Introdução a Sistemas Digitais

- Projeto Parte de Controle e Parte Operativa
- Descrição em linguagem de hardware RTL
- Implementação SERIAL x PARALELA

Descrição a nivel de transferencia entre registradores (RTL)

Projete um bloco de controle (represente na forma de diagrama de estados) que realize a seguinte operação no datapath a seguir:

```
inicio: X <= novo valor
Start =1;
Wait until done=1
go to inicio;
```

Implementação PARALELA: cada operação tem o seu operador, ou seja, precisamos de 3 multiplicadores e 2 somadores.

Implementação SERIAL : um único operador para somar e multiplicar, ou seja, uma operação por ciclo de relógio, precisa ter registrador para armazenar os estados intermediarios

VERSÃO SERIAL

 $S = A.X^2 + B.X + C$

A parte operativa tem carater acumulativo, ou seja, multiplica ou soma e acumula no registrador da saida do operador lógico.

Assim, para calcular S temos A que multiplica por X que soma com B que multiplica por X e soma com C.

Exemplo 1

Aula

9

Profa. Dra. Fernanda Gusmão de Lima Kastensmidt

Exemplo 1

Aula

9

Profa. Dra. Fernanda Gusmão de Lima Kastensmidt

Profa. Dra. Fernanda Gusmão de Lima Kastensmidt

Profa. Dra. Fernanda Gusmão de Lima Kastensmidt

Profa. Dra. Fernanda Gusmão de Lima Kastensmidt

```
Aula
entity pc funcao1 is
  Port (reset: in STD LOGIC;
      start: in STD LOGIC;
                                                                                                                                9
     clk: in STD_LOGIC;
     LX: out STD LOGIC;
                                                              RTL - VERSAO SERIAL
     LS: out STD LOGIC;
     M1: out STD_LOGIC_VECTOR(1 downto 0);
     M2: out STD LOGIC;
     P: out STD LOGIC;
                                                 Reset=1
     H: out STD LOGIC);
end pc funcao1;
                                                                          Start=1
                                                           IDLE
architecture Behavioral of pc funcao1 is
type tstate is (idle, S0, S1, S2, S3, S4, S5);
signal estado, prox estado: tstate;
begin
                                                                                                                         S2
                                                                                                      S1
process(reset, clk)
                                                                                 S0
begin
if (reset='1') then
 estado <= idle;
                                                                                                                         LX=0
                                                                                                     LX=0
                                                                                LX=1
elsif (clk'event and clk='1') then
                                                                                                                         M1=10
                                                                                                     M1 = 01
 estado <= prox estado;
                                                                                M1=X
end if;
                                                                                                                         M2 = 1
                                                                                                     M2 = 0
                                                                                M2=X
end process:
                                                                                                                         H=0
                                                                                                     H=1
                                                                                H=X
process(estado, start)
                                                                                                                          _S=
begin
CASE estado IS
                                                                                                     P=0
                                                                                                                         P=0
WHEN idle => if start='1' then prox estado <= S0; else prox estado <= idle; end if;
       LX<= 'X'; M1<="XX"; M2 <= 'X'; H <= 'X'; LS <= 'X'; P<='0';
WHEN S0 => prox estado <= S1;
       LX<= '1'; M1<="XX"; M2 <= 'X'; H <= 'X'; LS <= 'X'; P<='0';
                                                                                                                           S3
                                                                                                       S4
                                                                                   S5
WHEN S1 => prox estado <= S2;
       LX<= '0': M1<="01": M2 <= '0': H <= '1': LS <= '1': P<='0':
WHEN S2 => prox estado <= S3;
                                                                                                                          LX=0
       LX<= '0'; M1<="10"; M2 <= '1'; H <= '0'; LS <= '1'; P<='0';
                                                                                                      LX=0
                                                                                  LX=0
WHEN S3 => prox estado <= S4;
                                                                                                                          M1 = 00
                                                                                                      M1=11
                                                                                  M1=X
       LX<= '0'; M1<="00"; M2 <= '1'; H <= '1'; LS <= '1'; P<='0';
                                                                                                                          M2=1
                                                                                                      M2 = 1
WHEN S4 => prox estado <= S5:
                                                                                  M2=X
                                                                                                                          H=1
       LX<= '0'; M1<="11"; M2 <= '1'; H <= '0'; LS <= '1'; P<='0';
                                                                                                      H=0
                                                                                  H=X
WHEN S5 => prox estado <= idle;
                                                                                   _S=0
       LX<= '0'; M1<="XX"; M2 <= 'X'; H <= 'X'; LS <= '0'; P<='1';
WHEN others => prox estado <= idle;
```


END CASE; end process;

LX<= '0': M1<="XX": M2 <= 'X': H <= 'X': LS <= '0': P<='0':

process(mux1, mux2, H)

if H='0' then ula <= mux1 + mux2;

ula <= mux1 * mux2:

begin

else ula <= end if; end process;

```
entity PO_funcao1 is

Port ( reset : in STD_LOGIC;

clk : in STD_LOGIC;

LX : in STD_LOGIC;

M1 : in STD_LOGIC_VECTOR(1 downto 0);

M2 : in STD_LOGIC;

LS : in STD_LOGIC;

H : in STD_LOGIC;

dado : in STD_LOGIC_VECTOR (7 downto 0);

A : in STD_LOGIC_VECTOR (7 downto 0);

B : in STD_LOGIC_VECTOR (7 downto 0);

C : in STD_LOGIC_VECTOR (7 downto 0);

Saida_funcao : out STD_LOGIC_VECTOR (15 downto 0));

end PO_funcao1;
```

```
architecture Behavioral of PO_funcao1 is
signal dado 16, A 16, B 16, C 16, ula, mux1, mux2, regx, regs : std logic vector(15 downto 0);
begin
process(clk, reset)
beain
if reset='1' then
 regx <= "000000000000000";
elsif (clk'event and clk='1') then
 if LX ='1' then regx <= dado 16;
else regx <= regx;
end if; end if;
end process;
process(clk, reset)
begin
if reset='1' then
 regs <= "000000000000000";
elsif (clk'event and clk='1') then
 if LS ='1' then regs <= ula;
else regs <= regs;
end if; end if;
end process;
```

Implementação SERIAL

```
process(A 16, B 16, C 16, regx, M1)
begin
CASE M1 IS
WHEN "00" => mux1 <= regx;
WHEN "01" => mux1 <= A 16;
WHEN "10" => mux1 <= B 16;
WHEN others => mux1 <= C 16;
END CASE;
end process:
process(regx, regs, M2)
begin
if M2 = '1' then mux2 <= regs;
else mux2 <= regx;
end if;
end process;
saida funcao <= regs;
A 16 <= "00000000"&A;
B_16 <= "00000000"&B;
C 16 <= "00000000"&C;
dado 16 <= "00000000"&dado;
end Behavioral;
```


XC2v80 (VirtexII)

Estados: Idle, S0, S1, S2, S3, S4, S5

Periodo mínimo de clk = 2ns

Descrição em VHDL: Exemplo 1

Aula

9

VERSÃO PURAMENTE COMBINACIONAL

Paralelismo máximo

$$S = A.X^2 + B.X + C$$

$$S = X.(A.X + B) + C$$

Profa. Dra. Fernanda Gusmão de Lima Kastensmidt

```
entity funcao1 comb is
  Port ( dado : in STD LOGIC VECTOR(7 downto 0);
      clk: in STD LOGIC;
      reset: in STD LOGIC;
      start: in STD LOGIC;
      a: in STD_LOGIC_VECTOR(7 downto 0);
      b: in STD LOGIC VECTOR(7 downto 0);
      c:in STD LOGIC VECTOR(7 downto 0);
      saida funcao: out STD LOGIC VECTOR(15 downto 0));
end funcao1 comb;
architecture Behavioral of funcao1 comb is
signal dado_16, A_16, B_16, C_16, regx, regs : std_logic_vector(15 downto 0);
begin
saida funcao <= regs;
A 16 <= "0000000"&A;
B 16 <= "00000000"&B;
C 16 <= "0000000"&C;
dado 16 <= "00000000"&dado;
process(clk, reset)
begin
if reset='1' then
 regx <= "000000000000000";
elsif (clk'event and clk='1') then
 if start ='1' then
 regx <= dado_16;
else regx<=regx;
end if; end if;
end process;
process(clk, reset)
begin
if reset='1' then
  regs <= "000000000000000";
elsif (clk'event and clk='1') then
 if start='0' then
 regs <= (((A_16 * regx) + B_16)* regx ) + C_16;
else
  regs <= regs;
end if:
end if;
end process;
```

end Behavioral;

$$S = X.(A.X + B) + C$$

Descrição em VHDL: Exemplo 1

Aula

9

RTL – versão 2

```
entity funcao1 altonivel is
   Port (reset: in STD LOGIC;
        clk: in STD LOGIC;
                                                                                           process(reset, clk)
                                                      start: in std logic;
                                                                                           begin
        dado: in STD LOGIC VECTOR(7 downto 0);
                                                                                           if (reset='1' or start='1') then
       A, B, C: in STD LOGIC VECTOR(7 downto 0);
                                                                                           cont <= "00":
       saida_funcao: out STD_LOGIC_VECTOR(15 downto 0));
                                                                                           elsif clk'event and clk='1' then
 end funcao1 altonivel;
                                                                                           if start='0' then
                                                                                            cont <= cont +1;
architecture Behavioral of funcao1 altonivel is
                                                                                            end if;
                                                                                           end if;
signal dado 16, A 16, B 16, C 16, regx, regs: std logic vector(15 downto 0);
                                                                                           end process:
signal cont : std logic vector(1 downto 0);
begin
                                                                                           process(clk, reset)
                                                                                           begin
                                                                                           if reset='1' then
saida funcao <= regs;
                                                                                            regs <= "000000000000000";
A 16 <= "00000000"&A;
                                                                                          elsif (clk'event and clk='1') then
B 16 <= "0000000"&B;
                                                                                            if start='0' then
C 16 <= "00000000"&C;
                                                                                                            CASE CONT IS
dado_16 <= "00000000"&dado;
                                                                                                            WHEN "01" => regs <= A 16 * regx;
                                                                                                            WHEN "10" => regs <= regs + B 16;
process(clk, reset)
                                                                                                            WHEN "11" => regs <= regs * regx;
begin
                                                                                                            WHEN others => regs <= regs + C 16;
if reset='1' then
                                                                                                            END CASE:
 regx <= "000000000000000";
                                                                                           else
elsif (clk'event and clk='1') then
                                                                                           regs <= regs;
 if start ='1' then
                                                                                           end if:
 regx <= dado 16;
                                                                                           end if:
                                                                                           end process;
                 regx<=regx;
                 end if:
                                                                                           end Behavioral;
end if:
end process;
```


RTL - versão 2

Comparação de área e desempenho

Aula

9

XC2v80 (VirtexII)

Versão RTL (serial)

PC => 7 LUTS e 7 Flip-flops

PO => 78 LUTs e 24 flip-flops e 1 MULT18x18

=> periodo mínimo 6.8ns

Versão COMB e paralela

=> 30 LUTS, 24 flip-flops e 2 MULT18x18

=> periodo mínimo 12.4 ns

Devido ao caminho crítico E ao paralelismo x serial

Implementar um hardware para realizar as seguintes operações:

$$F(x) = (A. x^2 + B)/4 + C$$

Máximo desempenho (comprometimento em área)

inicio: X <= novo valor Start =1; Wait until done=1 go to inicio;

Mínima área (comprometimento em desempenho)

