(a) 计算每种情况下的概率及对应的抵押品池的回报

1. 两只债券都违约

- 概率: 0.2 * 0.2 = 0.04
- 回收金额: 0.4*15M + 0.6*25M = 6M + 15M = \$21M

2. 两只债券都存续

- 概率: 0.8 * 0.8 = 0.64
- 回收金额: 15M+25M = \$40M

3. **A违约B存续**

- 概率: 0.2 * 0.8 = 0.16
- 回收金额: 0.4 * 15M+25M = 6M+25M = \$31M

4. **A存续B违约**

- 概率: 0.8 * 0.2 = 0.16
- 回收金额: 15M + 0.6*25M = 15M + 15M = \$30M

预期回报计算:

$$E[$$
回报 $]=0.04 imes21+0.64 imes40+0.16 imes31+0.16 imes30$ $E[$ 回报 $]=0.84+25.6+4.96+4.8=36.2$

所以,抵押品池的预期回报是\$36.2M。

(b) 高级债券的预期回报(以百分比表示)

- 高级债券吸收前\$10M损失后的剩余回报。
- 各种情况的回报:
 - 两只债券都违约: \$21M
 - 两只债券都存续: 40M-10M = \$30M
 - A违约B存续: 31M-1M = \$30M
 - A存续B违约: \$30M

预期回报计算:

E[高级债券回报] = $0.04 \times 21 + 0.64 \times 30 + 0.16 \times 30 + 0.16 \times 30 = 29.64$ 所以,高级债券的预期回报是 26.2M,占其本金的百分比为: $\frac{39.64}{30} \times 100$ \$

- (c) 次级债券的预期回报 (以百分比表示)
 - 次级债券吸收前\$10M损失后的剩余回报。

- 各种情况的回报:
 - 两只债券都违约: 0*M* (由于损失超过10M)
 - 两只债券都存续: \$10M
 - A违约B存续: \$1M■ A存续B违约: \$0M

预期回报计算:

$$E$$
[次级债券回报] = 6.56

所以,次级债券的预期回报是 10M,占其本金的百分比为: $\frac{6.56}{10} imes 100$ \$

- (d) 违约概率完全相关时的预期回报(以百分比表示)
 - 如果违约概率完全相关, 那么只有两种情况:
 - 1. 两只债券都违约:
 - 概率: 0.2
 - 回收金额: \$21M
 - 高级债券: \$21M
 - 次级债券: \$0M
 - 2. 两只债券都存续:
 - 概率: 0.8
 - 回收金额: \$40M
 - 高级债券: \$30M
 - 次级债券: \$10M

预期回报计算:

$$E$$
[高级债券回报] = $0.2 \times 21 + 0.8 \times 30 = 28.2$

占本金的百分比
$$= \frac{26.2}{30} imes 100\% pprox 94\%$$

$$E$$
[次级债券回报] = 0.8×10

占本金的百分比 =
$$\frac{8}{10} \times 100\% = 80\%$$

所以, 当违约概率完全相关时:

- 高级债券的预期回报是 94%
- 次级债券的预期回报是80%

一年到期:

$$P = \frac{1000}{1.04} = 961.54$$

两年到期:

$$P = \frac{1000}{1.05^2} = 907.03$$

(c)

$$f_2=rac{1.05^2}{1.04}=6.01\%$$

$$f_3 = rac{1.08^3}{1.05^2} = 14.26\%$$

(d)

最终收益为

$$1000*(1+f_2)*(1+f_3) = 1121.54$$

(e)

今日的价格为:

$$\frac{500}{1.04} + \frac{2000}{1.05^2} = 2294.83$$

3

(a)

收益表格

S_T	买入看跌 期权 (K=\$40)	卖出看跌期权 (K=\$50)	卖出看涨 期权 (K=\$60)	期权	总收益
$S_T < 40$	$40-S_T$	$-(50-S_T)$	0	0	-10
$40 \leq S_T < 50$	0	S_T-50	0	0	$S_T - 50$
$50 \leq S_T < 60$	0	0	0	0	0
$60 \leq S_T < 70$	0	0	$60-S_T$	0	$60 - S_T$
$S_T \geq 70$	0	0	$60-S_T$	S_T-70	-10

收益图

在该图中,横轴表示标的资产价格 S_T ,纵轴表示总收益。曲线显示了不同 S_T 下的总收益。

(b)

根据表格和图形分析:

• 最高利润: $50 \le S_T < 60$

• 最低利润: $S_T < 40$ 或 $S_T \ge 70$

(c)

假设目前标的资产的价格为 55。根据收益表格,该投资方案在 S_T 处于50 和 60之间时的利润最高。因此,投资者预期标的资产的未来价格在50 和 \$60 之间 变动时,该投资方案是合理的。这种预期表明投资者认为标的资产的价格将保持在相对窄的 区间内波动,而不会大幅上涨或下跌。

(d)

- **行权价为** 40和**50 的看跌期权价格**:由于行权价 50高于行权价40,且看跌期权的价格随着行权价的增加而增加,因此 $P_{50} > P_{40}$ 。
- **行权价为** 60和**70 的看涨期权价格**:由于行权价 60低于行权价70,且看涨期权的价格随着行权价的增加而减少,因此 $C_{60}>C_{70}$ 。

(a) 计算看涨期权的价格

首先,我们需要计算6个月后的期权价格,然后推导到当前价格。

1. 计算12个月后各节点的期权价格

看涨期权行权价 K=97。

- $S_{++}=121$, 行权价为 97, 收益为 $\max(121-97,0)=24$ 。
- $S_{+-}=100$, 行权价为 97, 收益为 $\max(100-97,0)=3$ 。
- $S_{--}=81$, 行权价为 97, 收益为 $\max(81-97,0)=0$ 。

2. 计算6个月后各节点的期权价格

假设6个月后的价格是 $S_{+}=110$ 和 $S_{-}=90$ 。

期权价格 C_+ 和 C_- 可以通过折现计算得到:

$$\Delta H = \frac{C^{++} - C^{+-}}{S^{++} - S^{+-}} = 1$$

构建投资组合:

	S_T	$S_T = 100$
	= 121	= 100
write 1 call option	-24	-3
buy 1 stock	121	100
total	97	97

根据一价定律:

$$110 - C^{+} = \frac{97}{1.04^{0.5}} \Rightarrow C^{+} = 14.884$$

同理可得, $C^- = 1.669$

3. 计算当前期权价格

$$\Delta H = \frac{C^+ - C^-}{S^+ - S^-} = 0.661$$

构建投资组合:

	$S_T = 110$	$S_T = 90$
write 1 call option	-14.884	-1.669
buy 0.661 stock	72.678	59.464
total	57.795	57.795

因此

$$C_0 = 0.661 imes 100 - rac{57.795}{1.04^{0.5}} = 9.399$$

(b) 计算看跌期权的价格

使用期权平价公式 $S_0+P_0=C_0+rac{X}{(1+r_f)^T}$,求看跌期权价格。

已知:

- C = 9.399
- $S_0 = 100$
- X = 97
- r = 0.04
- T = 1 年

所以,看跌期权的当前价格约为 2.668

(c) 计算考虑股利后看涨期权的价格

首先,我们需要计算6个月后的期权价格,然后推导到当前价格。

1. 计算12个月后各节点的期权价格

看涨期权行权价 K=97。

- $S_{++}=121$, 行权价为 97, 收益为 $\max(121-97,0)=24$ 。
- $S_{+-}=100$,行权价为 97,收益为 $\max(100-97,0)=3$ 。
- $S_{--}=81$, 行权价为 97, 收益为 $\max(81-97,0)=0$ 。

2. 计算6个月后各节点的期权价格

假设6个月后的价格是 $S_{+}=110$ 和 $S_{-}=90$ 。

期权价格 C_+ 和 C_- 可以通过折现计算得到:

$$\Delta H = \frac{C^{++} - C^{+-}}{S^{++} - S^{+-}} = 1$$

构建投资组合:

	S_T	S_T
	=121	= 100
write 1 call option	-24	-3
buy 1 stock	121+2	100+2
total	99	99

根据一价定律:

$$110-C^+=rac{99}{1.04^{0.5}}\Rightarrow C^+=12.92$$

同理可得, $C^- = 1.36$

3. 计算当前期权价格

$$C_0 = 8.12$$

(d) 计算看跌期权的价格

使用期权平价公式 $S_0+P_0=C_0+rac{X}{(1+r_f)^T}$,求看跌期权价格。

已知:

- C = 8.12
- $S_0 = 100$
- X = 97 + 2
- r = 0.04
- T = 1 年

所以,看跌期权的当前价格约为 3.31

5

(a)

• D. 卖出看跌期权

(b)

≥1.png

标的资产价格变化如上图.

由题意可以得到以下情况的最终收益:

•
$$C^+ = 100 + i$$

•
$$C^{-++} = C^{-+-} = 100 + 3i$$

•
$$C^{--+} = 80$$

•
$$C^{---} = 51.2$$

1.计算 C^{-+}

$$\Delta H = rac{C^{-++} - C^{-+-}}{S^{-++} - S^{-+-}} = 0$$
 $S^{-+} \Delta H - C^{-+} = rac{S^{-++} \Delta H - C^{-++}}{1 + r_f} \Rightarrow C^{+-} = 100 + 3i$

2.计算C--

$$\Delta H = rac{C^{--+} - C^{---}}{S^{--+} - S^{---}} = 1$$

$$S^{--} \Delta H - C^{--} = rac{S^{--+} \Delta H - C^{--+}}{1 + r_f} \Rightarrow C^{--} = 64$$

3.计算C-

$$\Delta H = rac{C^{-+} - C^{--}}{S^{-+} - S^{--}} = 1 + i/12$$
 $S^- \Delta H - C^- = rac{S^{-+} \Delta H - C^{-+}}{1 + r_f} \Rightarrow C^- = 80 + 4i/3$

4.计算 C_0

$$\Delta H = rac{C^+ - C^-}{S^+ - S^-} = 4/9 - i/135$$
 $S_0 \Delta H - C_0 = rac{S^+ \Delta H - C^+}{1 + r_f} \Rightarrow C_0 = 800/9 + 32i/27$

由题意, $C_0=100$,从而解得i=75/8,也即承诺收益率为9.375%

(c) 投资机构的对冲行为对市场的影响

- 对于投资机构卖出的每份雪球资产,记一开始买入 a_0 份标的资产,每个时间点持有标的资产的 a_i 份,此时价格为 $p_i, i \in [n]$,记雪球资产结算给客户的价格为C,规定 $a_{-1} = a_n = 0$,雪球结算时长为T.
- 投资机构收益率为:

$$U = (p_0 - C - \sum_{i=0}^n (a_i - a_{i-1})p_i)/T$$

- 下分类讨论 a_{t+1} 的取值
 - 若 $p_{t+1} > p_t$,记 $a_{t+1} > a_t$ 时最终收入为 U^+ ,反之为 U^- 买入资产导致资产价格上涨, 卖出资产导致资产价格下降.

$$U^+ - U^- = [C^- - C^+ + \sum_{i=t+1}^n (a_i^- - a_{i-1}^-) p_i^- - (a_i^+ - a_{i-1}^+) p_i^+]/T$$

由于

$$E[C^-/T] < E[C^+/T]$$
 $a_{t+1}^+ p_i^+ - a_{t+1}^- p_i^- > 0$

因此 $E(U^+) < E(U^-)$

- 所以条件(i)时应当卖出资产
- 若 $p_{t+1} < p_t$,若此时未敲出,同理可得 $E(U^+) > E(U^-)$,所以条件(ii)时应当买入资产
- 若已敲出,即条件(iii),有 $C=p_n$ 利用Abel变换,有

$$UT = -\sum_{i=1}^n (p_i - p_{i-1}) - \sum_{i=1}^n a_{i-1}(p_{i-1} + p_i) - a_n p_n = \sum_{i=1}^n (a_{i-1} - 1)(p_i - p_{i-1})$$

■ 由于 $a_{i-1} < 1$,价格越低投资机构的效用越大(损失越小),因此投资机构不断卖出资产并导致降价

条件	行为	结果
(i)	A. 卖出	C. 下跌
(ii)	B. 买入	D. 上涨
(iii)	A. 卖出	C. 下跌

(d) 通过以上分析可以看到:

情况 (i)(ii) 降低了标的资产的波动,情况 (iii) 加剧了标的资产的波动。今年年初的股灾导致各个 A 股市场指数大幅下跌,以这些指数为标的资产的雪球类似于情况 (iii)。

6

(a)

根据无套利定价144hgee原理,远期汇率 F_0 的计算公式为:

$$F_0 = S_0 imes rac{(1+r_{USD})}{(1+r_{GBP})}$$

已知:

• 美元的一年期无风险利率 $r_{USD}=3\%$

• 英镑的一年期无风险利率 $r_{GBP}=8\%$

• 美元兑英镑的即期汇率 $S_0 = 1.25$ 美元/英镑

所以:

$$F_0 = 1.25 imes rac{(1+0.03)}{(1+0.08)}$$
 $F_0 = 1.25 imes rac{1.03}{1.08}$ $F_0 pprox 1.25 imes 0.9537$ $F_0 pprox 1.1921$

所以,如果不存在套利机会,计算得到的远期汇率 F_0 约为 1.1921 美元/英镑。

(b)

如果远期合约在兑现时要缴纳 1% 的手续费,远期汇率的取值范围需要考虑手续费的影响。 手续费使得远期汇率的实际价格 F_0^\prime 必须满足:

$$1 + r_{USD} > (1 + r_{GBP}) rac{F_0(1 - 0.01)}{S_0} \ 1 + r_{GBP} > (1 + r_{USD}) rac{S_0(1 - 0.01)}{F_0}$$

也即 $F_0 \in [1.280, 1.204]$

(c)

表格如下:

操作
$$\begin{pmatrix} CF_0 \\ (\$ \\) \end{pmatrix}$$
 $\begin{pmatrix} CF_1 \\ (\$) \end{pmatrix}$ $\begin{pmatrix} CF_1 \\ (\$) \end{pmatrix}$ $\begin{pmatrix} CF_1 \\ (\$) \end{pmatrix}$ $\begin{pmatrix} -(1 \\ +r_{USD}) \\ = \\ -1.03 \end{pmatrix}$

操作	CF_0 ($\$$	$CF_1 \ (\$)$
借出 $\frac{1}{S_0}$ 英镑	-1	$egin{aligned} (1\ + r_{GBP}\)rac{S_1}{S_0}\ &=rac{1.08S_1}{1.25} \end{aligned}$
利用远期合约,兑换 $(1+r_{GBP})rac{1}{S_0}$ 英镑得到 $(1+r_{GBP})rac{0.99F_0}{S_0}$ 美元	0	$egin{aligned} (1\ +\ r_{GBP}\ +\ r_{GBP}\)rac{F_0-S_1}{S_0}\ &=rac{1.08}{1.25}\ (1.22\ *\ 0.99\ -\ S_1) \end{aligned}$
Total	0	0.0135

这种情况下,净现金流为正,所以投资者可以通过套利获得无风险收益。