Классная работа 7 (решали 23.03).

ALG 1. Пусть даны вектора $v_1, \ldots, v_6 \in \mathbb{R}^4$ — порождающие все \mathbb{R}^4 .

- (а) Всегда ли можно их разбить на три группы по два вектора так, чтобы в группе вектора были линейно независимы.
- (б) Всегда ли можно их разбить на две группы по три вектора так, чтобы в группе вектора были линейно независимы.

ALG 2. Рассмотрим множество $C(\mathbb{R})$ — множество непрерывных функций действующих из \mathbb{R} в \mathbb{R} . Введем на нем операции сложения и умножения на скаляр:

- если $f, g \in C(\mathbb{R})$, то (f+g)(x) = f(x) + g(x);
- если $f \in C(\mathbb{R})$ и $r \in \mathbb{R}$, то (rf)(x) = rf(x).

Докажите, что

- (a) $C(\mathbb{R})$ образует векторное пространство над \mathbb{R} ;
- (б) $f_1, \ldots, f_n \in C(\mathbb{R})$ линейно независимы тогда и только тогда, когда существуют x_1, \ldots, x_n такие, что определитель матрицы $\begin{pmatrix} f_1(x_1) & \ldots & f_n(x_1) \\ \vdots & \ddots & \vdots \\ f_1(x_n) & \ldots & f_n(x_n) \end{pmatrix}$ не равен нулю.

$$\boxed{\mathbf{ALG 3.}}$$
 Вычислите: $\lim_{n \to \infty} \begin{pmatrix} 1 & \frac{\alpha}{n} \\ -\frac{\alpha}{n} & 1 \end{pmatrix}$.