

Unsupervised Visual Representation Learning by Graph-Based Consistent Constraints

Dong Li¹, Wei-Chih Hung², Jia-Bin Huang³, Shengjin Wang¹, Narendra Ahuja³, Ming-Hsuan Yang² ¹Tsinghua University, ²University of California, Merced, ³University of Illinois, Urbana-Champaign

http://bit.ly/feature-learning-eccv2016

Introduction

Supervised learning: Expensive annotations & poor scalability

Goal: Visual representation learning with a large, unlabeled image collection

Prior work:

Context [Doersch et al. ICCV'15] Tracking [Wang and Gupta ICCV'15]

instance-level training data within the same image/video

Contributions

- Generating semantically similar and dissimilar image pairs from a large, unlabeled image collection via an unsupervised constraint mining approach.
- Learning visual representations in an unsupervised manner via binary classification based on Siamese network.
- Improving the classification performance by applying the mined constraints for both unsupervised feature learning and semi-supervised learning.

Unsupervised Visual Representation Learning

Mining: Generate category-level training samples across different images

Cycle consistency → Positive mining

Training: Learn visual representations for binary classification

Experiments

Positive mining (CIFAR10) ■ TP rate ■ Accuracy 100.0 80.0 80.0 78.0 76.0 40.0 74.0 72.0 Accurate positive pairs & Better CNN representations

Methods	Supervision	mAP
Agrawal ICCV'15	Ego-motion	52.9
Doersch ICCV'15	Context	55.3
Wang ICCV'15	Tracking triplet	58.4
SIFT+FV	Matching pair	46.0
Ours	Matching pair	56.5
Krizhevsky NIPS'12	Class labels	69.5

Image classification (VOC'07)

Competitive performance with the state-of-the-arts

Significant improvement over hand-crafted features

Semi-supervised learning (CIFAR10)

over directly fine-tuning

Negative mining (CIFAR10)

Image search (ImageNet)

