Activité XI.2 Dérivation Taux d'accroissement

Une petite balle est lâchée du haut d'un très grand immeuble.

La distance d parcourue par la balle en mètres est exprimée en fonction du temps t en seconde par :

$$d(t) = 5t^2$$
.

1°) Compléter le tableau de valeur suivant :

t (en s)	0	1	2	3	4
d(t) (en m)					

- **2°)** Quelle est la vitesse moyenne de la balle lors de la première seconde ? Lors des deux premières secondes ?
- **3°)** Quelle est la vitesse moyenne de la balle entre la première et la deuxième seconde? Entre la deuxième et la troisième seconde?
- **4°)** On souhaite connaître la vitesse instantanée de la balle à un instant précis. Par exemple, on souhaite connaître la vitesse de la balle à la troisième seconde. Pour cela, on s'intéresse à des temps très proches de 3 secondes.

Compléter le tableau suivant :

h (en s)	-0,1	-0,01	-0,001	0,001	0,01	0,1
3 + h =						
d(3+h) =						

5°) On veut maintenant calculer la vitesse moyenne entre la troisième seconde et ces temps très proches de 3 secondes. On utilise alors la formule pour calculer une moyenne :

$$\overline{m} = \frac{d(3+h) - d(3)}{(3+h) - 3}.$$

En utilisant le tableau de valeurs de la calculatrice, compléter le tableau suivant (arrondir à 10^{-3} près) :

h (en s)	-0,1	-0,01	-0,001	0,001	0,01	0,1
m						

Le nombre $\frac{d(3+h)-d(3)}{(3+h)-3}$ s'appelle taux d'accroissement au point d'abscisse 3.