Name:	NetID:	
-------	--------	--

NYU Physics I—Term Exam 2

Problem 1: (from Lecture on 2018-09-27) A roller-coaster cart is at the top of a loop-the-loop (and therefore upside-down). The trajectory of the center of mass of the cart has a radius of curvature R = 5 m. How fast does the roller-coaster have to be moving in m s⁻¹ to stay on it's proper path (that is, on the tracks)? Assume the mass is M = 1000 kg and the acceleration due to gravity is g = 10 m s⁻².

Problem 2: (from Lecture on 2018-09-25) In 16 words or fewer tell me why the mass flying off the (not a) aki jump didn't fly all the way back up to the release height. Put a box around your answer, so I can count the words!

Problem 3: (from Problem Set 3) If a runner, starting at rest, accelerates at $5 \,\mathrm{m\,s^{-2}}$ for $2 \,\mathrm{s}$ and then continues at constant speed for $19 \,\mathrm{s}$ more, how far will she have run at the end of that $21 \,\mathrm{s}$?

Problem 4: (from Problem Set 4) What is your kinetic energy when you are walking along the street? State your assumptions, and make sure they are *reasonable*.

Problem 5: (from the blocks-and-pulleys worksheet) A massless pulley hangs from the ceiling from a string which is at tension T_1 . Over this pulley is another string at tension T_2 , on the ends of which are massive blocks attached. What is the relationship between T_1 and T_2 ? If you have to assume additional things to solve this problem, state them.

Problem 6: (from the friction worksheet) You have a block of mass m on an inclined plane, inclined at an angle $\theta = 15 \deg$ to the horizontal. The coefficient of friction is $\mu = 0.9$. What is the magnitude of the frictional force on the block? The acceleration due to gravity is g. You can leave your answer in terms of μ , m, g, θ , or whatever you need to deliver a correct answer. Once again, state any assumptions you need to make.