

AIR FORCE

RESOURCES

LEVEL

ITEM ANALYSIS PROGRAM (IAP) FOR ACHIEVEMENT TESTS

Вy

Janos B. Kopiyay

MANPOWER AND PERSONNEL DIVISION Brooks Air Force Base, Texas 78235

October 1981

Approved for public release; distribution unlimited.

SELECTE NOV 30 1981

D

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235

81 11 30 110

INE FILE COP.

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This paper has been reviewed and is approved for publication.

NANCY GUINN, Technical Director Manpower and Personnel Division

WILLIAM C. DEBOE, Colonel, USAF Chief, Manpower and Personnel Division SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
PREPORT NUMBER	1	3 RECIPIENT'S CATALOG NUMBER
ACHRI TP 81-22	AD-A107	534
4 TITLE (and Subtitle)		5 TYPE OF REPORT & PERIOD COVERED
TH WANALASIS PROGRAM (IAP) FOR		Technical Paper
ACHIEVEMENT TESTS		6 PERFORMING ORG. REPORT NUMBER
7 AUTHOR(s)		8 CONTRACT OR GRANT NUMBER(N)
Janos B. Koplyay		
9 PERFORMING ORGANIZATION NAME AND ADDRES	S	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Macpower and Personnel Division		62703[
Air Force Human Resources Edboratory Brooks Air Force Base, Texas 78235		77192201
		63230507
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE October 1981
HQ Au Force Human Resources Laboratory (Brooks Au Force Base, Fexas 7823.)	(FSC)	13. NUMBER OF PAGES
Drooks All Lofer base, rexas (02.5.)	j	13. NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESS(II differen	ent from Controlling Office)	15 SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION DOWNGRADING
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unli	imited.	
		}
17. DISTRIBUTION STATEMENT (of the abstract entere	d in Block 20 if different from	Penari)
The DISTRIBUTION STATEMENT (VI THE MISHACL PRINCE)	o in the k 20, it different flor	A A Province
		i
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse vide if necessary i	and identify by block number)	
analysis of achievement tests	mathematical item-analy	1-1-
laserial correlation	cormal ogive	1
item analysis item characteristics	test construction tetrachoric correlation	
\	in min in it midil	ļ
20 ABSTRACT (Continue on reverse side if necessary at	nd Identify by block number)	
TAP is a computer-based, versade and pov	verlui item analysis pack v/to-t-mesonalos torothor	cage. The input consists of responses to
achieve even (2) species is. The output provides iten ogive, N 30 and β . Among the many features, IAP	o o si parameters togethet can analyze multiple-resi	wood one parameters of the futed normal pouse items and factor analyze the fest for
audidance augility, and can be used for both po-		and a second and the fact and any to the first 101
·		.
Billia	* 1	
V	·	
والأراب والمراب المراب والمراب		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

HEM ANALYSIS PROGRAM (IAP) FOR ACHIEVEMENT TESTS

Вy

Janos B. Koplyay

MANPOWER AND PERSONNEL DIVISION Brooks Air Force Base, Texas 78235

for publication is presently a working paper. It is published somely to document work performed.

Acce	ssion For
DTIC	
3	nounced ification
Ву	
Dist	ribution/
Ava	ilability Codes
	Avail and/or
Dist	Special
A	

SELECTE NOV 30 1981

TABLE OF CONTENTS

						Page
I. Introduction		•			•	1
Basic Concept of IAP		•			•	1
1. Probability of a correct response				•		3
2. Selecting a certain percent of the examinees		•	•	•	•	5
II. Description of the IAP Program					•	6
General Information						6
Preparation of Input Data			•			9
Card or Tape Output		•	•	•		10
III. Control Contr						
III. Control Cards	• •	•	•	•	•	11
Card 1 - Input Parameters	• •	•	•	•	•	11
Card 2 - Title Card	• •	•	•	•	•	19
Card 3 - Input Data Format Card(s)		•	•	•	•	19
Card(s) 4 - Answer Key tor Numeric Items			•	•		21
Card(s) 5 - Answer Key for Alphanumeric Items		•				22
Card(s) 6 - Alternate Response Cards		•	•	•		25
Card Input Sequence	• •	•	•	•		26
IV. Summary	• •	•	•	•	•	28
Reterence	• •	•	•	•	•	29
Appendix A: IAP Computational Formulas and Mathematical De	riv	ati	ion	ıs	•	31
Appendix B: TAP Sample Run.			_	_		

I. INTRODUCTION

The traditional approximations, formulas, and techniques used in item analysis (Kelley, 1939) were geared to save computational labor at the expense of accuracy and amount of information about achievement tests, items, and the individuals taking the test. In view of the available assistance of modern high speed computers it became possible to develop a more sophisticated, accurate and detailed mathematical approach (Baker, 1964, 1965) which provides test constructors with more flexibility, greater accuracy, and detailed additional information necessary to improve the evaluation and hence the quality of the items and tests.

This paper describes the technical details that are required for the use of the IAP program as it is operational on a UNIVAC 1100/81 computer system at the Manpower and Personnel Division of the Air Force Human Resources Laboratory, Brooks Air Force Base, Texas. The basic concepts and general information are first provided. Detailed instructions for the preparation of IAP control cards by the user are provided in the next section. The appendices contain the computational formulas used, mathematical derivations including some proofs, and a sample run.

Basic Concept of IAP

The basic concept in modern item analysis is the item characteristic curve (Binet and Simon, 1916) and its associated parameters (Tucker, 1946). The curve is essentially a line fitted through the points obtained by plotting the proportion of respondents to a particular item

or item-alternative against a given criterion score or "ability-score" expressed in standard z-scores. Figure 1 is an example of such an item characteristic curve. This curve is a cumulative distribution function of two parameters, X50 and $\boldsymbol{\beta}$. Fitting a normal ogive through the points, X50 is the point at which 50% of the respondents passed the item. The corresponding z-score is the "ability" at which the item discriminates the best. Beta (β) is an indicator of the strength of discrimination; i.e., the larger the $_{\boldsymbol{\beta}}$, the sharper the discrimination. Beta is conceptually the slope of the line drawn to the item characteristic curve at the point X50. Mathematically it can be shown that $\beta = 1/\sigma$; i.e., the reciprocal of the standard deviation of the normal ogive. The use of X50 and β provides the scientist with great versatility and flexibility. They enable one to draw specific inferences about a given individual and a given item, choose items which have optimum discrimination power at a certain ability level, screen-off a certain percent of a group of examinees, estimate the "true score" of an individual, and compute the probability of the correct response. The advantages are so numerous and broad that only through use can the program be fully realized and understood. Two of the many applications are briefly discussed below, referencing Figure 1.

Figure 1 EXAMPLE OF A TYPICAL ITEM CHARACTERISTIC CURVE X50 = 1.0, $\beta = .68$, ITEM DIFFICULTY = .44.

* ITEM DIFFICULTY = $\frac{141}{318}$ = .44

1. Probability of a correct response

The probability of correct response of an individual for the given item can be read directly from Figure 1 providing that the individual's criterion score is known. For example, the probability of a correct response for a respondent with z=3 (abscissa value) is .91.

This probability can also be computed knowing X50, $\,\beta$, and z-score as follows (using X50 and β from Figure 1):

$$z = \beta(z \text{ score} - x50)$$

$$= .68 (3 - 1) = 1.36$$

From a cumulative normal distribution table, the area corresponding to z=1.36 equals approximately .91.

Thus, the probability that the individual with a criterion score z=3 will pass this item is P=.91.

Similar computations may be carried out for respondents with any given criterion score. Figure 1 shows these probabilities (proportions) for various standardized criterion scores (z-scores).

2. Selecting a certain percent of the examinees

Suppose an achievement test is administered to a group of individuals and subsequent item analysis provides the standard deviation (in standard score) of the test and, among other information, the X50 values for each item. Furthermore, suppose that the upper 16% of the examinees is desired to be selected from the rest of the group.

This can be accomplished by choosing items with certain X50 values. The upper 16% represents an area of (100-16) = 84 percent. The corresponding standard score in the cumulative normal frequency distribution table is z = 1.0. The items to be chosen should be those which have X50 = $(1.0) \cdot (1.0) \cdot (1.0)$

The maximum number of discriminations occur at the point at which 50% of the examinees pass the item; i.e., between 84% and 100% in the above example; thus, the upper 16% is selected by maximum discrimination.

The traditional item-analysis technique provides only the item difficulty in terms of proportion of the total respondents who choose a particular response, and the item-criterion correlation, and no information is available describing how a particular item or item-alternative functioned.

II. DESCRIPTION OF THE IAP PROGRAM

General Information

The criterion upon which the program bases all the statistical analyses is specified by the user. This criterion may be either internal or external.

The internal criterion is the total test score of each individual taking the test. These scores may be used as raw scores or may be corrected for guessing according to the user's specification. All item and test statistics are calculated accordingly. An exception is made in the case of the frequency distribution of an internal criterion, where the user may specify either raw score-distribution or corrected for guessing score-distribution regardless of the user's specification for the type of scores to be used in the item analysis. However, if the user specifies the computation of phi-coefficients, the exception previously mentioned is not available and both the phi and the frequency distribution are based on the same criterion used in the computation of item statistics.

The external criterion is furnished by the user. If an external criterion is specified on the control card, the program will use it in the item analysis. The validity coefficient between the external criterion and the internal criterion is calculated using raw scores or corrected scores depending upon the user's specification.

The test may be graded and analyzed as a power test or as a speed test.

In the latter case, only those respondents reaching a particular item will be

considered in the analysis of that item, including the item difficulty and response distribution. In addition, the mean and standard deviation of the population reaching the item will be given. Since the X50 represents a z-score of the population reaching the item, it is not necessarily comparable to an X50 obtained on another item from a different population. An equivalent X50 is computed by making a z-score transformation from the "item population" to the total population:

Equivalent
$$X SO = \frac{G_c}{G_t} \cdot X SO + \frac{\overline{X}_c - \overline{X}_t}{G_t}$$

where = standard deviation of total population

= standard deviation of item population

 X_t = mean of total population

 X_{i} = mean of item population

X50 is based on the item population

This "Equivalent X50" is printed in the item analysis summary table.

The factor analysis is done on a tetrachoric inter-item correlation matrix. It is always based on the total number of cases regardless of whether or not all finished the test. An individual who does not reach an item is considered to have missed it in this portion of the program. The factor analysis is a principal component analysis with Verimax rotation and unit diagonal elements.

Computation of the tetrachoric matrix is the slowest part of the program, particularly if the number of items is large.

The test reliability is influenced by the sum of item variances $\sum_{i=1}^{N} (p_i q_i). \text{Here, the proportion answering Item i correctly, } p_i, \text{ is always based on all the cases. This makes interpretation of the reliability coefficient in the case of a speed test questionable. (The same can be said about the factor analysis part of the program.)$

There is an option designed to handle test items for which there is more than one correct answer; in such cases the various responses receive different score points of credit. These items have alphanumeric responses in order to be able to handle a larger number of possible responses. This option would generally be used with multiple-response tests. The analysis of the items considers any credit achieved on an item as passing the item, and no credit at all as missing the item. This is rather arbitrary, and could be changed if desired. There is no correction for guessing on alphanumeric response items. The amount of credit to be received for a particular response to a particular item is read in on control cards (Card 5). This option could be used to weight responses differentially. Another option provides an Item Alternative Information Roster containing information about the validity and difficulty of each item-alternative. The validity is given as the point-biserial correlation between the particular alternative and the criterion. The difficulty is expressed as the proportion of the sample choosing a particular alternative. Additionally, the inter-correlation matrix of the alternatives within each item is provided.

Preparation of Input Data

The input may be either card or tape, as indicated on Control Card 1, Col. 44. The FORTRAN logical unit number for the input unit is to be specified in Col. 6-7 of Card 1.

The format for reading in the data is specified by the user (Card 3). The restrictions on the input data are as follows:

The ID variable must be either the first or the last word read, as specified on Card 1, Col. 36.

The external criterion must be the word immediately preceding the responses, if there is an external criterion.

The ID is read in by "A" format; the numeric responses by "I" format; and the alphanumeric responses (if any) by "A" format. The external criterion is read in by "F" format.

If an item is not attempted, it is to be coded "O" for both numeric and alphanumeric items. This is important for tests that are to be corrected for guessing.

On a speed test, the first <u>relevant</u> item after the last attempted item is to be coded a "9" if the item is a numeric response item, and a "W" if the item is an alphanumeric response item. (Items coded "0" on Card 4, which are not considered on the test, do not apply here. See write-up for Card 4.) If desired, all items following the last attempted item can be so coded.

Card or Tape Output

If desired, the following information can be listed on cards or tape:

Test ID, case ID, score, corrected score, external criterion score, and 1/0's for pass/fail for each item. Non-applicable information will be written zero.

The format for card output is:

(A6, 2X, A6, 2X, I3, 2X, 2F8.2, 2X, 41I1/80I1/79I1)

The Format for tape output is:

(2A6, I3, 2F7.2, 200I1)

III. Control Cards

Card 1 - Input Parameters

Card Column	Format	Source Listing Symbol	Description
1-3	13	NSTITM	Number of test items; may not exceed 200
			items.
4	11	IUPLIM	Highest response choice (not including
			multiple-response answers) may not exceed
			9. The response choices have to be
			consecutive positive integers, the largest
			of which is IUPLIM.
5	11	NFM	Number of format cards for input data.
			Default when blank, NFM = 1.
6-7	12	K1	FORTRAN logical unit number for data input
			(may be card reader or tape unit). ALL
			FORTRAN unit numbers should be greater than
			9 on the UNIVAC 1100/81.
8-9	12	ко	FORTRAN logical unit number for tape
			output, it applicable. May be left blank.
10-11	12	KS	FORTRAN logical unit number tor scratch
			tape (serves as working storage for
			program).

12-13	15	NB	Number of bits in a word on the computer,
			not counting the sign bit. (NB is used
			in the word-packing routine.) If blank, NB
			will be set to 35.
14-15	F2.2	EASY	Specified difficulty level for identifying
			too-easy items, in percent (two digits with
			no decimal point). 1
16-17	F2.2	DIFFLT	Specified difficulty level for identifying
			too-difficult items, in percent (two digits
			with no decimal point).
			NOTE: Default when both EASY and DIFFLT
			are blank; EASY = .8 and DIFFLT = .2.
18	11	IALPHA	O if all items are single-response
			(numeric).
			l if one or more items are
			multiple-response (alphanumeric).
19	11	NSPEED	0 if a power test.
			l if a speed test.

This option and the next one (DIFFLT) prints out items whose difficulty is outside of the specified difficulty-range.

20	11	ICORGS	O if scores are not to be corrected for
			guessing.
			l if scores are to be corrected for
			guessing by either standard formula or
			Hamilton's (1950) formula (see column 45).
			If corrected scores are called for, they
			will be used in all item analysis, unless
			an external criterion is used.
21	11	KIV	O it negative corrected scores are not to
	-		be set to zero.
			l if negative corrected scores are to be
			-
			set to zero.
22	11	ICRIT	O it test score is to be used as the
			criterion.
			l if an external criterion is to be used
			(in this case, all item analyses will be
			based on this criterion.)
23-25	F3.0	OUT	Code for missing criterion score, in the
			case of an external criterion. Must be an
			integer value (no decimal point). Cases
			with missing criterion score will be
			excluded from the analysis and printed out.
26	11	NOCASE	O if case scores are to be printed.
			1 if printing of case scores is to be
			suppressed.
			••

27 Il IPHI O if no phi correlation coefficient is desired.

l if phi based on median score for the sample is desired.

2 if phi based on median is desired. (In case of a speed test, the mean will be computed based upon only those individuals who reached the particular item.)

28 Il IFREQ 0 if no frequency distribution of scores is desired.

l if frequency distribution is to be done
with external criterion score (if
applicable).

2 if frequency distribution is to be done
with corrected test scores (if applicable).
3 if frequency distribution is to be done
with raw test scores.

NOTE: If phi with median is called for, the frequency distribution will be done accordingly, regardless of user's specification, since the median is calculated from the frequency distribution. For example, if phi with median is desired, and an external criterion is being used, IFREQ will be set to 1 automatically.

IOVER O if Henrysson's (1963) method for overlap $\mathbf{I}\mathbf{1}$ 29 correction of item analysis with internal criterion is to be used. 1 if Guilford's (1953, 1965) method is to be used. 2 it no overlap correction is desired. NOTE: It overlap correction is called for, both the uncorrected and the corrected values will be printed. 11 O it only the proportion of individuals 30 JPLOT passing each item at various z-score (standard score) levels is to be printed. (No plot .) 1 if the (titted) item characteristic curves are to be plotted. NOTE: On a speed test, proportions will be based on only on those individuals who reached the part cular item. 31-32 12 Number of factors to be extracted from NF tetrachoric inter-item correlation matrix. It NF is specified as zero, the inter-item correlation matrix will not be computed. Otherwise, NF must lie in the range:

2 < NF > 10.

33-35	F3.2	EIGN	Eigenvalue to serve as stop criterion for
			factor analysis of tetrachoric correlation
			matrix, if applicable. If an eigenvalue
			falls below this value, no further factors
			are extracted. This value is put on the
			card as three digits, the last two of which
			are considered to be after the decimal
			point. For example, if an eigenvalue
			cutoff of 1.00 is desired, it should be
			specified on the card as 100. An
			eigenvalue of 1.00 is commonly used.
36	11	IDEND	0 if identification variable (ID) precedes
			responses in input data.
			l if ID follows responses.
37	11	IRWIND	0 if input data tape is to be rewound
			before processing test; 1 otherwise.
			If only one test is being processed, this
			option is irrevlevant. If the same cases
			are to be used as were used in the previous
			test, IRWIND should be specified as 0, and
			the input format should pick up the fields
			on the tape that correspond to the present

test.

38	11	TUOT	O if no tape or card output is requested.
			l if tape output is requested.
			2 if card output is requested.
			The output will consist of a test ID, the
			case ID, score, corrected score, external
			criterion score, and 1/0's for pass/fail
			for each item. Any non-applicable
			information (such as the external criterion
			score for an internal criterion test run)
			will be written zero.
39-42	A4	ATEST	Test ID for tape or card output, if
			applicable.
43	Il	IALT	O if scores are not to be corrected for
43	11	IALT	O if scores are not to be corrected for guessing; or, if each item has the same
43	11	IALT	
43	Il	IALT	guessing; or, if each item has the same
43	Il	IALT	guessing; or, if each item has the same number of response choices, and this number
43	Il	IALT	guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4.
43	Il	IALT	guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4. l only if correction for guessing is called
43	Il	IALT	guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4. l only if correction for guessing is called for; and, in addition, at least one item
43	Il	IALT	guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4. 1 only if correction for guessing is called for; and, in addition, at least one item does not have the number of response choices equal to IUPLM; if this is the
43	Il	IALT	guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4. l only if correction for guessing is called for; and, in addition, at least one item does not have the number of response
43	Il	IALT	guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4. 1 only if correction for guessing is called for; and, in addition, at least one item does not have the number of response choices equal to IUPLM; if this is the case, additional card(s) will be necessary
43	11	IALT	guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4. I only if correction for guessing is called for; and, in addition, at least one item does not have the number of response choices equal to IUPLM; if this is the case, additional card(s) will be necessary (card no. 6).
			guessing; or, if each item has the same number of response choices, and this number is equal to IUPLM as specified in Col. 4. 1 only if correction for guessing is called for; and, in addition, at least one item does not have the number of response choices equal to IUPLM; if this is the case, additional card(s) will be necessary

45	11	IHAM	l of scores are to be corrected with
			Hamilton's (1950) formula; O, otherwise.
			IALT must be 0; ICORGS must be 1.
46-48	13	NERR	Maximum number of permissible input data
			errors specified by user (i.e. data do not
			match format editing code type; like
			reading alphanumeric with an 1 format.) If
			the number of errors equals or exceeds this
			number, the program will terminate. The
			case number and ID of each case with this
			type error will be printed. (See KERR
			col. 58).
49-52	14	NB 1K	Blocksize if the input data file on unit KI
			is COBOL (max blocksize = 1203).
53-55	13	LRL	Logical record length it data file on unit
			KI is COBOL. Both this field and the
			preceding one must be non-zero if the file
			is in COBOL (max LRL = 250).
56-57	12	KS2	Unit ID for temporary file needed when
			'Item Alternative Information Roster' is
			requested (O or blank indicates the above
			roster is not requested).
			This file need not be assigned because the
			system will assign a temporary tile of
			sufficient size.

58 Il KERR Data read error switch;

0 = system (FORTRAN) error exit routine,
1 = program error exit routine (see also
NERR, Col. 46-48).

NOTE: The system error exit will translate the error input character(s) into zeroes and print the system error message. The case is retained. The IAP program error exit will print the error case (see NERR) and reject the case.

Card 2 - Title Card

Any title less than or equal to 72 characters, starting in Col 1.

Card 3 - Input Data Format Card(s)

The ID will be read in "A" format with a field width of not more than six characters.

Responses to items with numeric answers will be read in "I" format.

Responses to items with alphanumeric answers (multiple-response items), if any, will be read in "A" format.

Skipped fields are indicated by "X". The format should begin with a left parenthesis and end with a right parenthesis. If more that one card is necessary, simply continue the format on additional cards. The number of format cards is specified on Card 1, Col 5. Each card of the format is read through Col 72 only.

As mentioned above under "Data Specification," the ID must be either the first or the last word read, and the external criterion (if any) must always precede the responses. The external criterion will be read in "F" format.

If a case requires more than one record (e.g., more than one card), a slash (/) in the format will cause the next record to be read.

Examples:

ı.

(5X	,	A 6	,	30X	, 2011	,	X	,	Al)
	†		†		†	†		†		†	
	5				30	20		1		1	
	Skipped	i	ID		Skipped	Numeric		Skipped	i	Alpha	

2.

(, 311)
	†		†	†	†	†	†	Ţ	†		†	
	1		1	3	4	50	3	}	20		ID	
N	umeric	:	Skip	Numeric	Alpha	Skip	Numeri	.c	Numeric			
							Skin t	n ne	ext Reco	rd		

3.

4.

(X, F7.1, I1, PX, 3A1, X, P0II, etc., X, II, Card.

2x, 3A1, x, 511) Col 70 Card 2

Here, two format cards are required to read one record since the format required more than 72 columns. In Example 2, one format card was needed to read two records.

Card(s) 4 - Answer Key for Numeric Items

The first three columns of the card(s) are not read, so anything may be written there (such as "KEY").

Starting in Col. 4, each column corresponds to an item specified in the "Format" statement, excluding the ID and the external criterion. For numeric items, the correct answer should be specified in the corresponding column. For alphanumeric (multiple-response) items, a "9" should be specified in the corresponding column. (A special key will be read in for alphanumeric items). Each "answer key" card contains keys for up to 77 items; 200 items will require three cards.

If desired, items can be omitted from analysis without enanging the format. This is done by specifying a "O" in each of the columns corresponding to those items. The remaining items will be referred to in the output by the same numbers that they would be without any O's in the key.

Examples:

KEY2341511357

This is a 10-item test in which all responses are numeric. The correct answer to item 1 is 2, and the correct answer to item 10 is 7.

KEY2341000057

This is a key for the same test as before, but items 5 through 8 are removed from the test by replacing the correct alternative with zero. The remaining items will be referred to as before, so items 1, 2, 3, 4, 9, and 10 are listed in the output.

Note that the same thing could have been accomplished by changing the format to "X" out items 5 through 8, and having the key changed to KEY234157. However, the items would now be referred to as items 1, 2, 3, 4, 5, and 6. KEY1235499221

Here, items 6 and 7 are alphanumeric (multiple-response), and the correct answers to these items will be read in on the next card.

Card(s) 5 - Answer Key for Alphanumeric Items

This card is optional and is included only if "ALPHA" was specified as 1 (Card 1, Col 18).

There are 33 possible multi-response codes. In order that each response occupy only one character in the data file, these responses are coded alphanumerically, using the numbers 1 through 9 and all letters of the alphabet except W and Y. These characters are converted to integers by a method that is machine-dependent; on machines other than the Univac 1100/81 a few changes will probably be necessary.

The codes for each alphanumeric character are as follows:

Alphanumeric	Character	(Response)	Code
	1		1
	2		2
	3		3
	4		Ų
	5		5
	6		6
	7		7
	8		8
	9		9
Alphanumeric	Character	(Response)	Code
	А		10
	В		11
	C		12
	D		13
	E		14
	F		15
	G		16
	Н		17
	1		18
	J		19
	К		20
	L		21
	М		22

Alphanumeric Character	(Response) Code	5
N	23	3
0	24	4
P	25	5
Ç	26	5
R	27	7
S	28	5
τ	29	j
U	30	j
V	31	l
Х	3;	2
Z	33	3

Any other response will be considered as an omit.

Correction for guessing is not made on alphanumeric items.

The character "w" is reserved for indicating the item after the last item attempted by a subject on a speed test with alphanumeric responses.

The card(s) are prepared as follows: Each response-item combination will occupy six card columns. The first three columns will contain the item number; the next two columns will contain the code for the response as given above; and the last column will contain the number of points credit to be given that response. Any response not listed will receive no credit. Up to 13 responses may be listed per card (Cols 1-78). If more than 13 item-response combinations are necessary, continue the same procedure on subsequent cards. Each item-response combination listed must immediately tollow the preceding. The six columns following the last combination must contain 999999. If a frequency distribution of scores is to be made, the maximum total score must not exceed 1000.

Example:

Suppose that items 3 and 5 have alphanumeric responses, and that each one has two possible responses that are to receive credit—a "2" to receive 1 point, and a "B" (code "11") to receive 2 points. The card would appear:

003021	003112	005021	005112	999999
Item Number	Item Number	Item Number	Item Number	6 nines
Response Code	Response Code	Response Code	Response Code	
Credit	Credit	Credit	Credit	

Card(s) 6 - Alternate Response Cards

This card is optional and is included only if "IALT" (Col 43 of Card 1) was "1".

The purpose of the card is to indicate the number of choices for each item (if any different from "IUPLIM" in Col 4 of Card 1) so that the proper correction for guessing can be made.

The first three columns are not read and may contain anything (such as "ALT"). Starting in Col 4, each column contains the number of alternate response choices for the corresponding item. If there are more than 77 items, continue on a second card (skipping the first three columns again). It an item is alphanumeric, its corresponding column may be left blank, or may contain any integer, since it is not used.

Example:

ALT444555333

Here, there were nine items. The first three items had tour alternatives; items 4 through 6 had tive alternatives; and items 7 through 9 had three alternatives.

Note:

Following the last control card for the last job there <u>must</u> be a card containing "999" in Cols 1-3.

Card - Input Sequence (in reverse order).

The cards in brace "A" below may be repeated for any successive jobs.

 ${\hbox{{\tt NOTE:}}}$ The term "card" refers to the type of card(s). There may be more than one physical card per card type. (See detailed description of card preparations.)

IV. SUMMARY

This report describes the development and implementation of a state-of-the-art computer-based item analysis technique. It deviates from traditional techniques by providing detailed information about the characteristics of achievement test items, particularly the ability level at which a given item discriminates most and the degree of discrimination. Here discrimination is independent of item difficulty, unlike traditional methods where the discrimination index is a function of the difficulty. This paper includes all information necessary for potential users and provides all formulas and mathematical derivations upon which the algorithm is based. The computer program has been written in FORTRAN V on the UNIVAC 1100/81 computer system and is easily convertible to other systems. An exception is the plotting subroutine for the item characteristic curves. This subroutine is written in COBOL and is machine-specific. However, the program can be used without the plot-routine since one of the options provides all numerical information about the item characteristic curves and permits manual graphing with ease.

REFERENCES

- Abramowits, M., & Stegun, I.A. Handbook of Mathematical Functions. (National Bureau of Standards, Applied Mathematics Series, Number 55). Washington, D.C.: U. S. Government Printing Office, June 1964.
- Acton, F.S. Numerical Methods that Work. New York, N.Y.: Harpers & Row Publishers, 1970.
- Eaker, F.B. An Intersection of Test Score Interpretation and Item Analysis.

 Paper read at the Annual Meeting of the National Council on Measurement in Education in Chicago, Illinois, February 1964.
- Eaker, F.B. Origins of the Item Parameters X50 and 3 as a Modern Item
 Analysis Technique. Journal of Educational Measurement, 1965, 2, 167-178.
- Vineland, New Jersey: The Training School, 1916.
- Guilford, J.P. The Correlation of an Item with a Composite of the Remaining Items in a Test. Educational and Psychological Measurement, 1953, 13, 87-93.
- Guiltord, J.P. <u>Fundamental Statistics in Psychology and Education</u>. New York, N.Y.: McGraw-Hill, 1965.
- Gulliksen, H. Theory of Mental Tests. New York, N.Y.: John Wiley and Sons, Inc., 1950, 375-378.
- Hamilton, C.H. Bias and Error in Multiple-Choice Tests. <u>Psychometrika</u>, 1950, 15, 151-168.
- Henrysson, S. Correction of Item-Total Correlations in Item Analysis. Psychometrika, 1963, 28, 211-218.
- Kelley, T.L. The Selection of Upper and Lower Groups for the Validation of Test Items. J. Education! Psychological. January 1939, XXX, 17-24.
- Owen, L.B. Tables for Computing Bivariate Normal Probabilities. Annals of Mathematical Statistics. 1956, 27, 1075-1090.
- Rec., M.J.Estimating Item Characteristic Curves. <u>Applied Psychological</u> Measurement. 1979, 3, 371-385.
- Tucker, L.R. Maximum Validity of a Test with Equivalent Items. Psychometrika, 1946, 11 1-13.

APPENDIX A

COMPUTATIONAL FORMULAS AND MATHEMATICAL DERIVATIONS

- 1. Raw Score number of correctly answered items.
- 2. Correction for Guessing Formulas.
 - a. Standard correction (Guilford, 1965, p. 489.)

Corrected Score = (number correct)
$$\frac{1}{(K_i - 1)}$$

Where K_{i} = the number of choices for item i,

n = number of items included in the item analysis, and the sum is taken over those items to which a wrong response was given.

If $K_i = K$ for all i, then this reduces to

(number correct) - number wrong
$$K - 1$$

For items with more than a single correct answer (multiple-response), no correction for guessing is made.

b. Hamilton Correction (Hamilton, 1950)

Corrected Score = a+(b) · (raw score)

where a and b are the coefficients of the linear regression of the corrected score on the raw score.

$$a = \frac{\overline{R} \overline{W} - n G_r^2}{(k-1)G_r^2} \quad \text{and} \quad b = \frac{k G_r^2 - \overline{W}}{(k-1)G_r^2}$$

where: \overline{R} = mean number of questions answered correctly

W = mean number of incorrect answers

n = number of items in the test

k = number of alternatives per item

 \int_{r}^{2} = variance of the raw scores

The squared correlation coefficient between the corrected scores and raw scores is:

$$r^2 = \frac{k G_r^2 - n + \overline{R}}{k G_r^2}$$

NOTE: For multiple-response items (more than one correct answer), no correction for guessing is made.

3. Mean :
$$\overline{X} = \sum_{i=1}^{N} \frac{x_i}{N}$$
 considered.

where N = the number of scores being

4. Variance =
$$6^2 = \frac{\sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2/N}{N-1}$$

5. Standard Deviation =
$$\sqrt{0^2}$$

6. Standard Error of the Mean =
$$\sqrt{N}$$

7. Skewness =
$$\frac{N}{(N-2)}$$
 . S3

where
$$\$3 : \mathbb{T} \times \mathbb{X}^3 = 3 \times \mathbb{T} \times \mathbb{X}/\mathbb{N} \times \mathbb{X}^2 + 2 \times \mathbb{T} \times \mathbb{X}/\mathbb{N} \times \mathbb{X}$$

where Q4 :
$$\frac{N}{(N-1)(N-2)(N-3)}$$
 $\left[(N+1)(2X^{4} - 4(2X/N)2X^{3} + 4(2X/N)$

$$6(-X/N)^{2} - X^{2} - 3(-X/N)^{3} - X) = 3((N-1)/N)) + (-\Sigma X^{2} - \frac{(-\Sigma X)^{2}}{N})^{2}$$

9. Standard Error of the Standard Deviation =
$$\sqrt{\frac{\sigma^2}{N}}$$
. (.5 + .25Q4/ σ^4)

10. Standard error of Skewness =
$$\sqrt{\frac{6N(N-1)}{(N-2)(N+1)(N+3)}}$$

11. Standard Error of Kurtosis
$$\sqrt{\frac{24N(N-1)^2}{(N-3)(N-2)(N+3)(N+5)}}$$

12.
$$z$$
-score = $\frac{x-x}{\sigma}$

13.
T
 score = (z score) . (10) + 50

14. Item Standard Deviation =
$$\sqrt{pq}$$

where p = the proportion of examinees answering the item correction

q = the proportion of examinees answering the item incorrectly, where, necessarily q = 1 - p.

15. Point Biserial Correlation (between item and total test score).

where M is the mean test score for persons answering the item correctly, M is the mean test score for persons answering the item incorrectly.

16. Biserial correlation.

where y is the ordinate at the point of dichotomy in a standard normal distribution (see 25, below).

17. t-test to test the significance of the correlation coefficient.

$$t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$

where r is the correlation coefficient and the resulting t has (N - 2) iegrees of freedom.

16.
$$\frac{x50}{r_{bis}} = \frac{x}{r_{bis}}$$

where X: the abcissa value at the point of dichotomy in a standard normal distribution (see 25 below).

X50 specifies the z-score on the (fitted) item characteristic curve at which 50% of the persons having the z-score chose the correct response. The item characteristic curve is a cumulative normal ogive fitted to the distribution of z-scores versus the proportion passing the item at each r-score level.

19. $\beta = \frac{r_{bis}}{\sqrt{1 - r_{bis}^2}}$ measure of the discrimination power of the item.

In non-technical terms (may be thought of as the slope of the item characteristic curve at X50. Mathematically it is the inverse of the standard deviation of the normal (fitted) ogive.

20. Reliability index of the item.

RI = $\binom{r}{pbis}$. \sqrt{pq} = the contribution of the item variance to the total test variance (Gulliksen, 1950, pp. 375-378).

21. Kuder Richardson Formula 20 (test reliability).

$$r = \frac{n}{n-1} \cdot \frac{s_x^2 - \sum_{i=1}^n P_i \varphi_i}{s_x^2}$$

where n = number of test items.

 S_{γ}^2 : variance of scores on test,

 p_i = proportion of examinees passing item i (difficulty of item),

 q_i : proportion of examinees failing item i where q_i = 1 - p_i

22. Phi Coefficient =
$$\frac{BC - AD}{\sqrt{(A + B) (C + D) (A + C) (B + D)}}$$

where the terms of the equation are defined as follows:

Test Scores

	Lower 50%	Cpper 50%	
Pass	۸	В	Λ + B
Fail	С	Ľ	C + D
	A + t.	B + D	

23. Computing the Tetrachoric Correlation

The tetrachoric correlation is an estimation of the correlation between two variables that are assumed to be from a bivariate normal distribution (i.e., marginal distributions normal, and linearity of regression) when the only actual information given about the distribution is dichotomous (i.e., tour-told frequency table, where the lines of lichotomy are necessarily the medians).

To be more specific, the procedure is:

- (1) Determine, for each variable, what the point of dichotomy should be in a standard normal distribution to produce the observed proportions above and below the dichotomy for that variable. This is simply the inverse function for the normal distribution, whose computation is described above.
- (2) Determine what correlation in a bivariate normal distribution will give the observed proportions in the four regions described by the four-fold table. This involves two problems:
 - a. The bivariate normal distribution must be represented as a function of r, the correlation, and equated to the observed proportion in a given region.
 - b. This equation must be solved for r. An iteration scheme must be used, since the bivariate normal distribution is an integral that must be computed numerically or written in a series expansion; if written as a series expansion, a polynomial equation of high degree must be solved, which requires iteration.

The usual approach is to use the series expansion and solve by iteration. However, for even a moderately large r, the series coverges very slowly; and for each iteration, it must be recomputed.

What is needed then is:

- (1) A better method for computing the bivariate normal distribution.
- (2) A scheme requiring the fewest possible iterations, since the slowest part of the computation is the bivariate normal.

The method used for computing the bivariate was based on the T-function of Owen (1956, p. 1075). The error in the program is less than $5X10^{-8}$ for all correlations and upper limits.

The equation was solved in a manner similar to Newton's (Acton, 1970) method, but with higher order terms included. This was done because the higher order derivatives can be obtained very simply, and are much cheaper than further iterations. (It was found that, using the Cosine-Pi formula of Pearson as a starting approximation, usually only one iteration was necessary to produce the maximum available accuracy, and at most two.)

The series was developed as rollows:

Let
$$B(h,k,r) = \frac{1}{2\pi\sqrt{1-r^2}} \int_{-\frac{1}{2}}^{h} e^{-\frac{1}{2}(\frac{x^2+y^2-2yxr}{1-r^2})} dxdy$$

If B is ditterentiated with respect to r, then the double integration can be performed, leaving

$$\frac{dB}{dr} = \frac{1}{2\pi \sqrt{1-r^2}} e^{-\frac{1}{2} \left(\frac{h^2 + k^2 - 2hkr}{1-r^2} \right)}$$

Therefore:

$$\frac{dr}{dB} = 2\pi \left(1 - r^2\right)^{\frac{1}{2}} e^{\frac{1}{2} \left(\frac{h^2 + k^2 - 2khr}{1 - r^2}\right)}$$

1.et

$$z(r) = 2\pi e^{+\frac{1}{2}\left(\frac{h^2+k^2-2hkr}{1-r^2}\right)}$$

Then

dr dr can be rewritten as tollows:

$$\frac{dr}{dB} = Z(r) \left(1-r^2\right)^{\frac{1}{2}}$$

Furthermore

$$\frac{d^{2}r}{dB^{2}} = \left[\frac{d}{dr}\left(\frac{dr}{dB}\right)\right]\frac{dr}{dB} = \left[-r\left(1-r^{2}\right)^{\frac{1}{2}}Z(r) + \left(1-r^{2}\right)^{\frac{1}{2}}\frac{dz}{dr}\right]\frac{dr}{dB}$$

$$= z^{2}(r)\left[\left(h^{2}+k^{2}-2hkr\right)(r)(1-r^{2})^{-1}-hk-r\right]$$

$$\frac{d^{3}r}{dB^{3}} = \left[\frac{d}{dr}\left(\frac{d^{2}r}{dB^{3}}\right)\right]\frac{dr}{dB} =$$

$$\frac{dr}{dB} \left\{ 2z \frac{dz}{dr} \left[(h^2 + k^2 - 2khr)(r)(1-r^2) - hk - r \right] + z^2 \left[(h^2 + k^2 - 2hkr)(1-r^2)^{-1} \right] - 2hkr(1-r^2)^{-1} + 2r^2(1-r^2)^{-2}(h^2 + k^2 - 2hkr) - 1 \right] \right\}$$

$$= Z^{3}(r) \left\{ \left\{ \left(h^{2} + k^{2} - 2hkr \right) (r) (1 - r^{2})^{-1} \right\}$$

$$\left\{ \left(h^{2} + k^{2} - 2hkr \right) (r) (1 - r^{2})^{-1} - 2hk \right\}$$

$$+ \frac{1}{2} \left(h^{2} + k^{2} - 2hkr \right) + h^{2}k^{2} \right\} \div \frac{1}{2} \sqrt{1 - r^{2}} - \sqrt{1 - r^{2}}$$

By assigning constants as follows, these three terms can be further simplified.

