Variational Autoencoders (VAE)

Lisa Herzog and Anthony Sonrel

Supervisor: Imran Fanaswala

Overview

- Introduction
- Autoencoders
- Regularized latent space
- Variational Autoencoders
- Applications

Introduction

- Variational Autoencoders (VAE) are special Neural Networks:
 - a. Learn the most relevant features of the data
 - b. Generate new data

Figure 1.1 Progress in human face generation
(Source: "The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation," by Miles Brundage et al., 2018, https://arxiv.org/abs/1802.07228.)

Introduction

State of the Art in generating data: https://thispersondoesnotexist.com/

Do you spot some artefacts?

Introduction

Why to generate new data?

- For fun: Create people that do not exist
- Additional training data
- Video Gaming: Create variations of data
- Learn latent representations
 - → Use features to initiate other neural networks
 - → Make people smile

Properties

- Special neural network architectures:
 Encoder → Latent space → Decoder
- Goal: Learn to reduce the data to its most relevant features (Latent space)
- Idea: Reconstruct the original image
 - → Unsupervised (no labels necessary)

Autoencoders: Example

7

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2 = \|\mathbf{x} - \sigma'(\mathbf{W}'(\sigma(\mathbf{W}\mathbf{x} + \mathbf{b})) + \mathbf{b}')\|^2$$

Autoencoders: Loss function

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2 = \|\mathbf{x} - \sigma'(\mathbf{W}'(\sigma(\mathbf{W}\mathbf{x} + \mathbf{b})) + \mathbf{b}')\|^2$$

Reconstruction loss to be minimized (via backpropagation)

Autoencoders: Variants

1. Increase the capacity of the latent space

2. Increase the capacity of the encoder/decoder

Autoencoders: Limitations

Latent space is not regularized

- Gaps in the latent space (feature space)
- Missing separability

→ Only trained to have minimal loss, no matter

how the latent space looks like!

Regularized latent space

- Properties:
 - Continuity: Two close points are expected to give similar outputs
 - Completeness: A point sampled from the
 latent space should give meaningful outputs

regular latent space

Regularized latent space

Map the input to distributions instead of points

Regularize the distributions

what we want to obtain with regularisation

Regularized latent space

- Regularization enables to create some gradient over the information in the latent space
- Points halfway between means of distributions
 are decoded in something in between

Variational Autoencoders (VAE)

- 1. **Encoder:** Learn to map the input to a (latent) distribution instead of a vector
- 2. **Latent space:** Sample a latent vector from this distribution over the latent space
- 3. **Decoder:** Generate output with <u>similar</u> characteristics using the sampled latent vector

VAE: Intuition

Regularize the latent space:

- Prevent punctual distributions (variance)
- Prevent distributions too far apart (mean)
- → Encoder is trained to return the mean and variance of
- a Gaussian distribution
- → Distributions are enforced to be close to standard normal N(0,1)

VAE: Loss function

Regularized reconstruction loss:

$$L(x,x') = ||x-x'||^2 + KL(N(\mu,\sigma^2),N(0,1))$$

- Reconstruction loss: Good reconstruction
- Kullback Leibler (KL) Divergence: Regularization

VAE: Training

Training: Stochastic Gradient Descent

- 1. Provide a batch of images to the model
- 2. Calculate the loss function
- 3. Update the parameters in the direction of the steepest descent of the loss using backpropagation

VAE: Training

Training: Stochastic Gradient Descent

- 1. Provide a batch of images to the model
- 2. Calculate the loss function
- 3. Update the parameters in the direction of the steepest descent of the loss using backpropagation

VAE: Reparameterization Trick

Trick:

$$egin{aligned} \mathbf{z} &\sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) = \mathcal{N}(\mathbf{z}; oldsymbol{\mu}^{(i)}, oldsymbol{\sigma}^{2(i)} oldsymbol{I}) \ \mathbf{z} &= oldsymbol{\mu} + oldsymbol{\sigma} \odot oldsymbol{\epsilon}, ext{where } oldsymbol{\epsilon} \sim \mathcal{N}(0, oldsymbol{I}) \end{aligned}$$

VAE: Example

Fully connected network

- two hidden layer
- two-dimensional latent space

VAE: Example

Moving in the latent space

24

VAE: Examples

Applications: Image (re)generation

extraction of the smile and
 mouth open vectors

VAE vs. Autoencoders

Autoencoders:

- Try to reconstruct the input image
- Learn features to initialize supervised learning methods
- → Not used so much anymore

Variational Autoencoders:

- Sample from a model (Bayesian) to generate new data
- → Oftentimes replaced by Generative Adversarial Networks (GAN)

Outlook: GANs

Minmax Game

- Discriminator: Distinguish real from fake examples
- Generator: Create fake examples

References

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

http://cs231n.stanford.edu/

Deep Learning: generative models (O. Dürr, HTWG, Lecture)

Appendix

Some more information about the math behind VAEs

Main source: http://cs231n.stanford.edu/

Variational Autoencoder:

1. **Probabilistic Encoder:** Approximate the distribution of the latent space given the data:

 $q_{\phi}(\mathbf{z}|\mathbf{x})$

2. **Probabilistic Decoder:** Likelihood of the data given the sampled latent variable: $p_{\theta}(\mathbf{x}|\mathbf{z})$

Goal: Maximum Likelihood estimation of the parameters of the data generating distribution

$$\theta^* = \arg \max_{\theta} \prod_{i=1}^{N} p_{\theta}(x^{(i)})$$
$$= \arg \max_{\theta} \sum_{i=1}^{N} \log p_{\theta}(x^{(i)})$$

Problem: Intractable integral

$$p_{\theta}(x^{(i)}) = \int p_{\theta}(x^{(i)}, z)dz = \int p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)dz$$

Variational Inference:

- Used to approximate the true posterior (which is unknown!)
- Consider a parameterized distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$ and find the parameters which approximate the true posterior best (e.g. family of Gaussians with parameters mean and variance)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))}_{\geq 0} \right]$$

$$\stackrel{\mathcal{L}(x^{(i)}, \theta, \phi) \text{ "Elbow"}}{} \geq 0$$

Lower bound (lbow) of the likelihood, which is called "evidence" (E) = Elbow

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad \text{(Bayes' Rule)}$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \qquad \text{(Multiply by constant)}$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \qquad \text{(Logarithms)}$$

$$= \underbrace{\left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))}_{\geq 0} \right]}_{\geq 0}$$

Reconstruct the input data (Decoder)

Latent state should follow the prior (Encoder)

Solution: Maximize the lower bound (ELBOW) in VAEs

$$\log p_{\theta}(x^{(i)}) \geq \mathcal{L}(x^{(i)}, \theta, \phi)$$

Variational lower bound (elbow)

$$\theta^*, \phi^* = \arg\max_{\theta, \phi} \sum_{i=1}^n \mathcal{L}(x^{(i)}, \theta, \phi)$$
 Training: Maximize lower bound