1.

2. The number of X is only 20. As a result, the number of possible values of $\sum_i^{20} X_i$ is 21 ranging from 0 to 1 with the step 0.05. Hence $P(\frac{1}{20}\sum_i^{20}X_i\geq 0.51)\Leftrightarrow P(\frac{1}{20}\sum_i^{20}X_i\geq 0.55)$

$$P(rac{1}{20}\sum_{i}^{20}X_{i}\geq0.51)\Leftrightarrow P(rac{1}{20}\sum_{i}^{20}X_{i}\geq0.55)$$

3,4,5:

Denote
$$Y=rac{1}{20}\sum_{i=0}^{20}X_i$$
. Given $X_i\sim(0,1)$, $EX=rac{1}{2}$, $DX=rac{1}{4}$, $EY=rac{1}{2}$, $DY=rac{1}{40}$

- Markov's bound: $\frac{1}{2a}$
- Chebyshev's bound:

$$P(|Y-EY|\geq b)\leq \frac{DX}{b^2}$$

$$P(|Y-\frac{1}{2}|\geq b)\leq \frac{1}{40b^2}$$

$$P(Y\geq b+\frac{1}{2})+P(Y\leq b-\frac{1}{2})\leq \frac{1}{40b^2}$$
 Let $0.5\leq \alpha=b+\frac{1}{2}\leq 1$, $b-\frac{1}{2}\leq 0$, so $P(Y\leq b-\frac{1}{2})=0$,
$$P(Y\geq \alpha)\leq \frac{1}{40(\alpha-\frac{1}{2})^2}$$

• Hoeffding's bound:

$$P(Y - EY \ge t) \le exp(-40t^2)$$

let
$$\alpha = t + \frac{1}{2}$$

$$P(Y \ge \alpha) \le exp(-40(\alpha - \frac{1}{2})^2)$$

When lpha=0.5, the Chebyshev's bound and Hoeffding's bound is positive infinity. I just set them as 10.

- 6. When α is close to 0.5, Markov's bound is more tight to the real frequency. When α gets close to 1, Chebyshev's bound and Hoeffding's bound become tighter and Hoeffding's bound is more accurate than others.
- 7. When $\alpha=1$, there must 20 $X_i=1$ and 0 $X_i=0$, $\ P(\frac{1}{20}\sum_i^{20}X_i\geq 1)=(\frac{1}{2})^{20}$ When $\alpha=0.95$, there must more than 19 $X_i=1$ $P(\frac{1}{20}\sum_i^{20}X_i\geq 1)=(\mathbb{C}_{20}^{19}+1)(\frac{1}{2})^{20}$

For bias 0.1,

Markov's bound: $\frac{1}{10a}$

Chebyshev's bound: $\frac{9}{100(\alpha-0.1)^2}$

Hoeffding's bound: $\exp(-40(\alpha-0.1)^2)$

1.2

All X_i are the same

$$X\sim (1,0.5)$$

2

$$P(\exists i: |S_i - p| \geq \epsilon) = |P(\cup_i^k |S_i - p| \geq \epsilon) \leq 2\sum_i^k \exp(2\epsilon^2 n) = 2k \exp(2n\epsilon^2)$$

3

1.
$$EL=0, DL=EL^2$$

$$\begin{split} \int_{-\infty}^{+\infty} x^2 \cdot \frac{1}{2b} \cdot \exp(-\frac{|x|}{b}) dx &= 2 \int_0^{+\infty} x^2 \cdot \frac{1}{2b} \cdot \exp(-\frac{x}{b}) dx \\ &= -\int_0^{+\infty} x^2 d(\exp(-\frac{x}{b})) \\ &= -\int_0^{+\infty} 2x \exp(-\frac{x}{b}) dx - x^2 \exp(-\frac{x}{b})|_0^{+\infty} \\ &= 2b^2 \end{split}$$

2.
$$\sigma^2=2b^2$$

3. To prove,

$$\exp(-\frac{|X+1|+1}{b}) \leq \exp(-\frac{|X|}{b}) \leq \exp(-\frac{|X+1|-1}{b})$$

 \Leftrightarrow

$$|X+1|+1 \ge |X| \ge |X+1|-1$$

X > 0

$$X+2 \ge X \ge X$$

 $0 \ge X > -1$

$$X+2 \geq -X \geq X$$

 $X \le -1$

$$-X \ge -X \ge -X - 2$$

