Week 5) ANOUA with multiple valiables /factors outcome is still quantative you have multiple explanatory variables goal:
to colent fy contributions of deferent
variables AlB test - Chance Campaing Relating score to rating (sinemas) Si = bot B. 1 (Rai = "PG") + 6, 1 (Kai = "PG-13") + b, 1 (Kai = " R") + I (ka; = "PG") - logical value (ka; = = "PG")

"indicator factors" average values: Bo zavy for G bo + 62 - avg for PG-13 both, - any for PG botbs - any for R

ANOVA in R assumed of In asvObj = asv (movies & score ~ movies frating) and obj & caeff (Intercept) 67.65 Frating PG-13 Grating R Frating 16 -12.59 -11.81 -12.02 avy for G Adding a second factor ratory Si = bo + bi I (Rai = "PG") + ba I (Rai = "PG-13") + ... + + y, 1(6i = "action") + y, I(6i = "animated") + ... +e lobs of genres only 2 variables!

aou 2 = aou (score ~ rating & genre) summary (asv 2) Fraku variation explained by factor for 1st (rating) - only by itself proler matters! for 2nd (genre) - matt only what wasn't loghamed by rating (after taking onto account rating) and 2 = and (score ~ genre - rating) ~ letter · you can add quantitative variables - so we may add box office and 3 = and (score ~ genre + rating + box office) only I degree of freedom

Language: unit - one observation treatment - applied to units factors - controlled by experementers replicates - multiple (indipendent) units with the same factors streatments Useful resources (wike pages: Experimental Messen ANOVA, All Testing) Binary automes bihe: - Dead Alive linory outcomes

or

0/1 outcomes - Wou / Loss - Success/Facture - etc Linear regression - may be not the best

Ravers data win num un (W/L) score opponent score Linear model: RWi = bo + be · Si + ei RWi 1 if w, O if not Si - number of points they scored with bo - probability of a Ravens win (O score) by - encrease in probability by each of point ei - error lu (um num v raven. score) not good (sometimes Pr > 1 which is impossible)

Branz	Outcomes: RW:
Probabilis	ly (0,1) Pr(RWi RSi, b., Bi)
Odds	(0, 0)
	Pr (RW: 1RS:, Bo, B,) 1- Pr (RW: 1RS:, Bo, B,)
Leg oda	
Linear	vs logretic Regression
Lipear	Logretic instead of modelling Rui
	we model the probaboloty based on odds

e to + BiRSi Pr (RWi | RSi, 60, 8,) = 1+ l Bo+ B+ RSi log (Pr (RWi (RSi, Bo, B1))
1-Pr (RWi (RSi, Bo, B1)) bo + biRSi havens score log odds any number $(-\infty; +\infty)$ not [0,1]interpretation bo-log odds of Wm if they score Opoints b. - leg edds ratio of un probability for lack point scored (compared to Opounts) epp (b,) - adds ration of u.n probabolity for lack point scored (compared to Opoints)

in R:	
glm command	
log keg kavens = glm (win Num ~ score, family = "Cinomual") outione covariants	/
Logretic regression	
coefficients are interpreted differently	
exp (log Reg havens I coeff)	
Li should see if score is bigger than I	
(more chances to un)	
exp (confint (log Rey Rowens))	
for confrdence intervals	

Ansva for legistic regression anova (log Reg Ravens, test - "Chisq") analysis of Devance Table Sny con's Paradox take a look at withis Interpreting Odds hation · not probabolities

· edds ratio of 1 = no difference in odds · log edds ratio of 0 = no deference in odds · 0,5 < adds ratio (2 - "moderate effects Relative Rosto Pr (RW: 1 RS: =10)
Pr (RW: 1 RS: =0) Wike" often easier to interpret Odds Ratio · for small probabolities RR & OR, but they are not the same

5

Count Outcomes
- many data take form of counts
· calls to a call center · number of flu cases in area · numbers of cars that cross a bristge
data may also be in the form of rates o percent of students passing the test percent of hits to a website from a country
Linear regression is an option
Poisson destribution can be used to anodel this data Set seed (3433) post rpois (100, lambda = 100)
(an arg number of calls Coming to a call center)
Spread is ligger for bigger lambdas and it controls both mean and var
mean (poss d) = var (poss d) very close

(Neb site traffec: possible to fit regression here NHi=bo+biJDi+li NHi - number of hots JDi - day of the year (Inhan day (from 01.01.70)) bo - number of hits on Thelean day o b, - energase in number of hits per unit day lu (v. srts ~ julian) linear vs Poisson Regression (log-linear) leg (E (NHi | JDi, Bo, Bi)) = = 60 + B1 JDi E[NHi [JDi, bo, bi] 2 e Bothe JDi = = 660. e 8, JDE If JDi is increased by 1, E[NHi [JOi bobi] is multiplied by exp(b1)

glow (visits ~ julian, family = "poisson") poisson regression To model rates Log (E[NHSS | JDi, Bo, B,) = leg (NHo) + +box by JDi (number of hots from a specific website) more informations Wike on Porsson Regression Model Checking and Model Selection Basic assumptions for linear regressions . Variance is constant · frend is where no by outliers · no biases

what to do if variance grows? - see if other variable explains the growth · Saudwich Cobrary library (sandwich) lu 1 - (da lu (data 1 n data 2) VCOVHC (lmd) - the tredd is not linear. o use boisson regression o use data transformation (log, etc) · use linear regression + vcovHC missing covariate · check covariates carefully _ ux exploratory analysis · report unexplained patter

- authors how much influence do they have? - fit regression with the outliers and then without - if the two slopes are very deflerent, then the outloers have a major effect more conson needed so if you know for sure they are nusbabers - remove and document them If they are real - consider reporting how sensitive your estimate is to the outlier Consider upny a robust thear mobel fix like rlm (MASS) (down wetguts authors) Model Checking

- Refault Mots after fitting em, try to see it's past A plot (em 1) Residuals us Fittes - Persance Commonly reported measure might tell you that the model is wrong -R2

may be a bad summary

Model Selection Usually you have a lot of variables - you have to do some sort of filtering How to choose correct variables? - have domain-specific knowledge (prer, experience) exploratory analysis (more prots, make plots of residuals colormy them by dofferent variables,) - Statistical selection · Step-wise / add/remove one vor at a time) . ALC (BIC · etc may hias your inference, so don't overdo statistical selection

Error measures

. R2 (not always good enough)

· Adjusted Ra - takes into account the number of estimated parameters

. ALC Information criteria

· BIC

Madel Selletion - Step all the terms

lui 1 = lui (score v ., jata = moires)

aic Formula = step (lm 1)

vecomputes finds better orders adds, deletes, etc.

score a box office + running, time

Reysubsets
library (leaps)
regsub = requibsets (score ~., data = movres)
calculates BIC score for all possible subsets
plot (reg Sub) V 600l: nunimize BIC
Notes And Resources
. exploratory prisual analysis - is a key
· automatic selection produces an answer, but it may bias inference (outfit-fits yours, but wont by other tamp)
· you may think of separating the sample
up 1st to extruste and to do the inference
· great - not to get . causal "model.
Elements of Machine Geornorg-
(book from the TOUREAD list) unodel selection Choosing variables