

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 401/04, A61K 31/445		A1	(11) International Publication Number: WO 98/54170 (43) International Publication Date: 3 December 1998 (03.12.98)
(21) International Application Number: PCT/US98/10886		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 28 May 1998 (28.05.98)			
(30) Priority Data: 60/048,278 30 May 1997 (30.05.97) US			
(71) Applicant (for all designated States except US): CELGENE CORPORATION [US/US]; 7 Powder Horn Drive, Warren, NJ 07059 (US).		Published <i>With international search report.</i>	
(71)(72) Applicants and Inventors: MULLER, George, W. [US/US]; 250 Windmill Court, Bridgewater, NJ 08807 (US). STIRLING, David, I. [GB/US]; 3281 Round Hill Road, Branchburg, NJ 08876 (US). CHEN, Roger, Shen-Chu [US/US]; 110 Christie Street, Edison, NJ 08820 (US).			
(74) Agents: COLLINS, Bruce, M. et al.; Mathews, Collins, Shepherd & Gould, P.A., Suite 306, 100 Thanet Circle, Princeton, NJ 08540 (US).			
(54) Title: SUBSTITUTED 2-(2,6-DIOXOPIPERIDIN-3-YL)-PHTHALIMIDES AND 1-OXOISOINDOLINES AND METHOD OF REDUCING TNF α LEVELS			
(57) Abstract <p>Substituted 2-(2,6-dioxopiperidin-3-yl)-phthalimides and 1-oxo-2-(2,6-dioxopiperidin-3-yl)isoindolines reduce the levels of TNFα in a mammal. A typical embodiment is 1-oxo-2-(2,6-dioxo-3-methylpiperidin-3-yl)-4,5,6,7-tetrafluoroisoindoline.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
RJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

SUBSTITUTED 2-(2,6-DIOXOPIPERIDIN-3-YL)-
PHTHALIMIDES AND -1-OXOISOINDOLINES AND
METHOD OF REDUCING TNF α LEVELS

The present invention relates to substituted 2-(2,6-dioxopiperidin-3-yl)-
5 phthalimides and substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines, the
method of reducing levels of tumor necrosis factor α and treating inflammatory and
autoimmune diseases in a mammal through the administration thereof, and to
pharmaceutical compositions of such derivatives.

Background of the Invention

Tumor necrosis factor α , or TNF α , is a cytokine which is released primarily
10 by mononuclear phagocytes in response to a number immunostimulators. When
administered to animals or humans, it causes inflammation, fever, cardiovascular
effects, hemorrhage, coagulation, and acute phase responses similar to those seen
during acute infections and shock states. Excessive or unregulated TNF α
15 production thus has been implicated in a number of disease conditions. These
include endotoxemia and/or toxic shock syndrome {Tracey *et al.*, *Nature* 330, 662-
664 (1987) and Hinshaw *et al.*, *Circ. Shock* 30, 279-292 (1990)}; cachexia {Dezube
et al., *Lancet*, 335 (1989), 662 (1990)} and Adult Respiratory Distress Syndrome
where TNF α concentration in excess of 12,000 pg/mL have been detected in
20 pulmonary aspirates from ARDS patients {Millar *et al.*, *Lancet* 2(8665), 712-714
(1989)}. Systemic infusion of recombinant TNF α also resulted in changes typically
seen in ARDS {Ferrai-Baliviera *et al.*, *Arch. Surg.* 124(12), 1400-1405 (1989)}.

TNF α appears to be involved in bone resorption diseases, including arthritis.
When activated, leukocytes will produce bone-resorption, an activity to which the
25 data suggest TNF α contributes. {Bertolini *et al.*, *Nature* 319, 516-518 (1986) and
Johnson *et al.*, *Endocrinology* 124(3), 1424-1427 (1989).} TNF α also has been
shown to stimulate bone resorption and inhibit bone formation *in vitro* and *in vivo*
through stimulation of osteoclast formation and activation combined with inhibition
of osteoblast function. Although TNF α may be involved in many bone resorption
30 diseases, including arthritis, the most compelling link with disease is the association
between production of TNF α by tumor or host tissues and malignancy associated
hypercalcemia {*Calci. Tissue Int. (US)* 46(Suppl.), S3-10 (1990)}. In Graft versus
Host Reaction, increased serum TNF α levels have been associated with major
complication following acute allogenic bone marrow transplants {Holler *et al.*,
35 *Blood*, 75(4), 1011-1016 (1990)}.

Cerebral malaria is a lethal hyperacute neurological syndrome associated with high blood levels of TNF α and the most severe complication occurring in malaria patients. Levels of serum TNF α correlated directly with the severity of disease and the prognosis in patients with acute malaria attacks {Grau *et al.*, *N. Engl. J. Med.* 5 320(24), 1586-1591 (1989)}.

Macrophage-induced angiogenesis is known to be mediated by TNF α . Leibovich *et al.* {*Nature*, 329, 630-632 (1987)} showed TNF α induces *in vivo* capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membranes at very low doses and suggest TNF α is a candidate for inducing 10 angiogenesis in inflammation, wound repair, and tumor growth. TNF α production also has been associated with cancerous conditions, particularly induced tumors {Ching *et al.*, *Brit. J. Cancer*, (1955) 72, 339-343, and Koch, *Progress in Medicinal Chemistry*, 22, 166-242 (1985)}.

TNF α also plays a role in the area of chronic pulmonary inflammatory diseases. 15 The deposition of silica particles leads to silicosis, a disease of progressive respiratory failure caused by a fibrotic reaction. Antibody to TNF α completely blocked the silica-induced lung fibrosis in mice {Pignet *et al.*, *Nature*, 344:245-247 (1990)}. High levels of TNF α production (in the serum and in isolated macrophages) have been demonstrated in animal models of silica and asbestos 20 induced fibrosis {Bissonnette *et al.*, *Inflammation* 13(3), 329-339 (1989)}. Alveolar macrophages from pulmonary sarcoidosis patients have also been found to spontaneously release massive quantities of TNF α as compared with macrophages from normal donors {Baughman *et al.*, *J. Lab. Clin. Med.* 115(1), 36-42 (1990)}.

TNF α is also implicated in the inflammatory response which follows 25 reperfusion, called reperfusion injury, and is a major cause of tissue damage after loss of blood flow {Vedder *et al.*, *PNAS* 87, 2643-2646 (1990)}. TNF α also alters the properties of endothelial cells and has various pro-coagulant activities, such as producing an increase in tissue factor pro-coagulant activity and suppression of the anticoagulant protein C pathway as well as down-regulating the expression of 30 thrombomodulin {Sherry *et al.*, *J. Cell Biol.* 107, 1269-1277 (1988)}. TNF α has pro-inflammatory activities which together with its early production (during the initial stage of an inflammatory event) make it a likely mediator of tissue injury in several important disorders including but not limited to, myocardial infarction, stroke and circulatory shock. Of specific importance may be TNF α -induced 35 expression of adhesion molecules, such as intercellular adhesion molecule (ICAM)

or endothelial leukocyte adhesion molecule (ELAM) on endothelial cells {Munro *et al.*, *Am. J. Path.* 135(1), 121-132 (1989)}.

TNF α blockage with monoclonal anti-TNF α antibodies has been shown to be beneficial in rheumatoid arthritis {Elliot *et al.*, *Int. J. Pharmac.* 1995 17(2), 141-5} and Crohn's disease {von Dullemen *et al.*, *Gastroenterology*, 1995 109(1), 129-135}

Moreover, it now is known that TNF α is a potent activator of retrovirus replication including activation of HIV-1. {Duh *et al.*, *Proc. Nat. Acad. Sci.* 86, 5974-5978 (1989); Poll *et al.*, *Proc. Nat. Acad. Sci.* 87, 782-785 (1990); Monto *et al.*, *Blood* 79, 2670 (1990); Clouse *et al.*, *J. Immunol.* 142, 431-438 (1989); Poll *et al.*, *AIDS Res. Hum. Retrovirus*, 191-197 (1992)}. AIDS results from the infection of T lymphocytes with Human Immunodeficiency Virus (HIV). At least three types or strains of HIV have been identified, *i.e.*, HIV-1, HIV-2 and HIV-3. As a consequence of HIV infection, T-cell mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms. HIV entry into the T lymphocyte requires T lymphocyte activation. Other viruses, such as HIV-1, HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HIV, the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication. Cytokines, specifically TNF α , are implicated in activated T-cell mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by prevention or inhibition of cytokine production, notably TNF α , in an HIV-infected individual assists in limiting the maintenance of T lymphocyte caused by HIV infection.

Monocytes, macrophages, and related cells, such as kupffer and glial cells, also have been implicated in maintenance of the HIV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. {Rosenberg *et al.*, *The Immunopathogenesis of HIV Infection*, Advances in Immunology, 57 (1989)}. Cytokines, such as TNF α , have been shown to activate HIV replication in monocytes and/or macrophages {Poli *et al.*, *Proc. Natl. Acad. Sci.*, 87, 782-784 (1990)}, therefore, prevention or inhibition of cytokine production or activity aids in limiting HIV progression for T cells. Additional studies have identified TNF α as a common factor in the activation of

HIV *in vitro* and has provided a clear mechanism of action via a nuclear regulatory protein found in the cytoplasm of cells (Osborn, *et al.*, *PNAS* 86 2336-2340). This evidence suggests that a reduction of TNF α synthesis may have an antiviral effect in HIV infections, by reducing the transcription and thus virus production.

5 AIDS viral replication of latent HIV in T cell and macrophage lines can be induced by TNF α {Folks *et al.*, *PNAS* 86, 2365-2368 (1989)}. A molecular mechanism for the virus inducing activity is suggested by TNF α 's ability to activate a gene regulatory protein (NF κ B) found in the cytoplasm of cells, which promotes HIV replication through binding to a viral regulatory gene sequence (LTR) {Osborn
10 *et al.*, *PNAS* 86, 2336-2340 (1989)}. TNF α in AIDS associated cachexia is suggested by elevated serum TNF α and high levels of spontaneous TNF α production in peripheral blood monocytes from patients {Wright *et al.*, *J. Immunol.* 141(1), 99-104 (1988)}. TNF α has been implicated in various roles with other viral infections, such as the cytomegalia virus (CMV), influenza virus, adenovirus, and
15 the herpes family of viruses for similar reasons as those noted.

The nuclear factor κ B (NF κ B) is a pleiotropic transcriptional activator (Lenardo, *et al.*, *Cell* 1989, 58, 227-29). NF κ B has been implicated as a transcriptional activator in a variety of disease and inflammatory states and is thought to regulate cytokine levels including but not limited to TNF α and also to be an activator of
20 HIV transcription (Dbaibo, *et al.*, *J. Biol. Chem.* 1993, 17762-66; Duh *et al.*, *Proc. Natl. Acad. Sci.* 1989, 86, 5974-78; Bachelerie *et al.*, *Nature* 1991, 350, 709-12; Boswas *et al.*, *J. Acquired Immune Deficiency Syndrome* 1993, 6, 778-786; Suzuki
25 *et al.*, *Biochem. And Biophys. Res. Comm.* 1993, 193, 277-83; Suzuki *et al.*, *Biochem. And Biophys. Res Comm.* 1992, 189, 1709-15; Suzuki *et al.*, *Biochem. Mol. Bio. Int.* 1993, 31(4), 693-700; Shakhov *et al.*, *Proc. Natl. Acad. Sci. USA* 1990, 171, 35-47; and Staal *et al.*, *Proc. Natl. Acad. Sci. USA* 1990, 87, 9943-47). Thus, inhibition of NF κ B binding can regulate transcription of cytokine gene(s) and through this modulation and other mechanisms be useful in the inhibition of a multitude of disease states. The compounds described herein can inhibit the action
30 of NF κ B in the nucleus and thus are useful in the treatment of a variety of diseases including but not limited to rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, septic shock, sepsis, endotoxic shock, graft versus host disease, wasting, Crohn's disease, inflammatory bowel disease, ulcerative colitis, multiple sclerosis, systemic lupus erythematosus, ENL in leprosy,
35 HIV, AIDS, and opportunistic infections in AIDS. TNF α and NF κ B levels are

influenced by a reciprocal feedback loop. As noted above, the compounds of the present invention affect the levels of both TNF α and NF κ B.

- Many cellular functions are mediated by levels of adenosine 3',5'-cyclic monophosphate (cAMP). Such cellular functions can contribute to inflammatory conditions and diseases including asthma, inflammation, and other conditions (Lowe and Cheng, *Drugs of the Future*, 17(9), 799-807, 1992). It has been shown that the elevation of cAMP in inflammatory leukocytes inhibits their activation and the subsequent release of inflammatory mediators, including TNF α and NF κ B. Increased levels of cAMP also leads to the relaxation of airway smooth muscle.
- Decreasing TNF α levels and/or increasing cAMP levels thus constitutes a valuable therapeutic strategy for the treatment of many inflammatory, infectious, immunological or malignant diseases. These include but are not restricted to septic shock, sepsis, endotoxic shock, hemodynamic shock and sepsis syndrome, post ischemic reperfusion injury, malaria, mycobacterial infection, meningitis, psoriasis, congestive heart failure, fibrotic disease, cachexia, graft rejection, cancer, autoimmune disease, opportunistic infections in AIDS, rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythematosus, ENL in leprosy, radiation damage, and hyperoxic alveolar injury. Prior efforts directed to the suppression of the effects of TNF α have ranged from the utilization of steroids such as dexamethasone and prednisolone to the use of both polyclonal and monoclonal antibodies {Beutler *et al.*, *Science* 234, 470-474 (1985); WO 92/11383}.

Detailed Description

- The present invention is based on the discovery that certain classes of non-polypeptide compounds more fully described herein decrease the levels of TNF α .

In particular, the invention pertains to compounds of the formula:

I.

in which:

one of X and Y is C=O and the other of X and Y is C=O or CH₂;

5 (i) each of R¹, R², R³, and R⁴, independently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon atoms or (ii) one of R¹, R², R³, and R⁴ is

-NHR⁵ and the remaining of R¹, R², R³, and R⁴ are hydrogen;

R⁵ is hydrogen or alkyl of 1 to 8 carbon atoms;

R⁶ is hydrogen, alkyl of 1 to 8 carbon atoms, benzo, chloro, or fluoro;

10 R⁷ is *m*-phenylene or *p*-phenylene or -(C_nH_{2n})- in which *n* has a value of 0 to 4;

each of R⁸ and R⁹ taken independently of the other is hydrogen or alkyl of 1 to 8 carbon atoms, or R⁸ and R⁹ taken together are tetramethylene, pentamethylene, hexamethylene, or -CH₂CH₂XCH₂CH₂- in which X is -O-, 15 -S- or -NH-;

R¹⁰ is hydrogen, alkyl of 1 to 8 carbon atoms, or phenyl; and

(b) the acid addition salts of said compounds which contain a nitrogen atom capable of being protonated.

A first preferred group of compounds are those of Formula I in which at least 20 one of R¹, R², R³, R⁴, and R⁶ is other than hydrogen. Among these, a preferred group are those compounds in which each of R¹, R², R³, and R⁴, independently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon atoms; R⁶ is hydrogen, methyl, ethyl, or propyl; each of R⁸ and R⁹ taken independently of the other is hydrogen or methyl; and R¹⁰ is hydrogen. Of these compounds, a 25 preferred subgroup are those compounds in which R⁷ is *m*-phenylene or *p*-phenylene while a second preferred subgroup are those compounds in which R⁷ -(C_nH_{2n})- in which *n* has a value of 0 to 4.

A further preferred group of compounds are those of Formula I in which one of R¹, R², R³, and R⁴ is -NH₂ and the remaining of R¹, R², R³, and R⁴ are hydrogen; R⁶ 30 is hydrogen, methyl, ethyl, or propyl; each of R⁸ and R⁹ taken independently of the other is hydrogen or methyl; and R¹⁰ is hydrogen. Of these compounds, a first preferred subgroup are those compounds in which R⁷ is *m*-phenylene or *p*-

phenylene while a second preferred subgroup are those compounds in which R⁷ - (C_nH_{2n}) - in which n has a value of 0 to 4.

The term alkyl denotes a univalent saturated branched or straight hydrocarbon chain containing from 1 to 8 carbon atoms. Representative of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, and tert-butyl. Alkoxy refers to an alkyl group bound to the remainder of the molecule through an ethereal oxygen atom. Representative of such alkoxy groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, and tert-butoxy. Preferably R¹, R², R³, and R⁴ are chloro, fluoro, methyl or methoxy.

10 The compounds of Formula I are used, under the supervision of qualified professionals, to inhibit the undesirable effects of TNF α . The compounds can be administered orally, rectally, or parenterally, alone or in combination with other therapeutic agents including antibiotics, steroids, etc., to a mammal in need of treatment.

15 The compounds of the present invention also can be used topically in the treatment or prophylaxis of topical disease states mediated or exacerbated by excessive TNF α production, respectively, such as viral infections, such as those caused by the herpes viruses, or viral conjunctivitis, psoriasis, atopic dermatitis, etc.

20 The compounds also can be used in the veterinary treatment of mammals other than humans in need of prevention or inhibition of TNF α production. TNF α mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections. Examples include feline immunodeficiency virus, equine infectious anaemia virus, caprine arthritis virus, visna virus, and maedi virus, as well as other lentiviruses.

25 The compounds can be prepared through an initial reaction of formaldehyde with an intermediate of the formula:

IIA.

in which X and Y are as defined above;

each of R₁, R₂, R₃, and R₄, independently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon atoms or (ii) one of R₁, R₂, R₃, and R₄ is nitro or protected amino and the remaining of R₁, R₂, R₃, and R₄ are hydrogen; and

5

R₆ is hydrogen, alkyl of 1 to 8 carbon atoms, benzo, chloro, or fluoro.

The resulting N-hydroxymethyl intermediate of Formula II then is coupled with a carboxylic acid derivative of Formula IV using methods which are known in general:

in which Hal is a reactive halogen such as chloro, bromo, or iodo.

Protecting groups utilized herein denote groups which generally are not found in the final therapeutic compounds but which are intentionally introduced at some stage of the synthesis in order to protect groups which otherwise might be altered in the course of chemical manipulations. Such protecting groups are removed at a later stage of the synthesis and compounds bearing such protecting groups thus are of importance primarily as chemical intermediates (although some derivatives also exhibit biological activity). Accordingly the precise structure of the protecting group is not critical. Numerous reactions for the formation and removal of such protecting groups are described in a number of standard works including, for example, "Protective Groups in Organic Chemistry", Plenum Press, London and New York, 1973; Greene, Th. W. "Protective Groups in Organic Synthesis", Wiley, New York, 1981; "The Peptides", Vol. I, Schröder and Lubke, Academic Press,

London and New York, 1965; "Methoden der organischen Chemie", Houben-Weyl, 4th Edition, Vol.15/I, Georg Thieme Verlag, Stuttgart 1974, the disclosures of which are incorporated herein by reference.

An amino group can be protected as an amide utilizing an acyl group which is selectively removable under mild conditions, especially benzyloxycarbonyl, formyl, or a lower alkanoyl group which is branched in 1- or α position to the carbonyl group, particularly tertiary alkanoyl such as pivaloyl, a lower alkanoyl group which is substituted in the position α to the carbonyl group, as for example trifluoroacetyl.

Coupling agents include such reagents as dicyclohexylcarbodiimide and N,N'-carbonyldiimidazole.

Following coupling, compounds of Formula V can be aminated in a conventional manner, as for example with an amine in the presence of sodium iodide.

Alternatively, a compound of Formula III is allowed to react with a protected aminocarboxylic acid of Formula IVA:

15

in which Z is a protected amino group.

Following this coupling, the amino protecting group Z is removed.

In the foregoing reactions when one of R_1 , R_2 , R_3 , and R_4 is nitro, it can be converted to an amino group by catalytic hydrogenation. Alternatively, if one of

R₁, R₂, R₃, and R₄ is protected amino, the protecting group can be cleaved to yield the corresponding compound in which one of R₁, R₂, R₃, and R₄ is amino.

In addition to serving as intermediates, certain other compound of Formula IIA are themselves biologically active in reducing levels of tumor necrosis factor α in a mammal. These compounds are those of the formula:

IIB.

in which:

- one of X and Y is C=O and the other of X and Y is C=O or CH₂;
- 10 (i) each of R¹, R², R³, and R⁴, independently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon atoms or (ii) one of R¹, R², R³, and R⁴ is -NHR⁵ and the remaining of R¹, R², R³, and R⁴ are hydrogen;
- 15 R⁵ is hydrogen, alkyl of 1 to 8 carbon atoms, or CO-R⁷-CH(R¹⁰)NR⁸R⁹ in which each of R⁷, R⁸, R⁹, and R¹⁰ is as herein defined; and
- R⁶ is alkyl of 1 to 8 carbon atoms, benzo, chloro, or fluoro.

Certain of the intermediates of Formula IIA are described in copending applications Serial Nos. 08/690,258, and 08/701,494, the disclosures of which are incorporated herein by reference. In addition, an alkyl *o*-bromomethylbenzoate which is appropriately substituted with R¹, R², R³, and R⁴ substituents is allowed to react with an α -R⁶-substituted α -aminoglutarimide salt in the presence of an acid acceptor such as triethyl amine to yield compounds in which one of X and Y is C=O and the other is CH₂.

Compounds of Formula IIA in which X and Y are both C=O also can be prepared by allowing a phthalic anhydride which is appropriately substituted with

R¹, R², R³, and R⁴ to react with an α -R⁶-substituted α -aminoglutamide salt in the presence of acetic acid and sodium acetate.

The α -R⁶-substituted α -aminoglutamide salt utilized in the foregoing reactions can be obtained by cyclizing an α -R⁶-substituted glutamine in which the amino group is protected. The cyclization can be conducted for example with N,N'-carbonyldiimidazole in the presence of an acid acceptor such as dimethylaminopyridine. Upon completion of the reaction, the protecting group can be removed in an appropriate fashion. Solely by way of example, if the protecting group is the N-benzyloxycarbonyl group, it can be removed by catalytic 10 hydrogenation.

The α -R⁶-substituted glutamines in turn can be prepared by treating an α -R⁶-substituted glutamic acid anhydride, in which the amino group is protected, with ammonia. Finally, the α -R⁶-substituted glutamic acid anhydride can be obtained from the corresponding α -R⁶-substituted glutamic acid with acetic anhydride.

15 The compounds of Formulas I and IIB possess a center of chirality and can exist as optical isomers. Both the racemates of these isomers and the individual isomers themselves, as well as diastereomers when there are two chiral centers, are within the scope of the present invention. The racemates can be used as such or can be separated into their individual isomers mechanically as by chromatography using a 20 chiral absorbant. Alternatively, the individual isomers can be prepared in chiral form or separated chemically from a mixture by forming salts with a chiral acid, such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, α -bromocamphoric acid, methoxyacetic acid, tartaric acid, diacetyltauric acid, malic acid, pyrrolidone-5-carboxylic acid, and the like, and then freeing one or both of the 25 resolved bases, optionally repeating the process, so as obtain either or both substantially free of the other; i.e., in a form having an optical purity of >95%.

