DESENVOLVIMENTO WEB 2

Jair C Leite

VISUALIZAÇÃO DA INFORMAÇÃO

Motivação

- Informações complexas precisam ser representadas e apresentadas adequadamente aos usuário
- O uso de técnicas pode tornar a informação mais fácil de ser interpretada.

Visualização da informação

 O uso de representações visuais interativas e apoiada por computador para ampliar a cognição humana

S. Card, J. Mackinlay and B. Shneiderman, *Readings in Information Visualization, Using Visualization to Think*)

O V's do Big Data

- Volume
- Variedade
- Velocidade
- Veracidade

O V's do Big Data

- Volume
- Variedade
- Velocidade
- Veracidade
- Visualização
- Valor

Visualization Tools

Value

Criando Visualizações da Informação

- Defina o problema
 - A informação a ser consumida
 - Como o usuário quer consumir
- Defina os dados que precisam ser representados
- Identifique as dimensões dos dados
- Identifique as estruturas
- Identifique como o usuário quer interagir com os dados

FUNDAMENTOS

Dados em Sistemas de Informação

- Em Sistemas de Informação, modelos conceituais estruturam dados em:
- Conceitos ou entidades
 - Pessoas, objetos, serviços, categorias, etc.
- Relacionamentos
 - É-um, parte-de, possui, etc.
- Atributos ou propriedades
 - · Idade, gênero, salário, localização, etc.

Tipos de Dados

- Nominais
 - Nomes de entidades, atributos, ...
- Ordinais ou sequenciais
 - Quantitativos, mas possui posição (1º, 2º, 3º, 4º,...)
- Temporais (intervalares)
 - Dia, Dia-da-semana, Mês, Ano, Duração
- Quantitativos (ratio)
 - · Valores de atributos: preço, idade, salário

Relacionamentos de Dados

- Categóricos
 - Classe ou categoria de objetos
- Comparativos
 - Maior-que, menor-que, igual-a, mais-que
- Lógicos
 - E, ou, não
- Espaciais (Localização)
 - Posição, Proximidade

Estruturas de Dados

- Listas
 - Categorização
- Tabelas
 - Categorização e relacionamentos
- Associações
 - Relacionamentos gerais, multidimensionais
 - ex. Modelos conceituais, Diagramas ER, Diagramas de Classes
- Hierarquias
 - Relacionamentos superior-inferior, parte-todo, heranças, etc.

PROPRIEDADES VISUAIS

Dados são representados visualmente

- Em 1 dimensão
 - Listas, vetores, ...
- Em 2 dimensões
 - Tabelas, gráficos, diagramas, mapas, etc.
- Em +2 dimensões
 - Gráficos alvo

Listas e vetores

- Vetores
 - Usados em dados ordinais ou temporais

- Listas
 - Usadas em dados nominais, podem indicar categorias
 - Frutas
 - Banana
 - Maçã
 - Laranja

Tabelas – Categorias de entidades

Frutas	Verduras	Legumes
Maçã	Alface	Cenoura
Banana	Rúcula	Batata
Laranja	Espinafre	Chuchu
Uva	Manjericão	Jerimum

Tabelas – Relacionamentos

Pessoa	Idade	Profissão
João	32	Professor
Maria	33	Médico
José	24	Advogado
Ana	25	Juiz

Planos bi-dimensionais

- São bons para representar valores quantitativos
- Variáveis visuais utilizadas
 - Tamanho de linha ou barras
 - Posição no plano X,Y

Posição comunicando informação

- Propriedades visuais
 - A, B e C são distinguíveis
 - B está entre A e B
 - BC é duas vezes mais longo que AB
- O que pode ser comunicado com estas propriedades?

- Relacionam duas ou mais dimensões
 - Ex.: comparar atributos de uma entidade ao longo do tempo

- Relacionam duas ou mais dimensões
 - Ex.: comparar atributos de uma entidade ao longo do tempo

- Relacionam duas ou mais dimensões
 - Ex.: comparar atributos quantitavos de entidades

- Relacionam duas ou mais dimensões
 - Ex.: comparar atributos de uma entidade ao longo do tempo

Hieraquias

Mapas

 Permitem analisar propriedades espaciais (localização, proximidade)

Diagramas

 Podem indicar relacionamentos entre entidades e atributos – pertinência, propriedades comuns,

etc.

Variáveis visuais

O que as variáveis podem representar?

Dados nominais: conceitos, categorias, atributos

O que as variáveis podem representar?

Quantidades (Atributos quantitativos)

O que as variáveis podem representar?

