Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Вариант 22

Выполнил студент группы КС-36: Золотухин А.А.

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Принял: Лебедев Данила Александрович

Дата сдачи: 02.04.2025

Москва 2025

Оглавление

Эписание задачи	1
Выполнение задачи	2
Задание 1	2
Задание 2	2
Задание 3	3
Задание 4	4
Задание 5	4
Задание 6	5
Задание 6	6
Задание 8	7

Описание задачи

Вариант	Уравнение	Интервалы переменных	Начальные и граничные условия
22	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$	$x \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x) = e^{x}$ $u(t, x = 0) = e^{t}$ $u(t, x = 1) = e^{t+1}$

Для заданного уравнения:

- 1. записать явную разностную схему;
- 2. определить порядок аппроксимации разностной схемы;
- 3. получить условие устойчивости разностной схемы на шаг (с помощью метода гармоник);
- 4. вывести рекуррентное соотношение;
- 5. составить алгоритм (блок-схему) расчёта;
- 6. построить программу на любом удобном языке программирования;
- 7. провести численный расчёт с использованием различных значений $\Delta t(0.1, 0.01, 0.001),$ h=0.1;
- 8. составить отчёт о проделанной работе.

Выполнение задачи

Задание 1

Записать явную разностную схему:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2}.$$
 (1)

В записанной разностной схеме (1) аппроксимация второй производной функции u(t,x) по координате рассматривается на n-м шаге по времени, т.е. относительно точки t^n , для которой рассматривается аппроксимация всего уравнения. Такая разностная схема называется **явной**.

Задание 2

Определить порядок аппроксимации разностной схемы (1):

Для этого запишу разложение значений $u_j^{n+1},\,u_{j+1}^n,\,u_{j-1}^n$ в ряд Тейлора относительно точки $(t^n,\,x_j)$ на разностной сетке:

$$u_j^{n+1} = u_j^n + \frac{\partial u}{\partial t}\Big|_i^n \Delta t + \frac{1}{2!} \frac{\partial^2 u}{\partial t^2}\Big|_i^n (\Delta t)^2 + \frac{1}{3!} \frac{\partial^3 u}{\partial t^3}\Big|_i^n (\Delta t)^3 + \dots,$$
 (2)

$$u_{j+1}^{n} = u_{j}^{n} + \frac{\partial u}{\partial x} \Big|_{j}^{n} h + \frac{1}{2!} \frac{\partial^{2} u}{\partial x^{2}} \Big|_{j}^{n} h^{2} + \frac{1}{3!} \frac{\partial^{3} u}{\partial x^{3}} \Big|_{j}^{n} h^{3} + \frac{1}{4!} \frac{\partial^{4} u}{\partial x^{4}} \Big|_{j}^{n} h^{4} + \dots,$$
(3)

$$u_{j-1}^n = u_j^n - \frac{\partial u}{\partial x}\Big|_i^n h + \frac{1}{2!} \frac{\partial^2 u}{\partial x^2}\Big|_i^n h^2 - \frac{1}{3!} \frac{\partial^3 u}{\partial x^3}\Big|_i^n h^3 + \frac{1}{4!} \frac{\partial^4 u}{\partial x^4}\Big|_i^n h^4 - \dots$$
 (4)

Подставляя зависимости (2)-(4) в разностную схему (1), получаем:

$$\frac{\partial u}{\partial t}\Big|_{j}^{n} + \frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}}\Big|_{j}^{n} \Delta t + \frac{1}{6} \frac{\partial^{3} u}{\partial t^{3}}\Big|_{j}^{n} (\Delta t)^{2} = \frac{\partial^{2} u}{\partial x^{2}}\Big|_{j}^{n} + \frac{1}{12} \frac{\partial^{4} u}{\partial x^{4}}\Big|_{j}^{n} h^{2}.$$

$$\Rightarrow \frac{\partial u}{\partial t}\Big|_{j}^{n} + O(\Delta t) = \frac{\partial^{2} u}{\partial x^{2}}\Big|_{j}^{n} + O(h^{2}).$$

Таким образом, явная разностная схема (1) аппроксимирует исходное дифференциальное уравнение с первым порядком по времени и со вторым порядком по координате, что записывается в следующем виде:

$$O(\Delta t) + O(h^2)$$
 или $O(\Delta t, h^2)$.

