

Introdução a Redes Neurais Artificiais

André Siqueira Ruela

- Cérebro: Um computador altamente complexo, não-linear e paralelo.
- Principal componente: Neurônio

- Velocidade de Operação:
 - Computadores: nanosegundos (10⁻⁹s).
 - Neurônios: milisegundos (10-3s).
- Cérebro: rede de neurônios massivamente paralela.
 - 10 bilhões de neurônios.
 - 60 trilhões de interconexões.

Comunicação entre neurônios:

Modelo de Neurônio

Modelo do Neuronio

$$V_{i} = \underbrace{\sum_{j=1}^{n} W_{ij} \times_{j}}_{X_{ij}} + b_{i} = \underbrace{W_{i} \times_{i}}_{X_{i}} \times_{i} + b_{i}$$

$$\times = \underbrace{\sum_{j=1}^{n} W_{ij} \times_{j}}_{X_{in}} + \underbrace{W_{i} \times_{i}}_{X_{in}} \times_{i}$$

$$\times = \underbrace{\sum_{j=1}^{n} W_{ij} \times_{j}}_{X_{in}} + \underbrace{W_{i} \times_{j}}_{X_{in}} \times_{i}$$

Modelo de Neurônio

$$u_i = \sum_{j=1}^{N} w_{ij} x_j + w_{i0} = \underline{w}_i^t \underline{x} + w_{i0}$$

$$s_i = s(u_i)$$

Função de Ativação s(u)

Neurônio	Função de ativação	Ganho
	$s_{i}(u_{i})$	linearizado
		$g_i(s_i) = ds_i / du_i$
linear	$\mathbf{u_i}$	1
Não linear,	$1-e^{-2u_i}$	
tipo tgh	$tgh(u_i) = \frac{1-e^{-2u_i}}{1+e^{-2u_i}}$	$1-s_i^2$
Não linear,	$ 0\rangle$ co $ 1\rangle = 0$	
Tipo binário	$\deg(\mathbf{u}_{i}) = \begin{cases} 0 & \text{se } \mathbf{u}_{i} < 0 \\ 1 & \text{se } \mathbf{u}_{i} \ge 0 \end{cases}$	-

Função de Ativação s(u)

Arquitetura da Rede

- Rede feedfoward (sem realimentação):
 - Estática.
 - · Estruturalmente estável.

$$\underline{\mathbf{x}} = \begin{bmatrix} 0, 1 \\ 0, 7 \end{bmatrix}$$

$$\tilde{\mathbf{y}} = ?$$

$$u_1 = -0.1 + (0.2)(0.1) + (0.2)(0.7) = 0.06$$

 $v_1 = tgh(0.06) = 0.06$

$$v_2 = 0.46$$
 $v_3 = 0.63$

$$u_4 = 0.2 + (0.1)(0.06) + (-0.1)(0.46) + (-0.1)(0.63) = 0.097$$

 $v_4 = 0.097$ (linear!)

$$u_5 = -0.1 + (0.5)(0.06) + (0.2)(0.46) + (1.1)(0.63) = 0.715$$

 $v_5 = \text{tgh}(0.715) = 0.614$

$$\underline{\mathbf{x}} = \begin{vmatrix} 0.1 \\ 0.7 \end{vmatrix} \qquad \widetilde{\mathbf{y}} = \begin{vmatrix} 0.097 \\ 0.614 \end{vmatrix} \qquad \widetilde{\mathbf{y}} = \boldsymbol{\varphi}(\underline{\mathbf{x}})$$

Utilidades

- Problemas para os quais RNAs NÃO são adequadas:
 - Problemas que podem ser solucionados por uma sequência de passos bem definidos.
 - Problemas solucionáveis por algoritmos que possuem blocos de construção estáticos (a lógica não muda).
 - Problemas os quais é necessário saber como a solução foi derivada.

Utilidades

- Problemas para os quais RNAs são adequadas:
 - Reconhecimento de padrões.
 - Classificação.
 - Predição de séries.
 - Mineração de Dados.

Utilidades e Capacidades

- Não-linearidade.
 - Interconexão de neurônios não-lineares.
 - Não-linearidade distribuída através da rede.
- Mapeamento das entradas e saídas.
 - Aprendizagem com um "professor".
- Adaptabilidade.
 - Pode adaptar os parâmetros livres. Eles se modificam no ambiente circundante.

Exemplo de Associações

Exemplo

Exemplo de Associações

Utilidades e Capacidades

- Resposta Evidencial.
 - · Decisão com uma medida de "confiança".
- Tolerância a Falhas.
 - Degradação "suave".
- Implementabilidade em (VLSI).
 - Very-Large-Scale Integration .

Treinamento e Aprendizagem

- Treinamento é o processo iterativo no qual os pesos das interconexões são ajustados para que a rede retorne uma saída apropriada.
- Supervisionado.
 - É dado um conjunto de entrada e um conjunto de saída ou respostas desejadas.
- Não Supervisionado.
 - · É dado apenas um conjunto de entrada.
- Modelos híbridos.

Validação

- Estágio em que os resultados retornados pela RNA são avaliados.
- Em geral, utiliza-se um conjunto de dados de treinamento diferente do conjunto de dados de validação.

Implementando RNAs

Heaton Research.

- Fornece um framework para se trabalhar com RNAs na linguagem Java (gratuito).
- O livro introdutório da disciplina (\$\$\$) apresenta os princípios básicos de RNAs e codificações em Java.

Como implementar?

Matrizes são a base!

matriz de pesos

$$\begin{bmatrix} w & w \\ w & w \\ w & w \\ t & t \end{bmatrix}$$

matriz de pesos e limiares

Classes relacionadas a matrizes

Class	Purpose	
BiPolarUtil	A utility class to convert between Boolean and bipolar numbers.	
Matrix	Holds a matrix.	
MatrixMath	Performs mathematical operations on a matrix.	

Hopfield Neural Network

Figure 3.1: A Hopfield neural network with 12 connections.

	Neuron 1 (N1)	Neuron 2 (N2)	Neuron 3 (N3)	Neuron 4 (N4)
Neuron 1(N1)	(n/a)	N2->N1	N3->N1	N4->N1
Neuron 2(N2)	N1->N2	(n/a)	N3->N2	N3->N2
Neuron 3(N3)	N1->N3	N2->N3	(n/a)	N4->N3
Neuron 4(N4)	N1->N4	N2->N4	N3->N4	(n/a)

Hopfield Neural Network

Uma rede neural que reconhece o padrão 0101.

	Neuron 1 (N1)	Neuron 2 (N2)	Neuron 3 (N3)	Neuron 4 (N4)
Neuron 1 (N1)	0	-1	1	-1
Neuron 2 (N2)	-1	0	-1	1
Neuron 3 (N3)	1	-1	0	-1
Neuron 4 (N4)	-1	1	-1	0

Como treinar uma Hopfield NN?

Equation 3.2: Binary to Bipolar

$$f(x)=2x-1$$

Equation 3.4: Input Matrix

$$0 = -1$$

Equation 3.5: Input Matrix Transposed

$$\begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix}$$

$M \times M^T = R$ Equation 3.6: Resulting Matrix

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

$$R - I = C$$

Equation 3.7: Contribution Matrix

$$\begin{bmatrix} 0 & -1 & 1 & -1 \\ -1 & 0 & -1 & 1 \\ 1 & -1 & 0 & -1 \\ -1 & 1 & -1 & 0 \end{bmatrix}$$

Classe HopfieldNetwork

Method Name	Purpose	
getMatrix	Accesses the neural network's weight matrix.	
getSize	Gets the size of the neural network.	
present	Presents a pattern to the neural network.	
train	Trains the neural network on a pattern.	

