

#### My Progress

### MonoHiggs to $b\bar{b}$

Prayag Yadav

Last updated: 2024-01-04 21:45:25+05:30

University of Hyderabad

#### Table of contents

- 1. Thu, 5<sup>th</sup> October 2023

  Basic kinematic plots (Without any scale factors or corrections)
- 2. Thu, 26<sup>th</sup> October 2023 MET Filters / MET Flags
- 3. Tue, 2<sup>nd</sup> January 2024 Contribution of various backgrounds:Resolved;2018

### Basic kinematic plots

#### BTag Scores: MC



- Btagger used : btagDeepFlavB
- Sample used: MonoHTobb\_ZpBaryonic
- Lots of bjets in Signal MC

Figure 1: BTag score for signal MC sample

#### BTag Scores: Data



- Btagger used:btagDeepFlavB
- Sample used: Run2018A/MET
- Less number of bjets in Data

Figure 2: BTag score for Data samples

#### Jet $p_t$ : MC



- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$
- Btagger used : btagDeepFlavB
- Sample used:MonoHTobb\_ZpBaryonic
- Medium Weight Parameter used for ak4bjets: 0.3040

Figure 3: Jet  $p_t$  of signal MC samples

#### Jet $p_t$ : Data



Figure 4: Jet  $p_t$  of Data samples

- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$
- Btagger used : btagDeepFlavB
- Sample used: Run2018A/MET
- Medium Weight Parameter used for ak4bjets: 0.3040
- Not as predictable as signal MC

#### DiJet mass: MC



Figure 5: DiJet mass of signal MC samples

- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$  for each jet
- Btagger used : btagDeepFlavB
- Sample used:MonoHTobb\_ZpBaryonic
- Medium Weight
   Parameter used for ak4bjets selection:
   0.3040
- Peaks around SM Higgs mass

#### DiJet mass: Data



Figure 6: DiJet mass of Data samples

- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$  for each jet
- Btagger used:btagDeepFlavB
- Sample used: Run2018A/MET
- Medium Weight Parameter used for ak4bjets selection: 0.3040
- Lot of noise, no clear structure

#### $MET p_t : MC$



No filters or Trigger applied

Figure 7: MET  $p_t$  for signal MC samples

#### MET $p_t$ : Data



- No filters or Trigger applied
- Looks similar to the Jet data

Figure 8: MET  $p_t$  for Data samples

#### **MET Filters**

#### MET $p_t$ : MET2018A



 Compared how the MET pt looks with and without MET triggers on Data

• .

Figure 9: MET  $p_t$  for MET2018A

#### MET $\phi$ : MET2018A



- . Compared how the MET  $\phi$  looks with and without MET triggers
- .jf

Figure 10: MET  $\phi$  for MET2018A

#### MET $p_t$ : MonoHtobb\_ZpBaryonic



- Compared how the MET p<sub>t</sub> looks with and without MET triggers on Signal MC
- · .jf

Figure 11: MET  $p_t$  for MonoHtobb\_ZpBaryonic

#### MET $\phi$ : MonoHTobb\_ZpBaryonic



• Compared how the MET  $\phi$  looks with and without MET triggers on Signal MC

•

Figure 12: MET  $\phi$  for MC

Contribution of various

backgrounds:Resolved;2018



# Figure 13: Simulated contribution of various backgrounds to the signal in the resolved $b\bar{b}$ bar case for 2018

#### Selections Applied: Event Selections:

- MET > 200 GeV
- no leptons
- no photons

- jet  $p_t > 30 \text{ GeV}$
- jet  $|\eta| < 2.5$
- Δφ(Jet, MET)
- · at least 2 tight bjets (algorithm:DeepFlavB)
- · leading bjet  $p_{t}>$  50 GeV
- subleading bjet  $p_{
  m t} >$  30 GeV
- atmost 2 additional jets



# Figure 14: Simulated contribution of various backgrounds to the signal in the resolved $b\bar{b}$ bar case for 2018

#### Selections Applied: Event Selections:

- MET > 200 GeV
- no leptons
- no photons

- $\cdot$  jet  $p_t >$  30 GeV
- jet  $|\eta| < 2.5$
- Δφ(Jet, MET)
- · at least 2 tight bjets (algorithm:DeepFlavB)
- leading bjet  $p_{
  m t} >$  50 GeV
- subleading bjet  $p_{
  m t} >$  30 GeV
- atmost 2 additional jets

#### ak4 dibjet Mass



Figure 15: Simulated contribution of various backgrounds to the signal in the resolved  $b\bar{b}$  bar case for 2018

## Selections Applied: Event Selections:

- MET > 200 GeV
- · no leptons
- · no photons

- jet p<sub>t</sub> > 30 GeV
- jet  $|\eta| < 2.5$
- Δφ(Jet, MET)
- · at least 2 tight bjets (algorithm:DeepFlavB)
- leading bjet p<sub>t</sub> > 50 GeV
- subleading bjet  $p_t > 30 \text{ GeV}$
- atmost 2 additional jets
- dijet = leading bjet + subleading bjet
- dijet mass between (100 GeV,150 GeV)
- dijet p<sub>t</sub> > 100 GeV

#### ak4 dibjet $p_t$



Figure 16: Simulated contribution of various backgrounds to the signal in the resolved  $b\bar{b}$  bar case for 2018

## Selections Applied: Event Selections:

- MET > 200 GeV
- · no leptons
- · no photons

- jet  $p_t > 30 \text{ GeV}$
- jet  $|\eta| < 2.5$
- Δφ(Jet, MET)
- · at least 2 tight bjets (algorithm:DeepFlavB)
- leading bjet p<sub>t</sub> > 50 GeV
- subleading bjet p<sub>t</sub> > 30 GeV
- · atmost 2 additional jets
- dijet = leading bjet + subleading bjet
- · dijet mass between (100 GeV,150 GeV)
- dijet  $p_t > 100 \text{ GeV}$

#### ak4 dibjet $\eta$



Figure 17: Simulated contribution of various backgrounds to the signal in the resolved  $b\bar{b}$  bar case for 2018

## Selections Applied: Event Selections:

- MET > 200 GeV
- · no leptons
- · no photons

- jet p<sub>t</sub> > 30 GeV
- jet  $|\eta| < 2.5$
- Δφ(Jet, MET)
- · at least 2 tight bjets (algorithm:DeepFlavB)
- leading bjet p<sub>t</sub> > 50 GeV
- subleading bjet  $p_t > 30 \text{ GeV}$
- atmost 2 additional jets
- dijet = leading bjet + subleading bjet
- · dijet mass between (100 GeV,150 GeV)
- dijet  $p_t > 100 \text{ GeV}$

#### ak4 dibjet $\phi$



Figure 18: Simulated contribution of various backgrounds to the signal in the resolved  $b\bar{b}$  bar case for 2018

## Selections Applied: Event Selections:

- MET > 200 GeV
- · no leptons
- · no photons

- jet p<sub>t</sub> > 30 GeV
  - jet  $|\eta| < 2.5$
- Δφ(Jet, MET)
- · at least 2 tight bjets (algorithm:DeepFlavB)
- leading bjet p<sub>t</sub> > 50 GeV
- subleading bjet  $p_t > 30 \text{ GeV}$
- atmost 2 additional jets
- dijet = leading bjet + subleading bjet
- dijet mass between (100 GeV,150 GeV)
- dijet p<sub>t</sub> > 100 GeV

#### References i