Scilab Textbook Companion for Antenna and Wave Propagation by G. S. N. Raju¹

Created by
Abhishek Sharma
B.E.
Electronics Engineering
Madhav Institute of Technology and Science, Gwalior
College Teacher
None

Cross-Checked by Harpreeth Singh

June 3, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Antenna and Wave Propagation

Author: G. S. N. Raju

Publisher: Dorling Kindersley, India

Edition: 1

Year: 2008

ISBN: 9788131701843

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	MATHEMATICAL PRELIMINARIES	5
2	MAXWELL EQUATIONS AND ELECTROMAGNETIC WAVES	15
3	RADIATION AND ANTENNAS	34
4	ANALYSIS OF LINEAR ARRAYS	37
6	HF VHF AND UHF ANTEENAS	48
7	MICROWAVE ANTENNAS	61
9	WAVE PROPAGATION	7 5

List of Scilab Codes

Exa 1.1	magnitude and direction of a vector	5
Exa 1.2	Addition and Subtraction of two vectors	5
Exa 1.3	Dot product of two vectors	6
Exa 1.4	cross product of two vectors A and B	6
Exa 1.5		7
Exa 1.9	Representation of point in cylindrical coordinates	7
Exa 1.10	Representation of point in cylindrical coordinates	8
Exa 1.12		8
Exa 1.17	Power gain in Decibels	9
Exa 1.18		9
Exa 1.19		0
Exa 1.20		0
Exa 1.21	magnitude and phase of a complex number	0
Exa 1.22	magnitude complex conjugate and phase of complex num-	
	ber	1
Exa 1.23	real and imaginary part of a complex number 1	1
Exa 1.24		2
Exa 1.25	Subtraction of two complex numbers	2
Exa 1.26	Product of two complex numbers	3
Exa 1.27	ratio of two complex numbers	3
Exa 1.28		3
Exa 1.31		4
Exa 2.8	magnetic field and its magnitude	5
Exa 2.9	electric field and electric flux density	6
Exa 2.12	frequency wavelength intrinsic impedance and phase con-	
	stant	7
Exa 2.14	propagation constant	8
Exa 2.15	amplitude frequency wavelength and phase constant . 1	8

Exa 2.16	electric field in free space and in medium
Exa 2.17	propagation constant and intrinsic impedance
Exa 2.18	frequency and permittivity
Exa 2.19	frequency phase constant and wavelength
Exa 2.20	conducting characteristics of earrth
Exa 2.21	attenuation constant phase constant phase velocity prop-
	agation constant and intrinsic impedance
Exa 2.22	depth of penetation
Exa 2.23	displacement current
Exa 2.25	reachable depth of the sea
Exa 2.27	Power per unit area
Exa 2.28	average power and maximum energy density of wave .
Exa 2.29	energy density and total energy
Exa 2.30	transmitted distance of an electromagnetic wave
Exa 2.31	incident and reflected magnetic field and reflected elec-
	tric field
Exa 2.32	average power density absorbed
Exa 3.1	radiation resistance
Exa 3.3	Directivity of half wave dipole
Exa 3.4	Power radiated
Exa 3.5	effective area of half wave dipole
Exa 3.6	effective area of hertzian dipole
Exa 4.1	null to null beam width of a broadside array
Exa 4.2	null to null beam width of a endfire array
Exa 4.3	null to null beam width and directivity
Exa 4.4	Progressive phase shift and array length
Exa 4.5	null to null and half power beam width and directivity
Exa 4.9	relative excitation levels
Exa 4.10	basic and actual transmission loss
Exa 4.11	basic transmission loss
Exa 4.12	Actual transmission loss
Exa 4.13	receiving power
Exa 6.1	Designing of a rhombic antenna
Exa 6.2	Designing of a rhombic antenna
Exa 6.3	Designing of a rhombic antenna
Exa 6.4	Design parameters of rhombic anteena
Exa 6.5	Design parameters of rhombic anteena
Exa 6.6	Design a three element yagi uda antenna

Exa 6.7	Designing of a six element yagi uda antenna	53
Exa 6.8	Designing of a long periodic antenna	54
Exa 6.9	induced voltage in a loop antenna	56
Exa 6.10	radiation resistance of a loop antenna	57
Exa 6.11	Directivity of a loop antenna	57
Exa 6.13	Directivity and radiation resistance of a loop antenna.	58
Exa 6.14	array length number of elements and null to null beam width	59
Exa 6.15	null to null and half power beam width and directivity	59
Exa 7.1	null to null and half power beam width of a paraboloid reflector	61
Exa 7.2	gain of the paraboloid reflector antenna	61
Exa 7.3	band width between first null and half power points .	62
Exa 7.4	Power gain in Decibels	63
Exa 7.5	mouth diameter HPBW and power gain	63
Exa 7.6	beam width directivity and capoture area	64
Exa 7.7	minimum distance required between two antennas	65
Exa 7.8	mouth diameter and beam width	65
Exa 7.9	capture area and beam width of paraboloid antenna .	66
Exa 7.10	HPBW BWFN and power gain	67
Exa 7.11	power gain	67
Exa 7.12	mouth diameter and capture area of a paraboloid antenna	68
Exa 7.13	mouth diameter and power gain of paraboloid reflector	
	antenna	69
Exa 7.14	null to null beam width and power gain of paraboloid reflector antenna	69
Exa 7.15	Power gain of a paraboloid reflector antenna	70
Exa 7.16	null to null and half power beam width and directivity	70
Exa 7.17	beam width power gain and directivity	71
Exa 7.18	power gain of a square horn antenna	72
Exa 7.19	power gain and directivity of a horn antenna	72
Exa 7.20	complementary slot impedances	73
Exa 9.1	Required transmitter power	75
Exa 9.2	field strength of the ground wave	76
Exa 9.3	maximum range of tropospheric transmission	81
Exa 9.4	Radio horizon distance	81
Exa 9.5	maximum distance covered by the space wave	82
Exa 9.6	Required height of receiving antenna	82
	6	

Exa 9.7	Radio horizon distance for transmitting and receiving	
	antenna and maximum range 8	3
Exa 9.8	range of the space wave	3
Exa 9.9	maximum wavelength at which propagation is possible 8	4
Exa 9.10	Electron density of the layer	5
Exa 9.11	range if the frequency is MUF itself 8	5
Exa 9.12	Relative permittivity of D E F layers 8	6
Exa 9.13	Angle of refraction	7
Exa 9.14	critical frequency of an electromagnetic wave 8	7
Exa 9.15	Critical frequency	8
Exa 9.16	maximum usable frequency	9
Exa 9.17	frequency of propagating wave for D layer 8	9
Exa 9.18	Range of line of sight	0
Exa 9.19		0

Chapter 1

MATHEMATICAL PRELIMINARIES

Scilab code Exa 1.1 magnitude and direction of a vector

```
1 //Exa 1.1
2 clc;
3 clear;
4 close;
5 // given :
6 A=[1 2 3] // A is a vector
7 l=norm(A) // magnitude or length of vector A
8 a=A/norm(A) // direction of vector A
9 disp(1, "magnitude of vector")
10 disp(a, "direction of vector")
```

Scilab code Exa 1.2 Addition and Subtraction of two vectors

```
1 //Exa 1.2
2 clc;
3 clear;
```

```
4 close;
5 // given :
6 A=[2 5 6] // vector A
7 B=[1 -3 6] // vector B
8 A+B // summation of two vectors
9 A-B // subtraction of two vectors
10 disp(A+B, "summation of two vectors:")
11 disp(A-B, "subtraction of two vectors:")
```

Scilab code Exa 1.3 Dot product of two vectors

```
1  // Exa 1.3
2  clc;
3  clear;
4  close;
5  // given :
6  A=[1 1 2] // vector A
7  B=[2 1 1] // vector B
8  k=sum(A.*B) // dot product of vector A and B
9  disp(k,"dot product of vector A and B:")
```

Scilab code Exa 1.4 cross product of two vectors A and B

```
1 //Exa 1.4
2 clc;
3 clear;
4 close;
5 function[V]=crossprod(A,B) // defining a function v
6 V(1)=A(2)*B(3)-A(3)*B(2)
7 V(2)=A(3)*B(1)-A(1)*B(3)
8 V(3)=A(1)*B(2)-A(2)*B(1)
9 endfunction
10 //given:
```

```
11 A=[2,1,2] // vector A
12 B=[1,2,1] // vector B
13 P=crossprod(A,B)
14 disp(P, "cross product of vectors A and B:")
```

Scilab code Exa 1.5 Dot product of two vectors

```
1  // Exa 1.5
2  clc;
3  clear;
4  close;
5  // given :
6  A=[1 3 4] // vector A
7  B=[1 0 2] // vector B
8  k=sum(A.*B) // dot product of two vectors A and B
9  disp(k,"dot product of two vectors A and B:")
```

Scilab code Exa 1.9 Representation of point in cylindrical coordinates

```
1 //Exa 1.9
2 clc;
3 clear;
4 close;
5 // given :
6 p=[1,2,3] // coordinates of point p
7 x=1 // x coordinate of P
8 y=2 // y coordinate of P
9 z=3 // z coordinate of P
10 rho=sqrt(x^2+y^2) //radius of cylinder in m
11 phi=atand(y/x) // azimuthal angle in degrees
12 z=3 // in m
13 disp(rho, "radius of cylinder in m:")
14 disp(phi, "azimuthal angle in degrees:")
```

Scilab code Exa 1.10 Representation of point in cylindrical coordinates

```
1 / Exa 1.10
2 clc;
3 clear;
4 close;
5 // given :
6 A = [4,2,1] // vector A
7 A_x=4 // x coordinate of P
8 A_y=2 // y coordinate of P
9 A_z=1 // z coordinate of P
10 phi=atand(A_y/A_x) // azimuthal in degrees
11 A_{\text{rho}} = A_{\text{x}} \cdot \cos d(\text{phi}) + A_{\text{y}} \cdot \sin d(\text{phi}) // \times coordinate of
       cylinder
12 A_{phi}=-A_x*sind(phi)+A_y*cosd(phi) // y coordinate
      of cylinder
13 A_z=1 // z coordinate of cylinder
14 A=[A_rho,A_phi,A_z] // cylindrical coordinates if
15 disp(A, "cylindrical coordinates of vector A:")
```

Scilab code Exa 1.12 Representation of point in spherical coordinates

```
8 y=2// y coordinate of point P in cartezian system
9 z=3// z coordinate of point P in cartezian system
10 r=sqrt(x^2+y^2+z^2) // radius of sphere in m
11 theta=acosd(z/(r)) // angle of elevation in degrees
12 phi=atand(x/y) // azimuthal angle in degrees
13 disp(r,"radius of sphere in m:")
14 disp(theta,"angle of elevation in degrees:")
15 disp(phi,"azimuthal angle in degrees:")
16
17
18 // note : answer in the book is incomplete they find only one coordinate but there are three.
```

Scilab code Exa 1.17 Power gain in Decibels

```
1 // Exa 1.17
2 clc;
3 clear;
4 close;
5 // given :
6 A_p=22 // power gain
7 A_p_dB=10*log10(A_p) // power gain in dB
8 disp(A_p_dB, "power gain in dB:")
```

Scilab code Exa 1.18 Current gain in Decibels

```
1  // Exa 1.18
2  clc;
3  clear;
4  close;
5  // given :
6  A_v=95 // voltage gain
7  A_v_dB=20*log10(A_v) // voltage gain in dB
```

```
8 disp(A_v_dB, "voltage gain in dB:")
```

Scilab code Exa 1.19 Power gain in nepers

```
1 // Exa 1.19
2 clc;
3 clear;
4 close;
5 // given :
6 A_p=16 // power gain
7 A_p_Np=log(sqrt(A_p)) // power gain in nepers
8 disp(A_p_Np, "power gain in nepers:")
```

Scilab code Exa 1.20 Current gain in nepers

```
1  // Exa 1.20
2  clc;
3  clear;
4  close;
5  // given :
6  A_i=34  // current gain
7  A_i_Np=log(A_i)  // current gain in nepers
8  disp(A_i_Np, "current gain in nepers:")
```

Scilab code Exa 1.21 magnitude and phase of a complex number

```
1 // Exa 1.21
2 clc;
3 clear;
4 close;
```

```
5 // given :
6 A=2+4*%i // complex number A
7 magnitude=sqrt((real(A))^2+(imag(A))^2) // magnitude
        of complex number A
8 phi=atand(imag(A)/real(A)) // phase of complex
        number A in degrees
9 disp(magnitude, "magnitude of complex number A:")
10 disp(phi, "phase of complex number A in degrees:")
```

Scilab code Exa 1.22 magnitude complex conjugate and phase of complex number

Scilab code Exa 1.23 real and imaginary part of a complex number

```
1 // Exa 1.23
2 clc;
3 clear;
4 close;
```

Scilab code Exa 1.24 Addition of two complex numbers

```
1 // Exa 1.24
2 clc;
3 clear;
4 close;
5 // given :
6 A_1=2+%i*3 // complex number A_1
7 A_2=4+%i*5 // complex number A_2
8 A=A_1+A_2
9 disp(A,"sum of complex numbers A_1 and A_2:")
```

Scilab code Exa 1.25 Subtraction of two complex numbers

```
1 // Exa 1.25
2 clc;
3 clear;
4 close;
5 // given :
6 A_1=%i*6 // complex number A_1
7 A_2=1-%i*2 // complex number A_2
8 A=A_1-A_2
```

```
9 disp(A, "difference of complex numbers A_1 and A_2:")
```

Scilab code Exa 1.26 Product of two complex numbers

```
1 // Exa 1.26
2 clc;
3 clear;
4 close;
5 // given :
6 A=0.4+%i*5 // complex number A
7 B=2+%i*3 // complex number B
8 P=A*B // product of complex numbers A and B
9 disp(P,"product of complex numbers A and B:")
```

Scilab code Exa 1.27 ratio of two complex numbers

```
1 // Exa 1.27
2 clc;
3 clear;
4 close;
5 // given :
6 A=10+%i*6 // complex number A
7 B=2-%i*3 // complex number B
8 D=A/B // division of complex numbers A and B
9 disp(D," division of complex numbers A and B:")
```

Scilab code Exa 1.28 Roots of the quadratic equation

```
1 //Exa 1.28
2 clc;
```

```
3 clear;
4 close;
5 // given :
6 x=poly([0], 'x')
7 p=(x)^2+2*x+4
8 roots(p) // roots of given quadratic equation
9 disp(roots(p), "The roots of the given quadratic equation are:")
```

Scilab code Exa 1.31 factorial of 4 and 6

```
1 //Exa 1.31
2 clc;
3 clear;
4 close;
5 f1=factorial(4) // factorial of 4
6 f2=factorial(6) // factorial of 6
7 disp(f1," factorial of 4 is:")
8 disp(f2," factorial of 6 is:")
```

Chapter 2

MAXWELL EQUATIONS AND ELECTROMAGNETIC WAVES

Scilab code Exa 2.8 magnetic field and its magnitude

```
1 // Exa 2.8
2 clc;
3 clear;
4 close;
5 // given :
6 mu_0=4*%pi*10^(-7) // permeability in free space
7 mu_r1=3 // region 1 relative permeability
8 mu_r2=5 // region 2 relative permeability
9 mu_1=mu_r1*mu_0 // region 1 permeability
10 mu_2=mu_r2*mu_0 // region 2 permeability
11 H1=[4 \ 1.5 \ -3] // magnetic field in region 1 in A/m
12 Ht1=[0 1.5 -3] // tangential component of magnetic
      field H1
13 Hn1=[4 0 0] // normal component of magnetic field H1
14 Ht2=[0 1.5 -3] // as tangential component of
     magnetic field H2=tangential component of
     magnetic field H1
```

Scilab code Exa 2.9 electric field and electric flux density

```
1 // Exa 2.9
2 clc;
3 clear;
4 close;
5 // given :
6 epsilon_0=8.854*10^{(-12)} // permittivity in free
7 sigma_1=0 //conductivity of medium 1
8 sigma_2=0 // conductivity of medium 2
9 epsilon_r1=1 // region 1 relative permittivity
10 epsilon_r2=2 // region 2 relative permittivity
11 epsilon_1=epsilon_r1*epsilon_0 // region 1
     permittivity
12 epsilon_2=epsilon_r2*epsilon_0 // region 2
     permittivity
13 E1=[1 2 3] // Electric field in region 1 in V/m
14 Et1=[0 2 3] // tangential component of electric
      field E1
15 En1=[1 0 0] // normal component of electric field E1
16 Et2=[0 2 3] // as tangential component of electric
     field E2=tangential component of electric field
     E1
17 En2=(epsilon_1/epsilon_2)*En1 // normal component of
      electric field E2
```

```
18 E2=Et2+En2 // electric field in region 2 in V/m
19 Dt1=epsilon_0*Et1 // tangential component of
        electric flux density D1
20 D2=epsilon_2*E2 // electric flux density in region 2
        in C/m^2
21 disp(E2,"electric field in region 2 in V/m:")
22 disp(D2,"electric flux density in region 2 in C/m^2:
        ")
```

Scilab code Exa 2.12 frequency wavelength intrinsic impedance and phase constant

```
1 // Exa 2.12
2 clc;
3 clear;
4 close;
5 // given :
6 / H = \cos(10^8 * t - Beta * z) ay // magnetic field in A/m
7 // E=377*\cos(10^8*t-Beta*z)ax // electric field in
      V/m
8 omega=10^8 // angular frequency in Hz
9 f=omega/(2*%pi) // frequency in Hz
10 v_0=3*10^8 // speed of light in m/s
11 lambda=v_0/f // wavelength in m
12 Beta=2*%pi/lambda // phase constant in rad/m
13 disp("eta_0= E/H = 377*\cos(10^8*t-Beta*z)/\cos(10^8*t
     -\text{Beta}*z) \implies E/H=377")
14 eta_0=abs(377) // intrinsic impedence in ohm
15 disp(eta_0, "intrinsic impedence in ohm:")
16 disp(f/10<sup>6</sup>, "frequency in MHz:")
17 disp(Beta, "phase constant in rad/m:")
18 disp(lambda, "wavelength in m:")
19
20 //note : answer of lambda in book is rounded-off, it
      is 18.86 meter.
```

Scilab code Exa 2.14 propagation constant

Scilab code Exa 2.15 amplitude frequency wavelength and phase constant

```
1 // Exa 2.15
2 clc;
3 clear;
4 close;
5 // given : H(z,t)=48*cos(10^8*t+40*z)ay // equation of magnetic field
6 A=48 // amplitude of the magnetic field in A/m
7 omega=10^8 // angular frequency in radians/sec
8 f=omega/(2*%pi) // frequency in Hz
9 Beta=40 // phase constant in rad/m
10 lambda=2*%pi/Beta // wavelength in m
11 disp(A,"amplitude of the magnetic field in A/m:")
12 disp(f/10^6,"frequency in MHz:")
```

```
13 disp(Beta, "phase constant in rad/m:")
14 disp(lambda, "wavelength in m:")
```

Scilab code Exa 2.16 electric field in free space and in medium

```
1 // Exa 2.16
2 clc;
3 clear;
4 close;
5 // given :
6 H=2 // amplitude of magnetic field in A/m
7 sigma=0 // conductivity
8 mu_0=4*%pi*10^-7 // permeability in free space in H/
9 epsilon_0=8.854*10^-12 // permittivity in free space
      in F/m
10 mu=mu_0 // permeability in F/m
11 epsilon=4*epsilon_0 // permittivity in F/m
12 Eta_0=120*%pi // intrinsic impedence in free space
     in ohm
13 E=Eta_0*H // electric field in V/m
14 disp(E, "magnitude of electric field in V/m in free
     space:")
15 Eta=sqrt(mu/epsilon) // intrinsic impedence in ohm
16 E=Eta*H // magnitude of electric field
17 disp(E, "magnitude of electric field in V/m:")
```

Scilab code Exa 2.17 propagation constant and intrinsic impedance

```
1 //Exa 2.17
2 clc;
3 clear;
4 close;
```

```
5 // given :
6 sigma=0 // conductivity in mho/m
7 f=0.3 // frequency in GHz
8 f=0.3*10^9 // frequency in Hz
9 omega=2*%pi*f // angular frequency in rad/sec
10 // formula : Gamma=sqrt(%i*omega*mu*(sigma+%i*omega*
     epsilon) = %i*omega*sqrt (mu*epsilon)
11 epsilon_0=8.854*10^-12 // permittivity in free space
      in F/m
12 epsilon=9*epsilon_0 // permittivity in F/m
13 mu_0=4*%pi*10^-7 // permeability in free space in H
14 mu=mu_0 // permeability in H/m
15 Gamma=%i*omega*sqrt(mu*epsilon) // propagation
     constant im m^-1
16 disp(Gamma, "propagation constant im m^-1:")
17 // formula : eta=sqrt((%i*omega*mu)/(sigma+omega*
     epsilon))=sqrt(mu/epsilon)
18 eta=sqrt(mu_0/(9*epsilon_0)) // intrinsic impedence
     in ohm
19 disp(eta, "intrinsic impedence in ohm:")
20
21
22 // note: answer of propagation constant in book is
     wrong they put mu_0=4*10^-7 in part 1 which is
     wrong the correct value of mu_0 is 4*\%pi*10^-7.
```

Scilab code Exa 2.18 frequency and permittivity

```
1 //Exa 2.18
2 clc;
3 clear;
4 close;
5 // given :
6 lambda=0.25 // wavelength in m
```

```
7 v=1.5*10^10 // velocity of propagation of wave in cm
8 v=1.5*10^8 // velocity of propagation of wave in m/
9 f=v/lambda // frequency in Hz
10 disp(f/10<sup>6</sup>, "frequecy in MHz:")
11 epsilon_0=8.854*10^-12 // permittivity in free space
       in F/m
12 mu_0=4*%pi*10^-7 // permeability in free space in H
13 mu=mu_0 // permeability in H/m
14 \text{ v}_0=3*10^8 \text{ // speed of light in m/s}
15 // formula : v=1/(mu*epsilon)=1/(mu_0*epsilon_0*
      epsilon_r)=v_0/sqrt(epsilon_r)
16 epsilon_r=(v_0/v)^2 // relative permittivity
17 disp(epsilon_r, "relative permittivity:")
18
19
20 //note: answer in the book is wrong.
```

Scilab code Exa 2.19 frequency phase constant and wavelength

```
1 // Exa 2.19
2 clc;
3 clear;
4 close;
5 // given : E=5*sin(10^8*t+4*x)az // equation of electric field
6 A=5 // amplitude of the electric field
7 omega=10^8 // angular frequency in radians/sec
8 f=omega/(2*%pi) // frequency in Hz
9 Beta=4 // phase constant in rad/m
10 v_0=3*10^8 // speed of light in m/s
11 lambda=v_0/f // wavelength in m
12 disp(f/10^6, "frequency in MHz:")
```

```
disp(Beta, "phase constant in rad/m:")
disp(lambda, "wavelength in m:")
```

Scilab code Exa 2.20 conducting characteristics of earrth

```
1 // Exa 2.20
2 clc;
3 clear;
4 close;
5 // given :
6 sigma=10^-2 // conductivity of earth in mho/m
7 epsilon_r=10 // relative permittivity
8 mu_r=2 // relative permeability
9 epsilon_0=(1/(36*\%pi))*10^-9 // permittivity in free
      space
10 epsilon=epsilon_r*epsilon_0 // permittivity
11 f1=50 // frequency in Hz
12 omega1=2*%pi*f1 // angular frequency in rad/sec
13 disp("When frequency=50Hz:")
14 k1=sigma/(omega1*epsilon)
15 disp(k1, "K1 is equal to")
16 disp("since k1>>1 hence it behaves like a good
     conductor:")
17 f2=1 // frequency in kHz
18 f2=1*10^3 // frequency in Hz
19 omega2=2*%pi*f2 // angular frequency in rad/sec
20 disp ("When frequency=1kHz:")
21 k2=sigma/(omega2*epsilon)
22 disp(k2, "K2 is equal to")
23 disp("since k2>>1 hence it behaves like a good
     conductor:")
24 f3=1 // frequency in MHz
25 f3=1*10^6 // frequency in Hz
26 omega3=2*%pi*f3 // angular frequency in rad/sec
27 disp ("When frequency=1MHz:")
```

```
28 k3=sigma/(omega3*epsilon)
29 disp(k3,"K3 is equal to")
30 disp("since k3=18 hence it behaves like a moderate
     conductor:")
31 f4=100 // frequency in MHz
32 f4=100*10^6 // frequency in Hz
33 omega4=2*%pi*f4 // angular frequency in rad/sec
34 disp("When frequency=100MHz:")
35 k4=sigma/(omega4*epsilon)
36 disp(k4, "K4 is equal to")
37 disp("since k4=0.18 hence it behaves like a quasi-
      dielectric:")
38 f5=10 // frequency in GHz
39 f5=10*10^9 // frequency in Hz
40 omega5=2*%pi*f5 // angular frequency in rad/sec
41 disp ("When frequency=10GHz:")
42 k5=sigma/(omega5*epsilon)
43 disp(k5, "K5 is equal to")
44 disp("since k5 << 1 hence it behaves like a good
      dielectric:")
```

Scilab code Exa 2.21 attenuation constant phase constant phase velocity propagation constant and intrinsic impedance

```
1 // Exa 2.21
2 clc;
3 clear;
4 close;
5 // given :
6 f=60 // frequency in Hz
7 omega=2*%pi*f // angular frequency in rad/sec
8 sigma=5.8*10^7 // conductivity in mho/m
9 epsilon_0=8.854*10^-12 // permittivity in free space in F/m
10 mu_0=4*%pi*10^-7 // permeability in free space in H
```

```
/m
11 epsilon_r=1 // relative permittivity
12 mu_r=1 // relative permeability
13 epsilon=epsilon_r*epsilon_0 // permittivity
14 mu=mu_0*mu_r // permeability
15 k=sigma/(omega*epsilon) // ratio
16 disp(k, "ratio k is equal to")
17 disp("since k>>1 therefore it is very good conductor
18 alpha=sqrt (omega*mu*sigma/2) // attenuation constant
      in m^-1
19 Beta=sqrt(omega*mu*sigma/2) // phase constant in m
20 Gamma=alpha+(%i*Beta) // propagation constant in m
21 lambda=2*%pi/Beta // wavelength
22 eta=sqrt((%i*omega*mu/sigma)) // intrinsic impedence
      in ohm
23 v=lambda*f // phase velocity of wave in m/s
24 disp(alpha, "attenuation constant in m^-1:")
25 disp(Beta, "phase constant in m^-1:")
26 disp(Gamma, "propagation constant in m^-1:")
27 disp(eta, "intrinsic impedence in ohm:")
28 disp(lambda*100, "wavelength in cm:")
29 disp(v,"phase velocity of wave in m/s:")
```

Scilab code Exa 2.22 depth of penetation

```
1 // Exa 2.22
2 clc;
3 clear;
4 close;
5 // given :
6 f1=60 // frequency in Hz
7 omega1=2*%pi*f1 // angular frequency in Hz
```

```
8 f2=100 // frequency in MHz
9 f2=100*10^6 // frequency in Hz
10 omega2=2*%pi*f2 // angular frequency in Hz
11 sigma=5.8*10^7 // conductivity in mho/m
12 epsilon_0=8.854*10^-12 // permittivity in free space
       in F/m
13 mu_0=4*%pi*10^-7 // permeability in free space in H
      /m
14 epsilon_r=1 // relative permittivity
15 mu_r=1 // relative permeability
16 epsilon=epsilon_r*epsilon_0 // permittivity
17 mu=mu_0*mu_r // permeability
18
19 \operatorname{disp}(\text{"At } f=60 \text{Hz"})
20 k1=(sigma)/(omega1*epsilon) // ratio
21 disp(k1," ratio k is equal to")
22 disp("since k>>1 therefore it is very good conductor
       at f = 60 \text{Hz}:")
23 delta1=(sqrt(2/(omega1*mu*sigma))) // depth of
      penetration in m
24 disp(delta1,"depth of penetration delta1 in m:")
25
26 disp("At f=100Hz")
27 k2=sigma/(omega2*epsilon) // ratio
28 disp(k2, "ratio k is equal to")
29 disp("since k2>>1 therefore it is very good
      conductor at f=100Hz:")
30 delta2=(sqrt(2/(omega2*mu*sigma))) // depth of
      penetration in m
31 disp(delta2, "depth of penetration delta2 in m:")
```

Scilab code Exa 2.23 displacement current

```
1 // Exa 2.23 2 clc;
```

```
3 clear;
4 close;
5 // given :
6 Ic=10 // conduction current in ampere
7 epsilon_r=1 // relative permittivity
8 epsilon_0=8.854*10^-12 // permittivity in free space
9 epsilon=epsilon_r*epsilon_0 // permittivity
10 sigma=5.8*10^7 // conductivity in mho/m
11 disp("when f=1MHz")
12 f=1 // frequency in MHz
13 f=1*10^6 // frequency in Hz
14 Id=2*%pi*f*epsilon*Ic/sigma // displacement current
15 disp(Id, "displacement current when f=1MHz in A:")
16 disp("when f=100MHz")
17 f=100 // frequency in MHz
18 f=100*10^6 // frequency in Hz
19 Id=2*%pi*f*epsilon*Ic/sigma // displacement current
20 disp(Id, "displacement current when f=100MHz in A:")
```

Scilab code Exa 2.25 reachable depth of the sea

```
1 // Exa 2.25
2 clc;
3 clear;
4 close;
5 // given :
6 Em=20 // minimum signal level required for vessel under sea water in microV/m
7 Em=20*10^-6 // minimum signal level required for vessel under sea water in V/m
8 E=100 // electric intensity of wave in V/m
9 v=3*10^8 // speed of light in m/s
10 f=4 // frequency in MHz
11 f=4*10^6 // frequency in Hz
12 omega=2*%pi*f // angular frequency in Hz
```

```
13 sigma=4 // conductivity of sea water in mho/m
14 epsilon_r=81 // relative permittivity
15 epsilon_0=8.854*10^-12 // permittivity in free space
16 epsilon=epsilon_r*epsilon_0 // permittivity
17 mu_r=1 // relative permeability
18 mu_0=4*\%pi*10^(-7) // permeability in free space
19 mu=mu_r*mu_0 // permeability
20 k=(sigma)/(omega*epsilon)//ratio
21 disp("ratio k is equal to: ")
22 disp(k, "ratio:")
23 disp("K is >>1 so sea water is a good conductor")
24 eta_1=377 // intrinsic impedance in free space in
25 alpha_1=0 // attenuation constant in free space in m
26 beta_1=omega/v // phase constant in m^-1
27 mageta_2=\operatorname{sqrt} (omega*mu/sigma) // magnitude of eta_2 (
      intrinsic impedance of sea water in ohm)
28 argeta_2=45 // argument of eta_2 in degrees
29 eta_2=mageta_2*cosd(argeta_2)+%i*mageta_2*sind(
     argeta_2) //intrinsic impedance in complex form (
     r*cos(theta)+\%i*r*sin(theta))
30 TC=2*eta_2/(eta_1+eta_2) // transmission cofficient
31 Et=abs(TC)*E // transmitted electric field in V/m
32 alpha_2=sqrt(omega*mu*sigma/2) // attenuation
     constant for sea water in m^-1
33 // formula: Et*exp(-alpha_2*d)=Es
34 d=-(1/alpha_2)*log(Em/Et) // depth in the sea that
     can be reached by the aeroplane in m
35 disp(d,"depth in the sea that can be reached by the
      aeroplane in m:")
36
37
38 // note 1: the value of alpha_2 in book is 7.905 but
      it is "7.94" exactly calculated by scilab
39 //note 2: The correct answer of the Depth(d) is
     "1.41094" the answer in the book is wrong.
```

Scilab code Exa 2.27 Power per unit area

```
1 // Exa 2.27
2 clc;
3 clear;
4 close;
5 // given :
6 eta_0=377 // intrinsic impedance in free space in ohm
7 disp("E=sin(omega*t-beta*z)ax+2*sin(omega*t-beta*z+75)ay // electric field in V/m")
8 Ex=1// magnitude of Ex
9 Ey=2 // magnitude of Ey
10 E=sqrt(Ex^2+Ey^2) // resultant magnitude
11 Pav=(1/2)*E^2/(eta_0) // power per unit area conveyed by the wave in free space
12 disp(Pav*1000, "power per unit area conveyed by the wave in free space in mW/m^2:")
```

Scilab code Exa 2.28 average power and maximum energy density of wave

```
1 // Exa 2.28
2 clc;
3 clear;
4 close;
5 // given :
6 epsilon_0=8.854*10^-12 // permittivity in free space in F/m
7 mu_0=4*%pi*10^-7 // permeability in free space in H /m
8 epsilon_r=4 // relative permittivity
9 mu_r=1 // relative permeability
```

Scilab code Exa 2.29 energy density and total energy

```
1 // Exa 2.29
2 clc;
3 clear;
4 close;
5 // given :
6 epsilon_0=8.854*10^-12 // permittivity in free space in F/m
7 mu_0=4*%pi*10^-7 // permeability in free space in H /m
8 epsilon_r=1 // relative permittivity
9 mu_r=1 // relative permeability
10 epsilon=epsilon_r*epsilon_0 // permittivity
11 mu=mu_0*mu_r // permeability
12 E=100*sqrt(%pi) // magnitude of electric field in V/m
13 W_E=(1/2)*epsilon*E^2 // electric energy density of
```

```
the wave

14 disp(W_E*10^9, "electric energy density of the wave
    in nJ/m^3:")

15 W_H=W_E // as the energy density is equal to that of
    magnetic field for a pla ne travelling wave

16 W_T=W_E+W_H // total energy density

17 disp(W_H*10^9, "magnetic energy density of wave in nJ
    /m^3:")

18 disp(W_T*10^9, "Total energy density in nJ/m^3:")
```

Scilab code Exa 2.30 transmitted distance of an electromagnetic wave

```
1 // Exa 2.30
2 clc;
3 clear:
4 close;
5 // given :
6 sigma=5 // conductivity of sea water in mho/m
7 f1=25 // frequency in kHz
8 f1=25*10^3 // frequency in Hz
9 omega1=2*%pi*f1 // angular frequency in Hz
10 f2=25 // frequency in MHz
11 f2=25*10^6 // frequency in Hz
12 omega2=2*%pi*f2 // angular frequency in Hz
13 epsilon_r=81 // relative permittivity
14 epsilon_0=8.854*10^-12 // permittivity in free space
15 epsilon=epsilon_r*epsilon_0 // permittivity
16 mu_r=1 // relative permeability
17 mu_0=4*%pi*10^(-7) // permeability in free space
18 mu=mu_r*mu_0 // permeability
19 disp ("when frequency=25kHz")
20 alpha_1=omega1*sqrt((mu*epsilon)/2*(sqrt(1+(sigma
     ^2/(omega1^2*epsilon^2)))-1)) // attenuation
     constant when f=25kHz
21 //formula: \exp(-alpha*x)=0.1
```

```
22 x1=2.3/alpha_1 // transmitted distance in m
23 disp(x1,"transmitted distance in m:")
24 disp("when frequency=25MHz")
25 alpha_2=omega2*sqrt((mu*epsilon)/2*(sqrt(1+(sigma ^2/(omega2^2*epsilon^2)))-1)) // attenuation constant when f=25MHz
26 x2=2.3/alpha_2 // transmitted distance in m
27 disp(x2,"transmitted distance in m:")
28
29
30 //note: the values of epsilon_r=81 and of mu_r=1 for sea water which are not given in the book.
```

Scilab code Exa 2.31 incident and reflected magnetic field and reflected electric field

```
1 // Exa 2.31
2 clc;
3 clear;
4 close;
5 // given :
6 E_i=1 // magnitude of incident electric field in mV/
7 E_i=1*10^-3 // magnitude of incident electric field
     in V/m
 epsilon_0=8.854*10^-12 // permittivity in free space
      in F/m
  mu_0=4*%pi*10^-7 // permeability in free space in H
10 theta_i=15 // incident angle in degrees
11 epsilon_r1=8.5 // relative permittivity of medium 1
12 mu_r1=1 // relative permeability of medium 1
13 epsilon1=epsilon_r1*epsilon_0 // permittivity
14 mu1=mu_0*mu_r1 // permeability
15 eta1=sqrt(mu1/epsilon1) // intrinsic impedence of
```

```
medium 1 in ohm
16 epsilon2=epsilon_0 // permittivity of medium 2
17 mu2=mu_0 // permeability of medium 2
18 eta2=sqrt(mu2/epsilon2) // intrinsic impedence of
     medium 2 in ohm
19 // formula : sind(theta_i)/sind(theta_t)=sqrt(
      epsilon2/epsilon1)
20 theta_t=asind(sind(theta_i)/(sqrt(epsilon2/epsilon1)
     )) // transmitted angle in degrees
21 E_r=E_i*((eta2*cosd(theta_i)-(eta1*cosd(theta_i)))/(
     eta2*cosd(theta_i)+eta1*cosd(theta_i))) //
      reflection cofficient of electric field
22 disp(E_r*1000, "reflection cofficient of electric
      field in mV/m:")
23 H_i=E_i/eta1 // incident cofficient of magnetic
      field
24 disp(H_i*10^6, "incident cofficient of magnetic field
      in micro*A/m:")
25 H_r=E_r/eta1 // reflection cofficient of electric
      field
26 disp(H_r*10^6, reflection cofficient of magnetic
      field in micro*A/m:")
27
28
29 // note : minute difference in decimal answer
     between scilab and book.
```

Scilab code Exa 2.32 average power density absorbed

```
1  // Exa 2.32
2  clc;
3  clear;
4  close;
5  // given :
6  sigma=5.8*10^7 // conductivity in mho/m
```

```
7 f=2 // frequency in MHz
8 f=2*10^6 // frequency in Hz
9 omega=2*%pi*f // angular frequency in rad/sec
10 E=2 // magnitude of electric field in mV/m
11 E=2*10^-3 // magnitude of electric field in V/m
12 epsilon_0=8.854*10^-12 // permittivity in free space
      in F/m
13 mu_0=4*%pi*10^-7 // permeability in free space in H
14 epsilon_r=1 // relative permittivity
15 mu_r=1 // relative permeability
16 epsilon=epsilon_r*epsilon_0 // permittivity
17 mu=mu_0*mu_r // permeability
18 eta=sqrt(mu*omega/sigma) // intrinsic impedence in
     ohm
19 P_{av}=(1/2)*E^2/eta // average power density
     anbsorbed by copper
20 disp(P_av*1000, "average power density anbsorbed by
     copper in mW/m<sup>2</sup>:")
```

Chapter 3

RADIATION AND ANTENNAS

Scilab code Exa 3.1 radiation resistance

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 Lm=poly(0, 'Lm')// defining Lm as lambda
6 dl=Lm/40 // dipole length
7 Rr = 80 * (\%pi)^{(2)} * (d1/Lm)^{2}
8 Rr=horner(Rr,1)
9 disp(Rr, "radiation resistance of dipole in ohm if dl
     =Lm/40 : ")
10 dl=Lm/60 // dipole length
11 Rr = 80*(\%pi)^(2)*(d1/Lm)^2
12 Rr=horner(Rr,1)
13 disp(Rr, "radiation resistance of dipole in ohm if dl
     =Lm/60 : ")
14 dl=Lm/80 // dipole length
15 Rr = 80*(\%pi)^(2)*(d1/Lm)^2
16 Rr=horner(Rr,1)
17 disp(Rr, "radiation resistance of dipole in ohm if dl
```

```
=Lm/80 : ")
```

Scilab code Exa 3.3 Directivity of half wave dipole

```
1 //Exa 3.3
2 clc;
3 clear;
4 close;
5 // given :
6 Pr=1 //power in watt
7 I=sqrt(Pr/73) // current in A
8 Eta0=120*(%pi) // constant
9 r=poly(0, 'r')
10 E_max=60*I/r
11 RI=r^2*E_max^2/Eta0 // radiation intensity
12 Gd_max=4*(%pi)*(RI)/Pr
13 Gd_max=horner(Gd_max,1)
14 disp(Gd_max," Directivity of a half wave dipole:")
```

Scilab code Exa 3.4 Power radiated

```
1 //Exa3.4
2 clc;
3 clear;
4 close;
5 Rr=300 // radiation resistance in ohm
6 I=3 // in A
7 //formula: Pr=I^2*R
8 Pr=I^2*Rr // power radiated in watt
9 disp(Pr, "power radiated by antenna in watts:")
```

Scilab code Exa 3.5 effective area of half wave dipole

Scilab code Exa 3.6 effective area of hertzian dipole

Chapter 4

ANALYSIS OF LINEAR ARRAYS

Scilab code Exa 4.1 null to null beam width of a broadside array

```
1 / Exa 4.1
2 clc;
3 clear;
4 close;
5 L=poly(0, 'L') //Defining L as lambda
6 1 = 10 * L
7 N=20 // number of elements
8 d=1/N
9 // formula : BW = (2*(L/d)*1/N)
10 BW1=(horner((2*L/(N*d)),1))
11 disp(BW1," Null-to-null BW of broadside array in
      radians when l=10*L, N=20:")
12 1=50*L
13 N=100 // number of elements
14 d=1/N
15 // formula : BW = (2*(L/d)*1/N)
16 BW2=(horner((2*L/(N*d)),1))
17 disp(BW2," Null-to-null BW of broadside array in
      radians when l=50*L, N=100:")
```

```
18  l=20*L
19  N=50 // number of elements
20  d=1/N
21  // formula : BW=(2*(L/d)*1/N)
22  BW3=(horner((2*L/(N*d)),1))
23  disp(BW3,"Null-to-null BW of broadside array in radians when l=20*L,N=50:")
```

Scilab code Exa 4.2 null to null beam width of a endfire array

```
1 / Exa 4.2
2 clc;
3 clear;
4 close;
5 L=poly(0, 'L') // Defining L as lambda
6 1 = 10 * L
7 N=20 // number of elements
8 d=1/N
9 // formula : BW=(2*sqrt(2*(L/d)*1/N))
10 BW1=2*sqrt(horner((2*L/(N*d)),1))
11 disp(BW1," Null-to-null BW of end-fire array in
      radians when l=10*L, N=20:")
12 1=50*L
13 N=100 // number of elements
14 d=1/N
15 // formula : BW=(2*sqrt(2*(L/d)*1/N))
16 BW2=2*sqrt(horner((2*L/(N*d)),1))
17 disp(BW2," Null-to-null BW of end-fire array in
      radians when l=50*L, N=100:")
18 1=20*L
19 N=50 // number of elements
20 d=1/N
21 // formula : BW=(2*sqrt(2*(L/d)*1/N))
22 BW3=2*sqrt(horner((2*L/(N*d)),1))
23 disp(BW3,"Null-to-null BW of end-fire array in
```

Scilab code Exa 4.3 null to null beam width and directivity

```
//Exa 4.3
clc;
clear;
close;
f=6 //frequency in GHz
f=6*10^9 //frequency in Hz
c=3*10^8 //speed of light in m/s
l=10 // array length in meter
lambda=c/f //wavelength in meter
// formula : BWFN = 2*lambda/l
BWFN = 2*(lambda/l) // band width in radians
disp(BWFN, "null-to-null Beamwidth of broad side array in radians:")
D=2*(1/lambda) // directivity
disp(D, "Directivity:")
```

Scilab code Exa 4.4 Progressive phase shift and array length

```
1 //Exa 4.4
2 clc;
3 clear;
4 close;
5 //given :
6 f=10 //frequency in Ghz
7 f=10*10^9 //frequency in hertz
8 c=3*10^8 //speed of light in m/s
9 lambda=c/f //wavelength in meter
10 N=50 // number of elements
11 d=0.5*lambda // element spacing in meter
```

```
12 Beta=2*(%pi)/lambda // phase shift
13 alpha=Beta*d // progressive phase shift in radians
14 l=N*d // Araay length in meter
15 disp(alpha, "progressive phase shift in radians:")
16 disp(1, "Array length in meter")
```

Scilab code Exa 4.5 null to null and half power beam width and directivity

```
1 / Exa 4.5
2 clc;
3 clear;
4 close;
5 // given :
6 N=100 // no. of elements
7 Lm=poly(0, 'Lm') // defining Lm as lambda
8 d = 0.5 * Lm
9 l=N*d // array length
10 B.W.F.N = 114.6 /(1/Lm) // beam width in degrees
11 B.W.F.N=horner(B.W.F.N,1)
12 disp(B.W.F.N, "null-to-null beamwidth in degrees:")
13 H.P.B.W = B.W.F.N/2 // half power beam width in
      degrees
14 disp(H.P.B.W, "half power beamwidth in degrees:")
15 D1=2*(1/Lm) // directivity of broad side array
16 D1=horner(D1,1)
17 D2=4*(1/Lm) // directivity of end fire array
18 D2=horner(D2,1)
19 disp(D1, "directivity of broad side array:")
20 disp(D2, "directivity of end fire array:")
21
22 // note: answer in the book is mis-printed, the HPBW
      is not 11.46 it should be 1.146 degrees.
23
24 // note: misprint in second step of part a in book
```

Scilab code Exa 4.9 relative excitation levels

```
1 // Exa 4.9
2 clc;
3 clear;
4 close;
5 // given :
6 // formula : combination (n,r) = (factorial(n))/(
     factorial (r) * factorial (n-r))
7 disp("when n=2")
8 n=2
9 a_0=factorial(1)/factorial(0)*factorial(1) //
     relative excitation level 1
10 a_1=factorial(1)/factorial(1)*factorial(0) //
     relative excitation level 2
11 disp((string(a_0)+" "+string(a_1))," relative
      excitation levels of binomial array at n=2:")
12 disp("when n=3")
13 \, n=3
14 a_1=factorial(1)/factorial(1)*factorial(0) //
     relative excitation level 2
15 a_0=2*a_1 // relative excitation level 1
16 disp((string(a_1)+" "+string(a_0)+" "+string(a_1)),"
      relative excitation levels of binomial array at n
     =3:")
```

Scilab code Exa 4.10 basic and actual transmission loss

```
1 // Exa 4.10
2 clc;
3 clear;
```

```
4 close;
5 // given :
6 d=30 //separation distance in meter
7 f=10 //frequency in mega hertz
8 f=10*10^6 //frequency in hertz
9 c=3*10^8 //speed of light in m/s
10 lambda=c/f //wavelength in meter
11 Gt=1.65 //transmitting gain in dB
12 Gr=1.65 //receiving gain in dB
13 // basic transmission loss :
14 // formula : Lb=10*\log(((4*(\%pi)*d)^2/(lambda)^2))
15 Lb=10*log10((4*(\%pi)*d)^2/(lambda)^2) // basic
     transmmision loss in dB
16 disp(Lb, "basic transmmision loss in dB:")
17 // actual transmission loss :
18 La=Lb-Gt-Gr // actual transmisson loss in dB
19 disp(La, "actual transmisson loss in dB:")
```

Scilab code Exa 4.11 basic transmission loss

```
1  //Exa 4.11
2  clc;
3  clear;
4  close;
5  //when frequency=0.3GHz
6  // given :
7  f=0.3  //frequency in Ghz
8  f=0.3*10^9  //frequency in hertz
9  c=3*10^8  //speed of light in m/s
10 lambda=c/f  //wavelength in meter
11  d1=1.6  // in Km
12  d1=1.6*10^3  // in meter
13  // formula : Lb=20*log10((4*(%pi)*d)/(lambda))
14  Lb1=20*log10(4*%pi*d1/lambda)  // basic transmission loss in dB
```

```
15 disp(Lb1," basic transmission loss in dB when d=1.6Km
      , f = 0.3 GHz:")
16 d2=16 // in Km
17 d2=16*10^3 // in meter
18 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
19 Lb2=20*log10(4*%pi*d2/lambda) // basic transmission
      loss in dB
20 disp(Lb2, "basic transmission loss in dB when d=16Km,
      f = 0.3 GHz:")
21 d3=160 // in Km
22 d3 = 160 * 10^3 // in meter
23 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
24 Lb3=20*log10(4*%pi*d3/lambda) // basic transmission
      loss in dB
25 disp(Lb3," basic transmission loss in dB when d=160Km
      f = 0.3 GHz:")
26 d4=320 // in Km
27 d4=320*10^3 // in meter
28 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
29 Lb4=20*log10(4*%pi*d4/lambda) // basic transmission
      loss in dB
30 disp(Lb4," basic transmission loss in dB when d=320Km
      , f = 0.3 GHz:")
31 // when frequency is 3Ghz
32 // given :
33 f=3 //frequency in Ghz
34 f=3*10^9 //frequency in hertz
35 c=3*10^8 //speed of light in m/s
36 lambda=c/f //wavelength in meter
37 	 d1=1.6 	 // 	 in 	 Km
38 d1=1.6*10^3 // in meter
39 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
40 Lb1=20*log10(4*%pi*d1/lambda) // basic transmission
      loss in dB
41 disp(Lb1,"basic transmission loss in dB when <math>d=1.6Km
      , f = 3GHz:")
42 d2 = 16 // in Km
43 d2=16*10^3 // in meter
```

```
44 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
45 Lb2=20*log10(4*%pi*d2/lambda) // basic transmission
      loss in dB
  disp(Lb2, "basic transmission loss in dB when d=16Km,
      f = 3GHz:")
47 d3=160 // in Km
48 d3 = 160 * 10^3 // in meter
49 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
50 Lb3=20*log10(4*%pi*d3/lambda) // basic transmission
      loss in dB
51 disp(Lb3," basic transmission loss in dB when d=160Km
      f = 3GHz:")
52 d4=320 // in Km
53 d4=320*10^3 // in meter
54 // formula : Lb=20*log10((4*(\%pi)*d)/(lambda))
55 Lb4=20*log10(4*%pi*d4/lambda) // basic transmission
      loss in dB
56 disp(Lb4," basic transmission loss in dB when d=320Km
      , f = 3GHz:")
```

Scilab code Exa 4.12 Actual transmission loss

```
1 //Exa 4.12
2 clc;
3 clear;
4 close;
5 // given :
6 Gt=10 // transmission gain in dB
7 Gr=10 // receiving gain in dB
8 //when frequency=0.3GHz
9 // given :
10 f=0.3 //frequency in Ghz
11 f=0.3*10^9 //frequency in hertz
12 c=3*10^8 //speed of light in m/s
13 lambda=c/f //wavelength in meter
```

```
14 d1=1.6 // in Km
15 d1=1.6*10^3 // in meter
16 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
17 Lb1=20*log10(4*%pi*d1/lambda) // basic transmission
      loss in dB
18 La1=Lb1-Gt-Gr // Actual transmission loss in dB
19 disp(La1, "Actual transmission loss in dB when d=1.6
     Km, f = 0.3GHz:")
20 d2=16 // in Km
21 d2=16*10^3 // in meter
22 // formula : Lb=20*log10((4*(\%pi)*d)/(lambda))
23 Lb2=20*log10(4*%pi*d2/lambda) // basic transmission
      loss in dB
24 La2=Lb2-Gt-Gr // Actual transmission loss in dB
25 disp(La2," Actual transmission loss in dB when d=16Km
      , f = 0.3GHz: ")
26 d3=160 // in Km
27 d3=160*10^3 // in meter
28 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
29 Lb3=20*log10(4*%pi*d3/lambda) // basic transmission
      loss in dB
30 La3=Lb3-Gt-Gr // Actual transmission loss in dB
31 disp(La3," Actual transmission loss in dB when d=160
     Km, f = 0.3GHz:")
32 d4 = 320 // in Km
33 d4 = 320 * 10^3 // in meter
34 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
35 Lb4=20*\log 10 (4*\%pi*d4/lambda) // basic transmission
      loss in dB
36 La4=Lb4-Gt-Gr // Actual transmission loss in dB
37 disp(La4," Actual transmission loss in dB when d=320
     Km, f = 0.3GHz:")
38 // when frequency is 3Ghz
39 // given :
40 f=3 //frequency in Ghz
41 f=3*10^9 //frequency in hertz
42 c=3*10^8 //speed of light in m/s
43 lambda=c/f //wavelength in meter
```

```
44 d1=1.6 // in Km
45 d1=1.6*10^3 // in meter
46 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
47 Lb1=20*log10(4*%pi*d1/lambda) // basic transmission
      loss in dB
48 La1=Lb1-Gt-Gr // Actual transmission loss in dB
49 disp(La1," Actual transmission loss in dB when d=1.6
     Km, f=3GHz:")
50 d2 = 16 // in Km
51 d2=16*10^3 // in meter
52 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
53 Lb2=20*log10(4*%pi*d2/lambda) // basic transmission
      loss in dB
54 La2=Lb2-Gt-Gr // Actual transmission loss in dB
55 disp(La2," Actual transmission loss in dB when d=16Km
      f = 3GHz:")
56 d3=160 // in Km
57 d3=160*10^3 // in meter
58 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
  Lb3=20*log10(4*%pi*d3/lambda) // basic transmission
      loss in dB
60 La3=Lb3-Gt-Gr // Actual transmission loss in dB
61 disp(La3," Actual transmission loss in dB when d=160
     Km, f=3GHz:")
62 	ext{ d4=320 } // 	ext{ in } 	ext{Km}
63 d4 = 320 * 10^3 // in meter
64 // formula : Lb=20*\log 10 ((4*(\%pi)*d)/(lambda))
65 Lb4=20*\log 10 (4*\%pi*d4/lambda) // basic transmission
      loss in dB
66 La4=Lb4-Gt-Gr // Actual transmission loss in dB
67 disp(La4," Actual transmission loss in dB when d=320
     Km, f=3GHz:")
```

Scilab code Exa 4.13 receiving power

