

偏导数的概念

设函数
$$u = f(x_1, x_2, \dots, x_n)$$
 在点 $P_0(x_1^0, x_2^0, \dots, x_n^0)$ 的某邻域内有定义,如果极限
$$\lim_{\Delta x_i \to 0} \frac{f(x_1^0, x_2^0, \dots, x_{i-1}^0, x_i^0 + \Delta x_i, x_{i+1}^0, \dots, x_n^0) - f(x_1^0, x_2^0, \dots, x_n^0)}{\Delta x_i} \quad (i = 1, 2, 3, \dots, n)$$

存在,则称 $f(x_1,x_2,\dots,x_n)$ 在点 P_0 处对变量 x_i 可偏导(偏导数存在), 此极限为 $f(x_1, x_2, \dots, x_n)$ 在点 P_0 处对变量 x_i $(i = 1, 2, 3, \dots, n)$ 的**偏导数**. 记为

$$\left. \frac{\partial u}{\partial x_i} \right|_{P_0} \vec{\mathfrak{U}} \left. \frac{\partial f}{\partial x_i} \right|_{P_0} \vec{\mathfrak{U}} \left. D_i f(P_0) \vec{\mathfrak{U}} \right. f'_{x_i}(P_0) \vec{\mathfrak{U}} \left. f'_i(P_0) \vec{\mathfrak{U}} \right. f'_i(P_0) \vec{\mathfrak{U$$

例如,对二元函数 z = f(x, y) 有

$$\frac{\partial z}{\partial x}\Big|_{P_0} = f'_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}; \quad \frac{\partial z}{\partial y}\Big|_{P_0} = f'_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}.$$

偏导数的意义

对二元函数
$$z = f(x, y)$$
, 事实上有
$$f'_x(x_0, y_0) = \frac{\mathrm{d}f(x, y_0)}{\mathrm{d}x}; \quad f'_y(x_0, y_0) = \frac{\mathrm{d}f(x_0, y)}{\mathrm{d}y}.$$

所以
$$f'_x(x_0, y_0)$$
 是曲线 $\begin{cases} z = f(x, y) \\ y = y_0 \end{cases}$ 在 $x = x_0$ 处的切线斜率;

$$f'_{y}(x_{0}, y_{0})$$
 是曲线
$$\begin{cases} z = f(x, y) \\ x = x_{0} \end{cases}$$
 在 $y = y_{0}$ 处的切线斜率.

• 多元函数在某点可偏导和在某点连续没有必然的关系.

例如: z = |x| + |y| 在 (0,0) 点连续,但两个偏导数皆不存在;

$$z = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) \neq (0, 0) \end{cases}$$
 在 $(0, 0)$ 点两个偏导数皆存在且为零,但不连续.

偏导数的意义

对二元函数
$$z = f(x, y)$$
, 事实上有
$$f'_x(x_0, y_0) = \frac{\mathrm{d}f(x, y_0)}{\mathrm{d}x}; \quad f'_y(x_0, y_0) = \frac{\mathrm{d}f(x_0, y)}{\mathrm{d}y}.$$

所以
$$f'_x(x_0, y_0)$$
 是曲线 $\begin{cases} z = f(x, y) \\ y = y_0 \end{cases}$ 在 $x = x_0$ 处的切线斜率;

$$f'_{y}(x_{0}, y_{0})$$
 是曲线
$$\begin{cases} z = f(x, y) \\ x = x_{0} \end{cases}$$
 在 $y = y_{0}$ 处的切线斜率.

• 多元函数在某点可偏导和在某点连续没有必然的关系.

例如: z = |x| + |y| 在 (0,0) 点连续,但两个偏导数皆不存在;

$$z = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) \neq (0, 0) \end{cases}$$
 在 $(0, 0)$ 点两个偏导数皆存在且为零,但不连续.

多元函数偏导数

● 若 f 在 $\forall P \in D \subset \mathbb{R}^n$ 皆可偏导,则称 f 在 D 上可偏导(偏导数存在). 如此,我们可以定义 D 上新的函数 f_i' : $D \rightarrow R$, 称为 f 关于第 i 个变量的**偏导函数**. 偏导函数一般仍然简称为偏导数。

例 1 求下列多元函数的所有偏导数

(1)
$$z = \ln(1 + x^2 y)$$
 (2) $z = x^y$ (3) $u = xy \sin(xyz)$

(2)
$$z = x^y$$

(3)
$$u = xy \sin(xyz)$$

(1)
$$\frac{\partial z}{\partial x} = \frac{2xy}{1+x^2y}$$
, $\frac{\partial z}{\partial y} = \frac{x^2}{1+x^2y}$ (2) $\frac{\partial z}{\partial x} = y \cdot x^{y-1}$, $\frac{\partial z}{\partial y} = x^y \ln x$

(2)
$$\frac{\partial z}{\partial x} = y \cdot x^{y-1}, \quad \frac{\partial z}{\partial y} = x^y \ln x$$

