

目录 CONTENTS 5.1 聚类的基本概念

5.2 基于划分的聚类方法

5.3 基于层次的聚类方法

5.4 基于密度的聚类方法

5.5 基于网格的聚类方法

5.6 聚类效果评估

□聚类分析

■聚类分析 (Cluster analysis) 简称聚类 (Clustering) ,是一个把一组数据对象 划分到不同子集的过程。每个子集称作一个簇 (Cluster) ,属于同一个簇中的数 据对象彼此相似,属于不同簇的数据对象彼此不相似。由聚类分析产生的簇的集合称作一个聚类。

- □聚类分析的困难
- 因为相似性的不确定性, 所以簇的概念并没有客观的定义。

□聚类的类型

- **层次的和划分的**: "聚类是层次的还是划分的?"是最常讨论的问题,两者的区别是簇的集合是否嵌套:
- ▶ 如果将数据集中的数据对象划分到不重叠的簇,使得每个数据对象都存在于一个 簇中,则称之为划分聚类 (Partitional clustering);
- ➤ 如果允许簇具有子簇,则称之为**层次聚类**(Hierarchical clustering),通常以树的形式表示数据对象之间的关系。

- □聚类的类型
- **互斥的、重叠的和模糊的**:数据对象的隶属关系也是区分不同聚类的重要因素:
- ➤ 如果每个数据对象都只属于唯一的簇,则称之为**互斥的**(Exclusive),比如按运 动能力对球员进行聚类;
- ▶ 如果某个数据对象可以同时属于多个簇,则称之为重叠的 (Overlapping) 或非 互斥的 (Non-exclusive) , 比如按兴趣爱好对球员进行聚类;
- ▶ 如果每个数据对象以[0,1]之间的隶属权值(隶属度)属于每个簇,则称之为模糊 聚类(Fuzzy clustering),比如按绘画风格对图片进行聚类。

- □聚类算法的要求
- 数据挖掘对聚类算法的要求有以下几点:
- 具有可伸缩性:许多聚类算法在小型数据集(几百或几千)上都可以运行良好,但是在大型数据集(百万级或十亿级)可能无法取得预期的结果。这种情况下,我们需要具有高度可伸缩性的聚类算法。
- ▶ 能够处理不同属性类型:许多聚类算法都是针对数值属性设计的,然而现实中可能要面临混合着标称属性、序数属性的数据,甚至诸如图、序列、文档等更复杂的数据。这种情况下,我们需要能够以较小代价适应不同类型数据的聚类算法。

- □聚类算法的要求
- 数据挖掘对聚类算法的要求有以下几点:
- ▶ 能够发现任意形状的簇:许多聚类算法基于欧式距离确定簇,导致得到的簇是球形的。然而,真实分布的簇可能是非球形的,甚至是非凸的。这种情况下,我们需要能够发现任意形状的簇的聚类算法。

聚类的基本概念

- □聚类算法的要求
- 数据挖掘对聚类算法的要求有以下几点:
- > 能够降低对于输入参数的领域知识的要求
- > 能够处理噪声数据
- > 对输入数据的顺序不敏感
- ▶能够进行增量聚类
- > 能够处理高维数据
- > 能够使聚类结果满足特定的约束
- > 具有良好的解释性和可用性

□划分方法的定义

■ 假设数据集 D 中包含 n 个欧式空间中的数据对象,划分方法把 D 中的数据对象分配到 k 个簇 $C_1, C_2, ..., C_k$ 中,使得对于 $1 \le i, j \le k$, $C_i \subset D$ 且 $C_i \cap C_j = \emptyset$ 。然后使用一个目标函数来评估划分的质量,使得簇内的数据对象相似,不同簇间的数据对象相异。

- □K-means算法
- K-means算法是最著名、最常用的基于划分的聚类方法。基本思想是首先创建一个初始 k 划分, 然后不断地迭代计算每个簇的聚类中心, 然后依据新的聚类中心 调整划分情况, 直至收敛。
- K-means算法是启发式算法,即每次聚类保证**局部最优**,利用局部最优聚类的上限来不断逼近全局最优。

- □K-means算法
- 使用**误差平方和** (Sum of the Squared Error, SSE) 度量迭代中聚类的质量。使用欧式距离作为距离度量时,目标函数表示为

$$loss = \sum_{i}^{K} \sum_{x \in c_{i}} ||x - c_{i}||_{2}^{2}$$

此时每个数据对象的损失表示为,其与所属聚类中心的欧式距离。可以证明,这种情况下使损失函数最小的质心是均值。

- □余弦相似性
- 在高维空间中可能需要使用余弦相似性进行相似性度量。使用余弦相似性作为距 离度量时,目标函数表示为

$$loss = \sum_{i}^{K} \sum_{x \in c_{i}} (1 - Cos(c_{i}, x))$$

可以证明,当每个数据对象单位化后(||x|| = 1),使用余弦相似性等价于使用欧式 距离。

- □距离度量、聚类中心和目标函数的关系
- ■一些距离度量、目标函数的组合都可以用于K-means算法,并能确保收敛。

距离度量	聚类中心	目标函数
平方欧氏距离	均值	最小化数据对象到簇质心的L ₂ 距离的平方和
余弦距离	均值	最小化数据对象到簇质心的余弦距离和
曼哈顿距离	中位数	最小化数据对象到簇质心的L ₁ 距离和

□初始质心的选择

■ 当质心初始化时,不同的初始质心导致不同的聚类结果,所以选择合适的初始质心是K-means算法的关键。常见的方法是随机选取质心,但是可能导致聚类的质量很差。

□初始质心的选择

■ 质心随机初始化的示例

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- ■质心随机初始化的局限性

- □初始质心的选择
- 质心随机初始化的局限性
- 》假设有K个簇,采用随机抽样的方式选择初始质心,则每个簇中拥有一个初始质心 (得到最优的聚类结果)的概率是

$$p = \frac{K!}{K^K}$$

▶ 所以随着簇的增多,至少一个簇对拥有一个初始质心(得到次优的聚类结果)的概率逐渐增加,而且这个问题即使多次重复的无法解决。

K	2	4	6	8	10	20	40
р	50.00%	9.38%	1.54%	0.24%	0.04%	$10^{-6}\%$	10^{-15} %

- □K-means++算法
- K-means++算法在选择初始质心时采用如下策略:
- ▶ 第一个初始质心采用随机选择的方法;
- ▶ 假设已经选取了 n (0<n<K) 个初始质心,那么在选择第 n+1个初始质心时,应 该距离当前 n 个质心越远的数据对象有更高的概率被选为新的质心。

- □Bisecting K-means算法
- 二分K-means算法是K-means算法的简单拓展,采用二分法的方式分裂簇,从而降低了对初始质心的敏感程度。
- 它基于一种简单的思想: 首先将所有数据对象看作一个簇, 然后将它分裂成两个 簇, 再选择一个簇继续分裂成两个簇, 直至得到 K 个簇。

基于划分的聚类方法

□Bisecting K-means算法

- □K-means算法对噪声更敏感
- 假设数据集中包含了7个标量数据对象: {1, 2, 3, 8, 9, 10, 25}, 簇的数量设置为2,则
- ▶ 对于聚类结果{1, 2, 3}和{8, 9, 10, 25}, 第一个簇的聚类中心为2, 第二个簇的聚类中心为13, 目标函数值为196;
- ▶ 对于聚类结果{1, 2, 3, 8}和{9, 10, 25}, 第一个簇的聚类中心为3.5, 第二个 簇的聚类中心为14.67, 目标函数值为189.67。
- 离群点 25 使得K-means将更为相似的 8 和 9 划分到不同的簇。此外,第二个簇的聚类中心为14.67,明显偏离簇中的数据对象!

□K-中心点

■ 采用实际的数据对象而非均值代表簇,其余的数据对象被分配到与其最为相似的代表对象所在的簇中。使用**绝对误差标准**(Absolute-Error Criterion)定义目标函数:

$$loss = \sum_{i}^{K} \sum_{x \in o_{i}} |x - o_{i}|$$

- 通过最小化该目标函数,把 n 个数据对象划分到 k 个簇中,这就是 k-中心点方法的基础。
- 当 k=1 时,可以快速的找到中心点,但当 k 为其他常数时,k-中心点问题是一个 NP-hard问题。

- □围绕中心点划分算法
- ■**围绕中心点划分算法** (Partitioning Around Medoids, 简称PAM) 是K-中心点问题的常见解决方式,使用迭代和贪心的方法求解该问题。PAM算法的流程如下:
- ▶ 随机选择 K 个数据对象作为初始的代表对象;
- > 将其余的数据对象划分到与其最相似的代表对象所属的簇;
- \triangleright 为了判断 o_j 是否是一个较好的代表对象,随机地选择一个非代表对象 o_{random} 代替 o_i 并更新目标函数值;
- \triangleright 根据目标函数的变化决定是否使用 o_{random} 代替 o_{j} .

替换后

- □围绕中心点划分算法
- \triangleright 替换前p属于 o_i , 替换后p属于 o_i , 则目标函数变化为 $d(p,o_i) d(p,o_i)$;
- ▶ 替换前p属于 o_i ,替换后p属于 o_i ,则目标函数变化为 $d(p,o_{random}) d(p,o_i)$;

替换后

- □围绕中心点划分算法
- ightharpoonup 替换前p属于 o_i ,替换后p属于 o_i ,则目标函数变化为 0;
- \triangleright 替换前p属于 o_i , 替换后p属于 o_j , 则目标函数变化为 $d(p,o_{random}) d(p,o_i)$;

- □围绕中心点划分算法
- 计算使用 o_{random} 替换 o_i 的总变化值:
- \triangleright 如果小于零,说明使用 o_{random} 替换 o_i 会取得更好的聚类效果;
- \triangleright 如果大于等于零,说明当前的 o_i 是可以接受的,在本次迭代不改变任何代表对象。

基于划分的聚类方法

- □Kmeans算法和数据的分布
- 对于发现不同类型的簇,Kmeans算法和相关改进算法都具有一定的局限性。更具体地说,当簇具有非球形的形状或具有不同尺寸或密度时,Kmeans算法很难发现"真实簇"的形状。
- 可采用的解决方案是将数据划分成更多的簇,至少保证每个更小的簇是纯的。

- □Kmeans算法和数据的分布
- ■不同尺寸的簇的结果

- □Kmeans算法和数据的分布
- ■更大的K值

- □Kmeans算法和数据的分布
- ■不同密度的簇的结果

- □Kmeans算法和数据的分布
- ■更大的K值

- □Kmeans算法和数据的分布
- ■非球形的簇的结果

- □Kmeans算法和数据的分布
- ■更大的K值

- □K-means算法的时间复杂度和空间复杂度
- K-means 算法在运行时只需要存储数据集和质心,所以它的空间复杂度为O((N+K)m),其中 N 表示数据对象的数量,K 表示聚类中心的数量,m 表示属性的数量。所以K-means算法的空间复杂度是线性的。
- K-means算法运行的时间复杂度是 $O(Iter \times KN)$, 其中 Iter 表示迭代次数,所以 K-means算法的时间复杂度也是线性的。

- ■Kmeans算法的特点
- 优点:
- ▶ 简单有效,可伸缩性强;
- > 当真实簇是密集的, 且簇间差异性较大, 则会取得较好的效果。
- 缺点:
- ▶ 需要人为指定 k 值;
- ▶ 对初始聚类中心敏感 (K-means++和BK-means);
- ▶ 通常取得局部最优解;
- ▶ 对噪声和异常值敏感 (PAM);
- > 只适用于数值属性;
- 不适合所有类型的数据分布,难以处理不同尺寸的、不同密度的、非球形的簇。

- 与基于划分的聚类方法相比,层次聚类同样是被广泛使用的、非常重要的聚类技术。层次聚类按照层次是否被细化分为以下两类方法:
- ▶ 凝聚的: 将每个数据对象看作一个簇,每一步合并最近的簇;
- ▶ 分裂的: 将全部数据对象看作一个簇,每一步分裂一个簇。

树状图 (Dendrogram)

嵌套簇图 (Nested cluster diagram)

- □基于层次的聚类方法
- ■凝聚层次聚类和分裂层次聚类的示意图

□凝聚层次聚类

- ■凝聚层次聚类的算法都可以用一个框架描述:从每个数据对象作为簇开始,相继 合并两个最接近的簇,直至剩下一个簇或满足用户指定的簇。交替迭代的执行以 下两个步骤:
- ▶ 利用簇的邻近度矩阵合并最接近的两个簇;
- 更新簇的邻近度矩阵,重新计算合并的簇和未改变的簇之间的邻近度信息。

- □簇之间的邻近度度量
- 凝聚层次聚类计算簇之间的邻近度度量时可以采取不同的计算方式,这些方式常 从图的角度进行定义和区分:
- ▶ 单链 (Single-linkage) : 簇之间的邻近度定义为不同簇中两个最近的数据对象的 距离。

$$d_{sl}(C_i, C_j) = \min_{x \in C_i, y \in C_j} dist(x, y)$$

- □簇之间的邻近度度量
- 凝聚层次聚类计算簇之间的邻近度度量时可以采取不同的计算方式,这些方式常 从图的角度进行定义和区分:
- ▶ 全链 (Complete-linkage) : 簇之间的邻近度定义为不同簇中两个最远的数据对象的距离。

$$d_{cl}(C_i, C_j) = \max_{x \in C_i, y \in C_j} dist(x, y)$$

- □簇之间的邻近度度量
- 凝聚层次聚类计算簇之间的邻近度度量时可以采取不同的计算方式,这些方式常 从图的角度进行定义和区分:
- > 均链 (Average-linkage) : 簇之间的邻近度定义为不同簇中所有数据对象之间距离的均值。

$$d_{al}(C_i, C_j) = \frac{1}{|C_1||C_2|} \sum_{x \in C_i} \sum_{y \in C_j} dist(x, y)$$

- □簇之间的邻近度度量
- 凝聚层次聚类计算簇之间的邻近度度量时可以采取不同的计算方式,这些方式常 从图的角度进行定义和区分:
- ▶ 质心距离 (Distance between centroids) : 簇之间的邻近度定义为不同簇的质心之间的距离。

$$d_c(C_i, C_j) = dist(c_i, c_j)$$

□凝聚层次聚类

■单链凝聚层次聚类示例

数据对象	X坐标	Y坐标
p1	0.4005	0.5306
p2	0.2148	0.3854
р3	0.3457	0.3156
p4	0.2652	0.1875
p5	0.0789	0.4139
р6	0.4548	0.3022

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

邻近度矩阵

□凝聚层次聚类

■单链凝聚层次聚类示例

• 1

• 5

• 3 • 6

• 4

聚类	数据对象
C1	{p1}
C2	{p2}
C3	{p3}
C4	{p4}
C5	{p5}
C6	{p6}

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

□凝聚层次聚类

• 5	• 2	1
		• 3 • 6

	1
_	7

聚类	数据对象
C1	{p1}
C2	{p2}
C3	{p3,p6}
C4	{p4}
C5	{p5}

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

□凝聚层次聚类

■单链凝聚层次聚类示例

4

聚类	数据对象
C1	{p1}
C2	{p2,p5}
C3	{p3,p6}
C4	{p4}

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

□凝聚层次聚类

聚类	数据对象
C1	{p1}
C2	{p2,p3,p5,p6}
C4	{p4}

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

□凝聚层次聚类

聚类	数据对象
C1	{p1}
C2	{p2,p3,p4,p5,p6}

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

□凝聚层次聚类

聚类	数据对象		
C1	{p1, p2,p3,p4,p5,p6}		

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

□凝聚层次聚类

聚类	数据对象		
C1	{p1, p2,p3,p4,p5,p6}		

□凝聚层次聚类

□凝聚层次聚类

	单链	全链	均链	质心距离
优点	可以处理非椭圆形的 簇		簇间的距离不易受到 噪声或异常值的影响	簇间的距离不易受到 噪声或异常值的影响
缺点	聚类结果对噪声或异 常值敏感	倾向于分裂较大的簇	倾向于形成球形的簇	倾向于形成球形的簇

□凝聚层次聚类

	单链	全链	均链	质心距离
优点	可以处理非椭圆形的 簇		簇间的距离不易受到 噪声或异常值的影响	簇间的距离不易受到 噪声或异常值的影响
缺点	聚类结果对噪声或异 常值敏感	倾向于分裂较大的簇	倾向于形成球形的簇	倾向于形成球形的簇

