

Sommario

Eccezioni	2
Interfacce	2
Java I/O	3
Analisi di Complessità	6
Strutture dati	8
Liste Concatenate	9
Liste doppiamente concatenate	10
Pila	12
Coda	12
Ricorsione	14
Alberi	16
Algoritmi di ordinamento	20
Codici JAVA	23
Eccezioni e interfacce	23
Java I/O	25
Liste concatenate	29
Pila	34
Coda	35
Ricorsione	36
BST	38
Ordinamento semplice	43
Ordinamento avanzato	44

	Eccezioni
Definizione	Evento che si scatena durante l'esecuzione di un programma per indicare un errore nell'esecuzione del programma il quale è necessario gestirlo. Le eccezioni causano l' interruzione del normale flusso delle operazioni. Sono conseguenze a varie anomalie: il malfunzionamento fisico di un dispositivo di sistema, la mancata inizializzazione di oggetti particolari quali ad esempio connessioni verso basi dati, o semplicemente errori di programmazione come la divisione per zero di un intero.
try catch	È possibile che venga intrapresa una serie di azioni speciali che consentano l'esecuzione del programma. È possibile catturare l'errore con il meccanismo try-catch. La clausola throws (lancia) è una segnalazione all'utente per avvisarlo che si può verificare una particolare eccezione che, se non correttamente gestita, provoca l'arresto del programma
Eccezioni non dichiarabili	Questi tipi di eccezioni non devono essere dichiarate, poiché andrebbero dichiarate ovunque nel programma, ma vengono gestite in automatico dalla JVM. Il programmatore deve comunque stare attento a non scatenarle. I tipi di eccezioni più comuni sono: • NullPointerException: si sta cercando di accedere ai campi di un oggetto ancora nullo; • IndexOutOfBoundsException: si stanno cercando di superare il numero di indici di un array; • ClassCastException: errore di conversione (casting).
Dichiarare una eccezione	Similmente al return, usiamo il throw (lancia): throw new Exception("Errore!"); Non causa solo il ritorno al chiamante, ma a tutti i chiamati, fino a quando qualcuno non cattura l'eccezione. Quando all'interno di un blocco di codice può essere sollevata un'eccezione, questa deve essere dichiarata nella firma del metodo e nei metodi richiamanti.
Catturare una eccezione	Il messaggio dell'eccezione sarà visibile insieme all'errore nella console Per catturare un 'eccezione si usa: il blocco try che la segnala, mentre la cattura avviene con il blocco catch Nella maggior parte dei casi, le eccezioni devono essere gestite nei programmi; in caso contrario il programma non viene compilato. Questo è il caso delle eccezioni di tipo IOException lanciate dai metodi di I/O, i quali metodi vengono di solito invocati all'interno di clausole try-catch.
	Interfacce
Definizione	Permettono di stabilire lo scheletro di una classe, e servono a dichiarare una classe e i suoi metodi senza definirli del tutto. In altre parole, servono a fornire una forma, ma non un'implementazione (simili alle classi astratte).
Possono contenere solo dichiarazioni di metodi, ma anche variabili unicamente final o static . I metodi dichiarati all'interno dell'interfaccia sono senza corpo, ma devono averlo nelle classi c implementano l'interfaccia.	
Differenza tra classi abstract e interfacce	La differenza con le classi <i>abstract</i> è che quest'ultime risultano più versatili perché oltre a dichiarare variabili astratte, nel suo interno troviamo anche delle definizioni reali; le interfacce però possono essere ereditate da più oggetti. È possibile combinare più interfacce (situazioni dove l'oggetto x è sia di tipo a, b, c non risolvibile con l'ereditarietà dato che Java non ammette quella multipla).

	Java I/O				
Definizione	Il package java.io definisce i concetti base per gestire l'I/O da qualsiasi sorgente e verso qualsiasi destinazione (sia console che file). Per importare tutto il package dobbiamo scrivere all'inizio della nostra classe: import java.io.*;				
Stream	Per ricevere in ingresso dei dati, un programma apre uno stream (flusso di dati) su una sorgente di informazioni (file, memoria, connessione di rete), e ne legge sequenzialmente le informazioni. Analogamente un programma può inviare informazioni ad un destinatario, aprendo uno stream verso di esso, e scrivendo sequenzialmente le informazioni in uscita. Uno stream è un'astrazione che produce o consuma informazioni, ed è collegato a un device fisico. Tutti gli stream si comportano allo stesso modo, anche se il device fisico a cui sono collegati è diverso. In questo modo, con le stesse classi I/O, i metodi possono essere usati per scrivere nella console o un su un file di disco. Gli Stream rappresentano flussi sequenziali di byte. Tutti gli Stream vengono gestiti con algoritmi del tipo rappresentato nella figura a destra.				
Classi di java.io	Il package java.io distingue due serie di classi per la ge Byte stream (8 bit - byte) Parliamo di I/O binario, viene usato in generale per i dati (Es. i bit di un immagine digitale o di un suono digitalizzato). I flussi di byte sono suddivisi in 2 classi astratte: InputStream: flusso di ingresso OutputStream: flusso d'uscita	Character stream (16bit - char) Flussi di caratteri Unicode a 16bit, parliamo quindi di I/O testuale (Es. i caratteri ascii). Sono divisi in 2 classi astratte: Reader: lettori Writer: scrittori			
Buffer	In italiano memoria tampone, memoria di transito o anche memoria intermediaria, è una zona di memoria usata temporaneamente per l'input o l'output dei dati, oppure per velocizzare l'esecuzione di alcune operazioni. Un buffer può essere implementato sia con l'hardware, per mezzo di circuiti dedicati, sia con il software, riservando una parte della memoria ai dati da manipolare. La memorizzazione in buffer avviene principalmente attraverso l'utilizzo di code (FIFO) o più raramente di stack (LIFO). Una struttura a coda permette l'ottimizzazione della sequenza di invio	Il buffer è utilizzato per la comunicazione fra componenti che lavorano a velocità differenti. Ad esempio se la CPU, che lavora ad alta velocità, deve spedire alcuni dati alla stampante, la quale supporta una velocità molto minore, scriverà tali dati nel buffer di memoria, potendo così continuare a lavorare ad un altro processo mentre la stampante può stampare il dato leggendolo dal buffer e non interrompendo la CPU. L'utilizzo di buffer nei software, li espone, se non adeguatamente protetti, ad attacchi che causano buffer overflow bloccando il programma o il sistema.			
Byte stream	dei dati. La classe base InputStream definisce il concetto generale di "canale di input" che lavora a byte Il costruttore apre lo stream read() legge uno o più byte close() chiude lo stream Attenzione: InputStream è una classe astratta, quindi il metodo read() dovrà essere realmente definito dalle classi derivate Dalle classi base astratte si derivano varie classi concrete, specializzate per fungere da: sorgenti per input da file dispositivi di output su file stream di incapsulamento, cioè pensati per aggiungere nuove funzionalità a un altro stream (I/O bufferizzato, filtrato, I/O di numeri, di oggetti,)	La classe base OutputStream definisce il concetto generale di "canale di output" che opera a byte il costruttore apre lo stream (vedi open) • write() scrive uno o più byte • flush() svuota il buffer di uscita • close() chiude lo stream Attenzione: OutputStream è una classe astratta, quindi il metodo write() dovrà essere realmente definito dalle classi derivate Verial de la descriptor File			

	 FileInputStream è la classe derivata che rappresenta il concetto di sorgente di byte agganciata a un file il nome del file da aprire è passato come parametro al costruttore di FileInputStream in alternativa si può passare al costruttore un oggetto File costruito in precedenza 				
Byte stream Input da file	Per aprire un file binario oggetto di classe FileInpi nome del file all'atto dell nell'argomento (apertura implicito)	in lettura si o utStream, sp a creazione	crea un pecificando il	Per leggere dal f permette di legg - restituisce i - se lo stream	file si usa poi il metodo read() che gere uno o più byte I byte letto come intero fra 0 e 255 n è finito, restituisce -1 no byte, ma lo stream non è finito,
	Poiché le operazioni su s	-	no fallire per var	rimane in a	ttesa dell'arrivo di un byte operazioni possono sollevare
	eccezioni necessità di try / catch FileOutputStream è la classe derivata che rappresenta il concetto di dispositivo di uscita agganciato da un file				
					Ittore di FileOutputStream Struito in precedenza
Byte stream Output su file	Per aprire un file binario oggetto di classe FileOut il nome del file all'atto de	in scrittura s putStream, ella creazion	si crea un specificando e, e un	Per scrivere sul che permette d	file si usa il metodo write() i scrivere uno o più byte (0 ÷ 255) passatogli come
	secondo parametro opzio	· · · · · · · · · · · · · · · · · · ·		parametro	
	Gli stream di incapsulam hanno come scopo quell	ento o di	InputStream	– non restituisc	Il loro costruttore ha quindi come parametro un InputStream o un
Stream di incapsulamento	avvolgere un altro stream per creare un'entità con funzionalità più evolute.		DataInputStream	OutputStream DataOutputStream	OutputStream esistente
	BufferedInputStream	aggiunge un buffer e ridefinisce read() in modo da avere una lettura bufferizzata			
Stream di incapsulamento	DataInputStream	definisce metodi per leggere i tipi di dati standard in forma binaria: readInteger(), readFloat(),			
input	ObjectInputStream	definisce un metodo per leggere oggetti "serializzati" (salvati) da uno stream; offre anche metodi per leggere i tipi primitivi e gli oggetti delle classi wrapper (Integer, etc.) di Java			
	BufferedOutputStream	bufferizzat	a		odo da avere una scrittura
Stream di incapsulamento	DataOutputStream	definisce metodi per scrivere i tipi di dati standard in forma binaria: writeInteger()			
output	PrintStream	definisce metodi per stampare come stringa valori primitivi (con print()) e clas standard (con toString())			
	ObjectOutputStream	scrivere i ti	pi primitivi e gli		erializzati"; offre anche metodi per si wrapper (Integer, etc.) di Java
	Le classi per l'I/O da stre		-		
	Writer) sono più efficienti di quelle a byte, hanno nomi analoghi e struttura analoga, e convertono				Object
	correttamente la codifica UNICODE di Java in			Reader Writer	
	quella locale.			Buffer	redReader BufferedWriter
Character Stream	Rispetto agli stream bina costruendo un oggetto F		=		crayReader — CharArrayWriter OutputStreamWriter
Character Stream	rispettivamente read() e				gReader
	un int che rappresenta u				rReader PipedWriter FilterWriter
	Un carattere UNICODE è lungo due byte, read()		FileReader	PrintWriter	
	restituisce -1 in caso di fine stream. Occorre dunque un cast esplicito per convertire			(Tilottoddo)	FileWriter
	il carattere UNICODE in i				
	Gli stream di byte esistono da Java 1.0, quelli di caratteri esistono invece da Java 1.1. Varie classi esistent			ce da Java 1.1. Varie classi esistenti	
InputSteramReader	fin da Java 1.0 usano quindi stream di byte anche quando dovrebbero usare in realtà stream di caratteri. La conseguenza è che i caratteri rischiano di non essere sempre trattati in modo coerente.				
OutputStream-	Occorre dunque poter reinterpretare uno stream di byte come reader / writer quando opportui				
Reader	Esistono due classi "incap • InputStreamRea			per questo scopo itStream come ur	
	-			tputStream come	

	Video e tastiera sono rappresentati dai due oggetti statici <i>System.in</i> e <i>System.out</i> . Poiché esistono fin da Java 1.0 (quando Reader e Writer non esistevano), essi sono formalmente degli stream di byte, ma in
	realtà sono stream di caratteri.
	System.in può essere interpretato come un Reader incapsulandolo dentro a un InputStreamReader
	InputStreamReader tastiera = new InputStreamReader(System.in);
	System.out può essere interpretato come un Writer incapsulandolo dentro a un OutputStreamWriter
La classa Sustana	OutputStreamWriter video = new OutputStreamWriter(System.out);
La classe System	L'oggetto reader legge singoli caratteri. La classe BufferedReader trasforma un reader in un lettore in
	grado di leggere intere righe. Il metodo readLine della classe BufferedReader consente di leggere una
	singola riga di testo da tastiera
	 InputStreamReader reader = new InputStreamReader(System.in);
	BufferedReader console = new BufferedReader(reader);
	System.out.println("Inserisci una riga di testo");
	• String str = console.readLine();
La classe	La classe ConsoleReader() racchiude tutti i termini e i metodi della classe System per quanto riguarda
ConsoleReader()	l'input e l'output di dati.

	Analisi di Complessità			
5. //	Funzione tra l'insieme delle istanze del problema e l'insieme delle soluzioni			
Problema	Es. $P: istanze_p \rightarrow soluzioni_P$ (2,3) \rightarrow 6; (2,7) \rightarrow 14;			
Algoritmo	Procedimento finito (descrivibile finitamente), non ambiguo (ad ogni istante è possibile determinare ciò			
Algoritmo	che l'algoritmo sta eseguendo) e terminante (avente sempre fine)			
Valutazione della	La complessità di un algoritmo non si valuta dal tempo di esecuzione di un programma che lo esegue			
complessità di un	(esso dipenderebbe dal tipo di implementazione, tipo di input o hardware utilizzato).			
algoritmo	Il tempo di esecuzione complessivo di un algoritmo dipende dalla dimensione dell'input , ossia dalla quantità di memoria necessaria a rappresentare l'input.			
	Lega la dimensione dell'input al tempo che l'algoritmo impiega su di esso.			
	Dato un algoritmo A , tipicamente T_A indica la sua funzione di complessità. Se non ci sono ambiguità, la			
Funzione di	funzione di complessità si indica semplicemente con T.			
complessità tempo	Es. Data una costante $c \in T_A(n) = c \cdot n$, consideriamo due input di dimensione $n_1 \in 2n_1$			
	$T_A(n_1) = c \cdot n_1 \qquad T_A(2n_1) = c \cdot 2 \cdot n_1 = 2 \cdot T_A(n_1)$ $T(n) = n^2 + 100n + \log_{10} n + 1000$			
Approssimazione	n piccolo: prevale l'ultimo termine n 10 cocondo o vitimo termino vizuali			
della funzione di	 n = 10: secondo e ultimo termine uguali n = 100: primo e secondo termine uguali 			
complessità	n > 100: è il primo termine a prevalere			
	A seconda dei valori di n, scegliamo la migliore approssimazione per T(n).			
	$T(n) = O(g(n))$ se \exists due costanti $c, N > 0$ tali che $T(n) \le cg(n) \ \forall n \ge N$. $(g(n) = \text{dimensione input})$			
	g(n) limita superiormente T(n)			
	g(n) approssima asintoticamente T(n) dall'alto			
Notazione	g(n) è una buona approssimazione superiore per T(n) quando n è molto grande			
O-grande	Es. Il limite superiore per la ricerca in un array non ordinato è $O(n)$			
_	Es. Provare che $T(n) = 3n^2 + 10n = O(n^2)$. Dobbiamo dimostrare che \exists le due costanti positive c ed			
	N tali che $T(n) \le cn^2 \ \forall n \ge N$. Basta scegliere $c=13$ e $n_0=1$, infatti $3n^2+10n \forall n \ge 1 \qquad \le 3n^2+10n^2=13n^2$			
	Es. $n^2 = O(n)$ è vera o falsa? Chiaramente è falsa: n non può essere un limite superiore per n^2			
	$T(n) = \Omega(g(n))$ se \exists due costanti $c, N > 0$ tali che $T(n) \ge c g(n) \ \forall n \ge N$. $(\Omega = \text{omega})$			
	g(n) limita inferiormente T(n)			
	g(n) approssima asintoticamente T(n) dal basso			
	g(n) è una buona approssimazione inferiore per T(n) quando n è molto grande			
Notazione Ω	Es. Il limite inferiore per la ricerca in un array non ordinato è $\Omega(1)$			
	Es. Provare che $T(n) = 3n^2 + 10n = \Omega(n^2)$. Dobbiamo dimostrare che \exists le due costanti positive c ed			
	N tali che $cn^2 \le T(n) \ \forall n \ge N$. Basta scegliere $c=3$ e $n_0=1$, infatti $3n^2+10n \ge 3n^2 \ \forall n \ge N=1$			
	Es. $n^2 = \Omega(n^3)$ è vera o falsa? Chiaramente è falsa: n^3 non può essere un limite inferiore per n^2			
	$T(n) \in \Theta(g(n))$ se \exists tre costanti c_1, c_2 ed N tali che $c_1 g(n) \le T(n) \le c_2 g(n) \ \forall n \ge N$ ($\Theta = \text{theta}$)			
	g(n) limita strettamente T(n)			
	g(n) approssima asintoticamente T(n)			
Notazione Θ	• g(n) è una buona approssimazione per T(n) quando n è molto grande			
	Teorema. $T(n) = \Theta(g(n)) \Leftrightarrow T(n) = O(g(n)) \wedge T(n) = \Omega(g(n))$			
	Es. Abbiamo dimostrato che $T(n) = O(n^2)$ e $T(n) = \Omega(n^2)$. Questo basta per concludere che $T(n) = \Theta(n^2)$			
	Un polinomio con termine di grado massimo positivo si comporta asintoticamente come il monomio con			
Proprietà di Θ	potenza massima e coefficiente unitario. $\sum_{i=0}^{d} a_i n^i = \Theta(n^d)$ $a_d > 0$			
	complessita dim. input 10 10 ³ 10 ⁶			
Complessità tipiche	costante - O(1) 1 µsec 1 µsec 1 µsec			
	logaritmica - O(lg n) 3 µsec 10 µsec 20 µsec			
	lineare - O(n) 10 µsec 1 msec 1 sec			
	quadratica - O(n²) 100 µsec 1 sec 101² sec 11.6 gg			
	cubica - O(n³) 1 msec (10° sec) (10 ¹⁸ sec)			
	esponenziale O(2 ⁿ) 10 msec 10 ³⁰¹ sec 10 ³⁰¹⁰³⁰ sec 31709 sec anni !!			
	16.7 min			
	• Se $T(n) = O(g(n))$ e $T_1(n) = O(g(n))$, allora $T(n) + T_1(n) = O(g(n))$			
Altre Proprietà	• Se $T(n) = O(g(n)) \in I_1(n) = O(g(n))$, allora $T(n) = O(h(n))$ (transitività)			
	$\bullet O(\log_b n) = O(\lg n)$			

	È la complessità dell'algoritmo implementato dal programma.				
	r-		ati di assegnamento fa l'algoritmo?		
	sum +		zazione, 2 per ciascuna iterazione del ciclo (i e sum;		
	n iterazioni)				
Complessità di un	Totale 2+2n asse	Totale 2+2n assegnamenti			
Complessità di un	Ogni assegnamer	(n) = c(2+2n) = O(n)			
programma	Es. for (i = 0; i-	1 per l'iniz	zializzazione		
		$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	cuna iterazione del ciclo esterno (i, j e sum; n iterazioni)		
	sum	+= a[j]; 2 per cias	cuna iterazioni del ciclo interno (i iterazioni $\forall i=$		
		1,2, <i>n</i> –			
			$(n-1) = c(1+3n+n(n-1)) = O(n^2)$		
	Caso peggiore	l'algoritmo richiede tempo	T(n) = O(1) complessità costante		
		massimo	$T(n) = O(\log n)$ complessità logaritmica		
	Caso medio l'algoritmo richiede tempo		T(n) = O(n) complessità lineare		
		medio	$T(n) = O(n \log n)$ complessità pseudolineare		
	Caso migliore	l'algoritmo richiede tempo	$T(n) = O(n^2)$ complessità quadratica		
		minimo	$T(n) = O(n^3)$ complessità cubica		
	Es. Algoritmo A per ordinare in senso		$T(n) = O(n^k), k > 0$ complessità polinomiale		
	crescente un array di 5 interi $i_1 \le i_2 \le i_3 \le$		$T(n) = O(\alpha^n), \alpha > 1$ complessità esponenziale		
Complessità	$i_4 \leq i_5$				
vari casi	Nel caso peggiore l'array è in ordine		Es.		
	·	A impiega passi(input), nel	$a*n+b \rightarrow \text{complessità lineare}$		
	_	complessità è costante $T(n) =$	$n^2 + n \rightarrow \text{complessità quadratica}$		
	0(1)		$n^k + a * n \rightarrow \text{complessità polinomiale}$		
		$\Sigma^{n!}$	$2^n + n \rightarrow$ complessità esponenziale		
	Caso medio: #me	edio passi di A= $\frac{\sum_{j=1}^{n!} passi(input)}{n!}$	È malka utila viasudava i divensi audini di infinita.		
		n!	È molto utile ricordare i diversi ordini di infinito:		
			$\log_a n \le n^b \le c^n \le n! \le n^n$ Questo significa che un algoritmo di complessità		
			logaritmica è più efficiente di uno di complessità a^n .		

Strutture dati						
	In informatica una struttura dati è un'entità usata per organizzare un insieme di dati all'interno della					
	memoria del computer.					
	La scelta de	La scelta delle strutture dati da utilizzare è strettamente legata a quella degli algoritmi; per questo, spesso				
Definizione	essi vengor	no consid	erati insieme. Infatti, la scelta della struttura dati influisce inevitabilmente			
	sull'efficier	cienza degli algoritmi che la manipolano, a prescinde dai dati effettivamente contenuti.				
	Le struttur	Le strutture di dati si differenziano prima di tutto in base alle operazioni che si possono effettuare su di				
	esse e alle					
			a dati omogenea, che contiene un numero finito di elementi dello stesso tipo. Questi			
	Array		elementi sono individuati attraverso un indice numerico, che tipicamente va da 0 al numero			
	Alluy		o di elementi meno uno. La dimensione del vettore deve essere dichiarata al momento			
			a creazione.			
Strutture dati			a dati che può essere eterogenea o omogenea. Nel primo caso contiene una			
fisse	Record		azione di elementi che possono essere di diverso tipo, ad esempio un intero, un			
			in virgola mobile e un carattere testuale. Gli elementi che lo compongono sono detti			
			ampi, e sono identificati da un nome.			
	Classe		o tipico dei linguaggi orientati agli oggetti , e consiste in un record a cui sono associate			
			elle operazioni o metodi.			
			amiche sono basate sull'uso di dati con i loro riferimenti in memoria , e sull'allocazione			
	dinamica della memoria. Gli elementi possono essere allocati (e deallocati) man mano che servono,					
	_	llegati tra loro in modi diversi, e questi collegamenti possono a loro volta mutare durante l'esecuzione				
	del programma. Lo spazio di memoria necessario per allocare i puntatori, e le operazioni necessarie alla					
	loro manutenzione costituiscono il costo aggiuntivo delle strutture dati dinamiche.					
			insieme di " nodi " collegati linearmente. I nodi sono dei record che contengono un			
			"carico utile" (valore) di dati, ed un puntatore all'elemento successivo della lista. Un			
	Lista concatenata		nodo funge da testa della lista, e da questo è possibile accedere a tutti i nodi della			
			lista. Il costo di accesso ad un nodo della lista cresce con la dimensione della lista.			
Strutture dati			Conoscendo il nodo precedente ad un nodo N, è possibile rimuovere N dalla lista, o			
dinamiche			inserire un elemento prima di lui, in un tempo costante			
	Lista		in questo caso i nodi contengono un puntatore sia al nodo precedente che al			
	doppian		successivo. Dato un nodo N il suo successore è N->succ, e il suo precedente è			
	concate	enate	N->prec. Deve sempre essere vero che N->succ->prec == N.			
			ogni nodo contiene due (o più) riferimenti ad altri nodi che sono detti suoi " figli ".			
			Ciascun nodo deve essere figlio di un solo padre. In molte implementazioni, ogni			
			nodo ha un numero fissato di figli, ad esempio due o tre. Si parla in questo caso di			
	Albe	ro	alberi binari o ternari.			
			Ciascun nodo, oltre ai puntatori ai nodi figli, ha normalmente un "carico utile"			
			(valore), ovvero un dato associato al nodo, utile per il problema applicativo da			
			risolvere.			
			ra esposte possono essere utilizzate per realizzare alcuni tipi di contenitori di utilizzo			
	rrequente,	che possi	ono forzare una particolare modalità di accesso ai dati.			
Contenitori	Pila (o stack)		struttura dati di tipo LIFO (Last In First Out) con metodi push e pull .			
			Viene tipicamente realizzata con array o liste			
	Coda (o queque)	ueque)	struttura dati di tipo FIFO (First In First Out) con metodi enqueque o dequeque .			
			Viene tipicamente realizzata con array o liste.			

