

变异系数与是非标志

授课教师: 洪兴建

浙江财经大学数据科学学院

引例

问题1:已知某班所有学生的身高和体重,哪个离散程度较小?

计算得到
$$\sigma_h = 13.64cm$$
, $\sigma_w = 8.94kg$ $\bar{x}_h = 167.9cm$, $\bar{x}_w = 65.1kg$

问题2: 某IT公司3名员工的工资: 102000、103000、104000

某超市3名售货员的工资: 2000、3000、4000

哪个单位的工资差距大?

计算得到
$$\sigma_{IT} = \sigma_{SM} = 816.5$$
(元)

✓ 结论:某些情况带有量纲的离散指标有缺陷!

引例

- > 消除变量水平和计量单位影响
- > 思路:一次量纲的离散指标/平均数⇒变异系数
- > 极差系数、平均差系数、标准差系数

标准差系数

计算公式

$$V_{\sigma} = \frac{\sigma}{\overline{X}} \qquad \vec{\boxtimes} \qquad V_{S} = \frac{S}{\overline{X}}$$

引例

问题1解答:
$$V_h = \frac{\sigma_h}{\bar{x}_h} = \frac{13.64cm}{167.9cm} = 8.12\%$$

$$V_w = \frac{\sigma_w}{\bar{x}_w} = \frac{8.94kg}{65.1kg} = 13.73\%$$

问题2解答:
$$V_{IT} = \frac{\sigma_{IT}}{\bar{x}_{IT}} = \frac{816.5}{103000} = 0.793\%$$

$$V_{SM} = \frac{\sigma_{SM}}{\bar{x}_{SM}} = \frac{816.5}{3000} = 27.22\%$$

标准差系数

例1 谁的发挥更为稳定

安 X		- Hr. (E) /		
	序号	姚明	格伦-戴维斯	克里斯-保罗
	万分	得分	得分	得分
	1	19	7	12
	2	12	13	4
	3	28	12	32
	4	17	15	14
	5	15	23	21
	6	21	21	26
	7	7	10	9
	8	11	14	31
	9	24	26	42
	10	23	18	29

标准差系数

$$S_{tylk} = 6.55(\%)$$

$$rac{1}{x_{\text{M}}} = 17.7(分)$$
 $rac{1}{x_{\text{M}}} = 6.55(分)$ $rac{1}{x_{\text{M}}} = \frac{s}{x} = \frac{6.55}{17.7} = 0.3701$

$$rac{1}{x_{ ext{m}}} = 15.9(分) s_{ ext{m}} = 6.01(分)$$

$$rac{1}{x_{\pm}} = 15.9$$
(分) $rac{1}{s_{\pm}} = 6.01$ (分) $rac{1}{s_{\pm}} = 6.01$ (分) $rac{1}{s_{\pm}} = 6.01$ (分)

$$\frac{1}{x_{\text{R}}} = 22(分) s_{\text{R}} =$$

$$\frac{1}{x_{\text{保}}} = 22(\text{分})$$
 $s_{\text{R}} = 12.04(\text{分})$ $\Rightarrow V_{\text{R}} = \frac{s}{x} = \frac{12.04}{22} = 0.5473$

✓ 姚明的发挥更稳定!

含义

- 口又称交替标志,用"是"、"否"或"有"、"无"来表示。
- 口常用1和0表示"是"、"否"
- 口成数: "是"或"非"所占比例

成数

变量	X	f
"是"	1	N_1
"否"	0	N_0
合计	-	N

- → "是"的成数 P = N1 / N
- → "否"的成数 Q = N0 / N

平均数和标准差

・算术平均数

$$\frac{-}{X} = \frac{\sum_{i} X_{i} f_{i}}{\sum_{i} f_{i}} = \frac{1 \times N_{1} + 0 \times N_{2}}{N} = \frac{N_{1}}{N} = P$$

・标准差

$$\sigma = \sqrt{\frac{\sum_{i}(X_{i} - \overline{X})^{2} f_{i}}{\sum_{i} f_{i}}} = \sqrt{\frac{(1 - P)^{2} N_{1} + (0 - P)^{2} N_{0}}{N}}$$

$$= \sqrt{Q^2P + P^2Q} = \sqrt{PQ(Q + P)} = \sqrt{PQ}$$

例题

□例2 某批产品共500件,其中合格品480件,不合格品20件,计算成数和标准差。

$$\sigma = \sqrt{PQ} = \sqrt{0.96 \times 0.04} = 0.196$$

变异系数与是非标志

讨论

1.什么情形下是非标志标准差最大?

$$\sigma = \sqrt{PQ} = \sqrt{P - P^2} \implies P = 0.5$$

$$\Rightarrow P = 0.5$$

2.是非标志是否要计算标准差系数?

3. 标准差系数是否为万能的?