Chapter 7

10/20/20

Dataset Types: Tables

Design choices for arranging tables

Arrange

Focus of all four design choices for tabular data

Arrange by Keys and Values

- Key
 - Independent attribute that can be used as a unique index to look up items in a table
 - Categorical or ordinal
- Value
 - ▶ Dependent attribute; the value of a cell in a table
 - ▶ Can be all three of the types: categorical, ordinal, quantitative
 - ▶ Levels unique values for a categorical or ordered attribute
- **Examples:**
 - Scatterplot two value attributes
 - ▶ Bar charts one key and one value attribute
 - Heatmap two keys and one value attribute

Express: Quantitative Values

- Plot example: Scatterplots
- Data: two quantitative values
- ► Task: find trends, clusters, outliers
- How: express values as point marks with horizontal and vertical spatial positioning
- Scalability: hundreds of points (items)
- Correlation: dependence between two attributes
 - Positive and negative correlation; indicated by lines
- Coordinate system (axes) and labels are important

Separate, Order, and Align: Categorical Regions

- Spatial position ordered magnitude visual channel
- Categorical attributes unordered identity semantics
- Use spatial region, distinct contiguous bounded areas, to encode categorical attributes
- Break down the distribution of regions into three operations:
 - Separate (required) done according to a categorical attribute
 - Align (optional) done by some other attribute that is ordered
 - Order (required) done by some other attribute that is ordered

- Example: Bar Chart
- Data: one quantitative attribute, one categorical attribute
- Task: lookup and compare values
- How: line marks, horizontal position (categorical), vertical position (quantitative)
- Ordering criteria: alphabetical OR using quantitative attribute
- Scalability: distinguishability; hundreds

- Example: Stacked Bar Charts
- Data: multidimensional table: one quantitative attribute, two categorical attributes
- Task: lookup values, part-to-whole relationship, trends
- How:
 - line marks: position (both horizontal based on categorical and vertical (based on quantitative)
 - subcomponent line marks: length, color based on value attribute for each category of secondary key attribute
- Scalability: main axis (dozen to hundreds of levels), bar classes (stacked) (<12)

[Bostock, 2012]

- Example: Steamgraphs
- Data: multidimensional table: one quantitative attribute (counts), one ordered key attribute (time), one categorical key attribute
- Task: analyze trends in time, find outliers
- How: derived position (height layer encodes counts) and geometry (categorical attribute across time)
- Scalability: more categories than stacked bar charts

[Byron and Wattenberg, 2012]

- Example: Dot and Line Charts
- Data: one quantitative attribute, one ordered attribute
 - similar to scatterplots, but allows ordered attribute
- Task: lookup values, find outliers and trends
- How:
 - Dot charts: point mark and positions
 - ► Line charts: add connection mark (line)
- Scalability: key attribute can have hundreds of levels

Proper Use of Line and Bar Charts

Don't use line charts for categorical attributes!

Matrix Alignment: Two Keys

- Example: Heatmaps
- Data: two categorical key attributes, one quantitative value attribute
- ► Task: find clusters, outliers, summarize
- How: area marks in grid, color encoding of quantitative attribute
- Scalability:
 - ▶ Items one million
 - Categorical attribute levels hundreds
 - Quantitative attribute levels less than a dozen (colors)
- ▶ Note: be aware of colorblindness!

Matrix Alignment: Two Keys

- Example: Cluster Heatmap
- Data: same as heatmap
- ► How: Area marks but matrix is ordered by two cluster hierarchies for table rows and columns
- Scalability: limited by the cluster dendrogram
- Dendrogram: a visual encoding of tree data with leaves aligned

Matrix Alignment: Small-Multiple Views

- Example: scatterplot matrix (SPLOM)
- Data: many quantitative attributes (table)
- ► Task: find correlations, trends, outliers
- ► How: scatterplot in 2D matrix alignment
- Scale:
 - Attributes: about one dozen
 - Items: dozens to hundreds
- Visualizations in a visualization: at a higher level, marks are themselves visualizations

Spatial Axis Orientation

- Rectilinear layouts (horizontal and vertical axes) have been used so far to encode almost everything!
- Are there other possibilities?

Spatial Axis Orientation

- Rectilinear layouts (horizontal and vertical axes) have been used so far to encode almost everything!
- Are there other possibilities?
 - Parallel axes
 - Radial axes

Parallel Coordinates

- Data: many quantitative attributes at once (using spatial position)
- Task: find trends, extremes, correlation
- How: vertical spatial position for each attribute, axis horizontally spaced (ordering horizontal axis is important), connection marks for identity (help visualize trends between particular values)
- Scalability: less than 40 attributes, hundreds of values
- Motivation: used for abstract task of checking for correlation between attributes

Parallel Coordinates

Example

	V1	V2	V3	V4	V5
D1	7	3	4	8	1
D2	2	7	6	3	4
D3	9	8	1	4	2

Comparing SPLOMs and Parallel Coordinates

Correlation in Parallel Coordinates

Overdraw in Parallel Coordinates

Radial Layouts

- Use Polar Coordinates
 - Angle and Length
 - Rectilinear and polar layouts same (mathematically)
 - Different, perceptually
 - What are the channel differences??

Radial Layouts

- Angle channel is less accurately perceived
- Angle channel is inherently cyclic
- More effective in visualizing periodicity of patterns!
- Misleading to encode non-periodic data with radial layouts!
- Misleading if two attributes have equal importance b/c radial layouts imply an asymmetry of importance between two attributes

Pie Chart

- Data: one quantitative, one categorical
- Task: part-whole relationship
- ► How: area marks using angle channels, radial layout
- Scalability: dozens of categories
- Color channel?

[Bostock, 2012]

Sources/Credits

- ► Tamara Munzner, Visualization Analysis & Design, A K Peters Visualization Series, CRC Press, 2014.
- ▶ Utah, Miriah Meyer, Visualization (2014).
- ▶ UMass Dartmouth, David Koop, Data Visualization (2015).