EE-635

(Applied Linear Algebra)

Assignment-1

Name: Sravan K Suresh

Roll No: 22B3936

Dept: Electrical Engineering

Soln 3:

	Assignment #1	Fage No : YOUVA
	V	Court I
Sel. 3]	Given, n = p.q., p≠q and both plim	e.
V	Z= {0,1,2,,n-13. Pleasy, 0 ∈ Z	n and
	x2 = 0	solution to 2=0.
		V1
9	Now, assuming contraly to the stated:	Charles San
-	Now, assuming contrary to the stated: suppose $\alpha \in \mathbb{Z}_n$, $\alpha \neq 0$ and $\alpha^2 = \alpha' \pmod{\alpha}$,=0,
(Fleselving that for my two numbers or y \ Z	y
	for x most y = 0, = it means that	n = pg) divides
	the product, which futher implies that	2 or y are
	Fleshwing that for any two numbers $x, y \in \mathbb{Z}$ for x into $y = 0$ it means that the product, which further implies that divisible by either p or q despectively (as	stated in hint.
34	So for a motor a = 0 to hold, a must be a which just means that a must be divisible	by pas well as q.
-	7	
	$\alpha^2 = \alpha \cdot \alpha = 0 \Rightarrow \alpha \mod n = 0 \Rightarrow \alpha \mod p$	= 0 AND a mod a = 0.
	: p, q -> PRIMES \ \ a < n > a mod p = 0	"
	LCM (p,q) = n.	/
	: a ∈ Z => a < n. Thus, there is n	o number in Zn
	satisfying $\alpha^2 = 0$ other than $\alpha = 0 \Rightarrow \alpha$	2=0 has a UNIQUE solution.
	De : Proved.	

Soln 5:

```
Sol.5) Given P = \begin{bmatrix} 3 \\ 12 \end{bmatrix} \in \mathbb{Z}_7^{2\times 2} and A = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \in \mathbb{Z}_7^{2\times 2}.
          For P (= 3 currently) to be = 1, we have to scale it to such a value that it satisfies P, mod 7 = 1.

In this manner, we use "elementary sow operations" to convert P to I^{2n2} so as to get P^{-1}.
            for (M, (5) P) to be o adding 6 times 1 to it
            \begin{bmatrix} 10 \\ 50 \\ 61 \end{bmatrix} \begin{bmatrix} 31 \\ 12 \end{bmatrix} = \begin{bmatrix} 10 \\ 61 \end{bmatrix} \begin{bmatrix} 15 \\ 12 \end{bmatrix} = \begin{bmatrix} 15 \\ 1 \\ 2 \end{bmatrix} 
           Now to make 4 to 1, 8 mod 7 = 1 .. M, (2) = 1 0
            :. P = E (2)M2(2) E (6) M (5)
```

Soln 7:

Rol-7 given An=2n=	$\Rightarrow (A - \lambda \mathbf{r}) x = 0$
- A-21	$ = 0 \Rightarrow 5 - \lambda 0 = (5 - \lambda)^3 = 0$
1 8.	- ov 5-N 1' > 7
0	5-2 2=5,5,5.
So, (A-5±) x = 0 ⇒	[0 1 0][x,] . [0]
	D 0 1 mg 0
produced to be to	000 23 0
.: (A-5I) hele clearly is	2 from fank 2" matrix, RREF form
with all zclose in 1	column, x, is a fece variable.
? x = c, x = 0,	% = O -
61	
°. x = c ∈ N	\mathbb{R}^3 .
0 1	u v v v min ti i
- · · · · · · · · · · · · · · · · · · ·	

Soln 11:

Sol.	H] Requiren	ent: 10 Phon	phous, 9	Pal	all	19	Maka	L. Jak	
-	(Pho)	1: X - [2]	Y	^	J.		Nitrogen		
- 2 - 2	Pot	3	1 1	3		1 2 3		• 1	
	LNJCO	5	9	4			0	100	
		+ 11 1 1	0			R L		4	
α	(a) -	No. of Bagy	al X	V	. 1 9	The second second	V. D		
/	8	Bag	3	, 7 0	and 2	lespe	etively		
	8	[21.]	(x)	-	100		AC TA	. 5	
	1 6 49	3 3 0	2015	7	9	139	A Park		-/-
			B	0	-	2 1	- 1		
		5 4 1			[19]			La Caraciana	
	. //.	.00	4		à	F 30	4 10	17 13	
-	: Using !	ROy R -	Ry-Ry	-R	• 0				
7 A	U			2		, ,			
1			The second	ENTRO.	Emma III				

