ST449 Artificial Intelligence and Deep Learning

Lecture 7

Dynamic programming and Monte Carlo methods

Milan Vojnovic

https://github.com/lse-st449/lectures

Topics of this lecture

- Elementary solution methods:
 - Dynamic programming
 - Monte Carlo methods
- Next lecture: elementary solution methods cont'd
 - Temporal-difference learning

Dynamic programming (DP)

Dynamic Programming

- Dynamic Programming (DP): a collection of algorithms used to compute optimal policies given a prefect knowledge of the environment as a MDP
- DP algorithms are rarely used directly in practice
- However, they provide a foundation for other solution methods
 - Other methods can be seen as trying to achieve the same but with less computation and without assuming a perfect knowledge of the environment

Our focus: finite MDPs

- Environment modeled by a finite MDP: finite state and action sets S, A(s), $s \in S$
- Dynamics specified by the transition probabilities

$$P_{s,s'}^a = \Pr[s_{t+1} = s' \mid s_t = s, a_t = a]$$

and the immediate expected rewards for actions and state transitions:

$$R_{s,s'}^a = \mathbf{E}[r_{t+1} \mid a_t = a, s_t = s, s_{t+1} = s']$$

- DP ideas can be applied also to problems with continuous state and action sets
 - A common approach is to use quantization

Bellman optimality equations

• The optimal state value function V^* satisfies:

$$V^*(s) = \max_{a} \sum_{s' \in S} P^a_{s,s'} [R^a_{s,s'} + \gamma V^*(s')], \text{ for } s \in S$$

• The optimal action value function Q^* satisfies:

$$Q^*(s, a) = \sum_{s' \in S} P_{s,s'}^a [R_{s,s'}^a + \gamma \max_{a'} Q^*(s, a')], \text{ for } s \in S, a \in A(s)$$

Policy evaluation

- Policy evaluation: computation of the state value function V^{π} for a given policy π
- Also referred to as the prediction problem
- For any given policy π , the existence and uniqueness of V^{π} are guaranteed whenever either
 - The discount rate satisfies $\gamma < 1$, or
 - Eventual termination is guaranteed from all states under policy π
- V^{π} is a solution of a system of |S| linear equations with |S| unknowns

Iterative policy evaluation

- Iterative policy evaluation: an iterative solution method that outputs a sequence of approximate state-value functions $V_0, V_1, ...$
 - Initial value function V_0 is chosen arbitrarily subject to the constraint that at any terminal state it has value equal to 0
 - Iterative update rule:

$$V_{k+1}(s) = \mathbf{E}_{\pi}[r_{t+1} + \gamma V_k(s_{t+1}) \mid s_t = s]$$

$$= \sum_{a} \pi(s, a) \sum_{s'} P_{s,s'}^a [R_{s,s'}^a + \gamma V_k(s')] \text{ for } s \in S$$

• The limit point of V_k as $k \to \infty$ is V^π under the same conditions that guarantee the existence of V^π

Iterative policy evaluation cont'd

- The iterative policy evaluation in the previous slide is referred to as a full backup iterative method
 - In each time step, the state value function is updated based on the values of states evaluated in the previous time step
- An alternative backup method:
 - Updating the state value function at a state by using the most recent updates
 of the state value function at other states
 - Pseudo-code in the next slide

Iterative policy evaluation: pseudo-code

- **Input**: a policy π , θ (a small positive number)
- Initialization: V(s) = 0 for all $s \in S^+$
- Repeat:

```
\begin{array}{l} \Delta \leftarrow 0 \\ \textbf{For each } s \in S : \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(s,a) \sum_{s'} P^a_{s,s'} [R^a_{s,s'} + \gamma V(s')] \\ \Delta = \max\{\Delta, |v-V(s)|\} \\ \textbf{until } \Delta < \theta \end{array}
```

• Output: V (approximation of V^{π})

Example: GridWorld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- Undiscounted, episodic task
- Action set for state s: $A(s) = \{up, down, right, left\}$
- Action that would take the agent off the grid leave the state unchanged
- Rewards: for each transition, the reward of value -1

GridWorld: values of equiprobable random policy

 $V^{\pi}(s)$:

0	-14 1	-20	-22
-14	-18	-20	-20 7
-20	-20 9	-18 10	-14 11
-20	-20	- 14	0

Q1: What is the value of $Q^{\pi}(11, \text{down})$?

