Смяна на базиса.

Нека V е крайномерно линейно пространство над поле F и $\dim V = n$. Нека e_1, \ldots, e_n е базис на V. В тази тема ще търсим начин за намиране на линеен оператор, който да преобразува един конкретен базис на V в друг конкретен базис на V.

Нека $\varphi \in \text{Hom}(V)$ е линеен оператор с матрица A. Започваме с проследяването на действието на линейния оператор върху векторите от V. Нека $x \in V$ е произволен вектор и

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n.$$

Нека още образът на вектора x под действието на φ да бъде

$$\varphi(x) = \zeta_1 e_1 + \zeta_2 e_2 + \dots + \zeta_n e_n.$$

Ако $A = (\alpha_{ij})_{n \times n}$, то φ действа на базисните вектори чрез

$$\varphi(e_i) = \alpha_{1i}e_1 + \alpha_{2i}e_2 + \dots + \alpha_{ni}e_n$$

за всяко $j=1,2,\ldots,n$. В такъв случай имаме, че

$$\varphi(x) = \varphi(\xi_1 e_1 + \dots + \xi_n e_n) = \xi_1 \varphi(e_1) + \dots + \xi_n \varphi(e_n)
= \xi_1 (\alpha_{11} e_1 + \dots + \alpha_{n1} e_n) + \dots + \xi_n (\alpha_{1n} e_1 + \dots + \alpha_{nn} e_n)
= (\xi_1 \alpha_{11} + \xi_2 \alpha_{12} + \dots + \xi_n \alpha_{1n}) e_1 + \dots + (\xi_1 \alpha_{n1} + \xi_2 \alpha_{n2} + \dots + \xi_n \alpha_{nn}) e_n.$$

По този начин получаваме системата

Образуваме векторите

$$\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}_{n \times 1} \in V, \text{ if } \zeta = \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_n \end{pmatrix}_{n \times 1} \in V$$

и запизваме матрично системата (*) като

$$A\xi = \zeta$$
.

С тези разсъждения получихме

Твърдение 1. За координатите ξ на $x \in V$ и координатите ζ на $\varphi(x) \in V$ е в сила матричното равенство

$$A\xi = \zeta$$
,

където A е матрицата на линейния оператор $\varphi \in \mathrm{Hom}(V)$ спрямо фиксиран базис на V.

Нека

$$(1) e_1, e_2, \ldots, e_n$$

И

$$(2) \quad f_1, f_2, \dots, f_n$$

са два базиса на V. Векторите f_1, f_2, \ldots, f_n се изразяват еднозначно чрез векторите e_1, e_2, \ldots, e_n с

$$\begin{vmatrix}
f_1 &= \tau_{11}e_1 + \tau_{21}e_2 + \dots + \tau_{n1}e_n, \\
f_2 &= \tau_{12}e_1 + \tau_{22}e_2 + \dots + \tau_{n2}e_n, \\
\dots \\
f_n &= \tau_{1n}e_1 + \tau_{2n}e_2 + \dots + \tau_{nn}e_n
\end{vmatrix}$$

с подходящи коефициенти $\tau_{ij} \in F$. Записваме координатите на векторите от базиса (2) спрямо базиса (1) в стълбовете на матрица

$$T = \begin{pmatrix} \tau_{11} & \tau_{12} & \dots & \tau_{1n} \\ \tau_{21} & \tau_{22} & \dots & \tau_{2n} \\ \dots & \dots & \dots & \dots \\ \tau_{n1} & \tau_{n2} & \dots & \tau_{nn} \end{pmatrix} \in F_{n \times n}.$$

Матрицата T се нарича матрица на прехода от базиса (1) към базиса (2) и записваме $e \xrightarrow{T} f$.

Ясно е, че матрицата T е неособена, защото при допускане на противното имаме, че $\det T = 0 \Leftrightarrow$ стълбовете на T са линейно зависими \Leftrightarrow векторите f_1, \ldots, f_n са линейно зависими, което води до противоречие с това, че същите тези вектори образуват базис на V. Обратно, всяка неособена матрица $T \in F_{n \times n}$ е матрица на прехода от един базис към друг. Наистина, нека вземем неособена матрица $T = (\tau_{ij})_{n \times n}$. От базиса (1) и числата τ_{ij} образуваме векторите $f_1, \ldots, f_n \in V$:

$$f_j = \tau_{1j}e_1 + \dots + \tau_{nj}e_n, \quad j = 1, 2, \dots, n.$$

Т.к. $\det T \neq 0$, то те са линейно независими и са n на брой и следователно образуват базис на V, а T е матрица на прехода и $e \stackrel{T}{\longrightarrow} f$.

Да разгледаме произволен вектор $x \in V$ от две гледни точки: нека

$$\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}_{n \times 1} \in F^n$$

е векторът от координатите на x спрямо базиса (1), т.е.

$$x = \xi_1 e_1 + \dots + \xi_n e_n$$

и нека

$$\eta = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}_{n \times 1} \in F^n$$

е векторът от координатите на x спрямо базиса (2), т.е.

$$x = \eta_1 f_1 + \dots + \eta_n f_n.$$

Използвайки матрицата на прехода T изразяваме последното равенство чрез

$$x = \eta_1 f_1 + \dots + \eta_n f_n$$

= $\eta_1 (\tau_{11} e_1 + \dots + \tau_{n1} e_n) + \dots + \eta_n (\tau_{1n} e_1 + \dots + \tau_{nn} e_n)$
= $(\tau_{11} \eta_1 + \tau_{12} \eta_2 + \dots + \tau_{1n} \eta_n) e_1 + \dots + (\tau_{n1} \eta_1 + \tau_{n2} \eta_2 + \dots + \tau_{nn} \eta_n) e_n.$

За да имаме съвпадане на това представяне с по-горното представяне на x в базиса (1) очевдино трябва да е изпълнена системата

$$\begin{cases} \xi_1 &= \tau_{11}\eta_1 + \tau_{12}\eta_2 + \dots + \tau_{1n}\eta_n, \\ \xi_2 &= \tau_{21}\eta_1 + \tau_{22}\eta_2 + \dots + \tau_{2n}\eta_n, \\ \dots \\ \xi_n &= \tau_{n1}\eta_1 + \tau_{n2}\eta_2 + \dots + \tau_{nn}\eta_n, \end{cases}$$

която в матричен запис изглежда така:

$$\xi = T\eta$$
.

По този начин доказахме следната

Твърдение 2. Нека V е крайномерно линейно пространство $c \dim V = n$. Нека векторите

$$(1)$$
 e_1,\ldots,e_n

u

$$(2) \quad f_1, \dots, f_n$$

образуват два базиса на V. Ако за произволен вектор $x \in V$ имаме

$$x = \xi_1 e_1 + \dots + \xi_n e_n$$

u

$$x = \eta_1 f_1 + \dots + \eta_n e_n,$$

а T е матрицата на прехода от (1) в (2), то в сила е матричното равенство

$$\xi = T\eta$$
.

Оттук следва и че

$$\eta = T^{-1}\xi$$

.

Следващото твърдение дава връзката между матриците на един и същи линеен оператор спрямо два различни базиса на линейното пространство.

Твърдение 3. Нека $\varphi \in \text{Hom}(V)$ е линеен оператор. Нека A е матрицата на φ спрямо базиса (1), а B е матрицата му спрямо базиса (2). Ако T е матрицата на прехода е $\stackrel{T}{\longrightarrow}$ f, то $B = T^{-1}AT$.

Доказателство. Нека τ е линейният оператор, чиято матрица спрямо базиса (1) е T. В такъв случай от дефиницията на матрица на прехода следва, че $\tau(e_i) = f_i$ за $i = 1, \ldots, n$, а оттук и $\tau^{-1}(f_i) = e_i$. Нека $B = (b_{ij})_{n \times n}$. Тогава

$$\varphi(f_i) = b_{1i}f_1 + b_{2i}f_2 + \dots + b_{ni}f_n.$$

Прилагаме оператора τ^{-1} към двете страни на равенството и получаваме (използвайки свойствата на линейните изображния)

$$\tau^{-1}\varphi(f_i) = b_{1i}e_1 + b_{2i}e_2 + \dots + b_{ni}e_n,$$

но т.к. $f_i = au(e_i)$ след заместване имаме

$$\tau^{-1}\varphi\tau(e_i) = b_{1i}e_1 + b_{2i}e_2 + \dots + b_{ni}e_n.$$

Това равенство дава, че операторът $\tau^{-1}\varphi\tau$ има матрица B в базиса (1). Но от свойствата на композицията на оператори имаме, че матрицата на $\tau^{-1}\varphi\tau$ в базиса (1) е просто произведението на матриците на операторите τ^{-1}, φ и τ , а това е точно матрицата $T^{-1}AT$. По този начин получаваме, че $B = T^{-1}AT$.