Corrigé de la feuille d'exercices 17

1 Ensemble $\mathbb{K}[X]$

Exercice 1. On a $deg(P_n) \leq 4n$.

D'après la binôme de newton, on a :

$$P_n = \sum_{k=0}^{2n} {2n \choose k} X^{2k} - \sum_{k=0}^{2n} {2n \choose k} (-1)^{2n-k} X^{2k}.$$

- le coefficient de X^{4n} de P_n vaut $\binom{2n}{2n} \binom{2n}{2n} (-1)^{2n-2n} = 0$. Donc $\deg(P_n) \le 4n 1$.
- le coefficient en X^{4n-1} de P_n vaut 0. En effet, il n'y a que des termes à la puissance paires dans P_n donc $\deg(P_n) \leq 4n-2$
- le coefficient en X^{2n-2} de P_n vaut $\binom{2n}{2n-1} \binom{2n}{2n-1} (-1)^{2n-(2n-1)} = 2n+2n = 4n$. Or, $4n \neq 0$

Ainsi P est de degré 4n-2 et son coefficient dominant vaut 4n.

Exercice 2. Le polynôme nul est solution.

Considérons P un polynôme non nul. Si P est solution alors en prenant le degré dans cette égalité, on obtient : $2\deg(P) = 2 + \deg(P)$, soit $\deg(P) = 2$.

Soit P de degré 2, il existe $(a, b, c) \in \mathbb{K}^* \times \mathbb{K}^2$ tel que $P(X) = aX^2 + bX + c$.

$$P \text{ est solution} \iff aX^4 + bX^2 + c = aX^4 + bX^3 + (a+c)X^2 + bX + c$$

$$\iff \begin{cases} a = a \\ b = 0 \\ a + c = b \end{cases}$$

en identifiant les coefficients (deux polynômes sont égaux ssi ils ont mêmes coefficients). Ainsi l'ensemble des polynômes satisfaisant cette identité est :

$$\{aX^2 - a | a \in \mathbb{K}\}.$$

Exercice 3. Soit $P \in \mathbb{K}[X]$ de degré 3. Il existe $(a,b,c,d) \in \mathbb{K}^* \times \mathbb{R}^3$ tel que $P = aX^3 + bX^2 + cX + d$. On a :

$$P(X+1) - P(X-1) = X^2 + 1$$

$$\iff a(X+1)^3 + b(X+1)^2 + c(X+1) + d - a(X-1)^3 - b(X-1)^2 - c(X-1) - d$$

$$\iff a(X+1)^3 + b(X+1)^2 + c(X+1) + d - a(X-1)^3 - b(X-1)^2 - c(X-1) - d$$

$$\iff a\left[(X+1)^3 - (X-1)^3\right] + b\left[(X+1)^2 - (X-1)^2\right] + 2c = 0$$

$$\iff a\left[X^3 + 3X^2 + 3X + 1 - X^3 + 3X^2 - 3X + 1\right] + b\left[X^2 + 2X + 1 - X^2 + 2X - 1\right] + 2c = X^2 + 1$$

$$\iff 6aX^2 + 4bX + 2c = X^2 + 1$$

$$\iff \begin{cases} 6a = 1 \\ 4b = 0 \\ 2a + 2c = 1 \end{cases}$$

$$\iff \begin{cases} a = \frac{1}{6} \\ b = 0 \\ c = \frac{1}{3} \end{cases}$$

Ainsi, l'ensemble des solutions est $\{\frac{1}{6}X^3 + \frac{1}{3}X + d \mid d \in \mathbb{R}\}.$

Exercice 4. Soit $n \ge 1$. Soit P un polynôme de degré n.

on a $\deg(P') = n - 1$. Ainsi, $\deg(X^2P') = n + 1$. Comme $n + 1 \neq n$, on a $\deg(Q) = \deg(X^2P' + P) = \max(\deg(X^2P', \deg(P)) = \max(n + 1, n) = n + 1$.

On a $\deg(XP') = 1 + \deg(P') = n$. On sait alors que $\deg(R) \leq \max(\deg(XP'), \deg(P)) = n$.

Notons $a_n \neq 0$ le coefficient de X^n dans P (coefficient dominant de P). Le coefficient de X^n dans XP' vaut na_n . Ainsi, le coefficient de X^n de R vaut $(n+1)a_n \neq 0$. Ainsi, R est de degré n.

2 Divisibilité

Exercice 5. Soit $n \in \mathbb{N}$. D'après le binôme de Newton, on a :

$$(X+1)^n - nX - 1 = \sum_{k=0}^n X^k - nX - 1 = \sum_{k=2}^n X^k = X^2 \sum_{k=2}^n X^{k-2} = X^2 \sum_{k=0}^{n-2} X^k$$

Ainsi, on a bien : $X^{2}|(X+1)^{n} - nX - 1$.

Exercice 6. 1. On a $4X^5 - 2X^4 + 3X^3 + 2X^2 - X + 5 = (X^2 + X + 1)(4X^3 - 6X^2 + 5X + 3) - 9X + 2$ en effectuant la division euclidienne.

2. On a $iX^3 - X^2 + 1 - i = ((1+i)X^2 - iX + 3)\left(\frac{(1+i)}{2}X + \frac{(-1+2i)}{2}\right) + \frac{(-5-4i)}{2}X + \frac{(5-8i)}{2}$ en effectuant la division euclidienne.

Exercise 7. 1. On a $3X^6 - 2X^5 + X^3 - X^2 + 2X + 1 = (2X^3 + 3X - 1)\left(\frac{3}{2}X^3 - X^2 - \frac{9}{4}X + \frac{11}{4}\right) + \frac{19}{4}X^2 - \frac{17}{2}X + \frac{15}{4}$ en effectuant le division euclidienne

en effectuant le division euclidienne. 2. On a $X^3 - iX^2 - X = (X - 1 + i) (X^2 + (1 - 2i)X - (2 + 3i)) - (5 + i)$ en effectuant le division euclidienne.

Exercice 8. Soient $n \in \mathbb{N}$, $p \in \mathbb{N}^*$, q et r le quotient et le reste de la division euclidienne de n par p et soit $a \in \mathbb{K}^*$. On a ainsi : n = pq + r avec $0 \le r < p$.

1. $X^n = X^{pq+r} = (X^p)^q X^r = (X^p - a + a)^q X^r = X^r \times \sum_{k=0}^q \binom{q}{k} (X^p - a)^k a^{q-k}$ d'après le binôme de Newton. Ainsi,

$$X^{n} = X^{r} \times \left[a^{q} + \sum_{k=1}^{q} {q \choose k} (X^{p} - a)^{k} a^{q-k} \right]$$

$$= a^{q} X^{r} + X^{r} (X^{p} - a) \sum_{k=1}^{q} {q \choose k} (X^{p} - a)^{k-1} a^{q-k}$$

$$= a^{q} X^{r} + X^{r} (X^{p} - a) \sum_{l=0}^{q-1} {q \choose l+1} (X^{p} - a)^{l} a^{q-1-l}$$

$$= (X^{p} - a) \times \underbrace{X^{r} \sum_{l=0}^{q-1} {q \choose l+1} (X^{p} - a)^{l} a^{q-1-l}}_{=Q} + a^{q} X^{r}$$

Ainsi, $X^n = (X^p - a)Q + a^q X^r$ et $\deg(X^r) = r .$ $Le reste dans la division euclidienne de <math>X^n$ par $X^p - a$ est donc $a^q X^r$.

2. Si q=0, alors n=r et donc $X^n-a^n=0\times (X^p-a^p)+(X^r-a^r)$ et $\deg(X^r-a^r)=r< p=\deg(X^p-a^p)$. On suppose donc $q\in\mathbb{N}^*$. On procède comme précédemment :

$$\begin{split} X^n - a^n &= X^{pq+r} - a^{pq+r} = (X^p)^q X^r - (a^p)^q a^r = (X^p)^q \left(X^r - a^r \right) + \left((X^p)^q - (a^p)^q \right) a^r \\ &= \left(X^p - a^p + a^p \right)^q \left(X^r - a^r \right) + \left((X^p)^q - (a^p)^q \right) a^r \\ &= \left(X^r - a^r \right) \sum_{k=0}^q \binom{q}{k} (X^p - a^p)^k a^{p(q-k)} + a^r (X^p - a^p) \sum_{l=0}^{q-1} X^{lp} a^{(q-1-l)p} \\ &= \left(X^r - a^r \right) \left[a^{pq} + (X^p - a^p) \sum_{k=1}^q (X^p - a^p)^{k-1} a^{p(q-k)} \right] + a^r (X^p - a^p) \sum_{l=0}^{q-1} X^{lp} a^{(q-1-l)p} \\ &= \left(X^p - a^p \right) \left(a^r \sum_{l=0}^{q-1} X^{lp} a^{(q-1-l)p} + (X^r - a^r) \sum_{m=0}^{q-1} \binom{q}{m+1} (X^p - a^p)^m a^{p(q-1-m)} \right) + a^{pq} \left(X^r - a^r \right) \end{split}$$

Or, $deg(X^r - a^r) = r .$

Ainsi, le reste dans la division euclidienne de $X^n - a^n$ par $X^p - a^p$ est $a^{pq} (X^r - a^r)$.

3.

 $12 = 3 \times 4 + 0$ donc le reste dans la division euclidienne de X^{12} par $X^3 - 1$ vaut $1 \times X^0 = 1$

 $11 = 3 \times 3 + 2$ donc le reste dans la division euclidienne de $8X^{11}$ par $X^3 - 1$ vaut $8 \times 1 \times X^2 = 8X^2$

 $6 = 3 \times 2 + 0$ donc le reste dans la division euclidienne de $5(X^6 - 1)$ par $X^3 - 1$ vaut $5 \times 1 \times (X^0 - 1) = 5$

 $4 = 3 \times 1 + 1$ donc le reste dans la division euclidienne de $-3X^4$ par $X^3 - 1$ vaut $-3 \times 1 \times X = -3X$

 $2 = 3 \times 0 + 2$ donc le reste dans la division euclidienne de X^2 par $X^3 - 1$ vaut $1 \times X^2 = X^2$

Finalement, le reste dans la division euclidienne de $X^{12} + 8X^{11} + 5X^6 - 3X^4 + X^2 - 5$ par $X^3 - 1$ est $1 + 8^2 + 5 - 3X + X^2 - 5 = 9X^2 - 3X + 1$.

Exercice 9. Soit $n \in \mathbb{N}^*$.

 $X^2+1\neq 0$. Ainsi, par le théorème de division euclidienne dans $\mathbb{R}[X]$, il existe $Q,R\in\mathbb{R}[X]$ tel que A=BQ+R et $\deg(R)<\deg(X^2+1)=2$. Ainsi, il existe $\alpha,\beta\in\mathbb{R}$ tels que $R=\alpha X+\beta$. On a alors : $A=BQ+\alpha X+\beta$. En évaluant cette égalité en $\pm i$, on obtient :

(S)
$$\begin{cases} \alpha + i\beta = (\cos(a) + i\sin(a))^n = e^{ina} \\ \alpha - i\beta = (\cos(a) - i\sin(a))^n = e^{-ina} \end{cases}$$

Or,

(S)
$$\iff$$

$$\begin{cases} \alpha = \frac{e^{ina} + e^{-ina}}{2} = \cos(na) \\ \beta = \frac{e^{ina} - e^{-ina}}{2i} = \sin(na) \end{cases}$$

Ainsi, le reste dans la division euclidienne de A par B est $\cos(na)X + \sin(na)$.

Exercice 10. Soit $P \in \mathbb{K}[X]$. Notons $P = \sum_{k=0}^{n} a_k X^k$.

$$\begin{split} P \circ P - X &= P \circ P - P + P - X \\ &= \sum_{k=0}^{n} a_{k} (P^{k} - X^{k}) + P - X \\ &= \sum_{k=1}^{n} a_{k} (P^{k} - X^{k}) + P - X \\ &= \sum_{k=1}^{n} a_{k} \left((P - X) \sum_{l=0}^{k-1} P^{l} X^{k-1-l} \right) + P - X \\ &= (P - X) \left(\sum_{k=1}^{n} \sum_{l=0}^{k-1} a_{k} P^{l} X^{k-1-l} \right) + P - X \\ &= (P - X) \left(1 + \sum_{k=1}^{n} \sum_{l=0}^{k-1} a_{k} P^{l} X^{k-1-l} \right) \end{split}$$

Ainsi, P - X divise $P \circ P - X$.

Posons $P = X^2 - 3X + 1$.

 $P \circ P - X = (X^2 - 3X + 1)^2 - 3(X^2 - 3X + 1) + 1 - X = (X^2 - 3X + 1)^2 - 3X^2 + 8X - 2$. Ainsi, chercher les solutions $x \in \mathbb{R}$ de $(x^2 - 3x + 1)^2 = 3x^2 - 8x + 2$ revient à chercher les racines de $P \circ P - X$.

Or,
$$P \circ P - X = (P - X) \left(1 + \sum_{k=1}^{2} \sum_{l=0}^{k-1} a_k P^l X^{k-1-l} \right)$$
 avec $a_0 = 1$, $a_1 = -3$, $a_2 = 1$.

On obtient ainsi : $P \circ P - X = (X^2 - 4X + 1)(1 - 3 + X + P) = (X^2 - 4X + 1)(X^2 - 2X - 1)$.

Le discriminant de $X^2 - 4X + 1$ vaut 16 - 4 = 12. Ainsi ses racines sont : $2 \pm \sqrt{3}$.

Le discriminant de $X^2 - 2X - 1$ vaut 4 + 4 = 8. Ainsi ses racines sont : $1 \pm \sqrt{2}$.

Finalement, on obtient que les solutions réelles de l'équation sont : $\{2 \pm \sqrt{3}, 1 \pm \sqrt{2}\}$.

3 Dérivation dans $\mathbb{K}[X]$

Exercice 11. 1. Le polynôme nul est solution.

Considérons P un polynôme non nul.

Si P est solution alors en prenant le degré dans cette égalité, on a : $2(\deg(P) - 1) = \deg(P)$. Ainsi, $\deg(P) = 2$. Soit P un polynôme de degré 2. Il existe $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$ tel que $P = aX^2 + bX + c$.

$$P'(X)^{2} = 4P(X) \iff (2aX + b)^{2} = 4aX^{2} + 4bX + 4c$$

$$\iff 4a^{2}X^{2} + 4abX + b^{2} = 4aX^{2} + 4bX + 4c$$

$$\iff \begin{cases} 4a^{2} = 4a \\ 4b = 4ab \\ 4c = b^{2} \end{cases}$$

$$\iff \begin{cases} a = 1 \\ 4c = b^{2} \end{cases} \quad \text{car } a \neq 0$$

Ainsi l'ensemble des solutions est : $S = \{X^2 + bX + \frac{b^2}{4} \mid b \in \mathbb{C}\} \cup \{0\}.$

2. Le polynôme nul est solution.

Soit $P \in \mathbb{C}[X]$ non nul. Notons $P = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$.

$$(X^{2}+1)P'' - 6P = 0 \iff (X^{2}+1)\sum_{k=2}^{n} k(k-1)a_{k}X^{k-2} = 6\sum_{k=0}^{n} a_{k}X^{k}$$
$$\iff \sum_{k=2}^{n} k(k-1)a_{k}X^{k} + \sum_{k=2}^{n} k(k-1)a_{k}X^{k-2} = 6\sum_{k=0}^{n} a_{k}X^{k}$$

Ainsi, si P est solution alors, en égalisant les coefficients en X^n , on obtient : $n(n-1)a_n = 6a_n$ d'où n(n-1) = 6 (car $a_n \neq 0$). Or, l'équation $n^2 - n - 6 = 0$ admet pour solutions 3 et -2. Ainsi, n = 3 car $n \geq 0$. Ainsi, si P est solution alors, P est de degré 3.

Soit $P = a_3 X^3 + a_2 X^2 + a_1 X + a_0$ avec $a_3 \neq 0$.

$$(X^{2}+1)P'' - 6P = 0 \iff (X^{2}+1)(6a_{3}X + 2a_{2}) = 6a_{2}X^{2} + 6a_{1}X + 6a_{0}$$

$$\iff 6a_{3}X^{3} + 2a_{2}X^{2} + 6a_{3}X + 2a_{2} = 6a_{3}X^{3} + 6a_{2}X^{2} + 6a_{1}X + 6a_{0}$$

$$\iff \begin{cases} 2a_{2} = 6a_{2} \\ 6a_{3} = 6a_{1} \\ 2a_{2} = 6a_{0} \end{cases}$$

$$\iff \begin{cases} a_{2} = 0 \\ a_{3} = a_{1} \\ a_{0} = 0 \end{cases}$$

Ainsi, l'ensemble des solutions est : $S = \{aX^3 + aX \mid a \in \mathbb{C}\}.$

Exercice 12. Si $\deg(P) < 2$ alors $P^{(2)} = 0$ donc P n'est pas solution.

Soit $P \in \mathbb{K}[X]$ de degré supérieur ou égal à 2 et soit $m \ge \deg(P)$. D'après la formule de Taylor, on a :

$$P = \sum_{k=0}^{m} \frac{P^{(k)}(2)}{k!} (X - 2)^{k}.$$

P est solution si et seulement si $P=6+1\times (X-2)+\frac{4}{2}(X-2)^2$

si et seulement si $P = 6 + X - 2 + 2(X^2 - 4X + 4) = 2X^2 - 7X + 12$

Le seul polynôme solution est $2X^2 - 7X + 12$.

Exercice 13. 1. Soit $n \in \mathbb{N}$. On a $P_n = (X^2 - 1)^n = \sum_{k=0}^n \binom{n}{k} X^{2k} (-1)^k$. Ainsi, P_n est de degré 2n donc $P_n^{(n)}$ est de degré 2n - n = n.

De plus, le terme dominant de P_n est X^{2n} donc le terme dominant de $P_n^{(n)}$ est $(X^{2n})^{(n)}$.

Or,
$$(X^{2n})^{(n)} = \frac{(2n)!}{(2n-n)!} X^{2n-n} = \frac{(2n)!}{n!} X^n$$
. Ainsi, le coefficient dominant de $P_n^{(n)}$ vaut $\frac{(2n)!}{n!}$.

Finalement, le coefficient dominant dans L_n est $\frac{1}{2^n n!} \times \frac{(2n)!}{n!} = \frac{(2n)!}{2^n (n!)^2}$

2. On remarque que $P_n = (X+1)^n (X-1)^n$. Ainsi, par la formule de Leibniz, il vient :

$$P^{(n)} = \sum_{k=0}^n \binom{n}{k} ((X+1)^n)^{(k)} ((X-1)^n)^{(n-k)} = \sum_{k=0}^n \binom{n}{k} \frac{n!}{(n-k)!} (X+1)^{n-k} \frac{n!}{k!} (X-1)^k = n! \sum_{k=0}^n \binom{n}{k}^2 (X+1)^{n-k} (X-1)^k.$$

On a :
$$P_n(1) = n! \sum_{k=0}^n \binom{n}{k}^2 2^{n-k} 0^k = n! \binom{n}{0}^2 2^n = n! 2^n$$
. Donc $L_n(1) = \frac{P_n^{(n)}(1)}{2^n n!} = \frac{2^n n!}{2^n n!} = 1$.

De même, on a :
$$P_n(-1) = n! \sum_{k=0}^n \binom{n}{k}^2 0^{n-k} (-2)^k = n! \binom{n}{n}^2 (-2)^n = n! (-2)^n$$
.

Donc
$$L_n(-1) = \frac{P_n^{(n)}(1)}{2^n n!} = \frac{(-2)^n n!}{2^n n!} = (-1)^n.$$

4 Racines

Exercice 14. Posons $P_n = (X-2)^{2n} + (X-1)^n - 1$.

On commence par remarquer que $X^2 - 3X + 2 = (X - 2)(X - 1)$.

Ainsi,
$$X^2 - 3X + 2|(X - 2)^{2n} + (X - 1)^n - 1$$
 si et seulement si $(X - 2)(X - 1)|P_n$

si et seulement si 1 et 2 sont racines de P_n

si et seulement si
$$P_n(2) = P_n(1) = 0$$

Or,
$$P_n(2) = 0$$
 et $P_n(1) = (-1)^{2n} - 1 = 0$.
Ainsi, $X^2 - 3X + 2|(X - 2)^{2n} + (X - 1)^n - 1$.

Exercice 15 (d'après Petites Mines).

1. Le discriminant du polynôme vaut 1-4=-3. Ainsi, ses racines sont $\frac{-1-\sqrt{3}i}{2}$ et $\frac{-1+i\sqrt{3}}{2}$.

On pose $j=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$. On a alors $\overline{j}=\frac{-1-\sqrt{3}i}{2}$ donc Q se factorise sous la forme : $Q=(X-j)(X-\overline{j})$. 2. Soient m,n,p trois entiers naturels. On pose $P=X^{3m+2}+X^{3n+1}+X^{3p}$. Comme P est à coefficients réels, on

sait que les racines de P sont réels ou complexes conjuguées. Par conséquent :

$$Q$$
 divise P si et seulement si $(X - j)(X - \overline{j})$ divise P si et seulement si j et \overline{j} sont racines de P si et seulement si j est racine de P

Il suffit donc de vérifier P(j) = 0. Or, $P(j) = j^{3m+2} + j^{3n+1} + j^{3p} = j^{3m}j^2 + j^{3n}j + j^{3p} = j^2 + j + 1 = 0$. Ainsi, j est racine de P donc par équivalence, Q divise P.

3. Notons $P_n = (X+1)^n + X^n + 1$. Comme P_n est à coefficients réels, on peut appliquer la même méthode que dans la question précédente. Ainsi, P_n est divisible par Q si et seulement si $P_n(j) = 0$.

Or, $P_n(j) = (j+1)^n + j^n + 1 = (-j^2)^n + j^n + 1.$

Etudions la valeur de $P_n(j)$ par disjonction de cas :

- si il existe $k \in \mathbb{N}$ tel que n = 3k. Alors, $P_n(j) = (-1)^{3k} (j^2)^{3k} + j^{3k} + 1 = (-1)^{3k} + 2.$ Dans ce cas $P_n(j) \neq 0$ donc Q ne divise pas P_n .
- si il existe $k \in \mathbb{N}$ tel que n = 3k+1. Alors, $P_n(j) = (-1)^{3k+1}(j^2)^{3k+1} + j^{3k+1} + 1 = (-1)^{3k+1}j^2 + j + 1$.
 - Si k est pair, il existe $p \in \mathbb{N}$ tel que k = 2p. On a alors $P_n(j) = -j^2 + j + 1 = -2j^2$. Donc Q ne divise pas P_n .
 - Si k est impair, il existe $p \in \mathbb{N}$ tel que k = 2p+1. On a alors $P_n(j) = (-1)^{6p+4}j^2 + j + 1 = j^2 + j + 1 = 0$. Donc Q divise P_n .
- si il existe $k \in \mathbb{N}$ tel que n = 3k + 2. Alors, $P_n(j) = (-1)^{3k} j + j^2 + 1$.
 - Si k est pair, il existe $p \in \mathbb{N}$ tel que k = 2p. On a alors $P_n(j) = (-1)^{6p}j + j^2 + 1 = j + j^2 + 1 = 0$. Donc Q divise P_n .

