Kafli 4: Eigingildisverkefni Töluleg greining, STÆ405G

24. janúar 2014

Benedikt Steinar Magnússon, bsm@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Yfirlit

Kafli 4: Eigingildisverkefni

Nr.	Viðfangsefni	Bls.	Glærur
4.0	Eigingildi og eiginvigrar	261-264	3-5
4.1	Veldaaðferð	265-280	6-12
4.2	Öfug veldaaðferð	281-295	13-17

Skilgreining

Látum A vera $n \times n$ fylki. Munum að $\lambda \in \mathbb{C}$ nefnist *eigingildi* fylkisins A ef til er $\mathbf{v} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ þannig að

$$A\mathbf{v}=\lambda\mathbf{v}.$$

Skilgreining

Látum A vera $n \times n$ fylki. Munum að $\lambda \in \mathbb{C}$ nefnist *eigingildi* fylkisins A ef til er $\mathbf{v} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ þannig að

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Vigurinn ${\bf v}$ nefnist þá eiginvigur fylkisins A og við segjum að hann svari til eigingildisins λ .

Skilgreining

Látum A vera $n \times n$ fylki. Munum að $\lambda \in \mathbb{C}$ nefnist *eigingildi* fylkisins A ef til er $\mathbf{v} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ þannig að

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Vigurinn ${\bf v}$ nefnist þá eiginvigur fylkisins A og við segjum að hann svari til eigingildisins λ .

Athugasemd

Eigingildi fylkisins A eru nákvæmlega núllstöðvar kennimargliðunnar

$$p_A(z) = \det(zI - A), \qquad z \in \mathbb{C}.$$

Skilgreining

Látum A vera $n \times n$ fylki. Munum að $\lambda \in \mathbb{C}$ nefnist *eigingildi* fylkisins A ef til er $\mathbf{v} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ þannig að

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Vigurinn ${\bf v}$ nefnist þá eiginvigur fylkisins A og við segjum að hann svari til eigingildisins λ .

Athugasemd

Eigingildi fylkisins A eru nákvæmlega núllstöðvar kennimargliðunnar

$$p_A(z) = \det(zI - A), \qquad z \in \mathbb{C}.$$

Athugasemd

Ef \mathbf{v} er eiginvigur fylkisins A, þá er $\alpha \mathbf{v}$ einnig eiginvigur fyrir sérhvert $\alpha \in \mathbb{C} \setminus \{\mathbf{0}\}$.

Skífusetning Gerschgorins

Skilgreinum

$$r_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|,$$

sem er summan af tölugildum stakanna í línu i utan hornalínunnar

Skífusetning Gerschgorins

Skilgreinum

$$r_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|,$$

sem er summan af tölugildum stakanna í línu *i utan hornalínunnar* og látum

$$C_i = \{z \in \mathbb{C} \, ; \, |z - a_{ii}| \le r_i\}$$

tákna skífuna með miðju í a_{ii} og geislann r_i .

Skífusetning Gerschgorins

Skilgreinum

$$r_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|,$$

sem er summan af tölugildum stakanna í línu i utan hornalínunnar og látum

$$C_i = \{z \in \mathbb{C} \, ; \, |z - a_{ii}| \le r_i\}$$

tákna skífuna með miðju í a_{ii} og geislann r_i . Þá gildir

(i) Öll eigingildi A liggja í sammengi skífanna C_i .

Skífusetning Gerschgorins

Skilgreinum

$$r_i = \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|,$$

sem er summan af tölugildum stakanna í línu *i utan hornalínunnar* og látum

$$C_i = \{z \in \mathbb{C} ; |z - a_{ii}| \le r_i\}$$

tákna skífuna með miðju í a_{ii} og geislann r_i . Þá gildir

- (i) Öll eigingildi A liggja í sammengi skífanna C_i .
- (ii) Ef k af skífunum C_i mynda samanhangandi svæði R í $\mathbb C$ sem er sundlægt við hinar n-k skífurnar, þá inniheldur R nákvæmlega k eigingildi.

Nokkrar staðreyndir um eigingildi og eiginvigra:

Nokkrar staðreyndir um eigingildi og eiginvigra:

(i) Eiginvigrar sem svara til ólíkra eigingilda eru línulega óháðir.

Nokkrar staðreyndir um eigingildi og eiginvigra:

- (i) Eiginvigrar sem svara til ólíkra eigingilda eru línulega óháðir.
- (ii) Eiginvigrar sem svara til eins ákveðins eigingildis λ spanna hlutrúm í \mathbb{C}^n .

Nokkrar staðreyndir um eigingildi og eiginvigra:

- (i) Eiginvigrar sem svara til ólíkra eigingilda eru línulega óháðir.
- (ii) Eiginvigrar sem svara til eins ákveðins eigingildis λ spanna hlutrúm í \mathbb{C}^n .
- (iii) Við segjum að fylkið A sé hornalínugeranlegt ef til eru eigingildi $\lambda_1, \lambda_2, \ldots, \lambda_n$ og tilsvarandi eiginvigrar $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ sem mynda grunn í \mathbb{R}^n .

Nokkrar staðreyndir um eigingildi og eiginvigra:

- (i) Eiginvigrar sem svara til ólíkra eigingilda eru línulega óháðir.
- (ii) Eiginvigrar sem svara til eins ákveðins eigingildis λ spanna hlutrúm í \mathbb{C}^n .
- (iii) Við segjum að fylkið A sé hornalínugeranlegt ef til eru eigingildi $\lambda_1, \lambda_2, \ldots, \lambda_n$ og tilsvarandi eiginvigrar $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ sem mynda grunn í \mathbb{R}^n . Þá er hægt að skrifa

$$A = T \Lambda T^{-1}$$

þar sem Λ er hornalínufylki með eigingildin $\lambda_1,\ldots,\lambda_n$ á hornalínunni og T er $n\times n$ fylki þannig að dálkur nr. k í því samanstendur af hnitum \mathbf{v}_k miðað við staðalgrunninn í \mathbb{R}^n .

Nokkrar staðreyndir um eigingildi og eiginvigra:

- (i) Eiginvigrar sem svara til ólíkra eigingilda eru línulega óháðir.
- (ii) Eiginvigrar sem svara til eins ákveðins eigingildis λ spanna hlutrúm í \mathbb{C}^n .
- (iii) Við segjum að fylkið A sé hornalínugeranlegt ef til eru eigingildi $\lambda_1, \lambda_2, \ldots, \lambda_n$ og tilsvarandi eiginvigrar $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ sem mynda grunn í \mathbb{R}^n . Þá er hægt að skrifa

$$A = T \Lambda T^{-1}$$

þar sem Λ er hornalínufylki með eigingildin $\lambda_1,\ldots,\lambda_n$ á hornalínunni og T er $n\times n$ fylki þannig að dálkur nr. k í því samanstendur af hnitum \mathbf{v}_k miðað við staðalgrunninn í \mathbb{R}^n .

(iv) Ef fylkið A er samhverft, þá er það hornalínugeranlegt.

Hugsum okkur nú að við A sé hornalínugeranlegt og að við röðum eigingildunum á hornalínu Λ í minnkandi röð eftir tölugildi

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$$

Hugsum okkur nú að við A sé hornalínugeranlegt og að við röðum eigingildunum á hornalínu Λ í minnkandi röð eftir tölugildi

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$$

Tökum einhvern vigur $\mathbf{x}^{(0)}$ og lítum á liðun hans í eiginvigra

$$\mathbf{x}^{(0)} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

Hugsum okkur nú að við A sé hornalínugeranlegt og að við röðum eigingildunum á hornalínu Λ í minnkandi röð eftir tölugildi

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$$

Tökum einhvern vigur $\mathbf{x}^{(0)}$ og lítum á liðun hans í eiginvigra

$$\mathbf{x}^{(0)} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

Skilgreinum síðan rununa $(x^{(m)})$ með ítruninni

$$\mathsf{x}^{(m+1)} = A\mathsf{x}^{(m)}.$$

Við fáum þá

$$\mathbf{x}^{(1)} = A\mathbf{x}^{(0)} = \alpha_1 A \mathbf{v}_1 + \dots + \alpha_n A \mathbf{v}_n$$
$$= \alpha_1 \lambda_1 \mathbf{v}_1 + \dots + \alpha_n \lambda_n \mathbf{v}_n,$$

Við fáum þá

$$\mathbf{x}^{(1)} = A\mathbf{x}^{(0)} = \alpha_1 A\mathbf{v}_1 + \dots + \alpha_n A\mathbf{v}_n$$
$$= \alpha_1 \lambda_1 \mathbf{v}_1 + \dots + \alpha_n \lambda_n \mathbf{v}_n,$$

$$\mathbf{x}^{(2)} = A\mathbf{x}^{(1)} = \alpha_1 \lambda_1 A \mathbf{v}_1 + \dots + \alpha_n \lambda_n A \mathbf{v}_n,$$

$$= \alpha_1 \lambda_1^2 \mathbf{v}_1 + \dots + \alpha_n \lambda_n^2 \mathbf{v}_n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{x}^{(m)} = \alpha_1 \lambda_1^m \mathbf{v}_1 + \dots + \alpha_n \lambda_n^m \mathbf{v}_n$$

Við fáum þá

$$\mathbf{x}^{(1)} = A\mathbf{x}^{(0)} = \alpha_1 A\mathbf{v}_1 + \dots + \alpha_n A\mathbf{v}_n$$
$$= \alpha_1 \lambda_1 \mathbf{v}_1 + \dots + \alpha_n \lambda_n \mathbf{v}_n,$$

$$\mathbf{x}^{(2)} = A\mathbf{x}^{(1)} = \alpha_1 \lambda_1 A \mathbf{v}_1 + \dots + \alpha_n \lambda_n A \mathbf{v}_n,$$

$$= \alpha_1 \lambda_1^2 \mathbf{v}_1 + \dots + \alpha_n \lambda_n^2 \mathbf{v}_n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{x}^{(m)} = \alpha_1 \lambda_1^m \mathbf{v}_1 + \dots + \alpha_n \lambda_n^m \mathbf{v}_n$$

Síðasti vigurinn er

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_+ \cdots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Við vorum komin með

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_2 + \dots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Við vorum komin með

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_2 + \dots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Hnit númer i í þessum vigri er:

$$\mathbf{x}_{i}^{(m)} = \lambda_{1}^{m} (\alpha_{1} \mathbf{v}_{1,i} + (\lambda_{2}/\lambda_{1})^{m} \alpha_{2} \mathbf{v}_{2,i} + \dots + (\lambda_{n}/\lambda_{1})^{m} \alpha_{n} \mathbf{v}_{n,i})$$

Við vorum komin með

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_2 + \dots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Hnit númer i í þessum vigri er:

$$\mathbf{x}_{i}^{(m)} = \lambda_{1}^{m} (\alpha_{1} \mathbf{v}_{1,i} + (\lambda_{2}/\lambda_{1})^{m} \alpha_{2} \mathbf{v}_{2,i} + \dots + (\lambda_{n}/\lambda_{1})^{m} \alpha_{n} \mathbf{v}_{n,i})$$

Hugsum okkur nú að $|\lambda_1| > |\lambda_2|$. Þá fæst:

$$\frac{x_i^{(m)}}{x_i^{(m-1)}} = \frac{\lambda_1^m (\alpha_1 v_{1,i} + O((\lambda_2/\lambda_1)^m))}{\lambda_1^{m-1} (\alpha_1 v_{1,i} + O((\lambda_2/\lambda_1)^{m-1}))}$$

Við vorum komin með

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_2 + \dots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Hnit númer *i* í þessum vigri er:

$$x_i^{(m)} = \lambda_1^m (\alpha_1 v_{1,i} + (\lambda_2/\lambda_1)^m \alpha_2 v_{2,i} + \dots + (\lambda_n/\lambda_1)^m \alpha_n v_{n,i})$$

Hugsum okkur nú að $|\lambda_1| > |\lambda_2|$. Þá fæst:

$$\frac{x_i^{(m)}}{x_i^{(m-1)}} = \frac{\lambda_1^m (\alpha_1 v_{1,i} + O((\lambda_2/\lambda_1)^m))}{\lambda_1^{m-1} (\alpha_1 v_{1,i} + O((\lambda_2/\lambda_1)^{m-1}))}$$

Ef við höfum $\alpha_1 v_{1,i} \neq 0$, þá er niðurstaðan

$$\frac{x_i^{(m)}}{x_i^{(m-1)}} = \lambda_1 \frac{\left(1 + O((\lambda_2/\lambda_1)^m)\right)}{\left(1 + O((\lambda_2/\lambda_1))^{m-1}\right)} \to \lambda_1 \quad \text{ begar } \quad m \to \infty.$$

Skoðum aftur

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_2 + \dots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Skoðum aftur

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_2 + \dots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Ef
$$|\lambda_1|>|\lambda_2|$$
, þá gildir fyrir $j>1$ að $(\lambda_j/\lambda_1)^m o 0$ þegar $m o \infty$ og

Skoðum aftur

$$\mathbf{x}^{(m)} = \lambda_1^m (\alpha_1 \mathbf{v}_1 + (\lambda_2/\lambda_1)^m \alpha_2 \mathbf{v}_2 + \dots + (\lambda_n/\lambda_1)^m \alpha_n \mathbf{v}_n)$$

Ef $|\lambda_1|>|\lambda_2|$, þá gildir fyrir j>1 að $(\lambda_j/\lambda_1)^m o 0$ þegar $m o \infty$ og

$$\lim_{m\to\infty}\frac{\mathbf{x}^{(m)}}{\lambda_1^m}=\alpha_1\mathbf{v}_1.$$

Pannig að ef $\mathbf{x}^{(0)}$ var valinn í upphafi þannig að $\alpha_1 \neq 0$, þá skilar þetta eiginvigrinum $\alpha_1 \mathbf{v}_1$ fyrir eigingildið λ_1 .

Pegar við reiknum \mathbf{x}^m eins og hér að framan þá er ekki ólíklegt að við lendum í undir- eða yfirflæðisvillum ef lengd \mathbf{x} (skv. einhverjum staðli) stefnir á 0 eða $+\infty$. Til þess að ráða bót á þessu þá stöðlum við vigurinn í hverju skrefi á eftirfarandi hátt.

Pegar við reiknum \mathbf{x}^m eins og hér að framan þá er ekki ólíklegt að við lendum í undir- eða yfirflæðisvillum ef lengd \mathbf{x} (skv. einhverjum staðli) stefnir á 0 eða $+\infty$. Til þess að ráða bót á þessu þá stöðlum við vigurinn í hverju skrefi á eftirfarandi hátt.

Við veljum $\mathbf{x}^{(0)}$ með einhverjum hætti og skilgreinum síðan

$$\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)},$$

Pegar við reiknum \mathbf{x}^m eins og hér að framan þá er ekki ólíklegt að við lendum í undir- eða yfirflæðisvillum ef lengd \mathbf{x} (skv. einhverjum staðli) stefnir á 0 eða $+\infty$. Til þess að ráða bót á þessu þá stöðlum við vigurinn í hverju skrefi á eftirfarandi hátt.

Við veljum $\mathbf{x}^{(0)}$ með einhverjum hætti og skilgreinum síðan

$$\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)}, \qquad \text{og svo } \mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{\mathcal{Y}_{\rho_m}^{(m)}}$$

Pegar við reiknum \mathbf{x}^m eins og hér að framan þá er ekki ólíklegt að við lendum í undir- eða yfirflæðisvillum ef lengd \mathbf{x} (skv. einhverjum staðli) stefnir á 0 eða $+\infty$. Til þess að ráða bót á þessu þá stöðlum við vigurinn í hverju skrefi á eftirfarandi hátt.

Við veljum $\mathbf{x}^{(0)}$ með einhverjum hætti og skilgreinum síðan

$$\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)}, \qquad \text{og svo } \mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{\mathcal{Y}_{\rho_m}^{(m)}}$$

þar sem p_m er númerið á því hniti í $\mathbf{y}^{(m)}$ sem hefur stærst tölugildi, sem þýðir að það hnit p_m uppfyllir

$$|y_{p_m}^{(m)}| = \|\mathbf{y}^{(m)}\|_{\infty} = \max_{1 \le j \le n} |y_j^{(m)}|.$$

Pegar við reiknum \mathbf{x}^m eins og hér að framan þá er ekki ólíklegt að við lendum í undir- eða yfirflæðisvillum ef lengd \mathbf{x} (skv. einhverjum staðli) stefnir á 0 eða $+\infty$. Til þess að ráða bót á þessu þá stöðlum við vigurinn í hverju skrefi á eftirfarandi hátt.

Við veljum $\mathbf{x}^{(0)}$ með einhverjum hætti og skilgreinum síðan

$$\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)}, \qquad \text{og svo } \mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{y_{p_m}^{(m)}}$$

þar sem p_m er númerið á því hniti í $\mathbf{y}^{(m)}$ sem hefur stærst tölugildi, sem þýðir að það hnit p_m uppfyllir

$$|y_{p_m}^{(m)}| = ||\mathbf{y}^{(m)}||_{\infty} = \max_{1 \le j \le n} |y_j^{(m)}|.$$

Ef mörg númer uppfylla þetta skilyrði, þá tökum við bara p_m sem lægsta gildið á j þar sem jafnaðarmerki gildir

Pegar við reiknum \mathbf{x}^m eins og hér að framan þá er ekki ólíklegt að við lendum í undir- eða yfirflæðisvillum ef lengd \mathbf{x} (skv. einhverjum staðli) stefnir á 0 eða $+\infty$. Til þess að ráða bót á þessu þá stöðlum við vigurinn í hverju skrefi á eftirfarandi hátt.

Við veljum $\mathbf{x}^{(0)}$ með einhverjum hætti og skilgreinum síðan

$$\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)}, \qquad \text{og svo } \mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{\mathcal{Y}_{\rho_m}^{(m)}}$$

þar sem p_m er númerið á því hniti í $\mathbf{y}^{(m)}$ sem hefur stærst tölugildi, sem þýðir að það hnit p_m uppfyllir

$$|y_{p_m}^{(m)}| = ||\mathbf{y}^{(m)}||_{\infty} = \max_{1 \le j \le n} |y_j^{(m)}|.$$

Ef mörg númer uppfylla þetta skilyrði, þá tökum við bara p_m sem lægsta gildið á j þar sem jafnaðarmerki gildir (enda skiptir það ekki máli fyrir skilgreininguna á $\mathbf{x}^{(m)}$).

4.1 Samleitnin

Nú kemur í ljós að $y_{\rho_{m-1}}^{(m)}$ stefnir á λ_1 . Auk þess stefnir $\mathbf{x}^{(m)}$ á eiginvigur sem svarar til λ_1 og hefur lengdina 1 í l_{∞} staðlinum.

4.1 Samleitnin

Nú kemur í ljós að $y_{p_{m-1}}^{(m)}$ stefnir á λ_1 . Auk þess stefnir $\mathbf{x}^{(m)}$ á eiginvigur sem svarar til λ_1 og hefur lengdina 1 í l_{∞} staðlinum.

Í útreikningum skilgreinum við því rununa $\lambda^{(m)} = y_{p_{m-1}}^{(m)}$. Við gefum okkur síðan þolmörk á skekkju TOL og reiknum úr runurnar þar til eitt af stoppskilyrðunum gildir:

$$|\lambda^{(m)} - \lambda^{(m-1)}| < TOL$$
 eða $\|\mathbf{x}^{(m)} - \mathbf{x}^{(m-1)}\| < TOL$ eða $\|A\mathbf{x}^{(m)} - \lambda^{(m)}\mathbf{x}^{(m)}\| < TOL$.

4.1 Samhverf fylki

Munum að ef A er samhverft, þá hefur A eiginvigragrunn og eiginvigrar sem svara til ólíkra eigingilda eru hornréttir.

4.1 Samhverf fylki

Munum að ef A er samhverft, þá hefur A eiginvigragrunn og eiginvigrar sem svara til ólíkra eigingilda eru hornréttir.

Í þessu tilfelli er einfaldara að smíða reiknirit svona:

$$\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)}$$
$$\lambda^{(m)} = \mathbf{x}^{(m-1)^T} \mathbf{y}^{(m)}$$
$$\mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{\sqrt{(\mathbf{y}^{(m)})^T \mathbf{y}^{(m)}}}$$

4.1 Samhverf fylki

Munum að ef A er samhverft, þá hefur A eiginvigragrunn og eiginvigrar sem svara til ólíkra eigingilda eru hornréttir.

Í þessu tilfelli er einfaldara að smíða reiknirit svona:

$$\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)}$$
$$\lambda^{(m)} = \mathbf{x}^{(m-1)^T} \mathbf{y}^{(m)}$$
$$\mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{\sqrt{(\mathbf{y}^{(m)})^T \mathbf{y}^{(m)}}}$$

Samleitnin verður sú sama: $\lambda^{(m)}$ stefnir á stærsta eigingildið og $\mathbf{x}^{(m)}$ stefnir á tilsvarandi eiginvigur.

4.2 Meira um eigingildi og eiginvigra

Setning

Látum sem fyrr A vera $n \times n$ fylki, $\lambda_1, \ldots, \lambda_n$ vera eigingildi og $\mathbf{v}_1, \ldots, \mathbf{v}_n$ vera tilsvarandi eiginvigra.

(i) Látum $p(x) = a_0 + a_1x + \cdots + a_mx^m$ vera margliðu og skilgreinum $n \times n$ fylkið B með því að stinga A inn í p,

$$B = p(A) = a_0I + a_1A + \cdots + a_mA^m$$

Pá eru tölurnar $p(\lambda_1), \ldots, p(\lambda_n)$ eigingildi fylkisins B = p(A) með tilsvarandi eiginvigrum $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

(ii) Ef A er andhverfanlegt þá eru $1/\lambda_1, \ldots, 1/\lambda_n$ eigingildi A^{-1} með tilsvarandi eiginvigrum $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Af síðustu setningu leiðir að fylkið $B = (A - qI)^{-1}$ hefur eigingildin

$$\mu_1 = \frac{1}{\lambda_1 - q}, \ \mu_2 = \frac{1}{\lambda_2 - q}, \ \cdots \ \mu_n = \frac{1}{\lambda_n - q}.$$

Hugsum okkur nú að við viljum finna nálgunargildi fyrir eigingildið λ_k og að við vitum út frá setningu Gerschgorins skífunum nokkurn veginn hvar það er staðsett.

Af síðustu setningu leiðir að fylkið $B = (A - qI)^{-1}$ hefur eigingildin

$$\mu_1 = \frac{1}{\lambda_1 - q}, \ \mu_2 = \frac{1}{\lambda_2 - q}, \ \cdots \ \mu_n = \frac{1}{\lambda_n - q}.$$

Hugsum okkur nú að við viljum finna nálgunargildi fyrir eigingildið λ_k og að við vitum út frá setningu Gerschgorins skífunum nokkurn veginn hvar það er staðsett.

Ef við erum með q nógu nálægt λ_k , þá verður μ_k stærsta eigingildi fylkisins $B=(A-qI)^{-1}$

Af síðustu setningu leiðir að fylkið $B = (A - qI)^{-1}$ hefur eigingildin

$$\mu_1 = \frac{1}{\lambda_1 - q}, \ \mu_2 = \frac{1}{\lambda_2 - q}, \ \cdots \ \mu_n = \frac{1}{\lambda_n - q}.$$

Hugsum okkur nú að við viljum finna nálgunargildi fyrir eigingildið λ_k og að við vitum út frá setningu Gerschgorins skífunum nokkurn veginn hvar það er staðsett.

Ef við erum með q nógu nálægt λ_k , þá verður μ_k stærsta eigingildi fylkisins $B=(A-qI)^{-1}$

Pá getum við beitt veldaaðferðinni til þess að búa til runu $\mu^{(m)} o \mu_k$ og við fáum að

$$\lambda^{(m)} = rac{1}{\mu^{(m)}} + q o \lambda_k.$$

Ef veldaaðferðinni er beitt á fylkið $B = (A - qI)^{-1}$ þá þurfum við að reikna út $\mathbf{y}^{(m)} = (A - qI)^{-1}\mathbf{x}^{(m-1)}$ í hverju skrefi.

