$12n_{0689} \ (K12n_{0689})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -249863221u^{14} - 685643435u^{13} + \dots + 7149815356b + 6972584040, \\ &- 9675904336u^{14} - 21495350106u^{13} + \dots + 21449446068a + 126465591430, \\ &u^{15} + 2u^{14} + \dots - 4u + 4 \rangle \\ I_2^u &= \langle b + 1, \ 2u^5 + 4u^4 + 7u^3 + 8u^2 + 3a + 6u + 5, \ u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1 \rangle \\ I_3^u &= \langle -au + 3b + 2a - 3, \ 2a^2 - au - 2a - 2u - 1, \ u^2 + 2 \rangle \\ I_1^v &= \langle a, \ b - v - 2, \ v^2 + 3v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 27 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle -2.50 \times 10^8 u^{14} - 6.86 \times 10^8 u^{13} + \dots + 7.15 \times 10^9 b + 6.97 \times 10^9, \ -9.68 \times 10^9 u^{14} - 2.15 \times 10^{10} u^{13} + \dots + 2.14 \times 10^{10} a + 1.26 \times 10^{11}, \ u^{15} + 2u^{14} + \dots - 4u + 4 \rangle \end{matrix}$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.451103u^{14} + 1.00214u^{13} + \dots - 17.5109u - 5.89598 \\ 0.0349468u^{14} + 0.0958967u^{13} + \dots - 1.33742u - 0.975212 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.486050u^{14} + 1.09804u^{13} + \dots - 18.8483u - 6.87120 \\ 0.0349468u^{14} + 0.0958967u^{13} + \dots - 1.33742u - 0.975212 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.294788u^{14} + 0.657010u^{13} + \dots - 14.7148u - 4.23924 \\ -0.0459078u^{14} - 0.0956177u^{13} + \dots - 0.878005u - 0.288978 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.130153u^{14} + 0.257727u^{13} + \dots - 6.22583u - 2.21939 \\ -0.0158172u^{14} - 0.0711109u^{13} + \dots + 0.500235u - 0.0616192 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.201267u^{14} + 0.468199u^{13} + \dots - 7.66259u - 2.24374 \\ 0.0648205u^{14} + 0.172140u^{13} + \dots - 1.47894u - 0.348628 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0813622u^{14} + 0.162342u^{13} + \dots - 5.15784u - 1.63915 \\ -0.0550842u^{14} - 0.133716u^{13} + \dots + 1.02581u + 0.255966 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{15} - 10u^{14} + \dots - 57u - 9$
c_3, c_7	$u^{15} - 2u^{14} + \dots - 192u + 576$
c_5, c_6, c_{10}	$u^{15} + 2u^{14} + \dots - 4u + 4$
c_8, c_{11}, c_{12}	$u^{15} + 4u^{14} + \dots - 37u - 19$
<i>C</i> 9	$u^{15} - 2u^{14} + \dots - 6348u + 2116$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{15} + 52y^{13} + \dots + 3177y - 81$
c_3, c_7	$y^{15} + 66y^{14} + \dots + 4349952y - 331776$
c_5, c_6, c_{10}	$y^{15} + 24y^{14} + \dots + 336y - 16$
c_8, c_{11}, c_{12}	$y^{15} - 2y^{14} + \dots + 4561y - 361$
<i>c</i> ₉	$y^{15} + 144y^{14} + \dots + 53534800y - 4477456$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.016193 + 1.236613I		
a = 0.649765 - 0.309826I	3.11226 + 1.37153I	-7.52048 - 4.70500I
b = -0.019483 + 0.380184I		
u = -0.016193 - 1.236613I		
a = 0.649765 + 0.309826I	3.11226 - 1.37153I	-7.52048 + 4.70500I
b = -0.019483 - 0.380184I		
u = -0.382234 + 0.648228I		
a = 0.093614 + 0.314483I	-0.561570 - 0.602510I	-12.89865 + 0.16991I
b = -0.910726 - 0.608079I		
