#### Curs 3

- Gramatici. Clasificarea Chomsky
  - Gramatici regulare
- Limbaje regulare. Echivalente
  - Expresii regulare
- Proprietati de inchidere ale limbajelor regulare

10/17/2023

#### Gramatica

- O gramatica este un cvadruplu  $G = (N, \Sigma, P, S)$
- N este un alfabet de simboluri neterminale
- Σ este un alfabet de simboluri terminale
- $N \cap \Sigma = \phi$
- $P \subseteq (N \cup \Sigma)^* N (N \cup \Sigma)^* \times (N \cup \Sigma)^*$

P multime finitã

(multimea regulilor de productie)

• S∈ N

(simbolul de start - simbolul initial)

#### Notatie:

$$(\alpha, \beta) \in P$$
 se noteaza:  $\alpha \to \beta$   
 $(\alpha \text{ se înlocuieste cu } \beta)$ 

#### Notatii

• la nivel abstract (exemple matematice, specificari)

 $-\Sigma$ : a,b,... litere mici de la inceputul alfabetului

– N: A,B,.. litere mari de la inceputul alfabetului

 $-\Sigma$  sau N: X,Y,...litere mari de la sfarsitul alfabetului

 $-\Sigma^*$ : x,y,... litere mici de la sfarsitul alfabetului

-  $(\Sigma \cup N)^*$ :  $\alpha,\beta,...$  litere grecesti

 nu se folosesc spatii cand avem nevoie de mai multe caractere pentru a specifica un simbol (terminal sau neterminal)

#### Relatii de derivare

relatii binare peste  $(\Sigma \cup N)^*$  adica  $(\Sigma \cup N)^* \times (\Sigma \cup N)^*$ 

derivare directa

$$\gamma => \delta <=> \exists \gamma_1, \gamma_2, \alpha, \beta \in (N \cup \Sigma)^*$$
a.i.  $\gamma = \gamma_1 \alpha \gamma_2, \delta = \gamma_1 \beta \gamma_2$ , iar  $(\alpha \to \beta) \in P$ 

- k-derivare =>
  (o succesiune de k derivari directe)
- + derivare => dacã ∃ k>0 a.1. cele 2 secvente sã fie într-o relatie de "k derivare"
- \* derivare = >

daca fie cele 2 secvente sunt egale, fie intre ele exista o relatie de +derivare

# Limbaj generat de o gramatica

• Limbaj generat gramatica  $G=(N,\Sigma,P,S)$ 

$$L(G) = \{ w \in \Sigma^* \mid S => w \}$$

- Forma propozitionala
  - $-\alpha \in (N \cup \Sigma)^* \text{ a.i.} \quad S => \alpha$
- Propozitie (cuvant)
  - un element din L(G)
- Gramatici echivalente daca genereaza acelasi limbaj

# Tipuri de gramatici

Gramatica monotona

$$- \forall \alpha \rightarrow \beta \in P: |\alpha| \leq |\beta|$$

$$\alpha, \beta \in (N \cup \Sigma)^*$$

- caz special:  $S \rightarrow \varepsilon$  poate sa apartina lui P. In acest caz S nu apare în membrul drept al nici unei reguli de productie.
- Gramatica dependenta de context reguli de productie sunt de forma:

$$\alpha A \beta \rightarrow \alpha \gamma \beta$$

$$A \in N$$

$$\alpha, \beta, \gamma \in (N \cup \Sigma)^*, \gamma \neq \varepsilon$$

- caz special:  $S \rightarrow \varepsilon$  poate sa apartina lui P. In acest caz S nu apare în membrul drept al nici unei reguli de productie.

## Tipuri de gramatici

• Gramatica regulara:

reg. prod. sunt de forma

- $A \rightarrow aB$
- $A \rightarrow b$

unde  $A,B \in N$  si  $a,b \in \Sigma$ 

caz special:  $S \rightarrow \varepsilon$  poate  $\in$ . P In acest caz S nu apare în membrul drept al nici unei reguli de productie.

Gramatica independenta de context:

reg. productie sunt de forma  $A \rightarrow \alpha$ ,  $A \in \mathbb{N}$ ,  $\alpha \in (\mathbb{N} \cup \Sigma)^*$ 

## Clasificarea Chomsky

- Gramatici de tip **0**nici o restrictie (suplimentara) referitoare la forma regulilor de productie
- Gramaticile de tip 1

dependente de context ⇔ gramatici monotone

(monotonic, non-contracting)

- Gramaticile de tip 2

  gramatici independente de context
- Gramaticile de tip 3

gramatici regulare

=> Limbaje independente de context

=> Limbaje regulare

## **Ierarhia Chomsky**

Fie ~ 1959-1963

- ullet L0 multimea limbajelor generate de gram. de tip 0
- ulletL1 multimea limbajelor generate de gram. de tip 1
- $\mathcal{L}2$  multimea limbajelor generate de gram. de tip 2
- £3 multimea limbajelor generate de gram. de tip 3

Are loc:

$$L0 \supset L1 \supset L2 \supset L3$$



#### Ierarhia Chomsky: observatii

Teorema:

Fiecare dintre familiile de limbaje:

L0, L1, L2, L3

este inchisa fata de operatia de reuniune

## Limbaje regulare. Echivalente

- Limbaj regular
  - = limbaj generat de o gramatica regulara

• putere de exprimare

AF: AFN ⇔AFD

AF ⇔ gr.regulare

AF ⇔ (m.regulare ⇔ expr.reg.)

## Multimi regulare

Fie  $\Sigma$  un alfabet.

Multimile regulare peste  $\Sigma$  se definesc recursiv astfel:

- 1.  $\Phi$  este o m. reg. peste  $\Sigma$
- 2.  $\{\epsilon\}$
- 3.  $\{a\}$  daca:  $a \in \Sigma$
- 4. RUS daca R,S multimi regulare peste  $\Sigma$  +
- 5. RS daca R,S multimi regulare peste  $\Sigma$
- 6.  $R^*$  daca R multime regulara peste  $\Sigma$
- 7. Orice alta multime regulara se obtine aplicand de un numar finit de ori reg. 1-6

## Multimi regulare si expresii regulare

Expresii regulare

```
1. \Phi expr. reg. coresp. m.reg. \Phi
2. \epsilon
3. a daca: a \in \Sigma {a}
4. r+s daca r,s - expresii regulare r | s RUS
5. rs daca r,s - expresii regulare RS
6. r* daca r - expresie regulara R*
```

- 7. Orice alta expr. reg. se obtine aplicand de un numar finit de ori reg. 1-6
- Expresii regulare echivalente:
  - mult. regulare reprezentate de acestea sunt egale

## Expresii regulare

• expresiile regulare – secv. obtinute prin concatenarea de simb. din

```
\Sigma \cup \{\Phi, \varepsilon, +, *, (,)\} (... prioritate ...)
```

 multimile regulare asociate expresiilor regulare sunt limbaje regulare

Deci: Orice expresie regulara peste  $\Sigma$  descrie un limbaj regular peste  $\Sigma$ 

# Proprietati de inchidere ale limbajelor regulare

#### Teorema:

Daca

 $L_1$ ,  $L_2$  sunt limbaje regulare peste alfabetul  $\Sigma$  *atunci*:

 $L_1 \cup L_2, L_1 \cap L_2, L_1 L_2, L_1^*$ , complement( $L_1$ ) sunt limbaje regulare peste alfabetul  $\Sigma$ 

- Daca L este un limbaj regular,
- atunci  $\exists p \in \mathbb{N}^*$  (fix pt. un limbaj dat) (oricat de mare)
- astfel incat:

∀ w ∈ L de lungime cel putin pexista o descompunere de forma w=xyz,

unde  $0 < |y| \le p$ 

cu proprietatea ca:  $xy^iz \in L$ ,  $\forall i \in N$ 

```
egin{aligned} (orall L \subseteq \Sigma^*) \ (	ext{regular}(L) \Rightarrow \ ((\exists p \geq 1)((orall w \in L)((|w| \geq p) \Rightarrow \ ((\exists x,y,z \in \Sigma^*)(w = xyz \land (|y| \geq 1 \land |y| \leq p \land (orall n \geq 0)(xy^nz \in L))))))))) \end{aligned}
```

(enunt formal al teoremei)

(o alta versiune, mai "puternica")

Daca L este un limbaj regular,

- atunci  $\exists p \in \mathbb{N}^*$  (fix pt. un limbaj dat) (oricat de mare)
- astfel incat:

```
∀ w ∈ L de lungime cel putin pexista o descompunere de forma w=xyz astfel incat
```

```
0 < |y|
|x y| \le p
xy^{i}z \in L, \forall i \in \mathbb{N}
```

#### Observatii:

- Lema da o conditie necesara dar nu suficienta
- daca un limbaj satisface conditiile lemei nu inseamna ca este regular
- folosim negatia lemei de pompare pt. a dem. ca un limbaj nu este regular

De ce se intampla asa:

- Daca L limb. reg.
- $\Rightarrow$  exista G gram. reg. a.i. L(G) = L(def.)
- $\Rightarrow$  exista M AF a.i. L(M) = L

(teorema)

- Fie p nr. de stari ale lui M
- daca |w|>=p si w –acceptat
- ⇒ ∃ un drum in graful asociat lui M a.i. etichetele arcelor sunt simb. din w
- $\Rightarrow$  drumul e de lung. p; adica trece prin p + 1 noduri din graf
- $\Rightarrow \exists$  un nod prin care se trece de cel putin 2 ori
- ⇒ ciclu/bucla care se poate repeta de oricate ori !!
- ⇒ se poate repeta sirul etichetelor arcelor din bucla!!

(de 0 sau mai multe ori)

```
Exemplu:
```

Fie L - limbajul regular corespunzator expresiei regulare: aa\*b\*

```
1) fie w = ab;
```

Puteti identifica o descompunere w=xyz a.i. xyiz in L?

2) fie w = aa;

Puteti identifica o descompunere w=xyz a.i. xy<sup>i</sup>z in L?

\_\_\_\_\_

Analog pt.: a(ba)\*

 $\mathbf{si}$   $\mathbf{w} = \mathbf{aba}$ 

\_\_\_\_\_

Analog pt.:  $L=\{a,b\}$  si w=a

#### Proprietati de inchidere ale limbajelor regulare

#### $L_1 \cap L_2$

- $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$
- $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$
- ?  $M = (Q, \Sigma, \delta, q_0, F)$

PP. ca aut. M<sub>1</sub> si M<sub>2</sub> sunt deterministe, complet definite!

(alg. de constr. !!)

- $M = (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F_1 \times F_2)$
- $\delta((q_1,q_2),a) = (\delta_1(q_1,a),\delta_2(q_2,a))$



#### Proprietati de inchidere ale limbajelor regulare

 $complement(L_1)$ 

- $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$
- $? M = (Q, \Sigma, \delta, q_0, F)$

- PP. ca aut. M<sub>1</sub> este determinist complet definit! (alg. de constr.)
- $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, Q_1 F_1)$