Week8 Learning Reflection

Name: Xinyu Chang Time: 2022.05.16-05.22

Class: CSE 416 Intro. Machine Learning

Lectures: 15 and 16

Summary

- 1. If never want to make false positive prediction always predict negative ($\alpha = \infty$)

 If never want to make false negative prediction always predict positive ($\alpha = -\infty$)
- 2. Bag of Words
 - a. Pros: very simple to describe and computer
 - b. Cons: Common words like "the" dominate counts of uncommon words, often it's the uncommon words that uniquely define a doc.

3.

Concepts

(Lecture 15) K-Nearest Neighbors

Pre-class material

ROC Curve

• Examine the relationship between True Positive and False Positive.

Want high TPR

Precision

0

 Of the ones, I predicted as positive, how many of them were actually positive?

$$\circ \quad \frac{C_{TP}}{C_{TP} + C_{FP}}$$

• Recall - True Positive Rate

 Of all the things that are truly positive, how many of them did I correctly predict as positive?

$$\circ \quad \frac{C_{TP}}{N_n} = \frac{C_{TP}}{C_{TP} + C_{FN}}$$

Precision-Recall Curve

- o An optimistic model will predict almost everything as positive
 - High recall, low precision
- o A pessimistic model will predict almost everything as negative
 - High precision, low recall.
- For logistic regression, we can control for how optimistic the model is by changing the threshold for positive classification

■ Before:
$$\hat{y_i} = + 1 if \hat{P}(y = + 1|x_i) > 0.5 else \hat{y_i} = -1$$

■ Now:
$$\hat{y}_i = + 1 if \hat{P}(y = + 1|x_i) > t else \hat{y}_i = -1$$

Precision at k

 If you show the top k most likely positive examples, how many of them are true positive.

Class session

- Document retrieval clustering and similarity Unsupervised Learning
 - Big idea: Define an embedding and a similarity metric for the books, and find the "nearest neightbor" to some query book
- Curse of Dimensionality in k-means clustering and k-nearest neighbors
- Nearest Neighbors
 - 1-Nearest Neighbor (1-NN), O(n)
 - input
 - x_q Query example
 - x_1 , ..., x_n Corpus of documents
 - output
 - The document in corpus that is most similar to x_a
 - $x^{NN} = argmin_{x_i \in [x_1, ..., x_n]} distance(x_q, x_i)$
 - pseudo code

```
Input: x_q
x^{NN} = \emptyset
nn\_dist = \infty
for \ x_i \in [x_1, ..., x_n]:
dist = distance(x_q, x_i)
if \ dist < nn\_dist:
x^{NN} = x_i
nn\_dist = dist
Output: x^{NN}
```

k-Nearest Neighbors (k-NN)

output - return k books simialr to x_q

```
Input: x_q
X^{k-NN} = [x_1, ..., x_k]
nn\_dists = [dist(x_1, x_q), dist(x_2, x_q), ..., dist(x_k, x_q)]
for \ x_i \in [x_{k+1}, ..., x_n]:
dist = distance(x_q, x_i)
if \ dist < \max(nn\_dists):
remove \ largest \ dist \ from \ X^{k-NN} \ and \ nn\_dists
add \ x_i \ to \ X^{k-NN} \ and \ distance(x_q, x_i) \ to \ nn\_dists
Output: X^{k-NN}
```

o k-NN in retrieval, regression, and classification

- Retrieval
 - Return X^{K-NN}
- Regression

$$\bullet \quad \hat{y}_i = \frac{1}{k} \sum_{j=1}^k x^{NN_j}$$

Classification

•
$$\hat{y}_{i} = majorityClass(X^{K-NN})$$

• Embeddings

o Bag-of-words

- Each document will become a W dimension vector where W is the number of words in the entire corpus of documents
- The value of x_i[j] will be the number of times word j appears in document i
- This ignores order of words in the document, just the counts.

o TF-IDF

- Goal: Emphasize important words
- TF: Term frequency = word counts
- IDF: Inverse doc frequency = log # docs / 1+ #docs using word
- Words that appear in every document will have a small IDF making the TF-IDF small. – its not useful at all.

• Distance Metrics

Euclidian Distance

■
$$distance(x_i, x_q) = ||x_i - x_q||_2 = \sqrt{\sum_{j=1}^{D} (x_i[j] - x_q[j])^2}$$

Manhattan Distance

•
$$distance(x_i, x_q) = ||x_i - x_q||_1 = \sum_{j=1}^{D} |x_i[j] - x_q[j]|$$

Weighted Euclidian Distance

•
$$distance(x_i, x_q) = \sqrt{\sum_{j=1}^{D} a_j^2(x_i[j] - x_q[j])^2}$$

■ For feature
$$j : a_j = \frac{1}{\max_j(x_j[j]) - \min_j(x_j[j])}$$

• Similarity metrics

Product similarity

This means a bigger number is better

Cosine Similarity

■ Cosine Distance = 1 - Cosine Similarity

$$similarity = \frac{x_i^T x_q}{\|x_i\|_2 \|x_q\|_2} = cos(\theta)$$

- Not a true distance metric
- Efficient for sparse vector.