	Liste Concatenat	ce			
	gli elementi sono organizzati in un'unica struttura	;			
Vantaggi di una	• la dimensione del nostro insieme cresce e decresce in funzione delle reali necessità del processo in esecuzione.				
lista concatenata	tenata • è possibile mantenere un ordine nell'insieme;				
	è possibile inserire elementi nel centro della lista.				
Struttura di una	Una lista concatenata semplice è caratterizzata dal fatto che gli elementi vengono aggiunti dinamicamente solo quando è necessario. Inoltre ogni elemento contiene un riferimento all'elemento successivo. Serve anche un identificatore esterno (aux) per tener traccia della lista.				
lista concatenata	Inizio Info Next	Info Next Info Nex	ıt.		
	Per creare un nuovo elemento con valore 10 scriviamo):			
	Nodo elem = r	new Nodo(10);			
	Per creare un secondo elemento con valore 13:				
Implementazione	elem.setNext(r	new Nodo(13));			
	Per creare un terzo elemento con valore 45:	/ /45)			
	(elem.getNext()).setN		tto della alcoca Nieda e		
	Per ogni nuovo nodo creato dobbiamo comunque istanziare un nuovo oggetto della classe Nodo e dobbiamo scrivere il riferimento al nuovo nodo nel nodo precedente				
	Per accedere ad un qualunque nodo dobbiamo accede	•	Nodo head = new Nodo(13);		
	precedente. Se ad esempio vogliamo settare il quarto		Nodo aux = head;		
Nodo aux	dover scrivere codice del genere:				
NOUU UUX	((head.getNext()).getNext).setNext(new Nodo(99)); aux = aux.getNext();				
	utilizziamo un nodo che chiamiamo <i>aux</i> il quale verrà assegnato al nuovo aux.setNext(new Nodo(18))				
	nodo creato per gestire le sue informazioni. I passi da seguire per l'inserimento in testa sono:				
	istanziare un nuovo elemento;	0x0022 → 44	4 0x0033 34 null		
	 collegare la lista già esistente al nuovo nodo; 	newelem	÷		
	> modificare il riferimento alla testa.	0x0055 → 13			
Inserimento		newelem 0x0055 → 13	0x0022		
in testa		head 0x0022 → 44	1 0x0033 → 34 null		
		newelem	1 3 0x0022		
		0x0055 → 1 head	5 0x0022		
			4 0x0033 → 34 null <u>+</u>		
I passi da eseguire per l'inserimento in coda sono: > scorrere la lista fino all'ultimo elemento; > istanziare un nuovo elemento > collegare l'ultimo elemento trovato con il nuovo		head 0x0022	newelem 0x0055 13 null		
Inserimento in coda	elemento appena creato. Se la lista è vuota bisogna però creare il primo elemento (modificare il valore di head)	head 0x0022 44 0x0033 0x0033	newelem 0x0055 13 null -		
		head 0x0022 → 44 0x003	33 34 0x0055 13 null		

	Pila				
In alcuni casi è utile disporre di strutture dati che hanno un solo punto di accesso					
	per inserire e reperire i dati (ad esempio, una pila di libri). In una struttura di				
	questo tipo i dati (i libri) vengono inseriti solo in cima e possono esser	re estratti			
Definizione	solo dalla cima.				
_ 5,	Un altro esempio può essere le persone che entrano in un ascensore.				
	Le strutture di questo tipo prendono il nome di Pile (Stack), le quali so				
	sistemi LIFO (Last In First Out). Esse hanno due metodi principali: <i>pus</i>				
	Verificare se è piena (IsFull)		e strutture LIFO hanno		
	Verificare se è vuota (IsEmpty)		ne limitata, per cui è Finire un valore		
Operazioni	Inserire un elemento (Push) Total		ementi inseribili.		
possibili	Togliere un elemento (Pop) Togliere un elemento (Pop) Togliere un elemento (Pop) Togliere un elemento (Pop)	massimo di ele	inenti inscribin.		
	 Far restituire il primo elemento, senza estrarlo (TopElem) Cancellare tutti i dati (Clear) 				
	Per implementare una pila servono:				
	o uno spazio di memoria ordinato, dove inserire gli elementi (com	e un arrav)			
	o un indice , per sapere qual è l'ultimo elemento inserito (<i>top</i>)	c an array,			
			top = 1		
Implementazione	L'indice deve tener conto di quanti	7 6	Vuol dire che c'è un		
Implementazione	elementi ci sono nella pila. Normalmonto ci utilizza un gregu top = 0 → pila vuota	5	elemento nell'array		
	Normalmente si utilizza un urruy	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	in posizione 0		
	per memorizzare gir elementi, e un	2			
	numero intero che indica la prima				
	posizione libera dello stack. Nella procedura di inserimento bisogna eseguire i seguenti passi:				
Push	 verificare che la pila non sia piena; 				
(inserimento)	inserire l'elemento appena passato;				
	> spostare di una posizione in alto l'indice top.				
	Nella procedura di estrazione bisogna eseguire i seguenti passi:				
Рор	verificare che la pila non sia vuota;				
(estrazione)	b decrementare il valore dell'indice;				
➢ leggere l'oggetto che sta in cima alla pila.					
Coda Al contrario delle pile, le code (o <i>QUEUE</i> , si legge "chiù") usano il sistema FIFO (First In First Out). La coda è					
	spesso usata in molte situazioni della vita quotidiana (fila alla posta, p	•	•		
	una sequenza di elementi che può essere "accorciata" da un lato e allungata da un altro lato tramite le				
	seguenti due operazioni:				
Definizione	> Enqueue: operazione che corrisponde all'inserimento di un elemento in coda				
	Dequeue: operazione che corrisponde all'estrazione dell'ele	mento testa da	lla coda		
	→ → → → → → — → Dequeue	Enque	ie		
	inserire un elemento x in coda (EnQueue(x));	Normaln	nente anche le code		
	togliere un elemento dalla coda (DeQueue ());		na dimensione		
	verificare se la coda è vuota (IsEmpty());		oltre la quale non		
	cancellare tutti i dati (ClearQueue());		più accettati		
Operazioni 	leggere (senza toglierlo dalla coda) il primo elemento in attesa	inserime			
possibili	(readHead());				
	nel caso in cui si preveda una coda con capacità massima limitata				
	verificare se la coda ha raggiunto la sua massima capacità: (IsFull	()).			

Schema di una coda	Per gestire una sequenza di dati il primo supporto da adoperare che viene in mente sono gli array. Essi purtroppo presentano numerosi problemi nel momento in cui debbono gestire le operazioni tipiche di una coda. Possiamo però utilizzare un array di dimensioni fisse che fornirà lo spazio di memoria dove vengono messi in sequenza gli elementi della coda. L'estrazione dall'inizio della coda prevede che si estragga l'elemento di indice 0 e che tutti gli altri elementi successivi vengano "scivolati" avanti di un indice. L'inserimento avviene semplicemente inserendo un elemento nel primo indice libero in fondo all'array. Dovrò pertanto mantenere in una variabile il valore di questo indice e aggiornarlo sia all'inserimento che alla estrazione.		
Operazioni Modulari	Sia A l'array di supporto e sia DIM=A.length ; Una operazione di Dequeue aggiorna l'indice di testa come segue: indiceTesta=(indiceTesta+1)%DIM; Una operazione di Enqueue aggiorna l'indice di coda come segue: indiceCoda=(indiceCoda+1)%DIM Es. Se nella coda abbiamo 2 3 con tail=2 e head=0 Enque di 6 tail = 3%4=3 2 3 6 Deque del 2 head = 1%4=1 3 6		
Code circolari	Eseguire uno shift di tutti gli elementi dopo ogni estrazione è troppo oneroso. Per tale motivo è stata pensata una struttura, denominata coda circolare, nella quale esistono due indici, head e tail, che indicano il primo elemento e l'ultimo. Il vantaggio di una simile struttura logica è che non è necessario effettuare shift per ogni inserimento, ma basta una sola assegnazione (più la modifica della variabile head). Ogni operazione di Enqueue o Dequeue comporta l'avanzamento di uno degli indici (tail per Enqueue, head per Dequeue). Gli indici head e tail vengono sempre incrementati, rispettivamente con le operazioni di DeQueue e EnQueue.		
	Chiaramente il valore dell'indice tail potrà raggiungere ma non superare il valore dell'indice head (a seguito di operazioni di Enqueue, riempimento della coda) come nella figura a destra.		
Limiti della coda circolare	Analogamente head non potrà superare tail (dopo operazioni di Dequeue, svuotamento della coda) come nella figura a destra. La figura a destra è un errore! Se però i due puntatori coincidono, dobbiamo poter distinguere le condizioni di coda vuota (prima figura) o coda con un solo elemento (seconda figura).		
Implementazione	Riassumendo, per definire una coda servono: o uno spazio di memoria ordinato, dove inserire gli elementi o due indici, per sapere quali sono il primo e l'ultimo elemento.		

