

PROBABILITY THEORY 0

作者:徐知南而北游

时间: 2025年7月7日

目录

1	Probability Space and Random Variable		1
	1.1	Probability space	1
2	Convergence Concepts		
	2.1	Convergence: almost sure, in probability, and in L^p	2
	2.2	Borel Cantelli lemma	3
3	Law	of Large Numbers	4
	3.1	simple theorems	4
	3.2	Weak law of large numbers	5
	3.3	Three series theorem	6
	3.4	Strong law of large numbers	9

Probability Space and Random Variable

____ § 1.1

Probability space

A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ contains three elements:

- The space Ω : this is a non-empty set. It can be viewed as the set of all possible outcomes.
- The σ -field \mathcal{F} : this can be viewed as a collection of all the events.
- The probability measure \mathbb{P} : this is a function from \mathcal{F} to [0,1]. It gives a probability to each event.

[Definition 1.1] Suppose \mathcal{F} is a non-empty collection of subsets of Ω .

• It is a field, if it is closed under complementation and closed under union:

$$A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$$

 $A_1, A_2 \in \mathcal{F} \Longrightarrow A_1 \cup A_2 \in \mathcal{F}$

• It is a monotone class if

$$A_j \in \mathcal{F}, A_j \subset A_{j+1}, 1 \leqslant j < \infty \Longrightarrow \cup_j A_j \in \mathcal{F}.$$

 $A_j \in \mathcal{F}, A_j \supset A_{j+1}, 1 \leqslant j < \infty \Longrightarrow \cap_j A_j \in \mathcal{F}.$

• It is a σ -field if it is closed under complementation and closed under countable union:

$$A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}.$$

$$A_j \in \mathcal{F}, 1 \leqslant j < \infty \Longrightarrow \cup_j A_j \in \mathcal{F}.$$

[Lemma 1.2] A field is a σ -field \iff it is a monotone class.

Proof.

- 1. (\Longrightarrow)
- 2. (<==)

[Definition 1.3] Given any collection C of sets, the σ -field (resp. monotone class) generated by C is the intersection of all σ -fields (resp. monotone classes) containing C.

Convergence Concepts

— § 2.1 —

Convergence: almost sure, in probability, and in L^p

[Definition 2.1] (Almost sure convergence (a.s.)) The sequence of random variables $\{X_n\}$ converges a.s. to the random variable X if there exists a null set \mathcal{N} such that

$$\lim_{n \to \infty} X_n(\omega) = X(\omega), \quad \forall \omega \in \Omega \backslash \mathcal{N}$$
(2.1)

[Definition 2.2] (Convergence in probability) The sequence $\{X_n\}$ converges in probability to the random variable X if, for every $\epsilon > 0$, we have

$$\lim_{n} \mathbb{P}\left[|X_n - X| > \epsilon\right] = 0 \tag{2.2}$$

[Definition 2.3] (Convergence in L^p) Assume $p \geqslant 1$. The sequence $\{X_n\}$ converges in L^p to the random variable X if $X_n \in L^p, X \in L^p$ and

$$\lim_{n} \mathbb{E}\left[\left|X_{n} - X\right|^{p}\right] = 0 \tag{2.3}$$

[Lemma 2.4] The sequence $\{X_n\}$ converges a.s. to $X \iff$, for any $\epsilon > 0$, we have

$$\lim_{m \to \infty} \mathbb{P}\left[|X_n - X| \leqslant \epsilon, \quad \forall n \geqslant m \right] = 1 \tag{2.4}$$

Proof.

 $1. (2.1) \implies (2.4)$

 $2. (2.1) \iff (2.4)$

[Proposition 2.5] Assume p > 0. Then $X_n \to X$ in $L^p \implies X_n \to X$ in probability.

<u>Proof.</u> Assume $X_n \to X$ in L^p . For any $\epsilon > 0$, we have

$$\mathbb{P}[|X_n - X| > \epsilon] \leqslant \epsilon^{-p} \mathbb{E}[|X_n - X|^p] \to 0 \tag{2.5}$$

[Remark 2.6] (2.5) is also called Markov inequality

- § 2.2 ----

Borel Cantelli lemma

[Definition 2.7] Let $\{E_n\}$ be a sequence of subsets in \mathcal{F} . Define

$$\limsup_n E_n = \bigcap_{m=1}^{\infty} \bigcup_{n \geqslant m} E_n, \quad \liminf_n E_n = \bigcup_{m=1}^{\infty} \bigcap_{n \geqslant m} \mathbb{E}_n$$

Note that

$$\liminf_n E_n = \left(\limsup_n E_n^c\right)^c$$

[Theorem 2.8] (Borel Cantelli lemma).

• For arbitrary sequence $\{E_n\}$, we have

$$\sum_{n} \mathbb{P}\left[E_{n}\right] < \infty \Longrightarrow \mathbb{P}\left[E_{n} \text{ i.o. }\right] = 0$$

• If the events $\{E_n\}$ are independent, we have

$$\sum_{n} \mathbb{P}\left[E_{n}\right] = \infty \Longrightarrow \mathbb{P}\left[E_{n} \text{ i.o. }\right] = 1$$

Proof.

Law of Large Numbers

- § 3.1

simple theorems

[Theorem 3.1] If the X_j 's are uncorrelated and their second moments have a common bound, then

$$\frac{S_n - \mathbb{E}(S_n)}{n} \to 0 \quad \text{in}L^2 \tag{3.1}$$

[Remark 3.2] hence also in pr.

Proof. By Chebyshev inequality

Theorem 3.3 If the X_j 's are uncorrelated and their second moments have a common bound, then (3.1) holds almost surely

<u>Proof.</u> Without loss of generality we may suppose that $\mathscr{E}(X_j) = 0$ for each j, so that the X_j 's are orthogonal. then

$$\sigma^{2}(S_{n}) = \sum_{j=1}^{n} \sigma^{2}(X_{j}) \implies \mathbb{E}(S_{n}^{2}) \leq Mn,$$

where M is a bound for the second moments. It follows by Chebyshev's inequality that for each $\epsilon > 0$ we have

$$\sum_{n} \mathbb{P}\left\{ |S_{n^2}| > n^2 \epsilon \right\} = \sum_{n} \frac{M}{n^2 \epsilon^2} < \infty$$

Hence by Borel-Cantelli lemma we have

$$\mathbb{P}\left\{|S_{n^2}| > n^2 \varepsilon \text{ i.o. }\right\} = 0 \quad \forall \varepsilon \iff \frac{S_{n^2}}{n^2} \to 0 \quad \text{ a.e. }$$

for each $n \ge 1$:

$$D_n = \max_{n^2 \le k < (n+1)^2} |S_k - S_{n^2}|$$

Then we have

$$\mathbb{E}\left(D_{n}^{2}\right) \leq 2n\mathbb{E}\left(\left|S_{(n+1)^{2}} - S_{n^{2}}\right|^{2}\right) = 2n\sum_{j=n^{2}+1}^{(n+1)^{2}} \sigma^{2}\left(X_{j}\right) \leq 4n^{2}M$$

By Chebyshev's inequality

$$\mathbb{P}\left\{D_n > n^2 \epsilon\right\} \le \frac{4M}{\epsilon^2 n^2}$$

It follows as before that

$$\frac{D_n}{n^2} \to 0$$
 a.e.

Then we have

$$\frac{|S_k|}{k} \le \frac{|S_{n^2}| + D_n}{n^2}$$

which implies (3.1)

§3.2

Weak law of large numbers

[Definition 3.4] Two sequences of random variables $\{X_n\}$ and $\{Y_n\}$ are equivalent if

$$\sum_{n} \mathbb{P}\left[X_n \neq Y_n\right] < \infty$$

[Theorem 3.5] If $\{X_n\}$ and $\{Y_n\}$ are equivalent, then

$$\sum_{n} (X_n - Y_n)$$
 converges almost surely

Furthermore if $a_n \uparrow \infty$, then

$$\frac{1}{a_n} \sum_{i=1}^n (X_j - Y_j) \to 0 \quad \text{almost surely}$$

Proof. By the Borel-Cantelli lemma, X_n, Y_n are equivalent implies that

$$\mathbb{P}\left\{X_n \neq Y_n \text{ i.o. }\right\} = 0$$

This means that there exists a null set N with the following property: if $\omega \in \Omega \backslash N$, then there exists $n_0(\omega)$ such that

