8 E	0.2 U 16.7	0.2 U 39.7 E	0.2 U 43.3 E	0.2 U 42.5 E	NS NS	0.2 U 10.3	0.2 U 27.4 D	0.2 U 45.3 D
Bromide	77.2	42.7	NS	11.2	8.84	0.66	3.71	3.53	1.71	NS	0.38	1.47	2.27
Nitrate as N	1.0 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U
O-Phosphate as P VOLATILE FATTY ACIDS	1.0 U mg/L	0.2 U mg/L	NS mg/L	0.2 U mg/L	0.2 U	0.2 U mg/L	0.2 U mg/L	0.2 U mg/L	0.2 U mg/L	NS mg/L	0.21 mg/L	0.2 U mg/L	0.2 U mg/L
Lactic Acid	NS	NS	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS
Acetic Acid Propionic Acid	NS NS	NS NS	NS NS	NS NS	1.0 U	1.0 U 1.0 U	1.0 U				NS NS	NS NS	NS NS
Formic Acid	NS	NS NS	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS	NS NS	NS NS
Butyric Acid	NS	NS	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS
Pyruvic Acid Valeric Acid	NS NS	NS NS	NS NS	NS NS	1.0 U	1.0 U 1.0 U	1.0 U				NS NS	NS NS	NS NS
FIELD PARAMETERS													
pH (SU)	5.69	6.07	6.20	5.83	5.77	6.26	5.98	5.92	5.99	5.99	5.94	6.04	5.93
Temperature (°C) Dissolved Oxygen (DO; mg/L)	17.92 0.20	17.06 0.14	13.80 0.41	16.52 0.14	16.05 0.48	13.22 0.32	12.76 0.67	12.17 0.21	13.01 0.64	14.33 0.18	15.10 0.20	16.95 0.16	15.83 0.09
Redox Potential (ORP; mV)	22.6	-110.4	-71	-97.2	-32.6	-52.3	-118.4	-39.0	-5.7	27.6	-18.1	-62.0	-200.8
Conductivity (µS/cm) Depth to Water (ft-btoc)	294 7.60	327 8.35	188 7.15	325 3.32	326 8.31	105 NS	305 7.90	293 11.90	268 NR	111 NR	134 7.99	271 8.03	293 8.70
	7.00												
qPCR DHC	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL 3.40E+01 U	cells/mL NS	cells/mL 3.20E+01 U	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS

Table D.23. PMW-8S: Analytical and Field Parameter Results

Sampling Date	Sample ID	PMW-8	3
Matrix		9051-4	
Matrix			13
VOCS (GCMS) jug/L dichloromethane 5.0 U chloromethane 5.0 U chloromethane 5.0 U bromomethane 5.0 U chloroberthane 5.0 U trichloroethylene 3.48 J trichloroethylene 3.48 J trans-1,2-dichloroethylene 5.0 U trans-1,2-dichloroethylene 5.0 U trans-1,2-dichloroethylene 5.0 U bromochlorome 5.0 U trans-1,2-dichloroethane 5.0 U carbon tetrachloride 5.0 U t,1-dichloroethylene 5.0 U trichloroethylene 5.0 U trichloroethylene 5.0 U trichloroethylene 5.0 U trichloroethylene 5.0 U trichloropropane 5.0 U trichloroethylene 5.0 U trans-1,3-dichloropropane 5.0	Matrix	Water	
Chloromethane	VOCS (GC/MS)	μg/L	
vinyl chloride 3.2 J bromomethane briboromomethane 5.0 U trichlorofluoromethane the bromomethane 5.0 U trichlorofluoromethane 1,1-dichloroethylene 5.0 U trichlorothylene trans-1,2-dichloroethylene 1.4 U trichlorothylene trans-1,2-dichloroethylene 5.0 U cy-dichloroethylene trans-1,2-dichloropropane 5.0 U cy-dichloroethylene trans-1,2-dichloroethylene 5.0 U cy-dichloroethylene trans-1,2-dichloropropene 5.0 U cy-dichloroethylene trans-1,2-dichloropropene 5.0 U trichloroethylene trans-1,2-dichloropropene 5.0 U trichloroethylene trans-1,3-dichloropropene 5.0 U trichloroethylene trans-1,3-dichloropropene 5.0 U trichloroethylene toluse-1,3-dichloropropene 5.0 U trichloroethylene toluse-1,3-dichloropropene 5.0 U trichloroethylene toluse-1,3-dichloropropene 5.0 U trichloroethylene toluse-1,3-dichloropropene 5.0 U trichloroethylene <td< td=""><td></td><td></td><td>IJ</td></td<>			IJ
cis 1,2-dichloroethylene 82.8 bromochloromethane 5.0 U chloroform 5.0 U Lin-dichlorobrome 5.0 U Lin-dichloroethane 5.0 U Lin-dichloropropene 5.0 U Uz-dichloropropene 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-2-dichloropropene 5.0 U Usbromochloromethane 5.0 U Usbromochloromethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dividence 5.0 U Sylvene 5.0 U Sylvene 5.0 U Sylvene 5.0 U	vinyl chloride	3.2	J
cis 1,2-dichloroethylene 82.8 bromochloromethane 5.0 U chloroform 5.0 U Lin-dichlorobrome 5.0 U Lin-dichloroethane 5.0 U Lin-dichloropropene 5.0 U Uz-dichloropropene 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-2-dichloropropene 5.0 U Usbromochloromethane 5.0 U Usbromochloromethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dividence 5.0 U Sylvene 5.0 U Sylvene 5.0 U Sylvene 5.0 U			U
cis 1,2-dichloroethylene 82.8 bromochloromethane 5.0 U chloroform 5.0 U Lin-dichlorobrome 5.0 U Lin-dichloroethane 5.0 U Lin-dichloropropene 5.0 U Uz-dichloropropene 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-2-dichloropropene 5.0 U Usbromochloromethane 5.0 U Usbromochloromethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dividence 5.0 U Sylvene 5.0 U Sylvene 5.0 U Sylvene 5.0 U	trichlorofluoromethane		U
cis 1,2-dichloroethylene 82.8 bromochloromethane 5.0 U chloroform 5.0 U Lin-dichlorobrome 5.0 U Lin-dichloroethane 5.0 U Lin-dichloropropene 5.0 U Uz-dichloropropene 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-2-dichloropropene 5.0 U Usbromochloromethane 5.0 U Usbromochloromethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dividence 5.0 U Sylvene 5.0 U Sylvene 5.0 U Sylvene 5.0 U	1,1-dichloroethylene	3.48	J
cis 1,2-dichloroethylene 82.8 bromochloromethane 5.0 U chloroform 5.0 U Lin-dichlorobrome 5.0 U Lin-dichloroethane 5.0 U Lin-dichloropropene 5.0 U Uz-dichloropropene 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-2-dichloropropene 5.0 U Usbromochloromethane 5.0 U Usbromochloromethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dividence 5.0 U Sylvene 5.0 U Sylvene 5.0 U Sylvene 5.0 U	methylene chloride trans-1.2-dichloroethylene		U .ı
cis 1,2-dichloroethylene 82.8 bromochloromethane 5.0 U chloroform 5.0 U Lin-dichlorobrome 5.0 U Lin-dichloroethane 5.0 U Lin-dichloropropene 5.0 U Uz-dichloropropene 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-dichloropropene 5.0 U Usbromodichloromethane 5.0 U Li-2-dichloropropene 5.0 U Usbromochloromethane 5.0 U Usbromochloromethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dibromoethane 5.0 U Li-2-dividence 5.0 U Sylvene 5.0 U Sylvene 5.0 U Sylvene 5.0 U	1,1-dichloroethane	5.0	U
Demonchloromethane	2,2-dichloropropane		U
trichloroethylene	bromochloromethane	5.0	U
trichloroethylene 685 U dibromorchorpropane 5.0 U dibromorchorpropane 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U toluene 5.0 U tol	chloroform		U
trichloroethylene 685 U dibromorchorpropane 5.0 U dibromorchorpropane 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U toluene 5.0 U tol			U
trichloroethylene 685 U dibromorchorpropane 5.0 U dibromorchorpropane 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U toluene 5.0 U tol	1,1-dichloropropene		Ū
trichloroethylene 685 U dibromorchorpropane 5.0 U dibromorchorpropane 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U cis-1,3-dichloropropene 5.0 U toluene 5.0 U tol			U
1,2-dichloropropane	trichloroethylene		
REDUCED GASES (GC)	1,2-dichloropropane		U
REDUCED GASES (GC)			U
REDUCED GASES (GC)	cis-1,3-dichloropropene	5.0	U
REDUCED GASES (GC)			U
REDUCED GASES (GC)	1,1,2-trichloroethane	5.0	U
REDUCED GASES (GC)	tetrachloroethylene		U
REDUCED GASES (GC)	dibromochloromethane		U
REDUCED GASES (GC)	1,2-dibromoethane	5.0	U
REDUCED GASES (GC)			U
REDUCED GASES (GC)	ethylbenzene	5.0	Ü
REDUCED GASES (GC)	xylenes (m/p)		U
REDUCED GASES (GC)	o-xylene styrene		U
REDUCED GASES (GC)	bromoform	5.0	U
REDUCED GASES (GC)			U
REDUCED GASES (GC)	1,1,2,2-tetrachloroethane		U
REDUCED GASES (GC)			U
REDUCED GASES (GC)			U
REDUCED GASES (GC)	4-chlorotoluene	5.0	U
REDUCED GASES (GC)	1,3,5-trimethylbenzene tert-hutylbenzene		U
REDUCED GASES (GC)	1,2,4-trimethylbenzene		U
REDUCED GASES (GC)	sec-butylbenzene		
REDUCED GASES (GC)	1,3-dichioropenzene 4-isopropyltoluene		U
REDUCED GASES (GC)	1.4-dichlorohonzono	5.0	U
REDUCED GASES (GC)	1,2-dichlorobenzene n-butylbenzene		U
REDUCED GASES (GC)	1,2-dibromo-3-chloropropane		U
REDUCED GASES (GC)			U
REDUCED GASES (GC)	naphthalene		U
REDUCED GASES (GC)	1,2,3-trichlorobenzene		U
REDUCED GASES (GC)	Acetone		U
REDUCED GASES (GC)	carbon disulfide	5.0	U
REDUCED GASES (GC)			U
REDUCED GASES (GC)	4-methyl-2-pentanone (MIBK)	10.0	U
REDUCED GASES (GC)	2-hexanone		
Methane 71.8 Ethane 2.0 U Ethane 2.5 U OTHER GASES µg/L Hydrogen 0.0031 J Hydrogen 0.0031 J METALS (DISSOLVED) µg/L Iron NS Manganese NS Arsenic NS Marganese NS GROUNDWATER CHEMISTRY mg/L Total Organic Carbon (TOC) NS Dissolved Organic Carbon (DOC) NS Alkalinity as CaCO3 NS ANIONS mg/L Fluoride 0.2 U Chloride 5.17 Nitrite as N 0.2 U Sulfate as SO ₄ 13.7 Bromide 0.31 Nitrate as N 0.2 U VOLATILE FATTY ACIDS mg/L Lactic Acid NS Propionic Acid NS Formic Acid NS Propionic Acid NS	REDUCED GASES (GC)		U
Ethene 2.5 U OTHER GASES	Methane	-:-	
OTHER GASES ug/L			U
Hydrogen	OTHER GASES		U
Iron	Hydrogen	0.0031	J
Manganese NS Arsenic NS METALS (TOTAL) μg/L Iron			
METALS (TOTAL)	Manganese	NS	
Iron	Arsenic		
Manganese NS GROUNDWATER CHEMISTRY mg/L Total Organic Carbon (TOC) NS Dissolved Organic Carbon (DOC) NS Alkalinity as CaCO3 NS ANIONS mg/L Fluoride 0.2 U Chloride 5.17 Nitrite as N 0.2 U Wilfate as SO₄ 13.7 Tomide Mitrate as N 0.2 U O-Phosphate as P 0.17 J VOLATILE FATTY ACIDS mg/L Lacte Acid NS Acetic Acid NS Formic Acid NS Butyric Acid NS Sylric Acid NS Pyruvic Acid NS Valeric Acid NS Pyruvic Acid NS PiELD PARAMETERS PI (Spt) pt (Spt) 6.32 Temporature (°C) 14.63 Dissolved Oxygen (DC: mg/L) 0.46 Redox Potential (ORP, mV) 16.1 Conductivity (LiS/cm)	Iron		
Total Organic Carbon (TOC) NS	Manganese	NS	
Dissolved Organic Carbon (DOC) NS Alkalinity as CaCO3 NS ANIONS mg/L Fluoride 0.2 U Chloride 5.17 Nitride as N 0.2 U Sulfate as SO ₄ 13.7 Bromide 0.31 Nitrate as N 0.2 U O-Phosphate as P 0.17 J VOLATILE FATTY ACIDS mg/L Lactic Acid NS Acetic Acid NS Propionic Acid NS Propionic Acid NS Butyric Acid NS S Pyruvic Acid NS FIELD PARAMETERS PH (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DO; mg/L) 0.46 Redox Potential (ORP; mV) 16.1 Conductivity (µS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR		mg/L NS	
Alkalinity as CaCO3	Dissolved Organic Carbon (DOC)	NS	
Fluoride	Alkalinity as CaCO3		
Chloride	Fluoride		U
Sulfate as SO ₄ 13.7 Bromide 0.31 Nitrate as N 0.2 U O-Phosphate as P 0.17 J VOLATILE FATTY ACIDS mg/L Lactic Acid NS Acetic Acid NS Formic Acid NS Butyric Acid NS Butyric Acid NS Pyruvic Acid NS Yularic Acid NS FIELD PARAMETERS Pf (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DC): mg/L) 0.46 Redox Potential (ORP, mV) 16.1 Conductivity (nS/cm) 154 Depth to Water (It-btoc) 8.13 qPCR celsis/mL	Chloride	5.17	
Bromide	Nitrite as N Sulfate as SO		U
Nitrate as N	Bromide		
\(\text{VOLATILE FATTY ACIDS} \) \(\text{mg/L} \) \\ \text{Lactic Acid} \) \(\text{NS} \) \\ \text{Acetic Acid} \) \(\text{NS} \) \\ \text{Acetic Acid} \) \(\text{NS} \) \\ \text{Propionic Acid} \) \(\text{NS} \) \\ \text{Propionic Acid} \) \(\text{NS} \) \\ \text{Butyric Acid} \) \(\text{NS} \) \\ \text{Pyruvic Acid} \) \(\text{NS} \) \\ \text{Yaleric Acid} \) \(\text{NS} \) \\ \text{Pyruvic Acid} \) \(\text{NS} \) \\ \text{FIELD PARAMETERS} \\ \text{PH (SU)} \) \(\text{6.32} \) \\ \text{Temperature (\$^{\mathbb{C}}\$C)} \) \(\text{14.63} \) \\ \text{Dissolved Oxygen (DC); mg/L)} \) \(\text{0.46} \) \\ \text{Bedox Potential (ORP; mV)} \) \(\text{16.1} \) \\ \text{Conductivity (\(\text{LS/cm})} \) \(\text{15.4} \) \\ \text{Depth to Water (\(\text{F-btoc})} \) \(\text{8.13} \) \\ \\ \end{PCR} \) \(\text{celis/mL}	Nitrate as N	0.2	U
Lactic Acid NS Acetic Acid NS Propionic Acid NS Propionic Acid NS Propionic Acid NS Butyric Acid NS Butyric Acid NS Pyruvic Acid NS Valeric Acid NS FIELD PARAMETERS PH (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DD; mg/L) Redox Potential (ORP; mV) Conductivity (µS/cm) 154 Depth to Water (ft-bloc) Bestimation Beth Valer (ft-bloc) Bestimation Beth Valer (ft-bloc) Bestimation Beth Valer (ft-bloc) Bestimation Beth Valer (ft-bloc) Beth Valer (ft-bl	VOLATILE FATTY ACIDS		J
Acetic Acid NS Propionic Acid NS Formic Acid NS Butyric Acid NS Butyric Acid NS Pyruvic Acid NS Valeric Acid NS Valeric Acid NS FIELD PARAMETERS ph (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DO; mg/L) 0.46 Redox Potential (ORP; mV) 16.1 Conductivity (µS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR cels/s/mL	Lactic Acid	NS	
Formic Acid NS Butyric Acid NS Butyric Acid NS Pyruvic Acid NS Valeric Acid NS Valeric Acid NS FIELD PARAMETERS pH (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DO: mg/L) 0.46 Redox Potential (ORP, mV) 16.1 Conductivity (LS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR cells/mL	Acetic Acid		
Butyric Acid NS Pyruvic Acid NS Valeric Acid NS FIELD PARAMETERS Ph (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DO; mg/L) 0.46 Redox Potential (ORP; mV) 16.1 Conductivity (µS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR cels/cmL	Formic Acid		-
Valeric Acid NS FIELD PARAMETERS 6.32 pH (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DC; mg/L) 0.46 Redox Potential (ORP; mV) 16.1 Conductivity (µS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR cels/mL	Butyric Acid	NS	
FIELD PARAMETERS	Pyruvic Acid Valeric Acid		_
pH (SU) 6.32 Temperature (°C) 14.63 Dissolved Oxygen (DO: mg/L) 0.46 Redox Potential (ORP; mV) 16.1 Conductivity (µS/cm) 154 Depth to Water (ft-bloc) 8.13 qPCR cels/mL	FIELD PARAMETERS	149	
Dissolved Oxygen (DO; mg/L) 0.46 Redox Potential (ORP; mV) 16.1 Conductivity (μS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR cells/mL	pH (SU)		
Redox Potential (ORP; mV) 16.1 Conductivity (μS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR cells/mL	Temperature (°C)	14.63	
Conductivity (μS/cm) 154 Depth to Water (ft-btoc) 8.13 qPCR cells/mL	Redox Potential (ORP; mV)		
qPCR cells/mL	Conductivity (µS/cm)	154	
q. o cens/IIIL	Depth to Water (ft-btoc)		
DHC NS	DHC		

Sample ID	NJ Higher of	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I
Lab Sample No.	PQLs and	8533-18	8539-2	8546-21	8547-21	8550-23	8551-21	8556-4	8561-7	8583-5	8596-8	8647-20	8652-15
Sampling Date Time	GW Quality	10/26/2011 -46	11/10/2011 -33	11/18/2011 -24	11/21/2011 -21	11/23/2011 -19	11/28/2011 -14	12/6/2011 -6	12/12/2011 0	1/16/2012 35	2/7/2012 57	3/27/2012 106	4/3/2012 113
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μg/L 50.0 U	μg/L 10.0 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 25.0 U	μg/L NS
chloromethane		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
vinyl chloride bromomethane	10	50.0 U 50.0 U	10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
chloroethane	10	50.0 U	10.0 U		NS	NS	NS	NS	NS	NS	NS	25.0 U	NS NS
trichlorofluoromethane	2000	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	25.0 U 5.1 JD	NS NS
1,1-dichloroethylene methylene chloride	3	50.0 U 50.0 U	10.0 U		NS	NS	NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS
trans-1,2-dichloroethylene	100	50.0 U	10.0 U		NS	NS	NS	NS	NS	NS	NS	3.4 J	NS
1,1-dichloroethane 2,2-dichloropropane	50	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
cis 1,2- dichloroethylene	70	141 D	72.9 D	NS	NS	NS	NS	NS	NS	NS	NS	372 D	NS
bromochloromethane chloroform	70	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,1,1-trichloroethane	30	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
carbon tetrachloride	1	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS	NS NC	NS NC	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,1-dichloropropene benzene	1	50.0 U 50.0 U	10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2-dichloroethane	2	50.0 U	10.0 U		NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
trichloroethylene 1,2-dichloropropane	1	9400 D 50.0 U	4650 D 10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5770 D 25.0 U	NS NS
dibromomethane		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
bromodichloromethane cis-1,3-dichloropropene	1	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
toluene	600	50.0 U	10.0 U		NS	NS	NS	NS	NS	NS	NS	25.0 U	NS NS
trans-1,3-dichloropropene	1	50.0 U	10.0 U		NS NC	NS	NS	NS	NS	NS	NS	25.0 U	NS NC
1,1,2-trichloroethane tetrachloroethylene	3	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,3-dichloropropane		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
dibromochloromethane 1,2-dibromoethane	1	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
chlorobenzene	50	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,1,1,2-tetrachloroethane	1 700	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
ethylbenzene xylenes (m/p)	1000	50.0 U	10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS
o-xylene		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
styrene bromoform	100 4	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
isopropyl benzene (cumene)	700	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
bromobenzene 1,1,2,2-tetrachloroethane	1	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,3-trichloropropane	0.03	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
n-propyl benzene		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
2-chlorotoluene 4-chlorotoluene		50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,3,5-trimethylbenzene		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
tert-butylbenzene 1,2,4-trimethylbenzene		50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
sec-butylbenzene		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
1,3-dichlorobenzene	600	50.0 U 50.0 U	10.0 U 10.0 U		NS NC	NS NS	NS	NS NC	NS NC	NS NC	NS NS	25.0 U 25.0 U	NS NS
4-isopropyltoluene 1,4-dichlorobenzene	75	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2-dichlorobenzene	600	50.0 U	10.0 U		NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
n-butylbenzene 1,2-dibromo-3-chloropropane	0.02	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,4-trichlorobenzene	9	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
hexachlorobutadiene naphthalene	1 300	50.0 U 50.0 U	10.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS
1,2,3-trichlorobenzene	300	50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
Methyl tertiary butyl ether	70	50.0 U	10.0 U		NS	NS	NS	NS	NS	NS	NS	25.0 U	NS
Acetone carbon disulfide	6000 700	100.0 U 50.0 U	20.0 U 10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	50.0 U 25.0 U	NS NS
2-butanone (MEK)	300	100.0 U	20.0 U		NS	NS	NS	NS	NS	NS	NS	50.0 U	NS
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	10	100.0 U	20.0 U 20.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	50.0 U 50.0 U	NS NS
2-hexanone		100.0 U	20.0 U	NS	NS	NS	NS	NS	NS	NS	NS	50.0 U	NS
2-chloroethyl vinyl ether REDUCED GASES (GC)	all	100.0 U	20.0 U	NS μg/L	NS ug/l	NS ug/L	NS μg/L	NS ug/l	NS μg/L	NS ug/L	NS ua/L	50.0 U	NS μg/L
Methane	μg/L NA	μg/L 129	μg/L 48.8	NS	μg/L NS	NS	NS	μg/L NS	NS NS	NS	NS	μg/L 133	NS
Ethane	NA NA	0.36 J 5.0 U	4.0 U		NS Ne	NS NS	NS NS	NS Ne	NS NC	NS Ne	NS NC	4.0 U 5.0 U	NS NS
Ethene OTHER GASES	NA μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	5.0 U μg/L	NS μg/L
Hydrogen	NA	0.009	0.0044 J	NS	NS	NS	NS	NS	0.0036 J	0.008 U	0.008 U	0.161	0.008 U
METALS (DISSOLVED) Iron	μg/L 300	μg/L NS	μg/L 3210 D	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	50	NS	52.6 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Arsenic		NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l
METALS (TOTAL) Iron	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY Total Organic Carbon (TOC)	mg/L NA	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 9.62	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Dissolved Organic Carbon (DOC)	NA	NS	NS	NS	NS	NS	NS	10.6	NS	NS	NS	NS	NS
Alkalinity as CaCO3	NA	NS mar/l	NS	NS	NS	NS	NS mad	NS	NS	NS	NS mad	NS ma/l	NS mad
ANIONS Fluoride	mg/L 2	mg/L 0.2 U	mg/L 0.2 U	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Chloride	250	17.8	7.68	NS	NS	NS	NS	NS	NS	NS	NS	13.7	NS
Nitrite as N Sulfate as SO ₄	1 250	0.2 U 91.1 E	0.2 U 39.9 E		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U 37.5 E	NS NS
Bromide	NA	91.1 E	0.35	1.63	9.83	0.26	2.82	NS NS	NS NS	NS NS	NS NS	37.5 E	NS NS
Nitrate as N	10	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	0.2 U	NS
O-Phosphate as P VOLATILE FATTY ACIDS	NA	0.2 U mg/L	0.2 U mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	0.2 U mg/L	NS mg/L
Lactic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid	NA NA	NS NS	1.0 U 1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Propionic Acid Formic Acid	NA NA	NS NS	1.0 U	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U 1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS													
pH (SU)	NA	5.52	5.97	NS	NS	NS	NS	NS	6.50	6.48	6.06	5.90	6.00
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	16.28 0.36	16.15 1.99	NS NS	NS NS	NS NS	NS NS	NS NS	15.46 0.07	14.67 0.38	14.11 2.70	13.90 0.24	14.12 0.61
Redox Potential (ORP; mV)	NA	-65.0	-26.2	NS	NS	NS	NS	NS	-60.7	-113.8	-15.9	-44.8	-134.4
Conductivity (µS/cm) Depth to Water (ft-btoc)	NA NA	361 7.81	178 7.57	NS NS	NS NS	NS NS	NS NS	NS NS	149 7.45	219 6.45	290 7.77	336 9.65	291 7.22
qPCR	INA	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
DHC	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Sample ID	PMW-8I												
Lab Sample No.	8698-12	8708-11	8713-22	8717-21	0/45/0040	0/40/0040	8767-8	0/40/0040	8807-6	8818-6	8837-9	8839-9	8840-10
Sampling Date Time	5/30/2012 170	6/7/2012 178	6/11/2012 182	6/13/2012 184	6/15/2012 186	6/19/2012 190	7/30/2012 231	8/16/2012 248	8/30/2012 262	9/12/2012 275	10/1/2012 294	10/2/2012 295	10/3/2012 296
Matrix	Water												
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 105 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
chloromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
vinyl chloride bromomethane	NS	NS	NS NC	NS NC	NS NS	NS NC	105 U 105 U		NS NC	NS NC	NS NC	NS NC	NS NS
chloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
trichlorofluoromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene methylene chloride	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
trans-1,2-dichloroethylene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,1-dichloroethane	NS NS	NS	NS NS	NS NC	NS NS	NS NC	105 U 105 U		NS NS	NS NC	NS NS	NS NC	NS NS
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	NS NS	NS	NS NS	NS NS	NS NS	105 U 239 D	NS NS	NS	NS NS	NS NS	NS NS	NS NS
bromochloromethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
chloroform 1,1,1-trichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
carbon tetrachloride	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
1,1-dichloropropene	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
benzene 1,2-dichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
trichloroethylene	NS	NS	NS	NS	NS	NS	3740 D	NS	NS	NS	NS	NS	NS
1,2-dichloropropane dibromomethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
bromodichloromethane	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
cis-1,3-dichloropropene	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
toluene trans-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2-trichloroethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
tetrachloroethylene 1,3-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
dibromochloromethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U		NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromoethane	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
chlorobenzene 1,1,1,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
ethylbenzene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
xylenes (m/p)	NS NS	NS NC	NS NS	NS Ne	NS NS	NS NS	105 U		NS NC	NS NS	NS NS	NS NS	NS NC
o-xylene styrene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
bromoform	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene) bromobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2,2-tetrachloroethane	NS NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS NS	NS NS	NS NS
1,2,3-trichloropropane	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
n-propyl benzene 2-chlorotoluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
4-chlorotoluene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene	NS	NS NS	NS NC	NS NC	NS NC	NS NS	105 U 105 U		NS NC	NS NC	NS NC	NS NC	NS NS
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
sec-butylbenzene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene 4-isopropyltoluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
1,4-dichlorobenzene	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
1,2-dichlorobenzene	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
n-butylbenzene 1,2-dibromo-3-chloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
1,2,4-trichlorobenzene	NS	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS
hexachlorobutadiene naphthalene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
1,2,3-trichlorobenzene	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
Methyl tertiary butyl ether	NS	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS
Acetone carbon disulfide	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	210 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS
2-butanone (MEK)	NS	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	210 U 210 U		NS NS	NS NS	NS NS	NS NS	NS NS
2-hexanone	NS NS	NS	NS	NS NS	NS NS	NS NS	210 U		NS	NS NS	NS NS	NS NS	NS NS
2-chloroethyl vinyl ether	NS	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS
REDUCED GASES (GC) Methane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 221	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Ethane	NS	NS	NS	NS	NS	NS	4.0 U	NS	NS	NS	NS	NS	NS
Ethene	NS 	NS a/l	NS	NS /I	NS	NS 	5.0 U		NS 	NS 	NS 	NS 	NS
OTHER GASES Hydrogen	μg/L 0.0059 J	μg/L 0.009 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 0.009 U	μg/L NS	μg/L 0.009 U	μg/L 0.0184	μg/L 0.0103	μg/L 0.0074 J	μg/L 0.0038 J
METALS (DISSOLVED)	μg/L												
Iron Manganese	NS NS												
Arsenic	NS NS												
METALS (TOTAL)	μg/L												
Iron Manganese	NS NS												
GROUNDWATER CHEMISTRY	mg/L												
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NS	NS NC	NS NS	NS Ne	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NC
Dissolved Organic Carbon (DOC) Alkalinity as CaCO3	NS NS												
ANIONS	mg/L												
Fluoride Chloride	NS 7.52	NS 11.7	NS 12.3	NS NS	NS NS	NS NS	0.2 U 14.5	NS NS	0.2 U 18.5	0.2 U 8.51	1.0 U 9.07	1.0 U 11.2	1.0 U 9.93
Nitrite as N	0.2 U	0.2 U	0.2 U	NS NS	NS NS	NS NS	0.2 U	NS NS	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U
Sulfate as SO ₄	23.2 E	48.8 E		NS	NS	NS	57.1 E	NS	62.3 D	25.1 D	4.07 D	12.3 D	
Bromide Nitrate as N	2.21 0.2 U	3.76 0.2 U	3.31 0.2 U	2.97 NS	3.02	2.98 NS	3.47 0.2 U	NS NS	2.00 0.2 U	0.92 0.2 U	1.0 U 1.0 U		126 1.0 U
O-Phosphate as P	0.2 U 0.2 U			NS NS	NS NS	NS NS	0.2 U		0.2 U	0.2 U			
VOLATILE FATTY ACIDS	mg/L												
Lactic Acid Acetic Acid	NS NS	1.0 U		NS NS	NS NS								
Propionic Acid	NS NS	1.0 U		NS NS	NS NS								
Formic Acid	NS	1.0 U	NS	NS	NS								
Butyric Acid Pyruvic Acid	NS NS	1.0 U		NS NS	NS NS								
Valeric Acid	NS	NS NS	1.0 U		NS	NS							
FIELD PARAMETERS	5.05	E 0.1	5.00	5.00	E 0^	E 07	E 4.	E 74	5.04	6.00	E 7^	F.05	E.CC
pH (SU) Temperature (°C)	5.85 15.42	5.91 16.05	5.99 16.51	5.92 16.03	5.86 16.08	5.95 15.94	5.44 17.10	5.71 17.55	5.91 17.35	6.08 17.40	5.79 17.62	5.95 17.66	5.66 19.97
Dissolved Oxygen (DO; mg/L)	1.09	0.83	1.13	0.16	0.85	0.88	0.07	0.12	0.40	3.49	0.80	0.22	0.18
Redox Potential (ORP; mV)	-105.8	-59.4	-52.2	-64.5 217	-37.4	-71.4 217	-174.1	-158.4	-140.3 267	-73.1 251	23.5	7.5	30.6
Conductivity (µS/cm) Depth to Water (ft-btoc)	169 NS	294 NS	323 8.81	317 8.11	310 8.10	317 8.21	327 NS	355 9.27	367 9.21	251 7.32	214 8.38	246 8.27	314 7.96
qPCR	cells/mL												
DHC	NS												

Sample ID	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I	PMW-8I
Lab Sample No.	8850-10	8852-10	8869-10	8876-9	8883-5	8896-6	8905-6	8929-6	8954-10	8977-10	8993-5	9017-5	9040-6
Sampling Date Time	10/5/2012 298	10/23/2012 316	11/15/2012 339	12/4/2012 358	12/18/2012 372	1/17/2013 402	2/7/2013 423	3/14/2013 458	4/24/2013 499	6/11/2013 547	7/2/2013 568	9/17/2013 645	11/12/2013 701
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	NS NS	42.0 U 42.0 U	NS NS	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
vinyl chloride	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	13.1
bromomethane chloroethane	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
trichlorofluoromethane	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
1,1-dichloroethylene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	2.5 J	25.0 U	NS	1.2 J	7.9	14.3
methylene chloride trans-1,2-dichloroethylene	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 4.5 J	5.0 U 6.49
1,1-dichloroethane	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	42.0 U 196 D	NS NS	NS NS	42.0 U 132 D	5.0 U 25.3	25.0 U 72.2 D	5.0 U 78.0	25.0 U 87.2 D	NS NS	5.0 U 220	5.0 U 605	5.0 U 450
bromochloromethane	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
chloroform	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
1,1,1-trichloroethane carbon tetrachloride	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
1,1-dichloropropene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
benzene	NS NS	42.0 U 42.0 U		NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U	5.0 U	25.0 U	NS NS	5.0 U	5.0 U	5.0 U 5.0 U
1,2-dichloroethane trichloroethylene	NS NS	1860 D	NS NS	NS NS	2180 D	5.0 U	25.0 U 992 D	5.0 U	25.0 U 1480 D	NS	5.0 U 489	5.0 U 992	2320
1,2-dichloropropane	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
dibromomethane bromodichloromethane	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
cis-1,3-dichloropropene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
toluene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
trans-1,3-dichloropropene 1,1,2-trichloroethane	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
tetrachloroethylene	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
1,3-dichloropropane dibromochloromethane	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
1,2-dibromoethane	NS NS	42.0 U		NS NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS NS	5.0 U	5.0 U	5.0 U
chlorobenzene	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
1,1,1,2-tetrachloroethane ethylbenzene	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
xylenes (m/p)	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
o-xylene	NS NS	42.0 U		NS NC	42.0 U 42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS Ne	5.0 U	5.0 U	5.0 U
styrene bromoform	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
isopropyl benzene (cumene)	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
bromobenzene 1,1,2,2-tetrachloroethane	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
1,2,3-trichloropropane	NS	42.0 U		NS NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
n-propyl benzene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
2-chlorotoluene 4-chlorotoluene	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U
1,3,5-trimethylbenzene	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
sec-butylbenzene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
1,3-dichlorobenzene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
1,2-dichlorobenzene	NS	42.0 U	NS	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
n-butylbenzene	NS	42.0 U		NS NC	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS NC	5.0 U	5.0 U	5.0 U
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
hexachlorobutadiene	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
naphthalene 1,2,3-trichlorobenzene	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
Methyl tertiary butyl ether	NS	42.0 U		NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U
Acetone	NS	84.0 U		NS	84.0 U 42.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U 5.0 U	10.0 U
carbon disulfide 2-butanone (MEK)	NS NS	42.0 U 84.0 U		NS NS	42.0 U 84.0 U	5.0 U 10.0 U	25.0 U 50.0 U	5.0 U 10.0 U	25.0 U 50.0 U	NS NS	5.0 U 10.0 U	5.0 U 10.0 U	5.0 U 10.0 U
tetrahydrofuran (THF)	NS	84.0 U		NS	84.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U	10.0 U
4-methyl-2-pentanone (MIBK) 2-hexanone	NS NS	84.0 U 84.0 U		NS NS	84.0 U 84.0 U	10.0 U 10.0 U	50.0 U	10.0 U	50.0 U	NS NS	10.0 U 10.0 U	10.0 U	10.0 U
2-chloroethyl vinyl ether	NS	84.0 U		NS	84.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U	10.0 U
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NS NS	182 1.1 J	NS NS	NS NS	225 4.0 U	28.5 4.0 U	51.7 4.0 U	79.4 4.0 U	41.6 4.0 U	NS NS	51.0 4.0 U	530 2.0 U	196 2.0 U
Ethene	NS	2.4 J	NS	NS	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	NS	5.0 U	2.5 U	2.5 U
OTHER GASES Hydrogen	μg/L 0.0040 J	μg/L	μg/L 0.0077 J	μg/L 0.0037 J	μg/L	μg/L	μg/L 0.0033 J	μg/L 0.0092	μg/L	μg/L 0.0122	μg/L 0.0320	μg/L 0.0049 J	μg/L 0.0048 J
METALS (DISSOLVED)	0.0040 J μg/L	0.0059 J μg/L	0.0077 J μg/L	0.0037 J μg/L	0.0035 J μg/L	0.03 U μg/L	0.0033 J μg/L	0.0092 μg/L	0.0079 J μg/L	0.0122 μg/L	0.0320 μg/L	0.0049 J μg/L	0.0048 J μg/L
Iron	NS	6790 D	NS	NS	6780 D	NS	NS	NS	NS	NS	1910 D	NS	NS
Manganese Arsenic	NS NS	116 D 2.5 U		NS NS	170 D NS	NS NS	NS NS	NS NS	NS NS	NS NS	41.9 D NS	NS NS	NS NS
METALS (TOTAL)	μg/L	2.5 U μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	NS	NS	NS	NS	6850 D	NS	NS	NS	NS	NS	NS	NS	NS
Manganese GROUNDWATER CHEMISTRY	NS mg/L	NS mg/L	NS mg/L	NS mg/L	169 D mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Total Organic Carbon (TOC)	NS	NS	NS	NS	NS	3.40	2.93	2.64	2.42	NS	NS	NS	NS
Dissolved Organic Carbon (DOC)	NS NS	NS 60.5	NS NS	NS NC	NS NS	NS NS	NS NC	NS Ne	NS NC	NS Ne	NS NS	NS NS	NS NC
Alkalinity as CaCO3 ANIONS	NS mg/L	69.5 mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L
Fluoride	1.0 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U
Chloride Nitrite as N	9.86 1.0 U	13.4 0.2 U	NS NS	14.7 0.2 U	20.9	2.16 0.2 U	13.0 0.2 U	15.6 0.2 U	15.4	NS NS	7.41 0.2 U	11.4 0.2 U	14.8 0.2 U
Sulfate as SO ₄	1.0 U 23.4 D	0.2 U 38.9 E		0.2 U	0.2 U 42.8 E	16.7	0.2 U	0.2 U 41.2 E	0.2 U 41.3 E	NS NS	8.05	17.2	0.2 U
Bromide	110	34.1	NS	11.7	9.51	0.61	4.71	5.08	1.96	NS	0.39	1.52	1.89
Nitrate as N	1.0 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U 0.2 U	NS NC	0.2 U	0.2 U	0.2 U
O-Phosphate as P VOLATILE FATTY ACIDS	1.0 U mg/L	0.2 U mg/L	NS mg/L	0.2 U mg/L	0.2 U	0.2 U mg/L	0.2 U mg/L	0.2 U mg/L	0.2 U mg/L	NS mg/L	0.19 J mg/L	0.2 U mg/L	0.2 U mg/L
Lactic Acid	NS	NS	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS
Acetic Acid	NS NS	NS NS	NS NS	NS NC	1.0 U		1.0 U		1.0 U		NS NS	NS NS	NS NC
Propionic Acid Formic Acid	NS NS	NS NS	NS NS	NS NS	1.0 U		1.0 U	1.0 U	1.0 U	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NS	NS	NS	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS
Pyruvic Acid Valeric Acid	NS NS	NS NS	NS NS	NS NS	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS	149	CNI	GVI	149	1.0 U	1.0 U	1.0 0	1.0 U	1.0 0	CNI	CPI	GPI	INO
pH (SU)	5.72	6.14	6.29	6.06	5.86	6.36	6.09	6.04	6.12	6.03	6.14	6.16	5.97
Temperature (°C) Dissolved Oxygen (DO; mg/L)	17.66 0.16	16.88 0.10	13.63 0.30	16.44 0.14	16.24 0.40	13.04 0.57	12.93 0.66	13.11	13.58	14.41 0.18	15.74	16.98 0.14	15.35 0.09
Redox Potential (ORP; mV)	0.16	-121.8	-92	-130.2	-52.5	-59.6	-126.6	0.17 -44.3	0.41 -30.2	33.1	0.20 -37.1	-88.2	-195.7
Conductivity (µS/cm)	338	333	161	361	351	97	329	331	278	111	122	249	289
Depth to Water (ft-btoc) qPCR	7.62 cells/mL	9.26 cells/mL	7.19 cells/mL	8.55 cells/mL	8.85 cells/mL	NS cells/mL	15.31 cells/mL	NR cells/mL	NR cells/mL	7.51 cells/mL	8.00 cells/mL	8.90 cells/mL	9.60 cells/mL
DHC	NS NS	NS NS	NS NS	NS NS	NS NS	3.40E+01 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS

Sampling Date 12/18/2013 Time 737 Matrix Water VOCS (GCMS) uppL dichlorodifluoromethane 5.0 U vinyl chloride 3.49 J bromomethane 5.0 U tichlorofluoromethane 5.0 U tichlorofluoromethane 5.0 U tichlorofluoromethylene 5.0 U tichlorofluoromethylene 5.0 U tichloropropane 5.0 U cla 1.2 dichloroethylene 5.0 U tichloroform 5.0 U tichloroform 5.0 U cla 1.2 dichloroethylene 5.0 U tichloroethylene 5.0 U tichloropropane 5.0 U tichloroethylene 5.0 <th>Sample ID</th> <th>PMW-8</th> <th></th>	Sample ID	PMW-8	
Marrix Water VOCS (GC/MS) μg/L	Lab Sample No.		13
VOCS (GCMS) µg/L dichloromethane 5.0 U chloromethane 5.0 U chloromethane 5.0 U viryl chloride 3.49 J bromomethane 5.0 U trichlorotethylene 3.98 J trichlorotethylene 3.98 J nethylene chloride 5.0 U trans-1,2-dichloroethylene 5.0 U trans-1,2-dichloroethylene 5.0 U trans-1,2-dichloroethylene 136 U trans-1,2-dichloroethylene 136 U trans-1,3-dichloropropane 5.0 U carbon tetrachloride 5.0 U trans-1,3-dichloropropane 5.0 U	Time	737	
chloromethane	VOCS (GC/MS)		
vinyl chloride 3.49 Jubromomethane 5.0 U chloroethane bromomethane 5.0 U trichlorofluoromethane 5.0 U trichlorofluoromethane 1,1-dichloroethylene 3.98 J methylene chloride 5.0 U trichloroethylene 1,1-dichloroethylene 2.21 J 1.1-dichloroethylene 5.0 U 2.2-dichloroethylene 1,1-dichloroethane 5.0 U 2.2-dichloroethylene 136 bromochloromethane 5.0 U 1.1-dichloroethylene 5.0 U 1.1-dichloroethylene 1,1,1-dichloroethylene 5.0 U 1.2-dichloroethylene 5.0 U 1.1-dichloroethylene 1,2-dichloropropane 5.0 U 1.2-dichloropropane 5.0 U 1.2-dichloroethane 1,2-dichloropropane 5.0 U 1.2-dichloroethylene 5.0 U 1.2-dichloroethylene 1,1,2-tichloroethane 5.0 U 1.2-dichloroethylene 5.0 U 1.2-dichloroethylene 1,1,2-tichloroethane 5.0 U 1.2-dichloroethylene 5.0 U 1.2-dichloroethylene 1,1,2-tichloroethylene 5.0 U 1.2-dichloroethylene 5.0 U 1.2-d	dichlorodifluoromethane	5.0	
Domomethane			
trichlorofluoromethane 1.1-dichioroethylene 1.3-98 J methylene chloride 15-0 U trans-1.2-dichioroethylene 1.2-dichioroethylene 1.2-dichioroethylene 1.2-dichioroethylene 1.3-6 bromochloromethane 1.1-dichioroethylene 1.3-6 bromochloromethane 1.5-0 U 1.1-1-dichioroethylene 1.5-0 U 1.1-1-dichioropropene 1.5-0 U 1.1-1-dichioropropene 1.5-0 U 1.1-1-dichioropropene 1.5-0 U 1.1-1-dichioropropene 1.0-1 U 1.1-1-dichioropropene 1.0-1 U 1.1-1-dichioropropene 1.0-1 U 1.1-1-1-dichioropropene 1.0-1 U 1.1-1-1-dichioropropene 1.0-1 U 1.1-1-1-dichioropropene 1.0-1 U 1.1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	bromomethane		
methylene chloride	trichlorofluoromethane		
trans-1.2-dichloroethylene 2.21	1,1-dichloroethylene		
2,2-dichloropropane	trans-1,2-dichloroethylene		
cis 1,2- dichloroethylene 136 bromochloromethane 5.0 U chloroform 5.0 U 1,1-1-firichloroethane 5.0 U 1,1-1-firichloroethane 5.0 U 1,2-dichloropropene 5.0 U 1,2-dichloropropane 5.0 U tirchloroethylene 1330 U 1,2-dichloropropane 5.0 U tirchloroethylene 5.0 U 1,2-dichloropropane 5.0 U tolluene 5.0 U trans-1,3-dichloropropene 5.0 U tolluene 5.0 U trans-1,3-dichloropropene 5.0 U toll-1,2-dichloropropane 5.0 U toll-1,2-dichloropropane 5.0 U toll-1,2-dichloropropane 5.0 U toll-1,2-dichloroethane 5.0 U toll-1,2-dichlorobethane 5.0 U toll-1,2-dichlorobethane 5.0 U toll-1,2	1,1-dichloroethane		
chloroform	cis 1,2- dichloroethylene		U
1,1,1-trichloroethane	bromochloromethane chloroform		
1,1-dichloropropene	1,1,1-trichloroethane		U
Denzene	carbon tetrachloride		
trichloroethylene 1030	benzene	5.0	U
1,2-dichloropropane			U
Demodichloromethane	1,2-dichloropropane	5.0	
cis-1,3-dichloropropene 5.0 U trans-1,3-dichloropropene 5.0 U trans-1,3-dichloropropene 5.0 U 1,1,2-trichloroethane 5.0 U 1,3-dichloropropane 5.0 U dibromochloromethane 5.0 U thlorobenzene 5.0 U sylenes (m/p) 5.0 U sylenes (m/p) 5.0 U bromoform 5.0 U sopropyl benzene (cumene) 5.0 U bromoform 5.0 U sopropyl benzene (cumene) 5.0 U tyl.2,3-trichloropropane 5.0 U tyl.2,2-tetrachloroethane 5.0 U tyl.2,3-trichlorobenzene <			
trans-1,3-dichloropropene 5.0 U In1,2-trichloroethane 5.0 U letrachloroethylene 5.0 U 1,3-dichloropropane 5.0 U dibromochloromethane 5.0 U 1,2-dibromoethane 5.0 U Licolorobezene 5.0 U 1,1,1,2-tetrachloroethane 5.0 U sylenes (m/p) 5.0 U o-xylene 5.0 U sylenes (m/p) 5.0 U o-xylene 5.0 U sylenes (m/p) 5.0 U o-xylene 5.0 U byomodorm 5.0 </td <td>cis-1,3-dichloropropene</td> <td>5.0</td> <td>U</td>	cis-1,3-dichloropropene	5.0	U
1,1,2-trichloroethane			
1,3-dichloropropane	1,1,2-trichloroethane		
Identification Iden	1,3-dichloropropane		
chlorobenzene	dibromochloromethane	5.0	U
ethylbenzene	chlorobenzene		U
xylenes (m/p) 5.0 U cxylerne 5.0 U styrene 5.0 U styrene 5.0 U styrene 5.0 U styrene 5.0 U bromobenzene 5.0 U bromobenzene 5.0 U 1,2,3-trichloropropane 5.0 U 1,2,3-trichloropropane 5.0 U 2-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 1,2,4-trimethylbenzene 5.0 U 1,2,4-trimethylbenzene 5.0 U 1,2,4-trimethylbenzene 5.0 U 1,4-dichlorobenzene 5.0 U 1,2-dichlorobenzene 5.0 U 1,2-dichlorobenzene 5.0 U 1,2-dichlorobenzene 5.0 U 1,2-dichlorobenzene 5.0 U	1,1,1,2-tetrachloroethane	5.0	U
o-xylene	xylenes (m/p)		U
bromoform 5.0 U bromoform 5.0 U bromoform 5.0 U bromoform 5.0 U bromoformenenenenenenenenenenenenenenenenenenen	o-xylene	5.0	U
bromobenzene 5.0	bromoform		
1,1,2,2-tetrachloroethane	isopropyl benzene (cumene)		
n-propyl benzene 5.0 U 2-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 1-2-chlorotoluene 5.0 U 1-2-drimethylbenzene 5.0 U 1-2-drimethylbenzene 5.0 U 1-2-drimethylbenzene 5.0 U 1-2-dribhorobenzene 5.0 U 1-2-dribhorob	1,1,2,2-tetrachloroethane		
2-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 4-chlorotoluene 5.0 U 1,3,5-trimethylbenzene 5.0 U 1,2,4-trimethylbenzene 5.0 U sec-butylbenzene 5.0 U 1,3-dichlorobenzene 5.0 U 4-isopropyltoluene 5.0 U 1,2-dichlorobenzene 5.0 U 1,2-dichlorobenzene 5.0 U 1,2-dichlorobenzene 5.0 U 1,2-dichlorobenzene 5.0 U 1,2-dirichlorobenzene 5.0 U 1,2-dirichlorobenzene 5.0 U 1,2,3-trichlorobenzene 5.0 U	1,2,3-trichloropropane		
1,3,5-trimethylbenzene	2-chlorotoluene		
tert-butylbenzene			
Sec-butylbenzene	tert-butylbenzene		
1,3-dichlorobenzene			
1,4-dichlorobenzene	1,3-dichlorobenzene		
1,2-dichlorobenzene 5.0 U	4-isopropyltoluene		
1,2-dirbromo-3-chloropropane	1,2-dichlorobenzene		
1,2,4-trichlorobenzene	n-butylbenzene		
naphthalene 5.0 U 1,2,3-trichlorobenzene 5.0 U Methyl tertiary butyl ether 5.0 U Acetone 10.0 U 2-butanone (MEK) 10.0 U 2-butanone (MEK) 10.0 U 2-butanone (MEK) 10.0 U 2-butanone (MEK) 10.0 U 2-butanone 10.0 U 2-hexanone 10.0 U 2-hexanone 10.0 U 2-butoroethyl vinyl ether 10.0 U <td>1,2,4-trichlorobenzene</td> <td></td> <td></td>	1,2,4-trichlorobenzene		
1,2,3-trichlorobenzene	hexachlorobutadiene		
Acetone	1,2,3-trichlorobenzene	5.0	
carbon disulfide 5.0 U 2-butanner (MEK) 10.0 U letrahydrofuran (THF) 10.0 U 4-methyl-2-pentanone (MIBK) 10.0 U 2-hexanone 10.0 U 2-hexanone 10.0 U 2-hexanone 10.0 U 2-hexanone 10.0 U 2-chloroethyl vinyl ether 10.0 U REDUCED GASES (GC) µg/L Methane 1.29 U Ethane 2.0 U Uethene 2.5 U OTHER GASES µg/L U Hydrogen 0.066 J Meral S (DISSOLVED) µg/L I Iron NS NS Arsenic NS NS Manganese NS NS GROUNDWATER CHEMISTRY mg/L Total Organic Carbon (TOC) NS Malanity as CaCO3 NS Alkalinity as CaCO3 NS Alkalinity	Methyl tertiary butyl ether		
tetrahydrofuran (THF) 10.0 U 4-methyl-2-pentanone (MIBK) 10.0 U 2-hexanone 129 2-hexanone 10.0 U 10.0	carbon disulfide	5.0	U
4-methyl-2-pentanone (MIBK) 10.0 U	2-butanone (MEK) tetrahydrofuran (THF)		
2-chloroethyl vinyl ether	4-methyl-2-pentanone (MIBK)	10.0	U
REDUCED GASES (GC) Hg/IL Methane 129 Ethane 2.0 U Uthan Uthan Uthan Uthan Marganes Most Most Arsenic NS Manganese NS Arsenic NS MeTALS (TOTAL) Hg/IL Iron NS Manganese NS			
Ethane 2.0 U Ethane 2.5 U OTHER GASES	REDUCED GASES (GC)	μg/L	
Ethene	Methane Ethane		IJ
Hydrogen 0.0066 J MgT Iron	Ethene	2.5	
METALS (DISSOLVED)			J
Manganese NS Arsenic NS METALS (TOTAL) µg/L Iron NS METALS (TOTAL) µg/L Iron NS Manganese NS GROUNDWATER CHEMISTRY mg/L Total Organic Carbon (DOC) NS Alkalinity as CaCO3 NS Alkalinity as CaCO3 NS Alkalinity as CaCO3 NS ANIONS mg/L Fluoride 0.2 U Chloride 5.87 Nitrile as N 0.2 U Suffate as SO ₄ 15.6 Bromide Nitrate as N 0.2 U O-Phosphate as P 0.22 U VOLATILE FATTY ACIDS mg/L Lactic Acid NS NS NS Propionic Acid NS NS Propionic Acid NS NS Pryruvic Acid NS NS Valeric Acid NS NS Valeric Acid	METALS (DISSOLVED)	μg/L	Ĭ
Arsenic NS METALS (TOTAL) µg/n. Iron NS Manganese NS Manganese NS Manganese NS Manganese NS MS Morphis MS Morphis MS Morphis MS MS ANIONS MILLION MS	Iron Manganese		
Iron	Arsenic	NS	
Manganese			
Total Organic Carbon (TOC)	Manganese	NS	
Dissolved Organic Carbon (DOC) NS Alkalinity as CaCO3 NS Alkalinity as CaCO3 NS ANIONS mg/L Fluoride 0.2 Chloride 5.87 Nitrite as N 0.2 U Sulfate as SO₄ 15.6 Bromide 0.38 Nitrate as N 0.2 O-Phosphate as P 0.22 VOLATILE FATTY ACIDS mg/L Lactic Acid NS Propionic Acid NS Propionic Acid NS Propionic Acid NS Pyruvic Acid NS Sulyric Acid NS Pyruvic Acid NS Yaleric Acid NS FIELD PARAMETERS pH (SU) 6.34 Temperature (°C) 14.64 Dissolved Oxygen (DO; mg/L) 0.34 Redox Potential (ORP; mV) -11.3 Conductivity (µS/cm) 156 Oepth to Water (ft-btoc) 9.01		mg/L NS	
MAIONS	Dissolved Organic Carbon (DOC)	NS	
Fluoride			
Nitrite as N 0.2 U 15.6	Fluoride	0.2	U
Sulfate as SO ₄	Chloride Nitrite as N		Ш
Nitrate as N 0.2 U	Sulfate as SO ₄		
O-Phosphate as P 0.22 VOLATILE FATTY ACIDS mgt. Lactic Acid NS Acetic Acid NS Propionic Acid NS Formic Acid NS Butyric Acid NS Butyric Acid NS Pyrtuvic Acid NS Pyrtuvic Acid NS Pyrtuvic Acid NS FIELD PARAMETERS PH (SU) 6.34 Temperature (°C) 14.64 Dissolved Oxygen (DO: mg/L) 0.34 Redox Potential (ORP; mV) -11.3 Conductivity (µS/cm) 156 Depth to Water (ft-btoc) 9.01 qPCR cells/mL	Bromide Nitrate as N		=
VOLATILE FATTY ACIDS mg/L Lactic Acid NS Acetic Acid NS Propionic Acid NS Formic Acid NS Butyric Acid NS Pyruvic Acid NS Valeric Acid NS FIELD PARAMETERS PH (SU) BH (SU) 6.34 Temperature (°C) 14.64 Dissolved Oxygen (DO; mg/L) 0.34 Redox Potential (ORP; mV) +11.3 Conductivity (μS/cm) 156 Depth to Water (ft-btoc) 9.01 qPCR cells/mL			U
Acetic Acid NS Propionic Acid NS Formic Acid NS Butyric Acid NS Butyric Acid NS Pyrtuvic Acid NS Valeric Acid NS Valeric Acid NS FIELD PARAMETERS PH (SU) 6.34 Temperature (°C) 14.64 Dissolved Oxygen (DO; mg/L) 0.34 Redox Potential (ORP; mV) 11.3 Conductivity (µS/cm) 156 Depth to Water (ft-bloc) 9.01 qPCR cells/mL	VOLATILE FATTY ACIDS		
Propionic Acid NS Formic Acid NS Butyric Acid NS Pyruvic Acid NS Valeric Acid NS Yaleric Acid NS FIELD PARAMETERS PH (SU) H (SU) 6.34 Temperature (°C) 14.64 Dissolved Oxygen (DO; mg/L) 0.34 Redox Potential (ORP; mV) -11.3 Conductivity (μS/cm) 156 Depth to Water (ft-btoc) 9.01 qPCR cells/mL	Acetic Acid		
Butyric Acid NS Pyrtuvic Acid NS Valeric Acid NS FIELD PARAMETERS Plh (SU) 5pH (SU) 6.34 Temperature (°C) 14.64 Dissolved Oxygen (DO; mg/L) 0.34 Redox Potential (ORP; mV) +11.3 Conductivity (µS/cm) 156 Depth to Water (ft-bloc) 9.01 qPCR cells/mL	Propionic Acid	NS	
Pyrturic Acid NS	Butyric Acid		
FIELD PARAMETERS	Pyruvic Acid	NS	
pH (SU) 6.34 Temperature (°C) 14.64 Dissolved Oxygen (DO; mg/L) 0.34 Redox Potential (ORP; mV) -11.3 Conductivity (µS/cm) 156 Depth to Water (ft-btoc) 9.01 qPCR cells/mL	FIELD PARAMETERS	IND	
Dissolved Oxygen (DO; mg/L) 0.34 Redox Potential (ORP; mV) -11.3 Conductivity (μS/cm) 156 Depth to Water (ft-btoc) 9.01 qPCR cells/mL	pH (SU)		
Redox Potential (ORP; mV) -11.3 Conductivity (μS/cm) 156 Depth to Water (ft-btoc) 9.01 qPCR cells/mL	nemperature (°C) Dissolved Oxygen (DO: ma/L)		
Depth to Water (ft-btoc) 9.01 qPCR cells/mL	Redox Potential (ORP; mV)	-11.3	
qPCR cells/mL	Depth to Water (ft-btoc)	156 9.01	
DIC NS	qPCR	cells/mL	
	סווט	NS	

0I- ID	T		DIEU OD	DIEU OD	D1411 0D	D1 1111 0D	51111 65	DI III OD	D1 111 0 D	DI ULU OD	D1011 0D	DI ULU OD	D1 81/ 0D	D1 11 11 0D	D1 81/ 0D
Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-8D 8533-20	PMW-8D 8539-3	PMW-8D 8546-22	PMW-8D 8547-22	PMW-8D 8550-24	PMW-8D 8551-22	PMW-8D 8556-6	PMW-8D 8561-8	PMW-8D 8583-6	PMW-8D 8596-8	PMW-8D 8649-9	PMW-8D 8652-22	PMW-8D 8698-13	PMW-8D 8708-12
Sampling Date	GW Quality	10/26/2011	11/10/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	12/6/2011	12/12/2011	1/16/2012	2/7/2012	3/27/2012	4/3/2012	5/30/2012	6/7/2012
Time		-46	-33	-24	-21	-19	-14	-6	0	35	57	106	113	170	178
Matrix VOCS (GC/MS)	2005 Criteria μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L	Water μg/L
dichlorodifluoromethane	1000	25.0 U	5.0 U		NS	NS	NS	NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS	NS NS
chloromethane		25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS
vinyl chloride bromomethane	10	25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS
chloroethane	- 10	25.0 U			NS	NS	NS	NS	NS NS	NS	NS	5.0 U	NS	NS	NS
trichlorofluoromethane	2000	25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS
1,1-dichloroethylene methylene chloride	3	25.0 U 25.0 U	0.0		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	2.1 J 5.0 U	NS NS	NS NS	NS NS
trans-1,2-dichloroethylene	100	25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	2.3 J	NS	NS	NS NS
1,1-dichloroethane	50	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
2,2-dichloropropane cis 1,2- dichloroethylene	70	25.0 U 41.5 D		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
bromochloromethane	70	25.0 U			NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS NS
chloroform	70	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
1,1,1-trichloroethane carbon tetrachloride	30	25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
1,1-dichloropropene	'	25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	5.0 U	NS NS	NS	NS NS
benzene	1	25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
1,2-dichloroethane trichloroethylene	2	25.0 U 1640 D	0.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	5.0 U	NS NS	NS NS	NS
1,2-dichloropropane	1	25.0 U	453 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
dibromomethane		25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
bromodichloromethane	1	25.0 U			NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS
cis-1,3-dichloropropene toluene	600	25.0 U 25.0 U	0.0		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
trans-1,3-dichloropropene	1	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
1,1,2-trichloroethane	3	25.0 U	5.0 U		NS	NS NS	NS NC	NS	NS	NS NC	NS NC	5.0 U	NS	NS	NS NC
tetrachloroethylene 1,3-dichloropropane	1	25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS
dibromochloromethane	1	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
1,2-dibromoethane	=-	25.0 U	0.0		NS	NS	NS NC	NS	NS	NS NC	NS NC	5.0 U		NS	NS
chlorobenzene 1,1,1,2-tetrachloroethane	50 1	25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS
ethylbenzene	700	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
xylenes (m/p)	1000	25.0 U	5.0 U		NS	NS	NS NC	NS	NS	NS NC	NS NC	5.0 U		NS	NS
o-xylene styrene	100	25.0 U 25.0 U			NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
bromoform	4	25.0 U			NS	NS	NS NS	NS	NS NS	NS NS	NS NS	5.0 U		NS	NS
isopropyl benzene (cumene)	700	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
bromobenzene 1,1,2,2-tetrachloroethane	1	25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS
1,2,3-trichloropropane	0.03	25.0 U			NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS NS
n-propyl benzene		25.0 U	0.0		NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
2-chlorotoluene 4-chlorotoluene		25.0 U 25.0 U	5.0 U 5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene		25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS NS
tert-butylbenzene		25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS
1,2,4-trimethylbenzene sec-butylbenzene		25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
1,3-dichlorobenzene	600	25.0 U			NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS NS
4-isopropyltoluene		25.0 U	0.0 0		NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS
1,4-dichlorobenzene 1,2-dichlorobenzene	75 600	25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U	NS NS	NS NS	NS NS
n-butylbenzene	600	25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
1,2,4-trichlorobenzene	9	25.0 U	0.0		NS	NS NC	NS NC	NS	NS NC	NS NC	NS	5.0 U		NS NC	NS
hexachlorobutadiene naphthalene	300	25.0 U 25.0 U	5.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	5.0 U		NS NS	NS NS
1,2,3-trichlorobenzene		25.0 U	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
Methyl tertiary butyl ether	70	25.0 U	5.0 U		NS	NS	NS	NS	NS	NS	NS	5.0 U		NS	NS
Acetone carbon disulfide	6000 700	50.0 U 25.0 U	10.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	10.0 U	NS NS	NS NS	NS NS
2-butanone (MEK)	300	50.0 U	10.0 U		NS	NS	NS	NS	NS	NS	NS	15.2	NS	NS	NS
tetrahydrofuran (THF)	10	50.0 U			NS	NS	NS	NS	NS	NS	NS	10.0 U		NS	NS
4-methyl-2-pentanone (MIBK) 2-hexanone		50.0 U 50.0 U	10.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	10.0 U		NS NS	NS NS
2-chloroethyl vinyl ether		50.0 U	10.0 U	NS	NS	NS	NS	NS	NS	NS	NS	10.0 U	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NA NA	97.0 4.0 U	99.8 4.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1430 0.46 J	NS NS	NS NS	NS NS
Ethene	NA NA	5.0 U			NS	NS	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	NA μg/L	0.009 U	0.0057 J μg/L	NS μg/L	NS μg/L	NS μα/L	NS μg/L	NS μg/L	0.0055 μg/L	0.0021 J μg/L	0.008 U	0.0094 μg/L	0.008 U μg/L	0.0081 J	0.004 J
Iron	μg/L 300	μg/L NS	μg/L 5920 D		NS NS	μg/L NS	μg/L NS	NS NS	NS NS	NS NS	NS NS	NS	μg/L NS	μg/L NS	μg/L NS
Manganese	50	NS	102 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Arsenic	uc ⁿ	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l	NS ug/l
METALS (TOTAL) Iron	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μ g/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	11.2 10.5	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Alkalinity as CaCO3	NA NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	2 250	0.2 U 13.2	0.2 U 12.6	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS 22.8	NS NS	NS 19.4	NS 21.8
Nitrite as N	1	0.2 U	0.2 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U	NS NS	0.2 U	0.2 U
Sulfate as SO ₄	250	47.0 E	67.6 E	NS	NS	NS	NS	NS	NS	NS	NS	96.2 D	NS	78.7 E	94.2 E
Bromide	NA	0.49	0.49	1.27	1.63	0.54	3.28	NS	NS	NS	NS	2.17	NS	1.86	2.32
Nitrate as N O-Phosphate as P	10 NA	0.2 U 0.2 U	0.2 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U	NS NS	0.2 U 0.2 U	0.2 U
VOLATILE FATTY ACIDS	INA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.53	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Propionic Acid Formic Acid	NA NA	NS NS	0.67 J 1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NA	NS NS	1.0 U	NS NS	NS NC	NS NC	NS NC	NS	NS NC	NS NC	NS NC	NS NS	NS NC	NS	NS NC
Valeric Acid FIELD PARAMETERS	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)	NA	5.57	5.93	NS	NS	NS	NS	NS	6.32	6.41	6.01	6.09	6.02	5.72	5.79
Temperature (°C)	NA	15.65	15.69	NS	NS	NS	NS	NS	15.16	14.75	14.43	12.86	14.43	15.40	15.66
Dissolved Oxygen (DO; mg/L)	NA NA	0.30	4.17	NS NC	NS NC	NS NC	NS NC	NS NC	0.02	0.37	3.01	0.18	0.59 -149.4	0.37	1.00
Redox Potential (ORP; mV) Conductivity (µS/cm)	NA NA	-33.8 231	-30.0 323	NS NS	NS NS	NS NS	NS NS	NS NS	-36.6 127	-110.3 300	-21.8 445	-59.9 604	-149.4 440	-119.9 309	-64.5 439
Depth to Water (ft-btoc)	NA	6.96	6.83	NS	NS	NS	NS	NS	6.90	6.45	7.14	7.40	7.61	NS	NS
qPCR		cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
DHC	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Sample ID	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D
Lab Sample No.	8713-5	8717-22	FIVIVV-OD	FIWIW-OD	8767-9	FINIW-OD	8807-7	8818-7	8837-10	8839-10	8840-9	8850-9	8852-11	8869-9
Sampling Date	6/11/2012	6/13/2012 184	6/15/2012	6/19/2012	7/30/2012	8/16/2012	8/30/2012	9/12/2012	10/1/2012 294	10/2/2012	10/3/2012	10/5/2012	10/23/2012	11/15/2012 339
Time Matrix	182 Water	Water	186 Water	Water	231 Water	248 Water	262 Water	275 Water	Vater	295 Water	296 Water	298 Water	316 Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
vinyl chloride	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
bromomethane chloroethane	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
trichlorofluoromethane	NS NS	NS NS	NS NS	NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS
1,1-dichloroethylene	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	4.3 JD	NS
methylene chloride trans-1,2-dichloroethylene	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
1,1-dichloroethane	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS	NS	42.0 U	NS
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	NS NS	NS NS	NS NS	105 U 275 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 206 D	NS NS
bromochloromethane	NS	NS	NS NS	NS	105 U		NS	NS	NS NS	NS	NS	NS	42.0 U	NS NS
chloroform	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS	NS	42.0 U	NS
1,1,1-trichloroethane carbon tetrachloride	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
1,1-dichloropropene	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
benzene 1.2-dichloroethane	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
trichloroethylene	NS	NS	NS	NS	1590 D	NS	NS	NS	NS	NS	NS	NS	1960 D	NS
1,2-dichloropropane	NS	NS	NS	NS	105 U 105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
dibromomethane bromodichloromethane	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
cis-1,3-dichloropropene	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS	NS	42.0 U	NS
toluene trans-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	14.2 JD 42.0 U	NS NS
1,1,2-trichloroethane	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
tetrachloroethylene	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS
1,3-dichloropropane dibromochloromethane	NS NS	NS NS	NS NS	NS NS	105 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
1,2-dibromoethane	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
chlorobenzene 1,1,1,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
ethylbenzene	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
xylenes (m/p)	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS
o-xylene styrene	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS
bromoform	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
isopropyl benzene (cumene) bromobenzene	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
1,1,2,2-tetrachloroethane	NS NS	NS NS	NS	NS	105 U	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	42.0 U	NS NS
1,2,3-trichloropropane	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS	NS	42.0 U	NS
n-propyl benzene 2-chlorotoluene	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
4-chlorotoluene	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
1,3,5-trimethylbenzene tert-butylbenzene	NS NS	NS NS	NS NS	NS NS	105 U 105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
1,2,4-trimethylbenzene	NS NS	NS	NS NS	NS	105 U		NS	NS	NS NS	NS NS	NS	NS	42.0 U	NS NS
sec-butylbenzene	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
1,3-dichlorobenzene 4-isopropyltoluene	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
1,4-dichlorobenzene	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
1,2-dichlorobenzene	NS NC	NS NC	NS NC	NS NC	105 U	NS NS	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	42.0 U 42.0 U	NS NC
n-butylbenzene 1,2-dibromo-3-chloropropane	NS NS	NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U	NS NS
1,2,4-trichlorobenzene	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS	NS	42.0 U	NS
hexachlorobutadiene naphthalene	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS
1,2,3-trichlorobenzene	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	42.0 U	NS
Methyl tertiary butyl ether Acetone	NS NS	NS NS	NS NS	NS NS	105 U 210 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 84.0 U	NS NS
carbon disulfide	NS NS	NS NS	NS NS	NS	105 U	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	42.0 U	NS NS
2-butanone (MEK)	NS	NS	NS	NS	210 U		NS	NS	NS	NS	NS	NS	84.0 U	NS
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS NS	NS NS	NS NS	NS NS	210 U 210 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	84.0 U 84.0 U	NS NS
2-hexanone	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS	NS	84.0 U	NS
2-chloroethyl vinyl ether REDUCED GASES (GC)	NS μg/L	NS ug/l	NS μg/L	NS a/l	210 U μg/L		NS all	NS a/l	NS ugf	NS a/l	NS all	NS ug/l	84.0 U μg/L	NS μg/L
Methane	NS NS	μg/L NS	NS NS	μg/L NS	1110	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	857	NS NS
Ethane	NS	NS	NS	NS	4.0 U	NS	NS	NS	NS	NS	NS	NS	2.7 J	NS
OTHER GASES	NS μg/L	NS μg/L	NS μg/L	NS μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	8.5 μg/L	NS μg/L
Hydrogen	NS	NS	NS	NS	0.009 U		0.009 U	0.0483	0.0030 J	0.0046 J	0.0034 J	0.0010 J	0.009 U	0.0038 J
METALS (DISSOLVED)	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L	μg/L NS	μg/L NS	μg/L	μg/L NS	μg/L NS	μg/L NS	μg/L	μg/L 13300 D	μg/L NS
Iron Manganese	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	111 D	NS NS
Arsenic	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.5 U	NS
METALS (TOTAL) Iron	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μ g/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μ g/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Alkalinity as CaCO3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	61.6	NS
ANIONS Fluoride	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 0.2 U	mg/L NS	mg/L 0.2 U	mg/L 0.34	mg/L 1.0 U	mg/L 1.0 U	mg/L 1.0 U	mg/L 1.0 U	mg/L 0.2 U	mg/L NS
Chloride	23.7 E	NS	NS	NS	24.1	NS	21.7	4.65	12.7	13.0	11.3	12.9	12.5	NS
Nitrite as N	0.2 U	NS	NS	NS	0.2 U	NS	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS
Sulfate as SO ₄ Bromide	97.2 E 2.69	NS 2.53	NS 2.77	NS 2.94	85.8 E 3.13	NS NS	90.1 D 4.50	4.12 0.31	21.3 D 1.00 J	22.9 D 2.00	22.6 D 65.9	27.9 D 31.3	28.8 E 77.5	NS NS
Nitrate as N	0.2 U	NS	NS	NS	0.2 U	NS	0.2 U	0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	NS
O-Phosphate as P	0.2 U	NS mad	NS mad	NS ma/l	0.2 U	NS mad	0.2 U	0.2 U	1.0 U		1.0 U	1.0 U	0.2 U	NS mad
VOLATILE FATTY ACIDS Lactic Acid	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L 1.0 U	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Acetic Acid	NS	NS	NS	NS	NS	NS	NS	1.56	NS	NS	NS	NS	NS	NS
Propionic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.91 J	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid Butyric Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Pyruvic Acid	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS	NS	NS	NS
Valeric Acid FIELD PARAMETERS	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS	NS	NS	NS
pH (SU)	5.87	5.84	5.82	5.84	5.52	5.54	5.88	6.11	5.85	5.86	5.83	5.63	5.99	6.15
Temperature (°C)	16.34	15.85	15.75	15.85	17.20	17.50	16.95	17.83	17.26	17.19	17.46	17.04	16.50	13.30
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	0.12 -60.0	-0.01 -75.1	0.65 -56.1	0.14 -79.1	0.07 -187.7	0.12 -160.7	0.38 -123.1	3.42 -73.2	1.66 12.7	9.6	0.13 23.2	0.23 26.3	0.10 -102.6	0.23 -76
Conductivity (µS/cm)	463	464	485	481	468	449	472	153	297	301	249	280	350	176
Depth to Water (ft-btoc)	7.87	7.62	7.95	7.84	NS colle/ml	7.54	8.50	7.46	7.94	8.23	7.96	7.80	8.44	7.36
qPCR DHC	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS	cells/mL NS
					-			-			-			

