Matrix vs. Tensor Methods: Robustness to Block Sparse Perturbations

Anima Anandkumar

U.C. Irvine

Joint work with Prateek Jain, Yang Shi, and U.N. Niranjan.

Denoising Big Data

Denoising: Remove noise to reveal hidden structures in data.

Classical analysis: PCA

 Pros: Efficient computation, requires only pairwise correlation.

Cons: Not robust to even a few outliers

Denoising Big Data

Denoising: Remove noise to reveal hidden structures in data.

Classical analysis: PCA

- Pros: Efficient computation, requires only pairwise correlation.
- Cons: Not robust to even a few outliers

Robust PCA

- Find low rank structure after removing sparse corruptions.
- Decompose input matrix as low rank + sparse matrices.

Applications in computer vision, community modeling,

From Matrices to Tensors

Matrix: Two dimensional

- $M \in \mathbb{R}^{d \times d}$.
- Rank 1: $M = a \otimes b$, $M_{i,j} = a_i b_j$.

Tensor: Multi dimensional

- \bullet $T \in \mathbb{R}^{d \times d \times d}$.
- Rank 1: $T = a \otimes b \otimes c$, $T_{i,j,k} = a_i b_j c_k$.

Robust Tensor PCA

Given T, find L, S such that:

$$T = L + S$$
, $L = \sum_{i=1}^{r} \sigma_i^* u_i \otimes u_i \otimes u_i, ||S||_0 \le s$

Why is Robust PCA difficult?

Natural constraints for identifiability?

- Low rank tensor is NOT sparse and viceversa.
- Incoherent low rank tensor: $||u_i||_{\infty} \leq \frac{\mu}{\sqrt{n}}$.
- Sparse tensor: Block sparsity pattern of size d with B blocks and overlap fraction η , ie,

$$\begin{split} \operatorname{supp}(S) &= \sum_{i=1}^B \psi_i \otimes \psi_i \otimes \psi_i, \\ \|\psi_i\|_0 &\leq d, \max_{i \neq j} \langle \psi_i, \psi_j \rangle \leq \eta d, \ \psi_i(j) = 0 \ \text{or} \ 1 \end{split}$$

Summary of Results

- Convex relaxation of tensor CP rank is NP-hard.
- Propose an efficient non-convex method based on alternating projections.
- Prove convergence to globally optimal solution.
- Prove that tensor method is more robust compared to matrix robust PCA under block sparsity.

Outline

- Introduction
- 2 Alternating Projections Algorithm
- 3 Analysis
- 4 Experiments
- Conclusion

Proposal for Non-convex Robust PCA

$$T = L + S$$
, $\operatorname{Rank}(L) = r, ||S||_0 \le s$

Proposal for Non-convex Robust PCA

$$T = L + S$$
, $\operatorname{Rank}(L) = r, ||S||_0 \le s$

A non-convex heuristic (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_r(T-S)$ and $S \leftarrow H_{\zeta}(T-L)$.
- $P_r(\cdot)$: rank-r projection. $H_{\zeta}(\cdot)$: thresholding with ζ .

Proposal for Non-convex Robust PCA

$$T = L + S$$
, $\operatorname{Rank}(L) = r, ||S||_0 \le s$

A non-convex heuristic (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_r(T-S)$ and $S \leftarrow H_{\zeta}(T-L)$.
- $P_r(\cdot)$: rank-r projection. $H_{\zeta}(\cdot)$: thresholding with ζ .
- how to find rank-r projections for tensors?

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, "Tensor Decompositions for Learning Latent Variable Models," JMLR 2014.

Tensor Power Method

$$v \mapsto \frac{L(v,v,\cdot)}{\|L(v,v,\cdot)\|}.$$

$$L(v,v,\cdot) = \langle v, u_1 \rangle^2 u_1 + \langle v, u_2 \rangle^2 u_2$$

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, "Tensor Decompositions for Learning Latent Variable Models," JMLR 2014.

Tensor Power Method

$$v \mapsto \frac{L(v, v, \cdot)}{\|L(v, v, \cdot)\|}.$$

$$L(v,v,\cdot) = \langle v, u_1 \rangle^2 u_1 + \langle v, u_2 \rangle^2 u_2$$

Orthogonal Tensors

- \bullet $\vec{u}_1 \perp \vec{u}_2$.
- $u_1 \perp \underline{u_2}$. $L(u_1, u_1, \cdot) = \lambda_1 u_1$.

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, "Tensor Decompositions for Learning Latent Variable Models," JMLR 2014.

Tensor Power Method

$$v \mapsto \frac{L(v, v, \cdot)}{\|L(v, v, \cdot)\|}.$$

$$L(v,v,\cdot) = \langle v, u_1 \rangle^2 u_1 + \langle v, u_2 \rangle^2 u_2$$

Orthogonal Tensors

- \bullet $\vec{u}_1 \perp \vec{u}_2$.
- $\bullet \ L(u_1,u_1,\cdot)=\lambda_1 u_1.$

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, "Tensor Decompositions for Learning Latent Variable Models," JMLR 2014.

Tensor Power Method

$$v \mapsto \frac{L(v, v, \cdot)}{\|L(v, v, \cdot)\|}.$$

$$L(v,v,\cdot) = \langle v, u_1 \rangle^2 u_1 + \langle v, u_2 \rangle^2 u_2$$

Exponential no. of stationary points for power method:

$$L(v, v, \cdot) = \lambda v$$

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, "Tensor Decompositions for Learning Latent Variable Models," JMLR 2014.

Tensor Power Method

$$v \mapsto \frac{L(v, v, \cdot)}{\|L(v, v, \cdot)\|}.$$

$$L(v,v,\cdot) = \langle v, u_1 \rangle^2 u_1 + \langle v, u_2 \rangle^2 u_2$$

Exponential no. of stationary points for power method:

$$L(v, v, \cdot) = \lambda v$$
 Stable

Unstable

Other statitionary points

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, "Tensor Decompositions for Learning Latent Variable Models," JMLR 2014.

Tensor Power Method

$$v \mapsto \frac{L(v, v, \cdot)}{\|L(v, v, \cdot)\|}.$$

$$L(v,v,\cdot) = \langle v, u_1 \rangle^2 u_1 + \langle v, u_2 \rangle^2 u_2$$

Exponential no. of stationary points for power method:

$$L(v, v, \cdot) = \lambda v$$

For power method on orthogonal tensor, no spurious stable points

 For Robust PCA: do gradient ascent after power iteration to ensure convergence under noise

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, "Tensor Decompositions for Learning Latent Variable Models," JMLR 2014.

Main Theorem

- Find T = L + S, where $L = \sum_i \sigma_i u_i \otimes u_i \otimes u_i$ and S is sparse.
- Incoherent low rank tensor: $||u_i||_{\infty} \leq \frac{\mu}{\sqrt{n}}$.
- Sparse tensor: Block sparsity pattern of size d with B blocks and overlap fraction η , ie,

$$\operatorname{supp}(S) = \sum_{i=1}^{B} \psi_i^{\otimes 3}, \ \|\psi_i\|_0 \le d, \max_{i \ne j} \langle \psi_i, \psi_j \rangle \le \eta d, \ \psi_i(j) = 0 \text{ or } 1$$

$$d = O(n/r^{2/3}\mu^2)$$
, $B = O(\min(n^{2/3}r^{1/3}, \eta^{-1.5}))$

Theorem

Under above conditions, the proposed RTD algorithm converges to globally optimal solution L^{\ast} and S^{\ast} .

Implications

Superiority over matrix Robust PCA

- Applying matrix RPCA: flatten or slice the tensor to obtain a matrix.
- Tensor method can handle much higher levels of perturbation.

Implications

Superiority over matrix Robust PCA

- Applying matrix RPCA: flatten or slice the tensor to obtain a matrix.
- Tensor method can handle much higher levels of perturbation.

