

Um algoritmo *Iterated Local Search* híbrido para solução do problema da Árvore geradora com número mínimo de vértices d-branch

Marcos Vinícius de Souza Silva e Maria Claudia Silva Boeres Universidade Federal do Espírito Santo

DO ESPÍRITO SANTO

Secretaria da Ciência, Tecnologia,
Inovação e Educação Profissional

RESUMO

Este trabalho explora métodos da literatura voltados para encontrar soluções eficientes para o problema d-MBV, com foco no estudo e aprimoramento da meta-heurística ILS (Iterated Local Search), do algoritmo construtivo R-BEP (Random Branch Expanding Prim) e da centralidade de grafos *PageRank*. O objetivo central é adaptar e integrar essas abordagens, utilizando a centralidade *PageRank* como uma alternativa inovadora, com a expectativa de melhorar a qualidade das soluções obtidas. As adaptações propostas foram implementadas nas etapas principais do ILS, permitindo avaliar o impacto de diferentes combinações de métodos sobre os resultados e identificar a configuração mais eficaz. O uso do R-BEP contribuiu significativamente para aprimorar a fase construtiva do ILS, enquanto a adoção do *PageRank* no estágio de perturbação se mostrou superior em desempenho em relação à centralidade Grau, com desempenho similar nas demais etapas.

O PROBLEMA D-MBV

- **Objetivo:** Encontrar uma árvore geradora que minimize a quantidade de vértices com grau superior a d, onde $d \ge 2$, em um grafo conexo e não direcionado.
- Grafo original: $G = (V_G, E_G)$
- Árvore geradora: $T = (V_T, E_T)$
- $V_T = V_G e E_T \subseteq E_G$

Figura 1: Grafo G(a)

(b)

Figura 2: Exemplos de Árvores Geradoras possíveis para G, respectivamente com 1 e 2 vértices *branch*.

METODOLOGIA

Durante este trabalho, foram analisadas todas as etapas da meta-heurística ILS (Iterated Local Search) proposta por [1] para a resolução do problema *d*-MBV. Os resultados de cada etapa foram estudados separadamente, variações foram propostas, implementadas e avaliadas. Por exemplo, na busca local, foi introduzido um método alternativo para a seleção de soluções vizinhas, e a centralidade foi alterada de grau para *PageRank*. O Algoritmo 1 apresenta a versão final do ILS modificado, integrando variáveis que determinam quais modificações serão aplicadas em cada rodada de testes, o que possibilita a comparação e o rastreamento da melhor combinação de adaptações realizadas ao longo deste estudo.

Algoritmo 1: ILS - Iterated Local Search

Entrada: O grafo G = (V, E), $Construtivo = \{AC_{\text{ILS}}, RBEP\}$, $OrdenacaoBusca = \{Grau, PageRank\}, ModoPertubacao = \{Grau, Pagerank\}$ $e \ SelecaoVizinhos = \{Primeiro, Melhor\}.$

Saída: Uma solução válida T.

- 1 $O_D \leftarrow Decomposicao_por_Pontes(G);$
- 2 $T_0 \leftarrow Solucao_Inicial(G, O_D, Construtivo);$
- $T^* \leftarrow Busca_Local(T_0, O_D, OrdenacaoBusca, SelecaoVizinhos);$
- 4 repita
- $T' \leftarrow Perturbacao(T^*, O_D, ModoPertubacao);$
- $T'' \leftarrow Busca_Local(T', O_D, OrdenacaoBusca, SelecaoVizinhos);$
- 7 $T^* \leftarrow Criterio_Aceitacao(T^*, T'', historia);$
- s até condicao de parada atendida;
- 9 return T^* ;

CONCEITOS

- **Teoria dos Grafos:** Estudo de estruturas formadas por vértices e arestas, focando em adjacência, conexidade, caminhos, ciclos, árvores e centralidades.
- **Centralidades:** Medidas para avaliar a importância de um vértice no grafo, incluindo grau, proximidade, intermediação e *PageRank*.
- Meta-heurística: Método utilizado para identificar soluções eficazes em problemas de otimização combinatória.

Conclusão

- Algoritmo Construtivo: O R-BEP apresentou desempenho superior ao algoritmo original do ILS. No entanto, as adaptações para incluir a centralidade *PageRank* não geraram resultados satisfatórios.
- **Busca Local:** A modificação na Seleção de Vizinhos e a inclusão da centralidade *PageRank* resultou em um desempenho ligeiramente superior.
- **Perturbação:** A etapa de perturbação demonstrou o melhor desempenho ao integrar a centralidade *PageRank*, destacando-se como um aspecto positivo da abordagem.

RESULTADOS

Os testes foram realizados em uma máquina com processador Ryzen 5 5600GT, 32 GB de RAM e Linux, abrangendo 525 instâncias. A Tabela 1 apresenta a média dos resultados por grupo de instâncias com o mesmo número de vértices, enquanto a Tabela 2 mostra os resultados gerais. Os melhores resultados estão destacados em azul e os piores em vermelho.

As colunas n' e m' representam os vértices e a média de arestas das instâncias, respectivamente. A coluna **ILS** apresenta os resultados do algoritmo original, enquanto as variantes **ILS-1** a **ILS-4** empregam o algoritmo construtivo **R-BEP** e as seguintes variações:

- ILS-1: OrdenacaoBusca = Pagerank, SelecaoVizinhos = Primeiro, ModoPerturbacao = Grau.
- ILS-2: OrdenacaoBusca = Pagerank, SelecaoVizinhos = Primeiro, ModoPerturbacao = PageRank.
- ILS-3: OrdenacaoBusca = Pagerank, SelecaoVizinhos = Melhor, ModoPerturbacao = Grau.
- ILS-4: OrdenacaoBusca = Pagerank, SelecaoVizinhos = Melhor, ModoPerturbacao = PageRank.

Tabela 1: Média dos resultados mínimos.

n'	m'	ILS	ILS-1	ILS-2	ILS-3	ILS-4
20	41.8	0.76	0.80	0.80	0.80	0.80
40	70.8	3.12	3.04	3.04	3.00	2.96
60	95.0	6.92	6.72	6.72	6.72	6.72
80	119.8	9.92	9.84	9.84	9.80	9.84
100	144.0	14.36	14.28	14.20	14.16	14.16
120	168.8	18.60	18.16	18.24	18.12	18.12
140	193.0	22.48	22.00	21.96	21.92	21.80
160	217.8	26.72	26.32	26.20	26.20	26.04
180	242.0	30.72	30.16	30.24	30.04	30.12
200	266.8	34.60	33.96	33.72	33.80	33.64
250	321.0	46.80	46.20	46.08	45.96	45.96
300	380.0	59.92	58.88	58.84	58.84	58.76
350	434.8	70.84	70.48	70.48	70.24	70.20
400	489.0	85.12	83.96	83.88	83.84	83.92
450	548.0	96.56	95.60	95.64	95.44	95.36
500	602.8	110.28	109.20	109.24	108.88	109.08
600	711.8	157.36	155.60	155.44	155.56	155.40
700	820.8	186.48	184.48	184.36	184.36	184.28
800	929.8	215.28	213.16	212.96	212.88	212.88
900	1034.0	247.24	244.76	244.80	244.52	244.60
1000	1143.0	277.92	275.12	274.92	275.04	274.76

Tabela 2: Resultados gerais.

Informações	ILS	ILS-1	ILS-2	ILS-3	ILS-4
Exatos	101	137	142	149	154
Melhores Resultados	204	351	374	398	416

AGRADECIMENTOS

Agradeço à professora Maria Claudia Silva Boeres (UFES-CT) e ao professor Renato Elias Nunes de Moreas (UFES-CT), por coordenar e orientar esse projeto, e em especial à Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) pelo apoio financeiro fundamental para o desenvolvimento deste projeto de Iniciação Científica.

REFERÊNCIAS

[1] JORGE REYNALDO MORENO RAMÍREZ. Heuristic and Exact Approaches for Some Combinatorial Optimization Problems on Graphs. Doutorado em ciência da computação, Programa de Pós-Graduação em Computação, Universidade Federal Fluminense, UFF, Brasil, Niterói, 2018.