

Our country, our future

525/1

S6 CHEMISTRY

Exam 23

PAPER 1

DURATION: 2 HOUR 45 MINUTES

Instructions:

- This paper consists of two sections A and B
- Section A is compulsory.
- Attempt only six questions in section B
- Answers must be written in the spaces provided **only**

For E	For Examiner's Use Only															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

SECTION A

Answer all questions from this section.

1.	(a) (i) The decay law is given the expression	ession $-\frac{dN}{dt} = \lambda N$		
	State what the symbols represent.	dt (01½)		
	(ii) Using the above expression derive the exdecay constant.	pression for the relation betv	veen half life and the (02)	
	(b) (i) Nickel(⁶³ Ni) decays to copper (⁶³ Cu) Name the particle emitted and write the	equation for the reaction:		
	Name of particle;		(01)	
	Equation			
	(ii) Calculate the time taken for $\frac{15}{16}$ of nick [The half life for nickel is 120 yea		(02)	

2.	(a) State conditions for the reaction between aluminium oxide and sulphuric acid and write the equation for the reaction. Conditions;
	Equation
	(b) The resultant solution in (a) was mixed with aqueous sodium carbonate solution. State what would be observed and write equation for the reaction that takes place Observation; (02 ½)
	Equation;
3.	The following experimental results were obtained for the reaction A + 2B products
	Eva Initial concentrations (mal $\begin{bmatrix} -1 \\ \end{bmatrix}$ Initial rate (mal $\begin{bmatrix} -1 \\ \end{bmatrix}$

Ехр	Initial concent	rations (mol $\lfloor ^{-1}$)	Initial rate (mol (-1 S -1)
	Α	В	
1	3.0 x 10 ⁻²	3.0 x 10 ⁻²	2.7 x 10 ⁻⁵
2	3.0 x 10 ⁻²	6.0 x 10 ⁻²	5.4 x 10 ⁻⁵
3	6.0 x 10 ⁻²	3.0 x 10 ⁻²	10.8 x 10 ⁻⁵

(a) (i) Deduce the order of reactions with respect to

A;

	ite the expression for the rate equation	(0½)
 in term (i)	te of reaction under certain conditions for temperature and pressure is x. ns of x when the following changes are made. The concentration B is halved while the concentration of A remains unc	(0 ½ each) hanged
	The rate constant is doubled, by increasing temperature, but keeping the of A and B unchanged.	
(iii)	If 90% of B is removed by precipitation, without affecting concentration	of A.

	(c) Calculate the value of the rate constant and state its units.	(02)
••••		
4.	Complete the following reaction equations and write the IUPAC names of the main of in each case. CH ₃ (a) CH ₃ CH ₂ O ⁻ K +/CH ₃ CH ₂ OH	organic product (01½)
	heat	
	Name of product;	
	(b) $C - H$ $Conc HCI$ Zn/Hg	
	Name of product;	
	Name of product,	

(c) (CH₃)₃COH anhydrous ZnCl₂/Conc HCl

••••		ame of product.	
5.		rite half equation(s) to show the action of hydrogen peroxide as) an oxidizing agent	(01 mark each)
	(i	i) a reducing agent	
	hydro	ate what is observed and in each case write equation of reaction thogen peroxide is added to the following mixtures;	nat take place when (01 ½ marks each)
	(i)	Acidified potassium chromate (VI) solution Observation	
		Equation	
	(ii)	Iron (ii) sulphate in dilute sulphuric acid Observation	
		Equation	

		e one reason why hydrogo tric analysis	en peroxide is no	t used in estimat	ion of concentra) ions (01)
(b) State three factors that can affect electron affinity. (01 (c) The first electron affinities of some elements of period – 3 are given in the table below	. (a) I	Explain what is meant by t	the term first elec	ction affinity.		(01)
(c) The first electron affinities of some elements of period – 3 are given in the table below						 (01 ½
Element Al Si P S	•••••					
First electron affinity — 44 — 134 — 71.7 — 200	_		+			

(ii) Explain your answer in c (i) above

(02)

More exams? browse: digitaltears.co.ug

••••	•••••					
••••	•••••					
7.	(a) The e	nthalpies of some rea	ctions are gi	ven below ΔH ^θ /KJmol ⁻¹		
	(i)	$C_{(s)} + O_{2(g)}$	→ CO _{2(g)}	$\Delta H^{\theta_1} = -393.5$		
	(ii)	H ₂ (g) + ½ O(g)	—→H ₂ O(I)	$\Delta H^{\theta}_{2} = 285.9$		
	(iii)	C ₆ H ₅ OH(s) + 7O ₂ (g)		6CO ₂ (g), +3H ₂ O (I)	$\Delta H^{\theta}_{3} = 3009$	
Cal	culate the	standard enthalny of	formation o	f phenol from its eleme	ents. (03)	
Cai	iculate the	Standard Chinaipy of	TOTTII deli OTTO	i phenor from its cieme		
	(b) (i) Fro	m your answer in (a)	state whethe	er phenol is a stable cor	mpound or not.	(0 ½)
	(ii) Gi	ive a reason for your a	nswer in b (i	i0 above		(01 mark)
	(d) Write	e equation'(s) to show	how phenol	l can be synthesized fro	om chloro benzen	e. (01 ½ mark)

