FEUILLE 6 : SUITES NUMÉRIQUES

I EXERCICES TECHNIQUES

Exercice 1

Déterminer la limite éventuelle des suites (u_n) suivantes :

a.
$$u_n = \frac{n^2 + 2n}{n+1}$$

a.
$$u_n = \frac{n^2 + 2n}{n+1}$$
 b. $u_n = \frac{n^2 + 2n + 3}{(2n+1)^2}$ **c.** $u_n = n + (-1)^n$ **d.** $u_n = 1 + \frac{(-1)^n}{n}$

c.
$$u_n = n + (-1)^n$$

d.
$$u_n = 1 + \frac{(-1)^n}{n}$$

e.
$$u_n = \sqrt{n^2 + 2} - \sqrt{n^2 + n}$$
 f. $u_n = \frac{3^n - 5^n}{4^n + 7^n}$ **g.** $u_n = \frac{1}{\sqrt{n+1} - \sqrt{n}}$

$$\mathbf{f.} \ u_n = \frac{3^n - 5^n}{4^n + 7^n}$$

g.
$$u_n = \frac{1}{\sqrt{n+1} - \sqrt{n}}$$

$$\mathbf{h.} \ u_n = \sin n - n$$

i.
$$u_n = \sin(1 - (-1)^n \pi)$$

h.
$$u_n = \sin n - n$$
 i. $u_n = \sin(1 - (-1)^n \pi)$ **j.** $u_n = \sin\left(1 + (-1)^n \frac{\pi}{2}\right)$

k.
$$u_n = \left(2 + \frac{4}{3}\cos n\right)^{\frac{1}{n}}, \ n > 0$$
 l. $u_n = \sin\left(\left(n + \frac{1}{n}\right)\frac{\pi}{2}\right), \ n > 0$ **m.** $u_n = \frac{1}{n^9}\sum_{i=1}^n k^7, \ n > 0$

1.
$$u_n = \sin\left(\left(n + \frac{1}{n}\right)\frac{\pi}{2}\right), n > 0$$

$$\mathbf{m.} \ u_n = \frac{1}{n^9} \sum_{k=1}^n k^7, \ n > 0$$

Exercice 2

Etudier les variations des suites suivantes :

a.
$$\forall n \in \mathbb{N}, \quad u_n = \frac{2^n}{n+1}$$

a.
$$\forall n \in \mathbb{N}, \quad u_n = \frac{2^n}{n+1}$$
 b. $\begin{cases} u_0 = 0 \\ u_{n+1} = u_n^2 + u_n + 1 & \forall n \in \mathbb{N} \end{cases}$

c.
$$\begin{cases} u_0 = 2 \\ u_{n+1} = u_n^2 + u_n - 1, & \forall n \in \mathbb{N} \end{cases}$$

$$\mathbf{c.} \left\{ \begin{array}{l} u_0 = 2 \\ u_{n+1} = u_n^2 + u_n - 1, \quad \forall n \in \mathbb{N} \end{array} \right. \quad \mathbf{d.} \left\{ \begin{array}{l} u_0 = 1 \\ u_{n+1} = \frac{u_n^2}{u_n^2 + 1}, \quad \forall n \in \mathbb{N} \end{array} \right.$$

Exercice 3

Donner la forme explicite des suites suivantes :

a.
$$\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{1}{4}u_n + 5, & \forall n \in \mathbb{N} \end{cases}$$
 b.
$$\begin{cases} u_0 = u_1 = 1 \\ u_{n+2} = u_{n+1} + 6u_n, \ \forall n \in \mathbb{N} \end{cases}$$

b.
$$\begin{cases} u_0 = u_1 = 1 \\ u_{n+2} = u_{n+1} + 6u_n, \ \forall n \in \mathbb{N} \end{cases}$$

c.
$$\begin{cases} v_0 = 1, v_1 = 1 + \sqrt{2} \\ v_{n+2} = 2v_{n+1} - 2v_n, \ \forall n \in \mathbb{N} \end{cases}$$

c.
$$\begin{cases} v_0 = 1, v_1 = 1 + \sqrt{2} \\ v_{n+2} = 2v_{n+1} - 2v_n, \ \forall n \in \mathbb{N} \end{cases}$$
 d.
$$\begin{cases} w_0 = 0, w_1 = 1 \\ w_{n+2} = \frac{-1}{4}w_n + w_{n+1}, \ \forall n \in \mathbb{N} \end{cases}$$

Exercice 4

Etudier les suites suivantes (variations, limite éventuelle) :

a.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{u_n + 2}, & n \in \mathbb{N} \end{cases}$$
b.
$$\begin{cases} u_0 = 3 \\ u_{n+1} = \sqrt{u_n + 2}, & n \in \mathbb{N} \end{cases}$$

$$\mathbf{b.} \quad \left\{ \begin{array}{l} u_0 = 3 \\ u_{n+1} = \sqrt{u_n + 2}, \quad n \in \mathbb{N} \end{array} \right.$$

c.
$$\begin{cases} u_0 = 1 \\ u_{n+1} = 1 + \frac{1}{u_n}, & n \in \mathbb{N} \end{cases}$$
 (on examinera les suites (u_{2n}) et (u_{2n+1})).

