SAS® **GLOBAL FORUM** 2019

USERS PROGRAM

APRIL 28 - MAY 1, 2019 | DALLAS, TX

Matthew Galati, SAS Institute Inc.

Matthew has worked at SAS since 2004 and is a Distinguished Operations Research Specialist. He focuses on mixed integer linear programming and network algorithms and consults on difficult problems through the Advanced Analytics and Optimization Services group. Matthew has a B.S. in Mathematics from Stetson University and an M.S. and Ph.D. in Operations Research from Lehigh University.

Network

- A Graph or Network represents relationships (or connections) between entities
 - Node an entity
 - Link a connection between a pair of nodes
 - Arbitrary number of attributes (distance, score, type, and so on) on links and/or nodes
- Example semantic network or knowledge base (subject-predicate-object expressions)

Pattern Matching

- Subgraph isomorphism find all subgraphs of G that are isomorphic to Q (topology mapping)
- Pattern matching subgraph isomorphism preserving all node and link attributes defined in Q
- network.patternMatch action and PROC NETWORK in SAS Visual Data Mining and Machine Learning

Friends of Matt who like barbecue restaurants

Pattern Matching

- Subgraph isomorphism find all subgraphs of G that are isomorphic to Q (topology mapping)
- Pattern matching subgraph isomorphism preserving all node and link attributes defined in Q
- network.patternMatch action and PROC NETWORK in SAS Visual Data Mining and Machine Learning

Friends of Matt who like barbecue restaurants

Semantic Network—Data

Main Graph (G) Data Tables

```
data mycas.NodesSocial:
   infile datalines ded.
   length node $40, type $40, subtype $20.;
   input node $ type $ subtype $;
  label=node;
   datalines:
Matt.
                    Person.
Rob.
                    Person,
Raleigh.
                    City.
Philadelphia.
                    City.
Red Hot Blue.
                    Restaurant, BBO
Vivo Rist.
                    Restaurant, Italian
data mycas.LinksSocial;
   infile datalines dsd:
   length from $40, to $40, connection $20.;
   input from $ to $ connection $ rating;
   datalines:
Matt.
         Rob.
                            friends. .
                            friends, .
Rob.
         Chuck.
Jack.
         Rob.
                            friends. .
Matt.
         Stephen,
                            friends, .
        Philadelphia,
                            lives in. .
Matt.
Stephen, JimmyJs,
                            likes,
Jack.
         Red Hot Blue,
                            likes.
```

Query Graph (Q) Data Tables

```
data mycas. NodesSocialQuery;
   infile datalines dad:
   length node $40. label $40. type $40. subtype $20.;
   input node $ label $ type $ subtype $;
   datalines:
Matt. Matt. Person.
X...
            Person.
BBO,,
            Restaurant, BBO
data mycas.LinksSocialOuery:
   infile datalines dsd:
   length from $40, to $40, connection $20.:
   input from $ to $ connection $:
   datalines:
Matt, X,
            friends
      Matt. friends
      BBO. likes
```


Semantic Network—Code and Log

Calling patternMatch from PROC NETWORK

```
proc network
  direction
                    = directed
  nodes
                    = mycas.NodesSocial
  links
                    = mycas.LinksSocial
  nodesQuery
                    = mycas.NodesSocialQuery
  linksQuery
                    = mycas.LinksSocialQuery;
  nodesVar
                    = (label type subtype);
     vars
  linksVar
     vars
                    = (connection);
  nodesOuervVar
     vars
                    = (label type subtype);
  linksOuervVar
                    = (connection);
      vars
  patternMatch
     outMatchNodes = mycas.OutMatchNodes
     outMatchLinks = mvcas.OutMatchLinks:
run:
```

PatternMatch Log File

NOIE:	
NOTE:	Running NETWORK.
NOTE:	
NOTE:	The number of nodes in the input graph is 18.
NOTE:	The number of links in the input graph is 35.
NOTE:	The number of nodes in the query graph is 3.
NOTE:	The number of links in the query graph is 3.
NOTE:	Processing the pattern matching query using 8 threads across 1 machines.
NOTE:	The algorithm found 5 matches.
NOTE:	Processing the pattern matching query used 0.00 (cpu: 0.00) seconds.
NOTE:	The Cloud Analytic Services server processed the request in 0.007591
	seconds.
NOTE:	The data set MYCAS.OUTMATCHNODES has 15 observations and 6 variables.

NOTE: The data set MYCAS.OUTMATCHLINKS has 15 observations and 4 variables.

	Node Mappings					Link Mapp	oings
ie	label	type	subtype	match	from	to	

match	nodeQ	node	label	type	subtype	match	from	to	connection
1	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ	1	Bryan	Matt	friends
1	Matt	Matt	Matt	Person		1	Bryan	Red Hot Blue	likes
1	X	Bryan	Bryan	Person		1	Matt	Bryan	friends
2	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ	2	Chuck	Matt	friends
2	Matt	Matt	Matt	Person		2	Chuck	The Pit Authentic	likes
2	X	Chuck	Chuck	Person		2	Matt	Chuck	friends
3	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ	3	Jack	Matt	friends
3	Matt	Matt	Matt	Person		3	Jack	Red Hot Blue	likes
3	X	Jack	Jack	Person		3	Matt	Jack	friends
4	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ	4	Matt	Rob	friends
4	Matt	Matt	Matt	Person		4	Rob	Matt	friends
4	X	Rob	Rob	Person		4	Rob	The Pit Authentic	likes
5	BBQ	JimmyJs	JimmyJs	Restaurant	BBQ	5	Matt	Stephen	friends
5	Matt	Matt	Matt	Person		5	Stephen	JimmyJs	likes
5	X	Stephen	Stephen	Person		5	Stephen	Matt	friends

Node	Mappings	
------	----------	--

Link Mappings	
---------------	--

match	nodeQ	node	label	type	subtype	match	from	to	connection
1	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ	1	Bryan	Matt	friends
1	Matt	Matt	Matt	Person		1	Bryan	Red Hot Blue	likes
1	X	Bryan	Bryan	Person		1	Matt	Bryan	friends
2	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ	2	Chuck	Matt	friends
2	Matt	Matt	Matt	Person		2	Chuck	The Pit Authentic	likes
2	X	Chuck	Chuck	Person		2	Matt	Chuck	friends
3	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ	3	Jack	Matt	friends
3	Matt	Matt	Matt	Person		3	Jack	Red Hot Blue	likes
3	X	Jack	Jack	Person		3	Matt	Jack	friends
4	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ	4	Matt	Rob	friends
4	Matt	Matt	Matt	Person		4	Rob	Matt	friends
4	X	Rob	Rob	Person		4	Rob	The Pit Authentic	likes
5	BBQ	JimmyJs	JimmyJs	Restaurant	BBQ	5	Matt	Stephen	friends
5	Matt	Matt	Matt	Person		5	Stephen	JimmyJs	likes
5	X	Stephen	Stephen	Person		5	Stephen	Matt	friends

BBQ

Matt

JimmyJs

Stephen

Matt

Node Mappings

JimmyJs

Stephen

Matt

	rrodo mappingo							ziiit mappingo				
match	nodeQ	node	label	type	subtype		match	from	to	connection		
1	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ		1	Bryan	Matt	friends		
1	Matt	Matt	Matt	Person			1	Bryan	Red Hot Blue	likes		
1	X	Bryan	Bryan	Person			1	Matt	Bryan	friends		
2	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ		2	Chuck	Matt	friends		
2	Matt	Matt	Matt	Person			2	Chuck	The Pit Authentic	likes		
2	X	Chuck	Chuck	Person			2	Matt	Chuck	friends		
3	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ		3	Jack	Matt	friends		
3	Matt	Matt	Matt	Person			3	Jack	Red Hot Blue	likes		
3	X	Jack	Jack	Person			3	Matt	Jack	friends		
4	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ		4	Matt	Rob	friends		
4	Matt	Matt	Matt	Person			4	Rob	Matt	friends		
4	X	Rob	Rob	Person			4	Rob	The Pit Authentic	likes		

BBQ

Restaurant

Person

Person

friends

friends

likes

Link Mappings

Stephen

JimmyJs

Matt

Matt

Stephen

Stephen

Stephen

Node Mannings

Stephen

	Node Mappings							Link Mappings					
match	nodeQ	node	label	type	subtype		match	from	to	connection			
1	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ		1	Bryan	Matt	friends			
1	Matt	Matt	Matt	Person			1	Bryan	Red Hot Blue	likes			
1	X	Bryan	Bryan	Person			1	Matt	Bryan	friends			
2	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ		2	Chuck	Matt	friends			
2	Matt	Matt	Matt	Person			2	Chuck	The Pit Authentic	likes			
2	X	Chuck	Chuck	Person			2	Matt	Chuck	friends			
3	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ		3	Jack	Matt	friends			
3	Matt	Matt	Matt	Person			3	Jack	Red Hot Blue	likes			
3	X	Jack	Jack	Person			3	Matt	Jack	friends			
4	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ		4	Matt	Rob	friends			
4	Matt	Matt	Matt	Person			4	Rob	Matt	friends			
4	X	Rob	Rob	Person			4	Rob	The Pit Authentic	likes			
5	BBQ	JimmyJs	JimmyJs	Restaurant	BBQ		5	Matt	Stephen	friends			
5	Matt	Matt	Matt	Person			5	Stephen	JimmyJs	likes			

