Отчёт по лабораторной работе №6

дисциплина: Математическое моделирование

Рыбалко Элина Павловна

Содержание

Цель работы	5
Объект исследования	5
Предмет исследования	5
Теоретическое введение	6
Задание	8
Выполнение лабораторной работы	9
1. Постановка задачи	9
2. Построение графиков	9
2.1. Листинги программ в OpenModelica	9
2.2. Полученный график	10
2.4. Анализ результатов:	12
Вывод	13
Список литературы	14

Список иллюстраций

1	Динамика изменения числа людей в каждой из трех групп в случае	
	с параметром S	11
2	Динамика изменения числа людей в каждой из трех групп в случае 1	11
3	Динамика изменения числа людей в каждой из трех групп в случае 2	12

Список таблиц

Цель работы

Рассмотреть простейшую модель эпидемии.

Объект исследования

Модель эпидемии.

Предмет исследования

Алгоритм решения задачи об эпидемии.

Теоретическое введение

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I/^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -aS, I(t) > I* \\ 0, I(t) <= I* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dS}{dt} = \begin{cases} aS - bI, I(t) > I* \\ -bI, I(t) <= I* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = bI$$

Постоянные пропорциональности a,b - это коэффициенты заболеваемости и выздоровления соответственно.

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) <= I^*$ и $I(0) > I^*$. [1]

Задание

Придумайте свой пример задачи об эпидемии, задайте начальные условия и коэффициенты пропорциональности. Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1) Если $I(0) <= I^*$
- 2) Если $I(0)>I^{st}$

Выполнение лабораторной работы

1. Постановка задачи

[Вариант 22]

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=10800) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=208, А число здоровых людей с иммунитетом к болезни R(0)=41. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в случае:

- 1) Если $I(0) <= I^*$
- 2) Если $I(0) > I^*$

2. Построение графиков

2.1. Листинги программ в OpenModelica

1. Написала программу на Modelica (с интервалом времени от 0 до 200 и шагом 0.01):

Программа:

```
model lab06
 parameter Real a = 0.01; // коэффициент заболеваемости
 parameter Real b = 0.02; //коэффициент выздоровления
 parameter Real N = 10800; // общая численность популяции
 parameter Real I0 = 208; // количество инфицированных особей в начальный момент
  parameter Real S0 = N - I0 - R0; // количество восприимчивых к болезни особей
 parameter Real R0 = 41; // количество здоровых особей с иммунитетом в начальный
  Real S(start=S0); // количество инфицированных особей в начальный момент времен
  Real I(start=I0); // количество восприимчивых к болезни особей в начальный моме
  Real R(start=R0); // количество здоровых особей с иммунитетом в начальный моме
equation
  // случай, когда I(0)<=I*
  der(S) = 0;
  der(I) = -b*I;
  der(R) = b*I;
  /* случай, когда I(0)>I*
  der(S) = -a*S;
  der(I) = a*S-b*I;
```

2.2. Полученный график

der(R) = b*I;*/

end lab06;

После запуска кода программы получили следующие графики для первого и второго случая соответственно (см. рис. -@fig:001, -@fig:002 и -@fig:003).

Рис. 1: Динамика изменения числа людей в каждой из трех групп в случае с параметром S

Рис. 2: Динамика изменения числа людей в каждой из трех групп в случае 1

Рис. 3: Динамика изменения числа людей в каждой из трех групп в случае 2

2.4. Анализ результатов:

Как можно заметить из рис. -@fig:001 и -@fig:002 количество инфицированных I уменьшается со временем, а количество особей с иммунитетом R возрастает по мере преодоления эпидемии. Во втором случае (см. рис. -@fig:003) при количестве инфицированных I больше критического значения, сначала возрастает число инфицированных, но затем идёт на спад. Соответственно, по мере уменьшения инфицированных увеличивается число с иммунитетом и уменьшается число особей, восприимчивых к болезни.

Вывод

Рассмотрели простейшую модель эпидемии.

Список литературы

- 1. Задача об эпидемии
- 2. Руководство по формуле Cmd Markdown
- 3. Математическое моделирование при решении задач
- 4. С.В. Каштаева, Математическое моделирование / Учебное пособие
- 5. Руководство по оформлению Markdown файлов