MOSbius-Style Class D Amplifier

XDAC

Xavier, Devlin, Angel, Christopher

General Specifications

As a lab device, we'd like students to be able to power a pair of headphones from the output of our chip. By listening to their amplifier configuration, students can tie their mathematical understanding of frequency response to what they hear.

	Target	Motivation	
Output Power	100mW	Typical max power for headphone jack. Real load should take far less, around 40mW.	
Sine-Wave Peak Differential Output Swing	Min. 1.4Vpp	Calculated from sound-pressure level of +110dB into typical 32-Ohm headphone load. Value should be easy to hit in Class-D operation.	
VDD	3.3V	Standard LV Voltage transistor in gf180mcuD	
Sawtooth Frequency	Programmable to max 200kHz	Manipulating the modulation frequency should be an interesting exercise.	

General Specifications

Other modes of operation (e.g. Class AB) should be possible with our chip, as should a front-end audio amplifier for a basic microphone.

Equivalent P and N-type devices should be made available so that different configurations can be tested. For example, N vs. P input diff pair for an OTA.

Following the original MOSBIUS project, we decided to target the same PLCC68 packaging.

P60 P59 P58 P57 P56 P55 P54 P53 P52 P51 P50 P49 P48 P47 P46 P45 P44 S_OUT P43 DEAD P62 ΕN TIME P42 GEN. P63 VDD P41 P64 P40 P-Type Devices P65 P39 **60x10 Crosspoint Matrix** Power P66 P38 Devices P67 P37 Matched P68 VSS P36 P35 P2 P34 Р3 P33 P4 **Analog Pins** P32 Matched **DNW Pair** P5 P31 **N-Type Devices** OUT P6 P30 TRIM P29 (W) REF1 P8 P28 OSC. REF2 P9 P27

P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26

Open Points of Discussion

Should voltage references for relaxation oscillator be made available to general switch matrix? Oscillator performance may be degraded by crosstalk in the matrix.

Included S_OUT (Serial Out) intended to cascade multiple MOSbius-style chips over one command interface.

Note we have one DNW NMOS pair, which appears to be available in the d-variant of gf180mcu we are using.

Whether we should support internal connections between the power pads (2X VDD, VSS, respectively).

Proposed Application Circuits (1)

Class D: Amplifier

Proposed Application Circuits (2)

Class AB: Operation

More General Applications

Many of the original MOSbius labs on the website are still possible with our proposed chip:

- Current mirrors
- Differential pair AC and DC characterizations
- 5T-OTA

Additionally, the included N and P comparators could be used by users to create their own triangle-wave oscillators, learn about hysteresis, etc.

Members + Work Allocation

Output Stage + Gate Driver, Comparator, Deadtime Circuit
Christopher Amankwaa

Oscillator, OTAs, Current Sources, Current Mirrors

Xavier Lee

Crosspoint Matrix, Shift Register Interface

Angel Romero + Devlin Glover

Project Schedule

Week	Christopher	Xavier (Presenter)	Devlin	Angel
29 (7/12 - 18)	Basic FET constraints: gm/id Comparator	Device Params Current Mirrors Current Ref.	Look into analog switch design, start designing digital blocks (NAND, NOT, work up to DFF)	Look into K-layout in python also start designing digital blocks
30 (7/19 - 25)	Designs: Output driver + Deadtime	Design: OTA, Triangle Oscillator	Research matrix design & begin designing analog switch network	Research digital elements for matrix (non-overlapping clock elements, etc) & begir serial register design
31 (7/26 - 8/1) Schem. Review	Collaboration + Cross-Check Finish block sims	Collaboration + Cross-Check Finish block sims	Continue analog switch network design	Continue Serial register design
32 (8/2 - 8/9) Block Sim Review	Tie up loose ends Begin top-level integration simulations	Coordinate w/ digital Begin top-level integration simulations	Finish overall matrix design and begin integration	Integration of overall digital design
33 (8/10 - 8/17) Go / NoGo	Finish integration simulations + presentation of work	Finish integration simulations + prepare presentation of work	Finish integration of matrix design	Finish integration of matrix design

	Week	Christopher	Xavier	Devlin	Angel
Xavier Starts Grad School	34: (8/18-8/25)	NMOS, PMOS, Gate Driver layout	Layout current mirrors, reference	Digital element layout	Automate switch matrix layout
	35: (8/26-9/2)	Comparator, Deadtime, Layout	OTA, Oscillator Layout	Complete ^	Complete ^
	36: (9/3-9/10) Block Layout Review	Top-Level Integration	Top-Level Integration	Top-Level Integration	Top-Level Integration
Devlin Starts Grad School	37: (9/17-9/24) Top Layout Review	Top-Level Integration	Top-Level Integration	Top-Level Integration	Top-Level Integration
	38: (9/25-10/2)	Top-Level Integration	Top-Level Integration	Top-Level Integration	Top-Level Integration
	39: (10/3-10/10) Final Review	Top-Level Integration	Top-Level Integration	Top-Level Integration	Top-Level Integration