

Development of web portal for silk cocoon farming information

presented by; kummara srinivasulu

GITAM DEEMED TO BE UNIVERSITY

CONTENTS

1. Abstract

- 2. Gantt Chart
- 3. Introduction
- 4. Literature Survey
- 5. Problem Statement
- 6. Objectives
- 7. Requirement Analysis
- 8. Identification of tools/technology/algorithms
- 9. Final Design Strategy (project workflow/ system design/ DFD/UML design)
- 10. Implementation details (Packages/Libraries, Classes, Methods and Datasets only)
- 11. Testing
- 12. Results
- 13. Conclusion
- 14. PO's Attainment
- 15. References

Abstract

- Silk cocoon rearing is an essential process in the silk industry, yet many farmers face challenges due to limited access to the information.
- This project aims to develop a user-friendly website designed specifically for silk cocoon rearing farmers, providing them with up-to-date matter and accurate information to improve their farming practices.
- The website will useful for what are the measures to follow in cocoon rearing techniques, pest and disease control, environmental and market insights.
- Additionally, it will feature sections for weather updates, government schemes, and a community forum where farmers can exchange knowledge and solutions.
- The website will helpful for silk farmers in reduce risks, and increase profitability in silk farming.

Gantt Chart

CAPSTONE PROJECT GANTT CHART SAMPLE																
PROJECT TITLE: De																
TIMELINE																
Tasks	PHASE I								PHASE II							
	Aug '24		Sept '24		Oct '24		Nov '24		Dec	24	Jan '25		Feb '25		Mar '25	
Project Selection																
Identification of the Problem																
Requirement Analysis																
Identification of tools/algorithm																
Design Strategy																
Final Design																
Implementation																
Testing																
Documentation																
				1	7	1	7		7						1	
Milestone (In percentage)		100	100	100	100	100		100							50	20

Introduction

Definition:

• Silk farming, also called sericulture, involves the cultivation of silkworms for the production of silk threads, a natural protein fiber used in textiles.

Historical Origins:

- Originated in **ancient China** over 5,000 years ago during the Neolithic Age.
- According to legend, silk was discovered by Empress Xi Ling Shi when a cocoon fell into her tea, unraveling into a long, delicate thread.

Global Spread:

- The art and techniques of sericulture gradually spread to Korea, Japan, India, and eventually Europe via the **Silk Road**.
- Today, silk farming is practiced in over 60 countries, with **India** and **China** being the largest producers.

Economic Importance:

• Contributes significantly to the rural economy, particularly in countries like India, where it is an important source of income for small-scale farmers.

Challenges:

- Sericulture faces challenges such as pest outbreaks, fluctuating market prices, and climate sensitivity.
- Governments and research organizations play a vital role in promoting disease management and weather adaptation strategies.

Literature Survey

Table 1: Literature Survey

S.	Paper	Summary	Techniques/Algo	Research Gap		
No.	Details		rithms Used			
1.	Expansion of	The article describes a project	• HTML(Hyper	• UX UI Design		
	sericulture in	that used geospatial tools and web	Tech Makup	Artificial		
	India using	technology to identify potential	Language	intelligence		
	geospatial	areas for expanding sericulture	• CSS(Cascadin	Machine learning		
	tools and web	(silk production) in India. The	g Style Sheets.	DBMS(Database		
		outcomes included identifying	• JAVASCRIPT	Management		
		additional areas suitable for		System)		
		mulberry cultivation and				
		developing a web portal to				
		provide information on potential				
		areas and sericulture for these				
		districts.				

Literature Survey...contd

Table 2: Literature Survey

S.	Paper Details	Summary	Te	echniques/A	Research Gap		
No			lg	orithms			
•			Us	sed			
2.	A	The survey uses sequencing	•	Sequencin	•	Limited	
	comprehensive	technologies, bioinformatics		g		Integration of	
	view of the web-	tools, and online databases to	•	Data		Databases	
	resources	study silkworms and related		Analysis	•	Real-time Data	
	related to	organisms in sericulture.	•	Machine		Analysis Tools	
	sericulture	Citation analysis evaluates the		learning	•	Data Science	
		impact of these resources on	•	Phylogenet		Tools like Data	
		research. Additionally, a web		ic analysis		Visualization,	
		portal, "SeriPort," was				Data	
		developed to index these				Processing and	
		databases for easier access.				Analysis Tools	

Literature Survey...contd

Table 3: Literature Survey

S.	Paper Details	Summary	Techniques/Alg	Research Gap			
No.			orithms Used				
3.	Mapping of potential areas for sericulture development and information dissemination through silks webportal	Sensing (RS) and GIS to map potential areas for expanding sericulture in India. It assesses land	Information System	 Limited Integration of Databases Lack of Global Accessibility Real-time Data Analysis Tools FAO Limitation Criteria 			
		geoportal					

Problem Statement

- Silk farmers face some challenges to get timely and accurate information about proper silk farming practices. This lack of knowledge can cause inefficiencies, lower production, and reduced income.
- The silk farming industry does not have a single platform where farmers can find all the information they need, such as
 - 1. Cocoon rearing methods,
 - 2. Market prices
 - 3. News updates(Govt schemes, others)
 - 4. Disease prevention tips
 - 5. Weather updates
- This project aims to create a simple website that gives farmers useful resources and real-time updates to improve their productivity and earnings.

Objectives

- To create an online platform that provides essential information on silk farming, designed to the needs of cocoon rearing farmers.
- To empower farmers with knowledge about various aspects of silk farming, including cocoon rearing techniques, disease management, market trends, and government policies.
- To facilitate knowledge sharing and networking among farmers through online forums and communities.

Requirement Analysis

Requirement Analysis:

User Needs: Farmers require up-to-date information on silk farming processes, disease management, and market trends.

System Requirements:

- A web platform that can be accessed via mobile phones.
- Integration with weather and market APIs(manual).
- Multilingual support for different regions.

Identification of tools/technology/algorithms

Frontend development

• HTML, CSS, JavaScript

APIs:

- Weather API.
- Silk market price API (if available) or manual updates

Website details

https://ecofriendlysilkfarmportal.on.drv.tw/www.silkfarm.com/mysilkfarm/main.html

Final Design Strategy

SILK FARMING PORTAL

Image Gallery News & Updates Weather & Season Info Market Prices Discussion Forum

Welcome to the Silk Farming Portal!

Your one-stop solution for all silk farming information and resources. We provide essential tools, insights, and community support to empower silk farmers worldwide.

- · Access detailed guides on silk farming techniques and practices.
- · Stay updated with the latest news and government schemes for silk farmers.
- · Check real-time weather updates and seasonal recommendations.
- · Monitor daily market prices for silk cocoons and raw silk.
- · Engage with a community of fellow farmers in our discussion forum.
- · Get personalized support through our dedicated contact center.

Image Gallery

Silk Farming Guide

Silk Farming Process

Silk farming, also known as sericulture, is the cultivation of silkworms to produce silk. It is an intricate process that requires careful planning, monitoring, and execution.

Introduction to Silk Farming

Learn all the essential steps and insights into silk farming.

1. Mulberry Cultivation

Mulberry leaves are the primary food source for silkworms. Proper cultivation ensures the best yield:

- . Choose fertile, well-drained soil with pH 6.2-6.8.
- · Plant high-yield, disease-resistant varieties
- · Maintain adequate spacing (e.g., 90cm x 90cm) to optimize growth.
- Regular pruning and irrigation are critical for leaf quality.

2. Silkworm Rearing

Rearing silkworms involves several crucial steps:

- · Selection of Disease-Free Layings (DFLs): Always use certified silkworm eggs from trusted sources.
- Incubation: Maintain a temperature of 25-27°C with 70-80% humidity to promote uniform hatching
- · Chawki Rearing: Feed silkworms tender mulberry leaves during the first two instars (early stages).
- · Late-Age Rearing: Transition to mature leaves for the final instars, ensuring a clean environment.
- . Mounting: Provide bamboo trays or mounts for cocoon spinning.

Present Market Prices of Silk

Raw Silk

Current Price: ₹4,200/kg Last Updated: 2024-12-30

Eri Silk

Current Price: ₹1,900/kg Last Updated: 2024-12-28

Mulberry Silk

Current Price: ₹3,800/kg Last Updated: 2024-12-30

Muga Silk

Current Price: ₹7,000/kg Last Updated: 2024-12-30

Tasar Silk

Current Price: ₹2,500/kg Last Updated: 2024-12-29

About the Silk Farming Industry

Silk farming, also known as sericulture, is a highly lucrative industry. The process involves rearing silkworms to produce raw silk. Factors such as quality, production techniques, and global demand influence silk prices.

This webpage provides up-to-date market prices for silk, buying and selling opportunities, and information about the silk industry, including government schemes, disease control, and best practices for rearing silkworms.

← Back

Testing

1. Pr	esen	tation Checks
		Slide titles are clear
		Consistent font and formatting.
		Readable background and text contrast
2. Co	nter	nt Accuracy
		Objectives align with the project goals.
		Requirement analysis and tools are relevant.
		Conclusion summarizes key points.
3. Fo	rma	tting & Visuals
		Clear images, diagrams, and tables.
		No overcrowding of content.
4. Te	chni	cal Testing
		Hyperlinks (if any) work correctly.
		Charts and diagrams are labeled.
		Gantt chart correctly represents timeline.
5. Fir	nal I	Review
1		References checked.

Implementation details verified.

Conclusion connects to objectives.

Result

Conclusion

Creating a website for silk cocoon farmers will help modernize the silk farming industry. This platform will provide farmers with important information like the best ways to raise silkworms, control pests, manage the environment, and understand market trends. By using the website, farmers will be able to produce better yields, reduce risks, and increase profits.

In the long run, this website will help farmers, especially those who have had limited access to information before. It will improve their ability to compete in the industry and ensure that silk farming remains successful and sustainable in the future.

Program Outcomes (POs)

- Better Knowledge Farmers access key silk farming insights.
- **Higher Productivity** Improved techniques boost yield.
- **Real-time Updates** Market & weather info aids decisions.
- Farmer Networking Knowledge sharing through forums.
- **Tech Adoption** Promotes digital tools in farming.
- Increased Profitability Reduces risks, boosts income.

PO's Attainment:

Title of the Project: Development of web portal for silk cocoon farming information													
	Program Outcomes Program Specific Outcomes												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	PSO1	PSO2	PSO3

Note: Guide need to tick ($\sqrt{}$) corresponding PO's and PSO's with respect to the project.

References

Journals

1... NRSC, Manual-National Land Use Land Cover Mapping using Multi-temporal Satellite Data, Land Use Division, National Remote Sensing Agency, Hyderabad, 2006.

NRSC, Wasteland Atlas of India, National Remote Sensing Agen cy, Hyderabad, 2011, pp. 4-14

2. . Xu,H. and O'brochta,D.A. (2015) Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc. R. Soc. B, 282, 20150487.

Putri,S.P., Yamamoto,S., Tsugawa,H. et al. (2013) Current metabolomics: technological advances. J. Biosci. Bioeng., 116, 9–16

. Knief, C. (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front. Plant Sci., 5, 216

References

- 3..CSB (1994), Manual of satellite remote sensing applications for sericulture development, Central Silk Board, Bangalore. FAO (1976). A Framework for Land Evaluation. Soil Bulletin, 32. Food and Agriculture Organization. United Nations. Rome, Italy.
- NRSC (2006), Manual- National Land Use Land Cover mapping using multitemporal satellite data, Land Use Division, National Remote Sensing Agency, Hyderabad.
- NRSC (2011), Wasteland Atlas of India, National Remote Sensing Agency, Hyderabad.
- Patel, N.R., Mandal, U.K. and Pande, L.M. (2000), Agro-ecological Zoning system. A Remote Sensing and GIS Perspective. Journal of Agrometeorology, 2(1), 1-13