Let's Win the Election

สาธารณรัฐ JOI ประกอบไปด้วย N รัฐ ใช้ตัวเลข 1 ถึง N แทนค่าแต่ละรัฐ ในปี 2022 มีการเลือกตั้ง ประธานาธิบดี โดยผู้ชนะการเลือกตั้งในรัฐนั้นจะได้รับเสียงโหวตจากรัฐดังกล่าว

ไรยลงสมัครประธานาธิบดีสมัยนี้ เธอวางแผนที่จะชนะการเลือกตั้งครั้งนี้ด้วยการใช้คำปราศรัย หลังจาก เธอกล่าวคำปราศรัย สิ่งเหล่านี้จะเกิดขึ้น

- ullet ถ้าเวลาที่ใช้ในการปราศรัยที่รัฐ i $(1 \leq i \leq N)$ เกิน A_i ชั่วโมง เธอจะได้รับเสียงโหวตจากรัฐ i
- ullet ถ้าเวลาที่ใช้ในการปราศรัยที่รัฐ i $(1 \leq i \leq N)$ เกิน B_i ชั่วโมง เธอจะได้ผู้ร่วมอุดมการณ์จากรัฐ i หลังจากนั้นแล้วผู้ร่วมอุดมการณ์สามารถช่วยเพิ่มเวลารวมในการปราศรัยได้
- ในบางกรณีไรยไม่สามารถหาผู้ร่วมอุดมการณ์ได้เลย ค่า $B_i=1$ ในกรณีดังกล่าว ไม่เช่นนั้นแล้วเรา จะการันตีได้ว่า $B_i\geq A_i$

ผู้ร่วมอุดมการณ์จากรัฐ i สามารถช่วยเพิ่มเวลาในการปราศรัยนอกรัฐ i ได้ สามารถมีผู้ร่วมอุดมการณ์ ช่วยปราศรัยพร้อมกันได้มากกว่าหนึ่งคนในรัฐเดียวกัน ตัวอย่างเช่น ถ้ามีผู้ร่วมอุดมการณ์สองคนช่วย ปราศรัยเป็นเวลา x ชั่วโมง เวลารวมของการปราศรัยก็จะเพิ่มขึ้นจากเดิม 2x ชั่วโมง สมมติว่าการเดินทาง ระหว่างรัฐไม่เสียเวลา

ไรยต้องการเสียงโหวตจาก K รัฐ กุณต้องช่วยเธอคำนวณหาเวลาที่น้อยที่สุดที่ไรยต้องใช้เพื่อให้ได้ K

ข้อมูลเข้า

อ่านข้อมูลเข้าจาก Standard Input ทุกค่าเป็นจำนวนเต็ม

N

K

 $A_1 B_1$

 $A_2 B_2$

•••

 $A_N B_N$

ข้อมูลออก

พิมพ์หนึ่งบรรทัดออกไปยัง Standard Output เป็นจำนวนชั่วโมงที่น้อยที่สุดที่ทำให้ไรยได้ *K* โหวต คำตอบของคุณจะถือว่าถูกต้องถ้าผลต่างระหว่างคำตอบที่ถูกต้องกับคำตอบของคุณมีค่าสัมบูรณ์น้อยกว่า หรือเท่ากับ 0.01 คำตอบของคุณสามารถเขียนได้สองแบบ

- จำนวนเต็ม เช่น 123, 0, -2022
- จำนวนเต็ม ตามด้วยจุดทศนิยม ตามด้วยตัวเลขหลายหลัก แต่ละตัวีค่า 0 ถึง 9 ไม่มีช่องว่าง ไม่ จำกัดความยาวของตัวเลขหลังจุดทศนิยม เช่น 123.4, -123.00, 0.00288 คำตอบจะต้องไม่อยู่ในรูปเลขยกกำลัง เช่น 1.23456e+05 และ 1.23456e5 (ห้ามตอบแบบนี้)

ข้อจำกัด

- $1 \le N \le 500$
- $1 \le K \le N$
- $1 \le A_i \le 1000 (1 \le i \le N)$
- $A_i \le B_i \le 1\,000$ หรือ $B_i = -1\,(1 \le i \le N)$

ปัญหาย่อย

- 1. (5 คะแนน) $B_i = -1 \ (1 \le i \le N)$
- 2. (5 คะแนน) $B_i = -1$ หรือ $B_i = A_i \ (1 \le i \le N)$
- 3. (11 คะแนน) $N \leq 7$
- 4. (12 คะแนน) *N* ≤ 20
- 5. (33 คะแนน) $N \leq 100$
- 6. (11 คะแนน) K = N
- 7. (23 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่าง

ข้อมูลเข้า 1	ข้อมูลออก 1
3	5.500000000000000
3	
1 5	
2 3	
4 5	

ถ้าไรยปราศรัยตามกำหนดการณ์ด้านล่าง จะสามารถได้โหวตจากทุกรัฐในเวลา 5.5 ชั่วโมง

- 1. ปราศรัย 2 ชั่วโมงที่รัฐที่ 2 ทำให้ได้โหวตจากรัฐที่ 2
- 2. ปราศรัยเพิ่มอีก 1 ชั่วโมงที่รัฐที่ 2 ทำให้ผู้ร่วมอุดมการณ์มาหนึ่งคน
- 3. ปราศรัยร่วมกับผู้ร่วมอุดมการณ์ที่รัฐที่ 3 เป็นเวลา 2 ชั่วโมง ทำให้ได้โหวตจากรัฐที่ 3
- 4. ปราศรัยร่วมกับผู้ร่วมอุดมการณ์ที่รัฐที่ 1 เป็นเวลา 0.5 ชั่วโมง ทำให้ได้โหวตจากรัฐที่ 1 ตัวอย่างนี้เป็นไปตามเงื่อนไขของปัญหาย่อย 3, 4, 5, 6, และ 7

ข้อมูลเข้า 2	ข้อมูลออก 2
7	32.000000000000000
4	
4 -1	
11 -1	
6 -1	
12 -1	
36 -1	
11 -1	
20 -1	

ถ้าไรยปราศรัยตามกำหนดการณ์ด้านล่าง จะสามารถได้โหวตจาก 4 รัฐในเวลา 32 ชั่วโมง

- 1. ปราศรัย 4 ชั่วโมงที่รัฐที่ 1 ทำให้ได้โหวตจากรัฐที่ 1
- 2. ปราศรัย 11 ชั่วโมงที่รัฐที่ 2 ทำให้ได้โหวตจากรัฐที่ 2
- 3. ปราศรัย 6 ชั่วโมงที่รัฐที่ 3 ทำให้ได้โหวตจากรัฐที่ 3
- 4. ปราศรัย 11 ชั่วโมงที่รัฐที่ 6 ทำให้ได้โหวตจากรัฐที่ 6

ตัวอย่างนี้เป็นไปตามเงื่อนไขของปัญหาย่อย 1, 2, 3, 4, 5, และ 7

ข้อมูลเข้า 3	ข้อมูลออก 3
5	11.500000000000000
3	
4 -1	
5 -1	
6 -1	
7 7	
8 8	

้ถ้าไรยปราศรัยตามกำหนดการณ์ด้านล่าง จะสามารถได้โหวตจาก 3 รัฐในเวลา 11.5 ชั่วโมง

- 1. ปราศรัย 7 ชั่วโมงที่รัฐที่ 4 ทำให้ได้โหวตจากรัฐที่ 4 และผู้ร่วมอุดมการณ์จากรัฐที่ 4
- 2. ไรยปราศรัย 4 ชั่วโมงที่รัฐที่ 1 ทำให้ได้โหวตจากรัฐที่ 1 ในเวลาเดียวกันผู้ร่วมอุดมการณ์ไปปราศรัย 4 ชั่วโมงที่รัฐที่ 2
- 3. ไรยและผู้ร่วมอุดมการณ์ร่วมกันปราศรัยอีก 0.5 ชั่วโมงที่รัฐที่ 2 ทำให้ได้โหวตจากรัฐที่ 2 ตัวอย่างนี้เป็นไปตามเงื่อนไขของปัญหาย่อย 2, 3, 4, 5, และ 7

ข้อมูลเข้า 4	ข้อมูลออก 4
7	62.16666666666664
5	
28 36	
11 57	
20 35	
19 27	
31 33	
25 56	
38 51	

ตัวอย่างนี้เป็นไปตามเงื่อนไขของปัญหาย่อย 3, 4, 5, และ 7

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)

ข้อมูลเข้า 5	ข้อมูลออก 5
20	644.203571428571422
14	
106 277	
175 217	
170 227	
164 245	
118 254	
139 261	
142 270	
185 200	
162 241	
153 239	
128 264	
103 299	
147 248	
158 236	
160 232	
183 205	
194 197	
135 260	
153 234	
128 260	

ตัวอย่างนี้เป็นไปตามเงื่อนไขของปัญหาย่อย 4, 5, และ 7