

What we claim is:

1. A compound of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

5 B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen with a removable hydrogen or a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , a nitrogen with a removable hydrogen or a carbon at the other position adjacent to the point of attachment is optionally substituted by R^{36} , a nitrogen with a removable hydrogen or a carbon adjacent to R^{32} and two atoms from the point of attachment is optionally substituted by R^{33} , a nitrogen with a removable hydrogen or a carbon adjacent to R^{36} and two atoms from the point of attachment is optionally substituted by R^{35} , and a nitrogen with a removable hydrogen or a carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

10 $R^9, R^{10}, R^{11}, R^{12}, R^{13}, R^{32}, R^{33}, R^{34}, R^{35}$, and R^{36} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclxyloxy, heterocyclalkoxy, alkoxyalkyl, haloalkoxylalkyl, hydroxy, amino, alkoxyamino, nitro, alkylamino,

15 20

N-alkyl-N-arylamino, arylamino, aralkylamino, heteroaryl-amino,
 heteroaralkylamino, heterocycllamino, heterocyclalkylamino, alkylthio,
 alkylthioalkyl, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl,
 heteroarylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl,
 5 cycloalkylsulfonyl, heteroarylsulfonyl, alkylsulfonylalkyl, aryl, aralkyl,
 cycloalkyl, cycloalkylalkyl, heteroaryl, heterocycl, alkylsulfonamido,
 amidosulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl,
 haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aminoalkyl,
 haloalkoxyalkyl, carboxyalkyl, carboalkoxy, carboxy, carboxamido,
 10 carboxamidoalkyl, and cyano;

$R^{32}, R^{33}, R^{34}, R^{35}$, and R^{36} are independently optionally Q^b ;

B is optionally selected from the group consisting of hydrido,
 trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and
 C2-C8 haloalkyl, wherein each member of group B is optionally substituted at
 15 any carbon up to and including 6 atoms from the point of attachment of B to A
 with one or more of the group consisting of $R^{32}, R^{33}, R^{34}, R^{35}$, and R^{36} ;

B is optionally a C3-C12 cycloalkyl or C4-C9 saturated heterocycl,
 wherein each ring carbon is optionally substituted with R^{33} , a ring carbon other
 than the ring carbon at the point of attachment of B to A is optionally
 20 substituted with oxo provided that no more than one ring carbon is substituted
 by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon
 atom at the point of attachment are optionally substituted with R^9 or R^{13} , a ring
 carbon or nitrogen atom adjacent to the R^9 position and two atoms from the
 25 point of attachment is optionally substituted with R^{10} , a ring carbon or nitrogen
 adjacent to the R^{13} position and two atoms from the point of attachment is
 optionally substituted with R^{12} , a ring carbon or nitrogen three atoms from the
 point of attachment and adjacent to the R^{10} position is optionally substituted
 with R^{11} , a ring carbon or nitrogen three atoms from the point of attachment

and adjacent to the R¹² position is optionally substituted with R³³, and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R¹¹ and R³³ positions is optionally substituted with R³⁴;

A is selected from the group consisting of a bond, (W⁷)_{rr}

5 (CH(R¹⁵))_{pa}, and (CH(R¹⁵))_{pa}-(W⁷)_{rr} wherein rr is 0 or 1, pa is an integer selected from 0 through 6, and W⁷ is selected from the group consisting of O, S, C(O), (R⁷)NC(O), (R⁷)NC(S), and N(R⁷) with the proviso that no more than one of the group consisting of rr and pa is 0 at the same time;

R⁷ is selected from the group consisting of hydrido, hydroxy, and
10 alkyl;

R¹⁵ is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

Ψ is NH or NOH;

M is N or R¹-C;

15 R¹ is selected from the group consisting of hydrido, alkyl, alkenyl, cyano, halo, haloalkyl, haloalkoxy, haloalkylthio, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

R² is Z⁰-Q;

20 Z⁰ is selected from the group consisting of a bond,

(CR⁴¹R⁴²)_q wherein q is an integer selected from 1 through 3, and

(CH(R⁴¹))_g-W⁰-(CH(R⁴²))_p wherein g and p are integers independently selected from 0 through 3 and W⁰ is selected from the group consisting of O, S, C(O), S(O), N(R⁴¹), and ON(R⁴¹);

Z^0 is optionally $(CH(R^{41}))_e - W^{22} - (CH(R^{42}))_h$ wherein e and h are independently 0 or 1 and W^{22} is selected from the group consisting of

$CR^{41} = CR^{42}$, 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl,
 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl,
 5 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl,
 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl,
 2,3-piperidinyl, 2,4-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl,
 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl,
 3,4-pyrrolidinyl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl,
 10 2,5-tetrahydrofuranyl, and 3,4-tetrahydrofuranyl, wherein Z^0 is directly bonded
 to the uracil ring and W^{22} is optionally substituted with one or more
 substituents selected from the group consisting of R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ;

R^{41} and R^{42} are independently selected from the group consisting of
 amidino, hydroxyamino, hydrido, hydroxy, amino, and alkyl;
 15 Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen
 with a removable hydrogen or a carbon adjacent to the carbon at the point of
 attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by
 R^9 , a nitrogen with a removable hydrogen or a carbon at the other position
 adjacent to the point of attachment is optionally substituted by R^{13} , a nitrogen
 20 with a removable hydrogen or a carbon adjacent to R^9 and two atoms from the
 point of attachment is optionally substituted by R^{10} , a nitrogen with a
 R^{13} removable hydrogen or a carbon adjacent to R^{13} and two atoms from the point
 of attachment is optionally substituted by R^{12} , and a nitrogen with a removable
 25 hydrogen or a carbon adjacent to both R^{10} and R^{12} is optionally substituted by
 R^{11} ;

Q^0 is optionally hydrido with the proviso that Z^0 is selected from other than a bond;

K is $(CR^{4a}R^{4b})_n$ wherein n is 1 or 2;

R^{4a} and R^{4b} are independently selected from the group consisting of

5 halo, hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

E^0 is E^1 , when K is $(CR^{4a}R^{4b})_n$, wherein E^1 is selected from the group

consisting of a bond, $C(O)$, $C(S)$, $C(O)N(R^7)$, $(R^7)NC(O)$, $S(O)_2$,

$(R^7)NS(O)_2$, and $S(O)_2N(R^7)$;

Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon

10 of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three

atoms from the point of attachment of Q^S to said phenyl or said heteroaryl to

said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the

point of attachment of Q^S is optionally substituted by R^{17} , another carbon

15 adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a

carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon

adjacent to Q^b is optionally substituted by R^{19} ;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group

consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy,

hydroxy, amino, nitro, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl,

20 alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboalkoxy, and cyano;

R^{16} or R^{19} is optionally selected from the group consisting of

$NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the

proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of $NR^{20}R^{21}$, aminoalkyl, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time,
 5 with the further proviso that no more than one of R^{23} and R^{24} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

$R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$, and R^{26} are independently selected from the group consisting of hydrido, alkyl, hydroxy, aminoalkyl, amino, dialkylamino, alkylamino, and hydroxyalkyl;
 10

Q^s is selected from the group consisting of bond, $(CR^{37}R^{38})_b$ wherein b is an integer selected from 1 through 4, and $(CH(R^{14}))_c-W^1-(CH(R^{15}))_d$
 15 wherein c and d are integers independently selected from 1 through 3 and W^1 is selected from the group consisting of $C(O)N(R^{14})$, $(R^{14})NC(O)$, $S(O)$, $S(O)_2$, $S(O)_2N(R^{14})$, $N(R^{14})S(O)_2$, and $N(R^{14})$, with the proviso that R^{14} is selected from other than halo when directly bonded to N, with the further provison that Q^s is selected from other than a bond when Y^0 is
 20

$2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-3-R^{19}$ pyridine or $2-Q^b-4-Q^s-3-R^{16}-5-R^{18}-6-R^{19}$ pyridine, and with the additional proviso that $(CR^{37}R^{38})_b$ and $(CH(R^{14}))_c$ are bonded to E^0 ;

R^{14} is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R^{37} and R^{38} are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

000212502602

R^{38} is optionally aroyl or heteroaroyl, wherein R^{38} is optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} ;

Y^0 is optionally Y^{AT} wherein Y^{AT} is Q^b-Q^s ;

5 Y^0 is optionally Q^b-Q^{ss} wherein Q^{ss} is $(CH(R^{14}))_e-W^2-(CH(R^{15}))_h$,
wherein e and h are independently 1 or 2 and W^2 is $CR^{4a}=CR^{4b}$, with the
proviso that $(CH(R^{14}))_e$ is bonded to E^0 ;

Y^0 is optionally Q^b-Q^{ssss} or Q^b-Q^{ssssr} wherein Q^{ssss} is $(CH(R^{38}))_r-$
 W^5 , Q^{ssssr} is $(CH(R^{38}))_r-W^6$, r is 1 or 2, W^5 and W^6 are independently
10 selected from the group consisting of 1,4-indenyl, 1,5-indenyl, 1,6-indenyl,
1,7-indenyl, 2,7-indenyl, 2,6-indenyl, 2,5-indenyl, 2,4-indenyl, 3,4-indenyl,
3,5-indenyl, 3,6-indenyl, 3,7-indenyl, 2,4-benzofuranyl, 2,5-benzofuranyl,
2,6-benzofuranyl, 2,7-benzofuranyl, 3,4-benzofuranyl, 3,5-benzofuranyl,
3,6-benzofuranyl, 3,7-benzofuranyl, 2,4-benzothiophenyl, 2,5-benzothiophenyl,
15 2,6-benzothiophenyl, 2,7-benzothiophenyl, 3,4-benzothiophenyl,
3,5-benzothiophenyl, 3,6-benzothiophenyl, 3,7-benzothiophenyl,
2,7-imidazo(1,2-a)pyridinyl, 3,4-imidazo(1,2-a)pyridinyl,
3,5-imidazo(1,2-a)pyridinyl, 3,6-imidazo(1,2-a)pyridinyl,
3,7-imidazo(1,2-a)pyridinyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7-indolyl,
20 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-isoindolyl,
1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7-isoindolyl,
1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7-indazolyl,
2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7-benzoxazolyl,
3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7-benzisoxazolyl,
25 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-naphthyl,
2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl,
2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl,
3,4-quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl,
4,5-quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl,
30 1,5-isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl,

3,4-isoquinoliny1, 3,5-isoquinoliny1, 3,6-isoquinoliny1, 3,7-isoquinoliny1,
 3,8-isoquinoliny1, 4,5-isoquinoliny1, 4,6-isoquinoliny1, 4,7-isoquinoliny1,
 4,8-isoquinoliny1, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl,
 3,8-cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl,
 5 and each carbon and hyrido containing nitrogen member of the ring of the W⁵
 and of the ring of the W⁶, other than the points of attachment of W⁵ and W⁶,
 is optionally substituted with one or more of the group consisting of R⁹, R¹⁰,
 R¹¹, and R¹², with the proviso that Q^b is bonded to lowest number substituent
 position of each W⁵, with the further proviso that Q^b is bonded to highest
 10 number substituent position of each W⁶, and with the additional proviso that
 $(CH(R^{38}))_r$ is bonded to E⁰.

2. Compound of Claim 1 of the Formula:

15 or a pharmaceutically acceptable salt thereof, wherein;
 B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon
 adjacent to the carbon at the point of attachment of said phenyl or heteroaryl
 ring to A is optionally substituted by R³², the other carbon adjacent to the
 32 carbon at the point of attachment is optionally substituted by R³⁶, a carbon
 carbon at the point of attachment is optionally substituted by R³³, a carbon adjacent to R³⁶ and two atoms from the carbon at the point of attachment is
 20 adjacent to R³² and two atoms from the carbon at the point of attachment is
 optionally substituted by R³³, a carbon adjacent to R³⁶ and two atoms from the

carbon at the point of attachment is optionally substituted by R^{35} , and any

carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino,

5 alkyleneedioxy, haloalkylthio, alkanoyloxy, alkoxy, hydroxy, amino, alkoxyamino, haloalkanoyl, nitro, alkylamino, alkylthio, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxamido, cyano, and

10 Q^b ;

B is optionally selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A

15 with one or more of the group consisting of R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} ;

B is optionally a C3-C12 cycloalkyl or a C4-C9 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R^{33} , a ring carbon other

than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R^9 or R^{13} , a ring

20 carbon or nitrogen atom adjacent to the R^9 position and two atoms from the

point of attachment is optionally substituted with R^{10} , a ring carbon or nitrogen

atom adjacent to the R^{13} position and two atoms from the point of attachment

25 is optionally substituted with R^{12} , a ring carbon or nitrogen atom three atoms

from the point of attachment and adjacent to the R^{10} position is optionally

substituted with R^{11} , a ring carbon or nitrogen atom three atoms from the

point of attachment and adjacent to the R^{12} position is optionally substituted

with R^{33} , and a ring carbon or nitrogen atom four atoms from the point of

attachment and adjacent to the R^{11} and R^{33} positions is optionally substituted

with R^{34} ;

