General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

EARTH VIEWING APPLICATIONS LABORATORY (EVAL)

(NASA-CR-152435) EARTH VIEWING APPLICATIONS LABORATORY (EVAI). INSTRUMENT CATALOG (General Electric Co.) 29 p HC A03/MF A01 N77-17142

Unclas G3/19 16674

INSTRUMENT CATALOG

EARTH VIEWING APPLICATIONS LABORATORY (EVAL)

INSTRUMENT CATALOG

25 MAY, 1976

PREFACE

This document contains a comprehensive description of 87 instruments used in Earth Observation, with an additional 51 instruments containing references to programs and their major functions.

These instruments were selected from such sources as:

- Earth Observation Flight Programs (e.g., Numbus, Landsat, Skylab, etc.)
- Operational Satellite Improvement Programs (OSIP)
- Advanced Application Flight Experiment Program (AAFE)
- Shuttle Experiment Definition Program (SHUTTLE)
- Earth Observation Aircraft Program (A/C)
- Support Research and Technology Program (SR&T)

The time period covered for these instruments is from the late 1960's to the early 1980's.

Generic Name	Status	Objective	Туро	Sį	pectral Bands	Total Angular Coverage (Deg)	Instantanen: Angular Field of Vic
Multispectral Photographic Facility (S-190A)	Skylab	High Resolution Multispectral Imagery	Mapping Camera	G	,4=,85 μm	20° × 20°	26 µrad
Earth Terrain Camera (S-190B)	Skylab	High Resolution Mapping	Mapping Camera	1	.485 µm	15° x 15°	14-55 #rad
Optical Bar Panoramie Camera (S-163)	Apollo	High Resolution Mapping	Panoramie Scanning Film Camera	1	.4-,85 µm	108° Cross-Track 11° Along-Track	12 µ rad
Multispectral Scanner (MSS)	Landsat	Multispectral Imagery	Scanning Spectral Radiometer	4	0,5-1,1 µ m 10,5-12,5 µ m	11,6*	85.7 #rad 257 #rad
Multispectral Scanner (S-192)	Skylab	Multispectral Imagery	Scanning Spectral Radiometer	9 3 1	.41-1.19 # m 1.2-2.35 # m 10.2-12.5 # m	11.0	162 µrad
Return Beam Vidicon (RBV)	Landsat	Multispectral Imagery	Image Tube Spectral Radiometer	3	.4883 µm	11.6° x 11,6°	90 µrad
High Resolution IR Radiometer (HRIRS)	Nimbus F	Vertical Temp Profile & H ₂ O Distribution	Scanning Spectral Radiometer	17	0.7-15 μm	72*	1,5*
IR Tempera- ture Profile Radiometer (ITPR)	Nimbus 5	Vertical Temp Profile	Filter Spectrometer	7	3, 8-15 μm	76*	1.5*
Automatic Picture Taking (APT)	Nimbus 1, 2	Local Cloud Cover Images	Image Tube Mapper	1	0,5-0,75 µm	77*	0,25*
Advanced Vidicon Camera (AVCS)	Nimbus 1, 2	High Resolution Cloud Images	Image Tube Mapper	3	0.5-0.75 µm	107*	0, 10*
High Resolution IR Radiometer (HRIR)	Nimbus 3	Day/Night Cloud Cover	Scanning Imaging Radiometer	2	0.7-1.3 / m 3,4-4.2 / m	Horizon-to-Horizon	0,4
Image Dissector Camera (IDCS)	Nimbus 3, 4	Day Cloud Cover	Image Tube Radiometer	1	0.5-0.75 µm	98° x 74°	0,1
Temperature/ Humidity IR Radiometer (THIR)	Numbus 4, 5, F, G	Cloud Cover, Water Vapor Mapping	Scanning Imaging Radiometer	2	6,5-7,5 µm 10,5-12,5 µm	Horizon-to-Horizon	1, 2° 0, 4°

ORIGINAL' PAGE IS OF POOR QUALITY

1

E P

SCA'S

Q.

Sec. 1

TOTAL ST

1

3

1

28.5

ORIGINAL PACE IS OF FOOR QUALITY

							· ·			ower Requirem	ients		Stabiliza	tion Requiremen	ts	****
шя	Look Angle	SI	76		Shape	# Of Packages	Weight	Cooling Requirements Cryogene	Volt	Avg. Power	Peak Pwr,	Slow, & Settling Time	Rate Stability	Ptg. Accuracy	Stab, Amp	Tope of Guipet
ew	(Deg)	(CM)	(CM)	(CM)	0,1,,,,		(KG)			(Watts)	(Watts)	Deg/Sec	Deg/Sec	(Deg)	(5ee)	
	NA DIR Viewing	45 31	65 46	72 46		2	109 34	None		200				0,5	3	
<u>-</u> 1	NADIR Viewing	70	35	27	Rect	1	36	None	115 VAC 400 Hz, +28 VDC					0,5	3	
	NADIR Viewing	152	65	74	Rect	1	185	None	115 VAC 400 Hz, 27,5 VDC	40 234	340					DA
<i>.</i>	NADIR Viewing	117	60	45	Rect	1	64	100°K		65						PCM
: -	NADIR Viewing	142	92	57	Rect	1	159	100°K		250					·	PGM
:	NADIR Viewing	67	87	32			85	None		144	168				<u>.</u>	3-Serial Analog Video
	NADIR Viewing	52	26	45	Rect	1	33	120° K	28 VDC	23						Digital
: -	NADIR Viewing	50	37	30	Rect	(optics) 1 (Elect)	9	None		14						Digital
:	NADIR Viewing	32	15	15	Cyl.	1	12	None		40						Video
	NADIR Viewing	30	47	20	Rect	1	60	None		27						Video
1	NADIR Viewing	42	22	15		1	7	200° %		14						Video
		_				<u> </u>				10	-	-	 			-
	Viewing	40		15	Rect	1	8	None		13						Vidro
		40	17	17	Rect		9	None		9						Video
• 	NADIR Viewing								<u>: </u>							

