CS6132 Advanced Logic Synthesis

Homework 2 Report

111062584 王領崧

● 實驗流程:

此次作業使用 SAT attack tool 來檢視三種不同 logic encryption algorithms。透過實驗比較不同 logic encryption 與不同 benchmarks 搭配的加密效果,藉此分析表現比較好的組合的特性。

測量的數據有 #PIs, #Key Inputs, #POs, #Gates, #SAT iterations, CPU time。

● 實驗設定:

實驗機器為 cad server 上面的 ic51, 有 64 CPUs & 128GB memory。

rnd, dac12 加密的 benchmark 有 21 個, 每個 benchmark 各有 4 個 encryption area overhead 的版本, 分別為 5%, 10%, 25%, 50%。

sarlock/dac12 加密的 benchmark 有 11 個, 每個 benchmark 各有 3 個 encryption area overhead 的版本, 分別為 5%, 10%, 25%。

SAT attack tool 解密的時限為 2 小時, 超過 2 小時即為解密失敗 (fail)。

● 實驗結果和分析:

1. rnd encryption results

這裡為攻擊 rnd encryption locked benchmark 的結果。在 21 個 benchmark 中, 17 個 benchmark 所有 encryption area 版本都能在時限內被解密, 4 個 benchmark 有部分版本會解密失敗, 分別是 c2670 (enc25, enc50)、c7552 (enc50)、dalu (enc50)、des (enc50)。Chart 1 是全部被解密 benchmark 的執行時間, Chart 2 是部分解密 benchmark 的執行時間。

實驗結果顯示, 大部分的 testcases 都能在 **12** 分鐘內被破解。全部解密和部分解密的 benchmark, 隨著 encryption area 提升, 執行時間皆以類指數型的成長(25 -> 50 成長幅度最大)。意外的是部分解密的 benchmark 在 enc 5%, 10% 的執行時間並沒有和全部解密的相差太多。

Chart 1: Runtime of complete decrypted benchmark (rnd encryption)

Chart 2: Runtime of partial decrypted benchmark (rnd encryption)

2. dac12 encryption results

這裡為攻擊 dac12 encryption locked benchmark 的結果。在 21 個 benchmark 中, 16 個 benchmark 都能在時限內被解密, 5 個 benchmark 有部分版本會解密失敗, 分別是 c2670 (全部)、c5315 (25%, 50%)、c7552 (10%, 25%, 50%)、dalu (50%)、des (10%, 25%, 50%)。Chart 3 是全部被解密 benchmark 的執行時間, Chart 4 是部分解密 benchmark 的執行時間。

與 rnd encryption 的實驗結果相似, 大部分的 testcases 都能在 **10** 分鐘內被破解, 執行時間皆以類指數型的成長, 部分解密的執行時間並沒有和全部解密的相差太多。

Chart 3: Runtime of complete decrypted benchmark (dac12 encryption)

Chart 4: Runtime of partial decrypted benchmark (dac12 encryption)

3. sarlock/dac12 encryption results

這裡為攻擊 sarlock/dac12 encryption locked benchmark 的結果。由於 sarlock 是anti-SAT, 所以在 11 個 benchmark 中, 僅有 2 個 benchmark 能在時限內被解密, 其餘 9 個所有版本都會解密失敗。Table 1 為成功解密的 benchmark 的實驗數據。實驗結果顯示, 隨著 encryption area 提升, #Key inputs 大約是 2 倍的速度在增加, 執行時間也呈現指數型增加。有趣的是, 相同測資需要的 SAT iterations 數量都相同。

Name	#PIs	#Key Inputs	#POs	#Gates	#SAT iterations	CPU time
apex4 (5%)	10	278	19	5675	1023	336.592
apex4 (10%)	10	546	19	5943	1023	383.401
apex4 (25%)	10	1350	19	6747	1023	1437.71
ex5 (5%)	8	61	63	1191	255	4.882
ex5 (10%)	8	114	63	1247	255	6.761
ex5 (25%)	8	272	63	1406	255	13.305

Table 1: Results of complete decrypted benchmark (sarlock/dac12 encryption)

4. rnd & dac12 results comparison

這裡為比較 rnd & dac12 加密的效果, 使用的測資是都有解密成功的 9 個 enc_50 的 testcases (有些執行時間 < 10s 就不列入表格), 參考的數據有 #KIs, #Gates, #SAT iterations, CPU time。Table 2 為比較的表格, 使用 rnd 作為 baseline 比較, 最後結果用%呈現。

實驗結果顯示, 兩者數據差異非常小, 基本上都在正負 0.5% 以內, 只有兩個測資的 CPU time 相差到 2~3 %, 顯示兩個 encryption algorithm 的效果差不多。

		- " - " - " - " - " - " - " - " - " - "		
Name	#Key Inputs	#Gates	#SAT iterations	CPU time
apex2	0	-0.004	-0.076	0.743
apex4	0	0.001	0.008	-0.039
c1355	0	0.015	-0.306	-0.943
c1908	0	0.007	0.521	2.407
c3540	0	0.001	0.199	-0.426
ex1010	0	0.001	-0.094	0.175
i8	0	-0.002	0.461	3.205
k2	0	-0.003	-0.032	0.043
seq	0	0.002	-0.023	0.051

Table 2: rnd & dac12 results comparison (rnd is the baseline)

5. #Key input & CPU time

這裡為 key input 數量和 CPU time 的關係圖, 資料為此次作業所有成功解密的 testcases。 Chart 5 為兩者關係的分布圖。

由實驗結果得知, key input 數量和 CPU time 呈現正相關, 但是沒有非常明顯。並且當 encryption area 越大, key input 的數量會越多, 執行時間也比較久。(enc5 和 enc10 因為都分布於左下角, 所以被蓋住了不易看見)

Chart 5: Relation of #Key inputs and CPU time (All decrypted benchmarks)

6. #Gates & CPU time

這裡為探討 gates 數量和 CPU time 的關係, 因為第 5. 已經討論 encryption area 和 CPU time 關係, 所以這邊直接使用 rnd encryption area 50% 的 testcase 來做比較分析, Chart 6 為 #gates 和 CPU time 的關係圖, testcase 的順序是由 #gates 由小到大排序。因為執行時間分佈較懸殊, 所以採用對數刻度來表示, 並且解密失敗的 testcase 用粉紅色來表示。

實驗結果顯示,對於成功解密的測資,#gates 數量和 CPU time 並沒有很直接的關聯,因為後面的 runtime 都在 2 次方的量級內,但第五個測資是在 3 次方。不過無法在時間內成功解密的測資,#gates 越大確實看起來機會比較大。

Chart 6: Relation of #Gates and CPU time (Decrypted rnd benchmarks)

7. Conclusion

- a. rnd & dac12 encryption 的效果差不多, 有 17(16)/21 的 testcases 可以成功解密, 剩餘的 testcases 部分版本可以成功解密, 不過大部分都在 12 分鐘內就可以被 SAT 破解, 加密的效果並不理想。
- b. 由於 sarlock 是 anti-SAT, 所以僅有 2/11 的 testcases 被成功解密。
- c. SAT attack tool 解密的時間會以類似指數型態成長, encryption area overhead 從 25% -> 50% 的成長幅度為最大。