Weekly Report NTUA 29/11/2019

George Bakas

Status Report

- Analysis:
 - Response matrices
 - Nbins reco ~ 2Nbins parton/particle
 - R_{yield} used as a transfer factor from SR_A to SR defined as: $R_{yield} = \frac{N_{SR}}{N_{SR_A}}$
 - Check if this quantity is stable in all Regions (0, 1, 2 btag) for every year
 - How to measure R_{yield} because our CR is contaminated
 - Unfolding Techniques
 - For equal bins → simple response matrix inversion
 - For unequal bins? → Minimum of global correlation

Signal Extraction

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$S(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{fit} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

$$C(x_{reco}) = D(x_{reco}) - C_{bkg}^{yield} N_{QCD}^{shape} C_{QCD}^{shape} (x_{reco}) Q(x_{reco}) - B(x_{reco})$$

- Where x_{reco} is the respected variable of interest (ttbar mass,pt, rapidity, leading and subleading jetPt and |jetY|)
- We deploy a simultaneous fit in 3 regions (0,1,2 btag) because we do not have a pure Control Region.
 - Our data CR is ttbar contaminated

$$D(m^t)^{(i)} = N_{tt}^{(i)} T^{(i)}(m^t, k_{MassScale}, k_{MassResolution}) + N_{bkg}^{(i)} B(m^t) (1 + k_1 x) + N_{sub}^{(i)} O^{(i)}(m^t)$$

• We assume that $N_{tt}^{(0)} = (1 - e_b)^2 N_{tt}$, $N_{tt}^{(2)} = e_b^2 N_{tt}$ and $N_{tt}^{(1)} = 2(1 - e_b)e_b N_{tt}$ where e_b is the b tagging efficiency and N_{tt} is the total ttbar yield.

R_{yield} Calculation (Data)

2016

2017

2018

R_{yield} Calculation (MC Closure)

2016

2017

2018

NQCD (2) / NQCD (0) vs eb

We define
$$R_0 = \frac{D_{red}^{(0)}}{D_{ext}^{(0)}}$$
 and $R_1 = \frac{D_{red}^{(0)} - N_{TT,MC\,red}^{(0)}}{D_{ext}^{(0)} - N_{TT,MC\,ext}^{(0)}}$

----2016----

R0 (just data) = 0.264097R1 (taking MC into account) = 0.262092(R[0]-R[1])/R[0] = 0.00759071

NQCD in Reduced (SR): 846.365

----2017----

R0 (just data) = 0.270622R1 (taking MC into account) = 0.269242(R[0]-R[1])/R[0] = 0.00509682

NQCD in Reduced (SR): 677.041

----2018----

R0 (just data) = 0.266928R1 (taking MC into account) = 0.265428(R[0]-R[1])/R[0] = 0.00561997

NQCD in Reduced (SR): 1201.35

Fiducial differential xsec

2016

2017

2018

