1	Convexité d'une fonction.	1
2	Inégalité des pentes.	2
3	Fonctions convexes dérivables.	3
4	Inégalité de Jensen.	4
Ex	tercices	5

I est un intervalle de \mathbb{R} . Rappelons que c'est une partie convexe de \mathbb{R} : si $a,b\in I$ avec $a\leq b$, alors $[a,b]\subset I$.

1 Convexité d'une fonction.

Lemme 1.

Soient a et b deux réels tels que $a \leq b$. On a

$$[a, b] = \{(1 - \lambda)a + \lambda b \mid \lambda \in [0, 1]\}.$$

Définition 2.

Une fonction $f: I \to \mathbb{R}$ est dite **convexe** sur I si pour tout $(x, y) \in I^2$ et tout $\lambda \in [0, 1]$,

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$$

L'opposé d'une fonction convexe est dite concave.

2 Inégalité des pentes.

Proposition 3 (Inégalité des pentes).

Si f est une fonction convexe sur I, alors

$$\forall (x, y, z) \in I^3 \quad (x < y < z) \Longrightarrow \left(\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}\right).$$

Proposition 4 (Caractérisation de la convexité par la croissance des pentes des sécantes).

Soit $f: I \to \mathbb{R}$. Il y a équivalence entre

- 1. f est convexe sur I.
- 2. Pour tout $a \in I$, la fonction $T_a : x \mapsto \frac{f(x) f(a)}{x a}$ est croissante sur $I \setminus \{a\}$.

Si a est un point à l'intérieur de I (c'est-à-dire un élément de I qui n'est pas une borne de I), on peut appliquer le théorème de la limite monotone au taux d'accroissement de f en a et prouver qu'il admet une limite finie à gauche et à droite de a (exercice). Ceci permet de prouver qu'une fonction convexe est dérivable à gauche et à droite en tout point intérieur de son intervalle de définition. Notamment, une fonction convexe sur I est continue en tout point intérieur de I.

Proposition 5 (Position du graphe par rapport aux sécantes).

Soit f une fonction convexe sur I et $a,b \in I$ tels que a < b.

Considérons l'unique droite affine passant par les points (a, f(a)) et (b, f(b)), sécante de f. Le graphe de f est en dessous de cette sécante sur [a, b] et au dessus à l'extérieur de [a, b].

3 Fonctions convexes dérivables.

Proposition 6 (Caractérisation des fonctions convexes parmi les fonctions dérivables).

Soit $f:I\to\mathbb{R}$ une fonction <u>dérivable</u> sur I. Il y a équivalence entre

- 1. f est convexe sur I.
- 2. f' est croissante sur I.

Notamment, si f est une fonction deux fois dérivable sur I, f est convexe sur I ssi $f'' \ge 0$ sur I.

Exemple 7.

- exp, ch, et les puissances paires $x \mapsto x^{2p}$ $(p \in \mathbb{N})$ sont convexes sur \mathbb{R} . Les fonctions $x \mapsto x^a$ avec $a \ge 1$ et $a \le 0$ sont convexes sur \mathbb{R}^*_+ .
- In est concave sur \mathbb{R}_+^* . Les fonctions $x \mapsto x^a$ avec $0 \le a \le 1$ sont concaves sur \mathbb{R}_+^* .
- Les puissances impaires $x \mapsto x^{2p+1}$ $(p \in \mathbb{N})$ sont concaves sur \mathbb{R}_{-} et convexes sur \mathbb{R}_{+} : on observe en 0 un point d'inflexion.

Proposition 8 (Position du graphe par rapport aux tangentes).

Le graphe d'une fonction $f \in \mathcal{D}(I, \mathbb{R})$ convexe est au-dessus de toutes ses tangentes : si $a \in I$,

$$\forall x \in I \quad f(x) \ge f'(a)(x-a) + f(a).$$

Exemple 9.

Les fonctions exp et ln sont respectivement convexe et concave.

$$\forall x \in \mathbb{R} \quad e^x \ge x + 1$$

$$\forall x \in \mathbb{R}_{+}^{*} \quad \ln(x) \le x - 1$$

Exemple 10.

La fonction sin est concave sur $[0, \frac{\pi}{2}]$: on a l'encadrement $\forall x \in [0, \frac{\pi}{2}] \quad \frac{2}{\pi}x \leq \sin x \leq x$.

4 Inégalité de Jensen.

(Lemme 11.

Soient x_1, \ldots, x_n n éléments d'un intervalle I et $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_+$ tels que $\sum_{k=1}^n \lambda_k = 1$.

Le nombre $\sum_{i=1}^{n} \lambda_i x_i$ est encore un élément de I.

Remarque. On peut voir le nombre $\sum_{i=1}^{n} \lambda_i x_i$ comme une moyenne pondérée des x_i .

On peut aussi emprunter son vocabulaire à la géométrie et parler de cette somme comme d'un barycentre des x_i . Un exemple important : celui où les n scalaires λ_i sont égaux (à $\frac{1}{n}$, donc)

$$\frac{1}{n} \sum_{i=1}^{n} x_i.$$

Alors tous les x_i ont le $m\hat{e}me$ poids dans la moyenne : on parlera d'isobarycentre en géométrie.

Théorème 12 (Inégalité de Jensen).

Soit $n \in \mathbb{N}^*$. Si f est une fonction convexe sur un intervalle I, l'inégalité

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i),$$

4

est vraie pour tous x_1, \ldots, x_n dans I et $\lambda_1, \ldots, \lambda_n$ positifs de somme égale à 1.

Remarque : on retrouve l'inégalité définissant la convexité dans le cas n=2.

L'inégalité de Jensen sera souvent écrite pour des scalaires λ_i tous égaux. Ainsi, pour $n \in \mathbb{N}^*$, f convexe sur I, et $x_1, \ldots x_n \in I$, on a

$$f\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) \le \frac{1}{n}f\left(\sum_{i=1}^{n}x_i\right).$$

${\bf Exemple~13~(In\'{e}galit\'{e}~arithm\'{e}tico-g\'{e}om\'{e}trique).}$

En utilisant la concavité de ln sur \mathbb{R}_+^* , on démontre que

$$\forall n \in \mathbb{N}^* \quad \forall x_1, \dots, x_n \in \mathbb{R}_+^* \quad (x_1 x_2 \cdots x_n)^{\frac{1}{n}} \le \frac{x_1 + x_2 + \dots + x_n}{n}.$$

Le membre de droite est appelé moyenne arithmétique des x_i : pour le grand public, c'est « la » moyenne. Le membre de gauche est appelé **moyenne géométrique** des x_i .

L'inégalité arithmético-géométrique montre que si l'on remplaçait la moyenne arithmétique par la géométrique sur les bulletins de notes des étudiants, cela se ferait toujours à leur désavantage!

Exercices

24.1 [$\Diamond\Diamond\Diamond$]

- 1. Démontrer que la fonction $x \mapsto \ln(\ln(x))$ est concave sur $]1, +\infty[$.
- 2. Montrer que

$$\forall a, b > 1 \ln\left(\frac{a+b}{2}\right) \ge \sqrt{\ln(a)\ln(b)}.$$

24.2 $[\blacklozenge \diamondsuit \diamondsuit]$ Soit $n \in \mathbb{N}^*$ et $(x_1, \ldots, x_n) \in (\mathbb{R}_+^*)^n$ et $\alpha \in \mathbb{R}$.

En discutant selon les valeurs de α , comparer

$$\left(\sum_{i=1}^{n} x_i\right)^{\alpha} \quad \text{et} \quad n^{\alpha-1} \sum_{i=1}^{n} x_i^{\alpha}.$$

24.3 [$\Diamond \Diamond \Diamond$] Soit $n \in \mathbb{N}^*$

- 1. Montrer que $f: x \mapsto \ln(1+e^x)$ est convexe sur \mathbb{R} .
- 2. Montrer que

$$\forall (x_1, \dots, x_n) \in (\mathbb{R}_+^*)^n \quad 1 + \left(\prod_{k=1}^n x_k\right)^{\frac{1}{n}} \le \left(\prod_{k=1}^n (1+x_k)\right)^{\frac{1}{n}}$$

3. Montrer que

$$\forall (a_1, \dots, a_n, b_1, \dots, b_n) \in (\mathbb{R}_+^*)^{2n} \quad \left(\prod_{k=1}^n a_k\right)^{\frac{1}{n}} + \left(\prod_{k=1}^n b_k\right)^{\frac{1}{n}} \leq \left(\prod_{k=1}^n (a_k + b_k)\right)^{\frac{1}{n}}.$$

5

24.4 $[\phi \phi \diamondsuit]$

- 1. Montrer que la fonction $x \mapsto \frac{1}{e^x + 1}$ est convexe sur \mathbb{R}_+ .
- 2. En déduire que pour tout $x_1, \ldots, x_n \ge 1$,

$$\sum_{k=1}^{n} \frac{1}{1+x_k} \ge \frac{n}{1+\sqrt[n]{x_1 \dots x_n}}.$$

 $\overline{\text{Soit } f}$ une fonction convexe et de classe \mathcal{C}^1 sur [a,b]. Prouver que

$$(b-a)f\left(\frac{a+b}{2}\right) \le \int_a^b f(t)dt \le (b-a)\frac{f(a)+f(b)}{2}.$$

24.7 $[\blacklozenge \blacklozenge \diamondsuit]$ Montrer que toute fonction convexe sur \mathbb{R} et majorée, est constante.

24.8 $[\blacklozenge \blacklozenge \diamondsuit]$ Soient deux réels a < b et $f : [a, b] \to \mathbb{R}_+$ une fonction convexe.

- 1. Montrer que f est continue sur]a, b[.
- 2. Donner le graphe d'une fonction convexe sur [a, b] et discontinue en a et b.

24.10 $[\blacklozenge \blacklozenge \blacklozenge]$ [Inégalités de Hölder et de Minkowski]

Soit $(p,q) \in]0, +\infty[^2$ tel que $\frac{1}{p} + \frac{1}{q} = 1$.

- 1. À l'aide de ln, montrer que $\forall (\alpha, \beta) \in]0, \infty[^2 \alpha\beta \leq \frac{1}{p}\alpha^p + \frac{1}{q}\beta^q$.
- 2. Montrer l'inégalité de Hölder

$$\forall (a_1, \dots, a_n, b_1, \dots, b_n) \in \mathbb{R}^{2n} \quad \sum_{i=1}^n |a_i| |b_i| \le \left(\sum_{i=1}^n |a_i|^p\right)^{\frac{1}{p}} \times \left(\sum_{i=1}^n |b_i|^q\right)^{\frac{1}{q}}.$$

On pourra poser $A = \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}}$ et $B = \left(\sum_{i=1}^{n} |b_i|^q\right)^{\frac{1}{q}}$, traiter le cas où A = 0 ou B = 0 puis appliquer 1) avec $\alpha = \frac{|a_i|}{A}$ et $\beta = \frac{|b_i|}{B}$.

3. Montrer l'inégalité de Minkowski :

$$\forall p \in]1, +\infty[\quad \forall (a_1, \dots, a_n, b_1, \dots, b_n) \in \mathbb{R}^{2n} \quad \left(\sum_{i=1}^n |a_i + b_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n |a_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^n |b_i|^p\right)^{\frac{1}{p}}.$$

Indication : on pourra remarquer que $|a_i+b_i|^p \le |a_i+b_i|^{p-1}(|a_i|+|b_i|)$ et appliquer l'inégalité de Hölder.