Proyecto 2

Universidad de Guanajuato, División de Ciencias e Ingenierías Programación Básica

Profesora: Dra. Alma Xochitl González Morales Alumna: Guadalupe Sinaí Florián Landa

Octubre 30 del 2018

1 Descripción del Programa

En este programa se calculará la tempratura de una placa muy delgada aislada por los extremos excepto en los bordes de su superficie; dichas condiciones son ideales para una aproximación más exacta de la trasferencia de calor si suponemos que ocurre en un plano xy sobre su supericie.

Bajo dicha suposicón la temperatura de cada punto de la placa será dado por la ecuación de Lamplace:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \tag{1}$$

Ésta es una ecuación de conservación expresada en términos de termpratura de la placa T.

12	12	12	12	12	12	12	12	12	12	12
12	11.754086	11.552094	11.409071	11.333941	11.328788	11.388779	11.50285	11.655174	11.827213	12
12	11.552094	11.184745	10.925228	10.789507	10.781038	10.89072	11.098247	11.374813	11.686826	12
12	11.409072	10.925228	10.58423	10.406732	10.396817	10.542084	10.815536	11.1792	11.588983	12
12	11.333941	10.789507	10.406731	10.208421	10.198651	10.363007	10.670835	11.079368	11.53916	12
12	11.328787	10.781036	10.396816	10.198651	10.19014	10.356346	10.666172	11.076556	11.537912	12
12	11.388779	10.890719	10.542084	10.363007	10.356346	10.508163	10.789975	11.162602	11.581093	12
12	11.50285	11.098247	10.815536	10.670835	10.666172	10.789974	11.018962	11.321295	11.660559	12
12	11.655175	11.374814	11.179201	11.079369	11.076556	11.162602	11.321296	11.530573	11.765265	12
12	11.827213	11.686827	11.588984	11.53916	11.537911	11.581094	11.660561	11.765265	11.882633	12
12	12	12	12	12	12	12	12	12	12	12
			40a Ten	nperatura d	e la placa –	Guadalupe	Florián			

Figure 1: Placa cecra de alcanzar su equilibrio térmico

Un método para resolverla es expresar cada punto de la placa como coordenadas i,j; de caea forma que las derivadas de T en cada punto se aproximan por la temperatura de los puntos x,y cercanos (arriba, abajo, izquierda y derecha). Dicho sistema de ecuaciones se haríad entro del área de la placa N*N (size). Usaremos el método de Gauss-Seidel para calcualr cada temperatura, donde i,j representan las posiciones de los ejes x,y de la placa respectivamente.

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$
 (2)

A continuacón describiremos el programa escrito en lenguaje C, que nos permitió encontrar la tempratura de cada punto de la placa, suponiendo que los bordes se encuentran a una temperatura fija.

2 Comandos usados en el Programa

Placa1.c

Primero se indicaron las librerías que se usarán en el programa, las cuales incluyen definiciones comunmente usadas en algoritmos. En este programa usamos la librería estandar:

$$include < stdio.h >$$
 (3)

Se declara la función void temperaturas y debajo de a misma se definen las acciones que realizará la misma:

$$void\ temperaturas\ () \{$$

Después declaramos las variables para indicar los archivos con los cuáles estaremos trabajando en el programa. Uno lo usaremos para leer las temperaturas iniciales de los extremos de la placa T y sus dimensiones N*N size, y el otro lo usaremos para imprimir el progreso de la placa hasta alcanzar/aproximar su equilibrio térmico:

$$FILE * info;$$
 (5)

$$FILE * results;$$
 (6)

Después declaro mis variables de tipo entras, que serían las coordenadas x,y y dimenciones de la placa y los contadores inicializados en cero:

$$int \ cx, cy, size, i = 0, a = 0; \tag{7}$$

También delcaramos las variables de punto flotante, el cuál ocupa hasta 8 bytes de información y tomará en cuenta hasta 10 números después del punto decimal. Esto nos será de mucha ayuda con los cálculos que realizaremos ya que la presición será de gran importancia para que el resultados de las temperaturas buscadas:

$$float\ T1, T2, T3, T4;$$
 (8)

Abro el archivo dónde se encuentran las temperaturas iniciales de los extremos de la placa T y sus dimenciones N*N size:

$$info = fopen ("info.txt", "r");$$
 (9)

