In this worksheet show how to derive the differential operator for the Cross Witten diagram of section 4.2 of the paper

Algorithm for differential equations for Feynman integrals in general dimensions

by

Leonardo de la Cruz and Pierre Vanhove

```
SetOptions[$FrontEnd, EvaluationCompletionAction → "ShowTiming"]
```

This worksheet needs FiniteFlow https://arxiv.org/abs/1905.08019

```
<< FiniteFlow`
```

Routines for the Griffiths-Dwork reduction

The routines follow the step of the reduction given in sections 3.1.1, 3.1.2 and 3.1.3 of the paper

```
SaveFile = False;
(* Change this to True if you want to save intermediate results*)

JacIdeal[pol_, vars__] := D[pol, #] & /@ vars;

DegreeHomogeneity[f_, xxx__] :=

Exponent[Simplify[(f /. Table[xxtmp → xxtmp λ, {xxtmp, xxx}]) / f], λ];

allMonoms[n_, deg_, x_] :=

DeleteCases[Coefficient[(List@@Expand[(1+Total[Array[x, n]]) ^deg] /.

j_Integer * monom : _ :> monom) /. {x[i_] :> λx[i]}, λ^deg], 0]

homPols[n_, deg_, sym_] :=

Module[{mons}, If[deg == 0, sym, mons = allMonoms[n, deg, x];

Return[(Plus@@(sym/@((Exponent[#, Array[x, n]] & /@ mons)) mons)) /.
```

```
{sym[A__] :> sym[Sequence @@ A] } ]; ] ];

getEquations[pol_, vars__] :=
  (CoefficientArrays[{pol}, vars]["NonzeroValues"]) // Through // Flatten;
```

Reduction with respect to F

```
ReductionF[M_, degreeP_, P_, coeffPtmp_, varunknown_, Fpol_, var_, varlong_] :=
Block[{degtmp, poltoreduce, Chattmp, systmp, varsystmp,
   solfiniteflowtmp, Chattmpresult, coeffPresult, JacFtmp, Filenametmp},
  Print["Reduction with respect to Jac(", Fpol, ")"];
  JacFtmp = JacIdeal[Fpol, var];
  degtmp = degreeP - DegreeHomogeneity[JacFtmp, var] [1];
  Print["degree coefficient ", degtmp];
 Chattmp =
   Table[homPols[Length[var], degtmp, varunknown[r]], {r, Length[var]}];
 If[ListQ[P], poltoreduce = M + coeffPtmp.P - Chattmp.JacFtmp,
   poltoreduce = M + coeffPtmp * P - Chattmp.JacFtmp];
  systmp = getEquations[poltoreduce, var];
  varsystmp = Complement[Variables[systmp], varlong];
  Print["Number of equations ", Length[systmp],
   ", number of variables ", Length[varsystmp]];
 If[SaveFile, Filenametmp =
     "Reduction-F-Case-" <> ToString[degreeP] <> "-" <> DateString[
        {"ISODate", "-", "Hour", ":", "Minute", ":", "Second"}] <> ".txt";
    Print["system saved in ", Filenametmp];
    Save[Filenametmp, {systmp, varsystmp}];] x Print["Calling Finite Flow "];
  solfiniteflowtmp = FFDenseSolve[Equal[#, 0] & /@ systmp,
    varsystmp, "ApplyFunction" → Together, MaxPrimes → 20];
 If[solfiniteflowtmp == FFImpossible, Echo["System cannot be solved"]];
  Print["finite flow done -- length result ", Length[solfiniteflowtmp]];
 Chattmpresult = Chattmp /. solfiniteflowtmp // Expand;
  coeffPresult = coeffPtmp /. solfiniteflowtmp // Expand;
  {Chattmpresult, degtmp, coeffPresult, solfiniteflowtmp}]
```

Reduction with respect to U

```
ReductionU[M_, degree_, Qnametmp_, Upol_, var_, varlong_] :=
 Block[{degtmp, poltoreduce, Qtmp, systmp, varsystmp,
   solfiniteflowtmp, polU, Mresult, Qtmpresult, JacUtmp, Filenametmp},
  Print["Reduction with respect to Jac(", Upol, ")"];
  JacUtmp = JacIdeal[Upol, var];
  polU = M.JacUtmp;
  degtmp = degree - 1;
  Print["Degree quotient ", degtmp];
  Qtmp = homPols[Length[var], degtmp, Qnametmp];
  poltoreduce = polU - Qtmp * Upol;
  systmp = DeleteCases[Flatten[CoefficientList[poltoreduce, var]], 0];
  varsystmp = Complement[Variables[systmp], varlong];
  Print["Number of equations ", Length[systmp],
   ", number of variables ", Length[varsystmp]];
  If[SaveFile,
    Filenametmp = "Reduction-U-Case-" <> ToString[degree] <> "-" <> DateString[
        {"ISODate", "-", "Hour", ":", "Minute", ":", "Second"}] <> ".txt";
    Print["system saved in ", Filenametmp];
    Save[Filenametmp, {systmp, varsystmp}];] x Print["Calling Finite Flow "];
  solfiniteflowtmp = FFDenseSolve[Equal[#, 0] & /@ systmp,
    varsystmp, "ApplyFunction" → Together, MaxPrimes → 20];
  If[solfiniteflowtmp == FFImpossible, Echo["System cannot be solved"]];
  Print["finite flow done -- length result ", Length[solfiniteflowtmp]];
  Mresult = M /. solfiniteflowtmp;
  Qtmpresult = Qtmp /. solfiniteflowtmp;
  {Mresult, degtmp, Qtmpresult, solfiniteflowtmp}]
```

The boundary term using equation 3.39 without including the factor of Ω_{Γ}

```
Bvec[Chat_, derivativeorder_, Fpol_, powerF_] :=
  Chat / (Fpol^ (derivative order - 1)) / (derivative order - 1 + powerF);
```

Routine for the parametric representation from the propagator representation of a Feynman graph

```
PropagatorToParametric3[listprop_, varloop_, rules_] :=
 Block[{listtmp, listtmp2, powertmp, Qtmp, Qtmp2, preftmp,
   mattmp, Utmp, Jtmp, ptmp, Ftmp, omegatmp}, {listtmp = listprop;
   listtmp2 = Table[List@@listtmp[i], {i, Length[listtmp]}];
   powertmp = Table[-listtmp2[i, 2] // Simplify, {i, Length[listtmp2]}];
   Print[listtmp2];
   Qtmp = Sum[x[i] \times listtmp2[i, 1], {i, Length[listtmp2]}] /. xx_ .yy_ \rightarrow xx yy;
   preftmp = Product[
     x[i] ^ (powertmp[i]] - 1) / Gamma[powertmp[i]], {i, Length[listtmp2]}];
   mattmp = DiagonalMatrix[Table[Coefficient[Qtmp, varloop[i]], 2], {i,
         Length[varloop]}]] + Table[Coefficient[Coefficient[Qtmp, varloop[i]]],
         varloop[j]] / 2, {i, 1, Length[varloop]}, {j, 1, Length[varloop]}];
   Utmp = Det[mattmp];
   Qtmp2 = Qtmp - varloop.(mattmp.varloop) - ptmp.varloop // FullSimplify;
   ptmp =
    Table[Coefficient[Qtmp2, varloop[i]] // Simplify, {i, Length[varloop]}];
   Jtmp = Qtmp - varloop.(mattmp.varloop) - ptmp.varloop // FullSimplify;
   Ftmp = Simplify[Expand[Together[
         Det[mattmp] (Jtmp - 1 / 4 ptmp.(Inverse[mattmp].ptmp))]] //. rules];
   omegatmp = Plus@@ powertmp - Length[varloop] * dim / 2;
   {preftmp * Pi^ (dim / 2 * Length[varloop]) * Gamma[omegatmp] *
     Utmp^(omegatmp-dim/2) / Ftmp^(omegatmp), Utmp, Ftmp, (preftmp*Pi^
         (dim / 2 * Length[varloop]) * Gamma[omegatmp]) /. x[i_] ⇒ 1, omegatmp}}]
```

Cross Witten diagram from equation (4.9) [arXiv:2201.09626]

Initialisation

Derive the parametric representation from the propagator representation

```
WittenCross =
     PropagatorToParametric3[\{1 / (X.X), 1 / ((X-u1).(X-u1))^{(X-u1)}\},
             1/((X-uz).(X-uz))}, {X}, {u u1 \rightarrow 0, u uz \rightarrow 0, u1^2 \rightarrow 1, uz^2 \rightarrow $$b,
             u1 uz \rightarrow (\xi + \xi b) / 2, u^2 \rightarrow 1}][1] /. dim \rightarrow 4 - 4 \epsilon // Simplify;
\{\,\{X.X\,,\,\,-1\}\,,\,\,\{\,\,(-\,u1\,+\,X)\,\,.\,\,(-\,u1\,+\,X)\,\,,\,\,-1\,+\,4\,\in\}\,\,,\,\,\{\,\,(-\,uz\,+\,X)\,\,.\,\,(-\,uz\,+\,X)\,\,,\,\,-1\}\,\}
 intcross = WittenCross[1]
 (\pi^{2-2} \in Gamma [1-2 \in] x [2]^{-4} \in
       ((-1+\zeta)(-1+\zeta b) \times [2] \times x[3] + x[1] (x[2] + \zeta \zeta b \times [3]))^{-1+2} \in 
   (Gamma[1-4 \in ] (x[1] + x[2] + x[3]))
 ucross = WittenCross[2]
 x[1] + x[2] + x[3]
 fcross = WittenCross[3]
  (-1+\zeta) \  \, (-1+\zeta b) \  \, x\,[\,2\,] \, \times x\,[\,3\,] \, + x\,[\,1\,] \  \, (x\,[\,2\,] \, + \zeta\,\zeta b\,x\,[\,3\,]\,)
 var = Variables[ucross]
 {x[1], x[2], x[3]}
 Kinematics = Complement[Variables[fcross], Variables[ucross]]
 {ζ, ζb}
 varlong = Join[\{\xi, \xi b, \epsilon\}, var]
 \{\zeta, \zeta b, \epsilon, x[1], x[2], x[3]\}
  (*checking homogeneoity*)
```

DegreeHomogeneity[intcross, var]

- 3

```
powerU =
 Coefficient[Simplify[PowerExpand[Log[intcross]]], Simplify[Log[ucross]]]
- 1
```

```
powerF =
 -Coefficient[Simplify[PowerExpand[Log[intcross]]], Simplify[Log[fcross]]]
1 − 2 ∈
```

```
powerQ =
Coefficient[Simplify[PowerExpand[Log[intcross]]], Simplify[Log[x[2]]]]
-4 ∈
```

```
Q = x[2]
```

Derivative w.r.t. *ζ*

We derive the partial differential equation equation (4.16)

```
listderivative =
 Reverse[Table[Simplify[D[intcross, {\mathcal{G}}, i\}] / intcross] // Numerator, {i, 2}]]
\left\{ 2 \ \left( -1+\varepsilon \right) \ \left( -1+2\,\varepsilon \right) \ \left( x\,[\,2\,] \,-\, \zeta b \ \left( x\,[\,1\,] \,+\, x\,[\,2\,] \,\right) \,\right)^{\,2}\,x\,[\,3\,]^{\,2}\,,
  (-1+2 \in) (-x[2] + \zeta b (x[1] + x[2])) x[3]
```

```
listdegree = DegreeHomogeneity[listderivative, var]
\{4, 2\}
```

We start at second derivative order in ζ

```
derivativeorder = 2;
 RedFStep1 = ReductionF[listderivative[1]],
     listdegree[1], 0, 0, \lambda_1, fcross, var, varlong];
 RedUStep1 = ReductionU[RedFStep1[1]], RedFStep1[2]], µ3, ucross, var, varlong];
 solnRstep1 = ReductionU[RedUStep1[1]], RedFStep1[2]], \mu_{31}, Q, var, varlong];
 (*Building M using equation 3.31*)
 Mstep1 =
    (Sum[D[RedUStep1[1][i]], var[i]], {i, Length[var]}] + powerU * RedUStep1[3] +
         powerQ * solnRstep1[3] ) / (derivativeorder - 1 + powerF) /. solnRstep1[4];
Reduction with respect to Jac((-1+\zeta)(-1+\zeta b) \times [2] \times x[3] + x[1] (x[2]+\zeta \zeta b \times [3]))
degree coefficient 3
Number of equations 15, number of variables 30
Calling Finite Flow
finite flow done -- length result 15
Reduction with respect to Jac(x[1] + x[2] + x[3])
Degree quotient 2
Number of equations 10, number of variables 21
Calling Finite Flow
finite flow done -- length result 10
Reduction with respect to Jac(x[2])
Degree quotient 2
Number of equations 10, number of variables 17
Calling Finite Flow
finite flow done -- length result 10
second step
 derivativeorder = 1;
 RedFStep2 = ReductionF[Mstep1, listdegree[2]],
     listderivative [2], c_1, \lambda_2, fcross, var, varlong];
 \label{eq:RedUStep2} \texttt{RedUStep2} \texttt{ [1]}, \texttt{RedFStep2} \texttt{ [2]}, \mu_2, \texttt{ucross}, \texttt{var}, \texttt{varlong} \texttt{ ]};
 solnRstep2 = ReductionU[RedUStep2[1]], RedFStep2[2]], µ22, Q, var, varlong];
 (*Building M using equation 3.31 *)
 Mstep2 =
    (Sum[D[solnRstep2[1]][i], var[i]]], {i, Length[var]}] + powerU * RedUStep2[3] +
```

