05. Ecuaciones diferenciales fundamentales de la teoría de la elasticidad

(5.1 - 5.2)

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales
Departamento de Ingeniería Civil
Mecánica de Sólidos

2022b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada [Álvarez, 2022].

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x, y, z) \in \Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- \bullet Cargas que actúan sobre el sólido (b(x) y f(x))

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x, y, z) \in \Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- ullet Cargas que actúan sobre el sólido (b(x) y f(x))

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x,y,z)\in\Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- ullet Cargas que actúan sobre el sólido (b(x) y f(x))

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x,y,z)\in\Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- ullet Cargas que actúan sobre el sólido (b(x) y f(x))

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x, y, z) \in \Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- ullet Cargas que actúan sobre el sólido (b(x) y f(x))

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x, y, z) \in \Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- ullet Cargas que actúan sobre el sólido (b(x) y f(x))

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x, y, z) \in \Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- \bullet Cargas que actúan sobre el sólido $(\boldsymbol{b}(\boldsymbol{x})$ y $\boldsymbol{f}(\boldsymbol{x}))$

La variación de los esfuerzos dentro del sólido estará definida por

EDPs de equilibric

Describen leyes físicas universales como conervación de la masa y de la energía. Aplicables a todo material.

EDPs de compatibilidad

La variación de los esfuerzos dentro del sólido estará definida por:

EDPs de equilibric

Describen leyes físicas universales como conervación de la masa y de la energía. Aplicables a todo material.

EDPs de compatibilidad

La variación de los esfuerzos dentro del sólido estará definida por:

EDPs de equilibrio

Describen leyes físicas universales como conervación de la masa y de la energía. Aplicables a todo material.

EDPs de compatibilidad

La variación de los esfuerzos dentro del sólido estará definida por:

EDPs de equilibrio

Describen leyes físicas universales como conervación de la masa y de la energía. Aplicables a todo material.

EDPs de compatibilidad

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
 - 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Figura: (5.1) Condiciones de equilibrio de un elemento rectangular cualquiera en el interior del sólido Ω . Observe que las fuerzas másicas también varían en el espacio. Este elemento tiene un espesor t no mostrado y un tamaño grande, que no es infinitesimal; esto en contraposición al elemento mostrado en la figura (2.2) que si tiene un tamaño infinitesimal.

Para el caso bidimensional, encontramos el equlibrio mediante el siguiente par de ecuaciones:

$$\frac{\partial \sigma_x(x,y)}{\partial x} + \frac{\partial \tau_{xy}(x,y)}{\partial y} + X(x,y) = 0$$

$$\frac{\partial \tau_{xy}(x,y)}{\partial x} + \frac{\partial \sigma_y(x,y)}{\partial y} + Y(x,y) = 0$$

Para el caso bidimensional, encontramos el equlibrio mediante el siguiente par de ecuaciones:

$$\frac{\partial \sigma_x(x,y)}{\partial x} + \frac{\partial \tau_{xy}(x,y)}{\partial y} + X(x,y) = 0$$

$$\frac{\partial \tau_{xy}(x,y)}{\partial x} + \frac{\partial \sigma_y(x,y)}{\partial y} + Y(x,y) = 0$$

Para el caso bidimensional, encontramos el equlibrio mediante el siguiente par de ecuaciones:

$$\begin{split} \frac{\partial \sigma_x(x,y)}{\partial x} + \frac{\partial \tau_{xy}(x,y)}{\partial y} + X(x,y) &= 0 \\ \frac{\partial \tau_{xy}(x,y)}{\partial x} + \frac{\partial \sigma_y(x,y)}{\partial y} + Y(x,y) &= 0 \end{split}$$

Análogamente, en el caso tridimensional:

$$\frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} + X(x,y,z) = 0$$

$$\frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} + Y(x,y,z) = 0$$

$$\frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} + Z(x,y,z) = 0$$

Análogamente, en el caso tridimensional:

$$\frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} + X(x,y,z) = 0$$

$$\frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} + Y(x,y,z) = 0$$

$$\frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} + Z(x,y,z) = 0$$

Análogamente, en el caso tridimensional:

$$\begin{split} &\frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} + X(x,y,z) = 0 \\ &\frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} + Y(x,y,z) = 0 \\ &\frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} + Z(x,y,z) = 0 \end{split}$$

Ecuaciones diferenciales parciales de equilibrio (interno)

$$\begin{split} \frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} + X(x,y,z) &= 0 \\ \frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} + Y(x,y,z) &= 0 \\ \frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} + Z(x,y,z) &= 0 \end{split}$$

Expresan el equilibrio de fuerzas en las direcciones x, y y z en todos los puntos interiores del sólido.

• Augustin-Louis Cauchy (1789-1857) en 1829, matemático e ingeniero civil.

Ecuaciones diferenciales parciales de equilibrio (interno)

$$\begin{split} \frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} + X(x,y,z) &= 0 \\ \frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} + Y(x,y,z) &= 0 \\ \frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} + Z(x,y,z) &= 0 \end{split}$$

Expresan el equilibrio de fuerzas en las direcciones $x,\,y$ y z en todos los puntos interiores del sólido.

• Augustin-Louis Cauchy (1789-1857) en 1829, matemático e ingeniero civil.

Cuando la única fuerza másica actuando es el peso propio

$$\frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} = 0$$

$$\frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} - \rho(x,y,z)g = 0$$

$$\frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} = 0$$

Cuando la única fuerza másica actuando es el peso propio:

$$\frac{\partial \sigma_x(x, y, z)}{\partial x} + \frac{\partial \tau_{xy}(x, y, z)}{\partial y} + \frac{\partial \tau_{xz}(x, y, z)}{\partial z} = 0$$

$$\frac{\partial \tau_{xy}(x, y, z)}{\partial x} + \frac{\partial \sigma_y(x, y, z)}{\partial y} + \frac{\partial \tau_{yz}(x, y, z)}{\partial z} - \rho(x, y, z)g = 0$$

$$\frac{\partial \tau_{xz}(x, y, z)}{\partial x} + \frac{\partial \tau_{yz}(x, y, z)}{\partial y} + \frac{\partial \sigma_z(x, y, z)}{\partial z} = 0$$

Cuando la única fuerza másica actuando es el peso propio:

$$\frac{\partial \sigma_x(x, y, z)}{\partial x} + \frac{\partial \tau_{xy}(x, y, z)}{\partial y} + \frac{\partial \tau_{xz}(x, y, z)}{\partial z} = 0$$

$$\frac{\partial \tau_{xy}(x, y, z)}{\partial x} + \frac{\partial \sigma_y(x, y, z)}{\partial y} + \frac{\partial \tau_{yz}(x, y, z)}{\partial z} - \rho(x, y, z)g = 0$$

$$\frac{\partial \tau_{xz}(x, y, z)}{\partial x} + \frac{\partial \tau_{yz}(x, y, z)}{\partial y} + \frac{\partial \sigma_z(x, y, z)}{\partial z} = 0$$

Dos notaciones:

• En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

• En notación vectorial:

$$abla \cdot \underline{\sigma} + b = 0$$

$$\operatorname{div}\,\underline{\underline{\sigma}}+b=0$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Dos notaciones:

• En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

• En notación vectorial:

$$abla \cdot \underline{\sigma} + b = 0$$

$$\operatorname{div}\,\underline{\underline{\sigma}}+b=0$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Dos notaciones:

• En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

• En notación vectorial:

$$abla \cdot \underline{\sigma} + b = 0$$

$$\operatorname{div}\,\underline{\underline{\sigma}}+b=0$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Dos notaciones:

• En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

• En notación vectorial:

$$abla \cdot \underline{\sigma} + b = 0$$

$$\operatorname{div}\,\underline{\underline{\boldsymbol{\sigma}}}+\boldsymbol{b}=\mathbf{0}$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Dos notaciones:

• En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

• En notación vectorial:

$$abla \cdot \underline{\sigma} + b = 0$$

$$\operatorname{div} \, \underline{\underline{\boldsymbol{\sigma}}} + \boldsymbol{b} = \boldsymbol{0}$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

¿Para qué?

Figura: (5.2) Las condiciones de compatibilidad garantizan que, después de la deformación, el cuerpo (a) sigue siendo contínuo en el sentido de que en su interior no aparecerán grietas, huecos o vacíos (b) ni traslapos del material (c); por esta razón, la posición relativa de las partículas se debe conservar (d)

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Operando:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} \to \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} = \frac{\partial^{3} u}{\partial x \partial y^{2}}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} \to \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} = \frac{\partial^{3} u}{\partial x \partial y^{2}} + \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} \to \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} = \frac{\partial^{3} u}{\partial x \partial y^{2}}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} \to \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} = \frac{\partial^{3} u}{\partial x \partial y^{2}} + \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} \to \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} = \frac{\partial^{3} u}{\partial x \partial y^{2}}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} \to \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} = \frac{\partial^{3} u}{\partial x \partial y^{2}} + \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\begin{split} \varepsilon_x &= \frac{\partial u}{\partial x} \to \frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{\partial^3 u}{\partial x \partial y^2} \\ \varepsilon_y &= \frac{\partial v}{\partial y} \to \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^3 v}{\partial y \partial x^2} \\ \gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^3 u}{\partial x \partial y^2} + \frac{\partial^3 v}{\partial y \partial x^2} \end{split}$$

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\begin{split} \varepsilon_x &= \frac{\partial u}{\partial x} \to \frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{\partial^3 u}{\partial x \partial y^2} \\ \varepsilon_y &= \frac{\partial v}{\partial y} \to \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^3 v}{\partial y \partial x^2} \\ \gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^3 u}{\partial x \partial y^2} + \frac{\partial^3 v}{\partial y \partial x^2} \end{split}$$

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\begin{split} \varepsilon_x &= \frac{\partial u}{\partial x} \to \frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{\partial^3 u}{\partial x \partial y^2} \\ \varepsilon_y &= \frac{\partial v}{\partial y} \to \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^3 v}{\partial y \partial x^2} \\ \gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^3 u}{\partial x \partial y^2} + \frac{\partial^3 v}{\partial y \partial x^2} \end{split}$$

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Ecuación de compatibilidad bidimensional en términos de deformaciones

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

- Los desplazamientos u y v deben ser funciones continuas y derivables, cuyas primeras dos derivadas parciales mixtas son continuas.
- Únicamente aplicable cuando se presentan deformaciones pequeñas.

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Conociendo

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} = \frac{\partial^2}{\partial x \partial z} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \to \frac{\partial^2 \gamma_{xz}}{\partial y \partial x} = \frac{\partial^2}{\partial y \partial x} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

$$2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Conociendo:

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} = \frac{\partial^2}{\partial x \partial z} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \to \frac{\partial^2 \gamma_{xz}}{\partial y \partial x} = \frac{\partial^2}{\partial y \partial x} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

$$2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Conociendo:

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} = \frac{\partial^2}{\partial x \partial z} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \to \frac{\partial^2 \gamma_{xz}}{\partial y \partial x} = \frac{\partial^2}{\partial y \partial x} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

$$2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Conociendo:

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} = \frac{\partial^2}{\partial x \partial z} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \to \frac{\partial^2 \gamma_{xz}}{\partial y \partial x} = \frac{\partial^2}{\partial y \partial x} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

$$2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Intercambiando cíclicamente los índices x, y, v z, obtenemos

$$\begin{split} \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} & 2 \frac{\partial^2 \varepsilon_x}{\partial y \partial z} &= \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} &= \frac{\partial^2 \gamma_{yz}}{\partial y \partial z} & 2 \frac{\partial^2 \varepsilon_y}{\partial x \partial z} &= \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_z}{\partial x^2} + \frac{\partial^2 \varepsilon_x}{\partial z^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} & 2 \frac{\partial^2 \varepsilon_z}{\partial x \partial y} &= \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) \end{split}$$

Intercambiando cíclicamente los índices x, y, y z, obtenemos:

$$\frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} + \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} \qquad 2 \frac{\partial^{2} \varepsilon_{x}}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)
\frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{z}}{\partial y^{2}} = \frac{\partial^{2} \gamma_{yz}}{\partial y \partial z} \qquad 2 \frac{\partial^{2} \varepsilon_{y}}{\partial x \partial z} = \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)
\frac{\partial^{2} \varepsilon_{z}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} = \frac{\partial^{2} \gamma_{xy}}{\partial x \partial z} \qquad 2 \frac{\partial^{2} \varepsilon_{z}}{\partial x \partial y} = \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Intercambiando cíclicamente los índices x, y, y z, obtenemos:

$$\begin{split} \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} & 2 \frac{\partial^2 \varepsilon_x}{\partial y \partial z} &= \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} &= \frac{\partial^2 \gamma_{yz}}{\partial y \partial z} & 2 \frac{\partial^2 \varepsilon_y}{\partial x \partial z} &= \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_z}{\partial x^2} + \frac{\partial^2 \varepsilon_x}{\partial z^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} & 2 \frac{\partial^2 \varepsilon_z}{\partial x \partial y} &= \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) \end{split}$$

Ecuaciones de compatibilidad de Saint-Venant

$$\begin{split} &\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} & 2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ &\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_{yz}}{\partial y \partial z} & 2\frac{\partial^2 \varepsilon_y}{\partial x \partial z} = \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ &\frac{\partial^2 \varepsilon_z}{\partial x^2} + \frac{\partial^2 \varepsilon_x}{\partial z^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} & 2\frac{\partial^2 \varepsilon_z}{\partial x \partial y} = \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) \end{split}$$

(mismas anotaciones)

• Adhémar Jean Claude de Saint-Venant (1797-1886) en 1864, matemático e ingeniero mecánico.

Ecuaciones de compatibilidad de Saint-Venant

$$\begin{split} &\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} & 2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ &\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_{yz}}{\partial y \partial z} & 2\frac{\partial^2 \varepsilon_y}{\partial x \partial z} = \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ &\frac{\partial^2 \varepsilon_z}{\partial x^2} + \frac{\partial^2 \varepsilon_x}{\partial z^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} & 2\frac{\partial^2 \varepsilon_z}{\partial x \partial y} = \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) \end{split}$$

(mismas anotaciones)

• Adhémar Jean Claude de Saint-Venant (1797-1886) en 1864, matemático e ingeniero mecánico.

Las ecuaciones anteriores son LD. Se pueden reducir al siguiente sistema de 3 EDPs LI. [Ameen, 2005]:

$$\begin{split} &2\frac{\partial^{4}\varepsilon_{x}}{\partial y^{2}\partial z^{2}}=\frac{\partial^{3}}{\partial x\partial y\partial z}\left(-\frac{\partial\gamma_{yz}}{\partial x}+\frac{\partial\gamma_{xz}}{\partial y}+\frac{\partial\gamma_{xy}}{\partial z}\right)\\ &2\frac{\partial^{4}\varepsilon_{y}}{\partial x^{2}\partial z^{2}}=\frac{\partial^{3}}{\partial x\partial y\partial z}\left(\frac{\partial\gamma_{yz}}{\partial x}-\frac{\partial\gamma_{xz}}{\partial y}+\frac{\partial\gamma_{xy}}{\partial z}\right)\\ &2\frac{\partial^{4}\varepsilon_{z}}{\partial x^{2}\partial y^{2}}=\frac{\partial^{3}}{\partial x\partial y\partial z}\left(\frac{\partial\gamma_{yz}}{\partial x}+\frac{\partial\gamma_{xz}}{\partial y}-\frac{\partial\gamma_{xy}}{\partial z}\right) \end{split}$$

Las ecuaciones anteriores son LD. Se pueden reducir al siguiente sistema de 3 EDPs LI. [Ameen, 2005]:

$$2\frac{\partial^{4}\varepsilon_{x}}{\partial y^{2}\partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

$$2\frac{\partial^{4}\varepsilon_{y}}{\partial x^{2}\partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

$$2\frac{\partial^{4}\varepsilon_{z}}{\partial x^{2}\partial y^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Las ecuaciones anteriores son LD. Se pueden reducir al siguiente sistema de 3 EDPs LI. [Ameen, 2005]:

$$\begin{split} &2\frac{\partial^{4}\varepsilon_{x}}{\partial y^{2}\partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ &2\frac{\partial^{4}\varepsilon_{y}}{\partial x^{2}\partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ &2\frac{\partial^{4}\varepsilon_{z}}{\partial x^{2}\partial y^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) \end{split}$$

Las ecuaciones anteriores son LD. Se pueden reducir al siguiente sistema de 3 EDPs LI. [Ameen, 2005]:

$$2\frac{\partial^{4} \varepsilon_{x}}{\partial y^{2} \partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$
$$2\frac{\partial^{4} \varepsilon_{y}}{\partial x^{2} \partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$
$$2\frac{\partial^{4} \varepsilon_{z}}{\partial x^{2} \partial y^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Recordemos la condición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right) \tag{1}$$

Recordemos la condición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right)$$
(1)

Recordemos la condición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas:

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right) \tag{1}$$

Recordemos la condición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas:

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right) \tag{1}$$

Recordemos la condición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas:

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right)$$
(1)

Las ecuaciones diferenciales de equilibrio 2D:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0 \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0$$

$$\frac{\partial \tau_{xy}}{\partial x \partial y} = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \tag{2}$$

Las ecuaciones diferenciales de equilibrio 2D:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0 \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0$$

$$\frac{\partial \tau_{xy}}{\partial x \partial y} = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \tag{2}$$

Las ecuaciones diferenciales de equilibrio 2D:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0 \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0$$

$$\frac{\partial \tau_{xy}}{\partial x \partial y} = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \tag{2}$$

Las ecuaciones diferenciales de equilibrio 2D:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0 \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0$$

$$\frac{\partial \tau_{xy}}{\partial x \partial y} = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \tag{2}$$

Igualando (1) y (2), simplificando y manipulando matemáticamente:

Ecuación de compatibilidad para el caso de tensión plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -(1+\nu)\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Igualando (1) y (2), simplificando y manipulando matemáticamente:

Ecuación de compatibilidad para el caso de tensión plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -(1+\nu)\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Igualando (1) y (2), simplificando y manipulando matemáticamente:

Ecuación de compatibilidad para el caso de tensión plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -(1+\nu)\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Recordemos la condición de **deformación plana**: $\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.39):

$$\varepsilon_x = \frac{1+\nu}{E}((1-\nu)\sigma_x - \nu\sigma_y)$$
 $\varepsilon_y = \frac{1+\nu}{E}((1-\nu)\sigma_y - \nu\sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1+\nu}{E} \frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y)
\frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1+\nu}{E} \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x)
\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

Recordemos la condición de **deformación plana**: $\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.39):

$$\varepsilon_x = \frac{1+\nu}{E}((1-\nu)\sigma_x - \nu\sigma_y)$$
 $\varepsilon_y = \frac{1+\nu}{E}((1-\nu)\sigma_y - \nu\sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1+\nu}{E} \frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y)$$
$$\frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1+\nu}{E} \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x)$$
$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

Recordemos la condición de **deformación plana**: $\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.39):

$$\varepsilon_x = \frac{1+\nu}{E}((1-\nu)\sigma_x - \nu\sigma_y)$$
 $\varepsilon_y = \frac{1+\nu}{E}((1-\nu)\sigma_y - \nu\sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1+\nu}{E} \frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y)
\frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1+\nu}{E} \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x)
\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

Recordemos la condición de **deformación plana**: $\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0$. Las ecuaciones que describen sus deformaciones (4.39):

$$\varepsilon_x = \frac{1+\nu}{E}((1-\nu)\sigma_x - \nu\sigma_y)$$
 $\varepsilon_y = \frac{1+\nu}{E}((1-\nu)\sigma_y - \nu\sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas:

$$\begin{split} \frac{\partial^2 \varepsilon_x}{\partial y^2} &= \frac{1+\nu}{E} \frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) \\ \frac{\partial^2 \varepsilon_y}{\partial x^2} &= \frac{1+\nu}{E} \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \\ \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} &= \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y} \end{split}$$

Sustituyendo en la ecuación de compatibilidad en dos dimensiones (5.6 del main):

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right)$$
(3)

$$\frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right) = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right)$$

Sustituyendo en la ecuación de compatibilidad en dos dimensiones (5.6 del main):

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right)$$
(3)

$$\frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right) = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right)$$

Sustituyendo en la ecuación de compatibilidad en dos dimensiones (5.6 del main):

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right)$$
(3)

$$\frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right) = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right)$$

Sustituyendo en la ecuación de compatibilidad en dos dimensiones (5.6 del main):

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right)$$
(3)

$$\frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right) = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right)$$

Sustituyendo en la ecuación de compatibilidad en dos dimensiones (5.6 del main):

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right)$$
(3)

$$\frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right) = \\
-\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right)$$

Simplificamos sabiendo que:

$$\frac{G(1+\nu)}{E} = \frac{E(1+\nu)}{2(1+\nu)E} = \frac{1}{2}$$

Ecuación de compatibilidad para el caso de deformación plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -\frac{1}{1 - \nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Simplificamos sabiendo que:

$$\frac{G(1+\nu)}{E} = \frac{E(1+\nu)}{2(1+\nu)E} = \frac{1}{2}$$

Ecuación de compatibilidad para el caso de deformación plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -\frac{1}{1 - \nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Simplificamos sabiendo que:

$$\frac{G(1+\nu)}{E} = \frac{E(1+\nu)}{2(1+\nu)E} = \frac{1}{2}$$

Ecuación de compatibilidad para el caso de deformación plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -\frac{1}{1 - \nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Podemos definir una fórmula general de compatibilidad para el aso 2D:

$$\left[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) (\sigma_x + \sigma_y) = K_1 \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \right]$$

$$K_1 = \begin{cases} -(1+\nu) & \text{para el caso de tensión plana} \\ -\frac{1}{1-\nu} & \text{para el caso de tensión plana} \end{cases}$$

Podemos definir una fórmula general de compatibilidad para el aso 2D:

$$\left[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) (\sigma_x + \sigma_y) = K_1 \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \right]$$

$$K_1 = \begin{cases} -(1+\nu) & \text{para el caso de tensión plana} \\ -\frac{1}{1-\nu} & \text{para el caso de tensión plana} \end{cases}$$

Podemos definir una fórmula general de compatibilidad para el aso 2D:

$$\left[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) (\sigma_x + \sigma_y) = K_1 \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \right]$$

$$K_1 = \begin{cases} -(1+\nu) & \text{para el caso de tensión plana} \\ -\frac{1}{1-\nu} & \text{para el caso de tensión plana} \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

• En notación vectorial

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathrm{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} \boldsymbol{b} \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } \boldsymbol{b} \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

• En notación vectorial

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathrm{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} \boldsymbol{b} \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } \boldsymbol{b} \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

• En notación vectorial:

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathrm{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} \boldsymbol{b} \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } \boldsymbol{b} \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

• En notación vectorial:

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathrm{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} \boldsymbol{b} \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } \boldsymbol{b} \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

• En notación vectorial:

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathrm{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} \boldsymbol{b} \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } \boldsymbol{b} \end{cases}$$

Ecuación de compatibilidad general para el caso bidimensional

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = K_1 \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

- Aplicable solo a sólidos con materiales elásticos, lineales, isótropos y homogéneos (Ley de Hooke).
- Materiales homogeneos: $E(x, y, z) = \nu(x, y, z) = \text{cte.}$
- Deformaciones pequeñas.

¿Y si las fuerzas másicas son homogéneas?

$$\frac{\partial X}{\partial x} = \frac{\partial Y}{\partial y} = 0$$

¿Y si las fuerzas másicas son homogéneas?

$$\frac{\partial X}{\partial x} = \frac{\partial Y}{\partial y} = 0;$$

Ecuación de Lévy

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = 0$$

La distribución de esfuerzos debe ser igual para todas las estructuras en tensión o deformación plana, siempre y cuando se trate de:

- Contornos idénticos.
- Estructuras sometidas al mismo sistema de fuerzas superficiales y másicas, constantes.
- Maurice Lévy (1838-1910), ingeniero y matemático francés.

Fotoeslasticidad

En el método fotoelástico, un material transparente se somete a una luz polarizada y a unas fuerzas; según la llamada ley de Brewster o ley tenso-óptica, el material responderá mostrando unas franjas del igual color, las cuales se pueden interpretar como curvas de esfuerzo cortante máximo τ_{max} constante; esto siempre y cuando el esfuerzo fuera del plano sea el esfuerzo intermedio, es decir, σ_2 en el caso tridimensional. (ver video)

Figura: Estudio de la distribución de esfuerzos sobre un polímero sometido a compresión, utilizando la técnica de fotoelasticidad. Hilda Sofía Soto Lesmes, ver.

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Recordemos:

• Las ecuaciones (4.3) dadas por la superposición de las deformaciones elásticas:

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu(\sigma_y + \sigma_z))$$

$$\varepsilon_y = \frac{1}{E} (\sigma_y - \nu(\sigma_x + \sigma_z))$$

$$\varepsilon_z = \frac{1}{E} (\sigma_z - \nu(\sigma_x + \sigma_y))$$

• Las EDPs de equilibrio interno (5.2):

$$\nabla \cdot \underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

Recordemos:

• Las ecuaciones (4.3) dadas por la superposición de las deformaciones elásticas:

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu(\sigma_y + \sigma_z))$$

$$\varepsilon_y = \frac{1}{E}(\sigma_y - \nu(\sigma_x + \sigma_z))$$

$$\varepsilon_z = \frac{1}{E}(\sigma_z - \nu(\sigma_x + \sigma_y))$$

• Las EDPs de equilibrio interno (5.2):

$$\nabla \cdot \underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

Recordemos:

• Las ecuaciones (4.3) dadas por la superposición de las deformaciones elásticas:

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu(\sigma_y + \sigma_z))$$

$$\varepsilon_y = \frac{1}{E}(\sigma_y - \nu(\sigma_x + \sigma_z))$$

$$\varepsilon_z = \frac{1}{E}(\sigma_z - \nu(\sigma_x + \sigma_y))$$

• Las EDPs de equilibrio interno (5.2):

$$\nabla \cdot \underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

$$\begin{split} \nabla^2 \sigma_x + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial X}{\partial x} \\ \nabla^2 \sigma_y + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial y^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Y}{\partial y} \\ \nabla^2 \sigma_z + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial z^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Z}{\partial z} \\ \nabla^2 \tau_{yz} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial y \partial z} &= -\left(\frac{\partial Y}{\partial z} + \frac{\partial Z}{\partial y} \right) \\ \nabla^2 \tau_{xz} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x \partial z} &= -\left(\frac{\partial X}{\partial z} + \frac{\partial Z}{\partial x} \right) \\ \nabla^2 \tau_{xy} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x \partial y} &= -\left(\frac{\partial X}{\partial y} + \frac{\partial Y}{\partial x} \right) \end{split}$$

Ecuaciones de Michell

$$\begin{split} \nabla^2 \sigma_x + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial X}{\partial x} \\ \nabla^2 \sigma_y + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial y^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Y}{\partial y} \\ \nabla^2 \sigma_z + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial z^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Z}{\partial z} \\ \nabla^2 \tau_{yz} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial y \partial z} &= -\left(\frac{\partial Y}{\partial z} + \frac{\partial Z}{\partial y} \right) \\ \nabla^2 \tau_{xz} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x \partial z} &= -\left(\frac{\partial X}{\partial z} + \frac{\partial Z}{\partial x} \right) \\ \nabla^2 \tau_{xy} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x \partial y} &= -\left(\frac{\partial X}{\partial y} + \frac{\partial Y}{\partial x} \right) \end{split}$$

• John Henry Michell (1863-1940) en 1900, matemático australiano.

En notación tensorial:

$$\sigma_{ij,kk} + \frac{1}{1+\nu}\Theta_{,ij} = -\frac{\nu}{1-\nu}\delta_{ij}b_{k,k} - b_{i,j} - b_{j,i}$$

donde:

- $\Theta := \sigma_{kk} = \sigma_x + \sigma_y + \sigma_z$ es el primer invariante de esfuerzos I_1
- ∇^2 es el operador laplaciano tridimensional:

$$\nabla^2 := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Comentario

A comparación de las ecuaciones de Saint-Venant (5.7) las de Michell son LI

En notación tensorial:

$$\sigma_{ij,kk} + \frac{1}{1+\nu}\Theta_{,ij} = -\frac{\nu}{1-\nu}\delta_{ij}b_{k,k} - b_{i,j} - b_{j,i}$$

donde:

- $\Theta := \sigma_{kk} = \sigma_x + \sigma_y + \sigma_z$ es el primer invariante de esfuerzos I_1
- ∇^2 es el operador laplaciano tridimensional:

$$\nabla^2 := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Comentario

A comparación de las ecuaciones de Saint-Venant (5.7) las de Michell son LI

En notación tensorial:

$$\sigma_{ij,kk} + \frac{1}{1+\nu}\Theta_{,ij} = -\frac{\nu}{1-\nu}\delta_{ij}b_{k,k} - b_{i,j} - b_{j,i}$$

donde:

- $\Theta := \sigma_{kk} = \sigma_x + \sigma_y + \sigma_z$ es el primer invariante de esfuerzos I_1
- ∇^2 es el operador laplaciano tridimensional:

$$\nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Comentario

A comparación de las ecuaciones de Saint-Venant (5.7) las de Michell son LI

¿Y si las fuerzas másicas son constantes?

$$b(x) = \begin{bmatrix} X(x, y, z) \\ Y(x, y, z) \\ Z(x, y, z) \end{bmatrix} = \text{cte}$$

¿Y si las fuerzas másicas son constantes?

$$\boldsymbol{b}(\boldsymbol{x}) = \begin{bmatrix} X(x, y, z) \\ Y(x, y, z) \\ Z(x, y, z) \end{bmatrix} = \text{cte};$$

Ecuaciones de Beltrami

$$\nabla^{2}\sigma_{x} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{yz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y\partial z} = 0$$

$$\nabla^{2}\sigma_{y} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{xz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial z} = 0$$

$$\nabla^{2}\sigma_{z} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial z^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{xy} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial y} = 0$$

- Eugenio Beltrami (1835-1900) en 1892, matemático italiano.
- Son análogas a $\nabla^2(\sigma_x + \sigma_y) = 0$ (caso bidimensional).

Ecuaciones de Beltrami

$$\nabla^{2}\sigma_{x} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{yz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y\partial z} = 0$$

$$\nabla^{2}\sigma_{y} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{xz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial z} = 0$$

$$\nabla^{2}\sigma_{z} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial z^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{xy} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial y} = 0$$

- Eugenio Beltrami (1835-1900) en 1892, matemático italiano.
- Son análogas a $\nabla^2(\sigma_x + \sigma_y) = 0$ (caso bidimensional).

Comentario

..

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

5.2.7. Interpretación física de las ecuaciones de compatibilidad

Figura: (5.2) Las condiciones de compatibilidad garantizan que, después de la deformación, el cuerpo (a) sigue siendo contínuo en el sentido de que en su interior no aparecerán grietas, huecos o vacíos (b) ni traslapos del material (c); por esta razón, la posición relativa de las partículas se debe conservar (d)

Derrotero

- Introducción
 - 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 4 Referencias

Referencias I

Ameen, M. (2005).

Computational Elasticity: Theory of Elasticity and Finite and Boundary Element Methods.

Alpha Science International.

Âlvarez, D. A. (2022).

Teoría de la elasticidad.

Universidad Nacional de Colombia.

Enlaces de interés

• Link de YouTube a la lista de reproducción dle profesor Diego Andrés Álvarez: https://www.youtube.com/watch?v=B18zvnW840c&list=PL0q9elBrzPDGfTsu_6h0iZq47_PhC6QwR