	Ricor	rsione	
Definizione	La funziona fattoriale, dato un numero intero non negativo n, è così definita: $n! = \begin{cases} 1 & se \ n = 0 \\ n \cdot (n-1)! & se \ n > 0 \end{cases}$ Il quale significa: $0! = 1$ $1! = 1 \cdot (1-1)! = 1 \cdot 0! = 1$ $2! = 2 \cdot (2-1)! = 2 \cdot 1! = 2 = 2$ $3! = 3 \cdot (3-1)! = 3 \cdot 2! = 3 \cdot 2 \cdot 1 = 6$ $4! = 4 \cdot (4-1)! = 4 \cdot 3! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$ Quindi per ogni n intero positivo, il fattoriale di n è il prodotto dei primi n numeri interi positivi.	Il fattoriale è un esempio di funzione con ricorsione; essa si basa si basa sul principio di induzione: per dimostrare una preposizione si dimostra il caso base, e poi bisogna dimostrare se la proprietà vale per n, e se vale anche per n+1 essa vale per qualsiasi n. Una funzione si dice ricorsiva se è definita in termini di se stessa. Ogni definizione ricorsiva è caratterizzata dal: Caso base (condizione di terminazione): la condizione per cui la funzione termina, cioè smette di richiamare se stessa. Se non ci fosse, la funzione sarebbe un loop infinito. Passo ricorsivo (chiamata ricorsiva): la soluzione ottenuta viene combinata con altra informazione per produrre la soluzione al problema originale.	
Ricorsione in Java	In Java la ricorsione è come un ciclo che richiama se stesso più volte fino al caso base, per poi ritornare qualcosa dall'ultima chiamata alla penultima, alla terz'ultima, ecc. Abbiamo 2 possibilità per scrivere il fattoriale in java: utilizzando un metodo ricorsivo. Invocare un metodo mentre si esegue il metodo stesso è un paradigma di programmazione che so chiama ricorsione, ed il metodo che ne fa uso si chiama metodo ricorsivo. La ricorsione è uno strumento molto potente per realizzare alcuni algoritmi, ma può essere anche causa di molti errori di difficile diagnosi.		
Pila di esecuzione	Per capire come utilizzare correttamente innanzitutto come funziona. In generale, metodi all'interno del corpo di altri metodi fa uso di una pila di esecuzione (run-time) Gli elementi della pila sono record della for e sono detti Documenti di attivazione (o Perametre connession indirizzo di valore resti parametre si invoca factorial(3) factorial(3) invoca factorial(2) factorial(3) invoca factorial(2) factorial(3) invoca factorial(1) factorial(1) invoca factorial(1) factorial(2) invoca factorial(1) factorial(2) restituisce 1 factorial(2) restituisce 2 factorial(3) restituisce 6 Come vediamo il metodo invoca se stesso numeri più piccoli di quello preso in input arrivare al caso base, dopo il quale comini cascata dei return. Si crea quindi una lista di metodi in attesa allunga e poi si accorcia fino ad estinguere di caso de stinguere di caso d	Parametri e variabili locali di, la macchina virtuale Java stack). Parametri e variabili locali Connessione dinamica Indirizzo di ritorno Valore restituito Quando un metodo ricorsivo invoca se stesso, la macchina virtuale Java esegue le stesse azioni che vengono eseguite quando viene invocato un metodo qualsiasi 1. sospende l' esecuzione del metodo invocante edinamica dinamica informo vari locali edinamica micorio vari locali edinamica informo vari locali vengono eseguite quando viene invocato un metodo qualsiasi 1. sospende l' esecuzione del metodo invocante dal punto in cui era stata sospesa (con un eventuale valore di ritorno). 3! Esistono due regole ben definite che vanno utilizzate per scrivere metodi ricorsivi: 1. Caso base: il metodo ricorsivo deve fornire la soluzione del problema in almeno un caso particolare, senza ricorrere ad una chiamata ricorsiva 2. Passo induttivo: il metodo ricorsivo deve effettuare la chiamata ricorsiva semplificando il problema (ossia avvicinandosi al caso base) Si potrebbe pensare che le chiamate ricorsive si possano succedere una dopo l'altra, all'infinito. Invece ad ogni invocazione il problema diventa sempre più semplice e si avvicina al caso base; la soluzione del caso base non richiede ricorsione. Quindi la soluzione ricorsiva di un problema è un	

Pila di esecuzione al dettaglio	 Consideriamo l'istruzione int n=fact(3); fact cerca di restituire 3*fact(2), ma fact(2) deve essere calcolato; fact(2) manda di nuovo in esecuzione la funzione con l'argomento 2, fact(2) cerca di restituire il valore 2*fact(1), ma fact(1) deve essere calcolato, fact(1) manda di nuovo in esecuzione la funzione con l'argomento 1, fact(1) cerca di restituire il valore 1*fact(0), ma fact(0) deve essere calcolato, fact(0) manda di nuovo in esecuzione la funzione con l'argomento 0, finalmente siamo arrivati al caso base, fact(0) può essere calcolato e vale 1 	 A questo punto il calcolo 1*fact(0) può essere completato 1*1=1 Ora Il calcolo 2*fact(1) può essere completato, restituendo 2 a fact(2) Ora il calcolo 3*fact(2) può essere completato, restituendo 6 a fact(3) 						
Ricorsione infinita	Se manca il caso base, o ad ogni passo ricorsivo la soluzione non si semplifica, il metodo continua a							
Ricorsione in coda	Esistono diversi tipi di ricorsione, quello visto nel caso del metodo "factorial" si chiama ricorsione di coda (o tail recursion). Nella ricorsione in coda il metodo ricorsivo esegue una sola invocazione ricorsiva (ossia se stesso), e tale invocazione è l'ultima azione del metodo.	 Allora, a cosa serve la ricorsione in coda? Non è necessaria ma rende il codice più leggibile E' utile quando la soluzione del problema è esplicitamente ricorsiva (es. fattoriale) In ogni caso, la ricorsione in coda è meno efficiente del ciclo equivalente perché il sistema deve gestire le invocazioni sospese 						
Esempio	scrivere in Java un metodo per calcolare la funzione esponenziale: $x^y = \begin{cases} 1 & \text{se } y = 0 \\ x \cdot x^{y-1} & \text{se } y > 0 \end{cases}$							
Ricorsione non in coda	È relativa a metodi ricorsivi in cui la chiamata al metodo stesso non è l'ultima azione compiuta. La ricorsione non in coda non può essere eliminata facilmente, però è possibile dimostrare che essa è sempre eliminabile.							
Ricorsione multipla	Si parla di ricorsione multipla quando un metodo rich se stesso $più$ volte durante la sua esecuzione. Un eser di ricorsione multipla è la funzione di Fibonacci $Fib(n) = \begin{cases} n & se\ 0 \le n < 2\\ Fib(n-2) + Fib(n-1) & se\ n \ge \end{cases}$ Tale funziona genera i numeri 0,1,1,2,3,5,8,13,21,34,5 (i primi due numeri sono 0 ed 1, mentre gli altri sono somma dei due predecessori nella sequenza prodotta	cautela perché può portare a programmi molto inefficienti. Eseguendo il calcolo della funzione di Fibonacci per un intero relativamente grande si può osservare che il tempo di elaborazione cresce molto rapidamente.						
Metodo di lavoro	Per risolvere un algoritmo con la ricorsione, non bisogna esprimere la soluzione in termini di se stessa, ma su di un problema più piccolo. Se il problema diventa sempre più piccolo, alla fine sarà così piccolo che potrà essere risolto direttamente.							

Livelli e tipi di nodi	Il <u>livello di un nodo</u> è la lunghezza del camino caratteristico di un nodo. Es. Nell'albero sopra, il nodo A ha livello 0; il nodo C ha livello 1; il nodo E ha livello 2. Se il cammino caratteristico di un nodo Y contiene un nodo X, diciamo che X è <u>antenato</u> di Y e Y è <u>discendente</u> di X. Es. Nell'albero sopra, per trovare gli antenati di F dobbiamo prima trovare il suo cammino caratteristico che è (A,C,F), e poi possiamo dunque dichiarare A e C come antenati di F, mentre F è il loro discendente. I discendenti di A sono tutti nodi che partono da esso.			 Un nodo senza figli si chiama foglia; Un nodo con almeno un figlio si chiama nodo interno; Il nodo interno senza padre si chiama radice; Due o più nodi con lo stesso padre si chiamano fratelli. Es. Nell'albero sopra abbiamo: D,F,G,E sono delle foglie A,B,C sono nodi interni A è la radice B,C,D sono fratelli di padre A; e F,G sono fratelli di padre C 		
Altezza e sotto-alberi	Altezza di un nodo La lunghezza del più lungo cammino da un nodo ad una foglia si chiama altezza del nodo. Tutte le foglie hanno altezza 0. Es. Nell'albero sopra l'altezza di C è 1.	Altezza di un albero Si definisce come l'alte o il massimo livello dell Es. L'albero sopra ha al	e sue f	foglie.	Sotto-albero Se T è un albero e X è un suo nodo, l'insieme dei nodi di T contenente X e tutti i suoi discendenti si chiama sotto- albero di T. X si chiama radice del sotto- albero. Es. Nell'albero sopra, se prendiamo il sotto-albero (C,F,G), C sarà la radice del sotto-albero,	
Attraversamento di un albero (visita)	Per attraversamento o visita l'ispezione dei nodi dell'albe vengano ispezionati una ed u Quindi, un attraversamento ordinamento totale tra i nodi in base alla loro posizione NON in base alle loro etich non ordinabili) Trattandosi di ordinamento precedente e un successivo a attraversamento.	ro in modo che tutti i no una sola volta. di un albero definisce ur li dell'albero nell'albero, ette (che possono essero totale, ogni nodo ha un	A,B,C,D,E,F,G B,C,D,E,F,G,A E,F,G,B,C,D,A 			
Albero binario Teoremi sugli	Un albero si dice binario se ogni nodo ha massimo due figli (detti rispettivamente figlio sinistro e figlio destro). In un albero binario, un nodo avente due figli si dice pieno. Un albero binario di altezza h si dice completo se tutti i nodi di livello minore di h sono pieni. Consideriamo un albero binario completo avente altri				B C Livello 1 D E F G Livello 2 Livello 1	
alberi binari completo Attraversamento dell'albero binario PREORDER	Possiamo esprimere n in fun Teorema 1. $n = 2^{h+1} - 1$ Visitare la radice, attraversal sotto-albero sinistro della ra albero destro della radice	re ricorsivamente il	a 1, e possiamo esprimere h in funzione di n con il 2. Teorema 2. $h = \log(n+1) - 1$ Es. Dall'albero binario sopra Attraversamento preorder: A, B, D, E, C, F, G			
Attraversamento dell'albero binario INORDER Attraversamento dell'albero binario POSTORDER	Attraversare ricorsivamente il sotto-albero sinistro della radice, visitare la radice, e attraversare ricorsivamente il sotto-albero destro della radice Attraversare ricorsivamente il sotto-albero sinistro della radice, il sotto-albero destro della radice, e infine visitare la radice.			Es. Dall'albero binario sopra Attraversamento inorder: D, B, E, A, F, C, G Es. Dall'albero binario sopra Attraversamento postorder: D, E, B, F, G, C, A		

		1.11			-				
	Un albero binario si dice bilanciato (in altezza) se, per ogni nodo, la differenza di altezza dei due sottoalberi è zero o uno.			Bilanciate	8 C F G H I Bilanciato				
Albero binario	Un albero binario comple	eto è bilanciato.		<u> </u>	A				
bilanciato	P			(B) (C)					
				FG)				
				H	Massimo				
				Sbilanciat	0	sbilanciamento:			
						Struttura lineare			
	Un albero binario si dice					Esempio			
	sottoalbero sinistro sono	(13)							
Albero binario di	sottoalbero destro sono	maggiori dell'eticheti	ta del r	nodo.		10 (25)			
ricerca (BST)			2 12 20 31						
	Dato un insieme totalme	ente ordinato, ha sens	50	Dato un BST e u	ına sua chiave o	che si trova in un nodo			
	parlare di predecessore			avente sotto-al					
	nell'insieme di un eleme	nto dell'insieme.		predecessore d	lella chiave (nel	l'insieme di etichette			
				· ·	•	destra del sotto-albero			
	Es. Dato l'insieme $A = \{A \in A \mid A = \{A \in A \mid A = A \}$	b, e, f , i, m, n, r, t, v, и	v, y}	sinistro del nod	o contenente la	a chiave.			
	e il suo elemento t:								
	- r è il predecesso					che si trova in un nodo			
Predecessore e	- vèil successore					n vuoto, il successore			
successore	Il predecessore di b e il s definiti.	uccessore al y non so	no	della chiave (nell'insieme di etichette del BST) si tro					
	denniti.			nel nodo più a sinistra del sotto-albero destro de contenente la chiave.					
				contenente la c		cessore di una chiave è			
	(13)	Predecesso			sima nel sotto-albero				
	10 (25)	Predecesso	re di 1	3 è 10	Sima ner sotto albero				
	Successore di 2 Successore di 2 Successore di 2				ssore di una chiave è la				
					a nel sotto-albero				
		ai 25 6	31	destro					
	Se il numero dei nodi di i	ori,	Es. Si consideri il BST						
	allora lo si può rappreser								
	dunque una struttura sta	atica.		Esso può essere Q					
	Ciascuna cella dell'array	rannresenta un nodo		implementato staticamente mediante il seguente array					
Implementazione	Ciascuna cella è una stru		٠.	inediante il seg	uente array				
statica di BST	1. L' etichetta del nodo ci	•	ta		-1 -1 4 -1 -1	-1 -1 -1 3 1			
	2. L' indice della cella dell								
	nodo figlio sinistro	,		0 1 2 3 4 5					
	3. L' indice della cella dell	l'array che rappresen	ta il	il la radice sta nella prima cella e –1 indica il figlio nullo					
	nodo figlio destro	ı				-			
	Si consideri il BST di sopr				M				
Implementazione	Esso può essere impleme	0							
dinamica si BST	dinamicamente mediant struttura in cui ogni nodo								
	due riferimenti ai nodi fi								
Implementazione									
dell'	Preorder								
attraversamento	> Inorder								
di un albero	Postorder								
binario									
	L'algoritmo per decidere se una chiave si trova in un BST avviene attraverso i seguenti controlli:								
	> Se il BST è vuoto restituisce null								
Ricerca su un	Se la chiave coincide con l'etichetta della radice, si restituisce la radice								
BST	Se la chiave è <i>minore</i> dell'etichetta della radice, si esegue l'algoritmo sul sotto-albero <i>sinistro</i> della								
	radice Se la chiave è maggiore dell'etichetta della radice, si esegue l'algoritmo sul sotto-albero destro della								
	radice	o-ainei o aestro della							
	Taulce								

Complessità della ricerca su BST	lista, ossia lineare. Più l'albero	all'a > Il nu all'a > Se il O(lg > Se il la complessiato, più la co	all'altezza del BST, quindi $T_p(n) = O(h)$ Il numero medio di assegnamenti è proporzionale all'altezza del BST, quindi $T_{me}(n) = O(h)$ Se il BST è completo avremo $T_p(n) = T_{me}(n) = O(h) = O(\lg n)$ Se il il BST è bilanciato avremo $T_p(n) = T_{me}(n) = O(h) = O(\lg n)$				
Inserimento in un BST	 Se il BST è vuoto, si inserisca la chiave in un nuovo nodo che sarà radice Si ricerchi la chiave. Se si trova, si restituisca false Si determini la foglia che può essere padre del nuovo nodo Si innesti il nuovo nodo come figlio della foglia trovata L'algoritmo di visto non mar bilanciamento 						
Cancellazione da un BST	Per cancellare da un BST una certa chiave, mantenendo le proprietà di BST, abbiamo 4 casi: O. Si ricerca la chiave, se non si trova si restituisce false	metta a	a null il rifer alla foglia	20 7 16 25	2. Se la chiave si trova in un nodo avente un solo sotto-albero , si faccia puntare al <i>figlio</i> il riferimento del nodo padre al nodo 15 Cancellare 4 20 4		
	3. Se la chiave si trova in un noo della chiave. Es. cancellare 20 dall'albero sop		ue sotto-alk	oeri , si esegua la <i>j</i>	<i>fusione</i> dei c	due sotto-alberi o la sostituzione	
Fusione di due sottoalberi	Serve a cancellare una chiave c trova in un nodo avente due so alberi. Il procedimento è il segu (a destra)	destra del n	il sotto-albero de nodo contenente re della chiave d	il	2. Si innesti il sotto-albero sinistro modificato come da (1) al posto del nodo con la chiave da cancellare		
Sostituzione di una chiave	3. Se il nodo che conteneva il p sotto-albero, si esegua il passo cancellazione (certamente è sotto-albero sinistro) (certamente è sotto-albero sinistro)	redecess 2 dell'alg	ore ha un	foglia, si es cancellazio	e per ninuisce : analoga cerca.	Ripetute cancellazioni per sostituzione inframmezzate da inserimenti nel sotto-albero destro aumentano lo sbilanciamento. Si può ovviare al problema rendendo l'algoritmo simmetrico, ossia alternando una sostituzione col predecessore ad una sostituzione col successore.	

Algoritmi di ordinamento Gli ordinamenti costituiscono una classe molto importante tra Per ordinare un insieme di dati: gli algoritmi di uso comune. Essi consentono di riordinare una primo passo: scelta dei criteri di ordinamento · Es. ordinamento crescente o decrescente per grande quantità di dati in base ad alcune chiavi (per esempio insieme di chiavi numeriche numeri o stringhe). · Es. ordinamento lessicografico per chiavi Il confronto tra la complessità degli algoritmi di ordinamento alfanumeriche avviene valutando 2 importanti proprietà (indipendenti dalla secondo passo: scelta dell' algoritmo basata macchina): sul tipo di chiavi e sulla dimensione dei dati Definizioni il **numero dei confronti** tra le chiavi Tipi di ordinamento il **numero di spostamenti** di dati Ordinamento diretto Il #confronti e #spostamenti possono non coincidere. elementare avanzato Poiché la complessità dello stesso algoritmo può selection sort Shell sort variare a seconda della proprietà che si considera, la scelta insertion sort merge sort dell'algoritmo da usare va valutata in relazione alla dimensione bubble sort auick sort dei dati ed al tipo di chiavi. Ordinamenti indiretti (su file) L'algoritmo seleziona di volta in volta il record con chiave minima (oppure massima), spostandolo nella posizione corretta: passo 1: il record con chiave più bassa viene selezionato e scambiato con l'elemento nella prima posizione passo 2: tra i record rimanenti, si cerca quello di chiave minima Selection sort e si scambia con il record in seconda posizione passo i: tra i record dalla posizione i alla posizione n-1, si cerca quello di chiave minima e si scambia con il record in posizione i Poiché ogni elemento è spostato massimo una volta, questo algoritmo è da preferire quando si devono ordinare insiemi di record molto grandi con chiavi piccole. Viene considerato un elemento alla volta, inserendolo in un passo 1: si confrontano i primi 2 elementi e si sottogruppo che viene costruito già ordinato. spostano se in ordine inverso Elementi già in ordine passo i: dal terzo elemento in poi, si seleziona l'elemento di posto i e si inserisce nella giusta posizione nel sottoarray ordinato dal posto 0 al posto i-1 slittando gli elementi per creare uno Per ogni nuovo elemento viene ricercata la posizione spazio libero. all'interno della parte ordinata, slittando gli elementi per creare uno spazio libero. Insertion sort Elementi già in ordine Elementi da ordinare Il vantaggio dell'ordinamento per inserimento è che l'array viene ordinato solo quando è realmente necessario. Lo svantaggio è che l'algoritmo non si accorge degli elementi che sono nella posizione corretta questi potrebbero venire spostati dalle loro posizioni per poi ritornarvi successivamente e questo può dar luogo a spostamenti ridondanti. Il bubble sort confronta elementi consecutivi (j e j-1) iniziando da destra, scambiandoli se non li trova in ordine. Al termine del primo ciclo viene così trovato il minimo, che galleggia in cima Bubble sort all'array. Al i-esimo passaggio viene trovato il i-esimo elemento più piccolo, posizionandolo all' iesimo posto.

		61			1	Di- '						
	#C = 15 f 1 = 15 f	Selection	Insertion	Bubble		Ricorda	ndo che definia	amo in ger	nerale:			
Commissis	#Confront Migliore	$O(n^2)$	O(n)	$O(n^2)$		_	T(n) = O(1))	complessità costante			
Complessità degli algoritmi	Medio	$O(n^2)$	$O(n^2)$	$O(n^2)$		_	T(n) = O(n)	,	complessità lineare			
degii digoritiiii di	Peggiore	$O(n^2)$	$O(n^2)$	$O(n^2)$		_	T(n) = O(n)		complessità quadratica			
ordinamento	#Spostame		0(11)	0(11)								
semplici	Migliore	0(1)	0(n)	0(1)		-		-	l'array è già ordinato			
	Medio	O(n)	$O(n^2)$	$O(n^2)$		-			l'array è in ordine inverso			
	peggiore	O(n)	$O(n^2)$	$O(n^2)$		-	<u>Caso medio</u> : e	elementi ii	n ordine sparso			
	È un miglior	ramento del	l'Insertion S	ort. Esso p	arte d	al princip	io che è più eff	iciente ord	dinare prima porzioni del			
	sotto-array,	, e poi l'inter	o array orig	inale								
		ta = array or	_									
	data _i = sotto-array											
	➤ h = numero di sotto-array											
	Scelta di h		Calcolo di data									
					Fissato h_t , data è diviso in h_t sotto-array per $h=1,\ldots,h_t,data_{h_th}[i]=data[h_t*i+(h-1)]$							
Shell sort	ordinamento ugualmente				$n=1,\ldots,n_t,uuuu_{h_th}[t]=uuuu[n_t+t+(n-1)]$							
	_				Esempio:							
						= [10,5,7	7,2,9,3,4] diviso	in data₃	1, data ₃₂ , data ₃₃			
	l'ordine	-	dobbiamo dunque creare 3 sotto-array con elementi presi a 3 a 3:									
	risulta	$data_{31}$ [0]=data[0]=10; $data_{31}$ [1]=data[3]=2; $data_{31}$ [2]=data[6]=4;										
	modific	$data_{32}$ [0]=data[1]=5; $data_{32}$ [1]=data[4]=9;										
						ta[2]=7; <i>c</i>	$data_{33}$ [1]=data	[5]=3				
		ncrementale		1	1							
	-	è un algoritr a, perché me										
	•			•		_						
	altri. Lo svantaggio principale deriva dalla sua					ivita.	pivot = K					
	Viene preso	un element	to di riferim	ento. dett	to r	W G A I	Q B K Z J C R P S					
	Viene preso un elemento di riferimento, detto pivot , utilizzato per il confronto con gli altri elementi. L'array viene suddiviso							W G A I	Q B (K)2 J C K P S			
	in 2 sottoar	ray:						17	///X			
	•	o contiene el			•	•						
	> il secondo contiene elementi maggiori (o) al pivot	· г	G A I B	J C W Q Z R P S			
								1. 1.				
	Nella posizione centrale viene posto l'elemento pivot.						•					

Quick sort

Scegliere il pivot

sottoarray.

Per non causare sbilanciamento, il pivot andrebbe scelto in modo da suddividere l'array in sottoarray di dimensione circa *uguale*. Una delle possibili scelte è prendere come pivot il primo o ultimo elemento dell'array:

Si procede quindi in maniera ricorsiva a riordinare i due

Viene preso come pivot il primo elemento a[0]. L'array viene scandito procedendo dai due estremi verso il centro, scambiando le eventuali coppie di elementi che si trovano in posizione errata.

Il ciclo termina quando gli indici si raggiungono. Nella posizione centrale viene posto l'elemento a[0]. A questo punto l'array avrà la parte sinistra con gli elementi più piccoli di a[0], e la parte destra con quelli maggiori.

Si procede quindi in maniera ricorsiva sulle due parti rimanenti dell'array.

Elementi più piccoli di

Elementi più grandi di

	mediante la chian	ne permette il rioro mata <i>ricorsiva</i> della a riordinare, seguit	procedura su					
	di merging.	a riorumare, seguit	e ua un aigum	13 7 9 10 2 3 8 6 21 13 7 9 10 2 3 6 6 21				
Merge sort		rray ha 2 elementi, scambio si ottiene l		13 7 9 10 2 3 8 6 21 13 7 10 2 3 8 6 21				
Werge sort		e l'array ha più di a ciascuno contenen			7 9 13 2 10 3 8 6 21 2 7 9 10 13 3 6 8 21 2 3 6 7 8 9 10 13 21			
	I due array vengono prima ordinati (richiama stessa procedura su ciascuno di essi), e poi funico array ordinato.							
	Qu	iick Merge			esiste una stima precisa della complessità dello Shell Sort			
	#Confronti			•	perché dipende dal valore ottimale per il passo di decremento			
Complessità	Migliore $0(n)$	$\lg n$) $O(n \lg n)$		$h_{i+1}-h$	i_i .			
degli algoritmi	Medio $0(n)$	$\lg n$) $O(n \lg n)$						
di	Peggiore 0(1	n^2) $O(n \lg n)$		II Quick	Sort non fa spostamenti dato che è ricorsivo			
ordinamento	#Spostamenti			m ()				
avanzati	Migliore	$O(n \lg n)$		$T(n) = O(\log n)$ complessità logaritmica/pseudolin				
	Medio	$O(n \lg n)$						
	peggiore	$O(n \lg n)$						

