Operationen auf binären Relationen und graphische Darstellung

Es seien M_1 und M_2 zwei Mengen. Eine Teilmenge T des kartesischen Produktes $M_1 \times M_2 = \{(x_1, x_2) | x_1 \in M_1 \land x_2 \in M_2\}$ heißt (binäre) Relation.

Graphische Darstellung binärer Relationen in $M_1 \times M_2$

Beispiel 1: $M_1 = \{1, 2, 3, 4\}, M_2 = \{a, b, c, d\}, T = \{(1, a), (2, a), (3, d), (4, c)\}$

Variante 1: Pfeildarstellung

Variante 2: Koordinatensystem

Graphische Darstellung binärer Relationen in $M \times M$

Beispiel 2: $M = \{1, 2, 3\}, T = \{(1, 1), (1, 2), (2, 3), (3, 2)\}$

Hier gibt es neben den beiden Varianten aus Beispiel 1 eine weitere Möglichkeit, indem bei der Pfeildarstellung die Elemente von M nur einmal dargestellt werden:

Besonderheiten:

Bei (1, 1) eine Schlinge zeichnen.

Anstelle der beiden Pfeile zwischen 2 und 3 ist auch ein Doppelpfeil möglich:

Komposition (Verkettung) von Relationen

Es seien $T_1 \subseteq M_1 \times M_2$ und $T_2 \subseteq M_2 \times M_3$ binäre Relationen. Die Relation

$$T_1 \circ T_2 := \{(x, z) \in M_1 \times M_3 \mid \exists_{y \in M_2} (x, y) \in T_1 \land (y, z) \in T_2 \}$$

heißt Komposition oder Verkettung von T1 und T2.

Beispiel 3: $M_1 = \{1, 2, 3, 4\}, M_2 = \{a, b, c, d\}, M_3 = \{u, v, w\},$

 $T_1 = \{(1,\,b),\,(1,\,d),\,(2,\,a),\,(3,\,b),\,(3,\,d),\,(4,\,a),\,(4,\,c)\} \subseteq M_1 \times M_2$.

 $T_2 = \{(b,u), (c,v), (c,w), (d,u), (d,v)\} \subseteq M_2 \times M_3.$

Vorgehensweise zur Ermittlung der Elemente einer Komposition $T_1 \circ T_2$

- 1) Für jedes Element $(x, y) \in T_1$ alle Fortsetzungen $(y, z_i) \in T_2$ suchen.
- 2) (x, z_i) als Element von $T_1 \circ T_2$ notieren, falls noch nicht vorhanden.

In der folgenden Tabelle ist diese Vorgehensweise für das Beispiel 3 dargestellt.

Element von T ₁	Fortsetzung(en) in T ₂	→ Element(e) von $T_1 \circ T_2$
(1, b)	(b, u)	(1, u)
(1, d)	$(\mathbf{d}, \mathbf{u})^{1}, (\mathbf{d}, \mathbf{v})$	(1, v)
(2, a)	-	-
(3, b)	(b , u)	(3, u)
(3, d)	$(\mathbf{d}, \mathbf{u})^{1}, (\mathbf{d}, \mathbf{v})$	(3, v)
(4, a)	-	-
(4, c)	$(\mathbf{c}, \mathbf{v}), (\mathbf{c}, \mathbf{w})$	(4, v), (4, w)

^{1) (1,} u) und (3, u) sind bereits vorhanden und werden nur einmal aufgeführt!

Damit ergibt sich
$$T_1 \circ T_2 = \{(1, u), (1, v), (3, u), (3, v), (4, v), (4, w)\}$$

Auch graphisch (Pfeildarstellung) lässt sich dies nachvollziehen, indem sämtliche Verbindungen von M_1 über M_2 nach M_3 gesucht werden (in der Skizze ist nur die erste Verbindung von 1 über b nach u farbig dargestellt):

Wichtig: Die Operation Verkettung ist assoziativ, d.h. mit $T_1 \subseteq A \times B$, $T_2 \subseteq B \times C$ und $T_3 \subseteq C \times D$ gilt: $(T_1 \circ T_2) \circ T_3 = T_1 \circ (T_2 \circ T_3) = : T_1 \circ T_2 \circ T_3 \subseteq A \times D$.

Projektionen

Es sei T eine Relation in $U \times V$. Die Menge $\operatorname{proj}_1(T) := \{x \in U \mid \exists_{y \in V}(x,y) \in T\}$ heißt Projektion von T auf den 1. Faktor U des kartesischen Produktes.

Analog ist $\operatorname{proj}_2(T) := \{ y \in V \mid \exists_{x \in U}(x, y) \in T \}$ die Projektion von T auf den 2. Faktor V des kartesischen Produktes.

Inverse Relation

Es sei $T \subseteq M_1 \times M_2$ eine binäre Relation. Die Relation

 $T^{-1} \coloneqq \{(y,x) \mid (x,y) \in T\} \subseteq M_2 \times M_1 \text{ heißt inverse Relation (kurz Inverse) von } T.$

Transitive Hülle

Es sei T eine Relation in $M \times M$ (auf M). Als transitive Hülle T^+ von T wird die kleinste Relation, die T enthält und transitiv ist, bezeichnet.

Satz: Es gilt
$$T^{+} = T \cup (T \circ T) \cup (T \circ T \circ T) \cup ... = \bigcup_{j=1}^{\infty} T^{j}.$$
 (1)

(Dabei bezeichnet T^{j} die Komposition $T \circ T \circ ... \circ T$.)

i-mal

Beispiel 4: Gegeben sei die Menge $M = \{a, b, c, d, e, f\}$ sowie die Relation $T = \{(a, b), (b, c), (c, e), (b, d), (d, e), (e, f)\} \subseteq M \times M$.

Entsprechend der Vorgehensweise im Beispiel 3 ergibt sich der Reihe nach

$$T \circ T = T^2 = \{(a, c), (a, d), (b, e), (c, f), (d, f)\}, \quad T \circ (T \circ T) = T^3 = \{(a, e), (b, f)\},$$

$$T \circ (T \circ T \circ T) = T^4 = \{(a, f)\}, \quad T \circ (T \circ T \circ T) = T^5 = \Phi \quad \text{und damit für die}$$

$$\underline{t} \text{ransitive Hülle } T^+ = \{(a, b), (b, c), (c, e), (b, d), (d, e), (e, f),$$

$$(a, c), (a, d), (b, e), (c, f), (d, f), (a, e), (b, f), (a, f)\}.$$

Reflexive Hülle, symmetrische Hülle. reflexiv-transitive Hülle

Es sei wieder T eine Relation in $M \times M$ (auf M). $I_M = \{(x,x) | x \in M\}$ sei die Identitätsrelation (ein Paar (x,y) gehört genau dann zu I_M wenn x gleich (oder identisch) y ist.

- 1) Als reflexive Hülle von T wird die Relation $\boxed{T \cup I_M}$ bezeichnet.
- 2) Die symmetrische Hülle von T ist $T \cup T^{-1}$.
- 3) Die reflexiv-transitive Hülle T* von T ist die Vereinigung der transitiven Hülle T $^+$ mit der Identitätsrelation I_M : $\boxed{T^* = T^+ \cup I_M}$.