```
1 //Exa 4.13
2 clc;
3 clear;
4 close;
5 // given :
6 Wt=15 // radaited power in watt
7 f=60 // in MHz
8 f = 60 * 10^6 // in Hz
9 d=10 // in m
10 c=3*10^8 // in m/s
11 lambda=c/f // in meter
12 Gt=1.64 // transmitting gain in dB
13 Gr=1.64 // receiving gain in dB
14 Wr=(Wt*Gt*Gr*(lambda)^2/(4*(%pi)*d)^2) // receiving
     power in watt
15 disp(Wr*1000, "receiving power in mW:")
```

Chapter 6

HF VHF AND UHF ANTEENAS

Scilab code Exa 6.1 Designing of a rhombic antenna

```
1 // Exa 6.1
2 clc;
3 clear;
4 close;
5 //given:
6 f=30 // frequency in MHz
7 f=30*10^6 // frequency in Hz
8 c=3*10^8 // speed of light in m/s
9 lambda=c/f // wavelength in meter
10 Delta=30 // angle of elevation in Degrees
11 H=lambda/(4*sind(Delta)) // Rhombic height in m
12 phi=90-Delta // tilt angle in Degrees
13 l=lambda/(2*(cosd(phi)^2)) // wire length in m
14 disp(H," Rhombic height in m:")
15 disp(phi, "Tilt angle in Degrees:")
16 disp(1, "length of wire in meter:")
```

Scilab code Exa 6.2 Designing of a rhombic antenna

```
1 / Exa 6.2
2 clc;
3 clear;
4 close;
5 //given:
6 f=20 //frequency in MHz
7 f=20*10^6 // frequency in Hz
8 c=3*10^8 //speed of light in m/s
9 lambda=c/f //wavelength in meter
10 Delta=10 // angle of elevation in Degrees
11 H=lambda/(4*sind(Delta)) // Rhombic height in m
12 phi=90-Delta // tilt angle in Degrees
13 l=lambda/(2*(cosd(phi)^2)) // wire length in m
14 disp(H, Rhombic height in m:")
15 disp(phi, "Tilt angle in Degrees:")
16 disp(1,"length of wire in meter:")
```

Scilab code Exa 6.3 Designing of a rhombic antenna

```
1 //Exa 6.3
2 clc;
3 clear;
4 close;
5 //given :
6 f=30 //frequency in MHz
7 f=30*10^6 //frequency in Hz
8 c=3*10^8 //speed of light in m/s
9 lambda=c/f //wavelength in meter
10
11 disp("for Delta=10 degrees")
12
13 Delta1=10 // angle of elevation in Degrees
14 H1=lambda/(4*sind(Delta1)) // Rhombic height in m
```

```
15 phi1=90-Delta1 // tilt angle in Degrees
16 l1=lambda/(2*(cosd(phi1)^2)) // wire length in m
17 disp(H1, "Rhombic height in m:")
18 disp(phi1, "Tilt angle in Degrees:")
19 disp(11," length of wire in meter:")
20
21 disp("for Delta=15 degrees")
22
23 Delta2=15 // angle of elevation in Degrees
24 H2=lambda/(4*sind(Delta2)) // Rhombic height in m
25 phi2=90-Delta2 // tilt angle in Degrees
26 12 = lambda/(2*(cosd(phi2)^2)) // wire length in m
27 disp(H2, "Rhombic height in m:")
28 disp(phi2, "Tilt angle in Degrees:")
29 disp(12," length of wire in meter:")
30
31 disp("for Delta=20 degrees")
32
33 Delta3=20 // angle of elevation in Degrees
34 H3=lambda/(4*sind(Delta3)) // Rhombic height in m
35 phi3=90-Delta3 // tilt angle in Degrees
36 \quad 13 = lambda/(2*(cosd(phi3)^2)) // wire length in m
37 disp(H3, "Rhombic height in m:")
38 disp(phi3, "Tilt angle in Degrees:")
39 disp(13,"length of wire in meter:")
40
41 disp("for Delta=25 degrees")
42
43 Delta4=25 // angle of elevation in Degrees
44 H4=lambda/(4*sind(Delta4)) // Rhombic height in m
45 phi4=90-Delta4 // tilt angle in Degrees
46 14=lambda/(2*(cosd(phi4)^2)) // wire length in m
47 disp(H4," Rhombic height in m:")
48 disp(phi4, "Tilt angle in Degrees:")
49 disp(14," length of wire in meter:")
50
51 disp("for Delta=30 degrees")
52
```

```
53 Delta5=30 // angle of elevation in Degrees
54 H5=lambda/(4*sind(Delta5)) // Rhombic height in m
55 phi5=90-Delta5 // tilt angle in Degrees
56 \ ls=lambda/(2*(cosd(phi5)^2)) // wire length in m
57 disp(H5," Rhombic height in m:")
58 disp(phi5, "Tilt angle in Degrees:")
59 disp(15," length of wire in meter:")
60
61 disp("for Delta=35 degrees")
62
63 Delta6=35 // angle of elevation in Degrees
64 H6=lambda/(4*sind(Delta6)) // Rhombic height in m
65 phi6=90-Delta6 // tilt angle in Degrees
66 16=lambda/(2*(cosd(phi6)^2)) // wire length in m
67 disp(H6, "Rhombic height in m:")
68 disp(phi6, "Tilt angle in Degrees:")
69 disp(16, "length of wire in meter:")
70
71 disp("for Delta=40 degrees")
72
73 Delta7=40 // angle of elevation in Degrees
74 H7=lambda/(4*sind(Delta7)) // Rhombic height in m
75 phi7=90-Delta7 // tilt angle in Degrees
76 17=lambda/(2*(cosd(phi7)^2)) // wire length in m
77 disp(H7, "Rhombic height in m:")
78 disp(phi7, "Tilt angle in Degrees:")
79 disp(17, "length of wire in meter:")
```

Scilab code Exa 6.4 Design parameters of rhombic anteena

```
1 //Exa 6.4
2 clc;
3 clear;
4 close;
5 // given :
```

```
6 f=30 //frequency in MHz
7 f=30*10^6 //frequency in Hz
8 c=3*10^8 //speed of light in m/s
9 K=0.74 // constant
10 lambda=c/f // in meter
11 Delta=30 // angle of elevation in Degrees
12 H=lambda/(4*sind(Delta)) // Rhombic height in m
13 phi=90-Delta // tilt angle in Degrees
14 l=(lambda/(2*(cosd(phi)^2)))*K // wire length in m
15 disp(H," Rhombic height in m:")
16 disp(phi,"Tilt angle in Degrees:")
17 disp(1,"length of wire in meter:")
```

Scilab code Exa 6.5 Design parameters of rhombic anteena

```
1 / Exa 6.5
2 clc;
3 clear;
4 close;
5 // given :
6 f=20 //ferquency in MHz
7 f=20*10^6 //frequency in Hz
8 c=3*10^8 //speed of light in m/s
9 \text{ K=0.74} // \text{constant}
10 lambda=c/f //wavelength in meter
11 Delta=20 // angle of elevation in Degrees
12 H=lambda/(4*sind(Delta)) // Rhombic height in m
13 phi=90-Delta // tilt angle in Degrees
14 l=(lambda/(2*(cosd(phi)^2)))*K // wire length in m
15 disp(H, "Rhombic height in m:")
16 disp(phi, "Tilt angle in Degrees:")
17 disp(1, "length of wire in meter:")
```

Scilab code Exa 6.6 Design a three element yagi uda antenna

```
1 / Exa 6.6
2 clc;
3 clear;
4 close;
5 // given :
6 \text{ f\_MHz=172} // frequency in MHz
7 c=3*10^8 // speed of light in m/s
8 lambda=c/f_MHz // wavelength in m
9 La=478/f_MHz // length of driven element in feet
10 Lr=492/f_MHz // length of reflector in feet
11 Ld=461.5/f_MHz // length of director in feet
12 S=142/f_MHz // element spacing in feet
13 disp(La," length of driven element in feet:")
14 disp(Lr, "length of reflector in feet:")
15 disp(Ld," length of director in feet:")
16 disp(S, "element spacing in feet:")
```

Scilab code Exa 6.7 Designing of a six element yagi uda antenna

```
1 //Exa6.7
2 clc;
3 clear;
4 close;
5 // given :
6 G=12 // required gain in dB
7 f=200 // frequency in MHz
8 f=200*10^6 // frequency in Hz
9 c=3*10^8 // speed of light in m/s
10 lambda=c/f // wavelength in m
11 La=0.46*lambda // length of driven element in m (note: in book La is given 0.416*lambda misprint)
12 Lr=0.475*lambda // length of reflector in m
13 Ld1=0.44*lambda // length of director1 in m
```

```
14 Ld2=0.44*lambda // length of director2 in m
15 Ld3=0.43*lambda // length of director3 in m
16 Ld4=0.40*lambda // length of director4 in m
17 SL=0.25*lambda // spacing between reflector and
      driver in m
18 Sd=0.31*lambda // spacing director and driving
      element in m
19 d=0.01*lambda // diameter of elements in m
20 l=1.5*lambda // length of array in m
21 disp(La," length of driven element in m:")
22 disp(Lr, "length of reflector in m:")
23 disp(Ld1, "length of director1 in m:")
24 disp(Ld2, "length of director2 in m:")
25 disp(Ld3, "length of director3 in m:")
26 disp(Ld4, "length of director4 in m:")
27 disp(SL, "spacing between reflector and driver in m:"
28 disp(Sd, "spacing director and driving element in m:"
29 disp(d," diameter of elements in m:")
30 disp(1,"length of array in m:")
```

Scilab code Exa 6.8 Designing of a long periodic antenna

```
1 //Exa 6.8
2 clc;
3 clear;
4 close;
5 // given :
6 G=9 // required gain in dB
7 f_l=125 // lowest frequency in MHz
8 f_l=125*10^6 // lowest frequency in Hz
9 f_h=500 // highest frequency in MHz
10 f_h=500*10^6 // lowest frequency in Hz
11 c=3*10^8 // speed of light in m/s
```

```
12 lambda_l=c/f_l // longest wavelength in m
13 lambda_s=c/f_h // shortest wavelength in m
14 tau=0.861 // scaling factor
15 sigma=0.162 // spacing factor
16 alpha=2*atand((1-tau)/(4*sigma)) // wedge angle in
      Degrees
17 L1=lambda_1/2 // in m
18 L2=tau*L1 // in m
19 L3=tau*L2 // in m
20 L4=tau*L3 // in m
21 L5=tau*L4 // in m
22 L6=tau*L5 // in m
23 L7=tau*L6 // in m
24 L8=tau*L7 // in m
25 L9=tau*L8 // in m
26 L10=tau*L9 // in m
27 L11=tau*L10 // in m
28
29 // element spacing relation
30 // formula : sn=2*sigma*Ln
31 \text{ S1=2*sigma*L1} // \text{ in m}
32 \text{ S2=2*sigma*L2} // \text{ in m}
33 S3=2*sigma*L3 // in m
34 \text{ S4=2*sigma*L4} // \text{ in m}
35 S5=2*sigma*L5 // in m
36 \text{ S6=2*sigma*L6} // \text{ in m}
37 \text{ S7=2*sigma*L7} // \text{ in m}
38 S8=2*sigma*L8 // in m
39 \text{ S9=2*sigma*L9} // \text{ in m}
40 \text{ S10=2*sigma*L10} // \text{ in m}
41 S11=2*sigma*L11 // in m
42
43
44 disp("designing of log-periodic antenna:")
45
46 disp(L1, "L1 in m:")
47 disp(L2,"L2 in m:")
48 disp(L3,"L3 in m:")
```

```
49 disp(L4,"L4 in m:")
50 disp(L5,"L5 in m:")
51 disp(L6,"L6 in m:")
52 disp(L7,"L7 in m:")
53 disp(L8,"L8 in m:")
54 disp(L9,"L9 in m:")
55 disp(L10,"L10 in m:")
56 disp(L11, "L11 in m:")
57
58 disp("elements spacing relation:")
59 disp(S1, "S1 in m:")
60 disp(S2, "S2 in m:")
61 disp(S3, "S3 in m:")
62 disp(S4, "S4 in m:")
63 disp(S5, "S5 in m:")
64 disp(S6, "S6 in m:")
65 disp(S7, "S7 in m:")
66 disp(S8, "S8 in m:")
67 disp(S9, "S9 in m:")
68 disp(S10, "S10 in m:")
69 disp(S11, "S11 in m:")
```

Scilab code Exa 6.9 induced voltage in a loop antenna

```
1 //Exa 6.9
2 clc;
3 clear;
4 close;
5 // given :
6 E_rms=10 // electric field in mV/m
7 E_rms=10*10^-3 // electric field in V/m
8 f=2 // frequency in MHz
9 f=2*10^6 // frequency in Hz
10 N=10 // number of turns
11 phi=0 // angle between the plane of loop and
```