Let

$$C_0 : hk$$
 $C_1 : 1 - r^2$
 $C_2 : \sqrt{C_1}$
 $C_3 : 2C_0$
 $C_4 : h^2 + k^2 - C_3 r$
 $C_5 : C_4/C_1$
 $C_6 = rC_5$
 $Z : (2 ij) exp ($\frac{1}{2}C_5$)

 $D_2 : C_6 - C_0 - r$
 $D_3 : 2 \left[C_6 (c_6 - c_3) + \frac{1}{2}C_4 + c_0^2 \right] / C_2 - C_2$$

Then:

$$\frac{d\mathbf{r}}{d\mathbf{B}} = \mathbf{C}_{\mathbf{Z}} \mathbf{Z}$$

$$\frac{d^{2}\mathbf{r}}{d\mathbf{B}^{2}} = \mathbf{D}_{2} \mathbf{Z}^{2}$$

$$\frac{d^{3}\mathbf{r}}{d\mathbf{B}^{3}} = \mathbf{D}_{3} \mathbf{Z}^{3}$$

No attempt was made to develop higher order terms, because three seemed to give maximum accuracy with only one iteration in most cases; higher terms could be generated in a straightforward manner, with considerable labor.

A first approximation is made with Pearson's Cosine-Pi formula. With this r, the proportion in any one of the four regions is computed using the scheme mentioned above. The difference between this proportion and the desired one in the region is computed, called, say, A B.

Let X = Z(B). Then r is corrected as follows:

r corrected = r + X
$$\left[C_2 + x (1/2D_2 + 1/6 D_3 x) \right]$$

If one iteration does not produce agreement to within $5x10^{-8}$ in the proportion, another iteration is performed. In this way, the desired correlation is reached.

The accuracy obtained in the correlation itself varies. For certain distributions (correlations very nearly 1.0, or very large or small h and k), dB/dr is nearly zero, so that a small error in the proportion corresponds to a large error in the correlation. However, the correlation given by the program does reproduce the four-fold table with an error of not more than 5×10^{-8} , which is a reasonable measure of the accuracy of the correlation. It should also be noted that in the exceptional ranges $m_{\rm c}$ loned, a small error in the input causes a very large error in the correlation, making it highly unreliable. (These are the cases where the standard error is largest, for a given N.)

24. If there is an <u>outside criterion</u>, a validity coefficient is computed which is Pearson's r.

$$r_{xy} = \sum_{i=1}^{N} \frac{(x_i - \overline{x})(y_i - \overline{y})}{N G_x G_y}$$

where r_{xy} = correlation between X and Y.

X_i = internal criterion scores.

 \overline{X} = mean of X values.

Y; = external criterion scores.

 \overline{Y} = mean of Y values.

 $_{\mbox{\scriptsize C}\chi}$ = standard deviation of the distribution of X scores.

'Y = standard deviation of the distribution of Y scores.

25. <u>Calculation of abcissa and ordinate</u> of standard normal distribution at dichotomy.

The abcissa (X) and the proportion passing item (p) are related as follows:

$$p = \frac{1}{\sqrt{x_n}} \int_{x}^{\infty} e^{-\frac{1}{2}u^2} du$$

The ordinate (y) is then computed as:

$$y = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

x is obtained in the manner discribed in 26 below.

26. Computation of the Inverse Normal Distribution Function.

The inverse normal (cumulative) distribution function x(q) is defined by the equation

$$q = \frac{1}{\sqrt{2\pi}} \int_{X(q)}^{\infty} e^{-\frac{1}{2}t^2} dt$$
, $0 < q < 1$

However, since x(1-q)=-x(q), only the $0 < q \le .5$ range is necessary to be considered.

Hastings (1964) gives a min-max rational approximation to x(q) which has a maximum error of 4.5 x 10^{-4} over the range $0 < q \le .5$. Since greater accuracy was desired, the following approach was taken.

(a.) Obtain the derivatives of x(q) as follows:

$$q_{i} = \frac{1}{\sqrt{2\pi}} \int_{x(q_{i})}^{\infty} e^{-\frac{1}{2}t^{2}} dt$$

$$\frac{dq}{dx} = -\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}}$$
and
$$\frac{dx}{dq} = -\sqrt{2\pi} e^{\frac{1}{2}x^{2}}$$

$$\frac{d^{2}x}{dq^{2}} = \left[\frac{d}{dx} \left(\frac{dx}{dq}\right)\right] \frac{dx}{dq} = \left(\frac{dx}{dq}\right)^{2}x$$

$$\frac{d^{3}x}{dq^{3}} = \left[\frac{d}{dx} \left(\frac{d^{2}x}{dq^{2}}\right)\right] \frac{dx}{dq} = \left(\frac{dx}{dq}\right)^{3} \left(1 + 2x^{2}\right)$$

$$\frac{d^{4}x}{dq^{4}} = \left[\frac{d}{dx} \left(\frac{d^{3}x}{dq^{3}}\right)\right] \frac{dx}{dq} = \left(\frac{dx}{dq}\right)^{4} \left(7x + 6x^{3}\right)$$

$$\frac{d^{5}x}{dq^{5}} = \left[\frac{d}{dx} \left(\frac{d^{4}x}{dq^{4}}\right)\right] \frac{dx}{dq} = \left(\frac{dx}{dq}\right)^{5} \left(7 + 46x^{2} + 24x^{4}\right)$$

Higher order terms are generated in a similar manner.

- (b.) Obtain an initial approximation of x_1 by the Hastings formula (26.2.23).
- (c.) Compute the error in q(x), say $_{\Lambda}q=q(x_{i})$ q. Most Fortran compilers have the Error Function available from which $q(x_{i})$ can be obtained. For large x_{i} , a Gaussian continued fraction can be used to arrive at $_{\Lambda}q$.

(d.) Write the correction terms as a Taylor series for x in terms of / q, expanding about q(x_i) (which is the q of the initial approximation), 10^{-38} q \leq .5. The lower limit (10^{-38}) is the smallest number on the IBM 7040 computer on which this program was developed.

It was found that only the first two terms of the Taylor series were required to attain desirable precision on an eight-digit machine, yielding an error of the magnitude of 5×10^{-8} . Using the first five terms of the series resulted in an error of less than 10^{-15} .

The first term in the series is equivalent to a single iteration by Newton's method. The reason for using higher order correction terms in lieu of further interations is that the former can be obtained very quickly from the first-order term, whereas additional iterations would require evaluation of q(x) and dx/dq for each iteration.

A graphical illustration may be helpful to understand the algorithm. Figure A-l shows the initial approximation \mathbf{x}_i , with the associated $\mathbf{q}(\mathbf{x}_i)$; the derived $\mathbf{q}(\mathbf{x}_F)$ associated with the final approximation \mathbf{x}_f , and the error (or difference) between the initial and final approximation ('x and q).

$$\Delta x = \frac{dx}{dq} (\Delta q) + \frac{1}{2} \frac{d^2x}{dq^2} (\Delta q)^2 + \dots$$

The final approximation, $\mathbf{x}_{\mathbf{F}}$, correct to eight digits can be written as follows:

Let

$$z = \frac{dx}{dq} (\Delta q) = -\sqrt{2\pi} e^{\frac{1}{2}x^2} (\Delta q)$$

Then

$$X_f = X + Z \left(1 + \frac{1}{2} XZ \right)$$

For 16-digit accuracy the final approximation, $\mathbf{x}_{\mathbf{F}}$, takes the form of:

$$X_{F} = x + Z\left(1 + Z\left(\frac{x}{2} + Z\left((1 + 2x^{2})/b + Z\left(x(7+bx^{2})/24\right)\right)\right)$$

$$+ Z\left(7 + x^{2}(46 + 24x^{2})\right)/(120)))$$

27. <u>Correction for overlap in biserial correlation</u> when item score contributes to criterion score (internal criterion).

Guilford's Method:

corrected
$$r_{bis} = \frac{r_{h.s} G - \rho q / y}{\sqrt{5^{\frac{1}{2}} (\rho q / y)^{\frac{1}{2}} - 2 r_{h.s} G (\rho q / y)}}$$

where ____ = standard deviation of test.

p,q are the same as in 14.

Henrysson's Method:

corrected
$$r_{\text{bis}} = \frac{r_{\text{his}} G - pq/y}{\sqrt{\sigma^2 + pq - 2r_{\text{his}} Gy}}$$

28. Correction for overlap in point biserial correlation.

corrected
$$r_{pbis} = \frac{r_{pb.}, \kappa - \sqrt{pq}}{\sqrt{6^2 + pq - 2r_{pb.}} \kappa \sqrt{pq}}$$

29. More on the Item Characteristic Curve

The information given about the item variable is a dichotomy since the item score is either pass or fail. To justify the statements about the shape of the item characteristic curve (i.e., ogive) and the formulas used for estimating its parameters, we have to make certain basic assumptions:

- (1) The item variable is continuous even though we know only dichotomous information about it. That is individuals know various amounts of information about the item, a certain amount of which is necessary to fall into the pass/fail dichotomy.
- (2) The regression of the item variable on the criterion variable is linear.

(3) The conditional distribution of the item variable (i.e., the distribution of the item variable for a given criterion score) is normal, with a variance independent of the criterion

The following discussion assumes that both the criterion variable and the item variable are in standard scores (i.e., deviations from the mean in standard deviation units). This means that the regression line passes through the origin, has a slope of r, where r is the correlation between the two variables, and the variance of the conditional distribution of the item variable is $(1-r^2)$. Figure A-2 is a graphic representation of the situation where

- p = proportion of individuals passing the item
- q = (l p) = proportion of individuals failing the item
- c : cutoff point on the item variable corresponding to the pass/fail dichotomy

The abscissa represents the criterion variable in standard scores (x-axis).

The ordinate represents the item variable in standard scores (y-axis). p(x) = preportion of individuals passing the item for a given criterion score x (shaded areas in Figure A-2).

FIGURE A-2

The conditional distributions have means on the line y: rx since linearity of regression was assumed.

Consider now p(x), the proportion above the cutoff point C in the conditional distribution varies with x. Since the conditional distribution is normal, its variance is $1 - r^2$ (see Proof 1) and furthermore this variance is independent from x. However, as x increases, the distance between the mean of the conditional distributions and the cutoff point C increases as well. In fact this distance is (C - rx). Since the displacement of the mean from the cutoff is a linear function of x, the proportion above the cutoff in the conditional distribution produces a normal ogive (cumulative normal distribution) with respect to x.

<u>Proof 1</u> To prove that the variance of the conditional normal distribution equals $(1 - r^2)$.

By hypothesis, the variance of the conditional distribution is constant, say $\frac{2}{2}$. Also by hypothesis, the mean of the conditional distribution is (rx). Therefore

(1)
$$\int_{0}^{\infty} (y - rx)^{2} f(y \mid x) dy = \int_{0}^{2} r^{2} dx$$

where f(y|x) = conditional density of y

Also by hypothesis (normal distribution), the means of y and x are zero and their variance is 1.

Thus:

(2)
$$\iint_{-\infty} y^2 g(x) f(y|x) dy dx = 1 \qquad \text{Variance of } y$$

where g(x) = density of x

and g(x)f(y|x) = joint density of y and x

from (1) above

$$\int_{-\infty}^{\infty} y^2 f(y|x) dy - 2rx \int_{-\infty}^{\infty} y f(y|x) dy + r^2 x^2 \int_{-\infty}^{\infty} f(y|x) dy = \int_{0}^{2}$$

Collecting terms and realizing that

$$\int_{-\infty}^{\infty} yf(y|x)dy = rx, \quad \int_{-\infty}^{\infty} y^2f(y|x)dy = 2r^2x^2 - r^2x^2 + \frac{2}{3} = \frac{2}{3} + r^2x^2$$

Substituting into (2) results in:

$$\int_{0}^{\infty} g(x) \int_{0}^{\infty} y^{2} f(y|x) dy dx = \int_{0}^{\infty} \left(\int_{0}^{2} + r^{2} x^{2} \right) g(x) dx = \int_{0}^{\infty} g(x) dx + r^{2} \int_{0}^{2} x^{2} g(x) dx = 1$$

Since

$$\int_{0}^{\infty} g(x)dx = 1 \qquad density of x$$

and

$$\int_{-\infty}^{\infty} x'g(x)dx = 1$$
 variance of x by hypothesis

we have

$$r^2(1) + r^2(1) = 1$$

$$\frac{2}{3} + r^2 = 1$$

$$r^2 = 1 - r^2$$

Returning to Figure A-2, at the point where the cutoff line y + C intersects the regression line y = rx, the value of x is called $\underline{X50}$. At this point as it can be seen from Figure A-2, 50% of the conditional distribution falls above and -50° talls below the cutoff since the mean of the conditional distribution coincides with the cutoff at this point. Since C = r(X50) at this point, $\underline{X50} = C/r$.

X50 is also the inflection point for the item characteristic curve (the curve of p(x) plotted against the criterion score). This curve is a normal ogive and has a standard deviation of

$$G = \frac{\sqrt{1-r^2}}{c}$$

Proof 2 The conditional density of the item variable y is

$$P(y|x) = \frac{1}{\sqrt{2v}(\sqrt{1-r^2})} e^{-\frac{1}{2}\frac{(y-rx)^2}{1-r^2}}$$

The proportion above the cutoff is

$$P(x) = \frac{1}{\sqrt{2\pi (1-r^2)!}} \int_{c}^{\infty} e^{-\frac{1}{2} \frac{(y-rx)^2}{1-r^2}} dy$$

let t = y/r - x

dy = rdt

then

$$P(x) = \frac{r}{\sqrt{2\pi (1-r^2)^{\frac{1}{2}}}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}} \frac{t^2}{(1-r^2)/r^2} dt$$

which is a normal ogive with standard deviation of

and inflection point of c/r.

The reciprocal of the standard deviation of the normal ogive is called

$$\beta \text{ and } \beta = r/(1-r^2)$$

There are numerous methods of estimating the parameters c and r from a given sample. Probably the best is the maximum likelihood method by which c and \hat{r} , the estimates of c and r, are chosen in such a way as to maximize the probability of occurrence of the sample data at hand, with the hypothesized probability distribution depending only on these two parameters. However, this method leads to non-linear simultaneous equations which must be solved iteratively with considerable labor at each step. A far simpler method for estimating r is by use of the biserial correlation. This method, however, requires two additional assumptions, namely that the regression of the criterion variable on the item variable is normal. The formula can be arrived at as follows:

Let f(x|y) be the conditional density x. The marginal distribution of y is hypothesized to be standard normal, so the density of y is

$$g(y) = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{\lambda} y^{\lambda}}$$

The assumption of linearity of regression of \boldsymbol{x} and \boldsymbol{y} means that

$$\int_{xf(x|y)dx = ry} xf(x|y)dx = ry$$

that is, the mean of the conditional distribution of x falls on the line x = ry.

Now consider \overline{X}_p : mean criterion value for cases above the cutoff line y=c.

$$\overline{X}_{p} = \int_{-\infty}^{\infty} xf(x|y)g(y)dxdy$$

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} f(x|y)g(y)dxdy$$

where f(x|y)g(y) is the joint density of x and y.

$$\overline{X}_{p} = \frac{\int_{g(y)}^{\infty} g(y) \int_{g(x,y)}^{\infty} xf(x,y) dxdy}{\int_{g(y)}^{\infty} f(x,y) dxdy}$$

Now

$$\int_{xf(x|y)dx = ry}^{\infty}$$

by hypothesis and

$$\int_{-\infty}^{\infty} f(x|y)dx = 1$$
therefore $\overline{X}_{p} = \int_{-\infty}^{\infty} g(y)dy$

out

$$\int g(y) dy = P$$

thus

$$r \int_{P} \frac{r \int_{\sqrt{2\pi}}^{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} dy}{P} = \frac{1}{\sqrt{2\pi}} \frac{r}{P} e^{-\frac{1}{2}e^{2}}$$

hence

$$r = \frac{P \tilde{\chi}_{\rho}}{\sqrt{2\tilde{n}}} e^{-\frac{1}{2}C^{*}}$$

Let

$$z = \frac{1}{\sqrt{2 i r}} e^{\frac{1}{2}c^2}$$

where c is simply the abscissa corresponding to a proportion P in a standard normal distribution, since the item variable was assumed to be normally distributed.

Rewriting Xp in terms of raw scores,

$$r = \frac{P}{Z} \cdot \overline{X} p = \frac{Mp - Mx}{6x} \cdot \frac{P}{Z}$$

which is the formula for the biserial correlation.

This relationship is exact for the population but it is only an estimate when written in terms of sample values. It is not as efficient as the maximum likelihood method, particularly for a large r; in fact for a large r, it is a rather poor estimator.

It is possible to incorporate the maximum likelihood method in this item analysis package; however, core limitations of the computer (IBM 7040) for which this program was originally developed would have made the attempt impractical with an added costly time factor. See also Ree (1979).

30. Average Item Difficulty

The percent of individuals passing a certain item is converted to a standard difficulty (D):

$$D = 0.5 - 0.16147653x$$

where x is the abscissa corresponding to the proportion of individuals passing the item (upper portion of the normal distribution).

To convert back from standard difficulty to the corresponding proportion:

Proportion:
$$\frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\frac{1}{2}t^{2}} dt$$

where
$$x = (.5 - D)/.16147653$$

Averaging is done with standard difficulties and then converted back to proportion passing.

A proportion of .999 converts to a D = .999

31. Mean of the jth alternative of item i
$$\overline{X}_{ij} = \sum_{k=1}^{N_i} X_{ijk} / N_i$$

where $N_i = N$ if the test was a power test and

= the number of people reaching item i if the test was a speed test.

32. Standar Deviation of the jth_alternative of item i

$$SD_{i_{\frac{1}{4}}} = \sqrt{\overline{X}_{i_{\frac{1}{4}}} \left(1 - \overline{X}_{i_{\frac{1}{4}}}\right)}$$

33. Correlation between alternatives a and b if item i

$$_{i} \Gamma_{ab} = \sqrt{\frac{\overline{x}_{ia} \overline{x}_{ib}}{(1-\overline{x}_{ia})(1-\overline{x}_{ib})}}$$

(Formulas 31 and 32 are derived from the regular formulas by noting that the individual values of the alternatives are 1's and 0's only and that the alternatives are mutually exclusive.)

34. Point-Biserial correlation between the criterion Y and the jth alternatives of item i

$$Phis Y_{j,k} = \frac{\sum_{k=1}^{N_{i}} X_{ijk} Y_{ik} / N_{i} - \overline{X}_{ij} \overline{Y}_{i}}{SD_{ij} SD_{ij}}$$

(Note that in a speed test \overline{Y}_i and SD_{yi} are based on the N_i reaching item i; in a power test, they are computed on the full sample).

