### **UNCLASSIFIED**

# AD NUMBER AD847562 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to DoD only; Critical Technology; FEB 1969. Other requests shall be referred to National Aeronautics and Space Administration, Marshall Space Flight Center (I-B-J), Huntsville, AL 35812. This document contains export-controlled technical data. **AUTHORITY** USAEDC ltr, 12 Jul 1974.

AEDC-TR-69-44

# ARCHIVE COPY DO NOT LOAN

Cy



ALTITUDE DEVELOPMENTAL TESTING OF THE J-2S ROCKET ENGINE IN PROPULSION ENGINE TEST CELL (J-4) (TESTS J4-1902-01 THROUGH J4-1902-04)

N. R. Vetter ARO, Inc.

February 1969

The March Con 12

Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (I-E-J), Hunts-ville, Alabama 85812.

LARGE ROCKET FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

PROPERTY OF U. S. AIR FORCE AEDC LIERARY F40600-69-C-0001

Th. . . . .

# **NOTICES**

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

ALTITUDE DEVELOPMENTAL TESTING OF THE J-2S ROCKET ENGINE IN PROPULSION ENGINE TEST CELL (J-4) (TESTS J4-1902-01 THROUGH J4-1902-04)

N. R. Vetter ARO, Inc.

Each transmittal of this document outside the Department of Defense must have prior approval of WASA, Marshall Space Flight Center (I-E-J). Huntsville, Alabama 35612.

Tom c' .....

Letter dt d 12 July, 74 Signed William Ol Cole

#### **FOREWORD**

The work reported herein was sponsored by the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) (I-E-J), under System 921E, Project 9194.

The results of the tests presented were obtained by ARO, Inc., (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Contract F40600-69-C-0001. Program direction was provided by NASA/MSFC; technical and engineering liaison was provided by North American Rockwell Corporation, Rocketdyne Division, manufacturer of the J-2S rocket engine, and McDonnell Douglas Corporation, Douglas Aircraft Company, Missile and Space Systems Division, manufacturer of the S-IVB stage. The testing reported herein was conducted between December 5, 1968, and January 10, 1969, in Propulsion Engine Test Cell (J-4) of the Large Rocket Facility (LRF) under ARO Project No. KA1902. The manuscript was submitted for publication on January 24, 1969.

Information in this report is embargoed under the Department of State International Traffic in Arms Regulations. This report may be released to foreign governments by departments or agencies of the U. S. Government subject to approval of NASA, Marshall Space Flight Center (I-E-J), or higher authority. Private individuals or firms require a Department of State export license.

This technical report has been reviewed and is approved.

Edgar D. Smith
Major, USAF
AF Representative, LRF
Directorate of Test

Roy R. Croy, Jr. Colonel, USAF Director of Test

#### **ABSTRACT**

Five firings of the Rocketdyne J-2S rocket engine (S/N J-111A) were conducted in Test Cell J-4 of the Large Rocket Facility between December 5, 1968, and January 10, 1969. These firings were accomplished during test periods J4-1902-01 through J4-1902-04 at pressure altitudes of approximately 100, 000 ft at engine start to investigate engine idle-mode operation, transition from idle mode to main stage, and steady-state operation at main stage. The engine started successfully in all cases and two planned transitions from idle mode to main stage were accomplished. The thrust chamber and injector were damaged extensively during a 288.5-sec duration idle-mode firing (04A).

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of N.SA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama 35812.

Of 12 July 74 Degret

### CONTENTS

|             |     |                                                    | Page |
|-------------|-----|----------------------------------------------------|------|
|             |     | BSTRACT                                            | iii  |
| _           |     | OMENCLATURE                                        | vii  |
| I.          |     | TRODUCTION                                         | 1    |
| II.<br>III. |     | PPARATUS                                           | 1    |
|             |     | ESULTS AND DISCUSSION                              | 7    |
| v.          |     | JMMARY OF RESULTS                                  | 12   |
| ••          |     | EFERENCES                                          | 13   |
|             |     |                                                    |      |
|             |     | APPENDIXES                                         |      |
| I.          | ILL | LUSTRATIONS                                        |      |
| Fig         | ure |                                                    |      |
|             | 1.  | Test Cell J-4 Complex                              | 17   |
|             | 2.  | Test Cell J-4, Artist's Conception                 | 18   |
|             | 3.  | J-2S Engine General Arrangement                    | 19   |
|             | 4.  | S-IVB Battleship Stage/J-2S Engine Schematic       | 20   |
|             | 5.  | Engine Details                                     | 21   |
|             | 6.  | Engine Start Logic Schematic                       | 25   |
|             | 7.  | Engine Start and Shutdown Sequence                 | 26   |
|             | 8.  | Engine Start Conditions for Propellant Pump Inlets |      |
|             |     | and Helium Tank                                    | 27   |
|             | 9.  | Engine Ambient and Combustion Chamber Pressure,    |      |
|             |     | Firing 01A                                         | 30   |
| 1           | 0.  | Thrust Chamber Chilldown, Firing 01A               | 31   |
| 1           | 1.  | Augmented Spark Igniter Performance,               |      |
|             |     | Firing 01A                                         | 32   |
| 1           | 2.  | Propellant System Performance during Idle Mode,    |      |
|             |     | Firing 01A                                         | 33   |
| 1           | 3.  | Engine Ambient and Combustion Chamber Pressure,    |      |
|             |     | Firing 02A                                         | 34   |
| 1           | 4.  | Engine Transient Operation, Firing 02A             | 35   |

### AEDC-TR-69-44

| Figure |                                                            | Page |
|--------|------------------------------------------------------------|------|
| 15.    | Solid-Propellant Turbine Starter Performance, Firing 02A   | 38   |
| 16.    | Oxidizer System Pressures, Firing 02A                      | 39   |
| 17.    | Engine-Generated Side Loads, Firing 02A                    | 40   |
| 18.    | Fuel Pump Start Transient Performance, Firing 02A          | 41   |
| 19.    | Engine Ambient and Combustion Chamber Pressure, Firing 03A | 42   |
| 20.    | Thrust Chamber Chilldown, Firing 03A                       | 43   |
| 21.    | Augmented Spark Igniter Performance, Firing 03A            | 44   |
| 22.    | Propellant System Performance during Idle Mode, Firing 03A | 45   |
| 23.    | Engine Transient Operation, Firing 03A                     | 46   |
| 24.    | Solid-Propellant Turbine Starter Performance, Firing 03A   | 49   |
| 25.    | Oxidizer System Pressures, Firing 03A                      | 50   |
| 26.    | Fuel Pump Start Transient Performance, Firing 03A          | 51   |
| 27.    | Engine Ambient and Combustion Chamber Pressure, Firing 03B | 52   |
| 28.    | Thrust Chamber Chilldown, Firing 03B                       | 53   |
| 29.    | Augmented Spark Igniter Performance, Firing 03B            | 54   |
| 30.    | Propellant System Performance during Idle Mode, Firing 03B | 55   |
| 31.    | Engine Ambient and Combustion Chamber Pressure, Firing 04A | 56   |
| 32.    | Thrust Chamber Chilldown, Firing 04A                       | 57   |
| 33.    | Augmented Spark Igniter Performance, Firing 04A            | 58   |
| 34.    | Propellant System Performance during Idle Mode, Firing 04A | 59   |
| 35.    | Engine Damage, Firing 04A                                  | 60   |
| 36.    | Pressure Perturbations. Firing 04A                         | 62   |

| Figure |                                              |                                                                         |    |  |  |  |
|--------|----------------------------------------------|-------------------------------------------------------------------------|----|--|--|--|
| 3'     | le-Mode Mixture Ratio, Predicted and easured | 65                                                                      |    |  |  |  |
| 38     | В. Не                                        | elium Tank Pressures and Temperatures                                   | 66 |  |  |  |
| II.    | TAB                                          | LES                                                                     |    |  |  |  |
|        | I.                                           | Major Engine Components (Effective Test J4-1902-01)                     | 68 |  |  |  |
|        | II.                                          | Summary of Engine Orifices                                              | 69 |  |  |  |
|        | ш.                                           | Engine Modifications (between Tests J4-1902-01 and J4-1902-04)          | 70 |  |  |  |
|        | IV.                                          | Engine Component Replacements (between Tests J4-1902-01 and J4-1902-04) | 70 |  |  |  |
|        | v.                                           | Engine Purge and Component Conditioning Sequence                        | 71 |  |  |  |
|        | VI.                                          | Summary of Test Requirements and Results                                | 72 |  |  |  |
|        | VII.                                         | Engine Valve Timings                                                    | 73 |  |  |  |
| III.   | INST                                         | RUMENTATION                                                             | 74 |  |  |  |
|        |                                              | NOMENCLATURE                                                            |    |  |  |  |
| A      |                                              | Area, in. <sup>2</sup>                                                  |    |  |  |  |
| ASI    |                                              | Augmented spark igniter                                                 |    |  |  |  |
| CCP    |                                              | Customer connect panel                                                  |    |  |  |  |
| EBW    |                                              | Exploding bridge wire                                                   |    |  |  |  |
| FM     |                                              | Frequency modulation                                                    |    |  |  |  |
| MFV    |                                              | Main fuel valve                                                         |    |  |  |  |
| MOV    |                                              | Main oxidizer valve                                                     |    |  |  |  |
| O/F    |                                              | Propellant mixture ratio, oxidizer to fuel, by weight                   |    |  |  |  |
| SPTS   |                                              | Solid-propellant turbine starter                                        |    |  |  |  |
| T/C    |                                              | Thrust chamber                                                          |    |  |  |  |

### AEDC-TR-69-44

t<sub>0</sub> Time at which helium control and idle-mode solenoids are energized; engine start

VSC Vibration safety counts, defined as engine vibration in excess of 150 g rms in a 960- to 6000-Hz frequency range

### SUBSCRIPTS

f Force

m Mass

t Throat

### SECTION I

Testing of the Rocketdyne J-2S rocket engine using an S-IVB battle-ship stage has been in progress since December, 1968, at AEDC. The five firings reported herein were conducted during test periods J4-1902-01 through J4-1902-04 in Propulsion Engine Test Cell (J-4) (Figs. 1 and 2, Appendix I) of the Large Rocket Facility (LRF). These firings were to verify previously obtained test data on the performance of the simplified J-2 engine under simulated altitude conditions. The firings were accomplished at pressure altitudes ranging from 86,000 to 101,000 ft (geometric pressure altitude, Z, Ref. 1) at engine start. Data collected to accomplish the test objectives are presented herein.

### SECTION II

### 2.1 TEST ARTICLE

The test article was a J-2S rocket engine (Fig. 3) designed and developed by Rocketdyne Division of North American Rockwell Corporation. The engine uses liquid oxygen and liquid hydrogen as propellants and is designed to operate either in idle mode at a nominal thrust of 5000 lb<sub>f</sub> and mixture ratio of 2.5 or at main stage at any precalibrated thrust level between 230,000 and 265,000 lb<sub>f</sub> at a mixture ratio of 5.5. The engine design is capable of transition from idle-mode to main-stage operation after a minimum of 1-sec idle mode; from main stage the engine can either be shut down or make a transition back to idle-mode operation before shutdown. An S-IVB battleship stage was used to supply propellants to the engine. A schematic of the battleship stage is presented in Fig. 4.

Listings of major engine components and engine orifices for this test period are presented in Tables I and II, respectively (Appendix II). All engine modifications and component replacements performed during this report period are presented in Tables III and IV, respectively.

### 2.1.1 J-2S Rocket Engine

The J-2S rocket engine (Figs. 3 and 5, Ref. 2) features the following major components:

- 1. Thrust Chamber The tubular-walled, bell-shaped thrust chamber consists of an 18.6-in.-diam combustion chamber with a throat diameter of 12.192 in., a characteristic length (L\*) of 35.4, and a divergent nozzle with an expansion ratio of 40. Thrust chamber length (from the injector flange to the nozzle exit) is 108.6 in. Cooling is accomplished by the circulation of engine fuel flow downward from the fuel manifold through 180 tubes and then upward through 360 tubes to the injector and by film cooling inside the combustion chamber.
- 2. Thrust Chamber Injector The injector is a concentricorificed (concentric fuel orifices around the oxidizer post
  orifices), porous-faced injector. Fuel and oxidizer injector
  orifice areas are 19.2 and 5.9 in.2, respectively. The oxidizer
  portion is compartmentalized, the outer compartment supplying oxidizer during main-stage operation only. The porous
  material, forming the injector face, allows approximately
  3.5 percent of main-stage fuel flow to transpiration cool the
  face of the injector.
- 3. Augmented Spark Igniter The augmented spark igniter unit is mounted on the thrust chamber injector and supplies the initial energy source to ignite propellants in the main combustion chamber. The augmented spark igniter chamber is an integral part of the thrust chamber injector. Fuel and oxidizer are ignited in the combustion area by two spark plugs.
- 4. Fuel Turbopump The fuel turbopump is a one and one-half stage, centrifugal-flow unit, powered by a direct-drive, two-stage turbine. The pump is self lubricated and nominally produces, at the 265,000-lbf-thrust rated condition, a head rise of 60,300 ft of liquid hydrogen at a flow rate of 9750 gpm for a rotor speed of 29,800 rpm.
- 5. Oxidizer Turbopump The oxidizer turbopump is a single-stage, centrifugal-flow unit, powered by a direct-drive, two-stage turbine. The pump is self lubricated and nominally produces, at the 265,000-lbf-thrust rated condition, a head rise of 3250 ft of liquid oxygen at a flow rate of 3310 gpm for a rotor speed of 10,500 rpm.
- 6. Propellant Utilization Valve The motor-driven propellant utilization valve is mounted on the oxidizer turbopump and bypasses liquid oxygen from the discharge to the inlet side of the pump to vary engine mixture ratio.
- 7. Main Oxidizer Valve The main oxidizer valve is a pneumatically actuated, two-stage, butterfly-type valve located in the

oxidizer high pressure duct between the turbopump and the injector. The first-stage actuator positions the main oxidizer valve at the 10-deg position to obtain initial main-stage-phase operation; the second-stage actuator ramps the main oxidizer valve full open to accelerate the engine to the main-stage operating level.

- 8. Main Fuel Valve The main fuel valve is a pneumatically actuated butterfly-type valve located in the fuel high pressure duct between the turbopump and the fuel manifold.
- 9. Pneumatic Control Package The pneumatic control package controls all pneumatically operated engine valves and purges.
- 10. Electrical Control Assembly The electrical control assembly provides the electrical logic required for proper sequencing of engine components during operation. The logic requires a minimum of 1-sec idle-mode operation before transition to main stage.
- 11. Flight Instrumentation Package The instrumentation package contains sensors required to monitor critical engine parameters. The package provides environmental control for the sensors.
- 12. Helium Tank The helium tank has a volume of 4000 in.<sup>3</sup> and provides a helium pressure supply to the engine pneumatic control system for three complete engine operational cycles.
- 13. Thrust Chamber Bypass Valve The thrust chamber bypass valve is a pneumatically operated, normally open, butterfly-type valve which allows fuel to bypass the thrust chamber body during idle-mode operation.
- 14. Idle-Mode Valve The idle-mode valve is a pneumatically operated ball-type valve which supplies liquid oxygen to the idle-mode compartment of the thrust chamber injector during both idle-mode and main-stage operation.
- 15. Hot Gas Tapoff Valve The hot gas tapoff valve is a pneumatically operated butterfly-type valve which provides on-off control of combustion chamber gases to drive the propellant turbopumps.
- 16. Solid-Propellant Turbine Starter The solid-propellant turbine starter provides the initial driving energy (transition to main stage) for the propellant turbopumps to prime the propellant feed systems and accelerate the turbopumps to 75 percent of their main-stage operating level. A three-start capability is provided.

