Durée: 2h

Questions de cours (5pts)

القصف الجامعي التشغيل الذاتي INDH

- 1. Quelles sont les propriétés d'un conducteur en équilibre électrostatique.
- 2. Donner les relations (forme locale et intégrale) de la conservation du flux magnétique.
- 3. Donner les relations (forme locale et intégrale) du théorème d'Ampère.
- 4. Calculer la capacité d'un condensateur cylindrique de rayon R_1 et R_2 et de hauteur h.

Exercice 1(5pts)

Soit une spire circulaire de rayon R, de centre O, parcourue par un courant stationnaire I constant et contenu dans le plan (xOy). Soit M, un point de l'axe (Oz) repéré par sa coté z (OM = z).

- 1. A l'aide des symétries et des antisymétries, montrer le sens du champ magnétique $\overrightarrow{B}_{spire}(M)$.
- B M de
- 2. Calculer le champ magnétique $\overrightarrow{B}_{spire}(M)$ en fonction de I, μ_0 , R et β .
- 3. Calculer le champ magnétique $\overrightarrow{B}_{spire}(M)$ en fonction de I, μ_0, R et z.
- 4. On considère que le champ magnétique créé par une bobine plate de rayon R, de N spires, parcourue par un courant I, à une distance OM = z de son axe est $\overrightarrow{B}_{bobine}(M) = N \cdot \overrightarrow{B}_{spire}(M)$
 - (a) Donner l'expression du champ $\overrightarrow{B}_{bobine}(M)$.
 - (b) Exprimer $\overrightarrow{B}_{bobine}(M)$ en fonction de B_0 , avec B_0 le champ créé en z=0.

Exercice 2(10pts)

Un conducteur sphérique creux A, initialement neutre, de centre O, de rayon extérieur $R_3 = 4R$ et de rayon intérieur $R_2 = 2R$ entoure un conducteur B sphérique de même centre O, de rayon $R_1 = R$ porte à un potentiel V_1 à l'aide d'un générateur, le conducteur B porte une charge $Q_1 > 0$.

- 1. L'influence électrostatique entre A et B est elle partielle ou totale. Justifier votre réponse.
- 2. Donner la répartition des charges sur A (les charges portées par les surfaces interne et externe).
- 3. A l'aide du théorème de Gauss, calculer et représenter graphiquement le champ électrique dans les 4 régions suivantes : $E(r < R_1)$; $E(R_1 < r < R_2)$; $E(R_2 < r < R_3)$; $E(r > R_3)$.