Име:	
група:	фак. номер:
	е на $1, 2, 4, 5, 7, 8, 9, 11$ и 12 се попълват на този лист, 0 , както и пресмятане в 11 , се използват допълнителни листа.
	(aa) Довършете дефиницията: $a_n\}_1^\infty$ се нарича сходяща, ако съществува число a такова, че за всяко
,	(a) Довършете дефиницията: е редицата $\{b_n\}_1^\infty$ клони към $+\infty$, ако за всяко
3. (3 точк	(au) Нека $\lim_{n \to \infty} b_n = -\infty$ и $\lim_{n \to \infty} a_n = a < 0$. Докажете, че $\lim_{n \to \infty} a_n b_n = +\infty$.
	o чки) Довършете дефиницията (по два начина): е функцията $f(x): \mathbb{R} \to \mathbb{R}$ се клони към $+\infty$ когато x клони към $+\infty$, ако:
(Хайне)	
5. (1 точк	$\kappa a)$ Формулирайте теоремата на Вайерщрас за непрекъсната функция.
	κu) Нека $f(x)$ е непрекъсната в $[0,+\infty)$, $\lim_{x\to+\infty}f(x)=+\infty$. Докажете, че $f(x)$ имайност в $[0,+\infty)$.
,	f(x) Довършете дефиницията: $f(x)$ се нарича диференцируема в точката a , ако е дефинирана в
11	

отговорите на 1, 2, 4, 5, 7, 8, 9, 11 и 12 се попълват на този лист, за 3, 6 и 10, както и пресмятане в 11, се използват допълнителни листа.

- **8.** *(1 точка)* Формулирайте теоремата на Лагранж (за крайните нараствания):
- 9. (1 точка) Довършете дефиницията: Функцията $f:\mathbb{R}\to\mathbb{R}$ се нарича изпъкнала в \mathbb{R} , ако
- **10.** (6 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че f(x) е изпъкнала в \mathbb{R} тогава и само тогава, когато производната и f'(x) е растяща функция в \mathbb{R} .
- 11. (4 точки) Дадено е, че функцията

$$f(x) = \begin{cases} e^x \sin x &, & \text{sa} \quad 0 \le x \\ A \arctan x + B &, & \text{sa} \quad x < 0 \end{cases}$$

има производна в точката a=0 . Намерете A и B . Има ли f(x) втора производна в точката a=0 ? Отговор: $A=\ldots$, $B=\ldots$

12. (5 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{3x^4 + 4}{x^6 + x^4 + 2}$ в \mathbb{R} . Докажете, че F(x) е ограничена в \mathbb{R} .

Име:	
група:	фак. номер:
	те на $1, 2, 4, 5, 7, 8, 9, 11$ и 12 се попълват на този лист, 10 , както и пресмятане в 11 , се използват допълнителни листа.
	ка) Довършете дефиницията: $a_n\}_1^\infty$ се нарича сходяща, ако съществува число a такова, че за всяко
,	(κa) Довършете дефиницията: е редицата $\{b_n\}_1^\infty$ клони към $-\infty$, ако за всяко
3. (3 moun	κu) Нека $\lim_{n \to \infty} b_n = +\infty$ и $\lim_{n \to \infty} a_n = a < 0$. Докажете, че $\lim_{n \to \infty} a_n b_n = -\infty$.
	x_0 очки) Довършете дефиницията (по два начина): е функцията $f(x): \mathbb{R} \to \mathbb{R}$ се клони към $-\infty$ когато x клони към $+\infty$, ако:
(Хайне)	
5. (1 moun	ка) Формулирайте теоремата на Вайерщрас за непрекъсната функция.
	$\kappa u)$ Нека $f(x)$ е непрекъсната в $[0,+\infty)$, $\lim_{x\to+\infty}f(x)=-\infty$. Докажете, че $f(x)$ има ойност в $[0,+\infty)$.
,	f(x) Довършете дефиницията: $f(x)$ се нарича диференцируема в точката a , ако е дефинирана в
и	

отговорите на 1, 2, 4, 5, 7, 8, 9, 11 и 12 се попълват на този лист, за 3, 6 и 10, както и пресмятане в 11, се използват допълнителни листа.

- **8.** *(1 точка)* Формулирайте теоремата на Лагранж (за крайните нараствания):
- 9. (1 точка) Довършете дефиницията: Функцията $f:\mathbb{R}\to\mathbb{R}$ се нарича вдлъбната в \mathbb{R} , ако
- **10.** $(6 \ mov \kappa u)$ Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че f(x) е вдлъбната в \mathbb{R} тогава и само тогава, когато производната й f'(x) е намаляваща функция в \mathbb{R} .
- 11. (4 точки) Дадено е, че функцията

$$f(x) = \begin{cases} e^x \cos x & , & \text{sa} \quad x \le 0 \\ A x \sqrt{1+x} + B & , & \text{sa} \quad x > 0 \end{cases}$$

има производна в точката a=0 . Намерете A и B . Има ли f(x) втора производна в точката a=0 ? Отговор: $A=\ \dots$, $B=\ \dots$

12. (5 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{4x^4 + 5}{x^6 + x^4 + 5}$ в \mathbb{R} . Докажете, че F(x) е ограничена в \mathbb{R} .