Normalization

- the length of each paperwork is different, then we can normalize the docs
- Normalizing can make dissimilar objects appear more similar.
- Common Compromise:
 - Just capture maximum word counts.

(Lecture 16)

Pre-class material - Local Methods, Locality Sensitive Hashing

- 1-NN Regression vs k-NN Regression
 - 1-NN Regression

```
\begin{array}{l} \textit{Input:} \ \text{Query point:} \ x_q, \text{Training Data:} \ \mathcal{D} = \{(x_t, y_t)\}_{i=1}^n \\ (x^{NN}, y^{NN}) = 1 NearestNeighbor(x_q, \mathcal{D}) \\ \textit{Output:} \ y^{NN} \end{array}
```

"locally constant"

0

- o Can visualize it with a Voronoi Tessellation
 - Show all of the points that are closest to a particular training point.

- Weaknesses
 - Inaccurate if data is sparse
 - Can wildly overfit. It relies too much on a single data point.
- k-NN Regression
 - Using a larger k, we make the function a bit less crazy
 - still discontinuous
 - boundaries are stil sort of a problem
 - somehow prevent overfit.
 - Issues
 - Have to choose right value of k,
 - o if k is too large, model is too simple
 - Discontinuities matter in many applications
 - The error might be good, but would you believe a price jump for a 2640 sqft house to a 2641 sqft house?
 - use weighted k-NN to smooth the processes
- Voronoi Tesselation
- Weighted k-NN
 - Big idea: instead of trating each neighbor equally, put more weight on closer neighbors.
 - o Predict:

- \circ Weight each nearest neighbor by some value $c_{q,NNj}$
- \circ How to choose $c_{q,\,NNj}$
 - Want it to be small if $dist(x_q, x^{NN_j})$ is large
 - want it to be large if dist is small
- Kernel turn distance into weight that satisfies the properties we listed before.

$$c_{q,NN_{j}} = Kernel_{\lambda}(dist(x_{q}, x^{NN_{j}})), \lambda = bandwidth$$

- Uniform / Boxcar Kernel
 - assigns equal weights
- Epanechnikov Kernel
 - outside of the bandwidth assigned zero
- o Gaussian Kernel
 - normal distribution, outside of the bandwidth is not assigned zero

$$Kernel_{\lambda}(dist(x_{i'}, x_{q})) = exp(-\frac{dist(x_{i'}, x_{q})^{2}}{\lambda})$$

• Kernel Regression

 instead of just using a kernel to weight the k nearest neighbors, can use the kernel to weight all training points.

$$\hat{y_q} = \frac{\sum\limits_{i=1}^{n} c_{q,i} y_i}{\sum\limits_{i=1}^{n} c_{q,i}} = \frac{\sum\limits_{i=1}^{n} Kernel_{\lambda}(dist(x_i x_q)) y_i}{\sum\limits_{i=1}^{n} Kernel_{\lambda}(dist(x_i x_q))}$$

Class session

• Comparing k-NN, weighted k-NN, kernel regression - three local methods.

Non-parametric functions.

- All of these models are taking averages.
 - K-Nearest: unweighted average. The samples used are K-nearest.
 - Weighted: weighted average (Use a kernel, tells you based on the distance between two points, what weight should use). The samples used are also K-nearest.
 - Kernel Regression: weighted average (Kernel). The samples used are all of the data points, many kernels give zero weight to points whose distance > lambda.

• The efficiency of nearest neighbors

- Nearest neighbor methods require no training time (just store the data)
- o If there is a lot of data, might take O(n) if there are n data points.
- There is not an obvious way of speeding this up.
- Big Idea: Sacrifice accuracy for speed. We will look for an approximate nearest neighbor to return results faster.

Approximate nearest neighbors

- Use locality sensitive hashing to answer this approximate nearest neighbor problem
 - Design an algorithm that yields a close neighbor with high probability
 - These algorithms usualy come with a guarantee of what probability they will succeed.

Locality Sensitive Hashing (LSH)

an algorithm that answers the approximate nearest neighbor problem

Big idea: break the data into smaller bins on how close they are to each other. When you want to find a nearest neighbor, choose an appropriate bin and do an exact nearest neighbor search for the points in that bin.

More bins -> fewer points per bin -> faster searchi

More bin -> more likely to make errors if we aren't careful

Bin index

- Put the data in bins based on the sign of the score (2 bins total)
- call negative score points bin 0, and the other bin 1 (bin index)
- When asked to find neighbor for query point, only search through points in the same bin.
- This reduces the search time to n/2 if we choose the line right.
- How to choose bins
- Searching nearby bins

Section material

Uncertainties

1.	What are some examples used Euclidean and some examples used Cosine Distance?
	Any typical examples?