Chapter 3 :: Sequential Logic Design (2)

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

참고도서: 개정판 논리회로 설계(김종현저), 홍릉과학출판사.

- 제7장 순차회로의 분석과 설계

Chapter 3 :: Topics

- Introduction
- Latches and Flip-Flops
- Synchronous Logic Design
- Finite State Machines
- Shifter
- Timing of Sequential Logic
- Parallelism

3.3 Sequential Logic

- 현재의 입력 뿐아니라 과거의 입력 혹은 출력 값들도 함께 고려하여 현재의 출력 값을 결정하는 논리회로
- 조합회로와 기억 소자(memory element)들로 구성

■그림 7-1 순차회로의 블록도

3.3 Sequential Logic

- 순차회로에 사용되는 기억 소자의 분류
 - 두 개의 안정된(bi-stable) 기억소자로, 메모리의 기본적인 형태 상태 중 하나를 가지는 1비트
 - 래치(latch): 기본적인 게이트 회로로 구성되는 기억 소자
 - 플립-플롭(flip-flop): 래치에 별도의 회로를 추가하여 구성되는 기억 소자
 - 저장된 값(즉, 상태 값)을 변경시키는 방법에서 차이

3.3 Sequential Logic

- Sequential circuits: all circuits that aren't combinational
- A problematic circuit:

- This circuit has no inputs and 1-3 outputs.
- It is an astable circuit that oscillates.
- Its period depends on the delay of the inverters which depends on the manufacturing process, temperature, etc.
- The circuit has a *cyclic path(全 환 경 로)*: output fed back to input

3.3.2 Synchronous Sequential Logic Design

- Breaks cyclic paths by inserting registers
 (순환 경로를 없애기 위해 레지스터를 삽입)
- These registers contain the state of the system
 - 상태(state)
 - 어떤 한 시점에서 순차회로의 기억 소자에 저장되어 있는 2진 정보
 - 한 비트 혹은 여러 비트들로 표현
 - 순차회로는 외부로부터 입력 신호(들)을 받으며, 그 입력들이 기억 소자에 저장된 현재 상태 값과 함께 조합회로를 통과하여 출력 값을 결정하며, 그 과정에서 기억 소자에는 새로운 상태 값이 저장됨.
- The state changes at the clock edge, so we say the system is synchronized to the clock. (상태는 클럭의 에지에서만 변화, 시스템은 클럭에 동기화 된다)

Synchronous Sequential Logic Design

- Rules of synchronous sequential circuit composition:
 - Every circuit element is either a register or a combinational circuit (모든 회로 소자가 레지스터이거나 조합회로이다.)
 - At least one circuit element is a register.
 (적어도 하나의 회로 소자는 레지스터이다.)
 - All registers receive the same clock signal.
 (모든 레지스터는 똑 같은 클럭 신호를 받는다.)
 - Every cyclic path contains at least one register.
 (모든 순환경로는 적어도 하나의 레지스터를 포함한다.)
- Two common synchronous sequential circuits
 - Finite state machines (FSMs)
 - Pipelines

3.4 Finite State Machine (FSM)

- Consists of:
 - State register that
 - Store the current state
 - Load the next state at the clock edge

- Combinational logic that
 - Computes the next state
 - Computes the outputs

동기식 순차회로는?

Sequential Logic

- 동기식 순차회로(Synchronous Sequential Logic)
 - 속도가 느리다 .(동작이 미리 종료되더라도 클록의 트리거 에지 때까지 기다려야 하므로)
 - 설계가 용이하다.
 - 출력 신호가 안정된다.
- 비동기식 순차회로(Asynchronous Sequential Logic)
 - 속도가 빠르다.
 - 설계가 어렵다.
 - 출력 값이 입력 신호에 따라 계속 변하여 불안정하다.

3.4 Finite State Machines (FSMs)

- Next state(다음상태) is determined by
 - the current state(현재상태) and the inputs(입력)
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

3.4 Finite State Machines (FSMs)

- Moore FSM: outputs depend only on the current state
 - 회로의 출력 신호가 현재 상태들 만에 의해 결정되는 형태의 순차회로
 - 공통 클록의 트리거 에지에서 상태들이 바뀌면, 출력 신호도 그와 동시에 갱신
 - 이 모델의 회로를 무어 기계(Moore machine)라 부름
- Mealy FSM: outputs depend on the current state *and* the inputs
 - 회로의 출력 신호가 현재 상태들과 입력 신호에 의해 결정되는 형태의 순차회로. 즉, 외부로부터 들어오는 입력 신호도 출력 신호에 영향을 줌
 - 입력 신호 값이 바뀌면 출력 신호도 (클록 신호에 상관 없이) 바뀜
 - 입력 신호를 클록 신호와 동기 시키지 않는 경우에는 출력이 수시로 바뀌는 불안정한 회로가 됨
 - 이 모델의 회로를 밀리 기계(Mealy machine)라 부름

FSM 설계 절차

- ① 설계할 회로의 기능 및 동작 특성에 대하여 상세하게 기술하며, 필요 시 상태 다이어그램을 그린다.
- ② 기억 소자로 사용할 Flip-Flop의 종류를 선택한다.
- ③ 상태표를 작성한다.
- ④ 입력 함수 및 출력 함수를 구하고, 간략화 한다.
- ⑤ 회로를 구성한다.

- 문제 기술(problem description)
 - 2비트 다운-카운터(down-counter)를 설계하고자 한다.
 - 이 순차 회로의 초기값은 3(11₍₂₎)에서 시작하며,
 - 입력 펄스가 들어올 때마다 1씩 감소하여 0까지 된 다음, 다시
 3으로 반복되는 2비트 상태 조합들을 발생한다.
- 요구사항 분석
 - 상태 수 = 2 (*A,B*)
 - $-x=1 \rightarrow AB = 11 \rightarrow 10 \rightarrow 01 \rightarrow 00, & \rightarrow 11으로 되돌아가서$
 - 반복
 - x = 0 → 상태 불변
 - 상태 다이어그램:

[표 7-8] 다운 카운터에 대한 상태표

현재 상태		입력	다음 상태	
A(t)	B(t)	x(t)	A(t+1)	B(t+1)
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

- 플립-플롭의 종류
 - 설계과정이 가장 간단한 D 플립-플롭을 선택

• 입력 함수의 유도

$$- D_A = A(t+1) = A'B'x + AB'x' + ABx' + ABx$$
$$= A'B'x + Ax' + AB$$

$$- D_B = B(t+1) = A'B'x + A'Bx' + AB'x + ABx'$$
$$= B'x + Bx' = B \oplus x$$

[표 7-8] 다운 카운터에 대한 상태표

현재 상태		입력	다음 상태	
A(t)	B(t)	x(t)	A(t+1)	<i>B</i> (<i>t</i> +1)
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

• 회로 구성

- 문제 기술(problem description)
 - D 플립-플롭을 이용한 2비트 다운-카운터(down-counter) 설계와 동일한 예를 사용하고, 회로 복잡도를 비교 한다.
- JK 플립-플롭의 여기표(excitation table)

Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

• 상태표 (excitation table 이용)

Q(t)	Q(t+1)	J K	
0	0	0 X	
0	1	1 X	
1	0	X 1	
1	1	X 0	

[표 7-10] JK 플립-플롭을 이용한 다운-카운터의 상태표

현지	내 상태	입력	다음	상태	플	립-플롭	입력들	
\overline{A}	В	x	\overline{A}	В	J_A	K_{A}	$J_{\it B}$	$K_{\mathcal{B}}$
0	0	0	0	0	0	X	0	X
0	0	1	1	1	1	X	1	X
0	1	0	0	1	0	X	X	0
0	1	1	0	0	0	X	X	1
1	0	0	1	0	X	0	0	X
1	0	1	0	1	X	1	1	X
1	1	0	1	1	X	0	X	0
1	1	1	1	0	X	0	X	1

• 입력 함수의 유도

(a)
$$J_{A(next)} = B'x$$

(b)
$$K_{A(next)} = B'x$$

- 회로 구성
 - JK 플립-플롭을 이용하면, 회로가 단순해 짐

 아래의 입력 신호 시퀀스에 대한 다운-카운터의 출력 파형 (A, B의 초기값 = 1)

FSM 분석

• 순차회로 분석의 목적

- : 외부 신호 x와 현재 상태 A(t) 및 B(t)에 의해
- : 다음 상태 A(t+1)과 B(t+1)이 클록의 트리거 에지에서 어떤 값으로 결정되는지를 파악하는 것

• 순차회로 분석 절차

- ① 모델을 분석한다.
- ② 플립-플롭의 입력 함수들을 구한다.
- ③ 입력 함수들을 이용하여, 현재 상태들과 입력 신호 값에 따른 다음 상태 값들을 구하여 상태표를 작성한다.
- ④ 상태 다이어그램을 그려서 상태 전이를 파악하고, 회로의 동작 특성을 이해한다.

D Flip-Flop이 한 개 포함된 FSM 분석 1-1

[1] 모델분석

• <무어 모델> 출력 값(A)이 입력 신호에 직접 영향을 받지 않음

[2] 상태 함수(state equation)의 유도

- 다음 상태(next state)를 현재 상태(present state)와 입력에 대한 함수로 표현

• 입력 함수: $D_{(next)} = Ax + y$

상태 함수: A(t+1)_(next) = D(t) = A(t)x(t) + y(t) 혹은
 A(next) = Ax + y

[3] 상태표(state table) 작성

- 상태 함수
 [A_(next) = Ax + y]에 근거하여
- 입력 값들에 따른 상태 변화를 표시한 표
- 전이표(transition table)라고도 부름

[표 7-2] 그림 7-29의 회로에 대한 상태표

현재 상태	입력		다음 상태
A	x	у	A(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

[4] 상태 다이어그램(state diagram)의 작성 [표 7-2] 그림 7-29의 회로에 대한 상태표

- 싱	·태 :	: 원	으로	표시
-----	------	-----	----	----

현재 상태	입	력	다음 상태
A	х	y	A(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- 상태 전이
 - 상태 간을 연결하는 선과 화살표 및
 - 해당 상태 전이를 야기하는 입력 조합(xy) 표시

[5] 상태 다이어그램으로부터의 분석

- 상태 전이 (0→1)
 - 상태가 0일 때 입력 조합 xy = 01 (x=0, y=1) 혹은 11(x=1, y=1)이라면, 상태는 1로 전이.

00.10

01, 11

01, 10, 11

- 상태 전이 (1→0)
 - 상태가 1일 때 xy = 00이라면, 상태는 0으로 전이.
- 상태 불변
 - 상태가 0일 때 xy = 00 혹은 10이라면 상태는 변하지 않고 그대로 유지
 - (그림에서 0으로 되돌아가는 것으로 표시).
 - 또한, 상태가 1일 때 xy = 01, 10 혹은 11이라면, 상태는 변하지
 않고 1을 유지 (그림에서 1로 되돌아가는 것으로 표시)

[1] 모델분석

<밀리 모델> 출력 신호가 상태A와 B 뿐 아니라, 입력 신호x에 의해서도 영향을 받음.

[2] 상태 함수(state equation)의 유도

- 입력함수:

$$D_{A(next)} = B \oplus X$$
$$D_{B(next)} = A' + X$$

$$A(t+1)_{(next)} = B \bigoplus x = B'x + Bx'$$

$$B(t+1)_{(next)} = A' + x$$

- 출력 함수:

$$F(t) = B'(t)x(t)$$
 혹은 $F = B'x$

[3] 상태표 [유형 1]

$$A(t+1)_{(next)} = B \bigoplus x = B'x + Bx'$$

$$B(t+1)_{(next)} = A' + x$$

$$F(t) = B'(t)x(t) \stackrel{\text{\equiv}}{=} C F = B'x$$

[표 7-3] 그림 7-31의 회로에 대한 상태표

현재	상태	입력	다음	상태	현재 출력
A	В	х	A	В	F
0	0	0	0	1	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	0	1	0

[3] 상태표 [유형 2]

[표 7-3] 그림 7-31의 회로에 대한 상태표

현재 <i>A</i>	상태 <i>B</i>	<u>입력</u> x	<u>다음</u> <i>A</i>	상태 <i>B</i>	현재 출력 <i>F</i>
0	0	0	0	1	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	0	1	0

[표 7-4] 그림 7-31의 회로에 대한 다른 형태의 상태표

현재 상태	다음	상태	현재	출력
4 D	x = 0	x = 1	x = 0	x = 1
A B	A B	A B	F	F
0 0	0 1	1 1	0	1
0 1	1 1	0 1	0	0
1 0	0 0	1 1	0	1
1 1	1 0	0 1	0	0

[4] 상태 다이어그램(state diagram)의 작성

- 상태: 두 비트로 표현된 상태를 포함한 원으로 표시
- 상태 전이: 화살표를 가진 선과 해당 상태 전이를 야기하는 입력
 및 그 순간에 발생하는 출력을 표시 (입력/출력)

[표 7-4] 그림 7-31의 회로에 대한 다른 형태의 상태표

현재 상태	다음	상태	현재	출력
4 D	x = 0	x = 1	x = 0	x = 1
A B	A B	A B	F	F
0 0	0 1	1 1	0	1
0 1	1 1	0 1	0	0
1 0	0 0	1 1	0	1
1 1	1 0	0 1	0	0

[5] 상태 다이어그램으로부터의 분석

 그림 같은 동작 특성을 가지는 순차회로에 아래와 같은 입력 신호들이 연속적으로 들어올 때, 상태 전이 및 출력 값은?

입력 시퀀스: 01001001101011 (단, 초기 상태 = 00)

클록 주기	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
현재 상태	00	01	01	11	10	11	10	00	11	01	11	01	11	10	11
입력(x)	0	1	0	0	1	0	0	1	1	0	1	0	0	1	1
다음 상태	01	01	11	10	11	10	00	11	01	11	01	11	10	11	01
출력(F)	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0

Q & A

