CPSC 420 Lecture 28: Today's announcements:

- ▶ HW4 is on Gradescope, due Mar 30, 23:59
- Examlet 4 on April 5 in class. Closed book & no notes
- ► Reading: Ch.5 Hash Tables [Director's Cut by Erickson]
- ► Reading: Cuckoo Hashing for Undergraduates [by Pagh]

Today's Plan

Cuckoo Hashing

Time per operation

Find O(1) time worst case

Delete O(1) time worst case

Insert O(1) expected, amortized time

How is this possible?

Time per operation

- Find O(1) time worst case Delete O(1) time worst case Insert O(1) expected, amortized time
- ▶ Use two hash functions h_1 and h_2 .
- ltem x will be stored in slot $h_1(x)$ or $h_2(x)$ of hash table T.
- Each slot in the hash table can contain at most one item.
- ightharpoonup n = maximum number of items stored at any time
- ightharpoonup m =size of hash table T (m > n)

Time per operation

- Find O(1) time worst case

 Delete O(1) time worst case

 Insert O(1) expected, amortized time
- ▶ Use two hash functions h_1 and h_2 .
- ltem x will be stored in slot $h_1(x)$ or $h_2(x)$ of hash table T.
- Each slot in the hash table can contain at most one item.
- ightharpoonup n = maximum number of items stored at any time
- ightharpoonup m =size of hash table T (m > n)

On an insert(x) collision, item x kicks the resident item y out. Item y then goes to its alternate slot (kicking whoever's there out). Etc. Etc.

¹Per Harald Olsen (Wikipedia)

Insert Algorithm

```
insert(x)
1. if T[h_1(x)] = x or T[h_2(x)] = x return
2. i \leftarrow h_1(x)
3. repeat <u>n</u> times
4. y \leftarrow T[i] \leftarrow gut x into stoling 5.  T[i] \leftarrow x \leftarrow gut x into stoling 6.  if <math>y = NULL return \leftarrow done
            if i = h_1(y) then i \leftarrow h_2(y) else i \leftarrow h_1(y)
x \leftarrow y
i = alternate slot for y
         x \leftarrow y
9. rehash; insert(x)
```


Cuckoo Insert Analysis

Pagh

insert(x) only visits slots that are connected in the cuckoo graph to $h_1(x)$ or $h_2(x)$.

We say x and y are in the same **bucket** if there is a path in the cuckoo graph from $h_1(x)$ or $h_2(x)$ to $h_1(y)$ or $h_2(y)$.

Only elements in the same bucket as x can impact the runtime of $\mathbf{insert}(x)$.

Lemma 2: The probability that x and y are in the same bucket is O(1/m).

To show this we first prove:

Lemma 1: For any slots i and j and any c>1, if $m\geq 2cn$ then the probability that a shortest path from i to j has length ℓ in the cuckoo graph is $\leq \frac{1}{c^{\ell}}$

Cuckoo Insert Analysis

Lemma 1: For any slots i and j and any c>1, if $\underline{m}\geq 2c\underline{n}$ then the probability that a shortest path from i to j has length ℓ in the cuckoo graph is $\leq \frac{1}{c^{\ell}\underline{m}}$.

Proof: Such a path exists of length $\ell=1$ iff some item x has $(h_1(x),h_2(x))=(i,j)$ or (j,i). This happens with probability $\leq \frac{n}{(\text{choices for }x)}(2/m^2) \leq 1/(cm)$ (assuming h_1 and h_2 are random).

Proceed by induction on ℓ . There is a shortest path from i to j of length $\ell \geq 2$ iff there is

(1) a shortest path of length $\ell-1$ from i to k (that avoids j)

and (2) an edge from k to j (for some $k \neq i,j$).

probability
$$\leq n(2/m^2) \leq 1/(cm)$$

Probability of (1) and (2) $\leq m$ $(1/(choices for k) (1/(choices for k) ($

Cuckoo Insert Analysis

Lemma 2: The probability that x and y are in the same bucket is O(1/m).

Proof: Items x and y are in the same bucket iff there is a path of length ℓ (for some ℓ) from $h_1(x)$ or $h_2(x)$ to $h_1(y)$ or $h_2(y)$. This happens with probability $4\sum_{\ell=1}^{\infty}\frac{1}{c^{\ell}m}=\frac{4}{(c-1)m}=O(1/m)$.

Theorem: If there is no cycle in the cuckoo graph then the expected time for insert(x) is O(1)

Proof: Only those items $y \neq x$ that are in the same bucket as x can cause cuckoo swaps during insert(x) and each y causes at most one swap (assuming there is no cycle). The probability that item y is in the same bucket as x is O(1/m) (Lemma 2). So the total expected number of swaps is $\leq (n-1) \cdot O(1/m) = O(1)$ (since n < m).

Cuckoo Rehash

insert(x)

- 1. if $T[h_1(x)] = x$ or $T[h_2(x)] = x$ return
- 2. $i \leftarrow h_1(x)$
- 3. repeat n times
- 4. $y \leftarrow T[i]$
- 5. $T[i] \leftarrow x$
- 6. if y = NULL return
- 7. if $i = h_1(y)$ then $i \leftarrow h_2(y)$ else $i \leftarrow h_1(y)$
- 8. $x \leftarrow y$
- 9. (rehash;) insert(x)

Lemma 3: If $m \ge 2cn$ then the probability of a cycle in the cuckoo graph after n insertions is at most $\frac{1}{c-1}$.

Proof: Slot i is involved in a cycle iff there is a path from i to itself of length $\ell \geq 1$. By Lemma 1, this happens with probability $\leq \sum_{\ell=1}^{\infty} \frac{1}{c^{\ell}m} = \frac{1}{(c-1)m}$. Summing over all m slots, gives probability $\leq \frac{1}{c^{\ell}}$ for a cycle.

Cuckoo Rehash

Lemma 3: If $m \ge 2cn$ then the probability of a cycle in the cuckoo graph after n insertions is at most $\frac{1}{c-1}$.

Proof: Slot i is involved in a cycle iff there is a path from i to itself of length $\ell \geq 1$. By Lemma 1, this happens with probability $\leq \sum_{\ell=1}^{\infty} \frac{1}{c^{\ell}m} = \frac{1}{(c-1)m}$. Summing over all m slots, gives probability $\leq \frac{1}{c-1}$ for a cycle.

Each rehash takes O(n) time.

By Lemma 3, for c>3, the prob. that one rehash occurs after n insertions is $\leq 1/2$, that two rehashes occur $\leq 1/4$, etc. So expected amortized cost of rehash is O(1).

Note: A rehash triggers k > 0 consecutive rehashes with prob. $\leq 1/2^k$. So the expected cost is still $O(n) \cdot \sum_{k=1}^{\infty} 1/2^k = O(n)$.