ORGANIC CHEMISTRY

I. OVERVIEW

- Organic Chemistry: the study of organic compounds
 - → Contains (C, H, O, N, P, S, X (F, Cl, Br, I)

Carbon Properties

- Catenation: ability to form chains
- Isomerism: two or more compounds with the same molecular formula but different structure
- Stability: following the octet rule
- Hybridization: mixing of 2 or more nonequivalent atomic orbitals to form a new set of equivalent or degenerate hybrid orbitals
 - \rightarrow E.g., sp³, sp², sp
 - → There are 3 main groups of geometries of organic molecules

Geometries of Organic Compounds

- sp³/tetrahedral shape
 - → configuration of <u>alkanes</u>
- sp²/trigonal planar shape
 - → configuration of <u>alkenes</u>
- sp/linear shape
 - → configuration of <u>alkynes</u>

II. CLASSIFICATION OF ORGANIC COMPOUNDS

Hydrocarbons

Aliphatic Hydrocarbons

- Saturated: usually alkanes
 - → Contains only single bonds
- <u>Unsaturated</u>: alkenes (double bonds), alkynes (triple bonds)
- <u>Cyclic alkanes</u>: occurs when electrons are removed and the structure connects to itself, instead of forming terminal ends

Aromatic Hydrocarbons

- Also known as polyaromatic hydrocarbons or arenes
- Prototype: benzene
- Most are polycyclic benzenoids/polyaromatic HC
 - → Benzene rings that are fused together
 - → Examples: benzene, naphthalene, anthracene
- Benzo[alpha]pyrene undergoing phase I (functionalization) → diol epoxide derivatives or BPDE (carcinogenic component) → generate free radicals

- → From automobile exhaust, charcoal, tar in cigarettes
- → NTK: Breast cancer is not smokingdependent

Hydrocarbon Derivatives

Halogen-containing

- Alkyl halides (H-X)
- Aryl halides (Ar-X)
- Examples:
 - → Propellants in aerosols (CFCs)
 - → Insecticides (DDT)
 - → Non-stick pans (Teflon)

Sulfur-containing

- Thiols (R-SH)
 - → Analog of alcohols
 - Cysteine
 - → Odor of flatulence, garlic odor, "rotten egg" odor
- Thioethers (R-S-R)
 - → Methionine

Phosphorus-containing

- Phosphates
 - → ATP, Glucose-6-phosphate
- Organophosphates
 - → Pesticides: Malathion, Parathion
 - → Nerve agents: Sarin, Tabun, Soman

Nitrogen-containing

- Amines (-NH2)
- Nitriles (R-C≡N) cyano
- Nitro (R-NO₂)
- Heterocyclic nitrogen compounds
 - → Pyrimidine, Purine, Alkaloids
 - → Melamine
 - Adulterant in milk
 - "as high apparent protein content"
 - Total N-content measured by Kjiedahl method

- → Melaware polymerized melamine
 - Causes kidney stones or renal failure in babies

Oxygen-containing

- Alcohols/phenols (ROH and ArOH) <u>Hydroxyl</u>
- Ethers (R-O-R) Alkoxy
- Aldehydes and ketones (RCHO and RCOR) Carbonyl
- Carboxylic acids (COOH) <u>Carboxyl</u>
- Carboxylic derivatives
 - → Esters (RCOOR)
 - → Amides (RCONH₂)
 - → Anhydride (O
 - → Acyl halides (RC=O X)

III. ISOMERISM

- Existence of two or more compounds of the same molecular formula but different structures
- Difference are based on:
 - → Order of bonding
 - → Spatial orientation
 - Arrangement of atoms in space
 - NTK: Racemic mixtures involve atoms of equal quantity of S & R isomers
 - Some isomers are more active
 - 40 mg of (S)-isomer omeprazole was discovered to be more potent than 40 mg of omeprazole

Classification of Isomers

- Structural or Constitutional isomers
 - → Chain
 - → Position of substituents
 - → Functional
- Stereoisomers
 - → Geometric (cis/trans) substituents containing double bonds
 - → Conformational
 - → Optical or configurational (using polarimeter for determination)

Structural Isomers

Chain Isomers

- Branching exhibited, also in the ability to form chains
 - \rightarrow $C_NH_{(2N+2)}$
 - Ex. C₄H₁₀ CH₃CH₂CH₂CH₃
 - Based on the formula, it can be n-butane if straight chain
 - Can be isobutane or 2-methyl propane if one of the methyl groups is placed or connected to C-2, making the structure symmetrical (iso)

