WHAT IS CLAIMED IS:

1	1. A method for processing a matrix of elements in	n a processor, the	
2	method comprising steps of:		
3	loading a first subset of matrix elements from a first location;		
4	loading a second subset of matrix elements from a seco	and location;	
5	storing a third subset of matrix elements in a first destination; and		
6	storing a fourth subset of matrix elements in a second of	lestination, wherein	
7	the loading and storing steps result from a first instruction issue.		
1	2. The method for processing the matrix of element	nts in the processor	
2	as recited in claim 1, wherein n sub-instructions perform an n -by- n ma	ıtrix transpose.	
1	3. The method for processing the matrix of elemen	its in the processor	
2	as recited in claim 1, wherein the first loading step is performed with a	a first processing	
3	path and the second loading step is performed with a second processing path.		
1	4. The method for processing the matrix of elemen	nts in the processor	
2	as recited in claim 1, further comprising the steps of:		
3	loading a fifth subset of matrix elements from a fifth lo	cation;	
4	loading a sixth subset of matrix elements from a sixth location;		
5	storing a seventh subset of matrix elements in a third de	estination; and	
6	storing a eighth subset of matrix elements in a fourth de	estination.	
1	5. The method for processing the matrix of elemen	nts in the processor	
2	as recited in claim 4, wherein the loading and storing steps introduced	in claim 4 result	
3	from a second instruction issue.		
1	6. The method for processing the matrix of elemen	nts in the processor	
2	as recited in claim 4, wherein each of the first through fourth destination	on include a matrix	
3 .	column.		
1	7. The method for processing the matrix of elemen	its in the processor	
2	as recited in claim 1, wherein each of the first through fourth locations include a matrix		
3	row.		

T		8. The method for processing the matrix of elements in the processor	
2	as recited in	s recited in claim 1, wherein the third and fourth subsets each comprise elements from	
3	the first and	second subsets.	
1		9. A processing core for transposing a matrix, comprising:	
2		a first source location comprising a first plurality of matrix elements;	
3		a second source register comprising a second plurality of matrix elements;	
4		a third source register comprising a third plurality of matrix elements;	
5		a fourth source register comprising a fourth plurality of matrix elements;	
6		a first destination register comprising a fifth plurality of matrix elements;	
7		a second destination register comprising a sixth plurality of matrix	
8	elements;	the second second second second second production of manning	
9	,	a first processing path coupled to the first through fourth source registers	
10	and the first destination register; and		
11		a second processing path coupled to the first through fourth source	
12	registers and	the second destination register.	
1		10. The processing core for transposing the matrix of claim 9, wherein:	
2		the first through fourth registers each include a plurality of source fields,	
3	and		
4		each source field includes a matrix element.	
1		11. The processing core for transposing the matrix of claim 9, wherein:	
2		the first and second destination registers each include a plurality of result	
3	fields, and		
4		each source field includes a matrix element.	
1		12. The processing core for transposing the matrix of claim 9, further	
2	comprising		
3		first and second instruction processors; and	
4		an exchange path between the first and second instruction processors.	
1		13. The processing core for transposing the matrix of claim 9, wherein	
2	the first proce	essing path receives a first sub-instruction and the second processing path	
3	receives a second sub-instruction.		

1	14. The processing core for transposing the matrix of claim 9, wherein		
2	each of the first through fourth source registers include a matrix row.		
1	15. The processing core for transposing the matrix of claim 9, wherein		
2	each of the first and second destination registers include a matrix column.		
1	16. The processing core for transposing the matrix of claim 9, wherein		
2	the first and second destination registers are addressed by a first and second sub-		
3	instructions which are included in a very long instruction word.		
1	17. A method for processing a matrix of elements, the method		
2	comprising steps of:		
3	loading a first instruction;		
4	loading a second instruction, wherein the first and second instructions		
5	address a first source register, second source register, third source register, fourth source		
6	register, first destination register and second destination register;		
7	loading a third instruction;		
8	loading a fourth instruction, wherein the third and fourth instructions		
9	address the first source register, the second source register, the third source register, the		
10	fourth source register, a third destination register and a fourth destination register;		
11	storing a first element of the first source register in the first destination		
12	register; and		
13	storing a fourth element of the first source register in the fourth destination		
14	register, wherein a plurality of the first through fourth elements comprise a same		
15	instruction issue.		
1	18. The method for processing the matrix of elements of claim 17,		
2	wherein the first and second instructions include a first operation code and the third and		
3	fourth instructions include a second operation code different from the first operation cod		
1	19. The method for processing the matrix of elements of claim 17,		
2	wherein the first and second instructions include a first operation code and the third and		
3	fourth instructions include a second operation code different from the first operation code		

- 1 20. The method for processing the matrix of elements of claim 17,
- 2 wherein the first instruction is a sub-instruction in a very long instruction word.