Método dos Beneficiários para Alocação de Custos de Sistemas de Transmissão

Trabalho de Conclusão de Curso

Aluna: Daniela Bayma de Almeida

Orientador: Prof. Djalma Mosqueira Falcão, Ph.D.

Co-orientador: Ricardo Cunha Perez, MSc.

UFRJ - DEE

Janeiro 2017

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Alocação de Custos

- Único sistema de transmissão para agentes consumidores e geradores (análogo a um problema de rodovias e pedágio)
- Necessidade de recuperar custos associados a construção e manutenção da linha de transmissão

"Características" da alocação de custos

- Características a serem consideradas na alocação de custos
 - Recuperação dos custos (Receita Requerida)
 - Tarifas estáveis e com volatilidade reduzida
 - Justiça e Isonomia
 - Clareza e transparência
 - Eficiência

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Parcela Locacional e Selo

- Todas as metodologias são compostas por 2 parcelas:
 - Parcela Locacional

Associada a localização do agentes no sistema

Parcela Selo

Receita Requerida não recuperada pela parcela locacional devido a:

- Carregamento dos circuitos menor que a capacidade de fluxo máxima
- Critérios de confiabilidade operativos (como N-1)
- Modularidade dos circuitos

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Metodologia Nodal

Metodologia Nodal

- Despacho fixo de referência
- Tarifas baseada na matriz de sensibilidade (β), isto é, na variação de fluxo nos circuitos (k) para uma injeção incremental de potência em uma das barras do sistema (i)

$$\beta_{ki} = \frac{\partial f_k}{\partial P_i}$$

Metodologia Nodal (2)

Cálculo da Tarifa

$$\widetilde{\pi_j} = \sum_{i=1}^m c_i \, \beta_{ij}$$

 $\widetilde{\pi_i}$ – Tarifa a ser paga por cada agente j

c_i - Custo unitário do circuito i

 β_{ij} - Sensibilidade "causada" pelo agente j no circuito i

 Adição da parcela α para permitir o rateio dos custos entre a geração e demanda conforme desejado (No Brasil 50%)

Metodologia Nodal (3)

Parcela Selo

Receita Requerida = Sinal Locacional $(\widetilde{\pi}_i)$ + Parcela Selo (π^{aj})

$$\pi^{aj} = \frac{RR - \sum_{j=1}^{N} (\tilde{\pi}_{j}^{g} g_{j} + \tilde{\pi}_{j}^{d} d_{j})}{\sum_{j=1}^{N} (g_{j} + d_{j})}$$

 $\tilde{\pi}_{i}^{g}$ – tarifa locacional de cada gerador j calculada de acordo com a metodologia Nodal

 $ilde{\pi}_i^d$ – tarifa locacional de cada demanda j calculada de acordo com a metodologia Nodal

 g_j – geração de cada gerador j

 d_i – consumo de cada demanda j

RR – receita total requerida

N - número de agentes

► TUST

$$\overline{\pi}_j = \widetilde{\pi}_j + \pi^{aj}$$

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Metodologia Nodal aplicada ao Brasil

Cálculo da Tarifa

$$\widetilde{\pi_j} = \sum_{i=1}^m c_i \, \beta_{ij} \underbrace{f_p}_{fp}$$

 O Fator de ponderação tem como objetivo "ponderar" o pagamento dos agentes pelo carregamento dos circuitos

Metodologia Nodal aplicada ao Brasil (2)

Como o carregamento dos circuitos é, na maioria das vezes, menor que o limite de carregamento, a parcela locacional é reduzida, aumentando a parcela selo

► TUST

$$\overline{\pi}_j = \widetilde{\pi}_j + \pi^{aj}$$

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Método das Participações Médias

 Objetivo: Determinar participação de cada agente (gerador e demanda) no fluxo de cada circuito

- Princípio da Proporcionalidade
 - Os fluxos que saem de uma barra são iguais em número aos que entraram
 - O fluxo de saída das barras é proporcional à injeção nas barras

Método das Participações Médias (2)

Princípio da Proporcionalidade

Janeiro/2017


```
P_{in} = 100 \text{ MW}
P_{ji} = 40MW = 40\%
P_{ki} = 60 MW = 60 \%

P_{out} = 100 \text{ MW}
P_{il}^{ji} = 40\% * 30MW = 12MW
P_{il}^{kl} = 60\% * 30MW = 18MW
P_{im}^{ji} = 40\% * 70MW = 28MW
P_{im}^{kl} = 60\% * 70MW = 42MW
```

