ARNALDO ALVES VIANA JÚNIOR OTÁVIO MOREIRA PETITO TIAGO AUGUSTO ORCAJO DEMAY CORDEIRO

SISTEMA DE GERENCIAMENTO DE ENERGIA PARA CUBESAT

SÃO CAETANO DO SUL 2015

ARNALDO ALVES VIANA JÚNIOR OTÁVIO MOREIRA PETITO TIAGO AUGUSTO ORCAJO DEMAY CORDEIRO

SISTEMA DE GERENCIAMENTO DE ENERGIA PARA CUBESAT

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia Mauá do Centro Universitário do Instituto Mauá de Tecnologia, como parte dos requisitos necessários à obtenção do grau de bacharel em Engenharia na habilitação Engenharia Eletrônica. Área de concentração: Engenharia Elétrica

Escola de Engenharia Mauá

Orientador: Prof. Me. Alessandro de Oliveira Santos

SÃO CAETANO DO SUL 2015

Júnior, Arnaldo Alves Viana

SISTEMA DE GERENCIAMENTO DE ENERGIA PARA CUBESAT/ Arnaldo Alves Viana Júnior, Otávio Moreira Petito e Tiago Augusto Orcajo Demay. – SÃO CAETANO DO SUL, CEUN-EEM, 2015

 $44~\mathrm{p.}$: il.

– Escola de Engenharia Mauá, SÃO CAETANO DO SUL, 2015.

Orientador: Prof. Me. Alessandro de Oliveira Santos

1. Gerenciamento de energia. 2. CubeSat. I. Petito, Otávio Moreira. II. Cordeiro, Tiago Augusto Orcajo Demay III. Instituto Mauá de Tecnológia. Centro Universitário. IV. Sistema de Gerenciamento de Energia para CubeSat

 CDU

ARNALDO ALVES VIANA JÚNIOR OTÁVIO MOREIRA PETITO TIAGO AUGUSTO ORCAJO DEMAY CORDEIRO

SISTEMA DE GERENCIAMENTO DE ENERGIA PARA CUBESAT

e Conclusão de Curso aprovado em deexaminadora composta por:	de
Prof. Me. Alessandro de Oliveira	
Santos	
Orientador	
Professor	
Convidado 1	
Duofoggan	
Professor Convidado 2	

SÃO CAETANO DO SUL 2015

Agradecimentos

A Escola de Engenharia Mauá por fornecer toda a gama de conhecimento e estrutura para um melhor aprendizado.

Ao Prof. Me. Alessandro de Oliveira Santos pela assessoria prestada quanto ao desenvolvimento do tema.

Ao Prof. Rafael Corsi por todo empenho dedicado auxiliando o projeto de distintas maneiras.

E aos nossos pais, amigos e namoradas que apesar de todas as dificuldades sempre nos suportaram para o melhor desenvolvimento do projeto.

Resumo

Resumo do TCC

Palavras-chaves: palavra 1, palavra 2, palavra 3, palavra 4, palavra 5.

Abstract

This is the english abstract.

 $\mathbf{Key\text{-}words} \colon word1, \ word2, \ word3, \ word4, \ word5.$

Lista de ilustrações

Figura 1 – MODELO DE UM CUBESAT DE 1U	15
Figura 2 – ESTRUTURA DO CUBESAT PROPOSTA PELO NSEE-IMT	16
Figura 3 – PRINCIPAIS TIPOS DE ÓRBITAS	19
Figura 4 – BATERIA DE ÍON-LÍTIO SELECIONADA	20
Figura 5 – PRINCÍPIO DE FUNCIONAMENTO DA BATERIA DE ÍON-LÍTIO	21
Figura 6 – PRINCÍPIO DE FUNCIONAMENTO DE UMA FOTOCÉLULA	22
Figura 7 – FOTOCÉLULAS DA <i>VIS TECHNOLOGY</i>	22
Figura 8 – SET UP PARA TESTE DAS FOTOCÉLULAS DA VIS TECHNOLOGY	23
Figura 9 – MODELO DE FOTOCÉLULA DA <i>SPECTROLAB</i>	24
Figura 10 – MODELO DE FOTOCÉLULA DA <i>EMCORE</i>	25
Figura 11 – MODELO DE FOTOCÉLULA DA <i>AZURSPACE</i>	25
Figura 12 – MODELO DE FOTOCÉLULA DA <i>TRISOLX</i>	26
Figura 13 – COEFICIENTES DE TEMPERATURA DOS CAPACITORES CERÂ-	
MICOS	28
Figura 14 – VARIAÇÃO DA CAPACITÂNCIA EM FUNÇÃO DA TEMPERATURA	28
Figura 15 – LISTA DE COMPONENTES ELETRÔNICOS	29
Figura 16 – CIRCUITOS DOS SUBCONJUNTOS DO SISTEMA	30

Lista de tabelas

Tabela 1 – TIPOS DE BATERIAS E AS PRINCÍPAIS CARACTERÍSTICAS	20
Tabela 2 – COMPARATIVO DAS FOTOCÉLULAS DA $SPECTROLAB$	24
Tabela 3 – COMPARATIVO DAS FOTOCÉLULAS DA $EMCORE$	24
Tabela 4 – COMPARATIVO DAS FOTOCÉLULAS DA $AZURSPACE$	25
Tabela 5 – ORÇAMENTO DAS FOTOCÉLULAS DA $AZURSPACE$	26
Tabela 6 – ORÇAMENTO DAS FOTOCÉLULAS DA TRISOLX	27

Lista de abreviaturas e siglas

Cal Poly California Polytechnic State University

NASA National Aeronautics and Space Administration

NSEE-IMT Núcleo de Sistemas Eletrônicos Embarcados do Instituto Mauá de

Tecnologia

LEO Low Earth Orbit

PV Photovoltaic

AM Air Mass

WRC World Radiation Center

T Temperatura

SMD Superficial Monting Device

DF Dissipation Factor

OSSI Open Source Satellite Initiative

Sumário

1	INTRODUÇÃO
2	REFERENCIAL TEÓRICO
2.1	CubeSat
2.2	Surgimento
2.3	No Brasil
3	MATERIAIS E MÉTODO
3.1	Condições do espaço
3.2	Definição dos componentes
3.2.1	Bateria
3.2.1.1	Princípio de funcionamento
3.2.2	Fotocélulas
3.2.2.1	Princípio de funcionamento
3.2.2.2	VIS Technology
3.2.2.3	SpectroLab
3.2.2.4	Emcore
3.2.2.5	AzurSpace
3.2.2.6	Análise de preços
3.2.2.7	TrisolX
3.2.3	Componentes passivos
3.2.4	Semicondutores
3.2.5	Lista de componentes
3.3	Ensaios possíveis
3.3.1	Validação dos subconjuntos
3.3.2	Ensaio de radiação
3.3.3	Ensaio térmico
3.3.4	Ensaio de vácuo
3.3.5	Ensaio de termovácuo
4	PROTÓTIPO 32
5	RESULTADOS E DISCUSSÕES
6	PLANO DE MARKETING
7	PLANO OPERACIONAL

8	PLANILHA FINANCEIRA	36
9	CONCLUSÕES	37
	REFERÊNCIAS	38
	ANEXOS	41
	ANEXO A – ORÇAMENTO DOS COMPONENTES DA FARNELL	42

1 Introdução

Os satélites artificiais amplamente utilizados e essenciais no dia-a-dia para diversas tarefas, como por exemplo para as transmissões televisivas e previsões meteorológicas, são objetos que orbitam os planetas em trajetos circulares ou elípticos. Esses satélites, feitos pelo homem, são desenvolvidos especificamente para funções preestabelecidas que tornem possível alcançar objetivos maiores.

Esse formato de desenvolvimento individual faz o seu processo produtivo ser lento e com custos elevados, o que torna a alta tecnologia encontrada nos satélites restrita a pequenos grupos de engenheiros e cientistas. A combinação desses fatores acabou motivando, no final dos anos 90, os professores Jordi Puig-Suari e Bob Twiggs, a proporem o modelo do *CubeSat*, que são satélites miniaturizados com tempo de desenvolvimento e custos bem abaixo dos satélites tradicionais.

O presente trabalho apresenta o Sistema de Gerenciamento de Energia de um *CubeSat*, ele é o subsistema responsável pela geração, transmissão e gerenciamento de energia, tendo por finalidade fornecer energia elétrica suficiente para o funcionamento dos demais subsistemas pertencentes a este satélite miniaturizado, como por exemplo o subsistema de comunicação, controle de atitude e computador de bordo.

O processo de geração de energia depende da captação de luz solar suficiente para suprir a demanada energética do *CubeSat*, além de ser capaz de realizar o carregamento de uma bateria. Essa bateria, que por sua vez, tem a capacidade de assumir o fornecimento de energia para todo o sistema nos momentos nos quais o *CubeSat* estiver na região de sombra da Terra.

O Sistema de Gerenciamento de Energia foi totalmente dimensionado de forma a atender todos os pré-requisitos da construção de um *CubeSat*, que futuramente deverá ser enviado para a realização de uma missão espacial.

Esse subsistema visa fornecer a energia necessária, com incidência direta ou não de luz solar, para garantir o sucesso de missões espaciais, além de ajudar a fomentar a pesquisa e desenvolvimento de projetos para formar e capacitar alunos e pesquisadores na área espacial, além de ser parte de um projeto da Escola de Engenharia Mauá que objetiva o desenvolvimento de um *CubeSat* com tecnologia nacional.

O presente trabalho está dividido em XX capítulos contendo as seguintes abordagens.

O capítulo 1 traz a apresentação do trabalho, suas principais características, inovações e os objetivos principais.

O capítulo 2 apresenta um estudo histórico sobre os CubeSats, como surgiram e o

posicionamento do Brasil neste segmento.

O capítulo 3 faz um estudo sobre o estado da arte no segmento espacial, apresenta a proposta do estudo e faz a discretização dos componentes utilizados para o desenvolvimento do CubeSat.

O capítulo 4 mostra os resultados e discussões dos dados obtidos no levantamento dos rendimento do subsistema proposto.

O capítulo 5 trata das conclusões obtidas através das análises dos resultados dos ensaios realizados.

2 Referencial Teórico

A seguir será apresentado a definição de um *CubeSat*, assim como as suas principais características de projeto, o seu surgimento e uma breve análise dos projetos brasileiros.

2.1 CubeSat

É um tipo de satélite miniaturizado usado em pesquisas espaciais. Por definição de projeto, elaborado pela *California Polytechnic State University* (*Cal Poly*), um *CubeSat* deve possuir volume máximo de um litro, ou seja, ser um cubo de 10x10x10 cm e com massa máxima de até 1,3 kg.⁽¹⁾

Um CubeSat com essas especificações são chamados de CubeSat de 1U, ou seja, é um CubeSat de 1 unidade, conforme a Figura 1. Porém outras unidades podem ser adicionadas gerando os CubeSats de 2U, 3U, 4U e etc.

Figura 1 – MODELO DE UM CUBESAT DE 1U

FONTE: $NASA^{(2)}$

O *CubeSat* Mauá, proposto no NSEE-IMT, é um equipamento do modelo 3U, sendo as unidades distribuídas em unidade de comunicação, unidade de controle de atitude e unidade de potência.

Comunicação

Controle de
Atitude

Potência

Figura 2 – ESTRUTURA DO CUBESAT PROPOSTA PELO NSEE-IMT

FONTE: Especificação do produto CubeSat⁽³⁾

2.2 Surgimento

O primeiro projeto de um *CubeSat* foi proposto em 1999 pelos professores Jordi Puig-Suari, da *California Polytechnic State University*, e Bob Twiggs, da *Stanford University*. O objetivo do projeto foi o de padronizar o *design* de picosatélites, visando a redução de custos e de tempo de desenvolvimento, além de prover uma maior acessibilidade ao espaço e conseguir realizar lançamentos frequentes, o que é de inviável obtenção com os satélites de grande porte.⁽¹⁾

2.3 No Brasil

Os projetos de picosatélites, nanosatélites e microsatélites se multiplicam a cada ano, não só no Brasil mas em todo o mundo. A *Cal Poly* estima que atualmente o projeto *CubeSat* conte com a colaboração internacional de mais de 100 universidades, colégios e de algumas empresas e governos.

Atualmente vários projetos nessa área, de pequenos satélites para diversas áreas da pesquisa científica e tecnológica, estão em curso no Brasil e outros ainda em fase de discussão, dentre eles se destacam os projetos abaixo:

• Tancredo 1

Picosatélite desenvolvido pelo grupo do professor Cândido Moura da Escola Tancredo Neves de Ubatuba, São Paulo. Primeiro satélite do Projeto UbatubaSat. (4)

• AESP-14

Cubesat desenvolvido pelo grupo do Dr. Pedro Lacava, professor e coordenador do Curso de Engenharia Aeroespacial do Instituto Tecnológico de Aeronáutica (ITA). (5)

• NanoSatC-Br2

Nanosatélite em desenvolvimento pelo grupo coordenado pelo Dr. Nelson Schuch do Centro Regional Sul do INPE (CRS) e do Dr. Otávio Durão (INPE/SJC), em parceria com pesquisadores da Universidade Federal de Santa Maria (UFSM) do Rio Grande do Sul, em orbita desde 19/06/2014.⁽⁶⁾

• 14-BISat

Nanosatélite científico em desenvolvimento pelo grupo liderado pelo professor Cedric Salotto, coordenador do Centro de Referência em Sistemas Embarcados e Aeroespaciais (CRSEA) do Instituto Federal Fluminense (IFF) da cidade de Campos dos Goytacazes (RJ), em parceria com a empresa Tekever S/A e a Faculdade de Engenharia da Universidade do Porto (FEUP), Portugal. Este projeto faz parte da missão internacional QB50.⁽⁷⁾

• ITASAT-1

Nanosatélite tecnológico em desenvolvimento pelo grupo liderado pelo Major Eloi Fonseca, professor do Curso de Engenharia Aeroespacial do Instituto Tecnológico de Aeronáutica (ITA) em parceria com a Agência Espacial Brasileira (AEB), Instituto Nacional de Pesquisas Espaciais (INPE-SJC, INPE-CRN e INPE-SM), Universidade do Vale do Rio dos Sinos (UNISINOS), Universidade Federal do Rio Grande do Norte (UFRN) e Universidade Federal de Santa Maria (UFSM). (8)

Nesse capítulo foram apresentadas as premissas básicas de um projeto de CubeSat, assim como o seu surgimento e um resumo do segmento de nanossatélites no Brasil.

3 Materiais e Método

Para auxiliar no projeto, as atividades foram divididas de forma a trazer, além do ganho teórico, uma maior dinâmica no desenvolvimento do mesmo. Essa etapa do projeto visou a máxima aquisição de dados possível sobre o tema proposto, foram abertas distintas frentes de trabalho para agilizar a aquisição teórica. Além do conhecimento adquirido foram definidos os principais componentes e equipamentos que foram utilizados no protótipo, como por exemplo as baterias, fotocélulas, componentes passivos e semicondutores.

Também foi possível identificar e conhecer, de forma mais profunda, possíveis testes que podem ser realizados no Sistema de Gerenciamento de Energia para *CubeSat*, como os testes de radiação, temperatura e pressão. Esses testes são de extrema importância para a detecção de possíveis problemas que possam existir, pois uma vez que o *CubeSat* for lançado nada mais poderá ser feito para reparar possíveis problemas.

3.1 Condições do espaço

Para o desenvolvimento do CubeSat é de extrema importância ter conhecimento das condições de operação que o equipamento irá operar.

Os CubeSats, operam em órbita terrestre baixa (LEO - Low Earth Orbit). A órbita LEO é a órbita que se encontra abaixo de 2.000 km do nível do mar, os objetos que situam-se nela, geralmente, ficam entre 320 até 800 km da superfície terrestre, muito diferente dos satélites tradicionais que operam em órbita geoestacionária, cuja a distância é de 35.796 km em relação ao nível do mar. $^{(9)(10)}$

Satélites situados na órbita LEO viajam em velocidades de aproximadamente 27.400 km/h ou 8 km/s, o que representa uma volta ao longo da Terra a cada 90 minutos. Já os satélites geoestacionários precisam ter uma velocidade que façam que eles acompanham sempre o mesmo ponto da Terra, por isso as velocidades deles são de aproximadamente 11.068 km/h ou 3 km/s. O planeta Terra tem uma velocidade de rotação de aproximadamente 1.669,8 km/h ou 0,5 km/s. $^{(9)(10)}$

Outras características de destaque para a órbita LEO são as condições de temperatura, variando de -170 °C a 123 °C e de pressão variando de 10^{-4} Pa a 10^{-6} Pa.⁽⁹⁾

Órbitas inferiores a esta não apresentam muita estabilidade e são alvos de arrastamento atmosférico, que é a força de fricção que atua sobre o foguete ou satélite, cuja principal causa é a fricção entre as moléculas do ar e a superfície do foguete ou satélite. (11)

Figura 3 – PRINCIPAIS TIPOS DE ÓRBITAS

FONTE: Civil Air Patrol⁽¹²⁾

3.2 Definição dos componentes

A seguir será explicado de forma mais detalhada como foram realizadas as escolhas dos principais componentes do projeto. Importante ressaltar que os projetos de *CubeSats* possuem como premissa o conceito de ser um projeto de baixo custo, porém o referencial do custo utilizado são os custos de projetos de grandes satélites.

Para a utilização dos componentes que suportem as condições impostas no meio espacial, alguns fabricantes possuem linhas de produtos voltadas para utilização de componentes aeroespaciais que possuem um custo mais elevado em comparação aos componentes utilizados no mercado comum.

3.2.1 Bateria

As baterias têm a função principal de armazenar carga para poder assumir o controle do fornecimento de energia para todos os subsistemas do *CubeSat*, nos momentos no qual o equipamento estiver situado em regiões de sombras solares, por exemplo atrás do planeta Terra. Nessas regiões, não há incidência de luz solar portanto as fotocélulas não irão gerar energia para o sistema. Dessa forma é preciso haver outro meio de geração de energia até que o *CubeSat* volte a ter incidência de luz solar, caso contrário o sistema será desligado e o equipamento virará apenas lixo espacial.

Algumas das premissas básicas de projeto para a definição da bateria estão relacionadas com o seu poder de armazenamento de carga e o seu dimensional reduzido. Essas baterias ficaram alocadas no interior do *CubeSat*, por isso a importância do dimensional reduzido, além disso não podem ser baterias com peso elevado, uma vez que a definição do projeto diz que os *CubeSats* não podem ultrapassar 1,3 kg.

Para a definição da bateria foi realizado um levantamento dos prós e contras dos tipos mais comuns de baterias encontradas no mercado, sendo elas de: níquel cádmio, hidreto metálico de níquel, íon-lítio e polímero de lítio.

Tabela 1 – TIPOS DE BATERIAS E AS PRINCÍPAIS CARACTERÍSTICAS

Composição	Prós	Contras
Níquel cádmio	Baixo custo	Tecnologia obsoleta, baixo
		ciclo de vida, possui efeito
		memória, altamente tóxica
Hidreto metálico de ní-	Boa capacidade de armazena-	Efeito memória
quel (NiMH)	mento, ciclo de vida longo, rápida	
	capacidade de carga, baixo desem-	
	penho, auto-descarga de 2% ao dia	
Íon-lítio	Armazena mais carga do que as	Inflamável, inutilidade em
	anteriores, não tem efeito memó-	caso de descarga total
	ria, peso e volume reduzido, alto	
	desempenho, alta densidade ener-	
	gética, ampla faixa de tempera-	
	tura de operação, baixo tempo de	
	carga, ciclo de vida longo	
Polímero de lítio	Os mesmos da íon-lítio, alta taxa	Mais inflamável, inutilidade
	de descarga	em caso de descarga total,
		alto custo

FONTE: Elaborada pelos autores através de pesquisas realizadas na internet.

Dentre os modelos comparados na Tabela 1, foi escolhida a bateria do tipo íon-lítio. Foram utilizadas duas baterias de duas células de 7,4 V e 2000 mAh, sendo uma para o conjunto principal e a outra para o conjunto de redundância do Sistema de Gerenciamento de Energia para *CubeSat*. Na Figura 4, é possível visualizar a bateria selecionada.

104871 2000MAH 7. 4V
2015.2.7

Figura 4 – BATERIA DE ÍON-LÍTIO SELECIONADA

FONTE: Fotos tiradas pelos autores

3.2.1.1 Princípio de funcionamento

As baterias de íon-lítio, têm esse nome devido ao seu princípio de funcionamento o qual consiste no movimento dos íons de lítio (Li) que migram do ânodo para o cátodo por

meio de um solvente não aquoso, conforme pode ser visto na Figura 5. (13)

Figura 5 – PRINCÍPIO DE FUNCIONAMENTO DA BATERIA DE ÍON-LÍTIO

FONTE: Brasil Escola⁽¹³⁾

O lítio (Li) é considerado o metal mais leve existente na Terra (desconsiderando os feitos em laboratório), por essa razão que as baterias de íon-lítio possuem baixo peso, o que é de fundamental importância para o projeto do *CubeSat*. Por se tratar de um dos tipos de bateria mais comuns, sendo amplamente encontrado em *smartphones* e *notebooks*, acaba tendo um impacto positivo nos custos de aquisição das mesmas. (14)

3.2.2 Fotocélulas

As fotocélulas são fundamental importância para o sistema, uma vez que elas são as responsáveis pela captação da luz solar que irá gerar a energia necessária para o funcionamento do *CubeSat*. É importante que elas possuam rendimento elevado, pois devido as condições impostas pela órbita *LEO*, na qual o *CubeSat* irá ficar um terço do período de translação em regiões de sombra, ou seja, estará sem a incidência direta de luz solar.

3.2.2.1 Princípio de funcionamento

As fotocélulas são um exemplo de aplicação prática do efeito fotoelétrico, descoberto por Heinrich Rudolf Hertz, em 1887 e explicado por Albert Einstein, em 1905. (15)

Quando uma grande quantidade de fótons é incidida em uma fotocélula a energia é absorvida. Essa absorção de energia permite que os átomos dos elementos que constituem a célula liberem elétrons, o espaço liberado é preenchido por outro elétron de uma camada inferior do semicondutor. Essa movimentação de elétrons, faz com que um dos lados da

célula tenha uma concentração maior de elétrons, o que origina a diferença de potencial entre os lados, conforme pode ser visto na Figura $6.^{(16)}$

Figura 6 – PRINCÍPIO DE FUNCIONAMENTO DE UMA FOTOCÉLULA

FONTE: Sapa $\mathrm{Solar}^{(16)}$

3.2.2.2 VIS Technology

Inicialmente foi indicado pelo Engenheiro Rafael Corsi, do NSEE-IMT, o contato da empresa Vis Technology, um empresa nacional, localizada em São Paulo, que desenvolve projetos com energias renováveis. Porém as fotocélulas utilizadas por eles são para aplicações industriais. Essas fotocélulas possuem um rendimento entre 10% e 12%, muito abaixo comparado ao rendimento com as próprias de aplicações aeroespaciais, além de terem um dimensional maior, conforme pode ser visualizado na Figura 7.

Figura 7 – FOTOCÉLULAS DA *VIS TECHNOLOGY*

FONTE: Foto tirada pelos autores

Mesmo sabendo dessas limitações, foram obtidas algumas amostras. Essas amostras serviram para um primeiro contato com essa tecnologia, conseguindo realizar alguns ensaios a fim de se obter uma familiaridade maior com o componente, conforme pode ser visto na Figura 8.

FONTE: Foto tirada pelos autores

Após uma breve familiarização com as fotocélulas, foram analisados diversos projetos de *CubeSats* e identificados os principais fornecedores de fotocélulas (*SpectroLab*, *Emcore* e *AzurSpace Solar*) para aplicações aeroespaciais.

Foi realizado um estudo apurado dos principais tipos de fotocélulas disponíveis nos portfólios desses fornecedores, visando identificar os modelos que se melhor ajustavam no desenvolvimento do CubeSat.

3.2.2.3 SpectroLab

A *SpectroLab*, empresa subsidiária da *The Boeing Company*, é a fabricante líder mundial de células solares de multi-junção de alta eficiência e de painéis solares. A empresa é sediada nos Estados Unidos, mais especificamente em Los Angeles, Califórnia. (17)

Avaliando os dados da Tabela 2, os modelos $PV\ UTJ\ Cell$ e $PV\ XTJ\ Cell$, foram os mais indicados para a aplicação, devido ao alto rendimento (superior a 28%) apresentado

3.2.2.4 Emcore

Em dezembro de 2014, a *Emcore* foi comprada pela *SolAero Technologies*, que é uma das fabricantes líderes mundial de alta eficiência, células solares e painéis solares para

Modelo	PV UTJ Cell	PV XTJ Cell	PV NM TASC	$PV\ ITJ\ Cell$				
			ITJ					
Rendimento	28,3%	29,5%	24% a 30%	26,8%				
Material	GaInP2/GaAs/Ge	GaInP2/GaAs/Ge	GaInP2/GaAs/Ge	GaInP2/GaAs/Ge				
Tensão	2,660 V	2,633 V	2,520 V	2,565 V				
Corrente	454 mA	472 mA	31 mA	441 mA				
Dimensional	$26,62 \text{ cm}^2$	$26,62 \text{ cm}^2$	$2,277 \text{ cm}^2$	31 cm^2				
Peso	84 mg/cm^2	84 mg/cm^2	0,234 g	84 mg/cm^2				

Tabela 2 – COMPARATIVO DAS FOTOCÉLULAS DA SPECTROLAB

FONTE: Elaborada pelos autores através de informações coletadas nos datasheets dos produtos. NOTA: Condições de teste: $AM~0,~WRC=135,3~mW/cm^2,~T=28^{\circ}C$.

Figura 9 – MODELO DE FOTOCÉLULA DA SPECTROLAB

FONTE: $SpectroLab^{(18)}$

aplicações espaciais. Assim como a SpectroLab, está sediada nos Estados Unidos, porém no município de Albuquerque, Novo México. (19)(20)

Tabela 3 – COMPARATIVO DAS FOTOCÉLULAS DA *EMCORE*

Modelo	ATJ PV Cell	BTJ PV Cell	BTJM PV	ZTJ PV Cell
			Cell	
Rendimento	27,5%	28,5%	28%	29,5%
Material	GaInP/GaAs/Ge	GaInP/GaAs/Ge	GaInP/GaAs/Ge	GaInP/GaAs/Ge
Tensão	2,60 V	2,70 V	2,69 V	2,73 V
Corrente	454 mA	455 mA	454 mA	467 mA
Dimensional	$26,6 \text{ cm}^2$	$26,6 \text{ cm}^2$	$26,6 \text{ cm}^2$	26.6 cm^2
Peso	84 mg/cm^2	84 mg/cm^2	84 mg/cm^2	84 mg/cm^2

FONTE: Elaborada pelos autores através de informações coletadas nos datasheets dos produtos. NOTA: Condições de teste: $AM~0,~WRC=135,3~\text{mW/cm}^2,~T=28^{\circ}\text{C}$.

Avaliando os dados da Tabela 3, os modelos BTJ PV Cell, BTJM PV Cell e ZTJ PV Cell, foram os mais indicados para a aplicação, devido ao alto rendimento (superior a 28%) apresentado.

Figura 10 – MODELO DE FOTOCÉLULA DA EMCORE

FONTE: SolAero Technologies⁽²¹⁾

3.2.2.5 AzurSpace

A *AzurSpace* é a líder européia no desenvolvimento e produção de células solares multi-junção para aplicações espaciais e terrestres, com quase 50 anos de experiência no mercado. A empresa localiza-se em Heilbronn, cidade em Baden-Württemberg, Alemanha. (22)

Tabela 4 – COMPARATIVO DAS FOTOCÉLULAS DA AZURSPACE

Modelo	3G30C	$3G30C ext{-}Large$	3G30C-Large-	3G28C
			120x60	
Rendimento	30%	30%	30%	28%
Material	GaInP/GaAs/Ge	GaInP/GaAs/Ge	GaInP/GaAs/Ge	GaInP/GaAs/Ge
Tensão	2,700 V	2,700 V	2,700 V	2,667 V
Corrente	520,2 mA	1041 mA	1186 mA	506 mA
Dimensional	$30,18 \text{ cm}^2$	$60,36 \text{ cm}^2$	$68,76 \text{ cm}^2$	$30,18 \text{ cm}^2$
Peso	86 mg/cm^2	114 mg/cm^2	130 mg/cm^2	86 mg/cm^2

FONTE: Elaborada pelos autores através de informações coletadas nos datasheets dos produtos. NOTA: Condições de teste: $AM~0,~WRC=1367~\mathrm{W/m^2},~\mathrm{T}=28^{\circ}\mathrm{C}.$

Avaliando os dados da Tabela 4, os modelos 30G28C e 30G30C, foram os mais indicados para a aplicação, devido ao alto rendimento (superior a 28%) apresentado. Os demais modelos não atenderam o dimensionamento adequado para o projeto.

Figura 11 – MODELO DE FOTOCÉLULA DA AZURSPACE

FONTE: $AzurSpace^{(23)}$

3.2.2.6 Análise de preços

Selecionados os modelos dos principais fornecedor, foi solicitado um orçamento das fotocélulas para realizar o comparativo dos preços e, por fim, realizar os procedimentos necessários para a aquisição das mesmas.

O contato com a SpectroLab não teve obteve sucesso, uma vez que a empresa não respondeu nenhuma das tentativas de contato realizadas. Já a solicitação do orçamento da $SolAero\ Technologies$ (antiga Emcore) não caminhou conforme esperado, uma vez que uma das políticas de vendas da empresa é de um pedido mínimo de \$7.500,00 dólares.

A AzurSpace enviou um orçamento dos modelos solicitados, conforme Tabela 5.

Tabela 5 – ORÇAMENTO DAS FOTOCÉLULAS DA AZURSPACE

Modelo	Valor unitário	Frete	$oxed{Lead\ time}$
3G28C	€193,00	€195,00	8 a 10 semanas
3G30C	€198,00	€195,00	8 a 10 semanas

FONTE: Elaborada pelos autores através do orçamento recebido pela AzurSpace

3.2.2.7 TrisolX

Devido ao alto custo e o grande lead time da AzurSpace, novas pesquisas foram feitas na tentativa de encontrar um novo fornecedor de fotocélulas com um custo mais acessível. Após uma busca detalhada em diversos grupos de discussões sobre o desenvolvimento de CubeSats, foi encontrada no LinkedIn a empresa TrisolX.

A *TrisolX* é uma pequena empresa, localizada em Nova Iorque, que oferece uma alternativa acessível para projetos com orçamentos reduzidos. A empresa, vende a *TrisolX Solar Wings*, que são fotocélulas cortadas a partir do modelo *3G28C* da *AzurSpace*.

É o mesmo produto da AzurSpace, porém com tamanho e formato diferentes, conforme Figura 12.

Figura 12 – MODELO DE FOTOCÉLULA DA *TRISOLX*

Foi solicitado um orçamento à $\mathit{TrisolX}$, que prontamente foi recebido conforme Tabela 6.

