We have a string *S* of length *N* consisting of *A*, *B*, and *C*.

You can do the following operation on S zero or more times: Choose i (1<=i<= S_{i-1}), such that $S_i != S_{i+1}$. Replace S_i with the character (among A, B, and C) that is different from both S_i and S_{i+1} , and remove S_{i+1} from S.

Find the number of distinct strings that S can be after zero or more operations, and print the count *modulo* (10 9 +7).

Input Format

Given standard input string as follows:

- N
- S

Constraints

- 1<=N<=106
- *S* is a string of length *N* consisting of *A*, *B*, and *C*.

Output Format

Print the number of distinct strings that S can be after zero or more operations, $modulo(10^9+7)$.

Sample Input 0

5

ABAAC

Sample Output 0

11

Explanation 0

For example, the following sequence of operations turns *S* into *ACB*:

- First, choose i = 2. We replace S_2 with C and remove S_3 , turning S into ACAC.
- Then, choose i = 3. We replace S_3 with B and remove S_4 , turning S into ACB.