

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resumo

Inferência II

Inferências com amostras pequenas

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Sumário

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resum

Recapitulando

- Intervalos de confiança para a média
 - A distribuição t de Student
 - Intervalos de confiança para amostras pequenas
- Resumo

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média

- Quando vamos fazer uma inferência sobre μ e sabemos σ^2 , podemos usar σ diretamente no intervalo de confiança.
- Para isto, consultamos na tabela normal padrão (tabela
 Z) para obter o valor crítico z_c
- Esse valor crítico representa a probabilidade de que o intervalo criado em torno de $\hat{\mu}=\bar{x}$ contenha o valor desejado μ .
- Na prática, isso raramente acontece (se não sabemos μ , raramente saberemos σ^2).

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média

- Quando vamos fazer uma inferência sobre μ e sabemos σ^2 , podemos usar σ diretamente no intervalo de confiança.
- Para isto, consultamos na tabela normal padrão (tabela
 Z) para obter o valor crítico z_c
- Esse valor crítico representa a probabilidade de que o intervalo criado em torno de $\hat{\mu}=\bar{x}$ contenha o valor desejado μ .
- Na prática, isso raramente acontece (se não sabemos μ , raramente saberemos σ^2).

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Quando vamos fazer uma inferência sobre μ e sabemos σ^2 , podemos usar σ diretamente no intervalo de confiança.
- Para isto, consultamos na tabela normal padrão (tabela
 Z) para obter o valor crítico z_c
- Esse valor crítico representa a probabilidade de que o intervalo criado em torno de $\hat{\mu}=\bar{x}$ contenha o valor desejado μ .
- Na prática, isso raramente acontece (se não sabemos μ , raramente saberemos σ^2).

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Quando vamos fazer uma inferência sobre μ e sabemos σ^2 , podemos usar σ diretamente no intervalo de confiança.
- Para isto, consultamos na tabela normal padrão (tabela
 Z) para obter o valor crítico z_c
- Esse valor crítico representa a probabilidade de que o intervalo criado em torno de $\hat{\mu}=\bar{x}$ contenha o valor desejado μ .
- Na prática, isso raramente acontece (se não sabemos μ , raramente saberemos σ^2).

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resumo

• Uma situação mais realista é quando queremos estimar μ e não sabemos σ .

- Quando temos uma amostra grande (n ≥ 30), podemos aproximar σ por s, e usar s diretamente no cálculo da margem de erro
- Isso é justificado pelo Teorema Central do Limite (TCL) (e.g. vídeo do experimento de Galton).
- Consultamos o z_c na tabela Z, usando s como estimador de σ

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Uma situação mais realista é quando queremos estimar μ e não sabemos σ .
- Quando temos uma amostra grande (n ≥ 30), podemos aproximar σ por s, e usar s diretamente no cálculo da margem de erro
- Isso é justificado pelo Teorema Central do Limite (TCL) (e.g. vídeo do experimento de Galton).
- Consultamos o z_c na tabela Z, usando s como estimador de σ

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Uma situação mais realista é quando queremos estimar μ e não sabemos σ .
- Quando temos uma amostra grande ($n \ge 30$), podemos aproximar σ por s, e usar s diretamente no cálculo da margem de erro
- Isso é justificado pelo Teorema Central do Limite (TCL) (e.g. vídeo do experimento de Galton).
- Consultamos o z_c na tabela Z, usando s como estimador de σ

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Uma situação mais realista é quando queremos estimar μ e não sabemos σ .
- Quando temos uma amostra grande (n ≥ 30), podemos aproximar σ por s, e usar s diretamente no cálculo da margem de erro
- Isso é justificado pelo Teorema Central do Limite (TCL) (e.g. vídeo do experimento de Galton).
- Consultamos o z_c na tabela Z, usando s como estimador de σ

Inferência II

Felipe Figueiredo

Recapitulando

confiança
para a média

- Para a construção de intervalos de confiança, usamos o nível de confiança c (tipicamente c = 0.95).
- Isto é equivalente à significância $\alpha = 1 0.95 = 0.05$
- Isto é, a confiança (c = probabilidade de que o IC contenha a média) é o complementar da significância (α = probabilidade de que o IC não contenha a média)
- Pela forma como a tabela é organizada, é mais conveniente procurar pela significância α na tabela.
- A significância deve ser dividida entre as duas caudas.

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Para a construção de intervalos de confiança, usamos o nível de confiança c (tipicamente c = 0.95).
- Isto é equivalente à significância $\alpha = 1 0.95 = 0.05$
- Isto é, a confiança (c = probabilidade de que o IC contenha a média) é o complementar da significância (α = probabilidade de que o IC não contenha a média)
- Pela forma como a tabela é organizada, é mais conveniente procurar pela significância α na tabela.
- A significância deve ser dividida entre as duas caudas.

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Para a construção de intervalos de confiança, usamos o nível de confiança c (tipicamente c = 0.95).
- Isto é equivalente à significância $\alpha = 1 0.95 = 0.05$
- Isto é, a confiança (c = probabilidade de que o IC contenha a média) é o complementar da significância (α = probabilidade de que o IC não contenha a média).
- Pela forma como a tabela é organizada, é mais conveniente procurar pela significância α na tabela.
- A significância deve ser dividida entre as duas caudas.

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média

- Para a construção de intervalos de confiança, usamos o nível de confiança c (tipicamente c = 0.95).
- Isto é equivalente à significância $\alpha = 1 0.95 = 0.05$
- Isto é, a confiança (c = probabilidade de que o IC contenha a média) é o complementar da significância (α = probabilidade de que o IC não contenha a média).
- Pela forma como a tabela é organizada, é mais conveniente procurar pela significância α na tabela.
- A significância deve ser dividida entre as duas caudas.

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Para a construção de intervalos de confiança, usamos o nível de confiança c (tipicamente c = 0.95).
- Isto é equivalente à significância $\alpha = 1 0.95 = 0.05$
- Isto é, a confiança (c = probabilidade de que o IC contenha a média) é o complementar da significância (α = probabilidade de que o IC não contenha a média).
- Pela forma como a tabela é organizada, é mais conveniente procurar pela significância α na tabela.
- A significância deve ser dividida entre as duas caudas.

- A tabela da Normal Padrão mostra os valores sob a curva até o ponto z observado (à esquerda de z).
- Cada linha corresponde ao primeiro dígito da área, e cada coluna identifica o segundo dígito da área (figura a seguir)

Example

A probabilidade de uma variável aleatória Z ser menor que z=0.35 é:

$$P(Z < 0.35) = 0.6368 = 63.68\%$$

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- A tabela da Normal Padrão mostra os valores sob a curva até o ponto z observado (à esquerda de z).
- Cada linha corresponde ao primeiro dígito da área, e cada coluna identifica o segundo dígito da área (figura a seguir)

Example

A probabilidade de uma variável aleatória Z ser menor que z=0.35 é:

$$P(Z < 0.35) = 0.6368 = 63.68\%$$

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

 A tabela da Normal Padrão mostra os valores sob a curva até o ponto z observado (à esquerda de z).

 Cada linha corresponde ao primeiro dígito da área, e cada coluna identifica o segundo dígito da área (figura a seguir)

Example

A probabilidade de uma variável aleatória Z ser menor que z=0.35 é:

$$P(Z < 0.35) = 0.6368 = 63.68\%$$

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Tables of the Normal Distribution

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

nesuii

Tables of the Normal Distribution

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Tables of the Normal Distribution

• c = 95% = 0.95

• $\alpha = 5\% = 0.05$

 $\frac{\alpha}{2} = 2.5\% = 0.0250$

 \bullet 1 - 0.025 = 0.9750

Assim, o z_c é 1.96

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resur

Tables of the Normal Distribution

Inferência II

Felipe Figueiredo

Recapitulando

confiança
para a média

Resur

•
$$c = 95\% = 0.95$$

•
$$\alpha = 5\% = 0.05$$

•
$$\frac{\alpha}{2} = 2.5\% = 0.0250$$

$$\bullet$$
 1 - 0.025 = 0.9750

Tables of the Normal Distribution

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resu

• c = 95% = 0.95

•
$$\alpha = 5\% = 0.05$$

•
$$\frac{\alpha}{2} = 2.5\% = 0.0250$$

$$\bullet$$
 1 - 0.025 = 0.9750

Assim, o z_c é 1.96

Tables of the Normal Distribution

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

•
$$c = 95\% = 0.95$$

•
$$\alpha = 5\% = 0.05$$

•
$$\frac{\alpha}{2} = 2.5\% = 0.0250$$

$$\bullet$$
 1 $-$ 0.025 $=$ 0.9750

Tables of the Normal Distribution

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Decume

Resu

• c = 95% = 0.95

•
$$\alpha = 5\% = 0.05$$

•
$$\frac{\alpha}{2} = 2.5\% = 0.0250$$

$$\bullet$$
 1 $-$ 0.025 $=$ 0.9750

Assim, o z_c é 1.96

Tables of the Normal Distribution

Inferência II

Felipe Figueiredo

Recapitulando

c = 95% = 0.95 $\alpha = 5\% = 0.05$

$$\alpha = 3/6 = 0.00$$

•
$$\frac{\alpha}{2} = 2.5\% = 0.0250$$

$$\bullet$$
 1 $-$ 0.025 $=$ 0.9750

Assim, o z_c é 1.96

E se a amostra não for grande?

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

- Quando a amostra é pequena, não podemos simplesmente substituir σ por s na fórmula, pois o erro dessa aproximação não é desprezível.
- Nesse caso, a média amostral não tem distribuição normal
- Assim precisamos usar uma outra distribuição (tabelada) com a distribuição t de Student.

E se a amostra não for grande?

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resun

 Quando a amostra é pequena, não podemos simplesmente substituir σ por s na fórmula, pois o erro dessa aproximação não é desprezível.

- Nesse caso, a média amostral não tem distribuição normal.
- Assim precisamos usar uma outra distribuição (tabelada) com a distribuição t de Student.

E se a amostra não for grande?

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média

- Quando a amostra é pequena, não podemos simplesmente substituir σ por s na fórmula, pois o erro dessa aproximação não é desprezível.
- Nesse caso, a média amostral não tem distribuição normal.
- Assim precisamos usar uma outra distribuição (tabelada) com a distribuição t de Student.

Sumário

Inferência II

Felipe Figueiredo

Student

A distribuição t de

- Intervalos de confiança para a média
 - A distribuição t de Student
 - Intervalos de confiança para amostras pequenas

A distribuição t de Student

Inferência II

Felipe Figueiredo

Recapitulando

onfiança para a média A distribuição t de

Student Intervalos de

Intervalos de confiança para amostras pequena

- Student (pseudônimo de W. S. Gossett [1876-1937], trabalhando para a cervejaria Guiness) criou uma distribuição que melhor se aproxima dos dados de amostras pequenas
- Tem um parâmetro graus de liberdade (gl) vinculado ao tamanho da amostra n.

A distribuição t de Student

Inferência II

Felipe Figueiredo

Recapitulando

para a média

A distribuição t de

Student

Intervalos de

confiança para amostras pequenas

- Student (pseudônimo de W. S. Gossett [1876-1937], trabalhando para a cervejaria Guiness) criou uma distribuição que melhor se aproxima dos dados de amostras pequenas
- Tem um parâmetro graus de liberdade (gl) vinculado ao tamanho da amostra n.

A distribuição t de Student

Figura: A distribuição t de Student

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

A distribuição t de Student

confiança para amostras pequena

Propriedades da distribuição t

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

A distribuição t de Student

Intervalos de confiança para amostras pequenas

- A distribuição tem forma de sino (simétrica) assim como a Normal padrão Z
- Reflete a maior variabilidade inerente às amostras pequenas
- O formato da curva depende do tamanho da amostra r
- Quanto mais graus de liberdade (dados), mais a distribuição t se parece com a distribuição Z.

Propriedades da distribuição t

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média

A distribuição t de Student

Intervalos de confiança para amostras pequenas

- A distribuição tem forma de sino (simétrica) assim como a Normal padrão Z
- Reflete a maior variabilidade inerente às amostras pequenas
- O formato da curva depende do tamanho da amostra i
- Quanto mais graus de liberdade (dados), mais a distribuição t se parece com a distribuição Z.

Propriedades da distribuição t

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de

Student Intervalos de

Intervalos de confiança para amostras pequenas

- A distribuição tem forma de sino (simétrica) assim como a Normal padrão Z
- Reflete a maior variabilidade inerente às amostras pequenas
- O formato da curva depende do tamanho da amostra n
- Quanto mais graus de liberdade (dados), mais a distribuição t se parece com a distribuição Z.

