From Estimators to Confidence Intervals

Stat 250

Click here for PDF version

Strategy

- We have an estimator, $\widehat{\theta}$, in hand
- Use $\widehat{\theta}$ to find a range of plausible values for θ with known long-run properties

$$P(\widehat{\theta}_{L} \le \theta \le \widehat{\theta}_{U}) = 1 - \alpha$$

Your turn Finding normal quantiles in **R**

qnorm(p) will calculate the p quantile of N(0,1)

Find the value of q that is needed for the following $(1-\alpha)100\%$ normal-based CIs:

1.90%

2.95%

3.97%

03:00

Your turn

Find a 90% confidence interval for the mean bill length of Gentoo penguins.

Assume that $\sigma = 3.08$.

Sample statistics:

- n = 123
- $\bar{x} = 47.5$

Interpreting Cls redux

"Stat 101" answer

We are $(1-\alpha)100\%$ confident that the true parameter of interest is between L and U

Interpreting Cls redux

- (L, U) is a random interval
 before data are observed
- The **process** by which the interval constructed is a random process
- $(1-\alpha)100\%$ is the long-run proportion of intervals that will capture the parameter
- In practice, we don't know which "type" of interval we have (good/bad)

Plug-in principle

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$
.

• In practice both μ and σ^2 are unknown

•
$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

• PROBLEM:
$$\bar{x} \pm z_{1-\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

Proposed solution: plug in the sample standard deviation

Estimating of impacts the distribution

(Student's) t distribution

Let
$$T = \frac{Z}{\sqrt{V/df}}$$
 where $Z \sim N(0,1), V \sim \chi_{df}^2$, and

$$Z \perp V \Longrightarrow T \sim t_{df}$$

t distribution properties

- Symmetric around 0
- For df = 1, mean doesn't exist (Cauchy distribution)
- For df ≥ 2 , $E(T) = E(Z)E(1/\sqrt{V/n}) = \sqrt{1/\sqrt{V/n}}$

• $t_{df} \rightarrow N(0,1)$ as $df \rightarrow \infty$

Your turn

Finding t quantiles in **Q**

 $\mathsf{qt}(\mathsf{p}, \mathsf{df})$ will calculate the p quantile of t_{df}

Find the value of q that is needed for the following $(1-\alpha)100\%$ normal-based CIs:

Your turn

Find a 90% confidence interval for the mean bill length of Gentoo penguins.

Assume that $\sigma = 3.08$.

Sample statistics:

- n = 123
- $\bar{x} = 47.5$
- s = 3.08

Underlying validity conditions

We have a random sample from a normal population distribution

Ask Yourself...

- Are the observations independent?
- Are the observations approximately normal?

Checking conditions

- Are the penguins independent?
- Are the bill lengths approximately normal?

Robustness

If the a procedure "perform well" even if some of the assumptions under which they were developed do not hold, then they will be called **robust.**

Simulation study

To check whether a procedure is robust, we can use simulation:

- 1. Simulate data from a variety of different probability distributions
- 2. Run the procedure (e.g., build a one-sample t-interval)
- 3. Compare the results of the procedure to what should have happened.
 - for a large number of CIs, approximately 95% of 95% CIs should capture the parameter value

	Bell- shaped	Short- tailed	Long- tailed	Mild Skew	Moderate Skew	Strong Skew
n						
5	95.3	94	96.3	91.6	91.8	89.8
10	95.9	94	96.3	93.3	93.2	90.8
25	95.3	95.4	95.9	93.8	93.5	90.3
50	94.8	94.3	96.3	94.1	94	93.8
100	95.3	95.7	94.9	95.1	95.9	94.6

Robustness one-sample t

- If the population distribution is roughly symmetric and unimodal, then the procedure works well for sample sizes of at least 10–15 (just a rough guide)
- For skewed population distributions, the t-procedure can be substantially affected, depending on the severity of the skew and the sample size.
- t-procedures are not resistant to outliers.
- If observations are not independent, the results can be misleading.