

Device Features

- +5V/680mA at operating bias condition
- Gain = 27.3 dB @ 1850 MHz
- P1dB = 33.1 dBm @ 1850MHz
- LTE 10M ACLR = 23.5dBm Output Power at -50dBc @ 1850MHz
- Intergrated interstage matching
- Green/RoHS2-compliant QFN5x5 SMT package

Product Description

The BMT332 is a high dynamic range two-stage power amplifier housed in RoHS2 compliant 20 pin, 5x5mm QFN package. The BMT332 uses a high reliability InGaP/GaAs HBT process technology. The BMT332 is designed for use where high linearity and gain is required. The BMT332 is able to deliver over 23 dBm output power from 700 to 2400MHz while maintaining superior ACLR performance with a few external matching components. All devices are 100% RF/DC screened.

Applications

- Base station / Repeaters Infrastructure
- Commercial/Industrial/Military wireless system
- LTE / WCDMA /CDMA Wireless Infrastructure

Application Circuits

^{*}external matching circuit: refer to the page 4 to 19.

Typical Performance¹

Parameter	Frequency					Unit	
	850	1750	1850	1960	2140	2350	MHz
Gain	33.5	28.0	27.3	26.7	26.0	24.0	dB
S11	-18.0	-30.0	-30.0	-26.0	-17.0	-17.0	dB
S22	-14.5	-11.5	-11.5	-12.0	-11.0	-12.5	dB
OIP3 ²	50.0	50.0	49.0	49.0	47.5	47.5	dBm
P1dB	33.6	33.2	33.1	33.1	33.2	33.1	dBm
LTE 10M ACLR	23.4	23.4	23.5	23.2	23.8	23.2	dBm
WCDMA ACLR	23.5	23.7	23.7	23.5	24.0	23.5	dBm
Noise Figure	7.0	5.6	5.6	5.5	5.5	5.3	dB

 $^{^1}$ Device performance $_$ measured on a BeRex evaluation board at 25°C, 50 Ω

⁻ WCDMA set-up: 3GPP WCDMA, TM1+64DPCH, +5MHz offset, PAR 9.78 at 0.01% Prob.

	Min.	Typical	Max.	Unit
Bandwidth	700		2400	MHz
I _{bias} @ (I _{REF1&2} + I _{B1&2})		33		mA
I _C @ (I _{C1} + I _{C2})		680		mA
V_{CC}/V_{Bias}		5.0		V
R _{TH}		7.9		°C/W

Absolute Maximum Ratings

Parameter	Rating	Unit
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-55 to +155	°C
Junction Temperature	+180	°C
Operating Voltage	+6	V
Supply Current	2000	mA
Input RF Power	23	dBm

^{*}Operation of this device above any of these parameters may result in permanent damage.

BeRex •website: www.berex.com

² OIP3 _ measured on two tones with a output power 23dBm/ tone , F2-F1 = 1 MHz..

^{*}ACLR Channel Power measured at -50dBc.

⁻ LTE set-up: 3GPP LTE, FDD E-TM3.1, 10MHz BW, ±5MHz offset, PAR 9.75 @0.01% Prob.

Pin Configuration

Pin No.	Label	
1	I _{REF1}	
4,5	RF IN	
6	V _{CC1}	
11,12,13	RF OUT/V _{CC2}	
16	V _{B2}	
19	I _{REF2}	
20	V_{B1}	
2,3,7,8,9,10,14,	GND	
15,17,18	GND	
Backside Paddle	GND	

V-I Characteristics

BeRex Evaluation Board

Figure about the reference position of components

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

2

Typical Device Data

S-Parameter

(V_{cc} & $_{VBias}$ = 5.0V, I_{cq} = 680mA, T_a = 25 °C, calibrated to device leads)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]
100	0.913	173.761	24.816	32.166	0.003	79.828	0.801	-178.428
500	0.619	171.121	26.921	-92.025	0.001	-44.058	0.869	-176.093
1000	0.701	-177.176	15.441	-178.364	0.002	59.383	0.879	-177.489
1500	0.784	177.684	10.073	107.582	0.001	119.430	0.895	179.724
2000	0.826	174.821	5.629	28.494	0.001	52.589	0.901	177.048
2500	0.877	167.581	2.533	-60.751	0.002	52.748	0.909	174.926
3000	0.856	164.082	0.614	-113.048	0.003	73.959	0.876	171.808
3500	0.863	160.570	0.198	-148.521	0.002	48.291	0.800	161.758
4000	0.868	160.252	0.085	179.517	0.004	44.770	0.607	121.233

BeRex

•website: www.berex.com

Application Circuit: 850 MHz

Notice

Below information is subject to change as conditions of the substrate.

