1 Lezione del 12-11-24

1.1 Riconoscitore di sequenze

Un riconoscitore di sequenze è una rete sequenziale sincronizzata a N ingressi ed un uscita. Questa rete si evolve secondo la legge seguente: se si presenta, in sequenza, una sequenza di stati di ingresso voluta, l'uscita vale 1,0 altrimenti.

Ogni stato di ingresso deve essere presentato prima del prossimo ciclo di clock, e per n stati di ingresso avremo bisogno di n cicli di clock per leggerli tutti. Inoltre, se un valore permane per più di un ciclo di clock, si considera questa una ripetizione.

Si ha che qesta è una **rete con memoria**: deve ricordare ad ogni stato di ingresso la sequenza degli stati di ingresso **corretti** e **consecutivi** visti finora, cioè K+1 stati (compreso lo stato finale con l'uscita a 1) per sequenze di K stati.

la sintesi è un esercizio per casa

1.2 Modello di Mealy

Nel modello di Moore avevamo detto che l'uscità è funzione soltanto dello stato interno precedente: $B: S \to Z$. Nelle reti di mealy, la legge B è più generale, e dipende anche dagli ingressi: $B: X \times S \to Z$.

Vediamo che le reti RCA e RCB, a questo punto, possono essere espresse come un unica grande rete RC con cicli di retroazione dal registro STAR. Possiamo quindi riformuare le diseguaglianze di temporizzazione come:

$$\begin{cases} T \geq T_{hold} + T_{a_monte} + T_{RC} + T_{setup} \\ T \geq T_{prop} + T_{RC} + T_{setup} \\ T \geq T_{hold} + T_{a_monte} + T_{RC} + T_{a_valle} \\ T \geq T_{prop} + T_{RC} + T_{a_valle} \end{cases}$$

dove i tempi di attraversamento da ingresso a registro, da registro a registro e da registro a uscita sono sostituiti dal tempo di attraversamento di RC come mai?

Notiamo che al variare dell'ingresso, una rete di Mealy può produrre una nuova uscita *prima dell'aggiornamento del clock*. Questo rende le reti di Mealy **non trasparenti**: gli ingressi sono connessi direttamente alle uscite (in senso logico), ergo cicli di retroazione possono creare oscillazioni incontrollate. Prendiamo ad esempio il contatore visto precedentemente: è effettivamente una **rete di Mealy** rispetto alle uscite di riporto *eu* e *ei*. L'uscita *q*, invece, che è collegata direttamente al registro, non è trasparente (la chiamiamo *uscita di Moore*). Notiamo quindi che basta un'*uscita di Mealy* a rendere una rete una rete di Mealy.