This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to).

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

JP00/01547

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

REC'D 2 4 MAR 2000 WIPO PCT

14.03.00

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 7月23日

EKU

出 願 番 号 Application Number:

平成11年特許願第209076号

出 願 人 Applicant (s):

三井化学株式会社 信越化学工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 2月18日

特許庁長官 Commissioner, Patent Office

近 藤 隆

出証番号 出証特2000-3008456

【書類名】 特許願

【整理番号】 C02020-010

【提出日】 平成11年 7月23日

【あて先】 特許庁長官殿

【発明者】

【住所又は居所】 千葉県市原市千種海岸3番地 三井化学株式会社内

【氏名】 菊地 義治

【発明者】

【住所又は居所】 千葉県市原市千種海岸3番地 三井化学株式会社内

【氏名】 白田 孝

【発明者】

【住所又は居所】 千葉県市原市千種海岸3番地 三井化学株式会社内

【氏名】 川崎雅昭

【発明者】

【住所又は居所】 千葉県市原市千種海岸3番地 三井化学株式会社内

【氏名】 細谷 三樹男

【発明者】

【住所又は居所】 千葉県市原市千種海岸3番地 三井化学株式会社内

【氏名】 有野恭巨

【発明者】

【住所又は居所】 群馬県碓氷郡松井田町大字人見1番地10 信越化学工

業株式会社内

【氏名】 中村 勉

【発明者】

【住所又は居所】 群馬県碓氷郡松井田町大字人見1番地10 信越化学工

業株式会社内

【氏名】 平林 佐太央

【発明者】

【住所又は居所】 群馬県碓氷郡松井田町大字人見1番地10 信越化学工

]

業株式会社内

【氏名】

吉 田 武 男

【特許出願人】

【識別番号】

000005887

【氏名又は名称】 三井化学株式会社

【特許出願人】

【識別番号】

000002060

【氏名又は名称】 信越化学工業株式会社

【代理人】

【識別番号】

100081994

【弁理士】

【氏名又は名称】 鈴 木

俊一郎

【選任した代理人】

【識別番号】 100103218

【弁理士】

【氏名又は名称】 牧 村 浩 次

【手数料の表示】

【予納台帳番号】 014535

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9710873

【包括委任状番号】 9906282

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 架橋可能な密封シールパッキン用ゴム組成物およびその用途

【請求項1】

【特許請求の範囲】

熱風および熱プレスで架橋可能なゴム組成物であり、

該ゴム組成物をシート状とした後熱風架橋して得られる熱風架橋ゴムシートは 、HBの鉛筆による鉛筆硬度試験で表面に傷が全く付かず、かつ、

該ゴム組成物をシート状とした後熱プレスして架橋して得られる熱プレス架橋 ゴムシートは、

- (1) 150℃で22時間熱処理後の圧縮永久歪み(CS)が70%以下であり、
- (2) 120℃で70時間エチレングリコール溶液に浸漬させた後の体積変化率(ΔV)が-20~+20%であり、
- (3) 1 2 0 ℃で 7 0 時間熱老化後の引張強さ保持率が 5 0 ~ 1 5 0 %、伸び保持率が 5 0 %以上、硬さ変化が 0 ~ + 5 0 ポイントであり、
- (4) 常態物性の引張強度が3~20MPaであり、
- (5) 金型汚染試験での汚染までのショット数が30回以上であることを特徴とする架橋可能な密封シールパッキン用ゴム組成物。

【請求項2】

前記ゴム組成物が、非共役ポリエンが下記一般式 [I] または [II] で表わされる少なくとも一種の末端ビニル基含有ノルボルネン化合物から導かれる構成単位を有するエチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)と、SiH基を1分子中に少なくとも2個持つSiH基含有化合物(B)とを含有してなり、該ゴム組成物の160での架橋速度(t_c (90))が15分以下であることを特徴とする請求項1に記載の密封シールパッキン用ゴム組成物;

【化1】

$$\begin{array}{c|c}
 & R^2 \\
 & C = CH_2 \\
 & \cdots [1]
\end{array}$$

[式中、nは0ないし10の整数であり、

 R^1 は水素原子または炭素原子数 $1\sim 10$ のアルキル基であり、

 R^2 は水素原子または炭素原子数 $1\sim5$ のアルキル基である]、

【化2】

$$CH_2$$
 B^3
... [II]

 $[式中、<math>R^3$ は水素原子または炭素原子数 $1\sim10$ のアルキル基である]。

【請求項3】

前記エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)が、

- (i) エチレンと炭素原子数 $3 \sim 20$ の α オレフィンとのモル比(エチレン/ α オレフィン)が $60/40 \sim 85/15$ の範囲にあり、
- (ii) ヨウ素価が0.5~30の範囲にあり、
- (iii) 135℃のデカリン溶液で測定した極限粘度 [η]が0.3~3.0d1/gの範囲にあり、
- (iv) 動的粘弾性測定器より求めた分岐指数が5以上である
- ことを特徴とする請求項2に記載の密封シールパッキン用ゴム組成物。

【請求項4】

前記ゴム組成物が、エチレン・α-オレフィン・非共役ポリエンランダム共重 合体ゴム(A)およびSiH基を1分子中に少なくとも2個持つSiH基含有化

合物 (B) の他に、触媒 (C) を含有してなることを特徴とする請求項2に記載の密封シールパッキン用ゴム組成物。

【請求項5】

前記ゴム組成物が、エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)、SiH基を1分子中に少なくとも2個持つSiH基含有化合物(B) および触媒(C) の他に、反応抑制剤(D) を含有してなることを特徴とする請求項4に記載の密封シールパッキン用ゴム組成物。

【請求項6】

前記触媒(C)が白金系触媒であることを特徴とする請求項4または5に記載の密封シールパッキン用ゴム組成物。

【請求項7】

請求項1~6のいずれかに記載のゴム組成物からなることを特徴とする密封シールパッキン部品。

【発明の詳細な説明】

[0001]

【発明の技術分野】

本発明は、密封性、耐候性、耐薬品性、耐クリープ性、耐熱老化性に優れる密封シールパッキン用ゴム組成物およびその用途に関し、さらに詳しくは、密封性、耐候性、耐薬品性、耐クリープ性耐熱老化性に優れ、さらには架橋速度が速く生産性に優れ、HAV(ホットエアー加硫槽)、UHF(極超短波電磁波)などの熱空気架橋が可能で、密封シールパッキンやコンデンサー封口シールパッキンの用途に用いることができる架橋可能な密封シールパッキン用ゴム組成物およびその用途に関する。

[0002]

【発明の技術的背景】

EPDMなどのエチレン・α- オレフィン・非共役ポリエンランダム共重合体 ゴムは、耐熱老化性、低温特性、耐候性、耐水性、耐薬品性および柔軟性に優れ ており、家庭用のジャーパッキン、給湯用パッキン、工業用パッキンなどの密封 シールパッキンや、コンデンサー封口シールパッキンに使用されている。

[0003]

従来のエチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴムの加 硫系としては、イオウ加硫が用いられていたが、この加硫系では耐熱老化性およ び耐永久歪み性が劣るという欠点がある。

[0004]

この欠点を解決する方法として、イオウ加硫からパーオキサイド架橋にするとの方法は効果的であるが、この方法では、架橋速度が遅く生産性が悪くなると同時に、金型汚染性が悪化する問題があった。また将来、同用途の生産スタイルがプレスなどのバッチ式から連続加硫方式(HAV、UHF)に替わっていく可能性がある。

[0005]

しかしながら、パーオキサイド架橋では、HAV、UHFなどで熱空気架橋をする場合、ゴム表面が架橋しない、あるいは崩壊(デグラデイション)を起こし耐傷付き性が著しく劣るという欠点がある。この原因は、パーオキサイドが架橋に関与せずゴム表面が酸素と触れることで崩壊が進むためであり、酸素を遮断するスチーム架橋、被鉛架橋などで架橋させればゴム表面の耐傷付き性は改良されるものの、生産コストの面で不利となる。

[0006]

特開平4-154855号公報には、HAVで熱空気架橋可能なエチレン・プロピレン・ジエン共重合体ゴムと、1分子中にケイ素原子に結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンと、白金触媒とを配合したゴム組成物を用いることによって、熱空気架橋が可能で、しかも耐傷付き性に優れたゴムを得ることができることが記載されている。

[0007]

しかしながら、本願発明者らは、この公報に記載されている発明を追試し、そ の結果、耐傷付き性、耐圧縮永久歪み性は十分に満足できるものではなかった。

また、特開平7-33924号公報には、エチレン・プロピレン・ジエン共重 合体ゴムに、少なくとも1つの反応性基を有するポリシロキサンを添加してなる ゴム組成物をパーオキサイド架橋することにより、熱空気架橋が可能で、耐傷付 き性に優れたゴムを得ることができることが記載されている。

[0008]

しかしながら、本願発明者らは、この公報に記載されている発明を追試し、その結果、上記ゴム組成物にパーオキサイドを添加することにより架橋効率は高くなってはいるものの、パーオキサイドラジカルがシロキサンの付加反応を起こさせると同時に、ポリマーラジカルを発生させるため、架橋後のゴム製品表面の耐傷付き性は実用に耐えうるものではないことを確認している。

[0009]

そこで、本願発明者らは、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム組成物について鋭意研究し、特定のエチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)、SiH基を1分子中に少なくとも2個持つSiH基含有化合物(B)、および必要に応じて触媒(C)、反応抑制剤(D)からなるゴム組成物は、生産コストに優れる熱空気架橋(HAV、UHFなど)で架橋することができ、しかも耐傷付き性、耐熱老化性、耐圧縮永久歪み性、耐薬品性および耐金型汚染性に優れるゴム成形体を製造することができること、および密封シールパッキンやコンデンサー封口シールパッキンの用途に好適であることを見出し、本発明を完成するに至った。

[0010]

【発明の目的】

本発明は、上記のような従来技術に伴う問題を解決しようとするものであって、架橋速度が速く生産性に優れ、HAV(ホットエアー加硫槽)、UHF(極超短波電磁波)などの熱空気架橋が可能であり、しかも、強度特性、耐傷付き性、耐熱老化性、耐圧縮永久歪み性、耐薬品性および耐金型汚染性に優れる架橋ゴム成形体を調製することができる、架橋可能な密封シールパッキン用ゴム組成物および密封シールパッキン部品を提供することを目的としている。

[0011]

【発明の概要】

本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、熱風および熱プレスで架橋可能なゴム組成物であり、

該ゴム組成物をシート状とした後熱風架橋して得られる熱風架橋ゴムシートは、HBの鉛筆による鉛筆硬度試験で表面に傷が全く付かず、かつ、

該ゴム組成物をシート状とした後熱プレスして架橋して得られる熱プレス架橋 ゴムシートは、

- (1) 150℃で22時間熱処理後の圧縮永久歪み(CS)が70%以下であり、
- (3) 120℃で70時間熱老化後の引張強さ保持率が50~150%、伸び保持率が50%以上、硬さ変化が0~+50ポイントであり、
- (4) 常態物性の引張強度が3~20MPaであり、
- (5) 金型汚染試験での汚染までのショット数が30回以上である ことを特徴としている。

[0012]

前記の物性を有する、本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、非共役ポリエンが下記一般式 [I] または [II] で表わされる少なくとも一種の末端ビニル基含有ノルボルネン化合物から導かれる構成単位を有するエチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)と、SiH 基を 1 分子中に少なくとも 2 個持つ SiH 基含有化合物(B)とを含有してなり、該ゴム組成物の 1 60 $\mathbb C$ での架橋速度($\mathbf t_c$ (90))が 1 5 分以下である。

[0013]

【化3】

$$(CH2)11 C=CH2$$

$$R1 ... [1]$$

[0014]

[式中、nは0ないし10の整数であり、

 R^1 は水素原子または炭素原子数 $1\sim 10$ のアルキル基であり、

 R^2 は水素原子または炭素原子数 $1 \sim 5$ のアルキル基である。]

[0015]

【化4】

[0016]

[式中、 R^3 は水素原子または炭素原子数 $1\sim10$ のアルキル基である。] 前記エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A) は、

- (i) エチレンと炭素原子数 $3 \sim 20$ の α オレフィンとのモル比(エチレン/ α オレフィン)が $60/40 \sim 85/15$ の範囲にあり、
- (ii) ヨウ素価が 0. 5~30の範囲にあり、
- (iii) 135℃のデカリン溶液で測定した極限粘度 [η]が0.3~3.0d1/gの範囲にあり、
- (iv) 動的粘弾性測定器より求めた分岐指数が5以上である。

[0017]

このゴム組成物は、エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)およびSiH基を1分子中に少なくとも2個持つSiH基含有化合物(B)の他に、必要に応じて触媒(C)、さらには反応抑制剤(D)を含有させることができる。

[0018]

前記触媒(C)としては、白金系触媒が好ましく用いられる。

本発明に係る密封シールパッキン部品は、上記の、本発明に係る架橋可能な密 封シールパッキン用ゴム組成物からなることを特徴としている。

[0019]

本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、家庭用ジャーパ

ッキング、給湯用パッキン、工業用パッキン等の密封シールパッキンや、コンデ ンサー封口シールパッキンなどの製造の際に好適に用いられる。

[0020]

なお、本明細書中の「密封シールパッキン用ゴム組成物」の語は、コンデンサー封口シールパッキン用ゴム組成物を含んで用いられる。

[0021]

【発明の具体的説明】

以下、本発明に係る架橋(加硫)可能な密封シールパッキン用ゴム組成物およびその用途について具体的に説明する。

[0022]

架橋可能なゴム組成物

本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、熱風および熱プレスで架橋可能であり、このゴム組成物をシート状とした後熱風架橋して得られる熱風架橋ゴムシートは、HBの鉛筆による鉛筆硬度試験で表面に傷が全く付かず、かつ、

このゴム組成物をシート状とした後熱プレスして架橋して得られる熱プレス架 橋ゴムシートは、

- (1) 150℃で22時間熱処理後の圧縮永久歪み(CS)が70%以下であり、
- (3) 120℃で70時間熱老化後の引張強さ保持率が50~150%、伸び保持率が50%以上、硬さ変化が0~+50ポイントであり、
- (4) 常態物性の引張強度が3~20MPaであり、
- (5) 金型汚染試験での汚染までのショット数が30回以上である。

[0023]

上記のような物性を示す、本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)、SiH基を1分子中に少なくとも2個持つSiH基含有化合物(B)および必要に応じて触媒(C)、反応抑制剤(D)を含有しており、160℃での架

橋速度(t_c(90))が15分以下である。

[0024]

[エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)]

本発明で用いられるエチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、エチレンと、炭素原子数3~20のα-オレフィンと、非共役ポリエンとのランダム共重合体である。

[0025]

[0026]

これらのα-オレフィンは、単独で、あるいは2種以上組み合わせて用いられる。

本発明で用いられる非共役ポリエンは、下記の一般式[I]または[II]で表 わされる末端ビニル基含有ノルボルネン化合物である。

[0027]

【化5】

$$\begin{array}{c|c}
 & R^2 \\
 & C \\
 & C$$

[0028]

一般式 [I] において、nは0ないし10の整数であり、

 R^{1} は水素原子または炭素原子数 $1 \sim 10$ のアルキル基であり、

R¹の炭素原子数 1~10のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、t-ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。

[0029]

 R^2 は水素原子または炭素原子数 $1 \sim 5$ のアルキル基である。

 R^2 の炭素原子数 $1 \sim 5$ のアルキル基の具体例としては、上記 R^1 の具体例のうち、炭素原子数 $1 \sim 5$ のアルキル基が挙げられる。

[0030]

【化6】

$$CH_2$$
 R^3 ... [II]

[0031]

一般式 [II] において、 R^3 は水素原子または炭素原子数 $1\sim 1$ 0 のアルキル基である。

 R^3 のアルキル基の具体例としては、上記 R^1 のアルキル基の具体例と同じアルキル基を挙げることができる。

[0032]

上記一般式 [I] または [II] で表わされるノルボルネン化合物としては、具体的には、5-メチレン-2- ノルボルネン、5-ビニル-2- ノルボルネン、5- (2-プロペニル) -2- ノルボルネン、5- (3-ブテニル) -2- ノルボルネン、5- (1-メチル-2- プロペニル) -2- ノルボルネン、5- (4-ペンテニル) -2- ノルボルネン、5- (1-メチル-3- ブテニル) -2- ノルボルネン、5- (5-ヘキセニル) -2- ノルボルネン、5- (1-メチル-4- ペンテニル) -2- ノルボルネン、5- (2,3-ジメチル-3- ジメチル-4- ペンテニル) -4- ノルボルネン、4- ペンテニル) -4- ノルボルネン、4- ペンテニル) -4- ノルボルネン、4- ペンテニル) -4- ペンテニル) -4- ノルボルネン、4- (4-ペンテニル) -4- ペンテニル) -4- ペンテニル) -4- ノルボルネン、4- (4-ペンテニル) -4- ペンテニル) -4- ノルボルネン、4- (4-ペンテニル) -4- ペンテニル) -4- ペンテニル) -4- ペンテニル

- ブテニル)-2- ノルボルネン、5- (2-エチル-3- ブテニル)-2- ノルボルネン、5- (6-ヘプテニル)-2- ノルボルネン、5- (3-メチル-5- ヘキセニル)-2- ノルボルネン、5- (3,4-ジメチル-4- ペンテニル)-2- ノルボルネン、5- (3-エチル-4- ペンテニル)-2- ノルボルネン、5- (3-エチル-4- ペンテニル)-2- ノルボルネン、5- (7-オクテニル)-2- ノルボルネン、5- (2-メチル-6- ヘプテニル)-2- ノルボルネン、5- (1,2-ジメチル-5- ヘキセシル)-2- ノルボルネン、5- (5-エチル-5- ヘキセニル)-2- ノルボルネン、5- (1,2,3-トリメチル-4- ペンテニル)-2- ノルボルネンなど挙げられる。このなかでも、5-ビニル-2- ノルボルネン、5-メチレン-2- ノルボルネン、5- (2-プロペニル)-2- ノルボルネン、5- (3-ブテニル)-2- ノルボルネン、5- (4-ペンテニル)-2- ノルボルネン、5- (6-ヘプテニル) -2- ノルボルネン、5- (6-ヘプテニル) -2- ノルボルネン、5- (6-ヘプテニル) -2- ノルボルネン、5- (7-オクテニル) -2- ノルボルネンが好ましい。これらのノルボルネン化合物は、単独で、あるいは2種以上組み合わせて用いることができる。

[0033]

上記ノルボルネン化合物たとえば5-ビニル-2- ノルボルネンの他に、本発明の目的とする物性を損なわない範囲で、以下に示す非共役ポリエンを併用することもできる。

[0034]

このような非共役ポリエンとしては、具体的には、1,4-ヘキサジエン、3-メチル-1,4- ヘキサジエン、4-メチル-1,4- ヘキサジエン、5-メチル-1,4- ヘキサジエン、4,5-ジメチル-1,4- ヘキサジエン、7-メチル-1,6- オクタジエン等の鎖状非共役ジエン;

メチルテトラヒドロインデン、5-エチリデン-2- ノルボルネン、5-メチレン-2 - ノルボルネン、5-イソプロピリデン-2- ノルボルネン、5-ビニリデン-2- ノルボルネン、5-ビニリデン-2- ノルボルネン、ジシクロペンタジエン等の環状非共役ジエン;

2,3-ジイソプロピリデン-5- ノルボルネン、2-エチリデン-3- イソプロピリデン-5- ノルボルネン、2-プロペニル-2,2- ノルボルナジエン等のトリエンなどが挙げられる。

[0035]

