

MATEMATИKA

УДК 514.763.624

© 2012

Член-корреспондент НАН Украины А. А. Борисенко,

С. В. Мирошниченко

О флаговой кривизне двумерных поверхностей трехмерных пространств Рандерса

Найдены достаточные условия положительности флаговой кривизны двумерных поверхностей трехмерных пространств Рандерса и доказана локальная выпуклость поверхностей с положительной флаговой кривизной.

- **1.** Необходимые сведения и результаты. Пространством Минковского [1] M^{n+1} называется пара (V^{n+1},F) , где $V^{n+1}-(n+1)$ -мерное векторное пространство с декартовыми координатами y^1,\dots,y^{n+1} . Норма Минковского $F\colon V^{n+1}\to [0,\infty)$ обладает свойствами:
 - 1) $F \in C^{\infty}(V^{n+1} \setminus \{0\});$
 - 2) для любого положительного q: F(qy) = qF(y);
 - 3) симметричная билинейная форма $g_{ij}=\frac{1}{2}\frac{\partial^2 F^2}{\partial y^i \partial y^j}$ положительно определена на V^{n+1} .

Метрика F, индуцируемая на поверхности $N\subset M^{n+1}$, является финслеровой, т.е. $F(x,y)\colon TN\to [0,+\infty)$ и для произвольной точки $p\in N,\ F\mid_{T_pN}$ — норма Минковского на T_pN .

 $\H{Ipocmpancmeom}$ Pandepca R_b^{n+1} будем называть пространство Минковского с нормой Fвида

$$F(y) = ||y||_E + \beta(y), \tag{1}$$

где

$$\|y\|_E = \sqrt{\sum_{i=1}^{n+1} (y^i)^2}$$
 — евклидова норма, $\beta(y) = b_i y^i$ — линейная форма.

Необходимым и достаточным условием того, что данная функция является нормой Минковского, есть условие на евклидову длину главного вектора $b = (b_1, \ldots, b_{n+1}) \colon |b| < 1$. Условимся считать пространство неевклидовым, т.е. $|b| \neq 0$.

Будем рассматривать C^3 -гладкую двумерную поверхность F^2 как множество точек в двух различных пространствах — в пространстве Рандерса (обозначая поверхность в таком случае $\widetilde{F}^2 \subset R_b^3$ с индуцированной финслеровой метрикой) и наложенном евклидовом пространстве ($F^2 \subset \mathbb{E}^3$ с индуцированной римановой метрикой).

Для F^2 через K_e обозначим гауссову кривизну индуцированной римановой метрики в произвольной точке $p \in F^2$. Главные кривизны в римановой метрике обозначим как k_1 , k_2 , считая, что $k_1 \leqslant k_2$, нормальную кривизну в некотором касательном направлении будем обозначать k, тогда известно, что $k_1 \leqslant k \leqslant k_2$.

Аналогом понятия секционной кривизны римановых пространств является ϕ лаговая κ ривизна финслеровых пространств [1], которая может быть определена как секционная кривизна римановой метрики

$$g_Y = \sqrt{g_{ij}(Y)u^i u^j} \tag{2}$$

для некоторого геодезического поля Y финслерового пространства, где g_{ij} — фундаментальная форма финслеровой метрики, определяемая аналогично пространствам Минковского.

В случае двумерных поверхностей флаговая кривизна является лишь функцией касательного направления Y, поскольку $\dim T_p \widetilde{F}^2 = 2$. Обозначим флаговую кривизну рассматриваемой гиперповерхности \widetilde{F}^2 в некотором направлении Y как $K_R(Y)$.

Лемма 1. Пусть F^2-C^3 -гладкая двумерная поверхность в \mathbb{E}^3 . Пусть n-eдиничная евклидова нормаль, y- некоторое касательное направление и $\gamma(s)-$ нормальная геодезическая индуцированной римановой метрики, для которой $\dot{\gamma}(0)=y$. Тогда флаговая кривизна $\widetilde{F}^2\subset R_b^3$ выражается как

$$K_R(y) = \frac{3}{4} \frac{(k(y)\langle b, n \rangle)^2}{F^4(y)} - \frac{1}{2} \frac{\frac{d}{ds}(k(y)\langle b, n \rangle)}{F^3(y)} + \frac{K_e}{F^2(y)}.$$
 (3)

С использованием выражения (3) был построен пример того, что выпуклость не является необходимым условием положительности флаговой кривизны.

