Домашнее задание 3 (тервер)

Андрей Зотов

Сентябрь 2023

Задача 1

Ответ:
$$P(S_1 = i | S_2 = 0) = \begin{cases} 0, & i = 10, 11, \dots, 18; \\ \frac{2}{19}, & i = 1, 2, \dots, 9; \\ \frac{1}{19}, & i = 0. \end{cases}$$

Решение.

В данной задаче пространство $\Omega = \{00, 01, \dots, 99\}$. Считаем все элементарные исходы равновероятными, т.е. $\forall \omega \in \Omega: \ P(\omega) = \frac{1}{|\Omega|} = \frac{1}{100}.$ По определению условной вероятности:

$$P(S_1 = i | S_0 = 0) = \frac{P(S_1 = i, S_0 = 0)}{P(S_0 = 0)}$$

Событие $S_0=0$ содержит 19 элементарных исходов (10 чисел, начинающихся с 0 и 9 чисел нулем не начинающихся, но нулем заканчивающихся). Поэтому $P(S_0 = 0) = \frac{19}{100}$.

Событие $S_1 = i, S_0 = 0$ содержит разное кол-во элементарных исходов в зависимости от значения i. Рассмотрим три случая:

1. i=0. В этом случае событие $S_1=0, S_0=0$ возможно только при одном элементарном исходе - 00, поэтому $P(S_1=0,S_0=0)=\frac{1}{100}$. $2.\ i\in\{1,2,\ldots,9\}$. В этом случае событие $S_1=i,S_2=0$ возможно только при двух элементарных исходах

0i и i0, поэтому $P(S_1 = i, S_0 = 0) = \frac{2}{100}$.

3. $i \in \{10,11,\ldots,18\}$. В этом случае событие $S_1=i,S_2=0$ пустое (не содержит элементарных исходов, т.к. $\max_{S_0=0} S_1=9$), поэтому $P(S_1=i,S_0=0)=0$.

Таким образом:

$$P(S_1 = i | S_0 = 0) = \frac{P(S_1 = i, S_0 = 0)}{P(S_0 = 0)} = \begin{cases} 0, & i = 10, 11, \dots, 18; \\ \frac{2}{19}, & i = 1, 2, \dots, 9; \\ \frac{1}{10}, & i = 0. \end{cases}$$

Залача 2

Ответ: $\frac{67}{105} \approx 0.64$.

Решение.

Введем следующие события:

- $X = \{$ Из 3-й урны вытащили черный шар $\};$
- $H_0 = \{$ Из 1-й урны вытащили белый шар и из 2-й урны вытащили белый шар $\};$
- $H_1 = \{$ Из 1-й урны вытащили белый шар и из 2-й урны вытащили черный шар $\};$
- $H_2 = \{$ Из 1-й урны вытащили черный шар и из 2-й урны вытащили белый шар $\};$
- $H_3 = \{$ Из 1-й урны вытащили черный шар и из 2-й урны вытащили черный шар $\}$.

Т.к. $\Omega = H_0 \sqcup H_1 \sqcup H_2 \sqcup H_3$, то $P(X) = P(X|H_0)P(H_0) + P(X|H_1)P(H_1) + P(X|H_2)P(H_2) + P(X|H_3)P(H_3)$, где:

- $P(H_0) = \frac{1}{10} \cdot \frac{5}{6} = \frac{5}{60}$;
- $P(H_1) = \frac{1}{10} \cdot \frac{1}{6} = \frac{1}{60};$
- $P(H_2) = \frac{9}{10} \cdot \frac{5}{6} = \frac{45}{60}$;
- $P(H_3) = \frac{9}{10} \cdot \frac{1}{6} = \frac{9}{60}$.

(тут считаем, что доставание шара из 1-й урны не зависит от доставания шара из 2-й урны и наоборот, т.е. вероятности можно перемножить)

Если произошло событие H_0 , то в 3-й урне будет 10 черных шаров и 4 белых, поэтому условная вероятность достать черный шар будет $P(X|H_0) = \frac{10}{14}$. Аналогично получаем $P(X|H_1) = \frac{9}{14}$, $P(X|H_2) = \frac{9}{14}$, $P(X|H_3) = \frac{8}{14}$. Таким образом:

$$P(X) = P(X|H_0)P(H_0) + P(X|H_1)P(H_1) + P(X|H_2)P(H_2) + P(X|H_3)P(H_3) = \frac{5}{60} \cdot \frac{10}{14} + \frac{1}{60} \cdot \frac{9}{14} + \frac{45}{60} \cdot \frac{9}{14} + \frac{9}{60} \cdot \frac{8}{14} = \frac{67}{105}.$$

Задача 3

Ответ: Работа скорее всего принадлежит первому студенту. Вероятность того, что она принадлежит первому студенту $\frac{27}{46} \approx 0.59$.

Решение.

Если i-й студент решает любую задачу с вероятностью p_i и при этом решение задач не зависит друг от друга, то вероятность того, что i-й студент решит ровно 3 задачи из 4-х будет (согласно биномиальному закону) $P_i = \frac{4!}{3! 1!} \cdot p_i^3 \cdot (1-p_i) = 4p_i^3 (1-p_i)$. Поэтому имеем:

- $P_1 = 4 \cdot \frac{3^3}{4^3} \cdot \frac{1}{4} = \frac{27}{64}$;
- $P_2 = 4 \cdot \frac{1^3}{2^3} \cdot \frac{1}{2} = \frac{16}{64};$
- $P_3 = 4 \cdot \frac{1^3}{4^3} \cdot \frac{3}{4} = \frac{3}{64}$.

Т.е. работа скорее всего принадлежит первому студенту. Найдем вероятность этого события.

Пусть событие X_i «Работа принадлежит i-му студенту» и событие H «Решено 3 задачи». Тогда требуется найти вероятность:

$$P(X_1|H) = \frac{P(X_1H)}{P(H)} = \frac{P(H|X_1)P(X_1)}{P(H)}.$$

Т.к. $\Omega = X_1 \sqcup X_2 \sqcup X_3$, то

$$P(H) = P(H|X_1)P(X_1) + P(H|X_2)P(X_2) + P(H|X_3)P(X_3).$$

Считаем, что преподаватель мог равновероятно получить работу от любого студента, поэтому $P(X_i) = \frac{1}{3}$. Таким образом

$$P(X_1|H) = \frac{\frac{1}{3}P(H|X_1)}{\frac{1}{3}(P(H|X_1) + P(H|X_2) + P(H|X_3))}$$

При этом событие $H|X_i$ означает, что решено 3 задачи при условии, что работа принадлежит i-му студенту, т.е. $P(H|X_i) = P_i$. Таким образом

$$P(X_1|H) = \frac{P_1}{P_1 + P_2 + P_3} = \frac{27}{27 + 16 + 3} = \frac{27}{46} \approx 0.59.$$

Задача 4

Ответ: При $N \in \{9, 10\}$. Если N = 9, то распределение X будет Если N=10, то распре-

Решение.

Пусть событие A_1 «Первая рыба из двух оказалась помеченная» и событие A_2 «Вторая рыба из двух оказалась помеченная», тогда (учитывая, что $A_1 \bar{A}_2 \bar{A}_1 A_2 = \emptyset$):

$$P(X = 1) = P(A_1\bar{A}_2) + P(\bar{A}_1A_2) = P(A_1)P(\bar{A}_2|A_1) + P(\bar{A}_1)P(A_2|\bar{A}_1)$$

Где $P(A_1) = \frac{5}{N}$, $P(\bar{A}_1) = \frac{N-5}{N}$. Если произошло событие A_1 , это значит, что в озере 4 помеченные рыбы и N-5 непомеченных, т.е. условная вероятность $P(\bar{A}_2|A_1) = \frac{N-5}{N-1}$. Аналогично получаем, что $P(A_2|\bar{A}_1) = \frac{5}{N-1}$. Таким образом:

$$P(X=1) = \frac{5(N-5)}{N(N-1)} + \frac{5(N-5)}{N(N-1)} = \frac{10(N-5)}{N(N-1)}$$

При этом $N \geq 5$.

Найдем максимум функции $f(x) = \frac{x-5}{x(x-1)}$ при $x \ge 5$ (очевидно максимум функции 10f(x) достигается в той же точке, если этот максимум вообще существует).

Заметим, что:

$$f'(x) = \frac{x(x-1) - (2x-1)(x-5)}{x^2(x-1)^2} = -\frac{(x-5)^2 - 20}{x^2(x-1)^2}$$

При $x \ge 5$ знаменатель в ноль не обращается, поэтому искомый максимум удовлетворяет системе

$$\begin{cases} (x-5)^2 = 20 \\ x \ge 5 \end{cases} \Leftrightarrow x = 5 + 2\sqrt{5}.$$

Т.к. $2 < \sqrt{5} < 2.5$, то $9 < 5 + 2\sqrt{5} < 10$. При этом f'(9) > 0 и f'(10) < 0, т.е. единственный допустимый экстремум $x = 5 + 2\sqrt{5}$ является максимумом.

Таким образом (учитывая, что N целое) максимум P(X=1) может достигаться либо при N=9, либо

при N=10, либо в обоих случаях сразу. При N=9 получаем $P(X=1)=\frac{10\cdot 4}{9\cdot 8}=\frac{5}{9}$. При N=10 получаем $P(X=1)=\frac{10\cdot 5}{10\cdot 9}=\frac{5}{9}$. Т.е. P(X=1) достигает максимума $\frac{5}{9}\approx 0.56$ при $N\in\{9,10\}$.

Случайная величина X может принимать только три значения: 0, 1, 2. Поэтому чтобы найти распределение X, нужно найти P(X=0) и P(X=2). Рассуждая также как в случае P(X=1) получаем:

- $P(X=0) = P(\bar{A}_1\bar{A}_2) = P(\bar{A}_1)P(\bar{A}_2|\bar{A}_1) = \frac{N-5}{N} \cdot \frac{N-6}{N-1}$
- $P(X=2) = P(A_1A_2) = P(A_1)P(A_2|A_1) = \frac{5}{N} \cdot \frac{4}{N-1}$.

Если N=10, то распределение

Задача 5

Ответ: а) 0.1; б) 0.15; в) 0.35; г) 0.05.

Решение.

a)
$$P(X = \frac{1}{2}, Y = 1) = 0.1;$$

6)
$$P(X = -1) = \sum P(X = -1, Y = y) = 0.1 + 0.05 + 0 = 0.15;$$

a)
$$P(X = \frac{1}{2}, Y = 1) = 0.1;$$

6) $P(X = -1) = \sum_{y \in \{0,1,2\}} P(X = -1, Y = y) = 0.1 + 0.05 + 0 = 0.15;$
B) $P(Y = 1) = \sum_{x \in \{-1,0.5,2\}} P(X = x, Y = 1) = 0.05 + 0.1 + 0.2 = 0.35;$

r)
$$P(X^2 + Y = 2) = P(X = -1, Y = 1) = 0.05.$$

Задача 6

Ответ: верно.

Решение

Заметим, что $f_{X,Y}(x,y) = \frac{1}{4}e^{-|x|-|y|} = \underbrace{\frac{1}{2}e^{-|x|}}_{f_X(x)} \cdot \underbrace{\frac{1}{2}e^{-|y|}}_{f_Y(y)}$. При этом $f_X(x) \ge 0 \ \forall x \in \mathbb{R}$ и

$$\int_{-\infty}^{+\infty} f_X(x) \, dx = 2 \cdot \int_{0}^{+\infty} \frac{1}{2} \cdot e^{-x} \, dx = -e^{-x} \Big|_{0}^{+\infty} = 0 - (-1) = 1$$

т.е. $f_X(x)$ - это плотность распределения величины X. Аналогично $f_Y(y)$ — это плотность распределения величины Y. Следовательно, X и Y независимы.

Задача 7

Ответ: $f_{X,Y}(x,y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \cdot \frac{1}{\pi(y^2+1)}$

Решение.

T.к. X и Y независимы, то плотность совместного распределения будет

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \cdot \frac{1}{\pi(y^2+1)}.$$

Задача 8

Ответ: $\frac{1}{48}$.

Решение.

Заметим что

$$F_{X,Y}(x,y) = \frac{1}{\pi^2} \arctan(x) \arctan(y) + \frac{1}{2\pi} \arctan(x) + \frac{1}{2\pi} \arctan(y) + \frac{1}{4} = \underbrace{\left(\frac{1}{\pi} \arctan(x) + \frac{1}{2}\right)}_{F_X(x)} \cdot \underbrace{\left(\frac{1}{\pi} \arctan(y) + \frac{1}{2}\right)}_{F_Y(y)}$$

При этом функция $F_X(x)$ (как и функция $F_Y(y)$) имеет вид распределения Коппи с параметрами $\gamma=1, x_0=0$, т.е. случайные величины X,Y - независимы. Учитывая независимость X и Y совместная плотность будет произведением плотностей, т.е. имеет вид $f_{X,Y}(x,y)=f_X(x)f_Y(y)$, поэтому

$$P(1 < X \le \sqrt{3}, \ 0 < Y \le 1) = \int_{\substack{1 < x \le \sqrt{3} \\ 0 < y \le 1}} f_{X,Y}(x, y) \, dx dy = \int_{1}^{\sqrt{3}} f_{X}(x) \, dx \int_{0}^{1} f_{Y}(y) \, dy = \int_{0}^{1} f_{X}(y) \, dy = \int_{0}^{1} f_{X}(y) \, dx \, dx \, dy = \int_{0}^{1} f_{X}(y) \, dx \, dy = \int_{0}^{1} f_{X}(y) \, dx$$

$$= (F_X(\sqrt{3}) - F_X(1))(F_Y(1) - F_Y(0)) = \left(\frac{1}{\pi} \underbrace{\arctan \sqrt{3}}_{\frac{\pi}{3}} - \frac{1}{\pi} \underbrace{\arctan 1}_{\frac{\pi}{4}}\right) \cdot \left(\frac{1}{\pi} \underbrace{\arctan 1}_{\frac{\pi}{4}} - \frac{1}{\pi} \underbrace{\arctan 0}_{0}\right) = \left(\frac{1}{3} - \frac{1}{4}\right) \cdot \frac{1}{4} = \frac{1}{12} \cdot \frac{1}{4} = \frac{1}{48}.$$

4