

rPlum fechado con plomo para el usuario común. rPlum lead dating for the common user

Marco A. Aquino-López¹

¹Maynooth University


```
@article{Appleby1978, author={Appleby, P.G. and Oldfield, F.},
title="The calculation of lead-210 dates assuming a constant rate
of supply of unsupported 210Pb to the sediment",
journal = \{Catena\}, year = \{1978\}, volume = \{5\}, number = \{1\}, 
pages=\{1-8\}, doi=\{10.1016/S0341-8162(78)80002-2\},
document type={Article}, source={Scopus}, }
Qarticle{Aguino 2018, doi = {10.1007/s13253-018-0328-7}, url = {10.1007/s13253-018-0328-7}
https://doi.org/10.1007\%2Fs13253-018-0328-7, year = 2018,
month = {jun}, publisher = {Springer Science and Business Media
\{LLC\}\}, volume = \{23\}, number = \{3\}, pages = \{317-333\},
author = \{Marco A. Aquino-L\{'\{o\}\} pez and Maarten Blaauw and J.
Andr\{'\{e\}\}\s Christen and Nicole K. Sanderson\}, title = {Bayesian}
Analysis of 210Pb Dating, journal = {Journal of Agricultural,
Biological and Environmental Statistics } }
```


What is Plum?

- Plum is a Bayesian age-depth model for ²¹⁰Pb
- It is a tool which allow us to obtained integrated chronologies without the need of pre-modelling ²¹⁰Pb dates.
- It is just simple and cool.

What differenciates Plum from other 210Pb dating methods?

CRS

logaritmic age-depth function.

This model assumes a constant rate of supply of 210Pb to the sediment in the period of interest.

$$t(x) = \frac{1}{\lambda} \log \left(\frac{A_0}{A_x} \right)$$

Appleby & Oldfield (1979) Robbins (1979)

Plum flexible age-depth function

On the other hand, *Plum* works by implementing a statistical approach to creating the chronology. *Plum* defines the toral measured ²¹⁰*Pb* as

$$y_i \sim \mathcal{N}\left(\mu_i^s + \mu_i^U\right)$$

Plum flexible age-depth function

Where mu_i^s is the "true" levels of supported ^{210}Pb and μ_i^u the unsupported levels in sample y_i . By assuming a constant supply of ^{210}Pb (Φ) we get that,

$$\mu_i^u = \frac{\Phi}{\lambda} \left(e^{-\lambda t(x_i - \delta)} - e^{-\lambda t(x_i)} \right)$$

Plum flexible age-depth function

Function t(x) is define as the autoregressive gamma process presented by Blaauw & Christen (2011) also known as *Bacon*.

Benefits of Plum

1