Algebra Notes

D. Zack Garza

January 6, 2020

Contents

1	Gro	up Theory 2	
	1.1	Finitely Generated Abelian Groups	
	1.2	The Symmetric Group	
	1.3	Counting Theorems	
		1.3.1 Examples of Orbit-Stabilizer	
		1.3.2 Sylow Theorems	
		1.3.3 Sylow 1 (Cauchy for Prime Powers)	
		1.3.4 Sylow 2 (Sylows are Conjugate)	
		1.3.5 Sylow 3 (Numerical Constraints)	
	1.4	Products	
	1.5	Isomorphism Theorems	
	1.6	Special Classes of Groups	
	1.7	Series of Groups	
2	Ring	rs 10	
	2.1	Definitions and Basics	
	2.2	Maximal and Prime Ideals	
	2.3	Nilradical and Jacobson Radical	
	2.4	Zorn's Lemma	
	2.5	Unsorted	
3	Fields 12		
	3.1	Cyclotomic Polynomials	
	3.2	Finite Fields	
	3.3	Galois Theory	
	0.0		
4	Mod	dules 14	
5	Line	ar Algebra 15	
	5.1	Minimal / Characteristic Polynomial	
	5.2	Simultaneous Diagonalizability	
	5.3	Characterizations if Diagonalizability	
	5.4	Canonical Forms	
		5.4.1 Rational Canonical Form	
		5.4.2 Jordan Canonical Form	

1 Group Theory

Definition (Centralizer):

$$C_G(H) = \left\{ g \in G \mid ghg^{-1} = h \ \forall h \in H \right\}$$

Definition (Normalizer):

$$N_G(H) = \left\{ g \in G \mid gHg^{-1} = H \right\}$$

Lemma: $C_G(H) \leq N_G(H)$

Lemma: The size of the conjugacy class of H is the index of the centralizer, i.e.

$$\left|\left\{gHg^{-1} \mid g \in G\right\}\right| = [G: C_G(H)].$$

Lemma ("The Fundamental Theorem of Cosets"):

$$aH = bH \iff a^{-1}b \in H \text{ or } aH \cap bH = \emptyset$$

Definition: $[x,y] = x^{-1}y^{-1}xy$ is the **commutator**, and $[G,G] := \{[x,y] \mid x,y \in G\}$ is the **commutator subgroup**.

Lemma:

$$[G,G] \leq H$$
 and $H \subseteq G \implies G/H$ is abelian.

1.1 Finitely Generated Abelian Groups

Invariant factor decomposition:

$$G \cong \mathbb{Z}^r \times \prod_{j=1}^m \mathbb{Z}/(n_j)$$
 where $n_1 \mid \cdots \mid n_m$.

Going from invariant divisors to elementary divisors:

- Take prime factorization of each factor
- Split into coprime pieces

Example:

$$\mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(2^3 \cdot 5^2 \cdot 7)$$

$$\cong \mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(2^3) \oplus \mathbb{Z}/(5^2) \oplus \mathbb{Z}/(7)$$

Going from elementary divisors to invariant factors:

• Bin up by primes occurring (keeping exponents)

- Take highest power from each prime as *last* invariant factor
- Take highest power from all remaining primes as next, etc

Example: Given the invariant factor decomposition

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{25},.$$

$$\frac{p=2 \quad p=3 \quad p=5}{2,2,2 \quad 3,3 \quad 5^2}$$

$$\implies n_m = 5^2 \cdot 3 \cdot 2$$

$$\frac{p=2 \quad p=3 \quad p=5}{2,2 \quad 3 \quad \emptyset}$$

$$\implies n_{m-1} = 3 \cdot 2$$

$$\frac{p=2 \quad p=3 \quad p=5}{2 \quad \emptyset \quad \emptyset}$$

$$\implies n_{m-2} = 2$$

and thus

$$G \cong \mathbb{Z}/(2) \oplus \mathbb{Z}/(3 \cdot 2) \oplus \mathbb{Z}/(5^2 \cdot 3 \cdot 2).$$

1.2 The Symmetric Group

Definitions:

- A cycle is **even** \iff product of an *even* number of transpositions.
 - A cycle of even *length* is **odd**
 - A cycle of odd *length* is **even**

Definition The **alternating group** is the subgroup of **even** permutations, i.e. $A_n := \{ \sigma \in S_n \mid \text{sign}(\sigma) = 1 \}$ where $\text{sign}(\sigma) = (-1)^m$ where m is the number of cycles of even length.

Corollary: Every $\sigma \in A_n$ has an even number of odd cycles (i.e. an even number of even-length cycles).

Example:

$$A_4 = \{ id,$$

$$(1,3)(2,4), (1,2)(3,4), (1,4)(2,3),$$

$$(1,2,3), (1,3,2),$$

$$(1,2,4), (1,4,2),$$

$$(1,3,4), (1,4,3),$$

$$(2,3,4), (2,4,3) \}.$$

Lemmas:

- The transitive subgroups of S_3 are S_3, A_3
- The transitive subgroups of S_4 are $S_4, A_4, D_4, \mathbb{Z}_2^2, \mathbb{Z}_4$.
- For n = 4, S_n has two normal subgroups: A_4 , \mathbb{Z}_2^2 .
- For $n \geq 5$, S_n one normal subgroup: A_n .
- $Z(S_n) = 1$ for $n \ge 3$
- $Z(A_n) = 1$ for $n \ge 4$
- $[S_n, S_n] = A_n$
- $\bullet \ [A_4, A_4] \cong \mathbb{Z}_2^2$
- $[A_n, A_n] = A_n$ for $n \ge 5$
- A_n is simple for $n \geq 5$.

1.3 Counting Theorems

Lagrange's Theorem:

$$H \le G \implies |H| \mid |G|.$$

Corollary: The order of every element divides the size of G, i.e.

$$g \in G \implies o(g) \mid o(G) \implies g^{|G|} = e.$$

Warning: Rhere does **not** necessarily exist $H \leq G$ with |H| = n for every $n \mid |G|$. Counterexample: $|A_4| = 12$ but has no subgroup of order 6.

Cauchy's Theorem:

For every prime p dividing |G|, there is an element (and thus a subgroup) of order p.

This is a partial converse to Lagrange's theorem.

Notation: For a group G acting on a set X,

- $G \cdot x = \{g \curvearrowright x \mid g \in G\} \subseteq X$ is the orbit
- $G_x = \{g \in G \mid g \curvearrowright x = x\} \subseteq G$ is the stabilizer
- $X/G \subset \mathcal{P}(X)$ is the set of orbits

• $X^g = \{x \in X \mid g \curvearrowright x = x\} \subseteq X$ are the fixed points

Orbit-Stabilizer:

$$|G \cdot x| = [G : G_x] = |G|/|G_x|$$
 if G is finite

Mnemonic: $G/G_x \cong G \cdot x$.

1.3.1 Examples of Orbit-Stabilizer

- 1. Let G act on itself by conjugation.
- $G \cdot x$ is the **conjugacy class** of x
- $G_x = Z(x) := C_G(x) = \{g \mid [g, x] = e\}, \text{ the centralizer of } x.$
- G^g (the fixed points) is the **center** Z(G).

Corollary: The size of a conjugacy class is the index of the centralizer.

Corollary: the Class Equation:

$$|G| = |Z(G)| + \sum_{\substack{\text{One } x_i \text{ from} \\ \text{each conjugacy} \\ \text{class}}} [G:Z(x_i)]$$

- 1. Let G act on S, its set of *subgroups*, by conjugation.
- $G \cdot H = \{gHg^{-1}\}$ is the set of conjugate subgroups of H
- $G_H = N_G(H)$ is the **normalizer** of in G of H
- S^G is the set of **normal subgroups** of G
- 3. For a fixed proper subgroup H < G, let G act on its cosets $G/H = \{gH \mid g \in G\}$ by left-multiplication.
- $G \cdot gH = G/H$, i.e. this is a transitive action.
- $G_{qH} = gHg^{-1}$ is a conjugate subgroup of H
- $(G/H)^G = \emptyset$

Application: If G is simple, H < G proper, and [G : H] = n, then there exists an injective map $\phi : G \hookrightarrow S_n$.

Proof: This action induces ϕ ; it is nontrivial since gH = H for all g implies H = G; $\ker \phi \subseteq G$ and G simple implies $\ker \phi = 1$.

Burnside's Formula:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

5

1.3.2 Sylow Theorems

Notation: For any p, let $Syl_p(G)$ be the set of Sylow-p subgroups of G.

Write

- $|G| = p^n m$ where (m, p) = 1,
- S_p a Sylow-p subgroup, and
- n_p the number of Sylow-p subgroups.

Definition: A p-group is a group G such that every element is order p^k for some k. If G is a finite p-group, then $|G| = p^j$ for some j.

Lemma: *p*-groups have nontrivial centers.

