Titulo 5 de marzo de 2022

Titulo Giovanni Gamaliel López Padilla

Problema 1

Usemos la distancia de Kullback-Leibler para T-SNE. En el caso discreto, la definición de la distancia de Kullback-Leibler es:

$$d(P^{1}, P^{2}) = \sum_{i} P_{i}^{1} \log \left(\frac{P_{i}^{1}}{P_{i}^{2}}\right)$$

- Calcula $d(P^1, P^2)$ si $P^1 \sim Bern(\theta_1)$ y $P^2 \sim Bern(\theta_2)$.
- \blacksquare Grafica $d(P^1,P^2)$ como función de θ_2 con θ_1 fija, y verifica que efectivamente mide de alguna manera la disimilitud entre P^1 y P^2 .

Se tiene que

$$P(\theta) = \theta^x (1 - \theta)^{1 - x}$$

Calculando $\log \left(\frac{P_i^1}{P_i^2}\right)$, se obtiene que:

$$\log\left(\frac{P_i^1}{P_i^2}\right) = \log\left(\frac{\theta_1^x (1 - \theta_1)^{1-x}}{\theta_2^x (1 - \theta_2)^{1-x}}\right)$$

$$= \log\left(\theta_1^x (1 - \theta_1)^{1-x}\right) - \log\left(\theta_2^x (1 - \theta_2)^{1-x}\right)$$

$$= x \log(\theta_1) + (1 - x) \log(1 - \theta_1) - x \log(\theta_2) - (1 - x) \log(1 - \theta_2)$$

$$= x (\log(\theta_1) - \log(\theta_2)) + (1 - x) (\log(1 - \theta_1) - \log(1 - \theta_2))$$

Entonces, la distancia de Kullback-Leibler para dos distribuciones de Bernoulli es la siguiente:

$$d(P^{1}, P^{2}) = \sum_{i=0}^{1} \theta_{1}^{i} (1 - \theta_{1})^{1-i} \left[i \left(\log(\theta_{1}) - \log(\theta_{2}) \right) + (1 - i) \left(\log(1 - \theta_{1}) - \log(1 - \theta_{2}) \right) \right]$$

$$d(P^{1}, P^{2}) = (1 - \theta_{1}) \left(\log(1 - \theta_{1}) - \log(1 - \theta_{2}) \right) + \theta_{1} \left(\log(\theta_{1}) - \log(\theta_{2}) \right)$$