

May, 2010

Freescale Android Platform Support for i.MX applications processors

Freescale Multimedia Markets

Automotive

- Historic leadership in Telematics
- Ramping in radio and infotainment
- Initial designs in advanced clusters

Smart Mobile Devices

- Thought leader for smartbooks
- Focused investment in tablets
- Strong smartphone player

eReaders

- Dominant market share in emerging eReader market
- Aligned with market leaders

Embedded Multimedia

- Broad traction in the embedded market
- Connected display based devices in consumer and industrial markets

Example of Consumer usage:

Applications Processors (i.MX) Roadmap

i.MX Value Proposition

- ▶ i.MX silicon and software <u>solution</u> that enables world-class smartbook/tablet products with real-world consumer benefits
- Complete hardware and software package provided to enable faster time to market and lower R&D investment
 - BSP's available for all major smartbook/tablet OS's
 - Full-featured media framework, including HW-accelerated Flash 10 and Skype
 - Significant investment in HW-acceleration for Linux and Android UI framework
 - Partners in place to provide UI and application customizations if needed
 - Design collateral up to and including complete form-factor reference design
 - Extensive tablet and smartbook consumer market research and thought leadership

Smartbook OS Options

os		Target Markets	Comments
Chrome		Clamshell	Aimed at cloud computingNo touch screen support today
Android	CIOSCUD	Smartphone Smaller tablets (<7 in) eReaders	 Optimized for smartphones Touch screen support Tremendous pull in multiple markets
Ubuntu	€	Clamshell Large tablets (7-10 in)	Supports netbook applicationsSmartbook flavors
Millos	MALLOS"	Smartbook Smartphone	Optimized applications
WinCE	Windows Embedded	Small clamshell Tablet	Highly integrated WinCE6 and WinCE 7 platforms

A few words about Android

What is Android?

- A free, open source and fully customizable software platform and operating system for mobile devices
- Based on the Linux kernel
- Offers a full software stack: an operating system, middleware, and key applications
- Also contains a rich set of APIs that allows third-party developers to develop great applications
- Developed by Google and later the Open Handset Alliance (OHA)
- Allows writing managed code in the Java language
- Unveiling of the Android platform was announced on 5 November 2007 with the founding of OHA
- Android is under version 2 of the Apache Software License (ASL)

What is Open Handset Alliance (OHA)?

- ▶ A group of mobile and technology leaders responsible for the creation and proliferation of Android and an open mobile ecosystem
- ► Devoted to advancing open standards for mobile devices
- Develop technologies that will significantly lower the cost of developing and distributing mobile devices and services
- ► Freescale joined OHA in early 2010

Android Platform details

Apps (Java) - Everyone can create his/her own application based on "Open" Android API APPLICATIONS Home Contacts Phone Browser **Android "Program" API** APPLICATION FRAMEWORK Middleware (Java) - App Notification Window Content View Activity Manager **Providers** Manager Manager System framework including window/focus management, Telephony Resource Location XMPP Service inter-app communication, Package Manager Manager Manager Manager event notification, etc ANDROID RUNTIME LIBRARIES Media Surface Manager **SQLite** Core Libraries Android native libraries. They are all Framework written in C/C++ internally, but you'll be calling them OpenGL|ES WebKit FreeType Machine through Java interface SGL SSL libc Android "Porting" I/F LINUX KERNEL Flash Memory Binder (IPC) Driver Linux kernel with Display Driver Bluetooth Camera Driver Driver Driver Android patch and BSP integration Audio Power **USB** Driver Keypad Driver WiFi Driver Drivers Management

What Android Is and Is Not

- ▶ It's a software stack for mobile devices including OS (Linux), middleware and key applications
- ▶ It's a different Linux OS (or "distribution") based on Linux kernel. The system libraries, system initialization and program interface in it are distinct from a "standard" Linux OS
- ▶ It's not ONLY an application framework for Linux, although it does include it's own app framework (window management, inter-app communication, event dispatch, ...)
- ▶ It's not ONLY a Java API for phone, although it does include a Java virtual machine (called "Dalvik") and all system interfaces are exposed only through Java libraries
- ▶ It's not a full phone stack. It's ONLY SW running on application CPU. It will interact with wireless protocol (GSM/GPRS/WCDMA/...) running on separate baseband chip to implement telephony features

Some key features of Android

Connectivity

Supports connectivity technologies including GSM/EDGE, CDMA, EV-DO, UMTS, Bluetooth, and Wi-Fi

Web browser

Web browser available in Android is based on the open-source WebKit application framework

Media

Supports the following audio/video/still media formats: H.263, H.264 (in 3GP or MP4 container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC (in MP4 or 3GP container), MP3, MIDI, OGG Vorbis, WAV, JPEG, PNG, GIF, BMP

Hardware and graphics

 Can use video/still cameras, touchscreens, GPS, accelerometers, magnetometers, accelerated 2D bit blits (with hardware orientation, scaling, pixel format conversion) and accelerated 3D graphics

Android Market place

 Catalog of applications that can be downloaded and installed to target hardware over-the-air, without the use of a PC

Multi-touch

Has native support for multi-touch which is available in newer handsets such as the Nexus One

Dev environment

 Includes a device emulator, tools for debugging, memory and performance profiling, a plugin for the Eclipse IDE

