Electric Vehicle (EE60082)

Lecture 10: Motor drive for EV (part 6)

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Switching State Vectors (recap)

$\vec{V}_{o} = [pt]$	[nn] = [nnn]] at center	point
$r_0 - LPF$	P] $-$ [m	j at conton	Pomi

	ρ	θ (°)
$\vec{V}_{_{I}}[pnn]$		30
$\vec{V}_2[ppn]$	$\sqrt{2} \cdot V_{dc}$	90
$\vec{V}_3[npn]$		150
$\vec{V}_{4}[npp]$		-150
$\vec{V}_{5}[nnp]$		-90
$\vec{V}_6[pnp]$		-30
$ec{V}_{\scriptscriptstyle 0}[ppp]$		0
$\vec{V_o}[nnn]$	0	0

Vector synthesis (recap)

Step 1: Choose desired switching state vectors to synthesize $ec{V}_{ref}$

Step 2: Calculate the duty ratios of chosen switching state vectors

Step 3: Make the sequence of chosen switching state vectors

Vector selection (recap)

- Minimize the number of switching
- Minimize the harmonic distortion

☞ Nearest Three Vectors (NTV)

 $\vec{V}_0 = [ppp] = [nnn]$ at center point

High frequency synthesis (recap)

$$\int_{0}^{T_{S}} \vec{V}_{ref} dt = \sum_{i} \left(\int_{0}^{T_{i}} \vec{V}_{i} dt \right), \qquad \sum_{i} T_{i} = T_{S}$$

For example
$$\int_{0}^{T_{S}} \vec{V}_{ref} dt = \int_{0}^{T_{I}} \vec{V}_{I} dt + \int_{T_{I}}^{T_{I}+T_{2}} \vec{V}_{2} dt + \int_{T_{I}+T_{2}}^{T_{S}} \vec{V}_{0} dt$$

Area of Total area of

$$\vec{V}_0 = [ppp] = [nnn]$$
 at center point

Duty ratio in sector I (recap)

From HF synthesis definition, $\int_{0}^{T_{S}} \vec{V}_{ref} dt = \int_{0}^{T_{I}} \vec{V}_{I} dt + \int_{T_{I}}^{T_{I}+T_{2}} \vec{V}_{2} dt + \int_{T_{I}+T_{2}}^{T_{S}} \vec{V}_{0} dt$

Assume \vec{V}_{ref} is constant in T_S , $\vec{V}_{ref} \cdot T_S = \vec{V}_1 \cdot T_1 + \vec{V}_2 \cdot T_2$

$$\rho \cdot \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix} \cdot T_S = \|V_I\| \cdot \begin{bmatrix} I \\ \theta \end{bmatrix} \cdot T_I + \|V_2\| \cdot \begin{bmatrix} \cos 60^{\circ} \\ \sin 60^{\circ} \end{bmatrix} \cdot T_2$$

where
$$\phi = \theta - 30^{\circ}$$

$$\frac{T_1}{T_S} = d_1 = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_1\|} \cdot \sin(60^\circ - \phi)$$

$$\frac{T_2}{T_S} = d_2 = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_2\|} \cdot \sin \phi$$

$$d_0 = 1 - d_1 - d_2$$

Duty ratio in other sectors (recap)

Other sectors have the same results of duty ratio.

$$\frac{T_N}{T_S} = d_N = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_N\|} \cdot \sin(60^\circ - \phi)$$

$$\frac{T_{N+1}}{T_S} = d_{N+1} = \frac{2}{\sqrt{3}} \cdot \frac{\rho}{\|V_{N+1}\|} \cdot \sin \phi$$

$$d_0 = 1 - d_N - d_{N+1}$$

where
$$\phi = \theta - (N-1) \cdot 60^{\circ} - 30^{\circ}$$

 $N : sector\ number\ (1 \sim 6)$

$$\vec{V}_{ref(steady-state)} = \rho \cdot e^{j\theta} = \sqrt{\frac{3}{2}} \cdot V_m \cdot e^{j\omega t}$$

Modulation index (recap)

For all the switching state vectors, $||V_N|| = \sqrt{2} \cdot V_{dc}$ and $\rho = \sqrt{\frac{3}{2}} \cdot V_m$

$$d_N = \frac{V_m}{V_{dc}} \cdot \sin(60^\circ - \phi)$$

$$d_{N+1} = \frac{V_m}{V_{dc}} \cdot \sin \phi$$

$$d_0 = I - d_N - d_{N+1}$$

Define the modulation index

$$M = \frac{V_m}{V_{dc}}$$

$$d_N = M \cdot \sin(60^\circ - \phi)$$

$$d_{N+1} = M \cdot \sin \phi$$

$$d_0 = I - d_N - d_{N+1}$$

Vector sequence – 3ph, symmetric (recap)

र्ग हिटामान् एक स्थापन स्यापन स्थापन स्यापन स्थापन स्थापन

- Use both zero switching state vectors
- Six commutations per switching cycle

Vector sequence – 2ph, asymmetric (recapital)

- Use a zero vector in one switching cycle $\begin{cases} \text{Sector I, III, V : [ppp]} \\ \text{Sector II, IV, VI : [nnn]} \end{cases}$
- Asymmetrical sequence
- Four commutations Reduced switching losses

Vector sequence – 2ph, symmetric (recap)

