

COMPONENTS OF NASA'S DATA ACQUISITION SYSTEM

Fall Internship, 2015

Melanie Schmocker

Overview

- Context
 - NDAS
- NOSS
 - Nodes
 - Form Validation
- NCAL
 - Calibration Report
- Other
- Questions

Overview

- Context
 - NDAS
- NOSS
 - Nodes
 - Form Validation
- NCAL
 - Calibration Report
- Other
- Questions

Stennis Space Center

- Stennis Space Center
 - Test rocket engines

- Stennis Space Center
 - Test rocket engines

- Stennis Space Center
 - Test rocket engines
- NDAS NASA's Data Acquisition System

- Stennis Space Center
 - Test rocket engines
- NDAS NASA's Data Acquisition System which can:
 - Calibrate (NCAL)
 - Record (NLOG)
 - Display (NDIS)
 - Export (NGATE)
 and otherwise process data from tests

Overview

- Context
 - NDAS
- NOSS
 - Nodes
 - Form Validation
- NCAL
 - Calibration Report
- Other
- Questions

NOSS Database

NASA's One-Stop Shop

NOSS Database

NASA's One-Stop Shop

NASA

 Each Node represents a piece of hardware on the test stand

- NASA **
- Each Node represents a piece of hardware on the test stand
 - Sensors
 - Filters
 - Digitizers

- NASA.
- Each Node represents a piece of hardware on the test stand
 - Sensors
 - Filters
 - Digitizers
- Measurements are collections of Nodes

- NASA
- Each Node represents a piece of hardware on the test stand
 - Sensors
 - Filters
 - Digitizers
- Measurements are collections of Nodes
 - Represent Nodes that are physically connected

- NASA
- Each Node represents a piece of hardware on the test stand
 - Sensors
 - Filters
 - Digitizers
- Measurements are collections of Nodes
 - Represent Nodes that are physically connected
 - Enable intuitive interpretation of data

• How to handle new types of hardware?

- How to handle new types of hardware?
- Typical database method

- How to handle new types of hardware?
- Typical database method
 - Redesign database

- How to handle new types of hardware?
- Typical database method
 - Redesign database
- NOSS method

- How to handle new types of hardware?
- Typical database method
 - Redesign database
- NOSS method
 - Nodes stored as XML in database

- How to handle new types of hardware?
- Typical database method
 - Redesign database
- NOSS method
 - Nodes stored as XML in database
 - Dynamically creates pages to create/update

- How to handle new types of hardware?
- Typical database method
 - Redesign database
- NOSS method
 - Nodes stored as XML in database
 - Dynamically creates pages to create/update
 - All XML are text, so no redesign necessary

- How to handle new types of hardware?
- Typical database method
 - Redesign database
- NOSS method
 - Nodes stored as XML in database
 - Dynamically creates pages to create/update
 - All XML are text, so no redesign necessary
 - All Nodes stored in same table

- How to handle new types of hardware?
- Typical database method
 - Redesign database
- NOSS method
 - Nodes stored as XML in database
 - Dynamically creates pages to create/update
 - All XML are text, so no redesign necessary
 - All Nodes stored in same table

XSD format

XSD formatXML Schema Definition

XSD formatXML Schema Definition

```
NIRDTableMapping xml 🖾 🔚 Generic_Transducer.xsd 🗵
   <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" attributeFormDefault</p>
     "unqualified" elementFormDefault="qualified">
       <xs:element name="GENERIC TRANSDUCER" type="GenericTransducerType"/>
       <xs:complexType name="IOType">
         <xs:sequence>
           <xs:element type="xs:string" name="OUTPUT" maxOccurs="1" minOccurs="1</pre>
         </xs:sequence>
       </xs:complexType>
       <xs:complexType name="CoefficientType">
         <xs:sequence>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A0"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A1"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A2"/>
           -<xs:element type="xs:float" name="ACTUAL COEFFICIENT A3"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A4"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A5"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A6"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A7"/>
       </xs:sequence>
       </xs:complexType>
       <xs:complexType name="TransducerTypes">
           <xs:element type="xs:string" name="TRANSDUCER TYPE"/>
           <xs:element type="xs:float" name="RTP"/>
           <xs:element type="xs:float" name="RTD MC T1"/>
           <xs:element type="xs:float" name="RTD MC T2"/>
```