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Metodologia Aumann-Shapley

- Metodologia de Shapley
 - Cada agente gerador escolhe a demanda que vai atender e os agentes consumidores escolhem por quais geradores serão atendidos.
 - Os primeiros a entrar tem mais graus de liberdade para escolher a demanda a atender. → Ordem de entrada dos agentes é importante
 - Necessidade de N! permutações (N é o número de agentes geradores/ consumidores)
 - A tarifa corresponde à media dos custos alocadas a cada agente

Fonte: The Wall Street Journal

Metodologia Aumann-Shapley (2)

- Metodologia "Aumann Shapley"
 - Propõe que os agentes sejam fragmentados em partes infinitesimais de forma que os "subagentes" sejam considerados agentes independentes.

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Vantagens e Desvantagens das Metodologias

Metodologia Nodal

Vantagem	Desvantagem	
 Aloca custos de transmissão aos agentes conforme carregam a rede Fácil de ser compreendido, pois se baseia no princípio econômico de quanto mais se usa, mais se paga 	 Dependendo do slack bus escolhido, alteram-se as tarifas dos agentes. Possibilidade de tarifas negativas e "pagamento cruzado". Não sabe lidar com link DC 	

22

Vantagens e Desvantagens das Metodologias(2)

Participações Médias

Vantagens e Desvantagens das Metodologias(3)

Procedimento de Shapley

	Vantagem	Desvantagem	
oportunion primeiro di	s geradores tem dade de serem os s a escolher seu "uso rede" → Evita dade entre os agentes	 A tarifa dos agentes é afetada pela quantidade de agentes e pelo tamanho Viabilidade computacional: necessidade de N! permutações. G1 = 5MW G2 = 5 MW G3 = 10 MW TUST_{C1} = 10 + 10 + 15 + 20 + 20 + 20 / 6 = 95 / 6 = \$ 15.86 TUST_{C2} = 15 + 20 + 10 + 10 + 20 + 20 / 6 = 95 / 6 = \$ 15.86 TUST_{C3} = 40 + 35 + 40 + 35 + 35 + 35 / 6 = \$ 220 / 6 = \$ 36.67 TUST_{C3} ≠ TUST_{C1} + TUST_{C2} 	

Vantagens e Desvantagens das Metodologias(4)

Metodologia Aumann-Shapley

	Vantagem	"Desvantagem"
•	Divisão dos agentes em segmentos infinitesimais →	"Não possui viés
	corrige limitação do procedimento Shapley em que dois	econômico"
	agentes de mesmo tamanho, na mesma barra possam	
	ter tarifas diferentes	
•	Divisão em segmentos infinitesimais → corrige limitação	
	do procedimento Shapley de inviabilidade	
	computacional devido a natureza combinatória do	
	problema.	
•	Eficiente e justo	
>	A definição da slack bus não interfere na alocação de	
	custos	
>	Boa representação de links DC	

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

- Objetiva alocar os custos de transmissão entre os beneficiados com a construção ou existência de um circuito
- Conceito de beneficiário
 - Soma líquida dos benefícios econômicos com a construção de um circuito seja positiva
 - Demanda: É beneficiada por uma expansão da transmissão quando o montante a pagar é menor com a existência do circuito
 - Geradores: São beneficiados por uma expansão quando a previsão de receita pela venda de energia maior após a construção de um circuito.

Parcela Locacional

$$Ben(l, d_i)_{anok} = \sum_t (\pi d_{i,t,k}^0 * d_{i,t,k} - \pi d_{i,t,k}^1 * d_{i,t,k}), i = 1,2,...,D$$

$$Ben(l,g_j)_{anok} = \sum_t (\pi d^1_{\Omega(j),t,k} * g^1_{j,t,k} - \pi d^0_{\Omega(j),t,k} * g^0_{j,t,k}), j = 1,2,...,G$$

 $Ben(l, d_i)_{anok}$ – benefício da demanda i no ano k, com a construção da linha l

 $Ben(l,g_j)_{anok}$ – benefício do gerador j no ano k, com a construção da linha I

 $\pi d_{i,t,k,}^1 \pi d_{i,j,k}^0$ – custo marginal da demanda na barra i, na etapa t, no ano k com e sem a ampliação da linha, respectivamente.

