Homework 2

Problem 1

a. This data was provided to build a predictive model for the rating variable. The first step was to clear the environment and load the MASS and leaps libraries. I downloaded and stored the dataset locally, and since it is a CSV file, I next used the read.csy command to load the file and examined it a bit.

	names (dats)	(E) (95	157	578			2017		55.0	c.
	[1] "name"	"efe"		type			es" "pro				"sodiu		fiber"
	[9] "carbo"	"sugars		pot	355"	"vitamin	ns" "she	1f"	wen	ght"	"cups"		rating"
>	head(dats)							100	well in				
				BIT L	type	calories.	protein	fat				sugars	
1		100%	Bran	N.	C	70	4	1	130	10.0	5.0	6	280
2	1009	Natural	Bran	0	C	120	3	5	15	2.0	8.0	- 8	135
3		A11-	Bran	- 16	C	70	4	1	260	9.0		5	320
4	All-Bran wit	h Extra F	iber	×	C	50	4	0	140	14.0		0	330
		Almond Del		8	r	110	2	2	200	1.0		R	-1
2	Apple Cinr			- 6	- 7	110	3	2	180	1.5	10.5	8 10	70
	vitagins she				rating		1.5	-	200	4.3	201.7	1.0	
	Alimento Ste												
+	25		0.33										
2	0		1,00										
3	25	3 1	0.33	59	.42551								
4	25 25	3 1	0.50	93	70491	L							
5	25	3 1	0.75	34	38484	4							
4 5 6	25		0.75										
ě				V 400		100							

I divided the data next, with a 70% training and 30% testing ratio, setting a seed of 123 such that my results can be replicated. Since the mfr and type variables are categorical, and since there isn't much variance in type, I have removed the first the 3 columns. I next fit a simple linear model to rating, and then used the predict function. To calculate the mean square error, I took the mean of the square of the residuals component. My result is 6.6207e-14.

```
> print(MSE)
[1] 6.620702e-14
> |
```

b. For part b, I performed forward subset selection. The default value for method in the regsubsets function is exhaustive, as mentioned in the lab, therefore I gave the value forward to the method parameter. A summary of the selection shows the best subset selections with different number of variables.

I experimented a bit to see if changing the number of best subsets for each size revealed anything unexpected, but it didn't, so I let the best single subset of each size stay.

c. For part c as well I did the same as for part b.

	ight is subs	sets		SE SE h size										
1		tion		thm: ex es prot			fiber	carbo	sugars	potass	vitamins	shelf	weight	cups
2	()	1.5	41 (41)	90.00	44 44	H H	14 m 14	00.00	11 10 11	10. 10	41 44	20.00	11 11	16 10
3	7 3	1.5	** **	11 11	91 91	n _p =	11 (0.11)	0.00	Pat !!	11. 11	** **	0.00	11 11	14 14
4	Ċ	1 5	41 41	11 11	***	nge	11-2-11	11. 11.	0.00	10 10		11 11	0.0	
5	6		** **	m ₀ .m	11-0-11	Her	Heff	00 10	11:00:31	18. 19		91 19	11 11	16 10
6	1	15	** 11 **	0.9/11	11 11	11/1/11	11 11 11	11/2/11	0.0	11 11	*1 (8) 241	0.0	11 11	10 10
7	1	1.5	** 54 **	11/16/11	44 44	11 (11)	11 10 10	11911	0.00	m _H m	***	11 11	44 44	16. 10
8	7	1 5	***	11-20-11	11 11	***	0.00	11-12-11	0.00	16-26-19	main	11 11	11 11	10 (0.
9	0	13.	***	nen	119:11	110.00	0.00	THE P.	0.70	man	mg.m	11 11	01.00	10 10
10	6	1)	****	11.40.11	114/11	11 (6.11)	11.01	Hatt.	THEFT	11.611	nan	11.00.11	11 11	it in
11	č	1)	100	11 (1) 11	11 (6.11	11/1/21	11-211	11 (6.11)	11 (6.11	****	41.95.00	10 (6.11	11 11	11 2 11
12	Č	1)	***	***	**	***	Angest.		***	***	***	114-11	Man	40.0

In addition to the subset selections, I also displayed the Cp, BIC, RSS and adjusted R squared for both forward and exhaustive.

Forward

Exhaustive

As is clear from the graphs, the forward and exhaustive selections are quite similar. There is a sharp decline in BIC for both forward and exhaustive subset selections around the 9 variable mark. Based on my results, I would say that the exhaustive subset selection is the best model.

Problem 2

- a. The first step was to load the train and test data. Since only 2s and 3s are to be focused on for this problem, I filtered the data to only include them. I also added all the k values in a list.
- b. For linear regression, I used the V1 variable as the focus for fitting a line to the data. To check it's prediction accuracy, I ran a loop through the values of the predictions and essentially rounded off the values such that the prediction is binary, either 2 or 3. Then, I simply mathematically calculated the error and stored it in a variable. The error was roughly 4.12%

c. For knn classification, as suggested in the pseudo code, I ran a loop through the list of k values, using the knn algorithm function each time and mathematically calculating the error each time and appending it to the store_error list. The testing errors corresponding to ascending order of k values (1, 3, 5, 7, 9, 11, 13, 15):

```
> store_error
[1] 0.02472527 0.03021978 0.03021978 0.03021978 0.03571429 0.03571429
[7] 0.03296703 0.03846154
```

k-value	Error
1	2.47%
3	3.02%
5	3.02%
7	3.02%
9	3.57%
11	3.57%
13	3.29%
15	3.85%

It appears that knn classification is better for all cases than linear regression. The error percentage seems to increase with increase in k-value except for a decline in error between 11 and 13. Beyond 15 as well, the error follows an increasing trend.

> store_error2
[1] 0.000000000 0.004319654 0.005759539 0.005759539 0.007919366 0.007919366 0.007919366 0.009359251
The training error for each of the k values is as above