DEVRELER ve SISTEMLER

BIMU2058 - CSBM2092

Yrd. Doç. Dr. Fatih KELEŞ

İÇERİK

- İşlemsel Kuvvetlendirici
- Op-Amp Devre Elemanı
- İdeal Op-Amp
- Çeşitli Op-Amp'lı Devreler
- Gerçek Op-Amp
- Op-Amp'ın İdealleştirilmesi

İşlemsel Kuvvetlendirici – OpAmp (Operational Amplifier)

- İşlemsel kuvvetlendirici kısaca op-amp, elektronik uygulamalarda günlük kullanımlarda yaygın olarak karşımıza çıkar.
- Op-Amp toplama, çıkarma, çarpma, bölme, türev ve integral alma gibi matematiksel işlemleri elektriksel olarak gerçekleştirmeye yarar.

Op-Amp Entegre Devreleri Invino 2 Non-invino 10 Non-invino 3 Output 1 From inp 2 Output 1 Non-invino 3 Output 1 Non-invino 3 Output 1 Non-invino 3 Non-invino 3 Non-invino 1 Non-invino

Op-Amp Entegresinin İçyapısı OFFST NILL TO THE TOUR THE

Ideal Op-Amp

ldeal Op-Amp Kuralları

Giriş uçlarından içeri ya da dışarı akım akmaz.

$$I-=0$$
 ve $I+=0$

 Giriş uçları arasında gerilim farkı yoktur yani gerilimleri eşittir.

$$V- = V+$$
 sanal kısa-devre

Op-amp bunun gerçekleşmesi için çalışır!

Eviren (Inverting) Kuvvetlendirici

KVL, Ohm yasası ve ideal op-amp kuralları uygulanarak çözülebilir.

$$-v_{\text{in}} + R_1 i + R_f i + v_{\text{out}} = 0$$

 $v_{\text{out}} = v_{\text{in}} - (R_1 + R_f) i$
 $-v_{\text{in}} + R_1 i + 0 = 0$

$$i = \frac{v_{\rm in}}{R_1} \quad v_{\rm out} = -\frac{R_f}{R_1} v_{\rm in}$$

veya KCL uygulanarak;

$$\frac{v_{in}}{R_1} = -\frac{v_{out}}{R_f} \quad v_{out} = -\frac{R_f}{R_1} v_{in}$$

Eviren (Inverting) Kuvvetlendirici

Örnek: $v_{in}(t)=5 \sin 3t$ mV, $R_f=47 k\Omega$, $R_J=4,7 k\Omega$

Evirmeyen (Non-inverting) Kuvvetlendirici

Bu düğüme KCL uygulanırsa;

$$0 = \frac{v_{\text{in}}}{R_1} + \frac{v_{\text{in}} - v_{\text{out}}}{R_f}$$

$$v_{out} = \left(1 + \frac{R_f}{R_1}\right) v_{out}$$

Evirmeyen (Non-inverting) Kuvvetlendirici

Örnek: $v_{in}(t)=5 \sin 3t$ mV, $R_f=47 k\Omega$, $R_I=4,7 k\Omega$

Gerilim İzleyici - Tampon (Buffer)

Çıkış gerilimi giriş gerilimini takip eder.

 $V_{out}(t) = V_{in}(t)$

- Bu buffer (tampon) ile kaynaktan ihmal edilebilir bir akım ve güç çekilirken yüke oldukça yüksek bir akım ve güç sağlanmış olur.
- Böylece kaynak yüklenmemiş olur.

Gerilim Toplayıcı

Bu devre toplama işlemi yapar ve aynı zamanda $-R_f/R$ oranında kuvvetlendirir.

Kaskad Kuvvetlendirici

Ard arda bağlanmış opamplı kuvvetlendirici yapısı

 $v_x = -\frac{R_f}{R}(v_1 + v_2)$ $v_{\text{out}} = -\frac{R_2}{R_1}v_x$ $v_{\text{out}} = \frac{R_2}{R_1}\frac{R_f}{R}(v_1 + v_2)$

Daha Detaylı OpAmp Modeli

Bir opamp bağımlı gerilim kaynağı ve dirençlerle modellenebilir:

- ▶ Giriş direnci: R_i
- Çıkış direnci: R_o
- Açık çevrim kazancı: A

Bir Gerçek OpAmp ile Eviren Kuvvetlendirici

Ideal opampda ise; $v_{out}(t) = -50\sin 3t \text{ mV}.$

741 opampı (A=200.000, R_i =2M Ω , R_o =75 Ω) $v_{out}(t)=-49,997sin3t$ mV.

Örnek: $v_{in}(t)=5 \sin 3t$ mV, $R_i=47 \text{ k}\Omega$, $R_i=4,7 \text{ k}\Omega$

İdeal Op-Amp

Eğer, $A=\infty$, $R_o=0$ Ω , and $R_i=\infty$ Ω ise op-amp ideal bir op-amp'tır ve ideal op-amp kuralları geçerlidir. ($v_d=0$ and $i_{in}=0$)

OpAmp'ın Beslemeleri

- Bir opamp beslemelere ihtiyaç duyar.
- Genelde, eşit ve zıt gerilimler V⁺ ve V⁻ uçlarına bağlanır.
- Tipik değerleri 5 ilâ 24 volt arasındadır.

Bu örnekte +18V ve -18V bağlanmış

