Carbon Dioxide (CO₂)

Skeletal structure

Total valence electrons = 16

Distribute electrons (octet and/or duet rules)

Need for double or triple bonds? Yes

Nitrate Ion (NO₃-)

Skeletal structure

Total valence electrons = 24

Distribute electrons (octet and/or duet rules)

Need for double or triple bonds? 4es

Resonance

NO₃-

Resonance structures-some skeletal structures, different electron arrangements

The actual structure is a resonance hybrid

Formal Charge

of valence electrons in free atom

of valence electrons assigned to atom in the molecule

Assigning each atom in a Lewis dot structure a formalized charge

$$\begin{bmatrix} :0 - N - 0 : \\ :0 - N - 0 : \\ :0 : \\ 0$$

Total formal charge must equal the overall charge on the species
Negative formal charge on the most electronegative atom
Minimize formal charges

Cyanate Ion (OCN-)

Draw the Lewis structure (including all resonance forms).

$$\begin{bmatrix} O = C = N \end{bmatrix} \longleftrightarrow \begin{bmatrix} O = C - N : \end{bmatrix}^{-1}$$

$$\begin{bmatrix} O = C = N \end{bmatrix}$$

Which resonance form is likely to contribute most to the correct structure?

Cyanate Ion (OCN-)

Resonance Structures	[ö=c=ÿ]	[o = c - ÿ:] _	[:Ö-c=ü]*
FC on O	6-6=0	6-5=1	6-7=-1
FC on C	4-4=0	4-4=0	4-4=0
FC on N	5-6=-1	5-7=-2	5-5=0