powerQ * solnRstep2[[3]]) / (derivativeorder - 1 + powerF) /. solnRstep2[[4]];

```
listcoPF1 =
  {-Mstep2, c1, 1} //. RedFStep1[4] //. solnRstep1[4] //. RedFStep2[4] //.
        RedUStep2[4] //. solnRstep2[4] // Simplify
 \left\{\frac{\left(-1+2\varepsilon\right)\left(-\zeta^{2}+2\varepsilon\left(\zeta+\zeta b\right)\right)}{\left(-1+\zeta\right)\zeta^{2}\left(\zeta-\zeta b\right)},\right.
  (-1 + \zeta b) \zeta b \left(-1 + 2 \in -2 \zeta \lambda_{1}[3][0, 0, 1] + 2 \zeta^{2} \lambda_{1}[3][0, 0, 1]\right), 1
                              (-1+2\in) (-1+\zeta) \zeta (-1+2\zeta b)
```

```
Btotal =
  (Bvec[solnRstep1[1]], 2, fcross, 1-2\epsilon] + Bvec[solnRstep2[1]], 1, fcross,
              1 - 2 ε]) intcross //. RedFStep1[[4]] //. solnRstep1[[4]] //.
       RedFStep2[4] //. RedUStep2[4] //. solnRstep2[4] // Expand;
```

```
BtotalVar = \{\lambda_1[3][1, 1, 1], \lambda_1[3][1, 2, 0], \lambda_1[3][2, 1, 0],
    \lambda_2[1][1, 0, 0], \lambda_2[3][0, 0, 1], \lambda_2[3][0, 1, 0], \lambda_2[3][1, 0, 0];
```

```
dBtotal = Sum[D[Btotal[i]], var[i]]], {i, Length[var]}];
```

```
dBtotalsimp = Collect[dBtotal, BtotalVar, Simplify]
(\pi^{2-2} \in (-1+2 \in) \text{ Gamma} [1-2 \in] x[2]^{-4 \in}
     ((-1+\zeta)(-1+\zeta))(-1+\zeta) \times [2] \times [3] + [1](x[2]+\zeta b \times [3])^{-3+2}
      \left( \zeta^2 \, \left( \, \left( \, -1 + \zeta + \zeta b - \zeta \, \zeta b \right) \, \, x \, [\, 2\, \right] \, \times x \, [\, 3\, ] \, + x \, [\, 1\, ] \, \, \left( x \, [\, 2\, ] \, - \, \left( \, -2 + \zeta \right) \, \zeta b \, x \, [\, 3\, ] \, \right) \, \right)
            ((-1 + \zeta b)^2 \times [2] \times x[3] + x[1] (x[2] + \zeta b^2 \times [3]) +
          2 \in (-\zeta b \times [2]^2 (x[1] + x[3] - \zeta b \times [3])^2 + \zeta^3 (-x[2] + \zeta b (x[1] + x[2]))
                  x[3] ((1-3 \zeta b + 2 \zeta b^2) x[2] \times x[3] + x[1] (x[2] + 2 \zeta b^2 x[3])) -
                \zeta x[2] (x[1] + x[3] - \zeta b x[3]) ((1 - 5 \zeta b + 4 \zeta b^2) x[2] \times x[3] +
                      x[1](x[2] + 4 \zeta b^2 x[3]) - \zeta^2 (-x[2] + \zeta b (x[1] + x[2])) x[3]
                  ((2-7 \zeta b + 5 \zeta b^2) x[2] \times x[3] + x[1] (-((-2+\zeta b) x[2]) + 4 \zeta b^2 x[3]))))))
  ((-1+\zeta)\zeta^2(\zeta-\zeta b) Gamma[1-4\in](x[1]+x[2]+x[3])
```

```
ApplyPFcross = Sum[D[intcross, \{\xi, i\}] × listcoPF1[i + 1], \{i, 0, 2\}] // Simplify;
```

We satisfy the identity in eq 3.40

```
checkpf = dBtotalsimp + ApplyPFcross // Simplify
```

We now evaluate the boundary contribution

```
B1simp = Collect[Btotal[1]], BtotalVar, Simplify];
B2simp = Collect[Btotal[2], BtotalVar, Simplify];
```

```
B3simp = Collect[Btotal[3], BtotalVar, Simplify];
```

We evaluate the limit of the various component for x_1 , x_2 and x_3 to 0 for $\epsilon > 0$

```
B1x10 = Series[B1simp, \{x[1], 0, 0\}, Assumptions \rightarrow
                                                   x[2] > 0 & x[3] > 0 & \varepsilon > 0 & \varepsilon < 1 // Normal // PowerExpand // Simplify;
\frac{1}{2\;\text{Gamma}\,[\,1-4\,\varepsilon\,]}\;\pi^{2-2\,\varepsilon}\;\left(\,-\,1+\,\zeta\,\right)^{\,-\,2+\,2\,\varepsilon}\;\left(\,-\,1\,+\,\zeta\,b\,\right)^{\,-\,1+\,2\,\varepsilon}\;\text{Gamma}\,[\,1\,-\,2\,\varepsilon\,]\;\;x\,[\,2\,]^{\,-\,1-\,2\,\varepsilon}\;x\,[\,3\,]^{\,-\,2+\,2\,\varepsilon}
                   \left[ -\left( \left( 2 \; \left( -1+2 \; \in \right) \; \left( \; \left( 1-4 \; \in \right) \; ^2 \; x \left[ \; 2 \; \right] \; ^2 + \; \left( 2 \; \left( 3-8 \; \in \right) \; \in \; \zeta^2 + \; \left( 1-10 \; \in +\; 20 \; \in ^2 \right) \; \zeta b \; - \right) \right] \right] \right] + \left[ \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \right) \right] + \left( \left( 1-4 \; \in \right) \; \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \right) \right] + \left( \left( 1-4 \; \in \right) \; \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \right) \; \left( \left( 1-4 \; \in \right) \; \left( 1-4 
                                                                                                       2 \in (\zeta - 2 \in \zeta + (-3 + 8 \in) \zeta^2 + \zeta b - 2 \in \zeta b) \times [3]^2))
                                                    \left(\;\left(\;\mathcal{\zeta}-4\in\mathcal{\zeta}\;\right)^{\;2}\;\left(\;\mathcal{\zeta}-\mathcal{\zeta}\;b\right)\;\left(\;x\,[\,2\,]\,+\,x\,[\,3\,]\;\right)\;\right)\;+\;\frac{4\in\;\left(\;-\,1\,+\,\mathcal{\zeta}\;\right)\;x\,[\,3\,]\;\lambda_{1}\,[\,3\,]\,[\,1,\;1,\;1\,]}{\left(\;-\,1\,+\,\varepsilon\;\right)\;\left(\;-\,1\,+\,4\;\varepsilon\;\right)}\;\;-\;\left(\;-\,1\,+\,2\,\varepsilon\;\right)\;
                               (-1+\zeta) \ (x\,[\,2\,] \ -4 \in x\,[\,2\,] \ +4 \in \zeta \,\,\zeta b \,\,x\,[\,3\,] \,\,) \,\,\lambda_1\,[\,3\,] \,\,[\,1,\,2\,,\,0\,]
                                                                                                                       (-1+\epsilon) \ (-1+4\epsilon)
                                (-1+\zeta) \ (\, (1-4\, \varepsilon) \ x \, [\, 2\, ] \, + \, (-1-4\, \varepsilon + \zeta + \zeta b) \ x \, [\, 3\, ] \, ) \ \lambda_1 \, [\, 3\, ] \, [\, 2\, , \, 1\, , \, 0\, ]
                                                                                                                                                              (-1+\epsilon) (-1+4\epsilon)
                               4 \in (-1 + \zeta) \times [3] \lambda_2[1][1, 0, 0]
                                                                                  1 - 6 \in +8 \in ^{2}
                               4 \in (-3 + 8 \in) (-1 + \zeta) \times [3] \lambda_2[3] [0, 0, 1]
                                                                                                (1-4\in)^2 (-1+2\in)
                               2(-1+\zeta)(x[2]-4 \in x[2]+2 \in \zeta \zeta b x[3]) \lambda_{2}[3][0,1,0]
                                                                                                                                                           1 - 6 \in +8 \in ^{2}
                                (1-4\in)^2 (-1+2\in)
                                     2(-1+\zeta)(-(1-4\epsilon)^2x[2]+(1-\zeta+8\epsilon^2(-1+\zeta(-1+\zeta b)-\zeta b)-\zeta b)
                                                                                \zeta b + \in (-2 \zeta (-3 + \zeta b) + 6 \zeta b) x [3] \lambda_2 [3] [1, 0, 0]
```

```
B2x20 =
   Series[B2simp, \{x[2], 0, 0\}, Assumptions \rightarrow x[1] > 0 \&\& x[2] > 0 \&\& x[3] > 0 \&\&
            \epsilon > 0 \&\& \epsilon < 1] // Normal // PowerExpand // Simplify;
```

