

Proprietà strutturali e leggi di controllo

Stima dello stato e regolatore dinamico

Stima dello stato e regolatore dinamico

- Stimatore asintotico dello stato
- Esempi di progetto di stimatori asintotici dello stato
- Regolatore dinamico
- > Proprietà del regolatore dinamico
- Esempio di progetto di un regolatore dinamico

Stima dello stato e regolatore dinamico

Stimatore asintotico dello stato

Introduzione (1/3)

ightharpoonup L'ingresso $u(\cdot)$ fornito da una legge di controllo per retroazione statica dallo stato del tipo

$$U(\cdot) = -KX(\cdot) + \alpha r(\cdot)$$

può essere calcolato solo quando lo stato $x(\cdot)$ risulta completamente accessibile (cioè misurabile)

- L'unica variabile accessibile di un sistema dinamico è l'uscita y(⋅) che però fornisce, in generale, solo un'informazione parziale sullo stato
- Pertanto nel caso di stato inaccessibile non si può, in generale, realizzare tale legge di controllo anche se il sistema risulta completamente raggiungibile

© 2007 Politecnico di Torino

y(t) = Cx(t)

Introduzione (2/3)

- ▶ La proprietà di osservabilità di un sistema dinamico garantisce la possibilità di stimare (ricostruire) lo stato x(·) a partire dalla misura di y(·) e dalla conoscenza di u(·)
- ▶ Vogliamo quindi studiare come si può sfruttare la proprietà di **osservabilità** di un sistema dinamico per ottenere una **stima** $\hat{x}(\cdot)$ dello stato $x(\cdot)$
- Poi, studieremo se e come sia possibile impiegare la stima $\hat{x}(\cdot)$ al posto di $x(\cdot)$ per realizzare la legge di controllo per **retroazione statica dallo stato**

 $U(\cdot) = -K\hat{x}(\cdot) + \alpha r(\cdot)$

5

Introduzione (3/3)

Nella trattazione considereremo per semplicità un sistema dinamico LTI TC SISO $(q = p = 1 \rightarrow B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}, D \in \mathbb{R})$ descritto dalle equazioni di stato:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- Tuttavia, i risultati che troveremo saranno validi anche:
 - Per i sistemi LTI TD SISO
 - Per i sistemi LTI MIMO

Lo stimatore dello stato

- ➤ La stima dello stato si può ottenere, come vedremo, sfruttando le caratteristiche di osservabilità del sistema mediante opportuni dispositivi detti stimatori o ricostruttori od osservatori dello stato
- Uno **stimatore dello stato** è un sistema dinamico che, utilizzando, come propri ingressi, l'uscita y(t) e l'ingresso u(t) di un sistema dinamico, genera come uscita una stima $\hat{x}(t)$ dello stato

7

y(t) = Cx(t)

Stimatore asintotico dello stato

Per uno **stimatore dello stato**, si definisce l'**errore di stima** $e(t) \in \mathbb{R}^n$ come la differenza tra lo stato stimato e lo stato vero:

$$e(t) = \hat{x}(t) - x(t)$$

Uno stimatore per cui l'errore di stima si annulla al tendere del tempo all'infinito è detto stimatore asintotico dello stato

$$\lim_{t \to \infty} ||e(t)|| = \lim_{t \to \infty} ||\hat{x}(t) - x(t)|| = 0$$

Occordo

Osservazione (1/3)

- L'uso di uno stimatore asintotico dello stato garantisce di ottenere stime con errore asintoticamente nullo
- Infatti, se la dinamica della stima dello stato fosse governata dalle medesime equazioni di stato del sistema, si avrebbe:

$$\dot{x}(t) = Ax(t) + Bu(t) \Rightarrow \dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t)$$

$$\dot{e}(t) = \dot{\hat{x}}(t) - \dot{x}(t) =$$

$$= A\hat{x}(t) + Bu(t) - (Ax(t) + Bu(t)) =$$

$$= A(\hat{x}(t) - x(t)) = Ae(t)$$

9

$y(t) \neq Cx(t)$

Osservazione (2/3)

> In tal caso quindi, il comportamento dinamico dell'errore di stima $e(t) = \hat{x}(t) - x(t)$ coincide con il movimento libero dello stato del sistema:

$$\dot{e}(t) = Ae(t) \Rightarrow e(t) = \exp(At)e(0)$$

Per ottenere la condizione

$$\lim_{t\to\infty} \|e(t)\| = 0$$

bisogna che:

 Tutti i modi naturali associati agli autovalori di A siano convergenti → sistema asintoticamente stabile

oppure

• L'errore di stima iniziale sia nullo $\rightarrow e(0) = 0$

Osservazione (3/3)

Quindi, in generale, non è possibile ottenere la condizione di stima asintotica dello stato

$$\lim_{t\to\infty} \|e(t)\| = 0$$

utilizzando le equazioni

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t)$$

Per superare tale limite basta usare la misura dell'uscita y(t) nelle equazioni di stato che governano la dinamica della stima dello stato

11

Stimatore asintotico: equazioni dinamiche

Per tenere conto della misura dell'uscita y(t) nelle equazioni

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t)$$

si può aggiungere il termine di correzione

$$-L(\hat{y}(t)-y(t))$$

che dipende dall'errore tra l'uscita misurata y(t) e l'uscita stimata del sistema $\hat{y}(t) = C\hat{x}(t) + Du(t)$

Si ha quindi:

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t))$$

Stimatore asintotico: errore di stima (1/2)

Calcoliamo con la nuova struttura:

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t))$$

le proprietà dinamiche dell'errore di stima

$$\dot{e}(t) = \dot{\hat{x}}(t) - \dot{x}(t) =
= A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t)) - (Ax(t) + Bu(t)) =
= A\hat{x}(t) - L[C\hat{x}(t) + Du(t) - (Cx(t) + Du(t))] - Ax(t) =
= A\hat{x}(t) - LC\hat{x}(t) - Ax(t) + LCx(t) =
= (A - LC)(\hat{x}(t) - x(t)) = (A - LC)e(t)$$

13

y(t) = Cx(t)

Stimatore asintotico: errore di stima (2/2)

La dinamica dell'errore di stima è quindi governata dal movimento libero del sistema

$$\dot{e}(t) = (A - LC)e(t) \Rightarrow e(t) = \exp[(A - LC)t]e(0)$$

> Pertanto la condizione:

$$\lim_{t\to\infty} \|e(t)\| = 0$$

sarà soddisfatta solo se A-LC ha autovalori asintoticamente stabili

Si tratta quindi di studiare sotto quali condizioni esiste una matrice ∠ tale da rendere asintoticamente stabili gli autovalori di A – LC

y(t) = Cx(t)

Stimatore asintotico: calcolo di L(1/3)

- Il problema può essere risolto grazie alla proprietà di osservabilità ed al principio di dualità
- Vale il seguente Teorema:

Se il sistema dinamico

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

risulta completamente osservabile allora è sempre possibile trovare una matrice \mathcal{L} tale da assegnare ad arbitrio tutti gli autovalori della matrice \mathcal{A} – \mathcal{LC}

15

y(t) = Cx(t)

Stimatore asintotico: calcolo di L(2/3)

- Ci siamo quindi ricondotti ad un problema di assegnazione degli autovalori
- Ricordando il principio di dualità: (A,C) osservabile $\Leftrightarrow (A^T,C^T)$ raggiungibile si può applicare il Teorema di assegnazione degli autovalori che garantisce che è sempre possibile trovare una matrice $L^T \in \mathbb{R}^{1 \times n}$ in grado di assegnare ad arbitrio gli autovalori di $A^T C^T L^T$
- Se il sistema non è completamente osservabile, non si può imporre arbitrariamente la dinamica dell'errore di stima, poiché si possono modificare solo gli o autovalori della parte osservabile

Poiché $A^T - C^T L^T = (A - LC)^T$, il teorema di assegnazione degli autovalori permette di calcolare la matrice dei guadagni L in modo tale da rendere il sistema dinamico descritto da:

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t))$$

$$\dot{\hat{y}}(t) = C\hat{x}(t) + Du(t)$$

uno stimatore asintotico dello stato

Per i sistemi LTI TD lo stimatore asintotico assume la forma:

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) - L(\hat{y}(k) - y(k))$$
$$\hat{y}(k) = C\hat{x}(k) + Du(k)$$

17

Stima dello stato e regolatore dinamico

Esempi di progetto di stimatori asintotici dello stato

Esempio 1: formulazione del problema

Dato il seguente sistema dinamico LTI TC:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

trovare, se possibile, i coefficienti della matrice dei guadagni \mathcal{L} di uno stimatore asintotico dello stato:

$$\hat{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t))$$

$$\hat{y}(t) = C\hat{x}(t) + Du(t)$$

in modo che la dinamica dello stato stimato sia governata dagli autovalori: $\lambda_{1,des}$ =-10, $\lambda_{2,des}$ =-20

19

Esempio 1: procedimento di soluzione

- ▶ Per determinare gli elementi della matrice L occorre procedere come segue:
 - Verificare la completa osservabilità del sistema (in caso contrario non è possibile calcolare ∠)
 - Dato l'insieme degli autovalori da assegnare allo stimatore $\{\lambda_{1,des},...,\lambda_{n,des}\}$, si calcola il polinomio caratteristico desiderato $p_{des}(\lambda)$
 - Si calcola, in funzione degli elementi incogniti di L, il polinomio caratteristico della matrice A LC: $\rho_{A-LC}(\lambda)$
 - Si determinano gli elementi incogniti di L applicando il principio di identità dei polinomi:

$$p_{A-LC}(\lambda) = p_{des}(\lambda)$$

Le matrici A e C del sistema dato sono:

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Poiché il sistema è di ordine n = 2, la matrice di osservabilità è della forma:

$$M_{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$$

21

Poiché risulta che:
$$M_{\mathcal{O}} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \Rightarrow \rho(M_{\mathcal{O}}) = 2$$

➤ Allora il sistema è completamente osservabile

Esempio 1: determinazione di $p_{des}(\lambda)$

Gli autovalori desiderati da assegnare sono:

$$\lambda_{1,des} = -10$$
, $\lambda_{2,des} = -20$

Il corrispondente polinomio caratteristico desiderato è quindi:

$$\rho_{des}(\lambda) = \prod_{i=1}^{n} (\lambda - \lambda_{i,des}) =$$

$$= (\lambda - \lambda_{1,des})(\lambda - \lambda_{2,des}) =$$

$$= (\lambda - (-10))(\lambda - (-20)) =$$

$$= \lambda^{2} + 30\lambda + 200$$

23

Esempio 1: determinazione di $p_{A-LC}(\lambda)$

Poiché n = 2, la matrice dei guadagni ∠ è della forma:

 $L = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$

si ha

$$A - LC = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & \ell_1 \\ 0 & \ell_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 - \ell_1 \\ -1 & 2 - \ell_2 \end{bmatrix}$$

$$A - LC = \begin{bmatrix} 0 & 1 - \ell_1 \\ -1 & 2 - \ell_2 \end{bmatrix}$$

Per cui:

$$\begin{aligned}
\rho_{A-LC}(\lambda) &= \det(\lambda I - (A - LC)) = \\
&= \det\left[\begin{bmatrix} \lambda & -(1 - \ell_1) \\ 1 & \lambda - (2 - \ell_2) \end{bmatrix}\right] = \\
&= \lambda \left[\lambda - (2 - \ell_2)\right] + 1 \cdot (1 - \ell_1) = \\
&= \lambda^2 + (\ell_2 - 2)\lambda + 1 - \ell_1
\end{aligned}$$

25

Esempio 1: calcolo di L

Affinché i due polinomi:

$$p_{des}(\lambda) = \lambda^2 + 30\lambda + 200$$

$$\rho_{A-LC}(\lambda) = \lambda^2 + (\ell_2 - 2)\lambda + 1 - \ell_1$$

abbiano le stesse radici, per il principio di identità dei polinomi deve risultare:

$$\begin{cases} \ell_2 - 2 = 30 \\ 1 - \ell_1 = 200 \end{cases} \Rightarrow \begin{cases} \ell_1 = -199 \\ \ell_2 = 32 \end{cases}$$

