Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Теорія складності

Дослідження coNP-повної задачі

Задача визначення того, чи даний граф не має циклу Гамільтона

ФІ-13 Дідух Максим

Фізико-технічний інститут

Кафедра математичних методів захисту інформації

Дослідження coNP-повної задачі

7 грудня 2022

Зміст

1	Вступ	2
	1.1 Постановка задачі	2
	1.2 Історія виникнення та наявні модифікаці	2
2	Практичне застосування	2
3	Доведення складності	2
4	Розв'язок	3
	4.1 Наявні методи розв'язку	3
	4.2 Наявні ефективні часткові розв'язки задачі та модифікацій	3
5	Список використано літератури	3

1 Вступ

Граф називається *гамільтоновим*, якщо існує цикл, що містить кожну вершину рівно один раз. Такий цикл носить назву гамільтонового. Поняття пішло від Вільям Гамільтон (англ. *William Hamiltonian*), який вигадав не дуже вдалу гру під назвою "ікосіанська гра" (англ. *"icosian game"*), завданням якої був пошук гамільтонового циклу на додекаедричному графі (і можливо на його підграфах).

мал. 1 гамільтоновий ціикл на додекаедрі change resolution

Хоча означення гамільтонового графу дуже схоже з означенням ойлерового графу, виявляється, що ці дві концепції поводяться досить по-різному. Якщо теорема Ойлера дає нам чіткий критерій ойлеровості, то для гамільтонових графів немає аналогічного твердження. Як з'ясувалось, перевірка графу на наявність гамільтонового циклу ϵ NP-повною задачею.

1.1 Постановка задачі

Дано: неорієнтований граф G=(V,E), де $V=\{v_1,v_2,\ldots v_n\}$ - множина вершин, $E=\{e_1,e_2,\ldots v_k\}$ - множина ребер. Перевірити, що даний граф не має циклу гамільтона. Цю задачу будемо позначати **NONHAMCYCLE** .

1.2 Історія виникнення та наявні її модифікації

2 Практичне застосування

3 Доведення складності

Доведемо, що **NONHAMCYCLE** ϵ coNP-повною. Для цього нам знадобиться довести додаткове твердження.

Твердження 1: задача перевірки графа на наявність гамільтонового циклу належить класу NP-повних задач (∂ani : **HAMCYCLE**)

Доведення цього факту складається з двох кроків:

1. **HAMCYCLE** ϵ NP?

Якщо довільна задача, належить класу NP, тоді, маючи «сертифікат», який є розв'язком зієї задачі та екземпляр проблеми (граф G і додатне ціле k, у цьому випадку), ми зможемо верифікувати (перевірити, чи надане рішення правильне чи ні) сертифікат за поліноміальний час. Сертифікат — це послідовність вершин, що утворюють гамільтонів цикл у графі. Ми можемо верифікувати розв'язок, перевіривши, що всі вершини належать графу, і, що кожна пара вершин, що належать розв'язку — суміжна.

Це можна зробити за поліноміальний час, тобто O(V+E), ось псевдокод верифікації сертифікату для графу G(V,E):

```
value = 1 для кожної пари \{u,v\} у підмножині V ::
```

```
перевірити, що між цими вершинами є ребро якщо ребра немає, то повернути 0 і завершити цикл якщо value = 1:
то повернути 1 (розв'язок коректний) інакше:
повернути 0 (розв'язок неправильний)
```

- 2. **HAMCYCLE** NP складна?
- 4 Розв'язок
- 4.1 Наявні методи розв'язку
- 4.2 Наявні ефективні часткові розв'язки задачі та модифікацій
- 5 Список використаної літератури