N >> PRank r = PRemember:

SVD and PCA

X = YNXP = (3, T)

NXP = SNXP Ji E RP Centered YT = (I-111T) YT deta matrix Dojujaji = YT = U Sprp pxp SVD provides (Vil) = (V1,..., Vp) Nxp our new basis Closest approximation L E-X rank (K) XT = [UK ZK] VKXP]
NXK For a given K (YPCA) = [UK ZK] NXK
coordinates of me $V_{k} = (\vec{v}_{1}, \dots, \vec{v}_{k}) \vec{v}_{i} \in \mathbb{R}^{p}$ のうでろうな where $\Sigma_{k} = diag \left(\overset{\sigma_{i}}{-} \overset{\sigma_{k}}{-} \right)$ adered grighter volves. Examples overless.

If we approximate by hist

= (v/T. yi) V, + (v2. yv) V2

the sum of puperhause

variability

by hympiane (V, V2)

CUCUC	S	WW	$\omega\omega\omega$
$\omega\omega$	u とこ	ころ	www
w mc	Bench	w	(v)
			ω ω ω
W W	· luw	W.C	ω $(\sim c)$
S	WW W	S	SOCO
$\omega\omega$	JOOGU	S	$\omega\omega\omega$
$\omega\omega$	SONO	S	~(\\(U)
$\omega \omega l$	ころう	S	w (U)
Cucul	2UV	S	SOM
$\omega\omega$	u(W)~	S	$\omega\omega\sim$
Sum	ころこ	S	WINW
(∪ an()	Samo	CUC	men

the snaysear of the images with

8 20 5 130 migs N=130 migs Vi€ R

Imperial College London

Illustration of PCA and SVD

vectors expressed in terms of the first has
$$\vec{v}_i$$
.
$$= \bar{x} + \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2$$

$$= \bar{x} + \lambda_1 \cdot \bar{v}_1 + \lambda_2 \cdot \bar{v}_2$$

×

is about linear projections that minimum First extension: a quadratic. 1) Nonlinearity: Kernel PCA How do we extend) $(\widetilde{y}^{\mathsf{T}}\widetilde{y})_{ij} = (\widetilde{y}_{i}^{\mathsf{T}}\widetilde{y}_{j}^{\mathsf{T}})$ PCA was about engeneratur of YTY and YYT Which are "Kernel" matrices. If we assume a kenel function $k_{ij} = k(\widetilde{y}_i, \widetilde{\widetilde{y}}_j)$ positive definite, etc. (see SVMs) Eigende composition of K (kernel mohite)

J. K (Xi, Xi) = e - 11xi-xill² Example werlest We can do spectral analysis of the Kernel (which is untinear in the original coordinated)

Second extension: Interpretability though sparsity. Sparse PCA Our description from standard PCA was of the form: (YPCA) NXK = (UKZK) NXK conditates in terms of Vi= (vi ··· Vic) pxk The tasis is Non sparse in terms of our original descriptors This leads to diminished interpretating 「max で(ダダで) デ) JERP This is an alternative 2 such that V v = 1 description by adding extra combaints. 立で151ミt Similar Find a basis that this, to prinimile the quadratic envinder sparsity constraints SUD LATSO tasis

If we find a description in terms of a few exectors that are sparse then the description is down to identifying the important combinations of descriptors

 $\hat{y} = \hat{f}(\lambda) = \sum_{j=1}^{K} \lambda_j \tilde{v}_{j,L}$ k < < ktrom LASSO

Then the matrix V will

be spanser and the

vi, will contain more

	Third extension : Interpretability through
	Non-negative matrix factorisation
	(NNM)
Ž.	\leq \sim
Strole	Y = (UKZK) VK NXP NXK KXP I the same matrix
	X = (UKZK) VK:
,	NWM = X = W H T A Sementine to X = W H KEP
	where his 70 + 1)
17	we require this will be an $[W,H] = \sum_{i=1}^{N} \sum_{j=1}^{N} [X_{ij}, lig(WH)_{ij}, WH)_{ij}]$ hown $[W,H] = \sum_{i=1}^{N} \sum_{j=1}^{N} [X_{ij}, lig(WH)_{ij}, WH)_{ij}]$ We require thinty $[W,H] = \sum_{i=1}^{N} \sum_{j=1}^{N} [X_{ij}, lig(WH)_{ij}, WH]_{ij}$ NNM
to eg	Xij ~ Poi with mean (WH) ij
	What does it give?
	See over
	for an example
	with images

Each of the Separes is This whole set of speak is speak the (VK) pxk matrix problem of or the bours Heater marked H49×381 The 49 faces closest to company. Sailing Siert Imperial College London p=381=19x19 k=49 N=2429 Non negative matrix factorisation NMF the software original original mix 40) inrye 19x19 linrye 19x19 pixer, which is vectorized into a 361-dimentional vector. Number of inerge in somple N=2429