Demonstration under Random Block Sparsity

- Randomly draw ψ_i 's as d-sparse vectors.
- D_{RTD} : total sparsity tolerated by proposed tensor method.
- ullet $D_{
 m mat}$: total sparsity tolerated by matrix RPCA applied on flattened tensor.

$$\frac{D_{RTD}}{D_{\text{mat}}} = \begin{cases} \Omega\left(n^{1/6}r^{4/3}\right), r < n^{0.25} \\ \Omega\left(n^{5/12}r^{1/3}\right), o.w. \end{cases}$$

• Thus, we can handle more gross corruptions than matrix methods.

Outline

- Introduction
- 2 Alternating Projections Algorithm
- 3 Analysis
- Experiments
- Conclusion

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- ullet $\left[L\leftarrow P_1(M-S)\right]$ and $\left[S\leftarrow H_\zeta(M-L)\right]$.
- $P_1(\cdot)$: rank-1 projection. $H_{\zeta}(\cdot)$: thresholding.

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- \bullet $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_1(\cdot)$: rank-1 projection. $H_{\zeta}(\cdot)$: thresholding.

Immediate Observations

• First PCA: $L \leftarrow P_1(M)$.

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- \bullet $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_1(\cdot)$: rank-1 projection. $H_{\zeta}(\cdot)$: thresholding.

Immediate Observations

- First PCA: $L \leftarrow P_1(M)$.
- Matrix perturbation bound: $\|M L\|_2 \le O(\|S^*\|)$

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- ullet $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_1(\cdot)$: rank-1 projection. $H_{\zeta}(\cdot)$: thresholding.

Immediate Observations

- First PCA: $L \leftarrow P_1(M)$.
- Matrix perturbation bound: $\|M L\|_2 \le O(\|S^*\|)$
- If $||S^*|| \gg 1$, no progress!

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- \bullet $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.
- $P_1(\cdot)$: rank-1 projection. $H_{\zeta}(\cdot)$: thresholding.

Immediate Observations

- First PCA: $L \leftarrow P_1(M)$.
- Matrix perturbation bound: $\|M L\|_2 \le O(\|S^*\|)$
- If $||S^*|| \gg 1$, no progress!

Exploit incoherence of L^* ?

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of L^*

•
$$L^* = u^*(u^*)^{\top}$$
 and $||u^*||_{\infty} \le \frac{\mu}{\sqrt{n}}$ and $||L^*||_{\infty} \le \frac{\mu^2}{n}$.

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of L^*

•
$$L^* = u^*(u^*)^{\top}$$
 and $||u^*||_{\infty} \le \frac{\mu}{\sqrt{n}}$ and $||L^*||_{\infty} \le \frac{\mu^2}{n}$.

Solution for handling large $||S^*||$

- First threshold M before rank-1 projection.
- Ensures large entries of S^* are identified.

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize L, S = 0 and iterate:
- $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of L^*

•
$$L^* = u^*(u^*)^{\top}$$
 and $||u^*||_{\infty} \le \frac{\mu}{\sqrt{n}}$ and $||L^*||_{\infty} \le \frac{\mu^2}{n}$.

Solution for handling large $||S^*||$

- First threshold M before rank-1 projection.
- Ensures large entries of S^* are identified.
- Choose threshold $\zeta_0 = \frac{4\mu^2}{n}$.

$$M = L^* + S^*, \quad L^* = u^*(u^*)^\top$$

Non-convex method (AltProj)

- Initialize $L=0, S=H_{\zeta_0}(M)$ and iterate:
- $L \leftarrow P_1(M-S)$ and $S \leftarrow H_{\zeta}(M-L)$.

Incoherence of L^*

•
$$L^* = u^*(u^*)^{\top}$$
 and $||u^*||_{\infty} \le \frac{\mu}{\sqrt{n}}$ and $||L^*||_{\infty} \le \frac{\mu^2}{n}$.

Solution for handling large $||S^*||$

- First threshold M before rank-1 projection.
- Ensures large entries of S^* are identified.
- Choose threshold $\zeta_0 = \frac{4\mu^2}{n}$.

Non-convex method (AltProj)

$$L^{(0)} = 0, S^{(0)} = H_{\zeta_0}(M),$$

$$L^{(t+1)} \leftarrow P_1(M - S^{(t)}), S^{(t+1)} \leftarrow H_{\zeta}(M - L^{(t+1)})$$

ullet To analyze progress, track $E^{(t+1)} := S^* - S^{(t+1)}$

One iteration of AltProj

$$L^{(0)} = 0, S^{(0)} = H_{\zeta_0}(M), \quad L^{(1)} \leftarrow P_1(M - S^{(0)}), \quad S^{(1)} \leftarrow H_{\zeta}(M - L^{(1)}).$$

Analyze $E^{(1)} := S^* - S^{(1)}$

- Thresholding is element-wise operation: require $||L^{(1)} L^*||_{\infty}$.
- ullet In general, no special bound for $\|L^{(1)}-L^*\|_{\infty}.$
- Exploit sparsity of S^* and incoherence of L^* ?

• $L^{(1)} = uu^{\mathsf{T}} = P_1(M - S^{(0)})$ and $E^{(0)} = S^* - S^{(0)}$.

Fixed point equation for eigenvectors $(M - S^{(0)})u = \lambda u$

• $L^{(1)} = uu^{\top} = P_1(M - S^{(0)})$ and $E^{(0)} = S^* - S^{(0)}$.

Fixed point equation for eigenvectors $(M - S^{(0)})u = \lambda u$

•
$$\langle u^*, u \rangle u^* + (S^* - S^{(0)})u = \lambda u \text{ or } u = \lambda \langle u^*, u \rangle \left(I - \frac{E^{(0)}}{\lambda}\right)^{-1} u^*$$

Taylor Series

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

• $L^{(1)} = uu^{\top} = P_1(M - S^{(0)})$ and $E^{(0)} = S^* - S^{(0)}$.

Fixed point equation for eigenvectors $(M - S^{(0)})u = \lambda u$

$$\bullet \ \langle u^*,u\rangle u^* + (S^*-S^{(0)})u = \lambda u \text{ or } u = \lambda \langle u^*,u\rangle \left(I-\frac{E^{(0)}}{\lambda}\right)^{-1}u^*$$

Taylor Series

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

• $E^{(0)}$ is sparse: $\operatorname{supp}(E^{(0)}) \subseteq \operatorname{supp}(S^*)$.

• $L^{(1)} = uu^{\top} = P_1(M - S^{(0)})$ and $E^{(0)} = S^* - S^{(0)}$.

Fixed point equation for eigenvectors $(M - S^{(0)})u = \lambda u$

$$\bullet \ \langle u^*,u\rangle u^* + (S^*-S^{(0)})u = \lambda u \text{ or } u = \lambda \langle u^*,u\rangle \left(I-\frac{E^{(0)}}{\lambda}\right)^{-1}u^*$$

Taylor Series

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse: $\operatorname{supp}(E^{(0)}) \subseteq \operatorname{supp}(S^*)$.
- Exploiting sparsity: $(E^{(0)})^p$ is the p^{th} -hop adjacency matrix of $E^{(0)}$.

• $L^{(1)} = uu^{\top} = P_1(M - S^{(0)})$ and $E^{(0)} = S^* - S^{(0)}$.

Fixed point equation for eigenvectors $(M - S^{(0)})u = \lambda u$

$$\bullet \ \langle u^*,u\rangle u^* + (S^*-S^{(0)})u = \lambda u \text{ or } u = \lambda \langle u^*,u\rangle \left(I-\frac{E^{(0)}}{\lambda}\right)^{-1}u^*$$

Taylor Series

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse: $\operatorname{supp}(E^{(0)}) \subseteq \operatorname{supp}(S^*)$.
- Exploiting sparsity: $(E^{(0)})^p$ is the p^{th} -hop adjacency matrix of $E^{(0)}$.
- Counting walks in sparse graphs.

• $L^{(1)} = uu^{\top} = P_1(M - S^{(0)})$ and $E^{(0)} = S^* - S^{(0)}$.

Fixed point equation for eigenvectors $(M - S^{(0)})u = \lambda u$

Taylor Series

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse: $\operatorname{supp}(E^{(0)}) \subseteq \operatorname{supp}(S^*)$.
- Exploiting sparsity: $(E^{(0)})^p$ is the p^{th} -hop adjacency matrix of $E^{(0)}$.
- Counting walks in sparse graphs.
- In addition, u^* is incoherent: $||u^*||_{\infty} < \frac{\mu}{\sqrt{n}}$.

