

SINGLE-CELL TRANSCRIPTOMICS WITH R

Differential gene expression analysis

Deepak Tanwar

March 18-20, 2025

Adapted from previous year courses

Feedback from Geert van Geest

Two types of gene expression analysis

1. Marker gene identification

Identify genes that are highly expressed in one group of cells (e.g., a specific cell type or cluster) compared to others, often used to annotate cell types or states.

2. Differential gene expression analysis

Identify genes that show a different expression between two populations, for example cells or individuals

Marker gene identification

Methods:

- Log-Fold Change (LFC) Analysis: Calculate the log-fold change in expression between a target cluster and all other cells (e.g., in Seurat or Scanpy).
- Wilcoxon Rank-Sum Test: Test for genes with significantly higher expression in one group compared to others (e.g., in Seurat).

Use Cases:

- Annotating cell types (e.g., identifying CD3 as a marker for T cells)
- Discovering novel cell states or subpopulations

Challenges:

- Marker genes may not be unique to a single cell type, requiring careful validation
- Dropout events can obscure marker gene detection

Research Open access | Published: 26 February 2024

A comparison of marker gene selection methods for single-cell RNA sequencing data

Jeffrey M. Pullin & Davis J. McCarthy ™

Genome Biology 25, Article number: 56 (2024) | Cite this article

16k Accesses | 32 Altmetric | Metrics

Methods based on logistic regression, Student's *t*-test and the Wilcoxon rank-sum test all have strong performance

Differential gene expression analysis

DGE can be divided into 2 sub-groups:

a. Single-Cell-Level DGE Analysis (finding markers)

Goal: Identify genes that are differentially expressed between cell populations (e.g., cell types, clusters, or conditions) while accounting for the single-cell nature of the data (e.g., sparsity, dropout events).

b. Pseudo-Bulk DGE Analysis (differential analysis)

Goal: Aggregate single-cell data into <u>pseudo-bulk</u> profiles to perform DGE analysis using bulk RNA-seq methods, reducing noise and leveraging biological replicates.

a. Single-Cell-Level DGE Analysis

a. Single-Cell-Level DGE Analysis

Methods:

- Wilcoxon Rank-Sum Test: A non-parametric test commonly used to compare gene expression distributions between two groups of cells (e.g., implemented in Seurat via the <u>FindMarkers</u> function).
- MAST (Model-based Analysis of Single-cell Transcriptomics): A hurdle model that accounts for dropout events and technical variability in scRNA-seq data.

Challenges:

- High false-positive rates due to the large number of cells and genes tested.
- Dropout events can obscure true biological differences.

b. Pseudo-Bulk DGE Analysis

b. Pseudo-Bulk DGE Analysis

Methods:

- Aggregate gene expression counts within groups (e.g., by cell type and sample) and use bulk RNA-seq tools like DESeq2, edgeR, or limma
- Tools like muscat in Bioconductor are specifically designed for pseudo-bulk DGE analysis in scRNA-seq

Advantages:

- Reduces noise and dropout effects
- Leverages well-validated bulk RNA-seq tools

Limitations: Loses single-cell resolution and cannot detect cell-to-cell variability

Quiz

What is a key limitation of pseudo-bulk analysis compared to single cell-level analysis?

- **A)** It is computationally more intensive.
- **B)** It loses single-cell resolution and cannot detect cell-to-cell variability.
- **C)** It cannot be used for differential expression analysis.
- D) It is less robust to dropout events.

Single Cell-Level: Finding markers

Pseudo-Bulk: Differential expression

Thank you

sib.swiss

