2023 春复分析每日一练 (VI)

黄天一

2023年6月23日

核心内容回顾

- 1. 解析开拓的基本概念.
- 2. 通过 Schwarz 对称进行解析开拓: (1) 区域关于实轴对称; (2) 区域关于一般的圆周对称.
- 3. 幂级数和函数沿半径解析开拓: (1) 正则点与奇点的概念; (2) 幂级数在收敛圆周上必有奇点; (3) 一些有自然边界的幂级数例子.

判断题 2

- 1. (22 期末) 定义在实轴上的实函数 $f(x) = \sqrt{x^2}$ 不能解析开拓到复平面上.
- **2.** 设 $D = B(\infty, R), f, g \in H(D) \cap C(\overline{D})$ 满足 $f(z) = g(z), \forall |z| = R, 则 f 恒等于 <math>g$. **3.** 存在收敛半径为 1 的幂级数 $\sum_{n=0}^{\infty} a_n z^n$, 它在 $\partial B(0,1)$ 上恰好有一个奇点.
- **4.** 幂级数 $\sum_{n=0}^{\infty} a_n z^n$ 在收敛圆周上必有正则点.

证明与计算题 3

- **1.** 设 γ 是圆周 $\partial B(z_0, R)$ 上的一段开圆弧, 证明: 若 f 在 $B(z_0, R)$ 上全纯, 在 $B(z_0, R) \cup \gamma$ 上连续, 并且在 γ 上恒为零, 则 f 在 $B(z_0, R)$ 上也恒为零.
- 2. 利用解析开拓证明下面两个命题:
- (1) (21 期末) 若 $f \in H(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ 满足 $|f(z)| = 1, \forall |z| = 1, 则 <math>f(z)$ 为有理函数.
- (2) (20 期末) 设 f 为整函数, 且 $f(\mathbb{R}) \subset \mathbb{R}$, $f(i\mathbb{R}) \subset i\mathbb{R}$, 证明 f 是奇函数.
- **3.** (1) 设区域 D 关于实轴对称, $f \in H(D)$. 证明: 存在 D 上的全纯函数 f_1, f_2 , 使得 f_1, f_2 在实轴上 取实值, 且 $f(z) = f_1(z) + i f_2(z)$.
- (2) 设 D 是由两条简单闭曲线 γ_1, γ_2 围成的二连通域, 其中 γ_2 位于 γ_1 的内部. 设 $f \in H(D)$, 证明:
- $f(z) = f_1(z) + f_2(z)$, 其中 f_1 在 γ_1 内部全纯, f_2 在 γ_2 外部全纯. **4.** 证明: $\sum_{n=0}^{\infty} \frac{z^{2^n}}{2^n}$ 的收敛圆周上的每个点都是和函数的奇点.
- **5.** 设和函数 $f(z) = \sum_{n=0}^{\infty} a_n z^n$ 的收敛圆周上存在点 z_0 , 使得 f(z) 可以解析开拓到 $B(z_0, r) \setminus z_0$ 上, 并 且 z_0 是开拓后函数的极点. 证明: 幂级数 $\sum_{n=0}^{\infty} a_n z^n$ 在收敛圆周上处处发散.