The present invention also pertains to the physiologically acceptable non-toxic acid addition salts of the compounds of Formulas I and IIB. Such salts include those derived from organic and inorganic acids such as, without limitation, 30 hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulphonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embonic acid, enanthic acid, and the like.

Oral dosage forms include tablets, capsules, dragees, and similar shaped, compressed pharmaceutical forms containing from 1 to 100 mg of drug per unit dosage. Isotonic saline solutions containing from 20 to 100 mg/mL can be used for parenteral administration which includes intramuscular, intrathecal, intravenous and 5 intra-arterial routes of administration. Rectal administration can be effected through the use of suppositories formulated from conventional carriers such as cocoa butter.

Pharmaceutical compositions thus comprise one or more compounds of Formulas I IIB associated with at least one pharmaceutically acceptable carrier, diluent or excipient. In preparing such compositions, the active ingredients are usually mixed with or diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule or sachet. When the excipient serves as a diluent, it may be a solid, semi-solid, or liquid material which acts as a vehicle, carrier, or medium for the active ingredient. Thus, the compositions can be in the 10 form of tablets, pills, powders, elixirs, suspensions, emulsions, solutions, syrups, soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders. Examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidinone, cellulose, water, syrup, and methyl cellulose, the 15 formulations can additionally include lubricating agents such as talc, magnesium stearate and mineral oil, wetting agents, emulsifying and suspending agents, preserving agents such as methyl- and propylhydroxybenzoates, sweetening agents or flavoring agents.

The compositions preferably are formulated in unit dosage form, meaning physically discrete units suitable as a unitary dosage, or a predetermined fraction of a unitary dose to be administered in a single or multiple dosage regimen to human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with a suitable pharmaceutical excipient. The compositions can be formulated so as 25 to provide an immediate, sustained or delayed release of active ingredient after administration to the patient by employing procedures well known in the art.

Oral dosage forms include tablets, capsules, dragees, and similar shaped, compressed pharmaceutical forms containing from 1 to 100 mg of drug per unit dosage. Isotonic saline solutions containing from 20 to 100 mg/mL can be used for 30 parenteral administration which includes intramuscular, intrathecal, intravenous and

intra-arterial routes of administration. Rectal administration can be effected through the use of suppositories formulated from conventional carriers such as cocoa butter.

- Pharmaceutical compositions thus comprise one or more compounds of Formula I associated with at least one pharmaceutically acceptable carrier, diluent or excipient. In preparing such compositions, the active ingredients are usually mixed with or diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule or sachet. When the excipient serves as a diluent, it may be a solid, semi-solid, or liquid material which acts as a vehicle, carrier, or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, elixirs, suspensions, emulsions, solutions, syrups, soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders. Examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidinone, cellulose, water, syrup, and methyl cellulose, the formulations can additionally include lubricating agents such as talc, magnesium stearate and mineral oil, wetting agents, emulsifying and suspending agents, preserving agents such as methyl- and propylhydroxybenzoates, sweetening agents or flavoring agents.
- The compositions preferably are formulated in unit dosage form, meaning physically discrete units suitable as a unitary dosage, or a predetermined fraction of a unitary dose to be administered in a single or multiple dosage regimen to human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with a suitable pharmaceutical excipient. The compositions can be formulated so as to provide an immediate, sustained or delayed release of active ingredient after administration to the patient by employing procedures well known in the art.

The following examples will serve to further typify the nature of this invention but should not be construed as a limitation in the scope thereof, which scope is defined solely by the appended claims.

*EXAMPLE 1***N-Benzylloxycarbonyl- α -methyl-glutamic Acid**

- To a stirred solution of α -methyl-D,L-glutamic acid (10 g, 62 mmol) in 2 N sodium hydroxide (62 mL) at 0-5°C was added benzyl chloroformate (12.7 g, 74.4 mmol) over 30 min. After the addition was complete the reaction mixture was stirred at room temperature for 3 hours. During this time the pH was maintained at 11 by addition of 2N sodium hydroxide (33 mL). The reaction mixture was then extracted with ether (60 mL). The aqueous layer was cooled in an ice bath and then acidified with 4N hydrochloric acid (34 mL) to pH=1. The resulting mixture was extracted with ethyl acetate (3 x 100 mL). The combined ethyl acetate extracts were washed with brine (60 mL) and dried ($MgSO_4$). The solvent was removed in vacuo to give 15.2 g (83%) of N-benzylloxycarbonyl- α -methylglutamic acid as an oil: 1H NMR ($CDCl_3$) δ 8.73(m, 5H), 5.77(b, 1H), 5.09(s, 2H), 2.45-2.27(m, 4H), 2.0(s, 3H).
- In a similar fashion from α -ethyl-D,L-glutamic acid and α -propyl-D,L-glutamic acid, there is obtained N-benzylloxycarbonyl- α -ethylglutamic acid and N-benzylloxycarbonyl- α -propylglutamic acid, respectively.

*EXAMPLE 2***N-Benzylloxycarbonyl- α -methyl-glutamic Anhydride**

- A stirred mixture of N-benzylloxycarbonyl- α -methyl-glutamic acid (15 g, 51 mmol) and acetic anhydride (65 mL) was heated at reflux under nitrogen for 30 min. The reaction mixture was cooled to room temperature and then concentrated in vacuo to afford N-benzylcarbonyl- α -methylglutamic anhydride as an oil (15.7 g) which can be used in next reaction without further purification: 1H NMR ($CDCl_3$) δ 7.44-7.26 (m, 5H), 5.32-5.30 (m, 2H), 5.11 (s, 1H), 2.69-2.61 (m, 2H), 2.40-2.30 (m, 2H), 1.68 (s, 3H).

In a similar fashion from N-benzylloxycarbonyl- α -ethylglutamic acid and N-benzylloxycarbonyl- α -propylglutamic acid, there is obtained N-benzylcarbonyl- α -ethylglutamic anhydride and N-benzylcarbonyl- α -propylglutamic anhydride, respectively.

*EXAMPLE 3*N-Benzylloxycarbonyl- α -methylisoglutamine

A stirred solution of N-benzylcarbonyl- α -methylglutamic anhydride (14.2 g, 51.5 mmol) in methylene chloride (100 mL) was cooled in an ice bath. Gaseous 5 ammonia was bubbled into the cooled solution for 2 hours. The reaction mixture was stirred at room temperature for 17 hours and then extracted with water (2 x 50 mL). The combined aqueous extracts were cooled in an ice bath and acidified with 4N hydrochloric acid (32 mL) to pH 1. The resulting mixture was extracted with ethyl acetate (3 x 80 mL). The combined ethyl acetate extracts were washed with 10 brine (60 mL) and then dried ($MgSO_4$). The solvent was removed in vacuo to give 11.5 g of N-benzylloxycarbonyl- α -amino- α -methylisoglutamine: 1H NMR ($CDCl_3/DMSO$) δ 7.35 (m, 5H), 7.01 (s, 1H), 6.87 (s, 1H), 6.29 (s, 1H), 5.04 (s, 2H), 2.24-1.88 (m, 4H), 1.53 (s, 3H).

In a similar fashion from N-benzylcarbonyl- α -ethylglutamic anhydride and N-15 benzylcarbonyl- α -propylglutamic anhydride there is obtained N-benzylloxycarbonyl- α -amino- α -ethylisoglutamine and N-benzylloxycarbonyl- α -amino- α -propylisoglutamine, respectively.

