CS 5630 - Machine Learning

Linear Regression CS 5630 - Machine Learning

Overview

Linear Regression

- Linear Regression with One Variable
- Cost Function
- Parameter Learning

Linear Regression with One Variable (1)

- Probably the most common problem type in machine learning
- Example : Predicting House Price

Linear Regression with One Variable (2)

• What is the price of a house whose size is 750 sq. feet?

Linear Regression with One Variable (1)

Training Set of Housing Prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Notations

- \circ m = Number of Training Examples
- \circ x's = input variables (also called features)
- o y's = output variables (also called target variable)

Linear Regression with One Variable (2)

Notations

- \circ m = Number of Training Examples
- \circ x's = input variables (also called features)
- o y's = output variables (also called target variable)

More Notations

- \circ (x,y) A single training example
- \circ $(x^{(i)}, y^{(i)}) i$ -th row in the training set
- \circ $x^2 = 1416$
- $y^2 = 232$

Linear Regression with One Variable (3)

h maps x (size of the house) to y (price of the house)

Linear Regression with One Variable (4)

• How do we represent h?

- $\circ h_{"}(x) = \theta_0 + \theta_1 x$
- y as linear function of x (straight line function)
- Linear Regression with one variable
- Univariate Linear Regression