Per cui

$$L = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix} = \begin{bmatrix} -199 \\ 32 \end{bmatrix}$$

Esempio 2: formulazione del problema

Dato il seguente sistema dinamico LTI TD:

$$x(k+1) = \begin{bmatrix} 1 & -0.1 \\ 0 & 2 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(k)$$

trovare, se possibile, i coefficienti della matrice dei guadagni \mathcal{L} di uno stimatore asintotico dello stato:

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) - L(\hat{y}(k) - y(k))$$

$$\hat{y}(k) = C\hat{x}(k) + Du(k)$$

in modo che la dinamica dello stato stimato sia governata dagli autovalori: $\lambda_{1,des} = \lambda_{2,des} = 0.01$

27

Esempio 2: procedimento di soluzione

- ▶ Per determinare gli elementi della matrice L occorre procedere come segue:
 - Verificare la completa osservabilità del sistema (in caso contrario non è possibile calcolare L)
 - Dato l'insieme degli autovalori da assegnare allo stimatore $\{\lambda_{1,des},...,\lambda_{n,des}\}$, si calcola il polinomio caratteristico desiderato $p_{des}(\lambda)$
 - Si calcola, in funzione degli elementi incogniti di L, il polinomio caratteristico della matrice A LC: $\rho_{A-LC}(\lambda)$
 - Si determinano gli elementi incogniti di L applicando il principio di identità dei polinomi:

$$p_{A-LC}(\lambda) = p_{des}(\lambda)$$

▶ Le matrici A e C del sistema dato sono:

$$A = \begin{bmatrix} 1 & -0.1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

Poiché il sistema è di ordine n = 2, la matrice di osservabilità è della forma:

$$M_{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$$

29

Poiché risulta che:

$$M_O = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \Rightarrow \rho(M_O) = 1 < 2$$

- Allora il sistema non è osservabile
- Non è pertanto possibile determinare lo stimatore asintotico dello stato richiesto, poiché non è sempre possibile trovare una matrice ∠ tale da assegnare ad arbitrio tutti gli autovalori della matrice A –LC

- In MatLab, la matrice dei guadagni ∠ può essere calcolata, nel caso di autovalori di molteplicità unitaria, mediante l'istruzione place sfruttando il principio di dualità: L = place(A',C',p)'
 - ♠ A, C: matrici della rappresentazione di stato

$$\dot{x}(t) = Ax(t) + Bu(t) \quad x(k+1) = Ax(k) + Bu(k)$$

$$y(t) = Cx(t) + Du(t) \quad y(k) = Cx(k) + Du(k)$$

- p: vettore contenente gli autovalori da assegnare
- Se invece gli autovalori da assegnare non hanno molteplicità unitaria, bisogna usare l'istruzione:

$$L = acker(A',C',p)'$$
 31

Stima dello stato e regolatore dinamico

Regolatore dinamico

© 2007 Politecnico di Torino

Stima dello stato e legge di controllo

- Abbiamo visto come l'impiego di uno stimatore asintotico possa fornire la stima dello stato
- Vogliamo quindi studiare come si possono sfruttare i risultati ottenuti finora dal punto di vista del calcolo di:
 - Leggi di controllo per retroazione statica dallo stato
 - Stimatori asintotici dello stato

al fine di progettare leggi di controllo per assegnazione degli autovalori qualora lo stato non sia completamente accessibile

33

Introduzione

Anche in questo caso considereremo per semplicità un sistema dinamico LTI TC SISO $(q = p = 1 \rightarrow B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}, D \in \mathbb{R})$ descritto dalle equazioni di stato:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- Tuttavia, i risultati che troveremo saranno validi anche:
 - Per i sistemi LTI TD SISO
 - Per i sistemi LTI MIMO

© 2007 Politecnico di Torino

Equazioni del regolatore (1/2)

