Un système tridiagonal symétrique

Pour tout $n \ge 1$, on note A_n la matrice carrée d'ordre n de terme général $a_{ij} = \begin{cases} 1 & \text{si } |j-i| = 1 \\ 0 & \text{sinon} \end{cases}$.

Ainsi
$$A_1=(0),\ A_2=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},\ A_3=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Pour tout x de \mathbb{R} , $P_n(x) = \det(A_n + xI_n)$ pour $n \ge 1$. Par convention, on pose $P_0(x) = 1$. Ainsi $P_1(x) = |x| = 1$

$$x, P_2(x) = \begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix}, P_3(x) = \begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{vmatrix}, P_4(x) = \begin{vmatrix} x & 1 & 0 & 0 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & 1 & x \end{vmatrix}$$

- 1. Montrer que pour tout x de \mathbb{R} , et tout $n \ge 2$, on a $P_n(x) xP_{n-1}(x) + P_{n-2}(x) = 0$.
- 2. Montrer que pour tout n de \mathbb{N} , l'application P_n est une fonction polynomiale unitaire de degré n, et qu'elle a la même parité que n.
- 3. On fixe dans \mathbb{R} la valeur de x, et on pose $u_n = P_n(x)$ pour tout n de \mathbb{N} .
 - (a) Montrer que si $x=2\varepsilon$ (où $\varepsilon=\pm 1)$ $u_n=(n+1)\varepsilon^n$
 - (b) Montrer que si x n'est pas dans $\{-2,2\}$, alors $u_n = \frac{\alpha^{n+1} \beta^{n+1}}{\alpha \beta}$, en notant α et β les racines distinctes de l'équation $\lambda^2 x\lambda + 1 = 0$
 - (c) On suppose |x|<2. Avec $\theta=\arccos\frac{x}{2}$, montrer que $\forall n\in\mathbb{N}, P_n(x)=\frac{\sin(n+1)\theta}{\sin\theta}$
- 4. Calculer $I_{n,m} = \int_{-2}^{2} \sqrt{4-x^2} P_n(x) P_m(x) dx$, pour tous n, m dans \mathbb{N}
- 5. (a) Montrer que pour tout $n\geqslant 1$, le polynôme P_n possède n zéros distincts, tous réels, et donnés par : $\forall k\in\{1,\cdots,n\},\, a_{n,k}=2\cos\theta_{n,k},\, {\rm avec}\,\,\theta_{n,k}=\frac{k\pi}{n+1}$
 - (b) Montrer alors que $P_{n-1}(a_{n,k}) = (-1)^{k+1}$
- 6. On se donne un réel λ et on considère le système $(S_{n,\lambda})$ défini par

$$\begin{cases} \lambda x_1 + x_2 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \\ \vdots \\ x_{n-2} + \lambda x_{n-1} + x_n = 0 \\ x_{n-1} + \lambda x_n = 0 \end{cases}$$

- (a) Résoudre $(S_{n,\lambda})$ quand $\lambda \notin \{a_{n,1}, \dots, a_{n,n}\}$
- (b) On suppose que $\lambda = a_{n,k} = 2\cos\theta_{n,k}$. Montrer alors que le système est de rang n-1, et que l'ensemble des solutions est la droite engendrée par $v_n = (\sin\theta_k, -\sin 2\theta_k, \cdots, (-1)^{n-1}\sin n\theta_k)$.

Un système tridiagonal symétrique

1. Pour $n \ge 3$, on développe le déterminant égal à $P_n(x)$ par rapport à sa première ligne.

$$P_{n}(x) = \begin{vmatrix} x & 1 & 0 & \cdots & \cdots & 0 \\ 1 & x & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & x & 1 \\ 0 & \cdots & \cdots & 0 & 1 & x \end{vmatrix} = x \begin{vmatrix} x & 1 & 0 & \cdots & 0 \\ 1 & x & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & x & 1 \\ 0 & \cdots & 0 & 1 & x \end{vmatrix} - \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & x & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & x & 1 \\ 0 & \cdots & 0 & 1 & x \end{vmatrix}$$

On constate (après développement par rapport à la première colonne) que ce dernier déterminant, d'ordre n-1, est en fait égal à $P_{n-2}(x)$. Pour tout $n \ge 3$ et tout x de \mathbb{R} , on a ainsi obtenu : $P_n(x) = xP_{n-1}(x) - P_{n-2}(x)$. On voit que cette relation est encore vraie si n = 2, par définition de P_0, P_1, P_2

2. P_0 et P_1 sont polynomiales unitaires, avec $\deg P_0 = 0$ et $\deg P_1 = 1$. S'il en est ainsi $\deg P_{n-2}$ et P_{n-1} , avec $n \ge 2$, alors $P_n : x \mapsto x P_{n-1}(x) - P_{n-2}(x)$ est encore une application polynomiale unitaire, et elle est de degré n. La fonction P_0 est paire, et la fonction P_1 est impaire. On se donne un entier $n \ge 2$ et on suppose que P_{n-1} a la parité de n-1 et que P_{n-2} a celle de n-2 (donc celle de n.) L'application $x \mapsto x P_{n-1}$ a la parité contraire de celle de P_{n-1} donc a la parité de n.

Ainsi $P_n: x \mapsto x P_{n-1}(x) - P_{n-2}(x)$ a la parité de n, ce qui achève la récurrence

3. (a) La suite $(u_n)_{n\geqslant 0}$ vérifie $u_n - .2\varepsilon u_{n-1} + u_{n-2} = 0$ pour tout $n\geqslant 2$, et $\begin{cases} u_0 = 1 \\ u_1 = 2\varepsilon \end{cases}$

L'équation caractéristique est $t^2 - 2\varepsilon t + 1 = 0$ donc $(t - \varepsilon)^2 = 0$. ε étant racine double, il existe λ, μ dans \mathbb{R} tels que; $\forall n \in \mathbb{N}, \ u_n = (\lambda n + \mu)\varepsilon^n$. Les valeurs initiales $u_0 = 1$ et $u_1 = 2\varepsilon$ donne : $\forall n \in \mathbb{N}, \ u_n = (n+1)\varepsilon^n$

(b) La suite $(u_n)_{n\geqslant 0}$ vérifie $u_n-xu_{n-1}+u_{n-2}=0$ pour tout $n\geqslant 2$. L'équation caractéristique est $t^2-xt+1=0$. Le discriminant $\Delta=x^2-4$ est non nul puisque $x\not\in\{-2,2\}$. Notons alors α,β les racines (réelles ou complexes) distinctes de cette équation. On sait qu'il existe λ,μ (dans \mathbb{R} ou \mathbb{C}) tels que : $\forall n\in\mathbb{N},\ u_n=0$

complexes) distinctes de cette équation. On sait qu'il existe
$$\lambda, \mu$$
 (dans \mathbb{R} ou \mathbb{C}) tels que : $\forall n \in \mathbb{N}, u_n = \lambda \alpha^n + \mu \beta^n$. Les conditions initiales
$$\begin{cases} u_0 = 1 \\ u_1 = x \end{cases} \quad \text{donne} \begin{cases} \lambda + \mu = 1 \\ \lambda \alpha + \mu \beta = x = \alpha + \beta \end{cases} \quad \text{On en déduit } \lambda = \frac{\alpha}{\alpha - \beta}$$
 et $\mu = \frac{\beta}{\beta - \alpha}$ donc $u_n = \frac{\alpha^{n+1} - \beta^{n-1}}{\alpha - \beta}$ pour tout $n \geqslant 0$

(c) Si |x| < 2, alors on peut poser $\theta = \arccos \frac{x}{2}$ et on a $0 < \theta < \pi$ et $x = 2\cos \theta$.

Avec les notations précédentes, on a $\Delta=-4\sin^2\theta$ donc $\begin{cases} \alpha=e^{i\theta}\\ \beta=e^{-i\theta} \end{cases}$. Dans ces conditions, pour tout $n\geqslant 0$:

$$u_n = \frac{e^{i(n+1)\theta} - e^{-i(n+1)\theta}}{e^{i\theta} - e^{-i\theta}} = \frac{\sin(n+1)\theta}{\sin\theta}$$

4. Sur le segment]-2,2[, on peut poser $x=2\cos\theta$, avec $0<\theta<\pi$. On obtient :

$$I_{n,m} = \int_0^{\pi} (4\sin^2\theta) \frac{\sin(n+1)\theta}{\sin\theta} \frac{\sin(m+1)\theta}{\sin\theta} d\theta = \int_0^{\pi} \sin(n+1)\theta \cdot \sin(m+1)\theta d\theta$$

Ainsi

$$I_{n,m} = 2 \int_0^{\pi} (\cos(m-n)\theta + \cos(m+n+2)\theta) d\theta = 2 \int_0^{\pi} \cos(m-n)\theta d\theta$$

Si $m \neq n$, on trouve $I_{m,n} = 0$. Si m = n, $I_{n,n} = 2 \int_0^{\pi} d\theta = 2\pi$

5. (a) Sur] -2,2[on pose $x=2\cos\theta,$ avec $0<\theta<\pi.$ On a alors $\mathbb{P}_n(x)=\frac{\sin(n+1)\theta}{\sin\theta}.$ Dans ces conditions :

$$P_n(x) = 0 \iff \sin(n+1)\theta = 0 \iff \exists k \in \{1, \dots, n\}, \ \theta = \frac{k\pi}{n+1}$$

Ainsi les $x_{n,k} = \cos \theta_{n,k}$, avec $1 \le k \le n$, sont des racines (distinctes deux à deux) de P_n . On a donc obtenu n racines de P_n , toutes réelles, distinctes, et éléments de]-2,2[. Comme ce polynôme est de degré n, on a obtenu toutes les racines de P_n

Un système tridiagonal symétrique

(b) On a
$$P_{n-1}(a_{n,k}) = P_{n-1}(2\cos\theta_{n,k}) = \frac{\sin n\theta_{n,k}}{\sin\theta_{n,k}} = \frac{\sin(k\pi - \theta_{n,k})}{\sin\theta_{n,k}} = = (-1)^k + 1$$

- 6. (a) Le déterminant du système, égal à $P_n(\lambda)$, est non nul si $\lambda \notin \{a_{n,1}, \dots, a_{n,n}\}$. Ce système homogène est donc "de Cramer" : sa seule solution est $(0,0,\dots,0)$
 - (b) Avec $\lambda = a_{n,k}$, le système n'est plus de Cramer car le déterminant est nul. On voit que le déterminant extrait des n-1 premières lignes et colonnes est $P_{n-1}(\lambda)$. Ici $P_{n-1}(\lambda) = P_{n-1}(a_{n,k}) = (-1)^{k+1}$ est non nul. La matrice du système est donc de rang n-1 (les lignes L_1, \dots, L_{n-1} sont libres.) Résoudre $(S_{n,\lambda})$, c'est trouver le noyau d'un endomorphisme de \mathbb{R}^n de rang n-1. D'après le théorème de la dimension, les solutions forment une droite vectorielle. Pour conclure, il suffit de vérifier que le vecteur $v_n \neq 0$ est sur cette droite. Notons $v_{n,j} = (-1)^{j-1} \sin(j\theta_{n,k})$, pour $j \in \{1, \dots, n\}$, les composantes de v_n . On pose aussi $v_{n,0} = 0$ et $v_{n,n+1} = (-1)^n \sin((n+1)\theta_{n,k}) = (-1)^n \sin(k\pi) = 0$. Avec cette définition étendue des $v_{n,j}$, vérifier que v_n est solution de $(S_{n,\lambda})$ consiste à établir les n égalités $v_{n,j-1} + \lambda v_{n,j} + v_{n,j+1} = 0$ pour $1 \leq j \leq n$. Effectivement, pour tout indice j de $\{1, \dots, n\}$, on trouve :

$$v_{n,j-1} + v_{n,j+1} = (-1)^{j-1} (\sin(j-1)\theta_{n,k} + \sin(j+1)\theta_{n,k})$$

$$= 2(-1)^{j-1} \sin(j\theta_{n,k}) \cos(2\theta_{n,k})$$

$$= -(-1)^{j} \lambda \sin(j\theta_{n,k}) = -\lambda v_{n,j}$$

Conclusion : l'ensemble des solutions de $(S_{n,\lambda})$ est la droite engendrée par v_n .