• Si k est impair, il existe $p \in \mathbb{N}$ tel que k = 2p + 1. On a alors $P_n(j) = (-1)^{6p+3}j + j^2 + 1 = -j + j^2 + 1 = -2j$. Donc Q ne divise pas P_n .

Ainsi, Q divise P_n si et seulement si il existe $p \in \mathbb{N}$ tel que n = 6p + 4 ou n = 6p + 2.

Exercice 16. Raisonnons par l'absurde.

Supposons que sin est une fonction polynomiale. On a : $\forall k \in \mathbb{Z}$, $\sin(k\pi) = 0$. Ainsi, sin s'annule une infinité de fois. Donc $\sin = 0$. Absurde car $\sin\left(\frac{\pi}{2}\right) = 1$.

Exercice 17. Pour tout $P \in \mathbb{K}[X] \setminus \{0\}$, on note dom (P) son coefficient dominant.

- 1. Pour tout $n \in \mathbb{N}^*$, on considère la propriété $\mathcal{P}(n)$: $\ll \deg(T_n) = n$ et dom $(T_n) = 2^{n-1}$. \gg Montrons par récurrence d'ordre 2 que pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ est vraie.
 - Pour n = 1, $T_1 = X$ donc $\deg(T_1) = 1$ et $\dim(T_1) = 1 = 2^0$. Pour n = 2, $T_2 = 2X^2 - 1$ donc $\deg(T_2) = 2$ et $\dim(T_2) = 2 = 2^{2-1}$. Ainsi $\mathcal{P}(1)$ et $\mathcal{P}(2)$ sont vraies.
 - Soit $n \in \mathbb{N}^*$, supposons que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies. On a $T_{n+2} = 2XT_{n+1} - T_n$ donc $\deg(T_{n+2}) = \deg(2XT_{n+1} - T_n)$. Or, $\deg(T_n) = n$, $\deg(2XT_{n+1}) = \deg(2X) + \deg(T_{n+1}) = \deg(X) + \deg(T_{n+1}) = n+2$ donc $\deg(T_n) < \deg(2XT_{n+1})$. Ainsi, $\deg(T_{n+2}) = \max(\deg(2XT_{n+1}), \deg(T_n)) = \deg(2XT_{n+1}) = n+2$. De plus, comme $\deg(T_n) < \deg(2XT_{n+1})$, le coefficient dominant de T_{n+2} est celui du polynôme $2XT_{n+1}$. D'où dom $(T_{n+2}) = \dim(2XT_{n+1}) = 2\dim(T_{n+1}) = 2 \times 2^n = 2^{n+1}$. Ainsi, $\mathcal{P}(n+2)$ est vraie.
 - Ainsi, pour tout $n \in \mathbb{N}^*$, $\deg(T_n) = n$ et $\operatorname{dom}(T_n) = 2^{n-1}$.

De plus, on a : $deg(T_0) = 0$ et $dom(T_0) = 1$.

- 2. Soit $\theta \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on considère la propriété $\mathcal{Q}(n) : \ll T_n(\cos(\theta)) = \cos(n\theta)$. \gg Montrons par récurrence d'ordre 2 que pour tout $n \in \mathbb{N}$, $\mathcal{Q}(n)$ est vraie.
 - Pour n = 0, $T_0(\cos(\theta)) = 1 = \cos(0\theta)$. Pour n = 1, $T_1(\cos(\theta)) = \cos(\theta)$. Ainsi, Q(0) et Q(1) sont vraies.
 - Soit $n \in \mathbb{N}$, supposons que $\mathcal{Q}(n)$ et $\mathcal{Q}(n+1)$ sont vraies.

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)T_{n+1}(\cos(\theta)) - T_n(\cos(\theta))$$

$$= 2\cos(\theta)\cos((n+1)\theta) - \cos(n\theta)$$

$$= 2\cos(\theta)\left(\cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta)\right) - \cos(n\theta)$$

$$= \cos(n\theta)\left(2\cos(\theta)^2 - 1\right) - \sin(n\theta)\left(2\cos(\theta)\sin(\theta)\right)$$

$$= \cos(n\theta)\cos(2\theta) - \sin(n\theta)\sin(2\theta)$$

$$= \cos((n+2)\theta)$$

Ainsi, Q(n+2) est vraie.

• On a donc prouvé par récurrence que pour tout $n \in \mathbb{N}$, $\mathcal{Q}(n)$ est vraie.

Montrons désormais l'unicité.

Soit $P \in \mathbb{C}[X]$ tel que : $\forall \theta \in \mathbb{R}, P(\cos(\theta)) = \cos(n\theta)$.

On a alors : $\forall \theta \in \mathbb{R}$, $P(\cos(\theta)) = T_n(\cos(\theta))$.

Donc: $\forall \theta \in \mathbb{R}, (P - T_n)(\cos(\theta)) = 0.$ Or, $\cos : \mathbb{R} \to [-1, 1]$ est surjective.

Ainsi: $\forall x \in [-1, 1], (P - T_n)(x) = 0.$

Donc $P-T_n$ admet une infinité de racines (distinctes). C'est donc le polynôme nul.

On a donc $P = T_n$. Ainsi, T_n est bien l'unique polynôme vérifiant l'égalité souhaitée.

3. T_0 n'admet aucune racine.

Soit $n \in \mathbb{N}^*$. Déterminons les racines de T_n .

Soit $\theta \in \mathbb{R}$. On a :

$$T_n(\cos(\theta)) = 0 \iff \cos(n\theta) = 0$$
 $\iff n\theta \equiv \frac{\pi}{2}[\pi]$
 $\iff \exists k \in \mathbb{Z}, \ n\theta = \frac{\pi}{2} + k\pi$
 $\iff \exists k \in \mathbb{Z}, \ \theta = \frac{\frac{\pi}{2} + k\pi}{n}$
 $\iff \exists k \in \mathbb{Z}, \ \theta = \frac{(2k+1)\pi}{2n}$

Ainsi, les $\left(\cos\left(\frac{(2k+1)\pi}{2n}\right)\right)$ avec $k \in [0, n-1]$ sont des racines de T_n .

Soit $k \in [0, n-1]$, on a $1 \le 2k+1 \le 2n-1$. D'où : $0 \le \frac{\pi}{2n} \le \frac{(2k+1)\pi}{2n} \le \pi - \frac{\pi}{2n} < \pi$.

De plus, la fonction $\cos: [0,\pi] \to [-1,1]$ est injective. Ainsi, pour tout $k \in [0,n-1]$, les $\left(\cos\left(\frac{(2k+1)\pi}{2n}\right)\right)$ sont deux à deux distincts. On a ainsi obtenu n racines distinctes pour T_n de degré n. On a donc déterminé toutes les racines de T_n .

Exercice 18. Posons $P_n = \left(\sum_{k=0}^{n-1} X^k\right)^2 - n^2 X^{n-1}$.

On a : $(X-1)^2|P_n$ si et seulement si 1 est racine de P_n d'ordre au moins 2 .

On a:
$$(X-1)$$
 $|P_n|$ si et seulement si 1 est rachie de P_n d'ord si et seulement si $P_n(1)=0$ et $P'_n(1)=0$. Or, $P_n(1)=\left(\sum_{k=0}^{n-1}1\right)^2-n^2=n^2-n^2=0$.

De plus,
$$P'_n = 2 \times \left(\sum_{k=0}^{n-1} X^k\right) \times \left(\sum_{k=1}^{n-1} k X^{k-1}\right) - n^2(n-1)X^{n-2}$$
.

Ainsi,
$$P'_n(1) = 2 \times \left(\sum_{k=0}^{n-1} 1\right) \times \left(\sum_{k=1}^{n-1} k\right) - n^2(n-1) = 2 \times n \times \left(\sum_{k=1}^{n-1} k\right) - n^2(n-1) = 2 \times n \times \frac{n(n-1)}{2} - n^2(n-1) = 0.$$

Donc $(X-1)^2|P_n$.

Exercice 19. Posons $Q_n = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$.

On a : $(X-1)^3 | Q_n$ si et seulement si 1 est racine de Q_n d'ordre au moins 3

si et seulement si
$$Q_n(1) = 0$$
, $Q'_n(1) = 0$ et $Q''_n(1) = 0$.

Or, $Q_n(1) = n - (n+2) + (n+2) - n = 0$. De plus, $Q'_n = n(n+2)X^{n+1} - (n+2)(n+1)X^n + (n+2)$. Ainsi, $Q'_n(1) = n(n+2) - (n+2)(n+1) + (n+2) = (n+2)(n-n-1+1) = 0$. Enfin, $Q''_n = n(n+2)(n+1)X^n - n(n+2)(n+1)X^{n-1}$.

Ainsi, $Q''_n(1) = 0$.

Donc : $(X - 1)^3 | Q_n$

Exercise 20. 1.
$$P' = \sum_{k=1}^{n} \frac{k}{k!} X^{k-1} = \sum_{k=1}^{n} \frac{1}{(k-1)!} X^{k-1} = \sum_{k=0}^{n-1} \frac{X^k}{k!}$$
. Ainsi, $P - P' = \sum_{k=0}^{n} \frac{X^k}{k!} - \sum_{k=0}^{n-1} \frac{X^k}{k!} = \frac{X^n}{n!}$.

- xercice 20. 1. $P' = \sum_{k=1}^{n} \frac{k}{k!} X^{k-1} = \sum_{k=1}^{n} \frac{1}{(k-1)!} X^{k-1} = \sum_{k=0}^{n-1} \frac{X^k}{k!}$. Ainsi, $P P' = \sum_{k=0}^{n} \frac{X^k}{k!} \sum_{k=0}^{n-1} \frac{X^k}{k!} = \frac{X^n}{n!}$. 2. Raisonnons par l'absurde. Supposons qu'il existe a racine au moins double de P, alors P(a) = P'(a) = 0 (par la caractérisation en termes de dérivées), donc P(a) P'(a) = 0 d'où $\frac{a^n}{n!} = 0$ puis a = 0. Or P(0) = 1 donc $P(0) \neq 0$. Ainsi, 0 n'est pas racine de P. Absurde! Ainsi P n'a que des racines simples.
- 1. On a P(1) = 0, donc 1 est racine de P.

On calcule $P' = 5X^4 - 24X^3 + 42X^2 - 32X + 9$. On a P'(1) = 0, donc 1 est racine au moins double de P. On calcule $P'' = 20X^3 - 72X^2 + 84X - 32$. On a P''(1) = 0, donc 1 est racine au moins triple de P.

On calcule $P^{(3)} = 60X^2 - 144X + 84$. On a $P^{(3)}(1) = 0$, donc 1 est racine de P de multiplicité au moins 4. On calcule $P^{(4)}=120X-144$. On a $P^{(4)}(1)=-24\neq 0$, donc 1 est racine de P de multiplicité 4.