Reference	Object	Distance	
Input pin	L1	8.0mm	
Input pin	C8	5.3mm	
Output pin	C10	9.0mm	
Pin 16	C3	7.2mm	
Pin 16	C6	2.0mm	
Pin 20	C4	5.0mm	

- 1. Pin 16 & 20 is used for Vce of the inner bias circuit. To eliminate bias line resonance you need above 10mm transmission line and adjust the position of C2, C3, C4,C5 and C6. Also you can adjust spectrum regrowth about bandwidth of signals which you want.
- 2. C10: We recommend High-Q capacitor for better output power performance. In this document we used '10pF(251R14S100JV4, EIA 0603) of Johanson Technology.
- 3. You could change C7 from 100 pF to 0 Ω or a line if you have other DC block front of BMT332.

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP WCDMA TM1 +64DPCH 1FA

3GPP LTE E-TM3.1 10MHz

3GPP WCDMA TM1 +64DPCH 4FA

3GPP LTE E-TM3.1 20MHz

Application Circuit: 1750 MHz

Notice

Below information is subject to change as conditions of the substrate.

Reference	Object	Distance
Input pin	C8	5.5mm
Input pin	C9	4.4mm
Output pin	C10	2.8mm
Pin 16	C3	7.2mm
Pin 16	C6	2.0mm
Pin 19	C5	1.0mm
Pin 20	C2	10.6mm

- 1. Pin 16 & 20 is used for Vce of the inner bias circuit. To eliminate bias line resonance you need above 10mm transmission line and adjust the position of C2, C3, C4,C5 and C6. Also you can adjust spectrum regrowth about bandwidth of signals which you want.
- 2. C10: We recommend High-Q capacitor for better output power performance. In this document we used '4.3pF(251R14S4R3BV4, EIA 0603) of Johanson Technology.

3.C7: Non-critical $0 \Omega.$

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP WCDMA TM1 +64DPCH 1FA

3GPP LTE E-TM3.1 10MHz

3GPP WCDMA TM1 +64DPCH 4FA

3GPP LTE E-TM3.1 20MHz

Application Circuit: 1850 MHz

PCB Diagram Notice

- Below information is subject to change as conditions of the substrate.

 Reference Object Distance
- 5.0mm Input pin **C8** Input pin C9 3.5mm C10 2.5mm Output pin Pin 16 C3 5.5mm Pin 16 2.0mm C6 Pin 19 **C5** 1.0mm Pin 20 C2 10.6mm
- 1. Pin 16 & 20 is used for Vce of the inner bias circuit. To eliminate bias line resonance you need above 10mm transmission line and adjust the position of C2, C3, C4,C5 and C6. Also you can adjust spectrum regrowth about bandwidth of signals which you want.
- 2. C10: We recommend High-Q capacitor for better output power performance. In this document we used '4.3pF(251R14S4R3BV4, EIA 0603) of Johanson Technology.

3.C7: Non-critical $0 \Omega.$

BeRex

•website: www.berex.com

•email: sales@berex.com

Typical Performance

Typical Performance

3GPP WCDMA TM1 +64DPCH 1FA

3GPP LTE E-TM3.1 10MHz

3GPP WCDMA TM1 +64DPCH 4FA

3GPP LTE E-TM3.1 20MHz

Application Circuit: 1960 MHz

PCB Diagram Notice

Reference Object Distance 5.0mm Input pin **C8** Input pin C9 3.1mm C10 2.0mm Output pin Pin 16 C3 5.0mm Pin 16 2.0mm C6

C5

C2

1.0mm

10.6mm

- 1. Pin 16 & 20 is used for Vce of the inner bias circuit. To eliminate bias line resonance you need above 10mm transmission line and adjust the position of C2, C3, C4,C5 and C6. Also you can adjust spectrum regrowth about bandwidth of signals which you want.
- 2. C10: We recommend High-Q capacitor for better output power performance. In this document we used '4.3pF(251R14S4R3BV4, EIA 0603) of Johanson Technology.

