Analisi Matematica 2 - Ing. Infor	Esame del 7 febbraio 2022		
Cognome:	Nome:	Matricola:	

È richiesto di giustificare tutti i passaggi.

La prova è sufficiente se le seguenti tre soglie sono tutte raggiunte: esercizi 12 punti, teoria 4 punti, punteggio totale 18.

ESERCIZI: 24 punti.

Esercizio 1 (6 punti)

- 1) (3 punti) Determinare l'integrale generale dell'equazione differenziale $y''(t) + 2y'(t) 3y(t) = e^t$.
- 2) (1,5 punti) Stabilire se esistono soluzioni di tale equazione che verificano $\lim_{t\to -\infty} y(t)=0$ e, in caso affermativo, determinarle tutte.
- 3) (1,5 punti) Risolvere il problema di Cauchy $\begin{cases} y''(t)+2y'(t)-3y(t)=e^t \\ y(0)=0 \\ y'(0)=0 \end{cases} .$

Esercizio 2 (6 punti)

Sia
$$f: \mathbb{R} \to \mathbb{R}$$
 la funzione 2π -periodica definita in $[-\pi, \pi)$ da
$$\begin{cases} -x & \text{per } x \in [-\pi, 0) \\ \frac{x}{2} & \text{per } x \in [0, \pi). \end{cases}$$

- 1) (3 punti) Studiare la convergenza della serie di Fourier di f, in particolare:
 - a- discutere la convergenza in media quadratica;
 - b- determinare l'insieme di convergenza puntuale della serie di Fourier e la funzione somma della serie in tale insieme;
 - c- stabilire se la convergenza della serie di Fourier sia totale in tutto \mathbb{R} .
- 2) (3 punti) Determinare i coefficienti a_n della serie di Fourier di f. Non è richiesto di calcolare i coefficienti b_n .

Esercizio 3 (6 punti)

- 1) (3 punti) Sia g la funzione di due variabili definita da $g(x,y)=\frac{\ln(1+x^2y)}{\sqrt{2x^2+y^2}}$.
 - a- Determinare il dominio di g e dire se si tratta di un insieme aperto/chiuso limitato/illimitato.
 - b- Stabilire se esiste il limite $\lim_{(x,y)\to(0,0)}g(x,y)$ e, in caso affermativo, determinarlo.
- 2) (3 punti) Sia ora $f(x,y)=e^{x^2-y}$. Determinare il massimo assoluto e il minimo assoluto di f sul vincolo $\mathcal{Z}=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$.

Data la lamina piana

$$L = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \ x \ge 0, \ -x \le y \le x\},\$$

avente densità di massa $\rho(x, y) = x$,

- 1) (2,5 punti) calcolare la massa m(L) della lamina L;
- 2) (3,5 punti) ricordando che il baricentro di ${\cal L}$ ha coordinate

$$\frac{1}{m(L)} \left(\iint_L x \rho(x,y) \, dx \, dy, \iint_L y \rho(x,y) \, dx \, dy \right),$$

determinarle.

TEORIA: 8 punti.

Tutte le domande a crocette ammettono una e una sola risposta corretta.

- 1) (1 punto) Si consideri il sistema differenziale omogeneo $\underline{y}'(t) = A\underline{y}(t)$, dove A è una matrice quadrata di ordine 2 avente autovalori complessi coniugati immaginari puri.
 - A Le soluzioni sono tutte limitate in \mathbb{R}
 - B Potrebbero esistere soluzioni non definite in tutto $\mathbb R$
 - C Le soluzioni sono tutte del tipo $\underline{v} e^{\lambda t}$, con λ reale e $\underline{v} \in \mathbb{R}^2$
 - D L'integrale generale è uno spazio vettoriale di dimensione 1
- 2) (1 punto) Siano $[a,b] \subset \mathbb{R}$ un intervallo limitato e $\underline{r}:[a,b] \to \mathbb{R}^n$ la parametrizzazione di una curva regolare γ . Siano poi $A \subset \mathbb{R}^n$ aperto tale che $\gamma \subset A$ e $f:A \to \mathbb{R}$ continua. L'integrale curvilineo di f lungo γ è
 - A $\int_a^b \|\underline{r}'(t)\| dt$
 - B $\int_{r(a)}^{\underline{r}(b)} f(\underline{r}(t)) dt$
 - $C \int_a^b f(\underline{r}(t)) dt$
 - D $\int_a^b f(\underline{r}(t)) \|\underline{r}'(t)\| dt$
- 3) (1 punto) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile in $\underline{x}_0 \in \mathbb{R}^2$. Allora
 - A fè di classe C^1 in un intorno di \underline{x}_0
 - B può esistere una successione di punti \underline{x}_n per cui si abbia $\lim_{n \to +\infty} \underline{x}_n = \underline{x}_0$ e $\lim_{n \to +\infty} f(\underline{x}_n) \neq f(\underline{x}_0)$
 - C se inoltre \underline{x}_0 è punto critico per f, allora $f(\underline{x}) f(\underline{x}_0) = o(\|\underline{x} \underline{x}_0\|)$ quando $\underline{x} \to \underline{x}_0$
 - D $\nabla f(\underline{x}_0)$ è tangente all'insieme di livello di f passante per \underline{x}_0
- 4) (1,5 punti) Enunciare il teorema di Fermat, specificandone le ipotesi di validità.

5) (3,5 punti) Enunciare primo ordine lineari.	e dimostrare l	a formula	risolutiva	per	le equazioni	differenziali	ordinarie	del
			6					