DIRICHLET'S THEOREM ON ARITHMETIC PROGRESSIONS

Sabyasachi Mukherjee

DEPARTMENT OF MATHEMATICS

SHIV NADAR UNIVERSITY

IN PARTIAL FULFILMENT OF DEGREE

OF BACHELOR OF SCIENCE (RESEARCH)

Adviser: Dr. Priyanka Grover

April 2017

Abstract

Dirichlet's theorem on arithmetic progressions states that given $q, l \in \mathbb{Z}$ such that gcd(q, l) = 1, there are infinitely many primes of the form q + kl where $k \in \mathbb{Z}$. Given $q, l \in \mathbb{N}$, we define $\delta_l(n) : \mathbb{Z} \to \{0, 1\}$ to take 1 if $n \equiv l \mod q$ and 0 otherwise and note that

$$\sum_{p \equiv l \bmod q} \frac{1}{p^s} = \sum_p \frac{\delta_l(p)}{p^s} = \frac{1}{\phi(q)} \sum_{p \text{ does not divide } q} \frac{1}{p^s} + \frac{1}{\phi(q)} \sum_{\chi \neq \chi_0} \overline{\chi(l)} \sum_p \frac{\chi(p)}{p^s},$$

where χ is the Dirichlet character and χ_0 is a trivial Dirichlet character. The sum $\sum_{p \text{ does not divide } q} \frac{1}{p^s} \text{ diverges to } \infty \text{ as } s \to 1+ \text{ and the one on the right is finite, proving that } \sum_{p \equiv l \bmod q} \frac{1}{p^s}, \text{ proving Dirichlet's theorem.}$

Acknowledgements

I would like to thank my adviser Dr. Priyanka Grover for guiding me very patiently through this work. I would also like to thank friends, family and acquaintances for their support. I am indebted to Dr. Satyanarayana Reddy, Dr. Debashish Bose and Dr. Krishnan Rajkumar who helped me understand a number of theorems. I am also thankful to the writers and stars of A Bit of Fry and Laurie, Hugh Laurie and Stephen Fry, for having produced a show which provided a welcome distraction while I was stuck on quite a few proofs leading to the main theorem. And finally, this document was created with the help of the dissertation template and document class created by Jeffrey Scott Dwoskin.

Contents

	Abstract	ii
	Acknowledgements	iii
1	Preliminaries	1
2	A few identities	3
	2.1 Estimates of some sums and products	4
3	L – functions and their properties	8
	3.1 Some properties of L – functions	8
	3.2 $L(1,\chi) \neq 0$ for non-trivial, complex Dirichlet character χ	15
	3.3 $L(1,\chi) \neq 0$ for non-trivial, real Dirichlet character χ	18
4	Endgame	21

Chapter 1

Preliminaries

We shall introduce a few preliminaries here which will list some of the theorems and facts used throughout this thesis.

1. Let G be a finite Abelian group. Then a character on G is a function $e: G \to S^1$ (the set of complex numbers of modulus 1) such that

$$\forall a, b \in G, e(a)e(b) = e(ab).$$

We denote the set of characters of G, \hat{G} .

2. We define $\hat{f}:G\to\mathbb{C}$ by

$$\hat{f}(e) = \frac{1}{|G|} \sum_{a \in G} f(a) \overline{e(a)}.$$

This $\hat{f}(e)$ is said to be the Fourier coefficient of f with respect to e.

3. Suppose G is a finite Abelian group and $f:G\to\mathbb{C}$ is a function. Then we can write f as

$$f = \sum_{e \in \hat{G}} \hat{f}(e)e.$$

The sum on the right hand side is called the Fourier series of f. (The characters e form an orthonormal basis for the vector space V of functions from G to \mathbb{C} , so we can write $f = \sum_{e \in \hat{G}} c_e e$. An inner product on V is defined by $(f,g) = \frac{1}{|G|} \sum_{a \in G} f(a) \overline{g(a)}$ and we have $(f,e) = c_e$ which gives us the result.)

- 4. $\{f_n\}$ is a sequence of functions, differentiable on (a,b) such that $\{f_n(x_0)\}$ is convergent for some $x_0 \in [a,b]$. If $\{f'_n\}$ converges uniformly on (a,b), then $\{f_n\}$ converges to f uniformly on (a,b) and $f'(x) = \lim_{n \to \infty} f'_n(x)$.
- 5. A multiplicative function $f: \mathbb{N} \to \mathbb{C}$ is one which satisfies the condition that $\forall a, b \in \mathbb{N}$ such that $\gcd(a, b) = 1$, f(a)f(b) = f(ab). If f is multiplicative, then so is $F(n) = \sum_{d|n} f(d)$.
- 6. Let f be a multiplicative arithmetic function such that the series $\sum f(n)$ be absolutely convergent. Then the sum of the series can expressed as an absolutely convergent infinite product,

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} \{1 + f(p) + f(p^2) + \dots \},\,$$

where the product is taken over all primes. If f is completely multiplicative (i.e. for all $a, b \in \mathbb{N}, f(a)f(b) = f(ab)$) then we have

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} \frac{1}{1 - f(p)}.$$

See [2] for a proof.

7. The characters of a finite abelian group G form a basis for the vector space of functions on G whose dimension is |G|. So, the number of characters is finite.

Chapter 2

A few identities

Definition: For |z| < 1, define $\log_1 \frac{1}{1-z} = \sum_{k=1}^{\infty} \frac{z^k}{k}$.

We note that the radius of convergence of the above power series is 1, so it converges for |z| < 1. It can thus be differentiated term by term within the region |z| < 1.

Theorem 2.1: $\exp\left(\log_1 \frac{1}{1-z}\right) = \frac{1}{1-z}$.

Proof: Write $z = re^{i\theta}$ where $\theta \in [0, 2\pi]$ and 0 < r < 1. We define

$$f(r) = (1 - re^{i\theta})e^{\log_1 \frac{1}{1 - re^{i\theta}}} = (1 - re^{i\theta})e^{\sum_{k=1}^{\infty} \frac{(re^{i\theta})^k}{k}}$$

We differentiate f(r) to get $f'(r) = -e^{i\theta}e^{\sum_{k=1}^{\infty}\frac{(re^{i\theta})^k}{k}} + (1 - re^{i\theta})(e^{\sum_{k=1}^{\infty}\frac{(re^{i\theta})^k}{k}})' = -e^{i\theta}e^{\sum_{k=1}^{\infty}\frac{(re^{i\theta})^k}{k}} + (1 - re^{i\theta})e^{i\theta}\sum_{k=1}^{\infty}(re^{i\theta})^{k-1}e^{\sum_{k=1}^{\infty}\frac{(re^{i\theta})^k}{k}}$

Since $\sum_{k=1}^{\infty} (re^{i\theta})^{k-1} = \frac{1}{1 - re^{i\theta}}$, we see that f'(r) = 0 and hence f(r) = c for some constant c. We put r = 0 and see that f(0) = 1 and hence c = 1.

Theorem 2.2: If |z| < 1, $\log_1 \frac{1}{1-z} = z + E(z)$, where $|E(z)| \le |z|^2$ if $|z| < \frac{1}{2}$.

Proof: Let
$$E(z) = \log_1 \frac{1}{1-z} - z$$
. Thus $|E(z)| = \left| \sum_{k=2}^{\infty} \frac{z^k}{k} \right| \le \sum_{k=2}^{\infty} \left| \frac{z^k}{k} \right| \le \sum_{k=2}^{\infty} \left| \frac{z^k}{2} \right| = \sum_{k=2}^{$

 $\frac{|z|^2}{2} \frac{1}{1-|z|}$. Since $|z| < \frac{1}{2}$, $\frac{1}{1-|z|} < 2$ and hence $|E(z)| \le |z|^2$.

Theorem 2.3: For $|z| < \frac{1}{2}$, $|\log_1 \frac{1}{1-z}| \le 2|z|$.

Proof Let $\log_1 \frac{1}{1-z} = y(z)$.

 $y(z)=z+E(z) \implies y(z)/z=1+E(z)/z \implies |\frac{y(z)}{z}|=|1+\frac{E(z)}{z}| \leq 1+|\frac{E(z)}{z}| \leq 1+|z| \leq 2 \text{ which proves our claim.}$

Theorem 2.4: If $\sum |a_n|$ converges and $a_n \neq 1$ for all n, then $\prod_{n=1}^{\infty} \frac{1}{1-a_n}$ converges. Also, the product is non-zero.

Proof Since $\sum |a_n|$ converges, $|a_n|$ and hence $a_n \to 0$. Therefore, for sufficiently large N, $|a_n| < \frac{1}{2}$ for all $n \ge N$. so, without loss of generality, assume that $|a_n| < 1/2$

$$\prod_{1}^{k} \frac{1}{1 - a_n} = \prod_{1}^{k} \exp\left(\log_1 \frac{1}{1 - a_n}\right) = \exp\left(\sum_{1}^{k} \log_1 \frac{1}{1 - a_n}\right)$$

Note that $|\log_1 \frac{1}{1-a_n}| \le 2|a_n|$ for $n \ge N$ as $|a_n| < 1/2$ and by the comparison test, $\sum_{n=1}^{\infty} \log_1 \frac{1}{1-a_n}$ converges to say, A. Since the exponential function $\exp: \mathbb{C} \to \mathbb{C}$ is continuous, $\exp(\sum_{n=1}^{\infty} \log_1 \frac{1}{1-a_n}) \to \exp(A) \ne 0$

2.1 Estimates of some sums and products

Theorem 2.5: For $N \in \mathbb{N}$, $\sum_{1 \le n \le N} \frac{1}{n} = \log N + O(1) = \log N + \gamma + O(\frac{1}{N})$ and this γ is called the Euler's constant.

Proof Define $\gamma_n = \frac{1}{n} - \int_n^{n+1} \frac{\mathrm{d}x}{x}$. Since 1/x is decreasing on [n, n+1], $1/n \ge \int_n^{n+1} \frac{\mathrm{d}x}{x} \ge 1/(n+1)$. Therefore, $0 \le \gamma_n \le \frac{1}{n} - \frac{1}{n+1} \le \frac{1}{n^2}$ and by the comparison test, $\sum \gamma_n$ converges to some γ .

Write
$$\gamma = \sum_{n=1}^{\infty} \gamma_n = \sum_{n=1}^{N} \gamma_n + \sum_{n=N+1}^{\infty} \gamma_n = \sum_{n=1}^{N} \frac{1}{n} - \int_1^{N+1} \frac{\mathrm{d}x}{x} + \sum_{n=N+1}^{\infty} \gamma_n = \sum_{n=1}^{N} \frac{1}{n} - \int_1^{N} \frac{\mathrm{d}x}{x} + \sum_{n=N+1}^{\infty} \gamma_n - \int_N^{N+1} \frac{\mathrm{d}x}{x}$$

From this, we get $\gamma + \log N - \sum_{n=1}^{N} \frac{1}{n} = \sum_{n=N+1}^{\infty} \gamma_n - \int_{N}^{N+1} \frac{\mathrm{d}x}{x}$ and we will show that each term on the right is O(1/N).

 $\int_{N}^{N+1} \frac{\mathrm{d}x}{x} \le 1/N \text{ and so it is } O(1/N). \text{ Also, } \sum_{n=N+1}^{\infty} \gamma_n \le \sum_{n=N+1}^{\infty} \frac{1}{n^2} \le \int_{N}^{\infty} \frac{\mathrm{d}x}{x^2} = 1/N \text{ which makes this sum } O(1/N).$

Theorem 2.6: If N is a natural number, then

$$\sum_{n=1}^{N} \frac{1}{n^{\frac{1}{2}}} = 2N^{\frac{1}{2}} + c + O(1/N^{\frac{1}{2}})$$

for some constant c.

The proof is a repetition of the previous proposition.

Before we prove the next theorem, let us consider a function $F: \mathbb{Z} \times \mathbb{Z} \to \mathbb{C}$. The sum $S_N = \sum \sum F(m,n)$ where the sum is taken over pairs of (m,n) where $mn \leq N$. We can find S_N in three ways:

1. Along hyperbolas:

$$S_N = \sum_{1 \le k \le N} \left(\sum_{nm=k} F(m, n) \right)$$

2. Vertically:

$$S_N = \sum_{1 \le m \le N} \left(\sum_{1 \le n \le N/m} F(m, n) \right)$$

3. Horizontally:

$$S_N = \sum_{1 \le n \le N} \left(\sum_{1 \le m \le N/m} F(m, n) \right)$$

Theorem 2.7: If $k \in \mathbb{N}$, then $\frac{1}{N} \sum_{k=1}^{N} d(k) = \log N + O(1) = \log N + (2\gamma - 1) + O(1/N^{\frac{1}{2}})$ where d(k) is the number of positive divisors of k.

Proof Define $S_N = \sum_{k=1}^N d(k) = \sum_{k=1}^N \sum_{nm=k} 1 = \sum_{1 \le m \le N} \sum_{1 \le n \le N/m} 1$ (Summing up vertically) = $\sum_{1 \le m \le N} \lfloor \frac{N}{m} \rfloor = \sum_{1 \le m \le N} (\frac{N}{m} + O(1)) = N \sum_{1 \le m \le N} + NO(1) \implies \frac{S_N}{N} = \log N + O(1)$

The harder part is to prove the second one.

We can divide the sum S_N into three sums: $S_I = \sum_{1 \le m < N^{\frac{1}{2}}} \sum_{N^{\frac{1}{2}} < n \le N/m} 1$, $S_{II} = \sum_{1 \le m \le N^{\frac{1}{2}}} \sum_{1 \le n \le N/m} 1$ and $S_{III} = \sum_{N^{\frac{1}{2}} < m \le N/n} \sum_{1 \le n < N^{\frac{1}{2}}} 1$ i.e. $S_I + S_{II} + S_{III} = S_N$. By symmetry, $S_I = S_{III}$ and we have $S_N = S_I + S_{II} + S_{III} = 2(S_I + S_{II}) - S_{II}$. Note that $S_I + S_{II} = \sum_{1 \le m \le N^{\frac{1}{2}}} \sum_{1 \le n \le N/m} 1 = \sum_{1 \le m \le N^{\frac{1}{2}}} \lfloor N/m \rfloor = \sum_{1 \le m \le N^{\frac{1}{2}}} (N/m + O(1)) = N \sum_{1 \le m \le N^{\frac{1}{2}}} 1/m + O(N^{\frac{1}{2}}) = N \log N^{\frac{1}{2}} + N\gamma + O(N^{\frac{1}{2}})$ (using Theorem 2.5) Also, $S_{II} = N$ and so have our result.

This, off it and so have our result.

Theorem 2.8: For every s > 1, we have

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}},$$

where the product is taken over all primes.

Proof Consider (6) in chapter 1, preliminaries. Take $f(n) = \frac{1}{n^s}$ and we are done.

Theorem 2.9

$$\sum_{p} \frac{1}{p}$$
 diverges.

Proof Note that

$$\prod_{p} \frac{1}{1 - p^{-s}} = \zeta(s)$$

implies $\log \zeta(s) = \log \prod_p \frac{1}{1-p^{-s}}$. Then $\lim_{N \to \infty} \prod_{p \le N} \log \frac{1}{1-p^{-s}} = \log \prod_p \frac{1}{1-p^{-s}}$. So, we have $\lim_{N \to \infty} \log \prod_{p \le N} \frac{1}{1-p^{-s}} = \lim_{N \to \infty} \sum_{p \le N} \log \left(\frac{1}{1-p^{-s}}\right) = \sum_p \log \left(\frac{1}{1-p^{-s}}\right) = \log \prod_p \frac{1}{1-p^{-s}}$

Simplifying, we get $\log \zeta(s) = -\sum_p \log(1 - \frac{1}{p^s}) = -\sum_p (-\frac{1}{p^s} + E_p)$ where $|E_p| \le \frac{1}{p^{2s}}$. Summing it, we get $\log \zeta(s) = \sum_{p \text{ prime}} \frac{1}{p^{2s}} + O(1)$ as $s \to 1+$ by comparing $\sum 1/p^{2s}$ with the convergent sum $\sum 1/n^s$ as s > 1.

We now wish to show that $\zeta(s)$ diverges as $s \to 1+$.

We consider a sequence $s_n \to 1$, $s_n > 1$.

We see that $\sum_{n=1}^{\infty} \frac{1}{n^s} \ge \sum_{n=1}^{M} \frac{1}{n^s}$ for every natural number M.

 $\text{In particular, } \sum_{n=1}^{\infty} \frac{1}{n^{s_n}} \geq \sum_{n=1}^{M} \frac{1}{n^{s_n}} \text{ and so } \liminf_{k \to \infty} \sum_{n=1}^{\infty} \frac{1}{n^{s_k}} \geq \liminf_{k \to \infty} \sum_{n=1}^{M} \frac{1}{n^{s_k}} = \sum_{n=1}^{M} \frac{1}{n}.$

Since this works for any $M \in \mathbb{N}$, we infer that $\liminf_{k \to \infty} \sum_{n=1}^{\infty} \frac{1}{n^{s_k}} \ge \sum_{n=1}^{\infty} \frac{1}{n}$.

Also, recall that $\sum 1/n$ diverges.

As a result, $\zeta(s_n)$ diverges as $s_n \to 1+$, so $\log \zeta(s_n)$ diverges as $s_n \to 1+$ and hence $\liminf_{n \to \infty} \sum_p \frac{1}{p^{s_n}}$ diverges and since $\liminf_{n \to \infty} \sum_p \frac{1}{p^{s_n}} \le \sum_p \frac{1}{p}$, we get that $\sum_p \frac{1}{p}$ diverges.

Chapter 3

L – functions and their properties

3.1 Some properties of L – functions

Before we define L – functions, we define Dirichlet characters. Recall that given a group G, a character on G is a function $e: G \to S^1$ such that for all $a, b \in G$, e(a)e(b) = e(ab).

Let $q \in \mathbb{N}$ and $G = Z^*(q)$ (the group of units modq). A Dirichlet character modulo q is a function $\chi : \mathbb{Z} \to \mathbb{C}$ such that $\chi(n) = \begin{cases} e(n) & \text{if } n \in G \\ 0 & \text{otherwise} \end{cases}$

An L-function for a fixed Dirichlet character, χ modulo q and s > 0 is a function $L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$. Throughout the rest of the text, we will only use Dirichlet characters modulo q.

Theorem 3.1: For s > 1, $L(s, \chi) = \prod_{p} \frac{1}{1 - \chi(p)p^{-s}}$ where the product is taken over primes.

Proof Consider (6) in chapter 1, preliminaries. Take $f(n) = \frac{\chi(n)}{n^s}$ and we are done.

Theorem 3.2: Suppose, χ_0 is the trivial Dirichlet character given by

$$\chi_0 = \begin{cases} 1 & \gcd(n, q) = 1 \\ 0 & \text{otherwise} \end{cases}$$

and $q = p_1^{a_1} \dots p_N^{a_N}$ is the prime factorisation of q. Then $L(s, \chi_0) = (1 - p_1^{-s}) \dots (1 - p_N^{-s}) \zeta(s)$. Therefore $L(s, \chi_0) \to \infty$ as $s \to 1+$.

Proof By the previous theorem, $L(s,\chi) = \prod_{p} \frac{1}{1-\chi(p)p^{-s}}$. Let $q = p_1^{a_1} \dots p_N^{a_N}$, q > 1. Notice that $\chi(p_k) = 0$, $1 \le k \le N$. So,

$$L(s,\chi_0) = \prod_{p \neq p_1,\dots,p_N} \frac{1}{1 - \chi_0(p)p^{-s}} = \prod_{p \neq p_1,\dots,p_N} \frac{1}{1 - p^{-s}}$$

which shows that $L(s, \chi_0)((1 - p_1^{-s}), \dots, (1 - p_N^{-s}))^{-1} = \zeta(s) \to \infty$ as $s \to 1+$ which proves our claim.

Theorem 3.3: Let χ be a non-trivial Dirichlet character modulo q. Then

$$|\sum_{n=1}^{k} \chi(n)| \le q$$

for any $k \in \mathbb{N}$.

Proof Let $S = \sum_{n=1}^{q} \chi(n)$. Since χ non-trivial, we can choose a such that $\chi(a) \neq 1, 0$. The product $S\chi(a) = \sum_{n=1}^{q} \chi(n)\chi(a) = \sum_{n=1}^{q} \chi(na) = \sum_{n=1}^{q} \chi(n) = S$ and so S = 0. Given $k \in \mathbb{N}$, we can write $k = aq + b, 0 \leq b \leq q$. So,

$$\left| \sum_{n=1}^k \chi(n) \right| = \left| \sum_{n=1}^{qa} \chi(n) + \sum_{aq < n \le aq + b} \chi(n) \right| = \left| \sum_{aq < n \le aq + b} \chi(n) \right| \le \sum_{aq < n \le aq + b} |\chi(n)| \le b < q.$$

Theorem 3.4: Let χ be a non-trivial Dirichlet character. Then the series $\sum_{n=1}^{\infty} \frac{X(n)}{n^s}$ converges for s > 0 and satisfies

(i) $L(s,\chi)$ is continuously differentiable on $0 < s < \infty$ and

(ii) There exists a constant c such that

$$L(s,\chi) = 1 + O(e^{-cs})$$

and

$$L'(s,\chi) = O(e^{-cs}).$$

Proof We begin by showing that $\sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ is convergent for s > 0.

Define $s_n = \sum_{k=1}^n \chi(k)$ and $s_0 = 0$. By Theorem 3.3, $|s_n| \le q$.

$$\sum_{n=1}^{N} \frac{\chi(n)}{n^s} = \sum_{n=1}^{N-1} \frac{s_n - s_{n-1}}{n^s} = \sum_{n=1}^{N} (\frac{s_n}{n^s} - \frac{s_n}{(n+1)^s}) + \frac{s_N}{N^s} \text{ and so } |\sum_{n=1}^{N} \frac{\chi(n)}{n^s}| \le q \sum_{n=1}^{N-1} |\frac{1}{n^s} - \frac{1}{(n+1)^s}| + |\frac{s_N}{N^s}|. \text{ Define } a_n = \frac{s_n}{n^s} - \frac{s_n}{(n+1)^s}$$

Now, consider $f(x) = x^{-s}$ on \mathbb{R} . $f'(x) = -sx^{-s-1}$, so applying the mean value theorem, $|f(n+1) - f(n)| = sc^{-s-1}$ where $c \in (n, n+1)$ which proves that $|a_n| \le qsn^{-s-1}$ which implies that $\sum a_n < \infty$ by the comparison test.

As a result, $\sum_{n=1}^{N} \frac{\chi(n)}{n^s}$ is convergent $\left(\left|\frac{s_N}{N^s}\right| \leq \left|\frac{q}{N^s}\right|$ which goes to 0 as $N \to \infty$)

Define $f_n:(0,\infty)\to\mathbb{C}$ by $f_n(s)=\sum_{k=1}^n\frac{\chi(k)}{k^s}$ and $f(s):=L(s,\chi)$. We note that $f_n(s)\to f(s)$ pointwise and that $f_n(s)$ converges for s>0 by what we proved earlier.

We wish to show that $\{f'_n\}$ converges uniformly.

$$f_N'(s) = -\sum_{n=1}^N (\log n) \frac{\chi(n)}{n^s} = -\sum_{n=1}^{N-1} s_n \left(\frac{\log n}{n^s} - \frac{\log(n+1)}{(n+1)^s} \right) - \log N \frac{s_N}{N^s}.$$
 The term on the right goes to 0 as $N \to \infty$.

We now consider

$$s_k \left[-k^{-s} \log k + (k+1)^{-s} \log(k+1) \right]$$

Let $g(x) = x^{-s} \log x$. Then, $g'(x) = -sx^{-s-1} \log x + x^{-s-1} = x^{-s-1}(-s \log x + 1)$. Using the mean value theorem, $\exists x \in (k, k+1)$ such that |g(k+1) - g(k)| = |g'(x)|.

We note that for $s > \delta > 0$, $|g'(x)| = |x^{-s-1}(-s\log x + 1)| \le k^{-\delta-1}|(-s\log x + 1)|$ The result of the product is $O(-k^{\delta/2-1})$ which proves our claim.

Now, $L(s,\chi) = 1 + \sum_{k=2}^{\infty} \frac{\chi(k)}{k^s}$ which means that $|L(s,\chi) - 1| = |\sum_{k=2}^{\infty} \frac{\chi(k)}{k^s}| \le \sum_{k=2}^{\infty} \frac{1}{k^s}$.

We claim that $\sum_{k=2}^{\infty} \frac{1}{k^s} \to 0$ as $s \to \infty$.

$$\sum_{k=2}^{\infty} \frac{1}{k^s} = \left(\frac{1}{2^s} + \frac{1}{3^s}\right) + \left(\frac{1}{4^s} + \frac{1}{5^s}\right) + \dots \le \frac{2}{2^s} + \frac{2}{4^s} + \frac{2}{6^s} + \dots = \frac{2}{2^s} \left(\sum_{k=1}^{\infty} \frac{1}{k^s}\right) \text{ and } \sum_{k=1}^{\infty} \frac{1}{k^s}$$

converges to say C since s is large. Therefore, $\sum_{k=2}^{\infty} \frac{1}{k^s} \leq 2C/2^s = 2Ce^{-cs}$ which proves our claim that $L(s,\chi) = 1 + O(e^{-cs})$ for some constant c.

$$L'(s,\chi) = -\sum_{k=2}^{n} \frac{\log k\chi(k)}{k^s} \text{ and so } |L(s,\chi)| \le \sum_{k=2}^{n} \frac{\log k}{k^s} \le \sum_{k=2}^{n} \frac{1}{k^s} \text{ and so } L'(s,\chi) = O(e^{-cs}).$$

Theorem 3.5: Let $\delta_l : \mathbb{Z} \to \mathbb{Z}$ by

$$\delta_l(n) = \begin{cases} 1 & \text{if } n \equiv l \bmod q \\ 0 & \text{otherwise} \end{cases}$$

