oerlemans-spm model

- Based on Oerlemans, J.: A quasi-analytical ice-sheet model for climate studies, Nonlin. Processes Geophys., 10, 441–452, https://doi.org/10.5194/npg-10-441-2003, 2003.
- Available at: https://github.com/sperezmont/oerlemans-spm.git

- → Bachelor's degree final thesis (TFG): "Conceptual Climate Models, Ice sheets"
- → Aim:
 - "In this work we will **build a conceptual model** for being able to study the possible **equilibrium states** of these ice-sheets as well as its **response to transient forcing**"
 - Some results and conclusions from this work:
 - Ice hysteresis due to the melt-surface height (positive) feedback
 - Sea level projections close to those made with more complex models
 - Simple models are very useful
- → oerlemans-spm
 - ◆ Objective: harness the simplicity
 - Conceptual, easy to use and adaptable model
 - Structure:
 - o runmodel
 - oerlemans_main.py > oerlemans2D.nc
 - plot_results.py > oerlemans-plot.gif

Main assumptions (fixed, originally made)

- Purely geometric model
 - sources of forcing are the equilibrium line $(z_{\scriptscriptstyle E})$ and the sea level (η)
- ◆ Axi-symmetric geometry (1D model)
- ◆ Perfectly plastic ice (Oerlemans (2001), page 60)
 - Ice thickness, $H(x) = [\mu \cdot (R x)]^{1/2}$
 - \circ R = ice sheet radius μ = profile parameter
- ◆ Bedrock (unperturbed bed)
 - - \circ d₀ = height of the center s = bed slope
- Mass budget
 - $B = A \beta \cdot (z_R z)$ where $z_R = z_E + A/\beta$
 - B = A if z above the runoff height
 - \circ A \propto Constant if continental ice sheet
 - \circ A \propto exp(-constant/R) if marine ice sheet

Time evolution

- \rightarrow Mass balance, MB = dVtot/dt = M · dR/dt
 - $M = dV^*/dR$ where $V^* = (1+\epsilon_1) \cdot V(R) \epsilon_2 \cdot Vsea(R, \eta)$
 - $V = 2\pi \int H(x) dx$ where H(x) is the ice thickness
 - Vsea, volume of water displaced by the marine ice sheet
- → Ice sheet evolution
 - $R(t+1) = R(t) + MB/M \cdot dt$
 - $MB = \iiint BdV$ if continental ice sheet
 - If marine ice sheet, MB = \iiint BdV F_{gr} where F_{gr} is the flux across the grounding line $F_{gr} = F_{gr}(\eta)$

Test 1: No forcing

Test 2: Periodical forcing in z_E

$$z_{E}(t) = z_{E,0} - z_{E,A} \sin(2\pi t/P)$$

 $z_{E,0}$ = reference z_E $z_{E,A}$ = amplitude of forcing P = forcing period

Test 3: Periodical forcing in η

 $\eta(t) = \eta_0 - \eta_A \sin(2\pi t/P)$

 $η_0 = \text{reference } η$ $η_A = \text{amplitude of forcing}$ P = forcing period

Test 4: Periodical forcing in z_E and η

- → Summary
 - ◆ Simple and easy to use model
 - Adaptability
- → Implement
 - More forcing types and from different sources
 - ♦ Ice shelves
- → Test other experiments from Oerlemans (2003)
 - ◆ Coupling of ice-sheets
 - ♦ Glacial cycles

From: Oerlemans (2003)