### 2.1.2 S-IVB Battleship Stage

The S-IVB battleship stage, which is mechanically configured to simulate the S-IVB flightweight vehicle, is approximately 22 ft in diameter and 49 ft long and has a maximum propellant capacity of 46,000 lb of liquid hydrogen and 199,000 lb of liquid oxygen. The propellant tanks, fuel above oxidizer, are separated by a common bulkhead. Propellant prevalves, in the low pressure ducts (external to the tanks) interfacing the stage and engine, retain propellants in the stage until being admitted into the engine to the main propellant valves and serve as emergency engine shutoff valves. Vent and relief valve systems are provided for both propellant tanks.

Pressurization of the fuel and oxidizer tanks was accomplished by facility systems using hydrogen and helium, respectively, as the pressurizing gases. The engine-supplied gaseous hydrogen and gaseous oxygen for fuel and oxidizer tank pressurization during flight were routed to the respective facility venting systems.

#### 2.2 TEST CELL

Propulsion Engine Test Cell J-4, Fig. 2, is a vertically oriented test unit designed for static testing of liquid-propellant rocket engines and propulsion systems at pressure altitudes of 100,000 ft. The basic cell construction provides a 1.5-million-lbf-thrust capacity. The cell consists of four major components (1) test capsule, 48 ft in diameter and 82 ft in height, situated at grade level and containing the test article; (2) spray chamber, 100 ft in diameter and 250 ft in depth, located directly beneath the test capsule to provide exhaust gas cooling and dehumidification; (3) coolant water, steam, nitrogen (gaseous and liquid). hydrogen (gaseous and liquid), and liquid oxygen and gaseous helium storage and delivery systems for operation of the cell and test article; and (4) control building, containing test article controls, test cell controls, and data acquisition equipment. Exhaust machinery is connected with the spray chamber and maintains a minimum test cell pressure before and after the engine firing and exhausts the products of combustion from the engine firing. Before a firing, the facility steam ejector, in series with the exhaust machinery, provides a pressure altitude of 100,000 ft in the test capsule. A detailed description of the test cell is presented in Ref. 3.

The battleship stage and the J-2S engine were oriented vertically downward on the centerline of the diffuser-steam ejector assembly. This assembly consisted of a diffuser duct (20 ft in diameter by 150 ft

in length), a centerbody steam ejector within the diffuser duct, a diffuser insert (13.5 ft in diameter by 30 ft in length) at the inlet to the diffuser duct, and a gaseous nitrogen annular ejector above the diffuser insert. The diffuser insert was provided for dynamic pressure recovery of the engine exhaust gases and to maintain engine ambient pressure altitude (attained by the steam ejector) during the engine firing. The annular ejector was provided to suppress steam recirculation into the test capsule during steam ejector shutdown. The test cell was also equipped with (1) a gaseous nitrogen purge system for continuously inerting the normal air in-leakage of the cell; (2) a gaseous nitrogen repressurization system for raising test cell pressure, after engine cutoff, to a level equal to spray chamber pressure and for rapid emergency inerting of the capsule; and (3) a spray chamber liquid nitrogen supply and distribution manifold for initially inerting the spray chamber and exhaust ducting and for increasing the molecular weight of the hydrogen-rich exhaust products.

Systems were provided for temperature conditioning of engine components. Cold helium from a liquid hydrogen-helium heat exchanger was routed externally over the main fuel valve to provide the required temperature. Temperature-conditioned nitrogen from liquid nitrogen-steam vaporizers was routed through shrouds surrounding the solid-propellant turbine starters to provide the required temperatures.

#### 2.3 INSTRUMENTATION

Instrumentation systems were provided to measure engine, stage, and facility parameters. The engine instrumentation was comprised of (1) flight instrumentation for the measurement of critical engine parameters and (2) facility instrumentation which was provided to verify the flight instrumentation and to measure additional engine parameters. The flight instrumentation was provided and calibrated by the engine manufacturer; facility instrumentation was initially calibrated and periodically recalibrated at AEDC. Appendix III contains a list of all measured engine test parameters and the locations of selected sensing points.

Pressure measurements were made using strain-gage and capacitance-type pressure transducers. Temperature measurements were made using resistance temperature transducers and thermocouples. Oxidizer and fuel turbopump shaft speeds were sensed by magnetic pick-up. Fuel and oxidizer flow rates to the engine were measured by turbine-type flowmeters which are an integral part of the engine. Vibrations were measured by accelerometers mounted on the oxidizer injector

dome and on the turbopumps. Primary engine and stage valves were instrumented with linear potentiometers and limit switches.

The data acquisition systems were calibrated by (1) precision electrical shunt resistance substitution for the pressure transducers and resistance temperature transducer units; (2) voltage substitution for the thermocouples; (3) frequency substitution for shaft speeds and flowmeters; and (4) frequency-voltage substitution for accelerometers and the capacitance-type pressure transducer.

The types of data acquisition and recording systems used during this test period were (1) a multiple-input digital data acquisition system scanning each parameter at 40 samples per second (50 samples per second for firing 04A) and recording on magnetic tape; (2) single-input, continuous-recording FM systems recording on magnetic tape; (3) photographically recording galvanometer oscillographs; (4) direct-inking, null-balance, potentiometer-type X-Y plotters and strip charts; and (5) optical data recorders. Applicable systems were calibrated before each test (atmospheric and altitude calibrations). Television cameras, in conjunction with video tape recorders, were used to provide visual coverage during an engine firing, as well as for replay capability for immediate examination of unexpected events.

### 2.4 CONTROLS

Control of the J-2S engine, battleship stage, and test cell systems during the terminal countdown was provided from the test cell control room. A facility control logic network was provided to interconnect the engine control system, major stage systems, the engine safety cutoff system, the observer cutoff circuits, and the countdown sequencer. A schematic of the engine start control logic is presented in Fig. 6. The sequence of engine events for start and shutdown is presented in Figs. 7a and b.

# SECTION III PROCEDURE

Preoperational procedures were begun several hours before the test period. All consumable storage systems were replenished, and engine inspections, leak checks, and drying procedures were conducted. Propellant tank pressurants and engine pneumatic and purge gas samples were taken to ensure that specification requirements were met. Chemical analysis of propellants was provided by the propellant suppliers.

Facility sequence, engine sequence, and engine abort checks were conducted within a 24-hr time period before an engine firing to verify the proper sequence of events. Facility and engine sequence checks consisted of verifying the timing of valves and events to be within specified limits; the abort checks consisted of electrically simulating engine malfunctions to verify the occurrence of an automatic engine cutoff signal. A final engine sequence check was conducted immediately preceding the test period.

Oxidizer dome and thrust chamber jacket purges were initiated before evacuating the test cell. After completion of instrumentation calibrations at atmospheric conditions, the solid-propellant turbine starters were installed, the test cell was evacuated to approximately 0.5 psia with the exhaust machinery, and instrumentation calibrations at altitude conditions were conducted. Immediately before loading propellants on board the vehicle, the cell and exhaust-ducting atmosphere was inerted. At this same time, the cell nitrogen purge was initiated for the duration of the test period, except for engine mainstage operation. The vehicle propellant tanks were then loaded, and the remainder of the terminal countdown was conducted. Temperature conditioning of the various engine components was accomplished as required, using the facility-supplied engine component conditioning system. Table V presents the engine purges and thermal conditioning operations during the terminal countdown and immediately following the engine firing.

# SECTION IV RESULTS AND DISCUSSION

### 4.1 TEST SUMMARY

Five firings of the Rocketdyne J-2S rocket engine (S/N J-111A) were conducted between December 5, 1968, and January 10, 1969, during test periods J4-1902-01 through J4-1902-04. These firings comprised the initial testing of the J-2S engine at altitude conditions; pressure altitude at engine start ranged from 86,000 to 101,000 ft.

Test requirements and specific test results are summarized in Table VI. Start and shutdown transient operating times for selected engine valves are presented in Table VII. Figure 8 shows engine start conditions for propellant pump inlets and helium tank. Accumulated firing durations were 593.8 sec in idle mode and 39.1 sec of mainstage operation.

Data presented in subsequent sections are from the digital data acquisition system except where indicated otherwise. Propellant flow rates are based on engine flowmeter calibration constants supplied by the engine manufacturer: 5.50 and 2.00 cycles/gal for the oxidizer and fuel flowmeters, respectively.

### 4.2 TEST RESULTS

### 4.2.1 Firing J4-1902-01A

Firing 01A was a 172.3-sec duration idle-mode firing to evaluate (1) thrust chamber chilldown rate, (2) augmented spark igniter performance, (3) engine mixture ratio, (4) helium consumption rate, and (5) engine integrity. Engine ambient and combustion chamber pressures are shown in Fig. 9; pressure altitude at engine start was 99,000 ft. At  $t_0 + 42$  sec a facility malfunction resulted in an engine ambient pressure and temperature level which adversely affected engine performance. Data beyond  $t_0 + 42$  sec which are not considered representative of J-2S engine operation at altitude conditions are not presented.

Thrust chamber chilldown rate as indicated by external skin thermocouples at the engine throat and exit is shown in Fig. 10. Augmented spark igniter performance is shown in Fig. 11; ignition was detected at  $t_0 + 0.364$  sec. Engine propellant flow rate and mixture ratio data in Fig. 12 were based on pump discharge temperatures and pressures and a manual reduction of the flowmeter cyclic outputs as recorded on an oscillogram. Included in Fig. 12 are engine inlet and combustion chamber pressures. Helium consumption and engine integrity data are presented in Sections 4.2.7 and 4.2.8, respectively.

### 4.2.2 Firing J4-1902-02A

This was a 32.2-sec duration main-stage firing to evaluate (1) engine start and shutdown transients, (2) steady-state operation, (3) solid-propellant turbine starter performance, (4) oxidizer system pressure surges, and (5) engine-generated side loads. Pressure altitude at engine start was 99,000 ft; engine ambient and combustion chamber pressures are shown in Fig. 13. The ambient pressure increase beginning at t<sub>0</sub> + 7 sec was caused by inadvertant operation of the facility annular ejector.

Engine start and shutdown transients and steady-state operation were satisfactory, as shown in Fig. 14. At  $t_0$  + 7 sec a propellant utilization valve excursion was made to produce a mixture ratio of 5.44

and a peak combustion chamber pressure of 1215 psia at t<sub>0</sub> + 27 sec. Solid-propellant turbine starter performance is shown in Fig. 15. Combustion pressure measurement was not recovered, but satisfactory starter performance is shown by the propellant pump start transients (Fig. 14). A maximum oxidizer system pressure of 1460 psia (230 psi above the operating level) was measured at the oxidizer pump discharge at t<sub>0</sub> + 33.45 sec as shown in Fig. 16. Engine-generated side loads were less than 1200 lbf, as shown in Fig. 17. The indicated levels before engine start result from tare loads caused by engine propellant supply line pressures and temperatures; the indicated oscillations before engine start result from the operation of facility steam and cooling water systems. Fuel pump start transient performance is shown in Fig. 18.

### 4.2.3 Firing J4-1902-03A

This firing consisted of 76.2 sec of idle-mode operation followed by a transition to main stage. Primary objectives were to evaluate (1) thrust chamber chilldown, (2) augmented spark igniter performance, (3) idle-mode mixture ratio, (4) engine transition from idle-mode to main-stage operation, (5) solid-propellant turbine starter performance, and (6) oxidizer system pressure surges. Pressure altitude at engine start was 86,000 ft; engine ambient and combustion chamber pressures are shown in Fig. 19.

Thrust chamber chilldown data are indicated in Fig. 20. The thrust chamber chilldown rate compares closely with that indicated for firing 01A. Augmented spark igniter performance is shown in Fig. 21; ignition was detected at  $t_0 + 0.481$  sec compared to 0.364 sec for firing 01A. Engine propellant flow rate and mixture ratio data in Fig. 22 were calculated in the same manner as those presented for firing 01A. Engine inlet and combustion chamber pressures are included in Fig. 22.

Transition from idle-mode to main-stage operation is shown in Fig. 23. Transition was satisfactory and compares favorably with firing 02A. Solid-propellant turbine starter performance (Fig. 24) was consistent with that obtained during firing 02A. Combustion pressure (Fig. 24a) was as predicted by the engine manufacturer. The burn duration was 2.4 sec, and the maximum pressure was 3420 psia. A maximum oxidizer system pressure (Fig. 25) of 1340 psia was measured at the oxidizer pump discharge at  $t_0 + 83.38$  sec. This was 120 psi less than that measured during firing 02A.

Fuel pump start transient performance is shown in Fig. 26. Data analysis indicated a possible degradation in the fuel pump balance piston rings, and the engine manufacturer requested that no further main-stage testing be conducted until the pump could be repaired or replaced.

### 4.2.4 Firing J4-1902-03B

Firing 03B was a 55.8-sec duration idle-mode firing to evaluate (1) thrust chamber childown, (2) augmented spark igniter performance, and (3) engine mixture ratio. Engine ambient and combustion chamber pressures are shown in Fig. 27; pressure altitude at engine start was 101,000 ft.

Thrust chamber chilldown rate (Fig. 28) compared favorably with that obtained for firings 01A and 03A. Augmented spark igniter performance was satisfactory, as shown in Fig. 29; ignition was detected at  $t_0 + 0.371$  sec. Engine propellant flow rate and mixture ratio data shown in Fig. 30 were calculated as stated in Section 4.2.1. Engine inlet and combustion chamber pressures are included in Fig. 30.

### 4.2.5 Firing J4-1902-04A

Firing 04A was a 288.5-sec duration idle-mode firing to evaluate (1) thrust chamber childown rate, (2) augmented spark igniter performance, and (3) engine mixture ratio. Pressure altitude at engine start was 98,000 ft; engine ambient and combustion chamber pressures are shown in Fig. 31.

Thrust chamber chilldown rate, as shown in Fig. 32, was lower than that measured for firings 01A, 03A, and 03B. The time required to reach a stable temperature was approximately 35 sec, some 10 sec longer than required for firings 01A, 03A, and 03B. Augmented spark igniter performance is shown in Fig. 33; ignition was detected at  $t_0 + 0.412$  sec. Engine propellant flow rate and mixture ratio data shown in Fig. 34 were calculated as stated in Section 4.2.1. Engine inlet and combustion chamber pressures are included in Fig. 34.

Post-test inspection showed that the engine had been damaged extensively during this firing. The injector face had been burned through in two separate places (Fig. 35a), and the ends of several oxidizer posts had been burned and distorted. The combustion chamber tubes (upstream of the throat) in approximately 28 isolated areas had been ruptured and distorted with no evidence of heat damage (Fig. 35b).

Data analysis showed severe pressure perturbations in the combustion chamber and propellant systems beginning at  $t_0 + 158$  sec and recurring at random time intervals until approximately  $t_0 + 252$  sec, at which time combustion chamber pressure decreased to 4.5 psia and remained stable until engine shutdown at  $t_0 + 288.5$  sec. The data shown in Fig. 36 are typical of the pressure perturbations as recorded by the digital data acquisition system. A pressure increase of 412 psi was reduced from the oscillogram recording of oxidizer injector pressure POJ-2 at  $t_0 + 158.20$  sec. No failure analysis is attempted in this report.

### 4.2.6 Idle-Mode Mixture Ratio

Figure 37 shows idle-mode mixture ratio predicted by the engine manufacturer as a function of propellant pump inlet pressures. The predicted mixture ratio assumes saturated liquids at the pump inlets. The measured mixture ratio data are from manual reductions of flowmeter cyclic outputs over 0.5-sec increments as recorded on an oscillogram. The symbols (Fig. 37) are predicted mixture ratio as a function of measured pump inlet pressures. The numbers in parentheses are measured mixture ratio. A portion of the erratic nature of the data in Fig. 37 is attributed to the fact that propellant quality at the oxidizer flowmeter is not known in all cases. The times shown (Fig. 37) were chosen to represent data for which the oxidizer pump discharge pressures and temperatures indicated 100-percent liquid, except firing 03A, for which liquid was not indicated until after shutdown. For firing 04A, liquid was not indicated before to + 140 sec. In all cases shown, the fuel pump discharge pressures and temperatures indicated 100-percent liquid.

### 4.2.7 Helium Consumption

Figure 38 shows temperature and pressure in the engine-mounted helium tank as functions of time for the five firings in this testing period. Helium consumption rate as indicated by a mass change averaged 0.001  $\rm lb_m/sec$  for idle-mode operation and 0.002  $\rm lb_m/sec$  for main-stage operation.

### 4.2.8 Engine Integrity

The main oxidizer valve was replaced following firing 01A because of a leaking idler arm shaft seal. The oxidizer dome purge check valve was repaired because of reverse flow following firing 01A and was replaced following firing 03B. The oxidizer idle-mode line purge check valve was replaced following firing 01A because of reverse flow.

Following firing 02A, the seal between the main oxidizer valve and the high pressure oxidizer supply duct was replaced because of leakage. At this time the oxidizer dome purge check valve was repaired to eliminate reverse flow.

Analysis of data from firing 03A indicated that the fuel pump balance piston rings had degraded to a degree that required repair or pump replacement before any further main-stage operation.

Inspection following firing 04A showed that the engine thrust chamber and injector had been damaged extensively and would require replacement.

# SECTION V SUMMARY OF RESULTS

j

Results of testing the J-2S rocket engine in Test Cell J-4 during test periods J4-1902-01 through J4-1902-04 between December 5, 1968, and January 10, 1969, are summarized as follows:

- 1. Augmented spark igniter performance was satisfactory, and engine start was successful in all cases.
- 2. Transition from idle-mode to main-stage operation was successful in all cases.
- 3. Engine-generated side loads during transition to main-stage operation were less than 1200 lb<sub>f</sub>.
- 4. Possible degradation of the fuel pump balance piston rings occurred during main-stage firing 03A.
- 5. The engine thrust chamber and injector were damaged extensively during a 288.5-sec duration idle-mode firing (04A).
- 6. Thrust chamber temperatures reached a steady-state idlemode operating level within 40 sec after engine start.

### REFERENCES

- 1. Dubin, M., Sissenwine, N., and Wexler, H. <u>U.S. Standard</u> Atmosphere, 1962. December 1962.
- 2. "J-2S Interface Criteria." Rocketdyne Document J-7211, October 16, 1967.
- 3. Test Facilities Handbook (7th Edition). "Large Rocket Facility,
  Vol. 3." Arnold Engineering Development Center, July 1968.
- 4. "Engine Model Specification Oxygen/Hydrogen Liquid-Propellant Rocket Engine Rocketdyne Model J-2S." Rocketdyne Document R-2158dS, August 21, 1968.

### APPENDIXES

- I. ILLUSTRATIONS
- II. TABLES
- III. INSTRUMENTATION



Fig. 1 Test Cell J-4 Complex



Fig. 2 Test Cell J-4, Artist's Conception



Fig. 3 J-25 Engine General Arrangement



Fig. 4 S-IVB Battleship Stage/J-2S Engine Schematic



a. Thrust Chamber

Fig. 5 Engine Details



b. Combustion Chamber Fig. 5 Continued



Fig. 5 Continued



d. Injector to Chamber Fig. 5 Concluded



Fig. 6 Engine Start Logic Schematic





b. Shutdown Sequence
Fig. 7 Engine Start and Shutdown Sequence



Fig. 8 Engine Start Conditions for Propellant Pump Inlets and Helium Tank



-b. Oxidizer Pump Fig. 8 Continued





Fig. 8 Concluded



Fig. 9 Engine Ambient and Combustion Chamber Pressure, Firing 01A



Fig. 10 Thrust Chamber Chilldown, Firing 01A



Fig. 11 Augmented Spark Igniter Performance, Firing 01A



b. Pump Inlet and Combustion Chamber Pressures
Fig. 12 Propellant System Performance during Idle Mode, Firing 01A



Fig. 13 Engine Ambient and Combustion Chamber Pressure, Firing 02A



a. Main Oxidizer and Fuel Bypass Valves, Start



b. Propellant Pumps, Start
Fig. 14 Engine Transient Operation, Firing 02A

١



# c. Fuel System, Start



d. Oxidizer System, Start Fig. 14 Continued







g. Oxidizer System, Shutdown
Fig. 14 Concluded

#### AEDC-TR-69-44



# a. Fuel and Turbine Inlet Temperature and Pressure



b. Tapoff Volve Position and Manifold Pressure
Fig. 15 | Solid-Propellant Turbine Starter Performance, Firing 02A



# a. Pump Inlet Pressure



b. Pump Discharge and Injector Pressure
Fig. 16 Oxidizer System Pressures, Firing 02A



Fig. 17 Engine-Generated Side Loads, Firing 02A

28, 000 RPM

 $60 \times 10^3$ 

NOTE: THE TEST DATA PLOTTED ARE PUMP DISCHARGE STATIC PRES-

SURE CONVERTED TO HEAD.

Fig. 18 Fuel Pump Start Transient Performance, Firing 02A

FLOW, QF-2. GPM



Fig. 19 Engine Ambient and Combustion Chamber Pressure, Firing 03A



Fig. 20 Thrust Chamber Chilldown, Firing 03A



Fig. 21 Augmented Spark Igniter Performance, Firing 03A





b. Pump Inlet and Combustian Chamber Pressures
 Fig. 22 Propellant System Performance during Idle Mode, Firing 03A



a. Main Oxidizer and Fuel Bypass Valves, Start



b. Propellant Pumps, Start
Fig. 23 Engine Transient Operation, Firing 03A



c. Fuel System, Start



d. Oxidizer System, Start Fig. 23 Continued



. Propellant Pumps, Shutdown



f. Fuel System, Shutdown



g. Oxidizer System, Shutdown Fig. 23 Concluded



# a. Combustion Pressure and Fuel Tubine Inlet Temperature and Pressure



b. Tapoff Valve Position and Manifold Pressure
Fig. 24 Solid-Propellant Turbine Starter Performance, Firing 03A







b. Pump Discharge and Injector Pressure Fig. 25 Oxidizer System Pressures, Firing 03A



Fig. 26 Fuel Pump Start Transient Performance, Firing 03A



Fig. 27 Engine Ambient and Combustion Chamber Pressure, Firing 03B



Fig. 28 Thrust Chamber Childown, Firing 03B



Fig. 29 Augmented Spark Igniter Performance, Firing 03B





b. Pump Inlet and Combustion Chamber Pressure
Fig. 30 Propellant System Performance during Idle Mode, Firing 03B



Fig. 31 Engine Ambient and Combustion Chamber Pressure, Firing 04A





Fig. 32 Thrust Chamber Chilldown, Firing 04A



Fig. 33 Augmented Spark Igniter Performance, Firing 04A





b. Pump Inlet and Combustian Chamber Pressures
Fig. 34 Prapellant System Perfarmance during Idle Made, Firing 04A



a. Injector

Fig. 35 Engine Damage, Firing 04A



b. Thrust Chamber Fig. 35 Concluded



# a. Combustion Chamber



# b. Tapoff Manifold



c. Oxidizer Idle-Mode Line

Fig. 36 Pressure Perturbations, Firing 04A



f. Augmented Spark Igniter Injector, Oxidizer
Fig. 36 Continued





Fig. 37 Idle-Mode Mixture Ratio, Predicted and Measured







Fig. 38 Helium Tank Pressures and Temperatures



e. Firing 04A Fig. 38 Concluded

TABLE I
. MAJOR ENGINE COMPONENTS
(EFFECTIVE TEST J4-1902-01)

| Part Name                                            | P/N          | S/N      |
|------------------------------------------------------|--------------|----------|
| Thrust Chamber Body Assembly Thrust Chamber Injector | 99-210620    | 4094417  |
| Assembly                                             | 99-210610-71 | 4087379  |
| Augmented Spark Igniter Assembly                     | 652050       | 4097350  |
| Ignition Detector Probe No. 1                        | 3243-2       | 041      |
| Ignition Detector Probe No. 2                        | 500750       | 7202262  |
| Fuel Turbopump Assembly                              | 99-461500    | R001-0B  |
| Oxidizer Turbopump Assembly                          | 99-460430    | S001-0   |
| Main Fuel Valve                                      | 99-411320x3  | 8900881  |
| Main Oxidizer Valve                                  | 99-411225    | 8900815  |
| Idle-Mode Valve                                      | 99-411385    | 8900816  |
| Thrust Chamber Bypass Valve                          | 99-411180    | 8900806  |
| Hot Gas Tapoff Valve                                 | 99-557824x2  | 8900847  |
| Propellant Utilization Valve                         | 99-251455x5  | 8900911  |
| Electrical Control Package                           | 99-503670    | 4098176  |
| Engine Instrumentation Package                       | 99-704641    | 4097437  |
| Pneumatic Control Package                            | 99-558330    | 8900817  |
| Restart Control Assembly                             | 99-503680    | 4097867  |
| Helium Tank Assembly                                 | 80097-1      | 0002     |
| Oxidizer Flowmeter                                   | 251216       | 4096874  |
| Fuel Flowmeter                                       | 251225       | 4096875  |
| Fuel Inlet Duct Assembly                             | 409900-11    | 6631788  |
| Oxidizer Inlet Duct Assembly                         | 409899-11    | 4052289  |
| Fuel Pump Discharge Duct                             | 99-411078    | 417      |
| Oxidizer Pump Discharge Duct                         | 99-411077    | 417      |
| Thrust Chamber Bypass Duct                           | 99-411079    | 417      |
| Fuel Turbine Exhaust Bypass Duct                     | 307879-11    | 02143580 |
| Hot Gas Tapoff Duct                                  | 99-411080-51 | 7239769  |
| Solid-Fropellant Turbine                             |              |          |
| Starters Manifold                                    | 99-210921    | 7216433  |
| Heat Exchanger and Oxidizer                          |              |          |
| Turbine Exhaust Duct                                 | 307887       | 2142922  |
| Crossover Duct                                       | 307879-11    | 02143580 |

AEDC-TR-69-44

TABLE II
SUMMARY OF ENGINE ORIFICES

| Orifice<br>Name                                 | Part<br>Number | Diameter,<br>Inches Unless<br>Otherwise Noted | Test<br>Effective        | Comments                 |
|-------------------------------------------------|----------------|-----------------------------------------------|--------------------------|--------------------------|
| Oxidizer Turbine<br>Bypass Nozzle               | 99-210924      | 1. 960                                        | J4-1902-01               |                          |
| Main Oxidizer Valve<br>Closing Control Line     | 99-411279      | 0. 0443<br>208. 5 scfm                        | J4-1902-01<br>J4-1902-02 | Thermostatic<br>Orifices |
| Augmented Spark Igniter<br>Oxidizer Supply Line | 99-558365-87   | 0.100                                         | J4-1902-01               |                          |
| Augmented Spark Igniter<br>Fuel Supply Line     |                |                                               |                          | No Orifice<br>Installed  |

# TABLE III ENGINE MODIFICATIONS (BETWEEN TESTS J4-1902-01 AND J4-1902-04)

| 34 320 - 42            | 10. 14.                 | Description                                                                                      |  |  |  |  |  |  |  |  |
|------------------------|-------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Modification           | Completion              | Description of                                                                                   |  |  |  |  |  |  |  |  |
| Number                 | Date                    | Modification                                                                                     |  |  |  |  |  |  |  |  |
| Pre-Test               |                         |                                                                                                  |  |  |  |  |  |  |  |  |
| R 086729               | 12/3/68                 | Insulation of Fuel Film<br>Coolant Line and the<br>Augmented Spark Igniter<br>Fuel Line          |  |  |  |  |  |  |  |  |
| T                      | est J4-1902-01          | 12/5/68                                                                                          |  |  |  |  |  |  |  |  |
| R 121031               | 12/16/68                | Replaced Main Oxidizer<br>Valve Closing Control<br>Orifice, 208.5 scfm<br>(Thermostatic Orifice) |  |  |  |  |  |  |  |  |
| T                      | est J4-1902-02          | 12/18/68                                                                                         |  |  |  |  |  |  |  |  |
| R 121114               | 12/30/68                | Installed Fuel Pump<br>Volute Seal Drain Line                                                    |  |  |  |  |  |  |  |  |
| Test J4-1902-03 1/3/69 |                         |                                                                                                  |  |  |  |  |  |  |  |  |
|                        | None                    |                                                                                                  |  |  |  |  |  |  |  |  |
| T                      | Test J4-1902-04 1/10/69 |                                                                                                  |  |  |  |  |  |  |  |  |

# TABLE IV ENGINE COMPONENT REPLACEMENTS (BETWEEN TESTS J4-1902-01 AND J4-1902-04)

| Replacement                    | Completion<br>Date | Component<br>Replaced                                                         |  |  |  |
|--------------------------------|--------------------|-------------------------------------------------------------------------------|--|--|--|
| Tes                            | st J4-1902-01      | 12/5/68                                                                       |  |  |  |
| P/N 557755-11<br>S/N 2137550   | 12/16/68           | Oxidizer Idle-Mode Line<br>Purge Check Valve,<br>P/N 557755-11<br>S/N 2137547 |  |  |  |
| P/N 99-411225X4<br>S/N 8900929 | 12/16/68           | Main Oxidizer Valve,<br>P/N 99-411225<br>S/N 8900815                          |  |  |  |
| Tes                            | st J4-1902-02      | 12/18/68                                                                      |  |  |  |
|                                | None               |                                                                               |  |  |  |
| Ter                            | st J4-1902-03      | 1/3/69                                                                        |  |  |  |
| P/N 554175<br>S/N 7224310      | 1/7/69             | Oxidizer Dome Purge<br>Check Valve,<br>P/N 554175<br>S/N 2138996              |  |  |  |
| Te                             | st J4-1902-04      | 1/10/69                                                                       |  |  |  |

TABLE V . ENGINE PURGE AND COMPONENT CONDITIONING SEQUENCE

| Purge                                                                                                           | Requirement                                                        | Sold Property          | et of a                | ropelled Drop    | ndine sport     | Coa<br>Per<br>Cytet                                   | iod &            | , et et e | Caped Fried |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|------------------------|------------------|-----------------|-------------------------------------------------------|------------------|-----------|-------------|
| Oxidizer Dome and<br>Idle-Mode<br>Compartment                                                                   | Nitrogen,<br>600 ± 25 psia;<br>100 to 200°F at<br>/CCP 150 scfm(s) |                        |                        |                  |                 |                                                       |                  |           | 15 min      |
| Thrust Chamber<br>Jackst, Film Coolant<br>and Turbopump Purges                                                  | Helium,<br>150 ± 25 psia;<br>100 to 150°F<br>at CCP<br>(125 scfm)  |                        | (b) (c)                |                  | (a)             | 15<br>min (b) (                                       | e)<br>/////      | (a)       | 15 min      |
| Solid-Propeliant Turbine 'Starter Conditioning                                                                  | Nitrogen,<br>-50 to +140°F                                         | //////////////No. 1, 2 | ////////<br>, and 3/// |                  |                 | l<br>Remaining Solid-Prope<br>Turbine Starter Install | ellant////////ed |           |             |
| Main Fuel Valve<br>Conditioning                                                                                 | Helium, -300°F<br>to Ambient                                       |                        |                        | V// <u>*</u> /// |                 |                                                       |                  |           |             |
| (a) Engine-Supplied L (b) Any Time Facility (c) 30 min before Pro (d) Initiate Main Fuel (e) 100 to 150°F for F | Water On<br>pellant Drop<br>Valve Conditioning                     |                        |                        |                  | se Firings with | n Temperature Requir                                  | ements           |           |             |

TABLE VI SUMMARY OF TEST REQUIREMENTS AND RESULTS

|                                          |                                    | J4-190         | 2-01A              |                    | 02 - 02A                       | J4-19           | 02-03A            | J4-190       | 02-03B            | J4-190         | 2-04A              |
|------------------------------------------|------------------------------------|----------------|--------------------|--------------------|--------------------------------|-----------------|-------------------|--------------|-------------------|----------------|--------------------|
| Firing Number                            |                                    | Terget         | Actual             | Terget             | Antuel                         | Terget          | Actual            | Taiget       | Actual            | Target         | Aetual             |
| Ftring Date/Time of Day                  |                                    |                | 12/5/68<br>16/2 hr |                    | 12/18/68<br>2026 hr            |                 | 1/3/69<br>1449 hr |              | 1/3/69<br>1931 hr |                | 1/10/69<br>1416 hr |
| Preceure Altitude at to, ft (Ref. 1)     | -                                  | 100,000        | 99,000             | 100,000            | 99,000                         | 100, 000        | 86, 000           | 100,000      | 101,000           | 100, 000       | 98,000             |
| Idle-Mode Duration Pre-Main Stage        | , eccO                             | 200            | 172, 310           | 1.0                | 0.996                          | 80              | 76, 243           | 100          | 55, 758           | 200 Minimum    | 288. 542           |
| Main-Stage Duration, secO                | .03                                |                |                    | 32, 5              | 32, 242                        | 7. 5            | f. 852            |              |                   |                |                    |
| ldle-Mode Duretion Post-Main Steg        | e, sec                             |                |                    | <u>/</u>           |                                |                 |                   |              | •                 |                |                    |
| Fuel Pump Inlet Pressure at to, ps       |                                    | 40.0 ± 1,0     | 40, 1              | 40. 0 +1. 0        | 40. 9                          | 40.0 ± 1.0      | 39. 0             | 33, 0 ± 1, 0 | 32, 8             | 30,0 ± 1,0     | 30. 4              |
| Fuel Pump iniet Tempereture et to-       | *F                                 |                | -416.0             |                    | -416.6                         |                 | - 147, 7          |              | -311.4            |                | -255. 8            |
| Fuel Tank Bulk Temperatura at to.        | •F                                 | -422, 4 ± 0, 4 | - 422.5            | -422. 4 ± 0. 4     | -422, 4                        | -422, 4 ± 0, 4  | -422.6            | -422.4 ± 0.4 | -422, 3           | -422, 4 ± 0, 4 | -422, 6            |
| Oxidizer Pump Inlet Preseure et to       | psle _                             | 45.0 ± 1.0     | 44.7               | 45.0 ± 1.0         | 45, 2                          | 45.0 ± 1.0      | 45. 2             | 39.0 ± 1.0   | 37, 1             | 45.0 ± 1.0     | 44.7               |
| Oxidizer Pump Inlet Temperature a        | t t <sub>0</sub> , *F              |                | -291.8             |                    | -292, 4                        |                 | -287.8            |              | -279.8            |                | -278. 3            |
| Oxidizer Tank Bulk Temperature at to, "F |                                    | -295,0±0.4     | - 295, 1           | -295, 0 ± 0, 4     | -295.6                         | -295, 0 ± 0. 4  | -295. 3           | -295.0 ± 0.4 | -295. 3           | -295, 0 ± 0, 4 | - 295. 0           |
| elium Tank Conditions et to              |                                    | 3450 -200      | 3302               | 3450 ±000          | 3333                           | 3450 +0<br>-200 | 3427              | 3450 -200    | 3329              | 3450 ±0        | 3240               |
|                                          | Temperature, *F                    |                | +80                |                    | +53                            | n •-•           | +77               |              | +41               |                | +90                |
| Main Fuel Velve Tempereture et to        | •F                                 | •              | +96                | -100 <sup>+0</sup> | -146                           |                 | +94               |              | +76               |                | +104               |
| Augmented Sperk Igniter Ignition De      | tected, sec (Ref. t <sub>0</sub> ) |                | 0, 364             |                    | 0, 425                         |                 | 0, 481            |              | 0, 371            |                | 0.412              |
| Propellant Utilization Valve Positio     | n et t <sub>0</sub>                | Null           | Null               | Null               | Nul1                           | Null            | Null              | Nul1         | Null              | Null           | Null               |
| Propellant Utilizetion Velve Excurs      | ion, Poeition/Time                 |                | /                  | 10 + 6.0           | Closed<br>t <sub>0</sub> + 7.0 |                 | -:-               |              |                   | -:-            |                    |
|                                          |                                    |                |                    | Null<br>10 + 27.5  | Null 10+28,5                   |                 |                   |              |                   |                |                    |
|                                          | Part Number                        | •••            | •••                |                    | 99803527-11                    |                 | 89803527-11       |              |                   |                |                    |
|                                          | Sariel Number                      | •              |                    |                    | RT000001                       |                 | RT000002          |              | ••-               |                |                    |
| Solid-Propelleat Turbine Starter         | Tempereture at to. *F              |                |                    | +50 ± 10           | Not<br>Recovered               | +50 ± 10        | +44               |              | •••               |                | •                  |
|                                          | Burn Time, sec                     |                |                    |                    | =                              |                 | 2, 4              |              |                   |                |                    |
|                                          | Maximum Pres-<br>eure, pele        |                |                    | •                  |                                |                 | 3420              |              |                   |                | •••                |

O<sub>Data</sub> Reducad from Oscillogrem

#### TABLE VII ENGINE VALVE TIMINGS

|                  |                |                                 |                 |                                  | -                               |                                |                                  | 10                              |                                    | Ste                              | rt                                  |                                |         |                                |                                |                                  |                                 |                                |                                                  |
|------------------|----------------|---------------------------------|-----------------|----------------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|------------------------------------|----------------------------------|-------------------------------------|--------------------------------|---------|--------------------------------|--------------------------------|----------------------------------|---------------------------------|--------------------------------|--------------------------------------------------|
| Test<br>J4-1902- | Firing         | Mein                            | Mein Fuel Velve |                                  | Idle- Mode<br>Oxidizer Velve    |                                | Hot Ges<br>Tapoff Velve          |                                 | Main Oxidixer Valve<br>First Stage |                                  | Main Oxidizsr Valve<br>Second Stege |                                |         | Thrust Chamber<br>Bypass Valve |                                |                                  |                                 |                                |                                                  |
|                  |                | Time<br>of<br>Opening<br>Signal |                 | Valve<br>Opening<br>Time,<br>see | Time<br>of<br>Opening<br>Signal | Valve<br>Delay<br>Time,<br>sec | Valva<br>Opening<br>Time,<br>aec | Time<br>of<br>Opening<br>Signel | Valve<br>Deley<br>Time,<br>see     | Valve<br>Opening<br>Time,<br>eee | Time<br>of<br>Opening<br>Signal     | Valva<br>Delay<br>Time,<br>soe | Opening |                                | Valve<br>Delay<br>Time,<br>sec | Valve<br>Opening<br>Time,<br>sec | Tims<br>of<br>Closing<br>Signal | Valve<br>Delay<br>Timo,<br>sec |                                                  |
| 01               | A              | 0.0                             | 0, 071          | 0. 112                           | 0.0                             | 0.200                          | 0.059                            |                                 |                                    |                                  |                                     |                                |         |                                |                                |                                  |                                 |                                |                                                  |
|                  | Firel Sequence | 0.0                             | 0.047           | 0.074                            | 0.0                             | 0, 125                         | 0.044                            | 0.094                           | 0.155                              | 0, 110                           | 0.994                               | 0, 076                         | 0.033   | 2,890                          | 0. 160                         | 0.520                            | 2. 980                          | 0, 166                         | 0.611                                            |
| 05               | A              | 0.0                             | 0. 053          | 0.062                            | 0.0                             | 0.130                          | 0.035                            | 0.996                           | 0.170                              | 0. 105                           | 0.996                               | 0.060                          | 0.032   | 2.870                          | 0.188                          | 0. 877                           | 2, 970                          | 0. 157                         | 0.860                                            |
|                  | Final Sequence | 0, 0                            | 0. 045          | 0.067                            | 0.0                             | 0, 122                         | 0.045                            | 0. 992                          | C. 155                             | 0.110                            | 0.992                               | 0.090                          | 0.040   | 2, 892                         | 0, 205                         | 0, 822                           | 2, 692                          | 0, 150                         | 0. 925                                           |
| 03               | Λ              | 0.0                             | 0. 053          | 0,059                            | 0.0                             | 0.124                          | 0.034                            | 76. 243                         | 0.164                              | 0. 124                           | 76. 243                             | 0. 075                         | 0.032   | 76. 126                        | 0, 180                         | 0.878                            | 78, 129                         | 0.150                          | 0.010                                            |
|                  | В              | 0.0                             | 0.053           | 0.058                            | 0.0                             | 0. 125                         | 0.033                            |                                 |                                    |                                  |                                     |                                | <u></u> |                                |                                |                                  |                                 |                                |                                                  |
|                  | Final Sequence | 0,0                             | 0.049           | 0.071                            | 0.0                             | 0. 129                         | 0, 041                           | 0.992                           | 0.162                              | 0.116                            | 0. 992                              | 0.079                          | 0.039   | 2. 879                         | 0. 192                         | 0.811                            | 2, 879                          | 0.173                          | 0.782                                            |
| 04               | A              | 0,0                             | 0. 050          | 0.057                            | 0.0                             | 0, 122                         | 0.044                            |                                 |                                    | (                                |                                     |                                |         |                                |                                | 🥳                                |                                 |                                |                                                  |
|                  | Final Sequence | 0.0                             | 0. 050          | 0. 074                           | 0.0                             | 0. 137                         | 0.043                            |                                 |                                    |                                  |                                     |                                |         |                                |                                |                                  |                                 |                                |                                                  |
|                  | -              |                                 |                 |                                  |                                 |                                |                                  |                                 |                                    |                                  |                                     |                                |         |                                |                                |                                  |                                 |                                | <del>                                     </del> |

|                  |                |                                 |                                |                                  |                                 |                                |                                  | S                               | iutdown                        |                                  |                                 |                                |                                  |         |                                |                                  |
|------------------|----------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|--------------------------------|----------------------------------|---------|--------------------------------|----------------------------------|
| Tent<br>J4-1902- | Firing         | Main Oxidizer Valve             |                                | Hot Gas<br>Tepoff Volvs          |                                 | Mein Fuei Valva                |                                  |                                 | [d]e-Mode<br>Oxidizer Valve    |                                  |                                 | Thrust Chamber<br>Bypsse Valvs |                                  |         |                                |                                  |
| J4-1502-         |                | Time<br>of<br>Closing<br>Signal | Valva<br>Delay<br>Time,<br>sec | Valve<br>Closing<br>Time,<br>sec | Tima<br>of<br>Closing<br>Signal | Velva<br>Delay<br>Time,<br>eec | Valve<br>Closing<br>Time,<br>sec | Time<br>of<br>Closing<br>Signei | Valva<br>Deley<br>Tune,<br>sec | Valve<br>Closing<br>Time,<br>sec | Time<br>of<br>Closing<br>Signal | Valve<br>Delay<br>Time,<br>sec | Velvo<br>Closing<br>Time,<br>sec |         | Velve<br>Delay<br>Time,<br>sec | Velvo<br>Opening<br>Tune,<br>sec |
| 01               | A              |                                 |                                |                                  |                                 |                                |                                  | 172. 302                        | 0.065                          | 0.245                            | 172. 302                        | 0, 065                         | 0. 137                           |         |                                |                                  |
|                  | Final Sequence | 7.049                           | 0.084                          | 0, 146                           | 7.019                           | 0.094                          | 0.210                            | 7,048                           | 0.069                          | 0. 249                           | 7.049                           | 0. 075                         | 0, 118                           | 7, 049  | 0. 248                         | 0, 220                           |
| 02               | A              | 33. 244                         | 0, 069                         | 0.150                            | 33, 244                         | 0.094                          | 0, 225                           | 33. 244                         | 0.090                          | 0, 304                           | 33, 244                         | 0. 084                         | 0, 160                           | 33, 244 | 0, 264                         | 0.200                            |
|                  | Final Sequence | 9,666                           | 0.099                          | 0. 144                           | 9, 668                          | 0.097                          | 0, 179                           | 9.669                           | 0.085                          | 0.237                            | 9.899                           | 0, 077                         | 0, 119                           | 9, 668  | 0. 238                         | 0. 221                           |
| 03               | A              | 63.095                          | 0.092                          | 0,146                            | 63, 005                         | 0, 085                         | 0. 220                           | 83, 095                         | 0. 092                         | 0.261                            | 63.095                          | 0.071                          | 0, 112                           | 83. 095 | 0.281                          | 0.164                            |
|                  | В              |                                 |                                | -                                | •                               |                                |                                  | 55, 756                         | 0. 070                         | 0.252                            | 55. 756                         | 0.069                          | 0, 151                           |         |                                |                                  |
|                  | Final Sequence | 7.970                           | 0.081                          | 0, 142                           | 7. 870                          | 0.088                          | 0, 217                           | 16. 288                         | 0, 099                         | 0.254                            | 16. 288                         | 0. 067                         | 0, 119                           | 7.670   | 0. 232                         | 0.219                            |
| 04               | A              | •••                             |                                |                                  |                                 |                                |                                  | 286, 547                        | 0. 073                         | 0.258                            | 268. 547                        | 0.071                          | 0, 132                           |         | -                              |                                  |
|                  | Final Sequence |                                 |                                | •••                              |                                 |                                |                                  | 8, 134                          | 0.071                          | 0, 254                           | 9.134                           | 0, 070                         | 0.119                            |         |                                |                                  |

Notes:
1. All veive signel times are referenced to t<sub>0</sub>.
2. Velve delay time is the lime required for initial valve movement after the valve "open" or "closed" solenoid has been anargized.
3. Final sequence check is conducted without propellants and within 12 hr bofors testing.
4. Deta ere reduced from oscillogram.

### APPENDIX III INSTRUMENTATION

The instrumentation for AEDC tests J4-1902-01 through J4-1902-04 is tabulated in Tables III-1 and III-2. The location of selected major engine instrumentation is shown in Fig. III-1.

