

Data Science – week 4

How to participate?

Go to wooclap.com

Event code UROZPY

Send @UROZPY to 0460 200 711

Go to wooclap.com and use the code UROZPY

Met de volgende functie kan je een aantal statistieken (mean, min, max, ...) berekenen voor de kolommen in een dataframe

(⊞

wooclap

Go to wooclap.com and use the code UROZPY

Met de dropna functie kan je

enkel rijen weglaten als er 1 of meerdere NaN waarden aanwezig zijn

0% 0 🚨

enkel kolommen weglaten als er 1 of meerdere NaN waarden aanwezig zijn

0% 0 🚨

rijen of kolommen weglaten als er 1 of meerdere NaN waarden aanwezig zijn

0% 0 🚨

rijen of kolommen weglaten als er exact 1 NaN waarde aanwezig is

0% 0 🚨

null-waarden in het dataframe vervangen

0 🚨

00:50

wooclap

Data analysis of EDA

Wat is het?

- EDA = Exploratory Data Analysis
- Proces waarbij de beschikbare data geanalyseerd wordt
 - Afwisselend met data cleaning
 - Rechtstreeks aansturen van bedrijfbeslissingen
 - Voorloper van ML/AI modellen
 - Welk model is het best, welke parameters moeten we gebruiken, welke data is bruikbaar, ...

Analyse op drie niveau's

■ Algemene informatie over beschikbare data

■ Informatie per kolom

■ Informatie over het verband tussen verschillende kolommen

Niveau 1 - Algemene informatie

- Aantal rijen (observaties) en kolommen (features) zijn er
 - Welke data zit erin
 - Wat is het datatype
 - Categorieke vs numerieke data
 - Discrete vs continue data

Niveau 2 – Per kolom – unieke waarden

- Vooral voor categorieke data
 - Aantal unieke waarden
 - Aantal elementen per categorie
- Gebruikt om gebalanceerdheid te controleren
 - Ongebalanceerd kan nadelig zijn voor ML

Niveau 2 – Per kolom – statistische waarden

- Voor numerieke kolommen
 - Minimum, maximum, gemiddelde, standaardafwijking, percentielen, outliers

Niveau 2 – Per kolom – outliers

- Sorting method (manueel zoeken)
- Op basis van box plot (nieuwe data < minimum of > maximum)
- Statistische analyse
 - # std van het gemiddelde
 - Threshold manueel
- Interkwartiel methode

Niveau 2 – Per kolom – outliers – interkwartiel methode

Niveau 3 – tussen kolommen – scatter plot

- Zoek naar het verband tussen features
- Voor numerieke waarden
- Rekenintensief

Niveau 3 – tussen kolommen – correlation

- Correlatie coëfficiënt: indicatie van hoe sterk het verband is tussen twee variabelen
 - Waarde tussen -1 en 1
 - Teken of de verandering in dezelfde richting is
 - Grootte van het getal = hoe sterk het verband is

Correlation coefficient	Correlation strength	Correlation type
7 to -1	Very strong	Negative
5 to7	Strong	Negative
3 to5	Moderate	Negative
0 to3	Weak	Negative
0	None	Zero
0 to .3	Weak	Positive
.3 to .5	Moderate	Positive
.5 to .7	Strong	Positive
.7 to 1	Very strong	Positive

Niveau 3 – tussen kolommen – correlation

Correlation coefficient	Type of relationship	Levels of measurement	Data distribution
Pearson's r	Linear	Two quantitative (interval or ratio) variables	Normal distribution
Spearman's rho	Non-linear	Two ordinal, interval or ratio variables	Any distribution
Point-biserial	Linear	One dichotomous (binary) variable and one quantitative (interval or ratio) variable	Normal distribution
Cramér's V (Cramér's φ)	Non-linear	Two nominal variables	Any distribution
Kendall's tau	Non-linear	Two ordinal, interval or ratio variables	Any distribution

Ordinal: volgorde is belangrijk

Nominal: volgorde is niet belangrijk

Niveau 3 – tussen kolommen – Pearson's correlation

- Quantificieer het verband
 - Pearson correlatie

- Waarde tussen -1 en 1
 - -1 = sterk negatief
 - 0 = geen correlatie
 - 1 = sterk positief

Niveau 3 – tussen kolommen – Pearson's correlation

- Eenvoudig te bereken via .corr()
- Vaak voorgesteld als heatmap

Relationship between food and health

- 0.5

-0.0

- -0.5

Niveau 3 – tussen kolommen – Spearman correlation

.corr(method="spearman")

- Te gebruiken wanneer
 - Minstens 1 ordinale variabele aanwezig
 - Minstens 1 variabele niet volgens standaardverdeling

Niveau 3 – tussen kolommen – Cramer's V correlation

■ Tussen categorieke kolommen

$$\mathbf{V}\!=\sqrt{rac{\chi^2}{N(k-1)}}$$

- X² is het resultaat van de chi-square test
- N aantal rijen
- K = min(aantal rijen, aantal kolommen)

Niveau 3 – tussen kolommen – Cramer's V correlation

```
import pandas as pd
import scipy.stats as ss
# create the contingency table
contingency table = pd.crosstab(df['Gender'], df['Marital Status'])
# calculate the chi-square test statistic
chi2, _, _, _ = ss.chi2_contingency(contingency_table)
# calculate the minimum of the number of categories in the two variables
min categories = min(contingency table.shape[0], contingency table.shape[1])
# calculate Cramer's V coefficient
n = contingency table.sum().sum()
V = np.sqrt(chi2 / (n * (min_categories - 1)))
```

$$\mathbf{V}\!=\sqrt{rac{\chi^2}{N(k-1)}}$$

Niveau 3 – tussen kolommen – Cramer's V correlation

- V < 0.1

-> geen verband

0.1 < V < 0.3

-> zwak verband

 $\mathbf{0.3} < V < 0.5$

-> gemiddeld verband

- V > 0.5

-> sterk verband

Niveau 3 – tussen kolommen – Point Biserial Correlation

- Tussen continue en categorieke kolom met twee mogelijkheden
 - Bvb bij one-hot encodings

```
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
```


Point Biserial

Hoe gebruiken we de correlation?

- Vooral kijken naar rij/kolom van wat we willen weten
- De sterkste correlaties bepalen welke waarden een grote impact erop hebben
- Deze waarden worden dan best gebruikt voor analyses / ML-modellen

■ Let op: Verschillende correlatiecoefficienten kunnen niet zomaar vergeleken worden

Belangrijke termen

- Exploratory Data Analysis
- Correlation Coefficient
- Pearson's correlation
- Cramer's V correlation
- Interkwartielafstand
- Outliers

Huiswerk

EDA extra tutorial

■ Ga naar:

- https://www.kaggle.com/learn/intermediate-machine-learning
- Volg de tutorial van hoofdstuk 1 tot en met 3.
- De informatie in de tutorials is te kennen leerstof en helpt bij het maken van de oefeningen

EDA oefening

- Opgave: https://classroom.github.com/a/UAH3I74x
- Maak de oefening individueel tegen volgende week

■ Deze oefening wordt geëvalueerd