0

```
B3x30 = Assuming[
      x[1] > 0 & x[2] > 0 & x[3] > 0 & \varepsilon > 0 & \varepsilon < 1, Series[B3simp, {x[3], 0, 0},
                    Assumptions \rightarrow x[1] > 0 \& x[2] > 0 \& x[3] > 0 \& \varepsilon > 0 \& \varepsilon < 1] // Normal //
               PowerExpand // FullSimplify // PowerExpand // Simplify];
2 Gamma [ 1 - 4 \in ]
 \pi^{2-2\,\in}\;\mathsf{Gamma}\,[\,1-2\,\in\,]\;\;x\,[\,1\,]^{\,2\,\,(-1+\varepsilon)}\;\;x\,[\,2\,]^{\,-1-2\,\in}\;\left(\frac{2\,\,(\,-1+2\,\in\,)\;\;x\,[\,2\,]^{\,2}}{(\,-1+\mathcal{L})\;\,\mathcal{L}^{\,2}\;\,(\,\mathcal{L}\,-\,\mathcal{L}\,b\,)\;\;(\,x\,[\,1\,]\,+\,x\,[\,2\,]\,)}\right)
         \frac{x[2] \lambda_{1}[3][1, 2, 0]}{-1 + \epsilon} + \frac{(-x[1] + x[2]) \lambda_{1}[3][2, 1, 0]}{-1 + \epsilon}
         \frac{2 \times [2] \lambda_2[3][0,1,0]}{2 (-x[1]+x[2]) \lambda_2[3][1,0,0]}
```

We evaluate the limit of the various component for x_1 , x_2 and x_3 to ∞ for $\epsilon > 0$ The limit x_1 and x_3 to ∞ for $\epsilon > 0$ exists only if impose these constraints on the free parameters

$$\begin{split} &\text{sub}\lambda = \\ &\left\{\lambda_{2}[3][1,\,0,\,0] \rightarrow -\frac{(-1+4\,\varepsilon)\,\,\lambda_{1}[3][2,\,1,\,0]}{2\,\,(-1+\varepsilon)}\,,\,\lambda_{2}[3][0,\,1,\,0] \rightarrow \frac{1}{4\,\,\xi^{2}\,\,\xi b^{2}}\,\,(-1+2\,\varepsilon) \right. \\ &\left. \left(\frac{4\,\,(-1+2\,\varepsilon)\,\,\xi b\,\,\left(\xi\,-2\,\varepsilon\,\xi\,+\,\,(-3+8\,\varepsilon)\,\,\xi^{2}\,+\,\xi b\,-2\,\varepsilon\,\xi b\right)}{(-1+4\,\varepsilon)\,\,\left(-1+\xi\right)\,\,\xi\,\,\left(\xi\,-\,\xi b\right)} + \frac{4\,\,\xi\,\,\xi b\,\,\lambda_{1}[3][1,\,1,\,1]}{-1+\varepsilon} - \right. \\ &\left. \frac{4\,\,\xi^{2}\,\,\xi b^{2}\,\,\lambda_{1}[3][1,\,2,\,0]}{-1+\varepsilon} + \frac{\xi\,\,\xi b\,\,\left(-1-4\,\varepsilon\,+\,\xi\,+\,\xi b\right)\,\,\lambda_{1}[3][2,\,1,\,0]}{(-1+\varepsilon)\,\,\varepsilon} - \right. \\ &\left. \left. \left(\xi\,\,\xi b\,\,(-\,((-1+2\,\varepsilon)\,\,(1+(-1+4\,\varepsilon)\,\,\xi))\,+\,(-1+4\,\varepsilon)\,\,(1+2\,\varepsilon\,\,(-1+\xi))\,\,\xi b\right) \right. \\ &\left. \lambda_{1}[3][2,\,1,\,0]\right)\,/\,\left((-1+\varepsilon)\,\,\varepsilon\,\,(-1+2\,\varepsilon)\right) - \frac{8\,\,\xi\,\,\xi b\,\,\lambda_{2}[3][0,\,0,\,1]}{1-4\,\varepsilon} \right\}; \end{split}$$

```
B1x1\infty = 0;
```

```
B2x2\infty = 0
0
```

```
B3x3\infty = 0;
```

```
Source1 = Assuming[x[1] > 0 && x[2] > 0 && x[3] > 0,
    B1x1\infty - B1x10 //. sub\lambda // PowerExpand // Simplify];
```

```
Source2 = B2x2\infty - B2x20
0
```

```
Source3 = Assuming[x[1] > 0 && x[2] > 0 && x[3] > 0,
   B3x3∞ - B3x30 //. subλ // PowerExpand // Simplify];
```

```
Source1proj = Source1 /. x[3] → 1 /. sub\lambda // Expand // Together // Simplify;
```

The integral of the contributions of the remaining free coefficients vanish

```
Source1projλ =
                    Table[Simplify[Coefficient[Source1proj, xxx]], {xxx, BtotalVar}];
Table[Integrate[xxx, \{x[2], 0, \infty\}, GenerateConditions \rightarrow False],
          {xxx, Source1projλ}]
          \frac{\left(-1+\zeta\right)^{-1+2\;\epsilon}\;\left(-1+\zeta b\right)^{-1+2\;\epsilon}\;x\left[2\right]^{-2\;\epsilon}}{\zeta\;\zeta b-\epsilon\;\zeta\;\zeta b}\;,\;\frac{\left(-1+\zeta\right)^{-1+2\;\epsilon}\;\left(-1+\zeta b\right)^{-1+2\;\epsilon}\;x\left[2\right]^{-2\;\epsilon}}{2\;\left(-1+\epsilon\right)}\;,
                                                                                                        \frac{1}{(-1+\zeta)^{-1+2}} \left(-1+\zeta\right)^{-1+2} \in \left(-1+\zeta b\right)^{-1+2} \in X\left[2\right]^{-1-2} \in \left(-1+\zeta b\right)^{-1+2} = \left(-1+\zeta b\right)
            2 \ (-1+\varepsilon) \ (-1+2\varepsilon) \ \zeta \ \zeta b
                             \left(\;\left(\;-\;2\;+\;2\;\,\zeta\;+\;2\;\,\zeta\;b\;-\;\zeta\;\,\zeta\;b\right)\;\;x\;\left[\;2\;\right]\;+\;2\;\in\;\left(\;\zeta\;\,\zeta\;b\;\;\left(\;-\;1\;+\;x\;\left[\;2\;\right]\;\right)\;-\;2\;\,\zeta\;\;x\;\left[\;2\;\right]\;-\;2\;\;\left(\;-\;1\;+\;\zeta\;b\right)\;\;x\;\left[\;2\;\right]\;\right)\;\right)\;,
            ((-2+2\zeta+2\zeta)^{-1+2\varepsilon})^{-1+2\varepsilon}(-1+\zeta)^{-1+2\varepsilon}x[2]^{-1-2\varepsilon},
                                                                                                                                1 - 6 \in +8 \in ^{2}
                        2 \, \left(-\, 1 + \zeta\,\right)^{\, -1 + \, 2 \, \varepsilon} \, \left(-\, 1 \, + \, \zeta\,b\,\right)^{\, -1 + \, 2 \, \varepsilon} \, x \, \left[\, 2\,\right]^{\, -1 - \, 2 \, \varepsilon} \, \left(\varepsilon \, \zeta \, \zeta\,b \, - \, x \, \left[\, 2\,\right] \, + \, 2 \, \varepsilon \, x \, \left[\, 2\,\right]\,\right) \, , \, \, 0 \, , \, \, 0 \, \Big\}
```

```
Source1proj0 = Source1proj /. Table[xxx \rightarrow 0, {xxx, BtotalVar}] // Simplify;
S1 = Integrate[Source1proj0, \{x[2], 0, \infty\}, GenerateConditions \rightarrow False]
```

The integral of the contributions of the remaining free coefficients vanish

 $-\pi \ \left(-1+2 \in \right) \ \left(-1+\left(-1+\mathcal{\zeta}\right)^{\, 2 \, \varepsilon} \ \left(-1+\mathcal{\zeta}b\right)^{\, 2 \, \varepsilon} \right) \ \mathsf{Csc} \left[\, 2 \, \pi \, \varepsilon \, \right]$

```
Source3proj = Source3 /. x[1] \rightarrow 1 /. sub\lambda // Simplify;
S3 = Integrate[Source3proj, \{x[2], 0, \infty\}, GenerateConditions \rightarrow False]
Stotal = (-1 + \xi) \xi^2 (\xi - \xi b) (S1 + S3) // FullSimplify
```

Checking that the evaluation given in [arXiv:2201.09626] at leading order in ϵ satisfies the differential equation

```
DB[\xi_{-}, \xi b_{-}] = (PolyLog[2, \xi] - PolyLog[2, \xi b] -
          1/2Log[$\mathcal{Z}$b] (PolyLog[1, \mathcal{Z}] - PolyLog[1, \mathcal{Z}b])) / (2I);
W[\xi_{-}, \xi b_{-}] = 4 I DB[\xi, \xi b] / (\xi - \xi b);
2\left(-\frac{1}{2}\left(-\log[1-\zeta]+\log[1-\zeta b]\right)\log[\zeta \zeta b]+\operatorname{PolyLog}[2,\zeta]-\operatorname{PolyLog}[2,\zeta b]\right)
```

```
pf1 =
 ((-1+\xi) \xi (\xi-\xi b) D[W[\xi,\xi b], \{\xi,2\}] + (3\xi^2-\xi (2+\xi b)) D[W[\xi,\xi b], \{\xi,1\}] + \xi
              W[ζ, ζb] // Simplify // PowerExpand // FullSimplify) /.
      Log[1-\xi] \rightarrow Log[-1] + Log[-1+\xi] /. Log[1-\xib] \rightarrow
      -Log[-1] + Log[-1 + \zeta b] // Simplify
  Log[-1+\zeta] + Log[-1+\zetab]
```

```
Stotal0 = (-1+\xi) \xi (\xi-\xi b) Normal[Series[Stotal, \{\epsilon, 0, 0\}]] // Simplify
Log[-1+\zeta] + Log[-1+\zetab]
```

```
pf1 + Stotal0 // FullSimplify
0
```

Derivative w.r.t. ζ , ζ b

We derive the differential partial equation of equation (4.17)

```
listderivative = {Simplify[D[intcross, {\mathcal{g}}, 1\}] / intcross] // Numerator,
   Simplify[D[intcross, {gb, 1}] / intcross] // Numerator}
\{ \ (-1+2 \, \in) \ \ (-x \, [2] + \zeta b \ \ (x \, [1] + x \, [2]) \ ) \ \ x \, [3] \ , \ \ (-1+2 \, \in) \ \ (-x \, [2] + \zeta \ \ (x \, [1] + x \, [2]) \ ) \ \ x \, [3] \ \}
```

```
listdegree = DegreeHomogeneity[listderivative, var]
{2, 2}
```

```
derivativeorder = 1;
RedFStep1 = ReductionF[listderivative[1]], listdegree[1],
   listderivative [2], c_1, Subscript [\lambda, 1], fcross, var, varlong];
\texttt{RedUStep1} = \texttt{ReductionU}[\texttt{RedFStep1}[\![1]\!], \, \texttt{RedFStep1}[\![2]\!], \, \mu_1, \, \texttt{ucross}, \, \texttt{var}, \, \texttt{varlong}];
solnRstep1 = ReductionU[RedUStep1[1]], RedFStep1[2]], \mu_{11}, Q, var, varlong];
(*Building M using equation 3.31 *)
4 \in solnRstep1[3]) / (derivative order - 1 + 1 - 2 \in) /. solnRstep1[4];
```

```
Reduction with respect to Jac((-1+\zeta)(-1+\zeta)) \times [2] \times x[3] + x[1] \times [2] + \zeta \cdot x[3])
degree coefficient 1
Number of equations 6, number of variables 10
Calling Finite Flow
finite flow done -- length result 6
Reduction with respect to Jac(x[1] + x[2] + x[3])
Degree quotient 0
Number of equations 3, number of variables 5
Calling Finite Flow
finite flow done -- length result 3
Reduction with respect to Jac(x[2])
Degree quotient 0
Number of equations 3, number of variables 3
Calling Finite Flow
finite flow done -- length result 3
 listcoPF2 =
   {-Mstep1, c_1, 1} //. RedFStep1[4] //. solnRstep1[4] //. RedUStep1[4] //.
      solnRstep1[4] // FullSimplify
  \left\{\frac{\operatorname{\mathcal{G}}\operatorname{\mathcal{G}} b - 2 \in (\operatorname{\mathcal{G}} + \operatorname{\mathcal{G}} b)}{(-1 + \operatorname{\mathcal{G}}) \operatorname{\mathcal{G}}\operatorname{\mathcal{G}} b}, \frac{-1 + \operatorname{\mathcal{G}} b}{-1 + \operatorname{\mathcal{G}}}, 1\right\}
 Btotal = ( Bvec[solnRstep1[[1]], 1, fcross, 1 - 2 e]) intcross //. RedFStep1[[4]] //.
         solnRstep1[4] // Expand // Simplify;
 BtotalVar = \{\lambda_1[3][1, 1, 1], \lambda_1[3][1, 2, 0], \lambda_1[3][2, 1, 0],
      \lambda_2[1][1, 0, 0], \lambda_2[3][0, 0, 1], \lambda_2[3][0, 1, 0], \lambda_2[3][1, 0, 0];
 dBtotal = Sum[D[Btotal[i]], var[i]]], {i, Length[var]}] // Simplify;
 ApplyPFcross =
     (listcoPF2[1] intcross + listcoPF2[2] × D[intcross, gb] + D[intcross, g]) //
      Simplify;
 checkpf = dBtotal + ApplyPFcross;
 checkpf // Simplify
 0
```