- NTK: Naming of the longest alkane chain (parent chain)
 - → Place "n-" prefix if normal/straight chain

Position Isomers

- Differences in the position of a multiple bond
 - → Ex. C₄H₈ alkene w/ 1 double bond
 - Can be named as:
 - 1-butene (CH₂=CHCH₂CH₃)
 - 2-butene (CH₃CH=CHCH₃)
- Differences in the position of a substituent of a functional group
 - → Ex. C3H7Br
 - Can be named as:
 - 1-bromopropane
 - 2-bromopropane
- Disubstituted benzenes
 - → Occurs in positions:
 - Ortho- (1,2-)
 - Meta- (1,3-)
 - Para- (1,4-)

Functional Isomers

- Similarities in molecular formula but difference in functional group formed
- Examples:
 - → Alcohols and ethers as functional isomers
 - C₂H₆O can be:
 - Ethanol (CH₃CH₂OH)
 - Methyl ether (CH₃OCH₃)
 - → <u>Aldehydes and ketones</u> as functional isomers
 - C₃H₆O can be:
 - Propanal
 - Propanone/ acetone
 - → <u>Carboxylic acids and esters</u> as functional isomers
 - C₃H₆O₂ can be:
 - Propanoic acid

$$H_3C$$
 OH

Methyl ethanoate or methyl acetate

Index of Hydrogen Deficiency (IHD)

$$IHD = \frac{2C + 2 - H - X + N}{2}$$

$$IHD = 0 \Rightarrow \text{saturated}$$

$$IHD = 1 \Rightarrow \text{double bond or cyclic}$$

$$IHD = 2 \Rightarrow \text{triple bond}$$

Benzene: IHD = 4

Stereoisomers

Geometric Isomers

- Occurs in:
 - → Double bonds
 - → Cyclic structures
- Types of Geometric Isomers
 - Cis/trans isomerism disubstituted alkene; same substituents
 - → Cis = functional groups are on the same side
 - → Trans = functional groups are on the opposite side

trans-1,2-dichloroethene

ांड-1,2-dichloroethene

- **2.** <u>E/Z isomerism</u> tri-/tetra-substituted alkenes; same priority
 - → E = "entgegen"

 - \rightarrow Z = "zusammen"
 - "Zame zide" together

(E) -1,2-dichloroethene

(Z)-1,2-dichloroethene

- Prioritization according to the Cahn-Ingold-Prelog Sequence
 - → ↑ atomic # → ↑ priority

Conformational Isomers

- Results from the different ways an atom can flex and bend due to:
 - → Rotation along a single bond
 - Occurs in acyclic and open chain
 - Ex. Ethane (CH3CH3)
 - → Ring flipping
 - Occurs in cyclic structures
 - Ring strain from angle strain and torsional strain
- Factors affecting rotation and stability
 - → Torsional energy (TE)
 - Energy needed to resist a conformation

 - TE of eclipsed > TE of staggered
 - → Steric effect / "crowding"
 - Bulky groups
 - Crowding = Ψ stability

- Graphical Representations of Conformational Isomers
 - → Saw horse formula

→ Perspective (dash and wedge) formula

- → Newman projection formula
 - Eclipsed
 - Staggered more stable

- Conformation of butane
 - Stability: anti > gauche > E₂ > E₁

fully eclipsed go (eclipsed) (sta θ_{Me/Me} = 0° θ_M

gauche (staggered) θ_{Me/Me} = 60°

eclipsed (eclipsed) θ_{Me/Me} =120°

anti (staggered) $\theta_{Me/Me} = 180^{\circ}$

- Factors affecting ring strains
 - → Angle strain
 - → Torsional strain
 - → Examples
 - Cyclobutane: planar < butterfly (less strain)
 - Cyclopentane: planar < envelope

"Flat" cyclopentane

"Envelope" cyclopentane

Cyclohexane: planar < boat < chair

Planar Structure severe angle strain (120°) severe eclipsing strain (all bonds) small storic strain

Boat Conformation slight angle strain eclipsing strain at two bonds steric crowding of two hydrogens

Twist Boat Conformatio slight angle strain small eclipsing strain small steric strain

Chair Conformation no angle strain no eclipsing strain small steric strain

Optical Isomers

- Optical activity: ability of a compound to rotate a plane-polarized light either to the right or to the left
 - → Uses a polarimeter
- Structural requirement for optical activity
 - → Chiral center/ stereogenic C carbon with 4 different groups or substituents
 - → No symmetry element
- **Dextrorotatory** = d/(+); to the right
- **Levorotatory** = 1/(-); to the left
- Types

	Forms mirror images?	Super- imposable?
Enantiomers	Yes	No
Diastereomers	No	No
Mesocompounds - same compounds - optically inactive (since these are symmetrical	Yes	Yes

Two Systems to Designate Configuration

- → D & L system
 - Common in biochemistry especially in sugar and amino acids
 - Orientation of hydroxyl (-OH) at chiral center

D-Glyceraldehyde

L-Glyceraldehyde

→ R & S system

- R/rectus right (clockwise)
- L/sinister left (counterclockwise)
- Determination of R, S through Cahn-Ingold-**Prelog Sequence**

- Examine the atoms attached to the central carbon. Prioritize these atoms according to atomic number.
 - Hydrogen is the lowest possible priority substituent and must be placed at the
 - Draw an arrow from the highest priority to the second and then the third priority substituents

- → In a structure, a <u>counterclockwise</u> direction, configuration at stereocenter considered S ("Sinister" → Latin= "left").
- → If, however, the arrow points clockwise then the stereocenter is labeled R ("Rectus" → Latin= "right").

NTK:

- → Wedges indicate coming towards the viewer.
- → Dashes indicate pointing away from the viewer.

Racemic mixture

- → Equal amount/ concentration of R & S or d & I isomers
- → Optically inactive
- → Examples of isomers which produce difference side effects:
 - R-thalidomide → sedative, hypnotic
 - S-thalidomide → teratogenic (i.e. Phocomelia, Amelia)
- Example: Tartaric acid

→ From L-R: I, II, III, IV

Mesocompounds: III and IV Diastereoisomers: II and III

Stereoisomers: I and II

IV. HC: ALIPATHIC Alkanes, Alkenes, and Alkynes

Alkanes	Alkenes	Alkynes
$C_nH_{(2n+2)}$	$C_nH_{(2n)}$	$C_nH_{(2n-2)}$
Saturated	Unsaturated	Unsaturated
hydrocarbons	hydrocarbons	hydrocarbons
Single bond	Double bonds	Triple bonds
(sp ³)	(sp²)	(sp)
Reactions are	Most reactive	
essentially inert	among the three	
Aka Paraffins	Aka Olefins	
Suffix = "+ane"	Suffix = "+ene"	Suffic = "+yne+
IUPAC naming:	IUPAC naming:	IUPAC naming:
Root word + "-	Position of the	Position of the
ane"	double bond +	triple bond +
	root word + "-	root word + "-
	ene"	yne"

- # of carbons and root word
 - \rightarrow 1 meth-
 - \rightarrow 2 eth-
 - \rightarrow 3 para-
 - \rightarrow 4 but-
 - \rightarrow 5 pent-

Chemical Reactions

Alkanes

- Essentially inert under most conditions
- Types
 - → Displacement
 - → Addition
 - → Elimination
 - → Rearrangement
 - → Reduction-oxidation
- Combustion
 - → Redox reaction
 - $\rightarrow C_n H_{2n+2} \xrightarrow{complete} CO_2(g) + H_2O(l)$
 - $\rightarrow C_n H_{2n+2} \xrightarrow{incomplete} CO_2 + H_2O + CO + C \text{ (soot)}$
 - → Will be based on the present O₂ supply
- Halogenation
 - → Free radical substitution
 - \rightarrow $CH_3CH_3 + X_2(Cl_2 \text{ or } Br_2 \xrightarrow{UV \text{ or } \Delta} CH_3CH_2X + HX$ (alkyl halide)
 - → Example:
 - $\bullet \quad CH_4 + Cl_2 \xrightarrow{UV \text{ or } \Delta} CH_3Cl + HCl$
 - Will also form and proceed to other products (usually low due to the concept of limiting reagents
 - CH₂Cl₂
 - CHCl₃
 - CCI₄

