MAT-041: Probabilidad y Estadística

Certamen 3. Septiembre 6, 2019

Tiempo: 90 minutos

Nombre:

Profesor: Felipe Osorio

1. (25 pts) Considere X_1, \ldots, X_n una muestra aleatoria desde $\mathcal{N}(\theta, 1)$ y defina

$$Y_i = \begin{cases} 1, & X_i > 0, \\ 0, & X_i \le 0. \end{cases}$$

Sea $\psi = P(Y_1 = 1)$. Obtenga el MLE de ψ .

Recuerde que: $\Phi(p) = P(Z \leq p)$ para $Z \sim \mathcal{N}(0, 1)$.

2. (25 pts) Suponga que X_1, \ldots, X_n representa una muestra aleatoria desde U(a, b) donde a y b son parámetros desconocidos con a < b. Obtenga los estimadores de momentos de a y b.

Recuerde que: Si $X \sim U(a, b)$. Entonces,

$$f(x; a, b) = \frac{1}{b - a}, \qquad x \in [a, b].$$

Además puede ser útil que: $b^3 - a^3 = (b - a)(a^2 + ab + b^2)$.

3. (25 pts) Sea X_1, \ldots, X_n muestra aleatoria de tamaño n desde una distribución $\mathsf{Poi}(\lambda)$ con función de densidad

$$f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \qquad x \in \{0,1,\dots\}, \lambda > 0.$$

Considere el conjunto de datos

$$x = \{2, 0, 1, 0, 1, 1, 0, 1, 0, 2\}.$$

Obtenga un intervalo de confianza asintótico del $100(1-\alpha)\%$ para λ con $\alpha=0.05$.

Puede ser útil: considerar alguno de los siguientes valores cuantiles,

$$Z_{0.975} = 1.96,$$
 $t_{0.975}(9) = 2.26,$ $Poi_{0.975}(1) = 3.00.$

4. (25 pts) Sea X_1, \ldots, X_n una m.a.(n) desde una distribución $\mathsf{Ber}(\theta_1)$ y Y_1, \ldots, Y_n una m.a.(n) de la variable aletoria $\mathsf{Ber}(\theta_2)$. Suponga también que ámbas muestras son independientes. Obtenga el test de Wald de tamaño α para probar $H_0: \theta_1 = \theta_2$ versus $H_1: \theta_1 \neq \theta_2$.

Recuerde que: Si $U \sim \text{Ber}(\theta)$, entonces

$$f(u;\theta) = \theta^u (1-\theta)^{1-u}, \qquad u \in \{0,1\}, \ 0 < \theta < 1.$$