Self-Sustained Penrose Excitation

A Spin-Regulated Mechanism for Super-Eddington Quasar Luminosities

1. The Puzzle: Super-Eddington Quasars & Spin Ceiling

Quasars often shine brighter than the Eddington limit ($L_{\rm Edd}$), sometimes by factors of 2-10x. Standard models struggle to explain this. Furthermore, observations suggest SMBH spins (a_*) rarely exceed unity, hinting at a self-regulating mechanism.

2. Core Mechanism: Equatorial Penrose Excitation

Near extremal spin $(a* \to 1)$, an equatorial return current sheet forms at the ISCO-ergoregion interface. Magnetic reconnection ejects plasmoids.

- Within the ergoregion, these plasmoids undergo a **Penrose split**:

 A **negative-energy branch** (Ε_ΠΩ_HL<0) falls into the black hole.
- A **positive energy branch ** $E = \Omega M \times U(W)$ heating (inner disk) uatorial quasi-beam.
- A fraction (count of this beam reheats the inneradisk doosting luminosity and extracting angular momentum, which enforces the spin ceiling.

3. Simulator: Spin & Luminosity

The plot shows the total luminosity ($L_{\text{tot}} = L_{\text{acc}} + L_{\text{self}}$) vs. spin (a_*), assuming a

4. Key Observational Signatures (The 'Hooks')

Target: high spin ($a > a_{th}$), high λ , transparency ($\ell \lesssim 30$)

ullet Hook (Support): energy-dependent Fe Klpha/UV lags; spin-dependent polarization; EUV/MeV shoulder