Algebraic Effects and Handlers

Andrej Bauer University of Ljubljana

July 18, 2018

1 Schedule of Lectures

- 1. Algebraic Theories
- 2. Programming Language
- 3. Reasoning
- 4. Applications

2 Algebraic Theories (Universal Algebra)

2.1 Example

A group $(G, u, \cdot, ^{-1})$ is s.t.

- $\bullet \ u \cdot x = x = x \cdot u$
- $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- $\bullet \ x \cdot x^{-1} = u = x^{-1} \cdot x$

Alternative Representation: (G, u, \cdot) and monoid s.t. $\forall x \exists y. x \cdot y = u = y \cdot x$

2.2 Definition: Signature

A signature $\Sigma = \{(\mathsf{op}_i, n_i)\}_{i \in I}$ where op_i are operation symbols and $n_i \in \mathbb{N}$ is the arity of op_i

2.3 Definition: Term

A term in context x_1, \ldots, x_k is

- one of the variables x_i or
- $op_i(t_1, \ldots, t_{n_i})$ where t_1, \ldots, t_{n_i} are terms in context x_1, \ldots, x_k

2.4 Definition: Algebraic (Equational) Theory

T is $(\Sigma_T, \mathcal{E}_T)$ where Σ_T is a signature and \mathcal{E}_T is a set of equations. An equation is $x_1, \ldots, x_k | l = r$ where l and r are Σ_T -terms in x_1, \ldots, x_k

2.5 Example

```
Group signature \Sigma_{Group} = \{(u, 0), (m, 2), (i, 1)\}

x | m(u(), x) = x

x | m(x, i(x)) = u()
```

2.6 Examples

- ring
- empty theory
- field $+, -, \times, ^{-1}, 0, 1$
- Pointed Set: signature: $(\cdot, 0)$ no equations
- semilattice: signature: $\{(\bot,0),(\lor,2)\}$ $\bot\lor x=x$ $x\lor(y\lor z)=(x\lor y)\lor z$ $x\lor y=y\lor x$ $x\lor x=x$

3 Interpretation and Models

Suppose T theory

3.1 Definition: Interpretation

An interpretation I of Σ_T is given by

- a carrier set |I|
- for each $(op_i, n_i) \in \Sigma_T$ a map $[op_i]_I : |I| \times \cdots \times |I| \to |I|$ with the function taking n_i params $(|I|^{n_i})$

Each term $x_1, \ldots, x_k | t$ is interpreted as a map $[\![x_i, \ldots, x_k | t]\!] : |I|^k \to |I|$ as follows:

- $[x_i, \ldots, x_k | x_i] : |I|^k \to |I| i^{\text{th}}$ projection
- $[x_1,\ldots,x_k] \operatorname{op}_i(t_1,\ldots,t_{n_i})]_I$ is $|I|^k \overset{[t_1]_I \to [t_{n_i}]]_I}{\to} |I|^{n_i} \overset{[\operatorname{op}_i]]_I}{\to} |I|$

3.2 Definition: T-Model

A T-Model is an interpretation M of theory T s.t. for every $x_1,\ldots,x_k|l=r$ in \mathcal{E}_T the maps $[\![x_1,\ldots,x_k|l]\!]_M:|M|^k\to |M|$ and $[\![x_1,\ldots,x_k|r]\!]_M:|M|^k\to |M|$ are equal.

3.3 Example

A model M of the theory of a pointed set:

- \bullet a carrier set —M—
- a map $[\![\cdot]\!]_M : |M|^0 \to |M|$ (i.e.: $1 \to |M|$

Isomorphically: (S, s) where S is a set and $s \in S$

3.4 Example

Every theory T has the trivial model M:

- |M| = 1
- $\llbracket \operatorname{op}_i \rrbracket_M : 1^{n_i} \to 1$

3.5 Example

If M and L are T-Models:
$$\begin{split} |M\times L| &= |M|\times |L| \\ \|\mathsf{op}_i\|_{M\times L} &: (|M|\times |L|)^{n_i} \to |M|\times |L| \\ \|\mathsf{op}_i\|_{m\times l}(a_1,\dots,a_{n_i}) &= (\|\mathsf{op}_i\|_M(\pi_1a_1,\dots,\pi_1a_{n_i}), \|\mathsf{op}_i\|_L(\pi_2a_1,\dots,\pi_2a_{n_i})) \end{split}$$

4 Free Models

Given theory T and set X, say that a T-model M with a map $\eta: X \to |M|$ is freely generated by X where $X \stackrel{\eta}{\to} |M|$ because $\forall f \exists ! \bar{f} \text{ s.t. } X \stackrel{f}{\to} |L| \Longrightarrow |M| \stackrel{\bar{f}}{\to} |L|$

because $\forall f \exists ! \bar{f} \text{ s.t. } X \xrightarrow{f} |L| \Longrightarrow |M| \xrightarrow{\bar{f}} |L|$ where $\bar{f} : M \to L$ is a T-homomorphism

4.1 Definition: T-Homomorphism

A T-homomorphism $f:M\to L$ For every $\operatorname{\sf op}_i$ in T: $f([\![\operatorname{\sf op}_i]\!]_M(a_1,\ldots,a_{n_i}))=[\![\operatorname{\sf op}_i]\!]_L(f(a_i),\ldots,f(a_{n_i}))$

4.2 Terminology

 $(M, \eta: X \to |M|)$ is a free model over X, free model given by X

4.3 Example

Define $P_{<\omega}(X):=\{S\subseteq X|S \text{finite}\}$ Claim: $(P_{<\omega}(X),0,\cup)$ is the free semilatice generated by X with $\eta:X\to P_{<\omega}(X), \ \eta \ x=\{x\}$

4.4 Free Model Construction (Free $_T(X)$)

- 1. $Tree_T(X)$ set of well-founded trees defined inductively
 - for every $x \in X$ there is tree return $x \in \text{Tree}_T(X)$
 - if $(op_i, n_i) \in \Sigma_T$ and $t_1, \dots, t_{n_1} \in Tree_T(X)$ then $op_i(t_1, \dots, t_{n_1}) \in Tree_T(X)$
- 2. Define \approx_T on $\mathsf{Tree}_T(X)$ to be least equiv. rel. s.t.
 - it's a congruence w.r.t. tree formation, and
 - \bullet it validates the equations of T