TABLE III-1
INSTRUMENTATION LIST FOR MAIN-STAGE OPERATION

| A EDC<br>Code | Parameter                                   | Tap<br>No | Range   | Digital<br>Data<br>Syetem | Magnetic<br>Tape | Oscillo-<br>graph | Strip<br>Chart | Event X-Y<br>Recorder Plotter |
|---------------|---------------------------------------------|-----------|---------|---------------------------|------------------|-------------------|----------------|-------------------------------|
|               | Current                                     |           | amp     |                           |                  |                   |                |                               |
| ICC           | Control                                     |           | 0 to 30 | ×                         |                  |                   |                |                               |
| IIC           | Ignition                                    |           | 0 to 30 | ×                         |                  |                   |                |                               |
|               | Event                                       |           |         |                           |                  |                   |                | •                             |
| EASIS-1       | Augmented Spark Igniter<br>No 1 Spark       |           | On/Off  |                           |                  |                   |                | x                             |
| EASIS-2       | Augmented Spark Igniter<br>No. 2 Spark      |           | On /Off |                           |                  |                   |                | x                             |
| EECL          | Engine Cutoff Lockin                        |           | On/Off  | ×                         |                  | ×                 |                | x                             |
| EECO          | Engine Cutoff Signal                        |           | On/Off  | x                         |                  | ×                 |                | ×                             |
| EER           | Engine Ready Signal                         |           | On/Off  |                           |                  |                   |                | x                             |
| RES           | Engine Start Command                        |           | On/Off  | x                         |                  | x                 |                | ×                             |
| EESCO         | Programmed Duration Cuto                    | of f      | On/Off  |                           |                  |                   |                | ×                             |
| EFBVO         | Fuel Bleed Valve Open<br>Limit              |           | On/Off  |                           |                  |                   |                | *                             |
| EFPCO         | Fuel Pump Overspeed Cut-<br>off             | -         | On/Off  |                           |                  |                   |                | ×                             |
| EFPVC         | Fuel Prevalve Closed Liz                    | nit       | On/Off  | x                         | •                |                   |                | x                             |
| EFPVO         | Fuel Prevalve Open Limit                    | t         | On/Off  | x                         |                  |                   |                | ×                             |
| EFUA          | Exploding Bridge Wire<br>Firing Units Armed |           | On/Off  |                           |                  |                   |                | ×                             |
| EHCS          | Helium Control Solenoid<br>Energized        |           | On/Off  | x                         | ×                | x                 |                | x                             |
| EHGTC         | Hot Gam Tapoff Valve<br>Closed Limit        |           | On/Off  |                           |                  |                   |                | x                             |
| EHGTO         | Hot Gae Tapoff Valve<br>Open Limit          |           | On/Off  |                           |                  |                   |                | x                             |
| EID           | Ignition Detected                           |           | On/Off  | x                         |                  | ×                 |                | ×                             |
| EIDA-1        | Ignition Detect Amplific                    | er        | On/Off  |                           |                  |                   |                | x                             |
| EIDA-2        | Ignition Detect Amplific                    | er        | On/Off  |                           |                  |                   |                | x                             |
| EIMCS         | Idle-Mode Control Solene<br>Energized       | oid       | On/Off  | ×                         |                  | x                 |                | x                             |
| EINVC         | Idle-Mode Valve Closed !                    | Limit     | On/Off  |                           |                  |                   |                | x x                           |
| EIMVO         | Idle-Mode Valve Open Lis                    | n1t       | On/Off  |                           |                  |                   |                | x                             |
| EMCL          | Main-Stage Cutoff Locki                     | n         | On/Off  | ×                         |                  | ×                 |                | ×                             |
| ENCO          | Main-Stage Cutoff Signal                    | ı         | On/Of f | x                         |                  | ×                 |                |                               |
| ENCS          | Main-Stage Control Sole                     | noi d     | On/Off  | x                         |                  | ×                 |                | x                             |
| EMD-1         | No. 1 Main-Stage "OK"<br>Depreseurized      |           | On/Off  | · x                       |                  | x                 |                | ×                             |
| EMD-2         | No. 2 Main-Stage "OK"<br>Depreseurized      |           | On/Off  | ×                         |                  | x                 |                | x                             |
| EXFVC         | Main Fuel Valve Closed                      | Limit     | On/Off  |                           |                  |                   |                | ×                             |
| EMFVO         | Main Fuel Valve Open Lin                    | nit       | On/Off  |                           |                  |                   |                | x                             |
| EMOVC         | Main Oxidizer Valve Clos<br>Limit           | ed        | On/Off  |                           |                  |                   |                | ж                             |

#### TABLE III-1 (Continued)

| AEDC<br>Code | Parameter                                                                              | Tap<br>No. | Range   | Digital<br>Data<br>System | Magnetic<br>Tape | Oscillo-<br>graph | Strip<br>Chart | Event X-Y<br>Recorder Plotter |
|--------------|----------------------------------------------------------------------------------------|------------|---------|---------------------------|------------------|-------------------|----------------|-------------------------------|
|              | Event                                                                                  |            |         |                           |                  |                   |                |                               |
| EMOVO        | Main Oxidizer Valve<br>Open Limit                                                      |            | On/Off  |                           |                  |                   |                | ×                             |
| ENP-1        | No. 1 Main-Stage "OK"<br>Pressurized                                                   |            | On/Off  | ×                         |                  | ×                 |                | ×                             |
| EMP-2        | No. 2 Main-Stage "OK"<br>Pressurized                                                   |            | On/Off  | x                         |                  |                   |                | x                             |
| ENPCO        | Main-Stage Pressure Cut<br>Signal                                                      | off        | On/Off  |                           |                  |                   |                | x                             |
| EMS          | Main-Stage Start Signal                                                                |            | On/Off  |                           |                  |                   |                | x                             |
| EMSCO        | Main-Stage Programmed<br>Duration Cutoff                                               |            | On/Off  |                           |                  |                   |                | x                             |
| EMSS         | Main-Stage Start Soleno<br>Energized                                                   | id         | On/Off  | x                         | ×                | ×                 |                | x                             |
| DOSVO        | Oxidizer Bleed Valve<br>Open Limit                                                     |            | On/Off  |                           |                  |                   |                | ж .                           |
| ECCO         | Observer Cutoff Signal                                                                 |            | On/Off  |                           |                  |                   |                | ×                             |
| EOPCO        | Oxidizer Pump Overspeed<br>Cutoff Signal                                               |            | On/Off  |                           |                  |                   |                | ×                             |
| EOPVC        | Oxidizer Prevalve Close                                                                | d          | On/Off  | ×                         |                  |                   |                | ж                             |
| BOPVO        | Oxidizer Prevalve Open<br>Limit                                                        |            | On/Off  | ×                         |                  |                   |                | X                             |
| EOTCO        | Fuel Turbine Overtemper<br>ture Cutoff                                                 | -          | On/Off  |                           |                  |                   |                | x                             |
| eras IS-1    | Augmented Spark Igniter<br>No. 1 Spark Rate                                            |            | On/Off  |                           |                  | x                 |                |                               |
| eras is-2    | Augmented Spark Igniter<br>No. 2 Spark Rate                                            |            | On/Off  |                           |                  | ×                 |                |                               |
| ES 1M1       | No. 1 Solid-Propellant<br>Turbine Starters Ex-<br>ploding Bridge Wire<br>No. 1 Monitor |            | On/Off  | ×                         |                  | ×                 |                |                               |
| ES1N2        | No. 1 Solid-Propellant<br>Turbine Starters Ex-<br>ploding Bridge Wire<br>No. 2 Monitor |            | On/Off  | x                         |                  | ×                 |                | ,                             |
| ES 2 M1      | No. 2 Solid-Propellant<br>Turbine Starters Ex-<br>ploding Bridge Wire<br>No. 1 Monitor |            | On/Off  | ×                         |                  | ×                 |                |                               |
| ES2N2        | No. 2 Solid-Propellant<br>Turbine Starters Ex-<br>ploding Bridge Wire<br>No. 2 Monitor |            | On/Off  | x                         |                  | ×                 |                |                               |
| es 3 m1      | No. 3 Solid-Propellant<br>Turbine Starters Ex-<br>ploding Bridge Wire<br>No. 1 Monitor |            | On/Off- | x                         |                  | ж                 |                |                               |
| ES3N2        | No. 3 Solid-Propellant<br>Turbine Starters Ex-<br>ploding Bridge Wire<br>No. 2 Monitor |            | On/Off  | x                         |                  | ×                 |                |                               |
| ESANCO       | Stall Approach Monitor<br>Cutoff                                                       |            | On/Off  |                           |                  |                   |                | x                             |
| ESPTS        | Solid-Propellant<br>Turbine Starter<br>Initiated                                       |            | On/Off  |                           |                  |                   |                | ×                             |

TABLE III-1 (Continued)

| AEDC<br>Code | Parameter                                        | Tap<br>No. | Range           | Digital<br>Data<br>System | Wagnetic<br>Tape | Oscillo-<br>graph | Strip Event X-Y<br>Chart Recorder Plotter |
|--------------|--------------------------------------------------|------------|-----------------|---------------------------|------------------|-------------------|-------------------------------------------|
|              | Event                                            |            |                 |                           |                  |                   | •                                         |
| ESR-1        | No. 1 Solid-Propellant<br>Turbine Starter Ready  |            | On/Off          | ×                         |                  | ×                 | ×                                         |
| ESR-2        | No. 2 Solid-Propellant<br>Turbine Starter Ready  |            | On/Off          | ×                         |                  | ×                 | ×                                         |
| ESR-3        | No. 3 Solid-Propellant<br>Turbine Starter Raady  |            | On/Off          | ×                         |                  | ×                 | <b>x</b> .                                |
| ESTCO        | Start "OK" Timer Cutoff<br>Signal                |            | On/Off          |                           |                  |                   | ×                                         |
| ETCBC        | Thrust Chamber Bypass Valve Closed               |            | On/Off          |                           |                  |                   | ×                                         |
| ETCBO        | Thrust Chamber<br>Bypass Valve Open              |            | On/Off          |                           |                  |                   | <b>x</b>                                  |
| EVSC-1       | Vibration Safety Counts<br>No. 1                 |            | On/Off          |                           |                  | ×                 |                                           |
| EVSC-2       | Vibration Safety Counts<br>No. 2                 |            | On/Off          |                           |                  | ×                 |                                           |
| EVSC-3       | Vibration Safety Counts<br>No. 3                 |            | On/Off          |                           |                  | x                 |                                           |
|              | Flows                                            |            | gpm             |                           |                  |                   |                                           |
| QF-1         | Engine Fuel Flow PFF                             |            | 0 to 11,000     | x                         |                  |                   |                                           |
| QF-2         | Engine Fuel Flow PFF                             |            | o to 11,000     | ×                         | ×                | x                 |                                           |
| QF-3         | Engine Puel Plow PFF                             | -          | 0 to 11,000     | -                         | ×                | ×                 |                                           |
| QF-1SAM      | Fuel Flow Stall Approach Monitor                 |            | 3 10 11,000     | ×                         | -                | ×                 |                                           |
| Q0-1         | Engine Oxidizer POF                              |            | 0 to 3600       | ×                         |                  |                   | •                                         |
| Q0-2         | Engine Oxidizer POF                              | À          | 0 to 3600       | ×                         | ×                | ×                 |                                           |
| Q0-3         | Engine Oxidizer POF                              |            | 0 to 3600       |                           | ×                | ×                 |                                           |
|              | Forces                                           |            | 1bf             |                           |                  |                   |                                           |
| PSP-1        | Side Load (Pitch)                                |            | ±20,000         | ×                         |                  | ×                 |                                           |
| FSY-1        | Side Load (Yaw)                                  |            | ±20,000         | ×                         |                  | ×                 |                                           |
|              | <u>Position</u>                                  |            | Percent<br>Open |                           |                  |                   |                                           |
| LFBT         | Thrust Chamber Bypass Valve                      |            | 0 to 100        | ×                         |                  | ×                 |                                           |
| LFVT         | Main Puel Valve                                  |            | 0 to 100        | ×                         |                  | ×                 |                                           |
| LIMT         | ldle-Mode/Augmented Spa<br>Igniter Oxidizer Valv |            | 0 to 100        | ×                         |                  | ×                 |                                           |
| LOVT         | Main Oxidizer Valve                              |            | 0 to 100        | ×                         |                  | ×                 |                                           |
| LPUTOP       | Propellant Utilization<br>Valve                  |            | 5 volts         | ×                         |                  | ×                 | x                                         |
| LTVT         | Hot Gas Tapoff Valve                             |            | 0 to 100        | x                         |                  | ×                 |                                           |
|              | Pressure                                         | •          | <u>psia</u>     |                           |                  |                   |                                           |
| PA-1         | Test Cell                                        |            | 0 to 0.5        | ×                         |                  |                   |                                           |
| PA-2         | Test Cell                                        |            | 0 to 1.0        | ×                         |                  |                   | `                                         |
| PA-3         | Test Cell                                        |            | 0 to 5.0        | x                         |                  | , <b>x</b>        |                                           |

TABLE [!!-1 (Continued)

| AEDC<br>Code | Parameter                                            | Tap<br>No. |   | Range   | Digital<br>Data<br>System | Magnetic<br>Tape | Oscillo-<br>graph | Strip<br>Chart | Event<br>Recorder | X-Y<br>Plotter |
|--------------|------------------------------------------------------|------------|---|---------|---------------------------|------------------|-------------------|----------------|-------------------|----------------|
|              | Preseure                                             |            |   | psia    |                           |                  |                   |                |                   |                |
| PC-1P        | Thrust Chamber                                       | CG1        | 0 | to 1500 | ×                         |                  |                   |                |                   |                |
| PC-2P        | Thrust Chamber                                       | CG1a-2     | 0 | to 1500 | ×                         |                  | ×                 | ×              |                   |                |
| PC-2PL       | Thrust Chamber                                       | CG1 a-1    | 0 | to 50   | ×                         |                  |                   | ×              |                   |                |
| PCSPTS-1     | Solid-Propellant<br>Turbine Starter<br>No. 1 Chamber | PTS-1      | 0 | to 5000 | x                         |                  | x                 |                |                   |                |
| PCS PTS-2    | Solid-Propellant<br>Turbine Starter<br>No. 2 Chamber | PTS-2      | 0 | to 5000 | ×                         |                  | ×                 |                |                   |                |
| PCS PTS-3    | Solid-Propellant<br>Turbine Starter<br>No. 3 Chamber | PTS-3      | 0 | to 5000 | x                         |                  | x                 |                |                   |                |
| PFAS IJ      | Augmented Spark<br>Igniter Fuel<br>Injection         | CF4        | 0 | to 2000 | x                         |                  |                   |                |                   |                |
| PPAS I J—L   | Augmented Spark<br>Igniter Fuel<br>Injection         | CP4        | 0 | to 50   | x                         |                  |                   |                |                   |                |
| PPBM         | Thrust Chamber<br>Bypase Manifold                    | CF3        | 0 | to 1500 | ×                         |                  |                   |                |                   |                |
| PFCO         | Film Coolant<br>Orifice                              | CF5        | 0 | to 2000 | ×                         |                  |                   |                |                   |                |
| PFCO-L       | Film Coolant<br>Orifice                              | CF5        | 0 | to 50   | *                         |                  |                   |                |                   |                |
| PFJ-1        | Fuel Injection                                       | CF2        | 0 | to 1500 | ×                         |                  | ×                 |                |                   |                |
| PFJ-1L       | Fuel Injection                                       | CF2        | 0 | to 50   | ×                         |                  |                   |                |                   |                |
| PPNI         | Fuel Jacket Mani-<br>fold Inlet                      | CF1        | 0 | to 2000 | ×                         |                  |                   |                |                   |                |
| PPMI—L       | Fuel Jacket Mani-<br>fold Inlet                      | CF1        | 0 | to 50   | ×                         |                  |                   |                |                   |                |
| PFPBC        | Fuel Pump Balance<br>Piston Cavity                   | PF5        | 0 | to 2000 | ×                         |                  | ×                 | ×              |                   |                |
| PF PBS       | Fuel Pump Balance<br>Piston Sump                     | PF4        | 0 | to 1000 | ×                         |                  | ж                 | ×              |                   |                |
| PFPD-1L      | Fuel Pump Dis-<br>charge                             | PF3        | 0 | to 50   | ×                         |                  |                   |                |                   |                |
| PFPD-1P      | Fuel Pump Dis-<br>charge                             | PF3        | 0 | to 2500 | <b>*</b>                  |                  |                   | ×              |                   |                |
| PFPD-2       | Fuel Pump Dis-<br>charge                             | PF 2       | 0 | to 3000 | ×                         | ×                | ×                 |                |                   |                |
| PFPI-1       | Fuel Pump Inlet                                      | PF1        | 0 | to 100  | ×                         |                  |                   | ×              |                   | ×              |
| PFP1-2       | Fuel Pump Inlet                                      |            | 0 | to 100  | ×                         |                  |                   |                |                   | ×              |
| PFP I-3      | Fuel Pump Inlet                                      | PFla       | 0 | to 100  | ×                         | ×                | ×                 |                |                   | x              |
| PFPRB        | Fuel Pump Rear<br>Bearing Coolant                    | PE 7       | 0 | to 1000 | ×                         |                  |                   | ×              |                   |                |
| PFPS         | Fuel Pump Inter-<br>stage                            | PF6        |   | to 1000 |                           |                  | ×                 |                |                   |                |
| PFPS I       | Fuel Pump Shroud<br>Inlet                            |            |   | to 2500 |                           |                  |                   | ×              |                   |                |
| PFT I-1P     | Fuel Trubine Inlet                                   | TG1        |   | to 1000 |                           |                  | ×                 |                |                   |                |
| PFTO         | Fuel Trubine<br>Outlet                               | 'TG2       | 0 | to 200  | ×                         |                  | •                 |                |                   |                |

