Пример решения задачи. Булевы функции. Полнота.

Задача. Даны функции f(mаблица 2) и w(mаблица 3).

- а) Вычислить таблицу значений функции f.
- δ) Найти минимальные ДН Φ функций f u w.
- в) Выяснить полноту системы $\{f, w\}$. Если система не полна, дополнить систему функцией g до полной системы.
- ε) Из функциональных элементов, реализующих функции полной системы $\{f,w\}$ или $\{f,w,g\}$, построить функциональные элементы, реализующие базовые функции $(V,\Lambda, -0,1)$.

$$f(x_1, x_2, x_3) = ((x_3 \Rightarrow (x_1 \sim x_2)) \oplus (\overline{x}_3 \Rightarrow \overline{x}_1)) \Rightarrow (\overline{x}_2 \mid \overline{x}_3);$$

$$w = (0, 1, 1, 0, 0, 1, 0, 1).$$

Решение:

а) Таблица значений функции f:

x_1	x_2	x_3	\overline{x}_1	\overline{x}_2	\overline{x}_3	$x_1 \sim x_2$	$x_3 \Longrightarrow (x_1 \sim x_2)$	$\overline{x}_3 \Rightarrow \overline{x}_1$	$((x_3 \Rightarrow (x_1 \sim x_2)) \oplus (\overline{x}_3 \Rightarrow \overline{x}_1)$	$\overline{x}_2 \mid \overline{x}_3$	f
0	0	0	1	1	1	1	1	1	0	0	1
0	0	1	1	1	0	1	1	1	0	1	1
0	1	0	1	0	1	0	1	1	0	1	1
0	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	1	0	1	0	0
1	0	1	0	1	0	0	0	1	1	1	1
1	1	0	0	0	1	1	1	0	1	1	1
1	1	1	0	0	0	1	1	1	0	1	1

б) Карта Карно функции f:

Задача скачана с сайта www.MatBuro.ru

Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm

©МатБюро - Решение задач по математике, экономике, статистике

0 1 1	x_1x_2	00	01	11	10
	0	$\begin{pmatrix} 1 \end{pmatrix}$	1	1	
1 1 1 1	1	1	1/	1	1

Минимальная ДНФ: $f = \overline{x}_1 \lor x_2 \lor x_3$

Карта Карно для функции w

$x_1x_2x_3$	W
000	0
001	1
010	1
011	0
100	0
101	1
110	0
111	1

x_1x_2	00	01	11	10
0		1		
1	1)		1	1

Минимальная ДНФ: $w = x_1 x_3 \vee \overline{x}_2 x_3 \vee \overline{x}_1 x_2 \overline{x}_3$.

в) Проверка на полноту системы $\{f, w\}$.

$x_1 x_2 x_3$	f	W
000	1	0
001	1	1
010	1	1
011	1	0
100	0	0
101	1	1
110	1	0
111	1	1

1. Сохранение 0.

$$f(0,0,0) = 1 \Rightarrow f \notin T_0;$$

$$w\left(0,0,0\right)=0\Rightarrow w\in T_{0}\;.$$

2. Сохранение 1.

$$f(1,1,1) = 1 \Rightarrow f \in T_1;$$

 $w(1,1,1) = 1 \Rightarrow w \in T_1.$

3. Самодвойственность.

$$f(0,0,0) = f(1,1,1) = 1 \Rightarrow f \notin S;$$

 $w(0,1,0) = w(1,0,1) = 1 \Rightarrow w \notin S.$

4. Монотонность.

Т.к.
$$(0,0,0) < (1,0,0)$$
, но $f(0,0,0) > f(1,0,0) \Rightarrow f \notin M$.

Т.к.
$$(0,0,1) < (0,1,1)$$
, но $w(0,0,1) > w(0,1,1) \Rightarrow w \notin M$.

5. Линейность функций.

