Problem 1.6

Theorem 1. Let $\alpha > 0$. Then $f(x) = x^{\alpha}$ is absolutely continuous on every subinterval $[a, b] \subseteq [0, \infty)$.

Solution

Proof. We have that f is differentiable on $(0,\infty)$ with derivative

$$f'(x) = \alpha x^{\alpha - 1}$$
.

Thus, f is differentiable almost everywhere on $[0, \infty)$. Now, let $[a, b] \subseteq [0, \infty)$. Since f' is continuous a.e. on [a, b], f' is integrable on [a, b]. Furthermore, we have for any $x \in [a, b]$,

$$\int_{a}^{x} f'(x)dx = \int_{a}^{x} \alpha x^{\alpha - 1} dx$$
$$= \alpha x^{\alpha} \Big|_{a}^{x}$$
$$= b^{\alpha} - x^{\alpha}$$
$$= f(x) - f(a).$$

Thus, by theorem 7.29 in our textbook, we have that f is absolutely continuous on any subinterval of $[0, \infty)$. \square

Problem 1.7

Theorem 2. A function f is absolutely continuous on [a,b] if and only if given $\epsilon > 0$, there exists $\delta > 0$ such that $|\sum [f(b_i) - f(a_i)]| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$.

Solution

Proof. Suppose f is absolutely continuous on [a,b], and let $\epsilon > 0$. Since f is absolutely continuous, there exists a $\delta > 0$ such that $\sum |[f(b_i) - f(a_i)]| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$. Thus, if we let $\{[a_i,b_i]\}$ be a set of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$, we have

$$\epsilon > \sum |[f(b_i) - f(a_i)]|$$

$$\geq |\sum [f(b_i) - f(a_i)]|,$$

Basic property of absolute value

and we have proven the forward direction.

Now, suppose that if we are given $\epsilon > 0$, there exists $\delta > 0$ such that $|\sum [f(b_i) - f(a_i)]| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. Let $\epsilon > 0$, and choose $\delta > 0$ such that $|\sum [f(b_i) - f(a_i)]| < \frac{\epsilon}{2}$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. Let $\{[a_i,b_i]\}$ be a set of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. We have

$$\sum_{i \in \{i: f(b_i) \ge f(a_i)\}} (b_i - a_i) < \delta,$$

which means that

$$\frac{\epsilon}{2} > \left| \sum_{i \in \{i: f(b_i) \ge f(a_i)\}} [f(b_i) - f(a_i)] \right|$$

$$= \sum_{i \in \{i: f(b_i) \ge f(a_i)\}} |f(b_i) - f(a_i)|.$$

Similarly, we have

$$\sum_{i \in \{i: f(b_i) < f(a_i)\}} (b_i - a_i) < \delta,$$

February 26, 2023

which implies

$$\frac{\epsilon}{2} > \left| \sum_{i \in \{i: f(b_i) < f(a_i)\}} [f(b_i) - f(a_i)] \right|$$

$$= \sum_{i \in \{i: f(b_i) < f(a_i)\}} |f(b_i) - f(a_i)|.$$

Finally, we have

$$\sum_{i} |f(b_{i}) - f(a_{i})| = \sum_{i \in \{i: f(b_{i}) < f(a_{i})\}} |f(b_{i}) - f(a_{i})| + \sum_{i \in \{i: f(b_{i}) \ge f(a_{i})\}} |f(b_{i}) - f(a_{i})|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

and we have shown that f is absolutely continuous. With this, our proof is complete.

Problem 1.8

Theorem 3. If f is of bounded variation on [a,b], and if the function V(x) = V[a,x] is absolutely continuous on [a,b], then f is absolutely continuous on [a,b].

Solution

Proof. Let $\epsilon > 0$. Since V(x) is absolutely continuous, we have that there exists $\delta > 0$ such that $\sum |V(b_i) - V(a_i)| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$. Let $\{[a_i,b_i]\}$ be a collection of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$. From Theorem 2.2 (part i) in our textbook, since f is of bounded variation, and V(x) is finite for all $x \in [a,b]$. Furthermore, from theorem 2.2 (part ii), we have

$$V[a, b] = V[a, a_i] + V[a_i, b]$$
 = $V[a, b_i] + V[b_i, b]$.

Then,

$$\begin{split} V(b_i) - V(a_i) &= V[a,b_i] - V[a,a_i] \\ &= V[a_i,b] - V[b_i,b] \\ &\geq V[a_i,b] \\ &\geq V[a_i,b_i] \end{split}$$
 Theorem 2.2 part i
$$\geq |f(b_i) - f(a_i)|. \end{split}$$

Finally, we have

$$\epsilon > \sum |V(b_i) - V(a_i)|$$

$$\geq \sum |f(b_i) - f(a_i)|,$$

and we have proven that f is absolutely continuous.

February 26, 2023 2