	Grading
Your PRINTED name is:	1
	2
	3

Please circle your recitation:

r01	T 11	4-159	Ailsa Keating	ailsa
r02	T 11	36-153	Rune Haugseng	haugseng
r03	T 12	4-159	Jennifer Park	jmypark
r04	T 12	36-153	Rune Haugseng	haugseng
r05	T 1	4-153	Dimiter Ostrev	ostrev
r06	T 1	4-159	Uhi Rinn Suh	ursuh
r07	T 1	66-144	Ailsa Keating	ailsa
r08	T 2	66-144	Niels Martin Moller	moller
r09	T 2	4-153	Dimiter Ostrev	ostrev
r10	ESG		Gabrielle Stoy	gstoy

1 (40 pts.)

(a) Find the projection p of the vector b onto the plane of a_1 and a_2 , when

$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad a_1 = \begin{bmatrix} 1 \\ 7 \\ 1 \\ 7 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -1 \\ 7 \\ 1 \\ -7 \end{bmatrix}.$$

What projection matrix P will produce the projection p = Pb for every vector b in \mathbb{R}^4 ?

(c) What is the determinant of I - P? Explain your answer.

(d) What are all nonzero eigenvectors of P with eigenvalue $\lambda = 1$?

How is the number of independent eigenvectors with $\lambda=0$ of an $n\times n$ square matrix Aconnected to the rank of A?

(You could answer (c) and (d) even if you don't answer (b).)

 $This \ page \ intentionally \ blank.$

2 (30 pts.)

Suppose the matrix A factors into A = PLU with a permutation matrix P, and 1's on the diagonal of L (lower triangular) and pivots d_1, \ldots, d_n on the diagonal of U (upper triangular).

What is the determinant of A? EXPLAIN WHAT RULES YOU ARE USING.

Suppose the first row of a new matrix A consists of the numbers 1, 2, 3, 4. Suppose the cofactors C_{ij} of that first row are the numbers 2, 2, 2, 2.

(Cofactors already include the \pm signs.)

Which entries of A^{-1} does this tell you and what are those entries?

(c) What is the determinant of the matrix M(x)? For which values of x is the determinant equal to zero?

$$M(x) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 2 & x \\ 1 & 1 & 4 & x^2 \\ 1 & -1 & 8 & x^3 \end{bmatrix}.$$

 $This \ page \ intentionally \ blank.$

3 (30 pts.)

Starting from independent vectors a_1 and a_2 , use Gram-Schmidt to find formulas for two orthonormal vectors q_1 and q_2 (combinations of a_1 and a_2):

 $q_1 =$

 $q_2 =$

The connection between the matrices $A = [a_1 \ a_2]$ and $Q = [q_1 \ q_2]$ is often written A = QR. From your answer to Part (a), what are the entries in this matrix R?

(c) The least squares solution \widehat{x} to the equation Ax = b comes from solving what equation? If A = QR as above, show that $R\widehat{x} = Q^Tb$.

 $This \ page \ intentionally \ blank.$