User Manual for

mrMLM.GUI

multi-locus random-SNP-effect Mixed Linear Model tools for genome-wide association study

(version 4.0)

Zhang Ya-Wen, Li Pei, Zhang Yuan-Ming (soyzhang@mail.hzau.edu.cn)

Last updated on October 21, 2019

Disclaimer: While extensive testing has been performed by Yuan-Ming Zhang's Lab at the Crop Information Center of College of Plant Science and Technology, Huazhong Agricultural University, the results are, in general, reliable, correct or appropriate. However, results are not guaranteed for any specific datasets. We strongly recommend that users validate the mrMLM.GUI results with other software packages, i.e., GEMMA, EMMAX, GAPIT v2 & PLINK.

Download website:

https://cran.r-project.org/web/packages/mrMLM.GUI/index.html

Method or software	e References
mrMLM	Wang et al. <i>Scientific Reports</i> 2016, 6 :19444
ISIS EM-BLASSO	Tamba et al. <i>PLoS Computational Biology</i> 2017, 13(1): e1005357.
pLARmEB	Zhang et al. <i>Heredity</i> 2017, 118: 517–524
FASTmrEMMA	Wen et al. <i>Briefings in Bioinformatics</i> 2018, 19(4): 700–712. DOI: 10.1093/bib/bbw145
pKWmEB	Ren et al. <i>Heredity</i> 2018, 120(3): 418–428
FASTmrMLM	Tamba & Zhang, <i>bioRxiv</i> preprint first posted online 2018, doi: https://doi.org/10.1101/341784
	Zhang et al. Genomics, Proteomics & Bioinformatics, Resubmission
Software mrMLM	Zhang et al. Genomics, Proteomics & Bioinformatics, Resubmission

Note: These references are listed in section of References.

This work was supported by the National Natural Science Foundation of China (31571268, 31871242 and U1602261), Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Program No. 2014RC020), and State Key Laboratory of Cotton Biology Open Fund (CB2017B01 & CB2019B01).

INTRODUCTION

1.1 Why mrMLM.GUI?

mrMLM.GUI (multi-locus random-SNP-effect Mixed Linear Model with Graphical User Interface) program is an R package for multi-locus genome-wide association study (GWAS). At present this program (v4.0) includes six methods: 1) mrMLM, 2) FASTmrMLM (Fast multi-locus random-SNP-effect EMMA), 3) ISIS EM-BLASSO (Iterative Sure Independence Screening EM-Bayesian LASSO), 4) pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes), 5) pKWmEB (polygenic-background-control-based Kruskal-Wallis test plus empirical Bayes); and 6) FASTmrMLM (fast mrMLM).

In the mrMLM.GUI, the package qqman is used to draw the Manhattan and QQ plots in the FASTmrMLM, FASTmrEMMA and pKWmEB methods, and the package ggplot2 is used to draw the the LOD score plot in the pLARmEB and ISIS EM-BLASSO methods.

The software package mrMLM.GUI 4.0 works well on Windows, Linux (desktop) and MacOS.

1.2 Getting started

The software package mrMLM runs only in the R software environment and can be freely downloaded from https://cran.r-project.org/web/packages/mrMLM.GUI/index.html, or requested from the maintainer, Dr Yuan-Ming Zhang at College of Plant Science and Technology, Huazhong Agri Univ (soyzhang@mail.hzau.edu.cn).

1.2.1 One-Click installation

Within R environment, the mrMLM.GUI software can be installed online using the below command:

install.packages("mrMLM.GUI")

1.2.2 Step-by-step installation

1.2.2.1 Install the add-on packages

Offline installation Users may download the below 62 packages from CRAN

(https://cran.r-project.org/), github (https://github.com/) and google search.

assertthat, bigmemory, bigmemory.sri, calibrate, cli, codetools, coin, colorspace, crayon, data.table, dichromat, digest, doParallel, foreach, ggplot2, glue, gtable, htmltools, httpuv, iterators, jsonlite, labeling, lars, later, lazyeval, lpsolve, magrittr, MASS, mime, miniUI, modeltools, mrMLM, multcomp, munsell, mvtnorm, ncvreg, openxlsx, pillar, plyr, promises, qqman, R6, RColorBrewer, Rcpp, reshape2, rlang, sampling, sandwich, scales, shiny, shinyjs, sourcetools, stringi, stringr, sbl, TH.data, tibble, utf8, viridisLite, xtable, zip, zoo.

Under the R environment, then, users find "Packages"—"Install package(s) from local files...", select all the above 62 packages, and install them offline.

1.2.2.2 Install mrMLM.GUI

Open R GUI, select "Packages"—"Install package(s) from local files..." and then find the mrMLM.GUI package in which you have downloaded on your desktop.

User Manual Users can decompress the mrMLM.GUI package and find the User Manual file (name: **Instruction.pdf**) in the folder of ".../mrMLM.GUI/inst/doc".

1.2.3 Run mrMLM.GUI

Once the software mrMLM.GUI is installed, users may run the software using two commands:

library("mrMLM.GUI")

If users re-use the software mrMLM.GUI, users also use the above two commands.

2. Dataset input

mrMLM.GUI()

2.1 Genotypic dataset

The **Genotypic** file should be a *.csv or *.txt format file.

Numeric format for Genotypic dataset (Table 1) The first column, named "rs#", stands for marker ID, i.e., "PZB00859.1". The second column, named "chrom", stands for chromosome, i.e., numeric variable "1". The third column, named "pos", stands for the position (bp) of SNP on the chromosome. The fourth column, named "genotype for code 1", indicates reference base for code variable x = 1. Among the

remaining columns, each column lists all the genotypes for one individual, and the first row shows the individual names. For each marker, homozygous genotypes are expressed by 1 and -1, respectively, and the heterozygous and missing genotypes are indicated by zero. If the base for the first individual is missing, the base firstly observed in this row is what we list. Note that the genotype with code 1 will be also listed in the **Result** files.

Table 1. The numeric format of the genotypic dataset

rs#	chrom	pos	genotype for code 1	33-16	Nov-38	A4226	A4722
PZB00859.1	1	157104	С	1	1	1	1
PZA01271.1	1	1947984	С	1	-1	1	-1
PZA03613.2	1	2914066	G	1	1	1	1
PZA03613.1	1	2914171	Т	1	1	1	1
PZA03614.2	1	2915078	G	1	1	1	1
PZA03614.1	1	2915242	Т	1	1	1	1
PZA02117.1	1	223466480	A	1	1	1	-1
PZA00403.5	1	223466873	Т	1	1	1	0
	:	•	:	:	:	:	

Character format for Genotypic dataset The first three columns in Table 2 are same as those in Table 1. The differences are that the marker values are characters, such as A, T, C, G and N, and the other notations are heterozygous genotypes. The "N" indicates the missing of genotypes. The first row from the fourth to last columns lists the names of individuals, i.e., "33-16" and "Nov-38".

Table 2. The character format of the genotypic dataset

rs#	chrom	pos	33-16	Nov-38	A4226	A4722
PZB00859.1	1	157104	С	С	С	С
PZA01271.1	1	1947984	С	G	С	G
PZA03613.2	1	2914066	G	G	G	G
PZA03613.1	1	2914171	Т	T	T	T
:	:	:	:	:	:	:

Hapmap format for Genotypic dataset Please see the TASSEL software in details. Here we describe simply. The first eleven columns describe the specific information of markers and individuals, and their column names must be "rs#", "alleles", "chrom", "pos", "strand", "assembly#", "center", "protLSID", "assayLSID", "panelLSID" and "QCcode". In the "rs#" (1st), "chrom" (3rd) and

"pos" (4th) columns, their information is described as the above in **Table 3**. The values of marker genotypes should be character, such as **AA**, **TT**, **CC**, **GG**, **NN**, **AC** and **AG**, where the "NN" indicates the missing or unknown of genotypes. In the 2nd and 5th to 11th columns, "NA" indicates **no information** available. All the individual genotypic information will be showed from the 12th to last columns. In each column, individual name is listed in the first row, i.e., "33-16", and the others are the genotypes (character).

Table 3. The hapmap format of the genotypic dataset

rs#	alleles	chrom	pos	strand	assembly#	center	protLSID	assayLSID	panelLSID	QCcode	33-16	
PZB00859.1	A/C	1	157104	+	AGPv1	Panzea	NA	NA	maize282	NA	СС	
PZA01271.1	C/G	1	1947984	+	AGPv1	Panzea	NA	NA	maize282	NA	СС	
PZA03613.2	G/T	1	2914066	+	AGPv1	Panzea	NA	NA	maize282	NA	GG	
PZA03613.1	A/T	1	2914171	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	
PZA03614.2	A/G	1	2915078	+	AGPv1	Panzea	NA	NA	maize282	NA	GG	
PZA03614.1	A/T	1	2915242	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	
PZA02117.1	A/G	1	223466480	+	AGPv1	Panzea	NA	NA	maize282	NA	AA	
PZA00403.5	C/T	1	223466873	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	
:	:	:	•	:	•	•	:	:	:	:	:	

Before implementing GWAS, the above character genotypes should be transferred into numeric information. Here the homozygous genotype of each marker for the first individual is transferred into 1, another homozygous genotype for this marker is transferred into -1, and the heterozygous and missing genotypes are transferred into zero. If the base for the first individual is missing, the base firstly observed in this row is what we list.

2.2 Phenotypic dataset

The **Phenotypic** file with the *.csv or *.txt format is showed in Table 4. The first column lists individual ID, i.e., "B46", and "<Phenotype>" should be showed in the first row. Among the other columns, each column lists all the observations for one trait, and its trait name is showed in the first row, i.e., "trait1".

Table 4. The format of Phenotypic dataset

<phenotype></phenotype>	trait1	trait2	trait3
B46	42	43.02	44.32
B52	72.5	71.88	72.8
B57	41	41.7	41.42
B64	74.5	74.43	74.5
	:	:	:

2.3 Kinship dataset

The Kinship file with the *.csv or *.txt format is showed in Table 5. In the first column, "263" is sample size (n), and "33-16", "Nov-38" and "A4226" are individual ID. Note that "n" is the number of common individuals between the phenotypic and genotypic datasets. All the kinship coefficients are listed as an $n \times n$ matrix.

Table 5. The format of the Kinship dataset

263					
33-16	1.00809	0.45954	0.50677	0.42503	0.45591
Nov-38	0.45954	1.03352	0.43048	0.47044	0.39597
A4226	0.50677	0.43048	1.01717	0.45409	0.43775
A4722	0.42503	0.47044	0.45409	0.89002	0.34874
A188	0.45591	0.39597	0.43775	0.34874	1.0099
A214N	0.34693	0.33421	0.39779	0.29244	0.33058
A239	0.43593	0.46499	0.40323	0.36691	0.39597
A272	0.34874	0.40505	0.31423	0.3887	0.44138
A441-5	0.47952	0.44138	0.47226	0.47952	0.49224
A554	0.39779	0.45954	0.5431	0.48679	0.4214
•	•	•	•	•	•

When users select "Calculate kinship (K) matrix by this software", these coefficients between pairs of the above common individuals in the phenotypic and genotypic datasets can be calculated. When users select to input and upload "Kinship (K)" matrix file, the number and order of individuals in the uploaded file may be not consistent with those in the phenotypic and genotypic datasets. At this case, our software can let the number and order of individuals in the uploaded K matrix file be consistent with those in the phenotypic and genotypic datasets.

2.4 Population Structure dataset

Dataset format of Q matrix The Q matrix dataset in Table 6 consists of a (n+2) × (k+1) matrix, where n is the number of the common individuals and k is the number of sub-populations. In the first column, "<PopStr>" and "<ID>" should present in the first and second rows, respectively; "33-16", "Nov-38" and "A4226" are individual ID. In the 2nd to (k+1)-th columns, " Q_1 " to " Q_k " indicate sub-populations. In the third row, "0.014", "0.972" and "0.014" are the posterior probabilities of the "33-16" individual from the first, second and third subpopulations, respectively. When the Q matrix is uploaded to the software, the software will automatically delete the column whose sum is the smallest.

Table 6. The format of the Population Structure dataset

<popstr></popstr>			
<id></id>	Q1	Q2	Q3
33-16	0.014	0.972	0.014
Nov-38	0.003	0.993	0.004
A4226	0.071	0.917	0.012
A4722	0.035	0.854	0.111
A188	0.013	0.982	0.005
A214N	0.762	0.017	0.221
A239	0.035	0.963	0.002
A272	0.019	0.122	0.859
A441-5	0.005	0.531	0.464
:	:	•	•

Dataset format of principal components The principal component dataset in Table 7 consists of a $(n+2) \times (k+1)$ matrix, where n is the number of the common individuals and k is the number of principal components. In the first column, " $\langle PCA \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "44226" are individual ID. In the 2nd to (k+1)-th columns, "44226" indicate the first to k-th principal components. In the second column, "44226" are the scores of the first principal component for the 1st to 9-th individuals, respectively.

Table 7. The format of the Principal components dataset

<pca></pca>			
<id></id>	PC1	PC2	PC3
33-16	0.306	0.029	0.226
Nov-38	-0.708	-2.071	1.413
A4226	-2.330	0.116	-0.824
A4722	1.059	0.470	-1.315
A188	-2.376	1.087	-0.135
A214N	-2.346	0.516	0.666
A239	-0.099	-0.318	-0.473
A272	-0.053	0.093	-0.275
A441-5	0.216	-0.535	-0.159
•	•	•	•

Table 8. The format of the Evolutionary population structure dataset

<evolpopstr></evolpopstr>	
<id></id>	EvolType
33-16	A
Nov-38	A
A4226	A
A4722	В
A188	A
A214N	A
A239	В
	:

Dataset format of evolutionary population structure The evolutionary population structure dataset in Table 8 consists of a $(n+2) \times 2$ matrix, where n is the number of the common individuals. In the first column, " $\langle EvolPopStr \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "44226" are individual ID. In the second column, "44226" indicates the evolutionary type, i.e., the evolutionary types for individuals "33-16" and "44722" are "A" and "B", respectively.

"Not included in the model" indicates no inclusion of population structure in the genetic model. On the contrary, it should be "Included". At this case, users should

upload the population structure file. If the number and order of individuals in the uploaded file aren't consistent with those in the phenotypic and genotypic datasets, our software may change the population structure matrix in order that the number and order of individuals are consistent with those in the above common individuals.

2.5 Covariate dataset

The "Covariate" dataset in Table 9 consists of the $(n+2) \times (k+1)$ matrix, where n is the number of the common individuals and k is the number of covariates. In the first column, "<Covariate>" and "<ID>" should present in the first and second rows, respectively. The 2nd to (k+1)-th columns are covariates. If covariate is categorical, it should be named as Cate_covariate*. If covariate is continuous, it should be named as Con covariate*.

Table 9. The format of the fileCov dataset

<covariate></covariate>				
<id></id>	Cate_covariate1	Cate_covariate2	Con_covariate1	Con_covariate2
33-16	A	C	349.5	374
Nov-38	В	C	205	452
A4226	A	D	300	374
A4722	A	D	190	452
A188	В	C	213	374
		:	:	:

"Not included in the model" indicates no inclusion of covariates in the genetic model. On the contrary, it should be "Included". At this case, users should upload the covariate file. If the number and order of individuals in the uploaded file aren't consistent with those in the above common individuals, our software may change the number and order of individual in order to match the original datasets.

3. Operation process

3.1 The Graphical User Interface of mrMLM.GUI

Multi-locus GWAS methods

- 1. Zhang YM, Mao Y, Xie C, Smith H, Luo L, Xu S*. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 2005;169:2267-2275
- 2. Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Jim M Dunwell, Xu S*, Zhang YM*. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports 2016;6:19444. doi:10.1038/srep19444 (mrMLM)
- 3. Tamba CL, Ni YL, Zhang YM*. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Computational Biology 2017;13 (1):e1005357. doi:10.1371/journal.pcbi.1005357 (ISIS EM-BLASSO)
- 4. Zhang J, Feng JY, Ni YL, Wen YJ, Niu Y, Tamba CL, Yue C, Song QJ, Zhang YM*. pLARmEB: integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. Heredity 2017;118(6):517-524. doi:10.1038/hdy.2017.8 (pLARmEB)
- 5. Ren WL, Wen YJ, Jim M Dunwell, Zhang YM*. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity 2018;120(3):208-218. https://doi.org/10.1038/s41437-017-0007-4 (pKWmEB)
- 6. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Jim M Dunwell, Zhang YM*, Wu R*. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Briefings in Bioinformatics 2018;19(4):700-712 doi:10.1093/bib/bbw145 (FASTmrEMMA)
- 7. Tamba CL, Zhang YM. A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv;preprint first posted online Jun. 7, 2018;doi: https://doi.org/10.1101/341784. (FASTmrMLM)
- 8. Zhang Ya-Wen, Tamba Cox Lwaka, Wen Yang-Jun, Li Pei, Ren Wen-Long, Ni Yuan-Li, Gao Jun, Zhang Yuan-Ming*. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. Genomics, Proteomics & Bioinformatics 2019;resubmission

Authors: Zhang Ya-Wen, Li Pei, Zhang Yuan-Ming Maintainer: Zhang Yuan-Ming (soyzhang at mail.hzau.edu.cn) mrMLM.GUI version 4.0, Realeased October 2019

Figure 1. The Graphical User Interface of mrMLM.GUI

3.2 Input dataset

Users must upload the genotypic and phenotypic files (Figs 2 & 3), while the Kinship, Population-Structure and Covariate files are optional. In Kinship module, users should upload the Kinship matrix if users select "Input Kinship (K) matrix file" (Fig 4). Users don't need to upload this file if users select "Calculate Kinship (K) matrix by this software", at this case, the K matrix can be calculate automatically. In Population Structure module, users should upload the Population Structure file if users select "Included" (Fig 5). There is no inclusion of population structure information in the genetic model if users select "Not included in the model". In Covariate module, users should upload the covariate file if users select "Included" (Fig 6). There is no inclusion of covariates in the genetic model if users select "Not included in the model".

Figure 2. Input genotypic dataset

Figure 3. Input Phenotypic dataset

Figure 4. Input kinship dataset

Figure 5. Input Population Structure dataset

Figure 6. Input Covariate dataset

3.3 Method select & Parameter setting (Fig 7)

Method selection: There are six multi-locus GWAS methods available in the mrMLM.GUI. Users may select one to six methods.

Search radius of candidate gene (kb) (mrMLM & FASTmrMLM): This parameter is only for mrMLM and FASTmrMLM, indicating Search Radius (kb) in search of potentially associated QTN. If users set it as 20 kb, only one potentially associated QTN within the radius of 20 kb may be selected into multi-locus model.

Likelihood function (FASTmrEMMA): This parameter is only for FASTmrEMMA, including restricted maximum likelihood (REML) and maximum likelihood (ML).

No. of potentially associated variables selected by LARS (pLARmEB): This parameter is only for pLARmEB. If users set it as 50, 50 potentially associated variables can be selected from each chromosome. Users may change this number in real data analysis in order to obtain the best results.

Bootstrap (pLARmEB): This parameter is only for pLARmEB, including FALSE & TRUE. FALSE indicates only the analysis of real dataset; TRUE indicates the

analyses of both real and four resampling datasets.

Save path: Save path in your computer in order to output the results in this path.

Traits analyzed: Traits analyzed may be from number n_1 to number n_2 . For example, "1:3" indicates that users analyze the first to third traits.

Draw plot (All the methods): Including **FALSE** and **TRUE**. **FALSE** indicates no figure output; **TRUE** indicates the output of figures, including the Manhattan, QQ and LOD score against genome position.

Plot Resolution (All the methods): Including Low and High for all the figure files. Their parameters are showed at Page 17.

Plot format (All the methods): Including *.jpeg, *.png, *.tiff and *.pdf for all the figure files.

Figure 7. Method select & Parameter setting

3.4 Run the software (Fig 8)

After uploading all the needed files and setting all the parameters, users can run the software. The result files will be saved to the path that users set up.

Figure 8. Run the software mrMLM.GUI

3.5 Re-draw the plot according to user's requirement

Once users run the software, users can obtain a result file, named **resultforplot.xlsx**, which is used to redraw the plot.

3.5.1 Manhattan plot

In the independent dialog window of Manhattan plot module, users can preview the Manhattan plot. Before saving this Figure, please set up the related parameters: width and height [with the unit of pixel (px)], word resolution [with the unit of 1/72 inch, being pixels per inch (ppi)], and figure resolution [with the unit of pixels per inch (ppi)]. Users may set up the colors for the adjacent chromosomes, with a drop-down option. The critical value for $-\log_{10}(P\text{-value})$ is defaulted as the value of $0.05/m_e$, where m_e is the effective number of markers (please see Wang et al. *Scientific Reports* 2016, 6:

19444). Use "Save Manhattan plot" button to choose a path and to save the Figure, with four frequently used image formats: *.png, *.tiff, *.jpeg and *.pdf (Fig 9).

Figure 9. Manhattan plot module

3.5.2 QQ plot

In the independent dialog window of **QQ plot** module, users can redraw the QQ plot. The parameter settings are the same as those in the Manhattan plot. Use "**Save QQ plot**" button to choose a path and to save the Figure, with four frequently used image formats: *.png, *.tiff, *.jpeg and *.pdf (**Fig 10**).

Figure 10. QQ plot module

3.5.3 Plot of LOD score against genome position

In the "Plot of LOD Score against Genome Position" module, users can redraw the plot. The parameter settings are the same as those in the Manhattan plot. Users may set up the color of LOD line. Use the "Save plot" button to choose a path and to save the Figure, with four frequently used image formats: *.png, *.tiff, *.jpeg and *.pdf (Fig 11).

Figure 11. Plot of LOD score against genome position (bp)

4. Result

At the work directory of user's R package, there will have two "results" files for the trait of interest, "1 intermediate result.csv" and "1 Final result.csv".

In the **intermediate result** from the mrMLM method, the result file includes: Trait ID, Trait name, method, reference sequence number (rs#, marker name), chromosome, marker's position (bp) in the chromosome, SNP effect (γ_k , Effect), -log₁₀(P), genotype for code 1.

In the **Final result** from the mrMLM method, the result file includes: Trait ID, Trait name, method, reference sequence number (rs#, marker names), chromosome, marker's position (bp) in the chromosome, QTN effect, LOD score, -log₁₀(P), the proportion of phenotypic variance explained by significant QTN (r²), minor allelic frequency, genotype for code 1, residual error variance, and total phenotypic variance.

In the **plot results**, there are ten sheets, including "Manhattan mrMLM", "qq mrMLM", "Manhattan FASTmrMLM", "qq FASTmrMLM", "Manhattan FASTmrEMMA", "qq FASTmrEMMA", "Plot pLARmEB", "Manhattan pKWmEB", "qq pKWmEB", "Plot ISIS EM-BLASSO". These plot results will be saved to the ten sheets if users select all the methods. Users may upload this file into mrMLM.GUI in order to adjust all the figures based on user's opinions.

5. References

- 1 Zhang Yuan-Ming, Mao Yongcai, Xie Chongqing, Howie Smith, Luo Lang, Xu Shizhong. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (*Zea mays* L.). *Genetics* 2005, 169: 2267–2275. DOI: 10.1534/genetics.104.033217
- Wang Shi-Bo, Feng Jian-Ying, Ren Wen-Long, Huang Bo, Zhou Ling, Wen Yang-Jun, Zhang Jin, Jim M. Dunwell, Xu Shizhong*, Zhang Yuan-Ming*. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. *Scientific Reports* 2016, 6: 19444. DOI: 10.1038/srep19444
- 3 Tamba Cox Lwaka, Ni Yuan-Li, Zhang Yuan-Ming*. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. *PLoS Computational Biology* 2017, 13(1): e1005357, DOI: 10.1371/journal.pcbi.1005357
- 4 Zhang Jin[#], Feng Jian-Ying[#], Ni Yuan-Li, Wen Yang-Jun, Niu Yuan, Tamba Cox Lwaka, Yue Chao, Song Qi-Jian, Zhang Yuan-Ming*. pLARmEB: Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. *Heredity* 2017, 118: 517–524. DOI:10.1038/hdy.2017.8
- 5 Ren Wen-Long[#], Wen Yang-Jun[#], Jim M. Dunwell, Zhang Yuan-Ming*. pKWmEB: Integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. *Heredity* 2018, 120: 208–218. https://doi.org/10.1038/s41437-017-0007-4
- Wen Yang-Jun, Zhang Hanwen, Ni Yuan-Li, Huang Bo, Zhang Jin, Feng Jian-Ying, Wang Shi-Bo, Jim M. Dunwell, Zhang Yuan-Ming*, Wu Rongling*. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. *Briefings in Bioinformatics* 2018, 19(4): 700–712. https://doi.org/10.1093/bib/bbw145
- 7 Tamba Cox Lwaka, Zhang Yuan-Ming*. A fast mrMLM algorithm for multi-locus genome-wide association studies. *bioRxiv* 2018; doi: https://doi.org/10.1101/341784, online (June 7, 2018)
- 8 Zhang Ya-Wen, Tamba Cox Lwaka, Wen Yang-Jun, Li Pei, Ren Wen-Long, Ni Yuan-Li, Gao Jun, Zhang Yuan-Ming*. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. *Genomics, Proteomics & Bioinformatics*, resubmission