Matemática atuarial

Aula 3-Juros e Inflação

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leronardo.costa@unifal-mg.edu.br</u>

➤ Inflação

- ➤ Aumento médio de preços, ocorrido no período considerado, usualmente medido por um índice expresso como taxa percentual.
 - > FIPE
 - > FGV
 - **→** DIEESE
- É a elevação generalizada dos preços de uma economia.
 - > Excesso de gastos
 - > Aumento de salários mais rápido do que da produtividade
 - > Aumento dos lucros
 - ➤ Aumento nos preços das matérias primas
 - > Inércia

- \triangleright Taxa real de juros (t_r)
 - Essa taxa elimina o efeito da inflação
 - ➤ Podem ser inclusive negativas

A relação entre a taxa de juros efetiva (i) a taxa de inflação no período (j) e a taxa real (t_r) é dada por:

$$(1+i) = (1+t_r)(1+j)$$

> EXEMPLO 15

Suponha que para o período de 1 ano, a inflação tenha sido de 15%. E a taxa nominal de juros que um banco cobra sobre um empréstimo (capitalizado mensalmente) seja de 36% ao ano. Qual é a taxa real de ganho do banco?

> EXEMPLO 15

Suponha que para o período de 1 ano, a inflação tenha sido de 15%. E a taxa nominal de juros que um banco cobra sobre um empréstimo (capitalizado mensalmente) seja de 36%. Qual é a taxa real de ganho do banco?

Resp.:

$$i = \left(1 + \frac{0,36}{12}\right)^{12} - 1$$

$$i = 42,58\% a. a.$$

$$(1+0.4258) = (1+t_r)(1+0.15)$$

$$t_r \approx 23,98\% a. a.$$

O ganho real do banco terá sido de 23,98% a.a.

Juros Compostos - Valor presente e Valor futuro

$$M = P(1+i)^n$$

 \triangleright O capital P também é chamado de <u>valor presente</u>, F_0 , (V.P.) e o montante M de <u>valor futuro</u>, F(V.P.), assim:

$$F = F_0(\mathbf{i} + \mathbf{1})^n$$

Logo:

$$F_0 = \frac{1}{(1+i)^n} F$$

 $\succ FCC(i,n) = (1+i)^n$: fator de capitalização (O incremento no valor presente até se tornar valor futuro).

 $ightharpoonup FAC(i, n) = v^n = \frac{1}{(1+i)^n}$ é chamado de <u>fator de atualização do capital</u>, <u>ou fator de desconto</u> (O decremento no valor futuro até voltar ao valor presente).

➤ Série é a generalização do conceito de soma para uma sequencia de infinitos termos.

$$S_n = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$$

➤ Denota-se por sequencia de somas parciais de um séria os seguintes termos:

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$

 \triangleright Se a é um número real diferente de zero, então a série infinita:

$$S_n = \sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ... + ar^n$$

É chamada, série geométrica de razão r

➤ Neste caso a sequencia de somas parciais da série é:

$$S_0 = a$$

$$S_1 = a + ar$$

$$S_2 = a + ar + ar^2$$

• • •

ightharpoonup A n-ésima soma parcial de uma séria geométrica $S_n = \sum_{n=0}^\infty a r^n$ é

$$S_n = \frac{a(1-r^{n+1})}{1-r}$$

para $r \neq 1$

Demonstração:

$$S_n = a + ar + .. + ar^n$$
 (1)

Multiplicando-se pela razão r:

$$rS_n = ar + ar^2 + \dots + ar^{n+1}$$
 (2)

Subtraindo-se a (2) de (1), cancelando-se os termos repetidos:

$$S_n - rS_n = (a + ar + ... + ar^n) - (ar + ar^2 + ... + ar^{n+1})$$

 $S_n - rS_n = a - ar^{n+1}$
 $S_n(1 - r) = a(1 - r^{n+1})$

$$S_n = \frac{a(1-r^{n+1})}{(1-r)}$$

 \triangleright Série de pagamentos é um conjunto de pagamentos de valores $R_1, R_2, R_3, \ldots, R_n$ distribuidos ao longo do tempo (n períodos).

- > Pagamentos (ou recebimentos) constantes.
- ➤ Pagamentos (ou recebimentos) distintos.

- \succ O conjunto de pagamentos ao longo dos n períodos, constitui-se num fluxo de caixa.
 - Fluxo Antecipado: Pagamentos (ou recebimentos) no início dos períodos, ou seja, os depósitos ou pagamentos ocorrem na data zero.
 - ➤ No caso de depósitos o montante é resgatado UM PERÍODO APÓS o último depósito.
 - Fluxo Postecipado: Pagamentos (ou recebimentos) no final dos períodos, ou seja, os depósitos ocorrem um período após a data zero.
 - ➢No caso de depósitos o montante é resgatado com O ÚLTIMO DEPÓSITO.

