Présentation des Modèles Mamba et Jamba

Strasbourg 29.06.2024

Robert Maria

Qu'est-ce que la modélisation de séquences ?

Domaine continu

Pourquoi Mamba?

Pour surmonter les limitations des transformers !!!

Pourquoi Mamba?

Pour surmonter les limitations des transformers!!!

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu^{*1} and Tri Dao^{*2}

¹Machine Learning Department, Carnegie Mellon University ²Department of Computer Science, Princeton University agu@cs.cmu.edu, tri@tridao.me

Entraînement	Inférence
Rapide (parallélisable)	Lente (quadratique avec la longueur de l'input, ou linéaire si nous mettons en cache les KV)

Entraînement	Inférence
Rapide (parallélisable)	Lente (quadratique avec la longueur de l'input, ou linéaire si nous mettons en cache les KV)

Source

Réseaux de Neurones Récurrents (RNN)

Réseaux de Neurones Convolutionnels (CNN)

Chaque état caché h est l'agrégation de tous les états cachés précédents et est généralement compressée

Entraînement	Inférence
Lente (non parallélisable)	Rapide
Wanishing / exploding gradients	Infinite context (en théorie)

Entraînement	Inférence
Rapide (parallélisable)	Rapide Contexte finie (en fonction de la taille du kernel)

Les SSMs sont des modèles probabilistiques.

Nous pouvons les ajouter en tant que module dans un réseau neuronal

permet de mapper un signal d'entrée x(t) à un signal de sortie y(t) par l'intermédiaire d'une représentation h(t):

$$x' = \mathbf{A}x + \mathbf{B}u$$

$$y = \mathbf{C}x + \mathbf{D}u$$

 $A \in N \times N$ matrice; $B \in N$ vecteur colonne

permet de mapper un signal d'entrée x(t) à un signal de sortie y(t) par l'intermédiaire d'une représentation h(t):

$$x' = \mathbf{A}x + \mathbf{B}u$$
$$y = \mathbf{C}x + \mathbf{D}u$$

A \in N×N matrice; B \in N vecteur colonne

permet de mapper un signal d'entrée x(t) à un signal de sortie y(t) par l'intermédiaire d'une représentation h(t):

Discretization

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t)$$

 $y(t) = Ch(t) + Dx(t)$

$$\lim_{\Delta o 0} rac{h(t+\Delta)-h(t)}{\Delta} = h'(t)$$

$$rac{b(t+\Delta)-b(t)}{\Delta}pprox b'(t)$$

$$h(t+\Delta) pprox \Delta h'(t) + h(t)$$

la méthode d'Euler

Discretization

$$h'(t) = \boldsymbol{A}h(t) + \boldsymbol{B}x(t)$$

$$h(t+\Delta) pprox \Delta h'(t) + h(t)$$

la méthode d'Euler

$$h(t + \Delta) \approx \Delta(Ah(t) + Bx(t)) + h(t)$$

= $\Delta Ah(t) + \Delta Bx(t) + h(t)$
= $(I + \Delta A)h(t) + \Delta Bx(t)$
= $\bar{A}h(t) + \bar{B}x(t)$

Discretization

$$h'(t) = Ah(t) + Bx(t)$$
 (1a) $h_t = \overline{A}h_{t-1} + \overline{B}x_t$
 $y(t) = Ch(t)$ (1b) $y_t = Ch_t$

zero-order hold

$$\overline{A} = \exp(\Delta A)$$
 $\overline{B} = (\Delta A)^{-1}(\exp(\Delta A) - I) \cdot \Delta B$

Le paramètre Δ est appris avec la descente de gradient

Calcul récurrent

$$h_t = \overline{A}h_{t-1} + \overline{B}x_t$$
$$y_t = Ch_t$$

$$egin{aligned} h_0 &= ar{B}x_0 \ y_0 &= Ch_0 = Car{B}x_0 \end{aligned}$$

$$egin{aligned} h_1 &= ar{A}h_0 + ar{B}x_1 = ar{A}ar{B}x_0 + ar{B}x_1 \ y_1 &= Ch_1 = C(ar{A}ar{B}x_0 + ar{B}x_1) = Car{A}ar{B}x_0 + Car{B}x_1 \end{aligned}$$