We claim that

$$\delta_l(n) = \frac{1}{\phi(q)} \sum_{\chi} \overline{\chi(l)} \chi(n).$$

Proof We restrict this function to the group $\mathbb{Z}^*(q)$ and expand this function in a Fourier series as

$$\delta_l(n) = \sum_{e \in \hat{G}} \hat{\delta}_l(e) e(n)$$

where

$$\delta_l(n) = \frac{1}{|G|} \sum_{m \in G} \delta_l(m) \overline{e(m)} = \frac{1}{|G|} \overline{e(l)}$$

which allows us to write

$$\delta_l(n) = \frac{1}{|G|} \sum_{e \in \hat{G}} \overline{e(l)} e(n)$$

Now, any Dirichlet character on G will be of the form $\chi(m) = e(m)$ if gcd(m,q) = 1 and 0 otherwise. Since $l \in G$, l and q are coprime and hence we get $\chi(l) = e(l)$ and

for the same reason $\chi(m) = e(m)$ when m and q are coprime. If not, $\chi(m) = 0$. So we can rewrite our sum as

$$\delta_l(n) = \frac{1}{\phi(q)} \sum_{\chi} \overline{\chi(l)} \chi(n)$$

We define for s > 1,

$$\log_2 L(s,\chi) = -\int_s^\infty \Re \frac{L'(t,\chi)}{L(t,\chi)} dt - i \int_s^\infty \Im \frac{L'(t,\chi)}{L(t,\chi)} dt,$$

where $\Re(z)$ and $\Im(z)$ denote the real and complex parts of z.

For now, we assume that the integrals are convergent and derivative of $\log_2 L(s,\chi)$ is $L(s,\chi)$. Those calculations are done in chapter 4.

Theorem 3.6: If s > 1, then

$$\exp(\log_2 L(s, \chi)) = L(s, \chi).$$

Further

$$\log_2 L(s,\chi) = \sum_p \log_1 \left(\frac{1}{1 - \chi(p)/p^s} \right).$$

Proof Differentiating $\exp(-\log_2 L(s,\chi))L(s,\chi)$ we get

$$-\frac{L'(s,\chi)}{L(s,\chi)}\exp(-\log_2 L(s,\chi))L(s,\chi) + \exp(-\log_2 L(s,\chi))L'(s,\chi)$$

which is 0 (by Theorem 3.1, $L(s,\chi) \neq 0$). Therefore, $\exp(-\log_2 L(s,\chi))L(s,\chi) = c$ for some constant c.

We claim that $\exp(-\log_2 L(s,\chi)) \to 1$ as $s \to \infty$. $(|L(s,\chi)| \to 1$, so that would imply that $\exp(-\log_2 L(s,\chi))L(s,\chi) \to 1$ as $s \to \infty$.

For large s, since t > s, $\left| \frac{L'(t,\chi)}{L(t,\chi)} \right| = O(e^{-ct})$. So we get that $\left| \int_s^\infty \Re\left(\frac{L'(t,\chi)}{L(t,\chi)}\right) \mathrm{d}t \right| \le \int_s^\infty \left| \frac{L'(t,\chi)}{L(t,\chi)} \right| \mathrm{d}t \le \int_s^\infty e^{-et} \mathrm{d}t = \frac{e^{-cs}}{c} \to 0 \text{ as } s \to \infty, \text{ where the real part of complex number } z \text{ is } \Re(z)$. Therefore, $\log_2 L(s,\chi) \to 0 \text{ as } s \to \infty$ which proves our claim above.

We claim that $\sum_{p} \log_1\left(\frac{1}{1-\chi(p)/p^s}\right)$ converges. By Theorem 2.3, we get $\left|\log_1\left(\frac{1}{1-\chi(p)/p^s}\right)\right| \leq \left|\frac{\chi(p)}{p^s}\right| \leq \frac{1}{p^s}$ for large p since for large p, $\left|\frac{\chi(p)}{p^s}\right| \leq 1/p^s$ and $\sum_{p} \frac{1}{p^s} \leq \sum_{n} \frac{1}{n^s} < \infty$ and so by the comparison test, $\sum_{p} \log_1\left(\frac{1}{1-\chi(p)/p^s}\right)$ converges.

So, we take
$$\exp\left(\sum_{p}\log_{1}(\frac{1}{1-\chi(p)/p^{s}})\right) = \prod_{p}\exp\left(\log_{1}(\frac{1}{1-\chi(p)/p^{s}})\right) = \prod_{p}\frac{1}{1-\chi(p)/p^{s}}$$
 (Using Theorem 3.1, this is) = $L(s,\chi) = \exp\left(\log_{2}L(s,\chi)\right)$, so there exists $M(s) \in \mathbb{Z}$ such that $\log_{2}L(s,\chi) - \sum_{p}\log_{1}(\frac{1}{1-\chi(p)/p^{s}}) = 2\pi i M(s)$

We will show that that both $\log_2 L(s,\chi)$ and $\sum_p \log_1 \left(\frac{1}{1-\chi(p)/p^s}\right)$ are both continuous functions of s.

Let
$$s_n \to s, s_n > 0$$
. Consider the difference $\left| \int_s^\infty \Re\left(\frac{L'(t,\chi)}{L(t,\chi)} dt - \int_{s_n}^\infty \Re\left(\frac{L'(t,\chi)}{L(t,\chi)}\right) dt \right| = \left| \int_s^{s_n} \Re\left(\frac{L'(t,\chi)}{L(t,\chi)}\right) dt \right| \le \int_s^{s_n} \left| \frac{L'(t,\chi)}{L(t,\chi)} \right| dt$

By the property of Riemann integrability, we get that the integral on the right goes to 0 as $s_n \to s$ (using the property that for integrable f, $g(s) = \int_a^s f(x) dx$ is continuous). Similarly, the imaginary part of $\log_2 L(s,\chi)$ is also continuous in s and so $\log_2 L(s,\chi)$ is continuous.

Now, recall that the number of primes is infinite and an infinite subset of \mathbb{N} , hence countable. So we can label the primes as p_1, p_2 and so on. In fact, we can use the calculations above to note that the sequence of functions, $\{f_n\}$ defined by $f_n(s) = \sum_{k=1}^n \log_1 \frac{1}{1-\chi(p_k)/p_k^s}$ on $(1,\infty)$ is uniformly convergent to $\sum_p \log_1 (\frac{1}{1-\chi(p)/p^s})$ and since each of these f_n 's is continuous, we are done.

As we proved earlier, we have $\log_2 L(s,\chi) - \sum_p \log_1 \left(\frac{1}{1-\chi(p)/p^s}\right) = 2\pi i M(s)$. As $s\to\infty$, both the expressions on the LHS $\to 0$ and hence M(s)=0.

Lemma 3.1 The number of Dirichlet characters modulo q is finite.

