	Clat 401 Tagt 1 E	all Oak 14 0019.	Manakasa	10 + 13
	Stat 421, Test 1, F	all, Oct. 14, 2013; ze "cheat sheet" is allow		
Multiple				11+47
Multiple	choice: Circle all the con		_	ity
		horizontal line, do not	expiam.	
CHOW	•	s below horizontal line,	ithaut amplanat	ion
pints (Table 2.3)	answer & work; NO CRE	DIT for correct answer	without explanat	1011
1. Circle all correct s	tatements.			0 = - 0
a) chi-squared tests a	re always 1-sided	c) F-tests are a	V	us each
(b))chi-squared tests r	nay be 1- or 2-sided	(d) F-tests may	be 1- or 2-sided.	0.5 each with 0.5 penalty
leit + book p. 4		•>		
2. Consider 3 factors	, each having 3 levels.	How many runs are re	quired for a factor	orial design, and
for a one-at-a-time de		X //-	- 2 - x	
a) $(3 \times 3, 6)$	b) $(3 \times 3, 7)$	c) (c	$(3^3, 6)$	$(d) (3^3, 7)$
	11 1	· C + 1		0.1 1.0
	oblem, what is the ans			
	(3k, (3-1)k+1)	- Take our the m	ea le point	1 point each
2.28 4. An article compar	es two procedures for p	redicting the sheer st	a. rongth for stool i	alates For three
plates the following	data are observed. We			
	igher mean shear stren			
a) Write down the ap	propriate H_0 , H_1 .	Ho: MASMB	Plate Method	
2	p-sp-esses0,1.	115, / A 5 / 18	1 1.186	
		HI; M>MB	2 1.151 3 1.322	
b) Suppose all of the	conditions for a t-test	are satisfied.	3 1.322	1.063
21 What kind of t-test is	s appropriate? Specify	as much as you can.		
1-55dad 1000	(ch,, paire			
1 3 422 , 010	(ax) Politi	Ti	s is The imp	ortant one.
(2.16 (-SILES)				
2 The average visco	osity of a liquid deterg	gent is supposed to be	e below 800, oth	erwise laundary
machines can be dam	aged. Write the appropriate $M = (M < 800) M > 8$ After not assume M atterested in testing wh	priate H_0, H_1 .	C 0	
- S \	# (/)		7, 850	
Suppose we are in	enterested in testing wh	ether electicity of a co	∟< 860 ertein plastic va	ries across three
temperatures We h	ave access to six plast	ic specimen and so v	ve measure the	elasticity of two
	he three temperatures.			· ·
(means model, fixe		c) (means model, rand		0.5 each
b) effects model, fixe	,	d) (effects model, rand	,	with o.
				- henerit
1 confident textbook disc	usses some of the adva-	ntages of a balanced d	esign. One of the	e reasons is that
equal sample size lead	ds to higher power. Do	oes this mean that if w	ve get rid of the	"extra" samples
in one pop, then we'l	l have more power? Ye	s/no, and briefly expla	ain.	

No, because if we get rid of The "extras", Then The overall sample size goes down, and so, power goes down, too.

Name: _____

$$\begin{split}
E[\gamma^{2}] &= \int_{-\infty}^{\infty} \chi^{2} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}} = \int_{-\infty}^{\infty} (\mu+\sigma_{z})^{2} \frac{1}{\sqrt{2\sigma}} e^{-\frac{1}{2}z^{2}} e^{-\frac{1}{2}z^{2}} \\
&= \mu^{2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\sigma}} e^{-\frac{1}{2}z^{2}} dz + \sigma^{2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\sigma}} e^{-\frac{1}{2}z^{2}} dz + 2\mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\sigma}} e^{-\frac{1}{2}z^{2}} dz \\
&= 1 \quad \text{(Hint)}
\end{split}$$

Consider a sample of size n. We have shown that if the individual elements of the sample drawn independently, then the variance of the sample mean is σ^2/n , where σ is the standard deviation of the population. Now, suppose the individual samples are not independent, and that the covariance is given by a constant K. Derive the expression for the variance of the sample mean.

$$V[\overline{\gamma}] = V[\frac{1}{N}, \overline{\gamma}, \overline{\gamma}] = \frac{1}{N^2} V[\frac{1}{N}, \overline{\gamma}] = \frac{1}{N^2} \left(\frac{N}{N}, \overline{\gamma}, \overline{\gamma} \right) + 2 \underbrace{\frac{1}{N}}_{i \neq j} Cav[\frac{1}{N}, \frac{1}{N}, \overline{\gamma}] \right)$$

$$= \frac{1}{N^2} \left(\frac{N^2 \cdot N + 2K}{N} \underbrace{\frac{N(N-1)}{N}}_{N} \right)$$

$$= \frac{N^2}{N} + \frac{N-1}{N} K \qquad \left[\frac{1}{N} + \frac{1}{N} (0^2 - 1K) - \frac{1}{$$