Q2: What is the value of $Q^{\pi}(7, \text{down})$?

Value function evaluation

By symmetry:

0	v_1	v ₂	<i>v</i> ₃
v_1	<i>v</i> ₅	v_6	v ₂
8 v ₂	v ₆	v ₅	v ₁
v ₃	v ₂	v_1	0

Bellman optimality equation:

$$v_{1} = \frac{1}{4}(-1 + v_{2}) + \frac{1}{4}(-1 + v_{5}) + \frac{1}{4}(-1 + 0) + \frac{1}{4}(-1 + v_{1})$$

$$v_{2} = \frac{1}{4}(-1 + v_{3}) + \frac{1}{4}(-1 + v_{6}) + \frac{1}{4}(-1 + v_{1}) + \frac{1}{4}(-1 + v_{2})$$

$$v_{3} = \frac{1}{4}(-1 + v_{3}) + \frac{1}{4}(-1 + v_{2}) + \frac{1}{4}(-1 + v_{2}) + \frac{1}{4}(-1 + v_{3})$$

$$v_{5} = \frac{1}{4}(-1 + v_{6}) + \frac{1}{4}(-1 + v_{6}) + \frac{1}{4}(-1 + v_{1}) + \frac{1}{4}(-1 + v_{1})$$

$$v_{6} = \frac{1}{4}(-1 + v_{2}) + \frac{1}{4}(-1 + v_{5}) + \frac{1}{4}(-1 + v_{5}) + \frac{1}{4}(-1 + v_{2})$$

$$\Rightarrow$$
 $(v_1, v_2, v_3, v_5, v_6) = (-14, -20, -22, -18, -20)$

GridWorld: optimal value and policy

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

GridWorld: optimal value and policy (cont'd)

0	v_1	v ₂	<i>v</i> ₃
v_1	<i>v</i> ₅	v_6	v ₂
8 v ₂	v ₆	v_5	v_1
v ₃	v ₂	v ₁	0

Bellman's optimality equations:

1
$$v_1 = \max\{-1 + v_2, -1 + v_5, -1 + 0, -1 + v_1\}$$

$$v_2 = \max\{-1 + v_3, -1 + v_6, -1 + v_1, -1 + v_2\}$$

3
$$v_3 = \max\{-1 + v_3, -1 + v_2, -1 + v_2, -1 + v_3\}$$

5
$$v_5 = \max\{-1 + v_6, -1 + v_6, -1 + v_1, -1 + v_1\}$$

6
$$v_6 = \max\{-1 + v_2, -1 + v_5, -1 + v_5, -1 + v_2\}$$

$$\begin{array}{c|c} 1 & \Rightarrow v_1 = -1 \\ & & \\ & & \\ 2 & \Rightarrow v_2 = -2 \end{array}$$

••

15

Policy improvement

• Th policy improvement theorem: suppose that π and π' are two deterministic policies such that

$$Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) \text{ for all } s \in S$$
 (C)

Then π' must be as good as, or better, than π , i.e.

$$V^{\pi'}(s) \ge V^{\pi}(s)$$
 for all $s \in S$ (R)

Moreover, if the inequality in (C) is strict for at least one state, then the inequality in (R) must be strict for at least one state

Proof of the policy improvement theorem

•
$$V^{\pi}(s)$$
 $\leq Q^{\pi}(s, \pi'(s))$
 $= \mathbf{E}_{\pi'}[r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_t = s]$
 $\leq \mathbf{E}_{\pi'}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, \pi'(s_{t+1})) \mid s_t = s]$
 $= \mathbf{E}_{\pi'}[r_{t+1} + \gamma r_{t+2} + \gamma^2 V^{\pi}(s_{t+2}) \mid s_t = s]$
 \vdots
 $= \mathbf{E}_{\pi'}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots \mid s_t = s]$
 $\leq V^{\pi'}(s)$