 $d_{i,j,k}$ – previsão de demanda na etapa t para a demanda conectada na barra i no ano k

 $g_{j,t,k}^0$, $g_{j,t,k}^1$ previsão de geração na etapa t para o gerador conectado na barra j no ano k antes e depois da construção da linha l

Ω (j) – barra de conexão do gerador j

D - número de barras com demanda

G – número de barras com gerador

- Custos Marginais de demanda são resultados de execuções do programa de despacho hidrotérmico SDDP
- Os Custos Marginais de demanda indicam o custo operativo associado ao gerador marginal, isto é, se houver uma variação marginal da demanda em alguma barra, qual é o gerador que irá suprir tal variação.

- Pagamento dos agentes a um circuito
 - Geradores

$$PAG_{g_{j_{anok}}}^{l} = \frac{Ben(l,g_{j})_{anok}}{Ben_{Tot_{anok}}} * min(RAP_{anok},Ben_{Tot_{anok}}), \quad \forall \ g_{j} \ pertencente \ a \ \Omega_{g}(l)$$

Demanda

$$PAG_{d_{i_{anok}}}^{l} = \frac{Ben(l, d_{i})_{anok}}{Ben_{Tot_{anok}}} * min(RAP_{anok}, Ben_{Tot_{anok}}), \forall d_{i} \ pertencente \ a \ \Omega_{d}(l)$$

 $Ben_{Tot_{ano\,k}} = \sum_{i=1}^{\Omega d(l)} Ben(l,d_i)_{anok} + \sum_{i=1}^{\Omega g(l)} Ben(l,g_j)_{anok}$, isto é, soma dos benefícios com a construção do circuito no ano k.

 $\Omega_a(l)$ – número de geradores que se beneficiam com a construção do circuito l.

 $\Omega_d(l)$ – número de consumidores que se beneficiam com a construção do circuito l.

- Pagamento dos agentes devido ao benefício com a construção dos circuitos
 - Geração

$$\Pi_{g_{j_{anok}}}^{B} = \sum_{l=1}^{I} PAG_{g_{j_{anok}}}^{l}$$

Demanda

$$\Pi_{d_{i_{anok}}}^{B} = \sum_{l=1}^{T} PAG_{d_{i_{anok}}}^{l}$$

Janeiro/2017

Idealmente, o benefício total da operação com a construção da linha deve ser maior que a RAP a ser paga:

$$RAP_{ano k} < Ben_{Tot_{ano k}}$$

 Nesse caso o pagamento dos agentes é ponderado pelo benefício e a RAP é integralmente recuperada

$$PAG_{g_{j_{anok}}}^{l} = \frac{{}^{Ben(l,g_{j})}_{anok}}{{}^{Ben_{Tot_{anok}}}} * min(RAP_{anok}, Ben_{Tot_{anok}}) \rightarrow \boxed{PAG_{g_{j_{anok}}}^{l} = \frac{Ben(l,g_{j})_{anok}}{Ben_{Tot_{anok}}} * RAP_{anok}}$$

$$PAG_{d_{i_{anok}}}^{l} = \frac{Ben(l,d_{i})_{anok}}{Ben_{Tot_{anok}}} * min(RAP_{anok}, Ben_{Tot_{anok}}) \Rightarrow PAG_{d_{i_{anok}}}^{l} = \frac{Ben(l,d_{i})_{anok}}{Ben_{Tot_{anok}}} * RAP_{anok}$$

Porém podem haver casos em que:

$$RAP_{ano k} \geq Ben_{Tot_{ano k}}$$

Nesse caso

$$PAG_{g_{j_{anok}}}^{l} = \frac{{}^{Ben(l,g_{j})}_{anok}}{{}^{Ben_{Tot_{anok}}}} * min(RAP_{anok}, Ben_{Tot_{anok}}) \rightarrow \boxed{PAG_{g_{j_{anok}}}^{l} = Ben(l,g_{j})_{anok}}$$

$$PAG_{d_{i_{anok}}}^{l} = \frac{Ben(l,d_{i})_{anok}}{Ben_{Tot_{anok}}} * min(RAP_{anok}, Ben_{Tot_{anok}}) \rightarrow PAG_{d_{i_{anok}}}^{l} = Ben(l,d_{i})_{anok}$$

RAP **não é** integralmente recuperada

Parcela Selo

$$Selo_{anual} = Receita \ Requerida - \left(\sum_{j=1}^{G} \Pi_{g_j}^B + \sum_{i=1}^{D} \Pi_{d_i}^B\right)$$

$$\Pi_a^{aj} = \frac{Selo * P_{inst_a}}{\sum_{a}^{n} P_{inst_a}}$$

 Π_a^{aj} – parcela de ajuste a ser paga pelo agente a para cada ano

 P_{inst_a} – potência instalada do agente a em cada ano

n- número de agentes

Janeiro/2017

- Tarifa a ser paga pelos agentes (TUST):
 - Geradores

$$TUST_{g_j} = \sum_{k}^{A} \Pi_{g_{j_{anok}}}^{B} + \sum_{k}^{A} \Pi_{g_{j_{anok}}}^{aj}$$

Demanda

$$TUST_{d_i} = \sum_{k}^{A} \Pi_{d_{ianok}}^{B} + \sum_{k}^{A} \Pi_{d_{ianok}}^{aj}$$

A: número de anos analisados

35

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Caso Exemplo – 2 barras

$$Rap_{anual} = 100kR$$
\$

	Custo de Geração	Capacidade de Geração
Barra A	<i>R\$ 20/MWh</i>	100 MW
Barra B	R\$ 50/MWh	60 MW

Esquema para atender as demandas considerando uma etapa: mês de janeiro (744 horas)

Análise sem a Linha AB

Caso Exemplo – 2 barras (2)

$$g_A = 60 MW$$
$$d_a = 40 MW$$

$$CMO = $20/MWh$$

$$g_B = 0 MW$$
$$d_b = 20 MW$$

$$CMO = $20/MWh$$

Análise com a Linha AB

$$Geração A \rightarrow PAG = 60 \ MW * 744 \ h * R$20/MWh = 892.8 \ kR$$$

Demanda A
$$\rightarrow$$
 PAG = 40 MW * 744 h * R\$20/MWh = 595.2 kR\$

Geração B
$$\rightarrow$$
 PAG = 0 MW * 744 h * R\$20/MWh = 0 kR\$

Demanda B
$$\rightarrow$$
 PAG = 20 MW * 744 h * R\$20/MWh = 297.6 kR\$

Análise dos beneficiários

$$Ben(g_a, l) = 892.8 k\$ - 595.2 k\$ \neq 297.6 kR\$$$

$$Ben(g_b, l) = 0 k\$ - 744 k\$ = -744 kR\$$$

$$Ben(d_a, l) = 595.2 k\$ - 595.2 k\$ = 0 kR\$$$

$$Ben(d_b, l) = 744 k\$ - 297.6 k\$ = 446.4 kR\$$$

$$Ben_{TOT} = 297.6 + 446.4 = 744kR$$
\$

$$RAP = 100kR$$
\$

$$Ben_{TOT} > RAP$$

$$PAG_{g_a} = \frac{297.6}{297.6 + 446.4} * 100 = 40 \ kR$$
\$

$$PAG_{d_b} = \frac{446.4}{297.6 + 446.4} * 100 = 60 \ kR$$
\$

$$PAG_{g_a} = PAG_{d_a} = 0 R$$

Agentes	TUST (kR\$)
Gerador A	40
Gerador B	-
Demanda A	-
Demanda B	60

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Caso Exemplo IEEE 24

- Caso acadêmico (24 barras)
 - Térmicas (T1) com custo operativo igual a \$50/MWh
 - Térmicas (T2) com custo operativo de \$250/MWh foram acionadas nas mesmas barras de T1.
 - Análise de 45 circuitos cujas receitas requeridas somadas eram de k\$
 2.027.000
- ► Como para todos os circuitos $RAP < Ben_{Tot}$, a receita requerida foi 100% recuperada

Caso Exemplo IEEE 24 (2)

Pagamento dos agentes (k\$)

Agentes	TUST(k\$)			
D:BUS_1	54,528.08			
D:BUS_10	156,978.83			
D:BUS_11	0.00			
D:BUS_12	0.00			
D:BUS_13	0.00			
D:BUS_14	174,010.94			
D:BUS_15	52,881.82			
D:BUS_16	165,903.05			
D:BUS_17	44,652.05			
D:BUS_18	111,513.44			
D:BUS_19	260,734.21			
D:BUS_2	30,931.66			
D:BUS_20	140,922.93			
D:BUS_21	0.00			
D:BUS_22	0.00			
D:BUS_23	0.00			
D:BUS_24	0.00			
D:BUS_3	160,306.34			

