M.TECH. LASER SCIENCE AND TECHNOLOGY FIRST YEAR SECOND SEMESTER - 2018

SUBJECT: LASER DAMAGE OF MATERIALS

Time: Three hours.

Full Marks: 100

Answer any five questions

No. of		Marks
questions		11202220
1.	(a) Compute the power density of a 50 mW Nd: Yag laser at 1064 nm	
	with a 0.8 mm beam diameter. Why the damage threshold at the	
	second harmonic (532 nm) of Nd:YAG laser will be half of that at	
	1064 nm?	
	(b) Explain with a graph how maximum power handling capacity of	
	glass fiber power changes with fiber diameter and pulse length.	
	(c) Explain the factors on which the maximum power or energy	
	transmitted down an optical fiber depends.	
	(c) What is Brillouin scattering? What are the basic differences	
	between optical and acoustic phonons?	
	5+5+5+5	
2.	How the damage mechanisms in optical materials occur when	
	intensity of light beam starts from low to very high values.	
	Explain laser induced damage in optical materials. How to design of	
	damage resistant laser?	
	Explain Self-focusing and Birefringes	
	6+5+5+4	
3.	How could you define Laser Induced Damage Threshold (LIDT) of an	
	optical component.	
	Show the variation of Damage Probability with laser fluence (J/cm ²)	
	for nanosecond pulses and how we can get an idea of defining LIDT	
	from the plot.	

Describe 1-on-1 test method for LIDT determination. What are the basic differences of 1-on-1 and R-on-1 techniques?

6+4+8+2

4. Explain how the LIDT of coated optics is governed by the surface, material properties of the substrate and the properties of the optical coating.

Derive the local heating in the surface of a ND glass caused by a single laser pulse, using the measured absorption coefficients.

15 + 5

Write down the five laser damage mechanisms in tissues.
Explain with diagram the major parts of the human eye and explain how wavelength dependent effects are observed in the eye?

5+15

6. Explain the primary mechanisms of laser induced breakdown spectroscopy (LIBS) mentioning the involvements of ablation and luminous plasma processes.

What are the main advantages of LIBS over other analytical methods?
What important information we get from the measurements of LIB spectra of the soil, a heterogeneous sample?

10+5+5