I will be using plotly express which is a wrapper for plotly with cufflinks for creating interactive graphs

Installing and Importing the Necessary Libraries

In [1]: #pip install cufflinks

In [2]: #pip install pandas-profiling

import pandas as pd
import pandas_profiling

import numpy as np

import cufflinks as cf

import plotly

import plotly.express **as** px

import plotly.graph_objects as go

import math

%matplotlib inline

#magic function for showing the plots in the same code cell and for additional facilities

For working in offline mode and saving the plotly plots in local machine

from plotly.offline import plot,iplot,download_plotlyjs,init_notebook_mode init_notebook_mode(connected=True)
cf.go_offline()

Q.1.1 - For visualizing the Co2 emission by the countries overtime

Reading the DataFrame

co2_df = pd.read_csv("D:\\Downloads\\global_co2_emissions.csv", parse_dates = ['year'])

```
In [6]: #co2_df.profile_report()
```

I will be making a copy of the original dataframe for easy handling and checking for missing values

Creating a separate dataframe for the missing values and checking for the unique values

```
In [9]:
          missing_vals = co2_dfc[co2_dfc.isna().any(axis=1)]
          missing_vals['country'].unique()
         array(['Africa', 'Asia', 'Asia (excl. China & India)', 'Europe',
 Out[9]:
                 'Europe (excl. EU-27)', 'Europe (excl. EU-28)',
                 'European Union (27)', 'European Union (28)',
                 'French Equatorial Africa', 'French West Africa',
                 'High-income countries', 'International transport',
                 'Kuwaiti Oil Fires', 'Leeward Islands', 'Low-income countries',
                 'Lower-middle-income countries', 'North America',
                 'North America (excl. USA)', 'Oceania', 'Panama Canal Zone',
                 'Ryukyu Islands', 'South America', 'St. Kitts-Nevis-Anguilla',
                 'Upper-middle-income countries'], dtype=object)
In [10]:
          co2 dfc.describe()
```

file:///D:/Downloads/Co2 Emissions EDA (1).html

Out[10]:

	Annual CO2 emis	sions (tonnes)
count		2.467000e+04
mean		3.266583e+08
std		1.677027e+09
min		3.400000e+01
25%		5.569280e+05
50%		5.332958e+06
75%		4.815309e+07
max		3.670250e+10

Filling in the missing iso codes for Kyrgystan and W&F Islands so that we can use the iso codes to remove the non countries

```
df1 = co2_dfc [co2_dfc ["country"].isin(["Kyrgysztan"])]
df1.fillna('KGZ', inplace = True)

df2 = co2_dfc [co2_dfc["country"].isin(["Wallis and Futuna Islands"])]
df2.fillna('WLF', inplace = True)
```

Removing the null values for the rows which are not countries

```
In [12]: co2_dfc.dropna(inplace=True)

In [13]: co2_dfc = pd.concat([co2_dfc,df1,df2]) co2_dfc
```

Out[13]:

	country	iso_code	year	Annual CO2 emissions (tonnes)
0	Afghanistan	AFG	1949-01-01	14656
1	Afghanistan	AFG	1950-01-01	84272
2	Afghanistan	AFG	1951-01-01	91600
3	Afghanistan	AFG	1952-01-01	91600
4	Afghanistan	AFG	1953-01-01	106256
•••				
24665	Zimbabwe	ZWE	2016-01-01	10737567
24666	Zimbabwe	ZWE	2017-01-01	9581633
24667	Zimbabwe	ZWE	2018-01-01	11854367
24668	Zimbabwe	ZWE	2019-01-01	10949084
24669	Zimbabwe	ZWE	2020-01-01	10531342

21299 rows × 4 columns

```
#co2_dfc1 = co2_dfc1[co2_dfc1['country'] == 'World']
#co2_dfc1.reset_index(level=0,inplace=True)
#del co2_dfc1["index"]
#co2_dfc1
```

Removing the rows which contain the entire worlds data which is not needed

```
co2_dfc = co2_dfc[co2_dfc['country'] != 'World']
co2_dfc
```

5:51 PM					Co2 Emissions EDA
Out[15]:		country	iso_code	year	Annual CO2 emissions (tonnes)
	0	Afghanistan	AFG	1949-01-01	14656
	1	Afghanistan	AFG	1950-01-01	84272
	2	Afghanistan	AFG	1951-01-01	91600
	3	Afghanistan	AFG	1952-01-01	91600
	4	Afghanistan	AFG	1953-01-01	106256
	•••				
	24665	Zimbabwe	ZWE	2016-01-01	10737567
	24666	Zimbabwe	ZWE	2017-01-01	9581633
	24667	Zimbabwe	ZWE	2018-01-01	11854367
	24668	Zimbabwe	ZWE	2019-01-01	10949084
	24669	Zimbabwe	ZWE	2020-01-01	10531342
	21028 r	ows × 4 colu	ımns		
In [16]:	co2_c	dfc['Annual	CO2 em	issions (to	nnes)'].nlargest(n=10)
Out[16]:	4536	106678874	153		

```
4535
        10489988555
4534
        10289989525
4530
         9985583382
4529
         9952743755
4533
         9920459189
4531
         9848419740
4528
         9775621803
4532
         9720444086
4527
         9528555734
Name: Annual CO2 emissions (tonnes ), dtype: int64
Storing the list of countries
```

```
In [103...
           list_countries = co2_dfc['country'].unique()
           #for i in list_countries:
              #print(i)
```

Grouping the countries together for further processing

```
In [18]:
         country_group = co2_dfc.groupby('country')
         country_afghanistan = country_group.get_group('Afghanistan')
         country_afghanistan['Annual CO2 emissions (tonnes )'].max()
```

```
Out[18]: 12160286
```

Using a for loop to get the maximum co2 emitted by a country over the course of years

```
In [19]:
          # Making empty lists to store the maximum c02 of countries and storing the
         corresponding country name
         list_max=[]
          list country name = []
          #begining the for loop
         for i in list countries:
            #will fetch the i th group from the "country_group"
            country_name = country_group.get_group(i)
            # will take out the maximum co2 present in that group
            max_emm = country_name['Annual CO2 emissions (tonnes )'].max()
            # storing the values in the empty list
            list_max.append(max_emm)
            list_country_name.append(i)
         print(len(list_max))
          print(list_country_name)
```

