Кафедра программного обеспечения ВТ и АС

Разработка и реализация алгоритма вычисления уровня топлива в баках сложной конфигурации

Автор работы:

Притчин Иван Сергеевич, магистрант МИВТ-191

Руководитель:

Зуев Сергей Валентинович, канд. ф-м наук

Актуальность

Компании, осуществляющие мониторинг за транспортными средствами, столкнулись с проблемой точности вычислений уровня топлива в баках сложной конфигурации:

- большое количество вариаций форм
- ограничения на стороне сервера у систем спутникового мониторинга в рассчете уровня топлива по данным, отсылаемых трекером;
- тяжелые условия эксплуатации, приводящие к колебаниям топлива.

Монтаж и тарировка ДУТ

- Специалист сервисной службы осуществляет монтаж датчика уровня топлива (ДУТ) в бак
- Производится процесс тарирования. Повторяются следующие действия:
 - Заливается *v_i* литров в бак
 - Снимаются показания D_i с датчика

В результате тарировки получаем функцию, заданную множеством точек: $\{(D_i, V_i)\}$, где

$$V_i = \sum_i v_i$$

Процесс вычисления показаний с ДУТ

- Трекер считывает данные с датчиков и формирует сообщение
- 2 Сообщение отправляется на сервер, на котором сохранена функция преобразования (тарировочная таблица):

$$f: D \to V$$

 $footnotemark{f 3}$ Если приходящее с трекера значение D отсутствует в таблице, используются алгоритмы линейной интерполяции и экстраполяции для расчёта V

Процесс вычисления показаний с ДУТ

В данном примере датчики отсылают значения D_1 , D_2 . Вычисляются показания:

$$fuel_1 = f_1(D_1)$$
 $fuel_2 = f_2(D_2)$

И для баков простой конфигурации является достаточным использование среднего арифметического:

$$fuel = \frac{fuel_1 + fuel_2}{2}$$

Процесс вычисления показаний с ДУТ

Допустим, что данный бак рассчитан на 140 литров, а максимальное показание, которое может увидеть второй (правый) ДУТ - 100 литров. Далее для него начинается слепая зона.

Если бак полон, будут присланы значения D_1 и D_2 соответствующие 140 и 100 литрам, и тогда уровень топлива:

$$fuel = \frac{fuel_1 + fuel_2}{2} = 120$$

Цель и задачи

Цель: улучшение точности измерения количества топлива в баках сложной конфигурации при использовании нескольких датчиков уровня топлива.

Задачи:

- исследовать существующие подходы к решению задач определения уровня топлива в баках сложной конфигурации.
- 🤰 определить требования к программному обеспечению.
- 3 разработать и реализовать в программном обеспечении алгоритм адаптации данных, получаемых с датчиков уровня топлива для систем спутникового мониторинга.
- провести тестирование разработанного продукта.
- описать алгоритм для специалистов технической поддержки по внедрению метода вычислений в системы спутникового мониторинга.

Решение

Рассмотрим бак следующей конфигурации с тремя датчиками:

Этап 1: выделение зон

В баке выделяются зоны на основании множества ДУТов, покрывающих данный уровень:

$$fuel(Z_1) = f_3(D_3)$$

$$fuel(Z_2) = \frac{f_2(D_2) + f_3(D_3)}{2}$$

$$fuel(Z_3) = \frac{f_1(D_1) + f_2(D_2) + f_3(D_3)}{3}$$

$$fuel(Z_4) = f_3(D_3)$$

В данном виде значение не может быть рассчитано:

- Формула имеет разветвляющуюся структуру;
- Для вычисления зоны надо знать уровень топлива, но чтобы знать уровень топлива - надо знать зону.

Этап 2: получение виртуальных датчиков

Назовём виртуальным датчиком уровня топлива (ВДУТ) некоторый отрезок ДУТа. Границы зон $Z_1,...,Z_4$ разделяют физические датчики $D_1,...,D_3$ на множество виртуальных $V_1,...,V_7$:

Важно помнить, что датчик задаётся множеством точек $\{(D_i, V_i)\}$. Каждому из виртуальных датчиков необходимо сопоставить множество точек на ДУТе.

Этап 3: получение тарировок ВДУТ

Процесс разбиения D_3 на виртуальные датчики:

7	D		7	D
L	D_3	_	L	D_3
0	30		0	30
10	100		10	100
20	213		20	213
30	345		30	345
40	450		40	450
50	567		50	567
60	710		60	710
70	842		70	842
80	960		80	960
90	1080		90	1080
100	1200		100	1200
110	1315		110	1315
120	1435		120	1435
130	1553		130	1553
140	1670		140	1670
150	1800		150	1800

)3	L
30	0
00	10
13	20
45	
50	L
67	20
10	30
42	40
60	50
080	60
200	
315	L
135	60
553	70
70	80

L	D_3
60	710
70	842
80	960
90	1080
100	1200
110	1315
120	1435

30

100 213

213

345

450

567

710

L	D_3
120	1435
130	1553
140	1670
150	1800

L	D_3
0	30
10	100
20	213

213

345

450

567

710 D₃

710

842

960

1080

1200

1315

1435

20-20

30-20

40-20

50-20

60-20

60-60

70-60

80-60

90-60

100-60

110-60

120-60

L	D_3
120-120	1435
130-120	1553
140-120	1670
150-120	1800

L	D_3
0	30
10	100
20	213

 V_1

 V_3

D_3	
213	
345	
450	
567	
710	
	345 450 567

	D_3	L
	710	0
	842	10
V_6	960	20
V 6	1080	30
	1200	40
	1315	50
	1435	60

L	D_3	
0	1435	
10	1553	V_7
20	1670	
30	1800	

Этап 4: подавление экстраполяции

Чтобы вычисления происходили корректно, необходимо подавить экстраполяцию. Достаточно добавить две точки, которые бы дублировали показания литров, но отличались на единицу в показаниях на ДУТе:

L	D_3
0	709
0	710
10	842
20	960
30	1080
40	1200
50	1315
60	1435
60	1436

Этап 5: получение формулы

Наличие виртуальных датчиков с устраненной экстраполяцией от ССМ позволяет для случая получить формулу:

$$fuel = f_{v_1}(D_3) + \frac{f_{v_2}(D_2) + f_{v_3}(D_3)}{2} + \frac{f_{v_4}(D_1) + f_{v_5}(D_2) + f_{v_6}(D_3)}{3} + f_{v_7}(D_3)$$

где f_{v_i} - функция для вычисления количества топлива для виртуального ДУТа v_i , а D_i - показания с i-го физического датчика.

Проведенные вычисления было легко осуществить, так как мы имели представление о форме бака и местоположений датчиков.

Была поставлена задача разработать такой продукт, который бы не имел такой информации, а ориентировался только на тарировочные таблицы.

Более того, программа должна корректно обрабатывать баки в форме сообщающихся сосудов.

Используемые инструменты

Язык программирования: Python 3.X

Среда разработки: PyCharm Community

Библиотеки:

- для чтения и записи исходных данных: xlrd, openpyxl;
- для обработки данных: pandas, numpy;
- для визуализации данных: matplotlib;
- для unit-тестирования: unittest.

Результаты работы программы

Программа выполняет разбиение тарировочной таблицы на множество файлов:

Конфигурация бака для слайда №20

Структура проекта. Тестирование

- Unit-тестирование. Достигнуто 98%-е покрытие строк
- Инсталляционное тестирование в лаборатории технической защиты информации
- Эксплуатационное приёмочное тестирование в ООО "Экспертком"

Заключение

В рамках выпускной квалификационной работы:

- исследованы подходы повышения точности вычисления уровня топлива;
- 2 разработан и реализован алгоритм на ЯП Руthon для разбиения тарировочной таблицы на виртуальные датчики уровня топлива, получения формулы вычисления и построения графиков;
- проведено unit-тестирование, инсталляционное, эксплуатационное приёмочное тестирования;
- описан алгоритм действия для специалистов технической поддержки по внедрению метода вычислений на примере CCM wialon.