

CPSIoTSec 2020 Virtual Event @ Orlando USA

Towards Robust Power Grid Attack Protection using LightGBM with Concept Drift Detection and Retraining

ANAND AGRAWAL MARIOS SAZOS AHMED AL DURRA

MICHAIL MANIATAKOS

- In this work we present a robust methodology to detect cyber attacks on the Power Grid
- Issues with the state-of-the-art methods:
 - Model-based approaches lack scalability and accuracy
 - Focus mostly on binary (attack/no attack) events, ignoring natural events
 - ► Machine learning-based model accuracy reduces overtime
- In this work:
 - We employ a realistic testbed to expose all attack surfaces of the platform
 - We use a Three-Class classifier (no attack/natural event/attack)
 - We introduce concept drift to maintain the model accuracy in the long-term

- Ensemble Learning
 - Multiple learners are trained in sequential or parallel way
 - ► LightGBM: Light Gradient Boosting Machine
 - · LightGBM excludes data instances with small gradients
 - Converges faster and accurately

- Assumptions
 - Attacker has control over monitoring data
 - Compromised devices may be protection/monitoring or networking
- Examined attack scenarios:
 - Data injection: Change phasor values in synchrophasor packets
 - Remote tripping injection: Sending close/trip command using relays
 - Relay setting change: Change the configuration of relay i.e. CT,
 VT ratio

- Benchmark Dataset¹
 - Consists of 3 bus system and 4 circuit breaker
 - Buses equipped with relays to control the circuit breakers
- Dataset description
 - Scenarios: Dataset consists of 37 scenarios
 - Events: Dataset broadly categorized as No Events, Natural, and Attack Events
 - Features: Comprises of 128 features correspond to phasor and magnitude of voltage and current

Feature	Description	Importance
R2-PA6:IH	Relay2 Current Phase Angle	0.020763
R2-PA3:VH	Relay2 Voltage Phase Angle	0.019436
R3-PA6:IH	Relay3 Current Phase Angle	0.019231
R2-PA7:VH	Relay2 Voltage Phase Angle	0.019213
R1-PM5:I	Relay1 Current Phase Magnitude	0.019079
snort_log	Log collected by IDS	0.000000
control_panel_log	Log collected by control panel	0.000000
R2: S	Status Flag for relays	0.000000
R3-PA9:VH	Relay3 Voltage Phase Angle	0.000086
R4-PA9:VH	Relay4 Voltage Phase Angle	0.000089

Class	Description	Event Type	Scenario Id.
0	Normal operation load changes	No Event	41
1	SLG Faults, Line Maintenance	Natural Event	1-6,13,14
2	Data Injection, Remote tripping, Relay setting change	Attack Event	7-12,15-20, 21-30, 35-40

¹ https://www.sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

- Accuracy of reduced feature set and overall set
 - Accuracy of model trained from selected features is better
 - In multi-class accuracy increases with more features
- · Other features
 - Number of iterations: 8000
 - Max_depth: 9, num_leaves: 50
 - boosting_type: Gradient Boosting (GDBT), Gradient-based One Side Sampling (GOSS)

Features	Binary-Class	Three-Class	Multi-Class
All	96.9	95.3	92.65
Subset	97.3	97.1	91.2

Model Generation and Concept Drift

- Detect accuracy reduction
 - Divide dataset in chunks
 - Pass data to Massive online Analysis (MOA)² framework
 - Drift Detection Method and Early Drift Detection Method
 - Detection of drift at instances where accuracy is reduced substantially
- Retraining of model
 - LightGBM classifier is retrained based on drift detection
 - Model accuracy increases in fraction

² A Bifet, G Holmes, R Kirkby, and B Pfahringer. 2010. MOA: Massive Online Analysis. J. Mach. Learn. Res. 11 (2010)

Experimental Setup Schematic View

Experimental Setup Physical View

Model Detection Accuracy

- Evaluation Metrics and detection
 - Compare results against other machine learning approaches
 - Used Binary, Three, and Multi class label data

Boosting Classifier	DNN			SVM			Lighte	htGBM (Our work)		
[L]	В	T	M	В	T	M	В	Т	M	
Precision	68.53	61.26	10.36	83.17	79.05	20.64	97.38	96.99	93.11	
Recall	78.16	78.26	13.48	78.57	78.57	24.34	97.38	96.98	92.76	
F1 Score	68.86	68.72	6.01	69.44	69.43	19.05	97.38	96.98	92.76	
Accuracy	78.16	78.26	13.48	78.57	78.57	24.34	97.28	96.98	92.76	

[M]: Metrics, [L]: Labels, B: Binary Class, T: Three Class, M: Multi Class

- Dynamic retraining of model after drift detection
 - Retrain model after 50% accuracy loss
 - Binary classification and Three class accuracy increased to 98.02% and 97.73% respectively

Related Work Comparisons

- We compare against emulated or physical power system
 - LightGBM outperforms other boosting techniques
 - Existing solutions do not employ concept drift
 - Our method performs best in three class data

Related Work	Classifier	Label	# of features	Acc. CD	
Our Work	LightGBM	Т	128	97.73%	/
[26]	Adaboost	M	128	93.54%	X
[10]	XGboost	T	128	95%	X
[27]	SAE DL	В	128	94.91%	X
[22]	NNGE+STEM	M	128	93%	X
[21]	CNN	T	150	94%	X

SAEDL: Stacked-Autoencoder Deep Learning, NNGE+STEM: Non Nested Generalized Exemplars State Extraction Method, CNN: Convolution Neural Network, B: Binary Class, T: Three Class, M: Multi Class, CD: Concept Drift

Conclusions and Future Direction

This work-in-progress provides three main insights:

- · Ability of dynamic retraining of ML based model
- Focus on three class recognition, to include natural events
- · Generalize the model for any power grid setup

Future work: We are in process of collecting more data with increased feature set, and we will also consider timestamp and drift based on timing.

Thank you for your time!