Prova di Comunicazioni Numeriche 075II

Scrivere nome, cognome e numero di matricola in cima a ogni foglio protocollo

23/01/2025

Rispondere ai quesiti 1-3 sul foglio protocollo 1.

- 1. Si consideri il circuito elettrico in Figura 1. Gli interruttori sono comandati in modo indipendente e hanno uguali probabilità di essere aperti o chiusi. (3 punti)
 - (a) Calcolare la probabilità che esista un percorso chiuso tra A e B.
 - (b) Calcolare la probabilità che esista un percorso chiuso tra A e B sapendo che l'interruttore S_1 è bloccato nello stato aperto.

Figura 1: Circuito elettrico.

Figura 2: Trasformazione Y=g(X).

- 2. Sia data la variabile aleatoria X Gaussiana di media $\eta_X=2$ e varianza $\sigma_X^2=4$. Si consideri la trasformazione di v.a. Y=g(X) rappresentata in Figura 2. (4 punti)
 - (a) Esprimere in forma analitica la d.d.p. $f_X(x)$ e disegnarla.
 - (b) Calcolare la d.d.p. $f_Y(y)$ e e disegnarla.
 - (c) Indicare se la v.a. Y è continua, discreta o mista, giustificando brevemente la risposta.
 - (d) Calcolare il valor medio di Y.
- 3. Sia dato il processo aleatorio X(t) stazionario in senso lato con funzione di autocorrelazione $R_X(\tau) = \delta(\tau) + 2$. X(t) viene posto in ingresso ad un sistema LTI con risposta impulsiva $h(t) = 10 \cdot \text{sinc}(10t)$. Sia Y(t) il processo aleatorio in uscita. (3 punti)
 - (a) Calcolare la potenza di X(t).
 - (b) Calcolare la densità spettrale di potenza di Y(t) e disegnarla.
 - (c) Calcolare la potenza di Y(t).

N.B.:
$$f(t) \cdot \delta(t - t_0) = f(t_0) \cdot \delta(t - t_0)$$

Rispondere ai quesiti 4-8 sul foglio protocollo 2.

4. Dato un sistema descritto dalla seguente equazione di ingresso-uscita (6 punti):

$$y(t) = \int_{-\infty}^{t} x(\alpha) d\alpha$$

- (a) Dimostrare che il sistema è lineare e tempo-invariante.
- (b) Calcolare la risposta impulsiva del sistema.
- 5. Si consideri il segnale

$$x(t) = \operatorname{rect}\left(\frac{t+T}{2T}\right) - \operatorname{rect}\left(\frac{t-T}{2T}\right)$$

con $T = 0.1 \mu s.$ (5 punti)

(a) Calcolare la trasformata continua di Fourier di

$$y(t) = \int_{-\infty}^{t} x(\alpha) d\alpha.$$

(b) Calcolare la frequenza di campionamento minima per

$$z(t) = y(t) \otimes \operatorname{sinc}(2Bt)$$

con B = 20 MHz.

6. Si consideri il codice sistematico con matrice generatrice: (4 punti)

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- (a) Determinare la matrice di controllo di parità **H**.
- (b) Decodificare la parola ricevuta y = x + e = [0, 0, 1, 1, 1, 0] utilizzando la decodifica a sindrome.
- 7. Un sistema di comunicazione impiega una banda B=30 MHz, una costellazione 16-QAM, un codice convoluzionale con tasso r=5/6 ed un impulso a radice di coseno rialzato con roll-off $\alpha=0.25$. (5 punti)
 - (a) Determinare l'efficienza spettrale del sistema.
 - (b) Determinare il tempo necessario a trasmettere 50 immagini di 1920×1080 pixels, nell'ipotesi in cui per trasmettere un pixel siano impiegati 24 bit.
 - (c) Modificare il sistema al fine di dimezzare il tempo necessario al punto precedente, mantenendo invariata l'efficienza spettrale.

2