Engineering Physics Laboratory(Course Code: PHY119)

Experiment Number: 2

AIM: To investigate the intensity of light coming through two crossed Polaroids and to verify the Malus' law

Learning Objectives

- 1. To understand the concept of polarization of light.
- 2. To learn about the position of the axis of the analyzer (θ) with respect to the axis of polarizer and the polarization intensity (I).
- 3. To verify the Malus' law, $I = I_0 \cos^2 \theta$.

Theoretical background

Malus cosine-squared law states that the intensity of a beam of plane-polarized light after passing through a rotatable polarizer varies as the square of the cosine of the angle through which the polarizer is rotated from the position that gives maximum intensity. Malus' law, $I = I_0 \cos^2 \theta$

Step by Step guide to perform the experiment on Virtual platform

(1) Go to the link: http://lo-au.vlabs.ac.in/laser-optics/Malus_law/experiment.html

Home page to start experiment

Click on the power on button

Change the polarizer rotation

Refer graph for (x,y) coordinates and analyze the graph

Activity Based Session

(go to new link: http://tutor-homework.com/Physics_Help/polarized_light.html)

Select incident beam

Select polarization orientation

Note intensity by changing analyzer orientation

Observation Table

Angle of analyzer, $\theta_a =$

Angle of polarizer, $\theta_p =$

Maximum intensity, $I_0 =$

S. No.	$\theta_a - \theta_p$	Ammeter Reading (I_p)	Experimental Relative Intensity (I_p/I_0)	Theoretical Relative Intensity (I_{th}/I_o)

Calculation

- The validity of Malu's law can be verified by plotting a graph between θ vs I_p/I_0 and θ vs I_{th}/I_0
- For comparison, both the curves must be on the same graph paper

Prepare a graph (to match with vlab)

Precautions (in the lab)

- 1. Beam should be along with the axis of Polaroid
- 2. Good quality laser beam should be used
- 3. Power supply should be continuous
- 4. There should be dark room for this experiment.
- 5. No obstacle should lie in the path of beam.

Understanding based questions

Q1: A window which can transmit all the incident light without any reflection is called

- a) Polarized Window
- b) Malus Window
- c) Brewster Window
- d) Non-reflecting window

Q2 : Sound waves can be polarized.

- a) True
- b) False

Q3 :If the phase difference between two rays is $\pi/2$ and the angle of incidence is not equal to $\pi/4$, the emergent light is _____

- a) Linearly Polarized
- b) Elliptically Polarized
- c) Circularly Polarized
- d) Non-Polarized

Activity based questions

Q1:Polarization of incident beam can be set to

- a) Unpolarised
- b) Linearly Polarized
- c) Elliptically Polarized
- d) Both (a) and (b)

Q2 :Analyzer orientation can be varied from _____ to ____

- a) 0°, 360°
- b) -90°, 90°
- c) -180°, 180°
- d) Automatic

Q3: Least count of polarizer and analyzer is_____

- a) 0.1°
- b) 0.01°
- c) 0.001°
- d) Undetermined

Q4: Intensity of light after it passes through analyzer is _____when polarizer and analyzer set to 45° and 60°, respectively.

- a) 0
- b) 0.467 I₀
- c) $0.5 I_0$
- d) I_0

Q5: what should be the direction of polarization of incident beam to get maximum intensity (I_0) of light? Consider the polarizer and analyzer set to 45° each.

- a) 0°
- b) 45°
- c) 90°
- d) Cannot be achieved