

PV im Stromsystem – Strommarkt

Anne Glatt 26.05.2020

Agenda

- Ergebnisse Übung 2
- Fragen zu Übung 3
- Theorie: PV im Stromsystem Strommarkt
- Übung 4
- Gruppenarbeit

Ergebnisse

Übung 2

2.1 - Einfluss von Temperatur und Strahlung

2.1 Vergleich der Ansätze

Monatliche Erträge

Stündliche Erträge

2.2 Volllaststunden

2.2 Iso-Ertragslinien

2.2 Höchster Ertrag

2.2 Winkelkombination Juni

2.2 Winkelkombination Dezember

2.2 Optimale Winkelkombinationen

	Azimutwinkel [°]	Neigungswinkel [°]
Jahr	190	32,5
Juni	190	12,5
Dezember	180	65

Offene Fragen

zu Übung 3

Aufgabe 3.1 – Verkauf der gesamten Produktion

- a. Berechnen Sie den Barwert (= Kapitalwert) einer 10 kWp PV-Anlage unter der Annahme, dass die gesamte Produktion am Spotmarkt verkauft wird.
 - Preise aus dem Jahr 2016 (Spotpreis.mat)
 - Annahme: 2016 steht exemplarisch für jedes kommende Jahr
 - Wie hoch dürfen die Investitionskosten maximal sein, damit die Wirtschaftlichkeit der Investition positiv bewertet wird (Barwert > 0)?
 - Stellen Sie die Entwicklung des Kapitalwerts (=Barwert) der Investition über die Lebensdauer in einem Diagramm dar.
- b. Führen Sie die Berechnung noch einmal unter der Annahme durch, dass Sie den aktuellen OeMAG Einspeisetarif für 13 Jahre erhalten.
 - Vergleich Sie diesen Fall mit dem nicht geförderten Fall.
 - Nach dem Vertragsende wird der Strom wieder bis zum Ende der Lebensdauer am Spotmarkt (Preise 2016) verkauft.
 - Annahme Anlagenleistung 10 kWp
 - http://www.oem-ag.at/de/foerderung/photovoltaik/

Aufgabe 3.1 – Verkauf der gesamten Produktion

a.

Spotpreis.mat: [€/MWh]

Parameter.mat: u.a. Einspeisetarif [€/kWh]

- Auch der Investitionszuschuss ist zu beachten
- 40% der Errichtungskosten
- Maximal 375 €
- Geht in den jährlichen Cashflow mit ein

Load_PVProduction.mat: 2 Vektoren

- Last → Lastprofil → Netzlast [GW] → wird nicht benötigt
- PV_profil → Einspeiseprofil mit normierten Werten [MW/MWp]

Aufgabe 3.2 - Eigenverbrauch

- a. Berechnen Sie den Eigenverbrauch und die Überschusseinspeisung einer 5kWp-Anlage für 5 der gegebenen 30 Haushalte.
 - PV Einspeiseprofil.mat
 - LeistungHaushalte.mat
 - Standort Wien
 - Ausrichtung der PV-Anlage: Azimut=180°, Neigungswinkel=30°
- b. Stellen Sie die Entwicklung des Eigenverbrauchsanteils und der Deckungsgrade der Haushalte für eine Anlagengröße von 0 bis 20 kWp für die 5 Haushalte dar.
- c. Erstellen Sie eine Grafik, in der die Erzeugung, die Last und der Eigenverbrauch für die Woche 3 und 25 für Haushalt 1 dargestellt wird. Verwenden Sie für die Darstellung des Eigenverbrauchs die Plot-Funktion area.

Aufgabe 3.2 - Eigenverbrauch

a.

Parameter.m: enthält alle geg. Parameter (noch einmal abgleichen!) PV_Einspeiseprofil.mat: 1 Vektor

- Leistung_Vec_Temperatur_Temp → Einspeiseprofil mit normierten Werten in 15min-Intervallen [kW/kWp]
- In diesem Einspeiseprofil ist Temperatur bereits berücksichtigt LeistungHaushalte.mat: 35040x30-Matrix → 15min-Werte für 30 Haushalte [Wh/4]
- → Keine Strahlungsdaten benötigt

Aufgabe 3.3 – Barwert

- Erstellen Sie eine Investitionsrechnung (Barwert) für die 5 gegebenen Haushalte und einer Anlagengröße von 5 kWp.
 - Vergleichen Sie dazu den Fall mit PV-Anlage mit dem Fall ohne PV-Erzeugung.
 - Für den Eigenverbrauch setzen Sie eine Ersparnis in Höhe des Haushaltsstrompreises (arbeitsabhängiger Anteil) an.
 - → Annahme: 15 cent/kWh
 - Nehmen Sie für die Überschusseinspeisung einen Einspeisetarif von 5 cent/kWh an.
- b. Wie hoch dürfen die spezifischen Investitionskosten (EUR/kW) je Haushalt maximal sein, damit die Investition als wirtschaftlich gewertet wird?

Aufgabe 3.3 – Barwert

a.

Fall ohne PV-Anlage: Haushaltsstrompreis für benötigte Energie ansetzen

Fall mit PV-Anlage:

- Investitionskosten berücksichtigen
- Für nicht selbst erzeugten Strom muss auch der Haushaltsstrompreis bezahlt werden
- Für die Einspeisung des erzeugten Überschusses erhalten die Haushalte den Einspeisetarif von 5 cent/kWh
- b. Wie hoch dürfen die Investitionskosten maximal sein, damit der Fall mit PV-Anlage wirtschaftlicher ist als der Fall ohne PV-Anlage?

