

(Bessel Functions)

() solutions of Bessel's differential equation:

$$\chi^2 \frac{d^2 y}{d \chi^2} + \chi \frac{d y}{d \chi} + (\chi^2 - \alpha^2) y = 0$$

arbritary complex number of (called the order of the solution Bessel equations / functions)

→ Solutions do not have "closed form" solutions involving only elementary factions

a integer -> cylindrical Bessel functions

appear in solution to Captace's equation in Cylindrical form

first kind Ja ~ order a

— finite at the origin x=0 for integer or positive α — diverge as $x\to0$ for megative, non-integer α

may be defined by series expansion around $\chi=0$:

$$J_{\alpha}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m + \alpha + 1)} \left(\frac{x}{2}\right)^{2m + \alpha}$$
gamma function

Sime/cosime functions proportionally to gross

 $\begin{array}{l}
\text{Plot for integer orders} \\
x = 0.1.2
\end{array}$

Bessel's integrals:

$$J_{m}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(x\sin \tau - n\tau)} d\tau \qquad \frac{1}{1+\pi}$$

$$J_{m}(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(\pi \tau - x \sin \tau) d\tau$$

Second kind Ya (singular solution)

have a singularity at the origin x=0 $\Rightarrow \chi_{\alpha} \to \infty \text{ as } x\to 0$ for non-integer α :

$$Y_{\alpha}(x) = \frac{J_{\alpha}(x)\cos(\alpha\pi) - J_{-\alpha}(x)}{\sin(\alpha\pi)}$$

plot of scand Kind for integer orders x=0,1,2

for integer order n, function defined by taking limit as a non-integer a -> 1

$$Y_{\mathbf{n}}(\mathbf{x}) = \sum_{\mathbf{n} \to \mathbf{n}} Y_{\mathbf{n}} Y_{\mathbf{n}}(\mathbf{x})$$

Former Expansion Series (worth 3616 video on Fourier series)

we may write any periodic function as an infinite weighted sum of simusoids

consider a real-valued function s(x), integrable on an internal of length P, which is also the period of the function. The not hammanic frequency is given by:

each term in the sum:

on in the sum:
$$\frac{n\pi}{P} = \frac{n^{4n} \text{ votation}}{\text{frequency}}$$

$$C_{n} e^{\frac{i}{P}} = \frac{n^{2\pi} x}{\text{of each votating vector}} exp \left[\left(\frac{\text{rotation}}{\text{frequency}} \right) i x \right]$$

$$\frac{n\pi}{P} = x$$

the Fourier series (in complex form) is given by:

$$S_{N}(x) = \sum_{m=-N}^{+N} c_{m} e^{i \cdot 2\pi mx/p}$$

and the coefficients are given by:

$$C_{n} = \begin{cases} A_{0}/2 &= a_{0}/2 & m = 0 \\ \frac{A_{m}}{2}e^{-i\psi_{m}} &= \frac{1}{2}(a_{m}-ib_{m}) & m > 0 \\ C_{m}, & m < 0 \end{cases}$$

we know S(X) is real so

$$C_n = C^*$$
 complex conjugate

$$C_{n} = \frac{1}{P} \int_{P} S(x) \cdot e^{-i2\pi nx/p} dx$$

we also know that all coefficients will be real-valued, because the starting complexe "vectors" lie in a one-dimential line (real) in the complex (output) plane.

* need to figure out any the Former burnderling of eg. 3.7 is missing a factor of 2 in the expone

DISCRETE / FAST	FOUNGR TRASFORM (notes for	m §5.1 momental methods b	00k)	
(DISCOURTS) -> 5	see 3616 video		Conding	
N data points	7=[40 4, 40-1] -	-> evenly spaced in f	ime, so $t_j = T_j$	ral T
				Shured (1
DISCORTE	ν - Συμο - 2π ij κ/N	where $K = 0,, N-1$ (frequency index)	(Spakel)	ltime index)
TPANSFORM.	data t	se p. 120 for coefficients)		1 Nz frequencies
	in point of the transform has an	associated frequency:	$\mathcal{J}_{\mathcal{K}} = \frac{L \nu}{ \mathcal{K} }$	o (Ha) Nigo
	and the standard of the standa			a total of N/2+1 frequencies from transfer
→ meas	use long time series to extract house small the large frequence	on technolis	Lowest> f,=	$\frac{1}{\tau N} = \frac{1}{\tau}$
			CAMPGEST -> f _{N-1} =	time sorres
	The Favier transform, transf	irms a faction		
			MATE: V	
	time Space	frequency space	hequency c	base. The jun
ACIASING O	and NYQUIST			
ACIASING -	the effect when finations /	signals of different fres	Anoweles poeme	
due to the	caloous, there is is maximum frague	man for which we must	u resolves for a somplime	internal T
NYQUIST for	equency \longrightarrow $f_{Ny} = \frac{1}{2T}$	the former trans	reform may be transcated	
. * one-half of sun	whing rate	· · · · · · · · · · · · ·	er bound for accurate re	V
	SAMP LING 1 CLATE T	$\frac{\sec}{\sec} = \frac{\sec^{-1}}{\sec}$	for time sovies duta)	everything past the Myzorst heghendywold be mirrored
NOTE:	Sepies		TRANSFORM	
	represents periodic function be discrete sum of complex expon	lemticuls by contin	onts a general num-peri numus superposition or in Complex expanentials	odic function regreat of
			the to skin in the	

FFT - Based Differentiation (notes from Johnson, MIT 2011, writeup)

Consider a periodic function y(x) to period L and write as Fourier series:

$$Y(x) = \sum_{k=-\infty}^{\infty} Y_k e^{\frac{2\pi i}{c}kx}$$

$$Y_k = \frac{1}{c} \int_{0}^{c} e^{\frac{2\pi i}{c}kx} y(x) dx$$

$$(continues To sign throughout)$$

Differentiation is performed term by term in Forrier dumain:

$$\frac{d}{dx}Y(x) = Y'(x) = \sum_{k=-\infty}^{\infty} \left(\frac{2\pi i}{c} k \cdot Y_k\right) e^{\frac{2\pi i}{c} kx}$$
(mote that is is not always valid, but is valid for a general Y(x) in PDE applications)

simply multiplication of coefficients Y_k

(or a fast Fourier transform) the fraction y(x) is replaced by N discrete samples $y_m = y\left(\frac{n}{N}\right)$, $n \in \mathbb{Z}^+$

$$\lambda^{k} = \frac{1}{l} \sum_{\omega \sim l} A^{\omega} e^{-\frac{\omega}{2\pi i} \omega_{k}}$$

* approximate the Fourier series for Ye by a discrete Fourier transform

for a given number of n, N and the derivative may be computed

Essentially zero-padding is a computationally efficient method of interpolating a large number of points and mitigate against aliasing error and/or bring number of points to a power of 2 for FFT algorithm efficiency.

Consider the integral:

$$\int_{a}^{b} \int_{a}^{b} f(x) dx$$

-
- ① Divido interval [a,b] into N-1 interval, define N points x_i :

$$f_i = f(x_i)$$

- 2) Fit a simple linear piecewise function through the evaluated function points (see fig. 10.3, p. 253)
- 3) True integral is estimated as the sum of the tropozoid areas Ti:

$$I \approx I_{\tau} = T_1 + T_2 + \cdots + T_{n-1}$$

$$T_{i} = \frac{1}{2} \left(x_{i+1} - x_{i} \right) \left(f_{i+1} + f_{i} \right)$$

single trapetoid area

mote last oned is indexed and because those some from some those soil point

Espally spaced grid points -> goveral formula simplifies

Spacing:
$$h = \frac{b-\alpha}{n-1}$$

$$T_i = \frac{1}{2}h$$
Supple frequency
$$x_i = \alpha + \frac{1}{n}(i-1)$$
domain length

$$T_i = \frac{1}{2} h \left(f_{i+1} + f_i \right)$$
Single trap area (simplified)

of panell

trapezoid rova for evenly snacod points:

$$T_{\tau}(h) = \frac{1}{2}hf_1 + hf_2 + hf_3 + \dots + hf_{N-1} + \frac{1}{2}hf_N$$

$$T_{\tau}(n) = \frac{1}{2}h(f_{i+}f_{n}) + h \sum_{j=2}^{N-1}f_{j}$$

uter points h -> each interior point
appears in 2 inaperoids

exterior points ~ my appear in

we probesory and

. 📑	the trapezo	idal v	ہالہ	Gάλν	ry e	٤	go,	ckr	1.	for	Sm	oof	٠. ر	evio	q);c	Ĵ٧	ute B	aΥ	ds
Periodic.	Trapezoida l	Rive																	

The charge of variables $(x,t) \mapsto (x,t)$; z = x - ct is introduced to compute transling wave solutions Constant wave speed, c>0

this is substituted into the Bernoulli egin, and many previous relations

The final travelling wave from is given by egin (2-18):

Bessel et mad Bessel of second kind

(2.18)
$$\int_{-L}^{L} kS \Big[(1 + S_z^2)(c^2 - 2\mathcal{F}) \Big]^{1/2} \Big(K_1(kb) I_1(kS) - I_1(kb) K_1(kS) \Big) e^{ikz} dz = 0,$$
where

$$\mathcal{F}\equiv\frac{\gamma\kappa}{\rho}-V-\mathcal{E},\qquad \kappa=-\frac{S_{zz}}{(1+S_z^2)^{3/2}}+\frac{1}{S(1+S_z^2)^{1/2}}.$$
 patential field Constant

NUMERICAL METHOD

Periodic travelling wave solutions are represented by a Fourier expansion:

(3.7)
$$S(z) \approx S_N = \sum_{m=-N}^{N} a_m e^{imTz/L}$$

$$V = \frac{mT}{L}$$

(an is read)

Substitute (3.7) into (1.18) \rightarrow also substitute (1.19) $\mathcal F$ and $\mathcal K$ approximate integral using trapezoidal integration rule (take first and second SC7) devivatives using FFT)

			٠		٠		٠																															
									٠				٠					٠	٠	٠			٠										٠		٠	٠		
	٠		٠		٠		٠	٠			٠	٠		٠		٠	٠	٠			٠	٠				٠		٠		٠		٠	٠	٠	٠	٠		
	٠	•	٠	٠	٠	٠	٠	٠	•			٠	•	٠	•	٠	٠	٠	•	٠	٠	٠	•	•	٠	•	•	٠	٠	٠		٠	٠	٠		٠	•	•
	٠		٠	٠	٠	٠	٠	•	•			٠	•	٠	•	٠		٠	•		٠	٠	•	•	٠	٠		•	٠	٠			٠	٠		٠	•	
			٠		٠		٠	٠			•	٠		٠		٠	٠	٠			٠	٠						٠				٠	٠	٠		٠		
												٠		٠				٠		٠	٠	٠											٠		٠	٠		
									٠				٠					٠	٠	٠			٠										٠		٠	٠		
•		•	٠	٠	٠	٠	٠		•	•	•		•		•				•	٠			•	•	٠	•	•		٠		•							
	•	•	•	•	•	•	•	•	٠	•	•	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠		•	•	•	•	•	•	•	•	٠	•	٠	٠	•	
			٠	•	•	•	•	•									•							•	•	•		•	•			•						
			٠	٠	٠	٠	٠																		٠				٠									
			٠	٠	٠	٠	٠													٠					٠				٠									
		•	٠	٠	٠	٠	٠		•	•	•		•			٠			•				•		٠	•	•		٠		•							
•	٠		٠	•	٠	•	٠	•	•		•	•	•	•		•	•	•	•	•	•	•	•		•			•	•	٠		•	•	•	•	•		
	•	•	•	•	•	•	•	•		•	•									٠					•	•	•	•	•	•	•				٠			•
												٠		٠				٠		٠	٠	٠											٠		٠	٠		
										٠								٠								٠				٠	٠		٠			٠	٠	٠
		•	٠	٠	٠	٠	٠	٠								٠		٠		٠					٠		•	٠	٠				٠	٠				
	•	•	٠	•							•																		•									
•	•	•	•																					•														
	•	•	•	•																				•														
																																					•	