□凝聚层次聚类

	单链	全链	均链	质心距离
优点	可以处理非椭圆形的 簇		簇间的距离不易受到 噪声或异常值的影响	簇间的距离不易受到 噪声或异常值的影响
缺点	聚类结果对噪声或异 常值敏感	倾向于分裂较大的簇	倾向于形成球形的簇	倾向于形成球形的簇

基于层次的聚类方法

□凝聚层次聚类

■不同的凝聚层次聚类对比

	单链	全链	均链	质心距离
优点	可以处理非椭圆形的 簇		簇间的距离不易受到 噪声或异常值的影响	簇间的距离不易受到 噪声或异常值的影响
缺点	聚类结果对噪声或异 常值敏感	倾向于分裂较大的簇	倾向于形成球形的簇	倾向于形成球形的簇

- □凝聚层次聚类方法的时间复杂度和空间复杂度
- 凝聚层次聚类方法需要存储包含 N^2 个元素的距离矩阵,其中 N 表示数据对象的数量。记录每个数据对象的簇信息需要约 N 个存储空间。所以总的空间复杂度为 $O(N^2+N)$ 。
- 凝聚层次聚类方法需要 $O(N^2)$ 的时间计算距离矩阵,迭代过程的时间复杂度大致 为 $O(N^2\log(N))$,所以总的时间复杂度为 $O(N^2(\log N + 1))$ 。

基于层次的聚类方法

- □凝聚层次聚类方法的特点
- 优点:
- 独有的层次结构,特别适合某些应用;
- ▶ 更易产生高质量的聚类;
- 对数据类型的适应性较好,易于拓展;
- > 不需要指定簇的数量。
- 缺点:
- ▶ 可伸缩性较差;
- > 合并的操作无法撤销,导致局部最优聚类无法转换为全局最优聚类。

□基于密度的聚类方法

■ 基于密度的聚类方法通过寻找被低密度区域(区域内包含的数据对象少于阈值)分离的高密度区域的方式实现聚类。其中, DBSCAN (Density-Based Spatial Clustering of Application with Noise) 是一种简单有效、被广泛使用的基于密度的聚类方法。

- DBSCAN通过用户指定的参数 ε (**eps**ilon, $\varepsilon > 0$) 确定每个数据对象的邻域半径。 所以数据对象 x 的 ε 邻域是以 x 为中心, ε 为半径的空间。
- \triangleright 核心对象(Core object):如果一个数据对象的 ε 邻域至少包含 n_{eps} 个数据对象(包含自身),则表示该数据对象处于高密度区域,并称之为核心对象。

假设
$$n_{eps} = 7$$

$$N_{eps}(A) = 7$$

$$N_{eps}(B) = 4$$

$$N_{eps}(C) = 3$$

所以A是核心对象

- 给定参数 ε 和 n_{eps} , DBSCAN的目的是找出数据集中所有的核心对象,并利用核心对象和它们的邻域形成高密度区域,每个高密度区域都对应一个簇。利用核心对象形成高密度区域时使用了如下概念:
- ightharpoonup **直接密度可达的** (Directly density-reachable) : 对于**对象** p 和核心对象 q,如果 p 在 q 的 ε 邻域,则称 p 是从核心对象 q 直接密度可达的。如果 p 不是核心对象,则直接密度可达关系是非对称的;
- 》密度可达的 (Density-reachable) : 对于对象 p 和核心对象 q,如果存在一个核心对象链 $o_1, o_2, ..., o_m$,使得 q 到 o_1 、 o_i 到 o_{i+1} 、 o_m 到 p 是直接密度可达的,则称 p 是从核心对象 q 是密度可达的。如果 p 不是核心对象,则直接密度可达关系是非对称的。

- 给定参数 ε 和 n_{eps} ,DBSCAN的目的是找出数据集中所有的核心对象,并利用核心对象和它们的邻域形成高密度区域,每个高密度区域都对应一个簇。利用核心对象形成高密度区域时使用了如下概念:
- ➢ 密度相连的 (Density-connected): 对于对象 p 和对象 q, 如果存在一个核心 对象 o, 使得 p 和 q 都是从 o 密度可达的,则称 p 和 q 是密度相连的。密度相连关系是对称的。

■三种关系的示例

- ➤ m, p, o 和 r 是核心对象;
- ▶ q 是从 p 密度可达的, 但 p 不是从 q 密度可达的;
- ▶ 对象 s 是从核心对象 r 密度可达的, 对象 s 和对象 r 是密度相连的。

- DBSCAN
- DBSCAN算法主要包含以下几个步骤:
- ▶初始时将数据集中所有数据对象标记为 "unvisited",表示未计算邻域信息;
- ightharpoonup 随机选择一个 "unvisited"对象 p 并将标记更改为 "visited",如果判断为非核心对象,则标记为<mark>噪声点</mark>。否则为 p 创建一个簇 C,将 p 的 ε 邻域的数据对象都放入 C 的候选集合 S_c 中;
- \triangleright 逐个将 S_C 中**不属于其他簇的数据对象**放入 C 中,并将标记更改为 "visited"。特别的,如果是该数据对象是核心对象,则将其 ε 邻域内的数据对象放入 S_C 中。此过程重复执行直到 C 不再增长(S_C 为空);
- ▶ 重复第二步和第三步,直到所有数据对象的标记都是 "visited"。

■ DBSCAN示例:假设数据集中数据对象仅包含两个属性,在二维平面上的分布如图所示。其中, $\varepsilon=1$ 且 $n_{eps}=4$ 。

随机选择 unvisited 的数据对象6 ,将其标记更改为visited,根据 距离矩阵有

$$N_{eps}(x_6) = 2$$

所以数据对象6是噪声对象。

DBSCAN

■ DBSCAN示例:假设数据集中数据对象仅包含两个属性,在二维平面上的分布如图所示。其中, $\varepsilon=1$ 且 $n_{eps}=4$ 。

随机选择 unvisited 的数据对象1,将其标记更改为visited,根据距离矩阵有

$$N_{eps}(x_1) = 3$$

所以数据对象1是噪声对象。

■ DBSCAN示例:假设数据集中数据对象仅包含两个属性,在二维平面上的分布如图所示。其中, $\varepsilon=1$ 且 $n_{eps}=4$ 。

随机选择 unvisited 的数据对象2 ,将其标记更改为visited,根据 距离矩阵有

$$N_{eps}(x_2) = 3$$

所以数据对象2是噪声对象。

DBSCAN

DBSCAN示例: 假设数据集中数据对象仅包含两个属性, 在二维平面上的分布如 图所示。其中, $\varepsilon = 1$ 且 $n_{eps} = 4$ 。

随机选择 unvisited 的数据对象5 将其标记更改为visited, 根据

$$N_{eps}(x_5) = 5$$

所以数据对象5是核心对象。

S_C	С
$\{x_2, x_4, x_6, x_7\}$	$\{x_5\}$

■ DBSCAN示例:假设数据集中数据对象仅包含两个属性,在二维平面上的分布如图所示。其中, $\varepsilon=1$ 且 $n_{eps}=4$ 。

因为 x_3 的标识是 unvisited,将 其标记更改为visited,根据距离 矩阵判断 x_3 是非核心对象,所以 直接放入 C 中。

S_C	C
$\{x_1, x_7\}$	$\{x_5, x_2, x_3, x_6, x_4\}$

■ DBSCAN示例:假设数据集中数据对象仅包含两个属性,在二维平面上的分布如图所示。其中, $\varepsilon=1$ 且 $n_{eps}=4$ 。

因为 x_7 的标识是 unvisited,将 其标记更改为visited,根据距离 矩阵判断 x_7 是非核心对象,所以 直接放入 C 中。

S_C	C
$\{x_1\}$	$\{x_5, x_2, x_3, x_6, x_4, x_7\}$

- **DBSCAN**
- 带噪声点的聚类结果

深蓝色的点表示被标记为噪声

□DBSCAN演示

- □DBSCAN的空间复杂度和时间复杂度
- 对于每个数据对象,DBSCAN只需要记录簇编号和是否被 visited 等信息,所以空间复杂度是 O(N)。
- DBSCAN的时间复杂度为 O(TN), 其中 T 表示找出 ε -邻域中的数据对象所花费的时间。在最坏的情况下,DBSCAN的时间复杂度为 $O(N^2)$ 。使用某些快速检索的算法,可以使时间复杂度下降到 $O(N \log N)$ 。

- □DBSCAN的特点
- ■优点:
- ▶ 基于密度的定义使得DBSCAN且能处理任意形状和大小的簇;
- > 可以在聚类的同时发现异常点或噪声, 所以对数据集中的异常点或噪声不敏感;
- > 不需要指定簇的数量,不需要设置初始值。
- 缺点:
- > 可伸缩性较差;
- ▶ 高维空间中数据分布稀疏,难以确定高密度的定义;
- \triangleright 当空间中不同区域的密度差距很大时,固定的 n_{eps} 可能使DBSCAN失效;
- \triangleright 调试参数复杂,需要对 ε 和 n_{eps} 进行联合调参。

□DBSCAN的改进

- 尽管DBSCAN能够根据给定的输入参数 ε 和 n_{eps} 聚类对象,但是DBSCAN对这 些参数的设置非常敏感,且依赖于用户的经验。
- 现实的高维数据集通常具有非常倾斜的分布,**全局性**的密度参数不能很好地刻画 其内在的聚类结构。

OPTICS

- 为了克服在聚类分析中使用一组全局参数的缺点,DBSCAN的研究团队又提出了OPTICS (Ordering Points To Identify the Clustering Structure) 聚类分析算法。
- OPTICS算法不显式地产生数据的聚类,而是输出簇排序 (cluster ordering)。 这个排序是所有数据对象的线性表,描述了数据的基于密度的聚类结构。

- OPTICS
- 对于每个对象, OPTICS定义了两个概念:
- ightharpoonup 对象 p 的 κ 心距离(core-distance):使得 p 的 ϵ -邻域内至少有 n_{eps} 的最小 ϵ 值。或者说,p 的核心距离是使得 p 成为核心对象的最小半径阈值。

 $n_{eps} = 5$

OPTICS

- ▶ 从对象 q 到对象 p 的可达距离 (reachability-distance) : 使 p 从 q 密度可达的最小半径。根据密度可达的定义, q 必须是核心对象, 并且 p 必须在 q 的邻域内。所以, 可达距离为 max{core_distance(q), dist(p,q)}。
- 对象 p 可能直接由多个核心对象可达,使得 p 可能有多个可达距离。我们更关注于 p 的最小可达距离,因为它给出了 p 连接到一个稠密簇的最短路径。

可达距离(p,r)= core_distance(p) 可达距离(p,q)= dist(p,q)

- □OPTICS示例
- 假设数据集中包含7个二维数据对象:

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

U 设置 $\varepsilon = Inf$, $n_{eps} = 2$

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24
3.16	0	6.32	1.41	6.71	5.39	2.00
8.60	6.32	0	5.10	1.00	4.12	4.47
4.47	1.41	5.10	0	5.39	5.00	1.41
9.22	6.71	1.00	5.29	0	5.10	5.00
6.08	5.39	4.12	5.00	5.10	0	3.61
4.24	2.00	4.47	1.41	5.00	3.61	0

核心距离

1	2	3	4	5	6	7
3.16	1.41	1.00	1.41	1.00	3.61	1.41

可达距离

1	2	3	4	5	6	7
Inf						

距离矩阵

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24
3.16	0	6.32	1.41	6.71	5.39	2.00
8.60	6.32	0	5.10	1.00	4.12	4.47
4.47	1.41	5.10	0	5.39	5.00	1.41
9.22	6.71	1.00	5.29	0	5.10	5.00
6.08	5.39	4.12	5.00	5.10	0	3.61
4.24	2.00	4.47	1.41	5.00	3.61	0

核心距离

1	2	3	4	5	6	7
3.16	1.41	1.00	1.41	1.00	3.61	1.41

p1的可达距离

1	2	3	4	5	6	7
Inf	3.16	8.60	4.47	9.22	6.08	4.24

距离矩阵

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24		核心距离							
3.16	0	6.32	1.41	6.71	5.39	2.00		1	2	3	4	5	6	7	
							1	3.16	1.41	1.00	1.41	1.00	3.61	1.41	
8.60	6.32	0	5.10	1.00	4.12	4.47		0.20							
							+		抖	序后	o1的可	「达距逐	<u>ਬ</u>		
4.47	1.41	5.10	0	5.39	5.00	1.41	1	2	7	4	6	3	5		
9.22	6.71	1.00	5.29	0	5.10	5.00		Inf	3.16	4.24	4.47	6.08	8.60	9.22	
6.08	5.39	4.12	5.00	5.10	0	3.61									
4.24	2.00	4.47	1.41	Step	Ce	nter	0	rderSe	eds		Ou	tput			
				1	p1		{2,7,4,6,3,5}				{p1	{p1}			
		茈	离矩	4د											

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24
3.16	0	6.32	1.41	6.71	5.39	2.00
8.60	6.32	0	5.10	1.00	4.12	4.47
4.47	1.41	5.10	0	5.39	5.00	1.41
9.22	6.71	1.00	5.29	0	5.10	5.00
6.08	5.39	4.12	5.00	5.10	0	3.61
4.24	2.00	4.47	1.41	5.00	3.61	0

核心距离

1	2	3	4	4 5		7	
3.16	1.41	1.00	1.41	1.00	3.61	1.41	

p2的可达距离

1	2	3	3 4		6	7	
Inf	3.16	6.32	1.41	6.71	5.39	2.00	

距离矩阵

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24		核心距离								
3.16	0	6.32	1.41	6.71	5.39	2.00		1	2	3	4	5	6	7		
								3.16	1.41	1.00	1.41	1.00	3.61	1.41		
8.60	6.32	0	5.10	1.00	4.12	4.47										
	4.47 1.41						1		抖	序后	2的可	」 」 」 」 」 」 」 」 」 」				
4.47		5.10	0	5.39	5.00	1.41		1	2	4	7	6	3	5		
9.22	6.71	1.00	5.29	0	5.10	5.00		Inf	3.16	1.41	2.00	5.39	6.32	6.71		
6.08	5.39	4.12	5.00	5.10	0	0 3.61										
4.24	2.00	4.47	1.41	Step	Ce	Center		OrderSeeds				Output				
				1	1 p1 {			{2,7,4,6,3,5}				{p1}				
距离矩				2	p2		{4,7,6,3,5}				{p1	{p1,p2}				

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24
3.16	0	6.32	1.41	6.71	5.39	2.00
8.60	6.32	0	5.10	1.00	4.12	4.47
4.47	1.41	5.10	0	5.39	5.00	1.41
9.22	6.71	1.00	5.29	0	5.10	5.00
6.08	5.39	4.12	5.00	5.10	0	3.61
4.24	2.00	4.47	1.41	5.00	3.61	0

核心距离

1	2	3	4	5	6	7
3.16	1.41	1.00	1.41	1.00	3.61	1.41

p4的可达距离

1	2	3	4	5	6	7
Inf	3.16	5.10	1.41	5.39	5.00	1.41

距离矩阵

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24		核心距离							
3.16	0	6.32	1.41	6.71	5.39	2.00		1	2	3	4	5	6	7	
							-	3.16	1.41	1.00	1.41	1.00	3.61	1.41	
8.60	6.32	0	5.10	1.00	4.12	4.47									
							── 排序后p4			04的可	J达距 認				
4.47	1.41	5.10	0	5.39	5.00	1.41		1	2	4	7	6	3	5	
9.22	6.71	1.00	5.29	0	5.10	5.00		Inf	3.16	1.41	1.41	5.00	5.10	5.39	
6.08	5.39	4.12	5.00	Step	Ce	nter	O	rderSe	eds		Ou	ıtput			
4.24	2.00	4.47	1 11	1	p1		{2	{2,7,4,6,3,5}		{p:	{p1}				
4.24	2.00	4.47	1.41	2	P2	P2		{4,7,6,3,5}			{p:	{p1,p2}			
		跙	离矩	3	p4		{7	{7,6,3,5} {p1,p2,p4}							

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24
3.16	0	6.32	1.41	6.71	5.39	2.00
8.60	6.32	0	5.10	1.00	4.12	4.47
4.47	1.41	5.10	0	5.39	5.00	1.41
9.22	6.71	1.00	5.29	0	5.10	5.00
6.08	5.39	4.12	5.00	5.10	0	3.61
4.24	2.00	4.47	1.41	5.00	3.61	0

核心距离

1	2	3	4	5	6	7
3.16	1.41	1.00	1.41	1.00	3.61	1.41

p7的可达距离

1	2	4	7	6	3	5
Inf	3.16	1.41	1.41	3.61	4.47	5.00

距离矩阵

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24	核心距离								
3.16	0	6.32	1.41	6.71	5.39	2.00		1	2	3	4	5	6	7	
							-	3.16	1.41	1.00	1.41	1.00	3.61	1.41	
8.60	6.32	0	5.10	1.00	4.12	4.47									
									抖	序后	7的可	J达距 第	য় মূ		
4.47	1.41	5.10	0	5.39	5.00	1.41		1	2	4	7	6	3	5	
9.22	6.71	1.00	5.29	0	5.10	5.00		Inf	3.16	1.41	1.41	3.61	4.47	5.00	
6.08	5.39	4.12	5.00	Step	Ce	nter	0	OrderSeeds			Οι	Output			
0.00	3.33	7.12	3.00	1	p1		{2	{2,7,4,6,3,5}			{p:	{p1}			
4.24	2.00	4.47	1.41	2			{4	.,7,6,3,	5}		{p:	1,p2}			
	距离矩 3 p4		{7	{7,6,3,5} {p			{p:	{p1,p2,p4}							
				4	р7		{6	{6,3,5} {p1,p2,p4,p7}							

□OPTICS示例

$$D = \{(1,2), (2,5), (8,7), (3,6), (8,8), (7,3), (4,5)\}$$

0	3.16	8.60	4.47	9.22	6.08	4.24
3.16	0	6.32	1.41	6.71	5.39	2.00
8.60	6.32	0	5.10	1.00	4.12	4.47
4.47	1.41	5.10	0	5.39	5.00	1.41
9.22	6.71	1.00	5.29	0	5.10	5.00
6.08	5.39	4.12	5.00	5.10	0	3.61
4.24	2.00	4.47	1.41	5.00	3.61	0

可达距离

1	2	4	7	6	3	5
Inf	3.16	1.41	1.41	3.61	4.12	1.00

距离矩阵

OPTICS

- 假设用户设置了 ε, 从结果序列按顺序取出数据对象, 依次进行以下判断直到序列 为空:
- \triangleright 如果该点的可达距离 ≤ ϵ ,则该点属于当前簇;
- \triangleright 如果该点的可达距离 > ϵ ,则进行以下判断:若该点的核心距离 > ϵ ,则该点为离群点;若该点的核心距离 < ϵ ,则该点为新的簇。

- □OPTICS的空间复杂度和时间复杂度
- OPTICS算法的结构和DBSCAN非常相似,因此具有相同的时间复杂度和空间复杂度。

- □OPTICS的特点
- 优点:
- \triangleright 相较于DBSCAN, OPTICS对 ε 的敏感度大大降低;
- ▶ OPTICS可以同时发现不同密度的簇结构。
- 缺点:
- > 可伸缩性较差。

- □OPTICS的算法流程
- 从数据集中选择任意的数据对象作为当前对象 p;
- 检索 p 的 ε -邻域,确定核心距离并设置可达距离为未定义,输出当前对象 p;
- 如果 p 不是核心对象,从OrderSeeds表选择下一个对象,如果OrderSeeds表为空,则从数据集中任选一个未被处理的对象;
- 如果 p 是核心对象,则对于 p 的 ε -邻域中的每个对象 q,更新从 p 到 q 的可达 距离,并且如果 q 未被处理,则把 q 插入OrderSeeds表中。
- 重复以上过程, 直数据集中所有数据对象都被处理且OrderSeeds表为空。

- □基于网格的聚类方法
- 基于划分、层次、密度的聚类方法都是**数据驱动的**——划分数据集并且自动适应空间中数据的分布。而基于网格的聚类方法则是**空间驱动的**,把空间划分成独立于数据的单元。

- □基于网格的聚类方法
- 基于网格的聚类方法使用一种多分辨率的网格数据结构,将空间量化成有限数目的单元(Cell),这些单元形成了网格结构,所有聚类操作都在该结构上进行。

STING

- **STING** (STatistical INformation Grid) 是一种基于网格的多分辨率的聚类方法, 它将输入对象的空间区域划分为矩形单元。
- 空间使用分层和递归的方法进行划分并形成层次结构,每层的矩形单元对应了不同级别的分辨率,每个单元的属性的统计信息称作统计参数,用于查询和数据分析。

- STING
- 网格中常用的参数:
- ➤ Count: 网格中对象数目;
- ➤ Mean: 网格中所有值的平均值;
- ➤ Stdev: 网格中属性值的标准偏差;
- ➤ Min: 网格中属性值的最小值;
- ➤ max: 网格中属性值的最大值;
- ▶ Distribution:网格中属性值符合的分布类型,如正态分布,均匀分布,未知分布。

- **STING**
- STING聚类的过程:
- ▶ 选定一层作为查询处理的开始点;
- 对当前层次的每个单元计算与给定查询的相关程度的置信度,标记为相关或不相关的单元;
- 全更低的层次上重复步骤 2 直至达到最底层,但只处理相关的单元;
- ▶ 到达底层后如果满足有满足查询条件的单元格,则由邻近的单元形成簇。如果没有满足查询条件的单元格,则重新考虑不相关的单元。
- 如果最底层的网格数量非常多,则STING的效果趋向于DBSCAN的聚类结果。因此,STING也可以看作基于密度的聚类方法。

- **STING**
- ■优点
- 网格结构有利于并行处理和增量更新;
- ▶ 效率高,仅需扫描一次数据集来计算单元的统计信息,时间复杂度为 O(n)。建立 层次结构后查询时间为 O(g),其中 g 是最底层网格单元的数目。
- ■缺点
- > 聚类质量取决于网格结构最底层的粒度;
- > 不太适用于高维数据。

