Customer Propensity for Service (Ashok Leyland Ltd (AL))

Debasish Patra (71620022)

Rama Chandra Vattigunta (71620097)

Soubhagya Ranjan Rout (71620070)

Vaibhav Pralhad Mhaske (71620083)

(ISB - CBA Batch 7)

Project Sponsor - J Balasubramanian

Agenda

- Introduction
- Key Points
- Conclusions
- Recommendations

Customer Propensity for Service

 If you order pizza from Pizza Hut today then what is the probability that you will order pizza from Pizza hut next week or next month?

On similar lines

• If a customer comes to service his vehicle to service outlet today, what is the probability that the customer will visit the service outlet next month, or maybe after 3 months?

What is Customer Propensity for Service ????

Key Points

Business Problem

Descriptive and Exploratory Analysis of Data

Categorization of Visits and Analytical Techniques used

Comparison of Models

Results and Interpretation

Business Problem

Problem

 To obtain Propensity / Probability scores against each customer who will visit dealership workshop for his vehicle servicing needs during the defined period of time

Sub Problem

 Prediction of customers to be met by the Service Marketing Executive, Customer's past service patterns and Services/potential for these Customer vehicles

Data Cleaning and Data Exploration

- Vehicle cost zero or negative
- Service amount is zero or negative
- Visit data had two formats (ddmmyyyy and mmddyyyy). Hence resolved the format issue
- Found common component ids from Sales data and Service data and filtered both the datasets for common component ids
- Merged multiple line items of a service into a single line item of service
- Merged sales data and service data to obtain a single dataset

Feature extraction

```
docid kmread
              segment
                         mode1
                                 lob
                                                       amount
                                                                                 repairtype
                                                                                              region
      compno
  ABE025007Y | Segment 2 Model 90 LOB 4 12070864 22881 1145.22 REPAIR TYPE 13 REPAIR TYPE 22 Region 13
  ABE025007Y Segment 2 Model 90 LOB 4 12385555 26897 11646.92 REPAIR TYPE 13 REPAIR TYPE 22 Region 13
  ABE025007Y Segment 2 Model 90 LOB 4 14048956 47668 12432.42
                                                                             REPAIR TYPE 13 Region 13
4 ABE025007Y Segment 2 Model 90 LOB 4 15073898 48000 22592.50
                                                                             REPAIR TYPE 13 Region 13
5 ABE025007Y Segment 2 Model 90 LOB 4 15120319 48045 2191.40
                                                                             REPAIR TYPE 13 Region 13
6 ABE025007Y Segment 2 Model 90 LOB 4 15129685 48046 240.07
                                                                             REPAIR TYPE 13 Region 13
  vehiclecost billdate dateofsale vstdate daysino datediff serviceno
                                                                            group dtdflag servdiff
                                                                       1 2014 Dec
      1400000 2015-10-27 2014-12-13 2015-10-27
                                                           318
                                                                                               318
                                                                       2 2014 Dec
                                                           366
                                                                                               48
      1400000 2015-12-15 2014-12-13 2015-12-14
                                                                                      318
                                                                                               217
      1400000 2016-07-18 2014-12-13 2016-07-18
                                                                       3 2014 Dec
                                                                                      366
                                                                                              133
                                                           716
                                                                       4 2014 Dec
                                                                                      583
      1400000 2016-12-03 2014-12-13 2016-11-28
                                                           722
                                                                       5 2014 Dec
                                                                                      716
      1400000 2016-12-04 2014-12-13 2016-12-04
                                                                       6 2014 Dec
                                                                                      722
      1400000 2016-12-08 2014-12-13 2016-12-05
```

Difference in days between consecutive services

Bill date – Visit date

Number in days between service and Date of Sale Service no of services for vehicles

Density plot for difference in days between consecutive services from 2nd service to 7th service

Summary of Difference in days of consecutive services

Difference in days of consecutive services	Median (Difference in days)
2nd service – 1st service	45
3rd service – 2nd service	38
4th service — 3rd service	36
5th service – 4th service	35
6th service – 5th service	33
7th service – 6th service	31

Density plot for km reading of 1st to 6th service (Date of sale from 1st Oct 2015)

Summary for km reading of 1st to 6th service (Date of sale from 1st Oct 2015)

Service number	Median (km reading)
1	10
2	2317
3	9468
4	23456
5	33202
6	40158

Missing Service data (Density plot for first service (date of sale month-wise))

Seasonality in Visits

Seasonality in Visits contd'

Seasonality in Visits

More features added

- Create categories for variable model
- Added lag variables of service data to each observation
- Created categories for variable lag repair type into individual lag repair types taking values '1' or '0'
- Time index tmonth
 - t = 10 for Oct 2015
- Sine seasonality = $\sin((2*\Pi*t)/12)$
- Cosine seasonality = $cos((2*\Pi*t)/12)$
- Dependent Variable is Visit
 - Can takes values '1' or '0'

Categorization of Visits (Method 1)

Formula for Models (Method 1)

Model 1

• visit~segment+lob+region+model571+model561+model562+lagkmread+lagamount+lgrtpaid +lgrtamc+lgrtancillary+lgrtfoc+lgrtfreeservice+lgrtwarrant+lagdatediff+lagdaysino+lagservdiff +tmonth

Model 2

 visit~segment+lob+region+model571+model561+model562+lagkmread+lagamount+lgrtpaid +lgrtamc+lgrtancillary+lgrtfoc+lgrtfreeservice+lgrtwarrant+lagdatediff+lagdaysino+lagservdiff +tmonth+tmonthsins+tmonthcoss

Model 3

 visit~segment+lob+region+model571+model561+model562+log(lagkmread+1)+log(lagamou nt+1)+lgrtpaid+lgrtamc+lgrtancillary+lgrtfoc+lgrtfreeservice+lgrtwarrant+lagdatediff+lagdaysi no+lagservdiff+tmonth

Model 4

visit~segment+lob+region+model571+model561+model562+log(lagkmread+1)+log(lagamount+1)+lgrtpaid+lgrtamc+lgrtancillary+lgrtfoc+lgrtfreeservice+lgrtwarrant+lagdatediff+lagdaysino+lagservdiff+tmonth+tmonthsins+tmonthcoss

Predictive Modelling (Method 1)

Cross Validation (Method 1)

Method	Model	Accuracy (obtained from cross
		validation)
10 fold cross validation (Logistic Regression)	Model 1	0.7097402
10 fold cross validation (Logistic Regression)	Model 2	0.7082656
10 fold cross validation (Logistic Regression)	Model 3	0.7141222
10 fold cross validation (Logistic Regression)	Model 4	0.7136789

Method	Model	Accuracy (obtained from cross
		validation)
10 fold cross validation (Decision Trees)	Model 1	0.7450177
10 fold cross validation (Decision Trees)	Model 2	0.7452369
10 fold cross validation (Decision Trees)	Model 3	0.7450324
10 fold cross validation (Decision Trees)	Model 4	0.7444610

Random Forest Models (Method 1)

Method	Model	Train Accuracy	Test Accuracy	Precision
Random Forest	Model 1	96.86592	78.23698	70.82284
Kandom Forest	Wodel 1	90.80392	78.23038	70.82284
Random Forest	Model 2	97.35192	78.17356	70.82974
Random Forest	Model 3	96.86153	78.30385	70.91710
Random Forest	Model 4	97.51001	78.15977	70.57703

Comparison of Models (Method 1)

Method	Model	Train Accuracy	Test Accuracy	Precision	
Logistic Regression	Model 3	71.41309	71.60756	60.58116	
Decision Trees	Model 2	75.94352	76.12093	65.05978	
Random Forest	Model 3	96.86153	78.30385	70.91710	

loglagkmread most important variable (MeanDecreaseGini)

Prediction of Customers for Months Nov 17, Dec 17 and Jan 18

- We predict customers to visit outlets for months Nov 17, Dec 17 and Jan 18
- Take top 11000 vehicles from 130993 vehicles based on probability scores for months Nov 17, Dec 17 and Jan 18

• Hence, we need to recalibrate the model

Recalibration of Model

Method	Model	Data	Train accuracy	Test accuracy	Precision
Random Forest	Model 3	Till Dec 16	97.01166	78.82469	68.25576
Random Forest	Model 3	Till Jan 17	96.86487	78.81995	68.41591

- We predict vehicles to visit outlets in next month
 - Model having data till Dec 16, we predict for Jan 17
 - Model having data till Jan 17, we predict for Feb 17

Top 10 vehicles predicted for month of Nov 17

Component No	Probability Score
FBEZ408375	1
FBEZ408507	1
FBEZ409747	1
FBPZ111519	1
FCPZ107967	1
FDEZ201595	1
FDEZ403504	1
FDEZ404741	1
FDEZ404748	1
FDEZ405243	1

> dtmdl[v	vhich(dt	:md1\$con	ipno == "i	BEZ408507"),c(1,4,5,6	5,10,11:1	[(3,15,16)]			
	compno	kmread	amount	repairtype	vstdate	daysino	datediff	serviceno	servdiff	tmonth
3878 FBE2	408507	1072	8176.95	PAID	2016-05-18	1	95	1	95	17
3879 FBE2	408507	1198	2854.75	PAID	2016-05-19	0	96	2	1	17
3880 FBE2	408507	1582	24393.68	PAID	2016-08-23	0	192	3	96	20
3881 FBE2	408507	1590	6353.70	PAID	2017-01-30	0	352	4	160	25
3882 FBE2	408507	2521	28843.66	PAID	2017-03-07	0	388	5	36	27

Additional Insights (Method 1)

Categorization of Visits (Method 2)

Month	Feb-16	Mar-16	Apr-16	May-16	Jun-16
Visit	No	Yes	No	Yes	No

Derived Variables (Method 2)

KM difference between last two services

Maximum amount spent in any month since date of sale

Average amount spent in any month when vehicle came for the service

Average day of stay in outlet per month, when vehicle came for service

Maximum Bill date - Minimum Visit date, this variable will be different from stays in outlet, if vehicle came for service multiple time

Age of the vehicle in months

Month duration till the vehicle came for last service

Number of months when the vehicle came for service

Formula for Models (Method 2)

Model 1

- Derived variables are used as independent variables.
- is.visit~KM.reading+km.diff+no.of.ser.mon+service.cnt+amount+avg.amt.spent+max.amt.spent+VEHICLE.COST+mean.out.stay+mn.outlet.stay+avg.outlet.st ay+vehicle.age.mon+last.service.age.mon+is.paid+is.warranty+is.foc+is.free.service+is.presales+is.amc+is.ancillary+LINE.OF.BUSINESS+SEGMENT+u.model+new.region

Model 2

- log variables for "KM.reading", "km.diff", "amount", "avg.amt.spent" and "max.amt.spent" added to the Model 1.
- is.visit~KM.reading+log.KM.reading+km.diff+log.KM.diff+no.of.ser.mon+service.cnt+amount+log.amount+avg.amt.spent+log.avg.amt.spent+max.amt.spent+log.max.amt.spent+VEHICLE.COST+mean.out.stay+mn.outlet.stay+avg.outlet.stay+vehicle.age.mon+last.service.age.mon+is.paid+is.warranty+is.foc+is.free.service+is.presales+is.amc+is.ancillary+LINE.OF.BUSINESS+SEGMENT+u.model+new.region

Model 3

- Using AIC criterion for obtaining the best subset from Model 2. Dropping "is.ancillary", "LINE.OF.BUSINESS", "VEHICLE.COST" and "KM.reading" as obtained from the analysis.
- is.visit~log.KM.reading+km.diff+log.KM.diff+no.of.ser.mon+service.cnt+amount+log.amount+avg.amt.spent+log.avg.amt.spent+max.amt.spent+log.max.amt .spent+mean.out.stay+mn.outlet.stay+avg.outlet.stay+vehicle.age.mon+last.service.age.mon+is.paid+is.warranty+is.foc+is.free.service+is.presales+is.amc+S EGMENT+u.model+new.region

Model 4

- Remove ingnificant variables "no.of.ser.mon" and "log.max.amt.spent" from Model 3.
- is.visit~log.KM.reading+km.diff+log.KM.diff+service.cnt+amount+log.amount+avg.amt.spent+log.avg.amt.spent+max.amt.spent+mean.out.stay+mn.outlet.s tay+avg.outlet.stay+vehicle.age.mon+last.service.age.mon+is.paid+is.warranty+is.foc+is.free.service+is.presales+is.amc+SEGMENT+u.model+new.region

Cross Validation (Method 2)

Method	Model	ROC	Sensitivity	Specificity
Logistic Regression (10-fold CV)	Model 1	0.7418075	0.6729161	0.695246
Logistic Regression (10-fold CV)	Model 2	0.8568601	0.8002683	0.7510183
Logistic Regression (10-fold CV)	Model 3	0.8569293	0.8005667	0.7506284
Logistic Regression (10-fold CV)	Model 4	0.8570705	0.8008957	0.7510791

Random Forest Models (Method 2)

Method	Model	ROC	ROC Sensitivity	
Random Forest	Model 1	0.9541772	0.8622745	0.8855686
Random Forest	Model 2	0.9550518	0.9550518 0.8631373	
Random Forest	Model 3	0.9550529 0.8643137		0.8812549
Random Forest	Model 4	0.9558711 0.8680000		0.8803922

Comparison of Models (Method 2)

Method	Model	Test Accuracy	Precision
Logistic Regression	Model 4	0.7771	0.7649
Random Forest	Model 4	0.8724	0.878

Additional Insights (Method 2)

Cost Benefit Analysis

Predicted customers per month	Customers converted (75%)	Average Revenue of service (INR)	Total yearly Revenue of service (INR crore)	Total yearly profit (30%) in INR crore
11000	8250	5968	59.08	17.72

Customer Service	Cost of Customer Service Executives (400000 INR per	IT infrastructure cost		Total Net Profit (INR
Executives	year)	(INR)	Total Cost (INR crore)	crore)
110	4400000	10000000	5.4	12.32

Conclusions and Recommendations

- Predicted customers can give an impetus to the service business of the company
- Increase service revenue
- Create an innovative business process for customer identification for service business
- Additional Insights efficiently manage the service marketing executives and also better manage supply chain for spares
- Use recent data of around 18 24 months and run the best selection model process every month to predict the customers next month

Future Actions and Acknowledgements

- Future Actions
 - More classifications model can be implemented
 - Improvement in Accuracy

- Acknowledgements
 - Faculty Advisor Prof. Manish Gupta
 - Project Sponsor J. Balasubramanian
 - Project Mentor Santa Suman Dutta

• Thank You