AG H	
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE	Technika cyfrowa
Temat ćwiczenia	Numer ćwiczenia
Minimalizacja i praktyczna realizacja złożonych funkcji logicznych	2
Wykonawca	Ocena
Marcin Przewięźlikowski	

1 Cel ćwiczenia

Zapoznanie się z zastosowaniem tablic Karnaugh'a do minimalizacji graficznej złożonych funkcji logicznych oraz zaprojektowanie w Multisimie układu cyfrowego zwiększającego o 1 trzybitową liczbę całkowitą oraz wyświetlacza siedmiosegmentowego.

2 Przebieg ćwiczenia

2.1 Układ cyfrowy inkrementujący trzybitową nieujemną liczbę całkowitą

Układ składa się z 3 wejść reprezentujących 3 bitową liczbę całkowitą oraz 4 wyjść, z których to czwarte jest opcjonalne: reprezentuje ono flagę przeniesienia (carry flag). Najstarszy bit na wejściu i wyjściu znajduje się najniżej na wykresie.

2.2 Minimalizacja funkcji metodą tablic Karnaugha

Zadaną funkcję logiczną przedstawiono w poniższej tabeli, a następnie zminimalizowano korzystając z metody Karnaugh'a. Wynik minimalizacji również znajduje się na poniższym zdjęciu:

MultiSimie swtworzono model bramki niezminimalizowanej oraz zminimalizowanej. Porównano je Logic Analyzerem i oceniono, że minimalizacja przebiegła pomyślnie:

2.3 Transkoder czterobitowych cyfr

W oparciu o poniższą konfigurację segmentów:

Dla każdego z 7 segmentów zrealizowano tablicę Karnaugh'a prezentującą pożądane zachowanie segmentu, zminimalizowano funkcję logiczną i zbudowano odpowiedni obwód:

A+C+BD+(-B)(-D)

Segment b:

			AB		
		00	01	11	10
	00	1	1	1	1
CD	01	1	0	1	0
	11				
	10	1	1		

Segment e:

e					
			AB		
		00	01	11	10
	00	1	0	0	1
CD	01	0	0	0	1
	11				
	10	1	0		
(-A)	(-B)(-D)+	A(-B)		

Segment f:

f				AB		
			00	01	11	10
		00	1	0	0	0
	CD	01	1	1	0	1
		11				
		10	1	1		
(-A)(-B)+	C+(-	B)D+	(-A)[)	

Wszystkie obwody podłączono do wyświetlacza siedmiosegmentowego i przetestowano. Wyświetlacz wskazywał przewidywane cyfry:

