Вариант 1

- 1. Дан симметричный ортогональный тензор $A(\mathbf{x},\mathbf{x}) = 4x_1^2 + x_2^2 + 4x_3^2 - 4x_1x_2 - 8x_1x_3 + 4x_2x_3$. Записать характеристический многочлен. Записать тензор в главных осях. Выписать главные направления так, чтобы они составляли ортонормированный правый базис.
- 2. Выделить симметричную S и антисимметричную A части ортогонального тензора

$$T = \begin{pmatrix} -4 & 1 & -5 \\ -5 & 10 & 8 \\ -3 & -2 & 3 \end{pmatrix}$$
. Симметричную часть разделить на шаровую часть и девиатор.

Найти декартовы координаты вектора \mathbf{w} : $A = \mathbf{w} \times$

3. Ортогональный тензор T в базисе $\mathbf{e}_1 = \frac{3}{\sqrt{10}}\mathbf{i} + \frac{1}{\sqrt{10}}\mathbf{j}$, $\mathbf{e}_2 = -\frac{1}{\sqrt{10}}\mathbf{i} + \frac{3}{\sqrt{10}}\mathbf{j}$, имеет компоненты

$$t_{111} = 0$$
 $t_{112} = 1$ $t_{121} = 6$ $t_{122} = 4$
 $t_{211} = 2$ $t_{212} = 3$ $t_{221} = 5$ $t_{222} = 0$

Найти компоненту t_{122} в базисе $\{\mathbf{i}, \mathbf{j}\}$.

- 4. Тензор (t_{ijklmn}) , i, j, k, l, m, n = 1, 2, 3, 4, 5 задан своими компонентами $t_{511234} = 1$, $t_{115324}=2,\ t_{312415}=5,\ t_{511243}=4,\ t_{115342}=7,\ t_{122345}=3,$ остальные компоненты равны нулю. Определим тензор $a_{ijklmn} = t_{[i|j|klmn]}$. Вычислить a_{213145} .
- 5. Заданы: базис $\mathbf{e_1} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}; \ \mathbf{e_2} = \mathbf{j} 2\mathbf{k}; \ \mathbf{e_3} = \mathbf{i} + 2\mathbf{j} + \mathbf{k};$ тензор $(t^i_j) = 2\mathbf{e_1} \otimes \mathbf{e^2} + 4\mathbf{e_2} \otimes \mathbf{e^1} + 3\mathbf{e_2} \otimes \mathbf{e^3} + 5\mathbf{e_3} \otimes \mathbf{e^1},$ вектор $\mathbf{v} = \mathbf{e_1} + 4\mathbf{e_2} + 2\mathbf{e_3}.$ Найти длину вектора \mathbf{u} , если $u^i = t^i_i v^j$.

Вариант 2.

- 1. Дан симметричный ортогональный тензор $A(\mathbf{x},\mathbf{x}) = 5x_1^2 + 8x_2^2 + 5x_3^2 + 4x_1x_2 - 2x_1x_3 - 4x_2x_3$. Записать характеристический многочлен. Записать тензор в главных осях. Выписать главные направления так, чтобы они составляли ортономированный правый базис. ($\lambda=4$)
- 2. Выделить симметричную S и антисимметричную A части ортогонального тензора $T=egin{pmatrix} -10 & 2 & 4 \ -8 & -1 & 3 \ 2 & 7 & 8 \end{pmatrix}$. Симметричную часть разделить на шаровую часть и девиатор.

Найти декартовы координаты вектора \mathbf{w} : $A = \mathbf{w} \times$

3. Ортогональный тензор T в базисе $\mathbf{e}_1 = \frac{1}{\sqrt{5}}\mathbf{i} - \frac{2}{\sqrt{5}}\mathbf{j}$, $\mathbf{e}_2 = \frac{2}{\sqrt{5}}\mathbf{i} + \frac{1}{\sqrt{5}}\mathbf{j}$, имеет компоненты

$$t_{111} = 0$$
 $t_{112} = 2$ $t_{121} = 1$ $t_{122} = 5$ $t_{211} = 6$ $t_{212} = 3$ $t_{221} = 4$ $t_{222} = 0$

Найти компоненту t_{212} в базисе $\{i, j\}$.

- 4. Тензор (t_{ijklmn}) , i, j, k, l, m, n = 1, 2, 3, 4, 5 задан своими компонентами $t_{123345} = 7$, $t_{314452}=2,\ t_{451432}=3,\ t_{154432}=4,\ t_{145432}=5,\ t_{534412}=6,$ остальные компоненты равны нулю. Определим тензор $a_{ijklmn} = t_{[ijk|l|mn]}$. Вычислить a_{213454} .
- 5. Заданы: базис $\mathbf{e_1} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$; $\mathbf{e_2} = \mathbf{i} + \mathbf{j}$; $\mathbf{e_3} = \mathbf{i} \mathbf{j} + 2\mathbf{k}$; тензор $(t_i^i) = \mathbf{e_1} \otimes \mathbf{e^2} + 2 \mathbf{e_1} \otimes \mathbf{e^3} + 4 \mathbf{e_2} \otimes \mathbf{e^1} + 3 \mathbf{e_3} \otimes \mathbf{e^2}$, вектор $\mathbf{v} = 2 \mathbf{e_1} + \mathbf{e_2} + 3 \mathbf{e_3}$. Найти длину вектора **u**, если $u^i = t^i_i v^j$.