□簇评估

- 对于模型结果的评估在数据挖掘中是必不可少且非常重要的。对于分类任务,存在一些客观的指标被广泛的使用和接受,比如准确率、召回率等。但是由于聚类问题的特点,不存在类似准确率的客观指标来评价聚类结果的好坏。
- 尽管如此,簇评估,或**簇确认** (Cluster validation) 也是非常有必要的,目的是确认数据中是否存在非随机结构,或者说确认数据集中是否有自然的簇结构。

- □簇评估
- 簇评估主要确认以下几个重要的问题:
- ➤ 确认数据集的**聚类趋势** (Clustering tendency) ,即识别数据中是否实际存在非随机结构;
- ▶ 确认正确的簇个数;
- > 测定聚类的质量。

DBSCAN的结果

全链的结果

□聚类趋势

■ 通过计算数据集被均匀分布产生的概率,可以评估数据集的聚类趋势。比如利用空间随机性的统计检验—霍普金斯统计量进行描述。

- □霍普金斯统计量
- 均匀地从空间中抽取 n 个点 $p_1, p_2, ..., p_n$,对于每个点 p_i ,找出 p_i 在数据集中的最近邻:

$$x_i = \min_{v \in D} dist(p_i, v)$$

■ 均匀地从数据集中抽取 n 个点 $q_1, q_2, ..., q_n$,对于每个点 q_i ,找出 q_i 在 $D - \{q_i\}$ 中的最近邻:

$$y_i = \min_{v \in D, v \neq q_i} dist(q_i, v)$$

■ 计算霍普金斯统计量 H

$$H = \frac{\sum y_i}{\sum y_i + \sum x_i}$$

如果数据集是均匀分布的,则 H 趋向于0.5,如果是高度倾斜的,则 H 趋向于 0。

□确定簇数

- 确定数据集中"正确的"簇数是重要的,合适的簇数可以看作在聚类分析中寻找 可压缩性和准确性之间好的平衡点。
- 确定簇数并非易事,即依赖于数据集分布的形状和尺度,也依赖于用户的需求。 常见的方法有以下两种:
- ho 经验法:对于 n 个点的数据集,设置簇数 k 为 $\sqrt{n/2}$ 。在期望的情况下,每个簇大约 $\sqrt{2n}$ 个数据对象;
- ▶ 肘方法: 增加簇数有助于降低每个簇的簇内方差之和,所以寻找簇内方差和簇数的曲线的拐点。

□测定聚类质量

- 非监督的簇评估指标一般称作**内部指标**(Internal index),因为它们仅使用出现 在数据集中的信息。簇的有效性的内部指标主要基于以下两个概念:
- ▶凝聚度 (Cohesion) : 用来评估簇中数据对象之间的密切相关程度,或者相似程度;
- ➤ 分离度 (Separation) : 用来评估簇之间的差异性或者不相似性。

□基于图的凝聚度和分离度定义

凝聚度表示为簇内数据对象之间的邻近度之和,分离度表示为不同簇的数据对象 之间的邻近度之和:

$$cohesion(C_i) = \sum_{x,y \in C_i} dist(x,y)$$

$$separation(C_i, C_j) = \sum_{x \in C_i, y \in C_j} dist(x, y)$$

- □基于原型的凝聚度和分离度定义
- 凝聚度表示为簇内数据对象与质心的邻近度之和,分离度表示为不同簇的质心之间的邻近度之和:

$$cohesion(C_i) = \sum_{x \in C_i} dist(x, c_i)$$
$$separation(C_i, C_j) = dist(c_i, c_j)$$

- □非监督簇评估:轮廓系数
- 轮廓系数 (Silhouette coefficient) 是另一种流行的簇评估方法,可以对聚类结果做出更全面的评估。计算轮廓系数包含三个步骤:对于第 i 个数据对象,
- \triangleright 计算它到簇中所有其他数据对象的平均距离,记为 a_i ;
- \triangleright 分别计算它到其他各个簇中所有数据对象的平均距离,得到 C-1 个值,取其中的最小值,记为 b_i ;
- \triangleright 它的轮廓系数表示为 $s_i = (b_i a_i)/\max(a_i, b_i)$ 。
- 当所有数据对象的轮廓系数计算完以后,取簇中所有数据对象的轮廓系数的平均 值作为该簇的平均轮廓系数。

- □非监督簇评估: 相似度矩阵
- 借助相似度矩阵可以直观评估簇的有效性,评估的方法就是相似度矩阵的可视化。 主要做法是,将数据对象按照簇编号进行排序,然后计算数据对象之间的相似度 矩阵并归一化。对于第 i 个数据对象和第 j 个数据对象:
- ▶ 相似度越趋向于1,则表示越相似;
- ▶相似度越趋向于0,则表示越不相似。
- 因此,理想的相似度矩阵应该是**块对角** (Block diagonal) 结构,即簇内的数据 对象是相似的,簇间的数据对象是不相似的。

□非监督簇评估: 相似度矩阵

■相似度矩阵的示例

数据分布 相似度矩阵可视化结果

- □非监督簇评估: 相似度矩阵
- ■相似度矩阵的示例

数据分布

相似度矩阵可视化结果

本章小结

- □在数据挖掘中对聚类算法的要求
- □基于划分的聚类方法: K-means,K-means++,Bisecting K-means
- □基于划分的聚类方法的优缺点
- □基于层次的聚类方法: 凝聚层次聚类
- □基于层次的聚类方法的优缺点
- □基于密度的聚类方法: DBSCAN, OPTICS
- □基于密度的聚类方法的优缺点
- □基于网格的聚类方法: STING
- □基于网格的聚类方法的优缺点
- □聚类效果评估:凝聚度、分离度、轮廓系数、相似度矩阵