$$egin{aligned} h_2 &= ar{A}h_1 + ar{B}x_2 = ar{A}^2ar{B}x_0 + ar{B}x_1 + ar{B}x_2 \ y_2 &= Ch_2 = Car{A}^2ar{B}x_0 + Car{A}ar{B}x_1 + ar{B}x_2 \end{aligned}$$

$$y_k = C \bar{A}^k \bar{B} x_0 + C \bar{A}^{k-1} \bar{B} x_1 + \ldots + C \bar{A} \bar{B} x_{k-1} + C \bar{B} x_k$$

source

$$y_k = C \bar{A}^k \bar{B} x_0 + C \bar{A}^{k-1} \bar{B} x_1 + \ldots + C \bar{A} \bar{B} x_{k-1} + C \bar{B} x_k$$

Construire un kernel pour calculer cela?

$$ar{K} = (Car{B}, Car{A}ar{b}, \dots, Car{A}^kar{b})$$

$$y = x * \bar{K}$$

Output

$$y_k = C \bar{A}^k \bar{B} x_0 + C \bar{A}^{k-1} \bar{B} x_1 + \ldots + C \bar{A} \bar{B} x_{k-1} + C \bar{B} x_k$$

$$ar{K} = (Car{B}, Car{A}ar{b}, \ldots, Car{A}^kar{b}) \qquad y = x*ar{K}$$

$$y_k = Car{A}^kar{B}x_0 + Car{A}^{k-1}ar{B}x_1 + \ldots + Car{A}ar{B}x_{k-1} + Car{B}x_k$$

$$ar{K} = (Car{B}, Car{A}ar{b}, \ldots, Car{A}^kar{b}) \qquad y = x*ar{K}$$

 $y_1 = C\bar{A}\bar{B}x_0 + C\bar{B}x_1$

$$y_k = C \bar{A}^k \bar{B} x_0 + C \bar{A}^{k-1} \bar{B} x_1 + \ldots + C \bar{A} \bar{B} x_{k-1} + C \bar{B} x_k$$

$$ar{K} = (Car{B}, Car{A}ar{b}, \ldots, Car{A}^kar{b}) \qquad y = x*ar{K}$$

$$y_2=Car{A}^2ar{B}x_0+Car{A}ar{B}x_1+ar{B}x_2$$

Avantages

Calcul par convolution pour effectuer l'entraînement

Calcul récurrent pour effectuer l'inférence, un token à la fois, en utilisant une quantité constante de calcul pour chaque token.

source

State Space Models - avec 512 dimensions

Structured State Space (S4)

formules spéciales pour les matrices A et B, sont appelées matrices HIPPO

$$egin{bmatrix} egin{bmatrix} egin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 2 & 0 & 0 \ 1 & 3 & 3 & 0 \ 1 & 3 & 5 & 4 \end{bmatrix} & x' = oldsymbol{A}x + oldsymbol{B}u \ y = oldsymbol{C}x + oldsymbol{D}u \end{pmatrix}$$
 HiPPO

HIPPO est une correspondance entre u(t) et x(t)

source

High-Order Polynomial Projection Operator

- 1) observer la séquence d'entrée: u1, u2, u3, ...
- 2) pour chaque étape temporelle, calculer les : x1, x2, x3, ...
- 3) encoder l'historique de toutes les entrées, c'est possible ?

$$x'(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$

operateur HIPPO

$$\mathbf{A}_{nk} = \begin{cases} 0 & n < k \\ n+1 & n = k \\ 2n+1 & n > k \end{cases}$$

matrice HIPPO

High-Order Polynomial Projection Operator

$$x(t_0) = \begin{bmatrix} 0.1 \\ -1.1 \\ 3.7 \\ 2.5 \end{bmatrix} \qquad \text{update} \qquad x(t_1) = \begin{bmatrix} 1.5 \\ 2.9 \\ -0.3 \\ 2.0 \end{bmatrix}$$
 source

Motivation

réécrire l'entrée un token à la fois, mais avec un décalage temporel

étant donné un post sur Reddit, supprimer tous les gros mots ne peut pas être réalisé par des SSMs normaux

