

D: Droga

Limit pamięci: 512 MB

Jasio został kontrolerem w Centrum Dróg. Jego zadaniem jest zbadanie efektywności odśnieżania pewnej drogi w czasie serii zamieci; standardowo droga podzielona jest na następujące bezpośrednio po sobie kilometrowe odcinki, ponumerowane kolejnymi liczbami naturalnymi od 1 do n. Jasio zabrał się szybko do pracy i skompletował już informacje o istotnych zdarzeniach:

- Centrum Meteorologii dostarczyło Jasiowi informacji o zamieciach. Intensywność zamieci określana jest przez dwa parametry f, g, które oznaczają, że w i-tej minucie ($i \ge 1$) od rozpoczęcia takiej zamieci spada na długości całej drogi $f \cdot i + g$ milimetrów nowego śniegu. Każda zamieć kończy się w minucie poprzedzającej pierwszą minutę kolejnej zamieci. Czas kontroli jest tak dobrany, że pierwsza z zamieci rozpoczęła się w dodatniej minucie, a w minucie 0 na całej drodze nie ma żadnego śniegu.
- Centrum Odśnieżania dostarczyło Jasiowi informacji o pracy pługów i piaskarek. Przejazd pługu w minucie t sprawia, że na koniec minuty t na całej trasie przejazdu nie ma śniegu. Analogicznie, rozsypanie przez piaskarkę soli jakości s sprawia, że na końcu każdej minuty $t, t+1, \ldots, t+s$ na całej trasie przejazdu nie ma śniegu. Działania różnych soli, nawet tej samej jakości, są niezależne i nie wpływają na siebie, a przejazd pługu nie usuwa soli, która jest obecnie na drodze. Każda trasa przejazdu piaskarki lub pługu składa się z pewnej liczby kilometrowych odcinków drogi o kolejnych numerach.
- Centrum Dróg przysłało wygenerowane przez siebie zapytania. Dla zapytania o minutę t należy podać wysokość w milimetrach najwyższej pokrywy śnieżnej na końcu danej minuty na danym fragmencie drogi składającym się z pewnej liczby kilometrowych odcinków drogi o kolejnych numerach.

Jasio wstępnie obrobił i posortował dane. Niestety, dokonanie samych obliczeń go przerasta. Pomóż mu! Napisz program, który wylicza odpowiedzi na zapytania Centrum Dróg.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby naturalne n i q ($1 \le n \le 10^9, 1 \le q \le 300\,000$) oddzielone pojedynczym odstępem, oznaczające odpowiednio liczbę kilometrowych odcinków drogi i liczbę zdarzeń. W każdym z kolejnych q wierszy znajduje się opis zdarzenia jednego z czterech poniższych typów:

- t L a b, które oznacza, że pług przejechał w minucie t od a-tego do b-tego odcinka drogi (włącznie).
- ullet t S a b s, oznaczające przejazd piaskarki w minucie t od a-tego do b-tego odcinka drogi (włącznie) i rozsypania soli jakości s.
- t ? a b, oznaczające, że Centrum Dróg chce poznać największą wysokość pokrywy śnieżnej w minucie t na fragmencie drogi od a-tego do b-tego odcinka.
- t B f g, oznaczające, że minuta t jest ostatnią minutą poprzedniej zamieci (o ile ta istnieje), zaś minuta t + 1 jest pierwszą minutą zamieci o intensywności f, g.

We wszystkich zdarzeniach spełnione są warunki $1 \le t \le 10^9, 1 \le a \le b \le n, 1 \le s, f, g \le 10^9$. Dodatkowo, wartości t w kolejnych wierszach są rosnące, a pierwsze zdarzenie jest zawsze typu B.

Wyjście

Dla każdego zdarzenia typu ? wypisz w osobnym wierszu największą wysokość w milimetrach pokrywy śnieżnej na odcinku drogi pomiędzy kilometrami a i b na koniec minuty t. Wynik podaj modulo $10^9 + 7$.

Przykład

Wejście	Wyjście			
3 4	3			
3 4 2 B 1 2	5			
3 ? 2 2				
4 L 1 3				
5 ? 1 3				

D: Droga 1/2

Poniższa tabela przedstawia wysokość pokrywy śnieżnej na poszczególnych odcinkach drogi oraz opad śniegu na koniec poszczególnych minut; wytłuszczone liczby odpowiadają zapytaniom.

\min ta	1	2	3	opad
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	3	3	3	3
4	0	0	0	4
5	5	5	5	5

Do momentu określonego w pierwszym zapytaniu na całą drogę opada $1 \cdot 1 + 2 = 3$ milimetrów śniegu. Pomiędzy przejazdem pługu w minucie 4 a drugim zapytaniem opada $3 \cdot 1 + 2 = 5$ milimetrów śniegu.

Wejście	Wyjście		
1 3	8		
1 3 1 B 1 1			
2 B 3 3 3 ? 1 1			
3 ? 1 1			

minuta	1	opad
0	0	0
1	0	0
2	2	2
3	8	6

Do momentu określonego w zapytaniu, przez pojedynczą minutę trwa pierwsza zamieć i następnie przez pojedynczą minutę druga zamieć.

Wejście	Wyjście		
5 5	7		
1 B 1 2	0		
2 S 1 3 5	30		
3 ? 3 4			
4 ? 1 1			
10 ? 1 1			

minuta	1	2	3	4	5	opad
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	3	3	3
3	0	0	0	7	7	4
4	0	0	0	12	12	5
5	0	0	0	18	18	6
6	0	0	0	25	25	7
7	0	0	0	33	33	8
8	9	9	9	42	42	9
9	19	19	19	52	52	10
10	30	30	30	63	63	11

D: Droga 2/2