GEOMETRY

Chapter 4

CIRCUNFERENCIA

HELICO | THEORY

Figura geométrica formada por un conjunto de infinitos puntos del plano que equidistan de otro punto fijo del mismo plano llamado centro.

Círculo

Parte del plano limitada por la circunferencia y los puntos de ella.

En la circunferencia se observan:

Centro: O

Diámetro: AB

Radio: R Flecha: PQ

Cuerda: EF

Arco: FB

Recta secante: \mathcal{Z}_{S}

Recta tangente: $\overleftarrow{\mathcal{L}_{\mathrm{T}}}$

Punto de tangencia: N

CIRCUNFERENCIA

Ángulos relacionados con arcos de circunferencia

1. Ángulo central

2. Ángulo inscrito

3. Ángulo interior

 $x = \frac{\alpha + \theta}{2}$

4. Ángulo semiinscrito

Ángulo semiinscrito

Teoremas

una recta, es perpendicular a ella.

Ángulo exterior

a) Dos secantes

$$x = \frac{\alpha - \theta}{2}$$

b) Tangente y secante

$$x = \frac{\alpha - \theta}{2}$$

c) Dos tangentes

 $\alpha + x = 180^{\circ}$

El radio trazado al punto de tangencia con 2. Los segmentos tangentes trazados desde el mismo punto, son congruentes.

A y B: puntos de tangencia PO biseca el ∢ P

PA = PB

misma circunferencia, arcos congruentes subtienden cuerdas congruentes, y recíprocamente.

 Todo diámetro perpendicular a una cuerda, 5. divide dicha cuerda y a los arcos, en partes congruentes.

AB: diámetro

Si $\overline{AB} \perp \overline{CD}$

$$\rightarrow$$
 $\overline{CM} \cong \overline{MD}$ $\widehat{CB} \cong \widehat{BD}$

En la misma circunferencia, cuerdas paralelas determinan arcos congruentes.

 Los ángulos inscritos en cualquier semicircunferencia, son rectos.

Si AB: diámetro

$$\rightarrow$$
 $x = 90^{\circ}$ y $\alpha = 90^{\circ}$

1. En la figura, O es centro. Halle m AB.

Resolución:

Piden: m AB = x

Dato:

$$OA = OB = a$$

△ AOB notable de 45°

Entonces, por ángulo central

$$x = 90^{\circ}$$

2. En la figura, halle el valor de x.

Resolución:

Piden el valor de x

Datos:

 $m \not ACE \Rightarrow m \overrightarrow{AFE} = 4x$

(ángulo inscrito)

Del gráfico:

$$4x + 80^{\circ} + 6x + 70^{\circ} = 360^{\circ}$$

 $21x = 210^{\circ}$

$$x = 21^{\circ}$$

3. Se tiene un triángulo acutángulo ABC inscrito en una circunferencia de centro O. Si $m \not \leq BCO = 35^{\circ}$, halle $m \not \leq BAC$.

Resolución:

Piden m ∡ BAC

Donde OB y OC son los radios

Tal que: \triangle BOC es isósceles

 $m \angle BOC = 110^{\circ} = m BC$

(ángulo central)

Entonces: m \$\alpha\$BAC es ángulo inscrito

$$m \preceq BAC = x = \frac{110}{2}$$

.: m ∡BAC = 55°

4. Halle el valor de x si $\alpha - \beta = 30^{\circ}$.

Resolución:

Piden el valor de x

Dato:
$$\alpha - \beta = 30^{\circ}$$

* Se traza AD entonces los cuadriláteros ABCD y ADEM son inscritos.

$$\Rightarrow$$
 m $\not = \beta$

$$\Rightarrow$$
 m $\not \leq$ SAF = α

Luego: En △ ADF

$$\alpha = \beta + x$$

$$\alpha - \beta = x$$

 $x = 30^{\circ}$

5. En la figura, B y D son puntos de tangencia y ABCD es un romboide. Halle el valor de x.

Resolución:

Piden el valor de x

$$\Rightarrow$$
 m $\not \perp$ BCD = m $\not \perp$ BAD = 80°

Siendo B y D puntos de tangencia

* Donde se cumple el teorema:

$$80^{\circ} + m BD = 180^{\circ}$$
 $\Rightarrow m BD = 100^{\circ}$

* Por teorema de ángulo interior

$$80^{\circ} = \frac{x + 100^{\circ}}{2}$$

$$x = 60^{\circ}$$

6. En la figura, halle m CD si AC es diámetro.

Resolución:

Piden el valor de m CD = x

Se traza la diagonal AC

Entonces: $m \angle ACD = 90^{\circ}$

En ⊿ACD:

$$m \angle CAD + 55^{\circ} = 90^{\circ}$$

$$m \angle CAD = 35^{\circ}$$

Luego:

$$35^{\circ} = \frac{x}{2}$$

$$.: mCD = 70^{\circ}$$

7. En la figura, A es punto de tangencia. Halle m CD.

8. Se tiene un trapecio ABCD inscrito en una circunferencia, tal que BC es la base menor. Si m AD – m BC= 80° , halle m $\cancel{\angle}$ BAD.

Resolución:

Piden m
$$\angle BAD = x$$

Dato:
$$m \stackrel{\frown}{AD} - m \stackrel{\frown}{BC} = 80^{\circ}$$

$$2\alpha - 2\beta = 80^{\circ}$$
 $\Rightarrow \alpha - \beta = 40^{\circ}$

* Siendo ABCD isósceles

$$m \not ABAD = m \not ADC = x$$

* m $\angle CAD = x - \beta$ °

Ahora, en \triangle ACD:

$$x - \beta + \alpha + x = 180^{\circ}$$

$$2x + 40^{\circ} = 180^{\circ}$$

 $x = 70^{\circ}$

9. Se tiene un cuadrilátero inscrito en una circunferencia, donde las medidas de sus ángulos internos al ser ordenados de menor a mayor, forman una progresión aritmética de razón 20°. Halle la medida del mayor de dichos ángulos.

Resolución:

Piden el mayor ángulo interno

Por teorema:

$$\alpha + \alpha + 40^{\circ} = 180^{\circ} \Rightarrow \alpha = 70^{\circ}$$

Entonces, el mayor ángulo interno es:

$$\alpha + 60^{\circ} = 70^{\circ} + 60^{\circ}$$

: el mayor ángulo es de 130°

10. En la figura, halle el valor de x si O y O' son centros.

Resolución:

Piden el valor de x.
Se trazan los radios OA, OB y OC

△ AOB es isósceles

△ OBO' es equilátero

Δ BO'C es isósceles

En ∆ BO'C

$$50^{\circ} + 50^{\circ} + x = 180^{\circ}$$

$$x = 80^{\circ}$$