

PROSJEKTOPPGAVE

Bølgeligning

ING2501 Matematiske Metoder 2

\mathbf{AV}

Erlend Haugstad Sandvik Adam Sitje Ingrid Selvaag Gohn Lukas Røine

KLASSE: VING 78

PROSJEKTGRUPPE: Erlend Haugstad Sandvik

Adam Sitje

Ingrid Selvaag Gohn

Lukas Røine

RAPPORT LEVERT: 29. september 2025

Sammendrag

Innhold

1	Innledning	1
2	Teori 2.1 Bølgeligningen 2.2 Fourierrekker 2.3 Løsningsmetoder	2
3	Metode og gjennomføring3.1 Implementasjon	
4	Resultater	4
5	Diskusjon	5
6	Konklusjon	6
Ve	edlegg	7

1 Innledning

Bakgrunn og motivasjon

Problemstilling og mål

Avgrensning

2 Teori

2.1 Bølgeligningen

Utledning av bølgeligningen

2.2 Fourierrekker

Periodiske funksjoner

Ortogonalitet og basisfunksjoner

Koeffisientene i en Fourierrekke

2.3 Løsningsmetoder

Separasjonsmetoden

Fouriermetoden

Eventuelt D'Alemberts løsning

3 Metode og gjennomføring

3.1 Implementasjon

Beregning av Fourierkoeffisienter

Numerisk simulering

3.2 Eksempler og tester

Test av implementasjon med kjente løsninger

4 Resultater

Fourier-serie med ulike antall ledd

Visualisering av løsninger

Sammenlikning teori vs simulering

5 Diskusjon

Tolkning av resultater

Fordeler og begrensninger ved metoden

Fysiske implikasjoner (demping vs oscillering)

6 Konklusjon

Oppsummering av funn

Hva man har lært

Forslag til videre arbeid

Vedlegg

. . .