neaSNOM Microscope SDK

Overview

- 1. General design SDK / DLL
- 2. Setup access to automatically updated dll of neaSNOM
- 3. LabVIEW
 - 1. Connect to neaSNOM SDK with LabVIEW
 - 2. LabVIEW example: PsHet scan routine
- 1. Python
 - 1. Installation Python and pythonnet
 - 2. Python example: AFM scan routine
- 2. Documentation

1 General design neaSNOM SDK / DLL

The general design is depicted beneath, how to access any functionality of the **neaSNOM**:

- 1. Connect to SDK
- Create Microscope with the function ,Connect()' of the SDK=> You have now access to all functionallities of the AFM e.g. AutoApproach(), GotoTipPosition()
- 3. You can now also connect to a Stage, Channel, or Scan:
 - Stage: Allows you to move any stage in the Micsocope, e.g. Parabolic mirror, sample
 - Channel: Allows you read out the current Value of any channel with CurrentValue
 - Scan: Allows you to create any Scan already implemented in the neaSNOM and you can set the parameter for the scan, e.g. AfmScan, WhitelightScan
 - 4. The function Start():
 - 1. Starts the scan
 - 2. Creates one or all images of the channels available in this scan.

2 Setup access to automatically updated dll of neaSNOM

Map Network Drive:

- 1) Click with the right mouse button on Computer in the Windows Explorer
- 2) Select Map network drive...
- 3) Name the Drive N: (any letter possible)
- 4) Connect to the following folder:

\\nea-server\updates\SDK

5) The SDK (DLL) in this loaction will be automatically updated with each **neaSCAN** update

3.1 Connect to neaSNOM with LabVIEW

3.2 LabVIEW Example: PsHet Scan Routine

After setting up the connection to the microscope all acquired Methods for standard Scan Routines and DAQ of the neaSNOM are accessible

Example PsHet Scan Routine:

- 1) Use another Invoke Node and wire it directly to Connect in the Connection Node
- 2) Choose the desired *Method* in the *Microscope* Node
- 3) In this example PreparePsHetScan() is selected as Method
- 4) Wire an Invoke Node to PreparePsHetScan()
- 5) This gives access to various scan parameters:

Set Center

Set Resolution

Set Sampling Time

Set Scan Area

... (further Settings in Documentation)

- 6) Connect all the parameters necessary for the scan in series
- 7) Wire the last PsHetScan Node with another Invoke Node and select the Start method to initiate the scan
- 8) Invoke the Images 2D Node to get access to individual channels in the GetChannel method
- 9) The String Input wired to acronym gives access to an user set Data Channel
- 10) For more than one channel, wire GetChannel methods in parallel
- 11) The path splits in two branches, data handling and scan status

□ → PsHetScan

SetScanArea

Start PsHet Scan

PsHetScan

Data Channel

Select Output Channel

→ Images2D

10

3.2 LabVIEW Example: PsHet Scan Routine

Data Handling:

- 1) Within the While Loop the data flow for each pixel is saved to a customizable file location
- 2) In parallel the Image (Image2D) of the selected Data Channel is displayed in the Front Panel

4.1 Installation Python and pythonnet

- 1. It is possible to use Python 2.7 and 3.7, but we recommend 3.7
- 2. Recommended download locations:
 - Anaconda includes already most important packages: https://www.anaconda.com/distribution/#download-section
 - Basic python (only basic packages installed): https://www.python.org/downloads/
- After installations of python, install the packacke pythonnet:
 "pip install pythonnet"

pythonnet allows python to handle the C# dll of the neaSNOM

- 4. Recommended packages to install (used in examples):
 - numpy
 - matplolib
 - scipy
 - statistics

4.2 Python example: AFM scan routine

```
# sys class for importing folder
import sys
import time
                                                                 # time class for short delay
                                                                 # pythonnet for reading C# SDK
import clr
#Basic steps to connect to Microscope
assembly folder = '//nea-server/updates/SDK'
                                                    #Import all DLLs in the folder or 'N:/updates/SDK' to mapped drive
sys.path.append(assembly folder)
                                                                 # Import all DLLs in the folder
clr.AddReference('Nea.Client.Hardware')
                                                                 # Load the main DLL
import Nea.Client.Hardware.SDK as neaSDK
                                                                 # Import the DLL as element neaSDK
neaClient = neaSDK.Connection('nea-server')
                                                                # Open up connection to microscope called neaClient
neaMic = neaClient.Connect()
                                                                 # Define the Microscope neaMIC
time.sleep(0.1)
                                                                 # Short delay makes things working fine
#Basic infos of Client and Server and print them to the console of python
ClVersion = neaMic.ClientVersion
                                                                 # get Client Version
print("Client Version: " + ClVersion)
SeVersion = neaMic.ServerVersion
                                                                 # get Server Version
print("Server Version: " + SeVersion)
#example to start auto approach after being connected
neaMic.CancelCurrentProcedure()
                                                                 # Cancel any running procedure (not obligatory)
neaMic.RegulatorOff()
                                                                 # Retract sample (not obligatory)
if not neaMic.IsInContact:
                                                                 # Check if system in contact (not obligatory)
                                                                 # Start auto approach with chosen setpoint
    neaMic.AutoApproach(setpoint)
#go out of contact and disconnect from the microscope
neaMic.RegulatorOff()
                                                                 # Retract sample
neaClient.Disconnect()
                                                                 # Disconnect from SDK
plt.show()
```

This file neaSNOM_AFMscan.py is an example for a python script how to perform, show and save an AFM Scan with the SDK containing the example above!

5 Documentation

Overview of the whole SDK functionality is documented under the following location:

\\nea-server\updates\SDK\doc\index.html

Nea.Client.Hardware

Test Bla und so.

Nea.Client.Hardware.SDK Namespace

Туре	Description
Connection	Provides a connection to remote neaSNOM controller.
Microscope	Represents a remote microscope.
Stage	Represents a stage with motors on three axes.

Nea.Client.Hardware.SDK.Images Namespace

Type	Description
Image2D	Represents a 2D image.
Image3D	Represents a 3D image.
Images <tscan,timage> Represents a collection of channels with scanned data.</tscan,timage>	
Images2D	Represents a collection of 2D images.
Images3D	Represents a collection of 3D images.
Interferogram	Represents Interferogramms.
Interferograms	Represents a collection of interferograms.
RawData	Represents a channel with scanned data.

Nea.Client.Hardware.SDK.Scan Namespace

Туре	Description
AfmScan	Represents a scan with AFM parameters.
BasicScan	Represents a scan with basic parameters.
CfmScan	Represents a scan with CFM parameters.
FourierScan	Represents a scan with Fourier parameters.
PsHetScan	Represents a scan with PsHet parameters.
Scan2D	Represents a scan with 2D parameters.
Scan3D	Represents a scan with 3D parameters.
SerpentableScan2D Represents a scan with basic parameters and optional serpent mode.	
WhitelightScan	Represents a scan with Whitelight parameters.

Neaspec GmbH

