

Winning Space Race with Data Science

Ranjitha M 09/10/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data wrangling
 - EDA with data visualization
 - EDA with SQL
 - Building an interactive map with folium
 - Building a Dashboard with Plotly Dash
 - Predictive analysis (Classification)
- Summary of all results
 - EDA results
 - Interactive analytics
 - Predictive analysis

Introduction

- Project background and context
 - ❖ SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.
- Problems you want to find answers
 - ❖The project task is to predicting if the first stage of the SpaceX Falcon 9 rocket will land successfully.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Web scrapping from Wikipedia
- Perform data wrangling
 - One Hot Encoding data fields for Machine Learning and data cleaning of null values and irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR,KNN,SVM,DT models have been built and evaluated for the best classifier

Data Collection

- The following datasets was collected:
 - SpaceX launch data that is gathered from the SpaceX Rest API.
 - This API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications and landing outcome.
 - The SpaceX Rest API endpoints, or URL, starts with api.spacexdata.com/v4/.
 - Another popular data source for obtaining Falcon 9 launch data is web scraping Wikipedia using BeautifulSoup.

Data Collection - SpaceX API

Data collection with SpaceX REST calls

https://github.com/ranjitha2
32/IBM-Applied-Data Science Capstone_/blob/main/jupyte
r-labs-spacex-data collection-api.ipynb

Data Collection - Scraping

Web Scraping from Wikipedia

https://github.com/ranjitha23
2/IBM-Applied-Data-Science Capstone_/blob/main/jupyter labs-webscraping.ipynb

Data Wrangling

https://github.com/ranjitha232/IBM-Applied-Data-Science-Capstone_/blob/main/IBM-DS0321EN-SkillsNetwork labs module 1 L3 labs-jupyter-spacex-data wrangling jupyterlite.jupyter

EDA with Data Visualization

https://github.com/ranjitha232/IBM-Applied-Data-Science-Capstone /blob/main/IBM-DS0321EN-SkillsNetwork labs module 2 jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

EDA with SQL

• SQL queries performed include:

- Displaying the names of the unique launch sites in the space mission
- Displaying 5 records where launch site begin with the string 'KSC'
- Displaying the total payload mass carried by boosters launched by NASA(CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where successful landing outcome in drone ship was achieved.
- Listing the names of the boosters which have success in ground pad and have payload mass >4000 but <6000
- Listing the total number of successful and failure mission outcomes
- Listing the names of the booster versions which had carried maximum payload mass
- Listing the records which will display the month names, successful landing_outcomes in ground pad, booster versions, launch site for the months in the year 2017
- Ranking the count of successful landing_outcomes between the date 04/06/2010 and 20/03/2017

Build an Interactive Map with Folium

 Map markers have been added to the map with aim to finding an optional location for building a launch site

https://github.com/ranjitha232/IBM-Applied-Data-Science-Capstone /blob/main/IBM-DS0321EN-SkillsNetwork labs module 3 lab jupyter launch site location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

• The SVM,KNN, and logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in terms of Area Under the Curve at 0.958

https://github.com/ranjitha232/IBM-Applied-Data-Science-Capstone /blob/main/IBM-DS0321EN-SkillsNetwork labs module 4 SpaceX Machine Learning Prediction Part 5.jupyterlite.ipynb

Results

- The SVM,KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfects the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES, L1 has the best success rate.

Flight Number vs. Launch Site

• Launches from the site of CCAFS SLC 40 are significantly higher than the launches from the other sites.

Payload vs. Launch Site

The majority of IPay Loads with lower
Mass have been launched from CCAFS
SLC 40.

Success Rate vs. Orbit Type

• The orbit types of ES-L1, GEO, HEO, SSO are among the highest success rate.

Flight Number vs. Orbit Type

 A trend can be observed of shifting to VLEO launches in recent years.

Payload vs. Orbit Type

 There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

Launch Success Yearly Trend

 Launch success rate has increased significantly since 2013 and has stabilized since 2019, potentially due to advance in technology and lessons learned.

All Launch Site Names

• %sql select distinct(LAUNCH_SITE) from SPACEXTBL

launch_site CCAFS LC-40 CCAFS SLC-40 KSC LC-39A VAFB SLC-4E

Launch Site Names Begin with 'CCA'

• %sql select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit 5

DATE	time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

 %sql select sum(PAYLOAD_MASS_KG_) from SPACEXTBL where CUSTOMER = 'NASA(CRS)'

45596

Average Payload Mass by F9 v1.1

• %sql select avg(PAYLOAD_MASS_KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928.400000

First Successful Ground Landing Date

%sql select min(DATE) from SPACEXTBL where Landing_Outcome = 'Success' (groundpad)'

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 %sql select BOOSTER_VERSION from SPACEXTBL where Loading__Outcome = 'Success (drone ship)' and PAYLOAD_MASS_KG_ > 4000 and PAYLOAD_MASS_KG_ < 6000

Total Number of Successful and Failure Mission Outcomes

%sql select count(MISSION_OUTCOME) from SPACEXTBL where
MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

100

Boosters Carried Maximum Payload

%sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS_KG_ =
(select max(PAYLOAD_MASS_KG_) from SPACEXTBL)

2015 Launch Records

• %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
17:54:00	F9 FT B1029.1	VAFB SLC-4E	Iridium NEXT 1	9600	Polar LEO	Iridium Communications	Success	Success (drone ship)
05:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
04:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
21:39:00	F9 FT B1023.1	CCAFS LC- 40	Thaicom 8	3100	GTO	Thaicom	Success	Success (drone ship)
05 04 00	FO FT 04000	CCAFS LC-	ICCAT AA	1000	CTO	SKY Perfect JSAT	-	

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

Success (drone ship	Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT B1023.1	21:39:00	2016-05- 27
Success (drone ship	Success	SKY Perfect JSAT Group	GTO	4696	JCSAT-14	CCAFS LC- 40	F9 FT B1022	05:21:00	2016-05- 06
Success (drone ship	Success	NASA (CRS)	LEO (ISS)	3136	SpaceX CRS-8	CCAFS LC- 40	F9 FT B1021.1	20:43:00	2016-04-
Success (ground	Success	Orbcomm	LEO	2034	OG2 Mission 2 11 Orbcomm-OG2 satellites	CCAFS LC- 40	F9 FT B1019	01:29:00	2015-12-

All launch sites marked on a map

Success/failed launches marked on the map

Distances between a launch site to its proximities

Total success launches by all sites

Success rate by site

Payload vs launch outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate.

