

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WESTBENGAL Odd Semester Examinations 2023-24

Paper Code: PCC-CS503

Paper Name: Formal Language & Automata Theory

Time Allotted: 3 Hours Full Marks: 70

Answer all questions.

Special Instructions :(If any)

CI	Quactions		I		
SI	Questions	Marks	Mapped CO	Mapped PO	Bloom's
	Group A				
1.(a)	To simplify CFG's following operations are performed. I. Remove useless symbols II. Remove epsilon-productions/lambda-productions III. Remove unit productions The order to perform these operations is (a) I, II, III (b) II, I, III (c) II, III, I (d) III, I, I	1	C O 4		L1
1.(b)	Consider the following grammar: S → AE SB A → bSEa B → aSB bBE E → aBE ad Which of the following is/are non-generating symbol(s)? (a) S (b) A (c) E (d) B	1	C O 4		L3
1.(c)	Pumping lemma for regular languages is used to check whether a given regular language is finite or not. (a) TRUE (b) FALSE	1	C O 3		L1
1.(d)	CFL's are closed under complement. (a) TRUE (b) FALSE	1	C O 3		L1
1.(e)	LBA's are same as TM. (a) TRUE (b) FALSE	1	C O 3		L1
1.(f)	S → aBc aB → cA Ac → d The above grammar is (a) Unrestricted (b) Context free (c) Regular (d) Context sensitive	1	C O 2		L3

1.(g)	Determining whether a string w belongs to $\mathbb{L}(M)$, where M is a $\mathbb{T}M$, is undecidable. (a) TRUE	1	C 0	L1
	(b) FALSE		1	
1.(h)	$L(ab*ba*)$ U $L(ba*ab*) = \varepsilon$ (epsilon).	1	С	L3
	(a) TRUE (b) FALSE		0	
1.(i)	Turing machines (TM) are "hardwired" i.e., they execute only one program.	1	C	L1
1.(.)	(a) TRUE	_	0	
	(b) FALSE		1	
1.(j)	Consider the following CFG $X \rightarrow XY$	1	С	L3
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	
	$Y \rightarrow Ya \mid Yb \mid b$		1	
	Any string of terminals, which can be generated by the CFG			
	(a) Has at least one b (b) Ends with a			
	(c) Has no consecutive a's or b's			
	(d) Has at least two a's			
	Group B			
2	a) Compute δ^* (q ₀ , 00101) by using recursive formula for δ^* [show each step	5	С	L3
	clearly].		O 3	
			3	
	O_{01}			
	$\rightarrow (9) \rightarrow (9)$			
OR	b) Convert the following regular expression into an $\varepsilon ext{-NFA}.$ By using Ken Thompson	5	С	L3
	method. Show each step clearly. a* b* c*		0	
	a^ p^ C^		3	
3	a) Consider the following derivation tree:	5	С	L3
			0	
			1	
	(S) (S) (b)			
	6 6			
	Find a simple grammar G for which this is the derivation tree of the string aab. Then find two			
	more sentences of $L(G)$.			
OR	b) Consider the grammar	5	С	L3
	S → aaB		0	
	$B \rightarrow Aa$		1	
	$A \rightarrow bBb \mid \epsilon$			
	Show that the string aabbabba is not in the language generated by this grammar.		L	
4	a) Convert the following CFG into CNF.	5	C	L3
	$\mathrm{E} ightarrow$ (E) E + E $\mathrm{E}\mathrm{E}$ $-\mathrm{E}$ 0 1		5	
			$oxedsymbol{oxedsymbol{oxed}}$	
OR	b) Convert the following CFG ${\tt G}$ into a PDA ${\tt M}$ with no final states such that ${\tt L}$ (${\tt M}$) $\;=\;$	5	С	L3
	L(G).		0	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	
	$B \rightarrow dB \mid d$			

	Group C			
5A	a) Give the complete hierarchy of grammars with their recognizers as well as the form of production rules.	7	C O 2	L1
	b) Design a TM to add two numbers $\mathbf x$ and $\mathbf y.$	8	C O 6	L6
OR 5B	a) Using Chomsky hierarchy, find the highest type number (Type-0/Type-1/Type-2/Type-3 grammar) which can be applied on the following grammars. Justify your answer. i) S → Aa, A → d Ba, B → abd ii) S → ASB d, A → aA iii) AAbdD → abdDbdD iv) A → abA	7	C O 2	L3
	b) Design a TM to compute $f(x) = 2x$.	8	C O 6	L6
6A	Draw an NFA which accepts a string containing "the" anywhere in a string of $\{a-z\}$ e.g., "there" but not "those". Convert the NFA to a minimized DFA by using the concept of distinguishability states.	3+ 6+ 6	C O 3 , C O 4	L2
OR 6B	a) Differentiate between PDA and LBA.	2	C O 3	L1
	b) Prove that the language $\{1^n0^n \mid n \ge 1\}$ is not regular using pumping lemma.	8	C O 4	L4
	c) Given a PDA M_1 having final states. Describe how to construct an equivalent PDA M_2 (without any final state) such that N (M_2) = L (M_1).	5	C O 3	L3
7A	a) Explain with a neat diagram, the working of a Turing model.	5	C O 6	L1
	 b) Consider the following grammar G: S → AB A → BB a B → AB b Use CYK algorithm to check whether the string aab is in L(G). 	10	C O 4	L3
OR 7B	a) Explain various types of Turing machines.	5	C O 6	L1
	b) Convert the following grammar into GNF. S → Abb a A → aaA B B → bAb	10	C O 4	L3