Universidade Tecnológica Federal do Paraná **Campus Toledo** Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas

Prof. Eduardo Vinicius Kuhn

1ª LISTA DE EXERCÍCIOS

1) Determine se o sinal é periódico; caso afirmativo, especifique o período fundamental correspondente.

a) $x(t) = 3\cos(4t + \pi/3)$

b) $x(t) = e^{-j(\pi t - 1)} u(t)$

c) $x(t) = \operatorname{sen}(6\pi t) + \cos(8\pi t)$

d) $x(t) = \operatorname{sen}(2\pi t) + \cos(3t)$

2) Determine e esboce as componentes pares e ímpares dos seguintes sinais:

a) $x(t) = \operatorname{sen}(\omega_0 t) u(t)$

b) $x(t) = \cos(\omega_0 t)u(t)$

3) Classifique os sinais indicados abaixo como sendo de energia ou de potência, especificando também E_x e P_x .

a) $x(t) = e^{-2t}u(t)$

b) $x(t) = e^{-j\left(2t + \frac{\pi}{4}\right)}$

c) $x(t) = \cos(t)$

- 4) Considerando $x_1(t) = \cos(t)$, $x_2(t) = \sin(\pi t)$ e $x_3(t) = x_1(t) + x_2(t)$ a) Determine o período fundamental de $x_1(t)$ e $x_2(t)$.
- b) Demonstre que $x_3(t)$ não é periódico.
- c) Determine a potência de $x_1(t)$, $x_2(t)$ e $x_3(t)$.
- 5) Para o sinal x(t) mostrado na Figura 1, esboce

a) y(t) = x(t+6)

b) y(t) = x(3t)

c) y(t) = x(t/2) d) $y(t) = \frac{d}{dt}x(t)$

Figura 1.

6) Obtenha uma expressão que descreve os sinais $x_1(t)$ e $x_2(t)$ apresentados na Figura 2.

Figura 2.

7) Calcule as seguintes integrais:

a) $\int_{-\infty}^{\infty} x(t-\tau)\delta(\tau)d\tau$

b) $\int_{-\infty}^{\infty} \delta(2t-3) \operatorname{sen}(\pi t) dt$

c) $\int_{-\infty}^{\infty} \delta(t+3)e^{-t} dt$

d) $\int_{-\infty}^{\infty} (3t-1)^2 \delta(2t+2) dt$

Universidade Tecnológica Federal do Paraná Campus Toledo

Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

8) Considere que um sinal senoidal x(t), definido como

$$x(t) = 3\cos(200t + \pi)$$

passa através de um dispositivo definido pela seguinte relação de entrada-saída:

$$y(t) = x^2(t).$$

Diante disso,

a) determine o sinal de saída y(t);

b) especifique a amplitude do componente DC; e

c) especifique a amplitude e a frequência fundamental do componente sinusoidal de y(t).

9) Para cada uma das relações de entrada x(t) e a saída y(t) dadas a seguir, verifique (justificando suas respostas) se o sistema correspondente é: (i) sem memória; (ii) invariante no tempo; (iii) linear; (iv) causal; e (v) estável.

a)
$$y(t) = x(t-2) + x(2-t)$$

b)
$$y(t) = t^2 x(t)$$

c)
$$y(t) = x^2(t)$$

d)
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

10) Considere um sistema linear e invariante no tempo (LTI) cuja resposta ao sinal $x_1(t)$, representado na Figura 3(a), é o sinal $y_1(t)$, mostrado na Figura 3(b). Diante do exposto, determine e represente graficamente as respostas do sistema para as entradas $x_2(t)$ e $x_3(t)$ correspondentes as Figuras 3(c) e 3(d), respectivamente.

Figura 3.

11) Considere que um dado sistema S pode ser representado em função de seus subsistemas conforme ilustrado na Figura 4. Então, assumindo que a relação de entrada x(t) e saída $y_1(t)$ do subsistema S_1 é dada por

$$y_1(t) = tx(t)x(t-1)$$

a relação de entrada x(t) e saída $y_2(t)$ do subsistema S_2 , por

$$y_2(t) = x^2(t)$$

a relação de entrada x(t) e saída $y_3(t)$ do subsistema S_3 , por

$$y_3(t) = 1 - x(t)$$

e a relação de entrada $y_3(t)$ e saída $y_4(t)$ do subsistema S_4 , por

$$y_{\Delta}(t) = \cos[0, 5\pi y_3(t)]$$

determine:

a) a relação de entrada x(t) e saída y(t) que descreve o sistema S;

b) se o sistema S é (i) sem memória, (ii) invariante no tempo, (iii) linear; (iv) causal; e

Universidade Tecnológica Federal do Paraná Campus Toledo

Curso de Engenharia Eletrônica ET45A – Sinais e Sistemas

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

(v) estável; e

c) a energia do sinal obtido na saída y(t) do sistema S para x(t) = u(t) - u(t-1).

Vale salientar que o desenvolvimento deve ser realizado no domínio do tempo, isto é, sem o auxílio da transformada de Laplace e da transformada de Fourier. Também, é importante destacar que as respostas apresentadas devem ser adequadamente justificadas.

Figura 4.

- 12) Considere que um dado sistema S apresenta os pares de entrada e saída ilustrados na Figura 5. A partir disso, <u>verifique e demonstre</u> se o sistema S é
- a) linear;
- b) causal;
- c) invariante no tempo; e
- d) sem memória.

Figura 5.

Vale salientar que o desenvolvimento deve ser realizado no domínio do tempo, isto é, sem o auxílio da transformada de Laplace e da transformada de Fourier. Também, é importante destacar que as respostas apresentadas devem ser adequadamente justificadas.

Universidade Tecnológica Federal do Paraná **Campus Toledo**

Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

13) É sabido que um sinal arbitrário x(t) pode ser expresso como

$$x(t) = x_{\text{par}}(t) + x_{\text{impar}}(t)$$

onde

$$x_{\text{par}}(t) = \frac{x(t) + x(-t)}{2}$$

e

$$x_{\text{impar}}(t) = \frac{x(t) - x(-t)}{2}$$

denotam a componente par e a componente ímpar do sinal, respectivamente. Diante disso,

- a) demonstre que a energia do sinal é dada pela soma da energia das componentes par e ímpar [assume-se aqui que x(t) é um sinal de energia];
- b) verifique a validade do resultado obtido [no Item a)] considerando o sinal x(t)apresentado na Figura 6;
- c) determine a energia do sinal x(t) (ilustrado na Figura 6) obtido na saída de um sistema cuja relação de entrada x(t) e saída y(t) é dada por

$$y(t) = 2\frac{d}{dt}x_{\text{par}}(t) + 2\frac{d}{dt}x_{\text{impar}}(t)$$

Vale salientar que o desenvolvimento deve ser realizado no domínio do tempo, isto é, sem o auxílio da transformada de Laplace e da transformada de Fourier. Também, é importante destacar que as respostas apresentadas devem ser adequadamente justificadas.

Figura 6.

14) Assumindo que

$$x(t) = \sum_{n = -\infty}^{\infty} e^{-(2t - n)} u(2t - n)$$

- a) determine se o sinal é periódico e, caso afirmativo, especifique o período fundamental;
- b) esboce o sinal; e
- c) verifique e demonstre se o sinal é de energia ou de potência.
- 15) Considere que um dado sistema S pode ser representado através do diagrama de blocos ilustrado na Figura 7. A partir disso, determine e demonstre se o sistema S é
- a) linear;
- b) causal;
- c) invariante no tempo; e
- d) sem memória.

a)

Universidade Tecnológica Federal do Paraná Campus Toledo

Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

RESPOSTAS

1)
a) Periódico $(T_0=\pi/2)$ b) Não periódico c) Periódico $(T_0=1)$ d) Não periódico

) b

3)a) Sinal de energia $E_x = \frac{1}{4}$ b) Sinal de potência $P_x = 1$ c) Sinal de potência $P_x = \frac{1}{2}$.

4)a)
$$T_1 = 2\pi \text{ e } T_2 = 2$$
 b) ------c) $P_1 = \frac{1}{2}, P_2 = \frac{1}{2} \text{ e } P_3 = 1$

d)

ightharpoons v(t)

6)a)
$$x(t) = 4(t+1)[u(t+1) - u(t)] + (-2t+4)[u(t) - u(t-2)]$$

b) $x(t) = t^2[u(t) - u(t-2)] + (2t-8)[u(t-2) - u(t-4)]$

7)a)
$$\int_{-\infty}^{\infty} x(t-\tau)\delta(\tau)d\tau = x(t)$$
 b)
$$\int_{-\infty}^{\infty} \delta(2t-3)\operatorname{sen}(\pi t) dt = -\frac{1}{2}$$

c)
$$\int_{-\infty}^{\infty} \delta(t+3)e^{-t} dt = e^3$$
 d) $\int_{-\infty}^{\infty} (3t-1)^2 \delta(2t+2) dt = 8$

8)a)
$$y(t) = \frac{9}{2}[1 + \cos(400t + 2\pi)]$$
 b) $DC = \frac{9}{2}$ c) $A = \frac{9}{2}$ e $\omega_0 = 400 \rightarrow f_0 = \frac{200}{\pi}$

10)
$$y_2(t) = y_1(t) - y_1(t-2)$$
 $y_3(t) = y_1(t+1) + y_1(t)$

11)Veja o material complementar.

Universidade Tecnológica Federal do Paraná Campus Toledo Curso de Engenharia Eletrônica

ET45A – Sinais e Sistemas Prof. Eduardo Vinicius Kuhn

- 12)Veja o material complementar.
- 13)Veja o material complementar.
- 14)Veja o material complementar.
- 15)Veja o material complementar.