Notes

November 26, 2014

section 6.2.4

let $f:[a,b]\to\mathbb{R}$ be differentiable, then

- 1. if f' is (strictly) positive, f is (strictly) increasing
- 2. same for negative
- 3. if f'(x) = 0 then $\forall x \in [a, b], f$ is constant

proof

suppose f' is strictly positive, let $x,y \in [a,b]$ such that x < y. then by mean value theorem $\exists c \in (x,y)$ such that $f'(c) = \frac{f(y) - f(x)}{y - x}$ and so (y - x)f'(c) = f(y) - f(x) and so y - x > 0 and $f'(c) \ge 0 > 0$ so $f(y) - f(x) \ge 0$ and $f(y) \ge f(x)$

exercise 6.2.L

a function is convex (lies below that line segment (x,f(x) to (y,f(y))) if $f(tx+(1-t)y) \leq tf(x)+(1-t)f(y)$ for all x,y in [a,b] and all $t \in [0,1]$

a)

if f is differentiable and f' is increasing then f is convex. define z = tx + (1 - t)y

note that $x \leq z \leq y$. and there exists $c_1 \in (x,z), c_2 \in (z,y)$ and $f'(c_1) = \frac{f(z) - f(x)}{z - x}$ and $f'(c_2) = \frac{f(y) - f(z)}{y - z}$ and $c_1 < c_2$ and so $f'(c_1) \leq f'(c_2)$ and $\frac{f(z) - f(x)}{z - x} \leq \frac{f(y) - f(z)}{y - z}$ and on through until $f(z)(y - z) + f(z)(z - x) \leq f(y)(z - x) + f(x)(y - z)$ and sub t back in for

$$f(z)(y-x) \le f(y)[tx + (1-t)y - x] + f(x)[y - tx - (1-t)y]$$

and algebra to get definition