TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Loopy Belief Propagation (Loopy BP)

Loopy Belief Propagation (Loopy BP)

We design an algorithm that is correct for tree graphs and use it on non-tree (loopy) graphs.

Belief Propagation on Trees

Belief Propagation is a message passing procedure (actually dynamic programming).

For each edge $\{n, m\}$ and possible value y for node n we define the message $\mathbb{Z}_{m \to n}[y]$ from m to n to be the partition function for the subtree attached to n through m and with $\hat{\mathcal{Y}}[n]$ restricted to y.

Dynamic Programming Computes the Messages

$$Z_{m \to n}[y] = \sum_{y'} e^{s^N[m,y'] + s^E[\langle m, n \rangle, y', y]} \left(\prod_{k \in N(m), k \neq n} Z_{k \to m}[y'] \right)$$

Loopy BP

In a Loopy Graph we can initializing all message $Z_{n\to m}[y] = 1$ and then repeating (until convergence) the updates

$$\tilde{Z}_{m \to n}[y] = \frac{1}{Z_{m \to n}} Z_{m \to n}[y] \qquad Z_{m \to n} = \sum_{y} Z_{m \to n}[y]$$

$$Z_{m\to n}[y] = \sum_{y'} e^{s^N[m,y'] + s^E[m,n,y',y]} \left(\prod_{k \in N(m), \ k \neq n} \tilde{Z}_{k\to m}[y'] \right)$$

Computing Node Marginals from Messages

$$Z^{N}(y) = \sum_{\hat{\mathcal{Y}}: \hat{\mathcal{Y}}[n]=y} e^{s(\hat{\mathcal{Y}})}$$

$$= e^{s^{N}[y]} \left(\prod_{m \in N(n)} Z_{m \to n}[y] \right)$$

$$P^{N}(y) = Z^{N}(y)/Z, \quad Z = \sum_{y} Z^{N}(y)$$

Computing Edge Marginals from Messages

$$Z_{n,m}(y,y') \doteq \sum_{\hat{\mathcal{Y}}: \hat{\mathcal{Y}}[n]=c, \hat{\mathcal{Y}}[m]=y'} e^{s(\mathcal{Y})}$$

$$= e^{s^{N}[n,y]+s^{N}[m,y']+s^{E}[n,m,y,y']}$$

$$\prod_{m \in N(n), k \neq m} Z_{m \to n}[y]$$

$$m \in N(m), k \neq m$$

$$\sum_{m \in N(m), k \neq n} Z_{m \to n}[y']$$

$$p_{n,m}(y,y') = Z_{n,m}(y,y')/Z \quad Z = \sum_{y,y'} Z_{n,m}(y,y')$$

\mathbf{END}