ARITHMETIC OF CURVES OVER TWO DIMENSIONAL LOCAL FIELD

BELGACEM DRAOUIL

ABSTRACT. We study the class field theory of curve defined over two dimensional local field. The approch used here is a combination of the work of Kato-Saito, and Yoshida where the base field is one dimensional

1. Introduction

Let k_1 be a local field with finite residue field and let X be a proper smooth geometrically irreducible curve over k_1 . To study the fundamental group $\pi_1^{ab}(X)$, Saito in [8], introduced the groups $SK_1(X)$ and V(X) and construct the maps $\sigma: SK_1(X) \longrightarrow \pi_1^{ab}(X)$ and $\tau: V(X) \longrightarrow \pi_1^{ab}(X)^{g\acute{e}o}$ where $\pi_1^{ab}(X)^{g\acute{e}o}$ is defined by the exact sequence

$$0 \longrightarrow \pi_1^{ab} \left(X \right)^{g \not e o} \longrightarrow \pi_1^{ab} \left(X \right) \longrightarrow Gal(k_1^{ab}/k_1) {\longrightarrow} 02$$

The most important results in this context are:

- 1) The quotient of $\pi_1^{ab}(X)$ by the closure of the image of σ and the cokernel of τ are both isomorphic to $\widehat{\mathbb{Z}}^r$ where r is the rank of the curve.
- 2) For this integer r, there is an exact sequence

$$(1.2) 0 \longrightarrow (\mathbb{Q}/\mathbb{Z})^r \longrightarrow H^3(K, \mathbb{Q}/\mathbb{Z}(2)) \longrightarrow \bigoplus_{v \in P} \mathbb{Q}/\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

where K = K(X) is the function field of X and P designates the set of closed points of X.

These results are obtained by Saito in [8] generalizing the previous work of Bloch where he is reduced to the good reduction case [8, Introduction]. The method of Saito depends on class field theory for two-dimensional local ring having finite residue field. He shows these results for general curve except for the p-primary part in chark = p > 0 case [8,Section II-4]. The remaining p-primary part had been proved by Yoshida in [11].

There is another direction for proving these results pointed out by Douai in [3]. It consists to consider for all l prime to the residual characteristic, the group $Co \ker \sigma$ as the dual of the group W_0 of the monodromy weight filtration of $H^1(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})$

$$H^1(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}) = W_2 \supseteq W_1 \supseteq W_0 \supseteq 0$$

where $\overline{X}2 = X \otimes_{k_1} \overline{k_1}$ and $\overline{k_1}$ is an algebraic closure of k_1 . This allow him to extend the precedent results to projective smooth surfaces [3].

The aim of this paper is to use a combination of this approach and the theory of the monodromy-weight filtration of degenerating abelian varieties on local fields explained by Yoshida in his paper [11], to study curves over two-dimensional local fields (section 3).

Let X be a projective smooth curve defined over two dimensional local field k. Let K be its function field and P denotes the set of closed points of X. For each $v \in P$, k(v) denotes the

¹⁹⁹¹ Mathematics Subject Classification. 11G25, 14H25.

Key words and phrases. Bloch-Ogus complex, Generalised reciprocity map, Higher local fields, Curves over local fields.

residue field at $v \in P$. A finite etale covering $Z \to X$ of X is called a c.s covering, if for any closed point x of X, $x \times_X Z$ is isomorphic to a finite sum of x. We denote by $\pi_1^{c.s}(X)$ the quotient group of $\pi_1^{ab}(X)$ which classifies abelian c.s coverings of X.

To study the class field theory of the curve X, we construct the generalized reciprocity map

$$\sigma/\ell: SK_2\left(X\right)/\ell \longrightarrow \pi_1^{ab}\left(X\right)/\ell$$
 where $SK_2\left(X\right)/\ell = Co\ker\left\{K_3\left(K\right)/\ell \xrightarrow{\oplus \partial_v} \underset{v \in P}{\oplus} K_2\left(k\left(v\right)\right)/\ell\right\}$ and $\tau/l: V(X)/\ell \longrightarrow \pi_1^{ab}\left(X\right)^{g\acute{e}o}/\ell$ for all ℓ prime to residual characteristic. The group $V(X)$ is defined to be the kernel of the norm map $N: SK_2\left(X\right) \longrightarrow K_2(k)$ induced by the norm map $N_{k(v)/k^x}: K_2\left(k(v)\right) \longrightarrow K_2(k)$ for all v and $\pi_1^{ab}\left(X\right)^{g\acute{e}o}$ by the exact sequence

$$0 \longrightarrow \pi_1^{ab}\left(X\right)^{g\acute{e}o} \longrightarrow \pi_1^{ab}\left(X\right) \longrightarrow Gal(k^{ab}/k) {\longrightarrow} 0$$

The cokernel of σ/ℓ is the quotient group of $\pi_1^{ab}(X)/\ell$ that classifies completely split coverings of X; that is; $\pi_1^{c.s}(X)/\ell$.