#### TABLE III-1 (Continued)

| AEDC<br>Code | Parameter                                                   | Tap<br>No.  | Range     | Digital<br>Data<br>System | Magnetic<br>Tape | Dscillo-<br>graph | Strip | Event<br>Recorder | X_Y<br>Plotter |
|--------------|-------------------------------------------------------------|-------------|-----------|---------------------------|------------------|-------------------|-------|-------------------|----------------|
|              | Preseure                                                    |             | psia      |                           |                  |                   |       |                   |                |
| PFTSC        | Fuel Turbine Seal<br>Cavity                                 | TG10        | 0 to 500  | ×                         |                  |                   |       |                   |                |
| PFUT         | Fuel Ullage Tank                                            |             | 0 to 100  | ×                         |                  |                   |       |                   |                |
| PFVC         | Fuel Repressurization<br>at Customer Connect<br>Panel       |             | 0 to 2000 | x                         |                  |                   |       |                   |                |
| PFVI         | Fuel Repressurization<br>Nozzle Inlet                       | KHF1        | 0 to 2000 | ×                         |                  |                   |       |                   |                |
| PFVL.        | Fuel Represeurization<br>Nozzle Throat                      | KHF2        | 0 to 1000 | x                         |                  |                   |       |                   |                |
| PHEA         | Helium Accumulator                                          | NN3         | 0 to 750  | ×                         |                  |                   |       |                   |                |
| PHES         | Helium Supply                                               |             | 0 to 5000 | ×                         |                  |                   |       |                   |                |
| PHET-1P      | Helium Tank                                                 | NN1-1       | 0 to 5000 | ×                         |                  |                   |       |                   | ×              |
| PHET-2P      | Helium Tank                                                 | NN 1-3      | 0 to 5000 | x                         |                  |                   |       |                   |                |
| PHRO-1P      | Helium Regulator<br>Outlet                                  | NN2         | 0 to 750  | x                         |                  |                   |       |                   |                |
| PNODP        | Oxidizer Dome Purge at<br>Cuetomer Connect Pane             | 1           | 0 to 750  | ×                         |                  |                   |       |                   |                |
| POASIJ       | Augmented Spark Igniter<br>Oxidizer Injection               | 103         | 0 to 1500 | x                         |                  | ×                 |       |                   |                |
| POASIJ-L     | Augmented Spark Igniter<br>Oxidizer Injection               | 103         | 0 to 50   | x                         |                  |                   |       |                   |                |
| POINL        | Oxidizer Idle-Modo Line                                     | PO10        | 0 to 2000 | ×                         |                  |                   |       |                   |                |
| POIML-L      | Oxidizer Idle-Mode Line                                     | PO10        | 0 to 50   | ×                         |                  |                   |       |                   |                |
| P0J-1        | Oxidizer Injection                                          | CO3         | 0 to 1500 | ×                         |                  |                   |       |                   |                |
| POJ-2        | Oxidizer Injection                                          | C03a        | 0 to 2000 | ×                         |                  | x                 |       |                   |                |
| P0J-3        | Oxidizer Injection<br>Manifold                              | СоЗь        | 0 to 5000 |                           | x                |                   |       |                   |                |
| POPBC        | Oxidizer Pump Bearing Coolant                               | P07         | 0 to 500  | ×                         |                  |                   |       |                   |                |
| POPD-1L      | Oxidizer Pump Discharge                                     | P03         | 0 to 50   | ×                         |                  |                   |       |                   |                |
| POPD-1P      | Oxidizer Pump Discharge                                     | P03         | 0 to 2500 | ×                         |                  |                   |       |                   |                |
| POPD-2       | Oxidizer Pump Discharge                                     | P02         | 0 to 3000 | ×                         | ×                | ×                 |       |                   |                |
| POPI-1       | Oxidizer Pump Inlet                                         | P01         | 0 to 100  | ×                         |                  |                   |       |                   | ×              |
| POPI-2       | Oxidizer Pump Inlet                                         |             | 0 to 100  | ×                         |                  |                   |       |                   | ×              |
| POPI-3       | Oxidizer Pump Inlet                                         | POla        | 0 to 100  | ×                         | ×                | ×                 |       | •                 |                |
| POPSC        | Oxidizer Pump Primary<br>Seal Cavity                        | <b>P</b> 06 | 0 to 50   | x                         |                  |                   |       |                   |                |
| POTI-1P      | Oxidizer Turbine Inlet                                      | TG3         | 0 to 200  | ×                         |                  |                   |       |                   |                |
| POTO-1P      | Oxidizer Turbine Outlet                                     | TG4         | 0 to 100  | x                         |                  |                   |       |                   |                |
| POUT         | Oxidizer Ullage Tank                                        |             | 0 to 100  | ×                         |                  |                   |       |                   |                |
| POVC         | Oxidizer Repressuriza-<br>tion at Cuetomer<br>Connect Panel |             | 0 to 2000 | ×                         |                  |                   |       |                   |                |
| POVI         | Oxidizer Represeuriza-<br>tion Nozzle Inlot                 | кно1        | 0 to 1500 | ×                         |                  |                   |       |                   |                |

TABLE III-1 (Continued)

| ARDC<br>Code | <u>Parameter</u>                             | Tap<br>No. | Range       | Digital<br>Data<br>System | Magnetic<br>Tape | Oscillo-<br>graph | Strip<br>Chart | Event L-Y<br>Recorder Flotter |
|--------------|----------------------------------------------|------------|-------------|---------------------------|------------------|-------------------|----------------|-------------------------------|
|              | Preseure                                     |            | psia        |                           |                  |                   |                | •                             |
| POVL         | Oxidizer Represeuriza-<br>tion Nozzle Throat | KH02       | 0 to 1000   | ×                         |                  |                   |                |                               |
| PPTD         | Photocon Cooling Water<br>(Downetream)       |            | 0 to 100    | x                         |                  |                   |                |                               |
| PPTU         | Photocon Cooling Water<br>(Upstream)         |            | 0 to 100    | ×                         |                  |                   |                |                               |
| PPUV I       | Propellant Utilization<br>Valve Inlet        | PO8        | 0 to 2000   | ×                         |                  |                   |                |                               |
| PPUVO        | Propellant Utilization Valve Outlet          | P09        | 0 to 1000   | x                         |                  |                   |                |                               |
| PTCFJP       | Thrust Chamber Fuel<br>Jacket Purge          |            | 0 to 200    | ×                         |                  |                   |                |                               |
| PTEN         | Turbine Exhauet<br>Manifold                  | TG5        | 0 to 50     | x                         |                  |                   |                | •                             |
| PTM          | Tapoff Manifold                              | GG25       | 0 to 1500   | ×                         |                  |                   |                |                               |
| PTM-L        | Tapoff Manifold                              | GGZb       | 0 to 50     | ×                         |                  |                   |                |                               |
|              | Speeds                                       |            | rpm         |                           |                  |                   |                |                               |
| NFP-1        | Fuel Pump                                    | PPY        | 0 to 33000  |                           | ×                |                   |                |                               |
| NFP-2        | Fuel Pump                                    | PPY        | 0 to 33000  | ×                         |                  | ×                 |                |                               |
| NFP-3        | Fuel Pump                                    | PPV        | 0 to 33000  |                           |                  | ×                 |                |                               |
| NOP-1        | Oxidizer Pump                                | POV        | 0 to 12000  |                           | ×                |                   |                |                               |
| NOP-2        | Oxidizer Pump                                | POV        | 0 to 12000  | ×                         |                  | ×                 |                |                               |
| NOP-3        | Oxidizer Pump                                | POY        | 0 to 12000  |                           |                  | ×                 |                |                               |
|              |                                              |            | ••          |                           |                  |                   |                |                               |
|              | Temperatures                                 |            | <u>*7</u>   | _                         |                  |                   |                |                               |
| TA-1<br>TA-2 | Test Cell North                              |            | -50 to 800  | ×                         |                  |                   |                |                               |
| TA-3         | Teet Cell East                               |            | -50 to 800  | ×                         |                  |                   |                |                               |
| TA-4         | Teet Cell South Teet Cell West               |            | -50 to 800  | x<br>x                    |                  |                   |                |                               |
| TECP-1P      | Electrical Control                           | NST1a      | _300 to 200 |                           |                  |                   |                |                               |
| TFAS IJ      | Ascembly Augmented Spark Igniter             |            | -425 to 100 |                           |                  | ×                 |                |                               |
| 12 80 10     | Fuel Injection                               |            | ,           | ^                         |                  | •                 |                |                               |
| TFD-Avg      | Fire Detection Average                       |            | 0 to 1000   | ×                         |                  |                   | x              |                               |
| TEDETA       | Fire Detect Fuel Turbin<br>Manifold Area     | 16         | 0 to 500    | x                         |                  |                   |                |                               |
| TPDMFVA      | Fire Detect Main Fuel<br>Valve Area          |            | 0 to 500    | x                         |                  |                   |                |                               |
| TPDMOVA      | Fire Detect Main Oxidia<br>Valve Area        | ter        | 0 to 500    | ×                         |                  |                   |                |                               |
| TFDODA       | Fire Detect Oxidizer<br>Done Area            |            | 0 to 500    | ×                         |                  |                   |                |                               |
| TFDTDA       | Fire Detect Tapoff<br>Duct Area              |            | 0 to 500    | ×                         |                  |                   |                |                               |
| TFJ-1P       | Fuel Injection                               | CFT2       | -425 to 100 |                           |                  |                   |                |                               |
| TFJ-2P       | Fuel Injection                               | CFT2a      | -425 to 100 |                           |                  | x                 |                | •                             |
| TP PBS       | Fuel Pump Balance<br>Piston Sump             | PFT4       | -425 to -3  | 75 x                      |                  |                   | ×              |                               |
| TFPD-1P      | Fuel Pump Discharge                          | PFT1       | -425 to -39 | 90 x                      | ×                |                   |                |                               |

#### TABLE III-1 (Continued)

| AEDC<br>Code | Parameter                                                   | Tap<br>No.      | Range        | Digital<br>Data<br>System | Magnetic<br>Tape | Oscillo-<br>graph | Strip<br>Chart | Event X-Y<br>Recorder Plotter |
|--------------|-------------------------------------------------------------|-----------------|--------------|---------------------------|------------------|-------------------|----------------|-------------------------------|
|              | Temperatures                                                |                 | <u>°</u>     |                           |                  |                   |                |                               |
| TFPD-2P      | Fuel Pump Discharge                                         | PFT1            | -425 to 100  | · ×                       |                  | •                 |                |                               |
| TFPI-1       | Fuel Pump Inlet                                             | KFT2            | -425 to -400 | ×                         |                  |                   |                | x                             |
| TFPI-2       | Fuel Pump Inlet                                             | KPT2a           | -425 to 100  | ×                         |                  |                   |                | x                             |
| TFRT-1       | Fuel Run Tank                                               |                 | -425 to -400 | ) x                       |                  |                   |                |                               |
| TFRT-3       | Fuel Run Tank                                               |                 | -425 to -400 | ) x                       |                  |                   |                |                               |
| TFTC-1       | Fuel Turbine Cone                                           |                 | -400 to 1800 | х (                       |                  |                   |                |                               |
| TFTC-2       | Fuel Turbine Cone                                           |                 | -400 to 1800 | ) x                       |                  |                   |                |                               |
| TFT 1-3      | Fuel Turbine Inlet                                          | TGT1            | -300 to 2400 | ) x                       |                  |                   | x              |                               |
| TFT 1-4      | Fuel Turbine Inlet                                          | GGT2<br>and GG2 | -300 to 2000 | x                         |                  | ×                 | ×              |                               |
| TFVC         | Fuel Repressuriza-<br>tion at Customer<br>Connect Panel     |                 | -300 to -100 | ) x                       |                  |                   |                |                               |
| TPVL         | Fuel Repressuriza-<br>tion Nozzle Inlet                     | KHPT1           | -300 to -100 | ×                         |                  |                   |                |                               |
| THET-1P      | Helium Tank                                                 | NXTI            | -200 to 150  | ×                         |                  |                   |                | (X                            |
| The VS-1     | Main Fuel Valve<br>Skin (Outer Wall)                        |                 | -425 to 100  | x                         |                  |                   | x              |                               |
| THEVS-2      | Main Fuel Valve<br>Skin (Inner Wall)                        |                 | -425 to 100  | x                         |                  |                   | x              |                               |
| TNODP .      | Oxidizer Dome Purge at<br>Customer Connect<br>Panel         |                 | -250 to 200  | x                         |                  |                   |                |                               |
| TOINL        | Oxidizer Idle Mode<br>Line                                  | POT5            | -300 to 100  | x                         |                  |                   |                |                               |
| TOJ          | Oxidizer Injection                                          | COT1            | -300 to 120  | 0 x                       |                  | ×                 |                |                               |
| TOPBC        | Oxidizer Pump Beering<br>Coolant                            | POT4            | -300 to -25  | 0 x                       |                  |                   |                |                               |
| TOPD-1P      | Oxidizer Pump<br>Discharge                                  | POT3            | -300 to -25  | 0 x                       |                  |                   |                |                               |
| TOPD-2P      | Oxidizer Pump<br>Discharge                                  | POT3            | -300 to 100  | ×                         |                  |                   |                |                               |
| TOPI-1       | Oxidizer Pump Inlet                                         | KOT2            | -310 to -25  | 0 x                       |                  |                   |                | x                             |
| TOPI-2       | Oxidizer Pump Inlet                                         | KOT2a           | -310 to 100  | ×                         |                  |                   |                | ×                             |
| TORT-1       | Oxidizer Run Tank                                           |                 | -300 to -28  | 5 x                       |                  |                   |                |                               |
| TORT-3       | Oxidizer Run Tank                                           |                 | -300 to -28  | 5 x                       |                  |                   |                |                               |
| TOTI-1P      | Oxidizer Turbine Inlet                                      | TGT3            | 0 to 120     | 0 x                       |                  |                   |                |                               |
| TOTH-1       | Oxidizer Turbine<br>Manifold                                |                 | -300 to 100  | 0 x                       |                  |                   |                |                               |
| TOTH-2       | Oxidizer Turbine<br>Wanifold                                |                 | -300 to 100  | 0 x                       |                  |                   |                |                               |
| TOTO-1P      | Oxidizer Turbine<br>Outlet                                  | TGT4            | 0 to 100     | 0 x                       |                  |                   |                |                               |
| TOTSDL       | Oxidizer Turbine Seal<br>Drain Line                         |                 | -100 to 100  | 0 x                       |                  |                   |                |                               |
| TOVC         | Oxidizer Repressuriza-<br>tion at Customer<br>Connect Panel |                 | -200 to 500  | x                         |                  |                   |                |                               |
| TOVL         | Oxidizer Repressuriza-<br>tion Nozzle Inlet                 | KHOT1           | -200 to 500  | ×                         |                  |                   |                |                               |
| TPIP-1P      | Instrumentation Package                                     |                 | -300 to 200  | ×                         |                  |                   |                |                               |

#### AEDC-TR-69-44

#### TABLE III-1 (Concluded)

| AEDC<br>Code | Parameter                                                    | Tap<br>No. | Range       | Digital<br>Data<br>System | Magnetic | Oscillo-<br>graph |   | Event Z-Y<br>Recorder Photon |
|--------------|--------------------------------------------------------------|------------|-------------|---------------------------|----------|-------------------|---|------------------------------|
|              | Temperatures                                                 |            | <u>.,</u>   |                           |          |                   |   |                              |
| TPTU         | Photocon Cooling Water (Upstream)                            |            | 0 to 300    | ×                         |          |                   |   |                              |
| TSCGA-1      | Solid-Propellant<br>Turbine Starter<br>No. 1 Conditioning Ga | •          | -100 to 200 | x                         |          |                   |   |                              |
| TSCGA-2      | Solid-Propellant Turbin<br>Starter No. 2 Conditi<br>Gas      |            | -100 to 200 | x                         |          |                   |   |                              |
| TSCGA-3      | Solid-Propellant<br>Turbine Starter<br>No. 3 Conditioning Ga | •          | -100 to 200 | x                         |          |                   |   |                              |
| TSCMF-1      | Solid-Propellant Turbin<br>Starter Case Mount Fl             |            | 0 to 1500   | ) x                       |          |                   |   |                              |
| TSCMF-2      | Solid-Propellant Turbin<br>Starter Case Mount Fl             |            | 0 to 150    | ) x                       |          |                   |   |                              |
| TSCMF-3      | Solid-Propellant Turbiz<br>Starter Case Hount Fl             |            | 0 to 150    | × •                       |          |                   |   |                              |
| TTCP         | Thrust Chamber Purge                                         |            | -250 to 200 | ×                         |          |                   |   |                              |
| TTCT-E       | Thrust Chamber Tube (Ex                                      | it)        | -425 to 500 | ×                         |          |                   |   |                              |
| TTCT-T1      | Thrust Chamber Tube (Ti                                      | roat)      | -425 to 500 | ×                         |          |                   | × |                              |
| TTCT-T2      | Thrust Chamber Tube (Ti                                      | roat)      | -425 to 500 | x                         |          |                   |   |                              |
|              | <b>Vibrations</b>                                            |            | g's         |                           |          |                   |   |                              |
| UFPR         | Fuel Pump                                                    | PZA-1      | 450 peak    |                           | ×        |                   |   |                              |
| UFTR         | Fuel Turbine                                                 | V123-2     | 450 peak    |                           | x        |                   |   |                              |
| UOPR         | Oxidizer Pump                                                | PZA-2      | 300 peak    |                           | ×        |                   |   |                              |
| UTCD-1       | Thrust Chamber Dome                                          | FZA-la     | 1400 peak   |                           | ×        | ×                 |   |                              |
| UTCD-2       | Thrust Chamber Dome                                          | FZA-2      | 1400 peak   |                           | ×        | ×                 |   |                              |
| UTCD-3       | Thrust Chamber Dome                                          | PZA-3      | 300 peak    |                           | ×        | x                 |   |                              |
|              | Voltage                                                      |            | volts       |                           |          |                   |   |                              |
| VCB          | Cootrol Bus                                                  |            | 0 to 36     | ×                         |          |                   |   |                              |
| VIB          | Ignition Bue                                                 |            | 0 to 36     | ×                         |          |                   |   |                              |
| VIDA-1       | Ignition Detect Amplif                                       | ier        | 9 to 16     | ×                         |          |                   |   |                              |
| VIDA-2       | Ignition Detect Amplif                                       | ier        | 9 to 16     | I                         |          |                   |   |                              |
| VPUVEP       | Propellant Utilization<br>Telemetry Potentione<br>Excitation |            | 0 to 5      | x                         |          |                   |   |                              |

TABLE III-2
INSTRUMENTATION LIST FOR IDLE-MODE OPERATION

|                |                                                       |            |                  | Digital        |                  |                   |                |                   |                |
|----------------|-------------------------------------------------------|------------|------------------|----------------|------------------|-------------------|----------------|-------------------|----------------|
| AEDC<br>Code   | Parameter                                             | Tap<br>No. | Range            | Data<br>System | Magnetic<br>Tape | Oscillo-<br>graph | Strip<br>Chart | Event<br>Recorder | X-Y<br>Plotter |
|                | Current                                               |            | anp              |                |                  |                   |                |                   |                |
| ICC            | Control                                               |            | 0 to 30          | x              |                  |                   |                |                   |                |
| IIC            | Ignition                                              |            | 0 to 30          | ×              |                  |                   |                |                   |                |
|                | Event                                                 |            | Counte           |                |                  |                   |                |                   |                |
| EASIS-1        | Augmented Spark Igniter<br>No. 1 Spark                |            | On/Off           |                |                  |                   |                | x                 |                |
| EASIS-2        | Augmented Spark Igniter<br>No. 2 Spark                |            | On/Off           |                |                  |                   |                | ×                 |                |
| EECL           | Engine Cutoff Lockin                                  |            | On/Off           | ×              |                  | ×                 |                | ×                 |                |
| EECO           | Engine Cutoff Signal                                  |            | On/Off           | ×              |                  | x                 |                | x                 |                |
| EER            | Engine Ready Signal                                   |            | On/Off           |                |                  |                   |                | x                 |                |
| EES            | Engine Start Command                                  | _          | On/Off           | ×              |                  | x                 |                | <b>x</b> .        |                |
| KESCO          | Programmed Duration Cutof                             |            | On/Off           |                |                  |                   |                | ' X               |                |
| EFBVO<br>EFPCO | Fuel Bleed Valve Open Lim Fuel Pump Overspeed Cutof   |            | On/Off<br>On/Off |                |                  |                   |                | X                 |                |
| EFPVC          | Fuel Prevalve Closed Limi                             |            | On/Off           | x              |                  |                   |                | ×                 |                |
| EFPVO          | Fuel Prevalve Open Limit                              | •          | On/Off           | ×              |                  |                   |                | ×                 |                |
| epua           | Exploding Bridge Vire<br>Firing Units Armed           |            | On/Off           | -              |                  |                   |                | x                 |                |
| EHCS           | Helium Control Solenoid<br>Energized                  |            | On/Off           | x              | x                | * '               |                | ×                 |                |
| EHGTC          | Hot Gas Tapoff Valve<br>Closed Limit                  |            | On/Off           |                |                  |                   |                | x                 |                |
| ehgto          | Hot Gas Tapoff Valve<br>Open Limit                    |            | On/Off           |                |                  |                   |                | x                 |                |
| EID            | Ignition Detected                                     |            | On/Off           | x              |                  | x                 |                | x                 |                |
| EIDA-1         | Ignition Detect Amplifier No. 1                       |            | On/Off           |                |                  |                   |                | x                 |                |
| EIDA-2         | Ignition Detect Amplifier No. 2                       |            | On/Off           |                |                  |                   |                | **                | 1              |
| EIMCS          | Idle-Mode Control Solenoi<br>Energized                |            | On/Off           | x              |                  | ×                 |                | ×                 |                |
| EIMAC          | Idle-Mode Valve Closed Li                             |            | On/Off           |                |                  |                   |                | X                 |                |
| ENCL           | Idle-Mode Valve Open Limi<br>Main-Stage Cutoff Lockin | t          | On/Off<br>On/Off |                |                  |                   |                | <b>x</b>          |                |
| ENCS           | Main-Stage Control Soleno                             | id         | On/011<br>On/011 |                |                  |                   |                | x                 |                |
| END-1          | Energized No. 1 Main-Stage "OK"                       |            | On/Off           |                |                  |                   |                | x                 |                |
|                | Depressurized .                                       |            | -                |                |                  |                   |                | -                 |                |
| END-2          | No. 2 Main-Stage "OK"<br>Depressurized                |            | On/Off           |                | •                |                   |                | ×                 |                |
| ENFVC          | Nain Fuel Valve Closed<br>Limit                       |            | On/Off           |                |                  |                   |                | <b>x</b>          |                |
| EMOAC<br>EMEAQ | Main Fuel Valve Open Lini Main Oxidizer Valve Close   |            | On/Off<br>On/Off |                |                  |                   |                |                   |                |
| ENOVO          | Limit Hain Oxidizer Valve Open                        |            | 0n/011           |                |                  |                   |                | ×                 |                |
| EMP-1          | Limit<br>No. 1 Main-Stage "OK"                        |            | On/Off           |                |                  |                   |                | ' x               |                |
| ENP-2          | Pressurized<br>No. 2 Main-Stage "OK"                  |            | On/Off           |                |                  |                   |                | -<br>x            |                |
| EMPCO          | Pressurized Main-Stage Pressure Cuto                  | tt         | On/Off           |                |                  |                   |                | *                 |                |
| -              | Signal                                                |            |                  |                |                  |                   |                |                   |                |
| ens<br>Ensco   | Main-Stage Start Signal                               |            | On/Off<br>On/Off |                |                  |                   |                | x                 |                |
| ENSS           | Duration Cutoff  Main-Stage Start Solenoic Energized  | 1          | On/Off           |                |                  |                   |                | ×                 |                |
| EOBAO          | Oxidizer Bleed Valve Oper<br>Limit                    | 1          | On/Off           |                |                  |                   |                | ×                 |                |
| EOCO           | Observer Cutoff Signal                                |            | On/Off           |                |                  |                   |                | x                 |                |

TABLE III-2 (Continued)

|                |                                                  |        |                         | Digital        |      |          |                               |                |
|----------------|--------------------------------------------------|--------|-------------------------|----------------|------|----------|-------------------------------|----------------|
| AEDC           | Davamatan                                        | Tap    | Proce                   | Data<br>System |      | Oscillo- | Strip Event<br>Chart Recorder | X~Y<br>Plotter |
| Code           | Parameter                                        | No.    | Raoge                   | O/Brow         | Tape | graph    | CHETT RECOIDES                | Pioner         |
|                | Event                                            |        |                         |                |      |          |                               |                |
| EOPCO          | Oxidizer Pump Overspeed<br>Cutoff Signal         |        | On/Of t                 |                |      |          | ×                             |                |
| EOPVC          | Oxidizer Prevalve Closed<br>Limit                |        | On/Off                  | x              |      |          | *                             |                |
| EOPVO          | Oxidizer Prevalve Open<br>Limit                  | •      | On/Off                  | ×              |      |          | x                             |                |
| EOTCO          | Fuel Turbine Over-<br>Temperature Cutoff         |        | On/Off                  |                |      |          | ×                             |                |
| eras is—1      | Augmented Spark Igniter<br>No. 1 Spark Rate      |        | On/Off                  |                |      | ×        |                               |                |
| erasis=2       | Augmented Spark Igniter<br>No. 2 Spark Rate      |        | On/Off                  |                |      | ×        |                               |                |
| ESAMCO         | Stall Approach Monitor<br>Cutoff                 |        | On/Off                  |                |      |          | ×                             |                |
| ESPTS          | Solid-Propellant Turbine<br>Starter Initiated    | i      | On/Off                  |                |      |          | x                             |                |
| ESR-1          | No. 1 Solid-Propellant<br>Turbine Starter Ready  |        | On/Off                  |                |      |          | ×                             |                |
| ESR-2          | No. 2 Solid-Propellant<br>Turbine Starter Ready  |        | On/Off                  |                |      |          | x                             |                |
| ESR-3          | No. 3 Solid-Propellant<br>Turbine Starter Ready  |        | On/Off                  |                |      |          | <b>x</b>                      |                |
| ESTCO .        | Start "OK" Timer Cutoff                          |        | On/Off                  |                |      |          | x                             |                |
| ETCBC          | Thrust Chamber Bypass<br>Valve Closed            |        | On/Off                  |                |      |          | ×                             |                |
| ETCB0          | Thrust Chamber Bypass<br>Valve Open              |        | On/Off                  |                |      |          | x                             |                |
| EVSC-1         | Vibration Safety Counts<br>No. 1                 |        | On/Off                  |                |      | ×        |                               |                |
| EVSC-2         | Vibration Safety Counts<br>No. 2                 |        | On/Off                  |                |      | ×        |                               |                |
| EVSC-3         | Vibration Safety Counts<br>No. 3                 |        | On/Off                  |                |      | x        |                               |                |
|                | Flows                                            |        | gpm                     |                |      |          |                               |                |
| QF-1           | Engine Fuel Flow                                 | PFF    | 0 to 11,000             | x              |      |          |                               |                |
| QF-2           | Engine Fuel Flow                                 | PFFR   | 0 to 11,000             | ×              |      | ×        |                               |                |
| QF-3           | Engine Fuel Flow                                 | PFF    | 0 to 11,000             |                |      | ×        |                               |                |
| QF-15AM        | Fuel Flow Stall<br>Approach Monitor              |        |                         | ×              |      | ×        |                               |                |
| QO-1           | Engine Oxidizer Flow                             | POF    | 0 to 3600               | ×              |      |          |                               |                |
| QO-2           | Engine Oxidizer Flow                             | POFa   | 0 to 3600               | ×              |      | ×        |                               |                |
| QO-3           | Engine Oxidixer Flow                             | POF    | 0 to 3600               |                |      | ×        |                               |                |
| *n             | Forces                                           |        | 1b <sub>f</sub>         |                |      |          |                               |                |
|                | 701000                                           |        |                         |                |      |          |                               |                |
| FSP-1<br>FSY-1 | Side Load (Pitch)                                |        | ±20,000                 | x<br>x         |      | x        |                               |                |
| F81-1          | Side Load (Yaw) Position                         |        | ±20,000<br>Percent Open |                |      | ^        |                               |                |
|                |                                                  |        |                         |                |      | _        |                               |                |
| LFVT<br>Limt   | Main Fuel Valve                                  |        | 0 to 100<br>0 to 100    | ×              |      | x<br>x   |                               |                |
| TIME           | Idle-Node/Augmented Spa<br>Ighiter Oxidizer Valv | e<br>E | 0 to 100                | •              |      | ^        |                               |                |
| LPUTOP         | Propellant Utilization<br>Valve                  |        | 5 volts                 | x              |      | ×        | x                             |                |
|                | Pressure                                         |        | peia                    |                |      |          |                               |                |
| PA-1           | Test Cell                                        |        | 0 to 0.5                | ×              |      |          |                               |                |
| PA-2           | Test Cell                                        |        | 0 to 1.0                | ×              |      |          |                               |                |
| PA-3           | Test Cell .                                      |        | 0 to 5.0                | x              |      | ×        |                               |                |
| PC-2PL         | Thrust Chamber                                   | CGla-1 | 0 to 50                 | x              |      |          | x                             |                |
| PPAS I J—L     | Augmented Spark<br>Igniter Fuel<br>Injection     | CF4    | 0 to 50                 | x              |      |          |                               |                |

TABLE III-2 (Continued)

|                                                                   | netic Oscillo- Strip Event X-Y ape graph Chart Recorder Plotter |
|-------------------------------------------------------------------|-----------------------------------------------------------------|
| Pressure                                                          |                                                                 |
| PFCO-L Film Coolant Orifice CF5 0 to 50 x                         |                                                                 |
| PFJ-1L Fuel Injection CF2 0 to 50 x                               |                                                                 |
| PFNI Fuel Jacket Manifold CF1 0 to 2000 x Inlet                   |                                                                 |
| PFNI-L Fuel Jacket Manifold CF1 0 to 50 x Inlet                   |                                                                 |
| PFPD-1L Fuel Pump Discharge PF3 0 to 50 x                         |                                                                 |
| PFFI-1 Fuel Pump Inlet PF1 0 to 100 x                             | x x                                                             |
| PFPI-2 Fuel Pump Inlet 0 to 100 x                                 | ×                                                               |
|                                                                   | x x                                                             |
| PFUT Fuel Ullage Tank 0 to 100 x                                  |                                                                 |
| PHEA Helium Accumulator NN3 0 to 750 x                            |                                                                 |
| PHES Helium Supply 0 to 5000 x                                    |                                                                 |
| PHET-1P Helium Tank NN1-1 0 to 5000 x                             | x                                                               |
| PHET-2P Helium Tank NN1-3 0 to 5000 x                             |                                                                 |
| PHRO-1P Helium Regulator NN2 0 to 750 x Outlet                    |                                                                 |
| PNODP Oxidizer Dome Purge 0 to 750 x at Customer Connect Panel    |                                                                 |
| POASIJ-L Augmented Spark 103 0 to 50 x Igniter Oxidizer Injection |                                                                 |
| POINL-L Oxidizer 1dle-Mode PO10 0 to 50 x Line                    |                                                                 |
| POJ-2 Oxidizer Injectinn CO3s 0 to 2000 x                         | x                                                               |
| POPD-1L Oxidizer Pump Discharge PO3 0 to 50 x                     |                                                                 |
| POPI-1 Oxidizer Pump Inlet PO1 0 to 100 x                         | ×                                                               |
| POPI-2 Oxidizer Pump Inlet 0 to 100 x                             | x                                                               |
|                                                                   | x x                                                             |
| POUT Oxidizer Ullage Tank 0 to 100 x                              |                                                                 |
| PPTD Photocon Cooling Water 0 to 100 x (Downstream)               |                                                                 |
| PPTU Photocon Cooling Water 0 to 100 x (Upstream)                 |                                                                 |
| PTCFJP Thrust Chamber Fuel 0 to 200 x Jacket Purge                |                                                                 |
| PTM-L Tapoff Manifold GG2b 0 to 50 x  Speeds rpm                  |                                                                 |
|                                                                   | _                                                               |
| NFP-2 Fusl Pump PPV 0 to 33,000                                   | x                                                               |
| NFP-3 Fuel Pump PPV 0 to 33,000                                   | <b>x</b>                                                        |
| NOP-2 Oxidizer Pump POV 0 to 12,000                               | x                                                               |
| NOP-3 Oxidizer Pump POV 0 to 12,000  Temperatures °F              | x                                                               |
| TA-1 Test Cell North -50 to 800 x                                 |                                                                 |
| TA-2 Test Cell East -50 to 800 x                                  |                                                                 |
| TA-3 Test Cell South -50 to 800 x                                 |                                                                 |
| TA-4 Test Cell West -50 to 800 x                                  |                                                                 |
| TECP-1P Electrical Control NST1a -300 to 200 x                    |                                                                 |
| TFASIJ Augmented Spark IFT1 -425 to 100 x Igniter Fuel Injection  | ж                                                               |
| TFD-AVG Fire Detection Average 0 to 1000 x                        | x                                                               |
| TFDFTA Fire Detect Fuel Turbine 0 to 500 x Manifold Area          |                                                                 |

#### TABLE III-2 (Continued)

| AEDC<br>Code     | Parameter                                       | Tap<br>No.         | Range                   | Digital<br>Data<br>Systen | Magnetic<br>Tape | Oscillo-<br>graph | Strip<br>Chart | Event<br>Recorder | X-Y<br>Plotter |
|------------------|-------------------------------------------------|--------------------|-------------------------|---------------------------|------------------|-------------------|----------------|-------------------|----------------|
|                  | Tenperatures                                    |                    |                         |                           |                  |                   |                |                   |                |
| TFDUFVA          | Fire Detect Main Fuel<br>Valve Area             |                    | 0 to 500                | ×                         |                  |                   |                |                   |                |
| TFDMOVA          | Fire Oetect Nain<br>Oxidizer Valve Area         |                    | 0 to 500                | x                         |                  |                   |                |                   |                |
| TFDOOA           | Fire Detect Oxidizer<br>Dome Area               |                    | 0 to 500                | ×                         |                  |                   |                |                   |                |
| TFDTDA           | Fire Oetect Tapoff<br>Duct Area                 |                    | 0 to 500                | x                         |                  |                   |                |                   |                |
| TFJ-1P           | Fuel Injection                                  | CFT2               | -425 to 100             | ×                         |                  |                   |                |                   |                |
| TFJ-2P           | Fuel Injection                                  | CFT2a              | -425 to 100             | x                         |                  | x                 |                |                   |                |
| TFPBS            | Puel Pump Balance<br>Piston Sump                | PFT4               | -425 to -37             | 5 x                       |                  |                   | ×              |                   |                |
| TFPD-1P          | Fuel Pump Discharge                             | PFT1               | -425 to -39             | 0 x                       | ×                |                   |                |                   |                |
| TFPD-2P          | Fuel Pump Oischarge                             | PFT1               | -425 to 100             | x                         |                  |                   |                |                   |                |
| TFPI-1           | Fuel Pump Inlet                                 | KFT2               | -425 to -40             |                           |                  |                   |                |                   | x              |
| TFPI-2           | Fuel Pump Inlet                                 | KFT2a              | -425 to 100             | ×                         |                  |                   |                |                   | ×              |
| TPRT-1           | Fuel Run Tank                                   |                    | -425 to -40             | 0 x                       |                  |                   |                |                   |                |
| TFRT_3           | Fuel Run Tank                                   |                    | -425 to -40             | 0 x                       |                  |                   |                |                   |                |
| TFTI-3           | Fuel Turbine Inlet                              | TCT 1              | -300 to 240             |                           |                  |                   | x              |                   |                |
| TFT I—4          | Fuel Turbine Inlet                              | GG2<br>and<br>GGT2 | -300 to 200             | 00 x                      |                  | x                 | x              | •                 |                |
| THET-1P          | Helium Tank                                     | NNTI               | -200 to 150             | ) x                       |                  |                   |                |                   | ×              |
| TMFVS-1          | Main Fuel Valve Skin<br>(Outer Wall)            |                    | -425 to 100             |                           |                  |                   | ×              |                   |                |
| TMFVS-2          | Main Fuel Valve Skin<br>(Inner Wall)            |                    | -425 to 100             | x                         |                  |                   | x              |                   |                |
| TNODP            | Oxidizer Dome Purge at<br>Customer Connect Pan  |                    | -250 to 200             | ) x                       |                  |                   | •              |                   |                |
| TOIML            | Oxidizer Idle-Mode Lin                          | e POT5             | -300 tn 100             | ) x                       |                  |                   |                |                   |                |
| LOT              | Oxidizer Injection                              | COT1               | -300 to 120             | 00 x                      |                  | ×                 |                |                   |                |
| TOPBC            | Oxidizer Pump Bearing<br>Coolant                | POT4               | -300 to −25             | 50 x                      |                  |                   |                |                   |                |
| TOPD-1P          | Oxidizer Pump Discharg                          | e POT3             | -300 to -25             |                           |                  |                   |                |                   |                |
| TOPD-2P          | Oxidizer Pump Oischarg                          |                    | -300 to 100             |                           |                  |                   |                |                   |                |
| TOPI-1           | Oxidizer Pump Inlet                             | кот2               | _310 to _2              |                           |                  |                   |                |                   | x              |
| TOPI-2           | Oxidizer Pump Inlet                             | KOT2a              | -310 to 100             |                           |                  |                   |                |                   | x              |
| TORT-1           | Oxidizer Run Tank                               |                    | -300 to -2              |                           |                  |                   |                |                   |                |
| TORT-3           | Oxidizer Run Tank                               |                    | -300 to -2              |                           |                  |                   |                |                   |                |
| TOTM-2<br>TOTSDL | Oxidizer Turbine Manif<br>Oxidizer Turbine 5eal | old                | -300 to 100             |                           |                  |                   |                |                   |                |
|                  | Drain Line                                      | 4.00               | 000 4- 00               |                           |                  |                   |                |                   |                |
| TPIP-1P<br>TPTU  | Instrumentation Packag                          |                    | -300 to 200<br>0 to 300 | 0 x                       |                  |                   |                |                   |                |
| TTCP             | (Upstream)                                      |                    | -250 to 20              | 0 x                       |                  |                   |                |                   |                |
| TTCT-E           | Thrust Chamber Purge<br>Thrust Chamber Tube (1  |                    | -425 to 50              |                           |                  |                   |                |                   |                |
| TTCT-T1          | Thrust Chamber Tube (                           |                    | -425 to 50              |                           |                  |                   | ×              |                   |                |
| TTCT-T2          | Thrust Chamber Tube (7                          |                    | -425 to 50              |                           |                  |                   |                |                   |                |
|                  | Vibrations                                      |                    | g's                     |                           |                  |                   |                |                   |                |
| UFPR             | Fuel Pump                                       | PZA-1              | 450 Peak                |                           | ×                |                   |                |                   |                |
| UFTR             | Fuel Turbine                                    | V123-2             | 450 Peak                |                           | ×                |                   |                |                   |                |
| UOPR             | Oxidizer Pump                                   | PZA-2              | 300 Peak                |                           | ×                |                   |                |                   |                |
| UTCD-1           | Thrust Chamber Dome                             | FZA-la             | 1400 Peak               |                           | x                | x                 |                |                   | _              |
| UTCD-2           | Thrust Chamber Dome                             | FZA-2              | 1400 Peak               |                           | x                | ×                 |                |                   |                |
| UTCD-3           | Thrust Chamber Dome                             | FZA-3              | 300 Penk                |                           | ×                | x                 |                |                   |                |

#### TABLE III-2 (Concluded)

| APDC   | Parameter                    | Tap<br>No. | Range   | Digital<br>Data<br>System | Magnetic<br>Tape | Oscillo-<br>graph | Strip | Event<br>Recorder | X-Y<br>Plotter |
|--------|------------------------------|------------|---------|---------------------------|------------------|-------------------|-------|-------------------|----------------|
|        | <b>Voltage</b>               |            | Volta   |                           |                  |                   |       |                   |                |
| VCB    | Control Bus                  |            | 0 to 36 | x                         |                  |                   |       |                   |                |
| VIB    | Ignition Bus                 |            | 0 to 36 | x                         |                  |                   |       |                   |                |
| VIDA-1 | Ignition Detect<br>Amplifier |            | 9 to 16 | ×                         |                  |                   |       | -                 |                |
| VIDA-2 | Ignition Detect<br>Amplifier |            | 9 to 16 | ×                         |                  |                   |       |                   |                |



a. General Arrangement

Fig. III-1 Selected Sensor Locations



b. Fuel Turbopump Sensor Locations
Fig. III-1 Continued



c. Fuel System Sensor Locations
Fig. 111-1 Continued



d. Oxidizer Turbopump Sensor Locations
Fig. III-1 Continued



e. Oxidizer System Sensor Locations
Fig. III-1 Continued



Fig. III-1 Continued



g. Thrust Chamber Injector Sensor Locations
Fig. III-1 Continued



h. Thrust Chamber Sensor Locations Fig. III-1 Continued



i. Pneumatic Control Package Sensor Locations Fig. III-1 Continued



j. Helium Tonk Sensor Locations Fig. III-1 Continued





k. Solid-Propellant Turbine Starter Sensar Locations
Fig. III-1 Continued



1. Solid-Propollant Turbine Starter Conditioning System Sensor Locations
Fig. III-1 Continued



m. Fuel Turbine Sensor Locations
Fig. III-1 Continued



n. Oxidizer Turbine Sensor Locations Fig. III-1 Continued

### View Looking Downstream



o. Side Load Forces Sensor Locations Fig. III-1 Continued



p. Customer Connect Panel Sensor Locations
Fig. 111-1 Continued



q. Test Cell Ambient Temperature Sensor Locations
Fig. 111-1 Continued



r. S-IVB Battleship Sensor Locations Fig. III-1 Concluded

Security Classification

#### DOCUMENT CONTROL DATA - R & D (Security classification of title, body, of abstract and indexing ennotation must be entered when the overall report is classified) 1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION Arnold Engineering Devélopment Center UNCLASSIFIED ARO, Inc., Operating Contractor Arnold Air Force Station, Tennessee 2b. GROUP N/A ALTITUDE DEVELOPMENTAL TESTING OF THE J-2S ROCKET ENGINE IN PROPULSION ENGINE TEST CELL (J-4) (TESTS J4-1902-01 THROUGH J4-1902-04) 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) December 5, 1968 through January 10, 1969 - Interim Report 5. AUTHOR(S) (First name, middle initial, last name) N. R. Vetter, ARO, Inc. 74. TOTAL NO. OF PAGES 6. REPORT DATE 7b. NO. OF REFS February 1969 113 60. CONTRACT OR GRANT NO. F40600-69-C-0001 9a, ORIGINATOR'S REPORT NUMBER(5) AEDC-TR-69-44 b. PROJECT NO. 9194 9b. OTHER REPORT NO(\$) (Any other numbers that may be assigned this report) .System 921E N/A 10. DISTRIBUTION TATEMENT Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama 35812. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY NASA, Marshall Space Flight Available in DDC. Center (I-E-J) Huntsville, Alabama 35812

Five firings of the Rocketdyne J-2S rocket engine (S/N J-111A) were conducted in Test Cell J-4 of the Large Rocket Facility between December 5, 1968, and January 10, 1969. These firings were accomplished during test periods J4-1902-01 through J4-1902-04 at pressure altitudes of approximately 100,000 ft at engine start to investigate engine idle-mode operation, transition from idle mode to main stage, and steady-state operation at main stage. The engine started successfully in all cases and two planned transitions from idle mode to main stage were accomplished. The thrust chamber and injector were damaged extensively during a 288.5-sec duration idle-mode firing (04A).

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Klight Center (I-E-J), Huntsville, Alabama 35812.

Ato 12 July 24 signal william of lake Italy

18. ABSTRACT

#### UNCLASSIFIED

| UNCLASSIFIED  Security Classification                                                                                                       |      |        |       |     |      |    |
|---------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------|-----|------|----|
| 14. KEY WORDS                                                                                                                               | LINI | LINK B |       | LIN | кс   |    |
|                                                                                                                                             | ROLE | WT     | ROLE  | WT  | ROLE | WT |
| J-2S rocket engines Saturn liquid propellants altitude simulation flight simulation startup performance tests performance evaluation damage | 5    |        | eri C |     |      |    |

UNCLASSIFIED

Security Classification