Задание 3

Получить условие устойчивости разностной схемы на шаг (с помощью метода гармоник):

Представлю решение разностной схемы в виде гармоники:

$$u_j^n = \lambda^n e^{i\alpha j}. (5)$$

Подставляя (5) в разностную схему (1), получаю:

$$\frac{\lambda^{n+1}e^{i\alpha j}-\lambda^n e^{i\alpha j}}{\Delta t}=\frac{\lambda^n e^{i\alpha (j+1)}-2\lambda^n e^{i\alpha j}+\lambda^n e^{i\alpha (j-1)}}{h^2}.$$

Упрощаю полученное выражение, деля левую и правую его части на $\lambda^n e^{i\alpha j}$:

$$\frac{\lambda - 1}{\Delta t} = \frac{e^{i\alpha} - 2 + e^{-i\alpha}}{h^2}.$$

Преобразую комплексные числа из экспоненциальной формы в тригонометрическую:

$$e^{\pm i\alpha} = \cos \alpha \pm i \sin \alpha \Rightarrow \frac{\lambda - 1}{\Delta t} = \frac{2\cos \alpha - 2}{h^2}.$$

Используя тригонометрические тождества

$$\cos \alpha = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} = 1 - 2\sin^2 \frac{\alpha}{2},$$

получаю формулу, из которой затем выражаю λ :

$$\frac{\lambda - 1}{\Delta t} = \frac{-4\sin^2\frac{\alpha}{2}}{h^2} \Rightarrow \lambda = 1 - \frac{4\Delta t}{h^2}\sin^2\frac{\alpha}{2}.$$

С учётом необходимого условия устойчивости разностных схем $|\lambda| \leq 1$ имею:

$$-1 \le 1 - \frac{4\Delta t}{h^2} \sin^2 \frac{\alpha}{2} \le 1.$$

В полученном двойном неравенстве правое условие выполняется автоматически. Поэтому рассмотрю более подробно левое условие:

$$1 - \frac{4\Delta t}{h^2} \sin^2 \frac{\alpha}{2} \ge -1 \Rightarrow \frac{\Delta t}{h^2} \sin^2 \frac{\alpha}{2} \le \frac{1}{2}.$$

Задавая для $\sin^2\frac{\alpha}{2}$ максимально возможное значение, равное 1, перехожу к более строгому условию, справедливому для любого α :

$$\frac{\Delta t}{h^2} \sin^2 \frac{\alpha}{2} \le \frac{1}{2} \Rightarrow \frac{\Delta t}{h^2} \le \frac{1}{2}.$$
 (6)

Выражение (6) является условием устойчивости явной разностной схемы, аппроксимирующей одномерное дифференциальное уравнение параболического типа. Такие

разностные схемы, устойчивость которых зависит от какого-либо условия, ограничивающего выбор интервала деления на разностной сетке, называют **условно устойчивыми**.

При $h = 10^{-1}$:

$$\Delta t \le \frac{(10^{-1})^2}{2} \Rightarrow \Delta t \le 5 \cdot 10^{-3}.$$

Задание 4

Вывести рекуррентное соотношение:

Выражаю из разностной схемы (1) величину u_i^{n+1} :

$$u_j^{n+1} = u_j^n + \frac{\Delta t}{h^2} (u_{j+1}^n - 2u_j^n + u_{j-1}^n).$$
 (7)

Соотношение типа (7), позволяющее рассчитывать значения искомой функции в узлах разностной сетки через известные значения в других узлах разностной сетки, называют рекуррентным соотношением.

