On left adjoints preserving colimits in HoTT

Perry Hart and Favonia

University of Minnesota, Twin Cities

HoTT/UF 2025

Goals

- 1. See whether left adjoints preserve colimits in wild categories.
- 2. Find a reasonably nice sufficient condition for it to hold.
- 3. Apply this condition to $\Sigma \dashv \Omega$.

Use a higher version of *Cavallo's trick* to enable mechanization in Book HoTT.

Why?

Originally, show that pointed colimits preserve acyclic types.

 Construct colimits in various wild categories of higher groups by describing them as reflective subcategories.

 Simplify the construction of stable homotopy as a homology theory.

The classical proof

Consider a diagram $F: \mathcal{J} \to \mathcal{C}$ with a colimit $T := \operatorname{colim}_{\mathcal{J}}(F)$.

Short and sweet:

$$\begin{aligned} & \mathsf{hom}_{\mathcal{D}}(L(T), Y) \\ & \cong & \mathsf{hom}_{\mathcal{C}}(T, R(Y)) \\ & \cong & \mathsf{lim}_{i}(\mathsf{hom}_{\mathcal{C}}(F_{i}, R(Y))) \\ & \cong & \mathsf{lim}_{i}(\mathsf{hom}_{\mathcal{D}}(L(F_{i}), Y)) \end{aligned}$$

This is *almost* the universal property of the colimit.

Need to ensure the composite equals the canonical function.

Not guaranteed to hold for wild categories.

The wild setting

A *wild category* is a pre-category except with untruncated hom-types.

Suppose $L: \mathcal{C} \to \mathcal{D}$ and $R: \mathcal{D} \to \mathcal{C}$ are functors of wild categories.

Suppose $L \dashv R$:

a family of hom-equivalences

$$\alpha : \prod_{X: \mathsf{Ob}(\mathcal{D})} \prod_{A: \mathsf{Ob}(\mathcal{C})} \mathsf{hom}_{\mathcal{D}}(\mathit{LA}, X) \xrightarrow{\simeq} \mathsf{hom}_{\mathcal{C}}(A, RX)$$

• proofs V_1 and V_2 of the naturality of α in X and A, respectively.

Let Γ be a graph and a diagram $F:\Gamma\to\mathcal{C}.$

Consider a cocone

under F.

Suppose the cocone (T, r, K) is colimiting.

Replaying the standard proof

We still have the chain of equivalences

$$\begin{array}{l} \mathsf{hom}_{\mathcal{D}}(L(T),Y) \\ \cong \; \mathsf{hom}_{\mathcal{C}}(T,R(Y)) \\ \cong \; \mathsf{lim}_{i}(\mathsf{hom}_{\mathcal{C}}(F_{i},R(Y))) \\ \cong \; \underbrace{\mathsf{lim}_{i}(\mathsf{hom}_{\mathcal{D}}(L(F_{i}),Y))}_{type \; of \; cocones \\ on \; Y \; under \; L(F)} \end{array}$$

Problem: This composite need not be post-composition.¹

- Legs of the cocones are still equal.
- The triangle homotopies may be different.

¹See the abstract for a counterexample based on the H-space S^1 .

A sufficient condition

Our definition of *adjunction* is fine for 1-categories but not coherent enough for wild categories.

Nothing about the interaction between

- the naturality sqaures of the adjunction
- the equational axioms of the categories and functors.

We need a condition on this interaction to make composite = post-comp.

We say that L is 2-coherent if the diagram

$$(\alpha(h_1) \circ h_2) \circ h_3 \xrightarrow{\operatorname{assoc}(\alpha(h_1),h_2,h_3)} \alpha(h_1) \circ (h_2 \circ h_3)$$

$$\operatorname{ap}_{-\circ h_3}(V_2(h_2,h_1)) \bigg\| \qquad \qquad \bigg\| V_2(h_2 \circ h_3,h_1) \\ \alpha(h_1 \circ L(h_2)) \circ h_3 \qquad \qquad \alpha(h_1 \circ L(h_2 \circ h_3)) \\ V_2(h_3,h_1 \circ L(h_2)) \bigg\| \qquad \qquad \bigg\| \operatorname{ap}_{\alpha}(\operatorname{ap}_{h_1 \circ -}(L_\circ(h_2,h_3))) \\ \alpha((h_1 \circ L(h_2)) \circ L(h_3)) \underset{\operatorname{ap}_{\alpha}(\operatorname{assoc}(h_1,L(h_2),L(h_3)))}{\bigoplus} \alpha(h_1 \circ (L(h_2) \circ L(h_3)))$$

commutes for all suitable morphisms h_1 , h_2 , and h_3 .

Theorem

If L is 2-coherent, then (L(T), L(r), L(K)) is colimiting in \mathcal{D} .

Suspension is 2-coherent

Goal: Show that $\Sigma: \mathcal{U}^* \to \mathcal{U}^*$ is a 2-coherent left adjoint to Ω .

The SIP turns 2-coherence into a *(pointed) homotopy between pointed homotopies*:

Definition

Let f_1 and f_2 be pointed maps and let $(H_1, \kappa_1), (H_2, \kappa_2)$: $f_1 \sim_* f_2$.

A homotopy between (H_1, κ_1) and (H_2, κ_2) consists of

- a homotopy $\mu: H_1 \sim H_2$
- a path M_{μ} : $\kappa_1 =_{\mu} \kappa_2$ over μ .

In the case of Σ ,

- μ : messy but doable
- M_{μ} : real nasty.

But we're landing in a loop space, which is strongly homogeneous.²

Lemma (yaCt)

Let $f_1, f_2: X_1 \rightarrow_* X_2$ with X_2 strongly homogeneous.

Let (H_1, κ_1) , (H_2, κ_2) : $f_1 \sim_* f_2$. If $H_1 \sim H_2$, then (H_1, κ_1) and (H_2, κ_2) are homotopic.

Result: We ignore M_{μ} and are done!

²A pointed type is *strongly homogeneous* if it's homogeneous such that the automorphism is the identity for the basepoint.

Future work

• A trick for showing that $\wedge: \mathcal{U}^* \to \mathcal{U}^*$ is 2-coherent?

• Show that all modalities on $\mathcal U$ satsisfy 2-coherence (not hard).

ullet Show that all reflective subuniverses of ${\mathcal U}$ satisfy 2-coherence.

"For any reflective subuniverse, we can prove all the familiar facts about reflective subcategories from category theory, in the usual way" (*The HoTT Book*, p. 248).

This seems non-obvious for preservation of colimits.

Conclusion

Takeaway: Left adjoints preserve colimits under a reasonable condition, which Σ satisfies.

Agda code: https://github.com/PHart3/colimits-agda

Thanks!