POPULATION PHARMACOMETRICS

MODELS, METHODS & TOOLS (A VERY QUICK OVERVIEW...)

MARC LAVIELLE
INRIA SACLAY, POPIX

Introduction to PKPD modeling

warfarin

anticoagulant used in the prevention of thrombosis

Pharmacokinetics:

what the body does to the drug

Absorption
Distribution
Metabolism
Excretion

Pharmacokinetics:

what the body does to the drug

Pharmacodynamics:

what the drug does to the body

Introduction to PKPD modeling

$$\frac{d}{dt}A_{d}(t) = -k_{a}A_{d}(t)$$

$$\frac{d}{dt}A_{c}(t) = k_{a}A_{d}(t) - (CI/V)A_{c}(t)$$

$$\frac{d}{dt}E(t) = -k_{in}\left(1 - I_{max}\frac{C_{c}(t)}{IC_{50} + C_{c}(t)}\right) - k_{out}E(t)$$

$$C_{c}(t) = A_{c}(t)/V$$

$$E_{0} = k_{in}/k_{out}$$

C(t): predicted concentration

E(t): predicted effect

PKPD parameters:

 k_a , V, Cl, I_{max} , k_{in} , k_{out} , IC_{50}

Pharmacokinetics (PK) of warfarin

Model = pharmacological model + statistical model

- N subjects
- $y_i = (y_{ij}, 1 \le j \le n_i)$: measurements for subject i (observed) $y_i \sim h(\cdot; \psi_i)$
- ψ_i : individual parameters for subject i (not observed) $\psi_i \sim \pi(\,\cdot\,;\theta)$
- \blacksquare θ : population parameters of the model (unknown)

Some tasks to perform

$$y_i \sim h(\cdot, \psi_i)$$

$$\psi_i \sim \pi(\cdot;\theta)$$

Model exploration

- sensitivity analysis,
- visual exploration,

Parameter estimation

- \blacksquare population parameters θ ,
- Fisher Information matrix,
- \blacksquare individual parameters (ψ_i) ,

3 Model evaluation

- model diagnostic,
- model selection,

4 Simulation

clinical trial simulation

Some tools for PKPD modeling

A PKPD model

linear

elimination

C(t): predicted concentration

E(t): predicted effect

PKPD parameters:

 k_a , V, CI, I_{max} , k_{in} , k_{out} , IC_{50}

MLXTran: a new modeling language

[LONGITUDINAL]

input = {ka, V, Cl, Imax, IC50, kin, kout}

EQUATION:

 $ddt_Ad = -ka*Ad$

 $ddt_Ac = ka*Ad - CI/V*Ac$

Cc = Ac/V

E_0 = kin/kout

 $ddt_E = kin*(1-lmax*Cc/(IC50+Cc)) - kout*E$

MLXTran: a new modeling language

[LONGITUDINAL]

input = {ka, V, Cl, Imax, IC50, kin, kout}

EQUATION:

```
ddt_Ad = -ka*Ad
```

ddt Ac = ka*Ad - CI/V*Ac

Cc = Ac/V

 $E_0 = kin/kout$

ddt E = kin*(1-lmax*Cc/(IC50+Cc)) - kout*E

[INDIVIDUAL]

input = {V_pop, Cl_pop, omega_V, omega_Cl}

DEFINITION:

V = {distribution=lognormal, reference=V_pop, sd=omega_V}

Cl = {distribution=lognormal, reference=Cl_pop, sd=omega_Cl}

MLXPlore: a graphical software for the exploration and visualization of complex models

