6COSC020W - APPLIED AI An Introduction to Reinforcement Learning

Dr Dimitris C. Dracopoulos

Control Learning

Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- Learning to choose actions to optimise factory output
- Learning to play Backgammon

Note several problem characteristics:

- Delayed reward
- Opportunity for active exploration
- Possibility that state only partially observable
- Possible need to learn multiple tasks with same sensors/effectors

Fimitris C. Dracopoulos 2/20

Machine (X) vs Machine (O)

Learn to play the tic-tac-toe game.

- ▶ 2 machines playing each other without previous knowledge
- ▶ Playing 20000 games
- Learning in each game!

Dimitris C. Dracopoulos 3/26

Another Example: TD-Gammon

Learn to play Backgammon.

Immediate reward:

- ► +100 if win
- ► -100 if lose
- 0 for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

imitris C. Dracopoulos 4/26

The Reinforcement Learning Problem

$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Goal: Learn to choose actions that maximise:

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots,$$

where $0 \le \gamma < 1$

Markov Decision Processes

Assume:

- finite set of states S
- set of actions A
- ▶ at each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- ▶ then receives immediate reward r_t
- \triangleright and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - ightharpoonup i.e., r_t and s_{t+1} depend only on *current* state and action
 - functions δ and r may be nondeterministic
 - functions δ and r not necessarily known to agent

Dimitris C. Dracopoulos 6/2

Agent's Learning Task

Execute actions in environment, observe results, and

▶ learn action policy $\pi: S \longrightarrow A$ that maximises

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

from any starting state in S

 \blacktriangleright here 0 $\leq \gamma < 1$ is the discount factor for future rewards

Note something new:

- ▶ Target function is $\pi: S \longrightarrow A$
- **b** but we have no training examples of form $\langle s, a \rangle$
- training examples are of form $\langle \langle s, a \rangle, r \rangle$

Dimitris C. Dracopoulos 7/26

Value Function

To begin, consider deterministic worlds...

For each possible policy π the agent might adopt, we can define an evaluation function over states

$$V^{\pi}(s) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$
$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where r_t, r_{t+1}, \ldots are generated by following policy π starting at state s

Restated, the task is to learn the optimal policy π^*

$$\pi^* \equiv \arg\max_{\pi} V^{\pi}(s), (\forall s)$$

Dimitris C. Dracopoulos 8/2

Figure 1: r(s, a) (immediate reward) values.

Figure 2: $V^*(s)$ values.

Figure 3: One optimal policy.

What to Learn

We might try to have agent learn the evaluation function V^{π^*} (which we write as V^*)

It could then do a lookahead search to choose best action from any state s because

$$\pi^*(s) = \arg\max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

A problem:

- ▶ This works well if agent knows $\delta: S \times A \longrightarrow S$, and $r: S \times A \longrightarrow \Re$
- ▶ But when it doesn't, it can't choose actions this way

imitris C. Dracopoulos 12/26

Q Function

Define new function very similar to V^*

$$Q(s,a) \equiv r(s,a) + \gamma V^*(\delta(s,a))$$

If agent learns Q, it can choose optimal action even without knowing $\delta!$

$$\pi^*(s) = \arg\max_a [r(s, a) + \gamma V^*(\delta(s, a))]$$

$$\pi^*(s) = \arg\max_a Q(s, a)$$

Q is the evaluation function the agent will learn

mitris C. Dracopoulos 13/26

Figure 4: Q(s, a) values for the grid problem previously seen.

Learning V in a Problem

- Select the moves.
- ▶ Most of the time we move *greedily*, i.e. select the move that leads to the state with greatest value (**Exploitation step**).
- Occasionally, we select randomly from among the other moves instead (Exploration step).

How to do iteratively? Update the V for <u>only</u> greedy moves according to the formula:

$$V(S_t) \leftarrow V(S_t) + \alpha [V(S_{t+1} - V(S_t))]$$
 (1)

where α is a small positive number (in the range between 0 and 1), which affects the rate of learning.

imitris C. Dracopoulos 15/26

ϵ-Greedy Methods for Exploration vs Exploitation

- To make sure that we explore while we exploit as well, ε-greedy actions can be applied:
- ► Most of the time a greedy action is selected (i.e. the one leading to the maximum *V* value estimated so far).
- ▶ With probability ϵ we apply an action which is selected randomly from all the actions (including the greedy action) with equal probability.

imitris C. Dracopoulos 16/2

An Example of ϵ -Greedy Selection

- ▶ Assume a problem with 3 states s_1, s_2, s_3 .
- ▶ There are 2 actions available from each state s_i . Each action will lead to one of the other 2 states.
- Assume that the currently estimated V values for the 3 states are $V(s_1) = 10$, $V(s_2) = 50$ and $V(s_3) = 20$.
- ▶ The probability of selecting a non-greedy action is $\epsilon = 0.2$.

This can be implemented as follows:

- ▶ If the random generator (generating a number between 0 and 1) returns a value in the range [0,0.2] a random action is selected (i.e. it could be a greedy or a non-greedy one).
- ▶ If the random generator (generating a number between 0 and 1) returns a value in the range (0.2, 1.0] a greedy approach is selected.
- \longrightarrow This means that the overall probability of selecting a greedy action is 0.8+0.1=0.9 (i.e. selecting the greedy action because an exploitation move was selected + selecting the greedy action because an exploration move is made)

Training Rule to Learn Q

Note Q and V^* closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

Let \hat{Q} denote learner's current approximation to Q. Consider training rule

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

where s' is the state resulting from applying action a in state s.

Dimitris C. Dracopoulos 18/2

Q Learning for Deterministic Worlds

For each s, a initialise table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- ▶ Update the table entry for $\hat{Q}(s, a)$ as follows:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

 $ightharpoonup s \longleftarrow s'$

Dimitris C. Dracopoulos 19/

Updating \hat{Q}

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')
\leftarrow 0 + 0.9 \max\{63, 81, 100\}
\leftarrow 90$$

notice if rewards non-negative, then

$$(\forall s, a, n)$$
 $\hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a)$

and

$$(\forall s, a, n) \ 0 \leq \hat{Q}_n(s, a) \leq Q(s, a)$$

mitris C. Dracopoulos 20/20

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$V^{\pi}(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$$

$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$

$$\equiv E[r_t + \gamma V^{\pi}(s+1)]$$
(2)

$$Q(s, a) \equiv E[r(s, a) + \gamma V^*(\delta(s, a))]$$

itris C. Dracopoulos 21/26

Nondeterministic Case

Q learning generalises to nondeterministic worlds

Alter training rule to

$$\hat{Q}_n(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r + \max_{a'}\hat{Q}_{n-1}(s',a')]$$

where

$$\alpha_n = \frac{1}{1 + visits_n(s, a)}$$

Can still prove convergence of \hat{Q} to Q.

itris C. Dracopoulos 22/26

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$$

Or n?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \dots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \hat{Q}(s_{t+n}, a)$$

Blend all of these:

$$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots
ight]$$

imitris C. Dracopoulos 23/26

Temporal Difference Learning (cont'd)

$$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots \right]$$

Equivalent expression:

$$Q^{\lambda}(s_t, a_t) = r_t + \gamma [(1 - \lambda) \max_{a} \hat{Q}(s_t, a_t) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1})]$$

 $\mathsf{TD}(\lambda)$ algorithm uses above training rule

- ► Sometimes converges faster than Q learning
- lacktriangle converges for learning V^* for any $0 \le \lambda \le 1$
- Tesauro's TD-Gammon uses this algorithm

Dimitris C. Dracopoulos 24/26

Families of Reinforcement Learning Algorithms

- Dynamic Programming: based on Bellman equation (2), well developed mathematically, but require a complete and accurate model of the environment.
- 2. *Monte Carlo Methods*: do not require a model but not appropriate for step-by-step incremental learning.
- 3. Temporal Difference Methods (e.g. Q-learning, temporal difference learning): require no model, they are fully incremental, but are more complex to analyse.

Dimitris C. Dracopoulos 25/:

Subtleties and Ongoing Research

- lacktriangle Replace \hat{Q} table with neural net or other generaliser
- ► Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- ▶ Learn and use $\hat{\delta}: S \times A \longrightarrow S$
- Relationship to dynamic programming

Dimitris C. Dracopoulos 26/26