Quiz Questions - week 4 Applied Biostatistics I Exercises, HS 2019

- 1) If events A and B are independent, are the following events (a, b, c) dependent or independent
 - a) A, \overline{B}
 - b) \bar{A} , B
 - c) \bar{A} , \bar{B}

Solution:

a) From the Low of total probability, we have: $A = A\overline{B} + AB$ and as corollary $P(A\overline{B}) = P(A) - P(AB)$, using the independence of A and B we have P(AB) = P(A)P(B)

As a result, $P(A\overline{B}) = P(A) - P(A)P(B) = P(A)(1 - P(B)) = P(A)P(\overline{B})$ which by definition means A and \overline{B} are independent.

- b) In the same way can be proved that \bar{A} and B are independent
- c) In similar way from the Low of total probability, we have: $\bar{B} = A\bar{B} + \bar{A}\bar{B}$ and as corollary $P(\bar{A}\bar{B}) = P(\bar{B}) P(A\bar{B})$ using the result from a) $P(\bar{A}\bar{B}) = P(\bar{B}) P(A)P(\bar{B}) = P(\bar{B})(1 P(A)) = P(\bar{B})P(\bar{A})$ which again by definition means \bar{A} and \bar{B} are independent.
- 2) You have a DNA polymer with length L that can break with the same probability at any point.

A: event of a break where the small part is less than $\frac{1}{3} * L$: What is the probability P(A) of event A? consider the continuous case

Solution:

Using Geometric probability based on length

```
P(break\ point < position(\frac{1}{3} * L)) = (\frac{1}{3} * L) / L = \frac{1}{3}
P(A) = P(break\ point < position(\frac{1}{3} * L)) + P(break\ point > position(\frac{1}{3} * L))
= \frac{1}{3} + \frac{1}{3} = \frac{2}{3}
```

For the discrete case where the length of the polymer is given in nucleotide base-pairs (N) and the break can happen only at a phosphodiester bond, the probability has to be corrected:

```
P(A) = P(breakpoint < floor(\frac{1}{3} * N)) + P(breakpoint > floor(\frac{2}{3} * N))
```

 $P(A) = floor(\frac{1}{3} * N) / N + floor(\frac{1}{3} * N) / N$ which for big enough N and considering a certain precision (as always in computational calculations) will be computationally equal to 2/3.

- * Function floor(x) (also in R) rounds to the nearest integer that's smaller than x
- 3) Freddy and Johnny are friends. Friday evening Freddy wants to meet Johnny (no mobile phones: battery empty). He knows he is with probability $\frac{2}{3}$ not at home $(P(Pub) = \frac{2}{3})$, $P(Home) = \frac{1}{3}$ and he could be in one of the two famous pubs in the town A and B with equal probability (P(A|Pub) = P(B|Pub) = 1/2). He already checked pub B and he was not there.

What is the probability $P(A|\bar{B})$ he is in pub A?

Solution: coming soon... will be updated next week