Hình học xạ ảnh và phép biến đổi 2D

- Hình học xạ ảnh và phép biến đổi 2D
 - The 2D projective plan Mặt phẳng xạ ảnh 2D
 - Phép chuyển vị của vector/matrix
 - Phép nhân vector/matrix:
 - Kí hiệu đường thẳng đồng nhất:
 - Kí hiệu điểm đồng nhất:
 - Tìm giao của 2 đường thẳng
 - Tìm đường thẳng qua 2 điểm
 - Điểm và đuường thẳng ở vô cùng.
 - A model for the projective plane
 - Tính đối lập (duality)
 - Đường conic và phương trình đường conic
 - o Projective transformation Phép biến đổi xạ ảnh.
 - Định nghĩa
 - Định lý về phép xạ ảnh.
 - Ánh xạ giữa 2 mặt phẳng
 - Xạ ảnh của đường thẳng và đường conic

The 2D projective plan - Mặt phẳng xạ ảnh 2D

Phép chuyển vị của vector/matrix

- Với một vector ngang (hoặc dọc) x thì vector dọc (hoặc ngang) tương ứng với nó là x^T . Cụ thể,

một vector ngang
$$x=(a_1,a_2,...a_n)$$
 sẽ có vector dọc tương ứng là $x^T=\begin{pmatrix} a_1\\a_2\\ \vdots\\a_n \end{pmatrix}$ và ngược lại.

- Mục đích của phép chuyển vị là để cho việc nhân vector với matrix được dễ dàng.
- Khi viết $x=(a_1,a_2,...a_n)$ ta hiểu đây là vector **ngang**.

Phép nhân vector/matrix:

• Phép nhân matrix: Tiếng anh, Tiêng việt.

- Phép nhân vô hướng 2 vector: 2 vector cùng chiều a,b, thay vì ta viết a.b, ta sử dụng kí hiệu **chuyển vị** và chuyển nó thành phép **nhân ma trận** ab^T hoặc a^Tb
- Tích có hướng của vector 3 chiều: tiếng anh.
 - $\circ \,$ 2 vector u=(a,b,c) và v=(x,y,z) có tích có hướng u imes v=()

Kí hiệu đường thẳng đồng nhất:

- Vì mỗi đường thẳng trên mặt phẳng đều có phương trình dạng ax+by+c=0 nên mỗi đường thẳng được chọn bởi bộ 3 số (a,b,c) và ta sẽ đại diện mỗi đường thẳng bằng 1 vector **dọc** $(a,b,c)^T$.
- Vector $(0,0,0)^T$ sẽ **không** đại diện cho đường thẳng nào cả.
- Tập hợp các đường thẳng có dạng $(ka,kb,kc)^T$ với k bất kì đều đại diện cho cùng 1 đường thẳng

Kí hiệu điểm đồng nhất:

- Thay vị sử dụng cặp điểm, ta sử dụng vector $\mathbf{doc}\ (x,y,1)^T$ để biểu diễn điểm (x,y) trên mặt phẳng.
- **Mục đích** cho việc biểu diễn như vậy để có thể dễ dàng kiểm tra điểm $p=(x,y,1)^T$ có thuộc đường thẳng bằng $l=(a,b,c)^T$ không bằng biểu thức $(x,y,1).(a,b,c)^T=(ax+by+c)=0$, hay nói cách khác, $p^Tl=0$.
- Mở rộng ra, vector dọc $(x,y,z)^T$ có thể biểu diễn điểm $\left(\frac{x}{z},\frac{y}{z}\right)$ trên mặt phẳng toạ độ.

Tìm giao của 2 đường thẳng

- Hai đường thẳng l_1 và l_2 sẽ có giao điểm $x=l_1 imes l_2$.
- Thật vậy, $l_1(l_1 \times l_2) = 0$ và $l_2(l_1 \times l_2) = 0$, do vector $l_1 \times l_2$ trong không gian cùng song với cả l_1 và l_2 . Như vậy l_1 và l_2 đều đi qua điểm $l_1 \times l_2$

Tìm đường thẳng qua 2 điểm

- Hai điểm p_1 và p_2 có sẽ có đường thẳng $l=p_1 imes p2$ cùng đi qua chúng.
- ullet Cũng như trên, do $p_1.(p_1 imes p_2)=0$ và $p_2.(p_1 imes p_2)=0$. Như vậy p_1 và p_2 đều thuộc đường thẳng $p_1 imes p_2$

Điểm và đuường thẳng ở vô cùng.

