Матан

Сергей Григорян

27 сентября 2024 г.

Содержание

1	Лекция 7			
	1.1	Критерий Коши	3	
	1.2	Частичные пределы	4	
2	Лекция 8			
	2.1	§3: Топология ℝ	7	

1 Лекция 7

1.1 Критерий Коши

Определение 1.1. Посл-ть $\{a_n\}_1^\infty$ наз-ся фундаментальной, если:

$$\forall \varepsilon > 0, \exists N : \forall n, m \ge N(|a_n - a_m| < \varepsilon)$$

Лемма 1.1. Всякая фундаментальная п-ть огр-на

 \mathcal{A} оказательство. Пусть $\{a_n\}_1^\infty$ - фундаментальна. По опр-ю:

$$\exists N : \forall n, m \geq N(|a_n - a_m| < 1)$$

В част-ти:

$$a_N - 1 < a_n < a_N + 1$$

для всех $n \ge N \ (m = N)$

Положим

$$\alpha = min(a_1, \dots, a_{N-1}, a_N - 1)$$

$$\beta = \max(a_1, \dots, a_{N-1}, a_N + 1)$$

. Тогда:

$$\alpha < a_n < \beta$$

при всех $n \in \mathbb{N}$

 $\underline{\text{Теорема}}_{ma, rp \mu a}$ 1.2 (Коши). П-ть $\{a_n\}_1^{\infty}$ - $cxodumcs \iff \{a_n\}_1^{\infty}$ - $\phi y \mu da Me \mu$ -

 ${\it Доказательство.} \implies$) Пусть $\lim_{n \to \infty} a_n = a$. Зафикс. $\varepsilon > 0$. По опр-ю предела:

$$\exists N, \forall n \in \mathbb{N}(|a_n - a| < \frac{\varepsilon}{2})$$

Тогда при всех $n, m \ge N$:

$$|a_n - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} * 2 = \varepsilon$$

 \Leftarrow) По предыдущей лемме, п-ть $\{a_n\}_1^\infty$ - ограничена \Rightarrow по т. Больцано-Вейерштрасса (Б-В) $\{a_n\}_1^\infty$ имеет сход. подпосл-ть $\{a_{n_k}\}_1^\infty \to a$

Покажем, что $a=\lim_{n\to\infty}$. Зафикс. $\varepsilon>0$. По опр-ю фундаментальности:

$$\exists N, \forall n, m \ge N(|a_n - a_m| < \frac{\varepsilon}{2})$$

 $T. K. \{a_{n_k}\} \rightarrow a \Rightarrow$

$$\exists K : \forall k \ge K(|a_{n_k} - a| < \frac{\varepsilon}{2})$$

Положим $M=\max(N,K)$. Тогда $n_M\geq M\geq N; n_M\geq M\geq K$ Поэтому при всех $n\geq N$:

$$|a_n - a| \le |a_n - a_{n_M}| + |a_{n_M} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

<u>Замечание</u>. Критерий Коши позволяет доказывать существование предела, без явного нахождения его значения

Кроме того, критерий позволяет **оценить скорость сходимости к пределу** (перейдём к пределу по т в определении фунд-ти):

$$|a_n - a| \le \varepsilon$$
, npu $\sec n \ge N$

Задача 1.1. Покажите, что если всякая фундаментальная посл-ть сх-ся (сходится), то выполняется аксиома непрерывности. А именно:

Пусть \mathbb{F} - упоряд. поле, на котором выполняется аксиома Архимеда

1.2 Частичные пределы

Определение 1.2. Точка $a \in \overline{\mathbb{R}}$ наз-ся частичным пределом числовой посл-ти $\{a_n\}_1^\infty$, если $\exists \{a_{n_k}\}$ - подпосл-ть $\{a_n\}$: $\lim_{k\to\infty} a_{n_k} = a$

$$L\left\{ a_{n}\right\} -$$
 мн-во частичных пределов $\left\{ a_{n}\right\}$

<u>Пример</u>. ± 1 - частичные пределы $a_n = (-1)^n$

$$a_{2k} \to 1, a_{2k-1} \to -1$$

Пусть задана числовая посл-ть $\{a_n\}$

Положим $M_{\pi} = \sup \{$

$$M_n = \sup_{k \ge n} \{ a_k \}$$

$$m_n = \inf_{k > n} \left\{ a_k \right\}$$

Пусть $\{a_n\}$ огр. сверху. Тогда все $M_n \in \mathbb{R}$

Поскольку при переходе к подмн-ву sup не увеличивается, то $\{M_n\}$ нестрого убывает

 $\Rightarrow \exists \lim_{n\to\infty} M_n$

Пусть $\{a_n\}$ не огр. сверху. Тогда все $M_n=+\inf$ Положим $\lim_{n\to\infty}M_n=+\infty$

Аналогично для $\{m_n\}$ (Огр./Неогр. снизу).

