

The Centre of Image and Material Analysis in Cultural Heritage

Einführung in die Ramanspektroskopie

Block 3 - Material analyse von historischem Kulturgut

Raman-Spektroskopie: Anwendung & Vorteile

Im Bereich der Kunstanalyse wird die Ramanspektroskopie großteils zur Materialidentifizierung eingesetzt.

Zu den häufigsten Anwendungen zählt die Analyse von natürlichen und synthetischen organischen Pigmenten, Farbstoffen, Bindemitteln (natürliche und moderne, synthetische), sowie die Charakterisierung von Alterungsphänomenen diverser, in der Kunst verwendeter Materialien.

- Berühungsfrei Analysemethode
- Raman Spektr. ist komplementär zur IR Spektr.

wobei aber verschiedene physikalische Prozesse die Grundlagen der beiden Verfahren sind:

r-FTIR

mittlere Infrarotstrahlung – Molekülschwingungen

Anregung von <u>asymmetrischen</u> <u>Schwingungen</u> und Rotationen im Molekül

Absorption von mittlerer IR-Strahlung

Dipolmomentänderung

Raman

Vis oder NIR Laser -Molekülschwingungen

Anregung von <u>symmetrischen</u> <u>Schwingungen</u> und Rotationen im Molekül

Streuung von monochromatischem Licht

Änderung der Polarisierbarkeit des Moleküls

Raman-Spektroskopie: LASER

Monochromatische Strahlung für Raman Spektroskopie: LASER

<u>Light Amplification by Stimulated Emission of Radiation</u>

Licht-Verstärkung durch stimulierte Emission von Strahlung

Molekulare Symmetrie ist eine Grundidee der Chemie. Es geht um die Symmetrie von Molekülen. Es ordnet Moleküle entsprechend ihrer Symmetrie in Gruppen ein. Es kann viele der chemischen Eigenschaften eines Moleküls vorhersagen oder erklären.

Raman-Spektroskopie: Molekulare Schwingungen

Raman → aktiv Infrarot → inaktiv

Symmetrische Valenzschwingung

Asymmetrische Valenzschwingung

Raman-Spektroskopie: IR vs Raman Spektroskopie

In beiden Fällen; Eine monochromatische Strahlung trifft auf eine Probe.

Bei der Raman-Spektroskopie wird die Strahlung in alle Richtungen gestreut, während bei der IR-Spektroskopie die Strahlung durch die Probe hindurchtritt und von dieser absorbiert wird.

Raman-Spektroskopie: Theorie

Principle of Raman Spectroscopy

Raman-Spektroskopie: Theorie

Interaction

Raman-Spektroskopie: Theorie

Raman-Spektroskopie: Fluoreszenz

Raman-aktive Moleküle zeigen **Fluoreszenz**, wenn sie mit einem Laser angeregt werden, was zu einem breiten Hintergrund führt, der typischerweise mehrere Größenordnungen stärker intensiviert wird als das Raman-Signal. Dies kann das Signal-Rausch-Verhältnis des Raman-Spektrums verringern oder es vollständig verdecken.

Raman-Spektroskopie: Fluoreszenz

Wenn die Molekülstruktur komplex ist, ist der Fluoreszenzhintergrund am größten. Dies wird bei organischen Verbindungen und biologischen Proben beobachtet, kann aber auch auftreten, wenn fluoreszierende Verunreinigungen in der Probe vorhanden sind.

Wie wähle ich den richtigen Laser?

Die Verringerung der Fluoreszenz kann durch Verwendung einer längeren Wellenlänge wie 785 oder 830 nm erreicht werden. Darüber hinaus ist die Eliminierung der Fluoreszenz bei Verwendung von 1064 nm fast vollständig möglich, obwohl einige biologische Proben immer noch einer unerwünschten Erwärmung unterliegen, wenn sie mit 1064 nm Raman angeregt werden.

Schematische Übersicht eines Raman-Spektrometers

Raman Geräte

Confocal LabRAM ARAMIS Vis spectrometer (Horiba Jobin Ivon)

Laser: 785 nm diode (NIR)

532 nm Nd:YAG (green)

633 nm HeNe (red)

Olympus L-BXFM microscope

(Magnifications: 10x, 50x, 50x LWD, and 100x)

ProRaman-L-Dual-G analyzer of Enwave Optronics

Integriertes Mikroskop ist mit einer 1,3-Megapixel-Kamera mit Inline-LED-Beleuchtung ausgestattet

Laser: 785 nm diode (NIR)

532 nm Nd:YAG (green)

Raman-Spektroskopie: Ergebnisse

Interpretation der Raman-Spektren

Raman-Spektroskopie: Ergebnisse

Interpretation der Raman-Spektren

✓ Identifizierung von funktionellen Gruppen

Functional Group/ Vibration	Region	Raman	InfraRed
Lattice vibrations in crystals, LA modes	10 - 200 cm ⁻¹	strong	strong
δ(CC) aliphatic chains	250 - 400 cm ⁻¹	strong	weak
υ(Se-Se)	290 -330 cm ⁻¹	strong	weak
υ(S-S)	430 -550 cm ⁻¹	strong	weak
υ(Si-O-Si)	450 -550 cm ⁻¹	strong	weak
υ(Xmetal-O)	150-450 cm ⁻¹	strong	med-weak
υ(C-I)	480 - 660 cm ⁻¹	strong	strong
υ(C-Br)	500 - 700 cm ⁻¹	strong	strong
υ(C-CI)	550 - 800 cm ⁻¹	strong	strong
υ(C-S) aliphatic	630 - 790 cm ⁻¹	strong	medium
υ(C-S) aromatic	1080 - 1100 cm ⁻¹	strong	medium
υ(O-O)	845 -900 cm ⁻¹	strong	weak
υ(C-O-C)	800 -970 cm ⁻¹	medium	weak
υ(C-O-C) asym	1060 - 1150 cm ⁻¹	weak	strong

Beispiele

✓ Identifizierung von funktionellen Gruppen

Organische Pigmente: Alizarin

Alizarin ist eine natürlich vorkommende chemische Verbindung aus der Gruppe der Anthrachinone, die vor allem als Farbstoff genutzt wird.

Raman-Spektroskopie: Ergebnisse

Interpretation der Raman-Spektren

- ✓ Auswertung durch vergleich mit Referenzspektren
- Frei verfügbare Raman-Spektrendatenbanken: rruff.info/
- Raman-Spektrendatenbanken, die von der Herstellerfirma gekauft wurden (bzw. Horiba, Thermo...)

Raman-Spektroskopie: Beispiele

Tinten und Pigmente in Handschriften

Cod. Slav. 3, folio 372v

Übung 1: Identifizierung einer roten Tinte

Komplementäre Methoden:

- RFA
- FT-IR
- Raman

RFA

FT-IR

Raman

Conclusion:

Red ink is **vermilion** (HgS) Binding medium is **animal glue**

Ubung 2: Identifizierung einer roten und schwarzen Tinten

Komplementäre Methoden:

- RFA
- Raman

INTK

Conclusion:

Red ink is **Red lead** (Pb₃O₄)

Wavenumber [cm⁻¹]

RAMAN

Spektroskopie

DEMO