Améliorer les SSMs avec la Sélection

```
Algorithm 1 SSM (S4)
                                                                                             Algorithm 2 SSM + Selection (S6)
Input: x : (B, L, D)
                                                                                             Input: x : (B, L, D)
Output: y : (B, L, D)
                                                                                             Output: y : (B, L, D)
  1: A:(D,N) \leftarrow Parameter
                                                                                               1: A:(D,N) \leftarrow Parameter
                                       \triangleright Represents structured N \times N matrix
                                                                                                                                    \triangleright Represents structured N \times N matrix
  2: \mathbf{B}: (D, N) \leftarrow Parameter
                                                                                               2: B:(B,L,N) \leftarrow s_B(x)
                                                                                               3: C: (B, L, N) \leftarrow s_C(x)
  3: C:(D,N) \leftarrow Parameter
  4: \Delta : (D) \leftarrow \tau_{\Lambda}(Parameter)
                                                                                               4: \Delta : (B, L, D) \leftarrow \tau_{\Lambda}(Parameter + s_{\Lambda}(x))
  5: \overline{A}, \overline{B} : (D, N) \leftarrow \text{discretize}(\Delta, A, B)
                                                                                               5: \overline{A}, \overline{B} : (B, L, D, N) \leftarrow \text{discretize}(\Delta, A, B)
  6: y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)
                                                                                               6: y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)
                              ▶ Time-invariant: recurrence or convolution
                                                                                                                                   ▶ Time-varying: recurrence (scan) only
  7: return y
                                                                                               7: return y
```

B: Batch Size

L: Sequence Length

D: Size of the input vector (equivalent to d_model in the Transformer)

N: Size of the hidden state h.

source

Problème: tous les modèles SSM précédents doivent être invariants au temps et à l'entrée afin d'être efficaces sur le plan computationnel

L'opération de balayage (scan)

Prefiz-sum array: est un tableau calculé séquentiellement, la valeur à chaque position indique la somme des positions précédentes

Prefix-sum

3	5	7	10	14	16
3	8	15	25	39	51

la formulation récurrente des SSM peut également être considérée comme une opération de balayage dans laquelle chaque état est la somme de l'état précédent et de l'entrée actuelle

input

scan output

X 0	X ₁	X ₂	X 3	X 4	X 5
h_0	h ₁	h ₂	h ₃	h ₄	h_5

$$h_t = \overline{A}h_{t-1} + \overline{B}x_t$$
$$y_t = Ch_t$$

Le balayage parallèle (parallel scan)

si les opérations sont associatives, nous pouvons paralléliser l'opération de balayage

Pairwise sums

Recursive prefix

Update "odds"

source

Kernel fusion

créer un CUDA kernel custom pour effectuer plusieurs opérations dans la SRAM et éviter de copier des données intermédiaires dans la HBM

L'architecture de MAMBA

Figure 3: (**Architecture**.) Our simplified block design combines the H3 block, which is the basis of most SSM architectures, with the ubiquitous MLP block of modern neural networks. Instead of interleaving these two blocks, we simply repeat the Mamba block homogenously. Compared to the H3 block, Mamba replaces the first multiplicative gate with an activation function. Compared to the MLP block, Mamba adds an SSM to the main branch. For σ we use the SiLU / Swish activation (Hendrycks and Gimpel 2016; Ramachandran, Zoph, and Quoc V Le 2017).

Résultats

Model	Arch.	Layer	Acc.
S4	No gate	S4	18.3
-	No gate	S6	97.0
H3	H3	S4	57.0
Hyena	H3	Hyena	30.1
-	H3	S6	99.7
-	Mamba	S4	56.4
-	Mamba	Hyena	28.4
Mamba	Mamba	S6	99.8

Table 1: (**Selective Copying**.) Accuracy for combinations of architectures and inner sequence layers.

Table 2: (**Induction Heads**.) Models are trained on sequence length $2^8 = 256$, and tested on increasing sequence lengths of $2^6 = 64$ up to $2^{20} = 1048576$. Full numbers in Table 11.

Figure 4: (**Scaling Laws**.) Models of size $\approx 125M$ to $\approx 1.3B$ parameters, trained on the Pile. Mamba scales better than all other attention-free models and is the first to match the performance of a very strong "Transformer++" recipe that has now become standard, particularly as the sequence length grows.