Decidability CSCI 338

Decidable

A language L is <u>decidable</u> if there is a TM (a decider) that accepts every string in the language and rejects everything else. (i.e. halts on all input)

Computability Hierarchy

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty?

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

 $A \cap \bar{B}$

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

What if we tried to use E_{DFA} somehow?

If L(A) = L(B), what would be empty? The part of L(A) not in L(B) and the part of L(B) not in L(A).

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

 M_4 = on input $\langle A, B \rangle$

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

$$M_4$$
 = on input $\langle A, B \rangle$

1. Construct DFA C as $(A \cap \overline{B}) \cup (\overline{A} \cap B)$.

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Details???

Proof:

$$M_4 = on input \langle A, B \rangle$$

 M_4 = on input $\langle A, B \rangle$ 1. Construct DFA C as $(A \cap \bar{B}) \cup (\bar{A} \cap B)$.

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

 M_4 = on input $\langle A, B \rangle$

- 1. Construct DFA C as $(A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 2. Run E_{DFA} Decider on $\langle C \rangle$.

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

 $M_A = \text{on input } \langle A, B \rangle$

- 1. Construct DFA C as $(A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 2. Run E_{DFA} Decider on $\langle C \rangle$.
- 3. Accept/Reject?

Claim: $EQ_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

Proof:

 $M_A = \text{on input } \langle A, B \rangle$

- 1. Construct DFA C as $(A \cap B) \cup (A \cap B)$.
- 2. Run E_{DFA} Decider on $\langle C \rangle$.
- 3. If Decider accepts, accept. If Decider rejects, reject.

 M_4 is a decider since constructing C halts and the E_{DFA} Decider is a decider.

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 $|L(A)| = \infty \Leftrightarrow \exists \text{ loops in } A.$

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 $|L(A)| = \infty \Leftrightarrow \exists \text{ loops in } A.$ loops in $A \Leftrightarrow A$ accepts strings $\geq ???$

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 $|L(A)| = \infty \Leftrightarrow \exists \text{ loops in } A.$ loops in $A \Leftrightarrow A$ accepts strings $\geq \#$ states in A.

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

1. Let p be number of states in A.

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.

p+1 states

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. ?

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$.

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$.
- 5. If Decider accepts, ?

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

```
M_5 = on input \langle A \rangle
```

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, ???
- 5. If Decider accepts, ?

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, ?

$$E_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } L(A) = \emptyset\}$$

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, $\underline{?}$ \Rightarrow No string is in both L(A) and L(D)

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

```
M_5 = on input \langle A \rangle
```

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, ? \Rightarrow No string is in both L(A) and L(D)
 - \Rightarrow No strings in L(A) are $\geq p$ characters

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

```
M_5 = on input \langle A \rangle
```

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, ? \Rightarrow No string is in both L(A) and L(D)
 - \Rightarrow No strings in L(A) are $\geq p$ characters
 - \Rightarrow All strings in L(A) are < p characters

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

```
M_5 = on input \langle A \rangle
```

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, ?
- \Rightarrow No string is in both L(A) and L(D)
- \Rightarrow No strings in L(A) are $\geq p$ characters
- \Rightarrow All strings in L(A) are < p characters
- \Rightarrow L(A) must be ???

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

```
M_5 = on input \langle A \rangle
```

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, ?

- \Rightarrow No string is in both L(A) and L(D)
- \Rightarrow No strings in L(A) are $\geq p$ characters
- \Rightarrow All strings in L(A) are < p characters
- \Rightarrow L(A) must be finite in size

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

```
M_5 = on input \langle A \rangle
```

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, ?

- \Rightarrow No string is in both L(A) and L(D)
- \Rightarrow No strings in L(A) are $\geq p$ characters
- \Rightarrow All strings in L(A) are < p characters
- \Rightarrow L(A) must be finite in size
- **⇒**???

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty\}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$. If the E_{DFA} Decider accepts, L(M) is empty
- 5. If Decider accepts, <u>reject</u>.
- \Rightarrow No string is in both L(A) and L(D)
- \Rightarrow No strings in L(A) are $\geq p$ characters
- \Rightarrow All strings in L(A) are < p characters
- \Rightarrow L(A) must be finite in size
- ⇒ Reject!!!

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$.
- 5. If Decider accepts, <u>reject</u>.

Claim: $INFINITE_{DFA} = \{\langle A \rangle : A \text{ is a DFA and } |L(A)| = \infty \}$ is decidable.

Proof:

 M_5 = on input $\langle A \rangle$

- 1. Let p be number of states in A.
- 2. Construct DFA D that accepts all strings of length $\geq p$.
- 3. Construct DFA M where $L(M) = L(A) \cap L(D)$.
- 4. Run E_{DFA} Decider on $\langle M \rangle$.
- 5. If Decider accepts, reject. If Decider rejects, accept.

 M_5 is a decider since D and M are finite and the E_{DFA} Decider is a decider.

Claim: $COMPLEMENTS_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(\overline{B})\}$ is decidable.

Proof:

Claim: $COMPLEMENTS_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(\overline{B})\}$ is decidable.

Proof:

$$M_6$$
 = on input $\langle A, B \rangle$
1. Let $C = \overline{B}$.

Claim: $COMPLEMENTS_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(\overline{B})\}$ is decidable.

Proof:

$$M_6$$
 = on input $\langle A, B \rangle$

- 1. Let $C = \overline{B}$.
- 2. Run EQ_{DFA} Decider on $\langle A, C \rangle$.

Claim: $COMPLEMENTS_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(\overline{B})\}$ is decidable.

Proof:

 M_6 = on input $\langle A, B \rangle$

- 1. Let $C = \overline{B}$.
- 2. Run EQ_{DFA} Decider on $\langle A, C \rangle$.
- 3. If Decider accepts, ???.

Claim: $COMPLEMENTS_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(\overline{B})\}$ is decidable.

Proof:

 M_6 = on input $\langle A, B \rangle$

- 1. Let $C = \overline{B}$.
- 2. Run EQ_{DFA} Decider on $\langle A, C \rangle$.
- 3. If Decider accepts, <u>accept</u>. If Decider rejects, <u>reject</u>.

Claim: $COMPLEMENTS_{DFA} = \{\langle A, B \rangle : A \text{ and } B \text{ are DFAs and } L(A) = L(\overline{B})\}$ is decidable.

Proof:

 M_6 = on input $\langle A, B \rangle$

- 1. Let $C = \overline{B}$.
- 2. Run EQ_{DFA} Decider on $\langle A, C \rangle$.
- 3. If Decider accepts, accept. If Decider rejects, reject.

 M_6 is a decider since constructing C halts and the EQ_{DFA} Decider is a decider.

Computability Hierarchy

A_{TM}

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is decidable.

Proof:

