Poszukiwanie największej kliki w grafie

Anna Stępień Adam Stelmaszczyk

Spis treści

1	Zadanie	2
2	Założenia	2
	2.1 Dane wejściowe	. 2
	2.2 Dane wyjściowe	. 2
	2.3 Sytuacje wyjątkowe	
3	Algorytm	3
	3.1 Pseudokod	. 3
	3.2 Opis działania	
	3.3 Złożoność	
4	Struktury danych	5
5	Testy	6
	5.1 Badanie poprawności zwracanych wyników	. 6
	5.2 Badanie czasu wykonania dla różnych typów grafów	
6	Analiza zaimplementowanego algorytmu	6
	6.1 Analiza poprawności działania algorytmu	. 7
	6.2 Analiza czasów wykonania algorytmu	7
7	Podsumowanie i wnioski	
\mathbf{D}	datek A Opis implementacji i instrukcja obsługi	2 3 3 3 3 4 5 5 5 6 6 6 pów grafów 6 7 7 19 1 obsługi 19
	A.1 Kod algorytmu	19
	A.2 Instrukcja obsługi	

1 Zadanie

Kliką grafu nazywamy podgraf, w którym każde dwa wierzchołki są ze sobą połączone. Maksymalną kliką nazywamy klikę, do której nie można dodać ani jednego wierzchołka więcej, tak aby razem z nią nadal tworzył klikę. Największą kliką nazywamy klikę o największej liczbie wierzchołków. Celem zadania jest implementacja wybranego algorytmu znajdującego największa klikę w grafie oraz analiza otrzymanych wyników.

2 Założenia

Realizowana aplikacja będzie pracowała w trybie konsolowym i będzie przyjmowała pliki z danymi przekazane na strumień wejściowy.

W projekcie zostanie wykorzystany zmodyfikowany algorytm Brona–Kerboscha [?], dokładniej opisany w sekcji 3. Do implementacji zadania wykorzystany zostanie jezyk Java.

2.1 Dane wejściowe

Wejściem dla algorytmu jest graf nieskierowany dany macierzą o n wierszach i n kolumnach:

 $q_{i,j}$ równe 0 oznacza, że wierzchołki i oraz j nie są połączone krawędzią. W przeciwnym razie, wierzchołki są połączone.

Macierz jest dana w pliku tekstowym, w którym kolejne $q_{i,j}$ w wierszu j są oddzielone co najmniej jednym znakiem białym. Przez znak biały rozumiemy spację lub tabulator. $q_{i,j}$ różne od 0 będą traktowane jak 1.

Poniżej przedstawiono przykładowy, poprawny plik wejściowy.

Kolejne $q_{i,j}$ w wierszu j są oddzielone co najmniej jednym znakiem białym. Przez znak biały rozumiemy spację lub tabulator. $q_{i,j}$ różne od 0 będą traktowane jak 1.

2.2 Dane wyjściowe

Wyjściem jest niepusty zbiór numerów wierzchołków, które tworzą największą klikę w podanym grafie. Wierzchołki numerujemy od 0 do n-1. W grafie może istnieć więcej niż jedna największa klika. W takim przypadku algorytm zwróci pierwszą ze znalezionych klik.

2.3 Sytuacje wyjątkowe

Problemami, które mogą wystąpić podczas działania aplikacji są:

- błędny format danych wejściowych,
- przepełnienie stosu spowodowane zbyt głębokim poziomem rekurencji.

W przypadku, gdy algorytm otrzyma na wejściu błędne dane np. liczba wierszy macierzy będzie niezgodna z zadeklarowaną na początku pliku z danymi, użytkownik zostanie poinformowany o zaistniałej sytuacji a dalsze działanie programu zostanie przerwane.

Ze względu na rekurencyjny charakter algorytmu Brona–Kerboscha może się zdarzyć, iż dla pewnych danych wejściowych algorytm nie będzie w stanie zwrócić wyniku ze względu na ograniczoną pojemność stosu. Próbą rozwiązania tego problemu mogłaby być iteracyjna implementacja algorytmu.

3 Algorytm

Algorytm Brona–Kerboscha jest rekurencyjnym algorytmem z nawrotami, który umożliwia poszukiwanie maksymalnych klik w zadanym grafie niezorientowanym. Domyślnie algorytm zwraca wszystkie maksymalne kliki. W algorytmie wprowadzona zostanie zmiana, dzięki której zwracana będzie największa ze znalezionych maksymalnych klik, charakteryzująca się największą liczbą wierzchołków.

3.1 Pseudokod

Na poniższym listingu przedstawiona została podstawowa wersja algorytmu Brona–Kerboscha.

Poniżej przedstawiona została zmodyfikowana wersja algorytmu, która zostanie wykorzystana do realizacji zadania.

1 Algorytm Brona–Kerboscha (wersja podstawowa)

```
1: compsub \leftarrow \emptyset
 2: candidates \leftarrow V(G)
 3: not \leftarrow \emptyset
 4: cliques \leftarrow \emptyset
 5: function BRON_KERBOSCH(compsub, candidates, not)
        if candidates = \emptyset and not = \emptyset then
             cliques \leftarrow cliques \cup \{compsub\}
                                                                               ⊳ Maksymalna klika
 7:
 8:
         else
             for each v in candidates do
 9:
10:
                 candidates \leftarrow candidates \setminus \{v\}
                 new\_compsub \leftarrow compsub \cup \{v\}
11:
12:
                 new\_candidates \leftarrow candidates \cap neighbors(v)
                 new\_not \leftarrow not \cap neighbors(v)
13:
                 BRON_KERBOSCH(new_compsub, new_candidates, new_not)
14:
                 compsub \leftarrow compsub \cup \{v\}
15:
             end for
16:
         end if
17:
18: end function
```

2 Algorytm Brona–Kerboscha (wersja rozszerzona)

```
1: compsub \leftarrow \emptyset
 2: candidates \leftarrow V(G)
 3: not \leftarrow \emptyset
 4: bigqest\_clique \leftarrow \emptyset
 5: function BRON_KERBOSCH(candidates, not)
         if candidates = \emptyset and not = \emptyset then
 6:
 7:
             if size(bigqest\_clique) < size(compsub) then
 8:
                 biggest\_clique \leftarrow compsub
                                                                                  ⊳ Największa klika
             end if
 9:
10:
        else
             pivot \leftarrow vertex\_with\_maxdeg(candidates \cup not)
11:
             candidates\_to\_check \leftarrow candidates \setminus neighbors(pivot)
12:
             for each v in candidates_to_check do
13:
                 compsub \leftarrow compsub \cup \{v\}
14:
                 candidates \leftarrow candidates \setminus \{v\}
15:
                 new\_candidates \leftarrow candidates \cap neighbors(v)
16:
                 new\_not \leftarrow not \cap neighbors(v)
17:
18:
                 BRON_KERBOSCH(new\_candidates, new\_not)
                 compsub \leftarrow compsub \setminus \{v\}
19:
                 not \leftarrow not \cup \{v\}
20:
21:
             end for
         end if
22:
23: end function
```

3.2 Opis działania

Istotą działania przedstawionego algorytmu jest utrzymywanie trzech rozłącznych zbiorów: compsub, candidates oraz not.

Algorytm Brona–Kerboscha znajduje maksymalne kliki składające się ze wszystkich wierzchołków należących do zbioru *compsub*, niektórych należących do zbioru *candidates*, i z żadnego, który należy do zbioru *not*.

Poniżej przedstawiona została charakterystyka każdego ze zbiorów wykorzystywanych przez algorytm:

- compsub do zbioru należą wszystkie wierzchołki grafu, które tworzą powstającą klikę.
- candidates
 do zbioru należą wierzchołki grafu, które mogą posłużyć do rozszerzenia zbioru compsub.
- not
 do zbioru należą te wierzchołki, które były już wcześniej wykorzystane do rozszerzenia zbioru compsub.

Należy zauważyć, iż wszystkie wierzchołki, które są połączone z każdym wierzchołkiem należącym do zbioru *compsub* znajdują się albo w zbiorze *candidates* albo not.

Zmodyfikowana wersja algorytmu Brona–Kerboscha wprowadza pojęcie wierzchołka zwrotnego (dalej oznaczanego pivot), który wybierany jest ze zbioru $candidates \cup not$ jako wierzchołek o największym stopniu.

W każdym rekurencyjnym wywołaniu algorytmu rozważane są wierzchołki należące do zbioru candidates. Jeśli zbiory candidates i not są puste, sprawdzane jest czy znaleziona maksymalna klika (oparta na wierzchołkach ze zbioru compsub) jest większa od największej dotychczas znalezionej kliki. Jeśli tak, to znaleziona klika staje się największą, w przeciwnym wypadku największa klika pozostawiana jest bez zmian. W przypadku, gdy zbiory candidates i not nie są puste, dla każdego wierzchołka ze zbioru $candidates \setminus neighbors(pivot)$ następuje rekurencyjne wywołanie algorytmu, w którym bieżący wierzchołek v dodawany jest do zbioru compsub i usuwany ze zbioru candidates, a w zbiorach candidates i not pozostawiane są tylko te wierzchołki grafu, które są sąsiadami wierzchołka v. Następnie, wierzchołek v jest dodawany do zbioru not jako już wykorzystany do rozszerzenia kliki oraz usuwany ze zbioru compsub.

Wynikiem działania algorytmu jest zbiór biggest_clique, który początkowo inicjowany jest jako zbiór pusty. W przypadku, gdy znaleziona zostanie największa klika, zbiór ten zawiera wierzchołki ją tworzące.

3.3 Złożoność

Pesymistyczna złożoność przedstawionego algorytmu wynosi $O(3^{n/3})$ i wynika z górnego ograniczenia na liczbę maksymalnych klik w grafie o n wierzchołkach.

4 Struktury danych

Graf Do reprezentacji grafu zostanie wykorzystana macierz sąsiedztwa, zaimplementowana jako dwuwymiarowa tablica wartości boolowskich.

Zbiory wierzchołków (compsub, candidates, not, biggest_clique) Zbiory przechowujące wierzchołki zostaną zaimplementowane jako klasa Vertices dziedzicząca po klasie TreeSet języka Java.

5 Testy

Istotną częścią realizowanego zadania jest przeprowadzenie testów związanych zarówno z poprawnością zwracanych wyników jak również wpływem danych wejściowych na czas wykonania algorytmu.

5.1 Badanie poprawności zwracanych wyników

Do weryfikacji poprawności zwracanych przez algorytm wyników zostanie wykorzystana biblioteka igraph¹, która udostępnia m.in funkcję wyznaczającą maksymalne kliki w zadanym grafie. Podczas testowania planujemy wykorzystać dane zwrócone przez bibliotekę igraph jako rozwiązania referencyjne, które następnie posłużą do porównania z wynikami otrzymanymi przez zaimplementowany algorytm. Rozwiązanie, a więc największa klika zwrócona przez algorytm jest poprawna wtedy, gdy znajduje się na liście rozwiązań referencyjnych.

Proces generowania rozwiązań referencyjnych oraz porównywania wyników zostanie zautomatyzowany.

5.2 Badanie czasu wykonania dla różnych typów grafów

Z punktu widzenia analizy zaimplementowanego algorytmu istotne jest zbadanie jego zachowania dla różnych typów grafów. W szczególności przeprowadzone zostaną eksperymenty na zestawach grafów o zróżnicowanej gęstości.

6 Analiza zaimplementowanego algorytmu

W ramach części badawczej projektu zrealizowane zostały dwa rodzaje testów: testy wykazujące poprawność implementacji algorytmu oraz testy badające jego zachowanie dla różnych typów grafów.

W obu eksperymentach wykorzystano następujące zestawy grafów:

- zestaw grafów losowych o gęstości 0,1
- zestaw grafów losowych o gęstości 0,2
- zestaw grafów losowych o gęstości 0,3
- zestaw grafów losowych o gęstości 0,4
- zestaw grafów losowych o gęstości 0,5
- zestaw grafów losowych o gęstości 0,6
- zestaw grafów losowych o gęstości 0,7

¹http://igraph.sourceforge.net/

- zestaw grafów losowych o gęstości 0,9
- zestaw grafów pełnych

W każdym zestawie znalazły się grafy o liczbie wierzchołków: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

Podczas analizy zbadane zostały dwa przypadki:

- wpływ liczby wierzchołków dla grafów o ustalonej gęstości,
- wpływ gęstości dla grafów o ustalonej liczbie wierzchołków.

6.1 Analiza poprawności działania algorytmu

6.2 Analiza czasów wykonania algorytmu

Dla każdego zestawu grafów dokonane zostały pomiary czasu działania algorytmu. Wyniki zostały zamieszczone poniżej.

Tabela 1: Statystyki czasowe dla zestawu grafów o gęstości 0,1

Liczba wierzchołków	Liczba największych klik	Czas [s]
10	5	0.12
20	2	0.18
30	2	0.20
40	8	0.34
50	16	0.46
60	37	0.46
70	53	0.60
80	1	0.87
90	3	0.94
100	3	0.82

Rysunek 1: Wykres zależności czasu wykonania od liczby wierzchołków dla grafów o gęstości $0,\!1$

Tabela 2: Statystyki czasowe dla zestawu grafów o gęstości 0,3

Liczba wierzchołków	Liczba największych klik	Czas [s]
10	3	0.18
20	2	0.25
30	20	0.22
40	1	0.43
50	1	0.49
60	29	0.68
70	1	1.02
80	2	1.17
90	8	1.30
100	9	1.15

Rysunek 2: Wykres zależności czasu wykonania od liczby wierzchołków dla grafów o gęstości $0,\!3$

Tabela 3: Statystyki czasowe dla zestawu grafów o gęstości 0,5

Liczba wierzchołków	Liczba największych klik	Czas [s]
10	12	0.13
20	3	0.18
30	11	0.31
40	2	0.46
50	3	0.78
60	4	1.12
70	7	1.43
80	7	1.98
90	2	2.30
100	17	2.58

Rysunek 3: Wykres zależności czasu wykonania od liczby wierzchołków dla grafów o gęstości $0,\!5$

Tabela 4: Statystyki czasowe dla zestawu grafów o gęstości 0,7

Liczba wierzchołków	Liczba największych klik	Czas [s]
10	4	0.13
20	2	0.24
30	23	0.42
40	2	0.72
50	16	1.68
60	24	2.29
70	1	3.04
80	92	4.83
90	39	8.17
100	52	13.99

Rysunek 4: Wykres zależności czasu wykonania od liczby wierzchołków dla grafów o gęstości $0,\!7$

Tabela 5: Statystyki czasowe dla zestawu grafów o gęstości 0,9

Liczba wierzchołków	Liczba największych klik	Czas [s]
10	2	0.14
20	2	0.22
30	2	0.56
40	5	1.47
50	30	2.46
60	67	11.49
70	127	102.40
80	106	437.49
90	*	*
100	*	*

Rysunek 5: Wykres zależności czasu wykonania od liczby wierzchołków dla grafów o gęstości $0,\!9$

Zestaw grafów pełnych

Tabela 6: Statystyki czasowe dla zestawu grafów pełnych

Liczba wierzchołków	Czas [s]
10	0.14
20	0.27
30	0.16
40	0.39
50	0.53
60	0.53
70	0.63
80	0.74
90	0.86
100	1.19

Rysunek 6: Wykres zależności czasu wykonania od liczby wierzchołków dla grafów pełnych

Zestaw grafów o 10 wierzchołkach

Rysunek 7: Wykres zależności czasu wykonania od gęstości dla grafów o 10 wierzchołkach

Zestaw grafów o 20 wierzchołkach

Rysunek 8: Wykres zależności czasu wykonania od gęstości dla grafów o 20 wierzchołkach

Zestaw grafów o 30 wierzchołkach

Rysunek 9: Wykres zależności czasu wykonania od gęstości dla grafów o 30 wierzchołkach

Zestaw grafów o 40 wierzchołkach

Rysunek 10: Wykres zależności czasu wykonania od gęstości dla grafów o 40 wierzchołkach

Zestaw grafów o 50 wierzchołkach

Rysunek 11: Wykres zależności czasu wykonania od gęstości dla grafów o 50 wierzchołkach

Zestaw grafów o 60 wierzchołkach

Rysunek 12: Wykres zależności czasu wykonania od gęstości dla grafów o 60 wierzchołkach

Zestaw grafów o 70 wierzchołkach

Rysunek 13: Wykres zależności czasu wykonania od gęstości dla grafów o 70 wierzchołkach

Zestaw grafów o 80 wierzchołkach

Rysunek 14: Wykres zależności czasu wykonania od gęstości dla grafów o 80 wierzchołkach

Zestaw grafów o 90 wierzchołkach

Rysunek 15: Wykres zależności czasu wykonania od gęstości dla grafów o 90 wierzchołkach

Zestaw grafów o 100 wierzchołkach

Rysunek 16: Wykres zależności czasu wykonania od gęstości dla grafów o 100 wierzchołkach

- 7 Podsumowanie i wnioski
- A Opis implementacji i instrukcja obsługi
- A.1 Kod algorytmu
- A.2 Instrukcja obsługi