

Institut National Polytechnique
Félix Houphouët – Boigny
SERVICE DES CONCOURS

Concours GIC session 2017

Composition : Chimie 1

Durée : 3 Heures

NB : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

- Les calculatrices sont autorisées ;
- Les trois parties sont indépendants ;
- Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

I. STRUCTURE DE LA MATIERE

I.1. Configurations électroniques

- **I.1.1.** Enoncer les différentes règles qui permettent de prévoir la configuration électronique des atomes à l'état fondamental : principe d'exclusion de Pauli, règles de Hund et de Klechkosky.
- **I.1.2.** Quelle est la configuration électronique du fer Fe, des ions Fe²⁺ et Fe³⁺ dans leurs états fondamentaux. Expliquer l'évolution des rayons ioniques des ions Fe²⁺ et Fe³⁺.
- **I.1.3.** Qu'appelle-t-on élément de transition ? Citer deux caractéristiques (ou propriétés) communes à ces éléments.

I.2. Variétés allotropiques du fer

Le fer existe sous plusieurs variétés allotropiques dont le fer α , phase stable du fer au-dessous de 906 ° C, et le fer Υ , phase stable du fer entre 906 ° C et 1401 ° C.

- **I.2.1.** Le fer α cristallise dans une structure cubique centrée de densité 7,92. En déduire le rayon métallique du fer dans cette structure notée r_{Fe} . On supposera ce rayon constant dans la suite. Préciser la compacité de cette structure.
- **I.2.2.** Le fer Υ cristallise dans une structure cubique à faces centrées de paramètre a_{Υ} .
- **I.2.2.1.** Quelles sont la coordinence et la compacité de cette structure ?
- **I.2.2.2.** Calculer la densité du fer Υ.
- **I.2.2.3.** Ces deux variétés allotropiques du fer sont en équilibre à une température de 906 °C sous une pression de de 1 bar. Que se passe-t-il si on modifie la pression à température constante ? Quelle est la variété stable à haute pression ? Justifier.

II. CINETIQUE DE LA REACTION DE REDUCTION DES IONS Fe³⁺ PAR LES IONS Sn²⁺

Les ions Fe³⁺ sont réduits par les ions Sn²⁺. Le but de cette partie est d'étudier la cinétique de cette réaction d'oxydation.

II.1. Ecrire l'équation de la réaction d'oxydoréduction. Calculer la constante d'équilibre K°. Conclure.

- II.2. L'expérience montre que la vitesse de cette réaction est donnée à un instant t par une expression de la forme : $V = k [Fe^{3+}]^{\alpha} [Sn^{2+}]^{\beta}$ où $[Fe^{3+}]$ et $[Sn^{2+}]$ désignent les concentrations des réactifs à l'instant t considéré. Donner le nom des constantes k, α , β et $\alpha + \beta$.
- **II.3.** Pour une solution aqueuse contenant initialement des ions Fe^{3+} à la concentration de 1 mol L^{-1} et des ions Sn^{2+} à la concentration de 10^{-2} mol L^{-1} , le temps de demi-réaction $t_{1/2}$ est de 2,08 s. Ce temps de demi-réaction reste le même si la concentration initiale de Sn^{2+} est divisé par 2. En cinétique chimique comment appelle-t-on de telles conditions initiales ? Déterminer numériquement k et β.
- **II.4.** Dans une seconde série d'expérience, on réalise une série de mélanges stœchiométriques de Fe^{3+} et Sn^{2+} , de différentes concentrations. On constate alors que le temps de demi-réaction $t_{1/2}$ pour chaque mélange étudié, est indépendant de la concentration initiale C_0 des ions Sn^{2+} .

Donner $t_{1/2}$ en fonction de C_0 , k et α . Déterminer α sachant que $t_{1/2}$ est divisé par 4 lorsque la concentration initiale en ions Sn^{2+} est multipliée par 2.

II.5. Donner la valeur de $\alpha+\beta$. Pensez-vous à priori que cette réaction puisse être un acte élémentaire ?

On donne:

- Rayons ioniques (ppm): Fe²⁺: 76; Fe³⁺: 64; O²⁻: 140.
- Numéro atomique : Fe : 26 ; O :8 ; H : 1.
- Nombre d'Avogadro : N = 6,02 10²³
- Potentiels standards E° (en V): Fe³⁺/Fe²⁺: 0,77; Sn⁴⁺/Sn²⁺: 0,14.
- On posera $\frac{RT}{F}$ LnX = 0,06 LnX
- Constante des gaz parfaits : R = 8,314 J.K⁻¹.mol⁻¹.
- Masse volumique de l'eau : 1000 kg m⁻³.

III. CORROSION DU FER

III.1. Etude thermodynamique : diagramme potentiel-pH à 25°C

Le diagramme potentiel-pH a été tracé en considérant les espèces suivantes (figure) :

- solides:

le fer α noté Fe, l'oxyde magnétique Fe₃O₄, la goethite (oxyde de fer III) α FeOOH ;

- dissoutes

les ions Fe²⁺, Fe³⁺;

Avec l'hypothèse de concentrations maximales en ions Fe^{2+} et Fe^{3+} de 1,0.10⁻⁶ mol.L⁻¹, E° (Fe^{3+}/Fe^{2+}) = 0,77 V. Enthalpies libres molaires standard de formation $\Delta_f G^{\circ}$ de quelques espèces à 25 °C :

Espèce	H ₂ O(l)	H^+	HO-	Fe ²⁺	Fe ³⁺	α FeOOH
$\Delta_f G^{\circ}(kJ.mol^{-1})$	- 237	0	- 157,1	- 84,9	- 10,6	- 495,7

- **III.1.1.** Indiquer de quelles espèces du fer les domaines de prédominance ou d'existence A à E du diagramme sont représentatifs.
- **III.1.2.** Calculer la pente du segment de droite correspondant à la coexistence de l'oxyde magnétique et de la goethite.
- III.1.3. Calculer la valeur du pH à partir de laquelle on peut observer de la goethite.
- **III.1.4.** Calculer les coordonnées du point d'intersection des segments de droite délimitant les domaines B, C et D du diagramme.
- III.1.5. En considérant la position des droites représentatives des couples O_2/H_2O et H_2O/H_2 , pour des pressions gazeuses de 1 bar, que peut-on dire de l'oxydation du fer en Fe^{3+} et en FeOOH en l'absence de dioxygène.
- **III.1.6.** Dans l'hypothèse où seule la goethite forme une couche protectrice du métal, pour quels domaines du diagramme peut-on prévoir l'immunité, la corrosion ou la passivité du fer ?

III.2. Etude cinétique de la corrosion

III.2.1. Courbes intensité-potentiel du couple Fe²⁺/Fe

En solution agitée, l'équation de la courbe intensité-potentiel que l'on peut tracer à l'aide d'une électrode de fer plongeant dans une solution d'ions Fe²⁺ peut être mise sous le forme :

$$I = i_o \left(exp \left[\frac{(2-\epsilon) F \eta}{RT} \right] \right) - exp \left(\frac{-\epsilon F \eta}{RT} \right)$$

Où: i représente l'intensité du courant qui traverse l'électrode;

η est la surtension, différence entre le potentiel appliqué E et le potentiel d'équilibre E_e;

 I_0 est une constante et \mathcal{E} est une constante comprise entre 0 et 1; F = 96500 C

Montrer que si η a une valeur positive η_a suffisamment grande, la branche anodique de la courbe intensitépotentiel peut être représentée par l'équation approchée :

$$\eta_a = \alpha_a + \beta_a \log |i|$$
 (approximation de Tafel)

Exprimer α_a et β_a en fonction de \mathcal{E} et i_o .

III.2.2. Corrosion du fer en solution acide désaérée

L'électrode de fer considérée est plongée dans une solution telle que les potentiels d'équilibre des couples Fe^{2+}/Fe et H^{+}/H_{2} valent respectivement $E_{e}=0.50~V$ et $E_{e}^{'}=0.00~V$.

On suppose que les seules réactions qui se produisent à la surface du métal sont l'oxydation du fer en Fe²⁺ et la réduction des ions hydrogène en H₂.

III.2.2.1. Ecrire les demi-équations électroniques correspondantes.

Lorsque le fer est abandonné dans la solution, que peut-on dire des vitesses d'oxydation du fer et réduction des ions hydrogène et des intensités correspondantes ?

III.2.2.2. On suppose que les courbes intensité-potentiel des deux réactions électrochimiques considérées peuvent être représentées par les équations de Tafel :

- Oxydation du fer $\eta_a = E E_e = \alpha_a + \beta_a \log |i|$
- Réduction des ions hydrogène η'_c = E- E'_e = α'_c + β'_c log|i|

Les intensités étant exprimées en ampère et les différences de potentiel en volt, on obtient :

$$\alpha_a = 0.40 \text{ V}$$
 $\beta_a = 0.04 \text{ V}$ $\eta'_c = -0.80 \text{ V}$ $\beta'_c = -0.15 \text{ V}.$

Représenter graphiquement (si possible sur une feuille de papier millimétré) pour des valeurs de |i| comprises entre 10^{-5} et 10^{-2} A, les droites donnant E en fonction de $\log|i|$ (diagramme d'Evans) (échelle 1 cm pour 0,1 V et 2 cm par unité de $\log|i|$). Les coordonnées du point d'intersection de ces droites correspondent à E_{corr} et i_{corr} respectivement le potentiel et le courant de corrosion.

Déduire du graphique : - le

- le potentiel de corrosion E_{corr} du fer dans le milieu considéré ;
- l'intensité de corrosion i_{corr} de la pièce de fr dans ces conditions

Figure: diagramme potentiel-pH du fer