

Operating Systems (15841, Spring 2016) Project

Professor Joongheon Kim

School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

Overview

- Theory Projects
 - Improving the Banker's Algorithm
 - Improving the Paging Algorithm
 - Paper Reading/Presentation/Discussion
- Implementation Projects
 - Process Execution Simulator
 - Banker's Algorithm Simulator
 - Paging Simulator (with Physical/Logical Address Mapping)

Theory Project

Overview

- [Project-T1] Improve the Banker's Algorithm in your own way
 - You have to define the drawbacks of the currently existing Banker's algorithm and propose the solution approaches to the drawbacks.
 - You have to submit intermediate report; and final report/poster.
- [Project-T2] Improve the Paging Algorithm in your own way
 - You have to define the drawbacks of the currently existing paging algorithm and propose the solution approaches to the drawbacks.
 - You have to submit intermediate report; and final report/poster.
- [Project-T3] Paper Reading/Presentation/Discussion
 - You have to read given papers.
 - You have to submit final summary report and poster.

Schedule

- For [Project-T1] and [Project-T2] (new idea proposals)
 - [May 20th (Friday)] Intermediate Progress **Report** Submission (for each topic)
 - The report should contain following contents:
 - Introduction and Motivation
 - The Proposed Algorithm
 - Performance Evaluation Approaches
 - Each team needs to meet Prof. Kim in order to present the algorithm (by appointment)
 - [June 6th (Monday)] Final **Report** and **Poster** Submission (for each topic)
 - The report should contain following contents:
 - Introduction and Motivation
 - The Proposed Algorithm
 - Performance Evaluation and Future Research Directions
 - Each team needs to meet Prof. Kim in order to present the algorithm (by appointment)
- For [Project-T3] (for paper reading/presentation/discussion)
 - [June 6th (Monday)] Final **Report** and **Poster** Submission (for each topic)
 - The report should contain following contents:
 - Introduction and Motivation
 - · The Proposed Algorithm
 - Performance Evaluation and Discussion (In "discussion", you have to clearly mention the disadvantages of the paper.)

Theory Project - List of Papers (Systems and Platforms)

- S. Yoo, Y. Shim, S. Lee, S.-A. Lee, and J. Kim, "A Case for Bad big.LITTLE Switching: How to Scale Power-Performance in SI-HMP," in Proceedings of the ACM Symposium on Operating Systems Principles (SOSP) Workshop on Power-Aware Computing and Systems (HotPower), Monterey, CA, USA, 4 October 2015.
- J. Paek, J. Kim, and R. Govindan, "Energy-Efficient Rate-Adaptive GPS-based Positioning for Smartphones," in Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA, USA, 15 18 June 2010.
- C. Noyes, "BitAV: Fast Anti-Malware by Distributed Blockchain Consensus and Feedforward Scanning," http://arxiv.org/pdf/1601.01405.pdf

Theory Project - List of Papers (Networks)

- M.-R. Ra, J. Paek, A.B. Sharma, R. Govindan, M.H. Krieger, and M.J. Neely, "Energy-Delay Tradeoffs in Smartphone Applications," in Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA, USA, 15 - 18 June 2010.
- J. Kim, G. Caire, and A.F. Molisch, "Quality-Aware Streaming and Scheduling for Device-to-Device Video Delivery," IEEE/ACM Transactions on Networking, (Published Online).

Implementation Project

Overview

- [Project-I1] Process Execution Simulator
- [Project-I2] Banker's Algorithm Simulator
- [Project-I3] Paging Simulator (with Physical/Logical Address Mapping)
- For all the four projects,
 - Your software should read a configuration file.
 - Your software should conduct desired functionalities.
 - Your software should generate a final result file.
- Submission Schedule
 - Submission Due: June 6th, 11:59pm
 - Submission Files
 - · Input file
 - Source code
 - · Output file

[Project-I1] Process Execution Simulator

- You have to submit three files
 - Names: configuration_process.xml, simulation_process.c (or cpp/java), finalresult_process.xml
 - configuration_process.xml
 - This file contains all required information for process execution including following items
 - The number of Program Counters
 - The number of Processes
 - The starting and ending addresses of each process
 - The starting and ending addresses of each process
 - And whatever you want
 - simulation_process.c
 - You can use C, C++, Java, Python, Lisp, or Scheme
 - finalresult_process.xml
 - This contains traces for each process execution.
 - There is no specific format for this. But, you have to explain how this file can be understood in final report.
 - Note
 - The configuration and final result files can be xml. But, you can define your own.
 - You should submit one report which shows your software architecture, compilation procedure, final result file understanding.
 - For evaluation, I will change the values in **configuration_process.xml**.

