

# Bluetooth® **BTC 2** Modules

User guide version V1.3 Software version V0.9

## **Adeunis RF**

283 rue Louis Néel Parc Technologique Pré Roux 38920 Crolles - France

Tel: +33 0)4 76 92 07 77 email: arf@adeunis-rf.com Website: www.adeunis-rf.com



#### **Information**

| <b>Document information</b> |                                                     |
|-----------------------------|-----------------------------------------------------|
| Title                       | Bluetooth® BTC 2 User guide                         |
| Subtitle                    | Version 1.3 - Software Version V0.9                 |
| Document type               | Hardware integration and software management manual |
| Document status             | Release for Bluetooth® BTC 2 V0.9                   |

This document applies to the following products

| Name                                | Reference | Status         | Firmware version |
|-------------------------------------|-----------|----------------|------------------|
| Bluetooth® BTC 2 Integrated antenna | ARF7678AA | Available      | V0.9             |
| Bluetooth® BTC 2 RF out pin         | ARF7678BA | Available      | V0.9             |
| Bluetooth® BTC 1 Integrated antenna | ARF7680AA | To be released |                  |
| Bluetooth® BTC 1 RF out pin         | ARF7680BA | To be released |                  |
| Bluetooth® BTC 1 U.FL connector     | ARF7681AA | To be released |                  |

#### **Disclaimer**

This document and the use of any information contained therein, is subject to the acceptance of the Adeunis RF terms and conditions. They can be downloaded from <a href="https://www.adeunis-rf.com">www.adeunis-rf.com</a>.

Adeunis RF makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.

Adeunis RF reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited. Copyright © 2012, Adeunis RF.

Adeunis RF is a registered trademark in the EU and other countries.

#### **Technical Support**

#### Website

Our website contains many useful information: modules and stand alone products information, user guides, configuration software and technical documents which can be accessed 24 hours a day.

#### **Email**

If you have technical problems or cannot find the required information in the provided documents, contact our Technical Support by email. Use our dedicated email address (arf@adeunis-rf.com) rather than any personal email address of our staff. This makes sure that your request is processed as soon as possible.

#### **Helpful Information when Contacting Technical Support**

When contacting Technical Support please have the following information ready:

- Product type (e.g. BTC2 module ref ARF7678),
- Firmware version (e.g. V0.9)
- Clear description of your question or the problem
- A short description of the application
- Your complete contact details



#### 1. BTC Bluetooth® modules REGULATORY CONSIDERATIONS

We ADEUNIS RF

283 rue LOUIS NEEL, 38920 CROLLES, France

declare under our own responsibility that the products

Name Bluetooth® BTC1&2 modules

Reference(s) ARF7678AA, 7678BA, 7680AA, 7680BA, 7681AA

to which this declaration refers conform with the relevant standards or other standardising documents :

- EN 300-328 V1.8.1 (2012-06)
- EN EN 60950-1/2001 + A11 (2004)
- EN 301 489-1 (v1.8.1) (2008-04)
- EN 301 489-3 (v1.4.1) (2002-08)

According to the RTTE Directive 99/5/EC

#### Notes:

- Receiver class (if applicable): 3
- CE marking applies only to End Products: Because this equipment is only a subassembly, conformity testing has been reduced (equipment has been design in accordance to standards but full testing is impossible). Manufacturer of End Products, based on such a solution, has to insure full conformity to be able to CE label marking.

Crolles, 18 June 2012 Hervé Vincent, CEO





## **Table of contents**

| Disclai                                          | nformation<br>Disclaimer<br>echnical Support                               |             |
|--------------------------------------------------|----------------------------------------------------------------------------|-------------|
| 1.                                               | BTC Bluetooth® modules REGULATORY CONSIDERATIONS                           | 3           |
| <b>2.</b> 2.1.                                   | Module overview Adeunis RF concept                                         | <b>5</b> 5  |
| <ul><li>2.2.</li><li>2.3.</li><li>2.4.</li></ul> | Module functionality Technical Specifications BTC module range of products | 5<br>5<br>5 |
| 3.                                               | Main characteristics                                                       | 6           |
| 3.1.                                             | Form factor and footprint                                                  | 6           |
| 3.2.                                             | Pin description                                                            | 6           |
|                                                  | 3.2.1 Pinout of BTC2 module 3.2.2 Pin configuration                        | 6<br>7      |
| 3.3.                                             | Electrical characteristics                                                 | 7           |
| 5.5.                                             | 3.3.1 Absolute maximum ratings                                             | 7           |
|                                                  | 3.3.2 General specifications                                               | 7           |
|                                                  | 3.3.3 Digital specifications                                               | 8           |
|                                                  | 3.3.4 Radio characteristics                                                | 8           |
| 3.4.                                             | Antenna                                                                    | 8           |
| 3.5.                                             | Suggested hardware design                                                  | 9           |
| 4.                                               | Communication basics                                                       | 9           |
| 4.1.                                             | Transparent / Data Mode (default mode)                                     | 9           |
| 4.2.                                             | Command Mode                                                               | 9           |
| 5.                                               | Quick configurations                                                       | 10          |
| 5.1.                                             | Use BTCL as a slave                                                        | 10          |
| 5.2.                                             | Use BTC as a master                                                        | 10          |
| 6.                                               | Main features                                                              | 11          |
| 6.1.                                             | Command Syntax                                                             | 11          |
| 6.2.                                             | AT Bluetooth® commands                                                     | 11          |
| 6.3.<br>6.4.                                     | Switching between Modes AT setup commands & registers                      | 12<br>12    |
| 0.4.                                             | At setup commands & registers                                              | 12          |
| 7.                                               | Advanced features                                                          | 14          |
| 7.1.<br>7.2.                                     | Remote Mode Auto-connection                                                | 14          |
| 7.2.<br>7.3.                                     | Multi SPP mode                                                             | 14<br>15    |
| 7.3.<br>7.4.                                     | GPIO management                                                            | 15          |
|                                                  | 7.4.1 GPIO feature activation (S242 register)                              | 15          |
| 8.                                               | Version history                                                            | 16          |



#### 2. Module overview

#### 2.1. Adeunis RF concept

BTC-DATA or BTC is the abbreviation used for Adeunis-RF Data Bluetooth® module, class1 or class2.

BTC implements an AT command interpreter, the Bluetooth® protocol stack, the Bluetooth® profiles and the low level firmware. It therefore presents a simple AT command interface to a host processor and abstracts all the complexities of Bluetooth® to the host.

The host system can interface to BTC through a serial interface, using the ASCII commands that BTC firmware supports (AT Commands).



#### 2.2. Module functionality

The BTC Bluetooth® modules enable Bluetooth® compliant duplex communications in the worldwide 2.45 GHz frequency band.

The main purpose is to establish a communication from a serial port to another by using Bluetooth® SPP profile.

Data exchange and set-up are only done through an UART data port. The BTC Bluetooth® modules offer two modes: command mode and transparent mode.

- The command mode is used to established Bluetooth® communications and set/get parameters.
- The transparent mode is used for data exchange.

#### 2.3. Technical Specifications

| Technical specifications |                                                                                                             |
|--------------------------|-------------------------------------------------------------------------------------------------------------|
| Embedded profiles        | SPP                                                                                                         |
| Bluetooth                | Bluetooth core specifications 2.1 + EDR                                                                     |
| Module configuration     | Through AT commands                                                                                         |
| Radio data rate          | Up to 3Mbps EDR                                                                                             |
| UART Data rate           | From 9.6kbps to 921.6kbps                                                                                   |
| UART TTL Ports           | TxD — RxD — TRS — CTS                                                                                       |
| Frequency                | FHSS / 2.402 to 2.480 GHz                                                                                   |
| RF radiated power        | Class2:+2dBm                                                                                                |
| RF sensitivity           | Up to -86dBm for BER 10-3                                                                                   |
| Operating range          | Up to 100m (Class2 - external antenna - line of sight) Up to 20m (Class2 - ceramic antenna - line of sight) |
| Operating Voltage        | 3.3V typ (2.85V to 3.6V)                                                                                    |
| Consumption (Class2)     | Receiver : 40mA<br>Transmitter : 60mA                                                                       |
| Operating temperature    | -40°C / +85°C                                                                                               |
| Dimensions               | Class 2 : 22 x 14 x 3 mm                                                                                    |
| Standards compliance     | EN 300-228 / EN 301-489 / FCC part 15 / IC                                                                  |

### 2.4. BTC module range of products

The BTC range is made up of 5 modules.

- Class 1: with antenna, with UFL connector, without antenna and connector
- Class 2: with antenna, without antenna and connector

The 2 modules are pin-to-pin compatible



#### 3. Main characteristics

#### 3.1. Form factor and footprint

#### Footprint of BTC2 module



Note: dxf and gerber files are available on request

## 3.2. Pin description

#### 3.2.1 Pinout of BTC2 module





## 3.2.2 Pin configuration

| Pin module | Pin name | i/O | Description                                                                                    | Recommended IO polarization                                                                   |
|------------|----------|-----|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1          | GND      |     |                                                                                                |                                                                                               |
| 2          | 3V3      | in  | Module regulated power supply                                                                  | 3.3V typ (2.85V to 3.6V)                                                                      |
| 3          | RF_OUT   |     |                                                                                                |                                                                                               |
| 4          | RESET    | in  | Reset active HIGH (>5ms)<br>Internal pull down                                                 | Can be left unconnected                                                                       |
| 5          | GND      |     |                                                                                                |                                                                                               |
| 6          | GND      |     |                                                                                                |                                                                                               |
| 7          | AIO_0    | in  |                                                                                                | MUST BE LEFT UNCONNECTED                                                                      |
| 8          | PCM_OUT  |     |                                                                                                | MUST BE LEFT UNCONNECTED                                                                      |
| 9          | UART_TXD | out |                                                                                                |                                                                                               |
| 10         | PCM_IN   |     |                                                                                                | MUST BE LEFT UNCONNECTED                                                                      |
| 11         | UART_RXD | in  |                                                                                                |                                                                                               |
| 12         | PCM_CLK  |     |                                                                                                | MUST BE LEFT UNCONNECTED                                                                      |
| 13         | UART_RTS | out | UART request to send active low                                                                | Low level when ready to accept incoming data on UART_RX                                       |
| 14         | PCM_SYNC |     |                                                                                                | MUST BE LEFT UNCONNECTED                                                                      |
| 15         | UART_CTS | in  | UART clear to sent active low                                                                  | Pull-down enable BTCL UART_TX                                                                 |
| 16         | PIO6     |     | General purpose input or specific I/O feature                                                  | When unused can be left unconnected                                                           |
| 17         | PIO7     |     | General purpose input or specific I/O feature                                                  | When unused can be left unconnected                                                           |
| 18         | USB+     |     |                                                                                                | MUST BE LEFT UNCONNECTED                                                                      |
| 19         | VREG_EN  | in  | High level : enable BT device regulator<br>Low level : disable BT device regulator             | Pull-up for enabling BT device<br>When pulled down module consumption is lower<br>than 100 μA |
| 20         | USB-     |     |                                                                                                | MUST BE LEFT UNCONNECTED                                                                      |
| 21         | PIO9     |     | General purpose input or specific I/O feature.<br>Can be used to restore default UART settings | When unused can be left unconnected                                                           |

## 3.3. Electrical characteristics

## 3.3.1 Absolute maximum ratings

| Parameter                 | Min  | Тур | Max  | Unit | Conditions |
|---------------------------|------|-----|------|------|------------|
| Supply voltage            | -0.3 |     | 3.6  | V    |            |
| Storage Temperature range | -40  |     | +125 | °C   |            |
| Input RF level            |      |     | +10  | dBm  |            |
| Voltage on any pin        | -0.3 |     | 3.6  | V    |            |

## 3.3.2 General specifications

| Parameter                 | Min  | Тур | Max | Unit   | Conditions |
|---------------------------|------|-----|-----|--------|------------|
| Supply Voltage Range      | 2.85 | 3.3 | 3.6 | V      |            |
| Temperature Range         | -40  |     | +85 | °C     |            |
| Transmitter consumption   |      | 60  |     | mA (*) |            |
| Receiver consumption      |      | 35  | 40  | mA     |            |
| Stand by consumption (*2) |      |     | 100 | μΑ     |            |

<sup>(\*)</sup> Consumption measured in conducted mode.

<sup>(\*2)</sup> VREG-EN tied low.



#### 3.3.3 Digital specifications

The table below summarizes all the different electrical input/output generic characteristics of the modules.

| Input/Output Terminal Characteristics (Digital)                                |                   |         |      |         |      |
|--------------------------------------------------------------------------------|-------------------|---------|------|---------|------|
| Digital Terminals Min Typ Max Un                                               | it                | Min     | Тур  | Max     | Unit |
| Input Voltage Levels                                                           |                   |         |      |         |      |
| VIL input logic level low                                                      | 2.7V ≤ VDD ≤ 3.0V | -0.4    | -    | 0.8 V   | V    |
| VIH input logic level high                                                     | ·                 | 0.7VDD  | -    | VDD+0.4 | V    |
| Output Voltage Levels                                                          |                   |         |      |         |      |
| Vol output logic level low, (lo = $4.0$ mA), $2.7$ V $\leq$ VDD $\leq$ $3.0$ V |                   | -       | -    | 0.2     | V    |
| Vol output logic level low, (lo = $4.0$ mA), $1.7$ V $\leq$ VDD $\leq$ $1.9$ V |                   | -       | -    | 0.4     | V    |
| Voн output logic level high,<br>(lo = -4.0mA), 2.7V $\leq$ VDD $\leq$ 3.0V     |                   | VDD-0.2 | -    | -       | V    |
| Voн output logic level high,<br>(lo = -4.0mA), 1.7V $\leq$ VDD $\leq$ 1.9V     |                   | VDD-0.4 | -    | -       | V    |
| Input and Tristate Current with:                                               |                   |         |      |         |      |
| Strong pull-up                                                                 |                   | -100    | -40  | -10     | μА   |
| Strong pull-down                                                               |                   | 10      | 40   | 100     | μА   |
| Weak pull-up                                                                   |                   | -5.0    | -1.0 | -0.2    | μА   |
| Weak pull-down                                                                 |                   | 0.2     | 1.0  | 5.0     | μА   |
| I/O pad leakage current                                                        |                   | -1      | 0    | 1       | μА   |
| CI Input Capacitance                                                           |                   | 1.0     | -    | 5.0     | pF   |

#### 3.3.4 Radio characteristics

| Radio characterictics |                                                                                                                |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------|--|
| Bluetooth             | Bluetooth core specifications 2.1 + EDR                                                                        |  |
| Radio data rate       | Up to 3Mbps EDR                                                                                                |  |
| Frequency             | FHSS / 2.402 to 2.480 GHz                                                                                      |  |
| RF radiated power     | Class2:+2dBm                                                                                                   |  |
| RF sensitivity        | Up to -86dBm for BER 10-3                                                                                      |  |
| Operating range       | Up to 100m (Class2 - external antenna - line of sight)<br>Up to 20m (Class2 - ceramic antenna - line of sight) |  |

#### 3.4. Antenna

- The footprint of the inductor and capacitor are useful to ensure good impedance matching between antenna and BTC modules.
- For a quick set-up, we recommend not to get the self, to install the capacitor to 10 pF (or replace it by a short circuit or a 0 ohm resistor) and solder a 3 cm length wire behind the capacitor.

Class 2 Module's antenna matching





#### 3.5. Suggested hardware design

For all GPIOs, there are internal configurable pull up.

GPIO 7\*: can be used for command/data mode switching

GPIO9\*: can be used for restoring default UART settings



#### 4. Communication basics

There are two different modes in BTC: Command mode and Transparent mode. Transparent mode (also called data mode) is the mode activated after the startup.

Default settings: 9600, 8bits, 1 stop, no parity, HW flow control Enabled



#### 4.1. Transparent / Data Mode (default mode)

Data mode allows completely transparent traffic between two connected SPP Bluetooth® devices. This is a full duplex connection where all bytes received on the local UART are transmitted to the connected device. Equally, all bytes received wirelessly are transmitted to the local UART. BTC will always boot in transparent mode and will be discoverable. Any device can then connect to it and exchange data. To put it into command mode, the user will have to issue the 'A+++' sequence.

#### 4.2. Command Mode

In command mode, BTC will expect AT Commands from the host. The AT Commands are used to change settings or perform actions (such as inquiry, connect to a Bluetooth® device, disconnect, etc.). This mode is used to perform configuration control and various actions.



### 5. Quick configurations

There is two scenarios to quickly establish a Bluetooth® SPP connection to be able to transmit datas:

- BTC module as a Slave (connection performed by another BT device)
- BTC module as a Master (connection established by the BTC module)

To start you need to have:

a) Adeunis Development board containing the BTC module. Please contact info@adeunis.fr for more information on ordering and product codes. b) A host with a serial port running a terminal.

Connect your host to your BTC module using the serial port. By default, BTC uses the following UART settings: 9600, 8bits, 1 stop, no parity, HW flow control Enabled

A second Bluetooth® device (can also be a BTC module).

Once the settings are loaded on your terminal, power up the module. You should see an 'ARF767x BT Vx,xx' prompt appear on the screen of the terminal. Then the BCT module is ready to operate (active mode is transparent).

#### 5.1. Use BTCL as a slave

At startup the BTC module is discoverable and ready to accept an incoming SPP connection.

So on your BT master device you can:

- 1. Perform a discovery to find out the BTC slave module; the BTC module address is 00 18 B2 xx xx xx, and the default device name is «Serial Port Device»
- 2. Ask for the device available service (which is SPP for BTC module)
- 3. Connect on the Port Com
- 4. When the connection is established you can send and receive data on both side (from the terminal of you master, and the terminal of your BTCL slave)

#### 5.2. Use BTC as a master

At startup the BTC module is in data mode. To establish the BT connection an perform the data exchange you have to:

1. To enter command mode using the A+++ sequence

| Command | Response |
|---------|----------|
| A+++    | O#CR#LF  |

2. To perform a discovery / inquiry to find out the slave module.

| Command  | Response                                                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATINQ#CR | Address=0018B2010ACA, ClassOfDevice=000000#CR#LF<br>Address=3859F9CCB893, ClassOfDevice=3E010C#CR#LF<br>Address=0021FE8ABF33, ClassOfDevice=5A020C#CR#LF |

3. Establish the SPP connection using the MAC address of the remote device

| Command             | Response |
|---------------------|----------|
| ATD 0018B2010ACA#CR | O#CR#LF  |

4. Go back to data mode using the ATO command

| Command | Response |
|---------|----------|
| ATO#CR  | O#CR#LF  |

**5**. Then exchange the data



#### 6. Main features

#### 6.1. Command Syntax

Command syntax : COMMAND#CR

Ex: AT&V#CR

Note: additional #LF will be silently discarded

Ex: AT&V#CR#LF also accepted

**Response syntax:** RESPONSE#CR#LF

or RESPONSE1#CR#LFRESPONSE2#CR#LF... or specific string if specified #CR#LF

Ex: O#CR#LF

Ex: S200=0018B2010984#CR#LFS201=serial#CR#LF ...

**Standard response:** O#CR#LF Successful completion

E#CR#LF Error (syntax error, invalid parameter)
D#cr#LF Link disconnection while remote mode active

**Notation used:** Bracket identifies optional parameters. For example ATINQ command is equivalent to ATINQ 10,10.

Comma is used as value or parameter delimiter. For example ATS218=30,0,0

#### 6.2. AT Bluetooth® commands

The AT commands specific to Bluetooth® are summarized below. When optional parameter are not given after the command, the command will automatically take as parameters, the optional parameters values that are shown in the second column.

#### The Bluetooth® command cannot be used in remote mode.

Bracket identifies optional parameters. For example ATINQ command is equivalent to ATINQ 10,10.

| Command<br>(link/profile oriented) | Optional default value | Description                                                                                                                                          |
|------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                        | Searches Bluetooth® devices in the area for a maximum number of devices and a maximum period of timeout (in multiples of 1.28s with a maximum of 48) |
|                                    |                        | Response : O#CR#LF (no device discovered)                                                                                                            |
| ATINQ [Max Device],[Timeout]       | 10, 10                 | or                                                                                                                                                   |
|                                    |                        | Address=0018B2010ACA, ClassOfDevice=000000#CR#LF                                                                                                     |
|                                    |                        | Address=78CA39C51227, ClassOfDevice=3A0104#CR#LF                                                                                                     |
|                                    |                        |                                                                                                                                                      |
|                                    |                        | O#CR#LF                                                                                                                                              |
|                                    |                        | Establishes a connection with a given Bluetooth® address.                                                                                            |
| ATD Bluetooth_Address              |                        | Response:                                                                                                                                            |
|                                    |                        | O#CR#LF (connection established)                                                                                                                     |
|                                    |                        | E#CR#LF                                                                                                                                              |
|                                    |                        | NO_CARRIER#CR#LF                                                                                                                                     |
| ATH                                |                        | Terminates Bluetooth® connection                                                                                                                     |
|                                    |                        | Response : O#CR#LF or E#CR#LF                                                                                                                        |



|         |     | Returns the Receiver Signal Strength of the last received frame.  RSSI > -70 dBm : Excellent receipt  -70 > RSSI > -80 dBm : Good receipt  -80 > RSSI > -90 dBm : Poor receipt |
|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT&RSSI |     | RSSI < -90 dBm : Bad receipt  Response: E#CR#LF ( <b>link not established</b> ) or -xx dBm <cr><lf></lf></cr>                                                                  |
| AT&L    | All | Link status.  Response: E#CR#LF (no connection established) Or Disconnection cause Or (one or several) LINK SPP1 remoteaddr 0#CR#LF                                            |
| ATO     |     | Enter Transparent mode                                                                                                                                                         |

#### 6.3. Switching between Modes

BTC will not switch automatically between modes. The following diagram indicates the commands or sequences to switch between modes.



Note 1 : A+++ is not an AT command but a predefined sequence. The A+++ sequence is accepted only if a silence (no other character) is detected before and after

Note 2: GPIO (PIO7) can be used to switch from transparent to command mode and vice-versa.

Note 3: GPIO (PIO9) can be used at start-up to restore default UART settings.

#### 6.4. AT setup commands & registers

The BTC module has many registers that can be configured to enable the module to behave differently depending on the use cases. These registers can be modified when in command mode using the AT Command 'ATSx='. At factory, the modules are loaded with the factory default values.

The setup commands and registers are summarized below. The setup commands can be used in remote mode.

| The Setap community and registers are summanized below. The Setap community can be used in remote mode. |                                                                         |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Command                                                                                                 | Description                                                             |  |
| AT&V or AT/S                                                                                            | Shows all registers                                                     |  |
| AT&W                                                                                                    | Write all registers in non volatile memory                              |  |
| AT&F or ATR                                                                                             | Restore factory default register value                                  |  |
| ATSn?                                                                                                   | Displays the Sn Register content where n represents the register number |  |



| ATSn=m      | Sets the Sn register value with 'm'. N represents the register number                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|
| ATI or AT/V | Returns information on the firmware (Version Number, etc.)                                                                            |
| ATRST       | Restart the module.<br>Caution : if parameter change have not been saved before using this command the parameter update will be lost. |

## Registers

A description of the Registers is in the table below:

| Register | Description (Values)                                                                                                                                                                                                                                                                    | Factory default Value |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| S200     | Local Bluetooth® address (Read Only)                                                                                                                                                                                                                                                    | -                     |  |  |
| S201     | Local device name (lower or equal than 32 bytes)                                                                                                                                                                                                                                        | «Serial Port Device»  |  |  |
| S202     | Auto connect mode: 0=disable, 1=autoconnect on reset and power up, 2 = autoconnect on GPIO (DTR)                                                                                                                                                                                        | 0                     |  |  |
| S203     | Remote Bluetooth® address for SPP (If auto connect is enabled, this Bluetooth® address is used)  Syntax for writing S203 ATS203=123456789012#CR                                                                                                                                         | 0,0,0h                |  |  |
| S204     | Reconnection on management (0: no reconnection, N: number of retries, 255: always)                                                                                                                                                                                                      | 255                   |  |  |
| S205     | Pin Code for connection on legacy device (lower or equal to 16 bytes) Required for a connection on legacy device which is configured with pin code requested on connection.  (ex: ARF52 with S205=PinCode)  Legacy device: Bluetooth® Core Specification 2.0 + EDR and earlier versions | 0                     |  |  |
|          | Class of Device                                                                                                                                                                                                                                                                         | 000000h               |  |  |
| S208     | SPP=0000h, HFD =408h  Syntax for writing S208 ATS208=123456#CR (value is hexadecimal)                                                                                                                                                                                                   | 0000011               |  |  |
|          | Tips: on Android OS, some stack doesn't support class of device 0000h. Set S208 to another value when using Android (example : S208=1).                                                                                                                                                 |                       |  |  |
| S210     | UART Baud rate in bits/s ('4'=9600, '5'=19200. '6'=38400, '7'=57600, '8'=115 200, '9'=230400, '10'=460800, '11'=921600)                                                                                                                                                                 | 4                     |  |  |
| S211     | UART Data length ('8'=8bit)                                                                                                                                                                                                                                                             | 8                     |  |  |
| S212     | UART Parity bit ('1'=none, '2'=odd, '3'=even)                                                                                                                                                                                                                                           | 1                     |  |  |
| S213     | UART Stop bit ('1'=1 stop bit, '2'=2 stop bits)                                                                                                                                                                                                                                         | 1                     |  |  |
| S214     | A+++ Command time out (Time duration for detecting the A+++ patern in 20ms units: from 1 to 255x20ms)                                                                                                                                                                                   |                       |  |  |
|          | UART Flow control management ('0'= disable RTS/CTS management, '1'=enable RTS/CTS management).  Modifying is enabled after ATO command which reboot the system.  Caution: if the save command (AT&W) is not used before this reboot, last register updates will                         |                       |  |  |
| S215     | not be retained. When upgrading this register value use the following command sequence for exiting the command mode:  AT&W#CR                                                                                                                                                           |                       |  |  |
|          | ATO#CR                                                                                                                                                                                                                                                                                  |                       |  |  |



|      | GPIO Read input re | egister |                | xxxx |
|------|--------------------|---------|----------------|------|
|      | Bit2               | PIO2    | (value 0x0004) |      |
|      | Bit3               | PIO3    | (value 0x0008) |      |
|      | Bit4               | PIO4    | (value 0x0010) |      |
|      | Bit5               | PIO5    | (value 0x0020) |      |
| S243 | Bit6               | PIO6    | (value 0x0040) |      |
|      | Bit7               | PIO7    | (value 0x0080) |      |
|      | Bit8               | PIO8    | (value 0x0100) |      |
|      | Bit9               | PIO9    | (value 0x0200) |      |
|      | Bit10              | PIO10   | (value 0x0400) |      |
|      | Bit11              | PIO11   | (value 0x0800) |      |

#### 7. Advanced features

#### 7.1. Remote Mode



Before all, a connection must be established.

In remote mode, commands transmitted to the local UART interface are sent wirelessly (via the SPP link) to the connected device. So commands are interpreted by the remote device instead of the local device.

From the Master module (the one controlling the Slave): When the host send ATC1 command to the module, the module will enter into Remote Mode. It will therefore transparently send the AT commands through to the Bluetooth® link and the remote module. When it will receive an ATC0 command, it will return to command mode.

From the Slave module (The receiving module). When the slave receives ATC1 over the Bluetooth® link, it will enter the Remote Mode. In this mode it will ignore the UART and accept commands from the SPP link over Bluetooth®. If any registers are modified, the master must send the AT&W command as the Slave will reboot when it receives the ATC0 to leave Config mode or when the connection is lost.

This mode can be used for example to configure the remote UART in order to perform an SPP connection between both applications.

Only setup commands can be used to configure the remote device. The Bluetooth® commands cannot be used in remote mode.

If a link disconnection occurs during remote mode control:

- On local device, any valid remote command will return the response D#CR#LF instead of a successful feedback (Currently no response feedback, only ATCO can be used to exit remote mode). In this case, the local device stays in remote control mode until receiving the ATCO command. This is done for preventing unexpected change on local device.
- On remote device, the device will be restart (after a 20s timeout)

#### 7.2. Auto-connection

Auto connection setup is performed using S202, S203 and S204 registers.

S202 register is used for enabling auto connection:

- Auto-connect can be performed at startup (\$202=1)
- or can be GPIO driven ((S202=2)
- S202=0 disable auto-connection feature

S203 register defines the MAC address used for auto-connection.

Startup string at power up



[RX] - ARF767x BT V0,90<CR><LF>

Go to command mode to configure the Auconnection

[TX] - A+++

[RX] - O < CR > < LF >

Set the mac @ for autoconnection

[TX] - ATS203=0018B2001023<CR>

[RX] - O<CR><LF>

Activate the Auconnection

[TX] - ATS202=2<CR>

[RX] - O<CR><LF>

Enable the Auconnection feature

[TX] - ATS242=40<CR>

[RX] - O<CR><LF>

By default PIO9 is High, so the link is not established

[TX] - AT&L<CR>

[RX] - E<CR><LF>

Pull PIO9 from High to Low

After a While, the connection is established

[TX] - AT&L<CR>

[RX] - LINK SPP1 0018B2001023 0<CR><LF>

#### 7.3. Multi SPP mode

To be released

#### 7.4. GPIO management

BTC has configurable I/O that can be used for :

- Reading local input
- Reset UART settings and S216 register to default (well known value)
- Automatic connection management : one line (DTR input) is externally asserted for requesting a connection, a second line (DSR output) indicates either the connection has been established or released.
- Data mode / command switching (equivalent to ATO/A+++)

For all I/O the default configuration (S242=0000) is:

- Input with internal pup, excepted AIOO. Each Input can be read using register S243.
- All I/O features are disabled excepted the UART Reset feature; This feature must be always accessible

#### 7.4.1 GPIO feature activation (S242 register)

S242 register allows to enable GPIO feature.

This first table describes local feature while the second contains the I/O used for reporting remote I/O (DUN capability).

| S242-bit number | S242-bit value       | name    | Available I/O feature                                                                                                               |
|-----------------|----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| b1-0            | XX                   |         | free                                                                                                                                |
| B3-2            | 00<br>(value 0x0000) | PIO6 In | Local Input                                                                                                                         |
|                 | 01<br>(value 0x0004) | Out     | DSR/ PIO6 (out) reflect the connection status  Level 0 -> connection established  Level 1 -> connection released  S242 value 0x0004 |



| B5-4 | 00<br>(value 0x0000)    | PIO7 In | Local Input                                                                                                                                                                              |
|------|-------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 01<br>(value 0x0010)    | PIO7 In | PIO7 (in) switching from data to command mode     Falling edge -> data mode activation     Rising edge-> command mode activation S242 value 0x0010                                       |
| B7-6 | 00 **<br>(value 0x0000) | PIO9 In | Local Input                                                                                                                                                                              |
|      | 01 **<br>(value 0x0040) | out     | <ul> <li>DTR/ PIO09 (in) acts as connection request</li> <li>falling edge is a connection request</li> <li>Rising edge is a disconnection request</li> <li>\$242 value 0x0040</li> </ul> |

#### Note \*\*:

- At startup PIO9 level (configured as an input with pull up) is always checked for restoring default UART value; If a low level is detected, then the default UART setting and S216 register value are restored. **The level 0 duration must be ≥ 500ms**.
- If default value restoration has been done the PIO9 DTR feature cannot be enabled (prevention of I/O conflict)

## 8. Version history

| User guide version | Contents                          |  |
|--------------------|-----------------------------------|--|
| V1.0               | Document layout update            |  |
| V1.1               | Declaration of conformity updated |  |
| V1.2               | Document update                   |  |
| V1.3               | Register S243 updated             |  |