Задание 5

Составить алгоритм (блок-схему) расчёта:

Задание 6

Построить программу на любом удобном языке программирования:

```
1 #include <iostream>
 2 #include <cmath>
3 #include <fstream>
5 #include "../include/Constants.h"
6
 7
  int main() {
    int N_x = 1 + (Constants::x_end - Constants::x_start) / Constants::h;
9
    int N_t[Constants::amount_of_delta_t] = {0};
10
    for (int i = 0; i < Constants::amount_of_delta_t; i++)</pre>
11
       N_t[i] = 1 + (Constants::t_end - Constants::t_start) / Constants::delta_t[i];
12
13 double u[N_t[0]][N_x] = \{0.0\};
```

```
14
     for (int j = 0; j <= N_x - 1; j++) {</pre>
15
       u[0][j] = std::exp(j * Constants::h);
16
17
18
     int n = 0;
19
20
     while (!(n == (N_t[0] - 1))) {
21
       for (int j = 1; j <= N_x - 2; j++)</pre>
22
         u[n + 1][j] = u[n][j] + (Constants::delta_t[2]) / (std::pow(Constants::h, 2)) *
       (u[n][j + 1] - 2 * u[n][j] + u[n][j - 1]);
23
24
       u[n + 1][0] = std::exp((n + 1) * Constants::delta_t[2]);
25
       u[n + 1][N_x - 1] = std::exp((n + 1) * Constants::delta_t[2] + 1);
26
27
       n++;
28
     }
29
30
     std::ofstream csvFile(Constants::csvPath);
31
     csvFile << "t\\x,";</pre>
32
     for (int j = 0; j \le N_x - 1; j++) {
33
       csvFile << j * Constants::h;</pre>
34
       if (j != (N_x - 1)) csvFile << ",";</pre>
35
36
     csvFile << "\n";</pre>
37
     for (int n = 0; n < N_t[0]; n++) {</pre>
38
       double t = (n + 1) * Constants::delta_t[2];
39
       csvFile << t << ",";
40
       for (int j = 0; j < N_x; j++) {
41
         csvFile << u[n][j];</pre>
42
         if (j != (N_x - 1)) csvFile << ",";</pre>
43
44
       csvFile << "\n";
45
     }
46
     csvFile.close();
47
48
     std::ofstream plotPath (Constants::plotPath);
49
     for (int n = 0; n <= N_t[0] - 1; n++) {</pre>
50
       double t = n * Constants::delta_t[2];
51
       for (int j = 0; j <= N_x - 1; j++) {</pre>
52
         double x = j * Constants::h;
53
         plotPath << t << " " << x << " " << u[n][j] << "\n";
54
55
       plotPath << "\n";</pre>
56
57
     plotPath.close();
58
59
     return 0;
60 }
```

Задание 6

Провести численный расчёт с использованием различных значений $\Delta t(0.1, 0.01, 0.001),$ h=0.1:

Таблица 1: Результаты

$t \backslash x$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
0.001	1	1.10517	1.2214	1.34986	1.49182	1.64872	1.82212	2.01375	2.22554	2.4596	2.
0.002	1.001	1.10628	1.22263	1.35121	1.49332	1.65037	1.82394	2.01577	2.22777	2.46206	2
0.003	1.002	1.10738	1.22385	1.35256	1.49481	1.65202	1.82577	2.01779	2.23	2.46453	2.
0.004	1.003	1.10849	1.22507	1.35392	1.49631	1.65368	1.8276	2.01981	2.23223	2.467	2.
0.005	1.00401	1.1096	1.2263	1.35527	1.49781	1.65533	1.82942	2.02183	2.23446	2.46946	2.
0.006	1.00501	1.11071	1.22753	1.35663	1.4993	1.65699	1.83126	2.02385	2.2367	2.47194	2.
0.007	1.00602	1.11182	1.22876	1.35799	1.50081	1.65865	1.83309	2.02588	2.23894	2.47441	2.
0.008	1.00702	1.11294	1.22999	1.35934	1.50231	1.66031	1.83492	2.0279	2.24118	2.47689	2.
0.009	1.00803	1.11405	1.23122	1.3607	1.50381	1.66197	1.83676	2.02993	2.24342	2.47936	2.
0.01	1.00904	1.11516	1.23245	1.36207	1.50532	1.66363	1.8386	2.03196	2.24567	2.48184	2.
0.011	1.01005	1.11628	1.23368	1.36343	1.50682	1.6653	1.84044	2.034	2.24791	2.48433	2.

Задание 8

Составить отчёт о проделанной работе. График фукнции $u(t,\ x)$

График зависимости u(t, x)