222

['Afghanistan', 'Albania', 'Algeria', 'Andorra', 'Angola', 'Anguilla', 'Antarctica', 'Antigua and Barbuda', 'Argentina', 'Armenia', 'Aruba', 'Australia', 'Austria', 'Azer baijan', 'Bahamas', 'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Beliz e', 'Benin', 'Bermuda', 'Bhutan', 'Bolivia', 'Bonaire Sint Eustatius and Saba', 'Bosn ia and Herzegovina', 'Botswana', 'Brazil', 'British Virgin Islands', 'Brunei', 'Bulga ria', 'Burkina Faso', 'Burundi', 'Cambodia', 'Cameroon', 'Canada', 'Cape Verde', 'Cen tral African Republic', 'Chad', 'Chile', 'China', 'Christmas Island', 'Colombia', 'Co moros', 'Congo', 'Cook Islands', 'Costa Rica', "Cote d'Ivoire", 'Croatia', 'Cuba', 'C uracao', 'Cyprus', 'Czechia', 'Democratic Republic of Congo', 'Denmark', 'Djibouti', 'Dominica', 'Dominican Republic', 'Ecuador', 'Egypt', 'El Salvador', 'Equatorial Guin ea', 'Eritrea', 'Estonia', 'Eswatini', 'Ethiopia', 'Faeroe Islands', 'Fiji', 'Finlan d', 'France', 'French Guiana', 'French Polynesia', 'Gabon', 'Gambia', 'Georgia', 'Ger many', 'Ghana', 'Greece', 'Greenland', 'Grenada', 'Guadeloupe', 'Guatemala', 'Guine a', 'Guinea-Bissau', 'Guyana', 'Haiti', 'Honduras', 'Hong Kong', 'Hungary', 'Icelan d', 'India', 'Indonesia', 'Iran', 'Iraq', 'Ireland', 'Israel', 'Italy', 'Jamaica', 'J apan', 'Jordan', 'Kazakhstan', 'Kenya', 'Kiribati', 'Kosovo', 'Kuwait', 'Kyrgyzstan', 'Laos', 'Latvia', 'Lebanon', 'Lesotho', 'Liberia', 'Libya', 'Liechtenstein', 'Lithuan ia', 'Luxembourg', 'Macao', 'Madagascar', 'Malawi', 'Malaysia', 'Maldives', 'Mali', 'Malta', 'Marshall Islands', 'Martinique', 'Mauritania', 'Mauritius', 'Mayotte', 'Mex ico', 'Micronesia (country)', 'Moldova', 'Mongolia', 'Montenegro', 'Montserrat', 'Mor occo', 'Mozambique', 'Myanmar', 'Namibia', 'Nauru', 'Nepal', 'Netherlands', 'New Cale donia', 'New Zealand', 'Nicaragua', 'Niger', 'Nigeria', 'Niue', 'North Korea', 'North Macedonia', 'Norway', 'Oman', 'Pakistan', 'Palau', 'Palestine', 'Panama', 'Papua New Guinea', 'Paraguay', 'Peru', 'Philippines', 'Poland', 'Portugal', 'Puerto Rico', 'Qat ar', 'Reunion', 'Romania', 'Russia', 'Rwanda', 'Saint Helena', 'Saint Kitts and Nevi s', 'Saint Lucia', 'Saint Pierre and Miquelon', 'Saint Vincent and the Grenadines', 'Samoa', 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal', 'Serbia', 'Seychelles', 'Sierra Leone', 'Singapore', 'Sint Maarten (Dutch part)', 'Slovakia', 'Slovenia', 'So lomon Islands', 'Somalia', 'South Africa', 'South Korea', 'South Sudan', 'Spain', 'Sr i Lanka', 'Sudan', 'Suriname', 'Sweden', 'Switzerland', 'Syria', 'Taiwan', 'Tajikista n', 'Tanzania', 'Thailand', 'Timor', 'Togo', 'Tonga', 'Trinidad and Tobago', 'Tunisi a', 'Turkey', 'Turkmenistan', 'Turks and Caicos Islands', 'Tuvalu', 'Uganda', 'Ukrain e', 'United Arab Emirates', 'United Kingdom', 'United States', 'Uruguay', 'Uzbekista n', 'Vanuatu', 'Venezuela', 'Vietnam', 'Wallis and Futuna', 'Yemen', 'Zambia', 'Zimba bwe']

Zipping the lists in a dataframe

```
max_emm_df = pd.DataFrame(list(zip(list_country_name,list_max)),columns=
['country','max_emission'])

# for printing the entire dataframe in a single cell output

#with pd.option_context('display.max_rows', None, 'display.max_columns', None):

print(max_emm_df)
```

```
country max_emission
0
           Afghanistan
                             12160286
1
               Albania
                              8976800
2
               Algeria
                            166641950
3
               Andorra
                               575248
4
                             33800624
                Angola
                                  . . .
217
               Vietnam
                            260312093
218
     Wallis and Futuna
                                29312
219
                 Yemen
                             24976297
220
                Zambia
                              7313113
221
              Zimbabwe
                             17393590
[222 rows x 2 columns]
```

For showing the barplot of emissions by top 10 countries

```
In [94]:
```

```
fig = px.bar(max_emm_df,x="country",y="max_emission")
fig.show()
```

#fig.write_html("D:\Downloads\GHG emissions HTML Plots\CO2 emissions of Bar plot of all the countries.html")

The Graphs have been distorted after converting to the pdf file. Please access the "HTML plots" .zip file and refer to the plot numbers.

Plot 1

The Above Graph shows the maximum co2 emitted by them in the entire history. If zoomed in to the graph we can see that china has emitted the maximum amount of co2 in history.

Taking the top 10 countries with the highest emission and storing it in top_10_list

```
In [22]:
    max_10 =max_emm_df.nlargest(10,'max_emission')
    top_10_list = list(max_10['country'].unique())
    top_10_list

Out[22]:

Out[22]:

('China',
    'United States',
    'India',
    'Russia',
    'Japan',
    'Germany',
    'Iran',
    'Ukraine',
    'Saudi Arabia',
    'South Korea']
```

Here we can see the top 10 countries who emit the maximum amount of co2

```
fig2 = px.bar(max_10,x="country",y="max_emission")
fig2.show()

#fig.write_html("D:\Downloads\GHG emissions HTML Plots\CO2 emissions of TOP
10 countries.html")
```


Plot 2

Here the similar kind of graph is generated which also indicates China as the biggest emitter of co2 in history. Then US and India follow afterwards on the 2nd and 3rd positions. One of the reasons behind china's insanely high usage of co2 can be coupled with the booming industries in china which are mostly focused on making goods which are accountable in various sectors.