्राप्ता स्थापन स्यापन स्थापन स्यापन स्थापन स्थापन

- Use a zero vector in one switching cycle $\begin{cases} \text{Sector I, III, V : [ppp]} \\ \text{Sector II, IV, VI : [nnn]} \end{cases}$
- Four commutations Reduced switching losses

< Example in sector I >

AC volage generation with space vector (rec

Example:

- DC voltage, Vdc = 400V
- Switching frequency, fsw = 100 kHz
- ➤ Line frequency, fline=100 Hz
- \triangleright R-L load, 1Ω , 1μ H

VSI simulation (recap)

VSI simulation (recap)

VSI simulation - modulation (recap)

VSI simulation - modulation (recap)


```
% inputs: M=modulation index, Ts=switching period, t=simulation time,
% wt=fundamental angle
function pwm = waveformgenerator(M,Ts,t,wt)
p=[1;0]; n=[0;1];
% find the current sector and relative angle phi
theta=rem((wt),2*pi)-pi/6;
if theta<0
    theta=theta+2*pi;
end
if theta<(pi/3)</pre>
    phi=theta; V1=[p;n;n]; V2=[p;p;n];
                                                  % sector 1
elseif theta<(2*pi/3)</pre>
    phi=theta-pi/3; V1=[p;p;n]; V2=[n;p;n];
                                                  % sector 2
elseif theta<(3*pi/3)</pre>
    phi=theta-2*pi/3; V1=[n;p;n]; V2=[n;p;p];
                                                  % sector 3
elseif theta<(4*pi/3)</pre>
    phi=theta-3*pi/3; V1=[n;p;p]; V2=[n;n;p];
                                                  % sector 4
elseif theta<(5*pi/3)</pre>
    phi=theta-4*pi/3; V1=[n;n;p]; V2=[p;n;p];
                                                  % sector 5
else
    phi=theta-5*pi/3; V1=[p;n;p]; V2=[p;n;n];
                                                  % sector 6
end
V0=[n;n;n];
V7=[p;p;p];
% find time durations for vectors
T1=M*sin(pi/3-phi)*Ts;
T2=M*sin(phi)*Ts;
```

```
% relative time in a switching period
tsec=rem(t,Ts);
% apply the vectors
                         -- for three phase centered modulation (0127-7210)
if tsec<T0/4
    : Wm=V0
elseif tsec<(T0/4+T1/2)
    pwm=V1;
elseif tsec<(T0/4+T1/2+T2/2)</pre>
    pwm=V2:
elseif tsec<(T0/4+T1/2+T2/2+T0/2)
    pwm=V7:
elseif tsec<(T0/4+T1/2+T2/2+T0/2+T2/2)
    pwm=V2;
elseif tsec<(T0/4+T1/2+T2/2+T0/2+T2/2+T1/2)
    pwm=V1;
else
    pwm=V0;
end
```

T0=Ts-T1-T2;

VSI simulation - modulation (recap)

Exercise:

Implement modulation with three phase symmetric (0127210) and two phase symmetric (01210) PWM

- Compare filtered voltage and current waveforms
- Compare common mode voltage waveforms
- Compare unfiltered current waveforms
- Which one is better?

Electromagnetic Interference

In 1992, a woman died because pacemaker failure when the technicians turned on their radio transmitter to ask for advice

- Another example is the explosion of the Texaco refinery in Milford Haven UK, on the 24th of July 1994,
 - which was caused by an electrical storm giving rise to power surges
 - > tripped out a number of pump motors while leaving others running.
 - The explosion led to 26 people being sustainably injured and damage of £48 million.

Electromagnetic Interference

Electromagnetic Compatibility (EMC)

Electromagnetic emissions

- Reduce Conducted emissions
 - > Radio frequency conducted emissions
 - ➤ To prevent connected cables from radiating and
 - To avoid the interference of connected equipment
 - > Harmonics
 - To prevent distortion of public mains supply
 - > Flickers
 - > to avoid unsteadiness
- > Reduce Radiated emissions
 - >To prevent disturbance of nearby electrical and electromechanical equipment

EMI standards

- Conducted EMI standards
 - measurement done on the connecting cables
 - > Frequency range depends on products and standards to comply
 - ➤ 150 kHz to 30MHz (CISPR 32 and FCC 47)
- Radiated EMI standards
 - > measured in an anechoic or semi-anechoic chamber or at an open area test site (OATS).
 - frequency range depends on products and standards to comply
 - ➤30MHz to 6 GHz (CISPR 32)
 - ➤ 30MHz up to 40 GHz (FCC 47)

EMC regulations

EMC Standards

Developed by international organizations (IEC, CISPR,...) Developed by national organizations, authorities (FCC,...)

National standards refer to international standards

1

Law determines which EMC Standards are to apply for (presumption of) conformity.

EMC Directives / EMC Regulations / EMC Laws

Issued by customs unions (EU, EAEU,...)

Issued by national, commissions, administrations (FCC, SAMR, ...)

National law implements international directives, law and regulations

EMC compliance mark

Bureau of Indian Standards (BIS) mandates Compulsory Registration Scheme (CRS)

> BIS CRS Mark

R-xxxxxxx

- CE Mark (Europe)
- FCC Mark (USA)

CISPR 25 EMI test setup

CISPR 25 EMI test example

EMI Filter

EMI noise simulation

LISN model

EMI DM noise comparison

3-ph symmetric SVPWM

2-ph symmetric SVPWM

Thank you!