你不知道的 大学大学 第 独特は標準と

Table of Contents

总览	1.1
C-Tool参数	1.2
C-Tool粗轧参数	1.2.1
C-Tool精轧温度参数	1.2.2
C-Tool板形	1.2.3
日志参数	1.3
粗轧日志参数	1.3.1
精轧日志轧参数	1.3.2
精轧温度日志参数	1.3.3
板形参数	1.3.4
CFG配置参数	1.4
粗轧CFG配置参数	1.4.1
精轧CFG配置参数	1.4.2
精轧温度CFG配置参数	1.4.3
板形CFG配置参数	1.4.4

你不知道的二级模型 参数篇

C-Tool

C-Tool直接读取和写入数据库数据。C-Tool数据的修改,在put后直接生效,不需要重启。

C-Tool RSU参数

粗轧区域的C-Tool参数分类如下图所示。

3 N	16 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d-n 172	副))
分类	英文全称	翻译	表	主要内容
RAMP	RM MAP parameter	粗轧策 略表	2	道次,载荷分布, 压下量,速度等
RPRP	RM Product parameter	粗轧参数表	8	中间坯厚度,宽度 补偿,缩颈等
RSPP/RSCD	RM Spray code table	粗轧工 艺水参 数表	2	工艺水使用设定, 代码设定等
RDRP/RMCP/RMGP	RM Model parameter	粗轧模 型参数 表	8	算轧制力、辊缝、 前后滑的系数等
RESS	RE Short Stroken	粗轧短 行程参 数表	5	短行程参数设定等
RAMP/RLFP/RLFW	RM adaptive learning	粗轧自学习表	16	粗轧所有自学习值 表(根据特定条件 划分)等

C-TOOL副表详细参数说明

RSU1601_Rolling_Map

相关参数:

- Loading Pattern(载荷分布)
- Entry Speed (咬入速度)
- Run_Speed(轧制速度)

• Side Guide(导卫道次对中投用)。

消化内容:

Loading Pattern:包含平辊及立辊载荷分配。1.0为百分百,其他数值均与1.0成比例关系。总减宽量及道次设定做为数据筛选条件。其中载荷分配数据默认根据前道次压下量大、后道次压下量小的原则。

Entry Speed:咬入角检查(入口速度受限于咬入角限制),并通过表RAMP电机和操作极限进行检查。

Run Speed:初始机架电机运行转速为电机最大转速。用这个速度初步计算轧辊咬钢扭矩后,为请求力矩计算最大速度,并再次确定轧制速度是否高于运行速度。如果操作工在HMI手动输入一个运行速度,该速度就是最终的运行速度。

Side Guide:可对每道次导卫是否对中进行设定,模型参数表中"0"代表该道次导卫不对中;"1"代表该道次导卫对中。

RSU1802_Transfer_Bar_Thick

相关参数:

Transfer Bar Thickness(中间坯厚度设定)。

消化内容:

对粗轧中间坯的厚度按钢种规格进行分档。通过查询检索模型表内对应 中间坯厚度对RSUC的辊缝进行设定计算,并检查中间坯的厚度极限是否 满足要求。中间坯厚度数值设定原则主要从带钢出炉温度、在线温降及 精轧出口厚度几方面考虑。同成品宽度下,成品厚度越薄,考虑精轧机 负荷能力,中间坯厚度越薄。

RSU1806_SprayPatternCode

相关参数:

Spy-Code(喷淋代码设定)

消化内容:

该表主要针对钢种组设定喷淋代码,每组喷淋代码对应粗轧除鳞策略。

RSU1806_Descaling

相关参数:

RM-Descaling Spray(粗轧除鳞道次设定)

消化内容:

该模型表主要针对粗轧除鳞提供了20套方案,每套方案可自行调整除鳞道次。Pass1-Pass11代表粗轧各轧制道次,"1"代表该道次投用除鳞,"0"代表各道次未投用除鳞。操作人员可以直接在二级PDI信息中对除鳞代码进行选择设定。

RSU1903 RmDefomModel

相关参数:

R1/2, E1/2变形抗力系数:

\$a1\$,\$a_2\$,\$a_3\$,\$a_4\$,\$a{4_2}\$,\$a{4_2}\$,\$a{4_3}\$...(其中给定变形抗力系数与钢种C含量有直接关系)

消化内容:

根据公式对每道次带钢变形抗力进行计算,表内变形抗力系数参与计算。程序内公式:

p_km = r_table.km_a1 * pow(*p_ks,(double)r_table.km_a2)

```
* pow(*p_kd,(double)r_table.km_a3)
- exp(A4+ A5 / abstmp_k);
```

RSU1904_RmForceModel

相关参数:

E1/E2/F1E轧制力计算系数,水平辊R1/R2轧制力计算不参与该公式。

消化内容:

轧制力计算公式在GFC与程序中均已找到(ROLL BITE.CXX文件),其中 轧制力计算与Ldi接触弧长、hmi平均厚度、Bmi入出口宽度、自学习参数 有关。

RSU1905_RmTorque

相关参数:

粗轧电机扭矩系数(cg, bg, eta)。

消化内容:

该表与钢种组无关,其中通过粗轧电机扭矩系数 (cg,bg)、平均厚度 (hmi)、接触弧长(Ldi)计算扭矩臂系数(入ai),最终通过扭矩臂系数、自学习系数等计算出该道次扭矩。程序内公式(roll bite.cxx):

```
hm = (p_hi + 2.0 * p_ho) / 3.0;
*p_rmd = r_table.g_cg + r_table.g_bg * hm /p_ld;
*p_g = 2.0 * p_p * p_ld *(*p_rmd) * ( Physcon.kgpt_lbpt_knp kn / Physcon.mmpm_inpft );
```

RSU1906_RMSlipModel

相关参数:

前后滑系数 (af,bf,cf,alp)。

消化内容:

该表未按钢种、规格分类,表内af,bf,cf,alp共4个系数。主要运用af,bf,alp 三个系数参与粗轧前后滑计算,其中cf在表内数值均为0,无实际意义。 程序内公式如下。(roll bite.cxx)

```
r = (p_hi - p_ho) / p_hi;
*p_f = f_table.f_af * pow(r, (double)f_table.f_bf);
```

RSU1907_RmGapModel

相关参数:

- R1/R2和E1/E2轧机弹跳系数(C1.2.3···)
- 油膜厚度
- 工作報磨损
- 热凸度补偿系数。

消化内容:

表内主要由参与粗轧辊缝计算的轧机弹跳系数、油膜厚度及工作辊磨损、热凸度补偿系数组成,通过公式计算出设定预摆辊缝值。程序内公式如下(roll gap.cxx):

- this->s_rw() + this->s_rh()
+ p_s_zset;

RSU1908_Widthdeformation and change model

相关参数:

- 表内根据各钢种组定义了R1/R2的宽展系数
- E1/E2的狗骨恢复系数及精轧机的宽展系数。

消化内容:

