

STATISTICAL MODELLING: Theory and practice

Project 3: Financial data

Introduction I

	time	SLV
1	2006-5-5	0.01376
2	2006-5-12	0.03286
3	2006-5-19	-0.12863
452	2015-4-24	-0.03213
453	2015-5-1	0.02722
454	2015-5-8	0.01875

The volatility is calculated as:

$$volatility = \sqrt{\frac{\sum_{i=1}(SLV_i - \overline{SLV})^2}{n-1}}$$
(1)

Summary statistics of Weekly Return (SLV)

	SLV
Min. :	-0.238893
1st Qu.:	-0.026350
Median :	0.002226
Mean :	0.001468
3rd Qu.:	0.033122
Max.:	0.267308

Introduction II: Normal Model

Introduction III: Normal Model

Normal Q-Q Plot

Theoretical Quantiles

Normal distribution, $N(\mu, \sigma^2)$ is a location-scale distribution with standard density.

$$f_0(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
 (2)

Hypothetical Model: Cauchy

Cauchy distribution, $Cauchy(\mu, \sigma)$ is also a location-scale distribution with standard density.

$$f_0(x) = \frac{1}{\pi(1+x^2)} \tag{3}$$

Cauchy is useful for data with heavy tails, characterized by the presence of outliers.

Final Model

Model	AIC
Normal	-1460
Cauchy	-1363.414

Assignment 1

Conclusions

- After comparing the both both models through Akaike information criterion (AIC), we can conclude that the normal model shows a better AIC value.
- However, Cauchy distribution could be more suitable for finance data analysis because of the heavy tails probabilities. This would need further analysis in order to make a final decision on the model.

References

 $Code \ of \ the \ project \ can \ be \ found \ at: \ \texttt{https://github.com/laurasansc/statistical_modelling}$

 Pawitan Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood. OUP Oxford; 2001. (Oxford science publications).