Computer Organization

Architecture diagrams:

- Single Cycle CPU

Hardware module analysis:

直接照著題目 pdf 里的 diagram 設計

- Program Counter 每回合通過 左上的 Adder + 4
- Instruction memory 根據 R- format, I format 去決定從哪個 Register file 的位置讀資料
- -Decoder 去用來判斷該 instruction 是否需要 RegDst, RegWrite, branch, ALUOp, ALUSrc
- 如果是 I format, 會透過 sign extender 把 16 bit extend 成 32 bit
- Branch instruction 的結果是由 ALU 的 zero output 來決定
- 右上的 adder 是用來決定 branch target 的

Finished Part:

-Testcase1

CO_P2_Result.txt - Notepad		
File Edit	Format View H	Help
r0=	0	
r1=	10	
r2=	4	
r3=	0	
r4=	0	
r5=	6	
r6=	0	
r7=	0	
r8=	0	
r9=	0	
r10=	0	
r11=	0	
r12=	0	

-Testcase2

Problems you met and solutions:

一開始沒發現 testcase2 有 beq, 花了蠻多時間在研究 r6 的值為什麼會是 0

Summary:

通過此次 lab 了解到 1 個簡單的 CPU 所需要的 component 及其讀 instruction 的方式