- 1. R1/R2平辊宽展量: 平辊宽展量 主要与轧前宽度、宽厚比、轧辊半径R、压下量Draft及入口厚度 有关,其中宽厚比Wgratio多次出现在计算过程中,是计算平辊宽展量的一个重要因素,宽厚比越大,平辊宽展量 越大。其中通过以下公式计算,其中spread参数通过C-TOOL表内的b0,b1,b2,b3计算。
- 2. 立辊狗骨恢复量:狗骨宽展恢复模型主要通过以下公式计算,其中与立辊入口宽度/厚度、立辊减宽量、立辊半径及立辊孔型系数grvmlt(若无孔型则不参与计算)及recv_mod系数有关。其中立辊孔型系数与在程序中通过立辊最大/最小直径及孔型角度计算出一个sgrv值,再通过sgrv值计算出agrv值,若dgrv>agrv值,则输出grvmlt值,输出的值必须再grvmlt的范围[0.5,1.1]内,否则取范围内极值,recv_mod再系统内默认设定为1.0。
- 3. 精轧宽展计算: 精轧宽展模型是建立在由仪表获得的大量宽度数据的回归线方程上,根据大量数据对不同钢种精轧机宽展情况设定不同宽展系数。

RSU2101-07_SSPmodeltable

相关参数:

- 侧压机过压系数 (over squeeze)
- 侧压机空过侧压量设定(常数)
- 侧压机狗骨恢复系数(a1,2…)
- 侧压机宽度修正系数 (a1,2…)
- 侧压机出口厚度系数(b1,d1,d2,d3,e1,e2)
- 侧压机轧制力(Qp…)
- 开口度计算系数

消化内容:

over squeeze:侧压机过压系数,为了补偿第一道次平辊轧制后的宽展量侧压机空过常数:侧压机投用与否会经过Course-T,0,1,2多次计算进行条件判断,判断依据根据粗轧原料板坯宽度、成品宽度及空过侧压量数值侧压机出口厚度由侧压机出口宽度及击打后的板坯横截面面积通过公式计算得出,且还需计算出侧压机打后板坯的厚度峰值。其余参数均参与公式计算。

RSU2108_SSPStep Press

相关参数:

内含步进侧压常数A1, A2, C1, C2, 以及\$a_1\$、\$a_2\$、\$b_1\$、\$b_2\$步进侧压数常数。

消化内容:

步进侧压的主要作用是防止板坯在平辊轧制候宽度失宽。并且通过计算侧压机头尾短行程长度数值,减少板坯头尾宽度及板坯中部宽度的变化量,正常板坯一般步进侧压总量在0-40之间。其中A1,A2可理解为板坯头部短行程区域程度,C1,C2为尾部短行程长度。\$a_1\$、\$a_2\$、\$b_1\$、\$b_2\$参与step amount计算;

RSU2110-11_SSPforward length and PR position

相关参数:

内含侧压机前进步距长度大小极值Lfwd max/Lfwd min及侧压机出口上下夹送辊辊缝调整余量系数Dptop/Dpbot。

消化内容:

SSP每次步进长度的最大最小值及出口夹送辊最大夹送辊力,作为SSP计算的极限检索条件。还包括SSP出口上/下夹送辊修正系数,通过辊修正系数可以计算出出口上、下夹送辊的辊缝。

RSU2112_REfirst pass CFR

相关参数:

恒轧制力轧制时设定的轧制力参数表,该表根据板坯宽度Bs,侧压机减宽量 $\triangle Bp$ 及钢种组进行分类。

消化内容:

应用于侧压机侧压后第一道次立辊轧制,若R1/R1E空过则应用于 R2/R2E。恒轧制力轧制,主要作用是保证立辊轧制后轧件边缘平滑。

RSU2112_RECFR gap calculation parameter

相关参数:

恒轧制力轧制立辊补偿辊缝常数SeCFR。

消化内容:

恒轧制力轧制模式中立辊补偿常数,默认设定值为5mm。CFR第一道次 轧制辊缝=侧压机头部端部宽度+CFR辊缝补偿值。

RSU2114_SSPwidth learing parameter

相关参数:

侧压机宽度自学习系数,包含ZLP上下限数值及βzlp的系数值。

消化内容:

若RM第一道次出口宽度的实际值与计算值的差值在ZLP的上下限以内,那么自学习参数将被更新;若大于该上下限,则自学习参数不进行更新。更新公式ZIp新=ZIpI日+βZIp(ZIp新-ZIpI日)。

RSU2401_ModelLearning

相关参数:

自学习参数,主要包括RM/RE轧制力,RM/RE扭矩的自学习系数,学习 比例参数β,自学习系数上限/下线数值。

消化内容:

粗轧区域自学习类型分加法类型和乘法类型。其中宽度尺寸、宽展/狗骨恢复量等方面自学习方式为加法类型; RE/RM变形抗力, 轧制力, 扭矩计算等使用的是乘法类型。

AWC01_NeckingComp

相关参数:

缩颈补偿参数表,按钢种组对板坯头端缩颈位置及缩颈时立辊辊缝参数 表分类。

消化内容:

用来补偿卷取机切换至张力模式时造成的带钢头部冲击造成缩颈现象。 该补偿在立辊最后一道次执行,对带钢头部留取余量。

AWC0404_EdgerShortStroke

相关参数:

粗轧短行程调整表,按钢种组分类(SGC)。针对减宽量,成品宽度、该道次中间坯厚度进行分类。

消化内容:

表内分为头部短行程及尾部短行程两段。头尾各补偿5个点,分别为 0.0,0.3,0.6,0.9,1.2米。拉窄则给予正值补偿,超宽则给予负值补偿。 补偿数值会影响该厚度中间坯对应的该道次头尾立辊辊缝,达到补偿目 的。通常为了使头部宽度保持均匀需在各道立辊轧制时先将开口度加 大,咬入时逐渐收小。而到了尾部不稳定端则将立辊辊缝慢慢增加。

AWC0604_FFCoef

相关参数:

根据成品宽度及该道次入口中间坯厚度分类R1/R2, 出口宽度前馈影响系数dbR/Dpr。

消化内容:

前馈控制分为FF-AWC(P)利用R1/R2的水平轧制力解决因温度原因造成的宽度波动偏差。FF-AWC(W)是由R1DW获得出口宽度数据,补偿R1轧制过程中的宽度偏差波动。具体包含前馈系数的公式尚未在文件或程序中找到。

C-Tool FTC

FTC C-Tool共计3个, 故本文主要针对这3张表的参数含义及功能进行说明。

FTPRP

参数	含义	功能
delay_dist	延迟距离	加速开始之前的最小延迟距离
dly_til_clr	加速延迟	带钢在卷取机咬钢前是否启用加速
accel_norm_max	最大加速度	加速度允许上限值
accel_norm_min	最小加速度	加速度允许下限值
accel_rot	输出辊道加速 度	带钢在输出辊道上的减速度
decmll	减速度	尾部拋钢减速度
tail_spd	抛钢速度	F7抛钢速度
decel_stop_std	减速停止机架	减速度停止的机架
accel_hi	高加速度	FDTC的高加速度
max_clr_hd_spd	最大入口速度	带钢头部进入卷取机的最大速度
ftc1_granted	允许FTC-1	允许FDTC-1投用
ftc2_granted	允许FTC-2	允许FDTC-2投用

