Particle System

Particles

- Particles are objects modeled as point masses
- Particle properties:
 - mass
 - position
 - velocity
 - force accumulator
 - age, lifespan
 - rendering properties
 - etc.

See also a nice introduction to particle systems with code by Daniel Shiffiman: https://youtu.be/vdgiqMkFygc
https://natureofcode.com/

Particles (cont.)

- Particles respond to forces
- We represent this using differential equations

$$\ddot{\mathbf{x}} = \frac{\mathbf{f}}{m}$$

$$\ddot{\mathbf{v}} = \frac{\mathbf{f}}{m}$$

2nd order ODE

1st order ODEs

Particle Systems

- Particle systems are collections of particles
- Particle systems can represent:
 - fire
 - -smoke/clouds
 - water
 - cloth
 - soft bodies
 - flocks/crowds

Example Videos

Particle Dreams by Karl Sims (1988)
 https://youtu.be/t2an3xMuiew

Pipe Dream by Wayne Lytle (Animusic,2001)

https://youtu.be/kTFBK7TltIE?t=13

Particle Systems

Separate the data structures and integration

Spatial Forces

 Forces that depend on nearby particles within a local region

Gravity, Lennard-Jones and electric potentials

Spatial data structures can optimize computations

Unary Forces

Forces that only depend on 1 particle

n-ary Forces

- Forces that depend on n particles
- Example: binary forces—spring and damper

$$\mathbf{f}_{a} = -k_{s}(|\mathbf{x}_{a} - \mathbf{x}_{b}| - l_{0}) \frac{\mathbf{x}_{a} - \mathbf{x}_{b}}{|\mathbf{x}_{a} - \mathbf{x}_{b}|}$$

$$-k_{d} \left(\frac{(\mathbf{v}_{a} - \mathbf{v}_{b}) \cdot (\mathbf{x}_{a} - \mathbf{x}_{b})}{|\mathbf{x}_{a} - \mathbf{x}_{b}|} \right) \frac{\mathbf{x}_{a} - \mathbf{x}_{b}}{|\mathbf{x}_{a} - \mathbf{x}_{b}|}$$

Springs

Spring Force

 If particle is located farther than the rest position, the spring force needs to pull it back

$$\Delta l = \left| \vec{x}_a - \vec{x}_b \right| - r > 0 \qquad \vec{f}_a = -(k\Delta l)\vec{l}, \quad k > 0$$

 If the particle is located nearer than the rest position, the spring force needs to push it away

$$\Delta l = \left| \vec{x}_a - \vec{x}_b \right| - r < 0 \qquad \vec{f}_a = -(k\Delta l)\vec{l}, \quad k > 0$$

$$\vec{f}_{a} = -k_{s}(|\vec{x}_{a} - \vec{x}_{b}| - r)\vec{l}, \quad k_{s} > 0$$

$$= -k_{s}(|\vec{x}_{a} - \vec{x}_{b}| - r)\frac{\vec{x}_{a} - \vec{x}_{b}}{|\vec{x}_{a} - \vec{x}_{b}|}$$

Damper Force

 If two particles are departing, the damper force needs to pull them back

$$\Delta v = (\vec{v}_a - \vec{v}_b) \cdot \vec{l} > 0 \qquad \vec{f}_a = -(k\Delta v)\vec{l}, \quad k > 0$$

 If two particles are approaching, the damper force needs to push them away

$$\Delta v = (\vec{v}_a - \vec{v}_b) \cdot \vec{l} < 0 \qquad \vec{f}_a = -(k\Delta v)\vec{l}, \quad k > 0$$

$$\vec{f}_{a} = -k_{d} ((\vec{v}_{a} - \vec{v}_{b}) \cdot \vec{l}) \vec{l}, \quad k_{d} > 0$$

$$= -k_{d} \frac{(\vec{v}_{a} - \vec{v}_{b}) \cdot (\vec{x}_{a} - \vec{x}_{b})}{|\vec{x}_{a} - \vec{x}_{b}|} \frac{(\vec{x}_{a} - \vec{x}_{b})}{|\vec{x}_{a} - \vec{x}_{b}|} \frac{\vec{l}}{|\vec{x}_{a} - \vec{x}_{b}|}$$

Notes on Damping Forces

 According to the law of energy conservation, a particle system consists of only masses and springs keep bouncing from each other after external forces disappear

 Damping/viscous drag force resist motion, making a particle system gradually come to rest in the absence of external forces

Notes on Damping Forces (cont.)

 It is highly recommended that at least a small amount of damping is applied to each particle

 Excessive damping, however, makes a particle appear that floating in molasses (energy dissipates out too quickly, not responsive)

Collision Detection and Response

- Later class: rigid body collision and contact
- For now, just simple pointplane collisions

Collision Detection

$$\|\mathbf{N}\| = 1$$

- Determine when a particle has collided
 - Close to the wall

$$\mathbf{N} \cdot (\mathbf{x} - \mathbf{p}) < \varepsilon$$

Heading in

$$\mathbf{N} \cdot \mathbf{v} < 0$$

Collision Response

 What should we do when a particle has collided (or penetrated)?

 The correct thing to do is rollback the simulation to the exact point of contact

 A less accurate but easier alternative is to just modify positions and velocities

Collision Response

Assume no friction...

Before

$$\mathbf{v} = \mathbf{v}_N + \mathbf{v}_T$$

After

$$\mathbf{v'} = -k_r \mathbf{v}_N + \mathbf{v}_T$$

coefficient of restitution

Contact Conditions

On the wall

$$|\mathbf{N}\cdot(\mathbf{x}-\mathbf{p})|<\varepsilon$$

- Moving along the wall $|\mathbf{N} \cdot \mathbf{v}| < \varepsilon$
- A force f, e.g., gravity, pushes the particle into the wall

$$\mathbf{N} \cdot \mathbf{f} < 0$$

Contact Forces

 When the particle is on the collision surface a contact force resists penetration

$$\mathbf{f}^c = -(\mathbf{N} \cdot \mathbf{f}) \, \mathbf{N} \qquad \mathbf{N} \cdot \mathbf{f} < 0$$

 Contact forces do not resist leaving the surface

$$\mathbf{f}^c = 0 \qquad \mathbf{N} \cdot \mathbf{f} > 0$$

Simple friction can be modeled

$$\mathbf{f}^f = -k_f(-\mathbf{N} \cdot \mathbf{f}) v_t \qquad \mathbf{N} \cdot \mathbf{f} < 0$$

Implementation

Solver Interface

Implementation (cont.)

Solver Interface

Physics Engine for Dynamics Simulation

- Open Dynamics Engine (ODE)
 - Rigid body dynamics, robotics
- Bullet
 - Rigid and soft body dynamics, e.g., rope and cloth
- PhysX
 - Nvidia
- Unreal
- Unity

For more details on some engines, please see the article at https://www.goodfirms.co/blog/applications-physics-engine-animation