Proof Since the number of characters is finite on $G = \mathbb{Z}^*(q)$, by chapter 1, preliminary 7, the number of Dirichlet characters is also finite.

3.2 $L(1,\chi) \neq 0$ for non-trivial, complex Dirichlet character χ

Here, we use proof by contradiction to prove our result.

Lemma 3.2 If s > 1, then we have

$$\prod_{\chi} L(s,\chi) \ge 1$$

where the product is over all Dirichlet characters. In particular, the product is real.

Proof: We know by Theorem 3.6 that

$$L(s,\chi) = \exp\left(\sum_{p} \log_1\left(\frac{1}{1-\chi(p)/p^s}\right)\right)$$

and hence we can write $\prod_{\chi} L(s,\chi) = \exp\left(\sum_{\chi} \sum_{p} \log_1\left(\frac{1}{1-\chi(p)/p^s}\right)\right) = \exp\left(\sum_{\chi} \sum_{p} \sum_{k=1}^{\infty} \frac{1}{k} \frac{\chi(p^k)}{p^{ks}}\right)$ which can be written as

$$\exp\Big(\sum_{p}\sum_{k=1}^{\infty}\sum_{\chi}\frac{\chi(p^k)}{kp^{ks}}\Big).$$

We know that if $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |a_{jk}| < \infty$, then $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{jk}$. To check that exchange the order of summation as above is valid, since the number of Dirichlet characters modulo q is finite, it is sufficient to check for a fixed χ , $\sum_{p} \sum_{k=1}^{\infty} |\frac{\chi(p^k)}{kp^{ks}}| < \infty$

Note that $\left|\frac{\chi(p^k)}{kp^{ks}}\right| \leq \left|\frac{1}{kp^{ks}}\right| \leq \left|\frac{1}{p^{ks}}\right|$ and $\sum_{k=1}^{\infty} \left|\frac{1}{p^{ks}}\right| = \frac{1}{p^{s-1}}$. Next, we see that by comparing with $\sum \frac{1}{p^s}$, $\sum_{r} \frac{1}{p^s-1}$ converges which proves our claim.

Taking l=1 in Theorem 3.5, we get $\sum_{\chi} \chi(p^k) = \phi(q)\delta_1(p^k)$ and so we get

$$\prod_{\chi} L(s,\chi) = \exp\Big(\phi(q) \sum_{p} \sum_{k=1}^{\infty} \frac{\delta_1(p^k)}{kp^{ks}}\Big).$$

In fact the calculation above allows us to say that the double-sum inside is finite. Also δ_1 gives a positive value and hence the product of these L functions at s is non-negative and real.

Lemma 3.3 The following properties hold:

- 1. If $L(1,\chi) = 0$, then $L(1,\overline{\chi}) = 0$.
- 2. If χ is a non-trivial Dirichlet character and $L(1,\chi)=0$, then $|L(s,\chi)|\leq C|s-1|$ when $1\leq s\leq 2$.
- 3. For the trivial Dirichlet character χ_0 , we have

$$|L(s,\chi_0)| \le \frac{C}{s-1}$$

when $1 < s \le 2$.

Proof The first one follows from

$$\overline{\sum_{n=1}^{\infty} a_n} = \sum_{n=1}^{\infty} \overline{a_n}.$$

For the second one, recall that $L(s,\chi)$ is C^1 . If s=1, we are done. If not, by the mean value theorem, there exists $c\in(1,s)$, $|L(s,\chi)-L(1,\chi)|=|L'(c,\chi)||s-1|$. Now, $1\leq s\leq 2$ and since $L'(s,\chi)$ is continuous, on the compact interval [1,2], there exists M>0 such that $|L'(c,\chi)|\leq M$ which proves our claim.

For (3), recall from theorem 3.2 that

$$L(s,\chi_0) = (1 - p_1^{-s}) \dots (1 - p_N^{-s})\zeta(s)$$

where $p_1^{a_1} \dots p_N^{a_N}$ is the prime factorisation of q. We estimate $\zeta(s)$.

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \le 1 + \int_1^{\infty} \frac{\mathrm{d}x}{x^s} = 1 + \frac{1}{s-1} \le k \frac{1}{s-1}$$

for large k and this shows (3) is true.

Now, we prove that $L(s,\chi_1) \neq 0$. Suppose not. Then $L(1,\chi_1) = 0$.

We can write $\prod_{\chi} L(s,\chi) = L(s,\chi_1)L(s,\overline{\chi_1})L(s,\chi_0)K$ since the rest of the product converges. As a result, $|L(s,\chi_1)||L(s,\overline{\chi_1})|L(s,\chi_0)| \leq C|s-1|$ which goes to 0 as $s \to 1+$ and so the whole product goes to 0 which contradicts Lemma 3.1. So, $L(1,\chi) \neq 0$.

$L(1,\chi) \neq 0$ for non-trivial, real Dirichlet char-3.3 acter χ

To prove theorem, we will require a couple of lemmas.

Lemma 3.4 $\sum_{n|k} \chi(n) \ge 0$ for all k. In fact, it is ≥ 1 if $k = l^2$ for some $l \in \mathbb{Z}$.

Proof We recall that if f(n) is multiplicative, so is $\sum_{d|n} f(d)$. Note that $\chi(n)$ is multiplicative, so we ought to compute $\sum_{n|n^a} \chi(n)$ where p is a prime. We see that

$$\sum_{n|p^a} \chi(n) = 1 + \chi(p) + \dots + \chi(p^a)$$
 and the sum is equal to

$$\begin{cases} a+1 & \chi(p)=1\\ 1 & \chi(p)=-1 \text{ and } a \text{ is even}\\ 0 & \chi(p)=-1 \text{ and } a \text{ is odd}\\ 1 & \text{if } \chi(p)=0 \text{, that is } p|q\\ \text{For } k \text{ square, } a \text{ is even and our claim} \end{cases}$$

For k square, a is even and our claim is proved.

Lemma 3.5 For all naturals 0 < a < b we have

1.

$$\sum_{n=a}^{b} \frac{\chi(n)}{n^{\frac{1}{2}}} = O(a^{\frac{-1}{2}}).$$

2.

$$\sum_{n=a}^{b} \frac{\chi(n)}{n} = O(a^{-1}).$$

Proof Once again, we define $s_n = \sum_{n=1}^k \chi(k)$ and $|s_n| \leq q$ for all n. Then $\sum_{n=1}^{b} \frac{\chi(n)}{n^{\frac{1}{2}}} = \sum_{n=1}^{b-1} s_n \left[n^{\frac{-1}{2}} - (n+1)^{\frac{-1}{2}} \right] + O(a^{\frac{-1}{2}}).$

We will prove that $\sum_{n=a}^{b-1} s_n \left[n^{\frac{-1}{2}} - (n+1)^{\frac{-1}{2}} \right]$ is $O(a^{\frac{-1}{2}})$. For that, we notice $\left| \sum_{n=a}^{b-1} s_n \left[n^{\frac{-1}{2}} - (n+1)^{\frac{-1}{2}} \right] \right| \le q \sum_{n=a}^{b-1} \left[n^{\frac{-1}{2}} - (n+1)^{\frac{-1}{2}} \right].$

Now, consider the function $f(x) = x^{\frac{-1}{2}}$ and note that $f'(x) = \frac{-1}{2}x^{\frac{-3}{2}}$ and by the mean value theorem, $|f(n+1) - f(n)| = \frac{1}{2}x^{\frac{-3}{2}}$ for some $x \in (n, n+1)$ which means that each term in the above sum $\leq \frac{1}{2}n^{\frac{-3}{2}}$ and so the above sum is $O(\sum_{n=a}^{\infty}n^{\frac{-3}{2}})$ and we will show that this sum itself is $O(a^{\frac{-1}{2}})$.

Consider the function $f(x)=x^{\frac{-3}{2}}$. We note that $\sum_{n=a}^{\infty}n^{\frac{-3}{2}}\leq \int_{a}^{\infty}f(x)\mathrm{d}x$. The integral is $\frac{1}{2}a^{\frac{-1}{2}}$ which proves our claim. The second part has a very similar proof.

Let χ be a non-trivial Dirichlet character. Given such a character, we let

$$F(m,n) = \frac{\chi(n)}{(nm)^{\frac{1}{2}}}$$

and

$$S_N = \sum \sum F(m, n)$$

where the sum is taken over all integers $m, n \ge 1$ such that $mn \le N$.

The two lemmas above lead to the following proposition:

Theorem 3.7: The following statements are true:

- 1. $S_N \ge c \log N$ for constant c.
- 2. $S_N = 2N^{\frac{1}{2}}L(1,\chi) + O(1)$.

Proof As before, we divide our sum S_N into three parts, S_I , S_{II} and S_{III} . Summing vertically, $S_I = \sum_{m < N^{\frac{1}{2}}} \frac{1}{m^{\frac{1}{2}}} \left(\sum_{N^{\frac{1}{2}} < n \le N/m} \chi(n)/n^{\frac{1}{2}} \right)$.

 $\sum_{N^{1/2} < n \le N/m} \frac{\chi(n)}{n^{\frac{1}{2}}} = O((\lfloor N^{\frac{1}{2}} \rfloor + 1)^{\frac{-1}{2}}) \text{ by Lemma 3.5 and } \lfloor N^{\frac{1}{2}} \rfloor + 1 \ge N^{\frac{1}{2}} \text{ and raising both the sides to power } -1/2, \text{ the inequality flips and so the sum above is actually } O(N^{\frac{-1}{4}}).$

$$\left(\sum_{N^{\frac{1}{2}} < n \le N/m} \chi(n)/n^{\frac{1}{2}}\right) \text{ is } O(N^{\frac{-1}{4}}). \text{ Now, } \sum_{1 < m \le N^{1/2}} \frac{1}{m^{1/2}} = 2(\lfloor N^{1/4} \rfloor + 1) + c + 1$$

 $O(1/N^{1/2}) \le jN^{1/4} + c + O(1/N^{1/2})$ for large j. Because of that, we see that $S_I = O(1)$.

Then we sum horizontally to get
$$S_I + S_{II} = \sum_{1 \le n \le N^{\frac{1}{2}}} \frac{\chi(n)}{n^{\frac{1}{2}}} \left(\sum_{m \le N/n} \frac{1}{m^{\frac{1}{2}}} \right)$$

(which using theorem 2.6 can be written as)

$$\sum_{1 \le n \le N^{\frac{1}{2}}} \frac{\chi(n)}{n^{\frac{1}{2}}} \{ 2(N/n)^{\frac{1}{2}} + c + O((n/N)^{\frac{1}{2}} \}.$$

So, we can write
$$S_I + S_{II} = 2N^{\frac{1}{2}} \sum_{1 \le n \le N^{\frac{1}{2}}} \frac{\chi(n)}{n} + c \sum_{1 \le n \le N^{\frac{1}{2}}} \frac{\chi(n)}{n^{\frac{1}{2}}} + O(1).$$

The sum $\sum_{1 \le n \le N^{\frac{1}{2}}} \frac{\chi(n)}{n} = \sum_{1}^{\infty} \frac{\chi(n)}{n} - \sum_{N^{\frac{1}{2}} < n < \infty} \frac{\chi(n)}{n}$. The second sum on the RHS

is O(1) by lemma 3.4 while the first on the right hand side is $2N^{\frac{1}{2}}L(1,\chi)$.

By lemma 3.4 (ii), the sum $\sum_{1 \le n \le N^{\frac{1}{2}}} \frac{\chi(n)}{n^{\frac{1}{2}}}$ is O(1) which implies that $S_{II} + S_{III} = 2N^{\frac{1}{2}}L(1,\chi) + O(1)$.

Summing S_I and $S_{II} + S_{III}$, we get the desired result.

Now we show the first part of the theorem i.e $S_N \ge c \log N$ for some constant c > 0.

We sum up along hyperbolas: $\sum_{k=1}^{N} \sum_{nm=k} \frac{\chi(n)}{(nm)^{\frac{1}{2}}} = \sum_{k=1}^{N} \frac{1}{k^{\frac{1}{2}}} \sum_{n|k} \chi(n).$ Using lemma 3.3, we have $S_N \geq \sum_{k=l^2, l \leq N^{\frac{1}{2}}} \frac{1}{k^{\frac{1}{2}}} = \frac{1}{2} \log N + O(1)$ (Using Theorem 2.5) By the archimedian property, there exists large $j \in \mathbb{N}$ such that $1/j \log N \leq 1/2 \log N + O(1)$ which proves our claim.

To prove that $L(1,\chi) \neq 0$, we note that if $L(1,\chi) = 0$ then $S_N = O(1)$ i.e. some constant. However, $S_N \geq c \log N$ for some constant c > 0 implies that S_N is not bounded above, a contradiction.

Chapter 4

Endgame

Now, we wish to come to the proof of the main theorem.

Let χ be a non-trivial Dirichlet character and s>1. We define

$$\log_2 L(s,\chi) = -\int_s^\infty \Re \frac{L'(t,\chi)}{L(t,\chi)} dt - i \int_s^\infty \Im \frac{L'(t,\chi)}{L(t,\chi)} dt.$$

We know that $L(s,\chi) = \prod_{p} \frac{1}{1 - \chi(p)p^{-s}}$ and by theorem 2.4, $L(s,\chi) \neq 0$.

To prove the convergence of the integral, we note that $\frac{L'(t,\chi)}{L(t,\chi)} = O(e^{-ct})$. Recall that $L(t,\chi) = 1 + O(e^{-ct})$ so for large t, we have $|L(t,\chi)| \geq \frac{1}{2}$ and hence $\left|\frac{L'(t,\chi)}{L(t,\chi)}\right| \leq 2|L'(t,\chi)|$ which makes it $O(e^{-ct})$. Now, by continuity of both the numerator and denominator, we get that $\frac{L'(t,\chi)}{L(t,\chi)}$ is continuous on [s,t] and hence its real and imaginary parts $\Re \frac{L'(t,\chi)}{L(t,\chi)}$ and $\Im \frac{L'(t,\chi)}{L(t,\chi)}$ are continuous and hence Riemann integrable. For large enough k, we can split the integral as $\int_s^N \Re \frac{L'(t,\chi)}{L(t,\chi)} dt = \int_s^k \Re \frac{L'(t,\chi)}{L(t,\chi)} dt + \int_s^N \Re \frac{L'(t,\chi)}{L(t,\chi)} dt$.

The first integral is a real number. We need to check the convergence of the second one as $N \to \infty$. To do that, we see that the real and complex parts of the following

integrals converge

$$\left| \int_{k}^{N} \Re\left(\frac{L'(t,\chi)}{L(t,\chi)} \right) dt \right| \leq \int_{k}^{N} \left| \frac{L'(t,\chi)}{L(t,\chi)} \right| dt \leq \int_{k}^{N} e^{-ct} dt < \infty$$

and

$$\left| \int_{k}^{N} \Im \frac{L'(t,\chi)}{L(t,\chi)} \mathrm{d}t \right| \leq \int_{k}^{N} \left| \frac{L'(t,\chi)}{L(t,\chi)} \right| \mathrm{d}t \leq \int_{k}^{N} e^{-ct} \mathrm{d}t < \infty$$

so $\log_2 L(s,\chi) < \infty$.

We can now prove that the derivative of $\log_2 L(s,\chi)$ is $L(s,\chi)$. Consider the real part of $\log_2 L(s,\chi)$. As before, for large enough k, we can write $\int_s^N \Re \frac{L'(t,\chi)}{L(t,\chi)} \mathrm{d}t = \int_s^k \Re \frac{L'(t,\chi)}{L(t,\chi)} \mathrm{d}t + \int_k^N \Re \frac{L'(t,\chi)}{L(t,\chi)} \mathrm{d}t$. The second integral is a constant as $N \to \infty$, while the derivative of the Riemann integral, $\int_s^k \Re \frac{L'(t,\chi)}{L(t,\chi)} \mathrm{d}t$ is $\Re \left(\frac{L'(t,\chi)}{L(t,\chi)}\right)$ by the fundamental theorem of calculus. The imaginary part can be dealt with likewise. This proves our claim that the derivative of $\log_2 L(s,\chi)$ is $L(s,\chi)$.

Theorem 4.1: $\sum_{p} \frac{\chi(p)}{p^s}$ remains bounded as $s \to 1+$ for non-trivial Dirichlet character χ .

Proof We can write

$$\log_1\left(\frac{1}{1-\chi(p)/p^s}\right) = \sum_p \frac{\chi(p)}{p^s} + O\left(\sum_p \frac{1}{p^{2s}}\right) = \sum_p \frac{\chi(p)}{p^s} + O(1)$$

If $L(1,\chi) \neq 0$, then $\log_2 L(s,\chi)$ remains bounded as $s \to 1+$ since $\log_2 L(s,\chi)$ is continuous on $(0,\infty)$, so it is bounded on [1,2] which means $\sum_p \frac{\chi(p)}{p^s}$ remains bounded as $s \to 1+$.

Theorem 4.2 (Dirichlet's Theorem): Given $k, l \in \mathbb{N}$ such that gcd(k, l) = 1, there are infinitely many primes in the sequence $\{l + kq\}_{k \in \mathbb{N}}$.

Proof We can write

$$\sum_{p \equiv l \bmod q} \frac{1}{p^s} = \sum_{p} \frac{\delta_l(p)}{p^s} = \frac{1}{\phi(q)} \sum_{\chi} \overline{\chi(l)} \sum_{p} \frac{\chi(p)}{p^s}$$

which can be split into

$$\frac{1}{\phi(q)} \sum_{p} \frac{\chi_0(p)}{p^s} + \frac{1}{\phi(q)} \sum_{\chi \neq \chi_0} \overline{\chi(l)} \sum_{p} \frac{\chi(p)}{p^s}$$

Take $s_n \to 1, s_n > 1$.

The sum on right is finite as $s \to 1+$ by Theorem 4.1 but the sum on the left diverges: $\sum_{p} \frac{1}{p^{s_n}} \geq \sum_{p \leq N} \frac{1}{p^{s_n}}$, so we have $\liminf_{n \to \infty} \sum_{p} \frac{1}{p^{s_n}} \geq \liminf_{n \to \infty} \sum_{p \leq N} \frac{1}{p^{s_n}} = \sum_{p \leq N} \frac{1}{p}$ and since this holds for every natural number N, we have $\liminf_{n \to \infty} \sum_{p} \frac{1}{p^{s_n}} \geq \sum_{p \neq N} \frac{1}{p^{s_n}} \geq \sum_{p \neq N} \frac{1}{p}$ which diverges, proving that $\sum_{p} \frac{1}{p^s}$ diverges as $s \to 1+$. Now, $\sum_{p} \frac{\chi_0(p)}{p^s} = \sum_{p \neq N} \frac{\chi_0(p)}{p^s}$ (otherwise $\chi_0(p) = 0$) = $\sum_{p \neq N} \frac{1}{p^s}$. Let the sum of reciprocals of primes dividing q be A (it is a real number A since such primes are finite).

Then adding, we get

$$\sum_{p \text{ does not divide } q} \frac{1}{p^s} + A = \sum_{p} \frac{1}{p^s}$$

which thus converges as $s \to 1+$, a contradiction to what we showed above.

If the number of primes in the sequence l+kq were finite, the sum $\lim_{s\to 1+} \sum_{p\equiv l \bmod q} \frac{1}{p^s}$ would be finite as well. Since the sum diverges, there are infinitely many primes in that sequence.

Bibliography

- [1] E. Stein, R. Shakarchi, Fourier Analysis: An Introduction, Levant Books, 2012
- [2] T. Apostol, An Introduction to Analytic Number Theory, Narosa Publishing House, Springer International Edition 1998.
- [3] W. Rudin, *Principles of Mathematical Analysis*, McGraw Hill, International Edition, 1976.