Problemas, Algoritmos, y Programación Trabajo Práctico 1

Jonás Levy Alfie Denys Bulavka Martín Fixman Facundo Gutiérrez

Segundo Cuatrimestre 2016

Índice

L.	La Tienda de Apu
	1.1. Soluciones teóricas al problema
	1.1.1. Backtracking naïve
	1.1.2. Meet in the Middle
	1.2. Código de la solución
	1.3. Casos de prueba
2.	El cumpleaños de Lisa
3.	Experimentos nucleares
1.	El error de Smithers

1. La Tienda de Apu

1.1. Soluciones teóricas al problema

1.1.1. Backtracking naïve

Una posible manera de solucionar el problema es usar backtracking normal. En particular, se puede definir una función $\mathcal{B}: \{Tamano\} \times precio \times precio \rightarrow precio$ que, dado un conjunto de tamaños de rosquillas D_1, \ldots, D_N , un precio P, y el precio ya pagado p, diga cuanta es la mayor cantidad de plata que puede gastar comprando las rosquillas en los argumentos para que en total gaste menos de P pesos.

$$\mathcal{B}(\varnothing, P, p) = \begin{cases} p & \text{si } p \leq P \\ 0 & \text{si } p > P \end{cases}$$

$$\mathcal{B}\left(\left\{D_{1}, D_{2}, \dots, D_{N}\right\}, P, p\right) = \max \begin{pmatrix} \mathcal{B}\left(\left\{D_{2}, \dots, D_{N}\right\}, P, p + D_{1}\right) \\ \mathcal{B}\left(\left\{D_{2}, \dots, D_{N}\right\}, P, p\right) \end{pmatrix}$$

El resultado de $\mathcal{B}(D, P, 0)$ sería el mejor resultado del problema, ya que

- Homero empieza comprando 0 pesos en rosquillas.
- Si no hay rosquillas disponibles, Homero no puede gastar más plata en rosquillas.
- \blacksquare Si hay dos casos donde se gasta menos que P pesos, el mejor caso es el que se gastó el mayor valor.
- El resultado no va a ser menor a 0; lo peor que le puede pasar a Homero es no poder comprar ninguna rosquilla.
- Cada rosquilla se puede comprar solo una vez.
- Cada combinación de $F \subseteq D$ de rosquillas compradas por Homero es contada. En particular, cada $d \in D$ aparece y no aparece en el precio final, alternativamente.

Si se implementa una función B que devuelva el resultado de $\mathcal B$ recursivamente, la complejidad en tiempo sería.

 $\mathcal{O}(1)$ en el caso base.

 $\mathcal{O}(1)$ en cada paso de la recursión.

 $\mathcal{O}(2^N)$ pasos de la recursión diferentes: dos paso por cada elemento de D.

 $\mathcal{O}(2^N)\cdot\mathcal{O}(1)=\mathcal{O}(2^N)$ complejidad de tiempo total.

Esto no es lo suficientemente rápido para las restricciones del problema, así que hay que usar otro método.

1.1.2. Meet in the Middle

Dado cierto número $\tau \in [1, N]$, separamos D en dos conjuntos.

$$A = D_1, \dots, D_{\tau}$$
$$B = D_{\tau+1}, \dots, D_N$$

Luego, definimos la función $\mathcal{V}: \{Tamano\} \times precio \times precio \rightarrow \{precio\}$ tal que V(D, P, p) es el conjunto de rosquillas subconjunto de D que se pueden comprar con P pesos si ya se pagaron p pesos de una manera similar a \mathcal{B} .

$$\mathcal{V}(\varnothing, P, p) = \begin{cases} \{p\} & \text{si } p \leq P \\ \varnothing & \text{si } p > P \end{cases}$$

$$\mathcal{V}\left(\left\{D_{1}, D_{2}, \dots, D_{N}\right\}, P, p\right) = \frac{\mathcal{V}\left(\left\{D_{2}, \dots, D_{N}\right\}, P, p + D_{1}\right)}{\cup \mathcal{V}\left(\left\{D_{2}, \dots, D_{N}\right\}, P, p\right)}$$

Se puede ver que la complejidad en tiempo de calcular $\mathcal{V}(D,P,p)$ es $\mathcal{O}\left(2^{|D|}\right)$ usando el mismo cálculo que se usó para \mathcal{B} .

Si calculamos $Q = \mathcal{V}(A, P, 0); W = \mathcal{V}(B, P, 0)$, estos dos valores van a ser subconjuntos de cantidades de donas que se pueden comprar dentro de A y B. Si la suma de dos elementos de cada uno de los conjuntos es menor que P, entonces se pueden comprar cierta cantidad de rosquillas de A y cierta cantidad de B sin gastar más plata que la que se tiene. Calcular estos dos conjuntos tiene complejidad $\mathcal{O}(2^{\tau} + 2^{N-\tau})$.

Por cada elemento q de entre los $t \leq 2^{|A|}$ elementos de Q, se puede elegir cualquier elemento $w \in W$ de sus $y \leq 2^{|B|}$ elementos siempre y cuando la suma de cada uno sea menor o igual a P. Pero, ¿cuál elegir? Como queremos maximizar la cantida de donas compradas, se debería tomar, por cada $q \in Q$ el mayor elemento $w \in W$ posible tal que $q + w \leq P$, osea, $w \leq P - q$. Como $A \cup B = D$ esto da todas las soluciones posibles, y una de estas tiene que ser la solución óptima.