Table D.25. PMW-8D: Analytical and Field Parameter Results

Sample ID	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D	PMW-8D
Lab Sample No.	8876-10	8883-6	8896-7	8905-7	8929-7	8954-11	8977-11	8993-6	9017-6	9040-7	9051-6
Sampling Date Time	12/4/2012 358	12/18/2012 372	1/17/2013 402	2/7/2013 423	3/14/2013 458	4/24/2013 499	6/11/2013 547	7/2/2013 568	9/17/2013 645	11/12/2013 701	12/18/2013 737
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS	μg/L 42.0 U	μ g/L 5.0 U	μg/L 25.0 U	μg/L 5.0 U	μg/L 25.0 U	μg/L NS	μg/L 5.0 U	μg/L 5.0 U	μg/L 5.0 U	μ g/L 5.0 U
chloromethane	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
vinyl chloride bromomethane	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	15.5 5.0 U	2.23 J 5.0 U
chloroethane trichlorofluoromethane	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
1,1-dichloroethylene	NS NS	42.0 U		25.0 U	4.8 J	25.0 U 4.6 JD	NS NS	0.6 J	11.0	10.7	1.96 J
methylene chloride	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
trans-1,2-dichloroethylene 1,1-dichloroethane	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	2.3 J 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	6.6 5.0 U	6.03 5.0 U	1.49 J 5.0 U
2,2-dichloropropane	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
cis 1,2- dichloroethylene bromochloromethane	NS NS	207 D 42.0 U	45.1 5.0 U	167 D 25.0 U	165 5.0 U	170 D 25.0 U	NS NS	86.4 5.0 U	1110 D 5.0 U	815 5.0 U	146 5.0 U
chloroform	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1-trichloroethane carbon tetrachloride	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
1,1-dichloropropene	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
benzene 1,2-dichloroethane	NS NS	42.0 U 42.0 U		25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
trichloroethylene	NS	1830 D	531	1420 D	1710 D	1810 D	NS	179	1550 D		611
1,2-dichloropropane dibromomethane	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U
bromodichloromethane	NS	42.0 U	0.0	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
cis-1,3-dichloropropene toluene	NS NS	42.0 U 42.0 U	0.0	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U	5.0 U 5.37	5.0 U
trans-1,3-dichloropropene	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-trichloroethane tetrachloroethylene	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
1,3-dichloropropane	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
dibromochloromethane 1,2-dibromoethane	NS NS	42.0 U 42.0 U		25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U
chlorobenzene	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1,2-tetrachloroethane ethylbenzene	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
xylenes (m/p)	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
o-xylene styrene	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U
bromoform	NS NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
isopropyl benzene (cumene) bromobenzene	NS NS	42.0 U 42.0 U		25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
1,1,2,2-tetrachloroethane	NS NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS NS	5.0 U	5.0 U	5.0 U	5.0 U
1,2,3-trichloropropane	NS	42.0 U		25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
n-propyl benzene 2-chlorotoluene	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U
4-chlorotoluene	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,3,5-trimethylbenzene tert-butylbenzene	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U
1,2,4-trimethylbenzene	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
sec-butylbenzene 1,3-dichlorobenzene	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U
4-isopropyltoluene	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,4-dichlorobenzene 1,2-dichlorobenzene	NS NS	42.0 U 42.0 U	5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U	5.0 U	5.0 U	5.0 U
n-butylbenzene	NS	42.0 U		25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS	42.0 U 42.0 U		25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U	5.0 U		5.0 U
hexachlorobutadiene	NS	42.0 U		25.0 U	5.0 U	25.0 U	NS	5.0 U	5.0 U		5.0 U
naphthalene 1,2,3-trichlorobenzene	NS NS	42.0 U 42.0 U	5.0 U 5.0 U	25.0 U 25.0 U	5.0 U 5.0 U	25.0 U 25.0 U	NS NS	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
Methyl tertiary butyl ether	NS	42.0 U	5.0 U	25.0 U	5.0 U	25.0 U		5.0 U	5.0 U	5.0 U	5.0 U
Acetone carbon disulfide	NS NS	84.0 U 42.0 U		50.0 U 25.0 U	10.0 U 5.0 U	50.0 U 25.0 U	NS NS	10.0 U 5.0 U	10.0 U 5.0 U	10.0 U 5.0 U	10.0 U 5.0 U
2-butanone (MEK)	NS	84.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U	10.0 U	10.0 U
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS NS	84.0 U 84.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS NS	10.0 U	10.0 U	10.0 U	10.0 U
2-hexanone	NS	84.0 U	10.0 U	50.0 U	10.0 U	50.0 U	NS	10.0 U	10.0 U	10.0 U	10.0 U
2-chloroethyl vinyl ether REDUCED GASES (GC)	NS μg/L	84.0 U μg/L	10.0 U μg/L	50.0 U μg/L	10.0 U μg/L	50.0 U μg/L	NS μg/L	10.0 U μg/L	10.0 U μg/L	10.0 U μg/L	10.0 U μg/L
Methane	NS	1030	101	227	225	233	NS	70.0	733	862	257
Ethane Ethene	NS NS	2.40 J 5.91	4.0 U 5.0 U	4.0 U 1.28 J	4.0 U 5.0 U	4.0 U 5.0 U	NS NS	4.0 U 5.0 U	2.0 U 2.5 U	2.0 U 2.5 U	2.0 U 2.5 U
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	0.0041 J μg/L	0.0041 J μg/L	0.03 U μg/L	0.032 μg/L	0.008 U μg/L	0.008 U μg/L	0.0089 μg/L	0.0441 J μg/L	0.0167 μg/L	0.0052 μg/L	0.0072 μg/L
Iron	NS	9860 D	NS	NS	NS	NS	NS	2320 D	NS	NS	NS
Manganese Arsenic	NS NS	105 D NS	NS NS	NS NS	NS NS	NS NS	NS NS	34.5 D NS	NS NS	NS NS	NS NS
METALS (TOTAL)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	NS NS	10100 D 107 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Organic Carbon (TOC) Dissolved Organic Carbon (DOC	NS	NS NC	2.89 NS	3.89	3.55	4.00	NS	NS	NS NS	NS NC	NS NS
Alkalinity as CaCO3	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	0.2 U 14.6	0.2 U 16.4	0.2 U 2.05	0.2 U 11.6	0.2 U 14.0	0.2 U 11.6	NS NS	0.2 U 4.54	0.2 U 12.1	0.2 U 12.5	0.2 U 3.29
Nitrite as N	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U
Sulfate as SO ₄ Bromide	31.6 E	32.5 E 15.0	13.5 0.75	29.9 E 9.68	34.3 E 10.2	30.9 E 6.15	NS NS	0.25 0.32	11.5 2.54	18.8 2.00	8.46 0.19 J
Nitrate as N	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	NS	0.2 U	0.2 U	0.2 U	0.2 U
O-Phosphate as P VOLATILE FATTY ACIDS	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U		0.18 J	0.18 J	0.18 J	0.2 U
Lactic Acid	mg/L NS	0.2 U		mg/L 1.0 U	mg/L 1.0 U	mg/L 1.0 U	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Acetic Acid	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS	NS
Propionic Acid Formic Acid	NS NS	1.0 U		1.0 U	1.0 U	1.0 U		NS NS	NS NS	NS NS	NS NS
Butyric Acid	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	NS	NS	NS	NS	NS
Pyruvic Acid Valeric Acid	NS NS	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS											
pH (SU)	5.87	5.74	6.15	5.94	5.81	5.86	6.01	6.23	5.99	5.86	6.24
Temperature (°C) Dissolved Oxygen (DO; mg/L)	16.21 0.18	16.07 0.41	13.59 0.36	12.97 0.63	13.28 0.17	14.03 0.40	15.13 0.41	16.04 0.20	16.73 0.10	15.21 0.07	14.74 0.24
Redox Potential (ORP; mV)	-100.5	-43.2	-24.6	-109.7	-22.5	-10.0	35.6	-40.7	-82.0	-191.8	1.8
Conductivity (µS/cm) Depth to Water (ft-btoc)	326 8.43	316 8.25	82 NS	290 15.22	261 NR	229 NR	84 7.74	104 7.06	234 7.69	244 8.22	135 8.58
qPCR	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
DHC	NS	NS	1.54E+05	NS	3.20E+01 U	NS	NS	NS	NS	NS	

Serget De	Table D.		IIAIA		Alla		u and			Iaiiie		Cour	
Semple Property	Sample ID	NJ Higher of	PMW-9S	PMW-9S	PMW-9S	PMW-9S	PMW-9S	PMW-9S	PMW-9S	PMW-9S	PMW-9S	PMW-9S	PMW-9S
Time													
Margin		GW Quality											
Wilson		2005 Criteria											
Schoolstanders													
Properties													
Secondary S. 190													
Secretary 1	vinyl chloride	1	50.0 U	5.0 U	NS	NS		NS		5.0 U	NS	NS	NS
Display Disp		10											
embrenderbeiterbeiter 1													
Total Confessional Program 10													
1-1-20-1-20-20-20-20-20-20-20-20-20-20-20-20-20-													
22 - 22 - 22 - 22 - 22 - 22 - 22 - 22													
84 2-5 Actinomishment 77 91.3 10 92.5 93 982 985 9		- 00											
Consecutional frame		70											
11. Informerentation of the control	bromochloromethane		50.0 U	5.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
action entertrocks	chloroform	70	50.0 U	5.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
1													
Designate		1											
Jackstendarber 2													
restructions 1													
1.26definerprograms													
Separate													
Second-informeration 1		'											
Section 1		1											
Solution		<u> </u>											
Part 1-2-decirocompany 1													
11.2 activisement		1											
13-derinterprogramme	1,1,2-trichloroethane	3	50.0 U	5.0 U	NS	NS		NS	NS	5.0 U		NS	NS
Description of the property		1											
12-determonementer													
Selections		1											
1.11 2 International manual 1 500 U 50 U		 											
enthelectories													
Systems (mip)													
Solid Soli													
Storenge		1000											
Stormord 4		100											
12,3-timethyprogenee													
Proporty New Year	1,1,2,2-tetrachloroethane	1	50.0 U	5.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
Section of the content of the cont	1,2,3-trichloropropane	0.03	50.0 U	5.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
	n-propyl benzene												
13.5-timethyberozene													
methodytheterene													
12.4-driefnorbenzene													
13-definity-fromprene		1											
4-bapproprioptionene		600											
14-dichorberperene		000											
Publisherane		75											
12-dischoro-d-chiropropane	1,2-dichlorobenzene	600	50.0 U	5.0 U	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS
12.4-trichlorobenzene						NS	NS	NS		5.0 U	NS	NS	NS
Inspection producted 1													
maphthalene													
12.3-Inchlorobenzene													
Methytetriary butyl ether		300											
Acetone 6000 1000 U 1000 U 100 U NS Acetone distributed 7000 1000 U 1000 U 100 U NS		70											
Carbon disulfide													
2-butanone (MEK)													
Bertahytofuran (THF)													
	tetrahydrofuran (THF)												
2-hexanone	4-methyl-2-pentanone (MIBK)		100.0 U	10.0 U	NS	NS	NS	NS	NS	10.0 U	NS	NS	NS
REDUCED GASES (GC)									NS				
Methane													
Ethane													
Ethene													
OTHER GASES													
Hydrogen													
METALS (DISSOLVED)													
Iron													
Manganese 50													
ANIONS mg/L													
Fluoride													
Chloride													
Sulfate as SO ₄ 250 102 E 82.3 E NS NS NS NS NS NS 46.7 D NS 53.2 E NS Bromide NA 0.40 0.37 3.47 2.72 0.59 3.09 NS 0.68 NS 2.45 2.48 Nitrate as N 10 0.2 U 0.2 U NS NS NS NS NS NS 0.2 U NS 0.2 U NS O-Phosphate as P NA 0.2 U 0.2 U NS NS NS NS NS NS NS 0.2 U NS 0.2 U NS	Chloride	250		12.5		NS		NS	NS	8.47	NS	12.0	
Bromide		+											
Nitrate as N													
O-Phosphate as P NA 0.2 U 0.2 U NS NS NS NS NS 0.2 U NS 0.2 U NS VOLATILE FATTY ACIDS		NA											
VOLATILE FATTY ACIDS													
Lactic Acid NA NS 1.0 U NS		NA											
Acetic Acid NA NS 1.0 U NS													
Propionic Acid NA NS 1.0 U NS													
Formic Acid NA NS 1.0 U NS													
Butyric Acid NA NS 1.0 U NS													
Pyruvic Acid													
Valeric Acid NA													
FIELD PARAMETERS													
pH (SU) NA 5.84 5.74 NS NS NS NS S.68 5.95 5.99 4.87 4.83 Temperature (°C) NA 16.64 16.42 NS NS NS NS NS 15.60 13.00 13.13 15.88 15.67 Dissolved Oxygen (DC; mg/L) NA 0.17 0.32 NS NS NS NS NS 0.06 0.00 0.71 1.76 0.31 Redox Potential (ORP; mV) NA -5.8 -84.4 NS NS NS NS NS -76.5 12.4 -101.0 78.0 89.3 Conductivity (μS/cm) NA 530 395 NS NS NS NS NS 289 311 236 200 193			.,0	0		.,,0	.,,0	.,0				.,,	
Temperature (°C) NA 16.64 16.42 NS NS NS NS NS 15.60 13.00 13.13 15.88 15.67 Dissolved Oxygen (DO; mg/L) NA 0.17 0.32 NS NS NS NS 0.06 0.00 0.71 1.76 0.31 Redox Potential (ORP; mV) NA -5.8 -84.4 NS NS NS NS NS -76.5 12.4 -101.0 78.0 89.3 Conductivity (µS/cm) NA 530 395 NS NS NS NS 289 311 236 200 193		NA	5.84	5.74	NS	NS	NS	NS	5.68	5.95	5.99	4.87	4.83
Dissolved Oxygen (DC; mg/L) NA 0.17 0.32 NS NS NS 0.06 0.00 0.71 1.76 0.31 Resolved Oxygen (DC; mg/L) NA -5.8 -84.4 NS													
Redox Potential (ORP; mV) NA -5.8 -84.4 NS NS NS -76.5 12.4 -101.0 78.0 89.3 Conductivity (μS/cm) NA 530 395 NS NS NS 289 311 236 200 193													
	Redox Potential (ORP; mV)	NA	-5.8	-84.4	NS	NS	NS	NS	-76.5	12.4	-101.0	78.0	89.3
Depth to Water (ft-btoc) NA 6.72 6.93 NS NS NS NS 6.55 7.35 7.23 7.65 7.55	Conductivity (µS/cm)	NA	530	395	NS	NS	NS	NS	289	311	236	200	193
	Depth to Water (ft-btoc)	NA	6.72	6.93	NS	NS	NS	NS	6.55	7.35	7.23	7.65	7.55

Sample ID	PMW-9S	PMW-9S
Lab Sample No.	1 11111 00	1 11111 00
Sampling Date Time	6/15/2012	6/19/2012 190
Matrix	186 Water	Water
VOCS (GC/MS)	μg/L	μg/L
dichlorodifluoromethane chloromethane	NS NS	NS NS
vinyl chloride	NS	NS NS
bromomethane	NS	NS
chloroethane trichlorofluoromethane	NS NS	NS NS
1,1-dichloroethylene	NS	NS
methylene chloride	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	NS NS	NS NS
2,2-dichloropropane	NS	NS
cis 1,2- dichloroethylene	NS	NS
bromochloromethane chloroform	NS NS	NS NS
1,1,1-trichloroethane	NS	NS
carbon tetrachloride	NS	NS
1,1-dichloropropene benzene	NS NS	NS NS
1,2-dichloroethane	NS	NS
trichloroethylene	NS	NS
1,2-dichloropropane dibromomethane	NS NS	NS NS
bromodichloromethane	NS	NS
cis-1,3-dichloropropene	NS	NS
toluene trans-1 3-dichloropropene	NS NS	NS NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	NS NS	NS NS
tetrachloroethylene	NS	NS
1,3-dichloropropane	NS NS	NS NS
dibromochloromethane 1,2-dibromoethane	NS NS	NS NS
chlorobenzene	NS	NS
1,1,1,2-tetrachloroethane	NS	NS
ethylbenzene xylenes (m/p)	NS NS	NS NS
o-xylene	NS	NS
styrene	NS	NS
bromoform	NS NS	NS NS
isopropyl benzene (cumene) bromobenzene	NS	NS
1,1,2,2-tetrachloroethane	NS	NS
1,2,3-trichloropropane	NS NS	NS NC
n-propyl benzene 2-chlorotoluene	NS NS	NS NS
4-chlorotoluene	NS	NS
1,3,5-trimethylbenzene	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	NS NS
sec-butylbenzene	NS	NS
1,3-dichlorobenzene	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	NS NS
1,2-dichlorobenzene	NS	NS
n-butylbenzene	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	NS NS	NS NS
hexachlorobutadiene	NS	NS
naphthalene	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	NS NS	NS NS
Acetone	NS	NS
carbon disulfide	NS	NS
2-butanone (MEK) tetrahydrofuran (THF)	NS	NS NC
4-methyl-2-pentanone (MIBK)	NS NS	NS NS
2-hexanone	NS	NS
2-chloroethyl vinyl ether	NS ug/l	NS ug/l
REDUCED GASES (GC) Methane	μg/L NS	μg/L NS
Ethane	NS	NS
Ethene	NS a/I	NS
OTHER GASES Hydrogen	μg/L NS	μg/L NS
METALS (DISSOLVED)	μg/L	μg/L
Iron	NS	NS
Manganese ANIONS	NS mg/l	NS mg/l
Fluoride	mg/L NS	mg/L NS
Chloride	NS	NS
Nitrite as N	NS	NS
Sulfate as SO ₄ Bromide	NS 2.64	NS 2.48
Nitrate as N	NS NS	NS
O-Phosphate as P	NS	NS
VOLATILE FATTY ACIDS Lactic Acid	mg/L	mg/L NS
Acetic Acid	NS NS	NS NS
Propionic Acid	NS	NS
Formic Acid	NS	NS NS
Butyric Acid Pyruvic Acid	NS NS	NS NS
Valeric Acid	NS	NS
FIELD PARAMETERS		
pH (SU) Temperature (°C)	4.87	4.72 15.90
Temperature (°C) Dissolved Oxygen (DO; mg/L)	15.75 0.10	15.90
Redox Potential (ORP; mV)	83.7	72.4
Conductivity (µS/cm)	196	194
Depth to Water (ft-btoc)	7.45	7.40

Table D.27. PMW-9I: Analytical and Field Parameter Results

Sample ID	NJ Higher of	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I	PMW-9I
Lab Sample No.	PQLs and	8533-21	8539-5 11/10/2011	8546-24 11/18/2011	8547-24	8550-26	8551-24 11/28/2011	8561-10	8649-11 3/27/2012	8652-20 4/3/2012	8713-23 6/11/2012	8717-24	6/15/2012	6/19/2012
Sampling Date Time	GW Quality	10/26/2011 -46	-32	-24	11/21/2011 -21	11/23/2011 -19	-14	12/12/2011	106	113	182	6/13/2012 184	186	190
Matrix VOCS (GC/MS)	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
dichlorodifluoromethane	μg/L 1000	μg/L 50.0 U	μg/L 10.0 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 350 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
chloromethane		50.0 U			NS	NS	NS	NS	350 U		NS	NS	NS	NS
vinyl chloride bromomethane	10	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
chloroethane		50.0 U			NS	NS	NS	NS	350 U		NS	NS	NS	NS
trichlorofluoromethane 1,1-dichloroethylene	2000	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
methylene chloride	3	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene 1.1-dichloroethane	100 50	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane		50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene bromochloromethane	70	278 D 50.0 U			NS NS	NS NS	NS NS	NS NS	256 JE 350 U		NS NS	NS NS	NS NS	NS NS
chloroform	70	50.0 U			NS	NS	NS	NS	350 U		NS	NS	NS	NS
1,1,1-trichloroethane carbon tetrachloride	30 1	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
1,1-dichloropropene	-	50.0 U			NS	NS	NS	NS	350 U		NS	NS NS	NS NS	NS
benzene 1.2-dichloroethane	1 2	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
trichloroethylene	1	22500 D			NS NS	NS NS	NS NS	NS NS	22500 D		NS NS	NS NS	NS NS	NS NS
1,2-dichloropropane	1	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
dibromomethane bromodichloromethane	1	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
cis-1,3-dichloropropene	1	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
toluene trans-1,3-dichloropropene	600	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
1,1,2-trichloroethane	3	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
tetrachloroethylene 1,3-dichloropropane	1	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
dibromochloromethane	1	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
1,2-dibromoethane chlorobenzene	50	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
ethylbenzene xylenes (m/p)	700 1000	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
o-xylene		50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
styrene bromoform	100 4	50.0 U 50.0 U	10.0 U	NS	NS NS	NS NS	NS NS	NS NS	350 U	NS	NS NS	NS NS	NS NS	NS NS
isopropyl benzene (cumene)	700	50.0 U			NS	NS	NS	NS	350 U		NS NS	NS	NS NS	NS NS
bromobenzene		50.0 U			NS	NS	NS	NS	350 U		NS	NS	NS	NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	0.03	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
n-propyl benzene		50.0 U			NS	NS	NS	NS	350 U		NS	NS	NS	NS
2-chlorotoluene 4-chlorotoluene		50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene		50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene		50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
sec-butylbenzene		50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
1,3-dichlorobenzene 4-isopropyltoluene	600	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
1,4-dichlorobenzene	75	50.0 U			NS	NS	NS	NS	350 U		NS	NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	600	50.0 U 50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene hexachlorobutadiene	9	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
naphthalene	300	50.0 U	10.0 U	NS	NS	NS	NS	NS	350 U	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	50.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
Acetone	6000	100.0 U			NS	NS	NS	NS	700 U	NS	NS	NS	NS	NS
carbon disulfide 2-butanone (MEK)	700 300	50.0 U 100.0 U			NS NS	NS NS	NS NS	NS NS	350 U		NS NS	NS NS	NS NS	NS NS
tetrahydrofuran (THF)	10	100.0 U	20.0 U	NS	NS	NS	NS	NS	700 U		NS NS	NS	NS NS	NS
4-methyl-2-pentanone (MIBK)		100.0 U			NS	NS	NS	NS	700 U		NS	NS	NS	NS
2-hexanone 2-chloroethyl vinyl ether		100.0 U			NS NS	NS NS	NS NS	NS NS	700 U		NS NS	NS NS	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NA NA	308 0.65 J	314 0.50 J	NS NS	NS NS	NS NS	NS NS	NS NS	295 4.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
Ethene	NA	1.53 J	0.97 J	NS	NS	NS	NS	NS	5.0 U	NS	NS	NS	NS	NS
OTHER GASES Hydrogen	μg/L NA	μg/L 0.008 J	μg/L 0.0052 J	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 0.0025 J	μg/L 0.01 U	μg/L 0.0427	μg/L NS	μg/L NS	μg/L NS	μg/L NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	NS NS	10600 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride Nitrite as N	250 1	28.1 0.2 U	29.2 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	25.3 0.2 U	NS NS	21.0 E 0.2 U	NS NS	NS NS	NS NS
Sulfate as SO ₄	250	104 E			NS	NS	NS	NS	69.7 D		63.7 E	NS	NS	NS
Bromide Nitrate as N	NA 10	0.96 0.2 U	0.96 0.2 U	1.00 NS	0.91 NS	0.91 NS	1.51 NS	NS NS	1.11 0.2 U	NS NS	1.55 0.2 U	1.72 NS	1.82 NS	1.79 NS
O-Phosphate as P	10 NA	0.2 U			NS NS	NS NS	NS NS	NS NS	0.2 U		0.2 U	NS NS	NS NS	NS NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid Acetic Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Propionic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid Butyric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Pyruvic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid FIELD PARAMETERS	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH (SU)	NA	5.18	4.99	NS	NS	NS	NS	5.13	5.15	5.11	4.90	5.05	5.00	5.02
Temperature (°C)	NA	16.25	16.12	NS	NS	NS	NS	14.95	13.59	13.72	15.99	15.84	16.28	16.11
Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA	0.20 38.9	0.60 -78.9	NS NS	NS NS	NS NS	NS NS	0.11 -93.5	0.21 34.4	0.69 -117.1	0.65 36.9	0.20 8.5	1.92	1.23 3.4
Conductivity (µS/cm)	NA	440	376	NS	NS	NS	NS	392	338	266	259	265	264	255
Depth to Water (ft-btoc)	NA	12.95	13.43	NS	NS	NS	NS	11.85	-2.5	7.21	8.05	12.03	11.77	12.05

Table D.28. PMW-9D: Analytical and Field Parameter Results

Sample ID	NJ Higher of	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D	PMW-9D
Lab Sample No.	PQLs and	8533-22	8539-6	8546-25	8547-25	8550-27	8551-25	8561-11	8649-12	8652-21	8713-24	8717-25		
Sampling Date	GW Quality	10/27/2011 -45	11/10/2011 -32	11/18/2011 -24	11/21/2011	11/23/2011	11/28/2011	12/12/2011	3/27/2012	4/3/2012 113	6/11/2012 182	6/13/2012	6/15/2012 186	6/19/2012
Time Matrix	2005 Criteria	-45 Water	-32 Water	-24 Water	-21 Water	-19 Water	-14 Water	Water	106 Water	Water	Water	184 Water	Water	190 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	1000	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
vinyl chloride	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS NS
bromomethane	10	50.0 U	25.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
chloroethane trichlorofluoromethane	2000	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethylene	1	50.0 U	4.5 JD	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
methylene chloride	3	50.0 U			NS	NS	NS	NS	105 U		NS	NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane		50.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	151 D 50.0 U	132 D 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	223 D 105 U	NS NS	NS NS	NS NS	NS NS	NS NS
bromochloromethane chloroform	70	50.0 U	25.0 U		NS	NS	NS	NS	105 U	NS NS	NS	NS	NS NS	NS NS
1,1,1-trichloroethane	30	50.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
carbon tetrachloride 1,1-dichloropropene	1	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
benzene	1	50.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS NS
1,2-dichloroethane	2	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
trichloroethylene 1,2-dichloropropane	1	7040 D 50.0 U	9610 D 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	1350 D 105 U	NS NS	NS NS	NS NS	NS NS	NS NS
dibromomethane		50.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
bromodichloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
cis-1,3-dichloropropene toluene	1 600	50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS NS
1,1,2-trichloroethane	3	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS
tetrachloroethylene 1,3-dichloropropane	1	50.0 U 50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
dibromochloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS NS	NS	NS	NS	NS
1,2-dibromoethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
chlorobenzene 1.1.1.2-tetrachloroethane	50 1	50.0 U			NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
ethylbenzene	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
xylenes (m/p)	1000	50.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
o-xylene styrene	100	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
bromoform	4	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
bromobenzene 1,1,2,2-tetrachloroethane	1	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,3-trichloropropane	0.03	50.0 U		NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
n-propyl benzene		50.0 U			NS	NS	NS	NS	105 U		NS	NS	NS	NS
2-chlorotoluene 4-chlorotoluene		50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene		50.0 U 50.0 U			NS	NS	NS	NS NS	105 U	NS NS	NS NS	NS	NS NO	NS
sec-butylbenzene		50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-dichlorobenzene	600	50.0 U			NS	NS	NS	NS	105 U		NS	NS	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	75	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichlorobenzene	600	50.0 U			NS NS	NS	NS	NS	105 U	NS NS	NS	NS	NS NS	NS NS
n-butylbenzene		50.0 U	25.0 U		NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	9.02	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
hexachlorobutadiene	1	50.0 U			NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
naphthalene	300	50.0 U			NS	NS	NS	NS	105 U		NS	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS
Acetone	6000	100.0 U		NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS
carbon disulfide	700	50.0 U	25.0 U	NS NC	NS NC	NS NC	NS NC	NS NC	105 U	NS NC	NS	NS NC	NS NC	NS NE
2-butanone (MEK) tetrahydrofuran (THF)	300 10	100.0 U	50.0 U		NS NS	NS NS	NS NS	NS NS	210 U 210 U	NS NS	NS NS	NS NS	NS NS	NS NS
4-methyl-2-pentanone (MIBK)		100.0 U	50.0 U	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS
2-hexanone 2-chloroethyl vinyl ether	-	100.0 U	50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	210 U 210 U	NS NS	NS NS	NS NS	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	182	190	NS	NS	NS	NS	NS	286	NS	NS	NS	NS	NS
Ethane Ethene	NA NA	0.46 J 0.74 J	0.51 J 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	0.36 J 5.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	0.0033 J	0.0045 J	NS	NS	NS	NS	0.0024 J	0.01 U	0.008 U	NS	NS	NS	NS
METALS (DISSOLVED) Iron	μ g/L 300	μg/L NS	μg/L 8510 D	μg/L NS	μg/L NS	μ g/L NS	μ g/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μ g/L NS	μg/L NS
Manganese	50	NS NS	304 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	2 250	0.2 U 21.9	0.2 U 20.6	NS NS	NS NS	NS NS	NS NS	NS NS	NS 26.1	NS NS	NS 19.8	NS NS	NS NS	NS NS
Nitrite as N	1	0.2 U	0.2 U	NS	NS	NS	NS	NS NS	0.2 U	NS	0.2 U	NS NS	NS NS	NS
Sulfate as SO ₄	250	78.0 E	77.6 E		NS	NS	NS	NS	88.3 D		62.5 E	NS	NS	NS
Bromide	NA	0.72	0.67	5.07	5.43	2.37	3.31	NS	1.25	NS NO	1.47	1.59	1.74	2.27
Nitrate as N O-Phosphate as P	10 NA	0.2 U 0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U	NS NS	0.2 U 0.2 U	NS NS	NS NS	NS NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS	1.0 U		NS	NS	NS	NS	NS	NS NO	NS	NS	NS NO	NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA NA	NS	1.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA	NS	1.0 U		NS	NS	NS	NS	NS	NS NO	NS	NS	NS NO	NS
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS														
pH (SU)	NA	6.11	5.89	NS	NS	NS	NS	6.12	6.01	6.10	5.85	5.78	5.77	5.77
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	15.91 0.45	15.88 0.32	NS NS	NS NS	NS NS	NS NS	14.95 0.01	13.37 0.23	13.68 0.67	16.14 1.15	16.05 0.01	15.44 0.79	15.72 0.60
Redox Potential (ORP; mV)	NA	-64.2	-46.3	NS	NS	NS	NS	-88.4	-14.6	-133.5	-33.0	-38.4	-26.9	-49.0
Conductivity (µS/cm)	NA	637	495	NS	NS	NS	NS	520	592	472	376	357	346	339
Depth to Water (ft-btoc)	NA	6.57	6.68	NS	NS	NS	NS	6.50	-2.6	7.30	7.62	7.48	7.71	7.61

Table D.29. PMW-10S: Analytical and Field Parameter Data

Sample ID	NJ Higher of	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S	PMW-10S
Lab Sample No.	PQLs and	8533-23	8539-7	8543-15	8546-26	8547-26	8550-28	8551-26	8649-13	8652-1	8665-11	8698-14	8708-13	8713-30	8717-26		
Sampling Date	GW Quality	10/27/2011	11/10/2011	11/16/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/27/2012	4/3/2012	4/18/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time		-45	-32	-24	-21	-19	-14	0	106	113	128	170	178	182	184	186	190
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
chloromethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride	10	50.0 U	25.0 U	NS	NS NS	NS	NS	NS	105 U	NS NS	NS	NS	NS	NS	NS	NS NS	NS
bromomethane chloroethane	10	50.0 U	25.0 U	NS NS		NS	NS	NS	105 U		NS NS	NS NC	NS NS	NS NS	NS NS	NS NS	NS
trichlorofluoromethane	2000	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1.1-dichloroethylene	1	50.0 U	25.0 U	NS NS	NS	NS NS	NS	NS	105 U	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS
methylene chloride	3	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS NS	NS NS	NS	NS NS	NS	NS NS	NS	NS NS
trans-1,2-dichloroethylene	100	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS NS	NS NS	NS	NS NS	NS	NS NS	NS	NS NS
1,1-dichloroethane	50	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
2,2-dichloropropane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	122 D	114 D	NS	NS	NS	NS	NS	125 D	NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
chloroform	70	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	30	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
benzene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloroethane	2	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene	1	4580 D	7060 D	NS	NS	NS	NS	NS	6550 D	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
toluene	600	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2-trichloroethane	3	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
tetrachloroethylene	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane	-	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
dibromochloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
chlorobenzene	50	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	1000	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
styrene	100	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
bromoform	4	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	100 0	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U		NS	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	0.03	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene		50.0 U	25.0 U	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS
4-chlorotoluene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
sec-butylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene 1,2-dichlorobenzene	75 600	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	600														NS NS		
n-butylbenzene	0.02	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	9	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
hexachlorobutadiene	1	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
naphthalene	300	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene	500	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	70	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	6000	100.0 U	50.0 U	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS	NS	NS	NS
2-butanone (MEK)	300	100.0 U	50.0 U	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	10	100.0 U	50.0 U	NS	NS	NS	NS	NS	210 U		NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)		100.0 U	50.0 U	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone		100.0 U	50.0 U	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether		100.0 U	50.0 U	NS	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS	NS	NS	NS
REDUCED GASES (GC)	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μq/L	μg/L	μg/L	µg/L	μg/L	µg/L	μg/L	μg/L
Methane	NA.	179	177	NS	NS	NS	NS	NS	69.5	NS	NS	NS	NS	NS	NS	NS	NS
Ethane	NA NA	4.0 U	4.0 U	NS	NS	NS	NS NS	NS	4.0 U	NS	NS	NS	NS	NS	NS	NS	NS
Ethene	NA NA	5.0 U	5.0 U	NS	NS	NS		NS	5.0 U	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μq/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L
Hydrogen	NA NA	0.139	0.006 J	NS	NS	NS	NS	NS	0.01 U	0.008 U	0.008 U	0.0087	0.008 J	NS	NS	NS	NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	300	NS	3310 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	50	NS	80.9 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride	250	19.7	19.7	NS	NS	NS	NS	NS	15.8	NS	NS	12.9	13.2	13.6	NS	NS	NS
Nitrite as N	1	0.2 U	0.2 U	NS	NS	NS	NS	NS	0.2 U	NS	NS	0.2 U	0.2 U	0.2 U	NS	NS	NS
Sulfate as SO ₄	250	62.9 E	59.9 E	NS	NS	NS	NS	NS	49.2 D	NS	NS	52.9 E	53.7 E	51.1 E	NS	NS	NS
Bromide	NA	0.59	0.58	2.97	5.34	3.90	1.82	1.86	1.34	NS	NS	1.50	1.42	1.42	4.16	11.7	15.4
Nitrate as N	10	0.2 U	0.2 U	NS	NS	NS	NS	NS	0.2 U	NS	NS	0.2 U	0.2 U	0.2 U	NS	NS	NS
O-Phosphate as P	NA NA	0.2 U	0.2 U	NS	NS	NS	NS	NS	0.2 U	NS	NS	0.2 U	0.2 U	0.2 U	NS	NS	NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid	NA NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Propionic Acid	NA.	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid	NA.	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NA NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
FIELD PARAMETERS																	
pH (SU)	NA	5.35	4.86	NS	NS	NS	NS	NS	4.93	4.80	4.94	5.12	5.23	5.36	5.35	5.30	5.32
Temperature (°C)	NA	16.15	16.30	NS	NS	NS	NS	NS	13.26	13.81	13.89	15.61	15.68	15.95	15.49	15.68	15.77
Dissolved Oxygen (DO; mg/L)	NA.	0.18	0.29	NS	NS	NS	NS	NS	-0.14	0.09	0.50	0.73	1.01	1.23	0.80	0.09	1.37
Redox Potential (ORP; mV)	NA.	65.2	-51.8	NS	NS	NS	NS	NS	50.1	72.9	82.5	-57.3	27.2	27.5	13.7	6.0	-7.0
Conductivity (µS/cm)	NA	299	242	NS	NS	NS	NS	NS	221	230	194	243	235	227	226	238	247
Depth to Water (ft-btoc)	NA	6.31	5.90	NS	NS	NS	NS	NS	6.60	6.51	7.01	NS	NS	6.78	6.71	6.60	6.63

Table D.30. PMW-10I: Analytical and Field Parameter Data

Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-10I 8534-3	PMW-10I 8539-9	PMW-10I 8543-16	PMW-10I 8546-27	PMW-10I 8547-27	PMW-10I 8550-29	PMW-10I 8551-27	PMW-10I 8649-14	PMW-10I 8652-17	PMW-10I 8665-12	PMW-10I 8698-15	PMW-10I 8708-14	PMW-10I 8713-27	PMW-10I 8717-27	PMW-10I	PMW-10I
Sampling Date Time	GW Quality	10/27/2011 -45	11/10/2011 -32	11/16/2011 -26	11/18/2011 -24	11/21/2011 -21	11/23/2011 -19	11/28/2011 -14	3/27/2012 106	4/3/2012 113	4/18/2012 128	5/30/2012 170	6/7/2012 178	6/11/2012 182	6/13/2012 184	6/15/2012 186	6/19/2012 190
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L 1000	μg/L 50.0 U	μg/L 25.0 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 105 L	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
chloromethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride bromomethane	10	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
chloroethane trichlorofluoromethane	2000	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethylene	1	50.0 U	25.0 U	NS	NS	NS NS	NS	NS NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride trans-1,2-dichloroethylene	3 100	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethane	50	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane cis 1,2- dichloroethylene	70	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromochloromethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
chloroform 1,1,1-trichloroethane	70 30	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
carbon tetrachloride	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene benzene	1	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichloroethane	2	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene 1,2-dichloropropane	1 1	7140 D 50.0 U	7000 D 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	5610 E	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromomethane		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L		NS	NS	NS	NS	NS	NS	NS
bromodichloromethane cis-1,3-dichloropropene	1	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
toluene	600	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
tetrachloroethylene 1,3-dichloropropane	1	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromochloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane chlorobenzene	50	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene xylenes (m/p)	700 1000	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
o-xylene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
styrene bromoform	100	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
isopropyl benzene (cumene)	700	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene 1.1.2.2-tetrachloroethane	1	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,3-trichloropropane	0.03	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene 2-chlorotoluene		50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
4-chlorotoluene 1.3.5-trimethylbenzene		50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tert-butylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene sec-butylbenzene		50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-dichlorobenzene	600	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	75	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichlorobenzene	600	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene 1,2-dibromo-3-chloropropane	0.02	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,4-trichlorobenzene	9	50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
hexachlorobutadiene naphthalene	300	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,3-trichlorobenzene		50.0 U	25.0 U	NS	NS	NS	NS	NS	105 L	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether Acetone	70 6000	50.0 U	25.0 U 50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L 210 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
carbon disulfide	700	50.0 U	25.0 U 50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	105 L 210 L	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-butanone (MEK) tetrahydrofuran (THF)	300 10	100.0 U	50.0 U	NS	NS	NS	NS	NS	210 L	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK) 2-hexanone		100.0 U	50.0 U 50.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	210 L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-chloroethyl vinyl ether		100.0 U	50.0 U	NS	NS	NS	NS	NS	210 L	NS	NS	NS	NS	NS	NS	NS	NS
REDUCED GASES (GC) Methane	µg/L NA	μg/L 167	μg/L 172	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 49.4	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Ethane	NA	4.0 U	4.0 U	NS	NS	NS	NS	NS	4.0 L	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	NA μg/L	5.0 U μg/L	5.0 U μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	5.0 L μg/L	NS μg/L	NS μg/L	NS μg/L	NS µg/L	NS μg/L	NS µg/L	NS μg/L	NS μg/L
Hydrogen	NA.	0.005 J	0.005 J	NS	NS	NS	NS	NS	0.01 L	0.008 U	0.008 U	0.0086 U	0.006 J	NS	NS	NS	NS
METALS (DISSOLVED) Iron	μg/L 300	μg/L NS	μg/L 3720 D	μg/L NS	μg/L NS	μg/L NS											
Manganese	50	NS	94.7 D	NS	NS	NS											
ANIONS Fluoride	mg/L 2	mg/L 0.2 U	mg/L 0.2 U	mg/L NS	mg/L NS	mg/L NS											
Chloride	250	19.6	19.5	NS	NS	NS	NS	NS	13.4	NS	NS	14.3	15.0	14.2	NS	NS	NS
Nitrite as N Sulfate as SO ₄	1 250	70.0 E	0.2 U 64.4 E	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 L 49.3 E	NS NS	NS NS	0.2 U 57.6 E	0.2 U 58.3 E	0.2 U 55.4 E	NS NS	NS NS	NS NS
Bromide	NA	0.63	0.58	0.79	2.81	3.68	1.63	1.81	1.50	NS	NS	1.56	1.49	1.59	1.61	1.65	1.87
Nitrate as N O-Phosphate as P	10 NA	0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 L	NS NS	NS NS	0.2 U 0.2 U	0.2 U	0.2 U 0.2 U	NS NS	NS NS	NS NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid Acetic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS											
Propionic Acid	NA	NS	1.0 U	NS	NS	NS											
Formic Acid Butyric Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS											
Pyruvic Acid	NA	NS	1.0 U	NS	NS	NS											
Valeric Acid FIELD PARAMETERS	NA	NS	1.0 U	NS	NS	NS											
pH (SU)	NA	5.52	5.40	NS	NS	NS	NS	NS	5.39	5.40	5.23	4.81	4.92	4.96	4.91	4.91	4.90
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	15.94 0.13	16.19 0.33	NS NS	NS NS	NS NS	NS NS	NS NS	13.34 0.21	14.46 0.54	14.10 0.49	15.36 0.37	16.02 0.61	16.60	15.78 0.17	15.66 0.01	15.94 0.81
Redox Potential (ORP; mV)	NA	25.80	-112.2	NS	NS	NS	NS	NS	-7.7	-128.7	43.1	-42.3	38.3	47.7	35.2	26.0	18.6
Conductivity (µS/cm) Depth to Water (ft-btoc)	NA NA	341.00 6.20	316 6.10	NS NS	NS NS	NS NS	NS NS	NS NS	247 6.65	202 NS	219 7.91	236 NS	222 NS	221 6.85	222 6.85	6.75	6.75

Table D.31. PMW-11S: Analytical and Field Parameter Data

D1- ID	T	D101/ 440	D1811/11/0		D181/ 440	y 1100	D1011 110	D184 440	D101/1/0	B1011 440	D101/110	D1811 440	D1011 110
Sample ID Lab Sample No.	NJ Higher of PQLs and	PMW-11S 8534-1	PMW-11S 8539-10	PMW-11S 8546-28	PMW-11S 8547-28	PMW-11S 8550-30	PMW-11S 8551-28	PMW-11S 8649-6	PMW-11S 8665-13	PMW-11S 8713-28	PMW-11S 8717-28	PMW-11S	PMW-11S
Sampling Date	GW Quality	10/27/2011	11/10/2011	11/18/2011	11/21/2011	11/23/2011	11/28/2011	3/27/2012	4/18/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time		-45	-32	-24	-21	-19	-14	106	128	182	184	186	190
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L 50.0 U	μg/L 25.0 U	μg/L	μg/L	μg/L NS	μg/L	μg/L	μg/L NS	μg/L NS	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	1000	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS
vinyl chloride	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
bromomethane	10	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
chloroethane	<u> </u>	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
trichlorofluoromethane	2000	50.0 U	25.0 U	NS NC	NS	NS NC	NS	25.0 U		NS	NS NC	NS NC	NS
1,1-dichloroethylene methylene chloride	3	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS
trans-1,2-dichloroethylene	100	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
1,1-dichloroethane	50	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
2,2-dichloropropane		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	156 D 50.0 U	25.0 U	NS	NS	NS	NS	213 D 25.0 U	NS	NS	NS	NS	NS
bromochloromethane chloroform	70	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS
1,1,1-trichloroethane	30	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
carbon tetrachloride	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
1,1-dichloropropene		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
benzene	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
1,2-dichloroethane trichloroethylene	2	50.0 U 9520 D	25.0 U 9920 D	NS NS	NS NS	NS NS	NS NS	25.0 U 11300 D	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichloropropane	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
dibromomethane	<u> </u>	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
bromodichloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
toluene	600	50.0 U 50.0 U	25.0 U 25.0 U	NS NC	NS NC	NS NS	NS NC	25.0 U 25.0 U		NS NS	NS NC	NS NC	NS NC
trans-1,3-dichloropropene 1,1,2-trichloroethane	3	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS
tetrachloroethylene	1	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U		NS NS	NS NS	NS NS	NS NS
1,3-dichloropropane		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
dibromochloromethane	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
1,2-dibromoethane	$ldsymbol{oxed}$	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
chlorobenzene	50	50.0 U	25.0 U	NS NC	NS NC	NS NC	NS NC	25.0 U		NS NC	NS NC	NS NC	NS
1,1,1,2-tetrachloroethane ethylbenzene	700	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
xylenes (m/p)	1000	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
o-xylene		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
styrene	100	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
bromoform	4	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
isopropyl benzene (cumene)	700	50.0 U	25.0 U	NS	NS	NS NC	NS	25.0 U		NS NC	NS NC	NS NC	NS
bromobenzene 1.1.2.2-tetrachloroethane	1	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS
1,2,3-trichloropropane	0.03	50.0 U	25.0 U	NS	NS	NS NS	NS	25.0 U		NS	NS	NS	NS
n-propyl benzene	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
2-chlorotoluene		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
4-chlorotoluene		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
1,3,5-trimethylbenzene tert-butylbenzene	 	50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U		NS NS	NS NS	NS NS	NS NS
1,2,4-trimethylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS NS	NS	NS	NS	NS
sec-butylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
4-isopropyltoluene		50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
1,4-dichlorobenzene	75 600	50.0 U	25.0 U 25.0 U	NS	NS	NS NC	NS NS	25.0 U 25.0 U		NS NC	NS NC	NS NC	NS NS
1,2-dichlorobenzene n-butvlbenzene	600	50.0 U	25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene	9	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
hexachlorobutadiene	1	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U		NS	NS	NS	NS
naphthalene 1,2,3-trichlorobenzene	300	50.0 U 50.0 U	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	25.0 U 25.0 U	NS NS	NS NS	NS NS	NS NS	NS NS
Methyl tertiary butyl ether	70	50.0 U	25.0 U	NS	NS	NS NS	NS	25.0 U	NS NS	NS	NS	NS	NS
Acetone	6000	100.0 U	50.0 U	NS	NS	NS	NS	50.0 U	NS	NS	NS	NS	NS
carbon disulfide	700	50.0 U	25.0 U	NS	NS	NS	NS	25.0 U	NS	NS	NS	NS	NS
2-butanone (MEK)	300	100.0 U	50.0 U	NS	NS	NS	NS	50.0 U		NS	NS	NS	NS
tetrahydrofuran (THF)	10	100.0 U	50.0 U	NS NC	NS NC	NS NC	NS NC	50.0 U		NS NC	NS NC	NS NC	NS NC
4-methyl-2-pentanone (MIBK) 2-hexanone	 	100.0 U	50.0 U	NS NS	NS NS	NS NS	NS NS	50.0 U 50.0 U		NS NS	NS NS	NS NS	NS NS
2-chloroethyl vinyl ether	 	100.0 U	50.0 U	NS	NS	NS	NS	50.0 U	NS	NS	NS	NS	NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	157	151	NS	NS	NS	NS	196	NS	NS	NS	NS	NS
Ethane	NA NA	0.31 J	4.0 U	NS NC	NS NC	NS NC	NS NC	4.0 U	NS NC	NS NC	NS NC	NS NC	NS
Ethene OTHER GASES	NA ug/l	5.0 J	5.0 U	NS ug/l	NS ug/l	NS ug/l	NS ug/l	5.0 U		NS ug/l	NS ug/l	NS ug/l	NS ug/l
OTHER GASES Hydrogen	μ g/L NA	μg/L 0.004 J	μg/L 0.004 J	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 0.01 U	μg/L 0.008 U	μg/L NS	μg/L NS	μg/L NS	μg/L NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron	300	NS	5520 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	50	NS	66.2 D	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride Chloride	2 250	0.2 U 22.6	0.2 U 20.2	NS NS	NS NS	NS NS	NS NS	NS 20.3	NS NS	NS 14.3	NS NS	NS NS	NS NS
Nitrite as N	250 1	0.2 U	0.2 U	NS NS	NS NS	NS NS	NS NS	0.2 U		0.2 U		NS NS	NS NS
Sulfate as SO ₄	250	93.1 E	76.8 E	NS	NS	NS	NS	62.2 D		62.5 E		NS	NS
Bromide	NA NA	0.67	0.63	13.9	7.82	4.94	3.74	0.86	NS	1.53	26.8	116	32.1
Nitrate as N	10	0.2 U	0.2 U	NS	NS	NS	NS	0.2 U	NS	0.2 U	NS	NS	NS
O-Phosphate as P	NA	0.2 U	0.2 U	NS	NS	NS	NS	0.2 U	NS	0.2 U	NS	NS	NS
VOLATILE FATTY ACIDS		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS NC	1.0 U	NS	NS	NS NC	NS	NS	NS NC	NS NC	NS NC	NS NC	NS
Acetic Acid Propionic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NA NA	NS NS	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Valeric Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
FIELD PARAMETERS				NE	NG	NG	NG	F 45	10-	4.00	1.0-	10:	4.00
pH (SU)	NA	5.49	5.14	NS	NS	NS	NS	5.17	4.29	4.58	4.25	4.21	4.29
Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA	16.19 0.37	16.24 2.83	NS NS	NS NS	NS NS	NS NS	13.31 0.83	13.75 0.63	15.52 2.12	15.04 0.53	14.68 0.04	15.03 0.46
Redox Potential (ORP; mV)	NA NA	-70.3	1.2	NS	NS	NS	NS	11.0	100.4	89.5	98.0	91.6	80.1
Conductivity (µS/cm)	NA	430	268	NS	NS	NS	NS	297	221	217	249	367	259
Depth to Water (ft-btoc)	NA	6.94	7.15	NS	NS	NS	NS	7.45	7.85	7.68	7.84	8.01	8.04

Table D.32. PMW-11I: Analytical and Field Parameter Results

					iaiy								
Sample ID	NJ Higher of	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I	PMW-11I
Lab Sample No.	PQLs and	8534-2	8539-11	8546-29 11/18/2011	8547-29	8550-31	8551-29	8649-7	8665-14	8713-26 6/11/2012	8717-29	0/45/0040	040/0040
Sampling Date Time	GW Quality	10/27/2011 -45	-32	-24	11/21/2011 -21	11/23/2011 -19	11/28/2011 -14	3/27/2012 106	4/18/2012 128	182	6/13/2012 184	6/15/2012 186	6/19/2012 190
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	50.0 U	25.0 U	NS	NS	NS	NS	105 U		NS	NS	NS	NS
chloromethane		50.0 U			NS	NS	NS NS	105 U 105 U		NS NS	NS NC	NS NS	NS NS
vinyl chloride bromomethane	10	50.0 U	25.0 U		NS NS	NS NS	NS NS	105 U		NS NS	NS NS	NS NS	NS NS
chloroethane	10	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS NS
trichlorofluoromethane	2000	50.0 U	25.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,1-dichloroethylene	1	50.0 U	7.7 JE	NS	NS	NS	NS	105 U		NS	NS	NS	NS
methylene chloride	3	50.0 U			NS	NS	NS	105 U		NS	NS	NS	NS
trans-1,2-dichloroethylene 1,1-dichloroethane	100 50	50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
2,2-dichloropropane	50	50.0 U	25.0 U		NS NS	NS	NS NS	105 U		NS NS	NS NS	NS NS	NS NS
cis 1,2- dichloroethylene	70	187 D	161 D	NS	NS	NS	NS	152 D	NS	NS	NS	NS	NS
bromochloromethane		50.0 U	25.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
chloroform	70	50.0 U			NS	NS	NS	105 U		NS	NS	NS	NS
1,1,1-trichloroethane	30	50.0 U			NS	NS	NS	105 U		NS	NS	NS	NS
carbon tetrachloride 1,1-dichloropropene	-1-	50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
benzene	1	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
1,2-dichloroethane	2	50.0 U			NS	NS	NS	105 U		NS	NS	NS	NS
trichloroethylene	1	17700 D	15700 D	NS	NS	NS	NS	11900 D	NS	NS	NS	NS	NS
1,2-dichloropropane	1	50.0 U	25.0 U	NS	NS	NS	NS	105 U		NS	NS	NS	NS
dibromomethane	<u> </u>	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
bromodichloromethane	1	50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
cis-1,3-dichloropropene toluene	600	50.0 U 50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene	1	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS NS
1,1,2-trichloroethane	3	50.0 U			NS	NS	NS	105 U	NS	NS	NS	NS	NS
tetrachloroethylene	1	50.0 U	25.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,3-dichloropropane	<u> </u>	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
dibromochloromethane	1	50.0 U	25.0 U		NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
1,2-dibromoethane chlorobenzene	50	50.0 U	25.0 U		NS NS	NS NS	NS NS	105 U		NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	50.0 U	25.0 U		NS NS	NS NS	NS NS	105 U		NS NS	NS NS	NS NS	NS NS
ethylbenzene	700	50.0 U			NS	NS	NS	105 U		NS	NS	NS	NS
xylenes (m/p)	1000	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
o-xylene		50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
styrene	100	50.0 U	25.0 U		NS	NS	NS NC	105 U		NS NC	NS	NS NC	NS NS
bromoform isopropyl benzene (cumene)	700	50.0 U 50.0 U			NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
bromobenzene	700	50.0 U			NS	NS	NS	105 U		NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	50.0 U			NS	NS	NS	105 U		NS	NS	NS	NS
1,2,3-trichloropropane	0.03	50.0 U	25.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
n-propyl benzene		50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
2-chlorotoluene		50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
4-chlorotoluene 1,3,5-trimethylbenzene	1	50.0 U			NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
tert-butylbenzene	1	50.0 U			NS	NS	NS NS	105 U		NS	NS	NS NS	NS
1,2,4-trimethylbenzene		50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
sec-butylbenzene		50.0 U	25.0 U	NS	NS	NS	NS	105 U	NS	NS	NS	NS	NS
1,3-dichlorobenzene	600	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
4-isopropyltoluene	70	50.0 U 50.0 U	25.0 U		NS NC	NS NC	NS NC	105 U 105 U		NS NC	NS NC	NS NC	NS NS
1,4-dichlorobenzene 1,2-dichlorobenzene	75 600	50.0 U 50.0 U			NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
n-butylbenzene	000	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS NS
1,2-dibromo-3-chloropropane	0.02	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
1,2,4-trichlorobenzene	9	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
hexachlorobutadiene	1	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
naphthalene	300	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	70	50.0 U	25.0 U 25.0 U		NS NS	NS NS	NS NS	105 U 105 U		NS NS	NS NS	NS NS	NS NS
Acetone	6000	100.0 U	50.0 U		NS	NS	NS	210 U		NS	NS	NS	NS
carbon disulfide	700	50.0 U	25.0 U		NS	NS	NS	105 U		NS	NS	NS	NS
2-butanone (MEK)	300	100.0 U	50.0 U	NS	NS	NS	NS	210 U	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	10	100.0 U	00.0		NS	NS	NS	210 U		NS	NS	NS	NS
4-methyl-2-pentanone (MIBK) 2-hexanone	 	100.0 U			NS NS	NS NS	NS NS	210 U 210 U		NS NS	NS NS	NS NS	NS NS
2-nexanone 2-chloroethyl vinyl ether	 	100.0 U	50.0 U		NS NS	NS NS	NS NS	210 U		NS NS	NS NS	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	250	203	NS	NS	NS	NS	215	NS	NS	NS	NS	NS
Ethane	NA	4.0 U	4.0 U	NS	NS	NS	NS	4.0 U	NS	NS	NS	NS	NS
Ethene	NA	5.0 U	5.0 U		NS	NS	NS	5.0 U		NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	NA ug/L	0.004 J μg/L	0.007 J μα/L	NS μg/L	NS ug/L	NS μg/L	NS μg/L	0.01 U	0.008 U μα/L	NS μg/L	NS μg/L	NS μg/L	NS ug/L
Iron	μg/L 300	μg/L NS	μg/L 7970 D		μg/L NS	μg/L NS	NS NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Manganese	50	NS	112 D	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	0.2 U	0.2 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride	250	24.8	21.8	NS	NS	NS	NS	20.4	NS	24.1 E	NS	NS	NS
Nitrite as N	1	0.2 U	0.2		NS	NS	NS	0.2 U		0.2 U	NS	NS	NS
Sulfate as SO ₄	250	87.5 E			NS	NS	NS 0.50	82.9 D		67.4 E		NS	NS
Bromide Nitrate as N	NA 10	0.67	0.73 0.2 U	0.85 NS	0.70	0.36 NS	0.58 NS	0.95 0.2 U	NS NS	0.91 0.2 U	0.84 NS	0.97 NS	0.96
Nitrate as N O-Phosphate as P	10 NA	0.2 U			NS NS	NS NS	NS NS	0.2 U		0.2 U	NS NS	NS NS	NS NS
VOLATILE FATTY ACIDS	NA	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NA	NS	1.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS NS
Acetic Acid	NA	NS	1.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS
Propionic Acid	NA	NS	1.0 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Formic Acid	NA	NS	1.0 U		NS	NS	NS	NS	NS	NS	NS	NS	NS
Butyric Acid	NA NA	NS NC	1.0 U		NS	NS	NS NC	NS NC	NS	NS NC	NS NC	NS	NS NS
Pyruvic Acid Valeric Acid	NA NA	NS NS	1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	. NA	INO	1.0 U	CVI	INO	INO	INO	INO	CVI	INO	CFI	INO	INO
FIELD PARAMETERS		5.52	5.60	NS	NS	NS	NS	5.87	5,33	5,70	5.72	5,77	5.78
FIELD PARAMETERS pH (SU)	NA NA	5.52 16.14	5.60 16.14	NS NS	NS NS	NS NS	NS NS	5.87 13.65	5.33 14.10	5.70 16.00	5.72 15.31	5.77 15.00	5.78 15.53
FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA NA	5.52 16.14 0.39	16.14 5.90	NS NS	NS NS	NS NS	NS NS	13.65 0.86	14.10 0.60	16.00 6.11	15.31 0.14	15.00 -0.23	15.53 0.49
FIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L) Redox Potential (ORP; mV)	NA NA NA	16.14 0.39 -62.5	16.14 5.90 -41.9	NS NS NS	NS NS NS	NS NS NS	NS NS NS	13.65 0.86 4.7	14.10 0.60 43.2	16.00 6.11 -8.0	15.31 0.14 -30.8	15.00 -0.23 -38.8	15.53 0.49 -49.6
PIELD PARAMETERS pH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L)	NA NA NA	16.14 0.39	16.14 5.90	NS NS	NS NS	NS NS	NS NS	13.65 0.86	14.10 0.60	16.00 6.11	15.31 0.14	15.00 -0.23	15.53 0.49

Table	ט.ט	<u> </u>	VV- I .		<u> </u>	ai aii	u i i	iu i	aram		INCOU		
Sample ID	NJ Higher of		CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1
Lab Sample No.	PQLs and	8543-17	8561-14	8573-6	8576-2	8577-2	8581-2		1/10/0010	0.00010	8647-1	8652-2	8665-15
Sampling Date	GW Quality	11/16/2011	12/13/2011	12/28/2011	1/5/2012	1/9/2012	1/12/2012	1/16/2012	1/19/2012	2/7/2012	3/26/2012	4/3/2012	4/18/2012
Time (days) Matrix	2005 Criteria	-26 Water	Water	16 Water	24 Water	28 Water	31 Water	35 Water	38 Water	57 Water	105 Water	113 Water	128 Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromomethane	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroethane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichlorofluoromethane	2000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride	3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene	100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethane	50	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS
2,2-dichloropropane	70	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
cis 1,2- dichloroethylene bromochloromethane	70	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS
chloroform	70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride	1	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS
1,1-dichloropropene	<u> </u>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
benzene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloroethane	2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
toluene	600	NS	NS	NS	NS	NS	NS	NS	NS NO	NS	NS NS	NS	NS
trans-1,3-dichloropropene	1 2	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2-trichloroethane tetrachloroethylene	3	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-dichloropropane	 -	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS
dibromochloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS
1.2-dibromoethane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chlorobenzene	50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	1000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene	ļ	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene	100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromoform	4	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene	1	NS	NS NS	NS	NS	NS NS	NS NC	NS	NS NS	NS NC	NS NS	NS NC	NS
1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	0.03	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
n-propyl benzene	0.03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS
4-chlorotoluene	†	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
sec-butylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene	<u> </u>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	75	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene	600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene	0.00	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	9	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
hexachlorobutadiene	1	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
naphthalene	300	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,3-trichlorobenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	6000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-butanone (MEK)	300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)	<u> </u>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone	↓	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	NS	0.0093	0.255	26.7	267	261	NS	NS	NS	310	1131	1210
ANIONS Chlorida	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Chloride Nitrite as N	250	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Sulfate as SO ₄	250	NS NC			NS NS							NS NC	
	250	NS 0.50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Bromide Nitrate as N	NA 40	0.59	NS NC	NS	NS	NS	NS NC	NS	NS NC	NS NC	NS NC	NS NC	NS
Nitrate as N O-Phosphate as P	10 NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS	NA	INO	CVI	IVO	INO	INO	CVI	INO	INO	CNI	140	UVU	CNI
pH (SU)	NA	NS	3.96	NS	5.33	6.01	6.66	6.91	9.18	9.96	9.98	10.69	11.31
Temperature (°C)	NA NA	NS	15.18	NS	13.8	13.7	13.87	13.50	13.41	13.65	12.60	13.72	13.42
Dissolved Oxygen (DO; mg/L)	NA NA	NS	3.42	NS	1.92	1.54	1.35	2.19	1.30	-0.09	2.17	0.57	0.94
Redox Potential (ORP: mV)	NA NA	NS	340.4	NS	53.0	-217.5	-515.9	-285.8	-368.8	-410.3	-311.4	-351.6	-428.2
Conductivity (µS/cm)	NA NA	NS	481	NS	228.3	244.5	254	257	268	293	354	405	553
Depth to Water (ft-btoc)	NA NA	NS	7.13	NS	7.07	6.90	7.04	NS	NS	NS	7.45	NS	NS
., (1. 5100)			•										

	_									
Sample ID	_	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1	CW-1
Lab Sample No.			8685-1				8713-20	8717-30		
Sampling Date		5/9/2012	5/11/2012	5/21/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time (days)		149	151	161	170	178	182	184	186	190
Matrix		Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane		NS	NS	NS	NS	NS	NS	NS	NS	NS
chloromethane		NS	NS	NS	NS	NS	NS	NS	NS	NS
vinyl chloride		NS	NS	NS	NS	NS	NS	NS	NS	NS
bromomethane		NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroethane		NS	NS	NS	NS	NS	NS	NS	NS	NS
trichlorofluoromethane	П	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene		NS	NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride		NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethane		NS	NS	NS	NS	NS	NS	NS	NS	NS
2,2-dichloropropane		NS	NS	NS	NS	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene		NS	NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform	7	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	7	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride	7	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene	7	NS	NS	NS	NS	NS	NS	NS	NS	NS
benzene	+	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloroethane	+	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene	+	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
1,2-dichloropropane	+	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromomethane	+	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
bromodichloromethane	+	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS
	+	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
cis-1,3-dichloropropene toluene	+	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS
	+				NS NS					
trans-1,3-dichloropropene	+	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2-trichloroethane	+	NS NS	NS NS	NS	NS NC	NS NS	NS NS	NS NS	NS NS	NS NC
tetrachloroethylene	+			NS	NS					NS
1,3-dichloropropane	4	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromochloromethane	4	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane	4	NS	NS	NS	NS	NS	NS	NS	NS	NS
chlorobenzene	4	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	4	NS	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromoform	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	_	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene		NS	NS	NS	NS	NS	NS	NS	NS	NS
4-chlorotoluene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
sec-butylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene	J	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	T	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene	┪	NS	NS	NS	NS	NS	NS	NS	NS	NS
hexachlorobutadiene	T	NS	NS	NS	NS	NS	NS	NS	NS	NS
naphthalene		NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene	╗	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	┪	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	┪	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	┪	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-butanone (MEK)	T	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	7	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)	T	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone	7	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
2-chloroethyl vinyl ether	+	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	1	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	٦	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
ANIONS	1	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Chloride	٦	NS	NS	NS NS	NS NS	NS	3.38	NS NS	NS NS	NS NS
Nitrite as N	+	NS	NS	NS	NS	NS	0.2 U	NS	NS	NS NS
Sulfate as SO ₄	+									
7	4	NS	NS	NS	NS	NS	27.9 E	NS	NS	NS
Bromide	Ц	NS	NS	NS	NS	NS	0.30	1850	2310	32.8
Nitrate as N	Ц	NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
O-Phosphate as P	╝	NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
FIELD PARAMETERS										
pH (SU)		4.25	5.95	7.70	10.48	9.47	9.33	6.72	6.48	5.77
Temperature (°C)	Ţ	14.54	14.73	15.57	15.95	16.99	17.09	17.01	17.78	17.85
Dissolved Oxygen (DO; mg/L)	┪	31.84	1.57	0.85	0.63	0.48	1.99	4.44	4.42	4.41
Redox Potential (ORP; mV)	T	434.0	-59.9	-259.5	-394.5	-291.1	-384.5	-57.2	7.7	49.9
Conductivity (µS/cm)	┪	638	338	289	349	301	296	3376	3799	459
Depth to Water (ft-btoc)	7	NS	NS	NS	NS	NS	NS	NS	NS	NS
.,										

Table D.34. CW-2: Analytical and Field Data Results

Lab Sample No. Part and 164-140 850-22 8861-16 877-1 857-14 100-12 110	Sample ID	NJ Higher of	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2
TROMOTOR STATE AND ALL	Lab Sample No.	PQLs and	8543-18	8560-2	8561-16	8573-1	8576-4	8577-4	8581-1				8647-2	8665-16	8678-7
Section Sect		GW Quality													
Secondaries 190 150 150 150 150 150 150 150 150 150 15	Matrix		Water	Water		Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Company															
Teacher 19		1000													
Component															
Colons		10													
	trichlorofluoromethane			NS			NS				NS			NS	
Teach Continue															
2-2001-0000-0000-0000-0000-0000-0000-00	trans-1,2-dichloroethylene	100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
20. Aphthesistance		50													
Secretaristance		70													
1.1 Instructionary	bromochloromethane		NS	NS		NS	NS			NS	NS		NS	NS	
order processors															
Segrey 1		1													
1.5 1.5		4													
Specimen															
Macroproper		1													
Stock		1													
Secretary Column	bromodichloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total Professional Confessional		1 600													
1.1.2 Particular		1													
1-2-chichospeare		3		NS			NS				NS			NS	
Second componence		1													
Processor 10	dibromochloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1.1 January Propriessor 1		50													
detect (mis)	1,1,1,2-tetrachloroethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Description			NS	NS		NS	NS			NS	NS		NS	NS	
		1000													
Separate Controlled 700 NS	styrene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Non-processor No. 100															
12.3 antichiprocesses	bromobenzene	700													
Programme															
2-000000000000000000000000000000000000		0.03													
1.3.54/methybergene	2-chlorotoluene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
sub-bighterenes NS NS NS NS NS NS NS N															
Separate															
13-decinfordementer 600 NS															
		600													
12-decidentedesterates 600 NS	4-isopropyltoluene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Content															
1,24-descriptocheckerseries		000													
1,2,3-transhoptenersene															
Methyl terflary buff effer		300													
Acetone 4000 MS		70													
2-butanner (MEK)	Acetone	6000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Interhydrofuran (THF)															
2-therannes	tetrahydrofuran (THF)														
2-chlorotely/wiyl ether															
REDUCED GASES (GC)															
Ethene NA NS	REDUCED GASES (GC)		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Ethene NA NS															
Hydrogen	Ethene	NA	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS
METALS (DISSOLVED) pg1_															
Incompany 1900															
METALS MS	Iron	300	NS	147	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	299
METALS (TOTAL)		50													
Iron		μg/L													
CATIONS	Iron		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3420
Calcium		ua/l													
GROUNDWATER CHEMISTRY mg/L	Calcium	μg/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	12600
Alkalinity as CaCO3															
Suffide															
Fluoride	Sulfide	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.08
Chloride															
Nitrite as N		-													
Bromide	Nitrite as N	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.2 U
Nitrate as N 10															
O-Phosphate as P NA NS															
Lactic Acid	O-Phosphate as P		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.2 U
Acetic Acid NA NS		NIA													
Propinic Acid															
Butyric Acid	Propionic Acid	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyrturk Acid															
FIELD PARAMETERS pH (SU) NA NS 15.51 5.38 5.49 6.14 8.37 10.12 10.55 10.02 10.81 11.08 11.35 10.21 13.54 12.62 13.19 13.54 13.54 13.54 13.55 13.54 13.54 13.55 13.54 13.55 13.54 13.55 13.54 13.55 13.54 13.55 13.54 13.55 13.	Pyruvic Acid	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
DH (SU) NA NS 5.51 5.38 5.49 6.14 8.37 10.12 10.55 10.02 10.81 11.08 11.35 10.21 1.00 10.0		NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Temperature (°C) NA NS 15.19 15.41 13.05 14.1 14.3 14.13 13.79 13.52 13.54 12.62 13.19 13.54 Dissolved Oxygen (DO; mg/L) NA NS 0.08 0.14 0.25 0.13 0.10 0.21 0.62 0.75 0.34 0.58 0.51 0.55 Redox Potential (ORP; mV) NA NS 242.5 205.4 188.4 -33.9.0 -438.6 -499.6 -419.0 -514.6 -510.1 421.9 -370.0 -461.5 Conductivity (µS/cm) NA NS 302 455 275 299.9 303.2 288 323 295 399 609 818 761		NA	NS	5.51	5.38	5.49	6.14	8.37	10.12	10.55	10.02	10.81	11.08	11.35	10.21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature (°C)	NA	NS	15.19	15.41	13.05	14.1	14.3	14.13	13.79	13.52	13.54	12.62	13.19	13.54
Conductivity (µS/cm) NA NS 302 455 275 299.9 303.2 288 323 295 399 609 818 761															

Table D.34. CW-2: Analytical and Field Data Results

Sample ID	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2
Lab Sample No.		8685-1	8689-1	8690-1	8698-1	8708-1	8713-35	8717-31					8807-1
Sampling Date Time (days)	5/9/2012 149	5/11/2012 151	5/16/2012 156	5/21/2012 161	5/30/2012 170	6/7/2012 178	6/11/2012 182	6/13/2012 184	6/15/2012 186	6/19/2012 190	8/1/2012 233	8/16/2012 248	8/30/2012 262
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
vinyl chloride	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromomethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
chloroethane trichlorofluoromethane	NS NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS NS
1,1-dichloroethylene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride trans-1,2-dichloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethane	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
2,2-dichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene bromochloromethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
chloroform	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride 1,1-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene 1,2-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromomethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane	NS NC	NS NC	NS	NS	NS	NS	NS NC	NS	NS	NS	NS	NS	NS NS
cis-1,3-dichloropropene toluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trans-1,3-dichloropropene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2-trichloroethane tetrachloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromochloromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane chlorobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p) o-xylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
styrene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromoform	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene) bromobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2,2-tetrachloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene 2-chlorotoluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
4-chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene 1,2,4-trimethylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
sec-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene 1,4-dichlorobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene 1,2-dibromo-3-chloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,4-trichlorobenzene	NS NS	NS	NS NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS
hexachlorobutadiene	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
naphthalene 1,2,3-trichlorobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Methyl tertiary butyl ether	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide 2-butanone (MEK)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrahydrofuran (THF)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-hexanone 2-chloroethyl vinyl ether	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane Ethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Ethene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen METALS (DISSOLVED)	NS μg/L	NS μg/L	NS μg/L	NS μg/L	739 μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	336 μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	NS NC	NS NC	NS	NS	NS	NS	NS NC	NS	NS	NS	NS	NS NC	NS
Arsenic METALS (TOTAL)	NS μg/L	NS μg/L	NS μg/L	NS mg/L	NS mg/L	NS mg/L	NS mg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Iron	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	NS	NS 	NS 	NS	NS 	NS 	NS 	NS 	NS	NS 	NS 	NS 	NS
CATIONS Calcium	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS
Magnesium	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
GROUNDWATER CHEMISTRY Alkalinity as CaCO3	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS	mg/L NS
Sulfide	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	NS NS	NS 5 II	NS 10.0 II	NS 5.46	NS 2.02	NS 1.26	NS 4.56	NS NC	NS NC	NS	NS NC	NS NC	0.18 J
Chloride Nitrite as N	NS NS	5 U	10.0 U	5.46 1.0 U	3.02 0.2 U	1.36 0.2 U	4.56 0.2 U	NS NS	NS NS	NS NS	NS NS	NS NS	17.7 0.2 U
Sulfate as SO ₄	NS	70.8 D		43.3	27.5 E	36.9 E	49.9 E	NS	NS	NS	NS	NS	59.9 E
Bromide	NS	181	21.3	1.97	0.82	0.82	0.73	764	1010	12.5	NS	NS	1.02
Nitrate as N O-Phosphate as P	NS NS	5 U	10.0 U	1.0 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U		NS NS	NS NS	NS NS	NS NS	0.2 U 0.2 U
VOLATILE FATTY ACIDS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Lactic Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetic Acid Propionic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Formic Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Butyric Acid	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Pyruvic Acid Valeric Acid	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FIELD PARAMETERS													
pH (SU)	6.03	6.18	7.06	7.00	9.76	6.40	6.79	5.82	5.70	5.52	5.34	5.23	5.28
Temperature (°C) Dissolved Oxygen (DO; mg/L)	14.07 23.13	14.42 1.61	17.20 1.28	15.16 2.48	16.80 3.21	16.05 0.40	16.49 1.80	16.20 4.77	17.32 4.50	17.81 5.13	20.62 0.56	19.42 0.21	19.25 0.73
Redox Potential (ORP; mV)	132.0	-7.5	-124.5	-240.5	-642.3	-157.3	-350.7	-20.4	17.3	13.0	-133.7	-179.4	-323.7
Conductivity (µS/cm) Depth to Water (ft-btoc)	749	756	485 NS	349	366	290	337	1527 NS	1762	344 NC	288 NC	248	242
Pebru to Maret (II-010C)	7.85	NS	N5	NS	NS	NS	NS	NO	NS	NS	NS	7.90	8.31

