

Processamento Paralelo

AULA 3

Modelos de Computação Paralela

Professor: Luiz Augusto Laranjeira luiz.laranjeira@gmail.com

Material originalmente produzido pelo Prof. Jairo Panetta (ITA) e adaptado para a FGA pelo Prof. Laranjeira.

Agenda

- Top 500
- Taxonomia de Flynn
- Modelos de Computação Paralela

Top500

Lista dos 500 computadores mais rápidos do mundo

- métrica: velocidade efetiva na solução de sistema denso de equações lineares em dupla precisão utilizando decomposição LU (HPL - High Performance Linpack) de tamanho escolhido pelo usuário
- <u>classificação</u>: velocidade efetiva medida em flops/s (*floating point operations per second*)
- <u>submissão</u>: usuários interessados executam HPL e enviam resultados (*logo, pode haver máquinas potentes fora da lista*)
- site: http://www.top500.org
- importância: Rara base histórica de dados (duas listas por ano, mantidas desde 1993)

Top500

- Ser número 1 no Top500 é objeto de desejo ("priceless")
 - HPL é um dos programas mais extensamente otimizados, por fabricantes, na história de computação
 - Dificilmente um programa obterá velocidade efetiva maior que a do HPL na mesma máquina
 - Atualmente há consenso que HPL é imperfeito como benchmark, pois não representa a maioria das computações. HPL está sendo substituído por HPCG ("High Performance Conjugate Gradient")

Top 500 June/Nov 2019

Máquina-Local	Cores	V Pico (Tflop/s)	V Linpac (Tflop/s	i divilodiito	Power (kW)
Summit, IBM AC922, USA	2 414 592	200 795	148 600	IBM POWER9 22C 3.07GHz + NVIDIA Volta GV100	10 096
Sierra, IBM S922LC, USA	1 572 480	125 712	119 193	IBM POWER9 22C 1.0 GHz + NVIDIA Volta GV100	7 438
Taihulight, Sunway, China	10 649 600	125 436	93 015	Sunway SW26010 260C 1.45GHz	15 371
Tianhe 2A, NSCC, China	4 981 760	100 679	61 445	Intel Xeon E5-2692v2 12C 2.2GHz	18 482
Frontera, Dell C6420, USA	448 448	38 746	23 516	Intel Xeon Platinum 8280 28C 2.7GHz	3 360

http://www.top500.org

1 Tflop = 1 000 000 000 000 = 10^{12} flops

Top 500 June 2020

Máquina-Local	Cores	V Pico (Tflop/s)	V Linpa (Tflop/	i abiloanto	Power (kW)
Fugaku, R-CCS Kobe, Japan	7 299 072	513 855	415 530	Fujitsu's A64FX 48C ARM (Advanced RISC Machine)	28 335
Summit, IBM AC922, USA	2 414 592	200 795	148 600	IBM POWER9 22C 3.07GHz + NVIDIA Volta GV100	10 096
Sierra, IBM S922LC, USA	1 572 480	125 712	119 193	IBM POWER9 22C 1.0 GHz + NVIDIA Volta GV100	7 438
Taihulight, Sunway, China	10 649 600	125 436	93 015	Sunway SW26010 260C 1.45GHz	15 371
Tianhe 2A, NSCC, China	4 981 760	100 679	61 445	Intel Xeon E5- 2692v2 12C 2.2GHz	18 482

http://www.top500.org

1 Tflop = 1 000 000 000 000 = 10^{12} flops

Países no Top500

Brasil no Top500

Brasil no Top500 Nov 2013

Brasil no Top500 Nov 2014

PETROBRAS #228

PETROBRAS #459

Brasil no Top500 Nov 2015

Top500 Jun 2016

Top500 Jun 2017

Top500 Jun 2018

Top500: Visão Histórica

http://www.top500.org

Projetando Máquina Exaflop

Jack Dongarra, Invited Talk, SIAM 2008 Annual Meeting

Agenda

- Top 500
- Taxonomia de Flynn
- Modelos de Computação Paralela
- Processos e Threads
- Excursão Inicial por OpenMP
- Padrão OpenMP
- Região Paralela e Condição de Corrida

Taxonomia de Flynn

- Múltiplas <u>taxonomias</u> anteriormente propostas. As tentativas anteriores de <u>classificar arquiteturas de computadores</u> <u>paralelos em categorias</u> não capturavam a arquitetura em si
- A taxonomia de Flynn foi universalmente adotada
 - Discutível se suficientemente fina para diferenciar algumas propostas posteriores (ex. data flow)
- O conceito central é classificar arquiteturas pelo número de fluxos (stream) de dados e instruções
 - "Stream in this context simply means a sequence of items (instructions or data) as executed or operated on by a processor"

Michael J. Flynn, "Some Computer Organizations and Their Effectiveness", IEEE Transactions on Computers Vol. C-21, n. 9, Sept 1972

Taxonomia de Flynn

Tipos de Arquiteturas de Computadores Paralelos

- SISD:
 - Single Instruction Stream Single Data Stream
- SIMD:
 - Single Instruction Stream Multiple Data Streams
 - Há múltiplas formas; veremos uma
- MISD:
 - Multiple Instruction Streams Single Data Stream
- MIMD:
 - Multiple Instruction Streams Multiple Data Streams
 - Há múltiplas formas

SISD

Arquiteturas convencionais (sequenciais)

SIMD: Array de Processadores

- Control Unit envia os sinais da mesma instrução para todas as PEs
- Cada PE atua exclusivamente sobre sua memória; PE similar a ALU+FPU

MISD

- Categoria considerada vazia pela comunidade
- Flynn cita antigas calculadoras
 - Talvez IBM 602, onde usuário monta o circuito (a verificar...)

MIMD - Memória Central

Múltiplos processadores endereçando a mesma memória

Sistema Operacional unificado (Single System Image)

MIMD – Memória Distribuída

Cada processador endereça sua própria memória

Múltipos Sistemas Operacionais, tipicamente idênticos

MIMD: Memória Central

Único sistema operacional

MIMD: Memória Distribuída

Múltiplas cópias do mesmo sistema operacional

MIMD: Clusters

Múltiplas cópias do mesmo sistema op. entre nós; Sistema operacional único em cada nó

Sumário: Classificação de Flynn

- SISD
 - CPU sequencial "convencional"
- SIMD
 - Vimos Array de processadores; há outras
- MISD
 - Talvez categoria vazia
- MIMD
 - Memória central
 - Memória distribuída
 - Cluster (memória distribuída entre nós)

Agenda

- Top 500
- Taxonomia de Flynn
- Modelos de Computação Paralela
- Processos e Threads
- Excursão Inicial por OpenMP
- Padrão OpenMP
- Região Paralela e Condição de Corrida

- Onde a computação é realizada (arquitetura do computador):
 - Memória Central
 - Memória Distribuída
- Como a computação é realizada (modelos de computação paralela):
 - Modelo de Troca de Mensagens
 - Modelo Fork-Join
 - Há outros...

Nomenclatura Genérica

- Uma computação paralela é composta por entidades (trechos de programa) que cooperam.
- Utilizaremos tarefa para denominar cada uma dessas entidades.
- Cada modelo de computação utiliza um nome particular para designar a entidade (ex., processo, thread).

Modelo de Troca de Mensagens

- Tarefas cooperam na execução de uma computação
- Cada tarefa tem o seu espaço de endereçamento (memória) invisível a outras tarefas
- Se necessário, tarefas trocam dados por meio de mensagens
 - Memória de uma tarefa é copiada para outra tarefa
 - A troca de mensagens gera sincronismo (portanto, dependência) entre as tarefas

Modelo Fork-Join

- Tarefas cooperam na execução de uma computação
- Todas as tarefas tem o mesmo espaço de endereçamento
 - Memória de uma tarefa é visível (e alterável) por outras tarefas
- Se necessário, tarefas trocam dados lendo e alterando memória "alheia" (comum, na realidade)
 - Potencial conflito de acesso (escrita leitura ou escrita escrita) em uma posição de memória, denominado condição de corrida (race condition)
 - A troca de dados requer sincronismo (portanto, dependência) entre as tarefas
 - Uso de semáforos, mutexes ou condition variables

Arquitetura de Computadores MIMD * Modelos de Computação MIMD

- Tipicamente, Fork-Join é executado em máquinas MIMD de memória central
 - Mesmo espaço de endereçamento
- Troca de Mensagens é executada em máquinas MIMD de memória central ou de memória distribuída
 - Existem implementações triviais de espaços de endereçamento distintos nos dois casos

Modelo Fork-Join de Paralelismo

- Um processo cria outro processo (filho) utilizando fork;
- Pai e filho tem o mesmo espaço de endereçamento;
- Pai aguarda término do filho invocando join;
- Como a criação e a destruição de processos é custosa, este modelo utiliza threads (processos leves) no lugar de processos

Sumário

- Top500 é base de dados relevante ao longo dos anos
- Taxonomia de Flynn organiza arquitetura de computadores paralelos
 - A arquitetura predominante hoje é um cluster de máquinas MIMD
- Os principais modelos de Computação Paralela são fork-join e troca de mensagens
 - Fork-join aplicável à máquinas MIMD de memória central
 - Troca de mensagens aplicável a máquinas MIMD