Now we can select these 10 countries and plot the co2 emitted by them over time

```
#Making an empty dataframe
top_10_country = pd.DataFrame()

for x in top_10_list:
```

```
# Storing only those values in dataframe which come in top 10 countries over the years

top_10 = co2_dfc[co2_dfc['country'] == x]

top_10_country = top_10_country.append(top_10)
```

```
# resetting the index to the default values

top_10_country.reset_index(level=0,inplace=True)

del top_10_country["index"]

top_10_country
```

Out[25]:		country	iso_code	year	Annual CO2 emissions (tonnes)
	0	China	CHN	1899-01-01	95264
	1	China	CHN	1902-01-01	95264
	2	China	CHN	1903-01-01	1963904
	3	China	CHN	1904-01-01	2088480
	4	China	CHN	1905-01-01	2297328
	•••				
	1514	South Korea	KOR	2016-01-01	639258641
	1515	South Korea	KOR	2017-01-01	655747114
	1516	South Korea	KOR	2018-01-01	671630709
	1517	South Korea	KOR	2019-01-01	648024558
	1518	South Korea	KOR	2020-01-01	597605055

1519 rows × 4 columns

Making the trend line plot for the top 10 emitter of co2 over the years

```
fig3 = px.line(top_10_country, x = "year", y = "Annual CO2 emissions (tonnes )", hover_name='country', hover_data= ['country','Annual CO2 emissions (tonnes )'],color='country', labels = {'country':'Country','Annual CO2 emissions (tonnes )': 'Co2 Emissions'}, height=600) fig3.update_layout(title="Change in CO2 Emission Between Years 1750 and 2020 - Countries",title_x=0.50) fig3.update_layout(showlegend = False) fig3.update(layout_coloraxis_showscale = True) fig3.show()
```

Change in CO₂ Emissi

Plot 3

The trend line shows the behaviour of top 10 countries in the matter of co2 emissions and we can see a certain spike in china's emissions whereas US had a consistent rise in co2 since the industrial age and a downward dip in the recent years due to the increase in the use of sustainable and renewable sources of energy. However for India there is a spike in recent years due to the booming population and exhaustive use of fossil fuels.

Saving the plot to an html file

In [27]: #fig3.write_html("D:/Downloads/file_name.html")

Q.1.2 - For finding out the Co2 emissions per capita

In [28]:

global co2 = pd.read csv("D:\\Downloads\\global-co2-data.csv")

```
per_capita = global_co2[['country','iso_code','year','co2_per_capita']]
per_capita
```

Out[29]:		country	iso_code	year	co2_per_capita
	0	Afghanistan	AFG	1949	0.002
	1	Afghanistan	AFG	1950	0.011
	2	Afghanistan	AFG	1951	0.012
	3	Afghanistan	AFG	1952	0.012
	4	Afghanistan	AFG	1953	0.013
	•••				
	23703	Zimbabwe	ZWE	2015	0.881
	23704	Zimbabwe	ZWE	2016	0.771
	23705	Zimbabwe	ZWE	2017	0.720

ZWE 2018

ZWE 2019

23708 rows × 4 columns

Zimbabwe

Zimbabwe

23706

23707

```
In [30]:
          per_capita.isna().sum()
         country
                               0
Out[30]:
         iso_code
                            2778
         year
                               0
          co2_per_capita
                            1328
         dtype: int64
In [31]:
          per_capita['co2_per_capita'].mean()
         4.059418990169768
Out[31]:
```

0.785

0.708

We see that the mean is around 4. But this is for global average and hence it will be not a good practice to input all the missing values with the global mean. Hence I decided to make a function which can take the mean of co2 per capita for each country over the years and input the missing values present in that country with its mean itself.

```
# demo function

emp = []

for i in per_capita['co2_per_capita'].isna():
```

```
if i == True:
    emp.append(i)
len(emp)
```

Out[32]:

1328

null_vals = per_capita[per_capita.isna().any(axis=1)]
null_vals

Out[33]: country iso_code year co2_per_capita 71 Africa NaN 1884 0.000 Africa 0.000 72 NaN 1885 NaN 1886 73 Africa 0.000 74 Africa NaN 1887 0.000 **75** Africa NaN 1888 0.001

 23326
 World
 OWID_WRL
 1895
 NaN

 23327
 World
 OWID_WRL
 1896
 NaN

 23328
 World
 OWID_WRL
 1897
 NaN

 23329
 World
 OWID_WRL
 1898
 NaN

 23330
 World
 OWID_WRL
 1899
 NaN

countries = capita_country_grp.get_group(i)

3672 rows × 4 columns

```
#taking the unique country values from the per_capita dataframe
list_country = per_capita['country'].unique()

#grouping the countries
capita_country_grp = per_capita.groupby('country')

#making an empty dataframe
per_capita_not_null = pd.DataFrame()

for i in list_country:
    # getting the i th group - lets suppose its afganistan, then it will fetch the group of afganistan
```

```
#checking whether the values are missing in the group of afganistan
   for x in countries['co2_per_capita'].isna():
     if x == True:
        # if x is true i.e the value is missing then, it will take the mean of co2 per
capita and replace it in the missing positions
        countries['co2 per capita'].fillna(countries['co2 per capita'].mean(),inplace =
True)
   per_capita_not_null = per_capita_not_null.append(countries)
# diplaying the entire dataframe
#with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(per_capita_not_null)
per capita not null.isna().sum()
#per_capita_not_null.to_csv("D:\\Downloads\\per.csv")
           country iso_code year co2_per_capita
0
       Afghanistan
                        AFG 1949
                                             0.002
1
       Afghanistan
                        AFG 1950
                                             0.011
2
       Afghanistan
                        AFG 1951
                                             0.012
3
       Afghanistan
                        AFG 1952
                                             0.012
```

```
4
      Afghanistan
                        AFG 1953
                                             0.013
                                               . . .
23703
                        ZWE
                             2015
          Zimbabwe
                                             0.881
23704
          Zimbabwe
                        ZWE 2016
                                             0.771
23705
          Zimbabwe
                        ZWE 2017
                                             0.720
23706
          Zimbabwe
                        ZWE 2018
                                             0.785
23707
          Zimbabwe
                        ZWE 2019
                                             0.708
[23708 rows x + columns]
country
                     0
iso code
                  2778
                     0
year
co2_per_capita
                   369
dtype: int64
```

Out[105]:

In [36]:

Now there will still be missing values in the co2 per capita column as there are countries for which the data is not present over the entire time range. So the mean will not be calculated for

```
per_capita_not_null.dropna(inplace=True)
```

these countries and it will not be filled up. So we can just drop these countries.

```
kryg = per_capita_not_null[per_capita_not_null["country"].isin(["Kyrgysztan"])]
kryg.fillna('KGZ', inplace = True)

per_capita_clean = pd.concat([per_capita_not_null,kryg])

# dropping the countries which have outliers in their co2 per capita column
per_capita_clean = per_capita_clean[per_capita_clean['country'] != 'World']
per_capita_clean = per_capita_clean[per_capita_clean['country'] != 'Sint Maarten
(Dutch part)']
per_capita_clean = per_capita_clean[per_capita_clean['country'] != 'Brunei']
per_capita_clean.isna().sum()
per_capita_clean
```

Out[36]:

	country	iso_code	year	co2_per_capita
0	Afghanistan	AFG	1949	0.002
1	Afghanistan	AFG	1950	0.011
2	Afghanistan	AFG	1951	0.012
3	Afghanistan	AFG	1952	0.012
4	Afghanistan	AFG	1953	0.013
•••				
23703	Zimbabwe	ZWE	2015	0.881
23704	Zimbabwe	ZWE	2016	0.771
23705	Zimbabwe	ZWE	2017	0.720
23706	Zimbabwe	ZWE	2018	0.785
23707	Zimbabwe	ZWE	2019	0.708

20311 rows × 4 columns

```
fig4 = px.line (per_capita_clean, x = "year", y = "co2_per_capita",
hover_name='country',
hover_data= ['country', 'co2_per_capita'],color='country',
labels = {'country':'Country','co2_per_capita': 'Co2 Per Capita'},
height=600)

fig4.update_layout ( title="Co2 per Capita of Countries",title_x=0.50)
fig4.update_layout (showlegend = False)
```

Out[38]:

	country	iso_code	year	co2_per_capita
0	Afghanistan	AFG	1949	0.002
1	Afghanistan	AFG	1950	0.011
2	Afghanistan	AFG	1951	0.012
3	Afghanistan	AFG	1952	0.012
4	Afghanistan	AFG	1953	0.013
•••				
23703	Zimbabwe	ZWE	2015	0.881
23704	Zimbabwe	ZWE	2016	0.771
23705	Zimbabwe	ZWE	2017	0.720
23706	Zimbabwe	ZWE	2018	0.785
23707	Zimbabwe	ZWE	2019	0.708

20311 rows × 4 columns

Now we will be using the same function approach for choosing the top 10 countries which have the highest c02 per capita as we cant just use the top 10 list obtained before as the countries who emit co2 over time will be different than the countries who have highest c02 per capita as per capita calculation depends on the population of the country

```
capita_countries = per_capita_clean['country'].unique()

group_countries = per_capita_clean.groupby('country')

list_capitas= []
list_capita_country = []

for k in capita_countries:

name_of_country = group_countries.get_group(k)

max_cap = name_of_country['co2_per_capita'].max()

list_capitas.append(max_cap)

list_capita_country.append(k)

print(list_capitas)
```

[0.402, 2.885, 3.988, 8.061, 1.642, 11.556, 19.637, 4.693, 5.824, 27.933, 19.276, 9.5 94, 8.327, 49.283, 40.348, 0.627, 5.758, 12.311, 14.262, 2.129, 0.678, 12.794, 2.237, 1.968, 88.84, 8.065, 3.279, 2.584, 7.806, 10.186, 0.212, 0.051, 0.972, 0.693, 18.705, 1.234, 0.115, 0.09, 4.649, 7.096, 2.092, 0.297, 1.088, 4.303, 1.807, 5.696, 3.463, 8. 047, 18.269, 0.251, 14.24, 1.132, 2.58, 2.549, 2.709, 2.595, 1.121, 10.486, 0.392, 2 3.583, 0.148, 16.215, 2.536, 13.9, 9.957, 3.342, 10.917, 0.253, 5.668, 14.252, 0.581, 10.305, 14.436, 2.816, 1.167, 0.249, 0.242, 3.053, 0.303, 1.121, 6.524, 8.542, 12.29 9, 1.916, 2.282, 9.402, 5.632, 12.391, 10.398, 8.622, 4.327, 10.246, 3.544, 17.448, 0.379, 0.702, 74.98, 5.649, 4.577, 7.321, 4.409, 1.208, 1.107, 17.379, 7.168, 10.238, 41.105, 0.224, 0.135, 8.073, 3.14, 0.178, 7.793, 2.764, 1.725, 3.869, 5.961, 6.891, 2 0.35, 4.195, 13.19, 1.972, 0.391, 0.486, 1.749, 17.913, 0.486, 13.292, 29.864, 9.086, 0.949, 0.147, 1.009, 5.496, 10.657, 7.206, 9.797, 16.778, 1.166, 0.766, 2.964, 0.898, 1.174, 1.969, 1.334, 13.037, 6.697, 98.928, 9.103, 17.117, 0.122, 2.198, 4.789, 2.29 9, 17.099, 2.884, 1.449, 0.604, 20.348, 0.675, 6.654, 8.465, 0.403, 18.139, 12.248, 9.006, 0.655, 0.166, 9.95, 12.408, 0.181, 8.394, 1.165, 0.537, 6.681, 11.457, 7.342, 3.334, 11.939, 2.536, 0.214, 4.212, 0.437, 0.523, 1.686, 35.36, 2.652, 5.243, 14.414, 6.255, 1.099, 0.153, 14.144, 101.022, 11.846, 22.133, 2.543, 6.763, 1.067, 17.031, 2. 568, 1.939, 1.635, 1.895]

In [106...

```
max_cap_df = pd.DataFrame(list(zip(list_capita_country,list_capitas)),columns=
['country','co2_per_capita'])
```

