Physics: Mechanics theorems

Contents

Pri	ncipe fondamental de la dynamique				
1.1	Définit	ions	3		
	1.1.1	Définition (quantité de mouvement)	3		
	1.1.2	Propriété	3		
1.2	Lois de	e Newton	3		
	1.2.1	Première loi de Newton	3		
	1.2.2	Deuxième loi de Newton	3		
	1.2.3	Troisième loi de Newton	4		
Éne	ergie				
2.1	Travail	1	4		
	2.1.1	Définition (travail d'une force constante)	4		
	2.1.2	Définition (travail élémentaire)	4		
	2.1.3	Définition (travail le long d'une courbe)	4		
2.2	Puissa	nce	5		
	2.2.1	Définition (puissance d'une force)	5		
	2.2.2	Propriétés	5		
2.3	Énergi	e cinétique	5		
	2.3.1	Définition (énergie cinétique)	5		
	2.3.2	Théorème de la puissance cinétique	5		
	2.3.3	Théorème de l'énergie cinétique	6		
2.4	Énergi	e potentielle	6		
	2.4.1	Définition (Énergie potentielle)	6		
	2.4.2	Propriétés	6		
2.5	Énergi	e mécanique	7		
	2.5.1	Définition (Énergie mécanique) $\dots \dots \dots \dots \dots \dots \dots \dots$	7		
	2.5.2	Propriété	7		
	2.5.3	Théorème de l'énergie mécanique	7		
	2.5.4	Théorème de la puissance mécanique	7		
Mo	ment		7		
3.1	Momer	nt d'une force	7		
	3.1.1	Par rapport à un point	7		
	3.1.2	Par rapport à un axe orienté	8		
	3.1.3	Bras de levier	8		
3.2	Momen		9		
	1.1 1.2 Éne 2.1 2.2 2.3 Moi 3.1	1.1 Définit	1.1.1 Définition (quantité de mouvement) 1.1.2 Propriété 1.2 Lois de NEWTON 1.2.1 Première loi de NEWTON 1.2.2 Deuxième loi de NEWTON 1.2.3 Troisième loi de NEWTON 1.2.3 Troisième loi de NEWTON		

3.3	3.2.1	Par rapport à un point	Ĉ
	3.2.2	Par rapport à un axe orienté	9
	Théor	ème du moment cinétique	9
	3.3.1	En un point fixe	9
	3.3.2	Par rapport à un axe fixe	Ç

1 Principe fondamental de la dynamique

1.1 Définitions

1.1.1 Définition (quantité de mouvement)

Soit M un point de masse m, de vitesse \vec{v} dans un référentiel \mathscr{R} . La quantité de mouvement du point M est la grandeur suivante :

$$\vec{p} = m\vec{v}$$

1.1.2 Propriété

Soit $\Sigma = \{M_k \mid k \in I\}$ un système, où $\forall k \in I \ M_k$ est de masse m_k . La quantité de mouvement de Σ est :

$$\vec{p} = \sum_{k \in I} m_k \vec{v}$$

1.2 Lois de Newton

1.2.1 Première loi de NEWTON

Il existe des référentiels privilégiés dans lesquels le mouvement d'un point matériel isolé est rectiligne uniforme.

Ces référentiels sont appelés référentiels galiléens.

1.2.2 Deuxième loi de Newton

Soit M un point matériel de masse m dans un référentiel galiléen \mathscr{R} .

Soit \vec{F} la résultante des forces s'exerçant sur M, et \vec{p} la quantité de mouvement de M. Alors :

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

et si m est constante, on a :

$$\vec{F} = m\vec{a}$$

avec \vec{a} l'accélération de M dans \mathscr{R} .

Remarques:

- Cette loi est aussi appelée principe fondamental de la dynamique.
- Cette loi est un postulat, elle ne se démontre pas, mais se vérifie expérimentalement.

1.2.3 Troisième loi de NEWTON

Soient A, B deux points matériels.

On a:

$$\overrightarrow{f_{A/B}} + \overrightarrow{f_{B/A}} = \overrightarrow{0}$$

De plus, ces deux forces sont portées par la droite (AB).

Remarque:

• On appelle aussi cette loi le principe des actions réciproques.

2 Énergie

2.1 Travail

2.1.1 Définition (travail d'une force constante)

Soient A, B deux points, et soit \vec{f} une force constante.

Le travail de \vec{f} est :

$$W(\vec{f}) = \vec{f} \cdot \overrightarrow{AB}$$

2.1.2 Définition (travail élémentaire)

Soit M un point mobile, et \vec{f} une force.

On définit le travail élémentaire de \vec{f} dans le déplacement $\overrightarrow{\mathrm{d}M}$ par :

$$\delta W\left(\vec{f}\right) = \vec{f} \cdot \overrightarrow{\mathrm{d}M}$$

Remarque:

Si on se place dans un référentiel \mathscr{R} , avec O un point fixe de \mathscr{R} , on a $\vec{v} = \frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t}$, donc $\overrightarrow{\mathrm{d}M} = \mathrm{d}\overrightarrow{OM} = \vec{v}\mathrm{d}t$, et :

$$\delta W(\vec{f}) = \vec{f} \cdot \vec{v} dt$$

2.1.3 Définition (travail le long d'une courbe)

Soient A, B deux points d'un référentiel \mathscr{R}, M un point mobile se déplaçant de A à B le long d'une courbe (\mathscr{C}) , et soit \vec{f} une force s'exerçant sur M.

Le travail de \vec{f} entre A et B sur (\mathscr{C}) est :

$$W_{A\to B,(\mathscr{C})}\left(\vec{f}\right) = \int_{A}^{B} \delta W\left(\vec{f}\right)$$

Remarque:

En cas de parcours fermé (i.e A = B), on note $W = \oint_{(\mathscr{C})} \delta W$.

2.2 Puissance

2.2.1 Définition (puissance d'une force)

Soit M un point de vitesse \vec{v} dans un référentiel $\mathscr{R},$ et soit \vec{f} une force s'exerçant sur M.

Alors la *puissance* de \vec{f} est :

$$P = \vec{f} \cdot \vec{v}$$

2.2.2 Propriétés

Soit M un point de vitesse \vec{v} dans un référentiel $\mathscr{R},$ et soit \vec{f} une force s'exerçant sur M.

Comme $\delta W = \vec{f} \cdot \vec{v} dt$, on a

$$\delta W = P dt$$

2.3 Énergie cinétique

2.3.1 Définition (énergie cinétique)

Soit M un point matériel de masse m et de vitesse \vec{v} (de norme v) dans un référentiel \mathcal{R} .

Alors l'énergie cinétique de M est :

$$E_{\rm c} = \frac{1}{2}mv^2$$

2.3.2 Théorème de la puissance cinétique

Soit M un point matériel de masse m et de vitesse \vec{v} (de norme v) dans un référentiel galiléen \mathscr{R} , et \vec{F} la résultantes des forces s'exerçant sur M.

Alors on a:

$$P = \frac{\mathrm{d}E_{\mathrm{c}}}{\mathrm{d}t}$$

Conséquence : si \vec{F} est normale à \vec{v} , alors $v = ||\vec{v}||$ est constante.

2.3.3 Théorème de l'énergie cinétique

Soit M un point matériel de masse m dans un référentiel galiléen \mathscr{R} , deux points A, B, et \vec{F} la résultante de toutes les forces s'exerçant sur M.

Alors on a:

$$\Delta_{A\to B} E_{\rm c} = W_{A\to B} \left(\vec{F} \right)$$

où
$$\Delta_{A\to B}E_c = E_c(B) - E_c(A)$$
.

2.4 Énergie potentielle

2.4.1 Définition (Énergie potentielle)

Soit M un point matériel soumis à un champ de forces $\vec{f}(M)$.

Si $\exists U \mid \delta W(\vec{f}) = -dU$, alors on dit que :

- La force \vec{f} est conservative ;
- La force \vec{f} dérive du potentiel U ;
- U est le potentiel de la force \vec{f} ;
- U(M) est l'énergie potentielle du point M dans le champ de forces $\vec{f}(M)$.

2.4.2 Propriétés

Soit M un point matériel soumis à un champ de forces $\vec{f}(M)$ conservatif de potentiel U.

- \bullet Un'est connue que par $\mathrm{d}U,$ donc U est définie à une constante additive près.
- On a $\delta W = -dU$, donc :

$$\int_{A}^{B} \delta W = -\int_{A}^{B} dU$$

Donc:

$$W_{A\to B} = U(A) - U(B) = -\Delta_{A\to B}U$$

I.e le travail ne dépend pas du chemin suivi par M, et si le parcours est fermé, le travail est nul.

• Si le point M a une vitesse \vec{v} dans le référentiel \mathcal{R} , on a

$$-\mathrm{d}U = \delta W = \vec{f} \cdot \overrightarrow{\mathrm{d}M} = \vec{f} \cdot \vec{v} \mathrm{d}t$$

Donc:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = -\vec{f} \cdot \vec{v}$$

2.5 Énergie mécanique

2.5.1 Définition (Énergie mécanique)

Soit un point M soumis à un champ de forces $\vec{f}(M) = \vec{f}_1(M) + \vec{f}_2(M)$ dans un référentiel \mathcal{R} , où \vec{f}_1 est conservatif de potentiel U.

Alors l'énergie mécanique du point M est :

$$E = E_{\rm c} + U$$

2.5.2 Propriété

Soit M un point matériel soumis à un champ de forces $\vec{f}(M)$ conservatif de potentiel U, dans un référentiel galiléen \mathscr{R} .

Alors l'énergie mécanique E est constante.

2.5.3 Théorème de l'énergie mécanique

Soit un point matériel M dans un référentiel galiléen \mathscr{R} , et soit $\vec{f} = \vec{f_{\rm c}} + \vec{f_{\rm nc}}$ la résultante des forces s'exerçant sur M, où $\vec{f_{\rm c}}$ est conservative et $\vec{f_{\rm nc}}$ est non conservative.

Alors:

$$\Delta_{A\to B}E = W_{A\to B}(\vec{f}_{\rm nc})$$

Forme infinitésimale du théorème de l'énergie mécanique :

$$dE = \delta W(\vec{f}_{\rm nc})$$

2.5.4 Théorème de la puissance mécanique

On reprend les notations du point précédant (2.5.3).

On a:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = P(\vec{f}_{\mathrm{nc}})$$

3 Moment

3.1 Moment d'une force

3.1.1 Par rapport à un point

Soit M un point soumis à une force \vec{f} , et A un point quelconque.

Le moment de \vec{f} par rapport à A est :

$$\overrightarrow{\mathcal{M}_A}(\overrightarrow{f}) = \overrightarrow{AM} \wedge \overrightarrow{f}$$

3.1.2 Par rapport à un axe orienté

Soit M un point soumis à une force \overrightarrow{f} , A un point quelconque, Δ un axe passant par A et orienté par un vecteur unitaire $\overrightarrow{u_{\Delta}}$.

Le moment de \vec{f} par rapport à Δ est :

$$\mathcal{M}_{\Delta}(\vec{f}) = \overrightarrow{\mathcal{M}_A}(\vec{f}) \cdot \overrightarrow{u_{\Delta}}$$

Remarque : cette grandeur est bien définie, car pour $A' \in \Delta$, on a :

$$\overrightarrow{M}_{A'}(\overrightarrow{f}) \cdot \overrightarrow{u}_{\Delta} = (\overrightarrow{A'M} \wedge \overrightarrow{f}) \cdot \overrightarrow{u}_{\Delta}$$

$$= (\overrightarrow{A'A} \wedge \overrightarrow{f} + \overrightarrow{AM} \wedge \overrightarrow{f}) \cdot \overrightarrow{u}_{\Delta}$$

$$= (\overrightarrow{A'A} \wedge \overrightarrow{f}) \cdot \overrightarrow{u}_{\Delta} + (\overrightarrow{AM} \wedge \overrightarrow{f}) \cdot \overrightarrow{u}_{\Delta}$$

$$= (\overrightarrow{A'A} \wedge \overrightarrow{f}) \cdot \overrightarrow{u}_{\Delta}$$

$$= (\overrightarrow{A'A} \wedge \overrightarrow{f}) \cdot \overrightarrow{u}_{\Delta}$$

3.1.3 Bras de levier

Soit M un point soumis à une force \vec{f} , A un point quelconque, et Δ l'axe passant par A perpendiculaire au plan formé par \overrightarrow{AM} et \vec{f} , orienté par un vecteur unitaire $\overrightarrow{u_{\Delta}}$. Soit H le projeté orthogonal de A sur la droite d'action de \vec{f} .

On a alors:

$$\overrightarrow{\mathcal{M}_A}(\vec{f}) = \mathcal{M}_{\Delta}(\vec{f}) \cdot \overrightarrow{u_{\Delta}}$$

$$\left\| \overrightarrow{\mathcal{M}_A}(\vec{f}) \right\| = \left| \mathcal{M}_{\Delta}(\vec{f}) \right| = \left\| \overrightarrow{AH} \right\| \cdot \left\| \vec{f} \right\|$$

et:

3.2 Moment cinétique d'un point

3.2.1 Par rapport à un point

Soit M un point matériel de masse m, de vitesse \vec{v} dans un référentiel \mathcal{R} , de quantité de mouvement $\vec{p} = m\vec{v}$, et soit A un point quelconque.

Le moment cinétique de M par rapport à A est :

$$\overrightarrow{\sigma_A}(M) = \overrightarrow{M_A}(\vec{p})$$

$$= \overrightarrow{AM} \wedge \vec{p}$$

$$= \overrightarrow{mAM} \wedge \vec{v}$$

Remarque: on note aussi $\overrightarrow{L_A}(M) = \overrightarrow{\sigma_A}(M)$

3.2.2 Par rapport à un axe orienté

Soit M un point matériel, A un point quelconque, et Δ un axe passant par A et orienté par un vecteur unitaire $\overrightarrow{u_{\Delta}}$.

Le moment cinétique de M par rapport à Δ est :

$$\sigma_{\Delta}(M) = \overrightarrow{\sigma_A}(M) \cdot \overrightarrow{u_{\Delta}}$$

3.3 Théorème du moment cinétique

3.3.1 En un point fixe

Soit M un point de masse m, de vitesse \vec{v} dans un référentiel galiléen \mathscr{R} , A un point fixe de \mathscr{R} , et $\vec{F} = \sum_{k \in I} \vec{f_k}$ la résultante des forces $\vec{f_k}$ s'exerçant sur M.

Alors:

$$\frac{\mathrm{d}\overrightarrow{\sigma_A}}{\mathrm{d}t} = \overrightarrow{\mathcal{M}_A} \left(\overrightarrow{F} \right) = \sum_{k \in I} \overrightarrow{\mathcal{M}_A} \left(\overrightarrow{f_k} \right)$$

Remarque: on appelle aussi ce théorème le théorème vectoriel du moment cinétique

3.3.2 Par rapport à un axe fixe

Soit M un point de masse m, de vitesse \vec{v} dans un référentiel galiléen \mathscr{R} , A un point **fixe** de \mathscr{R} , et Δ un axe **fixe** passant par A, et orienté par un vecteur unitaire $\overrightarrow{u_{\Delta}}$. On note \vec{F} la résultante des forces s'exerçant sur M.

Alors:

$$\frac{\mathrm{d}\sigma_{\Delta}}{\mathrm{d}t} = \mathscr{M}_{\Delta}(\vec{F})$$

Remarque : On appelle ce théorème le théorème scalaire du moment cinétique

