0.1 级数常用结论

定理 0.1 (交错级数不等式)

设 $\{a_n\}$ 递减非负数列,则对 $m,p \in \mathbb{N}_0$,必有

$$\left| \sum_{n=m}^{m+p} (-1)^n a_n \right| \leqslant a_m. \tag{1}$$

🕏 笔记 本不等式是最容易被遗忘的不等式,应该牢记于心.

证明 不妨设 m=0,则

$$\sum_{n=0}^{p} (-1)^n a_n = \begin{cases} a_0 - (a_1 - a_2) - (a_3 - a_4) - \dots - (a_{p-1} - a_p) & , p \not\exists \text{ (By)} \\ a_0 - (a_1 - a_2) - (a_3 - a_4) - \dots - (a_{p-2} - a_{p-1}) - a_p & , p \not\exists \text{ (By)} \end{cases} \leqslant a_0.$$

此外

$$\sum_{n=0}^{p} (-1)^n a_n = \begin{cases} (a_0 - a_1) + (a_2 - a_3) + \dots + (a_{p-2} - a_{p-1}) + a_p &, p \not\ni \text{ if } \\ (a_0 - a_1) + (a_2 - a_3) + \dots + (a_{p-1} - a_p) &, p \not\ni \text{ if } \end{cases} \geqslant 0,$$

这就证明了不等式(1).