#with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(max_cap_df)

```
country co2_per_capita
0
     Afghanistan
                             0.402
1
         Albania
                             2.885
2
         Algeria
                             3.988
3
         Andorra
                             8.061
4
          Angola
                             1.642
199
       Venezuela
                           17.031
200
         Vietnam
                             2.568
201
           Yemen
                             1.939
202
          Zambia
                             1.635
203
        Zimbabwe
                             1.895
[204 rows x 2 columns]
```

```
In [41]:
```

```
max_capita_10 =max_cap_df.nlargest(10,'co2_per_capita')
top_10_capitas = list(max_capita_10['country'].unique())
top_10_capitas
```

```
['United Arab Emirates',
Out[41]:
           'Qatar',
           'Bonaire Sint Eustatius and Saba',
           'Kuwait',
           'Bahamas',
           'Luxembourg',
           'Bahrain',
           'Trinidad and Tobago',
           'New Caledonia',
           'Aruba']
In [42]:
          capitas_10_countries = pd.DataFrame()
          for j in top_10_capitas:
             capitas= per capita clean[per capita clean['country'] == j]
             capitas_10_countries = capitas_10_countries.append(capitas)
In [43]:
          capitas 10 countries.reset index(level=0,inplace=True)
          del capitas_10_countries["index"]
          capitas 10 countries
Out[43]:
                         country iso_code year co2_per_capita
            0 United Arab Emirates
                                      ARE 1959
                                                        0.126
            1 United Arab Emirates
                                      ARE 1960
                                                        0.119
            2 United Arab Emirates
                                      ARE 1961
                                                        0.109
            3 United Arab Emirates
                                      ARE 1962
                                                        0.164
            4 United Arab Emirates
                                      ARE 1963
                                                        0.176
          802
                           Aruba
                                     ABW 2015
                                                        8.632
          803
                           Aruba
                                     ABW 2016
                                                        8.410
          804
                           Aruba
                                     ABW 2017
                                                        8.724
          805
                           Aruba
                                     ABW 2018
                                                        8.898
          806
                           Aruba
                                     ABW 2019
                                                        8.666
         807 rows × 4 columns
In [96]:
          fig5 = px.line(capitas 10 countries, x = "year", y = "co2 per capita",
          hover_name='country',
                    hover_data= ['country','co2_per_capita'],color='country',
```

labels = {'country':'Country','co2_per_capita': 'Co2 per capita'}, height=600)

```
fig5.update_layout(title="Co2 per Capita for Top 10 Countries",title_x=0.50)
fig5.update_layout(showlegend = False)
fig5.update(layout_coloraxis_showscale = True)
fig5.show()

#fig5.write_html("D:\Downloads\GHG emissions HTML Plots\CO2 per Capita of TOP 10 countries.html")
```

Co₂ p₁

Plot 4

In the above graph we see that the major countries that have the highest co2 per capita are the countries that produce the most amount of fossil fuels such as crude oil. And these include the countries which come in the Middle East and they have very low population as compared with

the amount of fossil fuels they extract. In 1969 UAE had the highest co2 per capita with 101 tonnes per person. And the highest recorded co2 per capita for Qatar was in 1963.

```
top_10_country['year'] = top_10_country['year'].astype(str)

pd.to_datetime(top_10_country['year'],errors='ignore')

top_10_country = top_10_country.loc[top_10_country['year'] > '1900-01-01']
```

Q.1.3 For visualizing how much they have emitted overtime

Filtering the timelime to be later than the year 1900

```
In [46]:
          co2 dfc['year'] = co2 dfc['year'].astype(str)
          pd.to_datetime(co2_dfc['year'],errors='ignore')
          co2 dfc3 = co2 dfc.loc[co2 dfc['year'] > '1900-01-01']
In [97]:
          fig6 = px.choropleth(co2_dfc3.groupby(['country', 'year'])['Annual CO2 emissions
          (tonnes)'].sum().reset index().sort values(by=['year'],ascending = True),
                      locations = 'country',
                      locationmode='country names',
                      color = 'Annual CO2 emissions (tonnes)',
                      color continuous scale='Spectral r',
                      height=800,
                      animation frame='year',
                      animation group='country')
          fig6.update layout(title = 'Co2 emissions by all the countries overtime')
          fig6.show()
          #fig6.write html("D:\Downloads\GHG emissions HTML Plots\CO2 emmisions
          animation map.html")
```

Co2 emissions by all the countries overtime

Plot 5

The animated map depicts the chann co2 in tonnes over time from the year 1900 to 2020. The countries which are in blue show a relatively low emission of co2 in comparison to the countries in red such as USA.

Q.1.4 How do emissions compare when we correct for trade? Done on Tableau

Click here for tableau link

Countries having higher positive values are net importers of co2 i.e they import more co2 than they export

Countries having higher negative values are net exporters of co2, they export more co2 than they import

The interactive map shows that US is a net importer of co2 and china is the net exporter of co2

Q.2.1 How much CO2 comes from coal, oil, gas, and flaring or cement production? Done on Tableau

Click here for Tableau link

There are many sources from where greenhouse gases can arise. The interactive graphs of the top 10 countries depicts the amount of co2 emitted in the atmosphere over time. The industrial revolution kickstarted the increase in the amount of co2 from coal and oil. Even till now, many industries rely heavily on these resources of energy.

Cement and Flaring also contribute significantly to the co2 emissions and african countries are the major stakeholders in these domains.

Talking about the more recent past, all of the sources of co2 contribute fairly equally to the global co2 amount.

Q.3.2 How much methane and nitrous oxide is emitted?

Done on tableau

Click here for tableau link

This is a comparative bar graph of Methane vs NO2 for the top 10 emitting cointries. It is seen as America comes as the highest emitter of these GHGs with around 19000 tonnes of Methane and 7000 tonnes of NO2. One of the big reasons is the high beef consumption in the USA. The livestock such as cows can produce upto 30 tonnes in their lifetime and due to the vast amount of cows in many livestock farms around the country. And NO2 comes from factories and the usage of transportation vehicles in the USA.

```
ghg_emissions = pd.read_csv("D:\\Downloads\\global-ghg-data.csv",parse_dates=
['year'])

In [82]: ghg_emissions
ghg_emissions['land-use-change-forestry'].dtype

Out[82]: dtype('float64')

Substituting the values which are lesser than zero by zero as we are only focussing on the contribution of these sectors to emissions.

In [107... num = ghg_emissions._get_numeric_data()
num[num<0] = 0

#with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print(ghg_emissions)
```

Q.4.1 Which sector contributes most to the GHG emissions

```
country iso_code
                                          agriculture land-use-change-forestry \
                                   year
0
      Afghanistan
                                                                               0.0
                        AFG 1990-01-01
                                            8070000.0
1
      Afghanistan
                        AFG 1991-01-01
                                            8400000.0
                                                                               0.0
2
      Afghanistan
                        AFG 1992-01-01
                                                                               0.0
                                            8410000.0
3
      Afghanistan
                        AFG 1993-01-01
                                            8490000.0
                                                                               0.0
4
      Afghanistan
                        AFG 1994-01-01
                                            8520000.0
                                                                               0.0
                         . . .
. . .
                        ZWE 2014-01-01
5650
         Zimbabwe
                                           10190000.0
                                                                       11490000.0
                        ZWE 2015-01-01
5651
         Zimbabwe
                                           11470000.0
                                                                       11610000.0
5652
         Zimbabwe
                        ZWE 2016-01-01
                                           10540000.0
                                                                       87400000.0
5653
         Zimbabwe
                        ZWE 2017-01-01
                                           10780000.0
                                                                       87290000.0
                        ZWE 2018-01-01
5654
         Zimbabwe
                                           11150000.0
                                                                       87380000.0
          waste
                  industry
                             manufacturing-and-construction transport \
      1230000.0
0
                     50000
                                                     570000.0
                                                               1670000.0
1
      1320000.0
                     50000
                                                     530000.0
                                                               1550000.0
2
      1400000.0
                     60000
                                                     390000.0
                                                                 770000.0
3
      1490000.0
                     60000
                                                     380000.0
                                                                 740000.0
4
      1580000.0
                     70000
                                                     360000.0
                                                                 710000.0
. . .
                        . . .
             . . .
                                                          . . .
                                                                      . . .
5650
      2380000.0
                   1530000
                                                    1070000.0
                                                               2640000.0
5651
      2430000.0
                   1580000
                                                    1090000.0
                                                               2570000.0
5652
      2480000.0
                   1720000
                                                    1090000.0
                                                               2180000.0
5653
      2540000.0
                   1790000
                                                    1120000.0
                                                               2240000.0
      2590000.0
5654
                   1850000
                                                    1190000.0
                                                               2870000.0
      electricity
                    buildings
                                fugitive-emissions
                                                     other-fuel
0
          270000.0
                      80000.0
                                           610000.0
                                                       2630000.0
1
          270000.0
                      70000.0
                                           520000.0
                                                       2400000.0
2
         160000.0
                      30000.0
                                                       2180000.0
                                           220000.0
3
         160000.0
                      30000.0
                                           160000.0
                                                       1950000.0
4
         160000.0
                      20000.0
                                           120000.0
                                                       1720000.0
. . .
               . . .
        6850000.0
                     190000.0
                                           600000.0
                                                       3890000.0
5650
5651
        7210000.0
                     220000.0
                                           660000.0
                                                       4060000.0
5652
        6220000.0
                     230000.0
                                           680000.0
                                                       3980000.0
        5410000.0
                     220000.0
                                           700000.0
                                                       4000000.0
5653
5654
        6600000.0
                     230000.0
                                           710000.0
                                                       4190000.0
      aviation-and-shipping
                     20000.0
0
1
                     20000.0
2
                     20000.0
3
                     20000.0
4
                     20000.0
                     50000.0
5650
                    100000.0
5651
5652
                    150000.0
5653
                    180000.0
5654
                    220000.0
```

```
[5655 rows x 14 columns]
```

Choosing the data of the entire world as our focus point as we want to see the cumulative contribution of each sector to emissions

```
ghg_world= ghg_emissions[ghg_emissions['country'] == 'World']
ghg_world.reset_index(level=0,inplace=True)

del ghg_world["index"]
ghg_world
```

Out[85]:

	country	iso_code	year	agriculture	land-use- change- forestry	waste	industry	manufacturir ar constructi
0	World	OWID_WRL	1990- 01-01	4.997830e+09	1.909290e+09	1.364400e+09	1010440000	3.955390e+
1	World	OWID_WRL	1991- 01-01	4.988460e+09	1.909290e+09	1.395180e+09	1014310000	3.875910e+
2	World	OWID_WRL	1992- 01-01	4.966820e+09	1.909290e+09	1.418280e+09	1030400000	3.743480e+
3	World	OWID_WRL	1993- 01-01	4.936150e+09	1.909290e+09	1.444390e+09	1044440000	3.694800e+
4	World	OWID_WRL	1994- 01-01	4.981350e+09	1.909320e+09	1.470960e+09	1151620000	3.711410e+
5	World	OWID_WRL	1995- 01-01	5.038180e+09	1.915150e+09	1.476510e+09	1225100000	3.937600e+
6	World	OWID_WRL	1996- 01-01	5.057350e+09	1.711370e+09	1.478310e+09	1277110000	3.827310e+
7	World	OWID_WRL	1997- 01-01	4.986720e+09	2.681330e+09	1.474360e+09	1319750000	3.852360e+
8	World	OWID_WRL	1998- 01-01	5.042290e+09	2.011150e+09	1.466280e+09	1323480000	3.854060e+
9	World	OWID_WRL	1999- 01-01	5.098820e+09	1.819850e+09	1.464470e+09	1329140000	3.694740e+
10	World	OWID_WRL	2000- 01-01	5.094120e+09	1.670960e+09	1.466760e+09	1388470000	3.874930e+
11	World	OWID_WRL	2001- 01-01	5.105040e+09	1.338220e+09	1.452910e+09	1413160000	3.897350e+
12	World	OWID_WRL	2002- 01-01	5.164050e+09	1.853110e+09	1.447970e+09	1479760000	3.896220e+
13	World	OWID_WRL	2003- 01-01	5.158070e+09	1.545550e+09	1.443660e+09	1555420000	4.083280e+
14	World	OWID_WRL	2004- 01-01	5.271690e+09	1.909320e+09	1.431880e+09	1654810000	4.515140e+
15	World	OWID_WRL	2005- 01-01	5.307630e+09	1.631340e+09	1.422660e+09	1737330000	4.927560e+
16	World	OWID_WRL	2006- 01-01	5.365470e+09	2.005130e+09	1.433850e+09	1868580000	5.176290e+
17	World	OWID_WRL	2007- 01-01	5.450030e+09	1.471650e+09	1.441860e+09	1993860000	5.450180e+
18	World	OWID_WRL	2008- 01-01	5.460100e+09	1.432930e+09	1.446930e+09	2039580000	5.563140e+
19	World	OWID_WRL	2009- 01-01	5.455290e+09	1.825130e+09	1.454290e+09	2089210000	5.547260e+

	country	iso_code	year	agriculture	land-use- change- forestry	waste	industry	manufacturir ar constructi
20	World	OWID_WRL	2010- 01-01	5.515230e+09	1.490210e+09	1.465130e+09	2223080000	6.087720e+
21	World	OWID_WRL	2011- 01-01	5.649500e+09	4.046800e+08	1.467310e+09	2371510000	6.313540e+
22	World	OWID_WRL	2012- 01-01	5.677850e+09	4.326400e+08	1.476630e+09	2450410000	6.332910e+
23	World	OWID_WRL	2013- 01-01	5.621260e+09	3.882600e+08	1.484040e+09	2556160000	6.324160e+
24	World	OWID_WRL	2014- 01-01	5.669750e+09	7.379400e+08	1.514260e+09	2671420000	6.360380e+
25	World	OWID_WRL	2015- 01-01	5.691560e+09	7.864600e+08	1.543590e+09	2678620000	6.315810e+
26	World	OWID_WRL	2016- 01-01	5.737280e+09	1.267610e+09	1.560850e+09	2768080000	6.188610e+
27	World	OWID_WRL	2017- 01-01	5.821070e+09	1.220050e+09	1.583860e+09	2825880000	6.174410e+
28	World	OWID_WRL	2018- 01-01	5.817650e+09	1.387560e+09	1.606860e+09	2902680000	6.158320e+

```
In [54]:
          ghg_world.isna().sum()
         country
                                              0
Out[54]:
          iso_code
                                              0
          year
                                              0
                                              0
          agriculture
          land-use-change-forestry
                                              0
          waste
                                              0
          industry
                                              0
          manufacturing-and-construction
                                              0
                                              0
          transport
          electricity
                                              0
          buildings
                                              0
                                              0
          fugitive-emissions
          other-fuel
                                              0
          aviation-and-shipping
          dtype: int64
In [98]:
          fig_world = px.line(ghg_world, x = 'year', y = ['land-use-change-forestry', 'waste',
          'industry', 'transport', 'manufacturing-and-construction',
                                          'electricity', 'buildings', 'fugitive-emissions', 'other-fuel',
          'aviation-and-shipping'],
                       hover_data= ['value'],
```

