Lesson 4. Sample Mean & Variance, Confidence Intervals

1 Overview

- In JaamSim, the simulations we create generate performance measures for 1 simulation run
 - o e.g., the average delay for the BaristaQ in the Nimitz Coffee Bar
- The observed average delay can and typically does differ between simulation runs
- The average delay is a random variable
 - o Uncertain quantity before the simulation run
 - Depends on interarrival and service times
- Can we estimate the distribution of the average delay?
 - o Let's focus on estimating the mean and variance of this distribution

2 The experiment

- Run the simulation *n* times
- Compute performance measure (e.g. average delay) for each simulation run (obtaining *n* observations of the performance measure)
- Use the *n* observations to estimate the mean of the delay

3 After the experiment: observed sample mean and sample variance

- Let $X_1, ..., X_n$ be independent and identically distributed (i.i.d.) random variables with unknown mean μ and variance σ^2
- Let x_1, \ldots, x_n be the observed values of X_1, \ldots, X_n , respectively
 - Think of X_i as the average delay in the *i*th simulation run before the experiment
 - Think of x_i as the observed average delay in the *i*th simulation run after the experiment
 - Since the simulation runs replicate the same system, X_1, \ldots, X_n should be identically distributed
- We want to estimate μ

• The observed sample mean is	
• The observed sample variance	is
• The standard error is	

• We estimate μ using the the observed sample mean

- We estimate σ^2 using the observed sample variance
- These are **point estimates** for μ and σ^2 , respectively
- $\bullet\,$ The standard error is a measure of the accuracy of the estimate of μ
- Why should we estimate μ and σ^2 this way?

4 Before the experiment: sample mean and sample variance

The sample mean is	n is
---------------------------	-------------

 \circ The sample mean \overline{X} is a random variable: before the experiment, it is an uncertain quantity

$$\circ \ E[\overline{X}] = \mu :$$

 $\circ \operatorname{Var}(\overline{X}) = \sigma^2/n:$

• The sample variance is	
• The sample variance is	

- The sample variance is also a random variable: before the experiment, it is an uncertain quantity
- The sample mean is an **unbiased estimator** of μ , and the sample variance is an **unbiased estimator** of σ^2 : that is,

• Intuitively, this indicates that using the observed sample mean to estimate μ and the observed sample variance to estimate σ^2 is not a bad idea

2

5 How good is the observed sample mean as an estimate?

- Is the observed sample mean \overline{x} "close" to μ ?
- Suppose \overline{X} is normally distributed
 - This is true if X_1, \ldots, X_n are normally distributed
 - This is approximately true by the Central Limit Theorem if $n \ge 30$

- This is an **interval estimate** for μ
- $t_{\alpha/2,n-1}$ can be computed in R with qt $((1-\alpha/2), n-1)$
- ∘ The *t*-distribution with n-1 degrees of freedom ≈ standard Normal distribution when $n \ge 30$
- Interpretation of a confidence interval:
 - Sample mean \overline{X} and sample standard deviation S^2 are random variables
 - Every experiment, we get different observed sample mean \bar{x} and observed sample variance s^2
 - ⇒ Every experiment, we get a different confidence interval
 - After running the experiment many times, $(1 \alpha)100\%$ of the resulting confidence intervals will contain the actual mean μ
 - We say that "we are $(1 \alpha)100\%$ confident that the mean μ lies within the confidence interval"
 - Wrong interpretation: "The mean μ lies within the given confidence interval with $(1 \alpha)100\%$ probability"
- Smaller confidence interval \Rightarrow more accurate estimate of μ

Example 1. Suppose an estimate of μ within 0.1 was desired at a confidence level of 95%. We perform a "warm-u experiment of $n = 30$ simulation runs to compute an observed sample variance s^2 , which is found to be 3.2. How marksimulations runs are needed to obtain this estimate of μ ?
• Example 1 is helpful in understanding the formula for computing confidence intervals but is not useful in practic when $n = 10000$ is often used
• What's wrong with the method in Example 1?