Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

Elementary Questions about Regular Languages

Membership Question

Question: Given regular language L and string w how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted

 $w \notin L$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question:

Given regular languages L_1 and L_2 how can we check if $L_1=L_2$? $\mathcal{H}(\mathcal{A}_1)=q_1'$

Answer: Find if
$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

$$M_1 \qquad M_2$$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

$$L_1 \cap \overline{L_2} = \varnothing \quad \text{and} \quad \overline{L_1} \cap L_2 = \varnothing$$

$$L_1 \cap L_2 = Z$$

$$L_1 \cap L_2 = Z$$

$$L_2 \cap L_1 \cap L_2 = Z$$

$$L_1 = L_2$$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) \neq \emptyset$$

$$\downarrow L_{1} \cap \overline{L_{2}} \neq \emptyset \quad \text{or} \quad \overline{L_{1}} \cap L_{2} \neq \emptyset$$

$$\downarrow L_{1} \quad L_{2} \quad L_{1} \quad L_{2} \quad L_{1} \quad L_{2} \quad L_{1} \quad L_{2} \neq L_{1}$$

 $L_1 \neq L_2$

If L1 and L2 are regular languages, then so L1 U L2; L1 \cap L2; L1L2, L1^c and L1*.

We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and Star-closure.

If L1 and L2 are regular languages, there exist regular expressions r1 and r2 such that L1 = L(r1) and L2 = L(r2).

By def^n , r1+r2, r1r2 and $r1^*$ are regular expressions denoting the languages L1 U L2; L1L2 and L1* respectively.

For complement of L1, we can design complemented automata (as discussed in previous classes).

For L1 \cap L2, we can design product automata for given L1 and L2 (as discussed in previous classes).

Claim 1: If L1 and L2 are regular, then L1 - L2 (set difference) is necessarily regular also ???

Claim 2: The family of regular languages is closed under reversal (L^R) ???

Claim 3: If L is a regular language, prove that the language $\{uv: u \in L, v \in L^R\}$ is also regular ???

Claim 4: Show that the family of regular languages is closed under symmetric difference ??? $A \oplus B = (A - B) \cup (B - A)$

Claim 5: Show that the family of languages is closed under NOR operation ???