Greedy policy improvement

• Greedy policy π' for any given policy π is given by

$$\pi'(s) = \operatorname{argmax}_a Q^{\pi}(s, a)$$
, for all $s \in S$

- Greedy policy selects the best action in one step lookahead
- The greedy policy meets the conditions of the policy improvement theorem, thus it is as good as, or better than, the original policy

Greedy policy improvement cont'd

Note that:

$$\pi'(s) = \operatorname{argmax}_{a} Q^{\pi}(s, a)$$

$$= \operatorname{argmax}_{a} \mathbf{E}[r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_{t} = s, a_{t} = a]$$

$$= \operatorname{argmax}_{a} \sum_{s'} P_{s,s'}^{a} [R_{s,s'}^{a} + \gamma V^{\pi}(s')]$$

- If π' is as good as but not better than π , then $V^{\pi} = V^{\pi'} \Rightarrow V^{\pi'}$ satisfies the Bellman optimality equation $\Rightarrow \pi$ and π' are optimal
- Policy improvement yields a strictly better policy, except when the original policy is already optimal

Policy iteration

- Policy iteration: an iterative method that alternates between
 - (E) policy evaluation
 - (I) policy improvement

•
$$\pi_0 \rightarrow V^{\pi_0} \rightarrow \pi_1 \rightarrow V^{\pi_1} \rightarrow \cdots \rightarrow \pi^* \rightarrow V^*$$

- A finite MDP has a finite number of policies
 - ⇒ the policy iteration method must converge in a finite number of steps

Policy iteration: pseudo-code

```
Initialization: V(s) \in \mathbb{R}, \pi(s) \in A(s) arbitrary for all s \in S
Repeat:
            \Delta \leftarrow 0
            For each s \in S:
                        v \leftarrow V(s)
                        V(s) \leftarrow \sum_{s'} P_{s,s'}^{\pi(s)} [R_{s,s'}^{\pi(s)} + \gamma V(s')]
                       \Delta = \max\{\Delta, |v - V(s)|\}
until \Delta < \theta
policystable ← True
For each s \in S:
            b \leftarrow \pi(s)
           \pi(s) = \operatorname{argmax}_{a} \sum_{s'} P_{s,s'}^{a} [R_{s,s'}^{a} + \gamma V(s')]
            If b \neq \pi(s) then policystable \leftarrow False
If policystable, then return, else go to policy evaluation
```

policy evaluation

policy improvement

Value iteration

- Drawbacks of the policy iteration method:
 - Each iteration requires executing policy evaluation which requires multiple iterations (sweeps through the state space)
 - This can be computationally inefficient
- Value iteration idea: evaluate only one step in the policy evaluation

$$V_{k+1}(s) = \max_{a} \mathbf{E}[r_{t+1} + \gamma V_k(s_{t+1}) | s_t = s, a_t = a]$$
$$= \max_{a} \sum_{s'} P_{s,s'}^a \left[R_{s,s'}^a + \gamma V_k(s') \right]$$

• The sequence $V_0, V_1, ...$ converges to V^* under the same conditions that guarantee the existence of V^*

Value iteration: pseudo-code

• Initialization: V(s) = 0 for all $s \in S^+$

```
• Repeat: \Delta \leftarrow 0 For each s \in S: v \leftarrow V(s) V(s) \leftarrow \max \sum_{s'} P_{s,s'}^a [R_{s,s'}^a + \gamma V(s')] \Delta = \max\{\Delta, |v - V(s)|\} until \Delta < \theta
```

• Output: deterministic policy π given by

$$\pi(s) = \operatorname{argmax}_a \sum_{s'} P_{s,s'}^a [R_{s,s'}^a + \gamma V(s')] \text{ for all } s \in S$$

Example: Gambler's problem

- A gambler makes bets on the outcomes of a sequence of coin flips
 - The gambler must decide for each coin flip what portion of his capital to stake
- If outcome of the coin flip = heads then:

The gambler wins as much money as he has staked on this flip

else

The gambler loses his stake

 The game ends when the gambler reaches his goal of \$100 or loses by running out of money

