Technologia wytwarzania i przetwarzania metali
Wyznaczanie parametrów konstrukcyjnych dyszy
de Lavala

Wydział IMIiP	Mateusz Karkula	Data wykonania:
Rok II, Grupa 1	Wateusz Karkula	27.11.2008r

1. Teoria

Konwertory – używane są do konwersji lub świeżenia metali (np. do konwersji żelaza w stal lub topienia kamieni miedziowych lub niklowych, galeny, itd.) w wyniku poddania materiałów, uprzednio stopionych lub podgrzanych do wysokiej temperatury, silnemu strumieniowi powietrza lub tlenu; w rezultacie większość węgla lub zanieczyszczeń, takich jak mangan, krzem i fosfor utlenia się i w postaci gazu lub płynnego żużlu jest usuwana.

Rysunek 1: Konwertor tlenowy - budowa

Rysunek 2: Konwertor tlenowy - kolejność wykonywania operacji

<u>Lanca tlenowa</u> – Głównym elementem lancy tlenowej jest rura zakończona dyszą wykonaną z miedzi. Doprowadza ona tlen na powierzchnię kąpieli metalowej w konwertorze tlenowym. Dysza jest złożona z kilku dysz De Lavala zwiększających prędkość tlenu. Kolejnym elementem jest system chłodzenia zapewniany przez podawanie i odprowadzanie wody przy pomocy dwóch dodatkowych rur.

<u>Dysza de Lavala</u> – kanał aerodynamiczny, dzięki któremu można uzyskać przepływ naddźwiękowy wykorzystywany w niektórych typach turbin parowych, w silnikach odrzutowych i rakietowych. Przekrój dyszy Lavala w początkowym odcinku jest zbieżny, następnie rozbieżny. W części zbieżnej następuje przyspieszenie czynnika od prędkości początkowej do prędkości dźwięku. W części rozbieżnej następuje dalsze przyspieszanie powyżej prędkości dźwięku. Zarówno w części zbieżnej jak i rozbieżnej występuje rozprężanie gazu. Przekrój najwęższy nazywany jest przekrojem krytycznym, a parametry gazu w nim występujące - parametrami krytycznymi. Prędkość krytyczna jest prędkością dźwięku. Dysza de Lavala składa się z konfuzora i dyfuzora.

Rysunek 3: Dysza de Lavala

<u>Konfuzor</u> – kanał przepływowy z malejącym przekrojem poprzecznym. Przepływający (w wyniku odpowiedniej różnicy ciśnień) z dużą prędkością czynnik termodynamiczny podlega przemianie adiabatycznej. Zmniejszający się przekrój poprzeczny powoduje wzrost prędkości przepływu i spadek ciśnienia czynnika. Wraz ze spadkiem ciśnienia następuje spadek temperatury a więc i entalpii . Rośnie przy tym objętość właściwa. Rozpatrując przemiany energii w konfuzorze można stwierdzić, że następuje zamiana pewnej wartości entalpii na energię kinetyczną. Spada więc entalpia gazu, a rośnie energia kinetyczna.

<u>Dyfuzor</u> – kanał przepływowy z rosnącym przekrojem poprzecznym, np. stożkowo rozszerzający się lub spiralny odcinek rury, kanał międzyłopatkowy ograniczony łopatkami sprężarki przepływowej_lub pompy wirowej, dyfuzory płaskie, i inne. W dyfuzorze (w wyniku wzrostu przekroju poprzecznego) następuje spowolnienie przepływu płynu i przemiana energii kinetycznej strumienia w energię ciśnienia.

Do wykonania obliczeń potrzebne jest natężenie przepływu tlenu. Oblicza się je z wzoru:

 $I_{tlenu} = 5,419 + 2,923 * Q$

Obliczenia wykonuje się na podstawie równania ciągłości strugi.

2. Projektowanie dyszy de Lavala

Wszystkie obliczenia zostały wykonane w programie dostępnym w laboratorium.

Dane początkowe:

Pojemność konwertora:	240	[Mg]
Temperatura tlenu na wejściu:	293	[K]
Ciśnienie tlenu na wejściu:	1013250	[N / m2]
Kąt rozwarcia dyfuzora:	10	[°]
Liczba dysz:	3	
Odległość kolejnych obliczonych przekrojów dyszy:	0,005	[m]

0,03805	[m]
0,11416	[m]
0,11148	[m]
0,05129	[m]
0,07126	[m]
1013250	[N / m2]
535281,7365	[N / m2]
101325	[N / m2]
40	[m / s]
298,12105	[m / s]
507,00123	[m / s]
	0,11416 0,11148 0,05129 0,07126 1013250 535281,7365 101325 40 298,12105

3. Symulacje

Zaprojektowana dysza została porównana z dyszami przystosowanymi do lancy z czterema i pięcioma dyszami. Różnice między nimi przedstawiają poniższe wykresy.

Zależność długości konfuzora i dyfuzora od liczby dysz 0,12 0,08 0,08 0,04 0,02 0 3 4 5 liczba dysz

Wykres 1: Zależność długości konfuzora i dyfuzora od liczby dysz

Zależność ciśnienia w funkcji odległości od wlotu dyszy

Wykres 2: Zależność ciśnienia w funkcji odległości od wlotu dyszy.

Zależność prędkości w funkcji odległości od wlotu dyszy 600 500 400 prędkość [m / s] 3 dysze 300 4 dysze 5 dysz 200 100 0 0,04 0,06 0,08 0 0,02 0,1 0,12 0,14 0,16 długość dyszy [m]

Wykres 3: Zależność prędkości w funkcji odległości od wlotu dyszy

4. Wnioski

Niemal wszystkie parametry zależą od ilości dysz w lancy, jedynie prędkość oraz ciśnienie wlotowe i wylotowe pozostają takie same. Wraz ze wzrostem liczby dysz maleją długości oraz średnice dysz, dodatkowo przepływ tlenu staje się bardziej gwałtowny. Największe zmiany parametrów przepływu tj. prędkości i ciśnienia zachodzą w konfuzorze.

Wszystkie dysze spełniają swoje zadanie – przyśpieszają tlen do prędkości ponaddźwiękowej, dlatego lepiej jest projektować lancę dla mniejszej ilości dysz, dzięki czemu zmniejsza się zużycie materiału z którego produkowane są dysze, mniejszej liczbie dysz łatwiej jest zapewnić chłodzenie. Wszystkie te czynniki wpływają na obniżenie kosztów produkcji.

Powyższe ćwiczenie spełniło swoje zadanie i pozwoliło zapoznać się z procesem projektowania dyszy de Lavala.