MOwNiT- laboratorium 2

Michał Bert grupa 4 (śr. 16:40-18:10)

Spis treści

Cel laboratorium	2
Konfiguracja sprzętowa	2
Interpolacja	2
Interpolacja wielomianem Lagrange'a	2
Interpolacja wielomianem Newtona	3
Funkcja do interpolacji	3
Interpolacja funkcji	4
Wykresy	4
Interpolacja Lagrange'a, rozkład węzłów równomierny	4
Interpolacja Lagrange'a, rozkład zer Czebyszewa	6
Interpolacja Newtona, rozkład węzłów równomierny:	7
Interpolacja Newtona, rozkład zer Czebyszewa	8
Błędy interpolacji	9
Błąd maximum	9
Błąd średniokwadratowy	10
Wnioski	10

Cel laboratorium

W ramach laboratorium należało zaimplementować algorytmy interpolacji wielomianowej w wersji Lagrange'a oraz Newtona. Dodatkowo węzły interpolacyjne miały być rozmieszczone w dwóch możliwych wariantach: równomiernie na przedziale (z punktami końcowymi włącznie) oraz w miejscach zerowych odpowiedniego wielomianu Czebyszewa.

Funkcję wraz z jej interpolacją należało naszkicować oraz obliczyć błędy interpolacji.

Konfiguracja sprzętowa

Zadanie zostało wykonane na komputerze z procesorem i5-12400f oraz systemem Windows 11 w języku Python.

Interpolacja

W problemie interpolacji funkcji f poszukujemy takiej funkcji g, która będzie przechodzić przez wyznaczone punkty na wykresie f, tzw. węzły interpolacyjne.

W poniższych wzorach zakładamy, że mamy k+1 węzłów interpolacyjnych

Interpolacja wielomianem Lagrange'a

W przypadku wielomianu Lagrange'a wzór interpolacyjny wygląda następująco:

$$L(x) = \sum_{j=0}^{k} y_j l_j(x)$$

Gdzie $l_i(x)$ oznacza wielomian bazowy, dany następującym wzorem:

$$l_j(x) = \prod_{\substack{0 \le m \le k \\ m \ne j}} \frac{x - x_m}{x_j - x_m}$$

Interpolacja wielomianem Newtona

Wzór wielomianu interpolacyjnego Newtona prezentuje się następująco:

$$N(x) = \sum_{j=0}^{k} a_j n_j(x)$$

Gdzie $n_i(x)$ oznacza wielomian bazowy, dany następującym wzorem:

$$n_j(x) = \prod_{i=0}^{j-1} (x - x_i)$$

Natomiast współczynniki a_i są tzw. różnicą dzieloną, zdefiniowaną następująco:

$$a_{j} = [y_{0}, \dots, y_{j}]$$

$$\begin{cases} [y_{k}] = y_{k}, & k \in \{0, \dots, n\} \\ [y_{k}, \dots, y_{k+j}] = \frac{[y_{k+1}, \dots, y_{k+j}] - [y_{k}, \dots, y_{k+j-1}]}{x_{k+j} - x_{k}}, & k \in \{0, \dots, n-1\}, & j \in \{1, \dots, n\} \end{cases}$$

Funkcja do interpolacji

Przydzielona funkcja ma następujący wzór:

$$f(x) = \sin(2x) * \sin\left(\frac{x^2}{\pi}\right), \quad x \in [0, 3\pi]$$

Przed przejściem do interpolacji warto obliczyć jej miejsca zerowe – pozwoli to na wyjaśnienie wyników.

Rozwiązując równanie

$$f(x) = 0$$

Otrzymujemy następujące rozwiązania:

$$\begin{cases} x = -\sqrt{n} * \pi, & n \in \mathbb{Z} \\ x = \sqrt{n} * \pi, & n \in \mathbb{Z} \\ x = n\frac{\pi}{2}, & n \in \mathbb{Z} \end{cases}$$

Interpolacja funkcji

Wykresy

Na poniższych wykresach n oznacza liczbę węzłów interpolacyjnych

Interpolacja Lagrange'a, rozkład węzłów równomierny

Rysunek 1: Interpolacja wielomianem Lagrange'a dla węzłów o rozkładzie równomiernym

Rysunek 2: Interpolacja Lagrange'a dla rozkładu węzłów równomiernego - dobrze widoczny efekt Rungego

Jak widać na powyższych wykresach, od n = 15 zaczyna być widoczny efekt Rungego. Dodatkowo zastanawiać może wygląd wykresów dla n = 3, 4 oraz 7. Płaski wykres jest spowodowany faktem, że węzły te mają swoje współrzędne x idealnie w miejscach zerowych interpolowanej funkcji.

Jeżeli narysujemy wykres bez funkcji interpolowanej zobaczymy, że linia ta nie jest idealnie prosta:

Rysunek 3: Wykres wielomianu interpolującego Lagrange'a dla równomiernego rozkładu węzłów dla n = 3

Wykres ten przypomina funkcję kwadratową. Patrząc jednak na skalę osi Y można łatwo zauważyć, że największa wartość tego wielomianu jest równa $\cong 2.5*10^{-16}$. Jest to spowodowane niedokładnością arytmetyki zmiennoprzecinkowej.

Rysunek 4: Interpolacja Lagrange'a dla węzłów w miejscach zer wielomianu Czebyszewa

Rysunek 5: Interpolacja Lagrange'a dla rozkładu węzłów w miejscach zer wielomianu Czebyszewa - brak widocznego efektu Rungego

Patrząc na powyższe wykresy można dość łatwo zauważyć, że rozłożenie węzłów interpolacyjnych w miejscach zer wielomianu Czebyszewa zapobiega występowaniu efektu Rungego. Dodatkowo tym razem współrzędne x nie są rozmieszczone w miejscach zerowych funkcji interpolowanej, co skutkuje innym wyglądem wykresu dla n = 3, 4 oraz 7.

Interpolacja Newtona, rozkład węzłów równomierny:

Rysunek 6: Interpolacja wielomianem Newtona dla węzłów o rozkładzie równomiernym

Rysunek 7: Interpolacja Newtona dla rozkładu węzłów równomiernego - dobrze widoczny efekt Rungego

Rysunek 8: Interpolacja Newtona dla węzłów w miejscach zer wielomianu Czebyszewa

Rysunek 9: Interpolacja Newtona dla rozkładu węzłów w miejscach zer wielomianu Czebyszewa - brak widocznego efektu Rungego

Z przedstawionych wykresów można zauważyć, że interpolacja Newtona radzi sobie bardzo podobnie do interpolacji Lagrange'a

Błędy interpolacji

Dla każdej interpolacji zostały wyliczone dwa rodzaje błędów: błąd maximum oraz błąd średniokwadratowy. W przedstawionych poniżej wzorach m oznacza liczbę punktów, dla których obliczamy wartości funkcji oraz wielomianu interpolacyjnego. Przyjmuję to oznaczenie, aby rozróżnić tą wartość od używanej wcześniej wartości n, oznaczającej ilość węzłów interpolacyjnych. W przypadku obu tabel m=1000.

Błąd maximum

Błąd maximum można obliczyć następującym wzorem:

$$\max_{i=0,\dots,m} |f(x_i) - w(x_i)|$$

Dlad manifesture							
Błąd maximum							
n	Interpolacja Lagrange'a		Interpolacja Newtona				
	Podział równomierny	Zera Czebyszewa	Podział równomierny	Zera Czebyszewa			
3	9.97495E-01	1.10221E+00	9.97495E-01	1.10221E+00			
4	9.97495E-01	1.24203E+00	9.97495E-01	1.24203E+00			
5	1.42076E+00	1.67208E+00	1.42076E+00	1.67208E+00			
7	9.97495E-01	1.56799E+00	9.97495E-01	1.56799E+00			
10	3.09102E+00	1.39623E+00	3.09102E+00	1.39623E+00			
15	4.88559E+01	1.11958E+00	4.88559E+01	1.11958E+00			
20	7.76951E+02	1.17533E+00	7.76951E+02	1.17533E+00			

Tabela 1: Wartości błędu maximum dla poszczególnych interpolacji, m=1000

Jak łatwo zauważyć, dla n = 3, 4, 7 w podziale równomiernym wartości błędu są bardzo małe. Jest to spowodowane rozmieszczeniem węzłów w miejscach zerowych badanej funkcji. Z kolei w przypadku n = 20 łatwo można dostrzec efekt Rungego.

Błąd średniokwadratowy

Błąd średniokwadratowy oblicza się według następującego wzoru:

$$\frac{1}{m}\sqrt{\sum_{i=0}^{m} (f(x_i) - w(x_i))^2}$$

Błąd średniokwadratowy							
n	Interpolacja Lagrange'a		Interpolacja Newtona				
	Podział równomierny	Zera Czebyszewa	Podział równomierny	Zera Czebyszewa			
3	1.58187E-02	1.69135E-02	1.58187E-02	1.69135E-02			
4	1.58187E-02	1.62816E-02	1.58187E-02	1.62816E-02			
5	2.02719E-02	1.87869E-02	2.02719E-02	1.87869E-02			
7	1.58187E-02	1.65249E-02	1.58187E-02	1.65249E-02			
10	3.10918E-02	1.60040E-02	3.10918E-02	1.60040E-02			
15	3.19795E-01	1.28856E-02	3.19795E-01	1.28856E-02			
20	4.35232E+00	1.12542E-02	4.35232E+00	1.12542E-02			

Tabela 2: Wartości błędu średniokwadratowego dla poszczególnych interpolacji, m=1000

Błędy średniokwadratowe są dużo mniejsze od błędów maximum. Dodatkowo nie są aż tak wrażliwe na efekt Rungego (chociaż dalej w tym wypadku są wartościami odstającymi). Możemy także zauważyć, że tym razem najmniejsze błędy występują w przypadku n = 20 dla rozmieszczenia węzłów w miejscach zerowych wielomianu Czebyszewa, a nie jak w poprzednio w miejscach zerowych funkcji.

Wnioski

Z przeprowadzonych doświadczeń można zauważyć, że interpolacja Lagrange'a oraz interpolacja Newtona dają praktycznie takie same wyniki. Kolejnym wnioskiem jest fakt, że rozłożenie węzłów interpolacyjnych zgodnie z miejscami zerowymi odpowiedniego wielomianu Czebyszewa zapobiega powstawaniu efektu Rungego.

Dodatkowo ze względu na specyfikę funkcji rozkład równomierny węzłów nie zawsze radził sobie z dobrym jej odwzorowaniem, ze względu na rozłożenie tych węzłów w miejscach zerowych funkcji interpolowanej.