2 20270	ESCOLA	Tipo de Prova Exame Época Normal Ano letivo 2021/2022		Data 11-02-2022
P. PORTO SUPERIOR DE TECNOLOGIA E GESTÃO		Curso Licenciaturas em Engenharia Informática / Segurança Informática em Redes e Comunicações		Hora 14h30
		Unidade Curricular Sistemas Operativos		Duração 02h10

Observações

- Com consulta de documentação própria.
- O tempo previsto para responder a cada questão é apresentado entre parêntesis reto.
- A cotação atribuída a cada pergunta é apresentada entre parêntesis reto.

PARTE I (Teórica) [60 min]

Questão 1 [10 min] [1.5 valores]

Para cada uma das seguintes afirmações deverá indicar se as considera verdadeiras ou falsas. Caso considere alguma afirmação como falsa deverá rescreve-la, transformando-a numa afirmação verdadeira. À simples negação não será atribuída nenhuma cotação.

- a) O segmento de memória de um processo é representado pelos seus endereços absolutos de inicio e fim, devidamente armazenados nos registos *base* e *limit* [0.5 valores];
- b) O principio de localidade espacial observa-se quando um processo acede várias vezes à mesma zona de memória num curto espaço de tempo [0.5 valores];
- c) Um semáforo é um mecanismo de sincronização cujo objetivo é eliminar situações de competição, impasse e míngua [0.5 valores];

Questão 2 [10 min] [2.5 valores]

"A prevenção de deadlocks, usando o algoritmo do banqueiro, só pode ser aplicado em situações que envolvem recursos com apenas uma instância, sendo suficiente saber à priori os recursos usados pelos outros processos no sistema."

Comente a afirmação, indicando também se **concorda ou não** com a mesma. Fundamente a sua resposta com um exemplo concreto.

Questão 3 [10 min] [2.0 valores]

Assuma um sistema com **32 KB** de memória virtual por **paging**, com páginas de **1 KB**. Indique, recorrendo à técnica MMU e à tabela sequinte:

1100	0
1011	1
0010	1
0000	0
1000	1
0001	1

a) a que endereço físico corresponde o endereço virtual 1320; [1.0 valores]

b) a que endereço físico corresponde o endereço virtual **2022**; [1.0 valores]

Questão 4 [10 min] [2.0 valores]

ESTG-PR05-Mod013V2 Página $\mathbf{1}$ de $\mathbf{4}$

2 20270	ESCOLA	Tipo de Prova Exame Época Normal Ano letivo 2021/2022		Data 11-02-2022
P. PORTO SUPERIOR DE TECNOLOGI. E GESTÃO		^{Curso} Licenciaturas em Engenharia Informátic Informática em Redes e Comunicações	Hora 14h30	
		Unidade Curricular Sistemas Operativos		Duração 02h10

Considere um computador com **1 MB** de memória que utiliza um sistema operativo que faz a gestão de memória pelo algoritmo **buddy**. Apresente uma representação de como a memória ficaria dividida considerando a lista de eventos apresentados de seguida:

- 1. Novo processo (P1) com 200K de tamanho;
- 2. Novo processo (P2) com 140K de tamanho;
- 3. Novo processo (P3) com 64K de tamanho;
- 4. Novo processo (P4) com 200K de tamanho;
- 5. Término e libertação dos processos (P1 e P2);
- 6. Novo processo (P5) com 65K de tamanho;
- 7. Término e libertação dos processos (P3);

Questão 5 [10 min] [2.0 valores]

Considere o seguinte conjunto de processos. Instante de chegada e duração são indicados na tabela seguinte:

Processo	Instante de chegada	Duração
P1	0.1	1.1
P2	0.5	0.6
P3	0.7	0.3
P4	0.9	0.1
P5	1.0	0.3

Calcule o tempo médio de turnaround, considerando que o algoritmo de escalonamento é o **SRTF**. Fundamente a sua resposta com todos os cálculos que sentir necessidade de efetuar.

Questão 6 [10 min] [2.0 valores]

Assuma um sistema com os tipos de recursos (A, B, ...), processos (P1, P2, ...) e caracterização como apresentada nas tabelas sequintes:

Alocado				٨	Necessidades máximas				Disponibilidade							
	Α	В	С	D			А	В	С	D		А	В	С	D	
P1	0	1	0	1		P1	3	1	0	2		1	0	0	1	
P2	1	0	1	0		P2	2	0	3	1						
Р3	1	0	1	1		РЗ	3	2	1	1						
P4	0	3	2	0		P4	1	3	2	1						
P5	0	0	1	1		P5	0	1	3	4						

Aplique o algoritmo do banqueiro e determine se existe uma sequência de execução que mantenha o sistema num estado seguro. Apresente essa sequência, juntamente com os cálculos que sentir necessidade de efetuar.

ESTG-PR05-Mod013V2 Página **2** de**4**

חדקחק ק
T.FORTO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

	Tipo de Prova Exame Época Normal	Ano letivo 2021/2022	Data 11-02-2022
GIA	_{Curso} Licenciaturas em Engenharia Informátic Informática em Redes e Comunicações	Hora 14h30	
	Unidade Curricular Sistemas Operativos	Duração 02h10	

PARTE II (Prática) [50 min]

Questão 7 [20 min] [4.0 valores]

Considere o seguinte excerto de código:

```
1 class Normal(
 2
     private int nota;
 3
 4
     Normal(int nota) {this.nota = nota; }
 5
     public int getNota() { return nota; }
 6 }
 7
 8 class ParteTeorica extends Normal{
 9
     ParteTeorica(int nota) { super(nota); }
10 }
 11 class PartePratica extends Normal{
      PartePratica(int nota) { super(nota); }
12
13 }
14
15 class Aluno extends Thread{
16
     private String nome;
17
     private Normal p1, p2;
18
19
     Aluno(String nome, Normal p1, Normal p2) {
20
       this.nome = nome; this.p1 = p1; this.p2 = p2;
21
22
23
      public void run() {
24
        synchronized(p1){
25
          System.out.println( nome + " obteve " + p1.getNota() );
          try { if ( p1.getNota() < 10 ) Thread.sleep(1000 );</pre>
26
27
          } catch(InterruptedException e) {}
28
          synchronized(p2){
29
            System.out.println(nome + "obteve " + p2.getNota());
30
31
32
33 }
34
35 public class ExameEpocaNormal {
36 public static void main(String[] args) {
37
      final Normal p1 = new ParteTeorica(15);
38
      final Normal p2 = new PartePratica(9);
39
40
      (new Aluno("Grupo 1: Alice", p1, p2)).start(); (new Aluno("Grupo 1: Bob", p2, p1)).start();
41
42
      System.out.println("A nota dos alunos do Grupo 1 foi registada");
43 }
44 }
```

ESTG-PR05-Mod013V2 Página 3 de4

2 20270	ESCOLA	Tipo de Prova Exame Época Normal Ano letivo 2021/2022		Data 11-02-2022
P. PORTO SUPERIOR DE TECNOLOGI E GESTÃO		Curso Licenciaturas em Engenharia Informática / Segurança Informática em Redes e Comunicações		Hora 14h30
		Unidade Curricular Sistemas Operativos		Duração 02h10

- a) [5 min] Admita que executa o código é executado várias vezes, existe a possibilidade de surgirem resultados diferentes e, inclusive, ocorrer uma situação de impasse/deadlock? Justifique a sua resposta. [2.0 valores]
- b) [15 min] Mantendo a estrutura base, altere o código apresentado de forma a: 1) eliminar possíveis situações de impasse/deadlock; e 2) garantir, usando semáforos, que a linha 42 só é executada quanto todas as threads já terminam. [2.0 valores]

Questão 8 [30 min] [4.0 valores]

Escreva três classes, **Professor** e **Estudante**, que partilham um **Email** para leitura e escrita de mensagens entre eles (Professor escreve em Email, Estudante lê do Email). O Email pode conter até 5 strings. **Em cada instante estão em execução 1 instância de Professor e 10 instâncias de Estudantes**. Pretende-se que o seguinte funcionamento seja implementado (em ciclo):

- 1) a instância de Professor escreve no Email \mathbf{x} strings (\mathbf{x} é um valor inteiro aleatório, mas por questões de simplicidade, pode atribuir-lhe o valor 5);
- 2) após a escrita de **x** strings no Email, a instância Professor adormece e todas as instâncias de Estudante são acordadas;
- 3) compete à última instância de Estudante a ler o Email e colocar a 0 o contador de strings);
- 4) depois da última instância Estudante realizar a sua tarefa (i.e., ler as strings e colocar o contador a 0), a instância Professor volta a escrever **x** strings no Emaill;

As etapas de 1) a 4) repetem-se 7 vezes. Deve usar os mecanismos de comunicação e sincronização entre threads abordados nas aulas.

ESTG-PR05-Mod013V2 Página **4** de**4**