35. Biserial correlation between the criterion Y and the jth alternative of item i

$$r_{is} = \frac{r_{is} r_{is} \cdot 5D_{ij}}{z}$$

where Z : the ordinate of the unit normal distribution curve with area equal to 1.0, at the point of division between segments containing ρ and q and q and q and q are q and q and q are q and q are q and q are q and q are q are q are q and q are q and q are q and q are q are q are q and q are q are q are q are q and q are q are q are q are q and q are q are q and q are q are q are q are q are q and q are q and q are q are q and q are q are q are q and q are q and q are q are q are q and q are q are q are q are q are q are q and q are q are q are q and q are q and q are q are q are q and q are q are q are q are q are q are q and q are q and q are q

36. Biserial validity significance test value =

the significance test is bis^rjy is then:

 $P \le .05$ if RTEST ≥ 1.96

 $P \le .01$ if RTEST ≥ 2.576

APPENDIX B

IAP Sample Run

3 × ×		÷80	Ö	c	c	1
SANPOWER AND PERSONNEL DIVIDION AF HUMAN RESOURCES LAFORATORY AIR FORCE SYSTEMS COMPAND		EASY# +80	NOCASER	IRMINDH	# 00 00 00 00 00 00 00 00 00 00 00 00 00	1 1 1
E STATE		35	0	0	:	
MANPOWER AND PERSONNEL DIVIDION AF HUMAN RESOURCES LAPORATORY AIR FORCE SYSTEMS COMMIND		* 67.2	• TUO	# 0 N 3 O I		4364 4364
		13	0	60,		>
52A3 ***		* 5	# 1 2 N D Z	EXCRE 1.00		# 60 92 93 93 22
usc s	88	0	a		2	0
TEM OF 1974 (5	SPECIFIED CONTROL PARAMETERS	*OX	X		2	HERI
CONTROLLED ITEM PRIVACY ACT OF 1	CONTRO	5	•	- (5	6
CONTROLLED ITEM	SPECIFIED	KI 10	4 4	1 5 9 4 0 1 7	3PLOT#	ICARO#
DNAL DI		-		3	0	,
(2 a a a a a a a a a a a a a a a a a a a		***************************************		KSPEED	IOVER	IALTS
tr.		,	•	6	~	
IAF : ITEM ANALUSIS PROGRAM			*F13401	IALPHAR	IFREGR	ATESTA
A A A A A L	•	1	D	0.	,.	υ
IAP : TTEY AND SOUNDS			#ST117#	015FLT= .00		1001=

TITLES INP CLASS RUN

THOUT FORMAT FOR DATA ON FORTRAN FILE (SEAA6/1114-5011)

NUMESTE ANSWER KEY GIVEN 1222155233223332235235222

SE SHEET OF BEERS SO

FINST PECOND READ ID IS 1 PESPONSES MEAD 2232333334242332324433311

~ .	IAP : ITER	ITEM ANALYSIS PROGRAM	•		CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONTROLLED ITEM	1076	COMTROLLED ITEM MANPO DETUACY ACT OF 1076 (5 MCF 552A) ***	MANPOWER AND PERSONNEL DIVISIO Af HUMAN RESOURCES LAHORATORY
1.4	IAP CLASS	W O W		10000					AIR FORCE SYSTEMS COMMAND
	= = = = = = = = = = = = = = = = = = = =	ITEM	INFORMATION			PROPORTION	1 0 F	225 SUBJECTS SELECTING EACH F	RESPONSE
Z	NUMBER	DIFFICULTY	OM 175	-	~	(14	4		
		191	000	101.	129.	.249	.018		
	~	.547	0.0	.231	869.	.071			
	٣	107*	000	.138	.551	.284	.027		
	4	•52•	000	• 0 4 4	777.	077	.071		•
	~	126	000*	.156	.431	.369	*0:4		
	٥	.028	060*	.218	.476	.271	•036		
	7	.233	000.	.027	•264	225.	.347		
	шQ	. 536	000•	•042	- 502	.387	650.		
	O.	.356	000	*50*	.369	.524	•062		
	1 C	1361	000	740.	.280	9440	.160		
	:	962*	0ũ3•	.013	107	.333	.547		
	12	. 324	000*	-052	.493	.351	.093		
	~	.361	* 00 *	•036	•329	.520	-11		
(14	• 502	000*	072.	.627	•102	•031		
57	15	*265	000	•053	.160	677*	.338		
	9	0 4 %	000•	920.	.378	.520	.057		
	17	645.	000	6ù0°	•225	789*	.084		
	æ:	.547	000	.173	.675	.142	600		
	<u>•</u>	627.	000•	.271	609*	.102	.018		
	20	.295	063•	•058	.351	.471	.120		
	5 ‡	.413	000•	•076	.560	.333	.031		
	22	.313	202•	070	.418	787.	•058		
	23	.526	000*	.196	779.	.142	.018		
	72	.354	000•	.116	.516	.316	•053		
	52	*295	000*	670*	.387	125	.093		
	52	073	000	• 0 2 2	.178	709*	196		
	27	•456	760*	290.	.591	.316	•022		
	28	625.	000•	•076	609.	•305	.013		
	52	• 526	000	.182	779.	.169	*00*		•
	O M	• 396	000.	.191	.547	-244	.018		-

MANPOWER AND PERSONNEL DIVISION AF HUMAN RESOURCES LABORATORY AIR FORCE SYSTEMS COMMAND THE FOLLOWING ITEMS FALL OUTSIDE OF THE SPECIFIED DIFFICULTY RANGE AND SHOULD BE ELIMINATED BECAUSE OF EXTREME DIFFICULTY/EASINESS EASY ITEMS ABOVE .80 DIFFICULT ITEMS BELOW .20 CONTROLLED ITEM *** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) *** IAP : ITEM ANALYSIS PROGRAM IAP CLASS RUN

~ • %

IAP : ITEM ANALYS	SIS PROGRAM	-	: : :	2000	CONTROL PATA - PRIVACY	LED IT	EM 4072 (6	201		AND PERSONNEL
TAP CLASS PUN			•		•	-	*	٠ ١		A FORCE SYSTEMS CO
ITEM ALTERNATIVE	INFORMATION	ROSTE	R (BAS	S ON C	CORRECTED TE	ST SCORE	CRITER!	CHOI		
17E4-AL7	MEAN	STD	biff.	CRIT. V. PI BIS	ALIDITY	**** 0 4 1 1	***************************************	*****	ALTERNAT	TAVE INTERCORRELATIONS ************************************
0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0000 0000 0000 0000 0000 0000 0000	0004444 00004444 000000000000000000000	0000	00000 0000 00000 00000	000000000000000000000000000000000000000	000000	1.000 448 139	1.000	1.000	1.000
2-0411 2-1 2-2 +	. 2311 . 6973 . 6773	.0000 .4215 .4592 .2570	.000	. 0000 . 0000 . 0000 . 0000	0000 0000 3407 *	- 000 - 000 - 000	1.000	1.000	1.000	
# * # OF N M V M PO M M PO	00000000000000000000000000000000000000	. 60000 . 5447 . 4574 . 1531	0040	. 0000 . 0000 . 1443 . 0000	.0000 .0000 .2210 .1125		1.000	1.000 699	1.003	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0000 44444 00004 44044	.0000 .2001 .4969 .4964 .2570	.2559 .2559	.0000 .0000 .0411 -0204	00000 00000 00000	00000	1.000	1.000	1.000	1.000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 0000 . 15556 . 15556 . 15659	.0000 .3624 .4952 .4825	.000 .241 .159	.0000 .0000 .1032		00000	1.000 374 328	1.000 666 188	1.000	1.000
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	. 2173 . 2773 . 2774 . 2774 . 5774	.0000 .4127 .4294 .4245	0000	00000 00000 00000 00000	.0000 .0000 .0000 .0000	0000	1.000 502 322	1.000 581	1.000	1.000
7-0#17 7-1 7-2 7-3 *	.0000 .0067 .2044 .4222	.0000 .1611 .4033 .4939	.000 .500 .230	9000 9000 9000 7000	.0000 .0000 .0000 .2836		1,000 034 141	1.000	1.000	1.000
H 8 X 0 F () M 4 1 1 1 1 1 0 W 70 91 15	0.000000000000000000000000000000000000	.0000 .2416 .5000 .4870	.000 .336 .182	.0000 .0000 .1268 0425	* 00000 * 14642 * 10000 * 10000	00000	1.000 1.200 1.205	1.000	1.000	
· FLAGS COR	CORRECT ANSWE	α			#	INDICATES	BISERIAL	. VALIDITY	TH SIGNIFICANT	ICANT AT .05 LEVEL & ** FGR .01

MANPOWER AND PERSONNEL DIVISION AF HUMAN RESOURCES LABORATORY AIR FORCE SYSTEMS COMMAND		INTERCORRELATIONS ************************************								
			1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
:		ALTERNATIVE 3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
USC 552A)	(NO	2	1,000	1.000	1.000 244 379	1.000	1.000	1.000	1.000	1.000
1974 (5	CRITERIO	•	1.000 165 226	1.000 189 289	1.000 040 082 128	1.000 254 189	1,500 -,134 -,200 -,568	1.000 728 190	1.000 104 214	1.000
LED ITEM	SCORE	0417	00000	0000	4.000 .000 .000 .000	0000	1.000 013 047 026	0000	0000	00000
CONTROLLED Data - Privacy ac	CORRECTED TEST	VALIBITY S BIS		.0000 .0050 .2823	.0000 .0000 .0000 .0197	.0000 .0000 .2671 **	2842 .0000 1175 .2479 **	.0000 .3474 .0000	.0000 .0000 .0000 .3172 **	.0000 .0000 1054 .2386 **
SONAL	ED ON "CC	CRIT. VI PT BIS	.0000 .0000 0106	.0000 .0000 0208 .2143	.0000 .0000 .00119	.2000 .2052 .2052 .2053	0556 -0000 0700 -1934	.0000 .0000 .2772 .0000	.0000 .0000 .0000 .2355	.0000 .0000 .11859
* * * * * * * * * * * * * * * * * * *	R (BASE	DIFF.	. 159 . 366 . 366	0000	0000	324	.000 .361	0000	.000	.000
	ROSTE	STD	.0000 .2061 .4825 .4994	.0000 .2781 .4490 .4994	.0000 .1147 .3087 .4714	.0000 .2416 .5000 .4773		.0000 .4271 .4837 .3029 .1736	.0000 .2247 .3666 .4974 .4730	
IS PROGRAH	INFORMATION	REAN	.0000		.0000 .0133 .1067 .3333		.0054 .0356 .3289 .5200	.0000 .2400 .6267 .1022	.0000 .0533 .4600 .4689	.0000 .0356 .3778 .5200
IAP : ITEM ANALYSI IAP CLASS RUN	ITEM ALTERNATIVE	ITEM-ALT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10-0#17 10-1 10-2 10-3	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12-10MIT 12-1 12-2 • 12-3 12-4	13 - 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14-0 M 1	15-0#IT 15-1 15-2 15-3 15-4	16-1 16-1 16-2 16-3

	* * *	
	552A)	
	usc	
	2	
x	1974	
ITE	0	
40	AC.	
ROLL	AC.Y	
CONTROLLED ITEM	A IV	
Ŭ	,	
	DATA	
	*** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) ***	
	*	
	•	
: ITEM ANALYSIS PROGRAM		
LYSIS		
AXA		NO.
E SI		P CLASS RUN
		3
٥.		۵

IAP : ITEM ANALYSIS	SIS PROGRAM		0£	SONAL	CONTROLL DATA - PRIVACY	A 0	EM F 1974 (5 USC 552	52A) ***	WER AND PERSONNEL UMAN RESOURCES LAB
IAP CLASS RUN										RCE SYSTEMS COMMAN
ITEM ALTERNATIVE	INFORMATION	ROSTE	R (BASE	ED ON "C(CORRECTED T	EST SCORE	CRIT	FRION)		
ITEM-ALT	BEAN	57 D 0 E V	DIFF.	CRIT. VI	ALIDITY 61S	# # # # O M I T	***	*******	ALTERNATIVI 3	IVE INTERCORRELATIONS ************************************
17-0#17 17-1 17-2 17-3	.0000 .0089 .2222 .4486	.0000 .0939 .4157 .4647	.000 .000 .000	.0000 .0000 .0000 .2051	.0099 .0000 .2589 **	. 0000 . 0000 . 0000	1.000 051 139	1.000	1.000	1-000
E E E E E E E E E E E E E E E E E E E	0000 0000 00000 00000 00000 00000	.0000 .3785 .4682 .3493		.0000 .0000 .2115 .0000	. 0000 . 0000 . 2665 . 0000 . 0000	. 0000 . 0000 . 0000	1.000 661 186	1.000	1.000	
190-19 190-2 190-3 191-6	.0000 .2711 .6089 .1022	.0000 .4445 .4880 .3029	.028 .000	.0000 .0717 .2736 .0000	.0000 -1836 -3431 -0000	0000	1.000 761 206	1.000	1.000	1.000
**************************************	.0578 .0578 .3511 .4711	.0000 .2333 .4773 .4992		.0000 .0000 -0197 .1510	.0000 .0000 -0311 .1996	0000	1.000	1.000	1.000	1.000
21-0#11 21-1 21-2 • 21-3 21-4	.0000 .0756 .5600 .8333	.0000 .2643 .4964 .4714	.000 .413 .000	.0000 .0000 .1314 0351		00000	1.000 323 202	1.000	1.000	1.000
22-0HIT 22-1 22-2 22-3 *	.0000 .0400 .4178 .4844	.0000 .1960 .4932 .4998	.000 .224 .313	.0000 .0000 -1321 .1978	.0000 .0000 .1841 *	00000	1.000 173 198	1.000	1.000	
23-0 MIT 23-1 23-2 23-4 23-4	.0000 .1956 .6444 .1422	.0000 .3966 .4787 .3493	.000 .000	.2938 .2938 .0000		00000	1.000	1.000 548 181	1.000	1.000
24-0H1T 24-7 24-3 24-3 24-4	.0000 .1156 .5156 .8456	.0000 .3197 .4998 .4647	.000 .354 .087	.0000 .0000 .1676 .0253	.0000 .0000 .22155 .0000	6300.	1.000 373 245	1.000	1.000	1.000
* FLAGS CO	CORRECT ANSWER				•	TWOTCATES	ATCEPTA	VAL TAT TAY	Y STENIFICANT	CANAL CO. GOS 66 S. SWALL SO, TA THANKS.

IAP : ITEM ANALYSIS PROGRAM

MANPOWER AND PERSONNEL DIVISION
AF HUMAN RESOURCES LABORATORY
AIR FORCE SYSTEMS COMMAND CONTROLLED 11EM

IAP CLASS RUN

ITEM ALTERNATIVE INFORMATION ROSTER (BASED ON "CORRECTED TEST SCORE" CRITERION)

TICH ALICHARITAE INFORMATION NOOTEN	TIVE THE THE	N 100 M	240		בטאאני בט זה	1631 35075	ENT LERICA						
ITEM-ALT	REAN	STD	DIFF.	CRIT. VALIDITY PT BIS BIS	ALIDITY BIS	0417	******	2	ALTERNATIVE 3	IVE INTEG	INTERCORRELATIONS	7	
25-1 25-1 25-2 25-3 25-4	.0000 .0489 .3867 .4711	.0000 .2156 .4870 .4992	.000 .182 .295	00000	0000 0000 2046	00000	1.000 180 214 073	1.000	1.000	1.000			•
26-5 26-3 26-3 26-3 26-3	.0300 .0222 .1778 .4046	.0000 .1474 .3823 .4890	000	00000 00000	00000	0000	1.000 070 186	1.000	1.000	1.000			
11 40 - 27 2 72 72 72 72 72 72 72 72 72 72 72 7	.0064 .0667 .5911 .3156	.0665 .2494 .4916 .4647	.000 .089 .000	-0337 -0000 -2585 -0985	1720 -0000 -3247 -1742	1.000 016 080 045	1.000 321 181	1.000 816 181	1.000	1.000			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.0000 .0756 .6089 .3022	.2643 .4880 .4592	.000 .070 .070	.0000 .0000 .1541 .0467	.0000 .0000 .1932 -0888	00000	1.000 357 188	1.000 821 145	1.000	1.000			
29-0n11 29-1 29-2 29-3 29-4	71925 71925 71925 71936 71936	.0000 .3860 .4757 .3747	.000 .000 .000	.0000 .1682 .0000	.00000 .2110 .0000	0000	1.900 636 213 032	1.000 1.607 1.090	1.000	1.000			
30-0417 30-1 30-2 30-3 30-4	.0000 .1911 .5467 .2444	.0000 .3932 .4978 .4298	0 % C O O O	.0000 .0000 .0000 .0000	.0000 .0000 .3213 .0000	0000	1.000 534 276 065	1.000	1.000	1.000			
• FLAGS	FLAGS CORRECT ANSWER	œ			•	+ INDICATES		VALIBIT	Y SIGNIF	BISERIAL VALIDITY SIGNIFICANT AT .05 LEVEL	.05 LEVE	8 ** FOR .01 LEVEL	LEVEL

MAI 1974 (5 USC 552A) *** A	AIR FORCE SYSTEMS COMMAND	STATISTICS	S.E. KURTOSIS S.E. NO. OF SUBJECTS	.16 .50 .32 225	.16 .50 .32 225
CONTROLLED ITEM PRIVACY ACT OF 1		SUMMARY OF TEST STATISTICS	SKEWNESS S.E.	25 .16	25
DATA - F		SUM	S.E.	.18	.24
** PERSONAL			ST.DEV. S.E.	3.41	4.57
•			S.E.	.23	•30
PROGRAM			MEAN	15.01	96.6
IAP : ITEM ANALYSIS PROGRAM	IAP CLASS RUN		VARIABLE	RAW SCORE	CCARECTED SCORE

