

sandipan_dey >

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

()

E1.3.4 Exam Question 4

□ Bookmark this page

Previous

■ Calculator

Exam 1 due Oct 31, 2023 09:12 IST Completed

Question 4

11/11 points (graded)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} =$$

1

0

0

Answer: 1

0

Answer: 0

4

Answer: 0

0

Answer: 0

0

Answer: 4

0

Answer: 0

1

Answer: 0

Answer: 0

Answer: 1

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2. Let
$$D=egin{pmatrix} \delta_0&0&0\0&\delta_1&0\0&0&\delta_2 \end{pmatrix}$$
 where δ_0,δ_1 , and δ_2 are scalars. Compute DD (matrix D multiplied by itself). $DD=$

$$D = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$D = egin{pmatrix} 2\delta_0 & 0 & 0 \ 0 & 2\delta_1 & 0 \ 0 & 0 & 2\delta_2 \end{pmatrix}$$

$$D = egin{pmatrix} \delta_0^2 & 0 & 0 \ 0 & \delta_1^2 & 0 \ 0 & 0 & \delta_2^2 \end{pmatrix}$$

$$D = egin{pmatrix} \delta_0^1 & 0 & 0 \ 0 & \delta_1^2 & 0 \ 0 & 0 & \delta_2^3 \end{pmatrix}$$

•

$$DD = \begin{pmatrix} \delta_0^2 & 0 & 0 \\ 0 & \delta_1^2 & 0 \\ 0 & 0 & \delta_2^2 \end{pmatrix}$$

3. For square matrix ${\bf A}$ define ${\bf A}$ as ${\bf A}={\bf I}$ (the identity) and ${\bf A}={\bf A}$ ${\bf A}$ for $n\geq 0$

Let
$$D$$
 again be defined as $D=egin{pmatrix} \delta_0 & 0 & 0 \ 0 & \delta_1 & 0 \ 0 & 0 & \delta_2 \end{pmatrix}$, then $D^n=egin{pmatrix} \delta_0^n & 0 & 0 \ 0 & \delta_1^n & 0 \ 0 & 0 & \delta_2^n \end{pmatrix}$ for $n\geq 0$.

Always ~

✓ Answer: Always

Answer:

Proof by induction.

Base Case: n = 0.

$$D^0 = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \delta_0^0 & 0 & 0 \\ 0 & \delta_1^0 & 0 \\ 0 & 0 & \delta_2^0 \end{pmatrix}.$$

Inductive Step. I.H.: Assume that $D^n = \begin{pmatrix} \delta_0^n & 0 & 0 \\ 0 & \delta_1^n & 0 \\ 0 & 0 & \delta_2^n \end{pmatrix}$.

Show that
$$D^{n+1} = \begin{pmatrix} \delta_0^{n+1} & 0 & 0 \\ 0 & \delta_1^{n+1} & 0 \\ 0 & 0 & \delta_2^{n+1} \end{pmatrix}$$
:

$$D^{n+1}$$

= < Definition of A^{n+1} >

 D^nD

$$\begin{pmatrix} \delta_0^n & 0 & 0 \\ 0 & \delta_1^n & 0 \\ 0 & 0 & \delta_2^n \end{pmatrix} \begin{pmatrix} \delta_0 & 0 & 0 \\ 0 & \delta_1 & 0 \\ 0 & 0 & \delta_2 \end{pmatrix}$$

= < matrix-matrix multiplication >

$$\begin{pmatrix} \delta_0^{n+1} & 0 & 0 \\ 0 & \delta_1^{n+1} & 0 \\ 0 & 0 & \delta_2^{n+1} \end{pmatrix}.$$

By the PMI the result holds for all $n \geq 0$.

Submit

Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Exam 1 / E1.3.4

Add a Post

Show all posts

There are no posts in this topic yet.

×

by recent activity \checkmark

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

<u>Open edX</u>

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>