

Investigation of Ultrasound Transducer Response

Katelyn N. Joyce[†], Alison E. Malcolm[‡] and Kristin M. Poduska[†]

[†]Department of Physics & Physical Oceanography, [‡]Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, Canada

August 14, 2023

Outline

Outline

Introduction

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

- 1. Introduction
 - Background
 - Ultrasonic Transducers
 - Nonlinear Elasticity
 - Motivation
- 2. Experiment 1: No Transducers
- 3. Experiment 2: Uncoupled Transducers
- 4. Experiment 3: Coupled Transducers
- 5. Conclusions

Ultrasonic Transducers

 Ultrasonic transducers convert between mechanical energy (sound) and electric current.

 Changes in ultrasound wave speeds can be used to determine elastic properties of media.

Outline

Introduction
Background
Motivation
Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Ultrasonic Transducers

• Ultrasonic transducers convert between mechanical energy (sound) and electric current.

 Changes in ultrasound wave speeds can be used to determine elastic properties of media.

Motion of Particles in Rock

Outline

Introduction Background Motivation

Experiment 1

Experiment 2

Experiment 3

Conclusions

Non-Linear Elasticity

• Elasticity describes the stress-strain relationship of materials.

• Elasticity is non-linear when this relationship does not adhere to Hooke's law.

Outline

Introduction
Background
Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Outline

Introduction

Background

Motivation Objectives

Objective

Experiment 1
Experiment 2

Experiment 3

Conclusions

Conclusions
Future Work

Non-linear elasticity is an indicator of material damage.

Outline

Introduction
Background
Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Future Work

Non-linear elasticity is an indicator of material damage.

Acoustic techniques are used across many disciplines (i.e. geophysics, medicine, and civil engineering) to characterize the structure of complex solids, such as:

Rocks

Ex: Riviere, J., Roux, P. J Acoust Soc Am (2017) 142 2723.

Outline

Introduction
Background
Motivation

Objectives

Experiment 1
Experiment 2

Experiment 3

Conclusions

Future Work

Non-linear elasticity is an indicator of material damage.

Acoustic techniques are used across many disciplines (i.e. geophysics, medicine, and civil engineering) to characterize the structure of complex solids, such as:

Rocks

Ex: Riviere, J., Roux, P. J Acoust Soc Am (2017) 142 2723.

Bones

Ex: Renaud et al. IEEE Trans Ultrason...Control (2008) 55 1497.

Muller et al. J Biomech (2008) 41 1062.

Outline

Introduction
Background
Motivation

Objectives

Experiment 1
Experiment 2

Experiment 3

Conclusions

Future Work

Non-linear elasticity is an indicator of material damage.

Acoustic techniques are used across many disciplines (i.e. geophysics, medicine, and civil engineering) to characterize the structure of complex solids, such as:

Rocks

Ex: Riviere, J., Roux, P. J Acoust Soc Am (2017) 142 2723.

Bones

Ex: Renaud et al. IEEE Trans Ultrason...Control (2008) 55 1497.

Muller et al. J Biomech (2008) 41 1062.

Concrete

Fx:

Riviere, J., Roux, P. Constr Build Mater. (2016) 114 87.

Transient Wave Dynamic Acousto-elastic Testing

Outline

Introduction
Background
Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Future Work

Pump-Probe setup for measuring non-linear elastic properties.

Motivation

The plot that started it all...

Existing research suggests that the waves induced in a material do not necessarily have the same properties as the input waveforms (Newman, 2021). Ex:

Introduction

Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Objectives

Outline

Introduction

.....

Motivation Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Future Work

(a) Verify the functionality of our equipment.

Objectives

Outline

Introduction

Background Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

- (a) Verify the functionality of our equipment.
- (b) Investigate transducer outputs for different coupled systems.

Objectives

Outline

Introduction

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

- (a) Verify the functionality of our equipment.
- (b) Investigate transducer outputs for different coupled systems.
- (c) Develop a protocol to inform researchers of necessary parameter adjustments when working with ultrasound transducers.

Wave Generator to Oscilloscope Methods

Outline

Introduction

Background Motivation

Objectives

--,-----

Experiment 1

Experiment 2

Experiment 3

Conclusions

Wave Generator to Oscilloscope

Results

Outline

Introduction

Motivation

Objectives

Experiment 1
Experiment 2

Experiment 3

Conclusions

Future Work

Generator to Oscilloscope, 4 cycles

Figure: FFT of 1 cycle pulse.

Figure: FFT of 4 cycle pulse.

Uncoupled Transducers

Methods

Outline

Introduction

Background Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Outline Introduction

Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3
Conclusions

Future Work

Uncoupled Transducers: S-wave

Results

Figure: Raw Data

Figure: FFT

Uncoupled Transducers: S-wave

Results

Outline Introduction

Introduction

Motivation Objectives

Experiment 1

Experiment 2

Experiment 2

Experiment 3

Conclusions

Coupled Transducers

Methods

Analyze FFT spectrum after changing:

- Input frequency
- Type of transducer (S-wave or P-wave)
- Number of cycles
- Sample material

Experiment 1 Experiment 2 Experiment 3

Conclusions

Objectives

Outline Introduction

Coupled Transducers: S-Wave

Results

4 cycles:

Figure: Raw Data

Figure: FFT

Introduction

Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Coupled Transducers: S-Wave

Results

1 cycle:

Time (s)

1e-5

Outline

Introduction Background

Motivation Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Outline
Introduction
Background
Motivation

Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Future Work

Coupled Transducers: S-Wave

Results

S-wave Probe:

Figure: My 1 cycle S-wave probe.

Motivation Data:

Figure: The plot that started it all.

Coupled Transducers: P-Wave

Results

1 cycle:

Figure: Raw Data

Figure: FFT

Outline

Introduction

Motivation Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Conclusions

Outline

Introduction

Motivation Objectives

Experiment 1

Experiment 2

Experiment 3

Conclusions

Future Work

• The equipment is functional.

- When coupled, S-wave transducers generate a unique coupling signature whose frequency is independent of the frequency set on the generator.
- S-wave transducers are not a viable option for measuring the relationship between probe frequency and nonlinear elasticity.

Future Work

Outline

Introduction

Background Motivation

Objectives

Experiment 1
Experiment 2

Experiment 3

Conclusions

- Using a P-wave probe to investigate the relationship between probe frequency and non-linear elasticity.
- Investigate if the S-wave coupling signature can be used to identify unknown samples.