TEST RELIABILITY .. 760

IAP : JTEM ANALYSIS PROGRAM

HISTOGRAM - EACH) = .5 PERCENT PERCENT FREQUENCY SCORES T-SCORE FREQUENCY DISTRIBUTION OF 2-SCORE SCORE

F4488 NFNFV6NNF 43.32 56.54 58.83 61.01 65.39 67.58 74.14 \$2.28 45.1 2.63 80

CONTROLLED ITEM
*** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) ***

IAP : ITEM ANALYSIS PROGRAM

The content of the				INIGNI	DUAL SCORES			
SCORE Z-SCORE T-SCORE			•			ORRECTE		
1,		C	-SCCR	-SC08	COR	Z-SCORE	SCOR	~
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-	16	• 2 9	7.04	9	• 28	7.16	0
1,	~	16	0	2.90	٣.	•	5.99	0
4 -1.200 52.00 -4.81 3.00 5.00 -4.81 3.00 5.00 <	►	14	٥	7.04	8.6	•28	7.16	C
1	•	16	5	2.90	1.3	•50	5.99	0
1	•	•	.23	69.	4.8	3.23	7.63	0
17 2.564 55.842 7.207 7.207 7.501 75.910 7.501	ø	œ)	\$2.	£ 7. 6	•	2.13	9.66	0
23 2.3.45 57.44.7 7.3.40.7 7.3.	۴.	17	• 58	8.8	9•2	• 59	5.91	0
17 884 55.842 7.35 879 55.401 18 291 55.842 7.35 297 55.401 19 291 52.066 0.00 867 51.20 11 291 52.066 0.00 867 51.20 11 291 52.066 0.00 867 51.20 11 291 52.066 0.00 867 51.20 11 291 52.066 0.00 867 51.20 12 291 52.068 11.17 563 55.46 13 296 42.00 0.00 863 55.46 14 296 42.00 0.00 863 55.46 15 296 42.00 0.00 863 55.46 16 296 42.00 0.00 863 55.46 17 296 42.00 0.00 863 55.46 18 2	αc	23	75.	3.44	9.0	.34	3.40	
1	o	17	8.58	18.5	2.6	• 29	5.91	
1.5	1.0	13	.58	4.10	7.3	• 57	72.7	0
12	-	46	5	2.90	1.3	\sim	66.2	0
11 .291 55.842 12.50 .25.66 16 .296 55.842 11.17 .265 .266 11 .296 47.040 8.50 .200 6.797 .26.797 11 .286 47.040 8.50 .200	~ ;	12	80	1.17	6.0	.86	1.32	0
4 -296 88.70 -326 88.70 88.70 -326 88.70 -326 88.70 -326 88.70 -326 88.70 -326 88.70 -326 88.70 -326 88.70 -326	13	17	53	5.84	2.5		5.54	Ö
1,	14	16	5	2.90		~	29.2	0
12 883 4,172 5.83 904 6.905 11 1470 35.30 4,072 10.00 <td>15</td> <td>14</td> <td>52.</td> <td>70.7</td> <td>8.5</td> <td>.32</td> <td>6.79</td> <td>0</td>	15	14	52.	70.7	8.5	.32	6.79	0
15	16	12	80	1.17	80	.90	96.0	0
17	17	15	00	6.97	0.0	00	20.0	0
17 .584 55.842 17.55 .555 55.546 18 .529 47.040 7.17 -612 47.162 47.162 18 .529 47.06 7.17 -612 47.162 47.162 19 .5208 47.166 5.83 -904 40.065 47.162	000	10	7.4.	5.30		1.45	5.49	0
14 296 47.540 7.17 612 47.181 15 296 47.106 7.17 612 47.181 16 291 42.106 7.17 612 47.181 17 283 44.106 7.17 612 47.181 17 284 52.008 7.17 612 47.181 16 295 47.172 52.004 47.182 52.004 17 284 52.842 284 52.01 40.065 52.01 17 296 47.172 284 52.01 40.065 52.01 52.01 52.01 52.01 52.01 52.01 52.01 52.01 52.01 52.01 52.02		2		7 0	, ,		75	c
13		7.		7 C) «	100	7.16	
11.17 -268 4.2,106 7.17 -261 40.065 11.18 -288 4.2,106 7.17 -261 40.065 11.19 -291 52.908 40.065 52.804 40.065 11.19 -291 52.908 40.065 52.904 40.065 11.10 -291 52.908 40.065 52.904 40.065 11.10 -291 52.908 40.065 52.904 40.065 11.10 -291 52.908 41.10 52.904 52.904 11.10 -291 52.908 41.10 52.908 52.909 52.909 11.10 -291 52.908 41.10 7.33 1.17 61.71) ,	* **		7.10	•		9	0.0
13 -589 44.172 5.83 -612 45.88 16 -284 58.842 -811.33 -290 52.904 17 -2.350 58.842 -81.33 -290 52.904 19 1.17 61.710 15.33 1.17 61.743 10 1.27 61.710 15.33 1.17 61.743 11 -2.29 58.72 61.743 58.82 58.82 12 -2.29 58.72 61.743 58.82 58.82 13 -2.29 58.72 61.743 58.82 58.82 14 -2.29 58.72 61.743 58.82 58.82 14 -2.29 58.72 61.743 58.82 58.82 15 -2.29 58.72 61.743 58.82 58.82 14 -2.29 58.74 61.743 58.82 58.82 15 -2.29 58.74 61.743 58.82 58.82 58.82 15 -2.20 48.74 41.00 58.83 58.82 58.82	, ,			00			7 5 5 7	c
12 883 41.172 5.88 904 40.965 5 291 52.808 11.33 904 40.965 7 2350 26.501 12.33 904 40.965 8 2350 26.501 12.33 904 40.965 9 236 26.501 12.33 904 40.965 10 291 55.808 11.17 263 55.904 11 296 47.70 14.00 263 52.629 11 296 47.10 15.33 1.17 61.43 11 269 47.10 15.33 1.17 61.42 12 266 44.10 17.33 264 61.42 13 276 44.10 17.33 276 61.42 14 277 44.10 17.33 276 61.42 15 276 44.10 17.33 276 61.42 16	7 .	~		7	,		8	00
11.33 -299 52.908 11.33 -299 52.994 17 -2.55 26.501 -2.57 -25.994 52.994 52.994 19 1.17 61.770 -2.56 52.994 61.743 61.743 61.743 10 1.17 61.770 1.17 -2.58 61.743 6	77	12	9 00	1.17	α		96.0	. 0
17 -534 55.842 -536 55.910 -591 55.910 7 -2350 26.501 -683 -2362 26.384 19 1.171 61.710 15.33 1.743 55.910 16 -296 47.740 86.826 55.629 55.629 11 -296 47.740 86.826 46.245 55.629 13 -4.704 87.826 46.245 55.629 55.629 14 -589 46.106 7.33 1.776 61.745 61.745 14 -589 46.106 7.83 1.776 61.745 64.245 14 -589 46.106 7.83 1.776 61.745 64.245 14 -888 58.776 14.00 88.826 64.245 64.245 15 -888 58.776 14.00 88.826 64.245 64.245 16 -291 52.906 11.33 -299 52.996 17	25	. •		7.00		2	00.0	· c
7 -2.350 26.501 83 -2.362 26.384 19 1,171 61.710 15.33 1.374 61.743 16 .297 52.908 11.17 .265 26.384 16 .297 52.908 47.54 61.745 61.745 17 1.17 .265 47.62 47.62 62.52 19 1.171 61.710 15.33 11.74 61.745 18 .258 44.10 88.7 52.62 74.26 19 1.171 61.710 15.33 11.74 61.743 19 1.171 61.710 15.33 1.474 61.743 10 1.171 10.53 1.4.26 7.54 11 1.171 1.174 1.174 61.74 12 2.051 7.28 1.174 1.174 61.74 11 1.27 61.74 1.174 61.74 1.174 61.74 11 1.28	26	12	. 83	2 8 6	2	. 0	5.91	. 0
9 1.171 61.710 15.33 1.174 61.743 18 .878 58.776 14.00 .863 58.826 14 296 47.40 17.17 284 47.162 13 596 47.20 17.33 27 284 47.162 4 13 878 58.776 17.00 883 58.826 4 19 1.171 61.743 17.16 17.4 61.743 5 2.05 1.710 14.00 883 58.826 47.16 5 2.05 1.771 14.00 883 58.826 77.43 6 2.05 1.771 11.33 2.049 77.43 77.43 7 18	22	^	35	6.50	80	2.36	6.38	0
18 -878 58.776 14.00 -883 58.826 14 291 45.704 86.826 47.162 86.826 47.162 47.26 47.2	23	10	17	1.71	5.3	.17	1.74	0
16 -291 52.908 11.17 -263 52.529 14 -296 47.040 8.67 -284 47.162 2 19 1.171 61.710 15.33 -57.8 44.245 4 10 1.171 61.710 15.33 -57.8 44.245 4 10 1.171 61.710 18.83 58.826 4 10 1.171 61.710 18.83 58.826 5 20 2.051 70.512 14.00 18.83 58.826 6 2.051 70.512 14.00 14.74 61.745 7 18 58.76 11.33 2.29 52.99 8 58.826 11.33 2.29 52.99 9 16 2.91 52.90 11.33 2.29 52.99 10 1.464 56.442 11.33 -2.99 52.99 11 -1.470 35.304 11.33 -1.450 35.49 10 -1.470 35.304 33.3 -1.468 55.91 11 -1.76 35.304 35.3 -1.487 55.91 10 -1.470 35.304 35.4 55.9 <tr< td=""><td>53</td><td>18</td><td>87</td><td>9.77</td><td>0 7</td><td>88</td><td>8.82</td><td>0</td></tr<>	53	18	87	9.77	0 7	88	8.82	0
14 296 47.240 15.33 1.174 47.162 13 589 44.106 7.33 575 46.245 14 878 58.776 14.00 883 58.826 19 1.171 61.710 15.33 1.174 61.743 19 878 58.776 14.00 883 58.26 10 291 52.903 11.33 299 52.994 10 291 52.903 11.33 299 52.994 11 291 52.903 11.33 299 52.994 12 883 41.172 52.903 11.33 299 52.994 11 291 52.903 11.33 299 52.994 12 883 41.172 11.33 299 52.994 13 964 41.329 12.67 .599 52.994 14 970 35.304 12.67 .599 52.994 15 970 35.304 3.33 145 55.994 16 174 35.304 3.37 148 55.994 17 174 35.304 3.37 148 55.	3.0	16	29	2.90	:	•0	2.52	0
2 19 1.171 61.710 15.33 1.174 61.743 3 589 44.106 7.33 575 44.245 4 18 58.776 16.00 575 44.245 5 19 1.171 61.771 61.743 61.743 6 22 2.051 70.512 16.00 883 58.826 7 .878 58.776 16.00 883 58.826 61.743 8 .876 .291 52.906 11.33 -2.99 52.994 9 .16 .291 52.906 11.33 -2.99 52.994 10 .291 52.908 11.33 -2.99 52.994 1 .294 52.908 11.33 -2.99 52.994 1 .20 .20 .20 .29 52.994 1 .24 .26 .29 .29 52.994 2 .20 .20 .20 .29 52.994 2 .24 .25 .20 .20 .29	31	14	5	7.04	8.6	. 28	7.16	0
3 589 44.106 7.33 575 44.245 4 .878 58.776 14.00 .883 58.826 5 19 1.171 61.719 19.33 2.049 70.743 5 2.051 70.512 19.33 2.049 70.743 6 2.2 2.051 70.512 10.400 .883 58.826 8 16 .291 52.908 11.33 .299 52.994 9 16 .291 52.908 11.33 .299 52.994 1 .291 52.908 11.33 .299 52.994 1 .294 52.908 11.33 .299 52.994 1 .294 52.908 11.33 .299 52.994 1 .264 64.644 11.33 .299 52.994 4 .294 52.998 11.33 .299 52.994 4 .294 52.998 11.33 .299 52.994 5 .294 52.998 12.67 .599 52	32	19	7	1.71	5.3	.17	1.74	0
4 18 -878 58.776 14.00 883 58.826 5 2.051 57.75 19.33 2.049 70.451 6 2.051 57.75 14.00 883 58.826 7 18 878 58.776 11.33 299 52.994 9 16 291 52.908 11.33 299 52.994 9 17 883 41.329 299 52.994 1 17 844 55.908 11.33 299 52.994 1 17 844 64.644 16.67 14.66 64.659 2 2.9 16.67 14.66 64.659 52.994 4 10 -1.470 35.304 35.497 55.910 5 11 -1.470 35.823 4.50 -1.450 35.497 8 16 -1.470 35.842 12.67 -5.99 52.99 1 -1.470 35.823 4.50 -1.450 35.99 52.99 1	33	13	8	4.10	٣.	.57	45.4	0
5 19 1.171 61.719 15.33 1.174 61.743 6 2.051 70.512 19.33 2.049 70.691 7 87 87.776 14.00 .883 58.826 8 .291 52.908 11.33 .299 52.996 9 16 .291 52.908 11.33 .299 52.996 10 1.2 883 41.172 .599 52.996 41.329 11 .291 52.968 11.33 .299 52.996 52.996 2 .291 52.968 11.33 .299 52.996 52.996 4 .7 .291 52.978 11.33 .299 52.996 5 .291 55.842 .599 52.996 .599 52.996 4 .7 .7 .591 55.996 .599 52.996 5 .7 .5 .5 .5 .5 .5 .5 .5 <td>34</td> <td>4.3</td> <td>8</td> <td>8.77</td> <td>4.0</td> <td>888</td> <td>8.82</td> <td>0</td>	34	4.3	8	8.77	4.0	888	8.82	0
6 22 2.051 70.512 79.33 2.049 70.491 7 88 58.776 14.00 .883 58.826 8 .291 52.968 11.33 .299 52.994 9 16 .291 52.908 11.33 .299 52.994 1 12 883 41.172 .299 52.994 41.329 1 12 884 55.842 14.667 41.329 55.994 2 1.464 64.644 16.67 1.466 64.659 52.994 4 10 -1.470 35.304 3.33 -1.450 35.497 5 11 -1.470 35.304 35.31 -1.487 35.304 6 11 -1.470 35.304 -1.487 35.99 52.994 7 10 -1.470 35.304 35.17 -1.487 35.99 8 16 -291 52.908 -1.487 35.99 52.994 9 17 -384 55.842 -1.488 55.994	35	61	17	1.71	5.3	-17	1.74	0
7 18 -878 58-776 14.00 -883 58.826 8 -291 52-908 11.33 -299 52.996 9 16 -284 52-908 11.33 -299 52.996 1 12 -883 41.172 5.00 -867 41.329 1 12 -884 55.842 12.67 -891 55.910 2 1.464 64.644 16.67 1.466 64.659 3 16 -291 52.994 11.33 -299 52.994 4 10 -1.470 35.304 3.33 -1.450 35.497 5 11 -1.470 35.304 4.50 -1.487 35.010 6 11 -1.470 35.304 4.50 -1.487 35.094 7 10 -1.470 35.304 3.17 -1.487 35.994 8 16 -291 55.908 -299 52.994 9 17 -364 55.910 -3.99 52.994 10 -1.470 35.842 3.17 -1.487 35.994 10 -1.470 35.842 3.17 -1.487 35.994	36	22	5	1.51	9.3	•04	0.49	0
8 16 .291 52.908 11.33 .299 52.994 9 16 .291 52.908 11.33 .299 52.994 10 .291 52.908 11.33 .299 52.994 11 .294 55.842 12.67 .591 52.994 11 .294 55.842 16.67 .466 64.659 10 .294 55.908 11.33 .299 52.994 11 .470 35.304 3.33 -1.450 35.910 10 -1.470 35.304 3.31 -1.487 35.910 10 -1.470 35.304 3.37 -1.487 35.994 10 -1.470 35.304 3.37 -1.487 35.994 10 -2.291 52.908 13.37 -2.99 52.994 10 -3.54 55.908 3.37 -1.487 35.994 10 -3.54 55.908 35.994 55.994 10 -3.54 55.998 55.994 55.994 10	37	₹	87	77. x	4.0	മ	8.82	0
9 16 .291 52.908 11.33 .299 52.994 1 883 41.172 6.00 867 41.329 2 2.9 1.464 64.644 16.67 1.466 64.659 3 16 291 52.996 11.33 299 52.994 4 10 -1.470 35.304 35.497 35.497 5 11 -1.470 35.823 4.50 -1.450 35.497 6 11 -1.470 35.304 3.17 -1.495 35.910 7 10 -1.470 35.304 3.17 -1.495 35.910 8 16 -2.91 55.908 11.33 -2.99 52.994 9 17 -3.84 55.842 35.910 55.910	38	16	5	2.90	1.3	0	5.99	0
12 883 41.172 5.00 867 41.329 1 17 .584 55.842 12.67 .591 55.910 2 1.464 64.644 16.67 1.466 64.659 3 16 .291 55.910 52.994 4 10 -1.470 35.304 35.33 -1.450 35.497 5 17 .584 55.842 12.67 .591 55.910 6 11 -1.470 35.336 4.50 -1.195 38.048 7 10 -1.470 35.304 11.33 -2.99 52.994 8 16 .291 52.908 12.67 .599 52.994 9 17 .584 55.842 12.67 .591 55.910	39	16	2	2.90	1.3	0	5.99	0
1 17 .584 55.842 12.67 .591 55.910 2 1.464 64.664 16.67 1.466 64.659 3 16 .291 55.904 4 10 -1.470 35.304 33.33 -1.450 35.904 5 17 -584 55.842 12.67 .591 55.910 6 11 -1.76 35.36 -1.487 35.132 7 10 -1.470 35.304 3.17 -1.487 35.132 8 16 .291 55.908 12.67 .599 52.994 9 17 .584 55.842 12.67 .591 55.910	64	12	80	1.17	٥٠٠	986	1.32	0
2 1.464 64.644 16.67 1.466 64.659 3 1.464 64.644 11.33 1.466 64.659 4 10 -1.470 35.304 3.17 -1.450 35.497 5 11 -1.176 38.238 4.50 -1.195 38.048 7 10 -1.470 35.304 3.17 -1.487 35.132 8 16 .291 52.908 11.33 .299 52.994 9 17 .584 55.842 12.67 .591 55.910	-	17	80	2.84	5.6	• 59	5.91	0
3 16 .291 52.994 4 17 -1.470 35.304 3.33 -1.450 35.497 5 17 .584 28.42 4.50 -1.450 35.497 6 11 -1.470 35.236 4.50 -1.487 38.132 7 10 -1.470 35.304 3.17 -1.487 35.304 8 16 .291 52.996 52.994 9 17 .584 55.842 12.67 .591 55.910	75	5 0	9	4.64	9•9	97.	4.65	0
4 10 -1.470 35.304 3.33 -1.450 35.497 5 17	4 3	16	2	2.90	1.3	•53	2.99	0
5 17 .584 55.842 12.67 .591 55.910 6 11 .176 38.238 4.50 .1795 38.048 7 10 .17470 35.304 3.17 .1787 35.132 8 16 .291 52.908 11.33 .299 52.994 9 17 .584 55.842 12.67 .591 55.910	7,	10	7	5.30	3.3	1.45	2.49	0
6 11 -1.176 38.238 4.50 -1.195 38.048 7 10 -1.470 35.304 3.17 -1.487 35.132 8 16 .291 52.908 11.33 .299 52.994 9 17 .584 55.842 12.67 .591 55.910	4.5	17	χ. α	5.84	5.6	• 59	5.91	0
7 10 -1.470 35.304 3.17 -1.487 35.132 8 16 .291 52.908 11.33 .299 52.994 9 17 .584 55.842 12.67 .591 55.910	94	-	.17	8.23	Ş	1.19	8.04	0
8 16 .291 52.908 11.33 .299 52.994 9 17 .584 55.842 12.67 .591 55.910	27	10	.47	5.30	3.1	1.48	5.13	0
9 17 .584 55.842 12.67 .591 55.910	83	16	29	2.90	7:	0	5.99	0
	64	17	8	2.84	2.6	o	č	_

	OMITS	-	0	0	0	D (> (o c	o c	oc) C	0	0	0	0	0	0	0	0	0	00	5 (5 (5 (5 C	o c	. 0	. 0	O	0	0	0 (> 6	,) C	0	0	o	0	0 (: C	00	.	, a	. 0	O	0
	T-SCORE	4.97	1.37	7.16	3.40	5.83	7.0	7 7 7	0	20.00	1.74	70.0	5.54	0.07	67.0	1.74	5.91	5.91	5.54	2.99	6.79		20 4	* * * *	7.7	8	6 2 9	2.39	5.99	4.24	1.32	25.5	,,,,	7.14	4.24	4.24	6.19	0.07	4-24	8.04	· ·	55.697	70.0	2.99	0.37	96.0	5.13
00000	Z-SCORE	.50	.13	25		9	0 0	•		· a		2	'n			.17	0	•	~	\$ 20	n r	00;	-		2	· 00	. ~	.29	~	~	•	9 0	> •		.57	~	-32	\circ	.57	• •	??	-1.450		0	o	90	60
INDIVIDUAL SCORES	SCORE	•	-	ø	0	o c	, i	2 <	~	20	~	9	'n	Ö	M	ň	ó	ó	ņ	m i	Ň	j,	٦,	٠,	۳	19	Š	M	'n	m	ď٠	۵,	? "	2 <	m	M	Š	ď	'n.	ŏ٠	?'	5.53	9	, M	9	ø	~
-	T-SCORE	4.1	1.7	7.0	3.6	2.5	-	- ^				0	5.8	6.0	2.0	1.7	5.8	5.8	S. 8	5 • 6	0.0		- '	- C			9	2.0	2.9	4.1	-	- (, , ,		4 . 1	٠.	7.0	6.	4.1	~ ε α: ε	9 1	55.504		2	6.6	Ξ	ν. Σ
•	2-SCORE	5.8	.17	• 5 9	2.34	40.	ים יש		0			_	•	\sim		•	~		~	^	~ .	~ .	- ` `	** *				•	^	~		~ .		_ ^	. ~~	~~	•	~		_ (074.1-	, –		~	~~	
	SCORE	13	19	~	23	•	2.5	· •	• •	0 ec	•	15	17	15	22	19	17	17	11	1 0	7 1	2 ;	5 .	<u>.</u>	# O	- -	50	35	16	13	12	2.	0 9	* •	:	13	*	15	43		7 (0 6	; <u>~</u>	9	15	12	10
	d T	51	25	53	24	22	9 1	e ec) (. ~	63	3 9	65	99	29	6.8	69	20	Z í	27	::	3 U	. 4		73	20.	87	18	82	× •	# W	^ «	200	80 80	89	60	10	26	s ,	• •		26	86	66	100

CONTROLLED ITEM

PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A)

IAP : ITEM ANALYSIS PROGRAM

8 T T T T T T T T T T T T T T T T T T T								
1			•	INDIVI	SCORE	21730		
11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	9	E 0 P	-500	-SCOR	0	SCORE	SCOR	H I
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	101	15	ย	٥	0	0	0.07	O
10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	102	-	.17	5.8	5	1.19	8.04	0
1	103	-	•29	2.3	~	•29	2.99	0
11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	104	12	88.	1:1	0.9	.86	1.32	0
1, 2, 3, 4, 2, 2, 3, 4, 2, 2, 3, 4, 2, 2, 3, 4, 2, 3, 4, 2, 2, 3, 4, 2, 2, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 2, 3, 3, 3, 3, 4, 2, 2, 3, 3, 3, 3, 4, 2, 2, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	105	11	œ	8.5	2.5	2	5.54	0
1, 2, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	106	16	0	5.9	1.3	0	5.99	0
1,758 52,578 11,539 57,578 11,530 1,758 57,578 11,530 1,758 57,578 11,530 1,758 57,578 11,530 1,758 57,578 11,530 1,758 57,578 11,530 1,758 57,578 11,530 1,758 57,578 1,540 1,5	101	12	80 80	:	6.0	86	1.32	0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	108	21	.75	7.5	8.0	•75	7.57	O
1	109	16	0	5.9	1.3	9	5.99	0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	110	17	.58	5.8	2.6	• 59	5.91	င
10	111	20	94.	4.5	6.6	.46	4.55	0
13 -1.296	112	10	٠17	1.7	5.3	.17	1.74	0
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	113	13	5.8	4.1	٦,	.61	3.88	O
1	114	71	•28	0.7	٠,	.32	6.19	0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	115	14	52.	2.0	8.5	• 32	6.19	0
10	116	21	.75	7.5	8	• 75	7.57	0
1	117	10	• 59	6	1.3	• 50	5.99	0
1	6 .	Ξ:	.17	ر م	Š		8.04	o
1	911	21	× ×		6.1	833	1.69	- (
1	157	D) #	<u> </u>	, c		5	7.5.	0
1	122	- «	- 0		•	- 0	* *	.
11	124	*	, u		` `		. 0) c
22 2.051 24 1.464 4.464 4.667 1.466 64.559 27 11.464 4.644 4.650 1.466 64.559 28 1.466 4.644 4.650 1.466 64.559 29 2.049 7.758 0.7578 1.160 1.758 0.7575 20 2.049 1.758 0.7578 1.160 1.758 0.7575 21 1.758 0.7578 1.160 1.758 0.7575 22 1.758 0.7578 1.177 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.137 0.265 1.160 1.160 0.266	124	=	17	2.8	4.5	, 6	8.04	0
1,664 4,664 4,667 1,666 1,66	125	22	55.	0.5	M	.04	69.0	0
1	125	20	97.	4.6	٠,	6.46	4.55	0
14 296 47.040 8.67 284 47.162 21 1.758 67.578 9.83 -2.955 52.629 11 -1.176 38.238 4.67 -1.159 38.413 15 003 49.974 11.17 -2.95 52.629 15 003 49.974 11.17 -2.95 49.713 15 003 49.974 11.17 -0.03 50.078 15 003 49.974 11.267 -0.03 40.713 15 003 49.974 11.60 -0.03 40.974 16 296 47.040 8.67 284 47.162 16 296 47.040 8.67 284 47.162 16 296 47.040 8.67 284 47.162 16 296 47.040 8.67 284 47.162 16 297 52.90 11.33 296 52.99 16 291 52.90 11.33 296 52.99 16 291 52.90 11.33 296 52.99 16 296 47.040 10.00 10.00 50.00	127	=	• 17	٠,	٠,	13	8.04	0
21 1.758 07.578 18.00 1.758 67.575 16 -2.937 20.633 -3.50 -2.945 20.655 16 -2.947 20.683 4.67 -1.159 38.413 17 -1.176 38.238 4.67 -1.159 38.413 17 -3.84 55.842 4.67 -1.159 38.413 18 -2.03 40.974 9.83 -0.03 49.713 19 -2.03 40.974 9.83 -0.03 49.713 10 -0.03 40.974 9.83 -0.03 47.162 10 -2.03 47.040 8.67 -2.84 47.162 10 -2.04 47.040 8.67 -2.84 47.162 11 -2.96 47.040 8.67 -2.84 47.162 12 -2.96 47.040 8.67 -2.84 47.162 12 -2.96 47.040 8.66 8.67 -2.99 52.99 14 -2.96 47.040 8.67 -2.99 52.99 8.66<	458	7,	50	7.0	8.6	.28	7.16	0
11	921	21	22	Z. 5	8	.75	7.57	0
1	15.7	^ ;	2	9.0	2.5	70	0.55	C
15	121	0 +	,,	· ·		97.	29.2	0
15	2.5	~	- 0			٠ c	• •	0 0
5.84 55.842 12.67 .591 55.910 15 003 49.974 10.00 .008 50.078 7 296 47.040 8.67 284 47.162 14 296 47.040 8.67 284 47.162 14 296 47.040 8.67 284 47.162 14 296 47.040 8.67 284 47.162 14 296 47.040 8.67 284 47.162 15 296 47.040 8.67 284 47.162 18 397 52.908 11.33 .299 52.994 16 381 55.842 55.910 55.910 17 584 55.842 55.910 55.910 16 296 47.040 8.50 56.32 76.324 17 584 55.842 55.910 55.910 55.910 16 296 47.040 8.50 320 46.797 17 296 47.040 8.50 <td>134</td> <td>15</td> <td>00</td> <td>ò</td> <td>8</td> <td>200</td> <td>7.7</td> <td>oc</td>	134	15	00	ò	8	200	7.7	oc
15 003 40.974 10.00 .008 50.078 14 296 47.040 8.67 284 47.162 14 296 47.040 8.67 284 47.162 14 296 47.040 8.67 284 47.162 16 296 47.040 8.67 284 47.162 16 296 47.040 8.85 8.826 18 703 49.974 10.00 .008 50.078 18 703 49.974 11.33 .299 52.994 10 703 49.974 11.33 .299 52.994 11 584 55.842 11.33 .299 52.994 10 263 76.384 55.910 55.910 10 264 47.040 8.50 320 46.797 10 296 47.040 8.50 320 46.797 11 296 47.040 8.50 320 46.797 12 296 47.040 8.50 320 46.797	135	17	.58	5.8	2.6	.59	5.91	0
14 296 47.040 8.67 284 47.162 29.435 .67 -2.034 29.664 30 14 296 47.040 8.67 -2.84 47.162 14 294 47.040 8.67 284 47.162 16 294 47.040 8.67 294 47.162 18 603 49.974 11.33 299 52.994 16 294 49.974 11.33 299 52.994 17 584 55.842 12.67 .591 55.910 16 296 47.040 8.50 320 46.797 16 296 47.040 8.50 320 46.797 16 296 47.040 8.50 320 46.797 16 296 47.040 8.50 320 46.797 16 296 47.040 8.50 320 46.797	136	15	00.	6.6	0.0	0	0.07	0
8 -2.056 29.435 9 14 -296 47.040 8.67 -284 47.162 14 -296 47.040 8.67 -284 47.162 16 -291 52.908 11.33 -296 52.994 18 -603 49.74 10.00 .08 58.82 18 -603 49.974 11.33 .299 52.994 10 -7.94 52.903 11.33 .299 52.994 11 -294 55.910 55.910 55.910 12 -296 47.040 8.50 -320 46.797 14 -296 47.040 8.50 -320 46.797 14 -296 47.040 8.50 -320 46.797	137	*	• 29	7.0	٠,	28	7.16	0
14296 47.040 8.67284 47.162 11.33 -299 52.994 47.162 11.33 52.884 47.162 11.33 52.994 47.162 11.33 52.994 52	80	en ;	50.	7. 6	S.	.03	99.6	0
14 296 47.162 15 297 52.904 16 297 52.994 18 603 49.974 11.33 299 52.994 14 603 49.974 11.33 299 52.994 13.83 .846 58.462 11.33 .299 52.994 13.83 .846 58.462 11.33 .299 52.994 12.67 .299 52.994 12.67 .299 52.994 13.83 .899 52.994 14 296 47.040 14 296 47.040 15 296 47.040 16 296 47.040 17 296 47.040 18 296 46.797	159	* ;	5.0	C • 1	9	82	7.16	0
1) + • •	7.	~ c	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜	٠ ٠	20.0	7.16	00
15 003 49.974 10.00 .008 50.078 49.974 13.83 .846 58.462 5 16 .291 52.903 11.33 .299 52.994 5 17 .584 55.842 12.67 .599 55.910 7 2.638 76.381 22.00 2.632 76.324 8 14 296 47.040 8.50 320 46.797 14 296 47.040 8.50 320 46.797	242	0 00	~ ~	` ~	- C	> a	7 · 4 · 4	5 C
18 .878 58.76 16 .291 52.908 17 .584 55.842 17 .584 55.842 17 .584 55.842 17 .584 55.910 18 .591 55.910 19 .501 55.910 10 .263 76.324 14 .296 47.040 14 .320 46.797 14 .296 47.040 14 .320 46.797 14 .320 46.797	16.3							.
5 16 -291 52.994 5 17 -584 55.842 12.67 -591 7 2.638 76.381 22.00 2.632 76.324 8 14 296 47.040 8.50 320 46.797 9 14 296 47.040 8.50 320 46.797	144	. 89	.87		3.6	•	9 7 9	0
5 17 5.84 55.842 12.67 .591 55.910 7 2.638 76.381 22.00 2.632 76.324 8 14296 47.040 8.50320 46.797 9 14296 47.040 8.50320 46.797	145	16	0	2.9	1.3	0	2.99	0
7 24 2.638 76.381 22.00 2.632 76.324 3 14296 47.040 8.50320 46.797 14296 47.040 8.50320 46.797 46.797	146	17	• 58	5.8	2.6	• 59	5.91	0
14296 47.040 8.50320 46.7972296 46.797220 46.797	147	56	•63	9	2.0	.63	6.32	0
760-04 CS	80 7	2 ;	• 29	0 -	ş	• 32	6.79	0
		5 [, ,		·	3	٥	<

	OMITS	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	5 (0 (0 0	.	> C	• •	0	0	0	0	0	0	5 (> C	5 C	0	0	0	0	0 (D (0 (2 7	o c		0	0	0	00
	T-SCORE	9.71	-82	9.71	5.91	7.57	5.91	9.71	0.07	8.82	20.0	3.38	5.31	5.91	1.74	6-19	4.65	67.0	* (*)	S • 68	300	0 F		72.9	5.91	2.99	1.32	8.41	28.8	6.79		* * *	7	3.46	1.74	96.0	1.74	7.57	9 2 0	2.00	,,,,	7.16	7.16	8.82	10.0	2.99	35.497 55.910
	Z-SCORE	02	œ	02	50	75	Ò	02	2	တ	00.	6	20	• 29	17	•32	97.	40.		100	<u>ک</u> و	2 4		. 57	59	2	.86	13	ന	25	7	~ C		.65	.17	6	.12	?:		62.	^ a	, ~	- 28	8	.008	62.	-1.450
SCORES	SCORE	90	9	တ္	4	9	٥.	φ,	9	٩.	9	٠.	40	2.6	~	٠.	٠,	٦,	•	•	<u>٠</u> °	9 -		'n	9	1.3	•	9.9	٩,	٠ د د	۰	? ~	2 0	2.1	5.3	5.8	~ •	: ; ; : ; ; ;	۲. د	າຸ າ	•	. 9	9	4.0	•		12.67
INDIVIDUAL SC																																															
	T-SCORE	79.0	8.77	26.6	2.84	7.57	5 . R.4	9.97	6.97	8.77	6.97	4.10	2.84	2.84	1.71	7.04	79.7	0.51) r • •			7.04	4.10	5.84	2.90	1.17	8.23	8.77	70.	***	7.4	0.07	3.56	1.71	1.17	1.71) (0 M = V	7 6	7.04	7.04	8.77	26.6	06.2	55.842
3	3-SC 08 E	0	8 7	00	.58	Š	%	00	00.	87	000	85.	S)	\$ 28	.17	.29	95	S		9	- a	27	6	5.88	58	59	88	.17	28.	٠. د	000	O or		.64	.17	∞	;	?:	, u	٠,٠	1 . 6 7	٠- - ۲	٠29	87	0	62.	785.
	SCORE	15	30°	15	17	12	17	15	5	~	\$ 1	13	- 1	12	O	7	23	~;	<u> </u>	2:	- :	¥ C	. 4	13	17	16	12	11	æ ;	* !	~ F	<u>.</u>	1.5	√ 0	4	12	6 :		2 ;	o c	- -	2	14	18	15	9 (4
	30	151	152	153	154	155	156	157	158	159	160	ø.	162	9	Ø	ø	Ô	so .	0	o t	~ ^	. ^	. ^	~	~	~	~	~	179	20 0	00	Oac	> ∞	∞.	80	8	100 - 6	o c	> (> 0	. 0	٠ ٥	O	0	0	6	200

MANDOWER AND PFRSONNEL DIVISIO AF HUMAN RESOURCES LASORATORY AIR FORCE SYSTEMS COMMAND

.

CONTROLLED ITEM *** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) ***

	OMITS	0	0	C	0	0	٥	0	0	٥	0	0	O	0	a	0	0	0	0	Ö	0	0	o	0	o	0
	T-SCORE	49.713	47.162	41.329	40.965	35.497	55.910	26.384	47.162	40.965	50.078	52,529	50.078	58.826	50.37%	47.162	55.910	43.881	58.826	50.078	35.132	58.526	25.994	58.826	58.826	50.078
4	Z-SCORE	029	284	867	706	-1.450	.591	-2.362	284	706	*00°	.263	& CO.	€883	\$00°	284	.591	612	.883	.00%	-1.487	.883	662.	883	.883	*00
INDIVIDUAL SCORES	SCORE	€8.46	8.67	6.03	5.83	3.33	12.67	₹8	74.8	5.83	10.00	11.17	10.00	14.09	13.00	8.67	12.07	7.17	14.00	10.09	3.17	14.00	11.33	14.00	16-00	10.00
	1-5CORF	726.07	47.040	41.172	41.172	35.104	55.842	26.501	070*27	41.172	720.67	52.908	720.07	58.776	726.67	47.540	55.842	44.106	58.776	726"67	35.334	58.776	826*25	58.776	58.776	726-67
.n	Z-SCOPE	£003	962*-	. 883	863	-1.470	.584	-2.350	952-	883	£003	.251	003	878.	£00°-	962	.584	589	.878	003	-1-470	.878	.291	.878	.878	003
	·	3.6	7.	~	1.2	1,	11	^	7_	12	15	10	15	4 38	15	77	17	13	∞	15	0	8 0 ←	16	∞ 0	48	15
												•		-	, ,	:	-	-	·	213	(::)	. € € ;	222	523	777	522

•		

1974 (5)		MEDIAN)																															
17EM		× 0																															
LED		(BASED																															
DATA -		COEFFICIENTS	PH I	303	.451	75C*	012	.021	.013	.218	.147	.116	.241	.085	•256	.233	.275	.283	.162	.189	.268	•276	.144	.146	•225	.312	189	.233	001	.278	.240	.126	• 5 6 5
*** PFRSONAL		CORRELATION C																															
		PHI	1 TE M	-	~	₩	4	∽	•	7	∞	٥	Ç	=	15	₹	=	15	16	17	∞	19	20	21	22	23	72	52	92	27	82	62	30
PROGRAM																																	
ITEM ANALYSIS	CLASS RUN																																
IAP :	IAP CL																																

	•	į	:	# 1 P	THEF ANALYSIS SUMM	IMMARY TABL	in the second	1	•	į
u	1 0 0 5 d	5135	DEVISATION	10880	T-TFST	1088	TAFF	X-1114	BEIA	**************************************
•	,	,	;							•
- ٢	613				CADE + INE D	CHECK LIE	T TOTAL COLIT	,	,	•
u	4411300		•	128	•	60.7*		7,75	7,7.	*
M	401	7.	067	134	2-026	-136	1,593	1 858	136	750
	OVERLAP	COPREC		- 001		100-	2018	167.891	-,001	100
4	•52.	962.	.438	010	142	200-	105	67.739	010	033
	OVERLAP	CORREC		138	-2.328	102		7.662	140	045
Š					_	· CHECK 1TE	EM DIFFICULTY			
•	.028	٠.	.165	190*	.612	.016		46.638	-941	£00°
	OVEFLAP	COPREC		052	774	050	302	36.860	055	D3
~	C 1 () () () () () () () () () (9	.421	•222	'n	.160	2.422	3.334	.228	•067
•	7 1 1 1 A 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$60°	•	696.	1.031	7.754	960*	\$20.
I C	0 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7/4.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		270.	1.174	4.385	260.	•035
۰	2454 2456	77"	287	116	10721	*>0.00	1,155	2.061	117	770
•	OVERIAP	778407		010		210.1	200	17.817	010	007
1 5	101	.41	657.	.212	۳,	161	2.430	2.468	-216	074
	OVERLAP	COPREC		0.00		.061	.912	6.501	.081	.028
=	961	•	685.	.061		870.	.718	4.346	.061	.023
	OVFRLAP	CORREC		2.075		359	881	3.542	075	328
12	728.	245	895.	761.		671.	2.247	2.351	197	Ů 2 Ů*
	OVERLAP	00		.061	-912	270.	.700	7.467	.061	-022
~	•36	77.	.480	.170	2.574	.132	1.995	2.087	.172	790.
•	OVERLAP	3 3 6 6 0 3		.035	625.	• 328	5145	10.018	.035	.013
-	200		200	052.	5.833	666	3.040	270	852.	66. -
•	0 4 C A C A C	ר טאאני יי		25.3	1.725	760.	7.575	V40.0	01.5	9
2	OVERLAP	. 800	•	125	1.882	\$ 0 C .	1,102	8 C C S	124	170°
16	092	77.	.480	.164		.128	1.924	2.185	165	160.
	OVERLAP	CORREC		.010		•023	.344	12-143	.030	.01
17	.579	.53	767.	.150		.119	1.791	-1.330	.152	• 50*
•	OVERLAP	COARE		.014	.211	110.	.167	-14.127	.014	900.
•	OVER 4P	0.000	644.	40.0		•163	245	40.1-	91.0	(C)
2	617.	;	• \$00	245	-	196	2.978	2220	253	00.0
		00 P. R		.110		.088	1.314	067.	.111	770
20		.41	•456	.132	_	.100	1.497	1.03.	.133	• 045
1	OVERLAP	CORRE		000	1001	•000	000	15529.874	000	000
21	613	97.	765	.082	_	•065	.970	2.673	- 082	032
,	OVERLAP	2 2 0 U		* 60.0	•	043	2,90.	4.033	354	021
"	C	7.0000	* 0 * •		•		(7,	6,000		400
23	.526	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	667	267	200.	213	3.258	007-00	, 277.	100
	OVERLAP	CORREC		•133		106	1.588	069-	.136	.053
54	1354	77.	.478	.137	2.060	.106	1.596	2.740	.138	.051
	OVERLAP	COR		-005	.032	-005	•025	173.192	-005	.00
23	562*	14.	•456	.144	2,176	.109	1.639	3.740	.146	•050
	OVEKLAF	X 2 2 3		710.	9 20	ADD.	. 141	45.516	210.	70.

Ę

IAP : ITEM ANALTSIS PROGRAM	ALTSIS P	ROGRAM	S	OWAL DATA	CONTROLLED ITEM - PRIVACY ACT OF	ED ITEM ICT OF 1974	CONTROLLED ITEM PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) +++	•	MANPONER AF HUMAN	AND PERSON!	MANPOWER AND PERSONNEL DIVISION AF HUMAN RESOURCES LABORATORY
IAP CLASS RUN	_								AIR FO	AIR FORCE SYSTEMS COMMAND	COMMAND
				ITEM	ITEM ANALYSIS SUMMARY TABLE	UMMARY TABL	in.				
116	ITEM DIFFICULTY	FICULTY	STANDARD	9151	BISERIAL	POINT BISERIAL	ISERIAL	X-F1F1F	BETA	REL.	•
	PROP'N	PROP'N. STD.	DEVIATION	CORR.	CORR. T-TEST	CORR.	T-TEST			INDEX	
56					UNDEFINED .	- CHECK IT	UNDEFINED - CHECK ITEM DIFFICULTY				
27	957	-482	867	.230	3.535	.183	2.786	.477	.237	160.	
	OVERLAP	CORRECTEL		\$60.	1.423	.076	1.131	1.157	\$60.	.038	
28	627.	28 .479 .491	.500	.101		.081	1.211	.531	•102	040	
	OVERLAP	CORRECTE		036		028	924	1.508	036	014	
58	. 526	.511	667.	106		*80*	1.266	614	107	-045	
	OVERLAP	OVERLAP CORRECTED		031			371	-2.087	031	012	
36	30 .396	. 457	687	772-	M	.192	2.919	1.088	.251	760.	
	OVERLAP	OVERLAP CORRECTED		.109			1.292	2.421	.110	-042	•
					MEAN STANDA	LRDIZED IT	MEAN STANDARDIZED ITEM DIFFICULTY =	* .402			
					บั	ORRESPONDI	CORRESPONDING PROPORTION .	272.			

** *** ** ***	ALTSID FF	# ★ 3 3		•	1		1	ب بر د	_ 	7201	-	(1000)	•		# 0 4 2 4 # E		IN THE POST OF	7 1 4 5 0	0
TAP CLASS RUN					, K				•	-	0 0 0		:		AIR		SYSTE	MS COA	A A A
	PROPURT	1104 011	f tui JE	0 510	T U O C K) 1 1 2		jasyd i	NSE AT	T VASIC	CUS ABI	ורווג ר	EVELS	MEASUR	RED IN	2-50	R c S		
178	-4.	6	٠ <u>.</u>	2- 3.	ş- s•		.5 -1.	.c- u	\$ 0	-0 +3-	5 +1	.0 +1.	.5 +2.	9 +2	.5 +3.	0 +3.	> • • •	0	XF1F
-		0	٠. نور	۲٠.	?	(• 10	٠ د •	.13	.12	10	02.	C 1	60.	çj.	C.	C C	2
7	£3.	ر د •	?.	*	3	ĵ.	. 41	45.	17.	05*	9.6	. 85	1.00		1.00	CD•	0.	• 30	i
~	Ć.	() ()	r ,		`.	, C		۲,	٥٢.	.43	69.	. 8 S	09.	نے	1.00	00.	ت د •	٠,	-
•	07.	c •	.50	<u>.</u>	Ç	·		.51	17.	17.	07.	• 45	0%.	•	00.	<u>.</u>	0; •	.33	67.
۰	Ç	: •	Ç	ς.	. 4	; ·	a:	7.	.12	•15	19	.13	.20		1.00	.93	00.	33	32.0
9	0 0 1	?	۲. د ،		· •	<i>(</i> •	13.	.	.23	• 23	•24	\$.°	. 50	⊌.	1.73	ر ي.	00.	00.	, 9 7
7	0	ζ,	ာ ငံ	(\ (•	(2 .	•	·.	٠,٠	A 2 .	17.	•43	.75	0 &		1.70	00.	0°.	•30	6
æ	<u>.</u>	CJ.	00.	~	٠ ٠	ت	57.	71.	.53	.55	.52	. \$5	¢.	€)	1.00	co•	وي •	0ù•	7
σ-	CC*	0	ວວ	٠.	.2€	<u>(</u>	٠,	€9•	95.	.51	.50	. \$5	1.00	•	1.00	сo.	CJ.	00.	5
5	Ců.	£.	c ,	<u>د</u> د		, . C.	.>		17.	67.	65.	.75	0		1.00	00.	٠ د	000	2 • 1
==	0.	00.	ာ	F.	() ·	000	\$ 4.5	.51	.53	.53	.62	.50	04.		1. 00	•00	00°	Ç.	7
12	03•	0د•	ن د ن	~·	• ()	·-·	*) **	72.	.53	. 5.1	.74	• 50	C & •	Ý	ეი. 1	င္မ	000	0 L•	2•1
13	0J•	CL.	30.	~1 ~	က် (-)	<u></u>	21.	\$1.	.53	.53	•76	57.	0	Œ	1.00	<u>.</u>	• 33	00.	5.
7,	g •	٠, د	<u>၁</u>	C.	.73	္	۲٠.	75.	₹9•	69.	69.	٠ کام	1.00		1.00	CC.	JC.	0 c •	ì
15	ر ا.	<u>စ</u> ည်	00•		-23	਼ੇ	* -	• 15	, 48 8.	275	.60	.75	09.	~	1.00	<u>.</u>	CJ.	36.	2.5
.,	00.	00.	\sim	00.	ି ୪ •	0 ر	• > 3		.53	.53	29.	.63	09.	œ,	1. ∩0	ი. ი.	0J.	ű.	2.1
17	ئ ن ن	00.	1.00	00.	• 20	۲. و	0.	. 7 G	₹9•	• 76	.71	© & •	0 &	L -	1.00	٠ 0	0C.	02	-
33	0J•	000	C	• 03	C 7 °	S •	.73	٠, ۸	27.	• 65	.,	0،	0.)		1.00	င္ပ ံ	00.	00.	7
•	00.	•00	ر 10	• 33	Ç.	(0)	9.	21.	.74	•	.76	٠.	C « •	C.	٠ د	င်.	00.	00.	•
62	00*	٠ د	7	. 33	.73	ੂੰ:	٠,٠	£.	77.	68.	79.	.53	() ()		. 00	CJ•	о С	e.	,
FN1	ن د	<u>.</u> .	00.	.00	C 7 *	ن د د	57.	67.	.53	65.	.57	• 15	C.		() ()	00.	ນຕຸ	00.	2.
25	٠ د د	•33	ن ن	19.	C.S.	Ç	۲۲.	.41	.38	27.	. 57	Ω.	09.	α	1.00	Cu•	00.	00.	2
23	ရ ရ	0	6	ខ្មុំ	C.	C.	.50		.56	69.	.83	(C) (M)	င္တ		1.00	00.	00.	00.	
5 2	03•	• 00	១ •	. 3.3	62.	9	.27	25.	• 65	67.	69.	0	0.4.	~	00.	• 00	00.	000	7
52	٥. د	°.	00.	.67	04.	Ç	.32	*2*	77.	.55	.\$2	• 75	0.4.		٠ در	ca.	00.	06•	m
56	င်ပို	6	0	.33	0 ~	000	•36	\$ 0 °	• 5 4	02.	6	25	000	m m	00.	6	င္ပင္	0	ON O
22	000	;; (7 0.) I		0.0	•	3	6	60.	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	08.		00.	00	00.	000	•
80 C	۵ د •	0 0	0 0 0	m	C **	ည ရ	~ .	* (50	28.5	9	0,4	.		00.	60.	ည် (0.0	•
67) (1)	2 6	~ (7 0	2 6	?	· ·	*	.51	<u>د</u> :	٠ •	C 2 .		00.	ខ្ល	000	000	
20	00.	2	3	2	3 3 •	20.	• • •	6	• 35	. 6.	.>.	\$0	9		00.	90.	90.	00.	, •

CONTROLLED ITEM

IAP

- PRIVACY ACT OF 1974 (5 USC 552A) 0+24 MOV SECOND PERSONAL DATA WENDOLARDON OLO 2000 SWOOD VALUE LAND CORRELATION PROGRAM INTER 1TEM . ITEM ANALYSIS TETRACHORIC IAP CLASS

TAP CLASS DUTY

TETRACHORIC INTERITER CORRELATION MATHIE

ITEM	12	22	í?	7.2	\$ 2	\$	12	er.	62	30
71	£ .))	71.17	•	2	,			;	•	
	0	•) •	•	•	•	. 7 •	•) •
77				~!:-	, .) () 	1 3	C	.17	Ć.
23	67	. 23	1.23	~		14	7 0.	\$3.	.21	.25
5.2	.33	12	~	0	٠,		5 7 5	5.5		204
٠ ٢	01	.13	10.1			\$5.	.13	- C2		
92	03	\$5.	14	-	· ·			2	~~~	?
23	120	1.13	40.		.15	· ~		~	40	
8 ≥	.24	1.30	• 55	E / M)	32	Ġ	62*	1.00	\ \cdot	50.
٥,	13	.17	.21	01.	~ 0.0	25	.16	77.	60.	0.4
30	20.	.10	• 26	67	00.	32	-12	80	74.	00.

IAP : 1	HAP : MIER ARALISMS PROGRAM		PERCORAL	0 - 4140	CONTROLLED ITEM	CONTROLLED ITEM CONTRO	:	AANPOLER AF HURA	MAD PERSON RES	AF HURAN RESOURCES LABORATORY
IAP CLASS RUN	SS RUN							AIR F	ORCE SYSTE	AIR FORCE SYSTEMS COMMAND
FACTOR !	ANALYSIS OF 30	FACTOR ANALYSIS OF 30 ITEMS RESULTED IN		S FACTORS						
FACTOR	RESIDUAL SUMSO		FACTOR SUMSO	PERCENT 1 FACTOR	PERCENT TOT SUMSOFACTOR ACCUR	EJGENVALUE	PERCENT MAX-V FACTOR ACCUP	MAX-V ACCUN	PERCENT CO FACTOR	PERCENT COMMUNALITY FACTOR ACCUM
-	25.890	06	6.045	34.94	36.94	3.007537	10.03	10.03	32.77	32.77
~	16.844	77	7.436	28.72	63.66	2.726855	60.6	19.11	29.71	65.59
m	607*6	60	1.728	6.67	70.33	1.514442	4.38	23.50	14.32	76.81
•	7.681	83. 83.	1.286	4.97	75.30	1.134079	3.78	27.28	12.36	89.17
v	6.395	95	.991	3.83	79.13	-995462	3.32	\$0.59	10.85	100.02
PEST	\$04.5	.04		20.87	100.00					

CONTROLLED ITEM *** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) ***

IAP CLASS RUN FACTOR LOADINGS

۰	7 7	031	20	050	336	055	142	9	260	.3063	241	920	27	189	0	165	34	040	.091	90	160	5.4	035	246	697	374	5	23	9	28	.9955	3.32 10.85
4	ψ.	7	9	13	~	7	19	143	.098	.2766	17	152	52	199	294	~	109	023	011	257	20	660	3.2	236	412	940	73	154	36	670	1.1327	3.78
~	3.5	214	166	7 ?	.269	.207	.228	8	175	2411	959	3	.234	032	120	.14.	439	00	960	455	€2	021	7.8	205	128	45	26	221	13	75	1.3167	4.38
~	2	549	110	8	233	337	297	111	303	.1578	023	253	57	515	348	316	9	254	502	78	152	411	509	000	8 2	207	37	042	66	2	2.7268	9-09
٠	(C)	065	3.7	3.6.7	707	.678	194	345	407		ç	.332	.144	7 ?	5.7	4	-	7	62	5	80	20	9	35	32	13	20	95	2	39	3.0071	10.02
COMMUNALITY	4	345	233	(۲	~	540	F .	7	0)	.210m	4.5	53	55	5	8	25	7	63	96	37	318	285	S	445	23	32	P 1	3	76	7.	9.1768	T N 36.59
1764	-	7	~	•	S	•	~	øŋ	σ.	10		12	13	7-	15	16	17	₹	19	50	21	22	23	7 2	52	92	22	82	62	30	SUM SO	PERCENT PCT. COM

IAP : ITEM ANALYSIS PROGRAM

TAP CLASS RUN

CONTROLLED ITEM
*** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) ***

FACTOR ANALYSIS .. ROTATED FACTOR LOADINGS

'n	-						0593																								1.6245	5.42
•	72	င္	000	100	727	571	1590	960	210	454	253	.452	390	110	232	52	900	161	019	048	124	345	32	191	289	270	67	3,7	g	18	1.7859	5.95
M	6	334	030	.119	777	190	.0125	111	208	3	105	22	539	3)	150	391	051	960	202	٠. ۱	936	5	305	177	_	438	38	53	8	28	1.5043	5.01
2	9	53	116	023	J. 5. 2. 4.	5	.4127	238	72	051	352	382	500	0	455	258	139	348	767	5.5	265	3	2	170	123	33	61	359	2,	252	2.2179	7.39
₩-	396	(A)	451	327	250	362	.1093	770	284	£ .	131	.196	110	235	969	(A)	055	5.9	335	955	53.5	5	.227	610	302	۲,	555	C1	129	063	2.0441	6.81
COMMONALITY	334	نې	233	σ) □	433	7	.2133	114	352	213	245	253	155	413	17) ()	5	371	153	208	337	9) #1 M	3	302	577	200	25	W)	S	75	7.	9.1758	N 30.59
#311	-	ر.	~	•	~	•0	۲.	o)	ዏ	3 0	11	12	13	.5	15	15	11	30 E~	0	23	21	22	23	5.6	2.5	5.2	27	e c	56	33	SUM SE	PERCENT N

CONTROLLED ITEM	*** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) ***	
IAP : ITEM ANALYSIS PROGRAM		IAP CLASS RUN (PROB. 2 - PLOTS)

MANPOWER AND PERSONNEL DIVISION
AF HUMAN RESOURCES LABOKATORY
AIR FORCE SYSTEMS COMMAND

	* 0	7-	O	Ö	
	EASY# .85	NOCASE	IREINDE	. KERR#	
	35	0.	0	0	
	NB= 35	0. *100	IDEND# 0	KS2≖ 0	
	1 2	۵	00.	~	
	X X K	ICRIT= 0	EI6N# .00	NERR# 2	
RS	0	0	0	0	
SPECIFIED CONTROL PARAMETERS	K0 = 0	XIV= 0	N P H	IHAR	
CONTR	10	0	-	0	
SPECIFIED	KI= 10	ICCR6S= 0	SPLOTE	ICARD=	
	-	0	~	•	
	# # # # #	NSPEED#	IOVER=	IALTE	
	•	0	0		
	IUPLIME	IALPHA	IFREGE	ATEST#	
	10	•20	Ö	٥	
	WEILTHE 10	DIFFLT= .20	HERGH	ICUL	

TITLE: JAP CLASS RUN (PROB. 2 - PLOTS)

INPUT FORMAT FOR DATA ON FORTRAM FILE CEX.A6/111X.10113

ADMERIC ANSWER KEY GIVEN 1222133233

ALTECHATE RESPONSE CARD GIVEN 4. 3. 4. 4. 4. 4. 4. 4.

NUMBER OF ITEMS 15 10

FIRST RECORD READ ID IS RESPONSES READ 2232233333

•	TAP CLASS OUN (PROR. 2 - PLOTS) VSTITME 16 IUPLIME 4 DIFFLE .20 IALPHAE 0 IPHIE 0 IEFEGE 0	C 4 0 0	*	0 0 0 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CONTROLLED ITEM CONTROLLED CONTROL PARAKETERS NFM* 1	CONTSOLUED ITEM IFIED CONTROL PA KIN 10 GS= 0	CONTROLLED ITEN A - PRIVACY ACT OF 1974 (5 U) CPECIFIED CONTROL PARAMETERS KI = 10 KO = (10006S = 0) KIV = (10006S = 0)	2	KS + 13 KS + 13 ICRIT = 0 EIGNE - 50	# C C	7		MAMPOHIS AND PERSONNEL DOWNS AT HUMAN RESOURCES LANDONATOR AND FORCE SYSTEMS COMMAND NO E SS TOWN COMMAND ADDROVED NO ADMINOR
0	ATESTA		IALT	-	1CARD=	0	HMAKH	0	N C C C C C C C C C C C C C C C C C C C	~	KS2#	O	. KR R R R

TITLE: IAP CLASS RUN (PROB. 2 - PLOTS)

CONTROL FORMAT FOR DATA ON FORTRAN FILE

SUMESIC ANSMER KEY GIVEN 1222133233

ALTECHATE DESPONSE CARD GIVEN

NUMBER OF ITEMS IS 10

FIRST PECGRO READ ID IS RESPONSES READ 2232233333

CONTROLLED ITEM
*** PERSONAL DATA -- PRIVACY ACT OF 1974 (5 USC 552A) *** IAP : ITEM ANALYSIS PROGRAM

MANDOWER AND PERSONNEL DIVISION
AF HUMAN RESOURCES LABORATORY
AIR FORCE SYSTEMS COMMAND ECTS SELECTING EACH RESPONSE IAP CLASS RUN (PROB. 2 - PLOTS)

1	ITEM	INFORMATION			PROPORTION	10 NOI.	225 SUBJEC
NUMBER	DIFFICULTY	OMITS		~	m	4	
-	.107	000	101.	.627	672.	.018	
~	869.	000	.231	869.	.071		
•	.551	000	.138	.551	-284	.027	
•	777	000*	**0	777	075	.071	
•	.156	000	.156	.431	.369	*70*	
•0	.271	000.	.218	9476	.271	•036	
~	*****	000	.027	*204	•425	.347	
.10	-502	003.	•062	• 502	.387	670*	
حل	.524	000•	770	,369	.524	-062	
1	.476	000	780*	.280	924.	.160	

CONTROLLED ITEM SERVONA: SATA - PRIVATY ACT OF 1974 (5 USC 552A) 444 AF HUMAN RESOURCES LABORATOR		: SPECIFIED DIFFICULTY RANGE AND SHOULD BE ELIMINATED BECAUSE OF EXTREME DIFFICULTY/EASINES Easy items above .80 Difficult items below .20	
•		L OUTSIDE OF THE SPECIFIED DIFFICULTY RAW EASY ITEMS ABOVE .80	
IAP : ITEM ANALYSIS PROGRAM	TAP CLASS RUN (PROB. 2 - PLOTS)	THE FOLLOWING ITEMS FALL OUTSIDE OF THE	

IAP : ITEM ANALYSIS PROGRAM	PROGRAM		444	ŭ a	CONTROLLED ITEM DERECHMS DATA - DRIVACY ACT OF 1074 (5 HSC 5524) 040	TEM DF 1974 ('	5 USE 552A)	:	MANPOWER AND PERSONKEL DIVISION Af HUMAN RESOURCES LABORATORY
IAP CLASS RUN (PROB. 2 - PLOTS)	. 2 - PL		JE 800 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E .					AIR FORCE SYSTEMS COMMAND
				SURR	SURMARY OF TEST STATISTICS	STATISTI	CS		
VARIABLE	HEAN	S.E.	ST.BEV. S.E.	S.E.	SKEUNESS S.E.	S.E.	KURTOSIS S.E.	S.E.	NO. OF SUBJECTS
BAU SCORE	4.15	01. 51.9	1.48	.0	.22 .16	.16	.37 .32	•32	525

TEST RELIABILITY# .035

NOISINIA JANNOSAJA GRA SEGONAM	AIR FORCE SYSTEMS CORRAND	REL.	INDEX	970-	.151	.169	.150	.104	.143	104	.138	.145	.234
MANPOSER	AIR	BETA		•52•	.480	.472	.410	• 485	.480	.571	.368	.390	.725
		X-F1F1Y		656.7	-1.197	301	.368	2.321	1.408	356	016	169	104
30 400	56 JSB C *	LE ISEPIAL	T-TEST	2.258	5.197	5.392	4.721	4.483	5.092	6.381	4.284	4.518	906-2
ED ITEM		UMMARY TABLE Point bisepial	CORR.	.150	.329	.343	.301	.288	.323	.393	.276	.290	897*
CONTROLLED ITEM	SIS SUMM		T-TEST	3.872	7.167	7.053	6.118	7.241	7.173	8.529	5.500	5.821	10.823
4	4 - V	ITEM ANALYS BISERIAL	CORR.	.251	-433	.427	.379	•436	.433	967.	-346	.363	-587
4		STANDARD	DEVIATION	•339	657*	265.	265.	.362	577.	767.	• 500	667*	667*
62AM	- PLOTS)	CULTY	STD.	•500	5 88	.521	44.	.336	204.	.463	.501	.510	067.
YSIS PRO	PROF. 2	DIFFICULTY	PPOP 7N	101.	.698	.551	777.	.156	.271	.422	.502	.524	927.
IAP : ITEM ANALYSIS PROGRAM	IAP CLASS RUN (PROP. 2 - PLOTS)	IIER		-	~	m	•	5	•	^	6 0	٠	10

.459

MEAN STANDARDIZED ITEM DIFFICULTY & CORRESPONDING PROPORTION &

95

CONTROLLED ITEM

MANPOWER AND PERSONNEL DIVISION

IAP : ITEM AN	AMALYSIS PROGRAM	CONTROLLED *** PERSONAL DATA - PRIVACY ACT	D ITEM CT OF 1974 (5 USC 552A) ***	MANPONER AND PERSONNER DIVISION OF THE STORY
TAP CLASS RUN	4 (PRGS. 2 - PLCTS)			AIR FORCE SYSTEMS COMMAND
	PROPORTION OF SUBJECTS	TS CHOOSING THE CORRECT RESPONSE	AT VARIOUS ABILITY LEVELS	MEASURED IN 2-SCORES
ITEM	0-5- 2-5- 0-7-	-2.5 -2.0 -1.5 -1.0 -0.5	5 0.0 +0.5 +1.0 +1.5 +2.0	0 +2.5 +3.0 +3.5 +4.0 XFIFTY
-	00. 00. 00.	.00 .00 .00 .14	.06 .00 .18 .09 .30	.00 .33 .C3 .05 .00 4.94
SCALED ABSOLUTELY.	MIN/MAX VALUES CURVE	DEFINED BY CALLING PROGRAM.	THE	THEORETICAL PROPORTION AT -4.0 = .010
0.0		m m	~. ~.	8
C 1 111				* * * * * * * * * * * * * * * * * * *
C) W			• •	
35		• •	•	• •
	•			,
55	i i t t			
.53.x 0	0	. •	• •	
OW	• •	• •	• •	MT
55. 25.k	• °	• •	• •	
# # 2 W (7 1) W (8	o c	• • •	• •	E 6
\ w: F				
1.25°x	0	• • •	• • •	- W K
		×	• • •	77
120	,	0	• • •	
2.75.X 5.23.		× 0		61 C 2 C
# ** ** ** ** ** ** ** ** ** ** ** ** **	, , , , , , ,	1 1 0 1	1	
× × × × × × × × × × × × × × × × × × ×		•	• • •	
4.50.x				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		PLOT	DESCRIPTION	
18ACE 1	FITTED VALUES	CHARACTER O	5000 0000 0000	A DOO . COO
•	,	ε		

MANPOWER AND PERSONNEL DIVISION AF HUMAN RESCURES EMBERTORY AIR FORCE SYSTEMS COMMAND -1.23 RESOLUTION .JB .JJB 690° * * 0 • THEORETICAL PROPORTION AT -4.0 = 80 0.4. PROPORTION OF SUBJECTS CHOOSING THE CORRECT RESPONSE AT VARIOUS ABILITY LEVELS REASURED IN 2-SCORES 0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 .00 1.00 1.00 .95 1.00 CONTRCLLED ITEM
--- PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) +++ •76 PLOT DESCRIPTION MUNINE 0000. 00. •63 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 •63 SCALED ABSOLUTELY, MINIMAX VALUES DEFINED BY CALLING PROGRAM.
ITEM CHAPACIERISTIC CURVE 69. 00. CHARACTER 00. 00. 00. IAP CLASS RUN (PROS. 2 - PLOTS) FITTED VALUES ACTUAL VALUES LAP & ITEM ANALYSIS PROGRAM 00. 00. PLOT TRACE -1.25.X 17E#

CONTROLLED ITEM +** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) *** IAP : ITEM ANALYSIS PROGRAM

MANPOWER AND PERSONNEL DIVISION
AF HUMAN RESOURCES LABORATCAT
AIR FORCE SYSTEMS COMMAND

IAP CLASS RUN (PROS. 2 - PLOTS)

	XFIFTY	.00 .25 .41 .56 .00 .71 .68 .80 .00 1.00 1.00 .00 .00 .0030	070*
		00•	•
RES	-2.0 -1.5 -1.0 -0.5 0.0 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0	00•	THEORETICAL PROPORTION AT -4.0 = .C40
PROPORTION OF SUBJECTS CHOOSING THE CORPECT RESPONSE AT VARIOUL ABILITY LEVELS MEASURED IN 2-SCORES	.0	1.00	PORTIO
ED IN	5 +3,	1.00	AL PR
RASUR	.2.	06.	AETIC
VELS	*5.	-80	TREC
ITY LE	+1.5	.68	
. A87L	•1.0	7.	
ARIOU.	+0.5	8	
EATV	0.0	. 98	
ESPONS	-0-5		
ECT R	-1.0	'n	OGRAM
E CORT	-1.5	0	CALLING PROGRAM.
ING TH	-2.0	•	ו כארר
CHOOS	2.5	-	K 69 9
JECTS	-4.0 -3.5 -3.0 -2.5	41. 00. 00. 00. 00.	S DEFI
S SUB	- 5.5	.00	VALUE
MOIL	0	00•	N/KAX URVE
9 R Q P Q R	7	•00	SCALED ABSOLUTELY, MINIMAX VALUES DEFINED BY ITEM CHARACTERISTIC CURVE
	1164	m	SCALED ABS

0 X		「「	2	
		• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·
		•	•	
	•	•)
,	' !	•		•
1	i 1	•)	i
•	•	1	•	•
!		•	•	•
1	1	• •) 6
•		•	*	•
စော ယ	I	• •		, , , , , , , , , , , , , , , , , , , ,
,	,	1	0	
	1	1) ×	
1	•	1 (×	
(•	,)	,
1	1	•)]	1
(1	•	!	
1	1	• •	. •)
		•		
10.10	1))	! !
• • •			• • • • • • • •	
() }			· •
1	1))))
,		0 ×)
1	1	i		,
	1	i • ())	
(1		i	,
(<u>'</u>	l 1) }	
	.	10	•	
ະ ທີ		! !		, ,
ï		1	1	
(•			' 1
(•	•	i I)
,	. о ж	•	1	
(•	•)
	•	• • • • • • • • • • • • • • • • • • •	1	
() 0 0		,	,
Ì		6 6) }	1
90	 	· · · · · · · · · · · · · · · · · · ·)	
00				SASAS
	******		**************************************	1 W W 4 4

LCT DESCRIPTION

	RESOLUTION • 003
	# A M T M U M T M U M T M U M T M U M U M U
PLCI DESCRIPTION	MUNIME COO*
	CHARACTER O X
	PLOT FITTED VALUES ACTUAL VALUES
	TRACE 1 2

IAP : ITEM AN	ANALYSIS PROGRAM	CONTROLLED		MANPORER AND PERSONNEL DIVISION
TAP CLACS RUN	1 (PCCB. 2 - PLOTS)	18 19:1144 S189 1880884 111	_	ATA FORCE SYSTEMS COLUMN
	PPCPORTION OF SUBJEC	SUBJECTS CHOOSING THE CORRECT RESPONSE AT VARIOUS	ABILITY LEVELS	MEASURED IN ITSCORES
1754	-4.0 -3.5 -3.0	0 -2.5 -2.0 -1.5 -1.0 -0.5	0.0 +0.5 +1.0 +1.5 +2.0	+2.5 +3.0 +3.5 +4.0 XFIFTY
4	00" 00" 00"	55. 90. 00. 00. 00.	.51 .00 .61 .55 .50 .00	0 .67 1.03 .00 .00 .37
SCALED ASSOLUTELY, I	TIN/MAX VALUES CURVE	DEFINED BY CALLING PROGRAM.	THEORETICAL	TICAL PROPORTION AT -4.0 = .037
ព ព ព រ រ		~ ~ ~	ν 	0 × 0
N H H	1			- N M
X	0			• • •
		•••	•••	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1	100000000000000000000000000000000000000
H H W C W W W W W W W W W W W W W W W W		° ×	• • •	15
* * * 6 % 0 1 6 % % 1		•		
1	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	5.5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3
1.75.X 2.00. 2.25.X				255
** ** ** ** ** ** ** ** ** ** ** ** **		• • •	×	• • • •
	- 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1		• × • × • • • • • • • • • • • • • • • •
5-75-X 4-00-X 4-25-X		• • •	•••	N
4.50.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			* i	
TACE 1 2	PLOT FITTED VALUES ACTUAL WALUES	CHARACTER O X		#AXIMUM RESOLUTION 1.000 .000 .000 .000
, , , , , , , , , , , , , , , , , , ,				

IAP = ITEM ANALYSIS PROGRAM

CONTROLLED 1TEM - PRIVACY ACT OF 1974 (5 USC 552A) ***

MANDOWER AND PERSONNEL DIVISION AF HUMAN RESOURCES LABORATORY AIR FORCE SYSTEMS COMMAND

IAP CLASS RUN (PROB. 2 - PLOTS)

CURYE *** O	ASURED IN 2-SCORES +2.5 +3.0 +3.5 +4.0 KFIFTY	.00 .33 1.00 .00 .00	THEORETICAL PROPORTION AT -4.0 =	ထ က	
0008-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	AT VARIOUS ABILITY LEVELS MEA 0.0 +0.5 +1.0 +1.5 +2.0	.00 .22 .32 .40	THEORI		
0008-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	CHOOSING THE CORRECT RESPONSE-2.5 -2.0 -1.5 -1.0 -0.5	80. 90. 00. 00.	8		
õu i la l	0f -3.5	00. 00.	SCALED ABSOLUTELY, MIN/MAX VALUES DEFI ITEM CHARACTERISTIC CURVE	• •	

RESOLUTION OCTS

#AXIMUM 1.000 1.000

MUNINIE 000° 000°

CHARACTER

PLOT FITTED VALUES ACTUAL WALUES

TRACE

PLOT DESCRIPTION

IAP CLASS RUN	N (PROB. 2 - PLGTS)	*** PERSONAL BATA - PRI	orivacy act of 1974 to USC 552A) and	7 K S D C 7 C K S	- () ()
				CE SYSTERS	CCKYAND '
	PROPORTION OF SUBJECTS	ITS CHOOSING THE CORPECT	RESPONSE AT VARIOUS ABILITY LEVELS	MEASURED IN Z-SCORES	
ITER	-4.0 -3.5 -3.6	-2.5 -2.0 -1.5 -1	.0 -0.5 0.0 +5.5 +1.0 +1.5 +2.	.0 +2.5 +3.0 +3.5 +4.0	XFIFTY
•	00* 00* 00*	90. 00. 21. 00.	.20 .19 .00 .37 .45 .65	.00. 00.1 70. 00.	1.41
SCALED ASSOLUTELY, I	TIN/MAX VALUES CURVE	DEFINED BY CALLING PROGRAM _o		THEORETICAL PROPORTION AT -4.0	\$00. = 0
00		~	٠°٠٠	ω ω	6.4
-4.90	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	*		
.25		• •	••	• •	• •
0 8 50 50 - 20 - 20 - 20 - 20 - 20 - 20 - 2					• •
25 × 0	,	• • •	•••	• •	• • •
•		; ; ; ; ; ;			· · ·
1.25.X 7.00.X	•	• •	••		• •
75-K 50-	× 0	• •	••	• •	• •
K	o *	• • •	• • •	• • •	(
. S) . x	0 6 8 8 8			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) • • 1 1
1.00. 1.25.x		×			• •
1.50. 1.75.x				• •	• •
2-00- 2-25-K 2-31-K		• • •	°	• • •	• • •
X - 22 - 22 - 22 - 22 - 22 - 22 - 22 -			>d	0 .0	• •
3.50. 3.50.	6 6 8 6 8 6 8 6		1		• • • • • × •
2000 2000 2000 2000	8 8 8 8 8 9 1 8	0 6 1 1 1 1 1 1			, !
			PLOT DESCRIPTION		
TRACE 1	FITTED VALUES	CHARACTER 0	NUMININ NUMINI	MAXINUM RES	RESOLUTION DDS
7					

IAP : ITEM ANALYSIS PROGRAM

CONTRCLLED ITEM *** PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) ***

MANPOWER AND PERSONNEL DIVISION
AF HUMAN RESOURCES LABORATORY
AIR FORCE SYSTEMS COMMAND

IAP CLASS RUN (PROB. 2 - PLOTS)

ο н			8 * * * * * * * * * * * * * * * * * * *
0.0	, • • • • • • • • • • • • • • • • • • •	i	, , , , , , , , , , , , , , , , , , ,
	1 1	•	
	• • •	4	
	1 1	1	
	* 6 *	•	
	f 6	•	× •
00 EO	! • • • • • • • • • • • • • • • • • • •	•	2
	1 !	6 : :	
	1 1 1	t	
	6 1	1 1 1	
	1 1 1	• •	
	1 1	! !	
~ ·	; ; • • • • • • • • • • • • • • • • • •		
	1 1		
	! ! !	•	
	1 1	i i	
	 	! ! * !	
	• •	! • (
m m	! • • • • • • • • • • • • • • • • • • •		
	! !	o	
	1 1 1	1 0 1	
:	i !	i 6 (
1		• • • • • • • • • • • • • • • • • • •	
		g (
11			

PLOT DESCRIPTION

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
MAXIMUM 1.000 1.000	
EUNINE OCO+ OCO+	
CHARACTER O N	
PLOT FITTED VALUES ACTUAL VALUES	
78ACE 1 2	

AN HOMER AND PERSONARE DISCUSSION AND TOPEN TO THE TOPEN --32 120 RESOLUTION .CC3 AIR FORCE SYSTEMS COMMAND .003 THEORETICAL PROPORTION AT -4.0 # .33 0.44 2-500785 +3.5 .90 1.00 1.03 +3.0 PPOPORTION OF SUBJECTS CHOOSING THE CORRECT RESPONSE AT VARIOUS ABILITY LEVELS REASURED IM +2.5 #AXIMUM 1.000 1.000 ¢2.0 03* CONTRULLED ITEM +++ PERSONAL DATA - PRIVACY ACT OF 1974 (5 USC 552A) +++ 0-0 +0-5 +1-0 +1-5 •73 .43 PLOT DESCRIPTION EUMINAM 000. co. 09. -1.5 -1.0 -0.5 .39 SCALED ABSOLUTELY, MINZMAX VALUES DEFINED BY CALLING PROGRAM. .19 00° CHARACTER -2.0 62. -2.5 00. -3.0 00. IAP CLASS RUN (PROG. 2 - PLOTS) PLOT FITTED VALUES ACTUAL VALUES 2.5 TIP & 177# ANALYSIS PROGRAM ខ្ល 02. TRACE 1 T E M 103

MANPOWER AND PERSONNEL DIVISION AF HUMAN RESOURCES LABORATORY AIR FORCE SYSTEMS COMMAND

CONTROLLED ITEN *** PERSONAL DATA -- PRIVACY ACT OF 1974 (5 USC 552A) *** IAP CLASS RUN (PROB. 2 - PLOTS)

Z-SCORES		
2		
MEASURED		
LEVELS		
ABILITY		
VARICUS		
AT		
RESPONSE	•	
CORRECT		
THE		
DNISOC		
Ē		
SUBJECTS CHOOSING THE CORRECT RESPONSE AT VARIOUS ABILITY LEVELS MEASURED IN 2-SCORES		
OF SUBJECTS CH		
PROPORTION OF SUBJECTS CH		

MEIFTY	-00 .25 .49 .46 .00 .57 .73 .90 1.00 1.00 0.00 .00	890.
c c	00.	THEORETICAL PROPORTION AT -4.0 * .063
.5	00.	A AT -
£ 0	1.33	DPORTIC
-2.0 -1.5 -1.0 -0.5 0.C +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5 +4.0	1.03	CAL PRI
• 0 +2	00-	EDRETI
•5 +2	64.	¥
•• 0•	•73	
3.5 +1	.57	
٥٠٥	80.	
0.5	97.	
0.1	57. 9	CALLING PROGRAM.
-1.5	9.2	ING PR
-2.0	0. 6	א כערנ
	2- 0	INED 8
-4.0 -3.5 -3.0 -2.5	J• 00	JES DEF
-3.5	00	AX VALI
0.4-	62. 00. 00. 00. 00.	HIN/H
1758	6	SCALED ABSOLUTELY, MIW/MAX VALUES DEFINED BY ITEM CHARACTERISTIC CURVE
		SCA 1TE

0 ¥	* N M * N N N N O O	Elemboro del como de c	C (40 C) (10 C) (40 C)
00		• • • • • • • • • •	
	s ŧ		
	i t	•	
	1 P		, , , , , , , , , , , , , , , , , , ,
	t 1		. 0 1
	t F	1	
	1 1	ė ė	. 0 !
∞ ∞	1 1	• •	1 0 t
	1 · · · · · · · · · · · · · · · · · · ·	1	; , , o , , , , , , , , , , , , , , , ,
	i f	• •	
	t i	4 4	
	! !	f (o 1 1
	!) 	l 1
	1 1		1 × 1
	\$ •	•	1 1
ง ง๋	' ! • • • • • • • • • • • • • • • • • • •		
	• !	1 ×	i i
	, , ,	,	l l l l
	' 1	i i	l l l l
	!	1 O	t t 1
	I	i 0	
	!	1 O	! ! !
m m	•	o 	! !
		1 4	!
	, , o	t t	t ;
	•	r 1	
,	ı °	1 1	
	1 °	† -	, , ,
1	ı ⁰ ı	!	, ,
00	 - *********************************	, 	, , , , , , , , , , , , , , , , , , ,
ĺľ	9 K W W B K W W B W	~ 0 × 0 × 0 × 0 × 0 × 0 × 0	KKKK K KKK K K K K K K K K K K K K K K
		1111	

	86 SOLUTION
	MAXINUM 5+000 1+000
PLOT DESCRIPTION	MUMINIM 6000 5000
•	CHARACTER O K
	PLOT FITTED VALUES ACTUAL VALUES
	TRACE 1 2

METSTATE THE STANFOLD STANFOLD STANFOLD AND A SECOND STANFOLD STAN

*** PERSONAL PATA - PRIVACA ACT OF 1974 (5 UCC 552A) *** MANGEST PERMITTED TO THE TOTAL

	SIDBEBOS FOR HOLLSCHOOL		THEORY OF THE SAMEOUS AUTHOR	ACICIAT LEVELS ME SONCO IN 270	
1161	-1.7 -3.5 -3.0	-2.5 -2.0 -1.5 -1	0-1+ 3.5 0.0 +0.5 +1.0	+1.5 +2.0 +2.5 +3.0 +3	*** *** ***
13	00° 00° 00°	61° 50° 05° Lb°	. 22 .48 .00 .55	(0.1 00.1 ch. 00. 57.	٠٠٠ د٠٠ د٥٠
SCALTD ABSOLUTELY.	JIELV, MIM/TAX VALUES RISTIC CUPVE	DEFINEN BY CALLING PROGRAM		THEORETICAL PROPOSITION	100 x 7 -4.0 x .001
00 11		Νņ	٠ •	w 12	C C + + + + + + + + + + + + + + + + + +
1 1 + 1 CO 4 M + 1 CO 4 M + 1	1 1 1 1 1 1 4 4 1 1				
~ 0			•••	. 	
-2.55.x 0			• • •	•••	
 	! 0 ! × ! 0 !	i i i i i i			
1.50.	×	•	• • •		
X X X X X X X X X X X X X X X X X X X			o	• • •	
- 4.000 - 4.00	1		1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
# * 75 * # * 2 * 5 * 4 * 4 * 5 * 5 * 4 * 5 * 5 * 5 * 5					92 · 0 x
# # 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•••	•••	₩
1 1 1 X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	f t t t t t t t t t t t t t t t t t t t	1		• • •
4.00.4 4.25.4 4.50.4				• • • • •	0. 33
			PLOT DESCRIPTION		
TPACE 1 2	PLOT FITTED VALUES ACTUAL VALUES	CHARACTER O X	#U#1%1# 0000*	E C C C C	RESOLUTION .008 .008
•					

21(CPU) SECONDS.

BFREE DA-IAPCLASSDATA.

SCHEE TEMP.

CBRKPT PRINTS

107