Codici JAVA

```
Eccezioni e interfacce
MECCANISMO TRY ... CATCH
// PseudoCodice
try{
  fai qualcosa;
} catch (tipo-eccezione nome-eccezione){
  fai qualcosa per correggere o segnalare l'eccezzione;
public int f1(int[] a, int n){
      throws ArrayIndexOutOfBoundsException;
       return n*a[n+2]
}
//f1() ritorna l'elemento dell'array a[n+1]*n
public void f2(){
  int[]a={1,2,3,4,5};
  try{
             for (int i=0;i<a.lentgh;i++)
         System.outprint(f1(a,i)+" ");
  } catch(ArrayIndexOutOfBoundsException e){
     System.out.println("Eccezione catturata in f2()");
             throw e;
      }
}
      f2() crea un array di 5 elementi e stampa il metodo f1(a,i)
       ma arrivato ad i=3 non potrà stampare a[5] perché non rientra nell'array.
       Dunque il controllo del corpo del catch si accorge che è stato generata
       un'eccezione "ArrayIndexOutOfBoundsException" e la chiama "e", stampa il messaggio
       che l'eccessione è stata catturata (quindi non la risolve) e lo manda ad f1()
*/
THROW E CATTURA DELLE ECCEZIONI
*//////////
class Eccezioni{
void f() throws Exception{
              g();
 }
 void g() throws Exception{
             h();
 }
 void h()throws Exception {
```

```
int x = 0;
   if (x==0)
    throw new Exception("divisione per 0");
   int y=2/x;
}
       i metodi si richiamano a cascata indicando nei costruttori che potrebbero
       esserci eccezioni. In questo caso solamente col throw stiamo lanciando l'eccezione
       ma non la stiamo catturando, quindi essa si propaga e interrompe il programma
*/
class Eccezioni{
void f() throws Exception{
    g();
 }
 void g()throws Exception {
   h();
 }
 void h()throws Exception {
   int x = 0;
   try{
      int y=2/x;
   }catch(ArithmeticException ae){
                      System.out.print("errore!")
}
       in questo caso l'eccezzione è catturata dal catch, il quale stamperà a
       console l'errore ma non lo farà propagare, e il programma continua a compilare
*/
Esempio di interfaccia
*//////////
interface Nuotatore{
 public void nuota();
class Acquario{
 Nuotatore[] elementi = new Nuotatore[10];
 //metodi della classe
class Pesce implements Nuotatore{
 public void nuota(){
}
class Crostaceo{
       ...
```

```
<u>Iava I/O</u>
        FILEINPUSTREAM
        Lettura da un file binario con il FileInputStream
*/
import java.io.*;
public class LetturaDaFileBinario {
        public static void main(String args[]){
                FileInputStream file = null;
                try {
                        file = new FileInputStream(args[0]);
                                                                         //args[0] potrebbe essere un percorso di un
file nel PC
                } catch(FileNotFoundException e){
                        System.out.println("File non trovato");
                        System.exit(1);
                                                                                                           //Inizio fase
                try {
di lettura e stampa su console del carattere letto
                        int x;
                        int n = 0;
                        while ((x = file.read())>=0){
                                                                                  //quando lo stream termina, read()
restituisce -1 ed esce dal while
                                System.out.print(" " + x);
                        System.out.println("Totale byte: " + n);
                        } catch(IOException ex){
                                System.out.println("Errore di input");
                                System.exit(2);
        }
        FILEOUTPUTSTREAM
        Scrittura su un file binario con il FileOutputStream
*/
import java.io.*;
public class ScritturaSuFileBinario {
        public static void main(String args[]){
                FileOutputStream file = null;
                try {
                        file = new FileOutputStream(args[0]);
                }catch(FileNotFoundException e){
```

```
System.out.println("Imposs. aprire file");
                        System.exit(1);
                                                                                                          //fase di
                try {
scrittura
                        for (int x=0; x<10; x+=3) {
                                System.out.println("Scrittura di " + x);
                                file.write(x);
                        } catch(IOException ex){
                                System.out.println("Errore di output");
                                System.exit(2);
                        }
        }
}
        DATAINPUTSTREAM
        FileInpuStreamReader legge solo byte, dobbiamo incapsularlo dentro lo steam DataInputStream
        per leggere float, int, double, boolean
*/
import java.io.*;
public class LetturaTipi {
        public static void main(String args[]){
                FileInputStream fin = null;
                try {
                        fin = new FileInputStream("Prova.dat");
                }catch(FileNotFoundException e){
                        System.out.println("File non trovato");
                        System.exit(3);
                DataInputStream is = new DataInputStream(fin);
                                                                                 //Creazione del DataInputStream
con argomento il FileInputStream
                float f2; char c2; boolean b2; double d2; int i2;
                try {
                        f2 = is.readFloat(); b2 = is.readBoolean();
                        d2 = is.readDouble(); c2 = is.readChar();
                        i2 = is.readInt();
                        is.close();
                        System.out.println(f2 + ", " + b2 + ", " + d2 + ", " + c2 + ", " + i2);
                } catch (IOException e){
                        System.out.println("Errore di input");
                        System.exit(4);
        }
}
        DATAOUTPUTSTREAM
        Stessa procedura dell'input per l'incapsulamento
*/
import java.io.*;
public class Scrittura Tipi {
        public static void main(String args[]){
                FileOutputStream fs = null;
                try {
                        fs = new FileOutputStream("Prova.dat");
                }catch(IOException e){
                        System.out.println("Apertura fallita");
```

```
System.exit(1);
                }
                DataOutputStream os = new DataOutputStream(fs);
                float f1 = 3.1415F; char c1 = 'X';
                boolean b1 = true; double d1 = 1.4142;
                try {
                        os.writeFloat(f1); os.writeBoolean(b1);
                        os.writeDouble(d1); os.writeChar(c1);
                        os.writeInt(12); os.close();
                } catch (IOException e){
                        System.out.println("Scrittura fallita");
                        System.exit(2);
                }
        }
}
        CHARACTERSTREAM
        Lettura da testo UNICODE
*/
import java.io.*;
public class LetturaDaFileDiTesto {
        public static void main(String args[]){
                FileReader r = null;
                try {
                        r = new FileReader(args[0]);
                }catch(FileNotFoundException e){
                        System.out.println("File non trovato");
                        System.exit(1);
                }
                try {
                        int n=0, x;
                        while ((x = r.read())>=0) {
                                char ch = (char) x;
                                System.out.print(" " + ch); n++; //Cast esplicito da int a char - Ma solo se è stato
davvero letto un carattere (cioè se non è stato letto -1)
                        System.out.println("\nTotale caratteri: " + n);
                } catch(IOException ex){
                        System.out.println("Errore di input");
                        System.exit(2);
                }
        }
}
        SYSTEM.IN
        Essa è interpretata come un Reader incapsulato dentro un InputStreamReader
        il quale a sa volta è incapsulato dentro un lettore Bufferizzato
*/
import java.io.*;
public class SistemDentro {
        public static void main(String[] args){
                BufferedReader console = new BufferedReader (new InputStreamReader (System.in));
                System.out.println("Inserisci una riga di testo");
        try{
                String str = console.readLine();
```

```
} catch (IOException e){
                        System.out.println(e);
                        System.exit(1);
        }
        CONSOLEREADER
        Racchiude tutti i termini e i metodi della classe System per quanto riguarda l'input e l'output di dati
*/
import java.io.*;
public class LettoreC{
        private BufferedReader reader;
        public LettoreC(){
                reader=new BufferedReader(new InputStreamReader (System.in));
        public String readLine(){
                                                                //leggi una stringa
                String inputLine="";
                        inputLine = reader.readLine();
                }catch(IOException e){
                        System.out.println(e);
                        System.exit(1);
        return inputLine;
        public int readInt (){
                String inputString = readLine();
                int n = Integer.parseInt(inputString);
                return n;
        }
        public double readDouble (){
                String inputString = readLine();
                double x = Double.parseDouble(inputString);
        return x;
        public static void main (String [] args){
                LettoreC lettore = new LettoreC();
                System.out.println("come ti chiami?");
                String x = lettore.readLine();
                System.out.println("ciao "+x+", quanti anni hai?");
                int eta = lettore.readInt();
                System.out.println(eta <10? "solo "+eta+" anni? che piccolo!":eta+" anni? sei grande!");
        }
}
        LETTURA E SCRITTURA SU FILE
        Insieme delle classi di Java.IO per leggere e scrivere dati su file
public class LetturaScritturaFile{
```

```
public static void main (String [] args){
        int n;
        ConsoleReader console = new ConsoleReader();
        System.out.print("inserisci il nome del file di input : ");
        String FileIn = console.readLine();
        System.out.print("inserisci il nome del file di output : ");
        String FileOut = console.readLine();
        try {
                FileReader lettore = new FileReader(FileIn);
                FileWriter scrittore = new FileWriter(FileOut);
                while ((n=lettore.read()) !=-1){
                        scrittore.write((char)n);
                lettore.close();
                scrittore.close();
        catch(FileNotFoundException e){
                System.out.println(e);
                System.exit(1);
        }
        catch(IOException e){
                System.out.println(e);
                System.exit(1);
        }
}
```

```
Liste concatenate
        NODO
        Struttura di un Nodo della lista semplice
*/
class Nodo{
                                //valore del nodo
        private int info;
                                         //riferimento al prossimo nodo
        private Nodo next;
        public Nodo(int val){
                this(val, null);
        public Nodo (int val, Nodo n){
                info = val;
                next = n;
        }
        public void setInfo(int val){
                info = val;
        public int getInfo(){
                return info;
        public void setNext(Nodo n){
                next = n;
        }
```

```
public Nodo getNext(){
        return next;
       }
}
       NODO AUSILIARIO
        Per evitare di scrivere
       ((head.getNext()).getNext).setNext(new Nodo(99));
        si crea un nodo ausiliaro a cui viene assegnato un nodo a noi interessato
*/
Nodo head = new Nodo(13);
Nodo aux = head;
aux.setNext(new Nodo(16));
aux = aux.getNext();
aux.setNext(new Nodo(18));
       LISTA CONCATENATA
        Gli elementi vengono aggiunti dinamicamente solo quando è necessario.
       Ogni elemento contiene un riferimento all'elemento successivo.
       Serve anche un identificatore esterno (aux) per tener traccia della lista.
class Lista{
        private Nodo head;
        public Lista(){
                                                                //in caso di lista vuota
               head = null;
        public void InsertHead(int val){
                head = new Nodo(val,head);
        public boolean IsEmpty(){
                                                        //controlla se la lista è vuota
                return (head == null ? true : false);
        public void InsertTail(int val){
               if (IsEmpty())
                       head = new Nodo(val);
                                                       //se la lista è vuota inserisci il Nodo in testa
                else{
                        Nodo aux = head;
                       for( ; aux.next != null; aux = aux.next);
                                                                       //scorrimento lista, porta aux all'ultimo
nodo
                       aux.next = new Nodo(val);
               }
        public void InsertOrdered(int val){
               if (IsEmpty())
                       head = new Nodo(val);
               else
                                                               //se il valore della testa è maggiore di val...
                       if( head.info > val)
                                head = new Nodo(val,head);
                                                               //..il Nodo con val diventa la nuova testa
                       else{
                                Nodo aux = head;
```

```
for(;(aux.next!=null) && (aux.next.info<val);aux=aux.next);</pre>
                                                                                                  //scorri fino a
quando la lista finisce && valore di aux è minore di val
                                aux.next = new Nodo(val,aux.next);
        }
        public Nodo SearchOrd(int key){
                Nodo aux = head;
                for( ; (aux != null) && (aux.info < key); aux = aux.next);</pre>
                                                                           //ricerca la lista è in ordine
crescente, per il decrescente basta mettere >
                if((aux != null) && (aux.info == key))
                        return aux;
                return null;
        public Nodo Search(int key){
                Nodo aux = head;
                for(; (aux != null) && (aux.info != key); aux = aux.next); //la lista scorre fino a quando aux.info ==
key, o aux.info == null, in quest'ultimo caso la chiave non esiste nella lista
                return aux;
        }
        public int DeleteHead(){
                if(IsEmpty())
                        return 0;
                else{
                        Nodo aux = head;
                        head = head.next;
                                                 //la nuova testa sarà il vecchio secondo nodo della lista
                        return aux.info;
                }
        }
        public int DeleteTail(){
                if (IsEmpty())
                        return 0;
                else{
                        Nodo aux = head;
                        Nodo prev = null;
                                                 //è un altro ausiliare ma per il nodo precedente
                        for( ; aux.next != null; prev = aux, aux = aux.next);
                                                                                 //scorre la lista assegnando 2
ausiliari
                        if(prev == null) //se prev == null vuol dire che abbiamo solo un elemento nella lista
                                head = null;
                        else
                                prev.next = null; //dato che prev è il penultimo, prev.next è l'ultimo è viene
cancellato
                        return aux.info;
        }
        public Nodo DeleteKey(int key){
                if (IsEmpty())
                        return null;
                else{
                        Nodo aux = head;
                        Nodo prev = null;
                        for(; (aux != null) && (aux.info != key); prev = aux, aux = aux.next);
                        if(aux != null)
```

```
if(prev == null)
                                        head = head.next;
                                else
                                        prev.next = aux.next; //unisci il riferimento del precedente del nodo A al
successivo del nodo A
                        return aux;
        }
        NODO DOPPIO
        Struttura di un Nodo della lista doppiamente concatenata
*/
public class NodoDbl{
        public int info;
        public NodoDbl next, prev;
                                       //riferimento al successivo e al precedente
        public NodoDbl(int val){
                this(val, null, null);
        public NodoDbl(int val, NodoDbl n, NodoDbl p){
                info = val;
                next = n;
                prev = p;
        }
}
        LISTA DOPPIAMENTE CONCATENATA
        Lista che permette di scorre sia dalla testa che dalla coda.
        A tale scopo sono necessari due riferimenti, uno all'oggetto precedente e l'altro al successivo.
*/
public class ListaDbl{
        private NodoDbl head;
        private NodoDbl tail; //tail è usato per poter scorrere la lista anche al contrario
        public ListaDbl(){
                head = tail = null;
        public boolean IsEmpty(){
                return head == null;
        public void InsertHead(int val){
        if (IsEmpty())
        head = tail = new NodoDbl(val);
        else{
                head = new NodoDbl(val,head,null);
                head.next.prev = head;
                                               //sistemazione del riferimento al nodo precedente della vecchia
testa all'attuale testa
}
        public void InsertTail(int val){
```

```
if (IsEmpty())
                head = tail = new NodoDbl(val);
                else{
                        tail = new NodoDbl(val,null,tail);
                        tail.prev.next = tail;
                                                         //sistemazione del riferimento al nodo successivo della
vecchia coda all'attuale coda
        }
        public void InsertOrdered(int val){
                if (IsEmpty())
                        head = tail = new NodoDbl(val);
                else
                        if(head.info >= val)
                                                 //se l'elemento da inserire è il primo
                                InsertHead(val);
                        else{
                                 NodoDbl aux= head;
                                for(; (aux!=null) && (aux.info<val); aux=aux.next);</pre>
                                                                                         //scorri la lista
                                if (aux == null)
                                         InsertTail(val); //se l'elemento da inserire è l'ultimo
                                else{
                                                                         //se l'elemento da inserire è nel mezzo...
                                         aux.prev = new NodoDbl(val,aux,aux.prev);
                                                                                          //...inserisci un nuovo nodo
col riferimento al nodo successivo della lista e a quello precedente
                                         aux.prev.prev.next = aux.prev; //sistemazione del riferimento al nodo
successivo del nodo precedente al precedente del nodo da inserire al nodo da inserire
                                }
        }
        public NodoDbl SearchOrd(int key){
        NodoDbl aux = head;
        for(; (aux != null) && (aux.info < key); aux = aux.next);
        if((aux != null) && (aux.info == key))
                return aux;
        return null;
}
        public NodoDbl Search(int key){
                NodoDbl aux = head;
                for(; (aux != null) && (aux.info != key); aux = aux.next);
                return aux;
        }
        public int DeleteHead(){
        if(IsEmpty())
                return 0;
        else{
                NodoDbl aux = head;
                if (head == tail)
                        head = tail = null;
                        else{
                                head = head.next;
                                head.prev = null;
                        }
                return aux.info;
        }
```

```
public int DeleteTail(){
        if(IsEmpty())
                return 0;
        else{
                NodoDbl aux = tail;
                if (head == tail)
                        head = tail = null;
                else{
                        tail = tail.prev;
                        tail.next = null;
                return aux.info;
}
public NodoDbl DeleteKey(int key){
        NodoDbl aux = head;
        for(;(aux!=null) && (aux.info!=key); aux=aux.next);
                if (aux != null)
                                                          // è stato trovato un elemento
                        if(aux.prev == null){
                                                          // è la testa
                                                          // un solo elemento nella lista
                                 if (head == tail)
                                         head = tail = null;
                                 else{
                                         head = head.next;
                                         head.prev = null;
                        }
                        else{
                                 if (aux == tail){
                                         tail = tail.prev; // è la coda
                                         tail.next = null;
                                 else{
                                                                           // è un elemento nel mezzo
                                         aux.prev.next = aux.next;
                                         aux.next.prev = aux.prev;
                        }
        return aux;
```

```
public boolean IsFull(){
                return (top == MAX);
        public boolean IsEmpty(){
                return (top == 0);
        public void Clear(){
                top = 0;
        public boolean Push(int val){ //inserimento
                if (IsFull())
                        return false;
                elem[top++] = val;
                return true;
        }
        public int Pop(){
                                                          //estrazione
                if (IsEmpty())
                        return 0;
                return elem[--top];
        }
        public int TopElem(){
                                                 //restituisce il valore dell'elemento in cima
                if (IsEmpty())
                        return 0;
                return elem[top-1];
                                                         //ritorna top-1 poiché l'array elem[] (come tutti gli array)
inizia dall'indice 0, dove c'è il primo elemento inserito nella pila
        }
```

```
Coda
public class Queue{
        private int head, tail;
        private final int MAX;
        private int elem[];
        private static final int MAXDEFAULT = 10;
        public Queue(){
                this(MAXDEFAULT);
        public Queue(int max){
                head = tail = 0;
                MAX = max;
                elem = new int[MAX];
        }
        public boolean IsFull(){
                return (head == (tail+1) % MAX);
        }
```

```
public boolean IsEmpty(){
        return ( head == tail );
public void ClearQueue(){
        head = tail = 0;
public int getFirstElem(){
        if(IsEmpty())
                return 0;
        return elem[head];
}
public boolean EnQueue(int val){
                                        //inserimento in coda
        if(IsFull())
                return false;
        elem[tail] = val;
        tail = ++tail % MAX;
        return true;
}
public int DeQueue(){
                                        //estrazione della testa
        if(IsEmpty())
                return 0;
        int val = elem[head];
        head = ++head % MAX;
        return val;
}
```

```
Ricorsione
        FATTORIALE
        metodi iterativi e ricorsivi per il calcolo del fattoriale
*/
        public static int iterFactorial(int n){
                if(n<0)
                         throw new IllegalArgumentException();
                else if (n==0) return 1;
                         else{
                                 int p=1;
                                 for (int i=2; i<=n; i++)
                                         p=p*i;
                                 return p;
        public static int ricFactorial(int n){
                if(n<0)
                         throw new IllegalArgumentException();
                else if (n==0) return 1;
                         else
                                 return n * factorial(n-1);
        ESPONENZIALE
```

```
metodi iterativi e ricorsivi per il calcolo dell'esponenziale
*/
        public int ricEsp(int x,int y){
                if (y==0) return 1;
                else return x*esp(x,y-1);
        public double iterEsp(int x, int y){
                if(y<0)
                        throw new IllegalArgumentException();
                else{
                        if(y==0) return 1;
                        else{
                                 int ris=x;
                                 while (y>1){
                                         ris=ris*x;
                                         y--;
                return ris;
        }
        INVERTI STRINGA
        Inversione di una stringa presa in input
        (Esempio di ricorsione non in coda, dove la chiamata al metodo stesso non è l'ultima azione compiuta)
*/
        public void reverse(){
                char ch = (char)System.in.read();
                if (ch != '\n'){
                        reverse();
                        System.out.print(ch);
                }
        }
        FIBONACCI
        metodi iterativi e ricorsivi per il calcolo della successione di Fibonacci
        (Esempio di ricorsione multipla)
*/
public static int ricFibonacci(int n){
        if(n<0)
                throw new IllegalArgumentException();
        else if (n<2) return n;
                else
                        return fibonacci(n-2) + fibonacci(n-1);
}
public static int iterFibonacci(int n){
        if (n<2) return n;
        else{
                int i=2, tmp, current=1, last=0;
                for (;i<=n; ++i){
                        tmp = current;
                        current += last;
                        last = tmp;
```

```
return current;
}
        RICORSIONI VARIE
        Altri esempi di ricorsione
*/
        //Massimo comune divisore
        public static int MCD (int x, int y){
                if (x==y) return x;
                else if (x>y) return MCD(x-y,y);
                else return MCD (x,y-x);
        }
        //Minimo comune multiplo
        public static int mcm(int x, int y){
                if (x==0 \&\& y==0) return 0;
                else return (x*y)/(MCD(x,y));
        }
       //Soluzione dela torre di Hanoi
public class TowersOfHanoi{
        private int totalDisks;
        public TowersOfHanoi(int disks){
                totalDisks = disks;
        public void solve(){
                moveTower(totalDisks, 1, 3, 2);
        private void moveTower(int numDisks, int start, int end, int temp){
                if (numDisks == 1)
                        move OneDisk(start, end);
                else{
                        moveTower(numDisks-1, start, temp, end);
                        moveOneDisk(start, end);
                        moveTower(numDisks-1, temp, end, start);
                }
        }
        private void moveOneDisk(int start, int end){
                System.out.println("Sposta un disco da "+start+" a "+end);
```

```
public NodoBST(){
                left = right = null;
        public NodoBST(int val){
                this(val, null, null);
        public NodoBST(int val, NodoBST sinistro, NodoBST destro){
                key = val; left = sinistro; right = destro;
                                                                                  //riferimenti ai figli
        public int visit(){
                                                 //questo metodo è da gestire, può ritornare la key, stamparla o altro
a seconda dell'uso necessario
                return key;
        }
}
//BST di interi
public class BST{
        protected NodoBST root;
        public BST(){
                root = null;
        ATTRAVERSAMENTO PREORDER
        - visitare la radice
        - attraversare ricorsivamente il sotto-albero sinistro della radice
        - attraversare ricorsivamente il sotto-albero destro della radice
protected void ricPreorder(NodoBST p){
        if (p != null){
                p.visit();
                preorder(p.left);
                preorder(p.right);
        }
}
protected void iterPreorder(){
        NodoBST p = root;
        Pila aiuto = new Pila();
        if (p != null){
                aiuto.push(p);
                while (!aiuto.isEmpty()){
                        p = (NodoBST) aiuto.pop();
                        p.visit();
                        if (p.right != null) aiuto.push(p.right);
                        if (p.left != null) aiuto.push(p.left);
                }
        }
}
        ATTRAVERSAMENTO INORDER
        - attraversare ricorsivamente il sotto-albero sinistro della radice
```

```
- visitare la radice
        - attraversare ricorsivamente il sotto-albero destro della radice
*/
protected void ricInorder(NodoBST p){
        if (p != null){
                inorder(p.left);
                p.visit();
                inorder(p.right);
        }
}
protected void iterInorder(){
        NodoBST p = root;
        Pila aiuto = new Pila();
        while (p != null){
                while (p != null){
                         if (p.right != null) aiuto.push(p.right); // impila figlio dx se esiste, e il nodo stesso
procedendo verso sx
                         aiuto.push(p);
                         p = p.left;
                p = (NodoBST) aiuto.pop();
                                                                                                    // estrai un nodo
senza figlio sinistro
                while (!aiuto.isEmpty() && p.right == null){
                                                                          //visita nodo e tutti quelli senza figlio dx
                         p.visit();
                         p = (NodoBST) aiuto.pop();
                p.visit();
                                                                                                                     //
visita anche il primo nodo con un figlio dx
                if (!aiuto.isEmpty())
                         p = (NodoBST) aiuto.pop();
                else p = null;
        }
        ATTRAVERSAMENTO POSTORDER
        - attraversare ricorsivamente il sotto-albero sinistro della radice
        - attraversare ricorsivamente il sotto-albero destro della radice
        - visitare la radice
*/
protected void ricPostorder(NodoBST p){
        if (p != null){
                postorder(p.left);
                postorder(p.right);
                p.visit();
        }
}
protected void iterPostorder(){
        NodoBST p = root, q = root;
        Pila aiuto = new Pila();
        while (p != null){
                for (; p.left != null; p = p.left) aiuto.push(p);
                while (p != null && (p.right == null || p.right == q)){
                         p.visit();
```

```
if (aiuto.isEmpty()) return;
                        p = (NodoBST) aiuto.pop();
                aiuto.push(p);
                p = p.right;
        }
}
        RICERCA SU UN BST
        L'algoritmo per decidere se una chiave si trova in un BST avviene
        attraverso i seguenti controlli
*/
public NodoBST ricerca (NodoBST p, int val){
        while (p != null)
                                                                 //Se il BST è vuoto restituisce null
                if (val == p.key) return p;
                                                                 //Se la chiave coincide con l'etichetta della radice, si
restituisce la radice
                else if (val < p.key) p = p.left; //Se la chiave è minore dell'etichetta della radice, si esegue
l'algoritmo sul sotto-albero sinistro della radice
                else p = p.right;
                                                                 //Se la chiave è maggiore dell'etichetta della radice,
si esegue l'algoritmo sul sotto-albero destro della radice
        return null;
        INSERIMENTO IN UN BST
        Inserisce un nuovo nodo in base al valore di esso
*/
public boolean inserisci (int val){
        if (root == null)
                root = new NodoBST(val);
                                                                          //Se il BST è vuoto, la chiave diventa la
radice
        else{
                NodoBST p = root, prev = null;
                while (p != null){
                                                                                  //Ricerca della chiave, scorrimento
dell'albero
                        if (val == p.key)
                                                                                  //Ritorna false se la chiave è già
                                return false;
presente
                        prev = p;
                        if (val < p.key)
                                 p = p.left;
                        else
                                 p = p.right;
                if (val < prev.key)
                                                                                  //Si determina la foglia che può
essere il padre del nuovo nodo
                                                                 //Si innesta il nuovo nodo come figlio della foglia
                        prev.left = new NodoBST(val);
trovata
                else
                        prev.right = new NodoBST(val);
        return true;
        CANCELLAZIONE DA UN BST
```

Per cancellare da un BST una certa chiave, mantenendo le proprietà di BST, abbiamo 4 casi: 0. Si ricerca la chiave, se non si trova si restituisce false 1. Se la chiave si trova in una foglia, si metta a null il riferimento del nodo padre alla foglia 2. Se la chiave si trova in un nodo avente un solo sotto-albero, si faccia puntare al figlio il riferimento del nodo padre al nodo 3. Se la chiave si trova in un nodo con due sotto-alberi, si esegua la fusione dei due sotto-alberi o la sostituzione della chiave. */ public int cancella (int val){ NodoBST nodo, p = root, prev = null; while (p != null && p.key != val){ prev = p; if (val < p.key) p = p.left;else p = p.right; } nodo = p; if $(p != null && p.key == val){}$ if (nodo.right == null) nodo = nodo.left; //passi 1 e 2 else if (nodo.left == null) nodo = nodo.right; else fondiSottoAlberi() //passo 3 //in alternativa al sostituisciChiave() precedente if (p == root) root = nodo;//continua else if (prev.left == p) prev.left = nodo; //passi 1 e 2 else prev.right = nodo; return 0; //cancellazione effettuata else if (root != null) //casi limite return -1; //chiave non presente nel BST else //BST vuoto return -2; } //FUZIONE DI DUE SOTTOALBERI {NodoBST tmp = nodo.left; while (tmp.right != null) tmp = tmp.right; tmp.right = nodo.right; nodo = nodo.left; } //SOSTITUZIONE DI DUE SOTTOALBERI NodoBST tmp = nodo.left; NodoBST previous = nodo; while (tmp.right != null) previous = tmp; tmp = tmp.right; nodo.key = tmp.key; if (previous == nodo) previous.left = tmp.left; else previous.right = tmp.left;

```
/* OPERAZIONI VARIE */
protected void LetturaLivelli(){
    NodoBST p = root;
    Coda aiuto = new Coda();
    if (p != null){
        aiuto.Enqueue(p);
        while (!aiuto.isEmpty()){
            p = (IntBSTNodo) aiuto.Dequeue();
            p.visit();
            if (p.left != null) aiuto.Enqueue(p.left);
            if (p.right != null) aiuto.Enqueue(p.right);
        }
    }
}
```

```
Ordinamento semplice
        SWAP
        Per scambiare il valore di due elementi in un array
        serve un indice temporaneo
*/
void swap(int array[], int precedente, int successivo) {
        int tmp = array[precedente];
        array[precedente] = array[successivo];
        array[successivo] = tmp;
}
        SELECTION SORT
        L'algoritmo seleziona di volta in volta il record con
        chiave minima (oppure massima), spostandolo nella posizione corretta
*/
public void SelectionSort(int [] data) {
        int i,j,minimo;
        for (i = 0; i < data.length-1; i++) {
                for (j=i+1, minimo=i; j<data.length; j++)
                        if (data[j]<data[minimo])</pre>
                                minimo = j;
                swap(data,minimo,i);
        }
}
//complessità #confronti
                                = migliore O(n^2), medio O(n^2), peggiore O(n^2)
//complessità #spostamenti
                                = migliore O(1), medio O(n), peggiore O(n)
        INSERTION SORT
        Ogni elemento dell'array viene spostato in un sotto-array che viene ordinato,
        facendo poi shiftare il processo al numero successivo
*/
public void InsertionSort(int[] data) {
        int i, j,tmp;
        for (i = 1; i < data.length; i++) {
                tmp = data[i];
                for (j=i; (j>0)&&(tmp<data[j-1]); j--)
```

```
data[j] = data[j-1];
                data[j] = tmp;
        }
//complessità #confronti
                                = migliore O(n), medio O(n^2), peggiore O(n^2)
//complessità #spostamenti
                                = migliore O(n), medio O(n^2), peggiore O(n^2)
        BUBBLE SORT
        Confronta elementi consecutivi (j e j-1) iniziando da destra,
        scambiandoli se non li trova in ordine. Al termine del primo
        ciclo viene così trovato il minimo, che galleggia in cima all'array.
        Al i-esimo passaggio viene trovato il i-esimo elemento più piccolo,
        posizionandolo all' i-esimo posto.
*/
public void BubbleSort(int [] data){
        for (int pass = 0; pass < data.length-1; pass++)
                for (i = 1; i<data.length;i++)
                        if (data[i]<data[i-1])
                                swap(data,i,i-1);
}
//complessità #confronti
                                = migliore O(n^2), medio O(n^2), peggiore O(n^2)
//complessità #spostamenti
                                = migliore O(1), medio O(n^2), peggiore O(n^2)
```

```
Ordinamento avanzato
        SHELL SORT
        Ordina prima porzioni del sotto-array, e poi l'intero array originale
*/
void ShellSort (int [] data) {
        int i, j, k, h, hContatore, tmp, incrementi[] = new int[20];
        for (h = 1, i = 0; h < data.length; i++) {
                                                                          // crea il numero corretto di incrementi h in
base alla formula generale
                incrementi[i] = h;
                h = 3*h + 1;
        for (i--; i >= 0; i--) {
                                                                                           // itera per il numero dei
diversi incrementi h
                h = incrementi[i];
                for (hContatore = h; hContatore < 2*h; hContatore++) {
                                                                                  // itera per il numero di sottoarray
ordinati-h nel passo i-mo
                        for (j = hContatore; j < data.length; ) {
                                                                                           // ordina per insertion sort il
sottoarray contenente ogni h-mo elemento dell' array "data"
                        tmp = data[j];
                        k = j;
                        while ((k-h)=0) \&\& (tmp<data[k-h]){
                                 data[k] = data[k-h];
                                 k = h;
                        data[k] = tmp;
                        j += h;
        }
```

```
/*
        QUICK SORT
        Viene preso un elemento di riferimento, detto pivot, utilizzato per il confronto con gli altri elementi.
        L'array viene suddiviso in 2 sottoarray:
        - il primo contiene elementi minori (o uguali) del pivot
        - il secondo contiene elementi maggiori (o uguali) al pivot.
        Nella posizione centrale viene posto l'elemento pivot.
        Si procede quindi in maniera ricorsiva a riordinare i due sottoarray.
*/
public void QuickSort(int[] data, int first, int last) {
        int lower = first + 1, upper = last, pivot = data[first];
        while (lower <= upper) {
                while (data[lower]<pivot)
                        lower++;
                while (pivot<data[upper])
                         upper--;
                if (lower < upper)
                         swap(data,lower++,upper--);
                else lower++;
swap(data,upper,first);
        if (first < upper-1)
                QuickSort(data,first,upper-1);
        if (upper+1 < last)
                QuickSort(data,upper+1,last);
}
//complessità #confronti = migliore O(n lg n), medio O(n lg n), peggiore O(n^2)
        MERGE SORT
        E' un algoritmo che permette il riordino di un array
        mediante la chiamata ricorsiva della procedura su due
        metà dell'array da riordinare, seguite da un algoritmo
        di merging.
*/
void MergeSort(int [] data, int first, int last) {
        if (first < last) {
                int mid = (first + last) / 2;
                MergeSort(data, first, mid);
                MergeSort(data, mid+1, last);
                merge(data, first, last);
        }
}
int[] temp; // usato da merge();
        void merge(int[] data, int first, int last) {
                int mid = (first + last) / 2;
                int i1 = 0, i2 = first, i3 = mid + 1;
                while (i2 <= mid && i3 <= last)
                        if (data[i2]<data[i3])
                                 temp[i1++] = data[i2++];
                        else temp[i1++] = data[i3++];
                while (i2 <= mid)
                         temp[i1++] = data[i2++];
                while (i3 <= last)
```