# Transmissão de Calor



#### Transmissão de calor

Sabemos que calor é a **energia** térmica que transita entre corpos ou sistemas, a temperaturas diferentes.

O calor sempre é transmitido espontaneamente do corpo "mais quente" para o corpo "mais frio".



#### Transmissão de calor

O calor pode ser transmitido de um corpo para outro, ou de um sistema para outro, por três processos distintos.

Condução

Convecção

Irradiação



## Condução de calor

No processo de transmissão de calor por condução, a energia térmica se transmite diretamente de uma partícula para outra (átomo, molécula ou íon) através do material do corpo.

Portanto, a condução não ocorre no vácuo.



## Condução de calor





## Fluxo de calor por Condução de calor

$$\Phi = Q/\Delta t = KA \Delta \theta/L$$

Φ □ fluxo de calor (cal/s)
Q □ quantidade de calor (cal)
Δt □ intervalo de tempo (s)
Δθ □ variação de temperatura (°C)
K □ constante de condutividade térmica {(cal/s).m.°C}
A □ área da secção reta (m²)
L □ comprimento (m)



## Condução de calor

Dependendo do material através do qual ocorre a condução de calor, podemos ter:

#### Bons condutores de calor (maus isolantes térmicos):

metais. Dentre os metais, a prata é o melhor condutor de calor, seguida do cobre, do alumínio e do ferro.

#### Maus condutores de calor (bons isolantes térmicos):

vácuo, ar seco, madeira, vidro, isopor, plásticos, gelo, lã, entre outros.



Vamos considerar o aquecimento da água contida em uma panela de alumínio colocada sobre a chama de um fogão a gás.





A água em contato com o fundo da panela se aquece por condução.

A água aquecida dilata-se, torna-se menos densa e sobe.





Ao subir, a água quente desloca a água fria da região superior para baixo.

A água fria desce e se aquece, e o ciclo se repete.





Na convecção, a energia térmica é, portanto, transmitida por correntes denominadas **correntes de convecção**, juntamente com porções do material aquecido.

As correntes de convecção são originadas pelas diferenças de densidades entre o material quente e o material frio.

Para a convecção ocorrer, é necessário que o material possa fluir (formando as correntes de convecção).



Portanto, a convecção pode ocorrer apenas com os materiais fluidos (líquidos, gases e vapores) e nunca acontece com os materiais sólidos.

De modo geral, podemos afirmar que:

- um aquecimento por convecção deve ser feito de baixo para cima;
- um resfriamento por convecção deve ser feito de cima para baixo.



Na irradiação, o calor é transmitido por ondas eletromagnéticas, principalmente pelos raios infravermelhos, também chamados de ondas de calor ou calor radiante.

As ondas eletromagnéticas podem ser de diferentes tipos.



Toda e qualquer onda eletromagnética pode se propagar no vácuo. Por esse motivo, a irradiação é o único processo de transmissão de calor que pode ocorrer no vácuo.



Todo corpo sempre emite alguma quantidade de calor radiante, que depende apenas de sua temperatura.

A propagação da onda eletromagnética através de um meio material depende de características do meio e da frequência da onda.



Para um corpo que recebe calor por irradiação, temos:



Calor incidente = calor refletido + calor absorvido + calor transmitido



Fonte: Editora moderna - Vereda digital