*EXAMPLE 4*N-Benzylloxycarbonyl- α -amino- α -methylglutarimide

20 A stirred mixture of N-benzylloxycarbonyl- α -methylisoglutamine (4.60 g, 15.6 mmol), 1,1'-carbonyldiimidazole (2.80 g, 17.1 mmol), and 4-dimethylaminopyridine (0.05 g) in tetrahydrofuran (50 mL) was heated to reflux under nitrogen for 17 hours. The reaction mixture was then concentrated in vacuo to an oil. The oil was slurried in water (50 mL) for 1 hour. The resulting 25 suspension was filtered and the solid washed with water and air dried to afford 3.8 g of the crude product as a white solid. The crude product was purified by flash chromatography (methylene chloride:ethyl acetate 8:2) to afford 2.3 g (50%) of N-benzylloxycarbonyl- α -amino- α -methylglutarimide as a white solid: mp 150.5-152.5°C; 1H NMR ($CDCl_3$) δ 8.21 (s, 1H), 7.34 (s, 5H), 5.59 (s, 1H), 5.08 (s, 2H), 2.74-2.57 (m, 3H), 2.28-2.25 (m, 1H), 1.54 (s, 3H); ^{13}C NMR ($CDCl_3$) δ 174.06, 171.56, 154.68, 135.88, 128.06, 127.69, 127.65, 66.15, 54.79, 29.14, 28.70, 21.98; HPLC : Waters Nova-Pak C18 column, 4 micron, 3.9x150 mm, 1mL/min, 240nm, 20/80 $CH_3CN/0.1\% H_3PO_4$ (aq), 7.56 min (100%); Anal. Calcd For $C_{14}H_{16}N_2O_4$; C, 60.86; H, 5.84; N, 10.14. Found: C, 60.88; H, 5.72; N, 10.07.

In a similar fashion from N-benzyloxycarbonyl- α -amino- α -ethylisoglutamine and N-benzyloxycarbonyl- α -amino- α -propylisoglutamine there is obtained N-benzyloxycarbonyl- α -amino- α -ethylglutarimide and N-benzyloxycarbonyl- α -amino- α -propylglutarimide, respectively.

5

EXAMPLE 5

α -Amino- α -methylglutarimide hydrochloride

- N-Benzylloxycarbonyl- α -amino- α -methylglutarimide (2.3 g, 8.3 mmol) was dissolved in ethanol (200 mL) with gentle heat and the resulting solution allowed to cool to room temperature. To this solution was added 4N hydrochloric acid (3 mL) followed by 10% Pd/C (0.4 g). The mixture was hydrogenated in a Parr apparatus under 50 psi of hydrogen for 3 hours. To the mixture was added water (50 mL) to dissolve the product. This mixture was filtered through a Celite pad which was washed with water (50 mL). The filtrate was concentrated in vacuo to afford a solid residue. The solid was slurried in ethanol (20 mL) for 30 min. The slurry was filtered to afford 1.38 g (93%) of α -amino- α -methylglutarimide hydrochloride as a white solid: ^1H NMR (DMSO-d₆) δ 11.25 (s, 1H), 8.92 (s, 3H), 2.84-2.51 (m, 2H), 2.35-2.09 (m, 2H), 1.53 (s, 3H); HPLC, Waters Nova-Pak C₁₈ column, 4 micron, 1 mL/min, 240 nm, 20/80 CH₃CN/ 0.1% H₃PO₄(aq), 1.03 min (94.6%).
- 20 In a similar fashion from N-benzyloxycarbonyl- α -amino- α -ethylglutarimide and N-benzyloxycarbonyl- α -amino- α -propylglutarimide there is obtained α -amino- α -ethylglutarimide hydrochloride and α -amino- α -propylglutarimide hydrochloride, respectively.

EXAMPLE 6

25 3-(3-Nitrophthalimido)-3-methylpiperidine-2,6-dione

- A stirred mixture of α -amino- α -methylglutarimide hydrochloride (1.2 g, 6.7 mmol), 3-nitrophthalic anhydride (1.3 g, 6.7 mmol), and sodium acetate (0.6 g, 7.4 mmol) in acetic acid (30 mL) was heated to reflux under nitrogen for 6 hours. The mixture then was cooled and concentrated in vacuo. The resulting solid was slurried in water (30 mL) and methylene chloride (30 mL) for 30 min. The suspension was filtered, the solid was washed with methylene chloride, and dried in vacuo (60°C, <1 mm) to afford 1.44 g (68%) of 3-(3-nitrophthalimido)-3-methylpiperidine-2,6-dione as a off-white solid : mp 265-266.5°C; ^1H NMR (DMSO-d₆) δ 11.05 (s, 1H), 8.31 (dd, J=1.1 and 7.9 Hz, 1H), 8.16-8.03 (m, 2H), 2.67-2.49 (m, 3H), 2.08-2.02 (m, 1H), 1.88 (s, 3H); ^{13}C NMR (DMSO-d₆) δ 172.20,

171.71, 165.89, 163.30, 144.19, 136.43, 133.04, 128.49, 126.77, 122.25, 59.22, 28.87, 28.49, 21.04; HPLC, Water Nova-Pak/C₁₈ column, 4micron, 1 mL/min, 240nm, 20/80 CH₃CN/0.1% H₃PO₄(aq), 7.38 min(98%). Anal. Calcd For C₁₄H₁₁N₃O₆ : C, 53.00; H, 3.49; N, 13.24. Found : C, 52.77; H, 3.29; N, 13.00.

5 In a similar fashion from α -amino- α -ethylglutarimide hydrochloride and α -amino- α -propylglutarimide hydrochloride there is obtained 3-(3-nitrophthalimido)-3-ethylpiperidine-2,6-dione and 3-(3-nitrophthalimido)-3-propylpiperidine-2,6-dione , respectively.

EXAMPLE 7

10 3-(3-Aminophthalimido)-3-methyl-piperidine-2,6-dione

3-(3-Nitrophthalimido)-3-methylpiperidine-2,6-dione (0.5 g, 1.57 mmol) was dissolved in acetone (250 mL) with gentle heat and then cooled to room temperature. To this solution was added 10% Pd/C (0.1 g) under nitrogen. The mixture was hydrogenated in a Parr apparatus at 50 psi of hydrogen for 4 hours. 15 The mixture then was filtered through Celite and the pad washed with acetone (50 mL). The filtrate was concentrated in vacuo to yield a yellow solid. The solid was slurried in ethyl acetate (10 mL) for 30 minutes. The slurry then was filtered and dried (60°C, <1 mm) to afford 0.37 g (82%) of 3-(3-aminophthalimido)-3-methylpiperidine-2,6-dione as a yellow solid: mp 268-269°C; ¹H NMR (DMSO-d₆) δ 10.98 (s, 1H), 7.44 (dd, J=7.1 and 7.3 Hz, 1H), 6.99 (d, J=8.4 Hz, 1H), 6.94 (d, J=6.9 Hz, 1H), 6.52 (s, 2H), 2.71-2.47 (m, 3H), 2.08-1.99 (m, 1H), 1.87 (s, 3H); ¹³C NMR (DMSO-d₆) δ 172.48, 172.18, 169.51, 168.06, 146.55, 135.38, 131.80, 121.51, 110.56, 108.30, 58.29, 29.25, 28.63, 21.00; HPLC, Water Nova-Pak/C₁₈ column, 4 micron, 1 mL/min, 240 nm, 20/80 CH₃CN/0.1%H₃PO₄(aq), 5.62 min 20 (99.18%). Anal. Calcd For C₁₄H₁₃N₃O₄ : C, 58.53; H, 4.56; N, 14.63. Found : C, 58.60; H, 4.41; N, 14.36.

In a similar fashion from 3-(3-nitrophthalimido)-3-ethylpiperidine-2,6-dione and 3-(3-nitrophthalimido)-3-propylpiperidine-2,6-dione there is obtained 3-(3-amino-phthalimido)-3-ethylpiperidine-2,6-dione and 3-(3-aminophthalimido)-3-propyl-piperidine-2,6-dione, respectively.

