

Lecture # 06

Newton's Raphson and Secant Method

Q: Find the root of $x^3 - 3x - 5 = 0$ using Newton's Raphson Method

Q: Find the root of $x^3 - 3x - 5 = 0$ using Newton's Raphson Method

Ans: $x_4 = 2.2790$

Q: Find the root of $\sin x = 1 + x^3$ using Newton's Raphson Method

Ans: $x_6 = -1.2490522$

Example of a Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of $f(x) = x^{10} - 1$ using the Newton-Raphson method and an initial guess of x = 0.5.

Example of a Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of $f(x) = x^{10} - 1$ using the Newton-Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is

$$x_{i+1} = x_i - \frac{x_i^{10} - 1}{10x_i^9}$$

which can be used to compute

Iteration	x		
0	0.5		
1	51.65		
2	46.485		
3	41.8365		
4 5	37.65285		
5	33.887565		
3			
+			
00	1.0000000		

Thus, after the first poor prediction, the technique is converging on the true root of 1, but at a very slow rate.

Secant Method:

The word secant is derived from the Latin word secan, which means to cut. The secant method uses a secant line, a line joining two points that cut the curve, to approximate a root.

Secant Method:

To find a solution to f(x) = 0 given initial approximations p_0 and p_1 :

Secant Method:

 $p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}.$

 $x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$

INPUT initial approximations p_0 , p_1 ; tolerance TOL; maximum number of iteration OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 2$$
;
 $q_0 = f(p_0)$;
 $q_1 = f(p_1)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_1| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p_1$$
; (Update p_0, q_0, p_1, q_1 .)
 $q_0 = q_1$;
 $p_1 = p$;
 $q_1 = f(p)$.

Step 7 OUTPUT ('The method failed after
$$N_0$$
 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

Problem Statement. Use the secant method to estimate the root of $f(x) = e^{-x} - x$. Start with initial estimates of $x_{-1} = 0$ and $x_0 = 1.0$.

Solution. Recall that the true root is 0.56714329. . . .

First iteration:

$$x_{-1} = 0$$
 $f(x_{-1}) = 1.00000$
 $x_0 = 1$ $f(x_0) = -0.63212$
 $x_1 = 1 - \frac{-0.63212(0-1)}{1 - (-0.63212)} = 0.61270$ $\varepsilon_t = 8.0\%$

Second iteration:

$$x_0 = 1$$
 $f(x_0) = -0.63212$
 $x_1 = 0.61270$ $f(x_1) = -0.07081$

(Note that both estimates are now on the same side of the root.)

$$x_2 = 0.61270 - \frac{-0.07081(1 - 0.61270)}{-0.63212 - (-0.07081)} = 0.56384$$
 $\varepsilon_t = 0.58\%$

Third iteration:

$$x_1 = 0.61270$$
 $f(x_1) = -0.07081$
 $x_2 = 0.56384$ $f(x_2) = 0.00518$
 $x_3 = 0.56384 - \frac{0.00518(0.61270 - 0.56384)}{-0.07081 - (-0.00518)} = 0.56717$ $\varepsilon_t = 0.0048\%$

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

		Newton		Secant
0.7853981635	27		n	p_n
0.7071067810	n	Pn	0	0.5
0.7602445972	0	0.7853981635	U	0.5
	1		1	0.7853981635
0.7246674808	1	0./39536133/	2	0.7363841388
0.7487198858	2	0.7390851781	3	0.7390581392
0.7325608446	3	0.7390851332	4	0.7390851493
0.7434642113	4	0.7390851332	5	0.7390851332
0.7361282565		A SECURE A SECURITION AND ASSESSED AS	<u> </u>	
	0.7071067810 0.7602445972 0.7246674808 0.7487198858 0.7325608446 0.7434642113	0.7071067810 n 0.7602445972 0 0.7246674808 1 0.7487198858 2 0.7325608446 3 0.7434642113 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$