PAT 451/551 INTERACTIVE MEDIA DESIGN

MOSFETS: CONTROLLING HIGH-POWER

DEVICES

GENERAL PRINCIPLE

POWER

to the device is supplied externally (NOT from the Arduino)

- For DC devices, from a wall-wart or other DC power supply
- For AC devices, from AC mains power outlet

A chip or controller

allows the Arduino to switch on/off the current flow to that device using a low-voltage control signal

Why?

Arduino digital I/O pins can only sink/source 40mA. Most devices like motors, lights, solenoids require much more power than that.

GENERAL PRINCIPLE

Batteries or AC/DC high-current supply

CONTROLLER TYPES

Transistor

Simplest for digital/binary on/off control

DC devices only, current/load limited

Fast switching, can be held on/off indefinitely

Potentially noisy for continuous control

No direction control for motors

H-Bridge

Designed for motor control

Usually used on a separate controller board

Most can power 2 motors, direction and speed control

DC or Stepper motors

<u>Relay</u>

For intermittent switching; can't be held indefinitely

Can handle higher loads/current than transistors

AC or DC versions

Electromechanical or Transistor-based control

ARDUINO POWER ARCHITECTURE

V_in pin carries whatever voltage is supplied on the barrel jack connector (red)

5V Pin carries a 5V, either from the Buck Converter or USB

3.3V Pin carries 3.3V from a voltage regulator

ARDUINO POWER ARCHITECTURE

Barrel jack connector:

Must be 5-24V DC center positive — +

If V_in > 6.6V, that voltage will be used to power the Arduino

If V_in < 6.6V, the 5V USB power will be used to power the Arduino

USING ARDUINO VIN

TRANSISTORS

For a full tutorial, see: https://learn.sparkfun.com/tutorials/transistors/all

Two basic varieties: NPN and PNP

B = Base

C = Collector

E = Emitter

Most crudely, the base voltage controls current flow from the collector to the emitter.

TRANSISTORS

We'll most commonly use an NPN transistor

It has 4 modes, based on the relationship of the 3 voltages at C, B, and E

- 1. Saturation Mode: $V_E < V_B$ and $V_C < V_B$
 - Transistor acts like a short circuit current flows freely from C to E
- 2. Cut-off Mode: $V_E > V_B$ and $V_C > V_B$
 - Transistor acts like an open circuit— no current flows
- 3. Active Mode: $V_C > V_B > V_E$
 - Transistor acts like an amplifier current from C to E is proportional to current flowing into the base
- 4. Reverse Active Mode: V_C < V_B < V_E
 - Transistor acts like a reverse amplifier current from E to C is proportional to current flowing into the base (rarely used)

TRANSISTOR AS SWITCH

When Control signal is at 5V, transistor is in **Saturation Mode** ($V_E < V_B$ and $V_C < V_B$): transistor acts as a *short circuit*.

When Control signal is at 0V, transistor is in Cut-off Mode ($V_E > V_B$ and $V_C > V_B$): transistor acts as an *open circuit*.

R1 is needed here to limit the current into the Base of the Transistor. It can only accept about 10-100mA of current

MOSFETS

Tutorial Here! https://youtu.be/CFt8hkh17 w

The Transistors we've looked at are technically

Bipolar Junction Transistors (BJT)

Most modern power applications use

Metal-Oxide Field-Effect Transistors (MOSFET)

The principles are the same, but we replace

Base (B) with Gate (G)

Collector (C) with Source (S)

Emitter (E) with Drain (D)

NPN BJT ~~ N-Channel MOSFET

PNP BJT ~~ P-Channel MOSFET

MOSFET AS SWITCH

If $V_{gate} > V_{source}$ current flows from D to S (short circuit)

If $V_{gate} \le V_{source}$ no current flows from D to S (open circuit)

N channel MOSFET Pinout

N-CHANNEL MOSFET AS SWITCH

N-CHANNEL MOSFET AS

MOTOR DRIVER

"flyback" diode dissipates backward current flow from shutdown spikes (happens with motors and solenoids)

OTHER RESOURCES

Sparkfun Transistor Tutorial:

https://learn.sparkfun.com/tutorials/transistors/all

Make: Electronics, Chap. 2:

https://search.lib.umich.edu/catalog/record/99187290028506381

Relays:

https://learn.adafruit.com/adafruit-power-relay-featherwing

https://howtomechatronics.com/tutorials/arduino/control-high-voltage-devices-arduino-relay-tutorial/