Unit 013 Block multiplication

Slide 01: In this unit, we will discuss block multiplication of matrices.

Slide 02: In a previous unit, we saw that if \boldsymbol{A} is a $m \times p$ matrix and \boldsymbol{B} is a $p \times n$ matrix, then \boldsymbol{AB} will be a $m \times n$ matrix.

(#)

Suppose we consider the matrix A in terms of its rows. Let a_1 , a_2 and so on until a_m be the rows of A. In particular, a_i is the *i*th row of A with entries a_{i1} , a_{i2} and so on till a_{ip} .

(#)

Similarly, let us consider the matrix B in terms of its columns. Let b_1 , b_2 and so on until b_n be the columns of B. In particular, b_j is the jth column of B with entries b_{1j} , b_{2j} and so on till b_{pj} .

Slide 03: The first way of computing the product AB is to do it entry by entry. This is precisely how we have defined matrix multiplication.

(#)

To recap, the (i, j)-entry of AB is obtained by identifying the i-th row of A, which is a_i and the j-th column of B, which is b_j before multiplying the corresponding entries and summing up the terms.

(#)

Thus $a_i b_j$ is the summation of $a_{ik} b_{kj}$ from k = 1 to p.

Slide 04: The second way of computing the product AB is to do it row by row. (#)

In order to do this, we will write A in terms of its rows. So by prem-ultiplying the rows of A to B, we will have the rows of AB. In particular, the i-th row of AB, denoted by a_iB is obtained by pre-mutiplying the i-th row of A, a_i to B. Note that a_iB will be a row matrix with n entries.

Slide 05: The third way of computing the product \boldsymbol{AB} is to do it column by column. (#)

In order to do this, we will write B in terms of its columns. So by post-multiplying the columns of B to A, we will have the columns of AB. In particular, the j-th column of AB, denoted by Ab_j is obtained by post-multiplying the j-th column of B, b_j to A. Note that Ab_j is a column matrix with m entries.

Slide 06: Consider the following example where \mathbf{A} is a 3×3 matrix and \mathbf{B} is a 3×2 matrix. We first compute \mathbf{AB} column by column. Consider the two columns of \mathbf{B} , $\mathbf{b_1}$ and $\mathbf{b_2}$. The first column of \mathbf{AB} will be $\mathbf{Ab_1}$ while the second column of \mathbf{AB} is $\mathbf{Ab_2}$.

(#)

Post-multiplying b_1 to A

(#)

and similarly, post-multiplying $\boldsymbol{b_2}$ to $\boldsymbol{A},$

(#)

we have the two columns of AB.

(#)

Thus AB is the 3×2 matrix as shown here.

Slide 07: We now compute the same matrix AB row by row. Consider the three rows of A, a_1 , a_2 and a_3 . The first row of AB will be a_1B , the second row of AB will be a_2B while the third row of AB will be a_3B .

(#)

Pre-multiplying a_1 to B,

(#)

 a_2 to B and

(#)

 a_3 to B,

(#)

we have the three rows of AB.

(#)

Thus AB, computed row by row, is shown here.

Slide 08: While we have seen how we can partition a matrix into its rows or columns, this is not the only way a matrix can be partitioned for multiplication.

Slide 09: For example, this matrix A is partitioned into 6 submatrices, each of a different size.

(#)

We have A_{11} being a 2×3 submatrix of A, A_{12} is a 2×2 submatrix while A_{13} is a 2×1 submatrix of A.

(#)

Likewise, we have the following submatrices A_{21} , A_{22} and A_{23} of A.

(#)

So we may write \boldsymbol{A} in terms of its submatrices as follows.

Slide 10: These submatrices of A are also called blocks.

Slide 11: If two matrices A and B of the same size are partitioned in the same way, then the blocks of A and B can be added or subtracted in the usual way.

(#)

For example the matrix A + B can be obtained by adding the corresponding blocks from A and B. Note that the usual way of adding two matrices that we have defined previously was simply done by treating each entry as a block, so we are still adding the the two matrices block by block.

Slide 12: What about for matrix multiplication? Partitioned matrices can also be multiplied by the usual row-column matching rule as long as for a product AB, the column partition of A matches the row partition of B.

(#)

The column partition of A means the number of partitions the columns of A are partitioned into while the row partition of B is the number of partitions the rows of B are partitioned into.

Slide 13: In this example, the columns of A are partitioned into two partitions. This matches with the row partition of B, where the rows of B are partitioned into two partitions. Note that A is partitioned into 4 blocks while B is partitioned into two blocks.

(#)

The product AB can be computed as follows. By writing A and B as blocks,

(#)

the matrix AB can be computed block by block. In this case AB will have two blocks. The first block of AB will be $A_{11}B_{11} + A_{12}B_{21}$. Note that this block of AB will be a 2×2 submatrix. The second block of AB will be $A_{21}B_{11} + A_{22}B_{21}$. Note that this block of AB will be a 1×2 submatrix. Together, these two blocks will form the 3×2 matrix AB.

Slide 14: Let us compute the product AB by block multiplication.

(#)

 $A_{11}B_{11}$ gives the following 2×2 matrix.

(#)

Similarly, we compute $A_{12}B_{21}$ and obtain the following 2×2 matrix.

(#)

Adding them up, we have the first block of AB, the 2×2 submatrix.

(#)

To find the second block of AB, we will need to compute $A_{21}B_{11} + A_{22}B_{21}$. I will leave it to you to verify that this second block is

(#)

the 1×2 submatrix $\begin{pmatrix} 2 & 1 \end{pmatrix}$. Thus we have completed the pre-multiplication of \boldsymbol{A} to \boldsymbol{B} using block multiplication.

Slide 15: To summarise the main points in this unit.

(#)

We first saw how a matrix can be partitioned into blocks or submatrices.

(#)

In the special case where we simply partition a matrix into either its rows or its columns, we saw how the matrix AB can be computed either row by row or column by column.

(#)

After that, we generalised this to matrix multiplication by blocks, where each block does not have to be just a row or a column partition.