Universidad de Granada

Grado en Estadística

Prácticas de ordenador: distribuciones discretas y continuas unidimensionales

Miguel Anguita Ruiz
Curso 2017/18

Índice

1. Práctica 1

Práctica 1

Ejercicio 1.1.

Calcular, para cada una de las distribuciones especificadas en las filas, los valores de probabilidades, percentiles y rango intercuartílico solicitados en las columnas de las siguientes tablas.

Sea mi DNI = 77149477, la tabla asociada es la siguiente:

	P(X=1)	$P(X \le 2)$	P(X > 2)	Percentiles 0.05, 0.1, 0.65	Rango intercuartílico
B(5,0.3)	0.36015	0.83692	0.16308	(0,0,2)	1
P(1.5)	0.3346952	0.8088468	0.1911532	(0,0,2)	1
BN(4,0.3)	0.02268	0.07047	0.92953	(2,3,11)	7
G(0.5)	0.25	0.875	0.125	(0,0,1)	1
H(11,3,5)	0.4545455	0.9393939	0.06060606	(0,0,2)	1

	f(4,3)	$P(X \le 5.3)$	P(X > 1)	Percentiles 0.25, 0.5, 0.55	Rango intercuartílico
N(4.4,1.4)	0.3359657	0.7765636	0.9979704	(3.601933,4.4,5.198067)	1.596134
Exp(0.85)	0.007474152	0.9980409	0.3083652	(0.2445298,0.5891751,0.6787315)	0.9338204

	f(0,35)	$P(X \le 0.95)$	P(X > 0.7)	Percentiles 0.25, 0.5, 0.55	Rango intercuartílico
Γ(1,9,1,1)	0.2453359	0.2405288	0.8453424	(0.9771061,1.736963,1.913223)	1.846206
Be(1.9,1.1)	0.8139028	0.928102	0.4529392	(0.4565206,0.6659588,0.7020887)	0.3800205

Los comandos en R usados han sido los siguientes:

1. Para B(5,0.3):

- dbinom(1,5,0.3)
- pbinom(2,5,0.3)
- pbinom(2,5,0.3,lower.tail = F)
- qbinom(0.05,5,0.3)
- qbinom(0.1,5,0.3)
- qbinom(0.65,5,0.3)
- qbinom(0.75,5,0.3)-qbinom(0.25,5,0.3)

2. Para P(1.5):

dpois(1,1.5)

- ppois(2,1.5)
- ppois(2,1.5,lower.tail = F)
- qpois(0.05,1.5)
- qpois(0.1,1.5)
- qpois(0.65,1.5)
- qpois(0.75,1.5)-qpois(0.25,1.5)

3. Para BN(4,0.3):

- dnbinom(1,4,0.3)
- pnbinom(2,4,0.3)
- pnbinom(2,4,0.3,lower.tail = F)
- qnbinom(0.05,4,0.3)
- qnbinom(0.1,4,0.3)
- qnbinom(0.65,4,0.3)
- qnbinom(0.75,4,0.3)-qnbinom(0.25,4,0.3)

4. Para G(0.5):

- dgeom(1,0.5)
- pgeom(2,0.5)
- pgeom(2,0.5,lower.tail = F)
- qgeom(0.05,0.5)
- qgeom(0.1,0.5)
- qgeom(0.65,0.5)
- qgeom(0.75,0.5)-qgeom(0.25,0.5)

5. Para H(11,3,5):

- dhyper(1,5,6,3)
- phyper(2,5,6,3)
- phyper(2,5,6,3, lower.tail = F)
- qhyper(0.05,5,6,3)
- qhyper(0.1,5,6,3)

- qhyper(0.65,5,6,3)
- qhyper(0.75,5,6,3)-qhyper(0.25,5,6,3)

6. Para N(4.4,1.4):

- dnorm(4.3,mean=4.4,sd=sqrt(1.4))
- pnorm(5.3,mean=4.4,sd=sqrt(1.4))
- pnorm(1,mean=4.4,sd=sqrt(1.4),lower.tail = F)
- qnorm(0.25,mean=4.4,sd=sqrt(1.4))
- qnorm(0.5,mean=4.4,sd=sqrt(1.4))
- qnorm(0.55,mean=4.4,sd=sqrt(1.4))
- qnorm(0.75,mean=4.4,sd=sqrt(1.4))-qnorm(0.25,mean=4.4,sd=sqrt(1.4))

7. Para Exp(0.85):

- dexp(4.3,1/0.85)
- pexp(5.3,1/0.85)
- pexp(1,1/0.85,lower.tail = F)
- = qexp(0.25,1/0.85)
- = qexp(0.5,1/0.85)
- = qexp(0.55,1/0.85)
- = qexp(0.75,1/0.85)-qexp(0.25,1/0.85)

8. Para $\Gamma(1,9,1,1)$:

- dgamma(0.35,shape=1.9,scale=1.1)
- pgamma(0.95,shape=1.9,scale=1.1)
- pgamma(0.7,shape=1.9,scale=1.1,lower.tail = F)
- qgamma(0.25,shape=1.9,scale=1.1)
- qgamma(0.5,shape=1.9,scale=1.1)
- qgamma(0.55,shape=1.9,scale=1.1)
- qgamma(0.75,shape=1.9,scale=1.1)-qgamma(0.25,shape=1.9,scale=1.1)

9. Para Be(1.9,1.1):

dbeta(0.35,shape1 = 1.9,shape2 = 1.1)

- pbeta(0.95,shape1 = 1.9,shape2 = 1.1)
- pbeta(0.7,shape1 = 1.9,shape2 = 1.1,lower.tail = F)
- qbeta(0.25,shape1 = 1.9,shape2 = 1.1)
- qbeta(0.5,shape1 = 1.9,shape2 = 1.1)
- qbeta(0.55,shape1 = 1.9,shape2 = 1.1)
- qbeta(0.75,shape1 = 1.9,shape2 = 1.1)-qbeta(0.25,shape1 = 1.9,shape2 = 1.1)

Ejercicio 1.2. Representa gráficamente la función de densidad y la función de distribución de una distribución Normal de media 10 y desviación típica 4, personaliza los gráficos a tu gusto y añádelos al documento a entregar.

Solución. .

Las funciones de densidad y distribución de una distribución normal de media 10 y desviación típica 4, son, respectivamente, las siguientes:

Distribución Normal: Media=10, Desviación típica=4

Distribución Normal: Media=10, Desviación típica=4

El código usado ha sido el siguiente:

1. Para la función de densidad:

2. Para la función de distribución:

local({ .x <- seq(-3.162, 23.162, length.out=1000) plotDistr(.x, pnorm(.x, mean=10, sd=4), cdf=TRUE, xlab="x", ylab="Función de distribución", main=paste("Distribución Normal: Media=10, Desviación típica=4"))
 })