

NHD-0216BZ-RN-YBW

Character Liquid Crystal Display Module

NHD- Newhaven Display
0216- 2 Lines x 16 Characters

BZ- Model
R- Reflective
N- No Backlight
Y- STN- Yellow/Green
B- 6:00 Optimal View
W- Wide Temperature
RoHS Compliant

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	3/6/08	Initial Release	-
1	12/21/09	User Guide Reformat	BE
2	1/7/10	Optical revised	BE
3	1/6/11	Alternate controller information updated	AK
4	5/3/11	Electrical characteristics updated	AK
5	2/20/19	Mechanical Drawing & Electrical Characteristics Updated	SB

Functions and Features

- 2 lines x 16 characters
- Built-in controller (ST7066U)
- +5.0V Power Supply
- 1/16 duty, 1/5 bias
- RoHS compliant

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for logic (+5.0V)
3	V_0	Adj Power Supply	Power supply for contrast (approx. 0.6V)
4	RS	MPU	Register select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	E	MPU	Operation enable signal. Falling edge triggered.
7-10	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines. These
			four are not used during 4-bit operation.
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
15	NC	-	No Connect
16	NC	-	No Connect

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	ı	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	ı	+80	°C
Supply Voltage	V_{DD}	•	4.8	5.0	5.2	V
Supply Current	I _{DD}	$V_{DD} = 5.0V$	1.0	1.5	2.5	mA
Supply for LCD (contrast)	V_{DD} - V_0	$T_{OP} = 25^{\circ}C$	4.2	4.4	4.6	V
"H" Level input	V _{IH}	-	0.7 * V _{DD}	-	V_{DD}	V
"L" Level input	VIL	-	Vss	-	0.6	V
"H" Level output	Vон	-	3.9	-	V_{DD}	V
"L" Level output	Vol	-	Vss	-	0.4	V

Optical Characteristics

	Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Outime	Тор		φΥ+		-	40	ı	0
Optimal	Bott	om	φΥ-	CR ≥ 2	-	60	ı	0
Viewing Angles	Left		θХ-	CR 2 2	-	60	ı	0
Aligies	Righ	nt	θX+		-	60	-	0
Contrast Rat	Contrast Ratio			-	2	5	ı	-
Posponso T	ima	Rise	T_R	T _{OP} = 25°C	-	150	250	ms
Response Ti	iiie	Fall	T_{F}	10P - 23 C	-	200	300	ms

Controller Information

Built-in ST7066U Controller.

Please download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

DDRAM Address

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
Ī	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Table of Commands

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (f _{osc} = 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	1	Set DDRAM Address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Sets cursor move direction and specifies display shift. These parameters are performed during data write and read.	37μs
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	D=1: Entire display on C=1: Cursor on B=1: Blinking cursor on	37µs
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	,	Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.	37µs
Function set	0	0	0	0	1	DL	N	F	-	ı	DL: Interface data is 8/4 bits N: Number of lines is 2/1 F: Font size is 5x11/5x8	37µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	37µs
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0s
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	37µs
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	37µs

Timing Characteristics

Writing data from MPU to ST7066U

	Write Mode (Writing data from MPU to ST7066U)										
T _C	Enable Cycle Time	Pin E	1200	ı	1	ns					
T _{PW}	Enable Pulse Width	Pin E	140	ı	1	ns					
T_R, T_F	Enable Rise/Fall Time	Pin E	•	ı	25	ns					
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	ı	1	ns					
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	ı	ı	ns					
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	ı	-	ns					
T _H	Data Hold Time	Pins: DB0 - DB7	10	ı	-	ns					

Reading data from ST7066U to MPU

	Read Mode (Reading Data from ST7066U to MPU)										
T _C	Enable Cycle Time	Pin E	1200	ı	1	ns					
T _{PW}	Enable Pulse Width	Pin E	140	ı	•	ns					
T_R, T_F	Enable Rise/Fall Time	Pin E	•	ı	25	ns					
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	ı	•	ns					
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	ı	•	ns					
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	•	100	ns					
T _H	Data Hold Time	Pins: DB0 - DB7	10	1	-	ns					

Built-in Font Table

b7-b4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

Example Initialization Program

```
8-bit Initialization:
void command(char i)
       P1 = i;
                                              //put data on output Port
       D I = 0;
                                               //D/I=LOW : send instruction
       R^{-}W = 0;
                                               //R/W=LOW : Write
       E = 1;
       Delay(1);
                                              //enable pulse width >= 300ns
                                               //Clock enable: falling edge
        E = 0;
void write(char i)
                                            //put data on output Port
//D/I=HIGH : send data
//R/W=LOW : Write
      P1 = i;
      D I = 1;
      RW=0;
       E = 1;
       Delay(1);
                                              //enable pulse width >= 300ns
       E = 0;
                                               //Clock enable: falling edge
/***********************
void init()
       E = 0;
                                              //Wait >40 msec after power is applied
       Delay(100);
       Delay(100);
command(0x30);
//command 0x30 = Wake up
Delay(30);
//must wait 5ms, busy flag not available
command(0x30);
//command 0x30 = Wake up #2
Delay(10);
//must wait 160us, busy flag not available
command(0x30);
//command 0x30 = Wake up #3
Delay(10);
//must wait 160us, busy flag not available
command(0x38);
//must wait 160us, busy flag not available
command(0x38);
//Function set: 8-bit/2-line
command(0x10);
//Set cursor
command(0x0c);
//Display ON; Cursor ON
command(0x06);
//Entry mode set
       Delay(100);
command(0x30);
Delay(30);
       command (0x06);
                                              //Entry mode set
/***********************
```

```
4-bit Initialization:
void command(char i)
      P1 = i;
                                     //put data on output Port
                                  //D/I=LOW : send instru
//R/W=LOW : Write
//Send Upper 4 bits
//Shift over by 4 bits
//put data or
     D I = 0;
                                     //D/I=LOW : send instruction
     R^{-}W = 0;
     Nybble();
      i = i<<4;
     P1 = i;
                                     //put data on output Port
                                     //Send Lower 4 bits
      Nybble();
/***********************
void write(char i)
     P1 = i;
                                     //put data on output Port
     D I = 1;
                                     //D/I=HIGH : send data
                                   //D/I=HIGH : send data
//R/W=LOW : Write
//Clock Upper 4 bits
//Shift over by 4 bits
//put data on output Po
     RW=0;
     Nybble();
     i = i << 4;
     P1 = i;
                                     //put data on output Port
     Nybble();
                                      //Clock Lower 4 bits
void Nybble()
     E = 1;
     Delay(1);
                                     //enable pulse width >= 300ns
     E = 0;
                                      //Clock enable: falling edge
/***********************
void init()
{
      P1 = 0;
      P3 = 0;
      Delay(100);
                                      //Wait >40 msec after power is applied
      P1 = 0x30;
                                      //put 0x30 on the output port
      Delay(30);
                                      //must wait 5ms, busy flag not available
      Nybble();
                                      //command 0x30 = Wake up
      Delay(10);
                                     //must wait 160us, busy flag not available
      Nybble();
                                     //command 0x30 = Wake up #2
                               //command 0x30 = wake up #2
//must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//can check busy flag now instead of delay
//put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
//Set cursor
//Display ON: Blinking cursor
      Delay(10);
      Nybble();
      Delay(10);
      P1 = 0x20;
      Nybble();
      command(0x28);
      command(0x10);
                                     //Display ON; Blinking cursor
      command(0x0F);
      command (0x06);
                                      //Entry Mode set
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms