# Informacija

- Informacija v računalniku
  - Ukazi
  - Operandi
    - Numerični
      - Fiksna vejica
        - Predznačena
        - Nepredznačena
      - Plavajoča vejica
        - Enojna natančnost

          Dvojna natančnost
      - Dvojna natancnos
    - Nenumerični
      - Logične spremenljivke
      - Znaki

ZAPIS INFORMACIJE IN ARTIMETIKA

# Zapis nenumeričnih operandov

- > Pri prvih rač. so bili operandi samo numerični
  - danes je veliko nenumeričnih
- Običajno so nenumerični operandi znaki oz. nizi znakov (strings)
- > Vsak znak (character) je predstavljen z neko abecedo

ZAPIS INFORMACIJE IN ARTIMETIKA

3

### Abeceda BCDIC

- > BCDIC (Binary Coded Decimal Interchange Code)
- > do leta 1964
- > 6-bitna
- > 10 številk, 26 črk, 28 posebnih znakov
- hitro je postala premajhna

| 000000 0<br>000001 1<br>000010 2 |
|----------------------------------|
| <br>001001 9                     |
| 010001 A<br>010010 B<br>010011 C |

|     | 000   | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|-----|-------|-----|-----|-----|-----|-----|-----|-----|
| 000 | 0     | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| 001 | 8     | 9   |     | #   | @   |     |     |     |
| 010 | &     | Α   | В   | С   | D   | E   | F   | G   |
| 011 | Н     | I   | +0  |     | Ħ   |     |     |     |
| 100 | -     | J   | K   | L   | М   | N   | 0   | Р   |
| 101 | Q     | R   | -0  | \$  | *   |     |     |     |
| 110 | space | /   | S   | Т   | U   | V   | w   | х   |
| 111 | Υ     | Z   | ‡   | ,   | %   |     |     |     |
|     | 0     | 1   | 2   | 3   | 4   | 5   | 6   | 7   |

ZAPIS INFORMACIJE IN ARTIMETIKA

### Abeceda EBCDIC

- Extended Binary Coded Decimal Interchange Code
- ➤ IBM, 1964
- > 8-bitna
- razširitev abecede BCD

ZAPIS INFORMACIJE IN ARTIMETIKA

5

### Abeceda ASCII

- > ASCII American Standard Code for Information Interchange
- > 1968
- originalno 7-bitna (128 znakov), razširjena 8-bitna
- od tega 95 natisljivih znakov in 33 kontrolnih znakov
  - A ... 1000001 (65), B ... 1000010 (66), ...
  - **a** ... 1100001 (97), b ... 1100010 (98), ...
  - **0** ... 0110000 (48), 1 ... 0110001 (49), ...
  - !... 0100001 (33), "... 0100010 (34), ...
- kontrolni znaki za rač. komunikacije in krmiljenje V/I naprav

ZAPIS INFORMACIJE IN ARTIMETIK

### Koda BCD

- Spodnji 4 biti znakov za desetiške cifre v abecedah BCDIC, EBCDIC in ASCII ustrezajo njihovi dvojiški numerični vrednosti
  - to je koda BCD (Binary Coded Decimal), 4-bitna binarna predstavitev desetiških cifer

ZAPIS INFORMACIJE IN ARTIMETIKA

7

### Unicode

#### Unicode

- neprofitni konzorcij, 1991
- abecede UTF-8, UTF-16, UTF-32
- UTF-8
  - posamezen znak zavzame od 1 do 4 bajtov
  - prvih 128 znakov isto kot ASCII (kompatibilnost)

| Število<br>bajtov | Št. bitov<br>kode | Prva koda | Zadnja<br>koda | Bajt 1   | Bajt 2   | Bajt 3   | Bajt 4   |
|-------------------|-------------------|-----------|----------------|----------|----------|----------|----------|
| 1                 | 7                 | 00        | 7F             | 0xxxxxxx |          |          |          |
| 2                 | 11                | 0800      | 07FF           | 110xxxxx | 10xxxxxx |          |          |
| 3                 | 16                | 0800      | FFFF           | 1110xxxx | 10xxxxxx | 10xxxxxx |          |
| 4                 | 21                | 10000     | 10FFFF         | 11110xxx | 10xxxxxx | 10xxxxxx | 10xxxxxx |

ZAPIS INFORMACIJE IN ARTIMETIKA

# Zapis numeričnih operandov v fiksni vejici

- Števila
- Pozicijska notacija
  - vsaka pozicija ima svojo težo
  - $192,73 = 1 \times 10^2 + 9 \times 10^1 + 2 \times 10^0 + 7 \times 10^{-1} + 3 \times 10^{-2}$

ZAPIS INFORMACIJE IN ARTIMETIK

# Pozicijska notacija

Ta zapis lahko posplošimo na uteži oblike r<sup>i</sup>, kjer je r baza ali radix številskega sistema

$$V = \sum_{i=-m}^{n-1} b_i r^i$$

- $215,36_7 = 2 \times 7^2 + 1 \times 7^1 + 5 \times 7^0 + 3 \times 7^{-1} + 6 \times 7^{-2}$
- V računalnikih se uporablja baza r = 2
  - nekdaj se je tudi baza r = 10
    - BCD-kodiranje

ZAPIS INFORMACIJE IN ARTIMETIKA

# Dvojiški zapis števil

- Dvojiški (binarni) zapis: baza r = 2
  - $b_{n-1} \dots b_2 b_1 b_0$ ,  $b_{-1} b_{-2} \dots b_{-m}$

 $b_{i} = 0 \text{ ali } 1$ 

Vrednost:

$$V(b) = \sum_{i=-m}^{n-1} b_i 2^i$$

> Primer: pretvori 110101,101<sub>2</sub> v desetiško število.

110101,101, =

$$1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 53,625_{10}$$

ZAPIS INFORMACIJE IN ARTIMETIKA

11

### Pretvorba desetiških števil v bazo *r*

- > Algoritem:
  - 1.  $N: r = Q_1 + b_0$
  - 2. Ponavljaj 1. za  $Q_i$ :  $r = Q_{i+1} + b_i$  za i = 1, 2, 3, ...
  - 3. Končaj, ko  $Q_i = 0$
- Primer: pretvorba 98<sub>10</sub> v bazo r=3
  - 98<sub>10</sub> = 10122<sub>3</sub>
- Posebno nas zanima pretvorba v bazo r=2 (pretvorba desetiškega števila v dvojiško)
  - 27<sub>10</sub> = 11011<sub>2</sub>

ZAPIS INFORMACIJE IN ARTIMETIKA

### Pretvorba ulomkov v bazo r

- > Algoritem:
  - 1.  $N * r = b_{-1} + F_1$
  - 2. Ponavljaj 1. za  $F_i * r = b_{-(i+1)} + F_{i+1}$  za i = 1, 2, ...
  - 3. Končaj, ko  $F_i = 0$
- > Primer: pretvorba  $0.375_{10}$  v bazo r = 2
  - **0**,011<sub>2</sub>

ZAPIS INFORMACIJE IN ARTIMETIKA

- 13

- Kadar število N odrežemo na k decimalk, dobimo približek N'
  - napaka N' N, absolutna napaka |N' N|
  - Abs. napaka ne more preseči  $r^{-k}$

$$r^{-k} \le E_{\max}$$

 Poiščemo tak k, da neenačba velja (običajno lahko tudi brez kalkulatorja)

$$k \ge \log_r (1/E_{max})$$

$$k = \lceil \log_r(1/E_{max}) \rceil$$

ZAPIS INFORMACIJE IN ARTIMETIK

Če logaritma z bazo r ne znamo izračunati, ga pretvorimo v bazo e ali 10:

$$\log_a c = \log_a b * \log_b c$$
 (pravilo)  
(na ta način se znebimo baze  $b$ , v našem primeru  $r$ ,
 za a pa vzamemo kako znano bazo)
 $\log_e c = \log_e r * \log_r c$ 
 $\log_r c = \ln c / \ln r$ 
 $k = \lceil \ln(1/E_{max}) / \ln r \rceil$ 

ZAPIS INFORMACIJE IN ARTIMETIKA

- 1!

Primer: pretvorba  $N = 0.8_{10}$  v bazo r = 3. Vzemi toliko decimalk, da napaka ne preseže  $E_{max} = 0.01$ .

$$0.8_{10} = 0$$
, 2101 2101 ...  $_3$   
Če upoštevamo  $k$  decimalk, napaka ne preseže  $r^{-k}$   $r^{-k} <= E_{max}$   
Brez kalkulatorja lahko ocenimo primeren  $k$ :  $3^{-5} = 1/243 = 0,004...$ ,  $3^{-4} = 1/81 = 0,012...$   
S kalkulatorjem:  $k = \lceil \ln(100) / \ln(3) \rceil = \lceil 4,19 \rceil = 5$   
 $0.8_{10} = 0,21012_3$ 

ZAPIS INFORMACIJE IN ARTIMETIKA

- Pri r = 2 imamo kar dvojiški logaritem (lb)  $k = \lceil \log_2(1/E_{\text{max}}) \rceil$
- Primer:  $0.8_{10}$  v bazo 2,  $E_{\text{max}} = 0.01$  0.8 = 0,  $1100 \ 1100 \ \dots \ _2$ k = 7:  $0.8 = 0.1100110_2$  (N' = 0.796875, E = -0.003125)
- Primer:  $N = 159, 3_{10}$  v bazo r = 16.  $|N'-N| \le 10^{-3}$  9(15), 4(12)(12)(12)...16  $16^{-3} < 10^{-3}$  k = 3 159, 310 = 9(15), 4(12)(12)16

1

### Pretvorba med poljubnima bazama

- > Pretvorba *r'* v *r*:
  - r' v 10
  - 10 v r
- > Npr. 26,5<sub>8</sub> v *r*=3
  - **211,12 12** ... <sub>3</sub>

ZAPIS INFORMACIJE IN ARTIMETIKA

### Osmiška in šestnajstiška baza

- Poleg dvojiške se v računalništvu pogosto uporabljata tudi osmiška (oktalna) in še posebno šestnajstiška (heksadecimalna) baza
  - v 16-iški bazi so poleg 0 .. 9 še dodatne cifre:
    - A (10), B (11), C (12), D (13), E (14), F (15)
  - Primer:
    - $3C7_{16} = 3*16^2 + 12*16^1 + 7*16^0 = 768 + 192 + 7 = 967_{10}$
  - Različni načini zapisa:
    - $3C7_{16} = 3C7_{H} = 0x3C7 = $3C7$

ZAPIS INFORMACIJE IN ARTIMETIKA

19

- Ker sta ti bazi sorodni bazi 2, je pretvorba enostavna
  - Pri osmiški bazi ena cifra predstavlja 3 bite (dvojiške baze)
    - 1110010101<sub>2</sub> = 1 110 010 101<sub>2</sub> = 1625<sub>8</sub>,
    - 327<sub>8</sub> = 011 010 111<sub>2</sub>
  - Pri šestnajstiški bazi ena cifra predstavlja 4 bite (dvojiške baze)
    - 1110010101<sub>2</sub> = 11 1001 0101<sub>2</sub> = 395<sub>16</sub> oz. 0x395
    - A15<sub>16</sub> = 1010 0001 0101<sub>2</sub>

ZAPIS INFORMACIJE IN ARTIMETIK

- Z n biti lahko zapišemo nepredznačena števila od 0 do 2<sup>n</sup>-1 (z n biti lahko v kateremkoli formatu zapišemo 2<sup>n</sup> števil!)
  - npr. n = 3, števila od 0 (000) do 7 (111)
  - npr. *n* = 10, števila od 0 (000...) do 1023 (111...)
- Kadar rezultat neke operacije preseže obseg števil, se pojavi prenos (carry)
  - rezultat na podanem številu cifer ni pravilen

$$101 + 100 = (1)001$$

2

# Zapisi predznačenih števil

- Predznačeno število lahko zapišemo na več načinov
- V vseh primerih imamo nbitno število: b<sub>n-1</sub> ... b<sub>2</sub>b<sub>1</sub>b<sub>0</sub>, njegova vrednost pa se v različnih načinih zapisa razlikuje
- Primer: Zapisi 3-bitnih predznačenih števil

| b <sub>2</sub> | $b_1$ | <i>b</i> <sub>0</sub> | PV | РО | 1′K | 2′K |
|----------------|-------|-----------------------|----|----|-----|-----|
| 0              | 0     | 0                     | +0 | -4 | +0  | 0   |
| 0              | 0     | 1                     | 1  | -3 | 1   | 1   |
| 0              | 1     | 0                     | 2  | -2 | 2   | 2   |
| 0              | 1     | 1                     | 3  | -1 | 3   | 3   |
| 1              | 0     | 0                     | -0 | 0  | -3  | -4  |
| 1              | 0     | 1                     | -1 | 1  | -2  | -3  |
| 1              | 1     | 0                     | -2 | 2  | -1  | -2  |
| 1              | 1     | 1                     | -3 | 3  | -0  | -1  |

ZAPIS INFORMACIJE IN ARTIMETIK

# Predznak-veličinski zapis

#### 1. Predznak-veličinski zapis

$$V(b) = (-1)^{b_{n-1}} \sum_{i=0}^{n-2} b_i 2^i$$

- prvi bit  $(b_{n-1})$  predstavlja predznak, ostali velikost
- Hihe
  - predznak je treba obravnavati posebej
  - ima dve ničli: -0 in +0
- PV zapis ni primeren za seštevanje/odštevanje
- Primeren za množenje/deljenje (ki pa sta manj pogosti operaciji)

ZAPIS INFORMACIJE IN ARTIMETIKA

2

# Zapis z odmikom

#### 2. Zapis z odmikom

$$V(b) = \sum_{i=0}^{n-1} b_i 2^i - 2^{n-1}$$

- odmik je (običajno) 2<sup>n-1</sup>
- nekoč priljubljen zapis
- Hibe:
  - pri seštevanju je treba odmik odšteti
  - pri odštevanju je treba odmik prišteti
    - v oboje se lahko hitro prepričamo

ZAPIS INFORMACIJE IN ARTIMETIKA

### Eniški komplement

#### 3. Eniški komplement (1'K)

$$V(b) = \sum_{i=0}^{n-1} b_i 2^i - b_{n-1} (2^n - 1)$$

- $b_{n-1}$  je predznak
- pozitivna števila ( $b_{n-1}$ =0) enako kot pri PV
- negativno število dobimo iz pozitivnega z invertiranjem vseh bitov
  - ekvivalentno odštevanju od 2<sup>n</sup> 1 (same enice)
- predznaka ni treba obravnavati posebej! ©
- hibe: 🕾
  - 2 ničli (-0, +0)
  - pri prenosu z najvišjega mesta je treba na najnižjem mestu prišteti 1 (End Around Carry - EAC)

ZAPIS INFORMACIJE IN ARTIMETIKA

2

# Dvojiški komplement

#### 4. Dvojiški komplement (2'K)

$$V(b) = \sum_{i=0}^{n-1} b_i 2^i - b_{n-1} 2^n$$

- Tudi tu se pozitivna števila začnejo z 0:
  - 0000 (0), 0001 (1), ..., 0110 (6), 0111 (7)=max
- Negativna števila se začnejo z 1:
  - 1000 (-8), 1001 (-7), ..., 1110 (-2), 1111 (-1)
  - ni pa takoj razvidno, za katero število gre 🗵

ZAPIS INFORMACIJE IN ARTIMETIKA

 Negativno število dobimo tako, da invertiramo vse bite pozitivnega števila (eniški komplement) in prištejemo 1 (to je ekvivalentno odštevanju od 2<sup>n</sup>)

• npr.

- Velja pa tudi obratno: če želimo ugotoviti, za katero negativno število gre, spet naredimo 2'K (1'K in prištevanje enice)
  - 10110 = ?, 1'K: 01001 + 1 = 01010, kar je 10, torej je 10110 enako -10 (minus deset)
- Razlikovanje med pojmoma zapis v 2'K in 2'K nekega števila

APIS INFORMACIJE IN ARTIMETIKA

27

Bit prenosa pri 2'K ignoriramo!

+110

(1)001

- Pri razširitvi števila na več bitov je potrebno razširiti predznak:
  - **0**101 v **000**101
  - **1**100 v **111**100
  - 01011111 v 000000001011111
  - 11001100 v 1111111111001100

ZAPIS INFORMACIJE IN ARTIMETIKA

- 2'K je najpogosteje uporabljan zapis
  - primeren za seštevanje/odštevanje
    - nima EAC
  - le ena predstavitev za ničlo
  - predznaka ni treba obravnavati posebej

29

### Primer

- Zapiši -37 kot predznačeno 10-bitno število v PV, PO, 1'K in 2'K
  - PV: 1000100101
  - PO: 0111011011
  - 1'K: 1111011010
  - 2'K: 1111011011

ZAPIS INFORMACIJE IN ARTIMETIKA

### Preliv

Obseg števil v n-bitnem 2'K:

$$-2^{n-1} \le x \le 2^{n-1} - 1$$

- > Če je (pravi) rezultat operacije izven tega območja: preliv (overflow)
  - rezultat je napačen
  - preliv se da detektirati
- Preliv ni isto kot prenos (carry) z najvišjega mesta!
  - le-ta se nanaša na operacije z nepredznačenimi števili
    - območje  $0 \le x \le 2^n 1$
  - pri 2'K se prenos ignorira

ZAPIS INFORMACIJE IN ARTIMETIKA

3

- Kdaj pride do preliva?
  - potreben pogoj je, da imata števili enak predznak
  - zadosten pogoj pa je, da ima vsota drugačen predznak kot števili
- Pogoj za preliv (OF) bi lahko zapisali kot

$$OF = x_{n-1} y_{n-1} \overline{s_{n-1}} \vee \overline{x_{n-1}} \overline{y_{n-1}} s_{n-1}$$

vendar je možno tudi enostavneje (kot bomo videli)

ZAPIS INFORMACIJE IN ARTIMETIKA

#### Primeri operacij v 4-bitnem 2'K:

ZAPIS INFORMACIJE IN ARTIMETIKA

3

### Primeri

#### > Seštej 21 in -7 v 6-bitnem 2'K

$$010101 \\ + 111001 \\ (1)001110$$

ZAPIS INFORMACIJE IN ARTIMETIKA

### Primeri aritmetičnih operacij v različnih bazah

- $\triangleright$  02345<sub>9</sub> + 16250<sub>9</sub> = 18605<sub>9</sub>
- 21202<sub>3</sub> + 12012<sub>3</sub> = (1)10221<sub>3</sub>, pojavi se prenos
- $\rightarrow$  11001<sub>2</sub> + 01011<sub>2</sub> = (1)00100<sub>2</sub>, pojavi se prenos
- $\rightarrow$  4102<sub>5</sub> 2430<sub>5</sub> = 1122<sub>5</sub>
- > 3306<sub>7</sub> 0615<sub>7</sub> = 2361<sub>7</sub>
- $\rightarrow$  10110<sub>2</sub> 01101<sub>2</sub> = 01001<sub>2</sub>
- > 324<sub>5</sub> \* 023<sub>5</sub> = 014112<sub>5</sub>
- > 1101<sub>2</sub> \* 0101<sub>2</sub> = 01000001<sub>2</sub>

ZADIC INFORMACUE IN ADTIMATTIVA

3

# Vezja za aritmetiko

#### > 1-bitni seštevalnik

- Polovični seštevalnik (Half Adder, HA)
  - sešteva 2 bita, izračuna vsoto (s, sum) in (izhodni) prenos (c, carry)



| S | = | xy'  | V  | x'y = x | ⊕у |
|---|---|------|----|---------|----|
| С | = | XV I | (= | x&v)    |    |

ZAPIS INFORMACIJE IN ARTIMETIK

- Polni seštevalnik (Full Adder, FA)
  - sešteva 3 bite, izračuna vsoto in (izhodni) prenos



$$s = x \oplus y \oplus z$$
  $(= x'y'z \lor x'yz' \lor xy'z' \lor xyz)$   
 $c = xy \lor xz \lor yz$ 

37

### Večbitni seštevalnik

#### Večbitni seštevalnik

- Seštevalnik z razširjanjem prenosa (Ripple Carry Adder, RCA)
  - zaporedna vezava 1-bitnih FA
  - izhodni prenos nižjega vezan na enega od vhodov višjega
    - običajno se en vhod imenuje kar vhodni prenos (c<sub>in</sub>)

$$s = x \oplus y \oplus c_{in}$$
  
 $c_{out} = xy + xc_{in} + yc_{in}$ 

- hiba: zakasnitev
  - V najslabšem primeru se prenos razširja čez vse FA
  - Dejanska zakasnitev je odvisna od operandov
  - Maksimalna zakasnitev pa narašča praktično linearno

ZAPIS INFORMACIJE IN ARTIMETIK



39

- Seštevalnik z vnaprejšnjim prenosom (Carry-Lookahead Adder, CLA)
  - hiter izračun vseh prenosov
    - le na osnovi vhodov x, y in c<sub>0</sub>
  - dodatna logika
    - sprememba večnivojske oblike v dvonivojsko

ZAPIS INFORMACIJE IN ARTIMETIKA

- Seštevanje in odštevanje predznačenih števil v 2'K z enim vezjem
  - signal M (Add'/Sub) določa operacijo
    - 0:+
    - 1:-
  - odštevanje kot prištevanje 2'K
    - X Y = X + Y' + 1
      - -Y kot dvojiški komplement Y
      - $\circ$  Y' =  $(y_{n-1}' \dots y_1' y_0') \dots 1' K$

      - y<sub>i</sub> ⊕ M
         XOR dela kot krmiljen negator (a ⊕ 0 = a, a ⊕ 1 = a')
         +1: M vežemo na c<sub>0</sub>

- Detekcija preliva
  - enak predznak operandov
  - drugačen predznak vsote (glej prejšnjo formulo za OF)
  - pri prvem produktu je  $c_{n-1}=0$  in  $c_n=0$ , pri drugem obratno, zato

$$OF = C_{n-1} \oplus C_n$$

# Binarno množenje

- > Binarno množenje
  - tvorba delnih (parcialnih) produktov (n\*n konjunkcij)
  - seštevanje delnih produktov

 Delni produkt je enak množencu, če je ustrezni bit množitelja enak 1, sicer je enak 0

ZAPIS INFORMACIJE IN ARTIMETIKA

43

- 2 vrsti metod:
  - pomikanje in seštevanje
    - 1 bit / cikel ure
    - o poceni, a ne prav hitro
    - registri
  - kombinacijski množilniki
    - brez ure
    - dragi, a hitri

ZAPIS INFORMACIJE IN ARTIMETIKA

#### Množenje s pomiki in seštevanjem

- Postopek iz n korakov:
  - Če je najnižji bit množitelja B enak 1, prištej množenec A registru P (na začetku 0)
    - sicer prištej 0
  - Pomik desno registrov P in B (kaskadno vezanih)

ZAPIS INFORMACIJE IN ARTIMETIKA

4

#### ➤ Primer: A=5, B=6

|   | Р    | В    |                      |
|---|------|------|----------------------|
| 0 | 0000 | 0110 | začetek              |
| 1 | 0000 | 0110 | $P \leftarrow P + 0$ |
|   | 0000 | 0011 | P,B >> 1             |
| 2 | 0101 | 0011 | $P \leftarrow P + A$ |
|   | 0010 | 1001 | P,B >> 1             |
| 3 | 0111 | 1001 | $P \leftarrow P + A$ |
|   | 0011 | 1100 | P,B >> 1             |
| 4 | 0011 | 1100 | $P \leftarrow P + 0$ |
|   | 0001 | 1110 | P,B >> 1             |

ZAPIS INFORMACIJE IN ARTIMETIKA

#### Matrični množilnik

na primeru 3x3



ZAPIS INFORMACIJE IN ARTIMETIK

4

#### Nekateri FA so odveč



ZAPIS INFORMACIJE IN ARTIMETIKA

- Zakasnitev ~ linearna
  - (3*n*-2)∆FA
  - (3*n*-4)∆FA
- Obstajajo tudi metode za hitro seštevanje več sumandov, t.i. paralelni števniki (parallel counters)
  - · Wallace, Dadda, ...
  - glavna aplikacija je množenje

49

- Množenje v 2'K
  - Booth-ov algoritem
- Binarno deljenje
  - 2 osnovna načina:
    - zaporedje odštevanj in pomikov
    - matrični delilnik
      - enobitni odštevalniki

ZAPIS INFORMACIJE IN ARTIMETIK

### Problemi pri vključitvi aritmetike v računalniški sistem

- Preliv
  - 2 rešitvi:
    - · postavitev posebnega bita
    - sprožitev pasti (nek bit lahko določa, ali se sproži, ali pa se ignorira)
- Dolžina produkta
  - produkt dveh števil je shranjen v spremenljivki enake velikosti kot števili
- > Izvajanje operacij v eni urini periodi
  - množenje in deljenje sta zahtevnejši operaciji
  - 2 rešitvi:
    - ukazi korak-množenja
    - množenje izvaja posebna enota
      - lahko FPU (floating point unit)
      - CPU čaka na izračun

ZAPIS INFORMACIJE IN ARTIMETIKA

51

### Zapis števil v plavajoči vejici

- Obseg števil v fiksni vejici je za določene probleme premajhen
  - potrebovali bi tudi zelo velika ali zelo majhna števila
- Znanstvena notacija omogoča krajši zapis
  - npr. 1×10<sup>18</sup> namesto 1 000 000 000 000 000 000
- Število lahko zapišemo kot m × r<sup>e</sup>
  - m je mantisa, r je baza (običajno 2), e je eksponent
  - s spreminjanjem eksponenta vejica plava vzdolž mantise levo in desno (odtod ime plavajoča vejica)

ZAPIS INFORMACIJE IN ARTIMETIK

- V plavajoči vejici lahko zapišemo bistveno večja, pa tudi bistveno manjša števila kot v fiksni
  - kljub temu pa je možnih števil enako mnogo (2<sup>n</sup>)
- Primer: plavajoča vejica v mini (6-bitnem) formatu
  - predznak: 1bit, mantisa: 3 biti, eksponent: 3 biti
  - (-1)<sup>S\*</sup>m\*2<sup>E-7</sup>,
    - max:  $111*2^0 = 7$
    - min abs.:  $0*2^{-3} = 0$ 
      - 1\*2<sup>-7</sup> = 0,0078, 2\*2<sup>-7</sup> =0,016, ...
    - min:  $-111*2^0 = -7$

5

#### celoten obseg števil:



#### del obsega:



APIS INFORMACIJE IN ARTIMETIKA

- Vsako število lahko v plavajoči vejici zapišemo na več načinov:
  - npr.  $1 \times 10^{18} = 10 \times 10^{17} = 0,1 \times 10^{19} \dots$
  - npr.  $1 \times 2^3 = 10 \times 2^2 = 0,1 \times 2^4 \dots$
  - zato mantiso normiramo:
    - prvi bit je 1 (normalni bit), implicitno predstavljen
    - npr.: mantisa 01001... pomeni 1,01001...
  - zelo majhnih števil pa ni mogoče predstaviti v normirani obliki
    - · denormirana števila
    - podliv (underflow)
- Eksponent je predstavljen v predstavitvi z odmikom

55

- Nekdaj je vsak proizvajalec je uporabljal svoj format zapisa v plavajoči vejici
  - isti program je lahko na različnih računalnikih dajal različne rezultate



- Standard IEEE 754 (1985)
  - IEEE: Institute of Electrical and Electronics Engineers
  - 2 formata:
    - enojna natančnost (single precision), 32 bitov
    - dvojna natančnost (double precision), 64 bitov

ZAPIS INFORMACIJE IN ARTIMETIK

# Enojna natančnost

> Enojna natančnost (single precision), 32 bitov



- predznak S (0: +, 1: -)
- 8-biten eksponent *e* z odmikom 127 (*e* = *E* 127)
- 23-bitna mantisa m (7-mestna desetiška natančnost)
- normirana vrednost je  $(-1)^{S} \cdot 1, m \cdot 2^{E-127}, E = 1, 2, ..., 254$
- obseg:  $\pm 1,18*10^{-38}$ ,  $\pm 3,40*10^{38}$  (v norm. obliki)

ZAPIS INFORMACIJE IN ARTIMETIKA

5

# Dvojna natančnost

Dvojna natančnost (double precision), 64 bitov



- predznak S (0: +, 1: -)
- 11-biten eksponent *e* z odmikom 1023 (*e* = *E* 1023)
- 52-bitna mantisa *m* (16-mestna desetiška natančnost)
- normirana vrednost je (-1)<sup>S</sup>· 1, $m \cdot 2^{E-1023}$ , E = 1, 2, ..., 2046
- obseg:  $\pm 2,22*10^{-308}$ ,  $\pm 1,80*10^{308}$  (v norm. obliki)

ZAPIS INFORMACIJE IN ARTIMETIK

- Primer: število 2
  - $2 = +1.0*2^{1}$
  - S = 0, m = 0, e = 1
  - enojna: E = e + 127 = 128 = 10000000



dvojna: E = e + 1023 = 1024 = 10000000000

| 63 | 62 52       | 51 0                                    |
|----|-------------|-----------------------------------------|
| 0  | 10000000000 | 000000000000000000000000000000000000000 |

ZAPIS INFORMACIJE IN ARTIMETIKA

5

- > Primer: število -8.25
  - -8.25 = -1000.01 = -1.00001\*2<sup>3</sup>
  - S = 1, m = 0000100 ..., e = 3
  - enojna: e = 3, E = e + 127 = 130 = 10000010

| 31 | 30 23    | 22 0                     |
|----|----------|--------------------------|
| 1  | 10000010 | 000010000000000000000000 |

dvojna: e = 3, E = e + 1023 = 1026 = 10000000010

| 63 | 62 52      | 51 0                                    |
|----|------------|-----------------------------------------|
| 1  | 1000000010 | 000010000000000000000000000000000000000 |

ZAPIS INFORMACIJE IN ARTIMETIKA

### Denormirana števila

#### Denormirana števila (zelo majhna števila)

- E=0
- implicitni normalni bit je enak 0
- vrednost v 32-bitnem formatu je (-1)<sup>S</sup>· 0,m · 2<sup>-126</sup>
  - eksponent je -126 namesto -127, ker imamo (0,m) namesto (1,m)
- vrednost v 64-bitnem formatu je (-1)<sup>S</sup> · 0,m · 2<sup>-1022</sup>,
  - eksponent je -1022 namesto -1023, ker imamo (0,m) namesto (1,m)
- tudi 0 je denormirano število, ki ima mantiso enako 0

ZAPIS INFORMACIJE IN ARTIMETIKA

61

### Neskončnosti in NaN

#### Še dve posebni vrsti števil:

- Neskončnosti
  - E = 255 (v 32-bitnem formatu) oz. E = 2047 (v 64-bitnem formatu), vsi biti E so 1
  - če m=0, imamo +∞ in -∞
  - pojavijo se, kadar je rezultat prevelik (npr. 1/0 da +∞)
- NaN
  - ravno tako E = 255 oz. 2047
  - m≠0
  - pojavijo se kot rezultat nedefiniranih operacij
     npr. 0 × ∞, 0/0, ∞ ∞, kvadratni koren negativnega števila, ...
  - rezultat operacije, ki vsebuje operand NaN, je tudi NaN

ZAPIS INFORMACIJE IN ARTIMETIK

### Aritmetika v plavajoči vejici

- Aritmetika v plavajoči vejici se obravnava in realizira ločeno od aritmetike v fiksni vejici
  - bolj zapletena
- Zaokroževanje
  - zaokrožujemo od matematično natančne vrednosti k najbližjemu še predstavljivemu številu
  - kadar je vrednost enako oddaljena od dveh najbližjih števil, se po standardu IEEE 754 zaokroži k sodemu številu
  - pri računanju mantiso podaljšamo za 3 dodatne bite
    - varovalni bit (guard bit)
    - zaokroževalni bit (round bit)
    - lepljivi bit (sticky bit)

ZAPIS INFORMACIJE IN ARTIMETIKA

6

- Varovalni bit je potreben, ker je vsota lahko za eno mesto daljša od operandov
- Zaokroževalni bit omogoča bolj natančno zaokroževanje
- Primer: desetiška predstavitev z mantiso dolžine 3
  - dodamo varovalno in zaokroževalno mesto
  - pri seštevanju/odštevanju po pravilu število z manjšim eksponentom zapišemo z večjim eksponentom (mantisa se pomakne desno)
  - 1,01\*10<sup>4</sup> 3,76\*10<sup>2</sup> = (1,0100 0,0376)\*10<sup>4</sup> = 0,9724\*10<sup>4</sup> = zaokr. 9,72\*10<sup>3</sup>
  - če bi uporabili le 4-mestno mantiso, bi dobili napačno 9,73\*10³

ZAPIS INFORMACIJE IN ARTIMETIK

- Lepljivi bit se uporablja zaradi zaokroževanja k sodemu številu
- Primer: (brez lepljivega bita)
  - 4,56\*10° + 5,01\*10-3 = (4,5600 + 0,0050)\*10° = 4,5650\*10° = zaokr. 4,56\*10°
  - natančna vrednost bi bila 4,56501 (zato bi bil bolj pravilen rezultat 4,57), vendar zaradi pomika mantise v desno zadnja enica izpade
  - lepljivi bit pove, ali je desno od zaokroževalnega mesta še kako od nič različno mesto
    - v tem primeru je treba zaokrožiti navzgor (ne navzdol zaradi morebitnega najbližjega sodega števila)
    - izračuna se kot funkcija ALI izpadlih bitov

65

### Seštevanje v plavajoči vejici

- Seštevanje (in odštevanje) v plavajoči vejici
  - prvo število naj bo tisto z večjim eksponentom (začasni eksponent)
  - pomik mantise drugega števila
  - seštevanje (odštevanje) mantis
  - Če preliv, zmanjšaj mantiso (pomik) in povečaj začasni eksponent
  - Zaokrožitev mantise, bita r in s ...

ZAPIS INFORMACIJE IN ARTIMETIKA

- Primer 1. Seštej binarno 3,25 + 30, če je mantisa 3-bitna, imamo pa tudi bite g, r in s. Določi njihovo vrednost.
  - $11,01*2^0 + 11110,0*2^0 = 1,101000*2^1 + 1,111000*2^4 = 1,111000*2^4 + 0,001101*2^4 = 10,000101*2^4 = 1,000|0101*2^5 = 1,000|011*2^5 = 1,000*2^5$
  - grs=011, vsota je 32
- Primer 2. Odštej binarno 30 4,5, če je mantisa 3-bitna, imamo pa tudi bite g, r in s. Določi njihovo vrednost.
  - 11110,0\*2<sup>0</sup> 100,1\*2<sup>0</sup> = 1,111000\*2<sup>4</sup> 1,001000\*2<sup>2</sup> = 1,111000\*2<sup>4</sup> 0,01001<u>000</u>\*2<sup>4</sup> = 1,100 | 110\*2<sup>4</sup> = 1,101\*2<sup>4</sup>
  - grs=110, vsota je 26

6

### Množenje v plavajoči vejici

- Množenje v plavajoči vejici
  - eksponenta seštejemo (dobimo začasni eksponent)
  - mantisi zmnožimo z množilnikom (fixed-point)
  - po potrebi normiramo rezultat
  - predznak produkta je XOR obeh predznakov
- $\triangleright$  Primer 1: A\*B, A = 1,01\*22, B = 1,11\*20,
  - začasni eksponent = 2 + 0 = 2
  - množimo mantisi 1,01\*1,11 = 10,0011
  - 10,0011 \*2<sup>2</sup>, normiramo: 1,00011\*2<sup>3</sup>
  - predznak: 0 ⊕ 0 = 0, tj. +

ZAPIS INFORMACIJE IN ARTIMETIK

#### Primer2: C = A\*B v enojni natančnosti

#### Deljenje v plavajoči vejici

odštevanje eksponentov, deljenje mantis

ZAPIS INFORMACIJE IN ARTIMETIKA