Kevin Sekuj

CS-225: Discrete Structures in CS

Homework 4, Part 1

Exercise Set 6.1, Question #7, #12, #25(a,b,c,), #27(c,e)

#33(a,c), #34(b), #35(d)

#7.

a. $A \nsubseteq B$ (False)

Let x = 10 and a = 1, then $x \in A$, because x = 6(1) + 4 = 10, but $x \notin B$ because there is no integer b such that 10 = 18b - 2. For if there were an integer, then

$$18b - 2 = 10$$

$$b = 12/18 = 2/3$$

But 2/3 is not an integer. Thus $10 \in A$ but $10 \notin B$, therefore $A \nsubseteq B$.

b. $B \subseteq A$ (True)

Supposition: Suppose y is a particular but arbitrary chosen element of B. Suppose $B \subseteq A$, then any element in B is an element in A.

Goal: We must show that $y \in A$, which means we must show that $y = 6 \cdot (\text{some integer}) + 4$.

Deduction:

Let $y \in B$, then by the definition of B there is an integer b such that y = 18b - 2. Since y is an element in A, then by the definition of subsets there is an integer a so that y = 18b - 2 = 6a + 4.

Then,

$$6a + 4 = 18b - 2$$

6a = 18b - 6 by algebra

a = 3b - 1 by algebra

a = 3b - 1 is an integer as it is the difference of two integers 2b and 1.

Then, by substituting in the value of a into A,

y = 6(3b - 1) + 4 = 18b - 2. Thus, any element from B is also in A.

Conclusion: Therefore, by the definition of the subset, $B \subseteq A$ is true.

c. B = C (True)

By the definition of equality, $B = C \leftrightarrow (B \subseteq C) \land (C \subseteq B)$.

1. B ⊆ C

Supposition: There is a particular but arbitrarily chosen element y in B. Suppose $B \subseteq C$, then any element in B is in C.

Goal: We must show that $y \in C$, which means we must show that $y = 18 \cdot (\text{some integer}) + 16$.

Deduction:

Let $y \in B$, then by the definition of B there is an integer b such that y = 18b - 2. Since y is an element in C, then by the definition of subsets there is an integer c so that y = 18b - 2 = 18c + 16.

Then,

18b - 2 = 18c + 16

18b - 18 = 18c by algebra

b-1=c by algebra

Since c is the difference of integers b and 1, c is also an integer.

Conclusion: Thus, the element $y \in B$ is an element in C by the definition of subsets.

 $2. C \subseteq B$

Supposition: There is a particular but arbitrarily chosen element z in C. Suppose $C \subseteq B$, then any element in C is in B.

Goal: We must show that $z \in B$, which means we must show that $z = 18 \cdot (\text{some integer}) - 2$.

Deduction:

Let $z \in C$, then by the definition of C there is an integer c such that z = 18c + 16. Since z is an element in B, then by the definition of subsets there is an integer b so that z = 18c + 16 = 18b - 2.

Then,

$$18b - 2 = 18c + 16$$

$$b = c + 1$$
 by algebra

Since b is the sum of integers c and 1, b is also an integer.

Conclusion: Thus, the element $z \in C$ is an element in B by the definition of subsets.

Therefore, we've proven that $B \subseteq C$ and $C \subseteq B$, so B = C by the definition of set equality.

#12.

$$A \cup B = \{x \in \mathbb{R} \mid -3 \le x \le 0\} \cup \{x \in \mathbb{R} \mid -1 < x < 2\}$$

$$= \{x \in \mathbf{R} \mid -3 \le x < 2\} =$$

$$A \cap B = \{x \in \mathbb{R} \mid -3 \ x \le 0\} \cap \{x \in \mathbb{R} \mid -1 < x < 2\}$$

$$= \{x \in \mathbf{R} \mid -1 < x \le 0\} =$$

c.
$$(-\infty, 3) \cup (0, \infty)$$

$$A^C = \{x \in \mathbf{R} \mid \text{ it is not the case that } x \in [-3, 0]\}$$

=
$$\{x \in \mathbb{R} \mid \text{ it is not the case that } x \ge -3 \text{ and } x \le 0\}$$

$$= \{x \in \mathbf{R} \mid x < -3 \text{ or } x > 0\} =$$

$$A \cup C = \{x \in \mathbb{R} \mid -3 \le x \le 0\} \cup \{x \in \mathbb{R} \mid 6 < x \le 8\}$$

$$= \{x \in \mathbb{R} \mid -3 \le x \le 0 \text{ or } 6 < x \le 8\} =$$

A∩C =
$$\{x \in \mathbb{R} \mid -3 \le x \le 0\} \cap \{x \in \mathbb{R} \mid 6 < x \le 8\}$$

= $\{x \in \mathbb{R} \mid -3 \le x \le 0 \text{ and } 6 < x \le 8\}$ =

f.
$$(-\infty, -1] \cup [2, \infty)$$

$$B^c = \{x \in \mathbb{R} \mid \text{ it is not the case that } x \in (-1, 2)\}$$

=
$$\{x \in \mathbb{R} \mid \text{ it is not the case that } x > -1 \text{ and } x < 2\}$$

$$= \{x \in \mathbf{R} \mid x \le -1 \text{ or } x \ge 2\} =$$

g.
$$(-\infty, -3) \cup [2, \infty)$$

$$A^c \cup B^c = [(-\infty, -3) \cup (0, \infty)] \cap [(-\infty, -1] \cup [2, \infty)] =$$

h.
$$(-\infty, -1] \cup (0, \infty)$$

$$A^c \cup B^c = [(-\infty, -3) \cup (0, \infty)] \cup [(-\infty, -1] \cup [2, \infty)] =$$

$$(A \cap B)^c = \{ x \in \mathbf{R} \mid \text{it is not the case that } x \in (-1, 0] \}$$

=
$$\{ x \in \mathbf{R} | \text{it is not the case that } x > -1 \text{ and } x \leq 0 \}$$

$$= \{ x \in \mathbf{R} | x \le -1 \text{ or } x < 0 \} =$$

$$(A \cup B)^c = \{ x \in \mathbf{R} \mid \text{it is not the case that } x \in [-3, 2) \}$$

= {
$$x \in \mathbf{R} | \text{it is not the case that } x \ge -3 \text{ and } x \le 2$$
}

$$= \{ x \in \mathbf{R} | x < -3 \text{ or } x \ge 2 \} =$$

#25 (a, b, c).

a.

$$\bigcup_{i=1}^4 R_1$$

$$R_1 = \{x \in \mathbf{R} \mid 1 \le x \le 1 + \frac{1}{1}\} = [1,2]$$

$$R_2 = \{x \in \mathbf{R} \mid 1 \le x \le 1 + \frac{1}{2}\} = [1, 1, \frac{1}{2}]$$

$$R_3 = \{x \in \mathbb{R} \mid 1 \le x \le 1 + \frac{1}{3}\} = [1, 1\frac{1}{3}]$$

$$R_4 = \{x \in \mathbf{R} \mid 1 \le x \le 1 + \frac{1}{4}\} = [1, 1\frac{1}{4}]$$

$$[1,2] \cup [1,1\frac{1}{2}] \cup [1,1\frac{1}{3}] \cup [1,1\frac{1}{4}] = [1,2]$$

b.

$$\bigcap_{i=1}^4 R_1$$

$$[1,2] \cap [1,1\frac{1}{2}] \cap [1,1\frac{1}{3}] \cap [1,1\frac{1}{4}] = [1,\frac{5}{4}]$$

c. No, R_1 , R_2 , and R_3 are not mutually disjoint. Both R_1 and R_2 contain the element 1, for example, which means the three sets cannot be mutually disjoint.

#27 (c, e).

c. No, $\{\{5, 4\}, \{7, 2\}, \{1, 3, 4,\}, \{6, 8\}\}$ is not a partition of $\{1, 2, 3, 4, 5, 6, 7, 8\}$. This is because $\{5, 4\}$ and $\{1, 3, 4\}$ are not mutually disjoint as both contain the element 4, as shown below.

$$\{5,4\} \cap \{1,3,4\} = 4$$

e. Yes, {{1, 5}, {4, 7}, {2, 8, 6, 3}} is a partition of {1, 2, 3, 4, 5, 6, 7, 8}.

Let $A_1 = \{1, 5\}$, Let $A_2 = \{4, 7\}$, and let $A_3 = \{2, 8, 6, 3\}$. All three sets are mutually disjoint as none have elements in common, and the union of them $A_1 \cup A_2 \cup A_3 = A = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

#33 (a, c).

a.
$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

c.
$$(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \emptyset\}\}\}.$$

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

$$(\mathcal{P}\left(\mathcal{P}(\emptyset)\right)=\{\emptyset,\{\emptyset\}\}$$

$$(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \emptyset\}\}\}.$$

$$A_1 \cup A_2 = \{1\} \cup \{u, v\} = \{1, u, v\}$$

$$(A_1 \cup A_2) \times A_3 = \{1, u, v\} \times \{m, n\}$$

$$= \{(1, m), (1, n), (u, m), (u, n), (v, m), (v, n)\}$$

Let
$$A = \{a, b\}, B = \{1, 2\}, and C = \{2, 3\}$$

$$A \times B = \{a, b\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$$

$$A \times C = \{a, b\} \times \{2, 3\} = \{(a, 2), (a, 3), (b, 2), (b, 3)\}$$

$$(A \times B) \cap (A \times C) = \{(a, 1), (a, 2), (b, 1), (b, 2)\} \cap \{(a, 2), (a, 3), (b, 2), (b, 3)\}$$

= $\{(a, 2), (b, 2)\}$