House Price Prediction

Feature Extraction A S S 0 R G Ε

An accurate prediction of the housing price

Problem P L S / P C R

Collinearity

Model Selection

Feature Extraction

print(dim(train))

[1] 1460 81

	SalePrice
LotFrontage	0.33477085
LotArea	0.26384335
MasVnrArea	0.47261450
BsmtFinSF1	0.38641981
BsmtFinSF2	-0.01137812
BsmtUnfSF	0.21447911
TotalBsmtSF	0.61358055
X1stFlrSF	0.60585218
X2ndFlrSF	0.31933380
LowQualFinSF	-0.02560613
GrLivArea	0.70862448
BsmtFullBath	0.22712223
BsmtHalfBath	-0.01684415
FullBath	0.56066376
HalfBath	0.28410768
BedroomAbvGr	0.16821315
KitchenAbvGr	-0.13590737
TotRmsAbvGrd	0.53372316
Fireplaces	0.46692884
GarageCars	0.64040920
GarageArea	0.62343144
WoodDeckSF	0.32441344
OpenPorchSF	0.31585623
EnclosedPorch	-0.12857796
DITOTODOGI OT OIL	
X3SsnPorch	0.04458367
	0.04458367 0.11144657
X3SsnPorch	
X3SsnPorch ScreenPorch	0.11144657

Model Selection

Collinearity Problem

- Lasso and Ridge are special cases of the General Linear Model
- Assumptions need to diagnose

The normal linear regression model assumes:

$$Y_i = \beta_o + \sum_{k=1}^p \beta_k X_k + e_i$$

$$e_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

- (1) Mean Function: $E(e_i \mid X) = 0$.
- (2) Variance Function: $Var(e_i \mid X) = \sigma^2$.
- (3) Normality of the errors.
- (4) Independence of the errors.
- (5) Little/No Multicollinearity in data.

Check Assumption 1: E(ei | X) = 0

- Most dots are around 0.
- The fitted mean function is appropriate.

Check Assumption 2: $Var(e_i \mid X) = \sigma^2$

- Most dots are around 0 (a constant).
- The fitted variance function is appropriate.

- Points on the lower-end have lower measurement than the Normal model predicts and the points on the upper-end have higher measurement than the Normal model predicts.
- Most points are approximately on the line. It might be due to the outliers.
- Thus, the residuals are normally distributed.

Check Assumption 4: Independence of Errors. --> No way to check, we assume it is correct here.

Check Assumption 5: Little / No Multicollinearity

There are some collinearity problems

Model Analysis

PLS

Models Comparison - MSE

- (1) Linear Regression Model has larger MSE than Lasso and Ridge Regression.
- (2) PLS and PCR have comparably similar MSE, while Lasso and Ridge Regression have comparably similar MSE.
- (3) Lasso and Ridge Regression's MSE much smaller than PLS and PCR's MSE.
- (4) Lasso has the lowest MSE value.