EXAMPLE 8

Methyl 2-bromomethyl-3-nitrobenzoate

A stirred mixture of methyl 2-methyl-3-nitrobenzoate(17.6 g, 87.1 mmol) and N-bromosuccinimide (18.9 g, 105 mmol) in carbon tetrachloride (243 mL) was heated

under gentle reflux with a 100 W light bulb situated 2 cm away shining on the reaction mixture overnight. After 18 hours, the reaction mixture was cooled to room temperature and filtered. The filtrate was washed with water (2 x 120 mL), brine(120 mL), and dried (MgSO_4). The solvent was removed in vacuo to give a yellow solid. The product was purified by flash chromatography (hexane:ethyl acetate 8:2) to give 22 g (93%) of methyl 2-bromomethyl-3-nitrobenzoate as a yellow solid: mp 69-72 °C; ^1H NMR (CDCl_3) δ 8.13-8.09 (dd, $J=1.36$ and 7.86 Hz, 1H), 7.98-7.93 (dd, $J=1.32$ and 8.13 Hz, 1H), 7.57-7.51 (t, $J=7.97$ Hz, 1H), 5.16 (s, 2H), 4.0 (s, 3H); ^{13}C NMR (CDCl_3) δ 65.84, 150.56, 134.68, 132.64, 132.36, 129.09, 53.05, 22.70; HPLC : Waters Nova-Pak C₁₈ column, 4micron, 1 mL/min, 240nm, 40/60 CH₃CN/0.1%H₃PO₄(aq), 8.2 min 99 %. Anal. Calcd for C₉H₈NO₄Br: C, 39.44; H, 2.94; N, 5.11, Br, 29.15. Found: C, 39.51; H, 2.79; N, 5.02; Br, 29.32.

EXAMPLE 9

15 3-(1-Oxo-4-nitroisoindolin-1-yl)-3-methylpiperidine-2,6-dione

To a stirred mixture of α -amino- α -methylglutarimide hydrochloride (2.5g, 14.0 mmol) and methyl 2-bromomethyl-3-nitrobenzoate(3.87g, 14.0 mmol in dimethylformamide (40 mL) was added triethylamine (3.14g, 30.8 mmol). The resulting mixture was heated to reflux under nitrogen for 6 hours. The mixture was cooled and then concentrated in vacuo. The resulting solid was slurried in water (50 mL) and CH₂Cl₂ for 30 min. The slurry was filtered, the solid washed with methylene chloride, and dried in vacuo (60°C , <1mm) to afford 2.68 g (63%) of 3-(1-oxo-4-nitroisoindolin-1-yl)-3-methylpiperidine-2,6-dione as a off-white solid : mp 233-235 °C; ^1H NMR (DMSO-d₆) δ 10.95 (s, 1H), 8.49-8.46 (d, $J=8.15$ Hz, 1H), 8.13-8.09 (d, $J=7.43$ Hz, 1H), 7.86-7.79 (t, $J=7.83$ Hz, 1H), 5.22-5.0 (dd, $J=19.35$ and 34.6 Hz, 2H), 2.77-2.49 (m, 3H), 2.0-1.94 (m, 1H), 1.74 (S, 3H); ^{13}C NMR (DMSO-d₆) δ 173.07, 172.27, 164.95, 143.15, 137.36, 135.19, 130.11, 129.32, 126.93, 57.57, 48.69, 28.9, 27.66, 20.6; HPLC, Waters Nova-Pak C₁₈ column, 4micron, 1 mL/min, 240nm, 20/80 CH₃CN/0.1%H₃PO₄(aq), 4.54 min 99.6%. Anal. Calcd for C₁₄H₁₃N₃O₅: C, 55.45; H, 4.32; N, 13.86. Found: C, 52.16; H, 4.59; N, 12.47.

By substituting equivalent amounts of α -amino- α -ethylglutarimide hydrochloride and α -amino- α -propylglutarimide hydrochloride for α -amino- α -methylglutarimide hydrochloride, there is obtained respectively 3-(1-oxo-4-nitroisoindolin-1-yl)-3-ethylpiperidine-2,6-dione and 3-(1-oxo-4-nitroisoindolin-1-yl)-3-propylpiperidine-2,6-dione.

EXAMPLE 10

3-(1-Oxo-4-aminoisoindolin-1-yl)-3-methylpiperidine-2,6-dione

3-(1-Oxo-4-nitroisoindolin-1-yl)-3-methylpiperidine-2,6-dione (1.0 g, 3.3 mmol) was dissolved in methanol (500 mL) with gentle heat and allowed to cool to room temperature. To this solution was added 10% Pd/C (0.3 g) under nitrogen. The mixture was hydrogenated in a Parr apparatus at 50 psi of hydrogen for 4 hours. The mixture was filtered through celite and the celite washed with methanol (50 mL). The filtrate was concentrated in vacuo to an off white solid. The solid was slurried in methylene chloride (20 mL) for 30 min. The slurry was then filtered and the solid dried (60°C, <1 mm) to afford 0.54 g (60%) of 3-(1-oxo-4-aminoisoindolin-1-yl)-3-methylpiperidine-2,6-dione as a white solid: mp 268-270 °C; ¹H NMR (DMSO-d₆) δ 10.85 (s, 1H), 7.19-7.13 (t, J=7.63 Hz, 1H), 6.83-6.76 (m, 2H), 5.44 (s, 2H), 4.41(s, 2H), 2.71-2.49 (m, 3H), 1.9-1.8 (m, 1H), 1.67 (s, 3H); ¹³C NMR (DMSO-d₆) δ 173.7, 172.49, 168.0, 143.5, 132.88, 128.78, 125.62, 116.12, 109.92, 56.98, 46.22, 29.04, 27.77, 20.82; HPLC, Waters Nova-Pak/C18 column, 4 micron, 1 mL/min, 240 nm, 20/80 CH₃CN/0.1%H₃PO₄(aq), 1.5 min (99.6%); Anal. Calcd for C₁₄H₁₅N₃O₃ : C, 61.53; H, 5.53; N, 15.38. Found : C, 58.99; H, 5.48; N, 14.29.

From 3-(1-oxo-4-nitroisoindolin-1-yl)-3-ethylpiperidine-2,6-dione and 3-(1-oxo-4-nitroisoindolin-1-yl)-3-propylpiperidine-2,6-dione there is similarly obtained 3-(1-oxo-4-aminoisoindolin-1-yl)-3-ethylpiperidine-2,6-dione and 3-(1-oxo-4-aminoisoindolin-1-yl)-3-propylpiperidine-2,6-dione, respectively.

EXAMPLE 11

Tablets, each containing 50 mg of 1-oxo-2-(2,6-dioxo-3-methylpiperidin-3-yl)-4,5,6,7-tetrafluoroisoindoline, can be prepared in the following manner:

Constituents (for 1000 tablets)

30	1-oxo-2-(2,6-dioxo-3-methylpiperidin-3-yl)-4,5,6,7-tetrafluoroisoindoline	50.0 g
	lactose.....	50.7 g
	wheat starch.....	7.5 g
	polyethylene glycol 6000	5.0 g
	talc	5.0 g
35	magnesium stearate	1.8 g
	demineralized water	q.s.

The solid ingredients are first forced through a sieve of 0.6 mm mesh width. The active ingredient, lactose, talc, magnesium stearate and half of the starch then are mixed. The other half of the starch is suspended in 40 mL of water and this suspension is added to a boiling solution of the polyethylene glycol in 100 mL of water. The resulting paste is added to the pulverulent substances and the mixture is granulated, if necessary with the addition of water. The granulate is dried overnight at 35°C, forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 6 mm diameter which are concave on both sides.