8.	(a) Neoprene is a synthetic polymer which has the following structure
	$\begin{array}{c c} \hline \\ CH_2 - C = C - CH_2 \\ \hline H & CI \end{array}$
	(i) Name the type of polymerization reaction which leads to formation of neoprene
	(ii) Write the structure and name of monomer of neoprene. (01)
	(b) When 350g of the monomer was polymerized 9.89 x 10^{-2} moles of neoprene was formed. Calculate the relative molecular mass of neoprene. (2)
••••	
••••	
	(c) state one use of neoprene (0½)

9 Calculato	the pH of a 0.1 moldm $^{-3}$ solution of aluminium nitrate	
(Acid dissocia	ation constant, Ka at 25°C for Al(H_2O) $_6^{3+}$ is 1.4 x 10 $^{-5}$ moldm $^{-3}$)	
	SECTION B	
	Attempt only six questions in this section	
10. (a) Ex	xplain what is meant by the term common ion effect.	(01)
(b) Silver Write	chromate is sparingly soluble in water.	
(i)	Equation for solubility of silver chromate in water	(1 ½)
(ii)	The expression for solubility product. Ksp for silver chromate.	(0 ½)

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

	rated solution of silver chromate contains 2.4×10^{-2} g per litre at 20° C	
		(00)
Calculate	the value for the solubility product Ksp for silver chromate at 20°C.	(02)
••••••		
• •	de ions in solution can be determined by titration with silver nitrate in the perions. The end point is indicated by a red precipitate of silver chromate.	oresence of
(i) Explair	why silver chromate does not precipitate until the end point is reached.	(01)
•••••		
•••••		
•••••		
(ii)	25cm ³ of a solution containing 0.1 moles of potassium chloride and 0.00	
	chromate ions required on titration 50cm ³ of 0.1M silver nitrate solution point. Calculate the concentration of chloride ions at the end point	to reach the end
	[solubility product for silver chloride is $1.6 \times 10^{-10} \text{ mol}^2 \text{ l}^{-2}$]	

11. (a) A compound Y contains carbon, hydrogen and nitrogen. On combustion, 0.7 1.615g of carbon dioxide and 0.42g produced 84cm ³ of nitrogen at 15°C and 76 Calculate the empirical formula of V	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg.
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76	0mmHg. (04 ½)
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76 Calculate the empirical formula of Y.	0mmHg. (04 ½)
1.615g of carbon dioxide and 0.42g produced 84cm³ of nitrogen at 15°C and 76 Calculate the empirical formula of Y.	0mmHg. (04 ½)

(b) When Y was vapourised, it took 38 seconds to diffuse through the same porous partition under similar conditions whereas oxygen takes 285. Calculate the molecular formula of Y (03)

(c) Y reacts with a mixture of concentrated hydrochlori form a yellow oily liquid.	c acid and aqueous sodium nitrite to
(i) Identify Y	(0 ½)
(ii) Write equation of reaction that takes place.	(01 mark)
12. Name the reagents that can be used to distinguish betw In each case state what would be observed if each men the reagent.	veen the following pairs of compounds.
marks each) (a) CH ₂ I and CH ₃ Name of reagent (s)	≻–।

Observation(s)

(b) $\stackrel{+}{N} \equiv NCI^-$ and $CH_3CH_2 N \equiv NCI^-$ Name of reagent
Observation(s)
(c) CH_2CHO and $C - CH_3$ O Name of reagent;
Observations
13. (a) (i) Compare the reactivity of hydrides of group (VII) elements with concentrated sulphuric acid. (Write equation(s) for the reaction(s) which take place if any) (04)

	(ii) Give	e a reason for the di	fference in rea	activity shown I	by the hydrides	in a(i) above. (01)
•••••	•••••			•••••			
•••••	•••••			•••••			
••••••	•••••			•••••			•••••
(b)	The bo	nd lengths of the hy	drides of grou	p (VII) element	s are given in t	he table below	•••••
		Hydride	HF	HCI	HBr	HI	
		Bond length (A°)	0.86	1.28	1.42	1.60	
	(i)	State the trend in v	variation of bo	nd length of th	e hydrides.	(01)	
	(ii)	Explain your answe	er in b (i) abov	e.		(03)	
14.	(a) Nitr Write;	ogen reacts with hy	drogen in a mo	ole ratio of 1:3	to form ammo	nia.	
	-	ation for the reaction	n that takes pl	ace.		(01 ½)	
	(ii) the expression for the equilibrium constant (Kc)					(0 ½)	
••••••	•••••						••••••

(b)	State the conditions used to obtain maximum yield of ammonia during it manufa Habers process.	(01½)
 (c)	The percentage of ammonia in the equilibrium mixture of gases was found to be Calculate the equilibrium constant (Kc) for the reaction at 600°C.	15% at 600°C. (04)
 (d)	State what would happen to the equilibrium position of the reaction in a(i) above hydrogen chloride gas is added to the equilibrium mixture. Give a reason for you	
	Write equations to show how the following conversions can be effected. Ethanol to benzene	(03 marks each)

	(b) 1,2 -	– dibromo ethane to ethanol .		
•••••				
•••••	•••••			•••••
	(c) Phe	nyl propane to phenol.		
	16. (a) (i) State three characteristic properties exhibited by cobalt as a transi	tion element.	(01½)
	(ii) E	Explain why zinc is not considered to be a transition element.		(02)
		alt (II) nitrate decomposes on heating in the absence of air forming a olves in water forming a pink solution.	re green solid a	nd
	(i)	Write equation for decomposition of cobalt (II) nitrate.	(01 ½)	
	(ii)	Name the species responsible for the pink colour of solution.	(01)	

		-	on in (b) was added con bserved and write equa	-		· ·	until in (03)
(i)	Observation					
(i	i)	Equation;					
17. (a	a) Expl	ain what is mea	ant by the term partition	n coefficient.			(02)
			the concentration's of i		wo layers w	/hen shaken v	vith a
	ire of o	carbon tetrachl			wo layers w	/hen shaken v	22.38
	ire of o	carbon tetrachlo	oride and water at 25°C	6.12	,		
	Plot	Carbon tetrachlo Concentration of Concentration of	oride and water at 25°C of I_2 in CCI $_4$ /moldm $^{-3}$	6.12 0.072	12.24 0.143	15.20 0.178	22.38 0.260
mixtu	Plot iodi Fro	Concentration of Concentration of the graph of contine in water methods.	oride and water at 25°C of I_2 in $CCI_4/moldm^{-3}$ of I_2 in water/ moldm $^{-3}$ occurration of iodine in termine the partition $CCI_4/moldm^{-3}$	6.12 3 0.072 carbon tetra o	12.24 0.143 chloride aga	15.20 0.178 inst concentr	22.38 0.260 ation of
mixtu (i)	Plot iodi Fro	Concentration of Concentration of the graph of continuing the in water	oride and water at 25°C of I_2 in $CCI_4/moldm^{-3}$ of I_2 in water/ moldm $^{-3}$ occurration of iodine in termine the partition $CCI_4/moldm^{-3}$	6.12 3 0.072 carbon tetra o	12.24 0.143 chloride aga	15.20 0.178 inst concentr	22.38 0.260 ation of
mixtu (i)	Plot iodi Fro	Concentration of Concentration of Concentration of the agraph of contine in water of the graph decreased and contine and conti	oride and water at 25°C of I_2 in $CCI_4/moldm^{-3}$ of I_2 in water/ moldm $^{-3}$ occurration of iodine in termine the partition $CCI_4/moldm^{-3}$	6.12 3 0.072 carbon tetra conficient for i	12.24 0.143 chloride aga dodine distri	15.20 0.178 inst concentr buted between	22.38 0.260 ation of en carbon (02)
mixtu (i)	Plot iodi Fro	Concentration of Concentration of Concentration of the agraph of contine in water of the graph decreased and contine and conti	oride and water at 25°C of I_2 in $CCI_4/moldm^{-3}$ of I_2 in water/ moldm $^{-3}$ occurration of iodine in termine the partition cowater.	6.12 3 0.072 carbon tetra conficient for i	12.24 0.143 chloride aga dodine distri	15.20 0.178 inst concentr buted between	22.38 0.260 ation of en carbor (02)
mixtu (i)	Plot iodi Fro	Concentration of Concentration of Concentration of the agraph of contine in water of the graph decreased and contine and conti	oride and water at 25°C of I_2 in $CCI_4/moldm^{-3}$ of I_2 in water/ moldm $^{-3}$ occurration of iodine in termine the partition cowater.	6.12 3 0.072 carbon tetra conficient for i	12.24 0.143 chloride aga dodine distri	15.20 0.178 inst concentr buted between	22.38 0.260 ation of en carbor (02)

For consultations call: +256 776 802709

	 State two applications of the partition coefficient.	(02)
•••••		

END