Practical HMM Training (for Speech Recognition)

- Our goal is to "assign" extracted feature vectors to HMM states
- Two popular methods for training,
 - ☐ Forward-Backward training assigns a probability that each vector was emitted from each HMM state (fuzzy labeling)
 - ☐ Viterbi training just assigns a feature vector to a particular state (most likely state from the best path).

Phoneme HMM

Let's assume each phoneme is represented by 3 HMM states connected with forward transitions,

■ S1 models the beginning part of the sound, S2 the middle, and S3 the end-part of the sound unit.

Word & Sentence HMMs

■ Construct word & sentence-level HMMs from the phoneme-level units. For example, "ONE" with pronunciation "W AX N":

■ For simplification, let's assume each state is a Gaussian Mixture Model (GMM). We also have transition probabilities between states.

Viterbi Training

■ Given an utterance, we can construct the composite HMM from the phone units and use the Viterbi algorithm to find the best state-sequence (assignment of feature-vectors to HMM states):

T-61.184

observations

Viterbi Algorithm in Log-Domain

$$\widetilde{\delta}_1(i) = \widetilde{\pi}_i + \widetilde{b}_i(\mathbf{o}_1) \quad \psi_1(i) = 0$$

2. Recursion

$$\widetilde{\delta}_{t}(j) = \max_{1 \le i \le N} [\widetilde{\delta}_{t-1}(i) + \widetilde{a}_{ij}] + \widetilde{b}_{j}(\mathbf{o}_{t})$$

$$\psi_{t}(j) = \arg\max[\widetilde{\delta}_{t-1}(i) + \widetilde{a}_{ii}]$$

3. Termination
$$\widetilde{P}^* = \max_{1 \le i \le N} \left[\widetilde{\delta}_T(i) \right]$$
 $q_T^* = \arg\max_{1 \le i \le N} \left[\widetilde{\delta}_T(i) \right]$

4. Path Back trace
$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$

1 < i < N

Viterbi Algorithm Illustration for Feed-Forward HMM Topology

S_9												
S_8												
S_7												
S_6												
S_5						$\widetilde{\delta}_6(5)$						
S_4												
S_3												
S_2												
S_1												
	o_1	o_2	o_3	o_4	o_5	06	<i>o</i> ₇	o_8	09	010	011	<i>o</i> ₁₂

$$\widetilde{\delta}_{t=6}(s=5) = \max \left\{ \left[\widetilde{\delta}_{t=5}(s=5) + \widetilde{a}_{55} \right], \left[\widetilde{\delta}_{t=5}(s=4) + \widetilde{a}_{45} \right] \right\} + \widetilde{b}_{s=5}(t=6)$$

$$\psi_{t=6}(s=5) = \arg \max \left\{ \left[\underbrace{\widetilde{\delta}_{t=5}(s=5) + a_{55}}_{self-loop} \right], \left[\underbrace{\widetilde{\delta}_{t=5}(s=4) + a_{45}}_{forward-transition} \right] \right\}$$

Viterbi Training

- For each training example, use current HMM models to assign (align) feature vectors to HMM states.
 - ☐ Assignment is made by using the Viterbi algorithm.
 - ☐ Assignment is based on most-likely path through composite HMM model
 - ☐ We refer to this as "Viterbi forced-alignment"
- Group feature vectors assigned to each HMM state and estimate new HMM state parameters (e.g., using GMM update equations).
- Repeat alignment / retraining process

Forward-Backward Training

- Rather than assigning each feature vector to a particular HMM state, we compute a "fuzzyassignment".
- "Fuzzy-assignment" is based on the probability of being in state i at time t,
 - ☐ Requires computing the forward and backward variables.
 - ☐ FB training is more expensive than Viterbi training

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{\displaystyle\sum_{j=1}^N \alpha_t(j)\beta_t(j)}$$
ng

Acoustic Modeling Issues

How to take into account variabilities in the acoustic signal? For example, the contextdependency of "w" in this example,

WE WERE AWAY WITH WILLIAM IN SEA WORLD

Types of Acoustic Variability

- Environmental Variability
- Between-Speaker Variability
 - ☐ Gender, Age
 - □ Dialect
 - □ Speaking Style
 - ☐ formal vs. informal
 - ☐ Planned vs. spontaneous
- Within-Speaker Variability
 - ☐ Variations within an utterance (could be due to prosody)
 - ☐ Speaker-specific co-articulation

Variability-Dependent Recognition

One simple method might be to estimate model parameters under each condition,

Can not account for all factors (data-sparse). Also very inefficient.

