MATH 302 - INTRODUCTION TO PROBABILITY

概率论导论

Author

Wenyou (Tobias) Tian 田文友 University of British Columbia 英属哥伦比亚大学 2024

Contents

1	\mathbf{Sec}	Section 1				
	1.1	Sample Space and Probabilities	4			
	1.2	Random sampling	4			
	1.3	Infinitely many outcomes	4			
	1.4	Consequences of Rules of Probability	5			
	1.5	Random Variables	5			
2	Sec	tion 2 - Conditional Probability and Independence	6			
	2.1	Conditional Probability	6			
	2.2	Bayes' Formula	6			
	2.3	Independence	6			
	2.4	Independent Trials	7			
	2.5	Conditional Independence	8			
3	Section 3 - Random Variables					
	3.1	Probability Distribution	G			
	3.2	Cumulative Distribution Function	Ĝ			
	3.3	Expectation	10			
	3.4	Variance	11			
	3.5	Gaussian Distribution	12			
4	\mathbf{Sec}	Section 4				
	4.1	Law of Large Numbers (LLN), Binomial Version	13			
	4.2	Central Limit Theorem (CLT), Binomial Version	13			
	4.3	Application of Normal Approximation and Confidence Intervals	14			
	4.4	Poisson Random Variable	15			
	4.5	Exponential Distribution	15			
5	\mathbf{Sec}	Section 5				
	5.1	Moment Generating Function	17			
	5.2	Distribution of a Function of a Random Variable	17			
6	Section 6 - Joint Distribution of Random Variables					
	6.1	Joint Distribution of Discrete Random Variables	19			
	6.2	Jointly Continuous Random Variables	19			
	6.3	Joint Distribution and Independence	20			
7	Sec	Section 7				
	7.1	Sums of Independent Random Variables	21			
8	Sec	Section 8 - Expectation and Variance in Multivariate Setting 22				
	8.1		22			
	8.2	Expectation and Variance for Sums of r.v.s	22			

	8.3	Sums and Moment Generating Functions	22
	8.4	Covariance and Correlation	23
9	Sect	cion 9	24
	9.1	Estimating Tail Probabilities	24
	9.2		24
	9.3	Law of Large Numbers, Central Limit Theorem, General Version $\ \ldots \ \ldots$	24
10	Sect	ion 10	2 6
	10.1	Conditional Distribution of Discrete Random Variables	26
	10.2	Conditional Distribution for Continuous Random Variables $\ \ldots \ \ldots$	27
	10.3	Conditional Expectation	27

1.1 Sample Space and Probabilities

Definition 1.1. A *sample point* is a possible outcome, denoted as ω . A *sample space* is the set of all sample points, denoted as Ω .

An **event** is a subset of Ω , with F representing the set of all possible events, we then have

$$|F| = 2^{|\Omega|}$$

A probability measure is a function where:

$$\mathbb{P}: F \to [0,1]$$

such that for an event $A \in F$, $\mathbb{P}(A)$ means the probability of event A occurring. It is trivial that $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = 1$, where $\forall A \in F, \mathbb{P}(A) \in [0, 1]$.

Theorem 1.1. If events A_1, A_2, \ldots are pairwise disjoint, that is, $\forall i \neq j, A_i \cap A_j = \emptyset$, we have

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i)$$

We then define

Definition 1.2. The triple (Ω, F, \mathbb{P}) is called a *probability space*.

1.2 Random sampling

Sampling is choosing an object at random from a given set.

Theorem 1.2. If all outcomes are equally likely, if $|\Omega| < \infty$, then

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

where A is an event.

1.3 Infinitely many outcomes

Definition 1.3. Sample spaces that are finite or countably infinite are *discrete*.

When Ω is discrete, we have $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$.

Uncountably infinite sample spaces can be the set [0,1]. Notice that in this case, we **do not** have $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$.

4

1.4 Consequences of Rules of Probability

Definition 1.4. Complement of a set A:

$$A^C = \{ \omega \in \Omega \mid \omega \notin A \}$$

Union of two sets A and B:

$$A \cup B = \{ \omega \in \Omega \mid \omega \in A \vee \omega \in B \}$$

Intersection of two sets A and B:

$$A \cap B = \{ \omega \in \Omega \mid \omega \in A \land \omega \in B \}$$

Difference of two sets A and B:

$$A - B = \{ \omega \in \Omega \mid \omega \in A \land \omega \notin B \}$$

We then have the following properties:

- 1. $\mathbb{P}(A) = 1 \mathbb{P}(A^C)$
- 2. If $A = \bigcup_{i=1}^{n} A_i$, and A_i are pairwise disjoint, $\mathbb{P}(A) = \sum_{i} A_i$.
- 3. If $B \subset A$, $\mathbb{P}(B) \leq \mathbb{P}(A)$.
- 4. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- 5. $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cap B) \mathbb{P}(B \cap C) \mathbb{P}(C \cap A) + \mathbb{P}(A \cap B \cap C)$

1.5 Random Variables

Definition 1.5. A *random variable* (r.v.) is a function from Ω to \mathbb{R} . If we define a random variable X, then we know

$$X:\Omega\to\mathbb{R}$$

Definition 1.6. The *probability distribution* of a random variable X is the collection of probabilities $\mathbb{P}(X \in B)$ for $B \subset \mathbb{R}$, where $X \in B$ is defined as

$$\{\omega \in \Omega : X(\omega) \in B\}$$

A discrete random variable takes value on a discrete set, then the **probability** $mass\ function$ (p.m.f) of a discrete random variable X is defined to be the collection of probabilities

$$p(k) = \mathbb{P}(X = k)$$

for all k values X may take. This implies: $\mathbb{P}(X \in B) = \sum_{k \in B} p(k)$

2 Section 2 - Conditional Probability and Independence

2.1 Conditional Probability

We write $\mathbb{P}(A|B)$ to be "the probability that event A occurs **given** event B occurs".

Definition 2.1. The probability that A occurs given B occurs is defined to be:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

where $\mathbb{P}(AB)$ represents that both A and B occurs.

 $\textbf{Theorem 2.1.} \ \mathbb{P}(A_1A_2\dots A_n) = \mathbb{P}(A_1)\times \mathbb{P}(A_2|A_1)\times \dots \times \mathbb{P}(A_n|A_1A_2\dots A_{n-1}).$

We also have:

$$\mathbb{P}(A) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) + \mathbb{P}(A|B^C) \cdot \mathbb{P}(B^C)$$

Furthermore, if B_1, \ldots, B_n is a partition of Ω , then

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

2.2 Bayes' Formula

Theorem 2.2. Bayes' Formula is the following:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B) \cdot \mathbb{P}(B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B) \cdot \mathbb{P}(B)}{\mathbb{P}(A|B) \cdot \mathbb{P}(B) + \mathbb{P}(A|B^C) \cdot \mathbb{P}(B^C)}$$

This is often used to represent situations like "false positives", where the table is the following:

$\text{Test} \downarrow \text{Actual} \rightarrow$	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

2.3 Independence

Definition 2.2. A and B are independent if and only if $\mathbb{P}(A) = \mathbb{P}(A|B)$, equivalently

$$\mathbb{P}(AB) = \mathbb{P}(A) \times \mathbb{P}(B)$$

If A and B are independent, then A and B^C are also independent. Mutually exclusive (disjoint) is not equivalent to independence. The independence between two events is essentially **proportional overlap**. For independence with more than 2 events,

say A_1, \ldots, A_n , they are independent if and only if for any set of indices $1 \le i_1 < i_2 < \cdots < i_k \le n$, we have

$$\mathbb{P}(A_{i_1}A_{i_2}\dots A_{i_k}) = \mathbb{P}(A_{i_1}) \times \mathbb{P}(A_{i_2}) \times \dots \times \mathbb{P}(A_{i_k})$$

If we have A, B and C, and we only have

- 1. $\mathbb{P}(AB) = \mathbb{P}(A) \times \mathbb{P}(B)$
- 2. $\mathbb{P}(BC) = \mathbb{P}(B) \times \mathbb{P}(C)$
- 3. $\mathbb{P}(CA) = \mathbb{P}(C) \times \mathbb{P}(A)$

they are only pairwise independent.

Definition 2.3. Random variables X_1, \ldots, X_n are independent if and only if, $\forall B_1, \ldots, B_n \subset \mathbb{R}$,

$$\mathbb{P}(X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n) = \prod_{i=1}^n \mathbb{P}(X_i \in B_i)$$

This implies that discrete random variables X_1, \ldots, X_n are independent if and only if, $\forall k_1, \ldots, k_n \in \mathbb{R}$, we have

$$\mathbb{P}(X_1 = k_1, X_2 = k_2, \dots, X_n = k_n) = \prod_{i=1}^n \mathbb{P}(X_i = k_i)$$

2.4 Independent Trials

A **trial** is a run of an experiment, where we we consider an experiment with two outcomes: 1 to denote success with probability p, and 0 to denote failure with probability 1-p.

Definition 2.4. A *Bernoulli random variable* with parameter p satisfies:

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

This random variable represents 1 independent trial.

We denote this random variable to be $X \sim \text{Bern}(p)$

If we have n trials, and let random variable X be the number of successes, we have

Definition 2.5. A *binomial random variable* with parameter n and p satisfies:

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

for k = 0, 1, ..., n.

We denote this random variable to be $X \sim \text{Bin}(n, p)$

If $X_1, \ldots, X_n \sim \text{Bern}(p)$, and they are all independent, then

$$X_1 + X_2 + \cdots + X_n \sim \operatorname{Bin}(n, p)$$

If we have unbounded trials, and let random variable X be the number of trials until the 1st success, we have

Definition 2.6. A *geometric random variable* with parameter p satisfies:

$$\mathbb{P}(X=k) = (1-p)^{k-1}p$$

for $k=1,2,\ldots$ We denote this random variable to be $X\sim \mathrm{Geom}(p)$

2.5 Conditional Independence

Definition 2.7. Events A and B are said to be **conditionally independent** given event D if

$$\mathbb{P}(AB|D) = \mathbb{P}(A|D) \times \mathbb{P}(B|D)$$

Section 3 - Random Variables 3

Probability Distribution 3.1

Probability distribution for a random variable X is the set of all probabilities $\{\mathbb{P}(X \in B)\}\$, we use a p.m.f for discrete random variables to represent its probability distribution. What if the random variable is not discrete?