5 R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are independently selected from the group
 consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl,
 haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy,
 cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy,
 heteroaralkoxy, heterocyclcloxy, heterocyclalkoxy, hydroxy, amino,
 10 alkylamino, N-alkyl-N-arylarnino, arylamino, aralkylamino, heteroarylarnino,
 heteroaralkylarnino, heterocyclarnino, heterocyclalkylarnino, alkylthio,
 alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylslfinyl,
 alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl,
 heteroarylslfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl,
 15 cycloalkylalkyl, heteroaryl, heterocycl, halo, haloalkyl, haloalkoxy,
 hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy,
 carboxyalkyl, carboxamido, and cyano;

A is bond or $(CH(R^{15}))_{pa}(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer
 selected from 0 through 3, and W^7 is selected from the group consisting of O,
 20 S, C(O), $(R^7)NC(O)$, $(R^7)NC(S)$, and $N(R^7)$;

R^7 is selected from the group consisting of hydrido, hydroxy and alkyl;

R^{15} is selected from the group consisting of hydrido, hydroxy, halo,

alkyl, and haloalkyl;

M is N or R^1-C ;

25 R^1 is selected from the group consisting of hydrido, alkyl, cyano, halo,
 haloalkyl, haloalkoxy, amino, aminoalkyl, alkylarnino, amidino, hydroxy,
 hydroxyarnino, alkoxy, hydroxyalkyl, alkoxyarnino, thiol, and alkylthio;

R^2 is Z^0-Q ;

Z^0 is selected from the group consisting of a bond, $(CR^{41}R^{42})_q$ wherein q is 1 or 2, and $(CH(R^{41}))_g-W^0-(CH(R^{42}))_p$ wherein g and p are integers independently selected from 0 through 3 and W^0 is selected from the group consisting of O, S, C(O), S(O), $N(R^{41})$, and $ON(R^{41})$;

5 Z^0 is optionally $(CH(R^{41}))_e-W^{22}-(CH(R^{42}))_h$ wherein e and h are independently 0 or 1 and W^{22} is selected from the group consisting of $CR^{41}=CR^{42}$, 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl,

10 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2,3-tetrahydrofuran-1-yl, 2,4-tetrahydrofuran-1-yl, 2,5-tetrahydrofuran-1-yl, and 3,4-tetrahydrofuran-1-yl, wherein Z^0 is directly bonded

15 to the uracil ring and W^{22} is optionally substituted with one or more substituents selected from the group consisting of R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ; R^{41} and R^{42} are independently selected from the group consisting of hydrido, hydroxy, alkyl, and amino;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the

carbon at the point of attachment is optionally substituted by R^{12} , and any

carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

Q is optionally hydrido with the proviso that Z^0 is other than a bond;

K is CHR^{4a} wherein R^{4a} is selected from the group consisting of

5 hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

E^0 is selected from the group consisting of a covalent single bond,

C(O)N(H), (H)NC(O), (R^7)NS(O)₂, and S(O)₂N(R^7);

$\text{C}(\text{O})\text{N}(\text{H})$, $(\text{H})\text{NC}(\text{O})$, $(\text{R}^7)\text{NS}(\text{O})_2$, and $\text{S}(\text{O})_2\text{N}(\text{R}^7)$;

Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon

of said phenyl or said heteroaryl is substituted by Q^s , a carbon two or three

10 atoms from the point of attachment of Q^s to said phenyl or said heteroaryl is

substituted by Q^b , a carbon adjacent to the point of attachment of Q^s is

optionally substituted by R¹⁷, another carbon adjacent to the point of

attachment of Q^s is optionally substituted by R^{18} , a carbon adjacent to Q^b is

optionally substituted by R¹⁶, and another carbon adjacent to Q^b is optionally

15 substituted by R¹⁹;

R^{16}, R^{17}, R^{18} , and R^{19} are independently selected from the group

consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy,

hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl,

alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy,

20 hydroxyalkyl, aminoalkyl, and cyano;

R^{16} or R^{19} is optionally selected from the group consisting of

$\text{NR}^{20}\text{R}^{21}, \text{N}(\text{R}^{26})\text{C}(\text{NR}^{25})\text{N}(\text{R}^{23})(\text{R}^{24}),$ and $\text{C}(\text{NR}^{25})\text{NR}^{23}\text{R}^{24}$, with the

proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of NR²⁰R²¹, hydrido,
 N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), and C(NR²⁵)NR²³R²⁴, with the proviso that no
 more than one of R²⁰ and R²¹ is selected from the group consisting of hydroxy,
 amino, alkylamino, and dialkylamino at the same time, with the further proviso that
 5 no more than one of R²³ and R²⁴ is selected from the group consisting of
 hydroxy, amino, alkylamino, and dialkylamino at the same time;
 R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the
 group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino;
 Q^s is selected from the group consisting of a bond, (CR³⁷R³⁸)_b
 10 wherein b is an integer selected from 1 through 4, and
 (CH(R¹⁴))_c-W¹-(CH(R¹⁵))_d wherein c and d are integers independently
 selected from 1 through 3 and W¹ is selected from the group consisting of
 C(O)N(R¹⁴), (R¹⁴)NC(O), S(O), S(O)₂, S(O)₂N(R¹⁴), N(R¹⁴)S(O)₂, and
 N(R¹⁴), with the proviso that R¹⁴ is selected from other than halo when
 15 directly bonded to N and with the further proviso that (CR³⁷R³⁸)_b, and
 (CH(R¹⁴))_c are bonded to E⁰;
 R¹⁴ is selected from the group consisting of hydrido, halo, alkyl, and
 haloalkyl;
 R³⁷ and R³⁸ are independently selected from the group consisting of
 20 hydrido, alkyl, and haloalkyl;
 R³⁸ is optionally aroyl or heteroaroyl, wherein R³⁸ is optionally
 substituted with one or more substituents selected from the group consisting of
 R¹⁶, R¹⁷, R¹⁸, and R¹⁹;
 Y⁰ is optionally Y^{AT} wherein Y^{AT} is Q^b-Q^s;

Y^0 is optionally Q^b-Q^{ss} wherein Q^{ss} is $(CH(R^{14}))_e-W^2-(CH(R^{15}))_h$,
 wherein e and h are integers independently selected from 1 through 2 and W^2
 is $CR^{4a}=CH$ with the proviso that $(CH(R^{14}))_e$ is bonded to E^0 .

5 3. Compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein;
 B is selected from the group consisting of hydrido, trialkylsilyl, C2-C8
 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl,
 wherein each member of group B is optionally substituted at any carbon up to
 and including 6 atoms from the point of attachment of B to A with one or more
 10 of the group consisting of R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} ;

R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the
 group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino,
 alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl,
 alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy,
 15 carboxy, carboxamido, cyano, and Q^b ;

A is $(CH(R^{15}))_{pa}-W^7$ wherein pa is an integer selected from 0 through
 3 and W^7 is selected from the group consisting of O, S, and $N(R^7)$ wherein R^7
 is hydrido or alkyl;
 20 R^{15} is selected from the group consisting of hydrido, hydroxy, halo,
 alkyl, and haloalkyl with the proviso that R^{15} is other than hydroxy or halo
 when R^{15} is on the carbon bonded directly to W^7 ;

M is N or R^1-C ;
 R^1 is selected from the group consisting of hydrido, alkyl, cyano, halo,
 haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy,
 25 hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;
 R^2 is Z^0-Q ;

Z^0 is a bond or $(CR^{41}R^{42})_q$ wherein q is 1 or 2;

R^{41} and R^{42} are independently selected from the group consisting of

hydrido, hydroxy, and amino;

5 Q is phenyl or a heteraryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteraryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the 10 carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

$R^9, R^{10}, R^{11}, R^{12}$, and R^{13} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl, haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclalkoxy, hydroxy, amino, alkylamino, N-alkyl-N-arylarnino, arylamino, aralkylamino, heteroarylarnino, heteroaralkylarnino, heterocyclarnino, heterocyclalkylarnino, alkylthio, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylulfinyl, 20 alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylulfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocycl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, and cyano;

25 K is CHR^{4a} wherein R^{4a} is selected from the group consisting of hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl; E^0 is selected from the group consisting of a covalent single bond, $C(O)N(H)$, $(H)NC(O)$, $(R^7)NS(O)_2$, and $S(O)_2N(R^7)$;

0002447 - 16021460

Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is 5 optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

10 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

15 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of R^{23} and R^{24} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

20 $R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$, and R^{26} are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino; Q^S is selected from the group consisting of a bond, $(CR^{37}R^{38})_b$ wherein b is an integer selected from 1 through 3, and $(CH(R^{14}))_cW^1-(CH(R^{15}))_d$ wherein c and d are integers independently selected from 1 through 2 and W^1 is selected from the group consisting of

C(O)N(R¹⁴), (R¹⁴)NC(O), S(O), S(O)₂, S(O)₂N(R¹⁴), N(R¹⁴)S(O)₂, and N(R¹⁴), with the proviso that R¹⁴ is selected from other than halo when directly bonded to N and with the further proviso that (CR³⁷R³⁸)_b, and (CH(R¹⁴))_c are bonded to E⁰;

5 R¹⁴ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

10 R³⁸ is optionally aroyl or heteroaroyl;

Y⁰ is optionally Q^b-Q^{ss} wherein Q^{ss} is (CH(R¹⁴))_e-W²-(CH(R¹⁵))_h, wherein e and h are independently 1 or 2 and W² is CR^{4a}=CH with the proviso that (CH(R¹⁴))_e is bonded to E⁰.

4. Compound of Claim 3 of the Formula:

15 or a pharmaceutically acceptable salt thereof, wherein;
B is selected from the group consisting of hydrido, trialkylsilyl, C2-C4 alkyl, C3-C5 alkenyl, C3-C4 alkenyl, C3-C4 alkynyl, and C2-C4 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 3 atoms from the point of attachment of B to A with one or more 20 of the group consisting of R³², R³³, and R³⁴;

R^{32} , R^{33} , and R^{34} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

5 A is $(CH(R^{15}))_{pa}N(R^7)$ wherein pa is an integer selected from 0

through 2 and R^7 is hydrido or alkyl;

R^{15} is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

10 M is N or R^1-C ;

R^1 is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

R^2 is Z^0-Q ;

15 Z^0 is a bond or CH_2 ;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon

20 adjacent to R^9 and two atoms from the carbon at the point of attachment is

optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any

carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R^9 , R^{11} , and R^{13} are independently selected from the group consisting

25 of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy,

halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, 5 cycloalkyl, cycloalkylalkyl, heteraryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyoxy, heterocyclalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylarnino, heteroaralkylamino, heterocyclamino, heterocyclalkylamino, 10 alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

Y⁰ is phenyl or a heteraryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteraryl is substituted by Q^s, a carbon two or three atoms from the point of attachment of Q^s to said phenyl or said heteraryl is substituted by Q^b, a carbon adjacent to the point of attachment of Q^s is optionally substituted by R¹⁷, another carbon adjacent to the point of attachment of Q^s is optionally substituted by R¹⁸, a carbon adjacent to Q^b is 20 optionally substituted by R¹⁶, and another carbon adjacent to Q^b is optionally substituted by R¹⁹;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R^{16} or R^{19} is optionally selected from the group consisting of
 $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the

proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido,

5 $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that
no more than one of R^{20} and R^{21} is hydroxy at the same time and with the
further proviso that no more than one of R^{23} and R^{24} is hydroxy at the same
time;

10 $R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$, and R^{26} are independently selected from the
group consisting of hydrido, alkyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH_2 , and
 CH_2CH_2 .

5. Compound of Claim 4 of the Formula or a pharmaceutically acceptable salt
15 thereof, wherein;

B is selected from the group consisting of ethyl, 2-propenyl,
2-propynyl, propyl, isopropyl, $-CH_2CH_2CH_2-$, $-CH_2CH_2CH_2CH_2-$, butyl,
2-butenyl, 3-butenyl, 2-butynyl, sec-butyl, *tert*-butyl, isobutyl,
2-methylpropenyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, and
20 2,2-difluoropropyl, wherein each member of group B is optionally substituted
at any carbon up to and including 3 atoms from the point of attachment of B to
A with one or more of the group consisting of R^{32} , R^{33} , and R^{34} ;

R^{32} , R^{33} , and R^{34} are independently selected from the group
consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy,
25 isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido,
trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio,
ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,

trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, 5 amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

A is selected from the group consisting of a bond, NH, and N(CH₃);

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, 10 amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

15 R² is Z⁰-Q;

Z⁰ is a bond or CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 20 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z⁰ is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

R^9 , R^{11} , and R^{13} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, 5 trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, 10 N,N-dimethylamidocarbonyl, and cyano;

R^{10} and R^{12} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 15 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, 20 N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-isopropylamidocarbonyl, 25 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethylcyclohexylmethoxy, cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 30 3-chlorobenzyl, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino, 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy,

3,4-difluorobenzyl, 2,5-difluorobenzyl, 3,5-difluorophenoxy,
 3,5-difluorobenzyl, 4-difluoromethoxybenzyl, 2,3-difluorophenoxy,
 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy,
 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,5-dimethylbenzyl,
 5 4-ethoxyphenoxy, 4-ethylbenzyl, 3-ethylphenoxy, 4-ethylaminophenoxy,
 3-ethyl-5-methylphenoxy, 4-fluorobenzyl,
 2-fluoro-3-trifluoromethylbenzyl, 3-fluoro-5-trifluoromethylbenzyl,
 4-fluoro-2-trifluoromethylbenzyl, 4-fluoro-3-trifluoromethylbenzyl,
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
 10 2-fluorobenzyl, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 4-isopropylbenzyl, 3-isopropylphenoxy, 4-isopropylphenoxy,
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyl, 3-isopropylphenoxy,
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
 15 phenylsulfonyl, 3-trifluoromethoxybenzyl, 4-trifluoromethoxybenzyl,
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
 3-trifluoromethylbenzyl, 4-trifluoromethylbenzyl,
 2,4-bis-trifluoromethylbenzyl, 3-trifluoromethylbenzyl,
 3,5-bis-trifluoromethylbenzyl, 4-trifluoromethylphenoxy,
 20 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyl,
 4-trifluoromethylthiobenzyl, 2,3,4-trifluorophenoxy,
 2,3,5-trifluorophenoxy, 3-pentafluoroethylphenoxy,
 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and 3-trifluoromethylthiophenoxy;

Y^0 is selected from the group consisting of:

25 $1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$ benzene,
 $2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-3-R^{19}$ pyridine,
 $3-Q^b-6-Q^s-2-R^{16}-5-R^{18}-4-R^{19}$ pyridine, $2-Q^b-5-Q^s-3-R^{16}-6-R^{18}$ pyrazine,
 $3-Q^b-6-Q^s-2-R^{18}-5-R^{18}-4-R^{19}$ pyridazine,
 $2-Q^b-5-Q^s-4-R^{17}-6-R^{18}$ pyrimidine, $5-Q^b-2-Q^s-4-R^{16}-6-R^{19}$ pyrimidine,
 30 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ thiophene, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ thiophene,

$3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$ furan, $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$ furan,
 $3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$ pyrrole, $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$ pyrrole,
 $4\text{-}Q^{\text{b}}\text{-}2\text{-}Q^{\text{s}}\text{-}5\text{-}R^{19}$ imidazole, $2\text{-}Q^{\text{b}}\text{-}4\text{-}Q^{\text{s}}\text{-}5\text{-}R^{17}$ imidazole,
 $3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}$ isoxazole, $5\text{-}Q^{\text{b}}\text{-}3\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}$ isoxazole,
5 $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}$ pyrazole, $4\text{-}Q^{\text{b}}\text{-}2\text{-}Q^{\text{s}}\text{-}5\text{-}R^{19}$ thiazole, and
 $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{17}$ thiazole;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,
10 aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,
15 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^{b} are not simultaneously hydrido;

Q^{b} is selected from the group consisting of $NR^{20}R^{21}$, hydrido,
20 $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no more than one of R^{20} , R^{21} , R^{23} , and R^{24} can be hydroxy, when any two of the group consisting of R^{20} , R^{21} , R^{23} , and R^{24} are bonded to the same atom and with the further proviso that said Q^{b} group is bonded directly to a carbon atom;

R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy; Q^S is selected from the group consisting of a bond, CH_2 , and CH_2CH_2 .

5 6. Compound of Claim 4 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

A is selected from the group consisting of $CH_2N(CH_3)$,

$CH_2N(CH_2CH_3)$, $CH_2CH_2N(CH_3)$, and $CH_2CH_2N(CH_2CH_3)$;

10 M is N or R^1-C ;

R^1 is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,

15 methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

R^2 is Z^0-Q ;

Z^0 is a bond or CH_2 ;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 20 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is

9

optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

$R^9, R^{11},$ and R^{13} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R^{10} and R^{12} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-isopropylamidocarbonyl, N-cyclobutylamidocarbonyl,

N-cyclopentylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethylcyclohexylmethoxy,
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
 5 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino,
 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy,
 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy,
 10 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy,
 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy,
 15 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,
 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,
 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 20 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 25 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,
 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,
 30 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and
 3-trifluoromethylthiophenoxy;

Y^0 is selected from the group consisting of:

$1-Q^{16} \overset{b}{-} Q^{17} \overset{s}{-} 2-R^{16} \overset{17}{-} 3-R^{17} \overset{18}{-} 5-R^{18} \overset{19}{-} 6-R^{19}$ benzene,

$2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-6-R}^{17}\text{-4-R}^{18}\text{-3-R}^{19}$ pyridine,
 $3\text{-Q}^{\text{b}}\text{-6-Q}^{\text{s}}\text{-2-R}^{16}\text{-5-R}^{18}\text{-4-R}^{19}$ pyridine, $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-3-R}^{16}\text{-6-R}^{18}$ pyrazine,
 $3\text{-Q}^{\text{b}}\text{-6-Q}^{\text{s}}\text{-2-R}^{18}\text{-5-R}^{18}\text{-4-R}^{19}$ pyridazine,
 $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{17}\text{-6-R}^{18}$ pyrimidine, $5\text{-Q}^{\text{b}}\text{-2-Q}^{\text{s}}\text{-4-R}^{16}\text{-6-R}^{19}$ pyrimidine,
5 $3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}\text{-2-R}^{19}$ thiophene, $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-3-R}^{16}\text{-4-R}^{17}$ thiophene,
 $3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}\text{-2-R}^{19}$ furan, $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-3-R}^{16}\text{-4-R}^{17}$ furan,
 $3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}\text{-2-R}^{19}$ pyrrole, $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-3-R}^{16}\text{-4-R}^{17}$ pyrrole,
 $4\text{-Q}^{\text{b}}\text{-2-Q}^{\text{s}}\text{-5-R}^{19}$ imidazole, $2\text{-Q}^{\text{b}}\text{-4-Q}^{\text{s}}\text{-5-R}^{17}$ imidazole,
 $3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}$ isoxazole, $5\text{-Q}^{\text{b}}\text{-3-Q}^{\text{s}}\text{-4-R}^{16}$ isoxazole,
10 $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}$ pyrazole, $4\text{-Q}^{\text{b}}\text{-2-Q}^{\text{s}}\text{-5-R}^{19}$ thiazole, and
 $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{17}$ thiazole;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

Q^{b} is selected from the group consisting of $\text{NR}^{20}\text{R}^{21}$, $\text{C}(\text{NR}^{25})\text{NR}^{23}\text{R}^{24}$, and $\text{N}(\text{R}^{26})\text{C}(\text{NR}^{25})\text{N}(\text{R}^{23})(\text{R}^{24})$, with the proviso that no more than one of R^{20} , R^{21} , R^{23} , and R^{24} can be hydroxy, when any two of the group consisting of R^{20} , R^{21} , R^{23} , and R^{24} are bonded to the same

atom, and with the further proviso that said Q^b group is bonded directly to a carbon atom;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂, and CH₂CH₂.

7. Compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein;

A is selected from the group consisting of CH₂N(CH₃),

10 CH₂N(CH₂CH₃), CH₂CH₂N(CH₃), and CH₂CH₂N(CH₂CH₃);

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio,

15 trifluoromethoxy, fluoro, and chloro;

R² is Z⁰-Q;

Z⁰ is a bond or CH₂;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

20 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,

3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,

3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

25 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

30 3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

5 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl,

5-amino-2-fluorophenyl, 3-amino-5-hydroxymethylphenyl,

5-amino-3-methoxycarbonylphenyl, 3-amidinophenyl,

10 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl, 3-aminophenyl,

3-carboxyphenyl, 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl,

3-chlorophenyl, 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl,

3-dimethylaminophenyl, 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl,

3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,

3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl

2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methy

4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,

2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,

3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl

20 Y^0 is selected from the group consisting of:

$1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$ benzene,

$2\text{-Q}^{\text{b}}\text{-}5\text{-Q}^{\text{s}}\text{-}6\text{-R}^{17}\text{-}4\text{-R}^{18}\text{-}3\text{-R}^{19}$ pyridine,

$3\text{-Q}^{\text{b}}\text{-}6\text{-Q}^{\text{s}}\text{-}2\text{-R}^{16}\text{-}5\text{-R}^{18}\text{-}4\text{-R}^{19}$ pyridine,

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹thiophene, and 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷thiophene;

²⁵ R¹⁶ and R¹⁹ are independently selected from the group consisting of

hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R^{17} and R^{18} are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

30 Q^b is C(NR²⁵)NR²³R²⁴;

R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido and methyl;

Q^S is CH_2 .

5 8. Compound of Claim 7 or a pharmaceutically acceptable salt thereof where said compound is selected from the group consisting of:

2-[3-[1-[3-aminophenyl]-N-[[4-aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-2,4-dioxo-2(2H,4H)-pyrimidinyl]]acetamide;

10 2-[3-[1-[3-aminophenyl]-5-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-2,4-dioxo-2(2H,4H)-pyrimidinyl]]acetamide;

15 2-[3-[1-[3-aminophenyl]-6-fluoro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-2,4-dioxo-2(2H,4H)-pyrimidinyl]]acetamide;

20 2-[4-[2-[3-aminophenyl]-N-[[4-aminoiminomethylphenyl]methyl]-6-[N,N-dimethylhydrazino]-3,5-dioxo-2(3H,5H)-1,2,4-triazinyl]]acetamide;

25 2-[4-[2-[3-aminophenyl]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-3,5-dioxo-2(3H,5H)-1,2,4-triazinyl]]acetamide;

30 2-[4-[2-[3-aminophenyl]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-3,5-dioxo-2(3H,5H)-1,2,4-triazinyl]]acetamide;

2-[3-[1-[3-amino-5-carboxyphenyl]-N-[[4-aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-2,4-dioxo-2(2H,4H)-pyrimidinyl]]acetamide;

2-[3-[1-[3-amino-5-carboxyphenyl]-5-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-2,4-dioxo-2(2H,4H)-pyrimidinyl]]acetamide;

35 2-[3-[1-[3-amino-5-carboxyphenyl]-6-fluoro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-2,4-dioxo-2(2H,4H)-pyrimidinyl]]acetamide;

2-[4-[2-[3-amino-5-carboxyphenyl]-N-[[4-aminoiminomethylphenyl]methyl]-6-[N,N-dimethylhydrazino]-3,5-dioxo-2(3H,5H)-1,2,4-triazinyl]]acetamide;

2-[4-[2-[3-amino-5-carboxyphenyl]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-3,5-dioxo-2(3H,5H)-1,2,4-triazinyl]]acetamide;

2-[4-[2-[3-amino-5-carboxyphenyl]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-3,5-dioxo-2(3H,5H)-1,2,4-triazinyl]]acetamide.

10

9. Compound of Claim 2 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R³⁶, a carbon adjacent to R³² and two atoms from the carbon at the point of attachment is optionally substituted by R³³, a carbon adjacent to R³⁶ and two atoms from the carbon at the point of attachment is optionally substituted by R³⁵, and any carbon adjacent to both R³³ and R³⁵ is optionally substituted by R³⁴;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl,

alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is a bond or (CH(R¹⁵))_{pa}-(W⁷)_{rr} wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W⁷ is (R⁷)NC(O) or N(R⁷);

5 R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;

R¹⁵ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R¹-C;

10 R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

R² is Z⁰-Q;

Z⁰ is selected from the group consisting of a bond, CH₂, CH₂CH₂, W⁰-(CH(R⁴²))_p wherein p is 0 or 1 and W⁰ is selected from the group consisting of O, S, and N(R⁴¹);

15 R⁴¹ and R⁴² are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z⁰ is optionally substituted by R⁹, the other carbon adjacent to the 20 carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

R^9 , R^{11} , and R^{13} are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, 5 carboxamido, and cyano;

R^{10} and R^{12} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteraryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, 10 heteroaralkoxy, heterocyclyoxy, heterocyclalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylalmino, heteroaralkylamino, heterocyclamino, heterocyclalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, 15 cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally 20 substituted by R^{19} ;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl,

haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the

proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

5 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, and
 $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is
hydroxy at the same time and with the further proviso that no more than one of R^{23}
and R^{24} is hydroxy at the same time;

10 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group
consisting of hydrido, alkyl, and hydroxy;
 Q^s is selected from the group consisting of a bond, CH_2 , and
 CH_2CH_2 .

