Pseudo-Random Numbers

- Important properties of good random number routines:
 - Fast
 - Portable to different computers
 - Have sufficiently long cycle
 - Replicable
 - · Verification and debugging
 - · Use identical stream of random numbers for different systems
 - · Closely approximate the ideal statistical properties of
 - · uniformity and
 - independence

Pseudo-Random Numbers: Properties

- Two important statistical properties:
 - Uniformity
 - Independence
- Random number R_i must be independently drawn from a uniform distribution with PDF:

$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

$$E(R) = \int_0^1 x dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2}$$

PDF for random numbers

Pseudo-Random Numbers

- Problems when generating pseudo-random numbers
 - The generated numbers might not be uniformly distributed
 - The generated numbers might be discrete-valued instead of continuous-valued
 - The mean of the generated numbers might be too high or too low
 - The variance of the generated numbers might be too high or too low
- There might be dependence:
 - Autocorrelation between numbers
 - Numbers successively higher or lower than adjacent numbers
 - Several numbers above the mean followed by several numbers below the mean

Generating Random Numbers

- Linear Congruential Method (LCM)
- Combined Linear Congruential Generators (CLCG)

Linear Congruential Method

 To produce a sequence of integers X₁, X₂, ... between 0 and m-1 by following a recursive relationship:

$$X_{i+1} = (aX_i + c) \bmod m, \quad i = 0,1,2,...$$
The multiplier The increment The modulus

- Assumption: m > 0 and a < m, c < m, $X_0 < m$
- The selection of the values for a, c, m, and X₀ drastically affects the statistical properties and the cycle length
- The random integers X_i are being generated in [0, m-1]

Linear Congruential Method

Convert the integers X_i to random numbers

$$R_i = \frac{X_i}{m}, \quad i = 1, 2, \dots$$

- Note:
 - $X_i \in \{0, 1, ..., m-1\}$
 - $R_i \in [0, (m-1)/m]$

Linear Congruential Method: Example

- Use $X_0 = 27$, a = 17, c = 43, and m = 100.
- The X_i and R_i values are:

$$X_1 = (17 \times 27 + 43) \mod 100 = 502 \mod 100 = 2$$
 \Rightarrow $R_1 = 0.02$
 $X_2 = (17 \times 2 + 43) \mod 100 = 77$ \Rightarrow $R_2 = 0.77$
 $X_3 = (17 \times 77 + 43) \mod 100 = 52$ \Rightarrow $R_3 = 0.52$
 $X_4 = (17 \times 52 + 43) \mod 100 = 27$ \Rightarrow $R_3 = 0.27$

Linear Congruential Method: Example

- Use a = 13, c = 0, and m = 64
- The period of the generator is very low
- Seed X₀ influences the sequence

i	X_i $X_0=1$	X_i $X_0=2$	X_i $X_0=3$	X_i X_0 =4
0	1	2	3	4
1	13	26	39	52
2	41	18	59	36
3	21	42	63	20
4	17	34	51	4
5	29	58	23	
6	57	50	43	
7	37	10	47	
8	33	2	35	
9	45		7	
10	9		27	
11	53		31	
12	49		19	
13	61		55	
14	25		11	
15	5		15	
16	1		3	

Linear Congruential Method

Properties to Consider

- Generated numbers must be approximately uniform and independent.
- Moreover, other properties, such as maximum density and maximum period must be considered.
- By maximum density is meant that the values assumed by R_i , i = 1, 2, ..., leave no large gaps on [0, 1].
- In many simulation languages, values such as $m=2^{31}-1$ and $m=2^{48}$ are in common use in generators.
- To help achieve maximum density and to avoid cycling, the generator should have the largest possible period.

Linear Congruential Method:

Characteristics of a good Generator

- The LCG has full period if and only if the following three conditions hold (Hull and Dobell, 1962):
 - 1. The only positive integer that (exactly) divides both m and c is 1
 - 2. If q is a prime number that divides m, then q divides a-1
 - 3. If 4 divides m, then 4 divides a-1

Combined Linear Congruential Generators

- Reason: Longer period generator is needed because of the increasing complexity of simulated systems.
- Approach: Combine two or more multiplicative congruential generators.
- Let $X_{i,1}, X_{i,2}, ..., X_{i,k}$ be the *i*-th output from *k* different multiplicative congruential generators.
 - The j-th generator X_{•j}:

$$X_{i+1,j} = (a_j X_i + c_j) \bmod m_j$$

- has prime modulus m_j, multiplier a_j, and period m_j-1
- produces integers $X_{i,j}$ approx ~ Uniform on $[0, m_i 1]$
- $W_{i,j} = X_{i,j} 1$ is approx ~ Uniform on integers on $[0, m_j 2]$

Combined Linear Congruential Generators

Suggested form:

$$X_{i} = \left(\sum_{j=1}^{k} (-1)^{j-1} X_{i,j}\right) \mod m_{1} - 1 \qquad \text{Hence, } R_{i} = \begin{cases} \frac{X_{i}}{m_{1}}, & X_{i} > 0 \\ \frac{m_{1} - 1}{m_{1}}, & X_{i} = 0 \end{cases}$$

• The maximum possible period is: $P = \frac{(m_1 - 1)(m_2 - 1)...(m_k - 1)}{2^{k-1}}$

Combined Linear Congruential Generators

• Example: For 32-bit computers, combining k = 2 generators with $m_1 = 2147483563$, $a_1 = 40014$, $m_2 = 2147483399$ and $a_2 = 40692$.

The algorithm becomes:

Step 1: Select seeds

 $X_{0.1}$ in the range [1, 2147483562] for the 1st generator

 $X_{0.2}$ in the range [1,2147483398] for the 2nd generator

Step 2: For each individual generator,

 $X_{i+1,1} = 40014 \times X_{i,1} \mod 2147483563$

 $X_{i+1,2} = 40692 \times X_{i,2} \mod 2147483399$

Step 3: $X_{i+1} = (X_{i+1,1} - X_{i+1,2}) \mod 2147483562$

Step 4: Return

$$R_{i+1} = \begin{cases} \frac{X_{i+1}}{2147483563}, & X_{i+1} > 0\\ \frac{2147483562}{2147483563}, & X_{i+1} = 0 \end{cases}$$

Step 5: Set i = i+1, go back to step 2.

• Combined generator has period: $(m_1 - 1)(m_2 - 1)/2 \sim 2 \times 10^{18}$

Tests for Random Numbers

- Two categories:
 - Testing for uniformity:

$$H_0: R_i \sim U[0,1]$$

 $H_1: R_i \sim U[0,1]$

- Failure to reject the null hypothesis, H_0 , means that evidence of non-uniformity has not been detected.
- Testing for independence:

$$H_0$$
: $R_i \sim \text{independent}$

$$H_1$$
: $R_i \neq \text{independent}$

- Failure to reject the null hypothesis, H_0 , means that evidence of dependence has not been detected.
- Level of significance α , the probability of rejecting H_0 when it is true:

$$\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

Tests for Random Numbers

- When to use these tests:
 - If a well-known simulation language or random-number generator is used, it is probably unnecessary to test
 - If the generator is not explicitly known or documented, e.g., spreadsheet programs, symbolic/numerical calculators, tests should be applied to many sample numbers.
- Types of tests:
 - Theoretical tests: evaluate the choices of m, a, and c without actually generating any numbers
 - Empirical tests: applied to actual sequences of numbers produced.
 - · Our emphasis.

Test for Random Numbers

- 1. *Frequency test*. Uses the Kolmogorov–Smirnov or the chi-square test to compare the distribution of the set of numbers generated to a uniform distribution.
- 2. Autocorrelation test. Tests the correlation between numbers and compares the sample correlation to the desired correlation, zero.

Kolmogorov-Smirnov Test

- Compares the continuous CDF, F(x), of the uniform distribution with the empirical CDF, $S_N(x)$, of the N sample observations.
 - We know: F(x) = x, $0 \le x \le 1$
 - If the sample from the RNG is R₁, R₂, ..., R_N, then the empirical CDF, S_N(x) is:

$$S_N(x) = \frac{\text{Number of } R_i \text{ where } R_i \le x}{N}$$

- Based on the statistic: $D = max | F(x) S_N(x)|$
 - Sampling distribution of D is known

Kolmogorov-Smirnov Test

- The test consists of the following steps
 - **Step 1:** Rank the data from smallest to largest $R_{(1)} \le R_{(2)} \le ... \le R_{(N)}$
 - Step 2: Compute

$$\begin{split} D^+ &= \max_{1 \leq i \leq N} \left\{ \frac{i}{N} - R_{(i)} \right\} \\ D^- &= \max_{1 \leq i \leq N} \left\{ R_{(i)} - \frac{i-1}{N} \right\} \end{split}$$

- **Step 3:** Compute $D = \max(D^+, D^-)$
- **Step 4:** Get D_{α} for the significance level α
- Step 5: If D≤D_α accept, otherwise reject H₀

Kolmogorov-Smirnov Critical Values

Degrees of Freedom			
(N)	$D_{0.10}$	$D_{0.05}$	$D_{0.01}$
1	0.950	0.975	0.995
2	0.776	0.842	0.929
3	0.642	0.708	0.828
4	0.564	0.624	0.733
5	0.510	0.565	0.669
6	0.470	0.521	0.618
7	0.438	0.486	0.577
8	0.411	0.457	0.543
9	0.388	0.432	0.514
10	0.368	0.410	0.490
11	0.352	0.391	0.468
12	0.338	0.375	0.450
13	0.325	0.361	0.433
14	0.314	0.349	0.418
15	0.304	0.338	0.404
16	0.295	0.328	0.392
17	0.286	0.318	0.381
18	0.278	0.309	0.371
19	0.272	0.301	0.363
20	0.264	0.294	0.356
25	0.24	0.27	0.32
30	0.22	0.24	0.29
35	0.21	0.23	.0.27
Over	1.22	1.36	1.63
35	\sqrt{N}	\sqrt{N}	\sqrt{N}

Kolmogorov-Smirnov Test

• Example: Suppose *N*=5 numbers: 0.44, 0.81, 0.14, 0.05, 0.93.

Chi-square Test

• Chi-square test uses the sample statistic:

- Approximately the chi-square distribution with n-1 degrees of freedom
- For the uniform distribution, E_i , the expected number in each class is:

$$E_i = \frac{N}{n}$$
, where N is the total number of observations

• Valid only for large samples, e.g., $N \ge 50$

Chi-square Test: Example

- Example with 100 numbers from [0,1], α =0.05
- 10 intervals
- $\chi^2_{0.05,9} = 16.9$
- Accept, since

•
$$X_0^2 = 11.2 < \chi_{0.05,9}^2$$

Interval	Upper Limit	$\mathbf{O}_{\mathbf{i}}$		O_i - E_i	$(O_i-E_i)^2$	$(O_i-E_i)^2/E_i$
1	0.1	10	10	0	0	0
2	0.2	9	10	-1	1	0.1
3	0.3	5	10	-5	25	2.5
4	0.4	6	10	-4	16	1.6
5	0.5	16	10	6	36	3.6
6	0.6	13	10	3	9	0.9
7	0.7	10	10	0	0	0
8	0.8	7	10	-3	9	0.9
9	0.9	10	10	0	0	0
10	1.0	14	10	4	16	1.6
Sum		100	100	0	0	11.2

$$\chi_0^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

Practice Questions

- 15. Consider the multiplicative congruential generator under the following circumstances:
 - (a) $X_0 = 7$, a = 11, m = 16
 - (b) $X_0 = 8, a = 11, m = 16$
 - (c) $X_0 = 7$, a = 7, m = 16
 - (d) $X_0 = 8$, a = 7, m = 16

Generate enough values in each case to complete a cycle. What inferences can be drawn? Is maximum period achieved?

23. Solution to Exercise 23:

Inferences:

Maximum period, p = 4, occurs when X_0 is odd and a = 3 + 8k where k = 1. Even seeds have the minimal possible period regardless of a.

- 4. Use the linear congruential method to generate a sequence of three two-digit random integers and corresponding random numbers. Let $X_0 = 27$, a = 8, c = 47, and m = 100.
- 4. Solution to Exercise 4:

$$X_0 = 27, \ a = 8, \ c = 47, \ m = 100$$

 $X_1 = (8 \times 27 + 47) \text{mod } 100 = 63, \ R_1 = 63/100 = .63$
 $X_2 = (8 \times 63 + 47) \text{mod } 100 = 51, \ R_2 = 51/100 = .51$
 $X_3 = (8 \times 51 + 47) \text{mod } 100 = 55, \ R_3 = 55/100 = .55$

- The sequence of numbers 0.54, 0.73, 0.98, 0.11, and 0.68 has been generated. Use the Kolmogorov– Smirnov test with α = 0.05 to learn whether the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected.
- 7. Solution to Exercise 7:

$$R_{(i)}$$
 | .11 .54 .68 .73 .98
 i/N | .20 .40 .60 .80 1.0
 $i/N - R_{(i)}$ | .09 - - .07 .02
 $R_{(i)} - (i-1)/N$ | .11 .34 .28 .13 .18

$$D^{+} = \max_{1 \le i \le N} (i/N - R_{(i)}) = .09$$

 $D^{-} = \max_{1 \le i \le N} (R_{(i)} - (i - 1)/N) = .34$
 $D = \max(D^{+}, D^{-}) = .34$

The critical value, D_{α} , obtained from Table A.8 is

$$D_{.05} = .565$$

since $D < D_{.05}$, the hypothesis that there is no difference between the true distribution of $\{R_1, R_2, ..., R_5\}$ and the uniform distribution on [0, 1] cannot be rejected on the basis of this test.

8. Reverse the 100 two-digit random numbers in Example 7 to get a new set of random numbers. Thus, the first random number in the new set will be 0.43. Use the chi-square test, with α = 0.05, to learn whether the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected.

0.34	0.90	0.25	0.89	0.87	0.44	0.12	0.21	0.46	0.67
0.83	0.76	0.79	0.64	0.70	0.81	0.94	0.74	0.22	0.74
0.96	0.99	0.77	0.67	0.56	0.41	0.52	0.73	0.99	0.02
0.47	0.30	0.17	0.82	0.56	0.05	0.45	0.31	0.78	0.05
0.79	0.71	0.23	0.19	0.82	0.93	0.65	0.37	0.39	0.42
0.99	0.17	0.99	0.46	0.05	0.66	0.10	0.42	0.18	0.49
0.37	0.51	0.54	0.01	0.81	0.28	0.69	0.34	0.75	0.49
0.72	0.43	0.56	0.97	0.30	0.94	0.96	0.58	0.73	0.05
0.06	0.39	0.84	0.24	0.40	0.64	0.40	0.19	0.79	0.62
0.18	0.26	0.97	0.88	0.64	0.47	0.60	0.11	0.29	0.78

8. Let ten intervals be defined each from (10i - 9) to (10i) where i = 1, 2, ..., 10. By counting the numbers that fall within each interval and comparing this to the expected value for each interval, $E_i = 10$, the following table is generated:

Interval	O_i	$(O_i - E_i)^2/E_i$
(01-10)	9	0.1
(11-20)	9	0.1
(21-30)	9	0.1
(31-40)	6	1.6
(41-50)	17	4.9
(51-60)	5	2.5
(61-70)	10	0.0
(71-80)	12	0.4
(81-90)	7	0.9
(91-00)	16	3.6
	100	$14.2 = \chi_0^2$

From Table A.6, $\chi^2_{.05,9} = 16.9$. Since $\chi^2_0 < \chi_{.05,9}$, then the null hypothesis of no difference between the sample distribution and the uniform distribution is not rejected.

- Use the mixed congruential method to generate a sequence of three two-digit random integers and corresponding random numbers with X₀ = 37, a = 7, c = 29, and m = 100.
- 11. Use the mixed congruential method to generate a sequence of three two-digit random integers between 0 and 24 and corresponding random numbers with $X_0 = 13$, a = 9, and c = 35.
- Write a computer program that will generate four-digit random numbers, using the multiplicative congruential method. Allow the user to input values of X₀, a, c, and m.
- 18. Solution to Exercise 18:

$$X_1 = [7 \times 37 + 29] \mod 100 = 88$$

$$R_1 = .88$$

$$X_2 = [7 \times 88 + 29] \mod 100 = 45$$

$$R_2 = .45$$

$$X_3 = [7 \times 45 + 29] \mod 100 = 44$$

$$R_3 = .44$$

19. Use
$$m = 25$$

$$X_1 = [9 \times 13 + 35] \mod 25 = 2$$

$$X_2 = [9 \times 2 + 35] \mod 25 = 3$$

$$X_3 = [9 \times 3 + 35] \mod 25 = 12$$

Test the following sequence of numbers for uniformity and independence, using procedures you learned in this chapter: 0.594, 0.928, 0.515, 0.055, 0.507, 0.351, 0.262, 0.797, 0.788, 0.442, 0.097, 0.798, 0.227, 0.127, 0.474, 0.825, 0.007, 0.182, 0.929, 0.852.