

## Week 2 - Problem Set



- 1. Consider the following five events:
  - 1. Correctly guessing a random 128-bit AES key on the first try.
  - 2. Winning a lottery with 1 million contestants (the probability is  $1/10^{6}$  ).
  - 3. Winning a lottery with 1 million contestants 5 times in a row (the probability is  $(1/10^6)^5$  ).
  - 4. Winning a lottery with 1 million contestants 6 times in a row.
  - 5. Winning a lottery with 1 million contestants 7 times in a row.

What is the order of these events from most likely to least likely?

- 3, 2, 5, 4, 1
- 2, 3, 4, 1, 5
- 2, 3, 1, 5, 4
- 2, 3, 5, 4, 1



- 1)  $1/2^{128} \approx 1/10^{38}$
- 2) 1/106
- 3) 1/10<sup>30</sup>
- 4) 1/10<sup>36</sup>
- 5) 1/10<sup>42</sup>

2>3>4>1>5



| 2. | Suppose that using commodity hardware it is possible to build a computer  |
|----|---------------------------------------------------------------------------|
|    | for about \$200 that can brute force about 1 billion AES keys per second. |
|    | Suppose an organization wants to run an exhaustive search for a single    |
|    | 128-bit AES key and was willing to spend 4 trillion dollars to buy these  |
|    | machines (this is more than the annual US federal budget). How long would |
|    | it take the organization to brute force this single 128-bit AES key with  |
|    | these machines? Ignore additional costs such as power and maintenance.    |
|    | More than a month but less than a year                                    |
|    | $\bigcirc$ More than a billion ( $10^9$ ) years                           |
|    | More than a year but less than 100 years                                  |
|    | More than a week but less than a month                                    |
|    | More than a 100 years but less than a million years                       |



$$2^{128}/2\times10^{19}\approx10^{38}/2\times10^{19}=5\times10^{18}$$
秒



3. Let  $F:\{0,1\}^n imes \{0,1\}^n o \{0,1\}^n$  be a secure PRF (i.e. a PRF where the key space, input space, and output space are all  $\{0,1\}^n$ ) and say n=128.

Which of the following is a secure PRF (there is more than one correct answer):

(here || denotes concatenation)

$$F'(k,x) = F(k,x)[0,\ldots,n-2]$$

(i.e., F'(k,x) drops the last bit of F(k,x))

$$F'((k_1, k_2), x) = \begin{cases} F(k_1, x) & \text{when } x \neq 0^n \\ k_2 & \text{otherwise} \end{cases}$$

$$\Box$$
  $F'(k, x) = k \oplus x$ 

$$\square$$
  $F'((k_1,k_2),\ x)=F(k_1,x)\ \|\ F(k_2,x)$  (here  $\|\$ denotes concatenation)

| 4. | Recall that the Luby-Rackoff theorem discussed in <u>The Data Encryption Standard lecture</u> states that applying a <b>three</b> |
|----|-----------------------------------------------------------------------------------------------------------------------------------|
|    | round Feistel network to a secure PRF gives a secure block cipher. Let's see what goes wrong it we only use a two round           |

#### Feistel.

Let 
$$F: K imes \{0,1\}^{32} o \{0,1\}^{32}$$
 be a secure PRF.

Recall that a 2-round Feistel defines the following PRP

$$F_2: K^2 \times \{0,1\}^{64} \to \{0,1\}^{64}$$
:

Here  $R_0$  is the right 32 bits of the 64-bit input and  $L_0$  is the left 32 bits.

One of the following lines is the output of this PRP  $F_2$  using a random key, while the other three are the output of a truly random permutation  $f:\{0,1\}^{64} \to \{0,1\}^{64}$ . All 64-bit outputs are encoded as 16 hex characters.

Can you say which is the output of the PRP? Note that since you are able to distinguish the output of  $F_2$  from random,  $F_2$  is not a secure block cipher, which is what we wanted to show.

**Hint:** First argue that there is a detectable pattern in the xor of  $F_2(\cdot, 0^{64})$  and  $F_2(\cdot, 1^{32}0^{32})$  Then try to detect this pattern in the given outputs.

 $\bigcirc$  On input  $0^{64}$  the output is "e86d2de2 e1387ae9".

On input  $1^{32}0^{32}$  the output is "1792d21d b645c008".

 $\bigcirc$  On input  $0^{64}$  the output is "5f67abaf 5210722b".

On input  $1^{32}0^{32}$  the output is "bbe033c0 0bc9330e".

 $\bigcirc$  On input  $0^{64}$  the output is "7c2822eb fdc48bfb".

On input  $1^{32}0^{32}$  the output is "325032a9 c5e2364b".

 $\bigcirc$  On input  $0^{64}$  the output is "7b50baab 07640c3d".

On input  $1^{32}0^{32}$  the output is "ac343a22 cea46d60".







# In symbols:

$$\begin{cases} R_i = F_i(R_{i-1}) \oplus L_{i-1} \\ L_i = R_{i-1} \end{cases}$$

$$R_1=F(R_0)\oplus L_0$$

$$L_1=R_0$$

$$R_2=F(F(R_0) \oplus L_0) \oplus R_0$$
  
 $L_2=F(R_0) \oplus L_0$ 

令
$$L_0$$
= $0^{32}$ , $R_0$ = $0^{32}$ ,可得 $L_2$ = $F(0^{32}) \oplus 0^{32}$ 

$$F(0^{32}) \oplus 0^{32} \oplus F(0^{32}) \oplus 1^{32} = 1^{32}$$



5. Nonce-based CBC. Recall that in <u>Lecture 4.4</u> we said that if one wants to use CBC encryption with a non-random unique nonce then the nonce must first be encrypted with an **independent** PRP key and the result then used as the CBC IV.

