数值微分和数值积分

数值微积分是根据导数和积分的定义,将无穷小量dx 近似为一个较小 (0.001 甚至更小) 的定值 Δx ,从而近似计算函数的导数与积分,即数值微分

图 1 数值微分割线法

点 A 处的切线通过绕 A 点旋转一个非常小的角度,与函数曲线相较于 B 点,则直线 AB 的斜率可以近似为函数在 A 点处的切线的斜率,即可计算出 A 点处的近似导数,即

$$\frac{dy}{dx} \approx \frac{y(x_B) - y(x_A)}{x_B - x_A}$$

 $\diamondsuit x_B - x_A = \Delta x$, \Box

$$\left. \frac{dy}{dx} \right|_{x=x_A} \approx \frac{y(x_A + \Delta x) - y(x_A)}{\Delta x}$$

最终函数的数值微分公式

$$\frac{dy}{dx} \approx \frac{y(x + \Delta x) - y(x)}{\Delta x}$$

数值积分

A≈A₁+A₂+···+A_n
____ 以直代曲,无限逼近

图 2 数值积分矩形法

如图 2 所示,定积分的几何意义是积分区间 [a,b] 范围内函数 f(x) 与x 轴包围而成的图形,所以将函数曲线下的面积部分划分为一个个较小的矩形,然后相加即可近似计算出定积分 $\int_{-\infty}^{b} f(x) dx$

在积分区间 [a,b] 上取n个点, $a = x_1 < x_2 < \dots < x_{n-1} < x_n = b$

则第i小矩形的边长为 $\Delta x_i = x_{i+1} - x_i, i = 1, 2, \dots, n-1$,第i小矩形的高为 $f(x_i)$,那么,第i小矩形的面积为 $A_i = f(x_i)\Delta x_i$

将n-1个小矩形叠加(注意n个点只能构成n-1个小矩形)得到定积分的近似公式

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n-1} f(x_{i}) \Delta x_{i}$$

例: 已知函数 $f(x) = \cos x$,用数值法计算 $f'\left(\frac{\pi}{2}\right)$ 和 $\int_0^{\frac{\pi}{2}} f(x) dx$

易知解析解为
$$f'\left(\frac{\pi}{2}\right) = -1$$
和 $\int_0^{\frac{\pi}{2}} f(x) dx = 1$

 Δx 取 0.1

 Δx 取 0.01

*∆x*取 0.001

 Δx 取值越小,近似计算约接近真实值