ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PROF. ME. MARCO IKURO HISATOMI

Livro didático

Fonte: Tangon, Leonardo Guimarães, 2016

Unidade 1 Fundamentos de Sistemas Computacionais	. 7
Seção 1.1 - Conceitos básicos de arquitetura	. 9
e organização de computadores	
Seção 1.2 - Desenvolvimento histórico	21
Seção 1.3 - A estrutura básica de um computador	33
Seção 1.4 - A hierarquia de níveis de computador	45
Unidade 2 Componetes básicos de um computador	61
Seção 2.1 - Unidade central de processamento (CPU)	63
Seção 2.2 - Memória principal	75
Seção 2.3 - Memória secundária	. 89
Seção 2.4 - Dispositivos de entrada e saída	103
Unidade 3 Sistemas numéricos: conceitos, simbologia e representação de base numérica	121
de base numérica	
de base numérica	123
de base numérica	123
de base numérica	123 135 147
de base numérica	123 135 147
de base numérica	123 135 147 161
de base numérica	123 135 147 161
de base numérica	123 135 147 161
de base numérica	123 135 147 161 175 177 193 203

Conteúdo Programático

Unidade 4 | Álgebra Booleana e Lógica Digital

- ► Seção 4.1 Introdução à álgebra booleana
- Seção 4.2 Expressões lógicas
- ► Seção 4.3 Portas lógicas
- ► Seção 4.4 Introdução a circuitos

Situação problema

EXBIN

Contextualizando

Fonte: Shutterstock

- Sua Missão:
- Agora, você, como parte da equipe de desenvolvimento da eXBin, teve uma nova atribuição.
- ► Foco na simplificação de expressões lógicas, a partir de regras e de teoremas, iremos dedicar-nos a aprender e desenvolver as formas de simplificação para chegarmos ao menor número possível de portas lógicas, fazendo com que usemos o menor número possível de portas lógicas com o mesmo resultado.

EXPRESSÕES LÓGICAS

Fonte: Shutterstock

- As leis comutativas da adição e multiplicação, as leis associativas da adição e multiplicação e a lei distributiva são as mesmas leis aplicadas à álgebra comum, que com certeza você já aprendeu no primeiro grau.
- ► Lei Comutativa da Adição → A + B = ____
- ▶ Lei Comutativa da Multiplicação Symbol → AB = ____
- ▶ Lei Associativa da Adição Symbol → A + (B + C) = ____
- ▶ Lei Associativa da Multiplicação → A(BC) = ____
- ► Lei Distributiva → A(B + C) = ____

Fonte: Shutterstock

- As leis comutativas da adição e multiplicação, as leis associativas da adição e multiplicação e a lei distributiva são as mesmas leis aplicadas à álgebra comum, que com certeza você já aprendeu no primeiro grau.
- ► Lei Comutativa da Adição → A + B = B + A
- ▶ Lei Comutativa da Multiplicação Symbol → AB = BA
- ► Lei Associativa da Adição Symbol → A + (B + C) = (A + B) + C
- ► Lei Associativa da Multiplicação → A(BC) = (AB)C
- ► Lei Distributiva \rightarrow A(B + C) = AB + AC

Regras da Álgebra Booleana.

1		Α	+	0	=	Α
---	--	---	---	---	---	---

$$2. A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \bullet A = A$$

8.
$$A \bullet \overline{A} = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{AB} = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

A, B ou C podem representar uma única variável ou uma combinação de variáveis.

OR

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

AND

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Regras da Álgebra Booleana.

$$1. A + 0 = A$$

$$2. A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

OR

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

AND

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

7.
$$A \bullet A = A$$

8.
$$A \bullet \overline{A} = 0$$

9.
$$\bar{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{AB} = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

OR

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

AND

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

7.
$$A \bullet A = A$$

8.
$$A \bullet \overline{A} = 0$$

9.
$$\bar{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{AB} = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

RECAPITULANDO

CONVERSÃO DE BASE
BINÁRIA COM FRAÇÃO

Converta o número

$$1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} =$$

 $8 + 0 + 2 + 1 + 0,5 = 11,5$

► Bons estudos!