Ef veldaaðferðinni er beitt á fylkið $B = (A - qI)^{-1}$ þá þurfum við að reikna út $\mathbf{y}^{(m)} = (A - qI)^{-1}\mathbf{x}^{(m-1)}$ í hverju skrefi.

Petta er gert þannig að fyrst framkvæmum við LU-þáttun á fylkinu LU = (A - qI) og framkvæmum síðan for- og endurinnsetningu til þess að leysa LUv $^{(m)} = x^{(m-1)}$.

Ef veldaaðferðinni er beitt á fylkið $B = (A - qI)^{-1}$ þá þurfum við að reikna út $\mathbf{y}^{(m)} = (A - qI)^{-1}\mathbf{x}^{(m-1)}$ í hverju skrefi.

Petta er gert þannig að fyrst framkvæmum við LU-þáttun á fylkinu LU = (A - qI) og framkvæmum síðan for- og endurinnsetningu til þess að leysa $LU\mathbf{y}^{(m)} = x^{(m-1)}$.

Tölulegar aðferðir fyrir LU-þáttun eru í kafla 3, og verður fjallað um síðar.

Takmarkið er að finna nálgun á eigingildinu λ_k .

(i) Finnum $q \in \mathbb{R}$ sem liggur næst eigingildinu λ_k af öllum eigingildum A

Takmarkið er að finna nálgun á eigingildinu λ_k .

- (i) Finnum $q \in \mathbb{R}$ sem liggur næst eigingildinu λ_k af öllum eigingildum A
- (ii) Páttum LU = A qI.

Takmarkið er að finna nálgun á eigingildinu λ_k .

- (i) Finnum $q \in \mathbb{R}$ sem liggur næst eigingildinu λ_k af öllum eigingildum A
- (ii) Páttum LU = A qI.
- (iii) Við veljum $\mathbf{x}^{(0)}$ með einhverjum hætti og leysum síðan $\mathbf{y}^{(m)}$ út úr jöfnunni

$$LU\mathbf{y}^{(m)}=\mathbf{x}^{(m-1)}.$$

Takmarkið er að finna nálgun á eigingildinu λ_k .

- (i) Finnum $q \in \mathbb{R}$ sem liggur næst eigingildinu λ_k af öllum eigingildum A
- (ii) Páttum LU = A qI.
- (iii) Við veljum $\mathbf{x}^{(0)}$ með einhverjum hætti og leysum síðan $\mathbf{y}^{(m)}$ út úr jöfnunni

$$LU\mathbf{y}^{(m)}=\mathbf{x}^{(m-1)}.$$

(iv) Skilgreinum $\mathbf{x}^{(m)} = \mathbf{y}^{(m)}/y_{p_m}^{(m)}$ þar sem p_m er númerið á því hniti í $\mathbf{y}^{(m)}$ sem hefur stærst tölugildi, sem þýðir að það hnit uppfyllir

$$|y_{p_m}^{(m)}| = \|\mathbf{y}^{(m)}\|_{\infty} = \max_{1 \le i \le n} |y_j^{(m)}|.$$

Ef mörg númer uppfylla þetta skilyrði, þá tökum við bara p_m sem lægsta gildið á j þar sem jafnaðarmerki gildir.

4.2 Reiknirit til þess að ákvarða eigingildi

Niðurstaðan verður að

$$\lambda^{(m)} = \frac{1}{y_{p_{m-1}}^{(m)}} + q \to \lambda_k$$

og $\mathbf{x}^{(m)}$ stefnir á tilsvarandi eiginvigur.

Kafli 4: Fræðilegar spurningar

- Hvernig er setning Gerschgorins um staðsetningu eigingilda fylkis?
- 2. Hvernig er veldaaðferð til þess að nálga það eigingildi fylkis sem hefur stærst tölugildi?
- 3. Afhverju skilgreinum $\mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{y_{p_m}^{(m)}}$ þar sem $\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)}$, en ekki bara $\mathbf{x}^{(m)} = A\mathbf{x}^{(m-1)}$?
- 4. Hvernig er andhverf veldaaðferð til þess að nálga eigingildi fylkis?
- 5. Hvernig er skynsamlegast að velja q í andhverfu veldaaðferðinni ef við viljum finna eigingildið λ_k ?