Introduction to individual-based modelling using R

https://stirlingcodingclub.github.io/individual_based_modelling/ibm_notes.html

Brad Duthie

25 March 2020

▶ Simulate a system *in silico*, using computer code

¹Duthie, A. B., & Reid, J. M. (2016). *Am. Nat.* 186, 651-667.

- ▶ Simulate a system *in silico*, using computer code
- Individuals are represented as discrete entities

¹Duthie, A. B., & Reid, J. M. (2016). Am. Nat. 186, 651-667.

Fig. 1. Interactions among plants, obligate pollinators, and obligate exploiters for a single set of parameter values.

Processes are often stochastic (events probabilistic)

¹Duthie, A. B., & Falcy, M. R. (2013). *Ecol. Modell.* 251, 260-270.

Fig. 1. Interactions among plants, obligate pollinators, and obligate exploiters for a single set of parameter values.

- Processes are often stochastic (events probabilistic)
- Can test ideas by simulating across many parameters

¹Duthie, A. B., & Falcy, M. R. (2013). *Ecol. Modell.* 251, 260-270.

Fig. 1. Interactions among plants, obligate pollinators, and obligate exploiters for a single set of parameter values.

- Processes are often stochastic (events probabilistic)
- Can test ideas by simulating across many parameters
- Highly mechanistic models are possible

¹Duthie, A. B., & Falcy, M. R. (2013). *Ecol. Modell.* 251, 260-270.

Advantages & disadvantages of using IBMs

Advantages

- 1. Very easy to model individual variation (genetic, phenotypic, environment, etc.)
- 2. Key biological processes are inherent to the model (e.g., drift, mutation, demography)
- 3. Models can often be more detailed and therefore more targeted

Advantages & disadvantages of using IBMs

Advantages

- 1. Very easy to model individual variation (genetic, phenotypic, environment, etc.)
- 2. Key biological processes are inherent to the model (e.g., drift, mutation, demography)
- 3. Models can often be more detailed and therefore more targeted

Disadvantages

- 1. Computational power can be limiting
- 2. Sometimes difficult to see the link between model assumptions and model predictions (i.e., difficult to interpret results)

Advantages & disadvantages of using IBMs

¹Duthie, A. B., & Reid, J. M. (2016). Am. Nat. 186, 651-667.

Getting started using R for IBMs

- ► **Objective**: Learn how to start writing IBMs from a basic knowledge of R coding
- ▶ **Notes**: Walk through all of the code required to get started with a basic predator-prey model
- Caveat: Code in the notes is not optimised for speed
- ► Languages: Other languages such as C, C++, or NetLogo are also worth considering

One way to model individuals in an IBM

Rows are individuals & columns are individual characteristics

ind_ID	x_loc	y_loc	body_mass	age
1	1	5	42.71	3
2	5	6	41.00	5
3	3	3	35.76	4
4	6	2	30.10	1
5	7	1	31.65	3
6	6	7	46.06	1
7	3	4	39.89	2
8	5	8	48.56	6

The process of modelling is then to do something to the individuals and their characteristics – have them interact, change, be removed, have more added. Models are as complex as we are willing to code.

Individual-based models are often spatially explicit

- Individual locations can be mapped to a landscape, with rules for movement
- Movement entails rules for changing x and y locations
- Landscape need not be represented in code, but can be to define landscape properties

Simulate individuals over multiple time steps

Define individuals

Move individuals to the right 5 times

```
ts <- 0;
time_steps <- 5;
while(ts < time_steps){
   inds[, 2] <- inds[, 2] + 1;
   ts <- ts + 1;
}</pre>
```

Working through the IBM notes

```
https://stirlingcodingclub.github.io/individual_based_modelling/ibm_notes.html
```

- Walks through R code for modelling individual movement, birth, death, and predation over time
- ▶ Meant to be a starting point for further development
- Ask questions in Twitch chat and in the GitHub Repository issues page