Gambler's problem cont'd

- Formulated as an undiscounted, episodic, finite MDP problem
- State set: $S = \{1, 2, ..., 99\}, S^+ = S \cup \{0, 100\}$
- Action sets: $A(s) = \{1, 2, ..., \min\{s, 100 s\}\}\$ for $s \in S$
- **Pr**[outcome of coin flip is heads] = p (known parameter)
- Exercise (seminar session):
 - Show value function for different iterations
 - Show the optimal policy

Gambler's problem cont'd

Optimal value function

Optimal policy

Asynchronous DP

- Drawback of standard DP method:
 - Requires operations over the entire state set of the MDP
 - For large state sets this can be computationally expensive
- Asynchronous DP: backups up values in any order using whatever values of other states are available
 - Convergence guaranteed provided each state is visited with a positive rate
- Asynchronous DP algorithms referred to as distributed DP algorithms
 - Implementation in multiprocessor systems with communication delays between processors

Monte Carlo methods

Monte Carlo methods

- Monte Carlo (MC) methods for reinforcement learning: learning methods for solving the RL problem based on averaging sample returns
 - Estimating value functions and discovering optimal policies
 - Not assuming a perfect model of the environment
 - Based only on experience: sample sequences of states, actions and rewards from online or simulated interactions with an environment
- Defined for episodic tasks to ensure well-defined returns
- Incremental methods in an episode-by-episode sense
 - Estimates of value functions and policies are updated only upon the completion of an episode
 - Different from step-by-step incremental methods (next lecture)

MC policy evaluation

- Suppose our goal is to estimate $V^{\pi}(s)$, the value of a state s for a given policy π , given a set of episodes obtained by following π and passing through state s
- Types of visits to states:
 - A visit to s: each occurrence of state s in an episode
 - First visit to s: each first occurrence of s in an episode
- Types of MC methods:
 - The every-visit MC method: $V^{\pi}(s)$ estimated by the average of the returns following **each visit** to s in a set of episodes
 - The first-visit MC method: $V^{\pi}(s)$ estimated by the average of the returns following each first visit to s in an episode of a set of episodes
- The every-visit and first-visit MC methods are similar but have different theoretical properties
 - Q: Can you think of a fundamental difference between the two methods?

The first-visit MC method: pseudo code

• Initialization:

```
\pi ← policy to be evaluated V ← an arbitrary state-value function Returns(s) ← an empty list, for all s \in S
```

Repeat:

Generate an episode using policy π

For each distinct *s* appearing in the episode:

 $R \leftarrow$ return following the first occurrence of s

Append *R* to Returns(*s*)

 $V(s) \leftarrow \text{average}(\text{Returns}(s))$

Backup diagram

• Backup diagram for MC estimation of V^{π} shows states sampled in one episode

Unlike to the DP backup diagram that shows only one-step transitions

Some pros and cons of MC methods

• Pros:

- Estimating the value of a single state is independent of the number of states
- One can generate many sample episodes starting from a given state to estimate the value of this state

Cons:

- Incremental updates on an episode-by-episode basis which introduces delays
- Alternative methods allow for step-by-step incremental updates
 - Time-difference learning methods (discussed in next lecture)

MC estimation of action values

- Given a model, state values are sufficient to find a policy
 - Simply look one-step ahead and choose an action that leads to the best combination of reward and next state
- Without a model, state values are insufficient to find a policy
 - We need to explicitly estimate the value of each action to find a policy
- Primary goal of MC methods: estimate optimal action value function Q^*
- The estimates can be defined analogously to estimating the state value function
 - E.g. the first-visit MC method

MC estimation of action values (cont'd)

- Issue: many state-action pairs may never be visited under a policy
 - E.g. if π is a deterministic policy, only one action-state pair is observed for each distinct state
 - Need to maintain exploration!
- Two approaches to ensuring continual exploration:
 - Exploring starts: the first step of each episode starts at a state-action pair and every such pair has non-zero probability of being selected at the start
 - Stochastic policies: use policies that ensure a non-zero probability of selecting each action from the set of available actions in each given state