$$n \ge n_0(\omega) \implies X_n(\omega) = Y_n(\omega)$$

Thus for such an ω , the two numerical sequences $\{X_n(\omega)\}$ and $\{Y_n(\omega)\}$ differ only in a finite number of terms (how many depending on ω). In other words, the series

$$\sum_{n} \left(X_n(\omega) - Y_n(\omega) \right)$$

consists of zeros from a certain point on. Both assertions of the theorem are trivial consequences of this fact. $\ \Box$

[Theorem 3.6] Let $\{X_n\}$ be i.i.d. with finite mean m. Define $S_n = \sum_{j=1}^n X_j$, then we have

$$\frac{S_n}{n} \to m$$
, in probability.

<u>Proof.</u> Denote by μ the common law of X_n 's, and suppose $Z \sim \mu$. Since $Z \in L^1$, we have

$$\sum_{n} \mathbb{P}[|Z| \geqslant n] < \infty$$

We introduce random variables Y_n 's by truncating X_n 's:

$$Y_n = X_n \mathbb{1}_{\{|X_n| \leqslant n\}}$$

Then

$$\sum_n \mathbb{P}\left[X_n \neq Y_n\right] = \sum_n \mathbb{P}\left[|X_n| > n\right] = \sum_n \mathbb{P}[|Z| \geqslant n] < \infty$$

Hence $\{Y_n\}$ and $\{X_n\}$ are equivalent. Define $T_n = \sum_{j=1}^n Y_j$. If we prove

$$\frac{T_n - \mathbb{E}\left[T_n\right]}{n} \to 0 \quad \text{ in probability}$$

then the conclusion follows, because $\mathbb{E}[T_n]/n \to m$ as $n \to \infty$. For any $\epsilon > 0$,

$$\mathbb{P}\left[|T_n - \mathbb{E}\left[T_n\right]| \geqslant n\epsilon\right] \leqslant \frac{\operatorname{var}\left(T_n\right)}{n^2 \epsilon^2}$$

It suffices to show var $(T_n) = o(n^2)$. Let us calculate var (T_n) .

$$\operatorname{var}\left(T_{n}\right) = \sum_{j=1}^{n} \operatorname{var}\left(Y_{j}\right) \leqslant \sum_{j=1}^{n} \mathbb{E}\left[Y_{j}^{2}\right] = \sum_{j=1}^{n} \mathbb{E}\left[Z^{2} \mathbb{1}_{\left\{|Z| \leqslant j\right\}}\right]$$

The most naive estimate is the following:

$$\operatorname{var}\left(T_{n}\right) \leqslant \sum_{j=1}^{n} \mathbb{E}\left[Z^{2} \mathbb{1}_{\left\{|Z| \leqslant j\right\}}\right] \leqslant \sum_{j=1}^{n} j^{2} = O\left(n^{3}\right)$$

The less naive estimate is the following:

$$\operatorname{var}\left(T_{n}\right) \leqslant \sum_{j=1}^{n} \mathbb{E}\left[Z^{2} \mathbb{1}_{\left\{|Z| \leqslant j\right\}}\right] \leqslant \sum_{j=1}^{n} j \mathbb{E}\left[|Z| \mathbb{1}_{\left\{|Z| \leqslant j\right\}}\right] \leqslant \sum_{j=1}^{n} j \mathbb{E}[|Z|] = O\left(n^{2}\right)$$

But we desire a control of $o(n^2)$. To improve it, let $\{a_n\}$ be a sequence of integers such that $1 \le a_n \le n$, $a_n \to \infty$, but $a_n = o(n)$. Then we have

$$\begin{aligned} \operatorname{var}\left(T_{n}\right) &\leqslant \sum_{j=1}^{n} \mathbb{E}\left[Z^{2} \mathbb{1}_{\left\{|Z| \leqslant j\right\}}\right] = \sum_{j \leqslant a_{n}} + \sum_{a_{n} < j \leqslant n} \\ &= \sum_{j \leqslant a_{n}} \mathbb{E}\left[Z^{2} \mathbb{1}_{\left\{|Z| \leqslant j\right\}}\right] + \sum_{a_{n} < j \leqslant n} \mathbb{E}\left[Z^{2} \mathbb{1}_{\left\{|Z| \leqslant a_{n}\right\}}\right] + \sum_{a_{n} < j \leqslant n} \mathbb{E}\left[Z^{2} \mathbb{1}_{\left\{a_{n} < |Z| \leqslant j\right\}}\right] \\ &\leqslant \sum_{j \leqslant a_{n}} a_{n} \mathbb{E}[|Z|] + \sum_{a_{n} < j \leqslant n} a_{n} \mathbb{E}[|Z|] + \sum_{a_{n} < j \leqslant n} n \mathbb{E}\left[|Z| \mathbb{1}_{\left\{a_{n} < |Z| \leqslant j\right\}}\right] \\ &\leqslant O(1) n a_{n} + O(1) n^{2} \mathbb{E}\left[|Z| \mathbb{1}_{\left\{|Z| > a_{n}\right\}}\right] \end{aligned}$$

The first term is $na_n = o\left(n^2\right)$ because $a_n = o(n)$; the second term is also $o\left(n^2\right)$ because $\mathbb{E}\left[|Z|\mathbb{1}_{\{|Z|>a_n\}}\right] \to 0$ since $a_n \to \infty$. Therefore, we have $\operatorname{var}\left(T_n\right) = o\left(n^2\right)$ as desired.

[Example 3.7] Let $\{X_n\}$ be i.i.d. with the common law given by

$$\mathbb{P}[Z=n] = \mathbb{P}[Z=-n] = \frac{c}{n^2 \log n}, \quad n=2,3,\ldots,$$

where c is a normalizing constant. Define $S_n = \sum_{i=1}^n X_j$. It is clear that $\mathbb{E}[|Z|] = \infty$, but we have

$$\frac{S_n}{n} \to 0$$
, in probability

Proof.

——— § 3.3

Three series theorem

[Lemma 3.8] Let $\{X_n\}$ be independent random variables such that $\mathbb{E}[X_n] = 0$ and $\mathbb{E}[X_n^2] < \infty$. Define $S_n = \sum_{j=1}^n X_j$. Then we have

$$\mathbb{P}\left[\max_{1 \leqslant j \leqslant n} |S_j| \geqslant \epsilon\right] \leqslant \frac{\mathbb{E}\left[S_n^2\right]}{\epsilon^2}$$

Proof. Fix $\epsilon > 0$ and define

$$\Lambda = \left\{ \max_{1 \leqslant j \leqslant n} |S_j| \geqslant \epsilon \right\}$$

Define $T = \min\{j : |S_j| \ge \epsilon\}$ to be the first time that $|S_j|$ exceeds ϵ , and define $\Lambda_k = \{T = k\}$:

$$\Lambda_k = \left\{ \max_{1 \leqslant j \leqslant k-1} |S_j| < \epsilon, |S_k| \geqslant \epsilon \right\}$$

Note that Λ_k 's are disjoint and $\Lambda = \bigsqcup_{k=1}^n \Lambda_k$. We have

$$\mathbb{E}\left[S_n^2 \mathbb{1}_{\Lambda}\right] = \sum_{k=1}^n \mathbb{E}\left[S_n^2 \mathbb{1}_{\Lambda_k}\right] = \sum_{k=1}^{\mathbb{E}} \left[S_k^2 \mathbb{1}_{\Lambda_k} + 2S_k \left(S_n - S_k\right) \mathbb{1}_{\Lambda_k} + \left(S_n - S_k\right)^2 \mathbb{1}_{\Lambda_k}\right]$$

Note that $S_k \mathbb{1}_{\Lambda_k}$ and $S_n - S_k$ are independent, thus

$$\mathbb{E}\left[S_k\left(S_n - S_k\right) \mathbb{1}_{\Lambda_k}\right] = \mathbb{E}\left[S_k \mathbb{1}_{\Lambda_k}\right] \mathbb{E}\left[\left(S_n - S_k\right)\right] = 0$$

Therefore,

$$\mathbb{E}\left[S_n^2 \mathbb{1}_{\Lambda}\right] = \sum_{k=1}^n \mathbb{E}\left[S_k^2 \mathbb{1}_{\Lambda_k} + (S_n - S_k)^2 \mathbb{1}_{\Lambda_k}\right] \geqslant \sum_{k=1}^n \mathbb{E}\left[S_k^2 \mathbb{1}_{\Lambda_k}\right] \geqslant \sum_{k=1}^n \epsilon^2 \mathbb{P}\left[\Lambda_k\right] = \epsilon^2 \mathbb{P}[\Lambda].$$

Thus we have $\mathbb{P}[\Lambda] \leq \mathbb{E}\left[S_n^2\right]/\epsilon^2$, as desired

[Lemma 3.9] Let $\{X_n\}$ be independent random variables which are bounded: there exists a constant A such that $|X_n| \leq A$ almost surely for all n. Define $S_n = \sum_{i=1}^n X_i$. Then we have

$$\mathbb{P}\left[\max_{1 \leqslant j \leqslant n} |S_j| \leqslant B\right] \leqslant \frac{(2B+A)^2}{\operatorname{var}(S_n)}$$

<u>Proof.</u> Define $T = \min\{j : |S_j| > B\}$ to be the first time that $|S_j|$ exceeds B. Then we have

$$\{T > k\} = \left\{ \max_{1 \leqslant j \leqslant k} |S_j| \leqslant B \right\}, \quad \{T = k\} = \left\{ \max_{1 \leqslant j \leqslant k-1} |S_j| \leqslant B, |S_k| > B \right\}$$

We need to give a upper bound for $\mathbb{P}[T > n] \operatorname{var}(S_n)$. Let us consider the expectation and the variance of S_k on $\{T > k\}$:

$$a_k := \mathbb{E}\left[S_k \mathbb{1}_{\{T>k\}}\right] / \mathbb{P}[T>k], \quad \mathbb{E}\left[\left(S_k - a_k\right)^2 \mathbb{1}_{\{T>k\}}\right].$$

It is clear that $|a_k| \leq B$. We write

$$\mathbb{E}\left[\left(S_{k+1} - a_{k+1}\right)^2 \mathbb{1}_{\{T > k+1\}}\right] = \mathbb{E}\left[\left(S_{k+1} - a_{k+1}\right)^2 \mathbb{1}_{\{T > k\}}\right] - \mathbb{E}\left[\left(S_{k+1} - a_{k+1}\right)^2 \mathbb{1}_{\{T = k+1\}}\right].$$

For the first term,

$$\begin{split} & \mathbb{E}\Big[\left(S_{k+1} - a_{k+1} \right)^2 \mathbbm{1}_{\{T > k\}} \Big] \\ & = \mathbb{E}\left[\left(S_k - a_k + X_{k+1} - a_{k+1} + a_k \right)^2 \mathbbm{1}_{\{T > k\}} \right] \\ & = \mathbb{E}\left[\left(S_k - a_k \right)^2 \mathbbm{1}_{\{T > k\}} \right] + \mathbb{E}\left[\left(X_{k+1} - a_{k+1} + a_k \right)^2 \mathbbm{1}_{\{T > k\}} \right] \\ & = \mathbb{E}\left[\left(S_k - a_k \right)^2 \mathbbm{1}_{\{T > k\}} \right] + \mathbb{E}\left[\left(X_{k+1} - a_{k+1} + a_k \right)^2 \right] \mathbb{P}[T > k] \\ & \geqslant \mathbb{E}\left[\left(S_k - a_k \right)^2 \mathbbm{1}_{\{T > k\}} \right] + \operatorname{var}\left(X_{k+1} \right) \mathbb{P}[T > k]. \end{split}$$

The last \geqslant uses the fact $\mathbb{E}\left[(X-c)^2\right]\geqslant \operatorname{var}(X)$ for all $c\in\mathbb{R}$.