上記のような諸成分からなるエチレン・α-オレフィン・非共役ポリエンラン ダム共重合体(A)は、以下のような特性を有している。

(i) エチレンと炭素原子数 $3 \sim 200 \alpha - オレフィンとのモル比(エチレン/ <math>\alpha - オレフィン)$

エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、 (a) エチレンで導かれる単位と(b) 炭素原子数 $3 \sim 200 \alpha$ - オレフィン(以下単に α - オレフィンということがある)から導かれる単位とを、 $60/40 \sim 85/15$ 、好ましくは $65/35 \sim 85/15$ 、さらに好ましくは $65/35 \sim 80/200$ モル比 [(a)/(b)]で含有している。

[0036]

このモル比が上記範囲内にあると、耐熱老化性、強度特性およびゴム弾性に優れるとともに、耐寒性および加工性に優れた架橋ゴム成形体を提供できるゴム組成物が得られる。

(ii) ヨウ素価

エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)のヨウ素価は、0.5~30(g/100g)、好ましくは $1\sim25$ (g/100g)、さらに好ましくは $2\sim20$ (g/100g)、特に好ましくは $3\sim18$ (g/100g)、最も好ましくは $4\sim15$ (g/100g)である。

[0037]

このヨウ素価が上記範囲内にあると、架橋効率の高いゴム組成物が得られ、耐圧縮永久歪み性に優れるとともに、耐環境劣化性(=耐熱老化性)に優れた架橋ゴム成形体を提供できるゴム組成物が得られる。ヨウ素価が30を超えると、コスト的に不利になるので好ましくない。

(iii)極限粘度

エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)の1 35℃デカリン中で測定した極限粘度 [n] は、0. $3\sim3$. 0 d 1 / g、好ましくは0. $3\sim2$. 5 d 1 / g、さらに好ましくは0. $3\sim2$. 3 d 1 / g、特に好ましくは0. $3\sim2$. 2 d 1 / gであることが望ましい。

51

[0038]

この極限粘度 [n] が上記範囲内にあると、強度特性および耐圧縮永久歪み性に優れるとともに、加工性に優れた架橋ゴム成形体を提供できるゴム組成物が得られる。

(iv) 動的粘弾性測定器より求めた分岐指数

エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)の動的粘弾性測定器より求めた分岐指数は、5以上、好ましくは7以上、さらに好ましくは7以上、さらに好ましくは9以上、特に好ましくは10以上である。この分岐指数の値が5より小さいと、高ずり速度領域での粘度が高くなり、流動性が悪化するため、ロール加工性および押出加工性が悪くなる。

[0039]

本発明で用いられるエチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、上記(i)、(ii)、(iii)および(iv)の物性の他に、下記の(v)~(vii)の物性を有していることが好ましい。

(v) 分子量分布(Mw/Mn)

エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)のG PCにより測定した分子量分布(Mw/Mn)は、2~200、好ましくは2. 5~150、さらに好ましくは3~120、特に好ましくは5~100であることが望ましい。

[0040]

この分子量分布(Mw/Mn)が上記範囲内にあると、加工性に優れるとともに、強度特性に優れた架橋ゴム成形体を提供できるゴム組成物が得られる。

(vi) 有効網目鎖密度(v) [架橋密度の指標]

[0041]

この有効網目鎖密度 (ν) が 1. 5×10^{20} 個 $/ cm^3$ 以上であると、耐圧縮永久歪み性に優れた架橋ゴム成形体を提供できるゴム組成物が得られる。

(vii) Log $(\gamma_2/\gamma_1)/\nu$

エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、100 $\mathbb C$ でのメルトフローカーブから求めた、ずり応力0. 4×10^6 d y n / cm^2 を示すときのずり速度 γ_1 とずり応力2. 4×10^6 d y n / cm^2 を示すときのずり速度 γ_2 との比 γ_2 / γ_1 と、前記有効網目鎖密度(ν)との比が、一般式 [III]

 $0.04 \times 10^{-19} \leq \log (\gamma_2/\gamma_1)/\nu \leq 0.20 \times 10^{-19} \cdots$ [III] で表わされる関係を満足していることが好ましい。

[0042]

エチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、 $\log (\gamma_2/\gamma_1)$ と有効網目鎖密度(ν)との比 [Log (γ_2/γ_1) / ν] が 0. $0.4\times10^{-19}\sim0$. 2.0×10^{-19} 、好ましくは 0. $0.4\times10^{-19}\sim0$. 2.0×10^{-19} 、 \sim 0. 1.9×10^{-19} 、 さらに好ましくは 0. $0.50\times10^{-19}\sim0$. 1.8×10^{-19} であることが望ましい。

[0043]

この比 $[Log(\gamma_2/\gamma_1)/\nu]$ が上記範囲内にあると、加工性に優れるとともに、強度特性および耐圧縮永久歪み性に優れた架橋ゴム成形体を提供できるゴム組成物が得られる。

[0044]

本発明で用いられるエチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、「ポリマー製造プロセス((株)工業調査会、発行 $p.309\sim3$ 30)もしくは本願出願人の出願に係る特開平9-71617号公報、特開平9-71618号公報、特開平9-208615号公報、特開平10-67823号公報、特開平10-67824号公報、特開平10-110054号公報などに記載されているような従来公知の方法により調製することができる。

[0045]

本発明で用いられるエチレン・α-オレフィン・非共役ポリエンランダム共重

合体ゴム (A) の製造の際に用いられるオレフィン重合用触媒としては、

バナジウム(V)、ジルコニウム(Zr)、チタニウム(Ti)等の遷移金属 化合物と、有機アルミニウム化合物(有機アルミニウムオキシ化合物)とからな るチーグラー触媒、あるいは

元素の周期律表第IVB族から選ばれる遷移金属のメタロセン化合物と、有機アルミニウムオキシ化合物またはイオン化イオン性化合物とからなるメタロセン触 媒が特に好ましく用いられる。

[0046]

また、下記の化合物 (H) および (I) を主成分として含有する触媒を用いてエチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム (A) を調製すると、沸騰キシレン不溶解分が 1%以下のエチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム (A) が得られるので好ましい。

[0047]

すなわち、キシレン不溶解分が1%以下のエチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、下記化合物(H)および(I)を主成分として含有する触媒の存在下に、重合温度30~60℃、特に30~59℃、重合圧力4~12kgf/cm²、特に5~8kgf/cm²、非共役ポリエンとエチレンとの供給量のモル比(非共役ポリエン/エチレン)0.01~0.2の条件で、エチレンと、炭素原子数3~20の α - オレフィンと、上記一般式[I]または[II]で表わされる末端ビニル基含有ノルボルネン化合物とをランダム共重合することにより得られる。共重合は、炭化水素媒体中で行なうのが好ましい。

(H) VO (OR) $_{n}X_{3-n}$ (式中、Rは炭化水素基であり、Xはハロゲン原子であり、nは0または $1\sim3$ の整数である)で表わされる可溶性バナジウム化合物、または VX_{4} (Xはハロゲン原子である)で表わされるバナジウム化合物。

[0048]

上記可溶性バナジウム化合物 (H) は、重合反応系の炭化水素媒体に可溶性の成分であり、具体的には、一般式 VO(OR) a X b または V(OR) c X d

(式中、Rは炭化水素基であり、 $0 \le a \le 3$ 、 $0 \le b \le 3$ 、 $2 \le a + b \le 3$ 、 $0 \le c \le 4$ 、 $0 \le d \le 4$ 、 $3 \le c + d \le 4$) で表わされるバナジウム化合物、あるいはこれらの電子供与体付加物を代表例として挙げることができる。

[0049]

より具体的には、 $VOC1_3$ 、 $VO(OC_2H_5)$ $C1_2$ 、

VO (OC_2H_5) ₂C1, VO $(O-iso-C_3H_7)$ C1₂,

 $VO (O-n-C_4H_9) Cl_2$, $VO (OC_2H_5)_3$, $VOBr_3$, VCl_4 ,

 $VOC1_3$ 、 $VO(O-n-C_4H_9)_3$ 、 $VC1_3\cdot 2OC_6H1_2OH$ などを例示することができる。

(I) $R'_{m}A1X'_{3-m}$ (R'は炭化水素基であり、X'はハロゲン原子であり、mは1~3の整数である)で表わされる有機アルミニウム化合物。

[0050]

上記有機アルミニウム化合物(I)としては、具体的には、

トリエチルアルミニウム、トリブチルアルミニウム、トリイソプロピルアルミニウム等のトリアルキルアルミニウム;

ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシド等のジア ルキルアルミニウムアルコキシド;

エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシド 等のアルキルアルミニウムセスキアルコキシド;

 $R^{1}_{0.5}A1$ (O R^{1}) $_{0.5}$ などで表わされる平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム;

ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルア ルミニウムブロミド等のジアルキルアルミニウムハライド;

エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エ チルアルミニウムセスキブロミド等のアルキルアルミニウムセスキハライド、エ チルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミ ニウムジブロミド等のアルキルアルミニウムジハライドなどの部分的にハロゲン 化されたアルキルアルミニウム;

ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリド等のジアルキ

ルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリド等のアルキルアルミニウムジヒドリドなどの部分的に水素化されたアルキルアルミニウム;

エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを挙げることができる。

[0051]

本発明において、上記化合物(H)のうち、 $VOC1_3$ で表わされる可溶性バナジウム化合物と、上記化合物(I)のうち、 $A1(OC_2H_5)_2C1/A1_2(OC_2H_5)_3C1_3$ とのブレンド物(ブレンド比は1/5以上)を触媒成分として使用すると、ソックスレー抽出(溶媒:沸騰キシレン、抽出時間:3時間、メッシュ:325)後の不溶解分が1%以下であるエチレン・ α - オレフィン・非共役ポリエンランダム共重合体ゴム(A)が得られるので好ましい。

[0052]

また、本発明で用いられるエチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、極性モノマーたとえば不飽和カルボン酸またはその誘導体(たとえば酸無水物、エステル)でグラフト変性されていてもよい。

[0053]

このような不飽和カルボン酸としては、具体的には、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ(2,2,1) ヘプト-2- エン-5,6- ジカルボン酸などが挙げられる。

[0054]

不飽和カルボンの酸無水物としては、具体的には、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水テトラヒドロフタル酸、ビシクロ(2,2,1) ヘプト-2- エン-5,6- ジカルボン酸無水物などが挙げられる。これらの中でも、無水マレイン酸が好ましい。

