Série 4 (Corrigé)

L'exercice 1 sera discuté pendant le cours du lundi 17 octobre. L'exercice $3 \ (\star)$ peut être rendu le jeudi 20 octobre aux assistants jusqu'à 15h.

Exercice 1 - QCM

` '	terminer si les énoncés proposés sont vrais ou faux.		
•	• Il existe un anneau $(A,+,\cdot)$ tel que A contient un seul élém	ent.	
		O vrai	O faux
•	• Il existe un corps $(K,+,\cdot)$ tel que K contient un seul éléme	nt.	
		🔾 vrai	O faux
•	• Dans l'anneau des polynômes $A[t]$, les polynômes de degré pa zéro forment un sous-anneau.	air avec le p	oolynôme
		🔾 vrai	O faux
•	• Dans l'anneau des polynômes $A[t]$, les polynômes de degré nôme zéro forment un sous-anneau.	impair ave	c le poly-
		🔾 vrai	O faux
•	Soit $D = \{z \in \mathbb{C} z = 1\}$. Alors (D, \cdot) et $(SO(2), \cdot)$ sont iso	morphes.	
		🔾 vrai	O faux
	• Pour chaque $z \in \mathbb{C}$ il existe $k \in \mathbb{N} \setminus \{0\}$ tel que $z^k \in \mathbb{R}$.		
		🔾 vrai	\bigcirc faux
(b) Dé	terminer les énoncés corrects.		
1	. Supposons que $a^2=a$ pour tous les éléments a d'un annea assertions suivantes sont correctes?	u A. Lesqu	uelles des
	$\bigcirc a^3 = a$, pour tout a .		
	○ L'anneau est commutatif.		
	$\bigcirc a^3 = 0$, pour tout a .		
2	. Combien de solutions a l'équation $z^{-1} = z$ dans \mathbb{C} ?		
	\bigcirc 0.		
	\bigcirc 1.		
	\bigcirc 2.		
	\bigcirc ∞ .		
3	c. Combien de solutions a l'équation $z^{-1} = \bar{z}$ dans \mathbb{C} ?		
	\bigcirc 0.		

	\bigcirc 1.		
	\bigcirc 2.		
	\bigcirc ∞ .		
4.	Combien de solutions a l'équation $\exp(z) = -1$ dans \mathbb{C} ?		
	\bigcirc 0.		
	\bigcirc 1.		
	$\bigcirc \infty$.		
5.	Combien de solutions a l'équation $\exp(z) = -1 + i \operatorname{dans} \mathbb{C}$?		
	\bigcirc 0.		
	\bigcirc 1.		
	$\bigcirc \infty$.		
Sol.:			
	erminer si les énoncés proposés sont vrais ou faux.		
, ,	Il existe un anneau $(A, +, \cdot)$ tel que A contient un seul élémer	nt.	
	· · · · · · · · · · · · · · · · · · ·	lacktriangledown $vrai$	() faux
•	Il existe un corps $(K,+,\cdot)$ tel que K contient un seul élément	· ·•	
		\bigcirc $vrai$	• faux
•	Dans l'anneau des polynômes $A[t]$, les polynômes de degré pair zéro forment un sous-anneau.	r avec le p	oolynôme
		O vrai	• faux
•	Dans l'anneau des polynômes $A[t]$, les polynômes de degré in nôme zéro forment un sous-anneau.	ıpair avec	e le poly-
		\bigcirc $vrai$	• faux
•	Soit $D = \{z \in \mathbb{C} z = 1\}$. Alors (D, \cdot) et $(SO(2), \cdot)$ sont isom	orphes.	
		lacktriangledown $vrai$	() faux
•	Pour chaque $z \in \mathbb{C}$, il existe $k \in \mathbb{N} \setminus \{0\}$ tel que $z^k \in \mathbb{R}$.		
		O vrai	• faux
(/	erminer les énoncés corrects.		
1.	Soit $a^2 = a$ pour tous les éléments a dans un anneau A. Leque suivantes sont correctes?	lles des a	ssertions
	\bullet $a^3 = a$, pour tous a . \bullet L'anneau est commutatif.		
	$\bigcirc a^3 = 0, \ pour \ tout \ a.$		
2.	Combien de solutions a l'équation $z^{-1} = z$ dans \mathbb{C} ?		
	\bigcirc 0.		
	\bigcirc 1.		

Sol.:

3. Combien de solutions a l'équation $z^{-1} = \bar{z}$ a dans \mathbb{C} ? \bigcirc 0.

 \bigcirc 1.

 \bigcirc 2.

 $\bigcirc \infty$.

4. Combien de solutions a l'équation $\exp(z) = -1$ dans \mathbb{C} ?

 $\bigcirc 0.$ $\bigcirc 1.$

 \bigcirc ∞ .

5. Combien de solutions a l'équation $\exp(z) = -1 + i \text{ dans } \mathbb{C}$?

 $\bigcirc 0$

 \bigcirc 1.

 $\bigcirc \infty$.

Exercice 2

Montrer que $(M_{n\times n}(K), +, \cdot)$, n > 1, est un anneau non-commutatif, où K est un corps, + l'addition matricelle et \cdot la multiplication matricelle.

Remarque : Vous pouvez utiliser le matériel déjà montré dans le polycopié et les exercices. Par exemple, il ne faut pas montrer que $(M_{n\times n}(K), +)$ est un groupe abélien.

Sol.:

- On a montré que $(M_{n\times n}(K),+)$ est un groupe abélien (voir Chapitre 2 du cours).
- L'associativité de · et la distributivité de · par rapport à + sont données par le Lemme 1.19 et (partiellement) démontrées dans l'exercice 10 de la série 2.
- Il reste à montrer qu'il existe un élément neutre par rapport à la multiplication ·. Ceci est donné par I_n ; voir l'équation 1.9 du cours.
- Pour finir, on a vu dans la série 2 qu'en général pour deux matrices $A, B \in M_{n \times n}(K)$ on a $AB \neq BA$, donc l'anneau n'est pas commutatif.

Exercice 3 (*)

Montrer que $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ n'est pas un anneau, où les opérations \oplus et \odot sont définies par

$$a\oplus b=\min\{a,b\},\quad a\odot b=a+b,\quad a,b\in\mathbb{R}\cup\{\infty\}.$$

En testant tous les axiomes, déterminer lesquels sont satisfaits et lesquels ne le sont pas.

Sol.: D'abord on note que les opérations sont définies dans

Soit $a, b, c \in \mathbb{R} \cup \{\infty\}$. Ensuite, on teste tous les axiomes :

- 1) $a \oplus b = \min\{a, b\} = \min\{b, a\} = b \oplus a$, donc la commutativité de \oplus est satisfaite.
- 2) $(a \oplus b) \oplus c = \min\{\min\{a, b\}, c\} = \min\{a, b, c\} = \min\{a, \min\{b, c\}\} = a \oplus (b \oplus c), donc$ la associativité de \oplus est satisfaite.

- 3) L'élément neutre pour \oplus est ∞ , parce que $a \oplus \infty = \min\{a, \infty\} = a, \forall a \in \mathbb{R} \cup \{\infty\}$.
- 4) Soit $a \in \mathbb{R} \cup \{\infty\}$. Si l'existe, l'élément inverse doit satisfaire $a \oplus b = \min\{a, b\} = \infty$. Cette assertion est vrai seulement quand $a = b = \infty$. Donc, en général il n'existe pas l'élément inverse pour \oplus .
- 5) $(a \odot b) \odot c = (a + b) + c = a + (b + c) = a \odot (b \odot c)$, donc la associativité de \odot est satisfaite.
- 6) L'élément neutre pour \odot est $0 \in \mathbb{R}$.
- 7) Supposons sans perte de généralité que $a \le b$. Donc $a + c \le b + c$. D'où

$$(a \oplus b) \odot c = \min\{a, b\} + c = a + c = \min\{a + c, b + c\} = (a \odot c) \oplus (b \odot c).$$

8) De la même façon que 7), on obtient que $a + \min\{b, c\} = \min\{a + b, a + c\}$.

Exercice 4

Montrer que l'ensemble A[t] avec les opérations + et \cdot , définies dans le cours, est un anneau. Montrer de plus que si A est un anneau commutatif, alors A[t] est aussi un anneau commutatif.

Sol.:

Nous allons vérifier que $(A[t], +, \cdot)$ les propriétés d'un anneau.

- 1. L'opération + est définie dans + : $A[t] \times A[t] \rightarrow A[t]$, comme sommer deux polynômes revient à additionnant les coefficients des monômes correspondants.
- 2. L'opération · est définie dans · : $A[t] \times A[t] \to A[t]$, comme pour $p(t) = \sum_{i=0}^{m} a_i t^i$, $q(t) = \sum_{j=0}^{n} b_j t^j \in A[t]$, on a $p(t) \cdot q(t) = \sum_{j=0}^{m+n} \left(\sum_{i=0}^{j} a_i b_{j-i}\right) t^j \in A[t]$.
- 3. (A[t], +) est un groupe abélien :
 - L'associativité et la commutativité de + sur A[t] découle de la commutativité et de l'associativité de l'addition sur A.
 - L'élément neutre de (A[t], +) est $0t^0$, où 0 est l'élément neutre de (A, +).
 - Soit $p(t) = \sum_{i=0}^{n} a_i t^i \in A[t]$. Son inverse -p(t) est $\sum_{i=0}^{n} (-a_i) t^i \in A[t]$, où $-a_i$ est l'inverse de a_i dans (A, +) pour $i = 0, 1, \ldots n$.
- 4. $(A[t], +, \cdot)$ est distributive par rapport au + :
 - Soient p(t), q(t), $r(t) \in A[t]$ et

$$p(t) = \sum_{i=0}^{m} a_i t^i, \qquad q(t) = \sum_{j=0}^{n} b_j t^j, \qquad r(t) = \sum_{k=0}^{p} c_k t^k.$$
 (1)

En notant $N = \max\{m, n, p\}$ on a

$$\begin{split} (p(t)+q(t))\cdot r(t) &= \left(\sum_{i=0}^N (a_i+b_i)t^i\right)\cdot \left(\sum_{k=0}^p c_k t^k\right) & \textit{d\'efinition de} \; + \\ &= \sum_{k=0}^{N+p} \left(\sum_{i=0}^k (a_i+b_i)c_{k-i}\right)t^k & \textit{d\'efinition de} \; \cdot \\ &= \sum_{k=0}^{N+p} \left(\sum_{i=0}^k a_i c_{k-i} + \sum_{i=0}^k b_i c_{k-i}\right)t^k & \textit{distrib. de} \; (A,+,\cdot) \\ &= \sum_{k=0}^{N+p} \left(\sum_{i=0}^k a_i c_{k-i}\right)t^k + \sum_{k=0}^{N+p} \left(\sum_{i=0}^k b_i c_{k-i}\right)t^k & \textit{d\'efinition de} \; + \\ &= p(t)\cdot r(t) + q(t)\cdot r(t). & \textit{d\'efinition de} \; \cdot \end{split}$$

De manière analogue, nous montrons que $p(t) \cdot (q(t) + r(t)) = p(t) \cdot r(t) + q(t) \cdot r(t)$. 5. $(A[t], \cdot)$ est associative :

— Soient p(t), q(t), $r(t) \in A[t]$ comme (1). On va utiliser une autre façon d'exprimer un produit de deux polynômes :

$$p(t) \cdot q(t) = \left(\sum_{i=0}^{m} (a_i t^i)\right) \cdot \left(\sum_{j=0}^{n} (b_j t^j)\right) \qquad définition \ de \cdot e$$

$$= \sum_{i=0}^{m} \sum_{j=0}^{n} (a_i t^i) \cdot (b_j t^j) \qquad distrib. \ de \ (A[t], +, \cdot)$$

$$= \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j t^{i+j}. \qquad définition \ de \cdot e$$

On note que

$$p(t) \cdot q(t) = \sum_{j=0}^{m+n} \left(\sum_{i=0}^{j} a_i b_{j-i} \right) t^j = \sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j t^{i+j}.$$

Alors, on a

$$(p(t) \cdot q(t)) \cdot r(t) = \left(\sum_{i=0}^{m} \sum_{j=0}^{n} a_i b_j t^{i+j}\right) \cdot \left(\sum_{k=0}^{p} c_k t^k\right) = \sum_{i=0}^{m} \sum_{j=0}^{n} \sum_{k=0}^{p} a_i b_j c_k t^{i+j+k},$$
$$p(t) \cdot (q(t)\dot{r}(t)) = \left(\sum_{i=0}^{m} a_i t^i\right) \cdot \left(\sum_{j=0}^{n} \sum_{k=0}^{p} b_j c_k t^{j+k}\right) = \sum_{i=0}^{m} \sum_{j=0}^{n} \sum_{k=0}^{p} a_i b_j c_k t^{i+j+k}.$$

6. Il existe un élément neutre dans $(A[t], \cdot)$.

 $On \ a$

$$p(t) \cdot 1t^0 = \sum_{i=0}^m (a_0 + a_1 + \cdots + a_{i-1} + a_i + a_i) t^i = \sum_{i=0}^m a_i t^i = p(t).$$

De manière similaire nous montrons que $1t^0 \cdot p(t) = p(t)$ donc $1t^0$ est l'élément neutre dans $(A[t], \cdot)$.

