

- (a) USANDO O ALGORITHO DE SETHÎ-ULLIAN PARA ANOTAR EM VERMELHO O NÚMERO DE REGISTRAJORES NECESSARIDS EN CADA SUB-ARVORE, NOTA: FOLHAS NA MENDRIA.
- (b) A ORDEM DO ESCACONAMENTO É DADO EM AZUL E SEGVE PRIMEIRO PARA A SUB-ARVORE QUE DEMANDA MAIS LEGISTRADORS

(c) NUMBER DE RECISTRADORES ÉZ. PRECISO FAZER SPILL ! ESCOLLIDO O VERTRE t3. (\*) r( := r1+r2 ri := M[do] PE(00) r2 := M[t] rz := n[co] ri != ri + rz r2 := M(e.) spill ri ;= rz-ri → h[t3] := ri ri := M[50] rz := M[ao]

(\*)



(b) NãO FORDA FOLICITADAS TODAS

AS ITERAÇÕES, SIMENTE O RESULTADO

FINAL, QUE PODE SER OBTIDO DE

FORDA "AD-HOC" DO CFG.

| 1 2 | in(n)<br>-<br>a+s | a+5<br>a+5,c-a | inicio<br>out[Bi]=\$<br>in[Bi]=gen[Bi] |
|-----|-------------------|----------------|----------------------------------------|
| 3   | a+5, c-a          | ass, c-a       | # Bi + BE                              |
| ч   | a+5, c-2          | ats, c-a       | in[Bc] =                               |
| 3   | a+5, c-a          | _              | U-Kill[Bi]                             |
| 6   | b≱d               | -              |                                        |
|     |                   |                | _                                      |



A OTTMIZA CADÉ CHAMADA DE "CODE
HOISTING". PERMITE REDUZIR O TAMANHO
DO PROGRAMA, HABILITAR CODE MOTION
PARA FORA DE LAÇOS, REALITAR EXECU
CÃO MOIS CEDO MO PIPELIME, ETE....

(a) for each block n do in[n]=\$;

while changes to any of in's occur do

for each block n do {

out [n] = [] in [s]

sesucc[n]

in[n] = ux[n][J(out(n]-defin])

}

(6) ORDEM DOS BLOCOS É REVERSA B3, B2, B, e B.

|   |         |        | 1     |                 | 2     |        |
|---|---------|--------|-------|-----------------|-------|--------|
|   | ( uk[n] | def[n] | in(n) | out [n]         | in[n] | out[n] |
| 9 | _       | a      | _     | a               | -     | a      |
| 1 | _       | 5,d    | a     | aid             | a     | a,d    |
| 2 | -       | cid    | a     | a<br>a,d<br>a,d | a     | a,d    |
| 3 | a,d     | - {    | a,d   | _               | and   | _      |
|   |         | 7      |       |                 | 7     |        |

- (C) O PROPAGAR OUTEN] PARA DENTED

  DE CADA BLOW N.
  - @ GH STIZUIR GROFO DE ÎNTERFERÊNCIA



3 DEGREE (6)=1<2 SIMPLIFY



- (a) = 27,2 -> NÃO SIMPLIFY
- Beiggs



(6) DEGREE (a)=1 < Z -> SIMPLIFY a

(csd)

3 DEGREE (CAD) =0 <2

- SIMPLIFY CO

B POP ( SELECT BIL):







- 1) DEGREE (a) = DEGREE (b) = 2 >, 2
  NÃO CONSE EUE SIMPLIFY
- 3 DECREE (CLD) = 27,2 Mão CONSEGUE CODLESGING (BRIGG)
- (3) a vizinto ched / NÃD GASE GUE GALERING DEGREE (6) = 27,2 } (GEDRGE)

GIDENTIFIZAR SPILL: CUSTO(h) = 
$$\frac{usos(h)}{degree(h)}$$
  
 $\alpha: 2/3 = 0.6$  } Escolite-se  $\alpha$ .

$$\alpha : \frac{2}{3} = 0.6$$

$$a: \frac{2}{3} - \frac{3}{5}$$

$$c: \frac{2}{1} = \frac{1}{1}$$

$$\frac{2}{d} = \frac{3}{2} = 1.5$$

## REECCEVENDO GÓDIBO

MOVE GRAKE:



- @ RECONE CANDO ...
- (a) DEGREE  $(a_1) = 0 < 2$ DEGREE  $(a_2) = DEGREE(5) = 1 < 2$   $\Rightarrow$  SIMPLIFY  $a_1, a_2, 5$ 
  - 3 comesce cod, QUALQUER HEURÍSTICA
- 3 DECREE (crd) = 0 < 2 = Simplify
- ( POP (SELEGT):



## QUESTED 4