Variability-Adapted Recognition

Another solution adapts the parameters of the recognizer to better match the input,

Adaptation can be supervised or unsupervised

An Ideal Acoustic Model also...

- Accounts for context-dependency
 - ☐ A phoneme produced in one phonetic context may be similar to the same phoneme produced in another phonetic context. (the converse is also true!)
- Provides a compact & trainable representation
 - ☐ Which is trainable from finite amounts of data
- Provides a general representation
 - ☐ Allows new words to be modeled which may not have been seen in the training data

Whole-Word HMMs

- Assign a number of HMM states to model a word as a whole.
- Passes the test?
 - □ Accurate Yes, if you have enough data and your environment consists of a small vocabulary. No, if you are trying to model context changes between words.
 - □ Compact No, need too many states as vocabulary increases. Probably not enough training data to model *every* word. What about infrequent words???
 - ☐ General No, can't build new words using this representation.

Context-Independent Phoneme HMMs

- Context-independent models consist of a single *M*-state HMM (e.g., *M*=3), one for each phoneme unit
- Also referred to as "monophone" models
- Passes the test?
 - ☐ Accurate No, does not accurately model coarticulation
 - ☐ Compact Yes, *M* states x *N* phonemes leads to only a few parameters which need to be estimated.
 - ☐ General Yes, you can construct new words by stringing together the units.

Context-Dependent Triphone HMMs

- Context-dependent models which consist of a single 3-state HMM, one for each phoneme unit modeled with the immediate left-and-right phonetic context
- Passes the test?
 - ☐ Accurate Yes, takes coarticulation into account
 - □ Compact Yes, Trainable No: For N phonemes, there exists NxNxN triphone models. Too many parameters to estimate!
 - ☐ General Yes, you can construct new words by stringing together the units.

Describing Context-Dependent Phonetic Models

Monophone:

☐ A single model used to represent phoneme in all contexts.

Biphone:

- ☐ Each model represents a particular left or right context.
- ☐ Left-context biphone notation: (a-b)
- ☐ Right-context biphone notation: (b+c)

Triphone:

- ☐ Each model represents a particular left & right context.
- ☐ (a-b+c) refers to phoneme "b" with "a" preceding and "c" immediately following.

Context-Dependent Model Examples

- Monophone:
 - \square BRYAN \rightarrow B R AY AX N
- Biphone
 - ☐ Left-Context: → SIL-B B-R R-AY AY-AX AX-N
 - ☐ Right-Context: → B+R R+AY AY+AX AX+N N+SIL
- Triphone
 - \Box \rightarrow SIL-B+R B-R+AY R-AY+AX AY-AX+N AX-N+SIL

Word-Boundary Modeling

Word-internal Context-Dependent Model Sequence (backs off to left and right biphone models at word boundaries):

```
BRYAN PELLOM → SIL B+R B-R-AY R-AY+AX

AY-AX+N AX-N P+EH P-EH+L EH-L+AX L-AX+M

AX-M SIL
```

Cross-Word Context-Dependent Triphone Sequence

BRYAN PELLOM

SIL-B+R B-R+AY R-AY+AX AY-AX+N

AX-N+P N-P+EH P-EH+L EH-L+AX L-AX+M AX-M+SIL

Triphone Acoustic Models

- Provide nice trade-off
 - ☐ Compact, General, Accurate
 - ☐ Assumes dependency on just previous and following phoneme.
- Modeling and Estimation Issues:
 - ☐ Not all triphone contexts appear in training data. We call these "unseen" triphones.
 - Many triphone contexts occur infrequently in the training data (data-sparse modeling problem)
- Solution
 - ☐ Cluster HMM states which share similar statistical distributions
 - ☐ Estimate HMM parameters using resulting pooled data
 - ☐ How to cluster the data?????