REVIEW: Chain Reaction Mechanism

- <u>Chain initiation</u> free radical formation (unpaired electrons) through homolytic cleavage
 - $\rightarrow Cl_2 \stackrel{UV}{\rightarrow} 2Cl$
- Chain propagation
 - \rightarrow $CH_4 + Cl \rightarrow CH_3 + HCl$
 - \rightarrow $CH_3Cl_2 \rightarrow CH_3Cl + Cl$
 - \rightarrow $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
- Chain termination
 - \rightarrow 2 $Cl \rightarrow Cl_2$
 - \rightarrow $CH_3 + Cl \rightarrow CH_3Cl$
 - \rightarrow $CH_3 + CH_3 \rightarrow CH_3 CH_3$

Alkenes

- More reactive due to more diffused electrons
 - → Greater instance of reactivity
- Addition of Hydrogen: Catalytic Hydrogenation
- Principle involved: electrophilic addition reaction

REVIEW: Types of Organic Reagents

- Electrophiles (E⁺)
 - → Electro-loving
 - → Electron pair acceptor
 - → (+) reagents
- Nucleophiles (Nu⁻)
 - → Electron-rich
 - → Electron pair donor
 - → (-) reagents

REVIEW: Markonikov's Rule

- H adds to carbon with greater # of H substituents (less substituted carbon)
- X adds to carbon with lesser # of H substituents (more substituted carbon)
 - → Based on stability of carbonation intermediate

Alkenes: Electrophilic Addition Reaction

- Addition of Halogen: Halogenation
 - → Reagent: X₂ + CHCl₃ or CCl₄
 - Product: Alkyl halide vicinal (nonpolar)

- → Reagent: X₂ + H₂O
 - Product: Halohydrin (polar)

Addition of Hydrohalogen (HX): Hydrohalogenation

→ Product: Alkyl halide

Hydration

- → Addition of water (as a nucleophile)
- → Initially no reaction
 - But upon exposure to acid, reaction occurs

Alkenes: Reduction-Oxidation

Reduction

- → Removal of O₂ or addition of H
- → Hydrogenation
 - Used in the production of margarine
 - Fixed oils and unsaturated FAs will produce saturated FAs (solid form) upon exposure to an acidic environment

Oxidation

→ Hydroxylation

- Formation of "glycol" + brown precipitate (MnO2) in basic/neutral condition
- Also called vicinal diol
- Must occur in basic environment and cold temperatures
- Alternative catalyst: Osmium tetroxide
- Principle behind Bayer's test for unsaturation (VR: brown precipitate)

→ Oxidative Cleavage

If performed in acidic condition

- Results to a colorless solution (from the products, Mn ions)
- Products of alkene + MnO₄
 - If there is CH₂ = CO₂ will be produced
 - If there is RCH = RCHOOH will be produced
 - If there is RCHR = RR'CO will be produced

Alkynes

- Via electrophilic addition reactions
 - → Since alkynes are electron rich (1 □, 2 □ bonds),

Reduction to alkenes

- → A continuous reaction that proceeds to forming alkanes
 - In the presence of an acid environment
 - Catalysts: Pd, Pt, Ni

$$H_3C \longrightarrow CH_3$$
 $H_3C - CH_2 - CH_2 - CH_3$

→ If only the alkene form is desired, used Lindlar's reagent as the catalyst

• Electrophilic addition

- → Hvdration
 - Addition of H₂O with H₃O⁺ medium and HgSO₄ as the catalyst
 - Product: Enol, but will undergo rearrangement called "Keto-enol Tautomerism"

V. HC: AROMATIC

Aromaticity

- Benzene and its derivatives
- Criteria for aromaticity:
 - → Cyclic
 - → Flat or planar sp² hybridization (trigonal planar)
 - → Conjugated alternating double bonds
 - → Follows Huckel's Rule
 - $4n + 2 = number of \pi$ electrons (where n = 0, 1, 2, 3, any integer)
- Examples (from L-R): benzene (6 πe-s), naphthalene (10πe-s), cyclobutadiene (antiaromatic compound following "4n rule")

IUPAC Nomenclature

- Substituted substitute + benzene
- Examples (from L-R): methylbenzene (toluene),
 hydroxybenzene (phenol), aminobenzene (aniline)

Chemical Reactions

 Principal Involved: Electrophilic Aromatic Substitution

Nitration

- Reagents: concentrated HNO₃ + concentrated H₂SO₄
- Electrophile: NO₂+ (nitronium ion)
- Product: nitrobenzene

Halogenation

- Reagents: X₂ (Cl₂, Br₂) + FeX₃ (FeCl₃/FeBr₃) as a Lewis acid catalyst
- Electrophile: X⁺ (halonium ion)
- Product: acyl halide (such as bromobenzene or chlorobenzene)

Friedel-Craft's Alkylation

- Reagents: R-Cl + AlCl₃ as a Lewis acid catalyst
- Electrophile: R⁺ (carbonium ion or carbocation or carbonium ion)
- Product: alkylated benzene

Friedel-Craft's Acylation

- Reagents: R cı (acid-Cl) + AlCl₃ as a Lewis acid catalyst
- Electrophile: R—c=; (acylium ion)
- Product: acylated benzene

Sulfation

- Reagents: SO₃ + concentrated H₂SO₄ (fuming sulfuric acid)
- Electrophile: sulfonium ion
- Product: acylated benzene
- Only reversible reaction

Effects of Substituents

Pattern 1: ortho- and para- products are major; meta product is minor

Ortho- and Para-directing Activators

 \rightarrow Strongly activating: -OH, -OR, -NH₂, -NHR, -NR₂

→ Moderately activating:

→ Weakly activating: -R, -benzene, -CH=CH₂

Meta-directing Deactivators

- \rightarrow Strongly deactivating: -NO₂, -NR₃, -SO₃H, -CN
- → Moderately deactivating: -CHO, -COR, -COOH, -COX

Ortho- and Para-directing Deactivators

→ Weakly deactivating: halogens (F, Cl, Br, I)

VI. HC DERIVATIVES: ALCOHOLS

• Functional group: -OH, -COH (carbinol)

IUPAC Nomenclature

- Position of -OH + root word + -ol
- Examples:
 - → CH₃OH methanol
 - → CH₃CH₂OH ethanol
 - → CH₃CH₂CH₂OH 1-propanol

Classification

Based on number of R groups attached to C-OH

- → Primary alcohol 1 R group
 - Ethanol
- → Secondary alcohol 2 R groups
 - Isopropyl alcohol
- → Tertiary alcohol 3 R groups
 - 2-methyl-2-propanol or tertbutyl alcohol

Based on number of OH groups

- → Monohydric 1 -OH group
- → Dihydric 2 -OH groups
 - Example: ethylene glycol or 1,2ethanediol

- → Trihydric 3 -OH groups
 - Example: glycerol/glycerin or 1,2,3propanetriol

→ Polyhydric (such as carbohydrates – glucose, fructose, galactose)

Chemical Reactions

 Principal Involved: Electrophilic Aromatic Substitution

Dehydration

- Removal of H₂O
- Principle: elimination

$$H - C - C - H \xrightarrow{\text{concd H}_{5}SO_{\mathscr{H}} 180^{\circ}C} H + HOH$$

$$H - OH$$

$$Ethanol$$

$$Ethylene$$

$$Ethylene$$

Oxidation

- Oxidizing agent: K₂Cr₂O₇
- Tertiary alcohol has no hydrogen on the carbon atom → no reaction

Qualitative Tests

Lucas Test

- Test to differentiate alcohols
- Reagent: concentrated HCl + ZnCl₂
- Visible result: formation of immiscible layer (nonpolar alkyl halide)
- Reactivity: tertiary > secondary > primary > CH₃OH

R-OH
$$\xrightarrow{\text{HCI}}$$
 R-CI + H₂O ZnCI_2

Reaction with Active Metals (Na)

- Principle involved: electrophilic substitution
- Visible result: bubble formation (H2)
- Reactivity: methanol > primary > secondary > tertiary (not much reactivity)

$$2Na_{(s)} + 2CH_3OH_{(l)} \longrightarrow 2CH_3ONa_{(l)} + H_{2(g)}$$

REVIEW: Common Names of Alcohols

- Methanol wood alcohol
- Ethanol grain alcohol
- Isopropyl rubbing alcohol
- Ethylene glycol "antifreeze" humectant

Clinical Correlates

Ethanol

- Acetaldehyde produces the "hangover effect"
- Disulfiram inhibits aldehyde dehydrogenase

Methanol

- Accumulation of formic acid or methanoic acid can lead to metabolic acidosis and destroys the optic nerve (blindness)
- Treatment
 - → 50% ethanol (as competitive inhibitor)
 - → Fomepizole (inhibits alcohol dehydrogenase)
 - → NaHCO₃ (treatment of metabolic acidosis and reversal of damage to the optic nerve) Hemodialysis (as last resort)

