SOS - WORKSHOP

Simulating Hard X-ray beamline optics by ray-tracing using ShadowOui

Manuel Sánchez del Río AAM, ISDD, ESRF

Oasys+ShadowOui

- Install Oasys+ShadowOui:
 - https://github.com/srio/oasys-installation-scripts/wiki
- Download Tutorial Examples:
 - https://github.com/srio/ShadowOui-Tutorial

BM – Emission by N incoherent e

- Monte Carlo (SHADOW)
 - Energy (and polarisation) sampled from spectrum
 - Angular Distribution (1e⁻, σ'_x , σ'_z)
 - Geometry (along the arc, σ_x , σ_z)
 - Limitation: Computer time and memory
 - Typically: 10³ 10⁹ rays
 - Desirable: one ray per photon, i.e., 10^{14} 10^{20}

Wiggler: Like BM, but a bit more complex

Figure 5 Plot of the horizontal phase space for a wiggler (ID17 at the ESRF) with 11 periods of 0.15 m length, K = 22.3 and electron beam energy of 6.04 GeV.

Undulator: Much more complex: 1e⁻ emission interferes with itself

ex13_insertiondevices.ows

Onuki & Elleaume Undulators, Wigglers and their applications, CRC press, 2002

78 P. Elleaume

1.2 $\omega = \omega_n$ 1.0 $\omega = \omega_n (1-1/nN)$ 1.0 $\omega = \omega_n (1+0.4/nN)$ 0.8 $\omega = \omega_n (1+0.4/nN)$ 0.9 $\omega = \omega_n (1+0.4/nN)$ 0.1 $\omega = \omega_n (1+0.4/nN)$ 0.2 $\omega = \omega_n (1+0.4/nN)$ 0.3 $\omega = \omega_n (1-1/nN)$ 0.4 $\omega = \omega_n (1-1/nN)$ 0.5 $\omega = \omega_n (1-1/nN)$ 0.7 $\omega = \omega_n (1-1/nN)$ 0.8 $\omega = \omega_n (1-1/nN)$ 0.9 $\omega = \omega_n (1-1/nN)$ 0.0 $\omega = \omega_n (1-1/nN)$

Figure 3.4 Spectral flux per unit surface in the middle of the undulator for three frequencies close to the on-axis resonant frequency $\omega_n = n\omega_1(0, 0)$.

$$\sigma_r = \frac{2.704}{4\pi} \sqrt{\lambda L} \approx \sqrt{\frac{\lambda L}{2\pi^2}}$$

Even on resonance, beam is not fully Gaussian
But for resonance, can be reasonably approximated as Gaussian

$$\sigma_{r'} = 0.69 \sqrt{\frac{\lambda}{L}} \approx \sqrt{\frac{\lambda}{2L}}$$

$$\sigma_r \sigma_{r'} = \frac{1.89\lambda}{4\pi} \approx \frac{\lambda}{2\pi}$$

- Undulator beams have not Gaussian profiles (even at resonances)
- •BY NOW, WE APPROXIMATE UNDULATORS BY GEOMETRIC SOURCES WITH GAUSSIAN SIZES AND DIVERGENCES

Non-imaging system:

BL as a concentrator: which shape (in reflection)?

- Point to point focusing (ellipsoid)
- Collimating (paraboloid)
- Focalization in two planes
 - Tangential or Meridional (ellipse or parabola)
 - Sagittal (circle)
- Demagnification: M=p/q
- Easier manufactiring:
 - 2D: Ellipsoid => Toroid
 - Only one plane: cylinder Ellipsoid (ellipse)=> cylinder (circle)
 - Sagittal radius: non-linear (ellipsoid) => constant (cylinder) or linear (cone),

$$\frac{1}{p} + \frac{1}{q} = \frac{2}{R\sin\theta}$$

$$\frac{1}{p} + \frac{1}{q} = \frac{2\sin\theta}{\rho}$$

Aberrations

Mirrors

Geometrical model

Physical model

$$1 = \left(\frac{n_1}{n_2}\right)^2 \cos^2 \theta_c \quad \Leftrightarrow \quad \sin \theta_c = \sqrt{2\delta - \delta^2} \approx \sqrt{2\delta}$$

Crystals

Geometrical model

like a grating originated by the truncation of the Bragg planes with the crystal surface. Crystals are dispersive elements, except for the most used case of Bragg-Symmetric reflection.

Physical model

(crystal reflectivity) is given by the Dynamical Theory of Diffraction and gives the "Darwin width"

BRAGG or reflection

ex17_sagittalfocusing.ows
OTHER_EXAMPLES/crystal_analyzer_diced_ows_hittelinescol_value_color_analyzer_diced_ow

LAUE or transmission

(ex23_crystal_laue.ows)

Theory of the Use of More Than Two Successive X-Ray Crystal Reflections to Obtain Increased Resolving Power J W. M. DuMond Phys. Rev. **52**, 872 – (1937)

http://dx.doi.org/10.1103/PhysRev.52.872

LENSE = TWO INTERFACES Geometrical model Physical model

Law of Refraction (Snell's Law)

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

absorption in media $I/I_0 = \exp(-\mu t)$

(OTHER_EXAMPLES/lens_elliptical.ows)
OTHER_EXAMPLES/CRL_Snigirev_1996.ows
ex24_transfocator.ows

CRL = n identical Lenses TRANSFOCATOR = m different CRLs

Other

ex16_kb.ows

ex19_beamline.ows