New kinematic weighting algorithm for CP asymmetries in charm decays

Georgios Christou Supervisors: Dr. Federico Betti and Prof. Angelo Carbone

LHCb Collaboration

August 29, 2023

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

We study CP asymmetries in the following charm decays

$$\begin{array}{c} D^{\star+} \to D^0 \pi^+ \text{ and } D^{\star-} \to \bar{D}^0 \pi^-, \\ D^0 \to K^- K^+ \text{ and } D^0 \to \pi^- \pi^+ \end{array}$$

At LHCb we observe:

- ullet CP asymmetry oDifferences in matter and anti-matter decays
- Production asymmetry \rightarrow Differences in $D^{\star\pm}$ production
- ullet Detection asymmetry oDifferences in π_s^\pm detection

 $\rightarrow\!\mbox{We mainly focus on CP}$ and detection asymmetries throughout this project

→At an experiment our physical observable is the total asymmetry

$$\begin{split} A_{\rm total} &= \frac{A_{CP} + A_D}{1 + A_{CP} A_D} \approx A_{CP} + A_D + \mathcal{O}(10^{-6}), \\ A_D &= \frac{\int \mathrm{d}\vec{p} N(\vec{p}) A(\vec{p})}{\int \mathrm{d}\vec{p} N(\vec{p})} \rightarrow \text{ Integrated detection asymmetry} \end{split}$$

→We can estimate the total asymmetry through

$$A_{\mathsf{total}} = \frac{N_+ - N_-}{N_+ + N_-}$$

→We define the total asymmetry difference

$$\Delta A_{\rm total} = A_{\rm total}^{KK} - A_{\rm total}^{\pi\pi} = \Delta A_{CP} + \Delta A_D$$

How can we calculate ΔA_{CP} ?

- We can equalize D^0 kinematic distributions for $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decay modes
- The following weighting function allows us to do that

$$Q(\vec{p}_{D^{\star}}, \vec{p}_{\pi_s}) \simeq \frac{\Gamma_{D^0}^{\pi\pi}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s}) + \Gamma_{\bar{D}^0}^{\pi\pi}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s})}{\Gamma_{D^0}^{KK}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s}) + \Gamma_{\bar{D}^0}^{KK}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s})}$$

 \rightarrow The association with π_s includes detection asymmetry to the weighting function \Rightarrow **We introduce bias!**

→We introduce a new weighting technique

$$Q(\vec{p}_{D^0}) \simeq \frac{\Gamma_{D^0}^{\pi\pi}(\vec{p}_{D^0}) + \Gamma_{\bar{D}^0}^{\pi\pi}(\vec{p}_{D^0})}{\Gamma_{D^0}^{KK}(\vec{p}_{D^0}) + \Gamma_{\bar{D}^0}^{KK}(\vec{p}_{D^0})} \to \text{We eliminate the detection asymmetry}$$

- ightarrowWe effectively equalize the distributions $\Rightarrow \Delta A_D = 0$
- →Now our physical observable can give us useful results!

$$\Delta A_{\mathsf{total}} = \Delta A_{\mathit{CP}}$$

However:

- Such candidates were discarded in Run-2
- We do not have enough statistics from Run-3
- ightarrowWe resort to MC data to test the new weighting technique

August 29, 2023

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

RapidSim

→We generate data using RapidSim and introduce:

- Different CP asymmetries for $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decay modes $\left(A^{KK}_{CP}=0.1,\ A^{\pi\pi}_{CP}=0.2,\ \to \Delta A_{\rm total}=-0.1\right)$
- \bullet The same momentum-dependent detection asymmetry $A_D(\vec{p})$ \to The integrated detection asymmetries are different for the two samples
- \rightarrow We exclude negative $\pi_s \Rightarrow$ Large detection asymmetry

RapidSim

→We calculate the weighting function before and after the introduction of the detection asymmetry

- Before: Not associated with $\pi_s \Rightarrow \text{New weighting technique}$
- After: Associated with $\pi_s \Rightarrow$ We introduce bias

Technique		Weighted	Unweighted
 Not associated	$\Delta A_{ m total}$ Deviation (σ)	-0.09845 ± 0.00073 2.12	-0.08303 ± 0.00072
Associated with π_s	$\Delta A_{ m total}$ Deviation (σ)	-0.09578 ± 0.00073 5.78	23.6

- The unweighted calculation is wrong $\rightarrow \Delta A_D \neq 0$
- The weighting function with π_s association (i.e., with detection asymmetry included) yields a biased result
- The new weighting technique (no detection asymmetry) allows us to keep events associated with large $A_D(\vec{p}) \Rightarrow \textbf{More statistics!}$

August 29, 2023

Particle Gun

- →We use Particle Gun data for a more realistic scenario.
 - We do not introduce CP asymmetry
 - There is detection asymmetry due to the magnet polarity

ightarrowThe new weighting technique should yield $\Delta A_{\mathrm{total}} = 0$

Particle Gun

Technique		Weighted	Unweighted
Not associated	ΔA_{total} Deviation (σ)	-0.000084 ± 0.000262 0.32	-0.000015 ± 0.000262
Associated with π_s	$\Delta A_{ m total}$ Deviation (σ)	-0.000036 ± 0.000262 0.14	0.057

- ullet The effect of A_D is small
- The asymmetries cancel out after averaging both magnet polarities
- The weighting technique needs to be investigated further

- Introduction
 - Asymmetries at the LHCb

- 2 Analysis
 - RapidSim
 - Particle Gun

RapidSim:

- The old weighting function reduces the deviation of ΔA_{total} , however it still introduces bias to our results
- The new weighting technique reduces the deviation of ΔA_{total} and allows us to keep all events, thus using higher statistics \Rightarrow **More** effective

Particle Gun:

- ullet The effect of ΔA_D is small
- The averaging of both magnet polarities removes the effect
- The weighting function needs to be investigated further

Thank you for your attention! Questions?