2.21 11. a) Suppose we are testing $H_0: \mu_1 \leq \mu_2$ versus $H_1: \mu_1 > \mu_2$. We have evidence to indicate the two population standard deviations are equal. From a sample with $n_1 = 9, n_2 = 16$, we have estimated a common standard deviation of $\frac{24}{5}$. At $\alpha = 0.05$, what is the power of the test if the true difference $\mu_1 - \mu_2$ is 0.790?

$$d = p(t) + \frac{(y_i - y_i) - (\mu_i - \mu_i)}{\sqrt{y_i - y_i} - (\mu_i - \mu_i)}$$

$$d = p(t) + \frac{(y_i - y_i) - (\mu_i - \mu_i)}{\sqrt{y_i - y_i} - (\mu_i - \mu_i)}$$

$$d = n_i + n_i - 2 \implies t_c = 1.7 + 14$$

$$\begin{array}{l} \text{c.'. cvitical Value}: & (\bar{Y}_{1} - \bar{Y}_{2})_{c} = t_{c} \, S_{p} \sqrt{\frac{1}{n_{i}} + \frac{1}{n_{2}}} \\ \text{power} = p \left(\bar{Y}_{1} - \bar{Y}_{2} \right) \times (\bar{Y}_{1} - \bar{Y}_{2})_{c} \left[m_{i} - m_{z} = 0.790 \right] = p \left(t \right) \\ = p \left(t \right) + t_{c} - \frac{.790}{S_{p} \sqrt{\frac{1}{n_{i}} + \frac{1}{n_{2}}}} \right) = p \left(t \right) + t_{c} - \frac{.790}{225} = p \left(t \right) + t_{c} - \frac{.790}{2} \\ = p \left(t \right) + t_{c} - \frac{.395}{2} \right) = p \left(t \right) + 1.714 - .395 \right) = p \left(t \right) + 1.319 = 0.10 \end{array}$$

b) Now, suppose we have good evidence to believe that the two populations have unequal standard deviations. Meanwhile, the sample standard deviations are both $\frac{24}{5}$. What is the power now? If you're short on time, just point out the places where the calculation in part a would be different.

you're short on time, just point out the places where the calculation in part a would be different.

This time, must use
$$df = Wc(dl) = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}$$

But when $S_1^2 = S_2^2$, it does not: $\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}$
 $\frac{(S_1^2)^2 \left(\frac{1}{n_1-1}\right) + \left(\frac{S_2^2}{n_1}\right)^2 \left(\frac{1}{n_2-1}\right)}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2} = \frac{(25)^2 \cdot 5}{8 \cdot 15} = \frac{(25)^2 \cdot 5}{27 + 160} = \frac{(25)^2 \cdot 5}{187} = \frac{16.7}{187}$

power = $p(t) + t_c - \frac{790}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ = $p(t) \cdot 1.335 - .395 = p(t) \cdot 0.941 \approx 18$

In short, of and the State error $\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)$ Change

In short, of and the std. evror (\sit + 500) change.

 \sim 3 Do the anova decomposition of SST (i.e., derive $SS_{between}$ and SS_{within} for unbalanced designs. The latter should be written in terms of the (conditional) variance of the response for each level of the treatment, and all of the limits of the sums should be clearly indicated.

$$SST = \underbrace{\sum_{i}^{N_{i}}}_{i} (N_{i})^{2} - \underbrace{\sum_{i}^{N_{i}}}_{i} [(Y_{i})^{2} - \underbrace{Y_{i}})^{2} + (Y_{i})^{2} - \underbrace{Y_{i}})^{2}$$

$$= \underbrace{\sum_{i}^{N_{i}}}_{i} (Y_{i})^{2} + \underbrace{\sum_{i}^{N_{i}}}_{i} \underbrace{(Y_{i} - Y_{i})^{2}}_{i} + 2\underbrace{\sum_{i}^{N_{i}}}_{i} \underbrace{(Y_{i})^{2} - Y_{i}}_{i})(Y_{i} - Y_{i})}_{N_{i}}$$

$$= \underbrace{\sum_{i}^{N_{i}}}_{i} (N_{i} - 1) S_{i}^{2}$$

$$= \underbrace{\sum_{i}^{N_{i}}}_{i} (N_{i} - 1) S_{i}^{2} + \underbrace{\sum_{i}^{N_{i}}}_{i} (Y_{i} - Y_{i})^{2}$$

$$= \underbrace{\sum_{i}^{N_{i}}}_{i} (N_{i} - 1) S_{i}^{2} + \underbrace{\sum_{i}^{N_{i}}}_{i} (Y_{i} - Y_{i})^{2}$$

$$= \underbrace{\sum_{i}^{N_{i}}}_{i} (N_{i} - 1) S_{i}^{2} + \underbrace{\sum_{i}^{N_{i}}}_{i} (Y_{i} - Y_{i})^{2}$$

$$= \underbrace{\sum_{i}^{N_{i}}}_{i} (N_{i} - 1) S_{i}^{2} + \underbrace{\sum_{i}^{N_{i}}}_{i} (Y_{i} - Y_{i})^{2}$$

$$= \underbrace{\sum_{i}^{N_{i}}}_{i} (N_{i} - 1) S_{i}^{2} + \underbrace{\sum_{i}^{N_{i}}}_{i} (Y_{i} - Y_{i})^{2}$$