Propriedades da distribuição t

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

A distribuição t de Student

Intervalos de confiança para amostras pequenas

- A distribuição tem forma de sino (simétrica) assim como a Normal padrão Z
- Reflete a maior variabilidade inerente às amostras pequenas
- O formato da curva depende do tamanho da amostra n
- Quanto mais graus de liberdade (dados), mais a distribuição t se parece com a distribuição Z.

Sumário

Inferência II

Felipe Figueiredo

Recapitulando

para a média

A distribuição t de
Student
Intervalos de

Intervalos de confiança para amostras pequenas

Resumo

Recapitulando

- 2 Intervalos de confiança para a média
 - A distribuição t de Student
 - Intervalos de confiança para amostras pequenas
- Resumo

Intervalos de confiança para a média

Inferência II

Felipe Figueiredo

Recapitulando

para a média

A distribuição t de

Intervalos de confiança para amostras pequenas

Paguma

Definition

A margem de erro usando a estatística t é

$$E = t_c imes rac{s}{\sqrt{n}}$$

- Consultamos a tabela t de Student para encontrar o valor crítico t_c
- Graus de liberdade: gl = n − 1 (onde n é o tamanho da amostra)

Intervalos de confiança para a média

Inferência II

Felipe Figueiredo

Recapitulando

para a média

A distribuição t de

Intervalos de confiança para amostras pequenas

Resumo

Definition

A margem de erro usando a estatística t é

$$E = t_c imes rac{s}{\sqrt{n}}$$

- Consultamos a tabela t de Student para encontrar o valor crítico t_c
- Graus de liberdade: gl = n 1 (onde n é o tamanho da amostra)

Intervalos de confiança para a média

Inferência II

Felipe Figueiredo

Intervalos de confianca para

amostras pequenas

Definition

A margem de erro usando a estatística t é

$$E = t_c imes rac{s}{\sqrt{n}}$$

- Consultamos a tabela t de Student para encontrar o valor crítico t_c
- Graus de liberdade: gl = n 1 (onde n é o tamanho da amostra)

A tabela t

t Discribution α						
1 2 3 4 5	63.657 9.925 5.841 4.604 4.032	31.821 6.965 4.541 3.747 3.365	12.706 ' 4.303 3.182 2.776 2.571	6.314 2.920 2.353 2.132 2.015	3.078 1.886 1.638 1.533 1.476	1,000 ,816 765 741 727
6 7 8 9	3.707 3.500 3.355 3.250 3.169	3.143 2.998 2.896 2.821 2.764	2.447 2.365 2.306 2.262 2.228	1.943 1.895 1.860 1.833 1.812	1.440 1.415 1.397 1.383 1.372	.718 .711 .706 .703 .700
11 12 13 14	3.106 3.054 3.012 2.977 2.947	2.718 2.681 2.650 2.625 2.602	2.201 2.179 2.160 2.145 2.132	1.796 1.782 1.771 1.761 1.753	1.363 1.356 1.350 1.345 1.341	,697 ,696 ,694 ,692 ,691
16 17 18 19 20	2.921 2.898 2.878 2.861 2.845	2.584 2.567 2.552 2.540 2.528	2.120 2.110 2.101 2.093 2.036	1.746 1.740 1.734 1.729 1.725	1.337 1.333 1.330 1.328 1.325	.690 .689 .688 .688
21 22 23 24 25	2.831 2.819 2.807 2.797 2.787	2.518 2.508 2.500 2.492 2.485	2.080 2.074 2.069 2.064 2.060	1.721 1.717 1.714 1.711 1.708	1.323 1.321 1.320 1.318 1.316	.686 .686 .685 .685 .684
26 27 28 29 Large (z)	2.779 2.771 2.763 2.756 2.575	2.479 2.473 2.467 2.462 2.327	2.056 2.052 2.048 2.045 1.960	1.706 1.703 1.701 1.699 1.645	1,315 1,314 1,313 1,311 1,282	.684 .684 .683 .683

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

Example

Considere uma amostra de 10 bebês selecionada de uma população de bebês que recebe antiácidos que contém alumínio e são frequentemente usados para tratar distúrbios digestivos. A distribuição de níveis de alumínio no plasma é conhecida como aproximadamente normal, no entanto sua média e desvio padrão não são conhecidos. O nível médio de alumínio para a amostra de dez bebês é $37.2~\mu g/l$ e desvio-padrão $7.13~\mu g/l$. Calcule um intervalo com 95% de confiança para a média populacional.

(Fonte: Hacker & Simões, 2008, Fiocruz)

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Intervalos de confiança para

confiança para amostras pequenas

• $\bar{x} = 37.2$

$$s = 7.13$$

•
$$n = 10 \Rightarrow gl = 9$$

Solução

$$t_c = 2.262$$

$$E = t_c \times \frac{s}{\sqrt{n}}$$

$$E = 2.262 \times \frac{7.13}{\sqrt{10}} \approx 5.1$$

$$(37.2 - 5.1, 37.2 + 5.1) = (32.1, 42.5)$$

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

- $\bar{x} = 37.2$
- s = 7.13
- $n = 10 \Rightarrow gl = 9$

Solução

$$t_c = 2.262$$
 $E = t_c \times \frac{s}{\sqrt{n}}$
 $E = 2.262 \times \frac{7.13}{\sqrt{10}} \approx 5.1$
 $(37.2 - 5.1, 37.2 + 5.1) = (32.1, 42.3)$

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

•
$$\bar{x} = 37.2$$

•
$$s = 7.13$$

•
$$n = 10 \Rightarrow gl = 9$$

Solução

$$t_c = 2.262$$

$$E = t_c \times \frac{s}{\sqrt{n}}$$

$$E = 2.262 \times \frac{7.13}{\sqrt{10}} \approx 5.1$$

$$5(37.2 - 5.1.37.2 + 5.1) = (32.1.42.3)$$

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

• $\bar{x} = 37.2$

•
$$s = 7.13$$

•
$$n = 10 \Rightarrow gl = 9$$

Solução

$$t_c = 2.262$$
 $E = t_c imes \frac{s}{\sqrt{n}}$
 $E = 2.262 imes \frac{7.13}{\sqrt{10}} \approx 5.1$
 $IC(95\%) = (37.2 - 5.1, 37.2 + 5.1) = (32.1, 42.3)$

Inferência II

Felipe Figueiredo

Recapitulando

confiança
para a média
A distribuição t de

Student Intervalos de

confiança para amostras pequenas

Inferência II

Felipe Figueiredo

Recapitulando

confiança
para a média
A distribuição t de

Intervalos de confiança para amostras pequenas

Resumo

Exercício

Num estudo para descrever o perfil dos pacientes adultos atendidos no ambulatório de um posto de saúde, uma amostra de 16 pacientes adultos foi selecionada ao acaso entre o total de pacientes atendidos no posto durante os últimos três anos, coletando-se dos prontuários desses pacientes dados relativos à idade, à escolaridade e a outros fatores de interesse.

Para a variável idade, observou-se uma média amostral de 36.86 anos com um desvio padrão amostral de 17.79 anos.

Exercício

- Defina a população e a amostra.
- 2 Forneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança.

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

Exercício

- 1 Defina a população e a amostra.
- ② Forneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

Exercício

- Defina a população e a amostra.
- Porneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança.

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

Exercício

- Defina a população e a amostra.
- ② Forneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança.

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de

Intervalos de confiança para

amostras pequenas

Resumo

 $t_c(95\%) = 2.132$ $II = 10 \Rightarrow gI = 15$

Exercício

- Defina a população e a amostra.
- Porneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança.

$$E = \frac{l_c s}{\sqrt{n}}$$

$$(90\%) - 1.78$$

$$l_{C}(3070) = 1.733$$

$$t_c(95\%) = 2.132$$

$$\bar{x} = 36.86$$

$$s = 17.79$$

$$n = 16 \Rightarrow gl = 15$$

Inferência II

Felipe Figueiredo

A distribuição t de

Intervalos de confianca para

amostras pequenas

Exercício

- 1 Defina a população e a amostra.
- Porneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança.

$$E=\frac{t_c s}{\sqrt{n}}$$

$$t_c(90\%) = 1.753$$

$$t_c(95\%) = 2.132$$

$$\bar{x} = 36.86$$

$$s = 17.79$$

$$n = 16 \Rightarrow gl = 15$$

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de

> Intervalos de confiança para amostras pequenas

Exercício

- Defina a população e a amostra.
- 2 Forneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança.

$$E = \frac{t_c s}{\sqrt{n}}$$
 $\bar{x} = 36.86$ $t_c(90\%) = 1.753$ $s = 17.79$ $t_c(95\%) = 2.132$ $n = 16 \Rightarrow gl = 15$

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de

> Intervalos de confiança para amostras pequenas

.

Solução

● IC de 90% (c=0.90)

$$E = \frac{t_c s}{\sqrt{n}} = \frac{1.753 \times 17.79}{\sqrt{16}} \approx 7.80$$

$$IC_{0.90} = \bar{x} \pm E = 36.86 \pm 7.80 = (29.06, 46.66)$$

• IC de 95% (c=0.95)

$$E = rac{t_c s}{\sqrt{n}} = rac{2.132 imes 17.79}{\sqrt{16}} pprox 9.48$$

$$IC_{0.95} = \bar{x} \pm E = 36.86 \pm 9.48 = (27.38, 46.34)$$

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de Student

Intervalos de confiança para amostras pequenas

Solução

• IC de 90% (c=0.90)

$$E = \frac{t_c s}{\sqrt{n}} = \frac{1.753 \times 17.79}{\sqrt{16}} \approx 7.80$$

$$IC_{0.90} = \bar{x} \pm E = 36.86 \pm 7.80 = (29.06, 46.66)$$

● IC de 95% (c=0.95)

$$E = \frac{t_c s}{\sqrt{n}} = \frac{2.132 \times 17.79}{\sqrt{16}} \approx 9.48$$

$$IC_{0.95} = \bar{x} \pm E = 36.86 \pm 9.48 = (27.38, 46.34)$$

Inferência II

Felipe Figueiredo

Recapitulando

confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

Solução

IC de 90% (c=0.90)

$$E = \frac{t_c s}{\sqrt{n}} = \frac{1.753 \times 17.79}{\sqrt{16}} \approx 7.80$$

$$IC_{0.90} = \bar{x} \pm E = 36.86 \pm 7.80 = (29.06, 46.66)$$

IC de 95% (c=0.95)

$$E = \frac{t_c s}{\sqrt{n}} = \frac{2.132 \times 17.79}{\sqrt{16}} \approx 9.48$$

$$IC_{0.95} = \bar{x} \pm E = 36.86 \pm 9.48 = (27.38, 46.34)$$

Inferência II

Felipe Figueiredo

Recapitulando

nntervalos de confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

Resumo

Para construir um intervalo de confiança para a média μ devemos considerar as informações e dados disponíveis:

• Se soubermos σ , usamos a tabela Z (z_c)

$$E=z_{c}\frac{\sigma}{\sqrt{n}}$$

• Se não soubermos σ , mas se n é grande ($n \ge 30$), usamos a tabela Z (z_c)

$$E = z_c \frac{s}{\sqrt{n}}$$

• Se não soubermos σ , mas e se n é pequeno (n < 30), usamos a tabela t (t_c)

$$E = t_c \frac{s}{\sqrt{n}}$$

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resumo

Para construir um intervalo de confiança para a média μ devemos considerar as informações e dados disponíveis:

• Se soubermos σ , usamos a tabela Z (z_c)

$$E=z_{c}\frac{\sigma}{\sqrt{n}}$$

• Se não soubermos σ , mas se n é grande ($n \ge 30$), usamos a tabela Z (z_c)

$$E=z_{c}\frac{s}{\sqrt{n}}$$

• Se não soubermos σ , mas e se n é pequeno (n < 30), usamos a tabela t (t_c)

$$E = t_c \frac{s}{\sqrt{n}}$$

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resumo

Para construir um intervalo de confiança para a média μ devemos considerar as informações e dados disponíveis:

• Se soubermos σ , usamos a tabela Z (z_c)

$$E=z_{c}\frac{\sigma}{\sqrt{n}}$$

• Se não soubermos σ , mas se n é grande ($n \ge 30$), usamos a tabela Z (z_c)

$$E=z_{c}\frac{s}{\sqrt{n}}$$

 Se não soubermos σ, mas e se n é pequeno (n < 30), usamos a tabela t (t_c)

$$E=t_{c}\frac{s}{\sqrt{n}}$$

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média