Trainability of Acoustic Models

- Tradeoff exists between the level of detail of the acoustic model and our ability to adequately estimate the parameters of the model
- Methods for improving trainability,
 - □ Backing-off : triphones → biphones → monophones
 - ☐ Smoothing : interpolate parameters of more specific

models with those of less specific

(better trained) models

☐ Sharing : cluster similar contexts

Recall the Bayes Rule Formulation

Using Bayes Rule,

$$P(W \mid O) = \frac{P(O \mid W)P(W)}{P(O)}$$

Since P(O) does not impact optimization,

$$\hat{W} = \underset{W}{\operatorname{arg max}} P(W \mid O)$$

$$= \underset{W}{\operatorname{arg max}} P(O \mid W) P(W)$$

Practical Speech Recognition

In practice, we work with log-probabilities,

$$\hat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{arg\,max}} \left\{ \log \left(P(\mathbf{O} \mid \mathbf{W}) P(W) \right) \right\}$$

Common to scale LM probabilities by a grammar scale factor ("s") and also include a word-transition penalty ("p"):

$$\hat{\mathbf{W}} = \underset{W}{\operatorname{arg\,max}} \left\{ \underbrace{\log(P(\mathbf{O} \mid \mathbf{W}))}_{\text{acoustic model}} + \underbrace{s \cdot \log(P(\mathbf{W})) + p}_{\text{language model}} \right\}$$

Language Models

- lacktriangle Assign probabilities to word sequences $P(\mathrm{W})$
- Aids in reducing search space and ambiguity
- Resolves most homonyms:

Write a letter to Mr. Wright right away

Constraint / Flexibility tradeoff

Statistical Language Models

Want to estimate,

$$P(\mathbf{W}) = P(\mathbf{w}_1 \mathbf{w}_2 \cdots \mathbf{w}_N)$$

Can decompose probability left-to-right

$$P(W) = P(w_1, w_2, ..., w_N)$$

$$= P(w_1)P(w_2 | w_1) \cdots P(w_N | w_1, w_2 \cdots w_{N-1})$$

$$= \prod_{n=1}^{N} P(w_n | w_1, w_2 \cdots w_{n-1})$$

Statistical Language Model Example

- P(W) = P(center for spoken language research)
- = $P(\text{center})P(\text{for } | \text{center})P(\text{spoken } | \text{center for})\cdots$
 - $\cdots P$ (research | center for spoken language)
 - Impossible to model the entire word sequence... never enough training data!
 - Need to consider restricting the word-history used in computation of the probability estimate.

"Markov Model" of Language

Cluster histories ending in same last N-1 words. "Markov Model" of Language.

■ N=1
$$P(w_n \mid w_1, w_2 \cdots w_{n-1}) = P(w_n)$$

■ N=2
$$P(w_n \mid w_1, w_2 \cdots w_{n-1}) = P(w_n \mid w_{n-1})$$

■ N=3
$$P(w_n \mid w_1, w_2 \cdots w_{n-1}) = P(w_n \mid w_{n-1}, w_{n-2})$$

N-gram Language Model

- N-gram models compute the probability of a word based on previous N-1 words:
 - □ N=1 (Unigram)
 - □ N=2 (Bigram)
 - □ N=3 (Trigram)
- Probabilities are estimated from a corpus of training data (text data).
- Once model is known, new sentences can be randomly generated by the model!
- Syntax roughly encoded by model, but ungrammatical and semantically "strange" sentences can be produced

3-gram Example

```
the united states of ???
→ P(states | the united) = ...
→ P(of | united states) = . . .
→ P(America | states of) = ...
 P(Belgium | states of) = ...
```

Estimating N-gram Probabilities

Given a text corpus, define the number of occurrences [count] of word (n) by,

$$C(w_n)$$

Count of occurrences of word (n-1) followed by word (n), $C(w_{n-1}, w_n)$

And for 3 words,

$$C(w_{n-2}, w_{n-1}, w_n)$$

Obtaining N-gram Probabilities

Maximum likelihood estimates of word probabilities are based on counting frequency of occurrence of word sequences from a training set of text data:

$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}, w_n)}{C(w_{n-1})}$$

$$P(w_n \mid w_{n-2}, w_{n-1}) = \frac{C(w_{n-2}, w_{n-1}, w_n)}{C(w_{n-2}, w_{n-1})}$$

Search

Goal of ASR search is to find the most likely string of symbols (e.g., words) to account for the observed speech waveform:

$$\hat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{arg\,max}} P(\mathbf{O} \mid \mathbf{W}) P(\mathbf{W})$$

- Types of input:
 - ☐ Isolated Words
 - ☐ Connected Words

Designing an Isolated-Word HMM

Whole-Word Model

- ☐ Collect many examples of word spoken in isolation
- ☐ Assign number of HMM states based on word duration
- ☐ Estimate HMM model parameters using iterative Forward-Backward algorithm

Subword-Unit Model

- ☐ Collect "large" corpus of speech and estimate phoneticunit HMMs (e.g., decision-tree state clustered triphones)
- ☐ Construct word-level HMM from phoneme-level HMMs
- ☐ More general than "whole-word" approach

Whole-Word HMM

HMM for word "one"

Computing Log-Probability of Model (Viterbi Algorithm)

Automatic Speech Recognition: From Theory to Practice

6

Isolated Word Recognition

- P(O|W) computed using Viterbi algorithm rather than Forward-Algorithm.
- Viterbi provides probability path represented by mostlikely state sequence. Simplifies our recognizer

Connected-Word (Continuous) Speech Recognition

- Utterance boundaries are unknown
- Number of words spoken in audio is unknown
- Exact position of word-boundaries are often unclear and difficult to determine
- Can not exhaustively search for all possibilities (M= num words, V=length of utterance → M^V possible word sequences).

Simple Connected-Word Example

Consider this hypothetical network consisting of 2 words,

Connected-Word Log-Viterbi Search

Remember at each node, we must compute,

$$\widetilde{\delta}_{t}(j) = \max_{1 \le i \le N} \left[\widetilde{\delta}_{t-1}(i) + \widetilde{a}_{ij} + \widetilde{\beta}_{ij} \right] + \widetilde{b}_{j}(\mathbf{o}_{t})$$

Where β_{ij} is the (log) language model score,

where
$$\beta_{ij}$$
 is the (log) language model score,
$$\widetilde{\beta}_{ij} = \begin{cases} s\widetilde{P}(W_k) + p & \text{:if "i" is the last state of any word} \\ & \text{"j" is the initial state of kth word} \end{cases}$$

$$0 & \text{:otherwise}$$

Recall "s" is the grammar-scale factor and "p" is a log-scale word transition penalty

Connected-Word Log-Viterbi Search

Remember at each node, we must also compute,

$$\psi_{t}(j) = \underset{1 \le i \le N}{\operatorname{arg\,max}} \left[\widetilde{\delta}_{t-1}(i) + \widetilde{a}_{ij} + \widetilde{\beta}_{ij} \right]$$

- This allows us to "back-trace" to discover the most-probable state-sequence.
- Words and word-boundaries are found during "back-trace". Going backwards we look for state transitions from state 0 into the last state of another word.

Automatic Speech Recognition: From Theory to Practice

12

Viterbi with Beam-Pruning

- Idea : Prune away low-scoring paths,
 - ☐ At each time, t, determine the log-probability of the absolute best Viterbi path,

$$\widetilde{\delta}_{t}^{MAX} = \max_{1 \le i \le N} \left[\widetilde{\delta}_{t}(i) \right]$$

☐ Prune away paths which fall below a pre-determined "beam" (BW) from the maximum probable path. "Deactivate" state "j" if,

$$\widetilde{\delta}_t(j) < \widetilde{\delta}_t^{MAX} - BW$$

Automatic Speech Recognition: From Theory to Practice

14

Issues with the "Trellis" Search

- Important note: language model is applied at the point that we transition into the word.
- As the number of words increases, so do the number of states and interconnections
 - ☐ "Beam-Search" Improves efficiency
 - ☐ Still difficult to evaluate the entire search space
- Not easy to incorporate word histories (e.g., n-gram models) into such a framework
- Not easy to account for between-word acoustics

