Regular Expressions vs Finite State Automata

- Regular Expressions (REs) are an algebraic means for defining languages.

- Languages accepted by **DFA**'s and **NFA**'s vs **RE**'s

Definition of a set RE of regular expressions

(over a finite set $\Sigma := \{\sigma_1, \sigma_2, \dots \sigma_K\}$)

Recursive Formal Definition

- (A) (Basis) e, \varnothing and σ_1 , σ_2 ,..., σ_K are all elements of RE
- (B) (Recursion)
 - (1) If E and F are in RE then so is E+F
 - (2) If **E** and **F** are in **RE** then so is **E.F**
 - (3) If E is in RE then so is E^*
 - (4) If **E** is in **RE** then so is **(E)**

We call each element of the set **RE** a **regular expression**!

Example of a RE (over the set $\Sigma := \{0,1\}$)

 $E \in RE$

$$1+(1.0^*).(1^*.0)+e \xrightarrow{0,1,e \in RE} E+(E.E^*).(E^*.E)+E$$

$$E^* \in RE \xrightarrow{E} E+(E.E).(E.E)+E \xrightarrow{E.E \in RE} E+(E).(E)+E$$

$$(E) \in RE \xrightarrow{E+E \in RE} E+E+E \xrightarrow{E+E \in RE} E+E+E \xrightarrow{E+E \in RE} E+E$$

Language interpretation is a mapping $L: RE \to 2^{\Sigma^*}$ given by :

$$L(e) := \{e\}$$
 where $e := empty string$

$$L(\mathcal{O}) := \mathcal{O}$$
 where $\mathcal{O} := null$ language (language with no strings)

$$L(\sigma_i) := {\sigma_i}, j=1,..., K$$

$$L(E+F) := L(E) \cup L(F)$$

$$L(E.F) := L(E).L(F)$$

$$L(E^*) := L(E)^*$$

$$L((E)) := (L(E))$$

Relation of Basic Operations on Languages to REs

(1) Union:
$$L = L_1 \cup L_2 \longrightarrow E + E$$

(2) Concatenation:
$$L = L_1 . L_2$$
 formal logical notation for AND = conjunction

$$L_1.L_2 := (s \in \Sigma * | s = u.v; u \in L_1 \land v \in L_2)$$

informal logical notation
for AND = conjunction

(3) Closure (star or Kleene closure)
$$L^* = \bigcup_{k=0,\infty} L^k$$

$$L^{k} := (s \in \Sigma * | s = u_{1}.u_{2}...u_{k}; u_{j} \in L \text{ for } j=1,...k)$$

Definition: A language L is called a **regular language** if it is the language interpretation of a **regular expression**

Main Theorem

A language is regular if and and only if it is accepted

by some finite state automaton.

Proof of the Main Theorem

- (if) Idea:
- (1) Let a DFA $D = (Q, \Sigma, \delta, 1, F)$ with $Q = \{1, 2, ..., n\}$
- (2) Let R_{ij}^{k} denote the language corresponding to strings covering **all** paths of **D** that start at state **i**; end at state **j**; and visit intermediate states with numbers $p \leq k$
- (3) Note that $L(D) = \bigcup_{(m \in F)} R_{lm}^n$ where 1 is the initial state
- (4) Prove by induction on k that R_{ij}^{k} is a RE for all i,j=1,...,n and k=0,...,n. (see the next slide first formula)
- (5) Conclude that L(D) is a RE.

Illustration of the language $R_{ij}^{\ k}$

 R_{II}^{0} = start at 1 and terminate at 1 (no intermediate visit is allowed) = 0+e

 R_{12}^{0} = start at 1 and terminate at 2 (no intermediate visit is allowed) = 1

 $R_{11}{}^1=$ start at 1, move to allowed intermediate state 1 as desired and terminate at 1=0*

 $R_{12}{}^{1}$ = start at 1, move to intermediate state 1 as desired and finally terminate at 2 = 0*.1

The Inductive Formula for DFA > RE

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}$$
. (R_{kk}^{k-1}) *. R_{kj}^{k-1} ; $i,j=1,...,n$; $k=0,...,n$

Example

$$R_{11}^{0} = 0 + e$$
; $R_{22}^{0} = 1 + e$; $R_{21}^{0} = 0$; $R_{12}^{0} = 1$

$$R_{11}^{1} = 0*; R_{22}^{1} = 0.0*.1+1+e; R_{21}^{1} = 0.0*; R_{12}^{1} = 0*.1$$

$$R_{11}^2 = \dots ; R_{22}^2 = \dots ; R_{21}^2 = \dots ; R_{12}^2 = \dots$$

After Simplification:
$$L=R_{12}^2=(0*.1.1*.0)*.0*.1.1*$$

Continue with the Proof (by induction on the superscript **k**)

Basis (k=0)

$$R_{ij}^{\ \theta} = \alpha + \beta + \dots if$$

$$= \varnothing \qquad if$$

$$E \rightarrow E + E$$

$$\alpha,\beta,...,e,\emptyset\in E$$

$$R_{ii}^{\ \theta} = \alpha + \beta + \ldots + e \quad if$$

$$R_{ii}^{\ \theta} = e \quad if$$

Induction (true for **k-1**, show for **k**)

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}$$
. (R_{kk}^{k-1}) *. R_{kj}^{k-1} ; $i,j=1,...,n$; $k=0,...,n$

(E)
$$\rightarrow E$$
 $E^* \rightarrow E$ $E.E \rightarrow E$ (twice) $E+E \rightarrow E$

Interpreting the induction formula :

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}$$
. (R_{kk}^{k-1}) *. R_{kj}^{k-1} ; $i,j=1,...,n$; $k=0,...,n$

A path (string) s in R_{ij}^{k} can be expressed in terms of a sequence of states as shown below:

$$i \longrightarrow m < k \longrightarrow j$$

$$s \in R_{ij}^{k-1}$$

$$i \longrightarrow k \longrightarrow k \longrightarrow j$$

$$u \in R_{ik}^{k-1} \quad v \in (R_{kk}^{k-1})^* \quad w \in R_{kj}^{k-1}$$
First occurrence of k Last occurrence of k

11

Alternative Proof of the Main Theorem (State Elimination)

After eliminating all non-initial and non-final states; start eliminating all final states except one f in F and repeat this for each distinct f in F. Then the following picture(s) prevail

$$L_f = (P_f^* \cdot Q_f \cdot R_f^* \cdot S_f)^* \cdot P_f^* \cdot Q_f \cdot R_f^*$$

$$L = \Sigma_{(f \in F)} L_f$$

Proof of the Main Theorem

given REs over the set $\Sigma = (\alpha, \beta, \gamma, ...,)$

Basis

$$e \longrightarrow > \bigcirc$$
 $\varnothing \longrightarrow > \bigcirc$
 $\alpha, \beta, \dots \longrightarrow > \bigcirc$
 α, β, \dots
 RE
 NFA

Some short cuts!

$$(a+b+c)*.d$$

But!

$$(a*+b+c).d$$

Algebraic Laws For REs

Trivial Laws

(1)
$$L+M=M+L$$
; $(L+M)+N=L+(M+N)$; $(L.M).N=L.(M.N)$

(2)
$$\phi + L = L$$
; $e \cdot L = L \cdot e = L$; $\phi \cdot L = \phi$

(3)
$$L.(M+N) = L.M + L.N$$
; $(L+M).N = L.N + M.N$; $L+L = L$

Non-trivial Laws

$$(4) (L+M)* = (L*+M*) * = (L*.M*)*$$

(5) $(L.M)^* \subseteq (L^*.M^*)^*$ and $(L.M)^* = (L^*.M^*)^*$ iff $e \in L$ and $e \in M$

Proof of (4)
$$\rightarrow$$
 (L+M)* = (L*. M*) *

Two steps: (1) $(L+M)^* \subseteq (L^*M^*)^*$; (2) $(L^*M^*)^* \subseteq (L+M)^*$

- (1) Let $u \in (L+M)^*$ then $u = u_1.u_2....u_k$ for some integer $k \ge 0$ where for each j, $u_j \in L+M$;
- but $L \subseteq L^* \subseteq L^*$. $e \subseteq L^*$. M^* and $M \subseteq M^* \subseteq e$. $M^* \subseteq L^*$. M^* ;

hence $u_i \in L^*$. $M^* + L^*$. $M^* = L^*$. M^* and therefore $(L+M)^* \subseteq (L^*.M^*)^*$

- (2) Conversely let $\mathbf{u} \in (L^*.M^*)^*$ then by definition $\mathbf{u} = \mathbf{u}_1.\mathbf{u}_2.....\mathbf{u}_k$ where $\mathbf{u}_j \in L^*.M^*$;
- hence $u_j = v_j^1 \cdot v_j^2 \cdot \dots \cdot v_j^{l(j)} \cdot w_j^1 \cdot w_j^2 \cdot \dots \cdot w_j^{p(j)}$ where $v_j^m \in L \subseteq L + M$ and $w_j^m \in M \subseteq L + M$;
- thus $u=z_1.z_2...z_q$ where $q=\sum_{j=1,k}l(j)+p(j)$ and each $z_i\in L+M$. Hence $u\in (L+M)^*$;
- this proves that $(L^*.M^*)^* \subseteq (L+M)^*$

Proof of (L+M) * = (L*+M*) * given (4) \rightarrow (L+M) * = (L*. M*) *

Since $L \subseteq L^*$ and $M \subseteq M^*$ it follows that $(L+M)^* \subseteq (L^*+M^*)^*$

Conversely let $u \in (L^*+M^*)^*$ then $u = (v_1+w_1)$ (v_k+w_k) where for each j $v_j \in L^*$ and $w_j \in M^*$.

We show that $u \in (L^*, M^*)^*$ by using induction on k.

For k=1 $v_1 \in L^* \subseteq L^*$. $e \subseteq L^* M^* \subseteq (L^*, M^*)^*$

similarly $w_1 \in M^* \subseteq e$. $M^* \subseteq L^*.M^* \subseteq (L^*.M^*)^*$ hence $v_1+w_1 \subseteq (L^*.M^*)^*$.

Now assume statement holds for k-1, hence $z := (v_1 + w_1)$ $(v_{k-1} + w_{k-1}) \in (L^*, M^*)^*$

But using the above reasoning for v_1+w_1 it follows that $v_k+w_k \in (L^*, M^*)^*$

and therefore u=z. $(v_k+w_k)\in (L^*,M^*)^*$. $(L^*,M^*)^*=(L^*,M^*)^*$ using the obvious

identity $K^* \cdot K^* = K^*$ for any language K. This proves that $(L^* + M^*)^* \subseteq (L^* \cdot M^*)^*$

but by (4) $(L+M)^* = (L^*, M^*)^*$ hence $(L^*+M^*)^* \subseteq (L+M)^*$ and result follows