No.Lista: 07 TAREA: 12

Universidad Nacional Autonoma de México Facultad de Ingeniería Investigación de método de momentos y máxima verosimilitud para estimación de parámetros puntual.

Celaya González David Alejandro Grupo: 02 Estadistica 30/Noviembre/2020

HETODO DG MOHENTOS Definición: Sea x una va y sea K > 1 un entero. El K-esimo momento de x, si existe, es el A los nomeros E(x1), E(x1), ... se les llama también momentos poblacionales. Sea X,..., Xn una m.a. de la distribución s(x; 6). Definiciónii. Sea X.,..., Xh una ma y sea k≥ 1 un enlero. El K-ésimo momento muestral es la va. ¼ £xi* Oste metodo consiste en igualar los mamentos poblacionales con los conespondientes momentos muestrales y resolver esta ecuación (o sistema de ecuaciones) para el parámetro o vector de parâmetros. ter m poblacional $G(x) = \frac{1}{h} \sum_{i=1}^{h} x_i$ ter m mushiol 2do m padacional $E(X^2) = \frac{1}{m} \sum_{i=1}^{m} X_i^2$ zdo m medici Gemplo Sea x una v.a. con fuerón de denedad $J(x; \theta) : \begin{cases} \theta \cdot x^{\theta-1} & \exists 1 \ 0 < x < 1 \end{cases}$ Gemplo en dande 0>0 E(x) = B Si Xi, ..., Xn es uno ma de esta distribución X = 1 Xi 1er momento muestral Chlances, par el método de momentos $\frac{\partial}{\partial x} = \overline{x}$ => $\partial = \overline{x} / 1 - \overline{x}$ Solve as a limitation for a θ Nétudo de maxima Vercominitud sea (x1, ..., xn) un vedor aleatorio avya distribuación depende de un parametro O. DEFINCION. (a función de vacasimilida del vador (X1,...,Xn) es (10) = \$x1,..., Xn (X1,...,Xn; 0) la letra "l' viene de likelihood que se puede troducir como vercasimilitad. Si X, ... , Xn son motoperdientes (16) = fx (x1; G) ... fxn (xn; G) y wando son identica mente distribudos. Ciste es ci caso de una muestra aleadoria.

Consiste en obtener el valor de 8 que maximiza a la fonción de verosimilitod (16) = f(x; 8) f(xn; 6). Al valor e en donde (16) alcanza su maximo se le llama "estimación de máximo verosimilitod" o "estimación máximo verosimil".
Basicamante la idea as que o debe ser tal que el valor número observado (x.,,x.n.) de la ma tenga la móxima probatoitidad.
Gemplo: Sea x,, x, una m.a. de la distribución exp(6)
(a fonsion de vaas imilitad es ((B) = \$(Xi; G) \$(Xn; G) \$(Xn; G) 9 - e^{-e \times n} 9 - e^{-e \times n}
(16) es maxma en el mismo punto en donde en (1(16)) lo es.
$=> n ((0)) = n \cdot n(0) - \Theta n x$
$\frac{de}{d\theta} \ln (C(\theta)) = \frac{h}{h} - h \tilde{x}$
=> $\Theta = V_X$ Ademas as un maximo dado que $\frac{d^2}{d\theta^2} \ln (L(\Theta)) = -\frac{n}{\theta^2} < 0$
Ø=1/x es la estimación para Ø. → Wúmero Ø=1/x es el estimador para Ø. → estodistica