Week 4 Logic Questions

April 25, 2020

- 1. If a system is subjected to $\mathbf{E}(\mathbf{r}, t)$ and $\mathbf{B}(\mathbf{r}, t)$, the Runge-Gross theorem for the current density still applies, but with what freedom in potentials? (i.e. what is the analog of c(t)?)
- 2. If two initial noninteracting wavefunctions yield some $v_s(\mathbf{r}, t)$, what two initial conditions must they satisfy?
- 3. Is it possible to have two TDKS equations (in TDDFT) in which the current densities differ?
- 4. Using eq. (7.35), calculate how much oscillator strength is in the continuum for the ground state of a Hydrogen atom.
- 5. Draw the absorption spectrum of a harmonic oscillator. What is unusual about it?
- 6. Draw the absorption spectrum of a particle in a box. How much oscillator strength is in the first transition? In all the other?
- 7. In eq. (7.109), assume $K_{12,12}(\omega)=a\frac{\omega^2}{\omega^2-b^2}$, where a and b are two fixed frequencies.
 - (a) Find exact formulas for all excitations.
 - (b) What happens in the adiabatic approximation?
 - (c) How accurate is the adiabatic approximation if:

i.
$$\omega_{12} = 1$$
, $a = 1$, $b = \frac{3}{2}$

ii.
$$\omega_{12} = 1$$
, $a = 0.1$, $b = \frac{3}{2}$

iii.
$$\omega_{12} = 1$$
, $a = 1$, $b = 4$

Can you give a general formula for when the adiabatic approximation should be accurate?