

NumProg WS 20/21 : Tutorübung 05

- 1. Wiederholung Komplexe Zahlen
- 2. Frequenzanalyse
- 3. DFT: Diskrete Fourier-Transformation
- 4. FFT: Schnelle (Inverse) Fourier-Transformation

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

• z = x + iy, x = Re(z), y = Im(z)

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

- z = x + iy, x = Re(z), y = Im(z)
- $\overline{z} = x iy$ (konjugiert Komplexes), $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

- z = x + iy, x = Re(z), y = Im(z)
- $\overline{z} = x iy$ (konjugiert Komplexes), $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

- z = x + iy, x = Re(z), y = Im(z)
- $\overline{z} = x iy$ (konjugiert Komplexes), $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$
- $e^{it} = \cos(t) + i\sin(t)$ (Eulerformel)

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

- z = x + iy, x = Re(z), y = Im(z)
- $\overline{z} = x iy$ (konjugiert Komplexes), $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$
- $e^{it} = \cos(t) + i\sin(t)$ (Eulerformel)
- $e^z=e^{x+iy}=e^xe^{iy}=e^x\big(\cos(y)+i\sin(y)\big)$ (e^{it} läuft in Einheitskreis gegen Uhrzeigersinn, startet in (0,1) und eine "Umdrehung" = 2π)

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

- z = x + iy, x = Re(z), y = Im(z)
- $\overline{z} = x iy$ (konjugiert Komplexes), $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$
- $e^{it} = \cos(t) + i\sin(t)$ (Eulerformel)
- $e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos(y) + i\sin(y))$ (e^{it} läuft in Einheitskreis gegen Uhrzeigersinn, startet in (0,1) und eine "Umdrehung" = 2π) $\rightarrow e^{i\cdot 0} = e^{i\cdot 2k\pi} = 1 \in \mathbb{R}. \ k \in \mathbb{Z}$

Wichtigste Eigenschaften komplexer Zahlen $(i = \sqrt{-1}; z, w \in \mathbb{C}; x, y \in \mathbb{R})$:

- z = x + iy, x = Re(z), y = Im(z)
- $\overline{z} = x iy$ (konjugiert Komplexes), $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$
- $e^{it} = \cos(t) + i\sin(t)$ (Eulerformel)
- $e^z=e^{x+iy}=e^xe^{iy}=e^x\big(\cos(y)+i\sin(y)\big)$ (e^{it} läuft in Einheitskreis gegen Uhrzeigersinn, startet in (0,1) und eine "Umdrehung" = 2π) $\rightarrow e^{i\cdot 0}=e^{i\cdot 2k\pi}=1\in\mathbb{R},\ k\in\mathbb{Z}$

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1				Im♠ Re
z_2				Im♠ Re
z_3				Im♠ Re

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1	2 + 3 <i>i</i>	2 - 3i	$\sqrt{13}$	Im ♠ Re
Z_2				Im ♠ Re
Z_3				Im ♠ Re

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1	2 + 3 <i>i</i>	2 - 3i	$\sqrt{13}$	Im♠ Re
z_2				Im ♠ Re
Z_3				Im♠ Re

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1	2 + 3 <i>i</i>	2 - 3i	$\sqrt{13}$	Im♠ Re
z_2	9 – 2 <i>i</i>	9 + 2 <i>i</i>	√85	Im ♠ Re
Z_3				Im♠ Re

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1	2 + 3 <i>i</i>	2 - 3i	$\sqrt{13}$	Im♠ Re
z_2	9 – 2 <i>i</i>	9 + 2 <i>i</i>	√85	<i>Im</i> ♠
z_3				Im ♠ Re

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1	2 + 3 <i>i</i>	2 - 3i	$\sqrt{13}$	Im♠ Re
z_2	9 – 2i	9 + 2 <i>i</i>	√85	<i>Im</i> ♠
z_3			1	Im ♠ Re

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1	2 + 3 <i>i</i>	2 - 3i	$\sqrt{13}$	Im♠ Re
z_2	9 – 2i	9 + 2 <i>i</i>	√85	<i>Im</i> ♠
z_3			1	Im ♠ Re

i)
$$z_1 = (4+2i) + (-2+i)$$

ii)
$$z_2 = (i) + (9 - 3i)$$

iii)
$$z_3 = e^{\frac{4}{3}\pi \cdot i}$$

	Algebraische Form	Konjugiert Komplex	Betrag	Koordinatensystem
z_1	2 + 3 <i>i</i>	2 - 3i	$\sqrt{13}$	Im♠ Re
Z_2	9 – 2i	9 + 2 <i>i</i>	$\sqrt{85}$	<i>Im</i> ♠
Z_3	$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$	$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$	1	Im Re

Frequenzanalyse

Trigonometrische Funktionen $(z. B. \sin(x) \text{ und } \cos(x))$ lassen sich in Amplitude und Frequenz aufteilen.

