# 几个回溯算法的例子

### 4后问题

4后问题:在4×4的方格棋盘上放置4个皇后,使得没有两个皇后在同一行、同一列、也不在同一条45度的斜线上.问有多少种可能的布局?

解是 4 维向量 < x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub> > 解: <2,4,1,3>, <3,1,4,2>

推广到8后问题

解: 8维向量,有92个.

例如: <1,5,8,6,3,7,2,4>是解.

# 搜索空间: 4叉树



每个结点有4个儿子,分别代表选择 1,2,3,4列位置 第 *i* 层选择解向量中第 *i* 个分量的值 最深层的树叶是解 按深度优先次序遍历树,找到所有解

#### 0-1背包问题

#### 问题:

有n种物品,每种物品只有 1个. 第i 种物品价值为  $v_i$ ,重量为  $w_i$ ,i=1,2,...,n. 问如何选择放入背包的物品,使得总重量不超过 B,而价值达到最大?

#### 实例:

 $V=\{12,11,9,8\}, W=\{8,6,4,3\}, B=13$ 

#### 最优解:

<0,1,1,1>,价值:28,重量:13

# 算法设计

解: n维0-1向量 $\langle x_1, x_2, ..., x_n \rangle$ ,  $x_i = 1 \Leftrightarrow$  物品 i 选入背包

结点:  $\langle x_1, x_2, ..., x_k \rangle$  (部分向量)

搜索空间: 0-1取值的二叉树, 称为子集树,有 $2^n$ 片树叶.

可行解:满足约束条件 $\sum_{i=1}^{n} w_i x_i \leq B$  的解最优解:可行解中价值达到最大的解

# 实例

#### 输入:

 $V=\{12,11,9,8\}, W=\{8,6,4,3\}, B=13$ 

#### 2个可行解:

<0,1,1,1>, 选入物品2,3,4,价值为28,

重量为13

<1,0,1,0>, 选入物品1,3,价值为21,

重量为12

最优解: <0,1,1,1>

## 搜索空间

实例:V={12,11,9,8}, W={8,6,4,3}, B=13

搜索空间:子集树,2<sup>n</sup>片树叶



# 货郎问题

问题: 有n个城市,已知任两个城市 之间的距离,求一条每个城市恰好经 过一次的回路,使得总长度最小.

**建模:** 城市集 $C = \{c_1, c_2, ..., c_n\}$ , 距离  $d(c_i, c_i) = d(c_i, c_i) \in \mathbb{Z}^+$ ,  $1 \le i < j \le n$ 

求: 1,2,...,n的排列  $k_1,k_2,...,k_n$ 使得

$$\min\{\sum_{i=1}^{n-1} d(c_{k_i}, c_{k_{i+1}}) + d(c_{k_n}, c_{k_1})\}$$

# 实例

$$C = \{1,2,3,4\}$$
  
 $d(1,2)=5, d(1,3)=9,$   
 $d(1,4)=4, d(2,3)=13,$   
 $d(2,4)=2, d(3,4)=7$ 



# 搜索空间

排列树, 有(n-1)!片树叶



## 小结

- 回朔算法的例子: n后问题, 0-1背 包问题, 货郎问题
- 解: 向量
- 搜索空间: 树,可能是n叉树、子 集树、排列树等等,树的结点对应 于部分向量,可行解在叶结点
- 搜索方法: 深度优先, 宽度优先, ... 跳越式遍历搜索树, 找到解