# u-s-home-assignment-final

December 13, 2023

### Data Science Project: Analyzing Key Factors Influencing US Home Prices

#### Introduction

The data for this analysis was collected from various publicly available sources, focusing on key factors believed to influence home prices in the United States. Using techniques such as VLOOKUP and HLOOKUP in Excel, the collected data was merged to create a comprehensive dataset. This dataset is now imported into this Colab notebook for further analysis and exploration.

#### Objective

The primary objective of this data science project is to build a predictive model that explains how different factors have impacted home prices in the United States over the last two decades (20 years). The analysis will revolve around understanding the relationship between various economic, demographic, and housing market indicators and the fluctuations in home prices.

```
[2]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     %matplotlib inline
     from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
[3]: df = pd.read_csv("/content/Assignment_1.csv")
[4]: df.head(1)
[4]:
                                           unemployment_rate interest_rates
              date
                   new_constructed_units
       01-01-1947
                                                         NaN
              home_price_index per_capita_gdp urban_population
        income
     0
                             NaN
                                           15248
           NaN
[5]: df.tail(1)
```

```
921 01-10-2023
                                      1410.0
                                                             3.9
                                                                             5.33
                   home_price_index per_capita_gdp
           income
                                                       urban_population
         16848.7
                             311.175
                                                67083
                                                                  83.084
     921
[6]: df.describe().T
[6]:
                                                                        min
                             count
                                            mean
                                                            std
     new_constructed_units
                             670.0
                                     1396.762687
                                                     358.271084
                                                                   520.000
     unemployment_rate
                             910.0
                                        5.709670
                                                       1.708239
                                                                      2.500
     interest_rates
                             832.0
                                        4.599916
                                                       3.596581
                                                                      0.050
                             778.0
                                                    4299.805894
                                                                   2318.400
     income
                                     8255.129820
     home_price_index
                             442.0
                                      142.293441
                                                      61.649943
                                                                     63.965
     per_capita_gdp
                             922.0
                                                                  15032.000
                                    37430.843818
                                                   15402.352634
     urban_population
                             766.0
                                       76.764057
                                                       3.788336
                                                                     69.996
                                     25%
                                                 50%
                                                             75%
                                                                         max
                                                       1641.7500
     new_constructed_units
                              1190.00000
                                            1396.000
                                                                   2299.000
                                                                      14.700
     unemployment_rate
                                 4.40000
                                               5.500
                                                          6.7000
                                                                      19.100
     interest_rates
                                 1.79000
                                               4.160
                                                          6.2425
                              4539.62500
                                            7282.850
                                                      12069.1750
                                                                   20422.600
     income
     home_price_index
                                82.25075
                                             141.275
                                                        179.0250
                                                                     311.175
     per_capita_gdp
                             24176.75000
                                          35582.000
                                                      52835.0000
                                                                   67083.000
     urban_population
                                73.65550
                                              75.701
                                                         80.2690
                                                                      83.084
     df.nunique()
                               922
[7]: date
     new_constructed_units
                               536
                                83
     unemployment_rate
     interest_rates
                               503
     income
                               777
     home_price_index
                               440
     per_capita_gdp
                               307
     urban_population
                                63
     dtype: int64
[8]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 922 entries, 0 to 921
    Data columns (total 8 columns):
         Column
                                 Non-Null Count
                                                  Dtype
         ____
                                  _____
     0
         date
                                 922 non-null
                                                  object
     1
         new_constructed_units 670 non-null
                                                  float64
```

new\_constructed\_units unemployment\_rate

interest\_rates \

[5]:

date

```
unemployment_rate
                                 910 non-null
                                                 float64
      2
      3
          interest_rates
                                 832 non-null
                                                 float64
      4
          income
                                 778 non-null
                                                 float64
      5
          home_price_index
                                 442 non-null
                                                 float64
          per capita gdp
                                 922 non-null
                                                 int64
          urban_population
                                 766 non-null
                                                 float64
     dtypes: float64(6), int64(1), object(1)
     memory usage: 57.8+ KB
 [9]: df['date'] = pd.to_datetime(df['date'])
[10]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 922 entries, 0 to 921
     Data columns (total 8 columns):
          Column
                                 Non-Null Count Dtype
      0
          date
                                 922 non-null
                                                 datetime64[ns]
          new_constructed_units 670 non-null
                                                 float64
      1
          unemployment_rate
                                 910 non-null
                                                 float64
      3
          interest_rates
                                 832 non-null
                                                 float64
      4
          income
                                 778 non-null
                                                 float64
      5
         home_price_index
                                 442 non-null
                                                 float64
          per_capita_gdp
                                 922 non-null
                                                 int64
          urban_population
                                 766 non-null
                                                 float64
     dtypes: datetime64[ns](1), float64(6), int64(1)
     memory usage: 57.8 KB
[11]: df.head(1)
[11]:
              date new_constructed_units unemployment_rate interest_rates \
      0 1947-01-01
                                      NaN
                                                         NaN
                                                                         NaN
         income home_price_index per_capita_gdp urban_population
      0
                                            15248
            NaN
                              NaN
                                                                NaN
[12]: df_20 = df[(df["date"] >= '01-01-2003') & (df["date"] <= '01-10-2023')]
[13]: df 20.head(1)
                date new_constructed_units unemployment_rate interest_rates \
[13]:
      672 2003-01-01
                                     1654.0
                                                           5.8
                                                                          1.24
            income home_price_index per_capita_gdp urban_population
      672 10710.4
                             128.461
                                               50462
                                                                79.583
```

```
[14]: df_20.tail(1)
[14]:
                 date new_constructed_units unemployment_rate interest_rates \
      921 2023-01-10
                                       1410.0
                                                              3.9
                                                                              5.33
            income home_price_index per_capita_gdp
                                                        urban_population
      921
          16848.7
                              311.175
                                                 67083
[15]: df_20.isnull().sum()
[15]: date
                                0
      new_constructed_units
                                0
      unemployment_rate
                                0
      interest_rates
                                0
      income
                                0
      home_price_index
                                0
      per_capita_gdp
                                0
      urban_population
                                0
      dtype: int64
     There are no Null Values on our dataset.
[16]: df_20.duplicated().sum()
[16]: 0
     There are no Duplicate columns present in our dataset.
[17]: df_20.nunique()
[17]: date
                                250
      new_constructed_units
                                228
      unemployment_rate
                                 64
      interest_rates
                                118
      income
                                250
      home_price_index
                                249
      per_capita_gdp
                                 83
      urban_population
                                 20
      dtype: int64
     Above info shows that there are no categorical variables present in the dataset.
[18]: df_20['year'] = df_20['date'].dt.year
     <ipython-input-18-b94521149b84>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-

docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy
df\_20['year'] = df\_20['date'].dt.year

Creating a new variable "Year" to make Year wise Analysis for the variables.

```
[19]: df_20.head()
[19]:
                date new_constructed_units unemployment_rate
                                                                interest_rates \
      672 2003-01-01
                                     1654.0
                                                           5.8
                                                                          1.24
      673 2003-01-02
                                     1688.0
                                                           5.9
                                                                          1.26
      674 2003-01-03
                                     1638.0
                                                           5.9
                                                                          1.25
      675 2003-01-04
                                                           6.0
                                                                          1.26
                                     1662.0
      676 2003-01-05
                                     1733.0
                                                           6.1
                                                                          1.26
            income home_price_index per_capita_gdp urban_population year
      672 10710.4
                             128.461
                                               50462
                                                                79.583 2003
      673 10674.0
                             129.355
                                               50462
                                                                79.583 2003
      674 10696.5
                             130.148
                                               50462
                                                                79.583 2003
      675 10752.7
                             130.884
                                               50796
                                                                79.583 2003
      676 10832.0
                             131.735
                                                                79.583 2003
                                               50796
[20]: pd.set_option('display.max_columns', None)
      df 20.
       agroupby('year')['new_constructed_units','unemployment_rate','interest_rates','income','home
       →agg(['mean', 'max', 'min']).T
```

<ipython-input-20-7ada3471925c>:2: FutureWarning: Indexing with multiple keys
(implicitly converted to a tuple of keys) will be deprecated, use a list
instead.

df\_20.groupby('year')['new\_constructed\_units','unemployment\_rate','interest\_ra
tes','income','home\_price\_index','per\_capita\_gdp','urban\_population'].agg(['mean
', 'max', 'min']).T

| [20]: | year                  |      | 2003         | 2004         | 2005         | \ |
|-------|-----------------------|------|--------------|--------------|--------------|---|
|       | new_constructed_units | mean | 1676.750000  | 1834.583333  | 1929.333333  |   |
|       |                       | max  | 1733.000000  | 1938.000000  | 2103.000000  |   |
|       |                       | min  | 1570.000000  | 1709.000000  | 1787.000000  |   |
|       | unemployment_rate     | mean | 5.991667     | 5.541667     | 5.083333     |   |
|       |                       | max  | 6.300000     | 5.800000     | 5.400000     |   |
|       |                       | min  | 5.700000     | 5.400000     | 4.900000     |   |
|       | interest_rates        | mean | 1.127500     | 1.349167     | 3.213333     |   |
|       |                       | max  | 1.260000     | 2.160000     | 4.160000     |   |
|       |                       | min  | 0.980000     | 1.000000     | 2.280000     |   |
|       | income                | mean | 10884.391667 | 11233.175000 | 11364.858333 |   |
|       |                       | max  | 11066.700000 | 11659.000000 | 11535.200000 |   |
|       |                       | min  | 10674.000000 | 11051.200000 | 11226.500000 |   |
|       | home_price_index      | mean | 133.731333   | 150.440250   | 171.737000   |   |
|       |                       | max  | 140.179000   | 159.330000   | 180.910000   |   |

|                           | min  | 128.461000   | 141.646000   | 161.288000   |   |
|---------------------------|------|--------------|--------------|--------------|---|
| per_capita_gdp            | mean | 51189.000000 | 52681.250000 | 54014.250000 |   |
| 1 = 1 =01                 | max  | 51986.000000 | 53242.000000 | 54317.000000 |   |
|                           |      |              |              |              |   |
|                           | min  | 50462.000000 | 52179.000000 | 53719.000000 |   |
| ${\tt urban\_population}$ | mean | 79.583000    | 79.757000    | 79.928000    |   |
|                           | max  | 79.583000    | 79.757000    | 79.928000    |   |
|                           | min  | 79.583000    | 79.757000    | 79.928000    |   |
|                           |      |              |              |              |   |
|                           |      | 0000         | 0007         | 0000         | , |
| year                      |      | 2006         | 2007         | 2008         | \ |
| new_constructed_units     | mean | 1989.000000  | 1513.833333  | 1126.833333  |   |
|                           | max  | 2245.000000  | 1822.000000  | 1331.000000  |   |
|                           | min  | 1877.000000  | 1328.000000  | 1017.000000  |   |
| unemployment_rate         | mean | 4.608333     | 4.616667     | 5.800000     |   |
| dirempleyment_late        |      | 4.800000     | 5.000000     | 7.300000     |   |
|                           | max  |              |              |              |   |
|                           | min  | 4.400000     | 4.400000     | 4.900000     |   |
| interest_rates            | mean | 4.964167     | 5.019167     | 1.927500     |   |
|                           | max  | 5.250000     | 5.260000     | 3.940000     |   |
|                           | min  | 4.290000     | 4.240000     | 0.160000     |   |
| income                    | mean | 11777.783333 | 12054.300000 | 12244.325000 |   |
|                           | max  | 11958.600000 | 12120.500000 | 12696.200000 |   |
|                           |      |              | 11956.600000 | 12100.800000 |   |
|                           | min  | 11651.800000 |              |              |   |
| home_price_index          | mean | 183.447500   | 179.918917   | 164.057417   |   |
|                           | max  | 184.364000   | 184.598000   | 173.132000   |   |
|                           | min  | 182.321000   | 174.342000   | 153.619000   |   |
| per_capita_gdp            | mean | 54993.500000 | 55560.000000 | 55105.250000 |   |
|                           | max  | 55216.000000 | 55857.000000 | 55705.000000 |   |
|                           | min  | 54886.000000 | 55260.000000 | 53941.000000 |   |
|                           |      |              |              |              |   |
| urban_population          | mean | 80.099000    | 80.269000    | 80.438000    |   |
|                           | max  | 80.099000    | 80.269000    | 80.438000    |   |
|                           | min  | 80.099000    | 80.269000    | 80.438000    |   |
|                           |      |              |              |              |   |
| year                      |      | 2009         | 2010         | 2011         | \ |
| new_constructed_units     | mean | 795.500000   | 653.750000   | 584.583333   | • |
| now_comportacod_amrob     |      | 846.000000   | 894.000000   | 634.000000   |   |
|                           | max  |              |              |              |   |
|                           | min  | 721.000000   | 552.000000   | 520.000000   |   |
| unemployment_rate         | mean | 9.283333     | 9.608333     | 8.933333     |   |
|                           | max  | 10.000000    | 9.900000     | 9.100000     |   |
|                           | min  | 7.800000     | 9.300000     | 8.500000     |   |
| interest_rates            | mean | 0.160000     | 0.175000     | 0.101667     |   |
| Intologo_lates            | max  | 0.220000     | 0.200000     | 0.170000     |   |
|                           |      |              |              |              |   |
|                           | min  | 0.120000     | 0.110000     | 0.070000     |   |
| income                    | mean | 12273.441667 | 12505.291667 | 12775.250000 |   |
|                           | max  | 12500.100000 | 12680.600000 | 12898.500000 |   |
|                           | min  | 12193.200000 | 12285.800000 | 12705.300000 |   |
| home_price_index          | mean | 148.545083   | 144.674500   | 139.259500   |   |
|                           | max  | 151.507000   | 147.396000   | 141.521000   |   |
|                           |      |              |              |              |   |
|                           | min  | 147.694000   | 142.060000   | 136.674000   |   |

| per_capita_gdp        | mean | 53212.500000 | 54188.25000 | 0 54603.000000 |   |
|-----------------------|------|--------------|-------------|----------------|---|
|                       | max  | 53531.000000 | 54569.00000 | 0 54979.000000 |   |
|                       | min  | 53017.000000 | 53683.00000 | 0 54341.000000 |   |
| urban_population      | mean | 80.606000    | 80.77200    | 0 80.944000    |   |
|                       | max  | 80.606000    | 80.77200    | 0 80.944000    |   |
|                       | min  | 80.606000    | 80.77200    | 0 80.944000    |   |
|                       |      |              |             |                |   |
| year                  |      | 2012         | 201         | 3 2014         | \ |
| new_constructed_units | mean | 641.416667   | 763.16666   |                | · |
|                       | max  | 730.000000   | 839.00000   |                |   |
|                       | min  | 545.000000   | 708.00000   |                |   |
| unemployment_rate     | mean | 8.075000     | 7.35833     |                |   |
| diomploymono_rase     | max  | 8.300000     | 8.00000     |                |   |
|                       | min  | 7.700000     | 6.70000     |                |   |
| interest_rates        | mean | 0.140000     | 0.10750     |                |   |
| interest_rates        |      | 0.140000     | 0.15730     |                |   |
|                       | max  |              |             |                |   |
|                       | min  | 0.080000     | 0.08000     |                |   |
| income                | mean | 13125.383333 | 12937.19166 |                |   |
|                       | max  | 13642.700000 | 13027.50000 |                |   |
|                       | min  | 12961.600000 | 12813.90000 |                |   |
| home_price_index      | mean | 140.993833   | 154.52075   |                |   |
|                       | max  | 145.503000   | 160.99400   |                |   |
|                       | min  | 136.533000   | 146.82700   | 0 161.927000   |   |
| per_capita_gdp        | mean | 55422.250000 | 56171.75000 | 0 57137.750000 |   |
|                       | max  | 55490.000000 | 56642.00000 | 0 57702.000000 |   |
|                       | min  | 55342.000000 | 55859.00000 | 0 56345.000000 |   |
| urban_population      | mean | 81.119000    | 81.29900    | 0 81.483000    |   |
|                       | max  | 81.119000    | 81.29900    | 0 81.483000    |   |
|                       | min  | 81.119000    | 81.29900    | 0 81.483000    |   |
|                       |      |              |             |                |   |
| year                  |      | 2015         | 2016        | 2017 \         |   |
| new_constructed_units | mean | 965.25000    | 1060.5000   | 1151.833333    |   |
|                       | max  | 1040.00000   | 1244.0000   | 1236.000000    |   |
|                       | min  | 781.00000    | 945.0000    | 1069.000000    |   |
| unemployment_rate     | mean | 5.27500      | 4.8750      | 4.358333       |   |
|                       | max  | 5.70000      | 5.1000      | 4.700000       |   |
|                       | min  | 5.00000      | 4.7000      | 4.100000       |   |
| interest_rates        | mean | 0.13250      | 0.3950      | 1.001667       |   |
|                       | max  | 0.24000      | 0.5400      | 1.300000       |   |
|                       | min  | 0.11000      | 0.3400      | 0.650000       |   |
| income                | mean | 13908.57500  |             | 14613.966667   |   |
| THCome                | max  | 14060.20000  |             | 14797.900000   |   |
|                       |      |              |             |                |   |
| homo price inde       | min  | 13797.70000  |             | 14373.700000   |   |
| home_price_index      | mean | 172.18175    | 180.9255    | 191.397667     |   |
|                       | max  | 176.54300    | 185.7220    | 197.172000     |   |
|                       | min  | 168.63400    | 177.2740    | 186.805000     |   |
| per_capita_gdp        | mean | 58363.25000  | 58967.7500  | 60000.750000   |   |

| urban_population           | max<br>min<br>mean<br>max<br>min | 58486.00000<br>58121.00000<br>81.67100<br>81.67100<br>81.67100 |              | 0674.000000<br>0494.000000<br>82.058000<br>82.058000<br>82.058000 |   |
|----------------------------|----------------------------------|----------------------------------------------------------------|--------------|-------------------------------------------------------------------|---|
| year                       |                                  | 2018                                                           | 2019         | 2020 `                                                            | \ |
| new_constructed_units      | mean                             | 1190.000000                                                    | 1260.666667  | 1286.333333                                                       |   |
|                            | max                              | 1288.000000                                                    | 1334.000000  | 1446.000000                                                       |   |
|                            | min                              | 1053.000000                                                    | 1150.000000  | 1171.000000                                                       |   |
| ${\tt unemployment\_rate}$ | mean                             | 3.891667                                                       | 3.683333     | 8.091667                                                          |   |
|                            | max                              | 4.100000                                                       |              | 14.700000                                                         |   |
|                            | min                              | 3.700000                                                       |              | 3.500000                                                          |   |
| interest_rates             | mean                             | 1.831667                                                       |              | 0.375833                                                          |   |
|                            | max                              | 2.270000                                                       |              | 1.580000                                                          |   |
|                            | min                              | 1.410000                                                       |              | 0.050000                                                          |   |
| income                     | mean                             | 15143.616667                                                   |              | 16607.466667                                                      |   |
|                            | max                              | 15506.500000                                                   |              | 18020.200000                                                      |   |
|                            | min                              | 14886.600000                                                   |              | 15696.300000                                                      |   |
| home_price_index           | mean                             | 202.476417                                                     |              | 222.143417                                                        |   |
|                            | max                              | 206.156000                                                     |              | 236.486000                                                        |   |
|                            | min                              | 198.315000                                                     |              | 214.994000                                                        |   |
| per_capita_gdp             | mean                             | 61417.500000<br>61622.000000                                   |              | 60984.750000<br>62414.000000                                      |   |
|                            | max<br>min                       | 61093.000000                                                   |              | 57386.000000                                                      |   |
| urban_population           | mean                             | 82.256000                                                      |              | 82.664000                                                         |   |
| urban_popuration           | max                              | 82.256000                                                      |              | 82.664000                                                         |   |
|                            | min                              | 82.256000                                                      |              | 82.664000                                                         |   |
|                            |                                  | 02.20000                                                       | 02.100000    | 02.001000                                                         |   |
| year                       |                                  | 2021                                                           | 2022         | 2023                                                              |   |
| new_constructed_units      | mean                             | 1340.666667                                                    |              | 1451.6000                                                         |   |
|                            | max                              | 1459.000000                                                    |              | 1577.0000                                                         |   |
|                            | min                              | 1232.000000                                                    |              | 1334.0000                                                         |   |
| unemployment_rate          | mean                             | 5.366667                                                       | 3.641667     | 3.6200                                                            |   |
|                            | max                              | 6.300000                                                       | 4.000000     | 3.9000                                                            |   |
|                            | min                              | 3.900000                                                       | 3.500000     | 3.4000                                                            |   |
| interest_rates             | mean                             | 0.080000                                                       | 1.683333     | 4.9630                                                            |   |
|                            | max                              | 0.100000                                                       | 4.100000     | 5.3300                                                            |   |
|                            | min                              | 0.060000                                                       | 0.080000     | 4.3300                                                            |   |
| income                     | mean                             | 17138.716667                                                   | 16117.050000 | 16763.0200                                                        |   |
|                            | max                              | 20422.600000                                                   | 16265.100000 | 16848.7000                                                        |   |
|                            | min                              | 16418.500000                                                   | 15963.400000 | 16601.9000                                                        |   |
| home_price_index           | mean                             | 260.045667                                                     |              | 303.8848                                                          |   |
|                            | max                              | 281.342000                                                     |              | 311.1750                                                          |   |
|                            | min                              | 239.560000                                                     |              | 297.0300                                                          |   |
| per_capita_gdp             | mean                             | 64412.500000                                                   |              | 66558.9000                                                        |   |
|                            | max                              | 65651.000000                                                   | 65783.000000 | 67083.0000                                                        |   |

|                  | min  | 63227.000000 | 65127.000000 | 66078.0000 |
|------------------|------|--------------|--------------|------------|
| urban_population | mean | 82.873000    | 83.084000    | 83.0840    |
|                  | max  | 82.873000    | 83.084000    | 83.0840    |
|                  | min  | 82.873000    | 83.084000    | 83.0840    |

- 1. The number of new constructed units has generally increased over the years, with a noticeable peak in 2005 and a subsequent decline until around 2009.
- 2. The unemployment rate shows a pattern of decrease from 2003 to 2007, followed by a significant increase during the 2008 financial crisis.
- 3. Interest rates have experienced a general decline over the years, reaching a minimum around 2009.
- 4. The maximum income has consistently increased, reflecting overall economic growth.

## 1 Exploratory data analysis (EDA)

