CS 3530: Assignment 0d

Fall 2022

Your Name Here

Problem 0.10 (7 points)

Problem

Find the error in the following proof that 2 = 1.

Consider the equation a = b. Multiply both sides by a to obtain $a^2 = ab$. Subtract b^2 from both sides to get $a^2 - b^2 = ab - b^2$. Now factor each side, (a + b)(a - b) = b(a - b), and divide each side by (a - b) to get a + b = b. Finally, let a and b equal 1, which shows that b = ab.

Solution

The error in the statement above occurs in the division step. It says to divide each side by (a-b). If a = b, a - b = 0. Division by 0 is not possible.

Exercise 0.11 (13 points)

Problem

Let $S(n) = 1 + 2 + \cdots + n$ be the sum of the first n natural numbers and let $C(n) = 1^3 + 2^3 + \cdots + n^3$ be the sum of the first n cubes. Prove the following equalities by induction on n, to arrive at the curious conclusion that $C(n) = S^2(n)$ for every n.

a. $S(n) = \frac{1}{2}n(n+1)$.

Solution

- 1. $1 = \frac{1}{2}1(1+1)$.
- 2. $1+2=\frac{1}{2}2(2+1)$. Therefore:
- 3. $S(n+1) = \frac{1}{2}(n+1)(n+2)$. = $(n+1)(n+2)\frac{1}{(n+2)}$

Which is equal to the original equation. When (n + 1) is plugged in it proves that every natural number will work.

1

b. $C(n) = \frac{1}{4}(n^4 + 2n^3 + n^2) = \frac{1}{4}n^2(n+1)^2$.

Solution

- 1. $\frac{1}{4}n^2(n+1)^2$ for n = 1
- 2. $1^3 = \frac{1}{4}1^2(1+1)^2$ or 1 = 1 for n = n
- 3. $n^3 = \frac{1}{4}n^2(n+1)^2$ for n = n+1

4.
$$(n+1)^3 = \frac{1}{4}(n+1)^2(n+2)^2$$

= $\frac{(n+1)^2(n+2)^2}{4}$

The equation above proves that the sum for of the cube of n numbers is also true for n+1 which means it is correct.