(3)
$$\frac{\partial u}{\partial x} = y \sin(xyz) + xy^2 z \cos(xyz), \quad \frac{\partial u}{\partial y} = x \sin(xyz) + x^2 yz \cos(xyz), \quad \frac{\partial u}{\partial z} = x^2 y^2 \cos(xyz).$$

高阶偏导数

定义

设函数 z = f(x, y), 若 f'_x , f'_y 在点 $P_0(x_0, y_0)$ 的某邻域内有定义,则

- (1) 如果极限 $\lim_{\Delta x \to 0} \frac{f_x'(x_0 + \Delta x, y_0) f(x_0, y_0)}{\Delta x}$ 存在,则称 f(x, y) 在点 P_0 处对变量 x 二阶可偏导
 - (**二阶偏导数存在**),此极限为 f(x,y) 在 P_0 处对 x 的**二阶偏导数**. 记为 $\frac{\partial^2 z}{\partial x^2}\Big|_{P_0}$ 或 $f''_{xx}(x_0,y_0)$ 等.
- (2) 如果极限 $\lim_{\Delta y \to 0} \frac{f_x'(x_0, y_0 + \Delta y) f(x_0, y_0)}{\Delta y}$ 存在,则称 f(x, y) 在点 P_0 处先对变量 x,后对变量 y 的
 - 二阶偏导数存在, 此极限为 f(x,y) 在 P_0 处对 x,y 的二阶偏导数. 记为 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{P_0}$ 或 $f''_{xy}(x_0,y_0)$ 等等.
- (3) 同理可定义二阶偏导数 $\frac{\partial^2 z}{\partial y \partial x}\Big|_{P_0}$ 和 $\frac{\partial^2 z}{\partial y^2}\Big|_{P_0}$ 以及n 阶偏导数 $\frac{\partial^n z}{\partial x^k \partial y^{n-k}}\Big|_{P_0}$ 等等.
- •二阶及以上偏导数皆称为**高阶偏导数**;

对两个及以上变量分别求偏导的高阶偏导数 $\left(\text{例如} \frac{\partial^2 z}{\partial x \partial y} \Big|_{P_0} \right)$ 和 $\frac{\partial^5 u}{\partial x^2 \partial y \partial z^2}$ 等 $\left(\text{称为$ **混合偏导数** $} \right)$ 称为**混合偏导数**.

高阶偏导数

例 2 求 $z = x^2y + \cos(3x - 2y)$ 的所有二阶偏导数.

$$\frac{\partial z}{\partial x} = 2xy - 3\sin(3x - 2y), \quad \frac{\partial z}{\partial y} = x^2 + 2\sin(3x - 2y)$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = 2y - 9\cos(3x - 2y), \quad \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = -4\cos(3x - 2y).$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = 2x + 6\cos(3x - 2y), \quad \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = 2x + 6\cos(3x - 2y).$$

定理 (混合偏导与求导次序无关)设二元函数 f(x,y) 在 (x_0,y_0) 点 $f''_{xy}(x,y)$ 和 $f''_{yx}(x,y)$ 皆连续,则在 (x_0,y_0) 点 $f''_{xy}(x_0,y_0) = f''_{yx}(x_0,y_0)$.

多元函数的全增量公式

定理 (全增量公式)设 z = f(x, y) 在点 (x, y) 偏导数 f'_x , f'_y 连续,则有 $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) = f'_x(x, y) \Delta x + f'_y(x, y) \Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y$ $= f'_x(x, y) \Delta x + f'_y(x, y) \Delta y + o(\rho), \quad \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0 \quad .$ 其中 $\lim_{\rho \to 0} \alpha_1 = 0$, $\lim_{\rho \to 0} \alpha_2 = 0$.

• 对 n 元函数 $u = f(x_1, x_2, \dots, x_n)$ 若在某点所有偏导数皆连续,则有全增量公式 $\Delta u = f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2, \dots, x_n)$ $= \sum_{i=1}^n f_i' \cdot \Delta x_i + o(\rho), \quad \rho = \sqrt{\sum_{i=1}^n (\Delta x_i)^2} \to 0.$

多元复合函数求偏导数的链式法则

定理 (**链式法则**)设 z = f(u, v), u = u(x, y), v = v(x, y),且在 (x, y)点 f偏导连续,

$$u,v$$
 偏导存在,则 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$, $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$.

囫 2 求下列函数的一阶偏导数:

(1)
$$z = u^3 v$$
, $u = \frac{y}{x}$, $v = 2x - 3y$ (2) $z = f(u, v)$, $u = \sin(xy)$, $v = x^2 + y^2$

(1)
$$\frac{\partial z}{\partial x} = 3u^2v \cdot \left(\frac{-y}{x^2}\right) + u^3 \cdot 2 = \frac{y^2}{x^2}(6x - 7y), \quad \frac{\partial z}{\partial y} = 3u^2v \cdot \frac{1}{x} + u^3 \cdot (-3) = \frac{3y^2}{x^3}(1 - y).$$

$$(2) \frac{\partial z}{\partial x} = f'_u \cdot (y \cos xy) + f'_v \cdot 2x, \quad \frac{\partial z}{\partial y} = f'_u \cdot (x \cos xy) + f'_v \cdot 2y.$$

某些复合情况的求偏导链式法则

变量图

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial y}.$$

$$\frac{\partial z}{\partial x} = f_1'(x, u) + \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} = f_2'(x, u) \cdot \frac{\partial u}{\partial y}.$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial x} + \frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial w} \cdot \frac{\partial w}{\partial x} + \frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial w} \cdot \frac{\partial w}{\partial x}. \quad \Leftrightarrow \Leftrightarrow.$$

多元复合函数求偏导数例题

例3 设 u = x, $v = x^2 + y^2$, 试变换方程 $y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0$ 为 z 关于变量 u, v 的方程。

例4 设
$$z = f\left(\frac{x}{y}, x - 2y\right)$$
, 求 $\frac{\partial^2 z}{\partial x^2}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.

例 5 设 $r = \sqrt{x^2 + y^2 + z^2}$, 证明函数 $u = \frac{1}{r}$ 满足拉普拉斯(Laplace) 方程 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$

隐函数及其偏导数

定义

设 $f: R^n \supset D \to R$, 在 $P(x_1, x_2, \dots, x_n) \in D$ 满足 $f(x_1, x_2, \dots, x_n) = 0$, 如果存在

函数 $\varphi: R^{n-1} \supset U \to R$ 使对 $\forall (x_1, x_2, \dots, x_{n-1}) \in U$,有

$$f(x_1, x_2, \dots, x_{n-1}, \varphi(x_1, x_2, \dots, x_{n-1})) = 0,$$

则称 φ 为由**函数**f 和点P关于变量 x_n 确定的隐函数. 此时函数关系也可表示为 $x_n = \varphi(x_1, x_2, \dots, x_{n-1}).$

定理

(二元函数的隐函数存在定理) 设 $D \subset R^2$ 为开集,如果

- (1) 函数 $f: D \to R$ 具有连续的偏导数;
- (2) $f(x_0, y_0) = 0$, $(x_0, y_0) \in D$;
- (3) $f_{v}'(x_{0}, y_{0}) \neq 0$.

则 $\exists U(x_0) \subset R$ 和一个由f 和点P 关于y 确定的隐函数 $\varphi: U(x_0) \to R$,

$$\varphi$$
有连续的导数,且有 $\varphi'(x) = -\frac{f_x'(x,\varphi(x))}{f_y'(x,\varphi(x))}$.

隐函数及其偏导数

(三元函数的隐函数存在定理)设 $E \subset \mathbb{R}^3$ 为开集,如果

- (1) 函数 $f: E \to R$ 具有连续的偏导数;
- (2) $F(x_0, y_0, z_0) = 0$, $(x_0, y_0, z_0) \in D$;
- (3) $F_z'(x_0, y_0, z_0) \neq 0$.

则 $\exists N(x_0, y_0) \subset \mathbb{R}^2$ 和一个由 F 和点 $P(x_0, y_0, z_0)$ 关于 z 确定的隐函数 $z = z(x, y), (x_0, y_0) \in N(x_0, y_0), z(x, y)$ 有连续的偏导数,且

$$\frac{\partial z}{\partial x}\Big|_{P} = -\frac{F_x'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)}, \quad \frac{\partial z}{\partial y}\Big|_{P} = -\frac{F_y'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)}.$$

- **例** 6 己知方程 $e^{xz} + xy + z^2 = 1$ 确定 z = z(x, y), 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
 - 已知方程 $z^5 + xz^4 + yz^3 = 1$ 确定 z = z(x, y), 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=0}$.
 - 已知方程 f(y-x, yz) = 0 确定 z = z(x,y), 其中 f 二阶偏导连续,求 $\frac{\partial^2 z}{\partial x^2}$.

隐函数及其偏导数

定理

(方程组确定的隐函数存在定理) 对 $\begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases}$ (*), $P(x_0, y_0, u_0, v_0) \in \mathbb{R}^4$,

- (1) 函数 $F,G:U(P) \rightarrow R$ 具有连续的偏导数;
- (2) $F(x_0, y_0, u_0, v_0) = G(x_0, y_0, u_0, v_0) = 0$;

$$(3) \frac{\partial(F,G)}{\partial(x,y)}\Big|_{P} = \begin{vmatrix} F'_{u} & F'_{v} \\ G'_{u} & G'_{v} \end{vmatrix} \neq 0.$$

则存在 $Q(x_0, y_0)$ 的邻域 U(Q) 和一个由(*) 和点 $P(x_0, y_0, u_0, v_0)$ 关于 u, v 确定的隐函数 $\varphi: U(Q) \to R$ 和 $\psi: U(Q) \to R$ 且 φ, ψ 有连续的偏导数. $u = \varphi(x, y)$ 和 $v = \psi(x, y)$ 的各个偏导数可由(*) 两边对 x 和 y 求导后解得.

例 7

已知方程组 $\begin{cases} ue^{x} + \ln(y+v) = xy \\ ue^{y} + \ln(x-v) = x+y \end{cases}$ 确定 u = u(x, y), v = v(x, y),