Se leen los datos de la placa leidos, ya formateados del stdin:

$$fscan f(info, \%f \%f \%f \%f \%i, T1, T2, T3, T4, size);$$
 (10)

Cierro el archivo con la información de la placa:

$$fclose(info);$$
 (11)

Imprimimos la información leída del archvio a la pantalla para verificar que la información sea correcta:

$$printf(\%f \%f \%f \%f \%in", T1, T2, T3, T4, size);$$
 (12)

Declaro una variable arreglo de tipo flotante donde se guardarán las posiciones de la placa delimitadas por sus dimenciones:

$$float\ placa\ [size][size];$$
 (13)

Indico un ciclo dónde el contador de las coordenadas "y" inician en cero, la condición de seguir realizando el ciclo es que se repita un un numero menor al valor de la variable "size" y que al coontador cy se le aumente una unidad cada vez que se completa la serie de instrucciones y dicho comando crea un ciclo donde inicializo mis coordenadas "y" en cero, dicha acción se repiten las instrucciones dentro del ciclo for hasta que haya un número de "size" coordenadas "y" en la placa:

$$for (cy = 0; cy < size; cy + +)$$
 (14)

Indico un ciclo dónde el contador de las coordenadas "x" inician en cero, la condición de seguir realizando el ciclo es que se repita un un numero menor al valor de la variable "size" y que al coontador cy se le aumente una unidad cada vez que se completa la serie de instrucciones y dicho comando crea un ciclo donde inicializo mis coordenadas "y" en cero, dicha acción se repiten las instrucciones dentro del ciclo for hasta que haya un número de "size" coordenadas "x" en la placa:

$$for (cx = 0; cx < size; cx + +)$$
 (15)

Los valores de cada puto de la placa serán guardados en las coordenadas (x,y):

$$placa [cx][cy] = 0; (16)$$

Se vuelve a iniciar un ciclo for para cy (ya descrito anteriormente):

$$for (cx = 0; cx < size; cx + +)$$

$$(17)$$

Esta vez para guardar el valor de las temperaturas T1 y T2 en las coordenadas (0,cy) y (size-1,cy) respectivamente:

placa [0][cy] = T1;

placa [size-1][cy] =T2;

Y se vuelve a iniciar otro ciclo para cx (ya descrito anteriormente):

$$for (cx = 0; cx < size; cx + +)$$
 (18)

Esta vez para guardar el valor de las temperaturas T3 y T4 en las coordenadas (cx,0) y (cx,size-1) respectivamente:

placa [0][cy] = T1;

placa [size-1][cy] =T2;

Dentro del ciclo for incluiremos las siguentes operaciones que se realizarán por cada progresión de la placa hasta alcanzar su equilibrio térmico:

/*Ciclo indica que mientras las instruccioes dentro de éste se realizen un número que tenga una unidad menor a 40, dicho ciclo se seguirá realizando*/

$$while (a < 40) \{ \tag{19}$$

Declaro una variable de tipo caracter que usaré en mi función snprintf para determinar el número máximo de caracteres que se usarán en el comando, que será un arreglo con una cadena de hasta 32 caracteres:

$$char\ cadena\ [32];$$
 (20)

Usamos el comando snprintí para formatear y guardar un número máximo de cracteres al buffer, en este caso serán 32 caracteres usando sizeof(char)32. Se indica que la cadena de caractéres guardará: Placa_temp %i.txt, el %i incrementará una unidad cada vez que se haga uso de buffer en cada ciclo:

$$snprintf (buffer, size of (char) * 32, "Placa_temp \% i.txt", a);$$
 (21)

En cada ciclo se le aumentará una uniadad al contador del archivo a:

$$a + + \tag{22}$$

Se indica que se abrirá y se escribirá en un archivo con el nombre de la cadena de caracteres indicada por snprintf, donde se imprimirán las temperaturas calculadas:

$$results = fopen(buffer, "w");$$
 (23)

Se vuelve a iniciar un ciclo for para cy (ya descrito anteriormente):

$$for (cy = 0; cy < size; cy + +)$$
 (24)

Y se vuelve a iniciar otro ciclo para cx (ya descrito anteriormente):

$$for (cx = 0; cx < size; cx + +)$$
 (25)

Esta vez para imprimir los valores al archivo de las temperaturas de la placa guardadas en las coordenadas (cx,cy):

$$fprintf (results, "\%f", placa[cx][cy]);$$
 (26)

Se imprime al documento un espacio, será para cada salto de línea de la placa:

$$fprintf (results, "\%f", placa[cx][cy]);$$
 (27)

Se cierra cada archivo con las temperaturas calculadas por lapso de tiempo:

$$fclose\ (results);$$
 (28)

Cerramos el ciclo for i responsable de los cálculos de las coordenadas:

$$\} \tag{29}$$

Delimitamos el número de impresiones de las temperaturas de la placa, de lo contrario se impimirán sin detenerse, para esto guardamos un valor de cero en la variable a al finalizar cada ciclo:

$$a = 0 \tag{30}$$

Se usa i++ para incrementar en una unidad cada vez que se finaliza el ciclo responsable del cálculo de las temperaturas T1,T2,T3,T4:

$$i + +; (31)$$

Cerramos el ciclo for responsable del ciclo de la escritura de los archivos que contienen resultados

$$\} \tag{32}$$

Usamos return 0 para ver si la secuencia de instrucconese sucedió correctamente, de lo contrario enviará un signo de error para poder corregir algún

comando o secuencia de instrucciones, y finalmente cerramos la función maestra del programa para finalizarlo:

```
return 0;
}
```

Placa2.c

Primero se indicaron las librerías que se usarán en el programa, las cuales incluyen definiciones comunmente usadas en algoritmos. En este programa usamos la librería estandar:

$$include < stdio.h >$$
 (33)

Se declara la función que calculará las temperaturas en cada punto de la placa, dicho nombre asignado a la función debe ser único y exclusivo para dicha función:

$$voidtemperaturas();$$
 (34)

Usamos la función maestra del programa, que sirve como punto de partida para la ejecución del programa. Un programa deja de ejecutarse normalmente al final del main, por lo tanto el corchete '}' se colocará hasta el final de nuestro programa:

$$intmain()\{\}$$
 (35)

Se llama y se hace uso de la función que calculará las temperaturas de la placa:

$$temperaturas();$$
 (36)

Usamos return 0 para ver si la secuencia de instrucconese sucedió correctamente, de lo contrario enviará un signo de error para poder corregir algún comando o secuencia de instrucciones, y finalmente cerramos la función maestra del programa para finalizarlo:

```
return 0;
```

3 Resultados

Después de haber ejecutado el programa obtendremos la gráfica numérica de la placa, se puede obsevar como cada temperatura se encuentra en una coordenada puntual (i,j) que representan a las coordenadas (x,y) respectivamente, como ya se había mencionado en la parte la introducción. Tomando lo anterior en cuenta los resultados se obtuvieron como se muestra a continuación:

A	В	C	D	E	F	G	—н—	- 1	J	K	L	M	N	0	P	Q
13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
12	11.767087	11.344366	10.948258	10.637156	10.414967	10.266958	10.175615	10.130366	10.135852	10.217465	10.418742	10.787945	11.361786	12.166506	13.272349	15
12	10.951935	9.997263	9.203656	8.597204	8.165068	7.875536	7.695816	7.607359	7.620114	7.781105	8.16748	8.859955	9.908493	11.313332	13.035151	15
12	10.376835	8.967897	7.826107	6.960506	6.342983	5.926985	5.667274	5.539227	5.557255	5.784785	6.322845	7.272462	8.685727	10.53256	12.698812	15
12	9.974651	8.221285	6.804	5.728613	4.958422	4.436559	4.108739	3.945915	3.965682	4.242951	4.894902	6.035339	7.715908	9.885544	12.389087	15
12	9.703117	7.706042	6.086354	4.85253	3.964462	3.359222	2.976636	2.784649	2.802927	3.113964	3.845551	5.119817	6.988334	9.387889	12.141189	15
12	9.527637	7.367568	5.608147	4.261937	3.28826	2.621138	2.196946	1.981767	1.996556	2.328625	3.112599	4.47619	6.471639	9.029236	11.95923	15
12	9.420815	7.159132	5.310385	3.890523	2.859357	2.149663	1.696087	1.46377	1.474552	1.818782	2.635446	4.05606	6.133495	8.793905	11.839571	15
12	9.36636	7.052935	5.157904	3.698698	2.635639	1.901344	1.430076	1.18695	1.194714	1.545808	2.382095	3.836909	5.961812	8.678379	11.782942	15
12	9.364761	7.051568	5.155796	3.693781	2.62613	1.886428	1.410094	1.16349	1.170869	1.526577	2.373466	3.842728	5.980415	8.701928	11.80011	15
12	9.437494	7.194838	5.357889	3.939544	2.901287	2.179697	1.713712	1.472953	1.484493	1.843789	2.690345	4.146643	6.248291	8.904585	11.910406	15
12	9.624073	7.55255	5.855362	4.541572	3.576158	2.902321	2.466044	2.243104	2.264231	2.622678	3.447332	4.844479	6.836381	9.330368	12.133238	15
12	9.969333	8.199295	6.741088	5.604057	4.762261	4.170738	3.786909	3.595295	3.628999	3.972984	4.73717	6.006002	7.789549	10.001963	12.475775	15
12	10.508389	9.182295	8.063574	7.174427	6.506466	6.032129	5.723836	5.57543	5.618634	5.922981	6.572687	7.628299	9.092631	10.898525	12.921259	15
12	11.268609	10.503912	9.795612	9.204977	8.749199	8.420534	8.206673	8.108463	8.151141	8.382942	8.85894	9.616933	10.658458	11.946162	13.418585	15
12	12.323906	12.131449	11.831889	11.55093	11.324549	11.158159	11.049865	11.00273	11.030769	11.157894	11.410102	11.804922	12.345078	13.024539	13.860781	15
14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14

Figure 2: Resultados numéricos de la placa antes de alcanzar el equilibrio térmico. Se puede observar que las temperaturas de los bordes son diferentes para cada lado, pero constantes en cuanto a su vector.

A	B	C	D	F	F	G				К		M	N	0	Р	Q
13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
12	12.495008	12.689418	12.781702	12.835272	12.873435	12.906226	12.938805	12.974453	13.015897	13.066235	13.130104	13.216028	13.342255	13.553469	13.974455	15
12	12.293976	12.486588	12.609713	12.695158	12.762648	12.82383	12.886017	12.954442	13.033668	13.128747	13.246667	13.398699	13.604683	13.900419	14.34564	15
12	12.199935	12.362459	12.487722	12.587835	12.67487	12.758293	12.845297	12.941666	13.052668	13.183937	13.342533	13.538294	13.785381	14.102854	14.509525	15
12	12.1509	12.287907	12.407276	12.513292	12.612838	12.712818	12.819401	12.938057	13.073914	13.232217	13.418857	13.64082	13.906169	14.222515	14.591905	15
12	12.12496	12.245825	12.35988	12.468851	12.576895	12.689039	12.810362	12.945691	13.0996	13.276521	13.480859	13.716924	13.988388	14.296731	14.638227	15
12	12.11352	12.227257	12.339703	12.451859	12.566593	12.687796	12.819719	12.96658	13.132349	13.320641	13.534587	13.776558	14.04757	14.346214	14.667166	15
12	12.113024	12.227839	12.343448	12.460582	12.581532	12.709621	12.84865	13.00245	13.174578	13.368069	13.585219	13.827246	14.0938	14.382293	14.687227	15
12	12.122208	12.245928	12.369849	12.494417	12.62173	12.755015	12.898035	13.054573	13.228075	13.421359	13.63637	13.873861	14.13301	14.410956	14.702461	15
12	12.141208	12.281843	12.419393	12.553942	12.687782	12.824561	12.968475	13.123657	13.293795	13.481862	13.689917	13.918844	14.168011	14.43486	14.714555	15
12	12.171541	12.337915	12.494437	12.64105	12.780958	12.918966	13.060278	13.209791	13.371761	13.549649	13.746029	13.962431	14.199039	14.454166	14.723573	15
12	12.216846	12.419352	12.5998	12.759218	12.903257	13.039021	13.173393	13.312399	13.46108	13.623578	13.803269	14.002802	14.223888	14.466597	14.727932	15
12	12.285002	12.536249	12.743801	12.913754	13.05728	13.185383	13.307261	13.430208	13.560013	13.701461	13.85881	14.036184	14.237678	14.466703	14.723529	15
12	12.393848	12.707712	12.93965	13.111671	13.245644	13.358058	13.460508	13.561176	13.666146	13.780436	13.908892	14.057114	14.232373	14.444017	14.701001	15
12	12.587839	12.969118	13.205879	13.36006	13.469404	13.55537	13.630453	13.702427	13.776669	13.857582	13.949766	14.059446	14.19676	14.379562	14.637483	15
12	12.99164	13.380009	13.561117	13.660873	13.724964	13.772464	13.812529	13.850206	13.888764	13.93086	13.979452	14.039152	14.119232	14.242041	14.469881	15
14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14

Figure 3: Resultados de la placa cuando ya ha alcanzado el equilibrio térmico

Como se puede observar las temperaturas varían en los bordes de la placa, aún así son constantes en el vector de cada lado. Se realizó un total de 100 iteraciones para que se obtuviera un resultado bastante cercano a temperaturas de la placa cercanas al equilibrio térmico. En la Figura 3 se puede observar como las temperaturas en el centro de la placa se aproximan a las de cada extremo de la misma.

Cada una de las 100 gráficas numéricas de la placa obtenidas se graficó con un mapa de calor para representar el cambio térmico de la misma en un lapso de tiempo hasta alcanzar su equilibrio, a continuación se muestra la progresión de las gráficas más representativas de dicho cambio; la imágen de la esquina superior izquierda de la Figura 4 representa la placa cuando el tiempo=0 y la

imágen de la esquina inferior derecha de la Figura 9 representa la placa cuando ya se ha alcanzado dicho equilibrio térmico:

Figure 4: Primera progresión de las temperaturas de la placa, del lado superior izquierdo se observa la placa cuanto el tiempo=0

Figure 5: Segunda progresión de las temperaturas de la placa, se observa la propagación de las temperaturas de los bordes hacia el centro.

Figure 6: Tercera progresión de las temperaturas de la placa, los valores mínimos en el centro de la placa ya son pocos.

Figure 7: Cuarta progresión de las temperaturas de la placa, se observa como las temperaturas cercanas a los bordes empiezan a tomar valores similares a los de los bordes.

Figure 8: Quinta progresión de las temperaturas de la placa, se observa como la placa va alcanzando el equilibrio térmico, ya que los colores de los bordes son parecidos a los que los rodean en la placa (los colores representan los valores de las temperaturas).

Figure 9: Sexta progresión de las temperaturas de la placa, del lado inferior derecho se observa la placa cuando ya ha alcanzado el equilibrio térmico.

4 Conclusiones

Para obtener las temperaturas de la placa se usaron las temperaturas en sus bordes y sus dimesiones, así como la ecuación 2 ya mencionada en la parte de la introducción y los comandos descritos en la sección 2 de éste documento. Dicho proceso representaba una iteración que como resultado obtuvo una gráfica numérica de la placa, con las temperaturas de la misma, representadas por pequeños elementos de su área como puntos de coordenadas (i,j).

Cada iteración y progresión representó la evolución de las temperaturas de la placa en un lapso de tiempo. Dichas iteraciones dependían de las temperaturas iniciales y para sus aproximaciones se requirió un mayor divisor de las dimenciones de la placa; es decir, se tuvo más presición si la placa se dividía, por ejemplo, en un área de N*N=15x15 (225 puntos de coordenadas) que si solo se divdía en un área N*N=5x5 (25 puntos de coordenadas). Cabe mencinar que si los valores de las temperaturas de los bordes eran muy diferentes unos de las otros, se requería un área N*N mayor para reprsentar los elementos del área de la placa, así como un mayor número de itreaciones para poder encontrar la aproximación de las temperaturas que se acercaran al equilibrio térmico de la placa.

Tomando lo anterior en cuenta, ésta placa se dividió en un número suficiente de puntos para obtener una mayor presición (N*N=15*15), y al mismo tiempo se aumentó el número de iteraciones a=100 para obtener un número mayor de gráficas númericas representando las temperaturas; de esta forma se logró obtener una mayor aproximación al a las temperaturas de nuestra placa cuando había alcanzado su equilibrio térmico.