FTAPP

参数	含义	功能
accel_norm	一般加速度	一般加速度自学习值,分为保温罩投 用与不投用。
	一般加速度	一般加速度自学习基准值,在其限制

accel_base	基准值	内允许加速度更新。
avg_slope	斜率平均值	中间坯全长温度斜率,分为保温罩投用与不投用。
temp_vernier	温度补偿值 r	目标终轧温度计算的补偿值。
temp_corr	温度修正	FDT分段斜率自学习参数,分段长度可配置。
perm_update	更新允许	自学习更新允许标志位
updates	更新次数	更新次数
last_update	更新时间	最后一次更新时间

FSPP

参数	含义	功能
in_pattern[n]	喷淋模式	喷淋模式 (启用与停用)
max_thd_flw	最大穿带流量	机架间冷却水穿带时最大流量
min_thd_flw	最小穿带流量	机架间冷却水穿带时最小流量
max_ctrl_flw	最大控制流量	机架间冷却水控制时最大流量
min_ctrl_flw	最小控制流量	机架间冷却水控制时最小流量
seq_num	喷淋序号	喷淋开启优先度
flw_margin	流量补偿	最大控制流量的修正值

C-Tool 板形GSM

和板形控制有关的参数。

GSM调节参数总览

GSM的C-TOOL表中的参数如下表所示。

参数名	所在CTOOL的表(忽略前缀)	初始参数变量名
UFD调节值	UFD_Stand(Tuning)Multplier.xlsb	psSPRP– >ufd_mult
初始弯辊力	NormalBendForce.xlsb	psSPRP- >bend_nom
窜辊机构最小软 极限调节值	ShiftActuatorLimit.xlsb	psSPRP- >min_accu_lmt
窜辊机构最大软 极限调节值	ShiftActuatorLimit.xlsb	psSPRP- >max_accu_lmt
弯辊机构最小软 极限调节值	BendingActuatorLimit.xIsb	psSPRP- >min_bend_lmt
弯辊机构最大软 极限调节值	BendingActuatorLimit.xIsb	psSPRP- >max_bend_lmt
边浪调节因子	WavinessTuning.xlsb	psSPRP– >wav_mult
边浪补偿值	WavinessTuning.xlsb	psSPRP- >wav_ofs
中浪调节因子	CenterBuckleTuning.xlsb	psSPRP- >cb_mult
中浪补偿值	CenterBuckleTuning.xlsb	psSPRP- >cb_ofs
综合凸度补偿系 数	WorkCrownOffsetTuning.xlsb	psSLFG- >wr_crn_off

UFD multiplier调节值

调节参数在表中的位置

UFD凸度multiplier调节值位于GSM的UFD_Stand(Tuning)Multplier.xlsb当中。按钢种组分类,针对每个宽度区间和厚度区间、每个机架,有一个UFD凸度multiplier调节值,供工艺人员进行调节。

如下图所示。

	Width index		Gauge index	F1	F2	F3	F4	F5	F6	F7
	al ann ann		Gauge muck	ufd-mult						
0	800<= w < 900	0	1.00<=h<1.15	1	1	1	1	1	1	1
180		1	1.15<=h<1.30	1	1	1	1	1	1	1
		2	1.30<=h<1.50	1	1	1	1	1	1	1
		3	1.50<=h<1.70	1	1	1	1	1	1	1
		4	1.70<=h<1.85	1	1	1	1	1	1	. 1
		5	1.85<=h<2.05	1	1	1	1	1	1	1
		6	2.05<=h<2.25	1	1	1	1	1	1	1
		7	2.25<=h<2.50	1	1	1	1	1	1	1
		8	2.50<=h<2.75	1	1	1	1	1	1	1
		9	2.75<=h<3.00	1	1	1	1	1	1	1
	1 1		3.00<=h<3.40	1	1	1	1	1	1	1
		11	3.40<=h<4.00	1	1	1	1	1	1	1
			4.00<=h<5.00	1	1	1	- 1	1	1	1
		13	5.00<=h<6.00	1	1	1	1	1	1	1
		14	6.00<=h<7.50	1	1	1	1	1	1	1
		15	7.50<=h<9.00	1	1	1	1	1	1	1
		16	9.00<=h<10.50	1	1	1	1	1	1	1
		17	10.50<=h<11.50	1	1	1	1	1	1	1
		18	11.50<=h<12.70	1	1	1	1	1	1	1
		19	12.70<=h<14.00	1	1	1	1	1	1	1
		20	(spare)	1	1	1	1	1	1	1
		21	(spare)	1	1	1	1	1	1	1
		22	(spare)	1	1	1	1	1	1	1
		23	(spare)	1	1	1	1	1	1	1
		24	(spare)	1	1	1	1	1	1	1
		25	(spare)	1	1	1	1	1	1	1
		26	(spare)	1	1	1	1	1	1	1
		27	(spare)	1	1	1	1	1	1	1

UFD调节参数的作用

这个参数的作用是对UFD凸度的计算进行补偿和修正。同时影响到其它 所有涉及到UFD凸度的工艺量计算,或者说影响到其它以UFD凸度为参 数的函数,如单位宽度轧制力、弯辊力、带钢-工作辊凸度的计算等。

UFD调节参数参与的过程

初始化

首先在cShapeSetupD::Init()的初始化过程,从sSPRP结构中将此参数映射的变量ufd_mult赋值给pcFSStdD对象中的变量ufd_mult(两者同名)。

在cShapeSetupD::Init()初始化过程中,有一个cUFDD::Init()函数,pcFSStdD对象的ufd_mult作为最后一个参数变量传入,对相关的cUFDD对象进行了初始化。pcFSStdD对象的ufd_mult被赋值给了cUFDD对象的ufd_modifier。ufd_modifier是cUFDD对象的一个属性。之后的各种计算,此参数均以ufd_modifier的变量形式进行参与。

UFD调节参数参与的函数总览

cUFDD::Init()初始化之后, ufd_modifier参与计算的函数如下表所示。

受参数影响的函数	函数作用
cUFDD::Prf	计算辊缝凸度
cUFDD::Bnd_Frc	计算弯辊力
cUFDD::Frc_PU_Wid	计算单位宽度轧制力
cUFDD::Pce_WR_Crn	单独计算带钢-工作辊凸度
cUFDD::Crns	计算综合轧辊凸度

cUFDD::Prf

cUFDD::Prf此函数是用来计算UFD辊缝凸度的函数,输入量为单位宽度轧制力、弯辊力、带钢-工作辊凸度、工作辊-支撑辊凸度。在函数中, ufd_modifier介入的地方如下所示。

```
eton | roll bending force
       const float pce wr crn,
                                                // [mm_mm_i
n] piece to work roll
                                                // stack
crown
       const float wr br crn
                                               // [mm mm in
] work roll to backup
                                                //
                                                    roll
crown
       //const float ufd modifier
                                                // [-] UF
D (family, grt, wrt) tuning modifier
               ) const
                                                // [mm mm i
n] UFD roll gap profile
{ // Begin of PRF function
    return
        ( b_cof[ 0 ] * force_pu_wid +
          b_cof[ 1 ] * pow( force_pu_wid, float(1.5) ) +
          b_cof[ 2 ] * pce_wr_crn +
          b_cof[ 3 ] * wr_br_crn * force_pu_wid +
          b cof[ 4 ] * wr br crn * pow( force pu wid, float(
1.5) ) +
          b_cof[ 5 ] * force_bnd +
          b_cof[ 6 ] * force_bnd * force_pu_wid +
          b_cof[ 7 ] * force_bnd * pow( force_pu_wid, float(
2.0) +
          b_cof[ 8 ] * wr_br_crn +
          b_cof[ 9 ] * force_pu_wid +
          b_cof[ 10 ] * force_bnd +
          b_cof[ 11 ] * force_pu_wid +
          b_cof[ 12 ] * pow( force_pu_wid, float(1.5) ) +
          b_cof[ 13 ] * force_bnd +
          b_cof[ 14 ] * pce_wr_crn +
          b cof[ 15 ] * pce wr crn +
          b_cof[ 16 ] +
          b_cof[ 17 ] ) * ufd_modifier;
} // End of PRF function
```

(<u>III</u>)

ufd_modifier是作为一个乘数,乘到UFD辊缝凸度的返回值上。在包络线生成、分配计算、评估计算等阶段,均运用到了cUFDD::Prf函数。当ufd_modifier或ufd调整参数增大,cUFDD::Prf的计算结果增大;当ufd_modifier或ufd调整参数减小,cUFDD::Prf的计算结果减小。

cUFDD::Bnd_Frc

cUFDD::Bnd_Frc此函数用来计算弯辊力,输入量为UFD辊缝凸度、单位宽度轧制力、带钢-工作辊凸度、工作辊-支撑辊凸度、弯辊力软极限(弯辊力软极限的调节系数在这里介入),输出量为计算的最终弯辊力force_bnd和实际需要的弯辊力force_bnd_des。如下所示。

```
void cUFDD::Bnd Frc(
       const float ufd prf,
                                              // [mm mm i
n] UFD roll gap profile
       const float force pu wid,
                                              // [kn/mm m
ton/mm eton/in] rolling
                                              // force
per unit piece width
       const float pce_wr_crn,
                                              // [mm_mm_i
n] piece to work roll
                                              // stack
crown
       const float wr_br_crn,
                                              // [mm_mm_i
n] work roll to backup
                                              // roll
stack crown
       const float force_bnd_lim[2],
                                              // [mton_et
on kn] roll bending
                                              // soft
limit (min,max)
             float& force bnd,
                                              // [mton et
on kn] roll bending force
             float& force bnd des
                                              // [mton_et
on_kn] desired roll
                                              // bendi
```

```
ng force
                  ) const
{ // Begin of BND FRC function
   //----
   // Calculate the roll bending force.
   //-----
   force_bnd_des =
       ( ufd_prf / ufd_modifier -
         b cof[ 0 ] * force pu wid -
         b_cof[ 1 ] * pow( force_pu_wid, float(1.5) ) -
         b cof[ 2 ] * pce wr crn -
         b_cof[ 3 ] * wr_br_crn * force_pu_wid -
         b_cof[ 4 ] * wr_br_crn * pow( force_pu_wid, float(
1.5) ) -
         b_cof[ 8 ] * wr_br_crn -
         b_cof[ 9 ] * force_pu_wid -
         b_cof[ 11 ] * force_pu_wid -
         b_cof[ 12 ] * pow( force_pu_wid, float(1.5) ) -
         b_cof[ 14 ] * pce_wr_crn -
         b_cof[ 15 ] * pce_wr_crn -
         b cof[ 16 ] -
         b_cof[ 17 ] ) /
       ( b_cof[ 5 ] +
         b_cof[ 6 ] * force_pu_wid +
         b_cof[ 7 ] * pow( force_pu_wid, float(2.0) ) +
         b_cof[ 10 ] +
         b cof[ 13 ] );
   // Restrict the roll bending force to within soft limit
S.
   force bnd = cMathUty::
       Clamp( force_bnd_des,
              force bnd lim[minl],
              force bnd lim[maxl] );
```

```
} // End of BND_FRC function

III
```

在函数中,首先计算实际需要的弯辊力,如下图所示。在这个过程中, ufd_modifier作为除数参与弯辊力计算,从UFD辊缝凸度中除去。

```
force_bnd_des =
        ( ufd_prf / ufd_modifier -
          b cof[ 0 ] * force pu wid -
          b_cof[ 1 ] * pow( force_pu_wid, float(1.5) ) -
          b cof[ 2 ] * pce wr crn -
          b_cof[ 3 ] * wr_br_crn * force pu wid -
          b cof[ 4 ] * wr br crn * pow( force pu wid, float(
1.5) ) -
         b_cof[ 8 ] * wr_br_crn -
         b cof[ 9 ] * force pu wid -
          b cof[ 11 ] * force pu wid -
          b cof[ 12 ] * pow( force pu wid, float(1.5) ) -
          b cof[ 14 ] * pce wr crn -
          b cof[ 15 ] * pce wr crn -
          b cof[ 16 ] -
          b cof[ 17 ] ) /
        ( b cof[ 5 ] +
          b_cof[ 6 ] * force_pu_wid +
          b cof[ 7 ] * pow( force pu wid, float(2.0) ) +
          b cof[ 10 ] +
          b cof[ 13 ] );
```

cUFDD::Frc_PU_Wid

cUFDD::Frc_PU_Wid此函数用于计算单位宽度轧制力,输入量为UFD辊缝凸度、弯辊力、综合轧辊凸度,输出量为单位宽度轧制力。 ufd_modifier在这里参与的是计算过程中被求导函数的常数项的计算。 cof_4计算中,ufd_modifier从辊缝凸度中除去,对辊缝凸度进行修正。

cUFDD::Pce_WR_Crn

```
float cUFDD::Pce WR Crn(
       const float ufd prf,
                                                // [mm_mm_i
n] UFD roll gap profile
       const float force pu wid,
                                               // [kn/mm m
ton/mm eton/in] rolling
                                                // force
per unit piece width
       const float force bnd,
                                                // [kn mton
eton] roll bending force
       const float wr br crn
                                               // [mm_mm_i
n] work roll to backup
                                                // roll
stack crown
                       ) const
                                                // [mm mm i
n] piece to work roll
                                                // stack
crown
{ // Begin of PCE WR CRN function
    return
        ( ufd_prf / ufd_modifier -
          b_cof[ 0 ] * force_pu_wid -
          b_cof[ 1 ] * pow( force_pu_wid, float(1.5) ) -
          b_cof[ 3 ] * wr_br_crn * force_pu_wid -
          b_cof[ 4 ] * wr_br_crn * pow( force_pu_wid, float(
1.5) ) -
          b_cof[ 5 ] * force_bnd -
          b_cof[ 6 ] * force_bnd * force_pu_wid -
          b cof[ 7 ] * force bnd * pow( force pu wid, float(
2.0) ) -
         b_cof[ 8 ] * wr_br_crn -
         b cof[ 9 ] * force pu wid -
          b_cof[ 10 ] * force_bnd -
          b cof[ 11 ] * force pu wid -
          b cof[ 12 ] * pow( force pu wid, float(1.5) ) -
          b cof[ 13 ] * force bnd -
```

```
b_cof[ 16 ] -
    b_cof[ 17 ] ) /
    ( b_cof[ 2 ] +
    b_cof[ 14 ] +
    b_cof[ 15 ] );
} // End of PCE_WR_CRN function
```

cUFDD::Pce_WR_Cm函数在包络线生成和分配计算阶段进行调用,而在分配阶段仅调用一次。

传入的UFD辊缝凸度对应的UFD单位凸度来自cLRGD->UFD_PU_Prf3,是利用入口有效凸度、出口有效凸度以及应变释放系数计算的结果,ufd_modifier是对这个UFD单位凸度对应的辊缝凸度进行修正。

cUFDD::Crns

cUFDD::Crns是用来同时计算带钢-工作辊凸度和工作辊-支撑辊凸度的。 输入量为UFD辊缝凸度、单位宽度轧制力和弯辊力。

在这里ufd_modifier不直接参与cUFDD::Crns的补偿,但是在分配计算阶段,其输入量弯辊力是利用cUFDD::Bnd_Frc进行计算的结果。

初始弯辊力

初始弯辊力在表中的位置

初始弯辊力调节值位于GSM的NormalBendForce.xlsb当中。按钢种组分类,针对每个宽度区间和厚度区间、针对每个道次,有一个初始弯辊力调节值,供工艺人员进行调节。如下图所示。

A	В	C	D	E	F	G	H	1	J	K
Norr	mal Bend Force									
Las	st Get : 1/14/2017 10	:43:19	AM							
	Width index		Onumer in days	bend-nom [kN/roll]						
-83		Section 2	Gauge index	F1	F2	F3	F4	F5	F6	F7
0	800<=w < 900	0	1.00<=h<1.15	890	890	890	890	840	840	840
		1	1.15<=h<1.30	890	890	890	890	840	840	840
		2	1.30<=h<1.50	890	890	890	890	840	840	840
		3	1.50<=h<1.70	890	890	890	890	840	840	840
		4	1.70<=h<1.85	890	890	890	890	840	840	840
		5	1.85<=h<2.05	890	890	890	890	840	840	840
		6	2.05<=h<2.25	890	890	890	890	840	840	840
		7	2.25<=h<2.50	890	890	890	890	840	840	840
		8	2.50<=h<2.75	890	890	890	890	840	840	840
1		9	2.75<=h<3.00	890	890	890	890	840	840	840
		10	3.00<=h<3.40	890	890	890	890	840	840	840
		11	3.40<=h<4.00	890	890	890	890	840	840	840
		12	4.00<=h<5.00	890	890	890	890	840	840	840
		13	5.00<=h<6.00	890	890	890	890	840	840	840
		14	6.00<=h<7.50	890	890	890	890	840	840	840
		15	7.50<=h<9.00	890	890	890	890	840	840	840
		16	9.00<=h<10.50	890	890	890	890	840	840	840
		17	10.50<=h<11.50	890	890	890	890	840	840	840
		18	11.50<=h<12.70	890	890	890	890	840	840	840
		19	12.70<=h<14.00	890	890	890	890	840	840	840
		20	(spare)	890	890	890	890	840	840	840
		21	(spare)	890	890	890	890	840	840	840
		22	(spare)	890	890	890	890	840	840	840
		23	(spare)	890	890	890	890	840	840	840
		24	(spare)	890	890	890	890	840	840	840
		25	(spare)	890	890	890	890	840	840	840
		26	(spare)	890	890	890	890	840	840	840
		27	(spare)	890	890	890	890	840	840	840
1	900 <= w < 1050	0	1.00<=h<1.15	890	890	890	890	840	840	840
1775		1	1.15<=h<1.30	890	890	890	890	840	840	840
		2	1 30z-hz1 50	200	200	200	200	840	840	840

初始弯辊力的初始化

首先在cShapeSetupD::Init()的初始化过程,从sSPRP结构中将此参数 psSPRP->bend_nom[passIdx]按制定的道次赋值给pcFSStd对象中的变量 pcFSPassD->pcFSStdD[iter]->pcFSStd->force_bnd_nom。

在cfg_fsstd.txt中,前6道次机架的force_bnd_nom为1500kN,第七机架为1000kN。

初始弯辊力的作用

PENV

在包络线计算过程中, force_bnd_nom主要参与UFD辊缝凸度对单位轧制力偏导数的计算。作为第二个参数传入。

分配计算

在分配计算阶段, force_bnd_nom参与SSU轧制力的计算。

窜辊机构软极限调节值

调节值位置

窜辊机构软极限调节值位于GSM的ShiftActuatorLimit.xIsb当中。 按钢种组分类,针对每个宽度区间和厚度区间、针对每个道次,有一组最大和最小窜辊软极限调节值,供工艺人员进行调节。

窜辊机构软极限调节值的作用

在SSU初始设定阶段,窜辊机构软极限调节值主要是用来作为乘数,乘 到窜辊硬极限上,用于修正和约束窜辊软极限。

窜辊调节值参与过程

首先利用窜辊速度和卷卷带钢之间的间隙时间计算窜辊步长的最大变化量。默认的窜辊步长最大变化量为100mm,与计算值比较并取最小值。如果磨损存在异常,则从新按磨损异常的规则确立最大窜辊步长。之后计算窜辊的位置极限,原窜辊位置加上最大最小窜辊步长变化量求窜辊位置的软极限。

弯辊机构软极限调节值

调节值位置

弯辊机构软极限调节值位于BendingActuatorLimit.xIsb中,针对每个钢种族,不同宽度与不同厚度、不同机架分别有最大最小两个调节值。

调节值作用

psSPRP->min_bend_Imt参与计算弯辊力软极限。

```
pcFSStdDloc->force_bnd_lim[ i ] = pcFSStdDloc->force_bnd_li
m_org[ i ] =
    pcFSStdDloc->pcFSStd->force_bnd_lim[ i ] *
    psSPRP->min_bend_lmt[ pcFSStdDloc->pcFSStd->num-1 ];
```

CenterBuckleTuning from WavinessTuning

CTOOL中GSM模块中有CenterBuckleTuning和CenterBuckleTuning两张表, 这两张表主要用来对屈曲判别标准的中浪和双边浪极限值进行调整。个 人理解是用来调整在带钢约束条件下的死区极限范围。

这两个表对于每个机架F1到F7分别有两个参数。一个是比例系数 multiplier,作为乘数而存在,另一个是补偿值Offset,作为加数而存在。 在模型代码中,用到参数表的地方主要在LPCE模块当中。

参数表中的中浪和双边浪调节系数作为函数的参数参与LPce对象的初始 化过程cLPceD::Init(),保存在bckl_mul和bckl_off中。参数表中的数据 在cLPceD::Crit_Bckl_Lim中参与屈曲极限值的计算。首先建立屈曲极限的 缓冲区并初始化为0值。中浪和双边浪的屈曲极限的原极限计算值是在 cLPceD::Crit_Bckl()当中完成的,并存储于bckl_lim。如下图所示。需要用 到带钢的宽度、厚度、带钢所受的机架张力和杨氏模量等进行计算。