EXEMPLO 16: (Pagamentos constantes.)

Faz-se 24 depósito mensal de R\$ 50 em uma conta de poupança que paga juros 0,5%, composto mensalmente. Qual é o montante na conta ao fim de dois anos? Considere o fluxo antecipado.

➤ Depois de 24 meses o dinheiro depositado no primeiro mês montara á:

$$M_{24} = 50(1 + 0.005)^{24} = 50(1.005)^{24}$$

Após 23 meses, o dinheiro depositado no segundo mês montará á: $M_{23} = 50(1 + 0.005)^{23} = 50(1.005)^{23}$

ightharpoonupO último deposito renderá por um único período, $M_1 = 50(1+0,005)$

	Montante para o depositado no mês 1	Montante para o depositado no mês 2	Montante para o depositado no mês 3	
Mês 0	\$50 depositado			
Mês 1	M_1	\$50 depositado		
Mês 2	M_2	M_1	\$50 depositado	
Mês 3	M_3	M_2	M_1	
			··	
Mês 24	M_{24}	M_{23}	M_{22}	

Prosseguindo desta maneira, vemos que o montante resultante dos 24 depois será:

$$F_{24} = M_{24} + M_{23} + M_{22} + \dots + M_1 = \sum_{n=1}^{24} M_n$$

$$F_{24} = R(1+i)^{24} + R(1+i)^{23} + R(1+i)^{22} + \dots + R(1+i) = \sum_{n=1}^{24} R(1+i)^n$$

$$F_{24} = \sum_{n=1}^{24} 50(1,005)^n = -50 + \sum_{n=0}^{24} 50(1,005)^n$$

Repare que trata-se de um série geometria de razão: r = 1,005 = 1 + i, e constantes iguais a: a = 50 = R

Como

$$S = S_{24} + S_{23} + S_{22} + ... + S_0 = \frac{a(1 - r^{24+1})}{(1 - r)}$$

temos

$$R + F_{24} = \frac{R[1 - (1+i)^{24+1}]}{1 - (1+i)} = \frac{-R[1 - (1+i)^{24+1}]}{i} = \frac{R[(1+i)^{24+1} - 1]}{i}$$

$$F_{24} = \frac{R[(1+i)^{24+1}-1]}{i} - R = \frac{R(1+i)^{24}(1+i) - R - Ri}{i}$$

$$F_{24} = \frac{R[(1+i)^{24}(1+i) - (1+i)]}{i} = \frac{R(1+i)[(1+i)^{24} - 1]}{i}$$

Logo:

$$F_{24} = \frac{50(1,005)(1,005^{24} - 1)}{0.005} \approx \$1277,956$$

$$F_n = \frac{R(1+i)[(1+i)^n - 1]}{i}$$

	Fluxo Antecipado	Fluxo Postecipado
Pagamento Constante	$F_n = \frac{R(1+i)[(1+i)^n - 1]}{i}$	$F_n = \frac{R[(1+i)^n - 1]}{i}$

> EXEMPLO 17:

Faz-se um depósito mensal de R\$ 100,00 em uma conta de poupança que paga juros de 0,6% a.m. Qual é o montante na conta ao fim de três meses? Considere o fluxo antecipado e postecipado.

➤ Fluxo antecipado:

$$F_3 = \frac{100(1+0,006)[(1+0,006)^3 - 1]}{0,006} = R$303,6144$$

> Fluxo postecipado:

$$F_3 = \frac{100[(1+0,006)^3 - 1]}{0,006} = R$301,8036$$

Montante fir	nal
--------------	-----

Fluxo postecipado

$$F_n = \frac{R(1+i)[(1+i)^n - 1]}{i}$$

$$F_n = \frac{R[(1+i)^n - 1]}{i}$$

- \succ Determinar o principal P que deve ser aplicada a uma taxa i para que se possa retirar o valor R em cada um dos n períodos.
- \triangleright Qual valor P que financiado à taxa i por período, pode ser amortizado em n pagamentos iguais a R.

	Capital investido	
	Fluxo Antecipado	Fluxo Postecipado
Pagamento Constante	$P = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}}$	$P = \frac{R[(1+i)^n - 1]}{i(1+i)^n}$

> EXEMPLO 18:

Uma empresa conseguiu um financiamento de R\$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga no ato da liberação dos recursos</u>, a uma taxa de 2% ao mês. Qual o valor da prestação?

