Taylor and Maclaurin Series

January 29, 2007

• The question is which functions have power series representations and how can we find representations of functions as power series?

Lecture 12

- The question is which functions have power series representations and how can we find representations of functions as power series?
- Suppose that f is a function such that

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + c_3(x - a)^3 + \cdots$$

for
$$|x - a| < R$$
.

• Can we determine the coefficients?

The answer is: YES

If f has a power series representation at a, then the coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

The answer is: YES

If f has a power series representation at a, then the coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

ullet The Taylor series of the function f at a is

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

The case a=0

• The Maclaurin series

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots$$

• Find the Maclaurin series of the function $f(x) = e^x$.

- Find the Maclaurin series of the function $f(x) = e^x$.
- Find the first four nonzero terms in the Maclaurin series of $f(x) = \cos(3x)$.

- Find the Maclaurin series of the function $f(x) = e^x$.
- Find the first four nonzero terms in the Maclaurin series of $f(x) = \cos(3x)$.
- \bullet Find the first four nonzero terms of the Taylor series of $\sin x$ at $\pi/4$.

- Find the Maclaurin series of the function $f(x) = e^x$.
- Find the first four nonzero terms in the Maclaurin series of $f(x) = \cos(3x)$.
- ullet Find the first four nonzero terms of the Taylor series of $\sin x$ at $\pi/4$.
- ullet Find the Taylor series for $f(x)=x^3$ at a=-1.

 \bullet Find the Maclaurin series for $\sin x$.

Lecture 12

 \bullet Find the Maclaurin series for $\sin x$.

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$