≡ Item Navigation

Notes: The Definite Integral

Riemann Sums

The **net area** under the graph of f is the difference of areas A_1-A_2 , where A_1 is the area of the region above the x-axis and below the graph of f and A_2 is the area of the region below the x-axis and above the graph of f.

Divide the interval [a,b] into n subintervals with endpoints $x_0=a,x_1,\cdots,x_{n-1},x_n=b$. $\Delta x_i=x_i-x_{i-1}$ is the **length** of the ith subinterval. A **sample point** is any point x_i^{\star} chosen from the ith subinterval $[x_{i-1},x_i]$.

The sum $\sum_{i=1}^n f(x_i^\star) \Delta x_i$ is called a **Riemann sum**. It is an approximation of the net area under the graph of f on [a,b] by n rectangles.

There are a few particular ways to choose sample points:

- A **left-endpoint sum** chooses the left endpoint x_{i-1} of each interval $[x_{i-1}, x_i]$ as the sample point.
- A **right-endpoint sum** chooses the right endpoint x_i of each interval $[x_{i-1}, x_i]$ as the sample point.
- A **midpoint sum** chooses the midpoint $\dfrac{x_{i-1}+x_i}{2}$ of each interval $[x_{i-1},x_i]$ as the sample point.
- A **lower sum** is taken by choosing each sample point x_i^\star so that $f(x_i^\star)$ is the minimum value of f in $[x_{i-1},x_1]$.
- An **upper sum** is taken by choosing each sample point x_i^\star so that $f(x_i^\star)$ is the maximum value of f in $[x_{i-1},x_i]$.

Visit this interactive Desmos graph to see an example of Riemann sums.

If a function is monotonic, then certain sums are overestimates or underestimates:

• For a decreasing function, a left endpoint sum is an overestimate and a right endpoint sum is an underestimate.