

Puru Sharma

Cheng-Kai Lim

Dehui Lin

Efficiently Enabling Block Semantics and Data Updates in DNA Storage

Yash Pote

Djordje Jevdjic

Why storing data in DNA molecules?

- 1. Incredible density
 - 6-7 orders of magnitude ahead of best alternatives!

- 2. Unmatched durability
 - Thousands/millions/billions of years (vs. 3-5 years for disks/flash)
- 3. Never obsolete: R/W interfaces will only improve with time
- 4. Efficient random access
- 5. Convenient for many data-parallel & near-data computations

Key Problems with DNA Storage

- 1. Expensive R/W interfaces
 - Writing cost: \$1K \$10K/MiB
 - Reading cost: \$10 \$10K/MiB
 - → Architectures to minimize the amount of data read/written
- 2. Limited number of addresses per test-tube
 - Only ~3000 unique objects can be retrieved at random
 - Key reason: arbitrary size of objects
- 3. No Practical Update Mechanism
 - Impractical to "edit" existing molecules

Our Proposal: Block-Based Architecture

- Enables ~3000 objects partitions of arbitrary size in a tube
 - Any whole partition can be retrieved at random
- Each partition internally blocked into fixed-size units
 - Fixed size allows for millions of blocks within each partition
 - Each block can be individually retrieved and written to at random
- Orders of magnitude reduction in read/write cost and latency
 - Instead of a giant partition, we can retrieve/update a small part of it

Outline

- Introduction
- DNA Storage Basics
- Limitations of Object Store semantics
- Block Semantics
- Data Updates
- Evaluation
- Conclusion

DNA Molecules

4 nucleotides

Synthetic DNA molecule

- Artificially created string of nucleotides
- No biological meaning

 log_2 | {A, C, G, T}| = 2 bits of data per nucleotide

Storing Data in short DNA strings

Problem: Artificial DNA molecules limited in length!

- Practical length: a few hundred nucleotides
- Solution: split big data into smaller ordered chunks! [Bornholt et al, ASPLOS'16]


```
AGTAC
                    encoding
1011000100101101...
                                 CAGTC
                                 GCGTA
                                 TAAGC
                                                  ordering
                                                metadata
                                                   (index)
```

How to retrieve the entire object at random?

Polymerase Chain Reaction (PCR)

primers

GAC AA ACGAGGATTCAACCTCG
GAC AC ACCGAGGATTCAACTCG
GAC AG CACACGGGGCCTTATCG
GAC AT AAATCGGTTACCGGTCG
GAC CA TACCATGACGAAGCTCG
GAC CC GATTCAACACGAGTTCG
GAC CG CTTAGGACTAATCG TCG
GAC CT ACAATTGAAGCTAGTCG

Random Access using PCR*

CTT A GACCAGGATTCGT AGG
CTT C CGATTCGATCGAC AGG

object #2

TACAAGCTTCGATTCGG GTA

TACCATCGATCGTGCTA GTA

TACGCGTAATCGGACTC GTA

TACT GATCGGCTATTCC GTA

object #3

object #1

Primer Constraints

Typical primer length is $20 \rightarrow 4^{20} = 2^{40}$ possible primers Unfortunately, primers have strict constraints:

- 1. Balanced GC-content: #G + #C == #A + #T
- 2. Max homopolymer length of 4: ACGTAGTTTTTACG
- 3. Minimum pairwise edit distance of 8
 - To avoid replication of unrelated data (a.k.a. mispriming)
 - Significantly reduces the size of the primer set!

Largest primer library contains only ~6000 primers → 3000 objects

homopolymers

PCR Mispriming – replication of unwanted data

Misprimed molecules can be exponentially replicated

Mispriming and Irregular Object Sizes

Maximum extent of *mispriming* uncontrollable due to arbitrary object sizes

Key Insights

Arbitrary object size causes severe problems:

- Mispriming must be avoided at all cost
 - Else, it can spiral out of control due to arbitrary object sizes
- → primers maintain high pairwise distance
- → unacceptably small set of viable primers

Key idea:

- Maintain uniform object sizes to allow for controllable amount of mispriming
 - Limited mispriming can be dealt with through error correction
- Relax the distance requirement → significantly increase the number of primers

Outline

- Introduction
- DNA Storage Basics
- Limitations of Object Store semantics
- Block Semantics
- Data Updates
- Evaluation
- Conclusion

Our Proposal: Block-Based DNA Storage

Our Proposal: Block-Based DNA Storage

Sequential Access with Partially-Elongated Primers

PCR with Elongated Primers

All possible elongated primers must comply with primer constraints!

However, for block 0 (AAAAA):

Front Primer AAAAAA

- → Too many homopolymers
- → GC content not balanced

Block Indexes need PCR-compatible Encoding

Sparse Encoding of Block Indexes

Add a suitable **padding** base between neighboring index bases

• In a manner that satisfies the constraints

All possible elongations, including the partial ones, satisfy the PCR constraints

Outline

- Introduction
- DNA Storage Basics
- Limitations of Object Store semantics
- Block Semantics
- Data Updates
- Evaluation
- Conclusion

Practical Data Updates

the update

Back Primer

Evaluation Methodology

Synthesized ~12.000 DNA strands as 13 partitions

- One big partition (9000 strands): "Alice in Wonderland" book in plaintext
 - Organized in 1024 blocks, 256B each
 - 15 DNA strands/block, 4 of which are Reed-Solomon ECC
- 6 DNA update patches created for 6 blocks chosen at random
 - contain textual edits
 - encoded as a diff rather than the entire replacement block
 - "persisted" by careful mixing with the original

Experiment: retrieve an updated block using PCR with elongated primers

Compare against the retrieval of the entire partition (conventional primers)

Result Highlights: Retrieving Block #531

reading the entire partition: >99% unwanted data

reading the target block: target data dominant

Conclusions

- Arbitrary object size significantly reduces the number of addresses
 - Uniform object size can relax the addressing restrictions
- Block-based architecture with elongated primers
 - 1024x more addresses within every partition
 - Convenient log-based data updates
 - Enables future DNA Storage File Systems

- Wetlab experiments: 140x reduction in sequencing cost (and latency)
- Check out the paper for more details and results:

Puru Sharma

Cheng-Kai Lim

Dehui Lin

Thank you! Questions?

Yash Pote

Djordje Jevdjic

Backup Slides

Prior Work

• Nested Primers [1]

[1] Tomek, Kyle J., et al. "Driving the scalability of DNA-based information storage systems." ACS synthetic biology 8.6 (2019)

Prior Work

• Nested Primers [1]

Combinatorial PCR [2]

^[1] Tomek, Kyle J., et al. "Driving the scalability of DNA-based information storage systems." ACS synthetic biology 8.6 (2019)

^[2] Winston, Claris, et al. "Combinatorial PCR method for efficient, selective oligo retrieval from complex oligo pools." ACS Synthetic Biology 11.5 (2022)

Future Work

- Study limitations of our PCR
- Increase number of partitions further
 - Extend both forward and reverse primers

