CSE 221: Algorithms Heapsort

Mumit Khan

Computer Science and Engineering BRAC University

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. The MIT Press, September 2001.

Last modified: May 14, 2010

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

Mumit Khan Licensed under CSE 221: Algorithms 1/29

Contents

- Heapsort
 - Introduction
 - Heap data structure
 - Heap algorithms
 - Heapsort algorithm
 - Priority queue
 - Conclusion

Contents

- Introduction
- Heap data structure
- Heap algorithms
- Heapsort algorithm
- Priority queue
- Conclusion

Heapsort

• $O(n \lg n)$ in the worst case – like merge sort.

Mumit Khan Licensed under CSE 221: Algorithms 4 / 29

Heapsort

- $O(n \lg n)$ in the worst case like merge sort.
- Sorts in place like insertion sort.

4 / 29

Heapsort

- $O(n \lg n)$ in the worst case like merge sort.
- Sorts in place like insertion sort.
- Combines the best of both algorithms.

- $O(n \lg n)$ in the worst case like merge sort.
- Sorts in place like insertion sort.
- Combines the best of both algorithms.
- Uses a data structure called the heap, which is also extensively used in other applications.

- Introduction
- Heap data structure
- Heap algorithms
- Heapsort algorithm
- Priority queue
- Conclusion

Heap data structure

• A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.

Heap data structure

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.

Licensed under

Heap data structure

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.
- Priority queue is a prototypical application, where the keys are retrieved by priority.

Licensed under Mumit Khan

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.
- Priority queue is a prototypical application, where the keys are retrieved by priority.
- Heapsort is an another application, where the keys can be sorted by repeatedly extracting the largest from the heap.

- A data structure that provides worst-case O(1) time access to the largest (max heap) or smallest (min heap) element.
- A data structure that provides worst-case $\Theta(\lg n)$ time extract the largest (max heap) or smallest (min heap) element.
- Priority queue is a prototypical application, where the keys are retrieved by priority.
- Heapsort is an another application, where the keys can be sorted by repeatedly extracting the largest from the heap.

Max vs. Min Heap

Unless explicitly stated as max heap or min heap, heap means max heap in this course.

Definition

A binary tree is heap-ordered if:

 \bullet the value at a node is \geq the value at each of its children.

Example of (max) heap

Mumit Khan

Licensed under @@@@

Definition

A binary tree is heap-ordered if:

1 the value at a node is > the value at each of its children.

Heapsort

2 the tree is almost-complete.

Example of complete tree (or *not*)

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Example of complete tree (or *not*)

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Example of complete tree (or *not*)

7 / 29

Heap-ordered tree

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Example of complete tree (or *not*)

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Example of complete tree (or *not*)

Definition

A binary tree is heap-ordered if:

- 1 the value at a node is > the value at each of its children.
- 2 the tree is almost-complete.

Mumit Khan

Licensed under @@@@

Introduction Heap data structure Heap algorithms Heapson

Heap – array representation of heap-ordered tree

Licensed under @@@@ 9 / 29 Mumit Khan CSE 221: Algorithms

Mumit Khan

Licensed under @@@@

Mumit Khan

Licensed under @@@@

Mumit Khan

Licensed under @@@@

MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

MAXIMUM(A)return A[1]PARENT(i)return |i/2|LEFT(i)return 2i

MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

LEFT(i)return 2i

Question

What if LEFT(i) > n?


```
MAXIMUM(A)
   return A[1]
PARENT(i)
   return |i/2|
LEFT(i)
   return 2i
RIGHT(i)
   return 2i + 1
```


MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

LEFT(i)return 2i

RIGHT(i)return 2i + 1

Question

What if RIGHT(i) > n?

Mumit Khan

Licensed under

10 / 29

Heap – accessing parent and children

MAXIMUM(A)return A[1]

PARENT(i)return |i/2|

LEFT(i)return 2i

RIGHT(i)return 2i + 1

Lemma

All nodes i > |length[A]/2| (or equivalently, i > |heap-size[A]/2|) are leaf nodes.

Mumit Khan Licensed under @@@@ CSE 221: Algorithms

MAXIMUM(A)return A[1]PARENT(i)return |i/2|LEFT(i)return 2i RIGHT(i)return 2i + 1

Definition (Heap property)

Heap property: For every node *i* other than the root,

$$A[PARENT(i)] \ge A[i].$$

Mumit Khan

Licensed under @@@@

MAXIMUM(A)return A[1]PARENT(i)return |i/2|LEFT(i)return 2i RIGHT(i)return 2i + 1

Question

Why do we insist that a heap-ordered tree be a complete binary tree? (Hint: draw the array representation of a tree that is not complete and see the gaps).

Contents

- Heapsort
 - Introduction
 - Heap data structure
 - Heap algorithms
 - Heapsort algorithm
 - Priority queue
 - Conclusion

Operations on heap

• MAX-HEAPIFY(A, i) – Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.

- **1** MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.

- MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.

Operations on heap

- **1** MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.
- **1** HEAPSORT(A) Sort the elements in array A using the heap operations.

Operations on heap

- MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.
- **1** HEAPSORT(A) Sort the elements in array A using the heap operations.
- **1** HEAP-INCREASE-KEY(A, i, key) Increase the value of element at node i to key, and ensure the heap property of A by moving larger elements upwards. Also known as "swim" operation as it moves larger elements upwards.

12 / 29

Operations on heap

- MAX-HEAPIFY(A, i) Ensure the heap property of A starting at node i. Also known as "sink" operation since it sinks the lighter elements down the tree.
- \bigcirc MAX-HEAP-INSERT(A, key) Insert key in the heap A, maintaining A's heap property.
- **3** BUILD-MAX-HEAP(A) Build a max heap given an array A.
- **1** HEAPSORT(A) Sort the elements in array A using the heap operations.
- **1** HEAP-INCREASE-KEY(A, i, key) Increase the value of element at node i to key, and ensure the heap property of A by moving larger elements upwards. Also known as "swim" operation as it moves larger elements upwards.
- heap A.

Licensed under Mumit Khan CSE 221: Algorithms

13 / 29

Example of MAX-HEAPIFY ("sink") operation

Licensed under @@@@ Mumit Khan CSE 221: Algorithms

Mumit Khan

Licensed under @@@@

13 / 29

Example of MAX-HEAPIFY ("sink") operation

Licensed under @@@@ Mumit Khan CSE 221: Algorithms

MAX-HEAPIFY algorithm

```
MAX-HEAPIFY (A, i)
  1 I \leftarrow left(i)
 2 r \leftarrow right(i)
 3 if l \le heap\text{-}size[A] and A[l] > A[i]
          then largest \leftarrow l
          else largest \leftarrow i
      if r \le heap\text{-}size[A] and A[r] > A[largest]
          then largest \leftarrow r
      if largest \neq i
 9
          then exchange A[i] \leftrightarrow A[largest]
10
                 MAX-HEAPIFY (A, largest)
```

Heapsort

MAX-HEAPIFY algorithm

```
MAX-HEAPIFY (A, i)
     I \leftarrow left(i)
  2 r \leftarrow right(i)
  3 if l \le heap\text{-}size[A] and A[l] > A[i]
          then largest \leftarrow l
          else largest \leftarrow i
      if r \le heap\text{-}size[A] and A[r] > A[largest]
          then largest \leftarrow r
      if largest \neq i
          then exchange A[i] \leftrightarrow A[largest]
                  MAX-HEAPIFY (A, largest)
10
```

Analysis – second way

The running time of MAX-HEAPIFY on a node of height h is $T(n) = O(h) = O(\lg n).$

Mumit Khan

Licensed under @@@@

Mumit Khan

Licensed under @@@@

```
BUILD-MAX-HEAP(A)
   heap-size[A]] \leftarrow length[A]
   for i \leftarrow |length[A]/2| downto 1
         do MAX-HEAPIFY(A, i)
3
```

BUILD-MAX-HEAP algorithm

```
BUILD-MAX-HEAP(A)
```

- heap- $size[A]] \leftarrow length[A]$
- for $i \leftarrow |length[A]/2|$ downto 1
- **do** MAX-HEAPIFY(A, i)

Analysis

$$T(n) = O(n)$$
 (see textbook for details)

- Introduction
- Heap data structure
- Heap algorithms
- Heapsort algorithm
- Priority queue
- Conclusion

Mumit Khan Licensed under [⊚] CSE 221: Algorithms 23 / 29

23 / 29

HEAPSORT algorithm

HEAPSORT(A)

```
times
                                                       cost
    BUILD-MAX-HEAP(A)
    for i \leftarrow length[A] downto 2
3
          do exchange A[1] \leftrightarrow A[i]
              heap-size[A] \leftarrow heap-size[A] - 1
4
              MAX-HEAPIFY (A, 1)
5
```

HEAPSORT algorithm

```
HEAPSORT(A)
```

HEAPSORT(A)

```
times
                                                         cost
    BUILD-MAX-HEAP(A)
                                                        \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                        \Theta(1)
3
          do exchange A[1] \leftrightarrow A[i]
               heap-size[A] \leftarrow heap-size[A] - 1
4
               MAX-HEAPIFY (A, 1)
5
```

```
HEAPSORT(A)
```

```
times
                                                        cost
    BUILD-MAX-HEAP(A)
                                                       \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                        \Theta(1)
3
          do exchange A[1] \leftrightarrow A[i]
                                                       \Theta(1) n-1
              heap-size[A] \leftarrow heap-size[A] - 1
4
              MAX-HEAPIFY (A, 1)
5
```

HEAPSORT(A)

```
times
                                                        cost
    BUILD-MAX-HEAP(A)
                                                       \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                       \Theta(1)
3
          do exchange A[1] \leftrightarrow A[i]
                                                       \Theta(1) n-1
              heap-size[A] \leftarrow heap-size[A] - 1 \Theta(1) n - 1
4
              MAX-HEAPIFY (A, 1)
5
```

HEAPSORT algorithm

HEAPSORT(A)

```
times
                                                           cost
    BUILD-MAX-HEAP(A)
                                                          \Theta(n)
                                                          \Theta(1) n
2
    for i \leftarrow length[A] downto 2
3
           do exchange A[1] \leftrightarrow A[i]
                                                          \Theta(1) n-1
               heap-size[A] \leftarrow heap-size[A] - 1 \quad \Theta(1) \quad n-1
4
               MAX-HEAPIFY (A, 1)
                                                       \Theta(\lg n) \quad n-1
5
```

HEAPSORT(A)

```
times
                                                            cost
    BUILD-MAX-HEAP(A)
                                                          \Theta(n)
2
    for i \leftarrow length[A] downto 2
                                                           \Theta(1)
3
           do exchange A[1] \leftrightarrow A[i]
                                                          \Theta(1) n-1
               heap-size[A] \leftarrow heap-size[A] - 1 \quad \Theta(1) \quad n-1
4
               MAX-HEAPIFY (A, 1)
                                                        \Theta(\lg n) \quad n-1
5
```

Worst-case analysis

$$T(n) = \Theta(n \lg n)$$

Mumit Khan

Licensed under @@@@