

جـــــامهــه هواري بومــــدين للهلـــوم و التكنــولوجيــــــــــا

Université des Sciences et de Technologie Houari Boumediene

Faculté d'Electronique et d'Informatique

EXAMEN FINAL MEL502

EXO N°1:

Dans tout le problème, les ponts sont alimentés par un réseau 220V, 50 Hz. On pose: $Vs(t)=V\sqrt{2}\sin\theta$, avec $\theta=\omega t$ (θ :angle électrique). On appellera α l'angle de retard à l'amorçage des thyristors. Tous les éléments sont idéaux.

1. CHARGE ACTIVE ET RESISTIVE.

Dans cette question la charge est constituée par une force électromotrice E'=100V en série avec une résistance $R=1\Omega$.

1.1. Pont à 4 diodes.

- a- Tracer sur le document-réponse n°1, les oscillogrammes de la tension $Uc(\theta)$ et du courant $ic(\theta)$. On précisera la valeur maximum de chacune de ces grandeurs.
- b- Calculer les angles électriques θ_1 et θ_2 pour lesquels la diode D_1 commute.

1.2. Pont mixte.

- a- Lorsque $\alpha < \theta_1$ la conduction peut-elle avoir lieu si la commande délivre une impulsion unique par demi période du réseau? Justifier votre réponse. A quelle condition, et pour quel angle électrique l'amorçage pourrait-il avoir lieu?
 - b-Lorsque $\alpha > \theta_2$ la conduction peut-elle avoir lieu? Justifier votre réponse.
- c- Lorsque α =60° représenter sur le document-réponse n°1, les oscillogrammes de la tension Uc(θ) et du courant ic(θ).

2. CHARGE ACTIVE, RESISTIVE ET INDUCTIVE.

La charge est maintenant constituée de la force électromotrice E'=100V, de la résistance $R=1\Omega$, d'une inductance L en série, comme le montre la figure ci-dessous. On place aux bornes de la charge une diode de roue libre.

- a- Quel est le rôle de l'inductance et quel est le rôle de la diode de roue libre?
- b Montrer que la tension moyenne aux bornes de l'inductance est nulle sur une période.

2.1. Conduction non interrompue.

On suppose que l'intensité du courant dans la charge n'est jamais nulle et un lissage parfait du courant.

- a- Représenter sur le document-réponse n°1, l'oscillogramme de la tension $Uc(\theta)$ pour α =60°. Justifier votre figure et la comparer avec celle obtenue au § **1.2.c**.
- b- Déterminer l'expression de la valeur moyenne de la tension Uc(t) en fonction de α et de V. En déduire l'expression de la valeur moyenne I_{mov} du courant dans la charge en fonction de V,α,E' et R.
- Déterminer en fonction de E' et V la condition nécessaire que doit vérifier α pour que le courant moyen soit non nul. Calculer cet angle limite α_L pour les valeurs numériques fournies.
- Calculer l'angle d'amorçage α permettant d'obtenir un courant moyen de 20A.
- La force électromotrice E' peut prendre diverses valeurs. Montrer qu'au-delà d'une valeur limite E'_L la conduction non interrompue n'est plus possible. Calculer cette valeur.

2.2. Conduction interrompue.

On suppose que la valeur de l'inductance est telle que la conduction ne dure que 5ms par période lorsque α =120° et E'=100V. Tracer sur le document-réponse n°1, les oscillogrammes de la tension $Uc(\theta)$ et du courant $ic(\theta)$.

جامهة هواري بومدين للهلوم و التكنولوجيا

Université des Sciences et de Technologie Houari Boumediene

Faculté d'Electronique et d'Informatique

EXAMEN FINAL MEL502

EXO $N^{\circ}2$:

L'alimentation de l'induit du moteur précédent est réalisée avec un hacheur série de période T fixe et de rapport cyclique α réglable ($0 \le \alpha \le 1$), U_a est une tension continue positive fixe. Le hacheur est représenté ci dessous. L'interrupteur commandé H et la diode D sont supposés parfaits. L est une inductance de lissage de résistance négligeable assurant une conduction ininterrompue. H est fermé de 0 à αT .

H est ouvert de αT à T.

I- Étude expérimentale du hacheur

1- On dispose d'une résistance de visualisation r_v et d'un oscilloscope bicourbe dont la voie Y_2 peut être inversée. La masse de l'oscilloscope est obligatoirement reliée au point M (voir document-réponse $n^\circ 2$).

