

Simultaneous Elicitation of Committee and Voters' Preferences

B. Napolitano¹, O. Cailloux¹ and P. Viappiani²

¹ LAMSADE, Université Paris-Dauphine, Paris, France ² LIP6, Sorbonne Université, Paris, France

> PhD Seminar 28 May 2020 AMSADF JMR CNRS 7243

laboratoire d'analyse et modélisation de systèmes pour l'aide à la décisior

Classical Scenario

Setting: Voters specify preferences over alternatives and a committee defines the social choice rule to aggregate them

(Head of the)

Committee

$$W = (W_{1_1} W_{2_1} W_3)$$

= (2, 1, 0)

Voters

Mickey Donald Goofy

Classical Scenario

Setting: Voters specify preferences over alternatives and a committee defines the social choice rule to aggregate them

Goal: Find a consensus choice

Our Scenario

Setting: Incompletely specified preferences and social choice rule

(Head of the)

Committee

 $W_1 \ge 2 W_2$

Voters

Mickey Donald Goofy

Our Scenario

Setting: Incompletely specified preferences and social choice rule

Goal: Develop an incremental elicitation strategy to acquire the most relevant information

Who?

• Imagine to be an external observer helping with the voting procedure

Who?

• Imagine to be an external observer helping with the voting procedure

Why?

- Voters: difficult or costly to order all alternatives
- Committee: difficult to specify a voting rule precisely and abstractly

Who?

Imagine to be an external observer helping with the voting procedure

Why?

- Voters: difficult or costly to order all alternatives
- Committee: difficult to specify a voting rule precisely and abstractly

What?

 We want to reduce uncertainty, inferring (eliciting) the true preferences of voters and committee, in order to quickly converge to an optimal or a near-optimal alternative

Approach

- Develop query strategies that interleave questions to the committee and questions to the voters
- Use Minimax regret to measure the quality of those strategies

Approach

- Develop query strategies that interleave questions to the committee and questions to the voters
- Use Minimax regret to measure the quality of those strategies

Assumptions

- We consider positional scoring rules, which attach weights to positions according to a scoring vector w
- We assume w to be convex

$$w_r - w_{r+1} \ge w_{r+1} - w_{r+2}$$
 $\forall r$

and that $w_1 = 1$ and $w_m = 0$

Related Works

Incomplete profile

 and known weights: Minimax regret to produce a robust winner approximation (Lu and Boutilier 2011, [2]; Boutilier et al. 2006, [1])

Uncertain weights

- and complete profile: dominance relations derived to eliminate alternatives always less preferred than others (Stein et al. 1994, [3])
- in positional scoring rules (Viappiani 2018, [4])

Context

$$A \ \ \text{alternatives, } |A| = m$$

$$N \ \ \text{voters}$$

$$P = (\succ_j, \ j \in N), \ P \in \mathcal{P} \ \ \text{complete preferences profile}$$

$$W = (\textit{\textbf{w}}_r, \ 1 \leq r \leq m), \ W \in \mathcal{W} \ \ \text{(convex) scoring vector that the committee has in mind}$$

Context

$$A \ \ \text{alternatives, } |A| = m$$

$$N \ \ \text{voters}$$

$$P = (\succ_j, \ j \in N), \ P \in \mathcal{P} \ \ \text{complete preferences profile}$$

$$W = (\textit{\textbf{w}}_r, \ 1 \leq r \leq m), \ W \in \mathcal{W} \ \ \text{(convex) scoring vector that the committee has in mind}$$

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \forall a \in A$

A alternatives, |A| = m

Context

$$N$$
 voters $P=(\succ_j,\ j\in N),\ P\in \mathcal{P}$ complete preferences profile $W=(\textbf{\textit{w}}_r,\ 1\leq r\leq m),\ W\in \mathcal{W}$ (convex) scoring vector that the committee has in mind

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \ \forall \ a \in A$

P and W exist in the minds of voters and committee but unknown to us

Questions to the voters

Comparison queries that ask a particular voter to compare two alternatives $a, b \in A$

$$a \succ_j b$$
 ?

Questions to the voters

Comparison queries that ask a particular voter to compare two alternatives $a, b \in A$

$$a \succ_j b$$
 ?

Questions to the committee

Queries relating the difference between the importance of consecutive ranks from r to r+2

$$w_r - w_{r+1} \ge \lambda (w_{r+1} - w_{r+2})$$
 ?

(Head of the) Committee

 $W_1 \ge 2 W_2$

Voters

Mickey Donald Goofy

(Head of the) **Committee**

 $W_1 \ge 2 W_2$

Question to a voter:

Voters

Mickey Donald Goofy

✓ bonald ?