Person

friends

Link Manninga

Stephen

Matt

Person

Person

Person

Restaurant

Semantic Network—Output

Matt

BBQ

Matt

Matt

JimmyJs

Rob

Matt

	match	nodeQ	node	label	type	subtype
ľ	1	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ
	1	Matt	Matt	Matt	Person	
	1	X	Bryan	Bryan	Person	
	2	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ
	2	Matt	Matt	Matt	Person	
	2	X	Chuck	Chuck	Person	
	3	BBQ	Red Hot Blue	Red Hot Blue	Restaurant	BBQ
	3	Matt	Matt	Matt	Person	
	3	X	Jack	Jack	Person	
	4	BBQ	The Pit Authentic	The Pit Authentic	Restaurant	BBQ

Matt

Rob

Matt

JimmyJs

Node Mappings

from	to	connectio
Bryan	Matt	friends
Bryan	Red Hot Blue	likes
Matt	Bryan	friends
Chuck	Matt	friends

likes

likes

friends

friends

friends

friends

friends

friends

likes

likes

The Pit Authentic

The Pit Authentic

Red Hot Blue

Link Mappings

Chuck

Matt

Jack

Rob

Matt

Stephen

JimmyJs

match

from

Chuck

Matt Jack

Jack

Matt

Matt

Rob

Rob

Matt

Stephen

BBO

subtype

BBQ

match

from

Semantic Network—Output

node

Matt

Matt

Chuck

Matt

Jack

Matt

JimmyJs

Stephen

Rob

Matt

Bryan

Red Hot Blue

Red Hot Blue

The Pit Authentic

The Pit Authentic

nodeQ

BBO

Matt

BBO

Matt

BBQ

Matt

BBO

Matt

BBQ

Matt

match

	Node	Мар	ping	js
		labe	l	
ıe		Red	Hot	Bl

Matt

JimmyJs

Stephen

Rob

Matt

idooi		1,00	oubtype
Red Hot	Blue	Restaurant	BBQ
Matt		Person	
Bryan		Person	
The Pit	Authentic	Restaurant	BBQ
Matt		Person	
Chuck		Person	
Red Hot	Blue	Restaurant	BBQ
Matt		Person	
Jack		Person	
The Pit	Authentic	Restaurant	BBQ
Matt		Person	

Person

Person

Person

Restaurant

tyne

Link Mappings

1	Bryan	Matt	friends
1	Bryan	Red Hot Blue	likes
1	Matt	Bryan	friends
2	Chuck	Matt	friends
2	Chuck	The Pit Authentic	likes
2	Matt	Chuck	friends
3	Jack	Matt	friends
3	Jack	Red Hot Blue	likes
3	Matt	Jack	friends
4	Matt	Rob	friends
4	Rob	Matt	friends
4	Rob	The Pit Authentic	likes
5	Matt	Stephen	friends
5	Stephen	JimmyJs	likes
5	Stephen	Matt	friends

connection

Friends of Matt who like barbecue restaurants, give the restaurant a rating of 9 or higher, and live in Raleigh

Friends of Matt who like barbecue restaurants, give the restaurant a rating of 9 or higher, and live in Raleigh

Semantic Network—Data and Code

Query Graph (Q) Data Tables and FCMP

```
data mycas.NodesSocialQuery;
   infile datalines dad:
   length node $40. label $40. type $40. subtype $20.;
   input node $ label $ type $ subtype $;
   datalines:
Matt.
         Matt.
                  Person.
х..
                  Person.
Raleigh, Raleigh, City,
                  Restaurant, BBO
BBO,,
data mycas.LinksSocialOuery;
   infile datalines dad:
   length from $40. to $40. connection $20.;
   input from $ to $ connection $;
   datalines:
Matt. X.
               friends
      Matt.
               friends
      Raleigh, lives in
      BBO.
               likes
proc cas:
   source myFilter:
   function myLinkFilter(connectionQ $, rating);
      if (connectionO='likes') then return (rating>=9):
      else return (1):
   endsub:
   endsource:
```

Calling patternMatch from PROC NETWORK

```
proc network
   direction
                    = directed
   nodes
                    = mycas.NodesSocial
   linke
                    = mvcas.LinksSocial
                    = mycas.NodesSocialQuery
   nodesOuerv
  linksOuerv
                    = mvcas.LinksSocialOuerv:
   nodesVar
      ware
                    = (label type subtype);
   linksVar
                    = (connection rating);
  nodesOuervVar
      vars
                    = (label type subtype);
  linksOuervVar
      vars
                    = (connection):
   patternMatch
      linkFilter
                    = mvLinkFilter
      outMatchNodes = mycas.OutMatchNodes
      outMatchLinks = mvcas.OutMatchLinks:
run:
```


A pair of friends of Matt who like the same barbecue restaurant, live in Raleigh, and are friends of each other

A pair of friends of Matt who like the same barbecue restaurant, live in Raleigh, and are friends of each other

A pair of friends of Matt who like the same barbecue restaurant, live in Raleigh, and are friends of each other

Semantic Network—Data and Code

Query Graph (Q) Data Tables

```
data mycas.NodesSocialQuery;
   infile datalines dad:
   length node $40. label $40. type $40. subtype $20.;
   input node $ label $ type $ subtype $;
   datalines:
Matt.
         Matt.
                  Person.
х..
                  Person.
                  Person.
Raleigh, Raleigh, City,
BBO,,
                  Restaurant, BBO
data mycas.LinksSocialOuery;
   infile datalines dad:
   length from $40, to $40, connection $20.;
   input from $ to $ connection $;
   datalines:
Matt. X.
               friends
      Matt.
               friends
Matt, Y.
               friends
      Matt.
               friende
      Raleigh, lives in
      Raleigh, lives in
      BBO.
               likes
      BBO.
               likes
               friends
               friends
```

Calling patternMatch from PROC NETWORK

```
proc network
   direction
                    = directed
   nodes
                    = mycas.NodesSocial
   linke
                    = mvcas.LinksSocial
   nodesOuerv
                    = mvcas.NodesSocialOuerv
   linksOuerv
                    = mvcas.LinksSocialOuerv:
   nodesVar
      ware
                    = (label type subtype);
   linksVar
      ware
                    = (connection):
   nodesOuervVar
      vars
                    = (label type subtype);
   linksOuervVar
      vars
                    = (connection):
   patternMatch
      outMatchNodes = mvcas.OutMatchNodes
      outMatchLinks = mvcas.OutMatchLinks:
run:
```


Applications of Pattern Matching

- Fraud (money laundering)
- Cybersecurity
- Social network analysis
- NLP and AI (semantic networks)
- Bio/chem-informatics
- Crystallography
- Image processing (computer vision)
- Compiler optimization
- CAD design of circuits
- o ..

Money Laundering

Sequential banking transactions through corporate entities established in the same year that start and end at the same entity

Y2 = Y3 and T1 < T2 < T3

Money Laundering

Sequential banking transactions through corporate entities established in the same year that start and end at the same entity

$$Y2 = Y3$$
 and $T1 < T2 < T3$

Money Laundering—Data and Code

Query Graph (Q) Data Tables and FCMP

```
data mycas.NodesQuery;
   input node @@;
  datalines:
1 2 3
data mycas.LinksOuery:
   input from to 00:
   datalines;
1 2 2 3 3 1
proc cas:
   source myPairFilter:
   function mvNodePairFilter(nodeO[*], vear[*]):
      if (nodeO[1]=2 and nodeO[2]=3) then return (year[1]=year[2]);
      else return (1):
   endsub;
   function mvLinkPairFilter(fromQ[*], toQ[*], time[*]);
      if (toO[1]=1) then return (1):
      else if (toO[1]=fromO[2]) then return (time[1]<time[2]):
      else return (1):
   endsub:
   endsource:
```

Calling patternMatch from PROC NETWORK

```
proc network
  direction
                     = directed
  nodes
                     = mvcas.NodesAML
  linke
                     = mvcas.LinksAML
                     = mycas.NodesQuery
  nodesOuerv
  linksOuerv
                     = mvcas.LinksOuerv:
  nodeeVar
      vars
                     = (year);
   LinkeVar
      vars
                     = (time);
  patternMatch
     nodePairFilter = mvNodePairFilter
     linkPairFilter = myLinkPairFilter
     outMatchNodes = mycas.OutMatchNodes
     outMatchLinks = mvcas.OutMatchLinks;
```


Y2 = Y3 and T1 < T2 < T3

Computational Comparison to iGraph and Neo4j

- Generally a very difficult problem to solve (NP-complete)
- Data sources
 - Stanford Network Analysis Project (SNAP)
 - Synthetically generated (Erdős-Rényi and Barabási-Albert models)
 - Lehigh University Benchmark (LUBM)
- |E(G)| ranges from 950,000 to 15,000,000
- |E(Q)| ranges from 1 to 45 with various data attributes and topologies
- Number of matches ranges from 2 to 1,939,108
- Server—Intel Xeon CPU X5550 @ 2.67 GHZ (2x4 CPUs), 64 GB RAM, running RHEL6.3

Software	Total Time (seconds)	Average Speedup
SAS Viya 3.4	261	151.8
iGraph 0.7.1	37,699	

Network versus iGraph (5 main graphs, 19 query graphs)

Software	Memory (GB)	Total Time (seconds)	Average Speedup
SAS Viya dev	1.9	145.7	7.2
SAS Viya 3.4	1.9	306.3	3.6
Neo4j 3.5.1	>24	822.1	

Network versus Neo4j (7 main graphs, 32 query graphs)

Algorithm Classes

- The network action set and PROC NETWORK in SAS Visual Data Mining and Machine Learning
- The optNetwork action set and PROC OPTNETWORK in SAS Optimization

	network	optNetwork
Topology/Descriptive		
connected components	✓	√
biconnected components	✓	\checkmark
clique enumeration	✓	\checkmark
core decomposition	✓	
cycle enumeration	✓	\checkmark
path enumeration	✓	\checkmark
shortest path	✓	\checkmark
summary statistics	✓	\checkmark
transitive closure	✓	\checkmark

	network	optNetwork
Network Analysis		
centrality	√	
community detection	✓	
node similarity	✓	
ego (reach) networks	✓	
pattern matching	✓	
Optimization		
bipartite matching		✓
minimum-cost network flow		✓
minimum cut		✓
minimum spanning tree		✓
traveling salesman problem		✓

Thank you!

Contact Information matthew.galati@sas.com

Reminder:

Complete your session survey in the conference mobile app.

API Comparison

Neo4j

- Graph database with a primary focus on data handling and matching through graph traversal
- Pattern matching supports (through the Cypher language):
 - exact topology (defined as ASCII-art paths)
 - exact and inexact attributes (SQL-like syntax)
 - limited inexact topology (variable path length)
- Traversal focus allows for more general filtering capability (at a computational cost)

SAS Viya 3.4

- Graph compute engine with a primary focus on fast analytical computation
- Pattern matching supports:
 - exact topology (data tables—node and edge lists)
 - exact and inexact attributes (FCMP syntax)
- Filtering capability is (currently) limited to individual or pairs of nodes or links

Cypher Example

Friends of Matt who like barbecue restaurants, give the restaurant a rating of 9 or higher, and live in Raleigh

Cypher

SAS Viya 3.4

```
MATCH (Matt)-[:friends]->(X)-[:friends]->(Matt),
(BBQ)<-[r:likes]-(X)-[:"lives in"]->(Raleigh)
WHERE Matt.label="Matt" and Matt.type="Person" and
X.type="Person" and
Raleigh.label="Raleigh" and Raleigh.type="City" and
BBQ.type="Restaurant" and BBQ.subtype="BBQ" and
r.rating>=9
BETIRN (X)
```



```
data mycas.NodesSocialOuery:
   infile datalines dsd:
  length node $40, label $40, type $40, subtype $20,;
  input node $ label $ type $ subtype $;
  datalines:
Matt,
         Matt,
                  Person,
х..
                  Person.
Raleigh, Raleigh, City,
BBO..
                  Restaurant, BBO
data mycas.LinksSocialOuery:
   infile datalines dad:
   length from $40, to $40, connection $20.;
   input from $ to $ connection $;
  datalines:
Matt, X.
               friends
               friends
      Matt.
     Raleigh, lives in
      BBO.
               likes
proc cas;
  source myFilter:
  function myLinkFilter(connectionO $, rating);
      if (connectionQ='likes') then return (rating>=9);
     else return (1):
   endsub:
   endsource:
```