Teorema 2.6.1

Para realizar una operación elemental por renglón en una matriz A se multiplica A por la izquierda por la matriz elemental adecuada.

Operaciones elementales mediante la multiplicación por matrices elementales

Sea
$$A = \begin{pmatrix} 1 & 3 & 2 & 1 \\ 4 & 2 & 3 & -5 \\ 3 & 1 & -2 & 4 \end{pmatrix}$$
. Realice las siguientes operaciones elementales con los renglones de A

multiplicando A por la izquierda por una matriz elemental adecuada.

- i) Multiplique el segundo renglón por 3.
- ii) Multiplique el primer renglón por -2 y súmelo al tercer renglón.
- iii) Permute el segundo y tercer renglones.

SOLUCIÓN \triangleright Como A es una matriz de 3×4 , cada matriz elemental E debe ser de 3×3 , ya que E debe ser cuadrada y multiplica a A por la izquierda. Se usan aquí los resultados del ejemplo 2.6.1.

i)
$$(3R_2)A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 & 1 \\ 4 & 2 & 3 & -5 \\ 3 & 1 & -2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 1 \\ 12 & 6 & 9 & -15 \\ 3 & 1 & -2 & 4 \end{pmatrix}$$

ii)
$$(R_3 - 2R_1)A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 & 1 \\ 4 & 2 & 3 & -5 \\ 3 & 1 & -2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 1 \\ 4 & 2 & 3 & -5 \\ 1 & -7 & -6 & 2 \end{pmatrix}$$

iii)
$$(P_{23})A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 & 1 \\ 4 & 2 & 3 & -5 \\ 3 & 1 & -2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 1 \\ 3 & 1 & -2 & 4 \\ 4 & 2 & 3 & -5 \end{pmatrix}$$

Considere los siguientes tres productos, con $c \neq 0$.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{c} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (2.6.1)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ c & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -c & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (2.6.2)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (2.6.3)