

भारतीय विज्ञान संस्थान

SEMESTER NOTES

Irish Debbarma

Department of Mathematics Indian Institute of Science, Bangalore

December 2022

Contents

I.	Modular Forms	1
1.	Lecture-1:	2
2.	Lecture-2:	3
3.	Lecture-3 (10 January, 2023): Valence formula and Eisenstein series 3.1. Valence formula	4 4 5
4.	Lecture-4 (12th January, 2023): Eisenstein series4.1. Eisenstein series contd4.1.1. Fourier expansions of $E_k(z)$ 4.1.2. Weight 2 Eisenstein series4.2. Modular forms of higher level	8 8 9 10 11
II.	Elliptic Curves	13
5.	Lecture-1:	14
6.	Lecture-2:	15
7.	Lecture-3 (10 January, 2023): Projective varieties 7.1. Projective varieties	16
8.	Lecture-4 (12th January, 2023):	20
Ш	. Basic Algebraic Geometry	21
9.	Lecture-1:	22
10.	Lecture-2 (10 January, 2023): 10.1. Ideals	23 23 23
11.	Lecture-3 (12th January):	26

Contents

IV.	Algebraic Geometry I	27
12.	Lecture-1 (9th January, 2023): Topological properties and Zariski Topology 12.1. Topological properties	28 28 30
13.	Lecture-2 (Ilth January, 2023): Zariski topology and affine schemes 13.1. Zariski topology contd	32 32 32 33
14.	Lecture-3:	36
V.	Topics in Analytic Number Theory	37
15.	Lecture-1: Hardy-Littlewood proof of infinitely many zeros on the line $\Re(s)=1/2$	38
16.	Lecture-2:	39
17.	Lecture-3 (10th January, 2023): Siegel's theorem	40
18.	Lecture-4 (12th January, 2023):	42

Part I. Modular Forms

1. Lecture-1:

2. Lecture-2:

3. Lecture-3 (10 January, 2023): Valence formula and Eisenstein series

3.1. Valence formula

Recall that $M_k(\Gamma_1)$ is the space of modular forms of weight k and level 1. It is also a vector space over \mathbb{C} .

Theorem 3.1.1.
$$\dim M_k(\Gamma_1) = \begin{cases} [k/12] + 1 & k \not\equiv \pmod{12} \\ [k/12] & k \equiv \pmod{12} \end{cases}$$

Proposition 3.1.2.

Let $f \in M_k(\Gamma_1)$. Then,

$$\sum_{p \in \Gamma_1 \backslash \mathbb{H}} \frac{1}{n_p} \operatorname{ord}_p(f) + \operatorname{ord}_{\infty}(f) = \frac{k}{12}$$

Proof. Let $\epsilon > 0$ be "small enough". Remove ϵ -balls around $\infty, i, \omega, \omega + 1$ in \mathcal{F}_1 . ϵ is small enough so that the removed balls are disjoint. Truncate \mathcal{F}_1 at the line $y=\epsilon^{-1}$ and call the enclosed region D.

By Cauchy's theorem

$$\int_{\partial D} d(\log f(z)) = 0$$

This integral on the two vertical strips (just the straight lines not the semicircle part) is 0 since the contribution of left is same as right but orientation is different. On the segment joining -1/2+iY, 1/2+iY, the integral is $2\pi i \operatorname{ord}_{\infty}(f)$. Again, integral around each removed point in \mathcal{F}_1 is $\frac{1}{n_p}\mathrm{ord}_p(f)$. Next, divide the bottom arc into left and right parts and observe that

$$d(\log f(S \cdot z)) = d(\log f(z)) + k \frac{dz}{z}$$

$$\int_C d(\log f(z)) = \frac{k\pi i}{6}$$

Corollary 3.1.3.
$$\dim M_k(\Gamma_1) = \begin{cases} 0 & k < 0 \\ 0 & k \text{ is odd} \\ 1 & k = 0 \\ \left\{ \begin{bmatrix} k/12 \end{bmatrix} + 1 & k \not\equiv \pmod{12} \\ \left[k/12 \right] & k \equiv \pmod{12} \\ \end{array} \right.$$

Proof. • If k < 0, then f has poles but is holomorphic.

- If k = 0, then f is the constant function.
- We have seen
- For m=[k/12]+1 let $f_1,\ldots,f_{m+1}\in M_k(\Gamma_1)$. Let P_1,\ldots,P_m be any points on \mathcal{F}_1 not equal to $i, \omega, \omega + 1$ and consider $(f_i(P_j))_{i \in [m+1], j \in [m]}$. There exists a linear combination $f = \sum_{i=1}^{m+1} c_i f_i$ not all c_i being zero, such that

 $f(P_i) = 0$ for $1 \le j \le m$.

From the previous theorem we get $f \equiv 0$ and this implies $\{f_i\}$ is linearly independent and thus $\dim_{\mathbb{C}} M_k(\Gamma_1) \leq m$.

For $k \equiv 2 \pmod{12}$, the relation in previous theorem holds only if there is at least a simple zero at p=i and at least a double zero at $p=\omega$. This gives

$$\frac{k}{12} - \frac{7}{6} = m - 1$$

Repeat the argument above.

A slight notation. For $\gamma=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathrm{SL}_2(\mathbb{Z})$ we set $f|_{\gamma}(z)=(cz+d)^{-k}f(\gamma\cdot z).$ Thus, $1|_{\gamma}(z)=(cz+d)^{-k}.$ If $1|_{\gamma}(z)=1\Rightarrow c=0.$ Conversely, if c=0, then $d^{-k}=1.$ So, $1|_{\gamma}(z)=1\Leftrightarrow c=0.$

$$\Gamma_{\infty} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \mathrm{SL}_{2}(\mathbb{Z}) \right\} = \mathrm{stab}(\infty)$$

3.2. Eisenstein series

Definition 3.2.1.

The Eisenstein series $E_k(z)$ is defined to be

$$E_k(z) = \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_1} 1|_{\gamma}(z)$$

Proposition 3.2.2.

3. Lecture-3 (10 January, 2023): Valence formula and Eisenstein series

$$E_k(z) = \frac{1}{2} \sum_{(c,d) \in \mathbb{Z}^2 \setminus \{(0,0)\}, \gcd(c,d) = 1} \frac{1}{(cz+d)^k}$$

Proof. \Box

Proposition 3.2.3.

$$\sum_{(c,d)\in\mathbb{Z}^2\setminus\{(0,0)\},\gcd(c,d)=1}\frac{1}{(cz+d)^k}$$

converges absolutely for k > 2

Proof. \Box

Theorem 3.2.4.

 $E_k(z) \in M_k(\Gamma_1)$ for k > 2.

Proof. \Box

Proposition 3.2.5.

 $E_k(z) \not\equiv 0$ for k > 2, even.

Proof. Observe that

$$\frac{1}{(cz+d)^k} \to 0, \Im(z) \to \infty, c \neq 0$$

and if c=0, then $c=\pm 1$. Hence, $E_k(z)=1+$ bounded term as $\Im(z)\to\infty$. This implies $E_k(z)\not\equiv 0$ and

 $E_k(z) = 1 + \sum_{n=1}^{\infty} a_n e^{2\pi i z}$

Another way of looking at Eisenstein series is a function on a lattice. Consider $G_k(z)=G_k(\mathbb{Z} z+\mathbb{Z})=\frac{1}{2}\sum_{(c,d)\in\mathbb{Z}^2}^{'}\frac{1}{(cz+d)^k}$

Proposition 3.2.6.

 $G_k(z)$ converges absolutely for k > 2.

Proposition 3.2.7.

 $G_k(z) = \zeta(k)E_k(z)$

3. Lecture-3 (10 January, 2023): Valence formula and Eisenstein series

Proposition 3.2.8.
$$\mathbb{G}_k(z)=\tfrac{(k-1)!}{(2\pi i)^k}G_k(z)=-\tfrac{B_k}{2k}+\textstyle\sum_{n=1}^\infty\sigma_{k-1}(n)q^n \text{ for } k>2\text{, even.}$$

4. Lecture-4 (12th January, 2023): Eisenstein series

4.1. Eisenstein series contd..

Recall that

$$M_*(\Gamma_1) = \bigoplus_{k \in \mathbb{Z}} M_k(\Gamma_1)$$

is a graded ring.

Proposition 4.1.1.

The graded ring $M_*(\Gamma_1)$ is freely generated by E_4, E_6 . This means that the map

$$f: C[X,Y] \to M_*(\Gamma_1)$$
$$X \mapsto E_4$$
$$Y \mapsto E_6$$

is an isomorphism of graded rings. Here, $\deg X = 4, \deg Y = 6$.

Proof. We want to show that E_4 and E_6 are algebraically independent. We start by showing that E_4^3 and E_6^2 are linearly independent over \mathbb{C} . Suppose $E_6(z)^2 = \lambda E_4(z)^3$. Consider $f(z) = E_6(z)/E_4(z)$. Now observe that $f(z)^2 = \lambda E_4(z)$. This means that f^2 is holomorphic and thus f is also holomorphic. But f is weakly modular of weight 2 which is a contradiction. So, our claim is proven.

Claim: Let f_1, f_2 be two nonzero modular forms of same weight. If f_1, f_2 are linearly independent, then they are algebraically independent as well.

Let $P(t_1,t_2) \in \mathbb{C}[t_1,t_2] \setminus \{0\}$ be such that $P(f_1,f_2) = 0$. Let $P_d(t_1,t_2)$ be the d degree parts of P. Using the fact that modular forms of different weights are linearly independent, we get that $P_d(f_1,f_2) = 0 \ \forall \ d \geq 0$. If $p_d(t_1/t_2) = P_d(t_1,t_2)/t_2^d$, then $p_d(f_1/f_2) = 0$. But this means that f_1/f_2 is a constant. But, f_1, f_2 are linearly independent which implies that they are algebraically independent as well.

All of this implies that E_4, E_6 are algebraically independent. Using

Corollary 4.1.2.

4. Lecture-4 (12th January, 2023): Eisenstein series

$$\dim_{\mathbb{C}} M_k(\Gamma_1) = \begin{cases} [k/12] + 1 & k \not\equiv \pmod{12} \\ [k/12] & k \equiv \pmod{12} \end{cases}$$

4.1.1. Fourier expansions of $E_k(z)$

Proposition 4.1.3.

$$\mathbb{G}_k(z) = \frac{(k-1)!}{(2\pi i)^k} G_k(z) = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

for k > 2, even and B_k are Bernoulli numbers.

Proof. Use

$$\frac{\pi}{\tan \pi z} = \sum_{n \in \mathbb{Z}} \frac{1}{z+n} = \lim_{M,N \to \infty, N-M < \infty} \sum_{-M}^{N} \frac{1}{z+n}$$

and

$$\frac{\pi}{\tan \pi z} = \frac{\pi \cos \pi z}{\sin \pi z} = \pi i \frac{e^{\pi i z} + e^{-\pi i z}}{e^{\pi i z} - e^{-\pi i z}} = -\pi i \frac{1+q}{1-q} = -2\pi i \left(\frac{1}{2} + \sum_{r=1}^{\infty} q^r\right)$$

This leads to the equality

$$\sum_{n \in \mathbb{Z}} \frac{1}{z+n} = -2\pi i \left(\frac{1}{2} + \sum_{r=1}^{\infty} q^r \right)$$

Differentiate both sides of equality k-1 times and divide by (k-1)! to get

$$\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{r=1}^{\infty} r^{k-1} q^r$$

Next, if we look at

$$G_{k}(z) = \frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0}^{\prime} \frac{1}{(mz+n)^{k}}$$

$$= \frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0}^{\prime} \frac{1}{n^{k}} + \frac{1}{2} \sum_{(m,n) \in \mathbb{Z}^{2}, m \neq 0}^{\prime} \frac{1}{(mz+n)^{k}}$$

$$= \zeta(k) + \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{k}}$$

$$= \zeta(k) + \frac{(2\pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} r^{k-1} q^{mr}$$

$$= \zeta(k) + \frac{(2\pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} \sigma_{k-1}(n) q^{n}$$

The expression of $\mathbb{G}_k(z)$ is trivial after noting

$$\frac{(k-1)!}{(2\pi i)^k}\zeta(k) = B_k$$

Remark 4.1.4. 1. $\mathbb{G}_4(z) = \frac{1}{240} + q + 9q^2 + 28q^3 + 73q^4 + \cdots$ 2. $\mathbb{G}_6(z) = -\frac{1}{504} + q + 33q^2 + 244q^3 + \cdots$ 3. $\mathbb{G}_8(z) = \frac{1}{480} + q + 129q^2 + 2188q^3 + \cdots$

2.
$$\mathbb{G}_6(z) = -\frac{1}{504} + q + 33q^2 + 244q^3 + \cdots$$

3.
$$\mathbb{G}_8(z) = \frac{1}{480} + q + 129q^2 + 2188q^3 + \cdots$$

Proposition 4.1.5.

$$\sum_{m=1}^{n-1} \sigma_3(m)\sigma_3(n-m) = \frac{\sigma_7(n) - \sigma_3(n)}{120}$$

Proof.

4.1.2. Weight 2 Eisenstein series

Definition 4.1.6.

$$\mathbb{G}_2(z) = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma_1(n)q^n$$
$$= -\frac{1}{24} + q + 3q^2 + 4q^3 + 7q^4 + \cdots$$

This converges rapidly on \mathbb{H} and defines a holomorphic function.

Proposition 4.1.7.

$$G_2(z) = -4\pi^2 \mathbb{G}_2(z)$$

Proof. Since we know that

$$G_2(z) = \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} \frac{1}{(mz+n)^2}$$

does not converge absolutely, we define

$$G_2(z) = \frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0} \frac{1}{n^2} + \frac{1}{2} \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^2}$$

This sum converges absolutely and we can show that this satisfies the functional equation as required. \Box

Proposition 4.1.8.

For
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
 we have

$$G_2\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 G_2(z) - \pi i c(cz+d)$$

 G_2 is called a quasi modular form.

Introduce (due to Hecke):

$$G_{2,s}(z) = \frac{1}{2} \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(mz+n)^2 |mz+n|^{2s}}, \Re(s) > 0$$

4.2. Modular forms of higher level

Let $N \in \mathbb{Z}_{>1}$

$$\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \mid ad - bc \equiv 1 \pmod{N} \right\}$$

Lemma 4.2.1.

The map

$$\operatorname{SL}_2 \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix}$$

is a group homomorphism.

Definition 4.2.2.

$$\Gamma(N) = \ker(\operatorname{SL}_2 \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}))$$

is called the principal congruence subgroup.

Definition 4.2.3

A subgroup Γ of $\mathrm{SL}_2(\mathbb{Z})$ is called a congruence subgroup if there exists N such that $\Gamma(N)\subseteq \Gamma$.

4. Lecture-4 (12th January, 2023): Eisenstein series

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z}) \mid c \equiv d \equiv 1 \pmod{N} \right\}$$

Part II. Elliptic Curves

5. Lecture-1:

6. Lecture-2:

7. Lecture-3 (10 January, 2023): **Projective varieties**

7.1. Projective varieties

Definition 7.1.1.

A Projective *n*-space over *k* denoted by \mathbb{P}^n or $\mathbb{P}^n(\bar{K})$ is the set $\mathbb{A}^{n+1}\setminus\{(0,\ldots,0)\}/\sim$

$$(x_0,\ldots,x_n)\sim(y_0,\ldots,y_n)$$

iff $\exists \lambda \in \bar{k}^{\times}$ such that $(y_0, \dots, y_n) = (\lambda x_0, \dots, \lambda x_n)$ The equivalence class (x_0, \dots, x_{n+1}) is denoted by $[x_0, \dots, x_n]$

The set of k-rational points of \mathbb{P}^n is

$$\mathbb{P}^n = \{ [x_0, \dots, x_n] \mid x_i \in k \}$$

Caution: If $p = [x_0, \dots, x_n] \in \mathbb{P}^n(k)$ and $x_i \neq 0$ for some i, then $x_i/x_i \in k \forall j$

Let $p = [x_0, \dots, x_n] \in \mathbb{P}^n(\bar{k})$. The minimal field of definition for p is the field

$$k(p) = k(x_0/x_i, \dots, x_n/x_i)$$
 for any i such that $x_i \neq 0$

$$k(p)=k(x_0/x_i,\dots,x_n/x_i) \text{ for any } i \text{ such that } x_i\neq 0$$

$$k(p)\tfrac{x_i}{x_j}=k(x_0/x_j,\dots,x_n/x_j) \text{ is the same as } k(p) \text{ as } x_i/x_j\in k(p)$$

For $\sigma \in G(\bar{k}/k)$ and $p = [x_0, \dots, x_n] \in \mathbb{P}^n$, we have the following action

$$\sigma(p) = [\sigma(x_0), \dots, \sigma(x_n)]$$

This action is well defined as

$$\sigma(\lambda p) = [\sigma(\lambda)\sigma(x_0), \dots, \sigma(\lambda)\sigma(x_n)] \sim [\sigma(x_0), \dots, \sigma(x_n)]$$

Definition 7.1.3.

A polynomial $f \in \bar{k}[X_0,\ldots,X_n]$ is homogenous of degree d if

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n) \forall \lambda \in \bar{k}$$

Definition 7.1.4.

An ideal $I \subseteq \bar{k}[X_0, \dots, X_n]$ is called a homogenous ideal if it is generated by homogenous polynomial.

Definition 7.1.5.

Let $I \subseteq \bar{k}[X_0, \dots, X_n]$ be a homogenous ideal. Then,

$$V(I) = \{ p \in \mathbb{P}^n(\bar{k}) \mid f(p) = 0 \ \forall \ f \in I \}$$

Definition 7.1.6. • A projective algebraic set is any set of the form V(I) for some homogenous ideal I.

- If V is a projective algebraic set, the homogenous ideal of V, denoted by I(V) is the ideal of $\bar{k}[X_0 \dots, X_n]$ generated by $\{f \in \bar{k}[X_0 \dots, X_n] \mid f \text{ is homogenous and } f(p) = 0 \ \forall \ p \in V\}$
- Such a V is defined over k, denoted by V/k if its ideal I(V) can be generated by homogenous polynomials $k[X_0, \ldots, X_n]$.
- If V is defined over k, then the set of k-rational points of V is

$$V(k) = V \cap \mathbb{P}^n(k) = \{ p \in V \mid \sigma(p) = p \ \forall \ \sigma \in G(\bar{k}/k) \}$$

Example 7.1.7.

A line in \mathbb{P}^2 is given by the equation aX+bY+cZ=0 with $a,b,c\in\bar{k}$ and not all 0 simultaneously.

If $c \neq 0$, then such a line is defined over a field containing a/c, b/c. More generally, a hyperplane in \mathbb{P}^n is given by an equation $a_0X_0 + \cdots + a_nX_n = 0$ with all $a_i \neq 0$ simultaneously.

Example 7.1.8.

Let V be the projective algebraic set in \mathbb{P}^2 given by $X^2+Y^2=Z^2$.

$$\mathbb{P}^1 \xrightarrow{\sim} V$$
$$[s,t] \mapsto [s^2 - t^2 : 2st : s^2 + t^2]$$

Remark 7.1.9.

For $p \in \mathbb{P}^n(\mathbb{Q})$ you can clear the denominators and then divide by common factor so that $x_i \in \mathbb{Z}$ and $\gcd(x_0, \dots, x_n) = 1$. So, $I = (f_1, \dots, f_m)$ and finding a rational point of V_I is same as finding coprime integer solutions to $f_i's$.

Example 7.1.10. $V\subseteq \mathbb{P}^2$ such that $X^2+Y^2=3Z^2$ over \mathbb{Q} . To find $V(\mathbb{Q})$, we just need to find integers a,b,c such that $a^2+b^2=3c^2$

 $V: 3X^3 + 4Y^3 + 5Z^3 = 0$. $V(\mathbb{Q}) = \emptyset$ but for all prime p we have $V(\mathbb{Q}_p) \neq \emptyset$

Definition 7.1.12.

A projective algebraic set is called a projective variety if its homogenous ideal I(V)is prime $k[X_0,\ldots,X_n]$

Relation between affine and projective varieties:

For $0 \le i \le n$

$$\phi_i: \mathbb{A}^n \to \mathbb{P}^n$$

$$(Y_1, \dots, Y_n) \mapsto [Y_1, \dots, Y_{i-1}, 1, Y_{i+1}, \dots, Y_n]$$

 $\operatorname{Im}(\phi) = U_i = \{ p \in \mathbb{P}^n \mid p = [x_0 : \dots : x_n] \text{ with } x_i \neq 0 \} = \mathbb{P}^n \backslash H_i.$ This process can also be reversed by the following map:

$$\phi_i^{-1}: U_i \to \mathbb{A}^n$$

 $[x_0: \dots: x_n) \mapsto [x_0/x_i, \dots, x_{i-1}/x_i, x_{i+1}/x_i, \dots, x_n/x_i]$

Let V be a projective algebraic set with homogenous ideal $I(V) \subseteq \bar{k}[X_0, \dots, X_n]$. Then,

$$V \cap \mathbb{A}^n = \phi_i^{-1}(V \cap U_i)$$
 for fixed i

is an affine algebraic set with $I(V\cap \mathbb{A}^n)\subset \bar{k}[X_0,\dots,X_{i-1},X_{i+1},\dots,X_n]$

Definition 7.1.13.

