Word2Vec theory

Word as combination of aspects

- Word are a representation of a concept
- Concept can have certain aspects.
- Characterize a concept behind a word:

	alive	elect rical	soft	big			
cat	yes	no	yes	yes	no	yes	no
table	No	no	no	no	no	yes	no
book	no	no	no	no	no	yes	yes
phon e	no	yes	no	no	yes	no	yes

Word2vec: define aspects of a word

Create a vector to capture the aspects

 Can have continuous (0 to 1) aspects instead of binary (yes/no)

Aspects can be abstract

	WOTUZV	/ec			
king	•				
man	-				
woman		http://jalamma	r.github.io/	illustrated	-word2vec/

	alive	electrical	soft	big	likable	abstract	value
cat	0.95	0.2	0.8	0.3	0.9	0.1	0.8
table	0.0	0.1	0.2	0.4	0.2	0.1	0.1
book	0.01	0.05	0.3	0.1	0.8	0.2	0.2
phone	0.05	0.9	0.1	0.05	0.7	0.2	0.7
thought	0.01	0.01	0.01	0.01	0.1	0.8	0.9

Exercise: look at some trends

- Which feature is 'human'?
- What separates man from boy / woman from girl?

http://jalammar.github.io/illustrated-word2vec/

Properties to vectors

- Create an N-dimensional graph
- Can place each word on this N-dimensional graph

Relating properties / vectors

Can create vectors between concepts

- Mathematical operations possible (woman + vector_man → king = queen)
- Similar concepts have similar features (cosine similarity)

How to do this?

- In short: translate word to property space
- Question: How will we do this?
 - Need to think of features of a word
 - Need to fill in these features for each word there is
 - Sounds like a lot of work to do by hand...

Whats in a name?

"You shall know a word by the company it keeps."

Word defined by its context

- —J.R. Firth
- A chair is something we sit on; A chair is something we work on
- A cat is something we love; A cat is something we feed; A cat has personality
- Question: What is a spirit?
 - A spirit is see trough; a spirit is scary; a spirit haunts
 - A spirit is liquid; a spirit has alcohol; a spirit is nice
- The context of a word will tell you about the properties of a word

Methods to define words by context

Continuous Bag of Words

- Context to word
- Good for small dataset
- Skip-gram
 - Word to context
 - Good for big dataset

CBOW getting dataset

- Multiple in → one out
- Sliding window approach

Thou shalt not make a machine in the likeness of a human mind

Sliding window across running text

thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	

Dataset

input 1	input 2	output
thou	shalt	not
shalt	not	make
not	make	а
make	а	machine
а	machine	in

skipgram getting dataset

- One in → multiple out
- Sliding window approach

Add negative sampling

- 1: they are context
- 0: they are not context

dataset

input word	output word	target
not	thou	1
not	aaron	0
not	taco	0
not	shalt	1
not	mango	0
not	finglonger	0
not	make	1
not	plumbus	0

Architecture - skipgram

Hidden layer serves as embedding

Architecture again

- First layer: input to embedding
- Second layer: embedding to output

The embedding / hidden layer

One-hot X embedding = embedding

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

Output weights for "car"

Training

- Minimize the liklihood of a negative sample
- Maximize the likelihood of a positive sample

How to do it for CBOW?

- Sum the input vectors, divide by the amount of input vectors
 - Get the context as an average word
- Train in the same way

End of presentation