

J. Christian Andersen Kursusuge 5

Plan

- •
- Frekvensanalyse
 - Bodeplot 1. og 2. orden
 - Stabilitet, Stabilitetsmargin
- Grupperegning
 - Frekvensanalyse

Grupperegningsopgaver I

• 1) Et system skal modelleres med en lineær overføringsfunktion Der måles med en sinus på indgangen (u) med forskellige frekvenser:

$$u(t) = 1 \cdot \sin(\omega t)$$

Output (y) er ved lave frekvenser op til ca. 10 rad/s konstant med en fasedrejning på ca. 0 grader

$$y(t) = 10 \cdot \sin(\omega t + 0)|_{\omega < 10}$$

ved ca. $\omega pprox 45$ er amplituden steget til et maksimum, så

$$y(t) \approx 13.5 \cdot \sin(\omega t - 80^{\circ})|_{\omega = 45}$$

Ved $\omega \approx 500$ er amplituden faldet med ca. en faktor 100:

$$y(t) \approx 0.1 \cdot \sin(\omega t - 180^{\circ})|_{\omega = 500}$$

Hvad er et kvalificeret gæt på overføringsfunktionen?

Grupperegningsopgaver II

• 2) Et system har overføringsfunktionen

$$G(s) = \frac{10}{(0.0009s^2 + 0.018s + 1)s}$$

Systemet forsøges reguleret med en P-regulator med Kp=1

- a) Hvad er krydsfrekvensen ω_c ?
- b) Hvad er fasemargin γ_M ?
- c) Hvad er gain margin K_M ?
- d) Vil lukket sløjfe være stabilt?
- 3) For samme system øges Kp til Kp=3
 - a) Hvad er nu fasemargin?
 - b) Vil lukket sløjfe være stabilt?

Grupperegningsopgaver III

- Multiple choice opgaver til lektion 5
 - a) Krydsfrekvens
 - b) Stabilitet
 - c) Bodeplot til overføringsfunktion
 - d) Lukket sløjfe