3. Preparation of 0.05 (N) Mohr solution in 2 (N) $\rm H_2SO_4~(100~ml)$

Relative equivalent mass of $FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2O = 392.16$

,	Initial mass	Final mass	Mass of Mohr salt	Mass of Mohr salt	Strength
	(g)	(g)	transferred (g)	to be taken (g)	of Mohr solution
ı				1.96	···(N)

[Dissolve the required amount of Mohr salt in 100 ml 2 (N) $\rm H_2SO_4$ which is prepared by diluting 5.6 ml concentrated $\rm H_2SO_4$ (36 N) to 100 ml carefully and then cooling.]

4. Titration and recording of e.m.f.: Volume of Mohr solution taken = 25 ml

No. of observations	No. of drops of $K_2Cr_2O_7$ (n) added	Observed e.m.f. (E_{celt}) volt or mV
1	0	
2	2	
3	4	
:		
*		
:	;	

5. Calibration of 1 cc of $K_2Cr_2O_7$ solution to number of drops: 1 cc = ... n' (drops say)

6. Graph plotting and Calculations

n	E_{cell} (volts)	ΔE_{cell} (volts)	Δn	$\Delta E_{cell}/\Delta n$ volt/drop
0 (n ₁)	E_1	_		_
2 (n ₂)	E_2	$E_2 \sim E_1$	$n_2 - n_1$:
4 (n ₃)	E_3	E_3 - E_2	$n_3 - n_2$:
:	:		:	
	:			:

7. Calculation of strength of Mohr solution and formal potential of Fe (III)-Fe(II)-system

- i. From the plot of E_{cell} vs. n, $E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = E_{cal} + \left(E_{cell}\right)_{\frac{1}{2}} = \cdots$ volt. Expected value of $E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = +0.68$ volt in (M) H_2SO_4 medium
- ii. From the plot of $\Delta E/\Delta n$ vs. n, number of drops of $K_2Cr_2O_7$ solution required = ... = ... ml Hence strength of Mohr solution = ... (N).

neimont 10

Experiment 10 Potentiometic titration of Zn(H) solution by potassium ferrocyanide solution and also determination of the composition of Zn(H)-ferrocyanide complex.

Theory: The electrode potential for the redox system

$$\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3^{-}} + e \iff \left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4^{-}}$$
 is given by Nernst equation as

$$E = E^{o} + \frac{RT}{F} \ln \frac{C_{\left[Fe(CN)_{f_{0}}\right]^{3}}}{C_{\left[Fe(CN)_{f_{0}}\right]^{4}}}$$

where E° is the standard reduction potential of $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-} - \left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-}$ system.

If a clean platinum electrode is inserted into the solution of a mixture of $K_4[Fe(CN)_6]$ and $K_3[Fe(CN)_6]$, it will serve as an electrode. If we couple this electrode with a standard calomel (saturated) electrode, then the cell which is constructed for the experiment is

Saturated calomel electrode
$$\| [Fe(CN)_6]^{4-} - [Fe(CN)_6]^{3-} / Pt$$
(Mixture of solution)
(L) (R)

Pictorially it is represented as below:

Fig. 6.25: Cell constructed for potentiometric titration of Zn(H) solution with $K_4Fe(CN)_6$ solution. The observed e.m.f. of the cell is given by

$$E = E_R - E_L$$

$$= E^{\circ} + \frac{RT}{F} \ln \frac{C_{\left[\text{Fe}(\text{CN})_{6}\right]^{3}}}{C_{\left[\text{Fe}(\text{CN})_{6}\right]^{3}}} - E_{cul} = E^{\circ} - E_{cul} + \frac{RT}{F} \ln \frac{C_{\left[\text{Fe}(\text{CN})_{6}\right]^{3}}}{C_{\left[\text{Fe}(\text{CN})_{6}\right]^{3}}}$$

$$= E^{\circ} - E_{cul} + 0.0591 \log \frac{C_{\left[\text{Fe}(\text{CN})_{6}\right]^{3}}}{C_{\left[\text{Fe}(\text{CN})_{6}\right]^{3}}} \text{ [at 25 ° C]}. \tag{1}$$

Here E_{cal} is the reduction potential of saturated calomel electrode.

