Lecture 21 – Algebraic Data Types (1)

COSE212: Programming Languages

Jihyeok Park

2023 Fall

- TFAE FAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics
- TRFAE RFAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics

- TFAE FAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics
- TRFAE RFAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics
- Let's learn algebraic data types (ADTs) and pattern matching!

- TFAE FAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics
- TRFAE RFAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics
- Let's learn algebraic data types (ADTs) and pattern matching!
- TAFAE TRFAE with ADTs and pattern matching.
 - Interpreter and Natural Semantics
 - Type Checker and Typing Rules

- TFAE FAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics
- TRFAE RFAE with type system.
 - Type Checker and Typing Rules
 - Interpreter and Natural Semantics
- Let's learn algebraic data types (ADTs) and pattern matching!
- TAFAE TRFAE with ADTs and pattern matching.
 - Interpreter and Natural Semantics
 - Type Checker and Typing Rules
- In this lecture, we will focus on Interpreter and Natural Semantics.

Contents

Algebraic Data Types (ADTs) and Pattern Matching

Recall: Types Product Types Union Types Sum Types

Algebraic Data Types (ADTs)

Pattern Matching

2. TAFAE – TRFAE with ADTs and Pattern Matching Concrete Syntax

Abstract Syntax

3. Interpreter and Reduction Semantics for TAFAE

Algebraic Data Types Function Application Pattern Matching

Contents

1. Algebraic Data Types (ADTs) and Pattern Matching

Recall: Types Product Types Union Types Sum Types Algebraic Data Types (ADTs)

Pattern Matching

Algebraic Data Types

Definition (Types)

A type is a set of values.

For example, the Int, Boolean, and Int => Int types are defined as the following sets of values in Scala.

```
Int = \{n \in \mathbb{Z} \mid -2^{31} \le n < 2^{31}\}
Boolean = \{\text{true}, \text{false}\}
Int \Rightarrow Int = \{f \mid f \text{ is a function from Int to Int}\}
```

Product Types

Definition (Product Types)

A **product type** (τ_1, \ldots, τ_n) is a set of values of the form (v_1, \ldots, v_n) where τ_i is the type of v_i for $1 \le i \le n$.

Product Types

Definition (Product Types)

A **product type** (τ_1, \ldots, τ_n) is a set of values of the form (v_1, \ldots, v_n) where τ_i is the type of v_i for $1 \le i \le n$.

It is corresponds to the Cartesian product of sets:

$$(\tau_1,\ldots,\tau_n)=\tau_1\times\ldots\times\tau_n$$

Product Types

Definition (Product Types)

A **product type** (τ_1, \ldots, τ_n) is a set of values of the form (v_1, \ldots, v_n) where τ_i is the type of v_i for $1 \le i \le n$.

It is corresponds to the Cartesian product of sets:

$$(\tau_1,\ldots,\tau_n)=\tau_1\times\ldots\times\tau_n$$

For example, we can define product types in Scala as follows:

Definition (Union Types)

A **union type** $\tau_1 \mid \ldots \mid \tau_n$ is a set of values whose type is one of τ_1, \ldots, τ_n .

Definition (Union Types)

A **union type** $\tau_1 \mid \ldots \mid \tau_n$ is a set of values whose type is one of τ_1, \ldots, τ_n .

It is corresponds to the **union** of sets:

$$\tau_1 \mid \ldots \mid \tau_n = \tau_1 \cup \ldots \cup \tau_n$$

Definition (Union Types)

A union type $\tau_1 \mid \ldots \mid \tau_n$ is a set of values whose type is one of τ_1, \ldots, τ_n .

It is corresponds to the union of sets:

$$\tau_1 \mid \ldots \mid \tau_n = \tau_1 \cup \ldots \cup \tau_n$$

For example, we can define union types in Scala as follows:

Definition (Union Types)

A union type $\tau_1 \mid \ldots \mid \tau_n$ is a set of values whose type is one of τ_1, \ldots, τ_n .

It is corresponds to the union of sets:

$$\tau_1 \mid \ldots \mid \tau_n = \tau_1 \cup \ldots \cup \tau_n$$

For example, we can define union types in Scala as follows:

How can we discriminate between a square and a triangle?

