

Республиканская физическая олимпиада 2024 года (III этап)

Теоретический тур

9 класс.

Внимание! Прочтите это в первую очередь!

- 1. Полный комплект состоит из трех заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. Каждое задание включает условие задания и Листы ответов. Для решения задач используйте рабочие листы. Часть из них используйте в качестве черновиков. После окончания работы черновые листы перечеркните.

В чистовых рабочих листах приведите решения задач (рисунки, исходные уравнения, математические преобразования, графики, окончательные результаты). Жюри будет проверять чистовые рабочие листы. Кроме того, каждое задание включает Листы ответов. В соответствующие графы Листов ответов занесите окончательные требуемые ответы. Для построения графиков, которые требуется по условию задачи, в Листах ответов подготовлены соответствующие бланки. Графики стройте на этих бланках. Дублировать их в рабочих листах не требуется.

- 4. Подписывать рабочие листы запрещается.
- 5. В ходе работы вы можете использовать ручки, карандаши, чертежные принадлежности, инженерный калькулятор.
- 6. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет заданий содержит:

- титульный лист (1 стр.);
- условия 3 теоретических заданий с Листами ответов (6 стр.).

Задание 9-1. Прогрессивная динамика

В данном задании действие силы тяжести не учитывать. Внимание! Рисунки носят качественный характер: реальные пропорции сил на них не соблюдены.

1.1 На материальную точку массой m=23,2 кг действуют двенадцать сил (Рис. 1), расположенных в одной плоскости, самая «маленькая» из которых равна $F_1=10$ Н и направлена вдоль оси Ox. Известно, что каждая следующая сила больше предыдущей на $\Delta F=10$ Н и повернута на угол $\alpha=30^\circ$ (см. Рис. 1). Найдите ускорение \vec{a}_1 материальной точки.

1.2 Рассмотрим общий случай. Пусть на материальную точку массой m (Рис. 2) действует система

из n сил $(\vec{F}_1; \vec{F}_2; \vec{F}_3; \dots; \vec{F}_{n-1}; \vec{F}_n)$, расположенных в одной плоскости на одинаковом угловом расстоянии $\alpha = \frac{2\pi}{n}$ друг от друга. Известно, что модуль F_{i+1} каждой следующей силы больше модуля F_i предыдущей на ΔF . Найдите ускорение \vec{a}_2 материальной точки.

1.3 Используя общее выражение, полученное для \vec{a}_2 в предыдущем пункте, вычислите ускорение \vec{a}_1 для первого пункта задачи.

Лист ответов. Задание 9-1. Прогрессивная динамика

1.1 Ускорение \vec{a}_1 материальной точки:
1.2 Ускорение \vec{a}_2 материальной точки:
1.3 Вычисление ускорения \vec{a}_1 для первого пункта задачи по формуле п. 1.2:

Задание 9-2. Двойное скольжение

Справочные данные и параметры рассматриваемых систем: трением и сопротивлением воздуха в данном задании пренебречь.

1.1 «Шарик и параллелепипед» Небольшой шарик, привязанный легкой нерастяжимой нитью к

вертикальной стенке в точке O (Рис. 1), свисает с параллелепипеда размерами $a \times b$ (в плоскости рисунка), слегка касаясь горизонтальной поверхности. Параллелепипед начинают двигать вправо с постоянной скоростью \vec{v} . Найдите скорость \vec{u}_1 шарика в процессе его скольжения по вертикальной стенке параллелепипеда. Опишите его траекторию на этом участке движения, укажите её существенные параметры. Считайте, что в процессе движения шарик не отрывается от параллелепипеда.

1.2 «Шарик и наклонная плоскость» Усложним задачу и рассмотрим небольшой шарик,

привязанный легкой нерастяжимой нитью к стене, который лежит на наклонной плоскости (Рис. 2), слегка касаясь горизонтальной поверхности. Наклонную плоскость начинают двигать вправо с постоянной скоростью \vec{v} . Найдите скорость \vec{u}_2 шарика в процессе его скольжения по наклонной плоскости. Опишите его траекторию на этом участке движения, укажите её существенные параметры. Считайте, что в процессе движения шарик не отрывается от наклонной плоскости. Угол наклона плоскости к горизонту α , ее длина l.

1.3 «Шарик и полусфера» Еще более усложним задачу и рассмотрим небольшой шарик на легкой

нерастяжимой нити, который лежит на полусфере (Рис. 3), слегка касаясь горизонтальной поверхности. Полусферу начинают двигать вправо с постоянной скоростью \vec{v} . Найдите скорость $\vec{u}_3(x)$ шарика в процессе его скольжения по полусфере в момент времени, когда полусфера сместилась на расстояние x(x < R). Опишите его траекторию на этом участке движения, укажите её существенные параметры. Считайте, что в процессе движения шарик не отрывается от полусферы. Радиус полусферы R.

Лист ответов. Задание 9-2. Двойное скольжение

1.1 Скорость \vec{u}_1 шарика:
Траектория шарика:
1.2 Скорость \vec{u}_2 шарика:
Траектория шарика:
1.3 Скорость $\vec{u}_3(x)$ шарика:
Траектория шарика:

Залание 9-3. Конечная бесконечность

1.1 «Шаг за шагом ...» Рассмотрим линейную электрическую цепь из резисторов R и 2R, составленную из одинаковых повторяющихся звеньев (Рис. 1). Интересно, что сопротивление R_{∞}^{*} такой цепи будет конечным даже при бесконечном числе звеньев $(n \to \infty)$.

Пусть R_n – сопротивление конечной линейной цепи \approx при n $(n=1,2,3,...,\infty)$ звеньях. Назовем *относительной погрешностью оценки* R_{∞}^{*} величину $arepsilon_n = rac{R_n - R_{n+1}}{R_n}$, выраженную в процентах.

Найдите сопротивления одного звена R_1 данной цепи, её двух звеньев R_2 , а также относительную погрешность ε_1 оценки R_{∞}^* . Далее проделайте такую же процедуру с R_2 и R_3 , найдите ε_2 . Продолжайте данную процедуру шаг за шагом до тех пор, пока относительная погрешность ε_n оценки R_{∞}^* не станет меньше одного процента ($\varepsilon_n < 1.0$ %). При каком значении n это произошло? Чему равно R_n ?

- **1.2** «Линейная бесконечность» Найдите точное значение сопротивления R_{∞}^{*} всей бесконечной линейной цепочки (Рис. 1).
- **1.3** «Плоская бесконечность» Из резисторов R и 2R на плоскости собрана бесконечная электрическая цепь АЗ (Рис. 2), некоторые части которой стерты (затонированы). Известно, что

данная цепь обладает следующим свойством: сопротивление R_{AB} первого звена цепи равно сопротивлению R_{AC} её двух первых звеньев, которое, в свою очередь, равно сопротивлению R_{AD} первых трех звеньев цепи и т.д. (до бесконечности). Восстановите стертые (затонированные) цепи на рисунке. Найдите сопротивление $R_{\infty}^{**} = R_{AZ}$ восстановленной вами бесконечной плоской цепи.

Лист ответов. Задание 9-3. Конечная бесконечность

1.1 Сопротивление одного звена R_1 :
Сопротивление двух звеньев R_2 :
Относительная погрешность ε_1 :
Сопротивление трех звеньев R_3 :
Относительная погрешность ε_2 :
3начение n :
1.2 Значение сопротивления R_{∞}^* :
1.3 Сопротивление $R_{\infty}^{**} = R_{AZ}$:
Восстановленная схема: