Deep Factor Alpha

Guanhao Feng^1 Nicholas Polson 2 Jianeng Xu^2

 $^{1}\mathrm{City}$ University of Hong Kong

 $^2 \mathsf{Chicago} \; \mathsf{Booth}$

 3 Chicago Booth

R/Finance 2018

Research Question

Whether there exists alpha in the cross-section of U.S. equities?

- Linear Factor Model / Factor Investing
- ► Firm Characteristics (Fundamentals) / Risk Anomalies
- ▶ Machine Learning / Neural Network / Artificial Intelligence

Seeking Alpha

$$R_{i,t} = \alpha_i + \beta_i^{\mathsf{T}} F_t + \epsilon_{i,t}$$
$$= \beta_i^{\mathsf{T}} F_t + \alpha_{i,t}$$

- $ightharpoonup R_{i,t}$ are excess returns of stock i at time t
- ► F_t are tradable factors (long-short zero-investment portfolios)
 - ► For CAPM, F_t is the excess market return
 - ▶ For Fama-French 3 factors, F_t are MktRf, SMB, and HML
- Our alpha defined in the model needs to be tradable.

Seeking Alpha

The forecasting machine is the portfolio

$$\widehat{R}_{i,t} = \beta_i^{\mathsf{T}} F_t.$$

- ▶ We trade the portfolio $R_{i,t} \widehat{R}_{i,t}$ [= $\alpha_{i,t}$] for stocks with positive alphas, and $\widehat{R}_{i,t} R_{i,t}$ for negatives.
- ▶ If market is efficient, $E(\alpha_{i,t}) = 0$ for all stock i (GRS test).
- ▶ However, the factor model is unknown (APT).
- ▶ Our goal is to use deep learning to create the factor model.

Fama-French Factor Models

- ► Any firm pattern to seek alphas is called an anomaly (size, value, momentum, ...).
- ► The asset pricing literature keeps discovering risk factors to eliminate these alphas.
 - CAPM
 - ► Fama-French 3/5 Factor Models
 - Hundreds of factors published (Harvey, Liu, and Zhu, 2016)
- ▶ However, still find significant alphas (small caps).

Fama-French five-factor model

Tradable Factor

The advantage of factor model is to reduce the dimension of thousands of stocks into a few portfolios, tradable factors.

How does the literature create risk factors?

- ▶ Sort Securities on firm characteristics (size, value, momentum, ...)
- Create long-short portfolios as tradable factors
- These factors have risk premium itself and help to explain the cross-section.

Why machine learning?

- ► Can't apply Machine learning directly like using firm characteristics to forecast cross-sectional stock returns.
 - ► The imbalanced data structure.
 - Missing value issues.
- ▶ However, machine learning is useful for
 - Selecting and test factors (Feng, Giglio, and Xiu, 2017).
 - Generating latent factors (Kelly, Pruitt, and Su, 2018)
 - Extracting nonlinear signals (Freyberger, Neuhierl, and Weber, 2017)
- ► We build a forecasting machine to implement Fama-French type factor models from square zero the firm characteristics.

How does the literature create firm characteristics?

The picture from Chicago Booth Review "The 300 secrets to high stock returns" provides an answer.

Example: Which momentum?

There are many momentum factors discovered in the literature.

- ► Momentum (Carhart, 1997)
- ► Long-Term Reversal (De Bondt and Thaler, 1985)
- ► Industry Momentum (Moskowitz and Grinblatt, 1999)
- ► Short-Term Reversal (Jegadeesh and Titman, 1993)
- ► 6-month Momentum (Jegadeesh and Titman, 1993)
- ▶ 36-month Momentum (Jegadeesh and Titman, 1993)
- ► Change in 6-month Momentum (Gettleman and Marks, 2006)
- **.**..

Why deep learning?

- ▶ Neural network is helpful to explore the multi-layer nonlinear space.
 - Extract signals using firm trading and accounting information (ME, BE, ROE, dividend, earning, historical returns, ...).
 - ► Forward propagation and multi-layer transformations.
 - Perform the security sorting within training the neural network.
 - Augmented linear factor model and backward propagation.
- We still rely on academic discovered characteristics, but let the machine to explore all possibilities.
- ► Our goal is to push the tradable factor generation from human fundamental research to Al.

Deep Generated Momentum

Deep Learning Objective

► The objective is to eliminate the mis-pricings using generated risk factors. Define the tradable alphas as

$$\alpha_{i,t} = R_{i,t} - \widehat{R}_{i,t}$$

- ▶ The objective is min $\frac{1}{N} \sum_{i=1}^{N} \bar{\alpha}_{i}^{2}$, where $\bar{\alpha}_{i} = \frac{1}{T} \sum_{t=1}^{T} \alpha_{i,t}$.
- ► We build a unified deep learning factor model from the firm characteristics to minimizing the mis-pricings.

Augmented Linear Factor Model

$$R_{i,t} = \alpha_i + \beta_i^{\mathsf{T}} F_t + \gamma G_t + \epsilon_{i,t}$$

- \triangleright F_t are latent factors generated from the underlying neural network
- $ightharpoonup G_t$ are other observable tradable factors to add (e.g. MktRf)

The unified deep learning loss function is

$$\min_{F_t} L = rac{1}{N} \sum_{i=1}^N ar{lpha}_i^2 + ext{penalty}(eta, \gamma).$$

Augmented Linear Factor Model

$$Z(t-1) \ \ Z^{[1]}(t) = g(WZ^{[0]}(t) + b) \quad \ S(t) \qquad \quad F_t = S(t)W(t)r(t) \qquad \qquad \widehat{R}(t) = \beta F_t + \gamma G_t$$

How TensorFlow helps?

- ▶ Security Sorting is an nonlinear activation function in our model.
- ► TensorFlow is extremely power to let us provide a joint estimation from latent factor generation to minimizing the mis-pricings.
- ▶ It takes 10 min to finish training a model (N 3000, T 500, P 70).
- ▶ In forecasting, we refit the model using G_t and the generated F_t .
- ► R users can use the R interface to TensorFlow with the high-level Keras and Estimator APIs.

Bivariate Sorted Portfolios

Decomposing the stock universe into six subsets, we use the top and bottom 20% firms to create the factors.

Bivariate Sorted Portfolios

$$F_t = \Big(\mathsf{P}(\mathsf{B ext{-}top}) + \mathsf{P}(\mathsf{S ext{-}top})\Big)/2 - \Big(\mathsf{P}(\mathsf{B ext{-}bottom}) + \mathsf{P}(\mathsf{S ext{-}bottom})\Big)/2$$

- $ightharpoonup F_t$ is a long-short zero-investment portfolio.
- Sort the firms every month using lag month characteristics.
 - FF sort firms annually on each June and fix the portfolio for the incoming year.
- ▶ Deal with the micro-cap issue.
- ▶ Fine with the imbalanced data structure.
- Solve the missing value issue.

Empirical Study

Monthly data from 1975 to 2017 for U.S. equities.

- ▶ We have 62 characteristics used in Feng, Giglio, and Xiu (2017).
- ▶ We add 11 industry specifications as dummy characteristics.
- ▶ We use use train data 1975-2009 and predict 2010-2017.

Train, validation and test asset design.

- ► The monthly largest 3000 firms to generate the factors (train).
- ▶ 202 sorted portfolios used in Giglio, and Xiu (2016) (validation).
- ► FF 96 portfolios (test).

We use a few measures to report the empirical results.

- ▶ RMSE = $\sqrt{\frac{1}{N}\sum_{i=1}^{N} \bar{\alpha}_i^2}$ is the standard deviation for the pricing error.
- ▶ $R^2 = 1 \text{RMSE}_{M_1}^2 / \text{RMSE}_{M_2}^2$ is the relative performance of Model 1 over Model 2.
- Appraisal ratio measures the model-adjusted return of a portfolio. For $\alpha_t = R_t \widehat{R_t}$, the annualized appraisal ratio is

$$\sqrt{12} * E(\alpha_t)/sd(\alpha_t)$$
.

- ▶ We build a 6-layer 3-factor neural network on the benchmark model.
- ▶ For TS prediction, the improvement is marginal over FF models.
- ▶ For CS prediction, we see significant improvement over all models.

	RMSE-TS	R2-TS	RMSE-CS	R2-CS
CAPM+DL	0.305%	4.8%	0.752%	2.6%
FF3+DL	0.285%	16.6%	0.504%	56.2%
FF5+DL	0.230%	45.2%	0.406%	71.5%
CAPM	0.311%	0.0%	0.762%	0.0%
FF3	0.281%	18.3%	0.513%	54.7%
FF5	0.232%	44.9%	0.411%	71.0%

For each benchmark G_t , we plot the mis-pricing RMSE after adding F_t . The first row 0-factor corresponds to RMSE of the benchmark.

Beyond Fama-French Models

- We provide a nested model comparison to evaluate the deep predictability beyond FF models.
 - ▶ We use all FF factors as G_t.
 - \blacktriangleright We only use the corresponding FF characteristics to generate F_t .
- ▶ The objective is the mis-pricings min $\frac{1}{N} \sum_{i=1}^{N} \bar{\alpha}_{i}^{2}$, and adding characteristics does not necessarily improve the goodness-of-fit.
- ► This is a useful framework to evaluate the importance of a new characteristics beyond a benchmark models.

Deep Alpha Factor

- ▶ DAF are useful complement to FF3 to forecast future returns.
- ▶ DAF are useful to price other assets out of the cross-section.

	RMSE-TS	R2-TS	RMSE-CS	R2-CS
FF3+DL2	0.287%	-3.78%	0.510%	1.26%
FF3+DL4	0.281%	0.63%	0.506%	2.62%
FF3+DL6	0.274%	5.11%	0.504%	3.38%
FF5+DL2	0.233%	-1.46%	0.401%	4.45%
FF5+DL4	0.232%	-0.76%	0.409%	0.53%
FF5+DL6	0.232%	-0.78%	0.398%	5.80%

Deep Alpha Factor

For the generated F_t , we plot their out-of-sample alpha hedged on the corresponding benchmark G_t .

Deep Alpha Factor

For the generated F_t , we plot their Appraisal ratios for out-of-sample alpha hedged on the benchmark corresponding G_t .

Summary

- ► Our model combines deep neural network, characteristics security sorting, and linear factor model.
- ► TensorFlow is powerful to provide a joint estimation to both neural network and augmented linear model.
- Our model can be used as a framework to evaluate future new characteristics by controlling for a benchmark model.
- We still have a lot to finish the paper. If interested, please do not hesitate to check back with me in a few weeks.