Sector wise cor

Plot 6

can generate the same graph for a particular country if a country wants to suppress the co2 coming from a particular sector but it is more sensible to see the sector wise behaviour from a global perspective. We see that heat and electricity are the largest contributors to the emissions. The least amount of co2 comes from aviation and shipping. The contributions from a particular country may change the behaviour of this graph as some countries specialize in a particular sector than others. Which can be shown as:

```
ghg_china= ghg_emissions[ghg_emissions['country'] == 'China']
ghg_china.reset_index(level=0,inplace=True)

del ghg_china["index"]
ghg_china
```

Out[89]:

	country	iso_code	year	agriculture	land- use- change- forestry	waste	industry	manufacturing- and- construction	tra
0	China	CHN	1990- 01-01	590560000.0	0.0	194710000.0	94350000	7.452000e+08	9415
1	China	CHN	1991- 01-01	600810000.0	0.0	199460000.0	112600000	7.788300e+08	10062
2	China	CHN	1992- 01-01	605370000.0	0.0	204210000.0	135160000	8.078000e+08	1111(
3	China	CHN	1993- 01-01	592670000.0	0.0	208960000.0	157020000	8.615400e+08	12570
4	China	CHN	1994- 01-01	612720000.0	0.0	213710000.0	180080000	9.033800e+08	11635
5	China	CHN	1995- 01-01	671870000.0	0.0	205550000.0	204110000	1.070170e+09	12737
6	China	CHN	1996- 01-01	714640000.0	0.0	197380000.0	219900000	9.686600e+08	16985
7	China	CHN	1997- 01-01	646420000.0	0.0	189200000.0	237400000	9.611300e+08	14613
8	China	CHN	1998- 01-01	669110000.0	0.0	181030000.0	253390000	1.023820e+09	14029
9	China	CHN	1999- 01-01	689040000.0	0.0	172860000.0	277780000	8.714900e+08	15736
10	China	CHN	2000- 01-01	677060000.0	0.0	164690000.0	301370000	9.063800e+08	24848
11	China	CHN	2001- 01-01	666040000.0	0.0	156220000.0	344630000	9.613300e+08	25425
12	China	CHN	2002- 01-01	671530000.0	0.0	147740000.0	387290000	9.995400e+08	27644
13	China	CHN	2003- 01-01	660990000.0	0.0	139270000.0	452750000	1.138750e+09	31314
14	China	CHN	2004- 01-01	679510000.0	0.0	130790000.0	504420000	1.500190e+09	37114
15	China	CHN	2005- 01-01	687280000.0	0.0	122320000.0	552880000	1.935870e+09	39731
16	China	CHN	2006- 01-01	689390000.0	0.0	128340000.0	632320000	2.083320e+09	43481
17	China	CHN	2007- 01-01	680840000.0	0.0	134370000.0	698160000	2.274350e+09	46858
18	China	CHN	2008- 01-01	693160000.0	0.0	140390000.0	730000000	2.409860e+09	50707
19	China	CHN	2009- 01-01	694650000.0	0.0	146410000.0	808640000	2.601830e+09	51708

	country	iso_code	year	agriculture	land- use- change- forestry	waste	industry	manufacturing- and- construction	tra
20	China	CHN	2010- 01-01	695410000.0	0.0	152440000.0	885580000	2.844450e+09	56878
21	China	CHN	2011- 01-01	689640000.0	0.0	158460000.0	975360000	3.005390e+09	62189
22	China	CHN	2012- 01-01	691170000.0	0.0	164480000.0	1002330000	3.038400e+09	68613
23	China	CHN	2013- 01-01	690840000.0	0.0	169550000.0	1058980000	3.029290e+09	74109
24	China	CHN	2014- 01-01	691800000.0	0.0	174620000.0	1112430000	3.022680e+09	77056
25	China	CHN	2015- 01-01	698730000.0	0.0	179680000.0	1090680000	2.972980e+09	82714
26	China	CHN	2016- 01-01	699820000.0	0.0	185650000.0	1122480000	2.846380e+09	84342
27	China	CHN	2017- 01-01	684300000.0	0.0	191610000.0	1144490000	2.734180e+09	88090
28	China	CHN	2018- 01-01	672870000.0	0.0	197570000.0	1166290000	2.667430e+09	91702

Sector wise con

Plot 7

This shows the sector wise contribution of ghg emissions in China. Here, contrary to the world graph, electricty and manufactoring sectors dominate the ghg emissions.

Q.4.2 Does transport contribute more or less than electricity

To show the contribution of transport and electricity we can plot a comparative histogram of them

```
fig_comp = px.histogram(ghg_world, x="year", y=['transport','electricity'],

hover_data= ['value'],

labels = {'value': 'GHG emissions'},

barmode='group',
```

Comparison of contribution to the

Plot 8

We see that electricity always accounts for more co2 than the transport sector over the years.

Q.4.3 How large are agriculture and land use emissions

For answering this question, we plot a stacked bar plot of land use and agriculture

```
fig_stack = px.bar(ghg_world, x="year", y=['land-use-change-forestry','agriculture'],
```

Size of GHG emission contributions from Agro and Lan

The highest emission by the agriculture and land use sector was in 1997 which stands as a staggering 4.98 Billion tonnes and 2.6 Billion tonnes respectively.

Q.5.1 and 5.2

How much energy do we use per unit of GDP?

How much carbon do we emit per unit of energy?

gdp_df = pd.read_csv("D:\\Downloads\\global-co2-data.csv",parse_dates=['year'])
gdp_df

	iso_code	country	year	co2	co2_growth_prct	co2_growth_abs	consumption_co2
0	AFG	Afghanistan	1949- 01-01	0.015	NaN	NaN	NaN
1	AFG	Afghanistan	1950- 01-01	0.084	475.000	0.070	NaN
2	AFG	Afghanistan	1951- 01-01	0.092	8.696	0.007	NaN
3	AFG	Afghanistan	1952- 01-01	0.092	NaN	NaN	NaN
4	AFG	Afghanistan	1953- 01-01	0.106	16.000	0.015	NaN
•••							
23703	ZWE	Zimbabwe	2015- 01-01	12.170	1.653	0.198	13.308
23704	ZWE	Zimbabwe	2016- 01-01	10.815	-11.139	-1.356	12.171
23705	ZWE	Zimbabwe	2017- 01-01	10.247	-5.251	-0.568	11.774
23706	ZWE	Zimbabwe	2018- 01-01	11.341	10.674	1.094	12.815
23707	ZWE	Zimbabwe	2019- 01-01	10.374	-8.521	-0.966	NaN

Focusing on India for this particular question

gdp_df= gdp_df[gdp_df['country'] == 'India']
gdp_df

Out	Γ5	97	9
out	Lィ	- 」	0

	iso_code	country	year	co2	co2_growth_prct	co2_growth_abs	consumption_co2	trad
10133	IND	India	1858- 01-01	0.395	NaN	NaN	NaN	
10134	IND	India	1859- 01-01	0.638	61.344	0.242	NaN	
10135	IND	India	1860- 01-01	0.644	1.042	0.007	NaN	
10136	IND	India	1861- 01-01	0.498	-22.680	-0.146	NaN	
10137	IND	India	1862- 01-01	0.551	10.667	0.053	NaN	
10279	IND	India	2015- 01-01	2253.429	3.159	68.997	2067.349	-18
10280	IND	India	2016- 01-01	2392.360	6.165	138.931	2180.245	-21
10281	IND	India	2017- 01-01	2456.848	2.696	64.488	2252.484	-20
10282	IND	India	2018- 01-01	2591.324	5.474	134.476	2354.795	-23
10283	IND	India	2019- 01-01	2616.449	0.970	25.125	NaN	

151 rows × 55 columns

```
In [108... gdp_df = gdp_df.loc[gdp_df['year'] > '1964-01-01' ]
```

Selecting the useful columns

```
gdp_df = gdp_df[['country' , 'year' , 'co2_per_unit_energy','energy_per_gdp']]

gdp_df.reset_index(level=0,inplace=True)

del gdp_df["index"]

gdp_df
```

Out[61]:

	country	year	co2_per_unit_energy	energy_per_gdp
0	India	1965-01-01	0.251	0.991
1	India	1966-01-01	0.253	1.036
2	India	1967-01-01	0.245	1.011
3	India	1968-01-01	0.251	1.089
4	India	1969-01-01	0.230	1.177
5	India	1970-01-01	0.241	1.128
6	India	1971-01-01	0.245	1.144
7	India	1972-01-01	0.246	1.175
8	India	1973-01-01	0.249	1.115
9	India	1974-01-01	0.242	1.190
10	India	1975-01-01	0.245	1.159
11	India	1976-01-01	0.244	1.244
12	India	1977-01-01	0.244	1.308
13	India	1978-01-01	0.239	1.374
14	India	1979-01-01	0.237	1.551
15	India	1980-01-01	0.243	1.546
16	India	1981-01-01	0.237	1.733
17	India	1982-01-01	0.247	1.748
18	India	1983-01-01	0.254	1.813
19	India	1984-01-01	0.244	1.938
20	India	1985-01-01	0.254	2.032
21	India	1986-01-01	0.254	2.063
22	India	1987-01-01	0.255	2.072
23	India	1988-01-01	0.253	2.067
24	India	1989-01-01	0.255	2.101
25	India	1990-01-01	0.254	2.109
26	India	1991-01-01	0.257	2.163
27	India	1992-01-01	0.260	2.141
28	India	1993-01-01	0.262	2.039
29	India	1994-01-01	0.263	2.035
30	India	1995-01-01	0.260	2.037
31	India	1996-01-01	0.271	1.945
32	India	1997-01-01	0.267	1.930

	country	year	co2_per_unit_energy	energy_per_gdp
33	India	1998-01-01	0.257	1.898
34	India	1999-01-01	0.271	1.827
35	India	2000-01-01	0.265	1.828
36	India	2001-01-01	0.267	1.736
37	India	2002-01-01	0.263	1.713
38	India	2003-01-01	0.262	1.622
39	India	2004-01-01	0.263	1.590
40	India	2005-01-01	0.258	1.507
41	India	2006-01-01	0.261	1.425
42	India	2007-01-01	0.258	1.401
43	India	2008-01-01	0.263	1.295
44	India	2009-01-01	0.270	1.312
45	India	2010-01-01	0.268	1.227
46	India	2011-01-01	0.266	1.170
47	India	2012-01-01	0.278	1.165
48	India	2013-01-01	0.280	1.177
49	India	2014-01-01	0.281	1.182
50	India	2015-01-01	0.281	1.135
51	India	2016-01-01	0.286	1.106
52	India	2017-01-01	NaN	NaN
53	India	2018-01-01	NaN	NaN
54	India	2019-01-01	NaN	NaN

Performing the multiple y axis plots for co2 per unit energy and energy per gdp

```
from plotly.subplots import make_subplots

#fig_co2 = px.line(gdp_df, x = "year", y = "co2_per_unit_energy", height=600)

# Create figure with secondary y-axis

fig_co2 = make_subplots(specs=[[{"secondary_y": True}]])

# Add traces

fig_co2.add_trace(
```

```
go.Scatter( x=gdp_df['year'], y=gdp_df['co2_per_unit_energy'], name="Co2 per_unit_energy"], name="Co2 per_unit_energy"]
unit energy"),
  secondary_y=False,
fig_co2.add_trace(
  go.Scatter(x=gdp_df['year'], y=gdp_df['energy_per_gdp'], name="Energy per unit
gdp"),
  secondary_y=True,
fig_co2.update_layout(title="Energy per GDP and Co2 per unit energy for
India",title_x=0.50)
fig co2.update(layout_coloraxis_showscale = True)
fig_co2.show()
#fig co2.write html("D:\Downloads\GHG emissions HTML Plots\Energy per gdp and
co2 per unit energy.html")
```

Energy per G

Plot 10

This plot shows the energy per gdp with reference to the right y axis and co2 per unit energy with reference to the left y axis with their corresponding scales.