Fields in the vertex	Variational derivative of Lagrangian by fields
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho}$	$-e(p_2^{\rho}g^{\mu\nu} - p_2^{\mu}g^{\nu\rho} - p_3^{\nu}g^{\mu\rho} + p_3^{\mu}g^{\nu\rho} + p_1^{\nu}g^{\mu\rho} - p_1^{\rho}g^{\mu\nu})$
$A_{\mu} W^{+}_{\nu} W^{-}_{F}$	$i \cdot e \cdot M_W \cdot g^{\mu\nu}$
$A_{\mu} W_F^+ W^{\ \nu}$	$-i \cdot e \cdot M_W \cdot g^{\mu\nu}$
	$e(p_3^\mu-p_2^\mu)$
\bar{C}^A C^{W+} W^{μ}	$-e\cdot p_1^\mu$
\bar{C}^A C^{W-} W^+_{μ}	$e\cdot p_1^\mu$
\bar{b}_{ap} b_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{b}_{ap} b_{bq} $G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
\bar{b}_{ap} b_{bq} H	$-rac{1}{2}rac{e\cdot M_b}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$egin{array}{cccc} ar{b}_{ap} & b_{bq} & Z_{\mu} \end{array}$	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} (2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - (3-2s_w^2) \cdot \frac{(1-\gamma^5)_{cb}}{2}) $
\bar{b}_{ap} b_{bq} Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_b}{M_W\cdot s_w}\delta_{pq}\cdot\gamma_{ab}^5$
\bar{b}_{ap} c_{bq} W^{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}\cdot Vcb}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{b}_{ap} c_{bq} W_F^-	$-\frac{1}{2}\frac{i\cdot e\cdot \sqrt{2}\cdot Vcb}{M_W\cdot s_w}\delta_{pq}\left(M_b\cdot \frac{(1-\gamma^5)_{ab}}{2}-M_c\cdot \frac{(1+\gamma^5)_{ab}}{2}\right)$
\bar{b}_{ap} t_{bq} W^{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}\cdot Vtb}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$ \bar{b}_{ap} t_{bq} W_F^-$	$-\frac{1}{2}\frac{i\cdot e\cdot \sqrt{2}\cdot Vtb}{M_W\cdot s_w}\delta_{pq}\left(M_b\cdot \frac{(1-\gamma^5)_{ab}}{2}-M_t\cdot \frac{(1+\gamma^5)_{ab}}{2}\right)$
$ \bar{b}_{ap} u_{bq} W^{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}\cdot Vub}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$ \bar{b}_{ap} u_{bq} W_F^-$	$-rac{1}{2}rac{i\cdot e\cdot M_b\cdot \sqrt{2}\cdot Vub}{M_W\cdot s_w}\cdot \delta_{pq}rac{(1-\gamma^5)_{ab}}{2}$
\bar{c}_{ap} b_{bq} W^+_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}\cdot Vcb}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} b_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2} \cdot V c b}{M_W \cdot s_w} \delta_{pq} \left(M_b \cdot \frac{(1+\gamma^5)_{ab}}{2} - M_c \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
\bar{c}_{ap} c_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{c}_{ap} c_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{c}_{ap} c_{bq} H	$-rac{1}{2}rac{e\cdot M_c}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{c}_{ap} c_{bq} Z_{μ}	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((3 - 4s_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
\bar{c}_{ap} c_{bq} Z_F	$\frac{1}{2} \frac{i \cdot e \cdot M_c}{M_W \cdot s_w} \delta_{pq} \cdot \gamma_{ab}^5$
\bar{c}_{ap} d_{bq} W^{+}_{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vcd}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{c}_{ap} d_{bq} W_F^+	$-\frac{1}{2}\frac{i\cdot e\cdot M_c\cdot \sqrt{2}\cdot Vcd}{M_W\cdot s_w}\cdot \delta_{pq}\frac{(1-\gamma^5)_{ab}}{2}$
\bar{c}_{ap} s_{bq} W^+_{μ}	$-\frac{1}{2} \frac{e \cdot \sqrt{2} \cdot V cs}{s_w} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{c}_{ap} s_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2} \cdot V cs}{M_W \cdot s_w} \delta_{pq} \left(M_s \cdot \frac{(1+\gamma^5)_{ab}}{2} - M_c \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
\bar{d}_{ap} c_{bq} W^{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vcd}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$ \bar{d}_{ap} c_{bq} W_F^-$	$\frac{1}{2} \frac{i \cdot e \cdot M_c \cdot \sqrt{2} \cdot Vcd}{M_W \cdot s_w} \cdot \delta_{pq} \frac{(1 + \gamma^5)_{ab}}{2}$
\bar{d}_{ap} d_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\int \bar{d}_{ap} d_{bq} G_{\mu r}$	$g_s \cdot \lambda^r_{pq} \gamma^\mu_{ab}$
$egin{array}{cccc} ar{d}_{ap} & d_{bq} & Z_{\mu} \end{array}$	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} (2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - (3-2s_w^2) \cdot \frac{(1-\gamma^5)_{cb}}{2}) $
\bar{d}_{ap} t_{bq} W^{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vtd}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{d}_{ap} t_{bq} W_F^-	$\frac{1}{2} \frac{i \cdot e \cdot M_t \cdot \sqrt{2} \cdot Vtd}{M_W \cdot s_w} \cdot \delta_{pq} \frac{(1+\gamma^5)_{ab}}{2}$
\bar{d}_{ap} u_{bq} W^{-}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}\cdot Vud}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$egin{array}{cccc} ar{e}_a & e_b & A_\mu \end{array}$	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$egin{array}{cccc} ar{e}_a & e_b & Z_{\mu} \end{array}$	$\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2s_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$\bar{e}_a \nu^e_b W^{\ \mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a$ μ_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\bar{\mu}_a \mu_b H$	$-rac{1}{2}rac{e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \delta_{ab}$
$\bar{\mu}_a$ μ_b Z_μ	$\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2s_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$\bar{\mu}_a$ μ_b Z_F	$-rac{1}{2}rac{i\cdot e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \gamma_{ab}^5$
$\bar{\mu}_a \nu^{\mu}_b W^{-}_{\mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a \nu^{\mu}_b W_F^-$	$-\frac{1}{2}\frac{i\cdot e\cdot M_{\mu}\cdot\sqrt{2}}{M_{W}\cdot s_{w}}\cdot\frac{(1-\gamma^{5})_{ab}}{2}$
$\bar{\tau}_a$ τ_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\bar{\tau}_a$ τ_b H	$-rac{1}{2}rac{e\cdot M_ au}{M_W\cdot s_w}\cdot \delta_{ab}$
$\bar{\tau}_a$ τ_b Z_μ	$\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} ((1 - 2s_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2})$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$-rac{1}{2}rac{i\cdot e\cdot M_ au}{M_W\cdot s_w}\cdot \gamma_{ab}^5$
$\bar{\tau}_a \nu^{\tau}_b W^{-}_{\mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\bar{\tau}_a \nu^{\tau}_b W_F^-$	$-rac{1}{2}rac{i\cdot e\cdot M_{ au}\cdot\sqrt{2}}{M_W\cdot s_w}\cdotrac{(1-\gamma^5)_{ab}}{2}$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$	$g_s f_{pqr} (p_3^{\nu} g^{\mu\rho} - p_3^{\mu} g^{\nu\rho} + p_1^{\rho} g^{\mu\nu} - p_1^{\nu} g^{\mu\rho} - p_2^{\rho} g^{\mu\nu} + p_2^{\mu} g^{\nu\rho})$
$\bar{C}^G_{\ p}$ $C^G_{\ q}$ $G_{\mu r}$	$g_s \cdot p_2^\mu f_{pqr}$
H H H	$-\frac{3}{2}\frac{e\cdot MH^2}{M_W \cdot s_w}$
H W^+_{μ} W^{ν}	$rac{e \cdot M_W}{s_w} \cdot g^{\mu u}$
H W^+_{μ} W^F	$rac{1}{2}rac{i\cdot e}{s_w}(p_3^\mu-p_1^\mu)$
H W_F^+ W_μ^-	$-rac{1}{2}rac{i\cdot e}{s_w}(p_1^\mu-p_2^\mu)$
H W_F^+ W_F^-	$-rac{1}{2}rac{e\cdot MH^2}{M_W\cdot s_w}$
H Z_{μ} $Z_{ u}$	$rac{e \cdot M_W}{c_w^2 \cdot s_w} \cdot g^{\mu u}$
H Z_{μ} Z_{F}	$\frac{1}{2} \frac{i \cdot e}{c_w \cdot s_w} (p_3^\mu - p_1^\mu)$
H Z_F Z_F	$-rac{1}{2}rac{e\cdot MH^2}{M_W\cdot s_w}$
$\bar{\nu}^e{}_a$ e_b $W^+{}_\mu$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^e{}_a \nu^e{}_b Z_\mu$	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} $W^{+}{}_{\mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} W_{F}^{+}	$\frac{1}{2} \frac{i \cdot e \cdot M_{\mu} \cdot \sqrt{2}}{M_W \cdot s_w} \cdot \frac{(1 + \gamma^5)_{ab}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} $W^{+}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} W_{F}^{+}	$\frac{1}{2} \frac{i \cdot e \cdot M_{\tau} \cdot \sqrt{2}}{M_W \cdot s_w} \cdot \frac{(1+\gamma^5)_{ab}}{2}$
$\bar{ u}^{ au}{}_{a}$ $ u^{ au}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W^{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vcs}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W_F^-	$-\frac{1}{2}\frac{i\cdot e\cdot \sqrt{2}\cdot Vcs}{M_W\cdot s_w}\delta_{pq}\left(M_s\cdot \frac{(1-\gamma^5)_{ab}}{2}-M_c\cdot \frac{(1+\gamma^5)_{ab}}{2}\right)$
\bar{s}_{ap} s_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{s}_{ap} s_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{s}_{ap} s_{bq} H	$-rac{1}{2}rac{e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{s}_{ap} s_{bq} Z_{μ}	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} - \left(3 - 2s_w^2\right) \cdot \frac{(1-\gamma^5)_{cb}}{2} \right) $

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{s}_{ap} s_{bq} Z_F	$-\frac{1}{2}\frac{i\cdot e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot \gamma_{ab}^5$
\bar{s}_{ap} t_{bq} W^{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vts}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} t_{bq} W_F^-	$-\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2} \cdot V t s}{M_W \cdot s_w} \delta_{pq} \left(M_s \cdot \frac{(1 - \gamma^5)_{ab}}{2} - M_t \cdot \frac{(1 + \gamma^5)_{ab}}{2} \right)$
\bar{s}_{ap} u_{bq} W^{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vus}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} u_{bq} W_F^-	$-\frac{1}{2}\frac{i\cdot e\cdot M_s\cdot \sqrt{2}\cdot Vus}{M_W\cdot s_w}\cdot \delta_{pq}\frac{(1-\gamma^5)_{ab}}{2}$
\bar{t}_{ap} b_{bq} W^{+}_{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vtb}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{t}_{ap} b_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2} \cdot Vtb}{M_W \cdot s_w} \delta_{pq} \left(M_b \cdot \frac{(1+\gamma^5)_{ab}}{2} - M_t \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
\bar{t}_{ap} d_{bq} W^{+}_{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vtd}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{t}_{ap} d_{bq} W_F^+	$-\frac{1}{2}\frac{i\cdot e\cdot M_t\cdot \sqrt{2}\cdot Vtd}{M_W\cdot s_w}\cdot \delta_{pq}\frac{(1-\gamma^5)_{ab}}{2}$
\bar{t}_{ap} s_{bq} W^{+}_{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vts}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{t}_{ap} s_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot \sqrt{2} \cdot Vts}{M_W \cdot s_w} \delta_{pq} \left(M_s \cdot \frac{(1+\gamma^5)_{ab}}{2} - M_t \cdot \frac{(1-\gamma^5)_{ab}}{2} \right)$
\bar{t}_{ap} t_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{t}_{ap} t_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{t}_{ap} t_{bq} H	$-rac{1}{2}rac{e\cdot M_t}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ar{t}_{ap}$ t_{bq} Z_{μ}	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((3 - 4s_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
$ar{t}_{ap}$ t_{bq} Z_F	$\frac{1}{2} \frac{i \cdot e \cdot M_t}{M_W \cdot s_w} \delta_{pq} \cdot \gamma_{ab}^5$
\bar{u}_{ap} b_{bq} W^+_{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}\cdot Vub}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
\bar{u}_{ap} b_{bq} W_F^+	$\frac{1}{2} \frac{i \cdot e \cdot M_b \cdot \sqrt{2} \cdot Vub}{M_W \cdot s_w} \cdot \delta_{pq} \frac{(1+\gamma^5)_{ab}}{2}$
\bar{u}_{ap} d_{bq} W^{+}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}\cdot Vud}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
\bar{u}_{ap} s_{bq} W^{+}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}\cdot Vus}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
\bar{u}_{ap} s_{bq} W_F^+	$\frac{1}{2} rac{i \cdot e \cdot M_s \cdot \sqrt{2} \cdot Vus}{M_W \cdot s_w} \cdot \delta_{pq} rac{(1+\gamma^5)_{ab}}{2}$
\bar{u}_{ap} u_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{u}_{ap} u_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{u}_{ap} u_{bq} Z_{μ}	$ -\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} ((3 - 4s_w^2) \cdot \frac{(1 - \gamma^5)_{cb}}{2} - 4s_w^2 \cdot \frac{(1 + \gamma^5)_{cb}}{2}) $
$W^+_{\mu} W^{\nu} Z_{\rho}$	$ \left -\frac{c_w \cdot e}{s_w} (p_1^{\nu} g^{\mu\rho} - p_1^{\rho} g^{\mu\nu} - p_2^{\mu} g^{\nu\rho} + p_2^{\rho} g^{\mu\nu} + p_3^{\mu} g^{\nu\rho} - p_3^{\nu} g^{\mu\rho}) \right $

Fields in the vertex	Variational derivative of Lagrangian by fields
W^+_{μ} W^F Z_{ν}	$-\frac{i\cdot e\cdot M_W\cdot s_w}{c_w}\cdot g^{\mu\nu}$
$W^+_{\mu} W^F Z_F$	$\left(-rac{1}{2}rac{e}{s_{w}}(p_{2}^{\mu}-p_{3}^{\mu}) ight)$
\bar{C}^{W+} C^Z W^{μ}	$\mid e \cdot p_1^\mu \mid$
\bar{C}^{W+} C^Z W_F^-	$-i \cdot e \cdot M_W$
\bar{C}^{W+} C^{W-} A_{μ}	$-e\cdot p_1^\mu$
\bar{C}^{W+} C^{W-} H	$-rac{1}{2}rac{e\cdot M_W}{s_w}$
\bar{C}^{W+} C^{W-} Z_{u}	$-\frac{c_w \cdot e}{\cdot p_1^{\mu}}$
$ar{C}^{W+}$ C^{W-} Z_F	$rac{1}{2}rac{i\cdot e\cdot M_W}{s_w}$
\bar{C}^{W+} C^Z W^{μ}	$\left(rac{c_w\cdot e}{s_w}\cdot p_1^{\mu} ight)$
\bar{C}^{W+} C^Z W_F^-	$-rac{1}{2}rac{i\cdot(1-2{s_w}^2)\cdot e\cdot M_W}{c_w\cdot s_w}$
W_F^+ $W_\mu^ Z_\nu$	$\left rac{i\cdot e\cdot M_W\cdot s_w}{c_w}\cdot g^{\mu u} ight $
W_F^+ $W_\mu^ Z_F$	$-rac{1}{2}rac{e}{s_{w}}(p_{3}^{\mu}-p_{1}^{\mu})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\frac{1}{2} \frac{(1-2s_w^2) \cdot e}{c_w \cdot s_w} (p_2^\mu - p_1^\mu)\right)$
\bar{C}^{W-} C^Z W^+_{μ}	
\bar{C}^{W-} C^Z W_F^+	$i \cdot e \cdot M_W$
\bar{C}^{W-} C^{W+} A_{μ}	$igg e \cdot p_1^\mu$
\bar{C}^{W-} C^{W+} H	$-rac{1}{2}rac{e\cdot M_W}{s_w}$
\bar{C}^{W-} C^{W+} Z_{μ}	$\left[\frac{c_w \cdot e}{s_m} \cdot p_1^{\mu}\right]$