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

• $E^{(0)}$ is sparse (each row/column is d sparse) and u^* is μ -incoherent.

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse (each row/column is d sparse) and u^* is μ -incoherent.
- We show: $\|(E^{(0)})^p u^*\|_{\infty} \le \frac{\mu}{\sqrt{n}} (d \|E^{(0)}\|_{\infty})^p$.

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse (each row/column is d sparse) and u^* is μ -incoherent.
- We show: $\|(E^{(0)})^p u^*\|_{\infty} \leq \frac{\mu}{\sqrt{n}} (d\|E^{(0)}\|_{\infty})^p$.
- Convergence when terms are < 1, i.e. $d||E^{(0)}||_{\infty} < 1$.

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse (each row/column is d sparse) and u^* is μ -incoherent.
- We show: $\|(E^{(0)})^p u^*\|_{\infty} \le \frac{\mu}{\sqrt{n}} (d\|E^{(0)}\|_{\infty})^p$.
- Convergence when terms are < 1, i.e. $d||E^{(0)}||_{\infty} < 1$.
- Recall $||E^{(0)}||_{\infty} < \frac{4\mu^2}{n}$ due to thresholding.

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse (each row/column is d sparse) and u^* is μ -incoherent.
- We show: $\|(E^{(0)})^p u^*\|_{\infty} \le \frac{\mu}{\sqrt{n}} (d\|E^{(0)}\|_{\infty})^p$.
- Convergence when terms are < 1, i.e. $d||E^{(0)}||_{\infty} < 1$.
- Recall $||E^{(0)}||_{\infty} < \frac{4\mu^2}{n}$ due to thresholding.
- Require $d < \frac{n}{4\mu^2}$. Can tolerate O(n) corruptions!

$$u = \lambda \langle u^*, u \rangle \left(I + \sum_{p \ge 1} \left(\frac{E^{(0)}}{\lambda} \right)^p \right) u^*$$

- $E^{(0)}$ is sparse (each row/column is d sparse) and u^* is μ -incoherent.
- We show: $\|(E^{(0)})^p u^*\|_{\infty} \le \frac{\mu}{\sqrt{n}} (d\|E^{(0)}\|_{\infty})^p$.
- Convergence when terms are < 1, i.e. $d||E^{(0)}||_{\infty} < 1$.
- Recall $||E^{(0)}||_{\infty} < \frac{4\mu^2}{n}$ due to thresholding.
- Require $d < \frac{n}{4\mu^2}$. Can tolerate O(n) corruptions!

Sketch of Further Steps

Extensions to higher rank

- Stage-wise algorithm: first only consider rank-1 estimates
- After sufficient denoising proceed to rank-2 estimates and so on.

Sketch of Further Steps

Extensions to higher rank

- Stage-wise algorithm: first only consider rank-1 estimates
- After sufficient denoising proceed to rank-2 estimates and so on.

Unique Challenges in Tensor Analysis

- Do not have guaranteed low rank decomposition of every tensor.
- Require perturbation to be small enough for guarantees.
- Tensor algebra quite different from matrix analysis.

Outline

- Introduction
- 2 Alternating Projections Algorithm
- 3 Analysis
- 4 Experiments
- Conclusion

Matrix RPCA: Foreground/background Separation

Tensor RPCA Results

Figure: (a),(b) Error with non-block sparsity. (c),(d) Error with block sparsity.

Outline

- Introduction
- 2 Alternating Projections Algorithm
- 3 Analysis
- 4 Experiments
- Conclusion

Conclusion

Guaranteed Non-Convex Tensor Robust PCA

- Efficient non-convex method for tensor robust PCA.
- Alternating rank projections and thresholding.
- Estimates for low rank and sparse parts "grown gradually".
- Low computational complexity: scalable to large tensors.
- Advantage over matrix methods: tensor methods incorporate more constraints.

Possible to have both: guarantees and computational efficiency!