Ethylene Glycol

 Oxalic acid chelates with Ca²⁺ precipitating CaC₂O₄ → nephrotoxicity

VII. HC DERIVATIVES: ETHERS

- · Functional group: alkoxy substituents
- Properties
 - → Relatively inert
 - → Good organic solvents
 - → Highly flammable with low flash points
- Examples:
 - → Monobenzene depigmenting agent
 - → <u>Eugenol</u> active components in clover and oil (Zn-eugenol cement)

Classification

Open-Chain Ethers

- Symmetrical same R groups
 - → Dimethylether (methoxymethane) CH₃OCH₃
 - → Diethylether (ethoxyethane as inhalational anesthetic) CH₃CH₂OCH₂CH₃
- Mixes ethers different R groups
 - → Ethylmethyl ether (methoxyethane) CH₃OCH₂CH₃

Cyclic Ethers

- Epoxides/ oxyranes/ oxycyclopropanes
 - → Ether oxygen is a part of a 3-membered ring system
 - → Ethylene oxide as gas sterilant (MOA: alkylation)

With More than 3 members

Furanose or oxacyclopentane

Pyranose or oxacyclohexane

VIII. HC DERIVATIVES: ALDEHYDES AND KETONES

Functional group: carbonyl

Classification

Aldehyde

- · RCHO with terminal carbonyl group
- Suffix: -al
- Examples (from L-R)
 - → Methanal or formaldehyde
 - → Ethanal or acetaldehyde

Ketone

- Nonterminal carbonyl group
- Suffix: -one
- Examples (from L-R)
 - → Propanone (acetone)
 - → Butanone
 - → 2-pentanone
 - → 3-pentanone

Chemical Reactions

Principal Involved: Nucleophilic acyl addition

Reaction with HCN

Product: cyclohydrin (precursor of amino acids)

$$\begin{array}{c}
R \\
C = 0 \\
H - C \\
H$$

Reaction with Grignard Reagent (RMgX)

- Nucleophile: R⁽⁻⁾ carbanion
- Product: alcohol

Reaction with Amines

- Involves elimination of water
- With primary amines → imines

$$R \longrightarrow NH_2 + H_2O$$

1º Amine

Aldehyde or Ketone

Imine

With secondary amines → enamines

With tertiary amines → no reaction

Reaction with Alcohols

- Hemiacetal/hemiketal and acetal/ketal formation
- Example: cyclization of monosaccharides

Qualitative Tests

Benedict's Test

- Test for reducing sugar
- (+) for aliphatic aldehydes and alpha-hydroxyketones only

Tollen's Test/Silver Mirror Test

- Test to distinguish aldehydes and ketones
- Tollen's reagent ammoniacal silver nitrate
- (+) for aliphatic and aromatic aldehydes

lodoform Test

- Reaction of I₂ and KI
- Test for presence of methylketone

$$R = C = CH_3$$
 $\frac{I_2}{NaOH} \rightarrow R = C = O$ $Na^+ + CHI_3$

Examples

Aldehydes

- <u>Formaldehyde/formalin</u>: embalming fluid through polymerization of tissues
 - → Poison: hardening of tissues
 - → Antidote: ammonia (converts formalin to methanamine)
- Benzaldehyde: "oil of bitter almond" as flavoring agent
- Vanillin: flavoring agent
- Retinal: from retinaldehyde as visual pigment
- <u>Chloral hydrate</u>: "KO" drug; precursor of insecticide (DDT)

Ketones

- Acetone: semi-polar for nail polish remover
- <u>Chloracetophenone</u>: lacrimating agent as a component of tear gas
- <u>Muscone</u>: produced from musk (deer) as a sex attractant or pheromones; used as fixative in perfumes
 - → Grandisol: pheromone from bees
 - → Muscalure: pheromone from mosquitoes

IX. HC DERIVATIVES: CARBOXYLIC ACIDS

- Functional group: -COOH (carboxyl group
 - → Terminal functional group
 - R-COOH
 - Ar-COOH
- Suffix: -oic acid
- Examples:
 - → HCOOH: Methanoic acid/ formic acid → formica = ants
 - → CH₃COOH: Ethanoic acid/ acetic acid

