ASSIGNMENT SIX Due Friday 4.5.24, noon, King 205a

Readings:

Please read over the definitions on this assignment sheet, my notes, and your notes.

Note: You will be graded on the correctness of your solutions and on how easy they are to read and understand. You will receive full credit for a solution to a problem if and only if the grader believes that a typical student in the class would understand how to do the problem after having read your solution.

DEFINITIONS (CARDINALITY)

<u>Definition</u>: If the members of a set A and the members of a set B can be put into a one-to-one correspondence (i.e., can be paired up), then A and B have the same **cardinality** and we write |A| = |B|. If, in addition, the set $B = \{1, 2, ... n\}$ for some $n \in \mathbb{N}$, then we write |A| = n.

<u>Definition</u>: A set S is **finite** if |S| = n for some $n \in \mathbb{N}$.

<u>Definition</u>: A set S is countably infinite if $|S| = |\mathbb{N}|$.

Definition: A set S is **countable** if S is finite or countably infinite.

Definition: A set S is uncountable (or uncountably infinite) if S is not countable.

DEFINITIONS (FUNCTIONS)

<u>Definition</u>: f is a function from A to B (written $f: A \to B$) if for each $a \in A$ there exists a unique $b \in B$ such that f(a) = b.

<u>Definition</u>: $f: A \to B$ is a **surjection** if for each $b \in B$ there exists an $a \in A$ such that f(a) = b.

<u>Definition</u>: $f: A \to B$ is an **injection** if $\forall a_1 \in A : \forall a_2 \in A : a_1 \neq a_2 \to f(a_1) \neq f(a_2)$ (f maps distinct elements of A to distinct elements of B).

Definition: $f: A \to B$ is a **bijection** if it is both an injection and a surjection.

Definition: |A| = |B| if there exists a bijection from A to B.

<u>Definition</u>: |A| > |B| if there exists a surjection from A to B but there does not exist a bijection from A to B.

EXERCISES

1. Let S be the set of all one-element and two-element subsets of the nonnegative integers. Is S countable? Explain.

3.21.24

- 2. Consider the set of functions from the set $\{0,1\}$ to \mathbb{N} . Is this set countable? Explain.
- **3.** Consider the set of functions from \mathbb{N} to the set $\{0,1\}$. Is this set countable? Explain.
- **4.** Determine which of the following functions are surjective and which of them are injective, where \mathbb{R} is the set of real numbers, and \mathbb{N} is the set of nonnegative integers.
- **a.** $f: \mathbb{N} \to \mathbb{N}$ given by the rule

f(n) = the number of distinct prime factors of n.

b. $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ given by the rule

$$g((x,y)) = (-y,x).$$

c. $h: H \to \mathbb{N}$ given by the rule

$$h(x)$$
 = the number of hairs on x's head

where H is the set of all living people. Assume that $|H| \geq 7,800,000,000$ and that no one has more than 150,000 hairs on their head.

- 5. Recall that $I\!N$ denotes the set of nonnegative integers and ${\bf Z}$ denotes the set of integers.
- **a.** Find a function from $I\!N$ to $I\!\!Z$ that is injective but not surjective.
- **b.** Find a function from IN to Z that is surjective but not injective.
- **c.** Find a bijection from **I**N to **Z**.