Nucleosynthesis in Massive Stars Nucleosynthesis Data Files

Presupernova Structure

Below we provide **preliminary** data sets. Note that *part of* this data is not yet published in refereed journals and thus may be updated without notice.

We would appreciate if you contact us before using the data on this site for your publications.

The Data

internal name	presupernova structure data
s15	222 kByte
s19	162 kByte
s20	206 kByte
s21	173 kByte
s25	200 kByte
s30	<u>194 kByte</u>
s35	187 kByte
s40	134 kByte

Hydro / EOS data explanation

column	data	unit
grid	cell number	
cell outer total mass	mass coordinate at the cell top interface	g
cell outer radius	radius coordinate at the cell top interface	cm
cell outer velocity	velocity of the cell top interface	cm s ⁻¹
cell density	average density of the cell	g cm ⁻³
cell temperature	average temperature of the cell	K
cell pressure	average pressure of the cell	dyn cm ⁻²
cell specific energy	average specific energy of the cell	erg g ⁻¹
cell specific entropy	average specific entropy of cell	k _B baryon ⁻¹
cell angular velocity	average angular velocity of the cell	rad s ⁻¹
cell A_bar	average mean mass number of nuclei in the cell	1
cell Y_e	average electrons per baryon in the cell	1
stability	hydrodynamic stability of outer cell boundary	

Network data explanation

APPROX: approximative 19 isotope network

QSE: Quasi Statitstical Equilibrium

isotopes treated in three NSE subgroups which are connected by "bottleneck" reactions

137 isotope network for weak rates

NSE: Nuclear Statistical Equilibrium

137 isotope network for weak rates

column	network		
	APPROX	QSE / NSE	unit
neutrons	neutrons	neutrons	(mass fraction)
H1	¹ H	protons	(mass fraction)
He3	³ He		(mass fraction)
He4	⁴ He	1 < A < 6	(mass fraction)
C12	¹² C		(mass fraction)
N14	¹⁴ N		(mass fraction)
016	¹⁶ O	¹⁶ O (unburned yet)	(mass fraction)
Ne20	²⁰ Ne		(mass fraction)
Mg24	²⁴ Mg	22 < A < 29, excluding ²⁸ Si	(mass fraction)
Si28	²⁸ Si	²⁸ Si	(mass fraction)
S32	³² S	28 < A < 36	(mass fraction)
Ar36	³⁶ Ar	35 < A < 40	(mass fraction)
Ca40	⁴⁰ Ca	39 < A < 44	(mass fraction)
Ti44	⁴⁴ Ti	43 < A < 48	(mass fraction)
Cr48	⁴⁸ Cr	47 < A < 52	(mass fraction)
Fe52	⁵² Fe		(mass fraction)
Fe54	⁵⁴ Fe (+ ⁵⁶ Fe)	A approximately 2*Z+2, Iron Peak	(mass fraction)
Ni56	⁵⁶ Ni	A < 2*Z+2, Iron Peak	(mass fraction)
Fe56		⁵⁶ Fe only	(mass fraction)
'Fe'		A > 2*Z + 3, Iron Peak, excluding ⁵⁶ Fe	(mass fraction)

Acknowledgements: This work has been supported by the NSF (AST-9731569, INT-9726315), NASA (NAG5-8128), the DOE (B347885, W-7405-ENG-48, W-7405-ENG-36), the DOE SciDAC Program (DE-FC02-01ER41176), the Swiss National Science Foundation (2124-055832.98, 2000-061822.00) and the Alexander von Humboldt Foundation (FLF-1065004).

Alexander Heger Thursday, 26-Aug-2004 03:51:51 AEST