Working with Twitter data to predict the number of reported cases of Influenza using a Support Vector Machine Learning algorithm

Written by Clayton Chapman (ICS 2018) Advised by D. Mutchler, P. Graf

Table of Contents

- Problem Background
- > Initial Research
- Revised Approach
- Applied Methods
- > Support Vector Machines in Depth
- > Results
- > Further Research

Twitter: The Social Database

- A social media website with short, constantly updated statuses
 - o 6,000 tweets posted every second worldwide
- Extremely diverse and immense database of information
- Robust API to allow for straightforward mining
 - Considerable amount of information is attached to a tweet
- I can build tools to use Twitter and the data associated with tweets to produce a solution to a Data Science problem

Initial Research

- Use Twitter and Machine Learning to analyze personality
- Deep learning for constructing microblog behavior representation to identify social media user's personality by Xiaoqian Liu, Tingshao Zhu
- Big Problem: Personality is not easy to accurately measure
- The thesis would need a better control variable

Tracking Influenza

- While being an inconvenience to many, the virus is deadly to some
 - Awareness is important
- CDC Reports contain useful information about cases of flu and location of cases
 - This method is slow
 - The "Current" weekly report is for April 21-28
- Could Twitter be used as an early prediction for future reports?

Revised Research

- Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level
- I shifted my focus to comparing tweets about the Flu to actual reported cases of the Flu
- My approach:
 - Mine the tweets
 - Use Machine Learning to classify the tweets
 - Compare the data with Official Reports

```
on_data(self, data):
self.outfile = "flu tweets.csv"
    with open(self.outfile, 'a', newline='', errors = 'ignore') as csvfile:
        decoded = json.loads(data)
        date = decoded['created at']
            tweet = decoded['extended_tweet']['full_text']
            tweet = decoded['text']
        tweet = re.sub(r"https\S+", "", tweet)
        tweet = re.sub(r''@\S+'', "", tweet)
        tweet = re.sub("RT", "", tweet)
        tweet = re.sub("\n", " ", tweet)
        location = "none"
        country = "none"
            location = decoded['place']['name']
            country = decoded['place']['country code']
        out = date + ", " + tweet + ", " + location + ", " + country
        write = [date, tweet, location, country]
        writer = csv.writer(csvfile)
        writer.writerows([write])
        print(out)
      BaseException as e:
    print("Error on data: %s" % str(e))
    time.sleep(5)
```

Twitter API

{"retweet_count":0,"text":"Man I like me some

API","id":6253282,"screen_name":"twitterapi","id_str":"6253282"}]},"retweeted":false,"in_reply_to_status_id_str":null,"place":null,"in_reply_to_user_id_str":null,"coordinates":null,"source":"web","in_reply_to_screen_name":null,"in_reply_to_user_id":null,"in_reply_to_status_id":null,"favorited":false,"contributors":null,"geo":null,"truncated":false,"created_at":"Wed Feb 29 19:42:02 +0000

 $2012","user":{"is_translator":false,"follow_request_sent":null,"statuses_count":142,"profile_background_color":"C0DEED","default_profile":false,"lang":"en","notifications":null,"profile_background_tile":true,"location":"","profile_sidebar_fill_color":"ffffff","followers_count":8,"profile_image_url":"http::<math>\forall$ a1.twimg.com \forall profile_images \forall 1540298033 \forall phatkicks_normal.jpg","contributors_enabled":false,"profile_background_image_url_https":"https: \forall si0.twimg.com \forall profile_background_images \forall 365782739 \forall doof.jpg","description":"I am just a testing account, following me probably won't gain you very

much", "following":null, "profile_sidebar_border_color": "CODEED", "profile_image_url_http s": "https:\/\si0.twimg.com\/profile_images\/1540298033\/phatkicks_normal.jpg", "default_p rofile_image":false, "show_all_inline_media":false, "verified":false, "profile_use_background_image":true, "favourites_count":1, "friends_count":5, "profile_text_color":"333333", "protect ed":false, "profile_background_image_url": "http:\/\/a3.twimg.com\/profile_background_images\/365782739\/doof.jpg", "time_zone": "Pacific Time (US & Canada)", "created_at": "Fri Sep 09 16:13:20 +0000

2011","name":"fakekurrik","geo_enabled":true,"profile_link_color":"0084B4","url":"http:\/\
/blog.roomanna.com","id":370773112,"id_str":"370773112","listed_count":0,"utc_offset":-2
8800,"screen_name":"fakekurrik"},"id":174942523154894848,"id_str":"1749425231548948
48"}

Support Vector Machine

- Supervised learning, so it needs to train with a buddy/human
- The complete training set makes up a training subset and a testing subset
- More detail on the math involved later

SVM's cont.

- Closest points are the "Support Vectors"
- Hyper-plane wants the greatest margin, which means minimizing 'w'
- Also possible to tweak SVMs

My Support Vector Machine

- Uses sci-kit SVM model
- 1,000 tweet training set
 - o 90/10 split
 - Obtained 90% accuracy

```
SVM_LinearSVCTrain(self):
SVM Classifier = Pipeline([
        ('vectorizer', CountVectorizer()),
        ('tfidf', TfidfTransformer()),
        ('clf', OneVsRestClassifier(LinearSVC()))
SVM Classifier.fit(self.X train, self.y)
predicted = SVM_Classifier.predict(self.X_test)
y pred = self.lb.inverse_transform(predicted)
i=self.train ex
correct=0
for label in y pred:
    if i > self.Y_train.__len__() -1:
    if label==self.Y train[i]:
        correct=correct+1
    i = i + 1
```

Results

- Obtained 8,700 tweets from 20 sessions
- 2,650 of these tweets would be labeled as valid
 - Only 60 of these tweets were "from America"
- Large assumption being most of these tweets were still from Americans

Results cont.

Conclusion

- I built tools using Twitter API and an existing Support Vector Machine
- I was able to gather tweets and classify them accordingly
- The results showed a promising relation to Official Flu Reports
- Twitter was indeed used for answering a Data Science problem
- Success!

Future Research

- Leaving Twitter stream open with multiple machines
- Finding another way to obtain location data
 - Compare results by region
- Extremely Versatile Framework to be used with many other problems

Thank you, dankeschön

SVM Advantages over NN (and Disadvantages)

- SVMs are simple, requiring little initial data and starting code
 - o NNs need massive training sets and time to create working model
- The math of SVMs is faster and cheaper
 - A good NN will need heavy GPU resources
- SVMs can be tweaked and tuned, and even used for non-linear classification
- Because SVMs only work with support vectors, less prone to overfitting data
- But, SVMs with multi-classifiers need to each be trained and used separately
 - NNs can train and use all classifiers at once
- SVMs have no understanding of Grammar, just patterns and counting