For the second term,

$$\mathbb{E}\left[\left(S_{k+1} - a_{k+1}\right)^2 \mathbb{1}_{\{T=k+1\}}\right] = \mathbb{E}\left[\left(S_k + X_{k+1} - a_{k+1}\right)^2 \mathbb{1}_{\{T=k+1\}}\right].$$

Note that, $|S_k| \leq B$ on $\{T = k + 1\}$, and $|X_{k+1}| \leq A$, and $|a_{k+1}| \leq B$. Thus, for the second term,

$$\mathbb{E}\left[\left(S_{k+1} - a_{k+1}\right)^2 \mathbb{1}_{\{T = k+1\}}\right] \leqslant (2B + A)^2 \mathbb{P}[T = k+1].$$

Combining the two estimates, we have

$$\mathbb{E}\left[\left(S_{k+1} - a_{k+1}\right)^2 \mathbbm{1}_{\{T > k+1\}}\right] \geqslant \mathbb{E}\left[\left(S_k - a_k\right)^2 \mathbbm{1}_{\{T > k\}}\right] + \operatorname{var}\left(X_{k+1}\right) \mathbb{P}[T > k] - (2B + A)^2 \mathbb{P}[T = k+1].$$

Summing over k, we have

$$\mathbb{E}\Big[(S_n - a_n)^2 \, \mathbb{1}_{\{T > n\}} \Big] \geqslant \mathbb{E}\Big[(X_1 - a_1)^2 \, \mathbb{1}_{\{T > 1\}} \Big] + \sum_{k=1}^{n-1} \operatorname{var}(X_{k+1}) \, \mathbb{P}[T > k] - (2B + A)^2 \mathbb{P}[2 \leqslant T \leqslant n]$$

$$\geqslant \mathbb{E}\Big[(X_1 - a_1)^2 \, \mathbb{1}_{\{T > 1\}} \Big] + \left(\operatorname{var}(S_n) - \operatorname{var}(X_1) \right) \mathbb{P}[T > n] - (2B + A)^2 \mathbb{P}[2 \leqslant T \leqslant n]$$

Thus

$${\rm var}\left(S_{n}\right)\mathbb{P}[T>n] \leqslant \mathbb{E}\left[\left(S_{n}-a_{n}\right)^{2}\mathbb{1}_{\{T>n\}}\right] + {\rm var}\left(X_{1}\right)\mathbb{P}[T>n] + (2B+A)^{2}\mathbb{P}[2\leqslant T\leqslant n].$$

Note that

$$\mathbb{E}\left[\left(S_{n}-a_{n}\right)^{2}\mathbb{1}_{\{T>n\}}\right] = \mathbb{E}\left[S_{n}^{2}\mathbb{1}_{\{T>n\}}\right] - a_{n}^{2}\mathbb{P}[T>n] \leqslant B^{2}\mathbb{P}[T>n].$$

Thus

$$\operatorname{var}(S_n) \mathbb{P}[T > n] \le B^2 \mathbb{P}[T > n] + A^2 \mathbb{P}[T > n] + (2B + A)^2 \mathbb{P}[2 \le T \le n] \le (2B + A)^2$$

Theorem 3.10 Let $\{X_n\}$ be independent random variables and define the truncation for a fixed constant A>0:

$$Y_n = X_n \mathbb{1}_{\{|X_n| \leqslant A\}}$$

Then the series $\sum_{n} X_n$ converges almost surely \iff the following three series all converge:

$$\sum_{n} \mathbb{P}[|X_n| > A], \quad \sum_{n} \mathbb{E}[Y_n], \quad \sum_{n} \operatorname{var}(Y_n).$$

<u>Proof.</u> Suppose the three series all converge.

the first series converges
$$\implies \sum_{n} \mathbb{P}\left[X_{n} \neq Y_{n}\right] < \infty \iff \left\{X_{n}\right\}, \left\{Y_{n}\right\}$$
 are equivalent

it suffices to show that $\sum_{n} Y_n$ converges almost surely.

$$\text{the second series converges} \implies \left(\sum_n Y_n \quad \text{converges a.s.} \iff \sum_n \left(Y_n - \mathbb{E}\left[Y_n \right] \right) \quad \text{converges a.s.} \right)$$

Let us consider the tail of this series

$$T(n,m) := \sum_{j=n}^{m} (Y_j - \mathbb{E}[Y_j])$$

We need to show that, almost surely, the oscillation

$$W_n := \max_{\ell \geqslant k \geqslant n} |T(k,\ell)|$$

is small when n is large. Fix $\epsilon > 0$, by Lemma 3.8, we have

$$\mathbb{P}\left[\max_{n\leqslant j\leqslant m}|T(n,j)|\geqslant \epsilon/2\right]\leqslant 4\epsilon^{-2}\sum_{j=n}^{m}\mathrm{var}\left(Y_{j}\right)$$

Let $m \to \infty$, we have

$$\mathbb{P}\left[\max_{j\geqslant n}|T(n,j)|\geqslant \epsilon/2\right]\leqslant 4\epsilon^{-2}\sum_{j\geqslant n}\mathrm{var}\left(Y_{j}\right)$$

For $\ell \geqslant k \geqslant n$, we have

$$T(k,\ell) = T(n,\ell) - T(n,k)$$

Thus

$$\mathbb{P}\left[W_n\geqslant\epsilon\right]=\mathbb{P}\left[\max_{\ell\geqslant k\geqslant n}|T(k,\ell)|\geqslant\epsilon\right]\leqslant\mathbb{P}\left[\max_{j\geqslant n}|T(n,j)|\geqslant\epsilon/2\right]\leqslant 4\epsilon^{-2}\sum_{j\geqslant n}\mathrm{var}\left(Y_j\right)$$

Since the third series converges, we have

$$\lim_{n} \mathbb{P}\left[W_n \geqslant \epsilon\right] = 0.$$

Since the sequence of events $\{W_n \ge \epsilon\}$ is decreasing in n, we have

$$\mathbb{P}\left[\lim_{n} W_{n} \geqslant \epsilon\right] = 0$$

Let $\epsilon \to 0$, we have

$$\mathbb{P}\left[\lim_{n} W_n = 0\right] = 1$$

This implies the almost sure convergence.

Suppose $\sum_{n} X_n$ converges almost surely, then we have

$$\mathbb{P}[|X_n| > A \text{ i.o. }] = 0$$

Then Borel Cantelli lemma guarantees the convergence of the first series. As a consequence, the sequences $\{Y_n\}$ and $\{X_n\}$ are equivalent, hence $\sum_n Y_n$ converges almost surely as well. By Lemma 3.9, we have

$$\mathbb{P}\left[\max_{n\leqslant k\leqslant m}\left|\sum_{j=n}^{k}Y_{j}\right|\leqslant1\right]\leqslant\frac{(A+2)^{2}}{\sum_{j=n}^{m}\operatorname{var}\left(Y_{j}\right)}$$

If the third series diverges, then the right hand-side will go to zero as $m \to \infty$. Hence the tail of $\sum_n Y_n$ almost surely would not be bounded by one, so the series could not converge. This confirms the convergence of the third series. By the proof of direction of \Leftarrow , the convergence of the third series implies the convergence of $\sum_n (Y_n - \mathbb{E}[Y_n])$. Combining with the convergence of $\sum_n Y_n$, we have the convergence of the second series. \square

Strong law of large numbers

[Lemma 3.11] (Kronecker's lemma) Let $\{x_n\}$ be a sequence of real numbers, $\{a_n\}$ be a sequence of numbers such that $0 < a_n \uparrow \infty$. Then

$$\sum_{n} \frac{x_n}{a_n} \text{ converges } \Longrightarrow \frac{1}{a_n} \sum_{i=1}^{n} x_i \to 0$$

[Theorem 3.12] Let $\{X_n\}$ be i.i.d. Define $S_n = \sum_{j=1}^n X_j$. Then we have

$$\mathbb{E}\left[|X_1|\right] < \infty \Longrightarrow \frac{S_n}{n} \to \mathbb{E}\left[X_1\right], \text{ almost surely;}$$

$$\mathbb{E}[|X_1|] = \infty \Longrightarrow \limsup_n \frac{|S_n|}{n} = \infty$$
, almost surely.