Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α

DATI		
E1 =	50,00	٧
E =	100,00	V
R =	2,00	Ω
X =	8,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Ei simm	etrici seq. Inver	sa

4 II valore massimo corrente INC con interruttore chiuso da t = oo

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	Α
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	10,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	20,00	V
E2M =	10,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI			
E1 =	50,00	٧	
E =	80,00	V	
R =	1,00	Ω	
X =	4,00	Ω	
ZA =	R+jX		
ZB =	R+jX		
ZC =	R+jX		
Gen Ei simmetrici seq. Inversa			
Gen E tension	ne continua		

Esercizio nº 2 16

Dato	il circuito in figura calcolare:	Punti	
1	il fasore cartesiano di Vc	4	V
2	il modulo del fasore di i	4	Α
3	il modulo del fasore di v	4	V
4	la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	34,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	35,00	V
E2M =	25,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio n° 1	17	
Dato il circuito in figura calcolare:	Punti	
il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI		
E1 =	50,00	V
E =	70,00	V
R =	3,00	Ω
X =	12,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Ei simm	etrici seq. Inver	sa

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	Α
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	32,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	5,00	V
E2M =	10,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI		
E1 =	50,00	٧
E =	60,00	٧
R =	4,00	Ω
X =	16,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Ei simm	etrici seq. Inver	sa

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	Α
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	28,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	15,00	V
E2M =	5,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α

5

Α

DATI		
E1 =	50,00	V
E =	50,00	V
R =	2,00	Ω
X =	8,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Fi simm	etrici sea. Inve	rsa

4 II valore massimo corrente INC con interruttore chiuso da t = oo

Gen Ei simmetrici seq. Invers

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	Α
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	26,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	10,00	V
E2M =	10,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI			
E1 =	50,00	V	
E =	40,00	V	
R =	1,00	Ω	
X =	4,00	Ω	
ZA =	R+jX		
ZB =	R+jX		
ZC =	R+jX		
Gen Ei simmetrici seq. Inversa			
Gen E tensione continua			

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	A
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	24,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	20,00	V
E2M =	20,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI		
E1 =	50,00	٧
E =	30,00	٧
R =	7,00	Ω
X =	28,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Ei simme	etrici seq. Inver	sa

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	A
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generato	ore a sinistra 4	Wb

DATI		
R =	22,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	20,00	V
E2M =	15,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	A
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	A
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	A

DATI		
E1 =	50,00	V
E =	110,00	V
R =	3,00	Ω
X =	12,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Ei simmetrici seq. Inversa		

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	A
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	20,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	20,00	V
E2M =	30,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	A
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	A
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	A

DATI		
E1 =	40,00	V
E =	120,00	V
R =	2,00	Ω
X =	8,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Fi simm	etrici sea Inve	rsa

Gen Ei simmetrici seq. Inversa

Eser	cizio n° 2	16	
Dato	il circuito in figura calcolare:	Punti	
1	il fasore cartesiano di Vc	4	V
2	il modulo del fasore di i	4	Α
3	il modulo del fasore di v	4	V
4	la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	18,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	30,00	V
E2M =	10,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI		
E1 =	50,00	V
E =	130,00	V
R =	1,00	Ω
X =	4,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Ei simm	etrici seq. Inve	rsa

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	A
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	16,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	25,00	V
E2M =	10,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI		
E1 =	50,00	٧
E =	75,00	V
R =	2,00	Ω
X =	8,00	Ω
ZA =	R+jX	
ZB =	R+jX	
ZC =	R+jX	
Gen Ei simm	etrici seq. Inver	sa

Esercizio nº 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	Α
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

DATI		
R =	14,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	20,00	V
E2M =	12,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1	17	
Dato il circuito in figura calcolare:	Punti	
1 il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2 il modulo della tensione concatenata su B con interruttore aperto	4	V
3 il valore massimo della corrente INB con interruttore aperto	4	Α
4 II valore massimo corrente INC con interruttore chiuso da t = oo	5	Δ

DATI			
E1 =	50,00	V	
E =	95,00	V	
R =	5,00	Ω	
X =	20,00	Ω	
ZA =	R+jX		
ZB =	R+jX		
ZC =	R+jX		
Gen Ei simmetrici seq. Inversa			
Gen E tensione continua			

Eser	cizio n° 2	16		
Dato	il circuito in figura calcolare:	Punti		
1	il fasore cartesiano di Vc	4		V
2	il modulo del fasore di i	4		Α
3	il modulo del fasore di v	4		V
4	la potenza attiva erogata dal generatore a sinistra	4	\	Wb

DATI		
R =	12,00	Ω
L =	0,10000	Н
C =	0,10000	F
E1M =	20,00	V
E2M =	15,00	V
w =	10,00	rad/s
e1(t) =	E1M cos(wt)	V
e2(t) =	E2M cos(wt)	V

Esercizio nº 1 17

Dato il circuito in figura calcolare:			
1	il modulo della corrente erogata dal E1 con interruttore aperto	4	Α
2	il modulo della tensione concatenata su B con interruttore aperto	4	V
3	il valore massimo della corrente INB con interruttore aperto	4	Α
4	Il valore massimo corrente INC con interruttore chiuso da t = oo	5	Α

DATI						
E1 =	50,00	V				
E =	100,00	V				
R =	2,00	Ω				
X =	8,00	Ω				
ZA =	R+jX					
ZB =	R+jX					
ZC =	R+jX					
One Et alamantal and Income						

Gen Ei simmetrici seq. Inversa Gen E tensione continua

Esercizio n° 2	16	
Dato il circuito in figura calcolare:	Punti	
1 il fasore cartesiano di Vc	4	V
2 il modulo del fasore di i	4	A
3 il modulo del fasore di v	4	V
4 la potenza attiva erogata dal generatore a sinistra	4	Wb

			•
DATI			1/1 1/1 / 1/1
R =	10,00	Ω	
L =	0,10000	Н	1, R R/S, W L
C =	0,10000	F	M SHELL ON OH
E1M =	20,00	V	5 7 1 1 5 C C C C C C C C C C C C C C C C C
E2M =	10,00	V	TOM RCT VERICE
w =	10,00	rad/s	1907
e1(t) =	E1M cos(wt)	V	,,
$e^{2(t)} =$	F2M cos(wt)	V	