Universität Potsdam Institut für Physik und Astronomie Abgabe Mi 15 Uhr/Do 10 Uhr am 20./21. November 2019

Übungsaufgaben zur Elektrodynamik²

28 Punkte

Übung: Schwarz¹

WS2019/20: Übung 06

Vorlesung: Feldmeier

1. Cauchy-Riemann'sche Differentialgleichungen

5 Punkte

Zeigen Sie, dass für analytische Funktionen w(z) die Cauchy-Riemann-Differentialgleichungen gelten und folglich deren Real- und Imaginärteil harmonische Funktionen sind.

Tipp: Betrachte $\frac{\mathrm{d}w}{\mathrm{d}z} = \frac{\mathrm{d}(u+iv)}{\mathrm{d}(x+iy)}$ und siehe Bücher über Funktionentheorie, z.B. Arens et al. Mathematik.

2. Stufenfunktion

6 Punkte

Zeigen Sie mittels Integration in der komplexen Ebene, dass folgende Darstellung der Stufenfunktion gilt

$$\Theta(x) = \lim_{\epsilon \to 0} \frac{i}{2\pi} \int_{-\infty}^{\infty} dk \frac{e^{-ikx}}{k + i\epsilon}$$

Wie sind die Integrationswege geeignet im Unendlichen zu schließen?

<u>3.</u> Methode der Green'schen Funktion

3 Punkte

Man löse die Poisson'sche Differentialgleichung der Elektrostatik $\Delta \varphi = -\frac{\rho(\vec{r})}{\epsilon_0}$, in der ρ die Ladungsdichte und φ das Potential bedeutet. Dabei verwende man die Green'sche Funktion für eine kugelsymmetrische Ladungsverteilung $\rho(r)$.

<u>4.</u> Symmetrie der Green'schen Funktion

3 Punkte

Beweisen Sie, dass die Green'sche Funktion des Dirichlet-Problems symmetrisch ist, d.h $G_D(\vec{x}, \vec{x}') = G_D(\vec{x}', \vec{x})$.

Tipp: 2. Green'sches Theorem.

<u>5.</u> Energiedichte für einen Zylinderkondensator

3 Punkte

Berechnen Sie die Energiedichte des elektrischen Feldes für einen Zylinderkondensator mit der Aufladung Q.

¹udo.schwarz@uni-potsdam.de

²http://www.agnld.uni-potsdam.de/~shw/Lehre/lehrangebot/2019WSEDynamik/2019WSEDynanik.html

Randwertproblem beim Metallkasten

<u>6.</u>

8 Punkte

Ein kubischer Kasten $0 \le x, y, z \le \pi$ hat fünf geerdete metallische Seiten. Die sechste Seite $z = \pi$ ist auch aus Metall und hat das Potential Φ_0 . Bestimmen Sie das Potential $\Phi(\vec{r})$ im Kasten!

Tipp: Die Poissongleichung kann durch einen Seperationsansatz $\Phi(\vec{r}) = X(x)Y(y)Z(z)$ gelöst werden. Zur Festlegung der Konstanten der allgemeinen Lösung ist diese als doppelte Fourierreihe zu interpretieren!