Coherent functional forecasts of mortality rates and life expectancy

Rob J Hyndman

Business & Economic Forecasting Unit

Joint work with Farah Yasmeen (Monash) and Heather Booth (ANU)

Mortality rates

Mortality rates

Let $f_{t,j}(x)$ be the smoothed mortality rate for age x in group j in year t.

Let $f_{t,j}(x)$ be the smoothed mortality rate for age x in group j in year t.

Groups may be males and females.

Let $f_{t,i}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females.
- Groups may be states within a country.

Let $f_{t,i}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.

Let $f_{t,i}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- We want to forecast whole curve $f_{t,i}(x)$ for future years.

Let $f_{t,j}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- We want to forecast whole curve $f_{t,j}(x)$ for future years.
- Coherent forecasts do not diverge over time.

Let $f_{t,j}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- We want to forecast whole curve $f_{t,j}(x)$ for future years.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

(Hyndman and Ullah, CSDA, 2007)

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^{K} \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

where $e_{t,j}(x) \stackrel{\text{iid}}{\sim} N(0, v(x))$.

(Hyndman and Ullah, CSDA, 2007)

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^{K} \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

where $e_{t,j}(x) \stackrel{\text{iid}}{\sim} N(0, v(x))$.

• Estimate smooth functions $f_{t,j}(x)$ using nonparametric regression.

(Hyndman and Ullah, CSDA, 2007)

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

where $e_{t,i}(x) \stackrel{\text{iid}}{\sim} N(0, v(x))$.

- **1** Estimate smooth functions $f_{t,i}(x)$ using nonparametric regression.
- 2 Estimate $\mu_i(x)$ as mean $\log[f_{t,i}(x)]$ across years.

(Hyndman and Ullah, CSDA, 2007)

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

where $e_{t,i}(x) \stackrel{\text{iid}}{\sim} N(0, v(x))$.

- Estimate smooth functions $f_{t,i}(x)$ using nonparametric regression.
- ② Estimate $\mu_i(x)$ as mean $\log[f_{t,i}(x)]$ across years.
- **Solution** Estimate $\beta_{t,i,k}$ and $\phi_{k,i}(x)$ using functional principal components.

(Hyndman and Ullah, CSDA, 2007)

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

where $e_{t,j}(x) \stackrel{\text{iid}}{\sim} N(0, v(x))$.

- Estimate smooth functions $f_{t,j}(x)$ using nonparametric regression.
- ② Estimate $\mu_j(x)$ as mean $\log[f_{t,j}(x)]$ across years.
- Estimate $\beta_{t,j,k}$ and $\phi_{k,j}(x)$ using functional principal components.
- Forecast $\beta_{t,i,k}$ using time series models.

(Hyndman and Ullah, CSDA, 2007)

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^{K} \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

where $e_{t,i}(x) \stackrel{\text{iid}}{\sim} N(0, v(x))$.

- Estimate smooth functions $f_{t,j}(x)$ using nonparametric regression.
- ② Estimate $\mu_j(x)$ as mean $\log[f_{t,j}(x)]$ across years.
- Sestimate $\beta_{t,j,k}$ and $\phi_{k,j}(x)$ using functional principal components.
- Forecast $\beta_{t,i,k}$ using time series models.
- **9** Put it all together to get forecasts of $f_{t,i}(x)$.

Male fts model

Female fts model

Forecasting the coefficients

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^{K} \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

• We use ARIMA models for each coefficient $\{\beta_{1,j,k},...,\beta_{n,j,k}\}.$

Forecasting the coefficients

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,j,k},...,\beta_{n,j,k}\}.$
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)

Forecasting the coefficients

$$\log[f_{t,j}(x)] = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{k,j}(x) + e_{t,j}(x)$$

- We use ARIMA models for each coefficient $\{\beta_{1,i,k},\ldots,\beta_{n,i,k}\}.$
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2)
- Non-stationary ARIMA forecasts will diverge. Hence the mortality forecasts are not coherent.

Male fts model

Female fts model

Australian mortality forecasts

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

Product and ratio are approximately independent

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

- Product and ratio are approximately independent
- Ratio should be stationary (for coherence) but product can be non-stationary.

Mortality rates

Mortality rates

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

$$\log[r_t(x)] = \mu_r(x) + \sum_{t=0}^{\infty} \gamma_{t,\ell} \psi_{\ell}(x) + w_t(x).$$

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

• $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t}(x)] = \mu_{r}(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell} \psi_{\ell}(x) + w_{t}(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1},...,\beta_{t,K}$.

$$p_t(x) = \sqrt{f_{t,M}(x)f_{t,F}(x)}$$
 and $r_t(x) = \sqrt{f_{t,M}(x)/f_{t,F}(x)}$.

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$
 $\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \dots, \beta_{t,K}$.
- Forecasts: $f_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$ $f_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x)$.

Product model

Ratio model

Product forecasts

Ratio forecasts

Coherent forecasts

Ratio forecasts

Life expectancy forecasts

and

$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$

$$r_{t,j}(x) = f_{t,j}(x)/p_t(x),$$

$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_t(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{k=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_t(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

• $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_t(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

• $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

• Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x)=1.$

$$p_t(x) = [f_{t,1}(x)f_{t,2}(x)\cdots f_{t,J}(x)]^{1/J}$$
 and
$$r_{t,j}(x) = f_{t,j}(x)/p_t(x),$$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

- $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.
- Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x)=1.$
- $\bullet \log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)]$

$$\begin{aligned} \log[f_{t,j}(x)] &= \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}] \\ &= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{k=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x) \end{aligned}$$

$$\begin{aligned} \log[f_{t,j}(x)] &= \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}] \\ &= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x) \end{aligned}$$

•
$$\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$$
 is group mean

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_i(x) = \mu_p(x) + \mu_{r,i}(x)$ is group mean
- $z_{t,i}(x) = e_t(x) + w_{t,i}(x)$ is error term.

$$\begin{aligned} \log[f_{t,j}(x)] &= \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}] \\ &= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{k=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x) \end{aligned}$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).

$$\log[f_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \dots, \beta_{t,K}$.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

where f is unsmoothed log mortality rate, β_t is a random walk with drift and $\gamma_{t,j}$ is AR(1) process.

No smoothing.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- AR(1) very limiting.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$f_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

 New, automatic, flexible method for coherent forecasting of groups of functional time series.

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Based on geometric means and ratios, so interpretable results.

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Based on geometric means and ratios, so interpretable results.
- More general and flexible than existing methods.

- New, automatic, flexible method for coherent forecasting of groups of functional time series.
- Based on geometric means and ratios, so interpretable results.
- More general and flexible than existing methods.
- Easy to compute prediction intervals.