

RISC-V Architectures for High-integrity Feature-Rich Automotive Applications

RISC-V Summit China – August 2024

Matt Bubis – Director of Product Management – Compute Andrew Johnston – Director of Quality, Functional Safety and Cybersecurity

Agenda

RISC-V + PowerVR: The flexible, scalable, compute platform of choice for high-integrity feature-rich applications

The Challenge

Finding the Right Balance

The Solution

The Challenge...

Complex Software Intensive Systems

Finding the Right Balance...

Quality by Design: World class semiconductor IP development lifecycle processes

- ✓ ISO 9001 ✓ IATF 16949 ✓ ISO 15288 ✓ ISO 26262 ✓ ISO 21434 ✓ Staged & Gated Dev Process ✓ V-Lifecycle
- ✓ Embedded a Systems Engineering approach to development and management of complexity

Verification, Validation & QA, Validation & Sales, Validat

Strong heritage in CPU and GPU development including for Automotive applications

The Solution

Integrated Graphics & Compute Processing

- High Performance
- Tile Based Rendering

- Hardware enabled Raytracing
- Efficient
- Scalable
 - Core Multicore Variants available (e.g. MC1-4)
 - SPU (Scalable Processing Unit)
 - Cluster

Integrated Graphics & Compute Processing

Simplified GPU Subsystem view

- 10 Subsystems in total
 - Coupling and Binding
 - QFD
- 5x Subsystems support Compute & Graphics
- 5x Graphics-only Subsystems
- Control Subsystem inclusive of RISC-V FW CPU
- 'Compute-only' GPU variants are available

Distributed Safety Architecture Summary

Requirements → Analysis → Design → Verification of Safety Performance

PHA

Vehicle/Item level analysis to validate AoUs and target ASIL

FMEAs

- FMEAs across top-level/systems and all Subsystems
- > 4000 failure modes analysed

FTA

 Fault tree construct from System, Subsystem, Module and Submodule, including Safety Mechanisms

DFA

 Cardinal DFIs considered across System, Subsystem, Structural (Multicore and Internal Core Hierarchy)

Fault Injection Campaign

Safety Mechanisms inc verification of SM DC/performance

FMEDA

- ASIL-B achieved: DSMs only: > 90% SPFM, > 70% LFM.
- ASIL-C achieved: DSMs + TRP/WGP: > 97 % SPFM, > 80% LFM.

Safety Architecture Summary (Firmware CPU)

Simplified Subsystem View

Same process applied at GPU level applied to CPU:

A generic Pipelined CPU architecture

ASIL-B Distributed Safety with Defence-in-Depth Safety Mechanisms

Results

POWERVR

IMG Distributed Safety Architecture (DSA) – Performance relative to a Non-safety equivalent IP (Generalised)

IP	Configuration	Area overhead	Performance delay	Power penalty	DC
RISC-V CPU	Non-safety	1	No delay	1	0 %
	DCLS	~1.75x	~1x	~1.75x	> 90 %
	IMG DSA	~1.15x	~1.02x	~1.15x	
PowerVR GPU	Non-safety	1	No delay	1	0 %
	DCLS	~1.75x	~1x	~1.75x	> 90 %
	IMG TRP/WGP MC1	~1.15x	~1.9x	~1.15x	
	IMG TRP/WGP MC2+	~1.8x	~1x	~1.8x	
	IMG DSA	~1.20x	~1.02x	~1.20x	

Summary & Conclusions

- = A high performance Compute platform
- = Gamechanger for Al and Graphics
- + Novel Safety Architecture = ASIL qualified
- PowerVR is a good match for RISC-V platforms low in area and high in performance.
 - 2x bus utilisation when used with IMG's own APXM-6600 Host CPU
 - ▲ Best-in-class performance density
- ▲ > ASIL-B metrics achieved per Core with IMG's Distributed Safety Architecture and novel safety mechanisms
 - ✓ Intrinsically Safe hardware closely-coupled distributed safety mechanism approach with Defence-in-Depth: Scalable Safety
 - No complex or convoluted Software Test Libraries (STLs) needed
 - ▲ No performance hogging run-time LBIST needed (remains supported)
- ▲ All major APIs supported: Vulkan, Vulkan SC, and OpenGL and OpenCL
 - ▲ A safe and robust enabling AI/ML platform for advanced use-cases such as L3+ ADAS.

Thank you Cimagination

www.imaginationtech.com