

Please amend the following claims:

Sub D 1. (Amended) A [scalable] routing system for distributing packets in a network,

comprising: [including

a plurality of data compilers;]

a plurality of port adapters that receive the packets [connected to said data compilers];

a plurality of route processing engines; and

a mechanism that performs a hashing function on at least a portion of network layer information in the packets to determine a distribution of the packets to the route processing engines for processing by the engines, the distribution being such that an original packet flow comprising the packets is preserved.

A2 2. (Amended) The [scalable] routing system of claim 1, including at least one uplink connection to an external network [connected to said at least one structure].

A3 3. (Amended) The [scalable] routing system of claim 1, [wherein said at least one structure includes] also including a crossbar.

A3 6. (Amended) The [scalable] routing system of claim 2, wherein [both said plurality of data compilers and] said at least one uplink connection to an external network uses [use] a hashing function to distribute packet flows among said plurality of route processing engines.

A4 9. (Amended) The [scalable] routing system of claim 1, [8, whereby] processing power of said system can be scaled by adding additional route processing engines to said plurality of route processing engines.

Sub A 11. (Amended) A [scalable] routing system for distributing packets in a network,

comprising: [including]

a plurality of network interfaces;

a plurality of route processing engines;

a fabric interconnecting said plurality of network interfaces and said plurality of route processing engines;

wherein each of said plurality of network interfaces uses a hashing function to determine a distribution of the packets [to distribute packet flows] among said plurality of route processing engines; and

wherein the hashing function is carried out on at least a portion of network layer information in the packets, and the distribution is such that an original packet flow comprising the packets is preserved [processing power of the scalable routing system can be scaled by adding additional route engines to said plurality of route processing engines].

A5 12. (Amended) The [scalable] routing system of claim 11, wherein said fabric includes a crossbar.

Sub B 15. (Amended) The [scalable] routing system of claim 11, wherein said network interfaces include [data compilers and] port adapters.

A6 16. (Amended) The [scalable] routing system of claim 15, wherein said network interfaces include at least one uplink connection to an external network.

Please add the following new claims:

Sub B 17. A method for selecting one processing engine of a plurality of processing

A7 2 engines for processing at least one packet, the method comprising the steps of:

3 examining at least a portion of network layer flow information of the at least one
4 packet; and

5 selecting the one processing engine based upon, at least in part, the portion of the
6 network layer flow information in such a way as to preserve an original packet flow
7 comprising the at least one packet.

1 18. The method of claim 17, wherein the network layer flow information com-
2 prises one or more of the following network information: a network source address of
3 the at least one packet, a network destination address of the at least one packet , a net-
4 work destination address of the at least one packet, a source port of the at least one
5 packet, and a protocol type value of the at least one packet.

1 19. The method of claim 18, wherein the step of examining comprises hashing
2 the portion of the network layer flow information to produce a hash value, and the hash
3 value is used, at least in part, to select the one processing engine.

Sub B⁴ 20. The method of claim 19, wherein the hash value is computed by logically
2 XORing the addresses, the port, and the protocol type value.

1 21. The method of claim 19, further comprising:
2 providing a table containing entries for use in selecting the one processing engine;
3 and
4 selecting one entry in the table specified by an index value, the index value being
5 based upon the hash value.

1 22. The method of claim 17, wherein the at least one packet is one of a plurality
2 of packets in at least one original flow, and the step of hashing is performed using a
3 hashing function that preserves the at least one original flow of the packets.

Sub E^b > 23. The method of claim 17, wherein the at least one packet is the one of a plu-
2 rality of packets, and the step of hashing is performed using a hashing function that
3 causes the packets to be at least mostly evenly distributed among the processing engines.

1 24. The method of claim 17, wherein the processing engines are comprised in a
2 routing system.

A/1 Sub B^b > 25. The method of claim 22, wherein the at least one original flow comprises a
2 plurality of original flows, and the step of hashing is performed such that only a single
3 respective processing engine is selected to process respective packets belonging to a re-
4 spective original flow.

1 26. A system for selecting one processing engine of a plurality of processing en-
2 gines for processing at least one packet, the system comprising:

3 means for examining at least a portion of network layer flow information of the at
4 least one packet; and

5 means for selecting the one processing engine based upon, at least in part, the
6 portion of the network layer flow information in such a way as to preserve an original
7 packet flow comprising the at least one packet.

1 27. The system of claim 26 wherein the network layer flow information com-
2 prises one or more of the following network information: a network source address of
3 the at least one packet, a network destination address of the at least one packet, a source

4 port of the at least one packet, a destination address of the at least one packet, and a pro-
5 tocol type value of the at least one packet.

1 28. The system of claim 27, wherein the means for examining comprises means
2 for hashing the portion of the network layer flow information to produce a hash value,
3 and the hash value is used, at least in part, to select the one processing engine.

Subj B 1 29. The system of claim 28, wherein the hash value is computed by logically
2 XORing the addresses, the ports, and the protocol type value.

Q1 1 30. The system of claim 28, further comprising:
2 means for providing a table containing entries for use in selecting the one proc-
3 essing engine; and
4 means for selecting one entry in the table specified by an index value, the index
5 value being based upon the hash value.

1 31. The system of claim 26, wherein the at least one packet is one of a plurality
2 of packets in at least one original flow, and the means for hashing carries out a hashing
3 function that preserves the at least one original flow of the packets.

1 32. The system of claim 26, wherein the at least one packet is one of a plurality
2 of packets, and the means for hashing carries out a hashing function that causes the pack-
3 ets to be least mostly evenly distributed among the processing engines.

1 33. The system of claim 26, wherein the processing engines are comprised in a
2 routing system.

Subj B 1 34. The system of claim 31, wherein the at least one original flow comprises a
2 plurality of original flows, and the means for hashing carries out the hashing such that

3 only a single respective processing engine is selected to process respective packets be-
4 longing to a respective original flow.

1 35. Computer-readable memory comprising computer-executable program in-
2 struction for selecting one processing engine of a plurality of processing engines for
3 processing at least one packet, the instructions, when executed, causing:

4 examining of at least a portion of network layer flow information of the at least
5 one packet; and

6 selecting of the one processing engine based upon, at least in part, the portion of
7 the network layer flow information in such a way as to preserve an original packet flow
8 comprising the at least one packet.

1 36. Memory of claim 35, wherein the network layer flow information comprises
2 one or more of the following network information: a network source address of the at
3 least one packet, a network destination address of the at least one packet, a source port of
4 the at least one packet, a destination address of the at least one packet, and a protocol
5 type value of the at least one packet.

Sub B
37. Memory of claim 36, wherein the examining comprises hashing the portion
2 of the network layer flow information to produce a hash value, and the hash value is used,
3 at least in part, to select the one processing engine.

1 38. Memory of claim 37, wherein the hash value is computed by logically
2 XORing the addresses, the ports, and the protocol type value.

1 39. Memory of claim 37, wherein, when executed, the instructions also cause:

2 providing of a table containing entries for use in selecting the one processing en-
3 gine; and

4 selecting of one entry in the table specified by an index value, the index value
5 being based upon the hash value.

1 40. Memory of claim 35, wherein the at least one packet is one of a plurality of
2 packets in at least one original flow, and the hashing is performed using a hashing func-
3 tion that preserves the at least one original flow of the packets.

1 41. Memory of claim 35, wherein the at least one packet is one of the plurality of
2 packets, and the hashing is performed using a hashing function that causes the packets to
3 be at least mostly evenly distributed among the processing engines.

1 42. Memory of claim 35, wherein the processing engines are comprised in a
2 routing system.

1 43. Memory of claim 40, wherein the at least one original flow comprises a plu-
2 rality of original flows, and the hashing is performed such that only a single respective
3 processing engine is selected to process respective packets belonging to a respective
4 original flow.--

REMARKS

The Office Action mailed September 12, 2000 has been carefully considered. Re-
consideration and allowance of the subject application, as amended, are respectfully re-
quested.