Device Modeling Report

COMPONENTS: MOSFET: OPERATIONAL AMPLIFIER

PART NUMBER:NJM2068

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

SPice Model


```
*$
* PART NUMBER:NJM2068
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2068 OUT1 -IN1 +IN1 VEE +IN2 -IN2 OUT2 VCC
       +IN1 -IN1 VCC VEE OUT1 NJM2068 SUB
X U2
       +IN2 -IN2 VCC VEE OUT2 NJM2068 SUB
.ends NJM2068
.subckt NJM2068 SUB 12345
 c1 11 12 8.6603E-12
 c2 6 7 30.000E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 35.357E6 -1E3 1E3 35E6 -35E6
 qa 6 0 11 12 1.1924E-3
 acm 0 6 10 99 3.6134E-9
 iee 3 10 dc 185.58E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 838.63
 rc2 4 12 838.63
 re1 13 10 558.53
 re2 14 10 558.53
 ree 10 99 1.0777E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 1.8203E3
 vb 9 0 dc 0
 vc 3 53 dc 2.2550
 ve 54 4 dc 2.2550
 vlim 7 8 dc 0
 vlp 91 0 dc 10
 vln 0 92 dc 10
.model dx D(ls=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=603.91)
.model qx2 PNP(ls=809.2394E-18 Bf=626.80)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	+13.5	+13.501	0.007
-Vout(V)	-13.5	-13.501	0.007

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	0.3	0.302	0.667

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	6	6	0

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb (nA)	150	150.043	0.029
Ibos (nA)	5	5.001	0.020

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	5.5	5.5077	0.140
Av-dc(dB)	120	120.011	0.009

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(1001267.224/3.1127) = 110.148 dB

	Measurement	Simulation	%Error
CMRR(dB)	110	110.148	0.135

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

