11 октября 2024 г.

Задача 1.

Пусть $\Omega = \{1, 2, 3, 4\}$ и

$$\mathcal{F} := \{\emptyset, \{1\}, \{3\}, \{1,3\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}, \{1,2,3,4\}\}\}$$

$$\mathcal{G} := \{\emptyset, \{1\}, \{2\}, \{1,3\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\}\}$$

$$\mathcal{H} := \{\emptyset, \{1\}, \{4\}, \{1,4\}, \{2,3\}, \{1,2,3\}, \{2,3,4\}, \{1,2,3,4\}\}\}$$

- а) Определите, какие из семейств множеств \mathcal{F}, \mathcal{G} и/или \mathcal{H} являются σ -алгебрами, а какие нет.
- b) Пусть $f: \Omega \to \mathbb{R}$ определена следующим образом: $f(n) := (-1)^n$. Проверьте измеримость f по отношению к σ -алгебрами, определённым в п. а).

Задача 2.

Пусть X – стандартная нормальная случайная величина, $\mathcal{N}(0,1)$. Случайная величина Y задается на том же вероятностном пространстве, что и X, следующим образом:

$$Y(\omega) = egin{cases} X(\omega) & \text{ для } \omega: |X(\omega)| < 0.5 \ -X(\omega) & \text{ для } \omega: |X(\omega)| \geq 0.5. \end{cases}$$

- а) Найдите маржинальную плотность $f_Y(y)$ распределения Y.
- b) Является ли X + Y нормальной случайной величиной?

Задача 3.

Фирма A на собеседовании нанимает работника с вероятностью p, и платит трудоустроенным сотрудникам вознаграждение $Y \sim Exp(\lambda)$, а в случае отказа в приёме на работу, её расходы на организацию одного собеседования составляют a. Найдите среднее значение и дисперсию общих затрат, если планируется провести собеседования с k кандидатами, и решения о приёме на работу и размере оплаты каждого работника принимаются независимо.

Задача 4.

Случайная величина X имеет равномерное распределение на отрезке [-1,1]. Вычислите $\mathbb{E}(X\mid X^2)$.