NTNU

Assignment 3

Grunnleggende Visuell Databehandling

Aditi Ravi Deshpande

October 3, 2025

Contents

1	Task 1: More polygons than you can shake a stick	ς .
	at	3
	1.1 a)	3
	(1,2,1)	3

	1.3 d)	4
2	Task 2 Helicopter Parenting $2.1 ext{ c} \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots$	6
3	Task 3: The (Model) Matrix: Revolutions $3.1 c) \dots \dots \dots \dots \dots$	7 7
5	Task 5: Help! My lighting is wrong! 5.1 a) 5.2 c)	
6	Task 6: Time to turn this thing up to 5	12

1 Task 1: More polygons than you can shake a stick at

1.1 a)

I just created a VAO object called terrain. Adjusting the camera x,y,z, pitch and fovy, I moved around to get this as a result:

Figure 1: Terrain

1.2 c)

Aftering adding normals as a vertex array object, and passing them as colour, we get Figure 2 as a result.

Figure 2: Terrain colour

1.3 d)

Following the steps stated in question 1d) one can get this lunar surface.

Figure 3: Lunar surface - lighting

2 Task 2 Helicopter Parenting

2.1 c)

Figure 4: Helicopter

3 Task 3: The (Model) Matrix: Revolutions

3.1 c)

Figure 5: Verifying rotation and position change

I combined the node's model matrix with the scene's View-Projection matrix to create the complete MVP (Model-View-Projection) matrix. In figure 5, I rotated the helicopter body by 30 degrees, and in the plane you can see the rotation, verifying that it works.

5 Task 5: Help! My lighting is wrong! 5.1 a)

Figure 6: The dark side of the helicopter

Figure 7: The bright side of the helicopter

5.2 c)

Figure 8: The dark side of the helicopter 1

Figure 9: The dark side of the helicopter 2

6 Task 6: Time to turn this thing up to 5

Figure 10: Five helicopters, man. Five!