

Decrease customer churn on mobile contracts by ML

Page-3: Data Sources, Features, Building Model, ML-Task, Prediction

- Identification of churning customers
- Individual value of a customer

Page-4: Offline Evaluation

Evaluation of the ML-algorithm

Page-5: Decision

- Handling of identified customers
- Justifiable costs per customer for churn prevention

Page-6: Business Use-Case of Value Proposition

- Calculated costs per churn
- Corporate investment for strategy against churn
- Necessary actions in the team, the infrastructure and the data acquisition strategy
- Monitoring of business use case profitability

Page-7: One-Pager Machine Learning Canvas

Composition of Machine Learning Canvas chart

Page-8: Bibliography

From Customer Data to Customer Value and Classification

Database with Customers, [1]

Parametric estimate of individual customer value

Evaluating the Classification Model

Given a churn-rate of 30% the model is evaluated by the F1-Score

- True Positive: A customer who is likely to churn gets incentivised
- False Negative: A customer who is likely to churn does not get incentivised, s. "Type I Error"
- **False Positive**: A customer who is unlikely to churn gets incentivised, s. "*Type II Error*"

$$F_1 = 2 * \frac{precision * recall}{precision + recall} = \frac{tp}{tp + \frac{1}{2}(fp + fn)}$$

The F1-score should be in the interval [0.95...1.0]

From Customer Value to Customer Incentive

Customer [customerID]_{value} = $\frac{\text{tenure}}{12} * \alpha + \text{MonthlyCharges} * \beta$

$$\alpha, \beta = [0.0...1.0]$$

 $Customer[customerID]_{incentive} = Customer[customerID]_{value} * P(Churn) + \gamma$

$$P(Churn) = [0.0...1.0]$$

Customer_Value -> Customer_Incentive

Reward principle: Customer churn prevention

Investment, cost and estimated value proposition

<u>Expenditure</u>	One time investment	Annually operating cost
MS-AZURE Cloud Plattform	10.000,00€	2.000,00 €
Terraform-Infrastructure	5.000,00 €	- €
Snowplow-Aggregator	5.000,00€	1.000,00 €
GitHub-CI/CD	- €	1.000,00 €
Customer Churn Service Team	- €	250.000,00€
Staff (Agile DevOps-Team)	- €	250.000,00€
GitHub-Codespace	- €	1.000,00€
Sum of infrastructure and staff	20.000,00€	505.000,00€
<u>Item</u>	<u>Description</u>	<u>Value</u>
Item Number of Customers	Description (Active paying customers)	<u>Value</u> 2978684
Number of Customers	(Active paying customers)	2978684
Number of Customers Aquisition of 1 customer	(Active paying customers) (Attraction of one customer, avg.)	2978684 10,00 €
Number of Customers Aquisition of 1 customer Average incentiveCost ChurnCost p.Y. = Aquisition *	(Active paying customers) (Attraction of one customer, avg.) (Make one customer stay, avg.) (How expensive Churn is at given	2978684 10,00 € 6,00 € 8.936.052,00 €

Every customer is incentivised for his loyalty so that he does not leave. The amount of the incentive depends on the customer value and the probability of churn.

ML task

Input, output to predict, type of problem.

For each customer: "How high is the probability of churn for this customer"

Input: Features Output:

- Churn Probability with a distribution from 0%-100%
- Yes/No Churn prediction

What are we trying to do for the end-user(s) of the predictive system? What objectives are we serving?

Context: Company sells mobile telephone contracts with variable subscription

Prevent customer churn by identifying those and incentivizing dynamically

Data Sources

Which raw data sources can we use (internal and external)?

User database with features and label

Collecting Data

How do we get new data to learn from (inputs and outputs)?

Every week to see which customers have churned or not. Automatic labelling. The data entries with already churned customers are anonymized, acc. GDPR.

Making **Predictions**

When do we make predictions on new inputs? How long do we have to featurize a new input and make a prediction?

The prediction is made once a week. New features undergo manual review. The delay shall less than one day

Offline **Evaluation**

Methods and metrics to evaluate the system before deployment.

It can only be tested if the customer has churned or not, based on the task. The F1-score calculated

Features

Input representations extracted from raw data sources.

Numerical features: Tenure, MonthlyCharges, **TotalCharges**

Factorial label: Churn

Building Models

₹0,6 When do we create/update models with new training data? How long do we have to featurize training inputs and create a model?

Every week and one model per region with offline evaluation

Live Evaluation and Monitoring

Methods and metrics to evaluate the system after deployment, and to quantify value creation.

The contract termination cases should minimize The ROI of the proposed investment should be positive

Summary: ML-Canvas

The Machine Learning Canvas (v0.4), [2]

Bibliography

Dataset

BlastChar (2018): Telco Customer Churn.

Online verfügbar unter

https://www.kaggle.com/blastchar/telco-customer-churn,
zuletzt aktualisiert am 23.02.2018, zuletzt geprüft am
02.01.2021.

ML Canvas

Dorard, Louis (2017): From Data to AI with the Machine Learning Canvas (Part II). In: *Own Machine Learning*, 12.11.2017.

Online verfügbar unter https://medium.com/louis-dorard/from-data-to-ai-with-the-machine-learning-canvas-part-ii-b02c71067da8, zuletzt geprüft am 02.01.2021.

5/1/2021 K. Ostheimer 8