Итак, посл-ти $\{m_n\}$ и $\{M_n\}$ имеют предел в $\overline{\mathbb{R}}$

Определение 1.3. Величина $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}$ - верхний предел $\{a_n\}$ и об-ся $\overline{\lim_{n\to\infty}}a_n$

Величина $\lim_{n\to\infty}\inf_{k\geq n} \{\,a_k\,\}$ - нижний предел $\{\,a_n\,\}$ и об-ся $\varliminf_{n\to\infty}a_n$

Замечание. $T. \kappa. m_n \leq M_n, \forall n \in \mathbb{N}, morda:$

$$\lim_{n \to \infty} a_n \le \overline{\lim}_{n \to \infty} a_n$$

Задача 1.2.

$$\overline{\lim}_{n\to\infty}(-a_n) = -\lim_{n\to\infty}a_n$$

Теорема 1.3. Верхний (нижний) предел - наибольший (наименьший) из част. пределов посл-ти.

Доказательство.

$$M = \overline{\lim}_{n \to \infty} a_n, m = \lim_{n \to \infty} a_n$$

Нужно показать, что M, m - это ч. п. $\{a_n\}$ и любой ч. п. лежит между ними.

1) Покажем, что есть подп-ть $\{a_n\}$, сх-ся к M:

I. $M \in \mathbb{R}$. Имеем

$$M = \inf \{ M_n \}$$

По опр-ю sup, $\exists n_1 \colon (M - 1 < a_{n_1})$

$$M_{n_1+1} = \sup_{k \ge n_1+1} \{ a_k \} \Rightarrow \exists n_2 > n_1 : (M - \frac{1}{2} < a_{n_2})$$

и т. д.

Таким образом, по индукции, будет построена подп-ть $\{a_{n_k}\}$, т. ч.

$$M - \frac{1}{k} < a_{n_k}$$

Имеем:

$$M - \frac{1}{k} < a_{n_k} \le M_{n_k}$$

Края нер-ва сх-ся к $M\Rightarrow$ по т. о зажатой посл-ти, $a_{n_k}\to M$

- II. $M=+\infty$, тогда $\{a_n\}$ неогр. сверху \Rightarrow (по Теореме 8') она имеет под-пть, сх-ся к $+\infty$
- III. $M=-\infty$. T. K. $a_n \leq M_n, \forall n \Rightarrow \lim_{n \to \infty} a_n = -\infty$
- 2) Для m док-во аналогично, или сводиться к M по задаче prot-pred
- 3) Пусть $\{a_{n_k}\}, a_{n_k} \to a$. Тогда:

$$m_{n_k} \leq a_{n_k} \leq M_{n_k}, \forall k \Rightarrow m \leq a \leq M$$
(част. пределы)

Следствие. $\exists \lim_{n\to\infty} a_n \ (e \ \overline{\mathbb{R}}) \iff \overline{\lim_{n\to\infty}} a_n = \underline{\lim_{n\to\infty}} a_n$ В этом случае все три предела равны.

$$\Leftarrow$$

$$m_n \le a_n \le M_n$$

для всех $n \Rightarrow a_n \to a \text{ (Края } \to a)$

<u>Лемма</u> 1.4. Для $c \in \mathbb{R}$ верно:

$$c = \overline{\lim}_{n \to \infty} a_n \iff \begin{cases} \forall \varepsilon > 0, \exists N, \forall n \ge N (a_n < c + \varepsilon) \ (1) \\ \forall \varepsilon > 0, \forall N, \exists n \ge N (a_n > c - \varepsilon) \ (2) \end{cases}$$

$$c = \lim_{\underline{n} \to \infty} a_n \iff \begin{cases} \forall \varepsilon > 0, \forall N, \exists n \ge N (a_n < c + \varepsilon) \\ \forall \varepsilon > 0, \exists N, \forall n \ge N (a_n > c - \varepsilon) \end{cases}$$

Доказательство. Докажем, для верх предела:

$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} M_n, M_n = \sup_{k > n} \{ a_k \}$$

(1)
$$\iff \forall \varepsilon > 0, \exists N(M_N < c + \varepsilon)$$

(2)
$$\iff \forall \varepsilon > 0, \forall N(M_n > c - \varepsilon)$$

Напомним, что $\{M_n\}$ - нестрого убыв.