We begin by proving the exactness of the Kato-Saito sequence (Proposition 4.2):

$$\begin{array}{ccc} 0 \longrightarrow \pi_{1}^{c.s}\left(X\right)/\ell & \longrightarrow & H^{4}\left(K,\mathbb{Z}/\ell\left(3\right)\right) \\ \longrightarrow & \underset{v \in P}{\oplus} H^{3}\left(k\left(v\right),\mathbb{Z}/\ell\left(2\right)\right) \longrightarrow \mathbb{Z}/\ell \longrightarrow 0 \end{array}$$

To determinate the group $\pi_1^{c.s}(X)/\ell$, we need to consider a semi stable model of the curve X (see Section 5) and the weight filtration on its special fiber. In fact, we will prove in (Proposition 5.1) that $\pi_1^{c.s}(X) \otimes \mathbb{Q}_\ell$ admits a quotient of type \mathbb{Q}_l^r where r is the rank of the first crane of this filtration.

Now, to investigate the group $\pi_1^{ab}(X)^{g\acute{e}o}$, we use class field theory of two-dimensional local field and prove the vanishing of the group $H^2(k,\mathbb{Q}/\mathbb{Z})$ (theorem 3.1). This yields the isomorphism

$$\pi_1^{ab} \left(X \right)^{g\acute{e}o} \simeq \pi_1^{ab} \left(\overline{X} \right)_{G_k}$$

Finally, by the Grothendick weight filtration on the group $\pi_1^{ab}\left(\overline{X}\right)_{G_k}$ and assuming the semi-stable reduction, we obtain the structure of the group $\pi_1^{ab}\left(X\right)^{g\acute{e}o}$ and information about the map $\tau:V(X)\longrightarrow\pi_1^{ab}\left(X\right)^{g\acute{e}o}$.

Our paper is organized as follows. Section 2 is devoted to some notations. Section 3 contains the proprieties which we need concerning two-dimensional local field: duality and the vanishing of the second cohomology group. In section 4, we construct the generalized reciprocity map and study the Bloch-Ogus complex associated to X. In section 5, we investigate the group $\pi_1^{c,s}(X)$.

2. Notations

For an abelian group M, and a positive integer $n \geq 1, M/n$ denotes the group M/nM.

For a scheme Z, and a sheaf \mathcal{F} over the étale site of Z, $H^i(Z,\mathcal{F})$ denotes the i-th étale cohomology group. The group $H^1(Z,\mathbb{Z}/\ell)$ is identified with the group of all continues homomorphisms $\pi_1^{ab}(Z) \longrightarrow \mathbb{Z}/\ell$. If ℓ is invertible on, $\mathbb{Z}/\ell(1)$ denotes the sheaf of ℓ -th root of unity and for any integer i,we denote $\mathbb{Z}/\ell(i) = (\mathbb{Z}/\ell(1))^{\otimes i}$

For a field L, $K_i(L)$ is the i-th Milnor group. It coincides with the i-th Quillen group for $i \leq 2$. For ℓ prime to $char\ L$, there is a Galois symbol

$$h_{\ell,L}^{i} \quad K_{i}L/\ell \longrightarrow H^{i}(L, \ \mathbb{Z}/\ell \left(i \right))$$

which is an isomorphism for i = 0, 1, 2 (i = 2 is Merkur'jev-Suslin).

3. On two-dimensional local field

A local field k is said to be n-dimensional local if there exists the following sequence of fields k_i $(1 \le i \le n)$ such that

- (i) each k_i is a complete discrete valuation field having k_{i-1} as the residue field of the valuation ring O_{k_i} of k_i , and
- (ii) k_0 is a finite field.

For such a field, and for ℓ prime to Char(k), the well-known isomorphism

(3.1)
$$H^{n+1}\left(k, \mathbb{Z}/\ell\left(n\right)\right) \simeq \mathbb{Z}/\ell \qquad (3.1)$$

and for each $i \in \{0, ..., n+1\}$ a perfect duality

$$(3.2) H^{i}(k, \mathbb{Z}/\ell(j)) \times H^{n+1-i}(k, \mathbb{Z}/\ell(n-j)) \longrightarrow H^{n+1}(k, \mathbb{Z}/\ell(n)) \simeq \mathbb{Z}/\ell(3.2)$$

hold. 8 The class field theory for such fields is summarized as follows: There is a map $h: K_2(k) \longrightarrow Gal(k^{ab}/k)$ which generalizes the classical reciprocity map for usually local fields. This map induces an isomorphism $K_2(k)/N_{L/k}K_2(L) \simeq Gal(L/k)$ for each finite abelian extension L of k. Furthermore, the canonical pairing

$$(3.3) H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \times K_2(k) \longrightarrow H^3(k, \mathbb{Q}_l/\mathbb{Z}_l(2)) \simeq \mathbb{Q}_l/\mathbb{Z}_l$$

induces an injective homomorphism

$$(3.4) H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \longrightarrow Hom(K_2(k), \mathbb{Q}_l/\mathbb{Z}_l)$$

It is well-known that the group $H^2(M, \mathbb{Q}/\mathbb{Z})$ vanishes when M is a finite field or usually local field. Next, we prove the same result for two-dimensional local field

Theorem 3.1. If k is a two-dimensional local field of characteristic zero, then the group $H^2(k, \mathbb{Q}/\mathbb{Z})$ vanishes.

Proof. We proceed as in the proof of theorem 4 of [10]. It is enough to prove that $H^2(k, \mathbb{Q}_l/\mathbb{Z}_l)$ vanishes for all l and when k contains the group μ_l of l-th roots of unity. For this, we prove that multiplication by l is injective. That is, we have to show that the coboundary map

$$H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \stackrel{\delta}{\longrightarrow} H^2(k, \mathbb{Z}/l\mathbb{Z})$$

is injective.

By assumption on k, we have

$$H^{2}\left(k,\mathbb{Z}/l\mathbb{Z}\right)\simeq H^{2}\left(k,\mu_{l}\right)\simeq\mathbb{Z}/\ell$$

The last isomorphism is well-known for one-dimensional local field and was generalized to non archimedian and locally compact fields by Shatz in [6]. The proof is now reduced to the fact that $\delta \neq 0$;

By class field theory of two dimensional local field, the cohomology group $H^1(k, \mathbb{Q}_l/\mathbb{Z}_l)$ may be identified with the group of continuous homomorphisms $K_2(k) \stackrel{\Phi}{\longrightarrow} \mathbb{Q}_l/\mathbb{Z}_l$.

Now, $\delta(\Phi) = 0$ if and only if Φ is a l-th power, and Φ is a l-th power if and only if Φ is trivial on μ_l . Thus, it is sufficient to construct an homomorphism $K_2(k) \longrightarrow \mathbb{Q}_l/\mathbb{Z}_l$ which is non trivial on 8 μ_l .

Let i be the maximal natural number such that k contains a primitive l^i —th root of unity. Then, the image ξ of a primitive l^i —th root of unity under the composite map

$$k^x/k^{xl} \simeq H^1(k,\mu_l) \simeq H^1(k,\mathbb{Z}/l\mathbb{Z}) \longrightarrow H^1(k,\mathbb{Q}_l/\mathbb{Z}_l)$$

is not zero. Thus, the injectivity of the map

$$H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \longrightarrow Hom(K_2(k), \mathbb{Q}_l/\mathbb{Z}_l)$$

gives rise to a character which is non trivial on μ_l .

4. Curves over two dimensional local field

Let k be a two dimensional local field of characteristic zero and X a smooth projective curve defined over k.

We recall that we deno8te:

K = K(X) its function field,

P: set of closed points of X, and for $v \in P$,

k(v): the residue field at $v \in P$

The residue field of k is one-dimensi6nal local field. It is denoted by k_1

Let $\mathcal{H}^n(\mathbb{Z}/\ell(3))$, $n \geq 1$, the Zariskien sheaf associated to the presheaf $U \longrightarrow H^n(U, \mathbb{Z}/\ell(3))$. Its cohomology is calculated by the Bloch-Ogus resolution. So, we have the two exact sequences:

$$(4.1) \qquad H^{3}\left(K,\mathbb{Z}/\ell\left(3\right)\right) \longrightarrow \bigoplus_{v \in P} H^{2}\left(k\left(v\right),\mathbb{Z}/\ell\left(2\right)\right) \longrightarrow H^{1}\left(X_{Zar},\mathcal{H}^{3}(\mathbb{Z}/\ell\left(3\right)\right)\right) \longrightarrow 0$$

$$(4.2) 0 \longrightarrow H^0(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3))) \longrightarrow H^4(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^3(k(v, \mathbb{Z}/\ell(2)))$$

4.1. The reciprocity map. We introduce the group $SK_2(X)/\ell$:

$$SK_{2}\left(X\right)/\ell = Co \ker \left\{K_{3}\left(K\right)/\ell \stackrel{\oplus \partial_{v}}{\longrightarrow} \underset{v \in P}{\oplus} K_{2}\left(k\left(v\right)\right)/\ell\right\}$$

where $\partial_v: K_3(K) \longrightarrow K_2(k(v))$ is the boundary map in K-Theory. It will play an important role in class field theory for X as pointed out by Saito in the introduction of [8]. In this section, we construct a map

$$\sigma/\ell: SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell$$

which describe the class field theory of X.

By definition of $SK_2(X)/\ell$, we have the exact sequence

$$K_3\left(K\right)/\ell \longrightarrow \bigoplus_{v \in P} K_2\left(k\left(v\right)\right)/\ell \longrightarrow SK_2\left(X\right)/\ell \longrightarrow 0$$

On the other hand, it is known that the following diagram is commutative:

$$K_{3}(K)/\ell \longrightarrow \bigoplus_{v \in P} K_{2}(k(v))/\ell$$

$$\downarrow h^{3} \qquad \qquad \downarrow h^{2}$$

$$H^{3}(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^{2}(k(v), \mathbb{Z}/\ell(2))$$

where h^2, h^3 are the Galois symbols. This yields the existence of a morphism

$$h: SK_2(X)/\ell \longrightarrow H^1(X_{Zar}, \mathcal{H}^3(\mathbb{Z}/\ell(2)))$$

taking in account the exact sequence (4.1). This morphism fit in the following commutative diagram

$$0 \longrightarrow K_{3}(K)/\ell \longrightarrow \bigoplus_{v \in P} K_{2}(k(v))/\ell \longrightarrow SK_{2}(X)/\ell \longrightarrow 0$$

$$\downarrow h^{3} \qquad \downarrow h^{2} \qquad \downarrow h$$

$$0 \longrightarrow H^{3}(K, \mathbb{Z}/\ell(2)) \longrightarrow \bigoplus_{v \in P} H^{2}(k(v), \mathbb{Z}/\ell(2)) \longrightarrow H^{1}(X_{Zar}, \mathcal{H}^{3}(\mathbb{Z}/\ell(2))) \longrightarrow 0$$

By Merkur'jev-Suslin, the map h^2 is an isomorphism, which imply that h is surjective. On the other hand the spectral sequence

$$H^{p}(X_{Zar}, \mathcal{H}^{q}(\mathbb{Z}/\ell(3))) \Rightarrow H^{p+q}(X, \mathbb{Z}/\ell(3))$$

induces the exact sequence

$$(4.3) 0 \longrightarrow H^{1}\left(X_{Zar}, \mathcal{H}^{3}(\mathbb{Z}/\ell(3))\right) \stackrel{e}{\longrightarrow} H^{4}(X, \mathbb{Z}/\ell(3))$$
$$\longrightarrow H^{0}\left(X_{Zar}, \mathcal{H}^{4}(\mathbb{Z}/\ell(3))\right) \longrightarrow H^{2}\left(X_{Zar}, \mathcal{H}^{3}(\mathbb{Z}/\ell(3))\right) = 0$$

Composing h and e, we get the map

$$SK_2(X)/\ell \longrightarrow H^4(X,\mathbb{Z}/\ell(3))$$

Finally the group $H^4(X,\mathbb{Z}/\ell(3))$ is identified to the group $\pi_1^{ab}(X)/\ell$ by the duality [4,II, th 2.1]

$$H^4(X, \mathbb{Z}/\ell(3)) \otimes H^1(X, \mathbb{Z}/\ell) \longrightarrow H^5(X, \mathbb{Z}/\ell(3)) \simeq H^3(k, \mathbb{Z}/\ell(2)) \simeq \mathbb{Z}/\ell$$

Hence, we obtain the map

$$\sigma/\ell: SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell$$

Remark 4.1. By the exact sequence (4.2) the group $H^0\left(X_{Zar},\mathcal{H}^4(\mathbb{Z}/\ell\left(3\right)\right)\right)$ coincides with the kernel of the map2

$$H^{4}(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^{3}(k(v), \mathbb{Z}/\ell(2))$$

and by localization in étale cohomology

$$\underset{v \in P}{\oplus} H^{2}\left(k\left(v\right), \mathbb{Z}/\ell\left(2\right)\right) \longrightarrow H^{4}\left(X, \mathbb{Z}/\ell\left(3\right)\right) \longrightarrow H^{4}\left(K, \mathbb{Z}/\ell\left(3\right)\right) \xrightarrow[v \in P]{} H^{3}\left(k\left(v\right), \mathbb{Z}/\ell\left(2\right)\right)$$

and taking in account (4.3), we see that $H^{1}\left(X_{Zar},\mathcal{H}^{4}(\mathbb{Z}/\ell\left(3\right)\right)\right)$ is the cokernel of the Gysin map

$$\bigoplus_{v \in P} H^{2}\left(k\left(v\right), \mathbb{Z}/\ell\left(2\right)\right) \stackrel{g}{\longrightarrow} H^{4}\left(X, \mathbb{Z}/\ell\left(3\right)\right)$$

and consequently the morphism g factorize through $H^1\left(X_{Zar},\mathcal{H}^4(\mathbb{Z}/\ell\left(3\right)\right)\right)$

Then, we deduce the following commutative diagram

$$K_{3}(K)/\ell \longrightarrow \bigoplus_{v \in P} K_{2}(k(v))/\ell \longrightarrow SK_{2}(X)/\ell \longrightarrow 0$$

$$\downarrow h^{3} \qquad \downarrow h^{2}$$

$$H^{3}(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^{2}(k(v), \mathbb{Z}/\ell(2)) \longrightarrow H^{1}(X_{Zar}, \mathcal{H}^{4}(\mathbb{Z}/\ell(3))) \longrightarrow 0$$

$$\downarrow g \qquad \swarrow e$$

$$\pi_{1}^{ab}(X)/l = H^{4}(X, \mathbb{Z}/\ell(3))$$

The surjectivity of the map h implies that the cokernel of

$$\sigma/\ell: SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell$$

coincides with the cokernel of e which is $H^0(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3)))$. Hence $Co \ker \sigma/\ell$ is the dual of the kernel of the map

$$(4.4) H^{1}\left(X, \mathbb{Z}/\ell\right) \longrightarrow \prod_{v \in P} H^{1}\left(k\left(v\right), \mathbb{Z}/\ell\right)$$

4.2. The Kato-Saito exact sequence.

Definition 4.2. Let Z be a Noetherian scheme. A finite etale covering $f:W\to Z$ is called a c.s covering if for any closed point z of Z, $z\times_Z W$ is isomorphic to a finite scheme-theoretic sum of copies of z We denote $\pi_1^{c.s}(Z)$ the quotient group of $\pi_1^{ab}(Z)$ which classifies abelian c.s coverings of Z.

Hence, the group $\pi_1^{c.s}(X)/\ell$ is the dual of the kernel of the map

$$(4.4) H^{1}\left(X, \mathbb{Z}/\ell\right) \longrightarrow \prod_{v \in P} H^{1}\left(k\left(v\right), \mathbb{Z}/\ell\right)$$

as in [8, section 2, definition and sentence just below]. Now, we are able to calculate the homologies of the Bloch-Ogus complex associated X.

Generalizing [9,Theorem7], we obtain:

Proposition 4.3. Let X be a projective smooth curve defined over k Then for all ℓ , we have the following exact sequence

$$0 \longrightarrow \pi_{1}^{c.s}\left(X\right)/\ell \longrightarrow H^{4}\left(K, \mathbb{Z}/\ell\left(3\right)\right) \longrightarrow \bigoplus_{v \in P} H^{3}\left(k\left(v\right), \mathbb{Z}/\ell\left(2\right)\right) \longrightarrow \mathbb{Z}/\ell \longrightarrow 0.$$

Proof. Consider the localization sequence on X

We know that the cokernel of the Gysin map g coincides with $\pi_1^{c.s}(X)/\ell$ and we use the isomorphism $H^5(X, \mathbb{Z}/\ell(3)) \simeq \mathbb{Z}/\ell$ (4.4).

5. The group
$$\pi_1^{c.s}(X)$$

In his paper [8], Saito don't prove the p- primary part in the char k=p>0 case. This case was developed by Yoshida in [11]. His method is based on the theory of monodromy-weight filtration of degenerating abelian varieties on local fields. In this work, we use this approach to investigate the group $\pi_1^{c.s}(X)$. As mentioned by Yoshida in [11,section 2] Grothendieck's theory of monodromy-weight filtration on Tate module of abelian varieties are valid where the residue field is arbitrary perfect field

We assume the semi-stable reduction and choose a regular model \mathcal{X} of X over $SpecO_k$, by which we mean a two dimensional regular scheme with a proper birational morphism $f: \mathcal{X} \longrightarrow SpecO_k$ such that $\mathcal{X} \otimes_{O_k} k \simeq X$ and if \mathcal{X}_s designates the special fiber $\mathcal{X} \otimes_{O_k} k_1$, then $Y = (\mathcal{X}_s)_{r \in d}$ is a curve defined over the residue field k_1 such that any irreducible component of Y is regular and it has ordinary double points as singularity.

Let $\overline{Y} = Y \otimes_{k_1} \overline{k_1}$, where $\overline{k_1}$ is an algebraic closure of k_1 and $\overline{Y}^{[p]} = \bigsqcup_{i_{/} < i_1 < \dots < i_p} \overline{Y_{i_{/}}} \cap \overline{Y_{i_1}} \cap \dots \cap \overline{Y_{i_p}}$

 $,(\overline{Y})_{i\in I}=$ collection of irreducible components of \overline{Y} .

Let $|\overline{\Gamma}|$ be a realization of the dual graph $\overline{\Gamma}$, then the group $H^1(|\overline{\Gamma}|, \mathbb{Q}_l)$ coincides with the group $W_0(H^1(\overline{Y}, \mathbb{Q}_l))$ constituted of elements of weight 0 for the filtration

$$H^1(\overline{Y}, \mathbb{Q}_\ell) = W_1 \supseteq W_0 \supseteq 0$$

of $H^1(\overline{Y}, \mathbb{Q}_{\ell})$ deduced from the spectral sequence

$$E_1^{p,q} = H^q(\overline{Y}^{[p]}, \mathbb{Q}_\ell) \Longrightarrow H^{p+q}(\overline{Y}, \mathbb{Q}_\ell)$$

For details see [2], [3] and [5]

Now, if we assume further that the irreducible components and double points of \overline{Y} are defined over k_1 , then the dual graph $\overline{\Gamma}$ of \overline{Y} go down to k_1 and we obtain the injection

$$W_0(H^1(\overline{Y}, \mathbb{Q}_l)) \subseteq H^1(Y, \mathbb{Q}_l) \hookrightarrow H^1(X, \mathbb{Q}_l)$$

Proposition 5.1. The group $\pi_1^{c.s}(X) \otimes \mathbb{Q}_l$ admits a quotient of type \mathbb{Q}_l^r , where r is the \mathbb{Q}_l -rank of the group $H^1(|\overline{\Gamma}|, \mathbb{Q}_l)$

Proof. We know (4.5) that $\pi_1^{c.s}(X) \otimes \mathbb{Q}_l$ is the dual of the kernel of the map

$$\alpha: H^1(X, \mathbb{Q}_l) \longrightarrow \prod_{v \in P} H^1(k(v), \mathbb{Q}_l)$$

We will prove that $W_0(H^1(\overline{Y}, \mathbb{Q}_l)) \subseteq Ker\alpha$. The group $W_0 = W_0(H^1(\overline{Y}, \mathbb{Q}_l))$ is calculated as the homologie of the complex

$$H^0(\overline{Y}^{[0]}, \mathbb{Q}_\ell) \longrightarrow H^0(\overline{Y}^{[1]}, \mathbb{Q}_\ell) \longrightarrow 0$$

Hence $W_0 = H^0(\overline{Y}^{[1]}, \mathbb{Q}_{\ell}) / \operatorname{Im}\{H^0(\overline{Y}^{[0]}, \mathbb{Q}_{\ell}) \longrightarrow H^0(\overline{Y}^{[1]}, \mathbb{Q}_{\ell})\}$. Thus, it suffices to prove the vanishing of the composing map

$$H^{0}(\overline{Y}^{[1]}, \mathbb{Q}_{\ell}) \longrightarrow W_{0} \subseteq H^{1}(Y, \mathbb{Q}_{l}) \hookrightarrow H^{1}(X, \mathbb{Q}_{l}) \longrightarrow H^{1}(k(v), \mathbb{Q}_{l})$$
 for all $v \in P$.

Let z_v be the 0- cycle in \overline{Y} obtained by specializing v, which induces a map $z_v^{[1]} \longrightarrow \overline{Y}^{[1]}$. Co8nsequently, the map $H^0(\overline{Y}^{[1]}, \mathbb{Q}_\ell) \longrightarrow H^1(k(v), \mathbb{Q}_\ell)$ factors as follows

$$H^{0}(\overline{Y}^{[1]}, \mathbb{Q}_{\ell}) \longrightarrow H^{1}(k(v), \mathbb{Q}_{l})$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

But the trace $z_v^{[1]}$ of $\overline{Y}^{[1]}$ on z_v is empty. This implies the vanishing of $H^0(z_v^{[1]}, \mathbb{Q}_\ell)$.

Let V(X) be the kernel of the norm map $N: SK_2(X) \longrightarrow K_2(k)$ induced by the norm map $N_{k(v)/k^x}: K_2(k(v)) \longrightarrow K_2(k)$ for all v. Then, we obtain a map $\tau/l: V(X)/\ell \longrightarrow \pi_1^{ab}(X)^{g\acute{e}o}/\ell$ and a commutative diagram

$$\begin{array}{cccc} V(X)/\ell & \longrightarrow & SK_2\left(X\right)/\ell & \to & K_2(k)/\ell \\ \downarrow \tau/l & & \downarrow \sigma/\ell & & \downarrow h/l \\ \pi_1^{ab}\left(X\right)^{g\acute{e}o}/\ell & \longrightarrow & \pi_1^{ab}\left(X\right)/\ell & \to & Gal(k^{ab}/k)/l \end{array}$$

where the map $h/l: K_2(k)/l \longrightarrow Gal(k^{ab}/k)/l$ is the one obtained by class field theory of k (section 3). From this diagram we see that the group $Co \ker \tau/l$ is isomorphic to the group $Co \ker \sigma/\ell$. Next, we investigate the map τ/l .

We begin by the following result which is a consequence of the structure of the two-dimensional local field \boldsymbol{k}

Lemma 5.2. There is an isomrphism

$$\pi_1^{ab}(X)^{g\acute{e}o} \simeq \pi_1^{ab}(\overline{X})_{G_{i}},$$

where $\pi_1^{ab}\left(\overline{X}\right)_{G_k}$ is the group of coinvariants under $G_k = \operatorname{Gal}(k^{ab}/k)$.

Proof. As in the proof of Lemma 4.3 of [11], this is an immediate consequence of (Theorem 3.1).

Finally, we are able to deduce the structure of the group $\pi_1^{ab}(X)^{g\acute{e}o}$

Theorem 5.3. The group $\pi_1^{ab}(X)^{g\acute{e}o} \otimes \mathbb{Q}_l$ is isomorphic to $\widehat{\mathbb{Q}_l}^r$ and the map $\tau: V(X) \longrightarrow \pi_1^{ab}(X)^{g\acute{e}o}$ is a surjection onto $(\pi_1^{ab}(X)^{g\acute{e}o})_{tor}$.

Proof. By the preceding lemma, we have the isomorphism $\pi_1^{ab}(X)^{g\acute{e}o} \simeq \pi_1^{ab}(\overline{X})_{G_k}$. On the other hand the group $\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_\ell$ admits the filtration [12,Lemma 4.1 and section 2]

$$W_0(\pi_1^{ab}\left(\overline{X}\right)_{G_k}\otimes\mathbb{Q}_l)=\pi_1^{ab}\left(\overline{X}\right)_{G_k}\otimes\mathbb{Q}_l\supseteq W_{-1}(\pi_1^{ab}\left(\overline{X}\right)_{G_k}\otimes\mathbb{Q}_l)\supseteq W_{-2}(\pi_1^{ab}\left(\overline{X}\right)_{G_k}\otimes\mathbb{Q}_l)$$

But; by assumption; the curve X admits a semi-stable reduction, then the group $Gr_0(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l) = W_0(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l)/W_{-1}(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l)$ has the following structure

$$0 \longrightarrow Gr_0(\pi_1^{ab}\left(\overline{X}\right)_{G_k} \otimes \mathbb{Q}_l)_{tor} \longrightarrow Gr_0(\pi_1^{ab}\left(\overline{X}\right)_{G_k} \otimes \mathbb{Q}_l) \longrightarrow \widehat{\mathbb{Q}_l}^{r'} \longrightarrow 0$$

where r' is the k-rank of X. This is confirmed by Yoshida [11, section 2], independently of the finitude of the residue field of k considered in his paper. The integer r' is equal to the integer $r = H^1(|\overline{\Gamma}|, \mathbb{Q}_l) = H^1(|\Gamma|, \mathbb{Q}_l)$ by assuming that the irreducible components and double points of \overline{Y} are defined over k_1 ,

On the other hand, the exact sequence

$$0 \longrightarrow W_{-1}(\pi_1^{ab}\left(\overline{X}\right)_{G_k}) \longrightarrow \pi_1^{ab}\left(\overline{X}\right)_{G_k} \longrightarrow Gr_0(\pi_1^{ab}\left(\overline{X}\right)_{G_k}) \longrightarrow 0$$

and (Proposition 5.1) allow us to conclude that the group $W_{-1}(\pi_1^{ab}(\overline{X})_{G_k})$ is finite and the map $\tau: V(X) \longrightarrow \pi_1^{ab}(X)^{g\acute{e}o}$ is a surjection onto $(\pi_1^{ab}(X)^{g\acute{e}o})_{tor}$ as established by Yoshida [11]

Remark 5.4. If we apply the same method of Saito to study curves over two-dimensional local fields, we need class field theory of two-dimensional local ring having one-dimensional local field as residue field. This is done by myself in [1]. Hence, one can follow Saito 's method to obtain the same results.

References

- [1] Draouil, B. Cohomological Hasse principle for the ring $\mathbb{F}_p((t))[[X,Y]]$, Bull. Belg. Math. Soc. Simon Stevin 11, no. 2 (2004), pp 181–190
- [2] Draouil, B., Douai, J. C. Sur l'arithmétique des anneaux locaux de dimension 2 et 3, Journal of Algebra 213 (1999), pp 499-512.
- [3] Douai, J. C. Monodromie et Arithmétique des Surfaces Birkhauser, Février (1993)
- [4] Douai, J. C. Le théorème de Tate-Poitou pour le corps des foncitons définies sur les corps locaux de dim N, Journal of Algebra Vol 125 N° II August 15, (1989) ,pp 181-196.
- [5] Morrisson, D. R. The Clemens-Scmid exact sequence and applications, in Annals of Mathematics Studies Vol. 106, Princeton Univ. Press, Princeton NJ, pp 101-119
- [6] Shatz S. S. Cohomology of Artinian group schemes over local fields, Annals of Maths (2) 88 (1968), pp 492-517
- [7] Saito, S. Class field Theory for two-dimensional local rings Galois groups and their representations, Kinokuniya-North Holland Amsterdam, vol 12 (1987), pp 343-373
- [8] Saito, S. Class field theory for curves over local fields, Journal of Number theory 21 (1985), pp 44-80. 8
- [9] Saito, S. Some observations on motivic cohomology of arithmetic schemes. Invent.math. 98 (1989), pp 371-404.
- [10] Serre, J. P. Modular forms of weight one and Galois representations, Algebraic Number Thory, Academic Press, (1977), pp 193-268.
- [11] Yoshida, T. Finitness theorems in the class field theory of varieties over local fields, Journal of Number Theory **101** (2003), pp 138-150.

DÉPARTEMENT DE MATHÉMATIQUES., FACULTÉ DES SCIENCES DE BIZERTE 7021, ZARZOUNA BIZERTE. E-mail address: Belgacem.Draouil@fsb.rnu.tn