 $W_1 \geq 2 W_2$

Voters

Mickey Donald Goofy

Question to a voter:

✓ bonald ?

Question to the committee:

 $w_1 \geq 2.3 \cdot w_2$?

Our Knowledge

The answers to these questions define C_P and C_W that is our knowledge about P and W

Our Knowledge

The answers to these questions define C_P and C_W that is our knowledge about P and W

• $C_P \subseteq \mathcal{P}$ constraints on the profile given by the voters

Our Knowledge

The answers to these questions define C_P and C_W that is our knowledge about P and W

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the voters
- $C_W \subseteq \mathcal{W}$ constraints on the voting rule given by the committee

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

We care about the worst case loss: *maximal regret* between a chosen alternative *a* and best real alternative *b*

$$\mathsf{MR}^{C_P,C_W}(a) = \max_{b \in A} \mathsf{PMR}^{C_P,C_W}(a,b)$$

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P, W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

We care about the worst case loss: *maximal regret* between a chosen alternative *a* and best real alternative *b*

$$MR^{C_P,C_W}(a) = \max_{b \in A} PMR^{C_P,C_W}(a,b)$$

We select the alternative which minimizes the maximal regret

$$\mathsf{MMR}^{C_P,C_W} = \min_{a \in A} \mathsf{MR}^{C_P,C_W}(a)$$

Pairwise Max Regret Computation

The computation of $PMR^{C_P,C_W}(\P^p, I)$ can be seen as a game in which an adversary both:

Pairwise Max Regret Computation

The computation of PMR^{C_P , C_W}(\P , $\ref{position}$) can be seen as a game in which an adversary both:

ullet chooses a complete profile $P \in \mathcal{P}$

Pairwise Max Regret Computation

The computation of PMR^{C_P , C_W}(\P , $\ref{position}$) can be seen as a game in which an adversary both:

ullet chooses a complete profile $P \in \mathcal{P}$

ullet chooses a feasible weight vector $W \in \mathcal{W}$

$$(1,?,0)$$
 $(1,0,0)$

in order to maximize the difference of scores

Computing Minimax Regret: Example

Profile completion

Consider the following partial profile

Computing Minimax Regret: Example

Weight selection

Consider the following constraint on the scoring vector given by the committee

$$w_1 \geq 2 \cdot w_2$$

and the convex assumption

$$w_1 - w_2 \ge w_2 - w_3$$

Computing Minimax Regret: Example

Minimax computing

$$MR(\nearrow) = \max \left\{ \begin{array}{ll} PMR(\nearrow \nearrow) & \frac{v = \textcircled{3} \quad w = \{1,0,0\}}{} & = 2 \\ \\ PMR(\nearrow \nearrow) & \frac{v = \textcircled{2} \quad w = \{1,0,0\}}{} & = 1 \end{array} \right.$$

$$MR(\P) = \boxed{0}$$

$$MR(\cancel{d}) = 2$$

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

The termination condition could be:

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

The termination condition could be:

• when the minimax regret is lower than a threshold

At each step, the strategy selects a question to ask either to one of the voters about her preferences or to the committee about the voting rule

The termination condition could be:

- when the minimax regret is lower than a threshold
- when the minimax regret is zero

Random Strategy

Random Strategy

Decides with a probability of $\frac{1}{2}$ each whether to ask a question about

Random Strategy

Decides with a probability of $\frac{1}{2}$ each whether to ask a question about

• weights: it draws a rank $2 \le r \le m-2$ equiprobably, takes λ as the middle of the interval of values we are still uncertain about, and asks whether $w_r - w_{r+1} \ge \lambda(w_{r+1} - w_{r+2})$

Random Strategy

Decides with a probability of $\frac{1}{2}$ each whether to ask a question about

- weights: it draws a rank $2 \le r \le m-2$ equiprobably, takes λ as the middle of the interval of values we are still uncertain about, and asks whether $w_r w_{r+1} \ge \lambda(w_{r+1} w_{r+2})$
- a preference ordering: it draws equiprobably a voter whose preference is not known entirely and two alternatives that are incomparable in our current knowledge

Pessimistic Strategy

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2}\mathsf{MMR}(\mathit{C}_{P}^{i},\mathit{C}_{W}^{i})$$

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2} \mathsf{MMR}(C_P^i, C_W^i)$$

The pessimistic strategy selects the question that leads to minimal regret in the worst case

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2} \mathsf{MMR}(C_P^i, C_W^i)$$

The pessimistic strategy selects the question that leads to minimal regret in the worst case

Note:

Other aggregators than max can be used

Limited Pessimistic Strategy

Limited Pessimistic Strategy

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

Limited Pessimistic Strategy

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

Limited Pessimistic Strategy

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

It uses the same criterion as the pessimistic strategy, but limiting it to a small set of n+1 candidate questions:

• One question per voter: For each voter i, either:

Limited Pessimistic Strategy

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

- One question per voter: For each voter *i*, either:
 - $a^* \succ_j^{\bar{P}} \bar{b}$: we ask about an incomparable alternative that can be placed above a^* by the adversary to increase PMR(a^*, \bar{b})

Limited Pessimistic Strategy

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

- One question per voter: For each voter *i*, either:
 - $a^* \succ_j^{\bar{P}} \bar{b}$: we ask about an incomparable alternative that can be placed above a^* by the adversary to increase PMR (a^*, \bar{b})
 - $\bar{b} \succ_{j}^{\bar{P}} a^{*}$: we ask about an incomparable alternative that can be placed between a^{*} and \bar{b} by the adversary to increase PMR(a^{*},\bar{b})

Limited Pessimistic Strategy

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

- One question per voter: For each voter *i*, either:
 - $a^* \succ_{\bar{j}}^{\bar{P}} \bar{b}$: we ask about an incomparable alternative that can be placed above a^* by the adversary to increase PMR (a^*, \bar{b})
 - $\bar{b} \succ_{\bar{j}}^{\bar{P}} a^*$: we ask about an incomparable alternative that can be placed between a^* and \bar{b} by the adversary to increase PMR (a^*, \bar{b})
 - ullet a* and $ar{b}$ are incomparable: we ask to compare them

Limited Pessimistic Strategy

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

It uses the same criterion as the pessimistic strategy, but limiting it to a small set of n+1 candidate questions:

• One question to the committee: Consider W_{τ} the weight vector that minimize the PMR in the worst case.

We ask about the position
$$r = \underset{i=\llbracket 1, m-1 \rrbracket}{\operatorname{argmax}} |\bar{W}(i) - W_{\tau}(i)|$$

Two Phase Strategy

Two Phase Strategy

Using the mechanism defined in the Limited Pessimistic strategy:

Two Phase Strategy

Using the mechanism defined in the Limited Pessimistic strategy:

- phase one: asks p questions to the committee in order to gather informations about the weights
- phase two: asks k p questions to the voters

k	$Rnd \pm sd$	$Pes. \! \pm sd$	L. pes. \pm sd
0	5.0±0	5.0±0	5.0±0
5	5.0 ± 0.1	3.7 ± 0.0	4.4 ± 0.6
10	4.7 ± 0.4	3.3 ± 0.4	3.3 ± 0.4
15	$4.4 {\pm} 0.5$	2.7 ± 0.4	2.7 ± 0.7
20	$3.7 {\pm} 0.5$	$1.5{\pm}0.4$	$2.1 {\pm} 0.7$
25	$3.1 {\pm} 0.7$	$1.4{\pm}0.5$	$0.9 {\pm} 0.6$
_30	$2.6 {\pm} 0.5$	$0.4 {\pm} 0.4$	$0.5 {\pm} 0.4$

Table: Minimax regret in a setting with 5 alternatives and 5 voters, after k questions.

Figure: Distribution of the first 200 questions asked with Limited Pessimistic strategy in a setting with 10 alternatives and 20 voters, for 25 runs.

Figure: Setting with 10 alternatives and 20 voters, for 25 runs.

 Introduced simultaneous elicitation of both committee and voters' preferences

- Introduced simultaneous elicitation of both committee and voters' preferences
- Proposed the use of minimax regret as a means of robust winner determination and as a guide to the process of elicitation

- Introduced simultaneous elicitation of both committee and voters' preferences
- Proposed the use of minimax regret as a means of robust winner determination and as a guide to the process of elicitation
- Our experimental results suggest that this approach is effective and allows to quickly reduce worst regret significantly

 Further development of elicitation strategies, considering alternative heuristics

- Further development of elicitation strategies, considering alternative heuristics
- Test these strategies on partial specified profiles, ideally on real datasets

- Further development of elicitation strategies, considering alternative heuristics
- Test these strategies on partial specified profiles, ideally on real datasets
- Extending elicitation to voting rules beyond scoring rules

Thank You!

C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Constraint-based Optimization and Utility Elicitation using the Minimax Decision Criterion.

Artifical Intelligence, 170(8–9):686–713, 2006.

Robust approximation and incremental elicitation in voting protocols. In *Proceedings of IJCAI 2011*, pages 287–293, 2011.

William E. Stein, Philip J. Mizzi, and Roger C. Pfaffenberger. A stochastic dominance analysis of ranked voting systems with scoring.

European Journal of Operational Research, 74(1):78 – 85, 1994.

Positional scoring rules with uncertain weights.

In Scalable Uncertainty Management - 12th International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, Proceedings, pages 306–320, 2018.