Signale (z.B. für Soundwellen) sind Summen aus trigonometrischen Funktionen.

Diese **Signale** will man nun in ihre **einzelnen Frequenzen** aufteilen, welche anschaulich in einem diskretisierten "**Frequenzspektrum**" dargestellt werden können.

$Amplitude[c_k]$

$$f(x) = \sum_{k=0}^{\infty} \frac{c_k}{c_k} \cdot \cos(\frac{kx}{x})$$
oder

$$f(x) = \sum_{k=0}^{\infty} c_k \cdot \sin(kx)$$

Diskrete Fourier-Transformation (DFT)

Mit der DFT wollen wir jetzt ein periodisches, diskretes und komplexes **Eingangssignal** als **Frequenzspektrum ausdrücken**.

Dafür gibt es wieder Matrix- und Vektormultiplikationen, um den Amplitudenvektor c bei einem Stützpunktevektor v zu berechnen und umgekehrt.

n beschreibt die Größe des Eingabevektors

$$\omega = \exp\left(i \cdot \frac{2\pi}{n}\right), \qquad \overline{\omega} = \exp\left(i \cdot \frac{-2\pi}{n}\right)$$

$$\mathrm{DFT}(\boldsymbol{v})_k \coloneqq \boldsymbol{c}_k = \frac{1}{n} \cdot \sum_{j=0}^{n-1} \boldsymbol{v}_j \cdot \overline{\omega}^{jk}$$

$$\mathrm{IDFT}(\boldsymbol{c})_l \coloneqq \boldsymbol{v}_l = \sum_{k=0}^{n-1} \boldsymbol{c}_k \cdot \omega^{kl}$$

Diskrete Fourier-Transformation (DFT)

Zur Erinnerung: $\omega_2 = \exp\left(i \cdot \frac{2\pi}{3}\right) = e^{i \cdot \frac{2\pi}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = \overline{\omega_3}$

$$\overline{\omega_2} = \exp\left(i \cdot \frac{4\pi}{3}\right) = e^{i \cdot \frac{4\pi}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i = \exp\left(i \cdot \frac{-2\pi}{3}\right) = \omega_3$$

n beschreibt die Größe des Eingabevektors

$$\omega = \exp\left(i \cdot \frac{2\pi}{n}\right), \qquad \overline{\omega} = \exp\left(i \cdot \frac{-2\pi}{n}\right)$$

$$DFT(v)_k := \frac{c_k}{n} \cdot \sum_{j=0}^{n-1} v_j \cdot \overline{\omega}^{jk}$$

$$IDFT(c)_l := v_l = \sum_{k=0}^{n-1} c_k \cdot \omega^{kl}$$

Es gibt eine **schnellere Methode** als IDFT $(\mathcal{O}(n^2))$, um die inverse Fourier-Transformation durchzuführen: Die **rekursive IFFT** $(\mathcal{O}(n \cdot \log(n)))$

Wird in 2 Schritten durchgeführt:

- Sortierphase
- Kombinationsphase mit Butterfly-Operator (BFO)

Sortierphase:

- jedes zweite c_i wird nach oben sortiert
- alle anderen c_i werden nach unten sortiert
- zu kombinierender Bereich wird "halbiert"

Sortierphase:

- dies wird wiederholt bis jeder Bereich (gekennzeichnet durch horizontale Striche) einen eigenen Wert enthält
- danach kann Kombinationsphase beginnen

Kombinationsphase:

- (n/2) Butterfly-Operationen (nicht überschneidend) für alle Bereiche; Index j=0 für alle Butterflies
- rekursive Rückentwicklung (jeder Schritt Bereichgröße x2)

$$\mathbf{Z_0} = \mathbf{z_0} + \omega^0 \mathbf{z_2}$$

$$\mathbf{Z_1} = \mathbf{z_0} - \omega^0 \mathbf{z_2}$$

$$Z_2 = Z_1 + \omega^0 Z_3$$

$$Z_3 = Z_1 - \omega^0 Z_3$$

Kombinationsphase:

- in jedem Schritt danach überschneiden sich jeweils
 2 Butterflies (Index j wird jeweils gezählt)
- bis sich alle überschneiden (Ergebnis)

$$\boldsymbol{v_0} = \boldsymbol{Z_0} + \omega^0 \boldsymbol{Z_2}$$

$$\mathbf{v_1} = \mathbf{Z_1} + \omega^1 \mathbf{Z_3}$$

$$v_2 = Z_0 - \omega^0 Z_2$$

$$v_3 = \overline{Z}_1 - \omega^1 Z_3$$