EXAMPLE 12

10 Tablets, each containing 100 mg of 1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-aminoisoindoline, can be prepared in the following manner:

Constituents (for 1000 tablets)

15	1-oxo-2-(2,6-dioxo-piperidin-3-yl)-4-amino isoindoline.....	100.0 g
	lactose.....	100.0 g
	wheat starch.....	47.0 g
20	magnesium stearate	3.0 g

All the solid ingredients are first forced through a sieve of 0.6 mm mesh width. The active ingredient, lactose, magnesium stearate and half of the starch then are mixed. The other half of the starch is suspended in 40 mL of water and this suspension is added to 100 mL of boiling water. The resulting paste is added to the pulverulent substances and the mixture is granulated, if necessary with the addition of water. The granulate is dried overnight at 35°C, forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 6 mm diameter which are concave on both sides.

EXAMPLE 13

30 Tablets for chewing, each containing 75 mg of 2-(2,6-dioxo-3-methylpiperidin-3-yl)-4-aminophthalimide, can be prepared in the following manner:

Composition (for 1000 tablets)

35	2-(2,6-dioxo-3-methylpiperidin-3-yl)-4-aminophthalimide	75.0 g
	mannitol	230.0 g
	lactose.....	150.0 g

5

talc.....	21.0 g
glycine.....	12.5 g
stearic acid.....	10.0 g
saccharin.....	1.5 g
5% gelatin solution.....	q.s.

All the solid ingredients are first forced through a sieve of 0.25 mm mesh width. The mannitol and the lactose are mixed, granulated with the addition of gelatin solution, forced through a sieve of 2 mm mesh width, dried at 50°C and again 10 forced through a sieve of 1.7 mm mesh width. 2-(2,6-Dioxo-3-methylpiperidin-3-yl)-4-aminophthalimide, the glycine and the saccharin are carefully mixed, the mannitol, the lactose granulate, the stearic acid and the talc are added and the whole is mixed thoroughly and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking groove on the upper 15 side.

EXAMPLE 14

Tablets, each containing 10 mg of 2-(2,6-dioxoethylpiperidin-3-yl)-4-aminophthalimide, can be prepared in the following manner:

20

Composition (for 1000 tablets)

25

2-(2,6-dioxoethylpiperidin-3-yl)-	
4-aminophthalimide	10.0 g
lactose.....	328.5 g
corn starch.....	17.5 g
polyethylene glycol 6000	5.0 g
talc	25.0 g
magnesium stearate.....	4.0 g
demineralized water	q.s.

30

The solid ingredients are first forced through a sieve of 0.6 mm mesh width. Then the active imide ingredient, lactose, talc, magnesium stearate and half of the starch are intimately mixed. The other half of the starch is suspended in 65 mL of water and this suspension is added to a boiling solution of the polyethylene glycol in 260 mL of water. The resulting paste is added to the pulverulent substances, and 35 the whole is mixed and granulated, if necessary with the addition of water. The granulate is dried overnight at 35°C, forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking notch on the upper side.

EXAMPLE 15

Gelatin dry-filled capsules, each containing 100 mg of 1-oxo-2-(2,6-dioxo-3-methylpiperidin-3-yl)-4,5,6,7-tetrafluoroisoindoline, can be prepared in the following manner:

5	<u>Composition</u> (for 1000 capsules)
	1-oxo-2-(2,6-dioxo-3-
	methylpiperidin-3-yl)-4,5,6,7-
10	tetrafluoroisoindoline 100.0 g
	microcrystalline cellulose 30.0 g
	sodium lauryl sulfate 2.0 g
	magnesium stearate 8.0 g

15 The sodium lauryl sulfate is sieved into the 1-oxo-2-(2,6-dioxo-3-methylpiperidin-3-yl)-4,5,6,7-tetrafluoroisoindoline through a sieve of 0.2 mm mesh width and the two components are intimately mixed for 10 minutes. The microcrystalline cellulose is then added through a sieve of 0.9 mm mesh width and the whole is again intimately mixed for 10 minutes. Finally, the magnesium stearate is added through a sieve of 0.8 mm width and, after mixing for a further 3
20 minutes, the mixture is introduced in portions of 140 mg each into size 0 (elongated) gelatin dry-fill capsules.

EXAMPLE 16

A 0.2% injection or infusion solution can be prepared, for example, in the following manner:

25	1-oxo-2-(2,6-dioxo-3-methylpiperidin-3-yl)-4,5,6,7-tetrafluoroisoindoline 5.0 g
	sodium chloride 22.5 g
30	phosphate buffer pH 7.4 300.0 g

demineralized water to 2500.0 mL

1-Oxo-2-(2,6-dioxo-3-methylpiperidin-3-yl)-4,5,6,7-tetrafluoroisoindoline is dissolved in 1000 mL of water and filtered through a microfilter. The buffer solution is added and the whole is made up to 2500 mL with water. To prepare dosage
35 unit forms, portions of 1.0 or 2.5 mL each are introduced into glass ampoules (each containing respectively 2.0 or 5.0 mg of imide).

What is claimed is:

- 1 1. A 2,6-dioxopiperidine selected from the group consisting of (a) a compound of the
2 formula:

3 in which:

4 5 one of X and Y is C=O and the other of X and Y is C=O or CH₂;

6 6 (i) each of R¹, R², R³, and R⁴, independently of the others, is halo, alkyl of 1 to 4
7 7 carbon atoms, or alkoxy of 1 to 4 carbon atoms or (ii) one of R¹, R², R³, and R⁴ is
8 8 -NHR⁵ and the remaining of R¹, R², R³, and R⁴ are hydrogen;

9 9 R⁵ is hydrogen, alkyl of 1 to 8 carbon atoms, or CO-R⁷-CH(R¹⁰)NR⁸R⁹;

10 10 R⁶ is hydrogen, alkyl of 1 to 8 carbon atoms, benzo, chloro, or fluoro;

11 11 R⁷ is *m*-phenylene or *p*-phenylene or -(C_nH_{2n})- in which *n* has a value of 0 to 4;

12 12 each of R⁸ and R⁹ taken independently of the other is hydrogen or alkyl of 1 to 8
13 13 carbon atoms, or R⁸ and R⁹ taken together are tetramethylene, pentamethylene,
14 14 hexamethylene, or -CH₂CH₂XCH₂CH₂- in which X is -O-, -S- or -NH-;

15 15 R¹⁰ is hydrogen, alkyl of 1 to 8 carbon atoms, or phenyl; and

16 16 (b) the acid addition salts of said compounds which contain a nitrogen atom capable
17 17 of being protonated.

18 18 2. A compound according to claim 1 in which each of R¹, R², R³, and R⁴, inde-
19 19 pendently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon
20 20 atoms; R⁶ is hydrogen, methyl, ethyl, or propyl; R⁷ is *m*-phenylene or *p*-phenylene; each
21 21 of R⁸ and R⁹ taken independently of the other is hydrogen or methyl; and R¹⁰ is hydro-
22 22 gen.

1 3. A compound according to claim 1 in which each of R¹, R², R³, and R⁴, independently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon atoms; R⁶ is hydrogen, methyl, ethyl, or propyl; R⁷ is -(C_nH_{2n})- in which n has a value of 0 to 4; each of R⁸ and R⁹ taken independently of the other is hydrogen or methyl; and R¹⁰ is hydrogen.

6 4. A compound according to claim 1 in which one of R¹, R², R³, and R⁴ is -NH₂ and the remaining of R¹, R², R³, and R⁴ are hydrogen; R⁶ is hydrogen, methyl, ethyl, or propyl; R⁷ is *m*-phenylene or *p*-phenylene; each of R⁸ and R⁹ taken independently of the other is hydrogen or methyl; and R¹⁰ is hydrogen.

10 5. A compound according to claim 1 in which one of R¹, R², R³, and R⁴ is -NH₂ and the remaining of R¹, R², R³, and R⁴ are hydrogen; R⁶ is hydrogen, methyl, ethyl, or propyl; R⁷ is or -(C_nH_{2n})- in which n has a value of 0 to 4; each of R⁸ and R⁹ taken independently of the other is hydrogen or methyl; and R¹⁰ is hydrogen.

14 6. A 2,6-dioxopiperidine selected from the group consisting of (a) a compound of
15 the formula:

16 in which:

18 one of X and Y is C=O and the other of X and Y is C=O or CH₂;

19 (i) each of R¹, R², R³, and R⁴, independently of the others, is halo, alkyl of 1 to 4
20 carbon atoms, or alkoxy of 1 to 4 carbon atoms or (ii) one of R¹, R², R³, and R⁴ is
21 -NHR⁵ and the remaining of R¹, R², R³, and R⁴ are hydrogen;

22 R⁵ is hydrogen, alkyl of 1 to 8 carbon atoms, or CO-R⁷-CH(R¹⁰)NR⁸R⁹;

23 R⁶ is alkyl of 1 to 8 carbon atoms, benzo, chloro, or fluoro;

24 R⁷ is *m*-phenylene or *p*-phenylene or -(C_nH_{2n})- in which n has a value of 0 to 4;

1 each of R⁸ and R⁹ taken independently of the other is hydrogen or alkyl of 1 to 8
2 carbon atoms, or R⁸ and R⁹ taken together are tetramethylene, pentamethylene;
3 hexamethylene, or -CH₂CH₂XCH₂CH₂- in which X is -O-, -S- or -NH-;

4 R¹⁰ is hydrogen, alkyl of 1 to 8 carbon atoms, or phenyl; and

5 (b) the acid addition salts of said compounds which contain a nitrogen atom capable
6 of being protonated.

7 7. A compound according to claim 6 in which each of R¹, R², R³, and R⁴, inde-
8 pendently of the others, is halo, alkyl of 1 to 4 carbon atoms, or alkoxy of 1 to 4 carbon
9 atoms and R⁶ is methyl, ethyl, or propyl.

10 8. A compound according to claim 6 in which one of R¹, R², R³, and R⁴ is -NH₂
11 and the remaining of R¹, R², R³, and R⁴ are hydrogen and R⁶ is methyl, ethyl, or propyl.

12 9. The method of reducing undesirable levels of TNF α in a mammal which com-
13 prises administering thereto an effective amount of a compound according to claim 1.

14 10. The method of reducing undesirable levels of TNF α in a mammal which
15 comprises administering thereto an effective amount of a compound according to claim 6.

16 11. A pharmaceutical composition comprising a quantity of a compound accord-
17 ing to claim 1 sufficient upon administration in a single or multiple dose regimen to
18 reduce levels of TNF α in a mammal in combination with a carrier.

19 12. A pharmaceutical composition comprising a quantity of a compound accord-
20 ing to claim 6 sufficient upon administration in a single or multiple dose regimen to
21 reduce levels of TNF α in a mammal in combination with a carrier.

INTERNATIONAL SEARCH REPORT

In. Application No.
PCT/US 98/10886

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D401/04 A61K31/445

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 42 11 812 A (GRUENENTHAL GMBH) 22 October 1992 see claim 1 ---	1-5, 9, 11
X	EP 0 688 771 A (GRUENENTHAL GMBH) 27 December 1995 see page 8 ---	6-8, 10, 12
X	WO 95 01348 A (CELGENE CORP ;MULLER GEORGE W (US)) 12 January 1995 see claims 2,58; example 11 ---	6-8, 10, 12
X	WO 92 14455 A (UNIV ROCKEFELLER) 3 September 1992 see claim 2 ---	6-8, 10, 12 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

20 August 1998

Date of mailing of the International search report

01/09/1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

De Jong, B

INTERNATIONAL SEARCH REPORT

Application No
PCT/US 98/10886

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 94 20085 A (CHILDRENS HOSP MEDICAL CENTER) 15 September 1994 see claim 2 ---	6-8,10, 12
X	NIWAYAMA S ET AL: "Potent Inhibition of Tumor Necrosis Factor-.alpha. Production by Tetrafluorothalidomide and Tetrafluorophthalimides" J. MED. CHEM. (JMCMAR,00222623);96; VOL.39 (16); PP.3044-3045, XP002048231 MASSACHUSETTS INSTITUTE OF TECHNOLOGY;CENTER FOR CANCER RESEARCH; CAMBRIDGE see the whole document ---	6-8,10, 12
X	WNENDT, STEPHAN ET AL: "Enantioselective inhibition of TNF-.alpha. release by thalidomide and thalidomide-analogs" CHIRALITY (1996), 8(5), 390-396, 1996, XP002074569 see page 390 - page 391 ---	6-8,10, 12
X	SHIBATA, YOSHIHIRO ET AL: "N-Alkylphthalimides: structural requirement of thalidomidal action on 12-O-tetradecanoylphorbol-13-acetate-induced tumor necrosis factor-.alpha. production by human leukemia HL-60 cells" CHEM. PHARM. BULL. (1995), 43(1), 177-9 , 1995, XP000566311 see page 177 ---	6-8,10, 12
P,X	WO 98 03502 A (CHEN ROGER SHEN CHU ;CELGENE CORP (US); MULLER GEORGE W (US); STIR) 29 January 1998 see claims ---	6-8,10, 12
P,X	NIWAYAMA, SATOMI ET AL: "Enhanced potency of perfluorinated thalidomide derivatives for inhibition of LPS-induced tumor necrosis factor-.alpha. production is associated with a change of mechanism of action" BIOORG. MED. CHEM. LETT. (1998), 8(9), 1071-1076 , 1998, XP002074570 see page 1071 - page 1072 ---	6-8,10, 12
P,X	WO 97 37988 A (GRUENENTHAL GMBH ;SCHNEIDER JOHANNES (DE); WINTER WERNER (DE); WNE) 16 October 1997 see claim 1 -----	1-5,9,11

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/US 98/10886

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
DE 4211812	A	22-10-1992		AT 146787 T AU 661299 B AU 1455592 A CA 2104776 A DE 59207778 D DK 580641 T WO 9218496 A EP 0580641 A ES 2098505 T GR 3022175 T JP 6506671 T		15-01-1997 20-07-1995 17-11-1992 18-10-1992 06-02-1997 20-01-1997 29-10-1992 02-02-1994 01-05-1997 31-03-1997 28-07-1994
EP 0688771	A	27-12-1995		DE 4422237 A AU 689885 B AU 2323095 A CA 2152432 A HU 72600 A JP 8092092 A		04-01-1996 09-04-1998 11-01-1996 25-12-1995 28-05-1996 09-04-1996
WO 9501348	A	12-01-1995		AU 687843 B AU 7216794 A CA 2166315 A CZ 9600010 A EP 0706521 A FI 956362 A HU 75312 A JP 9500872 T PL 312386 A SK 166595 A US 5463063 A US 5605914 A US 5698579 A		05-03-1998 24-01-1995 12-01-1995 16-10-1996 17-04-1996 26-02-1996 28-05-1997 28-01-1997 15-04-1996 08-01-1997 31-10-1995 25-02-1997 16-12-1997
WO 9214455	A	03-09-1992		AU 1531492 A US 5385901 A		15-09-1992 31-01-1995
WO 9420085	A	15-09-1994		US 5629327 A AU 676722 B AU 6248694 A BR 9400764 A		13-05-1997 20-03-1997 26-09-1994 01-11-1994

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/10886

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9420085 A		CA 2157288 A		15-09-1994
		EP 0688211 A		27-12-1995
		JP 8507767 T		20-08-1996
		US 5593990 A		14-01-1997
		US 5712291 A		27-01-1998
WO 9803502 A	29-01-1998	US 5635517 A		03-06-1997
		AU 3899897 A		10-02-1998
WO 9737988 A	16-10-1997	DE 19613976 C		20-11-1997
		AU 2505297 A		29-10-1997