

POLITECHNIKA POZNAŃSKA

Wydział Informatyki i Telekomunikacji

Wykrywanie naczyń dna siatkówki oka

Szymon Jakubiec nr indeksu 126997 Damian Cybulski nr indeksu 120573

Prowadzący:

dr hab. inż. Szymon Wilk

Język programowania

Zastosowanym przez nas językiem programowania był **Python**, który oferował odpowiednie biblioteki, ułatwiające przetwarzanie obrazu. Dodatkowym atutem była możliwość wykorzystania **Jupyter Notebooka**. Wykorzystano następujące biblioteki:

- Skimage
- Matplotlib
- Sklearn
- Imblearn

Opis zastosowanych metod

Przetwarzanie obrazów

Przetwarzanie obrazów wejściowych zostało wykonane wieloetapowo w następujących krokach:

1. Wczytanie obrazu wejściowego i eksperckiego

```
def load_base_image(self, base_image):
    self.base_image = base_image

def load_expert_image(self, expert_image):
    self.expert_image = expert_image
```

2. Przefiltrowanie obrazu i wyodrębnienie barwy zielonej

```
def extract_green(self):
    self.green_image = self.base_image.copy()
    self.green_image[:, :, 0] = 0
    self.green_image[:, :, 2] = 0
```

3. Konwersja obrazu do skali szarości

```
def convert_to_gray(self):
    self.gray_image = skimage.color.rgb2gray(self.green_image.copy())
```

4. Normalizacja histogramu kolorów

```
def normalize(self):
    self.normalized_image = exposure.equalize_hist(self.gray_image.copy())
    self.normalized_image = rank.equalize(skimage.util.img_as_ubyte(self.normalized_image), selem=disk(9))
```

5. Wykrywanie naczyń krwionośnych przy wykorzystaniu filtra Frangi'ego

```
def frangi_filter(self):
    K = ones([14, 14])
    K = K / sum(K)
    self.frangied_image = convolve(frangi(self.rescaled_image), K)
```

6. Odcięcie tła

```
def background_cut_off(self):
    self.binary_image = self.frangied_image > np.mean(self.frangied_image) + 1.5 * np.std(self.frangied_image)
```

Wizualizacja wyników

Zaimplementowany algorytm wykrywania naczyń krwionośnych zastosowano na 5 wejściowych obrazach. Poniżej przedstawiono wizualizację wyników.

Obraz 1 - od lewej - obraz po zastosowaniu filtra Frangi'ego, obraz z zastosowanym odcięciem tła, obraz ekspercki

Obraz 2 - od lewej - obraz po zastosowaniu filtra Frangi'ego, obraz z zastosowanym odcięciem tła, obraz ekspercki

Obraz 3 - od lewej - obraz po zastosowaniu filtra Frangi'ego, obraz z zastosowanym odcięciem tła, obraz ekspercki

Obraz 4 - od lewej - obraz po zastosowaniu filtra Frangi'ego, obraz z zastosowanym odcięciem tła, obraz ekspercki

Obraz 5 - od lewej - obraz po zastosowaniu filtra Frangi'ego, obraz z zastosowanym odcięciem tła, obraz ekspercki

Ocena statystyczna wyników

Oceny statystycznej wygenerowanych obrazów dokonano przy użyciu dostępnych bibliotek sklearn.metrics oraz imblearn.metrics. Badano takie parametry jak dokładność, czułość, swoistość pomiaru. Dodatkowo wykorzystano miary statystyczne dla danych niezrównoważonych takie jak miara f1, precision oraz recall. Wyniki oraz funkcję obliczającą efektywność algorytmu przedstawiono poniżej.

```
def calculate_effectiveness(self):
   img = self.binary_image.astype(np.uint8)
   img = np.array(img).reshape(-1)
   expert_img = self.expert_image
   expert_img = np.divide(expert_img, 255).astype(np.uint8)
   expert_img = np.array(expert_img).reshape(-1)
   print(classification_report_imbalanced(img, expert_img))
   conf_matrix = confusion_matrix(expert_img, img)
   true_positive = conf_matrix[0][0]
   false_positive = conf_matrix[0][1]
   false_negative = conf_matrix[1][0]
   true_negative = conf_matrix[1][1]
         .format(true_positive, false_positive, false_negative, true_negative))
   accuracy = (true_positive + true_negative) / (true_positive + true_negative + false_positive + false_negative)
   sensitivity = true_positive / (true_positive + false_negative)
   specificity = true_negative / (true_negative + false_positive) if (true_negative + false_positive) != 0 else 0
   print("Accuracy: {}, Sensitivity: {}, Specificity: {}".format(accuracy, sensitivity, specificity))
   f1 = f1_score(img, expert_img)
   print("F1_score: {}".format(f1))
```

Obraz 1 - metryki

Classification	Report Imb	alanced								
	pre	rec	spe	f1	geo	iba	sup			
0	0.98	0.95	0.75	0.96	0.84	0.73	7598638			
1	0.53	0.75	0.95	0.62	0.84	0.70	586706			
avg / total	0.95	0.93	0.76	0.94	0.84	0.72	8185344			

TruePositive: 7204656, FalsePositive: 146800, FalseNegative: 393982, TrueNegative:439906 Accuracy: 0.933932892740977, Sensitivity: 0.9481509712661664, Specificity: 0.7497895027492475 F1_score: 0.6193268449676684

Obraz 2 - metryki

Classification	Report Imb	alanced							
	pre	rec	spe	f1	geo	iba	sup		
0	0.98	0.95	0.71	0.96	0.83	0.70	7552357		
1	0.56	0.71	0.95	0.63	0.83	0.66	632987		
ava / tatal	0.04	0.02	0.72	0.04	a 02	0.60	0105344		
avg / total	0.94	0.93	0.73	0.94	0.83	0.69	8185344		

TruePositive: 7196263, FalsePositive: 180643, FalseNegative: 356094, TrueNegative:452344 Accuracy: 0.9344270686729843, Sensitivity: 0.9528499513463148, Specificity: 0.7146181517155961 F1_score: 0.6276344589555475

Obraz 3 - metryki

Classification	Report Imb	alanced								
	pre	rec	spe	f1	geo	iba	sup			
0	0.98	0.95	0.76	0.96	0.85	0.73	7582165			
1	0.53	0.76	0.95	0.62	0.85	0.70	603179			
avg / total	0.95	0.93	0.77	0.94	0.85	0.73	8185344			

TruePositive: 7173430, FalsePositive: 147743, FalseNegative: 408735, TrueNegative: 455436 Accuracy: 0.9320153190873836, Sensitivity: 0.946092573822912, Specificity: 0.7550594433824785 F1_score: 0.6207598732408764

Obraz 4 - metryki

Classification	Report Imb	alanced					
	pre	rec	spe	f1	geo	iba	sup
0	0.98	0.96	0.71	0.97	0.82	0.69	7562510
1	0.57	0.71	0.96	0.63	0.82	0.66	622834
avg / total	0.94	0.94	0.73	0.94	0.82	0.69	8185344

TruePositive: 7231864, FalsePositive: 181879, FalseNegative: 330646, TrueNegative:440955 Accuracy: 0.9373850384296616, Sensitivity: 0.9562782726898873, Specificity: 0.7079815809669993 F1_score: 0.6324497018505704

Obraz 5 - metryki

					Imbalanced	on Report I	Classificati
sup	iba	geo	f1	spe	rec	pre	
7561837 623507	0.75 0.72	0.86 0.86	0.97 0.69	0.76 0.96	0.96 0.76	0.98 0.64	0
8185344	0.75	0.86	0.95	0.77	0.95	0.95	avg / total

TruePositive: 7296272, FalsePositive: 150286, FalseNegative: 265565, TrueNegative:473221 Accuracy: 0.9491956599502721, Sensitivity: 0.9648808880699227, Specificity: 0.7589666194605674 F1_score: 0.6947418800507673