Orthogonal Range Searching

 Given a set of k-D points and an orthogonal range (whose boundaries are parallel to the coordinate axes), find all points enclosed by this query range

Brute force: O(n), is this necessary?

Selecting Desktop Icons

Orthogonal Range Searching

- Driving Applications
 - Database
 - Geographic Information System
 - Simulating group behaviors (bird homing)

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

Interpret DB Queries Geometrically

 Transform records in database into points in multi-dimensional space.

Interpret DB Queries Geometrically

 Transform queries on d-fields of records in the database into queries on this set of points in d-dimensional space

Query: age between 18 and 38, IQ between 70 and 110

			_ IQ		
name	age	IQ	1	Sam O	
Bob	12	75		Jessica O	
Jessica	21	132		Bob Query	Mary O
Mary	88	89]	Ö	
Sam	34	180			
			0	age	

- Let's solve a simple problem first
 - Let $P := \{p_1, p_2, ..., p_n\}$ be a given set of points on the real line. A query asks for the points inside a 1-D query rectangle -- i.e. an interval [x:x']

- Use a balanced binary search tree *T*.
 - The leaves of T store the points of P
 - The internal nodes of T store splitting values to guide the search
 - The largest value in the left sub-tree

- To report points in [x:x'], we search with x and x' in T.
 - Let u and u'be the two leaves where the search ends resp.
 - Then the points in [x:x'] are the ones stored in leaves between u and u', plus possibly points stored at u & u'.

1D Range Query

Input: A range tree *T* and a range [*x*:*x*] Output: All points that lie in the range.

```
1. v_{split} \leftarrow \text{FindSplitNode}(T, x, x')
```

- 2. if v_{split} is a leaf
- 3. then Check if the point stored at v_{split} must be reported
- 4. else (* Follow the path to x and report the points in subtrees right of the path *)
- $5. v \leftarrow lc(v_{split})$
- 6. while v is not a leaf

```
7. do if x \le x_v

8. then ReportSubTree(rc(v))

9. v \leftarrow lc(v)

else v \leftarrow rc(v)

move to left

move to right
```

- 11. Check if the point stored at leaf v must be reported
- 12. Similarly, follow the path to x'

Find Split Node

Input: A tree T and two values x and x 'with $x \le x$ '

Output: The node v where the paths to x and x 'splits, or the leaf where both paths end.

- **1.** $v \leftarrow root(T)$
- 2. while v is not a leaf and $(x' \le x_v \text{ or } x > x_v)$
- 3. do if $x' \leq x_v$
- 4. then $v \leftarrow lc(v)$
 - else $v \leftarrow rc(v)$
- (* left child of the node v *)
- (* right child of the node v *)

6. return *v*

5.

1D-Range Search Algorithm Analysis

- Let P be a set of n points in one-dimensional space
 - uses O(n) storage and has $O(n \log n)$ construction time
 - The points in a query range can be reported
 - Time O(k + log n), where k is the number of reported points
 - The time spent in "ReportSubtree" is linear in the number of reported points, i.e. O(k).
 - The remaining nodes that are visited on the search path of x or x.' The length is $O(\log n)$ and time spent at each node is O(1), so the total time spent at these nodes is $O(\log n)$.