4 HOUR PRACTICE FROM ED DUMMIT'S SEP

COLTON GRAINGER

1. GROUPS

- 1. (Jan-12.1) Let $|G| = 4312 = 2^37^211$.
 - (a) Show that G has a subgroup of order 77.
 - (b) Show that G has a subgroup of order 7 whose normalizer in G has index dividing 8.
 - (c) Conclude that G is not simple.
- (Jan-89.5) Let G be a nonabelian finite simple group of order divisible by p. If G has no more than 2p Sylow p-subgroups, determine the number of elements of G whose order is a power of p, in terms of p.
- (Jan-14.3) Let G be a finite group.
 - (a) If H is a proper subgroup of G, show that there is some element $x \in G$ which is not contained in any subgroup conjugate to H.
 - (b) Use part (a) to show that if all maximal subgroups of G are conjugate, then G is cyclic.

2. RINGS

- (Aug-13.3) Let I and J be ideals in a commutative ring R.
 - (a) Show that if I + J = R, then $I \cap J = IJ$.
 - (b) Suppose that I and J are ideals in C[x], and suppose that I + J = (x). Show that (I ∩ J)/IJ is 1-dimensional as a complex vector space, and moreover that it is isomorphic to C[x]/(x) as a C[x]-module.
 - (c) On the other hand, for general commutative rings R, once R/(I+J) is not trivial, the difference between I ∩ J and IJ can be large even if R/(I ∩ J) is small. Demonstrate this by showing that, if R = C[x, y], there exist ideals I and J in R such that I + J = (x, y) and the dimension of (I ∩ J)/IJ as a C-vector space is at least 100.
- (Jan-04.2) Let K be a field and R be the subring of K[x] of all polynomials with zero x-coefficient.
 - (a) Show that x² and x³ are irreducible but not prime in R.
 - (b) Show that R is Noetherian.
 - (c) Show that the ideal of all polynomials of R with zero constant term is not principal.

Date: 2019-01-04. Compiled: 2019-01-04.

3. SOLUTIONS

For groups, see Prob 1 to Prob 3 for the Groups Day 1 handout:

• https://github.com/coltongrainger/fy19alg1/raw/master/2014_algebra_sep_notes_groups_day_1_solutions.pdf

For rings, see Prob 1 to Prob 2 for the Rings Day 1 handout:

• https://github.com/coltongrainger/fy19alg1/raw/master/2014_algebra_sep_notes_rings_day_1_solutions.pdf