- XSD format
 - Before me: minimal validations

```
NIRDTableMapping xml 🖾 🔚 Generic_Transducer.xsd 🚨
    -<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" attributeFormDefault</pre>
     "unqualified" elementFormDefault="qualified">
       <xs:element name="GENERIC TRANSDUCER" type="GenericTransducerType"/>
       <xs:complexType name="IOType">
           <xs:element type="xs:string" name="OUTPUT" maxOccurs="1" minOccurs="1</pre>
       <xs:complexType name="CoefficientType">
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A0"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A1"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A2"/>
           -<xs:element type="xs:float" name="ACTUAL COEFFICIENT A3"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A4"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A5"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A6"/>
           <xs:element type="xs:float" name="ACTUAL COEFFICIENT A7"/>
       <xs:complexType name="TransducerTypes">
           <xs:element type="xs:string" name="TRANSDUCER TYPE"/>
           <xs:element type="xs:float" name="RTP"/>
           <xs:element type="xs:float" name="RTD MC T1"/>
           <xs:element type="xs:float" name="RTD MC T2"/>
```

</xs:sequence> </xs:complexType>

<xs:sequence>

</xs:sequence> </xs:complexType>

- XSD format
 - Before me: minimal validations
 - My tasks
 - Update XPath references

<xs:sequence>

</xs:sequence> </xs:complexType>

<xs:sequence>

</xs:sequence> </xs:complexType>

<xs:element type="xs:string" name="TRANSDUCER TYPE"/>

<xs:element type="xs:float" name="RTP"/>

<xs:element type="xs:float" name="RTD MC T1"/> <xs:element type="xs:float" name="RTD MC T2"/>

- XSD format
 - Before me: minimal validation done
 - My tasks
 - Update XPath references
 - Enforce all XSD
 validations in browser
 form


```
demonstration.xsd 🔀
      .<xs:complexType name="BaseDemoType";</pre>
           <xs:element name="NUMBERS" type="numberType"/>
           <xs:element name="STRINGS" type="stringType"/>
           <xs:element name="OTHERS" type="otherType"/>
         </xs:sequence>
       </xs:complexType>
       <xs:complexType name="numberType">
         <xs:sequence>
           <xs:element name="INCLUSIVE BOUNDARIES 0 TO 100">
              <xs:simpleType>
                <xs:restriction base="xs:integer">
                 <xs:minInclusive value="0"/>
                 <xs:maxInclusive value="100"/>
               </xs:restriction>
             </xs:simpleType>
           </xs:element>
           <xs:element name="EXCLUSIVE BOUNDARIES 0 TO 100">
              <xs:simpleType>
                <xs:restriction base="xs:float">
                 <<xs:minExclusive value="0"/>
               ···<xs:maxExclusive ·value="100"/>
```

- XSD format
 - Restrictions

Extensions

```
Type">
```

```
demonstration.xsd
      <xs:complexType name="BaseDemoType";</pre>
         <xs:sequence>
           <xs:element name="NUMBERS" type="numberType"/>
           <xs:element name="STRINGS" type="stringType"/>
           -<xs:element name="OTHERS" type="otherType"/>
      </xs:sequence>
       </xs:complexType>
      <xs:complexType name="numberType">
         <xs:sequence>
           <xs:element name="INCLUSIVE BOUNDARIES 0 TO 100">
          <xs:simpleType>
              <xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>
           <xs:maxInclusive value="100"/>
          </xs:restriction>
          </xs:simpleType>
           </xs:element>
           <xs:element name="EXCLUSIVE BOUNDARIES 0 TO 100">
             <xs:simpleType>
               <xs:restriction base="xs:float">
              <xs:minExclusive value="0"/>
           <xs:maxExclusive value="100"/>
```

demonstration xsd

<xs:sequence>

</xs:sequence> </xs:complexType>

<xs:sequence>

<xs:simpleType>

</xs:restriction> </xs:simpleType> </xs:element>

<xs:simpleType>

<xs:restriction base="xs:float"> <xs:minExclusive value="0"/> <xs:maxExclusive value="100"/>

- XSD format
 - Restrictions
 - Limit values stored
 - Extensions

```
<xs:complexType name="BaseDemoType";</pre>
    <xs:element name="NUMBERS" type="numberType"/>
    <xs:element name="STRINGS" type="stringType"/>
    <xs:element name="OTHERS" type="otherType"/>
<xs:complexType name="numberType">
    <xs:element name="INCLUSIVE BOUNDARIES 0 TO 100">
        <xs:restriction base="xs:integer">
    <xs:minInclusive value="0"/>
       <xs:maxInclusive value="100"/>
    <xs:element name="EXCLUSIVE BOUNDARIES 0 TO 100">
```

- XSD format
 - Restrictions
 - Limit values stored
 - Extensions
 - Add attributes to XML

```
Type">
```

```
demonstration xsd
      <xs:complexType name="BaseDemoType":</pre>
           <xs:element name="NUMBERS" type="numberType"/>
           <xs:element name="STRINGS" type="stringType"/>
           <xs:element name="OTHERS" type="otherType"/>
       </xs:sequence>
       </xs:complexType>
       <xs:complexType name="numberType">
         <xs:sequence>
           <xs:element name="INCLUSIVE BOUNDARIES 0 TO 100">
             <xs:simpleType>
               <xs:restriction base="xs:integer">
              <xs:minInclusive value="0"/>
               ···<xs:maxInclusive value="100"/>
           </xs:restriction>
           </xs:simpleType>
           </xs:element>
           <xs:element name="EXCLUSIVE BOUNDARIES 0 TO 100">
             <xs:simpleType>
               <xs:restriction base="xs:float">
                · · <xs:minExclusive · value="0"/>
              </xs:maxExclusive value="100"/>
```

demonstration xsd

</xs:sequence> </xs:complexType>

<xs:sequence>

<xs:simpleType>

</xs:simpleType> </xs:element>

<xs:simpleType>

</xs:restriction>

<xs:minExclusive value="0"/> ···<xs:maxExclusive value="100"/>

- XSD format
 - Restrictions
 - Limit values stored
 - Extensions
 - Add attributes to XML
- Validations

```
.<xs:complexType name="BaseDemoType";</pre>
    <xs:element name="NUMBERS" type="numberType"/>
    <xs:element name="STRINGS" type="stringType"/>
    <xs:element name="OTHERS" type="otherType"/>
<xs:complexType name="numberType">
    <xs:element name="INCLUSIVE BOUNDARIES 0 TO 100">
        <xs:restriction base="xs:integer">
        · · · <xs:minInclusive ·value="0"/>
        ···<xs:maxInclusive value="100"/>
    <xs:element name="EXCLUSIVE BOUNDARIES 0 TO 100">
        <xs:restriction base="xs:float">
```

Validations

No input

REGEX_PATTERN

Invalid input

REGEX_PATTERN

wrong input

REGEX_PATTERN is invalid. It should match the regex /^\s*([a-zA-Z]+\s*)+[0-9]+\s*\$/

Valid input

REGEX_PATTERN

good input 1

Validations

No input

F	EGEX_PATTERN						

Invalid input

REGEX_PATTERN

wrong input

Value should be words followed by a number

Valid input

REGEX_PATTERN

good input 1

Overview

- Context
 - NDAS
- NOSS
 - Nodes
 - Form Validation
- NCAL
 - Calibration Report
- Other
- Questions

- Calibrates Measurements
 - May also compare against a trusted prior calibration

- Calibrates Measurements
 - May also compare against a trusted prior calibration
- Produces a Calibration Report

- Calibrates Measurements
 - May also compare against a trusted prior calibration
- Produces a Calibration Report
 - Sensors calibrated at different points throughout the range of expected values

- Calibrates Measurements
 - May also compare against a trusted prior calibration
- Produces a Calibration Report
 - Sensors calibrated at different points throughout the range of expected values
 - Report is HTML but must also be printable

Calibration Report Updates

Prior format

NDAS Daily Cal Report

TEST STAND	
OPERATOR	
CAL DATE	
DATA BASE MDID	
REF CAL DATE	
TEST NUMBER	

CAL FILE	АМР	MEASUREMENT ID	PASS	PREAMB COUNTS	0 CAL	80 CAL	POSTAMB COUNTS	NCAL CO	NCAL C1	Description
CURRENT		CUI-000	0	15 ^{PRE}	<u>17</u> °	23437 ¹⁰	20°sт	-0.060581°°	11.262992°1	Test Channel 0
ANCILLARY	1 ^{E0}	PSIG ^{uT}	0 ^{G1}	5N_PRE	<u>4</u> ^{N_0}	<u>5</u> n_so	4 ^{N_PST}	23420 ^{spc}	O ^{spa}]
CURRENT	1	CUI-001	0	32767°RE	32767°	<u>32767</u> ∞	32767 ^{pst}	0.00000000	1.000000°	Test Channel 1
ANCILLARY	2 ^{co}	DegRut	0 ^{G1}	O ^{N_PRE}	<u>0</u> ∾_°	<u>O</u> N_60	O ^{N_PST}	O ^{spc}	O ^{spa}	
CURRENT	2	CUI-002	0	8319°RE	8404°	8392 ^{so}	8321 ^{pat}	886.795410°°	-344.591949°1	Test Channel 2
ANCILLARY	A ^{EO}		O ^{G1}	195 ^{N_PRE}	<u>187</u> ∿.º			-11 ^{spc}	Ospa	
CURRENT	3	CUI-003	0	2070 ^{PRE}	2037°	1989∞	2085 ^{pat}	55.478905°°	-84.392159°1	Test Channel 3
ANCILLARY		PSIG ^{□T}	O ^{G-1}	129 ^{N_PRE}	61 ^{N_0}	117 ^{N_60}	75 ^{N_PST}	-47 ^{spc}	O ^{spa}	
CURRENT	4	CUI-004	0	18783°RE	18855°	18801 ^{ss}	18988° sT	426.630859 ^{co}	-73.618820°1	Test Channel 4
ANCILLARY			O ^{G1}	176 ^{N_PRE}	198 ^{N_0}		279 ^{N_PST}	-54 ^{spc}	O ^{apa}	Tool Ondinior 1
CURRENT	5	CUI-005	0	11504°RE	11554°	11517 ^{so}	11548° ^s T	393.379669 ^{co}	-110.711685°1	Test Channel 5
ANCILLARY	_		O ^{G1}	137 ^{N_PRE}	102 ^{N_0}	104 ^{N_60}	120 ^{N_PST}	-36 ^{spc}	O ^{apa}	rest Chamiler 5
	=	CUI-006	0	22042°RE	21889°		21919°sT	-234.164505°°	35.502769°1	Test Channel 6
ANCILLARY	_		0 ^{G1}	158 ^{N_PRE}	228 ^{N_0}	177 ^{N_SO}		113 ^{spc}	Ospa	rest Channel 6
CURRENT										
ANCILLARY		CUI-007 DegR ^{ut}	0 ^{G1}	10383 ^{PRE} 98N_PRE	4 ^{N_0}	<u>-64</u> ∞ 5×.∞	10295 ^{PST}	-332.067383 ^{co}	-16958.101562°1	Test Channel 7
						<u> </u>				
CURRENT ANCILLARY	8 AEG	CUI-008 DegRut	0 ^{G1}	-32768 ^{PRE}	59°	<u>4</u> N_00	-32768°ST 0%.PST	-82.248108°° 0spc	4518.101074°1 0spa	Test Channel 8
			=]
	_	CUI-009	0 0 ^{a1}	602 ^{pre} 91 ^{N_pre}	640°	<u>-1434</u> [∞]	645 ^{pat} 103 ^{N_Pat}	3.381169 ^{co}	-1.948625°1	Test Channel 9
ANCILLARY			041		120 ^{N_0}	142 ^{N_60}				
	10	CUI-010	1	-8442 ^{PRE}	<u>0</u> °	<u>O</u> ^{co}	-8436° ^{s†}	-1.160327 ^{co}	15439.156250°1	Test Channel 10
ANCILLARY	AFO	DegR ^{□↑}	O ^{G1}	309 ^{N_PRE}	<u>5</u> n_o	4 ^{N_50}	195 ^{N_PST}	O ^{GPC}	O ^{4PB}	
	11	CUI-011	1	9369 ^{PRE}	<u>-1</u> °	<u>-2</u> ^{co}	9344 ^{pat}	-7.753644°°	-12366.498047°	Test Channel 11
ANCILLARY	Beo	DegR ^{u™}	O ^{G1}	67 ^{N_PRE}	<u>5</u> ^{N_0}	<u>5</u> N_60	86 ^{N_PST}	O ^{4PC}	O ^{spa}	<u> </u>
CURRENT	_	CUI-012	1	-5154 ^{PRE}	<u>1</u> °	<u>1</u> [∞]	-5049 ^{pst}	-42.772984 ^{co}	96401.343750°1	Test Channel 12
ANCILLARY	A ^{E0}	DegR ^{⊔⊺}	O ^{G1}	240 ^{N_PRE}	<u>4</u> N_0	4 ^{N_60}	199 ^{N_PST}	O ^{spo}	O ^{4P8}]

Calibration Report Updates

Prior format

Refactor HTML

NDAS Daily Cal Report

TEST STAND	
OPERATOR	
CAL DATE	
DATA BASE MDID	
REF CAL DATE	
TEST NUMBER	·

This page was created on Thu Nov 12 2015 at 16:10:59

CAL FILE	AMP	MEASUREMENT ID	PASS	PREAMB COUNTS	0 CAL	80 CAL	POSTAMB COUNTS	NCAL CO	NCAL C1	Description
CURRENT	0	CUI-000	0	15 ^{PRE}	<u>17</u> °	23437 ¹⁰	20°sT	-0.060581°°	11.262992 ^{c1}	Test Channel 0
ANCILLARY	1 ^{EQ}	PSIG ^{uT}	O ^{G1}	5N_PRE	4 ^{N_0}	<u>5</u> n_so	4 ^{N_PST}	23420 ^{spc}	O ^{4P8}	
CURRENT	1	CUI-001	0	32767PRE	32767°	<u>32767</u> ∞	32767 ^{PST}	0.00000000	1.000000°	Test Channel 1
ANCILLARY	2 ^{EQ}	DegRut	O ^{G1}	O ^{N_PRE}	<u>0</u> n_0	<u>O</u> N_50	O ^{N_PST}	O ^{apc}	O ^{spa}	
CURRENT	2	CUI-002	0	8319 ^{PRE}	8404°	8392 ⁶⁰	8321 ^{PST}	886.795410°°	-344.591949°1	Test Channel 2
ANCILLARY	A ^{EO}	DegR ^{□™}	0 ^{G1}	195 ^{N_PRE}	<u>187</u> ∾_∘	154 ^{N_60}	159 ^{N,PST}	-11 ^{spc}	O _{spa}	
CURRENT	3	CUI-003	0	2070°RE	2037°	1989 ^{so}	2085 ^{pst}	55.478905°°	-84.392159 ^{ct}	Test Channel 3
ANCILLARY	B∈o	PSIG ^{uT}	0 ^{G1}	129 ^{N_PRE}	61 ^{N_0}	117 ^{N_00}	75 ^{N_PST}	-47 ^{spc}	O ^{spa}	
CURRENT	4	CUI-004	0	18783°RE	18855°	18801∞	18988 ^{pat}	426.630859°°	-73.618820°1	Test Channel 4
ANCILLARY	A ^{EO}	PSIA ^{uT}	O ^{G1}	176 ^{N_PRE}	<u>198</u> °_°	290 ^{N_60}	279 ^{N_PST}	-54 ^{apc}	O ^{spa}	
CURRENT	5	CUI-005	0	11504PRE	11554°	11517™	11548 ^{pat}	393.379669°°	-110.711685°1	Test Channel 5
ANCILLARY		TEST™	O ^{G-1}	137 ^{N_PRE}	102 ^{N_0}	104 ^{N_00}	120 ^{N_PST}	-36 ^{spc}	Ospa	
CURRENT	6	CUI-006	0	22042°RE	21889°	22003 ^{so}	21919°sT	-234.164505°°	35.502769 ^{c1}	Test Channel 6
ANCILLARY	$\overline{}$	DegRut	O ⁶¹	158 ^{N_PRE}	228 ^{N_0}	177 ^{N_80}	170 ^{N_PST}	113 ^{spc}	O ^{spa}	
CURRENT	7	CUI-007	1	10383 ^{pRE}	.8.4°	-64 ^{co}	10295 ^{pat}	-332.067383°°	-16958.101562°	Test Channel 7
ANCILLARY	B ^{EQ}	DegR ^{u⊤}	O ^{G1}	98 ^{N_PRE}	4 ^{N_0}	5 ^{N_00}	118 ^{N_PST}	Oabc	O ^{apa}	Tool Gildinion
CURRENT	8	CUI-008	1	-32768°RE	500	800	-32768° st	-82.248108°°	4518.101074°1	Test Channel 8
ANCILLARY	A ^{EQ}	DegR ^{uT}	O ^{G1}	ON_PRE	5 ^{N_0}	4 ^{N_50}	ON_PST	O ^{GPC}	O ⁴⁹⁸	Tost Onamici o
CURRENT	9	CUI-009	0	602°RE	640°	-1434∞	645°°T	3.381169°°	-1.948625°	Test Channel 9
ANCILLARY	_	DegR ^{uT}		91 ^{N_PRE}	120 ^{N_0}	142 ^{N_50}	103 ^{N_PST}		Ospa	rest Chamilers
CURRENT		CUI-010	4	-8442 ^{pre}	00	000	-8436° st	-1.160327°°	15439.156250°1	Test Channel 10
ANCILLARY		DegR ^u T	O ^{G1}		<u>u</u> 5 ^{N_0}	4 ^{N_60}	195 ^{N_PST}	0spc	0498	rest Channel It
	11	CUI-011	4	9369°RE		-200	9344 ^{pat}	-7.753644°°	-12366.498047 ^{c1}	Test Channel 1
ANCILLARY		DegR ^u T	O ^{G1}	67 ^{N_PRE}	<u>-1</u> °	5 ^{N_60}	86N_PST	0sec	0 ⁴⁹⁸	rest Channel T
					40	400				T
CURRENT ANCILLARY	=	CUI-012 DegR ^u T	0 ^{G1}	-5154 ^{PRE}	1° 4 ^{N_0}	4 ^{N_80}	-5049 ^{pat}	-42.772984°°	96401.343750°1 0spa	Test Channel 12
ANOILLANT	^	Dogit	v	240	<u></u>	<u>=</u>	100	U	U .	

Calibration Report Updates

NASA

- Prior format
- Refactor HTML
- Add interactive data

Overview

- Context
 - NDAS
- NOSS
 - Nodes
 - Form Validation
- NCAL
 - Calibration Report
- Other
- Questions

Overview

- Context
 - NDAS
- NOSS
 - Nodes
 - Form Validation
- NCAL
 - Calibration Report
- Other
- Questions

Thank You

