Artificial Intelligence: State Space Search port 3 Informed Search Hill Climbing video #4

Russell & Norvig - Sections 3.5.1, 3.5.2, 4.1.1

Today

- State Space Representation
- State Space Search
 - Overview
 - Uninformed search
 - Breadth-first Search and Depth-first Search
 - Depth-limited Search
 - Iterative Deepening
 - 4. Uniform Cost
 - c) Informed search
 - Intro to Heuristics ARE HERE!
 Hill Climbing
 - Hill Climbing
 - Greedy Best-First Search
 - Algorithms A & A*
 - More on Heuristics
 - Summary

h(n)

 \neg h(n) = estimate of the lowest cost from n to goal

Hill Climbing

General idea:

健忘症

- Similar to climbing a mountain in the fog with amnesia ...
- in the fog
 - --> only 1-step view of what is to come, so 只能看见下一步,如果能爬的更高,go,不然到顶了
 - if next step seems higher than where you are now -> go
 - otherwise, you assume you are at the top of the mountain -> stop
- □ **with amnesia -->** 没法backtrack,no open list
 - if you ever want to try other path, you can't because you did not keep track of where you came from

可能达到的是local optimization

Vanilla HC vs Steepest Ascent HC

General Hill Climbing

uses h(n)

共同点

does not use an open list (amnesia)

- 1. Vanilla Hill Climbing
 - □ take 1st successor s with better h() than current state n
 - i.e. if lower h(n) is better, chose 1st s with h(s) < h(n) // deep diving 只要有比当前state好的successor, take it, 哪怕有别的备选项
- 2. Steepest ascent hill climbing:
 - generate all successor states S
 - \neg run h() on all $s \in S$ 评估所有successor,找到最好的h(n)
 - among all successors s with better h() than current state n, take
 the successor s with the best h(n)

通常来说steppest比vanilla强,但是有时候你有很多child branching(导致复数h(n)用时久),这时选Vanilla

h

initial state

Heuristic:

goal state

回(り**pickup&putOnTable(Block)** 从Stack顶上取一个放到

pickup&stack(Block1,Block2) 1顶上取一个放到 2页 F

I stack on top of a stack

Opt if a block is sitting where it is supposed to sit

花最小step从initial state到goal state

+1pt if a block is NOT sitting where it is supposed to sit +1如果不在应该在的相对位置上

- so lower h(n) is better
 - h(initial) = 2 H在G上, G在F上.....但B不在A上, A不在地上, 所以是处
 - h(goal) = 0heuri si ti c的goal 必须是0

Example: Hill Climbing

hill-climbing, 会停下

但有的算法,可以让你做到即使当前结果更差 但只是暂时的temperarily,为了达到最终goal 例如拧魔方,一面全红,为了六面完美 要打乱一面全红

h(n) = 2

hill-climbing will stop, because all children have higher h(n) than the parent... --> local minimum

pickup&stack(A,H)

pickup&putOnTab1e

pickup&putOnTable(H)

A

Don't be confused... a lower h(n) is better...

Steepest Ascent Hill Climbing

```
currentNode = startNode;
  loop do
     L = CHILDREN(currentNode);
     nextEval = +INFINITY;
     nextNode = NULL;
     for all c in L
       if (HEURISTIC-VALUE(c) < nextEval) // lower h is better
          nextNode = c;
          nextEval = HEURISTIC-VALUE(c);
      if nextEval >= HEURISTIC-VALUE(currentNode)
        // Return current node since no better child state exist
        return currentNode;
      currentNode = nextNode:
```

Problems with Hill Climbing

- Foothills (or local maxima)
 - reached a local maximum, not the global maximum
 - a state that is better than all its neighbors but is not better than some other states farther away.
 - at a local maximum, all moves appear to make things worse.
 - ex: 8-puzzle: we may need to move tiles temporarily out of goal position in order to place another tile in goal position

Use of Hill Climbing

mostly for optimization problems

 i.e. goal defined not as a function of the state alone, but with respect of other states (eg. the best state I can reach)

Source: Andrew Ng

Today

- State Space Representation
- 2. State Space Search
 - a) Overview 🗸
 - b) Uninformed search \checkmark
 - Breadth-first Search and Depth-first Search
 - 2. Depth-limited Search
 - Iterative Deepening
 - 4. Uniform Cost 🗸
 - c) Informed search
 - 1. Intro to Heuristics
 - 2. Hill climbing V
 - 3. Greedy Best-First Search h(n)
 - 4. Algorithms A & A*
 - 5. More on Heuristics
 - d) Summary

Problem with Hill-Climbing

- used mostly for optimization problems
 - where the goal state is defined with respect to other states
 - ex. shortest path, longest....
- if goal state is independent of other states
 - we should be able to backtrack, and find another path to the goal
 - i.e. we should use an OPEN list
 - i.e. Gready Best First Search

Up Next

- State Space Representation
- 2. State Space Search
 - a) Overview
 - ы Uninformed search
 - 1. Breadth-first and Depth-first
 - 2. Depth-limited Search
 - 3. Iterative Deepening
 - 4. Uniform Cost
 - c) Informed search
 - Intro to Heuristics
 - 2. Hill climbing
 - 3. Greedy Best-First Search
 - 4. Algorithms A & A*
 - 5. More on Heuristics
 - d) Summary