

Бизнис статистика

Експерименти и настани

- Секоја реализација на множество услови S се нарекува експеримент или опит.
- Ваквото определување на поимот експеримент наполно одговара и за таканаречените пасивни експерименти (во кои човекот не влијае) и за таканаречените активни експерименти (кои човекот ги организира и спроведува со одредена цел).

Примери на експерименти

Да ги разгледаме следните примери на експерименти.

- Една монета се фрла во воздух и по нејзиното паѓање на земја, на горната страна од монетата може да се појави "петка" или "глава". Со фрлањето на монетата сме извршиле еден експеримент и како резултат на тој експеримент може да се добие еден од следните исходи: "на горната страна од монетата се појави петка" или "на горната страна од монетата се појави глава".
- Ако вода се загрева на 100°C, тогаш таа ќе почне да врие. Овде е извршен еден експеримент (загревање на вода) и како резултат на тој експеримент се јавува исходот "водата врие".
- Ако се проверува исправноста на производите во една фабрика, тогаш се зема по еден производ, се проверува неговиот квалитет и се утврдува дали е исправен или не. Значи, експериментот е проверка на квалитетот, а можни исходи се: "производот е исправен" и "производот не е исправен".
- Се спроведува тест за да се провери знаењето на учениците. Оценувањето на тестот се прави со поени од 0 до 100. Тогаш експериментот е оценување на еден ученик, а можни исходи се "ученикот освои i поени", каде што $i = 0, 1, \ldots, 100$.

Настани

- Секој резултат (исход) од експериментот S се нарекува настан во врска со експериментот S.
- Настаните се обележуваат со големи печатни букви од латиницата: A, B, C, \dots
- Еден експеримент може да биде детерминистички и недетерминистички. Ако исходот на еден експеримент е однапред познат, тогаш тој експеримент е детерминистички, во спротивно, ако исходот не може со сигурност да се знае однапред, тој експеримент е недетерминистички.
 - Експериментот со загревање на вода е детерминистички.
 - Останатите експерименти од претходните примери се недетерминистички.

Цели на теоријата на веројатност

- При подлабоко проучување на природните и општествените појави се забележува дека постојат сосема малку закони кои се строго детерминистички.
- Најголем дел од експериментите во себе го вклучуваат елементот на случајност.
- Во теоријата на веројатноста се наоѓаат законитостите за настаните кои се резултат на експериментите кои имаат нееднозначен исход.
- Имено, и кај експериментите со нееднозначен исход се воочуваат одредени законитости.

- Да го разгледаме повторно експериментот фрлање монета и настанот А: "падна петка". Ако експериментот се изведува еднаш, тогаш не може со сигурност да се каже кој ќе биде неговиот исход.
- Затоа, нека се изведени 8 серии од по 1000 експерименти под еднакви услови.
- Со $n_i(A)$ се означува бројот на експериментите од i-тата серија во кои се појавил настанот A.
- Резултатите од овие осум серии се претставени во следнатата табела.

i	$n_i(A)$	$\frac{n_i(A)}{1000}$
1	502	0.502
2	504	0.504
3	492	0.492
4	500	0.500
5	510	0.510
6	490	0.490
7	493	0.493
8	509	0.509

Случаен настан

- Настанот A во врска со експериментот S се нарекува случаен настан, ако се исполнети следните два услова:
 - 1° Експериментот S може да се повтори при исти услови колку што сакаме пати;
 - 2° Релативните фреквенции на настанот A, во секоја од повеќе изведени серии експерименти, се броеви кои се приближно еднакви. Тоа значи дека ако се изведат серии од по $n_1, n_2, ..., n_k$ експерименти, тогаш:

$$\frac{n_1(A)}{n_1} \approx \frac{n_2(A)}{n_2} \approx \dots \approx \frac{n_k(A)}{n_k}.$$

Статистичка веројатност

- Релативната фреквенција $\frac{n_i(A)}{n}$ во една серија експерименти е приближна објективна мерка за можноста за појавување на настанот A.
- Меѓутоа, релативните фреквенции за различни серии експерименти се разликуваат помеѓу себе.
- Но, сепак тие се натрупуваат околу некој реален број.
- Реалниот број околу кој се натрупуваат релативните фреквенции на настанот A се нарекува *статистичка* (или *емпириска*) веројатност на настанот A.
- Во дефиницијата на случаен настан, условот 2° обезбедува статистичка стабилност (непроменливост) на релативните фреквенции, а условот 1° обезбедува проверка на условот 2°.

Сигурен и невозможен настан

- \blacksquare За секој експеримент S може да се разгледаат два специјални настани.
 - Сигурен настан во врска со даден експеримент е настанот кој се појавува при секоја реализација на тој експеримент.
 - *Невозможен настан* во врска со даден експеримент е настан што не се појавува никогаш при реализација на дадениот експеримент.

Примери.

Нека експериментот е фрлање коцка.

Се разгледуваат настаните:

 A_1 : падна број од 1 до 6

 A_2 : падна бројот 7.

Тогаш

 A_1 е сигурен настан.

 A_2 е невозможен настан.

Експериментот е извлекување на топче

од кутија во која има 5 бели топчиња.

Се разгледуваат настаните:

 B_1 : извлечено е бело топче,

В₂: извлечено е црно топче.

Тогаш

 B_1 е сигурен настан.

 B_2 е невозможен настан.

Сигурниот и невозможниот настан се случајни настани

- Ако експериментот S се изведува n пати, тогаш сигурниот настан ќе се појави n пати, а невозможниот настан 0 пати.
- Релативната зачестеност на сигурниот настан е $\frac{n}{n} = 1$, а на невозможниот настан $\frac{0}{n} = 0$.
- Ова важи за секоја серија експерименти S.
- Така, сигурниот и невозможниот настан ги задоволуваат условите 1° и 2°, па тие се случајни настани.

Множество елементарни настани Случајни настани

 Да го разгледаме експериментот фрлање коцка. Некои од можните настани во врска со овој експеримент се следните:

A: падна парен број; E_3 : падна бројот 3; E_4 : падна бројот 4; E_1 : падна бројот 1; E_5 : падна бројот 5; E_6 : падна бројот 6.

- Да воочиме дека настанот A се појавува ако се појави еден од настаните E_2 , E_4 или E_6 , а настанот B се појавува ако се појави настанот E_3 или ако се појави E_6 . Значи, настанот A може да се разложи на настаните E_2 , E_4 и E_6 , а настанот B може да се разложи на настаните E_3 и E_6 .
- Од друга страна, настаните E_1 , E_2 , E_3 , E_4 , E_5 и E_6 не може да се разложат на други настани. Затоа, тие настани ги нарекуваме елементарни настани.
- Елементарните настани ќе ги означуваме со симболот E со индекс 1,2,...

Множество елементарни настани

Дефиниција 1.

- *і) Елементарен настан* во врска со даден експеримент е секој логички исход на експериментот кој не може да се разложи на други настани. Притоа, при секоја реализација на експериментот се појавува еден и само еден елементарен настан.
- іі) Множеството од сите вакви настани во врска со еден експеримент се нарекува *множество елементарни настани* и се означува со Ω .

- Експериментот се состои во фрлање коцка. При секоја реализација на експериментот се појавува еден и само еден од настаните E_1, E_2, E_3, E_4, E_5 и E_6 .
- Затоа множеството елементарни настани во врска со овој експеримент е $\Omega = \{E_1, E_2, E_3, E_4, E_5, E_6\}.$

- Експериментот се состои во фрлање на две монети.
- При фрлање на една монета, можен исход е "падна петка" или "падна глава" (ќе пишуваме кратко "петка" или "глава").
- Но, експериментот се состои од фрлање на двете монети заедно, па можните исходи ќе бидат подредени парови, каде што првиот елемент ќе го означува исходот на првата монета, а вториот елемент исходот на втората.
- Множеството елементарни настани е следното:

 $\Omega = \{ (глава, глава), (глава, петка), (петка, глава), (петка, петка) \}.$

- Нека експериментот е фрлање на монета сè додека не се појави петка.
- Множеството елементарни настани е од облик $\Omega = \{E_1, E_2, \dots\}$, каде што

$$E_1 = (\text{петка}),$$

 $E_2 = (\text{глава, петка}), \text{ итн.}$

■ Во општ случај, за фиксно i = 2, 3, ..., елементарниот настан

$$E_i = (\underline{\Gamma}$$
лава, $\underline{\Gamma}$ лава, , петка)

и тој се појавува ако во првите i-1 фрлање на монетата се појави глава, а во i-тото фрлање се појави петка.

• Во овој случај, множеството елементарни настани е бесконечно преброиво множество, бидејќи теоретски експериментот може никогаш да не заврши.

- Се набљудува времето на непрекината работа на некоја машина.
- Елементарни настани за овој експеримент се:

$$E_t$$
: машината работи време t , $t \in [0, T]$

каде T е максималниот (гарантиран) век на работа на набљудуваната машина.

• Оттука, множеството елементарни настани за овој експеримент е:

$$\Omega = \{ E_t \mid t \in [0, T] \}$$

■ Во овој случај, Ω е интервал, т.е. е бесконечно непреброиво множество.

Множество елеметарни настани

• Од претходните примери можеме да воочиме дека зависно од експериментот, множеството елементарни настани може да биде конечно, бесконечно преброиво или бесконечно непреброиво множество.

- Во примерот со фрлање коцка заклучивме дека настанот A: падна парен број, ќе се појави ако се појави еден од настаните E_2 , E_4 или E_6 , а настанот B: падна број делив со три, се појавува ако се појави еден од настаните E_3 или E_6 .
- lacktriangle Оттука, настаните A и B може да се запишат на следниот начин

$$A = \{E_2, E_4, E_6\}$$
$$B = \{E_3, E_6\}$$

• Да воочиме дека настаните A и B се претставени како подмножества од множеството елементарни настани Ω .

Дефиниција на случаен настан

Дефиниција 2. Случаен настан е произволно подмножество од множеството елементарни настани Ω .

• Ќе велиме дека се појавил настанот A, ако се појавил некој од елементарните настани кои припаѓаат на подмножеството елементарни настани соодветно на настанот A.

• Нека експериментот е фрлање на две монети. Да се опише настанот

С: барем еднаш падна петка.

• Настанот C ќе се појави ако на една од монетите падне петка, а на другата глава или ако на двете монети падне петка, т.е.

 $C = \{ (глава, петка), (петка, глава), (петка, петка) \}.$

Сигурен и невозможен настан

- Сигурниот настан се појавува секогаш кога се реализира експериментот, т.е. секој елементарен настан доведува до негово појавување. Затоа, тој се означува со Ω .
- Невозможниот настан, пак, не се појавува никогаш кога се реализира експериментот, односно ниеден елементарен настан не доведува до негово појавување. Оттука, невозможниот настан ќе го означуваме со Ø.

Производ на настани

Дефиниција 3. *Производ* на настаните A и B е настан кој се појавува тогаш и само тогаш кога ќе се појават и двата настани A и B истовремено. Тој настан е определен со множество елементарни настани што е пресек од множествата елементарни настани на настанот A и настанот B. Производот на два настани A и B се означува со $A \cap B$ или AB.

• Нека експериментот е фрлање коцка. Ги разгледуваме настаните:

A: падна број помал или еднаков на 3;

B: падна број делив со 3;

С: падна број поголем од 4.

• Да се определи производот на било кои два од дадените три настани.

Решение: Множеството елементани настани за овој експеримент е

$$\Omega = \{E_1, E_2, E_3, E_4, E_5, E_6\}.$$
 Притоа, $A = \{E_1, E_2, E_3\}, B = \{E_3, E_6\}, C = \{E_5, E_6\}.$ Сега,
$$AB = \{E_3\}$$

$$AC = \varnothing$$

$$BC = \{E_6\}$$

Дисјунктни настани

Дефиниција 4. Ако два настани A и B не може да се појават истовремено тогаш тие се нарекуваат $\partial u c j y h k m h u$ или u c k n y u y b a u k u k u k n u

Во претходниот пример, A и C се дисјунктни настани.

