Chapter 4 운영체재 (Operating System)

2020. 1학기

- 컴퓨터개론 -

금오공과대학교 컴퓨터소프트웨어공학과

Contents

- 1 운영체제 정의 및 기능
- 2 운영체제 처리방식
- 3 운영체제 종류
- 4 운영체제 구조
- 5 프로세스
 - 5.1 프로세스 스케쥴링
 - 5.2 프로세스 간 경쟁
- 6 보안

1-1 운영체제의 정의 및 기능

1. 운영체제(OS, Operating System)

- A. 컴퓨터 주기억장치에 상주
- B. 컴퓨터 시스템의 **자원 관리**
- c. 응용 프로그램의 수행(실행) 제어
- D. 컴퓨터 사용자와 컴퓨터 하드웨어 간의 **인터페이스** 담당 – CLI, GUI
- E. 관리하는 자원
 - CPU, 기억장치, 입출력장치 등

2. 목적

- A. 컴퓨터 시스템 자원의 **효율적인 사용과 관리**
- B. 신뢰도(Reliability), 처리량(Throughput) 향상
- c. 응답 시간(Response Time) 단축

1-1 운영체제의 정의 및 기능

3. 운영체제 기능

- A. 프로세스관리
 - 프로세스 실행 중인 프로그램
 - 프로세스의 생성, 삭제, 중지, 통신 등
- B. 메모리 관리
 - 주기억장치 공간 할당 및 회수
- c. 파일 관리
 - 기억장소 할당, 빈공간 관리, 디스크 스케쥴링 등
- D. 입출력장치 관리
 - 입출력장치 할당 등 담당
- E. 스케쥴링(Scheduling): 프로그램 실행 일정 계획

2 운영체제의 처리(동작) 방식

- 1. 일괄 처리(Batch processing)
- 2. 대화식 처리(Interactive processing)
- 3. 시분할(Time-Sharing) 시스템
- 4. 멀티-태스킹(Multi-tasking/processing) 시스템
 - A. Process = Task
- 5. 다중프로세서(Multi-processor) 시스템
- 6. 분산처리(Distributed processing) 시스템
- 7. 실시간 처리(Real-time processing) 시스템

2-1 운영체제의 처리방식

1. 일괄처리(Batch processing) 시스템

- 처리할 작업을 일정 기간 또는 일정량이 될 때까지 모아두었다가 한꺼번에 처리하는 방식
- 2. 사용자 interaction이 없음: ex) 도스 배치 파일 (.bat)

2. 대화식 처리(Interactive processing) 시스템

1. 사용자와 interaction을 수행

Batch : 한 묶음, 한 솥(가마)

Interactive: 상호 작용하는, 대화식의

2-1 운영체제의 처리방식

3. 시분할(Time-Sharing) 시스템

A. 다수의 사용자들이 한 컴퓨터를 동시에 이용할 수 있게 하기 위해, 각 사용자들에게 CPU에 대한 일정 시간(Time Slice)을 제공하여, 주어진 시간 동안 프로그램을 수행할 수 있도록 개발된 방식

4. 다중 프로세싱(Multi-processing) 시스템

- A. CPU 효율을 극대화 하기 위한 방법으로, 여러 개의 사용자 프로 그램이 동시에 실행되는 것처럼 처리하는 방법
- B. 다수의 프로세서를 활용하거나 시분할처리를 수행함

5. 다중 프로세서(Multi-processor) 시스템

- A. 두 개 이상의 프로세서로 구성(Bus 이용)되어 다중 작업을 구현하는 방식
- B. 작업 속도(처리량)와 신뢰성 향상

2-1 운영체제의 처리방식

6. 실시간 처리(Real-time processing) 시스템

A. 처리를 요구하는 자료가 발생할 때마다 즉시 처리하여 정해진 짧은 시간 내에 응답하는 시스템 방식 (주어진 시간 내에 작업을 마칠 수 있으면 실시간 시스템)

7. 분산 처리 시스템(Distributed processing system)