2. D'après la question précédente, 1 est racine de multiplicité 4 donc $(X-1)^4$ diviser P. Ainsi, il existe $Q \in \mathbb{K}[X]$ tel que $P = (X-1)^4 Q(X)$. Or, $\deg(Q) = \deg(P) - 4 = 1$. Ainsi, il existe $(\alpha, \beta) \in \mathbb{K}^* \times \mathbb{K}$ tels que $Q = \alpha X + \beta$. En

égalisant les coefficients dominants de P et de $(X-1)^4Q$, on obtient : $\alpha=1$. En égalisant les termes constants, on obtient : $\beta = -2$. Ainsi, $P = (X - 1)^4 (X - 2)$.

Exercice 22. On utilise une caractérisation de l'ordre de multiplicité à l'aide des dérivées successives.

P(1) = 0 donc 1 est racine de P.

 $P' = 10X^9 - 150X^5 + 240X^4 - 100X^3$ donc P'(1) = 0. Ainsi, 1 est racine de P d'ordre au moins 2. $P'' = 90X^8 - 750X^4 + 960X^3 - 300X^2$ donc P''(1) = 0. Ainsi, 1 est racine de P d'ordre au moins 3.

 $P^{(3)} = 720X^7 - 3000X^3 + 2880X^2 - 600X$ donc $P^{(3)}(1) = 0$. Ainsi, 1 est racine de P d'ordre au moins 4.

 $P^{(4)} = 5040X^6 - 9000X^2 + 5760X - 600$ donc $P^{(4)}(1) \neq 0$. Ainsi, 1 est racine de P d'ordre 4.

Exercice 23. 1. P(-i) = 0 ainsi -i est racine de P.

 $P' = 4X^3 + (-12 + 6i)X^2 + (24 - 16i)X + 4 + 26i$. Ainsi, P'(-i) = 0. Ainsi, -i est racine d'ordre au moins 2

 $P'' = 12X^2 + (-24 + 12i)X + (24 - 16i)$. Ainsi, P''(-i) = 24 + 8i. Ainsi, -i est racine de P d'ordre 2.

2. Comme -i est racine de multiplicité 2 de P, $(X+i)^2|P$ donc il existe $a,b,c\in\mathbb{C}^3$ tels que $P=(X+i)^2(aX^2+i)^2$ bX + c).

$$X^{4} + (-4+2i)X^{3} + (12-8i)X^{2} + (4+26i)X - 13 = (X^{2} + 2iX - 1)(aX^{2} + bX + c)$$

$$\iff X^{4} + (-4+2i)X^{3} + (12-8i)X^{2} + (4+26i)X - 13 = aX^{4} + (2ia+b)X^{3} + (2ib+c-a)X^{2} + (2ic-b)X - c$$

$$\iff \begin{cases} a = 1 \\ 2ia+b = -4+2i \\ 2ib+c-a = 12-8i \\ 2ic-b = 4+26i \\ -c = -13 \end{cases}$$

$$\iff \begin{cases} a = 1 \\ b = -4 \\ c = 13 \end{cases}$$

Ainsi, $P = (X + i)^2(X^2 - 4X + 13)$. Le discriminant de $X^2 - 4 + 13$ vaut $16 - 4 \times 13 = -36 = (6i)^2$. Ses racines sont donc $2 \pm 3i$.

Finalement, les racines de P sont -i (de multiplicité 2), 2+3i, 2-3i.

Exercice 24. Soient $a, b \in \mathbb{C}$ tels que $b \neq 0$. Soit P de degré 5.

ice 24. Scient
$$a, b \in \mathbb{C}$$
 tels que $b \neq 0$. Soit P de degré 5.
 P solution \iff
$$\begin{cases} P(-b) + a = P'(-b) = P''(-b) = 0 & \text{car } (X + b)^3 \text{ divise } P + a \\ P(b) - a = P'(b) = 0 & \text{car } (X - b)^3 \text{ divise } P - a \end{cases}$$

$$\iff$$

$$\begin{cases} P(-b) + a = 0 \\ P(b) - a = 0 \\ -b \text{ est racine de } P' \text{ d'ordre au moins } 2 \end{cases}$$

$$\iff$$

$$\begin{cases} P(-b) + a = 0 \\ P(b) - a = 0 \\ (X - b)^2 (X + b)^2 \text{ divise } P' & \text{car } b \neq -b \end{cases}$$

$$\iff$$

$$\begin{cases} P(-b) + a = 0 \\ P(b) - a = 0 \\ 3\lambda \in \mathbb{C}^*, P' = \lambda (X - b)^2 (X + b)^2 & \text{car } P' \text{ est de degré } 4. \end{cases}$$

$$\begin{cases} P(-b) + a = 0 \\ P(b) - a = 0 \\ 3\lambda \in \mathbb{C}^*, P' = \lambda (X^2 - 2bX + b^2)(X^2 + 2bX + b^2) \\ = \lambda (X^4 + (2b - 2b)X^3 + (b^2 - 4b^2 + b^2)X^2 + (-2b^3 + 2b^3)X + b^4 \\ = \lambda (X^4 - 2b^2X^2 + b^4) \end{cases}$$

$$\iff$$

$$\begin{cases} P(-b) + a = 0 \\ P(b) - a = 0 \\ 3\lambda \in \mathbb{C}^*, \exists d \in \mathbb{C}, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \end{cases}$$

$$\iff$$

$$\begin{cases} P(b) - a = 0 \\ 3\lambda \in \mathbb{C}^*, \exists d \in \mathbb{C}, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} A \in \mathbb{C}^*, \exists d \in \mathbb{C}, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{b^5}{5} - \frac{2b^2}{3}b^3 + b^4b + d\right) = a \quad (L_1) \\ \lambda \left(\frac{b^5}{5} - \frac{2b^2}{3}b^3 + b^4b + d\right) = a \quad (L_2) \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, \exists d \in \mathbb{C}, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{8b^5}{15} + d\right) = a \quad (L_2) \\ 2\lambda d = 0 \quad ((L_1) + (L_2)) \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{8b^5}{15} + d\right) = a \quad d \\ d = 0 \quad \text{car } \lambda \neq 0 \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{8b^5}{15} + d\right) = a \quad d \\ d = 0 \quad \text{car } \lambda \neq 0 \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{8b^5}{15} + d\right) = a \quad d \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{8b^5}{15} + d\right) = a \quad d \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{8b^5}{15} + \frac{2b^2}{5}X^5 + \frac{2b^2}{5}X^5 + \frac{2b^2}{3}X^5 + b^4X + d\right) \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2}{3}X^3 + b^4X + d\right) \\ \lambda \left(\frac{8b^5}{15} - \frac{2b^2}{3}X^3 + b^4X + d\right) \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \exists \lambda \in \mathbb{C}^*, P = \lambda \left(\frac{X^5}{5} - \frac{2b^2$$

Ainsi, le seul polynôme solution est $P = \frac{15a}{8b^5} \left(\frac{X^5}{5} - \frac{2b^2}{3} X^3 + b^4 X \right)$.

Exercice 25. Soit P un polynôme de $\mathbb{R}[X]$ de degré non nul.

- 1. Vraie. Notons toujours P la fonction polynomiale associée à P. P est continue sur $\mathbb R$ et comme P est de degré impaire, si le coefficient dominant de P est strictement positif, on a $\lim_{x\to -\infty} P(x) = -\infty$ et $\lim_{x\to +\infty} P(x) = +\infty$. Et si le coefficient dominant de P est strictement négatif, $\lim_{x\to -\infty} P(x) = +\infty$ et $\lim_{x\to +\infty} P(x) = -\infty$. Ainsi, par une extension du théorème des valeurs intermédiaires, il existe $x_0 \in \mathbb{R}$ tel que $P(x_0) = 0$. Donc P admet une racine réelle.
- 2. Faux. P = X admet 0 pour racine réelle. Mais P' = 1 n'admet pas de racine réelle.
- 3. Vraie. Notons toujours P la fonction polynomiale associée à P. Supposons qu'il existe $\alpha, \beta \in \mathbb{R}$ tels que $P(\alpha) = 0$ et $P(\beta) = 0$. Alors, P est continue sur $[\alpha, \beta]$ dérivable sur $[\alpha, \beta]$ donc d'après le théorème de Rolle, il existe

- $\gamma \in]\alpha, \beta[\subset \mathbb{R} \text{ tel que } P'(\gamma) = 0. \text{ Ainsi, } P' \text{ admet une racine réelle.}$
- 4. Faux. Posons $P = X^2$. On a alors P' = 2X. Ainsi, toutes les racines de P' sont simples. Mais P admet 0 comme racine double.

Exercice 26. Soit $P \in \mathbb{R}[X]$ tel que $n = \deg(P) \geq 2$.

Supposons P scindé.

Notons $a_1,...,a_p$ les racines deux à deux distinctes de P de multiplicité respectives $m_1,...,m_p \in \mathbb{N}^*$. Comme P est

scindé, on a :
$$\sum_{k=1}^{p} m_k = n.$$

Soit $k \in [1, p]$, a_k est racine de P de multiplicité m_k donc $P(a_k) = ...P^{(m_k-1)}(a_k) = 0$ et $P^{(m_k)}(a_k) \neq 0$. Ainsi, a_k est racine de P' de multiplicité $m_k - 1$ (où l'on étend la définition d'ordre de multiplicité en disant qu'un élément est racine de P' de multiplicité 0 s'il n'est pas racine de P').

On obtient ainsi :
$$\sum_{k=1}^{p} (m_k - 1) = \sum_{k=1}^{p} m_k - \sum_{k=1}^{p} 1 = n - p$$
 racines de P' comptées avec leur ordre de multiplicité. De plus, pour tout $k \in [1, p-1]$, $P(a_k) = P(a_{k+1})$ et les fonctions polynomiales sont continues et dérivables sur \mathbb{R} .

De plus, pour tout $k \in [1, p-1]$, $P(a_k) = P(a_{k+1})$ et les fonctions polynomiales sont continues et dérivables sur \mathbb{R} . On applique le théorème de Rolle entre eux racines successives. Ainsi, pour tout $k \in [1, p-1]$, il existe $c_k \in a_k, a_{k+1}$ tel que $P'(c_k) = 0$.

Il y a donc p-1 c_k distincts (tous les c_k sont distincts des a_i car : $\forall k \in [1, p-1], c_k \in]a_k, a_{k+1}[$.

Finalement, en comptant les racines de P' avec leur multiplicité, on obtient : $n-p+p-1=n-1=\deg(P')$ racines pour P'.

Ainsi, P' est scindé sur \mathbb{R} .

5 Décomposition en facteurs irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$

Exercice 27. 1. Soit α une racine de P.

Alors, $P((\alpha+1)^2) = P(\alpha)P(\alpha+2) = 0$. Ainsi, $(\alpha+1)^2$ est aussi racine de P.

De même, $P((\alpha-1)^2) = P(\alpha-2)P(\alpha) = 0$. Ainsi, $(\alpha-1)^2$ est aussi racine de P.

Notons $\alpha_1 = (\alpha - 1)^2$ et $\alpha_2 = (\alpha + 1)^2$.

Si $|\alpha_1| > |\alpha|$ alors le résultat est prouvée.

Supposons désormais $|\alpha_1| \leq |\alpha|$. On sait que : $|\alpha_1|^2 = \alpha_1 \overline{\alpha_1} = (\alpha - 1) \overline{(\alpha - 1)} = \alpha \overline{\alpha} - (\alpha + \overline{\alpha}) + 1 = |\alpha|^2 - 2\text{Re}(\alpha) + 1$.

On a alors : $|\alpha|^2 - 2\text{Re}(\alpha) + 1 \le |\alpha|^2 \text{ donc } 2\text{Re}(\alpha) \ge 1.$

Or, $|\alpha_2|^2 = |\alpha|^2 + 2\text{Re}(\alpha) + 1$. Ainsi, $|\alpha_2|^2 - |\alpha|^2 = 2\text{Re}(\alpha) + 1 \ge 2$. Ainsi, on a $|\alpha_2| - |\alpha| > 0$.

Ainsi, il existe bien une racine de P dont le module est strictement plus grand que α .

2. Si P est non constant alors P admet une racine x_0 dans \mathbb{C} d'après le théorème de d'Alembert Gauss. D'après la question précédente, P admet donc une racine $x_1 \in \mathbb{C}$ telle que $|x_0| < |x_1|$. En appliquant de nouveau la question précédente à x_1 , il existe $x_2 \in \mathbb{C}$ racine de P tel que $|x_0| < |x_1| < |x_2|$. En itérant, on construit une suite $(x_n)_{n \in \mathbb{C}}$ de racines de P de module strictement croissant. Ainsi , P admettrait une infinité de racines. Donc P serait constant égal à 0, contraire à l'hypothèse.

Ainsi, si P est solution alors P est constant donc il existe $a \in \mathbb{C}$ tel que P = a. De plus, si P est solution alors $a = a^2$ donc a = 0 ou a = 1.

On vérifie aisément que P=0 et P=1 sont bien solutions.

Ainsi, les solutions sont les polynômes : P = 0 et P = 1.

Exercice 28. Soit $P \in \mathbb{C}[X]$ de fonction polynomiale périodique. Ainsi, il existe $T \in \mathbb{C}^*$ tel que : $\forall x \in \mathbb{C}, \ P(x) = P(x+T)$.

Par l'absurde. Supposons P non constant.

Alors, d'après le théorème de d'Alembert Gauss, P admet une racine réelle $a \in \mathbb{C}$. On a alors : P(a) = 0. Par récurrence, on obtient que : $\forall n \in \mathbb{N}$, P(a+nT) = P(a) = 0. Ainsi, les a+nT avec $n \in \mathbb{N}$ sont racines de P. De plus, $T \neq 0$ donc les a+nT avec $n \in \mathbb{N}$ sont 2 à 2 distincts. Ainsi, P admet une infinité de racines (distinctes). Donc P est le polynôme nul ce qui contredit l'hypothèse P non constant.

Ainsi, si P est solution alors, P est constant.

De plus, tout polynôme constant a bien sa fonction polynomiale périodique. Ainsi, les polynômes solutions sont les polynômes constants.

Exercice 29. 1. $X^5 + X = X(X^4 + 1)$.

Déterminons les racines de $X^4 + 1$.

Soit $x \in \mathbb{C}$, on a :

$$x^{4} + 1 = 0 \iff x^{4} = -1$$

$$\iff x^{4} = e^{i\pi}$$

$$\iff \left(\frac{x}{e^{i\frac{\pi}{4}}}\right)^{4} = 1$$

$$\iff \exists k \in [0, 3], \frac{x}{e^{i\frac{\pi}{4}}} = e^{\frac{2ik\pi}{4}}$$

$$\iff \exists k \in [0, 3], x = e^{i\frac{\pi}{4} + \frac{2ik\pi}{4}}$$

Ainsi, les racines de X^4+1 sont $e^{i\frac{\pi}{4}},\,e^{\frac{3i\pi}{4}},\,e^{\frac{5i\pi}{4}}=e^{-\frac{3i\pi}{4}},\,e^{\frac{7i\pi}{4}}=e^{-\frac{i\pi}{4}}.$ Ainsi, on a :

$$X^5+1=X\left(X-e^{i\frac{\pi}{4}}\right)\left(X-e^{-i\frac{\pi}{4}}\right)\left(X-e^{\frac{3i\pi}{4}}\right)\left(X-e^{-\frac{3i\pi}{4}}\right) \ \ \mathrm{dans} \ \mathbb{C}[X].$$

 Et

$$\begin{split} X^5 + X &= X \left(X - e^{i\frac{\pi}{4}} \right) \left(X - e^{-i\frac{\pi}{4}} \right) \left(X - e^{\frac{3i\pi}{4}} \right) \left(X - e^{-\frac{3i\pi}{4}} \right) \\ &= X \left(X^2 - 2 \mathrm{Re} \left(e^{i\frac{\pi}{4}} \right) + \left| e^{i\frac{\pi}{4}} \right|^2 \right) \left(X^2 - 2 \mathrm{Re} \left(e^{3i\frac{\pi}{4}} \right) + \left| e^{3i\frac{\pi}{4}} \right|^2 \right) \\ &= X \left(X^2 - 2 \cos \left(\frac{\pi}{4} \right) + 1 \right) \left(X^2 - 2 \cos \left(\frac{3\pi}{4} \right) + 1 \right) \end{split}$$

Donc

$$X^5 + X = X(X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1)$$
 dans $\mathbb{R}[X]$.

2. $(X^2 - X + 1)^2 + 1 = (X^2 - X + 1)^2 - i^2 = (X^2 - X + 1 + i)(X^2 - X + 1 - i)$.

Déterminons les racines de $X^2 - X + 1 + i$.

Son discriminant vaut -3 - 4i.

Soient $\alpha, \beta \in \mathbb{R}$, on a :

$$(\alpha + i\beta)^2 = -3 - 4i \iff \begin{cases} \alpha^2 - \beta^2 = -3\\ \alpha^2 + \beta^2 = \sqrt{9 + 16} = 5\\ 2\alpha\beta = -4 \end{cases}$$

$$\iff \begin{cases} \alpha^2 = 1\\ \beta^2 = 4\\ 2\alpha\beta = -4 \end{cases}$$

$$\iff \alpha + i\beta = 1 - 2i \text{ ou } \alpha + i\beta = -1 + 2i$$

Ainsi, les racines de $(X^2-X+1)^2+1$ sont $\frac{1-1+2i}{2}=i$ et $\frac{1+1-2i}{2}=1-i$. Or comme $(X^2-X+1)^2+1\in\mathbb{R}[X]$, les racines complexes de $(X^2-X+1)^2+1$ sont conjuguées. Ainsi, les racines de $X^2-X+1-i$ seront -i et 1+i. Finalement, on a :

$$(X^{-}X+1)^{2}+1=(X-i)(X+i)(X-1-i)(X-1+i)=(X^{2}+1)(X^{2}-2X+2).$$

3. -1 est racine évidente du polynôme. Ainsi, il existe $(a,b,c) \in \mathbb{R}^* \times \mathbb{R}^2$ tel que : $X^3 - 5X^2 + 3X + 9 = (X+1)(aX^2 + bX + c)$. En égalisant les coefficients dominants, on obtient a=1. En égalisant les termes constants, on obtient : c=9. En égalisant les coefficients devant X^2 , on obtient a+b=-5 donc b=-6. Ainsi, $X^3 - 5X^2 + 3X + 9 = (X-1)(X^2 - 6X + 9)$. Or, le discriminant de $X^2 - 6X + 9$ vaut 0. Son unique racine vaut 3. Ainsi, on a $X^2 - 6X + 9 = (X-3)^2$. Donc :

$$X^3 - 5X^2 + 3X + 9 = (X - 1)(X - 3)^2$$

4. Notons $P = 6X^5 + 15X^4 + 20X^3 + 15X^2 + 6X + 1$. On remarque que $P = (X + 1)^6 - X^6$.

Ainsi, on a:

$$6X^{5} + 15X^{4} + 20X^{3} + 15X^{2} + 6X + 1$$

$$= (X+1)^{6} - X^{6}$$

$$= ((X+1)^{3} - X^{3}) ((X+1)^{3} + X^{3})$$

$$= ((X+1)^{3} - X^{3}) ((X+1)^{3} - (-X)^{3})$$

$$= (X+1-X) \left(\sum_{k=0}^{2} (X+1)^{k} X^{2-k}\right) (X+1+X) \left(\sum_{k=0}^{2} (X+1)^{k} (-X)^{2-k}\right)$$

$$= (X+1-X) (X^{2} + (X+1)^{2} + X(X+1)) (2X+1) ((X+1)^{2} - X(X+1) + X^{2})$$

$$= (3X^{2} + 3X + 1) (2X+1) (X^{2} + X+1)$$

Ainsi, $P = (3X^2 + 3X + 1)(2X + 1)(X^2 + X + 1)$.

Exercice 30. Factorisons le polynôme $X^n - 1$ dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$ $(n \ge 1)$. On a déjà obtenu la factorisation dans $\mathbb{C}[X]$:

$$X^{n} - 1 = \prod_{k=0}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right).$$

Pour obtenir la factorisation dans $\mathbb{R}[X]$, on doit distinguer les cas où n est pair et impair. Soit $n \in \mathbb{N}^*$

• Si n est pair, il existe $p \in \mathbb{N}^*$ tel que n = 2p. P admet deux racines réelles. On a en regroupant les termes complexes conjugués :

$$\begin{split} X^{2p} - 1 &= (X - 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \left(X - e^{\frac{2ip\pi}{n}} \right) \prod_{k=p+1}^{2p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \\ &= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{k=p+1}^{2p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \\ &= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p-1} \left(X - e^{\frac{(2in\pi - 2il\pi)}{n}} \right) \quad \text{en posant } k = n - l = 2p - l \\ &= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \\ &= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \left(X - e^{\frac{-2ik\pi}{n}} \right) \\ &= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X^2 - 2\cos(\frac{2k\pi}{n})X + 1 \right). \end{split}$$

• Si n est impair, il existe $p \in \mathbb{N}$ tel que n = 2p + 1. P admet une seule racine réelle. On obtient de même :

$$X^{2p+1} - 1 = (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{k=p+1}^{2p} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

$$= (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p} \left(X - e^{\frac{(2in\pi - 2il\pi)}{n}} \right) \text{ en posant } k = n - l = 2p + 1 - l$$

$$= (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p} \left(X - e^{2i\pi} e^{\frac{-2il\pi}{n}} \right)$$

$$= (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \left(X - e^{-\frac{2ik\pi}{n}} \right)$$

$$= (X - 1) \prod_{k=1}^{p} \left(X^2 - 2\cos(\frac{2k\pi}{n})X + 1 \right).$$

Exercice 31. 1. Soit $x \in \mathbb{C}$, on a :

$$\begin{array}{lll} x^6+1=0 & \Longleftrightarrow & x^6=-1 \\ & \Longleftrightarrow & x^6=e^{i\pi} \\ & \Longleftrightarrow & \left(\frac{x}{e^{i\frac{\pi}{6}}}\right)^6=1 \\ & \Longleftrightarrow & \exists k \in \llbracket 0,5 \rrbracket, \; \frac{x}{e^{i\frac{\pi}{6}}}=e^{\frac{2ik\pi}{6}} \\ & \Longleftrightarrow & \exists k \in \llbracket 0,5 \rrbracket, \; x=e^{i\frac{\pi}{6}+\frac{2ik\pi}{6}} \end{array}$$

Ainsi, les racines de X^6+1 sont $e^{i\frac{\pi}{6}},\,e^{\frac{3i\pi}{6}},\,e^{\frac{5i\pi}{6}},\,e^{\frac{7i\pi}{6}}=e^{-\frac{5i\pi}{4}},\,e^{\frac{9i\pi}{4}}=e^{-\frac{3i\pi}{4}},\,e^{\frac{11i\pi}{4}}=e^{-\frac{i\pi}{4}}$.

