Monday May 1

- Today
 - Wilcoxon tests
 - ANOVA
- Tonight
 - practice exam questions
 - will cover them in final practical on May 12 10:45 (CC3)
- Thursday May 4 mini-lecture (13:45 in CC3)
 - topic 1: 2 categorical predictors
 - topic 2: 1 categorical and 1 interval/ratio variable
- Next Monday at 13:45
 - homework due
 - topic: random intercepts

When Assumptions are Broken

- Normality assumptions
- Ordinal data
- You can use... (pp 655 673)
 - Independent data
 - Wilcoxon rank-sum test
 - Dependent data
 - Wilcoxon signed-rank test
- Both tests are based on the ranks of your data points and compare medians

Wilcoxon tests in RStudio

Reporting the Results for Wilcoxon rank-sum test (independent samples)

• On average, participants experienced greater anxiety from real spiders (median = 50.00, IQR = 17), than from pictures of spiders (median = 40.00, IQR = 12.5). However, according to a Wilcoxon rank-sum test, this difference was not significant, W = -2.5, p = 0.13; furthermore, it represented a medium effect, r = -0.31.

Reporting the Results for Wilcoxon signed-rank test (for dependent samples)

• On average, participants experienced greater anxiety from real spiders (median = 50.00, IQR = 17), than from pictures of spiders (median = 40.00, IQR = 12.5). According to a Wilcoxon signed-rank test, this difference was significant, V = 8, p = 0.046; furthermore, it represented a medium effect, r = -0.40.

Comparing Several Means: Analysis of Variance (ANOVA)

Aims

- Understand the basic principles of ANOVA
 - Why it is done?
 - What it tells us?
- Theory of one-way independent ANOVA
- Following up an ANOVA:
 - Planned contrasts/comparisons
 - -Post hoc tests

When and Why

- When we want to compare means we can use a ttest. This test has limitations:
 - You can compare only 2 means: often we would like to compare means from 3 or more groups.
 - It can be used only with one predictor/independent variable.

ANOVA

- Compares several means.
- Can be used when you have manipulated more than one independent variable.
- It is an extension of regression (the general linear model).

- If we want to compare several means why don't we compare pairs of means with *t*-tests?
 - Inflates the Type I error rate.

Familywise error

- P-value = .05
 - Under null hypothesis (pattern this strong not in the population), then if you took 100 samples
 - 95 samples would also have not have the observed pattern
 - 5 samples would have a pattern at least as strong
 - or, if 20 samples
 - 19 would have no pattern
 - 1 would have a pattern at least as strong

Familywise error

- P-value = .05 across 3 tests
 - **1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20**
 - 5% chance you'll falsely reject null (Type I error)
 - 1 2 3 4 5 6 7 8 9 10 11 12 **13** 14 15 16 17 18 19 20
 - 1 2 3 4 5 6 7 8 9 10 11 **12** 13 14 15 16 17 18 19 20
- What is the probability of falsely rejecting null in at least 1 test?
 - 1 0.95*0.95*0.95 = 1 0.857 = 0.143 = 14.3%

What Does ANOVA Tell Us?

- Null hyothesis:
 - Like a t-test, ANOVA tests the null hypothesis that the means are the same.
- Experimental hypothesis:
 - The means differ.
- ANOVA is an omnibus test
 - It test for an overall difference between groups.
 - It tells us that the group means are different.
 - It doesn't tell us exactly which means differ.

T-test as regression

Binary Variable	Contrast Variable
Men	0
Women	1

ANOVA as regression

Nominal Variable	Contrast Variable 1	Contrast Variable 2
Cats	0	0
Dogs	1	0
Birds	0	1

Nominal Variable	Contrast Variable 1	Contrast Variable 2
Cats	0	0
Dogs	1	0
Birds	0	1

Predicted_{birds} = $b0 + b1 * c1_{birds}$ + $b2 * c2_{birds}$

$$Predicted_{birds} = b0 + b1 * 0 + b2 * 1$$

$$Predicted_{birds} = b0 + b2$$

Nominal Variable	Contrast Variable 1	Contrast Variable 2
Cats	0	0
Dogs	1	0
Birds	0	1

Predicted_{cats} = $b0 + b1 * c1_{cats}$ + $b2 * c2_{cats}$

Predicted_{cats} =
$$b0 + b1 * 0$$

+ $b2 * 0$

 $Predicted_{cats} = b0$

Nominal Variable	Contrast Variable 1	Contrast Variable 2
Cats	0	0
Dogs	1	0
Birds	0	1

Predicted_{dogs} = $b0 + b1 * c1_{dogs}$ + $b2 * c2_{dogs}$

$$Predicted_{dogs} = b0 + b1 * 1 + b2 * 0$$

 $Predicted_{dogs} = b0 + b1$

Regression Output

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.060 0.280 18.07 4.54e-10 ***
animalsdogs 4.100 0.396 10.35 2.46e-07 ***
animalsbirds -2.360 0.396 -5.96 6.61e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.6261 on 12 degrees of freedom Multiple R-squared: 0.9578, Adjusted R-squared: 0.9508 F-statistic: 136.3 on 2 and 12 DF, p-value: 5.621e-09

Sums of Squares in Regression

Total Sum of Squares (SSt)

Total Salli of Squares (SSt)

Residual Sum of Squares (SSr) = Model Sum of Squares (SSm)

Residual Mean Squares (MSr)

Mean Squares for the Model (MSm)

Mean Squares for the Model
Residual Mean Squares

Explained Variance
Unexplained Variance

= ⊦

Sums of Squares in ANOVA

Total Sum of Squares (SSt)

Residual Sum of Squares (SSr) = Model Sum of Squares (SSm)

76599430 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Participant

Residual Mean Squares (MSr)

Mean Squares for the Model (MSm)

Mean Squares for the Model Residual Mean Squares

Explained Variance
 Unexplained Variance

Theory of ANOVA

- We calculate how much variability there is between scores
 - Total sum of squares (SS_T).
- We then calculate how much of this variability can be explained by the model we fit to the data
 - How much variability is due to the experimental manipulation, model sum of squares (SS_M) ...
- ... and how much cannot be explained
 - How much variability is due to individual differences in performance, residual sum of squares (SS_R) .

Theory of ANOVA

- We compare the amount of variability explained by the model (MSm), to the error in the model (MSr)
 - This ratio is called the F-ratio.
- If the model explains a lot more variability than it can't explain, then the experimental manipulation has had a significant effect on the outcome.

Why Use Follow-Up Tests?

- The F-ratio tells us only that the experiment was successful
 - i.e. group means were different
- It does not tell us specifically which group means differ from which.
- We need additional tests to find out where the group differences lie.

How?

- Planned comparisons
 - Hypothesis driven
 - Planned beforehand
 - e.g., dummy contrasts, but often not what we want
- Post hoc tests
 - Not planned (no hypothesis)
 - Compare all pairs of means

Planned Comparisons/Contrasts

Basic idea:

- The variability explained by the model (experimental manipulation, SS_M) is due to participants being assigned to different groups.
- This variability can be broken down further to test specific hypotheses about which groups might differ.
- We break down the variance according to hypotheses made before the experiment.
- It's like cutting up a cake

Rules When Choosing Contrasts

Independent

 Contrasts must not interfere with each other (they must test unique hypotheses).

Only two chunks

 Each contrast should compare only two chunks of variation.

• *K*-1

 You should always end up with one less contrast than the number of groups.

Generating Hypotheses

- <u>Example</u>: Testing the effects of Viagra on libido using three groups:
 - Placebo (sugar pill)
 - Low dose viagra
 - High dose viagra
- Outcome variable was an objective measure of libido.
- Intuitively, what might we expect to happen?

	Placebo	Low Dose	High Dose
	3	5	7
	2	2	4
	1	4	5
	1	2	3
	4	3	6
Mean	2.20	3.20	5.00

How do I Choose Contrasts?

• Big hint:

- In most experiments we usually have one or more control groups.
- The logic of control groups dictates that we expect them to be different from groups that we've manipulated.
- The first contrast will always be to compare any control groups (chunk 1) with any experimental conditions (chunk 2).

Hypotheses

Hypothesis 1:

- People who take Viagra will have a higher libido than those who don't.
- placebo ≠ (low, high)

Hypothesis 2:

- People taking a high dose of Viagra will have a greater libido than those taking a low dose.
- low ≠ high

Planned Comparisons

Figure 10.5: Partitioning of experimental variance into component comparisons

Another Example

Figure 10.6: Partitioning variance for planned comparisons in a four-group experiment using one control group

Coding Planned Contrasts: Rules

Rule 1

 Groups coded with positive weights compared to groups coded with negative weights.

Rule 2

The sum of weights for a comparison should be zero.

• Rule 3

 If a group is not involved in a comparison, assign it a weight of zero.

• Rule 4

 For a given contrast, the weights assigned to the group(s) in one chunk of variation should be equal to the number of groups in the opposite chunk of variation.

• Rule 5

 If a group is singled out in a comparison, then that group should not be used in any subsequent contrasts.

Group	Contrast 1	Contrast 2
Placebo	-2	0
Low Dose	1	-1
High Dose	1	1
Total	0	0

Rule 1

Groups coded with positive weights compared to groups coded with negative weights.

Rule 2

The sum of weights for a comparison should be zero.

Rule 3

If a group is not involved in a comparison, assign it a weight of zero.

Rule 4

For a given contrast, the weights assigned to the group(s) in one chunk of variation should be equal to the number of groups in the opposite chunk of variation.

Rule 5

If a group is singled out in a comparison, then that group should not be used in any subsequent contrasts.

Group	Contrast 1	Contrast 2
Placebo	-2	0
Low Dose	1	-1
High Dose	1	1
Total	0	0

Group	Contrast 1	Contrast 2
Placebo	-2	0
Low Dose	1	-1
High Dose	1	1
Total	0	0

Group	Contrast 1	Contrast 2
Placebo	-2	0
Low Dose	1	-1
High Dose	1	1
Total	0	0

Group	Contrast 1	Contrast 2
Placebo	-2	0
Low Dose	1	-1
High Dose	1	1
Total	0	0

Group	Contrast 1	Contrast 2
Placebo	-2	0
Low Dose	1	-1
High Dose	1	1
Total	0	0

ANOVA in RStudio