

Final datasheet XHP™2 module with CoolSiC™ Trench MOSFET

Features

- · Electrical features
 - V_{DSS} = 3300 V
 - $I_{DN} = 1000 \text{ A} / I_{DRM} = 2000 \text{ A}$
 - $T_{vj,op} = 175$ °C
 - Low switching losses
 - High current density
 - Low inductive design
- Mechanical features
 - High power density
 - Package with CTI > 600
 - High creepage and clearance distances
 - AlSiC base plate for increased thermal cycling capability
 - AlN substrate with low thermal resistance

Potential applications

- Traction drives
- High-power converters
- High-frequency switching application

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

XHP™2 module

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET	3
3	Body diode (MOSFET)	6
4	NTC-Thermistor	6
5	Characteristics diagrams	7
6	Circuit diagram	3
7	Package outlines	4
8	Module label code	5
	Revision history	6
	Disclaimer	7

XHP™2 module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	6.0	kV
Partial discharge extinction voltage	$V_{\rm isol}$	RMS, $f = 50 \text{ Hz}, Q_{PD} \le 10 \text{ pC}$	2.6	kV
DC stability	V _{CE(D)}	T _{vj} = 25 °C, 100 Fit	2100	V
Material of module baseplate			Alsic	
Creepage distance	$d_{\text{Creep nom}}$	terminal to baseplate, nom.	40.0	mm
Creepage distance	$d_{\text{Creep nom}}$	terminal to terminal, nom.	34.0	mm
Clearance	d _{Clear nom}	terminal to baseplate, nom.	31.0	mm
Clearance	d _{Clear nom}	terminal to terminal, nom.	8.0	mm
Comparative tracking index	CTI		> 600	

Table 2 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Stray inductance module	L _{sCE}				10		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _C = 25 °C, per switch			0.43		mΩ
Storage temperature	$T_{\rm stg}$			-40		150	°C
Maximum baseplate operation temperature	T_{BPmax}					150	°C
Mounting torque for module mounting	М	- Mounting according to valid application note	M6, Screw	4.25		5.75	Nm
Terminal connection	М	- Mounting according to	M3, Screw	0.9		1.1	Nm
torque		valid application note	M8, Screw	8		10	
Weight	G		1		720		g

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	3300	V
Implemented drain current	I _{DN}			1000	Α
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 15 V	T _C = 25 °C	925	A

(table continues...)

XHP™2 module

2 MOSFET

Table 3 (continued) Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit
Repetitive peak drain current	/ _{DRM}	verified by design, t _p limited by T _{vjmax}	2000	А
Gate-source voltage, max. transient voltage	V _{GS}	D < 0.01	-10/23	V
Gate-source voltage, max. static voltage	V _{GS}		-7/20	V

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-5	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 1000 A	$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		1.9	2.4	mΩ
			V _{GS} = 15 V, T _{vj} = 125 °C		3.7	4.6	
			V _{GS} = 15 V, T _{vj} = 175 °C		5.3	6.6	
Gate threshold voltage	V _{GS(th)}		I_D = 900 mA, V_{DS} = V_{GS} , T_{vj} = 25 °C, (tested after 1ms pulse at V_{GS} = +20 V)		4.3	5.55	V
Total gate charge	Q _G	$V_{\rm DD}$ = 1800 V, $V_{\rm GS}$ = -5/15 V	$V_{\rm DD}$ = 1800 V, $V_{\rm GS}$ = -5/15 V		5		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			0.75		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 1800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		203		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 1800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		2.8		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 1800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.115		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 1800 V, $V_{\rm GS}$ = -5/15 V	', T _{vj} = 25 °C		5.8		mJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 3300 V, $V_{\rm GS}$ = -5 V	T _{vj} = 25 °C			2000	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			10000	nA

(table continues...)

