Majority Is Not Enough: Bitcoin Mining Is Vulnerable

Financial Technologies and Applications (T-714-FINT)

Giorgio Saldana

Reykjavík University

6 December 2024

Introduction

Bitcoin: A Decentralized Cryptocurrency

- Peer-to-peer digital currency.
- Transactions recorded on a blockchain.
- Miners solve cryptographic puzzles to validate transactions.

Key Feature: Decentralization

- No single entity controls the blockchain.
- · Assumes miners act honestly.

Giorgio Saldana (RU) Bitcoin Fall 2024 2/13

Bitcoin Mining Background

How Mining Works:

- Miners compete to solve cryptographic puzzles.
- Winner appends a new block to the blockchain.
- Longest chain is adopted as the valid chain.

Rewards:

- Block reward + transaction fees.
- Mining power (α) determines the probability of solving the puzzle.

Problem Statement

Assumption: Honest Mining is Incentive-Compatible

- Miners are rewarded proportionally to their mining power.
- Mining pools reduce income variance.

Reality: Vulnerability to Collusion

- Selfish mining strategy allows colluding miners to earn disproportionate rewards.
- Threatens Bitcoin's decentralization.

Giorgio Saldana (RU) Bitcoin Fall 2024 4/13

Selfish Mining Strategy

Key Idea:

- Keep discovered blocks private.
- Force honest miners to waste resources on the public chain.

Steps:

- (1) Mine privately and maintain a hidden chain.
- (2) Publish private chain strategically to invalidate honest miners' work.
- (3) Gain a higher share of rewards.

Finite State Model

States:

- 0: No private lead.
- 1: Selfish miners have a 1-block lead.
- *k*: Selfish miners have a *k*-block lead.

Transitions:

- Selfish miners mine a block: Move to k + 1.
- Honest miners mine a block: Publish private chain.

Tie State (0'):

- Honest and selfish chains have equal length.
- Resolved by honest miner behavior (γ) .

Revenue Events for Selfish and Honest Miners

Key Revenue Events:

- (a): Pool appends to its private branch, increasing its lead. Revenue counted later.
- **(b):** Pool has lead 2, publishes chain, earns revenue of 2.
- (c): Others find a block at head, lead drops to 1. Pool and others earn 1.
- (d): Others find a block after head in a tie.
 Others earn 2.

- (e): No private branch; others find a block. Others earn 1.
- (f): Lead is 1; others find a block. Pool publishes, creating a tie.
- (g): Lead is 2; others find a block. Pool publishes, earns 2.
- **(h):** Lead > 2; others find a block. Pool reveals *i*-th block, earns 1.

Mathematical Formulation

Revenue Contributions:

$$r_{\text{others}} = \underbrace{p_{0'} \cdot \gamma(1-\alpha) \cdot 1}_{\text{Case (c)}} + \underbrace{p_{0'} \cdot (1-\gamma)(1-\alpha) \cdot 2}_{\text{Case (d)}} + \underbrace{p_{0} \cdot (1-\alpha) \cdot 1}_{\text{Case (e)}} \\ r_{\text{pool}} = \underbrace{p_{0'} \cdot \alpha \cdot 2}_{\text{Case (b)}} + \underbrace{p_{0'} \cdot \gamma(1-\alpha) \cdot 1}_{\text{Case (c)}} + \underbrace{p_{2} \cdot (1-\alpha) \cdot 2}_{\text{Case (g)}} + \underbrace{P[i>2](1-\alpha) \cdot 1}_{\text{Case (h)}}$$

Revenue Ratio for the Selfish Pool:

$$R_{\mathsf{pool}} = rac{r_{\mathsf{pool}}}{r_{\mathsf{pool}} + r_{\mathsf{others}}} = rac{lpha (1 - lpha)^2 ig(4lpha + \gamma (1 - 2lpha) - lpha^3 ig)}{1 - lpha (1 + (2 - lpha)lpha)}$$

Threshold for Profitability:

$$lpha_{ ext{threshold}} = rac{1-\gamma}{3-2\gamma}$$

Example: If $\gamma = 0.5$, then $\alpha_{\text{threshold}} = 0.25$.

8/13

Giorgio Saldana (RU) Bitcoin Fall 2024

Revenue Analysis

Key Observations:

- Selfish mining is profitable if $R_{pool} > \alpha_{threshold}$.
- Threshold decreases as γ increases.
- Superlinear growth: Larger selfish pools attract more miners.

Simulation Results:

- Confirm theoretical predictions.
- Revenue increases with pool size once above the threshold.

Giorgio Saldana (RU) Bitcoin Fall 2024 9/13

Revenue Dynamics

Key Insights:

- Honest Mining (Gray Line): Revenue scales linearly with mining power $(R = \alpha)$.
- Selfish Mining (Colored Curves):
 - γ = 0: Honest miners resist selfish miners; least advantage.
 - $\gamma = 0.5$: Honest miners split evenly between chains; moderate advantage.
 - γ = 1: Honest miners fully support selfish chain; maximum selfish miner revenue.
- Superlinear Growth: Once $\alpha > \alpha_{\text{threshold}}$, selfish mining becomes disproportionately profitable.
- Simulation results (points) align with theoretical predictions (curves).

Giorgio Saldana (RU) Bitcoin Fall 2024 10/13

Threshold and Pool Growth

Behavior Above Threshold:

- Selfish pool earns disproportionate rewards.
- Rational miners are incentivized to join selfish pool.

Centralization Risk:

- Pool grows unopposed, potentially reaching 51
- Decentralization collapses.

Giorgio Saldana (RU) Bitcoin Fall 2024 11/13

Proposed Solutions

Protocol Modification:

- Randomized Fork Resolution: Miners should randomly choose which chain to mine on during ties, reducing the selfish pool's ability to exploit forks.
- Backward-Compatible Mechanism: Modifications to the protocol ensure that pools smaller than 1/4 of the total mining power cannot profitably engage in selfish mining.

Impact of the Solution:

- Increases $\alpha_{\text{threshold}}$ to 25% for profitability when the solution is adopted.
- Strengthens Bitcoin's resilience but does not eliminate the threat entirely.

Giorgio Saldana (RU) Bitcoin Fall 2024 12/13

Conclusion

- Selfish mining proves that Bitcoin's mining protocol is not incentive-compatible.
- Without changes, selfish pools as small as 1/4 ($\alpha = 0.25$) of mining power can profit.
- At least 2/3 of the network must remain honest to maintain decentralization and thwart selfish mining. A simple majority (51
- The solution makes attacks harder for smaller pools but does not completely eliminate risks to decentralization.

Giorgio Saldana (RU) Bitcoin Fall 2024 13/13