3.C7: Non-critical 0Ω .

Pin 19

Pin 20

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP WCDMA TM1 +64DPCH 1FA

3GPP LTE E-TM3.1 10MHz

3GPP WCDMA TM1 +64DPCH 4FA

3GPP LTE E-TM3.1 20MHz

Application Circuit: 2140 MHz

PCB Diagram Notice

- Below information is subject to change as conditions of the substrate.
- Reference Object Distance 4.1mm Input pin **C8** Input pin C9 2.2mm C10 1.8mm Output pin Pin 16 C3 3.0mm Pin 16 C6 2.0mm Pin 19 **C5** 1.0mm Pin 20 C4 5.0mm
- 1. Pin 16 & 20 is used for Vce of the inner bias circuit. To eliminate bias line resonance you need above 10mm transmission line and adjust the position of C2, C3, C4,C5 and C6. Also you can adjust spectrum regrowth about bandwidth of signals which you want.
- 2. C10: We recommend High-Q capacitor for better output power performance. In this document we used '3.9pF(251R14S3R9BV4, EIA 0603) of Johanson Technology.

3.C7: Non-critical 0Ω .

BeRex

•website: www.berex.com

•email: sales@berex.com

Typical Performance

Typical Performance

3GPP WCDMA TM1 +64DPCH 1FA

3GPP WCDMA TM1 +64DPCH 4FA

3GPP LTE E-TM3.1 20MHz

Application Circuit: 2350 MHz

PCB Diagram Notice

Below information is subject to change as conditions of the substrate.

Reference	Object	Distance
Input pin	C8	3.6mm
Input pin	C9	0.6mm
Output pin	C10	1.3mm
Pin 16	C6	2.0mm
Pin 19	C5	1.0mm
Pin 20	C4	5.0mm

- 1. Pin 16 & 20 is used for Vce of the inner bias circuit. To eliminate bias line resonance you need above 10mm transmission line and adjust the position of C2, C3, C4,C5 and C6. Also you can adjust spectrum regrowth about bandwidth of signals which you want.
- 2. C10: We recommend High-Q capacitor for better output power performance. In this document we used '3.3pF(251R14S3R3BV4, EIA 0603) of Johanson Technology.

3.C7: Non-critical $0 \Omega.$

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP WCDMA TM1 +64DPCH 1FA

3GPP LTE E-TM3.1 10MHz

3GPP WCDMA TM1 +64DPCH 4FA

3GPP LTE E-TM3.1 20MHz

Typical Performance (Pout vs Icc)

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

Package Outline Dimension

NOTES :

- 1. DIMENSION AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- CONTROLLING DIMENSIONS : MILLIMETER. CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.
- DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM. FROM TERMINAL TIP.
- 4. INSULATION THICKNESS, CLEARANCE OF OVERLAP ARE USER DEFINED.
- 5. INSULATION NOT COMPLETELY SHOWN FOR REASONS OF CLARITY.

Suggested PCB Land Pattern and PAD Layout

Notes

- 1. Use 1 oz. copper minimum for top and bottom layer metal.
- 2. A heatsink underneath the area of the PCB for the mounted device is required for proper thermal operation.
- 3. Ground / thermal vias are critical for the proper performance of this device.

BeRex

•website: www.berex.com

Package Marking

YY = Year, WW = Working Week, XX = Wafer No.

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 1C

Value: Passes \geq 1000V to < 2000 V

Test: Human Body Model (HBM)

Standard: JEDEC Standard JESD22-A114B

ESD Rating: Class IV

Value: Passes >1000V

Test: Charged Device Model (CDM)

Standard: JEDEC Standard JESD22-C101F

MSL Rating: Level 1 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

Caution: ESD Sensitive
Appropriate precautions in handling, packaging
and testing devices must be observed.

Proper ESD procedures should be followed when handling this device.

NATO CAGE code:

1				
2	N	9	6	F

BeRex •website: www.berex.com

●email: sales@berex.com