Let F denote a field, and V denote a vector space over F of dimension n. Fix $\mathcal{E} = \{e_1, \ldots, e_n\}$ an ordered basis of V, and use that basis to identify V with F^n or $M_{n,1}(F)$ and V^* with F^n or $M_{1,n}(F)$ as needed, and to identify $\operatorname{End}(V)$ with $M_n(F)$.

See page 2 for hints.

- 1. Bilinear forms. Let $\langle , \rangle_J : V \times V \to F$ associated to a matrix J.
 - (a) In lecture exercises, we proved that if J is symmetric, then so is \langle , \rangle_J . Prove the converse: if \langle , \rangle_J is symmetric, then so is J.

Proof. Suppose that \langle , \rangle_J is symmetric. Then we have that, for $u, v \in V$,

$$\langle u, v \rangle_J = u^t J v$$

$$= v^t J u$$

$$= \langle v, u \rangle_J$$

Recall that J is symmetric if $J = J^t$. That is, for every m, n, we have $j_{mn} = j_{nm}$. Let us now employ $e_m, e_n \in V$ in order to show this. We have that,

$$\langle e_m, e_n \rangle_J = e_m^t J e_n$$

= j_{mn}

But, since \langle , \rangle_J is symmetric, we know that,

$$\langle e_m, e_n \rangle_J = j_{mn}$$

$$= \langle e_n, e_m \rangle_J$$

$$= e_n^t J e^m$$

$$= j_{nm}$$

Since m, n were arbitrary, this holds for every entry of J and hence J is symmetric. \square

(b) Prove that \langle , \rangle_J is nondegenerate if and only if J is invertible.

Proof. Suppose \langle , \rangle_J is nondegenerate.

Suppose J is invertible.

2. **Trace form.** Define $\langle , \rangle : M_n(F) \times M_n(F) \to F$ by $\langle A, B \rangle = \operatorname{tr}(AB)$. Briefly verify that this is a symmetric bilinear form. Then prove that \langle , \rangle is nondegenerate.

Proof. Fix $A, B \in M_n(F)$. Then we have,

$$\langle A, B \rangle = tr(AB)$$

$$= \sum_{i=1}^{n} AB_{ii}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$

and,

$$\langle B, A \rangle = tr(BA)$$

$$= \sum_{i=1}^{n} BA_{ii}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki}$$

3. **Determinants.** Recall that the determinant function det : $M_n(F) \to F$ is defined by

$$\det((\alpha_{i,j})) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1,\sigma(1)} \alpha_{2,\sigma(2)} \cdots \alpha_{n,\sigma(n)}.$$

(a) Use this definition to verify that $det(I_n) = 1$, where I_n is the identity matrix.

Proof. Note that for I_n , we have that $\alpha_{ii} = 1$ for all $1 \le i \le n$ and $\alpha_{ij} = 0$ for all $i \ne j$. Hence, in the above definition of the determinant, we must have that the only non-zero term in the summation is the one corresponding to the identity $\sigma = 1$. This gives us,

$$\det(I_n) = \operatorname{sgn}(1)\alpha_{1,1}\alpha_{2,2}\cdots\alpha_{n,n}$$
$$= 1 \cdot 1 \cdot 1 \cdots 1$$
$$= 1$$

(b) Use this definition to show that if, for some fixed i, $\alpha_{i,1} = \alpha_{i,2} = \cdots = \alpha_{i,n} = 0$, then $\det((\alpha_{i,j})) = 0$.

Proof. Suppose that, for some $i \in \mathbb{Z}$ such that $1 \le i \le n$, we have that $\alpha_{i,1} = \alpha_{i,2} = \cdots = \alpha_{i,n} = 0$. Now fix some $\sigma \in S_n$ and let us denote $\sigma(i) = j$ for some $j \in \mathbb{Z}$ such that $1 \le j \le n$. We can see from the previous statements that,

$$\alpha_{i,\sigma(i)} = \alpha_{i,j}$$
$$= 0$$

Hence, in the definition of the determinant, we have,

$$\det((\alpha_{i,j})) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1,\sigma(1)} \alpha_{2,\sigma(2)} \cdots \alpha_{i,\sigma(i)} \cdots \alpha_{n,\sigma(n)}$$
$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1,\sigma(1)} \alpha_{2,\sigma(2)} \cdots 0 \cdots \alpha_{n,\sigma(n)}$$
$$= 0$$

as required. \Box

(c) Show that, for any $A \in GL_n(F)$, we have $\det(A^{-1}) = \det(A)^{-1}$, and that $\det(B) = \det(ABA^{-1})$. Conclude that determinant is independent of change of basis, so that

$$\det: \operatorname{End}(V) \to F \quad \text{ defined by } \quad \det(\varphi) = \det(M_{\mathcal{B}}^{\mathcal{B}}(\varphi))$$

is well-defined. You may use the facts established in our worksheet about determinants.

Proof. Let $A \in GL_n(F)$. Then A is invertible with inverse A^{-1} . But A^{-1} is also invertible with inverse A, so $A^{-1} \in GL_n(F)$. Hence, by fact (2) we have $\det(A^{-1}), \det(A)^{-1} \neq 0$. Furthermore, since $GL_n(F) \subset M_n(F)$, we have that $A, A^{-1} \in M_n(F)$ and so we can apply fact (3). Thus, we have that,

$$det(AA^{-1}) = det(I_n)$$

$$= 1$$

$$= det(A) det(A^{-1})$$

Since $det(A) det(A^{-1}) = 1$, we have that $det(A^{-1}) = det(A)^{-1}$.

Now let $B \in GL_n(F)$. Consider $det(ABA^{-1})$ and using fact (3) along with the associativity of matrix multiplication, we get,

$$\det((AB)A^{-1}) = \det(AB)\det(A^{-1})$$
$$= \det(A)\det(B)\det(A^{-1})$$

By our initial derivation, we have that $\det(A^{-1}) = \det(A)^{-1}$ and so, by the fact that F is a field and hence commutative, we have,

$$\det((AB)A^{-1}) = \det(A)\det(B)\det(A^{-1})$$

$$= \det(A)\det(B)\det(A)^{-1}$$

$$= \det(A)\det(A)^{-1}\det(B)$$

$$= 1 \cdot \det(B)$$

$$= \det(B)$$

(d) Pick one of facts (1), (2), or (3) from p. 4 of the Lecture 4 worksheet, and spell out the details (more so than the proof sketches already given in the worksheet). Cite your sources.

Proo	f	Fact	(2)
1 100		ract	(4)

Let $A \in M_n(F)$. Suppose $A \in GL_n$. Then A is invertible and thus the columns of A are linearly independent. Hence, by fact 1, $\det(A) \neq 0$.

Now suppose $\det(A) \neq 0$. Then again by fact (1), we have that the columns of A are linearly independent. Hence, A is invertible and $A \in GL_n$ as required.

To receive credit for this assignment, include the following in your solutions [edited appropriately]:

Academic integrity statement: I did not violate the CUNY Academic Integrity Policy in completing this assignment.

Christopher Hayduk

Some hints.

- 1a: Consider $e_i^t J e_j$.
- 1b: If $\langle V, u \rangle = 0$ for some $u \in V$, then in particular, $\langle e_i, u \rangle = 0$ for all i (and similarly the coordinates reversed). Try to avoid "proof by contradiction"—you don't need it!
- 2: Let $A \in M_n(F)$ be a non-zero matrix, and let $\alpha_{i,j}$ be a non-zero entry in A. For each such A, what is your goal? (Go back to the definition of degenerate for the answer.)