Optimisation linéaire : Algorithme du simplexe

PARTIE I

Optimisation linéaire : Algorithme du simplexe

(Cours 3)

Objectif

- Re-écrire l'algorithme du simplexe, version "forme dictionnaire" sous forme matricielle.
- ▶ En déduire l'algorithme du simplexe "forme matricielle".

On rappelle que l'algorithme du simplexe permet de résoudre le problème

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}$$

sous les contraintes

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n \le b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n \le b_m \\ x_1 \ge 0, \dots, x_n \ge 0. \end{cases} \iff \begin{cases} \mathbf{A}\mathbf{x} \le \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases}$$

Optimisation linéaire : Algorithme du simplexe

Ecriture matricielle de l'algorithme du simplexe

Objectif

Ecriture matricielle de l'algorithme du simplexe

Notations
Ecriture matricielle d'un dictionnaire
Une itération de l'algorithme du simplexe
Conclusion

Forme matricielle de l'algorithme du simplexe Algorithme Exemple

1.1. Notations

On a commencé par introduire les variables d'écart x_{n+1}, \cdots, x_{n+m} de telle sorte que l'on ait

$$\underbrace{\begin{bmatrix} \mathbf{A} & \mathbb{I}_m \end{bmatrix}}_{m \times (n+m)} \begin{bmatrix} x_1 \\ \dots \\ x_n \\ x_{n+1} \\ \dots \\ x_{n+m} \end{bmatrix} = \mathbf{b}$$

1.1. Notations

On a commencé par introduire les variables d'écart x_{n+1}, \cdots, x_{n+m} de telle sorte que l'on ait

$$\underbrace{\begin{bmatrix} \mathbf{A} & \mathbb{I}_m \end{bmatrix}}_{m \times (n+m)} \begin{bmatrix} x_1 & \dots & x_n & x_{n+1} & \dots & x_{n+m} \end{bmatrix} = \mathbf{b}$$

La fonction objectif peut se ré-écrire

$$\mathbf{c}^T \mathbf{x} = \begin{bmatrix} \mathbf{c}^T & 0 \cdots 0 \end{bmatrix} \quad \begin{bmatrix} x_1 \\ \cdots \\ x_n \\ x_{n+1} \\ \cdots \\ x_{n+m} \end{bmatrix}$$

1.1. Notations

On a commencé par introduire les variables d'écart x_{n+1}, \cdots, x_{n+m} de telle sorte que l'on ait

$$\underbrace{\begin{bmatrix} \mathbf{A} & \mathbb{I}_m \end{bmatrix}}_{m \times (n+m)} \begin{bmatrix} x_1 \\ \dots \\ x_n \\ x_{n+1} \\ \dots \\ x_{n+m} \end{bmatrix} = \mathbf{b}$$

La fonction objectif peut se ré-écrire

$$\mathbf{c}^T \mathbf{x} = \begin{bmatrix} \mathbf{c}^T & 0 \cdots 0 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ x_{n+1} \\ \vdots \\ x_{n+m} \end{bmatrix}$$

Le problème se re-écrit comme un problème d'optimisation dans \mathbb{R}^{n+m}

Dans toute la suite de ce cours

- ▶ A désigne une matrice de taille $m \times (n+m)$, de rang plein.
- $ightharpoonup \mathbf{x}$ désigne un vecteur de \mathbb{R}^{n+m} .
- ▶ c désigne un vecteur de \mathbb{R}^{n+m} .
- b est inchangé.

Avec ces nouvelles notations, la forme canonique matricielle du problème à n+m variables et m contraintes se re-écrit

$$\max_{\mathbf{x} \in \mathbb{R}^{n+m}} \ \mathbf{c}^T \mathbf{x}$$

sous les contraintes

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 $\mathbf{x} \ge 0$.

- ▶ Quand on écrit un dictionnaire, on partitionne les variables x_1, \dots, x_{n+m} en deux groupes
 - les variables de base que l'on collecte dans le vecteur $\mathbf{x}_B = (x_{j_1}, \cdots, x_{j_m}) \in \mathbb{R}^m$.
 - ▶ les variables hors base que l'on collecte dans le vecteur $\mathbf{x}_N \in \mathbb{R}^n$.

- ▶ Quand on écrit un dictionnaire, on partitionne les variables x_1, \dots, x_{n+m} en deux groupes
 - ▶ les variables de base que l'on collecte dans le vecteur $\mathbf{x}_B = (x_{i_1}, \dots, x_{i_m}) \in \mathbb{R}^m$.
 - ▶ les variables hors base que l'on collecte dans le vecteur $\mathbf{x}_N \in \mathbb{R}^n$.
- ▶ On peut partitionner les colonnes de la matrice A
 - be defacon à regrouper les colonnes j_1, \dots, j_m , et former la matrice notée B (de taille $m \times m$).
 - ▶ puis regrouper les autres colonnes dans une matrice de taille $m \times n$, notée A_N .

- ▶ Quand on écrit un dictionnaire, on partitionne les variables x_1, \dots, x_{n+m} en deux groupes
 - ▶ les variables de base que l'on collecte dans le vecteur $\mathbf{x}_B = (x_{i_1}, \dots, x_{i_m}) \in \mathbb{R}^m$.
 - ▶ les variables hors base que l'on collecte dans le vecteur $\mathbf{x}_N \in \mathbb{R}^n$.
- ▶ On peut partitionner les colonnes de la matrice A
 - be defacon à regrouper les colonnes j_1, \dots, j_m , et former la matrice notée B (de taille $m \times m$).
 - puis regrouper les autres colonnes dans une matrice de taille $m \times n$, notée \mathbf{A}_N .
- On peut ré-ordonner les composantes de c
 - ▶ de facon à mettre tout d'abord les colonnes j_1, \dots, j_m , et former le vecteur noté \mathbf{c}_B (de taille m).
 - puis mettre les autres composantes dans un vecteur de taille n, noté C_N.

- ▶ Quand on écrit un dictionnaire, on partitionne les variables x_1, \dots, x_{n+m} en deux groupes
 - ▶ les variables de base que l'on collecte dans le vecteur $\mathbf{x}_B = (x_{i_1}, \dots, x_{i_m}) \in \mathbb{R}^m$.
 - ▶ les variables hors base que l'on collecte dans le vecteur $\mathbf{x}_N \in \mathbb{R}^n$.
- ▶ On peut partitionner les colonnes de la matrice A
 - be defacon à regrouper les colonnes j_1, \dots, j_m , et former la matrice notée B (de taille $m \times m$).
 - ▶ puis regrouper les autres colonnes dans une matrice de taille $m \times n$, notée A_N .
- On peut ré-ordonner les composantes de c
 - be de facon à mettre tout d'abord les colonnes j_1, \dots, j_m , et former le vecteur noté \mathbf{c}_B (de taille m).
 - puis mettre les autres composantes dans un vecteur de taille n, noté C_N.

Avec ces notations:

$$\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x}_B + \mathbf{A}_N\mathbf{x}_N \qquad \qquad \mathbf{c}^T\mathbf{x} = \mathbf{c}_B^T\mathbf{x}_B + \mathbf{c}_N^T\mathbf{x}_N.$$

Qu'est-ce qu'une base?

Définition

Une base est un ensemble de m variables $(x_{j_1}, \dots, x_{j_m})$

- (i) qui s'expriment de facon unique comme une fonction affine des n autres;
- (ii) et cette expression est algébriquement équivalente aux m contraintes d'égalité initiales.

Qu'est-ce qu'une base?

Définition

Une base est un ensemble de m variables $(x_{i_1}, \dots, x_{i_m})$

- (i) qui s'expriment de facon unique comme une fonction affine des n autres;
- (ii) et cette expression est algébriquement équivalente aux m contraintes d'égalité initiales.

Théorème

Les variables $(x_{j_1}, \dots, x_{j_m})$ forment une base ssi la matrice \mathbf{B} associée extraite de \mathbf{A} , est inversible.

(A démontrer)

La "partie supérieure d'un dictionnaire" résulte de

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longleftrightarrow \mathbf{B}\mathbf{x}_B + \mathbf{A}_N\mathbf{x}_N = \mathbf{b} \Longleftrightarrow \mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{A}_N\mathbf{x}_N.$$

La "partie supérieure d'un dictionnaire" résulte de

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longleftrightarrow \mathbf{B}\mathbf{x}_B + \mathbf{A}_N\mathbf{x}_N = \mathbf{b} \Longleftrightarrow \mathbf{x}_B = \mathbf{B}^{-1}b - \mathbf{B}^{-1}\mathbf{A}_N\mathbf{x}_N.$$

lacktriangle La "partie inférieure", relative à la fonction objectif z résulte de

$$z = \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N = \mathbf{c}_B^T \left(\mathbf{B}^{-1} b - \mathbf{B}^{-1} \mathbf{A}_N \mathbf{x}_N \right) + \mathbf{c}_N^T \mathbf{x}_N$$
$$= \mathbf{c}_B^T \mathbf{B}^{-1} b + \left(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_N \right) \mathbf{x}_N.$$

La "partie supérieure d'un dictionnaire" résulte de

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longleftrightarrow \mathbf{B}\mathbf{x}_B + \mathbf{A}_N\mathbf{x}_N = \mathbf{b} \Longleftrightarrow \mathbf{x}_B = \mathbf{B}^{-1}b - \mathbf{B}^{-1}\mathbf{A}_N\mathbf{x}_N.$$

lacktriangle La "partie inférieure", relative à la fonction objectif z résulte de

$$z = \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N = \mathbf{c}_B^T \left(\mathbf{B}^{-1} b - \mathbf{B}^{-1} \mathbf{A}_N \mathbf{x}_N \right) + \mathbf{c}_N^T \mathbf{x}_N$$
$$= \mathbf{c}_B^T \mathbf{B}^{-1} b + \left(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_N \right) \mathbf{x}_N.$$

D'où le dictionnaire :

$$\begin{array}{rcl} \mathbf{x}_B & = & \mathbf{B}^{-1}\mathbf{b} & -\mathbf{B}^{-1}\mathbf{A}_N\mathbf{x}_N \\ z & = & \mathbf{c}_B^T\mathbf{B}^{-1}b & + \left(\mathbf{c}_N^T - \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{A}_N\right)\mathbf{x}_N \end{array}$$

Le dictionnaire associé à la base ${f B}$ s'écrit :

$$\begin{array}{cccc} \mathbf{x}_{B} & = & \mathbf{B}^{-1}b & -\mathbf{B}^{-1}\mathbf{A}_{N}\mathbf{x}_{N} \\ z & = & \mathbf{c}_{B}^{T}\mathbf{B}^{-1}b & + \left(\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{A}_{N}\right)\mathbf{x}_{N} \end{array}$$

Le dictionnaire associé à la base B s'écrit :

$$\frac{\mathbf{x}_{B} = \mathbf{B}^{-1}b - \mathbf{B}^{-1}\mathbf{A}_{N}\mathbf{x}_{N}}{z = \mathbf{c}_{B}^{T}\mathbf{B}^{-1}b + (\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{A}_{N})\mathbf{x}_{N}}$$

la solution basique associée est le point de \mathbb{R}^{n+m} donné par

$$\mathbf{x}_N^{\star} = 0_{\mathbb{R}^n} \qquad \mathbf{x}_B^{\star} = \mathbf{B}^{-1}b$$

Le dictionnaire associé à la base B s'écrit :

$$\begin{array}{cccc} \mathbf{x}_{B} & = & \mathbf{B}^{-1}b & -\mathbf{B}^{-1}\mathbf{A}_{N}\mathbf{x}_{N} \\ z & = & \mathbf{c}_{B}^{T}\mathbf{B}^{-1}b & + \left(\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{A}_{N}\right)\mathbf{x}_{N} \end{array}$$

la solution basique associée est le point de \mathbb{R}^{n+m} donné par

$$\mathbf{x}_N^{\star} = 0_{\mathbb{R}^n} \qquad \mathbf{x}_B^{\star} = \mathbf{B}^{-1}b$$

la valeur de la fonction objectif en le sommet associé à cette base est

$$z_{\star} = c_B^T \mathbf{B}^{-1} b$$

1.3. Une itération de l'algorithme du simplexe

Le dictionnaire associé à la base B s'écrit :

$$\begin{array}{rcl} \mathbf{x}_{B} & = & \mathbf{B}^{-1}b & -\mathbf{B}^{-1}\mathbf{A}_{N}\mathbf{x}_{N} \\ z & = & \mathbf{c}_{B}^{T}\mathbf{B}^{-1}b & +\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{A}_{N}\right)\mathbf{x}_{N} \end{array}$$

▶ Rechercher une variable entrante, c'est rechercher un indice j tel que

$$\left(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_N\right)_j > 0 \Longleftrightarrow \left[\mathbf{c}_N\right]_j^T - \mathbf{c}_B^T \mathbf{B}^{-1} [\mathbf{A}_N]_{\cdot,j} > 0$$

1.3. Une itération de l'algorithme du simplexe

Le dictionnaire associé à la base B s'écrit :

$$\frac{\mathbf{x}_B}{z} = \mathbf{B}^{-1}b - \mathbf{B}^{-1}\mathbf{A}_N\mathbf{x}_N$$
$$z = \mathbf{c}_B^T\mathbf{B}^{-1}b + (\mathbf{c}_N^T - \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{A}_N)\mathbf{x}_N$$

▶ Rechercher une variable entrante, c'est rechercher un indice j tel que

$$\left(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_N\right)_j > 0 \Longleftrightarrow \left[\mathbf{c}_N\right]_j^T - \mathbf{c}_B^T \mathbf{B}^{-1} [\mathbf{A}_N]_{\cdot,j} > 0$$

▶ Rechercher la valeur maximale de cette variable entrante, c'est chercher le plus grand $t \in \mathbb{R}$ vérifiant $\mathbf{B}^{-1}b \geq \left[\mathbf{B}^{-1}\mathbf{A}_N\right]_{::i}t$.

1.3. Une itération de l'algorithme du simplexe

Le dictionnaire associé à la base B s'écrit :

▶ Rechercher une variable entrante, c'est rechercher un indice j tel que

$$\left(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_N\right)_j > 0 \Longleftrightarrow \left[\mathbf{c}_N\right]_j^T - \mathbf{c}_B^T \mathbf{B}^{-1} [\mathbf{A}_N]_{\cdot,j} > 0$$

- ▶ Rechercher la valeur maximale de cette variable entrante, c'est chercher le plus grand $t \in \mathbb{R}$ vérifiant $\mathbf{B}^{-1}b \geq \left[\mathbf{B}^{-1}\mathbf{A}_N\right]_{:,i}t$
- ► Rechercher une variable sortante, c'est rechercher un indice k tel que

$$\left[\mathbf{B}^{-1}b\right]_{\mathbf{k}} - \left[\mathbf{B}^{-1}\mathbf{A}_{N}\right]_{\mathbf{k},\mathbf{j}} t = 0.$$

Optimisation linéaire : Algorithme du simplexe

Ecriture matricielle de l'algorithme du simplexe

Conclusion

Conclusion

Ainsi, l'algorithme du simplexe forme dictionnaire, a un équivalent sous forme matricielle,

que nous allons maintenant résumer et mettre en oeuvre!

Optimisation linéaire : Algorithme du simplexe

Forme matricielle de l'algorithme du simplexe

Objectif

Ecriture matricielle de l'algorithme du simplexe Notations Ecriture matricielle d'un dictionnaire Une itération de l'algorithme du simplexe Conclusion

Forme matricielle de l'algorithme du simplexe Algorithme Exemple

- une base réalisable B
- ▶ la liste des variables de base $\{j_1, \cdots, j_m\}$ et donc celle des variables hors base \mathcal{H}
- ▶ le vecteur c_B associé à la base
- ightharpoonup la solution basique associée $\mathbf{x}_{\mathbf{B}}^{\star}$
- la valeur de la fonction objectif en cette solution basique, z^*

$$\mathbf{B} \qquad \{j_1, \cdots, j_m\} \qquad \mathcal{H} \qquad \mathbf{c}_B \qquad \mathbf{x}_B^{\star} \qquad z_{\star}$$

- 2. Choix de la variable entrante:
 - ▶ Trouver $\mathbf{y} \in \mathbb{R}^m$ tel que $\mathbf{y}^T \mathbf{B} = c_B^T$
 - ► Trouver $j \in \mathcal{H}$ tel que $c_j \mathbf{y}^T \mathbf{A}_{\cdot,j} > 0$.

$$\mathbf{B} \qquad \{j_1, \cdots, j_m\} \qquad \mathcal{H} \qquad \mathbf{c}_B \qquad \mathbf{x}_B^{\star} \qquad z_{\star}$$

- 2. Choix de la variable entrante:
 - ▶ Trouver $\mathbf{y} \in \mathbb{R}^m$ tel que $\mathbf{y}^T \mathbf{B} = c_B^T$
 - ► Trouver $j \in \mathcal{H}$ tel que $c_j \mathbf{y}^T \mathbf{A}_{\cdot,j} > 0$.
- 3. Choix de la variable sortante:
 - ▶ Trouver $\omega \in \mathbb{R}^m$ tel que $\mathbf{B}\omega = \mathbf{A}_{\cdot,j}$.
 - ► Trouver le plus grand réel t tel que $\mathbf{x}_{\mathbf{B}}^{\star} t \ \omega \geq 0$.
 - ► Choisir $k \in \{j_1, \dots, j_m\}$ tel que $x_k^* = t\omega$.

$$\mathbf{B} \qquad \{j_1, \cdots, j_m\} \qquad \mathcal{H} \qquad \mathbf{c}_B \qquad \mathbf{x}_B^{\star} \qquad z_{\star}$$

- 2. Choix de la variable entrante:
 - ▶ Trouver $\mathbf{y} \in \mathbb{R}^m$ tel que $\mathbf{y}^T \mathbf{B} = c_B^T$
 - ▶ Trouver $j \in \mathcal{H}$ tel que $c_j \mathbf{y}^T \mathbf{A}_{\cdot,j} > 0$.
- 3. Choix de la variable sortante:
 - ▶ Trouver $\omega \in \mathbb{R}^m$ tel que $\mathbf{B}\omega = \mathbf{A}_{\cdot,i}$.
 - ► Trouver le plus grand réel t tel que $\mathbf{x}_{\mathbf{B}}^{\star} t \ \omega \geq 0$.
 - ▶ Choisir $k \in \{j_1, \dots, j_m\}$ tel que $x_k^* = t\omega$.
- 4. Mise à jour :
 - $lackbox{ t }$ de la base : substituer la colonne ${f A}_{\cdot,k}$ par ${f A}_{\cdot,j}$ dans l'expression de ${f B}$
 - ightharpoonup de la liste des variables en base : substituer k par j.
 - du vecteur c_B : substituer la composante c_k par c_j .
 - de \mathbf{x}_B^{\star} : $x_j^{\star} \leftarrow t$ $x_{j_l}^{\star} \leftarrow x_{j_l}^{\star} t\omega_l \text{ pour } j_l \neq k$
 - ▶ de la valeur de la fonction objectif: $z_{\star} \leftarrow z_{\star} + (c_j \mathbf{y}^T \mathbf{A}_{\cdot,j}) t$.

Optimisation linéaire : Algorithme du simplexe

Forme matricielle de l'algorithme du simplexe

Algorithme

Initialisation et Arrêt de l'algorithme

- ▶ Si A est obtenu en ajoutant les variables d'écart, la matrice constituée des m dernières colonnes est toujours une base.
- Plus généralement, initialiser l'algorithme consiste à extraire de A une matrice m x m inversible.
- ▶ ATTENTION : cette base doit être réalisable (donc vérifier le signe des composantes de la solution basique associée).

Initialisation et Arrêt de l'algorithme

- Si A est obtenu en ajoutant les variables d'écart, la matrice constituée des m dernières colonnes est toujours une base.
- Plus généralement, initialiser l'algorithme consiste à extraire de A une matrice m x m inversible.
- ATTENTION: cette base doit être réalisable (donc vérifier le signe des composantes de la solution basique associée).
- ▶ L'algorithme s'arrête quand il n'y a plus de candidats à entrer en base càd quand pour tout $j \in \mathcal{H}$, on a

$$c_j - \mathbf{y}^T \ \mathbf{A}_{\cdot,j} \le 0.$$

Exemple

Résoudre par la forme matricielle de la méthode du simplexe

$$\max_{\mathbf{x} \in \mathbb{R}^4} \qquad 24x_1 + 15x_2 + 34x_3 + 12x_4$$

sous les contraintes

$$\begin{cases} 4x_1 + x_2 + x_3 + 4x_4 \le 5\\ 3x_1 + 3x_2 + 6x_3 + x_4 \le 6\\ x_i \ge 0. \end{cases}$$

On initialisera l'algorithme en prenant la base associée au sommet $\mathbf{x}_{\star}=(1,1,0,0,0,0).$

(à faire)