Homogeneous Spiking Neural P Systems with Structural Plasticity

Ren Tristan A. de la Cruz¹, Francis George C. Cabarle^{1,2}, Ivan Cedric H. Macababayao¹, Henry N. Adorna¹, and Xiangxiang Zeng³

- 1 Algorithms and Complexity Laboratory
 Department of Computer Science
 University of the Philippines Diliman
 Diliman 1101, Quezon City, Philippines
- **2 -** Shenzhen Research Institute of Xiamen University Xiamen University, Shenzhen 518000 Guangdong, China.
- **3 -** School of Information Science and Engineering Hunan University 410082 Changsha, China

20th Conference on Membrane Computing

Curtea de Argeș, Romania 08 August 2019

$$\Pi = (0, \sigma_1, \dots, \sigma_m, syn, out)$$

Neurons: $\sigma_1, \dots, \sigma_m$

$$\Pi = (0, \sigma_1, \dots, \sigma_m, syn, out)$$

Synapses: syn

$$\Pi = (0, \sigma_1, \dots, \sigma_m, syn, out)$$

Spike: a Alphabet: $O = \{a\}$ Multiset of Spikes: a^i

$$\Pi = (0, \sigma_1, \dots, \sigma_m, syn, out)$$

Output Neuron: out

$$\Pi = (0, \sigma_1, ..., \sigma_m, syn, out)$$

Spiking Rule : E / $a^c \rightarrow a$

Plasticity Rule : E / $a^c \rightarrow \alpha k(N)$

N – target neurons

$$\alpha \in \{+, -, \pm, \mp\}$$

- +k add k synapses
- -k delete k synapses
- **±k** add then delete k synapses
- \mp k delete then add k synapses

In neuron 1: E / $a^c \rightarrow +2(\{2,3,4\})$

In neuron 1: E / $a^c \rightarrow +2(\{2,3,4\})$

In neuron 1: E / $a^c \rightarrow -2(\{2,3,4\})$

In neuron 1: E / $a^c \rightarrow -2(\{2,3,4\})$

Plasticity rules as forgetting rules.

Case 1: 1
$$\longrightarrow$$
 2 In neuron 1: E / $a^c \rightarrow +1(\{2\})$

 l_h Halt

Representing Numbers

n
Z + 3n
10ⁿ⁻¹1

Number (in Register)
Spike Count
Spike Train

Z is some constant spike count.

Common Rule Set for All Neurons

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1} (a^3)^+/a^4 \to \lambda$

 l_i ADD(r) l_j l_k

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2} / a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Case 1: Rule 1 is activated.

Case 1: Rule 1 is activated.

Case 1: Rule 1 is activated.

Case 2: Rule 2 is activated.

 $\begin{bmatrix} l_i & ADD(r) & l_j & l_k \end{bmatrix}$

Case 2: Rule 2 is activated.

Case 2: Rule 2 is activated.

Rule 0: $a^{X+1} / a^1 \rightarrow \lambda$

Rule 1: $a^{X+2} / a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 8: $a^{Z+2} (a^3)^+/a^3 \rightarrow a$

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 8: $a^{Z+2} (a^3)^+/a^3 \rightarrow a$

Rule 0: $a^{X+1} / a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 8: $a^{Z+2} (a^3)^+/a^3 \rightarrow a$

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 8: $a^{Z+2} (a^3)^+/a^3 \rightarrow a$

Rule 0: $a^{X+1} / a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 8: $a^{Z+2} (a^3)^+/a^3 \rightarrow a$

Case 2: n = 0

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 8: $a^{Z+2} (a^3)^+/a^3 \rightarrow a$

Case 2: n = 0

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Rule 8: $a^{Z+2} (a^3)^+/a^3 \rightarrow a$

Case 2: n = 0

HALT Module

 l_h HALT

Time: **t + 0**

Rule 0: $a^{X+1} / a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2} / a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

HALT Module

 l_h HALT

Time: **t + 1**

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2} / a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

HALT Module

 l_h HALT

Time: **t + 2**

to

Time: t + n + 1

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2} / a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

OUTPUT Module

Rule 0: $a^{X+1} / a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2} / a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2}/a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Discussion: On why plasticity rules are only used as forgetting rules.

In neuron X:

Rule 1: E / $a^c \rightarrow +2(\{Y,Z\})$

In neuron X':

Rule 1': E / $a^c \to +2(\{Y',Z'\})$

Neuron X' can not reuse Rule 1 of neuron X. Neuron X can not reuse Rule 1' of neuron X'. **Discussion:** On why plasticity rules are only used as forgetting rules.

In neuron X:

Rule 1: E / $a^c \rightarrow -1(\{Q\})$

Rule 1: E / $a^c \rightarrow \lambda$

In neuron X':

Rule 1': E / $a^c \to -1(\{Q\})$

Rule 1': E / $a^c \rightarrow \lambda$

Discussion: On "translating" rules

Rule 0:
$$a^{1} / a^{1} \rightarrow \lambda$$

Rule 1: $a^{2} / a^{2} \rightarrow \lambda$
Rule 2: $a^{2} / a^{2} \rightarrow a$

1 Rule 0: $a^{1} / a^{1} \rightarrow \lambda$
Rule 1: $a^{2} / a^{2} \rightarrow \lambda$
Rule 2: $a^{2} / a^{2} \rightarrow a$

2 Rule 3: $a^{1} / a^{1} \rightarrow a$
Rule 4: $a^{2} / a^{2} \rightarrow \lambda$

2 Rule 3: $a^{X+1} / a^{1} \rightarrow a$
Rule 4: $a^{X+2} / a^{2} \rightarrow \lambda$

X > 2

You can easily create a common set of rules by "translating" different rule sets then combining them and adding the appropriate initial spike counts to the neurons.

Discussion: On "translating" rules

Rule 0: $a^{X+1}/a^1 \rightarrow \lambda$

Rule 1: $a^{X+2}/a^2 \rightarrow \lambda$

Rule 2: $a^{X+2}/a^2 \rightarrow a$

Rule 3: $a^{Y+1}/a^1 \rightarrow \lambda$

Rule 4: $a^{Y+2}/a^2 \rightarrow a$

Rule 5: $a^{Z+1}/a^1 \rightarrow a$

Rule 6: $a^{Z+2} / a^2 \rightarrow \lambda$

Rule 7: $a^{Z+1}(a^3)^+/a^4 \to \lambda$

Discussion: On combining rules

Rule 0: $a^1 / a^1 \rightarrow \lambda$

Rule 1: $a^2 / a^2 \rightarrow \lambda$

Rule 2: $a^3 / a^3 \rightarrow a$

Discussion: On combining rules

Rule 0: $a^1 / a^1 \rightarrow \lambda$

Rule 1: $a^2 / a^2 \rightarrow \lambda$

Rule 2: $a^3 / a^3 \rightarrow a$

End of Presentation. Thank you!

Acknowledgements

R.T.A. de la Cruz and I.C.H. Macababayao are grateful for the Philippine's Department of Science and Technology - Science Education Institute (DOST-SEI)'s support through the Engineering Reasearch and Development for Technology (ERDT)'s graduate scholarship program. F.G.C. Cabarle thanks the support from the DOST-ERDT project; the Dean Ruben A. Garcia PCA AY2018-2019, and an RLC AY2018-2019 grant of the OVCRD, both from UP Diliman. H. Adorna would like to thank supports from DOST-ERDT project since 2009 until present; the Semirara Mining Corp. Professorial Chair Award since 2015 until present. The RLC grant from UPD - OVCRD 2019-2020. The work was supported by the Basic Research Program of Science and Technology of Shenzhen (JCYJ20180306172637807).