

Computational Physics

PHYS 6260

Molecular Dynamics

Announcements:

HW7: Due today (4/7)

No class: Mon 4/14

Poster presentations: Wed 4/16

We will cover these topics

- What is Molecular Dynamics (MD)?
- Components of MD simulations
 - Potential energy
 - Verlet algorithm
 - Ensembles of configurations
 - Boundary conditions
- Examples

Lecture Outline

What is MD?

- Simulation method for analyzing physical movement of atoms and molecules
- Atoms and molecules are allowed to interact for a fixed time
- Trajectories of particles are solved using Newton's equation of motion
- Forces are given by interatomic and intermolecular potentials
- Accuracy depends highly on interatomic potentials

MD Timescales

- Limited to the femto- to nanosecond scales
- Short timescale is needed to ensure numerical stability and accuracy when conserving energy
- Need timescales an order of magnitude shorter than the fastest timescales in the system

Assumptions

- Atoms are treated like balls connected on springs
- Neglects QM effects

Basic problems

- Size of configuration space
- Accuracy of molecular model or interatomic potential

Successful simulation reqs

- Fast & memory efficient
- Permit the use of long timesteps
- Duplicate classical treatments
- Satisfy known energy laws
- Time reversible <-> energy conservation
- Simple and easy to program

Successful simulation reqs (cont'd)

- Good algorithms permit both large dt & accuracy
 - Energy conservation is degraded with increasing dt
 - Measure "acceptable" MD simulation by preserving energy conservation
- Simplicity of algo increases speed
 - No point in calculating unused variables

Components of MD Simulations: Force law

Newton's 2nd law for particle motion

$$F_i = m_i \dot{v}_i = -\frac{\partial}{\partial x_i} V(\sum_i \{x_i\})$$

Equation of motion (EoM) for atomic systems in classical MD

$$\dot{q}_i = \frac{\partial H}{\partial p_i}; \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$$

- Here q_i is the generalized coordinate and p_i is the momentum
- The Hamiltonian is given by the standard

$$H = \sum_{i} [p_i^2/2m_i + V(\{x_i\})]$$

- For a given potential and initial condition, we solve for
 - Force (F_i) \rightarrow acceleration (a_i) \rightarrow new positions (x_i)

Pair potential

- Attraction: long distance; instantaneous dipoles arise during fluctuations of e-cloud
- Repulsive: short distance; overlap of e-cloud such that nuclei are shielded

$$U(r) = K\epsilon \left[\left(\frac{\sigma}{r} \right)^n - \left(\frac{\sigma}{r} \right)^m \right]; \quad K = \frac{n}{n-m} {n \choose m}^{\frac{m}{n-m}}$$

- Example: Lennard-Jones (LJ)
 - n = 12; m = 6; decays rapidly with distance
 - Save computational time by neglective pair potential at a specific radius (usually 2.5σ Angströms)

Coulombic interactions

Included if electrostatics between atoms are significant

$$U_i = \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$$

 For full potential calculations, we need to correct for screening e-clouds surrounding the point charges

Embedded atom model

- Each atom is considered to be embedded in an electron sea, where the energy of the system is expressed as a function of e⁻ density at each position
- Allows to capture bounding and repulsion between atoms

Reactive potentials

- Specifically designed to model bond breaking and forming
- Combines empirical parameters

Intermolecular

Models describe behavior between covalent bonds (stretching, bending, rotation modes)

Components of MD Simulations: Verlet algorithm

- Most widely used method for integrating EoM covered very early in the semester
- Direct solution of 2nd order equations (special case of leapfrog method)

- Disadvantages
 - Awkward handling of velocity
 - Some numerical imprecision

```
import numpy as np
n=100
t0=0
tstop=2*np.pi
deltat = (tstop-t0)/float(n)
t = np.linspace(t0,tstop,n+1)
rx, ry, rz = np.zeros(n+1),np.zeros(n+1),np.zeros(n+1)
ax, ay, az = np.zeros(n+1),np.zeros(n+1),np.zeros(n+1)
sum_vx, sum_vy, sum_vz = 0,0,0
rx[0],ry[0],rz[0] = 0.1,0.1,0.1
for i in range(1,n):
    rx[i+1] = 2*rx[i]-rx[i-1]+deltat*ax[i]
    ry[i+1] = 2*ry[i]-ry[i-1]+deltat*ay[i]
    rz[i+1] = 2*rz[i]-rz[i-1]+deltat*az[i]
    vx = (rx[i+1] - rx[i])/(2*deltat)
    vy = (ry[i+1] - ry[i])/(2*deltat)
    vz = (rz[i+1] - rz[i])/(2*deltat)
    sum_vx += vx
    sum vy += vy
    sum vz += vz
```

Components of MD Simulations: Verlet common mods

Half-step leapfrog

Reduces O(dt²) error term, however we are not storing the velocities at the same timestep

Velocity-Verlet algorithm

- Requires 2 stages and storage of \vec{r} , \vec{v} , \vec{a}
- Calculate new potential and forces at t+dt, velocities at t+dt/2

Ensemble of Configurations

- Collection of possible conditions that the system can occupy under specific circumstances
- For example, what thermodynamic parameters do we keep constant (pressure, temperature, volume?)

A few common ensembles

- Micro-canconical ensemble (NVE): const # of particles (N), volume (V), energy (E)
- Canonical ensemble (NVT): const # of particles (N), volume (V), temperature (T)
- Isothermal-isobaric ensemble (NPT): const # of particles (N), pressure (P), temperature (T)
- Boundary conditions: usually periodic in a single or multiple dimensions, depending on the system

Energy minimization

- Useful when initial configuration is unfavorable
- Energy minimization allows the system to be relaxed before MD simulation
- Can also be performed during a MD simulation to obtain a more favorable configuration

How does everything fit together?

boundary p p p units real

atom_style full bond_style harmonic angle_style hybrid harmonic charmm dihedral_style hybrid harmonic charmm pair_style lj/cut/coul/long 12

read_data mixture.data

first equilibration at large temperature fix mynpt all npt temp 360 360 100 iso 1000 1000 1000 timestep 1.0 thermo 1000 run 20000

Carbon Deposition on Nickel surface

Velocity: 3500 m/s

Potential: Olsson

Time: 0 ps

Recent (random) examples

- MD + Al for COVID-19
- MD in drug discovery review
- Food science
- Prof. Gumbart's group at GT