Some useful facts:

- Coprime order subgroups are disjoint, or more generally \mathbb{Z}_p , $\mathbb{Z}_q \subset G \implies \mathbb{Z}_p \cap \mathbb{Z}_q = \mathbb{Z}_{(p,q)}$.
- The Chinese Remainder theorem: $(p,q) = 1 \implies \mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq}$

1.3.3 Sylow 1 (Cauchy for Prime Powers)

 $\forall p^n$ dividing |G| there exists a subgroup of size p^n .

If $|G| = \prod p_i^{\alpha_i}$, then there exist subgroups of order $p_i^{\beta_i}$ for every i and every $0 \le \beta_i \le \alpha_i$. In particular, Sylow p-subgroups always exist.

1.3.4 Sylow 2 (Sylows are Conjugate)

All sylow-p subgroups S_p are conjugate, i.e.

$$S^1_p, S^2_p \in \operatorname{Syl}_p(G) \implies \exists g \text{ such that } gS^1_p g^{-1} = S^2_p.$$

Corollary: $n_p = 1 \iff S_p \leq G$

1.3.5 Sylow 3 (Numerical Constraints)

- 1. $n_p \mid m$ (in particular, $n_p \leq m$),
- 2. $n_p \equiv 1 \mod p$,
- 3. $n_p = [G: N_G(S_p)]$ where N_G is the normalizer.

Corollary: p does not divide n_p .

Lemma: Every *p*-subgroup of *G* is contained in a Sylow *p*-subgroup.

Proof: Let $H \leq G$ be a *p*-subgroup. If H is not *properly* contained in any other *p*-subgroup, it is a Sylow *p*-subgroup by definition.

Otherwise, it is contained in some p-subgroup H^1 . Inductively this yields a chain $H \subsetneq H^1 \subsetneq \cdots$, and by Zorn's lemma $H := \bigcup H^i$ is maximal and thus a Sylow p-subgroup.

Fratini's Argument: If $H \subseteq G$ and $P \in Syl_p(G)$, then $HN_G(P) = G$ and [G : H] divides $|N_G(P)|$.

1.4 Products

Characterizing direct products: $G \cong H \times K$ when

- $G = HK = \{hk \mid h \in H, k \in K\}$
- $H \cap K = \{e\} \subset G$
- $H, K \leq G$

Can relax to only $H \subseteq G$ to get a semidirect product instead

Characterizing semidirect products: $G = N \rtimes_{\psi} H$ when

- G = NH
- $N \leq G$
- $H \cap N$ by conjugation via a map

$$\psi: H \to \operatorname{Aut}(N)$$

 $h \mapsto h(\cdot)h^{-1}.$

Lemma: If $\sigma \in Aut(H)$, then $N \rtimes_{\psi} H \cong N \rtimes_{\psi \circ \sigma} H$.

Useful Facts

- Aut $(\prod_{k=1}^n \mathbb{Z}/(p)) = GL(n, \mathbb{Z}/(p))$ If this occurs in a semidirect product, it suffices to consider similarity classes of matrices (i.e. just use canonical forms)
- $\operatorname{Aut}(\mathbb{Z}_n) \cong (\mathbb{Z}^n)^{\times} \cong \mathbb{Z}^{\varphi(n)}$ where φ is the totient function.

1.5 Isomorphism Theorems

Lemma: If $H, K \leq G$ and $H \leq N_G(K)$ (or $K \leq G$) then $HK \leq G$ is a subgroup.

Diamond Theorem / 2nd Isomorphism Theorem:

If $S \leq G$ and $N \leq G$, then

$$\frac{SN}{N} \cong \frac{S}{S \cap N}$$

Note: for this to make sense, we also have

- $SN \leq G$,
- $S \cap N \leq S$,

Cancellation / 3rd Isomorphism Theorem

Figure 1: Image

If $H, K \subseteq G$ with $H \subseteq K$, then

$$\frac{G/H}{G/K}\cong \frac{G}{K}$$

Note: for this to make sense, we also have $G/K \subseteq G/H$.

The Correspondence Theorem / 4th Isomorphism Theorem: Suppose $N \subseteq G$, then there exists a correspondence:

$$\left\{ H < G \mid N \subseteq H \right\} \iff \left\{ H \mid H < \frac{G}{N} \right\}$$

$$\left\{ \right\} \iff \left\{ \right\}.$$

In words, subgroups of G containing N correspond to subgroups of the quotient group G/N. This is given by the map $H \mapsto H/N$.

Note:
$$N \subseteq G$$
 and $N \subseteq H < G \implies N \subseteq H$.

1.6 Special Classes of Groups

Definition: The "2 out of 3 property" is satisfied by a class of groups \mathcal{C} iff whenever $G \in \mathcal{C}$, then $N, G/N \in \mathcal{C}$ for any $N \leq G$.

