N>2 GRADOS DE LIBERTAD

Los ejercicios con (*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

1. Molécula triatómica Se esquematiza en la figura una molécula triatómica simétrica. En el equilibrio dos átomos de masa m están situados a ambos lados del átomo de m masa M=2m y vinculados por resortes de constante k y longitud natural l_0 . Como sólo estamos interesados en analizar los modos longitudinales, supondremos que las

masas se encuentran dentro de una canaleta que impide todo tipo de movimiento en

- a) Encuentre las ecuaciones de movimiento de cada masa.
- b) Halle las frecuencias de los modos normales.
- c) Dibuje las configuraciones de cada modo.

la dirección transversal.

- d) Si el centro de masa de la molécula se mueve con $v_o = cte$, halle la solución para $\psi_a(t)$, $\psi_b(t)$ y $\psi_c(t)$.
- e) Determine las condiciones iniciales para excitar sólo el modo más alto (mayor frecuencia).
- 2. Analice las oscilaciones transversales del problema anterior. Para su mejor comprensión puede imaginarlo como el esquema de la figura, en el cual las masas de los extremos pueden subir/bajar pero solidarios a la barra enhebrada a los vástagos laterales.

- a) Encuentre las ecuaciones de movimiento de las masas. ¿Qué diferencias hay entre la ecuación de movimiento para resortes slinky y resortes con $l_0 \neq 0$ en la aprox. de pequeñas oscilaciones?
- b) Halle las frecuencias de los modos normales.
- c) Dibuje la configuración correspondiente a cada modo normal. Determine los desplazamientos de cada masa como función del tiempo (solución más general posible para cada masa).
- d) ¿Qué condiciones iniciales que permiten excitar sólo el segundo modo?
- e) Si se fuerza la masa del centro con frecuencias incrementalmente mayores, ¿qué modos se van observando?
- f) ¿Cómo se modifican los resultados anteriores si el extremo de la derecha se fija a la pared como se indica en la figura a continuación?.

3. Considere el sistema de la figura, en la que los resortes verticales tienen longitud natural l_0 y constante k_1 , y los horizontales $a_0 = 0$ (son "slinkies") y k_2 . Calcule las frecuencias propias y los modos normales.

