

$\begin{array}{c} 1 \\ y \\ \hline \\ 0 \\ x = \cos(\alpha) \end{array}$ Ableitung $\begin{array}{c} \cos \\ \text{Ableitung} \\ -\sin \\ -\sin \\ -\sin \\ \end{array}$ Ableitung $\begin{array}{c} \cos \\ \text{Ableitung} \\ -\cos \\ \text{Ableitung} \\ \end{array}$
--

-cos Ableitung			
Physikalische Grössen: Geschwindigkeit	v	-	m/s
Beschleunigung	a	1	m/s^2
Federkonstante	D	1	N/m
Frequenz	f	Hertz	1/s
Kraft	F	Newton	${\rm kg}\cdot m/s^2$
Energie	E	Joule	$N \cdot m$
Arbeit = Δ Energie	W	Joule	$J=N\cdot m$
Leistung = Arbeit pro Zeit * 4.19 Joule = 1 Cal, 1 Joule = 1	P Watt/s	Watt => 3.6 · 10	J = 1 kWh

Basisgrös Länge	en:	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	s

Abhängigkeit Weg Geschwindigkeit und Beschleunigur				
über die Zeit: Wegfunktion	s(t)			
Geschwindigkeitsfunktion	$v(t)=\dot{s}(t)$			
Beschleunigungsfunktion	$a(t)=\dot{v}(t)=\ddot{s}(t)$			

Konstanten: Fallbeschleunigung	g	$9.80665m/s^2$
Lichtgeschwindigkeit	c	$2.99792458\cdot 10^8 m/s$
Gravitationskonstante	G	$\frac{6.673 \cdot 10^{-}11 N}{m^2/\text{kg}^2} \cdot$

Konservative Kraft: Die Kraft ist konservativ, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reell wertige Funktion einer Variable eine Stammfunktion besitzt. Das Hook'schen Gesetz beschreibt eine konservative Kraft, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reellwertige Funktion einer Variable eine Stammfunktion besitzt

2. Kinematik

Mittlere Geschwindigkeit: $\bar{v} = \frac{\Delta v}{\Delta s}$ Mittlere Beschleunigung: $\bar{a} = \frac{\Delta v}{\Delta t}$

Gleichförmige Bewegung: $s = s_0 + v \cdot t \Rightarrow \frac{s}{v} = t$

Geredlinige Bewegunginigte Dewegatg:

