Contrôle continu du 26 février 2024

Durée : une heure.

- 1. Soient $n \in \mathbb{N}^*$ et $f : \mathbb{R}^n \to \mathbb{C}$ une fonction appartenant à $L^1(\mathbb{R}^n)$.
 - (a) Donner la définition de la transformée de Fourier \widehat{f} de f.
 - (b) Montrer que $\widehat{f} \in \mathcal{C}(\mathbb{R}^n)$.
 - (c) Quelle autre propriété remarquable possède \widehat{f} ?
- 2. Soit la fonction $f: x \in \mathbb{R} \mapsto e^{-x^2} \in \mathbb{R}$. Expliciter \widehat{f} en utilisant une méthode de votre choix vue en cours ou en TD. Indication. On rappelle que $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$.
- 3. Pour tout a > 0, on définit la fonction $f_a : x \in \mathbb{R} \mapsto e^{-a|x|} \in \mathbb{R}$.
 - (a) Donner l'expression de \widehat{f}_a .
 - (b) Soit $b \in \mathbb{R}^{+*}$. On s'intéresse à l'équation suivante d'inconnue $u \in L^1(\mathbb{R})$:

$$(E) \qquad \text{p.p.t.} \ \, x \, \in \, \mathbb{R} \, , \quad u(x) \ = \ e^{-|x|} \, + \, b \int_{\mathbb{R}} e^{-|x-s|} u(s) \, ds \, .$$

- i. Reformuler cette équation à l'aide d'un produit de convolution.
- ii. Montrer qu'il n'y a aucune solution $u \in L^1(\mathbb{R})$ lorsque $b \geq \frac{1}{2}$.
- iii. On suppose que $b \in]0, \frac{1}{2}[$. Démontrer qu'il existe une unique solution que l'on déterminera explicitement.