Winter term 2023/2024

S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet MF02

Mathematical Finance: MF

Exercises (for discussion on Monday, 13.11.2023)

Exercise 1. Let X and Y be integrable random variables on some probability space (Ω, \mathcal{F}, P) . Let E[X|Y] = Y and E[Y|X] = X, show that it holds X = Y \mathbb{P} -almost surely. Hint: Consider E[(X - Y)(h(X) - h(Y))] with a suitably chosen auxiliary function h.

Exercise 2. We consider the probability space $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} denotes the Borel- σ -field on [0,1) and λ is the Lebesgue measure. We define for each $n \in \mathbb{N}$:

$$\mathcal{F}_n := \sigma\left(\left\{\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right) : 0 \le k \le 2^n - 1\right\}\right)$$

Let $X : [0,1) \to \mathbb{R}$ be an integrable random variable.

- 1. Calculate the random variable $E[X|\mathcal{F}_n]$ for all $n \in \mathbb{N}$.
- 2. Additionally assume that the mapping X is continuous. To which random variable does the limit $\lim_{n\to\infty} E[X|\mathcal{F}_n]$ converge pointwise?

Exercise 3. Let X and Y be two integrable, independent and identical distributed random variables.

- 1. Show that $E[X|\sigma(X+Y)] = E[Y|\sigma(X+Y)]$.
- 2. Calculate $E[X|\sigma(X+Y)]$.

Exercise 4. Let $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathcal{F}, P)$ be a filtered probability space and let σ and τ be $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -stopping times. Show that

- 1. $\max\{\tau, \sigma\}$, $\min\{\tau, \sigma\}$ and $\tau + \sigma$ are $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -stopping times.
- 2. $\mathcal{F}_{\tau} := \{A \in \mathcal{F} | A \cap \{\tau \leq n\} \in \mathcal{F}_n \text{ for all } n \in \mathbb{N} \}$ is a σ -algebra.