When Zn(II) solution is added to the system, $\left[Fe(CN)_6\right]^{4^-}$ is removed and the proportions of $\left[Fe(CN)_6\right]^{3^-}$ increases. From equation (1) it is evident that with the progressive addition of Zn(II), the observed e.m.f. will gradually increase. At the equivalence point, there will be a sharp increase in e.m.f. due to sudden removal of all $\left[Fe(CN)_6\right]^{4^-}$.

If we plot $\Delta E/\Delta n$ vs. n (n is the number of drops of $ZnSO_4$ added) the nature of curve will be of the following type (Fig. 6.26).

From the equivalence point, corresponding to the peak, volume of $ZnSO_4$ required can be known. Volume of $K_4[Fe(CN)_6]$ taken for estimation is also known. Therefore, strength of $K_4[Fe(CN)_6]$ can be calculated $\frac{\Delta E/\Delta n}{Coult}$ as strength of ZnSO₄ is known (prepared).

Determination of composion of the complex formed

Let 10 ml K₄[Fe(CN)₆] is taken for titration.

Let the number of moles of $K_4[Fe(CN)_6]$ present in 10 ml solution = a.

If at the equivalence point $V \text{ ml } ZnSO_4$ solution is required, then V ml of ZnSO_4 solution combines with 10 ml K_4 [Fe(CN)₆] solution.

Fig. 6.26: Plot of $\Delta E/\Delta n$ vs. n (no. of drops of ${\rm ZnSO_4}$ solution added for the titration of K₄Fe(CN)₆ solution with ZnSO4 solution.

Let the number of moles of $ZnSO_4$ present in V ml solution = b.

Then find the ratio, $\frac{\text{No. of moles of } ZnSO_4}{\text{No. of moles of } K_4 \left[\text{Fe}(CN)_6\right]} = \frac{b}{a}$.

From this ratio we can conclude about the composition of the complex formed.

- i. $100 \text{ ml } \frac{M}{6} \text{ZnSO}_4 \text{ solution}$
- ii. 100 ml $\frac{M}{100}$ K₄ [Fe(CN)₆] solution
- iii. $100 \text{ ml} \approx \frac{M}{100} \text{ K}_3 \left[\text{Fe(CN)}_6 \right] \text{ solution}$
- iv. Pt-electrode and saturated calomel electrode
- v. KCI-Agar salt bridge
- vi. Potentiomter, (vii) Microburrette, 100 ml beaker, pipette (10 ml), etc.

Procedure

- i. Prepare 100 ml $\frac{M}{6}$ ZnSO₄ solution, 100 ml $\frac{M}{100}$ K₄ [Fe(CN)₆] solution and 100 ml
- ii. Take 10 ml K_4 [Fe(CN)₆] solution and 10 ml K_3 [Fe(CN)₆] solution (of order ~ 0.01 M) in a clean 100 ml beaker (use pipette) and insert the clean and dry Pt-electrode into the solution. Connect the saturated calomel electrode through KCl-Agar salt bridge as shown in Fig. 6.25. Then connect the cell to the terminals indicated in the potentiometer.
- iii. Add one drop of ZnSO₄ solution from a microburette into the solution in the beaker—a white precipitate will be formed. Shake well and note the meter reading. Continue the titration adding 1 drop of ZnSO₄ solution at each time. Take 5 to 6 more readings after sharp change (equivalence

- iv. Calculate $\Delta E/\Delta n$ and plot it against n. Detect the equivalence point in the graph and note the number of drops of ZnSO₄ required.
- v. Calibrate 20 drops of ZnSO₄ solution into volume (ml).
- vi. Calculate the strength of $K_4[Fe(CN)_6]$ solution. Also calculate the number of moles of $ZnSO_4$ and $K_4[Fe(CN)_6]$. Then find ratio $\frac{b}{a}$ and conclude about the composition of Zn(II) ferrocyanide complex that is formed.

