First Semester B.C.A. Degree Examination October / November 2018 (2016-17 Syllabus)

BCA 440: DIGITAL COMPUTER FUNDAMENTALS

Time	: 3 H	ours Max. Marks : 80
I.	Answer ALL the following. 5x1=5	
1.	Perfo	orm 2's complement on 1101011.
2.	$A + \overline{A}B = \underline{\hspace{1cm}}$	
3.	Define minterm.	
4.	Define de-multiplexer.	
5.	Wha	t is the drawback of SR - FF.
II.	Answer any <u>FIVE</u> of the following: 15x5=75	
6.	a)	Convert the following:
		i) 147.71 = ? ₍₂₎
		ii) 304.3024 ₍₈₎ = ? ₍₁₆₎
		iii) $BCA_{(16)} = ?_{(8)}$
	b)	Solve using 1's and 2's complement of subtraction.
		i) 78 - 62 ii) 62 - 78
	c)	i) How do you convert binary to gray and vice-versa. Give example for each.
		ii) Expand BCD. (5+5+5)
7.	a)	Explain all the basic gates with circuit and truth table.
	b)	State and prove Demorgan's theorem.
	c)	Simplify the following using boolean laws
		i. $Y = (A + B) (\overline{A} \overline{C} + C) (\overline{B} + A \overline{C})$
		ii. Show that $\overline{A} \overline{B} C + \overline{B} \overline{C} D + \overline{A} \overline{D} = \overline{ABCD}$ (5+5+5)
8.	a)	Convert $AB + \overline{B} \overline{C}$ to its standard form and show SOP and POS are complement to each other.
	b)	i. Write the outlet of 3 and 4 variable K-map.

c) Simplify $Y = \overline{A} \overline{B} \overline{C} + \overline{B} C \overline{D} + \overline{A} B C \overline{D} + A \overline{B} \overline{C}$ using K-map and realise the simplified Expression using NAND gates only. (5+5+5)

9. a) Simplify

$$F(A, B, C, D) = \pi_m(0, 5, 7) .d(1, 4, 8)$$

using K-map and realise the simplified expression using NOR gates only.

- b) Solve by using QM method to find the prime implicants of $F(w, x, y, z) = \sum_{m} (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$
- c) For the above QM method problem find essemtial prime Implicants and realise the result with basic gates. (5+5+5)
- 10. a) Design a full adder using two half adders.
 - b) What is a multiplexer? Explain the working of 4:1 multiplexer.
 - c) Design and explain two bit magnitude comparator. (5+5+5)
- 11. a) What is a flip flop? Explain the working of JK FF.
 - b) Explain: i. T-FF ii. D-FF
 - c) What is a shift register? Explain SISO and PISO shift registers. (5+5+5)
- 12. a) Design and explain the working of 4-bit ripple up counter.
 - b) Explain 3-bit updown counter.
 - c) Explain the working of mod-11 counter. (5+5+5)

* * * *