XHP™2 module

2 MOSFET

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-on delay time	t _{d on}	I _D = 1000 A,	T _{vj} = 25 °C		480		ns
(inductive load)		$R_{Gon} = 0.75 \Omega,$ $V_{DD} = 1800 V,$	T _{vj} = 125 °C		420		
		$V_{\rm GS} = -5/15 \rm V$	T _{vj} = 175 °C		420		
Rise time (inductive load)	t _r	$R_{\text{Gon}} = 0.75 \Omega,$ $V_{\text{DD}} = 1800 \text{V},$	T _{vj} = 25 °C		170		ns
			T _{vj} = 125 °C		210		
			T _{vj} = 175 °C		210		
Turn-off delay time	$t_{\sf doff}$	$I_{\rm D} = 1000 \text{A}, R_{\rm Goff} = 1.2 \Omega,$	T _{vj} = 25 °C		330		ns
(inductive load)		$V_{DD} = 1800 \text{ V},$ $V_{GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		370		
		VGS = -5/15 V	T _{vj} = 175 °C		380		
Fall time (inductive load)	t _f	$I_{\rm D} = 1000 \text{A}, R_{\rm Goff} = 1.2 \Omega,$	T _{vj} = 25 °C		82		ns
		$V_{DD} = 1800 \text{ V},$ $V_{GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		82		
		VGS 3/13 V	T _{vj} = 175 °C		82		
Turn-on time (resistive load)	t _{on_R}	$I_D = 500 \text{ A}, V_{DD} = 2000 \text{ V},$ $V_{GS} = -5/15 \text{ V},$ $R_{Gon} = 0.75 \Omega$	T _{vj} = 25 °C	0.50			μs
Turn-on energy loss per	E _{on}	$I_{\rm D}$ = 1000 A, $V_{\rm DD}$ = 1800 V,	T _{vj} = 25 °C		280		mJ
pulse		$L_{\sigma} = 30 \text{ nH}, V_{GS} = -5/15 \text{ V},$ $R_{Gon} = 0.75 \Omega, \text{ di/dt} = 7.8$	T _{vj} = 125 °C		350		
		$kA/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		420		
Turn-off energy loss per	$E_{ m off}$	$I_{\rm D}$ = 1000 A, $V_{\rm DD}$ = 1800 V,	T _{vj} = 25 °C		160		mJ
pulse		L_{σ} = 30 nH, V_{GS} = -5/15 V, R_{Goff} = 1.2 Ω , dv/dt = 18.2	T _{vj} = 125 °C		160		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		160		
SC data	I _{SC}	$V_{GS} = -5/15 \text{ V},$ $V_{DD} = 2400 \text{ V},$ $V_{DSmax} = V_{DSS} - L_{SDS} * \text{di/dt},$ $R_G = 0.75 \Omega$	$t_{\rm P} = 3 \mu{\rm s},$ $T_{\rm vj} = 175 {}^{\circ}{\rm C}$		9100		A
Thermal resistance, junction to case	R _{thJC}	per MOSFET				26.3	K/kW
Thermal resistance, case to heat sink	R _{thCH}	per MOSFET, λ_{grease} = 1 W	/(m*K)		21.5		K/kW
Temperature under switching conditions	$T_{\rm vjop}$			-40		175	°C

XHP™2 module

3 Body diode (MOSFET)

3 Body diode (MOSFET)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward current	I _{SD}	$T_{\rm vj} = 175 {\rm ^{\circ}C}, V_{\rm GS} = -5 {\rm V}$	T _C = 55 °C	1000	А
l ² t - value	I ² t	$V_{DS} = 0 \text{ V}, V_{GS} = -5 \text{ V},$ $t_{P} = 10 \text{ ms}$	T _{vj} = 175 °C	500	kA ² s

Table 7Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	V_{SD}	$I_{SD} = 1000 \text{ A}, V_{GS} = -5 \text{ V}$	T _{vj} = 25 °C		4.6	5.8	V
			<i>T</i> _{vj} = 125 °C		3.9	4.9	
			<i>T</i> _{vj} = 175 °C		3.6	4.5	
Reverse recovery energy	E _{rec}	$I_{SD} = 1000 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		40		mJ
		7.8 kA/ μ s (T _{vj} = 175 °C), V_{DD} = 1800 V, V_{GS} =-5 V	<i>T</i> _{vj} = 125 °C		62		
		ν _{DD} = 1000 ν, ν_{GS}=- 3 ν	<i>T</i> _{vj} = 175 °C		105		

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Note or test condition		Values		
			Min.	Тур.	Мах.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: Specification according to the valid application note.

XHP™2 module

5 Characteristics diagrams

5 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$

T_{vj} = 175 °C

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 15 V$

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(T_{vj})$

 $V_{GS} = 15 V$

XHP™2 module

Transfer characteristic (typical), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

Gate-source threshold voltage (typical), MOSFET

 $V_{GS(th)} = f(T_{vj})$

 $V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET

 $V_{GS} = f(Q_G)$

 $I_D = 1000 \text{ A}, T_{vj} = 25 \,^{\circ}\text{C}$

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

 $f = 100 \text{ kHz}, T_{vj} = 25 \text{ °C}, V_{GS} = 0 \text{ V}$

XHP™2 module

5 Characteristics diagrams

Switching times (typical), MOSFET

 $t = f(I_D)$

 $R_{Goff} = 1.2 \,\Omega, \, R_{Gon} = 0.75 \,\Omega, \, V_{DD} = 1800 \,V, \, T_{vj} = 175 \,^{\circ}\text{C}, \, V_{GS} = \\ \left| \, V_{DD} = 1800 \,V, \, I_{D} = 1000 \,A, \, T_{vj} = 175 \,^{\circ}\text{C}, \, V_{GS} = -5/15 \,V_{CS} + 1000 \,A_{CS} + 10000 \,A_{CS} + 10000 \,A_{CS} + 1000 \,A_{CS} + 10000 \,A_{CS} + 10000 \,A_{CS} + 10000 \,A_{CS} +$ -5/15 V

Switching times (typical), MOSFET

 $t = f(R_G)$

Current slope (typical), MOSFET

 $di/dt = f(R_G)$

 V_{DD} = 1800 V, I_{D} = 1000 A, V_{GS} = -5/15 V

Voltage slope (typical), MOSFET

 $dv/dt = f(R_G)$

 V_{DD} = 1800 V, I_D = 1000 A, V_{GS} = -5/15 V

XHP™2 module

5 Characteristics diagrams

Switching losses (typical), MOSFET

 $E = f(I_D)$

$$R_{Goff} = 1.2 \Omega$$
, $R_{Gon} = 0.75 \Omega$, $V_{DD} = 1800 V$, $V_{GS} = -5/15 V$

Switching losses (typical), MOSFET

 $E = f(R_G)$

$$V_{DD} = 1800 \text{ V}, I_D = 1000 \text{ A}, V_{GS} = -5/15 \text{ V}$$

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

$$R_{Goff} = 1.2 \Omega, T_{vj} = 175 \,^{\circ}C, V_{GS} = -5/15 \,^{\circ}V$$

Transient thermal impedance, MOSFET

 $Z_{th} = f(t)$

XHP™2 module

Forward characteristic body diode (typical), MOSFET

$$V_{GS} = -5 V$$

Forward characteristic body diode (typical), MOSFET

$$I_{SD} = f(V_{SD})$$

$$V_{GS} = 15 V$$

Switching losses body diode (typical), MOSFET

$$E_{rec} = f(I_{SD})$$

$$R_{Gon} = 0.75 \Omega, V_{DD} = 1800 V$$

Switching losses body diode (typical), MOSFET

$$E_{rec} = f(R_G)$$

$$V_{DD}$$
 = 1800 V, I_{SD} = 1000 A

XHP™2 module

5 Characteristics diagrams

6 Circuit diagram

6 Circuit diagram

Figure 1

7 Package outlines

7 Package outlines

Figure 2

XHP™2 module

8 Module label code

8 Module label code

Code format	Data Matrix		Barcode C	Codo128
Code format	Data Matrix		Darcoue	
Encoding	ASCII text		Code Set A	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	-
Code content	Content	Digit		Example
	Module serial number	1-5		71549
	Module material number	6 - 11		142846
	Production order number	12 - 19		55054991
	Date code (production year)	20 – 21		15
	Date code (production week)	22 – 23		30
Example	BOOK 1985			
				88 88 1 88 8 1 88 1 8 1 8 8
	71549142846550549911530		7154914284	16550549911530

Figure 3

XHP™2 module

Revision history

Revision history

Document revision	Date of release	Description of changes
V1.0	2019-12-17	Target datasheet
n/a	2020-09-01	Datasheet migrated to a new system with a new layout and new revision number schema: target or preliminary datasheet = 0.xy; final datasheet = 1.xy
0.20	2023-11-21	Preliminary datasheet
1.00	2024-04-16	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-04-16 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-AAY262-003

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.