AP3 – Autômatos e Linguagens Formais Prova A

3 de fevereiro de 2022

Nome:	Nota:

Importante:

Em cada página da sua resposta, coloque nome e $n^{\underline{0}}$ de matrícula. Ao submeter sua resposta, você estará confirmando que a solução foi completamente construída e escrita por você, sem ajuda de outra pessoa. Sua solução deve ser manuscrita, fotografada e enviada na forma de arquivos digitais. Por favor, envie sua resposta na forma de arquivos .pdf.

Questão 1. Escolha apenas 1 (um) dos itens abaixo e exiba um autômato de pilha que reconhece a linguagem escolhida:

i. (1,5 pontos) Um vetor booleano ternário é uma sequência de símbolos 0 ou 1 de tamanho 3 (por exemplo, 000, 101, 011, etc.)

A linguagem $3\text{VetBool}^{\text{Var}}$ das expressões booleanas vetoriais ternárias com os operadores +, *, \neg (negação) em que os operadores binários (+ e *) aparecem entre parenteses e com variáveis. As variáveis começam com um b e são seguidas de uma sequência de dígitos $0, 1, 2, \ldots, 9$).

Exemplos:

```
000,

b02,

\neg 111,

\neg b37,

(010 + b00000),

\neg (010 + \neg b1),

((110 + 011) * 000),

((111 + \neg \neg (b3 * 110)) * ((b457 + 100) * \neg b111))
```

ii. (2,5 pontos) Um vetor booleano ternário é uma sequência de símbolos 0 ou 1 de tamanho 3 (por exemplo, 000, 101, 011, etc.)

Uma variável é um b seguido de uma sequência de dígitos $0, 1, 2, \dots, 9$ (por exemplo, b0, b1, b2, b001, b4028881, b00000, etc.).

A linguagem 3VetBool^{VarPal} das expressões booleanas vetoriais ternárias com os operadores +, *, ¬ (negação) em que os operadores binários (+ e *) aparecem entre parenteses e com variáveis. As sequências de números que compõem os nomes da variáveis são palíndromos.

Exemplos:

```
\begin{array}{l} 000,\\ b020,\\ b101100001101\\ \neg 111,\\ \neg b373\\ (010+b00000),\\ \neg (010+\neg b5),\\ ((110+011)*000),\\ ((111+\neg\neg(b1257521*110))*((b457754+100)*\neg b111)) \end{array}
```

iii. (3,0 pontos) As operações + e ¬ sobre vetores booleanos são bit-a-bit, isto é:

+	00	01	10	11	\neg	
00	00	01	10	11	00	11
01	01	01	11	11	01	10
10	10	11	10	11	10	01
11	11	11	10 11 10 11	11	00 01 10 11	00

A linguagem 2VetBool – 0 das expressões booleanas vetoriais binárias (00, 01, 10, 11) com os operadores + e ¬, sem variáveis, cujo resultado da expressão é 00.

Exemplos:

```
00,

\neg(10+01),

\neg11,

(\neg(\neg10+(10+01))+\neg(11+\neg(01+10))))

(\neg(11+10)+\neg(\neg00+10))
```

Questão 2. Escolha apenas 1 (um) dos itens a seguir e construa uma gramática para a linguagem escolhida. Depois transforme a gramática em um autômato de pilha usando o método apresentado nas aulas.

- i. (1,5 pontos) Palavras da forma $(bba)^n (aba)^m$ em que $n \le 3m$.
- ii. (2,0 pontos) Palavras da forma $a^n b^m$ em que $2n \le m \le 6n$.

Questão 3. (4,0 pontos) Transforme o seguinte autômato de pilha em autômato recursivo utilizando o método apresentado.

Questão 4. (1,0 ponto) Resolva os dois itens abaixo:

a) Transforme a seguinte gramática em uma gramática onde a calda das regras (a parte do lado direito da seta →) tem no máximo duas ocorrências de variáveis (inclusive ocorrências de uma mesma variável) e que descreva a mesma linguagem.

b) É possível transformar qualquer gramática em uma em que a calda das regras tem no máximo duas variáveis? Justifique sua resposta. (Soluções sem justificativa não serão consideradas.)