Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерных технологий

Отчет по лабораторной работе № 1
"Атака на алгоритм шифрования RSA посредством метода Ферма"
по дисциплине Информационная безопасность
Вариант 10

Студент группы № РЗ4151

Шипулин Павел Андреевич

Преподаватель

Маркина Татьяна Анатольевна

Санкт-Петербург 2024

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством метода Ферма.

Вариант задания

№ варианта	Модуль, <i>N</i>	Экспонента, е	Блок зашифрованного текста, <i>С</i>
10	77027476849549	2936957	18937689886043 6667195679130 53238895771820 6189192838687 48623327840257 47264919314001 42510070950746 16878504505970 22744978157662 23644842894223 71614018816334 24651499733229

Ход работы

- 1. Ознакомиться с теорией, изложенной в [3]. («Взлом алгоритма RSA при неудачном выборе параметров криптосистемы»).
- 2. Получить вариант у преподавателя
- 3. Используя разложение модуля на простые числа методом Ферма и полученные исходные данные, определить следующие показатели:
 - а. Множители модуля (p и q).
 - b. Значение функции Эйлера для данного модуля $\varphi(N)$.
 - с. Обратное значение экспоненты по модулю $\varphi(N)$.

- 4. Дешифровать зашифрованный текст, исходный текст должен быть фразой на русском языке.
- 5. Результаты и промежуточные вычисления оформить в виде отчета.

Листинг программ

Ссылка на репозиторий:

https://github.com/PashcalE2/IS/tree/main/cryptography/second_part

Файл lab1.py

```
import math
          num_block = pow(int(c), d, N)
print(f"num_block_{i} = {c}^{d} mod {N} = {num_block}")
```

```
if __name__ == "__main__":

BapMaHT 10

"""

_N = 77027476849549
_e = 2936957
_C = """

18937689886043
6667195679130
53238895771820
6189192838687
48623327840257
47264919314001
42510070950746
16878504505970
22744978157662
23644842894223
71614018816334
24651499733229
"""

lab1(_N, _e, _C)
```

Выполнение

Результат выполнения программы

```
Рассчет параметров

n = int(sqrt(77027476849549)) + 1 = 8776530

p = 8776535 + 9474 = 8786009

q = 8776535 - 9474 = 8767061

ф(N) = 8786008 * 8767060 = 77027459296480

d = 2936957^(-1) mod 77027459296480 = 8540915045653

Дешифровка

num_block_0 = 18937689886043^8540915045653 mod 77027476849549 = 4075692279

text_block = то ч

num_block_1 = 6667195679130^8540915045653 mod 77027476849549 = 3908168686

text_block = исло
```

num_block_2 = 53238895771820^8540915045653 mod 77027476849549 = 552592880

text_block = пер

num_block_3 = 6189192838687^8540915045653 mod 77027476849549 = 3856982242

text_block = едав

num_block_4 = 48623327840257^8540915045653 mod 77027476849549 = 3773164795

text block = аемы

num_block_5 = 47264919314001^8540915045653 mod 77027476849549 = 4112578792

text_block = x ши

num_block_6 = 42510070950746^8540915045653 mod 77027476849549 = 4042189550

text_block = роко

num_block_7 = 16878504505970^8540915045653 mod 77027476849549 = 3806722528

text_block = веща

num_block_8 = 22744978157662^8540915045653 mod 77027476849549 = 4075154428

text block = тель

num_block_9 = 23644842894223^8540915045653 mod 77027476849549 = 3992712480

text_block = ных

num_block_10 = 71614018816334^8540915045653 mod 77027476849549 = 4024494821

text_block = паке

num_block_11 = 24651499733229^8540915045653 mod 77027476849549 = 4075741791

 $text_block = tob_$

Результат = то число передаваемых широковещательных пакетов_

Вывод

Узнал и проверил, что при неудачном значении N в методе шифрования RSA, можно легко найти секретный ключ d с помощью простого перебора чисел $t \geq n = \left[\sqrt{N} + 1 \right]$ и дальнейшей проверки на полный квадрат выражения $t^2 - N$.