Math-08 Homework #1

Reading

- If necessary, skim through the documents in the resources module on canvas dealing with mathematical logic, sets, rational numbers, and prime factorization. The documents have more information than you will need; however, if you have something in your notes that you do not understand then you can find more description in the documents.
- Text book sections 0.1 and 0.2.

Problems

1). Let:

P := 0 is a positive number

Q := 0 is a rational number

Determine whether the following are true or false:

- a). P
- b). Q
- c). not P
- d). not Q
- e). P and Q
- f). P or Q
- 2). Decimal to rational form conversion.
 - a). Convert $0.14\overline{23}$ to rational form.
 - b). Show that $0.\overline{1} = \frac{1}{9}$.
 - c). If this is so, then $\frac{2}{9}$ should equal $0.\overline{2}$, $\frac{3}{9}$ should equal $0.\overline{3}$, and so on until $\frac{8}{9}$ should equal $0.\overline{8}$. So, what do you think that $0.\overline{9}$ should equal?
 - d). Show that this is so by converting $0.\overline{9}$ to rational form.
 - e). Take a guess at what $25.3\overline{9}$ equals.

- 3). Rational numbers and closure.
 - a). Write down the definition of \mathbb{Q} using setbuilder notation.
 - b). Prove that \mathbb{Q} is closed under addition (Hint: Assume that two numbers are in \mathbb{Q} , use the definition to express them as a ratio of integers, then add then and show why the result must be rational).
 - c). Prove that \mathbb{Q} is closed under multiplication (Hint: same as above, but multiply the two numbers).
 - d). Give a counterexample showing that $\mathbb{R}-\mathbb{Q}$ is not closed under addition.
 - e). Give a counterexample showing that $\mathbb{R} \mathbb{Q}$ is not closed under multiplication.

4). Let:

A =the set of all positive real numbers

B =the set of real numbers between -3 (exclusive) and 3 (inclusive)

- a). Graph each set on the real number line.
- b). Represent each set using set-builder notation.
- c). Represent each set using interval notation.
- d). Graph $A \cup B$ and represent it in interval notation.
- e). Graph $A \cap B$ and represent it in interval notation.