Il comportamento dinamico di un sistema controllato con una legge di controllo per retroazione statica dallo stato stimato è descritto dal seguente insieme di equazioni:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 \rightarrow Eq. stato sistema
$$y(t) = Cx(t) + Du(t) \qquad \rightarrow$$
 Eq. uscita sistema
$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t)) \qquad \rightarrow$$
 Eq. stato stimatore
$$\dot{\hat{y}}(t) = C\hat{x}(t) + Du(t) \qquad \rightarrow$$
 Stima dell'uscita
$$u(t) = -K\hat{x}(t) + \alpha r(t) \qquad \rightarrow$$
 Legge di controllo

37

Equazioni del regolatore (2/2)

```
\dot{x}(t) = Ax(t) + Bu(t) \rightarrow Eq. stato sistema
y(t) = Cx(t) + Du(t) \qquad \rightarrow Eq. uscita sistema
\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t)) \qquad \rightarrow Eq. stato stimatore
\dot{\hat{y}}(t) = C\hat{x}(t) + Du(t) \qquad \rightarrow Stima dell'uscita
u(t) = -K\hat{x}(t) + \alpha r(t) \qquad \rightarrow Legge di controllo
```

- Pertanto il sistema controllato complessivo è descritto da 2n equazioni di stato in 2n variabili di stato:
 - n variabili di stato del sistema da controllare
 - n variabili di stato dello stimatore asintotico

Progetto del regolatore

- Vogliamo ora studiare come si possono calcolare
 - La matrice dei guadagni K della legge di controllo
 - La matrice dei guadagni L dello stimatore asintotico dello stato

al fine di:

- Assegnare arbitrariamente tutti gli autovalori del sistema controllato complessivo
- Ottenere una stima asintotica dello stato
- ➤ Al momento siamo in grado di calcolare K ed L in modo indipendente ma non sappiamo come procedere quando la legge di controllo e lo stimatore interagiscono fra di loro

39

40

Equazioni dinamiche I (1/2)

■ Introducendo come vettore di stato $x_{tot}^{I}(t) = \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}$

e assumendo r(t) ed y(t) come ingresso ed uscita rispettivamente si possono scrivere le equazioni:

$$\begin{cases} \dot{x}_{tot}^{I}(t) = A_{reg}^{I} x_{tot}^{I}(t) + B_{reg}^{I} r(t) \\ y(t) = C_{reg}^{I} x_{tot}^{I}(t) + D_{reg}^{I} r(t) \end{cases}$$

Dove

$$\frac{A_{reg}^{I}}{A_{reg}^{I}} = \begin{bmatrix} A & -BK \\ LC & A - BK - LC \end{bmatrix} \qquad B_{reg}^{I} = \begin{bmatrix} B \\ B \end{bmatrix} \alpha$$

$$C_{reg}^{I} = \begin{bmatrix} C & -DK \end{bmatrix} \qquad D_{reg}^{I} = [D]\alpha$$

$$A_{reg}^{I} = \begin{bmatrix} A & -BK \\ LC & A-BK-LC \end{bmatrix}$$

- La forma della matrice A^I_{req} non permette di evidenziare in modo immediato l'influenza delle matrici dei quadagni Ked L sugli autovalori del sistema complessivo
- Pertanto le equazioni di stato non forniscono indicazioni utili ai fini della scelta di Ked L

41

Equazioni dinamiche II

Si possono ottenere indicazioni più utili se si

considera come vettore di stato:

$$x_{tot}^{II}(t) = \begin{bmatrix} x(t) \\ \hat{x}(t) - x(t) \end{bmatrix} = \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$$

ightharpoonup Assumendo r(t) e y(t) come ingresso e uscita si ha

$$\begin{cases} \dot{x}_{tot}^{II}(t) = A_{reg}^{II} x_{tot}^{II}(t) + B_{reg}^{II} r(t) \\ y(t) = C_{reg}^{II} x_{tot}^{II}(t) + D_{reg}^{II} r(t) \end{cases}$$

$$A_{reg}^{II} = \begin{bmatrix} A - BK & -BK \\ 0_{n \times n} & A - LC \end{bmatrix} \quad B_{reg}^{II} = \begin{bmatrix} B \\ 0_{n \times 1} \end{bmatrix} \alpha$$

$$C_{reg}^{II} = \begin{bmatrix} C - DK & -DK \end{bmatrix} \quad D_{reg}^{II} = [D]\alpha$$