Soln 12:

	PAGE NO. YOUVA
12] Given, the characteristic of field (let's is	ey, we represent it by
of the case on being implimite in 0. Solo, considering finite n: n Case 1: n is composite.	composite
Let n = arb for some a: By definition of characteristic, no 1+1+	>1, 6>1, +1 = n·1=0-
But no are also given that Z &	(n) $(n_1 \cdot 1)(n_2 \cdot 1) = 0$
either (n.) should be = 0 or (n.) = is an integral domain.	
but $(n,-1)$ or $(n_2-1) \neq 0$, as it will to the minimality of n .	the CONTRADICTION
Case 2: n is plime.	
Yontider any non-zero element 'a' ∈ Z, then GCD (a, n) = 1	
Now, Sezout's identity, Ix, y	'∈ Z: αx+ny=1
faking mod on on both sides, $\alpha \not\equiv (\alpha \pmod + y)^2 = 1$ $\Rightarrow \alpha \pmod m = \alpha \times x^{-1} \Rightarrow \alpha \cdot 1 = x^{-1} (\alpha \times x)^2 = x^{-1} = x^{-1$	≠0, α <n)< th=""></n)<>
This implies that $1+1+-+1=a^{-1}$ $\alpha \neq 0$ $A \in \mathbb{Z}_{p}$ when $a \neq 0$	(:: z ∈ Z)
:. Charf it nothing but n in Chaich is a peir	×
charf = 0 or charf = n 2 n	

Soln 15:

为证。	the state of the s
&d.1	of Let Ia and Im be additive and multiplicative (dentity (assume).
	then, x DIa= 2 AND 28 In= 2
	=> x+In-1= x AND x+Im-xIm= x
	$\Rightarrow I_{\alpha} = 1 AND I_{m} (1-\alpha) = 0$
	a CANNOT be fined, :. Im = 0
	VERIFYING:
	20 = x+1-1=x/ 20 0= x+0-x(0) = x/
	$ \bigoplus \alpha = 1 + n - 1 = n $ $0 \otimes \alpha = 0 + n - 0 (n) = n $
11.97	:. Ia=1 AND Im=0
	Now one checking whether it is an integed domain:
	Now one checking whether it is an integral domain: (x Dy = 0 \iff x = 0 or y = 0)
	$\therefore x+y-xy=0 \Rightarrow x=y(x-1) \Rightarrow y=x \Rightarrow \text{ satisfied by } (0,0),$ $x-1 \mapsto x-1 \mapsto x$
	2-1 1 (2,2)!
	∴ non-zelo numbel (2,2) salisfy, i. $2 \otimes 2 = 0$ ⇒ $(\mathbb{Z}, \oplus, \otimes)$ is an integral domain.
	⇒ (Z, ⊕, 8) is an Printegral domain.
	A CONTRACTOR OF THE PROPERTY AND ADDRESS OF THE PROPERTY A

Soln 16:

3 3		Page No.: Pote: YOUVA
	fere	0.00
16] (Being solved , so as to assist solution	to Qn 17])
Y	rem, K = {serof Nos}, K(ta) == { (or	+ p. (a): a, p & K, d > 0 is 19-5mi}
N	Le VITT to be a Publish it is	Illing the sent Het it
New	on integral domain and also has a	D Hillist
130	m integral domain and also has a	a multiplicative muche for
enu	ey non-zero element in it.	1+0
1	Consider a+ B.d. of B. o	
740	it course suit may be	taken as 1+8 ld.
	:. (x+pta) (r+ sta) = 1 => (r+	SNa) = 1
/15	12	(W+PU&)
14	$\delta \sqrt{d} = \alpha - \beta \sqrt{d} \Rightarrow Y = \alpha$	
14	$\alpha^2 - \beta^2 d$ $\alpha^2 \beta^2 d$	«2- g²d
Ok.		Con and b
no	w check for 1 K=Z: Z (Va): d, a	, β ∈ Z .
7.	hen Y+SJA NEED NOT necessarily	belong to Z,
for	example: $\alpha = 13$, $\beta = 2$, $d = 15$	Con street y herter #
	(Clearly, d, B, d ∈ L and d	(= 3×5 - 29. fee)
**	hen	
		5 = 13 +2.15
-01	$\frac{ 69 - (+2)^2 \times 5 }{ 13 ^2 - (+2)^2}$	*15 109 109
-u	early, 8,8 here \$ 7.	0.00
	:. Z (sa) is	NOT a field.
1.		1. 1
*	I of the same lines above also expl	ain how BIN (Ja) is NOT
	The state of the s	a field.