```
[21]: cols =
              ['new_constructed_units', 'unemployment_rate', 'interest_rates',
               'income', 'per_capita_gdp', 'urban_population']
[22]: fig = plt.figure(figsize = (60,60))
      gs = fig.add_gridspec(15,15)
      gs.update(wspace = 0.25,hspace = 0.25)
      ax0 = fig.add_subplot(gs[0,0],)
      ax1 = fig.add_subplot(gs[0,1])
      ax2 = fig.add_subplot(gs[0,2])
      ax3 = fig.add_subplot(gs[1,0])
      ax4 = fig.add_subplot(gs[1,1])
      ax5 = fig.add_subplot(gs[1,2])
      Axis = [ax0,ax1,ax2,ax3,ax4,ax5]
      for ax,col in zip(Axis,cols):
          sns.boxplot(ax = ax,data = df_20, x = col)
      plt.show()
```



- 1. Income has 1 outliers greater than upper bound (19853.34) or lower than lower bound (7509.24). Cap them or remove them.
- 2. Unemployement Rate has 3 outliers greater than upper bound (11.40) or lower than lower bound (0.20). Cap them or remove them.

So below we are calculating the IQR and on the basis of lower and Upper limit we are capping the outliers.

```
[23]: sns.boxplot(data=df_20, x= 'income')
```

[23]: <Axes: xlabel='income'>



```
[24]: q1_income = df_20['income'].quantile(0.25)
   q3_income = df_20['income'].quantile(0.75)
   income_IQR = q3_income - q1_income

upper_limit_income = q3_income + 1.5 * income_IQR
   lower_limit_income = q1_income - 1.5 * income_IQR

print(upper_limit_income)
   print(lower_limit_income)
```

19853.33749999998 7509.2375

<ipython-input-25-2109b2de28d0>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy

df\_20['income'] = df\_20['income'].clip(lower=lower\_limit\_income,
upper=upper\_limit\_income)

```
[26]: sns.boxplot(data=df_20, x= 'income')
```

[26]: <Axes: xlabel='income'>



We can see now there are no outliers present in the income data.

```
[27]: sns.boxplot(data=df_20, x= 'unemployment_rate')
```

[27]: <Axes: xlabel='unemployment\_rate'>



```
[28]: q1_ur = df_20['unemployment_rate'].quantile(0.25)
q3_ur = df_20['unemployment_rate'].quantile(0.75)
ur_IQR = q3_ur - q1_ur

upper_limit_ur = q3_ur + 1.5 * ur_IQR
lower_limit_ur = q1_ur - 1.5 * ur_IQR

print(upper_limit_ur)
print(lower_limit_ur)
```

#### 11.39999999999999

0.20000000000000107

```
[29]: df_20['unemployment_rate'] = df_20['unemployment_rate'].

clip(lower=lower_limit_ur, upper=upper_limit_ur)
```

<ipython-input-29-d67fd013cfd2>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-

```
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    df_20['unemployment_rate'] =
df_20['unemployment_rate'].clip(lower=lower_limit_ur, upper=upper_limit_ur)
```

```
[30]: sns.boxplot(data=df_20, x= 'unemployment_rate')
```

[30]: <Axes: xlabel='unemployment\_rate'>



We can see now there are no outliers present in the Unemployemt Rate data.

```
[31]: plt.figure(figsize = (12,4))
  plt.plot(df_20['year'], df_20['new_constructed_units'])
  plt.title("New Constructed Units Over Time")
  plt.xticks(df_20['year'].unique(), rotation=45, ha="right")
  plt.show()
```



```
[32]: plt.figure(figsize = (12,4))
  plt.plot(df_20['year'], df_20['unemployment_rate'])
  plt.title("Unemployement Rate Over Time")
  plt.xticks(df_20['year'].unique(), rotation=45, ha="right")
  plt.show()
```



```
[33]: plt.figure(figsize = (12,4))
  plt.plot(df_20['year'], df_20['interest_rates'])
  plt.title("Intrest Rates Over Time")
  plt.xticks(df_20['year'].unique(), rotation=45, ha="right")
  plt.show()
```



```
[34]: plt.figure(figsize = (12,4))
  plt.plot(df_20['year'], df_20['income'])
  plt.title("Income Over Time")
  plt.xticks(df_20['year'].unique(), rotation=45, ha="right")
  plt.show()
```



```
[35]: plt.figure(figsize = (12,4))
  plt.plot(df_20['year'], df_20['per_capita_gdp'])
  plt.title("Per Capita GDP Over Time")
  plt.xticks(df_20['year'].unique(), rotation=45, ha="right")
  plt.show()
```



```
[36]: plt.figure(figsize = (12,4))
  plt.plot(df_20['year'], df_20['urban_population'])
  plt.title("Urban Population Over Time")
  plt.xticks(df_20['year'].unique(), rotation=45, ha="right")
  plt.show()
```



```
[37]: plt.figure(figsize = (12,4))
   plt.plot(df_20['year'], df_20['home_price_index'])
   plt.title("Home Price Index Over Time")
   plt.xticks(df_20['year'].unique(), rotation=45, ha="right")
   plt.show()
```



```
[38]: fig = plt.figure(figsize = (60,60))
    gs = fig.add_gridspec(15,15)

gs.update(wspace = 0.25,hspace = 0.25)

ax0 = fig.add_subplot(gs[0,0],)
    ax1 = fig.add_subplot(gs[0,1])
    ax2 = fig.add_subplot(gs[0,2])
    ax3 = fig.add_subplot(gs[1,0])
    ax4 = fig.add_subplot(gs[1,0])
    ax5 = fig.add_subplot(gs[1,1])
    ax5 = fig.add_subplot(gs[1,2])

Axis = [ax0,ax1,ax2,ax3,ax4,ax5]

for ax,col in zip(Axis,cols):
    sns.scatterplot(df_20, ax=ax ,x = col, y = 'home_price_index')
    plt.show()
```



### "Scatter Plots of Factors vs. Home Price Index"

```
[39]: fig = plt.figure(figsize = (60,60))
    gs = fig.add_gridspec(15,15)

    gs.update(wspace = 0.50,hspace = 0.50)

    ax0 = fig.add_subplot(gs[0,0],)
    ax1 = fig.add_subplot(gs[0,1])
    ax2 = fig.add_subplot(gs[0,2])
    ax3 = fig.add_subplot(gs[1,0])
    ax4 = fig.add_subplot(gs[1,1])
    ax5 = fig.add_subplot(gs[1,2])

Axis = [ax0,ax1,ax2,ax3,ax4,ax5]

for ax,col in zip(Axis,cols):
    sns.kdeplot(df_20, ax=ax ,x = col)
    plt.show()
```



The variables new\_constructed\_units and urban\_population exhibit Normal distributions, while the remaining variables show slight right-skewness. This mild skewness, although present, is deemed acceptable for model building, and we will proceed with our analysis considering these distribution characteristics as Normal.

# [64]: df.corr()

<ipython-input-64-2f6f6606aa2c>:1: FutureWarning: The default value of
numeric\_only in DataFrame.corr is deprecated. In a future version, it will
default to False. Select only valid columns or specify the value of numeric\_only
to silence this warning.

df.corr()

| [64]: |                       | new_constructed_units | unemployment_rate  | \   |
|-------|-----------------------|-----------------------|--------------------|-----|
|       | new_constructed_units | 1.000000              | -0.390979          |     |
|       | unemployment_rate     | -0.390979             | 1.000000           |     |
|       | interest_rates        | 0.418073              | 0.066943           |     |
|       | income                | -0.411212             | -0.046088          |     |
|       | home_price_index      | -0.062159             | -0.231612          |     |
|       | per_capita_gdp        | -0.376994             | 0.103897           |     |
|       | urban_population      | -0.418469             | -0.068268          |     |
|       |                       | interest rates incom  | me home_price_inde | x \ |
|       | new_constructed_units | 0.418073 -0.4112      | <del>-</del>       |     |
|       | unemployment_rate     | 0.066943 -0.0460      | 88 -0.23161        | 2   |

```
interest_rates
                                   1.000000 -0.541979
                                                              -0.542286
                                  -0.541979 1.000000
                                                               0.935364
      income
     home_price_index
                                  -0.542286 0.935364
                                                               1.000000
      per_capita_gdp
                                  -0.374240 0.987732
                                                               0.943785
     urban_population
                                  -0.552013 0.986303
                                                               0.889301
                             per_capita_gdp urban_population
     new_constructed_units
                                  -0.376994
                                                    -0.418469
      unemployment rate
                                   0.103897
                                                    -0.068268
      interest_rates
                                  -0.374240
                                                    -0.552013
      income
                                                     0.986303
                                   0.987732
     home_price_index
                                   0.943785
                                                     0.889301
     per_capita_gdp
                                   1.000000
                                                     0.990761
     urban_population
                                   0.990761
                                                     1.000000
[40]: sns.heatmap(df_20.corr(), vmax = 1, vmin = -1, annot = True, cmap = "RdYlGn")
      plt.title("Correlation Heatmap")
      plt.show()
```

<ipython-input-40-748b961f0c4e>:1: FutureWarning: The default value of
numeric\_only in DataFrame.corr is deprecated. In a future version, it will
default to False. Select only valid columns or specify the value of numeric\_only
to silence this warning.

sns.heatmap(df\_20.corr(), vmax = 1, vmin = -1 , annot = True , cmap = "RdYlGn")



The above Heatmap indicates that few of these variables provide similar information, and their high correlation might lead to multicollinearity issues in regression analysis.

## 2 Standardization

Standardization is performed on the dataset to bring all features to a common scale. This is crucial when working with machine learning models that are sensitive to the magnitude of input variables.

```
[44]: X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

#### 3 MODEL BUILDING

## 4 Linear Regression

```
[45]: from sklearn.linear_model import LinearRegression
      lr = LinearRegression()
[46]: lr.fit(X_train_scaled,y_train)
      lr_pred = lr.predict(X_test_scaled)
[47]: r2_lr = r2_score(y_test,lr_pred)
      print("R squared Value")
      print(r2_score(y_test,lr_pred))
      mse_lr = mean_squared_error(y_test,lr_pred)
      print("\nMSE")
      print(mean_squared_error(y_test,lr_pred))
      mae_lr = mean_absolute_error(y_test,lr_pred)
      print("\nMAE")
      print(mean_absolute_error(y_test,lr_pred))
     R squared Value
     0.9527354255690559
     MSE
     119.27608462812941
     MAE
     7.788883975430829
```

R2 Score for LR model indicates 95.27% of the variability in the dependent variable is explained by the model.

#### 5 Random forest Model

```
[48]: from sklearn.ensemble import RandomForestRegressor
    rr = RandomForestRegressor()

[49]: rr.fit(X_train_scaled,y_train)
    rr_pred = rr.predict(X_test_scaled)

[50]: r2_rr = r2_score(y_test,rr_pred)
    print("R squared Value")
    print( r2_score(y_test,rr_pred))
```

```
mse_rr = mean_squared_error(y_test,rr_pred)
print("\nMSE")
print( mean_squared_error(y_test,rr_pred))
mae_rr = mean_absolute_error(y_test,rr_pred)
print("\nMAE")
print( mean_absolute_error(y_test,rr_pred))
R squared Value
0.9962608494326256

MSE
9.43605744643026

MAE
2.0383102409638623
```

R2 Score for RR model indicates 99.65% of the variability in the dependent variable is explained by the model.

#### 6 ADA BOOST

```
[51]: from sklearn.ensemble import AdaBoostRegressor
      ada = AdaBoostRegressor()
[52]: ada.fit(X_train_scaled,y_train)
      ada_pred = ada.predict(X_test_scaled)
[53]: r2_ab = r2_score(y_test,ada_pred )
      print("R squared Value")
      print( r2_score(y_test,ada_pred ))
      mse_ab = mean_squared_error(y_test,ada_pred )
      print("\nMSE")
      print( mean_squared_error(y_test,ada_pred ))
      mae_ab = mean_absolute_error(y_test,ada_pred )
      print("\nMAE")
      print( mean_absolute_error(y_test,ada_pred ))
     R squared Value
     0.9900592689000133
     MSE
     25.086261713407538
     MAE
     3.834583774110322
```

R2 Score for ADA Boosting model indicates 98.84% of the variability in the dependent variable is explained by the model.

## 7 Gradient Boosting

```
[54]: from sklearn.ensemble import GradientBoostingRegressor
      gb = GradientBoostingRegressor()
[55]: gb.fit(X_train_scaled, y_train)
      gb_pred = gb.predict(X_test_scaled)
[56]: r2_gb = r2_score(y_test,gb_pred )
      print("R squared Value")
      print( r2 score(y test,gb pred ))
      mse_gb = mean_squared_error(y_test,gb_pred )
      print("\nMSE")
      print( mean_squared_error(y_test,gb_pred ))
      mae_gb = mean_absolute_error(y_test,gb_pred )
      print("\nMAE")
      print( mean_absolute_error(y_test,gb_pred ))
     R squared Value
     0.9947513910680241
     MSE
     13.245301172974209
     MAE
     2.6471187223910935
```

R2 Score for Gradient Boosting model indicates 99.48% of the variability in the dependent variable is explained by the model.

## 8 XG Boosting Model

```
[57]: from xgboost import XGBRegressor
    xg = XGBRegressor()

[58]: xg.fit(X_train_scaled, y_train)
    xg_pred = xg.predict(X_test_scaled)

[59]: r2_xg = r2_score(y_test,xg_pred )
    print("R squared Value")
    print( r2_score(y_test,xg_pred ))
    mse_xg = mean_squared_error(y_test,xg_pred )
    print("\nMSE")
    print( mean_squared_error(y_test,xg_pred ))
    mae_xg = mean_absolute_error(y_test,xg_pred )
    print("\nMAE")
    print( mean_absolute_error(y_test,xg_pred ))
```

```
R squared Value
0.9953096425659546

MSE
11.836507087496674

MAE
2.3933190462043488
```

R2 Score for ADA Boosting model indicates 99.53% of the variability in the dependent variable is explained by the model.

#### 9 Observation

Random Forest and XGBoosting consistently outperform other models, demonstrating their effectiveness in capturing the underlying patterns in the data. Below is the graph that shoes the actual and the predicted value for the Ada Boost Algorithmn.

```
[63]: fit_data = ada.fit(X_train_scaled,y_train)
    prediction = fit_data.predict(X_test_scaled)

plt.figure(figsize=(10,10))
    plt.scatter(y_test, prediction, c ='#d62728')
    plt.yscale('log')
    plt.xscale('log')

p1 = max(max(prediction), max(y_test))
    p2 = min(min(prediction), min(y_test))
    plt.plot([p1, p2], [p1, p2], 'b-')
    plt.xlabel('True Values', fontsize=15)
    plt.ylabel('Predictions', fontsize=15)
    plt.title("Accuracy Plot")
    plt.axis('equal')
    plt.show()
```



[]: