

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - 4

Center for Multivariate Analysis University of Pittsburgh

593

AD-A160

LIMITING PROPERTIES OF LARGE SYSTEM OF RANDOM LINEAR EQUATIONS*

bу

Z. D. Bai

Center for Multivariate Analysis
University of Pittsburgh

Center for Multivariate Analysis
University of Pittsburgh

TIC FILE COPY

593

AD-A160

Approved for public release;
distribution unlimited.

85 10 11 116

LIMITING PROPERTIES OF LARGE SYSTEM OF RANDOM LINEAR EQUATIONS*

by

Z. D. Bai

Center for Multivariate Analysis
University of Pittsburgh

October 1984

Technical Report No. 84-41

Center for Multivariate Analysis Fifth Floor, Thackeray Hall University of Pittsburgh Pittsburgh, PA 15260

*This research is partially sponsored by the Air Force Office of Scientific Research (AFSC) under contract #F49620-85-C-0008. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

This document has been approved to public release and sale; its that is unlimited.

, ,	REPORT DOCUM	ENTATION PAGE	•		
THE REPUBLISE CURRENT VITUASS FICATION	THE RESTRICTIVE MARK NGS				
28 SECURITY CLASSIFICATION AUTHORITY INCLASSIFIED 26 DECLASSIFICATION DOWNGRADING SCHEDULE		3 DISTRIBUTION AVAILABILITY OF REPORT Approved for public release: distribution unlimited.			
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(\$)			
N/A		AFOSR TR 85 3859			
6. NAME OF PERFORMING ORGANIZATION 6. OFFICE SYMBOL (If applicable) Center for Multivariate Analysis		78 NAME OF MONITORING ORGANIZATION AFOSR			
6c ADDRESS City State and ZIP Code;		7b. ADDRESS (City, State and ZIP Code			
515 Thackeray Hall University of Pittsburgh, PA 15260		Bldg. 410 Bolling AFB, D.C. 20332-6448			
8. NAME OF FUNDING/SPONSORING ORGANIZATION	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
AF0CD	F49620-85-C-0008				
Bc. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUN			· · · · · · · · · · · · · · · · · · ·
Bldg. 410 Bolling AFB, D.C. 20332-6448		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT NO.
11 TITLE (Include Security Classification) Limiting properties of large system of rand		61102F	2304	A 5	
12. PERSONAL AUTHOR(S)					
TATE TO THE PORT, 136. TIME CO	VERED	14. DATE OF REPOR	T (Yr., Mo., Day) 985	15. PAGE CO	TAUC
16. SUPPLEMENTARY NOTATION					
17 COSATI CODES	ontinue on reverse if ne	cessary and identif	y by block number	,	
FIELD GROUP SUB GR	ontinue on reverse if necessary and identify by block number; theorem, large systems, law of large ting properties, random linear equations				
19. ABSTRACT Continue on reverse if necessary and identify by block number > S. Geman and Chi R. Hwang (Z. Wahrcheinlichkeistheoria verw. Gehiete, 1982) proposed a kind of algebraic systems of equations and proved the law of large numbers for its					
solution. In this paper, the conditions to ensure these results are significantly weakened for the law of large numbers. Also, the central limit theorem is shown.					
for both the law of large numbers and the limit theorem, the only needed assumption is that the random variables have finite second moment. Legende: In Itime to the continue of the large					
andy is make - mathematics					
J		' —			
20 DISTRIBUTION AVAILABILITY OF ABSTRACT		21 ABSTRACT SECU	BITY BLASSIFIC	ATION	
incomos a as on the six in suma in anaXi	u un diupara II	Unclass this	· į		
22a. NAME OF RESPONSIBLE INDIVIDUAL		225 TELEPHONE NO		22c OFFICE SYM	BOL
Brian W. Woodruff MAJ, USAF		(202)767-50		NM	
DD FORM 1473, 83 APR	EDITION OF 1 JAN 13	S OBSOLETE	Uncla	ssified	

LIMITING PROPERTIES OF LARGE SYSTEM OF RANDOM LINEAR EQUATIONS

by

Z. D. Bai The University of Pittsburgh

ABSTRACT

S. Geman and Chi R. Hwang (Z. Wahrscheinlichkeistheoria verw. Gehiete, 1942) proposed a kind of algebraic system of equations and proved the law of large numbers for its solution. In this paper, the conditions to ensure these results are significantly weakened for the law of large numbers. Also, the central limit theorem is shown. For both the law of large numbers and the limit theorem, the only needed assumption is that the random variables have finite second moment.

1. INTRODUCTION

Let $\{\omega_{ij}\}$, $i,j=1,2,\ldots$, be a collection of independent and identically distributed random variables with zero mean. For each $n, n=1,2,\ldots$, define W_n to be the $n\times n$ matrix whose (i,j) entry is ω_{ij} . Given a sequence α_1,α_2,\ldots , define for each $n, V_n=(\alpha_1,\alpha_2,\ldots,\alpha_n)^T$. Finally, for each n, define a random vector $X_n=(X_{n1},X_{n2},\ldots,X_{nn})^T$ as the solution to the equation

$$X_{n} = V_{n} + \frac{1}{n} W_{n} X_{n}$$
 (1.1)
i.e. $X_{n,i} = \alpha_{i} + \frac{1}{n} \sum_{j=1}^{n} \omega_{ij} X_{nj}, j = 1,2,...,n$.

This system of equations plays an improtant rule in large and homogeneous systems of physics (see [1] and [2]). When n is large enough, the solution of (1.1) is usually assumed being "nearly independent" (the so-called chaos hypothesis). This hypothesis was first proved by S. Geman and Chi R. Hwang. They usually assume that $E_{11}^{8} < \infty$. For some stronger conclusions, it is even assumed that the characteristic function of ω_{11} has a nondegenerate analytic zone.

In this paper, we relax all these restrictions to the existence of the second moment of ω_{11} and prove somewhat stronger conclusions than that are shown in [1]. Exactly speaking, we get the following theorems.

Theorem 1. Define X_n by (1.1) whenever $I - \frac{1}{n} W_n$ is nonsingular. Otherwise, define $X_n = 0$. Suppose that $E \omega_{11} = 0$ and $E \omega_{11}^2 < \infty$.

1) If $(\alpha_1, \alpha_2, ...) \in \ell_{\infty}$, then

$$\max_{1 \le i \le n} |X_{n,i} - \alpha_i| \longrightarrow 0, \text{ a.s. } n \to \infty.$$
 (1.2)

2) If $\lim_{n} \alpha_{n} = 0$, then

$$\sum_{i=1}^{n} (X_{n,i} - \alpha_i)^2 \longrightarrow 0, \text{ a.s. } n + \infty$$
 (1.3)

especially for $(\alpha_1, \alpha_2, ...) \in \ell_2$,

$$(X_{n,1},...,X_{n,n},0,...) \rightarrow (\alpha_1,\alpha_2,...)$$
 in ℓ_2 , a.s. (1.4)

If $\alpha_1 = \alpha_2 = \ldots = \alpha$ and if $E\omega_{11} = m$ (instead of zero), Geman and Hwang proved $X_{ni} \to \alpha/1-m$ a.s. under the conditions that |m| < 1 and $E |\omega_{11}|^n \le n^{\beta n}$, $\forall n \le 2$, for some positive constant β . Corresponding to this, we have

Theorem 2. Assume $\alpha = \alpha_1 = \alpha_2 = \dots$, $E\omega_{11} = m$. Define X_n by (1.1) whenever $I - \frac{1}{n} W_n$ is nonsingular and define $X_n = 0$ otherwise. If $m \neq 1$ and $E\omega_{11}^2 < \infty$, then $\max_{1 < i < n} |X_{ni} - \frac{\alpha}{1-m}| \to 0$. a.s.

For the CLT of X_n , we have

Theorem 3. If $E_{\omega_{11}} = 0$, $0 < E_{\omega_{11}}^2 = \sigma^2 < \infty$, $(\alpha_1, \alpha_2, \ldots) \in \ell_{\infty}$, and $\sum_{i=1}^{\infty} \alpha_i^2 = \infty$. Then for any given integers $(m_1 < m_2 < \ldots < m_k)$,

$$\frac{n}{\sigma \sqrt{\frac{n}{n}} \alpha_{1}^{2}} (X_{n,m_{1}} - \alpha_{m_{1}}, X_{n,m_{2}} - \alpha_{m_{2}}, \dots, X_{n,m_{k}} - \alpha_{m_{k}})^{T} \longrightarrow N(0,I_{k})$$

where I_{k} denotes the $k \times k$ unit matrix.

SOME LEMMAS

We first prove some lemmas.

Lemma 2.1. If
$$E\omega_{11}^2 < \infty$$
, then $\left| \left| \left(\frac{Wn}{n} \right)^2 \right| \right| \rightarrow 0$ a.s.

where the norm means the Euclidean one, i.e., for $A = (a_{ij})$,

$$||A|| = \left(\sum_{\mathbf{i}} \sum_{\mathbf{j}} a_{\mathbf{i}\mathbf{j}}^{2}\right)^{\mathbf{i}_{\mathbf{j}}}.$$

Proof.
$$\left| \left| \left(\frac{\mathbf{k} \mathbf{n}}{\mathbf{n}} \right)^{2} \right| \right|^{2} = \frac{1}{n^{4}} \sum_{\mathbf{i}, \mathbf{j}} \left(\sum_{\mathbf{k}} \omega_{\mathbf{i} \mathbf{k}} \omega_{\mathbf{k} \mathbf{j}} \right)^{2}$$

 $= J_{1}(\mathbf{n}) + J_{2}(\mathbf{n}) + J_{3}(\mathbf{n}) + J_{4}(\mathbf{n})$ (2.1)

where

$$J_{1}(n) = \frac{1}{n}, \sum_{i=1}^{n} \omega_{ii}$$
 (2.2)

$$J_{2}(n) = \frac{1}{n^{4}} \left\{ \sum_{i \neq j} (\omega_{ij}^{2} \omega_{ji}^{2} + 2 \omega_{ii}^{2} \omega_{jj}^{2} + 2 \omega_{ii}^{2} \omega_{jj}^{2}) \right\}$$
 (2.3)

$$J_{3}(n) = \frac{2}{n^{4}} \{ \sum_{i>j} \sum_{k} \omega_{ik}^{2} \omega_{kj}^{2} \}$$
 (2.4)

$$J_{4}(n) = \frac{2}{n} \{ \sum_{\substack{i \\ i \neq k}} \sum_{\substack{k>\ell \\ i \neq k}} \omega_{ik} \omega_{ki} \omega_{ih} \omega_{hi} + 2 \sum_{\substack{i>j \\ i \neq k}} \sum_{\substack{k>h \\ i \neq k}} \omega_{ik} \omega_{kj} \omega_{ih} \omega_{hj}$$

$$\begin{array}{ccc}
+ 2 & \sum_{\substack{i>j & i>h \\ j\neq h}} & \omega_{ii}\omega_{ij}\omega_{ih}\omega_{hj} \\
\end{array} (2.5)$$

It is easy to see that

$$E J_{\Delta}(n) = 0$$

$$E J_4(n) \leq \frac{4}{n^4} (E\omega_{11}^2)^4$$
.

By Chebyshev inequality and Borel-Cantelli lemma, we obtain that

$$J_4(n) \to 0$$
. a.s. (2.6)

By Marcinkiewicz strong law of large numbers, we have

$$J_1(n) = 0 \left(\frac{1}{n^2}\right)$$
 . a.s. (2.7)

and
$$\frac{1}{n^4} \sum_{i \neq j}^{\infty} \omega_{ij}^2 \omega_{ji}^2 = O(\frac{1}{n^2}) . \quad a.s.$$
 (2.8)

$$\left| \frac{1}{n^{4}} \sum_{i \neq j} \omega_{ii}^{2} \omega_{ij} \omega_{ji} \right| \leq \left(\left(\frac{1}{n} \omega_{ij} \right) \sum_{i \neq j} \omega_{ii}^{4} \right)^{\frac{1}{2}} \left(\left(\frac{1}{n} \omega_{ij} \right) \sum_{i \neq j} \omega_{ij}^{2} \omega_{ji}^{2} \right)^{\frac{1}{2}}$$

$$\leq \left(\frac{1}{n^{3}} \sum_{i=1}^{n} \omega_{ii}^{4} \right)^{\frac{1}{2}} \left(\frac{1}{n^{4}} \sum_{i \neq j} \omega_{ij}^{2} \omega_{ji}^{2} \right)^{\frac{1}{2}}$$

$$= \left[0 \left(\frac{1}{n} \right) \right]^{\frac{1}{2}} \left[0 \left(\frac{1}{n^{2}} \right) \right]^{\frac{1}{2}} = 0 \left(n^{-3/2} \right) \text{ a.s.}$$

$$(2.9)$$

and

$$\left| \frac{1}{n^{4}} \sum_{i \neq j} \omega_{ii} \omega_{ij}^{2} \omega_{jj} \right|$$

$$\leq \left(\frac{1}{n^{4}} \sum_{i \neq j} \omega_{ii}^{2} \omega_{jj}^{2} \right)^{\frac{1}{2}} \left(\frac{1}{n^{4}} \sum_{i \neq j} \omega_{ij}^{4} \right)^{\frac{1}{2}}$$

$$\leq \left(\frac{1}{n^{2}} \sum_{i=1}^{n} \omega_{ii}^{2} \right) \left(\frac{1}{n^{4}} \sum_{i \neq j} \omega_{ij}^{4} \right)^{\frac{1}{2}}$$

$$= 0 \left(\frac{1}{n} \right) (0(1))^{\frac{1}{2}} = 0 \left(\frac{1}{n} \right). \quad a.s.$$

$$(2.10)$$

hence

$$J_2(n) = 0 \left(\frac{1}{n}\right)$$
. a.s. (2.11)

To prove $J_3(n) \rightarrow 0$. a.s. we define

$$\hat{\omega}_{ijn} = \hat{\omega}_{ij} \left[\left| \omega_{ij} \right| < n \right]$$

$$\frac{\hat{\omega}_{ijn}^2}{\hat{\omega}_{ijn}^2} = \hat{\omega}_{ijn}^2 - E \hat{\omega}_{ijn}^2$$

and

$$\hat{J}_{3}(n) = \frac{2}{n^{i_{1}}} \sum_{i>j} \sum_{k} \hat{\omega}_{ikn}^{2} \hat{\omega}_{kjn}^{2}$$

$$\overline{J_{3}(n)} = \frac{2}{n^{i_{1}}} \sum_{i>j} \sum_{k} \overline{\omega_{ikn}^{2}} \frac{\hat{\omega}_{kjn}^{2}}{\hat{\omega}_{kjn}^{2}}.$$

Notice that $E \overline{\omega_{ikn}^2} = 0$, $E \overline{\omega_{kjn}^2} = 0$ and that $\overline{\omega_{ikn}^2}$, $\overline{\omega_{kjn}^2}$ are independent of each other for given i > j and k, we know

$$E \overline{J_3(n)} = 0$$

and

$$E(\overline{J_{3}(n)})^{2} = \frac{4}{n^{8}} \sum_{i>j} \sum_{k} (E(\overline{\omega_{11}^{2}n})^{2})^{2}$$

$$\leq 4n^{-5} [E \hat{\omega}_{11}^{4} n]^{2}$$

$$\leq 4 E \omega_{11}^{2} n^{-3} E \hat{\omega}_{11}^{4} n$$

Therefore, for any $\varepsilon > 0$, we have

$$\sum_{n=1}^{\infty} P(|\overline{J_{3}(n)}| \ge \varepsilon) \le 4 E \omega_{11}^{2} \varepsilon^{-2} \sum_{n=1}^{\infty} n^{-3} E \hat{\omega}_{11}^{4} n$$

$$\le c \sum_{n=1}^{\infty} n^{-3} \left(\sum_{k=1}^{n} k^{2} E \omega_{11}^{2} I [k-1 \le |\omega_{11}^{2}| < k] + 1 \right)$$

$$= c \left[1 + \sum_{k=1}^{\infty} k^{2} E \omega_{11}^{2} I [k-1 \le |\omega_{11}^{2}| < k] \sum_{n=k}^{\infty} n^{-3} \right]$$

$$\le c \left[1 + \sum_{k=1}^{\infty} E \omega_{11}^{2} I [k-1 \le |\omega_{11}^{2}| < k] \right]$$

$$\le c \left[1 + E \omega_{11}^{2} \right] < \infty. \tag{2.12}$$

here and after, c denotes a positive constant independent of n or k, but it may take different value in each appearance.

From (2.12) we get

$$\overline{J_3(n)} \to 0.$$
 a.s. (2.13)

On the other hand, noticing $\hat{E} = \hat{\omega}_{11}^2 = \hat{\omega}_{11}^2 < \infty$, we have

$$|\overline{J_3(n)} - \hat{J}_3(n)| \leq \frac{c}{n^4} |\sum_{i=1}^{n-1} \sum_{k=1}^{n} (n-i) |\overline{\omega_{ikn}^2}| + \frac{c}{n^4} |\sum_{j=2}^{n} \sum_{k=1}^{n} (j-1) |\widehat{\omega}_{kjn}^2|$$

$$\leq \frac{c}{n^3} \sum_{i=1}^{n} \sum_{k=1}^{n} |\widehat{J}_{ik}|^2 + \frac{c}{n} \longrightarrow 0, \quad a.s. \qquad (2.14)$$

here the first term tends to zero from Kolmogorov's strong

law of large numbers. From (2.13) (2.14) it follows that

$$\lim_{n\to\infty} \hat{J}_3(n) = 0.$$
 a.s. (2.15)

Finally, we prove that

$$P(\hat{J}_3(n) \neq J_3(n), i.o) = 0.$$

We have

$$P(\hat{J}_{3}(n) \neq J_{3}(n), i.o) \leq \lim_{k \to \infty} \sum_{m=k}^{\infty} P(\bigcup_{2^{m-1} \leq n < 2^{m}} (\hat{J}_{3}(n) \neq J_{3}(n)))$$

$$\leq \lim_{k \to \infty} \sum_{m=k}^{\infty} P(\bigcup_{2^{m-1} \leq n < 2^{m}} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} (|\omega_{ij}| > n))$$

$$\leq \lim_{k \to \infty} \sum_{m=k}^{\infty} P(\bigcup_{2^{m-1} < n < 2^{m}} \bigcup_{i=1}^{2^{m}} \bigcup_{j=1}^{2^{m}} (|\omega_{ij}| \geq 2^{m-1}))$$

$$= \lim_{k \to \infty} \sum_{m=k}^{\infty} P(\bigcup_{i=1}^{2^{m}} \bigcup_{j=1}^{2^{m}} (|\omega_{ij}| \ge 2^{m-1}))$$

$$\leq \lim_{k \to \infty} \sum_{m=k}^{\infty} 2^{2m} P(|\omega_{11}| \ge 2^{m-1})$$

$$= \lim_{k \to \infty} \sum_{m=k}^{\infty} 2^{2m} \sum_{\ell=m}^{\infty} P(2^{\ell-1} \le |\omega_{11}| < 2^{\ell})$$

$$= \lim_{k \to \infty} \sum_{\ell=k}^{\infty} P(2^{\ell-1} \le |\omega_{11}| < 2^{\ell}) \sum_{m=k}^{\ell} 2^{2m}$$

$$\leq \lim_{k \to \infty} 2 \sum_{\ell=k}^{\infty} 2^{2\ell} P(2^{\ell-1} \le |\omega_{11}| < 2^{\ell}) \le \lim_{k \to \infty} 2 E \omega_{11}^{2} I[|\omega_{11}| > 2^{-1}]$$

(2.16)

which and (2.14) prove

$$J_3(n) \to 0$$
. a.s. (2.17)

(2.17) and (2.1) (2.6) (2.7) (2.11) complete the proof of Lemma 2.1.

Lemma 2.1 implies that for almost all ω , when n is large enough, we have

$$\textstyle\sum\limits_{k=0}^{\infty}\;\big|\,\big|\,(\frac{\mathbb{W}n}{n})^{\,k}\big|\,\big|\,\leq\,\big|\,\big|(\frac{\mathbb{W}n}{n})\,\big|\,\big|\,\sum\limits_{k=0}^{\infty}\;\big|\,\big|\,(\frac{\mathbb{W}n}{n})^{\,2}\,\big|\,\big|^{\,k}\;+\;\sum\limits_{k=0}^{\infty}\;\big|\,\big|\,(\frac{\mathbb{W}n}{n})^{\,2}\,\big|\,\big|^{\,k}\;<\;\infty\;.$$

Hence we obtain

Lemma 2.2. If E $\omega_{11} = 0$, E $\omega_{11}^2 < \infty$, then, almost surely, $(I - \frac{Wn}{n})^{-1}$ exists and equals $\sum_{k=0}^{\infty} (\frac{Wn}{n})^k$, when n is sufficiently large.

3. THE PROOF OF MAIN RESULTS

3.1. The proof of Theorem 1.

Firstly, we shall prove

$$\frac{1 \text{ im }}{n \to \infty} \left| \left| \frac{1}{n} w_n v_n \right| \right| = 0 \quad \text{a.s. if } \lim_{n \to \infty} \alpha_n = 0$$

$$\leq M E^{\frac{1}{2}} \omega_{11}^{2}, \quad \text{a.s. if } \sup_{n} |\alpha_n| \leq M$$
(3.1)

We have

$$||\frac{1}{n} \mathbf{W}_{n} \mathbf{V}_{n}||^{2} = \frac{1}{n^{2}} \sum_{k=1}^{n} (\sum_{i=1}^{n} \alpha_{i} \omega_{ki})^{2}$$

$$= \frac{1}{n^{2}} \sum_{k=1}^{n} \sum_{i=1}^{n} \alpha_{i}^{2} \omega_{ki}^{2} + \frac{2}{n^{2}} \sum_{k=1}^{n} \sum_{i>j} \alpha_{i}^{\alpha_{j}} \omega_{ki}^{\omega_{kj}}$$

$$= I_{1}(n) + I_{2}(n).$$

$$(3.2)$$

By Kolmogorov's strong law of large numbers, we have for any m

$$I_1(n) \le \frac{1}{n^2} \{M^2(1) \sum_{k=1}^n \sum_{i=1}^m \omega_{ki}^2 + M(m) \sum_{k=1}^n \sum_{i=m+1}^n \omega_{ki}^2 \}$$

$$\longrightarrow M^2(m) \to \omega_{11}^2. \quad a.s.$$

where M(m) = $\sup_{n\geq m}\,\left|\alpha_n^{}\right|\,\leq\,$ M, m = 1,2,... . From this we can easily see that

$$\frac{1 \text{ im }}{1 \text{ in }} I_{1}(n) \begin{cases}
= 0 & \text{if } \lim_{n \to \infty} \alpha_{n} = 0, \\
\leq M E \omega_{11}^{2}, \text{ a.s. if } \sup_{n} |\alpha_{n}| \leq M
\end{cases} (3.3)$$

Let

$$Z_{n} = \sum_{k=1}^{n} \sum_{n>i>j>1} \alpha_{i} \alpha_{j} \omega_{ki} \omega_{kj}.$$

Noting that $\{Z_n, n = 1, 2, ...\}$ forms a martingale sequence, by a well-known martingale inequality, we get for any $\epsilon > 0$

$$P(\max_{2^{m-1} \le n < 2^{m}} \frac{2}{n^{2}} | Z_{n} | \ge \varepsilon) \le P(\max_{1 \le n \le 2^{m}} | Z_{n} | \ge \frac{\varepsilon}{8} | 2^{2m})$$

$$\le \frac{8^{2}}{\varepsilon^{2}} 2^{-4m} | E(Z_{2^{m}})^{2}$$

$$= 8^{2} \varepsilon^{-2} 2^{-4m} \sum_{k=1}^{2^{m}} \sum_{2^{m} \ge i > j \ge 1} \alpha_{1}^{2} \alpha_{j}^{2} (E \omega_{11}^{2})^{2}$$

$$\le c 2^{-m}.$$

from which and Borel-Cantelli lemma, it follows that

$$I_2(n) = \frac{2}{n^2} Z_n \longrightarrow 0.$$
 a.s. (3.4)

By (3.2) (3.3) (3.4) we get (3.1).

Next we shall prove that

$$\left|\left|\left(\frac{\operatorname{Wn}}{\operatorname{n}}\right)^{2} \operatorname{V}_{\operatorname{n}}\right|\right| \longrightarrow 0. \quad \text{a.s.}$$
 (3.5)

We have

$$||(\frac{Wn}{n})^{2} v_{n}||^{2} = \frac{1}{n}, \sum_{i=1}^{n} (\sum_{j=1}^{n} \sum_{k=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}$$

$$\leq \frac{2}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \sum_{k=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \sum_{k=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \sum_{k=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \sum_{k=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \sum_{k=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

$$\leq \frac{1}{n}, \{\sum_{i=1}^{n} \omega_{ii}^{2} (\sum_{k=1}^{n} \omega_{ik} \alpha_{k})^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \omega_{ij} \omega_{jk} \alpha_{k})^{2}\}$$

We shall first prove that

$$\max_{1 \le i \le n} n^{-3} \left(\sum_{k=1}^{n} \omega_{ik} \alpha_{k} \right)^{2} \longrightarrow 0. \text{ a.s.}$$
 (3.7)

If we have done so, then

$$\frac{2}{n^{4}} \sum_{i=1}^{n} \omega_{ii}^{2} \left(\sum_{k=1}^{n} \omega_{ik} \alpha_{k} \right)^{2} \leq 2 \left(\frac{1}{n} \sum_{i=1}^{n} \omega_{ii}^{2} \right) \left(\max_{1 \leq i \leq n} n^{-3} \left(\sum_{k=1}^{n} \omega_{ik} \alpha_{k} \right)^{2} \right)$$

$$+ 2 E \omega_{11}^{2} \cdot 0 = 0, \text{ a.s.}$$
(3.8)

Noting that $\{\sum\limits_{k=1}^n \omega_{ik}^{}\alpha_k,\;n$ = 1,2,...} forms a martingale sequence, we have for any ϵ > 0

$$P(\max_{2^{m-1} \le n < 2^{m}} \max_{1 \le i \le n} n^{-3} (\sum_{i=1}^{n} \omega_{ik} \alpha_{k})^{2} \ge \epsilon)$$

$$\le 2^{m} P(\max_{2^{m-1} \le n < 2^{m}} (\sum_{i=1}^{n} \omega_{ik} \alpha_{k})^{2} \ge \epsilon \cdot 8^{-1} 2^{-3m}).$$

$$\le c 2^{-2m} E(\sum_{i=1}^{n} \omega_{ik} \alpha_{k})^{2} \le c M^{2}(1) 2^{-m} = c 2^{-m}.$$
(3.9)

which and Borel-Cantelli lemma imply (3.7). Hence, (3.8) holds.

On the other hand, we have

$$n^{-4} \sum_{i=1}^{n} (\sum_{j=1}^{n} \sum_{k=1}^{\alpha} \omega_{ij} \omega_{jk} \alpha_{k})^{2}$$

$$= n^{-4} \sum_{i=1}^{n} \{\sum_{j=1}^{n} \omega_{ij}^{2} (\sum_{k=1}^{n} \omega_{jk} \alpha_{k})^{2} + 2 \sum_{j_{1} \geq j_{2}} \omega_{ij_{1}} \omega_{ij_{2}} \sum_{k_{1}=1}^{n} \sum_{k_{2}=1}^{n} \omega_{jk_{1}} \omega_{jk_{2}} \alpha_{k_{1}} \alpha_{k_{2}} \}$$

$$= n^{-4} \sum_{i=1}^{n} \{\sum_{j=1}^{n} \omega_{ij}^{2} (\sum_{k=1}^{n} \omega_{jk} \alpha_{k})^{2} + 2 \sum_{j_{1} \geq j_{2}} \omega_{ij_{1}} \omega_{ij_{2}} \sum_{k_{1}=1}^{n} \sum_{k_{2}=1}^{n} \omega_{jk_{1}} \omega_{jk_{2}} \alpha_{k_{1}} \alpha_{k_{2}} \}$$

$$= n^{-4} \sum_{i=1}^{n} \{\sum_{j=1}^{n} \omega_{ij}^{2} (\sum_{k=1}^{n} \omega_{jk} \alpha_{k})^{2} + 2 \sum_{j_{1} \geq j_{2}} \omega_{ij_{1}} \omega_{ij_{2}} \sum_{k_{1}=1}^{n} \sum_{k_{2}=1}^{n} \omega_{jk_{1}} \omega_{jk_{2}} \alpha_{k_{1}} \alpha_{k_{2}} \}$$

$$\stackrel{\Delta}{=} n^{-4} \{ R_1(n) + R_2(n) \}. \tag{3.10}$$

Since

$$E(n^{-4}R_2(n))^2 \le c n^{-3}$$
,

we have

$$n^{-4} R_2(n) \longrightarrow 0.$$
 s.s. (3.11)

Noticing that $\{\sum_{n\geq k_1>k_2\geq 1}^{\infty} \omega_{1k_1} \omega_{1k_2} \alpha_{k_1} \alpha_{k_2}, n=1,2,...\}$ forms a martingale sequence, we obtain

which ensures that

$$\max_{1 \le j \le n} n^{-2} \left| \sum_{n \ge k_1 > k_2 \ge 1} \sum_{j \ge k_1} \omega_{j k_1} \omega_{j k_2} \alpha_{k_1} \alpha_{k_2} \right| + 0 \quad a.s. \quad (3.12)$$

Thus, to prove $n^{-4} R_1(n) \rightarrow 0$ a.s. we only need to prove

$$n^{-4}$$
 $\sum_{i=1}^{n}$ $\sum_{j=1, j\neq i}^{n}$ $\sum_{k=1}^{n} \omega_{ij}^{2} \omega_{jk}^{2} \alpha_{k}^{2} \rightarrow 0.$ a.s. (3.13)

Since $|\alpha_k| \leq M$, it follows that we only need to prove

$$n^{-4} \sum_{i=1}^{n} \sum_{j=1, j\neq i}^{n} \sum_{k=1}^{n} \omega_{ij}^{2} \omega_{jk}^{2} \longrightarrow 0. \text{ a.s.}$$
 (3.13)

This can be easily seen from the facts that $\left\{ \sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} \sum_{k=1}^{n} \omega_{ij}^{2} \omega_{jk}^{2} \right\}$

n = 1,2,... forms a semi-martingale sequence and that

$$P(\max_{2^{m-1} \le n < 2^{m}} n^{-4} | \sum_{i=1}^{n} \sum_{j=1, j \ne i}^{n} \sum_{k=1}^{n} \omega_{ij}^{2} \omega_{jk}^{2} | \ge \varepsilon)$$

$$\leq P(\max_{n \le 2^{m}} | \sum_{i=1}^{n} \sum_{j=1, j \ne i}^{n} \sum_{k=1}^{n} \omega_{ij}^{2} \omega_{jk}^{2} | \ge 2^{-4} \varepsilon 2^{4m})$$

$$\leq c 2^{-4m} \varepsilon | \sum_{i=1}^{2^{m}} \sum_{j=1, j \ne i}^{2^{m}} \omega_{ij}^{2} \omega_{jk}^{2} | \ge 2^{-4} \varepsilon 2^{4m})$$

$$\leq c 2^{-4m} \varepsilon | \sum_{i=1}^{2^{m}} \sum_{j=1, j \ne i}^{2^{m}} \omega_{ij}^{2} \omega_{jk}^{2} |$$

$$\leq c 2^{-m}.$$

From (3.6), (3.7), (3.10), (3.11) and (3.13), we obtain (3.5).

By Lemma 2.2, for almost all ω , it holds that

$$X_{n} - V_{n} = (\frac{Wn}{n}) (I - \frac{1}{n} Wn)^{-1} V_{n} = \sum_{k=1}^{\infty} (\frac{Wn}{n})^{k} V_{n}$$

$$= (\frac{Wn}{n}) V_{n} + \sum_{k=2}^{\infty} (\frac{Wn}{n})^{k} V_{n}. \qquad (3.16)$$

If $\lim_{n \to \infty} \alpha_n = 0$, by (3.1), (3.5) and (3.16), we obtain

$$||X_n - V_n|| \le (||(\frac{Wn}{n})V_n|| + ||(\frac{Wn}{n})^2 V_n||) \sum_{k=0}^{\infty} ||(\frac{Wn}{n})^2||^k \to 0.$$
 a.s. (3.17)

which is equivalent to the second assertion of Theorem 1. Since

$$\left|\left|\sum_{k=2}^{\infty} \left(\frac{w_n}{n}\right)^k v_n\right|\right| \leq \left|\left|\left(\frac{w_n}{n}\right)^2 v_n\right|\right| \sum_{k=0}^{\infty} \left|\left|\left(\frac{w_n}{n}\right)^2\right|\right|^k + \left|\left|\frac{w_n}{n} v_n\right|\right| \sum_{k\neq 1}^{\infty} \left|\left|\left(\frac{w_n}{n}\right)^2\right|\right|^k$$

$$\longrightarrow 0. \quad \text{a.s.} \tag{3.18}$$

to prove the first assertion of Theorem 1, we only need to prove

$$\max_{1 \leq i \leq n} \left| \left(\frac{1}{n} W_n V_n \right)_i \right| = \max_{1 \leq i \leq n} \left| \frac{1}{n} \sum_{j=1}^n \omega_{ij} \alpha_j \right| \longrightarrow 0. \text{ a.s.}$$
 (3.19)

or equivalently,

$$\max_{1 \le i \le n} \left| \frac{1}{n^2} \left(\sum_{i=1}^n \omega_{ij} \alpha_j \right)^2 \right| \longrightarrow 0. \text{ a.s.}$$
 (3.20)

In view of (3.12), we only need to prove

$$\max_{1 \le i \le n} \left| \frac{1}{n^2} \sum_{j=1}^{n} \omega_{ij}^{2} \alpha_{j}^{2} \right| \le M^2(1) \max_{1 \le i \le n} n^{-2} \sum_{j=1}^{n} \omega_{ij}^{2} \to 0. \text{ a.s.}$$
(3.21)

Set

$$Z_{jn} = \omega_{ij}^{2} I_{\{|\omega_{ij}| \le n\}} - E \omega_{11}^{2} I_{\{|\omega_{11}| \le n\}}$$

When m is so large that E ω_{11}^{2} / 2^{m} < $\frac{\varepsilon}{4}$, we have

$$P(\max_{2^{m-1} \le n < 2^{m}} \max_{1 \le i \le n} n^{-2} \sum_{j=1}^{n} \omega_{ij}^{2} \ge \varepsilon)$$

$$\leq 2^{m}P(\max_{2^{m-1} \le n < 2^{m}} \sum_{j=1}^{n} (\omega_{ij}^{2} - E \omega_{11}^{2} I_{[|\omega_{11}| < n]}) \ge \frac{\varepsilon}{8} 2^{2^{m}})$$

$$\leq 2^{m}[P(\max_{2^{m-1} \le n < 2^{m}} \sum_{j=1}^{n} Z_{jn} \ge \frac{\varepsilon}{8} 2^{2^{m}}) + P(\bigcup_{2^{m-1} \le n < 2^{m}} \bigcup_{i=1}^{n} (|\omega_{ij}| > n))]$$

$$\leq 2^{m}[2^{-3m} E Z_{12}^{2} + P(\bigcup_{i=1}^{2^{m}} \bigcup_{j=1}^{2^{m}} (|\omega_{ij}| > 2^{m-1}))]$$

$$\leq 2^{-2^{m}} E \omega_{11}^{4} I_{[|\omega_{11}| \le 2^{m}]} + 2^{2^{m}} P(|\omega_{11}| > 2^{m-1}). \tag{3.22}$$

where ε is an arbitrarily preassigned positive number.

From (2.16) we know

$$\sum_{m=1}^{\infty} 2^{2^m} P(|\omega_{11}| > 2^{m-1}) < \infty.$$
 (3.23)

On the other hand we have

$$\sum_{m=1}^{\infty} 2^{-2m} E \omega_{11}^{k} I_{\{|\omega_{11}| \leq 2^{m}\}} = \sum_{m=1}^{\infty} 2^{-2m} \left[\sum_{k=1}^{m} E \omega_{11}^{k} I_{\{2^{k-1} < |\omega_{11}| \leq 2^{k}\}} + 1\right]$$

$$\leq \sum_{k=1}^{\infty} E \omega_{11}^{k} I_{\{2^{k-1} < |\omega_{11}| \leq 2^{k}\}} \sum_{m=k}^{\infty} 2^{-2m} + 1$$

$$\leq 2 \sum_{k=1}^{\infty} 2^{-2k} E \omega_{11}^{k} I_{\{2^{k-1} < |\omega_{11}| \leq 2^{k}\}} + 1$$

$$\leq 2 E \omega_{11}^{2} + 1 < \infty. \tag{3.24}$$

From (3.22), (3.23), (3.24) and Borel-Cantelli lemma, it follows that

$$\max_{1 \le i \le n} n^{-2} \sum_{j=1}^{n} \omega_{ij}^{2} \longrightarrow 0. \text{ a.s.}$$
 (3.25)

The proof of Theorem 1 is completed.

3.2. The proof of Theorem 2.

Let M_n be the $n \times n$ matrix with all its entries being $m = E \omega_{11}$, and let $\hat{W}_n = W_n - M_n$. Write $\gamma_n = X_n - V_n / (1-m) = (X_{n,1} - \frac{\alpha}{1-m}, \dots, X_{nn} - \frac{\alpha}{1-m})$. Then (1.1) can be rewritten as

$$\gamma_n = \frac{Wn}{n} \gamma_n + \frac{\alpha}{n(1-m)} \hat{W}_n$$

where $i = (1,1,...,1)^T$ being an $n \times 1$ vector.

Let $|A|_0$ denote the operator norm of the matrix A. Since $W_n = \hat{W}_n + M_n$, we have

$$\left|\left|\left(\frac{\mathbf{W}\mathbf{n}}{\mathbf{n}}\right)^{2}\right|\right|_{0} \leq \left|\left|\left(\frac{\hat{\mathbf{W}}\mathbf{n}}{\mathbf{n}}\right)^{2}\right|\right|_{0} + \left|\left|\frac{\hat{\mathbf{W}}\mathbf{n}}{\mathbf{m}^{2}}\right|\right|_{0} + \left|\left|\frac{\mathbf{M}\mathbf{n}\hat{\mathbf{W}}\mathbf{n}}{\mathbf{n}^{2}}\right|\right|_{0} + \left|\left|\frac{\mathbf{M}\mathbf{n}}{\mathbf{n}^{2}}\right|\right|_{0}.$$
(3.26)

Applying lemma 2.1, we have

$$\left|\left|\left(\frac{\hat{\mathbf{w}}_{\mathbf{n}}}{\mathbf{n}}\right)^{2}\right|\right|_{0} \leq \left|\left|\left(\frac{\hat{\mathbf{w}}_{\mathbf{n}}}{\mathbf{n}}\right)^{2}\right|\right| \longrightarrow 0. \quad \text{a.s.,}$$
 (3.27)

where | |A| | denotes the Euclidean norm of the matrix A. We can easily compute that

$$\left|\left|\frac{Mn}{n^2}\right|\right|_0 = |m| \left|\left|\frac{Mn}{n}\right|\right|_0 = \frac{m^2}{\sqrt{n}} \longrightarrow 0.$$
 (3.28)

Furthermore, we have

$$\left| \left| \left(\frac{\widehat{W}n}{n} \right) \left(\frac{Mn}{n} \right) \right| \right|_{0}^{2} \leq \left| \left| \left(\frac{\widehat{W}n}{n} \right) \left(\frac{Mn}{n} \right) \right| \right|^{2}$$

$$= \frac{m^{2}}{n^{4}} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} \widehat{\omega}_{ik} \right)^{2} = \frac{m^{2}}{n^{3}} \sum_{i=1}^{n} \left(\sum_{k=1}^{n} \widehat{\omega}_{ik} \right)^{2},$$

$$(3.29)$$

where $\omega_{ik} = \omega_{ik} - m$ being a random variable with zero mean. Applying (3.12) with $\alpha_1 = \alpha_2 = ... = 1$, we have

$$\frac{2m^{2}}{n^{3}} \begin{vmatrix} \sum_{i=1}^{n} \sum_{k_{1} > k_{2}} \hat{\omega}_{ik_{1}} \hat{\omega}_{ik_{2}} \end{vmatrix}$$

$$\leq 2m^{2} \max_{1 \leq i \leq n} n^{-2} \begin{vmatrix} \sum_{n \geq k_{1} > k_{2} \geq 1} \hat{\omega}_{ik_{1}} \hat{\omega}_{ik_{2}} \end{vmatrix} + 0. \quad a.s.$$
(3.30)

By Kolmogorov's strong law of large numbers, we have

$$\frac{\mathbf{m}^2}{\mathbf{n}^3} \sum_{\mathbf{i=1}}^{\mathbf{n}} \sum_{\mathbf{k=1}}^{\mathbf{n}} \hat{\omega}_{\mathbf{ik}}^2 \longrightarrow 0 \cdot \operatorname{Var}(\hat{\omega}_{11}) = 0. \quad \text{a.s.}$$
 (3.31)

From (3.29), (3.30) and (3.31) we get

$$\left|\left|\frac{\hat{W}nMn}{n^2}\right|\right|_0 \longrightarrow 0. \quad a.s. \tag{3.32}$$

Similarly, we can prove that

$$\left|\left|\frac{Mn\hat{W}n}{n}\right|\right|_{0} \longrightarrow 0. \text{ a.s.}$$
 (3.33)

From (3.26), (3.27), (3.28), (3.32) and (3.33), we conclude that

$$\left|\left|\left(\frac{\operatorname{Wn}}{\operatorname{n}}\right)^{2}\right|\right|_{0}\longrightarrow 0. \quad a.s.$$
 (3.34)

Like proving Lemma 2.2, we see that for almost all ω , $(I-\frac{W\,n}{n})^{-1}$ is nonsingular and

$$\left(I - \frac{Wn}{n}\right)^{-1} = \sum_{k=0}^{\infty} \left(\frac{Wn}{n}\right)^{k}$$

when n is sufficiently large. Thus, for almost all $\boldsymbol{\omega}$, when n is large enough,

$$\gamma_{n} = (1 - \frac{Wn}{n})^{-1} \left(\frac{\alpha}{1-m} - \frac{\hat{W}n}{n} \right)$$

$$= \frac{\alpha}{1-m} \sum_{k=0}^{\infty} (\frac{Wn}{n})^{k} (\frac{\hat{W}n}{n}) \cdot 1. \qquad (3.35)$$

Since

$$\frac{1}{n}/2\sum_{i=1}^{n}\sum_{j=1}^{n}\hat{\omega}_{ij} \longrightarrow 0. \quad a.s. \quad (from Marcinkiewicz theorem)$$

we have

$$\left|\left|\frac{\underline{\mathbf{M}}\mathbf{n}}{\mathbf{n}} \frac{\hat{\mathbf{W}}\mathbf{n}}{\mathbf{n}} \right|^{2} = \mathbf{m}^{2}\mathbf{n}^{-3} \left(\sum_{\mathbf{i}=1}^{\mathbf{n}} \sum_{\mathbf{j}=1}^{\mathbf{n}} \hat{\omega}_{\mathbf{i}\mathbf{j}}\right)^{2} \longrightarrow 0. \quad \text{a.s.}$$
 (3.36)

from which and (3.5) we conclude that

$$\left|\left|\frac{w_n}{n} \frac{\hat{w}_n}{n} 1\right|\right| \le \left|\left|\left(\frac{\hat{w}_n}{n}\right)^2 1\right|\right| + \left|\left|\frac{m_n}{n} \frac{\hat{w}_n}{n} 1\right|\right| \to 0. \text{ a.s.}$$
 (3.37)

Applying (3.1) with M = 1, we have

$$\frac{\overline{\lim}}{n \to \infty} || \frac{\hat{w}_n}{n} || \leq E^{\frac{1}{2}} \hat{\omega}_{11}, \text{ a.s.}$$
 (3.38)

Consequently, by (3.37) and (3.38),

Using the same method as used in the proof of Theorem 1, we can prove

$$\max_{1 \le j \le n} \left| \frac{1}{n} \sum_{i=1}^{n} \hat{\omega}_{ij} \right| \longrightarrow 0. \text{ a.s.}$$
 (3.40)

which and (3.35), (3.39) imply Theorem 2, and the proof is finished.

3.3. The proof of Theorem 3.

Without loss of generality, we can assume that $m_i = i$, i=1,2,...,k. In the proof of Theorem 1, we have shown that, for almost all ω , when n is large enough,

$$x_n - v_n = \sum_{k=1}^{\infty} \left(\frac{w_n}{n}\right)^k v_n.$$
 (3.41)

Note that

$$\left\{ \begin{array}{c|c} \frac{n}{\sigma||V_{n}||} & \left(\frac{Wn}{n}\right) & V_{n} \\ \hline \end{array} \right\}, \quad j = 1, 2, \dots, k$$

$$= \left\{ \begin{array}{c|c} \frac{1}{\sigma||V_{n}||} & \sum_{k=1}^{n} \alpha_{k} \omega_{jk}, \quad j = 1, 2, \dots, k \end{array} \right\}$$

is a set of independent and identically distributed random variables, each of which is a normalized sum of independent random variables, where $(X_1, X_2, \dots, X_n)^T = X_j$. Since $\{\alpha_i, i = 1, 2, \dots\}$ is bounded, and $\sum_{i=1}^{\infty} \alpha_i^2 = \infty$. According to the Lindeberg-Feller theorem, we have $\{\frac{n}{\sigma||V_n||}, \frac{w_n}{\sigma||V_n||}, j = 1, 2, \dots, k\} \xrightarrow{d} N(0, I_k)$. (3.42)

We have

$$\begin{aligned} & \left| \left| \frac{n}{\|v_{n}\|} \left(\frac{w_{n}}{n} \right)^{2} v_{n} \right| \right|^{2} \\ & = \frac{1}{n^{2} \|v_{n}\|^{2}} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \sum_{\ell=1}^{n} \omega_{ij} \omega_{j\ell} \alpha_{\ell} \right)^{2} \\ & \leq \frac{2}{n^{2} \|v_{n}\|^{2}} \left\{ \sum_{i=1}^{n} \omega_{i1}^{2} \left(\sum_{\ell=1}^{n} \omega_{i\ell} \alpha_{\ell} \right)^{2} + \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \sum_{\ell=1}^{n} \omega_{ij} \omega_{j\ell} \alpha_{\ell} \right)^{2} \right\} \\ & \leq \frac{4}{n^{2} \|v_{n}\|^{2}} \left\{ \sum_{i=1}^{n} \omega_{i1}^{4} \alpha_{i}^{2} + \sum_{i=1}^{n} \omega_{i1}^{2} \left(\sum_{\ell=1}^{n} \omega_{i\ell} \alpha_{\ell} \right)^{2} + \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \sum_{\ell=1}^{n} \omega_{ij} \omega_{j\ell} \alpha_{\ell} \right)^{2} \right\} \\ & = J_{1}(n) + J_{2}(n) + J_{3}(n). \end{aligned}$$

$$(3.43)$$

It is obvious that

$$J_1(n) \le 4 n^{-2} \sum_{i=1}^{n} \omega_{ii}^{4} \longrightarrow 0.$$
 a.s. (see, Marcinkiewicz theore.)
(3.44)

and

$$E J_2(n) \le 4(E \omega_{11}^2)^2 / n \longrightarrow 0,$$
 (3.45)

and

$$E J_3(n) \le 4(E \omega_{11}^2)^2$$
. (3.46)

Hence

$$\left|\left|\frac{n}{\left|\left|v_{n}\right|\right|}\left(\frac{\forall n}{n}\right)^{2}v_{n}\right|\right|=0_{p}(1), n \longrightarrow \infty$$
(3.47)

where " $|X_n|| = 0_p(1)$, $n \to \infty$ " means that the sequence $\{X_n, n = 1, 2, ...\}$ are uniformly bounded in probability in the sense of Euclidean norm.

Since
$$\left| \left| \frac{Wn}{n} \right| \right|^2 = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij}^2 + E \omega_{11}^2$$
, a.s.

we have

$$\left|\left|\frac{n}{||v_n||} \left(\frac{w_n}{n}\right)^3 v_n\right|\right| \leq \left|\left|\frac{w_n}{n}\right|\right| \left|\left|\frac{n}{||v_n||} \left(\frac{w_n}{n}\right)^2 v_n\right|\right| = 0_p(1), n + \infty,$$

which and (3.47) and Lemma 2.1 imply

$$\left|\left|\begin{array}{cc} \frac{n}{\|v_n\|} & \sum_{k=4}^{\infty} \left(\frac{w_n}{n}\right)^k v_n\right|\right| \leq \left\{\left|\left|\frac{n}{\|v_n\|} \left(\frac{w_n}{n}\right)^2 v_n\right|\right| + \left|\left|\frac{n}{\|v_n\|} \left(\frac{w_n}{n}\right)^3 v_n\right|\right|\right\}$$

$$\cdot \left| \left| \left(\frac{Wn}{n} \right)^2 \right| \sum_{k=0}^{\infty} \left| \left| \left(\frac{Wn}{n} \right)^2 \right| \right|^k \longrightarrow 0. \text{ in p.}$$
 (3.48)

By (3.41), (3.42), (3.48), to prove Theorem 3, we only need to prove

$$\frac{n}{||v_n||} \left(\frac{\forall n}{n}\right)^{\ell} v_n \Big|_{j} \longrightarrow 0. \text{ in p. } \ell = 2,3, j=1,2,\ldots,k$$
 (3.49)

Since for each ℓ , $\frac{n}{||v_n||}$ $(\frac{Wn}{n})^{\ell} |v_n|_j$, j = 1, 2, ..., k, are identically distributed, we only need to prove (3.49) for j = 1.

For $\ell = 2$, we have

$$\frac{1}{n||v_{n}||} W_{n}^{2} V_{n}|_{1} = \frac{1}{n||v_{n}||} \sum_{i=1}^{n} \sum_{\ell=1}^{n} \omega_{1i} \omega_{i\ell} \alpha_{\ell}$$

$$= \frac{1}{n||v_{n}||} \{\omega_{11}^{2} \alpha_{1} + \omega_{11} \sum_{\ell=2}^{n} \omega_{i\ell} \alpha_{\ell} + \sum_{i=2}^{n} \sum_{\ell=1}^{n} \omega_{1i} \omega_{i\ell} \alpha_{\ell}\}$$

$$= J_{1}(n) + J_{2}(n) + J_{3}(n) \tag{3.50}$$

It is obvious that

$$\left|J_{1}(n)\right| \leq \frac{1}{n} \omega_{11}^{2} \longrightarrow 0. \quad a.s. \tag{3.51}$$

and

$$E(J_{2}(n)) = \frac{1}{n^{2} ||v_{n}||^{2}} \sum_{\ell=2}^{n} \alpha_{\ell}^{2} (E \omega_{11}^{2})^{2} \leq \frac{(E \omega_{11}^{2})^{2}}{n^{2}}$$
 (3.52)

$$E(J_{3}(n)) = \frac{1}{n^{2} ||v_{n}||^{2}} \sum_{i=2}^{n} \sum_{\ell=1}^{n} \alpha_{\ell}^{2} (E \omega_{11}^{2})^{2}$$

$$\leq \frac{(E \omega_{11}^{2})^{2}}{n}$$
(3.53)

From (3.52) and (3.53), we obtain

$$J_2(n) \longrightarrow 0.$$
 a.s.

$$J_3(n) \longrightarrow 0$$
, in p.

which and (3.51) imply (3.49) for $\ell = 2$.

For l = 3 we have

$$\frac{n}{||v_{n}||} \frac{(w_{n})^{3}}{||v_{n}||} v_{n}|_{1} = \frac{1}{n^{2}||v_{n}||} \sum_{i=1}^{n} \sum_{\ell=1}^{n} \sum_{m=1}^{n} \omega_{1i} \omega_{i\ell} \omega_{\ell m} \alpha_{m}$$

$$= \frac{1}{n^{2}||v_{n}||} \{\omega_{11}^{3}\alpha_{1} + \sum_{i=2}^{n} \omega_{1i} \omega_{ii}^{2} \alpha_{i} + \sum_{\ell=1}^{n} \omega_{1i} \omega_{\ell m}^{2} \alpha_{m} + \sum_{\ell=1}^{n} \omega_{\ell m}^{2} \alpha_{m} \}$$

$$+ \sum_{\ell=1}^{n} (3.54)$$

where $\sum_{(2)}$ runs over the set (i,ℓ,m) ; $2 \le i \le n$, $1 \le \ell$, $m \le n$, two of (i,ℓ,m) are equal to each other, but the other one is not equal to them.}, and $\sum_{(3)}$ runs over the set $\{(i,\ell,m), 2 \le i \le n, 1 \le \ell, m \le n,$ any two of (i,ℓ,m) are not equal to each other.}

It is obvious that

$$\frac{1}{n^{2}||v_{n}||} \omega_{11}^{3} \alpha_{1} \longrightarrow 0,$$

$$E \left| \frac{1}{n^{2}||v_{n}||} \sum_{i=2}^{2} \omega_{1i}^{\omega_{1i}^{2}} \alpha_{i} \right| \leq \frac{M}{n||v_{n}||} E|_{\omega_{11}} |E|_{\omega_{11}^{2}} \longrightarrow 0,$$

$$E \left| \frac{1}{n^{2}||v_{n}||} \sum_{(2)} \omega_{1i}^{\omega_{1i}^{2}} \omega_{\ell m}^{\omega_{\ell m}} \alpha_{m} \right| \leq \frac{3 M E|_{\omega_{11}^{2}} |E|_{\omega_{11}^{2}}}{||v_{n}^{2}||} \longrightarrow 0,$$

and

$$E\left(\frac{1}{n^2||\mathbf{v}_n||}\sum_{(3)}\omega_{11}\omega_{1\ell}\omega_{\ell m}\alpha_{m}\right)^2\leq (E\omega_{11}^2)^3/n^2\longrightarrow 0,$$

where M is the super bound of the sequence $\{\alpha_1, \alpha_2, ...\}$, which and (3.54) imply (3.49) for $\ell = 3$, and the proof of Theorem 3 is proved.

Acknowledgement. The author is very grateful to Professor P. R. Krishnaia...

for his kind support and encouragement.

REFERENCES

- [1] S. GEMAN and CHI RII HWANG. (1982). A Chaos Hypothesis for Some Large Systems of Random Equations. Z. Wahrscheinlichkeistheoria verw. Gehiete, 60, 291-314.
- [2] S. GEMAN. (1982). Almost Sure Stable Oscillations in a Large System of Randomly Coupled Equations. SIAM J. Applied Math., Vol. 42, No. 4, 695-703.
- [3] K. L. CHUNG. (1974). A Course in Probability Theory, New York, Academic Press.
- [4] W. F. STOUT. (1974). Almost Sure Convergence, New York, Academic Press.
- [5] P. BILLINGSLY, (1968). Convergence of Probability Measures, New York, Wiley.

END

FILMED

12-85

DTIC