Offline Reinforcement Learning

Assurance for high-stakes applications

Thanh Nguyen-Tang & Raman Arora

Department of Computer Science, Whiting School of Engineering, JHU

{nguyent,arora}@cs.jhu.edu

What makes modern machine learning work?

• Big models

• Big data

From Prediction to Decision-Making

Supervised learning:

- i.i.d. data
- Ground truth supervision
- Objective: to predict the right label

Reinforcement Learning:

- Each decision changes the future inputs
- No supervision, only abstract goal with delayed feedbacks
- Objective: to accomplish the task

What is Reinforcement Learning (RL)?

at deployment time:

- 1. deploy the trained policy
- 2. interact
- 3. iterate

at training time:

- 1. try a candidate policy
- 2. collect data
- 3. train
- 4. iterate

Does (online) RL work?

Yes! But only when online interaction is feasible and plentiful!

Mnih et al. '13

Levine*, Finn*, et al. '16

Kalashnikov et al. '18

Safety and Assurance in Al

• Online RL may be <u>risky</u>, <u>unethical</u> or <u>prohibitive</u> in <u>high-stakes applications</u> such as **self-driving cars**, **financial investment** and **clinical diagnosis**

E.g. In dynamical treatment regimes, it is regarded <u>unethical</u> to actively collect the treatment effects of a potential treatment policy in patients.

Figure from Gottesman et al. "Guidelines for reinforcement learning in healthcare". Nature Medicine, 2019

Offline RL

- 1. Leverage observational dataset
 - Past experiences that have been collected previously
- 2. <u>Train</u> an offline RL algorithm in this observational dataset to learn a policy
- 3. <u>Deploy</u> the learned policy in the real world

$\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ \mathbf{s}, r \mathbf{m} \mathbf{a} \mathbf{s} \mathbf{m} \mathbf{a} \mathbf{s} \mathbf{m} \mathbf{a} \mathbf{n} \mathbf{d} \mathbf{d}

training phase

with any policy

(c) offline reinforcement learning

Advantages:

- No exploration
- Flexibility to incorporate big data (and big models)

Offline RL as **Assurance** in high-stakes applications

Healthcare

- The iterative process of diagnosing and treating a patient is a RL problem
- Evaluating a treatment policy in question in patients is dangerous
- Offline RL: use <u>historical treatment data</u> to refine a new treatment policy

Financial investment

- RL can iteratively learn from a stock market
- Online RL requires the large number of interactions with the market to learn a useful trading policy
 - By the time it learns a useful strategy, it already incurs a <u>huge financial loss</u> for its exploration
- Offline RL: leverage the big historical trading data to learn a useful trading strategy
 - Minimize the risk of financial loss just for exploration

What is **hard** about offline RL?

Fundamental problem: decision making under distributional shifts (i.e., counterfactual learning)

- Online RL does not have this problem
- Offline RL must
 - account for out-of-distribution actions
 - generalize from the best behavior seen in the observational data

Key Results / Contribution I

- NT, Arora. "Provably efficient neural offline RL via perturbed rewards". Under review for ICLR 2023.
 - For **generalization** to unseen states in a large state space, we use deep neural network to approximate value functions
 - Computational efficiency: we give a polynomial time algorithm based on perturbing rewards in offline data and training multiple deep neural networks using SGD
 - Statistical efficiency: our approach finds an optimal policy using a polynomial number of samples, without a uniform data coverage assumption

Key Results / Contributions II

- NT, Yin, Gupta, Venkatesh, Arora. "On instance-dependent bounds for offline RL with linear function approximation". Under review for AAAI 2023.
 - Under a gap assumption (reward associated with an optimal action is well separated from that of sub-optimal arms), we show faster rates of convergence (from $\frac{1}{\sqrt{K}}$ to $\frac{1}{K}$ where K is the number of offline samples) using a computationally efficient algorithm

Thank you