Sprawozdanie-Metody numeryczne i optymailzacja

Jakub Andryszczak 259519, Jakub Żak 244255, Maciej Cierpisz 249163

Spis treści

1	Wstęp	2
2	Zadanie nr. 1	2
3	Zadanie nr. 2	4
4	Zadanie nr. 3	5
5	Zadanie nr. 4	5
6	Zadanie nr. 5	5
7	Zadanie nr. 6	11
8	Zadanie nr. 7	11
9	Zadanie nr. 8	11
10	Zadanie nr. 9	11
11	Zakończenie	11

1 Wstęp

Mieliśmy do rozwiązania problem, który polegał na tym, że po otrzymaniu sygnału z anten sieci komórkowej musieliśmy zlokalizować dany telefon w budynku wydziału MiNI. Do określenia były współrzędne x, y oraz piętro w budynku.

Projekt ten wykonywaliśmy w ośmioosobowej grupie. Co tydzień spotykaliśmy się na zajęciach, gdzie omawialiśmy postępy w zadaniu i stawialiśmy sobie nowe cele, zadania, a także rozpatrywaliśmy potencjalne problemy. Stworzyliśmy także grupę dyskusyjną, gdzie omawialiśmy rezultaty działań i zawieraliśmy istotne spostrzeżenia nt. projektu. Powstała również wspólna przestrzeń dyskowa, gdzie udostępnialiśmy sobie nawzajem różne dane, skrypty, wyniki, informacje, dokumenty, poradniki, wykresy i statystyki.

Do próby rozwiązania problemu wykorzystaliśmy uczenie maszynowe. Używaliśmy oprogramowania RapidMiner.

Pomocny również okazał się program MATLAB, w którym pisaliśmy pomocne skrypty takie jak:

- Generator trójwymiarowych map, które pokazywały rozkładanie się błędu na współrzędnych x i y
- Generator twójwymiarowych map siły sygnału z anteny
- 'Wycięcie' prostopadłościanu danych
- Wartościowanie anten

Dokładniejszy opis powyższych skryptów został zamieszczony w rozdziale trzecim.

2 Zadanie nr. 1

Rozwiązać ręcznie i komputerowo metodą eliminacji Gaussa poniższy układ równań liniowych. Znaleźć elementy podstawowe (pivots).

$$\begin{cases}
2u - v = 0 \\
-u + 2v - w = 0 \\
-v + 2w - z = 0 \\
-w + 2z = 5
\end{cases}$$
(1)

Do wykonania tego zadania rozpisano lewą stronę jako macier
z $4\mathrm{x}4$ oraz wektor wynikowy $1\mathrm{x}4$

$$\begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & 5 \end{bmatrix} \xrightarrow{\cdot \frac{1}{2}} \xrightarrow{\cdot \frac{1}{2}}$$

$$\begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & 5 \end{bmatrix} \xrightarrow{\cdot \frac{2}{3}} \xrightarrow{\cdot \frac{3}{4}}$$

$$\begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 & 0 & 0 \\ 0 & 0 & \frac{4}{3} & -1 & 0 & 0 \\ 0 & 0 & \frac{4}{3} & -1 & 0 & 0 \\ 0 & 0 & \frac{5}{4} & 5 \end{bmatrix} \xrightarrow{\cdot \frac{1}{2}} \xrightarrow{\cdot \frac{1}{2$$

$$\begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ 0 & \frac{3}{2} & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 3 \end{bmatrix}$$

3 Zadanie nr. 2

Tiruriru Tiruriru

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 1 \end{bmatrix} \xrightarrow{-1} \xrightarrow{-1} \xrightarrow{-1} \xrightarrow{+}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{+}_{-1}^{+}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{-1}_{-1}^{+}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

- 4 Zadanie nr. 3
- 5 Zadanie nr. 4
- 6 Zadanie nr. 5

Zadanie nr. 5 polegało na zaimplementowaniu dowolnego algorytmu do faktoryzacji LU i zastosowaniu do zadanej macierzy. Zdecydowano się na algorytm Crout. Poniżej implementacja algorytmu na zadanej macierzy.

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 1 & 2 & 1 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} L \end{bmatrix}^{*} \begin{bmatrix} U \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} L_{M} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 1 & 2 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 & 0 \\ L_{21} & L_{22} & 0 & 0 \\ L_{31} & L_{32} & L_{33} & 0 \\ L_{41} & L_{42} & L_{43} & L_{44} \end{bmatrix} \begin{bmatrix} 1 & U_{12} & U_{13} & U_{14} \\ 0 & 1 & U_{23} & U_{24} \\ 0 & 0 & 1 & U_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$2 = \begin{bmatrix} L_{10} & 000 \end{bmatrix} * \begin{bmatrix} U_{12} \\ 1 \\ 0 \\ 0 \end{bmatrix} U_{12} = 2$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
-1 & 1 & 2 & 1 \\
0 & 2 & 1 & 3 \\
0 & 0 & 1 & 1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 0 & 0 \\
-1$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & U_{23} & U_{24} \\
0 & 0 & 1 & U_{34} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$-1 = \begin{bmatrix} L_{21} L_{22} & 00 \end{bmatrix} * \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} L_{21} = -1 \\ 0 \\ 0 \end{bmatrix}$$

$$\lambda = \begin{bmatrix} -1 & 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ u_{23} \\ 1 \\ 0 \end{bmatrix} \quad \lambda = -3 + 3 u_{13} + 0 + 0 = 0$$

$$5 = 3 u_{23} + 3$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 1 & 2 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 1 & 3 & 0 \\ 1 & 3 & 1 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 5 & 3 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$0 = \begin{bmatrix} L_{31} & L_{32} & L_{33} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad L_{31} = 0$$

$$2 = \left[0 L_{32} L_{33} 0\right] \begin{bmatrix} \lambda \\ \lambda \\ 0 \\ 0 \end{bmatrix} L_{32} = \lambda$$

$$1 = \begin{bmatrix} 0 & \lambda & L_{73} & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 & \frac{10}{3} & = L_{33} \\ \frac{5}{3} & 1 & \frac{1}{3} & = L_{33} \\ 0 & 1 & \frac{1}{3} & = -\frac{4}{3} \end{bmatrix}$$

$$3 = \begin{bmatrix} 0 & 2 & -\frac{7}{3} & 0 \end{bmatrix} \begin{bmatrix} 4 & 5 & 5 & 5 \\ \frac{7}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$\frac{7}{3}$$
 $434 = -3 + \frac{10}{3}$ $\frac{7}{3}$ $434 = \frac{1}{3}$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
-1 & 3 & 4 \\
0 & 2 & 1 & 3 \\
0 & 0 & 1 & 1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
-1 & 3 & 0 & 0 \\
0 & 2 & -\frac{7}{3} & 0 \\
-44 & -\frac{7}{3} & 0 & 0 \\
-44 & -\frac{7}{3} & -\frac{7}{3} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$0 = \begin{bmatrix} L_{41} & L_{42} & L_{43} & L_{44} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$L_{41} = 0$$

$$1 = \begin{bmatrix} 0 & 0 & -43 & -44 \end{bmatrix} \begin{bmatrix} 3 \\ \frac{5}{3} \\ 1 \\ 0 \end{bmatrix} - 43 = 1$$

$$1 = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 5 & 3 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 3 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 0 & 2 & -\frac{7}{3} & 0 \\ 0 & 0 & 1 & \frac{7}{3} \\ 0 & 0 & 1 & \frac{7}{3} \end{bmatrix}$$

- 7 Zadanie nr. 6
- 8 Zadanie nr. 7
- 9 Zadanie nr. 8
- 10 Zadanie nr. 9

11 Zakończenie

Realizacja tego projektu była bardzo pouczająca. Dała nam ona podstawowy przegląd technik uczenia maszynowego (pojęcia takie jak SVM, kroswalidacja itp.), pokazała nam potęgę programu RapidMiner i nauczyliśmy się korzystać z jego podstawowych funkcji. Podczas jednych ćwiczeń przeprowadziliśmy eksperyment wspólnego rozpatrywania problemu (nie związanego z naszym projektem) - rozbitków na oceanie. Dzięki tym ćwiczeniom doszliśmy do wniosku, że wspólna analiza wszystkich pomysłów może być bardzo efektywna i przynieść znaczący postęp. Podsumowując, wykonanie projektu było ciekawym doświadczeniem, jednak niestety nie udało nam się go rozwinąć tak, aby nasze rozwiązanie mogło być wykorzystane w praktyce. Być może inne metody (takie jak wykorzystanie więcej niż jednego pomiaru do lokalizacji użytkownika) mogą dać lepsze wyniki, uważamy jednak, że dotarliśmy do granic możliwości zadanego podejścia.