Table D.34. CW-2: Analytical and Field Data Results

Sample ID	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2	CW-2
Lab Sample No.	8818-1	8837-4	8839-4	8840-1	8850-1	8852-1	8869-1	8876-1	8883-7	8929-1	8954-1	8977-2
Sampling Date Time (days)	9/12/2012 275	10/1/2012 294	10/2/2012 295	10/3/2012 296	10/5/2012 298	10/23/2012 316	11/15/2012 339	12/4/2012 358	12/18/2012 372	3/14/2013 458	4/24/2013 499	6/11/2013 547
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U	NS NS	NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
vinyl chloride	NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U	25.0 U	NS
bromomethane chloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
trichlorofluoromethane	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
1,1-dichloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U	25.0 U 25.0 U		NS NS
methylene chloride trans-1,2-dichloroethylene	NS NS	NS	NS	NS	NS	42.0 U		NS	42.0 U 42.0 U	25.0 U		NS NS
1,1-dichloroethane	NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U	25.0 U	NS
2,2-dichloropropane cis 1,2- dichloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 67.3 D		NS NS	42.0 U 95.8 D	25.0 U 61.0 D		NS NS
bromochloromethane	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
chloroform 1,1,1-trichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
carbon tetrachloride	NS NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS NS
1,1-dichloropropene	NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS
benzene 1,2-dichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
trichloroethylene	NS	NS	NS	NS	NS	2900 D	NS	NS	2940 D	2180 D	349 D	NS
1,2-dichloropropane dibromomethane	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
bromodichloromethane	NS NS	NS NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS
cis-1,3-dichloropropene	NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS
toluene trans-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
1,1,2-trichloroethane	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
tetrachloroethylene 1,3-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
dibromochloromethane	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
1,2-dibromoethane	NS NS	NS NC	NS NC	NS NC	NS NC	42.0 U		NS NC	42.0 U	25.0 U		NS NS
chlorobenzene 1,1,1,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
ethylbenzene	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
xylenes (m/p) o-xylene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
styrene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U		NS NS	42.0 U	25.0 U		NS NS
bromoform	NS NC	NS NC	NS NC	NS	NS	42.0 U		NS	42.0 U	25.0 U	25.0 U	NS
isopropyl benzene (cumene) bromobenzene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
1,1,2,2-tetrachloroethane	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
1,2,3-trichloropropane n-propyl benzene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
2-chlorotoluene	NS NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS NS
4-chlorotoluene	NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS
1,3,5-trimethylbenzene tert-butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
1,2,4-trimethylbenzene	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
sec-butylbenzene 1,3-dichlorobenzene	NS NS	NS NS	NS NS	NS NS	NS	42.0 U 42.0 U		NS NS	42.0 U	25.0 U 25.0 U		NS NS
4-isopropyltoluene	NS NS	NS	NS	NS	NS NS	42.0 U		NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
1,4-dichlorobenzene	NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U	25.0 U	NS
1,2-dichlorobenzene n-butylbenzene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
1,2-dibromo-3-chloropropane	NS NS	NS NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS
1,2,4-trichlorobenzene	NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS
hexachlorobutadiene naphthalene	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 42.0 U		NS NS	42.0 U 42.0 U	25.0 U 25.0 U		NS NS
1,2,3-trichlorobenzene	NS	NS	NS	NS	NS	42.0 U	NS	NS	42.0 U	25.0 U	25.0 U	NS
Methyl tertiary butyl ether Acetone	NS NS	NS NS	NS NS	NS NS	NS NS	42.0 U 84.0 U		NS NS	42.0 U 84.0 U	25.0 U 50.0 U		NS NS
carbon disulfide	NS NS	NS	NS	NS	NS	42.0 U		NS	42.0 U	25.0 U		NS NS
2-butanone (MEK)	NS	NS	NS	NS	NS	84.0 U		NS	84.0 U	50.0 U		NS
tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS NS	NS NS	NS NS	NS NS	NS NS	84.0 U 84.0 U		NS NS	84.0 U 84.0 U	50.0 U		NS NS
2-hexanone	NS	NS	NS	NS	NS	84.0 U	NS	NS	84.0 U	50.0 U	50.0 U	NS
2-chloroethyl vinyl ether REDUCED GASES (GC)	NS 	NS	NS 	NS ad	NS 	84.0 U		NS a/l	84.0 U	50.0 U		NS
Methane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 248	μg/L NS	μg/L NS	μg/L 254	μg/L 83.8	μg/L 2.22	μg/L NS
Ethane	NS	NS	NS	NS	NS	2.7	NS	NS	1.76 J	1.15 J	4.0 U	NS
Ethene OTHER GASES	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	7.8 μg/L	NS μg/L	NS μg/L	6.67 μg/L	3.74 J μg/L	5.0 U μg/L	NS μg/L
Hydrogen	μg/L 613	μg/L 62.2	μg/L 58.9	μg/L 60.9	17.7	μg/L 22.4	2.15	74.0	μg/L 67.3	μg/L 146	μg/L 356	μg/L 99.9
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	NS NS	NS NS	NS NS	NS NS	NS NS	8840 55.5	NS NS	NS NS	73.2	NS NS	NS NS	NS NS
Arsenic	NS	NS	NS	NS	NS	2.5 U	NS	NS	NS	NS	NS	NS
Iron	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μg/L 9740	μg/L NS	μg/L NS	μg/L NS
Manganese	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	72.8	NS NS	NS NS	NS NS
CATIONS	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Calcium Magnesium	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
GROUNDWATER CHEMISTRY	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Alkalinity as CaCO3 Sulfide	NS NS	NS NS	NS NS	NS NS	NS NS	0.20 J NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ANIONS	MS mg/L	MS mg/L	MS mg/L	NS mg/L	MS mg/L	MS mg/L	MS mg/L	MS mg/L	NS mg/L	MS mg/L	MS mg/L	MS mg/L
Fluoride	0.07 J	1.0 U	1.0 U	1.0 U	1.0 U	0.2 J	NS	0.18 J	0.2 U	NS	NS	NS
Chloride Nitrite as N	9.14 0.2 U	17.2 1.0 U	17.7 1.0 U	16.4 1.0 U	16.9 1.0 U	17.0 0.2 U	NS NS	19.5 0.2 U	23.3 0.2 U	NS NS	NS NS	NS NS
Sulfate as SO ₄	38.0 E	77.2 D	89.7	87.7 D	91.9 D	56.7 E		55.9 E	27.3 E	NS NS	NS NS	NS
Bromide	0.75	1.45	3.22	14.4	30.4	8.13	NS	7.88	5.11	NS	NS	NS
Nitrate as N O-Phosphate as P	0.2 U 0.2 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U 0.2 U		0.2 U 0.2 U	0.2 U 0.2 U		NS NS	NS NS
VOLATILE FATTY ACIDS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	0.2 U		mg/L	mg/L
Lactic Acid	1.0 U	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS
Acetic Acid Propionic Acid	0.81 J 1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U		NS NS	NS NS
Formic Acid	1.0 U	NS	NS	NS	NS	NS	NS	NS	1.0 U	NS	NS	NS
Butyric Acid	1.0 U 1.0 U		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U		NS NS	NS NS
Pyruvic Acid Valeric Acid	1.0 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.0 U		NS NS	NS NS
FIELD PARAMETERS												
pH (SU) Temperature (°C)	5.39	4.74	4.43	4.22	4.53	4.76	5.06	4.66	4.74	5.51	12.30	5.20
Dissolved Oxygen (DO; mg/L)	19.22 3.47	18.32 0.64	17.90 4.67	17.69 1.19	17.92 0.45	15.92 0.24	12.96 0.66	15.28 0.16	15.27 0.45	11.32 0.11	12.58 0.27	17.19 0.84
Redox Potential (ORP; mV)	-19.5	49.0	88.6	118.0	53.0	-6.4	73	-116.8	8.8	-49.9	-449.5	123.8
Conductivity (µS/cm) Depth to Water (ft-btoc)	167 7.63	210 3.50	229 6.00	132.6 6.3	5.28	219 3.92	146 NS	229 2.27	244 5.63	226 6.36	1933 NS	119 NS
Soper to Water (It-DIOC)	1.03	0.00	0.00	0.3	J.20	J.32	INO	2.21	5.05	0.30	INO	140

Sample ID	NJ Higher of	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3
Lab Sample No.	PQLs and	8543-19	8561-17	8573-7	8576-6	8577-6	8581-3	CW-3	CVV-3	CW-3	8647-3	8665-17
Sampling Date	GW Quality	11/16/2011	12/12/2011	12/28/2011	1/5/2012	1/9/2012	1/12/2012	1/16/2012	1/19/2012	2/7/2012	3/26/2012	4/18/2012
Time (days)	GW Quality	-26	0	16	24	28	31	35	38	57	105	128
Matrix	2005 Criteria	-26 Water	Water	Water	24 Water	28 Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)												
dichlorodifluoromethane	μg/L 1000	μg/L NS	μ g /L NS	μg/L NS	μg/L	μg/L NS	μg/L	μg/L NS	μg/L NS	μg/L	μg/L NS	μg/L NS
	1000				NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS
chloromethane	1	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
vinyl chloride bromomethane	10					NS NS						NS NS
	10	NS NC	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS NC	NS NC	
chloroethane	0000	NS	NS	NS	NS		NS			NS	NS	NS
trichlorofluoromethane	2000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethylene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
methylene chloride	3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene	100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloroethane	50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2,2-dichloropropane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform	70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon tetrachloride	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
benzene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloroethane	2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trichloroethylene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichloropropane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromodichloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
toluene	600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2-trichloroethane	3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrachloroethylene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichloropropane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromochloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chlorobenzene	50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,1,2-tetrachloroethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	1000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene	1000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene	100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromoform	4	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene	700	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
1,2,3-trichloropropane	0.03	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS
n-propyl benzene	0.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene		NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS
4-chlorotoluene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
1,3,5-trimethylbenzene		NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS NS
		NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS NS
tert-butylbenzene 1,2,4-trimethylbenzene		NS NS										
		NS NS	NS NC	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NC
sec-butylbenzene	000		NS	NS							NS	NS
1,3-dichlorobenzene	600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	75	NS NS	NS NC	NS	NS	NS NC	NS	NS NC	NS	NS NC	NS NC	NS NC
1,2-dichlorobenzene	600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	0.02	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene	9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
hexachlorobutadiene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
naphthalene	300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	6000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-butanone (MEK)	300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	NS	0.0036 J	27.8	147	579	298	NS	NS	NS	339	768
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Chloride	250	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Nitrite as N	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Sulfate as SO ₄	250	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Bromide	NA NA	6.22	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Nitrate as N	10	NS NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS
O-Phosphate as P	NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS
FIELD PARAMETERS	14/1	140	140	140	140	140	140	140	140	140	140	140
pH (SU)	NA	NS	5.01	NS	6.56	10.42	10.03	10.48	10.36	10.38	11.76	11.52
Temperature (°C)	NA	NS	15.22	NS	13.1	13.7	13.22	13.40	13.72	13.49	12.73	13.56
Dissolved Oxygen (DO; mg/L)	NA	NS	0.01	NS	0.26	0.13	0.19	0.62	0.21	0.65	0.39	0.78
Redox Potential (ORP; mV)	NA	NS	253.3	NS	-353.4	-472.5	-430.7	-410.7	-519.7	-466.7	-416.0	-373.2
Conductivity (µS/cm)	NA	NS	244	NS	270.5	303.1	328	301	295	369	1416	1130
Depth to Water (ft-btoc)	NA	NS	6.70	NS	6.60	6.74	6.54	NS	NS	NS	7.39	7.50

<u>abie D.33.</u>		. Alle	uyuc			<u>iu i a</u>	Iaiiic		CSuit
Sample ID	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3	CW-3
Lab Sample No.		-///				8713-29	8717-32		
Sampling Date	5/9/2012	5/11/2012	5/21/2012	5/30/2012	6/7/2012	6/11/2012	6/13/2012	6/15/2012	6/19/2012
Time (days)	149	151	161	170	178	182	184	186	190
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloromethane	NS	NS	NS	NS NO	NS	NS	NS	NS	NS
vinyl chloride	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NC
bromomethane chloroethane		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	NS NS	NS NS	NS NS	NS NS	NS NS		NS	NS NS	
trichlorofluoromethane		NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS
1,1-dichloroethylene methylene chloride	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
trans-1,2-dichloroethylene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
1.1-dichloroethane	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS
2,2-dichloropropane	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS NS
cis 1,2- dichloroethylene	NS NS	NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS
bromochloromethane	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS
1,1,1-trichloroethane	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS
carbon tetrachloride	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS
1,1-dichloropropene	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
benzene	NS	NS	NS	NS NS	NS	NS	NS	NS	NS
1,2-dichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS NS
trichloroethylene 1,2-dichloropropane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
dibromomethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromodichloromethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
cis-1,3-dichloropropene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
toluene	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
trans-1,3-dichloropropene	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS NS
1,1,2-trichloroethane	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
tetrachloroethylene	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS
1,3-dichloropropane	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS
dibromochloromethane	NS NS	NS	NS	NS	NS	NS	NS	NS	NS NS
1.2-dibromoethane	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS
chlorobenzene	NS NS	NS	NS	NS	NS	NS NS	NS	NS	NS
1,1,1,2-tetrachloroethane	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
ethylbenzene	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS
xylenes (m/p)	NS	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene	NS	NS	NS	NS	NS	NS	NS	NS	NS
styrene	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromoform	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-propyl benzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-chlorotoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
tert-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
sec-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,3-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-isopropyltoluene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
n-butylbenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromo-3-chloropropane	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
hexachlorobutadiene	NS	NS	NS	NS	NS	NS	NS	NS	NS
naphthalene	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tertiary butyl ether	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-butanone (MEK)	NS	NS	NS	NS	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chloroethyl vinyl ether	NS	NS	NS	NS	NS	NS	NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NS	NS	NS	NS	NS	NS	NS	NS	NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Chloride	NS	NS	NS	NS	NS	3.30	NS	NS	NS
Nitrite as N	NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
Sulfate as SO ₄	NS	NS	NS	NS	NS	25.1 E	NS	NS	NS
Bromide	NS	NS	NS	NS	NS	0.38	1420	654	21.9
Nitrate as N	NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
O-Phosphate as P	NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
FIELD PARAMETERS									
pH (SU)	5.86	5.86	6.85	9.09	8.64	10.25	6.59	6.60	6.81
Temperature (°C)	14.28	14.57	13.35	16.02	16.81	16.91	17.73	16.97	17.34
Dissolved Oxygen (DO; mg/L)	19.82	1.13	0.35	0.42	0.49	0.68	1.39	0.65	2.74
Redox Potential (ORP; mV)	147.3	52.2	-224.3	-365.4	-229.3	-354.4	-8.9	30.5	45.6
Conductivity (µS/cm)	611	440	318	209	368	550	2347	1370	543
Depth to Water (ft-btoc)	6.50	NS	NS	NS	NS	7.77	7.42	7.32	NS

Sample ID	NJ Higher of	AW-1	AW-1	AW-1	AW-1	AW-1
Lab Sample No.	PQLs and	8561-12	AVV-1	AVV-1	AVV-I	AVV-1
Sampling Date	GW Quality	12/13/2011	1/5/2012	1/9/2012	2/7/2012	5/9/2012
Time (days)	orr quanty	1	24	28	57	149
Matrix	2005 Criteria	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane	1000	NS	NS	NS	NS	NS
chloromethane		NS	NS	NS	NS	NS
vinyl chloride	1	NS	NS	NS	NS	NS
bromomethane	10	NS	NS	NS	NS	NS
chloroethane trichlorofluoromethane	2000	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethylene	1	NS	NS	NS NS	NS	NS
methylene chloride	3	NS	NS	NS NS	NS	NS
trans-1,2-dichloroethylene	100	NS	NS	NS	NS	NS
1,1-dichloroethane	50	NS	NS	NS	NS	NS
2,2-dichloropropane		NS	NS	NS	NS	NS
cis 1,2- dichloroethylene	70	NS	NS	NS	NS	NS
bromochloromethane		NS	NS	NS	NS	NS
chloroform	70	NS	NS	NS	NS	NS
1,1,1-trichloroethane	30	NS	NS	NS	NS	NS
carbon tetrachloride	1	NS	NS	NS	NS	NS
1,1-dichloropropene	-	NS	NS	NS	NS	NS
benzene 1,2-dichloroethane	1 2	NS NS	NS NS	NS NS	NS NS	NS NS
trichloroethylene	1	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dichloropropane	1	NS	NS	NS NS	NS	NS
dibromomethane	_	NS	NS	NS	NS	NS
bromodichloromethane	1	NS	NS	NS	NS	NS
cis-1,3-dichloropropene	1	NS	NS	NS	NS	NS
toluene	600	NS	NS	NS	NS	NS
trans-1,3-dichloropropene	1	NS	NS	NS	NS	NS
1,1,2-trichloroethane	3	NS	NS	NS	NS	NS
tetrachloroethylene	1	NS	NS	NS	NS	NS
1,3-dichloropropane		NS	NS	NS	NS	NS
dibromochloromethane	1	NS	NS	NS	NS	NS
1,2-dibromoethane chlorobenzene	50	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	NS	NS	NS	NS	NS
ethylbenzene	700	NS	NS	NS	NS	NS
xylenes (m/p)	1000	NS	NS	NS	NS	NS
o-xylene		NS	NS	NS	NS	NS
styrene	100	NS	NS	NS	NS	NS
bromoform	4	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	700	NS	NS	NS	NS	NS
bromobenzene		NS	NS	NS	NS	NS
1,1,2,2-tetrachloroethane	1	NS	NS	NS NS	NS	NS
1,2,3-trichloropropane n-propyl benzene	0.03	NS NS	NS NS	NS NS	NS NS	NS NS
2-chlorotoluene		NS	NS	NS	NS	NS
4-chlorotoluene		NS	NS	NS	NS	NS
1,3,5-trimethylbenzene		NS	NS	NS	NS	NS
tert-butylbenzene		NS	NS	NS	NS	NS
1,2,4-trimethylbenzene		NS	NS	NS	NS	NS
sec-butylbenzene		NS	NS	NS	NS	NS
1,3-dichlorobenzene	600	NS	NS	NS	NS	NS
4-isopropyltoluene		NS	NS	NS NS	NS	NS
1,4-dichlorobenzene	75	NS	NS NC	NS NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	600	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,4-trichlorobenzene	9	NS	NS	NS	NS	NS
hexachlorobutadiene	1	NS	NS	NS	NS	NS
naphthalene	300	NS	NS	NS	NS	NS
1,2,3-trichlorobenzene		NS	NS	NS	NS	NS
Methyl tertiary butyl ether	70	NS	NS	NS	NS	NS
Acetone	6000	NS	NS	NS	NS	NS
carbon disulfide	700	NS	NS	NS	NS	NS
2-butanone (MEK)	300	NS	NS	NS	NS	NS
tetrahydrofuran (THF)	10	NS NS	NS NS	NS NS	NS NS	NS NS
4-methyl-2-pentanone (MIBK) 2-hexanone	1	NS NS	NS NS	NS NS	NS NS	NS NS
2-chloroethyl vinyl ether	<u> </u>	NS	NS NS	NS NS	NS	NS
OTHER GASES	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Hydrogen	NA	0.0033 J	NS	NS	NS	NS
FIELD PARAMETERS						
pH (SU)	NA	4.05	3.41	2.87	3.04	5.69
Temperature (°C)	NA	15.79	15.10	14.8	14.18	14.20
Dissolved Oxygen (DO; mg/L)	NA	0.19	1.27	6.88	2.93	0.98
Redox Potential (ORP; mV)	NA	141.9	272.8	395.5	288.9	-156.1
Conductivity (μS/cm)	NA	439	308.8	415.5	487	229
Depth to Water (ft-btoc)	NA	7.02	NS	NS	NS	8.25

Sample ID	NJ Higher of	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2
Lab Sample No.	PQLs and	8560-1	8561-13	8573-2								
Sampling Date Time	GW Quality	12/12/2011	12/13/2011	12/28/2011 16	1/5/2012 24	1/9/2012 28	2/7/2012 57	5/9/2012 149	5/30/2012 170	8/16/2012 248	8/31/2012 263	9/12/2012 275
Matrix	2005 Criteria	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
dichlorodifluoromethane chloromethane	1000	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
vinyl chloride	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromomethane	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroethane trichlorofluoromethane	2000	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethylene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS
methylene chloride	3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-dichloroethylene	100 50	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-dichloroethane 2,2-dichloropropane	50	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS
cis 1,2- dichloroethylene	70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromochloromethane		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
chloroform 1,1,1-trichloroethane	70 30	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
carbon tetrachloride	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,1-dichloropropene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
benzene 1,2-dichloroethane	2	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
trichloroethylene	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS
1,2-dichloropropane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
dibromomethane bromodishloromethane	1	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NC	NS NS	NS NS
bromodichloromethane cis-1,3-dichloropropene	1	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
toluene	600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,3-dichloropropene	1	NS NC	NS NC	NS NC	NS NS	NS NS	NS NS	NS NS	NS NC	NS NC	NS	NS NC
1,1,2-trichloroethane tetrachloroethylene	3	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-dichloropropane		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
dibromochloromethane	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dibromoethane chlorobenzene	50	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,1,2-tetrachloroethane	1	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS
ethylbenzene	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
xylenes (m/p)	1000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
o-xylene styrene	100	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
bromoform	4	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
isopropyl benzene (cumene)	700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
bromobenzene 1,1,2,2-tetrachloroethane	1	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,3-trichloropropane	0.03	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS
n-propyl benzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-chlorotoluene 4-chlorotoluene		NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3,5-trimethylbenzene		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS
tert-butylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2,4-trimethylbenzene		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
sec-butylbenzene 1,3-dichlorobenzene	600	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
4-isopropyltoluene	000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,4-dichlorobenzene	75	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1,2-dichlorobenzene n-butylbenzene	600	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-dibromo-3-chloropropane	0.02	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
1,2,4-trichlorobenzene	9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
hexachlorobutadiene	200	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NS	NS NC	NS NC	NS NC
naphthalene 1,2,3-trichlorobenzene	300	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS
Methyl tertiary butyl ether	70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acetone	6000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
carbon disulfide 2-butanone (MEK)	700 300	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
tetrahydrofuran (THF)	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4-methyl-2-pentanone (MIBK)		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-hexanone 2-chloroethyl vinyl ether		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
REDUCED GASES (GC)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Methane	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethane	NA NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NC	NS NC	NS NS	NS NC
Ethene OTHER GASES	NA μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L	NS μg/L
Hydrogen	NA	0.0018 J	0.0041	0.0080 U	NS	NS	NS	NS	NS	NS	NS	NS
METALS (DISSOLVED)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Iron Manganese	300 50	664 D 53 D	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic	30	NS	NS NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS
ANIONS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Fluoride	2	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS 12.1	NS NC	NS NS	NS NC
Chloride Nitrite as N	250 1	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	13.1 0.2 U	NS NS	NS NS	NS NS
Sulfate as SO ₄	250	NS	NS	NS	NS	NS	NS	NS	95.9 E	NS	NS	NS
Bromide	NA	NS	NS	NS	NS	NS	NS	NS	1.74	NS	NS	NS
Nitrate as N	10	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.2 U	NS NC	NS NS	NS NC
O-Phosphate as P FIELD PARAMETERS	NA	NS	NS	NS	NS	NS	NS	NS	0.2 U	NS	NS	NS
pH (SU)	NA	4.61	4.39	3.80	2.90	2.71	2.69	9.36	2.44	3.85	3.99	4.06
Temperature (°C)	NA	15.03	15.62	14.90	14.6	14.4	13.91	14.04	16.22	17.63	18.04	18.16
Dissolved Oxygen (DO; mg/L)	NA	0.21	0.07	0.51	8.05	18.64	1.99	0.94	13.46	0.38	0.49	3.43
Redox Potential (ORP; mV) Conductivity (μS/cm)	NA NA	283.6 276	268.3 409	397.6 288	519.5 490.6	492.5 760	378.8 1036	-311.0 339	465.3 649	-12.5 272	160.4 278	102.5 192
Depth to Water (ft-btoc)	NA NA	6.80	6.91	6.65	NS	NS NS	NS	7.60	NS NS	7.86	7.97	7.78
, , ,/												

