MAXIMUM MATCHING IN GENERAL GRAPHS

Ahmad Khayyat

Department of Electrical & Computer Engineering ahmad.khayyat@ece.queensu.ca

Course Project
CISC 879 — Algorithms and Applications
Queen's University

November 19, 2008

- Introduction
- Paths, Trees and Flowers
- 3 Efficient Implementation of Edmonds' Algorithm
- Reachability Problem Approach
- Conclusion

Outline

Introduction

- Introduction
 - Terminology
 - Berge's Theorem
 - Bipartite Matching
- Paths, Trees and Flowers
- 3 Efficient Implementation of Edmonds' Algorithm
- Reachability Problem Approach
- 5 Conclusion

Maximum Matching

- G = (V, E) is a finite undirected graph: n = |V|, m = |E|.
- A matching M in G, (G, M), is a subset of its edges such that no two meet the same vertex.
- M is a maximum matching if no other matching in G contains more edges than M.
- A maximum matching is not necessarily unique.
- Given (G, M), a vertex is exposed if it meets no edge in M.

Augmenting Paths

- An alternating path in (G, M) is a simple path whose edges are alternately in M and not in M.
- An augmenting path is an alternating path whose ends are distinct exposed vertices.

Berge's Theorem

Berge's Theorem (1957)

A matched graph (G,M) has an augmenting path if and only if M is not maximum.

An Exponential Algorithm:

Exhaustively search for an augmenting path starting from an exposed vertex.

000000

Bipartite Graphs

- A bipartite graph G=(A,B,E) is a graph whose vertices can be divided into two disjoint sets A and B such that every edge connects a vertex in A to one in B.
- Equivalently, it is a graph with no odd cycles.

Bipartite Graph Maximum Matching

```
O(nm) \left\{ \begin{array}{l} \textbf{for all } v \in A, \ v \ \text{is exposed do} \\ \text{Search for simple alternating paths starting at } v \\ \textbf{if path } P \ \text{ends at an exposed vertex } u \in B \ \textbf{then} \\ P \ \text{is an augmenting path } \{ \text{Update } M \} \\ \textbf{end if} \\ \textbf{end for} \\ \text{Current } M \ \text{is maximum } \{ \text{No more augmenting paths} \} \end{array} \right.
```


Bipartite Graph Maximum Matching

```
O(nm) \begin{tabular}{ll} \begin{tabular}{ll
```

Current M is maximum {No more augmenting paths}

00000

Non-Bipartite Matching

Problem: Odd cycles . . .

- Introduction
- 2 Paths, Trees and Flowers
 - Blossoms
 - The Algorithm
- 3 Efficient Implementation of Edmonds' Algorithm
- Reachability Problem Approach
- Conclusion

Blossoms

Blossoms

A blossom B in (G, M) is an odd cycle with a unique exposed vertex (the base) in $M \cap B$.

Edmonds' Blossoms Lemma

Blossoms Lemma

Let G^\prime and M^\prime be obtained by contracting a blossom B in (G,M) to a single vertex.

The matching M of G is maximum iff M' is maximum in G'.

Detecting Blossoms

- Performing the alternating path search of the bipartite matching algorithm (starting from an exposed vertex):
 - Label vertices at even distance from the root as "outer";
 - Label vertices at odd distance from the root as "inner".
- If two outer vertices are found adjacent, we have a blossom.

Edmonds' Algorithm (1965)

```
O(n^3) \begin{cases} \text{ Search for simple alternating paths starting at } v \\ O(n^3) \end{cases} \begin{cases} \text{ Search for simple alternating paths starting at } v \\ \text{ Shrink any found blossoms} \end{cases} \\ \text{ if path } P \text{ ends at an exposed vertex then } P \text{ is an augmenting path } \{\text{Update } M\} \} \\ \text{ else if no augmenting paths found then } \\ \text{ lgnore } v \text{ in future searches} \\ \text{ end if } \\ \text{ end for } \end{cases} \\ \text{ Current } M \text{ is maximum } \{\text{No more augmenting paths}\} \end{cases}
```

Complexity: $O(n^4)$

$$|M| = 4$$

$$|M| = 4$$

$$|M| = 4$$

$$B_1 = 5, 6, 7$$

$$|M| = 4$$

$$B_1 = 5, 6, 7$$

$$|M| = 4$$

$$B_1 = 5, 6, 7$$

 $B_2 = B_1, 8, 9 = 5, 6, 7, 8, 9$

$$|M| = 4$$

$$B_1 = 5, 6, 7$$

 $B_2 = B_1, 8, 9 = 5, 6, 7, 8, 9$

$$|M| = 4$$

$$B_1 = 5, 6, 7$$

 $B_2 = B_1, 8, 9 = 5, 6, 7, 8, 9$

$$|M| = 4$$

$$|M| = 5$$

$$B_1 = 5, 6, 7$$

 $B_2 = B_1, 8, 9 = 5, 6, 7, 8, 9$

- 1 Introduction
- 2 Paths, Trees and Flowers
- 3 Efficient Implementation of Edmonds' Algorithm
 - Data Structures
 - The Algorithm
 - Performance
- 4 Reachability Problem Approach
- Conclusion

Three Arrays

- *u* is an exposed vertex.
- A vertex v is outer if there is a path $P(v) = (v, v_1, \dots, u)$, where $vv_1 \in M$.
- *MATE:* Specifies a matching. An entry for each vertex:

$$\Rightarrow vw \in M \Rightarrow MATE(v) = w \text{ and } MATE(w) = v.$$

② *LABEL:* Provides a type and a value:

$$LABEL(v) \geq 0 \qquad \rightarrow v \text{ is outer}$$

$$LABEL(u) \qquad \rightarrow \text{ start label, } P(u) = (u)$$

$$1 \leq LABEL(v) \leq n \qquad \rightarrow \text{ vertex label}$$

$$n+1 \leq LABEL(v) \leq n+2m \rightarrow \text{ edge label}$$

3 START(v) =the first non-outer vertex in P(v).

Gabow's Algorithm (1976)

```
for all u \in V, u is exposed do
  while \exists an edge xy, x is outer AND
         no augmenting path found do
    if y is exposed, y \neq u then
       (y, x, \ldots, u) is an augmenting path
    else if y is outer then
       Assign edge labels to P(x) and P(y)
    else if MATE(y) is non-outer then
       Assign a vertex label to MATE(y)
    end if
  end while
end for
```

Gabow's Algorithm (1976)

```
O(n) for all u \in V, u is exposed do
           while \exists an edge xy, x is outer AND
                no augmenting path found do
  -O(1) if y is exposed, y \neq u then
  \vdash O(n) (y, x, \dots, u) is an augmenting path
  O(n) else if y is outer then
   \vdash O(n) Assign edge labels to P(x) and P(y)
  O(n) else if MATE(y) is non-outer then
     end if
           end while
         end for
```

Complexity: $O(n^3)$

Experimental Performance

Using an implementation in Algol W on the IBM 360/165

- Worst-case graphs:
 - ightharpoonup Efficient Implementation: run times proportional to $n^{2.8}$.
 - ightharpoonup Edmond: run times proportional to $n^{3.5}$.
- Random graphs: times one order of magnitude faster than worst-case graphs.
- Space used is 5n + 4m.

- Introduction
- 2 Paths, Trees and Flowers
- 3 Efficient Implementation of Edmonds' Algorithm
- Reachability Problem Approach
 - Reachability and Graphs
 - The Algorithm
- 5 Conclusion

Reachability and Graphs

The Reachability Problem in Bipartite Graphs

Construction:

Bipartite graph + Matching
$$\rightarrow$$
 Directed graph $G = (A, B, E) + M \rightarrow G' = (V', E')$

- $\sim V' = V \cup \{s, t\}$
- $\Rightarrow \forall xy \in M, x \in A, y \in B \to (x,y) \in E' \qquad e \in M \Rightarrow e : A \to B$
- $\Rightarrow \forall xy \notin M, x \in A, y \in B \rightarrow (y, x) \in E'$ $e \notin M \Rightarrow e : B \rightarrow A$
- \Rightarrow \forall $b \in B, b$ is exposed \rightarrow add (s, b) to E'
- $\Rightarrow \forall a \in A, a \text{ is exposed} \rightarrow \mathsf{add}\ (a,t) \text{ to } E'$

The Reachability Problem in Bipartite Graphs

Construction:

Bipartite graph + Matching
$$\rightarrow$$
 Directed graph $G = (A, B, E) + M \rightarrow G' = (V', E')$

- $\Rightarrow V' = V \cup \{s, t\}$
- $\Rightarrow \forall xy \in M, x \in A, y \in B \to (x, y) \in E'$ $e \in M \Rightarrow e : A \to B$
- $\Rightarrow \forall xy \notin M, x \in A, y \in B \rightarrow (y, x) \in E'$ $e \notin M \Rightarrow e : B \rightarrow A$
- \Rightarrow \forall $b \in B, b$ is exposed \rightarrow add (s, b) to E'
- $\Rightarrow \forall a \in A, a \text{ is exposed} \rightarrow \mathsf{add}\ (a,t) \text{ to } E'$

• An augmenting path in $G \Leftrightarrow A$ simple path from s to t in G'.

Reachability and Graphs

The Reachability Problem in General Graphs Construction

• For each $v \in V$, we introduce two nodes v_A and v_B

$$V' = \{v_A, v_B | v \in V\} \cup \{s, t\} \qquad s, t \notin V, s \neq t$$

 $\bullet \ e \in M \Rightarrow e : A \to B, \qquad e \notin M \Rightarrow e : B \to A$

$$E' = \{(x_A, y_B), (y_A, x_B) \mid (x, y) \in M\}$$

$$\cup \{(x_B, y_A), (y_B, x_A) \mid (x, y) \notin M\}$$

$$\cup \{(s, x_B) \mid x \text{ is exposed}\} \cup \{(x_A, t) \mid x \text{ is exposed}\}$$

Reachability and Graphs

The Reachability Problem in General Graphs Strongly Simple Paths

A path P in G' is strongly simple if:

- P is simple.
- $v_A \in P \Rightarrow v_B \notin P$.

$\mathsf{Theorem}$

There is an augmenting path in G if and only if there is a strongly simple path from s to t in G'.

Solving the Reachability Problem

Solution: A strongly simple path from s to t in G':

- Depth-First Search (DFS) for t starting at s.
- DFS finds simple paths.
- We need to find strongly simple paths only.
- We use a Modified Depth-First Search (MDFS) algorithm.

Solving the Reachability Problem

Solution: A strongly simple path from s to t in G':

- Depth-First Search (DFS) for t starting at s.
- DFS finds simple paths.
- We need to find strongly simple paths only.
- We use a Modified Depth-First Search (MDFS) algorithm.

Data Structures

- Stack K
 - ightharpoonup TOP(K): the last vertex added to the stack K.
 - ightharpoonup Vertices in K form the current path.
 - In each step, the MDFS algorithm considers an edge (TOP(K), v), $v \in V'$.
- List $L(v_A)$
 - \sim To get a strongly simple path, v_A and v_B cannot be in K simultaneously (we may ignore a vertex, *temporarily*).
 - ightharpoonup List $L(v_A)$ keeps track of such vertices.

Hopcroft and Karp Algorithm for Bipartite Graphs (1973)

Step 1:
$$M \leftarrow \phi$$

- Step 2: Let l(M) be the length of a shortest augmenting path of M Find a maximal set of paths $\{Q_1, Q_2, \dots, Q_t\}$ such that:
 - 2.1 For each i, Q_i is an augmenting path of M, $|Q_i| = l(M)$, Q_i are vertex-disjoint.
 - 2.2 Halt if no such paths exists.
- Step 3: $M \leftarrow M \oplus Q_1 \oplus Q_2 \oplus \cdots \oplus Q_t$; Go to 1.

Hopcroft and Karp Theorem

If the cardinality of a maximum matching is s, then this algorithm constructs a maximum matching within $2\lfloor \sqrt{s} \rfloor + 2$ executions of Step 2.

Step 2 complexity: $O(m) \Rightarrow$ Overall complexity: $O(\sqrt{n}m)$

An $O(\sqrt{n}m)$ Algorithm for General Graphs

- Blum describes an O(m) implementation of Step 2 for general graphs, using a Modified Breadth-First Search (MBFS).
- Blum's Step 2 Algorithm:
- Step 1: Using MBFS, compute $\overline{G'}$
- Step 2: Using MDFS, compute a maximal set of strongly simple paths from s to t in $\overline{G'}$.

Blum's Theorm

A maximum matching in a general graph can be found in time $O(\sqrt{n}m)$ and space O(m+n).

Outline

- Introduction
- Paths, Trees and Flowers
- 3 Efficient Implementation of Edmonds' Algorithm
- 4 Reachability Problem Approach
- 6 Conclusion
 - Summary
 - Questions

Summary

Summary

References

Jack Edmonds

Paths, Trees, and Flowers

Canadian Journal of Mathematics, 17:449-467, 1965.

http://www.cs.berkeley.edu/~christos/classics/edmonds.ps

Harold N. Gabow

An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs

Journal of the ACM (JACM), 23(2):221-234, 1976.

Norbert Blum

A New Approach to Maximum Matching in General Graphs

Lecture Notes in Computer Science: Automata, Languages and Programming, 443::586–597, Springer Berlin / Heidelberg, 1990.

Summary

Thank You

Thank You!

Questions Questions

???