u = -0.382234 - 0.648228I		
a = 0.093614 - 0.314483I	-0.561570 + 0.602510I	-12.89865 - 0.16991I
b = -0.910726 + 0.608079I		
u = 0.481765		
a = 0.876017	-10.9150	-27.4910
b = 1.52879		
u = 0.43189 + 1.48192I		
a = -0.381495 - 0.081254I	-5.53981 - 3.37298I	-14.3863 + 0.4326I
b = 1.32115 - 0.59294I		
u = 0.43189 - 1.48192I		
a = -0.381495 + 0.081254I	-5.53981 + 3.37298I	-14.3863 - 0.4326I
b = 1.32115 + 0.59294I		
u = -1.01904 + 1.21960I		
a = 0.793015 + 0.629146I	4.94872 + 5.24403I	-12.95978 - 2.95789I
b = 1.05096 - 1.67638I		
u = -1.01904 - 1.21960I		
a = 0.793015 - 0.629146I	4.94872 - 5.24403I	-12.95978 + 2.95789I
b = 1.05096 + 1.67638I		
u = -0.358485		
a = 0.777590	-0.594411	-16.4650
b = -0.141539		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.269953		
a = -9.24911	-2.86090	-50.4000
b = -0.853104		
u = -0.39688 + 1.74630I		
a = 0.064779 + 1.248157I	14.2231 + 11.2321I	-13.44172 - 4.13184I
b = 1.80094 - 0.90555I		
u = -0.39688 - 1.74630I		
a = 0.064779 - 1.248157I	14.2231 - 11.2321I	-13.44172 + 4.13184I
b = 1.80094 + 0.90555I		
u = 0.18584 + 2.25780I		
a = -0.088591 - 0.982699I	18.1439 - 0.8477I	-12.17052 + 0.18757I
b = 1.49008 + 2.48794I		
u = 0.18584 - 2.25780I		
a = -0.088591 + 0.982699I	18.1439 + 0.8477I	-12.17052 - 0.18757I
b = 1.49008 - 2.48794I		

 $II. \\ I_2^u = \langle b+1, \ 2u^5+4u^4+7u^3+8u^2+3a+6u+5, \ u^6+u^5+3u^4+2u^3+2u^2+u-1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{2}{3}u^{5} - \frac{4}{3}u^{4} + \dots - 2u - \frac{5}{3}\\-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{2}{3}u^{5} - \frac{4}{3}u^{4} + \dots - 2u - \frac{8}{3}\\-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{2}{3}u^{5} - \frac{4}{3}u^{4} + \dots - 2u - \frac{5}{3}\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u\\u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} - 2u^{3} - u\\-u^{5} - u^{4} - 2u^{3} - u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{7}{9}u^5 \frac{31}{9}u^4 \frac{10}{9}u^3 \frac{41}{9}u^2 2u \frac{110}{9}u^3$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_7	u^6
C ₄	$(u+1)^6$
c_5, c_6	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$
<i>c</i> ₈	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
c_9, c_{11}, c_{12}	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_{10}	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_6, c_{10}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$
c_8, c_9, c_{11} c_{12}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.873214		
a = -0.836730	-9.30502	-15.6070
b = -1.00000		
u = 0.138835 + 1.234445I		
a = -0.366605 + 0.544193I	1.31531 - 1.97241I	-11.11410 + 3.48248I
b = -1.00000		
u = 0.138835 - 1.234445I		
a = -0.366605 - 0.544193I	1.31531 + 1.97241I	-11.11410 - 3.48248I
b = -1.00000		
u = -0.408802 + 1.276377I		
a = 0.031424 - 0.540243I	-5.34051 + 4.59213I	-13.8624 - 6.6392I
b = -1.00000		
u = -0.408802 - 1.276377I		
a = 0.031424 + 0.540243I	-5.34051 - 4.59213I	-13.8624 + 6.6392I
b = -1.00000		
u = 0.413150		
a = -3.15957	-2.38379	-13.9950
b = -1.00000		

III.