Definition: If $|G| = p^k$, then G is a **p-group.**

Lemmas:

• p-groups have nontrivial centers

- Every normal subgroup is contained in the center
- Normalizers grow
- Every maximal is normal
- Every maximal has index p
- p-groups are nilpotent
- p-groups are solvable

Definition: A group G is **simple** iff $H \subseteq G \implies H = \{e\}, G$, i.e. it has no non-trivial proper subgroups.

Lemma: If G is not simple, then for any $N \subseteq G$, it is the case that $G \cong E$ for an extension of the form $N \to E \to G/N$.

Definition: A group G is **solvable** iff G has a terminating normal series with abelian factors, i.e.

$$G \to G^1 \to \cdots \to \{e\}$$
 with G^i/G^{i+1} abelian for all i.

Lemmas:

- \bullet G is solvable iff G has a terminating derived series.
- Solvable groups satisfy the 2 out of 3 property
- \bullet Abelian \Longrightarrow solvable
- Every group of order less than 60 is solvable.

Definition: A group G is **nilpotent** iff G has a terminating central series, upper central series, or lower central series.

Moral: the adjoint map is nilpotent.

Lemma: For G a finite group, TFAE:

- G is nilpotent
- Normalizers grow (i.e. $H < N_G(H)$ whenever H is proper)
- Every Sylow-p subgroup is normal
- G is the direct product of its Sylow p-subgroups
- Every maximal subgroup is normal
- G has a terminating Lower Central Series
- G has a terminating Upper Central Series

Lemmas:

- G nilpotent $\implies G$ solvable
- Nilpotent groups satisfy the 2 out of 3 property.
- G has normal subgroups of order d for every d dividing |G|
- G nilpotent $\implies Z(G) \neq 0$
- \bullet Abelian \Longrightarrow nilpotent
- \bullet p-groups \Longrightarrow nilpotent

1.7 Series of Groups

Definition: A normal series of a group G is a sequence $G \to G^1 \to G^2 \to \cdots$ such that $G^{i+1} \subseteq G_i$ for every i.

Definition A composition series of a group G is a finite normal series such that G^{i+1} is a maximal proper normal subgroup of G^i .

Theorem (Jordan-Holder): Any two composition series of a group have the same length and isomorphic factors (up to permutation).1

Definition A **derived series** of a group G is a normal series $G \to G^1 \to G^2 \to \cdots$ where $G^{i+1} = [G^i, G^i]$ is the commutator subgroup.

The derived series terminates iff G is solvable.

Definition: A **central series** for a group G is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that each quotient is **central**, i.e. $[G, G^i] \leq G^{i-1}$ for all i.

Definition: A lower central series is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that $G^{i+1} = [G^i, G]$

Moral: Iterate the adjoint map $[\cdot, G]$.

G is nilpotent \iff the LCS terminates.

Definition: An upper central series is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that $G^1 = Z(G)$ and G^{i+1} is defined such that $G^{i+1}/G^i = Z(G^i)$.

Moral: Iterate taking "higher centers".

2 Rings

2.1 Definitions and Basics

Definition: \mathfrak{p} is a **prime** ideal $\iff ab \in \mathfrak{p} \implies a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.

Definition: Spec $(R) = \{ \mathfrak{p} \leq R \mid \mathfrak{p} \text{ is prime} \}$ is the **spectrum** of R.

Definition: \mathfrak{m} is maximal $\iff I \triangleleft R \implies I \subseteq \mathfrak{m}$.

Definition: Spec_{max} $(R) = \{ \mathfrak{m} \leq R \mid \mathfrak{m} \text{ is maximal} \}$ is the **max-spectrum** of R.

Note: nonstandard notation / definition.

Lemma: Field \implies Euclidean Domain \implies PID \implies UFD \implies Integral Domain.

2.2 Maximal and Prime Ideals

Lemma: Maximal \implies prime, but generally not the converse.

Counterexample: $(0) \in \mathbb{Z}$ is prime since \mathbb{Z} is a domain, but not maximal since it is properly contained in any other ideal.

Proof: Suppose \mathfrak{m} is maximal, $ab \in \mathfrak{m}$, and $b \notin \mathfrak{m}$. Then there is a containment of ideals $\mathfrak{m} \subsetneq \mathfrak{m} + (b) \Longrightarrow \mathfrak{m} + (b) = R$. So

$$1 = m + rb \implies a = am + r(ab),$$

but $am \in \mathfrak{m}$ and $ab \in \mathfrak{m} \implies a \in \mathfrak{m}$.

Lemma: If x is not a unit, then x is contained in some maximal ideal \mathfrak{m} .

Proof: Zorn's lemma.

Lemma: R/\mathfrak{m} is a field $\iff \mathfrak{m}$ is maximal.

Lemma: R/\mathfrak{p} is an integral domain $\iff \mathfrak{p}$ is prime.

2.3 Nilradical and Jacobson Radical

Definition: $\mathfrak{N} := \{ x \in R \mid x^n = 0 \text{ for some } n \}$ is the **nilradical** of R.

Lemma: The nilradical is the intersection of all prime ideals, i.e.

$$\mathfrak{N}(R) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}$$

Proof: $\mathfrak{N} \subseteq \bigcap \mathfrak{p} \colon x \in \mathfrak{N} \implies x^n = 0 \in \mathfrak{p} \implies x \in \mathfrak{p} \text{ or } x^{n-1} \in \mathfrak{p}.$ $\mathfrak{N}^c \subseteq \bigcup \mathfrak{p}^c \colon \text{ Define } S = \left\{ I \subseteq R \ \middle| \ a^n \notin I \text{ for any } n \right\}. \text{ Then apply Zorn's lemma to get a maximal ideal } \mathfrak{m}, \text{ and maximal } \Longrightarrow \text{ prime.}$

Lemma: $R/\mathfrak{N}(R)$ has no nonzero nilpotent elements.

Proof:

$$a + \mathfrak{N}(R)$$
 nilpotent $\implies (a + \mathfrak{N}(R))^n := a^n + \mathfrak{N}(R) = \mathfrak{N}(R)$
 $\implies a^n \in \mathfrak{N}(R)$
 $\implies \exists \ell \text{ such that } (a^n)^\ell = 0$
 $\implies a \in \mathfrak{N}(R).$

Definition: The **Jacobson radical** is the intersection of all **maximal** ideals, i.e.

$$J(R) = \bigcap_{\mathfrak{m} \in \operatorname{Spec}_{\max}} \mathfrak{m}$$

Lemma: $\mathfrak{N}(R) \subseteq J(R)$.

Proof: Maximal \implies prime, and so if x is in every prime ideal, it is necessarily in every maximal ideal as well.

2.4 Zorn's Lemma

Lemma: A field has no nontrivial proper ideals.

Lemma: If $I \subseteq R$ is a proper ideal $\iff I$ contains no units.

Proof:
$$r \in R^{\times} \bigcap I \implies r^{-1}r \in I \implies 1 \in I \implies x \cdot 1 \in I \quad \forall x \in R.$$

Lemma: If $I_1 \subseteq I_2 \subseteq \cdots$ are ideals then $\bigcup_j I_j$ is an ideal.

Example Application of Zorn's Lemma: Every proper ideal is contained in a maximal ideal.

Proof: Let 0 < I < R be a proper ideal, and consider the set

$$S = \left\{ J \mid I \subseteq J < R \right\}.$$

Note $I \in S$, so S is nonempty. The claim is that S contains a maximal element M.

S is a poset, ordered by set inclusion, so if we can show that every chain has an upper bound, we can apply Zorn's lemma to produce M.

Let
$$C \subseteq S$$
 be a chain in S , so $C = \{C_1 \subseteq C_2 \subseteq \cdots\}$ and define $\hat{C} = \bigcup C_i$.

 \hat{C} is an upper bound for C:

This follows because every $C_i \subseteq \hat{C}$.

 \hat{C} is in S:

Use the fact that $I \subseteq C_i < R$ for every C_i and since no C_i contains a unit, \hat{C} doesn't contain a unit, and is thus proper.

2.5 Unsorted

Lemma: Every $a \in R$ for a finite ring is either a unit or a zero divisor.

Proof: Let $a \in R$ and define $\phi(x) = ax$. If ϕ is injective, then it is surjective, so 1 = ax for some $x \implies x^{-1} = a$. Otherwise, $ax_1 = ax_2$ with $x_1 \neq x_2 \implies a(x_1 - x_2) = 0$ and $x_1 - x_2 \neq 0$, so a is a zero divisor.

3 Fields

Lemma: Let $\phi_n := x^{p^n} - x$. Then $f(x) \mid \phi_n(x) \iff \deg f \mid n$ and f is irreducible.

(So $\phi_n = \prod f_i(x)$ over all irreducible monic f_i of degree d dividing n.)

Proof:

Suppose f is irreducible of degree d. Then $f \mid x^{p^d} - x$ (consider $F[x]/\langle f \rangle$) and $x^{p^d} - x \mid x^{p^n} - x \mid x^{p^n}$ $x \iff d \mid n.$

- $\alpha \in \mathbb{GF}(p^n) \iff \alpha^{p^n} \alpha = 0$, so every element is a root of ϕ_n and $\deg \min(\alpha, \mathbb{F}_p) \mid n$ since $\mathbb{F}_p(\alpha)$ is an intermediate extension.
- So if f is an irreducible factor of ϕ_n , f is the minimal polynomial of some root α of ϕ_n , so deg $f \mid n$. $\phi'_n(x) = p^n x^{p^{n-1}} \neq 0$, so ϕ_n has distinct roots and thus no repeated factors. So ϕ_n is the product of all such irreducible f.

3.1 Cyclotomic Polynomials

Definition: Let $\zeta_n = e^{2\pi i/n}$, then

$$\Phi_n(x) = \prod_{\substack{k=1\\(j,n)=1}}^n \left(x - \zeta_n^k\right)$$

Corollary: $\deg \Phi_n(x) = \phi(n)$ for ϕ the totient function.

Computing Φ_n :

1.

$$\Phi_n(z) = \prod_{d|n,d>0} \left(z^d - 1\right)^{\mu\left(\frac{n}{d}\right)}$$

where

$$\mu(n) \equiv \left\{ \begin{array}{ll} 0 & \text{if n has one or more repeated prime factors} \\ 1 & \text{if $n=1$} \\ (-1)^k & \text{if n is a product of k distinct primes,} \end{array} \right.$$

2.

$$x^n - 1 = \prod_{d|n} \Phi_d(x) \implies \Phi_n(x) = \frac{x^n - 1}{\prod_{\substack{d|n \ d \le n}} \Phi_d(x)},$$

so just use polynomial long division.

Lemma:

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$

$$\Phi_{2p}(x) = x^{p-1} - x^{p-2} + \dots - x + 1.$$

Lemma:

$$k \mid n \implies \Phi_{nk}(x) = \Phi_n\left(x^k\right)$$

Theorem: Gal($\mathbb{Q}(\zeta_n)/\mathbb{Q}$) $\cong \mathbb{Z}/(n)^{\times}$ and is generated by maps of the form $\zeta_n \mapsto \zeta_n^j$ where (j,n)=1.

3.2 Finite Fields

Theorem: $\mathbb{GF}(p^n)$ is obtained as $\frac{\mathbb{F}_p}{\langle f \rangle}$ where $f \in \mathbb{F}_p[x]$ is irreducible of degree n.

Eisenstein's Criterion: If $f(x) = \sum_{i=0}^{n} \alpha_i x^i \in \mathbb{Q}[x]$ and $\exists p$ such that

- $p \mid a_n$ but $p \mid a_{i\neq n}$, and
- p^2 / a_0 ,

then f is irreducible.

3.3 Galois Theory

Definition: A field extension L/k is algebraic iff every $\alpha \in L$ is the root of some $f \in k[x]$.

Definition: A field extension L/k is **normal** iff

- Every embedding $\sigma: L \hookrightarrow \overline{k}$ that is a lift of the identity over k satisfies $\sigma(L) = L$.
- Every irreducible $f \in k[x]$ that has one root in L has all of its roots in L
- If L is separable: L is the splitting field of some irreducible $f \in k[x]$.

Definition: A field extension L/k is **separable** iff

- For every $\alpha \in L$, $f(x) := \min(\alpha, k)$ equivalently has
 - No repeated factors/roots
 - $-f' \not\equiv 0$, or
 - $-\gcd(f,f')=1.$

Lemma: If char k = 0 or k is finite, then every algebraic extension L/k is separable.

Definition: Let L/k be a finite field extension. TFAE:

- L/k is Galois
- L/k is normal and separable.
- L/k is the splitting field of a separable polynomial
- $|\operatorname{Aut}(L/k)| = [L:k]$

Lemmas about towers: Let L/F/k be a tower of field extensions

- L/k normal $\implies L/F$ normal.
- L/k Galois $\implies L/F$ Galois.

•
$$F/k$$
 is Galois \iff $\operatorname{Gal}(L/F) \leq \operatorname{Gal}(L/k)$
 $- \iff \operatorname{Gal}(F/k) \cong \frac{\operatorname{Gal}(L/k)}{\operatorname{Gal}(L/F)}$

• Every quadratic extension is Galois.

4 Modules

Lemma: $I \subseteq R$ is a free R-module iff I is a principal ideal.

 \Longrightarrow :

Suppose I is free as an R-module, and let $B = \{\mathbf{m}_j\}_{j \in J} \subseteq I$ be a basis so we can write $M = \langle B \rangle$. Suppose that $|B| \ge 2$, so we can pick at least 2 basis elements $\mathbf{m}_1 \ne \mathbf{m}_2$, and consider

$$\mathbf{c} = \mathbf{m}_1 \mathbf{m}_2 - \mathbf{m}_2 \mathbf{m}_1,$$

which is also an element of M .

Since R is an integral domain, R is commutative, and so

$$c = m_1 m_2 - m_2 m_1 = m_1 m_2 - m_1 m_2 = 0_M$$

However, this exhibits a linear dependence between \mathbf{m}_1 and \mathbf{m}_2 , namely that there exist $\alpha_1, \alpha_2 \neq 0_R$ such that $\alpha_1 \mathbf{m}_1 + \alpha_2 \mathbf{m}_2 = \mathbf{0}_M$; this follows because $M \subset R$ means that we can take $\alpha_1 = -m_2, \alpha_2 = m_1$. This contradicts the assumption that B was a basis, so we must have |B| = 1 and so $B = \{\mathbf{m}\}$ for some $\mathbf{m} \in I$. But then $M = \langle B \rangle = \langle \mathbf{m} \rangle$ is generated by a single element, so M is principal.

⇐ :

Suppose $M \leq R$ is principal, so $M = \langle \mathbf{m} \rangle$ for some $\mathbf{m} \neq \mathbf{0}_M \in M \subset R$.

Then $x \in M \implies x = \alpha \mathbf{m}$ for some element $\alpha \in R$ and we just need to show that $\alpha \mathbf{m} = \mathbf{0}_M \implies \alpha = \mathbf{0}_R$ in order for $\{\mathbf{m}\}$ to be a basis for M, making M a free R-module.

But since $M \subset R$, we have $\alpha, m \in R$ and $\mathbf{0}_M = 0_R$, and since R is an integral domain, we have $\alpha m = 0_R \implies \alpha = 0_R$ or $m = 0_R$.

Since $m \neq 0_R$, this forces $\alpha = 0_R$, which allows $\{m\}$ to be a linearly independent set and thus a basis for M as an R-module.

5 Linear Algebra

5.1 Minimal / Characteristic Polynomial

Finding the minimal polynomial m(x) of A:

- 1. Find the characteristic polynomial $\chi(x)$; this annihilates A by Cayley-Hamilton. Then $m(x) \mid \chi(x)$, so just test the finitely many products of irreducible factors.
- 2. Pick any **v** and compute T**v**, T^2 **v**, $\cdots T^k$ **v** until a linear dependence is introduced. Write this as p(T) = 0; then $\chi(x)$ p(x).

5.2 Simultaneous Diagonalizability

Lemma: $\{A_i\}$ pairwise commute \iff they are all simultaneously diagonalizable.

Proof: By induction on number of operators

- A_n is diagonalizable, so $V = \bigoplus E_i$ a sum of eigenspaces
- Restrict all n-1 operators A to E_n .
- The commuted in V so they commute in E_n
- (Lemma) They were diagonalizable in V, so they're diagonalizable in E_n
- So they're simultaneously diagonalizable by I.H.
- But these eigenvectors for the A_i are all in E_n , so they're eigenvectors for A_n too.
- Can do this for each eigenspace.

Full details here

5.3 Characterizations if Diagonalizability

Let $\min_{M}(x)$ denote the minimal polynomial of A and $\chi_{M}(x)$ the characteristic polynomial.

Lemma:

$$\chi_M(x) = \prod_{i=1}^k (x - \lambda_i)^{m_i} \implies \min_M(x) = \prod_{i=1}^k (x - \lambda_i)^{\ell_i} \text{ where } 1 \le \ell_i \le m_i,$$

where λ_i are eigenvalues of M, m_i is the multiplicity of λ_i .

Proof: Since \mathbb{C} is algebraically closed, p_M splits into linear factors where $\sum m_i = n$. By Cayley-Hamilton, p_M annihilates M, and so by definition, μ_M divides p_M . Finally, every λ_i is a root of μ_M : let \mathbf{v}_i be the eigenvector associated to λ_i , so $\mathbf{v}_i \neq \mathbf{0}$ and $M\mathbf{v}_i = \lambda_i\mathbf{v}_i$. Then by linearity $\mu_M(\lambda_i)\mathbf{v}_i = \mu_M(M)\mathbf{v}_i = \mathbf{0}$, which forces $\mu_M(\lambda_i) = 0$.

Lemma:

 $M \text{ is diagonalizable over } \mathbb{F} \iff \min_{M}(x) \text{ splits into distinct linear factors over } \mathbb{F}.$

(Equivalently, iff all of the roots of \min_{M} lie in \mathbb{F})

Proof:

 \Longrightarrow

If M is diagonalizable, its domain has a basis of eigenvectors. So if $\mathbf{x} \in \text{domain}(M)$, $\mathbf{v} = \sum \alpha_i \mathbf{v}_i$ where \mathbf{v}_i are eigenvectors. Then $q(x) = \prod_{i=1}^k (x - \lambda_i)$ annihilates M, because we have

$$q(M)\mathbf{w} = q(M)\sum_{i} \alpha_{i}\mathbf{v}_{i} = \sum_{i} \alpha_{i}\prod_{j} (M - I\lambda_{j})\mathbf{v}_{i} = \mathbf{0}$$

where the last equality follows because $(M - I\lambda_i)\mathbf{v}_i = \mathbf{0}$ and for each i, a factor of $(M - I\lambda_i)$ in the product will annihilate \mathbf{v}_i . By minimality, μ_M must divide q, but we must have $k \leq \deg \mu_M \leq n$, so this forces $\deg \mu_M = k$. But then we have two monic polynomials of degree k with the same roots, forcing them to be identical.

⇐=: Longer proof, omitted.

5.4 Canonical Forms

Fix $T: V \to V$, and decompositions

$$V = \bigoplus_{j=1}^{n} \frac{k[x]}{(f_j)}$$
 (invariant factors).

Fix some notation:

 $\chi_T(x)$: The characteristic polynomial of A

 $\min_{x}(x)$: The minimal polynomial of A.

Definition: Two matrices A, B are **similar** (i.e. $A = PBP^{-1}$) $\iff A, B$ have the same JCF

Definition: Two matrices A, B are **equivalent** (i.e. A = PBQ) \iff

- They have the same rank,
- They have the same invariant factors, and
- They have the same JCF

5.4.1 Rational Canonical Form

Corresponds to the **Invariant Factor Decomposition** of T

Derivation:

- Let $k[x] \curvearrowright V$ using T, take invariant factors a_i ,
- Note that $T \curvearrowright V$ by multiplication by x
- Write $\overline{x} = \pi(x)$ where $F[x] \xrightarrow{\pi} F[x]/(a_i)$; then span $\{\overline{x}\} = F[x]/(a_i)$.
- Write $a_i(x) = \sum b_i x^i$, note that $V \to F[x]$ pushes $T \curvearrowright V$ to $T \curvearrowright k[x]$ by multiplication by \overline{x}
- WRT the basis \overline{x} , T then acts via the companion matrix on this summand.
- Each invariant factor corresponds to a block of the RCF.

Lemma: For a linear operator on a vector space of nonzero finite dimension, TFAE:

- The minimal polynomial is equal to the characteristic polynomial.
- The list of invariant factors has length one.
- The Rational Canonical Form has a single block.
- The operator has a matrix similar to a companion matrix.
- There exists a cyclic vector v such that $\operatorname{span}_k\left\{T^j\mathbf{v}\ \middle|\ j=1,2,\cdots\right\}=V.$
- \bullet T has dim V distinct eigenvalues

5.4.2 Jordan Canonical Form

Corresponds to the Elementary Divisor Decomposition of T

Derivation Todo

Facts:

- The following can be read directly off of the invariant factor decomposition:
 - The minimal polynomial is the invariant factor of highest degree, i.e.

$$\min_{T}(x) = f_n(x).$$

- The characteristic polynomial is the product of the invariant factors, i.e.

$$\chi_T(x) = \prod_{j=1}^n f_j(x).$$

- Both $\min_{T}(x)$ and $\chi_{T}(x)$ have roots precisely the eigenvalues of T, with potentially different multiplicities.
- Writing

$$\min_{A}(x) = \prod_{A}(x - \lambda_i)^{a_i}$$
$$\chi_A(x) = \prod_{A}(x - \lambda_i)^{b_i}$$

$$\chi_A(x) = \prod (x - \lambda_i)$$

then $a_i \leq b_i$, and

- a_i tells you the size of the **largest** Jordan block associated to λ_i ,
- b_i is the **sum of sizes** of all Jordan blocks associated to λ_i
- dim E_{λ_i} is the **number of Jordan blocks** associated to λ_i
- \bullet The elementary divisors of A are the minimal polynomials of the Jordan blocks.
- For characteristic polynomials

$$p(x) = \det(A - x1) = \det(SNF(A - x1)).$$

- ullet ? Invariant factors of A are the invariant factors of xI
- A\$ over k[x], and $\prod a_i = \det(xI A)$.