USO DE EQUIPOS Y TOMA DE INFORMACIÓN RELACIONADA CON LA ESTRUCTURA DEL BOSQUE

Cristian Camilo Gañan Tapasco -Duván Arley Marín Gil - Yonatan Macovi Moran Ruano -Elkin Danilo Vanegas Vargas - Natalia Velásquez Marín - Juan Alvaro Vidal Arango

INTRODUCCIÓN

Se realiza una visita a la estación forestal piedras blancas con el objetivo de aplicar los conocimientos adquiridos teóricamente en lo relacionado a uso de equipos y toma de información relacionada con la estructura del bosque. La información recolectada en las parcelas relacionada con el DAP, altura de los árboles y diámetro de copa (DC); se usa para realizar comparaciones entre parcelas y además comparar los métodos de medición implementados en la práctica.

MATERIALES Y EQUIPOS

- Forcípula: Regla graduada que permite medir el diámetro de los de una superficie circular como el caso de los árboles.
- Cinta diamétrica: Cinta graduada en pulgadas o centímetros que se usa para medir el diámetro de los árboles
- Clinómetro: Medición de la altura de un árbol mediante la medición del ángulo y la respectiva distancia desde donde se toma el ángulo con respecto al fuste del árbol.
- Hipsómetro: Instrumento de medición empleado en el cálculo de las alturas de los árboles.

PROCEDIMIENTO

En la realización de la práctica se procedió de la siguiente manera:

Para el levantamiento de las parcelas en campo se seleccionaron al azar 4 parcelas circulares en una plantación de pino Pátula en la reserva forestal de piedras blancas.

En las parcelas circulares con un área de de 250 m2, se procedió a medir el DAP a los individuos que tenían un DAP >=10 con cinta diamétrica. Seguidamente dentro de la parcela de 250 m2 se procedió a establecer una subparcela de 100 m2 en la cual se tomaron las siguientes mediciones:

Altura total con clinómetro e hipsómetro de los individuos Diámetro de copa DAP con forcípula Para obtener el diámetro de copa medio se midió la proyección en dos direcciones, con cinta métrica, el diámetro normal se midió con forcípula en forma cruzada, utilizando el promedio entre las dos mediciones realizadas a cada árbol. Posterior a la recolección de información se procedió a realizar los correspondientes cálculos que se pueden apreciar en el script de R studio presentado; los resultados de dichos cálculos se relacionan a continuación.

RESULTADOS

Error en las mediciones

Con la fórmula ($E\%=100*\frac{Estimado-Observado}{Observado}$) en valor absoluto, calculamos el porcentaje de error de DAP y altura, tomando los datos del estimado para DAP como el DAP con forcípula, y e observado el DAP tomado con cinta diamétrica; para altura estimada se tomó la lectura del hipsómetro y para observada, la que se calculó con el clinómetro.

Table 1: Error de DAP y altura, DAP_obs= DAP tomado con cinta diamétrica, DAP_est= DAP tomado con forcípula, Alt_obs= Altura calculada (con clinómetro) con ángulos y distancia, Alt_est= Altura tomada con hipsómetro.

Parcela	DAP_obs	DAP_est	Alt_obs	Alt_est	Error DAP	Error alt
1	25.6	25.90	15.49	14.8	1.1718750	4.4544868
1	34.2	33.50	15.99	15.6	2.0467836	2.4390244
2	20.4	19.80	20.86	19.8	2.9411765	5.0814957
2	14.9	14.55	13.27	12.2	2.3489933	8.0633007
2	20.8	19.85	17.73	17.0	4.5673077	4.1173153
2	28.5	28.60	18.62	19.0	0.3508772	2.0408163
3	24.5	24.30	9.36	8.9	0.8163265	4.9145299
3	18.1	17.95	12.32	11.5	0.8287293	6.6558442
3	35.2	34.05	19.11	19.1	3.2670455	0.0523286
3	27.5	27.15	16.45	15.7	1.2727273	4.5592705
3	17.7	17.60	12.18	11.9	0.5649718	2.2988506
3	19.9	19.65	9.94	9.7	1.2562814	2.4144869
3	26.8	25.90	14.39	13.8	3.3582090	4.1000695
3	21.3	20.80	10.09	9.9	2.3474178	1.8830525
3	19.9	19.55	9.24	9.1	1.7587940	1.5151515
4	31.8	29.35	24.03	23.5	7.7044025	2.2055764
4	34.9	33.95	21.12	20.7	2.7220630	1.9886364
4	31.5	30.15	21.84	21.6	4.2857143	1.0989011
4	28.8	27.45	18.67	18.2	4.6875000	2.5174076
4	33.1	32.60	24.47	23.5	1.5105740	3.9640376

Table 2: Error promedio de DAP y altura por Parcela.

Parcela	DAP_obs	DAP_est	Alt_obs	Alt_est	Error DAP	Error alt
1	29.90000	29.70000	15.74000	15.20000	1.609329	3.446756
2	21.15000	20.70000	17.62000	17.00000	2.552089	4.825732
3	23.43333	22.99444	12.56444	12.17778	1.718945	3.154843
4	32.02000	30.70000	22.02600	21.50000	4.182051	2.354912

Table 3: Diámetro cuadrático promedio y área basal por parcela.

Parcela	Dcm	Area basal
1	30.01895	22.64806
2	27.19282	34.84573
3	26.20020	32.34823

Parcela	Dcm	Area basal
4	28.11720	32.28772

Table 4: Diámetro cuadrático promedio, área basal, área de copa promedio y altura promedio por subparcela.

Subparcela	Dcm	Area basal	Area_copa_p	Altura_p
1a	30.20761	14.33352	24.04104	15.74000
2a	21.69712	14.78952	12.47310	17.62000
3a	24.03791	40.84377	14.43867	12.56444
4a	32.08286	40.42091	48.43825	22.02600

Distribuciónes DAP

Distribuciónes diamétricas DAP

distribuciónes alt

Distribuciónes de Altura

distribuciones copa

Distribuciónes de área de copa

 $\# \mathrm{Modelos}$

Modelo lineal (altura dap)

Modelo exponencial (altura dap)

Modelo	ValorP	RSE	Shapiro test	AIC
H = 13.92 + 0.14 * DAP	0.0035402	4.21	0.389	421.0029
H = exp(2.38 + 0.155 * log(DAP))	0.0095268	9.73		

Table 5: Modelos altura DAP

Modelo lineal (acopa dap)

Modelo Exp(acopa dap)

Modelo	ValorP	RSE	Shapiro test	AIC
Acopa = -2.404 + 1.302 * DAP	1.300739e - 09	15.798	0.0045	595.759
Acopa = exp(0.661 + 0.891 * log(DAP))	0.0000831	8.435		

Table 6: Modelos Acopa DAP

Modelo lineal (DC ind)

Modelo Exp (Dc ind)

Table 7: Modelos Dc Nind

Modelo lineal (hprom dc)

Modelo exp (Hrpm dc)

Table 8: Modelos Hprom Dcp