Freescale Android strategy

i.MX Android Strategy

▶ Readiness

An "integrated" solution (kernel + Android framework + dev/debug environment) instead of a "Android compliable" kernel only. Customer should be able to directly develop applications on this "integrated" solution or easily modify/replace their own drivers based on our reference code. i.e. our BSP needs to be "glued" with Android framework seamlessly

▶ Performance

Our i.MX+Android integration shows higher performance by careful optimization (e.g. utilizing HW acceleration, SW codec optimization) on current Android base

▶ Contribution

Freescale is now an OHA member

Participate and actively contribute in the OHA community

Contents of a Freescale i.MX Android Release

Consist of three packages:

- Core Images for board and source patches except FSL's parser/codec enhancement (HW video acceleration is still included in this package)
- Codec standard package FSL's parser/codec enhancement, but exclude those parser/codec which need additional license agreement
- Codec excluded package those parser/codec enhancement which need additional license agreement, including DivX/AC3/RMVB

i.MX5x Android Value Add and Roadmap

Integrated and tested solution

Kernel + Android framework + codecs + development/debug environment

Performance Optimization

- Hardware acceleration for graphics and multimedia
- Optimized OpenMax and OpenGL/ES with on chip VPU/GPU

Extensive Test Case

- · System test: power, audio, video, graphics, camera, connectivity
- BSP and Codec test

New release ~ every two months

Freescale Android optimizations

Multimedia – Audio/Video Codec

Multimedia – Graphics

Freescale takes numerous optimization into Android

Performance optimization for video/audio playback

- Incorporated audio codecs optimized specific for Cortex-A8/Neon
- Incorporated video accelerator to enable 720p playback
- Incorporated video accelerator to enable D1 camcording
- Video rendering
 - Rendering video through overlay instead of the SurfaceFlinger (UI)
 - Video overlay is accelerated by hardware
 - Frame buffers are shared between the decoder and renderer so avoid memory copy

Performance optimization for 3D and UI by using the GPU

- Incorporated the GPU for 3D processing
- Hardware Bitblt to combine surfaces into the display buffer

Functional enhancement for Android OpenCORE

- Added more formats: AVI, MKV, FLV, ASF and RM
- Added more codecs: WMV7/8/9, WMA, Ogg Vorbis and AC3 decoders
- Added MP3 for audio encoding
- Product-quality test

Video playback performance comparison between un-optimized and optimized Android

Container	Video	Audio	Resolution/	CPU loading		Frame Dropping Rate	
			Framerate	Original	Optimized	Original	Optimized
MP4	MPEG-4	- AAC-LC	320x240/30	56.5%	7.3%	0	0
			640x480/30	96.5%	8.7%	7.4%	0
			720x576/30	>97%	9.2%	27%	0
			1280x720/30	N/A	11%	N/A	0
	H.264		320x240/30	79.6%	7.0%	0	0
			640x480/30	N/A	7.6%	N/A	0
			720x576/30	N/A	8.2%	N/A	0
			1280x720/30	N/A	11.2%	N/A	0

Notes

- ▶ The test is carried out on Freescale Babbage 3.0 board with WVGA output
- N/A means this specification is not supported
- ▶ The original Android supports MPEG-4 up to VGA and H.264 up to CIF with acceptable quality
- ▶ Freescale version with optimization supports MPEG-4 and H.264 up to 720p without frame dropping

Android Test Methodology

- Freescale provides platform software components under the Android framework, to enable customers develop final Android-based solutions
- Our validation strategy consists of primarily validating the key platform pieces that constitute an Android port – which (as seen in the block diagram) is focused on the HAL, BSP and Codecs
- ▶ From a system stand point, we focus on the following pieces for integration and validation: Codecs, WiFi, Bluetooth, GPS, Camera, Graphics, and extensions that would feed into the Android stack.
- We will provide feedback on the Android stack to OHA but will not validate middleware features that are being handled by Google/OHA – we assume they are already extensively validated
- ▶ Validation with Android CTS

OHA contribution

- Android enabled kernel for i.MX SoC
- Android runable configuration (and necessary binaries) which can be used for building Android for our open-available hardware platform
- Utilize HW (Image Processing Unit) for video surface rendering
- Utilize HW (Video Processing Unit) for video codec acceleration
- Utilize HW (Graphics Processing Unit) for OpenGL-ES graphic acceleration
- Utilize/verify Android HAL (GPS/WiFi/BT, Camera, sound with ALSA) on our Android platform

Summary

- ► Freescale Semiconductor enables customers with integrated hardware/software solutions to realize faster time to market. The Android platform provides a compelling and innovative end user experience to support this effort
- ► The i.MX51 Applications processor with Android is a full hardware and software solution that is ideal for high performance, low power and cost effective mobile devices, including smartphones and other smart mobile devices such as smartbooks and eReaders
- ► The i.MX51 EVK offers a fully integrated and tested Android platform with optimized codecs and graphics and a development and debug environment. This solution is based on the latest stable Android kernel/release
- ► Freescale is a member of the Open Handset Alliance™ a group of mobile and technology leaders responsible for the creation and proliferation of Android and an open mobile ecosystem

Learn more on...

http://www.freescale.com/imxandroid

