Teoría de Lenguajes

Gianfranco Zambonni

11 de enero de 2023

Teoría de Lenguajes

Gianfranco Zambonni

11 de enero de 2023

Índice

1.	Intr	roducción	4
	1.1.	Relaciones	4
		1.1.1. Operaciones	4
	1.2.	Alfabetos	5
	1.3.	Lenguajes	6
	1.4.	Gramáticas	7
		1.4.1. Clasificación de grámaticas (Chomsky)	8
2.	Aut	ómatas finitos	9
	2.1.	Autómatas finitos deterministicos (AFD)	ç
	2.2.	Autómatas finitos no deterministas (AFND)	9
		2.2.1. Equivalencia entre AFD y AFND	10
	2.3.	Autómatas finitos no deterministico con transiciones λ	11
		2.3.1. Equivalencia entre AFND y AFND- λ	13
3.	Exp	oresiones regulares	15
	3.1.	Expresiones regulares a AFND- λ	15
		3.1.1. Casos base	15
		3.1.2. Pasos inductivos	16
	3.2.	AFD a expresión regular	18
		3.2.1. Demostración	18
	3.3.	Gramática regular a AFND	20
		3.3.1. Demostración	20
	3.4.		21
			21

4.	Minimización de AFD			
	4.1. Indistinguibilidad	23		
	4.1.1. Indestinguibilidad de orden k	24		
	4.2. Autómatas finito determinístico mínimo	25		
	4.3. Algoritmo de minimización de un AFD	26		
5.	Lenguajes regulares y lema de pumping	2 9		
	5.1 Lema de pumping	20		

1. Introducción

1.1. Relaciones

Dados dos conjuntos A y B, se llama **relación** $R:A\to B$ de A en B a todo subconjutno de $A\times B$, es decir $R\subset A\times B$.

Dos elementos $a \in A$ y $b \in B$ están relacionados si $(a, b) \in R$ y lo notamos aRb.

Si A = B, se dice que R es una relación sobre A y se dice que:

- es **reflexica** cuando $\forall a, aRa$.
- \blacksquare es **simétrica** cuando $\forall a, b \in A, aRb \implies bRa$.
- es **transitiva** cuando $a, b, c \in A$, $aRb \land bRc \implies aRc$.

Relación de equivalencia: Una relación $R:A\to A$ es de equivalencia cuando es reflexiva, simétrica y transitiva. Este tipo de relaciones particiona a A en subconjuntos disjuntos llamados clases de equivalencia.

1.1.1. Operaciones

Composición de relaciones: Si $R:A\to B$ y $S:B\to C$ son relaciones, entonces la composición de R y S es la relación $S\circ R:A\to C$ definida por:

$$S \circ R = \{(a,c) \mid a \in A, c \in C : \exists b \in B, aRb \land bSc\}$$

Relación de identidad: La relación de identidad sobre A es la relación $id_A : A \to A$ definida por: $id_A = \{(a, a) \mid a \in A\}$.

• La relación de identidad el el elemento neutro de la composición de relaciones.

Relación de potencia: Dado $R: A \to A$ se define la relación de potencia $R^k: A \to A$ como la composición de k copias de R:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

Clausura transitiva/positiva: Dada una relación $R: A \to A$ se define la clausura transitiva de R como la relación R^+ definida por:

$$R^+ = \bigcup_{n=1}^{\infty} R^n$$

La clausura transitiva de R cumple las siguientes propiedades:

1. $R \subseteq R^+$

2. R^+ es transitiva

DEMOSTRACIÓN

Si aR^+b entonces existe una secuencia de elementos $a=a_0,a_1,\ldots,a_n=b$ tales que a_iRa_{i+1} para todo $i \in [0,n-1]$.

Análogamente, como bR^+c existe una secuencia de elementos

$$b = b_0, b_1, \dots, b_m = c$$

tales que b_iRb_{i+1} para todo $i\in[0,m-1].$

Entonces $aR^{n+m}c$ pues puedo armar la secuencia

$$a = a_0, a_1, \dots, a_n, b_1 \dots b_m = c$$

.

Luego como $R^{n+m} \subseteq R^+$ vale que aR^+c .

3. Para toda relación $G: A \to A$ tal que $R \subseteq G \land G$ es transitiva, entonces $R^+ \subseteq G$, es decir R^+ es la relación transitiva más pequeña que contiene a R.

DEMOSTRACIÓN

Si aR^+b entonces existe una secuencia de elementos $a=a_0,a_1,\ldots,a_n=b$ tales que a_iRa_{i+1} para todo $i\in[0,n-1]$.

Como $R \subseteq G$ entonces $a_i G a_{i+1}$ para todo $i \in [0, n-1]$. Como G es transitiva entonces la aplicación repetida de la transitividad nos lleva a que $a_1 G a_n$, por lo que a G b.

Clausura transitiva reflexiva:

$$R^* = R^+ \cup id_A = \bigcup_{n=0}^{\infty} R^n$$

Observaciones:

- Si A es un conjunto finito, entonces todas las relaciones $R:A\to A$ son finitas.
- Si R es reflexiva, entonces $R^* = R^+$.

1.2. Alfabetos

Alfabeto: Un alfabeto es un conjunto finito de símbolos.

1.3 Lenguajes Teoría de Lenguajes

Cadena: Una cadena sobre un alfabeto Σ es una secuencia finita de símbolos de Σ . Los símbolos son notados respetando el orden de la secuencia.

Concatenación: Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto:

$$\circ: \Sigma \times \{\text{cadenas sobre }\Sigma\} \to \{\text{cadenas de }\Sigma\}$$

 \blacksquare La cadena nula λ es el elemento neutro de la concatenación.

Clausura de Kleene de Σ : Σ^*

- $\quad \blacksquare \ \lambda \in \Sigma^*$
- $\bullet \ \alpha \in \Sigma^* \implies \forall \ a \in \Sigma, \ a \circ \alpha \in \Sigma^*$

Clausura positiva de Σ : $\Sigma^+ = \Sigma^* \setminus \{\lambda\}$

1.3. Lenguajes

Lenguaje: Un lenguaje es un conjunto de cadenas sobre un alfabeto Σ .

Concatenación de lenguajes: Si L_1 y L_2 son lenguajes definidos sobre los alfabetos Σ_1 y Σ_2 respectivamente, entonces la concatenación de L_1 y L_2 es un lenguaje L_1L_2 sobre el alfabeto $\Sigma_1 \cup \Sigma_2$ dfinido de la siguiente manera:

$$L_1L_2 = \{\alpha\beta \mid \alpha \in L_1, \ \beta \in L_2\}$$

Clausura de Kleene L^* :

$$L^0 = \{\lambda\}$$

$$L^n = LL^{n-1} \text{ para } n >= 1$$

$$L^* = \bigcup_{n=0}^{\infty} L^n$$

Clausura positiva L^+ :

$$L^+ = \bigcup_{n=1}^{\infty} L^n$$

Observaciones:

- $\quad \blacksquare \ L^+ = LL^*$
- $\quad \blacksquare \ L^* = L^+ \cup \{\lambda\}$
- \bullet Si L es un lenguaje definido sobre Σ entonces $L\subseteq \Sigma^*$

1.4. Gramáticas

Una gramática es una 4-tupla (V_N,V_T,P,S) donde:

- V_N es un conjunto finito de símbolos no terminales.
- V_T es un conjunto finito de símbolos terminales.
- \blacksquare P es un conjunto finito de reglas de producción: Son pares ordenados $\alpha \to \beta$ donde

$$\alpha \in (V_N \cup V_T)^* V_N (V_N \cup V_T)^*$$
y $\beta \in (V_N \cup V_T)^*$

• $S \in V_N$ es el símbolo inicial.

Dada una producción $A \to \alpha \in P$, se denomina a A como **cabeza** de la producción y a α como su **cuerpo**.

Derivación: El el proceso por el cual se obtiene una cadena a partir de un símbolo inicial remplazando recursivamente símbolos no terminales por cuerpos de producciones en P cuya cabeza coincida con los símbolos que están siendo remplazados.

Forma setencial de una grámatica: Se llama forma sentencial a cualquier derivación de la grámatica:

- \blacksquare S es una forma setencial de G
- Si $\alpha\beta\gamma$ es una forma setencial de G y $\beta \to \delta \in P$ entonces $\alpha\delta\gamma$ es una forma setencial de G.

Derivación directa en G: Si $\alpha\beta\gamma \in (V_N \cup V_T)^*$ y $\beta \to \delta \in P$ entonces $\alpha\delta\gamma$ es una derivación directa de G de $\alpha\beta\gamma$ y se denota como $\alpha\beta\gamma \Longrightarrow_G \alpha\delta\gamma$.

- $\blacksquare \xrightarrow{+}_{G}$ es la clausura positiva.
- $\stackrel{*}{\Longrightarrow}$ es la clausura transitiva y reflexiva.
- $\blacksquare \xrightarrow{k}$ será la potencia k-ésima.

Lenguaje de una grámatica $\mathcal{L}(G)$: Es el conjunto de todas las cadenas de símbolos terminales que son formas setenciales de G.

$$\mathcal{L}(G) = \{ \alpha \in V_T^* : S \stackrel{+}{\Longrightarrow} \alpha \}$$

1.4.1. Clasificación de grámaticas (Chomsky)

Gramáticas regulares (tipo 3): Son aquellas gramáticas que cumplen alguna de las siguientes condiciones:

- Todas sus producciones son de la forma $A \to aB$ ó $A \to a$ ó $A \to \lambda$ donde $A, B \in V_N$ y $a \in V_T$. En este caso se dice que es una gramática lineal a derecha.
- Todas sus producciones son de la forma $A \to Ba$ ó $A \to a$ ó $A \to \lambda$ donde $A, B \in V_N$ y $a \in V_T$. En este caso se dice que es una gramática lineal a izquierda.

Gramáticas libres de contexto (tipo 2): Son aquellas gramáticas en las que cada producción es de la forma $A \to \alpha$ donde $A \in V_N$ y $\alpha \in (V_N \cup V_T)^*$.

De la definición anterior puede inferirse que toda grámatica regular es libre de contexto.

Gramáticas sensibles al contexto (tipo 1): Son aquellas gramáticas en las que cada producción es de la forma $\alpha \to \beta$ donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$. Se puede inferir que toda gramática independiente del contexto que no posea regla borradoraas (es decir, que no posea producciones de la forma $A \to \lambda$) es sensible al contexto.

Gramáticas sin restricciones (tipo 0): Son aquellas gramáticas que no poseen ninguna restricción sobre la forma de sus producciones. El conjunto de las grámaticas tipo 0 es el conjunto de todas las grámaticas y permite generar todos los lenguajes aceptados por una máquina de Turing.

Definición: Un lenguaje generado por una grámatica tipo t es llamado lenguaje tipo t.

2. Autómatas finitos

2.1. Autómatas finitos deterministicos (AFD)

Un autómata finito determinista es una 5-tupla $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde:

- \blacksquare Q es un conjunto finito de estados.
- ullet Σ es un conjunto finito de símbolos de entrada.
- $\delta: Q \times \Sigma \to Q$ es una función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Función de transición generalizada $\hat{\delta}$: La función de transición δ está definida para que tome como parámetro un único símbolo de Σ . Se puede extender para que tome como parámetro una cadena de símbolos de Σ , es decir $\hat{\delta}: Q \times \Sigma^* \to Q$:

- $\hat{\delta}(q,\lambda) = q$
- $\hat{\delta}(q, \beta a) = \delta(\hat{\delta}(q, \beta), a) \text{ con } \beta \in \Sigma^* \text{ y } a \in \Sigma$

Cadena aceptada por un AFD: Una cadena $\beta \in \Sigma^*$ es aceptada por un AFD $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \in F$.

Lenguaje aceptado por un AFD: El lenguaje aceptado por un AFD $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas $\beta \in \Sigma^*$ que son aceptadas por \mathcal{M} :

$$L(\mathcal{M}) = \{ \beta \in \Sigma^* : \ \hat{\delta}(q_0, \beta) \in F \}$$

2.2. Autómatas finitos no deterministas (AFND)

Un autómata finito no determinista es una 5-tupla $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde:

- $\blacksquare \ Q$ es un conjunto finito de estados.
- ullet Es un conjunto finito de símbolos de entrada.
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ es una función de transición.

A diferencia de los AFD, la función δ devuelve un conjunto de estados en lugar de un solo estado.

- $q_0 \in Q$ es el estado inicial.
- \bullet $F\subseteq Q$ es el conjunto de estados finales.

Función de transición generalizada $\hat{\delta}$: Primero vamos a definir $\delta_P : \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ de la siguiente manera:

$$\delta_P(P, a) = \bigcup_{p \in P} \delta(p, a)$$

La función $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ se define de manera recursiva como:

- $\hat{\delta}(q,\lambda) = \{q\}$
- $\hat{\delta}(q, \beta a) = \{p : \exists r \in \hat{\delta}(q, \beta) \text{ tal que } p \in \delta(r, a)\} = \delta_P(\hat{\delta}(q, \beta), a) \text{ con } \beta \in \Sigma^* \text{ y } a \in \Sigma^* \}$

Para generalizar a un más podemos definir $\hat{\delta}_P : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ de la siguiente manera:

$$\hat{\delta}_P(P,\beta) = \bigcup_{q \in P} \hat{\delta}(q,\beta)$$

Cadena aceptada por un AFND: Una cadena $\beta \in \Sigma^*$ es aceptada por un AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \cap F \neq \emptyset$. Es decir, si alguno de los estados alcanzados por $\hat{\delta}(q_0, \beta)$ es un estado final.

Lenguaje aceptado por un AFND: El lenguaje aceptado por un AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas $\beta \in \Sigma^*$ que son aceptadas por \mathcal{M} :

$$L(\mathcal{M}) = \{ \beta \in \Sigma^* : \ \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \}$$

2.2.1. Equivalencia entre AFD y AFND

Es trivial ver que para todo AFD existe un AFND que acepte el mismo lenguaje.

Teorema 2.1. Dado una AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $\mathcal{M}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $L(\mathcal{M}) = L(\mathcal{M}')$.

Vamos a demostrar este teorema construyendo una AFD \mathcal{M}' a partir de \mathcal{M} . Una vez constuido deberemos demostrar que \mathcal{M}' acepta el mismo lenguaje que \mathcal{M} .

Construcción de \mathcal{M}' :

■ Q' será el conjunto de partes $\mathcal{P}(Q)$. Vamos a denotar cada estado $s \in Q'$ con etiquetas del estilo $[q_1, \ldots, q_k]$ donde $q_1, \ldots, q_k \in Q$. Entonces:

$$Q' = \mathcal{P}(Q)$$

- $\delta'([q_1, \dots, q_k], a) = [p_1, \dots, p_m] \iff \delta_P(\{q_1, \dots, q_k\}, a) = \{p_1, \dots, p_m\}$
- $q_0' = [q_0]$
- $F' = \{ [q_1, \dots, q_n] \in Q' : \{q_1, \dots, q_n\} \cap F \neq \emptyset \}$

Equivalencia entre funciones de transición: Antes de demostrar que ambos automátas aceptan el mismo lenguaje, vamos a demostrar que las funciones de transición generalizadas de ambos automátas son equivalentes cuando las llamamos con el estado inicial como primer parámetro. Es decir, queremos ver que $\hat{\delta}'(q'_0, \beta) = [p_1, \dots, p_k] \iff \hat{\delta}(q_0, \beta) = \{p_1, \dots, p_k\}.$

Lo vamos a hacer por inducción. Recordemos que $q'_0 = [q_0]$:

- Caso base: $\beta = \lambda$:
 - $\hat{\delta}'([q_0], \lambda) = [q_0]$ por definición de $\hat{\delta}'$.
 - $\hat{\delta}(q_0, \lambda) = \{q_0\}$ por definición de $\hat{\delta}$.

Luego
$$\hat{\delta}'([q_0], \lambda) = [q_0] \iff \hat{\delta}(q_0, \lambda) = \{q_0\}.$$

• Caso inductivo: $\beta \implies \beta a$:

Nuestra hipotesis inductiva es $\hat{\delta}'(q_0', \beta) = [r_1, \dots, r_m] \iff \hat{\delta}(q_0, \beta) = \{r_1, \dots, r_m\}.$

Queremos ver que $\hat{\delta}'(q_0', \beta a) = [p_1, \dots, p_k] \iff \hat{\delta}(q_0, \beta a) = \{p_1, \dots, p_k\}$

$$\begin{split} \hat{\delta}'(q_0',\beta a) &= [p_1,\ldots,p_k] \iff \delta'(\hat{\delta}'(q_0',\beta),a) = [p_1,\ldots,p_k] \\ &\iff \exists [r_1,\ldots,r_m] \in Q' \text{ tal que } \delta'(q_0',\beta) = [r_1,\ldots,r_m] \\ &\wedge \delta'([r_1,\ldots,r_m],a) = [p_1,\ldots,p_k] \\ &\iff \exists \{r_1,\ldots,r_m\} \in Q \text{ tal que } \hat{\delta}(q_0,\beta) = \{r_1,\ldots,r_m\} \\ &\cosh(r_1,\ldots,r_m) + (r_1,\ldots,r_m) + (r_2,\ldots,r_m) + (r_3,\ldots,r_m) + (r_4,\ldots,r_m) + (r_4$$

Demostración de la equivalencia: Ahora que hemos demostrado que las funciones de transición generalizadas de ambos automátas son equivalentes, vamos a demostrar que ambos automátas aceptan el mismo lenguaje:

$$\beta \in \mathcal{L}(\mathcal{M}) \iff \hat{\delta}(q_0, \beta) = \{q_1, \dots, q_n\} \land \{q_1, \dots, q_n\} \cap F \neq \emptyset$$

$$\iff \hat{\delta}(q'_0, \beta) = [q_1, \dots, q_n] \land [q_1, \dots, q_n] \in F'$$
constr.
$$\iff x \in \mathcal{L}(M')$$
def.

2.3. Autómatas finitos no deterministico con transiciones λ

Un autómata finito no determinista con transiciones λ es un autómata finito no determinista que tiene transiciones λ . Estas transacciones nos permiten ir de un estado a otro sin consumir ningún símbolo de entrada.

Los definimos con una 5-upla $(Q, \Sigma, \delta, q_0, F)$ donde:

- lacksquare Q es un conjunto finito de estados.
- \blacksquare Σ es un conjunto finito de símbolos de entrada.
- $\delta: Q \times (\Sigma \cup {\lambda}) \to \mathcal{P}(Q)$ es una función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Clausura λ de un estado q: Se denota $Cl_{\lambda}(q)$ es el conjunto de estados que se pueden alcanzar desde q siguiendo solo transiciones λ . Es decir,

$$Cl_{\lambda}(q) = \delta(q, \lambda)$$

Además $q \in Cl_{\lambda}(q)$.

Clausura λ de un conjunto de estados P:

$$Cl_{P\lambda}(P) = \bigcup_{p \in P} Cl_{\lambda}(p)$$

Generalización de la función de transición: Podemos extender δ a conjunto de estados:

$$\delta_P : \mathcal{P}(Q) \times (\Sigma \cup {\lambda}) \to \mathcal{P}(Q)$$

$$\delta_P(P, a) = \bigcup_{p \in P} \delta(p, a)$$

Entonces podemos definir:

$$\begin{split} \hat{\delta}: Q \times \Sigma^* &\to \mathcal{P}(Q) \\ \hat{\delta}(q_0, \lambda) &= Cl_{\lambda}(q_0) \\ \hat{\delta}(q_0, \beta a) &= Cl_{P\lambda} \left(\delta_P(\hat{\delta}(q_0, \beta), a) \right) = Cl_{P\lambda} \left(\left\{ p : \exists q \in \hat{\delta}(q_0, \beta) \text{ tal que } p \in \delta(q, a) \right\} \right) \end{split}$$

Tambien extendemos $\hat{\delta}$ a conjuntos de estados:

$$\hat{\delta}_P : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
$$\hat{\delta}_P(P, \beta a) = \bigcup_{p \in P} \hat{\delta}(p, \beta a)$$

Cadena aceptada por un AFND- λ : Una cadena β es aceptada por un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \cap F \neq \emptyset$.

Lenguaje aceptado por un AFND- λ : El lenguaje aceptado por un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas aceptadas por M:

$$\mathcal{L}(M) = \{ \beta \in \Sigma^* : \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \}$$

2.3.1. Equivalencia entre AFND y AFND- λ

Dado un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ podemos construir un AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$ tal que M acepte el mismo lenguaje que M'.

Construcción de M': Notemos que ambos autómatas tiene el mismo conjunto de estados Q, el mismo conjunto de símbolos de entrada Σ y el mismo estado inicial q_0 . Por lo que solo debemos definir δ' y F'.

$$\bullet \delta'(q, a) = \hat{\delta}(q, a) = Cl_{P\lambda} \left(\delta_P(\hat{\delta}(q, \lambda), a) \right)$$

$$F' = \begin{cases} F \cup \{q_0\} & \text{si } Cl_{\lambda}(q_0) \cap F \neq \emptyset \\ F & \text{si no} \end{cases}$$

Equivalencia de funciones de transición generalizada: Vamos a demostrar por inducción que $\hat{\delta}'(q_0, \beta) = \hat{\delta}(q_0, \beta)$ para todo $|\beta| \ge 1$:

- Caso base: $|\beta| = 1$. Sea $\beta = a$, entonces $\hat{\delta}'(q_0, \beta) = \hat{\delta}'(q_0, a) = \hat{\delta}(q_0, a)$ por como definimos δ' .
- Caso inductivo: Supongamos que $\hat{\delta}'(q_0, \beta) = \hat{\delta}(q_0, \beta)$ para todo $|\beta| \leq n$. Sea $\omega = \beta a$. Entonces:

$$\hat{\delta}'(q_0, \omega) = \hat{\delta}'(q_0, \beta a) \underset{\text{def.}}{=} \delta'_P(\hat{\delta}'(q_0, \beta), a) \underset{\text{H.I}}{=} \delta'_P(\hat{\delta}(q_0, \beta), a) \tag{1}$$

Por otro lado, dado $P \subseteq Q$ tenemos que:

$$\delta_P'(P,a) \underset{\text{def.}}{=} \bigcup_{p \in P} \delta'(p,a) \underset{\text{constr.}}{=} \bigcup_{p \in P} \hat{\delta}(p,a) \underset{\text{def}}{=} \hat{\delta}_P(P,a)$$

Entonces, remplazando el último término en (1), nos queda:

$$\delta'_P(\hat{\delta}(q_0,\beta),a) = \hat{\delta}_P(\hat{\delta}(q_0,\beta),a) = \underset{\text{def.}}{\hat{\delta}}(q_0,\beta a) = \hat{\delta}(q_0,\omega)$$

Demostración de equivalencia: Veamos ahora que M acepta el mismo lenguaje que M', vamos a separar la demostración en dos casos: $\beta = \lambda$ y $\beta \neq \lambda$.

$$\quad \blacksquare \ \beta = \lambda$$

•
$$\lambda \in \mathcal{L}(M) \implies \lambda \in \mathcal{L}(M')$$

$$\lambda \in \mathcal{L}(M) \iff \hat{\delta}(q_0, \lambda) \cap F \neq \emptyset$$

$$\iff Cl_{\lambda}(q_0) \cap F \neq \emptyset$$

$$\implies_{\text{constr.}} q_0 \in F' \iff \lambda \in \mathcal{L}(M')$$

$$\begin{array}{c} \bullet \ \lambda \in \mathcal{L}(M') \implies \lambda \in \mathcal{L}(M). \\ \\ \lambda \in \mathcal{L}(M') \stackrel{\Longrightarrow}{\Longrightarrow} q_0 \in F' \\ \\ \stackrel{\Longrightarrow}{\Longrightarrow} q_0 \in F \vee Cl_{\lambda}(q_0) \cap F \neq \emptyset \\ \\ \stackrel{\Longrightarrow}{\Longrightarrow} Cl_{\lambda}(q_0) \cap F \neq \emptyset \vee Cl_{\lambda}(q_0) \cap F \neq \emptyset \\ \\ \stackrel{\Longrightarrow}{\Longrightarrow} Cl_{\lambda}(q_0) \cap F \neq \emptyset \\ \\ \stackrel{\longleftrightarrow}{\Longrightarrow} \lambda \in \mathcal{L}(M) \\ \end{array}$$

 $\beta \neq \lambda$

•
$$\beta \in \mathcal{L}(M) \implies \beta \in \mathcal{L}(M')$$

$$\beta \in \mathcal{L}(M) \underset{\text{def.}}{\Longrightarrow} \hat{\delta}(q_0, \beta) \cap F \neq \emptyset$$

$$\underset{\text{equiv. tran.}}{\Longrightarrow} \hat{\delta}'(q_0, \beta) \cap F \neq \emptyset$$

$$\underset{\text{constr. } M'}{\Longrightarrow} \hat{\delta}'(q_0, \beta) \cap F' \neq \emptyset \underset{\text{def.}}{\Longrightarrow} \beta \in \mathcal{L}(M')$$

•
$$\beta \in \mathcal{L}(M') \implies \beta \in \mathcal{L}(M)$$

$$\beta \in \mathcal{L}(M') \underset{\text{def.}}{\Longrightarrow} \hat{\delta}'(q_0, \beta) \cap F' \neq \emptyset$$

$$\underset{\text{equiv. trans}}{\Longrightarrow} \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \lor \hat{\delta}(q_0, \beta) \cap (F \cup \{q_0\}) \neq \emptyset \hat{\delta}(q_0, \beta) \cap \widehat{\delta}(q_0, \beta) \cap F \neq \emptyset$$

$$\underset{\text{constr.} M'}{\Longrightarrow} \hat{\delta}(q_0, \beta) \cap F \neq \emptyset$$

Si vale la primera parte de la última expresión $\delta(q_0, \beta) \cap F \neq \emptyset$ entonces $\beta \in \mathcal{L}(M)$ por definición.

Veamos que pasa si vale $\hat{\delta}(q_0, \beta) \cap (F \cup \{q_0\}) \neq \emptyset$, es decir hay un camino de transiciones λ desde q_0 hasta algún estado estado $q' \in F$:

$$\hat{\delta}(q_0,\beta) \cap (F \cup \{q_0\}) \neq \emptyset \implies \hat{\delta}(q_0,\beta) \cap F \neq \emptyset \vee \hat{\delta}(q_0,\beta) \cap \{q_0\} \neq \emptyset$$

La primer parte es lo mismo que arriba, analizemos la segunda:

$$\hat{\delta}(q_0,\beta) \cap \{q_0\} \neq \emptyset \implies Cl_{\lambda}(q_0) \cap F \neq \emptyset \implies \lambda \in \mathcal{L}(M)$$

Queda demostrada la equivalencia de lenguajes.

3. Expresiones regulares

Una expresión regular es una expresión que describe un lenguaje de forma compacta y sencilla:

- ullet \varnothing es una expresión regular que describe el lenguaje vacío \emptyset .
- λ es una expresión regular que describe el lenguaje unitario $\{\lambda\}$.
- Para cada $a \in \sigma$, a es una expresión regular que describe el lenguaje $\{a\}$.
- \blacksquare Si r y s son dos expresiones que denotan los lenguajes R y S entonces:
 - r|s ó r+s es una expresión regular que describe el lenguaje $R \cup S$.
 - rs es una expresión regular que describe el lenguaje RS.
 - r^* es una expresión regular que describe el lenguaje R^* .
 - r^+ es una expresión regular que describe el lenguaje R^+ .

Expresiones regulares recursivas: Si $r = \alpha r + \beta$, entonces $r = \alpha^* \beta$. Además, si $\alpha^* = \alpha^+$, entonces $r = \alpha^* (\beta + \gamma)$ para culquier expresión regular γ .

3.1. Expresiones regulares a AFND- λ

Dada una expresión regular r, existe una AFND- λ M con un solo estado final y sin trancisiones a partir del mismo tal que $\mathcal{L}(M) = \mathcal{L}(r)$.

Vamosa a demostrar por inducción sobre los operadores de las expresiones regulares.

3.1.1. Casos base

3.1.2. Pasos inductivos

Sean r_1 y r_2 dos expresiones regulares. Supongamos que existen AFND- λ $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_1, \{f_1\} \rangle$ y $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_2, \{f_\} \rangle$ tal que $\mathcal{L}(M_1) = \mathcal{L}(r_1)$ y $\mathcal{L}(M_2) = \mathcal{L}(r_2)$. Vamos a armar a partir de estos autómata uno nuevo que acepte los lenguajes generados por las expresiones $r_1|r_2$, r_1r_2 , r_1^* y r^+ .

 $r_1|r_2$: Podemos construir un automata $M_0 = \langle Q_0, \Sigma_0, \delta_0, q_0, \{f_0\} \rangle$ tal que $\mathcal{L}(M_0) = \mathcal{L}(r_1|r_2)$ de la siguiente forma:

- $Q_0 = Q_1 \cup Q_2 \cup \{q_0, f_0\}$
- $\bullet \ \Sigma_0 = \Sigma_1 \cup \Sigma_2$
- $\bullet \ \delta_0: Q_0 \times \Sigma_0 \to \mathcal{P}(Q_0)$

$$\delta(q_0, \lambda) = \{q_1, q_2\}$$

$$\delta(q, a) = \delta_1(q, a)$$
 para $q \in Q_1 - \{f_1\}$ y $a \in \Sigma_1 \cup \{\lambda\}$

$$\delta(q, a) = \delta_2(q, a)$$
 para $q \in Q_2 - \{f_2\}$ y $a \in \Sigma_2 \cup \{\lambda\}$

$$d(f_1, \lambda) = d(f_2, \lambda) = \{f_0\}$$

 r_1r_2 : $M_0 = \langle Q_0, \Sigma_0, \delta_0, q_1, \{f_2\} \rangle$:

$$Q_0 = Q_1 \cup Q_2$$

$$\Sigma_0 = \Sigma_1 \cup \Sigma_2$$

$$\delta_0: Q_0 \times \Sigma_0 \to \mathcal{P}(Q_0)$$

$$\delta(q, a) = \delta_1(q, a) \text{ para } q \in Q_1 - \{f_1\} \text{ y } a \in \Sigma_1 \cup \{\lambda\}$$

$$\delta(q, a) = \delta_2(q, a) \text{ para } q \in Q_2 - \{f_2\} \text{ y } a \in \Sigma_2 \cup \{\lambda\}$$

$$d(f_1, \lambda) = \{q_2\}$$

 $r_1^*: M_0 = \langle Q_0, \Sigma_1, \delta_0, q_0, \{f_0\} \rangle$:

$$Q_0 = Q_1 \cup \{f_0, q_0\}$$

•
$$\delta_1: Q_0 \times \Sigma_1 \to \mathcal{P}(Q_0)$$

$$\delta(q_0, \lambda) = \delta(f_1, \lambda) = \{q_1, f_0\}$$

$$\delta(q, a) = \delta_1(q, a) \text{ para } q \in Q_1 - \{f_1\} \text{ y } a \in \Sigma_1 \cup \{\lambda\}$$

Para el caso r_1^+ es el mismo autómata que para este caso sin la transición $q_0 \stackrel{\lambda}{\to} f_0$.

3.2. AFD a expresión regular

Dado un AFD $M = \langle \{q_1, \ldots, q_n\}, \Sigma, \delta, q_1, F \rangle$, que acepta el lenguaje \mathcal{L} , existe una expresión regular que denota el mismo lenguaje.

3.2.1. Demostración

Nombremos $R_{i,j}^k$ a la expresión regular cuyo lenguaje $\omega \subseteq \Sigma^*$ son las cadenas que llevan al autómata M desde el estado q_i al estado q_j pasando solo por estados q_l con $l \leq k$. En particular $R_{i,j}^n$ es la expresión regular que representa todas las cadenas que permiten ir del estado i al estado j.

Vamos a buscar como construir $R_{i,j}^k$ para cada $k \in \{0,\ldots,n\}$ de manera inductiva. Suponiendo que demostramos la existencia de esta expresión regular, podemos concluir que la unión $R_{1,f_1}^n|R_{1,f_2}^n|\ldots|R_{1,f_m}^n$ (con $f_1\ldots f_m\in F$) es la expresión regular que representa el lenguaje \mathcal{L} :

Caso base (k = 0): Como todos los estados están enumerados del 1 para arriba, k = 0 significa que no debe haber estados intermedios en el camino entre q_i y q_j , por lo que pueden ser de dos formas:

- Una arco del estado i al estado j.
- \blacksquare Un camino de longitud cero que solo contiene el estado i.

Si $i \neq j$, entonces solo es posible la primera opción. Debemos examinar el AFD y encontrar aquellos simbolos que nos permitan ir del estado i al estado j.

- 1. Si no existe tal símbolo, entonces $R_{i,j}^0 = \emptyset$.
- 2. Si existe exactamente un símbolo a, entonces $R_{i,j}^0 = a$.
- 3. Si existen más de un símbolo, entonces $R_{i,j}^0 = a_1|a_2|...|a_n$.

Ahora, si i = j entonces los caminos de longitud cero también son posibles, por lo que habría que agregar a cada una de las expresiones recién mencionadas el simbolo λ :

- 1. $R_{i,j}^0 = \lambda$.
- 2. $R_{i,j}^0 = a | \lambda$.
- 3. $R_{i,j}^0 = a_1 |a_2| ... |a_n| \lambda$.

Paso inductivo: Supongamos que hay un camino desde el estado i al estado j que no pasa por estados mas grandes k. Entonces podemos considerar las siguientes dos opciones:

1. El camino no pasa por el estado k, por lo que el lenguaje de $R_{i,j}^{k-1}$ contiene a ese camino.

2. El camino pasa por el estado k por lo menos una vez. Entonces podemos partir el camino en varias partes:

La primer parte, va desde el estado i al estado k sin pasar por k, la última parte es desde el estado k al estado j sin pasar por k, y todas las partes intermedia s van desde el estado k al estado k sin pasar por k. Cada una de estas partes ya tiene una expresión regular asociada: $R_{i,k}^{k-1}$, $R_{k,j}^{k-1}$, por lo que podemos unirlas para obtener la expresión regular que representa el camino completo de la siguiente forma:

$$R_{i,k}^{k-1} \left(R_{k,k}^{k-1} \right)^* R_{k,j}^{k-1}$$

Entonces $R_{i,j}^k$ es la unión de las expresiones de los dos tipos de caminos que acabamos de describir:

$$R_{i,j}^{k} = R_{i,j}^{k-1} \cup R_{i,k}^{k-1} \left(R_{k,k}^{k-1} \right)^{*} R_{k,j}^{k-1}$$

Finalmente, si construimos en orden todas estas expresiones regulares desde $R_{i,j}^0$, eventualmente llegaremos hasta $R_{i,j}^n$.

Y como dijimos, más arriba si calculamos $R_{1,j}^0$ para cada $q_j \in F$ y unimos todas las expresiones, obtendremos la expresión regular que representa el lenguaje \mathcal{L} .

3.3. Gramática regular a AFND

Dada una grámatica regular $G = \langle V_N, V_T, P, S \rangle$, podemos construir un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ que reconozca el lenguaje generado por G

3.3.1. Demostración

Vamos a constuir el autómata finito no determinista M y demostrar que reconoce el lenguaje generado por G.

Construcción de M: Construyamos M de la siguiente manera:

- $Q = V_N \cup \{q_f\}$. Denotarmeos q_A al estado que representa al no símbolo no terminar A.
- $\Sigma = V_T$
- $q_0 = q_S$
- Si $A, B \in V_N$ y $a \in \Sigma$, entonces:
 - $q_B \in \delta(q_A, a) \iff A \to aB \in P$
 - $q_f \in \delta(q_A, a) \iff A \to a \in P$
 - $q_A \in F \iff A \to \lambda \in P$
 - $q_f \in F$

Equivalencia clausura transitiva de producciones y δ : Vamos a probar por inducción que

$$A \stackrel{*}{\Rightarrow} \alpha B \iff q_B \in \hat{\delta}(q_A, \alpha)$$

- Caso base $\alpha = \lambda$:
 - $A \stackrel{*}{\Rightarrow} \alpha B$, pero las gramáticas regulares no acentan producciones que vayan de un no terminal a otro sin pasar por un terminal, por lo que B = A. Osea $A \stackrel{*}{\Rightarrow} \alpha A$.
 - Además, como es un AFND, no tiene transiciones lambda, osea que $\delta(q_A, \lambda) = \{q_A\}$, por lo que $q_A \in \hat{\delta}(q_A, \alpha)$.
- Caso inductivo $\alpha = \beta a$:

$$A \stackrel{*}{\Rightarrow} \alpha B \iff A \stackrel{*}{\Rightarrow} \beta a B \iff \exists C \in V_N : A \stackrel{*}{\Rightarrow} \beta C \land C \to a B$$

$$\iff \exists q_C \in Q, q_c \in \hat{\delta}(q_A, \alpha) \land q_B \in \delta(q_C, a)$$

$$\text{constr. M}$$

$$\iff q_B \in \delta(\hat{\delta}(q_A, \alpha), a)$$

$$\iff q_B \in \hat{\delta}(q_A, \beta a) \iff q_B \in \hat{\delta}(q_A, \alpha)$$

Demostración de la equivalencia: Vamos a demostrar que el lenguaje generado por G y M son iguales, osea que $\alpha a \in \mathcal{L}(M) \iff S \stackrel{*}{\Rightarrow} \alpha a$. Como G es una grámatica regular, hay solo dos formas de llegar desde S hasta αa :

1.
$$\exists A \in V_N : S \stackrel{*}{\Rightarrow} \alpha A \land A \rightarrow a \in P$$

2.
$$\exists B \in V_N : S \stackrel{*}{\Rightarrow} \alpha a B \wedge B \rightarrow \lambda \in P$$

Entonces:

$$S \stackrel{*}{\Rightarrow} \alpha a \iff_{\text{def. G}} (\exists A \in V_N : S \stackrel{*}{\Rightarrow} \alpha A \wedge A \to a \in P) \vee (\exists B \in V_N : S \stackrel{*}{\Rightarrow} \alpha a B \wedge B \to \lambda \in P)$$

$$\iff_{\text{Equiv. anterior}} (\exists q_A \in Q, q_A \in \hat{\delta}(q_0, \alpha) \wedge q_f \in \delta(q_A, a)) \vee (\exists q_B \in Q, q_B \in \hat{\delta}(q_0, \alpha a) \wedge q_B \in F)$$

$$\iff_{\text{def. } \delta} q_f \in \delta(q_S, \alpha a) \vee (\exists q_B \in Q, q_B \in \hat{\delta}(q_0, \alpha a) \wedge q_B \in F)$$

$$\iff_{\text{def. } \delta} \alpha a \in \mathcal{L}(M)$$

Falta ver que pasa si $\lambda \in \mathcal{L}(G)$:

$$\lambda \in \mathcal{L}(G) \iff S \stackrel{*}{\Rightarrow} \lambda \iff S \to \lambda \in P \iff q_S \in F \iff \lambda \in \mathcal{L}(M)$$

3.4. AFD a gramática regular

Dado un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe una gramática regular $G = \langle V_N, V_T, P, S \rangle$ equivalente

3.4.1. Demonstración

Contrucción de G: Vamos a construir G de la siguiente forma:

- $V_N = Q$, para mayor claridad llamamos A_p al no terminal correspondiente al estado $p \in Q$
- $V_T = \Sigma$
- $S = q_0$
- Si $q \in Q \land q \notin F$ entonces $A_p \to aA_q \in P \iff \delta(p,a) = q$
- Si $q \in F$ entonces $A_p \to a \in P \iff \delta(p, a) = q$
- $S \to \lambda \in P \iff q_0 \in F$

Paso intermedio: Vamos a demostrar por inducción:

$$\hat{\delta}(p,\alpha) = q \iff A_p \stackrel{*}{\Rightarrow} \alpha A_q$$

■ Caso base: $\alpha = \lambda$ es trivial:

$$\hat{\delta}(p,\lambda) = q \iff A_p \stackrel{*}{\Rightarrow} A_p$$

■ Caso inductivo $\alpha = \beta a$: Queremos probar que $\hat{\delta}(p, \alpha) = q \iff A_p \stackrel{*}{\Rightarrow} \alpha A_q$. Nuestra hipotesis inductiva: $\hat{\delta}(p, \beta) = q \iff A_p \stackrel{*}{\Rightarrow} \beta A_q$ para todo $|\beta| \le n$

$$\begin{split} \hat{\delta}(p,\alpha) &= \hat{\delta}(p,\beta a) = q \iff \exists r \in Q: \ \hat{\delta}(p,\beta) = r \wedge \delta(r,a) = q \\ &\iff \exists A_r, A_p \stackrel{*}{\Rightarrow} \beta A_r \wedge A_r \rightarrow a A_q \in P \iff A_p \stackrel{*}{\Rightarrow} \beta a A_q \\ & \xrightarrow{\text{constr. G}} \end{split}$$

Demostración de equivalencia de lenguajes:

$$\alpha a \in \mathcal{L}(M) \iff \hat{\delta}(q_0, \alpha a) \in F \iff \exists q \in Q : \hat{\delta}(q_0, \alpha) = q \land \delta(q, a) \in F$$

$$\iff_{\text{paso intermedio}} \exists A_p, A_{q0} \stackrel{*}{\Rightarrow} \alpha A_p \land A_p \to a \in P \iff A_{q0} \stackrel{*}{\Rightarrow} \alpha a$$

$$\iff_{\text{def.}} \alpha a \in \mathcal{L}(G)$$

4. Minimización de AFD

4.1. Indistinguibilidad

Sea $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ un AFD, decimos que $p, q \in Q$, son indistinguibles $(p \equiv q)$ si para toda cadena $\alpha \in \Sigma^*$ tal que $\hat{\delta}(p, \alpha) \in F$ entonces pasa que $\hat{\delta}(q, \alpha) \in F$ y viceversa. Si $p, q \in Q$ son indistinguibles, entonces decimos que p y q son equivalentes.

$$p \equiv q \iff \forall \alpha \in \Sigma^* : (\hat{\delta}(p, \alpha) \in F \iff \hat{\delta}(q, \alpha) \in F)$$

Teorema: Si $p \ y \ q$ son indistinguibles, sea $\alpha \in \Sigma^*$ entonces $\hat{\delta}(p,\alpha) \equiv \hat{\delta}(q,\alpha)$

$$p \equiv q \implies \forall \alpha \in \Sigma^* : \hat{\delta}(p, \alpha) \equiv \hat{\delta}(q, \alpha)$$

DEMOSTRACIÓN

Sean $p, q \in Q$, $p \equiv q$.

Supogamos que existe $\alpha \in \Sigma^*$ tal que $\hat{\delta}(p,\alpha) \not\equiv \hat{\delta}(q,\alpha)$ entonces existe una cadena $\gamma \in \Sigma^*$ que distingue a $\hat{\delta}(p,\alpha)$ de $\hat{\delta}(q,\alpha)$. Osea que $\hat{\delta}(\hat{\delta}(p,\alpha),\gamma) \in F$ y $\hat{\delta}(\hat{\delta}(q,\alpha),\gamma) \not\in F$ (o viceversa).

Por def: $\hat{\delta}(\hat{\delta}(p,\alpha),\gamma) = \hat{\delta}(p,\alpha\gamma)$ y $\hat{\delta}(\hat{\delta}(q,\alpha),\gamma) = \hat{\delta}(p,\alpha\gamma)$. Entonces, como $\alpha\gamma$ es una cadena que nos permite distinguir p de q, es decir $p \not\equiv q$. Absurdo.

Teorema: \equiv es una relación de equivalencia.

DEMOSTRACIÓN

• Reflexividad: $p \equiv p$:

$$\forall \alpha \in \Sigma^* : (\hat{\delta}(p,\alpha) \in F \iff \hat{\delta}(p,\alpha) \in F) \iff p \equiv p$$

• Simetría: $p \equiv q \implies q \equiv p$:

$$\begin{split} p &\equiv q \implies \forall \alpha \in \Sigma^*: \ (\hat{\delta}(p,\alpha) \in F \iff \hat{\delta}(q,\alpha) \in F) \\ &\iff \forall \alpha \in \Sigma^*: \ (\hat{\delta}(q,\alpha) \in F \iff \hat{\delta}(p,\alpha) \in F) \iff q \equiv p \end{split}$$

■ Transitividad: $p \equiv q \land q \equiv r \implies p \equiv r$:

$$p \equiv q \implies \forall \alpha \in \Sigma^* : \ (\hat{\delta}(p,\alpha) \in F \iff \hat{\delta}(q,\alpha) \in F)$$
$$q \equiv r \implies \forall \alpha \in \Sigma^* : \ (\hat{\delta}(q,\alpha) \in F \iff \hat{\delta}(r,\alpha) \in F)$$

Entonces

$$\forall \alpha \in \Sigma^* : (\hat{\delta}(p, \alpha) \in F \iff \hat{\delta}(r, \alpha) \in F) \iff p \equiv r$$

4.1.1. Indestinguibilidad de orden k

$$p \stackrel{k}{=} q \iff \forall \alpha \in \Sigma^*, (|\alpha| \le k) \implies (\hat{\delta}(p, \alpha) \in F \iff \hat{\delta}(q, \alpha) \in F)$$

Propiedades:

1. $\stackrel{k}{\equiv}$ es un relación de equivalencia.

DEMOSTRACIÓN

Es exactamente igual a la demostración \equiv es transitiva.

$$2. \stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}$$

DEMOSTRACIÓN

$$p \overset{k+1}{\equiv} q \implies \forall \alpha \in \Sigma^*, (|\alpha| \leq k+1) \implies (\hat{\delta}(p,\alpha) \in F \iff \hat{\delta}(q,\alpha) \in F)$$

Ahora como esto vale $\forall \alpha \in \Sigma^*, (|\alpha| \leq k+1)$, necesarimente vale $\forall \alpha \in \Sigma^*, (|\alpha| \leq k)$. Entonces

$$\forall \alpha \in \Sigma^*, (|\alpha| \le k+1) \implies (\hat{\delta}(p,\alpha) \in F \iff \hat{\delta}(q,\alpha) \in F) \implies p \stackrel{k}{=} q$$

- 3. $\left(Q/\stackrel{0}{\equiv}\right)=\{Q-F,F\}$ si $Q-F\neq\emptyset$ y $F\neq\emptyset$. En castellano, $\stackrel{0}{\equiv}$ divide al conjunto de estados en estados finales y no finales.
- $4. \ p \stackrel{k+1}{\equiv} q \iff \left(p \stackrel{0}{\equiv} q\right) \land \left(\forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(q, a)\right)$

DEMOSTRACIÓN

 \Rightarrow) Como $\stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}$ entonces $p \stackrel{k+1}{\equiv} q \implies p \stackrel{0}{\equiv} q$.

Por otro lado, supongamos que no vale $\left(\forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(q, a)\right)$ entonces

$$\exists a \in \Sigma, \ \exists \alpha \in \Sigma^*, (|\alpha| \le k) \land \hat{\delta}(\delta(p, a), \alpha) \in F \land \hat{\delta}(\delta(q, a), \alpha) \notin F$$

o viceversa. Pero entonces $p \overset{k+1}{\not\equiv} q$ ya que $a\alpha \leq k+1$ y $a\alpha$ distinque a p y a q.

 \Leftarrow Supogamos que $p \stackrel{k}{\equiv} q$. Entonces ó $p \stackrel{0}{\equiv} q$ ó $\exists a\alpha, |a\alpha| \leq k+1$ que distingue p de q, o sea que:

$$\hat{\delta}(\delta(p,a),\alpha) \in F \wedge \hat{\delta}(\delta(q,a),\alpha) \notin F$$

o viceversa. Pero entonce $\delta(p,a) \overset{k+1}{\not\equiv} \delta(q,a).$

5.
$$\begin{pmatrix} k+1 \\ \equiv = \equiv \end{pmatrix} \implies \forall n \ge 0, \begin{pmatrix} k+n \\ \equiv = \equiv \end{pmatrix}$$

DEMOSTRACIÓN

Lo vamos a demostrar por inducción:

Caso base: n = 0. Entonces $k \stackrel{k}{=} = \stackrel{k}{=}$.

Paso inductivo: Suponemos que es cierto para n, osea que vale $\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv} = \stackrel{k}{\equiv$

Queremos probar $\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv} \Longrightarrow \stackrel{k+n+1}{\equiv} = \stackrel{k}{\equiv} :$

Sabemos que $\stackrel{k+n+1}{\equiv} = \stackrel{k}{\equiv}$ si y solo si $\forall p,q \in Q, \left(p \stackrel{k}{\equiv} q \iff p \stackrel{k+n+1}{\equiv} q\right)$

Por la propiedad (4), tenemos:

$$\begin{split} p &\overset{k+n+1}{\equiv} \iff \left(p \overset{0}{\equiv} q \right) \land \left(\forall a \in \Sigma, \delta(p,a) \overset{k+n}{\equiv} \delta(q,a) \right) \left(p \overset{0}{\equiv} q \right) \\ & \land \left(\forall a \in \Sigma, \delta(p,a) \overset{k+n}{\equiv} \delta(q,a) \right) \\ & \underset{\text{prop. 2}}{\Longrightarrow} \left(p \overset{0}{\equiv} q \right) \land \left(\forall a \in \Sigma, \delta(p,a) \overset{k}{\equiv} \delta(q,a) \right) \\ & \underset{\text{prop. 4}}{\Longrightarrow} p \overset{k+1}{\equiv} q \underset{\text{prop. 2}}{\Longrightarrow} q \overset{k}{p} \end{split}$$

4.2. Autómatas finito determinístico mínimo

Sea $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ un AFD sin estados inaccesibles, el AFD mínimo equivalente $M' = \langle Q', \Sigma, \delta', q_0, F' \rangle$ se define de la siguiente manera:

- $Q' = Q/\equiv$. Vamos a notar [q] al estado que representa a la clase de equivalencia que contiene a q.
- $\bullet \delta'([q], a) = [\delta(q, a)]$
- $q_0' = [q_0]$
- $\bullet F' = \{ [q] \in Q' : q \in F \}$

Teorema:

$$\forall \alpha \in \Sigma^*, \hat{\delta}(q, \alpha) = r \implies \hat{\delta}'(q'_0, \alpha) = \hat{\delta}'([q], \alpha) = [r]$$

DEMOSTRACIÓN

Va a ser por inducción en la longitud de α :

- $\alpha = \lambda$: $\hat{\delta}(q, \epsilon) = q$, por def. de $\hat{\delta}$ • $\hat{\delta}'(q'_0, \epsilon) = \hat{\delta}'([q], \epsilon) = [q]$ por def. de $\hat{\delta}'$ Entonces $\hat{\delta}(q, \lambda) = q \implies \hat{\delta}'([q], \lambda) = [q]$
- Paso inductivo: Sea $\alpha=\beta a,$ queremos probar que $\hat{\delta}(q,\alpha)=r\implies \hat{\delta}'([q],\alpha)=[r].$

Nuestra hipotesis inductiva es $\forall \beta \in \Sigma^*, \ |\beta| \le n, \ \hat{\delta}(q,\beta) = p \implies \hat{\delta}'([q],\beta) = [p]$

Entonces:

$$\hat{\delta}(q,\alpha) = \hat{\delta}(q,\beta a) = \delta(\hat{\delta}(q,\beta),a) = \hat{\delta}(p,a) = r \underset{\text{constr. } \delta'}{\Longrightarrow} \delta'([p],a) = [r] \ (1)$$

Además, por hipotesis inductiva sabemos que $\hat{\delta}'([q], \beta) = [p]$, entonces remplazando en el último término de la ecuación (1) obtenemos:

$$\delta'([p], \alpha) = \delta'(\hat{\delta}'([q], \beta), \alpha) = \hat{\delta}(q, \beta a) = \hat{\delta}(q, \alpha) = [r]$$

4.3. Algoritmo de minimización de un AFD

```
Require: M = \langle Q, \Sigma, \delta, q_0, F \rangle
                                                          \triangleright P = \stackrel{0}{\equiv}, separamos los estados finales de los no finales
   P \leftarrow \{Q - F, F\}
   stop \leftarrow false
   while stop = false do
        P' \leftarrow \emptyset
                                              \triangleright Separamos cada clase de equivalencia en las subclases de \stackrel{n+1}{\equiv}
        for X \in P do
             while \exists e \in X : \neg marked(e, X) \ do \triangleright Elegimos un nuevo representante para cada clase
                 X_1 \leftarrow \{e\}
                 marked(e, X)
                 for e' \in X : e \neq e' do
                                                                             ▷ Conseguimos los elementos de esa clase
                      if \neg marked(e', X) \land (\forall a \in \Sigma, [\delta(e, a)] = [\delta(e', a)]) then
                           X_1 \leftarrow X_1 \cup \{e'\}
                           mark(e', X)
```

```
end if end for P' \leftarrow P' \cup \{X_1\} end while end for if P \neq P' then P \leftarrow P' else stop \leftarrow true end if end while
```

Lema: Sean $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ y $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ dos AFDs. Si M no poseee estados inaccesibles y todo par de cadenas que conducen a estados diferentes de M conducen a estados diferentes de M', entonces la cantidad de estados de M' es mayor o igual a la cantidad de estados de M. Es decir:

$$\left(\forall \alpha, \beta \in \Sigma^*, \ \hat{\delta}(q, \alpha) \neq \hat{\delta}(q, \beta) \implies \hat{\delta}'(q_0', \alpha) \neq \hat{\delta}'(q_0', \beta)\right) \implies |Q| \leq |Q'|$$

DEMOSTRACIÓN

Sea $g:Q\to \Sigma^*$ definida por $g(q)=\min\left\{\alpha\in\Sigma^*:\hat{\delta}(q_0,\alpha)=q\right\}$ donde suponemos una relación de orden en Σ^* dada por la longitud para cadenas de distinta longitud, y por el lexicográfico para las cadenas de igual longitud. Definamos $f:Q\to Q'$ con $f(q)=\hat{\delta}'(q_0',g(q))$. Como para cualquier par de estados diferentes $p,q\in Q$ es cierto que

Como para cualquier par de estados diferentes $p, q \in Q$ es cierto que $\hat{\delta}(q_0, g(p)) \neq \hat{\delta}(q_0, g(q))$, entonces $\hat{\delta}'(q'_0, g(p)) \neq \hat{\delta}'(q'_0, g(q))$. Lo que equivale a decir que $f(p) \neq f(q)$. Por lo tanto, f es una función inyectiva, es decir que $|Q| \leq |Q'|$.

Lema: Sea $M_R = \langle Q_R, \Sigma, \delta_R, q_{R0}, F_R \rangle$ el autómata reducido correspondiente a $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. Entonces, cualquier autómata $M' = \langle Q', \Sigma, \delta', q_{0'}, F' \rangle$ que reconozca el mismo lenguaje que M no poseerá menos estados que M_R . Osea:

$$\forall M', \ \mathcal{L}(M') = \mathcal{L}(M) \implies |Q'| \ge |Q_R|$$

DEMOSTRACIÓN

Supongamos que $\exists M'$ tal que $|Q'| < |Q_R|$, entonces según el lema anterior deben existir dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\hat{\delta}_R(q_0,\alpha) \neq \hat{\delta}_R(q_0,\beta) \wedge \hat{\delta}'(q_0',\alpha) = \hat{\delta}'(q_0',\beta)$$

Pero entonces, como $\hat{\delta_R}(q_0, \alpha)$ y $\hat{\delta_R}(q_0, \beta)$ son estados diferentes, entonces $\hat{\delta}(q_0, \alpha)$ y $\hat{\delta}(q_0, \beta)$ son estados distinguibles por pertenecer al autómata reducido M_R entonces $\exists \gamma \in \Sigma^*$ tal que:

$$\hat{\delta}(q_0, \alpha \gamma) \in F \wedge \hat{\delta}(q_0, \beta \gamma) \notin F$$

o viceversa. Entonces $\alpha \gamma \in \mathcal{L}(M_R) \iff \beta \gamma \notin \mathcal{L}(M_R)$. Por otro lado, como $\hat{\delta}'(q_0', \alpha) = \hat{\delta}'(q_0', \beta)$, es obvio que

$$\hat{\delta}'(q_0', \alpha \gamma) \in F \wedge \hat{\delta}'(q_0', \beta \gamma) \in F$$

o ninguno de los dos perteneces a F. De esto se inifiere que $\alpha \gamma \in \mathcal{L}(M') \iff \beta \gamma \in \mathcal{L}(M')$.

Pero entonces, como $\mathcal{L}(M') \neq \mathcal{L}(M)$, lo que contradice nuestra hipotesis inicial. f

5. Lenguajes regulares y lema de pumping

5.1. Lema de pumping

Propiedad: Sea \mathcal{L} un lenguaje regular, si las longitudes de las cadenas de un lenguaje \mathcal{L} están acotadas superiormente, entonces \mathcal{L} tiene que ser finito.

Propiedad: Si \mathcal{L} es un luenguaje regular infinito, entonces el grafo de un autómata fínito que acepte \mathcal{L} tiene que tener un camino desde el estado inicial hasta algún estado final que paso por algún ciclo.

Lema de pumping: Sea \mathcal{L} un lenguaje regular, si \mathcal{L} es infinito, entonces todas las cadenas ω de longitud mayor o igual a n (para algún n > 1) van a ser de la forma $\omega = xy^iz$, estext decir hay una parte de ω que se repite i cantidad de veces:

 \mathcal{L} es regular e infinito $\implies \exists n \in \mathbb{N}$ tal que $\forall \omega \in \mathcal{L}, \ |\omega| \ge n : (\exists x, y, z \in \Sigma^* : \omega = xyz \land |xy| \le n \land |z| \ge 1 \land (\forall i \ge 0 : xy^iz \in \mathcal{L})$

DEMOSTRACIÓN

Supongamos que \mathcal{L} es un lenguaje regular. Entonces existe una AFD $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ que acepta \mathcal{L} .

Sea n=|Q| la cantidad de estados de A y $\omega=a_1a_2\ldots a_m\in \Sigma^*$ de longitud m>n. Para cada $i=0,\ldots,m$ definamos el estado $p_i=\hat{\delta}(q_0,a_1\ldots a_i)$ (el estado en el que se encuentra A después de haber consumido los primeros i símbolos de ω .

Como el A solo tiene n estados pero hay m > n estados p, poes imposible que todos los p sean distintos. Por lo tanto, existen $0 \le i < j \le n$ tales que $p_i = p_j$.

Considerar entonces la siguiente descomposición para $\omega = xyz$:

$$x = a_1 \dots a_i$$

$$y = a_{i+1} \dots a_j$$

$$z = a_{j+1} \dots a_m$$

Entonces podemos concluir que:

$$\hat{\delta}(q_0, x) = p_i$$

 $\hat{\delta}(p_i,y)=p_j$ (que como son el mismo estado implica que A tiene un ciclo)

$$\hat{\delta}(p_j, z) = p_m$$

Observar que x podría ser la cadena cuando $i=0,\,z$ podría ser vacía si j=n=m, pero y no puede ser vacía ya que se tomó i< j.

Vimos entonces que si \mathcal{L} es regular y $|\omega| \geq n$ entonces podemos dividirla en cadenas x, y, z tal que $|xy| \leq n$ y $|z| \geq 1$. Ahora vamos a ver que si $xyz \in \mathcal{L}$ entonces $xy^kz \in \mathcal{L}$ para todo $k \geq 0$.

• Si k = 0 entonces $xy^0z = xz$:

$$\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(p_i, z) = \hat{\delta}(p_i, z) = p_m$$

Y p_m es un estado final pues es el mismo estado al que llegamos si la entrada fuese $xyz \in \mathcal{L}$. Entonces $xz = xy^0z \in \mathcal{L}$.

■ Si i > 0. Entonces A consume x desde q_0 y llega hasta p_i . Luego A consume y desde p_i y llega hasta p_j (que son iguales) y repite este ciclo k veces hasta consumir todas las apariciones de y en la cadena. Finalmente A consume z desde p_j y llega hasta p_m . Entonces A llega a un estado final y por lo tanto $xy^kz \in \mathcal{L}$.

Contrarecíproco:

 $\forall n \in \mathbb{N} \exists \omega \in \mathcal{L} \text{ tal que } |\omega| \geq n \land \forall x, y, z \in \Sigma^* : \omega \neq xyz \land |xy| \geq n \lor |z| \leq 1 \lor \exists i \geq 0, \ xy^iz \notin \mathcal{L}$ $\implies \mathcal{L} \text{ no es regular}$