```
direction of incident wave in Degrees

12 S=1.4 // area of loop antenna in m^2

13 c=3*10^8 // speed of light in m/s

14 lambda=c/f // wavelength in m

15 E_max=sqrt(2)*E_rms // electric field in V/m

16 V_rms=(2*%pi*E_max*S*N/lambda)*cosd(phi) // induced voltage

17 disp(V_rms*1000, "induced voltage in mV:")
```

Scilab code Exa 6.10 radiation resistance of a loop antenna

```
1 //Exa6.10
2 clc;
3 clear;
4 close;
5 //given :
6 D=0.5 // diameter of loop antenna in m
7 a=D/2 // radius of loop antenna in m
8 f=1 // frequency in MHz
9 f=1*10^6 // frequency in Hz
10 c=3*10^8 // speed of light in m/s
11 lambda=c/f // wavelength in m
12 Rr=3720*(a/lambda) // radiation resistance of loop antenna in ohm
13 disp(Rr, "radiation resistance of loop antenna in ohm
:")
```

Scilab code Exa 6.11 Directivity of a loop antenna

```
1 //Exa 6.11
2 clc;
3 clear;
4 close;
```

```
5 //given :
6 a=0.5 // radius of loop antenna in m
7 f=0.9 // frequency in MHz
8 f=0.9*10^6 // frequency in Hz
9 c=3*10^8 // speed of light in m/s
10 lambda=c/f // wavelength in m
11 k=(2*%pi*a)/lambda // constant
12 disp("the value of k is:")
13 disp(k)
14 disp("since, k<1/3")
15 disp("So Directivity of loop antenna is D=1.5")</pre>
```

Scilab code Exa 6.13 Directivity and radiation resistance of a loop antenna

```
1 //Exa 6.13
2 clc;
3 clear;
4 close;
5 Lm=poly(0, 'Lm') // defining Lm as lambda
6 d=1.5*Lm // diameter of antenna in m
7 a=d/2 // radius of antenna in m
8 // \text{ formula} : Rr = 3720 * (a/Lm)
9 Rr=3720*(a/Lm) // radiation resistance of loop
      antenna in ohm
10 Rr=horner(Rr,1)
11 // formula : D=4.25*(a/Lm)
12 D=4.25*(a/Lm)// Directivity of the loop antenna
13 D = horner(D, 1)
14 disp(Rr, "radiation resistance of the loop antenna in
      ohm:")
15 disp(D, "Directivity of the loop antenna:")
```

Scilab code Exa 6.14 array length number of elements and null to null beam width

```
1 / Exa 6.14
2 clc;
3 clear;
4 close;
5 //given:
6 Gp=28 // power gain
7 Lm=poly(0, 'Lm') // defining Lm as lambda
8 d=Lm/2 // length of dipole
9 //formula : Gp=4*(L/lambda)
10 L=Gp*Lm/4 // array length
11 disp(L, "array length (where Lm is wavelength in m):")
12 N=7*2 // Number of elements in the array when spaced
       at lambda/2
13 disp(N," Number of elements in the array when spaced
     at lambda / 2:")
14 // formula : B.W=2*sqrt ((2*/N)*(lambda/d))
15 BW=2*sqrt(horner((2*Lm/(N*d)),1)) // null-to-null
     beam width in radians
16 BW_d=BW*180/%pi // null-to-null beam width in
      degrees
  disp(BW_d, "null-to-null beam width in degrees:")
17
18
19
20
  // Answer of null-to-null beam width in degrees is
21
     rounded-off in book.
```

Scilab code Exa 6.15 null to null and half power beam width and directivity

```
1 //Exa 6.15
2 clc;
```

```
3 clear;
4 close;
5 // given :
6 S=0.05 // spacing in m
7 Dh=0.1 // diameter of helical antenna in m
8 N=20 // number of turns
9 f=1000 // frequency in MHz
10 f=1000*10^6 // frequency in MHz
11 c=3*10^8 // speed of light in m/s
12 lambda=c/f // wavelength in m
13 C=%pi*Dh // circumfrence of helix in m
14 La=N*S // axial legth in m
15 phi_not = (115*(lambda^(3/2))/(C*sqrt(La))) // B.W.F.N
     ., null-to-null beamwidth of main beam in
     Degreess
16 phi = (52*lambda^(3/2)/(C*sqrt(La))) // H.P.B.W, half
     power beamwidth in Degreess
17 D=(15*N*C^2*S/(lambda)^3) // Directivity
18 disp(phi_not,"B.W.F.N., null-to-null beamwidth of
     main beam in Degrees:")
19 disp(phi,"H.P.B.W, half power beamwidth in Degrees:"
20 disp(D, "Directivity:")
```

Chapter 7

MICROWAVE ANTENNAS

Scilab code Exa 7.1 null to null and half power beam width of a paraboloid reflector

```
1 // \text{Exa} 7.1
2 clc;
3 clear;
4 close;
5 // given :
6 D=2 // Diameter of paraboloid reflector in m
7 c=3*10^8 // speed of light in m/s
8 f=5 // frequency in GHz
9 f=5*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 BWFN=140*(lambda/D) // null-to-null beamwidth in
     degrees
12 HPBW=70*(lambda/D) // half power beamwidth in
     degrees
13 disp(BWFN, "null-to-null beamwidth in degrees:")
14 disp(HPBW, "half power beamwidth in degrees:")
```

Scilab code Exa 7.2 gain of the paraboloid reflector antenna

```
1 //Exa 7.2
2 clc;
3 clear;
4 close;
5 // given :
6 D=2 // mouth diameter of paraboloid reflector in m
7 c=3*10^8 // speed of light in m/s
8 f=5 // frequency in GHz
9 f=5*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 G=6.4*(D/lambda)^2 // power gain of paraboloid
12 G_p=10*log10(G) //power gain in dB
13 disp(G_p, "power gain in dB:")
```

Scilab code Exa 7.3 band width between first null and half power points

```
1 / Exa 7.3
2 clc;
3 clear;
4 close;
5 // given :
6 D_a=0.15 // mouth Diameter of paraboloid in m
7 c=3*10^8 // speed of light in m/s
8 f=10 // frequency in GHz
9 f=10*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 BWFN=140*(lambda/D_a) // null-to-null beamwidth in
     degrees
12 HPBW=70*(lambda/D_a) // half power beamwidth in
     degrees
13 disp(BWFN, "null-to-null beamwidth in degrees:")
14 disp(HPBW," half power beamwidth in degrees:")
15 G_p=6.4*(D_a/lambda)^2 // power gain of paraboloid
16 G_p=10*log10(G_p) // power gain in dB
17 disp(G_p, "power gain in dB")
```

Scilab code Exa 7.4 Power gain in Decibels

```
1 //Exa 7.4
2 clc;
3 clear;
4 close;
5 // given :
6 D_a=1.8 //mouth diameter of paraboloid reflector in m
7 c=3*10^8 // speed of light in m/s
8 f=2 // frequency in GHz
9 f=2*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 G_p=6.4*(D_a/lambda)^2 // power gain of paraboloid
12 G_p=10*log10(G_p) // power gain in dB
13 disp(G_p, "power gain in dB")
```

Scilab code Exa 7.5 mouth diameter HPBW and power gain

```
1 //Exa 7.5
2 clc;
3 clear;
4 close;
5 // given :
6 c=3*10^8 // speed of light in m/s
7 f=5 // frequency in GHz
8 f=5*10^9 // frequency in Hz
9 lambda=c/f // wavelength in m
10 BWFN=10 // null-to-null beamwidth in degrees
11 // formula: BWFN=140*(lambda/D_a)
12 D_a=140*lambda/BWFN // mouth Diameter of paraboloid reflector in m
```

Scilab code Exa 7.6 beam width directivity and capoture area

```
1 / Exa 7.6
2 clc;
3 clear;
4 close;
5 // given :
6 b=0.65 // illumination efficiency
7 D_a=6 // mouth diameter of paraboloid reflector in m
8 c=3*10^8 // speed of light in m/s
9 f=10 // frequency in GHz
10 f=10*10^9 // frequency in Hz
11 lambda=c/f // wavelength in m
12 A=\%pi*(D_a)^2/4 // Actual area in m^2
13 A_c=0.65*A // capture area in m<sup>2</sup>
14 D=6.4*(D_a/lambda)^2 // directivity
15 D=10*log10(D) // directivity in dB
16 phi=70*(lambda/D_a) // half power beam width in
     degrees
17 phi_not=2*phi // null-to-null main beam width in
      degrees
18 disp(D, "directivity in dB:")
19 disp(phi, "half power beam width in degrees:")
20 disp(phi_not,"null-to-null main beam width in
      degrees:")
21 disp(A_c, "capture area in m^2:")
```

Scilab code Exa 7.7 minimum distance required between two antennas

```
1 //Exa 7.7
2 clc;
3 clear;
4 close;
5 // given :
6 D_a=6 // Diameter of paraboloid reflector in m
7 c=3*10^8 // speed of light in m/s
8 f=4 // frequency in GHz
9 f=4*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 r=2*D_a^2/lambda // required minimum distance between two antennae in m
12 disp(r,"required minimum distance between two antennae in m:")
```

Scilab code Exa 7.8 mouth diameter and beam width

```
1 //Exa 7.8
2 clc;
3 clear;
4 close;
5 // given :
6 G_p=1000 // gain
7 c=3*10^8 // speed of light in m/s
8 f=3 // frequency in GHz
9 f=3*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 // formula : G_p=6.4*(D_a/lambda)^2 // power gain
12 D_a=lambda*(sqrt(G_p/6.4)) // mouth Diameter of paraboloid in m
```

```
13 BWFN=140*(lambda/D_a) // null-to-null beamwidth in
         degrees
14 HPBW=70*(lambda/D_a) // half power beamwidth in
         degrees
15 disp(D_a,"mouth Diameter of paraboloid in m")
16 disp(BWFN,"null-to-null beamwidth in degrees:")
17 disp(HPBW,"half power beamwidth in degrees:")
```

Scilab code Exa 7.9 capture area and beam width of paraboloid antenna

```
1 / Exa 7.9
2 clc;
3 clear;
4 close;
5 // given :
6 c=3*10^8 // speed of light in m/s
7 f=10 // frequency in GHz
8 f=10*10^9 // frequency in Hz
9 lambda=c/f // wavelength in m
10 G_p=75 // power gain in dB
11 // formula : G_p=10*log10(G_p) // power gain in dB
12 G=10^{(G_p/10)} // simple power gain
13 // formula : G=6.4*(D_a/lambda)^2 // power gain
14 D_a=lambda*(sqrt(G/6.4)) // mouth Diameter of
      paraboloid in m
15 A=\%pi*(D_a)^2/4 // Actual area in m^2
16 A_c=0.65*A // capture area in m<sup>2</sup>
17 BWFN=140*(lambda/D_a) // null-to-null beamwidth in
      degrees
18 HPBW=70*(lambda/D_a) // half power beamwidth in
      degrees
19 disp(BWFN, "null-to-null beamwidth in degrees:")
20 disp(HPBW, "half power beamwidth in degrees:")
21 disp(A_c, "capture area in m^2:")
22
```

```
23
24
25 //note : answer of A_c in book is 2269.83 m^2 but
in scilab 2270.20 m^2
```

Scilab code Exa 7.10 HPBW BWFN and power gain

```
1 / \text{Exa} 7.10
2 clc;
3 clear;
4 close;
5 // given :
6 D_a=60 // mouth diameter of paraboloid reflector in
7 c=3*10^8 // speed of light in m/s
8 f=2 // frequency in GHz
9 f=2*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 phi=70*(lambda/D_a) // half power beam width in
     degrees
12 phi_not=140*(lambda/D_a) // null-to-null main beam
     width in degrees
13 disp(phi," half power beam width in degrees:")
14 disp(phi_not,"null-to-null main beam width in
     degrees:")
15 G_p=6.4*(D_a/lambda)^2 // power gain of paraboloid
16 G_p=10*log10(G_p) //power gain in dB
17 disp(G_p, "power gain in dB:")
```

Scilab code Exa 7.11 power gain

```
1 //Exa 7.11
2 clc;
```

```
3 clear;
4 close;
5 // given :
6 D=22 // mouth diameter of paraboloid reflector in m
7 c=3*10^8 // speed of light in m/s
8 f=5 // frequency in GHz
9 f=5*10^9 // frequency in Hz
10 lambda=c/f // wavelength in m
11 b=0.6 // illumination efficiency
12 G_p=b*(D/lambda)^2 // power gain of paraboloid
13 G_p=10*log10(G_p) //power gain in dB
14 disp(G_p, "power gain in dB:")
```

Scilab code Exa 7.12 mouth diameter and capture area of a paraboloid antenna

```
1 / \text{Exa} 7.12
2 clc;
3 clear;
4 close;
5 // given :
6 c=3*10^8 // speed of light in m/s
7 f=2 // frequency in GHz
8 f=2*10^9 // frequency in Hz
9 lambda=c/f // wavelength in m
10 BWFN=12 // null-to-null main beam width in degrees
11 // formula : BWFN=140*(lambda/D_a)
12 D_a=140*lambda/BWFN // mouth diameter of paraboloid
      reflector in m
13 A=\%pi*(D_a)^2/4 // Actual area in m<sup>2</sup>
14 A_c=0.65*A // capture area in m<sup>2</sup>
15 disp(D_a,"mouth diameter of paraboloid reflector in
     m:")
16 disp(A_c, "capture area in m^2:")
```

Scilab code Exa 7.13 mouth diameter and power gain of paraboloid reflector antenna

```
1 // \text{Exa} 7.13
2 clc;
3 clear;
4 close;
5 // given :
6 c=3*10^8 // speed of light in m/s
7 f=2.5 // frequency in GHz
8 f=2.5*10^9 // frequency in Hz
9 lambda=c/f // wavelength in m
10 BWFN=3 // null-to-null main beam width in degrees
  // formula : BWFN=140*(lambda/D_a)
12 D_a=140*lambda/BWFN // mouth diameter of paraboloid
      reflector in m
13 G=6.4*(D_a/lambda)^2 // power gain of paraboloid
14 G_p=10*log10(G) //power gain in dB
15 disp(G_p, "power gain in dB:")
16 disp(D_a, "mouth diameter of paraboloid reflector in
     m:")
```

Scilab code Exa 7.14 null to null beam width and power gain of paraboloid reflector antenna

```
1 // Exa7.14
2 clc;
3 clear;
4 close;
5 // given :
6 phi=5 // HPBW, half power beam width in Degrees
```

```
7 phi_not=2*phi // BWFN, null-to-null beam width in
         degrees
8 Lm=poly(0, 'Lm') // defining Lm as lambda
9 // formula : phi=70*(Lm/D_a) // where Lm is
          wavelength in m and D_a is mouth diameter in m
10 D_a=(70*Lm)/phi
11 G_p=6.4*(D_a/Lm)^2
12 G_p=horner(G_p,1)
13 G_p=10*log10(G_p) // power gain in dB
14 disp(phi_not, "BWFN, null-to-null beam width in
          degrees:")
15 disp(G_p, "power gain in dB:")
```

Scilab code Exa 7.15 Power gain of a paraboloid reflector antenna

```
1 // Exa 7.15
2 clc;
3 clear;
4 close;
5 Lm=poly(0, 'Lm')// defining Lm as lambda
6 D_a=8*Lm // where D_a is mouth diameter in m and Lm
    is wavelength in m
7 // formula : G_p=6.4*(D/lambda)^2
8 G_p=6.4*(D_a/Lm)^2 //power gain
9 G_p=horner(G_p,1)
10 G_p=10*log10(G_p) // power gain in dB
11 disp(G_p, "power gain in dB:")
```

Scilab code Exa 7.16 null to null and half power beam width and directivity

```
1 //Exa 7.16
2 clc;
```

```
clear;
close;
Lm=poly(0,'Lm') // defining Lm as lambda
D_a=6*Lm // where D_a is mouth diameter in m and Lm
    is wavelength
// formula : HPBW=phi=70*(lambda/D_a)
phi=70*(Lm/D_a) // half power beam width in degrees
phi=horner(phi,1)
phi_not=2*phi // null-to-null beam width in degrees
// formula : D=6.4*(D_a/lambda)^2
D=6.4*(D_a/Lm)^2
D=horner(D,1)
disp(D," Directivity:")
disp(phi," half power beam width in degrees:")
disp(phi_not," null-to-null beam width in degrees:")
```

Scilab code Exa 7.17 beam width power gain and directivity

```
1 // \text{Exa} 7.17
2 clc;
3 clear;
4 close;
5 // given :
6 f=6 // frequency in GHz
7 f=6*10^9 // frequency in Hz
8 c=3*10^8 // speed of light in m/s
9 lambda=c/f // wavelength in m
10 d=12 // aperture length in cm
11 d=12*10^-2 // aperture length in m
12 w=6 // aperture width in cm
13 w=6*10^-2 // aperture width in m
14 phi_E=56*(lambda/d) // half power beam width for
     aperture length d in Degrees
15 phi_H=67*(lambda/w) // half power beam width for
     aperture width w in Degrees
```

```
16 G_p=(4.5*w*d)/(lambda)^2 // power gain
17 G_p=10*log10(G_p) // power gain in dB
18 D=(7.5*w*d)/(lambda)^2 // Directivity
19 disp(phi_E,"half power beam width for aperture length d in Degrees:")
20 disp(phi_H,"half power beam width for aperture width w in Degrees:")
21 disp(G_p,"power gain in dB:")
22 disp(D,"Directivity:")
```

Scilab code Exa 7.18 power gain of a square horn antenna

Scilab code Exa 7.19 power gain and directivity of a horn antenna

```
1 //Exa 7.19
2 clc;
3 clear;
4 close;
5 // given :
```

```
f=6 // frequency in GHz
f=6*10^9 // frequency in Hz
c=3*10^8 // speed of light in m/s
lambda=c/f // wavelength in m
lambda=c/f // wavelength in cm
d=10 // aperture length in cm
lambda=c/f // aperture length in m
lambda=c/
```

Scilab code Exa 7.20 complementary slot impedances

```
1 / \text{Exa} 7.20
2 clc;
3 clear;
4 close;
5 // given :
6 eta_0=377 //intrinsic impedance in ohm
7 disp("when Zd=73+\%i*42.5")
8 Zd=73+%i*42.5 // dipole impedance
9 // formula : zs*zd=(eta_0)^2/4
10 Zs=eta_0^2/(4*Zd) // slot impedance in ohm
11 disp(Zs, "complementary slot impedance in ohm:")
12
13 disp("when Zd=67+\%i*0")
14 Zd=67+%i*0 // dipole impedance
15 // formula : zs*zd=(eta_0)^2/4
16 Zs=eta_0^2/(4*Zd) // slot impedance in ohm
17 disp(Zs, "complementary slot impedance in ohm:")
18
```

```
19 disp("when Zd=710+\%i*0")
20 Zd=710+%i*0 // dipole impedance
21 // formula : zs*zd=(eta_0)^2/4
22 Zs=eta_0^2/(4*Zd) // slot impedance in ohm
23 disp(Zs, "complementary slot impedance in ohm:")
24
25
26 disp("when Zd=500+\%i*0")
27 Zd=500+%i*0 // dipole impedance
28 // \text{ formula } : zs*zd = (eta_0)^2/4
29 Zs=eta_0^2/(4*Zd) // slot impedance in ohm
30 disp(Zs, "complementary slot impedance in ohm:")
31
32
33 disp("when Zd=50+\%i*20")
34 Zd=50+%i*20 // dipole impedance
35 // formula : zs*zd=(eta_0)^2/4
36 Zs=eta_0^2/(4*Zd) // slot impedance in ohm
37 disp(Zs, "complementary slot impedance in ohm:")
38
39
40 disp("when Zd=50-\%i*25")
41 Zd=50-%i*25 // dipole impedance
42 // formula : zs*zd=(eta_0)^2/4
43 Zs=eta_0^2/(4*Zd) // slot impedance in ohm
44 disp(Zs, "complementary slot impedance in ohm:")
45
46
47 disp("when Zd=300+\%i*0")
48 Zd=300+%i*0 // dipole impedance
49 // formula : zs*zd=(eta_0)^2/4
50 Zs=eta_0^2/(4*Zd) // slot impedance in ohm
51 disp(Zs, "complementary slot impedance in ohm:")
```

Chapter 9

WAVE PROPAGATION

Scilab code Exa 9.1 Required transmitter power

```
1 //Exa 9.1
2 clc;
3 clear;
4 close;
5 // given :
6 f=1.7 //frequency in MHz
7 f=1.7*10^6 //frequency in Hz
8 E=0.5 //electric field in mV/m
9 E=0.5*10^(-3) // electric field in V/m
10 sigma=5*10^-5 // conductivity in mho/cm
11 eta=0.5 // efficiency
12 epsilon_r=10 //relative permittivity
13 c=3*10^8 // speed of light in m/s
14 lambda=c/f //wavelength in m
15 d=10 // distance in km
16 d=10*10^3 // distance in m
17 Df=1.8*10^12*(sigma/f) // dissipation factor
18 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
19 p=(%pi/Df)*(d/lambda)*cosd(b) // numerical distance
20 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
```

```
((-5*p)/8))) // factor of the ground losses

// formula: E=(A*E_not)/d

// E_not=300*sqrt(P_kW) // E_not is in mV/m

// E_not=300*sqrt(P_kW)*10^(-3) // E_not is in V/m

// E_not=300*sqrt(P_kW)*10^-3) // Power in kW and d is in km

// formula : P=Ptx*eta

// formula : P=Ptx*eta

// formula : P=Ptx*eta

// transmitter power required in kW

// disp(Ptx*1000, "transmitter power required in W:")

// note: answer in the book is wrong.scilab give Ptx

=11.48W whereas answer in the book is Ptx=12.6W
```

Scilab code Exa 9.2 field strength of the ground wave

```
1 / Exa 9.2
2 clc;
3 clear;
4 close;
5 // given :
6 disp("for frequency=500kHz")
7 f1=500*10^3 //frequency in Hz
8 c=3*10^8 //speed of light in m/s
9 lambda1=c/f1 // wavelength in m
10 d=100 // distance in km
11 d=100*10^3 // distance in m
12 Pt=100 // transmitter power in kW
13 eta=50 // efficiency in percentage
14 eta=0.5 // efficiency
15 P_kW=Pt*eta // radiated power in kW
16 E_not=300*1.28*sqrt(P_kW) // field strength in mV/m
     without ground losses at 1km
17
18
   // for sea water earth
```

```
19 epsilon_r=81 // permittivity
20 sigma=45*10^-3 // conductivity in mho/cm
21 Df=1.8*10^12*(sigma/f1) // dissipation factor
22 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
23 p=(%pi/Df)*(d/lambda1)*cosd(b) // numerical distance
A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
25 E1=(A*E_not)/(d) // in V/m
26 disp(E1*1000," electric field strength for sea water
      earth in mV/m when f=500kHz:")
27
28 // for good soil
29 epsilon_r=20 // permittivity
30 sigma=10^-4 // conductivity in mho/cm
31 Df=1.8*10^12*(sigma/f1) // dissipation factor
32 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
33 p=(%pi/Df)*(d/lambda1)*cosd(b) // numerical distance
34 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
35 E2=(A*E_not)/(d) // in V/m
36 disp(E2*1000, "electric field strength for good soil
      in mV/m when f=500kHz:")
37
38 // for poor soil
39 epsilon_r=10 // permittivity
40 sigma=0.2*10^-4 // conductivity in mho/cm
41 Df=1.8*10^12*(sigma/f1) // dissipation factor
42 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
43 p=(%pi/Df)*(d/lambda1)*cosd(b) // numerical distance
A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
45 E3=(A*E_not)/(d) // in V/m
46 disp(E3*1000," electric field strength for poor soil
      in mV/m when f=500kHz:")
47
```

```
48 // for cities, industrial areas
49 epsilon_r=5 // permittivity
50 sigma=10^-5 // conductivity in mho/cm
51 Df=1.8*10^12*(sigma/f1) // dissipation factor
52 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
53 p=(%pi/Df)*(d/lambda1)*cosd(b) // numerical distance
54 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
55 E4=(A*E_not)/(d) // in V/m
56 disp(E4*1000, "electric field strength for cities,
      industrial areas in mV/m when f=500kHz:")
57
58 // for Rockey soil, flat sandy
59 epsilon_r=10 // permittivity
60 sigma=2*10^-3 // conductivity in mho/cm
61 Df=1.8*10^12*(sigma/f1) // dissipation factor
62 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
63 p=(%pi/Df)*(d/lambda1)*cosd(b) // numerical distance
64 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
65 E5=(A*E_not)/(d) // in V/m
66 disp(E5*1000," electric field strength for Rockey
      soil, flat sandy in mV/m when f=500kHz:")
67
68 // for medium hills, forestation
69 epsilon_r=13 // permittivity
70 sigma=5*10^-5 // conductivity in mho/cm
71 Df=1.8*10^12*(sigma/f1) // dissipation factor
72 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
73 p=(%pi/Df)*(d/lambda1)*cosd(b) // numerical distance
74 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
     ((-5*p)/8))) // factor of the ground losses
75 E6=(A*E_not)/(d) // in V/m
76 disp(E6*1000, "electric field strength for medium
      hills, forestation in mV/m when f=500kHz:")
```

```
77
78
79
80 disp("for frequency=1500 \text{kHz}")
81
82 	ext{ f2=1500 } // 	ext{ in } 	ext{kHz}
83 f2=1500*10^{(3)} // in Hz
84 lambda2=c/f2 // in m
85 // for sea water earth
86 epsilon_r=81 // permittivity
87 sigma=45*10^-3 // conductivity in mho/cm
88 Df=1.8*10^12*(sigma/f2) // dissipation factor
89 b=atand((epsilon_r+1)/Df) // phase constant in
       degrees
90 p=(%pi/Df)*(d/lambda2)*cosd(b) // numerical distance
91 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
       ((-5*p)/8))) // factor of the ground losses
92 E1=(A*E_not)/(d) // in V/m
93 disp(E1*1000," electric field strength for sea water
       earth in mV/m when f=1500kHz:")
94
95 // for good soil
96 epsilon_r=20 // permittivity
97 sigma=10^-4 // conductivity in mho/cm
98 Df=1.8*10^12*(sigma/f2) // dissipation factor
99 b=atand((epsilon_r+1)/Df) // phase constant in
       degrees
100 p=(%pi/Df)*(d/lambda2)*cosd(b) // numerical distance
101 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
       ((-5*p)/8))) // factor of the ground losses
102 E2=(A*E_not)/(d) // in V/m
103 disp(E2*1000," electric field strength for good soil
      in mV/m when f=1500kHz:")
104
105 // for poor soil
106 epsilon_r=10 // permittivity
107 sigma=0.2*10^-4 // conductivity in mho/cm
108 Df=1.8*10^12*(sigma/f2) // dissipation factor
```