The Token Passing Model

- Proposed by Young et al. (1989)
- Provides a conceptually appealing framework for connected word speech recognition search
- Allows for arbitrarily complex networks to be constructed and searched
- Efficiently allows n-gram language models to be applied during search

Token Passing Approach

- Let's assume each HMM state can hold (multiple) movable "token(s)"
- Think of a token as an <u>object</u> that can move from state-to-state in our network
- For now, let's assume each token carries with it the (log-scale) Viterbi path cost: *s*

Token Passing Idea

- At each time, "t", we examine the tokens that are assigned to nodes in the network
- Tokens are <u>propagated</u> to reachable network positions at time t+1,
 - Make a copy of the token
 - □ Adjust path score to account for HMM transition and observation probability
- Tokens are merged based on Viterbi algorithm,
 - ☐ Select token with best-path by picking the one with the maximum score
 - ☐ Discard all other "competing" tokens

Token Passing Algorithm

- Initialization (t=0)
 - \square Initialize each initial state to hold a token with, s=0
 - \square All other states initialized with a token of score, $s = -\infty$
- Algorithm (t>0):
 - ☐ Propagate tokens to all possible "next" states
 - ☐ Prune tokens whose path scores fall below a search beam
- Termination (t=T)
 - ☐ Examine the tokens in all possible final states
 - ☐ Find the token with the largest Viterbi path score
 - ☐ This is the probability of the most likely state alignment

Token Propagation (Without Language Model)

```
for t := 1 to T
    foreach state i do
        <u>Pass token copy</u> in state i to all connecting states j,
        increment,
                       s = s + \widetilde{a}_{ii} + \widetilde{b}_{i}(\mathbf{o}_{t})
    end
    foreach state i do
        Find the token in state i with the largest s and discard
        the rest of the tokens in state i. (Viterbi Search)
    end
end
```

Token Propagation Example

Token Passing Model for Connected Word Recognition

- Individual word models are connected together into a looped composite model
 - ☐ Can transition from final state of word "i" to initial state of word "j".
- Path scores are maintained by tokens
 - □ Language model score added to path when transitioning between words.
- Path through network also maintained by tokens
 - ☐ Allows us to recover best word sequence

Connected Word Example (with Token Passing)

- Tokens emitted from last state of each word propagate to initial state of each word.
- Language model score added to path score upon word-entry.

Maintaining Path Information

- The previous example assumes a unigram language model. Knowledge of the previous word is not maintained by the tokens.
- For connected word recognition, we don't care much about the underlying state sequence within each word model
- We care about transitions between words and when they occur
- → Must augment token structure with a <u>path identifier</u> & <u>path</u> <u>score</u>

Word-Link Record

- Path Identifier points to a record (data structure) containing word-boundary information
- Word-Link Record (WLR): data structure created each time a token exits a word. Contains,
 - ☐ Word Identifier (e.g., "hello")
 - ☐ Word End Frame (e.g., "time=t")
 - ☐ Viterbi Path Score at time t.
 - ☐ Pointer to previous WLR

word_id
end_frame
path_score_s
previous_WLR

Word-Link Record

WLR's link together to provide search outcome:

"is" begins at frame 50 (.5 sec), ends at frame 76 (0.76 sec). The total path cost for the word is -700. "This" begins at frame 0 and ends at frame 50.

Illustration of WLR Generation

Automatic Speech Recognition: From Theory to Practice

27

WLRs as a Word-History Provider

- Each propagating token contains a pointer to a word link record
- Tracing back provides word-history

Incorporating N-gram Language Models During Token Passing Search

- When a token exits a word and is about to propagate into a new word, we can augment the token's path cost with the LM score.
- Upon exit, each token contains pointer to a word link record. Can obtain previous word(s) from WLR
- Therefore, update the path with,

$$s = s + g\widetilde{P}(W_n \mid W_{n-1} \mid W_{n-2}) + p$$