Был рассмотрен эллиптический параболоид $z = x^2 + y^2$, который является глобально выпуклой гиперповерхностью. Тогда флаговая кривизна данной поверхности в начале координат в касательном направлении $Y = (\cos t, \sin t, 0)$ может быть выражена как

$$K_R(Y) = \frac{4 + 6b_1 \cos t + 6b_2 \sin t}{(1 + b_1 \cos t + b_2 \sin t)^3} + \frac{3b_3^2}{(1 + b_1 \cos t + b_2 \sin t)^4}.$$

Очевидно, что для некоторого фиксированного вектора b флаговая кривизна меняет знак.

Однако существуют достаточные условия того, что выпуклость влечет за собой положительность флаговой кривизны.

Теорема 1 (первое достаточное условие положительности флаговой кривизны). Пусть двумерная C^3 -гладкая поверхность $F^2 \subset \mathbb{E}^3$ имеет положительную гауссову кривизну $K_e > 0$ и в каждой точке поверхности выполнено неравенство

$$|b| < \frac{2\frac{k_1}{k_2}}{2\frac{k_1}{k_2} + 1}.\tag{4}$$

Если также вдоль каждой нормальной геодезической первая производная ее кривизны удовлетворяет неравенству

$$\left| \frac{dk}{ds} \right| < 2K_e \sqrt{3\left(\frac{k_1}{k_2} - \frac{|b|}{2(1-|b|)}\right)},$$
 (5)

то флаговая кривизна $\widetilde{F}^2 \subset R_b^3$ положительна в любом касательном направлении.

Интервал, ограничивающий производную кривизны геодезической dk/ds, может быть расширен, но с более сильными требованиями на |b|, а именно:

Теорема 2 (второе достаточное условие положительности флаговой кривизны). Пусть двумерная C^3 -гладкая поверхность $F^2 \subset \mathbb{E}^3$ имеет положительную гауссову кривизну $K_e > 0$ и в каждой точке поверхности выполнено неравенство

$$|b| < \frac{-1 + \sqrt{1 + 12\frac{k_1}{k_2}}}{2 + \sqrt{1 + 12\frac{k_1}{k_2}}}. (6)$$

Если также вдоль каждой нормальной геодезической первая производная ее кривизны удовлетворяет неравенству

$$\left| \frac{dk}{ds} \right| < K_e \left(\frac{3|b|}{2(1+|b|)} \frac{k_1}{k_2} - \frac{k_2}{k_1} + \frac{2(1-|b|)}{|b|} \right), \tag{7}$$

то флаговая кривизна $\widetilde{F}^2 \subset R_b^3$ положительна в любом касательном направлении.

Тем не менее положительность флаговой кривизны двумерной поверхности трехмерного пространства Рандерса гарантирует выполнение условия локальной выпуклости.

Теорема 3. Пусть флаговая кривизна C^3 -гладкой двумерной поверхности в трехмерном пространстве Рандерса положительна в любом касательном направлении, тогда поверхность является локально выпуклой.

2. Доказательство основных результатов. Доказательство леммы **1.** Для финслеровых пространств естественным образом можно вводить понятие локально кратчайших кривых (seodesuveckux). По аналогии с римановыми пространствами, можно показать, что геодезическая c(t) финслерового пространства (M,F) удовлетворяет системе дифференциальных уравнений второго порядка

$$\ddot{c}^{i}(t) + 2G^{i}(c(t), \dot{c}(t)) = 0,$$

где

$$G^{i}(x,y) = \frac{1}{4}g^{il}(x,y)([F^{2}]_{x^{k}y^{l}}y^{k} - [F^{2}]_{x^{l}}).$$

 $G^{i}(y)$ называются геодезическими коэффициентами.

В работе [2] была получена упрощенная формула флаговой кривизны K_F двумерного финслерового пространства $\varphi \colon D \to S, \ D \subset \mathbb{R}^2$ в направлении касательного вектора $y = u\varphi_x + v\varphi_y \in T_pS$:

$$K_F(p,y) = \frac{1}{F^2(y)} (2G_x^1 + 2G_y^2 + 2G_u^1 G_v^2 - 2G_u^2 G_v^1 - Q^2 - Q_x u - Q_y v + 2G^1 Q_u + 2G^2 Q_v), \quad (8)$$

где
$$Q = G_u^1 + G_v^2$$
.

