Paràmetres de la tecnologia

Rosa M. Badia Ramon Canal DM Tardor 2004

Índex

- Resistència:
 - Llei d'Ohm
 - Divisor de tensió
- Capacitat:
 - Càrrega/descàrrega
 - Redistribució de la càrrega
- Retard
- Consum
 - Consum estàtic
 - Consum dinàmic
 - Mapes de temperatura

Llei d'Ohm

 Relaciona els tres elements més importants en el funcionament dels circuits digitals:

$$I = \frac{V_1 - V_2}{R}$$

- La intensitat es proporcional a la diferencia de potencial V₂ V₁ i inversament proporcional a la resistència
- La diferencia de potencial es distribueix proporcionalment a la resistència
- El potencial es divideix:

$$V_2 = \frac{R_2}{R_1 + R_2} V_1$$

Resistència

• En general:

$$R_{AB} = r \frac{L}{tW}$$
 $I_{AB} = \frac{V_{AB}}{R_{AB}}$

Tecnologia $0.25\mu m$, VDD = 1.5V

- Alumini: $0.05 0.1 \Omega/\Box$
- nMOS: 19 kΩ/□
- pMOS: 55 kΩ/□
- Per una determinada tecnologia
 - t constant
 - Unitat bàsica de resistència quadrat (L=W): □, R_s

$$R_{s} = \frac{\mathbf{r}}{t}$$

Capacitat

 Pot emmagatzemar una diferencia de potencial entre els seus dos terminals:

L'energia emmagatzemada (càrrega)

$$Q = CV$$

- Com més gran és la capacitat més difícil és carregar-la, però més quantitat d'energia emmagatzema.
- Si unim dues capacitats la seva càrrega es distribueix:

$$V_R = \frac{Q_T}{C_T} = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$$

Capacitat

- La capacitat depèn de l'àrea del aïllant
- En general: $C_{LW} = \frac{\boldsymbol{e}_0 \boldsymbol{e}_{ins}}{t} LW$

Tecnologia 0.25µm

1Cg = 0.375 fF

- Per una determinada tecnologia:
 - Permeabilitat ε_{ins} constant
 - Distancia t constant
 - Unitat bàsica de capacitat de porta d'un transistor de mida mínima (2λ×2λ)

$$C_g = \frac{\boldsymbol{e}_0 \boldsymbol{e}_{ins}}{t} (2\boldsymbol{l} \times 2\boldsymbol{l}) \rightarrow C_{LW} = \frac{LW}{4\boldsymbol{l}^2} C_g$$

Retard

En general: Retard

RC

- Per una determinada tecnologia:
- R_s i C_g predeterminades

$$1 \tau = R_s \cdot C_g$$

Consum

- Existeixen dos tipus de consum
 - Dinàmic: degut a l'activitat
 - Estàtic: degut a la "presència"

Consum dinàmic

- Consum dinàmic:
 - Càrrega i descàrrega de capacitàncies

Les capacitàncies són els transistors/cables conectats a la sortida.

Consum estàtic

Curt-circuits i corrents de fuga dels transistors

- Leakage is growing dramatically
 - 7% now, expect 20% in next process technology, 50% in next one

Consum i Energia

Energia

- "La capacitat de treballar"
 - -Es mesura en Joules
- Important per
 - Duració Bateries menys energia → més duració
 - Factura elèctrica menys energia → més barat
- Energia dinàmica (CMOS):
 - És proporcional a la capacitància I al voltatge al quadrat. (E=CV²)
- Energia estàtica (CMOS):

Consum i Energia

Consum

- "Treball per unitat de temps"
 - Mesurada en Watts
- Important per:
 - Més consum → més corrent (I)
 - No ens podem passar del límit (power delivery constraints)
 - Més consum → temperatura més alta
 - No ens podem passar dels límits tèrmics (power envelop)

Consum i Energia

CMOS

-P_{dinàmic} = CV²f (C: capacitància, V: voltatge, f: freqüència)

$$-P_{estàtic} = nI_1V$$

(n: número transistors *off*, I: corrent de fuga, V: voltatge)

Hot Spots i problemes tèrmics

- El silici no és un bon conductor de calor
- Temperatura ? → leakage ? → consum ?→ temperatura ?
- Fent el circuit més gran no serveix. Cal reduir els hot spots.
- Amb un bon layout es poden separar els hot spots i, per tant, reduir els límits de consum –power envelope.

^{* &}quot;New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

El Power Envelop

- CPU "power envelop"
 - Màxim consum que els sistemes de refrigeració poden dissipar.
- Limitat per
 - Consum total del sistema
 - Consum del processador.
 - Normalment sol ser de:
 Servidor <130W, Sobretaula 50-80W, Portàtil 20-30W, PDA <10W
- Els sistemes més grans tenen millors sistemes de refrigeració I poden dissipar més calor
 - Heat sinks
 - Heat pipes
 - Millors TIM (Thermal Interface Materials)
- La mitjana de densitat de consum és important per:
 - Si la dissipació està uniformement distribuïda permet una dissipació millor per la CPU

Alpha hot spots

21064 Thermal Plot

21164 Thermal Plot

	Power (Watts)	Freq. (MHz.)	Die Size (mm²)	Vdd
Alpha 21064	30	200	234	3.3
Alpha 21164	50	300	299	3.3

Source - CoolChips-99

Eficiència d'Energia

Energia per treball

- Proporcional al # d'instruccions per tasca
- Proporcional a l'energia mitja necessària per instrucció
- Augmenta quan s'incrementa l'especulació (instruccions executades especulativament) i la complexitat (més consum)
- Formalment, per un treball,
 - L'energia per instrucció correctament executada és: b*W, on
 - β: Ratio de les instruccions que s'han executat amb les que s'han executat correctament
 - W: Energia mitja per instrucció

Els dos factors augmenten a cada generació

- En conclusió:
 - Les microarquitectures d'alt rendiment cada vegada són menys eficients en termes d'energia
- Per sort, la tecnologia redueix aquest impacte ja que redueix l'energia per transició.

Voltage Scaling

- Donat un rang de voltatge, com més alt sigui el voltatge més freqüència podrà tenir el circuit
- Útil per trobar un compromís entre consum i freqüència. Es pot fer:
 - Estàticament, a l'hora de construir el circuit
 - Dinàmicament, mentre s'està fent servir el circuit
 - Intel's SpeedStep® Technology
 - Transmeta LongRun
 - AMD PowerNow
- El rang depèn del disseny i de la tecnologia emprada. Per exemple*:
 - Intel® XScale™ processors poden desde 0.75V (150MHz/50mW) fins a 1.65V (800MHz/900mW)
 - Intel mobile Pentium® III processor pot desde 1.1V (600MHz) a 1.7V (1GHz)

* Source: Intel Corp. (http://developer.intel.com)

Voltage Scaling (cont.)

Impacte sobre el consum:

Freqüència 20% ?→ ? 20% voltatge

- → 35% reducció energia. $(\alpha CV^2 = \alpha C^*0.8^2 = \alpha C^*0.64)$
- → 50% reducció consum. $(\alpha CV^2f = \alpha C^*0.8^3 = \alpha C^*0.51)$
- I la reducció en rendíment és mínima:

Freqüència 20% ? → rendiment 10%-15% ?*

 Voltage scaling es fa servir per buscar un compromís entre rendiment i consum

^{*} Depèn del ratio entre la freqüència del core i dels bussos externs i el tamany de la cache.

Compromís entre consum i rendiment

Aplicar Voltage scaling no és suficient per reduir el consum

Cal millorar:

- 1. El dissenys (arquitectura de computadors)
 - Considerant l'impacte en el consum
 - Energy*Delay
- 2. La tecnologia (tecnòlegs, físics)

Power - Performance Metrics

- Power α C V² f
- Mètrica: suposem que introduïm una millora en el disseny que té un cost en consum i ens dóna un guany en rendiment:
 - Power/Perf (→ Energy), assumint la mateixa tecnologia (mateixa C) i mateix voltatge.
 - Bona mesura per:
 - Durada de les bateries, factures elèctriques.
 - Mesurar l'estalvi donat un power envelope sense escalar el voltatge.
 - 2. Power/Perf² (→ Energy*Delay)
 - Balanç entre les necessitats de rendiment i el consum.
 - 3. Power/Perf³ (→ Energy*Delay²)
 - Independent de l'escalat del voltatge!!
 - Permet avaluar noves tècniques arquitectòniques mirant si milloren l'escalat de voltatge

Exemple: Disseny d'un sumador

- Un sumador el podem implementar de diferents maneres:
 - Ripple, select, skip (x2), Look-ahead, conditional-sum.
 - Cadascun tindrà les seves característiques de retard i consum

Comportament en energia i retard

Segons Callaway i Swartzlander*:

	Energy (pJ)	Delay (nSec)
Ripple Carry	117	54.27
Constant Width Carry Skip	109	28.38
Variable Width Carry Skip	126	21.84
Carry Lookahead	171	(17.13)
Carry Select	216	19.56
Conditional Sum	304	20.05

- Si hem d'escollir una alternativa:
 - Si l'objectiu és el consum triarem el "constant width carry skip"
 - Si el retard és el més important triarem el "carry look-ahead"

^{* &}quot;Estimating the power consumption of CMOS adders" - Callaway, T.K.; Swartzlander, E.E., Jr. 11th Symposium on Computer Arithmetic, 1993. Proceedings.

