

Take Test: ECE 344L Test 2 Spring 2020 **Test Information** Description Instructions Multiple Attempts This test allows 2 attempts. This is attempt number 1. Force Completion This test can be saved and resumed later. **▼** Question Completion Status: **QUESTION 1** 4 points (Extra Credit) Saved Which of the following is NOT a serial communication interface present on the MX7 board? • RS232 UART O SPI O 12C **QUESTION 2** 3 points (Extra Credit) Saved

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

O. PIC32MX460F512H

QUESTION 3

12 points

Saved

Describe the characteristics of a half-duplex, synchronous, serial communication channel. Also, identify the minimal set of signal lines that will be needed to connect communicating devices which are configured with an interface with these characteristics.

For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).

Terminal ♦ 3 (12pt) ♦

Half-duplex: only allows data to be received <u>or</u> transmitted at a time, not both simultaneously.

Synchronous: one of the devices, typically the master, transmits a clock and all other devices (slaves) are receiving.

Serial communication: only transmits one bit at a time, however recent advances have increased the speed of this communication considerably.

Half-duplex, synchronous, serial communication describes I2C which only uses two wires - the serial data line and the serial clock line.

Path: p » span Words:73

QUESTION 4

12 points

Saved

TABLE 12-1: PORTA REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F5256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F512L AND PIC32MX795F512L DEVICES

Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range								В	its								<u>s</u>
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6000	TRISA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6000	IRISA	15:0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6010	PORTA	31:16	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6010	FURIA	15:0	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6020	LATA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0020	LAIA	15:0	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6030	ODCA	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6030	ODCA	15:0	ODCA15	ODCA14	_	_	_	ODCA10	ODCA9	-	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, resctively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

The LAT register is the register used to write data to the port I/O pins. Assume we have configured all of the Port A pins as outputs, and each is pin is currently set to a desired value. Now, we need to clear bit 9 (set to zero) while not affecting any of the other bits. What is the hexadecimal value and the address that we must write to, in order to set the specific bit to zero while not affecting any of the other bits?

For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).

Path: p	Wo
QUESTION 6	5 points Saved
Terminal \$\(\begin{aligned} \) 3 (12pt) \$\\ \) SPI uses full-duplex, synchronous, so	erial communication.
Terminal \$ (3 (12pt) \$ SPI uses full-duplex, synchronous, so	erial communication.
	erial communication.
SPI uses full-duplex, synchronous, so	W
SPI uses full-duplex, synchronous, so Path: p » span	5 points Saved
SPI uses full-duplex, synchronous, so Path: p » span	

SFRs are special function registers that are used to configure and control hardware and peripheral functions. General purpose registers are used for data storage and address calculations only, no instructions.

Path: p » span Words:30

QUESTION 8

14 points

Saved

You have configured the UART on your PIC32 microcontroller to communicate at 2400 baud using an 8,N,1 configuration, where the X,Y,Z notation corresponds to data bits, parity, and stop bits. The terminal to which you are connected is transmitting signals to your microcontroller, but the data are not received properly so you instrument the connection with the oscilloscope and observe the following signal, where each tick on the line corresponds to one bit time:

You measure the bit time and it corresponds to a 2400 baud rate, but the data being received erroneously. Analyze the signal and identify each bit type using the options below to give you insight into what the sender configuration might be. Match the bit times indicated by the letters with the indicated bit types.

- 1. O A
- 1. ≎ B
- 2. C
- 1. OD
- [1. ≎]E
- [1. ≎]F
- [3. ≎]G
- [3. ♀] ⊢

- 1. Idlel bit
- 2. Start Bit
- 3. Data Bit
- 4. Data or Parity Bit
- 5. Stop Bit
- 6. Idle or Stop Bit

1. 🗘 J	
3. \$ K	
5. \$ L	
1. ♦ M	
1. • N	
UESTION 9	10 points Saved
You are examining a byte of digital data received from the received data as ASCII characters. The byte read from the 10010011. Is this a valid ASCII character? Why, or why no	e SPI buffer has the following va
Terminal ♦ 3 (12pt) ♦	
determined that this was not a valid ASCII charac	ter.
determined that this was not a valid ASCII charac	ter.
determined that this was not a valid ASCII charac	ter. Wo
Path: p » span UESTION 10	10 points Saved
Path: p » span UESTION 10 What are the three basic requirements that must be met to microcontroller?	10 points Saved
Path: p » span UESTION 10 What are the three basic requirements that must be met to	10 points Saved
Path: p » span UESTION 10 What are the three basic requirements that must be met to microcontroller?	10 points Saved
Path: p » span UESTION 10 What are the three basic requirements that must be met to microcontroller? Terminal \$ 3 (12pt) \$	10 points Saved
Path: p » span UESTION 10 What are the three basic requirements that must be met to microcontroller? Terminal \$ 3 (12pt) \$ 1. Need an interrupt source	10 points Saved

You are debugging a PIC32 program and are examining	10 points	Saved
examine one location and the value is 0x80000010. Whexadecimal value if the operand is an unsigned integer	hat are the two decima	nds in memory Il equivalents o
(Hint: $2^{31} = 2,147,483,648$)		
For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).		
Terminal \$ 3 (12pt) \$		
0x80000010 = 1000 0000 0000 0000 0000 0000	. 0000 (binary)	
= 2,147,483,664 (unsigned integer)		
= -2,147,483,648 + 16 = -2,147,483,6	32 (signed integer)	
Path: p » span » span » span		Words
QUESTION 12	3 points (Extra Credit)	Saved
If you wanted to use the input: BTN1, which Port and Pin would	you need?	
○ A. RA7		
○ B. RG7		
○ B. _{RG7}		
• C. _{RG6}		
● C. RG6		
○ C. RG6○ D. RA10	40	
• C. RG6○ D. RA10	12 points	Saved
○ C. RG6○ D. RA10	12 points	Saved
• C. RG6 • D. RA10	12 points	Saved
• C. RG6 • D. RA10	12 points	Saved
• C. RG6	12 points	Saved

TABLE 7-7: INTERRUPT REGISTER MAP FOR PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES

		-		(700101															$\overline{}$
e SS										. В	its								10
Virtual Addres (BF88_#)	Register Name(1)	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SSO	0000
1000	INTCON	15:0	_	_	_	MVEC	_		TPC<2:0>		_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT(3)	31:16	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	0000
1010	INTSTATE	15:0 — — — SRIPL<2:0> — —								VEC<5:0>					0000				
1020	IPTMR	31:16 15:0										0000							
1030	IFS0	31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF I2C3MIF	U1RXIF SPI3RXIF I2C3SIF	U1EIF SPI3EIF I2C3BIF	SPI1TXIF	SPI1RXIF	SPI1EIF	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INTOIF	CS1IF	CSOIF	CTIF	0000
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	CAN2IF(2)	CAN1IF	USBIF	FCEIF	DMA7IF(2)	DMA6IF(2)	DMA5IF(2)	DMA4IF(2)	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000
1040	IFS1	15:0	RTCCIF	FSCMIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF SPI4TXIF I2C5MIF	U2RXIF SPI4RXIF I2C5SIF	U2EIF SPI4EIF I2C5BIF	U3TXIF SPI2TXIF I2C4MIF	U3RXIF SPI2RXIF I2C4SIF	U3EIF SPI2EIF I2C4BIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000
		31:16	_	_	_	_	_	12CSIWIF	120001F	1200011	1204MIF	1204315	1204615	_	_	_	_		0000
1050	IFS2	15:0			_		U5TXIF	U5RXIF	USEIF	U8TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000
1060	IEC0	31:16	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE SPI3TXIE I2C3MIE	U1RXIE SPI3RXIE I2C3SIE	U1EIE SPI3EIE I2C3BIE	SPI1TXIE	SPI1RXIE	SPI1EIE	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INTOIE	CS1IE	CSOIE	CTIE	0000
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	CAN2IE(2)	CAN1IE	USBIE	FCEIE	DMA7IE(2)	DMA6IE(2)	DMA5IE ⁽²⁾	DMA4IE ⁽²⁾	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000
1070	IEC1	15:0	RTCCIE	FSCMIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE SPI4TXIE I2C5MIE	U2RXIE SPI4RXIE I2C5SIE	U2EIE SPI4EIE I2C5BIE	U3TXIE SPI2TXIE I2C4MIE	U3RXIE SPI2RXIE I2C4SIE	U3EIE SPI2EIE I2C4BIE	CMP2IE	CMP1IE	PMPIE	AD1IE	CNIE	0000
1080	IEC2	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1000	IEG2	15:0	_	_	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000
1090	IPC0	31:16 15:0	-	_	_		INT0IP<2:0> CS0IP<2:0>			S<1:0> S<1:0>	_	_	_		CS1IP<2:0>		CS1IS CTIS		0000
10A0	IPC1	31:16	_	_	_		INT1IP<2:0>		INT18	S<1:0>	_	_	_	OC1IP<2:0> OC		0018	S<1:0>	0000	
		15:0	_	_	_		IC1IP<2:0>			<1:0>	_	_	_	T1IP<2:0>			T1IS		0000
10B0	IPC2	31:16	_	_	_		INT2IP<2:0>			S<1:0>	_	_	_	OC2IP<2:0>		OC2IS<1:0>		0000	
		15:0	_	_	_		IC2IP<2:0>			<1:0>	_	_	_		T2IP<2:0>			<1:0>	0000
10C0	IPC3	31:16	_	_	_		INT3IP<2:0>	•		S<1:0>	_	_	_		OC3IP<2:0>	•	OC319		0000
		15:0	-	_	_		IC3IP<2:0>		IC3IS wn in hexad	<1:0>	_	_	_		T3IP<2:0>		T3IS	<1:0>	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1. Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: This bit is unimplemented on PIC32MX764F128L device.

3: This register does not have associated CLR, SET, and INV registers.

Using table 7.7 above specify the address and the 32-bit word (expressed as a hexadecimal values) that must be written to it, in order to enable the interrupt for Timer 2

For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).

Terminal \$ 3 (12pt) \$	
Write the value 0x100 to the address 0xBF881060.	
Path: p » span	Words:10

(
(

2204//20, 15:29