Общий вид полинома Жегалкина для функции трёх переменных:

$$f(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$$

			1	
x_1	x_2	x_3	$ \begin{cases} f \\ (x_1, x_2, x_3) \end{cases} $	
0	0	0	1	$a_0 = 1$
0	0	1	1	$a_0 + a_3 = 1 \Rightarrow 1 + a_3 = 1 \Rightarrow a_3 = 0$
0	1	0	1	$a_2 + a_0 = 1 \Rightarrow a_2 + 1 = 1 \Rightarrow a_2 = 0$
0	1	1	1	$a_{23}+a_2+a_3+a_0=1 \Rightarrow a_{23}+0+0+1=1 \Rightarrow a_{23}=0$
1	0	0	0	$a_1 + a_0 = 0 \Rightarrow a_1 + 1 = 0 \Rightarrow a_1 = 1$
1	0	1	1	$a_{13}+a_1+a_3+a_0=1 \Rightarrow a_{13}+1+0+1=1 \Rightarrow a_{13}=1$
1	1	0	1	$a_{12}+a_1+a_2+a_0=1 \Rightarrow a_{12}+1+0+1=1 \Rightarrow a_{12}=1$
1	1	1	1	$a_{123} + a_{12} + a_{23} + a_{13} + a_1 + a_2 + a_3 + a_0 = 1 \Rightarrow$ $\Rightarrow a_{123} + 1 + 0 + 1 + 1 + 0 + 0 + 1 = 1 \Rightarrow a_{123} = 1$

Полином Жегалкина функции f:

$$f(x_1, x_2, x_3) = x_1 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_1 + 1.$$

Так как полином функции f содержит конъюнкции, то $f \not\in L$.

$$w(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$$

x_1	x_2	x_3	$w \ (x_1, x_2, x_3)$	
0	0	0	0	$a_0 = 0$
0	0	1	1	$a_0 + a_3 = 1 \Rightarrow 0 + a_3 = 1 \Rightarrow a_3 = 1$
0	1	0	1	$a_2 + a_0 = 1 \Rightarrow a_2 + 0 = 1 \Rightarrow a_2 = 1$
0	1	1	0	$a_{23}+a_2+a_3+a_0=0 \Rightarrow a_{23}+1+1+0=0 \Rightarrow a_{23}=0$
1	0	0	0	$a_1 + a_0 = 0 \Rightarrow a_1 + 0 = 0 \Rightarrow a_1 = 0$
1	0	1	1	$a_{13}+a_1+a_3+a_0=1 \Rightarrow a_{13}+0+1+0=1 \Rightarrow a_{13}=0$
1	1	0	0	$a_{12}+a_1+a_2+a_0=0 \Rightarrow a_{12}+0+1+0=0 \Rightarrow a_{12}=1$
1	1	1	1	$a_{123}+a_{12}+a_{23}+a_{13}+a_1+a_2+a_3+a_0=1 \Rightarrow$ $\Rightarrow a_{123}+1+0+0+0+1+1+0=1 \Rightarrow a_{123}=0$

$$w(x_1, x_2, x_3) = x_1 x_2 + x_2 + x_3$$

Функция w не является линейной, т.е. $w \notin L$.

Критериальная таблица:

	T_0	T_1	S	M	L
f	1	+	1	1	ı
W	+	+	_	_	_

г) Система $\{f,w\}$ не является функционально полным классом, т.к. обе функции сохраняют константу 1. Дополним систему функцией, которая не сохраняет 1, например, функцией $g(x_1,x_2,x_3)=(1,0,0,0,1,1,1,0)$. Функция g не сохраняет 0, не сохраняет 1, является самодвойственной, но не является

монотонной.

$$g(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_{13}x_1 \oplus a_{23}x_2 \oplus a_{33}x_3 \oplus a_{01}x_1 \oplus a_{12}x_1 \oplus a_{13}x_1 \oplus a_{13$$

x_1	x_2	x_3	$g \\ (x_1, x_2, x_3)$	
0	0	0	1	$a_0 = 1$
0	0	1	0	$a_0 + a_3 = 0 \Rightarrow 1 + a_3 = 0 \Rightarrow a_3 = 1$
0	1	0	0	$a_2 + a_0 = 0 \Rightarrow a_2 + 1 = 0 \Rightarrow a_2 = 1$
0	1	1	0	$a_{23}+a_2+a_3+a_0=0 \Rightarrow a_{23}+1+1+1=0 \Rightarrow a_{23}=1$
1	0	0	1	$a_1 + a_0 = 1 \Rightarrow a_1 + 1 = 1 \Rightarrow a_1 = 0$
1	0	1	1	$a_{13} + a_1 + a_3 + a_0 = 1 \Rightarrow a_{13} + 0 + 1 + 1 = 1 \Rightarrow a_{13} = 1$
1	1	0	1	$a_{12}+a_1+a_2+a_0=1 \Rightarrow a_{12}+0+1+1=1 \Rightarrow a_{12}=1$
1	1	1	0	$a_{123}+a_{12}+a_{23}+a_{13}+a_1+a_2+a_3+a_0=0 \Rightarrow$ $\Rightarrow a_{123}+1+1+1+0+1+1+1=0 \Rightarrow a_{123}=0$

$$g(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3 + x_2 + x_3 + 1.$$

Функция g не является линейной, т.е. $g \notin L$.

Критериальная таблица:

	T_0	T_1	S	M	L
f	_	+	_	_	-
W	+	+	_	_	_
g	_	_	+	_	_

Система $\{f, w, g\}$ является функционально полным классом. Значит, из этих функций с помощью суперпозиций можно выразить константы 0,1, отрицание, конъюнкцию и дизъюнкцию.

1.Отрицание.

 $g \notin T_0$ и $g \notin T_1$ ⇒ отрицание строим из функции g, т.к. g (0,0,0) = 1 и g (1,1,1) = 0.

$$g(x, x, x) = \overline{x}$$
.

2. Константа 1.

$$f \notin T_0$$
 и $f \in T_1$ ⇒ константу 1 строим из функции f . $f(0,0,0) = f(1,1,1) = 1$. Следовательно, $f(x,x,x) \equiv 1$.

3. Константа 0.

Для построения константы 0 возьмём отрицание от функции f(x,x,x).

$$\overline{f(x,x,x)} = g(f(x,x,x), f(x,x,x), f(x,x,x)) \equiv 0.$$

Проверка:

$$g(f(0,0,0), f(0,0,0), f(0,0,0)) = g(1,1,1) = 0;$$

 $g(f(1,1,1), f(1,1,1), f(1,1,1)) = g(1,1,1) = 0.$

4. Для построения дизъюнкции из функции $f = \overline{x_1} \lor x_2 \lor x_3$ зафиксируем переменную $x_1 = 1$, и обозначим $x_2 \to x$, $x_3 \to y$.

Тогда
$$f(1, x, y) = \overline{1} \lor x \lor y = 0 \lor x \lor y = x \lor y$$
.

Выражение для дизьюнкции: $d(x, y) = f(1, x, y) = f(f(x, x, x), x, y) = x \lor y$

Проверка:

$$d(0,0) = f(f(0,0,0),0,0) = f(1,0,0) = 0;$$

$$d(0,1) = f(f(0,0,0),0,1) = f(1,0,1) = 1;$$

$$d(1,0) = f(f(1,1,1),1,0) = f(1,1,0) = 1;$$

$$d(1,1) = f(f(1,1,1),1,1) = f(1,1,1) = 1.$$

5. Для построения конъюнкции из функции $w = x_1 x_3 \lor \overline{x}_2 x_3 \lor \overline{x}_1 x_2 \overline{x}_3$ зафиксируем переменную $x_3 = 0$, и обозначим $\overline{x}_1 \to x$, $x_2 \to y$.

Тогда
$$w(x_1,x_2,0)=x_1x_3\vee \overline{x}_2x_3\vee \overline{x}_1x_2\overline{x}_3=x_1\cdot 0\vee \overline{x}_2\cdot 0\vee \overline{x}_1x_2\cdot 1=\overline{x}_1x_2=xy$$
.

Выражение для конъюнкции:

$$k(x, y) = w(\overline{x}, y, 0) = w(g(x, x, x), y, g(f(x, x, x), f(x, x, x), f(x, x, x))) = xy$$
.

Проверка:

 $k(0,0) = w(g(0,0,0),0,g(f(0,0,0),f(0,0,0),f(0,0,0))) = w(1,0,g(1,1,1)) = w(1,0,0) = 0; \\ k(0,1) = w(g(0,0,0),1,g(f(0,0,0),f(0,0,0),f(0,0,0))) = w(1,1,g(1,1,1)) = w(1,1,0) = 0; \\ k(1,0) = w(g(1,1,1),0,g(f(1,1,1),f(1,1,1),f(1,1,1))) = w(0,0,g(1,1,1)) = w(0,0,0) = 0; \\ k(1,1) = w(g(1,1,1),1,g(f(1,1,1),f(1,1,1),f(1,1,1))) = w(0,1,g(1,1,1)) = w(0,1,0) = 1.$