L4: Relation to bar resn (Priddy's story) (technical!) There is another canonical resn, namely the bar resn, which exists for any augmented k-algebra (k=R-jk), (history in alg topology, gp cohomology) For comparison to Priddy's resn, first do: Equivalent description of Ro for a quadratic algebra (also coordinate-free) Given W = VOV = T(V) 2 k subspace have 0 -> W -> V&V -> coker ->0 dual Go-3 (coker)* -> V*&V* -> W* -> 0 (*) Claim 1: (coker) = When in any coords! <u>bt</u>: MT = {b=\(\int \gamma_i \times_i \times_i \) \(\omegamma_i \times_j \) \(\omegamma_i \times_j \) \(\omegamma_i \times_j \) (coker)* = {f= Z / is x; x; | f|w=0-map} but for $\omega = \overline{\lambda} min xix$, $f(\omega) = \overline{\lambda} hin min = \langle \omega, p \rangle$ By (*), this gives (w1)* = VOV Claim 2: (R!)* = (P) (O V & W & V & D) = T(V) Pf: By def, 0 -> (V*) & W a (V*) -> T(V*) -> R: -> 0 dod 50-3(R!)* → T(V) → @ V&i⊗ (WL)* @ V&i ~ vov

