Chapter 4 Part 3

04/28/2021

Using Deviances to Compare Models

- A deviance is a way in which to measure how the observed data deviates from the model predictions; it will be defined more later in this chapter, but it is similar to sum of squared errors (unexplained variability in the response) in LLSR regression.
- Because we want models that minimize deviance, we calculate the drop-in-deviance when adding age to the model with no covariates (the null model).
- The deviances for the null model and the model with age can be found in the model output.
- Lets go indentify this in our output.

Using Deviances to Compare Models

- A residual deviance for the model with age is reported as 2337.1 with 1498 df.
- The output also includes the deviance and degrees of freedom for the null model (2362.5 with 1499 df).
- The drop-in-deviance is 25.4 (2362.5 2337.1) with a difference of only 1 df, so that the addition of one extra term (age) reduced unexplained variability by 25.4.

Using Deviances to Compare Models

- If the null model were true, we would expect the drop-in-deviance to follow a χ^2 distribution with 1 df. The p-value for comparing the null model to the model with age is found by determining the probability that the value for a χ^2 random variable with one degree of freedom exceeds 25.4, which is essentially 0.
- Once again, we can conclude that we have statistically significant evidence ($\chi^2_{df=1}=25.4$, p<.001) that average household size decreases as age of the head of household increases.
- Lets conduct this test in R
- Lets use the χ^2 function in R to get this p value

Formalizing this Test

■ We are testing:

Null (reduced) Model :
$$\log(\lambda) = \beta_0$$
 or $\beta_1 = 0$
Larger (full) Model : $\log(\lambda) = \beta_0 + \beta_1$ age or $\beta_1 \neq 0$

Nested Models

- In order to use the drop-in-deviance test, the models being compared must be nested
 - All the terms in the smaller model must appear in the larger model.
- Here the smaller model is the null model with the single term β_0 and the larger model has β_0 and β_1 , so the two models are indeed nested.
- For nested models, we can compare the models' residual deviances to determine whether the larger model provides a significant improvement.

Comparing Two Approaches

Drop-in-deviance test to compare models

- Compute the deviance for each model, then calculate: drop-in-deviance = residual deviance for reduced model – residual deviance for the larger model.
- When the reduced model is true, the drop-in-deviance $\sim \chi_d^2$ where d= the difference in the degrees of freedom associated with the two models (that is, the difference in the number of terms/coefficients).
- A large drop-in-deviance favors the larger model.

Wald test for a single coefficient

- Wald-type statistic = estimated coefficient / standard error
- When the true coefficient is 0, for sufficiently large n, the test statistic $\sim N(0,1)$.
- If the magnitude of the test statistic is large, there is evidence that the true coefficient is not 0.

Comparing Methods

- The drop-in-deviance and the Wald-type tests usually provide consistent results
 - However, if there is a discrepancy, the drop-in-deviance is preferred.
- Not only does the drop-in-deviance test perform better in more cases, but it's also more flexible.
- If two models differ by one term, then the drop-in-deviance test essentially tests if a single coefficient is 0 like the Wald test does, while if two models differ by more than one term, the Wald test is no longer appropriate.

Second Order Model

- The Wald-type test and drop-in-deviance test both suggest that a linear term in age is useful.
- Our exploratory data analysis suggested that a quadratic model might be more appropriate.
- A quadratic model would allow us to see if there exists an age where the number in the house is, on average, a maximum.
- Lets fit this in R

Assesing the New Model

- We can assess the importance of the quadratic term in two ways.
 - First, the p-value for the Wald-type statistic for age² is statistically significant (Z = -11.058, p < 0.001).
 - Another approach is to perform a drop-in-deviance test.
- Lets do both in R

The Test

$$H_0$$
: $\log(\lambda) = \beta_0 + \beta_1 \text{age}$ (reduced model)
 H_A : $\log(\lambda) = \beta_0 + \beta_1 \text{age} + \beta_2 \text{age}^2$ (larger model)

The Test Results

- The first order model has a residual deviance of 2337.1 with 1498 df and the second order model, the quadratic model, has a residual deviance of 2200.9 with 1497 df.
- The drop-in-deviance by adding the quadratic term to the linear model is 2337.1 2200.9 = 136.2 which can be compared to a χ^2 distribution with one degree of freedom.
- The p-value is essentially 0, so the observed drop of 136.2 again provides significant support for including the quadratic term.

Fitted Model

We now have an equation in age which yields the estimated log(mean number in the house).

$$\log(\text{mean numHouse}) = -0.333 + 0.071 \text{age} - 0.00071 \text{age}^2$$

- These are found using the method of maximum likelihood estimation
- Lets try this in R