

Conceitos avançados de Python focados em análise de dados + 4 indicações de livros

Qual é a relevância do Python para a análise de dados?

Considerando que estamos falando sobre um trabalho extenso e que demanda o uso de ferramentas de automação para lidar com grandes volumes de dados, é importante que o processamento aconteça de forma eficiente e ágil. Além disso, também há a importância em ter informações limpas para o momento da análise.

É aí que entra o Python: a ferramenta prioriza a automação de tarefas, apresenta facilidade para lidar com recorrências e possui certo grau de simplicidade. O que isso significa? Produtividade! Também é relevante destacar a força da comunidade para aqueles que utilizam a linguagem. O compartilhamento de recursos e bibliotecas disponíveis ajudam o profissional a fazer a aplicação, conduzir os processos analíticos e garantir que haja qualidade em cada um deles.

E você, como está o seu desenvolvimento profissional com relação ao Python? Para contribuir com os próximos passos na sua jornada profissional, preparamos um conteúdo com dicas para uma análise de dados ainda mais eficiente.

Boa leitura!

O que você irá encontrar neste e-book?

- Quais são as bibliotecas mais utilizadas para análise de dados?
- 2 9 conceitos para colocar em prática
- 3 8 dicas para visualizar dados em um gráfico
- Quer se desenvolver em Python? Saiba como (+ dicas de livros)
- 5 Encerramento

Quais são as bibliotecas mais utilizadas para análise de dados?

As libraries são o diferencial para que Python seja uma boa escolha para a análise de dados. Com elas, é possível obter soluções completas para que as tarefas sejam realizadas com sucesso. Saiba mais sobre as principais bibliotecas a seguir:

#1 - Pandas

A primeira ferramenta da lista se destaca por atuar com análise e manipulação de dados com facilidade, agilidade e flexibilidade. Essas características tornam a análise produtiva e proporcionam um alto desempenho, ajudando a destacar o Python na sua função de atuar com o processamento dessas informações.

Diferenciais da pandas: remodelamento, expansão e filtragem de subconjuntos de dados.

Saiba mais sobre a *library* clicando <u>aqui.</u>

Quais são as bibliotecas mais utilizadas para análise de dados?

#2 - NumPy

Ideal para a computação numérica com matrizes multidimensionais, ela processa arranjos e matrizes grandes e multidimensionais. Também possui funções matemáticas para manipular esses arrays.

Quando o assunto é análise de dados, ela é utilizada como contêiner primário. Assim, possibilita-se o compartilhamento de dados entre algoritmos.

Por que os arranjos em NumPy se destacam?

Método superior de armazenamento e manipulação de dados numéricos em comparação às estruturas nativas de Python;

Libraries de linguagens de níveis mais baixos podem ler e alterar os dados armazenados nesses arrays.

Você pode acessar a página da NumPy aqui.

Quais são as bibliotecas mais utilizadas para análise de dados?

#3 - Matplotlib

Já essa biblioteca se destaca pela ampla possibilidade de produções de gráficos, como os tipos bidimensionais, de forma nativa. E não para por aí, pois há a possibilidade de utilizar extensões para maximizar suas possibilidades para:

projeções gráficos mais produtos cartográficas; tridimensionais; gráficos.

Aliás, você sabia que os gráficos gerados pela pandas possuem o Matplotlib como origem?

Acesse o Matplotlib agora.

Quais são as bibliotecas mais utilizadas para análise de dados?

Além das bibliotecas que citamos acima, ainda existem as seguintes alternativas:

Seaborn

Foco em visualização de dados;

Scikit-learn

Para a modelagem estatística;

TensorFlow e Keras

Redes neurais, otimização e modelos mais complexos de machine learning.

9 conceitos para colocar em prática

As funções que vamos destacar a seguir podem ser utilizadas no database Iris. O dataset apresenta quatro variáveis de 50 amostras de três espécies: setosa, versicolor e virginica.

/pd.read_csv

A função é indicada para realizar a leitura do arquivo. O dataset é carregado para a memória, além de ser mantido na variável "planta".

planta = pd.read_csv("iris.csv")

/import

Essa instrução diz respeito à biblioteca que será utilizada no código. Então, vamos supor que pandas seja a nossa primeira escolha. Veja: "as" é utilizada para criar um apelido para a library. Assim, pode-se fazer um referenciamento depois.

Lembrando que o mesmo raciocínio pode ser aplicado às demais bibliotecas.

import pandas as pd

Outro ponto é o estilo do gráfico, que pode ser utilizado da seguinte forma:

plt.style.use('ggplot')

/head()

Responsável por mostrar as primeiras linhas da base de dados. Caso o usuário não informe um valor, a função exibirá até a 5ª linha.

	pl:	anta.head()				
t[3]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

/describe()

A função agrega com informações sobre os dados que podem ser aproveitados para a geração de estatísticas, como desvio padrão e média.

		mo de informações das colunas a.describe()						
4]:		sepal_length	sepal_width	petal_length	petal_width			
	count	150 000000	150.000000	150 000000	150 000000			
	mean	5.843333	3.054000	3.758667	1.198667			
	obd	0.828066	0.433594	1.764420	0.763161			
	min	4.300000	2.000000	1.000000	0.100000			
	25%	5.100000	2.800000	1.600000	0.300000			
	50%	5.800000	3.000000	4.350000	1.300000			
	75%	6.400000	3.300000	5.100000	1.800000			
	max	7.900000	4.400000	6.900000	2.500000			

/dtypes

Como o nome indica, a função está ligada ao tipo de dados, ou seja, a forma como Python interpreta os valores.

```
Out[5]: sepal_length float64
sepal_width float64
petal_width float64
species object
dtype: object
```

/shape

Apresenta dois valores: quantidade de linhas e colunas da tabela.

```
In [6]: mguantidade total de Linhas e colunas
planta.shape
Out[6]: (150, 5)
```

/columns

Aqui, a dica é aproveitar o atributo para renomear as colunas. Assim, a manipulação dos dados e o entendimento dessa base de informações tornam-se facilitados.

Utilize head() para verificar a nova versão dos nomes.

#Renomeando as colunas

planta.columns = ['sepala_comprimento', 'sepala_largura','petala_comprimento', 'petala_largura','especie']

/isnull()

Com a função, as linhas que apresentam valores nulos retornam na coluna "sepala_comprimento".

```
In [9]: #wertficondo ce no coluno copola comprimento hi digue volce nulo
planta[planta['copala_comprimento'].ismull()].head()

Out[9]:
sepala_comprimento sepala_largura petria_comprimento petala_largura especia
```

/value_counts

Quer saber as contagens de valores totais? Você pode utilizar esta função.

```
In [10]: #contendo o totol de setosa
planta['especie'].value_counts()
Out[10]: versicolor 50
virginica 50
setosa 50
Name: especie, dtype: int64
```

8 dicas para visualizar dados em um gráfico

Para apoiar na tomada de decisão da empresa, a precisão dos dados analisados é fundamental. É neste momento que entra a importância em selecionar o gráfico corretamente.

Confira, a seguir, algumas dicas para produzir diferentes formatos desse recurso.

uma linha de código, cinco argumentos

KindTipo de gráfico;

Color Cor do gráfico. Figsize
Tamanho do
gráfico;

Grid
Para definir a
linha de grade
no gráfico;

Rot Grau de rotação dos dados relacionados ao eixo X;

```
In [16]: #Contendo gráfico com openos sem tinho de cádigo
plants['empetie'].value counts().head(10).plot(kind='bar', figsize=(11,5), grid = False, rot=0, color='orange')
#detsondo o gráfico mais agradasei
plt.title('conjunto de dedos de flores de Iris ']
plt.slabel('Classificação') #nomeando o eixo x, onde fico o tipo de Iris
plt.ylabel('Quantidade') #nomeando o eixo y, ande fico o total de classificação
plt.show() #extoindo o grafico
```


8 dicas para visualizar dados em um gráfico

pandas profiling

A função amplia o DataFrame para uma ágil análise de dados. Uma linha de código gera volume de informações, além de um relatório HTML interativo.

df.describe()df.info()functionsdf.profile_report()

8 dicas para visualizar dados em um gráfico

Veja, a seguir, quais são as estatísticas calculadas no pacote de criação do pandas profiling

Como fazer a instalação?

pip install pandas-profiling
ou
conda install -c anaconda pandas-profiling

Como usar?

Utilize o conjunto de dados titânico para apresentar os recursos do criador de perfil Python.

#importing os pacotes necessários import pandas as pd import pandas_profiling

#Pandas-Profiling 2.0.0
df = pd.read_csv('titanic/train.csv')
df.profile_report()

Essa linha cumpre com o objetivo de exibir o relatório de criação de perfil de dados em um Jupyter Notebook de forma detalhada e com gráficos.

Para exportar o relatório para um arquivo HTML interativo, utilize o código:

profile = df.profile_report(title='Pandas Profiling Report')
profile.to_file(outputfile="Titanic data profiling.html")

Plotar com interatividade sem modificar o código de forma brusca? É possível

Com a library Cufflinks, você pode utilizar a plotagem unida à flexibilidade dos pandas e gerar gráficos. Veja:

8 dicas para visualizar dados em um gráfico

Como usar?

#importar pandas

Como fazer a instalação?

pip install plotly # Plotly é um

#importar pandas como pd

#importar plotly e abotoaduras no modo offline

importar abotoaduras como cf

import plotly.offline
cf.go_offline()
cf.set_config_file(offline=False, world_readable=True)

pip install plotly # Plotly é um pré-requisito antes de instalar abotoaduras pip install abotoaduras

Comandos mágicos

Com a library Cufflinks, você pode utilizar a plotagem unida à flexibilidade dos pandas e gerar gráficos. Veja: Eles ajudam a solucionar alguns dos principais desafios que aparecem na análise de "Ismagic" utiliza você pode conferir todas as funções disponíveis.

Um exemplo é <u>%matplotlib inline</u> que ajuda a renderizar os gráficos de Matplotlib no Jupyter Notebook. Para que os gráficos tenham capacidade de zoom e redimensionamento, substitua "inline" por "notebook", mas confira se a função foi chamada antes de importar a biblioteca.

8 dicas para visualizar dados em um gráfico

Como melhorar a estética das estruturas de dados?

Utilize pprint para atingir esse objetivo! O módulo irá ajudar na impressão de dicionários ou dados JSON. Veja alguns exemplos a seguir:

8 dicas para visualizar dados em um gráfico

Quer dar destaque a algo importante?

Caixa azul para transmitir informações

<div class="alert alert-block alert-info">
 Dica: Use caixas azuis (alert-info) para dicas e notas.
Se for uma nota, você não precisa incluir a palavra "Nota".
 </div>

Tip/Info: The Blue boxes are used for tips and notes.

Caixa amarela para emitir avisos

<div class="alert alert-block alert-warning">

Exemplo:
/b> Caixas amarelas são geralmente usadas para incluir exemplos adicionais ou fórmulas matemáticas.

</div>

Yellow Boxes are generally used to include additional examples or mathematical formulas.

Caixa verde para destacar um sucesso

<div class="alert alert-block alert-success">

Use a caixa verde apenas quando necessário para exibir links para conteúdo relacionado.

</div>

Use green box only when necessary like to display links to related content.

Caixa vermelha para indicar perigo

<div class="alert alert-block alert-danger">

É bom evitar caixas vermelhas, mas pode ser usado para alertar

os usuários para não excluir alguma parte importante do código etc.

</div>

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

Excluiu uma célula por engano? Saiba como restaurar

Pressione CTRL/CMD+Z para recuperar o conteúdo de uma célula. Caso a restauração seja de uma célula inteira que foi apagada, utilize ESC+Z ou EDIT > Undo Delete Cells.

Quer saber como usar Python no Power BI?

Com o Python, você pode importar, transformar e visualizar dados na ferramenta. Veja algumas ações:

Criar o script de importação de dados (conjunto de dados Boston Housing, disponível no scikit-learn)

2.

Utilizando para clustering, podemos usar a Análise de Componentes Principais para diminuir as dimensões e visualizar os dados em um espaço bidimensional;

Após, vamos aplicar o agrupamento k-means para identificar grupos homogêneos nos dados.

Obs.: crie scripts autônomos do código para testar e depurar possíveis problemas antes de utilizá-los no Power BI.

Como habilitar o Python no Power BI?

1.

2.

Configure o ambiente com as bibliotecas;

Para gerenciar o ambiente Python, é possível utilizar virtualenv e pipenv ou a distribuição conda.

8 dicas para visualizar dados em um gráfico

Quer se desenvolver em Python? Saiba como (+dicas de livros)

Estatística/álgebra linear: são skills fundamentais para a realização do tratamento prévio da base de dados e a escolha de variáveis;

Comunidades: um dos grandes diferenciais da programação são esses espaços de troca de experiências com outros profissionais. Utilize sempre que necessário;

O desenvolvimento profissional não pode parar, não é verdade? Por isso, aproveitamos para reforçar mais habilidades que são importantes para todo profissional que atua com Python:

Para aprofundar o seu conhecimento, você também pode acessar os seguintes conteúdos:

Towards data science;

Data Hackers;

Hipster.tech (podcast);

Data science dojo;

Datacamp (podcast dataframed);

DeepLearning.AI (blog).

4 dicas de livros para você ir além no seu conhecimento de Python

1.

Python para análise de dados: Tratamento de dados com Pandas, NumPy e IPython - Wes McKinney - Novatec Editora

3.

Pense em Python: Pense Como um Cientista da Computação -Allen B. Downey - Novatec Editora

2.

Python Fluente: Programação Clara, Concisa e Eficaz - Luciano Ramalho - Novatec Editora

4.

Mãos à Obra: Aprendizado de Máquina com Scikit-Learn & TensorFlow - Aurélien Géron - Alta Books

Esperamos que os conteúdos apresentados neste e-book possam contribuir com o desenvolvimento da sua carreira e no aprimoramento das habilidades técnicas que, assim como as soft skills, são importantes para quem deseja alcançar maior reconhecimento profissional ou até mesmo um cargo de gestão.

Por isso, desejamos que a sua jornada com Python seja de muito aprendizado e evolução constante! Quer inovar com a gente? Acesse o banco de talentos Vivo clicando aqui e venha digitalizar para aproximar.

E não deixe de nos acompanhar nas mídias sociais

Até a próxima!