BÁO CÁO THỰC HÀNH

Họ tên	Chu Quang Cường	Lớp: PH002.P15.2					
MSSV	24520236	STT: 09					
Bài Thực Hành	Báo cáo LAB3 – Bài tập trên lớp						
CBHD	Trương Văn Cương						

Đề bài:

- 1. Tao mach FA.
- 2. Mạch cộng 4 bit dùng FA.

Bài làm:

2.1: Tạo mạch FA

- Bảng chân trị:

	Input	Output			
Α	В	C - IN	S	C - OUT	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

- Sơ đồ mạch logic:

Chú thích:

- Mạch FA có: $S = A \oplus B \oplus C_{IN}$ và $AB + C_{IN}(A \oplus B)$
- Đóng gói:

- Mô phỏng:

Nhận xét: Qua so sánh giữa kết quả mô phỏng và bảng chân trị của mạch số, ta có thể thấy kết quả hoàn toàn đúng với lý thuyết. Bởi vì khi ta cộng hai số và thêm biến nhớ thì khi cho vào mạch ta được phép cộng giữa A và B với biến nhớ CIN.

2.2: Mạch cộng 4 bit dùng FA

- Bảng chân trị:

Input										Output				
A1	A2	A3	A4	B1	B2	В3	В4	C-IN	C-OUT	S1	S2	S3	S4	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	0	1	0	0	0	
0	0	0	0	0	0	0	1	0	0	0	0	0	1	
0	0	0	0	0	0	0	1	1	0	1	0	0	1	
0	0	0	0	0	0	1	0	0	0	0	0	1	0	
0	0	0	0	0	0	1	0	1	0	1	0	1	0	
0	0	0	0	0	0	1	1	0	0	0	0	1	1	
0	0	0	0	0	0	1	1	1	0	1	0	1	1	
0	0	0	0	0	1	0	0	0	0	0	1	0	0	
0	0	0	0	0	1	0	0	1	0	1	1	0	0	
0	0	0	0	0	1	0	1	0	0	0	1	0	1	
0	0	0	0	0	1	0	1	1	0	1	1	0	1	
0	0	0	0	0	1	1	0	0	0	0	1	1	0	
0	0	0	0	0	1	1	0	1	0	1	1	1	0	
0	0	0	0	0	1	1	1	0	0	0	1	1	1	
0	0	0	0	0	1	1	1	1	0	1	1	1	1	
0	0	0	0	1	0	0	0	0	0	1	0	0	0	
0	0	0	0	1	0	0	0	1	0	0	1	0	0	
0	0	0	0	1	0	0	1	0	0	1	0	0	1	
0	0	0	0	1	0	0	1	1	0	0	1	0	1	
0	0	0	0	1	0	1	0	0	0	1	0	1	0	
0	0	0	0	1	0	1	0	1	0	0	1	1	0	
0	0	0	0	1	0	1	1	0	0	1	0	1	1	
0	0	0	0	1	0	1	1	1	0	0	1	1	1	
0	0	0	0	1	1	0	0	0	0	1	1	0	0	
0	0	0	0	1	1	0	0	1	0	0	0	1	0	
0	0	0	0	1	1	0	1	0	0	1	1	0	1	

0	0	0	0	1	1	0	1	1	0	0	0	1	1
0	0	0	0	1	1	1	0	0	0	1	1	1	0
0	0	0	0	1	1	1	0	1	0	0	0	0	1
0	0	0	0	1	1	1	1	0	0	1	1	1	1
0	0	0	0	1	1	1	1	1	1	0	0	0	0

- Sơ đồ mạch logic:

Chú thích:

- Đây là mạch cộng 4 bit nên ta dùng 4 mạch FA cho mỗi bit đã cho.
- Với biến CIN đầu được thêm vào mạch FA cuối, các đầu CIN còn lại là từ đầu ra COUT tương ứng của mạch FA trước đó.

- Đóng gói:

- Mô phỏng:

Nhận xét: Qua so sánh giữa kết quả mô phỏng và bảng chân trị của mạch số, ta có thể thấy kết quả hoàn toàn đúng với lý thuyết. Vì số quá lớn nên hình trên chỉ là một phần nhỏ khi cộng 2 số 4 bit bất kỳ lúc ta sử dụng mạch cộng 4 bit có dùng mạch FA.