Soln 17:

	Date VOOV	A
17]	Constanting IT, the smallest field in the family that contains sational number Q:	
	sational number Q:	
	F. = X+BId. (noting that a is already a field	()
	Now, a, p, d & a is a field FIELD	-
1	assuming to be field me deduce Fing to be a field	
	(Pacy by induction) (d collesponding to	0
	29 free component	t
	The field, we deduce From to be a field (Part by induction) (d collesponding to be a field by induction) i. From = { x + p \tall : a, \beta \in Transform and d = d, } of transform.	
	Thus, $F_n \in F_{n+1}$ $\Rightarrow \chi \in F_{n+1}$ Now, consider $y = \alpha + \beta \int_{\mathbb{R}} d_n$ where $\alpha = 0$, $\beta = C$, $c \in \mathbb{N}$ then $c_1d_n \in F_{n+1}$ but $c_2d_n \notin F_n$ $f_1 \in F_{n+1}$ Thus, for F_{n+1} to loe a field, consider any two $f_1, f_2 \in F_{n+1}$ checking closure under oddn: $f_1 + f_2 = \alpha_1 + \alpha_2 + (\beta_1 + \beta_2) \int_{\mathbb{R}} d_n = \alpha_3 + \beta_3 \int_{\mathbb{R}} d_n$	
	m_{+1} $\Rightarrow \alpha \in \mathbb{F}$	
	Thur F. E.F. MI	_
	Now, consider y = \a + \b d where \a = 0, \b = c, c \in M	-
	then coldn EF but Coldn & Fn x + Boldn = B	
	: F C F	14
	None for Fret to loe a field controll any two fift ettati	
*	Checking closure ander add =	
	71 1/2 01 1/2 (P1 /2/ 1/2 1/3 1/3 Wh	
	": a, a eff => (a+a) = a eff. rly, (f+f2) = f3 eff. Photos later later and eff.	
	5. fi+f2 € Fn.	_
*	meding crossee under multiplication:	_
	f. of 2 = (x,+B, 1dn) (x,+B, 1dn) = x, x + B, B, 2dn + (x, B,+B, x) de	_
Too I at a		
114	of felf of formalle is lot $\alpha = \alpha$	
	: fith=0: enutr. SEF >EF	
* M	ultiplicative Envelse:	
	ultiplicative inverse: Now conidu for EF, 1903 = 0+ B. Jan, 0, B E. F.	
	X J1 N+1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Let fif=1 => fi (x+B)=1	
A CONTRACTOR	$\Rightarrow f^{-1} = 1 = \alpha - \beta \sqrt{d_n} = a - b \sqrt{d_n}$ $(\alpha + \beta \sqrt{d_n}) \alpha^2 - \beta^2 d_n \alpha^2 - \beta^2 d_n$	_
	(x+ pldn) x2-p2dn x2-p2dn	

Soln 22:

	Page No.: YOUVA
	Date:
29]	Tel weW, nW = weW, and weW
-	w = 0 (from @) and w = vo = 0 (from @)
_	: W = \Z 0 ZEF. => W = Z [10] \ZEF
7	$: W = ZO, ZEF. \Rightarrow W = Z[10] \forall ZEF$
	Thut any element we W. TW. can be spanned by [10]
1	$W \cap W_2 = \text{span} \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right).$
	2 1 ([00]
	Now,
	consider & E.W. + W2.
	: y = [a+2 B+0] , a, B, Y, 2, y & F
	: 1x+0 0+y
	- [- n].
	= a B a, B, Y, y eff
1	E F R+2
	Thur W, +W, = F2x2.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ú.	
	fat -