Si $(A, +, \cdot)$ est commutatif alors on a $\sum_{i=0}^{k} a_i b_{k-i} = \sum_{i=0}^{k} b_{k-i} a_i = \sum_{i=0}^{k} b_i a_{k-i}$ donc $p(t) \cdot q(t) = q(t) \cdot p(t)$.

Exercice 5

a) Soient u = -2 + i, v = 2 + 3i et w = 7 - 11i. Calculer

$$u+v, \qquad u+\bar{v}+w, \qquad u\cdot v, \qquad v\cdot w\cdot \mathrm{i}, \qquad \frac{w}{v}, \qquad \frac{v}{u}.$$

b) Pour chacun des nombres complexes suivants, déterminer la partie réelle, la partie imaginaire, le module et l'argument :

$$\sqrt{5} + 2i$$
, $(3+3i)^9$, $\frac{5-i}{3+2i}$, $\left(\frac{-1}{i}\right)^{57}$.

Sol.:

i) On obtient

$$\begin{aligned} u+v&=(-2+i)+(2+3i)=0+4i=4i,\\ u+\overline{v}+w&=(-2+i)+(2-3i)+(7-11i)=-2i+(7-11i)=7-13i,\\ u\cdot v&=(-2+i)\cdot (2+3i)=-4-6i+2i-3=-7-4i,\\ v\cdot w\cdot i&=(-2+3i)\cdot (7-11i)\cdot i=(14-22i+21i+33)\cdot i=(47-i)\cdot i\\ &=1+47\cdot i,\\ \frac{w}{v}&=\frac{7-11i}{2+3i}=\frac{(7-11i)\cdot (2-3i)}{(2+3i)\cdot (2-3i)}=\frac{14-21i-22i-33}{4-6i+6i+9}=\frac{-19-43i}{13},\\ \frac{v}{u}&=\frac{2+3i}{-2+i}=\frac{(2+3i)\cdot (-2-i)}{(-2+i)\cdot (-2-i)}=\frac{-4-2i-6i+3}{4+i-i+1}=\frac{-1-8i}{5},\\ |v|&=\sqrt{v\overline{v}}=\sqrt{(2+3i)\cdot (2-3i)}=\sqrt{4+9}=\sqrt{13}.\end{aligned}$$

ii) Pour le premier nombre $\sqrt{5} + 2i$, on a :

$$Re(\sqrt{5} + 2i) = \sqrt{5}, \quad Im(\sqrt{5} + 2i) = 2, \quad |\sqrt{5} + 2i| = \sqrt{\sqrt{5}^2 + 2^2} = 3,$$
$$arg(\sqrt{5} + 2i) = Arctg(\frac{2\sqrt{5}}{5}) \quad (car \ Re(\sqrt{5} + 2i) > 0).$$

Pour le deuxième nombre $(3+3i)^9$, on va utiliser la formule de Moivre. D'abord on calcule

$$|3+3i| = \sqrt{3^2+3^2} = 3\sqrt{2}, \quad \arg(3+3i) = \frac{\pi}{4}, (car \operatorname{Re}(3+3i) > 0).$$

Donc,

$$(3+3i)^9 = (3\sqrt{2})^9 \left(\cos\frac{9\pi}{4} + i\sin\frac{9\pi}{4}\right) = (3\sqrt{2})^9 \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
$$= (3\sqrt{2})^9 \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right),$$

$$|(3+3i)^9| = (3\sqrt{2})^9$$
, $\operatorname{Re}((3+3i)^9) = \operatorname{Im}((3+3i)^9) = (3\sqrt{2})^9 \cdot \frac{\sqrt{2}}{2}$, $\operatorname{arg}((3+3i)^9) = \frac{\pi}{4}$.

Pour le troisième nombre, on rend le dénominateur réel et on obtient :

$$\frac{5-i}{3+2i} = \frac{(5-i)(3-2i)}{(3+2i)(3-2i)} = \frac{13-13i}{13} = 1-i.$$

On
$$a |1 - i| = \sqrt{2}$$
, $\text{Re}(1 - i) = 1$, $\text{Im}(1 - i) = -1$, $\text{arg}(1 - i) = -\frac{\pi}{4}$.

