Machine Learning for Inverse Problems in Computational Engineering

Kailai Xu, Weiqiang Zhu, and Eric Darve https://github.com/kailaix/ADCME.jl

Outline

- Inverse Modeling
- Automatic Differentiation
- Code Example
- 4 Applications

Inverse Modeling

Forward Problem

Inverse Problem

Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization problem

$$\min_{\theta} L_h(u_h)$$
 s.t. $F_h(\theta, u_h) = 0$

- The loss function L_h measures the discrepancy between the prediction u_h and the observation u_{obs} , e.g., $L_h(u_h) = ||u_h u_{\text{obs}}||_2^2$.
- \bullet θ is the model parameter to be calibrated.
- The physics constraints $F_h(\theta,u_h)=0$ are described by a system of partial differential equations. Solving for u_h may require solving linear systems or applying an iterative algorithm such as the Newton-Raphson method.

Function Inverse Problem

$$\min_{\mathbf{f}} L_h(u_h) \quad \text{s.t. } F_h(\mathbf{f}, u_h) = 0$$

What if the unknown is a function instead of a set of parameters?

- Koopman operator in dynamical systems.
- Constitutive relations in solid mechanics.
- Turbulent closure relations in fluid mechanics.
- ...

The candidate solution space is infinite dimensional.

Machine Learning for Computational Engineering

$$\min_{\theta} L_h(u_h)$$
 s.t. $F_h(NN_{\theta}, u_h) = 0$

- Deep neural networks exhibit capability of approximating high dimensional and complicated functions.
- Machine Learning for Computational Engineering: the unknown function is approximated by a deep neural network, and the physical constraints are enforced by numerical schemes.
- Satisfy the physics to the largest extent.

Gradient Based Optimization

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(\theta, u_h) = 0 \tag{1}$$

- We can now apply a gradient-based optimization method to (1).
- The key is to calculate the gradient descent direction g^k

$$\theta^{k+1} \leftarrow \theta^k - \alpha g^k$$

Outline

- Inverse Modeling
- Automatic Differentiation
- Code Example
- 4 Applications

Automatic Differentiation

The fact that bridges the technical gap between machine learning and inverse modeling:

 Deep learning (and many other machine learning techniques) and numerical schemes share the same computational model: composition of individual operators.

Mathematical Fact Back-propagation || Reverse-mode Automatic Differentiation || Discrete Adjoint-State Method

Computational Graph for Numerical Schemes

- To leverage automatic differentiation for inverse modeling, we need to express the numerical schemes in the "AD language": computational graph.
- No matter how complicated a numerical scheme is, it can be decomposed into a collection of operators that are interlinked via state variable dependencies.

ADCME: Computational-Graph-based Numerical Simulation

Automatic Differentiation: Forward-mode and Reverse-mode

Forward Mode Automatic Differentiation

What is the Appropriate Model for Inverse Problems?

• In general, for a function $f: \mathbb{R}^n \to \mathbb{R}^m$

Mode	Suitable for	$Complexity^1$	Application
Forward		$\leq 2.5 \text{ OPS}(f(x))$	UQ
Reverse		$\leq 4 \text{ OPS}(f(x))$	Inverse Modeling

- There are also many other interesting topics
 - Mixed mode AD: many-to-many mappings.
 - Computing sparse Jacobian matrices using AD by exploiting sparse structures.

Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2019 Jul;9(4):e1305.

¹OPS is a metric for complexity in terms of fused-multiply adds. ← ≥ → ← ≥ → へ ≥ → へ へ

Granularity of Automatic Differentiation

Outline

- Inverse Modeling
- 2 Automatic Differentiation
- 3 Code Example
- 4 Applications

Inverse Modeling of the Stokes Equation

• The governing equation for the Stokes problem

$$\begin{aligned} -\nu \Delta \mathbf{u} + \nabla p &= \mathbf{f} & \text{in } \Omega \\ \nabla \cdot \mathbf{u} &= 0 & \text{in } \Omega \\ \mathbf{u} &= \mathbf{0} & \text{on } \partial \Omega \end{aligned}$$

The weak form is given by

$$({}_{\boldsymbol{\nu}}\nabla u, \nabla v) - (p, \nabla \cdot v) = (f, v)$$

$$(\nabla \cdot u, q) = 0$$

Inverse Modeling of the Stokes Equation

```
nu = Variable(0.5)
K = nu*constant(compute_fem_laplace_matrix(m, n, h))
B = constant(compute_interaction_matrix(m, n, h))
Z = [K -B]
    -B spdiag(zeros(size(B,1)))]
# Impose boundary conditions
bd = bcnode("all", m, n, h)
bd = [bd; bd .+ (m+1)*(n+1); ((1:m) .+ 2(m+1)*(n+1))]
Z, = fem impose Dirichlet boundary condition1(Z, bd, m, n, h)
# Calculate the source term
F1 = eval f on gauss pts(f1func, m, n, h)
F2 = eval f on gauss pts(f2func, m, n, h)
F = compute fem source term(F1, F2, m, n, h)
rhs = [F; zeros(m*n)]
rhs[bd] = 0.0
```

ADCME

Inverse Modeling of the Stokes Equation

 The distinguished feature compared to traditional forward simulation programs: the model output is differentiable with respect to model parameters!

```
loss = sum((sol[idx] - observation[idx])^2)
g = gradients(loss, nu)
```

Optimization with a one-liner: BFGS!(sess, loss)

PoreFlow/ADCME

Simulation Program

Outline

- Inverse Modeling
- 2 Automatic Differentiation
- Code Example
- 4 Applications

Linear Poroelasticity

 The governing equation for linear poroelasticity with a spatially-varying viscosity coefficient

$$\begin{aligned} \operatorname{div} \boldsymbol{\sigma} + \rho \mathbf{g} &= \ddot{\mathbf{u}} \\ \dot{\sigma}_{ij} + \frac{\mu}{\eta(\mathbf{y})} \left(\sigma_{ij} - \frac{\sigma_{kk}}{3} \delta_{ij} \right) &= 2\mu \dot{\epsilon}_{ij} + \lambda \dot{\epsilon}_{kk} \delta_{ij} \end{aligned}$$

Linear Poroelasticity

• The true model of $\eta(y)^{-1}$, the displacement at the terminal time, and the von Mises stress distribution at the terminal time.

• Evolution of learned $\eta(y)^{-1}$ at iteration 0, 80, 160, and 240.

Viscoelasticity

 Multi-physics Interaction of Coupled Geomechanics and Multi-Phase Flow Equations

$$\operatorname{div} \boldsymbol{\sigma}(\mathbf{u}) - b \nabla p = 0$$

$$\frac{1}{M} \frac{\partial p}{\partial t} + b \frac{\partial \epsilon_{\nu}(\mathbf{u})}{\partial t} - \nabla \cdot \left(\frac{k}{B_{f} \mu} \nabla p \right) = f(x, t)$$

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}(\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}})$$

Approximate the constitutive relation by a neural network

$$oldsymbol{\sigma}^{n+1} = \mathcal{NN}_{oldsymbol{ heta}}(oldsymbol{\sigma}^n, oldsymbol{\epsilon}^n) + Holdsymbol{\epsilon}^{n+1}$$

Viscoelasticity

• Comparison with space varying linear elasticity approximation

$$\sigma = H(x, y)\epsilon$$

Viscoelasticity

24 / 28

Navier-Stokes Equation

Steady-state Navier-Stokes equation

$$(\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nabla \cdot (\mathbf{v}\nabla \mathbf{u}) + \mathbf{g}$$

 $\nabla \cdot \mathbf{u} = 0$

Inverse problem are ubiquitous in fluid dynamics:

Figure: Left: electronic cooling; right: nasal drug delivery.

Navier-Stokes Equation

Navier-Stokes Equation

- Data: (u, v)
- Unknown: $\nu(\mathbf{x})$ (represented by a deep neural network)
- Prediction: p (absent in the training data)
- The DNN provides regularization, which generalizes the estimation better!

A General Approach to Inverse Modeling

