EXEMPLE

Les données des analystes font état d'un coefficient de risque sectoriel désendetté de 0,95 et d'une prime du marché boursier de 3 %.

Mise en œuvre de la méthode de FISHER

La Société Exemple affiche les prévisions de Résultat suivantes :

	Année 0	Année 1	Année 2	Année 3	Année 4	Année 5
В	3 7	41	45	49	54	60

et nous nous limiterons à cette durée de visibilité.

1. Détermination du flux de dividendes

Le taux de distribution est constant à 20 % du Résultat de l'exercice précédent. Le flux de dividendes est donc :

	Année 1		Année 3	Année 4	
Dividende hors AF	7,4	8,2	9	9,8	10,8
Avoir Fiscal	3,7	4,1	4,5	4,9	5,4
Dividende total	11,1	12,3	13,5	14,7	16,2

2. Détermination de valeur de revente (ou valeur terminale : V₅)

a. Par la méthode de l'actif Net Corrigé

ANC
$$(0) = 175$$

Somme des résultats nets prévisionnels des années 1 à 5

$$=41+45+49+54+60=249$$

Somme des dividendes versés pendant la période

$$= 7.4 + 8.2 + 9 + 9.8 + 10.8 = 45$$

ANC
$$(5) = 175 + 249 - 45$$

$$ANC(5) = 379$$

Par cette méthode $V_5 = 379$

b. Par la méthode de la Rente Abrégée de Goodwill

La valeur d'ANC en
$$0 = 175$$

(-) Incorporels (non amortissables) = 8
 $\Rightarrow A(0) = 167$

Le Goodwill en année 5 sera la valeur actuelle de la rente de surprofit réalisable en année 6 et suivantes.

Pour cela, il nous faut estimer le résultat net prévisionnel au-delà de l'année 5. Nous le supposerons identique à celui de l'année 5 soit 60.

Compte tenu de l'éloignement, et s'agissant de valoriser des incorporels volatils, nous ne pouvons que retenir une durée courte (3 ans) soit les années 6, 7 et 8.

En supposant les taux longs constants dans l'avenir, on peut supposer que le taux sans risque en année 5 sera identique au taux sans risque année 0 soit 6 %.

Enfin, en ce qui concerne le taux d'actualisation, nous retiendrons pour le calcul du Goodwill une prime globale élevée, soit un taux de : 6 + 6 = 12 %, compte tenu de l'éloignement et des remarques que nous avons faites sur cette méthode.

	Année 6	Année 7	Année 8
B iA (371 x 6 %) Surprofit	60	60	60
	22	22	22
	38	38	38

$$GW = \frac{38}{1,12} + \frac{38}{(1,12)^2} + \frac{38}{(1,12)^3} = 91$$

La valeur résiduelle V_5 par cette méthode est donc de :

$$371 + 91 = 462$$

c. Par la méthode du PER

Nous avons vu que la société Exemple pouvait se valoriser en année 0 par cette méthode 11 fois le résultat attendu sur l'exercice en cours.

En supposant que dans les cinq années à venir, les PER ne se déforment pas et prévisionnel de l'exercice en cours.

3. Choix du taux d'actualisation

Les données des analystes font état d'un coefficient de risque sectoriel désendetté de 0,95 et d'une prime marché de 3 %.

Ainsi, le coefficient \(\beta \) de la société est de :

$$\beta = \left[1 + (1 - 36^{2/3}\%) \frac{\text{Dette}}{V_0}\right] \times 0.95$$

Dette Financière Nette = 50 V_0 = estimation aux fonds propres (183) puis itérations.

Ainsi, le premier β de l'itération est donc :

$$\beta = [1 + 0.17] \times 0.95 = 1.11$$

Le premier taux de l'itération est donc :

$$t = i + \beta [t_M - i]$$

= 6 + 1,11 x 3 = 9,33 %

4. Détermination de la valeur de la société Exemple

Selon les 3 hypothèses ci-dessus :

a. Valeur Terminale calculée par la méthode de l'Actif Net Corrigé

$$V_0 = \left[\sum_{j=1}^5 \frac{D_j}{(1+\mathbf{t})^j}\right] + \frac{V_5}{(1+\mathbf{t})^5}$$

1^{re} itération avec t = 9,33 %

$$V_0 = \frac{11,1}{1,0933} + \frac{12,3}{(1,0933)^2} + \frac{13,5}{(0,0933)^3} + \frac{14,7}{(1,0933)^4} + \frac{16,2}{(1,0933)^5} + \frac{379}{(1,0933)^5}$$

$$V_0 = 10,15 + 10,29 + 10,33 + 10,29 + 10,37 + 242,63$$

soit
$$V_0 = 294$$

Cette première valeur V_0 va venir se substituer à 183 dans la formule de calcul de β donc de t et l'itération est relancée, et ainsi de suite.

A l'issue d'un maximum de 100 itérations, on obtient :

$$t = 9,15 \%$$

 $V_0 = 296$

b. Valeur Terminale calculée parla méthode du Goodwill

$$V_0 = \frac{11,1}{1,0933} + \frac{12,3}{(1,0933)^2} + \frac{13,5}{(0,0933)^3} + \frac{14,7}{(1,0933)^4} + \frac{16,2}{(1,0933)^5} + \frac{462}{(1,0933)^5}$$
soit $V_0 = 347$

A l'issue d'un maximum de 100 itérations, on obtient :

$$t = 9,11 \%$$

 $V_0 = 350$

c. Valeur Terminale calculée par la méthode du PER

1re itération :

$$V_0 = \frac{11,1}{1,0933} + \frac{12,3}{(1,0933)^2} + \frac{13,5}{(0,0933)^3} + \frac{14,7}{(1,0933)^4} + \frac{16,2}{(1,0933)^5} + \frac{660}{(1,0933)^5}$$
soit $V_0 = 474$

A l'issue d'un maximum de 100 itérations, on obtient :

$$t = 9,04 \%$$

 $V_0 = 480$