[0055]

不飽和カルボン酸エステルとしては、具体的には、アクリル酸メチル、メタクリル酸メチル、マレイン酸ジメチル、マレイン酸モノメチル、フマル酸ジメチル

、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロフタル酸ジメチル 、ビシクロ (2,2,1) ヘプト-2- エン-5,6- ジカルボン酸ジメチルなどが挙げら れる。これらの中でも、アクリル酸メチル、アクリル酸エチルが好ましい。

[0056]

上記の不飽和カルボン酸等のグラフト変性剤(グラフトモノマー)は、それぞれ単独または2種以上の組み合わせで使用されるが、何れの場合も前述したグラフト変性前のエチレン・α-オレフィン・非共役ポリエン共重合体ゴム100g 当たり、0.1モル以下のグラフト量にするのがよい。

[0057]

上記のようなグラフト量が上記範囲にあるエチレン・α-オレフィン・非共役 ポリエンランダム共重合体ゴム(A)を用いると、耐寒性に優れた架橋ゴム成形 体を提供し得る、流動性(成形加工性)に優れたゴム組成物が得られる。

[0058]

グラフト変性したエチレン・α- オレフィン・非共役ポリエンランダム共重合体ゴム(A)は、前述した未変性のエチレン・α- オレフィン・非共役ポリエン共重合体ゴムと不飽和カルボン酸またはその誘導体とを、ラジカル開始剤の存在下に反応させることにより得ることができる。

[0059]

このグラフト反応は溶液にして行なうこともできるし、溶融状態で行なっても よい。溶融状態でグラフト反応を行なう場合には、押出機の中で連続的に行なう ことが最も効率的であり、好ましい。

[0060]

グラフト反応に使用されるラジカル開始剤としては、具体的には、ジクミルパーオキサイド、ジーtー ブチルパーオキサイド、ジーtー ブチルパーオキシー3,3,5ートリメチルシクロヘキサン、tーブチルクミルパーオキサイド、ジーtー アミルパーオキサイド、tーブチルヒドロパーオキサイド、2,5-ジメチル-2,5- ジ(tーブチルパーオキシ) ヘキシン-3、2,5-ジメチル-2,5- ジ(ベンゾイルパーオキシ) ヘキサン、2,5-ジメチル-2,5- ジ(tーブチルパーオキシ) ヘキサン、 α , α ' - ビス(tーブチルパーオキシーm-イソプロピル)ベンゼン等のジアルキルパーオキサ

イド類;

t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシベンゾエート、ジ-t- ブチルパーオキシフタレート等のパーオキシエステル類;

およびこれらの混合物などが挙げられる。中でも半減期1分を与える温度が13 0~200℃の範囲にある有機過酸化物が好ましく、特に、ジクミルパーオキサイド、ジ-t- ブチルパーオキサイド、ジ-t- ブチルパーオキシ-3,3,5- トリメチ

ジシクロヘキサノンパーオキサイド等のケトンパーオキサイド類;

ルシクロヘキサン、t-ブチルクミルパーオキサイド、ジ-t- アミルパーオキサイド、t-ブチルヒドロパーオキサイドなどの有機過酸化物が好ましい。

[0061]

また、不飽和カルボン酸またはその誘導体(たとえば酸無水物、エステル)以外の極性モノマーとしては、水酸基含有エチレン性不飽和化合物、アミノ基含有エチレン性不飽和化合物、 デ香族ビニル化合物、 ビニルエステル化合物、 塩化ビニルなどが挙げられる。

[0062]

[SiH基含有化合物(B)]

本発明で用いられるSiH基含有化合物(B)は、エチレン・α- オレフィン・非共役ポリエンランダム共重合体ゴム(A)と反応し、架橋剤として作用する。このSiH基含有化合物(B)は、その分子構造に特に制限はなく、従来製造されている例えば線状、環状、分岐状構造あるいは三次元網目状構造の樹脂状物などでも使用可能であるが、1分子中に少なくとも2個、好ましくは3個以上のケイ素原子に直結した水素原子、すなわちSiH基を含んでいることが必要である。

[0063]

で表わされる化合物を使用することができる。

[0064]

上記一般組成式において、R⁴ は、脂肪族不飽和結合を除く、炭素原子数1~10、特に炭素原子数1~8の置換または非置換の1価炭化水素基であり、このような1価炭化水素基としては、前記R¹ に例示したアルキル基の他に、フェニル基、ハロゲン置換のアルキル基たとえばトリフロロプロピル基を例示することができる。中でも、メチル基、エチル基、プロピル基、フェニル基、トリフロロプロピル基が好ましく、特にメチル基、フェニル基が好ましい。

[0065]

また、bは、 $0 \le b < 3$ 、好ましくは0. 6 < b < 2. 2、特に好ましくは1. $5 \le b \le 2$ であり、cは、 $0 < c \le 3$ 、好ましくは0. $0 \ 0 \ 2 \le c < 2$ 、特に好ましくは0. $0 \ 1 \le c \le 1$ であり、かつ、b + cは、 $0 < b + c \le 3$ 、好ましくは1. $5 < b + c \le 2$. 7である。

[0066]

このSiH基含有化合物(B)は、1分子中のケイ素原子数が好ましくは2~1000個、特に好ましくは2~300個、最も好ましくは4~200個のオルガノハイドロジェンポリシロキサンであり、具体的には、

1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルテトラシクロシロキサン、1,3,5,7,8-ペンタメチルペンタシクロシロキサン等のシロキサンオリゴマー;

分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端シラノール基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルカイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、R 4 2(H)SiO $_{1/2}$ 単位、R 4 2SiO $_{2/2}$ 単位、R 4 (H)SiO $_{2/2}$ 単位、(H)SiO $_{3}$

/2 または $R^4SiO_{3/2}$ 単位を含み得るシリコーンレジンなどを挙げることができる。

[0067]

分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサンとしては、たとえば下式で示される化合物、さらには下式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換した化合物などが挙げられる。

[0068]

 $(CH_3)_3S$ i O-(-S i $H(CH_3)$ -O-) $_d$ -S i $(CH_3)_3$

[式中のdは2以上の整数である。]

分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体としては、下式で示される化合物、さらには下式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換した化合物などが挙げられる。

[0069]

 $(CH_3)_3$ SiO-(-Si($CH_3)_2$ -O-)_e-(-SiH(CH_3)-O-)_f-Si(CH_3)₃ 「式中のeは1以上の整数であり、fは2以上の整数である。]

分子鎖両末端シラノール基封鎖メチルハイドロジェンポリシロキサンとしては、たとえば下式で示される化合物、さらには下式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換した化合物などが挙げられる。

[0070]

 ${\tt HOSi(CH_3)_2O-(-SiH(CH_3)-O-)_2-Si(CH_3)_2OH}$

分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体としては、たとえば下式で示される化合物、さらには下式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換した化合物などが挙げられる。

[0071]

 $H_3)_2OH$

[式中のeは1以上の整数であり、fは2以上の整数である。]

分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサンとしては、たとえば下式で示される化合物、さらには下式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換した化合物などが挙げられる。

[0072]

 $HSi(CH_3)_2O-(-Si(CH_3)_2-O-)_e-Si(CH_3)_2H$ [式中のeは1以上の整数である。]

分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサンとしては、たとえば下式で示される化合物、さらには下式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換した化合物などが挙げられる。

[0073]

 $HSi(CH_3)_2O-(-SiH(CH_3)-O-)_e-Si(CH_3)_2H$ [式中のeは1以上の整数である。]

分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メ チルハイドロジェンシロキサン共重合体としては、たとえば下式で示される化合物、さらには下式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換した化合物などが挙げられる。

[0074]

i ithinhle

 $HSi(CH_3)_2O-(-Si(CH_3)_2-O-)_e-(-SiH(CH_3)-O-)_h -Si(CH_3)_2H$

[式中のeおよびhは、それぞれ1以上の整数である。]

このような化合物は、公知の方法により製造することができ、たとえばオクタメチルシクロテトラシロキサンおよび/またはテトラメチルシクロテトラシロキサンと、末端基となり得るヘキサメチルジシロキサンあるいは1,3-ジハイドロ-1,1,3,3-テトラメチルジシロキサンなどの、トリオルガノシリル基あるいはジオルガノハイドロジェンシロキシ基を含む化合物とを、硫酸、トリフルオロメタン

スルホン酸、メタンスルホン酸等の触媒の存在下に、-10℃~+40℃程度の 温度で平衡化させることによって容易に得ることができる。

[0075]

SiH基含有化合物(B)は、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対して、0.1~100重量部、好ましくは0.1~75重量部、より好ましくは0.1~50重量部、さらに好ましくは0.2~30重量部、さらにより好ましくは0.2~20重量部、特に好ましくは0.5~10重量部、最も好ましくは0.5~5重量部の割合で用いられる。上記範囲内の割合でSiH基含有化合物(B)を用いると、耐圧縮永久歪み性に優れるとともに、架橋密度が適度で強度特性および伸び特性に優れた架橋ゴム成形体を形成できるゴム組成物が得られる。100重量部を超える割合でSiH基含有化合物(B)を用いると、コスト的に不利になるので好ましくない。

[0076]

[触媒(C)]

本発明で任意成分として用いられる触媒(C)は、付加反応触媒であり、上記エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)成分のアルケニル基と、SiH基含有化合物(B)のSiH基との付加反応(アルケンのヒドロシリル化反応)を促進するものであれば特に制限はなく、たとえば白金系触媒、パラジウム系触媒、ロジウム系触媒等の白金族元素よりなる付加反応触媒(周期律表8族金属、8族金属錯体、8族金属化合物等の8族金属系触媒)を挙げることができ、中でも、白金系触媒が好ましい。

[0077]

白金系触媒は、通常、付加硬化型の硬化に使用される公知のものでよく、たとえば米国特許第2,970,150号明細書に記載の微粉末金属白金触媒、米国特許第2,823,218号明細書に記載の塩化白金酸触媒、米国特許第3,159,601号公報明細書および米国特許第159,662号明細書に記載の白金と炭化水素との錯化合物、米国特許第3,516,946号明細書に記載の塩化白金酸とオレフィンとの錯化合物、米国特許第3,775,452号明細書および米国特許第3,814,780号明細書に記載の白金とビニルシロキサンと

の錯化合物などが挙げられる。より具体的には、白金の単体(白金黒)、塩化白金酸、白金ーオレフィン錯体、白金ーアルコール錯体、あるいはアルミナ、シリカ等の担体に白金の担体を担持させたものなどが挙げられる。

[0078]

上記パラジウム系触媒は、パラジウム、パラジウム化合物、塩化パラジウム酸等からなり、また、上記ロジウム系触媒は、ロジウム、ロジウム化合物、塩化ロジウム酸等からなる。

[0079]

上記以外の触媒(C)としては、ルイス酸、コバルトカルボニルなどが挙げられる。

触媒 (C) は、エチレン・ α - オレフィン・非共役ポリエンランダム共重合体 ゴム (A) に対して、 $0.1\sim100$, 000重量ppm、好ましくは $0.1\sim10$, 000重量ppm、さらに好ましくは $1\sim5$, 000重量ppm、特に好ましくは $5\sim1$, 000重量ppmの割合で用いられる。

[0080]

上記範囲内の割合で触媒(C)を用いると、架橋密度が適度で強度特性および伸び特性に優れる架橋ゴム成形体を形成できるゴム組成物が得られる。100,000重量 P P mを超える割合で触媒(C)を用いると、コスト的に不利になるので好ましくない。

[0081]

なお、本発明においては、上記触媒 (C) を含まないゴム組成物の未架橋ゴム 成形体に、光、γ線、電子線等を照射して架橋ゴム成形体を得ることもできる。

[反応抑制剤(D)]

本発明で触媒(C)とともに任意成分として用いられる反応抑制剤(D)としては、ベンゾトリアゾール、エチニル基含有アルコール(たとえばエチニルシクロヘキサノール等)、アクリロニトリル、アミド化合物(たとえばN,N-ジアリルアセトアミド、N,N-ジアリルベンズアミド、N,N,N',N'-テトラアリル-o-フタル酸ジアミド、N,N,N',N'-テトラアリル-m-フタル酸ジアミド、N,N,N',N'-テトラアリル-p-フタル酸ジアミドなど)、イオウ、リン、窒素、アミン化合物、イオ

ウ化合物、リン化合物、スズ、スズ化合物、テトラメチルテトラビニルシクロテトラシロキサン、ハイドロパーオキサイド等の有機過酸化物などが挙げられる。

[0082]

反応抑制剤(D)は、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対して、0~50重量部、通常0.0001~50重量部、好ましくは0.0001~30重量部、より好ましくは0.0001~20重量部、さらに好ましくは0.0001~10重量部、特に好ましくは0.0001~5重量部の割合で用いられる。

[0083]

50重量部以下の割合で反応抑制剤(D)を用いると、架橋スピードが速く、 架橋ゴム成形体の生産性に優れたゴム組成物が得られる。50重量部を超える割 合で反応抑制剤(D)を用いると、コスト的に不利になるので好ましくない。

[0084]

[その他の成分]

本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、未架橋のままで も用いることができるが、架橋ゴム成形体あるいは架橋ゴム発泡成形体のような 架橋物として用いた場合に最もその特性を発揮することができる。

[0085]

本発明に係る架橋可能な密封シールパッキン用ゴム組成物中に、意図する架橋物の用途等に応じて、従来公知のゴム補強剤、無機充填剤、軟化剤、老化防止剤、加工助剤、加硫促進剤、有機過酸化物、架橋助剤、発泡剤、発泡助剤、着色剤、分散剤、難燃剤などの添加剤を、本発明の目的を損なわない範囲で配合することができる。

[0086]

上記ゴム補強剤は、架橋(加硫)ゴムの引張強度、引き裂き強度、耐摩耗性などの機械的性質を高める効果がある。このようなゴム補強剤としては、具体的には、SRF、GPF、FEF、HAF、ISAF、SAF、FT、MT等のカーボンブラック、シランカップリング剤などにより表面処理が施されているこれらのカーボンブラック、微粉ケイ酸、シリカなどが挙げられる。

[0087]

シリカの具体例としては、煙霧質シリカ、沈降性シリカなどが挙げられる。これらのシリカは、ヘキサメチルジシラザン、クロロシラン、アルコキシシラン等の反応性シランあるいは低分子量のシロキサン等で表面処理されていてもよい。また、これらシリカの比表面積(BED法)は、好ましくは $50\,\mathrm{m}^2/\mathrm{g}$ 以上、より好ましくは $100\sim400\,\mathrm{m}^2/\mathrm{g}$ である。

[0088]

これらのゴム補強剤の種類および配合量は、その用途により適宜選択できるが、ゴム補強剤の配合量は通常、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対して、最大300重量部、好ましくは最大200重量部である。

[0089]

上記無機充填剤としては、具体的には、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられる。

これらの無機充填剤の種類および配合量は、その用途により適宜選択できるが、無機充填剤の配合量は通常、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対して、最大300重量部、好ましくは最大200重量部である。

[0090]

上記軟化剤としては、通常ゴムに使用される軟化剤を用いることができる。

具体的には、プロセスオイル、潤滑油、パラフィン、流動パラフィン、石油ア スファルト、ワセリン等の石油系軟化剤;

コールタール、コールタールピッチ等のコールタール系軟化剤;

ヒマシ油、アマニ油、ナタネ油、ヤシ油等の脂肪油系軟化剤;

トール油;

サブ;

蜜ロウ、カルナウバロウ、ラノリン等のロウ類;

リシノール酸、パルミチン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸および脂肪酸塩;

石油樹脂、アタクチックポリプロピレン、クマロンインデン樹脂等の合成高分子物質を挙げることができる。中でも石油系軟化剤が好ましく用いられ、特にプロセスオイルが好ましく用いられる。

[0091]

これらの軟化剤の配合量は、架橋物の用途により適宜選択される。

上記老化防止剤としては、たとえばアミン系、ヒンダードフェノール系、またはイオウ系老化防止剤などが挙げられるが、これらの老化防止剤は、上述したように、本発明の目的を損なわない範囲で用いられる。

[0092]

本発明で用いられるアミン系老化防止剤としては、ジフェニルアミン類、フェニレンジアミン類などが挙げられる。

ジフェニルアミン類としては、具体的には、p-(p-h)ルエン・スルホニルアミド) - ジフェニルアミン、 $4,4'-(\alpha,\alpha-i)$ メチルベンジル)ジフェニルアミン、4,4'-i ジオクチル・ジフェニルアミン、ジフェニルアミンとアセトンとの高温反応生成物、ジフェニルアミンとアセトンとの低温反応生成物、ジフェニルアミンとアニリンとアセトンとの低温反応物、ジフェニルアミンとジイソブチレンとの反応生成物、オクチル化ジフェニルアミン、ジオクチル化ジフェニルアミン、p,p'-i ジオクチル・ジフェニルアミン、アルキル化ジフェニルアミンなどが挙げられる。

[0093]

フェニレンジアミン類としては、具体的には、N,N' - ジフェニル-p - フェニレンジアミン、n - イソプロピル-N' - フェニル-p - フェニレンジアミン、N,N' - ジー2- ナフチル-p - フェニレンジアミン、N - シクロヘキシル-N' - フェニル-p - フェニレンジアミン、N - フェニル-N' - (- メタクリロイルオキシ-2 - ヒドロキシプロピル) - p - フェニレンジアミン、N,N' - ビス(1 - メチルヘプチル) - p - フェニレンジアミン、N,N' - ビス(1,4-ジメチルペンチル) - p - フェニレンジアミン、N,N' - ビス(1-エチル-3 - メチルペンチル) - p - フェニレンジアミン、N - (1,3-ジメチルブチル) -N' - フェニル-p - フェニレンジアミン、フェニルヘキシル-p - フェニレンジアミン、フェニルヘキシル-p - フェ

ニレンジアミン、フェニルオクチル-p-フェニレンジアミン等のp- フェニレンジアミン類などが挙げられる。

[0094]

これらの中でも、特に4,4'- (α,α-ジメチルベンジル)ジフェニルアミン、N,N'- ジ-2- ナフチル-p-フェニレンジアミンが好ましい。

これらの化合物は、単独で、あるいは2種以上組み合わせて用いることができる。

[0095]

本発明で用いられるヒンダードフェノール系老化防止剤としては、具体的には

- (1) 1,1,3-トリス- (2-メチル-4- ヒドロキシ-5-t- ブチルフェニルブタン、
- (2) 4,4'- ブチリデンビス- (3-メチル-6-t- ブチルフェノール)、
- (3) 2,2-チオビス (4-メチル-6-t- ブチルフェノール)、
- (4) 7-オクタデシル-3- (4'-ヒドロキシ-3',5'- ジ-t- ブチルフェニル) プロ ピオネート、
- (5) テトラキス- [メチレン-3-(3',5'- ジ-t- ブチル-4'-ヒドロキシフェニル) プロピオネートメタン、
- (6) ペンタエリスリトール- テトラキス [3-(3,5-ジ-t- ブチル-4- ヒドロキ シフェニル) プロピオネート]、
- (7) トリエチレングリコール- ビス [3-(3-t-ブチル-5- メチル-4- ヒドロキ シフェニル)プロピオネート]、
- (8) 1,6-ヘキサンジオール- ビス [3-(3,5-ジ-t- ブチル-4- ヒドロキシフェ ニル) プロピオネート]、
- (9) 2,4-ビス (n-オクチルチオ) -6- (4-ヒドロキシ-3,5- ジ-t- ブチルアニリノ) -1,3,5- トリアジン、
- (10) トリス- (3,5-ジ-t- ブチル-4- ヒドロキシベンジル) イソシアヌレート、
- (11) 2,2-チオ- ジエチレンビス [3-(3,5-ジ-t- ブチル-4- ヒドロキシフェニル) プロピオネート]、
- (12) N,N'- ヘキサメチレンビス (3,5-ジ-t- ブチル-4- ヒドロキシ) ヒドロ

シンナアミド、

- (13) 2,4-ビス [(オクチルチオ) メチル] o-クレゾール、
- (14) 3,5-ジ-t- ブチル-4- ヒドロキシベンジル- ホスホネート- ジエチルエステル、
- (15) テトラキス [メチレン (3,5-ジ-t- ブチル-4- ヒドロキシヒドロシンナメ イト)] メタン、
- (16) オクタデシル-3- (3,5-ジ-t- ブチル-4- ヒドロキシフェニル) プロピオン酸エステル、
- (17) 3,9-ビス [2- {3- (3-t-ブチル-4- ヒドロキシ-5- メチルフェニル) プロ ピオニルオキシ} -1,1- ジメチルエチル] -2,4-8,10-テトラオキサスピロ [5,5] ウンデカン

などを挙げることができる。中でも、特に(5)、(17)のフェノール化合物が 好ましい。

[0096]

本発明で用いられるイオウ系老化防止剤としては、通常ゴムに使用されるイオウ系老化防止剤が用いられる。

具体的には、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾイミダゾールの亜鉛塩、2-メルカプトメチルベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾールの亜鉛塩、2-メルカプトメチルイミダゾールの亜鉛塩等のイミダゾール系老化防止剤;

ジミリスチルチオジプロピオネート、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等の脂肪族チオエーテル系老化防止剤などを挙げることができる。これらの中でも、特に2-メルカプトベンゾイミダゾール、2-メルカプトベンゾイミダゾールの亜鉛塩、2-メルカプトメチルベンゾイミダゾールの亜鉛塩、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)が好ましい。

[0097]

上記の加工助剤としては、通常のゴムの加工に使用される化合物を使用することができる。具体的には、リシノール酸、ステアリン酸、パルチミン酸、ラウリン酸等の高級脂肪酸;ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸の塩;リシノール酸、ステアリン酸、パルチミン酸、ラウリン酸等の高級脂肪酸のエステル類などが挙げられる。

[0098]

このような加工助剤は、通常、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対して、10重量部以下、好ましくは5重量部以下の割合で用いられるが、要求される物性値に応じて適宜最適量を決定することが望ましい。

[0099]

[0100]

本発明においては、上述した触媒(C)の他に有機過酸化物を使用して、付加架橋とラジカル架橋の両方を行なってもよい。有機過酸化物は、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対し、0.1~10重量部程度の割合で用いられる。有機過酸化物としては、ゴムの架橋の際に通常使用されている従来公知の有機過酸化物を使用することができる。

また、有機過酸化物を使用するときは、架橋助剤を併用することが好ましい。 架橋助剤としては、具体的には、イオウ; p- キノンジオキシム等のキノンジオキシム系化合物; ポリエチレングリコールジメタクリレート等のメタクリレート系化合物; ジアリルフタレート、トリアリルシアヌレート等のアリル系化合物; マレイミド系化合物; ジビニルベンゼンなどが挙げられる。このような架橋助剤は、使用する有機過酸化物1モルに対して0.5~2モル、好ましくは約等モルの量で用いられる。

[0101]

上記の発泡剤としては、具体的には、重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機発泡剤;

N,N'- ジメチル-N,N'-ジニトロソテレフタルアミド、N,N'- ジニトロソペンタ メチレンテトラミン等のニトロソ化合物;

アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;

ベンゼンスルホニルヒドラジド、トルエンスルホニルヒドラジド、p,p'- オキシビス (ベンゼンスルホニルヒドラジド)、ジフェニルスルホン-3,3'-ジスルホニルヒドラジド化合物;

カルシウムアジド、4,4-ジフェニルジスルホニルアジド、p-トルエンスルホル ニルアジド等のアジド化合物などが挙げられる。

[0102]

これらの発泡剤は、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対して、0.5~30重量部、好ましくは1~20重量部の割合で用いられる。上記のような割合で発泡剤を用いると、比重0.03~0.8g/cm³の発泡体を製造することができるが、要求される物性値に応じて適宜最適量を決定することが望ましい。

[0103]

また、必要に応じて、発泡剤と併用して、発泡助剤を使用してもよい。発泡助剤は、発泡剤の分解温度の低下、分解促進、気泡の均一化などの作用をする。

このような発泡助剤としては、サリチル酸、フタル酸、ステアリン酸、しゅう 酸等の有機酸、尿素またはその誘導体などが挙げられる。

[0104]

これらの発泡助剤は、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)100重量部に対して、0.01~10重量部、好ましくは0.1~5重量部の割合で用いられるが、要求される物性値に応じて適宜最適量を決定することが望ましい。

[0105]

また、本発明に係る架橋可能なゴム組成物中に、本発明の目的を損なわない範囲で、公知の他のゴムとブレンドして用いることができる。

このような他のゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)などのイソプレン系ゴム、ブタジエンゴム(BR)、スチレンーブタジエンゴム(

SBR)、アクリロニトリルーブタジエンゴム(NBR)、クロロプレンゴム(CR)などの共役ジエン系ゴムを挙げることができる。

[0106]

さらに従来公知のエチレン・α-オレフィン系共重合体ゴムを用いることもでき、たとえばエチレン・プロピレンランダム共重合体(EPR)、前記エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)以外のエチレン・α-オレフィン・ポリエン共重合体(たとえばEPDMなど)を用いることができる。

[0107]

密封シールパッキン部品

本発明に係る密封シリンダーパッキン部品は、前述した、本発明に係る架橋可能な密封シールパッキン用ゴム組成物からなる。

[0108]

本発明に係る密封シリンダーパッキン部品は、非架橋ゴム成形体あるいは非架 橋発泡成形体のような非架橋物で構成されていてもよいが、架橋ゴム成形体ある いは架橋ゴム発泡成形体のような架橋物で構成されている方が、本発明に係る密 封シールパッキン用ゴム組成物の特性を最も良く発揮することができる。

[0109]

本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、家庭用のジャーパッキン、給湯用パッキン、工業用パッキン等の密封シールパッキンや、コンデンサー封口シールパッキンなどの製造の際に好適に用いられる。

[0110]

ゴム組成物およびその架橋ゴム成形体の調製

上述したように、本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、未架橋のままでも用いることもできるが、架橋ゴム成形体あるいは架橋ゴム発 泡成形体のような架橋物として用いた場合に最もその特性を発揮することができる。

[0111]

本発明に係る架橋可能な密封シールパッキン用ゴム組成物から架橋物を製造す

るには、通常一般のゴムを加硫(架橋)するときと同様に、未架橋の配合ゴムを 一度調製し、次いで、この配合ゴムを意図する形状に成形した後に架橋を行なえ ばよい。

[0112]

架橋方法としては、架橋剤(SiH基含有化合物(B))を使用して加熱する方法、または光、γ線、電子線照射による方法のどちらを採用してもよい。

まず、本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、たとえば次のような方法で調製される。

[0113]

すなわち、本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、バンバリーミキサー、ニーダー、インターミックスのようなインターナルミキサー(密閉式混合機)類により、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム(A)、ゴム補強剤、無機充填剤、軟化剤などの添加剤を80~170℃の温度で3~10分間混練した後、オープンロールのようなロール類、あるいはニーダーを使用して、SiH基含有化合物(B)および必要に応じて触媒(C)、反応抑制剤(D)、加硫促進剤、架橋助剤、発泡剤、発泡助剤を追加混合し、ロール温度80℃以下で1~30分間混練した後、分出しすることにより調製することができる。

[0114]

また、インターナルミキサー類での混練温度が低い場合には、エチレン・α-オレフィン・非共役ポリエンランダム共重合体ゴム (A)、SiH基含有化合物 (B)、ゴム補強剤、無機充填剤、軟化剤などとともに、老化防止剤、着色剤、 分散剤、難燃剤、発泡剤などを同時に混練してもよい。

[0115]

上記のようにして調製された、本発明に係る架橋可能な密封シールパッキン用 ゴム組成物は、押出成形機、カレンダーロール、プレス、インジェクション成形 機、トランスファー成形機などを用いる種々の成形法より、意図する形状に成形 され、成形と同時にまたは成型物を加硫槽内に導入し、架橋することができる。 100~270℃の温度で1~30分間加熱するか、あるいは前記した方法によ

り光、γ線、電子線を照射することにより架橋物が得られる。また、常温で架橋 することもできる。

[0116]

この架橋の段階は金型を用いてもよいし、また金型を用いないで架橋を実施してもよい。金型を用いない場合は成形、架橋の工程は通常連続的に実施される。 加硫槽における加熱方法としては、熱空気、ガラスビーズ流動床、UHF(極超 短波電磁波)、スチームなどの加熱槽を用いることができる。

[0117]

【発明の効果】

本発明に係る架橋可能な密封シールパッキン用ゴム組成物は、架橋速度が速く 生産性に優れ、HAV、UHFなどの熱空気架橋が可能であり、しかも、強度特 性、耐傷付き性、耐熱老化性、耐圧縮永久歪み性、耐薬品性および耐金型汚染性 などの特性に優れる密封シールパッキン用架橋ゴム成形体(発泡体も含む)を提 供することができる。

[0118]

本発明に係る密封シールパッキン部品は、上記のような効果を有する架橋ゴム 成形体からなるので、家庭用ジャーパッキング、給湯用パッキン、工業用パッキン等の密封シールパッキンや、コンデンサー封口シールパッキンなどの用途に広 く用いられる。

[0119]

【実施例】

以下、本発明を実施例により説明するが、本発明は、これら実施例に何ら限定されるものではない。

[0120]

なお、実施例、比較例で用いた共重合体ゴムの組成、ヨウ素価、極限粘度 [η]、分子量分布(Mw/Mn)、 $γ_2/γ_1$ 、有効網目鎖密度(ν)、 $γ_2/γ_1$ と有効網目鎖密度(架橋密度の指標)との関係、分岐指数は、次のような方法で測定ないし計算により求めた。

(1) 共重合体ゴムの組成

共重合体ゴムの組成は 13 C-NMR法で測定した。

(2) 共重合体ゴムのヨウ素価

共重合体ゴムのヨウ素価は、滴定法により求めた。

(3) 極限粘度[η]

共重合体ゴムの極限粘度 [η] は、135°Cデカリン中で測定した。

(4) 分子量分布 (Mw/Mn)

共重合体ゴムの分子量分布は、GPCにより求めた重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わした。GPCには、カラムに東ソー(株)製のGMH-HT、GMH-HTLを用い、溶媒にはオルソジクロロベンゼンを用いた。

(5) γ_2/γ_1

共重合体ゴムの100°Cでのメルトフローカーブを求め、ずり応力 0.4×1 0^6 d y n / c m 2 を示すときのずり速度 γ_1 とずり応力 2.4×10^6 d y n / c m 2 を示すときのずり速度 γ_2 との比(γ_2 / γ_1)を求めた。

[0121]

L/D = 60 mm/3 mm

(6)有効網目鎖密度(v)

JIS K 6258 (1993年) に従い、トルエンに37℃×72時間浸漬させ、Flory-Rehnerの式より有効網目鎖密度を算出した。

[0122]

【数1】

$$v_R + \ln(1 - v_R) + \mu v_R^2$$

$$v(個/cm^3) = \frac{-V_0(v_R^{1/3} - v_R/2)}{-V_0(v_R^{1/3} - v_R/2)}$$

[0123]

 v_R :膨潤した加硫ゴム中における膨潤した純ゴムの容積(純ゴム容積+吸収した溶剤の容積)に対する純ゴムの容積分率

μ: ゴムー溶剤間の相互作用定数=0.49

V_n:溶剤の分子容

ν (個/cm³):有効網目鎖濃度。純ゴム1 cm³中の有効網目鎖の数。

[0124]

サンプルの作製:共重合体ゴム100gに対し、ジクミルパーオキサイド0. 01モルを添加し、混練温度50℃で8インチロールオープンロールを用いて、日本ゴム協会標準規格(SRIS)に記載の方法により混練を行ない、得られた混練物を170℃で10分間プレス加硫してサンプルを作製した。

(7) γ_2/γ_1 と有効網目鎖密度(架橋密度の指標)との関係 Log (γ_2/γ_1) / ν を計算により求めた。

(8) 分岐指数

長鎖分岐を有しないEPR(分子量の異なる4 サンプル)について動的粘弾性 試験機を用いて複素粘性率 η *の周波数分散を測定した。

[0125]

0.01 rad/secと8 rad/secのときの複素粘性率 η^* を求め、複素粘性率 η_{1L}^* (0.01 rad/sec)を縦軸に、複素粘性率 η_{2L}^* (8 rad/sec)を横軸にプロットし、基準ラインを作成し、そのラインの延長線上にある η_{2L}^* =1×10 3 /Pa·sのときの η_{1L0}^* を測定した。

[0126]

次に、対象サンプルについても同様に、0.01 rad/secと8 rad/secのときの複素粘性率 n^* を求め、複素粘性率 n_{1B}^{*} (0.01 rad/sec)を縦軸に、複素粘性率 n_{2B}^{*} (8 rad/sec)を横軸にプロットする。このプロットは基準ラインよりも大きな値となり、長鎖分岐が多いほど基準ラインよりも大きく離れていく。

[0127]

次に、このプロットの上を通るように基準ラインを平行移動させ、複素粘性率 ${\eta_9}^*=1 \times 10^3/{
m Pa}\cdot{
m s}$ との交点 ${\eta_{180}}^*$ を測定した。

上記のようにして測定した η_{1L0}^* および η_{1B0}^* の値を下式に適用し、分岐指数を算出した。

[0128]

分岐指数= $(\log \eta_{1L0}^* - \log \eta_{1B0}^*) \times 10$ 上記測定条件は、次の通りである。

- ・基準サンプル:4種類のEPR三井化学(株)製、タフマーP-0280、P-0480、P-0680、P-0880(商品名)
- ·動的粘弾性試験機(RDS):Rheometrics社
- ・サンプル:2mmシートを直径25mmの円状に打ち抜いて使用。

·温度 : 190°C

・歪み率 :1%

·周波数依存: 0. 001~500 rad/sec

[0129]

【製造例1】

[エチレン・プロピレン・5-ビニル-2- ノルボルネンランダム共重合体ゴム(A-1)の製造]

[0130]

以上に述べたような条件で共重合反応を行なうと、エチレン・プロピレン・5-ビニル-2-ノルボルネンランダム共重合体ゴム(A-1)が均一な溶液状態で得られた。

[0131]

その後、重合器下部から連続的に抜き出した重合溶液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にて重合体を溶媒か

ら分離したのち、55℃で48時間真空乾燥を行なった。

[0132]

上記のようにして得られたエチレン・プロピレン・5-ビニル-2- ノルボルネンランダム共重合体ゴム (A-1) の物性を表1に示す。

[0133]

【製造例2~3】

製造例 1 において、重合条件を表 1 の通りに変えることにより、異なる性状のエチレン・プロピレン・5-エチリデン-2- ノルボルネンランダム共重合体ゴム(A-2)、エチレン・プロピレン・ジシクロペンタジエンランダム共重合体ゴム(A-3)を得た。得られた共重合体ゴム(A-2)、(A-3)の物性を表 1 に示す。

[0134]

【表1】

	<u> </u>		2	2	3
	α-41/74>		7, 02, 13	プ ロピ レン	7° 02° 13
*I)	7-1-	(g/lp)	480	350	480
(T.			ANA	ENB	OCPD
観 棋	74-1°	(mmo1/h)	48	65	75
	重合压力	(kgf/cm^2)	6.5	6. 5	6, 3
	関	(၃)	40	45	45
A1 (Bt) 2C1/	AI/V AI (Et) 1. 5	Cl 1. s	5/1	1/9	2/1
	AIM		9	9	9
	軍禁		VOC13-A1 (Et) 2C1/A1 (Et) 1. 5C11. 5	VOC13-A1 (Bt) 2C1/A1 (Bt) 1. 5C11. 5	VOC13-A1 (Et) 2C1/A1 (Et) 1. 6C11. 6
-	共重合体	ゴム	A-1	A-2	A-3

	エチレン/ ローオレフィン	² H	松量	环沙含量	[4]	λI		有効綱目鎖密度v [Log(アッ/ア1) [MW/Mn]分岐指数	Log (7 2/7 1)	Mw/Mn	分岐指数
共重合体	74-k*	(NL/h)	(kg/h)	(mo 1%)	(d1/g)	(d1/g) (g/100g) r2/r1	T 2/T 1	(×10 ¹⁹ 個/cm³)	/ ۸		
ゴム	(kg/h)										
A-1	3.7/8.0	20	4.5	91	1.83	10.9	145. 1	31.8	0.068	28. 2	13. 2
A-2	3, 2/9, 5	7	4.8	99	1. 98	13	27.7	14. 2	0. 102	5. 1	3.5
A-3	3. 2/9. 3	12	4.5	99	1.85	12	54. 6	14. 0	0.124	9.5	8. 4

(註1) VNB:5-ピニル2-/冰 ルネン、ENB:5-エチリデン-2-/ルボルネン、DCPD:ジシクロペンタジエン(註2) Et:エトキシ基(註3) IV:ヨウ素価

3 9

[0135]

【実施例1】

表1に示すエチレン・プロピレン・5-ビニル-2- ノルボルネンランダム共重合体ゴム(A-1)100重量部、酸化亜鉛2種[堺化学工業(株)製、亜鉛華1号]5重量部、ステアリン酸[日本油脂(株)製、椿(商標)]1重量部、カーボンブラック[東海カーボン(株)製、シースト116G(商標);算術平均粒径38ミリミクロン]40重量部、タルク[日本ミストロン社製、ミストロンベーパータルク(商標)]70重量部および活性剤としてポリエチレングリコール(分子量=4000)1重量部を、容量1.7リットルバンバリーミキサーを用いて混練した。

[0136]

混練方法は、まずエチレン・プロピレン・5-ビニル-2- ノルボルネンランダム 共重合体ゴム(A-1)を30秒素練りし、次いで、亜鉛華1号、ステアリン酸 、カーボンブラック、タルクおよび活性剤を入れ、2分間混練した。その後、ラ ムを上昇させ掃除を行ない、さらに1分間混練を行ない、約150℃で排出し、 ゴム配合物(I-1)を得た。この混練は充填率70%で行なった。

[0137]

次に、この配合物(I-1)217重量部を、8インチロール(前ロールの表面温度30℃、後ロールの表面温度30℃、前ロールの回転数16 r p m、後ロールの回転数18 r p m)に巻き付けて、 C_6H_5-S i(CS i(CH_3) $_2H$)3で示されるS i H基含有化合物(架橋剤)2重量部、反応制御剤としてエチニルシクロヘキサノール0.2重量部を加え10 分間混練したのちに、触媒として塩化白金酸濃度5 重量%のイソプロピルアルコール溶液0.5 重量部を加えて5 分間混練した後、混練物(1)をシート状に分出し、50トンプレス成形機を用いて40℃で6分間加圧し、厚み2 m m の未架橋ゴムシートを調製した。

[0138]

また、上記熱硬化前の架橋剤入り混練物について架橋速度の目安として「 t_c (90)」を、JSRキュラストメーター3型 [日本合成ゴム(株) 製) を用いて、160 \mathbb{C} の条件で測定した。架橋(加硫) 曲線から得られるトルクの最低値ML

と最高値MHの差をME (=MH-ML) とし、90%MEに達する時間を t_c (90)」とした。

[0139]

次いで、上記混練物(1)を、150トンプレス成形機 [コータキ精機(株)製]を用い、型温度140℃で10分間加熱加圧し、2mm厚の架橋シートを調製し、引張試験、耐熱老化性試験およびエチレングリコール膨潤度(ΔV)に供した。

[0140]

また、圧縮永久歪み(CS)は、型温度140℃で15分間加熱し、直径29 . 0mm、厚さ12. 7mmの直円柱形のブロックを調製し、このブロックを用いて測定した。これらの試験は、下記の方法に従って行なった。

(1) 引張試験

JIS K 6 2 5 1 に従って、測定温度 2 3 $\mathbb C$ 、引張速度 5 0 0 m m $\mathbb Z$ 分の条件で引張試験を行ない、架橋シートの破断時の強度 $\mathbb T_R$ と伸び $\mathbb E_R$ を測定した。

(2) 耐熱老化性試験

JIS K 6 2 5 7 に従って、耐熱老化性試験を行なった。すなわち、架橋シートを 120 $\mathbb C$ のオーブン中に 70 時間入れて老化させた後、測定温度 23 $\mathbb C$ 、 引張速度 500 mm/分の条件で引張試験を行ない、架橋シートの破断時の伸びと強度を測定し、引張強さ保持率 A_R (T_B) と、伸び保持率 A_R (E_B) を算出した。また、架橋シートを 120 $\mathbb C$ のオーブン中に 70 時間入れて老化させた後および老化前に、JIS K 6 2 5 3 に従って、測定温度 23 $\mathbb C$ でデュロメーター硬さ試験(タイプA)を行ない、老化前の硬さと老化後の硬さを算出し、老化前と老化後の硬さ変化 A_R を算出した。

(3) エチレングリコール膨潤度試験

JIS K 6 2 5 8 に従い、架橋ゴムシートを 100 $\mathbb C$ のエチレングリコール 溶液中に 24 時間浸漬させた後、膨潤度(ΔV)を測定した。

(4) 圧縮永久歪み試験

JIS K6262 (1993) に従い、圧縮永久歪み試験を行なった。この 試験条件は150℃×22hrsである。

[0141]

次に、上記未架橋ゴムシート(I)を200℃雰囲気のHAV(ホットエアー加硫槽)に5分間放置し、無圧で架橋シートを作製した。

また、金型汚染試験を以下の条件で行なった。すなわち、縦型射出成形機 [松田製作所社製、VI-75P]を用いて、ストローク7.7mm、最大型締力75トン、架橋温度160℃、架橋時間100秒で金型表面に汚染が発生するまでのショット数を求めた。このショット数を耐金型汚染性の指標とした。

[0142]

得られた架橋シートについて耐傷付き性試験を下記の方法に従って行なった。 [耐傷付き性試験]

HAV (ホットエアー加硫槽)より取り出した直後の架橋シート表面をHBの 鉛筆でひっかき、その傷付き状態を肉眼で観察し、耐傷付き性の評価を4段階で 行なった。

<耐傷付き性の4段階評価>

A:表面に傷が全く付かないもの

B:表面にわずかに傷が付くもの

C:傷が付くもの

D:傷が著しく激しいもの

これらの結果を表2に示す。

[0143]

【比較例1】

実施例1において、実施例1で用いたエチレン・プロピレン・5-ビニル-2- ノルボルネンランダム共重合体ゴム(A-1)の代わりに、表1に示すエチレン・プロピレン・5-エチリデン-2- ノルボルネン共重合ゴム(A-2)を用いた以外は、実施例1と同様に行なった。なお、バンバリーミキサーから排出した際の混練物の温度は134℃であった。

[0144]

結果を表2に示す。

[0145]

【比較例2】

実施例1において、実施例1で用いたエチレン・プロピレン・5-ビニル-2- ノ ルボルネンランダム共重合体ゴム(A-1)の代わりに、表1に示すエチレン・ プロピレン・ジシクロペンタジエンランダム共重合ゴム(A-3)を用いた以外 は、実施例1と同様に行なった。なお、バンバリーミキサーから排出した際の混 練物の温度は132℃であった。

[0146]

結果を表2に示す。

[0147]

【比較例3】

比較例1において、 C_6H_5-Si (OSi (CH $_3$) $_2H$) $_3$ で示されるSi H基含有化合物2重量部、エチニルシクロヘキサノール0.2重量部および塩化 白金酸濃度5重量%のイソプロピルアルコール溶液0.5重量部の代わりに、ジ クミルパーオキサイド (DCP) 40%希釈物 [化薬アクゾ(株) 製、カヤミク ルD-40 (商標)] 3. 5重量部と架橋助剤としてハイクロスM(商標) [精 工化学社(株)製]1.0重量部を用い、かつ、金型汚染試験は、架橋温度19 0℃、架橋時間120秒の条件で行ない、また架橋ゴムの物性は、150トンプ レス成形機を用いて170℃で15分間加圧して得られた厚さ2mmの架橋シー トについて、引張試験および耐熱老化試験を行なった以外は、比較例1と同様に 行なった。

[0148]

結果を表2に示す。

[0149]

【比較例4】

比較例1において、エチレン・プロピレン・5-エチリデン-2- ノルボルネンラ ンダム共重合体ゴム (A-2) の代わりに、表1に示すエチレン・プロピレン・ ジシクロペンタジエンランダム共重合ゴム(A-3)を用い、かつ、 C_6H_5-S i (OSi (CH $_3$) $_2$ H) $_3$ で示されるSiH基含有化合物2重量部、エチニー ルシクロヘキサノール0、2重量部および塩化白金酸濃度5重量%のイソプロピ

出証特2000-3008/15(4 3

ルアルコール溶液 0.5重量部の代わりに、ジクミルパーオキサイド(DPC) 40%希釈物 [化薬アクゾ(株) 製、カヤミクルD-40(商標)] 6.8重量部と架橋助剤としてハイクロスM(商標) [精工化学社(株)製] 1.0重量部を用いた以外は、比較例1と同様に行なった。

[0150]

結果を表2に示す。

[0151]

【比較例5】

比較例1において、エチレン・プロピレン・5-エチリデン-2- ノルボルネンランダム共重合体ゴム(A-2)の代わりに、表1に示すエチレン・プロピレン・ジシクロペンタジエンランダム共重合ゴム(A-3)を用い、かつ、C₆H₅-Si(OSi(CH₃)₂H)₃で示されるSiH基含有化合物2重量部、エチニルシクロヘキサノール0.2重量部および塩化白金酸濃度5重量%のイソプロピルアルコール溶液0.5重量部の代わりに、加硫促進剤としてCBS[商品名:サンセラーCM、三新化学工業(株)製]0.5重量部、ZnBDC[商品名:サンセラーBZ、三新化学工業(株)製]0.7重量部、TMTD[商品名:サンセラーTT、三新化学工業(株)製]0.7重量部、DPTT[商品名:サンセラーTRA、三新化学工業(株)製]0.5重量部、TeEDC[商品名:サンセラーEZ、三新化学工業(株)製]0.5重量部よびイオウ1.0重量部を用いた以外は、比較例1と同様に行なった。

[0152]

結果を表2に示す。

[0153]

【表2】

表 2

	実施例		1	比較例		
	1	1	2	3	4	5
組成物 [重量部]						
共重合体ゴム (A-1)	100					
共重合体ゴム(A-2)		100		100		
共重合体ゴム (A-3)			100		100	100
S 1 H 基含有化合物 "1	2	7	7			
塩化白金酸 5 重量%の 1 P A 溶液	0.5	0.5	0.5			
サノー	0.2	0.2	0.2			
DCP/D-40			*	3.5	6.8	
ハイクロスM				1.0	1.0	
CBS						0.5
ZIBDC						0.7
TMTD						0.7
DPTT						0.5
Tebdc						0.5
イオウ						1.0
t。(90) (at 160℃) [分]	1	I	1	3 0	3 0	2 0
熟風架橋 (H A V)ゴムの特性						
耐傷付き性	Α	D	Ω	Д	Д	А

ン量 サ 重。 # - 10 日酸い シンで リリん ボア合 ンテを エス部 ジ、量 口部重 上量1 イ重剤 八ら性 ノ号语 氏ュゼ ル華よ る亜部才鉛お さぞ重れれ事 O S i (C H 3) z H) 3で示さ j i 1 ~ 5 の組成物は、それぞ z 4 0 重量部、タルク 7 0 重 1 (O r 数 多 1 2-8 1 (11、比較のパンプラン C。H 法据的

[0154]

【表3】

250 85 51 S S 2604 图 98 104 + 220က 式 てない ~ 胀 てない 米 実施例 L) 10. + 200 101 2 8 8 [MPa] 旦 % % 度 鯅 . ± 颞 数 __ 牡 华 3 6 Π П 1 HI A R (T B) €: Ή 唇紫龙化柱 A R (E 1 ス 祭 橋 다 교 교 圧縮水久エチレン チレン 態物性 浴存 衎 ◁ ۷ 到

表 2 (続き)

特平11-209076

【書類名】

要 約 書

【要約】

【解決手段】本発明の架橋可能な密封シールパッキン用ゴム組成物は、その熱風架橋ゴムシートがHBの鉛筆による鉛筆硬度試験で表面に傷が全く付かず、かつ、その熱プレス架橋ゴムシートは、150℃で22時間熱処理後の圧縮永久歪みが70%以下であり、120℃で70時間エチレングリコール溶液に浸漬させた後の体積変化率が-20~+20%であり、120℃で70時間熱老化後の引張強さ保持率が50~150%、伸び保持率が50%以上、硬さ変化が0~+50ポイントであり、常態物性の引張強度が3~20MPaであり、金型汚染試験での汚染までのショット数が30回以上であることを特徴とする。このような物性を有する組成物は、特定のエチレン・αーオレフィン・非共役ポリエンランダム共重合体ゴムと、SiH基を1分子中に少なくとも2個持つSiH基含有化合物とを含有してなり、該組成物の160℃での架橋速度(tc(90))が15分以下である。

【効果】上記組成物は、架橋速度が速く生産性に優れ、熱空気架橋が可能で、しかも強度特性、耐傷付き性、耐熱老化性、耐圧縮永久歪み性、耐薬品性および耐金型汚染性に優れる密封シールパッキン用架橋ゴム成形体(発泡成形体も含む)を提供できる

【選択図】なし

識別番号

[000005887]

1. 変更年月日 1997年10月 1日

[変更理由] 名称変更

住 所 東京都千代田区霞が関三丁目2番5号

氏 名 三井化学株式会社

特平11-209076

出願人履歴情報

識別番号

[000002060]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 東京都千代田区大手町二丁目6番1号

氏 名 信越化学工業株式会社