Dr. Tyler Morhart

CHEM 420: Selected Topics in Analytical Chemistry — Analytical Applications of Microfluidics Module Due March 15, 2024

Assignment

Note: Where necessary, please use your favourite graphing software (e.g. MS Excel, Origin, others) to complete the following questions. Responses can be typed or handwritten as long as they are legible. *Total marks:* 24

Question 1. 3 marks Beginning with the Navier-Stokes equation (ignoring body forces, shown below), non-dimensionalize the equation and show that a single dimensionless number, the Reynolds number, Re = $\rho V_0 L_0 / \eta$ can be obtained.

$$\rho(\partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v}) = -\nabla p + \eta \nabla^2 \boldsymbol{v}$$

Question 2. 2 marks What is the physical significance of the Reynolds number? Comment on possible values of Re and the implications for fluid flow.

Question 3. 3 marks Recall that for a circular channel of radius a, we obtained a solution for the z-component of the velocity $v_z(x,y) = -\frac{\Delta p}{4\eta L}(a^2 - x^2 - y^2)$. Verify that this is a solution of the Stokes equation, $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)v_z(x,y) = -\frac{\Delta p}{\eta L}$. Prove that this solution complies with the non-slip boundary condition, i.e. that $v_z = 0$ for (x,y) on $\partial \mathcal{C}$. Hint: The Pythagorean theorem is helpful.

Question 4. 10 marks total In the following dataset, a pressure Δp was applied across a microfluidic device and water was collected at the outlet for 300 s. The mass of water, m, was measured and is reported in the table for each pressure.

pressure Δp / mbar	mass water, $m \neq g$
50	0.0348
250	0.2327
500	0.484
750	0.7175
950	0.9061

- 1) 5 marks Use the Hagen-Poiseuille Law, $\Delta p = QR$, and the following data set to determine the hydraulic resistance, R_{device} , of the microfluidic device. Include a graph and report your answer with units of Pas/m³.
- 2) 2 marks The hydraulic resistance of the tubing, R_{tubes} , was subsequently calculated to be about $1 \times 10^8 \,\mathrm{Pa\,s/m^3}$. How does this affect the result?
- 3) 2 marks This device has the following dimensions: channel width $w = 650 \,\mu\text{m}$ and height $h = 30 \,\mu\text{m}$. If we apply a pressure $\Delta p = 150 \,\text{mbar}$ to the channel, what is the volumetric flow rate Q and the average linear flow velocity V_0 ? Report your answer with units of m³ s⁻¹ and m s⁻¹, respectively.
- 4) 1 mark Assuming the use of water at 20 °C, calculate the Reynolds number, Re, using the average linear flow velocity V_0 from Question 3.3. Is this flow turbulent or laminar? Note that the dynamic viscosity of water at 20 °C is $\eta = 1.0 \,\mathrm{mPa}\,\mathrm{s}$.

Question 5. 6 marks total You are working for a start-up company developing a microfluidic filtering method for whole blood. As a good analytical chemist, you know that whole blood basically has the following three components:

- \bullet dissolved ions and solutes $D=2\times 10^{-9}~\mathrm{m^2\,s^{-1}}$
- \bullet proteins $D=6\times 10^{-11}~\mathrm{m^2\,s^{-1}}$
- red and white blood cells and platelets $D = 2 \times 10^{-14} \text{ m}^2 \text{ s}^{-1}$

Your boss wants you to design an H-filter to capture the first two components, discarding the blood cells and platelets.

- 1) 3 marks The engineering team says the device needs to run with average velocity $V_0 = 1$ mm/s, channel width w = 100 µm, and height h = 20 µm. What should the channel length L be in order to achieve complete mixing of only the dissolved ions, solutes, and proteins? What about for only the dissolved ions and solutes?
- 2) 2 mark The engineering team says they can't fit anything longer than a 50 mm channel on the chip. Given that constraint, which component(s) of whole blood can be captured?
- 3) 2 marks Your boss thinks you should be able to recover 100% of the desired analyte(s) in a single H-filter. Is this true? Why or why not? Hint: What does the concentration profile look like when diffusion is complete?