On veut visualiser les grandeurs suivantes: **a-** $\mathbf{U}(t)$ et i(t). **b-** $\mathbf{U}(t)$ et $i_D(t)$. **c-** $\mathbf{U}(t)$ et $i_H(t)$. U est la tension aux bornes de l'ensemble moteur et inductance de lissage).

Compléter les schémas a, b, c correspondants du document-réponse $n^{\circ}2$, et indiquer le branchement des voies Y_1 et Y_2 ainsi que l'emplacement de la résistance r_v dans chaque cas.

- **2-** Préciser sur le document-réponse n°2, pour chaque cas (a,b,c), la position du zéro pour avoir le maximum de sensibilité verticale ainsi que la position des commutateurs d'entrée AC ou DC.
- 3- Expliquer le rôle de la diode D.

II Étude du fonctionnement pour une valeur constante du rapport cyclique α

- 1- La forme de la tension r_vi aux bornes de la résistance r_v est donnée sur le document-réponse n°3.
- **a-** En déduire la fréquence f de fonctionnement et le rapport cyclique α .
- **b-** Sachant que r_v =0,10 Ω , calculer la valeur maximale i_{max} , la valeur minimale i_{min} et la valeur moyenne <**i**> de l'intensité du courant i(t).
- 2- Représenter les formes de i_H (t), de i_D (t) et de U(t) sur le document-réponse n°3.
- 3- Donner en la justifiant l'expression de la valeur moyenne $\langle U \rangle$ de U(t) en fonction de α et de U_a .
- 4- On donne <U>=90V: en déduire la valeur de U_a

جـــامهة هواري بومــدين للهلــوم و التكنــولوجيــــا

Université des Sciences et de Technologie Houari Boumediene

Faculté d'Electronique et d'Informatique

EXAMEN FINAL MEL502

Document réponse n°1 à rendre avec la copie

جامعة هواري بومدين للعلوم و التكنولوجيا

Université des Sciences et de Technologie Houari Boumediene

Faculté d'Electronique et d'Informatique

EXAMEN FINAL MEL502

Document réponse n°2 à rendre avec la copie

جـــامهة هواري بومــدين للهلــوم و التكنــولوجيــــا

Université des Sciences et de Technologie Houari Boumediene

Faculté d'Electronique et d'Informatique

EXAMEN FINAL MEL502

Document réponse n°3 à rendre avec la copie

MATRICULE:

SECTION et GROUPE:

EXO N°01:

$$U_{max} = 311V$$
; $I_{max} = 211 A$

$$V\sqrt{2}$$
. $\sin \theta = E' \Rightarrow \sin \theta = \frac{E'}{V\sqrt{2}} \Rightarrow \theta = Arc \sin \frac{E'}{V\sqrt{2}}$
 $\theta_1 = 18,4^{\circ} (0,321 \text{ rad})$; $\theta_2 = 161,3^{\circ} (2,86 \text{ rad})$

Si $\alpha < \theta_1$ l'impulsion arrive quand le thyristor est sous tension directe négative \rightarrow la conduction ne peut avoir lieu. Amorçage possible si $\alpha \ge \theta_1$.

Si $\alpha > \theta_2$ l'impulsion arrive quand le thyristor est sous tension directe négative \rightarrow la conduction ne peut avoir lieu

 α =60°, i(θ) et v(θ) périodiques de période π .

$$i(\theta) = \begin{cases} = 0 & \text{pour } \theta \in [0, \pi/3] \\ = V\sqrt{2} \cdot \sin \theta - E' & \text{pour } \theta \in [\pi/3, \theta_2], \\ = 0 & \text{pour } \theta \in [\theta_2, \pi] \end{cases}$$

$$V(\theta) = \begin{cases} = E' & \text{pour } \theta \in [0, \pi/3] \\ = V\sqrt{2} \cdot \sin \theta' & \text{pour } \theta \in [\pi/3, \theta_2] \\ = E' & \text{pour } \theta \in [\theta_2, \pi] \end{cases}$$

L'inductance lisse le courant. La DRL diminue l'échauffement des thyristors et évite une perte de contrôle en cas de pertes des impulsions sur une gâchette.

Par définition
$$U_{Lmoy} = \frac{1}{T} \int_0^T L \frac{di}{dt} dt = \frac{1}{T} L[i]_0^T = 0$$
 puisque i(t) est périodique.

 $u(\theta)$ est périodique de période π .

$$V(\theta) = \begin{cases} = 0 & \text{pour } \theta \in [0, \pi/3] \\ = V\sqrt{2}.\sin\theta & \text{pour } \theta \in [\pi/3, \pi] \end{cases}$$

MATRICULE:

SECTION et GROUPE:

$$U_{\text{moy}} = \frac{1}{T} \int_0^T U(t) dt = \frac{1}{2\pi} \int_{\alpha}^{\pi} V \sqrt{2} \sin\theta \ d\theta = \frac{V\sqrt{2}}{\pi} (1 + \cos\alpha)$$

$$U_{moy} = E' + R.I_{moy} \Rightarrow I_{moy} = \frac{U_{moy} - E'}{R} \Rightarrow I_{moy} = \frac{V\sqrt{2}}{\pi R} (1 + \cos\alpha) - \frac{E'}{R}$$

$$I_{\text{moy}} > 0 \longrightarrow \frac{V\sqrt{2}}{\pi R} \left(1 + \cos\alpha\right) > \frac{E'}{R} \longrightarrow \alpha < Arc\cos\left(\frac{\pi E'}{V\sqrt{2}} - 1\right)$$

donc
$$\alpha_L = Arc \cos \left(\frac{\pi E'}{V \sqrt{2}} - 1 \right)$$
 $\alpha_L \approx 90^\circ$

$$\alpha = Arc\cos\left(\frac{\pi E'}{V\sqrt{2}} - 1\right)$$

$$\alpha = 77.8^{\circ}$$

E' + RI_{moy} =
$$U_{moy} = \frac{V\sqrt{2}}{\pi}(1 + \cos\alpha)$$
 si la conduction est ininterrompue

Cette équation ne peut être vérifiée que si :

 $-1 < \cos \alpha < +1 \rightarrow 0 < 1 + \cos \alpha < 2$.

Cette équation ne peut être vérifiée que si $-1 < \cos \alpha < +1 \rightarrow 0 < 1 + \cos \alpha < 2$. Le problème se pose pour la borne supérieure. La conduction n'est ininterrompue que si $\frac{\pi}{\sqrt{\sqrt{2}}} (E' + RI_{moy}) < 2$. Elle sera donc obligatoirement

discontinue si
$$\frac{\pi}{V\sqrt{2}} E' \ge 2 \rightarrow E'_L = \frac{2V\sqrt{2}}{\pi} \rightarrow E'_L \approx 200 \text{ V}$$

 $\alpha=120^{\circ}$, $i(\theta)$ et $v(\theta)$ périodiques de période π .

$$i(\theta) = \begin{cases} \succ 0 & \text{pour } \theta \in [0, \pi/6] \\ = 0 & \text{pour } \theta \in [\pi/6, \pi/3], \\ \succ 0 & \text{pour } \theta \in [2\pi/3, \pi] \end{cases}$$

$$V(\theta) = \begin{cases} = 0 & \text{pour } \theta \in [0, \pi/6] \\ = E' & \text{pour } \theta \in [\pi/6, 2\pi/3] \\ = V\sqrt{2}.\sin\theta & \text{pour } \theta \in [2\pi/3, \pi] \end{cases}$$

NOM et PRENOM

MATRICULE:

SECTION et GROUPE:

EXO N°02:

La diode de roue libre sert dans le cas d'une charge inductive. Elle conduit en alternance avec l'interrupteur H, c'est-à-dire de αT à T. A l'instant αT , l'intensité dans la charge est I_{max} et la bobine a emmagasiné

l'énergie $\frac{1}{2}$ LI 2 max. Comme il ne faut pas ouvrir un circuit inductif, la diode de roue libre permet à la bobine de restituer cette énergie au moteur.

$$T = 1 \text{ ms}$$
 $f = 1 \text{ kHz}$

$$\alpha T = 0.75 \text{ ms}$$
 $\alpha = 0.75$

$$I_{max} = 11 A;$$
 $I_{min} = 9 A;$ $< i> = \frac{I_{max} + I_{min}}{2} = 10 A$

$$<\mathbf{u}> = \frac{1}{T} \int_0^T u(t)dt = \frac{1}{T} \int_0^{\alpha T} U_a dt = \alpha \mathbf{U}_a$$

$$U_a = \frac{\langle u \rangle}{\alpha} = \frac{90}{0.75} = 120 \text{ V}$$

