EAE1223: Econometria III

Exercícios de revisão

Questão 1: Sejam X_1, \ldots, X_m e Y_1, \ldots, Y_n variáveis aleatórias, e $a, b, c \in \mathbb{R}$ números reais. Usando as propriedades de esperança:

$$\mathbb{E}[X_1 + X_2] = \mathbb{E}[X_1] + \mathbb{E}[X_2],$$

$$\mathbb{E}[aX_1 + b] = a\mathbb{E}[X_1] + b,$$

$$\mathbb{E}[a] = a,$$

e as definições de variância e covariância:

$$\mathbb{V}[X_1] = \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2,$$

$$cov(X_1, X_2) = \mathbb{E}[X_1 X_2] - \mathbb{E}[X_1] \mathbb{E}[X_2],$$

verifique as seguintes propriedades.

- 1. $cov(X_1, X_2) = cov(X_2, X_1)$.
- 2. $cov(X_1, X_1) = V[X_1].$
- 3. $cov(aX_1, bX_2) = ab cov(X_1, X_2)$.
- 4. $cov(X_1 + X_2, X_3) = cov(X_1, X_3) + cov(X_2, X_3)$.
- 5. $cov(X_1 + X_2, X_3 + X_4) = cov(X_1, X_3) + cov(X_1, X_4) + cov(X_2, X_3) + cov(X_2, X_4).$
- 6. Generalize para: $cov(\sum_{i=1}^m X_i, \sum_{j=1}^n Y_j) = \sum_{i=1}^m \sum_{j=1}^n cov(X_i, Y_j)$.
- 7. $cov(a, X_1) = 0$.
- 8. V[a] = 0.
- 9. $\mathbb{V}[aX_1] = a^2 \mathbb{V}[X_1]$.
- 10. $V[a + X_1] = V[X_1]$.
- 11. $\mathbb{V}[X_1 + X_2] = \mathbb{V}[X_1] + \mathbb{V}[X_2] + 2\operatorname{cov}(X_1, X_2).$
- 12. $\mathbb{V}[X_1 + X_2 + X_3] = \mathbb{V}[X_1] + \mathbb{V}[X_2] + \mathbb{V}[X_3] + 2\operatorname{cov}(X_1, X_2) + 2\operatorname{cov}(X_1, X_3) + 2\operatorname{cov}(X_2, X_3).$
- 13. Generalize para: $\mathbb{V}[\sum_{j=1}^{m} X_j] = \sum_{j=1}^{m} \mathbb{V}[X_j] + 2\sum_{i=1}^{m} \sum_{j=i+1}^{m} \text{cov}(X_i, X_j)$.

Questão 2 Sejam Y e Z variáveis aleatórias. Recorde-se que os coeficientes do melhor preditor linear de Y como função de Z (e um intercepto) são dados por:

$$(\alpha, \beta) \in \operatorname{argmin}_{(a,b) \in \mathbb{R}^2} \mathbb{E}[(Y - a - bZ)^2],$$

Mostre, nesse caso, que, se $\mathbb{V}[Z]>0,$ $\beta=\cos(Z,Y)/\mathbb{V}[Z],$ e que, definindo o erro de previsão $u=Y-\alpha-\beta Z,$ temos:

$$Y = \alpha + \beta Z + u \,,$$

onde
$$\mathbb{E}[u] = 0$$
 e $\mathbb{E}[Zu] = \text{cov}(Z, u) = 0$.