15 10. Compound of Claim 9 or a pharmaceutically acceptable salt thereof,
wherein;
B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl,
2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl,
4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl,
4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl,
20 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to
the carbon at the point of attachment of said phenyl or heteroaryl ring to A is
optionally substituted by R^{32} , the other carbon adjacent to the carbon at the
point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32}
and two atoms from the carbon at the point of attachment is optionally
25 substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at

the point of attachment is optionally substituted by R^{35} , and any carbon

adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy,

5 isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl,

10 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q^b ;

A is selected from the group consisting of a bond, NH, $N(CH_3)$,

15 $N(OH)$, CH_2 , CH_3CH , CF_3CH , $NHC(O)$, $N(CH_3)C(O)$, $C(O)NH$,

$C(O)N(CH_3)$, CH_2CH_2 , $CH_2CH_2CH_2$, CH_3CHCH_2 , and CF_3CHCH_2 ;

M is N or R^1-C ;

R^1 is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino,

20 dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

R^2 is Z^0-Q ;

25 Z^0 is selected from the group consisting of a bond, CH_2 , CH_2CH_2 , O,

S, NH, $N(CH_3)$, OCH_2 , SCH_2 , $N(H)CH_2$, and $N(CH_3)CH_2$;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl,

4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl,
3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to
the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is
optionally substituted by R^9 , the other carbon adjacent to the carbon at the point
of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two
atoms from the carbon at the point of attachment is optionally substituted by
 R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of
attachment is optionally substituted by R^{12} , and any carbon adjacent to both
 R^{10} and R^{12} is optionally substituted by R^{11} ;
10 R^9 , R^{11} , and R^{13} are independently selected from the group consisting
of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl,
methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino,
N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio,
trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,
15 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro,
chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,
2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl,
N,N-dimethylamidocarbonyl, and cyano;
20 R^{10} and R^{12} are independently selected from the group consisting of
hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl,
isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,
methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl,
1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino,
25 methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,
2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl,
amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl,
N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,
N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
5 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy,
cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
10 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino,
4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy,
4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
15 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy,
2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
.5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy,
20 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy,
4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,
2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,
4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
25 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
30 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,
3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
35 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,

4-trifluoromethylthiobenzylxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and 3-trifluoromethylthiophenoxy;

Y^0 is selected from the group consisting of:

5 $1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$ benzene,
 $2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-3-R^{19}$ pyridine,
 $3-Q^b-6-Q^s-2-R^{16}-5-R^{18}-4-R^{19}$ pyridine, $2-Q^b-5-Q^s-3-R^{16}-6-R^{18}$ pyrazine,
 $3-Q^b-6-Q^s-2-R^{18}-5-R^{18}-4-R^{19}$ pyridazine,
 $2-Q^b-5-Q^s-4-R^{17}-6-R^{18}$ pyrimidine, $5-Q^b-2-Q^s-4-R^{16}-6-R^{19}$ pyrimidine,
10 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ thiophene, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ thiophene,
 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ furan, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ furan,
 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ pyrrole, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ pyrrole,
 $4-Q^b-2-Q^s-5-R^{19}$ imidazole, $2-Q^b-4-Q^s-5-R^{17}$ imidazole,
 $3-Q^b-5-Q^s-4-R^{16}$ isoxazole, $5-Q^b-3-Q^s-4-R^{16}$ isoxazole,
15 $2-Q^b-5-Q^s-4-R^{16}$ pyrazole, $4-Q^b-2-Q^s-5-R^{19}$ thiazole, and
 $2-Q^b-5-Q^s-4-R^{17}$ thiazole;

R^{16}, R^{17}, R^{18} , and R^{19} are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} ,
 R^{19} , and Q^b are not simultaneously hydrido;

Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido, with the proviso that no more than
one of R^{23} and R^{24} is hydroxy at the same time;

5 R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of
hydrido, methyl, ethyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH_2 and CH_2CH_2 .

11. Compound of Claim 10 or a pharmaceutically acceptable salt thereof,
10 wherein;

B is selected from the group consisting of 2-aminophenyl,
3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,
3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,
3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,
15 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,
3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,
3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,
5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and
3-trifluoromethyl-2-pyridyl;

20 A is selected from the group consisting of CH_2 , CH_3CH , CF_3CH ,
 $NHC(O)$, CH_2CH_2 , and $CH_2CH_2CH_2$;

M is N or R^1-C ;

25 R^1 is selected from the group consisting of hydrido, hydroxy, amino,
amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl,
trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio,
trifluoromethoxy, fluoro, and chloro;

R^2 is Z^0-Q ;

Z^0 is selected from the group consisting of a bond, CH₂, O, S, NH, N(CH₃), OCH₂, and SCH₂;

Q is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 5 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,
- 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,
- 3-amino-5-benzylxylophenyl, 3-amino-5-(2-phenylethoxy)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
- 10 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-benzylamidosulfonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
- 15 3-amino-5-(N-ethylamidocarbonyl)phenyl,
- 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
- 20 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
- 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
- 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
- 25 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,
- 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,
- 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
- 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
- 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
- 30 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
- 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
- 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,
- phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
- 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
- 35 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y^0 is selected from the group consisting of:

1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹ benzene,

2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-3-R¹⁹ pyridine,

3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹ pyridine,

5 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ thiophene, and 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of

hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁶ or R¹⁹ is optionally C(NR²⁵)NR²³R²⁴ with the proviso that R¹⁶,

10 R¹⁹, and Q^b are not simultaneously hydrido;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is C(NR²⁵)NR²³R²⁴ or hydrido;

R²³, R²⁴, and R²⁵ are independently hydrido or methyl;

15 Q^s is CH₂.

12. Compound of Claim 9 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

20 B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl

00000000000000000000000000000000

ring to A is optionally substituted by R^{32} , the other carbon adjacent to the
 carbon at the point of attachment is optionally substituted by R^{36} , a carbon
 adjacent to R^{32} and two atoms from the carbon at the point of attachment is
 5 optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the
 carbon at the point of attachment is optionally substituted by R^{35} , and any
 10 carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;
 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the
 group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino,
 alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl,
 15 alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy,
 carboxamido, cyano, and Q^b ;

A is a bond or $(CH(R^{15}))_{pa}-(W^7)_{rr}$ wherein rr is 0 or 1, pa is an
 integer selected from 0 through 3, and W^7 is $N(R^7)$;

15 R^{15} is hydrido or alkyl;

15 R^{15} is selected from the group consisting of hydrido, halo, alkyl, and
 haloalkyl;

M is N or R^1-C ;

20 R^1 is selected from the group consisting of hydrido, hydroxy,
 hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino,
 aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

R^2 is Z^0-Q ;

25 Z^0 is a bond;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon
 adjacent to the carbon at the point of attachment of said phenyl or heteroaryl
 ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the

260
250
240
230
220
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0

carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

$R^9, R^{11},$ and R^{13} are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R^{10} and R^{12} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

$R^{16}, R^{17}, R^{18},$ and R^{19} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl,

haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the

proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

5 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, and
 $C(NR^{25})NR^{23}R^{24}$;

R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently hydrido or alkyl;

Q^s is CH_2 .

10 13. Compound of Claim 12 or a pharmaceutically acceptable salt thereof,
wherein;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl,
2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl,
4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, and 5-isoxazolyl, wherein a carbon

15 adjacent to the carbon at the point of attachment of said phenyl or heteraryl
ring to A is optionally substituted by R^{32} , the other carbon adjacent to the

carbon at the point of attachment is optionally substituted by R^{36} , a carbon

adjacent to R^{32} and two atoms from the carbon at the point of attachment is

optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the

20 carbon at the point of attachment is optionally substituted by R^{35} , and any

carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy,

ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino,

25 methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,

fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃), CH₂, CH₃CH₂, and CH₂CH₂;

5 M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

10 R² is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to the uracil ring is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at 15 the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

20 R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

25 R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,
 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
 N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
 5 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy,
 hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,
 carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl,
 10 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino,
 dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl,
 N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro,
 chloro, bromo, and cyano;

Y^0 is selected from the group consisting of:

15 $1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$ benzene,
 $2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-3-R^{19}$ pyridine, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ thiophene,
 $3-Q^b-6-Q^s-2-R^{16}-5-R^{18}-4-R^{19}$ pyridine, $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ thiophene,
 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ furan, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ furan,
 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ pyrrole, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ pyrrole,
 20 $4-Q^b-2-Q^s-5-R^{19}$ thiazole, and $2-Q^b-5-Q^s-4-R^{17}$ thiazole;

R^{16}, R^{17}, R^{18} , and R^{19} are independently selected from the group
 consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy,
 amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino,
 dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl,
 25 methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,
 trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

Q^b is $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$;

$R^{20}, R^{21}, R^{23}, R^{24}$, and R^{25} are independently selected from the group
 consisting of hydrido, methyl, and ethyl;

Q^S is CH_2 .

14. Compound of Claim 13 or a pharmaceutically acceptable salt thereof, wherein:

- 5 B is selected from the group consisting of 2-aminophenyl, 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl, 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,
- 10 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl, 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl, 5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and 3-trifluoromethyl-2-pyridyl;

A is CH_2 or CH_2CH_2 ;

- 15 M is N or R^1-C ;

R^1 is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

- 20 R^2 is selected from the group consisting of 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl, 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
- 25 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl, 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl, 3-amino-5-(N-benzylamidosulfonyl)phenyl, 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, 3-amino-5-(N-ethylamidocarbonyl)phenyl,
- 30 -amino-5-(N-isopropylamidocarbonyl)phenyl, -amino-5-(N-propylamidocarbonyl)phenyl, 3-amino-5-(N-isobutylamidocarbonyl)phenyl, 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

00000000000000000000000000000000

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 5 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,
 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 10 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,
 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 15 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y^0 is selected from the group consisting of:

1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹ benzene,
 2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-3-R¹⁹ pyridine,
 20 3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹ pyridine,
 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ thiophene, and 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ thiophene;

R^{16} and R^{19} are independently selected from the group consisting of
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,
 hydroxymethyl, fluoro, chloro, and cyano;

25 R^{17} and R^{18} are independently selected from the group consisting of
 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is $C(NR^{25})NR^{23}R^{24}$;

R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;

Q^s is CH_2 .

15. Compound of Claim 14 or a pharmaceutically acceptable salt thereof,
wherein;

B is selected from the group consisting of 3-aminophenyl,
3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl,
5 3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, phenyl, 2-imidazoyl,
3-pyridyl, 4-pyridyl, and 3-trifluoromethyl-2-pyridyl;

A is CH₂ or CH₂CH₂;

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy,
10 hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and
fluoro;

R² is selected from the group consisting of
3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
15 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
3-amino-5-(N-benzylamidosulfonyl)phenyl,
20 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
3-amino-5-(N-ethylamidocarbonyl)phenyl,
3-amino-5-(N-isopropylamidocarbonyl)phenyl,
3-amino-5-(N-propylamidocarbonyl)phenyl,
3-amino-5-(N-isobutylamidocarbonyl)phenyl,
25 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,
3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,
30 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl;

09247053 412000

Y^0 is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

16. Compound of Claim 9 where said compound is selected from the group of
5 the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

R² is 3-aminophenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

10 R² is 3-aminophenyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is phenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

15 R² is 3-aminophenyl, B is 2-imidazoyl, A is CH₂CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-dimethylaminophenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 2-methylphenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

20 R² is phenyl, B is 3-aminophenyl, A is C(O)NH, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is phenyl, B is 3-amidinophenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

000112223344556677889900

R^2 is 3-(N-methylamino)phenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-thienyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-methylsulfonamidophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is phenyl, B is 4-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-methylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is phenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is phenyl, B is 4-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is phenyl, B is 3-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-chlorophenyl, B is 4-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-methylphenyl, B is 4-phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

25 R^2 is 3-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

25 is CF;

R^2 is phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-aminophenyl, B is 2-imidazoyl, A is $CH_2CH_2CH_2$, Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-dimethylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

5 R^2 is 2-methylphenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is phenyl, B is 3-aminophenyl, A is $C(O)NH$, Y^0 is 4-amidinobenzyl, and M is CF;

10 R^2 is phenyl, B is 3-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-(N-methylamino)phenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

15 R^2 is 3-thienyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-methylsulfonamidophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

20 R^2 is phenyl, B is 4-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-methylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

25 R^2 is phenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is phenyl, B is 4-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is phenyl, B is 3-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

25 is CF;

R^2 is 3-chlorophenyl, B is 4-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-methylphenyl, B is 4-phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 3-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

5 R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

10 R^2 is phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-imidazoyl, A is $CH_2CH_2CH_2$, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-dimethylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 2-methylphenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is phenyl, B is 3-aminophenyl, A is $C(O)NH$, Y^0 is 4-amidinobenzyl, and M is N;

20 R^2 is phenyl, B is 3-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-(N-methylamino)phenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-thienyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

25 R^2 is 3-methylsulfonamidophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is phenyl, B is 4-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-methylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is phenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

5 R^2 is phenyl, B is 4-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is phenyl, B is 3-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-chlorophenyl, B is 4-pyridyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

10 R^2 is 3-methylphenyl, B is 4-phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

25 R^2 is 3,5-diaminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-carboxyphenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 ,

Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A

is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

5 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-

chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

10 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3,5-diaminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-

amidinobenzyl, and M is N;

R^2 is 3-amino-5-carboxyphenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N.

15

17. Compound of Claim 2 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

20 B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the

point of attachment of B to A with one or more of the group consisting of R^{32} ,

R^{33} , R^{34} , R^{35} , and R^{36} ;

R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino,
5 alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl,
alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy,
carboxy, carboxamido, cyano, and Q^b ;

A is a bond or $(CH(R^{15}))_{pa}(W^7)_{rr}$ wherein rr is 0 or 1, pa is an
integer selected from 0 through 3, and W^7 is $(R^7)NC(O)$ or $N(R^7)$;

10 R^7 is selected from the group consisting of hydrido, hydroxy and alkyl;
 R^{15} is selected from the group consisting of hydrido, halo, alkyl, and
haloalkyl;

M is N or R^1-C ;

15 R^1 is selected from the group consisting of hydrido, hydroxy,
hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino,
aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

R^2 is Z^0-Q ;

Z^0 is selected from the group consisting of a bond, CH_2 , CH_2CH_2 , W^0 -
 $(CH(R^{42}))_p$ wherein p is 0 or 1 and W^0 is selected from the group consisting
20 of O, S, and $N(R^{41})$;

R^{41} and R^{42} are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon
adjacent to the carbon at the point of attachment of said phenyl or heteroaryl
ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the
25 carbon at the point of attachment is optionally substituted by R^{13} , a carbon

adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

5 R^9 , R^{11} , and R^{13} are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

10 R^{10} and R^{12} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyoxy, heterocyclylalkoxy, hydroxy, amino, 15 alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylalmino, heteroaralkylamino, heterocyclalamino, heterocyclylalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, 20 aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

Y⁰ is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^s, a carbon two or three atoms from the point of attachment of Q^s to said phenyl or said heteroaryl is substituted by Q^b, a carbon adjacent to the point of attachment of Q^s is 25 optionally substituted by R¹⁷, another carbon adjacent to the point of attachment of Q^s is optionally substituted by R¹⁸, a carbon adjacent to Q^b is

optionally substituted by R¹⁶, and another carbon adjacent to Q^b is optionally substituted by R¹⁹;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxylalkyl, aminoalkyl, and cyano;

R¹⁶ or R¹⁹ is optionally selected from the group consisting of NR²⁰R²¹, N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), and C(NR²⁵)NR²³R²⁴, with the proviso that R¹⁶, R¹⁹, and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of NR²⁰R²¹, hydrido, C(NR²⁵)NR²³R²⁴, and N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), with the proviso that no more than one of R²⁰ and R²¹ is hydroxy at the same time and with the further proviso that no more than one of R²³ and R²⁴ is hydroxy at the same time;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂, and

CH₂CH₂.

18. Compound of Claim 17 or a pharmaceutically acceptable salt thereof, wherein;
 B is selected from the group consisting of hydrido, ethyl, 2-propynyl, 2-propenyl, propyl, isopropyl, butyl, 2-but enyl, 3-but enyl, 2-butynyl, sec-butyl, 25 tert-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 1-methyl-2-but enyl, 1-methyl-3-but enyl, 1-methyl-2-butynyl, 3-pentyl, 1-ethyl-2-propenyl,

00042000-00000000

2-methylbutyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 2-methyl-3-butynyl,
 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1-hexyl, 2-hexenyl,
 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl,
 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl,
 5 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl,
 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-butynyl, 1-heptyl, 2-heptenyl,
 3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2-heptynyl, 3-heptynyl,
 4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl,
 1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 1-methyl-2-hexynyl,
 10 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl,
 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-pentynyl,
 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl, 4-trifluoromethyl-
 5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and
 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted
 15 at any carbon up to and including 5 atoms from the point of attachment of B to
 A with one or more of the group consisting of R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} ;
 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the
 group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy,
 isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino,
 20 acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino,
 methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl,
 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy,
 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl,
 N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl,
 25 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl,
 methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl,
 N,N-dimethylamidocarbonyl, cyano, and Q^b ;
 A is selected from the group consisting of bond, NH, N(CH₃), N(OH),
 CH₂, CH₃CH, CF₃CH, NHC(O), N(CH₃)C(O), C(O)NH, C(O)N(CH₃),
 30 CH₂CH₂, CH₂CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂;

A is optionally selected from the group consisting of $\text{CH}_2\text{N}(\text{CH}_3)$,

$\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)$, $\text{CH}_2\text{CH}_2\text{N}(\text{CH}_3)$, and $\text{CH}_2\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)$ with the proviso that B is hydrido;

M is N or $\text{R}^1\text{-C}$;

5 R^1 is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy,

10 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

R^2 is $\text{Z}^0\text{-Q}$;

Z^0 is selected from the group consisting of a bond, CH_2 , CH_2CH_2 , O,

S, NH, $\text{N}(\text{CH}_3)$, OCH_2 , SCH_2 , $\text{N}(\text{H})\text{CH}_2$, and $\text{N}(\text{CH}_3)\text{CH}_2$;

Q is selected from the group consisting of phenyl, 2-thienyl,

15 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or

20 heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a

carbon adjacent to R^9 and two atoms from the carbon at the point of attachment

is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any

25 carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

R^9 , R^{11} , and R^{13} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 5 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, 10 N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R^{10} and R^{12} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 15 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, 20 N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, 25 N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethylcyclohexylmethoxy, 30 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino, 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy,

00000000000000000000000000000000

4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzylxy,
 2,4-difluorobenzylxy, 3,4-difluorobenzylxy, 2,5-difluorobenzylxy,
 3,5-difluorophenoxy, 3,5-difluorobenzylxy, 4-difluoromethoxybenzylxy,
 5 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzylxy,
 3,5-dimethylbenzylxy, 4-ethoxyphenoxy, 4-ethylbenzylxy, 3-ethylphenoxy,
 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzylxy,
 2-fluoro-3-trifluoromethylbenzylxy, 3-fluoro-5-trifluoromethylbenzylxy,
 10 4-fluoro-2-trifluoromethylbenzylxy, 4-fluoro-3-trifluoromethylbenzylxy,
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
 2-fluorobenzylxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 4-isopropylbenzylxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzylxy, 3-isopropylphenoxy,
 15 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
 phenylsulfonyl, 3-trifluoromethoxybenzylxy, 4-trifluoromethoxybenzylxy,
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
 3-trifluoromethylbenzylxy, 4-trifluoromethylbenzylxy,
 20 2,4-bis-trifluoromethylbenzylxy, 3-trifluoromethylbenzyl,
 3,5-bis-trifluoromethylbenzylxy, 4-trifluoromethylphenoxy,
 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzylxy,
 4-trifluoromethylthiobenzylxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and
 25 3-trifluoromethylthiophenoxy;

Y^0 is selected from the group consisting of:

$1-Q^{b\ s}-4-Q^{s\ 16}-2-R^{17}-3-R^{18}-5-R^{19}-6-R^{19}$ benzene,
 $2-Q^{b\ s}-5-Q^{s\ 17}-6-R^{18}-4-R^{19}-3-R^{19}$ pyridine,
 $3-Q^{b\ s}-6-Q^{s\ 16}-2-R^{17}-5-R^{18}-4-R^{19}$ pyridine, $2-Q^{b\ s}-5-Q^{s\ 16}-3-R^{17}-6-R^{18}$ pyrazine,
 30 $3-Q^{b\ s}-6-Q^{s\ 18}-2-R^{18}-5-R^{18}-4-R^{19}$ pyridazine,
 $2-Q^{b\ s}-5-Q^{s\ 17}-6-R^{18}$ pyrimidine, $5-Q^{b\ s}-2-Q^{s\ 16}-4-R^{19}-6-R^{19}$ pyrimidine,

00242062
00242062
00242062
00242062
00242062

$3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}\text{-2-R}^{19}$ thiophene, $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-3-R}^{16}\text{-4-R}^{17}$ thiophene,
 $3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}\text{-2-R}^{19}$ furan, $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-3-R}^{16}\text{-4-R}^{17}$ furan,
 $3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}\text{-2-R}^{19}$ pyrrole, $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-3-R}^{16}\text{-4-R}^{17}$ pyrrole,
 $4\text{-Q}^{\text{b}}\text{-2-Q}^{\text{s}}\text{-5-R}^{19}$ imidazole, $2\text{-Q}^{\text{b}}\text{-4-Q}^{\text{s}}\text{-5-R}^{17}$ imidazole,
5 $3\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}$ isoxazole, $5\text{-Q}^{\text{b}}\text{-3-Q}^{\text{s}}\text{-4-R}^{16}$ isoxazole,
 $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{16}$ pyrazole, $4\text{-Q}^{\text{b}}\text{-2-Q}^{\text{s}}\text{-5-R}^{19}$ thiazole, and
 $2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{17}$ thiazole;
 R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group
 consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino,
10 guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,
 aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino,
 N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio,
 methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl,
 pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl,
15 trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,
 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;
 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$,
 $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that R^{16} ,
 R^{19} , and Q^{b} are not simultaneously hydrido;
20 Q^{b} is selected from the group consisting of $NR^{20}R^{21}$, hydrido,
 $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no
 more than one of R^{20} and R^{21} is hydroxy at the same time and with the further
 proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;
 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the
25 group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy;

Q^S is selected from the group consisting of a bond, CH_2 , and CH_2CH_2 .

19. Compound of Claim 18 or a pharmaceutically acceptable salt thereof, wherein;

5 B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, *tert*-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl,

10 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

15 A is selected from the group consisting of a bond, CH_2 , NHC(O) ,

CH_2CH_2 , $\text{CH}_2\text{CH}_2\text{CH}_2$, and CH_3CHCH_2 ;

M is N or $R^1\text{-C}$;

20 R^1 is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

R^2 is $Z^0\text{-Q}$;

Z^0 is selected from the group consisting of a bond, CH_2 , O, S, NH,

N(CH_3), OCH_2 , and SCH_2 ;

25 Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl, 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl, 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl, 3-amino-5-benzylxyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl, 30 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

08242051 - 142000

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 5 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 3-amino-5-(N-propylamidocarbonyl)phenyl,
 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 10 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 15 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,
 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,
 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
 20 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,
 phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 25 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y^0 is selected from the group consisting of:

$1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$ benzene,
 $2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-3-R^{19}$ pyridine,
 $3-Q^b-6-Q^s-2-R^{16}-5-R^{18}-4-R^{19}$ pyridine,
 30 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ thiophene, and $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ thiophene;

R^{16} and R^{19} are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

5 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

R^{17} and R^{18} are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano; Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido;

R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;

10 Q^s is CH_2 .

20. Compound of Claim 17 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

15 B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R^{32} ,

R^{33} , R^{34} , R^{35} , and R^{36} ;

20 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl,

alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is a bond or (CH(R¹⁵))_{pa}-(W⁷)_{rr} wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W⁷ is N(R⁷);

5 R⁷ is hydrido or alkyl;

R¹⁵ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, 10 hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

R² is Z⁰-Q;

Z⁰ is a bond;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon 15 adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z⁰ is optionally substituted by R⁹, the other carbon adjacent to the

carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is

optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the 20 carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R^{10} and R^{12} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, 5 carboxyalkyl, and cyano;

Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is 10 optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group 15 consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R^{16} or R^{19} is optionally selected from the group consisting of 20 $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$; R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently hydrido or alkyl; 25 Q^S is CH_2 .

21. Compound of Claim 20 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl, sec-butyl, *tert*-butyl, 5 isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 3-pentyl, 2-methylbutyl, 2-methyl-2-butenyl, 3-methylbutyl, 3-methyl-2-butynyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 10 1-methyl-3-pentenyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butynyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-2-hexynyl, 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 15 1-ethyl-3-pentenyl, 1-ethyl-2-pentynyl, 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

20 R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, 25 amidocarbonyl, carboxy, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃), CH₂,

CH₃CH, and CH₂CH₂;

A is optionally selected from the group consisting of CH₂N(CH₃), CH₂N(CH₂CH₃), CH₂CH₂N(CH₃), and CH₂CH₂N(CH₂CH₃) with the proviso that B is hydrido;

M is N or R¹-C;

R^1 is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

5 R^2 is selected from the group consisting of phenyl, 2-thienyl, 2-furyl,
2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl,
wherein a carbon adjacent to the carbon at the point of attachment of said
phenyl or heteroaryl ring to the uracil ring is optionally substituted by R^9 , the
other carbon adjacent to the carbon at the point of attachment is optionally
10 substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at
the point of attachment is optionally substituted by R^{10} , a carbon adjacent to
 R^{13} and two atoms from the carbon at the point of attachment is optionally
substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally
substituted by R^{11} ;

15 R^9 , R^{11} , and R^{13} are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 20 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;
R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, 25 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,

N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, 5 dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

Y^0 is selected from the group consisting of:

10 $1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$ benzene,
 $2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-3-R^{19}$ pyridine, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ thiophene,
 $3-Q^b-6-Q^s-2-R^{16}-5-R^{18}-4-R^{19}$ pyridine, $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ thiophene,
 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ furan, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ furan,
 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ pyrrole, $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ pyrrole,
 $4-Q^b-2-Q^s-5-R^{19}$ thiazole, and $2-Q^b-5-Q^s-4-R^{17}$ thiazole;

15 R^{16}, R^{17}, R^{18} , and R^{19} are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 20 trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

20 Q^b is selected from the group consisting of $NR^{20}R^{21}$,
 $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$;
 $R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$, and R^{26} are independently selected from the group consisting of hydrido, methyl, and ethyl;

25 Q^s is CH_2 .

22. Compound of Claim 21 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, *tert*-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl,

5 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and

10 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH, and CH₂CH₂:

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;;

R² is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,
 3-amino-5-(N-benzylamidocarbonyl)phenyl,

20 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

25 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 3-amino-5-(N-propylamidocarbonyl)phenyl,

30 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

00021705
12000

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
 5 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,
 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
 10 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,
 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

15 Y^0 is selected from the group consisting of:
 $1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$ benzene,
 $2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-3-R^{19}$ pyridine,
 $3-Q^b-6-Q^s-2-R^{16}-5-R^{18}-4-R^{19}$ pyridine,
 $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$ thiophene, and $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$ thiophene;

20 R^{16} and R^{19} are independently selected from the group consisting of
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,
 hydroxymethyl, fluoro, chloro, and cyano;
 R^{17} and R^{18} are independently selected from the group consisting of
 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

25 Q^b is $C(NR^{25})NR^{23}R^{24}$;
 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;
 Q^s is CH_2 .

23. Compound of Claim 22 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, 5 *tert*-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 10 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH, and

CH₂CH₂;

15 M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

R² is selected from the group consisting of
 20 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl, 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 25 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl, 3-amino-5-(N-benzylamidosulfonyl)phenyl, 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, 3-amino-5-(N-ethylamidocarbonyl)phenyl, 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 30 3-amino-5-(N-propylamidocarbonyl)phenyl, 3-amino-5-(N-isobutylamidocarbonyl)phenyl, 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl, 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,
 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,
 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
 5 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl;
 Y^0 is selected from the group consisting of 5-amidino-2-thienylmethyl,
 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

10 24. Compound of Claim 17 where said compound is selected from the group of
 the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

15 R^2 is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is single bond, Y^0 is 4-
 amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is (S)-2-butyl, A is single bond, Y^0 is 4-
 amidinobenzyl, and M is CH;

R^2 is 5-amino-2-fluorophenyl, B is isopropyl, A is single bond, Y^0 is 4-
 amidinobenzyl, and M is CH;

20 R^2 is 2-methyl-3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-
 amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is ethyl, A is single bond, Y^0 is 4-amidinobenzyl,
 and M is CH;

25 R^2 is 3-aminophenyl, B is ethyl, A is single bond, Y^0 is 4-amidino-2-
 fluorobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 2-propenyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

5 R^2 is 3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-aminophenyl, B is (R)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 2-propynyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 3-pentyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is 3-aminophenyl, B is hydrido, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is ethyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-aminophenyl, B is 2-methypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 2-propyl, A is CH_3CH , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is propyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

25 R^2 is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 3-hydroxypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-aminophenyl, B is 2-methylpropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-aminophenyl, B is 1-methoxy-2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 2-methoxyethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 5-amidino-2-thienylmethyl, and M is CH;

R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

R^2 is 3-carboxyphenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is (S)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

25 R^2 is 5-amino-2-fluorophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 2-methyl-3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is ethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is ethyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

5 R^2 is 3-aminophenyl, B is 2-propenyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

10 R^2 is 3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-aminophenyl, B is (R)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-propynyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

20 R^2 is 3-aminophenyl, B is 3-pentyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is hydrido, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

25 R^2 is 3-aminophenyl, B is ethyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-methypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-propyl, A is CH_3CH , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is propyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

5 R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 3-hydroxypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

10 R^2 is 3-aminophenyl, B is 2-methylpropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

R^2 is 3-aminophenyl, B is butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 1-methoxy-2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-aminophenyl, B is 2-methoxyethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 5-amidino-2-thienylmethyl, and M is N;

20 R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is N;

R^2 is 3-carboxyphenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

25 R^2 is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-carbomethoxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R^2 is 3-amino-5-carboxamidophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-amino-5-(N-benzyl-N-methylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-amino-5-(N-(2-phenyl-2-propyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2,4-dichlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(4-bromobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(3-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

25 R^2 is 3-amino-5-(N-isobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

00024745021260

R^2 is 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-amino-5-(N-cycloheptylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-pyridylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-amino-5-(N-(3-pyridylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-(4-methoxyphenyl)ethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is 3-amino-5-(N-(3-phenylpropyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2,2-diphenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-amino-5-(N-(2-naphthylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(1,2,3,4-tetrahydronaphth-2-ylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

25 R^2 is 3-aminophenyl, B is 2-propyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

R^2 is 3,5-diaminophenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3,5-diaminophenyl, B is (S)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzylbenzyl, and M is CH;

5 R^2 is 3,5-diaminophenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3,5-diaminophenyl, B is ethyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

10 R^2 is 3-amino-5-carboxyphenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-carboxyphenyl, B is (S)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzylbenzyl, and M is CH;

15 R^2 is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

20 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is (S)-2-butyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzylbenzyl, and M is CH;

25 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-carbomethoxyphenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

5 R^2 is 3-amino-5-carboxamidophenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-benzyl-N-methylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

10 R^2 is 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-phenyl-2-propyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2,4-dichlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-amino-5-(N-(4-bromobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

20 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

25 R^2 is 3-amino-5-(N-(3-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-isobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

5 R^2 is 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-cycloheptylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

10 R^2 is 3-amino-5-(N-(2-pyridylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(3-pyridylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-(4-methoxyphenyl)ethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-amino-5-(N-(3-phenylpropyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2,2-diphenylethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-naphthylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

20 R^2 is 3-amino-5-(N-(1,2,3,4-tetrahydronaphth-2-ylmethyl)amidocarbonyl)phenyl, B is isopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-carboxyphenyl, B is 2-propyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

25 and M is CCl;

R^2 is 3-aminophenyl, B is 2-propyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is N;

R² is 3,5-diaminophenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenyl, B is (S)-2-butyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

5 R² is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzylbenzyl, and M is N;

10 R² is 3,5-diaminophenyl, B is ethyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenyl, B is ethyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N;

R² is 3-amino-5-carboxyphenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

15 R² is 3-amino-5-carboxyphenyl, B is (S)-2-butyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxyphenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzylbenzyl, and M is N;

20 R² is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxyphenyl, B is ethyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2,2,2-trifluoroethyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

25 R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is (S)-2-butyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is isopropyl, A is a bond, Y⁰ is 4-amidino-2-fluorobenzylbenzyl, and M is N;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond,
 Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is ethyl, A is a bond,
 Y^0 is 4-amidino-2-fluorobenzyl, and M is N.

5

25. Compound of Claim 2 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is a C3-C7 cycloalkyl or a C4-C6 saturated heterocyclyl, wherein

10 each ring carbon is optionally substituted with R^{33} , a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R^9 or R^{13} , a ring carbon or

15 nitrogen adjacent to the R^9 position and two atoms from the point of attachment is optionally substituted with R^{10} , a ring carbon or nitrogen adjacent to the R^{13} position and two atoms from the point of attachment is optionally substituted with R^{12} , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R^{10} position is optionally substituted with R^{11} , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R^{12} position is optionally substituted with R^{33} , and a ring carbon or nitrogen

four atoms from the point of attachment and adjacent to the R¹¹ and R³³

positions is optionally substituted with R³⁴;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting

of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio,

5 alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of

hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl,

10 cycloalkyl, cycloalkylalkyl, heteroaryl, heterocycl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylalmino, heteroaralkylamino, heterocyclamino, heterocyclalkylamino,

15 alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

20 R³³ and R³⁴ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

25 R³³ is optionally Q^b;

A is a bond or (CH(R¹⁵))_{pa}-(W⁷)_{rr} wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W⁷ is (R⁷)NC(O) or N(R⁷);

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;

R^{15} is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R^1-C ;

R^1 is selected from the group consisting of hydrido, hydroxy, 5 hydroxyamino, amidino, amino, cyano, hydroxylalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

R^2 is Z^0-Q ;

Z^0 is selected from the group consisting of a bond, CH_2 , CH_2CH_2 , $W^0-(CH(R^{42}))_p$ wherein p is 0 or 1 and W^0 is selected from the group 10 consisting of O , S , and $N(R^{41})$;

R^{41} and R^{42} are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the 15 carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

20 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of

attachment of Q^s is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group

5 consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or and $C(NR^{25})NR^{23}R^{24}$, with the

10 proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, and

$C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is

23 hydroxy at the same time and with the further proviso that no more than one of R^{23}

and R^{24} is hydroxy at the same time;

15 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group

consisting of hydrido, alkyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH_2 , and

CH_2CH_2 .

20 26. Compound of Claim 25 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, thiaetan-3-yl, cyclopentyl, cyclohexyl, norbornyl, 7-oxabicyclo[2.2.1]heptan-2-yl,

25 bicyclo[3.1.0]hexan-6-yl, cycloheptyl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl,

DRAFT 2/2000 EDITION

2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl,
 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl,
 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl,
 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is
 5 optionally substituted with R^{33} , ring carbons and a nitrogen adjacent to the
 carbon atom at the point of attachment are optionally substituted with R^9 or
 R^{13} , a ring carbon or nitrogen adjacent to the R^9 position and two atoms from
 the point of attachment is optionally substituted with R^{10} , and a ring carbon or
 nitrogen adjacent to the R^{13} position and two atoms from the point of
 10 attachment is optionally substituted with R^{12} ;
 R^9 , R^{11} , and R^{13} are independently selected from the group consisting
 of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl,
 methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino,
 N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio,
 15 trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,
 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro,
 chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,
 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl,
 20 N,N-dimethylamidocarbonyl, and cyano;
 R^{10} and R^{12} are independently selected from the group consisting of
 hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl,
 isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,
 methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl,
 25 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino,
 methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,
 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl,
 amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl,
 30 N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,
 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
 N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
 5 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethylcyclohexylmethoxy,
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
 10 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino,
 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy,
 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
 15 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy,
 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy,
 20 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy,
 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,
 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,
 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
 25 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
 30 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,
 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
 35 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,

09717054-112000

4-trifluoromethylthiobenzylxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy, 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and 3-trifluoromethylthiophenoxy;

R^{33} is selected from the group consisting of hydrido, amidino,

5 guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, 10 chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q^b ;

15 A is selected from the group consisting of a bond, NH, N(CH₃),

N(OH), CH₂, CH₃CH, CF₃CH, NHC(O), N(CH₃)C(O), C(O)NH, C(O)N(CH₃), CH₂CH₂, CH₂CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂;

M is N or R¹-C;

20 R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

25 R² is Z⁰-Q;

Z⁰ is selected from the group consisting of a bond, CH₂, CH₂CH₂, O,

S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 30 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl,

00024277 15027260

4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl,
 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to
 the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is
 5 optionally substituted by R^9 , the other carbon adjacent to the carbon at the point
 of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two
 atoms from the carbon at the point of attachment is optionally substituted by
 R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of
 attachment is optionally substituted by R^{12} , and any carbon adjacent to both
 R^{10} and R^{12} is optionally substituted by R^{11} ;

10 Y^0 is selected from the group consisting of:

1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹ benzene,

2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-3-R¹⁹ pyridine,

3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹ pyridine, 2-Q^b-5-Q^s-3-R¹⁶-6-R¹⁸ pyrazine,

3-Q^b-6-Q^s-2-R¹⁸-5-R¹⁸-4-R¹⁹ pyridazine,

15 2-Q^b-5-Q^s-4-R¹⁷-6-R¹⁸ pyrimidine, 5-Q^b-2-Q^s-4-R¹⁶-6-R¹⁹ pyrimidine,

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ thiophene, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ thiophene,

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ furan, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ furan,

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ pyrrole, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ pyrrole,

4-Q^b-2-Q^s-5-R¹⁹ imidazole, 2-Q^b-4-Q^s-5-R¹⁷ imidazole,

20 3-Q^b-5-Q^s-4-R¹⁶ isoxazole, 5-Q^b-3-Q^s-4-R¹⁶ isoxazole,

2-Q^b-5-Q^s-4-R¹⁶ pyrazole, 4-Q^b-2-Q^s-5-R¹⁹ thiazole, and

2-Q^b-5-Q^s-4-R¹⁷ thiazole;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, 5 N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

10 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido, with the proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

15 R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido, methyl, ethyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH_2 and CH_2CH_2 .

27. Compound of Claim 26 or a pharmaceutically acceptable salt thereof, wherein;

20 B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, 1-pyrrolidinyl, 1-piperidinyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuran-3-yl, 3-tetrahydrofuran-2-yl, 2-tetrahydropyran-3-yl, 3-tetrahydropyran-4-yl, 4-tetrahydropyran-2-yl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl;

A is selected from the group consisting of a bond, CH₂, NHC(O), CH₂CH₂, and CH₂CH₂CH₂;

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

R² is Z⁰-Q;

Z⁰ is selected from the group consisting of a bond, CH₂, O, S, NH,

10 N(CH₃), OCH₂, and SCH₂;

Q is selected from the group consisting of
 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,
 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,

15 3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,
 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 -amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

20 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 -amino-5-(N-isopropylamidocarbonyl)phenyl,

25 3-amino-5-(N-propylamidocarbonyl)phenyl,
 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

30 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,
 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,
 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 5 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,
 phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 10 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y^0 is selected from the group consisting of:

1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹ benzene,
 2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-3-R¹⁹ pyridine,
 15 3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹ pyridine,
 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ thiophene, and 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,
 hydroxymethyl, fluoro, chloro, and cyano;

20 R¹⁶ or R¹⁹ is optionally C(NR²⁵)NR²³R²⁴ with the proviso that R¹⁶,
 R¹⁹, and Q^b are not simultaneously hydrido;

R¹⁷ and R¹⁸ are independently selected from the group consisting of
 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is C(NR²⁵)NR²³R²⁴ or hydrido;

25 R²³, R²⁴, and R²⁵ are independently hydrido or methyl;

Q^s is CH₂.

28. Compound of Claim 25 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is a C3-C7 cycloalkyl or a C4-C6 saturated heterocyclyl, wherein

- 5 each ring carbon is optionally substituted with R^{33} , a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R^9 or R^{13} , a ring carbon or
- 10 nitrogen adjacent to the R^9 position and two atoms from the point of attachment is optionally substituted with R^{10} , a ring carbon or nitrogen adjacent to the R^{13} position and two atoms from the point of attachment is optionally substituted with R^{12} , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R^{10} position is optionally substituted with R^{11} , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R^{12} position is optionally substituted with R^{33} , and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R^{11} and R^{33} positions is optionally substituted with R^{34} ;

R^9 , R^{11} , and R^{13} are independently selected from the group consisting

- 20 of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R^{10} and R^{12} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

5 R^{33} and R^{34} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

10 R^{33} is optionally Q^b ;

A is a bond or $(CH(R^{15}))_{pa}(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $N(R^7)$;

R^7 is hydrido or alkyl;

R^{15} is selected from the group consisting of hydrido, halo, alkyl, and

15 haloalkyl;

M is N or R^1-C ;

R^1 is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

20 R^2 is Z^0-Q ;

Z^0 is a bond;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the

25 carbon at the point of attachment is optionally substituted by R^{13} , a carbon

adjacent to R^9 and two atoms from the carbon at the point of attachment is

optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the

carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three atoms from the point of attachment of Q^S to said phenyl or said heteroaryl is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is 5 optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally 10 substituted by R^{19} ;

R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

15 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, and $C(NR^{25})NR^{23}R^{24}$;

20 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently hydrido or alkyl;

Q^S is CH_2 .

29. Compound of Claim 28 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl,

5 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is optionally substituted with R³³, ring carbons and a nitrogen

10 adjacent to the carbon atom at the point of attachment are optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment are optionally substituted with R¹⁰, and a ring carbon or nitrogen atom adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R¹²;

15 R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl,

20 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano; R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,

25 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,

N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, 5 dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

10 R^{33} is selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, carboxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, cyano, and Q^b ;

15 A is selected from the group consisting of a bond, NH, $N(CH_3)$, CH_2 , CH_3CH , CH_2CH_2 , and $CH_2CH_2CH_2$;

16 M is N or R^1-C ;

17 R^1 is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

20 R^2 is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to the uracil ring is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at

25 the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally

substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

Y⁰ is selected from the group consisting of:

1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹ benzene,

5 2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-3-R¹⁹ pyridine, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ thiophene,

3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹ pyridine, 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ thiophene,

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ furan, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ furan,

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹ pyrrole, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷ pyrrole,

4-Q^b-2-Q^s-5-R¹⁹ thiazole, and 2-Q^b-5-Q^s-4-R¹⁷ thiazole;

10 R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

15 trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

Q^b is NR²⁰R²¹ or C(NR²⁵)NR²³R²⁴;

R²⁰, R²¹, R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, methyl, and ethyl;

Q^s is CH₂.

20

30. Compound of Claim 29 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 1-pyrrolidinyl and 1-piperidinyl;

A is selected from the group consisting of a bond, CH_2 , CH_2CH_2 and $\text{CH}_2\text{CH}_2\text{CH}_2$;

M is N or $\text{R}^1\text{-C}$;

R^1 is selected from the group consisting of hydrido, hydroxy,

5 hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

R^2 is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,
- 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 10 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 15 3-amino-5-(N-benzylamidosulfonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
- 3-amino-5-(N-ethylamidocarbonyl)phenyl,
- 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 20 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
- 25 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
- 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
- 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
- 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,
- 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
- 30 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
- 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
- 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
- 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,

2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

5 Y^0 is selected from the group consisting of:

$1-Q^b - 4-Q^s - 2-R^{16} - 3-R^{17} - 5-R^{18} - 6-R^{19}$ benzene,

$2-Q^b - 5-Q^s - 6-R^{17} - 4-R^{18} - 3-R^{19}$ pyridine,

$3-Q^b - 6-Q^s - 2-R^{16} - 5-R^{18} - 4-R^{19}$ pyridine,

$3-Q^b - 5-Q^s - 4-R^{16} - 2-R^{19}$ thiophene, and $2-Q^b - 5-Q^s - 3-R^{16} - 4-R^{17}$ thiophene;

10 R^{16} and R^{19} are independently selected from the group consisting of
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,
 hydroxymethyl, fluoro, chloro, and cyano;

R^{17} and R^{18} are independently selected from the group consisting of
 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

15 Q^b is $C(NR^{25})NR^{23}R^{24}$;

R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;

Q^s is CH_2 .

31. Compound of Claim 30 or a pharmaceutically acceptable salt thereof,
 20 wherein;
 B is selected from the group consisting of cyclopropyl, cyclobutyl,
 cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl,
 azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and 1-piperidinyl;
 A is selected from the group consisting of a bond, CH_2 , CH_2CH_2 and
 25 $CH_2CH_2CH_2$;
 M is N or R^1-C ;

R^1 is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

R^2 is selected from the group consisting of

- 5 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
- 10 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
3-amino-5-(N-benzylamidosulfonyl)phenyl,
3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
3-amino-5-(N-ethylamidocarbonyl)phenyl,
3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 15 3-amino-5-(N-propylamidocarbonyl)phenyl,
3-amino-5-(N-isobutylamidocarbonyl)phenyl,
3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 20 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,
3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,
3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl;
- 25 Y^0 is selected from the group consisting of 5-amidino-2-thienylmethyl,
4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

32. Compound of Claim 25 where said compound is selected from the group of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

- 5 R^2 is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;
- 10 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- R^2 is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;
- R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- 15 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;
- R^2 is 3-aminophenyl, B is cyclopentyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- R^2 is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- 20 R^2 is 3-aminophenyl, B is cyclopropyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;
- R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is cyclopentyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is cyclohexyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-aminophenyl, B is oxalan-2-yl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is phenyl, B is 1-pyrrolidinyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-aminophenyl, B is 1-piperidinyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 1,1-dioxothiolan-3-yl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is 1-pyrrolidinyl, A is $CH_2CH_2CH_2$, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

25 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CF;

R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclopropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

5 R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

10 R² is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclopropyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

15 R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclohexyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is oxalan-2-yl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

20 R² is phenyl, B is 1-pyrrolidinyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is 1-piperidinyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

25 R² is 3-aminophenyl, B is 1,1-dioxothiolan-3-yl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

000277504760

R^2 is 3-aminophenyl, B is 1-pyrrolidinyl, A is $CH_2CH_2CH_2$, Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

5 R^2 is 3-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

R^2 is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

10 R^2 is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is N;

20 R^2 is 3-aminophenyl, B is cyclopentyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

25 R^2 is 3-aminophenyl, B is cyclopropyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N;

R² is 3-aminophenyl, B is cyclohexyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

5 R² is 3-aminophenyl, B is oxalan-2-yl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is phenyl, B is 1-pyrrolidinyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

10 R² is 3-aminophenyl, B is 1-piperidinyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 1,1-dioxothiolan-3-yl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

15 R² is 3-aminophenyl, B is 1-pyrrolidinyl, A is CH₂CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

M is N;

R² is 3-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-

20 amidinobenzyl, and M is N;

R² is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carbomethoxyphenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-

25 amidinobenzyl, and M is N;

R² is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y⁰ is 4-

amidinobenzyl, and M is N;

R^2 is 2-amino-6-carboxy-4-pyridyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-carbomethoxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 2,6-dichlorophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3,5-diaminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3,5-diaminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

15 R^2 is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

20 R^2 is 3,5-diaminophenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-carboxy-5-aminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

25 R^2 is 3-carboxy-5-aminophenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

R^2 is 3-carboxy-5-aminophenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

10 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

25 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

69242000

R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

5 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopropyl, A is a bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclobutyl; A is a bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CH;

20 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenyl, B is cyclopentyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-carboxamidophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

25 R^2 is 3-amino-5-(N-(2-phenyl-2-propyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

© 2024 Cengage Learning

R^2 is 3-amino-5-(N-(2,4-dichlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(4-bromobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(3-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-amino-5-(N-isobutylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R^2 is 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-cycloheptylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-pyridylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

20 R^2 is 3-amino-5-(N-(3-pyridylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-(4-methoxyphenyl)ethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(3-phenylpropyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

25 R^2 is 3-amino-5-(N-(2,2-diphenylethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

R^2 is 3-amino-5-(N-(2-naphthylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

5 R^2 is 3-amino-5-(N-(1,2,3,4-tetrahydronaphth-2-ylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is CH;

10 R^2 is 3-amino-5-carboxamidophenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

20 R^2 is 3-amino-5-(N-(2-phenyl-2-propyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

25 R^2 is 3-amino-5-(N-(2,4-dichlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(4-bromobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(3-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

20 R^2 is 3-amino-5-(N-isobutylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

25 R^2 is 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-cycloheptylamidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-pyridylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(3-pyridylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

5 R^2 is 3-amino-5-(N-(2-(4-methoxyphenyl)ethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(3-phenylpropyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

10 R^2 is 3-amino-5-(N-(2,2-diphenylethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

R^2 is 3-amino-5-(N-(2-naphthylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R^2 is 3-amino-5-(N-(1,2,3,4-tetrahydronaphth-2-ylmethyl)amidocarbonyl)phenyl, B is cyclobutyl, A is a bond, Y^0 is 4-amidinobenzyl, and M is N.

33. The compound of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

20 B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon

2014 RELEASE UNDER E.O. 14176

adjacent to R^{32} and two atoms from the carbon at the point of attachment is
 optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the
 carbon at the point of attachment is optionally substituted by R^{35} , and any
 carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;
 5 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the
 group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino,
 alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, hydroxy, amino,
 alkoxyamino, haloalkanoyl, nitro, alkylamino, alkylthio, aryl, aralkyl, cycloalkyl,
 cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl,
 10 alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyalkyl,
 alkylamino, carboalkoxy, carboxy, carboxamido, cyano, and Q^b ;
 B is optionally selected from the group consisting of hydrido,
 trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and
 C2-C8 haloalkyl, wherein each member of group B is optionally substituted at
 15 any carbon up to and including 6 atoms from the point of attachment of B to A
 with one or more of the group consisting of R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} ;
 B is optionally a C3-C12 cycloalkyl or a C4-C9 saturated heterocyclyl,
 wherein each ring carbon is optionally substituted with R^{33} , a ring carbon other
 than the ring carbon at the point of attachment of B to A is optionally
 20 substituted with oxo provided that no more than one ring carbon is substituted
 by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon
 atom at the point of attachment are optionally substituted with R^9 or R^{13} , a ring
 carbon or nitrogen adjacent to the R^9 position and two atoms from the point of
 attachment is optionally substituted with R^{10} , a ring carbon or nitrogen adjacent
 25 to the R^{13} position and two atoms from the point of attachment is optionally
 substituted with R^{12} , a ring carbon or nitrogen three atoms from the point of

attachment and adjacent to the R¹⁰ position is optionally substituted with R¹¹,

a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R¹² position is optionally substituted with R³³, and a ring carbon or

nitrogen four atoms from the point of attachment and adjacent to the R¹¹ and

5 R³³ positions is optionally substituted with R³⁴;

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group

consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl,

haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy,

cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy,

10 heteroaralkoxy, heterocyclyloxy, heterocyclalkoxy, hydroxy, amino,

alkylamino, N-alkyl-N-arylarnino, arylamino, aralkylamino, heteroarylarnino,

heteroaralkylarnino, heterocyclarnino, heterocyclalkylarnino, alkylthio,

alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylulfinyl,

alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl,

15 heteroarylulfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl,

cycloalkylalkyl, heteroaryl, heterocycl, halo, haloalkyl, haloalkoxy,

hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy,

carboxyalkyl, carboxamido, and cyano;

A is a bond or (CH(R¹⁵))_{pa}-(W⁷)_{rr} wherein rr is 0 or 1, pa is an

20 integer selected from 0 through 3, and W⁷ is selected from the group

consisting of O, S, C(O), (R⁷)NC(O), (R⁷)NC(S), and N(R⁷);

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;

R¹⁵ is selected from the group consisting of hydrido, hydroxy, halo,

alkyl, and haloalkyl;

25 M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylarnino, amidino, hydroxy, hydroxyarnino, alkoxy, hydroxyalkyl, alkoxyarnino, thiol, and alkylthio;

R^2 is Z^0-Q ;

Z^0 is selected from the group consisting of a bond, $(CR^{41}R^{42})_q$

wherein q is 1 or 2, and $(CH(R^{41}))_g-W^0-(CH(R^{42}))_p$ wherein g and p are integers independently selected from 0 through 3 and W^0 is selected from the 5 group consisting of O, S, C(O), S(O), $N(R^{41})$, and $ON(R^{41})$;

Z^0 is optionally $(CH(R^{41}))_e-W^{22}-(CH(R^{42}))_h$ wherein e and h are independently 0 or 1 and W^{22} is selected from the group consisting of $CR^{41}=CR^{42}$, 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 10 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 15 2,5-tetrahydrofuranyl, and 3,4-tetrahydrofuranyl, wherein Z^0 is directly bonded to the uracil ring and W^{22} is optionally substituted with one or more substituents selected from the group consisting of $R^9, R^{10}, R^{11}, R^{12}$, and R^{13} ;

R^{41} and R^{42} are independently selected from the group consisting of hydrido, hydroxy, and amino;

20 Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is

25 optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the

000277507460

carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} ;

Q is optionally hydrido with the proviso that Z^0 is other than a bond;

K is CHR^{4a} wherein R^{4a} is selected from the group consisting of

5 hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

E^0 is selected from the group consisting of a bond, $C(O)N(H)$,

(H)NC(O), $(R^7)_2NS(O)_2$, and $S(O)_2N(R^7)$;

Y^{AT} is Q^b-Q^s ;

Q^s is $(CR^{37}R^{38})_b$ wherein b is an integer selected from 1 through 4,

10 R^{37} is selected from the group consisting of hydrido, alkyl, and haloalkyl, and R^{38} is selected from the group consisting of hydrido, alkyl, haloalkyl, aroyl, and heteroaroyl with the proviso that there is at least one aroyl or heteroaroyl substituent, with the further proviso that no more than one aroyl or heteroaroyl is bonded to $(CR^{37}R^{38})_b$ at the same time, with the still further proviso that

15 said aroyl and said heteroaroyl are optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} , with another further proviso that said aroyl and said heteroaroyl are bonded to the $CR^{37}R^{38}$ that is directly bonded to E^0 , with still another further proviso that no more than one alkyl or one haloalkyl is bonded to a $CR^{37}R^{38}$ at the

20 same time, and with the additional proviso that said alkyl and haloalkyl are bonded to a carbon other than the one bonding said aroyl or said heteroaroyl; R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido,

5 $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of R^{23} and R^{24} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

10 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino.

34. Compound of Claim 33 of the Formula:

15 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, and 5-isoxazolyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon

20 adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon

adjacent to R^{32} and two atoms from the carbon at the point of attachment is
 optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the
 carbon at the point of attachment is optionally substituted by R^{35} , and any
 carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

5 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the
 group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy,
 ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino,
 methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,
 fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl,
 10 amidocarbonyl, carboxy, cyano, and Q^b ;

B is optionally selected from the group consisting of hydrido, ethyl,
 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl,
 sec-butyl, *tert*-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl,
 3-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 3-pentyl, 2-methylbutyl,
 15 2-methyl-2-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 1-hexyl, 2-hexenyl,
 3-hexenyl, 4-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl,
 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-2-pentynyl,
 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl, 1-heptyl, 2-heptenyl,
 3-heptenyl, 4-heptenyl, 5-heptenyl, 2-heptynyl, 3-heptynyl, 4-heptynyl,
 20 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl,
 1-methyl-4-hexenyl, 1-methyl-2-hexynyl, 1-methyl-3-hexynyl,
 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl,
 1-ethyl-2-pentynyl, 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl,
 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl,
 25 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of
 group B is optionally substituted at any carbon up to and including 5 atoms
 from the point of attachment of B to A with one or more of the group
 consisting of R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} ;

B is optionally selected from the group consisting of cyclopropyl,
 30 cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl,
 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl,

00000000000000000000000000000000

azetidin-3-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl,
 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl,
 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl,
 2-dioxanyl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl,
 5 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and
 3-tetrahydrothienyl, wherein each ring carbon is optionally substituted with
 R^{33} , ring carbons and a nitrogen adjacent to the carbon atom at the point of
 attachment are optionally substituted with R^9 or R^{13} , a ring carbon or nitrogen
 adjacent to the R^9 position and two atoms from the point of attachment is
 10 optionally substituted with R^{10} , and a ring carbon or nitrogen adjacent to the
 R^{13} position and two atoms from the point of attachment is optionally
 substituted with R^{12} ;
 R^9 , R^{11} , and R^{13} are independently selected from the group consisting
 of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino,
 15 N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl,
 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl,
 N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl,
 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;
 R^{10} and R^{12} are independently selected from the group consisting of
 20 hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl,
 N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,
 N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,
 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
 25 N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy,
 hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,
 30 carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl,

2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

5 A is selected from the group consisting of a bond, NH, N(CH₃), CH₂, CH₃CH, CH₂CH₂, and CH₂CH₂CH₂;

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, 10 trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

R² is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to the uracil ring is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at 15 the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally 20 substituted by R¹¹;

Y^{AT} is Q^b-Q^s;

Q^s is selected from the group consisting of:

C[R³⁷(benzoyl)(CR³⁷R³⁸)_b],
 C[R³⁷(2-pyridylcarbonyl)(CR³⁷R³⁸)_b],
 25 C[R³⁷(3-pyridylcarbonyl)(CR³⁷R³⁸)_b],

DETAILED ACTION

$C[R^{37}(4\text{-pyridylcarbonyl})(CR^{37}R^{38})_b]$,
 $C[R^{37}(2\text{-thienylcarbonyl})(CR^{37}R^{38})_b]$,
 $C[R^{37}(3\text{-thienylcarbonyl})(CR^{37}R^{38})_b]$,
 $C[R^{37}(2\text{-thiazolylcarbonyl})(CR^{37}R^{38})_b]$,
 5 $C[R^{37}(4\text{-thiazolylcarbonyl})(CR^{37}R^{38})_b]$, and
 $C[R^{37}(5\text{-thiazolylcarbonyl})(CR^{37}R^{38})_b]$, wherein b is an integer selected
 from 1 through 3, R^{37} and R^{38} are independently selected from the group
 consisting of hydrido, alkyl, and haloalkyl, with the proviso that said benzoyl
 and the heteroaroyls are optionally substituted with one or more substituents
 10 selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} with the proviso
 that R^{17} and R^{18} are optionally substituted at a carbon selected from other than
 the meta and para carbons relative to the carbonyl of the benzoyl or heteroaroyl,
 with the further proviso that said benzoyl or said heteroaroyl are bonded to the
 carbon directly bonded to amide nitrogen of the 1-(amidocarbonylmethylene)
 15 group, and with the still further proviso that is no more than one alkyl or one
 haloalkyl is bonded to a $CR^{37}R^{38}$ at the same time;
 R^{16} , R^{17} , R^{18} , and R^{19} are independently selected from the group
 consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy,
 amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino,
 20 dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl,
 methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,
 trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;
 Q^b is $C(NR^{25})NR^{23}R^{24}$ or $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$;
 R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group
 25 consisting of hydrido, methyl, and ethyl.

35. Compound of Claim 34 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 2-aminophenyl,
 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,
 5 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,
 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,
 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,
 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,
 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,
 10 5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and
 3-trifluoromethyl-2-pyridyl;

B is optionally selected from the group consisting of hydrido, ethyl,
 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl,
 S)-2-butyl, *tert*-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl,
 15 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl,
 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl,
 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl,
 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl,
 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanoethyl,
 20 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl,
 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

B is optionally selected from the group consisting of cyclopropyl,
 cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl,
 oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 1-pyrrolidinyl and
 25 1-piperidinyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH,
 CH₂CH₂, and CH₂CH₂CH₂;

M is N or R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy,
 30 hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, fluoro, and
 chloro;

R² is selected from the group consisting of
 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,

2025 RELEASE UNDER E.O. 14176

- 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
- 5 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-benzylamidosulfonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
- 3-amino-5-(N-ethylamidocarbonyl)phenyl,
- 10 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
- 15 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl,
- 5-amino-2-fluorophenyl, 3-amino-5-hydroxymethylphenyl,
- 5-amino-3-methoxycarbonylphenyl, 3-amidinophenyl,
- 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl, 3-aminophenyl,
- 20 3-carboxyphenyl, 3-carboxy-5-aminophenyl, 3-carboxy-5-hydroxyphenyl,
- 3-carboxymethyl-5-aminophenyl, 3-carboxymethyl-5-hydroxyphenyl,
- 3-carboxymethylphenyl, 3-chlorophenyl, 2-chlorophenyl, 3-cyanophenyl,
- ,5-diaminophenyl, 3-dimethylaminophenyl, 2-fluorophenyl, 3-fluorophenyl,
- 2,5-difluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
- 25 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
- 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
- 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,
- phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
- 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
- 30 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y^{AT} is $Q^b - Q^s$;

Q^s is selected from the group consisting of:

$[CH(benzoyl)](CH_2)_b$, $[CH(2\text{-pyridylcarbonyl})](CH_2)_b$.

[CH(3-pyridylcarbonyl)](CH₂)_b, [CH(4-pyridylcarbonyl)](CH₂)_b,

[CH(2-thienylcarbonyl)](CH₂)_b, [CH(3-thienylcarbonyl)](CH₂)_b,

[CH(2-thiazolylcarbonyl)](CH₂)_b, [CH(4-thiazolylcarbonyl)](CH₂)_b,

and [CH(5-thiazolylcarbonyl)](CH₂)_b, wherein b is an integer selected from 1 through 3, with the proviso that said benzoyl and said heteroaroys are optionally substituted with one or more substituents selected from the group consisting of R¹⁶, R¹⁷, R¹⁸, and R¹⁹ with the proviso that R¹⁷ and R¹⁸ are optionally substituted at a carbon selected from other than the meta and para carbons relative to the carbonyl of the benzoyl or the heteroaroyl, and that said benzoyl or said heteroaroyl are bonded to the carbon directly bonded to amide nitrogen of the 1-(amidocarbonylmethylene) group;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is N(R²⁶)C(NR²⁵)N(R²³)(R²⁴);

R²³, R²⁴, R²⁵, and R²⁶ are independently hydrido or methyl.

36. Compound of Claim 35 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, phenyl, 2-imidazoyl, 3-pyridyl, 4-pyridyl, and 3-trifluoromethyl-2-pyridyl;

B is optionally selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, *tert*-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl,

3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl,
 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl,
 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl,
 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl,
 5 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl,
 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

B is optionally selected from the group consisting of cyclopropyl,
 cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl,
 oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and 1-piperidinyl;

10 A is selected from the group consisting of a bond, CH_2 , CH_2CH_2 and
 $\text{CH}_2\text{CH}_2\text{CH}_2$;

M is N or $\text{R}^1\text{-C}$;

R^1 is selected from the group consisting of hydrido, hydroxy,
 hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and
 15 fluoro;

R^2 is selected from the group consisting of
 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 20 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 25 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 3-amino-5-(N-propylamidocarbonyl)phenyl,
 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 30 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,
 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,

00000000000000000000000000000000

3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl;

Y^{AT} is selected from the group consisting of

5 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(4-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(5-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(4-amino-2-thiazolyl)-2-pentyl, and 5-guanidino-1-oxo-1-phenyl-2-pentyl.

10 37. Compound of Claim 33 where said compound is selected from the group of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

15 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
 R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
 R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
 20 R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
 R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
 25 R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

09212051-E212000

R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CF;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CF;

5 R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CF;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CF;

10 R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CF;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CF;

15 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

20 R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

25 R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

5 R^2 is benzyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R^2 is phenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

10 R^2 is 3,5-diaminophenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R^2 is 3-carboxy-5-aminophenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

15 R^2 is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R^2 is 3-carboxy-5-aminophenyl, B is isopropyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

20 R^2 is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R^2 is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

25 R^2 is 3,5-diaminophenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R^2 is 3-carboxy-5-aminophenyl, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R^2 is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R^2 is 3-carboxy-5-aminophenyl, B is isopropyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

R² is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

5 R² is 3,5-diaminophenyl, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-carboxy-5-aminophenyl, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

10 R² is 3,5-diaminophenyl, B is isopropyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-carboxy-5-aminophenyl, B is isopropyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

15 R² is 3-carboxy-5-aminophenyl, B is cyclobutyl, A is a bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N.

38. A composition for inhibiting thrombotic conditions in blood comprising a compound of any one of Claims 8, 16, 24, 32, and 37 and a pharmaceutically acceptable carrier.

20
25 39. A composition for inhibiting thrombotic conditions in blood comprising a compound of any one of Claims 1 through 7, Claims 9 through 15, Claims 17 through 23, Claims 25 through 31, and Claims 33 through 36 and a pharmaceutically acceptable carrier.

40. A method for inhibiting thrombotic conditions in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.

41. A method for inhibiting formation of blood platelet aggregates in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.

5 42. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.

10 43. A method for treating or preventing venous thromboembolism and pulmonary embolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

15 44. A method for treating or preventing deep vein thrombosis in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

20 45. A method for treating or preventing cardiogenic thromboembolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

25 46. A method for treating or preventing thromboembolic stroke in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

30 47. A method for treating or preventing thrombosis associated with cancer and cancer chemotherapy in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

48. A method for treating or preventing unstable angina in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.