Soln 26:

26	a) Xn < Xn+1 / {a} & WCR
	considering segmence a faz z y,
	$y = \alpha x_n$, $\alpha \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$
	(note: if <<0 then reverse seguinee, yn 7, ynu)
£ 20	:. Y & W : A 2 NEED NOT GW Y A E IR.
	W (the W
1	:. W is NOT a subspace -

1) W: lim f(n) =0, let [x3, [y] & [w]. lim x=0, lim y=0. of REIR Let Z = ax + f/n lim Z = a lim X + Blin fr = 0 [23 EW :. W is subspace. c) W:= {fere : 3 and 6 R bo that fn- ay + (n-1) dy} dat = dif ER) =) af EW. .. Wis a subspace. W: = { f E R = :] a, th = f(n) = a, y, n-1 } t(n)=aya 1-1 t2(n) = a 1-7 fr(n)+fr(n) & AR" (ARER)

: NOT a subspace

Soln 28:

	Date:
	Sund to the land of our f: R->R;
28]	Set V be the victor space of all f: IR -> IR;
	Set $V \rightarrow Subset of all even find: f(-n) = f(n). Let V \rightarrow Subset of all odd find: f(-n) = -f(+2).$
	We -> Subset of all odd Ins I
	a) 2
	Then for any scalar C, (cf. +fa) $(-n) = cfa (-n) + fe2 (-n)$
	Then for any scalar C, $(cf_{e_1} + f_{e_2})(-x) = cf_{e_1}(-x) + f_{e_2}(-x)$ $= cf_{e_1}(x) + f_{e_2}(x)$
_	(cfe + fez) (-2) = cfe (-1) + fez (2)
	76() 3-2
	= (cf+f) (2).
	· · · · · · · · · · · · · · · · · · ·
	·· Ve or a major
	AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1	At a large to lot C
	(6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	- (cfo + for) (m).
	2 - Cfg (m) - for (n) (19,192) (1
	z - cfo (m) - for (n) = - (cfo + for) (m). :. Vo is also a subsepace of V.
	b) T-P-T V = Ve & V
	Proof: Let f & W be altitledy.
	Set $f_e \in V$, $f_e = f(m) + f(-x)$,
1	With 2 real Landella
	let for ∈ V, for = f(m) - f(-m).
	Mary san Mark and Mark
- 1	llearly, fe ∈ Ve and fo ∈ Vo.
	·: f(m=fe+f fe(x)+fo(x) +x => f(x) 6 N/ A W V EV BV
	3 to W to a rest word in the William Color for any
	C. W= W & W (both fix = W, c.)
	" ve de de la ve + W ≤ V
MA.	

Soln 32:

-1-1	Pega No. Data YOUVA
and a	10 10 10 10 10 10 10 10 10 10 10 10 10 1
32	D9. R. XEV, S = (34, 23), P: = (29, 23),
	P. P. R. X & V. S := (8 9, 1, 13) . P: = (8 p. 1, 23). Q: = (8 p. 1, 13) -> all subspaces of W.
	7. P.T y gep and g & S => peQ.
	Proof: 9= ap+BN+78: a,B, r & F.
	CONCEPT: d-CANNOT be O!
	if d=0 then 9 = BR+YE
	which contradicts to given your of the said ?)
-	CONCEPT: OR-CANNOT be O!! if $x=0$ then $g=8.4 \times 8$ which contradicts to given that $g \notin S$. (q. CANNOT be spanned by a and 2) .: $x \neq 0$.
	807 ·· V
	p= 9 - 89 - 78 , 8, 70 17 ,
	a a a
	p = aq - be - ct, a, b, c ∈ IF.
	⇒ p ∈ < § 9, 4, 23>
-	D 0 6 0
1.0	Laved "
	parson of the sale of
26	a) Xn < Xn+1 , {a} & WCR
	considering segmence a faz 2 y
	y = a a, x & R and x, y & R
	(note: if << o then revelle seguine, yn 7, ynn)
2	
	: y & W : a a NEED NOT GW Y a E IR.
1 1	:. W is NOT a subspace -
4	