Logică pentru Informatică - Subiectul 3 (23.11.2018)

Se va completa de către student	
Nume, prenume:	
An, grupă:	

Începeți rezolvarea pe această pagină. Numerotați toate paginile.

Se va completa de		
profesorul corector		
Subject	Punctaj	
1		
2		
3		
4		
5		
Total		

Reguli de inferență pentru deducția naturală:

$$\wedge i \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \varphi'}{\Gamma \vdash (\varphi \land \varphi')}, \qquad \wedge e_1 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi}, \qquad \wedge e_2 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi'}, \qquad \rightarrow e \frac{\Gamma \vdash (\varphi \rightarrow \varphi') \quad \Gamma \vdash \varphi}{\Gamma \vdash \varphi'}, \qquad \rightarrow i \frac{\Gamma, \varphi \vdash \varphi'}{\Gamma \vdash (\varphi \rightarrow \varphi')}, \qquad \vee i_1 \frac{\Gamma \vdash \varphi_1}{\Gamma \vdash (\varphi_1 \lor \varphi_2)}, \qquad \vee i_2 \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash (\varphi_1 \lor \varphi_2)}, \qquad \vee e^{\frac{\Gamma}{\Gamma}} \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash \varphi'}, \qquad \rightarrow e^{\frac{\Gamma}{\Gamma}} \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi'}, \qquad \Rightarrow e^{\frac{\Gamma}{\Gamma}} \frac{\Gamma}{\Gamma} \frac{\Gamma}{\Gamma} \frac{\Gamma}{\Gamma} \frac{\Gamma}{\Gamma} \frac{\Gamma}{\Gamma} \frac{$$

- 1. (5p). Enunțați teorema de înlocuire.
- 2. (10p). Scrieți o formulă din LP care modelează următoarea afirmație: sunt student doar dacă studiez, iar eu nu studiez.
- 3. (10p). Arătați că, oricum am alege o formulă $\varphi \in LP$, formula $\neg \varphi$ este validă dacă și numai dacă $\neg \neg \varphi \models \neg \varphi$.
- 4. (10p). Folosiți algoritmul lui Tseitin și metoda rezoluției pentru a arăta că formula $(p \land q) \rightarrow p$ este validă.
- 5. (10p). Dați o demonstrație formală pentru secvența $\neg p \rightarrow q$, $\neg q \vdash p$, folosind deducția naturală, fără a folosi regula modus tollens.