Тогда
$$(1) \wedge (2) \iff c = \lim_{n \to \infty} M_n \ (= \inf \{ M_n \})$$

2 Лекция 8

2.1 §3: Топология $\mathbb R$

Пусть $a \in \mathbb{R}$ и $\varepsilon > 0$.

Обозначение. •
$$B_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$$
 - ε -окрестность a

•
$$\overset{\circ}{B_{\varepsilon}}(a)=B_{\varepsilon}(a)\setminus\{a\}=(a-\varepsilon,a)\cup(a,a+\varepsilon)$$
 - проколотая ε -окр-ть $m.$ a

Определение 2.1. ПУсть $E \subset \mathbb{R}$ и $x \in \mathbb{R}$

- 1) Точка x наз-ся внутренней точкой мн-ва E, если $\exists \varepsilon > 0 (B_{\varepsilon}(x) \subset E)$
 - (int)E мн-во всех внут. точек E
- 2) Точка x наз-ся внешней точкой мн. E, если $\exists \varepsilon > 0(B_{\varepsilon}(x) \subset \mathbb{R} \backslash E)$ (ext)E мн-во внешних точек E

3) Точка x наз-ся граничной точкой мн-ва E, если

$$\forall \varepsilon > 0(B_{\varepsilon}(x) \cap E \neq \emptyset \land B_{\varepsilon}(x) \cap (\mathbb{R} \backslash E) \neq \emptyset)$$

 σE - мн-во всех граничных точек E

Замечание. Из опр-я следует:

$$\mathbb{R} = (int)E \sqcup (ext)E \sqcup \sigma E$$

Пример.

$$E = (0, 1], (int)E = (0, 1), (ext)E = (-\infty, 0) \cup (1, +\infty), \sigma E = \{0, 1\}$$

Определение 2.2. Мн-во $G \subset \mathbb{R}$ наз-ся открытым, если все его точки яв-ся внутренними (т. е. G = (int)G)

Определение 2.3. Мн-во $F\subset\mathbb{R}$ наз-ся замкнутым, если $\mathbb{R}\backslash F$ - открыто.

Пример. 1) (a,b) - открытое.

- (a,b) замкнутое.
- <u>Лемма</u> **2.1.** а) Объединение любого семейства открытых мн-в открыто.
 - b) Пересечение конечного сем-ва открытых мн-в открыто.
 - c) \mathbb{R}, \emptyset $om \kappa p \omega m \omega$

 \mathcal{A} оказательство. а) Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ - семейство открытых мн-в.

$$G = \bigcup_{\lambda \in \Lambda} G_{\lambda}$$
 и $x \in G$

По опр-ю:

$$\exists \lambda_0 \in \Lambda(x \in G_\lambda$$
 - открыто) $\iff \exists \varepsilon > 0 \colon B_\varepsilon(x) \subset G_\lambda \subset G$

Сл-но, $B_{\varepsilon}(x)\subset G$, т. е. x - внут. точка G

b) ПУсть $\{G_k\}_{k=1}^m$ - семейство открытых мн-в, $G=\bigcap_{k=1}^m G_k, x\in G$. По опр. пересечения:

$$\forall k, x \in G_k \Rightarrow \forall k, \exists \varepsilon_k > 0 \colon B_{\varepsilon_k}(x) \subset G_k$$
$$\varepsilon = \min_{1 \le k \le m} \{ \varepsilon_k \}$$

Тогда $\varepsilon>0$ и $B_\varepsilon(x)\subset B_{\varepsilon_k}(x)\subset G_k, \forall k\Rightarrow B_\varepsilon(x)\subset G=\bigcap_{k=1}^m$, т. е. x - внут. точка G

с) Открытость \mathbb{R}, \emptyset следует из опр-я.

<u>Лемма</u> **2.2.** а) Объединение конечного семейства замкнутых мн-в замкнуто

- b) Пересечение любого семейства замкнутых мн-в замкнуто
- c) \mathbb{R}, \emptyset замкнуты

Доказательство. а, b)

$$\mathbb{R}\backslash(\bigcap_{\lambda\in\Lambda}F_{\lambda})=\bigcup_{\lambda\in\Lambda}(\mathbb{R}\backslash F_{\lambda}).$$

$$\mathbb{R}\backslash(\bigcup_{k=1}^{m}F_{k})=\bigcap_{k=1}^{m}(\mathbb{R}\backslash F_{k})$$

с) Очев.

