FEMA:

FLEXIBLE EVOLUTIONARY MULTI-FACETED ANALYSIS FOR DYNAMIC BEHAVIOR PATTERN DISCOVERY

Meng Jiang, Tsinghua University, Beijing, China

Joint work with Peng Cui, Fei Wang, Xinran Xu, Wenwu Zhu and Shiqiang Yang August 25, 2014 – NYC, USA

Behavior Analysis

Modeling

How to formulate human behavior?

Pattern discovery

How to understand human behavior?

Prediction

What is the missing human behavior?

Our Goals

- Given: Behavioral data sequence
- Find: A general framework that fast and best fit the behavioral data

Goals:

- G1. Model the human behavior
- G2. Understand the hidden patterns
- G3. Predict the missing behavior

OUTLINE

1. Background

2. Model Formulation

3. The Framework

4. Experiments

5. Visualization

Human Behavior

Write a paper/book

Post a photo on Facebook

Human Behavior: Multi-faceted

Write a paper/book

Post a photo on Facebook

Human Behavior: Dynamic

Write a paper/book

Human Behavior: Dynamic

Post Facebook messages

Month

Human Behavior

- Multi-faceted
- Dynamic

• How to model human behavior?

OUTLINE

1. Background

2. Model Formulation

3. The Framework

4. Experiments

5. Visualization

Model Human Behavior

Challenges

- High sparsity
 - High-order tensors

- High complexity
 - Long sequence of tensors
 - Too slow if decomposing at each time

Idea

- High sparsity
 - Auxiliary knowledge as regularizations

Idea

- High complexity
 - Update projection matrices with new coming piece of data

OUTLINE

- 1. Background
- 2. Model Formulation
- 3. The Framework
- 4. Experiments
- 5. Visualization

FEMA: Flexible Evolutionary Multi-faceted Analysis

FEMA: Flexible Evolutionary Multi-faceted Analysis

FEMA Algorithm

Approximation

Bound Guarantee

```
Require: \mathcal{X}_{\mathbf{t}}, \Delta \mathcal{X}_{\mathbf{t}}, \mathbf{A}_{\mathbf{t}}^{(\mathbf{m})}|_{m=1}^{M}, \lambda_{\mathbf{t}}^{(\mathbf{m})}|_{m=1}^{M}
       for m=1,\ldots,M do
                            Compute \Delta \lambda_{t,i}^{(m)} using Core tensor
                  for i = 1, ..., r^{(m)} do
                                          \Delta \lambda_i^{(m)} = \mathbf{a}_i^{(m)\top} (\mathbf{X}^{(m)} \Delta \mathbf{X}^{(m)\top} + \Delta \mathbf{X}^{(m)} \mathbf{X}^{(m)\top}) \mathbf{a}_i^{(m)} 
 |\Delta \lambda_i^{(m)}| \leq 2 (\lambda_{\mathbf{X}(\mathbf{m})}^{\mathbf{max}} + \lambda_{\mathbf{X}(\mathbf{m})}^{\mathbf{X}(\mathbf{m})\top})^{\frac{1}{2}} ||\Delta \mathbf{X}^{(\mathbf{m})}||_2 
                                             \lambda_{t+1,i}^{(m)} = \lambda_{t,i}^{(m)} + \Delta \lambda_{t,i}^{(m)};
                            Compute \Delta \mathbf{a}_{\mathbf{t}, \mathbf{i}}^{(\mathbf{m})} using projection matrix
                                       \Delta \mathbf{a}_{\mathbf{i}}^{(\mathbf{m})} = \sum_{j \neq i} \frac{\mathbf{a}_{\mathbf{j}}^{(\mathbf{m})^{\top}} (\mathbf{X}^{(\mathbf{m})} \Delta \mathbf{X}^{(\mathbf{m})^{\top}} + \Delta \mathbf{X}^{(\mathbf{m})} \mathbf{X}^{(\mathbf{m})^{\top}}) \mathbf{a}_{\mathbf{i}}^{(\mathbf{m})}}{\lambda_{i}^{(m)} - \lambda_{j}^{(m)}} \mathbf{a}_{\mathbf{j}}^{(\mathbf{m})} \qquad |\Delta \mathbf{a}_{\mathbf{i}}^{(\mathbf{m})}| \leq 2 ||\Delta \mathbf{X}^{(\mathbf{m})}||_{2} \sum_{i \neq j} \frac{(\lambda_{\mathbf{X}^{(\mathbf{m})}}^{\mathbf{max}} + \mathbf{X}^{(\mathbf{m})})^{2}}{|\lambda_{i}^{(m)} - \lambda_{i}^{(m)}|}
                             \mathbf{a_{t+1,i}^{(m)}} = \mathbf{a_{t,i}^{(m)}} + \Delta \mathbf{a_{t,i}^{(m)}} \text{ and } \mathbf{A_{t+1}^{(m)}} = {\mathbf{a_{t+1,i}^{(m)}}};
                  end for
      end for
       \mathcal{Y}_{t+1} = (\mathcal{X}_t + \Delta \mathcal{X}_t) \prod_{m=1}^{M} \times_{(m)} \mathbf{A}_{t+1}^{(m)T};
       return \mathbf{A}_{\mathbf{t+1}}^{(\mathbf{m})}|_{m=1}^{M}, \lambda_{\mathbf{t+1}}^{(\mathbf{m})}|_{m=1}^{M}, \mathcal{Y}_{\mathbf{t+1}}
```

OUTLINE

- 1. Background
- 2. Model Formulation
- 3. The Framework
- 4. Experiments
- 5. Visualization

Experiments: Test Behavior Prediction

- Data sets
- Leveraging multi-faceted information
- Leveraging flexible regularizations
- Efficiency, loss and parameters

Data Sets

- Microsoft Academic Search
 - Subset of top 100 experts from query "data mining"
 - Paper: <author, affiliation and keyword>
 - Regularization: co-authorship <author, author>
 - 7,777 x 651 x 4,566 x 32 years: 171,519 tuples
- Tencent Weibo
 - 43 days: Nov. 9, 2011 to Dec. 20, 2011
 - Tweet: <user-who-@, @-ed-user, word>
 - Regularization: social relation <user, user>
 - 6,200 x 1,813 x 6,435 x 43 days: 519,624 tuples

Leveraging Multi-faceted Information

Predict "Who"-"What keyword"

FEMA uses "Where" (affiliation).

Predict "Who"-"@Whom" FEMA use "What" (tweet word).

	Microsoft Academic Search		Tencent Weibo	
	MAE	RMSE	MAE	RMSE
FEMA	0.735	0.944	0.894	1.312
EMA X	0.794	1.130	0.932	1.556
EA X	0.979	1.364	1.120	1.873
Precision vs Recall	Precision Production of the pr		Precision Precision FEMA FEMA O.2 O.4 O.6 Recall	

Leveraging Flexible Regularizations

"Who"-"Where"-"What keyword"? "Who"-"@Whom"-"What"?

	Microsoft Academic Search		Tencent Weibo	
	MAE	RMSE	MAE	RMSE
FEMAX	0.893	1.215	0.954	1.437
EMA X	0.909	1.466	0.986	1.698
DTA [Sun et al.]	0.950	1.556	1.105	1.889
Precision vs Recall	Precision 0.2 0.4 0.8 0.8 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	FEMA	Precision 0.2 0.4 0.6 0.8 1.0 0.2 0.4	FEMA -> EMA -> DTA CP 0.6 0.8 1 Recall

Efficiency, Loss and Parameters

Re-decompose updated matrices

Evolutionary analysis: update λ and a with ΔX

Time vs Num. objects N

Evolutionary analysis: update λ and a with ΔX

Re-decompose updated matrices

The loss is small.

Insensitive to regularization weight

(a) Academic data MAS

(b) Tweet data WEIBO

OUTLINE

- 1. Background
- 2. Model Formulation
- 3. The Framework
- 4. Experiments
- 5. Visualization

Visualization: Test Pattern Discovery

- Microsoft Academic Search
- Tencent Weibo (see our paper ☺)

- Behavior Patterns
 - Multi-faceted
 - Dynamic

Microsoft Academic Search

Microsoft Academic Search

Microsoft Academic Search

Conclusion

- Human behavior: multi-faceted and dynamic
- Challenges: high sparsity and high complexity
- Solutions: flexible regularizations & evolutionary analysis
- FEMA: approximation algorithm and bounds
- Experiment: behavior prediction
- Visualization: pattern discovery

Questions?

Meng Jiang mjiang89@gmail.com http://www.meng-jiang.com