II EXERCICES SUR LES BORNES INF et SUP

Exercice 5

Soient A et B des parties non vides de \mathbb{R} , majorées.

Montrer que A+B est une partie non vide majorée de $\mathbb R$ et que

$$\sup(A+B) = \sup(A) + \sup(B)$$

Utiliser la définition d'une borne sup.

Exercice 6

Soient A et B deux parties non vides de \mathbb{R} telles que $\forall (a,b) \in A \times B, a \leq b$. Montrer que $\sup(A)$ et $\inf(B)$ existent et que $\sup(A) \leq \inf(B)$.

Direct.

Exercice 7

Déterminer les bornes inf et sup (éventuellement infinies) des ensembles suivants :

$$\mathbf{a.} \quad A = \left\{ 1 + \frac{1}{n}, n \in \mathbb{N}^* \right\}$$

b.
$$B = \left\{ \frac{n-1}{n+1}, n \in \mathbb{N} \right\}$$
 Ecrire: $\frac{n-1}{n+1} = 1 - \frac{2}{n+1}$

c.
$$C = \left\{ \frac{3n^2 + 4}{n^2 + 1}, n \in \mathbb{N} \right\}$$
 Ecrire: $\frac{3n^2 + 4}{n^2 + 1} = 3 + \frac{1}{n^2 + 1}$

d.
$$D = \left\{ \frac{1}{n} + \frac{1}{m}, n \in \mathbb{Z}^*, m \in \mathbb{Z}^* \right\}$$
 Etudier séparément les deux entiers.

III EXERCICES SUR LES SUITES

Exercice 8

Soit $x \in \mathbb{R}$. Déterminer la limite de la suite $\left(\frac{x^n}{n!}\right)_{n \in \mathbb{N}}$

Déterminer $n_0 \in \mathbb{N}$ tel que $|x| < n_0$ et majorer $\frac{|x|}{k}$ pour $k \ge n_0$.

Exercice 9

a. Montrer que :

$$\forall n \in \mathbb{N}, \quad \left(3 + \sqrt{5}\right)^n + \left(3 - \sqrt{5}\right)^n \in 2\mathbb{N}$$

Utiliser la formule du binôme.

b. En déduire que la suite $\left(\sin\left(\left(3+\sqrt{5}\right)^n\pi\right)\right)_{n\in\mathbb{N}}$ converge. Ecrire $\left(3+\sqrt{5}\right)^n\pi=2p\pi-(3-\sqrt{5})^n\pi$

Exercice 10

Etudier la convergence de la suite complexe (z_n) définie par : $\begin{cases} z_0 = 1 + i \\ z_{n+1} = \frac{z_n + |z_n|}{2}, & n \in \mathbb{N} \end{cases}$

Majorer $|z_n|$ par le terme général d'une suite géométrique.

Exercice 11

- Montrer que si une suite (x_n) est convergente alors la suite $(x_{n+1} x_n)$ converge vers 0. Utiliser l'inégalité triangulaire.
- **b.** En déduire que la suite (S_n) définie par $S_n = \sum_{k=1}^n \frac{k}{k+1}$ est divergente.

Utiliser la contraposée du résultat précédent.

Exercice 12

On considère la suite (u_n) définie par

$$\begin{cases} u_0 \in]0,1[\\ u_{n+1} = u_n - u_n^2 \quad \forall n \in \mathbb{N} \end{cases}$$

- Etudier la monotonie et la convergence de la suite (u_n) Le raisonnement peut être direct, ou en utilisant la fonction f définie sur]0,1[par $f(x)=x-x^2$.
- Etudier la limite des suites (v_n) et (w_n) définies par

$$\forall n \in \mathbb{N}, \quad v_n = \sum_{k=0}^n u_k^2 \quad \text{et} \quad w_n = \prod_{k=0}^n (1 - u_k)$$

Faire apparaître la suite précédente.

