Chapitre 3 : Nombre dérivé - Applications Cours 1 : Taux de variation et nombre dérivé

R. KHODJAOUI

Lycée J.J. HENNER - 1D

Samedi 5 octobre 2019

Sommaire

Définition 1

Définition 2

2/5

On considère une fonction f définie sur un intervalle I

Soit a et b deux nombre réels distincts de I.

Le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est appelé taux de variation (ou taux d'accroissement) de f entre a et b.

On considère une fonction f définie sur un intervalle I

Soit a et b deux nombre réels distincts de I.

Le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est appelé taux de variation (ou taux d'accroissement) de f entre a et b.

Interprétation géométrique

On considère, dans un repère du plan, les points A(a,f(a)) et B(b,f(b)) de la courbe représentative de f. Le taux de variation de f entre a et b est

le coefficient directeur de la droite (AB). En effet, on a :

$$\frac{f(b) - f(a)}{b - a} = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta_y}{\Delta_x}$$

On considère une fonction f définie sur un intervalle I

Soit a et b deux nombre réels distincts de I.

Le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est appelé taux de variation (ou taux d'accroissement) de f entre a et b.

Interprétation cinématique

On considère un mobile M se déplaçant sur un axe $(O; \overrightarrow{i})$, on repère la position de ce mobile à l'instant t par la distance d(t) entre ce point et l'origine O de l'axe.

Le taux de variation de la fonction d entre deux instants distincts t_0 et t_1 est égal à la **vitesse moyenne** du mobile entre les instants t_0 et t_1 :

$$V_m = \frac{d(t_1) - d(t_0)}{t_1 - t_0} = \frac{\text{distance parcourue entre les instants } t_0 \text{ et } t_1}{\text{durée écoulée entre ces deux instants}}$$

On considère une fonction f définie sur un intervalle I

Soit a et b deux nombre réels distincts de I.

Le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est appelé taux de variation (ou taux d'accroissement) de f entre a et b.

Exemple 1 : taux d'accroissement de la fonction carré entre a=1 et b=3

Pour tout réel x, $f(x) = x^2$

$$\frac{f(3) - f(1)}{3 - 1} = \frac{3^2 - 1^2}{3 - 1}$$
$$= \frac{9 - 1}{2}$$
$$= \frac{8}{2}$$
$$= 4.$$

On considère une fonction f définie sur un intervalle I

Soit a et b deux nombre réels distincts de I.

Le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est appelé \mathbf{taux} de $\mathbf{variation}$ (ou \mathbf{taux} d'accroissement) de f entre a et b.

Exercice: On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 3$.

Calculer le taux d'accroissement de f entre 2 et 2,01

On considère une fonction f définie sur un intervalle I

Soit a et b deux nombre réels distincts de I.

Le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est appelé taux de variation (ou taux d'accroissement) de f entre a et b.

Exemple 2 : On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 1$.

Soit h un réel non nul, calculons $\tau(h)$, le taux d'accroissement de f entre 3 et 3+h: $f(3+h) = (3+h)^2 + 1 = 9 + 6h + h^2 + 1 =$ $h^2 + 6h + 10$ $f(3) = 3^2 + 1 = 10$

$$\tau(h) = \frac{f(3+h) - f(3)}{h}$$

$$= \frac{h^2 + 6h + 10 - 10}{h}$$

$$= \frac{h^2 + 6h}{h}$$

$$= \frac{h(h+6)}{h}$$

$$= h + 6.$$

On considère une fonction f définie sur un intervalle I

Soit a et b deux nombre réels distincts de I.

Le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est appelé ${f taux}$ de ${f variation}$ (ou taux d'accroissement) de f entre a et b.

Exercice: On considère la fonction f définie sur \mathbb{R} par $f(x) = 3x^2 - 2$.

Calculer le taux d'accroissement de f entre 2 et $2+h,\,h$ étant un réel non nul.

On considère une fonction f définie sur un intervalle I

Soit a un réel de I et soit h un réel non nul tel que $a+h\in I$.

- \rightarrow La fonction f est dite **dérivable en** a si, et seulement si, le taux de variation de f entre les réels a et a+h tend vers un réel l quand h tend vers 0.
- \rightarrow Le nombre l est alors appelé **nombre dérivé** de f en a et est noté f'(a) :

Samedi 5 octobre 2019

On considère une fonction f définie sur un intervalle I

Soit a un réel de I et soit h un réel non nul tel que $a+h\in I$.

- \rightarrow La fonction f est dite **dérivable en** a si, et seulement si, le taux de variation de f entre les réels a et a+h tend vers un réel l quand h tend vers 0.
- \rightarrow Le nombre l est alors appelé **nombre dérivé** de f en a et est noté f'(a) :

Notation

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

Cette expression se lit : la limite lorsque h tend vers 0 de $\frac{f(a+h)-f(a)}{h}$ est égale à f'(a).

On considère une fonction f définie sur un intervalle I

Soit a un réel de I et soit h un réel non nul tel que $a+h\in I$.

- \rightarrow La fonction f est dite **dérivable en** a si, et seulement si, le taux de variation de f entre les réels a et a+h tend vers un réel l quand h tend vers 0.
- \rightarrow Le nombre l est alors appelé **nombre dérivé** de f en a et est noté f'(a) :

Interprétation cinématique

On reprend le contexte précédent : Le taux de variation de la fonction d entre les instants t_0 et $t_1 = t_0 + h$ est égal à la **vitesse moyenne** du mobile entre les instants t_0 et $t_0 + h$:

$$V_m = \frac{d(t_0 + h) - d(t_0)}{h}$$

Si ce taux de variation admet, lorsque h tend vers 0, une limite réelle, alors la fonction d est dérivable en t_0 et le nombre dérivé $d'(t_0)$ est la **vitesse** instantanée du mobile à l'instant h_0 .

On considère une fonction f définie sur un intervalle I

Soit a un réel de I et soit h un réel non nul tel que $a+h\in I$.

- \rightarrow La fonction f est dite **dérivable en** a si, et seulement si, le taux de variation de f entre les réels a et a+h tend vers un réel l quand h tend vers 0.
- \rightarrow Le nombre l est alors appelé **nombre dérivé** de f en a et est noté f'(a):

Exemple: On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 1$.

Montrons que f est dérivable en 3 et donnons la valeur du nombre dérivé correspondant.

Nous savons que pour tout réel $h \neq 0$, $\tau(h) = h + 6$.

Donc si h se rapproche de 0, $\tau(h)$ se rapproche de 0+6=6.

Ainsi

$$\lim_{h\to 0} \tau(h) = 6$$

Finalement f est dérivable en 3 et

On considère une fonction f définie sur un intervalle I

Soit a un réel de I et soit h un réel non nul tel que $a + h \in I$.

- \rightarrow La fonction f est dite **dérivable en** a si, et seulement si, le taux de variation de f entre les réels a et a+h tend vers un réel l quand h tend vers 0.
- \rightarrow Le nombre l est alors appelé **nombre dérivé** de f en a et est noté f'(a) :

Exercice: On considère la fonction f définie sur \mathbb{R} par f(x) = 3x + 1.

Soit a un réel fixé, montrer que f est dérivable en a.

FIN

Revenir au début

