A Hitchhiker Guide to Empirical Macro Models¹

Filippo Ferroni (Chicago Fed)
Fabio Canova (Norwegian Business School, CAMP and CEPR)

WGEM September 18, 2020

¹The views in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of Chicago or any other person associated with the Federal Reserve System.

Outline

- 1 Introduction
- 2 Inference
- 3 IRF
- 4 Mixed Frequency VAR
- 5 Forecasts
 Forecasting in times of pandemics (preliminary
- **6** Loose ends
- Appendix

Introduction

 The Empirical Macro Toolbox is a package which uses MATLAB/Octave functions and routines to estimate a number of reduced form macro models with classical or Bayesian methods

Introduction

- The Empirical Macro Toolbox is a package which uses MATLAB/Octave functions and routines to estimate a number of reduced form macro models with classical or Bayesian methods
- Source codes with examples can be forked/downloaded at https://github.com/naffe15/BVAR_

Introduction

- The Empirical Macro Toolbox is a package which uses MATLAB/Octave functions and routines to estimate a number of reduced form macro models with classical or Bayesian methods.
- Source codes with examples can be forked/downloaded at https://github.com/naffe15/BVAR_
- The hitchhiker guide can be downloaded here https://www.filippoferroni.com/empiricalmacrotoolbox or
 - https://sites.google.com/view/fabio-canova-homepage/home/empirical-macro-toolbox

Recursive methods (VAR):
 Classic and Bayesian Inference, Point/density Forecasts, IRF (many identifications),
 historical and variance decomposition, missing values/mixed frequency, panels of VAR.

- Recursive methods (VAR):
 Classic and Bayesian Inference, Point/density Forecasts, IRF (many identifications),
 historical and variance decomposition, missing values/mixed frequency, panels of VAR.
- Direct methods (LP): Classic and Bayesian Inference, Forecasts, IRF (cholesky, IV)

- Recursive methods (VAR):
 Classic and Bayesian Inference, Point/density Forecasts, IRF (many identifications),
 historical and variance decomposition, missing values/mixed frequency, panels of VAR.
- Direct methods (LP): Classic and Bayesian Inference, Forecasts, IRF (cholesky, IV)
- Compression methods (FAVAR):
 Static and Dynamic (TBA) FAVAR

- Recursive methods (VAR):
 Classic and Bayesian Inference, Point/density Forecasts, IRF (many identifications),
 historical and variance decomposition, missing values/mixed frequency, panels of VAR.
- Direct methods (LP): Classic and Bayesian Inference, Forecasts, IRF (cholesky, IV)
- Compression methods (FAVAR):
 Static and Dynamic (TBA) FAVAR
- Filtering methods (TBA): Extracting trend/cycles and gaps, Dating BC.

Road map for today: VAR

Topics (use examples in the tutorial as blueprints):

I Bayesian VAR inference: priors and posteriors. Uninformative and Minnesota priors. How to chose the Minnesota hyper parameters.

```
open YOUR_LOCATION/BVAR_/v4.1/'BVAR tutorial'/example_0_minn.m
```

- II IRFs with various identification schemes. Historical and Variance Decomposition. open YOUR_LOCATION/BVAR_/v4.1/'BVAR tutorial'/example_1_irf.m
- III Nowcasts and Mixed-Frequency estimation.
 open YOUR_LOCATION/BVAR_/v4.1/'BVAR tutorial'/example_2_mfvar.m
- IV Point and Density Forecasts. Conditional Forecasts.
 open YOUR_LOCATION/BVAR_/v4.1/'BVAR tutorial'/example_4_prediction.m

Some notation

• VAR(p): A vector of autoregression with p lags can be expressed as

$$y_t = \Phi_1 y_{t-1} + ... + \Phi_p y_{t-p} + \Phi_0 + u_t \quad u_t \sim N(0, \Sigma)$$
 (1)

where y_t is $n \times 1$ vector, Φ_i suitable matrices

Inference: A VAR(p) can be expressed as a SURE

$$Y = X\Phi + E$$

Forecasts and IRF: Any VAR(p) can be expressed as a VAR(1) (companion form)

$$x_t = Fx_{t-1} + F_0 + Gu_t$$

Decompositions: Any VAR model can be expressed as a Vector MA (VMA) model:

$$y_t = u_t + \Psi_1 u_{t-1} + \dots + \Psi_t u_1 + \overline{\Psi}_t$$

where Ψ_i for j=1,...,t are functions of $(\Phi_1,...,\Phi_p)$ and $\overline{\Psi}_t$ is deterministic.

Outline

- 1 Introduction
- 2 Inference
- 3 IRF
- 4 Mixed Frequency VAR
- **5** Forecasts

 Forecasting in times of pandemics (preliminary
- **6** Loose ends
- Appendix

Inference

- Estimation can be performed using flat and informative priors. By default, Jeffrey (uninformative) prior is assumed; other options for the prior are available and discussed below.
- Given the prior, draws are generated from the posterior distribution of the parameters using a Gibbs sampler algorithm; see the guide for more details.
- The baseline estimation function is

- Inputs: data, lags and options (which can be omitted)
 - y, a (T × n) array of data (i.e. rows=time columns=var)
 - lags > 0.
 - options a field structure that specifies various customized options (i.e. priors, horizons, identification schemes)

Outputs

- BVAR a field with many sub-fields. Here's the most important ones.
 - BVAR.Phi_draws is a $(n \times lags + 1) \times n \times K$ array. Last dimension draws. BVAR.Phi_draws(:,:,k) stacks vertically the AR matrix; last row of BVAR.Phi_draws(:,:,k) contains the constant, Φ_0 , if it assumed to be present. BVAR.Sigma_draws is a $n \times n \times K$ matrix containing K draws from Σ . BVAR.e_draws is a $(T lags) \times n \times K$ matrix containing K draws of the innovations. BVAR.Phi_ols, BVAR.Sigma_ols and BVAR.e_ols are the OLS point estimate analogs.
 - BVAR.ir_draws is a four dimensional object (i.e. n × hor × n × K matrix) that collects the impulse response functions with recursive identification.
 - BVAR.forecasts.no_shocks (with_shocks) is a three dimensional object (i.e. fhor x n x K matrix) that collects the forecasts assuming zero (non-zero) shocks in the future.
 - BVAR.logmlike contains the log marginal likelihood a measure of fit.
 BVAR.InfoCrit: the Akaike information criterion, AIC, Hannan-Quinn information criterion
 HQIC and the Bayes information criterion,BIC.
- By default, K=5000 (change with options.K = numb;).
- By default, a constant is assumed (change with options.noconstant = 1;).

Priors

The toolbox allows for three types of priors

• Uninformative or Jeffrey prior (default, no instruction needed).

```
[BVAR] = bvar(y, lags)
```

Minnesota prior with default hyper-parameter values.

```
options.priors.name = 'Minnesota';
[BVAR] = bvar(y, lags, options)
```

• Multivariate-Normal Inverse-Wishart Conjugate with default (loose) values.

```
options.priors.name = 'Conjugate';
[BVAR] = bvar(y, lags, options)
```

Minnesota prior

- Minnesota prior is controlled by 5 hyper-parameters allowing for different layers of shrinkage (all scalar)
 - au options.minn_prior_tau: overall tightness (default 3). The larger the tighter is prior.
 - d options.minn_prior_decay: tightness on the lags greater than one (default 0.5). The larger the faster is the lag decay.
 - λ options.minn_prior_lambda: the Sum-of-Coefficient prior (default 5)
 - μ options.minn_prior_mu: co-persistence prior (default 2)
 - ω options.minn_prior_omega: the covariance matrix (default 2)
- Three ways to activate the Minnesota prior by defining the appropriate option
 - 1 default values:
 options.priors.name = 'Minnesota'
 - 2 customized values:
 options.minn_prior_tau=5;
 options.minn_prior_lambda=0.01;
 - 3 maximized values:
 options.max_minn_hyper = 1; % default maximization
- After typing the desired option in the command window, launch the estimation

Minnesota prior with optimal hyper-param

- Various options can be set for the maximization step:
 - options.index_est is a row vector that selects the parameters to be optimized (default, options.index_est=1:5)
 - options.lb (.ub) set the lower (upper) bound for the optimization. same size of options.index_est.
 - options.max_compute is a scalar selecting the maximization routine to be employed:
 - options.max_compute = 1 uses the MATLAB fminunc.m
 - options.max_compute = 2 uses the MATLAB fmincon.m
 - options.max_compute = 3 uses the Chris Sims's cminwel.m (default)
 - options.max_compute = 7 uses the MATLAB fminsearch.m
- Once the maximum is found, the posterior distribution is computed using the optimal hyper-parameter values. If unsuccessful, the posterior distribution is computed with default values (warning is issued).
- Tip: max one param at time starting the optimization from the values obtained in the previous step

Conjugate MN-IW

Multivariate Normal-Inverse Wishart conjugate prior.

```
options.priors.name = 'Conjugate'
```

Default: $\Phi \sim N(0, 10 \ I_{np+1})$ and $\Sigma \sim IW(I_n, n+1)$

- options.priors.Phi.mean is a $(n \times lags + 1) \times n$ matrix containing the prior means for the autoregressive parameters.
- options.priors.Phi.cov is a (n × lags + 1) × (n × lags + 1) matrix containing the prior covariance for the autoregressive parameters.
- options.priors.Sigma.scale is a $(n \times n)$ matrix containing the prior scale of the covariance of the residuals.
 - ightarrow adjust for variables with different units.
- options.priors.Sigma.df is a scalar defining the prior degrees of freedom.
- After typing the desired option in the command window, launch the estimation

VARX

VAR with exogenous variables (X) are allowed in the toolbox. Need to specify it as an
option

```
options.controls = z;
```

where z is a $(T \times q)$ matrix containing the exogenous variables

- The first dimension of z is time and must coincide with the time dimension of y or with the sum of the time dimension of y and the out-of-sample forecast horizon
- Lags of exogenous controls can be used and specified as additional columns in z.
- A VARX model can be estimated in the toolkit assuming either Jeffrey priors or conjugate priors; Minnesota priors in VARs with exogenous are not currently supported.
- After typing the desired option in the command window, launch the estimation

```
BVAR = bvar(y,lags,options);
```


Outline

- 1 Introduction
- 2 Inference
- 3 IRF
- 4 Mixed Frequency VAR
- **5** Forecasts

 Forecasting in times of pandemics (preliminary
- **6** Loose ends
- Appendix

IRF

- For each draw of the posterior distribution, the toolbox computes the IRF for a given identification scheme
- IRFs are stored as $(n \times hor \times n \times K)$ arrays (variable, horizon, shock, draw)
- Priors: flat, Minnesota, Conjugate MN-IW
- Default horizon 24; change with options.hor = hor; before launching byar
- By default Recursive or Cholesky: BVAR.ir_draws default (no command needed);
- Other identification schemes need to be specified by the user in options (see next slides) before launching bvar.

Long run

• Long Run:

```
options.long_run_irf = 1;
```

- First variable in the y lists is specified in log difference
- First disturbance has long run effects on the first variable.
- Reference: Gali (1999).
- More than one long run shock, as in Fisher(2006), can be estimated by introducing more variables in first difference.
- IRFs are stored in BVAR.irlr_draws

Sign and Magnitude

Sign and Magnitude:

```
options.signs{1} = y(a,b,c)>0
```

where the array 'y' refers to the IRF (variable, horizon, shock).

- The syntax means that the shock c has a positive impact on variable a at horizon b
- Flexible syntax (e.g. lower bound on elasticity or threshold on the cumulative impact)

options.signs{2} =
$$y(a_1,1,c)/y(a_2,1,c) > m'$$

options.signs{3} = $\max(cumsum(y(a,:,c),2)) < M'$

- Reference: Rubio-Ramirez, Waggoner and Zha (2010)
- IRFs are stored in BVAR.irsign_draws

Narrative

Narrative restrictions:

```
options.narrative{1} = 'v(tau,n)>0'
```

where the array ${}^{,}v{}^{,}$ refers to the structural innovation (time, shock).

- The syntax means that shock n is positive on the time periods tau
- Flexible syntax

```
options.narrative{1} = 'sum(v(tau_0:tau_1),n)>0'
```

The syntax means that the sum of the shock n between periods tau_0 and tau_1 is positive.

- Reference: Ben Zeev (2018) and Antolin-Diaz and Rubio-Ramirez (2018)
- IRFs are stored in BVAR.irnarrsign_draws

External, instrumental or proxy variable:

```
options.proxy = instrument;
```

- Instrument cannot be longer than (T lags)
- Instrument ends when the VAR ends (default). When this is not the case,

```
options.proxy_end = periods;
```

periods is the number that separates the last observation of the instrument and the last observation of the VAR innovations.

- Multiple proxy variables are allowed to identify one structural shocks.
- Reference: Miranda-Agrippino and Ricco (2020)
- IRFs are stored in BVAR.irproxy_draws
- By convention, the structural shock of interest is ordered first; i.e.
 BVAR.irproxy_draws(:,:,1,:);

Mixed identification

- Mix of zero (short and long run) and sign restrictions
- options.zero_signs{1} = 'y(j,k)=+1'
 shock k has a positive effect on the j-th variable on impact
- options.zero_signs{2} = 'ys(j,k_1)=0' shock k_1 has a zero impact effect on the j-th variable.
- options.zero_signs{3} = 'y1(j,k_2)=0' shock k_2 has a zero long run effect on the j-th variable.
- Reference: Arias, Rubio-Ramirez, Waggoner and Zha (2018) and Binning (2013)
- IRFs are stored in BVAR.irzerosign_draws