Exercice 13

Etudier la convergence et déterminer la limite éventuelle des suites (u_n) suivantes :

$$\mathbf{a.} \quad \left\{ \begin{array}{l} u_0 = 2 \\ u_{n+1} = \frac{u_n^2 + 1}{2u_n}, \quad \forall n \in \mathbb{N} \end{array} \right.$$

Etudier la fonction f définie sur $[1, +\infty[$, par $f(x) = \frac{x^2 + 1}{2x}$.

b.
$$\begin{cases} u_0 \in \mathbb{R}_+^* \\ u_{n+1} = \frac{u_n^3 + 3au_n}{3u_n^2 + a}, \quad \forall n \in \mathbb{N} \end{cases}, \quad \text{où } a \in \mathbb{R}_+^*$$

Etudier la fonction f définie sur $[1, +\infty[$, par $f(x) = \frac{x^3 + 3ax}{3x^2 + a}$, ainsi que le signe de f(x) - x, puis faire une disjonction de cas suivant la valeur de u_0

c.
$$\begin{cases} u_0 > 1 \\ u_{n+1} = \sqrt{\frac{1}{2} (u_n^2 + 7u_n)} - 1, \quad \forall n \in \mathbb{N} \end{cases}$$
 Procéder comme à la question précédente

d.
$$\forall n \ge 1$$
, $u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$, où $x \in \mathbb{R}$.

Utiliser le résultat : $\forall x \in \mathbb{R}, \ x - 1 < |x| \le x$

Exercice 14

On considère les suites (u_n) et (v_n) définies par :

$$\begin{cases} u_0 = 1, \ v_0 = 2\\ u_{n+1} = \frac{2u_n v_n}{u_n + v_n}, \ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

Montrer que (u_n) et (v_n) sont rationnelles et strictement positives. Par récurrence

- b. Montrer que (u_n) et (v_n) sont adjacentes. Pour la monotonie de suites, étudier le signe de $u_n - v_n$; pour montrer que la différence tend vers 0, montrer que les deux suites ont le même limite.
- c. Déterminer leur limite. Considérer la suite $(u_n v_n)$.

Exercice 15

- a. Montrer que les suites de termes général $u_n = \sum_{k=1}^n \frac{1}{n+k}$ et $v_n = \sum_{k=n}^{2n} \frac{1}{k}$ sont adjacentes.
- b. En considérant l'aire sous la courbe de la fonction inverse sur [1, 2], montrer que

$$\forall n \in \mathbb{N} \quad u_n \le \ln \ 2 \le v_n$$

Pour $k \in [0, n-1]$, on se place sur les intervalles $\left[1 + \frac{k}{n}, 1 + \frac{k+1}{n}\right]$ sur lesquels la fonction inverse est décroissante.

c. Que peut-on en déduire?Utiliser le théorème d'encadrement.

Exercice 16

Montrer que les suites (u_n) et (v_n) sont adjacentes dans les cas suivants :

a.
$$\begin{cases} 0 < u_0 < v_0 \\ u_{n+1} = \sqrt{u_n v_n}, \ v_{n+1} = \frac{u_n + v_n}{2}, \quad \forall n \in \mathbb{N} \end{cases}$$
 Procéder comme à l'exercice 14.

b.
$$\forall \in \mathbb{N}^*, \begin{cases} u_n = 2^n \sin \frac{\theta}{2^n} \\ v_n = 2^n \tan \frac{\theta}{2^n} \end{cases}$$
 où $\theta \in \left]0, \frac{\pi}{2}\right[$

Pour les variations, considérer les quotients.

Exercice 17

Soient $\rho \in \mathbb{R}^+, \theta \in]-\pi, \pi[$. On considère la suite complexe (z_n) définie par :

$$\begin{cases} z_0 = \rho e^{i\theta} \\ z_{n+1} = \frac{z_n + |z_n|}{2}, & n \in \mathbb{N} \end{cases}$$

a. Montrer que :

$$\forall n \in \mathbb{N}^*, \quad z_n = \rho e^{i\frac{\theta}{2^n}} \prod_{k=1}^n \cos\frac{\theta}{2^k}$$

Par récurrence, en utilisant $e^{ix} + e^{iy} = e^{i\frac{x+y}{2}} 2\cos\frac{x+y}{2}$

b. Montrer que :

$$\forall n \in \mathbb{N}^*, \quad \sin \frac{\theta}{2^n} \prod_{k=1}^n \cos \frac{\theta}{2^k} = \frac{\sin \theta}{2^n}$$

Par récurrence en utilisant : $\forall x \in \mathbb{R}, \sin(2x) = 2\sin x \cos x$.

c. Déterminer la limite de la suite (z_n) .

LES BONS REFLEXES

- \maltese Pour montrer qu'un résultat est vrai "pour tout n", penser au raisonnement par récurrence.
- \maltese Quand une suite est définie par récurrence avec une fonction décroissante, considérer les sous-suites d'indices pairs et d'indices impairs.