```
109 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
110 p=(%pi/Df)*(d/lambda2)*cosd(b) // numerical distance
111 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
112 E3=(A*E_not)/(d) // in V/m
113 disp(E3*1000," electric field strength for poor soil
      in mV/m when f=1500kHz:")
114
115 // for cities, industrial areas
116 epsilon_r=5 // permittivity
117 sigma=10^-5 // conductivity in mho/cm
118 Df=1.8*10^12*(sigma/f2) // dissipation factor
119 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
120 p=(%pi/Df)*(d/lambda2)*cosd(b) // numerical distance
121 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
122 E4=(A*E_not)/(d) // in V/m
123 disp(E4*1000, "electric field strength for cities,
      industrial areas in mV/m when f=1500kHz:")
124
125 // for Rockey soil, flat sandy
126 epsilon_r=10 // permittivity
127 sigma=2*10^-3 // conductivity in mho/cm
128 Df=1.8*10^12*(sigma/f2) // dissipation factor
129 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
130 p=(%pi/Df)*(d/lambda2)*cosd(b) // numerical distance
131 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
132 E5=(A*E_not)/(d) // in V/m
133 disp(E5*1000," electric field strength for Rockey
      soil, flat sandy in mV/m when f=1500kHz:")
134
135 // for medium hills, forestation
136 epsilon_r=13 // permittivity
137 sigma=5*10^-5 // conductivity in mho/cm
```

```
138 Df=1.8*10^12*(sigma/f2) // dissipation factor
139 b=atand((epsilon_r+1)/Df) // phase constant in
      degrees
140 p=(%pi/Df)*(d/lambda2)*cosd(b) // numerical distance
141 A = ((2+0.3*p)/(2+p+0.6*p^2)) - (sind(b)*(sqrt(p/2)*exp)
      ((-5*p)/8))) // factor of the ground losses
142 E6=(A*E_not)/(d) // in V/m
143 disp(E6*1000, "electric field strength for medium
      hills, forestation in mV/m when f=1500kHz:")
144
145
146
147 // note1 : misprint value of sigma in part (e) when
      f=500khz correct is sigma=2*10^-3 for rockey soil
148 //note 2: The ans is rounded off at the F = 1500
      kHz in poor soil and Cities, industrial area.
```

Scilab code Exa 9.3 maximum range of tropospheric transmission

```
1 //Exa9.3
2 clc;
3 clear;
4 close;
5 //given :
6 Ht=100 // height of transmittin antenna in feet
7 Hr=50 // height of receiving antenna in feet
8 Dmax=sqrt(2*Ht)+sqrt(2*Hr) // in miles
9 disp(Dmax, "maximum range of tropospheric transmission in miles:")
```

Scilab code Exa 9.4 Radio horizon distance

```
1 / Exa 9.4
```

```
2 clc;
3 clear;
4 close;
5 //given :
6 Ht=80 // height of transmitting antenna in meter
7 d=sqrt(17*Ht) // radio horizon distance of transmitting antenna
8 disp(d,"radio horizon distance of transmitting antenna in Km")
```

Scilab code Exa 9.5 maximum distance covered by the space wave

```
1 //Exa 9.5
2 clc;
3 clear;
4 close;
5 //given :
6 Ht=80 // height of transmitting antenna in meter
7 Hr=50 // height of receiving antenna in meter
8 Dmax=sqrt(17*Ht)+sqrt(17*Hr) // in Km
9 disp(Dmax, "maximum range of tropospheric transmission in Km:")
```

Scilab code Exa 9.6 Required height of receiving antenna

```
1 //Exa 9.6
2 clc;
3 clear;
4 close;
5 //given :
6 Dmax=80 //distance in Km
7 Ht=100 // height of transmitting antenna in meter
8 // formula : Dmax=sqrt(17*Ht)+sqrt(17*Hr)
```

```
9 Hr=(Dmax-(sqrt(17*Ht)))^2/17 // height of receiving antenna in m
10 disp(Hr, "height of receiving antenna in m")
```

Scilab code Exa 9.7 Radio horizon distance for transmitting and receiving antenna and maximum range

```
1 / \text{Exa} 9.7
2 clc;
3 clear;
4 close;
5 // given ;
6 Ht=300 // height of antenna in feet
7 Hr=100 // height of receiving antenna in feet
8 dt=sqrt(2*Ht) // radio horizon distance for a
      transmitting antenna in miles
9 dr=sqrt(2*Hr) // radio horizon distance for a
      transmitting antenna in miles
10 dmax=dt+dr // maximum range of space wave
     propagation in miles
11 disp(dt, "radio horizon distance for a transmitting
     antenna in miles:")
12 disp(dr, "radio horizon distance for a receiving
     antenna in miles:")
13 disp(dmax, "maximum range of space wave propagation
     in miles:")
```

Scilab code Exa 9.8 range of the space wave

```
1 //Exa 9.8
2 clc;
3 clear;
4 close;
```

```
5 // given :
6 f = 60 // in MHz
7 f=60*10^6 // in Hertz
8 c=3*10^8 // speed of light in m/s
9 lambda=c/f // wavelength in meter
10 Ptx=1 // transmitting power in kilo watt
11 ht=50 // height of transmiting antenna in meter
12 hr=5 // height of receiving antenna in meter
13 E=80 // electric field in micro V/m
14 E=80*10^{(-6)} // electric field in V/m
15 E0=3*137.6*sqrt(Ptx)*(8/5)*10^3 // field in mV/m at
     1 meter where Ptx is in kW
16 E0=3*137.6*sqrt(Ptx)*(8/5)*10^3*10^(-3) // field in
     V/m at 1 meter where Ptx is in kW
17 // formula : E=(4*(\%pi)*ht*hr*E0)/(lambda*d^2)
18 d=sqrt((4*\%pi*ht*hr*E0)/(lambda*E)) // range of
     space wave in meter
19 disp(d/1000, "range of space wave in Km:")
```

Scilab code Exa 9.9 maximum wavelength at which propagation is possible

```
1 //Exa 9.9
2 clc;
3 clear;
4 close;
5 //given :
6 hd=30 // height of duct in m
7 delta_M=30 // unitless
8 LAMBDA_max=2.5*hd*sqrt(delta_M*10^-6) // maximum wavelength at which duct propagation is possible
9 disp(LAMBDA_max, "maximum wavelength at which duct propagation is possible in m:")
```

Scilab code Exa 9.10 Electron density of the layer

```
1 //Exa 9.10
2 clc;
3 clear;
4 close;
5 // given :
6 fc=1.5 // critical frequency in MHz
7 fc=1.5*10^(6) // critical frequency in Hz
8 // formula : fc=9*sqrt(Nmax)
9 Nmax=(fc)^2/81 // electron density in electrons/m^3
10 disp(Nmax, "electron density in electrons/m^3")
```

Scilab code Exa 9.11 range if the frequency is MUF itself

```
1 // Exa 9.11
2 clc;
3 clear;
4 close;
5 // given :
6 n=0.92 // refrective index
7 MUF=10 // maximum usable frequency in MHz
8 MUF=10*10^6 // maximum usable frequency in Hz
9 f=10*10^6 // in Hz ordinary frequency and maximum
      usable frequency are same
10 h=400 // height of ray reflection point on the
      ionospheric layer in Km
11 h=400*10^3 // height of ray reflection point on the
      ionospheric layer in m
12 // formula : n = sqrt(1 - (81*Nmax/f^2))
13 \operatorname{Nmax}=(1-n^2)*f^2/81 // electron density in electrons
      /\mathrm{m}^3
```

```
14 fc=9*sqrt(Nmax) // critical frequency in Hz
15 // MUF=fc*sec(thetai)
16 //sec(thetai)=MUF/fc
17 // also, sec(thetai)=sqrt(h^2+(d^2/4))/h so on comparing,
18 d=sqrt(((MUF*h/fc)^2-h^2)*4) // range in km
19 disp(d/1000,"Range in Km")
20
21
22 // note :answer in the book is 1876.59 where as in scilab is 1877.94 minute difference only
```

Scilab code Exa 9.12 Relative permittivity of D E F layers

```
1 / Exa 9.12
2 clc;
3 clear;
4 close;
5 // given ;
6 f = 50 // in hz
7 f = 50 * 10^3 // in KHz
8 N1=400 // electron density of D layer in electrons/
      cm^3
9 N2=5*10<sup>5</sup> // electron density of E layer in
      electrons/cm<sup>3</sup>
10 N3=2*10^6 // electron density of F layer in
      electrons/cm<sup>3</sup>
11 // formula : n = sqrt(epsilon_r) = sqrt(1 - (81*N/f^2)) //
     WHERE f IS IN KhZ
12 // for D layer
13 epsilon_r1=1-(81*N1/f^2) // relative permittivity of
       D layer
14 // for E layer
15 epsilon_r2=1-(81*N2/f^2) // relative permittivity of
       E layer
```

Scilab code Exa 9.13 Angle of refraction

```
1 // Exa 9.13
2 clc;
3 clear;
4 close;
5 //given :
6 f=50 // in hz
7 f = 50 * 10^3 // in KHz
8 \text{ theta_i=30} // \text{ in degrees}
9 N=400 // electron density of D layer in electrons/cm
10 // formula : n = sqrt(epsilon_r) = sqrt(1 - (81*N/f^2)) //
     WHERE f IS IN KhZ
11 // for D layer
12 epsilon_r=1-(81*N/f^2) // relative permittivity of D
13 n=sqrt(epsilon_r) // refrective index
14 // formula : nsin(theta_r)=sin(theta_i) // snell 's
15 theta_r=asind(sind(theta_i/n)) // angle of
      refraction in degrees
16 disp(theta_r, "angle of refraction in degrees:")
```

Scilab code Exa 9.14 critical frequency of an electromagnetic wave

```
1 // Exa 9.14
2 clc;
3 clear;
4 close;
5 // given :
6 N1=400 // electron density of D layer in electrons/
     cm^3
7 N2=5*10^5 // electron density of E layer in
      electrons/cm<sup>3</sup>
8 N3=2*10^6 // electron density of F layer in
      electrons/cm<sup>3</sup>
9 // formula : fc = 9 * sqrt(N)
10 fc1=9*sqrt(N1) // critical frequency in Khz of EM
      wave for D layer
11 fc2=9*sqrt(N2) // critical frequency in MHz of EM
      wave for E layer
12 fc3=9*sqrt(N3) // critical frequency in MHz of EM
      wave for F layer
13 disp(fc1, "critical frequency of EM wave for D layer
      in kHz:")
14 disp(fc2/10^3, "critical frequency of EM wave for E
      layer in Mhz:")
15 disp(fc3/10<sup>3</sup>, "critical frequency of EM wave for F
      layer in Mhz:")
16
17
18
19 //note: the value of fc3 in book is equal to 12.8MHz
       but the correct is 12.72MHz.
```

Scilab code Exa 9.15 Critical frequency

```
1 // Exa 9.15
2 clc;
3 clear;
```

```
4 close;
5 // given :
6 Nmax=1.3*10^6 // maximum electron density in
        electrons/cm^3
7 // formula : fc=9*sqrt(Nmax)
8 fc_khz=9*sqrt(Nmax) // critical frequency in Khz
9 disp(fc_khz/1000, "critical frequency in Mhz:")
```

Scilab code Exa 9.16 maximum usable frequency

```
1 / Exa 9.16
2 clc;
3 clear;
4 close;
5 // given :
6 d=2600 // distance between the points in Km
7 d=2600*10^3 // distance between the points in m
8 fc=4 // critical frequency in MHz
9 fc=4*10^6 // critical frequency in Hz
10 h=200 // height of ionospheric layer in km
11 h=200*10^3 // height of ionospheric layer in m
12 MUF=fc*sqrt(1+(d/(2*h))^2) // maximum usable
     frequency (this step is Misprinted in the book)
13 disp(MUF/10<sup>6</sup>, "maximum usable frequency in MHz:")
14
15
16
17
18 //note: Answer in the book is wrong.
```

Scilab code Exa 9.17 frequency of propagating wave for D layer

```
1 // Exa 9.17
```

```
2 clc;
3 clear;
4 close;
5 // given :
6 N=400 // electron density in electrons/cm^3
7 n=0.5 // refrective index
8 // formula : n=sqrt(1-(81*N/f^2))
9 f=sqrt(81*N/(1-n^2)) // frequency in kHz
10 disp(f, "frequency of propagating wave in kHz:")
```

Scilab code Exa 9.18 Range of line of sight

```
1 //Exa 9.18
2 clc;
3 clear;
4 close;
5 //given :
6 Ht=60 // height of transmitting antenna in meter
7 Hr=6 // height of receiving antenna in meter
8 d=sqrt(17*Ht)+sqrt(17*Hr) // in Km
9 disp(d,"range of line of sight in Km:")
```

Scilab code Exa 9.19 Critical angle of propagation for D layer

```
1 //Exa 9.19
2 clc;
3 clear;
4 close;
5 // given :
6 d=500 // distance between transmitter and receiver in km
7 h=70 // height of D layer in km
```

```
8 theta_c=asind(h/(sqrt(h^2+(d^2/4)))) // critical
        angle in degrees
9 disp(theta_c, "critical angle of propagation in
        degrees:")
10
11
12
13 //it can also be calculated from
14 theta_c=atand(2*h/d) // critical angle in degrees
15 disp(theta_c, "critical angle of propagation in
        degrees by method 2:")
```