Chapitre 5

Espaces vectoriels normés

1. Normes

- 1.1. Norme, espace vectoriel normé
 - Définition : norme, espace vectoriel normé
 - Propriété (seconde inégalité triangulaire)
- 1.2. Exemples de normes
- 1.3. Distance associée
 - a) Définition
 - b) Distance associée à une norme
 - c) Distance d'un point à une partie
- 1.4. Boules
 - a) Boules ouvertes, fermées
 - b) Propriéte : convexité des boules
 - c) Exemples
- 1.5. Parties bornées, fonctions bornées
- 1.6. Normes équivalentes
 - a) Définition
 - b) Importance de cette notion
 - c) Exemples

2. Suites dans un espace vectoriel normé

- 2.1. Convergence, divergence
 - a) Définition; la limite est unique
 - b) Exemples
 - c) Propriétés algébriques
 - d) Cas des espaces produits
- 2.2. Suites extraites
 - a) Définition
 - b) Rappel des propriétés vues en MPSI
 - c) Valeurs d'adhérence

Démonstration

Démonstration

3. Eléments de topologie

- 3.1. Voisinages, ouverts, fermés
 - a) Définitions et exemples
 - b) Propriétés
 - Union et intersection d'ouverts et de fermés

Démonstration

- Exemples et contre-exemples
- c) Caractérisation séquentielle des fermés
 - Théorème

Démonstration

- Exemples
- d) Ouverts et fermés relatifs de A
- 3.2. Intérieur, adhérence, frontière
 - a) Adhérence
 - Définitions : point adhérent, adhérence d'une partie A.
 - Exemples
 - Théorème : caractérisation séquentielle

Démonstration

- Exemple : borne supérieure d'une partie de $\mathbb R$
- b) Intérieur
 - Définition : point intérieur, intérieur d'une partie A.
 - Exemples
- c) Propriétés de l'adhérence et de l'intérieur
- d) Frontière
 - Définition, exemple.
- e) Parties denses
 - Définition.
 - Exemples
 - \circ \mathbb{Q} est dense dans \mathbb{R}

Démonstration

- $\circ \mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R}
- o Autres exemples

4. Etude locale des applications

4.1. Limite en un point, continuité

- a) <u>Définition</u>
 - La limite, si elle existe est unique

Démonstration.

- Si $a \in A$, la limite si elle n'existe ne peut être que f(a): on dit alors que f est continue en a
- b) Prolongement par continuité
- c) Cas des espaces produits
- d) Extensions de la notion de limite
- 4.2. Théorème de caractérisation séquentielle

Démonstration

4.3. Opérations algébriques

4.4. Continuité sur une partie A

- a) <u>Définition</u>
- b) Structures algébriques de $\mathcal{C}(A,F)$, de $\mathcal{C}(A,\mathbb{K})$.
- c) <u>Continuité et densité</u>:

Théorème : fonctions continues égales sur une partie dense Démonstration

d) Continuité et topologie

Théorème : image réciproque d'un ouvert, d'un fermé par une fonction continue

4.5. Uniforme continuité

- a) Un exemple : applications k-lipschitziennes
- b) Applications uniformément continues

Définition, exemples et contre-exemples.

4.6. Applications linéaires continues

a) Théorème fondamental : caractérisation des applications linéaires continues

Démonstration

b) Exemples

5. Compacité

5.1. <u>Introduction(rappels)</u>

Théorème de Bolzano-Weierstarss

Démonstration dans \mathbb{C} , le théorème étant admis dans \mathbb{R}

5.2. Définition et premiers exemples

Définition : partie compacte

o Exemple : dans tout K-espace vectoriel de dimension finie : toute partie fermée et bornée est compacte

5.3. Propriétés

- Théorème : Tout compact est fermé et borné.

 Démonstration
- Propriété 1 : Une partie fermée d'un compact est compacte Démonstration
- Propriété 2 : Soient A compacte et $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de A. Alors : $(u_n)_{n\in\mathbb{N}}$ converge $\Leftrightarrow (u_n)_{n\in\mathbb{N}}$ admet une et une seule val eur d'adhérence
- Propriété 3 : Tout produit (cartésien) fini de compacts est compact

5.4. Compacité et continuité

a) Image d'un compact par une fonction continue

Démonstration

- b) Corollaire : toute fonction à valeurs réelles continue sur un compact est bornée et atteint ses bornes.
 - Plus particulièrement :

l'image d'un segment par une fonction réelle continue est un segment

- c) Application : optimisation et problèmes de distances
- d) Théorème de Heine

Démonstration

• Application : sommes de Riemann

6. Parties connexes par arcs

6.1. Introduction: rappels de MPSI

- Théorème des valeurs intermédiaires
- Image d'un intervalle par une fonction réelle continue

6.2. Définitions

- a) Définition 1 : arc, chemin
- b) Définition 2 : partie connexe par arcs

6.3. Exemples

- a) Partie convexe : toute partie convexe est connexe par arcs

 Démonstration
- b) Couronne
- c) <u>Partie étoilée</u>:
 - Définition
 - o Propriété : toute partie étoilée est connexe par arcs Démonstration
- d) Composante connexe par arcs d'une partie X de E

6.4. Connexité par arcs et continuité

Théorème : image d'une partie connexe par arcs par une application continue

Démonstration

6.5. Etude du cas réel

- a) Connexité par arcs et intervalles
- b) Théorème des valeurs intermédiaires généralisé
- c) Applications

7. Espaces vectoriels normés de dimension finie

7.1. Equivalence des normes

- Théorème de Riesz
- Importance de ce théorème

7.2. Parties compactes d'un espace normé de dimension finie

- Application immédiate des propriétés vues au §5.3 :
 - parties compactes d'un espace normé de dimension finie
 - les suites convergentes d'un espace normé de dimension finie sont les suites bornées n'ayant qu'une valeur d'adhérence

7.3. Sous-espaces de dimension finie

Tout sous-espace de dimension finie d'un espace vectoriel normé est fermé.

7.4. Continuité des applications linéaires

a) Théorème fondamental

Démonstration

- b) Généralisation à la multilinéarité
 - Condition suffisante pour la continuité des applications n-linéaire

Démonstration

• Théorème : Soient E, F et G trois \mathbb{K} -e.v.n. de dimension finie. Alors toute application bilinéaire $B: E \times F \to G$ est continue.

Démonstration