CPSC 331: DATA STRUCTURES, ALGORITHMS, AND THEIR ANALYSIS

GO UEZONO

March 16, 2024

CONTENTS

1	Algorithmic Analysis		
	1.1	Loop Invariants	2
	1.2	Bound Functions	2
2	Data Structures		
	2.1	Lists	2
	2.2	Stacks	2
	2.3	Queues	2
	2.4	Binary Search Trees	2
	2.5	Red and Black Trees	3
3	Methods		
	3.1	Test sub	4
	3.2	Math subsection	4
4	Results and Discussion		
	4.1	Subsection	4
	4.2	Subsubsection	4

LIST OF FIGURES

LIST OF TABLES

ALGORITHMIC ANALYSIS 1

- Loop Invariants 1.1
- 1.2 **Bound Functions**

DATA STRUCTURES 2

- 2.1 Lists
- 2.2 Stacks
- 2.3 Queues
- 2.4 Binary Search Trees

2.5 Red and Black Trees

Definition.

A concrete implementation of a **self-balancing** binary-search tree (reference here) that automatically maintains balance. Each node is assigned a color, hence the name. There are specific rules how to each node attains their color, which will be discussed here (reference here).

• Giving each node their respective color ensures that the tree maintains a certain balance.

After inserting an deleting nodes, complex algorithms are applied to check compliance with rules.

• In case of deviations, to restore the prescribed properties by recoloring nodes and rotations.

2.5.1 Rotational Properties

ASSUMPTION We will assume that values in the tree are unique.

3 METHODS

Test math notation: $\cos \pi = -1$ and $\alpha \omega$

- 1. 1st item in list
- 2. 2nd item
- 3. 3rd
- 3.1 Test sub

DESCRIPTION

2ND DESCRIPTION

3.2 Math subsection

$$\cos^3\theta = \frac{1}{4}\cos\theta + \frac{3}{4}\cos 3\theta\tag{1}$$

Definition (Gauss). To a mathematician, it is obvious that $\int_{-\inf}^{+\inf} e^{-x^2} dx = \sqrt{pi}$.

Theorem 3.1 (Red and Black Trees). Red trees are better than black trees.

Proof. We have that $\log(1)^2 = 2\log(1)$. We also have that $\log(-1)^2 = \log(1) = 0$. Then, $2\log(-1) = 0$, from which the proof.

4 RESULTS AND DISCUSSION

4.1 Subsection

Test subsec

4.2 Subsubsection

Test sub

word Definition

CONCEPT Explanation

IDEA Text

Test Test

- First
- Second
- Third