# Proof of mutual-exclusion and nonstarvation of a program: PostgreSQL

Jade Alglave (MSR-Cambridge, UCL, UK)
Patrick Cousot (NYU, Emer. ENS, PSL)

Dagstuhl Seminar 16471

http://www.dagstuhl.de/16471

Concurrency with Weak Memory Models: Semantics, Languages, Compilation, Verification, Static Analysis, and Synthesis

November 22, 2016

# PostgreSQL

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do
2:
    do
                                           r[] Rl1 latch1
3:
      r[] RlO latchO
                                        24: while (Rl1=0)
4:
    while (R10=0)
                                             w[] latch1 0
5:
  w[] latch0 0
                                        26: r[] Rf1 flag1
6:
    r[] RfO flag0
                                             if (Rf1 \neq 0) then
    if (Rf0 \neq 0) then
                                        28: (* critical section *)
8: (* critical section *)
      w[] flag0 0
                                             w[] flag1 0
                                       29: w[] flag0 1
9: w[] flag1 1
                                        30: w[] latch0 1
10: w[] latch1 1
11: fi
                                        32:while true
12:while true
13:
                                        33:
```





© I. Alglave & P. Cousot









# Conditional invariance proof: Mutual exclusion

# Algorithm



# PostgreSQL

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
                                             22: do \{m_\ell\} 23: r[] Rl1 latch1 \{\leadsto L1_{m_\ell}^\ell\}
     do \{j_i\}
    r[] R10 latch0 \{\leadsto L0^i_{j_i}\}
                                             24: while (Rl1=0) \{n_\ell\}
   while (R10=0) \{k_i\}
                                             25: w[] latch1 0
5: w[] latch0 0
   r[] Rf0 flag0 \{\leadsto F0^i\}
                                             26: r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                             27: if (Rf1 \neq 0) then
7: if (Rf0 \neq 0) then
   (* critical section *)
                                             28: (* critical section *)
8:
                                                  w[] flag1 0
       w[] flag0 0
                                             29: w[] flag0 1
9:
   w[] flag1 1
                                             30: w[] latch0 1
10:
     w[] latch1 1
                                             31: fi
11: fi
                                             32:while true
12:while true
                                              33:
13:
```

### Stamps

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
   do \{j_i\}
                                            23: r[] Rl1 latch1 \{\leadsto L1_{m_\ell}^\ell\}
       r[] R10 latch0 \{ \leadsto L0_{j_i}^i \}
   while (R10=0) \{k_i\}
                                            24: while (Rl1=0) \{n_{\ell}\}
                                            25: w[] latch1 0
5: w[] latch0 0
   r[] RfO flag0 \{\leadsto F0^i\}
                                            26: r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                            27: if (Rf1 \neq 0) then
7: if (Rf0 \neq 0) then
   (* critical section *)
                                            28: (* critical section *)
                                                 w[] flag1 0
      w[] flag0 0
                                            29: w[] flag0 1
9: w[] flag1 1
                                            30: w[] latch0 1
10:
    w[] latch1 1
11: fi
                                            32:while true
12:while true
13:
                                             33:
```

#### Ensure that events are unique (your choice)

# Variables in Hoare logic & L/O-G

- program variables: int x;
- in predicates you need to name the value of variable x to express properties of this value of x:
  - valueof(x)
  - $\bullet$  x
- WCM: no notion of "the" value of a shared variable x
- The only way to know something about "the" value of a shared variable x is to read it
- Pythia variable: name given to the read value
- Not necessary in the semantics, only in assertions (but we put them in the semantics)

# Pythia variables

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
                                              22: do \{m_\ell\}
23: r[] Rl1 latch1 \{\leadsto L1_{m_\ell}^\ell\}
     do \{j_i\}
       r[] RlO latchO \{\leadsto L0^i_{j_i}\}
    while (R10=0) \{k_i\}
                                               24: while (Rl1=0) \{n_\ell\}
                                               25: w[] latch1 0
   w[] latch0 0
5:
                                               26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
    r[] RfO flag0 \{\leadsto F0^i\}
   if (Rf0 \neq 0) then
                                               27: if (Rf1 \neq 0) then
7:
    (* critical section *)
                                               28: (* critical section *)
8:
                                                     w[] flag1 0
       w[] flag0 0
                                               29: w[] flag0 1
9:
    w[] flag1 1
                                               30: w[] latch0 1
10:
     w[] latch1 1
11: fi
                                               32:while true
12:while true
                                               33:
13:
```

# Invariant specification $S_{inv}$



#### Mutual exclusion

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                               21:do \{\ell\}
22: do \{m_\ell\}
23: r[] Rl1 latch1 \{\leadsto L1_{m_\ell}^\ell\}
1: do \{i\}
2: do \{j_i\}
        r[] R10 latch0 \{\leadsto L0^i_{j_i}\}
                                               24: while (Rl1=0) \{n_\ell\}
   while (R10=0) \{k_i\}
                                               25: w[] latch1 0
5: w[] latch0 0
                                               26: r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
   r[] Rf0 flag0 \{\leadsto F0^i\}
                                               27: if (Rf1 \neq 0) then
7: if (Rf0 \neq 0) then
8: \neg at\{28\}
                                                       (* critical section *)
        (* critical section *)
                                                      w[] flag1 0
       w[] flag0 0
                                               29: w[] flag0 1
9: w[] flag1 1
                                               30: w[] latch0 1
10: w[] latch1 1
11: fi
12:while true
13:
```

#### (invariant $S_{i_{nv}}$ is elsewhere true)

# Analytic semantics = Anarchic semantics + communication constraints

## Analytics semantics with cuts

Anarchic semantics: set of executions:

$$\pi = \varsigma \times \pi \times \mathsf{rf}$$

- $\varsigma$  is the *computation*
- $\pi$  is the *cut sequence*
- rf is the communication
- Communication semantics:
   restrictions on rf in cat



## Local invariants



#### Local invariant



- ullet Attached to each program point  $\ell$  of each process p
- Depends on
  - Program points of all other processes  $\kappa$
  - Stamps  $\theta$  of all processes
  - Local registers of all processes  $\rho$
  - ullet Pythia variables u
  - Communications (rf)

#### Communication relation rf

- rf: relation between write and read events
- Each rf is encoded by  $\Gamma$ , a set of pairs



•  $\Gamma \in \Gamma$  (the set of all possible communications rf)

# Anarchic communications

#### Anarchic communications

 Any read can read from any write on the same shared variable (location)

```
\mathrm{RL0}_{j_i}^i \triangleq \{ \frac{\mathfrak{rf}\langle L0_{j_i}^i, \ \langle 0:, \ \_, \ 0 \rangle \rangle}{\mathfrak{rf}\langle L0_{j_i}^i, \ \langle 5:, \ i_5, \ 0 \rangle \rangle}, \mathfrak{rf}\langle L0_{j_i}^i, \ \langle 30:, \ \ell_{30}, \ 1 \rangle \rangle \mid i_5 \in \mathbb{N} \land \ell_{30} \in \mathbb{N} \}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
                                              21:do \{\ell\}
     do \{j_i\}
    r[] R10 latch0 \{\leadsto L0_{i_i}^i\}
                                              23: r[] Rl1 latch1 \{ \rightsquigarrow L1_{m_{\ell}}^{\ell} \}
                                              24: while (R11=0) \{n_{\ell}\}
4: while (R10=0) \{k_i\}
25: w[] latch1 0
    r[] Rf0 flag0 \{ \leadsto F0^i \}
                                              26: r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                              27: if (Rf1 \neq 0) then
     if (Rf0 \neq 0) then
    (* critical section *)
                                                   (* critical section *)
       w[] flag0 0
                                                    w[] flag1 0
                                                     w[] flag0 1
9:
       w[] flag1 1
                                              29:
                                                      w[] latch0 1
10: w[] latch1 1
11: fi
                                              32:while true
12:while true
13:
```

#### Anarchic communications

 Possible communications for each read at each stamp (point in the execution):

```
\begin{split} & \text{RL0}_{j_i}^i \triangleq \{\mathfrak{rf}\langle L0_{j_i}^i,\, \langle 0:,\, \_,\, 0\rangle\rangle, \mathfrak{rf}\langle L0_{j_i}^i,\, \langle 5:,\, i_5,\, 0\rangle\rangle, \mathfrak{rf}\langle L0_{j_i}^i,\, \langle 30:,\, \ell_{30},\, 1\rangle\rangle \mid i_5 \in \mathbb{N} \wedge \ell_{30} \in \mathbb{N}\} \\ & \text{RF0}^i \triangleq \{\mathfrak{rf}\langle F0^i,\, \langle 0:,\, \_,\, 0\rangle\rangle, \mathfrak{rf}\langle F0^i,\, \langle 8:,\, i_8,\, 0\rangle\rangle, \mathfrak{rf}\langle F0^i,\, \langle 29:,\, \ell_{29},\, 1\rangle\rangle \mid i_8 \in \mathbb{N} \wedge \ell_{29} \in \mathbb{N}\} \\ & \text{RL1}_{m_\ell}^\ell \triangleq \{\mathfrak{rf}\langle L1_{m_\ell}^\ell,\, \langle 0:,\, \_,\, 1\rangle\rangle, \mathfrak{rf}\langle L1_{m_\ell}^\ell,\, \langle 25:,\, \ell_{25},\, 0\rangle\rangle, \mathfrak{rf}\langle L1_{m_\ell}^\ell,\, \langle 10:,\, i_{10},\, 1\rangle\rangle \mid \ell_{25} \in \mathbb{N} \wedge i_{10} \in \mathbb{N}\} \\ & \text{RF1}^\ell \triangleq \{\mathfrak{rf}\langle F1^\ell,\, \langle 0:,\, \_,\, 1\rangle\rangle, \mathfrak{rf}\langle F1^\ell,\, \langle 28:,\, \ell_{28},\, 0\rangle\rangle, \mathfrak{rf}\langle F1^\ell,\, \langle 9:,\, i_9,\, 1\rangle\rangle \mid \ell_{28} \in \mathbb{N} \wedge i_9 \in \mathbb{N}\} \end{split}
```

Anarchic communications:

```
\overline{\Gamma} = \{ \{ \operatorname{rl0}_{j_i}^i, \operatorname{rf0}^i, \operatorname{rl1}_{m_\ell}^\ell, \operatorname{rf1}^\ell \mid i \in \mathbb{N} \land j_i \in [0, k_i] \land \ell \in \mathbb{N} \land j \in [0, n_\ell] \} \mid \forall i \in \mathbb{N} . \forall j_i \in [1, k_i] . \operatorname{rl0}_{j_i}^i \in \operatorname{RL0}_{j_i}^i \land \operatorname{rf0}^i \in \operatorname{RF0}^i \land \forall \ell \in \mathbb{N} . \forall m_\ell \in [1, m_\ell] . \operatorname{rl1}_{m_\ell}^\ell \in \operatorname{RL1}_{m_\ell}^\ell \land \operatorname{rf1}^\ell \in \operatorname{RF1}^\ell \}
```

- ullet Anarchic semantics:  $arGamma \in \overline{\Gamma}$
- WCM semantics:  $\Gamma \in \Gamma, \Gamma \subseteq \overline{\Gamma}$

# Inductive invariant $S_{ind}$



- $S_{ind}$  is inductive under hypothesis  $S_{com}$  iff, assuming  $S_{com}$ , we have:
  - $S_{ind}$  is true at the beginning of an execution
  - If  $S_{ind}$  is true during execution is remains true after one more computation or communication step

 $S_{inv}$  holds under hypothesis  $S_{com}$ 

$$S_{ind} \Rightarrow S_{inv}$$

$$S_{com} \Rightarrow S_{inv}$$

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}
2: \{\Gamma \in \Gamma\}
          do \{j_i\}
        \{\Gamma \in \Gamma\}
              r[] RlO latchO \{ \sim L0_{i_i}^i \}
          \{\varGamma\in\Gamma\land\mathtt{Rl0}=L0^i_{j_i}\land(\mathtt{r0Rl0}^i_{j_i}[\varGamma]\lor\mathtt{r1Rl0}^i_{j_i}[\varGamma])\}
          while (R10=0) \{k_i\}
5: \{\Gamma \in \Gamma \wedge r1R10_{k}^{i}[\Gamma]\}
          w[] latch0 0
6: \{\Gamma \in \Gamma \wedge r1R10_{k_s}^i[\Gamma]\}
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
7:  \{ \varGamma \in \Gamma \wedge \mathrm{r1Rl0}^i_{k_i}[\varGamma] \wedge \mathrm{Rf0} = F0^i \\ \wedge \left( \mathrm{r0Rf0}^i[\varGamma] \vee \mathrm{r1Rf0}^i[\varGamma] \right) \} 
          if (Rf0 \neq 0) then
          \{\Gamma \in \Gamma \wedge \mathsf{r}1\mathsf{R}10^i_{k_i}[\Gamma] \wedge \mathsf{r}1\mathsf{R}f0^i[\Gamma]\}
              (* critical section *)
              w[] flag0 0
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
              w[] flag1 1
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
10:
              w[] latch1 1
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
           fi
12: \{\Gamma \in \Gamma\}
       while true
13:{false}
```

```
\begin{split} \mathbf{r} \text{[] Rl1 latch1 } &\{ \leadsto L1^\ell_{m_\ell} \} \\ \text{24:} & \{ \varGamma \in \Gamma \land \mathtt{Rl1} = L1^\ell_{m_\ell} \land (\mathtt{r0Rl1}^\ell_{m_\ell}[\varGamma] \lor \mathtt{r1Rl1}^\ell_{m_\ell}[\varGamma]) \} \end{split}
             while (Rl1=0) \{n_\ell\}
25: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]\}
              w[] latch1 0
26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
             r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
27: \{\Gamma \in \Gamma \wedge \mathrm{r1Rl1}_{n_\ell}^\ell[\Gamma] \wedge \mathrm{Rf1} = F1^\ell
                                                                      \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
              if (Rf1 \neq 0) then
 28: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                   (* critical section *)
                   w[] flag1 0
29: \{\Gamma \in \Gamma \wedge \mathrm{r1Rl1}_{n_\ell}^\ell[\Gamma] \wedge \mathrm{r1Rf1}^\ell[\Gamma]\}
                  w[] flag0 1
 30: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                   w[] latch0 1
                 \{\Gamma \in \Gamma \wedge \mathrm{r1R11}_{n_{\ell}}^{\ell}[\Gamma] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma]\}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
                                                                                                           21:\{\Gamma\in\Gamma\}
      do \{i\}
      \{\Gamma \in \Gamma\}
          do \{j_i\}
             \{\Gamma \in \Gamma\}
3:
                                                                                                                       Possible
              r[] RlO latch0 \{ \sim L0_{i_i}^i \}
           \{\varGamma\in\Gamma\wedge\mathtt{RlO}=L0^i_{j_i}\wedge(\mathtt{rORlO}^i_{j_i}[\varGamma]\vee\mathtt{rl}
                                                                                                                                                                                              \mathsf{Rl1}^\ell_{m_\ell}[\Gamma])\}
                                                                                                      communications
          while (R10=0) \{k_i\}
      \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
          w[] latch0 0
      \{\Gamma \in \Gamma \wedge \mathrm{r1R10}_{k}^i, [\Gamma]\}
                                                                                                           26: \{\Gamma \in \Gamma \land r1Rl1_{n_{\ell}}^{\ell}[\Gamma]\}
                                                                                                                     r[] R11 flag1 \{ \rightsquigarrow F1^{\ell} \}
          r[] Rf0 flag0 \{ \sim F0^i \}
                                                                                                           27: \{\Gamma \in \Gamma \land r1R11_{n_{\ell}}^{\ell}[\Gamma] \land Rf1 = F1^{\ell}\}
          \{\Gamma \in \Gamma \land \mathsf{T}\mathsf{R}\mathsf{I}\mathsf{O}^i_{k_i}[\Gamma] \land \mathsf{R}\mathsf{f}\mathsf{0} = F\mathsf{0}^i\}
                                                                                                                                                                  \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                       \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
          if (Rf0 \neq 0) then
                                                                                                                     if (Rf \neq 0) then
             \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma] \wedge r1Rf0^i [\Gamma]\}
                                                                                                                         \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
8:
                                                                                                                          (* critical section *)
              (* critical section *)
              w[] flag0 0
                                                                                                                          w[] frag1 0
                                                                                                                         \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
              w[] flag1 1
                                                                                                                          w[] flag0 1
                                                                                                                        \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                           30:
10:
              w[] latch1 1
                                                                                                                          w[] latch0 1
                                                                                                                         \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
                                                                                                           31:
          fi
                                                                                                                     fi
12: \{\Gamma \in \Gamma\}
      while true
13:{false}
                                                                                                           33:{false}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}
      \{\Gamma \in \Gamma\}
          do \{j_i\}
3:
             \{\Gamma \in \Gamma\}
                                                                                                                       r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
             r[] RlO latch0 \{ \sim L0_{i}^{i} \}
                                                                                                                       \{ \varGamma \in \Gamma \wedge \mathtt{Rl1} = L1^\ell_{m_\ell} \wedge (\mathsf{rORl1}^\ell_{m_\ell}[\varGamma] \vee \mathsf{r1Rl1}^\ell_{m_\ell}[\varGamma]) \}
             \{\Gamma \in \Gamma \land \mathtt{Rl0} = L0^i_{j_i} \land (\mathtt{r0Rl0}^i_{j_i}[\Gamma] \lor \mathtt{r1Rl0}^i_{j_i}[\Gamma])\}
          while (R10=0) \{k_i\}
                                                                                                                   while (Rl1=2) \{n_{\ell}\}
          \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma]\}
          w[] latch0 0
        \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma]\}
                                                                                                                          \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                                   r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                                                   \{ \varGamma \in \Gamma \wedge \mathrm{r1Rl1}_{n_\ell}^\ell [\varGamma] \wedge \underline{\mathrm{Rf1}} = F1^\ell
          \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma] \wedge \mathrm{Rf0} = F0
                                                                                                                                                              \land (r0Rf1^{\ell}[\Gamma] \lor r1Rf1^{\ell}[\Gamma])
                                                                     ^{i}[\Gamma] \vee \mathrm{r1Rf0}^{i}[\Gamma]
                                                     \wedge (r0Rf0
                                                                                                                          (Pf1 \neq 0) then
          if (Rf
                                                                                                                                  \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]
              \{\Gamma \in
8:
                             Register assignment of
                                                                                                                                 itical section *)
              w[]
                                                                                                                                 lag1 0
                                                                                                                                  \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]
              \{\Gamma \in
9:
                                   the Pythia variable
              w[]
                                                                                                                                  lag0 1
                                                                                                                                  \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]
              \{\Gamma \in
10:
                                           after read event
              w[]
                                                                                                                                  atch0 1
                                                                                                                                  \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]
              \{\Gamma \in
11:
          fi
                                                                                                                   Ϊī
12: \{\Gamma \in \Gamma\}
                                                                                                                 \{\Gamma \in \Gamma\}
      while true
13:{false}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}
2: \{\Gamma \in \Gamma\}
          do \{j_i\}
      \{\Gamma \in \Gamma\}
                                                                                                            r[] Rl1 latch1 \{\leadsto L1_{m_\ell}^\ell\}
             r[] R10 latch0 \{ \sim L0_{i_i}^i \}
                                                                                                           \mathbf{24:} \qquad \{ \varGamma \in \Gamma \wedge \mathtt{Rl1} = L1^\ell_{m_\ell} \wedge (\mathsf{r0Rl1}^\ell_{m_\ell}[\varGamma] \vee \mathsf{r1Rl1}^\ell_{m_\ell}[\varGamma]) \}
         \{ \varGamma \in \Gamma \land \mathtt{Rl0} = L0^i_{j_i} \land (\mathtt{r0Rl0}^i_{j_i}[\varGamma] \lor \mathtt{r1Rl0}^i_{j_i}[\varGamma]) \}
          while (R10=0) \{k_i\}
                                                                                                                     while (Rl1=0) \{n_\ell\}
      \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k}^{i}[\Gamma]\}
                                                                                                           25: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]\}
          w[] latch0 0
                                                                                                                      w[] latch1 0
```

Possible values of Pythia variables depending on communications

```
\begin{aligned} &\operatorname{rORl0}_{j_i}^i[\Gamma] \triangleq \frac{(\mathfrak{rf}\langle L0_{j_i}^i,\ \langle 0:,\ \_,\ 0\rangle\rangle \in \Gamma \wedge L0_{j_i}^i = 0)}{\operatorname{r1Rl0}_{j_i}^i[\Gamma]} \vee \frac{(\exists i_5 \in \mathbb{N} \ .\ \mathfrak{rf}\langle L0_{j_i}^i,\ \langle 5:,\ i_5,\ 0\rangle\rangle \in \Gamma \wedge L0_{j_i}^i = 0)}{\operatorname{r1Rl0}_{j_i}^i[\Gamma]} \triangleq (\exists \ell_{30} \in \mathbb{N} \ .\ \mathfrak{rf}\langle L0_{j_i}^i,\ \langle 30:,\ \ell_{30},\ 1\rangle\rangle \in \Gamma \wedge L0_{j_i}^i = 1) \end{aligned}
```

```
w[] flag0 0
                                                                                                                            w[] flag1 0
                                                                                                                          \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
              w[] flag1 1
                                                                                                                            w[] flag0 1
                                                                                                             30: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
10:
              w[] latch1 1
                                                                                                                            w[] latch0 1
                                                                                                                            \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
           fi
12: \{\Gamma \in \Gamma\}
      while true
13: {false}
```

#### Communicated values



```
\begin{split} &\operatorname{r0Rl0}_{j_i}^i[\varGamma] \triangleq (\operatorname{\mathfrak{rf}}\langle L0_{j_i}^i,\, \langle 0\colon,\, _{-},\, 0\rangle\rangle \in \varGamma \wedge L0_{j_i}^i = 0) \vee (\exists i_5 \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle L0_{j_i}^i,\, \langle 5\colon,\, i_5,\, 0\rangle\rangle \in \varGamma \wedge L0_{j_i}^i = 0) \\ &\operatorname{r1Rl0}_{j_i}^i[\varGamma] \triangleq (\exists \ell_{30} \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle L0_{j_i}^i,\, \langle 30\colon,\, \ell_{30},\, 1\rangle\rangle \in \varGamma \wedge L0_{j_i}^i = 1) \\ &\operatorname{r0Rf0}^i[\varGamma] \triangleq (\operatorname{\mathfrak{rf}}\langle \digamma 0^i,\, \langle 0\colon,\, _{-},\, 0\rangle\rangle \in \varGamma \wedge \digamma 0^i = 0) \vee (\exists i_8 \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle \digamma 0^i,\, \langle 8\colon,\, i_8,\, 0\rangle\rangle \in \varGamma \wedge \digamma 0^i = 0) \\ &\operatorname{r1Rf0}^i[\varGamma] \triangleq (\exists \ell_{29} \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle \digamma 0^i,\, \langle 29\colon,\, \ell_{29},\, 1\rangle\rangle \in \varGamma \wedge \digamma 0^i = 1) \\ &\operatorname{r0Rl1}_{m_\ell}^\ell[\varGamma] \triangleq (\exists \ell_{25} \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle L1_{m_\ell}^\ell,\, \langle 25\colon,\, \ell_{25},\, 0\rangle\rangle \in \varGamma \wedge L1_{m_\ell}^\ell = 0) \\ &\operatorname{r1Rl1}_{m_\ell}^\ell[\varGamma] \triangleq (\operatorname{\mathfrak{rf}}\langle L1_{m_\ell}^\ell,\, \langle 0\colon,\, _{-},\, 1\rangle\rangle \in \varGamma \wedge L1_{m_\ell}^\ell = 1) \vee (\exists i_{10} \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle L1_{m_\ell}^\ell,\, \langle 10\colon,\, i_{10},\, 1\rangle\rangle \in \varGamma \wedge L1_{m_\ell}^\ell = 1) \\ &\operatorname{r0Rf1}^\ell[\varGamma] \triangleq (\exists m_{28} \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle \digamma 1^\ell,\, \langle 28\colon,\, m_{28},\, 0\rangle\rangle \in \varGamma \wedge \digamma 1^\ell = 0) \\ &\operatorname{r1Rf1}^\ell[\varGamma] \triangleq (\operatorname{\mathfrak{rf}}\langle \digamma 1^\ell,\, \langle 0\colon,\, _{-},\, 1\rangle\rangle \in \varGamma \wedge \digamma 1^\ell = 1) \vee (\exists i_9 \in \mathbb{N} \, .\, \operatorname{\mathfrak{rf}}\langle \digamma 1^\ell,\, \langle 9\colon,\, i_9,\, 1\rangle\rangle \in \varGamma \wedge \digamma 1^\ell = 1) \end{split}
```

# Communication specification



#### Calculational design of the communication specification

```
(\neg S_{inv}(\Gamma,\Gamma)) \wedge S_{ind}(\Gamma,\Gamma)
 \triangleq at \{8\} \land at \{28\} \land S_{ind}(\Gamma, \Gamma) def. invariance specification S_{inv}
 \Rightarrow at\{8\} \land at\{28\} \land (\exists i, k_i, \ell, n_\ell \in \mathbb{N} : \Gamma \in \Gamma \land r1Rl0^i_{k_i}[\Gamma] \land r1Rl0^i_{k
                                                          \mathsf{r}1\mathsf{R}f0^i[\Gamma] \wedge \mathsf{r}1\mathsf{R}11^\ell_{n,\ell}[\Gamma] \wedge \mathsf{r}1\mathsf{R}f1^\ell[\Gamma]) by invariant S_{ind}(\Gamma,\Gamma)
\Rightarrow at\{8\} \land at\{28\} \land (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29} \in \mathbb{N} : \Gamma \in \Gamma \land (\mathfrak{rf} \land L0^i_{k_i}, \ell_{30}, \ell_{30
                                                               \langle 30:, \ell_{30}, 1 \rangle \rangle \in \Gamma) \wedge (\mathfrak{rf} \langle F0^i, \langle 29:, \ell_{29}, 1 \rangle) \in \Gamma) \wedge (\mathfrak{rf} \langle L1^{\ell}_{n_{\ell}}, \mathfrak{r} \rangle)
                                                               \langle 0:, -, 1 \rangle \rangle \in \Gamma \rangle \wedge (\mathfrak{rf} \langle F1^{\ell}, \langle 0:, -, 1 \rangle) \in \Gamma \rangle) \vee
                                                                (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_9 \in \mathbb{N} . \Gamma \in \Gamma \wedge (\mathfrak{rf} \langle L0^i_{k_i}, \langle 30:, \ell_{30}, \ell_{30}, \ell_{30}) \rangle)
                                                             |1\rangle\rangle \in \Gamma) \wedge (\mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma) \wedge (\mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \langle 0:, -, \ell_{29}, \ell_{29}, \ell_{29}, \ell_{29}) \rangle)
                                                               |1\rangle\rangle\in\Gamma\rangle \wedge (\mathfrak{rf}\langle F1^{\ell}, \langle 9:, i_9, 1\rangle\rangle\in\Gamma\rangle\rangle) \vee
                                                                  (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} . \Gamma \in \Gamma \wedge (\mathfrak{rf} \langle L0_{k_i}^i, \langle 30:, \ell_{30}, \ell_{30}, \ell_{30}) \rangle)
                                                               |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F0^i,\langle 29:,\ell_{29},1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle L1^{\ell}_{n_{\ell}},\langle 10:,i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},i_{10},
                                                             |1\rangle\rangle \in \Gamma) \wedge (\mathfrak{rf}\langle F1^{\ell}, \langle 0:, -, 1\rangle\rangle \in \Gamma)) \vee
                                                                (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10}, i_9 \in \mathbb{N} . \Gamma \in \Gamma \wedge (\mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{30}, \ell_{30}, \ell_{30}, \ell_{30}))
                                                             |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F0^i,\ \langle 29:,\ \ell_{29},\ 1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle L1^{\ell}_{n_{\ell}},\ \langle 10:,\ i_{10},\ i_
                                                             |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F1^{\ell}, \langle 9:, i_9, 1\rangle\rangle\in\Gamma)
                                                                                                                         \langle \operatorname{def.} r1R10_{k_i}^i[\Gamma], r1Rf0^i[\Gamma], r1R11_{n_\ell}^\ell[\Gamma], \operatorname{and} r1Rf1^\ell[\Gamma], \mathfrak{rf}\langle x_\theta, r_\theta \rangle
                                                                                                                                           \langle \ell :, \theta', v \rangle implies that x_{\theta} = v, A \wedge (B \vee C) = (A \wedge B) \vee
                                                                                                                                           (A \wedge C), \exists distributes over \vee, and (\exists x . A(x)) \wedge B = \exists x.
                                                                                                                                           (A(x) \wedge B) when x is not free in B \setminus
\Rightarrow at{8} \land at{28} \land (\neg S_{com_1}(\Gamma, \Gamma) \lor \neg S_{com_2}(\Gamma, \Gamma) \lor \neg S_{com_3}(\Gamma, \Gamma) 
                                                             \neg S_{com_A}(\Gamma,\Gamma)
 \Rightarrow \neg S_{com}(\Gamma, \Gamma)
```

#### Calculational design of the communication specification

#### where

$$\begin{split} S_{com}(\Gamma, \overline{\Gamma}) & \triangleq (\mathsf{at}\{8\} \land \mathsf{at}\{28\}) \Longrightarrow (S_{com_1}(\Gamma, \overline{\Gamma}) \land S_{com_2}(\Gamma, \overline{\Gamma}) \land S_{com_3}(\Gamma, \overline{\Gamma}) \land S_{com_4}(\Gamma, \overline{\Gamma})) \\ S_{com_1} & \triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29} \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 0:, -, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 0:, -, 1\rangle\rangle \in \Gamma \\ S_{com_2} & \triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_9 \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 0:, -, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \\ S_{com_3} & \triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 0:, -, 1\rangle\rangle \in \Gamma \\ S_{com_4} & \triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10}, i_9 \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \end{cases}$$

- This proves  $S_{com}$  sufficient for correctness
- Counter-examples prove  $S_{com}$  necessary  $\Rightarrow S_{com}$  is the weakest WCM requirement for correctness

#### Example of counter-example to $S_{com_1}$

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                               ↓ 21:
1:
    do \{i\}
2:
                                                  22:
      do \{j_i\}
                                                        do
                                                  23:
3:
                                                           r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
        r[] R10 latch0 \{ \rightsquigarrow L0_{i}^{i} \}
4:
                                                  24:
      while (R10=0) \{k_i\}
                                                        while (R11=0) \{n_\ell\}
5:
                                                  25:
      w[] latch0 0
                                                        w[] latch 0
                                                  26:
6:
      r[] RfO flag0 \{ \leadsto F0^i \}
                                                        r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
7:
                                                  27:
      if (Rf0 \neq 0) then
                                                        if (Rf1 \neq 0) then
8:
                                                  28
         (* critical section *)
                                                           (* critical section *)
        w[] flag0 0
                                                           w[] flag1 0
                                                  29:
9:
        w[] flag1 1
                                                           w[] flag0 1
                                                  30:
10:
        w[] latch1 1
                                                           w[] latch0 1
                                                  31:
11:
                                                        fi
      fi
                                                  32:
12:
   while true
                                                      while true
                                                  33:
13:
```

#### Proof of mutual exclusion

•  $S_{com}$  implies mutual exclusion (for any  $\Gamma$ )

$$(\neg S_{inv}(\Gamma, \Gamma) \land S_{ind}(\Gamma, \Gamma)) \Longrightarrow \neg (S_{com}(\Gamma, \Gamma))$$

$$\Longrightarrow S_{com}(\Gamma, \Gamma) \Longrightarrow (S_{inv}(\Gamma, \Gamma) \lor \neg S_{ind}(\Gamma, \Gamma)) \text{ (contraposition)}$$

$$\Longrightarrow S_{com}(\Gamma, \Gamma) \Longrightarrow (S_{ind}(\Gamma, \Gamma) \Longrightarrow S_{inv}(\Gamma, \Gamma)) \text{ (implication)}$$

$$\Longrightarrow (S_{com}(\Gamma, \Gamma) \land S_{ind}(\Gamma, \Gamma)) \Longrightarrow S_{inv}(\Gamma, \Gamma) \text{ (implication)}$$

$$\Longrightarrow S_{com}(\Gamma, \overline{\Gamma}) \Longrightarrow S_{inv}(\Gamma, \overline{\Gamma}) \text{ (implication)}$$

# Conditional invariance proof



# Sequential proof $\ell = \kappa$ and p = q

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                                                                                       \parallel 21:\{\Gamma \in \Gamma\}
1: \{\Gamma \in \Gamma\}
      do \{i\}
                                            For a read instruction \kappa : r[ts] R \times \kappa':
                                                                                                                                                                                                       (read)
2: \{\Gamma \in \Gamma\}
                                                  \mathsf{PRE}_{p,r}^{\ell,\kappa}[\theta_r,\rho_r,\nu_r,\mathsf{rf}] \wedge \mathit{rf}[\mathfrak{w}(\langle q,\ell',\mathsf{w}[\mathit{ts}] \mathsf{x} \mathit{r-value},\theta'\rangle,v),
          do \{j_i\}
3:
             \{\Gamma \in \Gamma\}
                                                                                                                          \mathfrak{r}(\langle r, \ell, \mathbf{r}[ts] \ \mathsf{R} \ \mathsf{x}, \ \theta_r \rangle, \mathsf{x}_{\theta_r})] \in \mathsf{rf}
              r[] R10 lat
                                                           \Rightarrow \mathsf{POST}_{p,r}^{\ell,\kappa'}[\rho_r \leftarrow \rho_r[\mathtt{R} := \mathtt{x}_{\theta_r}], \nu_r \leftarrow \nu_r[\mathtt{x}_{\theta_r} := v]]
             \{\Gamma\in\Gamma\wedge\mathtt{RlO}
          while (R10=0)
                                                                                                           25: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]\}
        \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma]\}
          w[] latch0 0
                                                                                                                     w[] latch1 0
        \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma]\}
                                                                                                           26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
                                                                                                                     r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                           27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
         \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge Rf0 = F0^i\}
                                                                                                                                                                  \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                       \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
          if (Rf0 \neq 0) then
                                                                                                                     if (Rf1 \neq 0) then
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                    \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
8:
              (* critical section *)
                                                                                                                          (* critical section *)
              w[] flag0 0
                                                                                                                          w[] flag1 0
                                                                                                                       \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
              w[] flag1 1
                                                                                                                         w[] flag0 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                        \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
10:
                                                                                                           30:
              w[] latch1 1
                                                                                                                          w[] latch0 1
                                                                                                                         \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
                                                                                                           31:
          fi
                                                                                                                     fi
12: \{\Gamma \in \Gamma\}
      while true
13:{false}
                                                                                                           33:{false}
```

# Sequential proof $\ell = \kappa$ and p = q

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}
2: \{\Gamma \in \Gamma\}
          do \{j_i\}
             \{\Gamma \in \Gamma\}
                                      For a test instruction \kappa : b[ts] operation l_t \kappa':
             r[] R10 lat
                                             \mathsf{PRE}_{p,r}^{\ell,\kappa}[\rho_r,\nu_r] \land \mathsf{sat}(E[\![operation]\!](\rho_r,\nu_r) \neq 0) \Rightarrow \mathsf{POST}_{p,r}^{\ell,l_t}
             \{\Gamma\in\Gamma\wedge\mathtt{RlO}
          while (R10=0)
                                             \mathsf{PRE}_{p,r}^{\ell,\kappa}[\rho_r,\nu_r] \land \mathsf{sat}(\boldsymbol{E}[\![operation]\!](\rho_r,\nu_r) = 0) \Rightarrow \mathsf{POST}_{p,r}^{\ell,\kappa'}
         \{\Gamma \in \Gamma \land r1R10\}
          w[] latch0 0
        \{\Gamma \in \Gamma \wedge \mathsf{r}1\mathsf{R}10^i_{k_i}[\Gamma]\}
                                                                                                      26: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]\}
                                                                                                                r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                      27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
         \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k}^{i} [\Gamma] \wedge \mathrm{Rf0} = F0^{i}
7:
                                                                                                                                                          \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                     \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
          if (Rf0 \neq 0) then
                                                                                                                if (Rf1 \neq 0) then
                                                                                                               \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
8:
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
              (* critical section *)
                                                                                                                    (* critical section *)
             w[] flag0 0
                                                                                                                    w[] flag1 0
                                                                                                                  \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
             w[] flag1 1
                                                                                                                    w[] flag0 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                   \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
10:
                                                                                                      30:
             w[] latch1 1
                                                                                                                    w[] latch0 1
                                                                                                                    \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
                                                                                                      31:
          fi
                                                                                                                fi
12: \{\Gamma \in \Gamma\}
      while true
13:{false}
                                                                                                      33:{false}
```

# Sequential proof $\ell = \kappa$ and p = q

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
     do \{i\}
2: \{\Gamma \in \Gamma\}
         do \{j_i\}
3:
            \{\Gamma \in \Gamma\}
                                                                                                           r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
            r[] RlO latch0 \{ \sim L0_{i}^{i} \}
           \{ \varGamma \in \Gamma \land \mathtt{Rl0} = L0^i \land (\mathtt{r0Rl0}^i \ [\varGamma] \lor \mathtt{r1Rl0}^i \ [\varGamma]) \}
                                                                                                          \{\Gamma \in \Gamma \land R \} = L 1^{\ell} \land (r 0 R 1 1^{\ell} \mid \Gamma) \lor r 1 R 1 1^{\ell} \mid \Gamma)\}
                                          For local side-effect free marker instructions \kappa: instr \kappa'
         while (R10=0)
                                          where instr = f[ts] [\{l_1^0 \dots l_1^m\} \{l_2^0 \dots l_2^q\}], w[ts] \times r\text{-value},
         \{\Gamma \in \Gamma \land r1R10\}
5:
         w[] latch0 0
                                          beginrmw[ts] x, endrmw[ts] x:
                                                                                                                                                                            (marker)
       \{\Gamma \in \Gamma \land r1R10\}
                                                \mathsf{PRE}_{n,r}^{\ell,\kappa} \Rightarrow \mathsf{POST}_{n,r}^{\ell,\kappa'}
         r[] RfO flag0
         \{\Gamma \in \Gamma \wedge r1R10\}
                                                 \land (r0Rf0^{i}[\Gamma] \lor r1Rf0^{i}[\Gamma])
                                                                                                                                               \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
         if (Rf0 \neq 0) then
                                                                                                        if (Rf1 \neq 0) then
             \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}^i_{k_i}[\Gamma] \wedge \mathrm{r1Rf0}^i[\Gamma]\}
                                                                                                           \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             (* critical section *)
                                                                                                            (* critical section *)
             w[] flag0 0
                                                                                                           w[] flag1 0
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                           \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
9:
            w[] flag1 1
                                                                                                           w[] flag0 1
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                           \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
10:
                                                                                               30:
            w[] latch1 1
                                                                                                           w[] latch0 1
                                                                                                           \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
                                                                                               31:
         fi
                                                                                                        fi
12: \{\Gamma \in \Gamma\}
      while true
13:{false}
                                                                                               33:{false}
```

## Non-interference proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
     do \{i\}
                                                          The local invariants of process p
2: \{\Gamma \in \Gamma\}
        do \{j_i\}
                                                    depend only on \Gamma and local registers
      \{\Gamma \in \Gamma\}
           r[] R10 latch0 \{ \leadsto L0 \}
                                                       or Pythia variables unchanged by a
        \{ \Gamma \in \Gamma \wedge \mathtt{Rl0} = L0^i_{j_i} \wedge (\mathtt{r}) \}
        while (R10=0) \{k_i\}
                                                                      step in the other process
5: \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma]\}
        w[] latch0 0
6: \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma]\}
                                                                                       26: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]\}
                                                                                               r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
        r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                       27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
7: \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge Rf0 = F0^i\}
                                                                                                                                    \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                             \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
        if (Rf0 \neq 0) then
                                                                                               if (Rf1 \neq 0) then
                                                                                       28: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
         \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
           (* critical section *)
                                                                                                   (* critical section *)
           w[] flag0 0
                                                                                                   w[] flag1 0
                                                                                                 \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
           w[] flag1 1
                                                                                                  w[] flag0 1
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                 \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                                                                                       30:
10:
           w[] latch1 1
                                                                                                  w[] latch0 1
                                                                                                  \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                       31:
        fi
                                                                                               fi
12: \{\Gamma \in \Gamma\}
     while true
13:{false}
```

## Communication proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}

    Communication condition

2: \{\Gamma \in \Gamma\}
                                                                      \mathsf{COM}_{p}^{\ell}[\mathsf{rf}] \triangleq S_{\mathsf{ind}\,p}(\ell)[\mathsf{rf}] \wedge S_{\mathsf{com}_{p}}(\ell)[\mathsf{rf}]
         do \{j_i\}
3:
          \{\Gamma \in \Gamma\}
             r[] R10 latch0 \{ \sim L0 \}
                                                          • A read event can read from only one write event.
         \{ \Gamma \in \Gamma \wedge \mathtt{RlO} = L0^i_{j_i} \wedge (\mathtt{r}) \}
                                                                     \mathsf{COM}_n^{\ell}[\mathsf{rf}] \wedge \mathit{rf}[r,w_1] \in \mathsf{rf} \wedge \mathit{rf}[r,w_2] \in \mathsf{rf}
                                                                                                                                                                              (singleness)
         while (R10=0) \{k_i\}
                                                                       \Rightarrow w_1 = w_2.
5: \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma]\}
         w[] latch0 0
6: \{\Gamma \in \Gamma \wedge r1R10_{k}^{i} [\Gamma]\}
                                                                                                     26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
         r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                               r[] Rf1 flag1 \longleftrightarrow F1^{\ell}]
                                                                                                     27: \{\Gamma \in \Gamma \land r1R11_{n_{\ell}}^{\ell}[\Gamma] \land Rf1\}
      \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma] \wedge \mathrm{Rf0} = F0^i
                                                                                                                                                              (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                    \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
                                                                                                               if (Rf1 \neq 0) then
         if (Rf0 \neq 0) then
                                                                                                              \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
          \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma] \wedge r1Rf0^i [\Gamma]\}
                                                                                                                   (* critical section *)
             (* critical section *)
             w[] flag0 0
                                                                                                                   w[] flag1 0
                                                                                                                 \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
                                                                                                                   w[] flag0 1
             w[] flag1 1
                                                                                                                 \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
10:
                                                                                                      30:
             w[] latch1 1
                                                                                                                   w[] latch0 1
                                                                                                                   \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
                                                                                                     31:
          fi
                                                                                                               fi
12: \{\Gamma \in \Gamma\}
      while true
13:{false}
                                                                                                     33:{false}
```

## Communication proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
       do \{i\}
                                                               • All process read instructions \ell : r[ts] R \times \ell' must read either from
2: \{\Gamma \in \Gamma\}
                                                               an initial or a reachable program write, allowed by the communica-
           do \{j_i\}
                                                               tion hypothesis (\exists P[X_1, \dots, X_m] means that all free variables in
             \{\Gamma\in I
              r[] Flo latcho \{\sim L0 \mid \mathsf{COM}_p^\ell[\theta_p,\mathsf{rf}] \land \mathsf{rf} \neq \emptyset \Rightarrow \exists \mathit{rf}[\mathfrak{w}(\langle q,\,\ell_q,\,\mathsf{w}[\mathit{ts}]\,\,\mathsf{x}\,\mathit{r-value},\,\theta'\rangle,v),
           \{ arGamma \in \Gamma \wedge \mathtt{RlO} = L0^i_{i_i} \wedge (\mathtt{rO}) \}
                                                                   \mathfrak{r}(\langle p, \ell, \mathbf{r}[ts] \ \mathsf{R} \ \mathsf{x}, \ \theta_p \rangle, \mathsf{x}_{\theta_n})] \in \mathsf{rf}.
                                                                                                                                                                                 (satisfaction)
           while (R10=0) \{k_i\}
                                                                         ((q \in \mathbb{P} \hat{\mathbb{I}} \wedge \mathbf{\exists} \mathsf{PRE}_q^{\ell_q} [\theta_q \leftarrow \theta', \mathsf{rf}]) \vee (q = \mathsf{start} \wedge v = 0)).
5: \{\Gamma \in \Gamma \land r1R10^i_{k}, [\Gamma]\}
           w[] latch0 0
       \{\Gamma \in \Gamma \wedge r1R10^i_{k}, [\Gamma]\}
                                                                                                           26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
           r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                                     r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
7: \{\Gamma \in \Gamma \land r \mathbb{1} \mathsf{R} \mathsf{10}^i_{k}, |\Gamma| \land \mathsf{Rf0} = F0^i\}
                                                                                                           27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
                                                                                                                                                                  \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                        \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
           if (Rf(\neq 0)) then
                                                                                                                     if (Rf1 \neq 0) then
                                                                                                           28: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10_{k}^{i} [\Gamma] \wedge r1Rf0^{i} [\Gamma]\}
               (* critical section *)
                                                                                                                          (* critical section *)
               w[] flag0 0
                                                                                                                          w[] flag1 0
                                                                                                                          \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
                                                                                                           29:
               w[] flag1 1
                                                                                                                          w[] flag0 1
               \int \Gamma \subset \Gamma \wedge r 1R 10^i [\Gamma] \wedge r 1R f 0^i [\Gamma]
                                                                                                           30.
                                                                                                                          \int \Gamma \subset \Gamma \wedge r 1R 11^{\ell} [\Gamma] \wedge r 1R f 1^{\ell} [\Gamma]
\mathrm{rORf0}^i[\Gamma] \triangleq (\mathfrak{rf}\langle F0^i, \langle 0:, -, 0 \rangle) \in \Gamma \wedge F0^i = 0) \vee (\exists i_8 \in \mathbb{N} \cdot \mathfrak{rf}\langle F0^i, \langle 8:, i_8, 0 \rangle) \in \Gamma \wedge F0^i = 0)
\mathsf{r}1\mathsf{R}f0^{i}[\Gamma] \triangleq (\exists \ell_{29} \in \mathbb{N} \cdot \mathfrak{r}f\langle F0^{i}, \langle 29:, \ell_{29}, 1 \rangle) \in \Gamma \wedge F0^{i} = 1)
12: \{\Gamma \in \Gamma\}
       while true
13:{false}
```

## Communication proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
       do \{i\}
2: \{\Gamma \in \Gamma\}
                                                               • The values v allowed to be read by the communication hypo-
           do \{j_i\}
                                                               thesis must originate from reachable program write instructions
                                                               \ell: w[ts] x r-value \ell':
              r[] F10 latch0 \{ \leadsto L(
                                                                          \forall \mathsf{rf} \ . \ \forall \mathit{rf}[\mathfrak{w}(\langle q, \ell_q, \mathsf{w}[\mathit{ts}] \mathsf{x} \mathit{r-value}, \theta_p \rangle, v), r] \in \mathsf{rf} \ (\mathsf{match})
           \{\Gamma \in \Gamma \land \mathtt{Rl0} = L0^i_{i_i} \land (\mathtt{r0})
                                                                                     \mathsf{COM}_{p}^{\ell}[\theta_{q}, \rho_{q}, \nu_{q}, \mathsf{rf}] \Rightarrow v = \mathsf{E}[r\text{-}value](\rho_{q}, \nu_{q})
           while (10=0) \{k_i\}
5: \{\Gamma \in \Gamma \land \mathsf{r} 1\mathsf{R} 10^i_{k}, [\Gamma]\}
           w[] latch0 0
       \{\Gamma \in \Gamma \wedge \mathrm{r1R10}_{k}^{i}[\Gamma]\}
                                                                                                           26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\theta}}^{\ell}[\Gamma]\}
                                                                                                                     r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
           r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
         \{\Gamma \in \Gamma \land r \mathbb{R} | 0_{k_i}^i | \Gamma \} \land \mathbb{R} f 0 = F 0^i
                                                                                                           27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
                                                                                                                                                                  \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                       \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
           if (Rf(\neq 0)) then
                                                                                                                     if (Rf1 \neq 0) then
                                                                                                           28: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10_{k}^{i} [\Gamma] \wedge r1Rf0^{i} [\Gamma] \}
               (* critical section *)
                                                                                                                          (* critical section *)
               w[] flag0 0
                                                                                                                          w[] flag1 0
                                                                                                                          \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
                                                                                                           29:
               w[] flag1 1
                                                                                                                          w[] flag0 1
               \int \Gamma \subset \Gamma \wedge r 1R 10^i [\Gamma] \wedge r 1R f 0^i [\Gamma]
                                                                                                           30.
                                                                                                                          \int \Gamma \subset \Gamma \wedge r 1R 11^{\ell} [\Gamma] \wedge r 1R f 1^{\ell} [\Gamma]
\mathrm{rORf0}^i[\Gamma] \triangleq (\mathfrak{rf}\langle F0^i, \langle 0:, -, 0 \rangle) \in \Gamma \wedge F0^i = 0) \vee (\exists i_8 \in \mathbb{N} \cdot \mathfrak{rf}\langle F0^i, \langle 8:, i_8, 0 \rangle) \in \Gamma \wedge F0^i = 0)
\mathsf{r}1\mathsf{R}f0^{i}[\Gamma] \triangleq (\exists \ell_{29} \in \mathbb{N} \cdot \mathfrak{r}f\langle F0^{i}, \langle 29:, \ell_{29}, 1 \rangle) \in \Gamma \wedge F0^{i} = 1)
12: \{\Gamma \in \Gamma\}
       while true
13:{false}
```

# Inclusion proof



## Method

The communication specification is

$$S_{com}(\Gamma, \overline{\Gamma}) \triangleq (at\{8\} \land at\{28\}) \Longrightarrow (S_{com_1}(\Gamma, \overline{\Gamma}) \land S_{com_2}(\Gamma, \overline{\Gamma}) \land S_{com_3}(\Gamma, \overline{\Gamma}) \land S_{com_4}(\Gamma, \overline{\Gamma}))$$

The consistency specification must satisfy

$$H_{com}(\Gamma, \overline{\Gamma}) \Rightarrow S_{com}(\Gamma, \overline{\Gamma})$$
 i.e.  $\neg S_{com}(\Gamma, \overline{\Gamma}) \Rightarrow \neg H_{com}(\Gamma, \overline{\Gamma})$ 

• So the design of  $H_{com}(\Gamma, \overline{\Gamma})$  must forbid the erroneous communications specified by the communication specification

$$\left(\operatorname{at}\{8\} \wedge \operatorname{at}\{28\} \wedge \bigvee_{i=1}^{4} \neg S_{com_{i}}(\Gamma, \overline{\Gamma})\right) \Longrightarrow \bigvee_{i=1}^{4} \neg H_{com_{i}}(\Gamma, \overline{\Gamma})$$

```
S_{com_1} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29} \in \mathbb{N} \cdot \Gamma \in \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29} \rangle = \mathbb{N} \cdot \Gamma = \Gamma \wedge \Gamma + \Gamma \wedge \Gamma = \Gamma \wedge \Gamma \wedge \Gamma = \Gamma \wedge \Gamma + \Gamma \wedge \Gamma = \Gamma \wedge 
                                                                                                                                                            |\ell_{30}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{2
                                                                                                                                                               \langle 0:, -, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 0:, -, 1 \rangle \rangle \in \Gamma
                         {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      21:do~\{\ell\}
                        1: do \{i\}
                                                                                   do \{j_i\}
                        2:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                r[] Rl1 latch1 \{\leadsto L1^\ell_{m_\ell}\}
                                                                                                           r[] R10 latch0 \{ \longleftrightarrow L0_{j_i}^i \}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      23:
                        3:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 while (R11=0) \{n_\ell\}
                       4:
                                                                                  while (R10=0) \{k_i\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 w[] latch1 0
                        5:
                                                                                  w[] latch0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
                                                           r[] Rf0 flag0 \longrightarrow F0^i}
                        7: if (Rf0 \neq 0) then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     27: if (Rf1\neq0) then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      28 ---- (* -critical section *)
--8:----(*-critical-section-*)
                                                                                                           w[] flag0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       w[] flag1 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      29: w[] flag0 1
                                                         w[] flag1 1
                        9:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     w[] latch0 1
                                                                             w[] latch1 1
                         10:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      31:
                        11:
                                                                                    fi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      32:while true
                         12:while true
                        13:
```

```
S_{com_2} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_9 \in \mathbb{N} . \Gamma \in \Gamma \land \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{29}, \ell_{29}, \ell_{29} \rangle )
                                                                        |\ell_{30}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{2
                                                                         \langle 0:, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 9:, i_9, 1 \rangle \rangle \in \Gamma
           {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
           1: do \{i\}
                                                                                                                                                                                                                                               21:do \{\ell\}
                                      do \{j_i\}
           2:
                                                                                                                                                                                                                                              23: r[] Rl1 latch1 \{ \rightsquigarrow L1_{m_{\ell}}^{\ell} \}
                                                 r[] R10 latch0 \{ \longleftrightarrow L0_{j_i}^i \}
           3:
                                                                                                                                                                                                                                               24: while (Rl1=0) \{n_\ell\}
          4:
                                      while (R10=0) \{k_i\}
                                                                                                                                                                                                                                               25: w[] latch1 0
           5:
                                      w[] latch0 0
                                                                                                                                                                                                                                               26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
                          r[] Rf0 flag0 \longrightarrow F0^i}
           7: if (Rf0 \neq 0) then
                                                                                                                                                                                                                                              27: if (Rf1 \neq 0) then
                                                                                                                                                                                                                                               28;----(*-critical-section-*)
--8:----(*-critical-section *)
                                                 w[] flag0 0
                                                                                                                                                                                                                                                                               w[] flag1 0
                                                                                                                                                                                                                                               29: \w[] flag0 1
                         w[] flag1 1
          9:
                                                                                                                                                                                                                                                                                   w[] latch0 1
                               w[] latch1 1
           10:
                                                                                                                                                                                                                                               31:
           11:
                                       fi
                                                                                                                                                                                                                                              32:while true
           12:while true
           13:
```

```
S_{com_3} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} . \Gamma \in \Gamma \land \mathfrak{rf} \langle L0_{k_i}^i, \langle 30:, \ell_{29}, \ell_{29}, \ell_{29}, \ell_{29} \rangle
                                                                        |\ell_{30}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{2
                                                                          \langle 10:, i_{10}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 0:, ., 1 \rangle \rangle \in \Gamma
           {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
           1: do \{i\}
                                                                                                                                                                                                                                                21:do \{\ell\}
                                      do \{j_i\}
           2:
                                                                                                                                                                                                                                               23: r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
                                                 r[] R10 latch0 \{ \leadsto L0_{j_i}^i \}
           3:
                                                                                                                                                                                                                                                24. while (Rl1=0) \{n_\ell\}
          4:
                                      while (R10=0) \{k_i\}
                                                                                                                                                                                                                                                                  w[] latch1 0
           5:
                                      w[] latch0 0
                                                                                                                                                                                                                                                26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
                          r[] Rf0 flag0 \{ \leadsto F0^i \}
           7: if (Rf0 \neq 0) then
                                                                                                                                                                                                                                                27: if (Rf1 \neq 0) then
                                                                                                                                                                                                                                                 28:----(* -critical -section *-)-
--8:----(*-critical-section *)
                                                  w[] flag0 0
                                                                                                                                                                                                                                                                                       w[] flag1 0
                                                                                                                                                                                                                                                29: w[] flag0 1
          9:
                        w[] flag1 1
                              w[] latch1 1
                                                                                                                                                                                                                                                                                  w[] latch0 1
                                                                                                                                                                                                                                                31:
           11:
                                       fi
                                                                                                                                                                                                                                                32:while true
           12:while true
           13:
```

```
S_{com_4} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10}, i_9 \in \mathbb{N} \cdot \Gamma \in \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, q_{10}^i, q_{10}^i
                                                                                                                              \langle 30:, \ell_{30}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F0^i, \langle 29:, \ell_{29}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle L1^{\ell}_{n_{\ell}}, \ell_{29}, 
                                                                                                                              \langle 10:, i_{10}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 9:, i_{9}, 1 \rangle \rangle \in \Gamma
                 {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                 1: do \{i\}
                                                                                                                                                                                                                                                                                                                                                                            21:do \{\ell\}
                                                                                                                                                                                                                                                                                                                                                                           22: do \{m_{\ell}\}
                                                          do \{j_i\}
                                                                                                                                                                                                                                                                                                                                                                           23: r[] Rl1 latch1 \{ \rightsquigarrow L1_{m_{\ell}}^{\ell} \}
                                                                           r[] R10 latch0 \{ \longleftrightarrow L0_{j_i}^i \}
                                                         while (R10=0) \{k_i\}
                                                                                                                                                                                                                                                                                                                                                                            24. while (Rl1=0) \{n_\ell\}
                                                                                                                                                                                                                                                                                                                                                                            25: w[] latch1 0
                                                          w[] latch0 0
                                                                                                                                                                                                                                                                                                                                                                             26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
                                      r[] Rf0 flag0 \{ \leadsto F0^i \}
                 7: if (Rf0 \neq 0) then
                                                                                                                                                                                                                                                                                                                                                                            27: if (Rf1 \neq 0) then
--8:----(*-critical-section *)
                                                                                                                                                                                                                                                                                                                                                                              28:----(*-critical-section-*)
                                                                            w[] flag0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                     w[] flag1 0
               9: w[] flag1 1
                                                                                                                                                                                                                                                                                                                                                                            29: w[] flag0 1
                                                                                                                                                                                                                                                                                                                                                                                                                               w[] latch0 1
                                              w[] latch1 1
                                                                                                                                                                                                                                                                                                                                                                            31:
                                                           fi
                                                                                                                                                                                                                                                                                                                                                                            32:while true
                 12:while true
```

2:

3:

4:

5:

10:

11:

13:

## Conclusion on mutual exclusion

 PostgreSQL is correct on architectures satisfying the "no prophecy beyond cut during execution" property



 Intuition on necessity: when waiting for a spinlock, you should look at its current value, not at later ones!

#### in cat

A static condition to impose a dynamic condition:

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
     do \{j_i\}
                                         23:    r[] Rl1 latch1 \{\leadsto L1_{m_\ell}^\ell\}
    r[] R10 latch0 \{\leadsto L0_{j_i}^i\}
                                          24: while (Rl1=0) \{n_\ell\}
4: while (R10=0) \{k_i\}
                                          25: w[] latch1 0
     w[] latch0 0
                                          26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
     r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
     if (Rf0 \neq 0) then
                                          27: if (Rf1 \neq 0) then
     f[cut] -
                                         28: f[cut] -
       (* critical section *)
                                                 (* critical section *)
       w[] flag0 0
                                                 w[] flag1 0
     w[] flag1 1
                                          29: w[] flag0 1
       w[] latch1 1
                                                w[] latch0 1
10:
11: fi
                                          32:while true
12:while true
13:
enum fences = 'cut
instructions F[{'cut}]
let cut = (tag2events('cut) * tag2events('cut)) & ext
irreflexive rf; po; cut; po
```

## Prevents valid executions



Non-starvation

## Difference with Lamport/Owicki-Gries

 The communications in L/O-G are fixed in the semantics (SC) for <u>all</u> executions:







(b) Read from last write

- ⇒ entangled with the verification conditions
- ⇒ impossible to reason on one execution trace only

## Reasoning on only one execution

- An execution is entirely determined by its read-from relation rf
- The verification conditions depend on a set  $\Gamma$  of verification conditions
- By choosing  $\Gamma = \{rf\}$ , we can reason on this execution
- This execution satisfies the inductive invariant  $S_{ind}(\{rf\})$
- To prove that this execution is impossible it is sufficient to prove that  $S_{ind}(\{rf\})$  cannot hold (according to the verification conditions)
- Since the method is sound, if the verification conditions are not satisfied, the execution is excluded by the semantics

## 9 cases of starvation



### (I) Both processes starve in spin loops

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
 1: {true}
       do \{i\}
                                                                                             do \{\ell\}
                                                                                      22: {true}
           {true}
           do \{j_i\}
                                                                                       23:
               r[] R10 latch0 \{ \rightsquigarrow L0^i_{i:} \}
                                                                                                    r[] Rl1 latch1 \{\leadsto L1_{m_{\theta}}^{\ell}\}
                                                                                                     \{Rl1 = L1_{m_e}^{\ell} \nearrow
                \{R10 = L0^{i}_{i} \land
                                                                                       24:
 4:
                                                                                                       (\mathrm{roRl1}_{\mathrm{m}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee \mathrm{r1Rl1}_{\mathrm{m}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                  (r0Rl0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}])\}
           while (R10=0) \{k_i\}
                                                                                                 while (Rl1=0) \{n_\ell\}
           \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                       25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                  w[] latch1 0
            w[] latch0 0
                                                                                      26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
           \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}]\}
           r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                 r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                       27: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}] \wedge Rf1 = F1^{\ell} \wedge
           \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}] \land Rf0 = F0^{i} \land
                                                                                                    (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
              (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
           if (Rf0 \neq 0) then
                                                                                                  if (Rf1 \neq 0) then
                \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                     \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                (* critical section *)
                                                                                                      (* critical section *)
                                                                                                                                                              false
false
                w[] flag0 0
                                                                                                     w[] flag1 0
                                                                                                     \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0_{\mathbf{k}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
 9:
                                                                                                     w[] flag0 1
               w[] flag1 1
                \{r1Rl0_{k_i}^i[\Gamma_{rf}] \wedge r1Rf0^i[\Gamma_{rf}]\}
                                                                                                      \{r1Rl1_{n_e}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
 10:
               w[] latch1 1
                                                                                                      w[] latch0 1
                \{r1Rl0_{k_{i}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                      \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
 11:
                                                                                       31:
           fi
                                                                                                  fi
          {true}
                                                                                       32: {true}
        while true
 13: { false }
                                                                                       33: { false }
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- invariant false after both spin loops
- so latch1 in 23: can only be read from initialization
- so latch1 is I not 0, a contradiction

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
       {true}
                                                                                      22: {true}
                                                                                                  do \{m_{\ell}\}
          do \{j_i\}
                                                                                      23:
                                                                                                     r[] Rl1 latch1 \{\leadsto L1_{m_{\ell}}^{\ell}\}
              r[] R10 latch0 \{ \rightsquigarrow L0_{i}^{i} \}
              \{R10 = L0^{i}_{i} \land
                                                                                      24:
                                                                                                     \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_\ell} \land
4:
                                                                                                     (r0Rl1_{m_{\ell}}^{\ell} [\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell} [\Gamma_{\mathsf{rf}}]) \}
                (r0Rl0_{i_{i}}^{i}[\Gamma_{\mathsf{rf}}] \vee r1Rl0_{i_{i}}^{i}[\Gamma_{\mathsf{rf}}])
          while (R10=0) \{k_i\}
                                                                                                 while (Rl1=0) \{n_\ell\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                      25: \{r1Rl1_{n_{\rho}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
          w[] latch0 0
                                                                                                  w[] latch1 0
                                                                                      26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
          r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                 r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                      27: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}] \wedge Rf1 = F1^{\ell} \wedge \}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}] \land Rf0 = F0^{i} \land
                                                                                                    (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
            (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
          if (Rf0 \neq 0) then
                                                                                                 if (Rf1 \neq 0) then
                                                                                                     \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
              \{r1Rl0_{\mathbf{k}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
               (* critical section *)
                                                                                                      (* critical section *)
              w[] flag0 0
                                                                                                     w[] flag1 0
                                                                                                     \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\text{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\text{rf}}]\}
              \{r1Rl0_{\mathbf{k}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
              w[] flag1 1
                                                                                                     w[] flag0 1
              \{r1Rl0_{k_i}^i[\Gamma_{rf}] \wedge r1Rf0^i[\Gamma_{rf}]\}
                                                                                                     \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
10:
                                                                                                     w[] latch0 1
              w[] latch1 1
                                                                                                     \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
              \{r1Rl0_{k_{i}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
11:
          fi
12: {true}
      while true
13:{false}
```

• let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
       {true}
                                                                                         22: {true}
                                                                                                     do \{m_{\ell}\}
          do \{j_i\}
                                                                                         23:
                                                                                                         r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
              r[] R10 latch0 \{ \rightsquigarrow L0_{i}^{i} \}
              \{R10 = L0^{i}_{i} \land
                                                                                         24:
                                                                                                         \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_\ell} \land
4:
                                                                                                         (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                 (r0Rl0_{i_{i}}^{i}[\Gamma_{\mathsf{rf}}] \vee r1Rl0_{i_{i}}^{i}[\Gamma_{\mathsf{rf}}])
          while (R10=0) \{k_i\}
                                                                                                     while (Rl1=0) \{n_\ell\}
                                                                                         25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                     w[] latch1 0
          w[] latch0 0
                                                                                         26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
          r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                     r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                         27: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}] \land Rf1 = F1^{\ell} \land
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}] \land Rf0 = F0^{i} \land
             (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
                                                                                                       (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
          if (Rf0 \neq 0) then
                                                                                                     if (Rf1 \neq 0) then
                                                                                                         \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r}1\mathrm{Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
              \{r1Rl0^{i}_{\mathbf{k}:}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
               (* critical section *)
                                                                                                         (* critical section *)
               w[] flag0 0
                                                                                                         w[] flag1 0
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
               \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
              w[] flag1 1
                                                                                                         w[] flag0 1
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
               \{r1Rl0_{k_i}^{i}[\Gamma_{\text{rf}}] \wedge r1Rf0^{i}[\Gamma_{\text{rf}}]\}
10:
                                                                                                         w[] latch0 1
              w[] latch1 1
             \{\mathrm{r1Rl0}_{\mathrm{k_{i}}}^{\mathrm{i}}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0}^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
           fi
12: {true}
                                                                                         32: {true}
      while true
13:{false}
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- the invariant inside critical sections must be false

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
        {true}
                                                                                          22: {true}
                                                                                                      do \{m_\ell\}
          do \{j_i\}
                                                                                          23:
              r[] R10 latch0 \{ \rightsquigarrow L0_{i}^{i} \}
                                                                                                          r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
               \{R10 = L0^{i}_{i} \land
                                                                                          24:
                                                                                                          \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_a} \land
4:
                                                                                                          (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                 (r0Rl0_{i_{i}}^{i}[\Gamma_{\mathsf{rf}}] \vee r1Rl0_{i_{i}}^{i}[\Gamma_{\mathsf{rf}}])
          while (R10=0) \{k_i\}
                                                                                                      while (Rl1=0) \{n_\ell\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                          25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
           w[] latch0 0
                                                                                                      w[] latch1 0
                                                                                          26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                      r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
          r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                          27: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}] \wedge Rf1 = F1^{\ell} \wedge
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}] \land Rf0 = F0^{i} \land
             (r0Rf0^{i}[\Gamma_{rf}] \vee \frac{r1Rf0^{i}[\Gamma_{rr}]}{r})
                                                                                                         (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rr}])
           if (Rf0 \neq 0) then
                                                                                                      if (Rf1 \neq 0) then
              \{\mathrm{r1Rl0_{k_i}^i}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0^i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                          \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r}1\mathrm{Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
               (* critical section *)
                                                                                                           (* critical section *)
               w[] flag0 0
                                                                                                          w[] flag1 0
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
               \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
                                                                                                          w[] flag0 1
               w[] flag1 1
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
               \{r1Rl0_{k_i}^{i}[\Gamma_{\text{rf}}] \wedge r1Rf0^{i}[\Gamma_{\text{rf}}]\}
10:
                                                                                                          w[] latch0 1
               w[] latch1 1
             \{\mathrm{r1Rl0}_{\mathrm{k_{i}}}^{\mathrm{i}}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0}^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
           fi
                                                                                                      fi
12: {true}
                                                                                          32: {true}
      while true
13:{false}
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- the invariant inside critical sections must be false
- tests (Rf0≠0) and (Rf1≠0)
   must be false (written \*\*\*)

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
                                                                                                do \{\ell\}
        {true}
                                                                                         22: {true}
                                                                                                     do \{m_{\ell}\}
           do \{j_i\}
                                                                                                         {true}
                                                                                          23:
              r[] R10 latch0 \{ \leadsto L0_{i}^{i} \}
                                                                                                         r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
               \{R10 = L0^i_{ii} \land
                                                                                         24:
                                                                                                         \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_a} \land
4:
                                                                                                           (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                 (r0Rl0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}] \vee r1I[l0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}])\}
          while (R10=0) \{k_i\}
                                                                                                     while (Rl1=0) \{n_\ell\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}]\}
                                                                                         25: \{r1Rl1_{n_{\rho}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
          w[] latch0 0
                                                                                                     w[] latch1 0
                                                                                         26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}]\}
                                                                                                    r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                         27: \{rIRII_{n,\epsilon}^{\ell}[\Gamma_{rf}] \wedge Rf1 = F1^{\ell} \wedge
                                                                                                       (r0Rf1^{\ell}[\Gamma_{rf}] \vee r\frac{1Rf1^{\ell}[\Gamma_{rr}]}{r})
             (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rr}]
           if (Rf0 \neq 0) then
                                                                                                     if (Rf1 \neq 0) then
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
              \{\mathrm{r1Rl0_{k}^{i}}_{i}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0^{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                         (* critical section *)
               (* critical section *)
                                                                                                         w[] flag1 0
               w[] flag0 0
                                                                                                         \left\{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\right\}
               \{r1Rl0_{\mathbf{k}}^{i}, [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
              w[] flag1 1
                                                                                                         w[] flag0 1
                                                                                                         \left\{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\right\}
               \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
10:
                                                                                                         w[] latch0 1
               w[] latch1 1
             \{\mathrm{r1Rl0}_{\mathrm{k_{i}}}^{\mathrm{i}}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0}^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
           fi
                                                                                                     fi
12: {true}
                                                                                         32: {true}
      while true
                                                                                         33: {false}
13:{false}
```

- let rf be the communication for such a trace (encoded in
- the invariant inside critical sections must be false
- tests (Rf0≠0) and (Rf1≠0) must be false (written \*\*\*)
- so read of Rf0 and Rf1 is 0 from a reachable write

false

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
                                                                                          21:{true}
      do \{i\}
                                                                                                do \{\ell\}
          {true}
                                                                                         22: {true}
           do \{j_i\}
                                                                                                     do \{m_\ell\}
                                                                                                          {true}
                                                                                          23:
              r[] R10 latch0 \{ \leadsto L0_{i}^{i} \}
                                                                                                         r[] Rl1 latch1 \{ \leadsto L1_{m_{\theta}}^{\ell} \}
               \{R10 = L0^{i}_{i} \land
                                                                                         24:
                                                                                                         \{Rl1 = L1^{\ell}_{m_{\alpha}} \wedge
4:
                 (r0Rl0_{i:}^{i}[\Gamma_{\mathsf{rf}}] \vee r1Kl0_{i:}^{i}[\Gamma_{\mathsf{rf}}])
          while (R10=0) \{k_i\}
                                                                                                     while (Rl1=0) \{n_{\ell}\}
                                                                                                     \left\{ \mathrm{r} rac{1\mathrm{R} \mathrm{H}^{\ell}}{\mathrm{n}_{\ell}} [\Gamma_{\mathsf{r}\mathsf{f}}] 
ight\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}]\}
           w[] latch0 0
                                                                                                     w[] latch1 0
                                                                                         26: \{r1R11^{\ell}_{n_{\ell}}[\Gamma_{\mathsf{rf}}]\}
          \{r1Rl0^{i}_{k}, [\Gamma_{rf}]\}
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                     r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                                     \{rIRII_{n,\epsilon}^{\ell}[\Gamma_{rf}] \land Rf1 = F1^{\ell} \land
             (r0Rf0^{i}[\Gamma_{rf}] \vee \frac{r1Rf0^{i}[\Gamma_{rr}]}{r}
           if (Rf0 \neq 0) then
                                                                                                     if (Rf1 \neq 0) then
              \{r1Rl0^{i}_{\mathbf{k}_{:}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                         28:
                                                                                                          (* critical section *)
               (* critical section *)
               w[] flag0 0
                                                                                                         w[] flag1 0
                \{r1Rl0_{\mathbf{k}}^{\mathbf{i}} [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{\mathbf{i}} [\Gamma_{\mathsf{rf}}]\}
                                                                                         29:
                                                                                                         \{\mathrm{r}1\mathrm{R}11_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r}1\mathrm{R}f1^{\ell}[\Gamma_{\mathsf{rf}}]\}
9:
               w[] flag1 1
                                                                                                         w[] flag0 1
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\text{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\text{rf}}]\}
               \{r1Rl0_{k}^{i}, [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                         w[] latch0 1
               w[] latch1 1
              [\Gamma 1Rl0^{i}_{k}, \Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i} \Gamma_{\mathsf{rf}}]
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
           fi
                                                                                                     fi
12: {true}
                                                                                         32: {true}
      while true
                                                                                         33: {false}
13:{false}
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- the invariant inside critical sections must be false
- tests (Rf0≠0) and (Rf1≠0)
   must be false (written \*\*\*)
- so read of Rf0 and Rf1 is 0 from a reachable write
- impossible for Rf1 so loop 23
  —24 is never exited
  - $\Rightarrow$  we are in case (3), PI stuck in spin loop

#### (3) Process P1 stuck in spin loop (no hypothesis on P0)

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
         {true}
                                                                                   22: {true}
          do \{j_i\}
                                                                                              do \{m_{\ell}\}
              {true}
                                                                                   23:
3:
                                                                                                   {true}
             r[] R10 latch0 \{ \rightsquigarrow L0_{i}^{i} \}
                                                                                                  r[] Rl1 latch1 \{ \leadsto L1_{m_\theta}^\ell \}
              \{R10 = L0^{i}_{i} \land
                                                                                   24:
                                                                                                  \{Rl1 = L1^{\ell}_{ma} \land
4:
                (r0Rl0_{i:}^{i}[\Gamma_{\mathsf{rf}}] \vee r1Rl0_{i:}^{i}[\Gamma_{\mathsf{rf}}])
          while (R10=0) \{k_i\}
                                                                                              while (Rl1=0) \{n_\ell\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                   25: \{r1Rl1_{n_{\rho}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
          w[] latch0 0
                                                                                              w[] latch1 0
                                                                                   26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}]\}
          r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                              r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
          \{r1Rl0^{i}_{k}, [\Gamma_{rf}] \land Rf0 = F0^{i} \land
                                                                                   27: \{r1Rl1_{n_{\theta}}^{\ell}[\Gamma_{rf}] \wedge Rf1 = F1^{\ell} \wedge
                                                                                                (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
            (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
          if (Rf0 \neq 0) then
                                                                                              if (Rf1 \neq 0) then
                                                                                                 \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\} false
             \{\mathrm{r1Rl0_{k:}^{i}}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0^{i}}[\Gamma_{\mathsf{rf}}]\}
              (* critical section *)
                                                                                                  (* critical section *)
              w[] flag0 0
                                                                                                  w[] flag1 0
                                                                                                  \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\wedge\mathrm{r}1\mathrm{Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
              \{r1Rl0_{\mathbf{k}}^{i}, [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
   false
             w[] flag1 1
                                                                                                  w[] flag0 1
              \{r1Rl0_{k}^{i}, [\Gamma_{rf}] \wedge r1Rf0^{i} [\Gamma_{rf}]\}
                                                                                                  \{r1Rl1_{n_f}^{\ell}[\Gamma_{rf}] \wedge r1Rf1^{\ell}[\Gamma_{rf}]\}
10:
                                                                                                  w[] latch0 1
              w[] latch1 1
            \{r1Rl0^{i}_{k:}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                  \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
11:
                                                                                   31:
          fi
                                                                                              fi
12: {true}
                                                                                   32: {true}
      while true
13: {false}
                                                                                   33: { false }
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- the invariant after 25: must be false
- read of latch1 in 23: must be a 0
- only possibility if from 25:
- A contradiction since 25: is unreachable

#### (4) Process P0 starves in spin loop, no hypothesis on P1

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
      1: {true}
                                                                                           21:{true}
            do \{i\}
                                                                                                 do \{\ell\}
                                                                    CO
              {true}
                                                                                           22: {true}
                                                                                                      do \{m_{\ell}\}
                do \{j_i\}
                                                                                                          {true}
                     {true}
                                                                                           23:
      3:
                    r[] R10 latch0 \{ \rightsquigarrow L0_{j_i}^i \}
                                                                                                          r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
                    \{R10 = L0^{i}, \wedge
                                                                                           24:
                                                                                                          \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_a} \land
      4:
                      (r0Rl0_{j}^{i}[\Gamma_{rf}] \vee \frac{1}{1}Rl0_{j_{i}}^{i}[\Gamma_{rf}])
                                                                                                            (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                                                                                                      while (Rl1=0) \{n_\ell\}
                while (R10\rightleftharpoons) \{k_i\}
      5: \{r1Rl0_{k:}^{i}[\Gamma_{rf}]\}
                                                                                           25: \{r1Rl1_{n_{\rho}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                w[] latch0 0
                                                                                                      w[] latch1 0
                                                                                          26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}]\}
                                                                                                      r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                           2: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}] \wedge Rf1 = F1^{\ell} \wedge \}
                \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}] \land Rf0 = F0^{i} \land
                                                                                                        (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
                   (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
                if (Rf0 \neq 0) then
                                                                                                      if (Rf1 \neq 0) then
                     \{r1Rl0^{i}_{k}, [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
      8:
false
                     (* critical section *)
                                                                                                          (* critical section *)
                    w[] flag0 0
                                                                                                          w[] flag1 0
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                     \{r1Rl0_{\mathbf{k}}^{i}, [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                           29:
                    w[] flag1 1
                                                                                                          w[] flag0 1
                                                                                                        \{\mathrm{r1Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                    \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
     10:
                    w[] latch1 1
                                                                                                          w[] latch0 1
                    \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                fi
                                                                                                      fi
                {true}
                                                                                           32: {true}
           while true
                                                                                                  while true
      13: {false}
                                                                                           33: {false}
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- the invariant after 5: must be false so P0 never enters its critical section
- read of latch0 in 3: must be a 0, with 2 possibilities
- cannot be from write at 5: which is unreachable
- so is from initial write 0:
- but PI enters its critical section (otherwise see case I)
- so w[] latch0 1 will be executed later in co order
- so all 3:r[] R10 latch0 are fr to all 30: w[] latch0 1
- by fairness of communications, this write of I to latch0 will eventually be read at 3:
- in contradiction with always reading 0

#### (4) Process P0 starves in spin loop, P1 does not



## Communication fairness hypothesis®

- All writes eventually hit the memory:
  - If, at a cut of the execution, all the processes infinitely often write the same value  $\upsilon$  to a shared variable x and only that value  $\upsilon$
  - and from a later cut point of that execution, a process infinitely often repeats reads to that variable
  - ullet then the reads will end up reading that value  $\upsilon$

<sup>(\*)</sup> The SPARC Architecture Manual, Version 8, Section K2, p. 283: ``if one processor does an S, and another processor repeatedly does L 's to the same location, then there is an L that will be after the S".

## (5) Process P1 never enters its CS

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
                                                                                            21:{true}
      do \{i\}
                                                                                                   do \{\ell\}
        {true}
                                                                                            22: {true}
           do \{j_i\}
                                                                                                        do \{m_\ell\}
                {true}
                                                                                             23:
                                                                                                             {true}
3:
               r[] R10 latch0 \{ \rightsquigarrow L0^i_{i} \}
                                                                                                            r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
                                                                                                             \{R11 = L1_{m_{\ell}}^{\ell} \land
               \{R10 = L0^i_{ii} \land
                                                                                             24:
4:
                                                                                                               (\mathrm{r0R}\Pi_{\mathrm{m}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee \mathrm{r1Rl1}_{\mathrm{m}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                  (r0Rl0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}])\}
           while (R10=0) \{k_i\}
                                                                                                        while (R11=0) \{n_\ell\}
                                                                                            25: \{r1R11_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                        w[] latch1 0
           w[] latch0 0
          \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}]\}
                                                                                            26: \{ \operatorname{f1Rl1}_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \}
           r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                        r[] Rf1 flag1\{ \leadsto F1^{\ell} \}
           \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}] \land Rf0 = F0^{i} \land
              (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
                                                                                                           (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
           if (Rf0 \neq 0) then
                                                                                                        if (Rf1 \neq 0) then
                                                                                                             \{\operatorname{r1Rl1}_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \operatorname{r1B}f1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                (* critical section *)
                                                                                                             (* critical section *)
                                                                                                            w[] flag1 0 / rt
               w[] flag0 0
                                                                                                            \{\mathrm{r}1\mathrm{R}l1^{\ell}_{\mathrm{n}_{\ell}}[\Gamma_{\mathsf{r}\mathsf{f}}]\wedge\mathrm{r}1\mathrm{R}\mathrm{f}1^{\ell}[\Gamma_{\mathsf{r}\mathsf{f}}]\}\big|\mathsf{false}
                \{\mathrm{r}1\mathrm{R}10^{\mathrm{i}}_{\mathrm{k}}, [\Gamma_{\mathsf{rf}}] \wedge \mathrm{r}1\mathrm{R}f0^{\mathrm{i}}[\mathcal{V}_{\mathsf{rf}}]\}
9:
                                                                                                            w[] flag0 1
               w[] flag1 1
                \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}] \land rRf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                             \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
10:
               w[] latch1 1
                                                                                                             w[] latch0 1
                \{r1Rl0_{k_{i}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                             \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
11:
                                                                                            31:
           fi
                                                                                                        fi
12: {true}
                                                                                            32: {true}
      while true
                                                                                            33: {false}
13:{false}
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- P1 exits loop 23:–24: (else see cases (I) or (3))
- must read Rl1 = I from 0: or I0:
- read of Rf1 at 26: must be 0
- only possibility is from 28:
- impossible from unreachable code

#### (5) Process P0 leaves spin loop but always fails entering its CS

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
     1: {true}
            do \{i\}
                                                                                               22: {true}
                \{\Gamma_{\mathsf{rf}}\}
                                                                                                           do \{m_\ell\}
                do \{j_i\}
     3:
                                                                                               23:
                                                                                                              r[] Rl1 latch1 \{ \leadsto L1_{m,e}^{\ell} \}
                    r[] R10 latch \{
fences
                     \{R10 = L0^{i}_{i}\}
                                                                                                               \{Rl1 = L1^{\ell}_{m_a} \land
     4:
                                                                                               24:
                       (r0Rl0_{i:}^{i}[\Gamma_{rf}] \vee r1Rl0_{i:}^{i}
                                                                                                                 (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                                                                                                          while (Rl1=0) \{n_{\ell}\}
                while (R10=0) \{k_i\}
                                                                                               25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0_{k_i}^i[\Gamma_{rf}]\}
                                                                                   CO
                w[] latch0 0
                                                                                                          w[] latch1 0
                \{r1Rl0^{i}_{k}, [\Gamma_{\mathsf{rf}}]\}
                f[fdep] {3} {6
                                                                                                          \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0^{i}_{k}, [\Gamma_{rf}]\}
                                                                                               26:
                                                                                                          r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                r[] Rf0 flag0 \{ \sim F0^i \}
                                                                           fre
                                                                                                          \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{Rf1} = \mathrm{F1}^{\ell} \wedge
                                                                                                             (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
                  (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
                if (Rf0 \neq 0) then
                                                                                                          if (Rf1 \neq 0) then
                 \lceil \{r1Rl0^{i}_{k:}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}] \}
                                                                                                               \{r1Rl1_{n_{\theta}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                     (* critical section *)
                                                                                                               (* critical section *)
                    w[] flag0 0
                                                                                                              w[] flag1 0
                     \{r1Rl0_{\mathbf{k}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                              \{\mathrm{r}1\mathrm{R}11_{\mathrm{n}\,\ell}^{\ell}[\Gamma_{\mathsf{r}\mathsf{f}}]\wedge\mathrm{r}1\mathrm{R}\mathrm{f}1^{\ell}[\Gamma_{\mathsf{r}\mathsf{f}}]\}
     9:
                    w[] flag1 1
                                                                                                              w[] flag0 1
                     \{r1Rl0_{k}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                               \{\mathrm{r1Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rti}^{\ell}[\Gamma_{\mathsf{rf}}]\}
     10:
                                                                                                              f[flw] {29} {30}
   false
                                                                                                               \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}] \wedge r1Rf1^{\ell}[\Gamma_{rf}]\}
                                                                                               30:
                                                                                                               w[] latch0 1
                     w[] latch1 1
                                                                                                                                                                tences
                                                                                                               \{r1Rl1_{n_{\delta}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                    \{r1Rl0^{i}_{k}, [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                               31:
                fi
     12: {true}
            while true
     13: {false}
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- loop 2:–4: exited
- read of R10 = I at 3: is from 30:
- invariant false in critical section8:–11:
- read of Rf0 = 0 at 6: is from 0: (8: not reachable)

In TSO there is no need for a fence since it is MP. For weaker than PSO, a fence is needed.

#### (6) Both processes eventually starve in spin loop

```
w latch0 0;
      w flag0 0;
   r RlO latch0 1
   w latch0 0
   r RfO flag0\1
   (* critical section *)
    w flag0 0
9: w flag1 1
                      CO
    f[bar] {5:} {10:}
10: w latch1 1
   r RlO latchO 1
   w latch0 0
  r RfO flagO 1
8: (* critical section *)
    w flag0 0
9: w flag1 1
    f[bar] {5:}/{10:}
10: w latch1 1
   r RlO latchO O
    r R10 latch0 0
```

```
w latch1 1;
      w flag1 1;}
23: r Rl1 latch1 1
25: w latch1 0
26; r Rf1 flag1 1.
28: (* critical section *)
    w flag1 ()
   f[bar] {25:} {29
29: w ilagu 1
30: w latch0 1
23: r Rl1 latch1 1
25: w latch1 0 ••••
26: r Rf1 flag1 1
28: (* critical section **)
    w flag1 0
    f[bar] {25:} {29:}
29: w flag0 1
30: w latch0 1
23: r Rl1 latch1 0
23: r Rl1 latch1 0
```

- let rf be the communication for such a trace (encoded in  $\Gamma_{rf}$ )
- so latch0 is always 0 and latch1 is always 0
- so latch0 in 23 is always read from 25:
- so 10: w latch1 1 was cobefore (since otherwise by the communication hypothesis it would be eventually read)
- and 3: R10 latch0 0 is from 0: or 5:
- so 30: w latch0 1 is cobefore them (since otherwise by the communication hypothesis it would be eventually read)
- impossible by fences
- irreflexive co; bar; co; bar

#### (7) Eventually, P0 starves in spin loop, P1 never enters its CS

```
{0: ; w latch0 0;
                  w flag0 0;
                 r RlO latchO 1
                 w latch0 0
                 r RfO flag0 1
                 (* critical section *)
                 w flag0 0
Process
                 w flag1 1
  P0
                 w latch1 1
enters &
                 r RlO latch0 1
exits CS
                 w latch0 0
multiple
               r RfO flag0 1
 times
                 (* critical section *)
                 w flag0 0
                 w flag1 1
                 w latch1 1
  then,
                 r R10 latch0 0
  never
                 r R10 latch0 0
  exits
   the
                 r R10 latch0 0
 waiting
  loop
```

```
w latch1 1;
     w flag1 1;}
    r Rl1 latch1
25: w latch1 0
26: r Rf1 flag1 1
28: (* critical section *) • P1 then does a last write of
    w[] flag1 0
29: w[] flag0 1
    w[] latch0 1 *
23: r Rl1 latch1 1
25: w latch1 0
26: r Rf1 flag1 0
23: r Rl1 latch1 1
25: w latch1 0
26: r Rf1 flag1 0
```

 P1 does not eventually starves in spin loop (otherwise case 6)

last

CS

entr-

ance

- case P1 eventually never starves and never enters its critical section
- I to latch0
- P0 eventually makes infinitely many reads of latch0
- A contradiction (since) otherwise by the communication hypothesis, this I would be eventually read)

(8) Eventually, P1 starves in spin loop, P0 never enters its CS

symmetric of (7)

#### (9) P0 and P1 always leave spin loop and never enter their CS

```
{0: w[] latch0 0;
                                   w[] latch1 1;
      w[] flag0 0;
                                   w[] flag1 1;}
                              . . . . . .
3: r[] R10 latch0 1
                             23: r[] Rl1 latch1 1
   w[] latch0 0
                             25: w[] latch1 0
6: r[] RfO flag0 1
                             26: r[] Rf1 flag1 1
8: (* critical section *)
                             28: (* critical section *)
    w[] flag0 0
                                  w[] flag1 0
9: w[] flag1 1
                             29: w[] flag0 1
10: w[] latch1 1
                             30 w[] latch0 1
                             23: r[] K11 latch1 1
3: r R10 latch0 1
                             25. w[] lateh1 0
5: w[] latch0 0
                              26: r[] Rf1 flag1 0
6: r[] Rf0 flag0 1
                             28: (* critical section *)
8: (* critical section *)
                             23: w[] flag1 0
    w[] flag0 0
                             29: w[] flag0 1
9: w[] flag1 1
                             30: w[] latch0 1
10: w[] latch1 1
3: r[] R10 latch0 1
                             23: r[] Rl1 latch1 1
                             25: w[] latch1 0
5: w[] latch0 0
6: r[] Rf0 flag0 0
                             26: r[] Rf1 flag1 0
  r[] R10 latch0 1
                             23: r[] Rl1 latch1 1
   w[] latch0 0
                             25: w[] latch1 0
   r[] RfO flag0 0
                             26: r[] Rf1 flag1 0
   r∏ RlO latchO 1
                             23: r[] Rl1 latch1 1
    w∏ latch0 0
                             25: w[] latch1 0
   r[] RfO flag0 0
                             26: r[] Rf1 flag1 0
                              . . . . . .
```

- P0 and P1 eventually never starve and never enter their critical sections
- They both have a last entrance in their critical sections
- This last write of I to the latches will, by communication fairness, eventually reach the memory
- Then we only have infinitely many writes of 0 to the latches
- So the read of the latches in the spin loops will eventually always read 0
- So from then on, by communication fairness, all the reads will be from 0, in reads of the latch will be zero
- In contradiction with the fact that the spin loop is always exited
- The barrier prevents infinitely postponing the write 0 actions

# Conclusion

## Conclusion

- The proof method is parameterized by consistency hypotheses, expressed in
  - Invariance form:  $S_{com}$
  - Consistency form:  $H_{com}$  (e.g. in cat)
- Program not logic/architecture/consistency model dependent (hence the proof is portable)
- Can reason on arbitrary subsets of anarchic executions (hence flexible e.g. non-starvation)

# Proposed design methodology

- I. Design the algorithm A and its specification  $S_{inv}$  (e.g. in the sequential consistency model of parallelism)
- 2. Consider the anarchic semantics of algorithm A
- 3. Add communication specifications  $S_{com}$  to restrict anarchic communications and ensure the correctness of A with respect to specification  $S_{inv}$
- 4. Do the invariance proof under WCM with  $S_{com}$
- 5. Infer  $H_{com}$  (in cat) from invariant  $S_{com}$
- 6. Prove that the machine memory model M in cat implies  $H_{cm}$

## Challenges

- Modern machines have complex memory models
  - ⇒ portability has a price (refencing)
  - ⇒ debugging is very hard/quasi-impossible
  - ⇒ proofs are much harder than with sequential consistency (but still feasible?, mechanically?)
  - ⇒ static analysis parameterized by a WCM will be a challenge
  - $\Rightarrow$  but we can start with  $S_{com}$

## **Thanks**

 Patrick Cousot thanks Luc Maranget for his precious help at Dagstuhl on the non-starvation part.

# The End, Thank You