Definition 3.1. A random variable X has probability density function (p.d.f) f if

$$\mathbb{P}(X \le a) = \int_{-\infty}^{a} f(x) \mathrm{d}x$$

If X has a p.d.f, we call X to be a **continuous random variable**. A valid p.d.f must satisfy two conditions:

1.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
2.
$$f(x) \ge 0$$

2.
$$f(x) \ge 0$$

We have the following properties of a p.d.f:

1.
$$\mathbb{P}(X \in [a,b]) = \int_a^b f(x) dx$$

2.
$$\mathbb{P}(X \in B) = \int_B f(x) dx$$

3.
$$\mathbb{P}(X = k) = 0$$

Definition 3.2. Let random variable X have p.d.f:

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & x \notin [a, b] \end{cases}$$

We say X is a uniform variable with parameters a, b, where $X \sim \text{Unif}(a, b)$

The intuitive meaning of f(x) is the following:

$$f(a) \approx \frac{\mathbb{P}(X \in [a, a + \varepsilon])}{\varepsilon}$$

3.2 **Cumulative Distribution Function**

Definition 3.3. The *cumulative distribution function* (c.d.f), F, of a random variable X satisfies:

$$F(s) = \mathbb{P}(X \le s)$$

for all $s \in \mathbb{R}$.

The c.d.f completely characterizes the probability distribution of a random variable.

9

Furthermore, if r.v. X is continuous with p.d.f f(x), we then have

$$F(s) = \int_{-\infty}^{s} f(x) dx$$

This also gives that f(x) = F'(x), for where F' is defined, if F' is undefined, then we choose an arbitrary value.

Theorem 3.1. If c.d.f is continuous and differentiable at all but finite number of points, then the underlying random variable is continuous.

The c.d.f of discrete r.v.s would have jumps at each available X = k.

Theorem 3.2. Suppose r.v. X has c.d.f F which is piecewise constant, then X is a discrete r.v. The values that X can take are the places where F has jumps. If x is such a point, then $\mathbb{P}(X=x)$ is the size of the jump.

We also know that a c.d.f must be **non-negative**, **always increasing**, and the limit as it approaches ∞ is 1.

3.3 Expectation

Definition 3.4. The expected value of a r.v. X is:

- 1. Discrete: $\mathbb{E}(X) = \sum_{k} kp(k)$
- 2. Continuous: $\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$

It is essentially the weighted average of values that X can take.

Some expected values for common random variables are:

- 1. $X \sim \text{Bern}(p) : \mathbb{E}(X) = p$
- 2. $X \sim Bin(n, p) : \mathbb{E}(X) = np$
- 3. $X \sim \text{Unif}(a,b) : \mathbb{E}(X) = \frac{a+b}{2}$
- 4. $X \sim \text{Geom}(p) : \mathbb{E}(X) = \frac{1}{p}$

Theorem 3.3.

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)$$

Specifically for a geometric r.v., we have the property:

$$\mathbb{E}(X) = \sum_{k \ge 1} \mathbb{P}(X \ge k) = \sum_{k \ge 1} (1 - p)^{k - 1}$$

This is derived from expected values of non-negative r.v.s where:

- 1. Discrete: $\mathbb{E}(X) = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k)$ 2. Continuous: $\mathbb{E}(X) = \int_{0}^{\infty} \mathbb{P}(X \ge x) dx$

Theorem 3.4. Let the range of r.v. X be contained in the domain of some real function g, then

$$\mathbb{E}(g(X)) = \sum_{k} g(k)p(k)$$

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Definition 3.5. The nth moment of r.v X is defined to be $\mathbb{E}(X^n)$

Variance 3.4

Definition 3.6. Let X be a r.v with mean μ , then the **variance** of X is

$$Var(X) = \mathbb{E}(X - \mu)^2$$

We may also denote it as $\sigma^2(X)$, where $\sigma(X)$ denotes the **standard deviation** of X with $\sigma(X) = \sqrt{\operatorname{Var}(X)}$.

We can consider a function g, where $g(X) = (X - \mu)^2$. Then we may use Theorem 3.4 to yield corresponding formulas for discrete and continuous r.v.s. Some variances of common r.v.s include:

- 1. $X \sim \text{Bern}(p) : \sigma^2(X) = p(1-p)$
- 2. $X \sim \text{Bin}(n, p) : \sigma^2(X) = np(1 p)$
- 3. $X \sim \text{Geom}(p) : \mathbb{E}(X) = \frac{1-p}{p^2}$

Theorem 3.5. If X is constant, then $\sigma^2(X) = 0$.

If X_1, \ldots, X_n are independent, then $\sigma^2(X_1 + \cdots + X_n) = \sigma^2(X_1) + \cdots + \sigma^2(X_n)$.

$$\mathbb{E}(aX+b) = a\mathbb{E}(X) + b$$

$$\sigma(aX + b) = a^2 \sigma^2(X)$$

$$\sigma^2(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

3.5 Gaussian Distribution

Definition 3.7. R.v. Z has *standard normal distribution* if it has p.d.f:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

We denote $Z \sim N(0,1)$

The corresponding c.d.f is thus:

$$\Phi(s) = \mathbb{P}(Z \le s) = \int_{-\infty}^{s} \phi(x) dx$$

Z is called standard normal because $\mathbb{E}(Z)=0, \sigma^2(Z)=1$. For the entire family of normal r.v.s, just consider $X=\sigma Z+\mu$, then we would have $X\sim N(\mu,\sigma^2)$, with $\mathbb{E}(X)=\mu$ and $\sigma^2(X)=\sigma^2$.

Then for such a normal r.v. X, we have

$$F(s) = \mathbb{P}(X \le s) = \mathbb{P}(Z \le \frac{s-\mu}{\sigma}) = \Phi(\frac{s-\mu}{\sigma})$$

$$f(s) = \frac{\mathrm{d}}{\mathrm{d}s} F(s) = \frac{1}{\sigma} \cdot \phi(\frac{s-\mu}{\sigma}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(s-\mu)^2}{2\sigma^2}}$$

If $X \sim N(\mu, \sigma^2)$ and Y = aX + b, then we have

$$Y \sim N(a\mu + b, a^2\sigma^2)$$

Furthermore, we have a special property for the standard normal c.d.f:

$$\Phi(t) = 1 - \Phi(-t)$$

4.1 Law of Large Numbers (LLN), Binomial Version

Consider $X_i \sim \text{Bern}(p)$, and $S_n = X_1 + \cdots + X_n$ all of which are independent. We already know $S_n \sim \text{Bin}(n,p)$, but as n gets large, it becomes very hard to calculate, thus we use binomial approximation:

- 1. First order approximation: $S_n \approx \mathbb{E}(S_n) = np$
- 2. Second order approximation (deviation from mean is Gaussian):

$$S_n \approx \mathbb{E}(S_n) + \sqrt{\sigma^2(S_n)} \cdot N(0, 1) = np + \sqrt{np(1-p)} \cdot N(0, 1)$$

Theorem 4.1. The Law of Large Numbers claim:

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(|\frac{S_n}{n} - p| < \varepsilon) = 1$$

This is equivalent to saying:

$$\forall \delta > 0, \exists N, n \ge N, 1 - \delta \le \mathbb{P}(\left|\frac{S_n}{n} - p\right| < \varepsilon) \le 1$$

We can call this $\frac{S_n}{n}$ converges to p in probability.

We define $\frac{S_n}{n}$ to be **proportion of success**, with expected value p. Note that for any r.v. X, $\{|X| \leq a\} \subset \{X \leq a\}$.

4.2 Central Limit Theorem (CLT), Binomial Version

Let r.v. $S_n \sim \text{Bin}(n, p)$ with $\mathbb{E}(S_n) = np$ and $\sigma^2(S_n) = np(1-p)$, we standardize it to another r.v. Q_n with:

$$Q_n = \frac{S_n - np}{\sqrt{np(1-p)}}$$

so $\mathbb{E}(Q_n) = 0$ and $\sigma^2(Q_n) = 1$.

Then Q_n converges to N(0,1) in distribution.

Theorem 4.2. The *Central Limit Theorem* (CLT)) claim:

$$\lim_{n \to \infty} \mathbb{P}(Q_n \in [a, b]) = \Phi(b) - \Phi(a)$$

The normal approximation goes from CLT saying:

$$\frac{S_n - np}{\sqrt{np(1-p)}} \to_d N(0,1)$$

This means for large n, S_n is approximately N(np, np(1-p)), the approximation is accurate if np(1-p) > 10.

Consider a random walk problem, where one takes 1 step left or right each with $\frac{1}{2}$ probability, about how far is the person from home after n steps, assuming the person starts from the house.

Let

$$X_i = \begin{cases} 1 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{cases}$$

and $Y_i \sim \text{Bern}(\frac{1}{2})$, then $X_i = (Y_i - \frac{1}{2}) \times 2$. Then if we let Z_n be the distance after n steps, we have

$$Z_n = \sum_{i=1}^n X_i = 2\sum_{i=1}^n (Y_i - \frac{1}{2}) = -n + 2\sum_{i=1}^n Y_i = -n + 2S_n$$

Then by normal approximation, we have $Z_n \approx -n + 2 \cdot N(\frac{n}{2}, \frac{n}{4}) = -n + 2(\frac{n}{2} + \frac{\sqrt{n}}{2} \cdot N(0, 1)) = \sqrt{n} \cdot N(0, 1)$.

The concentration of standard normal r.v. is as follows:

- 1. $\mathbb{P}(N(0,1) \in [-1,1]) \approx 0.68$
- 2. $\mathbb{P}(N(0,1) \in [-2,2]) \approx 0.95$
- 3. $\mathbb{P}(N(0,1) \in [-3,3]) \approx 0.997$

We then know with normal approximation:

$$Bin(n, p) \in [np - 3\sqrt{np(1-p)}, np + 3\sqrt{np(1-p)}]$$

4.3 Application of Normal Approximation and Confidence Intervals

To find a 95% confidence interval, we first start with an estimator $\hat{\mu}$. We express this estimator as some normal r.v. with information about μ . We then find the distribution of $\hat{\mu} - \mu$ and build relationship with a standard normal distribution N(0,1). Finally, we may use the concentration of a standard normal variable to find the 95% confidence interval.

Recall with normal approximation $\mathbb{P}(\text{Bin}(n,p) \in [a,b]) \approx \mathbb{P}(N(np,np(1-p)) \in [a,b])$, then for large n, we should have for $Z \sim N(0,1)$,

$$S_n \approx np + \sqrt{np(1-p)} \cdot Z$$

and $\hat{p} = \frac{S_n}{n}$. So $\hat{p} - p \approx \sqrt{\frac{p(1-p)}{n}} \cdot Z$.

$$\begin{split} \mathbb{P}(|\hat{p} - p| \leq \varepsilon) &\approx \mathbb{P}(|Z| \leq \frac{\varepsilon \sqrt{n}}{\sqrt{p(1 - p)}}) \\ &\geq \mathbb{P}(|Z| \leq 2\varepsilon \sqrt{n}) \{\sqrt{p(1 - p)} \leq \frac{1}{2}\} \end{split}$$

For a 95% confidence interval, we choose $\varepsilon = \frac{1}{\sqrt{n}}$, then we know:

$$p \in [\hat{p} - \frac{1}{\sqrt{n}}, \hat{p} + \frac{1}{\sqrt{n}}]$$

4.4 Poisson Random Variable

Definition 4.1. A discrete r.v. X has **Poisson** distribution with parameter $\lambda > 0$ if:

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

We denote $X \sim \text{Poisson}(\lambda)$.

Theorem 4.3. Let $\lambda > 0$, $k \in \mathbb{Z}^+$, then:

$$\lim_{n\to\infty}\mathbb{P}(\mathrm{Bin}(n,\frac{\lambda}{n})=k)=\mathbb{P}(\mathrm{Poisson}(\lambda)=k)$$

The p.m.f of Bin $(n, \frac{\lambda}{n})$ converges to the p.m.f of Poisson (λ) . Bin $(n, p) \approx \text{Poisson}(np)$ for n large and p small.

Theorem 4.4. Let $X \sim \text{Bin}(n, p)$, and $Y \sim \text{Poisson}(np)$, then for any $A \subset \mathbb{Z}^+$, we have

$$|\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)| \le np^2$$

The properties of a Poisson r.v. include:

Let
$$X \sim \text{Poisson}(\lambda)$$
, $Y \sim \text{Poisson}(\alpha)$ 1. $\mathbb{E}(X) = \lambda$, $\sigma^2(X) = \lambda$ 2. $X + Y \sim \text{Poisson}(\lambda + \alpha)$

Often it is natural to model as Poisson even without knowing n or p for underlying Binomial distribution. We only need to know $np = \lambda$.

4.5 Exponential Distribution

An exponential r.v. models continuous waiting time, analogous to geometric r.v. modelling discrete waiting time.

Definition 4.2. A continuous r.v. X has *exponential distribution* with parameter $\lambda > 0$ if its p.d.f, f, is:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

We write $X \sim \text{Exp}(\lambda)$

Thus, we have $\mathbb{P}(X > t) = e^{-\lambda t}$, giving us the c.d.f, F, to be:

$$F(s) = 1 - e^{-\lambda s}$$

A useful property is that $X \sim \text{Exp}(\alpha), Y \sim \text{Exp}(\beta)$, and they are independent, if we define $Z = \min(X, Y)$, then $Z \sim \text{Exp}(\alpha + \beta)$.

Other general properties include:

- 1. $\mathbb{E}(X) = \frac{1}{\lambda}, \sigma^2(X) = \frac{1}{\lambda^2}$
- 2. $\alpha X \sim \operatorname{Exp}(\frac{\lambda}{\alpha})$
- 3. Memorylessness: $\mathbb{P}(X > s + t \mid X > t) = \mathbb{P}(X > s)$

5.1 Moment Generating Function

Definition 5.1. The *moment generating function* of a r.v. X is the function $M: \mathbb{R} \to \mathbb{R}^+$ defined by:

$$M(t) = M_X(t) = \mathbb{E}(e^{tX})$$

The m.g.f of some common r.v.s include:

- 1. $X \sim \text{Bern}(p)$: $M(t) = 1 p + pe^t$
- 2. $X \sim \text{Unif}(0,1)$: $M(t) = \frac{1}{t}(e^t 1)$
- 3. $X \sim N(0,1)$: $M(t) = e^{\frac{1}{2}t^2}$
- 4. $X \sim \text{Exp}(\lambda)$:

$$M(t) = \begin{cases} \frac{\lambda}{\lambda - t} & t < \lambda \\ \infty & t \ge \lambda \end{cases}$$

Theorem 5.1. M.g.f can generate moments in the following way:

$$M^{(n)}(0) = \mathbb{E}(X^n)$$

That is

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}M(t)|_{t=0} = \mathbb{E}(X^n)$$

We say that X and Y are equal in distribution if $\forall B \subset \mathbb{R}$, $\mathbb{P}(X \in B) = \mathbb{P}(Y \in B)$.

Theorem 5.2. If $M_X(t) = M_Y(t) \neq \infty$, we say $X \stackrel{\text{dist.}}{=} Y$. More generally, if $\exists \delta > 0$, $\forall t \in (-\delta, \delta)$, $M_X(t) = M_Y(t) \neq \infty$, we say $X \stackrel{\text{dist.}}{=} Y$.

5.2 Distribution of a Function of a Random Variable

Theorem 5.3. Let X be a discrete r.v. with p.m.f p_X , g be an one-to-one function with Y = g(X), then Y has p.m.f satisfying $p_Y(g(k)) = p_X(k)$

If X is still discrete, but g is no longer one - to - one, then we have

$$p_Y(l) = \sum_{k:g(k)=l} p_X(k)$$

For continuous random variables, we derive its c.d.f for g(X). For affine transformations, that is Y = aX + b, we should have

$$f_Y(s) = \frac{1}{|a|} \times f_X(\frac{s-b}{a})$$

If g is one-to-one and differentiable for continuous r.v. X, and Y=g(X), we would have:

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}$$

We also need g have derivative at only finite number of points and g^{-1} existing. For other points, $f_Y(y) = 0$. If g is only differentiable and has derivative at finitely many number of points, with Y = g(X), we have:

$$f_Y(y) = \sum_{x:g(x)=y,g'(x)\neq 0} \frac{f_X(x)}{|g'(x)|}$$

6 Section 6 - Joint Distribution of Random Variables

6.1 Joint Distribution of Discrete Random Variables

Definition 6.1. Let X, Y be discrete r.v.s defined on the same sample space, then the **joint p.m.f** is defined by:

$$p(k,l) = \mathbb{P}(X = k, Y = l)$$

for all values of k and l.

Definition 6.2. Given a joint p.m.f of p(k, l), the p.m.f of X is defined by:

$$p_X(k) = \sum_{l} p(k, l)$$

where p_X is the **marginal** p.m.f of X

Theorem 6.1. Let $g: \mathbb{R}^2 \to \mathbb{R}$, and let X, Y be discrete r.v. with joint p.m.f p, then:

$$\mathbb{E}(g(X,Y)) = \sum_{k,l} g(k,l) p(k,l)$$

A famous example in game theory is the situation of Prisoner's Dilemma.

6.2 Jointly Continuous Random Variables

Definition 6.3. R.v.s X, Y are *jointly continuous* if $\exists f : \mathbb{R}^2 \to \mathbb{R}^+$ such that $\forall B \subset \mathbb{R}^2$, we have

$$\mathbb{P}((X,Y) \in B) = \iint_B f(x,y) dxdy$$

We need:

1. $f(x,y) \ge 0$

2.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

Definition 6.4. Let $g: \mathbb{R}^2 \to \mathbb{R}$, the expected value of g can be characterized by:

$$\mathbb{E}(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy$$

If (X,Y) are jointly continuous, then X,Y are continuous r.v.s. However, if X,Y are continuous, (X,Y) need not be jointly continuous.

Definition 6.5. Let (X, Y) be jointly continuous with joint p.d.f f, then X is continuous with p.d.f f_X satisfying:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

We specifically analyze uniform r.v.s in higher dimensions. Consider $D \subset \mathbb{R}^2$ with $A_D < \infty$, then (X, Y) has uniform distribution on D if:

$$f(x,y) = \begin{cases} \frac{1}{A_D} & (x,y) \in D\\ 0 & (x,y) \notin D \end{cases}$$

Let $(X_1, \ldots, X_n) \sim \text{Unif}(\sqrt{n}B_n)$, with $B_n = \{(x_1, \ldots, x_n) : x_1^2 + \cdots + x_n^2 \leq n\}$, then we first have:

$$f(x_1, \dots, x_n) = \begin{cases} \frac{1}{\operatorname{Vol}(\sqrt{n}B_n)} & (x_1, \dots, x_n) \in \sqrt{n}B_n \\ 0 & (x_1, \dots, x_n) \notin \sqrt{n}B_n \end{cases}$$

For r > 0, we also have $Vol(rB_n) = r^n Vol(B_n)$.

The marginal of X_1 is derived to be $(V_i = Vol(B_i))$:

$$f_{X_1}(x_1) = \frac{V_{n-1} \cdot n^{\frac{n}{2}}}{V_n \sqrt{n^n} \sqrt{n - x_1^2}} \cdot \left(\frac{n - x_1^2}{n}\right)^{\frac{n}{2}}$$

when taking $n \to \infty$, it converges to $\phi(x_1)$

6.3 Joint Distribution and Independence

For X, Y be discrete r.v.s with joint p.m.f p and marginal p_X, p_Y, X and Y are independent if and only if:

$$p(k, l) = p_X(k) \times p_Y(l)$$

Analogously, for X, Y be continuous r.v.s with joint p.d.f f and marginal f_X , f_Y , X and Y are independent if and only if:

$$f(x,y) = f_X(x) \times f_Y(y)$$

Sums of Independent Random Variables 7.1

Definition 7.1. Let X, Y be independent r.v.s, we have X + Y satisfying:

- 1. Discrete: $p_{X+Y}(n) = \sum_k p_X(k) p_Y(n-k) = p_X * p_Y(n) = p_Y * p_X(n)$ 2. Continuous: $f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx = f_X * f_Y(z)$

Here $p_X * p_Y$ is the **convolution** of p_X and p_Y , $f_X * f_Y$ is the **convolution** of f_X and f_Y .

8 Section 8 - Expectation and Variance in Multivariate Setting

8.1

8.2 Expectation and Variance for Sums of r.v.s

Theorem 8.1. Regardless of X, Y being independent or not, we have:

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

$$\mathbb{E}(f(X) + g(Y)) = \mathbb{E}(f(X)) + \mathbb{E}(g(Y))$$

For X, Y being independent r.v.s, we have:

$$\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

$$\sigma^2(X+Y) = \sigma^2(X) + \sigma^2(Y)$$

$$\mathbb{E}(\frac{X}{Y}) = \mathbb{E}(X) \cdot \mathbb{E}(\frac{1}{Y})$$

Theorem 8.2. Let X_1, \ldots, X_n be independently identically distributed r.v.s with $\mathbb{E}(X_i) = \mu$ and $\sigma^2(X_i) = \sigma^2$, if we define:

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$$

we have $\mathbb{E}(\bar{X}_n) = \mu$ and $\sigma^2(\bar{X}_n) = \frac{\sigma^2}{n}$

Definition 8.1. Let A be an event, the indicator of that event 1_A is a random variable satisfying:

$$1_A = \begin{cases} 1 & \text{A happens} \\ 0 & \text{A does not happen} \end{cases}$$

We know that $1_A \sim \text{Bern}(p)$, with $p = \mathbb{P}(A)$ and $\mathbb{E}(1_A) = \mathbb{P}(A)$

8.3 Sums and Moment Generating Functions

We know functions of X, Y are independent if X, Y are independent. Then, if X, Y are independent, $M_{X+Y}(t) = M_X(t)M_Y(t)$. That is the m.g.f of sum is product of m.g.f.

For $X \sim N(0, \sigma^2)$, we have $M_X(t) = e^{\frac{t^2 \sigma^2}{2}}$.

Since $X \sim \text{Bin}(n, p)$ and we know $X \stackrel{\text{dist.}}{=} X_1 + \cdots + X_n$ with $X_i \sim \text{Bern}(p)$, so we know

$$M_X(t) = (1 - p + pe^t)^n$$

For Poisson variables $X \sim \text{Poisson}(\alpha)$, we have

$$M_X(t) = \exp(\alpha(e^t - 1))$$

And in this case, if $X_1, \ldots, X_n \sim \text{Poisson}(1)$, we know $\sum_i X_i \sim \text{Poisson}(n)$

8.4 Covariance and Correlation

To say something about the level of dependence between X and Y, we can look into the covariance of X and Y.

Definition 8.2. Let X, Y be r.v.s with μ_X, μ_Y , we have

$$Cov(X, Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y)) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

If X and Y are independent, then the covariance of X and Y is 0. However, the other way may not stand, since if f is an even function, $X \sim (-a, a)$, then Cov(X, f(X)) = 0.

The properties of covariances include:

- 1. $|Cov(X,Y)| \leq \sqrt{\sigma^2(X)\sigma^2(Y)}$
- 2. Cov(X, Y) = Cov(Y, X)
- 3. Cov(aX + bZ, Y) = aCov(X, Y) + bCov(Z, Y)
- 4. $Cov(X, X) = \sigma^{2}(X)$

Consider two events A, B and their corresponding indicator variables $1_A, 1_B$, then we have

$$Cov(1_A, 1_B) = \mathbb{E}(1_A 1_B) - \mathbb{E}(1_A)\mathbb{E}(1_B) = \mathbb{P}(AB) - \mathbb{P}(A)\mathbb{P}(B)$$

Thus, $Cov(1_A, 1_B) = 0 \iff A, B$ are independent.

Theorem 8.3. For r.v.s X_1, \ldots, X_n , we have

$$\sigma^{2}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} \sigma^{2}(X_{i}) + 2 \sum_{1 \leq i < j \leq n} \text{Cov}(X_{i}, X_{j})$$

Definition 8.3.

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{\sigma^2(X)\sigma^2(Y)}}$$

We also know it is $\in [-1, 1]$

Then $Y = aX + b \iff Corr(X, Y) = 1$.

Furthermore, if X_i and X_j are pairwise uncorrelated, then we still have:

$$\sigma^2(\sum_{i=1}^n X_i) = \sum_{i=1}^n \sigma^2(X_i)$$

9.1 Estimating Tail Probabilities

Theorem 9.1. Markov Inequality states that, for a non-negative random variable X and some t > 0, we have

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}$$

The proof relies on $X \ge t \cdot 1_{[X \ge t]}$.

Theorem 9.2. Chebychev's Inequality states that, for a random variable X with $\mathbb{E}(X) = \mu$ and $\sigma^2(X) = \sigma^2$, then for some t > 0, we have:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}$$

For X_i be uncorrelated (independence suffices) with $\mathbb{E}(X_i) = \mu$ and $\sigma^2(X_i) = \sigma^2$, then define $S_n = X_1 + \cdots + X_n$, we have

$$\mathbb{P}(|S_n - n\mu| \ge \sqrt{n}t) \le \frac{\sigma^2}{t^2}$$

$$\mathbb{P}(|\frac{S_n}{n} - \mu| \ge \frac{t}{\sqrt{n}}) \le \frac{\sigma^2}{t^2}$$

9.2

9.3 Law of Large Numbers, Central Limit Theorem, General Version

Theorem 9.3. Let X_1, \ldots, X_n be iid with $\mathbb{E}(X_i) = \mu, \sigma^2(X_i) = \sigma^2 < \infty$, let

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$$

then $\forall \varepsilon > 0$.

$$\lim_{n\to\infty} \mathbb{P}(|\bar{X}_n - \mu| \le \varepsilon) = 1$$

$$\lim_{n \to \infty} \mathbb{P}(|\bar{X}_n - \mu| > \varepsilon) = 0$$

If we only focus on a small interval around μ , we ask about the distribution of \bar{X}_n . We examine $Z_n = \frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu)$, so that $\mathbb{E}(Z_n) = 1$ and $\sigma^2(Z_n) = 1$.

Theorem 9.4. Let X_1, \ldots, X_n be iid with $\mathbb{E}(X_i) = \mu, \sigma^2(X_i) = \sigma^2 < \infty$, let

$$Z_n = \frac{1}{\sigma\sqrt{n}} \sum_{i=1}^n (X_i - \mu)$$

Then $Z_n \to_d N(0,1)$, $\forall a \leq b \in (-\infty,\infty)$, we have

$$\lim_{n \to \infty} \mathbb{P}(Z_n \in [a, b]) = \Phi(b) - \Phi(a)$$

This means a normalized sum of many iid r.v.s is almost N(0,1), that is

$$\frac{1}{\sqrt{n}} \sum \pm 1 \approx N(0, 1)$$

The normal approximation start with X_1, \ldots, X_n being iid, with $\mathbb{E}(X_i) = \mu$ and $\sigma^2(X_i) = \sigma^2$, let $S_n = X_1 + \cdots + X_n$, thus, we know $\mathbb{E}(S_n) = n\mu$ and $\sigma^2(S_n) = n\sigma^2$, so if n is large

$$S_n \approx N(n\mu, n\sigma^2) = n\mu + \sqrt{n}\sigma N(0, 1)$$

Theorem 9.5.

$$|\mathbb{P}(Z_n \le x) - \Phi(x)| \le \frac{3\mathbb{E}|X - \mu|^3}{\sigma^3 \sqrt{n}}$$

The tail decay for normal random variables has:

$$\mathbb{P}(N(0,1) \ge t) \le e^{-\frac{t^2}{2}}$$

10.1 Conditional Distribution of Discrete Random Variables

Definition 10.1. Let X be a discrete r.v., B be an event with $\mathbb{P}(B) > 0$, the conditional p.m.f of X given B is defined as:

$$p_{X|B}(k) = \mathbb{P}(X = k \mid B) = \frac{\mathbb{P}(X = k, B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \mid X = k)\mathbb{P}(X = k)}{\mathbb{P}(B)}$$

Definition 10.2. Following the same setup, the expected value of X given B is

$$\mathbb{E}(X \mid B) = \sum_{k} k \times p_{X|B}(k)$$

Theorem 10.1. The *Law of Total Probability* states that, if B_1, \ldots, B_n is a partition of Ω , then

$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$$

This gives us

$$p_X(k) = \sum_{i=1}^n p_{X|B_i}(k) \cdot \mathbb{P}(B_i)$$

bringing the expected value to be

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(X \mid B_i) \cdot \mathbb{P}(B_i)$$

We then transition from conditioning on events to conditioning on r.v.s. Then,

Definition 10.3. Let Y be another discrete r.v., so conditioning on $\{Y = y\}$, then

$$p_{X|Y}(x|y) = \mathbb{P}(X = x \mid Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

So this gives the conditional expected value of X conditional on Y = y, we have

$$\mathbb{E}(X \mid Y = y) = \sum_{x} x \cdot p_{X|Y}(x|y)$$

Since $\{Y = y\}$ form a partition, then we have:

$$p_X(x) = \sum_{y} p_{X|Y}(x|y) p_Y(y)$$

$$\mathbb{E}(X) = \sum_{y} \mathbb{E}(X \mid Y = y) \cdot p_{Y}(y)$$

By Bayes' Formula, we also have:

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)}$$

10.2 Conditional Distribution for Continuous Random Variables

Analogous to discrete cases,

Definition 10.4. Let X, Y be jointly continuous, the conditional function of X given Y = y is defined as:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

The **conditional expectation** of g(X) given Y = y is defined as:

$$\mathbb{E}(g(X) \mid Y = y) = \int_{-\infty}^{\infty} g(x) \cdot f_{X|Y}(x|y) dx$$

The **conditional probability** of $X \in A$ given Y = y is defined as:

$$\mathbb{P}(X \in A \mid Y = y) = \int_{A} f_{X|Y}(x|y) dx$$

Then by definition,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) \cdot f_Y(y) dy$$

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} \mathbb{E}(g(X) \mid Y = y) \cdot f_Y(y) dy$$

10.3 Conditional Expectation

From previous definitions, we can consider $\mathbb{E}(X \mid Y = y) = v(y)$ to be a function of y. Then we transform this to v(Y) so that $\mathbb{E}(X \mid Y) = v(Y)$ and it becomes a r.v.

Theorem 10.2. The *Law of Iterated Expectation* states that:

$$\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y))$$

Conditional expectation respects linearity, thus, we have

$$\mathbb{E}(X_1 + X_2 \mid Y) = \mathbb{E}(X_1 \mid Y) + \mathbb{E}(X_2 \mid Y)$$

Independence means that conditioning has no effect, thus, we should have

$$p_{X|Y}(x|y) = p_X(x)$$

$$f_{X|Y}(x|y) = f_X(x)$$

if and only if X, Y are independent. This also adds that:

$$\mathbb{E}(X \mid Y = y) = \mathbb{E}(X), \mathbb{E}(X \mid Y) = \mathbb{E}(X)$$

Some properties include:

- 1. $\mathbb{E}(X \mid X = x) = x$
- $2. \ \mathbb{E}(g(X) \mid X = x) = g(x)$
- 3. $\mathbb{E}(X \mid X) = X$
- $4. \ \mathbb{E}(g(X) \mid X) = g(X)$
- 5. $\mathbb{E}(g(X)f(Z) \mid X) = g(X) \cdot \mathbb{E}(f(Z) \mid X)$