宇宙射线µ子实验数据处理

2022年12月17日

1 实验结果

1.1 alpha

degree	$ au/\mu s$	$\delta au/\mu s$	χ^2
0	2.1805	0.0214	5.5721
5	2.0586	0.0381	1.4370
10	2.2193	0.0583	0.7371
15	2.1553	0.0553	0.7012
20	2.1445	0.0557	0.7381
25	2.2971	0.0668	0.5935
30	2.1111	0.0580	0.6199
35	2.219	0.0558	0.8695
40	2.1774	0.0521	0.858
45	2.1082	0.0437	1.2445
50	2.2074	0.0574	0.702
55	2.0759	0.0459	0.9506

2 THINKING 2

2 Thinking

1.解释实验测量的 μ 子衰变寿命曲线具有一定分布的物理原因? 因为高能量的 μ 子具有较高的速度,在狭义相对论下, μ 子寿命会有增长,低能下 μ 子自然衰变寿命短。

2. 该实验如何保证测量的 2 个信号恰是同一 μ 子的到达与衰变信号? 来自宇宙线的 μ 子通量很低,每次击中探测器的事例可以看作单 μ 子处理,因此将测量的 2 个信号看作同一 μ 子产生的。