The **conditional probability of A, given B** (the probability of event A, computed on the assumption that event B has happened) is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 (assuming $P(B) \neq 0$).

Similarly, the conditional probability of B, given A is

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$
 (assuming $P(A) \neq 0$).

3. (continued)

The probability that a randomly selected student at Anytown College owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.

	C	C'	
В	0.10	0.45	0.55
B'	0.20	0.25	0.45
	0.30	0.70	1.00

$$P(B) = 0.55, P(C) = 0.30, P(B \cap C) = 0.10.$$

a) What is the probability that a student owns a bicycle, given that he/she owns a car?

$$P(B \mid C) = \frac{0.10}{0.30} = \frac{1}{3}$$

b) <u>Suppose a student does not have a bicycle</u>. What is the probability that he/she has a car?

$$P(C \mid B') = \frac{0.20}{0.45} = \frac{4}{9}$$

5. (continued)

Suppose

$$P(A) = 0.22,$$

$$P(B) = 0.25$$
,

$$P(C) = 0.28$$
,

$$P(A \cap B) = 0.11$$
,

$$P(A \cap C) = 0.05$$
,

$$P(B \cap C) = 0.07$$
,

$$P(A \cap B \cap C) = 0.01.$$

Find the following:

- b) P(B|C) $P(B|C) = \frac{0.07}{0.28} = 0.25.$
- d) $P(B \cup C \mid A)$ $P(B \cup C \mid A) = \frac{0.15}{0.22} = \frac{15}{22}$
- f) $P(C|A \cap B)$ $P(C|A \cap B) = \frac{0.01}{0.11} = \frac{1}{11}$

A 0.07 0.10 0.08 0.08 0.07 0.17 0.47 C

- c) $P(B \cap C \mid A)$ $P(B \cap C \mid A) = \frac{0.01}{0.22} = \frac{1}{22}$
- e) $P(C \mid A \cup B)$ $P(C \mid A \cup B) = \frac{0.11}{0.36} = \frac{11}{36}$
- g) $P(A \cap B \cap C \mid A \cup B \cup C)$ $P(A \cap B \cap C \mid A \cup B \cup C) = \frac{0.01}{0.53} = \frac{1}{53}$

Multiplication Law of Probability

If A and B are any two events, then

$$P(A \cap B) = P(A) \cdot P(B \mid A)$$

$$P(A \cap B) = P(B) \cdot P(A \mid B)$$

8. It is known that 30% of all the students at Anytown College live off campus. Suppose also that 48% of all the students are females. Of the female students, 25% live off campus.

$$P(Off) = 0.30,$$
 $P(F) = 0.48,$ $P(Off | F) = 0.25.$

a) What is the probability that a randomly selected student is a female <u>and</u> lives off campus?

$$P(F \cap Off) = P(F) \times P(Off | F) = 0.48 \times 0.25 = 0.12.$$

	Off	On	
F	0.12	0.36	0.48
M	0.18	0.34	0.52
	0.30	0.70	1.00

b) What is the probability that a randomly selected student either is a female <u>or</u> lives off campus, or both?

$$P(F \cup Off) = P(F) + P(Off) - P(F \cap Off) = 0.48 + 0.30 - 0.12 = 0.66.$$

OR

$$P(F \cup Off) = P(F \cap Off) + P(F' \cap Off) + P(F \cap Off')$$

= 0.12 + 0.18 + 0.36 = **0.66**.

OR

$$P(F \cup Off) = 1 - P(F' \cap Off') = 1 - 0.34 = 0.66.$$

c) What proportion of the off-campus students are females?

$$P(F \mid Off) = \frac{0.12}{0.30} = 0.40.$$

d) What proportion of the male students live off campus?

P(Off | M) =
$${}^{0.18}/_{0.52} = {}^{9}/_{26} \approx 0.346154$$
.

- **9.** Suppose that Joe's Discount Store has received a shipment of 25 television sets, 5 of which are defective. On the following day, 2 television sets are sold.
- a) Find the probability that both of the television sets are defective.

P(both defective) = P(1st D
$$\cap$$
 2nd D) = P(1st D) × P(2nd D | 1st D)
= $\frac{5}{25} \times \frac{4}{24} = \frac{1}{30}$.

b) Find the probability that at least one of the two television sets sold is defective.

$$\checkmark$$
 D D $\frac{5}{25} \times \frac{4}{24} = \frac{1}{30}$.

$$\checkmark$$
 D D' $\frac{5}{25} \times \frac{20}{24} = \frac{5}{30}$

$$\checkmark$$
 D' D $\frac{20}{25} \times \frac{5}{24} = \frac{5}{30}$.

$$\mathbf{X}$$
 \mathbf{D}' \mathbf{D}'

P(at least one D) =
$$\frac{1}{30} + \frac{5}{30} + \frac{5}{30} = \frac{11}{30}$$
.

OR

P(at least one D) =
$$1 - P(D'D') = 1 - \frac{20}{25} \times \frac{19}{24} = 1 - \frac{19}{30} = \frac{11}{30}$$
.

- **10.** Cards are drawn one-by-one **without** replacement from a standard 52-card deck. What is the probability that ...
- a) ... both the first and the second card drawn are ♥'s?

P(1st
$$\vee \cap 2$$
nd \vee) = P(1st \vee) × P(2nd \vee | 1st \vee) = $\frac{13}{52} \times \frac{12}{51} = \frac{1}{17}$.

b) ... the first two cards drawn are a \forall and a \clubsuit (or a \clubsuit and a \forall)?

P(1st
$$\vee \cap 2$$
nd \wedge) + P(1st $\vee \cap 2$ nd \wedge) = $\frac{13}{52} \times \frac{13}{51} + \frac{13}{52} \times \frac{13}{51}$.

c) ... there are at least two ♥'s among the first three cards drawn?