Resp.:

$$P = 15000$$

$$i = 0.02$$

$$n = 4$$

$$P = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}}$$

> EXEMPLO 18:

Uma empresa conseguiu um financiamento de R\$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga no ato da liberação dos recursos</u>, a uma taxa de 2% ao mês. Qual o valor da prestação?

Resp.:

$$P = R \frac{[(1+i)^n - 1]}{i(1+i)^{n-1}}$$

$$R = \frac{P[i(1+i)^{n-1}]}{[(1+i)^n - 1]} = \frac{15000[0,02(1,02^3)]}{[(1,02^4) - 1]} = R$3862,11$$

> EXEMPLO 19:

Uma empresa conseguiu um financiamento de R\$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga 30 dias após a liberação dos recursos</u>, a uma taxa de 2% ao mês. Qual o valor da prestação?

Resp.:

$$P = \frac{R[(1+i)^n - 1]}{i(1+i)^n}$$

$$R = \frac{P[i(1+i)^n]}{[(1+i)^n - 1]} = \frac{15000[0,02(1,02^4)]}{[(1,02^4) - 1]} = R$3939,356$$

- ➤ No caso de pagamentos variáveis tem-se que (fluxo antecipado *).
 - > Fluxo antecipado porém o modelo considera deposito no mês de resgate, dai é um fluxo genérico na verdade.
- \triangleright Após o primeiro mês o primeiro deposito (F_0) montara á:

$$F_1 = F_0(1+i) + R_1$$

ightharpoonup Após o segundo mês o primeiro deposito (F_0) acrescido de R_1 montara á:

$$F_2 = F_1(1+i) + R_2$$

Sucessivamente temos que:

$$F_3 = F_2(1+i) + R_3$$

 $F_4 = F_3(1+i) + R_4$

$$F_n = F_{n-1}(i+1) + R_n$$

➤ Note também que:

$$F_1 = F_0(1+i) + R_1$$

$$F_2 = F_1(1+i) + R_2 = [F_0(1+i) + R_1](1+i) + R_2$$

$$F_2 = F_0(1+i)^2 + (1+i)R_1 + R_2$$

$$F_3 = F_2(1+i) + R_3 = [F_0(1+i)^2 + (1+i)R_1 + R_2](1+i) + R_3$$

$$F_3 = F_0(1+i)^3 + (1+i)^2R_1 + (1+i)R_2 + R_3$$

$$F_4 = F_3(1+i) + R_4 = [F_0(1+i)^3 + (1+i)^2R_1 + (1+i)R_2 + R_3](1+i) + R_4$$

$$F_4 = F_0(1+i)^4 + (1+i)^3R_1 + (1+i)^2R_2 + (1+i)R_3 + R_4$$
...
$$F_n = F_0(i+1)^n + \sum_{j=1}^n (1+i)^{n-j}R_j$$
Acumulação do capital inicial.
Soma dos valores acumulados nos depósitos intermediários.

Soma dos valores acumulados nos depósitos intermediários.

> Modelo genérico

$$F_n = F_0(i+1)^n + \sum_{j=1}^n (1+i)^{n-j} R_j$$

> Fluxo antecipado

$$F_n = F_0(i+1)^n + \sum_{j=1}^{n-1} (1+i)^{n-j} R_j$$

> Fluxo postecipado

$$F_n = \sum_{j=1}^{n} (1+i)^{n-j} R_j$$

	Fluxo Antecipado	Fluxo postecipado
Pagamento Constante	$F_n = \frac{R(1+i)[(1+i)^n - 1]}{i}$	$F_n = \frac{R[(1+i)^n - 1]}{i}$
Pagamento Variável	$F_n = F_0(i+1)^n + \sum_{j=1}^{n-1} (1+i)^{n-j} R_j$	$F_n = \sum_{j=1}^{n} (1+i)^{n-j} R_j$

> EXEMPLO 20:

Faz-se um depósito mensal de R\$ 100,00 em uma conta de poupança que paga juros de 0,6% a.m. Qual é o montante na conta ao fim de três meses? Considere o fluxo antecipado e postecipado.

➤ Fluxo antecipado:

$$F_3 = \frac{100(1+0,006)[(1+0,006)^3 - 1]}{0,006} = R$303,6144$$

> Fluxo postecipado:

$$F_3 = \frac{100[(1+0,006)^3 - 1]}{0,006} = R$301,8036$$

> Fluxo antecipado:

$$F_3 = \frac{100(1+0,006)[(1+0,006)^3 - 1]}{0,006} = R$303,6144$$

ou

$$F_3 = 100(1+0,006)^3 + \sum_{j=1}^{2} (1+0,006)^{3-j} 100 = 100(1,006)^3 + (1,006)^2 100 + (1,006)100$$

$$= R$303,6144$$

>Fluxo postecipado:

$$F_3 = \frac{100[(1+0,006)^3 - 1]}{0.006} = R$301,8036$$

ou

$$F_3 = \sum_{i=1}^{3} (1 + 0,006)^{3-j} 100 = (1,006)^2 100 + (1,006) 100 + 100 = R$301,8036$$

	Fluxo Antecipado	Fluxo Postecipado
Pagamento Constante	$P = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}}$	$P = \frac{R[(1+i)^n - 1]}{i(1+i)^n}$
Pagamento Variável	$P = F_0 + \sum_{j=1}^{n-1} \left(\frac{1}{1+i}\right)^j R_j$	$P = \sum_{j=1}^{n} \left(\frac{1}{1+i}\right)^{j} R_{j}$

> EXEMPLO 21:

Uma empresa conseguiu um financiamento de *R*\$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga no ato da</u> <u>liberação dos recursos</u>, a uma taxa de 2% ao mês. Qual o valor da prestação?

> EXEMPLO 21:

Uma empresa conseguiu um financiamento de R\$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga no ato da liberação dos recursos</u>, a uma taxa de 2% ao mês. Qual o valor da prestação?

Resp.:

$$P = R \frac{[(1+i)^n - 1]}{i(1+i)^{n-1}}$$

$$R = \frac{P[i(1+i)^{n-1}]}{[(1+i)^n - 1]} = \frac{15000[0,02(1,02^3)]}{[(1,02^4) - 1]} = R$3862,11$$

Pagamento no ato da liberação dos recursos

$$P = F_0 + \sum_{j=1}^{n-1} \left(\frac{1}{1+i}\right)^J R_j = R + \left(\frac{1}{1+i}\right) R + \left(\frac{1}{1+i}\right)^2 R + \left(\frac{1}{1+i}\right)^3 R$$

$$R = \frac{P}{\left[1 + \left(\frac{1}{1+i}\right) + \left(\frac{1}{1+i}\right)^2 + \left(\frac{1}{1+i}\right)^3\right]} = \frac{15000}{1 + \frac{1}{1,02} + \frac{1}{1,0404} + \frac{1}{1,0612}} = R$3862,11$$

➤ EXEMPLO 22:

Uma empresa conseguiu um financiamento de R\$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga 30 dias após a liberação dos recursos</u>, a uma taxa de 2% ao mês. Qual o valor da prestação?

> EXEMPLO 22:

Uma empresa conseguiu um financiamento de R\$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga 30 dias após a liberação</u> <u>dos recursos</u>, a uma taxa de 2% ao mês. Qual o valor da prestação?

Resp.:

$$P = \frac{R[(1+i)^n - 1]}{i(1+i)^n}$$

$$R = \frac{P[i(1+i)^n]}{[(1+i)^n - 1]} = \frac{15000[0,02(1,02^4)]}{[(1,02^4) - 1]} = R$3939,356$$

Pagamento 30 dias após a liberação dos recursos

$$P = \sum_{j=1}^{n} \left(\frac{1}{1+i}\right)^{j} R_{j} = \left(\frac{1}{1+i}\right) R + \left(\frac{1}{1+i}\right)^{2} R + \left(\frac{1}{1+i}\right)^{3} R \left(\frac{1}{1+i}\right)^{4} R$$

$$R = \frac{P}{\left[\left(\frac{1}{1+i}\right) + \left(\frac{1}{1+i}\right)^2 + \left(\frac{1}{1+i}\right)^3 \left(\frac{1}{1+i}\right)^4\right]} = \frac{15000}{\left[\left(\frac{1}{1,02}\right) + \left(\frac{1}{1,02}\right)^2 + \left(\frac{1}{1,02}\right)^3 + \left(\frac{1}{1,02}\right)^4\right]}$$

$$R = R$3939,35$$

	Fluxo Antecipado	Fluxo postecipado
Pagamento Constante	$F_n = \frac{R(1+i)[(1+i)^n - 1]}{i}$	$F_n = \frac{R[(1+i)^n - 1]}{i}$
Pagamento Variável	$F_n = F_0(i+1)^n + \sum_{j=1}^{n-1} (1+i)^{n-j} R_j$	$F_n = \sum_{j=1}^{n} (1+i)^{n-j} R_j$

Fluxo Antecipado	Fluxo Postecipado
$P = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}}$	$P = \frac{R[(1+i)^n - 1]}{i(1+i)^n}$
$P = F_0 + \sum_{j=1}^{n-1} \left(\frac{1}{1+i}\right)^j R_j$	$P = \sum_{j=1}^{n} \left(\frac{1}{1+i}\right)^{j} R_{j}$
	$P = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}}$

