MATH 405: Assignment 2

Micah Sherry

February 6, 2025

1. Let m and n be positive integers. Prove that if $m \mid n$ and $n \mid m$ then m = n.

Proof. Assume $m \mid n$ and $n \mid m$. Since $m \mid n$, $n = m(x_1)$ for some $x_1 \in \mathbb{Z}$ and since $n \mid m$, $m = n(x_2)$ for some $x_2 \in \mathbb{Z}$. Therefore,

$$n = m(x_1)$$

= $n(x_2x_1)$ (by substitution)

So, $(x_2x_1) = 1$, and because n and m are both positive $x_1 = x_2 = 1$. This implies n=m, which is what we wanted to show.

- 2. let $m, n \in \mathbb{Z}$ if $n \mid m$ then $m\mathbb{Z} \subseteq n\mathbb{Z}$.
 - (a) Example: n=2 and m=4Note $2 \mid 4$. Let $x \in 4\mathbb{Z}$ then x=4a for some $a \in \mathbb{Z}$. x=2(2a) therefore $x \in 2\mathbb{Z}$
 - (b) prove the statement.

Proof. Let $n, m \in \mathbb{Z}$ and assume $n \mid m$. Since $n \mid m$, m = n(a) for some $a \in \mathbb{Z}$. Let $x \in m\mathbb{Z}$ so, x = m(b) for some $b \in \mathbb{Z}$. So,

$$x = m(b)$$

= $n(a)(b)$ (by substitution)
= $n(ab)$

Since ab is an integer (because \mathbb{Z} is closed under multiplication) x is an element of $n\mathbb{Z}$. Therefore the subset relationship holds, which is what we wanted to show.

3. Prove the converse of the statement above. That is Prove: Let $m, n \in \mathbb{Z}$. If $m\mathbb{Z} \subseteq n\mathbb{Z}$, then $n \mid m$.

Proof. The proof will be by contradiction.

Assume that $m\mathbb{Z} \subseteq n\mathbb{Z}$ and $n \nmid m$. Notice $m \in m\mathbb{Z}$ (because m = m(1)). This means that m has to be an element of $n\mathbb{Z}$ (otherwise it would not be a subset). Therefore m = n(a) for some $a \in \mathbb{Z}$ contradicting the assumption. Therefore the original statement is true.

- 4. For each pair of integers a and b determine whether or not ax + by = 1 has an integer solution. If it does then find at least 3 different integer solutions (x, y) if it doesn't then explain why not
 - (a) a = 7, b = 10Integer solutions (x, y) : (-7, 5), (3, -2), (13, -9)
 - (b) a = 8, b = 10

$$ax + by = 8x + 10y$$
$$= 2(4x + 5y)$$

Which implies that all (integer) linear combos of a and b must be even. Therefore there is no integer solutions.

1

(c) a = 15, b = 21

$$ax + by = 15x + 21y$$
$$= 3(5x + 7y)$$

Which implies that all (integer) linear combos of a and b must be a multiple of 3. Therefore there is no integer solutions.

- (d) a = 15, b = 16Integer solutions (x, y) : (-1, 1), (15, -14), (-17, 16)
- 5. Let a and b be consecutive odd integers. show that the gcd(a, b) = 1.

Proof. Since a and b are odd integers a=2k+1 and b=2k+3 for some $k \in \mathbb{Z}$. Let d=gcd(a,b). Therefore a=dn for some $n \in \mathbb{Z}$ and similarly b=dm for some $m \in \mathbb{Z}$. So,

$$b - a = dm - dn$$

$$b - a = d(m - n)$$

$$(2k + 3) - (2k + 1) = d(m - n)$$

$$2 = d(m - n)$$

Therefor $d \mid 2$ and since a and b are odd $d \neq 2$. So, d = 1.

Extra Credit: prove that 3, 5, 7 is the only prime triple.

Proof. Let $n \in \mathbb{Z}$ and n > 3. Notice that if $n \equiv_3 0$ it is a multiple of 3, therefore it is not prime.

Case 1: n is even. This is trivial if n is even then it is not prime and therefore not in a prime triple

Case 2: n is odd.

Consider the three consecutive odd integers n, n+2n+4. Notice there are three sub-cases for n: $n \equiv_3 0$, $n \equiv_3 1$, $n \equiv_3 2$

Subcase 1: $n \equiv_3 0$. Therefore n is not prime. So, n, n+2, and n+4 is not a prime triple.

Subcase 2: $n \equiv_3 1$. which implies $n+2 \equiv_3 0$ Therefore n+2 is not prime. So, n, n+2, and n+4 is not a prime triple.

Subcase 3: $n \equiv_3 2$. which implies $n+4 \equiv_3 0$ Therefore n+4 is not prime. So, n, n+2, and n+4 is not a prime triple.

Therefore since in all cases for n, n+2 and n+4 is not a prime triple 3, 5, 7 is the only prime triple.

2