Lect3-Exponents and Logarithms

AMC-12

September 26, 2021

Index

- Intensive Lecture
 - Outline
 - Exponents
 - Logarithms
 - Exponential and Logarithm Functions
- 2 Exercise
- Review

Index

- Intensive Lecture
 - Outline
 - Exponents
 - Logarithms
 - Exponential and Logarithm Functions
- 2 Exercise
- Review

Outline

Outline of Algebra:

- Functions:
 - Linear functions;
 - Quadratics and Polynomials;
 - Exponents and Logarithms;
 - **.**...
- Inequalities;
- Sequences and Series;
- Trigonometric Functions;
- Complex Number;
- ...

Exponents

Example:

$$2^2 \times 2^3 \times 2^4 = 4 \times 8 \times 16 = 512 = 2^9$$
.

Rules of Exponents:

- \bullet $a^m \times a^n = a^{m+n}$, $a^n \times b^n = (a \times b)^n$:
- \bullet $a^{-n} = 1/a^n$, $a^n/a^m = a^{n-m}$, $a^n/b^n = (a/b)^n$;
- $(a^m)^n = a^{mn}$;
- $a^{1/n} = \sqrt[n]{a}, \sqrt[m]{a^n} = a^{n/m} (a > 0)$
- $a^{n^m} = a^{(n^m)}$.
- $a^0 = 1 \ (a \neq 0), \ 0^a = 0 \ (a > 0)$:

Example 1: Simplify

$$\left(\frac{x^5y^{-3}}{x^3y^8}\right)^2$$
, $\frac{\left(27x^4y^{-5}\right)^3}{\left(81x^2y^{-3}\right)^2}$.

Example 2: If $3^{x-y} = 81$, $3^{x+y} = 729$, what is x?

Example 3: If $9^{3-x} = 81^{4-2x}$, then what is *x*?

7/23

Example 4: Suppose that

$$4^{x_1} = 5, 5^{x_2} = 6, 6^{x_3} = 7, \cdots, 127^{x_{124}} = 128$$
. What is $x_1 x_2 \cdots x_{124}$?

Logarithms

Example: $\log_2 64 = 6$, $\log_3 81 = 4$.

Definition 1 (Logarithm)

A logarithm is the inverse of the exponent. Specifically, a logarithm is the power to which a number (the base) must be raised to produce a given number.

z is called the base-x $(x > 0, x \neq 1)$ logarithm of argument-y (y > 0) if and only if $x^z = y$. In typical notation

$$\log_x y = z \Leftrightarrow x^z = y.$$

Natural logarithm: $\ln x = \log_e x$,

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.7182818284 \cdots$$

Base 10 logarithm: $\lg x = \log_{10} x$.

Rules of Logarithm

Rules of Logarithms:

- $\bullet \log_a b + \log_a c = \log_a bc;$
- $\log_a b = -\log_a \frac{1}{b}$, $\log_a b \log_a c = \log_a \frac{b}{c}$;
- $\bullet \log_a b^c = c \cdot \log_a b;$
- $\log_a b = \frac{1}{\log_h a}$;
- $\log_a b = \frac{\log_c b}{\log_c a} = \frac{\log_a c}{\log_b c}$;
- $\bullet \ a^{\log_a b} = b;$
- $\log_a 1 = 0$;

Example 1: Simplify

$$\log_2\left(\frac{32}{9}\right)^2$$
, $2\log_4\sqrt{5} + \frac{1}{2}\log_2625 - \log_2\frac{1}{5}$.

Example 2: What are the solutions of the equation

$$\lg 2x + \lg(x - 1) = \lg(x^2 + 3).$$

Example 3: What are the solutions of the equation

$$2(\lg x)^2 = 7\lg x - 3.$$

Example 4: If the solutions of the equation $x^{\log_3 x - 2} = 27$ are a and b, what is $\log_a b + \log_b a$?

Exponential Function

- $f(x) = a^x (a > 0, a \neq 1);$
- Domain: $(-\infty, +\infty)$;
- Range: $(0, +\infty)$;
- Monotonicity: a > 1: monotone increasing; a < 1: monotone decreasing.
- f(0) = 1.

4 D > 4 A > 4 B > 4 B > 9 Q P

Logarithm Function

Index

- Intensive Lecture
 - Outline
 - Exponents
 - Logarithms
 - Exponential and Logarithm Functions
- 2 Exercise
- Review

Excercise 1

Suppose
$$P = 2^m$$
 and $Q = 3^n$. What is 12^{mn} ? (A) P^2Q (B) P^nQ^m (C) P^nQ^{2m} (D) $P^{2m}Q^n$ (E) $P^{2n}Q^m$.

Excercise 2

How many positive integers n satisfy the following condition:

$$(130n)^{50} > n^{100} > 2^{200}?$$

Exercise 3

What is the domain of the function

$$f(x) = \log_{27} \left(\log_9 \left(\log_3 \left(\log_{\frac{1}{3}} x \right) \right) \right)?$$

Exercise 4

Solve the following equation for *a*:

$$\frac{1}{\log_2 a} + \frac{1}{\log_9 a} + \frac{1}{\log_{12} a} = 3.$$

Excercise 5

What is the solutions of the equation

$$\log_x xy \times \log_y xy + \log_x (x - y) \times \log_y (x - y) = 0?$$

Index

- Intensive Lecture
 - Outline
 - Exponents
 - Logarithms
 - Exponential and Logarithm Functions
- 2 Exercise
- Review

A Short Review

- Exponents
 - Definition;
 - Rules;
 - Exponential function;
- Logarithms
 - Definition;
 - Rules;
 - Logarithm function.