Plotting IRFs

Plotting IRF:

```
plot_irfs_(irfs_to_plot, optnsplt)
```

- irfs_to_plot is a fourth dimensional array; e.g. irfs_to_plot = BVAR.ir_draws or irfs_to_plot = BVAR.irproxy_draws(:,:,1,:);
- optnsplt is optional and defines various plotting options
 - optnsplt.varnames (.shocksnames) is a cell string with variable (shock) names
 - optnsplt.conf_sig (.conf_sig_2) is a number between 0 and 1 indicating the size of (second) HPD set to be plotted; the default is 0.68.
 - optnsplt.saveas_strng (.saveas_dir) a string array with name of (directory where to save) the plot.
 - optnsplt.add_irfs allows to add additional IRF to be plotted when one wants to compare responses.
 - optnsplt.nplots is a 1×2 array indicating the structure of the subplots.

Other useful functions

- Forecast error variance decomposition: FEVD = fevd(hor,Phi,Sigma,Omega); FEVD is a n × n array; the (i,j) element the share of variance of variable i explained by shock j at horizon h. Omega is the rotation (omit if Choleski)
- Historical decomposition: [yDecomp,v] = histdecomp(BVAR,opts); yDecomp is a $T \times n \times n+1$ array (time, variable, shock and initial condition $\overline{\Psi}_t$) v is the $T \times n$ array of structural innovations. BVAR is the output of the bvar.m function. opts.Omega declares a different rotation/identification from the default (Choleski)
- Plotting yDecomp: plot_shcks_dcmp_(yDecomp, BVAR, optnsplt)
 optnsplt is optional and controls various plotting options (see guide)

Additional identifications: Max FEVD

Given a draw (Phi, Sigma) of the reduced form VAR parameters, one can use

```
Qbar = max_fevd(i, hor, j, Phi, Sigma)
```

which finds the orthonormal rotation maximizing the forecast error variance decomposition (FEVD) of variable i explained by shock j at horizon hor.

Given Q_bar, IRF can be computed

```
y_fevd = iresponse(Phi, Sigma, hor, Q_bar)
```

- Loop over draws (Phi,Sigma)
- Useful functions
 Q = generateQ(n)
 y = iresponse(Phi, Sigma, hor, Q)

Outline

- 1 Introduction
- 2 Inference
- 3 IRF
- 4 Mixed Frequency VAR
- **5** Forecasts

 Forecasting in times of pandemics (preliminary
- **6** Loose ends
- Appendix

Mixed Frequency VAR

- Mixed Frequency VAR (MF-VAR): now-casts, back-cast or retrieving variables that have an arbitrary pattern of missing observations.
- · Gibbs sampler:
 - 1. generate a draw from the posterior distribution of the reduced form VAR parameters, conditional on observables and states.
 - with this draw run the Kalman smoother and get estimate the unobserved states (monthly GDP).
 - 3. Repeat 1. and 2.
- Prior: flat, Minnesota (except max), Conjugate MN-IW. IRF: all identification. Forecasts.
- MF-VAR estimation is triggered automatically in bvar.m whenever there are NaN in the the data, y. (warning is printed).

Monthly-Quarterly Frequency

- Example with quarterly and monthly variables. Time unit is month.
- Pool vars together in y = [y^m, y^q]; the q variable is observed in the last month of the q, elsewhere NaN. Define the unobserved states as x_t.
- State space where the transition equation is the VAR (x_t) and measurement equation maps x_t into y_t.
 - Monthly variables: $y_t^m = x_{m,t}$
 - **Stock** quarterly variables: $y_t^q = x_{q,t}$. [no instruction is needed]
 - Flow quarterly variables (e.g. GDP): y_t^q = ½(x_{q,t} + x_{q,t-1} + x_{q,t-2}) options.mf_variadex = num;
 where num is a scalar indicating the position of the q flow variable (column # in y)
- Additional outputs: BVAR.yfill (smoothed) and BVAR.yfilt (filtered) $T \times n \times K$ arrays

Outline

- 1 Introduction
- 2 Inference
- 3 IRF
- 4 Mixed Frequency VAR
- **5** Forecasts

Forecasting in times of pandemics (preliminary)

