Imagem = Matriz Dispositivos Efeitos Primitivas Básicas OpenGL Atividade

Dispositivos

José Luis Seixas Junior

Ciência da Computação Universidade Estadual do Paraná

> Computação Gráfica 2017

Índice

- 1 Imagem = Matriz
- 2 Dispositivos
- 3 Efeitos
- Primitivas Básicas
- OpenGL
- 6 Atividade

Imagem = Matriz

Resolução

Largura x Altura;

Exemplo

• 400 x 300;

Exemplo

Resolução

 $400 \times 300 \times 8 \times 3 = 2.880.000 \text{ bits} = 2.8 \text{ Mb}$

Cores

Variação de cor

- 0 255;
- $256 = 2^8$ por canal;
 - Vermelho;
 - Verde;
 - Azul;
- 256³ cores;
- 16.777.216 possibilidades de cores;

Variação de cor

- 0 15 por canal;
- 4.096 posibilidades de cores;

Projeção

- Impressoras, monitores, controladores de vídeo;
- Projeção dos pontos em ordem de varredura;
- Alocação de pontos em dadas coordenadas;

Memória Digital

- Armazenamento de imagem a ser visualizada;
- Pontos a serem alterados em tempo curto;

Imagem = Matriz **Dispositivos** Efeitos Primitivas Básicas OpenGL Atividade

Dispositivos

Vídeo Varredura

Frames per second

15FPS é o framerating mínimo para evitar flickering.

Vídeo Varredura

Profundidade de Pixel

- Diretamente relacionada a possibilidade de cores;
- Pontos a serem alterados em tempo curto;

Look-up Table

Binário	Decimal	RGB	Cor
000	0	[0,0,0]	Preto
001	1	[0,0,255]	Azul
010	2	[0,255,0]	Verde
011	3	[0,255,255]	Ciano
100	4	[255,0,0]	Vermelho
101	5	[255,0,255]	Magenta
110	6	[255,255,0]	Amarelo

Entrada de Dados

- Teclado;
- LightPen;
- JoyStick e Trackball;
- Mouse;
- Mesa digitalizadora;
- Câmeras;
- Scanners 2D/3D;
- Captura de movimentos;
- Captura de ações;

Efeitos em Imagens

Tamanho de pixel

Quantidade de Cores

Efeitos em Imagens

Profundidade de pixel

1 Bit

Primitivas Básicas

Linhas e Polígonos

Primitivas Básicas

Primitivas

Criação de primitivas

- DrawLine → Desenhar linhas;
- DrawDot → Desenhar ponto;
- draw(polygon) → Desenhar polígonos;
 - Por lista:
 - Polígono fechado se o primeiro e o último pontos tiverem as memas coordenadas;

Criação de pontos

- SetPixel → Coordenadas e cor;
- GetPixel → Coordenadas;

Primitivas

Atributos de Linhas

- Espessura;
- Angulação;
- Comprimento;

Criação de Strings

ullet DrawString o Desenhar Palavras em determinado ponto;

Primitivas

Regiões

- Faces;
- Preenchimento de cor;
- FillPolygon(polygon, pattern);
 - Padrão de preenchimento;
 - Reflexão:

Renderização

- Replicação e ponto não mostráveis;
- Textura;
- Esqueletização;
- Deformação;

glutInit(&argc, argv)

prepara a utilização da glut;

glutInitDisplayMode(int)

- GLUT_SINGLE | GLUT_RGB;
- Especifica como a tela será atualizada;

glutInitWindowSize(int, int)

- width e height;
- Define o tamanho da janela;

glutCreateWindow(*char)

• Criação de Frame;

glutDisplayFunc(void (*func(void)))

• Chamada para a função de desenho;

gluReshapeFunc(void (*func(void)))

 Chamada para a função de desenho, quando a forma da janela for alterada;

mylniti()

• Rotina que implementa as configurações iniciais do programa;

glutMainLoop()

Gerencia a fila de eventos;

glClear(int)

- Limpa a tela;
- Repintar a tela com a cor padrão;

glFlush()

Garante a execução de todas as rotinas anteriores;

glBegin(int)

- Inicia configuração de desenhos;
- Exemplos: GL_POINTS, GL_LINES, GL_POLYGONS;

glutEnd()

Encerra as configurações abertas;

glVertex2i(int, int)

- Biblioteca gl;
- Comando Básico;
- Quantidade de argumentos;
- Tipo de argumentos;


```
void myDisplay(void)

{

glClear(GL_COLOR_BUFFER_BIT); // limpa a janela
glBegin(GL_POINTS);
glVertex2i(100, 50); // desenha 3 pontos
glVertex2i(100, 130);
glVertex2i(150, 130);
glEnd();
glFlush(); // Garante a execução de todas as
// rotinas de desenho
}
```

Atividade 01

Atividade 01/1

- Abrir uma janela desenhável;
- Desenhar uma imagem;
 - Qualquer imagem reconhecível
- Entrega: 18 de agosto;

Referências I

- Azevedo, E.; Conci A. Computação Gráfica. Elsevier. 2003.
- Gonzalez, R. F.; Woods, R. E. Processamento Digital de Imagens. *Pearson*, 3° edição, 2010.
- Sellers, G.; Wright Jr., R. S.; Haemel, N. OpenGL SuperBible.
 Addison-Wesley, 7° edicão 2015.

