

ROS机械臂开发:从入门到实战

—— 第9讲: "手眼"结合完成物体抓取应用

机器人博客"古月居"博主 《ROS机器人开发实践》作者 武汉精锋微控科技有限公司 联合创始人 华中科技大学 自动化学院 硕士

- □ 1. 视觉抓取中的关键技术
- 2. 手眼标定
- 3. 机械臂视觉抓取案例

⇒ 1. 视觉抓取中的关键技术

⇒ 1. 视觉抓取中的关键技术

1. 视觉抓取中的关键技术

- > 手眼标定(内参、外参)
- > 物体识别与定位
- > 抓取姿态分析
- > 运动规划

\$ 1. 视觉抓取中的关键技术

camera_calibration: http://wiki.ros.org/camera_calibration/

1. 视觉抓取中的关键技术

外参标定

visp_hand2eye_calibration: http://wiki.ros.org/visp_hand2eye_calibration
ros easy_handeye: https://github.com/IFL-CAMP/easy_handeye

\$

1. 视觉抓取中的关键技术

物体识别与定位

find_object_2d: http://wiki.ros.org/object_recognition

Tensorflow Object Detection API: https://github.com/tensorflow/models/tree/master/research/object_detection

object_recognition: http://wiki.ros.org/object_recognition

\$

1. 视觉抓取中的关键技术

抓取姿态分析

agile_grasp: http://wiki.ros.org/agile_grasp

graspit: http://wiki.ros.org/graspit

moveit_simple_grasps: http://wiki.ros.org/moveit_simple_grasps

1. 视觉抓取中的关键技术

运动规划(轨迹规划、运动学、动力学、避障)

⇒ 2. 手眼标定

eye to hand 眼在外

eye in hand 眼在手

Not used

Eye In Hand

在 Eye-In-Hand 的配置方式中对于机器人移动过程中任意两个位姿,有以下公式成立:

上式经过转换后,可得:

*参考: https://blog.csdn.net/yaked/article/details/77161160

Eye To Hand

在 Eye-To-Hand 的配置方式中对于机器人夹着标定板移动任意两个位姿,有以下公式成立:

$${}^{End}_{Robot1}T * {}^{Robot1}_{Camera1}T * {}^{Camera1}_{Object}T = {}^{End}_{Robot2}T * {}^{Robot2}_{Camera2}T * {}^{Camera2}_{Object}T$$

上式经过转换后,可得:

*参考: https://blog.csdn.net/yaked/article/details/77161160

easy_handeye: TF / VISP Hand-Eye Calibration

Form		DCO - O X ■Image View		DC0 - 03
Info		Actions	/aruco_tracker/result ‡	10.00m 🕽 🔼
Name:	/PROBOT_handeyecalibration_eye_on_base/	Take Sample	□ r/result_mouse_left □ S	
Туре:	eye on base			
Tracking Base Frame:	stereo_gazebo_left_camera_optical_frame	Remove Sample		
Tracking Marker Frame:	camera_marker	Compute		
Robot Base Frame:	base_link		GRAN .	
Robot Effector Frame:	tool0	Save		
Samples				
x:-0.294517394026 y: 0.458536286601 z:-0.538460893354 w:-0.642700431628 camera->marker transla	ition.			

easy_handeye可视化标定过程

*参考:《PROBOT Anno手眼标定步骤(easy_handeye-眼在外)》

⇒ 3. 机械臂视觉抓取案例

\$ 3. 机械臂视觉抓取案例

视觉抓取例程

\$ roslaunch probot_grasping probot_anno_grasping_demo.launch

3. 机械臂视觉抓取案例


```
void GraspingDemo::imageCb(const sensor msgs::ImageConstPtr &msg)
 if (!grasp running)
   ROS INFO STREAM ("Processing the Image to locate the Object...");
   try
     cv ptr = cv bridge::toCvCopy(msq, sensor msqs::image encodings::BGR8);
   catch (cv bridge::Exception &e)
     ROS ERROR ("cv bridge exception: %s", e.what());
     return;
   // ROS INFO("Image Message Received");
                                                                                             获取物体在图像中的位置
   float obj x, obj y;
   vMng .get2DLocation(cv ptr->image, obj x, obj y);
   // Temporary Debugging
   std::cout<< " X-Co-ordinate in Camera Frame : " << obj x << std::endl;
   std::cout<< " Y-Co-ordinate in Camera Frame : " << obj y << std::endl;
   obj camera frame.setZ(-obj y);
                                                                                             获取物体在相机坐标系下位置
   obj camera frame.setY(-obj x);
   obj camera frame.setX(0.45);
   obj robot frame = camera to robot * obj camera frame;
                                                                                              计算物体在机器人坐标系下位置
   grasp running = true;
   // Temporary Debugging
   std::cout<< " X-Co-ordinate in Robot Frame :" << obj robot frame.getX() << std::endl;
   std::cout<< " Y-Co-ordinate in Robot Frame : " << obj robot frame.getY() << std::endl;
   std::cout<< " Z-Co-ordinate in Robot Frame : " << obj robot frame.getZ() << std::endl;
```


查询是否存在机器人基坐标系与摄像头坐标系之间的坐标变换

```
try
 this->tf camera to robot.waitForTransform("/base link", "/camera link", ros::Time(0), ros::Duration(50.0));
catch (tf::TransformException &ex)
 ROS ERROR ("[adventure tf]: (wait) %s", ex.what());
 ros::Duration(1.0).sleep();
try
 this->tf_camera_to_robot.lookupTransform("/base_link", "/camera_link", ros::Time(0), (this->camera_to_robot_));
catch (tf::TransformException &ex)
                                             获取机器人基坐标系与摄像头坐标系之间的坐标变换矩阵
 ROS ERROR ("[adventure tf]: (lookup) %s", ex.what());
```


💲 3. 机械臂视觉抓取案例

PROBOT Anno视觉分拣演示

视觉抓取中的 关键技术

- 手眼标定:相机内参、外参的标定
- 物体识别与定位:物体在什么、物体在哪里
- 抓取姿态分析:如何完成抓取动作
- 运动规划:轨迹规划、运动学、动力学、碰撞检测

手眼标定

相机位置:

- eye to hand眼在外
- eye in hand眼在手

机械臂视觉抓 取案例

- 机器人坐标系、图像坐标系、相机坐标系、工件坐标系之间的关系
- 视觉识别与运动控制的集成

- 1. 查阅资料,学习"手眼标定"的理论知识;
- 2. 使用仿真器/真机完成物体位置的识别,并控制机械臂终端运动到物体位置。

- easy_handeyehttps://github.com/IFL-CAMP/easy_handeye
- 机器人手眼标定 https://blog.csdn.net/yaked/article/details/77161160
- find_object_2d
 http://wiki.ros.org/object_recognition
- Tensorflow Object Detection API
 https://github.com/tensorflow/models/tree/master/research/object_detection
- Robotics、Vision and Control, Peter Corke

Thank You

怕什么真理无穷,进一寸有一寸的欢喜

更多精彩,欢迎关注