Tumor growth model

Glucose insulin model

Glucose insulin model ddt_AIG=QIG*(IH-IG) ddt_AGG=rOGA3 + rOGA2 + QGG*(GH-GG)-rGGU ACRN 0-CRN0*/CRN			
GIUCOSE INSULI	n model	ddt_AIG=QIG*(IH-IG)	QGG*(GH-GG)-rGGU
Otacosc misati		AIK_0=IK0*VIK	AGPN_0=GPN0*VGPN
(DDEDICTION)	QGK=10.1	ddt_AIK=QIK*(IH-IK)-rKIC	$ddt_AGPN=QGPN*(GH-GPN)$
[PREDICTION]	QGP=15.1	AIPV 0=IPV0*VIPV	AGL_0=GL0*VGL
input={ta,tge2,tge3,GPV0,IPV0,VGPI}	QGPN=0.5	ddt AIPV=QIP*(IH-IPV)+(VIPI/TIP)*(IPI-IPV)	AGK_0=GK0*VGK
	TB=2.1	AIPI 0=IPI0*VIPI	if GK<0
EQUATION:	TGP=5.0	<u> </u>	rKGE=0
t0=0	Taul=25	ddt_AIPI=(VIPI/TIP)*(IPV-IPI)-rPIC	elseif GK<460
ddt_Gs2=-Gs2/tge2	TauGamma=65	rBPIR=IH0*(QIH/(1-FLIC)-QIA-QIG-(1-	rKGE=71+71*tanh(0.011*(GK-460))
ddt_rOGA2=-(rOGA2/ta)+Gs2/(ta*tge2)	rBGU=70	FPIC)/(1-FLIC)*QIP-QIB/(1-FLIC)-QIPN-	else
ddt_Gs3=-Gs3/tge3	rRBCU=10	QIK*(1-FKIC)/(1-FLIC))	rKGE=-330+0.872*GK
ddt_rOGA3=-(rOGA3/ta)+Gs3/(ta*tge3)	rGGU=20	AIPN_0=IPN0*VIPN	end
VIB=0.265	rBPGU=35	IIPV=log(IPV)	ddt AGK=QGK*(GH-GK)-rKGE
VIL=1.07		IIH=log(IH)	AGPV_0=GPV0*VGPV
VIG=0.945	rBHGP=155	GH0=GPV0+rBPGU/QGP	ddt_AGPV=QGP*(GH-GPV)-
VIK=0.505	rBHGU=20	GBV0=GH0-rBGU/QGB	(VGPI/TGP)*(GPV-GPI)
VIH=0.985	GPI=AGPI/VGPI	GBI0=GBV0-rBGU*TB/VGBI	AGPI 0=GPI0*VGPI
VIPV=0.735	MIHGP_0=1	GPI0=GPV0-rBPGU*TGP/VGPI	ddt_AGPI=(VGPI/TGP)*(GPV-GPI)-
VIPI=6.3	MIHGU_0=1	GK0=GH0	
VIPN=0.07	f_0=0	GG0=(GH0-rGGU/QGG)	rPGU
QIB=0.45	VGamma=9930	GPN0=GH0	IGPV=log(GPV)
QIH=3.12	rMGammaC=910	GL0=(1/QGL)*(QGA*GH0+QGG*GG0+QGPN	IGH=log(GH)
QIA=0.18	VInc=9.930	*GPN0+rBHGP-rBHGU)	MG=2.93-2.10*tanh(4.18*(GNH-
	rMIncC=0.14	x0=GH0^(3.267)/(131.87^(3.267)+5.932*(GH0	0.61))
QIL=0.9	TauInc=25	^(3.024)))	MI=1.31-0.61*tanh(1.06*(INH-0.47))
QIG=0.684	IncG_0=0	y0=x0^(1.1141)	AGammaN_0=VGamma
QIK=0.72	AInc_0=0	GH=AGH/VGH	GammaN=AGammaN/VGamma
QIP=1.05	IB0=IPV0/(1-FPIC)	GBV=AGBV/VGBV	ddt_AGammaN=rMGammaC*(MG*
QIPN=0.036	IH0=IB0	GBI=AGBI/VGBI	MI-GammaN)
TIP=20	IL0=(IH0/QIL)*(QIH-QIP*(1-FPIC)-QIK*(1-FKIC)-QIB)	GG=AGG/VGG	Inc=Alnc/VInc
FPIC=0.15	IPN0=(IH0/QIPN)*(QIH/(1-FLIC)-QIA-QIG-(1-FPIC)/(1-	GPN=AGPN/VGPN	ddt_IncG=-IncG/TauInc
FLIC=0.40	FLIC)*QIP-QIB/(1-FLIC)-QIK*(1-FKIC)/(1-FLIC))	GL=AGL/VGL	ddt_Alnc=IncG/Taulnc-rMIncC*Inc
FKIC=0.30	IK0=IH0*(1-FKIC)		X=GH^(3.267)/(131.87^(3.267)+5.9
M1=0.007968	IPI0=(1-(TIP*FPIC*QIP)/(VIPI*(1-FPIC)))*IPV0	GK=AGK/VGK	32*(GH^(3.024)))
M2=0.136495	IG0=IH0	GPV=AGPV/VGPV	Y=X^(1.1141)+phi1*Inc
alpha=0.048229	IH=AIH/VIH	MlinfHGP=1.2088-1.138*tanh(1.669*(INL-	I 0=x0
beta=0.93141	IB=AIB/VIB	0.8885))	PP_0=y0
K=0.0079378	IL=AIL/VIL	MIinfHGU=2.0*tanh(0.549*INL)	ddt_PP=alpha*(Y-PP)
phi1=0.003	IG=AIG/VIG	MGHGP=1.425-1.406*tanh(0.6199*(GL/GL0-	ddt_l=beta*(X-I)
phi2=0.0001	IK=AIK/VIK	0.4969))	Qi=(K*Imb0+gam*y0)/(M1*y0+K)
gam=0.57493	IPV=AIPV/VIPV	MGHGU=5.6648+5.6589*tanh(2.4375*((GL/G	lmb_0=Qi
lmb0=6.3294		L0)-1.48))	ddt_lmb=K*(lmb0-lmb)+gam*PP-
VGBV=3.5	IPI=AIPI/VIPI	MGPGU=GPI/GPI0	(M1*Y+M2*max(0,X-
VGBI=4.5	IPN=AIPN/VIPN	MIPGU=7.035+6.51623*tanh(0.33827*((IPI/IP	I)+phi2*Inc)*Imb
VGH=13.8	rLIC=FLIC*(QIA*IH+QIG*IG+QIPN*IPN)	10)-5.82113))	S=(M1*Y+M2*max(0,X-
VGL=23.5	rKIC=FKIC*QIK*IH	ddt_MIHGP=(MlinfHGP-MIHGP)/Taul	I)+phi2*Inc)*Imb
VGG=11.2	rPIC=IPI/((1-FPIC)/(FPIC*QIP)-TIP/VIPI)	ddt_MIHGU=(MlinfHGU-MIHGU)/Taul	, , ,
VGK=6.6	AIH_0=IH0*VIH	rHGU=MGHGU*MIHGU*rBHGU	SBGH=(M1*y0)*Qi rPIR=(S/SBGH)*rBPIR
VGPV=10.4	ddt_AIH=QIB*IB+QIL*IL+QIK*IK+QIP*IPV-QIH*IH	rPGU=MGPGU*rBPGU*MIPGU	
VGPN=1.6	INH=IH/IH0	AGH_0=GH0*VGH	ddt_AIPN=QIPN*(IH-IPN)+rPIR
QGB=5.9	AIB_0=IB0*VIB	ddt_AGH=QGB*GBV+QGL*GL+QGK*GK+Q	MGamma0HGP=2.7*tanh(0.388*Ga
QGH=43.7	$ddt_AIB=QIB*(IH-IB)$	GP*GPV-QGH*GH-rRBCU	mmaN)
QGA=2.5	AIL_0=IL0*VIL	GNH=GH/GH0	MGammaHGP=MGamma0HGP-f
QGA=2.5 QGL=12.6	ddt_AIL=QIA*IH+QIG*IG-QIL*IL+QIPN*IPN-rLIC	AGBV_0=GBV0*VGBV	ddt_f=((MGamma0HGP-1)/2-
	INL=IL/IL0	AGBI_0=GBI0*VGBI	f)/TauGamma
QGG=9.6	AIG_0=IG0*VIG	ddt AGBV=QGB*(GH-GBV)-	rHGP=MGHGP*MIHGP*MGammaH
		(VODUTD)*(ODV ODV)	GP*rBHGP

ddt_AGG=rOGA3 + rOGA2 +

Glucose-insulin model

MONOLIX: a platform of reference for model based drug development

Running a MLXTran model from MATLAB or R

[LONGITUDINAL]

input = {ka, V, Cl, Imax, IC50, kin, kout}

EQUATION:

```
ddt_Ad = -ka*Ad
```

ddt Ac = ka*Ad - CI/V*Ac

Cc = Ac/V

E 0 = kin/kout

ddt E = kin*(1-lmax*Cc/(IC50+Cc)) - kout*E

[INDIVIDUAL]

input = {V_pop, Cl_pop, omega_V, omega_Cl}

DEFINITION:

V = {distribution=lognormal, reference=V_pop, sd=omega_V}

Cl = {distribution=lognormal, reference=Cl_pop, sd=omega_Cl}

Running a **MLXTran** model from MATLAB

Running a **MLXTran** model from R studio

MLXTran

- Continuous data model
 - ODEs based model
 - PK & PKPD model (dynamical system)

- Categorical data model
- Count data model
- Survival data model

Some links

Get Monolix & MLXPlore on the LIXOFT website

http://lixoft.net

WikiPopix: a wiki about the mixed effects models for the population approach

https://wiki.inria.fr/popix