Definition (Union Types)

A union type $\tau_1 \mid \ldots \mid \tau_n$ is a set of values whose type is one of τ_1, \ldots, τ_n .

It is corresponds to the union of sets:

$$\tau_1 \mid \ldots \mid \tau_n = \tau_1 \cup \ldots \cup \tau_n$$

For example, we can define union types in Scala as follows:

How can we discriminate between a square and a triangle? Sum types!

Sum Types

Definition (Sum Types)

A sum type $x_1(\tau_1) + \ldots + x_n(\tau_n)$ consists of variants $x_i(\tau_i)$ for $1 \le i \le n$. For each variant $x_i(\tau_i)$, x_i is the **constructor**, a function that takes a value v of type τ_i and generates a value $x_i(v)$ of the sum type.

Sum Types

Definition (Sum Types)

A sum type $x_1(\tau_1) + \ldots + x_n(\tau_n)$ consists of variants $x_i(\tau_i)$ for $1 \le i \le n$. For each variant $x_i(\tau_i)$, x_i is the **constructor**, a function that takes a value v of type τ_i and generates a value $x_i(v)$ of the sum type.

It is corresponds to a tagged union of sets:

$$x_1(\tau_1) + \ldots + x_n(\tau_n) = \{x_i(v) \mid \exists 1 \le i \le n. \text{ s.t. } v \in \tau_i\}$$

Sum Types

Definition (Sum Types)

A sum type $x_1(\tau_1) + \ldots + x_n(\tau_n)$ consists of variants $x_i(\tau_i)$ for $1 \le i \le n$. For each variant $x_i(\tau_i)$, x_i is the **constructor**, a function that takes a value v of type τ_i and generates a value $x_i(v)$ of the sum type.

It is corresponds to a tagged union of sets:

$$x_1(\tau_1) + \ldots + x_n(\tau_n) = \{x_i(v) \mid \exists 1 \le i \le n. \text{ s.t. } v \in \tau_i\}$$

For example, we can define **sum types** in Scala as follows:

Now, we can discriminate between a square and a triangle!

Definition (Sum Types)

A sum type $x_1(\tau_1) + \ldots + x_n(\tau_n)$ consists of variants $x_i(\tau_i)$ for $1 \le i \le n$. For each variant $x_i(\tau_i)$, x_i is the **constructor**, a function that takes a value v of type τ_i and generates a value $x_i(v)$ of the sum type.

Algebraic Data Types (ADTs)

Definition (Algebraic Data Types (ADTs))

An algebraic data type $x_1(\tau_{1,1},\ldots,\tau_{1,m_1})+\ldots+x_n(\tau_{n,1},\ldots,\tau_{n,m_n})$ is a recursive sum type of product types.

Algebraic Data Types (ADTs)

Definition (Algebraic Data Types (ADTs))

An algebraic data type $x_1(\tau_{1,1},\ldots,\tau_{1,m_1})+\ldots+x_n(\tau_{n,1},\ldots,\tau_{n,m_n})$ is a recursive sum type of product types.

For example, we can define algebraic data type for trees in Scala:

```
enum Tree:
    case Leaf(v: Int)
    case Node(l: Tree, v: Int, r: Tree)

val t1: Tree = Node(Leaf(1), 2, Leaf(3))
val t2: Tree = Node(Leaf(1), 2, Node(Leaf(3), 4, Leaf(5)))
```


Pattern Matching

Definition (Pattern matching)

We can use **pattern matching** for algebraic data types to identify which variant of the sum type a value belongs to and extract the data it contains.

Pattern Matching

Definition (Pattern matching)

We can use **pattern matching** for algebraic data types to identify which variant of the sum type a value belongs to and extract the data it contains.

For example, we can define a function sum that sums all the values in a tree using pattern matching (match) on the Tree type in Scala:

```
enum Tree:
    case Leaf(v: Int)
    case Node(1: Tree, v: Int, r: Tree)

def sum(t: Tree): Int = t match
    case Leaf(v) => v
    case Node(1, v, r) => sum(1) + v + sum(r)

sum(Node(Leaf(1), 2, Leaf(3))) // 6
sum(Node(Leaf(1), 2, Node(Leaf(3), 4, Leaf(5)))) // 15
```

Algebraic Data Types

Many functional languages support algebraic data types:

• Scala

```
enum Tree { Leaf(v: Int), Node(1: Tree, v: Int, r: Tree) }
```

• Haskell

```
data Tree = Leaf Int | Node Tree Int Tree
```

• Rust

```
enum Tree { Leaf(i32), Node(Tree, i32, Tree) }
```

OCaml

```
type tree = Leaf of int | Node of tree * int * tree
```

•

Contents

1. Algebraic Data Types (ADTs) and Pattern Matching

Recall: Types
Product Types
Union Types
Sum Types
Algebraic Data Types (ADTs)
Pattern Matching

2. TAFAE – TRFAE with ADTs and Pattern Matching Concrete Syntax Abstract Syntax

Interpreter and Reduction Semantics for TAFAE
 Algebraic Data Types
 Function Application
 Pattern Matching

TAFAE – TRFAE with ADTs and Pattern Matching **▶PLRG**

Now, let's extend TRFAE into TAFAE to support **algebraic data types** and **pattern matching**. (Assume that TRFAE supports multiple arguments for functions.)

```
/* TAFAE */
enum Tree {
  case Leaf(Number)
  case Node(Tree, Number, Tree)
}
Node(Leaf(1), 2, Leaf(3))
```

```
/* TAFAE */
enum NumList {
  case Nil()
  case Cons(Number, NumList)
}
Cons(1, Cons(2, Cons(3, Nil())))
```

For TAFAE, we need to extend expressions of TRFAE with

- 1 algebraic data types (ADTs)
- 2 pattern matching
- **3** type variables

Concrete Syntax

For TAFAE, we need to extend **expressions** of TRFAE with

- 1 algebraic data types (ADTs)
- pattern matching
- type variables

Concrete Syntax

For TAFAE, we need to extend expressions of TRFAE with

- 1 algebraic data types (ADTs)
- 2 pattern matching
- **3** type variables

We can extend the **concrete syntax** of FAE as follows:

```
// expressions
<expr> ::= ...
         | "enum" <id> "{" [ <variant> ";"? ]+ "}"
         | <expr> "match" "{" [ <mcase> ";"? ]+ "}"
// variants
<variant> ::= <id> "(" ")" | <id> "(" <type> [ "," <type> ]* ")"
// match cases
<mcase> ::= "case" <id> "(" ")" "=>" <expr>
          | "case" <id> "(" <id> [ ", " <id> ]* ")" "=>" <expr>
// types
<type> ::= ...
         <id> // type variable
```

Abstract Syntax


```
Expressions \mathbb{E} \ni e ::= \dots
| \text{enum } t \in [\text{case } x(\tau^*)]^* \}; e \quad (\text{TypeDef})
| e \text{ match } \{ [\text{case } x(x^*) => e]^* \} \quad (\text{Match})

Types \mathbb{T} \ni \tau ::= \dots
| t \quad (\text{VarT})

um Expr:
...

case TypeDef(name: String varts: List[Variant] body: Expr)
```

```
enum Expr:
...
case TypeDef(name: String, varts: List[Variant], body: Expr)
case Match(expr: Expr, mcases: List[MatchCase])

case class Variant(name: String, ptys: List[Type]):
case class MatchCase(name: String, params: List[String], body: Expr):
enum Type:
...
case VarT(name: String)
```

Abstract Syntax


```
/* TAFAE */
enum Tree {
  case Leaf(Number)
  case Node(Tree, Number, Tree)
}
Node(Leaf(1), 2, Leaf(3))
```

will be parsed to the following abstract syntax tree (AST):

```
TypeDef("Tree", List(
    Variant("Leaf", List(NumT)),
    Variant("Node", List(VarT("Tree"), NumT, VarT("Tree")))
),
App(Id("Node"), List(
    App(Id("Leaf"), List(Num(1))),
    Num(2),
    App(Id("Leaf"), List(Num(3)))
))
)
```

Contents

1. Algebraic Data Types (ADTs) and Pattern Matching

Recall: Types
Product Types
Union Types
Sum Types
Algebraic Data Types (ADTs)
Pattern Matching

 TAFAE – TRFAE with ADTs and Pattern Matching Concrete Syntax Abstract Syntax

3. Interpreter and Reduction Semantics for TAFAE

Algebraic Data Types Function Application Pattern Matching

Interpreter and Natural Semantics for TAFAE

For TAFAE, we need to 1) implement the **interpreter** with environments:

```
def interp(expr: Expr, env: Env): Value = ???
```

and 2) define the **natural semantics** with environments:

$$\sigma \vdash e \Rightarrow v$$

For TAFAE, we need to 1) implement the **interpreter** with environments:

```
def interp(expr: Expr, env: Env): Value = ???
```

and 2) define the **natural semantics** with environments:

$$\sigma \vdash e \Rightarrow v$$

with a new kind of values called **constructor values** and **variant values**:

```
enum Value:
...
case ConstrV(name: String)
case VariantV(name: String, values: List[Value])
```

Algebraic Data Types


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case TypeDef(_, ws, body) =>
     interp(body, env ++ ws.map(w => w.name -> ConstrV(w.name)))
```

$$\sigma \vdash e \Rightarrow v$$

$$\begin{array}{c} \text{TypeDef} \; \dfrac{\sigma[\mathsf{x}_1 \mapsto \langle \mathsf{x}_1 \rangle, \ldots, \mathsf{x}_n \mapsto \langle \mathsf{x}_n \rangle] \vdash e \Rightarrow \mathsf{v} \\ \\ \sigma \vdash \mathsf{enum} \; t \; \left\{ \begin{array}{c} \mathsf{case} \; \mathsf{x}_1(\tau_{1,1}, \ldots, \tau_{1,m_1}) \\ \ldots \\ \mathsf{case} \; \mathsf{x}_n(\tau_{n,1}, \ldots, \tau_{n,m_n}) \end{array} \right\}; \; e \Rightarrow \mathsf{v} \end{array}$$

Algebraic Data Types


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case App(f, es) => interp(f, env) match
      case CloV(ps, b, fenv) =>
      arityCheck(ps.length, es.length)
      interp(b, fenv() ++ (ps zip es.map(interp(_, env))))
   case ConstrV(name) => VariantV(name, es.map(interp(_, env)))
   case v => error(s"not a function: ${v.str}")
```

$$\sigma \vdash e \Rightarrow v$$

$$\operatorname{App}_{\langle -\rangle} \frac{\sigma \vdash e_0 \Rightarrow \langle x \rangle \quad \sigma \vdash e_1 \Rightarrow v_1 \quad \dots \quad \sigma \vdash e_n \Rightarrow v_n}{\sigma \vdash e_0(e_1, \dots, e_n) \Rightarrow x(v_1, \dots, v_n)}$$

Pattern Matching


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Match(expr, cases) => interp(expr, env) match
      case VariantV(wname, vs) => cases.find(_.name == wname) match
      case Some(MatchCase(_, ps, b)) =>
            arityCheck(ps.length, vs.length)
            interp(b, env ++ (ps zip vs))
      case None => error(s"no such case: $wname")
      case v => error(s"not a variant: ${v.str}")
```

$$\sigma \vdash e \Rightarrow v$$

$$\frac{1 \leq i \leq n \quad \sigma \vdash e \Rightarrow x_i(v_i, \dots, v_{m_i})}{\sigma[x_{i,1} \mapsto v_1, \dots, x_{i,m_i} \mapsto v_{m_i}] \vdash e_i \Rightarrow v}$$
 Match
$$\frac{\sigma[x_{i,1} \mapsto v_1, \dots, x_{i,m_i} \mapsto v_{m_i}] \vdash e_i \Rightarrow v}{\sigma \vdash e \text{ match}} \left\{ \begin{array}{c} \operatorname{case} x_1(x_{1,1}, \dots, x_{1,m_1}) \Rightarrow e_1 \\ \dots \\ \operatorname{case} x_n(x_{n,1}, \dots, x_{n,m_n}) \Rightarrow e_n \end{array} \right\} \Rightarrow v$$

Summary

1. Algebraic Data Types (ADTs) and Pattern Matching

Recall: Types
Product Types
Union Types

Sum Types

Algebraic Data Types (ADTs)

Pattern Matching

2. TAFAE – TRFAE with ADTs and Pattern Matching

Concrete Syntax

Abstract Syntax

3. Interpreter and Reduction Semantics for TAFAE

Algebraic Data Types

Function Application

Pattern Matching

Next Lecture

• Algebraic Data Types (2)

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr