EECS 114: Engineering Data Structures and Algorithms Lecture 6

Instructor: Ryan Rusich

E-mail: rusichr@uci.edu

Office: EH 2204

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

(Binary) Heaps

- Similar to a Binary Search Tree (BST)
- Heap is sorted in a weaker sense than BST
- Tree is a complete tree
 - o Bottom level may not be filled but fills from left to right

(Binary) Heaps

- Binary trees are easily stored in an array
 - Array with index started at 0
 - Parent = (i-1)/2
 - Left Child = 2i + 1
 - Right Child = 2i + 2
 - Array with index started at 1 (from CLRS)
 - Parent = i/2
 - Left Child = 2i
 - Right Child = 2i + 1

Binary Tree – Array

0	1	2	3	4	5	6	7
6	3	11	1	4	7	12	

Heap Order Properties

- Min Heap
 - \circ For each node X, X.key > (X.parent).key
 - Smallest number is at the root
- Max Heap
 - \circ For each node X, X.key < (X.parent).key
 - Largest number is at the root

Max Heap

10	
9	
6	
3	
2	
5	

Min Heap

1	
7	
2	
2 8	
9	
5	

Heap - Insert

- Create a hole (empty node) in the next available complete tree location
 - o Remember to fill bottom layer from left to right
- If the item can be inserted into the hole without violation of the heap property, insert item
- Otherwise, copy the hole's parent item into the hole then trickle up

13, 16, 19, 14, 23, 17, 6

Insert 13

13, 16, 19, 14, 23, 17, 6

13, 16, 19, 14, 23, 17, 6

13, 16, 19, 14, 23, 17, 6

13, 16, 19, 14, 23, 17, 6

13, 16, 19, 14, 23, 17, 6

13, 16, 19, 14, 23, 17, 6

Min Heap – Extract Min

6, 14, 13, 16, 23, 19, 17

6,14,13,16 23,19,17 13,14,17,16,23,19 14,16,17,19,23 17,19,23 19,23 23

1, 2, 3, 4, 5, 6

Insert 1

1, 2, 3, 4, 5, 6

Running time = O(logn)

```
void Min-Heap-Insert (itemtype item)
       if heap full
            throw heap full exception
       // Trickle up
       x = numNodes
        while (x > 0 \&\& arr[(x-1)/2] > item)
          arr[x] = arr[(x-1)/2]
          x = (x-1)/2
        arr[x] = item
        numNodes++
```

Heap Find Min/Max

- Finding the node with the highest priority is easy it is just at the root
 - \circ Running time = O(1)

Heap – Remove (Extract Min or Max)

- Remove highest priority item
 - Makes a hole at the root
 - Want to remain a complete tree, so attempt to place last item in the heap into the hole
 - If item can be placed in hole without violation of the heap property, then done
 - Otherwise, trickle down
 - Pick the child with the highest priority

1,14,13,16,23,19,17
13,14,17,16,23,19
14,16,17,19,23
16,19,17,23
17,19,23
19,23
23

Building a Heap

- Naïve method
 - Perform N insert operations O(nlogn)
- Better solution
 - o Given an array of unordered items:

for (int
$$i=(N/2)-1$$
; $i >= 0$; $i--$)

Trickle down

								i=8
10	7	14	9	8	6	12	2	19

 i=0
 i=1
 i=2
 i=3
 i=4
 i=5
 i=6
 i=7
 i=8

 10
 7
 14
 2
 8
 6
 12
 9
 19

								i=8
10	7	6	2	8	14	12	9	19

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 10 2 6 7 8 14 12 9 19

i=0	i=1	i=2	i=3	i=4	i=5	i=6	i=7	i=8
2	10	6	7	8	14	12	9	19

Building a Min Heap

								i=8
2	7	6	10	8	14	12	9	19

Building a Min Heap

								i=8
2	7	6	9	8	14	12	10	19

Heapsort

- Build heap for the opposite of what you want
 - Max heap for ascending order
 - Min heap for descending order
- Take root and place in last array position, then think of array as 1 smaller
- Trickle down from root to rebuild heap

Heapsort Run Time

- Build step O(n)
- Sorting step O(nlogn)
- Heapsort O(n) + O(nlogn) = O(nlogn)