Agentes	TUST(k\$)
D:BUS_4	112,425.12
D:BUS_5	79,844.49
D:BUS_6	113,244.10
D:BUS_7	59,217.71
D:BUS_8	128,133.29
D:BUS_9	159,741.70
T:13_T1	7,404.44
T.13_T2	0.00
T:15_T1	3,621.69
T:15_T2	0.00
T:16_T1	452.17
T:16 T2	0.00
T·18_T1	3,047.11
T:18_T2	0.00
T:1_T1	2,058.25
T:1_T2	0.00
T:21_T1	0.00
T:21_T2	0.00

Agentes	TUST(k\$)
T:22_T1	3,522.24
T:22_T2	0.00
T:23_T1	80.93
T:23_T2	0.00
T:2_T1	434.63
T.2_T2	0.00
T:7_T1	408.78
T:7_T2	0.00

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Caso Bolívia – caso real

Análise do benefício para **27 circuitos** (vindos de um plano de expansão da transmissão)

Utilização de **100 cenários hidrológicos**

Horizonte: 2016-2024 (9 anos)

Caso Bolívia – caso real (2)

	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5	Ano 6	Ano 7	Ano 8	Ano 9
	(2016)	(2017)	(2018)	(2019)	(2020)	(2021)	(2022)	(2023)	(2024)
RR(k\$)	519.82	5215.99	5215.99	5215.99	5793.54	7981.45	8965.42	10693.95	15824.51
$\Pi^{B}(k\$)$	519.82	5195.74	5215.99	5215.99	5398.44	7981.45	8420.61	10386.98	15021.39
Selo (k\$)	0.00	20.25	0.00	0.00	395.10	0.00	544.82	306.98	803.12

RR Total(k\$)	65426.68	100%
$\Pi^{B}\left(\mathbf{k}\right)$	63356.4	97%
Selo (k\$)	2070.28	3%

Caso Bolívia – caso real (3)

	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5	Ano 6	Ano 7	Ano 8	Ano 9
	(2016)	(2017)	(2018)	(2019)	(2020)	(2021)	(2022)	(2023)	(2024)
RR(k\$)	519.82	5215.99	5215.99	5215.99	5793.54	7981.45	8965.42	10693.95	15824.51
$\Pi^{B}(k\$)$	519.82	5195.74	5215.99	5215.99	5398.44	7981.45	8420.61	10386.98	15021.39
Selo (k\$)	0.00	20.25	0.00	0.00	395.10	0.00	544.82	306.98	803.12

RR Total(k\$)	65426.68	100%
$\Pi^{B}\left(\mathbf{k}\right)$	63356.4	97%
Selo (k\$)	2070.28	3%

Daniela Bayma de Almeida – "Método dos Beneficiários para alocação de custos de sistemas de transmissão" - UFRJ

A parcela selo no Brasil é aproximadamente 80%

Caso Bolívia – caso real (3)

► Por que selo?

- Incertezas e aproximações envolvidas no cálculo da política operativa e na simulação estocástica.
- Os resultantes impactos das incertezas no cálculo da política operativa nos custos marginais da demanda.

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Conclusões

- Metodologia dos Beneficiários é outra forma de alocar custos de transmissão.
- Método de alocação de custos com viés econômico
- Análise das características de alocação de custos:
 - Permite recuperação dos custos (Receita Requerida)
 - Caso a soma dos pagamentos relativos aos benefícios for maior que a RAP →
 RR 100% recuperada pela parcela locacional → não há parcela selo!
 - Justa
 - Clara/ transparente
 - Eficiente
 - Volatilidade nas tarifas dependente da matriz energética do sistema

- Alocação de Custos
 - "Características" da alocação de custos
- Metodologias de cálculo da TUST
 - Parcela Locacional e Selo
 - Metodologia Nodal
 - Metodologia Nodal aplicada ao Brasil
 - Método das Participações Médias
 - Metodologia Aumann-Shapley
- Vantagens e Desvantagens das Metodologias
- Metodologia dos Beneficiários
- Estudos de caso
 - Caso Exemplo 2 barras
 - Caso Exemplo IEEE 24
 - Caso Bolívia (caso real)
- Conclusão
- Trabalhos Futuros

Trabalhos Futuros

Cálculo do benefício utilizando cenário de maior carregamento do circuito → tende a ter maior diferença de custos marginais → tende a reduzir ainda mais a parcela selo

► Aplicar alocação de custos da transmissão em redes expandidas com critério de segurança N-1 → Neste caso, a simulação do despacho hidrotérmico também deveria considerar essa característica para que os despachos estejam coerentes com a realidade operativa da rede.