HW3_yc4384_Cynthia

Yangyang Chen

2024-02-26

Problem 1

(a) Fit a prospective model to the data to study the relation between alcohol consumption, age, and disease (model age as a continuous variable taking values 25, 35, 45, 55, 65, and 75). Interpret the result.

Using logistics regression model to fit data from prospective study:

$$log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 X_{alc} + \beta_2 X_{age}$$

```
# load data
age = seq(from = 25, to = 75, by = 10) |>
case = c(1, 4, 25, 42, 19, 5, 0, 5, 21, 34, 36, 8)
control = c(9, 26, 29, 27, 18, 0, 106, 164, 138, 139, 88, 31)
alc = c(rep(1,6), rep(0, 6))
resp = cbind(case, control)
# Model fitting using logit link
glm_logit=glm(resp ~ alc + age, family=binomial(link='logit'))
summary(glm_logit)
##
## Call:
## glm(formula = resp ~ alc + age, family = binomial(link = "logit"))
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -5.023449
                           0.418224 -12.011
                                              <2e-16 ***
                1.780000
                           0.187086
                                      9.514
                                              <2e-16 ***
## age
                0.061579
                           0.007291
                                      8.446
                                              <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 211.608 on 11 degrees of freedom
## Residual deviance: 31.932
                              on 9 degrees of freedom
## AIC: 78.259
##
## Number of Fisher Scoring iterations: 4
```

Hence, the logistics regression model is:

$$log(\frac{\pi}{1-\pi}) = -5.02 + 1.78 X_{alc} + 0.06 * X_{age}$$

Interpretation:

- The model suggests a significant relationship between esophageal cancer, daily alcohol consumption adjusted and age.
- β_1 : the log odds ratio of having the disease among heavy drinkers is 1.78 times the odds odds ratio of non-heavy drinkers, keeping age fixed.
- $exp(\beta_1)$: odds ratio for the association between disease and alcohol consumption, holding age constant.
- β_2 : the log odds ratio of having the disease will increase by 0.06 for every unit increment in age, keeping alcohol consumption fixed.
- $exp(\beta_2)$: the odds ratio for the association between disease and age, holding alcohol consumption constant.
- This model appears to fit the data well, as indicated by the significant coefficients and the reduction in deviance from the null model to the fitted model.

(b) age = c(1:6) |> factor() ind = dummy.code(age) grp1 = rep(ind[,1],2)grp2 = rep(ind[,2],2)grp3 = rep(ind[,3],2)grp4 = rep(ind[,4],2)grp5 = rep(ind[,5],2)grp6 = rep(ind[,6],2)M_0 = glm(resp ~ grp1 + grp2 + grp3 + grp4 + grp5 + grp6, family = binomial(link = 'logit')) summary(M_0) ## ## Call: ## glm(formula = resp ~ grp1 + grp2 + grp3 + grp4 + grp5 + grp6, family = binomial(link = "logit")) ## ## Coefficients: (1 not defined because of singularities) ## Estimate Std. Error z value Pr(>|z|)## (Intercept) -0.86904 0.33043 -2.630 0.008537 ** 1.05728 -3.666 0.000246 *** ## grp1 -3.87589-2.180760.47493 -4.592 4.39e-06 *** ## grp2 ## grp3 -0.42031 0.37001 -1.136 0.255977 0.08778 0.35828 0.245 0.806445 ## grp4 0.21293 0.36986 0.576 0.564812 ## grp5 NANANA## grp6 NA ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 ## ## (Dispersion parameter for binomial family taken to be 1) ## Null deviance: 211.608 on 11 degrees of freedom ##

```
## Residual deviance: 90.563 on 6 degrees of freedom
## ATC: 142.89
##
## Number of Fisher Scoring iterations: 6
dev_m0 = residuals(M_0, type = "deviance")^2 |> sum()
M_1 = glm(resp ~ alc + grp1 + grp2 + grp3 + grp4 + grp5 + grp6, family = binomial(link = 'logit'))
summary(M_1)
##
## Call:
## glm(formula = resp ~ alc + grp1 + grp2 + grp3 + grp4 + grp5 +
      grp6, family = binomial(link = "logit"))
##
## Coefficients: (1 not defined because of singularities)
               Estimate Std. Error z value Pr(>|z|)
                          0.344216 -3.173 0.001509 **
## (Intercept) -1.092158
               1.669890
                         0.189602
                                    8.807 < 2e-16 ***
## alc
              -3.962190 1.065035 -3.720 0.000199 ***
## grp1
                          0.491328 -4.925 8.43e-07 ***
## grp2
              -2.419896
                          0.389837 -1.958 0.050192 .
## grp3
              -0.763428
## grp4
              -0.248700
                          0.376735 -0.660 0.509161
              0.004692
                          0.387043
                                   0.012 0.990328
## grp5
                     NA
                                NA
                                        NA
                                                 NA
## grp6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 211.608 on 11 degrees of freedom
## Residual deviance: 11.041 on 5 degrees of freedom
## AIC: 65.369
## Number of Fisher Scoring iterations: 5
dev_m2 = residuals(M_1, type = "deviance")^2 |> sum()
```

Problem 2

(a) Fit a logistic regression model to study the relation between germination rates and different types of seed and root extract. Interpret the result.

Let Y_i denote the number of seeds germinates among m_i seeds with the *ith* covariate pattern. The logistic regression model:

$$log(\frac{\pi}{1-\pi}) = \beta_1 + \beta_2 x_i;$$

 $Y_i \sim Bin(n_i, \pi_i), \ i = 1, ..., m,$

```
# input data
x=c(rep(0,10),rep(1,11))
y=c(10,23,23,26,17,8,10,8,23,0,5,53,55,32,46,10,3,22,15,32,3) # survive=1
m=c(39,62,81,51,39,16,30,28,45,4,6,74,72,51,79,13,12,41,30,51,7)
data=data.frame(x,y,m)
plot(x,m)
```



```
summary(m-y) ## m >= y

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 19.00 19.38 22.00 58.00

# fit binomial (logistic) without dispersion
none.disp=glm(cbind(y,m-y)~x, family=binomial(link='logit'))
summary(none.disp)
```

```
##
## Call:
  glm(formula = cbind(y, m - y) ~ x, family = binomial(link = "logit"))
##
##
  Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
  (Intercept) -0.5122
                            0.1039 -4.927 8.34e-07 ***
##
                                    7.353 1.93e-13 ***
## x
                 1.0574
                            0.1438
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 98.719 on 20 degrees of freedom
##
## Residual deviance: 42.751 on 19 degrees of freedom
## AIC: 123.35
##
## Number of Fisher Scoring iterations: 3
G.stat=sum(residuals(none.disp,type='pearson')^2) # pearson chisq
G.stat
```

[1] 41.22615

The binomial logistic without dispersion was fitted with the following results:

$$b_1 = -0.5122$$
, standard $error(b_1) = 0.1039$;
 $b_2 = 1.0574$, standard $error(b_2) = 0.1438$;

 $Pearson - \chi^2 statistic: X^2 = \sum X_i^2 = 41.226 \ and \ Deviance \ D = \sum d_i^2 = 42.751.$

```
# goodness of fit
pval=1-pchisq(none.disp$deviance,21-3)
pval # bad fit, reject the fitting
```

[1] 0.0008677067

Comparing X^2 and D with $\chi^2(19)$, we concluded that the model appears to fit bad.

(b) Is there over dispersion? If so, what is the estimate of dispersion parameter? Update your model and reinterpret the result.

Estimating the dispersion parameter by following two methods:

First,

$$\hat{\phi} = G_0/(n-p),$$

where

$$G_0 = \sum_{i=1}^n \frac{(y_i - m_i \hat{\pi}_i)^2}{m_i \hat{\pi}_i (1 - \hat{\pi}_i) \phi} \sim \chi^2(n - p)$$

is the generalized Pearson χ^2 from the original model fitting without over-dispersion.

Second,

$$\hat{\phi} = \frac{D_0}{n - p}$$

```
# calc dispersion para in 2 methods
# the first method
phi=G.stat/(21-3)
phi
## [1] 2.290341
# the second method
tilde.phi=none.disp$deviance/none.disp$df.residual
tilde.phi # similar to the one estimated from pearson chisq
## [1] 2.250045
# test over-dispersion (half normal plot)
res=residuals(none.disp,type='pearson')
plot(qnorm((21+1:21+0.5)/(2*21+1.125)),sort(abs(res)),xlab='Expected Half-Normal Order Stats',ylab='Order St
abline(a=0,b=1)
abline(a=0,b=sqrt(phi),lty=2, col = 'red')
                                                                                                                                                                                                                                                                                                                                                           0
Ordered Abs Pearson Residuals
                        5
                        S
                        0
                                                                                            00000
                        ď
                        S
                       1.0
                       0.5
                       0.0
                                                                                                                0.5
                                                                                                                                                                                     1.0
                                                                                                                                                                                                                                                          1.5
                                                                                                                                                                                                                                                                                                                              2.0
                                           0.0
                                                                                                                               Expected Half–Normal Order Stats
```

Therefore, there exists over-dispersion in our model and the estimate of dispersion parameter: $\hat{\phi} = 2.1697$.

Next, we updated regression model.

```
# fit model with constant over-dispersion
summary(none.disp,dispersion=phi)
##
## Call:
## glm(formula = cbind(y, m - y) ~ x, family = binomial(link = "logit"))
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.5122
                            0.1573 -3.256 0.00113 **
                                     4.859 1.18e-06 ***
## x
                 1.0574
                            0.2176
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 2.290341)
##
## Null deviance: 98.719 on 20 degrees of freedom
## Residual deviance: 42.751 on 19 degrees of freedom
## AIC: 123.35
##
## Number of Fisher Scoring iterations: 3
```

The binomial logistic with dispersion was fitted with the following results:

$$b_1=-0.5122,\ standard\ error(b_1)=0.1531;$$

$$b_2=1.0574,\ standard\ error(b_2)=0.2118;$$

$$Pearson-\chi^2 statistic: X^2=\sum X_i^2=41.226\ and\ Deviance\ D=\sum d_i^2=42.751.$$

(c) What is a plausible cause of the over dispersion?