Fastai Lesson 8a

Infrastructure Broadcasting

Next week: Sat. 7/13 Lesson 8b

TWiML Fastai Meetup Sat. 06 Jul 2019 Joseph Catanzarite

Or, run the notebooks on your own computer

How to install fastai v1 on Windows 10

Medium article by Pierre Guillou

https://medium.com/@pierre_guillou/how-to-install-fastai-v1-on-windows-10-ca1 bc370dce4

Installation Guide on fastai/README

https://github.com/fastai/fastai/blob/master/README.md#conda-install

It's time to start reading papers

Theorem 4.1. Assume that the function f_t has bounded gradients, $\|\nabla f_t(\theta)\|_2 \leq G$, $\|\nabla f_t(\theta)\|_{\infty} \leq$ G_{∞} for all $\theta \in \mathbb{R}^d$ and distance between any θ_t generated by Adam is bounded, $\|\theta_n - \theta_m\|_2 \leq \overline{D}$, $\|\theta_m - \theta_n\|_{\infty} \le D_{\infty}$ for any $m, n \in \{1, ..., T\}$, and $\beta_1, \beta_2 \in [0, 1)$ satisfy $\frac{\beta_1^2}{\sqrt{\beta_2}} < 1$. Let $\alpha_t = \frac{\alpha}{\sqrt{t}}$ and $\beta_{1,t} = \beta_1 \lambda^{t-1}, \lambda \in (0, 1)$. Adam achieves the following guarantee, for all $T \ge 1$.

esson 8 (2019) - Deep Learning from the Foundations

$$R(T) \leq \frac{D^2}{2\alpha(1-\beta_1)} \sum_{i=1}^d \sqrt{T \widehat{v}_{T,i}} + \frac{\alpha(1+\beta_1)G_\infty}{(1-\beta_1)\sqrt{1-\beta_2}(1-\gamma)^2} \sum_{i=1}^d \|g_{1:T,i}\|_2 + \sum_{i=1}^d \frac{D_\infty^2 G_\infty \sqrt{1-\beta_2}}{2\alpha(1-\beta_1)(1-\lambda)^2}$$
 Our Theorem 4.1 implies when the data features are sparse and bounded gradients, the summation term can be much smaller than its upper bound $\sum_{i=1}^d \|g_{1:T,i}\|_2 << dG_\infty \sqrt{T}$ and

mation term can be much smaller than its upper bound $\sum_{i=1}^d \|g_{1:T,i}\|_2 << dG_{\infty}\sqrt{T}$ and

[1901.] M Under: k Intro t k SIIM-A k Recurs k pneum Interp M Papers (103) S L How to

① **□** https://course.fast.ai/videos/?lesson=8 🚨 G Google 🕠 fastai install 🚥 colab 🕴 Colab | fast.ai course v3 🔘 Fastai Forum 👺 Foundations 🚯 🚥 NLP-TF 🔘 2019Part2 🚼 TWiML&AI 🗎 CVPR 🕥 NLP-fastai 💥 RXRX.AI 🗜 SIIM-ACR 🔆 doc.ai 🖨 CS231 💲 CS24N

Google for a blog post describing the paper

beyond the basics, but hard to read

Papers are important for deep learning

Even familiar stuff looks complex in a paper!

Watch later

Learn to pronounce Greek letters

Greek Alphabet and Symbols

Ø 1_ms

 Lessor
 Ø 02_full
 G image
 Ist ms
 Comp
 torch
 W Greek
 G greek
 W List of
 About
 About

M 🖨 SFFCU 🔼 G Google 🗘 fastai install1 💹 fastai install2 💛 colab 🕴 Colab | fastai course v3 🔘 Fastai Forum 🐉 Foundations 81 🕬 NLP-TF 🔘 2019Part2 📅 TWiML&XAI 🗎 CVPR 🗘 NLP-fastai

i detexify.kirelabs.org/classify.html

Detexify LaTeX handwritten symbol recognition - Mozilla Firefox
 File Edit View History Bookmarks Tools Help

- 150% + □ ☆

0 X

Exporting jupyter notebooks as Python modules

First notebook 00_exports.ipynb:

!python notebook2script.py
00_exports.ipynb

Converts 00_exports.ipynb to exp\nb_00.py, a python module

Next notebook 01_matmul.ipynb:

from exp.nb_00 import *

Each notebook imports material from the previous notebook, in the form of a file exp\nb_xx.py

Extends array operation syntax via implicit rules

Broadcasting

Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side.

Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape.

Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

Broadcasting Rules

https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arrays-broadcasting.html

00_exports.ipynb and 01_matmul.ipynb

Play with them until you understand as much as you can!

Also, have a look inside

notebook2script.py

to see what it's doing

Run through the notebooks

Set up your environment to run notebooks!

Study the second half of Lesson 8, on forward and backward propagation

Work through the associated notebook 02_fully_connected.ipynb

Read section 2.2 in the "Delving Deep Into Rectifiers" paper

https://arxiv.org/abs/1502.01852

For next time