AVX-Register

- ▶ Datenbreite: 256 Bit
 - ► Platz für acht 32-bit single-precision oder vier 64-bit double-precision Gleitkommazahlen
- ► Erweiterung der 16 xmm-Register
 - > ymm0 bis ymm15
 - ▶ Die unteren 128 Bit beinhalten die xmm-Register

Erweiterte SSE-Instruktionen in AVX

- ► Drei-Operanden Format
 - ► Mehr Flexibilität
 - $ightharpoonup a = a + b \Longrightarrow c = a + b$
- ► V Präfix

Erweiterte SSE-Instruktionen in AVX

- ▶ VADDPS xmm/ymm, xmm/ymm, xmm/m128/ymm/m256
 - Vektoraddition von Gleitkommazahlen

- ► VMOVSD xmm, xmm, xmm
 - ▶ Merged zwei 64 Bit Gleitkommazahlen in ein xmm Zielregister

Neue AVX-Instruktionen

- ▶ VBROADCASTSS xmm/ymm, xmm/m32
 - ► Kopiert die Gleitkommazahl an den unteren 32 Bit des Quelloperanden in alle 32 Bit Blöcke des Zielregisters

Neue AVX-Instruktionen

- ▶ VPSLLVD xmm/ymm, xmm/ymm, xmm3/m128/ymm/m256
 - Shift Logical Left von 32 Bit Blöcken
- ▶ VPSRLVD xmm/ymm, xmm/ymm, xmm3/m128/ymm/m256
 - ► Shift Logical Right von 32 Bit Blöcken
- ▶ VPSRAVD xmm/ymm, xmm/ymm, xmm3/m128/ymm/m256
 - ► Shift Arithmetric Right von 32 Bit Blöcken

Alignment

- Nicht mehr verpflichtend
 - ► Gilt auch für die meisten SSE-Instruktionen
 - ► Außer bei expliziter Forderung (z.B.: MOVAPD)
- ► Trotzdem sollte man Alignment nutzen (falls möglich)
 - ▶ Höhere Performance
- Best Practice
 - ▶ 16-Byte Alignment für 128-Bit Daten
 - ▶ 32-Byte Alignment für 256-Bit Daten

SSE und AVX – Adressierungsschemata

- Verschiedene Adressierungsschemata
 - lacktriangle Sind die oberen 128 Bit \neq 0, so wird jede SSE-Instruktion zu einem Merge
 - Teuer
- VZEROALL
 - ► Nullt alle ymm-Register

- VZEROUPPER
 - ▶ Nullt die oberen 128 Bit aller ymm-Register

► Sollte vor jedem SSE/AVX Wechsel ausgeführt werden

SSE und AVX – Frequenzen

- ▶ Unterschiedliche Prozessorfrequenzen für verschiedene Instruktionsklassen
 - Non-AVX
 - ▶ Reguläre- und SSE-Instruktionen, sowie Integer Vektor-Operationen
 - Normale Basis- und Turbofrequenz
 - AVX2 heavy
 - AVX-Instruktionen
 - AVX2 Basis- und Turbofrequenz

SSE und AVX – Frequenzen

Non-AVX Turbofrequenz

AVX2 Turbofrequenz

Non-AVX Basisfrequenz

AVX2 Basisfrequenz

SSE und AVX - Fazit

- ▶ VEX-Instruktionen nicht mit nicht-VEX Befehlen mischen
 - ► Teurer Merge von SSE-Instruktionen
 - ► Heruntertakten des Prozessors