$$X^{6} + 1 = \prod_{k=0}^{5} (X - e^{i\frac{(2k+1)\pi}{6}})$$
 dans $\mathbb{C}[X]$

Pour la factorisation dans $\mathbb{R}[X]$, il faut regrouper les termes deux à deux conjugués.

$$\begin{split} X^6 + 1 &= (X - e^{\frac{i\pi}{6}})(X - e^{\frac{-i\pi}{6}})(X - e^{\frac{3i\pi}{6}})(X - e^{\frac{-3i\pi}{6}})(X - e^{\frac{5i\pi}{6}})(X - e^{\frac{-5i\pi}{6}}) \\ &= \left(X^2 - 2\operatorname{Re}\left(e^{i\frac{\pi}{6}}\right) + \left|e^{i\frac{\pi}{6}}\right|^2\right)\left(X^2 - 2\operatorname{Re}\left(e^{i\frac{\pi}{2}}\right) + \left|e^{i\frac{\pi}{2}}\right|^2\right)\left(X^2 - 2\operatorname{Re}\left(e^{5i\frac{\pi}{6}}\right) + \left|e^{5i\frac{\pi}{6}}\right|^2\right) \\ &= (X^2 - 2\cos(\frac{\pi}{6})X + 1)(X^2 - \cos(\frac{\pi}{2})X + 1)(X^2 - \cos(\frac{5\pi}{6})X + 1) \\ &= (X^2 - \sqrt{3}X + 1)(X^2 + 1)(X^2 + \sqrt{3}X + 1) \end{split}$$

2. Notons $P = X^6 - 7X^3 - 8$, on constate que $P = Q(X^3)$ avec $Q = X^2 - 7X - 8$. Cherchons les racines de Q.

Son discriminant vaut 49 + 32 = 81. Ainsi, Q a pour racines $\frac{7-9}{2} = -1$ et $\frac{7+9}{2} = 8$.

On a donc Q = (X + 1)(X - 8).

Ainsi $P = (X^3 + 1)(X^3 - 8)$.

Soit $x \in \mathbb{C}$, on a :

$$\begin{array}{lll} x^3+1=0 &\iff& x^3=-1\\ &\iff& x^3=e^{i\pi}\\ &\iff& \left(\frac{x}{e^{i\frac{\pi}{3}}}\right)^3=1\\ &\iff& \exists k\in\llbracket 0,2\rrbracket,\; \frac{x}{e^{i\frac{\pi}{3}}}=e^{\frac{2ik\pi}{3}}\\ &\iff& \exists k\in\llbracket 0,2\rrbracket,\; x=e^{i\frac{\pi}{3}+\frac{2ik\pi}{3}} \end{array}$$

Ainsi, les racines de X^3+1 sont $e^{i\frac{\pi}{3}}$, -1 et $e^{-i\frac{\pi}{3}}$. Ainsi, $X^3+1=\left(X-e^{i\frac{\pi}{3}}\right)(X+1)\left(X-e^{-i\frac{\pi}{3}}\right)$. De même, Soit $x\in\mathbb{C}$, on a :

$$\begin{split} x^3 + 1 &= 0 &\iff x^3 = 8 \\ &\iff \left(\frac{x}{8^{\frac{1}{3}}}\right)^3 = 1 \\ &\iff \exists k \in \llbracket 0, 2 \rrbracket, \ \frac{x}{2} = e^{\frac{2ik\pi}{3}} \\ &\iff \exists k \in \llbracket 0, 2 \rrbracket, \ x = 2e^{\frac{2ik\pi}{3}} \end{split}$$

Donc les racines cubiques de 8 sont 2, $2e^{\frac{2i\pi}{3}}$, $2e^{\frac{4i\pi}{3}} = 2e^{-\frac{2i\pi}{3}}$. Ainsi, on a : $X^3 - 8 = (X - 2) \left(X - 2e^{\frac{2i\pi}{3}}\right) \left(X - 2e^{-\frac{2i\pi}{3}}\right)$. Finalement, on a :

$$P = \left(X+1\right)\left(X-e^{i\frac{\pi}{3}}\right)\left(X-e^{-i\frac{\pi}{3}}\right)\left(X-2\right)\left(X-2e^{\frac{2i\pi}{3}}\right)\left(X-2e^{-2\frac{2i\pi}{3}}\right) \quad \text{dans } \mathbb{C}[X]$$

Et:

$$P = (X+1)\left(X - e^{i\frac{\pi}{3}}\right)\left(X - e^{-i\frac{\pi}{3}}\right)\left(X - 2\right)\left(X - 2e^{\frac{2i\pi}{3}}\right)\left(X - 2e^{-2\frac{2i\pi}{3}}\right)$$

$$= (X+1)\left(X^2 - 2\operatorname{Re}\left(e^{i\frac{\pi}{3}}\right) + \left|e^{i\frac{\pi}{3}}\right|^2\right)\left(X - 2\right)\left(X^2 - 2\operatorname{Re}\left(2e^{2i\frac{\pi}{3}}\right) + \left|2e^{2i\frac{\pi}{3}}\right|^2\right)$$

$$= (X+1)\left(X^2 - 2\cos\left(\frac{\pi}{3}\right)X + 1\right)\left(X - 2\right)\left(X^2 - 4\cos\left(\frac{2\pi}{3}\right)X + 4\right)$$

$$= (X+1)\left(X - 2\right)\left(X^2 - X + 1\right)\left(X^2 + 2X + 4\right)$$

3. Posons $P = (X+1)^n - (X-1)^n$. On sait que $deg(P) \leq n$.

De plus, d'après le binôme de Newton, on a : $(X+1)^n = \sum_{k=0}^n \binom{n}{k} X^k$ et $(X-1)^n = \sum_{k=0}^n \binom{n}{k} X^k (-1)^{n-k}$. Ainsi, le coefficient de X^n dans $(X+1)^n$ vaut 1, de même, le coefficient de X^n dans $(X-1)^n$ vaut 1. Ainsi, le

coefficient de X^n dans P vaut 0. Ainsi, $deg(P) \le n - 1$.

De plus, le coefficient de X^{n-1} de $(X+1)^n$ vaut $\binom{n}{n-1}=n$ et le coefficient de X^{n-1} de $(X-1)^n$ vaut

$$\binom{n}{n-1}(-1) = -n.$$

Ainsi, le coefficient de X^{n-1} de P vaut 2n donc $\deg(P) = n-1$ et le coefficient dominant de P vaut 2n. Cherchons les racines complexes du polynôme.

On remarque tout d'abord que 1 n'est pas racine de P.

Soit $z \in \mathbb{C} \setminus \{1\}$.

$$P(z) = 0$$

$$\iff (z+1)^n = (z-1)^n$$

$$\iff \frac{(z+1)^n}{(z-1)^n} = 1 \quad \text{car } z \neq 1$$

$$\iff \exists k \in [0, n-1], \ z+1 = e^{\frac{2ik\pi}{n}}(z-1)$$

$$\iff \exists k \in [0, n-1], \ z\left(1-e^{\frac{2ik\pi}{n}}\right) = -\left(e^{\frac{2ik\pi}{n}}+1\right)$$

$$\iff \exists k \in [0, n-1], \ -2i\sin\left(\frac{k\pi}{n}\right)z = -2\cos\left(\frac{k\pi}{n}\right)$$

$$\iff \exists k \in [1, n-1], \ i\sin\left(\frac{k\pi}{n}\right)z = \cos\left(\frac{k\pi}{n}\right) \quad \text{car pour } k = 0 \text{ on a } 0 = 1 \text{ absurde}$$

$$\iff \exists k \in [1, n-1], \ z = -i\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} \quad \text{licite car on a } : \forall k \in [1, n-1], \ \sin\left(\frac{k\pi}{n}\right) \neq 0$$

De plus, les $\frac{k\pi}{n}$, $k \in [1, n-1]$ sont des réels deux à deux distincts de $]0, \pi[$. Posons $h = \frac{\cos}{\sin}$. h est bien définie sur $]0, \pi[$ et dérivable sur $]0, \pi[$. De plus, $h' = \frac{-1}{\sin^2} < 0$. Ainsi, h est strictement décroissante donc injective sur $]0, \pi[$. Ainsi, on a trouvé n-1 racines distinctes de P et on les a toutes puisque $\deg(P) = n-1$. Ainsi,

$$P = 2n \prod_{k=0}^{n-1} \left(X + i \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} \right).$$

Pour la décomposition dans \mathbb{R} , on identifie les termes deux à deux conjugués.

Pour tout
$$k \in [0, n-1]$$
, posons $z_k = i \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)}$.

On a:

$$z_{n-k} = i \frac{\cos\left(\frac{(n-k)\pi}{n}\right)}{\sin\left(\frac{(n-k)\pi}{n}\right)} = i \frac{\cos\left(\pi + \frac{-k\pi}{n}\right)}{\sin\left(\pi + \frac{-k\pi}{n}\right)} = i \frac{\cos\left(\frac{-k\pi}{n}\right)}{\sin\left(\frac{-k\pi}{n}\right)} = -i \frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)} = \overline{z_k}.$$

• Si n est pair, il existe $p \in \mathbb{N}$ tel que n = 2p, on a $\frac{n}{2} - 1 = p - 1$ paires de racines complexes non réelles deux à deux conjuguées et une racine réelle 0 correspondant à $k = \frac{n}{2}$.

$$P = 2n \prod_{k=1}^{2p-1} (X - z_k)$$

$$= 2n \prod_{k=1}^{p-1} (X - z_k) (X - z_p) \prod_{k=p+1}^{2p-1} (X - z_k)$$

$$= 2n \prod_{k=1}^{p-1} (X - z_k) (X - z_p) \prod_{k=p+1}^{p-1} (X - z_{n-l}) \quad \text{en posant } l = n - k = 2p - k$$

$$= 2nX \prod_{k=1}^{p-1} (X - z_k) \prod_{k=1}^{p} (X - \overline{z_k})$$

$$= 2nX \prod_{k=1}^{p-1} [(X - z_k) (X - \overline{z_k})]$$

$$= 2nX \prod_{k=1}^{p-1} (X^2 - (z_k + \overline{z_k})X + z_k \overline{z_k})$$

$$= 2nX \prod_{k=1}^{p-1} (X^2 + \frac{\cos\left(\frac{k\pi}{n}\right)^2}{\sin\left(\frac{k\pi}{n}\right)^2})$$

• Si n est impair, il existe $p \in \mathbb{N}$ tel que n = 2p + 1, on a $\frac{n-1}{2} = p$ paires de racines complexes non réelles deux à deux conjuguées.

$$P = 2n \prod_{k=1}^{2p} (X - z_k)$$

$$= 2n \prod_{k=1}^{p} (X - z_k) \prod_{k=p+1}^{2p} (X - z_k)$$

$$= 2n \prod_{k=1}^{p} (X - z_k) \prod_{l=1}^{p} (X - z_{n-l}) \quad \text{en posant } l = n - k = 2p - k$$

$$= 2n \prod_{k=1}^{p} (X - z_k) \prod_{k=1}^{p} (X - \overline{z_k})$$

$$= 2n \prod_{k=1}^{p} [(X - z_k) (X - \overline{z_k})]$$

$$= 2n \prod_{k=1}^{p} (X^2 - (z_k + \overline{z_k})X + z_k \overline{z_k})$$

$$= 2n \prod_{k=1}^{p} \left(X^2 + \frac{\cos\left(\frac{k\pi}{n}\right)^2}{\sin\left(\frac{k\pi}{n}\right)^2}\right)$$

4. On constate que $P = \sum_{k=0}^{n} X^{2k}$ est de degré 2n et unitaire. On remarque que 1 et -1 ne sont pas racine de P. Soit $x \in \mathbb{C} \setminus \{1, -1\}$. On a :

$$P(x) = 0 \iff \sum_{k=0}^{n} (x^{2})^{k} = 0$$

$$\iff \frac{(x^{2})^{n+1} - 1}{x^{2} - 1} = 0$$

$$\iff x^{2n+2} = 1$$

$$\iff \exists k \in [0, 2n+1], \ x = e^{\frac{2ik\pi}{2n+2}}$$

$$\iff \exists k \in [1, 2n+1] \setminus \{n+1\}, \ x = e^{\frac{2ik\pi}{2n+2}} \quad \operatorname{car} x \neq -1 \text{ et } x \neq 1 \text{ donc } k \neq 0 \text{ et } k \neq n+1$$

On obtient alors 2n racines de P_n deux à deux distinctes (ce sont des racines (2n + 2)-ièmes de l'unité deux à deux distinctes) et

$$P = \prod_{k=1}^{n} (X - e^{\frac{ik\pi}{n+1}}) \prod_{k=n+2}^{2n+1} (X - e^{\frac{ik\pi}{n+1}})$$

$$= \prod_{k=1}^{n} (X - e^{\frac{ik\pi}{n+1}}) \prod_{l=1}^{n} (X - e^{\frac{i(2n+2-l)\pi}{n+1}}) \quad \text{en posant } l = 2n+2-k$$

$$= \prod_{k=1}^{n} (X - e^{\frac{ik\pi}{n+1}}) \prod_{l=1}^{n} (X - e^{-\frac{il\pi}{n+1}})$$

$$= \prod_{k=1}^{n} \left[(X - e^{\frac{ik\pi}{n+1}})(X - e^{-\frac{ik\pi}{n+1}}) \right]$$

$$= \prod_{k=1}^{n} (X^2 - 2X \cos(\frac{k\pi}{n+1}) + 1).$$

Exercice 32. On constate que $P(X) = X^{2n} - 2\cos\phi X^n + 1 = Q(X^n)$ avec $Q(X) = X^2 - 2\cos\phi X + 1$. On commencer par trouver les racines de Q.

Les racines de Q sont $e^{i\phi}$ et $e^{-i\phi}$. Ainsi, on a $Q = (X - e^{i\phi})(X - e^{-i\phi})$.

Donc $P = (X^n - e^{i\phi})(X^n - e^{-i\phi}).$

Déterminons les racines de $X^n - e^{i\phi}$

Pour ce faire, déterminons les racines n-ièmes de $e^{i\phi}$.

Soit $z \in \mathbb{C}$, on a :

$$z^{n} = e^{i\phi} \iff \left(\frac{z}{e^{i\frac{\phi}{n}}}\right)^{n} = 1$$

$$\iff \exists k \in [0, n-1], \ \frac{z}{e^{i\frac{\phi}{n}}} = e^{\frac{2ik\pi}{n}}$$

$$\iff \exists k \in [0, n-1], \ z = e^{i\frac{\phi}{n}} e^{\frac{2ik\pi}{n}}$$

Justifions que toutes les racines sont complexes non réelles : Soit $k \in \mathbb{Z}$, on a :

$$e^{i\frac{\phi}{n}}e^{\frac{2ik\pi}{n}} \in \mathbb{R} \iff \frac{\phi}{n} + \frac{2k\pi}{n} \equiv 0 \ [\pi]$$
$$\iff \phi + 2k\pi \equiv 0 \ [n\pi]$$
$$\iff \phi \equiv -2k\pi \ [n\pi]$$

Or, $\phi \notin \pi \mathbb{Z}$ donc $e^{i\frac{\phi}{n}} e^{\frac{2ik\pi}{n}} \notin \mathbb{R}$. On a ainsi obtenu n racines complexes non réelles deux à deux distinctes. Or, $P \in \mathbb{R}[X]$. Ainsi, les racines de $(X - e^{-i\phi})$ sont les $e^{-i\frac{\phi}{n}} e^{-\frac{2ik\pi}{n}}$ avec $k \in [0, n-1]$. On a donc :

$$P(X) = \prod_{k=0}^{n-1} (X - e^{i\left(\frac{\phi + 2k\pi}{n}\right)})(X - e^{-i\left(\frac{\phi + 2k\pi}{n}\right)}) = \prod_{k=0}^{n-1} (X^2 - 2\cos\left(\frac{\phi + 2k\pi}{n}\right)X + 1)$$

Exercice 33. Soit $P \in \mathbb{C}[X]$ tel que P' divise P. Supposons P non nul, P est alors non constant (sinon P' = 0 divise P entraı̂nerait P = 0), donc $P' \neq 0$. On écrit $P'(X) = \lambda \prod_{i=1}^k (X - a_i)^{m_i}$ la factorisation de P'.

Soit $i \in [1, k]$, on a a_i racine de P' donc de P (car P' divise P). Comme a_i est racine de P' de multiplicité m_i , on a : $P'(a_i) = \dots = (P')^{(m_i-1)}(a_i) = 0$ et $(P')^{(m_i)}(a_i) \neq 0$. Donc $P'(a_i) = \dots = P^{(m_i)}(a_i) = 0$ et $P^{(m_i+1)}(a_i) \neq 0$. Ainsi, $a_i = 0$ est racine de P de multiplicité $m_i + 1$.

Donc P admet au moins $\sum_{i=1}^{\kappa} (m_i + 1) = \left(\sum_{i=1}^{\kappa} m_i\right) + k$ racines, chacune étant comptée avec sa multiplicité.

$$\text{Or, } \deg(P) = \deg(P') + 1 = \sum_{i=1}^k m_i + 1 \text{ (car } P' \text{ est scind\'e)}. \text{ Ainsi, } \left(\sum_{i=1}^k m_i\right) + k \leq \left(\sum_{i=1}^k m_i\right) + 1 \text{ donc } k \leq 1.$$

Si k=1, on a alors $\deg(P)=\deg(P')+1=m_1+1$ et a_1 est racine de P de multiplicité m_1+1 . Ainsi, P admet autant de racines comptées avec leur multiplicité que son degré donc P est scindé. Ainsi, P est de la forme $\lambda(X-a)^m$, $\lambda \in \mathbb{C} \text{ et } m \in \mathbb{N}^*.$

Si k=0 alors $P'=\lambda$. Ainsi, il existe $\beta\in\mathbb{C}$ tel que $P=\lambda X+\beta$. Donc de nouveau, P est scindé et s'écrit sous la forme $\lambda(X-a)^m$, $\lambda \in \mathbb{C}$ et $m \in \mathbb{N}^*$.

Réciproquement, soit
$$\lambda \in \mathbb{C}$$
, $m \in \mathbb{N}^*$, posons $P = \lambda (X - a)^m$.
Alors $P' = m\lambda (X - a)^{m-1}$ donc $P = \frac{1}{m}(X - a)P'$ $(m \neq 0)$.

Donc P'|P

Finalement, l'ensemble des solution est $\{\lambda(X-a)^m \mid \lambda \in \mathbb{C}, m \in \mathbb{N}^*\}$.

Exercice 34.

1. Soit
$$n \in \mathbb{N}^*$$
. On a $(X-1)P_n = X^{n+1} - 1 = \prod_{k=0}^n (X - e^{2ik\pi/(n+1)}) = (X-1) \prod_{k=1}^n (X - e^{2ik\pi/(n+1)})$.
Ainsi, $P_n = \prod_{k=1}^n (X - e^{2ik\pi/(n+1)})$.

2.
$$P_n(1) = \sum_{k=0}^{n} 1 = n+1$$
 et

$$\begin{split} P_n(1) &= \prod_{k=1}^n (1 - e^{2ik\pi/(n+1)}) \\ &= \prod_{k=1}^n (e^{-ik\pi/(n+1)} - e^{ik\pi/(n+1)}) \prod_{k=1}^n e^{ik\pi/(n+1)} \\ &= \prod_{k=1}^n e^{ik\pi/(n+1)} \prod_{k=1}^n \left[-2i\sin\left(\frac{k\pi}{n+1}\right) \right] \\ &= \left[\prod_{k=1}^n e^{ik\pi/(n+1)} \right] \left[\prod_{k=1}^n (-2i) \right] \left[\prod_{k=1}^n \sin\left(\frac{k\pi}{n+1}\right) \right] \\ &= (-2i)^n \prod_{k=1}^n e^{ik\pi/(n+1)} \prod_{k=1}^n \sin\left(\frac{k\pi}{n+1}\right) \end{split}$$

Or,

$$\prod_{k=1}^n e^{ik\pi/(n+1)} = \exp\left(\frac{i\pi}{n+1}\sum_{k=1}^n k\right) = \exp\left(\frac{in(n+1)\pi}{2(n+1)}\right) = \exp\left(\frac{in\pi}{2}\right) = i^n$$

Donc

$$i^{n}(-2i)^{n}\prod_{k=1}^{n}\sin\left(\frac{k\pi}{n+1}\right) = n+1$$

Ainsi,

$$2^n \prod_{k=1}^n \sin\left(\frac{k\pi}{n+1}\right) = n+1$$

Donc finalement,

$$\prod_{k=1}^{n} \sin\left(\frac{k\pi}{n+1}\right) = \frac{n+1}{2^n}$$

6 Relations entre coefficients et racines

Exercice 35.

1. Soit $(x,y) \in \mathbb{R}^2$. Notons s = x + y et p = xy. Avec ces notations,

$$(S) \iff \begin{cases} 3s + 4p = -5 \\ s - 2p = 5 \end{cases}$$

$$\iff \begin{cases} s - 2p = 5 \\ 10p = -20 \end{cases}$$

$$\iff \begin{cases} s = 1 \\ p = -2 \end{cases}$$

2. D'après la question précédente, (S) est équivalent au système :

$$\begin{cases} x+y=1\\ xy=-2 \end{cases}$$

Or, les solutions x, y de ce système sont les racines du polynôme $X^2 - X - 2 = 0$, à savoir 2 et -1. Finalement, (S) admet deux couples de solutions (2, -1) et (-1, 2).

Exercice 36. 1. Le polynôme P est unitaire de degré n. Soit $x \in \mathbb{C}$.

$$P(x) = 0 \iff (x+1)^n = e^{2ina}$$

$$\iff \exists k \in [0, n-1], \ x+1 = e^{2ia}e^{\frac{2ik\pi}{n}}$$

$$\iff \exists k \in [0, n-1], \ x = -1 + e^{2ia}e^{\frac{2ik\pi}{n}}$$

$$\iff \exists k \in [0, n-1], \ x = e^{i(a+\frac{k\pi}{n})}(2i)\sin(a+\frac{k\pi}{n})$$

Soient $k, l \in [0, n-1]$, on a :

$$-1 + e^{2ia}e^{\frac{2ik\pi}{n}} = -1 + e^{2ia}e^{\frac{2il\pi}{n}}$$

$$\iff e^{2ia + \frac{2ik\pi}{n}} = e^{2ia + \frac{2il\pi}{n}}$$

$$\iff 2a + \frac{2k\pi}{n} \equiv 2a + \frac{2l\pi}{n} [2\pi]$$

$$\iff \frac{2k\pi}{n} \equiv \frac{2l\pi}{n} [2\pi]$$

$$\iff k \equiv l [n]$$

$$\iff k = l \quad \text{car } k, l \in [0, n - 1]$$

On a trouvé n racines deux à deux distinctes et P est de degré n donc on les a toutes.

2. Le terme constant du polynôme P est $1-e^{2ina}.$ Ainsi :

$$\prod_{k=0}^{n-1} \left(e^{i(a + \frac{k\pi}{n})} 2i\sin(a + \frac{k\pi}{n})\right) = (-1)^n (1 - e^{2ina}) = (-1)^{n+1} 2ie^{ina}\sin(na)$$

par les relations coefficients racines.

De plus

$$\prod_{k=0}^{n-1} e^{i(a + \frac{k\pi}{n})} = \left[\prod_{k=0}^{n-1} e^{ia}\right] \left[\prod_{k=0}^{n-1} e^{i\frac{k\pi}{n}}\right] = e^{ina} \exp\left(\frac{i\pi}{n} \sum_{k=0}^{n-1} k\right) = e^{ina} e^{\frac{i\pi n(n-1)}{2n}} = e^{ina} \times (e^{\frac{i\pi}{2}})^{n-1} = i^{n-1} e^{ina}.$$

Par ailleurs, $\prod_{i=0}^{n-1} (2i) = (2i)^n$.

Ainsi, on a : k=0

$$\prod_{k=0}^{n-1}(e^{i(a+\frac{k\pi}{n})}2i\sin(a+\frac{k\pi}{n}))=i^{n-1}e^{ina}(2i)^n=(-1)^{n-1}i2^ne^{ina}\prod_{k=0}^{n-1}\sin(a+\frac{k\pi}{n})$$

Donc:

$$(-1)^{n-1}i2^n e^{ina} \prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n}) = 2i(-1)^{n+1}e^{ina} \sin(na)$$

Ainsi,

$$2^{n} \prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n}) = 2\sin(na)$$

Donc finalement,

$$\prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n}) = \frac{\sin(na)}{2^{n-1}}.$$

3. Soit $a \in \mathbb{R}^*$, on a:

$$\prod_{k=1}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) = \frac{\sin(na)}{2^{n-1}\sin(a)}$$
$$= \frac{n}{2^{n-1}} \times \frac{\sin(na)}{na} \times \frac{a}{\sin(a)}$$

Or,
$$\lim_{a \to 0} \prod_{k=1}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right).$$
 Et
$$\lim_{a \to 0} \left(\frac{n}{2^{n-1}} \times \frac{\sin(na)}{na} \times \frac{a}{\sin(a)}\right) = \frac{n}{2^{n-1}} \times 1 \times 1 = \frac{n}{2^{n-1}}.$$
 Ainsi, on obtient :

$$\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}.$$

1. Soit P un polynôme non nul vérifiant la relation et α une racine de P. Exercice 37.

En évaluant la relation en α , on a : $P((\alpha)^2) = P(\alpha)P(\alpha - 1) = 0$.

Ainsi, α^2 est aussi racine de P.

Montrons par récurrence que : pour tout $n \in \mathbb{N}$, α^{2^n} est racine de P.

- Pour n = 0, on a $\alpha^{2^0} = \alpha$ et par hypothèse α est bien racine de P.
- Soit $n \in \mathbb{N}$, supposons que α^{2^n} est racine de P. En évaluant la relation en α^{2^n} , on trouve :

$$P\left(\left(\alpha^{2^n}\right)^2\right) = P\left(\alpha^{2^n}\right)P\left(\alpha^{2^n} - 1\right) = 0$$

car par hypothèse, $P\left(\alpha^{2^n}\right) = 0$. Or, $\left(\alpha^{2^n}\right)^2 = \alpha^{2^n \times 2} = \alpha^{2^{n+1}}$.

$$P\left(\alpha^{2^{n+1}}\right) = 0.$$

Donc $\alpha^{2^{n+1}}$ est racine de P.

• On a prouvé par récurrence que pour tout $n \in \mathbb{N}, \alpha^{2^n}$ est racine de P.

On a
$$|\alpha|^{2^{n+1}} - |\alpha|^{2^n} = |\alpha|^{2^n} (|\alpha|^2 - 1)$$
. Donc $|\alpha|^{2^{n+1}} - |\alpha^{2^n}|$ est du signe de $|\alpha|^2 - 1$.

Supposons que $|\alpha|$ soit différent de 0 et 1. Alors, $|\alpha|^{2^{n+1}} - |\alpha|^{2^n}$ est de signe strict constant :

- Si $|\alpha| \in]0, 1[$, alors $|\alpha|^{2^{n+1}} |\alpha|^{2^n} < 0$ donc la suite $(|\alpha|^{2^n})_{n \in \mathbb{N}}$ est strictement décroissante. Donc les $|\alpha|^{2^n}$, avec $n \in \mathbb{N}$, sont 2 à 2 distincts et donc à fortiori les α^{2^n} , avec $n \in \mathbb{N}$.
- Si $|\alpha| \in]1, +\infty[$, alors $|\alpha|^{2^{n+1}} |\alpha|^{2^n} > 0$ donc la suite $\left(|\alpha|^{2^n} \right)_{n \in \mathbb{N}}$ est strictement croissante. Donc les $|\alpha|^{2^n}$, avec $n \in \mathbb{N}$, sont 2 à 2 distincts et donc à fortiori les α^{2^n} , avec $n \in \mathbb{N}$.

Ainsi, dés que $|\alpha|$ est différent de 0 et 1, alors les α^{2^n} pour $n \in \mathbb{N}$ sont 2 à 2 distincts. Donc P admettrait donc une infinité de racines donc P serait le polynôme nul, ce qui contredit l'hypothèse de départ.

Ainsi, les racines de P sont nulles ou de module 1.

Soit $\alpha = e^{i\theta}$, $\theta \in]-\pi,\pi]$ une racine complexe non nulle de P. De plus, on a $P((\alpha+1)^2) = P(\alpha+1)P(\alpha) = 0$. Ainsi, $(\alpha+1)^2$ est aussi racine de P donc est nulle ou de module 1. On a donc:

- soit $\alpha + 1 = 0$ et donc $\alpha = -1$
- soit $|\alpha+1|^2=1$ d'où $1=|1+e^{i\theta}|^2$ donc $(\cos(\theta)+1)^2+\sin(\theta)^2=1$ puis $1+2\cos(\theta)+1=1$. Donc finalement, $\cos(\theta) = -\frac{1}{2}$. Ainsi, $\theta \equiv \frac{2\pi}{3} [2\pi]$. Ainsi, $\alpha = e^{\frac{2i\pi}{3}}$ ou $\alpha = e^{-\frac{2i\pi}{3}}$.

On a donc bien prouvé que l'ensemble des racines de P appartiennent à $\{0, -1, e^{\frac{2i\pi}{3}}, e^{-\frac{2i\pi}{3}}\}$. On rappelle que l'on pose $j = e^{\frac{2i\pi}{3}}$. On a alors : $\bar{j} = j^2 = e^{-\frac{2i\pi}{3}}$.

2. Le polynôme nul est solution.

Soit P un polynôme non nul solution. D'après le théorème de décomposition dans $\mathbb{C}[X]$, P se décompose de manière unique à l'ordre des facteurs près sous la forme :

$$P = \lambda X^{\alpha} (X+1)^{\beta} (X-j)^{\gamma} (X-j^2)^{\delta}$$

avec $\lambda \in \mathbb{C}$ et $\alpha, \beta, \gamma, \delta \in \mathbb{N}$.

On en déduit les décompositions de $P(X) \times P(X-1)$ et de $P(X^2)$.

$$P(X)P(X-1) = \lambda^2 X^{\alpha+\beta} (X-1)^{\alpha} (X+1)^{\beta} (X-j)^{\gamma} (X-j^2)^{\delta} (X-1-j^2)^{\delta} (X-1-j)^{\gamma}$$

= $\lambda^2 X^{\alpha+\beta} (X-1)^{\alpha} (X+1)^{\beta} (X-j)^{\gamma} (X-j^2)^{\delta} (X+j)^{\delta} (X+j^2)^{\gamma}$

$$\begin{split} P(X^2) &= \lambda X^{2\alpha} (X^2+1)^{\beta} (X^2-j^2)^{\delta} (X^2-j^4)^{\gamma} \\ &= \lambda X^{2\alpha} (X-i)^{\beta} (X+i)^{\beta} (X-j)^{\delta} (X+j)^{\delta} (X-j^2)^{\gamma} (X+j^2)^{\gamma} \end{split}$$

Par unicité de la décomposition d'un polynôme, on obtient :

$$P(X^{2}) = P(X+1)P(X-1) \iff \begin{cases} \lambda = \lambda^{2} \\ \alpha + \beta = 2\alpha \\ \beta = 0 \\ \alpha = 0 \\ \gamma = \delta \end{cases}$$

$$\iff \begin{cases} \lambda(\lambda - 1) = 0 \\ \alpha = 0 \\ \beta = 0 \\ \gamma = \delta \end{cases}$$

$$\iff P = \left((X - j)(X - j^{2}) \right)^{\gamma} \text{ ou } P = 0$$

$$\iff P = \left(X^{2} + X + 1 \right)^{\gamma} \text{ ou } P = 0$$

Ainsi, l'ensemble des solutions est $\{(X^2 + X + 1)^{\gamma}, \gamma \in \mathbb{R}\} \cup \{0\}.$

Exercice 38. Soit $P \in \mathbb{C}[X] \setminus \{0\}$, soit $n = \deg P$. Notons $P = \sum_{k=0}^{n} a_k X^k$.

Pour tout $j \in [0, n-1]$, on note S_j la somme des racines de $P^{(j)}$ et $P^{(j)} = \sum_{k=1}^{n-1} c_k^j X^k$.

On a:
$$\forall j \in [0, n-1], P^{(j)} = \sum_{k=j}^{n} a_k \frac{k!}{(k-j)!} X^{k-j}.$$

Ainsi:
$$\forall j \in [0, n-1], c_{n-j}^j = a_n \frac{n!}{(n-j)!}$$
 et $c_{n-1-j}^j = a_{n-1} \frac{(n-1)!}{(n-1-j)!}$.

$$\begin{split} & \text{Ainsi}: \forall j \in [\![0,n-1]\!], \ c_{n-j}^j = a_n \frac{n!}{(n-j)!} \text{ et } c_{n-1-j}^j = a_{n-1} \frac{(n-1)!}{(n-1-j)!}. \\ & \text{Ainsi}: \forall j \in [\![0,n-1]\!], \ S_j = -\frac{c_{n-1-j}}{c_{n-j}} = -\frac{a_{n-1}(n-1)!}{(n-1-j)!} \times \frac{(n-j)!}{n!a_n} = -\frac{a_{n-1}}{a_n} \times \frac{n-j}{n}. \end{split}$$

Soit $j \in [0, n-2]$,

$$S_{j+1} - S_j = -\frac{a_{n-1}}{a_n} \times \frac{n - (j+1)}{n} - \frac{a_{n-1}}{a_n} \times \frac{n - j}{n}$$
$$= -\frac{a_{n-1}}{na_n} (n - j - 1 - n + j)$$
$$= \frac{a_{n-1}}{na_n}$$

Ainsi : $\forall j \in [0, n-2]$, $S_{j+1} - S_j = \frac{a_{n-1}}{na_n}$ qui est indépendant de j.

Ainsi, les sommes des racines de $P, P', \ldots, P^{(n-1)}$ forment une progression arithmétique de raison $\frac{a_{n-1}}{na_n}$.