Stromerzeugung in Deutschland

Stromerzeugung in Deutschland, 21.05.2020

Stromerzeugung in Deutschland, 24.05.2020

Spotmarktpreis in Deutschland, 24.05.2020

Last update: 24 May 2020 (12:46:18 CET/CEST)

MCV Volume

Quelle: www.epexspot.com

Grenzkosten

Levelized Costs of Energy (in EUR/kWh):

$$LCOE = \frac{C_C + C_{OF} + C_{misc}}{T} + c_{Fuel} + c_{OC} + c_{CO_2}$$

$$= \frac{I_0\alpha + C_{OF} + C_{misc}}{T} + \frac{P_{Fuel}}{H_i\eta} + c_{OC} + \frac{P_{CO_2}f_{CO_2}}{\eta}.$$
 jährliche kurzfristige Grenzkosten

langfristige Grenzkosten

Preisbildung am Strommarkt – Merit-Order-Kurve

Preisbildung am Strommarkt – Merit-Order-Kurve

Preisbildung am Strommarkt – Deckungsbeiträge

Preisbildung am Strommarkt – Merit-Order-Kurve

Preisbildung am Strommarkt – Merit-Order-Kurve

Day-Ahead Auction

EPEXSPOT Auction DE-LU 24.05.2020 Stunde 00-01

Last update: 24 May 2020 (13:16:47 CET/CEST)

Einflussfaktoren auf die Preisbildung

- Kraftwerkspark
- Nachfrage (Temperatur, Zeit, Wochentag usw.)
- Verfügbarkeit erneuerbarer Energieträger
- Brennstoffpreise
- CO₂-Zertifikatspreise
- Speichermöglichkeiten
- Marktmacht, etc.

Akteure und Möglichkeiten am Strommarkt

Struktur von Energie- und Regelenergiemärkten

Aufgabe 4.1

Im File Load_PVProduction.mat finden Sie Netzlast (in MW) sowie normierte PV-Erzeugung (in MW/MWpeak) für das Marktgebiet Österreich/Deutschland.

- a. Stellen Sie eine Dauerlinie der Last und der Residuallast ($Last PV_{Produktion}$) für eine installierte Leistung von PV-Anlagen in der Höhe von 0 bis 200 GW dar. (in 50GW-Intervallen). Was beobachten Sie?
- b. Betrachten Sie im Folgenden die tatsächlichen Daten der Erneuerbaren (Wind und PV) aus dem Jahr 2012. Stellen Sie die Last sowie Residuallast ($Last PV_{Produktion}$ $Wind_{Produktion}$) als Leistungsdauerlinie dar.
- c. Erstellen Sie 3 Scatterplots (siehe Matlab-Funktion scatter) des Spotmarktpreises in Abhängigkeit von:
 - Last
 - Residuallast
 - Einspeisung der Erneuerbaren
- d. Wie interpretieren Sie die Scatterplots? Decken sich die Ergebnisse mit ihren Erwartungen?

Day-Ahead Spotmarkt Preis

Aufgabe 4.2

- a. Erstellen Sie die Preisdauerlinie für die Jahre 2008 bis 2016. Was beobachten Sie?
- b. Erstellen Sie eine Grafik der mittleren stündlichen Großhandelsstrompreise für alle 24h für die Jahre 2016 und 2008. Sprich für jede Stunde soll der Mittelwert aus 365 Tagen gebildet werden.
 - Alternativ können Sie dies auch mit einem Boxplot darstellen.
 - Was erkennen Sie daraus?
- → Die stündlichen Preise finden Sie im File Spotpreis.mat in €/MWh. Schaltjahre wurden bei 8760 abgeschnitten.

Aufgabe 4.3

- a. Berechnen Sie den monetären Ertrag am Spotmarkt (Marktwert) einer 1kW_{peak}-PV-Anlage für die Jahre 2008 bis 2016 (das PV-Erzeugungsprofil (in MW/MW_{peak}) finden Sie im File Load PVProduction.mat)
- b. Geben Sie die monetären Erträge (der 1kWp-Anlage) der Tage 4 bis 34 und 180 bis 220 im Jahr 2008 und 2016 an.
- c. Wie interpretieren Sie die jährliche Entwicklung der Erträge? Was schließen Sie aus den Ergebnissen?

Abgabe

1. Protokoll

- Das Protokoll beinhaltet:
 - Ergebnisse und Lösungsweg kommentieren
 - Ergebnisse, bevorzugt auch in graphischer Darstellung
 - Schlussfolgerungen
 - Überflüssigen Text vermeiden, max. 10-15 Seiten
- Das <u>Erscheinungsbild und die wissenschaftliche Gestaltung des Protokolls</u> wird in die Beurteilung miteinbezogen.
 - <u>https://www.wissenschaftliches-arbeiten.org/</u>
 - Kriterien: Inhaltsverzeichnis, Abbildung- und Tabellenbeschriftung, Verweise, Modellbeschreibung, Lesbarkeit…
- Eine LaTeX Vorlage finden Sie im TUWEL (nicht verpflichtend).
- Abgabe des Protokolls <u>als pdf Datei</u>.

2. Ausführbarer Matlab Code

Als Gruppenabgabe (Protokoll + Code gemeinsam als zip-Datei) ins TUWEL hochladen!

Deadline: 08.06.2020, 23:59 (keine spätere Abgabe möglich)

Fragen: glatt@eeg.tuwien.ac.at

Nächste Einheit: 09.06.2020

Achtung: am 02.06.2020 ist vorlesungsfrei!

→ Beantwortung aller Fragen zu Übung 4 online

Nächste Übung am 09.06.2020

- Ergebnisse der Übung 3 und 4
- Zusammenfassung
- Definition eines eigenen Themas