

KALKULUS

Bagian 4. Aplikasi Turunan dan Integral

Sesi Online 14

PROGRAM STUDI INFORMATIKA
UNIVERSITAS SIBER ASIA

Oleh:

Ambros Magnus Rudolf Mekeng, S.T, M.T

7.1 Menghitung Luas Daerah

a.Misalkan daerah
$$D = \{(x, y) \mid a \le x \le b, 0 \le y \le f(x)\}$$

Luas D = ?

Langkah:

1. Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi f(x) alas(lebar) Δx

$$\Delta A \approx |f(x)| \Delta x$$

2. Ltas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh:

Luas D = A =
$$\int_{a}^{b} |f(x)| dx$$

Contoh : Hitung luas daerah yang dibatasi oleh kurva $y = x^2$, sumbu x, dan x = 2.

Luas irisan

$$\Delta A \approx \left| x^2 \right| \Delta x$$

Luas daerah

$$A = \int_{0}^{2} |x^{2}| dx = \int_{0}^{2} x^{2} dx = \frac{1}{3} x^{3} \Big]_{0}^{2} = \frac{8}{3}$$

b) Misalkan daerah
$$D = \{(x, y) \mid a \le x \le b, g(x) \le y \le h(x)\}$$

Luas D = ?

Langkah:

1. Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi h(x)-g(x) alas(lebar) Δx

$$\Delta A \approx |h(x) - g(x)| \Delta x$$

2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh:

Luas D = A =
$$\int_{a}^{b} |h(x) - g(x)| dx$$

Contoh : Hitung luas daerah yang dibatasi oleh garis y = x+4 dan parabola $y = x^2 - 2$

Titik potong antara garis dan parabola

$$x + 4 = x^2 - 2$$

$$x^2 - x - 6 = 0$$

$$(x-3)(x+2) = 0$$

$$x = -2, x = 3$$

Luas irisan

$$\Delta A \approx ((x+4)-(x^2-2))\Delta x$$

Sehingga luas daerah:

$$A = \int_{-2}^{3} ((x+4) - (x^2 - 2)) dx = \int_{-2}^{3} (-x^2 + x + 6) dx$$
$$= -\frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x \Big|_{2}^{3} = \frac{125}{6}$$

Ctt:

Jika irisan dibuat tegak lurus terhadap sumbu x maka tinggi irisan adalah kurva yang terletak disebelah atas dikurangi kurva yang berada disebelah bawah. Jika batas atas dan bawah irisan berubah untuk sembarang irisan di D maka daerah D harus dibagi dua atau lebih

Contoh: Hitung luas daerah yang dibatasi oleh sumbu x,

$$y = x^2 \text{ dan } y = -x + 2$$

Jawab

Titik potong

$$x^{2} = -x + 2 \longrightarrow x^{2} + x - 2 = 0 \longrightarrow (x + 2)(x - 1) = 0$$

$$\longrightarrow x = -2, x = 1$$

Jika dibuat irisan tegak, maka daerah harus dibagi menjadi dua bagian

Luas irisan I

$$\Delta A_1 \approx x^2 \Delta x$$

Luas irisan II

$$\Delta A_2 \approx (-x+2)\Delta x$$

Luas daerah I

$$A_1 = \int_0^1 x^2 dx = \frac{1}{3} x^3 \mid_0^1 = \frac{1}{3}$$

Luas daerah II

$$A_2 = \int_{1}^{2} -x + 2 \, dx = -\frac{1}{2}x^2 + 2x \,|_{1}^{2}$$
$$= (-2+4) - (-\frac{1}{2}+2) = \frac{1}{2}$$

Sehingga luas daerah

$$A = A_1 + A_2 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

c). Misalkan daerah $D = \{(x, y) | c \le y \le d, g(y) \le x \le h(y)\}$

Luas D = ?

Langkah:

1. Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi h(y)-g(y) alas(lebar) Δy

$$\Delta A \approx |h(y) - g(y)|\Delta y$$

2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh:

Luas D = A =
$$\int_{c}^{d} |h(y) - g(y)| dy$$

Contoh: Hitung luas daerah yang dibatasi oleh $x = 3 - y^2$

$$dan y = x - 1$$

Jawab:

Titik potong antara garis dan parabola

$$y+1=3-y^{2}$$

 $y^{2}+y-2=0$
 $(y+2)(y-1)=0$
 $y = -2 \text{ dan } y = 1$

Luas irisan

$$\Delta A = \left| (3 - y^2) - (y + 1) \right| \Delta y$$

Sehingga luas daerah:

$$L = \int_{-2}^{1} ((3 - y^2) - (y + 1)) dy = \int_{-2}^{1} (-y^2 - y + 2) dy$$
$$= -\frac{1}{3}y^3 - \frac{1}{2}y^2 + 2y \Big|_{2}^{1} = \frac{9}{2}.$$

Ctt:

Jika irisan sejajar dengan sumbu x maka tinggi irisan adalah kurva yang terletak disebelah kanan dikurangi kurva yang berada disebelah kiri. Jika batas kanan dan kiri irisan berubah untuk sembarang irisan di D maka daerah D harus dibagi dua atau lebih

Soal Latihan

A. Gambarkan dan hitung luas daerah yang dibatasi oleh

1.
$$y = x^2 \text{ dan } y = x + 2$$

2.
$$y = x^3$$
, $y = -x$, dan $y = 8$

3.
$$y = x$$
, $y = 4x$, $y = -x+2$

4.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $x = 2\pi$.

5.
$$x = 4 - y^2 dan y = x + 2$$

6.
$$y = x^2 - 3x + 2$$
, sumbu y, dan sumbu x

7.2 Menghitung volume benda putar

7.2.1 Metoda Cakram

a. Daerah $D = \{(x, y) \mid a \le x \le b, 0 \le y \le f(x)\}$ diputar terhadap sumbu x

? Volume benda putar

Benda putar

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya.

Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas Δx diputar terhadap sumbu x akan diperoleh suatu cakram lingkaran dengan tebal Δx dan jari-jari f(x).

sehingga

$$\Delta V \approx \pi f^{2}(x) \Delta x$$

$$V = \pi \int_{a}^{b} f^{2}(x) dx$$

Contoh: Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh $y=x^2$, sumbu x, dan garis x=2 diputar terhadap sumbu x

Jika irisan diputar terhadap sumbu x akan diperoleh cakram dengan jari-jari x^2 dan tebal Δx

Sehingga

$$\Delta V \approx \pi (x^2)^2 \Delta x = \pi x^4 \Delta x$$

Volume benda putar

$$V = \pi \int_{0}^{2} x^{4} dx = \frac{\pi}{5} x^{5} \mid_{0}^{2} = \frac{32}{5} \pi$$

b. Daerah
$$D = \{(x, y) | c \le y \le d , 0 \le x \le g(y) \}$$

diputar terhadap sumbu y

Daerah D

Benda putar

? Volume benda putar

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya.

Jika irisan berbentuk persegi panjang dengan tinggi g(y) dan alas Δy diputar terhadap sumbu y akan diperoleh suatu cakram lingkaran dengan tebal Δy dan Jari-jari g(y).

sehingga

$$\Delta V \approx \pi g^{2}(y) \Delta y$$

$$\downarrow V$$

$$V = \pi \int_{0}^{d} g^{2}(y) dy$$

Contoh : Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh $y = x^2$ garis y = 4, dan sumbu y diputar terhadap sumbu y

Jika irisan dengan tinggi \sqrt{y} dan tebal Δy diputar terhadap sumbu y akan diperoleh cakram dengan jari-jari \sqrt{y} dan tebal Δy

Sehingga

$$\Delta V = \pi (\sqrt{y})^2 \Delta y = \pi y \Delta y$$

Volume benda putar

$$V = \pi \int_{0}^{4} y dy = \frac{\pi}{2} y^{2} |_{0}^{4} = 8\pi$$

B. Hitung volume benda putar yang terjadi jika daerah yang di batasi oleh grafik fungsi-fungsi berikut diputar terhadap sumbu *x*

1.
$$y = x^3$$
, $y = 0$, dan $x = 2$

2.
$$y = 9 - x^2 \text{ dan } y = 0$$

C. Hitung volume benda putar yang terjadi jika daerah yang di batasi oleh grafik fungsi-fungsi berikut diputar terhadap sumbu *y*

3.
$$y = x^2$$
, $y = 4$, dan $x = 0$ di kuadran I

4.
$$x = y^2$$
, $y = 2$, dan $x = 0$

5.
$$y = x^3, y = 1, dan x = 0$$

7.2.2 Metoda Cincin

a. Daerah $D = \{(x, y) \mid a \le x \le b, g(x) \le y \le h(x)\}$

diputar terhadap sumbu x

? Volume benda putar

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya.

Jika irisan berbentuk persegi panjang dengan tinggi h(x)-g(x) dan alas Δx diputar terhadap sumbu x akan diperoleh suatu cincin dengan tebal Δx dan jari —jari luar h(x) dan jari-jari dalam g(x).

sehingga

$$\Delta V \approx \pi (h^2(x) - g^2(x)) \Delta x$$

$$V = \pi \int_a^b (h^2(x) - g^2(x)) dx$$

Jika irisan diputar terhadap garis y=1 Akan diperoleh suatu cincin dengan Jari-jari dalam 1 dan jari-jari luar $1+x^2$

Sehingga

$$\Delta V = \pi ((x^2 + 1)^2 - 1^2) \Delta x$$

$$= \pi (x^4 + 2x^2 + 1 - 1) \Delta x$$

$$= \pi (x^4 + 2x^2) \Delta x$$

Volume benda putar :

$$V = \pi \int_{0}^{2} x^{4} + 2x^{2} dx = \pi \left(\frac{1}{5}x^{5} + \frac{2}{3}x^{3}\right)^{2} = \pi \left(\frac{32}{5} + \frac{16}{3}\right) = \frac{186}{15}\pi$$

Catatan:

-Metoda cakram/cincin

Irisan dibuat tegak lurus terhadap sumbu putar

- Metoda kulit tabung

Irisan dibuat sejajar dengan sumbu putar

Jika daerah dan sumbu putarnya sama maka perhitungan dengan menggunakan metoda cakram/cincin dan metoda kulit tabung akan menghasilkan hasil yang sama

Contoh Tentukan benda putar yang terjadi jika daerah D yang dibatasi Oleh parabola $y = x^2$, garis x = 2, dan sumbu x diputar terhadap

a. Garis
$$y = 4$$

$$d. Garis y = 4$$

b. Garis
$$x = 3$$

- a. Sumbu putar y = 4
 - (i) Metoda cincin

Jika irisan diputar terhadap garis y=4 akan diperoleh cincin dengan

Jari-jari dalam =
$$r_d = (4 - x^2)$$

Jari-jari luar =
$$r_l = 4$$

Sehingga

$$\Delta V \approx \pi ((4)^2 - (4 - x^2)^2) \Delta x$$
$$= \pi (8x^2 - x^4) \Delta x$$

Volume benda putar

$$V = \pi \int_{0}^{2} (8x^{2} - x^{4}) dx = \pi (\frac{8}{3}x^{3} - \frac{1}{5}x^{5}) \Big|_{0}^{2} = \pi (\frac{64}{3} - \frac{32}{5}) = \frac{224}{15}\pi$$

b. Sumbu putar x=3

(i) Metoda cincin

Jika irisan diputar terhadap garis x=3 diperoleh cincin dengan

Jari-jari dalam = $r_d = 1$

Jari-jari luar =
$$r_l = 3 - \sqrt{y}$$

Sehingga

$$\Delta V \approx \pi ((3 - \sqrt{y})^2 - (1)^2) \Delta y$$
$$= \pi (8 - 6\sqrt{y} + y) \Delta y$$

Volume benda putar

$$V = \pi \int_{0}^{4} (8 - 6\sqrt{y} + y) dy = \pi (8y - 4y^{3/2} + 8|_{0}^{4}) = 8\pi$$

D. Hitung volume benda putar yang terjadi jika daerah yang di batasi oleh grafik fungsi-fungsi berikut diputar terhadap sumbu *x*

1.
$$y = x^2 \, dan \, y = 4x$$

2.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $x = \pi/4$

3. $y = x^3$ dan y = x, di kuadran 1

4.
$$y = x^2$$
, dan $y = \sqrt{x}$

5.
$$y = \sqrt{x}$$
, dan $y = x$

- E. Hitung volume benda putar yang terjadi jika daerah yang di batasi oleh grafik fungsi-fungsi berikut diputar terhadap sumbu *y*
 - 1. $y = x^2 \, \text{dan } y = 4x$
 - 2. y = -x+1, $y = x^2$, dan x = 0 di kuadran 1
 - 3. $y = x^3$ dan y = x, di kuadran 1
 - 4. $y = x^2$, dan $y = \sqrt{x}$
 - 5. $y = \sqrt{x}$, dan y = x

7.2.3 Metoda Kulit Tabung

Diketahui
$$D = \{(x, y) \mid a \le x \le b, 0 \le y \le f(x)\}$$

Jika D diputar terhadap sumbu y diperoleh benda putar

Volume benda putar ?

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya.

Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas Δx serta berjarak x dari sumbu y diputar terhadap sumbu y akan diperoleh suatu kulit tabung dengan tinggi f(x), jari-jari x, dan tebal Δx

sehingga

$$\Delta V \approx 2\pi x f(x) \Delta x$$

$$V = 2\pi \int_{a}^{b} x f(x) dx$$

Contoh: Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh $y = x^2$, sumbu x, dan garis x=2 diputar terhadap sumbu y

Jika irisan dengan tinggi x^2 ,tebal Δx dan berjarak x dari sumbu y diputar terhadap sumbu y akan diperoleh kulit tabung dengan tinggi x^2 , tebal Δx dan jari jari x

Sehingga

$$\Delta V = 2\pi x x^2 \Delta x = 2\pi x^3 \Delta x$$

Volume benda putar

$$V = 2\pi \int_{0}^{2} x^{3} dx = \frac{\pi}{2} x^{4} \mid_{0}^{2} = 8\pi$$

Catatan:

-Metoda cakram/cincin

Irisan dibuat tegak lurus terhadap sumbu putar

Metoda kulit tabung
 Irisan dibuat sejajar dengan sumbu putar

Jika daerah dan sumbu putarnya sama maka perhitungan dengan menggunakan metoda cakram/cincin dan metoda kulit tabung akan menghasilkan hasil yang sama

Contoh Tentukan benda putar yang terjadi jika daerah D yang dibatasi Oleh parabola $y = x^2$, garis x = 2, dan sumbu x diputar terhadap

- a. Garis y = 4
- b. Garis x = 3

(ii) Metoda kulit tabung

Jika irisan diputar terhadap garis y=4 akan diperoleh kulit tabung dengan

Jari-jari =
$$r = 4 - y$$

Tinggi = h =
$$2 - \sqrt{y}$$

Tebal =
$$\Delta y$$

Sehingga

$$\Delta V \approx 2\pi (4 - y)(2 - \sqrt{y})\Delta y$$
$$= 2\pi (8 - 4\sqrt{y} - 2y + y\sqrt{y})\Delta y$$

Volume benda putar

$$V = 2\pi \int_{0}^{4} (8 - 4\sqrt{y} - 2y + y\sqrt{y}) dy = 2\pi (8y - \frac{8}{3}y^{3/2} - y^2 + \frac{2}{5}y^{5/2}) \Big|_{0}^{4} = \frac{224}{15}\pi$$

(ii) Metoda kulit tabung

Jika irisan diputar terhadap garis x=3 diperoleh kulit tabung dengan

Tinggi = h =
$$\chi^2$$

Jari-jari =
$$r = 3-x$$

Tebal =
$$\Delta x$$

Sehingga

$$\Delta V \approx 2\pi (3-x)x^2 \Delta x$$
$$= 2\pi (3x^2 - x^3) \Delta x$$

Volume benda putar

$$V = 2\pi \int_{0}^{2} (3x^{2} - x^{3}) dx = 2\pi (x^{3} - \frac{1}{4}x^{4}) \Big|_{0}^{2} = 2\pi (8 - 4) = 8\pi$$

- F. Daerah D dibatasi oleh kurva $y = \sqrt{x}$ dan garis x = 2y. Hitung volume benda putar, jika D diputar terhadap :
 - (1) sumbu *x*
 - (2) garis x = -1
 - (3) garis y = 4

- (4) sumbu *y*
- (5) garis y = -2
- (6) garis x = 4
- G. Daerah D dibatasi oleh parabol $y = 4x x^2$ dan garis x + y = 4. Hitung volume benda putar, jika D diputar terhadap :
 - (1) sumbu *x*
 - (2) garis x = 6

- (3) sumbu *y*
- (4) garis y = -1

7.3 Panjang

Kurva

Persamaan parameter kurva dibidang

$$x = f(t) y = g(t) , a \le t \le b$$
 (1)

Titik A(f(a),g(a)) disebut titik pangkal kurva dan titik B(f(b),g(b)) disebut titik ujung dari kurva.

Definisi: Suatu kurva dalam bentuk parameter seperti (1) disebut mulus jika

- (i) f' dan g' kontinu pada [a,b] Kurva tidak berubah sekonyong-konyong
- (ii) f' dan g' tidak secara bersamaan nol pada (a,b)

Misal diberikan kurva dalam bentuk parameter (1), akan dihitung panjang kurva

Langkah

1. Partisi [a,b] menjadi n bagian, dengan titik-titik pembagian

$$a = t_o < t_1 < t_2 < \dots < t_n = b$$

$$a \quad t_1 \quad t_{i-1} \quad t_i \quad t_{n-1} \quad b$$
Partisi pada [a,b]
$$Paritisi pada kurva$$

2. Hampiri panjang kurva

 Δs_i panjang busur $Q_{i-1}Q_i$

 Δw_i panjang tali busur $Q_{i-1}Q_i$

Panjang busur dihampiri dengan panjang tali busur

$$\Delta s_{i} \approx \Delta w_{i}$$

$$= \sqrt{(\Delta x_{i})_{2} + (\Delta y)_{2}}$$

$$= \sqrt{[f(t_{i}) - f(t_{i-1})]_{2} + [g(t_{i}) - g(t_{i-1})]_{2}}$$

Dengan menggunakan teorema nilai rata-rata untuk turunan, terdapat $\hat{t}_i, \bar{t}_i \in (t_{i-1}, t_i)$ sehingga

$$f(t_i) - f(t_{i-1}) = f'(\bar{t}_i) \Delta t$$
$$g(t_i) - g(t_{i-1}) = g'(\hat{t}_i) \Delta t$$

dengan $\Delta t_i = t_i - t_{i-1}$

sehingga

$$\Delta w_{i} = \sqrt{[f'(t_{i})\Delta t_{i}]^{2} + [g'(\hat{t}_{i})\Delta t_{i}]^{2}}$$
$$= \sqrt{[f'(t_{i})]^{2} + [g'(\hat{t}_{i})]^{2}} \Delta t_{i}$$

Panjang kurva dihampiri oleh jumlah panjang tali busur

$$L \approx \sum_{i=1}^{n} \sqrt{[f'(t_i)]^2 + [g'(\hat{t}_i)]^2} \Delta t_i$$

Dengan mengambil panjang partisi(||P||) menuju nol diperoleh

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt$$

Ctt:

Jika persamaan kurva y=f(x), $a \le x \le b$

$$L = \int_{f^{-1}(a)}^{f^{-1}(b)} \sqrt{[f'(t)]^2 + [g'(t)]^2} dt = \int_{a}^{b} \sqrt{[\frac{dx}{dt}]^2 + [\frac{dy}{dt}]^2} dt$$
$$= \int_{a}^{b} \sqrt{(\frac{dx}{dt})^2 (1 + (\frac{dy}{dx})^2)} dt = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} dx$$

Jika persamaan kurva x=g(y), $c \le y \le d$

$$L = \int_{g^{-1}(c)}^{g^{-1}(d)} \sqrt{[f'(t)]^2 + [g'(t)]^2} dt = \int_{c}^{d} \sqrt{[\frac{dx}{dt}]^2 + [\frac{dy}{dt}]^2} dt$$
$$= \int_{c}^{d} \sqrt{(\frac{dy}{dt})^2 \left(\left(\frac{dx}{dy}\right)^2 + 1 \right)} dt = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

Contoh: Hitung panjang kurva

1.
$$x = t^3$$
, $y = t^2$; $0 \le t \le 4$
 $x'(t) = 3t^2$, $y'(t) = 2t$

Panjang kurva

$$L = \int_{0}^{4} \sqrt{(3t^{2})^{2} + (2t)^{2}} dt = \int_{0}^{4} \sqrt{9t^{4} + 4t^{2}} dt = \int_{0}^{4} \sqrt{t^{2}(9t^{2} + 4)} dt$$

$$= \int_{0}^{4} t \sqrt{9t^{2} + 4} dt = \int_{0}^{4} t (9t^{2} + 4)^{1/2} \frac{d(9t^{2} + 4)}{18t}$$

$$= \frac{1}{18} \frac{2}{3} (9t^{2} + 4)^{3/2} \Big|_{0}^{4} = \frac{1}{27} (40\sqrt{40} - 8) = \frac{1}{27} (80\sqrt{10} - 8)$$

2. $y = 2x^{3/2}$ antara x = 1/3 dan x = 7

Jawab:

$$\frac{dy}{dx} = 3x^{1/2}$$

$$L = \int_{1/3}^{7} \sqrt{1 + (3x^{1/2})^2} dx = \int_{1/3}^{7} \sqrt{1 + 9x} dx = \frac{1}{9} \int_{1/3}^{7} (1 + 9x)^{1/2} d(1 + 9x)$$
$$= \frac{2}{27} (1 + 9x)^{3/2} \Big|_{1/3}^{7} = \frac{2}{27} (512 - 8) = 37 \frac{1}{3}$$

E. Hitung panjang kurva berikut

• 2.
$$x = 3t^2 + 2$$
, $y = 2t^3 - 1/2$; $1 \le t \le 4$
1. $x = 4\sin t$, $y = 4\cos t - 5$; $0 \le t \le \pi$

•
$$y = {1 \over 1}(x^2 + 2)^{3/2}, 0 \le x \le 1$$

• 3

•
$$x = {}^{13}$$
. $y(y-3)$, $0 \le y \le 9$

• 3

4.
$$-\sqrt{}$$

5.
$$y = \ln(1 - x^2), \ 0 \le x \le 1/2$$

6.
$$y = \frac{x^2}{2} - \frac{\ln x}{4}, \ 2 \le x \le 4$$