MC control

- MC control: using MC estimation to approximate optimal policies
- Basic idea: use generalized policy iteration
 - Repeatedly alter the value function estimate to more closely approximate the value function of the current policy
 - Repeatedly improve the policy estimate wrt the current value function
- MC version of the standard policy iteration:

MC control with exploring starts

```
• Initialization: for all s \in S, a \in A(s)

Q(s,a) \leftarrow \text{arbitrary}

\pi(s) \leftarrow \text{arbitrary}

\text{Returns}(s,a) \leftarrow \text{empty list}
```

Repeat:

Generate an episode using exploring starts and policy π

```
For each pair (s, a) appearing in the episode:

R \leftarrow \text{return following the first occurrence of } (s, a)

Append R to Returns(s, a)

Q(s, a) \leftarrow \text{average}(\text{Returns}(s, a))
```

For each *s* in the episode:

$$\pi(s) \leftarrow \operatorname{argmax}_a Q(s, a)$$

On-policy vs off-policy control methods

 On-policy methods: attempt to evaluate or improve the policy that is used to make decisions

 Off-policy methods: attempt to evaluate a policy by observing episodes generated by using a different policy

Soft polices

• In on-policy control methods, policy π is usually a soft policy:

$$\pi(s,a) > 0$$
 for all $s \in S$ and $a \in A(s)$

• A policy π is said to be an ϵ -soft policy if

$$\pi(s, a) \ge \frac{\epsilon}{|A(s)|}$$
 for all $s \in S$ and $a \in A(s)$

- ϵ -greedy policy: chose an action with maximum estimated action value with probability $1-\epsilon$, and otherwise select an action at random
 - Any non-greedy action is selected with probability $\geq \epsilon/|A(s)|$
 - Greedy action is selected with probability $1 \epsilon + \epsilon/|A(s)|$

An ϵ -soft on-policy MC control algorithm

```
• Initialization: for all s \in S, a \in A(s)
            Q(s, a) \leftarrow \text{arbitrary}
            \pi(s) \leftarrow \text{arbitrary } \epsilon \text{-soft policy}
            Returns(s, a) \leftarrow empty list
Repeat:
            Generate an episode using policy \pi
            For each pair (s, a) appearing in the episode:
                        R \leftarrow return following the first occurrence of (s, a)
                        Append R to Returns(s, a)
                        Q(s, a) \leftarrow average(Returns(s, a))
            For each s in the episode:
                        a^* \leftarrow \operatorname{argmax}_a Q(s, a)
                        For each a \in A(s):
                                   \pi(s,a) \leftarrow \begin{cases} 1 - \epsilon + \epsilon \frac{1}{|A(s)|} & \text{if } a = a^* \\ \epsilon \frac{1}{|A(s)|} & \text{if } a \neq a^* \end{cases}
```

Improvement guarantees

- Suppose π is any ϵ -soft policy and π' is the ϵ -greedy policy wrt Q^{π}
- Fact: $Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s)$ for all $s \in S$
- By the policy improvement theorem: $V^{\pi'}(s) \ge V^{\pi}(s)$ for all $s \in S$

Off-policy MC control

- The policy used to generate behavior (behavior policy) may be different to the policy used for evaluation and improvement (estimation policy)
- An advantage of off-policy MC methods: the estimation policy may be deterministic (e.g. greedy) while the behavior policy can continue to sample all auctions
- The key point: evaluating one policy while following another

Evaluating one policy while following another

- Suppose episodes are generated by following policy π' while we want to estimate V^{π} or Q^{π} for a given policy π such that $\pi \neq \pi'$
- Requirement: $\pi(s, a) > 0 \Rightarrow \pi'(s, a) > 0$ for all $s \in S$, $a \in A(s)$
- How can we construct an estimate of $V^{\pi}(s)$ using returns, states, and actions observed under policy π' ?

Estimating the value function

- N := the number of episodes
- $T_i(s) :=$ first time step at which state s is visited in episode i, otherwise infinity
- $T_i :=$ the number of steps in episode i
- $R_i(s) :=$ reward from the first visit to state s in episode i
- $N_s(N) :=$ number of episodes with at least one visit of state s

• Estimator:
$$\hat{V}_{N}^{\pi'}(s) = \frac{1}{N_{S}(N)} \sum_{i=1}^{N} R_{i}(s) \mathbf{1}_{\{T_{i}(s) < T_{i}\}}$$

By the law of large numbers,

$$\lim_{N \to \infty} \widehat{V}_N^{\pi'}(s) = \frac{\mathbf{E}[R_1(s)\mathbf{1}_{\{T_1(s) < T_1\}}]}{\mathbf{Pr}[T_1(s) < T_1]} = \mathbf{E}[R_1(s) \mid T_1(s) < T_1]$$

Estimating the value function (cont'd)

• By the definition of the MDP environment:

$$\mathbf{E}[R_{1}(s) \mid T_{1}(s) < T_{1}] = \frac{\sum_{(s,a) \in \Pi_{S}} \left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi'(s_{k},a_{k}) P_{s_{k},s_{k+1}}^{a_{k}}\right) \left(\sum_{k=t_{1}(s)}^{t_{1}-1} R_{s_{k},s_{k+1}}^{a_{k}}\right)}{\sum_{(s,a) \in \Pi_{S}} \left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi'(s_{k},a_{k}) P_{s_{k},s_{k+1}}^{a_{k}}\right)}$$

where $\Pi_{\mathbf{S}}$ contains $\mathbf{s}=(s_{t_1(s)},\ldots,s_{t_1})$ and $\mathbf{a}=(a_{t_1(s)},\ldots,a_{t_1-1})$ such that $s_{t_1(s)}=s$

• To have an estimator of $V^{\pi}(s)$ in the equation above we would like to have $\pi(s_k, a_k)$ instead of $\pi'(s_k, a_k)$

• Use the estimator:
$$\hat{V}_{N}^{\pi}(s) = \frac{\sum_{i=1}^{N} \frac{p_{i}^{\pi}(s)}{p_{i}^{\pi'}(s)} R_{i}(s) \mathbf{1}_{\{T_{i}(s) < T_{i}\}}}{\sum_{i=1}^{N} \frac{p_{i}^{\pi}(s)}{p_{i}^{\pi'}(s)} \mathbf{1}_{\{T_{i}(s) < T_{i}\}}}$$

where
$$p_i^{\varphi}(s) := \prod_{k=T_i(s)}^{T_i-1} \varphi(s_k, a_k) P_{s_k, s_{k+1}}^{a_k}$$
 for a policy φ

Estimating the value function (cont'd)

•
$$\lim_{N \to \infty} \hat{V}_N^{\pi}(s) = \frac{\mathbf{E} \left[\frac{p_1^{\pi}(s)}{p_1^{\pi'}(s)} R_1(s) \mid T_1(s) < T_1 \right]}{\mathbf{E} \left[\frac{p_1^{\pi}(s)}{p_1^{\pi'}(s)} \mid T_1(s) < T_1 \right]}$$

• Note that (as desired):

$$\mathbf{E}\left[\frac{p_1^{\pi}(s)}{p_1^{\pi'}(s)}R_1(s) \mid T_1(s) < T_1\right]$$

$$= \sum_{(s,a)\in\Pi_{s}} \left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi'(s_{k}, a_{k}) P_{s_{k}, s_{k+1}}^{a_{k}}\right) \frac{\left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi(s_{k}, a_{k}) P_{s_{k}, s_{k+1}}^{a_{k}}\right)}{\left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi'(s_{k}, a_{k}) P_{s_{k}, s_{k+1}}^{a_{k}}\right)} \left(\sum_{k=t_{1}(s)}^{t_{1}-1} R_{s_{k}, s_{k+1}}^{a_{k}}\right)$$

$$= \sum_{(s,a)\in\Pi_s} \left(\prod_{k=t_1(s)}^{t_1-1} \pi(s_k, a_k) P_{s_k, s_{k+1}}^{a_k} \right) \left(\sum_{k=t_1(s)}^{t_1-1} R_{s_k, s_{k+1}}^{a_k} \right)$$

Estimating the value function (cont'd)

Similarly, we have

$$\begin{split} \mathbf{E} \left[\frac{p_{1}^{\pi}(s)}{p_{1}^{\pi'}(s)} \mid T_{1}(s) < T_{1} \right] \\ &= \sum_{(s,a) \in \Pi_{S}} \left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi'(s_{k}, a_{k}) P_{s_{k}, s_{k+1}}^{a_{k}} \right) \frac{\left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi(s_{k}, a_{k}) P_{s_{k}, s_{k+1}}^{a_{k}} \right)}{\left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi'(s_{k}, a_{k}) P_{s_{k}, s_{k+1}}^{a_{k}} \right)} \\ &= \sum_{(s,a) \in \Pi_{S}} \left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi(s_{k}, a_{k}) P_{s_{k}, s_{k+1}}^{a_{k}} \right) \end{split}$$

• Hence, we have (as desired):

$$\lim_{N \to \infty} \widehat{V}_{N}^{\pi}(s) = \frac{\sum_{(s,a) \in \Pi_{S}} \left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi(s_{k},a_{k}) P_{s_{k},s_{k+1}}^{a_{k}}\right) \left(\sum_{k=t_{1}(s)}^{t_{1}-1} R_{s_{k},s_{k+1}}^{a_{k}}\right)}{\sum_{(s,a) \in \Pi_{S}} \left(\prod_{k=t_{1}(s)}^{t_{1}-1} \pi(s_{k},a_{k}) P_{s_{k},s_{k+1}}^{a_{k}}\right)}$$

No need to know the environment

• The important point for the estimator $\widehat{V}_N^{\pi}(s)$ is that it does not require knowledge of the environment

• The ratio of the weights depends only on the policies:

$$\frac{p_i^{\pi}(s)}{p_i^{\pi'}(s)} = \prod_{k=T_i(s)}^{T_i-1} \frac{\pi(s_k, a_k)}{\pi'(s_k, a_k)}$$

• The random reward $R_i(s)$ is observable

Alternative notation

- In the book, the estimator is defined equivalently but using different notation by considering only the episodes in which state s is visited (we only collect a sample of the reward in these episodes)
- The estimator $\hat{V}_N^{\pi}(s)$ can be written as

$$V(s) = \frac{\sum_{j=1}^{n_s} \frac{p_j(s)}{p'_j(s)} R_j(s)}{\sum_{j=1}^{n_s} \frac{p_j(s)}{p'_j(s)}}$$

where n_s is the number of episodes in which state s is visited and $p_j(s) = p_{i_s(j)}^{\pi}(s)$ and $p_j'(s) = p_{i_s(j)}^{\pi'}(s)$ where $i_s(j)$ is the index of the episode in the sequence of all episodes for which state s occurred for the j-th time in an episode

An off-policy MC control algorithm

• Initialization: for all $s \in S$, $a \in A(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $N(s,a) \leftarrow 0 \text{ // numerator of } Q(s,a)$ $D(s,a) \leftarrow 0 \text{ // denominator of } Q(s,a)$ $\pi \leftarrow \text{an arbitrary deterministic policy}$

Repeat:

Select a policy π' and use it to generate an episode:

$$s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T, s_T$$

 $\tau \leftarrow \text{latest time at which } a_\tau \neq \pi(s_\tau)$

For each pair (s, a) appearing at the episode at τ or later:

 $t \leftarrow \text{time of the first occurrence of } (s, a) \text{ at } t \geq \tau$

$$w \leftarrow \prod_{k=t+1}^{T-1} \frac{1}{\pi'(s_k, a_k)}$$

$$N(s, a) \leftarrow N(s, a) + wR_t$$

$$D(s, a) \leftarrow D(s, a) + w$$

$$Q(s, a) \leftarrow \frac{N(s, a)}{D(s, a)}$$

For each $s \in S$:

$$\pi(s) = \operatorname{argmax}_a Q(s, a)$$

References

• R. S. Sutton and A. G. Barto, Reinforcement Learning, Chapters 4 and 5, 1998

Seminar exercises

- Iterative policy evaluation: Gridworld problem
- Value iteration: Gambler's problem
- Monte Carlo prediction: Black Jack example
- Monte Carlo control: Black Jack example