

Institut Supérieur d'Informatique et de Mathématiques de Monastir

ISIMM

Devoir Surveillé – S2 - 2024/2025

Filière : 1 LInfo	Matière : Système exploitation 2		Enseignant : Sana BENZARTI
Date: 17/03/2025	Nbr de Crédits : 4	Coefficient: 2	Documents autorisés : Non Calculatrice autorisée : oui
Durée de l'examen : 1h	Régime d'évaluation : Mixte / CC		Nombre de pages : 2
	Ex(70%) + DS(10%) + TP(20%)		

La clarté et la propreté de la feuille de l'examen sont prises en compte

Exercice 1: OCM: Vous pouvez trouver plusieurs réponses exactes pour une même question

Exercise 1: QCM: vous pouvez trouver prusie	
1- Les mises à jour sont proposées à un rythme frénétique, il s'agit de : a- Windows b- Linux c- Mac OS	6- La fonction waitpid() renvoie: a- 0 chez le processus père Le PID du fils chez le père c- 1 en cas d'erreur
2- Les serveurs utilisent des processeurs de type : a Intel XEON Platinum b Intel XEON GOLD c- Intel Core i3	7- La macro WTERMSIG: a Peut être utilisée avec wait(&status) b Renvoie le numéro d'un signal spécifique c- Renvoie le code de sortie en cas de fin de tâche avec succès
3- La famille exec comporte : a execlp b execve c- execlc	8- La syntaxe exacte d'execl est : a- execl("find", "/home/rep", "-type", "f", NULL); execl("/bin/find", "find", "/home/rep", "- type", "f", NULL); c- execl("find", "/home/rep", "-type", "f", NULL, NULL);
4- Si un processus fils meurt avant le processus père sans le notifier, il devient : a- Orphelin b Zombie c- Zombie et orphelin	9- L'appel système exec fait partie de la bibliothèque : a- sys/wait.h b- unistd.h C c- stdlib.h
5- Les processus orphelins sont adoptés par le processus : a- Père b- Init c- Systemd	10- La fonction exit(EXIT_FAILURE): arrange le processus immédiatement avec erreur b- Equivalent a exit(-1)

Exercice 2 : Les fonctions fork(), wait() et exit()

A- On considère les codes 1 et 2. Mentionner le nombre de processus générés en expliquant votre demarche.

Code 1	Code 2	
<pre>int main() { int cpt=0;</pre>	<pre>int main() { int i;</pre>	
<pre>while (cpt < 3) { if (fork() > 0) cpt++; else cpt=3; }</pre>	<pre>for (i=0; i<2; i++) fork(); printf("hello!\n"); exit(0); }</pre>	

- B- En considérant le code 4, mentionner le résultat trouvé avec l'état du processus fils.
- C- Modifier le code pour avoir une bonne synchronisation entre le processus père et le processus fils (ne pas réécrire le code, indiquer ce que vous avez ajouté)
- D- Ajouter au processus fils la commande execvp(argv[1], &argv[1]) et au processus père les macros WIFEXITED(status) et WEXITSTATUS(status).

```
pid_t val;
val = fork();

if (val == 0) {

printf("Fils : Je suis le fils, la valeur de retour du fork dans mon contexte est %d.\n", val);
printf("Fils : Termine !\n");
}
else if (val > 0)
{

printf("Père : Je suis le père, la valeur de retour du fork dans mon contexte est %d.\n", val);
while (1) // Boucle infinie, le père ne termine jamais !
usleep(1);
}
```

Exercice 3 : Ordonnancement des processus avec commutation de contexte CC

Soit le tableau suivant : Si deux processus arrivent au même temps, on les place dans la FA par ordre

Processus	Temps d'exécution	Temps d'arrivée	
P1	70	0	
P2	40	0	
Р3	60	10	
P4	10	10	
P5	20	15	
Р6	40	20	
P7	10	20	

En utilisant l'algorithme d'ordonnancement Round Robin (Quantum = 30, TCC=10 et file d'attente en FIFQ).

- Donner le diagramme de Gantt

TAT

WT

- Calculer sous forme de tableau : le temps de rotation, le temps d'attente, la moyenne du temps de rotation, la moyenne du temps d'attente et le débit (mettre les détails du calculs).

TRM

TAN

Debut