之后在cLPceD::Crit_Bckl_Lim中用调节系数进行修正, multiplier作为乘数, offset作为加数。值得注意的是,补偿计算极限值有一个约束条件,那就是在补偿计算后,双边浪的极限值必须大于中浪的极限值,也就是说必须保证死区的存在,否则返回中浪极限值和双边浪极限值的均值。如下图中的if条件分支所示。

工作辊综合凸度补偿

综合凸度补偿的调节在WorkCrownOffsetTuning.xIsb当中,初始变量为psSLFG->wr_crn_off[pass_idx],主要参与综合凸度的计算。

	Width index		Gauge index	F1	F2	F3	F4	F5	F6	F7
			Gauge muck	wr crn off adj	wr_crn_off_adj	wr_crn_off_adj	wr_crn_off_adj	wr_crn_off_adj	wr_crn_off_adj	wr_crn_off_adj
0	0 800<= w < 900	0	1.00<=h<1.15	-0.4	-0.25	0	0.1	0.1	0	(
П		1	1.15<=h<1.30	-0.4	-0.25	0	0.1	0.1	0	(
П		2	1.30<=h<1.50	-0.4	-0.25	0	0.1	0.1	0	(
П		3	1.50<=h<1.70	-0.4	-0.25	0	0.1	0.1	0	(
П		4	1.70<=h<1.85	-0.4	-0.25	0	0.1	0.1	0	(
П		5	1.85<=h<2.05	-0.4	-0.25	0	0.1	0.1	0	(
П		6	2.05<=h<2.25	-0.4	-0.25	0	0.1	0.1	0	(
П		7	2.25<=h<2.50	-0.4	-0.25	0	0.1	0.1	0	(
П		8	2.50<=h<2.75	-0.4	-0.25	0	0.1	0.1	0	(
П		9	2.75<=h<3.00	-0.4	-0.25	0	0.1	0.1	0	(
П		10	3.00<=h<3.40	-0.4	-0.25	0	0.1	0.1	0	(
П		11	3.40<=h<4.00	-0.4	-0.25	0	0.1	0.1	0	
П		12	4.00<=h<5.00	-0.4	-0.25	0	0.1	0.1	0	-
П		13	5.00<=h<6.00	-0.4	-0.25	0	0.1	0.1	0	-
П		14	6.00<=h<7.50	-0.4	-0.25	0	0.1	0.1	0	-
П		15	7.50<=h<9.00	-0.4	-0.25	0	0.1	0.1	0	
П		16	9.00<=h<10.50	-0.4	-0.25	0	0.1	0.1	0	
П		17	10.50<=h<11.50	-0.4	-0.25	0	0.1	0.1	0	
П		18	11.50<=h<12.70	-0.4	-0.25	0	0.1	0.1	0	
П		19	12.70<=h<14.00	-0.4	-0.25	0	0.1	0.1	0	1.0
П		20	(spare)	0	0	0	0	0	0	
П		21	(spare)	0	0	0	0	0	0	
П		22	(spare)	0	0	0	0	0	0	
П		23	(spare)	0	0	0	0	0	0	
П		24	(spare)	0	0	0	0	0	0	
П		25	(spare)	0	0	0	0	0	0	
		26	(spare)	0	0	0	0	0	0	-
		27	(spare)	0	0	0	0	0	0	
1	900 <= w < 1050	0	1.00<=h<1.15	-0.4	-0.25	0	0.1	0.1	0	
		1	1.15<=h<1.30	-0.4	-0.25	0	0.1	0.1	0	

在ShapeSetup初始化过程中,综合凸度的补偿值作为输入参数传入cCRLCD::Init()进行初始化。

```
pcFSPassD->pcFSStdD[ seg ]->pcCRLCD->Init(
                  inhb_t_w_calc,
                  pce_wr_t_w_crn,
                  wr_br_t_w_crn,
                  psSAMP->wr_crn_vrn[ pass_idx ],
//@@2ND-2(MAC014) begin
                  //( psSLFG->wr_crn_off[ pass_idx ] + psS
PRP->wr_crn_off_adj[ pass_idx ]),
                  ( psSLFG->wr_crn_off[ pass_idx ] + f_wr_
crn_off_adj ),
//@@2ND-2(MAC014) end
                  pcFSPassD->pcFSStdD[ seg ]->pcEnPceD->wid
th,
                  pcFSPassD->pcFSPass->wr_crn_vrn_i_gn,
                  pcFSPassD->pcFSPass->wr crn off i gn,
                  pcFSPassD->pcFSPass->wr_crn_cor_i_gn,
                  pcFSPassD->pcFSStdD[ seg ]->pcStdRollPrD
                  //psPDI->grt idx
                  );
```

Log日志

模型在生产每卷带钢每个计算周期形成的日志文件,按照不同的模型模块进行划分。Log日志为日志系统的产物,日志中变化的参数直接从C++代码中用输出流语句输出。

RSU 日志

粗轧RSU日志主要分为以下几大块。

基本信息

钢卷基本信息, 如卷号、原料尺寸等。

各区域入出口参数计算(重要!)

包括粗轧入出口、精轧入出口板坯尺寸,热膨胀系数,温度,宽展,回展,自学习值等。

```
| Cold |
```

钢种分档

钢种牌号、钢种族、材质代码、厚度代码、宽度代码、喷淋代码、牌号 代码、加热炉号、压下分配模式等;

<		PDI INDEX	DATA	>
	indGrd	family	grt_idx	wrt_idx
Cur	30	15	8	3
Prv	0	0	0	0
Nxt	0	0	0	0

系统参数记录

操作人员宽度补偿,厚度补偿,立辊平辊载荷分配、载荷比等。

SYSTEM Data ophofs= 0.000 opwofs= 13. x min_gauge= 25.00 x_max cbx_in_use= F cbx_in_use(0 =>spy_code= 4	gauge= 65.00	adj_load_perm= T	adj_xbarthk_	perm= T	eload_eml= 1	00. 0 100. 0 100. 0
e1 auto = T dummy = F load = 100 max_pas= min_pas= ent_spd= run_spd=	r1 T T 110 1 1 3.00 7.00	e2 r2 T T F F 100 100 5 5 5.00 7.00	ef F F 100			
Map Data el rl AWC = F Edummy = F Sdummy = F Xdummy = T Sload = 0.900 Eload = 1.000	e2 r2 F F F T 1.000 0.650	r2 e2 F T F T O. 850 O. 000	e2 r2 F F F T 0.750	r2 e2 F T F T 0.630 0.000	e2 r2 F F F T 0.420 0.850	ef F F T T 0.000

粗轧各道次参数数据

包括道次, 辊缝, 入出口厚度/宽度/长度, 前后滑, 温度预报, 压下量, 最大/最小轧制力等极限检查。

各道次扭矩计算

ps obj	flow stress MPa	fs act MPa	Mean strate 1/sec	arcon mm	force qp [-]	AGC plast kN/mm	Bite angle [deg]	torque arm [-]	torque arm act [-]	dgap/ dwid mm/mm	tgt_wid_ ff_awc mm	pp_idx [-]		ering set [-]
1 el	0.000		0.000	0.000	0.0000	0.000		0.0000		0.0000	1298.0			
1 r1	0.000		0.000	0.000	0.0000	0.000	0.000	0.0000				1	ON	OFF
2 e2	10.796		0.221	80.333	5.3026	35.722		1.0351		-1.8307	1298.0			
2 r2	37.725		3.206	173.264	1.0745	100.280	16.643	0.5462				0	ON	ON
R 3 r2	44.609		5.054	159.637	1.0425	224. 295	15.326	0.5297				0	OFF	OFF
R 3 e2	0.000		0.000	0.000	0.0000	0.000		0.0000		0.0000	1305.7			
4 e2	13.190		0.256	97.118	3.9121	25.264		1.0427		-2.2680	1305.7			
4 r2	50.638		6.092	145.728	1.0957	298.087	13.983	0.5148				0	OFF	OFF
R 5 r2	51.811		9.691	143.046	1.2174	357.215	13.725	0.4945				0	OFF	OFF
R 5 e2	0.000		0.000	0.000	0.0000	0.000		0.0000		0.0000	1305.1			
6 e2	13.091		0.275	91.865	3.6286	13.577		1.0403		-3.2959	1304.9			
6 r2	71.189		13.461	124.057	1.3572	731.940	11.896	0.4818				0	OFF	OFF
7 ef	8.366		0.052	29.303	7.9613	11.851		1.0126		-7.2488	0.0			

各道次辊缝计算

包括轧辊弹跳、标定弹跳、辊缝补偿、油膜厚度、轧辊磨损、轧辊膨胀 等辊缝构成因素。

os obj	gap mm	max gap mm	strch mm	gapof mm	s_mO mm	s_oil mm	s_oil0 mm	s_rw mm	s_rh mm	s_zset mm	esg gap mm	xsg gap mm		norml
0 ssp 1 el 1 rl 2 e2	1320. 031 283. 771 1286. 533	1650.185 8666.090 1605.665	0.000 0.000 0.724	0.000 0.000 -0.604	0.000	0.000	0.000	0.000	0.000	0.000	1350.0	1350.0	FFF FFF FFF	0.00
2 r2 3 r2 3 e2 4 e2	185. 927 143. 071 1321. 737 1292. 971	8802, 721 8802, 721 1605, 665 1605, 665	2. 365 2. 679 0. 000 0. 521	0.000 0.000 0.000 -0.604	4. 481 4. 481	0.002 0.033	-0.070 -0.070	0. 082 0. 082	0. 202 0. 202	0. 000 0. 000	1349. 9 1354. 3	1354. 4 1361. 7	TFF FFF FFF	0.53 0.62
4 r2 5 r2 5 e2 6 e2	107. 451 73. 173 1325. 113 1298. 381	8802, 721 8802, 721 1605, 665 1605, 665	2. 821 2. 932 0. 000 0. 230	0.000 0.000 0.000 -0.604	4. 481 4. 481	0.032 0.049	-0.070 -0.070	0. 082 0. 082	0. 202 0. 202	0. 000 0. 000	1361.7 1360.7		FFF FFF FFF	0. 66 0. 70
6 r2 7 ef bd- 0 ssp	46. 536 1308. 927	8802. 721 9427. 455	3. 856 0. 067	0.000 -0.375	4. 481	0.047	-0.070	0.082	0. 202	0.000	1364. 9 1362. 4	1363. 4	FFF TFF	1.00
1 e1 1 r1 2 e2 2 r2	1320, 023 283, 771 1286, 526 185, 926	1650.185 8666.090 1605.665 8802.721	0.000 0.000 0.724 2.366	0.000 0.000 -0.604 0.000	0.000 4.481	0.000 0.002	0.000 -0.070	0.000 0.082	0.000 0.202	0.000	1350.0 1349.9	1350.0 1354.4	FFF FFF FFF TFF	0.00
2 r2 3 r2 3 e2 4 e2	143. 059 1321. 725 1292. 938	8802. 721 8802. 721 1605. 665 1605. 665	2. 706 0. 000 0. 555	0.000 0.000 -0.604	4. 481	0.002	-0.070	0.082	0. 202	0.000	1354.3	1361.7	FFF FFF FFF	0.62
4 r2 5 r2 5 e2 6 e2	107. 433 73. 163 1325. 083 1298. 362	8802. 721 8802. 721 1605. 665 1605. 665	2. 860 2. 946 0. 000 0. 239	0.000 0.000 0.000 -0.604	4. 481 4. 481	0.053 0.053	-0.070 -0.070	0.082 0.082	0. 202 0. 202	0.000 0.000	1361.7 1360.7	1360.8 1365.1	FFF FFF FFF FFF	0.66 0.70
6 r2 7 ef	46. 524 1309. 000	8802. 721 9427. 455	3. 873 0. 067	0. 000 -0. 375	4. 481	0.052	-0.070	0.082	0.202	0.000	1364. 9 1362. 4	1363. 4 0. 0	FFF TFF	1.00

轧辊数据

包括轧辊吨位、轧制公里数、辊号、、材质、辊凸度、磨损等。

```
--Roll Data
modeSet=T havebackup=F isEdger=T Data Set? work=T backup=F thrm=F seg=F
Work Roll Data, pos=edger
Serial Number RE20006 R
                                RE20005
Matl Type
Matl TypeIdx
Roll Diam
                                     SSUIdx= 0
                     SS SS
5 5
                    1029.790039 1029.839966
                                                            Avg Diam 1029.814941
Roll Crown
                     0.000000 0.000000
                     -0.324189 -0.324164 (since zero) Face Width= 430.000000
-0.324189 -0.324164 (total)
Wear Cent
Wear Cent
                     -0.524189 -0.524164 (1674)
42533.542969 42533.542969
62895.316406 62895.316406
27304.775391 27304.775391
2866 2866 since roll che
2866 2866 since stand ze
Len Rolled
                                                                 Hitchcock 44405.203125
Tons Rolled
                                                                 Equiv Modulus 205800.000000
Contact Time
Bars Rolled
                                       since roll change
Bars Rolled
                                       since stand zeroed
modeSet=T havebackup=F isEdger=F Data Set? work=T backup=F thrm=T seg=T
Work Roll Data, pos-work
Serial Number RW10014 RW10013
Matl Type CR1 CR1 SSUI
Matl TypeIdx 0 0
                                                  Profile parab
Matl Type
Matl TypeIdx
                                       SSUIdx= 0
Roll Diam
                    1334. 250000 1333. 369995
                                                            Avg Diam 1333.810059
                     0.000000 0.000000

-0.275950 -0.278047 (since zero) Face Width= 1580.000000

-0.275950 -0.278047 (total)
Roll Crown
Wear Cent
Wear Cent
                     125520. 453125 125520. 453125
176768. 546875 176768. 546875
Len Rolled
                                                                    Hitchcock 47365.550781
                                                                    Equiv Modulus 219520.000000
Tons Rolled
                     73009.546875 73009.546875
2866 2866 since roll change
2866 2866 since stand zeroe
Contact Time
Bars Rolled
Bars Rolled
                                       since stand zeroed
Thermal model information:
                                         pos=work
Roll Surface Temp at Centerline
Roll Slice Avg Temp at Centerline
                                                    164.814224 165.357040
                                                  141.592560 141.683350
```