Relacionamentos

Outra versão das variáveis

ANÁLISE DE INFORMAÇÕES VISUAIS

Variáveis de análise

- Variáveis independentes
 - Sua variação ocorre naturalmente (tempo, localização)
 - Normalmente, sua variação não é de interesse primário, servindo como referência (categoria)
- Variáveis dependentes
 - Variáveis de interesse da análise
 - Atributos de entidades (normalmente quantitativos ou ordinais)
 - Analisada contra 1 ou mais variáveis independentes
 - Ex. Variação de atributo de quantidade (vendas) ao longo do tempo (mês)

Dimensões de análise

- Os dados a serem analisados estão associados aos problemas e podem ser:
- Univariados
 - 1 variável dependente analisada contra 1 ou mais independentes
- Bivariados
 - 2 variáveis dependentes analisada contra 1 ou mais independentes
- Trivariados
 - 3 variáveis dependente analisada contra 1 ou mais independentes
- Multivariados
 - +3 variáveis

Análises

- Distribuição
- Relacionamentos (correlações)
- Comparações
- Composição (parte-todo)

Distribuição

- Analisa a distribuição de um atributo dentre as instâncias de entidade
 - Ex. Distribuição por idade dos alunos dessa turma

Pode analisar a distribuição em relação à média

(desvio)

Distribuição - geográfica

- Analisa a distribuição de um atributo em localização geográfica
 - Ex. Distribuição por estado das vendas

Relacionamentos (correlações)

- Entre entidades ou atributos de entidades (duas ou três variáveis)
 - Horas estudadas X Notas obtidas

Comparações

- Ranking
- Nominais
- Análises temporais

Ranking

- Ordena atributos quantitativos dentre as categorias ou instâncias de entidade
 - Velocidade entre atletas de mesma categoria
 - Vendas de livros por categoria
- Ordenação de
 - Velocidade de atletas por idade

Nominais

- Entre atributos (duas variáveis)
 - Público pagante por categoria de filme

Análises temporais

- De um atributo ao longo do tempo
 - · Visualizações de páginas por mês

Análise temporal - linear

- De um atributo ao longo do tempo
 - · Visualizações de páginas por ano

Análises temporais – mais variáveis

- De um atributo, por categoria ao longo do tempo
 - Público de filmes por ano
 - Duas variáveis dependentes e uma independente

Análises temporais – em gráficos de linha

- De um atributo, por categoria ao longo do tempo
 - Público de filmes por ano
 - Duas variáveis dependentes e uma independente

Composição

Aplicação do conceito parte-todo nas análises

Composição – gráfico de área

Aplicação do conceito parte-todo nas análises

· Visualizações podem ser absolutas ou em

percentual

Exercícios

- Desenhe um gráfico de área para o exemplo anterior considerando percentuais
- Estude o gráfico de tortas e analise
 - Ele é adequado para composição?
 - Como você utilizaria para os exemplos anteriores?

The chart selector — some basic chart suggestions

GOOGLE CHARTS

Google Charts

• API JS do Google para a criação de gráficos

Criando gráfico torta com Google Charts

```
<script type="text/javascript"</pre>
        src="https://www.gstatic.com/charts/loader.js"></script>
<script type="text/javascript">
   // Load the <u>current</u> Visualization API and the <u>corechart</u> package.
    google.charts.load('current', {'packages':['corechart']});
   // Set a callback function – drawChart -- to run when the API is
loaded.
   google.charts.setOnLoadCallback(drawChart);
```

Cont... 2/3

```
// Callback that creates and populates a data table,
   // instantiates the pie chart, passes in the data and
   // draws it.
   function drawChart() {
    // Create the data table.
    var data = new google.visualization.DataTable();
    data.addColumn('string', 'Responsável');
    data.addColumn('number', 'Quantidade');
    data.addRows([
      ['Maria', 3],
     ['Marina', 1],
      ['Mariana', 1],
      ['Marilena', 1],
      ['Margarida', 2]
    ]);
```

Cont... 3/3

```
// Set chart options
     var options = {'title':'Tarefas Pendentes',
              'width':400,
              'height':300};
     // Instantiate and draw our chart, passing in some options.
     var chart = new
google.visualization.BarChart(document.getElementById('chart_div'));
     chart.draw(data, options);
  </script>
 </head>
 <body>
  <!--Div that will hold the chart-->
  <div id="chart_div"></div>
 </body>
```

Referencias

- https://www.interaction-design.org/literature/ article/how-to-design-an-information-visualization
- http://bigdata.black/featured/the-four-pillarsvisual-analytics/
- https://bigdata-madesimple.com/review-of-20-best-big-data-visualization-tools-2/
- https://github.com/d3/d3/wiki/Gallery
- https://developers.google.com/chart/interactive/ docs/
- http://www.fernandaviegas.com