Image classification of the illustration of everyday objects

By Jeffery Coulter, Aditya Joseph James, Manasi Swaminathan Group 8

CSCI P556 Applied Machine Learning – Spring 2022 4th May'22

How well do image classification algorithms work on illustrations?

Classification using Domainnet data

345 Categories

Research Questions

- 1) Can a "simple" CNN architecture provide robust prediction power while classifying illustrations?
- 2) How does the performance of a "simple" CNN architecture compare to the state-of-the-art architectures such as ResNet-50 and GoogLeNet?

ResNet-50

GoogLeNet

3) Can clustering algorithms be used to classify images based on color i.e. color image vs black and white?

Prior work

Image transformation results for two different neurons of the first convolutional layer. **a** Original image, **b** transformation via 7th neuron, **c** transformation via 11th neuron

[4] Young-Min Kim, "Feature visualization in comic artist classification using deep neural networks.," J. Big Data, vol. 6, pp. 56, 2019

- [1] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang, "Moment matching for multi-source domain adaptation," in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 1406–1415.
- [2] Yann LeCun and Corinna Cortes, "MNIST handwritten digit database," 2010.
- [3] Yanqing Zhou, Yongxu Jin, Anqi Luo, Szeyu Chan, Xiangyun Xiao, and Xubo Yang, "Toonnet: a cartoon image dataset and a dnn-based semantic classification system," in Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, VRCAI 2018, Hachioji, Japan, December 02-03, 2018, Koji Mikami, Zhigeng Pan, Matt Adcock, Daniel Thalmann, Xubo Yang, Tomoki Itamiya, and Enhua Wu, Eds. 2018, pp. 30:1–30:8, ACM.
- [4] Young-Min Kim, "Feature visualization in comic artist classification using deep neural networks.," J. Big Data, vol. 6, pp. 56, 2019.
- [5] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, "Going deeper with convolutions," CoRR, vol. abs/1409.4842, 2014.
- [6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep residual learning for image recognition," CoRR, vol. abs/1512.03385, 2015.
- [7] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger, "Densely connected convolutional networks," 2018.
- [8] Syed Mohammad Abid Hasan and Kwanghee Ko, "Depth edge detection by image-based smoothing and morphological operations," Journal of Computational Design and Engineering, vol. 3, no. 3, pp. 191–197, 2016.

Classification of clipart: Architecture

----- Model Summary -----

Model: "Architecture 1"

Layer (type)	Output Shape	Param #
rescaling 1 (Rescaling)	(None, 64, 64, 1)	0
random_flip_1 (RandomFlip)	(None, 64, 64, 1)	0
conv2d_8 (Conv2D)	(None, 60, 60, 6)	156
max_pooling2d_5(MaxPooling 2D)	(None, 30, 30, 6)	0
dropout_8 (Dropout)	(None, 30, 30, 6)	0
conv2d_9 (Conv2D)	(None, 26, 26, 16)	2416
max_pooling2d_6(MaxPooling 2D)	(None, 13, 13, 16)	0
dropout_9 (Dropout)	(None, 13, 13, 16)	0
flatten_2 (Flatten)	(None, 2704)	0
dense_6 (Dense)	(None, 256)	692480
dropout_10 (Dropout)	(None, 256)	0
dense_7 (Dense)	(None, 128)	32896
dropout_11 (Dropout)	(None, 128)	0
dense_8 (Dense)	(None, 17)	2193

Total params: 730,141 Trainable params: 730,141

Non-trainable params: 0

CNN with 6,16 filters Kernel size of 5x5 No Regularization Relu activation

----- Model Summary -----

Model: "Architecure 2"

Layer (type)	Output Shape	Param #
rescaling 1 (Rescaling)	(None, 64, 64, 1)	0
random flip 1 (RandomFlip)	(None, 64, 64, 1)	0
conv2d_10 (Conv2D)	(None, 62, 62, 16)	160
batch_normalization_6 (BatchNormalization)	(None, 62, 62, 16)	64
conv2d_11 (Conv2D)	(None, 60, 60, 16)	2320
batch_normalization_7 (BatchNormalization)	(None, 60, 60, 16)	64
max_pooling2d_7 (MaxPooling 2D)	(None, 30, 30, 16)	0
dropout_12 (Dropout)	(None, 30, 30, 16)	0
conv2d_12 (Conv2D)	(None, 28, 28, 32)	4640
batch_normalization_8 (BatchNormalization)	(None, 28, 28, 32)	128
conv2d_13 (Conv2D)	(None, 26, 26, 32)	9248
batch_normalization_9 (BatchNormalization)	(None, 26, 26, 32)	128
max_pooling2d_8 (MaxPooling 2D)	(None, 13, 13, 32)	0
dropout_13 (Dropout)	(None, 13, 13, 32)	0
conv2d_14 (Conv2D)	(None, 11, 11, 64)	18496
batch_normalization_10 (BatchNormalization)	(None, 11, 11, 64)	256
conv2d_15 (Conv2D)	(None, 9, 9, 64)	36928
batch_normalization_11 (BatchNormalization)	(None, 9, 9, 64)	256
max_pooling2d_9 (MaxPooling 2D)	(None, 4, 4, 64)	0
dropout_14 (Dropout)	(None, 4, 4, 64)	0
flatten_3 (Flatten)	(None, 1024)	0
dense_9 (Dense)	(None, 256)	262400
dropout_15 (Dropout)	(None, 256)	0
dense_10 (Dense)	(None, 128)	32896
dense_11 (Dense)	(None, 17)	2193

Total params: 370,177 Trainable params: 369,729 Non-trainable params: 448

> CNN with 16,32, 64 filters Kernel size of 3x3 Regularization Relu activation

----- Model Summary -----

Model: "Architecure 3"

Layer (type)	Output Shape	Param #	======
rescali	ng_1 (Rescaling)	(None, 64, 64, 1)	0
random_	flip_1 (RandomFlip)	(None, 64, 64, 1)	0
conv2d	_16 (Conv2D)	(None, 63, 63, 16)	80
batch_normalizat	tion_12 (BatchNormalizatio	n) (None, 63, 63, 16)	64
conv2d	_17 (Conv2D)	(None, 62, 62, 16)	1040
batch_normalizat	tion_13 (BatchNormalizatio	n) (None, 62, 62, 16)	64
max_pooling	g2d_10 (MaxPooling2D)	(None, 31, 31, 16)	0
dropou	t_16 (Dropout)	(None, 31, 31, 16)	0
conv2d	_18 (Conv2D)	(None, 29, 29, 16)	2320
batch_normalizat	tion_14 (BatchNormalizatio	n) (None, 29, 29, 16)	64
conv2d	_19 (Conv2D)	(None, 27, 27, 16)	2320
batch_normalizat	tion_15 (BatchNormalizatio	n) (None, 27, 27, 16)	64
max_pooling	g2d_11 (MaxPooling2D)	(None, 13, 13, 16)	0
dropou	t_17 (Dropout)	(None, 13, 13, 16)	0
conv2d	_20 (Conv2D)	(None, 9, 9, 16)	6416
batch_normalizat	tion_16 (BatchNormalizatio	n) (None, 9, 9, 16)	64
conv2d	I_21 (Conv2D)	(None, 5, 5, 16)	6416
batch_normalizat	tion_17 (BatchNormalizatio	n) (None, 5, 5, 16)	64
max_pooling	g2d_12 (MaxPooling2D)	(None, 2, 2, 16)	0
dropou	t_18 (Dropout)	(None, 2, 2, 16)	0
flatte	n_4 (Flatten)	(None, 64)	0
dense	_12 (Dense)	(None, 256)	16640
dropou	t_19 (Dropout)	(None, 256)	0
dense	_13 (Dense)	(None, 128)	32896
dense	_14 (Dense)	(None, 17)	2193

Total params: 70,705 Trainable params: 70,513 Non-trainable params: 192

> CNN with 16 filters for each convolution Kernel size of 2x2, 3x3, 5x5 Regularization Relu activation

Classification of clipart: Loss and accuracy curves

Model trained on 17 classes due to low sample volumes

Classification of clipart: ResNet-50

Transfer learning using weights from Imagenette

Transfer learning ResNet-50

ResNet-50 Architecture

The architecture of ResNet-50 model.

Training accuracy 96.4%

Validation accuracy 80.02%

Test accuracy 78.5%

Luqman Ali, Fady Alnajjar, Hamad Jassmi, Munkhjar-gal Gochoo, Wasif Khan, and Mohamed Serhani, "Performance evaluation of deep cnn-based crack detection and localization techniques for concrete structures," Sensors, vol. 21, pp. 1688, 03 2021.

Classification of clipart: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360N
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128N
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304N
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73N
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88N
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	1001
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	1191
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	1701
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54N
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71N
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Figure 2: Inception module

ResNet-50 transfer learning and GoogLeNet are far superior architectures and could be used to solve illustration classification problems

Classification across categories using GoogLeNet

Training accuracy	99.3%				
Validation accuracy	93.5%				
Test accuracy	91.3%				

Clustering based on the dominant colors of an image: Approach

K Means elbow curve for colored image

K Means elbow curve for black and white image

• The implementation is based on the hypothesis that the dominant colors in black and white image is black and white so the k value is set to 2. This is proved by the elbow method.

Clustering based on the dominant colors of an image: Technique

Centroids/ RGB value of the 2 dominant colors

The RGB value is converted to CIE Labspace value

L = 0 (White)

deltaE_cie76

skimage.color.deltaE_cie76(lab1, lab2, channel_axis=- 1)

Euclidean distance between two points in Lab color space

Parameters

lab1 : array_like

reference color (Lab colorspace)

lab2 : array_like

comparison color (Lab colorspace)

channel_axis : int, optional

This parameter indicates which axis of the arrays corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns

dE : array_like

distance between colors 1ab1 and 1ab2

Clustering based on the dominant colors of an image: Results

Results for black and white image

Results for color image

Top 3 dominant colors (k=3)

• K Means returns the centroid of the images. The centroids represent the RGB value. The RGB value is used to compare with the actual RGB value of black and white to determine if the image is black or white.

Conclusion

- 1. Through our experiments we find that transfer learning and GoogLeNet architecture are far superior to "simple" CNN architectures
- 2. We found that the same architectures perform with different accuracies when classifying between classes (clipart vs painting vs others) and within classes (aircraft vs ball vs bat, etc)
- 3. We were able to use the K Means algorithm to classify if an image was colored or black and white using the property that the centroids would represent the dominant colors of an image.
- 4. Additionally, the 3 dominant colors in a colored image is also visualized.

Thank You