Slinty o inverzních zobrazeních. Zobrazení $f: A \to B$ jsou pro nás automaticky **zobrazení definovaná všude**, tedy f(a) je prvek B pro každé $a \in A$.

Když $f:A\to B$ a $g:B\to C$, pak složení zobrazení $g\circ f$, které je definováno stejně jako složení relací (bo zobrazení jsou relace), je zobrazení $A\to C$. Většinou budu vynechávat symbol \circ a místo $g\circ f$ psát jenom gf. Dobře se složení zobrazení představují jako skládání šipek za sebe:

$$A \xrightarrow{f} B \xrightarrow{g} C$$

Dívat se na složení gf jako na základnu trojúhelníku s rameny f a g asi taky může pomoct:

Zobrazení $f:A\to B$ a $g:C\to D$ lze v skládat pořadí $g\circ f$ jenom tehdy, když f končí tam, kde g začíná, formálně když codom $f=\mathrm{dom}\,g$. V tomhle případě to znamená B=C. V opačném pořadí, tj. $f\circ g$, je lze skládat, když codom $g=\mathrm{dom}\,f$ neboli D=A.

Na každé množině A je jedno speciální zobrazení, které každému prvku přiřadí ten samý. Budu mu říkat *identické zobrazení* a značit je $\mathbb{1}_A$. Tedy, $\mathbb{1}_A$ je zobrazení $A \to A$ takové, že $\mathbb{1}_A(a) = a$ pro každé $a \in A$.

Definice (Inverzní zobrazení). Ať $f:A\to B$. Inverzním zobrazením k f nazveme zobrazení $g:B\to A$ splňující

$$gf = \mathbb{1}_A$$
 a $fg = \mathbb{1}_B$.

Inverzní zobrazení samozřejmě nemusí existovat. Pokud existuje, značíme ho, pravdaže dost nesmyslně, f^{-1} . Čili $ff^{-1} = \mathbb{1}_B$ a $f^{-1}f = \mathbb{1}_A$.

Poznámka. Všimněte si, že ff^{-1} je zobrazení $B \to B$ a $f^{-1}f$ je zobrazení $A \to A!$ V obrázcích

$$A \xrightarrow{f} B \xrightarrow{f^{-1}} A$$

$$B \xrightarrow{f^{-1}} A \xrightarrow{f} B.$$

$$ff^{-1} = \mathbb{1}_{B}$$

Možná vám někdo někdy řekl, že k zobrazení (asi jim říkali "funkce") existuje zobrazení inverzní právě tehdy, když je prosté. To nám nestačí. My budeme

uvažovat inverzní zobrazení pouze k bijekcím (tj. k zobrazením, která jsou prostá a na). Má to následující důvod.

Prosté zobrazení $f:A\to B$ je totiž "to samé", co bijekce $f:A\to \operatorname{im} f$, kde im f je množina všech obrazů prvků z A při zobrazení f. Symbolicky,

im
$$f = \{f(a) \mid a \in A\} \subseteq B$$
.

Když zobrazení f není na, pak im f je pouze podmnožina B, a ne celé B. Když ale vynechám z B ty prvky, na které se nic z A nezobrazuje, tak přece dostanu úplně to samé zobrazení. V obrázcích si to můžete představovat tak, že pokud f je třeba následující zobrazení:

pak když vynechám z B prvky 1 a 4, které nejsou v im f, pak dostanu opravdu to samé zobrazení. Konkrétně,

$$\begin{array}{ccccc}
A & & & & & & & & & & \\
f & & & & & & & & \\
1 & \bullet & & & & & & & \\
2 & \bullet & & & & & & & \\
3 & \bullet & & & & & & & \\
\end{array}$$

Skončíme následující větou, která potvrzuje, že přemýšlíme správným směrem.

Věta (Bijekce \iff existuje inverzní zobrazení). $A\vec{t}$ $f:A\to B$ je zobrazení. Pak f je bijekce (prosté a na) právě tehdy, když k němu existuje inverzní zobrazení.

Důkaz. Tvrzení je ekvivalence, takže budeme dokazovat dvě implikace.

Nejdřív dokážeme implikaci "zleva doprava", tj. že k bijekci vždycky existuje inverzní zobrazení. Ať f je tedy bijekce, tedy prosté a na. Potřebujeme definovat zobrazení $g: B \to A$ takové, aby $fg = \mathbb{1}_B$ a $gf = \mathbb{1}_A$.

Uděláme to prostě prvek po prvku. Zvolme si náhodně nějaké $b \in B$. Protože f je na, existuje $a \in A$, že f(a) = b. Navíc, protože f je prosté, tohle a je právě jedno, tj. žádný jiný prvek z A se na b nezobrazuje. Definujme g(b) = a. Pak máme fg(b) = f(a) = b (tady využíváme toho, že f je na, tedy máme prvek a, který se zobrazuje na b) a taky gf(a) = g(b) = a (tady využíváme toho, že f je prosté, tedy že opravdu jenom a se zobrazí na b). Čili, $g = f^{-1}$.

Implikaci zprava doleva uděláme trochu jinak. Pamatujte z logiky, že implikace $p \Rightarrow q$ je to samé, jako implikace $\neg q \Rightarrow \neg p$. Takže budeme předpokládat, že f **není** bijekce (tedy není prosté nebo není na) a chceme dokázat, že f **nemá** k sobě inverzní funkci. Pro spor tedy budeme předpokládat, že f^{-1} existuje a ukážeme, že to vede na nesmysl.

Máme celkem dvě možnosti:

(1) Zobrazení f není prosté. Pak existují dva prvky $a_1, a_2 \in A$ takové, že $f(a_1) = f(a_2)$. Označíme jejich obraz b. Pak ale $f^{-1}f$ nemůže být rovno $\mathbb{1}_A$, protože buď

(a)
$$f^{-1}(b) = a_1$$
 a pak $f^{-1}f(a_2) = f^{-1}(b) = a_1$, nebo

(b)
$$f^{-1}(b) = a_2$$
 a pak $f^{-1}f(a_1) = f^{-1}(b) = a_2$.

V obou případech jsme se dostali z jednoho prvku pomocí zobrazení $f^{-1}f$ do jiného, tedy to nemůže být identické zobrazení. Pomocný obrázek ukazuje ten problém – f^{-1} totiž může b zobrazovat jen na jeden prvek, což je ale dost problém, když f na b zobrazuje prvky **dva**.

(2) Zobrazení f není na. Pak existuje prvek $b \in B$, na který se žádné $a \in A$ nezobrazuje. To je ovšem taky dost problém, protože potom se b pomocí ff^{-1} nemůže zobrazit zpátky na b. Vskutku, ať $f^{-1}(b)$ je nějaký prvek a. Pak ale $f(a) \neq b$, protože f nezobrazuje nic na b. tedy $ff^{-1}(b) \neq b$, takže $ff^{-1} \neq \mathbb{1}_B$. Problém opět vidíte na obrázku.

Shrnuto, když f není prosté, pak nemůže platit $f^{-1}f=\mathbbm{1}_A$, a když f není na, pak nemůže platit $ff^{-1}=\mathbbm{1}_B$. Celkově, zobrazení, které není bijektivní, k sobě nemůže mít inverzní zobrazení.