\bar{C}^{W-} C^{W+} Z_F	
\bar{C}^{W-} C^Z W^+_{μ}	$\left[-rac{c_w\cdot e}{s_w}\cdot p_1^\mu ight]$
\bar{C}^{W-} C^Z W_F^+	
\bar{C}^Z C^{W+} W^{μ}	$-rac{c_w \cdot e}{s_w} \cdot p_1^\mu$
\bar{C}^Z C^{W+} W_F^-	$rac{1}{2}rac{i\cdot e\cdot M_W}{c_w\cdot s_w}$
\bar{C}^Z C^{W-} W^+_{μ}	$\left(rac{c_w \cdot e}{s_w} \cdot p_1^{\mu} ight)$
\bar{C}^Z C^{W-} W_F^+	$-rac{1}{2}rac{i\cdot e\cdot M_W}{c_w\cdot s_w}$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{C}^Z C^Z H	$-rac{1}{2}rac{e\cdot M_W}{c_w{}^2\cdot s_w}$
$A_{\mu} A_{\nu} W^{+}{}_{\rho} W^{-}{}_{\sigma}$	$-e^2(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} A_{\nu} W_F^+ W_F^-$	$2e^2 \cdot g^{\mu\nu}$
A_{μ} H W^{+}_{ν} W^{-}_{F}	$\left[rac{1}{2} rac{i \cdot e^2}{s_w} \cdot g^{\mu u} ight.$
$A_{\mu} H W_F^+ W^{\ \nu}$	$-rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{+}_{\ \nu} W^{-}_{\ \rho} Z_{\sigma}$	$-\frac{c_w \cdot e^2}{s_w} (2g^{\mu\sigma}g^{\nu\rho} - g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma})$
$A_{\mu} W^{+}_{ \nu} W^{-}_{F} Z_{F}$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W_F^+ W^{\ \nu} Z_F$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W_F^+ W_F^- Z_{\nu}$	$\frac{(1-2s_w^2)\cdot e^2}{c_w\cdot s_w}\cdot g^{\mu\nu}$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$ $G_{\sigma s}$	$g_s^2 (g^{\mu\rho}g^{\nu\sigma}f_{pqt}f_{rst} - g^{\mu\sigma}g^{\nu\rho}f_{pqt}f_{rst} + g^{\mu\nu}g^{\rho\sigma}f_{prt}f_{qst})$
	$-g^{\mu\sigma}g^{\nu\rho}f_{prt}f_{qst} + g^{\mu\nu}g^{\rho\sigma}f_{pst}f_{qrt} - g^{\mu\rho}g^{\nu\sigma}f_{pst}f_{qrt})$
H H H	$-\frac{3}{4}\frac{e^2 \cdot MH^2}{M_W^2 \cdot s_w^2}$
$H \ H \ W^{+}_{\mu} \ W^{-}_{\nu}$	$\left[rac{1}{2} rac{e^2}{s_w{}^2} \cdot g^{\mu u} ight.$
H H W_F^+ W_F^-	$-\frac{1}{4}\frac{e^2 \cdot MH^2}{M_W^2 \cdot s_w^2}$
H H Z_{μ} $Z_{ u}$	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
H H Z_F Z_F	$-\frac{1}{4}\frac{e^2 \cdot MH^2}{M_W^2 \cdot s_w^2}$
$H W^+_{\mu} W^F Z_{\nu}$	$-rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u}$
H W_F^+ $W_\mu^ Z_\nu$	$\left \; rac{1}{2} rac{i \cdot e^2}{c_w} \cdot g^{\mu u} ight.$
$W^{+}_{\mu} W^{+}_{\nu} W^{-}_{\rho} W^{-}_{\sigma}$	$\frac{e^2}{s_w^2} (2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma})$
$W^{+}_{\mu} W^{+}_{F} W^{-}_{\nu} W^{-}_{F}$	$\frac{1}{2} rac{e^2}{s_w^2} \cdot g^{\mu u}$
W^+_{μ} W^{ν} Z_{ρ} Z_{σ}	$-\frac{c_w^2 \cdot e^2}{s_w^2} \left(2g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho}\right)$
$W^+_{\mu} W^{\nu} Z_F Z_F$	$rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u}$
$W^+_{\mu} W^F Z_{\nu} Z_F$	$rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{1}{2}\frac{e^2 \cdot MH^2}{M_W^2 \cdot s_w^2}$
W_F^+ $W_\mu^ Z_\nu$ Z_F	$=rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
Fields in the vertex	Variational derivative of Lagrangian by fields

Fields in the vertex	Variational derivative of Lagrangian by fields
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{2} \frac{(1-2s_w^2)^2 \cdot e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
W_F^+ $W_F^ Z_F$ Z_F	$-\frac{1}{4}\frac{e^2 \cdot MH^2}{MW^2 \cdot s_w^2}$
Z_{μ} $Z_{ u}$ Z_{F} Z_{F}	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{3}{4} \frac{e^2 \cdot MH^2}{M_W^2 \cdot s_w^2}$