Chemical Reactions

- Salt formation/ Neutralization
 - → $R COOH + NaOH \rightarrow R COO^{(-)}Na^{(+)} + H_2O$
- Conversion to Functional Derivatives
 - → To acid/acyl halides
 - $\begin{array}{c} \blacksquare & R-COOH+SOCl_2 \rightarrow R-COCl \\ & \text{(thionyl chloride) (acyl/acyl chloride)} \end{array}$
 - → To esters (esterification)
 - $\blacksquare R COOH + R' OH \xrightarrow{H^+} R COOR' + H_2O$
 - → To amides
 - $R COOH + NH_3 \xrightarrow{X} R CO NH_2 \rightarrow R COO^{(-)}NH_4^{(+)}$
 - $\blacksquare R COOH + SOCl_2 \xrightarrow{(1)} R COCl + NH_3 \xrightarrow{(3)} R CONH_2$
- Reduction
 - $\rightarrow R COOH \xrightarrow{LiAlH_4} RCH_2OH (1^o alcohol)$

Examples

- Benzoic acid antifungal agent
 - → Na benzoate Preservative for juices
 - → Na benzoate + salicylic acid = Whitfield's ointment (antifungal agent)
- Salicylic acid keratolytic agent
 - → Destroys skin keratin
- Acetyl salicylic acid (ASA) aspirin
 - → COX inhibitor
 - → Analgesic, antiplatelet, anti-inflammatory

X. HC DERIVATIVES: CARBOXYLIC ACID DERIVATIVES

Acyl/Acid Chlorides

- Suffix: -oic acid → -oyl chloride
- Reaction: Hydrolysis (very reactive)
- Example
 - → CH₃-COCI: ethanoyl chloride (acetyl chloride)
 - $R COCl + H_2O \rightarrow R COOH + HCl$
 - $CH_3 COCl + H_2O \rightarrow CH_3 COOH + HCl$

Acid Anhydrides

- Suffix: -oic acid → -oic anhydride
- Reaction: Hydrolysis (very reactive)
- Example:
 - → CH₃-COO-COCH₃ ethanoic anhydride (acetic anhydride)
 - $CH_3 COO COH + H_2O \rightarrow CH_3COOH + HCOOH$
 - Formation of ethanoic methanoic anhydride (acetic formic anhydride)
 - $R COO COR + H_2O \rightarrow 2R COOH$

Esters

- Suffix: -oic acid → -oate
- Reaction: Hydrolysis (very reactive)
- Example:
 - → CH₃-COOCH₂CH₃ ethyl ethanoate (ethyl acetate)
 - $R COOR + H_2O \rightarrow R COOH + R' OH$
 - → ASA + H₂O → Salicylic acid + acetic acid
 - Dry granulation
 - Direct compression

Amides

- Suffix: -oic acid → -amide
- Reaction: Hydrolysis
- Example:

Examples

Reactivity: acid chlorides > anhydrides > esters
 acids > amides

Local anesthetics

- → Esters
 - Short-duration
 - Metabolized in the plasma via pseudocholinesters
- → Amides (e.g., lidocaine)
 - Long-duration
 - Metabolized in the liver through amidases

Nicotinamide/niacinamide

- → Nicotinic acid (niacin)
- → Vitamin B3 supplement
- → Prevent pellagra (deficiency of vitamin B3)
 - Pellagra: dermatitis, diarrhea, dementia, death

Sulfonilamide

- → Sulfur analogue of an amide
- → Parent compound of sulfonamides

XI. HC DERIVATIVES: AMINES

Classification

Aliphatic Amines

- IUPAC Nomenclature: alkyl + amine
- R electron-donating group (steric/ crowding effect)
- Lewis base is an electron pair donor (availability of lone pairs to be donated = basicity)
 - → Basicity: secondary > tertiary > primary > NH₃

Aromatic Amines

Basicity: aliphatic amines > aromatic > amides

Chemical Reactions

Salt formation/neutralization

Diazotization

- → Aniline produces diazonium salt (using concentrated HCl in ice batch 0 to 5 degrees Celsius)
 - With aromatic compounds (or coupling): produces azo dyes
 - With water: produces phenol and N₂

(b)
$$\stackrel{+}{N} \equiv N$$
 $+ \stackrel{R}{\longrightarrow} R$ $N = N$ azo dyes

Examples

- Beta-adrenergic agonist
 - → Salbutamol, terbutaline
- Catecholamines
 - → NE, Epi, Dopamine
- Pseudoephedrine, phenylpropanolamine
- Amphetamine, methamphetamine