

Enora Rice, Pranay Varada

Tagging IRS.gov Webpages with the BERT Language Model

A Bit About Me

- Civic Digital Fellow with Coding it Forward
- First-Year PhD at the University of Colorado Boulder
- Studying computational linguistics

A Bit About Me

- Civic Digital Fellow with Coding it Forward
- Sophomore at Harvard College
- Studying Statistics

Research Question:

How informative are the text representations generated by taxBERT compared to a general model?

BERT: Bidirectional Encoder Representations (from) Transformers

- Released by Google in 2018
- Pretrained on ~2.5B words/sentences on Wikipedia
- General model -- can then be further 'tuned' to your purposes
- Our project: comparing BERT with taxBERT

Technical Overview

BERT Architecture

- Takes in sentences, learns a "vocabulary" of words/sub-words
- Mathematically represents "meaning" of each word/sub-word
- Incorporates "context" ("river bank" vs. "bank account")

Pretraining versus Finetuning

There are two ways BERT can be adapted for IRS tasks

- Pretraining: the general BERT model can be further trained on domain specific corpus
 - Unsupervised, BERT learns through next token prediction
- Finetuning: task-specific machine learning models built off of a BERT base
 - Supervised, requires labeled training data
 - Can be used for classification

Prior RAAS work with NLP

"taxBERT"

- RAAS has previously trained English BERT models on millions of sentences from publicly available documents
 - IRC, IRM, form instructions, form notes, other publications
- One use for IRS: answering FAQs via chatbot
- Classification of webpages that contain useful information can help with this task

What tasks can BERT be tuned for?

Classification, Prediction Tasks

- Sentiment analysis: positive/negative?
- Word prediction: What word fits best?
- Document summarization
- Question answering
- Text classification

Scoping the Project

Data Wrangling, Code Adapting, Learning

- First: did background research on projects leveraging taxmBERT and Spanish call transcripts—translation layer, sentiment analysis, topic modeling
 - Found that BERT is not the best model for translation, topic modeling seemed most promising
 - Originally, we were focused on the new multilingual taxmBERT model developed by MITRE
 - Environment constraints lead us away from working with this model
 - Ultimately decided to switch to the English-only taxBERT model and focus on classification due to time constraints

Working around Limitations

- Consistently searching for new environments
- Project scope fluctuated constantly as new unforeseen barriers emerged
- Analytical environment down for a week due to recertification requirement

Classify IRS.gov webpages using a predetermined list of tags

About IRS	Affordable Care Act	Business Tax
Charities and Non-Profits	Credits	Compliance
Deductions	Filing	Fraud and Scam
Government Entities	Income Taxes	International Taxes
Refund	Tax Professionals	

Purpose:

- Cost-effective automatic labeling
- Metadata for search engines, dynamic webpages

How We Approached Classification

Training a classification layer requires a large amount of labeled data

 Due to time constraints, we could not generate sufficient labeled data

How We Approached Classification

Settled on a bi-encoder approach to assess semantic equivalence instead

We can use BERT as an encoder without tuning it to a specific task—this allows us to generate vector representations of text that we can compare to one another

Bi-Encoder

Better than random, but not ready

- In samples, taxBERT classified ~50% correctly, GenEng ~20%
- Why?
 - Looking under the hood, it appeared that both models found the similarity of each text with each tag was ~0.4 - ~0.6
 - It seems that both models understood on a basic level that both the tags and the texts were related to the same topic – taxes – but not much nuance beyond that
 - Models even mislabeled texts directly included one of labels frequently

Takeaways and Future Work

Expanding taxBERT's capabilities

TaxBERT shows promise for webpage tagging but is not sufficient

 Likely because taxBERT was trained on "legalese" documents rather than plain English

Possible Extensions

- Further pre-train a model on webpage data
- Recommended: manually assemble a corpus of labeled webpages to finetune a classifier
 - Would require labor upfront but ultimately less than manually labeling the whole corpus

Reflecting on the Summer

Working at the IRS

- Often difficult to move past permissions, security measures, and interruptions
- Learning curve working with both old and new technology
- Great to see that RAAS DMD is a big part of the commissioner's and the IRS's vision for the future
- Hopeful that this summer's work can be a step towards that vision

Thanks for listening!

