Facultad de Ciencias de la Computación

DISCIPLINA COMPUTACIONAL

Unidad 3 Ingenieria de Software

Objetivos

- Definir la Ingeniería de Software y explicar su importancia.
- Discutir los conceptos de producto de software y proceso de software.
- Explicar la importancia de la visibilidad de los procesos.
- Introducir la noción de responsabilidad profesional.

Ingeniería de Software

- Las economías de los países desarrollados dependen en gran parte del software.
- Mas y más sistemas son actualmente controlados por software.
- La Ingeniería de Software concierne a teorías, métodos y herramientas para el desarrollo profesional de software.
- El gasto en La Ingeniería de Software, representa un alto porcentaje del PIB de los países desarrollados.

Costos del Software

- Los costos del software a menudo dominan al costo del sistema. El costo del software en un PC es a menudo mas caro que la PC.
- Cuesta mas mantener el software que desarrollarlo. Para sistemas con una larga vida, este costo se multiplica.
- La Ingeniería de Software concierne a un desarrollo efectivo en cuanto a costes del software.

Principios de la Ingeniería del Software

- Haz de la calidad la razón de trabajar.
- Una buena gestión es más importante que una buena tecnología.
- Las personas y el tiempo no son intercambiables.
- Seleccionar el modelo de ciclo de vida adecuado.
- Entregar productos al usuario lo más pronto posible.
- Determinar y acotar el problema antes de escribir los requisitos.
- Realizar un diseño.
- Minimizar la distancia intelectual.

Principios de la Ingeniería del Software

- Documentar.
- Las técnicas son anteriores a las herramientas.
- Primero hazlo correcto, luego hazlo rápido.
- Probar, probar y probar (** incluye inspecciones **).
- Introducir las mejoras y modificaciones con cuidado.
- Asunción de responsabilidades.
- La entropía del Software es creciente.
- La gente es la clave del éxito.

Pero que es el Software?

Ingeniería de Software

Software: Definición

Características del Software

- Es un elemento lógico y no físico
- Es desarrollado, fabricado
- Se deteriora
- No hay piezas de repuesto
- Se construye a la medida

Ingeniería de Software

Características del Software

Un sistema software debe ser...

- Fácil de mantener.
 - Construido y documentado para permitir cambios.
- Fiable.
 - Debe hacer lo que se espera de él, no debe fallar más a menudo de lo que se acordó en la especificación.
- Eficiente.
 - No debe hacer uso innecesario de recursos.
- Fácil de usar.
 - Interfaz de usuario adecuada.

Evolución de la Ingeniería

1970	Aceptación creciente de los métodos de programación estructurada
1980	Lenguajes de 4ª Generación
1990	Reusabilidad

1956	IBM inventa el Fortran	
1965↑	Algoritmos y Estructuras de datos	
1970	1er compilador de Pascal	
1972	Lenguajes de Orientación a Objetos	
1978	Nace el Lenguaje C	
Ciencia		

Producción

Artesanía

1950↑	Programas pequeños e intuitivos
1970	Programas grandes con éxito eran una excepción
1990↑	Se continuan haciendo programas sin metodología

Comercialización

1970↑	Empresas de Servicios Informáticos
1980↑	Control de Producción
1985↑	Marketing

Ingeniería Informática Profesional

1990↑	Profesionales cada vez mejor formados
	Metodologías
	Equipos de desarrollo
	Automatización

Causas.

Síntomas.

Consecuencias.

· Solución.

Causas:

- Hardware más potente.
- Mayor demanda.
- Falta de metodologías y técnicas (hasta hace poco).
- Uso inadecuado de recursos.
- Sistemas más complejos.
- Poca información de los desarrolladores.

Síntomas:

- Productividad de los desarrolladores: baja en relación a la demanda.
- Expectativas: los sistemas no responden a las expectativas de los usuarios.
- Fiabilidad: Los programas fallan a menudo.
- Calidad: No es adecuada.
- Costes: Difíciles de predecir, a menudo sobrepasan lo esperado.
- Mantenimiento: Modificación del sw costosa y compleja.
- Plazos: No se cumplen.
- Portabilidad: Difícil cambiar de plataforma.
- Eficiencia: No hay aprovechamiento óptimo de recursos.

Consecuencias:

- Baja productividad.
- Baja calidad.

· Solución:

- Aplicar la Ingeniería del Software en la construcción de Sistemas Informáticos.
- La necesidad de un enfoque de ingeniería en el desarrollo del software fue propuesta en una conferencia de la OTAN en 1968.

Desafíos de la Ingeniería de Software

- Reducir el coste y mejorar la calidad del software.
- Explotar y aprovechar el potencial proporcionado por el hardware

Desarrollar y mantener software asegurando:

- Calidad.
- Fiabilidad.
- Facilidad de uso
- Imposibilidad de mal uso

...de tal manera que el humano dirija la computadora y no al revés.

Existen muchas clases de software:

THE MERIA

- De sistemas.
- De tiempo real.
- De gestión.
- Científico.
- De Inteligencia Artificial.
- Empotrado.

— ...

...pero existen métodos y procedimientos comunes para construir **buen** software

Ingeniería de Software

- "El establecimiento y uso de principios de ingeniería robustos, orientados a obtener económicamente software que sea fiable y funcione eficientemente sobre máquinas reales"
 Fritz Bauer.
- "La aproximación sistemática al desarrollo, operación y mantenimiento del software."
- "Software: programas de ordenador, procedimientos, reglas, documentación y datos asociados a un sistema de ordenador".

IEEE Standard Glossary of Software Engineering (IEE83).

Objetivo : Ingeniería de Software

- EMERA TO THE PARTY OF THE PARTY
- El principal (común a todas las ingenierías)
- "Construir instrumentos (HW, SW) que ayuden o faciliten al ser humano la realización de alguna tarea"
- Conseguir un producto Software fiable, de alta calidad y bajo coste.
- Conducir un proceso de desarrollo y mantenimiento software de manera eficiente y con éxito.

Realizar un proyecto software no es (sólo) programar

Ingeniería de Software Disciplinas que la componen:

Ingeniería del Software: Fundamentos y técnicas

- Métodos:
 - Definen cómo construir el software desde el punto de vista técnico.
- Herramientas:
 - Proporcionan un soporte automático o semi-automático para los métodos.
- Procedimientos.
 - Punto de unión entre métodos y herramientas. Definen la secuencia en la que se aplican los métodos, cómo usar las herramientas, las entregas que se requieren, controles de seguimiento y calidad, guías para facilitar la labor de gestores y desarrolladores, etc.

Ingeniería del Software: Fundamentos y técnicas

- Métodos:
 - Planificación y estimación de proyectos.
 - Análisis de requisitos.
 - Diseño.
 - Codificación.
 - Pruebas.
 - Mantenimiento.
- Herramientas:
 - CASE.
 - CAD, ...
- Procedimientos.
 - PSP
 - TSP
 - CMMi.....

Ingeniería del Software: Fundamentos y técnicas

Otras técnicas de Apoyo

- Abstracciones:
 - Modelos de ciclo de vida.
 - Principios de las distintas fases, ...
- Representaciones:
 - Notaciones y lenguajes.
 - Diagramas de GANTT
- Evaluaciones:
 - Mediciones (sobre proceso y producto).

El Ingeniero del Software debe:

- Trabajar en equipo.
- Analizar y estudiar problemas.
- Trabajar bajo restricciones de tiempo, costes y recursos.
- Interactuar con clientes y usuarios.
- Tomar decisiones.

- ...

- Actividades de desarrollo:
 - Decidir qué hacer.(Análisis)
 - Decidir cómo hacerlo.(Diseño)
 - Hacerlo.(Codificación)
 - Probar el producto.(Pruebas)
 - Usar el producto.(Entrega/Instalación)
 - Mantener el producto.(Mantenimiento)

Producto y Proceso

Análisis

- Estudio de Viabilidad.
- Educción de requisitos.
- Análisis de requisitos.
- · Modelado del sistema.
- Maquetaje.

• ...

Diseño

- Arquitectónico.
- Detallado.
- Interfaz de usuario.
- Datos.
- •...

Construcción

- · Codificación.
- Documentación.
- Debug
- ..

Mantenimiento

- Correctivo.
- Perfectivo.
- Adaptativo.
- •...

Validación y Verificación

- Inspecciones y revisiones.
- Planificación de pruebas.
- Pruebas de unidad.
- Pruebas de integración.
- Pruebas de regresión.

- Pruebas del sistema.
- Pruebas de aceptación.
- ...

- Actividades de Gestión:
 - Planificación y estimación.
 - Seguimiento de los proyectos.
 - Administración de proyectos.
 - Dirección de proyectos.

— ...

- Actividades de Operación:
 - Entrega (e instalación).
 - Puesta en marcha.
 - Formación a los usuarios.

— ...

 El proceso de construir software es una actividad de resolución de problemas

Realizar un proyecto software no es (sólo) programar

Actividad Colaborativa

- 1. Reúnete con tu equipo y asignen entre ustedes los siguientes roles:
 - Secretario: toma notas claras y organizadas sobre la discusión
 - Moderador: conduce la discusión, asegurándose de que todos participen activamente y que no se desvíen del tema. En caso de haber diferencias de opinión, se encargará de estabilizar la discusión.
 - Informador: presenta el resumen de lo discutido en el equipo, reflejando las ideas con exactitud.
 - Observador: observa y toma nota del comportamiento del resto de los integrantes del equipo. Posteriormente compartirá sus observaciones con los demás equipos.

- 2. Utilizando los temas ya vistos que cada uno de ustedes a estudiado, comenten sobre:
 - Las diversas características que debe tener un software
 - La importancia que tiene un producto de software
 - Los principios que debe tener un producto de Software
 - Las actividades que se deben desarrollar para generar una producto de software
 - y elijan lo mas representativo para presentar al resto de sus compañeros.
- 3. Todos deberán asegurarse de que todos los integrantes del equipo conozcan bien las características y la importancia que debe tener un buen desarrollo de software así como los riesgos que pueden suceder.

- 4. El informador de cada equipo presentará, en 2 minutos, el trabajo realizado.
- 5. Reúnanse de nuevo con sus grupos y discutan brevemente sobre las siguientes preguntas:
 - ¿Cómo les ayudó otro miembro del equipo a cumplir con el objetivo de la actividad?
 - ¿Cómo pueden mejorar como equipo para la próxima ocasión? En este punto, las notas del observador son de gran utilidad.