remen	ts	{			Data		·	1
		Type Of		T	[1	T	•
uracy	Stab, Amp	Output	Rate	Format	Storage	Accuracy	Frame Rate	Special Considerations
1	(Sec)		(BPS)	1 2 2 2 2 2 2 2	(Bits)	(Bits/Wd)		Special Constitutions
	(300)	<u></u>			(101110)	(Bits/Wu)	(Fr/Sec)	
.	<u>†</u> 3	ł	N/A		Į.	ļ	G1/Sea	Aperture Control Adjustable from
	t	<u> </u>		į	(ļ	Į	f/28 to f/16 in 1/2-Stop Increments; 6" Focal Length
	ĺ	[1]	ł	Increments; 6" Focal Length
	3		N/A		1			
	3	[1 3/4	}	1		0-25 Fr/Min	f/4 Relative Aporture 18" Focal Length
		ļ	ĺ	} .	{		{) The state of the
		ļ	ļ	ļ				<u> </u>
		1	N/A	ł			4.7 to 8.9	f/3,5 Relative Aperture
}]	Ì]		Sec/Frame	24" Focal Length
}		i '	\	ĺ)		1	· ·
. —	279	PCM	15×106	1 Minor		6 Blts/Word	7	
ł		ļ		Frame Ea.				
		[6x6 Pix.			i	
			 	 -				<u> </u>
: }		PCM	9,7×10 ⁵) ;	8 Bits/Word	94.8	Length of Sensor Scan Rotation Period Not Constant
}		}			}	,	}	Which Results in Either Unequal Frame Lengths or Unequal Words/Frame Complicates Processing
						 -		one-fair notes, 1 take completeles 1 toessing
		3-Serial Analog	3.2×10 ⁶				25 Sec. Cycle Time	į
.		Vídeo	P. Chan.		1		Cycle 11ma	
	<u> </u>]				
		Digital	3,4×10 ³	NIMBUS			1/4 Sec.	
-	,			HDRSS			174 560,	
	,	į		(•		
				 -				
		Digital	2,5 x 10 ³	10 Bit			1/80 Sec.	
i				Word			١ .	
	1	i		j		<i>2</i>		
-				 			 	
		Video					200 Sec/Fr.	,
]		*1000					200 500/ FF.	
						7.		
\ \	·	Video					4 Sec/Fr.	19
							1 500, 11.	
4				·				
					:		* *	
	i	Video		RTTS			1.25 Sec/Line	
. }	. s							
+								<u> </u>
l						1 1 Ten 1		
		Video	2.4×10 ³	RTTS			1/200 Sec	
+							<u> </u>	
		Video	360	RTTS			1,2 Sec/Line	
					•		-,,	
1							<u> </u>	

OL FOOT GLAFOT

Conordo Nama		Ohlostina	Time	Speatr	al Banis	Catal Angular Canana	Instantaneous Angular	
Generic Name	Status	Objective	Туро	#	Location	Total Angular Coverage (Deg)	Field of View (Deg)	h
Surface Comp, Mapping Radiometer (SCMR)	Nimbus 5	Identification of Surface Minerals	Filter Spectrometer	3	.8-1.1 μm 8.3-9.2 μm 10.5-11.3 μm	Horizon-to-Hori-an	0.4*	· .
Earth Radiation Budget (ERB)	Nimbus F. G	Planetary Heat Budget; Solar Radiation & Earth Flux	Fixed and Scanning Radiometers	22 (10 Solar) (12 Earth)	0.2-5.0 μm	±55° Cross-Track ±65° Along-Track	5x.25° (Sean Ch.) 29° (Solar Ch.) 133° (Flaud Earth)	
Medium Resolution IR Radiometer (MRIR)	Nimbus 2, 3	Vertical Temp. Proffic, Heat Balance	Imaging . Spectrometer	5	0.5-29 μm	ijorizon-To-ijorizon	2.7*	N. V
Infrared Spectrometer (S-191)	Skylab	Atmospheric Calibration Data	Spectral Radiometer	90	.42-2.5 μm 6.6-16.0 μm	N/A	1 mrad	E V
Limb Radiance Inversion Radiometer (LRIR)	Nimbus F	Stratospheric Profiles of Temp, H ₂ O and O ₃	Scanning Spectral Radiometer	4	8.7-25 μm	20°	0.3° × 0.03°	H V
Backscatter UV Spectrometer (BUV)	Nimbus 4	Spatial Distribu- tion of Ozone	Grating Spectrometer	13	2500-3900° A	12°	12*	E
Filter Wedge Spectrometer (FWS)	Mimbus 4	Vertical Distr. & Temp. Profile of H ₂ O and CO ₂	Filter Spectrometer	320	1,2-2,4 μm 3,2-6,4 μm	2.6*	2.6*	E V
IR Interfero- meter Spectrometer (IRIS)	Nimbus 3,4	Vertical Temp. and H ₂ O Profile	Michelson Interfero- meter	N/A	5-25 µm	8° (Nimbus 3) 5° (Nimbus 4)	6° (Kimbus 3) 5° (Nimbus 4)	E V
Selective Chopper Radiometer (SCR)	Nimbus 5	Vertical Temp. Profile, Dist. of H ₂ O, Ice Part, Density in Clouds	Gas Cell Filter Spectrometer	10	Ľ-100 μm	1.5*	1.5*	E
Satellite IR Spectrometer (SIRS)	Nimbus 4	Vertical Temp. Profile Distr. of ATM. Gases	Grating Spectrometer	14	11-35 µm	±35°	12*	×
Pressure Modulated Radiometer (PMR)	Nimbus F	Vertical Temp. Profile to 85 Km	Pressure Broadening Spectrometer	2	15 µm	15*	4° x 20°	ş v
L-Band Radiometer (S-194)	Skylab	Measure Surface Brightness Temp.	Microwave Radiometer (Passive)	1	1.4- 1.427 GHz	15*	15*	,
Radiometer/ Scatterometer/ Altimeter (S-193)	Skylab	Temperature Distribution for Oceanology	Microwave Radiometer/ Scatterometer	1	13.9 GHz	48*	27 mrad	,

100.17

影

									[]	Cooling	. 7	Power Requirem	ents
	Total Angular Coverage	Instantaneous Angular Field of View	Look Angle		Size				Weight	Requirements	Yoll	AVE. PAT.	Peak
1	(Deg)	(Deg)	(DoR)	(CM)	(CM)	(CM)	Shape	f of Phys	(KS)	Cryogene		(Watta)	CAL
	Horizon-to-Horizon	0.4*	NADIR View	52 27	22 30	40 12	[3 Sec 310 Liket.	27	100°K		11	
1	±55° Cross-Track ±65° Along-Track	5x.25* (Scan Ch.) 29* (Solar Ch.) 133* (Fixed Earth)	NADIR and Solar View	35	32	47	Rect	1	26	None		25	
	Horizon-To-Horizon	2,7	NADIR View	32	15	17	Rect	2	7			?	
	N/A	1 mrad	Earth Viowing	0.3m ³	-	-	-		136	100°K		10	
_	20*	0.3° × 0.03°	Horizon Viewing	22 35 15	22 35 15	60 45 20	Cylind Rect	1 2	50	œ.к		28	
	12*	12°	Earth Viewing	55 15	20 15	15 15	Rect Rect	2	18		-24.5 VIX	13	
	2.6*	2,0°	Earth Viewing	32	16	15	Rect	1	16	170°K		20	
	8* (Nimbus 3) 5* (Nimbus 4)	8° (Nimbus 3) 5° (Nimbus 4)	Earth Viewing	37	32	20	Rect	3	15	25 or K		23	
	1.5*	1,5*	Earth Viewing	42	20	30	Rect	2	14	None		15	
٠.	±35*	12*	NADIR Viewing	52	30	30	Cyclind	5	32	None		24	
	15*	4" × 20°	NADIR Viewing	22	17	22	Rect	1	11	Bone		5	
	15*	15*	Earth Viewing	.25m ³	-	_		-	17	ж.		13	
	44.	27 mrad	NADIR View	0.65m ³	_	-	-	•	3.5	SA.		153	
							ŀ		· [1		

ORIGINAL PAGE IS DE POOR OUALI Za

							Cooling		Power Requirem	nents	Stabili	zation Requi	rements		
gle ms	(CM)	Size				Weight	Requirements	Volt	Avg. Pwr.	Peak Pwr.	Slew, and Settl- ing Time	Nate Stability	Pig. Accuracy	Stab. Amp	7
	· 	(CM)	(CM)	Shape	# of Pkgs	(Kg)	Cryogene		(Watte)	(Watte)	(Deg, Sec)	(Deg/Sec)	(Deg)	(Sec)	
	52 22	22 30	40 12	Rect Rect	2 2 ca-310 Elect.	27	100° K		11	77					Vic
zi W	35	32	47	Rect	1	26	None		25						Ď:g:
_	32	15	17	Rect	2	7			7						
	0.3m ³	-	-	-	.	136	100°K		10						PC)
	22 35 15	22 35 15	60 45 20	Cylind Rect	1 2	50	65°K		28	•					Dig
	55 15	20 15	15 15	Rect Rect	2	16	·	-24.5 VDC	13						Dig
	32	16	15	Rect	1	16	170°K		20						Digi
	37_	32	20	Rect	3	. 15	250° K		25						Digi
	42	20	30	Rect	2	14	None		15	35					Digii
	52	30	30	Cyclind	5	32	None		24						Dige
	22	17	22	Rect	1	11	None		5	15					Digit
	.25m ³	-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-	<u>-</u>	17	NA		10						ICM
	0.65m ³		-	-	-	95	NA		153			. 4.			ACM Eplit Phas
									ute to the contract	·					

	zation Requi		,			 -	Data			
۱	Rate Stability	Pig. Accuracy	Stab.	Type of Output	Rate	Formst	Storage	Accuracy	Frame Rate	Special Coasiderations
t	(Deg/Sec)	(Deg)	(Šec)	ļ	(Bps)		(Bita)	(Btts/Wd)	(Fr/Sec)	
1				Video	50 x 10 ³	Analog	·		10 Lines/scc	10 jmin, Duty Cycle/Orbit
				Digital	50	Rimbus VIP		10 Nit/ Word		
					2 x 10 ³	N(mbus VIP			8/800	
		 		PCM	5.47 × 10 ⁴			10 Bit/ Word	46,8 mseo/Frame	Data taken only when Astrona Highlights a Particular Area and Depresses Data Button,
	·			Digital	4 x 10 ³	IDRSS				20 Sec. Horizon Acquisition 4 Sec. Horizon Scan.
	<u>.</u>			Digital	60	-		10 Bit/ Word	1/32 Sec.	
				Digital	220	. !		10 Bit/ Word	1/16 Sec.	
				Digital	3.9 x 10 ³	Nimbus		12 Bit/ Word	1/16 Sec.	
				Digital	4 x 103	Nimbus		10 Bit/ Word		
				Digitaj	250	Nimbus		10 Bit/ Word	1/2 Sea.	
				Digital	400	Nimbus			NA	
				PCM	180			10 Bit/ Word	1 Frame/Sec.	Two Data Cycles -34.6 min and 4.8 min Depending on Orbit.
				PCM Split Phase	5.33 x 10 ³ 10x10 (Alt)	3		10 Bit/ Word	2.665 Fr/Scc 1.64 Sec/Fr (Alt)	Large No. of Modes with Different Timing Results in Asynchronism between Data Acquisition and Telemetry Format.

ORIGINAL PAGE IS OF POOR QUALITY

Generic Name	Status	Objective	Туре		tral Bands	Total Angular Coverage	instantaneous Argutar Field of Value
Electrically Scanning Microwave Radiometer (ESMR-F)	Nimbus F	Sea Ice Cover; II ₂ O Content of Clouds	Polarized Scanning Microwave Rad. (RF Diode)	2	Location 37 GHz 5 GHz	(Deg) 74*	1.1° (37 GHz) 7.7° (LGHz)
Electrically Scanning Microwave Radiometer (ESMR)	Nimbus 5	Thormal Image of Occan	Soanning Microwave Radiometer (RF Diode)	1	19,35 GHz	50°	1.5*
Tropical Winds Energy Conv. Ref. Lovel Exp. (TWERLE)	Nimbus F	Large Scale Atm. Motions; conver- sion of Potential to Kinetic Energy	RF Receiver, Balloon Transmitter (RF Diode)	6	401 MHz	NA	NA
Microwave Spectrometer (NEMS)	Nimbus 8	Vertical Temp. Profile Using O ₂ Line, Il ₂ O Distr.	Microwave Radiometer Spectrometer (RF Diode)	5	20-80 GIIz	10*	10*
Scanning Microwave Spectrometer (SCAMS)	Nimbus F	Vertical Temp. Profile Using O ₂ Line, H ₂ O Distr.	Scanning Spectral Microwaye Radiometer	6	· 20-60 Gliz	86*	7,5*
HF Bistatic Radar (HFBR)	Alroraft Flight					60*	
Large Format Camera (LFC)	Under Develop	High Resolution, Large Area Coverage Imagery, Stereo	Framing Mapping Camera	1	0.5-0.85 µm	40° Cross-Track 80° Along-Track	30 prad
Thematic Mapper (TM)	Umler Develop	High Resolution Multispectral Imagery	Scanning Spectral Radiometer	4 1 1 1	.5-1.1 μm 1.55-1.75 μm 2.1-2.35 μm 10.1-12.6 μm	14* Azimuth 2* Elevation	.0017* .0058*
Coastal Zone Color Scanner (CZCS)	Nimbus G	Ocean & Coastal Zone Water Color Temp., Map Chlorophyll, Sediment	Scanned Spectral Radiometer	6	0.4-0.9 μm 10.5-12.5 μm	±40° Azimuth 1.0° Elev.	0.05*
Advanced Vory High Resolution Radiometer (AVHRR)	Under Develop	Sea Surface Temperature	Scanning Spectral Radiometer	5	0.7-12 µm	Norizon-ta-Norizon	0.115° to 0.173°
Hadamaard Imagery Spectrometer (HADIS)	AAFE	Atmospheric IR Images for Meteorological Application	Hadamaard Spectrometer	1	8-16 µm	5•	. 5°
Measurement of Air Pollution from Satellite (MAPS)	Nimbus G	Global Distrib. of CO, SO ₂ , CH ₄ , NH ₃	Gas Filter Radiometer	3	3–10 μm	7*	7*
Vertical Sounder	Under Develop	Vertical Temp, Distribution	Spectral Radiometer	14	3.7-30 µm	81*	1,125*

Age A

A STATE OF THE STA

AND A

製製

SAL

芸芸

A.

OF POOR QUALITY

								g - dina	P	ower Requirem	ents	Stabili	zation Requi	ireme
alar	took Angle		Size		Shape		Weight	Cooling Requirements Cryogene	Volt	Avg. Pwr.	Peak Pivr.	Slow and Sottling Time	Rate Stability	P Acc:
	1 mitations (Deg)	(CM)	(CM)	(CM)	- Chape	# of Pkgs	(Kg)			(Watta)	(Watts)	(Deg. Sec)	(Deg/Seo	(1)
	NADIR View	90 90	90 90	12 25	Rect Rest	1	82	None		50				
		· · · · · · · · · · · · · · · · · · ·												
	NADIR View	90	90	15	Root	1	30	None		42			·	
						_				n o				
						2	10	None		36				
	NADIR Vlow	32	50	47	Rect	3	32	220° K		32	45			
	y luw									•				
.	NADIR View	2 oa 1 oa	4/4 4/0	Nimbus 	Modules	3	32	None		37	50			
	Earth Viewing	. 0	hip Anter 1. 1m ³ ectronics				3			100	· .			±
	NADIR Viewing	81 15 30	61 43 43	117 51 69	Reat	3	136 11 34	NA	·.	180			·	0
	±20° Off NADIR View	116	93	60	Rect	1	180	100 K Radiative	28 VDC	100				0
1	NADIR Viewing	67	42	25	Rect	1	27	100°K		25				٥
					<u>.</u>									
	NADIR View	4	6	12	Rect	1	23	100°K	28 VDC	25				
	MARIN		25	25	Stant	1	110			30	1 1			-
	NADIR	150	2.0	20	Rect	•	110	100° K			·. · .			
	No Sunview NADIR	32 37	32 37	20 50	Rect Cyl.	з	43			67				9
-	Viewing				<u>.</u>		-		:				<u> </u>	├
	NADIR Viewing	60	37	37	Cyl.	1	20			30		j		

OF POOR QUALITY

		·. -	Data								
Special Consideration	Frame Rate (Fr/Sec)	Accuracy (Bits/Wd)	Storago	Format	Rate	Type of Output	Stab. Amp	Ptg. Лесигасу	Rate Stability	end Settling Time	
			(Bits)		(Bps)		(Sea)	(Deg)	(Deg/Sec	eg, Sec)	
Large Planar Anten	0.187	10	·	Nimbus 10 Blt Word	700	Digital					
Large Planar Array Deployed Outside th Vehiclo	0.167	10		Nimbus 10 Bit Word	400	Digital					
	NA	10		Nimbus	500	Bigital					
		}	. }	. :		· {			} }		
No Metallic Objects Below Horns				Nimbus VIP	800		e sur-		·		
No Meialile Chjects Below Horns	1/16 Sec	10		Nimbus 10 Bit Word	200	Digital		· · · · · · · · · · · · · · · · · · ·			
20 Each. 20 Minute Data Tokes	10-45 Seo/Fr				200			±20°			
f/6 Relative Aportu 12" Focal Length				· · · · · · · · · · · · · · · · · · ·	NA.		3	0.5			
	45 msec/ Line	7			120 x 10 ⁶	Digital 7 Bits	G	0.1		·	
Tape Recorder Rec	7.8 Lines Per Scc.				4 × 10 ⁶	Digital	18	0.05		<u> </u>	
					}				1		
		N.		8 Bits		Digital					
					10 x 10 ³			0.5*			
					840	Digitai	360	0.3			
			1 1	· · · · · · · · · · · · · · · · · · ·		ļ			ļ		
	8 Sec/Scan)	TBD	4					

	<u> </u>			Spect	ral Bands	Total Angular Coverage	Insta _{ti} t
Generio Name	Status	Objectivo	Туро	ji ji	Location	(Deg)	
Stratospheric & Mesospheric Sounder (SAMS)	NIMBUS G	Stratospheric Pro- files of H2O, N2O, CH4, CO, NO2, NO, O3	Prossure Broadening Spectral Radiometer	9	4.5 to 70 μm	6° Across Borizon 40° Azimuth	2° x ;
Stratospheric Aerosol Measure- ment (SAM II)	NIMBUS G	Stratospheric Aerosols	Spectral Radiometer	3	0.37 to 1 μm	Solar Occultation	0.016
Solar Backscatter UV & Total Ozone Mapping Spectrom- eter (SBUV/TOMS)	NIMBUS G	Vertical Profile & Total Burden of O3, Solar Irradiance	Spectral Photometer	8	.012-0.4 μm	90°	3° x 3° 11° x i
Lower Atm. Comp. & Temperature Experiment (LACATE)	NIMBUS G	Stratospheric Pro- files of O3, NO2, H2O, HNO3, N2O, Chi, Aerosols & Temp	Scanning Spectral Radiometer	10	6.1- 17.5 µm	+6*, -5* Elev. +15* Azimuth	.014° .028° .057°
Correlation Inter. Mens. of Atm. Trace Species (CIMATS)	Undur Davelop	Measure CO, CH ₄ , N ₂ O, NH ₃ , O ₃ , SO ₂ , H ₂ O	Correlation Interferometer	5 5	2-2.4 µm 4~9 µm	7° or 2°	7° or ;
Aerosol Physical Properties Instru- ment (APP)	Under Develop	Stratospheric Profiles of Aurosols	Spectral Photometer	6	0.31- 0.70 µm	2*	0.023*
Fraunhofor Line Discriminator (FLD)	Under Develop	Daytime Mapping of Luminescence	Photometer	đ	3950- 7000*A	10*	t*
Shuttle Imaging Microwave Sys- tems (SIMS)	Shuttle	Measure Thermal Emissions from Earth Surface & Atmosphere	Passive Microwave Radiometer	11	0.81- 118.7 GHz	60° Cross-Track 17° Along-Track	.09* - Functo Freque
Synthetic Aper- ture Radar (SAR)	Shuttle	High Resolution Microwave Imaging Soll Moisture Measurement	Active Imaging Microwave	2	9.0 GHz 1.01 GHz	±5°	
Synthetic Aper- ture Radar (SAR)	Seasat	All Weather Day/ Night (Seean Physics Analyt. Senson	Active Imaging Microwave	2	9,3-9,5 GHz 1.7 GHz	10° x 1.2°	0.6° x 1.5° x
Muitichannel Ocean Color Scanner (MOCS)	Under Develop	Spatial Distribution of Ocuan Color	Scanning Spectral Radiometer	20	0.4-0.7 μm	±17.1°	0.115*
Laser Altimeter	Under Develop	Altimater	Active Optical	1	TBD	100*	6 x 10
High Resolution Ozone Mapper (HROM)	Under Develop	Map Vertical & Horizontal Atm. Ozone Profiles	Spectral Photometer	TBD	.012- 0.4 μm	120° x 3°	TBD

N.

A E

É

E A

12

io in

\$

S. Carlot

	Spectr	al Bands	Total Angular Coverage	Instantaneous Angular Fleid of View	Look Angle Limitations			Size			Weight	Cooling Requirements	[•
	<i>#</i>	Location	(Deg)]	(D' ö)	(Deg)	(CM)	(CM)	(CM)	Elispes	f of Piga	(6.2)	Cryonono	
સ્ક • દ	9	4.5 to 70 μm	6° Auress Horizon 40° Azimuth	2° x 1.5°	Horizon Viewing	37	25	+2	Rect	3	25	\$00°16	
er	3	0.37 to 1 μm	Solar Occultation	0.016*	Solar View at Horizon	15 20	15 15	10 8	Rect Rect	2	7	Nona	
er	8	.012-0.4 µm	90° 105°	3° x 3° 11° 11° 11° 11° 11° 11° 11° 11° 11°	Nadir Viewing Solar View with Diffuser Plate	5.7 33	3H 15	21 20		Vita 1217 v (West Harris Administration)	16.9 7.7	None	
er	10	6.1- 17.6 µm	46°, -5° Elev, +45° Azimuth	.014* x .286* .028* x .143* .057* x .143*	Horizon Viewing	37 35	37 35	15 67	Cyl Cyl 3/0, 2/0 (Nimbus Modules)	4	77	65* K	
on melec	5 5	2-2.4 μm 4-9 μm	7° or 2°	7° or 2°	No Sun View Nodir Viewing	60 18 50	35 18 50	38 36 20	Rect Cyl Rect	1.	50	rn ²	2;
er	6	0.31- 0.70 μm	2*	0.023*	No Sun View Horizon View 30° From Sun	25	15	15	Cyl	1	1.5	None	
er	Ĝ	3950- 7000*A	10*	1*	Nadir View	46 31	46 25	38 	Rect Rect	1	2¢ 25		
va er	11	0.61- 118.7 GHz	60° Cross-Track 17° Along-Track	,09° - 17.0° Function of Frequency	Nadir Viewing	400	300	250	Rest.	.	952	None	
naging Ve	2	0.0 GHz 1.04 GHz	±5*		20* Off Nadir	1000	310		Rect	1	1248	None	
taging re	2	9.3-9.5 GHz 1.7 GHz	10° × 1,2°	0.6° x 3.3° 1.5° x 16.2°	23° Off Nadir	¢00 150	75 75	30 30		1 1	79 97	None	
Spectral ter	20	0.4-0.7 μm	±17.1°	0,115*	Nadir Viewing	-18	13	17	Rect	1	3.7		2:
ptical	1	TRD	100*	6 x 10 ⁻⁴ *		1,4m ³	-	-			340	None	
er	TBD	.012- 0.4 µm	120° × 3°	тво	Earth Viewing	60	25	25			13		

ORIGINAL PAGE IS
OF POOR QUALITY

4 Be

											·		
												•	
		i						•	Po	wer Requireme	ents	Stabili, Siew and Settling	e to the second
	Look Angle	İ		Sizo	i l			Cooling Requirements	Volt	Avg. Pwr,	Peak Pwr.	Slew and Settling Time	Tari 🔻
_	Limitations (Deg)	(CM)	(CM)	(CM)	Shapo	#:ol Pkgs	Weight (Kg)	Cryogene		(Watts)	(Watts)	(Deg. Sec)	Mariana de la composición del composición de la composición del composición de la composición del composición de la composición de la composición del compos
	Horizon Viewing	37	25	42	Rect	2	25	200° K		24	i		
	Solar View at Horizon	15 20	15 15	10 8	Rect Rect	2	7	Nono		8	15		
	Nadir Viewing Solar View with Diffuser Plate	53 33	38 15	21 20			16.0	None		20			
	Horizon Viowing	37 35	37 35	15 67	Cyl Cyl 3/0, 2/0 (Nimbus Modules)	4	77	65° K	•	50	80		
	No Sun View Nadir Viewing	60 18 50	35 18 50	38 36 20	Rect } Cyl } Rect	1	50	LN ₂	28 VDC	180	185		
	No Sun View Horizon View 30° From Sun	25	15	15	Cyl	1	4.5	None			3		
	Nadir View	46 31	46 25	31 38	Rect Rect	1 1	36 25			400			
	Nadir Vlowing	400	300	250	Rect	.1	952	None		930			
+	20° Off Nadir	1000	310		Rect	1	1248	None		6500			
†	23° Off Nadir	800 150	75 75	30		1 1	79 97	None		10W for 90 M 1075W for 10	iin. Min.		
†	Nadir Viewing	48	18	17	Rect	1	5.7		28 VDC	6	1		
		1.4m ²	3 _	-			340	None		560	870		-
	Earth Viewing	60	25	25			15			15			

ORIGINAL PAGE IS

	ation Require						Data			
Settling ne	Rate Stability	Ptg. Accuracy	Stab. Amp	Type of	Rate	Format	Storage	Ассигасу	Frame Rate	Special Considerations
Sec)	(Deg/Sen)	(Dog)	(Sec)	Output	(Bps)		(Bits)	(Dits/Wd)	(Fr/Sec)	
				Digital	200	NIMBUS 10 Bit Word		10		128 Bit Command Word to Program Scan Pattern
				Digital	2	÷				
		0.3	100	Digital	300 350	•	•	· · ·	1/16 sec	
				7						
			•		·					•
		0.01	5	Digital	4x 10 ³	NIMBUS VIP			8	
		0.1	36	Digital	2016			12	1	
				Serial Digital	48x 103					
								_		
		0.05	36		3x 10 ⁶			:		
		0.1	ß		480x 10 ⁶					
		±0.5		Digital 5 Bit	125x 10 ⁶	2 Channel				High Resolution Spatial Data After Processing
		0.5	43		TBD	: '.				
				. :: ·	30x 10 ³			. 4		
		0.3	100		2200			TBD		

ORIGINAL PAGE IS OF POOR QUALITY

				Spec	tral Bands		Instantaneous Angular	1.
Generic Name	Status	Objective	Түре	#	Location	Total Angular Coverage (Deg)	Field of View (Deg)	 - .'
iligh Speed Interfero- metor (IISI)	Under Develop	Measure Concont of all Molecular Species with Transition in 2-6 µm	Michelson Interferometer	NA.	2-6 µm	1,25*	1.25*	Sol G 1 Or Vic
Cloud Physics Radiometer (CPR)	AAFE	Measure Cloud Height, Cloud Temp, Ice Crystalls and H ₂ O Droplets	Scanning Imaging Itadiometer	5 1	.75-1.65 μm 11.5 μm	90*		NA Vie
Cloud Lidar System (CLS)	AAFE	Measure Cloud Height and H ₂ O Droplet Phase In Cloud	Active Optical	I	0.6 μm	NA	тво	NA' Vie
Magneto- meter	Under Develop	Measuro Earth's Magnetic Field in Orbit		NA	NA	DAT		Ea1 Vie
Microwave Wind Scatterometer (MWWS)	SEASAT	Measure Oceanic Surface Winds (Speed & Direction)	Active Microwave	1	14.6 Giiz ,	25° x 0.5°	2,6-5,0*	±46 NA:
Electromagnetic Environment Experiment (EEE)	Under Develop	Measure and Characterize EM Environment Interference	Passive Microwave		.4 – 40 GIIz	1° - 5°	1° - 70° Depends on Antennas used.	±70 NA
Adaptivo Multibeam Phased Array (AMPA)	Under Develop	Demonstrate Low Power, Point- to-Point Communi- cation, Soil Mois- ture (Passivo)	Active/ Passivo Microwave	3	1.5/1.6 GHz (Active) 1.4 GHz (Passive) 12 GHz (Active)	±40°	5°	llor Hor
Pulsed Com- pression Radar Altimeter (PCRA)	SEASAT	Measure Attitude Above Ocean Surface *_ 10 _m. Resolution	Active Microwave	1	13.9 GHz	1.5*	2 mr	NA Vie
Microwave Antenna	Under Develop					1.3*	•	Hot
Atmospheric X-Ray Emission (AXEE)	Under Develop	Measure Energy & Dist. Bremsstrah Lung X-Rays in Upper Atmos.		NA	1-100 Kev X-Ray	90° x360°		lior Hor
Bandwidth Compression Modulation (BCM)	Under Develop	Measure Statistical and Operational Perf. Char. of Commun. Links		3	S, X, and K Bands	1° Beamwidth	1.	Ear Vie
Electric Satellite Pyrheliometer (ESP)	AAFE	Measure Solar Constant and Monitor Variation of Solar Rad. in Spectral Bands	Spectrat Radiometer	3	0,2 - 50 μm	1,6*	1.6*	Sol: Poi
Spaceborne Laser Ranging System (SLRS)	Under Dovelop	Provide Precise Orbit/Geodetic Baseline Determination	Active Optical			0.03*		0(1 762
	1 - 11			1 7 1				

ORIGINAL, PAGE IS OF POOR QUALITY

				\			Cooling	Pow	er Requireme	nts	Stabili	zation Requi	Thteres	
Look Angle		Size				Weight	Requirements Cryogene	Volt	Avg. Pwr.	Peak Pwr.	Slew. and Settl- ing Time	Rato Stability	Access	4
Imitations (Deg)	(CM)	(CM)	(CM)	Shape	# of Pkgs	(Kg)			(Watts)	(Watte)	(Deg. Sec)	(Deg/Sec)	1-2	k
ar View Horizon NADIR swing	40	40	20	Rect	2	23							. 04	21
DIR ewing	61	25	36			167			25				0.2	Ho
ADIR ewing	76 127	51 97	26 97			205 TBD			1000				0.005	0.4
rth ewing	60 9 45	60 9 45	60 9 45			9.5 10 21	None		10 9 22				0.005	10
6° from ADIR	(4 ca) 300 100	17 41	15 35	Rect	5	55 80			TBD .				0.05	15
70° from ADIR	300	300	50			258	None		674		:		0.1	180
rizon-to- rizon	300 400 400	300 400 400	50 50 50	Reot	3	1500 100 100	None		500 300 600 800				0.3	180
ADIR owing	1m Dish 64	25	32	Rect	2	70	None		125				0.5	125
•						•								
rizon-to rizon	1.3m ³ 1.0m ³	-	-			110 220		28 VDC, 115 V, 60 Uz	350 250				0.05	90
)rizon-to)rizon	44	44	35			.192			10.2				0.2	360
irth ewing	1m ² Parab. Dish 1.2m ³	-	-			7 233	None	400 Hz	1300				1.2	
lar	25.5 14.3	28 34.3	15 9,0			13.5			3.5	22			2.0	
i5* I nadir	82 1m ³ Elect.	57	36			60 200			250				0.01	
· · · · · · · · · · · · · · · · · · ·	1,000,										· · ·	<u> </u>	<u> </u>	1

				Data	T					ention Requi	
Special Considerations	Frame Rate	Fr	Accuracy	Storage	Format	Rate	Type of Output	Stab, Amp	Pig. Accuracy	Rate Stability	Slow. and Settl- ing Time
	(Fr/See)	(1	(Blta/Wd)	(Bits)	1	(Dps)	1	(Scc)	(Deg)	(Deg/Sec)	(Deg. Sec)
			7			50	PCM	20	.00		
•						х 10 ³			'''		
						100					
						5 x 10 ⁵		140	0.2		
						105					
•			·			ļ			İ	,	
					İ	103		0.4	0.005		
Boom Deployed: 10-30 Len						450		10	0.005		
Magnetometer Orientation n be known to 20 Sec.											
De Known to 20 Sec.						ļ	·				
						THD		18	0,05		
					Ì				'		•
······································			· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>					·
	:		•			83 x		180	0.1	·	
						10 ³ -					
						2.5 x 10 ⁶					
						2 x 10 ⁶		180	0.3		
			•			10 ⁶					
			•		:						
							1				
								100	4. 5		
					.	3 x 10 ³		125	0.5		2
										ŀ	٠
					j		13			ĺ	
						TBD	-	90	0.05		
						132		• • • • • • • • • • • • • • • • • • • •			
				<u> </u>		2 x		360	0.2		
			•			104		-			*
				<u> </u>							
Pressurized Module In-						5 ×			1.2		
side Spacelab Module.						5 x 10 ³				ŀ	
	ger en i	1	•		ŀ						
		 		:	1	200	 		2.0	-	
+		ĺ				320			2.0		
		W 1						1 4			Sept. Sec. 12
]			
Tracking Accuracy 0.2			ti iki iki		1	5 🕶			0.01		
mrad for 10 Sec.						5 x					
		1		1	1.	1			[. ·		

ORIGINAL' PAGE IS OF POOR QUALITY

INSTRUMENT DESCRIPTION

Generic Name	Status	Objective	Туре	Sp #	ectral Bands	Total Angular Coverage (Deg.)	Instantaneous Angular Field of View (Deg.)
Microwave Directional Wave Spectrometer (MWDWS)	Under Develop.	Ocean Wave Directional Spectral	Real Apertura (Non-Imaging) Microwave	1	X Band or Ku Band	Conical Scan about NADIR 20* NADIR Angle (Cycle to 0* NADIR Angle)	0.5° x 1.0°
Scanning Multichannel Microwaye Rad, (SMMR)	NIMBUS G	Ocean Surface Temp, Ocean Currents, Air/Surface Heat Exchange	Dicke Type Radiometer	1	3 or 5 GHz	±35° Cross Track 43° to 55° Fwd Pitch	1" to 2.5"
Active Optical Scatterometer	Under Develop.	Determine Temporal & Spatial Distr. of Aurosols & Cloud Hoight	Selective Spectral Scatterometer	1	,35 - 1,5 μm	NA .	1.8 mrad
Differential Absorption Tuneable Laser	Under Develop.	Mensure Conc. Profile of O ₃ , SO ₂ , NO ₂ , Cl ₂ , Br ₂ , ClO, ClO ₂ , HNO ₃	Active Optical	2	9.0 -10.5 µm	NA	TBD
Visual & IR Radiometer (VIRR)	SEASAT	Visual & IR Imagery; Surf. Temp. of Ground, Sen & Cloud Tops	Seanning Imaging Radiometer	2	.5273 µm 10.5 - 12.5 µm	140° Cross-Track 1/3° Along-Track	5.3 mrad
Photo Polarimeter	Under Develop.	Mensures Polarized Components of Visible Light	Photometer	3	.4 = 1.0 µm	120° Cross-Track 1° Along-Track	1° × 1°
Wave Motion Sensor (WMS)	Under Develop,					3*	
Halogen Occultation Experiment (Haloe)	Under Develop.	Stratospheric Profiles of HCl, HF, CH ₄ , H ₂ O	Extinction Photometer			Solar Occultation	
Stratospheric Aerosol & Gas Experiment (SER/SAGE)	Under Develop.	Stratospheric Profiles of O ₃ , NO _x , Acrosols	Extinction Photometer	4	.38-1.0 µm	Solar Occultation	.016*

								Po	wer Requiren	nents		Stabilization	Requirements	
Look Angle Limitations	Sta			Shape	# Of Packages	Weight	Cooling Requirements Cryogeno	Volt.	Avg. Pwr.	Peak Pwr.	Slew and Settling Time (Deg./Sec.)	Rate Stability (Deg./Sec.)	Ptg. Accuracy (Deg.)	
(Deg.)	(CM)	(CM)	(CM)			(KG)		<u> </u>	(WHILES)		(10081) 20013	(magi, sees)		4-
NADIR View					2 Antennas Plus Electronics	100		28 VDC	<250	<400				
NADIR View					2 Scanning Antennas Plus Electronics	30	None	28 VDC	50				1° (Control) .1° (Knowledge)	,
	.4 m ³					220	None		270			ŀ		-
					·	i :								
	1-2 m ³				2-Trans- mitter & Receiver	TBD			TBD					
NADIR Viewing	21	16	24	Rect.	1	10	None		TBD				±1°	
NADIR Viewing	50	35	35	Rect.	1	27.2	None		20	45				
NADIR Viewing	1 m. Parab. Dish 5-0.5 m. Dishes .2 m ³ elec- tronics					91			90				0, 5	
Solar View at Horizon						20		1	20	50				
Solar View at Horizon						20			17	50				
1		1							1		-1 -	1	1 11 11	

ORIGINAL PAGE IS OF POOR QUALITY

	Stabilization	Requirements				D;	ata			
Siew and Settling Time (Deg./Sec.)	Rate Stability (Deg./Sec.)	Pig. Accuracy	Stab. Amp	Type of Output	Rnte (Bps)	Format	Storage (Bits)	Accuracy (Bits/Wd)	Frame Rate (Fr/Sec)	Special Considerations
			·	Digital	5 x 10 ⁶	PCM Serial		7 Bit A/D		2 versions of sensor: (1) Short Pulse Radar Wide Band Revr & Spectrum Analyzer (GSFC), (2) Narrow Band 2 freq. Syst (Lare)
		1* (Control) .1* (Knowledge)		Digital (Science) Hskpng	1.5 x 10 ³ 2 x 10 ³	PCM Serial		10 Bit A/D Conv.		
				Digital	80 x 10 ⁶			•		
					TBD					
		±1°			TBD				2 Lines/sec	
					TBD					
-		0.5			103				 	Antennas on 12m Boom Along Flight Vector
										I light vector
			}						}.	
				Digital	4 x 10 ³					
				S	<u> </u>	ļ <u>.</u>				
		. 1		Digital	4 x 10 ³					
				1 45 4	<u>.</u>					

Generic Name	Status	Objective	Тура	Spec	trat Bands	Total Angular Coverage (Deg)	Instantaneous Angular Field of View (Dog)
Pyrohellemeter	Amps	Measuro Total Solar Flux	Radiometer	1	•2-50 µm	5°	6*
Spectrophotometer	Amps	Monsure Solar Spectral Distribution	Spectromuter	N/A	.25-4 µm	1*	1,
Grazing Incidence Spectrograph	Amps	Spectral Line Profile	Spectrometer	N/A	300-600* A	N/A	35 min.
Normal Incidence Spteetrograph	Amps	Spectral Line Profile	Spectrometer	N/A	580-1220° A	N/A	20 séo
Echelle Spectrograph	Amps	Spectral Line Profile	Speatrometer	N/A	1150-1800° A	N/A	7 x 32 min.
Grazing Incidence Monochrometer	Amps	Solar Spectrum	Spectrometer	N/A	180-1800° A	N/A	7 x 32 min.
XUV Normal Incidence Spectrometer	Ampa AP 102	Identify Constit. & Energy of Ionosphere	Grating Spectrometer	1	300-1300° A	N/A	10° Dia.
UV-VIS-NIR Scanning Spectrometer	Amps AP 103	Identify Neutral Constit. Distribution	Ebent- Fastle Spectrometer	1	1150° Å-1.1 µm	N/A	0.8 x 1.8 mrad
Hi-Resolution Fourier SWIR Spectrometer	Amps AP 104	Identify Constituents & Distribution of Ions & Oil, Ogn NO	IR Interferometer	N/A	1-5 µm	N/A	3 min - 5*
Cryogenic Fourier Spectrometer	Amps AP 105	Identify Constitu- ents & Distribution of Ions	IR Interferometer	N/A	5-15 µm	N/A	3-30 min
IR Radiometer	Amps AP 106	Thermal Balance IR O ₂ Emission	IR Radiometer	1	15-150 μm	N/A	10° Dia.
Fabrey-Perot Interferometer	Amps AP 107	Velocity & Temp. of Upper Atm. Species	Visible Interferometer	N/A	2500-7000° A	N/A	TBD
Narrow Band Filter Photometer	Amps AP 108	Neutral Density Aerosols, O ₃ , O ₂ , Day & Night Airglow	Visible Radiometer	4	1050-8000° A	N/A	1 min - 1 deg

ORIGINAL PAGE IS OF POOR QUALITY

春

Sales

接管

SES.

ie E

No.

								Cooling Requirements	Volt	Avg. Pwr	Peak Pwr.	Slow and Settling Time	zation Requ Rate Stability	Pig.
,ar	Look Angle Limitations	(014)	Size (CM)	(CM)	Shapo	# of Pkgs	Wolght (KG)	Cryogena	Aptr	(Watts)	(Wnite)		(Deg/Ecc)	(Degi
	(Deg) Solar Pointing	(CM)	(C31)	(C.III)	annio	1		None		10				.5"
	Solar Pointing					1		None		10				.5*
	Solar Pointing	175	61	10	Rect	1	36	None		20	·			. 25*
	Solvr Pointing	148	46	31	Rect	1	56	None		60			-	.1"
<u> </u>	Solar Pointing	87	31	10	Rect		27	None		20				*6*
	Solar Pointing	61	30	30	Cyl	1	14	None		10				.25*
	Earth Viewing	24	90	79	Rect	1	11.4		110 VAC 40 CY	TBD	30			. 05*
	Enrth Viewing	55	37	130	Rect	1	106		110 VAC 40 CY	твр	25			
	Earth Viewing	52	70	30	Rect	1	54		110 VAC 40 CY	TBD	25			
:	Earth Viewing	90	90	75	Rect	1	134		110 VAC 40 CY	TBD	25			
-	Farth Viraling	30	30	90	Cyl	1.	24.6		110 VAC 40 CY	TBD	20			
	Farth Viewing	30	30	90	Cyl	1	22.8		110 VAC 40 CY	тво	20			
* <u></u>	Farth Virging	25	25	75	Cyl	4	18.4		110 VAC 40 CY	TBD	20			

Chabille	zation Requi	ramonia	}			·	Data			
nd Settling	Rate Stability	Pig.	Stab. Amp.	Type of Output	Rate	Format	Storage	Accuracy	Frame Rate	Special Considerations
Time (, Sec)	(Dog/Sec)	(Deg)	(Sec)		(Bpa)		(Blts)	(Bita/Wd)	(FR/Sec)	
, 500)	(1208) 1100)	.5*			103					
		.5*			10 ³					
	<u> </u>	. 25*		 	10x10 ³					
		.1*			10x10 ³					
		.5*			10×10 ³					
	-	.25*			103					
	 	.05*	<u> </u>		5x10 ³					
	<u> </u>		<u> </u>	 -	320	-		<u> </u>		
								<u> </u>		
					TBD					
	<u> </u>			1	TBD		+			
				. .			_		-	
					104					
					TBD					
		1			103		_			
.*		1	1 .	: 1	\			. 1 ·		

ORIGINAL' PAGE IS OF POOR QUALITY

ADDITIONAL EARTH OBSERVATION SENSORS

22nsor	PROGRAM/IDENTIFIER	MAJOR FUNCTION
SPACECRAFT		
Scanning Radiometer (SR)	ITOS-7	Cloud Monitoring,
_		Surface Temperature
Vertical Temperature	ITOS-7	Temperature Sounding
Profile Radiometer		
(VTPR)	1	
Very High Resolution	ITOS - 7	Cloud Monitoring,
Radiometer (VHRR-ITOS)	}	Surface Temperature
Visible IR Spin Scan	SMS-1	Cloud Monitoring,
Radiometer (VISSR)	(Surface Temperature
TIROS Operational	TIROS-N	
Vertical Sounder (TOVS)		
- Basic Sounding Unit (BSU)		Temperature & H2O Sounding
- Stratospheric Sounding Unit		Temperature Sounding
(SSU)		
- Microwave Sounding Unit (MSU)		Temperature Sounding
Large Earth Survey	SEOS A	Earth Resources Survey,
Telescope (LEST)		Atmospheric Sounding
Very High Resolution	ATS 6	Cloud Monitoring,
Radiometer Experiment (VHRR-ATS	•	Surface Temperature
Heat Capacity Mapping	AEM-A	Surface Temperature
Radiometer (HCMR)		
Stratospheric Aerosol	AEM-B	Aerosol Properties
and Gas Experiment (SAGE)		
Modified VISSR (VAS)	OSIP	Cloud Monitoring,
		Atmospheric Sounding
TIROS 5-Channel	TIROS	Cloud Monitoring,
Radiometer (TVCR)		Surface Temperature
AIRCRAFT		Darres Lamber age.
Modular Multiband	A/C	Earth Resources Survey
Scanner (M ² S)	1.70	Learn Resources ourvey
Passive Microwave	A/C	Earth Resources Survey
Imaging System (PMIS)	117.0	Haren nesources our vey
Scanning Imaging	A/C	Earth Resources Survey
Spectroradiometer (SIS)		laten nessares sarvey
Thermal Scanner (RS-18)	A/C	Surface Temperature
Ineimal Scaimer (No-10)	A/6	Juliace Temperature
24 Channel Multispectral	A/C	Earth Resources Survey,
• • • • • • • • • • • • • • • • • • •	A/C	Multispectral Research
Scanner (MSDS)		Mulcispectial Research
AAFE		
	FY70	Sea State
Radiometer/Scatterometer	F1/0	ser scorts
(RADSCAT)		S-a C
S-Band Microwave	FY70	Sea Surface
Radiometer	L	Temperature
CO Pollution Experiment	FY70	Pollution Monitoring-
(COPE)	<u> </u>	Total Burden

ENSOR	PROGRAM/IDENTIFIER	MAJOR FUNCTION
Microwave Temperature Sounder (MIS)	FY71	Temperature Sounding
High Speed Interferometer (HSI)	FY71	Pollution Monitoring- Total Burden
IR Heterodyne Radiometer (IHR)	FY74	Pollution Monitoring- Sounding
Multispectral Active/Passive Microwave System	FY74	Sea State, Water Content Measurement
Surface Profile Radar (SPR)	FY74	Sea State
Coherent Imaging Radar (CIR)	FY74	Costal Zone Processes
Long Term Zonal Earth Energy Budget (LZEEBE)	FY74	Earth Radiation Budget
Advanced Atmospheric Sounder & Imaging Radiometer (AASIR)	FY74	Severe Storm Monitoring, Temperature Sounding
High Spectral Resolution Laser Radar	FY75	Aerosol Properties, Cloud Physics
Àirborne Oceanographic Lidar	FY75	Turbidity, Water Pollution Monitoring
Active/Passive Multispectral Scanner	FY75	Earth Resources Survey
Microwave Limb Sounder (MLS)	FY75	Temperature & Pollution Sounding
Laser Absorption Spectrometer (LAS)	FY75	Pollution Monitoring- Sounding
PPORTING RESEARCH & TECHNOLOGY Cloud Top Scanner (CTP)	PROGRAM 175-21-48-01	Cloud Physics
Ocean Temperature Sensor (OTS)	175-21-41-07	Surface Temperature
IR EBERT Spectrometer	175-21-41-04	IR Spectrum Research
IR Heterodyne Sounder	175-21-41-06	Temperature & H ₂ 0 Sounding
Multiple Level Ozone Field Mapper (MLOFM)	175-21-42-02	Ozone Sounding
L-Band Radiometer	1,75-31-31-02	Ocean Salinity
Sweep Frequency Radiometer	175-31-31-02	Sea State, Soil Moisture
Gas Filter Correlation Analyzer (GFCA)	176-21-31-02	Pollution Monitoring- Total Burden
Correlation Radiometer For Tropospheric	176-21-41-01	Pollution Monitoring- Total Burden
Pollution (CRTP)	A William Control of the Control of	

SENSOR	PROGRAM/IDENTIFIER	MAJOR FUNCTION
Ocean Color Sensor (OCS)	177-22-41-04	Ocean Color
Heat Capacity Mapper (MCM)	177-51-41-01	Surface Temperature
Short Pulse Wind/Wave Sensor	369-03-06-03	Wind Speed, Wave Spectra
Airborne Oceanographic Probing Experiment (AOPE)	502-23-56	Pollution Monitoring
SHUTTLE		
Orbiting Meteorological Radar	645-10-02	Wind Speed, Water Content Measurements
IR LIDAR	645-20-01	Aerosol, 03 & H20 Sounding
MK II Interferometer	645-20-02	Pollution Monitoring, Total Burden
Modular Scanning Spectromradiometer	645-30-06	Earth Resources Survey
High Resolution Imaging Radar	645-30-07	Earth Resources Survey
Low Noise Microwave Radiometer	645-50-05	Surface Temperature Water Content Measurements

with the state of