Исследование электронных ламп диода и триода

Александр Крупин 30 декабря 2020 г.

1 Снятие статической характеристики диода

Снимем вольт-амперную характеристику диода, занесем данные в таблицу (1), построим график (1). Для того чтобы рассчитать кривизну вольт-амперной характеристики, воспользуемся полиномиальным приближением экспериментальных точек. Производная от полученного полинома даст наиболее точное значение крутизны вольт-амперной характеристики диода (см. график (2)).

I_a , MA	3,6	9,5	15,8	23,3	31,4	39,6	48,3	60,6	71,8	83,5	95,9	108,9
U_a , B	2	4	6	8	10	12	14	16	18	20	22	24

Таблица 1: Вольт-амперная характеристика диода

Рис. 1: Вольт-амперная характеристика диода

Рис. 2: Крутизна вольт-амперной характеристики диода

2 Снятие статических характеристик триода

В случае триода, ток при постоянной температуре катода зависит от двух переменных: анодного и сеточного напряжений. Таким образом, для описания вольтамперной характеристики триода удобно изображать два семейства статических характеристик.

2.1 Анодные характеристики

Снимем семейство анодных характеристик при некоторых конкретных значениях сеточного напряжения (см. график (3)). Стоит не забывать, что нельзя превышать предельную рассеиваемую мощность ($P_{max} \approx 2.5$ В), также отметим это на графике.

2.2 Сеточные характеристики

Снимем семейство сеточных характеристик при некоторых конкретных значениях анодного напряжения (см. график (4)). По-прежнему, не забываем про предельную мощность рассеяния.

Рис. 3: Анодная характеристика триода

Рис. 4: Сеточная характеристика триода

2.3 Параметры S, R_i, μ

Вводят следующие параметры:

$$S=rac{\partial I_a}{\partial U_c}$$
 — крутизна $R_i=rac{\partial U_a}{\partial I_a}$ — внутреннее сопротивление

Сказанное в самом начале секции формально можно записать так:

$$I_a = f(U_a, U_c) \Rightarrow dI_a = \frac{\partial I_a}{\partial U_a} dU_a + \frac{\partial I_a}{\partial U_c} dU_c$$

Тогда можно связать введенные параметры можно так:

$$SR_i=\mu,$$
 где $\mu=\left[rac{dU_a}{dU_c}
ight]_{I_a=const}-$ статический коэффициент

Значит должно быть справедливо равенство:

$$\frac{SR_i}{\mu} = 1$$

Проверим это, вычислив параметры S, R_i, μ , используя полученные графики (3, 4). Будем рассматривать средние участки характеристик, тогда:

$$R_i(U_c = 0 \text{ B}) \approx 8.3 \text{ кОм}; \ R_i(U_c = -2 \text{ B}) \approx 8.5 \text{ кОм}; \ R_i(U_c = -4 \text{ B}) \approx 8.8 \text{ кОм}; \ R_i(U_c = 0 \text{ B}) \approx 7.1 \text{ кОм}; \ \Rightarrow R_i \approx 8.2 \text{ кОм}$$

$$S(U_a=70~{\rm B})\approx 2.6~{\rm mA/B};~S(U_a=90~{\rm B})\approx 2.7~{\rm mA/B};~S(U_a=110~{\rm B})\approx 2.8~{\rm mA/B};$$
 $\Rightarrow S\approx 2.7~{\rm mA/B}$

$$\mu(I_a = 1.5 \text{ mA}) \approx 25$$

Грубо говоря, равенство выполняется. Можно было сделать измерения точнее, пользуясь методом, который мы использовали для изучения крутизны диода.

3 Определение коэффициента усиления усилителя

Подадим на "вход" осциллографа сигнал с амплитудой $U_{in} = 0.1$ В, далее пропустим этот сигнал через усилитель и выведем результат U_{out} на "выход" осциллографа. Посмотрим, как будет меняться коэффициент усиления в зависимости от частоты сигнала (см. график 5). Зафиксируем сопротивление нагрузки $R_a = 50$ кОм. Видно, что при больших частотах K ухудшается. Это связано, в основном, с влиянием межэлектродных емкостей и индуктивностей вводов лампы.

f , Γ ц	100	500	10^{3}	$5 \cdot 10^3$	10^{4}	$2 \cdot 10^{4}$	$3 \cdot 10^{4}$	$4 \cdot 10^{4}$	$5 \cdot 10^4$	$6 \cdot 10^{4}$	$7 \cdot 10^{4}$
U_{out} , B	1,82	1,82	1,82	1,82	1,82	1,74	1,68	1,6	1,51	1,41	1,31
K	18,2	18,2	18,2	18,2	18,2	17,4	16,8	16	15,1	14,1	13,1

Таблица 2: Зависимость K(f)

Pис. 5: Зависимость K(f)

Теперь посмотрим, как зависит коэффициент усиления от сопротивления нагрузки (см. график 6). Зафиксируем частоту $f=10^3$ Гц. При больших значениях R_a/R_i дальнейшее увеличение R_a при постоянном E_a не дает роста K, так как это приводит к смещению рабочей точки на динамической анодно-сеточной характреистике ближе к основанию, где R_i возрастает, а μ уменьшается.

R_a	, кОм	0,5	1	2	5	10	20	50	100	200	500	1000
U_o	$_{ut}$, B	0,12	0,24	0,37	0,69	1,07	1,42	1,82	1,94	2,02	2,04	1,94
	K	1,2	2,4	3,7	6,9	10,7	14,2	18,2	19,4	20,2	20,4	19,4

Таблица 3: Зависимость $K(R_a)$

Рис. 6: Зависимость K(R)

Оценим проходную емкость C_{ac} (емкость между анодом и сеткой). Из теории предельная частота, до которой триод может быть использован в режиме усилителя ,определяется выражением:

$$f_{\mathrm{пp}} = 25 \cdot rac{S}{K^2 \cdot C_{ac}}, \,\, \mathrm{M}\Gamma$$
ц. где S в м $\mathrm{A/B}, C_{ac}$ в п Φ

Посмотрим на график (7), где нас интересуют лишь значения при $0.1~\mathrm{M}\Gamma$ ц и $0.2~\mathrm{M}\Gamma$ ц. В предположении, что наклон кривой не изменится к моменту, когда K=1, сделаем оценку емкости, пользуясь графиком и формулой выше:

$$C_{ac} = 25 \cdot 2.7 \text{ мA/B} \cdot \frac{0.0273 - 0.0086}{0.1 \text{ M}\Gamma\text{ц}} = 12.7 \text{ п}\Phi$$

4 Итоги

Все хорошо.

Рис. 7: Зависимость K(R)