Estimação Bayesiana para o comprimento médio da primeira maturação do ariocó *Lutjanus synagris* (Linnaeus, 1758) na costa do Rio Grande do Norte, Brasil

RUFENER, M.C.^{1,2}; KINAS, P.G.¹; NÓBREGA, M.F.²; LINS, J.O.²

1 - Laboratório de Estatística Ambiental, Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, Brasil

2 - Laboratório de Biologia Pesqueira, Universidade Federal do Rio Grande do Norte, Brasil

INTRODUÇÃO

Estudos de determinação da idade e/ou do tamanho médio em que 50% dos indivíduos atingem a maturidade sexual (L_{50}) são frequentemente utilizados para se ter um primeiro acesso da dinâmica populacional. O cálculo do L_{50} é realizado por meio de uma regressão logística, cujos parâmetros (β_0 e β_1) são tradicionalmente estimados via método de máxima verossimilhança. Quando a amostra é pequena, esse método produz estimativas enviesadas e os limites de confiança não podem ser calculados. Dado a essa falha imposta pelo método frequentista, inferências bayesianas têm sido cada vez mais acessadas pela ciência pesqueira haja vista não ser tão limitante quanto à restrição do tamanho amostral, bem como tratar a probabilidade de forma completamente diferente do método convencional. Considerando essas informações, o presente estudo objetivou estimar o comprimento de primeira maturação *de L. synagris*, baseando-se exclusivamente em métodos Bayesianos.

MATERIAL & MÉTODOS

Fig. 1: Área de estudo com destaque para os pontos de amostragem.

Tabela I: Número de indivíduos por estados de maturação e sexo

Estado de maturação	Q	ď
A	0	3
В	16	19
C	19	21
D	7	4
E	0	0
Total	42	47

Fig. 2: Ilustração da medida morfológica utilizada.

onde p_{ij} denota a probabilidade de que um indivíduo i da j-ésima classe de comprimento esteja sexualmente maturo; $g(p_{ij})$ representa a função de ligação logit; β_0 é o logit da probabilidade de que um indivíduo com comprimento igual à média \bar{x} se encontre sexualmente maduro; β_1 o incremento médio no logit de p_{ij} para cada centímetro adicionado ao comprimento; e x_{ij} denota o comprimento individual i na j-ésima classe.

RESULTADOS & DISCUSSÕES

CONCLUSÃO

- Estimação conjunta do L₅₀;
- O L₅₀ estimado é próximo aos valores encontrados para esta espécie no Nordeste ;
- Importância da análise bayesiana nas pesquisas pesqueiras ;

