Dynamic Programming*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Algorithm Course: Shanghai Jiao Tong University

Algorithm Course @SJTU Xiaofeng Gao Dynamic Programming 1/

^{*}Special thanks is given to *Prof. Kevin Wayne@Princeton* for sharing his slides, and also given to Mr. Chao Wang from CS2014@SJTU and Mr. Hongjian Cao from CS2015@SJTU for producing this lecture.

Outline

- Introduction
 - Introduction
- Basic Methodology
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Knapsack Problem
- More Examples
 - RNA Secondary Structure

Outline

- Introduction
 - Introduction
- 2 Basic Methodology
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Knapsack Problem
- More Examples
 - RNA Secondary Structure

Algorithmic Paradigms

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming: Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

Areas

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- o Computer science: theory, graphics, AI, compilers, systems, ...

Some famous dynamic programming algorithms

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- o Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- o Cocke-Kasami-Younger for parsing context free grammars.

Outline

- Introduction
 - Introduction
- 2 Basic Methodology
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Knapsack Problem
- More Examples
 - RNA Secondary Structure

Weighted Interval Scheduling Problem

Job j starts at s_j , finishes at f_j , and has weight or value v_j .

Two jobs compatible if they don't overlap.

Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling Problem

Job j starts at s_j , finishes at f_j , and has weight or value v_j .

Two jobs compatible if they don't overlap.

Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall: Greedy algorithm works if all weights are 1.

- o Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Unweighted Interval Scheduling Review

Recall: Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation: Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Definition: p(j) = largest index i < j such that job i is compatible with j.

Weighted Interval Scheduling

Notation: Label jobs by finishing time: $f_1 \le f_2 \le \cdots \le f_n$.

Definition: p(j) = largest index i < j such that job i is compatible with j.

Example: p(8) = 5, p(7) = 3, p(2) = 0.

Binary Choice

Greedy template: OPT(j) = value of optimal solution to the problem consisting of job requests $1, 2, \dots, j$.

Optimal substructure:

Case 1: OPT selects job *j*.

- collect profit v_j
- o can't use incompatible jobs $\{p(j) + 1, p(j) + 2, \dots, j 1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, p(j)$

Case 2: OPT does not select job *j*.

• must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, j-1$

Binary Choice

Greedy template: OPT(j) = value of optimal solution to the problem consisting of job requests $1, 2, \dots, j$.

Optimal substructure:

Case 1: OPT selects job *j*.

- collect profit v_j
- o can't use incompatible jobs $\{p(j) + 1, p(j) + 2, \dots, j 1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, p(j)$

Case 2: OPT does not select job *j*.

• must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \dots, j-1$

$$\mathit{OPT}(j) = \begin{cases} 0, & j = 0, \\ \max\{v_j + \mathit{OPT}(p(j)), \mathit{OPT}(j-1)\}, & \mathit{otherwise} \end{cases}$$

Brute Force Algorithm

Algorithm 1: Brute Force **Input:** n; s_1, \dots, s_n ; f_1, \dots, f_n ; v_1, \dots, v_n ; **Sort** jobs by finish times so that $f_1 < f_2 < \cdots < f_n$; Compute $p(1), p(2), \cdots, p(n)$; Function Compute-Opt (i): if i=0 then return 0; else return $\max\{v_i + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1)\};$

5

6

8

Brute Force Algorithm

Observation: Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Example: Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Memoization

Store results of each sub-problem in a cache; lookup as needed.

Algorithm 2: Memoization

```
Input: n; s_1, \dots, s_n; f_1, \dots, f_n; v_1, \dots, v_n
   Sort jobs by finish times so that f_1 < f_2 < \cdots < f_n;
2 Compute p(1), p(2), \dots, p(n);
3 for j = 1 \rightarrow n do
   M[j] = \text{empty};
M[0] = 0;
   Function M-Compute-Opt (i):
       if M[i] is empty then
           M[j] =
 8
              \max\{v_i + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1)\};
 9
       return M[i];
10
```

Running Time

Claim: Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n \log n)$ via sorting by start time.
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - \triangleright returns an existing value M[j]
 - \triangleright fills in one new entry M[j] and makes two recursive calls
- Progress measure $\Phi =$ number nonempty entries of $M[\cdot]$.
 - \triangleright initially $\Phi = 0$, throughout $\Phi \le n$.
 - \triangleright increases Φ by $1 \Rightarrow$ at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n).

Remark: O(n) if jobs are pre-sorted by start and finish times.

Finding a Solution from the OPT Value

```
Algorithm 3: Post-Processing
  Run M-Compute-Opt(n);
  Run Find-Solution(n);
  Function Find-Solution (i):
      if j = 0 then
5
         output nothing;
      else if v_i + M[p(j)] > M[j-1] then
6
          print j;
          Find-Solution (p(j));
8
      else
9
          Find-Solution(j-1);
10
```

```
• # of recursive calls 1 \le n \Rightarrow O(n);
```

Bottom-Up Dynamic Programming

Algorithm 4: Memoization

```
Input: n; s_1, \dots, s_n; f_1, \dots, f_n; v_1, \dots, v_n

1 Sort jobs by finish times so that f_1 \leq f_2 \leq \dots \leq f_n;

2 Compute p(1), p(2), \dots, p(n);

3 Function Iterative-Compute-Opt():

4 | M[0] = 0;

5 | for j = 1 \rightarrow n do

6 | M[j] = \max\{v_j + M[p(j)], M[j-1]\};
```

Outline

- Introduction
 - Introduction
- 2 Basic Methodology
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Knapsack Problem
- More Examples
 - RNA Secondary Structure

Algorithm Course@SJTU

- Foundational problem in statistic and numerical analysis.
- Given *n* points in the plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- Find a line y = ax + b to minimize the sum of the squared error:

Solution: Calculus \Rightarrow min error is achieved when

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

Xiaofeng Gao

4 D P 4 B P 4 E P 4 E P 9 Q C

Dynamic Programming

- Points lie roughly on a sequence of several line segments.
- Given *n* points in the plane: (x_1, y_1) , (x_2, y_2) , \cdots , (x_n, y_n) with $x_1 < x_2 < \cdots < x_n$, find a sequence of lines that minimizes f(x).

Question: What's a reasonable choice for f(x) to balance accuracy (goodness of fit) and parsimony (number of lines)?

- Points lie roughly on a sequence of several line segments.
- Given *n* points in the plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with $x_1 < x_2 < \dots < x_n$, find a sequence of lines that minimizes:
 - \triangleright the sum of the sums of the squared errors E in each segment
 - \triangleright the number of lines L
- Tradeoff function: E + cL, for some constant c > 0.

Multiway Choice

Notation:

- $OPT(j) = \text{minimum cost for points } p_1, p_{i+1}, \cdots, p_j$.
- $e(i,j) = \text{minimum sum of squares for points } p_i, p_{i+1}, \cdots, p_j$.

Compute OPT(j):

- Last segment uses points p_i, p_{i+1}, \dots, p_j for some i.
- Cost = e(i,j) + c + OPT(i-1).

$$OPT(j) = \begin{cases} 0, & j = 0, \\ \min_{1 \le i \le j} \{e(i,j) + c + OPT(i-1)\}, & otherwise \end{cases}$$

Algorithm 5: Memoization

```
Input: n; p_1, \cdots, p_N; c

1 Function Iterative-Compute-Opt():

2 M[0] = 0;

3 \mathbf{for} \ j = 1 \rightarrow n \ \mathbf{do}

4 \mathbf{for} \ i = 1 \rightarrow j \ \mathbf{do}

5 \mathbf{compute} \  the least square error e_{ij} for the segment p_i, \cdots, p_j;

6 \mathbf{for} \ j = 1 \rightarrow n \ \mathbf{do}

6 \mathbf{for} \ j = 1 \rightarrow n \ \mathbf{do}

7 \mathbf{M}[j] = \min_{1 \leq i \leq j} \{e_{ij} + c + M[i-1]\};

8 \mathbf{return} \ M[n];
```

Algorithm 6: Memoization

```
Input: n; p_1, \cdots, p_N; c

1 Function Iterative-Compute-Opt():

2 | M[0] = 0;

3 | for j = 1 \rightarrow n do

4 | for i = 1 \rightarrow j do

5 | compute the least square error e_{ij} for the segment

p_i, \cdots, p_j;

6 | for j = 1 \rightarrow n do

7 | M[j] = \min_{1 \le i \le j} \{e_{ij} + c + M[i - 1]\};

8 | return M[n];
```

Running time: $O(n^3)$ (can be improved to $O(n^2)$ by pre-computing.)

Bottleneck = computing e(i,j) for $O(n^2)$ pairs, O(n) per pair using previous formula.

Outline

- Introduction
 - Introduction
- Basic Methodology
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Knapsack Problem
- More Examples
 - RNA Secondary Structure

Knapsack Problem

Given *n* objects and a "knapsack".

Item *i* weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Knapsack Problem

Given *n* objects and a "knapsack".

Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Example: $\{3,4\}$ has value 40.

	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem

Given *n* objects and a "knapsack".

Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Example: $\{3,4\}$ has value 40.

	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i/w_i .

Example: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow$ greedy not optimal.

False Start

Definiton: $OPT(i) = \max \text{ profit subset of items } 1, \dots, i.$

Case 1: OPT does not select item i.

• OPT selects best of $\{1, 2, \dots, i-1\}$

Case 2: OPT selects item i.

- accepting item *i* does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion: Need more sub-problems!

Adding a New Variable

Definiton: $OPT(i) = \max \text{ profit subset of items } 1, \dots, i \text{ with weight limit } w.$

Case 1: OPT does not select item i.

• OPT selects best of $\{1, 2, \dots, i-1\}$ using weight limit w

Case 2: OPT selects item i.

- new weight $limit = w w_i$
- OPT selects best of using $\{1, 2, \dots, i-1\}$ this new weight limit

$$OPT(i, w) = \begin{cases} 0, & j = 0, \\ OPT(i-1, w), & w_i > w, \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\}, & otherwise \end{cases}$$

Bottom-Up Algorithm (Fill up an *n*-by-*W* array)

Algorithm 7: Knapsack Problem Algorithm using *n*-by-*W* Array

```
Input: n, W, w_1, \cdots, w_N, v_1, \cdots, v_N
1 for w = 0 \rightarrow W do
 M[0, w] = 0;
3 for i=1 \rightarrow n do
      for w = 1 \rightarrow W do
5
         if w_i > w then
         M[i, w] = M[i - 1, w];
6
          else
             M[i, w] = \max\{M[i-1, w], v_i + M[i-1, w-w_i]\} 
8
```

9 return M[n, W];

Knapsack Algorithm

Knapsack Algorithm

OPT:
$$\{4,3\}$$
 value = $22 + 18 = 40$

W =	11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Running Time

Running time: $\Theta(nW)$.

- Not polynomial in input size!
- "Pseudo-polynomial".
- o Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm: There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum.

Outline

- Introduction
 - Introduction
- 2 Basic Methodology
 - Weighted Interval Scheduling
 - Segmented Least Squares
 - Knapsack Problem
- More Examples
 - RNA Secondary Structure

RNA Secondary Structure

RNA:String $B = b_1 b_2 \cdots b_n$ over alphabet $\{A, C, G, U\}$.

Secondary structure: RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

RNA Secondary Structure

Secondary structure: A set of pairs $S = \{(b_i, b_j)\}$ that satisfy:

[Watson-Crick.] *S* is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.

[No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j - 4.

[Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l.

Free energy: Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

Goal: Given an RNA molecule $B = b_1 b_2 \cdots b_n$, find a secondary structure S that maximizes the number of base pairs

Examples

sharp turn

crossing

Subproblems

First attempt: $OPT(j) = \text{maximum number of base pairs in a secondary structure of the substring <math>b_1b_2 \cdots b_j$.

Difficulty: Results in two sub-problems.

- Finding secondary structure in: $b_1b_2 \cdots b_{t-1}$.
- Finding secondary structure in: $b_{t+1}b_{t+2}\cdots b_{n-1}$.

Dynamic Programming Over Intervals

Notation: $OPT(j) = \text{maximum number of base pairs in a secondary structure of the substring <math>b_i b_{i+1} \cdots b_j$.

- Case 1: If i > j 4.
 - OPT(i,j) = 0 by no-sharp turns condition.
- Case 2: Base b_i is not involved in a pair.
 - \circ OPT(i,j) = OPT(i,j-1)
- Case 3: Base b_j pairs with b_t for some $i \le t < j 4$.
 - non-crossing constraint decouples resulting sub-problems
 - $\circ OPT(i,j) = 1 + \max_{t} \{OPT(i,t-1) + OPT(t+1,j-1)\}\$

Remark: Same core idea in CKY algorithm to parse context-free grammars.

Bottom Up Dynamic Programming Over Intervals

Question: What order to solve the sub-problems?

Answer: Do shortest intervals first.

```
RNA(b_{1},...,b_{n}) \{ \\ for k = 5, 6, ..., n-1 \\ for i = 1, 2, ..., n-k \\ j = i + k \\ Compute M[i, j] \\ return M[1, n] \\ using recurrence \}
```


Running time: $O(n^3)$.

Dynamic Programming Summary

Recipe

- o Characterize structure of problem.
- o Recursively define value of optimal solution.
- o Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques

- o Binary choice: weighted interval scheduling.
- o Multi-way choice: segmented least squares.]
- Adding a new variable: knapsack.
- Dynamic programming over interval

Top-down vs. bottom-up: different people have different intuitions.