Pacote	Quantidade	Valor	Frete	Prazo de
				entrega
Sample Pack	5 células	\$25,00	\$68,00	2 semanas
Starter Pack	25 células	\$100,00	\$68,00	2 semanas
Development Pack	100 células	\$400,00	\$68,00	2 semanas

Tabela 6 – ORÇAMENTO DAS FOTOCÉLULAS DA TRISOLX

FONTE: Elaborada pelos autores através do orçamento recebedido pela TrisolX. NOTA: O modelo das fotocélulas comercializado pela TrisolX é o 3G28C da AzurSpace.

Tendo como objetivo inicial fazer a validação do sistema como um todo, realizar testes de pressão, temperatura e radiação, para fazer um levantamento completo do funcionamento do sistema, foi solicitado para a *TrisolX* o *Starter Pack*. Dessa forma foi possível ganhar experiência no manuseio das fotocélulas e validar o sistema, para depois fazer a aquisição das fotocélulas mais robustas da *AzurSpace*.

3.2.3 Componentes passivos

Os componentes passivos, são os componentes eletrônicos que não aumentam a intensidade da tensão ou da corrente de um circuito eletrônico, ou seja, são os resistores, indutores, capacitores e memristores. (25) No desenvolvimento do projeto não foram utilizados os memristores.

Resistores são componentes utilizados para controlar a intensidade da corrente elétrica que passa no circuito. Capacitores são componentes que armazenam e liberam cargas elétricas por meio da tensão elétrica. Indutor são componentes que utilizam o magnetismo para armazenar e liberar cargas por meio da corrente elétrica.

É de extrema importância que os componentes passivos atendam algumas premissas para a utilização no projeto. Esses componentes precisam possuir uma grande faixa de temperatura de operação, uma certa tolerância a radiação e um dimensional pequeno (SMD).

Os capacitores, devido as baixas pressões encontradas no espaço, não podem ser do modelo eletrolítico, ou seja, precisam ser ou cerâmicos ou de tântalo. Os capacitores cerâmicos geralmente são de 0,5 pF até 470 nF com tensão de isolação de 25 V ou 50 V. Para esses capacitores tomou-se o cuidado de selecionar os capacitores com o coeficiente de temperatura X7R, devido a sua grande faixa de temperatura de operação, conforme indicado na Figura 13. (26)

Maximum Allowable Low Temperature Limit **High Temperature Limit** Capacitance Change From +25°C (0 VDC) X = -55°C 5 = +85°C $F = \pm 7.5\%$ Y = -30°C 6 = +105°C P = ±10% 7 = +125°C R = ±15% Z = +10°C 8 = +150°C (SPECIAL) $s = \pm 22\%$ T = +22% / -33% U = +22% / -56% V = +22% / -82% X7R = ±15% \(\Delta \text{ over -55°C \(\sime + 125°C \)

Figura 13 – COEFICIENTES DE TEMPERATURA DOS CAPACITORES CERÂMICOS

FONTE: PY2BBS⁽²⁶⁾

Além dessa característica, os capacitores X7R apresentam um bom comportamento com a variação de temperatura, comparado com os capacitores Y5V (outro modelo amplamente encontrado no mercado), conforme pode ser visto na Figura 14.

Figura 14 – VARIAÇÃO DA CAPACITÂNCIA EM FUNÇÃO DA TEMPERATURA

FONTE: Johanson Dielectrics⁽²⁷⁾

Já os capacitores de tântalo apresentam valores de 0,22 pF até 100 μ F, esse tipo de capacitor possui baixa corrente de fuga e baixas perdas, além de uma vida útil maior comparado aos eletrolíticos. (26)

3.2.4 Semicondutores

3.2.5 Lista de componentes

SENSOR DE TEMPERATURA

SOT23-5

Seguindo as premissas apresentadas anteriormente, foi finalizada a lista de componentes necessárias para o seguimento do projeto, também foi levado em consideração a questão financeira, portanto alguns componentes apresentados nessa lista podem ser substituídos após a realização de todos os ensaios e validações.

Na Figura 15 é possível visualizar a lista de componentes eletrônicos definida pelo grupo.

Figura 15 – LISTA DE COMPONENTES ELETRÔNICOS

LISTA DE COMPRA DE COMPONENTES ELETRÔNICOS VALOR COMPONENTE PACKAGE QUANTIDADE DESCRIÇÃO **FABRICANTE** PART NUMBER 3300pF CAPACITOR SMD 0805 CERAMIC CAPACITOR 3300PF, 50V, X7R, 10%, 0805 MULTICOMP MC0805B332K500C .022uF CAPACITOR SMD 0805 CAP, MLCC, X7R, 0.022UF, 100V, 0805 /ishay /J0805Y223KXBBC31 CAPACITOR, European symbol 000pF .00nF CAPACITOR SMD 0805 CAP, MLCC, X7R, 0.1UF, 50V, 0805 Vishay VJ0805Y104KXABE31 CAPACITOR SMD 0805 CAP, MLCC, X7R, 0.01UF, 50V, 0805 Vishay VJ0805Y103KNAAO OuF CAPACITOR CASE R CAP, TANT, 10UF, 16V, CASE R /ishay TP8R106M0160 1500pF CAPACITOR SMD 0805 CAPACITOR, European symbol Vishay VJ0805A152JXBM 2.2nF CAPACITOR SMD 0805 CAP, MLCC, X7R, 2200PF, 100V, 0805 Vishay VJ0805Y222KXBBC31 CAPACITOR SMD 0805 AP, MLCC, X7R, 0.22UF, 25V, 0805 J0805Y224KNXAT 22uF CAPACITOR CASE C CAP. TANT. 22UF. 16V. CASE C Vishav TR3C226K016C0350 47nF CAPACITOR SMD 080 CAP, MLCC, X7R, 0.047UF, 50V, 0805 Vishay VJ0805Y473KXABC31 CAP, TANT, 47UF, 16V, CASE C 7uF TR3C476K016C0350 CAPACITOR CASE C /ishay T1941 CIRCUITO INTEGRADO SSOP IC, DC/DC CONVERTER, SMD, TSSOP28 Linear Technology LT1941EFE#PBF Linear Technology IRCUITO INTEGRADO , POWER PATH CONTROLLER, TSOT23-6 LTC4412ES6#TRMPB Microchip Technology MCP2551 CIRCUITO INTEGRADO 8-5010 CAN TRANSCEIVER, 1MBPS, 1/1, 5.5V, 8-SOIC MCP2551-I/SN PIC18F66K80 TQFP64-10X10X1MM CIRCUITO INTEGRADO MCU, 8BIT, PIC18, 64MHZ, TQFP-64 PIC18F66K80-I/PT-ND Microchip Technology BQ24005_PWP_200 IRCUITO INTEGRADO PWP20_2P4X3P4-M CARREGADOR DE BATERIA BQ24005PWP LM3488MM/NOPB CIRCUITO INTEGRADO VSSOP IC, N-CH CONTROLLER, VSSOP-8 Texas Instruments LM3488MM/NOPB OP AMP, 3MHZ, 4V/US, VSSOP-MP2012MM/NOPE LM3488MM/NOPB CIRCUITO INTEGRADO VSSOP IC, N-CH CONTROLLER, VSSOP-8 Texas Instruments LM3488MM/NOPB LMP2012 OP AMP, 3MHZ, 4V/US, VSSOP-8 LMP2012MM/NOPB CIRCUITO INTEGRADO VSSOP Texas Instruments TPS563209DDC1 CIRCUITO INTEGRADO SOT-23 SYNC BUCK REGULATOR, 650KHZ, SOT-23-6 Texas Instruments TPS563209DDCT B340A-13-F DIODO DO-214AC SCHOTTKY DIODE, 3A, 40V, DO-214AC DIODES INC B340A-13-F 5.86mm x 6.47mm x 3mn INDUCTOR, 3A, 10UH /ishay IHLP2525CZER100M01 2.2uH INDUTOR 5.49mm x 5.18mm x 2mm INDUCTOR, 2.2UH, 5.5A, 209 Vishay IHLP2020BZER2R2M11 INDUTOR 6.86mm x 6.47mm x 3mm NDUCTOR, SMD, 3.3UH Vishay IHLP2525CZER3R3M01 33uH INDUTOR 10.8mm x 10.8mm x 4.16mm SHIELDED, 33UH, 3.7A, 20% Vishay IHLE4040DCER330M5 KINGBRIGHT Texas Instru MOSFET CANAL N CSD16323Q3 CSD16323Q3 OSFET, N CH, 25V, 60A, 8SON DN360P MOSFET CANAL P SUPER-SOT3 MOSFET, P. SMD, SSOT-3 FAIRCHILD SEMICONDUCTOR FDN306P MOSFET DUPLO CANAL MOSFET, PP-CH, 20V, 4A, SO8 Si9933CDY Vishay SI9933CDY-T1-GE3 Vishay 0.1R RESISTOR SMD 2818 RESISTOR, METAL STRIP, 0.10HM, 7W, 1% WSHM2818R1000FEE 470R, 0.125W, 1%, 0805, SMD Vishay CRCW0805470RFKEA 70R RESISTOR SMD 0805 Thick Film, 100R, 0.125W, 1%, 0805 /isha CRCW0805100RFKEA 100k RESISTOR SMD 0805 HICK FILM RESISTOR, 100KOHM, 125mW, 1% Vishay CRCW0805100KFKEB THICK FILM, 0.125W, 1%, 0805 /ishay CRCW080510K0FKTA Ok7 RESISTOR SMD 0805 THICK FILM RESISTOR, 10.7KOHM, 125mW, 1% Vishay CRCW080510K7FKEA 115k RESISTOR SMD 0805 THICK FILM RESISTOR, 115KOHM, 125mW, 1% CRCW0805115KFKEA Vishay /ishay SMD 0805 THICK FILM RESISTOR, 120 OHM, 125mW, 1% 20R CRCW0805120RFKEA 3k3 RESISTOR SMD 0805 THICK FILM RESISTOR, 13.3KOHM, 125mW, 1% /ishay CRCW080513K3FKEA 7K4 RESISTOR SMD 0805 THICK FILM RESISTOR, 17.4KOHM, 125mW, 1% /ishay CRCW080517K4FKEA RESISTOR SMD 0805 1K, 0.125W, 1%, 0805 Vishay CRCW08051K00FKEA THICK FILM RESISTOR, 1.5KOHM, 125mW, 1% Vishay CRCW08051K50FKEB RESISTOR SMD 0805 THICK FILM, 0.125W, 1%, 0805 Vishay CRCW0805220KFKEA 220k RESISTOR SMD 0805 THICK FILM, 0.125W, 1%, 0805 Vishay CRCW080522K0FKEA 2K49 THICK FILM RESISTOR, 2.49KOHM, 125mW, 1% RESISTOR SMD 0805 THICK FILM RESISTOR, 2.2KOHM, 125mW, 1% Vishay CRCW08052K20FKEA RESISTOR SMD 0805 THICK FILM, 0.125W, 1%, 0805 /ishay CRCW08053K40FKEA 0.033R RESISTOR SMD 2818 METAL STRIP, 0.033OHM, 7W, 1% Vishay WSHM2818R0330FEB 33.2k THICK FILM, 0.125W, 1%, 0805 Vishay CRCW080533K2FKEA RESISTOR SMD 0805 56.2k CRCW080556K2FKEA SMD 0805 THICK FILM, 0.125W, 1%, 0805 /ishay RESISTOR 580k RESISTOR SMD 0805 THICK FILM, 0.125W, 1%, 0805 Vishay CRCW0805680KFKEA 71.5k THICK FILM, 0.125W, 1%, 0805 CRCW080571K5FKEA 8.45k RESISTOR SMD 0805 THICK FILM, 0.125W, 1%, 0805 Vishay CRCW08058K45FKEA

FONTE: Elaborado pelos autores.

IC, SENSOR, TEMP, TO-92-3

Foi solicitado um orçamento para a Farnell, uma vez que o Instituto Mauá de Tecnologia tem a preferência de trabalhar com esse parceiro. O valor do orçamento, que tinha a disposição praticamente todos os componentes necessários com exceção do carregador de bateria (BQ24005PWP), ficou R\$ 2.065,66, conforme pode ser visto no Anexo A.

3.3 Ensaios possíveis

Durante a fase de aquisição teórica foram identificados possíveis ensaios que poderiam ser feitos no sistema para validação do circuito como um todo. Esses ensaios são de essencial importância para o projeto, pois dessa forma podem ser identificados possíveis problemas que devem ser corrigidos antes do lançamento da missão.

3.3.1 Validação dos subconjuntos

Um dos ensaios identificados foi o de validação dos subconjuntos do Sistema de Gerenciamento de Energia para *CubeSat*. O circuito do sistema como um todo foi dividido em vários subconjuntos de funções especificas para serem validados, ou seja, foi separada a parte do carregador de bateria, do conversor 3,3 V, do conversor de 5 V, do conversor de 12 V e do conversor *backup*. Na Figura 16 pode ser visualizado um dos subconjuntos do sistema.

Figura 16 – CIRCUITOS DOS SUBCONJUNTOS DO SISTEMA

FONTE: Fotos tiradas pelos autores.

3.3.2 Ensaio de radiação

O ensaio de radiação consiste na emissão de radiação nos semicondutores a fim de se obter a assinatura da tensão e corrente após a exposição a radiação. Para esse ensaio

foi necessário que os semicondutores estivessem decapados, ou seja, é necessário que a eletrônica do semicondutor esteja visível para que a emissão da radiação seja direta no componente, fato que não ocorrerá no espaço, uma vez que a película do componente estará presente o que, por sua vez, acaba dando uma pequena filtrada na radiação. Esse teste foi realizado em conjunto com o Centro Universitário da Faculdade de Engenharia Industrial (FEI), com a professora Marcilei da FEI.

Entre diversas pesquisas a respeito de possíveis testes de radiação, foi encontrado o projeto $Open\ Source\ Satellite\ Initiative^{(28)}$. Na $wikipage^{(29)}$ do projeto OSSI é disponibilizado um link para um $data\ base$ que contém dados de testes de radiação da NASA $Goddard\ Space\ Flight\ Center.^{(30)}$

- 3.3.3 Ensaio térmico
- 3.3.4 Ensaio de vácuo
- 3.3.5 Ensaio de termovácuo

4 Protótipo

5 Resultados e discussões

6 Plano de marketing

7 Plano operacional

8 Planilha financeira

9 Conclusões

Referências

- 1 MEHRPARVAR A.; PIGNATELLI, D. *CubeSat Design Specification*. 13. ed. Califórnia, 2014. Citado 2 vezes nas páginas 15 e 16.
- 2 NASA. NASA's CubeSat Launch Initiative. Washington, D.C, 2014. Disponível em: http://www.nasa.gov/directorates/somd/home/CubeSats_initiative.html>. Acesso em: 06 dez. 2014. Citado na página 15.
- 3 FERRÃO, R. C. Especificação do produto CubeSat. 1. ed. São Caetano do Sul, 2014. Citado na página 16.
- 4 ETEC TANCREDO NEVES. *Projeto UbatubaSat.* Ubatuba, 2014. Disponível em: http://www.tancredoubatuba.com.br/ubatubasat/index.php. Acesso em: 24 out. 2014. Citado na página 16.
- 5 ITA. AESP14. São José dos Campos, 2014. Disponível em: http://www.aer.ita.br/~aesp14/>. Acesso em: 24 out. 2014. Citado na página 16.
- 6 INPE. NanoSatC-BR2. São José dos Campos, 2014. Disponível em: http://www.inpe.br/crs/nanosat/NanoSatCBR2.php. Acesso em: 24 out. 2014. Citado na página 17.
- 7 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA FLUMINENSE. *Programas e Projetos desenvolvidos pelo IFF*. Campos dos Goytacazes, 2014. Disponível em: http://portal.iff.edu.br/projetos. Acesso em: 24 out. 2014. Citado na página 17.
- 8 ITA. Satélite ITASAT-1. São José dos Campos, 2014. Disponível em: http://www.ita.br/noticias/itasat1. Acesso em: 09 out. 2014. Citado na página 17.
- 9 THE TECH. Low Earth Orbit. [S.l.], 2014. Disponível em: https://www.thetech.org/exhibits/online/satellite/4/4a/4a.1.html>. Acesso em: 23 de nov. de 2014. Citado na página 18.
- 10 HOWELL, E. What Is a Geosynchronous Orbit? [S.l.], 2015. Disponível em: <http://www.space.com/29222-geosynchronous-orbit.html>. Acesso em: 27 de jun. de 2015. Citado na página 18.
- 11 NASA. Rocket Aerodynamics. Washington, D.C, 2014. Disponível em: http://microgravity.grc.nasa.gov/education/rocket/rktaero.html. Acesso em: 23 de nov. de 2014. Citado na página 18.
- 12 CIVIL AIR PATROL. Satellites. [S.l.], 2015. Disponível em: http://www.cap-ny153.org/satellites.htm. Acesso em: 05 de jun. de 2015. Citado na página 19.
- 13 FOGAçA, J. *Pilhas e bateria de lítio*. [S.l.], 2015. Disponível em: http://www.brasilescola.com/quimica/pilhas-baterias-litio.htm>. Acesso em: 08 de jun. de 2015. Citado na página 21.

Referências 39

14 KARASINSKI, L. Como são produzidas as baterias de lítio. [S.l.], 2015. Disponível em: http://www.tecmundo.com.br/bateria/42123-como-sao-produzidas-as-baterias-de-litio-.htm. Acesso em: 08 de jun. de 2015. Citado na página 21.

- 15 DIAS, C. B. Como funciona uma célula fotovoltaica? [S.l.], 1988. Disponível em: http://super.abril.com.br/ciencia/celula-fotovoltaica. Acesso em: 10 de jul. de 2015. Citado na página 21.
- 16 SAPA SOLAR. Como funciona uma célula fotovoltaica? [S.l.], 2015. Disponível em: http://www.sapa-solar.com/portugal/fotovoltaicas/ Como-funciona-uma-celula-fotovoltaica.html>. Acesso em: 10 de jul. de 2015. Citado na página 22.
- 17 SPECTROLAB. Company profile. Los Angeles, 2015. Disponível em: http://www.spectrolab.com/company.htm. Acesso em: 17 de jun. de 2015. Citado na página 23.
- 18 SPECTROLAB. *High Efficiency Space Solar Cells*. Califórnia, 2009? Citado na página 24.
- 19 ENGLISH, M. *Emcore completes sale to SolAero*. Albuquerque, NM, 2015. Disponível em: http://www.bizjournals.com/albuquerque/blog/morning-edition/2014/12/emcore-completes-sale-to-solaero.html. Acesso em: 17 de jun. de 2015. Citado na página 24.
- 20 SOLAERO TECHNOLOGIES. *About us.* Albuquerque, NM, 2015. Disponível em: http://solaerotech.com/about-us/. Acesso em: 17 de jun. de 2015. Citado na página 24.
- 21 SOLAERO TECHNOLOGIES. ZTJ Space Solar Cell Datasheet. Albuquerque, NM, 2015. Citado na página 25.
- 22 AZURSPACE SOLAR POWER GMBH. We develop future from space to Earth. Heilbronn, 2015. Disponível em: http://www.azurspace.com/index.php/en/. Acesso em: 17 de jun. de 2015. Citado na página 25.
- 23 AZURSPACE SOLAR POWER GMBH. 3G30C Advanced. Heilbronn, 2015. Citado na página 25.
- 24 TRISOLX. TrisolX Solar Wings. Nova Iorque, 2015. Citado na página 26.
- 25 NOVA ELETRôNICA. O que são componentes passivos. [S.l.], 2015. Disponível em: http://www.novaeletronica.com.br/o-que-sao-componentes-passivos/. Acesso em: 07 de jul. de 2015. Citado na página 27.
- 26 PY2BBS. Conhecendo capacitores. [S.l.], 2015. Disponível em: http://www.py2bbs.qsl.br/capacitores.php>. Acesso em: 08 de jul. de 2015. Citado 2 vezes nas páginas 27 e 28.
- 27 JOHANSON DIELECTRICS. Basics of ceramic chip capacitors. [S.l.], 2015. Disponível em: ">. Acesso em: 08 de jul. de 2015. Citado na página 28.

Referências 40

28 OPEN SOURCE SATELLITE INITIATIVE. Open Source Satellite Initiative. [S.l.], 2015. Disponível em: http://opensat.cc/. Acesso em: 10 de jul. de 2015. Citado na página 31.

- 29 OPEN SOURCE SATELLITE INITIATIVE. Open Source Satellite Initiative Wiki. [S.l.], 2015. Disponível em: http://opensat.cc/wiki/parts:radiation. Acesso em: 10 de jul. de 2015. Citado na página 31.
- 30 RADHOME. GSFC Radiation Data Base. [S.l.], 2015. Disponível em: http://radhome.gsfc.nasa.gov/radhome/RadDataBase/RadDataBase.html. Acesso em: 10 de jul. de 2015. Citado na página 31.

ANEXO A – Orçamento dos componentes da *Farnell*

Orçamento enviado pelo Sr. Helder Sant'ana Viana da Farnell Newark element 14.

Orçamento de Vendas Page 1 of 3

Orçamento de Vendas Page 2 of 3

1663917	LTC4412ES6#TRMPBF	CI SMD 6P SOT-23 CIRCUITO INTEGRADO	85423120	TECHNOLOGY	30/06/2015	16 UN	16,52	264,32	269,61	32,35	5,29	12,00	2,00
69K7604	MCP2551-I/SN	TRANSCEPTOR 5.5V SOIC-8	85423939	MICROCHIP	30/06/2015	7 UN	7,93	55,51	58,28	10,49	2,77	18,00	5,00
1823178	PIC18F66K80-I/PT	CIRCUITO INTEGRADO MICROCONTROLADOR 8BIT 64PINOS T	85423120	MICROCHIP	30/06/2015	7 UN	32,23	225,61	230,12	27,62	4,51	12,00	2,00
41K4832	LM3488MM/NOPB	CIRCUITO INTEGRADO CONTROLADOR TENSAO MSOP-8	85423120	TEXAS INSTRUMENTS	30/06/2015	4 UN	9,34	37,36	38,11	4,57	0,75	12,00	2,00
2382791	LMP2012MM/NOPB	CIRCUITO INTEGRADO AMPLIFICADOR OPERACIONAL VSSOP 8 PINOS	85423390	TEXAS INSTRUMENTS	30/06/2015	16 UN	14,61	233,76	245,45	44,18	11,69	18,00	5,00
2455147	TPS563209DDCT	CIRCUITO INTEGRADO REGULADOR SINCRONO SOT-23 6PINOS	85423939	TEXAS INSTRUMENTS	30/06/2015	12 UN	9,17	110,04	115,54	20,80	5,50	18,00	5,00
12T1465	B340A-13-F	DIODO SCHOTTKY 3A 40V DO-214AC	85411022	DIODES INC.	30/06/2015	24 UN	0,56	13,44	14,11	1,69	0,67	12,00	5,00
1692722	IHLP2525CZER100M01	INDUTOR SMD 10UH 3A 20% VISHAY DALE	85045000	VISHAY DALE	30/06/2015	4 UN	10,76	43,04	43,04	7,75	0,00	18,00	0,00
1741312	IHLP2020BZER2R2M11	INDUTOR 2.2UH 5.5A 20% SMD	85045000	VISHAY DALE	30/06/2015	4 UN	9,84	39,36	39,36	7,08	0,00	18,00	0,00
1187066	IHLP2525CZER3R3M01	INDUTOR SMD 3.3UH - 1187066	85045000	VISHAY DALE	30/06/2015	16 UN	8,11	129,76	129,76	23,36	0,00	18,00	0,00
2469472	IHLE4040DCER330M5A	INDUTOR SMD 33UH 3.7A 20% VISHAY	85045000	VISHAY	30/06/2015	4 UN	30,00	120,00	120,00	21,60	0,00	18,00	0,00
2290331	KP-2012CGCK	LED 0805 50MCD GREEN	85414029	KINGBRIGHT	30/06/2015	12 UN	0,29	3,48	3,55	0,64	0,07	18,00	2,00
1778306	CSD16323Q3	TRANSISTOR MOSFET N CH 25V 60A SON-8 TRANSISTOR MOSFET	85412120	TEXAS INSTRUMENTS	30/06/2015	4 UN	4,59	18,36	18,73	3,37	0,37	18,00	2,00
1471047	FDN306P	P - MULTIPLOS DE 05 UND	85412920	FAIRCHILD SEMICONDUC	30/06/2015	5 UN	1,09	5,45	5,56	1,00	0,11	18,00	2,00
1779275	SI9933CDY-T1-GE3	TRANSISTOR MOSFET PP-CH 20V 4A SMD	85412120	VISHAY	30/06/2015	24 UN	2,09	50,16	51,16	9,21	1,00	18,00	2,00
2469459	WSHM2818R0330FEB	RESISTOR DE FAIXA METALICA 0.033R 7W 1% 2818	85332120	VISHAY	30/06/2015	25 UN	3,01	75,25	76,76	13,82	1,51	18,00	2,00
1469932	CRCW0805470RFKEA	RESISTOR FILME ESPESSO 470 OHM 125 MW 1% 0805 - MULTIPLOS DE 10 UND	85332120	VISHAY DRALORIC	30/06/2015	20 UN	0,03	0,60	0,61	0,11	0,01	18,00	2,00
1469862	CRCW0805100RFKEA	RESISTOR FILME ESPESSO 1000HM 125MW 1% SMD 0805 RESISTOR FILME	85332120	VISHAY DRALORIC	30/06/2015	10 UN	0,03	0,30	0,31	0,05	0,01	18,00	2,00
65J1373	CRCW0805100KFKEB	ESPESSO 100K SMD 0805 1% 125MW VISHAY DALE	85332120		30/06/2015	20 UN	0,03	0,60	0,61	0,11	0,01	18,00	2,00
1652909	CRCW080510K0FKTA	RESISTOR FILME ESP 10K 125VDC	85332120	VISHAY DRALORIC	30/06/2015	64 UN	0,03	1,92	1,96	0,36	0,04	18,00	2,00
52K9800	CRCW080510K7FKEA	RESISTOR THICK FILM 10.7KOHM 125MW 1% SMD 0805	85332120	VISHAY DALE	30/06/2015	4 UN	0,03	0,12	0,12	0,02	0,00	18,00	2,00
52K9832	CRCW0805115KFKEA	RESISTOR SMD FILME ESPESSO 115 KOHM 125 mW 1% 0805	85332120	VISHAY DALE	30/06/2015	4 UN	0,03	0,12	0,12	0,02	0,00	18,00	2,00
52K9845	CRCW0805120RFKEA	RESISTOR SMD FILME ESPESSO 120 OHM 125 MW 1% 0 RESISTOR FILME	85332120	VISHAY DALE	30/06/2015	4 UN	0,03	0,12	0,12	0,02	0,00	18,00	2,00
<u>52K9855</u>	CRCW080513K3FKEA	ESPESSO 13.3KOHM 125MW 1% VISHAY DA	85332120	VISHAY DALE	30/06/2015	4 UN	0,03	0,12	0,13	0,02	0,01	18,00	2,00
<u>52K9914</u>	CRCW080517K4FKEA	RESISTOR FILME ESPESSO 17.4 KOHM 125 MW 1% 0805 RESISTOR FILME	85332120	VISHAY DALE	30/06/2015	8 UN	0,03	0,24	0,24	0,05	0,00	18,00	2,00
<u>52K9723</u>	CRCW08051K00FKEA	ESPESSO 1KOHM 125MW 1% SMD 0805 - IGUAL AO COD 1469847	85332120	VISHAY DALE	30/06/2015	4 UN	0,03	0,12	0,12	0,02	0,00	18,00	2,00
65J1295	CRCW08051K50FKEB	RESISTOR FILME ESPESSO 1.5K SMD 0805 1% 125MW VISHAY DALE	85332120	VISHAY DALE	30/06/2015	8 UN	0,03	0,24	0,25	0,04	0,01	18,00	2,00
1469653	CRCW0805220KFKEA	RESISTOR FILME ESP 220K 150V - MULTIPLOS DE 10 UND	85332120	VISHAY DRALORIC	30/06/2015	40 UN	0,03	1,20	1,22	0,22	0,02	18,00	2,00
1469896	CRCW080522K0FKEA	RESISTOR FILME ESP 22K - MULTIPLOS DE 10 UND	85332120	VISHAY DRALORIC	30/06/2015	40 UN	0,03	1,20	1,23	0,23	0,03	18,00	2,00
<u>52K9959</u>	CRCW08052K49FKEA	RESISTOR SMD FILME ESPESSO 2.49 KOHM 125 MW 1% 0	85332120	VISHAY DALE	30/06/2015	8 UN	0,03	0,24	0,24	0,04	0,00	18,00	2,00
52K9951	CRCW08052K20FKEA	RESISTOR FILME ESPESSO 2.2KOHM 125MW 1% SMD 0805 RESISTOR FILME	85332120	VISHAY DALE	30/06/2015	4 UN	0,03	0,12	0,12	0,02	0,00	18,00	2,00
2138953	CRCW08053K40FKEA	ESPESSO 3K4 SMD 0805 1% 125MW VISHAY DRALORIC - MULTIPLOS DE 10 UND	85332120	VISHAY DRALORIC	30/06/2015	20 UN	0,03	0,60	0,61	0,11	0,01	18,00	2,00
2469459	WSHM2818R0330FEB	RESISTOR DE FAIXA METALICA 0.033R 7W 1% 2818	85332120	VISHAY	30/06/2015	4 UN	3,01	12,04	12,29	2,21	0,25	18,00	2,00

Orçamento de Vendas Page 3 of 3

1653020	CRCW080556K2FKEA	56.2KOHM 125MW 1% 0805 - MULTIPLOS DE 10 UND	85332120	VISHAY DRALORIC	30/06/2015	10 UN	0,03	0,30	0,30	0,06	0,00	18,00	2,00
53K0432	CRCW0805680KFKEA	RESISTOR FILME ESPESSO 680K SMD 0805 1% VISHAY DRALORIC - MULTIPLOS DE 10 UND	85332120	VISHAY DALE	30/06/2015	30 UN	0,03	0,90	0,92	0,16	0,02	18,00	2,00
<u>1653034</u>	CRCW080571K5FKEA	RESISTOR THICK FILM 71.5KOHM 125MW 1% - MULTIPLOS DE 10 UND	85332120	VISHAY DRALORIC	30/06/2015	10 UN	0,03	0,30	0,31	0,06	0,01	18,00	2,00
2138971	CRCW08058K45FKEA	RESISTOR FILME ESPESSO 8.45K 1% SMD 0805 VISHAY DRALORIC - MULTIPLOS DE 10 UND	85332120	VISHAY DRALORIC	30/06/2015	10 UN	0,03	0,30	0,30	0,05	0,00	18,00	2,00
1438760	TMP36GT9Z	CIRCUITO INTEGRADO SENSOR DE TEMPERATURA TO-92- 3	85423190		30/06/2015	4 UN	4,70	18,80	19,18	2,30	0,38	12,00	2,00

- OBSERVAÇÕES

 1 Faturamento mínimo para 28 ddl será no valor de R\$ 250,00, após aprovação de limite de crédito. Para pagamento a vista (antecipado), o pedido será liberado mediante a compensação benção de alteração. Previsão/ disponibilidade a partir da liberação crédito/compensação bancária.

 8 Não aceitamos cancelamento ou devoluções de itens que necessitem ser importados.

 9 Esse documento, se for um orçamento, é válido por 10 dias.