Збир на настани

Дефиниција 5. *Збир* на настаните A и B е настан кој се појавува тогаш и само тогаш кога ќе се појави барем еден од настаните A или B. Тој настан е определен со множество елементарни настани што е унија од множествата елементарни настани на настанот A и настанот B. Збирот на два настани A и B, во општ случај, се означува со $A \cup B$. Доколку настаните A и B се дисјунктни, тогаш нивниот збир ќе го означуваме со A + B.

Збир на настани

- Кога се вели дека се појавил барем еден од настаните A или B, тогаш се подразбира дека се појавил или само настанот A или само настанот B или и двата настани истовремено.
- Ако настаните A и B се дисјунктни, тогаш истовремено појавување на двата настани е невозможно, па појавување на настанот $A \cup B$ подразбира да се појави или само настанот A, или само настанот B.
- Затоа, во овој случај, за збир на два настани се користи ознаката A+B. Значи, $A+B=A\cup B$, ако $AB=\varnothing$.

• Нека експериментот е фрлање коцка. Ги разгледуваме настаните:

A: падна број помал или еднаков на 3;

B: падна број делив со 3;

С: падна број поголем од 4.

■ Да се определи збирот на било кои два од дадените три настани.

Решение:

$$\Omega = \{E_1, E_2, E_3, E_4, E_5, E_6\}.$$

$$A = \{E_1, E_2, E_3\}, B = \{E_3, E_6\}, C = \{E_5, E_6\}.$$

Сега,

$$A \cup B = \{E_1, E_2, E_3, E_6\}$$

$$A \cup C = A + C = \{E_1, E_2, E_3, E_5, E_6\}$$

$$B \cup C = \{E_3, E_5, E_6\}$$

Спротивен настан

Дефиниција 6. Спротивен настан на настанот A е настанот кој се појавува тогаш и само тогаш кога не се појавува настанот A.

Овој настан се означува со \bar{A} .

Множеството елементарни настани на настанот \bar{A} е комплемент на множеството елементарни настани соодветно на настанот A во однос на Ω .

За секој настан А важи:

$$A \cap \bar{A} = \emptyset$$
, $A \cup \bar{A} = \Omega$.

• Нека експериментот е фрлање коцка. Ги разгледуваме настаните:

A: падна број помал или еднаков на 3;

В: падна број делив со 3;

С: падна број поголем од 4.

• Да се определат спротивните настани на дадените три настани.

Решение:

$$\Omega = \{E_1, E_2, E_3, E_4, E_5, E_6\}.$$

$$A = \{E_1, E_2, E_3\}, B = \{E_3, E_6\}, C = \{E_5, E_6\}.$$

Сега,

$$ar{A} = \{E_4, E_5, E_6\}$$
 $ar{B} = \{E_1, E_2, E_4, E_5\}$
 $ar{C} = \{E_1, E_2, E_3, E_4\}$

Настанот A го повлекува настанот B

Дефиниција 7. Настанот A го повлекува настанот B (пишуваме $A \subseteq B$), ако секогаш кога се појавува настанот A се појавува и настанот B.

Пример 11. Да го разгледаме повторно експериментот фрлање на две монети. Нека

A: падна точно една глава

B: падна барем една глава.

■ Може да се воочи дека секогаш кога ќе се појави настанот A се појавува и настанот B, т.е. $A \subseteq B$.

Дефиниција 8. Ако $A \subseteq B$ и $B \subseteq A$, тогаш за настаните A и B велиме дека се $e\partial \mu a \kappa b u$.

