b.i.	. Compare statistical modelling and machine learning.									5	2	1	1			
ii.	Write the purpose of linear regression and gradient descent. Explain with an example.										5	4	1	1		
27. a.i.					f re	gulariza	ition parai	meters in	linear	regression	and	5	2	2	2	
100	ridge/lasso regression.															
ii.	i. Define the terms concordance/ c-statistic. Calculate the concordance value for											5	2	3	2	
	the given table. Actual 1 0 0 1 1 0 1															
		edicted	0.92	$\frac{0}{0.34}$			0.64 0.82									
	110	dicted	0.72	0.51	70.1	(OR		2 0.01								
ъ.	Explain	n in det	tail abo	ut lo	gisti		ssion with	an examp	ole.			10	4	2	2	
28. a.				_					-	d and 3 w						
	_	-	or 100	mai	lls. A	apply N	laive Baye	es classifi	cation w	ith conditi	onai					
	probab w		ennenc	v and	d like	elihood	of lottery	with span	n and har	m						
	**	Old II	_	ottery		Jimood	or lottery	Lotter								
		Frequ			No	Total	Likelihoo		No	Total	ı .					
		Spa	am	3	19	22	Spam	3/22	19/22	22						
		Ha	m	2	76	78	Ham	2/78	76/78	78						
		Tot	tal	5	95	100	Total	5/100	95/100	100						
			-	OT Y	71\	2 6'11'	(1170)	TT 1	. 11 (77	72)						
	Likelihood Yes No Yes No Yes no Total															
			Yes 3/22	-	Vo 1/22	Yes 11/22	No -11/22	Yes 13/22	9/22	Total 22						
	Span		2/78		/78	15/78		. 21/78	57/7	_						
	Tota		5/100	-	100	26/100		34/100	66/10							
	_ Tota.	1	3/100	751	100	(OR		5 1/100	00/10	.0 100						
b.	Write	about	KNN	cla	assifi			example	e. Elabo	rate curse	of	10	4	3	3	
	dimens															
												10				
29. a.	Explain			_		-						10	4	4	4	2
	(i)				_	classific	ers									
	(ii)	Sup	port v	ectoi	rcias	ssiners										
						(OR)									
b.	b. Explain forward propagation and backward propagation algorithm in ANN with									with	10	4	4	4		
•	a neat			E8			2	1 - 8	<i>y</i> .							
		_														
30. a.			tail ab	out 1	k-me	ans clu	stering an	d its wor	king me	thodology	with	10	4	5	5	
	an exa	mple.														
						(OD	`									
h	Evaloi	n in det	tail aho	uit m	rinci	OR)	a) aponent an	alveie wit	h an eva	mnle		10	4	6	6	
υ.	Expial	n mi del	wari au O	ut pi	mot	pai COII.	ponent an	aryono wil	ar uii CAd	inpie.					9	
* * * *																

Reg. No.		

B.Tech. DEGREE EXAMINATION, MAY 2022 Sixth Semester

					AL MACHINE LEARNING	0.1			
NT - 4	(For the candidates a	dmitted from	the a	cademic year 2018-2019 to 2019-2020	"			
Note: (i)		A should be answere hall invigilator at the			within first 40 minutes and OMR shee	t shoul	ld be	hane	ded
(ii)		B should be answered							
Time: 21	⁄2 Hours					Max.	Ma	rks:	75
			A (25 × 1 =			Marks	BL	CO	PO
			ver ALL Q			997			
1.	Considerabuilt bas	1	2	1	I				
		ini – batches			Optimized parameters				
	` /	yper parameters		(D)	_				
2.	per itera		dient descer	nt wh	ich processes one training example	1	1	1	1
	*	atch gradient descen	t	(B)	Mini gradient descent				
	(C) St	ochastic batch		\ /	1-gradiant descent				
2		escent		d	nulation standard deviation is not	1	2	1	1
3.	given. I	How would you test	the significa	a pop	pulation, standard deviation is not of the difference of the mean values		0		
	between			(D)	Ch: a success to st				
	(A) f-t			(B)	Chi-square test				
	(C) t-t	est		(D)	z-test				
4	Falce no	sitive rate is				1	1	1	1
7.	_	ecificity —		(B)	Sensitivity				
	` ' -	Sensitivity		(D)	1-specificty				
	(0) -			(-)	7				
5.		cannot be achie	ved with lin	ear m	nodel.	1	2	1	1
	` '	exibility fit c	omplicated	(B)	Uncover complex multivariate relationship				
			ion models	(D)	Handling discrete values				
6.	Identify regressi	1	2	2	2				
	(A) 1	ì		(B)					
	(C) 3			(D)	4				
7.	Choose lambda.	-	hich describ	es re	lationship of bias and variance with	1	2	2	2
	` /	or very small lamb w, variance is low	da, bias is	(B)	For very small lambda, bias is low, variance is high				
		or very small lamb	da, bias is	(D)	For very small lambda, bias is				
	` '	gh, variance is low	A .	` '	high, variance is high				