[Project-I2] Banker's Algorithm Simulator

- You have to submit three files.
 - Names: configuration_banker.xml, simulation_banker.c (or cpp/java), finalresult_banker.xml
 - configuration banker.xml
 - This file contains all required information for the banker's algorithm including following items
 - Allocation Matrix, Maximum Matrix (assume that we can have infinite types of resources and infinite number of processes)
 - Competition Priority among processes
 - And whatever you want
 - simulation banker.c
 - You can use C, C++, Java, Python, Lisp, or Scheme
 - finalresult_banker.txt
 - This contains traces for process scheduling.
 - There is no specific format for this. But, you have to explain how this file can be understood in final report.
 - Sample example for the trace file format is in the next page (obtained from our HW1 solution)
 - Note
 - The configuration and final result files can be xml. But, you can define your own.
 - You should submit one report which shows your software architecture, compilation procedure, final result file understanding.
 - For evaluation, I will change the values in **configuration_banker.xml**.

[Project-I2] Banker's Algorithm Simulator

[Step 1]
• Total [11,7,7]
• Available: [7,5,2]

Sample for Final Result File

Available: [7,5,2] P0 → A: [0,1,0], N: [7,4,3] P1 → A: [1,0,0], N: [2,2,2] P2 → A: [2,0,2], N: [7,0,0] P3 → A: [1,1,1], N: [1,1,1] P4 → A: [0,0,2], N: [5,3,1] P1,P2,P3,P4 can be processed. P1 is selected to be processed. Allocate [2,2,2] to P1 P1 completes its work and returns resources [Step 2] Available: [8,5,2] $P0 \rightarrow A: [0,1,0], N: [7,4,3]$ P2 → A: [2,0,2], N: [7,0,0] P3 → A: [1,1,1], N: [1,1,1] P4 → A: [0,0,2], N: [5,3,1] P2,P3,P4 can be processed. P2 is selected to be processed. (i) Allocate [7,0,0] to P2 (ii) P2 completes its work and returns [Step 3] Available: [10,5,4] P0 → A: [0,1,0], N: [7,4,3] P3 → A: [1,1,1], N: [1,1,1] P4 → A: [0,0,2], N: [5,3,1] P0,P3,P4 can be processed. P2 is selected to be processed. Allocate [7,4,3] to P0 P0 completes its work and returns resources [Step 4] Available: [10,6,4] P3 → A: [1,1,1], N: [1,1,1] P4 → A: [0,0,2], N: [5,3,1] P3,P4 can be processed P3 is selected to be processed. Allocate [1,1,1] to P1 (ii) P1 completes its work and returns resources [Step 5] Available: [11,7,5] P4 → A: [0,0,2], N: [5,3,1] P4 is selected to be processed. Allocate [5,3,1] to P1 P1 completes its work and returns resources [Final] Processing order: P1, P2, P0, P3, P4

[Project-I3] Paging Simulator (with Physical/Logical Address Mapping)

- You have to submit three files
 - Names: configuration_paging.xml, simulation_paging.c (or cpp/java), finalresult_paging.xml
 - configuration_paging.xml
 - This file contains all required information for paging operation including following items
 - Process related information (numbers, sizes, and segment sizes, process scheduling priorities)
 - Page size, offset size, address size (these sizes will be equivalent to the textbook configuration)
 - Sequence of process allocation and corresponding information (your paging software should work with at least 20 processes and shows the step-by-step procedure for the paging operation in **finalresult_paging.txt** file).
 - · And whatever you want.

simulation_paging.c

- You can use C, C++, Java, Python, Lisp, or Scheme
- You have to implement physical/logical address mapping functions in your code. Both addresses should be presented in **finalresult_paging.txt** trace file.

finalresult_paging.txt

- This contains traces for paging operation.
- There is no specific format for this. But, you have to explain how this file can be understood in final report.
- Note
 - The configuration and final result files can be xml. But, you can define your own.
 - You should submit one report which shows your software architecture, compilation procedure, final result file understanding.
 - For evaluation, I will change the values in **configuration_paging.xml**.