A. **네트워크**를 통해 연결된 여러 컴퓨터 시스템에 작업과 자원을 나누어 처리하게 하는 방식

년도	처리방식	내용
1940년대	초기 전자식 디지털 컴퓨터	운영체제가 존재하지 않음단지 기계적 스위치에 의해 작동
1950년대	단순 순차처리	한 번에 오직 하나의 작업만을 수행IBM 701용 운영체제개발(GM)
1960년대	다중 프로그래밍	 1964년 IBM S/360 운영체제 개발 멀티프로그래밍, 멀티프로세싱, 시분할처리 개념 대두 멀티 대화식 사용자, 멀티모드 시스템의 보편화
1970년대	다중모드 시분할	 멀티모드 시분할 시스템(일괄처리, 시분할처리, 실시간처리)의 보편화 근거리 지역 네트워크(이더넷(Ethernet))(표준에 의해 실용화) 정보보호 및 보안문제의 증대에 암호화 중요성 대두

1980년대	분산네트워크	운영체제 기능들이 하드웨어에 포함된 펌웨어 개념의 대두 개인용 컴퓨터와 워크스테이션, 강력한 데스크톱 컴퓨터의 구축가 능 각종 응용 프로그램의 개발 및 데이터베이스 활용 확대 네트워크를 기반으로 클라이언트/서버(Client/Server)모델의 확대
1990년대	병렬계산과 분산계산	중앙김궁이 아닌 분산으로 발전 네트워크와 멀티미디어 처리 기술의 발달 인터넷 보급의 급속한 확산 그래픽 사용자 인터페이스(GUI)의 강화 선점형, 멀티태스킹, 멀티스레딩, 가상메모리의 보편화 PC용 운영체제(Windows, Mac), 서버용 운영체제(Unix, Linux) 의 보편화
2000년대	모바일 및 임베디드 운영체 제	시스템은 초고속화, 고기능화, 초경량화 방향으로 발전 다양한 통신망의 확대와 개발형 시스템의 발달 다양한 기능, 확강성과 호환성의 극대화 네트워크 기반의 분산 및 병렬운영체제의 보편화 PDP, PMP 등의 모바일 장치와 가전제품을 위한 모바일 및 임베디드 운영체제의 보편화 64비트 CPU에 호환되는 64비트용 운영체제

2-2 소프트웨어 유형

1. 응용(Application) 소프트웨어

- A. 사용자들을 위해 특정 작업을 수행함
- B. MS Office, 한글, 게임 등

2. 시스템(System) 소프트웨어

- A. 응용 소프트웨어를 위한 인프라(Infra) 제공
- B. 운영체제와 유틸리티 소프트웨어로 구성됨
- c. 디바이스 드라이버 등

Infra: 아래에, 밑에, 하부에

System Programming

Device vs Device Driver

2 소프트웨어의 분류

1. 종류

- A. DOS **D**isk **O**perating **S**ystem
- B. 윈도우(Windows) 3x, 9x : windows 95, 98, 2000, NT, xp, me, vista, Windows 7, 8, 10, 11
 Windows 10 As part of its Windows NT family of
 - operating system.
- A. 윈도우(Windows) CE (Embedded Compact)
- B. 유닉스(Unix)
- c. 리눅스(Linux)
- D. 매킨토시

3 운영체제의 종류 - MS Windows 계열

1. 도스(DOS): Disk Operating System

- A. 단일 사용자, 단일 태스트(Task) 운영체제
- B. 명령행 인터페이스 제공
- c. PC-DOS, MS-DOS, DR-DOS 등

```
C:\rightarrow
C 드라이브의 볼륨에는 이름이 없습니다.
볼륨 일련 번호: 2CD8-D055

C:\rightarrow
```

2. **윈도우 9x 기반** – 이전 윈도우 3x

- A. Microsoft Corporation에서 만든 GUI환경 운영체제
- B. Windows 95: 다중 작업 기능 향상
- c. Windows 98: FAT 32 파일 시스템 지원, Plug & Play 기능
- D. Windows me: Millennium Edition으로 시스템 복원 기능 추가

3. 윈도우 NT 기반

- A. 마이크로소프트웨어사의 32비트 운영체제
- B. Windows NT는 기업용으로 보안성과 안정성에 중점
- c. Windows 2000, XP, 2003, Vista 등이 NT에 기반함

4. 윈도우 CE 기반

- A. 팜탑(palmtop) 컴퓨터와 휴대용단말기(PDA)를 위한 운영체제
- B. 실시간 운영체제를 표방

윈도우 CE

저장 공간이 충분하지 않은 정보 단말기나 모바일 장치등에 최적화. 윈도우 CE 커널 자체만으로는 1 메가바이트 이하의 메모리에서도 동작. 장치들은 디스크 저장 장치를 사용하지 않고 설정할 수 있음. 윈도우 CE는 실시간 운영 체제를 표방하고 있으며 256단계의 우선순위 정도. 마이크로소프트는 "CE"에 어떠한 뜻도 없음.

윈도우 Mobile

윈도우 CE를 바탕으로 만들어진 모바일 장치 운영 체제. 윈도우 모바일 4, 5, 6, 7, 8, 8.1 이 있으며 현재는 윈도우 폰 8.1이 나와 있음.

윈도우 폰 8.1 이후 윈도우 10 부터는 "윈도우 10 모바일"로 명칭을 바꿈.

5. 유닉스(Unix)

- A. 미국 벨(AT&T Bell) 연구소에서 개발
- B. 다수의 사용자와 전문 프로그래머를 위해 개발되어, 다중 사용자(multi-user), 다중 작업(multi-tasking)이 가능
- c. AT&T, Berkeley(BSD), Solaris (SUN), Irix (SGI) 등 다양한 버전이 존재

6. 리눅스(Linux)

A. 리누스 토발즈가 개발한 개방형 운영체제

7. 매킨토시(Macintosh)

- A. 맥(Mac) OS로도 부르며, Apple사에서 개발한 운영체제
- A. 강력한 그래픽 기능

McIntosh - Apple의 한 품종

4 운영체제의 구성요소

1. 쉘(Shell): 사용자와의 통신을 담당

- A. 텍스트 기반 쉘 CLI, Command Line Interface
 - 유닉스: C shell, Bourne shell 등
- B. GUI(Graphical user interface) 쉘
 - 윈도우 관리자

2. 커널(Kernel): 기본적인 필수 기능을 수행

- A. 파일 관리자
- B. 장치 관리자 (device driver)
- c. 메모리 관리자
- D. 일정 관리자와 실행 관리자

4.1 사용자와 운영체제 사이의 인터페이스: 셸

4.2 파일 관리자

- 1. 디렉터리 (Directory, 또는 폴더): 파일들과 하위 디렉터리들을 포함하는 묶음
- 2. 디렉토리 경로 (Path):
 Directory : 인명부, 사용자 안내판, 전화 번호부(telephone ~)

 디렉터리 안의 디렉터리로 이어지는 연결 사슬

4.3 메모리 관리자

1. 주기억장치에서 공간 할당을 관장한다

Single contiguous allocation

Partitioned allocation

Paged memory management

Segmented memory management

2. 가상 메모리(Virtual Memory)

A. 하드디스크의 일부 영역을 주기억 장치(메모리)로 사용한다. 따라서 주기억장치와 대용량 저장장치 사이에서 페이지(Page)라고 불리는 데이터 블록을 옮기는 작업을 반복함으로써 실제보다 큰 주기억장치가 있는 것처럼 기능하게 만든다.

3. 메모리 스와핑(Swapping)

A. 주기억장치와 가상메모리 장치 사이의 데이터 교환
(Swap Out, Swap in)

4.4 운영체제의 시동 (부팅)

1. 부트스트랩(Bootstrap): ROM 안의 프로그램

- A. 전원이 켜질 때 CPU에 의해 실행된다
- B. 대용량 저장장치의 운영체제를 주기억장치로 옮긴다
- c. 운영체제로 점프 명령을 실행한다

Bootstrap: 편상화의 손잡이 가죽

2. 운영체제가 주기억 장치로 옮겨진 후

A. 컴퓨터구조에서 배운 것과 같이 순차적으로 명령을 실행함 (Program Counter, Instruction Register 등을 활용함)

4.4 부팅 과정

단계 1: 컴퓨터는 메모리에 이미 들어있는 부트스트랩 프로그램을 실행함으로써 일을 시작한다. 운영체제는 대용량 저장장치에 저장되어 있다.

단계 2: 부트스트랩 프로그램은 운영체제를 주기억장치로 옮기도록 지시하고 운영체제에 제시어를 넘긴다.

➡ 좀더 상세한 내용은 뒤의 Understanding Boot Process에서