Sinais e Sistemas: Parte 2

Universidade Federal do Ceará Campus Sobral Engenharia Elétrica e Engenharia de Computação

Sistemas Lineares (SBL0091)

Prof. C. Alexandre R. Fernandes

Agenda

I. Equações de diferenças

II. Equações diferenciais

Equações de diferenças com coeficientes constantes ou simplesmente
Equações de diferenças

Subclasse importante de sistemas LTI cuja entrada e saída satisfazem uma equação de diferenças de ordem N com coecifientes constantes:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$y[n] = \frac{1}{a_0} \sum_{k=0}^{M} b_k x[n-k] - \frac{1}{a_0} \sum_{k=1}^{N} a_k y[n-k]$$

Exemplo 1 (acumulador):

$$y[n] = \sum_{k=-\infty}^{n} x[k] = x[n] + \underbrace{\sum_{k=-\infty}^{n-1} x[k]}_{y[n-1]} = x[n] + y[n-1]$$

Portanto, temos:

$$y[n] - y[n-1] = x[n]$$

Ou seja, equações de diferenças podem ser usadas para descrever um sistema de maneira simplificada.

Exemplo 2 (média móvel com $M_1 = 0$):

$$x_1[n] = \frac{1}{M_2+1}(x[n] - x[n - M_2 - 1])$$

$$y[n] - y[n - 1] = x_1[n] = \frac{1}{M_2+1}(x[n] - x[n - M_2 - 1])$$

Obs: Equação de diferenças com N=1, $M=M_2$, $a_0=1, a_1=-1$, $b_0=-b_{M_2+1}=1/(M_2+1),\ b_k=0 \ {\rm para\ demais\ valores\ de\ }k.$

- Equações de diferenças necessitam de informações adicionais, chamadas de condições auxiliares, para especificar de maneira única a saída do sistema.
- A saída do sistema pode ser expressa por:

$$y[n] = y_p[n] + y_h[n],$$

em que $y_p[n]$ é a solução particular, que depende da entrada mas não depende das condições auxiliares, e $y_h[n]$ é a solução homogênea, que não depende da entrada mas depende das condições auxiliares.

A solução homogênea é a solução de:

$$\sum_{k=0}^{N} a_k y[n-k] = 0$$

A solução homogênea possui a seguinte forma:

$$y_h[n] = \sum_{m=1}^{N} A_m z_m^n$$

sendo z_m as raízes do polinômio:

$$\sum_{k=0}^{N} a_k \, z^{-k} = 0$$

- As condições auxiliares são frequentemente dadas na forma de N valores de y[n], como, por exemplo: y[-1], y[-2], ..., y[-N].
- Se o sistema é causal e LTI, então ele estará em repouso antes da aplicação da entrada. Por exemplor, se x[n]=0 para n<0, então um sistema causal LTI terá y[-1]=y[-2]=...=y[-N]=0.

Example 2.16 Recursive Computation of Difference Equations

The difference equation satisfied by the input and output of a system is

$$y[n] = ay[n-1] + x[n].$$

Consider the input $x[n] = K\delta[n]$, where K is an arbitrary number, and the auxiliary condition y[-1] = c.

- Equações de diferenças principais pontos:
 - Tal como a resposta ao impulso, equações de diferenças são usadas para representar sistemas discretos no tempo matematicamente.
 - Não é unicamente definida pelos coeficientes, depende das condições iniciais.
 - Em geral, as condições iniciais são os valores de y[-1],...,y[-N].
 - O sistemas será linear, invariante no tempo e causal se e somente se y[-1]=...=y[-N]=0.

- Equações de diferenças principais pontos:
 - Uma equação de diferenças sempre tem um número finito de coeficientes, ao contrário da resposta ao impulso.
 - Para sistemas com resposta ao impulso finita, a eq. da convolução já está no formato da equação de diferenças.
 - Sistemas com resposta ao impulso infinita só podem ser implementados computacionalmente usando-se a equação de diferenças.

 No caso de sistemas contínuos, as equações diferenciais são usadas no lugar das equações de diferenças:

$$\sum_{k=0}^{N} a_{k} \frac{d^{k}}{dt^{k}} y(t) = \sum_{k=0}^{M} b_{k} \frac{d^{k}}{dt^{k}} x(t)$$

 Note que as ordens N e M da equação diferencial são as derivadas mais elevada.

Na equações de diferenças, as ordens são as memórias máximas.

Exemplo de sistema modelos por eq. diferencial:

Exemplo mais complexo:

$$R_{y}(t) + L\frac{dy(t)}{dt} + \frac{1}{C} \int_{-\infty}^{t} y(\tau) d\tau = x(t)$$

• Sistemas mecânico massa mola modelado por eq. diferencial:

$$m\frac{d^2}{dt^2}y(t) + f\frac{d}{dt}y(t) + ky(t) = x(t)$$

 Uma eq. diferencial não é completamente determinada pelos seus coeficientes, ela depende também das condições auxiliares.

Neste caso, as condições auxiliares são as seguintes derivadas:

$$\frac{dy(t)}{dt}, \frac{d^2y(t)}{dt^2}, ..., \frac{d^{N-1}y(t)}{dt^{N-1}}$$

calculadas, em geral, em t=0.

- Uma eq. diferencial também possui respostas natural e forçada:
 - Resposta Natural:
 - Associada às condições iniciais do sistema
 - Não depende da entrada
 - Resposta Forçada:
 - Associada à entrada do sistema.
 - Depende da entrada.
- Para o sistema ser linear, invariante no tempo e causal, as condições inicias devem ser nulas.
 - Condições iniciais nulas → Não há energia armazenada no sistema

- Resposta Natural:
 - Solução da eq. homogênea:

$$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y^{(n)}(t) = 0$$

• Não será cobrada obtenção da solução da eq. homogênea.

- Equações diferenciais principais pontos:
 - Tal como a resposta ao impulso, equações diferenciais são usadas para reapresentar sistemas contínuos no tempo matematicamente.
 - Não é unicamente definida pelos coeficientes, depende das condições iniciais.
 - Em geral, as condições iniciais são os valores de das derivadas de ordem 1 até N de y(t), em t=0.
 - O sistemas será linear, invariante no tempo e causal se e somente se as condições iniciais forem nulas.