

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo 28 de Abril de 2010/ 1	M.C. David Flores Granados Ing. Mónica Patricia René M.C. José Enrique Alvarez	Se modificó el programa para adecuarlo a la Taxonomía de Anderson. Se actualizó la bibliografía. Se reestructuró el contenido de algunas unidades, recortando incisos innecesariamente detallados. Se solicita restringir el cupo de ingreso a un máximo de 35 estudiantes, debido a la capacidad del Lab. De Telemática

Relación con otras asignaturas

Anteriores	Posteriores
Asignatura(s) a) IT0105 Organización y Estructura de	
Computadoras (Básica). b) IT0218 Electrónica Digital (Básica).	Asignatura(s) a) IT0318 Diseño de Sistemas Operativos (Básica).
Tema(s) a) TODOS b) TODOS	Tema(s) a) TODOS

Nombre de la asignatura	Departamento o Licenciatura

Arquitectura de computadoras Ingeniería en Telemática

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	IT0316	8	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	Н
Seminario	48	16	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Representar las principales partes que componen un sistema de cómputo según el modelo de Von Neumann para el diseño de una arquitectura emulada.

Objetivo procedimental

Construir los elementos del modelo Von Neumann para la implementación de una máquina virtualizada.

Objetivo actitudinal

Fomentar el trabajo colaborativo y la responsabilidad para la resolución de prácticas.

Unidades y temas

Unidad I. CONCEPTOS BÁSICOS

Describir las principales partes de un sistema de cómputo para el seguimiento de su evolución y desarrollo histórico.

- 1) Evolución y rendimiento de los sistemas de cómputo
- 2) Canales del sistema
- 3) Memoria
- 4) Entrada/salida
- 5) Soporte del sistema operativo

Unidad II. LA UNIDAD CENTRAL DE PROCESAMIENTO

Revisar el repertorio de instrucciones básicas para la identificación de un procesador moderno.

1) Aritmética del computador

2) Repertorio de instrucciones
3) Estructura y función de la unidad central de procesamiento
4) Computadoras con repertorio de instrucciones reducido (RISC)
Unidad III. LA UNIDAD DE CONTROL
Experimentar el funcionamiento de la unidad de control de un procesador para la elaboración de simulaciones con software.
1) Operación de la unidad de control
2) Control microprogramado
Unidad IV. ENTRADA/SALIDA
Reproducir diversos dispositivos de entrada/salida para la emulación de una computadora, ya sea de caracteres o de bloques.
1) Puertos
2) Acceso Directo a Memoria (DMA)
Unidad V. PROYECTO INTEGRADOR
Construir una computadora virtual para la integración de los elementos del modelo de Vonn Neumann
1) Virtualización
2) Emulación interpretada
3) Recompilación dinámica
4) Hipervisores

Actividades que promueven el aprendizaje

Recuperación de Ideas previas Moderar el Trabajo en equipo Coordinar la Discusión de casos prácticosPrácticas Foro

Realización de una Investigación bibliográfica Participar en el Trabajo en equipo Solución de ejercicios y problemas Exposición

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal

http://WilliamStallings.com/StudentSupport.html

para investigación documental y solución de ejercicios

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Participación en clases	10
Exámenes	30
Prácticas y simulaciones	30
Trabajos de investigación	15
Exposiciones	15
Total	100

Fuentes de referencia básica

Bibliográficas

Stallings, W. (2005) Organización y arquitectura de computadores. Pearson: México.

Siewiorek, D. y Swarz R. (1998). Reliable Computer Systems: Design and Evaluation (3th.Edition). A. K. Peters: USA

Tanenbaum, A. (2008) Organización de computadoras. Pearson: México.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Behrouz F. (2003). Introducción a la ciencia de la computación. Paraninfo: España.

Martínez R., Boluda J. y Pérez, J. (2001). Estructura de computadores y periféricos. Alfaomega-Rama: España.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Ingeniería, licenciatura o posgrado en Ciencias de la Computación, Sistemas, Eléctrica o Electrónica.

Docentes

2 años de experiencia impartiendo asignaturas afines en instituciones de educación superior o posgrado.

Profesionales

Experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos.