DATA DICTIONARY

How data was recorded:

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(*tAcc-XYZ*) from accelerometer and '3-axial angular velocity' (*tGyro-XYZ*) from Gyroscope with several variations.

- 1. prefix 't' in those metrics denotes time.
- suffix 'XYZ' represents 3-axial signals in X , Y, and Z directions

Feature names

- These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
 From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.
 The accelertion signal was saperated into Body and Gravity acceleration signals(___tBodyAcc-XYZ___ and ___tGravityAcc-XYZ___) using some low pass filter with corner frequecy of 0.3Hz.
 After that, the body linear acceleration and angular velocity were derived in time to obtian _jerk signals_ (___tBodyAccJerk-XYZ__ and ___tBodyGyroJerk-XYZ___).
 The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This magnitudes are represented as features
- _tBodyAccJerkMag_, _tBodyGyroMag_ and _tBodyGyroJerkMag_.

 6) Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with ___prefix 'f'___ just like original signals with ___prefix 't'___. These signals are labeled as fBodyAcc-XYZ , fBodyGyroMag etc.,.

with names like _tBodyAccMag_, _tGravityAccMag_,

- 7) These are the signals that we got so far.
 - + tBodyAcc-XYZ
 - + tGravityAcc-XYZ
 - + tBodyAccJerk-XYZ
 - + tBodyGyro-XYZ

+ tBodyGyroJerk-XYZ
+ tBodyAccMag
+ tGravityAccMag
+ tBodyAccJerkMag
+ tBodyGyroMag
+ tBodyGyroJerkMag
+ fBodyAcc-XYZ
+ fBodyAccJerk-XYZ
+ fBodyGyro-XYZ
+ fBodyAccMag
+ fBodyAccJerkMag
+ fBodyGyroMag
+ fBodyGyroJerkMag
8) We can esitmate some set of variables from the above signals. ie.,
We will estimate the following properties on each and every signal
that we recoreded so far.
+mean(): Mean value
+std(): Standard deviation
+mad(): Median absolute deviation
+max(): Largest value in array
+min(): Smallest value in array
+sma(): Signal magnitude area
+energy(): Energy measure. Sum of the squares
divided by the number of values.
+iqr(): Interquartile range
+entropy(): Signal entropy
+arCoeff(): Autorregresion coefficients with Burg
order equal to 4
+correlation(): correlation coefficient between two
signals
+maxInds(): index of the frequency component with
largest magnitude
+meanFreq(): Weighted average of the frequency
components to obtain a mean frequency
+skewness(): skewness of the frequency domain
signal

+ ___kurtosis()___: kurtosis of the frequency domain signal

+ ___bandsEnergy()___: Energy of a frequency interval

within the 64 bins of the FFT of each window.

+ angle() : Angle between to vectors. 9) We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable' + gravityMean + tBodyAccMean + tBodyAccJerkMean + tBodyGyroMean + tBodyGyroJerkMean Y_Labels(Encoded) + In the dataset, Y labels are represented as numbers from 1 to 6 as their identifiers. WALKING as __1_ - WALKING_UPSTAIRS as __2_ - WALKING DOWNSTAIRS as 3 - SITTING as 4 - STANDING as 5 - LAYING as __6_ Data All the data is present in 'UCI HAR dataset/' folder in present working directory. - Feature names are present in 'UCI HAR dataset/features.txt' - Train Data - 'UCI HAR dataset/train/X train.txt' - 'UCI_HAR_dataset/train/subject_train.txt' - 'UCI HAR dataset/train/y train.txt' Test Data - 'UCI HAR dataset/test/X test.txt' - 'UCI HAR dataset/test/subject test.txt'

- 'UCI HAR dataset/test/y test.txt'