FIUBA 83.01/63.01 Química

Guía de Problemas G4

EJERCICIO 3

3) Dos moles de gas ideal evolucionan desde el punto A hasta el punto B por una isobara y desde el punto B hasta el punto C por una isoterma. Y luego la evolución prosigue desde el punto C hasta el punto D por una isocora Además, se conocen algunos valores de las propiedades en estos puntos, que se reseñan en la siguiente tabla:

	Α	В	С	D
P (atm)	1		0,5	1
V (L)		100		
T (K)	300			

Información adicional: c_p (g) = 3,0 cal/mol·K

- a) Completar la tabla de valores.
- b) Graficar la evolución total en un diagrama P-V.
- **c)** Hallar Q, W, ΔU y ΔH para toda la evolución.

a) Completar la tabla de valores.

$$PV = nRT$$

$$P_A V_A = nRT_A$$

$$V_A = \frac{nRT_A}{P_A} = \frac{2 \ mol \cdot 0,082 \frac{atm \cdot L}{mol \cdot K} \cdot 300 \ K}{1 \ atm} = 49,2 \ L$$

$$A \rightarrow B$$
 Isobárico $P_A = P_B$

$$P_B V_B = nRT_B$$

$$T_B = \frac{P_B V_B}{nR} = \frac{1 \ atm \cdot 100 \ L}{2 \ mol \cdot 0,082 \frac{atm \cdot L}{mol \cdot K}} == 609,77 \ K$$

$$B \rightarrow C$$
 Isotermico $T_B = T_C$

$$P_C V_C = nRT_C$$

$$V_C = \frac{nRT_C}{P_C} = \frac{2 \text{ mol} \cdot 0,082 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}} \cdot 609,77 \text{ K}}{0,5 \text{ atm}} = 200 \text{ L}$$

$$C \rightarrow D$$
 isocórico $V_C = V_D$

$$P_D V_D = nRT_D$$

$$T_D = \frac{P_D V_D}{nR} = \frac{1 \ atm \cdot 200 \ L}{2 \ mol \cdot 0,082 \frac{atm \cdot L}{mol \cdot K}} = 1219,51 \ K$$

	Α	В	С	D
P (atm)	1		0,5	1
V (L)		100		
T (K)	300			

	Α	В	С	D
P (atm)	1	1	0,5	1
V (L)	49,2	100	200	200
T (K)	300	609,77	609,77	1219,51

b) Graficar la evolución total en un diagrama P-V.

c) Hallar Q, W, ΔU y ΔH para toda la evolución.

$$A \rightarrow B$$
 Isobárico $P_A = P_B = \text{constante}$

$$\Delta U = Q + W$$
 Primer principio

$$W_{AB} = -P_{ext} \int_{V_A}^{V_B} dV = P(V_B - V_A) = 1 \ atm(100 - 49.2)L$$

$$W_{AB} = -50.8 L \cdot atm$$
 Si $1 L \cdot atm = 24.22 cal$

Entonces el
$$W_{AB} = -1230,38 \ cal$$

La ΔU de un gas ideal depende exclusivamente de la temperatura, por lo tanto, la ΔU se calcula usando la expresión general para un gas ideal:

$$\Delta U = nC_v(T_B - T_A)$$
 No tenemos la C_v

Pero sabemos que $C_P - C_V = R$

Despejando
$$C_V = C_P - R = 3 \frac{cal}{mol \cdot K} - 2 \frac{cal}{mol \cdot K} = 1 \frac{cal}{mol \cdot K}$$

$$\Delta U_{AB} = 2 \ mol \cdot 1 \frac{cal}{mol \cdot K} (609,77 - 300) K$$

$$\Delta U_{AB} = 619,54 \text{ cal}$$

El calor (Q) es la transferencia de energía de un sistema a otro. Para expresar la relación entre el calor y la variación de temperatura usaremos ahora la capacidad calorífica a presión constante.

$$Q_{AB} = nC_V(T_B - T_A) = 2 \text{ mol} \cdot 3 \frac{cal}{mol \cdot K} (609,77 - 300)K$$

$$Q_{AB} = 1858,62 \text{ cal}$$

A Presión constante $| Q_{AB} = \Delta H_{AB} = 1858,62 \text{ K}$

$$Q_{AB} = \Delta H_{AB} = 1858,62 \text{ K}$$

	AB	ВС	CD	Total
Q (cal)	1858,62			
W (cal)	-1230,38			
ΔU (cal)	619,54			
ΔH (cal)	1858,62			

c) Hallar Q, W, ΔU y ΔH para toda la evolución.

$$B \rightarrow C$$
 Isotérmico

$$T_B = T_C$$

$$\Delta U = Q + W$$
 $Q_{BC} = -W_{BC}$

$$Q_{BC} = -W_{BC}$$

$$\Delta U_{BC} = 0$$

$$W_{BC} = -P_{ext} \int_{V_B}^{V_C} dV = -nRT \int_{V_B}^{V_C} \frac{dV}{V} = -nRT Ln \left(\frac{V_C}{V_B} \right)$$

$$W_{BC} = -2 \ mol \cdot 2 \frac{cal}{mol \cdot K} \cdot 609,77K \cdot Ln(\frac{200L}{100L})$$

$$W_{BC} = -1690,64 \text{ cal}$$

$$Q_{BC} = 1690,64$$
 cal

a T= cte para un gas ideal: $P_RV_R=P_CV_C$ Entonces $\Delta(PV) = 0$

$$\Delta H = \Delta U + \Delta (PV)$$
 $\Delta H_{BC} = 0$

	AB	BC	CD	Total
Q	1858,62	1690,64		
(cal)	1030,02	1090,04		
W	-1230,38	1600.64		
(cal)	-1230,36	-1690,64		
ΔU	619,54	0		
(cal)	019,54	U		
ΔН	1050.63	0		
(cal)	1858,62	U		

$$C \rightarrow D$$
 Isocórico $V_C = V_D$

$$W_{CD} = -P_{ext} \int_{V_C}^{V_D} dV \qquad \boxed{W_{CD} = 0}$$

$$\Delta U = Q + W \longrightarrow \Delta U_{CD} = Q_{CD}$$

$$\Delta U_{CD} = nC_V(T_D - T_C)$$

$$\Delta U_{CD} = 2 \ mol \cdot 1 \frac{cal}{mol \cdot K} (1219,51 - 609,77) K$$

$$\Delta U_{CD} = 1219,48 \ cal = Q_{CD}$$

$$\Delta H = \Delta U + \Delta (PV) \rightarrow \Delta H_{CD} = \Delta U_{CD} + V(P_D - P_C)$$

 $\Delta H_{CD} = 1219,48 \ cal + 200 \ L(1 - 0.5) \ atm$

$$\Delta H_{CD} = 3641,48 \ cal$$

	AB	ВС	CD	Total
Q (cal)	1858,62	1690,64	1219,48	
W (cal)	-1230,38	-1690,64	0	
ΔU (cal)	619,54	0	1219,48	
ΔH (cal)	1858,62	0	3641,48	

Finalmente el calculo para toda la evolución:

	AB	ВС	CD	/ Total
Q (cal)	1858,62	1690,64	1219,48	3768,74
W (cal)	-1230,38	-1690,64	0	-2921,02
ΔU (cal)	619,54	0	1219,48	1839,02
ΔH (cal)	1858,62	0	3641,48	5500,1