Определение 2.4. Пусть $E \subset \mathbb{R}$ и $x \in \mathbb{R}$. Точка x наз-ся предельной точкой мн-ва E, если:

$$\forall \varepsilon > 0(B_{\varepsilon}(x) \cap E \neq \emptyset)$$

<u>Лемма</u> **2.3.** Точка x - предельная точка \iff

$$\exists \{x_n\}_{x_n \neq x} \subset E \colon (x_n \to x)$$

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

$$x_n \in \overset{\circ}{B_{\frac{1}{n}}}(x) \cap E, \forall n \Rightarrow x_n \neq x \text{ и } x_n \in E \Rightarrow x - \frac{1}{n} < x_n < x + \frac{1}{n} \Rightarrow x_n \to x$$

<=) Зафикс. $\varepsilon>0$. Тогда $\exists N\colon \forall n\geq N(x_n\in(x-\varepsilon,x+\varepsilon))$ Сл-но, $x_N\in \overset{\circ}{B}_{\varepsilon}(x)\cap E$

Теорема 2.4 (Критерий замкнутости). Следующие утв. эквивалентны:

- 1) E замкнуто;
- 2) Е содержит все свои граничные точки;
- 3) Е содержит все свои предельные точки;
- 4) Если п-ть $\{x_n\}$ точек из E сходится κ x, то $x \in E$

Доказательство.

- 1=>2) Пусть $x\in\mathbb{R}ackslash E$ (открытое) $\Rightarrow\exists B_{arepsilon}(x)\subset\mathbb{R}ackslash E$, т. е. x внешняя точка E. Тогда $\sigma E\subset E$
- 2 = > 3) E содержит все свои граничные точки. Рассм. 2 случая:
 - а) x внутренняя точка $\Rightarrow x \in E$
 - b) x граничная точка $E\Rightarrow x\in E$ по усл. 2)
- 3 = > 4) Пусть $\{x_n\} \subset E, x_n \to x$

Предположим, что $x \not\in E \stackrel{\mbox{\scriptsize J}2}{\Rightarrow} x$ - предельная точка E

 $4 => 1) \ x \in R \backslash E.$ Предположим, что x - не внутренняя точка E. Тогда:

$$\forall n \colon B_{\frac{1}{n}}(x) \cap E \neq \emptyset$$

Пусть $x_n \in B_{\frac{1}{n}}(x)$. Имеем $\{x_n\} \subset E \Rightarrow x_n \to x \in E!!!!!!!$

<u>Пример.</u> Пусть L - мн-во част. пределов числовой n-ть $\{a_n\}$. Покажем, что L - замкнуто.

Доказательство. Пусть $\{x_n\} \subset L, x_n \to x$

По опр-ю част. предела, найдётся строго возрастающая п-ть номеров { n_k }, что $|a_{n_k}-x_k|<\frac{1}{k}$

Сл-но:

$$|a_{n_k} - x| \le |a_{n_k} - x_k| + |x_k - x| < \frac{1}{k} + |x_k - x|$$

Т. е. $x \in L$, по эквив. п.1 и п. 4 (Теоремы 2.4) заключаем, что L - замкнуто.

Определение 2.5. $\overline{E}=E\cup\sigma E$ - замыкание мн-ва E

 $\underline{\underline{Nemma}}$ 2.5. \underline{M} н-во \overline{E} является замкнутым. Кроме того, $\overline{E}=E\cup\{\,x\colon x$ - предельная точка $E\,\}$

Доказательство. Пусть $x \in \mathbb{R} \backslash \overline{E} \Rightarrow x$ - внешн. точка E, т. е.

$$\exists B_{\varepsilon}(x) \subset \mathbb{R} \backslash E$$

Если $B_{\varepsilon}(x) \cap \sigma E \neq \emptyset$, то $B_{\varepsilon}(x) \cap E \neq \emptyset!!!$

Сл-но, $B_{\varepsilon}(x) \subset \mathbb{R} \backslash \overline{E}$, т. е. x - внут. точка $\mathbb{R} \backslash \overline{E}$

Вторая часть следует из наблюдений:

- (1) любая предельная точка E либо внутренняя, любо граничная.
- (2) граничная точка E, не принадлежащая E, является предельной.

Задача **2.1.** 1) $x \in \overline{E} \iff \exists \{x_n\} \subset E(x_n \to x)$

2) $\overline{E} = \bigcap \{ F \colon F \text{ - замкнуто или } F \supset E \}$