Clase teórica de la semana del 21-3

Mario Garelik

Sección 13.1 - Curvas en el espacio y sus tangentes.

- Ejercitación propuesta (pág. 713-715): 1 al 23 // 25 al 34.
- \bullet Breve introducción al tema de funciones con dominio en R y valores vectoriales. Este tipo de funciones son las funciones vectoriales.
- Nos manejaremos, indistinta y simultáneamente, con R^2 y R^3 .
- Ahora, los puntos $(x, y, z) = (f(t), g(t), h(t)), t \in I$ forman la curva, que representa la trayectoria de la partícula. Las ecuaciones x = f(t), y = g(t), z = h(t) parametrizan la curva.
- Definición formal de función vectorial. Representación como curvas en \mathbb{R}^3 . Más tarde veremos campos vectoriales (Dominio $\subseteq \mathbb{R}^2$; \mathbb{R}^3).
- Nomenclatura: vector de posición $\mathbf{r}(t)$, funciones componentes. Notación abreviada para la evaluación en un punto: $\mathbf{r}(t_0) = \mathbf{r}_0$.
 - Retomar los visto de Vectores de Matemática Básica: Norma o módulo y dirección (vista como el vector unitario correspondiente o versor) cómo normalizar un vector (conseguir, a partir de uno dado, otro con la misma dirección y de norma igual a uno) suma y resta productos: por un escalar, escalar y vectorial (definición, propiedades y connotaciones geométricas de cada uno) proyección ortogonal (componente de un vector sobre otro) desigualdad triangular.
- Ejemplos gráficos. Ingreso de curvas parametrizadas en ggb.
- Mirar bien los efectos en los argumentos de las componentes que hacen diferentes, en la figura 13.4 de pág. 708, las 2ª y 3ª hélices. Comprobar en ggb.

• Límite de funciones vectoriales.

- Definición $\epsilon \delta$.
- Diferenciar bien cuándo se mide con valor absoluto y cuándo con norma.
- A partir del cálculo de límites por las componentes (ver la ecuación (3) pág. 709), se procede en todos los cálculos de límite de manera analoga a lo que hacíamos en Cálculo I: vale sustitución directa y L'Hospital aplicados en cada componente.
- $-\,$ Vale para funciones vectoriales el álgebra de límites de las funciones vistas en Cálculo $_{\rm I}$
- Ejemplo de cálculo rapidito.

• Continuidad.

- Definición y analogías con Cálculo I para la verificación de continuidad.
- La revisión de la continuidad componente a componente permite, como en límites, utilizar todas las propiedades relativas vistas en Cálculo I.
- Derivabilidad. Definición y analogías con Cálculo I para la verificación de derivabilidad.
- El vector $\frac{d\mathbf{r}}{dt}$ mide la tasa de cambio de la posición respecto al tiempo, y siempre apunta en la dirección del movimiento del objeto (leer despacito el último párrafo de la pág. 710).
- Curva suave o regular: concepto y el requisito que $\frac{d\mathbf{r}}{dt} \neq \mathbf{0}$ con el fin que la partícula no invierta su dirección. Suavidad a trozos o por partes o tramos.
- Relación entre $\frac{d\mathbf{r}}{dt} \neq \mathbf{0}$ y la presencia de un ángulo o una cúspide. Analogías y diferencias con Cálculo I
- Vector y recta tangente en un punto. Significado geométrico del cociente $\frac{\mathbf{r}(t + \Delta t) \mathbf{r}(t)}{\Delta t}$.
- Curva suave o regular: definición y justificación del requerimiento que tenga derivada no nula en todo punto. Curva suave por tramos o a trozos.
- Velocidad, rapidez aceleración y dirección del movimiento. Ver ejemplo 4.
- Reglas de derivación.
 - A partir de la definición de derivada de una función vectorial a partir de sus componentes (pág. 710), las reglas pueden deducirse fácilmente aplicando a las componentes lo visto en Cálculo I (ver cómo demuestra la regla del producto punto en pág. 712).
 - Incorporación de los *nuevos productos*. (Notar la diferencia entre la naturaleza de las expresiones $(u \cdot v)'$ y $(u \times v)'$.
 - Distinguir bien los dos productos de la regla 2.
 - NO VER LA DEMO DE LA REGLA 7 (de la cadena).
- Las funciones vectoriales de magnitud constante. El ejemplo de la esfera como muestra de que, en cada punto t, el vector posición $\mathbf{r}(t)$ resulta ortogonal al tangente $\mathbf{r}'(t)$.

Sección 13.2 - Integrales de funciones vectoriales.

- Ejercitación propuesta (pág. 720-724): 1 al 18.
- Antiderivada, integral indefinida y definida: definición y analogías con Cálculo I. Validez de todas las propiedades referidas al tema
 - Por ejemplo, vale el Teorema Fundamental del Cálculo, aplicado a las componentes, incluso se hereda la nomenclatura: a la primitiva de $\mathbf{r}(t)$ la anotaremos con $\mathbf{R}(t)$.
 - Linealidad.

.

- \bullet Ejemplito para ver todo. Aclarar que la constante de integración C_1 y C_1 en el ejemplo 3 es un vector.
- Desde: Ecuaciones vectoriales y paramétricas para el movimiento de un proyectil ideal (pág. 717), hasta terminar: NO LO VEMOS.