Linux Administration

Azza Khalel

khalelazza@gmail.com

https://www.linkedin.com/in/azzakhalel/

Linux package management

- RPM (RedHat Package Manager)
 - RPM package files names consists of 4 elements
 - Name-version-release.architecture.rpm
 - To get your OS release
 - #cat /etc/redhat-release
 - To get your CPU arch
 - #uname -a
 - RPM used to install a package which already downloaded without any dependencies
 - To download a package
 - #wget <package_URL>
- YUM (Yellowdog Updater, Modified)
 - Its designed to be a better system for managing rpm-based packages
 - Its used to download and install any package with all its dependencies
 - It uses repository concept.
 - Starting from RHEL8, there are 2 main repos
 - BaseOS (all OS related packages)
 - AppStream (any other packages)
- Dnf (Dandified YUM)
 - is the next-generation version of the yum

RPM

- rpm -i <pck_name> OR rpm --install <pck_name>
- rpm -ivh <pck_name> (install verbose installation progress hash ###)
- rpm --install --nodeps <pck_name> → ignore dependency checks
- rpm --install --force <pck_name> → force the installation, even if there are conflicts or problems.
- rpm -U <pck_name> → upgrade the pck (if it's installed,update it and if not installed,install it then update)
- rpm -F <pck_name>→ fresh the pck (if it's installed, update it and if not installed, no actions)
- rpm -e <pck_name> OR rpm --erase <pck_name> → uninstall pck

- Yum list → print all installed packages
- Yum search <keyword> → list all package which contain this keyword in the name or summary fields only
- Yum info <pck_name> → print information about pck
- Yum install <pck_name> → to install package and its dependencies
- Yum provides <dir_path> → to know this dir is related to which package
- yum update <pck_name>
 - Checks for updates to package metadata (e.g., information about available packages, their versions, and dependencies) from configured repositories.
 - Does not install any new packages.
 - Updates the local package database to reflect the latest available versions.
- yum upgrade <pck_name>
 - Installs the latest versions of packages that are already installed on your system, based on the updated metadata obtained from #dnf update
- #yum remove <pck_name>
- yum localinstall <pck_name>→ install a downloaded pck with it's dependencies

dnf

Task:	Command:
List installed and available packages by name.	dnf list [NAME-PATTERN]
List installed and available groups.	dnf group list
Search for a package by keyword.	dnf search KEYWORD
Show details of a package.	dnf info PACKAGENAME
Install a package.	dnf install PACKAGENAME
Install a package group.	dnf group install GROUPNAME
Update all packages.	dnf update
Remove a package.	dnf remove PACKAGENAME
Display transaction history.	dnf history

Repositories

- #dnf repolist → to list all enabled repos
- #dnf repolist all → to list all enabled and disabled packages
- /etc/yum.repo.d →
 - the dir which contain all .repo files which contain all repos
 - Each file contain one or more repos
 - Each section in this file represent a repo
- To enable a specific repo
 - #dnf config-manager --enable <repo_id>
 - #dnf config-manager --disable <repo_id>

Own repo

- #mkdir /myrepo
- #cp /media/DVD_name/Packages /myrepo
- #chmod -R 755 /myrepo
- #createrepo / myrepo
- vi /etc/yum.repos.d/ownrepos.repo
 [ownrepos]
 name=that's my own repos
 baseurl=file:///myrepo
 gpgcheck=0 (not check from redhat or from any)
 enabled=1
- #yum clean all → clean up the yum cache
- #yum repolist → to list all system repos

Controlling services and demons

- Systemd is the first process to start (PID1).
- Listing service units
 - #systemctl list-units --type=service → to list all services
 - #systemctl --failed --type=service → to list all failed services
 - #systemctl status sshd.service → to check status of specific service
- Controlling system services
 - # systemctl start sshd.service #systemctl stop sshd.service
 - # systemctl enable sshd.service #systemctl disable sshd.service
 - #systemctl enable --now sshd.service
 - # systemctl restart sshd.service → stop the service then start
 - systemctl reload sshd.service → just reload the config files without stopping the service
- Masking and unmasking services
 - #systemctl mask httpd → to stop the service and avoid to be started by mistake, no one can start it

Created symlink /etc/systemd/system/httpd.service → /dev/null.

#systemctl start httpd

Failed to start httpd.service: Unit httpd.service is masked.

#systemctl unmask httpd

Removed "/etc/systemd/system/httpd.service".

Scheduling(periodic)

- cron
- /var/spool/cron/user_name
- crontab -e
- crontab -u <user_name> -e
- Syntax \Rightarrow min hour day month no.of.day full_path_of_cmd 0-59 0-23 1-31 1-12 0-7(sunday) /usr/bin/date
- Output is sent to mail until you redirect it.
- crontab -l
- crontab -u <user_name> -l
- crontab -r → will remove all tasks
- /etc/cron.allow ⇒ isn't exist by default
- /etc/cron.deny ⇒ it's exist by default
- Crontab mechanism ⇒ see the cron.allow then decide.

Scheduling(one time)

- at
- /var/spool/at/user_name
- at 17:30 [at 17:30, at now+2 min,at 17:30+4 days, at noon, at midnight, at teatime] teatime ⇒ 5PM
 - at> then writ wanted command and Enter then the second command
 - Ctrl +d (at the end)
- Output is sent to mail until you redirect it.
- atq (list all at jobs)
- at -d <at_job_name>
- /etc/at.allow
- /etc/at.deny

Storage management

Type of device	Device naming pattern
SATA/SAS/USB-attached storage (SCSI driver)	/dev/sda, /dev/sdb, /dev/sdc,
virtio-blk paravirtualized storage (VMs)	/dev/vda, /dev/vdb, /dev/vdc,
virtio-scsi paravirtualized storage (VMs)	/dev/sda, /dev/sdb, /dev/sdc,
NVMe-attached storage (SSDs)	/dev/nvme0,/dev/nvme1,
SD/MMC/eMMC storage (SD cards)	/dev/mmcblk0,/dev/mmcblk1,

Storage management

- 3 steps should be done to use a disk partition and access it's data
 - Create the partition
 - #fdisk -l → print full info about disks and their partitions
 - #df -h → print all mounted partitions which ready for use
 - #fdisk /dev/sda [to create a new partition or delete a partition]
 - #cat /proc/partitions
 - #partporbe
 - #reboot
 - #lsblk → to check block devices we have attached to our system
 - #lsblk -fp → to list full path of the device, the UUIDs and mount points, and the partition's file-system type
 - Format this partition with a certain file system
 - #mkfs -t ext3 /dev/sda1
 OR mkfs.ext3 /dev/sda5
 - #fsck → to check the file system issues and try to repair it
 - Mount this partition to a free dir on our system
 - Temporary mount
 - #mount /dev/sda5 /dir1
 - #df -h
 - Permeant mount
 - #vi /etc/fstab

HD_partition mount_point fs_type options dump pass /dev/sda1 <mount_point> fs_type defaults 0 0

· After writing in fstab, you should reboot system or run mount command

- #swapon → print info about swap partitions
- Create a SWAP
 - From disk partition
 - #fdisk /dev/sdb → create /dev/sdb1 partition
 - During the partition creation change its type to be swap (click t)
 - #mkswap /dev/sdb1 → make it a swap partition
 - #swapon /dev/sdb1 → add it to swap area
 - #vi /etc/fstab → add this partition on fstab file to be permanently on the system]
 /dev/sdb1 swap swap defaults 0 0
 - From file
 - #fallocate -l 4G /swapfile
 - #ls -lh /myswap
 - #chmod 600 / myswap
 - #mkswap / myswap
 - #swapon / myswap
 - #vi /etc/fstab = add this partition on fstab file to be permanently on the system]
 /dev/sdb1 swap swap defaults 0 0

LVM (Logical Volume Manager)

- If the HD was partitioned and then want to extend its size, These partitions should be LVM to apply that.
 - Partitions' type should be LVM
 - Then convert them to physical volumes.
 - Put all physical volumes in a volume group.
 - Then we can partition this volume group to logical volumes.
 - Mount these logical volumes on your system; it will be your system partitions.

Here, Data is stored in an extent, before that in the normal partition data is

stored in blocks.

- Create a partition
 - #fdisk /dev/sda n p t 8e :wq
- Make physical volume
 - #pvcreate /dev/sda1 #pvs #pvdisplay #pvdisplay /dev/sda1 #pvremove /dev/sda1
- Create volume group
 - #vgcreate vg0 /dev/sda1 /dev/sda2 #vgs vgdisplay #vgremove vg0
- Create logical volume
 - #lvcreate -L +50G -n lv0 vg0 #lvs #lvdisplay #lvremove lv0
- Make file system
 - #mkfs.ext3 /dev/vg0/lv0
- mount and fstab
 - #mount /dev/vg0/lv0 /part1
 - #vi /etc/fstab/dev/vg0/lv0 /part1 ext3 defaults 0 0
- #vgextend vg0 /dev/sdb → will create a PV from this disk and expand the VG
- #vgreduce vg0 /dev/sda3
- #Ivextend -r -L +10G lv0 → will add 10G to this lvm and -r to extend the XFS File system
- #lvextend -r -L 10G lv0 → this will set this lvm to be 10G
- #resize2fs /dev/vg1/lv0
- #lvreduce -L -10G lv0

Partition reducing

- Backup your data
- Identify the LVM and its mount point
- Umount the mountpoint
- Resize the filesystem
 - #resize2fs /dev/vg0/lv0 2G → desired size
- Reduce the lvm size
 - #lvreduce -L 2G lv0