Intro to Algorithms - Homework 1

Q1.

(a):
$$f(n)$$
 and $g(n)$ are $O(n)$, therefore $f = O(g)$

(b):
$$\frac{1}{2} < \frac{2}{3}$$
 therefore $f = U(g)$

(c):
$$f(n)$$
 and $g(n)$ are both $U(n)$, therefore $f = \theta(g)$

(d):
$$f(n)$$
 and $g(n)$ are both $O(n \log n)$, therefore $f = O(g)$

(e):
$$f(n)$$
 and $g(n)$ are both $O(\log n)$, therefore $f = O(g)$

(f):
$$f(n)$$
 and $g(n)$ are both $O(\log n)$, therefore $f = \Theta(g)$

(h):
$$\frac{n^2}{\log n} \cdot \frac{\log n}{n} = n$$
, $n(\log n)^2 \cdot \frac{\log n}{n} = (\log n)^3$
therefore $f = \Omega(g)$

(i)
$$n^{\sigma l} > (\log n)^{l\sigma}$$
; therefore $f = \Omega(g)$

(j)
$$(\log n)^{\log n} = n^{\log \log n}$$
; therefore $f = \Omega(g)$

 Q_2 T(n) is 2^n . Base case: $T(v)=2^v=1$; when n is v, the function will print 1 *which is true. Induction step: show $T(n) \rightarrow T(n+1)$ for all $n \ge 0$. Assume T(n) is true, show $T(n+1) = 2^{n+1}$ is True. for n = 0, it punt $1 * 2^{\circ} = 1$ T(2): 4 n = 1, it print 2 * 2' = 2 T(3)=8 n=2, it print 4 * $2^2=4$ n=3, it print $8 \times 2^3 = 8$ $T(n+1) = 2^n \cdot 2 = 2^{n+1}$ which is exactly what was to be shown So, T(n+1) is True. By induction, T(n) is 2n for all n 2 0. Q3. $\max(f(n), g(n)) = \theta(f(n) + g(n))$ The basic definition of θ - notation is $C_1 g(n) \leq f(n) \leq C_2 g(n)$ Since f(n) and g(n) are asymptotically numerative functions and the definition of Θ -notation, we can see that $f(n) \leq C_2 g(n)$ and $f(n) \geq C_1 g(n)$ if there exist constant C1, C2. Hence, by combining this, we can get $\max(f(n), g(n)) \leq f(n) + g(n) \leq 2\max(f(n), g(n))$

therefore, $\max(f(n), g(n)) = O(f(n) + g(n))$ proved.

Q4	
	(a) $2^{2n} != U(2^n)$; which is mean that 2^{2n} is not $U(2^n)$
	(b) Because $O(2^n)$ will be in form of $2^{n+1} \longrightarrow (2^n)2 \implies This will result in O(2^n)$
	However, $2^{2n} \rightarrow (2^n)^2$, which is $(2^n)^2 > (2^n)^2$.
	Hence, $2^{2n} != U(2^n)$