Pair localization in dipolar systems with tunable positional disorder

Adrian Braemer ,^{1,*} Titus Franz ,¹ Matthias Weidemüller ,¹ and Martin Gärttner ,^{1,2,3,†} Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

(Received 30 July 2022; accepted 16 October 2022; published 31 October 2022)

Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of random potentials, while many experimental realizations naturally feature disorder in the interparticle interactions. Inspired by cold Rydberg gases, where such disorder can be engineered using the dipole blockade effect, we study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings, arising from power-law interactions between randomly positioned spins. Using established spectral and eigenstate properties and entanglement entropy, we show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities in the system, leading to an intuitive physical picture consistent with our numerical results.

DOI: 10.1103/PhysRevB.106.134212

I. INTRODUCTION

Understanding how an isolated quantum system prepared out of equilibrium can exhibit thermal properties at late times, i.e., how it thermalizes, has challenged quantum physicists for almost a century. The eigenstate thermalization hypothesis (ETH) [1,2] offers a generic mechanism to explain this phenomenon but makes strong assumptions on the structure of energy eigenstates in terms of the matrix elements of local operators. Nonetheless, it has been shown numerically that a large class of quantum systems complies with ETH and thermalizes [3,4]. A notable exception are strongly disordered systems in which transport is absent and the system retains memory of the initial state at arbitrary times [5–8].

This phenomenon, called many-body localization (MBL), has been verified for small systems including, but not limited to, spin systems with random potentials [9–11], random nearest [12–14], and next-nearest-neighbor interactions [15,16], and power-law interactions [17–21] using a combination of exact numerical approaches and heuristic arguments like the strong disorder renormalization group (SDRG) [22–25] to generalize to large systems.

Recently, claims have been made that this localization phenomenology may not be stable in the thermodynamic limit due to thermal inclusions [26–34]. These are small, more ordered subregions thought to thermalize with their surroundings and thus slowly pushing the system toward thermalization. Unfortunately, these regions are very rare and thus only start appearing in large systems far beyond the reach of numerical methods. This raises the question whether this instability is relevant for quantum simulation experiments, being finite in

size and limited by coherence time. In this paper, we only focus on the phenomenology of localization in finite systems and subsequently use the term localized regime instead of a phase, following the terminology of Ref. [28].

Complementary to numerical works, there are a number of experimental results falling into roughly two classes: Experiments with single-particle resolution, including optical lattices [35–38] and trapped ions [39], and experiments based on macroscopic samples, like NV centers in diamond [40] or NMR systems [41]. The former offer precise control, but are rather limited in size, while the latter can realize much larger systems at the expense of flexibility, in particular, lack of programmable disorder. Cold gases of Rydberg atoms implement dipolar dynamics with random couplings (similar to NMR systems or NV centers) and allow for control of the disorder strength and even the power law of the interaction at rather large particle numbers [42], which makes them a powerful platform for studying localization phenomena.

Motivated by recent progress on quantum simulations with Rydberg atoms [42–45], we consider a power-law interacting spin system where the disorder is due to randomly positioned spins respecting a blockade condition, which induces disordered couplings. In this setup, the strength of the disorder can be tuned by changing the density of particles or, equivalently, the minimal distance between them. Starting in an ordered system, where the blockade radius is of order of the mean interparticle distance, we show numerically that this system exhibits a crossover to a localized regime at small blockade and apply a SDRG approach to derive a simple model based on strongly interacting pairs, which captures the properties of the eigenstates in the localized regime well. Our study thus adds to the body of numerical works on MBL, focusing on dipolar systems with tunable positional disorder, and is highly relevant to experimental efforts, as a wide range of quantum simulation platforms feature dipolar interactions.

^{*}adrian.braemer@kip.uni-heidelberg.de

[†]martin.gaerttner@kip.uni-heidelberg.de