Закони за операции со настани

- Бидејќи случајните настани се подмножества од множеството елементарни настани во врска со еден експеримент, за операциите со настани важат истите закони како за операциите со множества.
- Некои од нив, кои ќе ги користиме во понатамошните излагања се следните.

$$A(B \cup C) = AB \cup AC$$
$$(A \cup B)C = AC \cup BC$$

Де Морганови закони
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Збир и производ на повеќе настани

Дефиниција 9. Збир на настаните $A_1, A_2, ..., A_n$ е настанот кој се појавува тогаш и само тогаш кога ќе се појави барем еден од настаните $A_1, A_2, ..., A_n$. Овој настан се означува со $A_1 \cup A_2 \cup ... \cup A_n$, а неговото множество елементарни настани е унија од множествата елементарни настани соодветни на секој од настаните $A_1, A_2, ..., A_n$.

Дефиниција 10. Производ на настаните $A_1, A_2,..., A_n$ е настанот кој се појавува тогаш и само тогаш кога ќе се појават сите настани $A_1, A_2,..., A_n$ истовремено.

Овој настан се означува со $A_1 \cap A_2 \cap ... \cap A_n$, а неговото множество елементарни настани е пресек од множествата елементарни настани соодветни на секој од настаните $A_1, A_2, ..., A_n$.

Обопштување

• Дефинициите за збир и производ на настани може да се обопштат и за преброиво многу настани. Имено, збир на настаните $A_1, A_2,...$ е настанот кој се појавува тогаш и само тогаш кога ќе се појави барем еден од настаните $A_1, A_2,...$, а нивен производ е настанот кој се појавува тогаш и само тогаш кога ќе се појават истовремено сите настани $A_1, A_2,...$

Во цел се стрела три пати. Се разгледуваат настаните A_1 , A_2 и A_3 кои означуваат погодување на целта во првото, второто и третото стрелање, соодветно. Со помош на овие настани, да се опишат следните случајни настани:

B: постигнати се три погодоци;

C: целта е три пати промашена;

D: постигнат е барем еден погодок;

E: постигнато е барем едно промашување;

F: постигнати се не повеќе од два погодока;

G: до третото стрелање немало погодок.

Решение:

$$B = A_1 A_2 A_3 \qquad E = \overline{A}_1 \cup \overline{A}_2 \cup \overline{A}_3$$

$$C = \overline{A}_1 \overline{A}_2 \overline{A}_3 \qquad F = E$$

$$D = A_1 \cup A_2 \cup A_3 \qquad G = \overline{A}_1 \overline{A}_2$$

Дисјунктно разложување на Ω

Дефиниција 11. Нека $A_1,\ A_2,...,\ A_n$ се настани во врска со еден експеримент така што $A_i\,A_j=\varnothing$, за $i\neq j$ и $\sum_{i=1}^n A_i=\Omega$ тогаш за настаните $A_1,\ A_2,...,\ A_n$ велиме дека се дисјунктно разложување на Ω , т.е. Ω е дисјунктна сума на настаните $A_1,\ A_2,...,\ A_n$.

Забелешка: Ω може да се претстави и како дисјунктна сума на преброиво многу настани $A_1, A_2,...$, ако $A_i A_j = \emptyset$, за $i \neq j$ и $\sum_{i=1}^{+\infty} A_i = \Omega$.

• Експериментот се состои во фрлање на три монети. Ако со 0 се означи исходот "падна петка", а со 1 - исходот "падна глава", тогаш множеството елементарни настани за овој експеримент е

$$\Omega = \{(x, y, z) | x, y, z \in \{0, 1\}\}.$$

- Со A_i го означуваме настанот "глава падна i пати", i=0,1,2,3. Тогаш $A_0 = \{(0,0,0)\}$ $A_1 = \{(1,0,0),(0,1,0),(0,0,1)\}$ $A_2 = \{(1,1,0),(1,0,1),(0,1,1)\}$ $A_3 = \{(1,1,1)\}$
- Јасно е дека настаните A_i , i = 0, 1, 2, 3 се дисјунктни и $A_0 + A_1 + A_2 + A_3 = \Omega$, т.е. A_0 , A_1 , A_2 и A_3 се дисјунктно разложување на Ω .