

What is an Audio File?

- An audio file is a digital recording or representation of sound.
- It contains information about the amplitude and frequency of sound waves over time.
- Audio files are used for various purposes, including music, speech, sound effects, and more.
- Different audio file formats exist to store and transmit audio data efficiently.

Audio Codec

• Lossy Codecs

- These codecs discard some audio data during compression, resulting in a smaller file size
- Ex: MP3, AAC, WMA

• Lossless Codecs

- Lossless codecs compress audio data without losing any information, allowing for perfect reconstruction of the original audio
- Ex: FLAC, ALAC, WAV (in some cases)

Application

• Streaming Services

• Codecs like AAC and MP3 are commonly used for streaming audio over the internet due to their efficient compression.

Music Storage

• Lossless codecs like FLAC and ALAC are favored for storing high-quality music files on devices with abundant storage.

Voice Communication

• Codecs like Opus are optimized for real-time communication applications, such as VoIP and online gaming.

• Broadcasting

• Codecs like MPEG-2 Layer III (MP3) are used for radio broadcasting, allowing for the transmission of audio with reduced bandwidth requirements.

WAV File

- Waveform Audio File Format (WAV) is a popular uncompressed audio file format developed by Microsoft and IBM.
- WAV files contain raw audio data without any compression, resulting in high audio quality but larger file sizes.
- WAV files are commonly used in professional audio production, where preserving the original quality is crucial.

WAV Header

endian	File offset (bytes)	field name	Field Size (bytes)		
big	° [ChunkID	4	٦	The "RIFF" chunk descriptor
little	4	ChunkSize	4	}	The Format of concern here is
big	8	Format	4	J	"WAVE", which requires two sub-chunks: "fmt " and "data"
big	12	Subchunk1 ID	4	1	Sub-Chunks, iiiic and data
little	16	Subchunk1 Size	4		
little	20	AudioFormat	2		The "fmt " sub-chunk
little	22	Num Channels	2		THE HIIL SUD-CHUIK
little	24	SampleRate	4		describes the format of the sound information in
little	32	ByteRate	4		the data sub-chunk
little	34	BlockAlign	2		
little	36	BitsPerSample	2	J	
big	40	Subchunk2ID	4	}	The "data" sub-chunk
little		Subchunk2Size	4		The data sub-chulik
little	44	data	Subchunk2Size	}	Indicates the size of the sound information and contains the raw sound data

PCM (Pulse Code Modulation)

- PCM is a method used to digitally represent analog signals, including audio.
- It involves sampling the amplitude of an analog signal at regular intervals and converting each sample into a digital code.
- PCM is the basis for many audio file formats, including WAV.
- PCM can be either linear or nonlinear, with linear PCM being the most common.

How to Play Audio

Audio File Decoding

• The microcontroller needs to decode the audio file, especially if it's in a compressed format. This may require using a dedicated audio codec or a software decoder.

Digital-to-Analog Conversion (DAC)

• The microcontroller must convert the digital audio data into analog signals that can be played through speakers or headphones. This is achieved using a DAC.

• Amplification

• In many cases, the analog signal may need amplification before being sent to speakers to ensure sufficient volume.

Output to Speakers

• Connect the output from the DAC or amplifier to speakers or headphones for audio playback.