- 6 Loose ends
- Appendix

Forecasts

- BVAR.forecasts.no_shocks is a (nfor x n x K) matrix (time, variable, draw). Future shocks are zeros.
- BVAR.forecasts.with_shocks is a (nfor x n x K) matrix (time, variable, draw). Future shocks are drawn randomly.
- BVAR.forecasts.conditional is a (nfor x n x K) matrix containing the conditional forecasts.
 - options.endo_index is a row array containing the index of the variable constrained to a specified path.
 - options.endo_path is a matrix containing the path for each variable (rows horizon, column variables). size(options.endo_path,1) = options.fhor.
 - options.exo_index [optional] specifies the shocks of the VAR used to generate the
 assumed paths of the endogenous variables. exo_index could be one or more
 shocks. If no structural identification is performed, the program uses a Cholesky
 factorization by default.
- BVAR.forecasts.EPS contains the shocks used to generate the conditional forecasts.
- Use options.fhor to change the forecasting horizon

Plotting the Forecasts

The plot command for forecast is:

```
plot_frcst_(frcst_to_plot,y,T,optnsplt)
.
```

options can be omitted

- frcst_to_plot is a three dimensional array (time,variable,draw) containing the forecast.
 E.g. frcst_to_plot = BVAR.forecasts.no_shocks.
- y is the (T × n) array of data
- T is the (T × 1) array with the in-sample time span.
 E.g. for quarterly data, T= 1990 : 0.25 : 2010.25 coincides with the sample span 1990Q1 to 2010Q2.
- optnsplt defines a number of options. Similar to the ones of plot_irf_
- options.order_transform is a 1 × n array with values
 - =0 → no transformation
 - =1 → period-by-period change
 - =12 \rightarrow 12 period change multiplied by 100, i.e. $100(y_{t+12} y_t)$.
 - =4 \rightarrow 4 period change multiplied by 100, i.e. $100(y_{t+3} y_t)$.
 - =4 → 4 period change multiplied by 100, i.e. 100(y_{t+3} y_t).
 =100 → period over period change multiplied by 100.

4 D > 4 D > 4 E > 4 E > 9 Q P

Forecasting in times of pandemics (preliminary)

- The elephant in the room: are VAR models useful now?
- Schorfheide and Song (2020): MF-VAR to generate real-time macroeconomic forecasts for the U.S. during the COVID-19 pandemic. MF-VAR outlook is quite pessimistic. Long-lasting recession.
- Primiceri and Lenza (2020): Heteroskedasticity adjusted VAR. Scale down the observables during the peak of the COVID-19 pandemic. Seems a sensible idea.

$$y_t = \mathbf{x}_t' \Phi + w_t u_t$$

options.heterosked_weights is the (T - lags × 1) array of weights; e.g. sample 2000m1 to 2020m7
 options.heterosked_weights = [1 1 30 20 10 1 1];

```
    Optimize the weights (along with Minnesota hyper-parameters) by defining
options.objective_function = 'bvar_opt_heterosked';
```

options.tstar = find(time==2020) + 2; %march 2020
[postmode,logmlike,HH] = bvar_max_hyper(hyperpara,y,lags,options);

hitchhiker guide to empirical macro model

Outline

- 1 Introduction
- 2 Inference
- 3 IRF
- 4 Mixed Frequency VAR
- Forecasts
 Forecasting in times of pandemics (preliminary
- 6 Loose ends
- Appendix

• TBA soon: Dynamic FAVAR, trend/cycles and gaps extraction, dating BC.

- TBA soon: Dynamic FAVAR, trend/cycles and gaps extraction, dating BC.
- TBA later (if ever): non-linear models, TVP and SV; translate to Python

- TBA soon: Dynamic FAVAR, trend/cycles and gaps extraction, dating BC.
- TBA later (if ever): non-linear models, TVP and SV; translate to Python
- For bugs, open an issue in github. Or send an email.

- TBA soon: Dynamic FAVAR, trend/cycles and gaps extraction, dating BC.
- TBA later (if ever): non-linear models, TVP and SV; translate to Python
- For bugs, open an issue in github. Or send an email.
- Feedback and suggestions for improvements are welcome

Outline

- 1 Introduction
- 2 Inference
- 3 IRF
- 4 Mixed Frequency VAR
- **5** Forecasts

 Forecasting in times of pandemics (preliminary
- **6** Loose ends
- 7 Appendix

Empirical and structural innovations

• Reduced-form VAR innovations u_t and structural disturbances ν_t

$$u_t = \Omega \ \nu_t = \Omega_0 \ Q \ \nu_t$$

- $E(\nu_t \nu_t') = I$ and $\Omega \Omega' = \Sigma$,
- Ω_0 is the Cholesky decompostion of Σ and Q is an orthonormal rotation such that $Q'Q = QQ' = I_n$.
- To recover ν_t , we need to impose restrictions on Ω .
- This is because Σ only contains n(n+1)/2 estimated elements, while Ω has n^2 elements.