Let's see what goes wrong if one encrypts the nonce with the **same** PRP key as the key used for CBC encryption.

Let  $F: K \times \{0,1\}^\ell \to \{0,1\}^\ell$  be a secure PRP with, say,  $\ell=128$ . Let n be a nonce and suppose one encrypts a message m by first computing IV=F(k,n) and then using this IV in CBC encryption using  $F(k,\cdot)$ . Note that the same key k is used for computing the IV and for CBC encryption. We show that the resulting system is not nonce-based CPA secure.

The attacker begins by asking for the encryption of the two block message  $m=(0^\ell,0^\ell)$  with nonce  $n=0^\ell$ . It receives back a two block ciphertext  $(c_0,c_1)$ . Observe that by definition of CBC we know that  $c_1=F(k,c_0)$ .

Next, the attacker asks for the encryption of the one block message  $m_1=c_0\bigoplus c_1$  with nonce  $n=c_0$ . It receives back a one block ciphertext  $c_0'$ .

What relation holds between  $c_0, c_1, c_0'$ ? Note that this relation lets the adversary win the nonce-based CPA game with advantage 1.

- $\bigcirc$   $c_0' = c_0 \bigoplus 1^{\ell}$
- $\bigcirc$   $c_1 = c'_0$
- $\bigcirc$   $c_0 = c_1 \bigoplus c'_0$
- $\bigcirc c_1 = c_0 \bigoplus c'_0$







6. Let m be a message consisting of  $\ell$  AES blocks

(say  $\ell=100$ ). Alice encrypts m using CBC mode and transmits

the resulting ciphertext to Bob. Due to a network error,

ciphertext block number  $\ell/2$  is corrupted during transmission.

All other ciphertext blocks are transmitted and received correctly.

Once Bob decrypts the received ciphertext, how many plaintext blocks

will be corrupted?

- $\bigcirc$  2
- $\bigcirc$  1 +  $\ell/2$
- $\bigcirc \ell/2$
- $\bigcirc$  1
- $\bigcirc$



### 假设c[1]出错





7. Let m be a message consisting of  $\ell$  AES blocks (say  $\ell=100$ ). Alice encrypts m using randomized counter mode and transmits the resulting ciphertext to Bob. Due to a network error,

ciphertext block number  $\ell/2$  is corrupted during transmission.

All other ciphertext blocks are transmitted and received correctly.

Once Bob decrypts the received ciphertext, how many plaintext blocks

will be corrupted?

- $\bigcirc \ell/2$
- $\bigcirc$
- 0 1
- O 2
- 0



8. Recall that encryption systems do not fully hide the length of

transmitted messages. Leaking the length of web requests <u>hasbeen used</u> to eavesdrop on encrypted HTTPS traffic to a number of

web sites, such as tax preparation sites, Google searches, and

healthcare sites.

Suppose an attacker intercepts a packet where he knows that the

packet payload is encrypted using AES in CBC mode with a random IV. The

encrypted packet payload is 128 bytes. Which of the following

messages is plausibly the decryption of the payload:

### 165bytes

- The significance of this general conjecture, assuming its truth, is easy to see. It means that it may be feasible to design ciphers that
  - are effectively unbreakable.'

#### 124bytes

If qualified opinions incline to believe in the exponential

conjecture, then I think we cannot afford not to make use of it.'

In this letter I make some remarks on a general principle

relevant to enciphering in general and my machine.

#### 108

- + padding=112 (16×7)
- + IV =128

#### 92bytes

 $\bigcirc\,\,$  'The most direct computation would be for the enemy to try

all 2^r possible keys, one by one.'



9. Let  $R:=\{0,1\}^4$  and consider the following PRF  $F:R^5 imes R o R$  defined as follows:

$$F(k,x) := \left\{ \begin{array}{l} t = k[0] \\ \text{for i=1 to 4 do} \\ \text{if } (x[i-1] == 1) \quad t = t \oplus k[i] \\ \text{output } t \end{array} \right.$$

That is, the key is k=(k[0],k[1],k[2],k[3],k[4]) in  $R^5$  and the function at, for example, 0101 is defined as  $F(k,0101)=k[0]\oplus k[2]\oplus k[4]$ .

For a random key k unknown to you, you learn that

$$F(k,0110) = 0011$$
 and  $F(k,0101) = 1010$  and  $F(k,1110) = 0110$  .

What is the value of F(k, 1101)? Note that since you are able to predict the function at a new point, this PRF is insecure.



$$F(k, 0110) = k[0]$$

 $\oplus k[2] \oplus k[3]$ 

=0.011

F(k, 0101) = k[0]

 $\oplus k[2]$ 

 $\oplus k[4]=1010$ 

 $F(k, 1110) = k \lceil 0 \rceil \oplus k \lceil 1 \rceil \oplus k \lceil 2 \rceil \oplus k \lceil 3 \rceil$ 

=0110

 $F(k, 1101) = k \lceil 0 \rceil \oplus k \lceil 1 \rceil \oplus k \lceil 2 \rceil$  $\oplus k[4]$ 

 $= F(k, 0110) \oplus$