16-08-15_Sr.IPLCO_JEE-ADV_(2012_P1)_RPTA-3_Key&Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 16-08-15

 Time: 3 Hours
 2012-P1-Model
 Max Marks: 210

PAPER-I KEY & SOLUTIONS

PHYSICS

1	D	2	В	3	A	4	В	5	D	6	С
7	С	8	A	9	В	10	D	11	ABCD	12	AB
13	BD	14	ACD	15	AB	16	1	17	1	18	6
19	7	20	4								

CHEMISTRY

21	В	22	A	23	С	24	A	25	A	26	С
27	D	28	C	29	D	30	С	31	BD	32	ABCD
33	BD	34	BCD	35	BCD	36	6	37	5	38	4
39	4	40	2								

MATHS

41	D	42	В	43	D	44	В	45	C	46	В
47	В	48	C	49	C	50	D	51	A,B,C,D	52	A,C
53	В,С	54	A,B,C	55	A,B,C,D	56	8	57	0	58	1
59	4	60	2								

MATHS

41.

Sol:- Let mid-point of chords be $(t^2, 2t)$ As it lies inside the given ellipse

$$\therefore t^4 + 8t^2 - 1 < 0$$
$$t^2 \in (0, \sqrt{17} - 4)$$

Equation of chord with mid-point $(t^2, 2t)$ for given ellipse is

$$t^{2}x + (2t) \times 2y = t^{4} + 8t^{2}$$
⇒ $(a+1) = t^{2} + 8$

$$t^{2} = a - 7$$

∴ $t^{2} + 7 \in (0 + 7, \sqrt{17} - 4 + 7)$

42.

Sol:- Circle 'C' is $x^2 + y^2 + \lambda y - 16 = 0$, it intersects the circle $x^2 + y^2 - 6x - 10y + 9 = 0$, orthogonally then $\lambda = \frac{7}{5}$.

Now
$$|r_1 - r_2| < C_1 C_2 < r_1 + r_2$$

43. a - b > b

44. Eqn of chord is $\frac{x}{2\sqrt{6}} + \frac{y}{2} = 1$

45. Using reflection property. Area = $d\sqrt{a^2 - b^2}$. Where of d is \perp^r dist from (0,0) to the chord

46.

Sol:-

$$a^2 = 25$$
 and $b^2 = 16$

$$\Rightarrow e = \sqrt{1 - \frac{16}{25}}$$

$$= \frac{3}{5}$$

Let point Q be (h, k), where k < 0. Given that $k = SP = a + ex_1$, where $P(x_1, y_1)$ lies on the ellipse

$$\Rightarrow |\hat{k}| = a + eh(as x_1 = h)$$

\Rightarrow -y = a + ex
\Rightarrow 3x + 5y + 25 = 0

47. Write chord eqn. Homogenise & coeff of $x^2 + coeff$ of $y^2 = 0$

48. Conceptual

49. Ordinate of the point of intersection of the line $\frac{x}{a} - \frac{y}{b} = m$ and the hyperbola is given by

$16\hbox{-}08\hbox{-}15_Sr.IPLCO_JEE\hbox{-}ADV_(2012_P1)_RPTA\hbox{-}3_Key\&Sol's$

$$\left(\frac{x}{a} - \frac{y}{b}\right)\left(\frac{x}{a} - \frac{y}{b} + \frac{2y}{b}\right) = 1$$

i.e.
$$m\left(m + \frac{2y}{b}\right) = 1$$
 i.e. $y = \frac{b(1 - m^2)}{2m}$

Similarly ordinate of the point of intersection of the line $\frac{x}{a} + \frac{y}{b} = m$ and the hyperbola is

$$y = \frac{b(m^2 - 1)}{2m}$$

 \therefore Sum of the ordinates is 0.

50. Equation of tangent is
$$hx + ky = h^2 + k^2$$

----1

Also tangent at P is

$$\frac{x}{t} + yt = 2c$$

----2

: (1) and (2) are identical

eliminate t

Multiple correct answer type:

51. Conceptual

52.

Sol:-
$$PM = K$$

Equation
$$AB = -x + y = 2$$

Equation
$$AC \equiv x + y = 2$$

According

$$\left(\frac{2-h-k}{\sqrt{2}}\right)\left(\frac{2+h+k}{\sqrt{2}}\right) = 2k^2$$

$$\Rightarrow h^2 + 3k^2 + 4k = 4$$

$$\Rightarrow h^2 + 3\left(k^2 + \frac{4}{3}k + \frac{4}{9}\right) = 4 + \frac{4}{3}$$

$$\Rightarrow h^2 + 3\left(k + \frac{2}{3}\right)^2 = \frac{16}{3}$$

$$\Rightarrow \frac{h^2}{16/3} + \frac{\left(k + \frac{2}{3}\right)^2}{16/9} = 1$$

$$\Rightarrow$$
 ellipse with $e = \sqrt{\frac{2}{3}}$ and $D = \left(0, -\frac{2}{3}\right)$

53.

Sol:-
$$y^2 = 32x$$
 Let equation of tangent $y = mx + \frac{8}{m}$ $\frac{64}{m^2} = \frac{8}{9}m^2 - \frac{8}{9}m = \pm 3$, $y = \pm (3x + 8/3)$.

16-08-15_Sr.IPLCO_JEE-ADV_(2012_P1)_RPTA-3_Key&Sol's

54. Sol:- The given equation is
$$\left(x - \frac{1}{13}\right)^2 + \left(y - \frac{2}{13}\right)^2 = \frac{1}{a^2} \left(\frac{5x + 12y - 1}{13}\right)^2$$

It represents ellipse if $\frac{1}{a^2} < 1 \Rightarrow a^2 > 1 \Rightarrow a > 1$

$$4x^2 + 8x + 9y^2 - 36y = -4$$

$$\Rightarrow 4(x^2+2x+1)+9(y^2-4y+4)=36$$

$$\Rightarrow \frac{(x+1)^2}{9} + \frac{(y-2)^2}{4} = 1$$

Hence, (-1, 2) is focus and (1,2) lies on the major axis. Then required minimum distance is 1.

Equation of normal at $P(\theta)$ is 5 sec θ x ($-4\cos ec \theta y = 25-16$, and it passes through $P(0,\alpha)$

$$\therefore \alpha = \frac{-9}{4\cos ec\theta}$$

$$\Rightarrow \alpha = \frac{-9}{4} \sin \theta$$

$$\Rightarrow |\alpha| < \frac{9}{4}$$

$$\frac{2b^2}{a} = \frac{2a}{3} \Rightarrow 3b^2 = a^2$$

$$\Rightarrow$$
 from $b^2 = a^2(1 - e^2), 1 = 3(1 - e^2) \Rightarrow e = \sqrt{2/3}$

55. Common normal must pass through (5,0). Not possible

Integer type:-

56.

Sol:- Let $P\left(ct_1, \frac{c}{t_1}\right)$ and $Q\left(ct_2, \frac{c}{t_2}\right)$ be any two point on $xy = c^2$. Then, tangents at P and Q are

$$x + yt_1^2 = 2ct_1$$
(i)

and

$$x + yt_2^2 = 2ct_2$$
(ii)

The foot of the ordinate of P is (ct₁, 0) and it lies on Eq. (ii), then

$$ct_1 + 0 = 2ct_2$$

$$t_1 = 2t_2$$

Then, from Eqs. (iii) and (iv),

$$h = \frac{2c.2t_2.t_2}{2t_2 + t_2}$$

and

$$k = \frac{2c}{2t_2 + t_2}$$

16-08-15_Sr.IPLCO_JEE-ADV_(2012_P1)_RPTA-3_Key&Sol's

$$h = \frac{4c}{3}t_2$$

and
$$k = \frac{2c}{3t_2}$$

$$h.k = \frac{4c}{3}t_2 \times \frac{2c}{3t_2}$$

$$hk = \frac{8}{9}c^2$$

$$\therefore$$
 Locus of (h,k) is $xy = \frac{8}{9}c^2$,

$$\lambda = \frac{8}{9}$$

Then
$$729\lambda = 648$$

- 57. $\lambda \in (0,2) \{1\}$
- 58. The equation of any tangent PQ to the ellipse $x^2/a^2 + y^2/b^2 = 1$ is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$

This tangent cuts the ellipse $x^2/c^2 + y^2/d^2 = 1$ at the points P and Q.

Let the tangent at P and Q intersect at the point R(h,k).

Then PQ becomes the chord of contact w.r.t to the point R for the ellipse $x^2/c^2 + y^2/d^2 = 1$, i.e., the equation of PQ is

$$\frac{hx}{c^2} + \frac{ky}{d^2} = 1$$
 (2) The equations (1) and (2) represent the same straight

line. Therefore, $\frac{(\cos\theta)/a}{h/c^2} = \frac{(\sin\theta)/b}{k/d^2} = 1 \implies \cos\theta = \frac{ah}{c^2}$ and $\sin\theta = \frac{bh}{d^2}$ Squaring and adding, we get

$$\frac{a^2h^2}{c^4} + \frac{b^2k^2}{d^4} = 1 \qquad(3)$$

Which is the locus of the point R(h,k). If R(h,k) is the point of intersection of the two perpendicular tangents, then the locus of R should be the director circle of the ellipse

$$x^{2}/c^{2} + y^{2}/d^{2} = 1, i.e., x^{2} + y^{2} = c^{2} + d^{2}$$
 i.e., $\frac{x^{2}}{c^{2} + d^{2}} + \frac{y^{2}}{c^{2} + d^{2}} = 1$

The equations (3) and (4) represent the same locus. Therefore,

$$\frac{a^2}{c^4} = \frac{1}{c^2 + d^2} \text{ and } \frac{b^2}{b^4} = \frac{1}{c^2 + d^2} \qquad \Rightarrow \frac{a^2}{c^2} + \frac{b^2}{d^2} = 1$$

- 59. Foci of the ellipse = $(\pm\sqrt{7},0)$ there fore $r = \sqrt{7+9} = 4$
- 60. 2x + y = 1 is tangent $\Rightarrow c^2 = a^2 m^2 b^2 \Rightarrow 1 = a^2 4 b^2 \Rightarrow 1 = 4a^2 a^2 (e^2 1)$

$$\Rightarrow$$
 1 = 5 $a^2 - a^2 e^2$ ----- (1) also $2x + y = 1$ passes through $\left(\frac{a}{e}, 0\right) \Rightarrow 2\frac{a}{e} = 1$

$$\Rightarrow a = \frac{e}{2} \qquad \Rightarrow 1 = 5\frac{e^2}{4} - \frac{e^2}{4}e^2 \quad e^4 - 5e^2 + 4 = 0 \Rightarrow e = 2$$