ECE 590: Neuromorphic Computing

Lecture 9: Memristor-based Neuromorphic – Architecture

> Yiran Chen Duke University

Outline

- Paper review session agenda
- Memristor-based arrays with NoC
- Larger Implementation: PipeLayer
- Memristor-based Graph-computing

Paper Review Session Agenda

Feb. 20, 2018 (Tue.)		Feb. 22, 2018 (Thu.)	
1	Zhiyao Xie	1	Arjun Chaudhuri
2	Huanrui Yang	2	Xiong Cao
3	Wei Wen	3	Rana Elnaggar
4	Jiachen Mao	4	Naman Jain
5	Fan Chen	5	Mengyun Liu
6	Hsin-Pai Cheng	6	Xin Liu
7	Nate Inkawhich	7	Atefeh Mehrabi
		8	Jingchi Zhang

RENO Overview

- An efficient memristor-based mixed-signal accelerator is designed to speed up neuromorphic computing and support the implementations of a variety of neural network topologies;
- A mixed-signal interconnection network (M-Net) is proposed to assist the communication of computational signals among the MBCs;
- An optimized configuration is discussed and established by analyzing the impact of various design parameters on the system performance/accuracy.

Neuromorphic Computing Acceleration (NCA)

Software Support

bool Recall(float *vec, float *wm)
{ /* simulate the synapse network*/
 for(i=0;i<BsbSize;++i) wx[i] +=
 □wm[i*BsbSize+j] * vec[j];

Find the candidate codes

Source-to-source translation

bool Recall(float *vec)
{
 Send(RENO.id, vec);
 return Receive(RENO.id)

The neural topology

RENO-aware compilation

MOVD RENO.id, R1

SET RENO.id, #VAL LAUNCH DEO R1, RENO.id

DEQ R1, RENO.1d

The NCA-aware executable

System Level Evaluation

 Two implementations representing tradeoffs between computation performance and accuracy

Multi-layer perception (MLP)

Auto-associative memory (AAM)

- 7 classification benchmarks
- Classification rate is used as reliability metric

Benchmark	Description		
cancer	breast cancer diagnose		
connect-4	connect-4 game		
gene	nucleotide sequences detection		
lymphography	lymph diagnose		
MNIST	digit recognition		
mushroom	poisonous mushroom discrimination		
thyroid	thyroid diagnose		

Optimize Configuration

- Exploration of MBC size
 - Performance: large size is preferable
 - But...with decreasing classification rate
 - Because the aggravated variations at a large MBC size
 - 64x64 is the best tradeoff

Deficient Training & Hardware

- MBC training effort: Limited accuracy of training
 - MLP (a) is more sensitive than AAM (b)

- Variation: Device & Signal
 - AAM (b) is much more robust compared to MLP (a)

(device variation, signal fluctuation)

Comparison w/ Other Designs

Comparison w/ Other Designs

Example: Multilayer Perception (MLP)

- Digital NPU + Digital NOC $^{[1]}$
- MBC + Digital NoC
- RENO (MBC + Mixed-signal NoC)

PipeLayer: Motivation

- Convolutional Neural Networks (CNNs)
 - Heart of deep learning
 - Computation and memory intensive
- Resistive Random Access Memory (ReRAM) Based Acceleration
 - Capability of combined computation and storage
 - Processing in memory to reduce data movement

PipeLayer: Motivation

Limitations on Current ReRAM Based Approaches

- Do not support neural network training *#
- Deep pipeline may introduce bubbles #
- Kernel mapping was not clear *
- ➤ Analog/digital converters (ADCs & DACs) overhead *

*P. Chi et al, "PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory," ISCA 2016

#A. Shafiee et al, "ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars," ISCA 2016.

PipeLayer: Contributions of This Work

- Accelerating Both **Training** and **Testing**
- Intra- and Inter-layer Pipeline Design
- Spike-based Data Input and Output

PipeLayer [HPCA, 2017]

A Pipelined ReRAM-Based Accelerator for Deep Learning

42.5x speedup **7.17**x energy saving over GPU

PipeLayer: Kernel Mapping

PipeLayer: Intra Layer Parallelism

PipeLayer: Training Support

PipeLayer: Inter Layer Parallelism

(a) Latency of PipeLayer without pipeline

(b) Latency of PipeLayer with pipeline

EI-lab, HPCA'17

PipeLayer: Resolution Compensation

(a) Forwarding (b) Updating 4-bit 4-bit **W**3..0 $D_0 << 0$ Arrays W_{new} 4-bit 4-bit D1<<4 W7..4 Arrays Din -4-bit D2<<8 4-bit Arrays W11..8 $\leftarrow \nabla W$ Arrays 4-bit D3<<12 4-bit W_{old} W15..12 Arrays

PipeLayer: Speedup & Energy saving (vs GTX 1080)

d d

EI-lab, HPCA'17

Graph Processing

• Applications: PageRank, Breadth First Search, etc.

BFS

maximum flow problem, bipartiteness testing

PageRank

website page importance measuring

Graph Programming Models

Vertex-centric programing

Graph Programming Models

Edge-centric programing

(random access)

GraphR: Graph Representation

- 0
 0
 0
 3
 8

 1
 0
 0
 7
 0
 - 1 0 0 0
 - $0 \ 4 \ 0 \ 2$

3

0 1 2 3

- Compressed Sparse Column (CSC)
- Compressed Sparse Row (CSR)
- Coordinate List(COO)


```
(col,val) rowptr

(2,3) 0 0 0

(3,8) 1 2 1

(2,7) 2 3 2

(0,1) 3 4 3

(1,4) 4 6

(3,2) 5
```

(row,col,val) (0,2,3) (0,3,8) (1,2,7) (2,0,1) (3,1,4) (3,3,2)

GraphR: Where is it? Matrix-vector Multiplication Compressed Form (MVM) in ReRAM (row,col,val) **GraphR:** I'm Here! Χ Y=W*XStorage Efficiency Computation

Efficiency

GraphR Architecture

CTRL Controller

DRV Driver

SALU Simple ALU

S/H Sample & hold

GE Graph Engine

RegI Input register

ADC Analog to digital RegO Output register

GraphR: Parallel Processing (PageRank)

$$W = \begin{bmatrix} 0 & 4/15 & 4/15 & 4/15 \\ 2/5 & 0 & 0 & 2/5 \\ 0 & 0 & 4/5 & 0 \\ 0 & 2/5 & 2/5 & 0 \end{bmatrix}^{T}$$

 $PR_0 = [1/4 \ 1/4 \ 1/4 \ 1/4]^T$ $e = [1/20 \ 1/20 \ 1/20 \ 1/20]^T$

GraphR: Serial Processing (SSSP)

GraphR: Speedup and Energy Saving

16.01x speedup over CPU

33.82x energy saving over CPU