Sample ID	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2	AW-2
Lab Sample No.	8837-11	8839-11	8840-11	8850-11	8852-2	8869-11	8876-11
Sampling Date	10/1/2012	10/2/2012	10/3/2012	10/5/2012	10/23/2012	11/15/2012	12/4/2012
Time	294	295	296	298	316	339	358
Matrix	Water	Water	Water	Water	Water	Water	Water
VOCS (GC/MS) dichlorodifluoromethane	μg/L NS	μg/L NS	μg/L NS	μg/L NS	μ g/L 42.0 l	μg/L NS	μg/L NS
chloromethane	NS	NS	NS	NS	42.0 L		NS
vinyl chloride	NS	NS	NS	NS	42.0 L		NS
bromomethane	NS	NS	NS	NS	42.0 L	NS NS	NS
chloroethane	NS	NS	NS	NS	42.0 L		NS
trichlorofluoromethane	NS	NS	NS NS	NS NC	42.0 L		NS NS
1,1-dichloroethylene methylene chloride	NS NS	NS NS	NS NS	NS NS	42.0 L 42.0 L		NS NS
trans-1,2-dichloroethylene	NS	NS	NS	NS	42.0 L		NS
1,1-dichloroethane	NS	NS	NS	NS	42.0 L	NS NS	NS
2,2-dichloropropane	NS	NS	NS	NS	42.0 L		NS
cis 1,2- dichloroethylene	NS	NS	NS	NS	56.7		NS
bromochloromethane chloroform	NS NS	NS NS	NS NS	NS NS	42.0 L		NS NS
1,1,1-trichloroethane	NS NS	NS NS	NS NS	NS NS	42.0 L		NS NS
carbon tetrachloride	NS	NS	NS	NS	42.0 L		NS
1,1-dichloropropene	NS	NS	NS	NS	42.0 L	NS NS	NS
benzene	NS	NS	NS	NS	42.0 L		NS
1,2-dichloroethane	NS	NS	NS	NS	42.0 L		NS
trichloroethylene 1,2-dichloropropane	NS NS	NS NS	NS NS	NS NS	3110 E		NS NS
dibromomethane	NS NS	NS	NS NS	NS NS	42.0 L		NS NS
bromodichloromethane	NS	NS	NS	NS	42.0 L		NS
cis-1,3-dichloropropene	NS	NS	NS	NS	42.0 L		NS
toluene	NS	NS	NS	NS	42.0 L		NS
trans-1,3-dichloropropene	NS NC	NS NC	NS NC	NS NC	42.0 L		NS NC
1,1,2-trichloroethane tetrachloroethylene	NS NS	NS NS	NS NS	NS NS	42.0 L 42.0 L		NS NS
1,3-dichloropropane	NS	NS	NS	NS	42.0 L		NS
dibromochloromethane	NS	NS	NS	NS	42.0 L		NS
1,2-dibromoethane	NS	NS	NS	NS	42.0 L		NS
chlorobenzene	NS NC	NS	NS	NS	42.0 L		NS NC
1,1,1,2-tetrachloroethane ethylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 L 42.0 L		NS NS
xylenes (m/p)	NS	NS	NS	NS	42.0 L		NS NS
o-xylene	NS	NS	NS	NS	42.0 L		NS
styrene	NS	NS	NS	NS	42.0 L	NS NS	NS
bromoform	NS	NS	NS	NS	42.0 L		NS
isopropyl benzene (cumene)	NS	NS	NS	NS	42.0 L		NS
bromobenzene 1,1,2,2-tetrachloroethane	NS NS	NS NS	NS NS	NS NS	42.0 L		NS NS
1,2,3-trichloropropane	NS	NS	NS	NS	42.0 L		NS
n-propyl benzene	NS	NS	NS	NS	42.0 L	NS NS	NS
2-chlorotoluene	NS	NS	NS	NS	42.0 L		NS
4-chlorotoluene	NS	NS	NS	NS	42.0 L		NS
1,3,5-trimethylbenzene tert-butylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 L		NS NS
1,2,4-trimethylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 L		NS NS
sec-butylbenzene	NS	NS	NS	NS	42.0 L		NS
1,3-dichlorobenzene	NS	NS	NS	NS	42.0 L	NS NS	NS
4-isopropyltoluene	NS	NS	NS	NS	42.0 L		NS
1,4-dichlorobenzene	NS	NS	NS	NS	42.0 L		NS
1,2-dichlorobenzene n-butylbenzene	NS NS	NS NS	NS NS	NS NS	42.0 L		NS NS
1,2-dibromo-3-chloropropane	NS	NS	NS	NS	42.0 L		INO
1,2,4-trichlorobenzene	NS	NS					NS
hexachlorobutadiene	110		NS	NS	42.0 L	NS NS	NS NS
naphthalene	NS	NS	NS	NS	42.0 L	NS NS	NS NS
	NS	NS	NS NS	NS NS	42.0 L 42.0 L	NS NS	NS NS NS
1,2,3-trichlorobenzene	NS NS	NS NS	NS NS NS	NS NS NS	42.0 L 42.0 L 42.0 L	NS NS NS	NS NS NS
	NS	NS	NS NS	NS NS	42.0 L 42.0 L	NS NS NS NS	NS NS NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether	NS NS NS	NS NS NS	NS NS NS	NS NS NS	42.0 L 42.0 L 42.0 L 42.0 L	NS NS NS NS NS	NS NS NS NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK)	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 42.0 L 84.0 L	NS NS NS NS NS NS NS NS NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF)	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS	NS	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L	NS	NS
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS	NS NS NS NS NS NS NS NS NS	NS	NS	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L	NS	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone	NS	NS	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK)	NS	NS NS NS NS NS NS NS NS NS	NS	NS	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L	NS N	NS N
1.2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L	NS N	NS N
1.2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 1.1 L	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethane OTHER GASES	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 124 0.0 L 124 0.0 L	NS N	NS N
1.2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene OTHER GASES Hydrogen	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 114 L 124 0.0 L	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethane OTHER GASES	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 124 0.0 L 124 0.0 L	NS N	NS N
1.2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.1 L 84.0 L 84.0 L 84.1 L 84.2 L 84.3 L 84.4 L 84.5 L 84.5 L 84.6 L 84.6 L 84.7 L 84.8 L 84.8 L 84.8 L 84.8 L 84.9 L 84.9 L 84.8 L 84.9 L 84.8 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Nitrite as N	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.1 L 84.0 L 84.0 L 84.1 L 84.2 L 84.3 L 84.4 L 84.5 L 84.5 L 84.6 L 84.6 L 84.7 L 84.8 L 84.8 L 84.8 L 84.8 L 84.9 L 84.9 L 84.8 L 84.9 L 84.8 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Nitrite as N Sulfate as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.0 L 84.1 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS pH (SU)	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS PH (SU) Temperature (°C)	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS PH (SU) Temperature (°C) Dissolved Oxygen (DO; mg/L)	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N
1,2,3-trichlorobenzene Methyl tertiary butyl ether Acetone carbon disulfide 2-butanone (MEK) tetrahydrofuran (THF) 4-methyl-2-pentanone (MIBK) 2-hexanone 2-chloroethyl vinyl ether REDUCED GASES (GC) Methane Ethane Ethane Ethene OTHER GASES Hydrogen METALS (DISSOLVED) Iron Manganese Arsenic ANIONS Fluoride Chloride Nitrite as N Sulfate as SO ₄ Bromide Nitrate as N O-Phosphate as P FIELD PARAMETERS PH (SU) Temperature (°C)	NS N	NS N	NS N	NS N	42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 42.0 L 84.0 L 84	NS N	NS N

Page Intentionally Left Blank

APPENDIX E SEPTEMBER 2016 BI-MONTHLY PROJECT STATUS REPORT NESDI PROJECT 501

September 6, 2016

Mr. Wayne C. Hagwood CECM Hazardous Waste Program Manager MCB Quantico, GF NREA Branch 3049 Bordelon Street Quantico, VA 22134-5001 Environmental Compliance Section

RE: Bi-Monthly Project Status Report: July-August, 2016

Proton Reduction Technology Demonstration

NESDI Project 501 Russell Road Landfill

Quantico Marine Corps Base, VA

Dear Mr. Hagwood,

This Bi-Monthly Status Report, prepared by CB&I Federal Services (CB&I), describes the activities conducted during July and August of 2016 as part of our field demonstration of the Proton Reduction Technology (PRT) for degradation of chlorinated volatile organic compounds (cVOCs) in groundwater. The work is being conducted through the Navy's Environmental Sustainability Development to Integration (NESDI) program and is designated NESDI Project 501. The demonstration is being conducted at the southern end of the Russell Road Landfill (RRL), located at Marine Corps Base Quantico in Quantico, Virginia. A site location map is provided in **Figure 1**.

OBJECTIVES

The overall objective of this project is to demonstrate a sustainable (solar-powered) technology for treating cVOCs in low pH, low permeability, and/or continuing contaminant source aquifers. The project involves the operation of a pilot-scale PRT system at the RRL site. Specific objectives for this field demonstration are as follows:

- Evaluate the ability of PRT to increase groundwater pH in a low pH aquifer, and/or maintain groundwater pH at neutral levels (i.e. between approximately 6.0 and 8.0 standard units);
- Evaluate the production and distribution of hydrogen (H₂) and proton consumption within a low permeability aquifer;
- Evaluate the efficacy of PRT, coupled with bioaugmentation with a dechlorinating bacterial culture (e.g., SDC-9), to enhance biodegradation of cVOCs [primarily *cis*-1,2-dichloroethene (*cis*-DCE)]; and,
- Evaluate the performance and efficiency of the PRT electrode design and construction.

Successful demonstration of the technology will provide a viable remedial approach for a number of other Navy and Department of Defense (DoD) sites.

PRT DESCRIPTION

PRT involves the use of electrodes inserted into an aquifer to generate H_2 , which can be used as an electron donor (i.e., energy source) for chlorinated solvent-degrading bacteria (Lohner and Tiehm, 2009; Lohner et al. 2011; Steffan and Sewell, 2011). A generalized schematic of solar powered PRT is provided as **Figure 2.** H_2 is produced by electrolysis and reduction of hydrogen ions (H^+) (i.e., protons) on a cathode. H_2 is an important energy source and electron donor in anaerobic metabolism, including dehalorespiration, which results in dechlorination of chlorinated solvents (He et al.2003; Maymo-Gatell et al., 1997, 2001). This PRT pilot demonstration will provide direct *in situ* generation of H_2 by electrical reduction of free protons (H^+).

Proton reduction occurs at a potential of approximately -0.5 volts (V) which can be supplied easily with solar-charged batteries. Because protons are the cause of acidity, their reduction at the cathode increases pH. In addition to proton reduction, electrical current can be used to further increase aquifer pH. At an electrical potential of approximately -2 V, water molecules are split into a proton (H⁺) and a hydroxide ion (OH⁻); the hydroxide ion is a strong base. This process is often referred to as electrolysis or hydrolysis. The produced proton will then be reduced to H₂, and the OH⁻ will further increase aquifer pH. In theory, any amount of OH⁻ can be produced using this process, thereby allowing neutralization of even very low alkalinity groundwaters like those at the Russell Road Landfill.

The electrodes used for PRT are low power (<20 Voltage Direct Current [VDC]), and are supplied by a relatively small photovoltaic system. The systems are capable of sustainable operation for extended periods to allow treatment of continuous contaminant sources. In addition, the polarity of the proton reduction system can be periodically switched (i.e., the anode becomes a cathode) to increase the size of the treatment area, control the production of H_2 (to minimize methane production), and control changes in pH that can occur, if necessary.

DEMONSTRATION WELL LAYOUT

For this demonstration, eight cathodes were placed in a barrier configuration perpendicular to groundwater flow, and spaced approximately 1.5 feet from one another (**Figure 3**). This close spacing is required due to the relatively low permeability and shallow hydraulic gradient of the aquifer. The anodes were installed in a row approximately 12 feet downgradient of the cathodes. The 9 monitoring wells sampled during this demonstration are summarized as follows:

- Cathode wells CW-2 and CW-7: Treatment zone monitoring wells located within two of the cathode boreholes and within the cathode barrier,
- Performance monitoring wells PMW-1 through PMW-3: Treatment zone monitoring wells located immediately downgradient of the cathode barrier,
- Monitoring well MW-15R: Historic monitoring well with a longer and deeper screen interval located near the center of the test plot,
- Anode well AW-1: Monitoring well located within one of the two anode boreholes,
- Performance monitoring well PMW-4: Monitoring well located immediately downgradient of anode well AW-1, and
- Control well TMW-26S: Historic side-gradient well used as a control well for the demonstration.

Data collected from the 8 monitoring wells located throughout the demonstration plot will be compared against data collected from control well TMW-26S to evaluate efficacy of the treatment approach.

PREVIOUS ACTIVITIES

Previous activities associated with the demonstration included site characterization activities as detailed in the Demonstration Work Plan (CB&I, 2015). Following is a summary of site characterization activities performed during April and June of 2015:

- Underground utility clearance and site clearing,
- Collection of continuous soil cores at 14 locations during electrode and well installations,
- Installation of a total of 10 electrodes and electrode wells, including 8 negatively charged cathodes (CW-1 through CW-8) and 2 positively charged anodes (AW-1 and AW-2),
- Installation of 4 performance monitoring wells (PMW-1 through PMW-4),
- Groundwater sample collection at existing monitoring wells MW-15R and TMW-26S, the 4 newly installed performance monitoring wells, and the 10 electrode wells.

Once site characterization activities were completed, CB&I completed the design and procurement of the PRT system components. System installation was conducted in August and September of 2015. Baseline groundwater samples were collected on September 1-2, 2015 from 8 monitoring wells (PMW-1 through PMW-4, CW-2, CW-7, AW-1, and MW-15R) within the demonstration plot and from well TMW-26S (control well located side-gradient of the demonstration plot) prior to system testing. System testing was performed starting September 2, 2015, and system startup occurred on September 17, 2015. Groundwater parameter measurements collected during the first two months of system operation showed that groundwater pH values increased to within the target range (between approximately 6.0 to 8.0 standard units) in most of the wells within (CW-1 through CW-8) and immediately downgradient (PMW-1 through PMW-3) of the cathode barrier.

On December 1, 2015, bioaugmentation with CB&I's SDC-9 dechlorinating culture was performed by injecting the culture into the eight cathode monitoring wells (CW-1 through CW-8). A total of 4 liters of culture (0.5 liters per well) was injected in the target treatment zone. Immediately prior to bioaugmentation injections, approximately 6 gallons of groundwater was pumped from each of the cathode wells, and stored in separate containers. Each bioaugmentation injection took less than 20 minutes to perform. Once injection of the culture was complete, the 6 gallons of groundwater extracted from each of the cathode wells was gravity fed back into the respective wells to further distribute the culture within the surrounding formation.

A pre-bioaugmentation groundwater sampling event was performed on November 17, 2015, and performance groundwater sampling events were performed approximately every six weeks, starting on January 12, 2016. Prior to this reporting period, a total of 5 performance groundwater sampling events have been performed. The 9 monitoring wells that were sampled during the baseline sampling event were also sampled during these events. Results of these sampling events were presented in previous bimonthly project status reports.

REPORTING PERIOD ACTIVITIES AND RESULTS

During the current reporting period (July 1, 2016 through August 31, 2016), CB&I continued operation and monitoring of the PRT system and conducted Performance Groundwater Sampling Event #6 on August 9, 2016. Groundwater samples were collected via low flow sampling methods using dedicated bladder pumps previously installed in these wells. Samples collected during these events were analyzed for VOCs, reduced gases, anions, volatile fatty acids, and dissolved hydrogen. Field parameters [pH, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP), and specific conductivity] were collected in the field during each event using a YSI 8260 (or equivalent) multi-parameter field meter. All groundwater analyses were performed in CB&I's New Jersey-certified analytical laboratory located in Lawrenceville, NJ. The following is a summary of results from Groundwater Sampling Event #6.

Field Parameters and Sulfate

The two key field parameter measurements collected during groundwater sampling include pH and ORP. As previously discussed, the desired pH range for reductive dechlorination is approximately 6.0 to 8.0 standard units (SUs). **Figure 4** provides a graph of pH data collected from the 9 demonstration monitoring wells during groundwater sampling events performed during this demonstration. These data show that operation of the PRT system has successfully increased and is generally maintaining the pH in the desired range within the treatment zone (wells CW-2, CW-7, PMW-1 through PMW-3). As discussed above, monitoring well MW-15R has a deeper and longer screen interval that the other demonstration monitoring wells, and appears to be tapping into groundwater that has noticeably different geochemical properties (very low pH, high ORP and high DO) than the other wells. A modest increase (< 1 standard unit) in groundwater pH has been observed at this well. Anode well AW-1, located in the same borehole as one of the anodes, exhibits a very low pH (<2.0 SUs), as would be expected at an anode. However, pH data collected from performance monitoring well PMW-4 (located 3 feet downgradient of AW-1) indicate no significant change in groundwater pH downgradient of the treatment zone, likely due to the mixing of higher pH groundwater flowing from the cathode barrier with the lower pH groundwater at the anode wells. pH levels in control well TMW-26S are largely unchanged.

The desired ORP level for complete reductive dechlorination is typically less than -100 millivolts (mV). However, the reductive dechlorination process can occur at higher ORP levels (although, typically still in the negative range). **Figure 5** provides a graph of ORP data collected from the 9 demonstration monitoring wells during groundwater sampling events. These data show that operation of the PRT system has successfully decreased groundwater ORP from > +100 mV to between approximately < -50 mV and -150 mV within the treatment zone. ORP levels at monitoring well MW-15R remain largely unchanged, ranging between approximately +300 mV to +400 mV. Anode well AW-1 has exhibited a very high ORP (> +500 mV) since the PRT system was started, as would be expected under the oxidizing condition present at an anode. As with groundwater pH, ORP data collected from performance monitoring well PMW-4 indicate no significant change in groundwater ORP downgradient of the treatment zone due to the mixing of lower ORP groundwater flowing from the cathode barrier with the higher ORP groundwater at the anode wells. ORP levels at control well TMW-26S are largely unchanged.

A decrease in sulfate groundwater concentrations is an indicator that reducing conditions have been established within an aquifer. **Figure 6** provides a graph of sulfate concentration data collected from the 9 demonstration monitoring wells during groundwater sampling events. These data show that operation of the PRT system has successfully reduced sulfate concentrations from greater than 300 mg/L to generally below 100 mg/L in 3 of the 5 treatment zone wells (CW-7, PMW-2, and PMW-3). The other two treatment zone wells (CW-2 and PMW-1) had starting sulfate concentrations below 15 mg/L. Sulfate concentrations at monitoring well MW-15R decreased from 5,800 mg/L to 2,010 mg/L between the baseline sampling event and Performance Sampling Event #6. Anode well AW-1 has shown an increase in sulfate concentrations from 491 mg/L during the baseline event, to 1,190 mg/L during Performance Sampling Event #6, as would be expected under the oxidizing conditions present at an anode. Groundwater data collected from performance monitoring well PMW-4 indicate a moderate decrease in sulfate, with concentrations decreasing from 294 mg/L to 158 mg/L during the demonstration. Sulfate concentrations at control well TMW-26S are largely unchanged.

CVOCs and Ethene

Figures 7 through **9** provide graphs of *cis*-DCE (the primary contaminant of concern), vinyl chloride, and ethene concentration data collected from the 9 demonstration monitoring wells during groundwater sampling events. The data presented in **Figure 7** show decreases in *cis*-DCE ranging from 88 to 99 percent in the 5 treatment zone wells (CW-2, CW-7, and PMW-1 through PMW-3). Decreases in *cis*-DCE of 79 and 76 percent have been observed at wells PMW-4 and MW-15R, respectively. *cis*-DCE concentrations at anode well AW-1 and control well TMW-26S started out significantly lower (12.6 μg/L and 27.8 μg/L, respectively) than the other 7 wells, and are largely unchanged.

Figure 8 shows transient increases in vinyl chloride at several wells, and **Figure 9** shows increasing or transient concentrations of ethene (the innocuous end-product of reductive dechlorination) in the demonstration plot. These data indicate that complete reductive dechlorination is occurring in the treatment area. Groundwater data collected at monitoring well MW-15R show that effective treatment upgradient of this location is positivity impacting contaminant concentrations at this well, even with the vastly different geochemical conditions observed at this location.

PMW-4, the most downgradient well, has seen a relatively consistent decrease in *cis*-DCE concentrations (from 305 µg/L to 64.9 µg/L) during the demonstration, and concentrations at this well are currently below the U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) of 70 µg/L. However, the most recent vinyl chloride concentration measured at this well (9.25 µg/L), as well as several other wells, remain above the MCL of 2.0 µg/L. It is expected that the vinyl chloride could further degrade, via either anaerobic or aerobic biological degradation pathways, downgradient of this location. However, there are no monitoring wells downgradient of PMW-4 to show further treatment of this contaminant. Overall, contaminant concentration data show that operation of the PRT system and bioaugmentation have been effective at significantly reducing *cis*-DCE concentrations within the demonstration plot, and continue to treat contaminated groundwater flowing through the plot.

REFERENCES

CB&I. 2015. Demonstration Work Plan, NESDI Project 501, Proton Reduction Technology Demonstration, Russell Road Landfill, Quantico Marine Corps Base, Virginia.

- He, J., K.M. Ritalahti, K. Yang, S.S. Koenigsberg, and F.E. Loffler. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature. 424:62-65.
- Lohner, S.T. and A. Tiehm. 2009. Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. Environ. Sci. Technol. 43:7098-7104.
- Lohner, S.T., D. Becker, K.-M. Mangold, and A. Tiehm. 2011. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environ. Sci. Technol. 45:6191-6197.
- Maymo-Gatell, X., Y.-t. Chien, J.M. Gossett, and S.H. Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 276:1568-1571.
- Maymo-Gatell, X., I. Nijenhuis, and S.H. Zinder. 2001. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by "Dehalococcoides ethenogenes". Environ. Sci. Technol. 35:516-521.
- Steffan, R.J. and G.W. Sewell. 2011. Chapter 11: Advances in Bioremediation of Aquifers. pp. 143-151 in F.F. Quercia and D. Vidojevic (eds.), Clean Soil and Safe Water, NATO Science for Peace and Security Series C: Environmental Security. Springer Science + Business Media B.V., ISBN 978-94-007-2239-2.

Do not hesitate to contact me at (609) 895-5380 or <u>david.lippincott@cbifederalservices.com</u> if you have any questions regarding this report.

Sincerely,

CB&I Federal Services, LLC

David Lippincott, PG Project Manager

cc: Ms. Nancy Ruiz, NAVFAC, Port Hueneme, CA

Dail R. Typingth

Ms. Victoria Waranoski, NAVFAC, Washington DC

Ms. Lyndsay Kelsey, NAVFAC, Washington DC

Mr. Paul Hatzinger, CB&I Federal Services, Lawrenceville, NJ

FIGURES

Figure 4. Graph of Monitoring Well pH Measurements

Figure 5. Graph of Monitoring Well ORP Measurements

Figure 6. Graph of Monitoring Well Sulfate Concentrations

Figure 7. Graph of Monitoring Well cis-DCE Concentrations

Figure 8. Graph of Monitoring Well Vinyl Chloride Concentrations

Figure 9. Graph of Monitoring Well Ethene Concentrations