When Standard Methods Succeed

Lucy D'Agostino McGowan

Wake Forest University

2022-07-05 (updated: 2022-10-16)

when correlation is causation

randomized controlled trials A/B testing

Even in these cases, using the methods you will learn here can help!

- 1 Adjusting for baseline covariates can make an estimate more efficient
- 2 Propensity score weighting is more efficient that direct adjustment
- 3 Sometimes we are more comfortable with the functional form of the propensity score (predicting exposure) than the outcome model

simulated data (100 observations)

simulated data (100 observations)

Treatment is randomly assigned

simulated data (100 observations)

Treatment is randomly assigned

There are two baseline covariates: age and weight

Unadjusted model

Im(y ~ treatment, data = data) Characteristic Beta SE¹ 95% CI¹ p-value treatment 1.6 0.803 -0.04, 3.1 0.056 ¹ SE = Standard Error, CI = Confidence Interval

Adjusted model

Lm(y ~ treatment + weight + age					
Characteristic	Beta	SE ¹	95% CI ¹	p-value	
treatment	1.5	0.204	1.1, 1.9	<0.001	
weight	0.18	0.103	-0.03, 0.38	0.087	
age	0.20	0.005	0.19, 0.21	<0.001	
¹ SE = Standard Error, CI = Confidence Interval					

Propensity score adjusted model

Characteristic	Beta	SE	95% CI	p-value
treatment	1.5	0.197	1.1, 1.9	<0.001

simulated data (10,000 observations)

Treatment is randomly assigned

There are two baseline covariates: age and weight

Unadjusted model

Im(y ~ treatment, data = data) Characteristic Beta SE¹ 95% Cl¹ p-value treatment 0.89 0.082 0.73, 1.1 <0.001 ¹ SE = Standard Error, Cl = Confidence Interval</pre>

Adjusted model

m(y ~ tre	atme	nt +	weigh	t + age
Characteristic	Beta	SE ¹	95% CI ¹	p-value
treatment	1.0	0.020	0.97, 1.0	<0.001
weight	0.19	0.010	0.17, 0.21	<0.001
age	0.20	0.001	0.20, 0.20	<0.001
¹ SE = Standard Error, CI = Confidence Interval				

Propensity score adjusted model

Characteristic	Beta	SE	95% CI	p-value
treatment	1	0.02	1, 1	<0.001

time-varying confounding