Дискретна математика

Колоквијум II

1. Доказати да граф са 15 чворова у ком је минимални степен чвора 3 има највише 3 компоненте.

Peшење: Претпоставимо да имамо $k \geq 4$ компоненти. Како је $\delta(G) = 3$ свака компонента мора имати бар 4 чвора. Сада је укупан број чворова графа G већи или једнак од $k \cdot 4 \geq 16$, што је контрадикција са условом да G има 15 чворова.

2. Доказати да ако стабло T не садржи чвор степена 2, онда T има већи број висећих чворова него чворова степена већег од 2.

Peшење: Нека је kброј висећих чворова у стаблу T. На основне теорије графова важи

$$2(n-1) = \sum d(v) \ge k \cdot 1 + (n-k) \cdot 3 = 3n - 2k,$$

одакле добијамо $k \geq \frac{n}{2} + 1$. Како је висећих чворова више од $\frac{n}{2}$, тривијално закључујемо да их има више него невисећих чворова.

- 3. Да ли је следећи граф
 - а) Ојлеров,
 - б) Хамилтонов?

Образложити одговор и написати одговарајућу контуру ако постоји.

Решење: Граф је и Ојлеров и Хамилтонов. На следећој слици су приказана по једна Ојлерова и Хамилтонова контура за дати граф.

4. Доказати да у повезаном планарном графу са n чворова и e грана у ком све области имају најмање k ивица важи $e \leq \frac{k(n-2)}{k-2}$.

Peшење: Пошто све области имају најмање k ивица важи $2e \geq r \cdot k$, тј. $r \leq \frac{2e}{k}$. Пошто је граф планаран важи Ојлерова формула r+n-e=2. Сада је $e-n+2 \leq \frac{2e}{k}$, одакле је даље $e(k-2) \leq nk-2k$, па је $e \leq \frac{k(n-2)}{k-2}$.