Out[2]: (4177, 9)

In [3]: 1 data.head()
2

Out[3]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [4]: 1 data.describe()

Out[4]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000
4							>

```
In [5]:
          1 data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
dtyp	es: float64(7),	int64(1), object	(1)

memory usage: 293.8+ KB

```
1 data.isnull().sum()
In [6]:
```

```
Out[6]: Sex
                           0
                           0
        Length
        Diameter
                           0
        Height
        Whole weight
                           0
        Shucked weight
                           0
        Viscera weight
                           0
        Shell weight
                           0
        Rings
                           0
```

dtype: int64

In [7]:

1 data.isnull()

Out[7]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

4177 rows × 9 columns

In [8]: 1 sns.pairplot(data)

Out[8]: <seaborn.axisgrid.PairGrid at 0x24972beac70>


```
In [9]:
           1
             data.columns
           2
dtype='object')
In [10]:
           1
             2
Out[10]: <AxesSubplot:>
          0
199
398
597
796
995
1194
1393
1592
1791
2189
2388
2587
2786
2985
2985
3388
3383
                                                     25
                                                     - 20
                                                     - 15
                                                    - 10
                                                     5
          3582
3781
3980
                                 Shucked weight.
                                         Shell weight.
                            Whole weight.
                                     Viscera weight.
                    Diameter
```

Ι

F

1528

1342

1307

Name: Sex, dtype: int64

data['Sex'].value_counts()

In [11]:

Out[11]: M

```
In [12]: 1 plt.rcParams['figure.figsize'] = (18, 8)
2 sns.boxplot(x=data['Rings'], y=data['Length'], hue = data['Sex'], palette = 
3 plt.title('Rings vs length and sex', fontsize = 20)
```

Out[12]: Text(0.5, 1.0, 'Rings vs length and sex')


```
In [13]: 1 plt.rcParams['figure.figsize'] = (20, 8)
2 sns.violinplot(x=data['Rings'], y=data['Diameter'], hue = data['Sex'], palet
3 plt.title('Rings vs diameter and sex', fontsize = 20)
```

Out[13]: Text(0.5, 1.0, 'Rings vs diameter and sex')

Out[14]: Text(0.5, 1.0, 'Rings vs height and sex')


```
In [15]: 1 plt.rcParams['figure.figsize'] = (18, 10)
2 sns.stripplot(x=data['Rings'], y=data['Whole weight'])
3 plt.title('Rings vs weight')
```

Out[15]: Text(0.5, 1.0, 'Rings vs weight')

Out[16]: Text(0.5, 1.0, 'Rings vs shucked weight')

Out[17]: Text(0.5, 1.0, 'Rings vs Viscera Weight')

Out[18]: Text(0.5, 1.0, 'Rings vs Shell weight')


```
In [19]:
             from math import pi
           2
           3 # Set data
           4 df = pd.DataFrame({
             'group': [i for i in range(0, 4177)],
           5
             'Sex': data['Sex'],
           6
             'Length': data['Length'],
           7
           8 'Diameter': data['Diameter'],
           9 'Whole weight': data['Whole weight'],
          10 'Viscera weight': data['Viscera weight'],
             'Shell weight': data['Shell weight']
          11
          12 | })
          13
          14 # number of variable
          15 categories=list(df)[1:]
          16 N = len(categories)
          17
          18 | # We are going to plot the first line of the data frame.
          19 # But we need to repeat the first value to close the circular graph:
          20 values = df.loc[0].drop('group').values.flatten().tolist()
          21 values += values[:1]
          22 values
          23
          24 | # What will be the angle of each axis in the plot? (we divide the plot / num
          25 angles = [n / float(N) * 2 * pi for n in range(N)]
          26 angles += angles[:1]
          27
          28 # Initialise the spider plot
          29 ax = plt.subplot(111, polar=True)
          30
          31 # Draw one axe per variable + add labels labels yet
          32 plt.xticks(angles[:-1], categories, color='grey', size=8)
          33
          34 # Draw ylabels
          35 ax.set_rlabel_position(0)
          36 plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
          37 plt.ylim(0,40)
          38
          39 # Plot data
          40 ax.plot(angles, values, linewidth=1, linestyle='solid')
          41 plt.title('Radar Chart for determing Importances of Features', fontsize = 20
          42 # Fill area
          43 ax.fill(angles, values, 'red', alpha=0.1)
```

Out[19]: [<matplotlib.patches.Polygon at 0x24979ee2940>]

Radar Chart for determing Importances of Features


```
In [21]: 1
2 data.head()
```

Out[21]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Sex_F	Sex_I	Sex_M
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	0	0	1
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	0	0	1
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	1	0	0
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	0	0	1
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	0	1	0

Shape of x: (4177, 10) Shape of y: (4177,)

Shape of x_train : (3341, 10) Shape of x_test : (836, 10) Shape of y_train : (3341,) Shape of y_test : (836,)

```
In [24]:
             from sklearn.ensemble import RandomForestClassifier
             from sklearn.metrics import mean squared error
           3 from sklearn.metrics import r2 score
           4
           5
             model = RandomForestClassifier()
             model.fit(x train, y train)
           7
             y pred = model.predict(x test)
           8
           9
             # evaluation
          10 mse = mean_squared_error(y_test, y_pred)
             rmse = np.sqrt(mse)
          11
          12 print("RMSE :", rmse)
          13
          14 # r2 score
          15 r2 = r2_score(y_test, y_pred)
          16 print("R2 Score :", r2)
```

RMSE: 2.5539630523418446 R2 Score: 0.39939775195158833

In [25]: 1 !pip install eli5

Requirement already satisfied: eli5 in c:\users\write\anaconda3\lib\site-packag es (0.13.0)

Requirement already satisfied: six in c:\users\write\anaconda3\lib\site-package s (from eli5) (1.16.0)

Requirement already satisfied: scikit-learn>=0.20 in c:\users\write\anaconda3\l ib\site-packages (from eli5) (1.0.2)

Requirement already satisfied: graphviz in c:\users\write\anaconda3\lib\site-pa ckages (from eli5) (0.20.1)

Requirement already satisfied: tabulate>=0.7.7 in c:\users\write\anaconda3\lib \site-packages (from eli5) (0.8.9)

Requirement already satisfied: jinja2>=3.0.0 in c:\users\write\anaconda3\lib\si te-packages (from eli5) (3.1.2)

Requirement already satisfied: numpy>=1.9.0 in c:\users\write\anaconda3\lib\sit e-packages (from eli5) (1.21.5)

Requirement already satisfied: scipy in c:\users\write\anaconda3\lib\site-packa ges (from eli5) (1.7.3)

Requirement already satisfied: attrs>17.1.0 in c:\users\write\anaconda3\lib\sit e-packages (from eli5) (21.4.0)

Requirement already satisfied: MarkupSafe>=2.0 in c:\users\write\anaconda3\lib \site-packages (from jinja2>=3.0.0->eli5) (2.0.1)

Requirement already satisfied: joblib>=0.11 in c:\users\write\anaconda3\lib\sit e-packages (from scikit-learn>=0.20->eli5) (1.1.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\write\anaconda3 \lib\site-packages (from scikit-learn>=0.20->eli5) (2.2.0)

```
In [26]: 1 import eli5
2 from eli5.sklearn import PermutationImportance
3
4 perm = PermutationImportance(model, random_state = 0).fit(x_test, y_test)
5 eli5.show_weights(perm, feature_names = x_test.columns.tolist())
```

Weight Feature 0.0388 ± 0.0399 Shell weight 0.0297 ± 0.0231 Shucked weight 0.0172 ± 0.0110 Length

0.0172 ± 0.0110 Length 0.0160 ± 0.0113 Viscera weight 0.0084 ± 0.0062 Height 0.0072 ± 0.0086 Sex_I -0.0014 ± 0.0111 Sex_F -0.0019 ± 0.0135 Whole weight

 -0.0048 ± 0.0079 Sex_M -0.0077 ± 0.0120 Diameter

In []: 1