Let $V \subseteq \mathbb{A}^n$ be an affine algebraic set with ideal I(V) and consider $V \subseteq \mathbb{P}^n$ and ϕ_i defined as before.

The projective closure of V is \bar{V} is the projective algebraic set whose homogenous ideal I(V) is generated by $\{f^* \mid f \in I(V)\}$.

Here, for $f \in k[X_0, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$ we define

$$f^*(X_0,\ldots,X_n)=X_i^d(f(X_0/X_i,\ldots,X_{i-1}/X_i,X_{i+1}/X_i,\ldots,X_n/X_i))$$

with $d = \deg(f)$.

Definition 7.1.14.

Dehomogenization of $f(X_0, \ldots, X_n)$ with respect to i is $f(X_0, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_n)$

Proposition 7.1.15. 1. Let V be an affine variety. Then \bar{V} is a projective variety and $V = \bar{V} \cap \mathbb{A}^n$.

- 2. Let V be a projective variety. Then, $V \cap \mathbb{A}^n$ is an affine variety and either $V \cap \mathbb{A}^n = \emptyset$ or $V = \overline{V \cap \mathbb{A}^n}$.
- 3. If an affine (resp. projective) variety V is defined over k, then \bar{V} (resp. $V \cap \mathbb{A}^n$) is also defined over k.

Proof. 1.

2.

3.

Example 7.1.16. $V:Y^2=X^3+17\subseteq \mathbb{A}^2\to \mathbb{P}^2 \text{ with } (X,Y)\mapsto [X:Y:1]. \text{ Here, } \overline{V}:Y^2Z=X^3+17Z^3 \text{ and } \overline{V}\backslash V=\{[0:1:0]\}$

8. Lecture-4 (12th January, 2023):

Part III. Basic Algebraic Geometry

9. Lecture-1:

10. Lecture-2 (10 January, 2023):

10.1. Ideals

For I, J ideals

$$I + J = \{x + y \mid x \in I, y \in J\}$$
$$IJ = \{\sum x_i y_i \mid x_i \in I, y_i \in J\}$$

- $IJ \subseteq I \cap J$.
- If I+J=R, then $I^2+J^2=R$. This is because, say $I^2+J^2\neq R$, then there is a maximal ideal m such that $I^2+J^2\subseteq \mathfrak{m}$. This means $I^2,J^2\subseteq \mathfrak{m}$. But \mathfrak{m} is prime ideal, therefore $I,J\subseteq \mathfrak{m}\Rightarrow I+J\subseteq \mathfrak{m}$ which is a contradiction. Thus, we are done.
- If $\mathfrak p$ is a prime ideal and $IJ\subseteq \mathfrak p$. Then, $I\subseteq \mathfrak p$ or $J\subseteq \mathfrak p$. Suppose not, then there exists $x\in I\setminus \mathfrak p, y\in I\setminus \mathfrak p$. But then $xy\in IJ\subseteq \mathfrak p$.
- $\mathfrak{p} \supseteq I \cap J \Leftrightarrow IJ \subseteq \mathfrak{p}$.

10.2. Zariski topology

Definition 10.2.1. • For an ideal I, let

$$V(I) = \{\mathfrak{p} \text{ prime ideal } \mid I \subseteq \mathfrak{p}\}$$

• $\operatorname{Spec}(R) = \{ \text{ collection of all prime ideals of } R \}$

Definition 10.2.2 (Zariski Topology).

It is the topology defined on Spec(R) such that the closed sets are V(I).

Verification that this indeed is a topology.

1.
$$V(0) = \text{Spec}(R), V(R) = \emptyset$$
.

2.
$$V(I) \cup V(J) = V(I \cap J) = V(IJ)$$
.

3.
$$\bigcap_{k \in k} V_k = V(\sum_{k \in K} I_k)$$
. This is because $\mathfrak{p} \supseteq I_k \Leftrightarrow \mathfrak{p} \supseteq \sum_{k \in K} I_k$

Let us now look at the open sets of this topology. The basis for the open sets is given by

$$D(f \in R) = \{ \text{ all prime ideals not containing } f \}$$

Clearly,

$$(V(I))^c = \bigcup_{f \in I} D(f)$$

and moreover, each D(f) is open since $D(f) = (V(\langle f \rangle))^c$

Theorem 10.2.3.

 $\operatorname{Spec}(R)$ is quasi-compact.

Proof. We wish to prove that every open cover has a finite subcover. This is equivalent to saying every cover by $D(f_i)$ has a finite subcover. Say

$$\operatorname{Spec}(R) = \bigcup_{i \in I} D(f_i)$$

Take J to be the ideal generated by $f_i's$. Either J=R or $J\subseteq\mathfrak{m}$. Suppose $J\subseteq\mathfrak{m}$, then $f_i\in\mathfrak{m}\in\operatorname{Spec}(R)\Rightarrow\mathfrak{m}\not\in D(f_i)$ \forall $i\Rightarrow D(f_i)$ does not cover \mathfrak{m} . A contradiction. Therefore, J=R and this implies 1= some linear combination of f_i and notice that this sum is finite. So, just consider these finitely many $f_i's$ (say the indexing set is K). These cover J. Suppose that $\{D(f_k), k\in K\}$ do not cover $\operatorname{Spec}(R)$. Then, there is a prime ideal $\mathfrak{p}\not\in\bigcup_{k\in K}D(f_k)\Rightarrow\mathfrak{p}\ni f_k$ \forall $k\in K\Rightarrow R\subseteq\mathfrak{p}\Rightarrow\Leftarrow$. Hence, it covers all of $\operatorname{Spec}(R)$ as required.

Another proof:

Suppose $\operatorname{Spec}(R) = \bigcup_{j \in J} U_j = \bigcup_{j \in J} \operatorname{Spec}(R) \setminus \mathcal{V}(I_j) = \operatorname{Spec}(R) \setminus \bigcap_{j \in J} \mathcal{V}(I_j) = \operatorname{Spec}(R) \setminus \mathcal{V}(\sum_{j \in J} I_j)$. This is equivalent to saying that $\mathcal{V}(\sum_{j \in J} I_j) = \emptyset$. So, we conclude that $\sum_{j \in J} I_j = R \Rightarrow \sum_{k \in K} a_k = 1$ for some finite set K. We claim that $\{U_k : k \in K\}$ covers $\operatorname{Spec}(R)$. This is because

$$\mathcal{V}(\sum_{k \in K} I_k) = 0$$

$$\Rightarrow \operatorname{Spec}(R) = \operatorname{Spec}(R) \backslash \mathcal{V}(\sum_{k \in K} I_k)$$

$$= \bigcup_{k \in K} \operatorname{Spec}(R) \backslash \mathcal{V}(I_k)$$

$$= \bigcup_{k \in K} U_k$$

This completes the proof.

Proposition 10.2.4.

Each D(f) is quasi-compact.

Proof. Suppose

$$D(f) = \bigcup D(g_i)$$

and let J be the ideal generated by $g_i's$. Take $\mathfrak{p}\supseteq J$. Then, each $g_i\in J\subseteq\mathfrak{p}\Rightarrow\mathfrak{p}\not\in D(g_i)\Rightarrow\mathfrak{p}\not\in D(f)\Rightarrow f\in\mathfrak{p}\Rightarrow f\in\bigcap_{\mathfrak{p}\supseteq J}\mathfrak{p}$. Before completing this proof, we need to understand this intersection much better. Refer to following content on nilpotent elements and come back.

f is nilpotent from the result proven below.

Definition 10.2.5.

 $x \in R$ is nilpotent if $x^n = 0$ for some $n \in \mathbb{N}$.

Remark 10.2.6.

Any nilpotent element ($x^n=0$ for some n) is clearly in every prime ideal ($0\in\mathfrak{p}$) and thus in the intersection of all prime ideals. This can be recorded as

$$\bigcap_{\mathfrak{p}\supset J}\mathfrak{p}\supseteq \mathrm{Nil}(R)$$

Proposition 10.2.7.

$$\bigcap_{\mathfrak{p}\supset I}\mathfrak{p}\subseteq \mathrm{Nil}(R)$$

Proof. Take an element $x \in R \setminus Nil(R)$ (not nilpotent) and consider the set

$$\Sigma = \{ I \le R \mid x^n \notin I \ \forall \ n > 0 \}$$

Notice that Σ is a poset with respect to inclusion. And every chain $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ has an upper bound (union of all the ideals). Thus, we can apply Zorn's lemma to get a maximal element $\mathfrak p$ which we claim is prime. Indeed, if $ab \in \mathfrak p$ but $a \notin \mathfrak p, b \notin \mathfrak p$ then $\mathfrak p + \langle a \rangle, \mathfrak p + \langle b \rangle$ are ideals strictly containing $\mathfrak p$ contradicting maximality of $\mathfrak p$. Therefore, we can conclude that $x \notin \mathfrak p \Rightarrow x \notin \bigcap_{\mathfrak p \supseteq J} \mathfrak p$ or rather not nilpotent implies not in intersection and hence we have proved the required inclusion.

11. Lecture-3 (12th January):

Part IV. Algebraic Geometry I

12. Lecture-1 (9th January, 2023): Topological properties and Zariski **Topology**

12.1. Topological properties

Consider a topological space X.

Definition 12.1.1. 1. We say X is quasi-compact if every open cover of X admits a finite subcover.

2. If $f:X\to Y$ is continuous, we call f quasi-compact if $f^{-1}(V)$ is quasicompact for all quasi-compact open $V \subseteq Y$.

Exercise 12.1.2. Composition of quasi-compact maps is quasi-compact.

Lemma 12.1.3. X quasi-compact and $Y \subseteq X$ is closed implies Y is quasi-compact. Proof. Proposition 12.1.4. If X is quasi-compact and Hausdorff, then $E \subseteq X$ is quasi-compact iff E is closed. Proof. Lemma 12.1.5.

Any finite union of quasi-compact spaces is quasi-compact.

Proof.

Suppose Σ is a poset. Σ satisfies acc if every ascending chain

$$x_1 \le x_2 \le \cdots$$

is stationary.

12. Lecture-1 (9th January, 2023): Topological properties and Zariski Topology

Lemma 12.1.6.

The following are equivalent:

- 1. Σ satisfies acc.
- 2. Every non-empty subset of Σ has maximal element.

Definition 12.1.7.

A topological space is called Noetherian if set of all closed subsets of X satisfies dcc.

Lemma 12.1.8.

X Noetherian implies X is quasi-compact.

Lemma 12.1.9.

If X_1, \ldots, X_n are Noetherian subspaces of X, then so is $X_1 \cup X_2 \cup \ldots \cup X_n$

Lemma 12.1.10.

Quasi-compact and locally Noetherian implies Noetherian.

Exercise 12.1.11. Give an example of a ring R such that $\operatorname{Spec}(R)$ is Noetherian but R is not.

Definition 12.1.12.

A topological space X is called irreducible if it cannot be written as finite union of proper closed subsets.

A closed subset $Y \subseteq X$ is called irreducible component of X if it is a maximal irreducible closed subset of X.

Lemma 12.1.13.

If X is Noetherian and $Y \subseteq X$ is a subspace, then Y is Noetherian.

Lemma 12.1.14.

Let X be Noetherian. Then, X has finitely many irreducible components.

Lemma 12.1.15.

X is Noetherian implies there exists an unique expression $X = X_1 \cup \cdots \cup X_n$ where $X_i's$ are irreducible components of X.

Lemma 12.1.16.

Suppose X is Noetherian and $X_1 \subseteq X$ an irreducible component. Then, X_1 contains a non-empty open set in X.

Definition 12.1.17.

Let X be a topological space. We say that X is a spectral space if the following holds:

- 1. X is quasi-compact.
- 2. X is T_0 .
- 3. X has a basis of quasi-compact open sets.
- 4. Every irreducible closed subset of X has a generic point $(\exists x \in Y \text{ such that } \{x\} = X)$

12.2. Zariski Topology

Let A be a commutative ring with identity and $X = \operatorname{Spec}(A)$.

Zariski topology is the unique topology such that a subset $Y \subseteq X$ is closed iff $Y = \mathcal{V}(I)$ for some ideal $I \subseteq A$. Here,

$$\mathcal{V}(I) = \{ \mathfrak{p} \in X \mid \mathfrak{p} \supseteq I \}$$

Theorem 12.2.1.

 $\operatorname{Spec}(A)$ is always spectral.

Proof. 1. X is T_0

2. X is quasi-compact.

Let $\{U_i\}$ be an open cover of X. WLOG, we can assume that $U_i = \operatorname{Spec}(A_{f_i}), f \neq 0$. Let I be the ideal generated by these $f_i s$.

Case-1: Suppose that $I \neq A$. Then there exists a maximal ideal $\mathfrak{m} \supseteq I \Rightarrow \mathcal{V}(\mathfrak{m}) \subseteq \mathcal{V}(I) \Rightarrow X \setminus \mathcal{V}(\mathfrak{m}) \supseteq X \setminus \mathcal{V}(I) = X \setminus \bigcap_{i \in I} \mathcal{V}(f_i) = \bigcup U_i = X$ which is absurd.

12. Lecture-1 (9th January, 2023): Topological properties and Zariski Topology

Hence, we conclude that I = A. Next,

$$1 = \sum_{i=1}^n a_i f_i \qquad \qquad \text{for some } a_i \in A$$

$$\Rightarrow \bigcup_{i=1}^n U_i = \bigcup_{i=1}^n X \backslash \mathcal{V}(f_i)$$

And, we get the required refinement.

- 3. *X* has a basis of quasi-compact open sets follows from the above.
- 4. Let $Y \subseteq X$ be an irreducible closed subset. Then, $Y = \operatorname{Spec}(A/I)$. WLOG, we can assume X is irreducible. Next, observe that $\operatorname{Spec}(A) = \operatorname{Spec}(A/\operatorname{Nil}(A))$.

13. Lecture-2 (11th January, 2023): Zariski topology and affine schemes

13.1. Zariski topology contd..

Theorem 13.1.1 (Hochster).

Every spectral space is homeomorphic to $\operatorname{Spec}(A)$ for some commutative ring A.

Notation: Ring be the category of commutative rings, **Top** be the category of topological spaces.

Theorem 13.1.2.

There is a contravariant functor

$$sp : \mathbf{Ring} \to \mathbf{Top}$$

 $\mathrm{Spec}(B) \mapsto \mathrm{Spec}(A)$

Proof. Consider $f: A \to B$. This induces a map

$$f_{\#}: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

such that $f_{\#}(\mathfrak{p}) = f^{-1}(\mathfrak{p})$. We claim that $f_{\#}$ is continuous. This can be seen as follows: Take a basic open set $U = \operatorname{Spec}(A_a)$ and b = f(a). Then, it is easy to see that $f_{\#}^{-1}(U_b) = U_a$.

13.2. Affine schemes

Definition 13.2.1.

 $\operatorname{Spec}(A)$ will be called an affine "scheme" (we will see this properly later on).

Definition 13.2.2.

Let $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B)$. Let $f: Y \to X$ be a continuous map. We call such a map f regular (holomorphic) if there is a ring homomorphism $g: A \to B$ such that $f = g_{\#}$

Example 13.2.3.

Take $\operatorname{Spec}(\mathbb{Z})$ and consider the constant map. This cannot be regular because any ring homomorphism must take 1 to 1 and as a consequence fixes every element.

Proposition 13.2.4.

If $X = \operatorname{Spec}(A)$. A regular function on X is a regular map from X to $\operatorname{Spec}(\mathbb{Z}[t])$.

Remark 13.2.5.

On an affine scheme, the set of all regular maps is the ring A itself since, the map $\mathbb{Z}[t] \to A$ is determined by where t is sent to.

Lemma 13.2.6.

Every affine scheme has a closed point.

Proof. Every commutative ring has a maximal ideal.

Definition 13.2.7.

Open in affine is called quasi-affine.

Example 13.2.8.

Take A a local integral domain with $\mathfrak m$ the maximal ideal. Suppose that all prime ideals of A are of the form

$$\langle 0 \rangle \subset \mathfrak{p}_1 \subset \mathfrak{p}_2 \subset \cdots \subset \{\mathfrak{m}\}\$$

Consider $X = \operatorname{Spec}(A) \backslash \mathfrak{m}$. X is open in affine scheme but has no closed point.

An example of such a ring is

$$\Gamma = \mathbb{Z}x_1 \oplus \mathbb{Z}x_2 \oplus \cdots$$

Give an ordering: $\sum a_i x_i \ge 0$ if the first nonzero term is > 0 or all $a_i = 0$

Exercise 13.2.9. Let $A = k[X_1, X_2, \ldots], B = A_{\mathfrak{m}}, X = \operatorname{Spec}(B) \backslash \mathfrak{m}, \mathfrak{m} = \langle X_1, X_2, \ldots, \rangle$. Claim is that X has no closed point.

13.2.1. Fiber products of affine schemes

Suppose A is a commutative ring, B, C are A-algebras. Let $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B), Z = \operatorname{Spec}(C)$. Next, suppose we have

$$\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow g \\
C
\end{array}$$

Universal property of fiber products:

Definition 13.2.10.

If a W exists such that the universal property is satisfied, then W is called the fiber product of Y,Z over X and we write $W=Y\times_X Z$

Theorem 13.2.11.

 $\mathbf{Aff}_{\mathbb{Z}} = \mathbf{category}$ of affine schemes admits fiber products.

Proof. Consider the following data:

$$\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow g \\
C
\end{array}$$

Let $D = B \otimes_A C$. We have the natural maps $f_1 : B \to B \otimes B \otimes C$ sending $b \mapsto b \otimes 1$ and $f_2 : C \to B \otimes C$ sending $c \mapsto 1 \otimes c$. Both are ring homomorphisms and fit into the following diagram due to the nature of tensor product

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow g \downarrow & & \downarrow f_1 \\
C & \xrightarrow{g_1} & B \otimes C
\end{array}$$

Now, let $W = \operatorname{Spec}(B \otimes_A C)$ and we claim that this satisfies the universal property of fibre product. Apply $\operatorname{Spec}(-)$ functor to the diagram to get

$$A \leftarrow f_{\#} \qquad B$$

$$g_{\#} \uparrow \qquad \uparrow f_{1\#}$$

$$C \leftarrow g_{1\#} \operatorname{Spec}(B \otimes_{A} C)$$

From the universal property of tensor product we have the following diagram

13. Lecture-2 (Ilth January, 2023): Zariski topology and affine schemes

Again, apply the Spec(-) functor.

This completes the proof.

14. Lecture-3:

Part V. Topics in Analytic Number Theory

15. Lecture-1: Hardy-Littlewood proof of infinitely many zeros on the line $\Re(s)=1/2$

16. Lecture-2:

17. Lecture-3 (10th January, 2023): Siegel's theorem

Theorem 17.0.1 (Siegel).

Let $\chi(q)$ be a real Dirichlet character modulo $q \geq 3$. Given any $\epsilon > 0$, we have

$$L(1,\chi) \ge \frac{C_{\epsilon}}{q^{\epsilon}}$$

A trivial lower bound: $L(1,\chi) \gg q^{-1/2}$

Goldfeld's proof. Consider

$$f(s) = \zeta(s)L(s,\chi_1)L(s,\chi_2)L(s,\chi_1\chi_2)$$

with $\chi_i, i=1,2$ primitive quadratic characters. Notice that $f(s)=\sum_n b_n n^{-s}$ with $b_1=1,b_n\geq 0$. Let $\lambda=\mathrm{Res}_{s=1}f(s)=L(1,\chi_1)L(1,\chi_2)L(1,\chi_1\chi_2)$

Lemma 17.0.2.

Given any $\epsilon > 0$, one can find $\chi_1(q_1)$ and β with $1 - \epsilon < \beta < 1$ such that $f(\beta) \le 0$, independent of what $\chi_2(q_2)$ is.

Proof. Case-1: If there are no real zeros of $L(s, \psi)$ for any primitive quadratic character in $(1 - \epsilon, 1)$, then $f(\beta) < 0$ for any $\beta \in (1 - \epsilon, 1)$. This is because

$$f(\beta) = \underbrace{\zeta(\beta)}_{<0} \underbrace{L(s, \chi_1) L(s, \chi_2) L(s, \chi_1 \chi_2)}_{>0}$$

as $L(1,\chi) > 0$ and L is continuous so any change of sign will lead to a zero which is a contradiction.

Case-2: If we cannot find such a ψ , then just set $\chi_1 = \chi$ and let β be the real zero. Then, $f(\beta) = 0$. We are done.

Next, consider the integral

Corollary 17.0.3.

17. Lecture-3 (10th January, 2023): Siegel's theorem

$$h(-d) = \frac{L(1, \chi_d)\sqrt{|d|} \omega}{2\pi}$$
$$= \frac{L(1, \chi_d)}{\log \epsilon_d}$$

Theorem 17.0.4 (Y. Zhang).

$$L(1,\chi) \ge \frac{c}{(\log q)^{2022}}$$

Theorem 17.0.5.

If $\chi(q)$ does not have a Siegel zero, then $L(1,\chi)\gg \frac{1}{\log q}$

18. Lecture-4 (12th January, 2023):