$$I_3^u = \langle -au + 3b + 2a - 3, \ 2a^2 - au - 2a - 2u - 1, \ u^2 + 2 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a\\\frac{1}{3}au - \frac{2}{3}a + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{3}au + \frac{1}{3}a + 1\\\frac{1}{3}au - \frac{2}{3}a + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{3}au + \frac{2}{3}a + \frac{1}{2}u\\-\frac{1}{3}au + \frac{2}{3}a - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{3}au + \frac{2}{3}a - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\-u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1\\0\\-\frac{1}{3}au + \frac{2}{3}a - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{3}au + \frac{2}{3}a + u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -16

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$(u^2 + u - 1)^2$
c_3, c_4	$(u^2 - u - 1)^2$
c_5, c_6, c_9 c_{10}	$(u^2+2)^2$
c_8	$(u+1)^4$
c_{11}, c_{12}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	$(y^2 - 3y + 1)^2$
c_5, c_6, c_9 c_{10}	$(y+2)^4$
c_8, c_{11}, c_{12}	$(y-1)^4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.414210I		
a = -0.618034 - 0.437016I	-5.59278	-16.0000
b = 1.61803		
u = 1.414210I		
a = 1.61803 + 1.14412I	2.30291	-16.0000
b = -0.618034		
u = -1.414210I		
a = -0.618034 + 0.437016I	-5.59278	-16.0000
b = 1.61803		
u = -1.414210I		
a = 1.61803 - 1.14412I	2.30291	-16.0000
b = -0.618034		

IV.
$$I_1^v = \langle a, \ b-v-2, \ v^2+3v+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ v+2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} v+2 \\ v+2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -v-2 \\ -v-3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ -v-3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- $a_8 = \begin{pmatrix} 1 \\ v+3 \end{pmatrix}$
- $a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$
- $a_{12} = \begin{pmatrix} v 1 \\ -v 3 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	$u^2 + u - 1$
c_4, c_7	$u^2 - u - 1$
c_5, c_6, c_9 c_{10}	u^2
c_8	$(u-1)^2$
c_{11}, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	$y^2 - 3y + 1$
c_5, c_6, c_9 c_{10}	y^2
c_8, c_{11}, c_{12}	$(y-1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.381966		
a = 0	-10.5276	-6.00000
b = 1.61803		
v = -2.61803		
a = 0	-2.63189	-6.00000
b = -0.618034		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^6)(u^2+u-1)^3(u^{15}-10u^{14}+\cdots-57u-9)$
c_3	$u^{6}(u^{2}-u-1)^{2}(u^{2}+u-1)(u^{15}-2u^{14}+\cdots-192u+576)$
c_4	$((u+1)^6)(u^2-u-1)^3(u^{15}-10u^{14}+\cdots-57u-9)$
c_5, c_6	$u^{2}(u^{2}+2)^{2}(u^{6}+u^{5}+\cdots+u-1)(u^{15}+2u^{14}+\cdots-4u+4)$
c_7	$u^{6}(u^{2}-u-1)(u^{2}+u-1)^{2}(u^{15}-2u^{14}+\cdots-192u+576)$
c ₈	$(u-1)^{2}(u+1)^{4}(u^{6}-u^{5}-3u^{4}+2u^{3}+2u^{2}+u-1)$ $\cdot (u^{15}+4u^{14}+\cdots-37u-19)$
<i>c</i> 9	$u^{2}(u^{2}+2)^{2}(u^{6}+u^{5}-3u^{4}-2u^{3}+2u^{2}-u-1)$ $\cdot (u^{15}-2u^{14}+\cdots-6348u+2116)$
c_{10}	$u^{2}(u^{2}+2)^{2}(u^{6}-u^{5}+\cdots-u-1)(u^{15}+2u^{14}+\cdots-4u+4)$
c_{11}, c_{12}	$(u-1)^{4}(u+1)^{2}(u^{6}+u^{5}-3u^{4}-2u^{3}+2u^{2}-u-1)$ $\cdot (u^{15}+4u^{14}+\cdots-37u-19)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$((y-1)^6)(y^2-3y+1)^3(y^{15}+52y^{13}+\cdots+3177y-81)$
c_3, c_7	$y^{6}(y^{2} - 3y + 1)^{3}(y^{15} + 66y^{14} + \dots + 4349952y - 331776)$
c_5, c_6, c_{10}	$y^{2}(y+2)^{4}(y^{6}+5y^{5}+9y^{4}+4y^{3}-6y^{2}-5y+1)$ $\cdot (y^{15}+24y^{14}+\cdots+336y-16)$
c_8, c_{11}, c_{12}	$(y-1)^{6}(y^{6}-7y^{5}+17y^{4}-16y^{3}+6y^{2}-5y+1)$ $\cdot (y^{15}-2y^{14}+\cdots+4561y-361)$
<i>c</i> ₉	$y^{2}(y+2)^{4}(y^{6}-7y^{5}+17y^{4}-16y^{3}+6y^{2}-5y+1)$ $\cdot (y^{15}+144y^{14}+\cdots+53534800y-4477456)$