$$\frac{\text{Wormup}}{I_{S}} \int_{1}^{2} \frac{x}{\sqrt{x^{2}-1}} dx \quad \text{convergent or divergent?}$$

$$\frac{1}{1} \sqrt{\frac{1}{x^2 - 1}}$$

Soletion:

consider $I = \int_{0}^{1} \frac{1}{x^{p}} dx$. I converges iff p < 1Consider $I = \int_{2P}^{\infty} dx$. I converges if $f = \int_{2P}^{\infty} dx$.

Does $I = \int_{2}^{\infty} \int_{\infty}^{\infty} dx$ converge or diverge? What happens if we choose a fix) that decays slightly faster as $x \to \infty$?

Does $I = \int_{0}^{y_2} \frac{1}{x} dx$ convage or divage?

Decay rate

Consider
$$f(z) = \frac{1}{z(\ln z)^p}$$
. Is $\int_z^{\infty} f(z)dz$ convergent?

Decay rate (contd.)

Consider
$$f(x) = \frac{1}{x(\ln x)^p}$$
. Is $J = \int_0^{1/2} f(x) dx$ converget?

Volume of revolution.

Let
$$f(x) = \frac{1}{x}$$
, we have

Let
$$f(x) = \frac{1}{x}$$
, we have $\int_{-\infty}^{\infty} dx$ is infinith.

What about volume of resolution of $f(x)$ about $x-oxis$?

Suppose $f(x) = \frac{1}{x^p}$ for p > 0. Find the range of p s.t. $V = \int_{-\pi}^{\pi} f(x) dx$ is finite.

Volume of revolution (contd.).

Area concellation.

Avea concellation con lead to conveyence. "sine" function: fox) = sinx

A formous special function is the

Area concellation. (contol.).

Consider a slightly different function: $f(x) = \frac{\sin(\ln x)}{x}$ $\int_{-\infty}^{\infty} \frac{\sin(\ln x)}{x} dx$

Sin(lnz) varios very slowly. There is not enough concellation for convergence.

Approse mation by tongent line. Consider $I = \int_{a}^{b} \frac{g(x)}{f(x)} dx$. Let f(c) = 0 for some CE [a,b].

If $f'(c) \neq 0$ and $g(c) \neq 0$ elem I

Example.

Consider $I = \int_{1}^{\infty} \left(\sqrt{\frac{1}{\pi^2 + 1}} - \frac{1}{\pi} \right) dx$. Is I convergent?

we know $\int_{1}^{\infty} \frac{1}{\sqrt{\pi^2 + 1}} dx$ and $\int_{-\pi}^{\infty} dx$ are divergent.

I is finite because of concellation.

Example (contd.)

Example (contd).