Usando una estructura de árbol balanceado para representar los conjuntos (como set de C++), la operación de buscar el mayor elemento menor o igual a otro elemento en W (similar a lower_bound) tiene complejidad $\mathcal{O}(\log |W|) = \mathcal{O}(\log 2^{|B|}) = \mathcal{O}(|B|) = \mathcal{O}(N-\tau)$. Como esto se tiene que hacer por cada elemento de Q, la complejidad final del "merge" es $\mathcal{O}(2^{\tau} \cdot (N-\tau)) = \mathcal{O}(N \cdot 2^{\tau})$.

La complejidad final en tiempo de hacer el merge de los dos conjuntos es $\mathcal{O}(2^{\tau}+2^{N-\tau}+N\cdot 2^{\tau})=\mathcal{O}(2^{N-\tau}+N\cdot 2^{\tau})$. Como la exponenciación crece mucho más rápido que la multiplicación, la complejidad menor se alcanza poniendo $\tau=1/2$. Esta complejidad entonces queda como $\mathcal{O}(2^{\frac{1}{2}}+N\cdot 2^{\frac{1}{2}})=\mathcal{O}(N\cdot \frac{1}{2})$, que esta vez sí cumple con las restricciones del enunciado.

1.2. Código de la solución

```
1 #include <cassert>
   #include <iostream>
2
   #include <set>
3
   #include <vector>
   {\tt static\_assert}\,(
      sizeof(long) >= 8,
      "long_tiene_que_ser_de_por_lo_menos_64_bit_para_que_el_codigo_no_haga_overflow"
9
10
   //\ Backtracker(D).\ backtrack()\ construye\ una\ lista\ de\ costos\ posibles\ para
11
   // comprar rosquillas de costo D_0, ..., D_m.
12
   // Llama a backtrackFrom 2 veces por cada llamada desde D_0 hasta D_m, asi
13
   // que la complejidad del algoritmo es O(2^m).
14
15
   struct Backtracker
16
17
      const std::vector <long> &D;
      std::set <long> R;
18
19
      // Hacer backtracking en D_-t, ..., D_-m, mientras que se asume que ya se
20
21
        compraron c rosquillas.
      // Cuando se llega al final, agregar el resultado al conjunto R.
22
      void backtrackFrom(int t, long c)
23
        if (t == D. size())
25
          R. insert (c);
26
27
        else
28
          backtrackFrom(t + 1, c);
29
          backtrackFrom(t + 1, c + D[t]);
30
31
32
33
      // Hacer backtracking para encontrar
34
      std::set <long> &backtrack()
35
36
        if (R.empty())
37
          backtrackFrom(0, 0);
38
39
        return R;
40
41
42
      Backtracker(const std::vector < long > &D)
43
44
      : D(D)
45
46
   };
47
48
   // Devuelve la mayor cantidad de rosquillas que se pueden comprar si vienen
49
    // en paquetes de D_0, ..., D_n, y se tienen p pesos. // La complejidad total es O(2^n (n / 2) + 2^n (n / 2) * n) = O(2^n (n / 2) * n).
50
51
   long comprarRosquillas(std::vector <long> &D, long p)
52
      // Particionar D en dos partes con igual tamano.
54
      std::vector < long > A(D. begin(), D. begin() + D. size() / 2);
```

```
std::vector < long > B(D.begin() + D.size() / 2, D.end());
56
57
       // Buscar la lista de costos posibles para comprar rosquillas tanto en la
58
       // mitad izquierda como en la mitad derecha.
       // Cada uno de esos tiene complejidad temporal O(2\hat{\ }(n\ /\ 2)).
60
      std::set <long> valuesLeft = Backtracker(A).backtrack();
61
      std::set <long> valuesRight = Backtracker(B).backtrack();
62
63
       // Se deberian poder gastar 0 pesos en la mitad izquierda, ya que siempre
      // se puede no comprar ninguna rosquilla. Si esto no fuese cierto , // *-- valuesLeft.upper_bound(x) podria fallar con x < min(valuesLeft). assert (valuesLeft .find(0) != valuesLeft .end());
65
66
67
68
       // Por cada elemento de la particiin de la derecha, buscar el elemento de
69
       //\ la\ particion\ de\ la\ izquierda\ tal\ que\ comprando\ esas\ partes\ de\ las\ dos
70
       // mitades cueste menos que p, pero que igual se compren la mayor cantidad
71
       // de donas. Entre todos los elementos, elegir el que maximice la suma.
72
       // Como std::set::upper bound es un arbol balanceado, la complejidad
73
74
       // de esto es O(\log 2 \hat{\ }(n / 2)) = O(n) por cada elemento de valuesRight,
       // asi que la complejidad total es O(2^{n}/2) * n.
75
76
      long best = 0;
       for (long r : valuesRight)
77
78
         if (r \le p)
79
           best = std :: max(best, r + *--valuesLeft.upper bound(p - r));
80
81
82
      return best;
83
84
85
    int main()
86
87
      long p;
88
      int n;
89
       while (std::cin \gg p \gg n)
90
91
         std::vector <long> D(n);
92
93
         for (long &k : D)
           std :: cin >> k;
94
95
         std::cout << comprarRosquillas(D, p) << std::endl;
96
97
98
      return 0;
99
100
```

1.3. Casos de prueba

Se hicieron algunos casos de prueba de casos extremos del problema. En particular,

cular, Caso de prueba Archivo de entrada

Homero se puede comer todas las rosquillas $\begin{bmatrix} 10 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$ Homero se puede comer todas las rosquillas $\begin{bmatrix} 5 & 4 \\ 6 & 6 & 6 & 6 \end{bmatrix}$ Homero se puede comer todas las rosquillas $\begin{bmatrix} 5 & 4 \\ 5 & 5 & 5 & 5 \end{bmatrix}$

1000000000040

Homero se puede comer todas las rosquillas

2. El cumpleaños de Lisa

3. Experimentos nucleares

4. El error de Smithers