

ANÁLISIS DE MUESTRAS COMPLEJAS EN R

María Eugenia Riaño

1. ¿Qué es una muestra compleja?

Una muestra compleja es una muestra obtenida mediante un diseño que involucre estratos, conglomerados, y/o etapas de selección.

Un diseño complejo implica, en la mayoría de los casos, probabilidades de selección diferentes entre las unidades de muestreo.

¿Cómo analizar datos provenientes de una muestra compleja?

Los métodos estadísticos a utilizar deben de tener en cuenta el diseño muestral:

 Los errores estándar usuales, que asumen un muestreo simple con reposición, serán incorrectos si los datos provienen de una muestra compleja.

Ejemplo:

En términos de varianza, un diseño por conglomerados puede ser menos eficiente que un diseño simple. Si la variable de interés es homogénea dentro del conglomerado, y si los errores estándar se calculan asumiendo un diseño simple, se subestimará la verdadera varianza poblacional, pudiendo llevar a conclusiones erróneas sobre el comportamiento de los parámetros de interés.

2. El paquete Survey de R

Creado por **Thomas Lumley** en el 2003

http://r-survey.r-forge.r-project.org/survey/

Versión actual 3.32 (ha tenido 97 actualizaciones!!)

Journal of Statistical Software, 2004 (versión 2.2)

Complex Surveys: A guide to Analysis using R, Wiley 2010

Características del paquete Survey

- Cálculo de promedios, totales, razones, cuantiles, tablas de contingencia, modelos de regresión, entre otros para la muestra completa y para dominios.
- Las varianzas se calculan utilizando linearización de Taylor o con técnicas de remuestreo (Bootstrap, Jackknife)
- Post Estratificación, estimadores de raking generalizado, calibración.
- Diseños en dos fases.

svydesign especifica el diseño muestral

Argumentos

id indica las unidades de muestreo (PSUs, muestreo directo de elementos)

data base de datos con la que se va a trabajar

strata indica los estratos

weights indica los pesos muestrales

fpc indica si se deben realizar correcciones por poblaciones finitas

Ejemplo: Encuesta Continua de Hogares

- Estratos: geográficos.
- Dos etapas de selección: unidades primarias de muestreo, zonas censales. Unidades de segunda etapa, viviendas particulares ocupadas. Probabilidades proporcionales al tamaño en la primer etapa de selección.
- Se utilizan estimadores de raking generalizado que ajustan los pesos muestrales a totales poblacionales por sexo y tramo etario.

Diseño estratificado con pesos muestrales diferentes

Se crea un objeto que contiene los datos y la información del diseño de la muestra.

Diseño estratificado en etapas con pesos muestrales diferentes

```
p.c=svydesign(id=~codsegm+numero, strata=~region_3,
weights=~pesomen, data= hog, nest=TRUE)
```

La función svydesign genera un "entorno" con funciones propias:

```
sum() es svytotal()
mean() es svymean()
glm() es svyglm()
```


Estimación de promedios

```
>svymean(~HT11,p.s)
    mean    SE
    HT11 69536 890.36

>svymean(~HT11,p.c)
    mean    SE
    HT11 69536 1374.2
```


Tablas

> svytable(~pobre06+dpto,p.s)

```
dpto
pobre06 Montevideo Artigas Canelones Cerro Largo
No pobre 478597 21995 187008 29068
Pobre 32196 1703 9916 2258
```

.

Dominios

> svyby(~pobre06,~dpto,p.s,svytotal)

```
dpto
         pobre06Nopobre pobre06Pobre se.pobre06Nopobre se.pobre06Pobre
Montevideo
               478597
                             32196
                                         3943.301
                                                         3372.3688
                             1703
Artigas
               21995
                                         2688.271
                                                         852.5694
Canelones
               187008
                             9916
                                         7034.014
                                                         1911.2359
                                         3303.456
               29068
                             2258
                                                         1015.5243
Cerro Largo
```

......

Modelos Lineales

```
> m = svyqlm(HT11\sim d21_14_1+d21_15_4+d21_18_1,p.s)
> summary(m)
Call:
svyglm(formula = HT11 \sim d21_14_1 + d21_15_4 + d21_18_1, p.s)
Survey design:
svydesign(id = \sim1, strata = \simregion_3, weights = \simpesomen, data = hog)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                          899.6 38.099 <2e-16 ***
(Intercept)
             34272.9
d21 14 1
             10929.7 1302.5 8.392 <2e-16 ***
             22309.0 1183.9 18.844 <2e-16 ***
d21 15 4
d21 18 1
             24432.1
                     1684.3 14.506 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 1653659940)
Number of Fisher Scoring iterations: 2
```


GRACIAS!!