Handout 11

Lectures in Week 46

Thank you to all of your for three very informative and nice presentations about the core NMF (or NLS or NQP) algorithms. I very much appreciate your effort!

Monday, November 12:

Discussion of Alexandrov et al. (2013, Cell Reports).

Wednesday, November 14:

Guest lecture by Johanna Bertl. Finish discussion of Alexandrov et al. (2013, Cell Reports).

Lectures in Week 47

The final topic of the course is statistical models for molecular evolution. We begin with the material in EG Section 11.7 (Continuous-Time Markov Chains) and EG Section 14.3 (Continuous-Time Evolutionary Models).

Exercises in Week 46

First you should solve Exercise 1 below. Second you should read EG Section 11.7 pages 403-407. Third you should solve Problem 11.10 in EG Section 11.7 page 407.

Exercise 1

The differential equation

$$f'(t) = a f(t)$$

is the most important differential equation (ever!).

- 1. Show that $f(t) = Ke^{at}$ is a solution where K is any constant.
- 2. Show that there are no other solutions.

Hint: Let g(t) be any solution and show that the derivative of $g(t)e^{-at}$ equals zero:

$$\frac{d}{dt}\Big(g(t)e^{-at}\Big) = 0.$$

Conclude that $g(t)e^{-at} = K$ and therefore $g(t) = Ke^{at}$.

Note that the constant K is determined if the solution $f_0 = f(t_0)$ to the differential equation is specified in a single point t_0 .

3. Now consider the differential equation

$$f'(t) = a\Big(f(t) + b\Big).$$

Show that the solution is

$$f(t) = -b + Ke^{at},$$

where K is any constant.

4. Show that if f(0) = 1 we have

$$f(t) = -b + (1-b)e^{at},$$

and if f(0) = 0 we have

$$f(t) = -b + be^{at} = b(e^{at} - 1).$$