Results and Calculations

1. Recording of laboratory temperature

	Before experiment	After experiment	Mean
Temperature	°C	… °C	°C

2. Preparation of 100 ml $\frac{M}{6}$ ZnSO₄ solution: Relative molar mass of ZnSO₄ · 7H₂O = 287.35

		6	4		
ſ	Initial mass	Final mass	Mass of ZnSO ₄	Mass of ZnSO ₄	Strength
	(g)	(g)	transferred (g)	to be taken (g)	of ZnSO ₄ solution
		111		4.789	(M)
l.		L	1		

3. Preparation of 100 ml 0.01 (M) $K_4[Fe(CN)_6]$ solution: Relative molar mass of $K_4[Fe(CN)_6] \cdot 3H_2O = 422.26$.

Initial mass (g)	Final mass (g)	Mass of K ₄ [Fe(CN) ₆] transferred (g)	Mass of K ₄ [Fe(CN) ₆] to be taken (g)	Strength of K ₄ [Fe(CN) ₆)] solution
			0.4222	··· (M)

Preparation of 100 ml 0.01 (M) $K_3[Fe(CN)_6]$ solution: Relative molar mass of $K_3[Fe(CN)_6] = 329.16$

Initial mass (g)	Final mass (g)	Mass of K ₃ [Fe(CN) ₆] transferred (g)	Mass of K ₃ [Fe(CN) ₆] to be taken (g)	Strength of K ₃ [Fe(CN) ₆] solution
		+1+	0.3291	··· (M)

5. Titration and recording of e.m.f.'s

Volume of $K_4[Fe(CN)_6]$ solution taken = 10 ml Volume of $K_3[Fe(CN)_6]$ solution taken = 10 ml in a 100 ml beaker

Observation number	No. of drops of ZnSO ₄ solution added	Observed e.m.f. (in V or mV)
1	1	± + 4
2	2	
3	3	
4	4	***
:		***

te the

1SO₄

nide

6. Calibration of number of drops of ${\rm ZnSO_4}$ solution to volume (ml)

Observation	No of the	- 4 solution	to volume (ml)	
No.	No. of drops of ZnSO ₄ solution (from microburette)	Volume of 20 drops of ZnSO ₄ solution (ml)	Mean volume of of 20 drops (ml) ZnSO ₄ solution	No. of drops for 1 ml solution
1	20			
2	20		V ml (say)	$\frac{20}{V} = n' \text{ (say)}$
3	20			
7. Graph plot	ting and sale to			

7. Graph plotting and calculation of strength of $K_4[Fe(CN)_6]$ solution

No. of drops of ZnSO ₄ solution added	Observed e.m.f. E (volt)	$\Delta E(\text{volt})$	Δn	$\frac{\Delta E}{\Delta n}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E_1 E_2 E_3	$E_2 - E_1$ $E_3 - E_2$	$n_2 - n_1$ $n_3 - n_2$	volt/dro
the graph, obtained by p	:	:	, :	

From the graph, obtained by plotting $\Delta E/\Delta n$ vs. n, it is found that the number of drops of $ZnSO_4$ solution, at equivalence point (corresponding to the peak) = n'' (say). So, the volume of $ZnSO_4$ required for 10 ml $K_4[Fe(CN)_6]$ solution = $\frac{n''}{n'}$ ml = x ml (say).

Therefore, the strength of K₄[Fe(CN)₆] solution

$$= \frac{x \times S}{10}(M) = y(M) \text{ (say), where } S \text{ is the strength of } ZnSO_4 \text{ solution in molarity.}$$
Impare this stength, obtained potentiometrically with the strength of the strength of

Compare this stength, obtained potentiometrically, with the strength of K₄[Fe(CN)] solution you have prepared by accurate weighing.

Determination of Composition of $Zn(\Pi)$ – $Fe(CN)_6^{-4}$ complex

Number of moles of
$$ZnSO_4 = \frac{x \times molar concentration of ZnSO_4 solution}{1000} = b$$

Again, number of moles of $K_4[Fe(CN)_6]$ that combine with $ZnSO_4$

$$= \frac{10 \times \text{molar concentron of } K_4[\text{Fe}(\text{CN})]}{1000} = \frac{y}{100} = a.$$

Thus, the ratio =
$$\frac{\text{No. of moles of } ZnSO_4}{\text{No. of moles of } K_4[Fe(CN)_6]} = \frac{b}{a}$$

Expected value of the ratio is
$$\frac{3}{2}$$
.

Hence, the precipitation reaction that takes place in neutral medium according to the following equation.

$$3ZnSO_4 + 2K_4[Fe(CN)_6] = K_2Zn_3[Fe(CN)_6]_2 \downarrow + 3K_2SO_4$$

[N.B.: $K_4[Fe(CN)_6]$ and $K_3[Fe(CN)_6]$ must be fresthly prepared. Otherwise their concentrations will change in presence of air and the result will be inaccurate]. P.C.P.-12