Variance, Co-Variance, Mahalanobis distance, Co-Relation, Mean, Standard Deviation

Prepared By: Dr.Mydhili K Nair, Professor, ISE Dept, RIT

For: Machine Learning Elective Class

Target Audience: Sem 6 Students

Term: Feb to June 2019

By what quantity are these two parameters related?
What is the "level of correlation"??

54 77 67 68 46 64 62 56 38

Height (inches)

Variance =
$$\sigma^2 = 127.43$$
 $\sigma = \sqrt{127.43} = 11.29$

Standard Deviation = 11.29

Formulae

$$Mean=\overline{x}=rac{\sum x}{n}$$
 $Variance=s^2=rac{\sum (x-\overline{x})^2}{n-1}$
 $Std\ dev=s=\sqrt{rac{\sum (x-\overline{x})^2}{n-1}}$

Note: The numerator is **not** a squared deviation, but a **product** of the summation deviation of each data point X from its mean and each data point Y from its mean.

Covariance

$$COV(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

Correlation Coefficient

$$r_{(x,y)} = \frac{COV(x,y)}{Std \ dev}$$

Each dot plot below represents a different set of data.

Order the dot plots from largest standard deviation (top) to smallest standard deviation (bottom).

Each dot plot below represents a different set of data.

Order the dot plots from largest standard deviation (top) to smallest standard deviation (bottom).

V

Question#1: Standard Deviation Calculation

A veterinarian weighed a sample of 6 puppies. Here are each of their weights (in kilograms):

1, 2, 7, 7, 10, 15

The mean of these weights is $\bar{x}=7~\mathrm{kg}$.

What is the standard deviation?

Question#1: Standard Deviation Calculation

x_i	Deviation: $(x_i - ar{m{x}})$	Squared deviation: $(x_i - ar{x})^2$
1	1 - 7 = -6	$(-6)^2 = 36$
2	2 - 7 = -5	$(-5)^2 = 25$
7	7 - 7 = 0	$0^2 = 0$
7	7 - 7 = 0	$0^2=0$
10	10 - 7 = 3	$3^2=9$
15	15 - 7 = 8	Deviation in Visual Form $8^2=64$
Sum:	0	E.g.#3

Question#1: Standard Deviation Calculation

$$rac{134}{n-1} = rac{134}{6-1} = rac{134}{5} = 26.8$$
 $s_x = \sqrt{26.8} pprox 5.177 ext{ kg}$ $variance = s^2 = rac{\Sigma(x-\overline{x})^2}{n-1}$

Std dev = $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$

Standard

Deviation

in Visual

Form

E.g.#3

Why did we divide by n-1??

The variance is the average squared deviation from the population mean

Population Mean could be anywhere on this number line.

This is the **Population Variance**

This is the **Sample Variance**

Why did we divide by n-1??

The variance is the average squared deviation from the population mean

The sample mean is one POSSIBLE position for the true population mean

$$\sigma^2$$

$$\operatorname{Var}(X) = rac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Population Variance

How "connected" or "correlated" are these two parameters?

SI#	Temperature	Ice-Cream Sales
1	66	8
2	72	11
3	77	15
4	84	20
5	83	21
6	71	11
7	65	8
8	70	10
Mean	73.5	13
Std Deviation	7.19	5.13

How "connected" or "correlated" are these two parameters?

SI#	Deviation $(x-\overline{x})$	Sample Variance $S^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n-1}$
1	-7.5	56.25
2	-1.5	3
3	3.5	12.25
4	10.5	110.25
5	9.5	90.25
6	-2.5	5
7	-8.5	17
8	-3.5	12.25

$(x-\overline{x})$	$(y_i - \overline{y})$	$(\times_i - \overline{\times})(y_i - \overline{y})$
-7.5	-5	37.5
-1.5	-2	3
3.5	2	7
10.5	7	73.5
9.5	8	76
-2.5	-2	5
-8.5	-5	42.5
-3.5	-3	10.5
		255

$$COV(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1} = 255 / 7$$

$$= 36.43$$

Covariance is a large positive number. This indicates *positive correlation*.

$$r_{(x,y)} = \frac{COV(x,y)}{s_x s_y}$$
 = 255 / (7.19 * 5.13)
= 0.99 Correlation Coefficient is number close to 1. This indicates correlation is very high between X and Y. .

The importance of covariance

The importance of covariance

The importance of covariance