Proprietà di separazione (1/2)

$$A_{reg}^{II} = \begin{bmatrix} A - BK & -BK \\ 0_{n \times n} & A - LC \end{bmatrix}$$

Si può notare che la matrice A^{II}_{reg} risulta triangolare a blocchi per cui i suoi 2n autovalori (che sono gli autovalori del sistema controllato complessivo) sono dati da:

$$\lambda(A_{reg}^{II}) = \left\{\lambda(A - BK) \cup \lambda(A - LC)\right\}$$

➤ Tale caratteristica è nota come Proprietà di Separazione

43

Proprietà di separazione (2/2)

- ➤ La **Proprietà di Separazione** permette di progettare la legge di controllo per retroazione statica dallo stato stimato (cioè il regolatore) progettando in modo **indipendente** la matrice dei guadagni della legge di controllo *K* e la matrice dei quadagni dello stimatore *L*
- ➤ Il progetto del regolatore è quindi ricondotto al progetto separato di
 - ullet Una legge di controllo (\rightarrow matrice dei guadagni K)
 - Uno stimatore asintotico dello stato
 (→ matrice dei guadagni L)

secondo le modalità già studiate

Stima dello stato e regolatore dinamico

Proprietà del regolatore dinamico

Matrice di trasferimento

Si può dimostrare che la matrice di trasferimento H(s) tra l'ingresso r(t) (riferimento) e l'uscita y(t) del sistema controllato mediante regolatore dinamico coincide con quella ottenuta nel caso della retroazione statica dallo stato:

$$H(s) = \{(C - DK)[sI - (A - BK)]^{-1}B + D\}\alpha$$

Questo dimostra che le dinamiche associate alla stima dello stato non influenzano il comportamento ingresso – uscita del sistema controllato complessivo

Funzione di trasferimento

Nel caso SISO:

$$H(s) = \left\{ (C - DK) \left[sI - (A - BK) \right]^{-1} B + D \right\} \alpha =$$

$$= \frac{\alpha \left\{ (C - DK) Adj \left[sI - (A - BK) \right] B + D \right\}}{\det \left[sI - (A - BK) \right]}$$

 \Rightarrow i poli di H(s) sono solo gli autovalori di A - BK

Mentre gli autovalori del sistema controllato complessivo sono gli autovalori di A –BK e gli autovalori di A –LC

47

Regolazione

Come conseguenza di questo risultato si ha che per imporre la condizione di regolazione:

$$\overline{y} = \overline{r}$$

si può calcolare il parametro α della legge di controllo

$$u(t) = -K\hat{x}(t) + \alpha r(t)$$

utilizzando la medesima relazione trovata nel caso della retroazione statica dallo stato

$$\alpha = \left[-(C - DK)(A - BK)^{-1}B + D \right]^{-1}$$

- Risultati analoghi valgono per i sistemi LTI TD. In particolare:
 - La matrice di trasferimento H(z) tra l'ingresso r(k) (riferimento) e l'uscita y(k) è data da:

$$H(z) = \left\{ (C - DK) \left[zI - (A - BK) \right]^{-1} B + D \right\} \alpha$$

• La condizione di regolazione si ottiene imponendo

$$\alpha = \left\{ (C - DK) \left[I - (A - BK) \right]^{-1} B + D \right\}^{-1}$$

49

Stima dello stato e regolatore dinamico

Esempio di progetto di un regolatore dinamico

Dato il seguente sistema dinamico LTI TC:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ -9 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 600 & 0 \end{bmatrix} x(t)$$

progettare, se possibile, un regolatore dinamico in modo da soddisfare i seguenti requisiti:

- Autovalori desiderati imposti dalla legge di controllo complessi coniugati e aventi $\omega_{n,des} = 45$ $\zeta_{.des} = 0.2$
- Autovalori desiderati dello stimatore dello stato

$$\lambda_{L1.des} = \lambda_{L2.des} = -100$$

Regolazione dell'uscita

51

- Per il progetto del regolatore dinamico richiesto si può procedere con i seguenti passi:
 - Verifica della completa raggiungibilità ed osservabilità del sistema (in caso contrario non è possibile procedere con il progetto)
 - Nel caso di completa raggiungibilità ed osservabilità, in virtù del principio di separazione, si procede al
 - ullet Calcolo dei parametri K ed α della legge di controllo

$$u(t) = -K\hat{x}(t) + \alpha r(t)$$

Calcolo della matrice L dello stimatore

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t))$$

© 2007 Politecnico di Torino

Verifica della raggiungibilità

➤ Le matrici A e B del sistema dato sono:

$$A = \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ -9 \end{bmatrix}$$

■ Il sistema è di ordine n = 2, quindi:

$$M_{R} = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} B & AB \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -9 \\ -9 & 0 \end{bmatrix} \Rightarrow \rho(M_{R}) = 2$$

Pertanto il sistema è completamente raggiungibile

53

Verifica dell'osservabilità

➤ Le matrici A e C del sistema dato sono:

$$A = \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix}, C = \begin{bmatrix} 600 & 0 \end{bmatrix}$$

■ Il sistema è di ordine n = 2, per cui:

$$M_{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 600 & 0 \\ 0 & 600 \end{bmatrix} \Rightarrow \rho(M_{O}) = 2$$

> Pertanto il sistema è completamente osservabile

- ▶ Per determinare gli elementi della matrice K occorre procedere come segue:
 - ullet Dato l'insieme degli autovalori da assegnare $\{\lambda_{\mathcal{K},1,des},\dots\,\lambda_{\mathcal{K},n,des}\}$, si calcola il polinomio caratteristico desiderato $p_{\mathcal{K},des}(\lambda)$
 - lacktriangle Si calcola, in funzione degli elementi incogniti di K, il polinomio caratteristico della matrice A –BK: p_{A} –BK(λ)
 - Si determinano gli elementi incogniti di Kapplicando il principio di identità dei polinomi:

$$p_{A-BK}(\lambda) = p_{K,des}(\lambda)$$

55

Gli autovalori che la legge di controllo deve assegnare sono dati da:

$$\lambda_{\text{K,1,des}} = \sigma_{\text{des}} + j\omega_{\text{des}}$$
, $\lambda_{\text{K,2,des}} = \sigma_{\text{des}} - j\omega_{\text{des}}$

Poiché:

$$\sigma_{des} = -\zeta_{des}\omega_{n,des}, \quad \omega_{des} = \omega_{n,des}\sqrt{1-\zeta_{des}^2}$$

$$\omega_{n,des} = 45, \zeta_{des} = 0.2$$

Si ha:

$$\sigma_{des} = -9$$
, $\omega_{des} = 44.09$
 $\lambda_{K,1,des} = -9 + j44.09$, $\lambda_{K,2,des} = -9 - j44.09$

© 2007 Politecnico di Torino

Dati gli autovalori desiderati:

$$\lambda_{K,1,des} = -9 + j44.09, \lambda_{K,2,des} = -9 - j44.09$$

il corrispondente polinomio caratteristico desiderato è quindi:

$$p_{K,des}(\lambda) = (\lambda - \lambda_{K,1,des})(\lambda - \lambda_{K,2,des}) =$$

$$= (\lambda - (-9 + j44.09))(\lambda - (-9 - j44.09)) =$$

$$= \lambda^2 + 18\lambda + 2025$$

57

Poiché n = 2, la matrice dei guadagni Kè della forma:

$$K = [k_1 \quad k_2]$$

si ha

$$A - BK = \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ -9 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ -9k_1 & -9k_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 900 + 9k_1 & 9k_2 \end{bmatrix}$$

