- ullet Line Integral:-Integral along the curve c is $\int_c \overline{F} . \, \overline{dr}$
- work done:- $W = \oint_C \overline{F} \cdot \overline{dr}$
- Conservative Vector Field:- A vector field \overline{F} is said to be conservative if and only if $W = \oint_C \overline{F} \cdot \overline{dr}$
- If the vector field \overline{F} is conservative field then it is always irrotational and we find scalar function \emptyset such that $\overline{F} = \nabla \emptyset$, $W = \oint_A^B \overline{F} \cdot \overline{dr} = \emptyset_B \emptyset_A$
- Green's Lemma:- $\oint_c \overline{F} \cdot \overline{dr} = \int_c u dx + v dy = \iint_s (\frac{\partial v}{\partial x} \frac{\partial u}{\partial y}) dx dy$ (where c is traverse in anticlockwise direction).
- Stokes Theorem: $-\oint_c \overline{F} \cdot \overline{dr} = \iint_S (\nabla \times \overline{F}) \cdot \overline{dr}$
- Gauss Divergence Theorem: $\iint_{S} \overline{F} \cdot \overline{ds} = \iiint_{V} (\nabla \cdot \overline{F}) dv$