## 20 2025-10-10 | Week 07 | Lecture 20

The nexus question of this lecture: What is a linear transformation?

This lecture is based on section 5.1 in the textbook.w

## 20.1 Function notation

When a function f goes from a set X to a set Y, we write

$$f: X \to Y$$

which is read as "f maps X to Y". The set X is the **domain** of f. The set Y is the **codomain** of f. The subset

$$Range(f) = \{ f(x) \mid x \in X \}$$

is called the **range** of f.

**Example 92.** • Let  $f(x) = e^x$ . Then  $f: \mathbb{R} \to \mathbb{R}$ . The range of this function is the set of positive real numbers.

• Let  $g: \mathbb{R}^2 \to \mathbb{R}$  ge given by

$$g\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 - y^2$$

The range of the function is  $\mathbb{R}$ , which is the same as its codomain.

End of Example 92.  $\square$ 

## 20.2 Linear Transformation

**Definition 93.** Let V, W be vector spaces and  $T: V \to W$  a function. We say that T is a *linear transformation* if, for all vectors  $u, v \in V$  and  $c \in \mathbb{R}$ , we have

- (i) T(u+v) = T(u) + T(v) (preserves addition)
- (ii) T(cV) = cT(v). (preserves scalar multiplication)

Sometimes people refer to linear transformations as linear operators, which means the same thing.

You have seen linear transformations before, even if you didn't call them that at the time. For example, the derivative operator  $\frac{d}{dx}$  is one such function.

**Example 94.** Let  $P = \{\text{all polynomials in the variable } x\}$ . So an arbitary element of P looks like

$$p = c_0 + c_1 x + c_2 x^2 + \ldots + c_r x^r$$

for some nonnegative integer r.

We know that P is a vector space. Define a function

$$T: P \to P$$

where T(p) = p'. In other words,  $T = \frac{d}{dx}$ .

To check that T is a linear transformation, let  $p, q \in P$  and  $c \in \mathbb{R}$ . Then

- $T(p+q) = \frac{d}{dx} [p(x) + q(x)] = p'(x) + q'(x) = T(p) + T(q).$
- $T(cp) = \frac{d}{dx} [cp(x)] = c\frac{d}{dx} [p(x)] = cT(p)$ .

End of Example 94.  $\square$ 

**Example 95.** Let  $T: \mathbb{R}^3 \to \mathbb{R}^2$  be given by

$$T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + y - z \\ x + 2y + x \end{bmatrix}$$

we can check that this is also a linear transformation.

First observe that we can write

$$T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Letting  $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ , we can write

$$T(v) = Av$$
, for  $v \in \mathbb{R}^3$ .

Let's check conditions (i) and (ii) in the definition of linear transformation:

• Proof of (i): Let  $u, v \in \mathbb{R}^3$ . Then

$$T(u + v) = A(u + v) = Au + Av = T(u) + T(v)$$

This shows that condition (i) holds.

• Proof of (ii): Let  $c \in \mathbb{R}$  and  $u \in \mathbb{R}^3$ . Then

$$T(cu) = A(cu) = c(Au) = cT(u)$$

This shows that condition (ii) holds.

Therefore since both conditions are met, T is a linear transformation.

End of Example 95.  $\square$ 

The proofs from the previous example didn't depend on the specific form of A, only that A was a matrix. Thus we have the following theorem:

**Theorem 96.** If A is an  $m \times n$  matrix, then the function  $T : \mathbb{R}^n \to \mathbb{R}^m$  given by

$$T(X) = AX$$

is a linear transformation.

Linear transformations of this form are called *matrix transformations*.

**Theorem 97.** Suppose  $T: V \to W$  is a linear transformation. Then

- (i) T(0) = 0.
- (ii) For any vectors  $v_1, \ldots, v_n \in V$  and scalars  $c_1, \ldots, c_n \in \mathbb{R}$ , we have

$$T(c_1v_1 + \ldots + c_nv_n) = c_1T(v_1) + \ldots + c_nT(v_n)$$

The second property says that linear transformations preserve linear combinations.

*Proof.* To show that T(0) = 0 involves a trick. Observe that

$$T(0) = T(0+0) = T(0) + T(0).$$

Subtracting T(0) from both sides gives

$$T(0) = 0.$$

Proof of (ii) is omitted, but follows from the definition of linear transformation. (HW?)

**Definition 98.** The *kernel* of a linear transformation  $T: V \to W$  the set

$$\ker(T) = \{ v \in V : T(v) = 0 \}$$

The previous theorem shows that 0 is always in ker(T). Just like matrices. Huh.

**Example 99.** Let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be the linear transformation defined by

$$T\begin{bmatrix} x \\ y \\ z \end{bmatrix} := \underbrace{\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix}}_{A} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

**Question:** Find a basis for ker(T). [Equivalently: find a basis for NS(A).]

**Solution:** Idea: solve the homogeneous system AX = 0, then interpret the solution. The system AX = 0 is

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

We can solve this with row reduction:

$$\left[\begin{array}{cc|c} 1 & 1 & -1 & 0 \\ 1 & 2 & 1 & 0 \end{array}\right] \xrightarrow{\text{row reduction}} \left[\begin{array}{cc|c} 1 & 0 & -3 & 0 \\ 0 & 1 & 2 & 0 \end{array}\right].$$

This corresponds to the equations

$$\begin{cases} x - 3z = 0 \\ y + 2z = 0 \end{cases}$$

or

$$\begin{cases} x = 3z \\ y = -2z \end{cases}$$

where z a free variable. Thus, every solution  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$  to AX = 0 takes the form

$$\begin{bmatrix} 3z \\ -2z \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} z$$

Therefore the vector  $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$  form a basis for  $\ker(T)$ .

End of Example 99.  $\square$