# Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

## Кафедра вычислительной техники

Направление: 09.04.01. «Информатика и вычислительная техника» Профиль: «Программное обеспечение средств вычислительной техники и автоматизированных систем»

Лабораторная работа №4

# «Параллельное программирование с использованием технологии CUDA»

по курсу:

«Вычислительные системы»

Студент: Старостенков А.А.

Группа: ВМ-22(маг)

Вариант: 19

Преподаватель: Федулов А.С.

### Задание

1. Написать, отладить, скомпилировать и запустить на гибридном вычислительном кластере СФМЭИ программу вычисления суммы

числового ряда:  $\sum_{n=1}^{N} a_n$ , где  $a_n$  - общий член ряда, с использованием технологии CUDA. Вариант задания (общий член ряда) выбрать в таблице (по номеру журнала).

- 2. Предусмотреть замер времени выполнения программы, контроль правильности вычисления суммы.
- 3. Вычисление членов ряда производить на GPU. Редукцию (суммирование) элементов массива для получения итогового значения суммы можно выполнить на CPU.
- 4. Получить зависимость времени выполнения параллельной программы от числа отрезков разбиения интервала интегрирования п.
- 5. При максимальном п исследовать влияние параметров запуска ядра CUDA на время выполнения параллельной программы. Произвести замер времени пересылок между устройством и хостом, времени счета на GPU и времени суммирования членов ряда на CPU. Проанализировать полученные результаты.
- 6. Все полученные зависимости оформить в виде графиков.

$$\frac{3}{10n^2-2n-3}$$

# Ход работы

- 1. Написать, отладить, скомпилировать и запустить на гибридном вычислительном кластере СФМЭИ программу вычисления суммы числового ряда: , где общий член ряда, с использованием технологии CUDA. Вариант задания (общий член ряда) выбрать в таблице (по номеру журнала).
- 2. Предусмотреть замер времени выполнения программы, контроль правильности вычисления суммы.

```
#include <cuda.h>
#include <stdio.h>
#define N 1000000
#define THREADS PER BLOCK 1024
 global void get_el(float *dev_el)
    float index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index <= N)</pre>
        float znam = (10 * (index + 1) * (index + 1) - 2 * (index + 1) - 3);
        dev el[(int)index] = 3.0 / znam;
    else
        return;
int main(void)
    float gpu_calc_time, gpu_send_time;
    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    float *el;
    float *dev_el;
    int size = N * sizeof(float);
```

```
el = (float *)malloc(size);
cudaMalloc((void **)&dev_el, size);
cudaEventRecord(start, 0);
get_el<<<(int)(N / THREADS_PER_BLOCK) + 1, THREADS_PER_BLOCK>>>(dev_el);
cudaEventRecord(stop, ∅);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&gpu_calc_time, start, stop);
cudaEventRecord(start, 0);
cudaMemcpy(el, dev_el, size, cudaMemcpyDeviceToHost);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&gpu_send_time, start, stop);
cudaFree(dev el);
float cpu t;
double sum = 0;
cudaEventRecord(start, ∅);
for (float i = 0; i < N; i++)
    sum += el[(int)i];
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&cpu_t, start, stop);
printf("Количество итераций: %d\n", N);
printf("Сумма числового ряда: %.6f\n", sum);
printf("Время вычисления в gpu: %.4f мс\n", gpu_calc_time);
printf("Время пересылок: %.4f мс\n", gpu_send_time);
printf("Время суммирования в сри: %.4f мс\n", сри_t);
printf("Общее время: %.4f мс\n", gpu_calc_time + gpu_send_time + cpu_t);
cudaEventDestroy(start);
cudaEventDestroy(stop);
return 0;
```

3. Вычисление членов ряда производить на GPU. Редукцию (суммирование) элементов массива для получения итогового значения суммы можно выполнить на CPU.

```
[starostenkov_aa@mng1 4]$ module load CUDA && module load GCC
[starostenkov_aa@mng1 4]$ nvcc 1.cu -o 1
[starostenkov_aa@mng1 4]$ srun 1
Количество итераций: 1000000
Сумма числового ряда: 0.816332
Время вычисления в gpu: 0.1805 мс
Время пересылок: 3.1329 мс
Время суммирования в cpu: 4.6268 мс
Общее время: 7.9403 мс
[starostenkov_aa@mng1 4]$ []
```

Рисунок 1 - Программа вычисления суммы числового ряда с использованием технологии CUDA

- 4. Получить зависимость времени выполнения параллельной программы от числа отрезков разбиения интервала интегрирования п.
- 5. При максимальном п исследовать влияние параметров запуска ядра CUDA на время выполнения параллельной программы. Произвести замер времени пересылок между устройством и хостом, времени счета на GPU и времени суммирования членов ряда на CPU. Проанализировать полученные результаты.

Для выполнения заданий 4 и 5 необходимо произвести измерения работы программы при различных значениях числа итераций. Были выбраны следующие значения N: 100, 1000, 10000, 100000, 1000000.

На рисунках 2 - 7 представлены результаты вычислений.

```
    [starostenkov_aa@mng1 4]$ srun 1
Количество итераций: 100
    Сумма числового ряда: 0.813344
    Время вычисления в gpu: 0.1948 мс
    Время пересылок: 0.0450 мс
    Время суммирования в cpu: 0.0024 мс
    Общее время: 0.2422 мс
    [starostenkov_aa@mng1 4]$
```

Рисунок 2 - Измерение времени при <math>N = 100

```
    [starostenkov_aa@mng1 4]$ srun 1
Количество итераций: 1000
    Сумма числового ряда: 0.816032
    Время вычисления в gpu: 0.1276 мс
    Время пересылок: 0.0289 мс
    Время суммирования в cpu: 0.0025 мс
    Общее время: 0.1589 мс
    [starostenkov_aa@mng1 4]$
```

Рисунок 3 — Измерение времени при N = 1000

```
    [starostenkov_aa@mng1 4]$ srun 1
Количество итераций: 10000
    Сумма числового ряда: 0.816302
    Время вычисления в gpu: 0.1250 мс
    Время пересылок: 0.0710 мс
    Время суммирования в cpu: 0.0023 мс
    Общее время: 0.1983 мс
    [starostenkov_aa@mng1 4]$
```

Рисунок 4 - Измерение времени при <math>N = 10000

```
• [starostenkov_aa@mng1 4]$ srun 1
Количество итераций: 100000
Сумма числового ряда: 0.816329
Время вычисления в gpu: 0.1835 мс
Время пересылок: 0.5249 мс
Время суммирования в cpu: 0.5370 мс
Общее время: 1.2453 мс
• [starostenkov_aa@mng1 4]$
```

Рисунок 5 — Измерение времени при N = 100000

```
    [starostenkov_aa@mng1 4]$ srun 1
    Количество итераций: 1000000
    Сумма числового ряда: 0.816332
    Время вычисления в gpu: 0.1633 мс
    Время пересылок: 2.4646 мс
    Время суммирования в сри: 3.3927 мс
    Общее время: 6.0206 мс
    [starostenkov_aa@mng1 4]$
```

Рисунок 6 – Измерение времени при N = 1000000

```
    [starostenkov_aa@mng1 4]$ srun 1
    Количество итераций: 10000000
    Сумма числового ряда: 0.816332
    Время вычисления в gpu: 0.4745 мс
    Время пересылок: 26.4539 мс
    Время суммирования в сри: 48.2439 мс
    Общее время: 75.1723 мс
    [starostenkov_aa@mng1 4]$
```

Рисунок 7 — Измерение времени при N = 10000000

Для наглядности все результаты вычисления времени занесены в таблицу 1.

Таблица 1 – Результаты измерения времени

| Кол-во<br>итераций | Время<br>вычисления в<br>gpu | Время пересылок | Время<br>суммирования<br>в сри | Общее время |
|--------------------|------------------------------|-----------------|--------------------------------|-------------|
| 100                | 0,1948                       | 0,0450          | 0,0024                         | 0,2422      |
| 1000               | 0,1276                       | 0,0289          | 0,0025                         | 0,1589      |
| 10000              | 0,1250                       | 0,0710          | 0,0023                         | 0,1983      |
| 100000             | 0,1835                       | 0,5249          | 0,5370                         | 1,2453      |
| 1000000            | 0,1633                       | 2,4646          | 3,3927                         | 6,0206      |
| 10000000           | 0,4745                       | 26,4539         | 48,2439                        | 75,1723     |

На рисунке 8 представлены графики зависимости времени от числа итераций.



Рисунок 8 – График зависимости времени от числа итераций **Выводы**:

По данному графику видно, что время выполнения ядра при любом количестве итераций не меняется. Это связано с тем, что ядро не содержит циклы, которые зависят от количества итераций. Для вычисления членов ряда N потоков запускаются параллельно.

Время пересылки, суммирования в сри и общее время ведут себя одинаково. При N равному интервалу от 100 до 100000 время меняется несущественно, но после 10000 время возрастает прямо пропорционально N.