В некоторой окрестности произвольной точки p двумерной гиперповерхности \widetilde{F}^2 пространства Рандерса зададим поверхность явно z=f(x,y) так, что выполнены следующие условия:

$$f(p) = 0,$$
 $f_x(p) = f_y(p) = 0.$ (9)

Из условия параметризации следует, что ось pz сонаправлена с вектором единичной евклидовой нормали n в точке p, которая для явно заданных поверхностей имеет вид

$$n = \frac{1}{\sqrt{1 + f_x^2 + f_y^2}} (-f_x, -f_y, 1). \tag{10}$$

В случае такой параметризации произвольный единичный касательный вектор $Y \in T_p \widetilde{F}^2$ имеет вид $Y = (u, v, uf_x + vf_y) = (u, v, 0)$. В таком случае, из общего вида нормы пространства (1), индуцированная метрика Рандерса имеет вид

$$F(Y) = \sqrt{(1 + f_x^2)u^2 + 2f_x f_y uv + (1 + f_y^2)v^2} + (b_1 + b_3 f_x)u + (b_2 + b_3 f_y)v.$$
(11)

Заметим, что всегда можем рассмотреть такую систему координат, что главный вектор пространства Рандерса имеет вид $b = (0, b_2, b_3)$, т.е. лежит в плоскости ypz.

Рассмотрим некоторую нормальную геодезическую $\gamma(s)$ индуцированной римановой метрики из наложенного евклидового пространства, для которой $\gamma(0)=p,\,\dot{\gamma}(0)=Y_p.$ В таком случае касательный вектор имеет вид $Y_p=(dx/ds,dy/ds,0).$

Подставляя метрику вида (11) в выражение (8), непосредственной группировкой коэффициентов перед степенями b_2 и b_3 , получаем

$$K_R(Y) = \frac{3b_3^2k^2}{4(1+r)^4} + \frac{1}{2}\frac{b_2k(uf_{xy} + vf_{yy}) - b_3\frac{dk}{ds}}{(1+r)^3} + \frac{K_e}{(1+r)^2}.$$

C учетом параметризации геодезической $\gamma(s)$

$$b_2(uf_{xy} + vf_{xy}) = b_2\left(f_{xy}\frac{dx}{ds} + f_{yy}\frac{dy}{ds}\right) = b_2\frac{df_y}{ds} = -\frac{d}{ds}(-b_2f_y + b_3) = -\frac{d}{ds}\langle b, n \rangle \Big|_p.$$

Используя определение нормы Рандерса (1), получаем

$$1 + r = 1 + b_2 v = 1 + \langle b, Y \rangle = F(Y).$$

Данные упрощения приводят формулу к виду (3). Заметим, что при замене координат таким образом, что главный вектор b не лежит в плоскости ypz, формула флаговой кривизны остается верной, так как скалярное произведение не зависит от выбора системы координат.

Доказательство теоремы 1. В некоторой окрестности произвольной точки $p \in F^2$ поверхность задается явно z = f(x,y). Таким образом,

$$f(p) = 0,$$
 $f_x(p) = f_y(p) = f_{xy}(p) = 0.$

В таком случае ось pz сонаправлена с вектором единичной евклидовой нормали n. Пусть в данной системе координат главный вектор b имеет вид $b = (b_1, b_2, b_3)$, где $b_3 = \langle b, n \rangle$.

Для некоторого касательного направления $\tau \in T_p \widetilde{F}^2$, $\tau = (u, v, 0)$ рассмотрим нормальную геодезическую $\gamma(s)$ такую, что $\gamma(0) = p$, $\dot{\gamma}(0) = \tau$. Тогда (3) в направлении τ принимает вид

$$K_R(\tau) = \frac{3}{4} \frac{b_3^2 k^2(\tau)}{F^4(\tau)} + \frac{1}{2} \frac{k(\tau)(b_1 u f_{xx} + b_2 v f_{yy}) - b_3 \frac{dk}{ds}(\tau)}{F^3(\tau)} + \frac{K_e}{F^2(\tau)}.$$
 (12)

Можем считать, что $u = \cos t$, $v = \sin t$, тогда оценим выражения $c(t) = b_1 f_{xx} \cos t + b_2 f_{yy} \sin t$ и $F(\tau) = 1 + \langle b, \tau \rangle$. Заметим, что f_{xx} , f_{yy} — это главные кривизны в точке p, тогда

$$-k_2|b| \leqslant -k_2\sqrt{b_1^2 + b_2^2} \leqslant c(t) \leqslant k_2\sqrt{b_1^2 + b_2^2} \leqslant k_2|b|, \qquad 0 < 1 - |b| \leqslant F(\tau) \leqslant 1 + |b|. \tag{13}$$

Можем рассмотреть выражение для флаговой кривизны $K_R(\tau)$ как квадратный трехчлен от переменной b_3 . Достаточным условием того, что $K_R(\tau)>0$, есть условие на отрицательность дискриминанта, так как коэффициент при старшем члене строго положителен:

тельность дискриминанта, так как коэффициент при старшем члене строго положителен:
$$\left(\frac{dk(\tau)}{ds}\right)^2 < 12k^2(\tau) \left(K_e + \frac{ck(\tau)}{2F(\tau)}\right),$$
 что эквивалентно системе

$$\begin{cases}
\left| \frac{dk(\tau)}{ds} \right| < 2k(\tau) \sqrt{3\left(K_e + \frac{ck(\tau)}{2F(\tau)}\right)}, \\
K_e + \frac{ck(\tau)}{2F(\tau)} > 0.
\end{cases} \tag{14}$$

Используя оценки (13), получаем

$$2k(\tau)\sqrt{3\left(K_e + \frac{ck(\tau)}{2F(\tau)}\right)} \geqslant 2K_e\sqrt{\frac{k_1}{k_2} - \frac{|b|}{2(1-|b|)}}.$$

Тогда потребуем выполнения следующих двух условий, которые обеспечат выполнение условий системы (14):

$$\left| \frac{k_1}{k_2} - \frac{|b|}{2(1-|b|)} > 0, \qquad \left| \frac{dk(\tau)}{ds} \right| < 2K_e \sqrt{3\left(\frac{k_1}{k_2} - \frac{|b|}{2(1-|b|)}\right)}.$$

Теорема доказана в силу произвольности выбора касательного направления.

Доказательство теоремы 2. Повторяя рассуждения доказательства предыдущей теоремы, рассмотрим выражение для флаговой кривизны гиперповерхности пространства Рандерса в направлении τ (12) как квадратный трехчлен от переменной $b_3 \leq |b|$.

Вторым достаточным условием того, что $K_R(\tau) > 0$, является условие на то, что для вещественных корней данного трехчлена $x_- \leqslant x_+$ выполнено $x_- > |b|$ или $x_+ < -|b|$, при условии, что они существуют. Непосредственной подстановкой получаем

$$x_{\pm} = \frac{\frac{dk(\tau)}{ds} \pm \sqrt{\left(\frac{dk(\tau)}{ds}\right)^2 - 12k^2(\tau)\left(K_e + \frac{ck(\tau)}{2F(\tau)}\right)}}{\frac{3k^2(\tau)}{F(\tau)}}.$$

То есть выполняется одна из следующих систем неравенств:

$$\begin{cases}
\left(\frac{dk(\tau)}{ds}\right)^2 \geqslant 12k^2(\tau)\left(K_e + \frac{ck(\tau)}{2F(\tau)}\right), \\
|b| < x_-
\end{cases}$$
(15)

или

$$\begin{cases}
\left(\frac{dk(\tau)}{ds}\right)^2 \geqslant 12k^2(\tau)\left(K_e + \frac{ck(\tau)}{2F(\tau)}\right), \\
x_+ < -|b|.
\end{cases} (16)$$

Рассмотрим систему (15), она эквивалентна

$$\begin{cases}
K_e + \frac{ck(\tau)}{2F(\tau)} > 0, \\
\left| \frac{dk(\tau)}{ds} \right| \geqslant 2k(\tau) \sqrt{3\left(K_e + \frac{ck(\tau)}{2F(\tau)}\right)}, \\
\frac{dk(\tau)}{ds} > \frac{3k^2(\tau)|b|}{F(\tau)}, \\
\frac{dk(\tau)}{ds} < \frac{3k^2(\tau)|b|}{2F(\tau)} + \frac{2F(\tau)}{|b|} \left(K_e + \frac{ck(\tau)}{2F(\tau)}\right).
\end{cases}$$
(17)

Объединим данные требования с ограничением из системы (14). Чтобы множество требуемых значений для $dk(\tau)/ds$ было связным, потребуем выполнения условия

$$\frac{3k^2(\tau)|b|}{F(\tau)} < 2k(\tau)\sqrt{3\left(K_e + \frac{ck(\tau)}{2F(\tau)}\right)}.$$

Таким образом, окончательные условия примут вид

$$K_e > \frac{3k^2(\tau)|b|^2}{4F^2(\tau)} - \frac{ck(\tau)}{2F(\tau)},$$
 (18)

$$\left| \frac{dk(\tau)}{ds} \right| < \frac{3k^2(\tau)|b|}{2F(\tau)} + \frac{2F(\tau)}{|b|} \left(K_e + \frac{ck(\tau)}{2F(\tau)} \right). \tag{19}$$

Используя оценки (13), получаем, что для правой части неравенства (18) выполнено

$$\frac{3k^2(\tau)|b|^2}{4F(\tau)^2} - \frac{ck(\tau)}{2F(\tau)} \le 3k_2^2 \frac{|b|^2}{4(1-|b|)^2} + k_2^2 \frac{|b|}{2(1-|b|)}.$$

Тогда потребуем выполнения условия

$$\frac{k_1}{k_2} > 3 \frac{|b|^2}{4(1-|b|)^2} + \frac{|b|}{2(1-|b|)},\tag{20}$$

что обеспечит выполнение неравенства (18).

Аналогично, используя (13) для правой части неравенства (19), получаем выполнение

$$\frac{3k^2(\tau)|b|}{2F(\tau)} + \frac{2F(\tau)}{|b|} \left(K_e + \frac{ck(\tau)}{2F(\tau)} \right) \geqslant K_e \left(\frac{3|b|}{2(1+|b|)} \frac{k_1}{k_2} - \frac{k_2}{k_1} + \frac{2(1-|b|)}{|b|} \right),$$

тогда, потребовав выполнения неравенства

$$\left| \frac{dk(\tau)}{ds} \right| < K_e \left(\frac{3|b|}{2(1+|b|)} \frac{k_1}{k_2} - \frac{k_2}{k_1} + \frac{2(1-|b|)}{|b|} \right),$$

обеспечим выполнение неравенства (19).

Аналогичные рассуждения для системы (16) приводят к тому же результату.

Условие (20) может быть записано как $|b|<\frac{-1+\sqrt{1+12k_1/k_2}}{2+\sqrt{1+12k_1/k_2}},$ а условие на |b| из

предыдущей теоремы имеет вид $|b|<\frac{2k_1/k_2}{2k_1/k_2+1}$. Непосредственным сравнением несложно

показать, что
$$\frac{-1+\sqrt{1+12x}}{2+\sqrt{1+12x}}<\frac{2x}{2x+1}$$
 при $x>0.$

Так как касательное направление au было выбрано произвольно, то теорема доказана.

Доказательство теоремы 3. Предположим противное, т. е. считаем, что в некоторой точке p флаговая кривизна положительна для всех касательных направлений, но поверхность локально не является выпуклой $K_e \leq 0$. Тогда в точке p существует асимптотическое направление y_1 , т. е. $k(y_1) = 0$. Заметим, что тогда и $-y_1$ является асимптотическим. Воспользуемся формулой (3) в направлениях y_1 и $-y_1$

$$K_R(\pm y_1) = -\frac{1}{2} \frac{\langle b, n \rangle}{F^3(\pm y_1)} \frac{dk}{ds} (\pm y_1) + \frac{K_e}{F^2(\pm y_1)} > 0.$$

Или иначе

$$K_e > \frac{\langle b, n \rangle}{2F(\pm y_1)} \frac{dk}{ds} (\pm y_1).$$

Если $\langle b, n \rangle = 0$, то теорема верна.

Если $\langle b,n\rangle<0$, то выбираем одно из направлений y_1 или $-y_1$, в котором $dk/ds\leqslant 0$, т.е. $K_e>a^2\geqslant 0$, что приводит к противоречию. Аналогичное рассуждение верно при $\langle b,n\rangle>0$.

- 1. Shen Z. Lectures on Finsler geometry. Singapore: World Scientific, 2001. 307 p.
- 2. Bao D., Chern S.-S., Shen Z. An introduction to Riemann–Finsler geometry. New York: Springer, 2000. 431 p.

Харьковский национальный университет им. В. Н. Каразина Поступило в редакцию 04.05.2012

Член-кореспондент НАН України О. А. Борисенко, С. В. Мірошниченко

Про флагову кривизну двовимірних поверхонь тривимірних просторів Рандерса

Знайдено достатні умови додатності флагової кривини двовимірних поверхонь тривимірних просторів Рандерса і доведено локальну опуклість поверхонь з додатною флаговою кривиною.

Corresponding Member of the NAS of Ukraine A. A. Borisenko, S. V. Miroshnichenko

On the flag curvature of 2D surfaces of 3D Randers spaces

We find the sufficient conditions for the positivity of the flag curvature of two-dimensional surfaces of three-dimensional Randers spaces and prove the local convexity of surfaces with positive flag curvature.