Enfin,
$$\frac{-1}{i} = i$$
 et $i^4 = 1$, $donc \left(\frac{-1}{i}\right)^{57} = i^{57} = i^{4\cdot 14+1} = (i^4)^{14} \cdot i = 1 \cdot i = i$. On obtient

$$Re(i) = 0$$
, $Im(i) = 1$, $|i| = 1$, $arg(i) = \frac{\pi}{2}$.

Exercice 6

On considère le sous-ensemble $H = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}; a, b \in \mathbb{C} \right\} \text{ de } M_{2 \times 2}(\mathbb{C}).$

- i) Montrer que $(H, +, \cdot)$ est un sous-anneau de $(M_{2\times 2}(\mathbb{C}), +, \cdot)$, où + et \cdot sont l'addition et la multiplication usuelle des matrices.
- ii) Montrer que tous les éléments de $H \setminus \{0\}$ sont inversibles pour la multiplication. Est-ce que $(H, +, \cdot)$ est un corps?
- iii) (**optionnel**) Construire un isomorphisme entre $(H, +, \cdot)$ et un sous-anneau de $(M_{4\times 4}(\mathbb{R}), +, \cdot)$.

Indice: Pour l'inverse d'un élément non nul de H, on a une formule similaire (mais pas identique) à l'inverse d'une matrice réelle 2×2 inversible.

NB : L'ensemble H muni des opérations + et · s'appelle l'ensemble des quaternions. Sol.:

i) Pour montrer que H est un sous-anneau, on utilise le Lemme 2.19. Soient $A = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}, B = \begin{pmatrix} c & d \\ -\bar{d} & \bar{c} \end{pmatrix} \in H$. On voit facilement que $A - B \in H$ aussi. On montre que H est stable pour la multiplication :

$$AB = \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \begin{pmatrix} c & d \\ -\overline{d} & \overline{c} \end{pmatrix} = \begin{pmatrix} ac - b\overline{d} & ad + b\overline{c} \\ -\overline{b}c - \overline{a}\overline{d} & -\overline{b}d + \overline{a}\overline{c} \end{pmatrix} = \begin{pmatrix} ac - b\overline{d} & ad + b\overline{c} \\ -(ad + b\overline{c}) & ac - b\overline{d} \end{pmatrix} \in H.$$

Et pour finir l'élément neutre pour la multiplication I_2 appartient à H aussi. D'ápres Lemme 2.19, $(H, +, \cdot)$ est un sous anneau de $(M_{2\times 2}(\mathbb{C}), +, \cdot)$.

ii) Soit $A \in H \setminus \{0\}$, donc $a \neq 0$ ou $b \neq 0$. Supposons $a \neq 0$. On cherche B telle que $AB = I_2$.

$$AB = \begin{pmatrix} ac - b\overline{d} & ad + b\overline{c} \\ -\overline{b}c - \overline{a}\overline{d} & -\overline{b}d + \overline{a}\overline{c} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

La première ligne donne le système d'équations $ac - b\overline{d} = 1$ et $ad + b\overline{c} = 0$. Ce qui donne

$$c = (1 + b\overline{d})/a$$
 et $ad + b(1 + \overline{b}d)/\overline{a} = 0$,

en développant on obtient $d = -b/(|a|^2 + |b|^2)$ et $c = \overline{a}/(|a|^2 + |b|^2)$. Si a = 0 et $b \neq 0$ on trouve les mêmes solutions pour c, d. Ainsi A possède l'inverse

$$A^{-1} = \frac{1}{|a|^2 + |b|^2} \begin{pmatrix} \overline{a} & -b \\ \overline{b} & a \end{pmatrix} \in H.$$

On a que $(H,+,\cdot)$ est un anneau dont tout élément non nul possède une inverse $multiplicative \ dans \ H.$

Mais, la multiplication dans H n'est pas commutative, comme en général

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \begin{pmatrix} c & d \\ -\overline{d} & \overline{c} \end{pmatrix} \neq \begin{pmatrix} c & d \\ -\overline{d} & \overline{c} \end{pmatrix} \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}.$$

Donc $(H, +, \cdot)$ n'est pas un corps.

Remarque: si on multiplie $ac - b\overline{d} = 1$ par \overline{a} et $ad + b\overline{c} = 0$ par \overline{b} on peut trouver c et d sans effectuer divisions par a ni b, il n'est donc pas necessaire que $a \neq 0$ ou $b \neq 0$ mais il suffit que $|a|^2 + |b|^2 \neq 0$.

iii) D'abord on note que un nombre complex $a = a_1 + ia_2$ peut être representé par

$$a_1 + ia_2 \longmapsto \begin{pmatrix} a_1 & a_2 \\ -a_2 & a_1 \end{pmatrix}.$$

On définit l'application $f: H \to M_{4\times 4}(\mathbb{R})$

$$f\left(\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}\right) = \begin{pmatrix} a_1 & a_2 & b_1 & b_2 \\ -a_2 & a_1 & -b_2 & b_1 \\ -b_1 & b_2 & a_1 & -a_2 \\ -b_2 & -b_1 & a_2 & a_1 \end{pmatrix},$$

 $où a = a_1 + ia_2$ et $b = b_1 + ib_2$. Donc, on considère le sous-ensemble S de matrices

ou
$$a = a_1 + ia_2$$
 et $b = b_1 + ib_2$. Donc, on considere le sous-ensemble S de matrices $M_{4\times 4}(\mathbb{R})$ définie par $S = \left\{ B \in M_{4\times 4}(\mathbb{R}) \middle| B = \begin{pmatrix} a_1 & a_2 & b_1 & b_2 \\ -a_2 & a_1 & -b_2 & b_1 \\ -b_1 & b_2 & a_1 & -a_2 \\ -b_2 & -b_1 & a_2 & a_1 \end{pmatrix} \right\}$. Il faut

vérifier que S est un sous-anneau de H. On utilise le Lemme 2.19

— l'élément neutre pour · dans $M_{4\times 4}(\mathbb{R})$ est la matrice identité I_4 . Si on prend

$$- \ Soitent \ B = \begin{pmatrix} a_1 & a_2 & b_1 & b_2 \\ -a_2 & a_1 & -b_2 & b_1 \\ -b_1 & b_2 & a_1 & -a_2 \\ -b_2 & -b_1 & a_2 & a_1 \end{pmatrix}, C = \begin{pmatrix} c_1 & c_2 & d_1 & d_2 \\ -c_2 & c_1 & -d_2 & d_1 \\ -d_1 & d_2 & c_1 & -c_2 \\ -d_2 & -d_1 & c_2 & c_1 \end{pmatrix} \in S. \ On$$

voit facilement que $B-C \in S$ aussi. De plus, en multipliant B et C, on vérifie que $B \cdot C \in S$.

Donc, S est un sous-anneau de $(M_{4\times 4}(\mathbb{R}),+,\cdot)$.

L'application $f: H \to S$ est bijective :

- $-(\forall B \in S) \ (\exists A \in H) \ t.g. \ f(A) = B;$
- $si f(A_1) = f(A_2) pour A_1, A_2 \in H, donc A_1 = A_2.$

Maintenant, il faut montrer que f est un morphisme d'anneaux. Soient $a = a_1 +$ $ia_2, b = b_1 + ib_2, c = c_1 + ic_2$ et $d = d_1 + id_2$. Donc,

$$f\left(\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} + \begin{pmatrix} c & d \\ -\overline{d} & \overline{c} \end{pmatrix}\right) = f\left(\begin{pmatrix} a+c & b+d \\ -\overline{b+d} & \overline{a+c} \end{pmatrix}\right)$$

$$= \begin{pmatrix} a_1 + c_1 & a_2 + c_2 & b_1 + d_1 & b_2 + d_2 \\ -(a_2 + c_2) & a_1 + c_1 & -(b_2 + d_2) & b_1 + d_1 \\ -(b_1 + d_1) & (b_2 + d_2) & a_1 + c_1 & -(a_2 + c_2) \\ -(b_2 + d_2) & -(b_1 + d_1) & a_2 + c_2 & a_1 + c_1 \end{pmatrix}$$

$$= f\left(\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}\right) + f\left(\begin{pmatrix} c & d \\ -\overline{d} & \overline{c} \end{pmatrix}\right).$$

D'une manière similaire on montre que

$$f\left(\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \cdot \begin{pmatrix} c & d \\ -\overline{d} & \overline{c} \end{pmatrix}\right) = f\left(\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}\right) \cdot f\left(\begin{pmatrix} c & d \\ -\overline{d} & \overline{c} \end{pmatrix}\right).$$

Enfin, on voit que $f(I_2) = I_4$, donc f est un isomorphisme entre H et S.

Exercice 7

Soit $G = \{a, b, c, x, y, z\}$ et $\circ : G \times G \to G$ une loi de composition donnée par la table de Cayley (incomplète)

Par exemple, si y est dans la ligne c et la colonne b, cela signifie que $c \circ b = y$. Tous les éléments de G apparaissent au plus une fois dans chaque ligne et dans chaque colonne (la règle du Sudoku).

Compléter la table afin que (G, \circ) soit un groupe, c-à-d vérifier

- la stabilité de G,
- l'associativité de 0,
- l'existence de l'élément neutre,
- l'inversibilité.

Remarque: Vous pouvez compléter la table de sorte à ce que les 4 points ci-dessus soient vérifiés. Vous n'avez alors pas besoin à la fin de vérifier si, par exemple, l'associativité est satisfaite pour toutes les paires d'éléments de G.

Sol.: Tout d'abord, on essaye d'identifier l'élément neutre e du groupe qui satisfait $u \circ e = u$ ou $e \circ u = u$ pour tout $u \in G$. Donc, si on trouve l'entrée $u \circ w = u$ en ligne u, alors w doit être l'élément neutre, parce que si w n'est pas l'élément neutre, il y a une contradiction avec la règle du Sudoku. De manière analogue, on peut aussi procéder pour les colonnes.

On trouve l'entrée $x \circ x = x$ dans le tableau, donc e = x doit être l'élément neutre. Maintenant, on utilise la définition de l'élément neutre $(u \circ e = u \text{ ou } e \circ u = u)$ et on peut remplir la ligne x et la colonne x:

Maintenant, on utilise la définition de l'inverse élément v de u : $u \circ v = e = v \circ u$. On trouve l'entrée $z \circ y = x$, de sorte que on peut ajouter $y \circ z = x$.

Pour procéder, on doit utiliser associativité : $(u \circ v) \circ w = u \circ (v \circ w)$. Afin de créer une entrée en utilisant l'associativité, on a besoin d'utiliser trois entrées déjà existantes dans le tableau. Trouver de telles combinaisons est un peu fastidieux, mais il y a par exemple les combinaisons suivantes :

$$a \circ b = \underbrace{(z \circ b)}_{a} \circ b = z \circ \underbrace{(b \circ b)}_{x} = z,$$

$$x = \underbrace{(a \circ z)}_{b} \circ b = a \circ \underbrace{(z \circ b)}_{a} = a \circ a,$$

$$y \circ b = \underbrace{(c \circ b)}_{y} \circ b = c \circ \underbrace{(b \circ b)}_{x} = c,$$

$$z \circ c = \underbrace{(a \circ b)}_{z} \circ c = a \circ \underbrace{(b \circ c)}_{z} = b.$$

Ensuite

Maintenant, on peut créer rapidement des entrées avec la Sudoku règle :

$$a \circ x = a$$

$$c \circ c = x$$

$$y \circ c = a$$

$$c \circ y = b$$

$$c \circ z = a$$

$$y \circ y = z$$

$$b \circ y = a$$

$$y \circ a = b$$

et on obtient

Maintenant, il y a encore quatre domaines où soit x ou y doivent être disponibles. Ici, on utilise à nouveau l'associativité et reconnaît

$$y = \underbrace{(b \circ b)}_{x} \circ y = b \circ \underbrace{(b \circ y)}_{a} = b \circ a.$$

Maintenant, on utilise la Sudoku règle trois fois et ensuite obtient le tableau complet

0	$\mid a \mid$	b	c	\boldsymbol{x}	y	z
\overline{a}	x	z	y	a	c	b
b	y	\boldsymbol{x}	z	a b c x y z	a	c
c	z	y	\boldsymbol{x}	c	b	a
\boldsymbol{x}	a	b	c	\boldsymbol{x}	y	z
y	b	c	a	y	z	\boldsymbol{x}
z	c	a	b	z	\boldsymbol{x}	y

Est-ce un groupe maintenant? Comme nous l'avons appliqué des règles obligatoires à chaque étape, nous pouvons supposer cela. Si cette fin est pas un groupe, alors il n'y a pas d'achèvement de la table du tout parce que la table doit contenir une contradiction avec les règles du groupe au début.