• Các điểm có dạng $(x_1,x_2,0)^T$ là những điểm ở vô cùng, vì ta không thể tìm thấy điểm $(x_1/0,x_2/0)$ trên mặt phẳng tọa độ.

- Tập hợp các điểm ở vô cùng tạo thành đường thẳng ở vô cùng $(0,0,1)^T$ (thật vậy $(a,-b,0)^T(0,0,1)=0$).
- ullet Mọi đường thẳng l=(a,b,c) đều giao với đường thẳng $(0,0,1)^T$ tại điểm $(b,-a,0)^T$

A model for the projective plane

Todo

Do em phần này em chưa biết dịch như thế nào.

Tính đối lập (duality)

- Ta có thể đảo vai trò của điểm và đường thẳng cho nhau:
 - o Chúng đều là vector 3 chiều dọc.
 - \circ Biểu thức kiểm tra điểm x nằm trên đường thẳng l là $x^T l = 0$ có thể đổi thành $l^T x = 0$.
 - o Ngoài ra việc tìm giao điểm và đường thẳng qua 2 điểm chúng đều có thể đảo chỗ cho nhau.
- Đây gọi là nguyên tắc đôi lập (duality principle)

Đường conic và phương trình đường conic

Todo

Projective transformation - Phép biến đổi xạ ảnh.

Định nghĩa

• Một phép xạ ảnh là một song ánh h từ \mathbb{P}^2 đến chính nó thỏa mãn với 3 điểm bất kì thẳng hàng p_1, p_2 và p_3 thì 3 điểm $h(p_1), h(p_2)$) và $h(p_3)$ cũng phải thẳng hàng.

Định lý về phép xạ ảnh.

• Phép ánh xạ $h:\mathbb{P}^2 o\mathbb{P}^2$ là phép xạ ảnh khi và chỉ khi tồn tại 1 matrix khả nghịch 3 imes 3 H thỏa mãn với điểm bất kì thuộc mặt phẳng đc biểu diễn bởi vector x thì h(x)=Hx.

$$ullet$$
 Cụ thể, với điểm $x=(a,b,c)^T$ và matrix $H=egin{bmatrix} h_{11}&h_{12}&h_{13}\h_{21}&h_{22}&h_{23}\h_{31}&h_{32}&h_{33} \end{bmatrix}$ thì:

$$h(x) = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & h_{33} \end{bmatrix} egin{pmatrix} a \ b \ c \end{pmatrix} = egin{pmatrix} a' \ b' \ c' \end{pmatrix}$$

Ánh xạ giữa 2 mặt phẳng

Hình 1: Phép xạ ảnh xuyên tâm từ 1 điểm trên mặt phẳng này đến mặt phẳng khác

Hình 1 là một ví dụ cho cách định lý trên được áp dụng như thế nào. Với mỗi một điểm bất kì x thuộc mặt phẳng π đều có một điểm x' trên mặt phẳng π' tương ứng với điểm x là giao của π' với Ox và ngược lại. Hiển nhiên ánh xạ này là một song ánh.

Xạ ảnh của đường thẳng và đường conic

- ullet Với phép xạ ảnh điểm x'=Hx thì điểm x' sẽ nằm trên đường thẳng $l'=H^{-T}l$.
 - $\circ~$ Thật vậy, vì $l^Tx=0$ nên

$$l^T H^{-1} H x = 0 \iff (H^{-T} l)^T H X = 0$$

- , hay điểm Hx sẽ nằm trên đường thẳng $H^{-T}l$.
- ullet Như vậy với sự biến đổi điếm x'=Hx thì đương thẳng l' lại được biến đổi thành $H^{-T}l$.

Todo: xạ ảnh của đường conic