Fachbereich 07 Informatik/Mathematik

Praktikum Datenbanksysteme II Wintersemester 2018/19

Prof. Dr. Martin Staudt

Übung 3

Wimmer, Anja IF8 Gabl, Daniel IF6

19.01.2019

Inhaltsverzeichnis

INHALTSVERZEICHNIS	 L
AUFGAREN	 1
AUFGABE 2	ا

19.01.2019 II

Aufgaben

Aufgabe 1

-

Aufgabe 2

Bei der Implementierung der Min-Max-Skallierung haben wir zuerst eine Tabelle von Personen aufgestellt und mit Test-Werten gefüttert. Als zu skallierenden Wert haben wir das Alter der Person genommen (auch wenn dies nicht wirklich viel Sinn ergibt).

Die Skallierungsfunktion haben wir auch als eigene Funktion definiert, die eben die fünf Parameter (aktueller Wert, altes Minimum, altes Maximum, neues Maximum) übergeben bekommt und aus der gegebenen Formel das neue Minum berechnet.

Formel d. Min-Max-Skallierung:
$$v' = \frac{v - old_min}{old_max - old_min} (new_max - new_min) + new_min$$

Beispiel:

Wir wollen eine Skala, die ursprünglich von 17 bis 74 ging, neuskallieren. Die neue Skala soll nun von 10 bis 50 gehen, als aktuellen Wert bekommen wir 34.

$$v' = \frac{34 - 17}{74 - 17}(50 - 10) + 10 = \frac{17}{57}(40) + 10 = \frac{680}{57} + 10 = \frac{1250}{57} = 21.9298 \dots \approx 22$$

Dazu haben wir eine Prodezur geschrieben, die nur das neue Minimum und das neue Maximum übergeben bekommt, das alte Minimum und das alte Maximum wird mittels den Aggregatfunktionen MIN und MAX aus der Tabelle berechnet. Danach wird auf jeden Datensatz der Tabelle die Min-Max-Skallierung mit den übergebenen und berechneten Daten angewandt, wobei der aktuelle Wert dem Alter im aktuellen Datensatz entspricht. Nach der Berechnung des neuen Werts wird der alte Wert mit dem neuen Wert überschrieben.

Hier Screendumps unserer Tablle vor der Skallierung und nach einer 10,50-Skallierung:

						_	. '		
	₱ PERSON_ID	♦ PERSON_NAME	₱ PERSON_AGE	♦ PERSON_PLACE		PERSON_ID	₱ PERSON_NAME	₱ PERSON_AGE	PERSON_PLACE
1	0	Hans	34	Bonn	1	0	Hans	22	Bonn
2	1	Werner	18	Berlin	2	1	Werner	11	Berlin
3	2	Jürgen	74	München	3	2	Jürgen	50	München
4	3	Luis	25	Augsburg	4	3	Luis	16	Augsburg
5	4	Nicklas	22	Regensburg	5	4	Nicklas	14	Regensburg
6	5	Jens	49	Prag	6	5	Jens	32	Prag
7	6	Marvin	17	Cottbus	7	6	Marvin	10	Cottbus
8	7	Sophia	22	München	8	7	Sophia	14	München
9	8	Günther	63	Ulm	9	8	Günther	42	Ulm
10	9	Sebastian	19	Ingolstadt	10	9	Sebastian	11	Ingolstadt

Als Anmerkung: Eine sinnvolle Anwendung einer Min-Max-Skallierung ist, wenn man bspw. den "Fortschritt" des aktuellen Jahres in Prozent berechnen möchte (26.12 = 98.36%).

Der Unix-Timestamp vom 01.01, Mitternacht des aktuellen Jahres = altes Minimum, Der Unix-Timestamp vom 01.01, Mitternacht des nächsten Jahres = altes Maximum, 0 = neue Minimum, 100 = neue Maximum & der aktuelle Unix-Timestamp = aktueller Wert.

$$26.12,00:30\ Uhr = \frac{1545780600 - 1514761200}{1546297200 - 1514761200}(100 - 0) + 0 = 98.361872146\dots$$

19.01.2019

Aufgabe 3

<<insert solution here>>

Quelle für Arbeitsstunden pro Monat: https://www.arbeitsrechte.de/arbeitstage-pro-monat/

19.01.2019