Introducción a la Lógica y la Computación — Estructuras de orden Práctico 8: Productos y sumas directas. Caracterización de D_n .

Notación: Mediante $\underline{\mathbf{n}}$ denotamos la cadena (es decir, el conjunto totalmente ordenado) de n elementos. Decimos "la cadena" porque todas las del mismo cardinal son isomorfas; por este motivo, se pueden elegir los elementos que uno encuentre más convenientes para el problema en cuestión.

El **producto directo** $(L, \leq_L) \times (M, \leq_M)$ de (L, \leq_L) y (M, \leq_M) tiene como universo a $L \times M$ y como orden parcial a la relación

$$(x_1, y_1) \leq_{L \times M} (x_2, y_2) \iff x_1 \leq_L x_2 \& y_1 \leq_M y_2.$$

Definimos además $L^1 := L \ y \ L^{n+1} := L \times L^n$ para todo poset L.

La suma directa $(L, \leq_L) \oplus (M, \leq_M)$ de (L, \leq_L) y (M, \leq_M) disjuntos tiene como universo a $L \cup M$ y al orden parcial definido por casos:

$$x \leq_{L \oplus M} y \iff (x, y \in L \& x \leq_L y) \circ (x, y \in M \& x \leq_M y).$$

- 1. Dé los diagramas de Hasse de $\mathbf{2} \times \mathbf{4}$ y de $\mathcal{P}(\{a,b\}) \times \mathbf{2}$.
- 2. Demostrar que si (L, \leq_L) y (M, \leq_M) son posets, entonces $L \times M \cong M \times L$.
- 3. Suponga que (L, \vee_L, \wedge_L) y (M, \vee_M, \wedge_M) son reticulados. Entonces las operaciones

$$(x_1, y_1) \lor_{L \times M} (x_2, y_2) := (x_1 \lor_L x_2, y_1 \lor_M y_2)$$

 $(x_1, y_1) \land_{L \times M} (x_2, y_2) := (x_1 \land_L x_2, y_1 \land_M y_2)$

definidas en $L\times M$ son exactamente el supremo y el ínfimo, respectivamente, en el poset $L\times M$. Concluir que $L\times M$ también es un reticulado.

- 4. a) Dar explícitamente un isomorfismo entre $\underline{\mathbf{2}}^3$ y D_{30} .
 - b) Demostrar que $\underline{\mathbf{2}}^n \cong \mathcal{P}(\{1,\ldots,n\})$.
- 5. Supongamos que L y M son posets disjuntos.
 - a) Si $D \subseteq L \cup M$ es decreciente en la suma directa $L \oplus M$, entonces $D \cap L$ es decreciente en $L \setminus D \cap M$ lo es en M.
 - b) Si $D \subseteq L$ es decreciente en L, entonces lo es en $L \oplus M$ (ídem con $D \subseteq M$).
- 6. Explique por qué no existe n tal que D_{630} sea isomorfo a $\underline{\mathbf{2}}^n$
- 7. Escriba a D_{300} como producto de cadenas.
- 8. Dé un poset P sobre X tal que $\mathfrak{D}(P)$ sea iso a $\underline{\mathbf{4}} \times \underline{\mathbf{5}}$.
- 9. a) Sea L un reticulado distributivo y sea $\{a_1, a_2\} \subseteq L$. Demostrar que hay un subreticulado finito L_0 de L tal que $\{a_1, a_2\} \subseteq L_0$. (Nota: este caso no requiere distributividad).
 - b) (*) Igual que el ítem anterior para $\{a_1, a_2, a_3\}$ (se puede ver que L_0 tendrá cardinal menor o igual a 18 en este caso).