Page 1 of 4

8.	In Random Forest or Gradient boosting algorithms, features can be of any type. For example, it can be continuous or categorical. Identify which of the following option is true by considering these types of features. (A) Only random forest – handlers (B) Only gradient boosting handles	1 2 2 2	17. Neural networks are complex with many parameters (A) Linear functions (B) Non linear functions (C) Discrete functions (D) Exponential functions	1	4	
	real valued distributes by real valued attributes by discretizing them (C) Both can handle real valued (D) Both cannot handle real valued attributes by discretizing them attributes by discretizing them		18. The output at each node is called (A) Node value (B) Weight (C) Neurons (D) Axons	1	4	4
9.	For Lesso regression, if the regularization parameter is very high, choose the correct option (A) Can be used to select important (B) Shrinks the coefficient of less features of a dataset important features to exactly 0 (C) The loss function is same as the ordinary least square loss ridge regression loss function function	1 2 2 2	19. Suppose you are using RBF Kernel in SVM with high Gamma value. It signifies the model would (A) Consider even far away points (B) Consider only the points close to from hyperplane for modelling (C) Not be affected by distance of (D) Be affected by distance of points points from hyperplane for close to the hyper plane for modelling 1. Consider only the points close to the hyperplane for modelling	2	4	4
10.	Choose the limitation of Lasso regression (A) If the number of features (P)> the number of observations, Lasso will pick at most n features as non-zero, even if all features are relevant (B) Lasso can be used to select important features of a data set	1 1 2 2	20. Find the option that more likely to consider iterating SVM next time (A) To increase data points (B) To decrease data points (C) To calculate more variables (D) To reduce the features		4	
11.	 (C) If there are two or more highly collinear features Lasso selects one of the randomly which is not good for interpretation (D) Lasso make coefficients to absolute 0 is the purpose of the Laprace estimator in the content of Naïve Bayes 	1 1 3 3	21 is used for topic modelling 1 (A) Random forest (B) Support vector machine (C) k-means (D) k-nearest neighbours	1	5	5
	classifiers. (A) To ensure the probabilities are (B) To ensure that probability sum to not negative one (C) To ensure non-zero probabilities (D) To ensure zero probability		22. Identify the importance of using PCA before the clustering (A) Find the explained variance (B) Find good features to improve clustering (C) Find which dimension of data (D) Avoid bad features	2	6	6
12.	Choose the wrong statement. (A) k-means clustering is a method (B) k-means clustering aims to partition 'n' observations into 'k' clusters	1 1 3 3	23. PCA is used	1	6	6
13.	(C) k-nearest neighbor is same as k- (D) k-means clustering requires means distance metric Choose the correct statement about 'k' in KNN in terms of variance	1 1 3 3	(C) To find latent features and (D) Every time before uses a ML reduce dimension latency algorithm 24 of the following clustering algorithms suffers from the problem of	2	5	5
	 (A) Increase of k will increases (B) Decrease of k will increases variance (C) Increase of k will not change (D) Decrease of k will not change variance 		convergence at local optima. (A) k-means and expectation – (B) Agglomerative and k-means maximization (C) Expectation-maximization and (D) Diverse and k-means			
14.	In Naïve Bayes, suppose that prior for class W1 is greater than class W2, would the decision boundary shift (A) Towards region R1 (B) Towards region R2	1 2 3 3	25. Identify the clustering algorithm which is most sensitive to outliers.	2	5	5
	(C) No shift in decision boundary (D) It depends on the exact value of priors		(A) k-means (B) k-medians (C) k-modes (D) k-medoids			
	Bayes rule can be used for (Λ) Solving queries (B) Increasing complexity (C) Decreasing complexity (D) Answering probabilistic query	1 1 3 3	Answer ALL Questions	ks BL	CO	
16.	of the following is FALSE for neural networks (A) Artificial neurons are similar in operation to biological neurons (B) Training time for a neural network depends on network size (C) Neural networks can be simulated on conventional computer (D) The basic unit of neural networks are neurons	1 2 4 4	26. a.i. Discuss the broad categories of machine learning. 5 ii. Write the steps to find variance. Consider the given data set and find variance. Data set 46 69 32 60 52 41		1	
Page 2 of 4		8MF618CSE479T	Page 3 of 4 (OR)	618CSE	4 7 9T	