$$A - BK = \begin{bmatrix} 0 & 1 \\ 900 + 9k_1 & 9k_2 \end{bmatrix}$$

- Notiamo che la matrice A BK è in forma compagna inferiore
- Si può quindi determinare direttamente il polinomio caratteristico $p_{A-BK}(\lambda)$ in base ai coefficienti dell'ultima riga:

$$p_{A-BK}(\lambda) = \lambda^2 - 9k_2\lambda - 900 - 9k_1$$

59

Affinché i polinomi:

$$p_{K,des}(\lambda) = \lambda^2 + 18\lambda + 2025$$

e

$$p_{A-BK}(\lambda) = \lambda^2 - 9k_2\lambda - 900 - 9k_1$$

abbiano le stesse radici, per il principio di identità dei polinomi deve risultare:

$$\begin{cases} -9k_2 = 18 \\ -900 - 9k_1 = 2025 \end{cases} \Rightarrow \begin{cases} k_1 = -325 \\ k_2 = -2 \end{cases}$$

$$\Rightarrow K = \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} -325 & -2 \end{bmatrix}$$

Applicando la condizione per la regolazione di sistemi LTI TC

$$\alpha = \left[-(C - DK)(A - BK)^{-1}B + D \right]^{-1}$$

con i dati

$$A = \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ -9 \end{bmatrix}, C = \begin{bmatrix} 600 & 0 \end{bmatrix}, D = 0, K = \begin{bmatrix} -325 & -2 \end{bmatrix}$$

si ottiene:

$$\alpha = -\left[\begin{bmatrix} 600 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2025 & -18 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ -9 \end{bmatrix}\right]^{-1} = -0.375$$

- ➤ Per determinare gli elementi della matrice *L* occorre procedere come segue:
 - ullet Dato l'insieme degli autovalori da assegnare allo stimatore $\{\lambda_{L,1,des}, \dots \lambda_{L,n,des}\}$, si calcola il polinomio caratteristico desiderato $p_{L,des}(\lambda)$
 - Si calcola, in funzione degli elementi incogniti di L, il polinomio caratteristico della matrice A LC: $p_{A-LC}(\lambda)$
 - Si determinano gli elementi incogniti di L applicando il principio di identità dei polinomi:

$$p_{A-LC}(\lambda) = p_{L,des}(\lambda)$$

Gli autovalori desiderati da assegnare sono:

$$\lambda_{L,1,des} = \lambda_{L,2,des} = -100$$

Il corrispondente polinomio caratteristico desiderato è quindi:

$$p_{L,des}(\lambda) = (\lambda - \lambda_{L,1,des})(\lambda - \lambda_{L,2,des}) =
 = (\lambda - (-100))^2 =
 = \lambda^2 + 200\lambda + 10000$$

63

Poiché n = 2, la matrice dei guadagni L è della forma:

 $\mathcal{L} = \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix}$

si ha

$$A - LC = \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix} - \begin{bmatrix} \ell_1 \\ \ell_2 \end{bmatrix} \begin{bmatrix} 600 & 0 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix} - \begin{bmatrix} 600\ell_1 & 0 \\ 600\ell_2 & 0 \end{bmatrix} = \begin{bmatrix} -600\ell_1 & 1 \\ 900 - 600\ell_2 & 0 \end{bmatrix}$$

$$A - LC = \begin{bmatrix} -600\ell_1 & 1\\ 900 - 600\ell_2 & 0 \end{bmatrix}$$

- Notiamo che la matrice A LC è in forma compagna sinistra
- Si può quindi determinare direttamente il polinomio caratteristico $p_{A-LC}(\lambda)$ in base ai coefficienti della prima colonna:

$$\rho_{A-LC}(\lambda) = \lambda^2 + 600\ell_1\lambda - 900 + 600\ell_2$$

65

Affinché i due polinomi:

$$\rho_{L,des}(\lambda) = \lambda^2 + 200\lambda + 10000$$

$$\rho_{A-LC}(\lambda) = \lambda^2 + 600\ell_1\lambda - 900 + 600\ell_2$$

abbiano le stesse radici, per il principio di identità dei polinomi deve risultare: