Synthèse du cours 8 : Algorithmes gloutons

15 novembre 2022

François Laroussinie

NB: Ces synthèses ont pour but de compléter les notes prises en cours. Elles ne les remplacent pas! En particulier, la plupart des preuves n'y figurent pas. Rappel : il faut programmer les algorithmes vus en cours.

1 Le problème de l'allocation d'une ressource

On dispose d'une ressource (par exemple, un camion, un processeur,...), et on a un ensemble \mathcal{E} de requêtes: chaque requête vise à utiliser cette ressource entre deux dates. L'objectif est de satisfaire le plus grand nombre de requêtes possible.

Une requête sera une paire $(d, f) \in \mathbb{N} \times \mathbb{N}$ avec d < f. Un sous-ensemble $\mathcal{F} \subseteq \mathcal{E}$ de requêtes est dit *compatible* lorsqu'une aucune requête n'en intersecte une autre, c'est-à-dire lorsque pour tout $(d_i, f_i), (d_j, f_j) \in \mathcal{F}$, on a soit $f_i \leq d_j$ (la requête i se termine avant le début de la requête j, on dit alors que la requête i précède j) ou $f_j \leq d_i$ (la requête j précède la requête i).

Le problème s'énonce alors comme suit :

```
Input : un ensemble \mathcal{E} de n requêtes (d_i, f_i)_{1 \leq i \leq n} avec d_i < f_i pour tout i.

Output : un sous-ensemble compatible \mathcal{F} \subseteq \mathcal{E} de taille maximale.
```

La taille du problème est n.

Dans la suite, on parlera des « solutions optimales pour un ensemble de requêtes \mathcal{E} » pour désigner les sous-ensembles compatibles de taille maximale.

Algorithme. On va utiliser l'algorithme ci-dessous. La variable aux sert à s'assurer que la prochaine requête qui sera ajouté à la solution n'intersecte pas la dernière requête choisie.

```
Trier l'ensemble \mathcal{E} par ordre de date de fin croissante (donc tel que f_i \leq f_{i+1}) \mathcal{F} = \emptyset aux = 0 Pour i = 1, \ldots, n: ..... Si aux \leq d_i Alors: ...... \mathcal{F} + = \{(d_i, f_i)\} ....... aux = f_i Retourner \mathcal{F}
```

La complexité de l'algorithme est donc $O(n \cdot \log n)$ pour la phase de tri et O(n) pour le reste...

Il reste à prouver sa correction! Il est clair qu'il renvoie bien un sous-ensemble compatible (c'est un invariant direct de l'algorithme) mais il faut montrer son optimalité. On va la montrer de deux manières. D'abord avec une preuve *adhoc* et ensuite en utilisant deux propriétés des algorithmes gloutons.

Preuve de correction 1. On va montrer que l'algorithme donne une solution optimale, c'est-à-dire un sous-ensemble \mathcal{F} de taille maximale. Pour cela, on va supposer que ce n'est pas le cas et donc que la ou les solutions optimales contiennent plus de requêtes que le sous-ensemble renvoyé par l'algorithme. Dans la suite, on note $\mathcal{F} = \{x_1, \ldots, x_p\}$ le sous-ensemble compatible renvoyé par l'algorithme trié par date de fin croissante. Etant donnée la manière dont l'algorithme procède, on sait aussi que x_1 est la première requête choisie par l'algorithme pour \mathcal{F} , x_2 est la seconde, x_3 la troisième,...

On suppose à présent qu'une solution optimale comprend q requêtes avec q > p. Parmi toutes les solutions optimales, on choisit celle qui partage le plus des premiers choix fait par l'algorithme. Soit $\mathcal G$ cette solution optimale $\{y_1,y_2,\ldots,y_q\}$ aussi triée par date de fin croissante. On a donc $d(y_1) < f(y_1) \le d(y_2 \le f(y_2) < \ldots$ où $d(y_i)$ désigne la date de début de la requête y_i et $f(y_i)$ sa date de fin.

 \mathcal{G} peut aussi s'écrire $\{x_1, \ldots, x_k, y_{k+1}, \ldots, y_q\}$ et $x_{k+1} \neq y_{k+1} : k$ est le nombre de premiers choix de l'algorithme partagés par \mathcal{G} . Et étant donnée hypothèse sur le choix de \mathcal{F} , il n'existe pas de solutions optimales qui contiennent les requêtes x_1, \ldots, x_{k+1} .

On sait aussi que k < p car si k = p alors l'algorithme aurait aussi essayer d'ajouter les requêtes $y_{k+1}, y_{k+2},...$ et que certaines d'entre elles auraient été ajoutées puisqu'elles sont compatibles avec les premières requêtes choisies... Maintenant on définit \mathcal{G}' par $\mathcal{G}\setminus\{y_{k+1}\}\cup\{x_{k+1}\}$. On voit alors que \mathcal{G}' est un sous-ensemble compatible puisque si l'algorithme choisit la requête x_{k+1} , c'est qu'elle est la requête ayant une date de fin minimale parmi celles compatibles avec $\{x_1, \ldots, x_k\}$, et donc la requête y_{k+1} a une date de fin supérieure ou égale à celle de x_{k+1} , et donc remplacer y_{k+1} par x_{k+1} ne pose pas de problème pour les autres requêtes de \mathcal{G} : on a bien $f(x_{k+1}) \leq d(y_{k+2})$ (car $f(x_{k+1}) \leq f(y_{k+1})$).

 \mathcal{G}' est donc un sous-ensemble compatible et de même taille que \mathcal{G} , c'est donc une solution optimale et il partage un premier choix de l'algorithme de plus que \mathcal{G} , on a donc une contradiction avec les hypothèses de départ.

Preuve de correction 2. Pour cette seconde preuve, on procède en montrant d'abord que l'algorithme fait un « bon » premier choix, c'est à dire un choix qui permettra *in fine* d'obtenir un sous-ensemble optimal : autrement dit, un « bon choix » est un choix inclus dans une solution optimale.

Lemme 1 Soit \mathcal{E} un ensemble de requête et soit e une requête de \mathcal{E} ayant une date de fin minimale. Il existe une solution optimale avec la requête e.

Preuve : Soit $\mathcal{G} = \{y_1, \dots, y_q\}$ une solution optimale, où les y_i sont triés par date de fin croissante, et donc telle que $d(y_i) < f(y_i) \le d(y_{i+1}) \dots$ Etant donné l'algorithme, on sait que $f(e) \le f(y_1)$, d'où $f(e) \le d(y_2)$ et donc le sous-ensemble $\{e, y_2, \dots, y_q\}$ est compatible et constitue aussi une solution optimale qui contient le premier choix de l'algorithme.

Lemme 2 Soit \mathcal{E} un ensemble de requêtes. Soit \mathcal{G} une solution optimale pour \mathcal{E} et soit $e \in \mathcal{G}$. Alors $\mathcal{G}' = \mathcal{G} \setminus \{e\}$ est une solution optimale pour les requêtes de \mathcal{E} compatibles avec e, c'est-à-dire pour l'ensemble de requêtes $\mathcal{E}' = \{e' \in \mathcal{E} \mid d(e') \geq f(e) \lor d(e) \geq f(e')\}$.

Preuve : Soit $|\mathcal{G}| = k$ et donc $|\mathcal{G}'| = k - 1$.

Supposons que le lemme soit faux. Alors il existe \mathcal{G}'' une solution optimale pour \mathcal{E}' avec $|\mathcal{G}''| > |\mathcal{G}'| = k - 1$. Il suffit de prendre $\mathcal{G}'' \cup \{e\}$ pour obtenir un sous-ensemble compatible

(car par hypothèse \mathcal{G}'' est compatible avec e) pour \mathcal{E} et il est de cardinal strictement supérieur à k, donc \mathcal{G} n'est pas optimal, et cela contredit les hypothèses de départ.

Il reste à en tirer le théorème de correction... Pour cela il faut noter qu'une itération de l'algorithme consiste à choisir une requête ayant une date de fin minimale puis à passer à l'étape suivante où il va chercher une solution pour l'ensemble des requêtes compatibles avec son choix précédent, etc.

La preuve de correction se fait alors par induction sur la taille n de \mathcal{E} :

- -n=1: l'algorithme renvoie l'unique requête et c'est bien évidemment la solution optimale!
- n+1: Soit \mathcal{F} la solution renvoyée par l'algorithme, et soit e la première requête choisie par l'algorithme. On sait par le lemme 1, qu'il existe une solution optimale \mathcal{G} contenant e. Soit $k=|\mathcal{G}|$. Par le lemme 2, on sait que $\mathcal{G}'=\mathcal{G}\setminus\{e\}$ est une solution optimale pour l'ensemble \mathcal{E}' des requêtes compatibles avec e (donc avec $\mathcal{E}'=\{e'\in\mathcal{E}\mid d(e')\geq f(e)\vee d(e)\geq f(e')\}$). Et on a $|\mathcal{G}'|=k-1$.

A quoi correspond l'ensemble \mathcal{F} renvoyé par l'algorithme? A $\{e\} \cup \mathcal{F}'$ où \mathcal{F}' est l'ensemble renvoyé par l'algorithme pour l'ensemble \mathcal{E}' . Mais par hypothèse d'induction, on sait que l'algorithme est correct pour \mathcal{E}' (car $|\mathcal{E}'| \leq n$) et donc $|\mathcal{F}'| = |\mathcal{G}'| = k - 1$ et donc $|\mathcal{F}| = k$ et c'est donc une solution optimale.