短行程参数(重要)

包括各道次短行程头尾参数设定值及操作人员补偿值,对宽度控制比较重要。

温度及除鳞数据

通过冷却水对流换热及T.VD曲线计算各道次入口温度,出口温度。

	HANGE OF	entry	temp	exit	temp	198		
ps	obj	avg C	surf C	avg C	surf C	spr_base [-]	espy [-]	xspy [-]
10000	hd							
	FCE	1103	1103					
-	RME	1081	955				M -	
	e1	1072	978	1072	978	1200		
1	r1	1071	977	1071	977	T		
2		1066	971	1066	971			
2	r2	1063	920	1062	880	T	W	
3	r2	1060	919	1060	886	F	_	
3	e2	1060	894	1060	894			
4	e2	1057	938	1057	938			
4		1056	942	1056	904	T	-	
	r2	1054	948	1053	899	F		
5		1053	917	1053	917	•		
6	100	1047	965	1047	965			
	r2	1046	969	1046	914	T	_	
0	RMX	1040	303	1043	973	1		
7		1008	981	1043	981			
- T	ef bd	1008	981	1008	981			
	FCE	1103	1103					
	RME	1081	954				W -	
1		1071	977	1071	977		W	
1		1071	977	1071	977	T	_	
2		1066	970	1066	970	1		
		1063	920	1062	880	т		
2	rz					Ţ	M	
	r2	1060	932	1059	900	F	100 m	
3		1059	907	1059	907			
4		1057	942	1057	942	1 <u>22</u> 00		
4		1057	944	1056	910	T	-	
	r2	1053	957	1052	908	F		
5	e2	1052	924	1052	924			
6	e2	1046	975	1046	975			
6	r2	1045	976	1046	923	T	_	

自学习值更新

所有自学习值更新均存储在RMX的日志文件内,其中SWTICH代表自学习开关,1代表自学习关闭,2代表自学习开启,SIGMACNT代表多少块更新一次长期自学习。

ZLK (1 pass) (2 pass) (3 pass) (4 pass) (5 pass) (6 pass)	switch 2 2 2 2 2 2 2 2 2	OLD 0. 850000 0. 670311 0. 743728 0. 811067 0. 752159 0. 965925	CUR 0. 000000 0. 000000 0. 000000 0. 000000 0. 000000	NEW 0.850000 0.670311 0.743728 0.811067 0.752159 0.965925	Str_Idx Tr 0 2 3 4 6 7	mp_Idx 0 9 9 9 9 9	CurValid 0 0 0 0 0 0	l Nev	0 0 7 0 0 8	yAct 0.0000 0.0000 6.9162 0.0000 3.3390 0.0000	yCal 0.0000 0.0000 61.0018 0.0000 69.4982 0.0000	ACT 0.000000 0.000000 1.260885 0.000000 1.199153 0.000000	SigmaCnt 0 0 1 0 1 0	SigmaZ 0.000000 0.000000 1.260885 0.000000 1.199153 0.000000
ZBP (1 pass) (2 pass) (3 pass) (4 pass) (5 pass) (6 pass)	switch 2 2 2 2 2 2 2 2 2	OLD 1. 030951 0. 978363 1. 073581 1. 056712 0. 987960 1. 071648	CUR 0.000000 0.000000 1.695358 0.000000 1.594282 0.000000	NEW 1. 030951 0. 978363 1. 073581 1. 056712 0. 987960 1. 071648	CurValid 0 0 2 0 2 0	NewVa 0 0 0 0 0 0	163	Act 0.00 0.00 79.09 0.00 68.86 0.00	yCal 0.00 0.00 9661.14 0.00 11647.16 0.00	0.0000 1.6953 0.0000 1.5942	00 00 58 00 82			
ZBPC (1 stand) (2 stand)	switch 1 1	OLD 1.000000 1.000000	CUR 0. 000000 0. 000000	NEW 1.000000 1.000000	CurValid 0 0	NewVa 0 0	lid							
ZPP (1 pass) (2 pass) (3 pass) (4 pass) (5 pass) (6 pass)	switch 1 1 1 1 1 1 1 1 1	OLD 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000	CUR 0.000000 0.000000 1.579161 0.000000 1.613711 0.000000	NEW 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000	CurValid 0 0 2 0 2 0	NewVa 0 0 0 0 0 0	163	Act 0.00 0.00 79.09 0.00 68.86 0.00	yCal 0.00 0.00 9661.15 0.00 11647.16 0.00	0.0000	00 00 57 00 82			

精轧日志

FSU coursef内容可以分为以下几个大块,分别如下:

基本信息

Ø 钢卷基本信息

卷号、钢种牌号、钢种族、材质代码、厚度代码、宽度代码、喷淋代码、牌号代码、加热炉号、压下分配模式等

未理解: Sim_mode、second_dcut、cold_lim、hot_lim、hot_slab、tmge_control

0 板坯及中间坯信息

厚度、宽度、长度、重量、表面温度、平均温度

0 目标数据

目标厚度、温度、宽度、速度等

0 化学成分信息

C Si Mn Ni Cr V Nb Mo Ti B Cu Sb Mg Fe Zn Se TePbBe Cd Ce Co Ge Ta

头点设定计算及实际数据

0 轧制力相关计算数据

各机架计算出口厚度x-thk;

各机架计算出口宽度x-wid;

各机架轧辊设定速度rollspeed;

各机架设定计算速度setspeed;

各机架前滑forwdslip;

各机架后滑back slip;

各机架带钢轧制力stripforce;

各机架参数表载荷分配fprpload;

各机架操作输入载荷oprload;

各机架ssu设定反馈载荷ssu load;

各机架初始设定载荷分配initload;

各机架目标载荷分配targetload;

各机架最终载荷分配finalload;

0 变形抗力相关计算数据

绝对压下量draft

相对压下量pu draft

变形区温度rb temp

平均温度avg temp

表面温度surf temp

应力状态影响系数forceQp

接触弧长arcon

压扁半径Deform

压扁半径与原始半径比值Rd/R

咬入角bite angel

变形抗力deformresist

应变速率stain rate

变形抗力计算相关数值ks、kk、n、m、ad

Ø 轧制力矩相关计算数据

轧制力矩rolltorque

单位轧制力矩比例putorque

转速rpm

主传动力矩motortorque

主传动力矩限制Mt.torquelimit

主传动功率power

轧制功率power def

摩擦功率power fri

功率调节参数Powermult

变形热温升dtempdeform

摩擦热温升dtempfrict

传导热温度损失dtempcond

Ø 功率相关计算数据

Power shaft

Pct power

Power ten

Power torque

Op tensM

Lpr out_svc

出口张力exittension

Dfdhx

Dtmp avg

最大轧制力限制forcemax

Fst limreasons

Lst limreasons

0 变形抗力及轧制力相关自学习数据

Z-LK变形抗力自学习系数

Str_idx应变速率索引

Tmp_idx温度索引

Read 布尔型变量

Z-LPHZ_LPBZ_BP=Z_P

轧制力自学习计算

 $Z_LGHZ_LGBZ_BG=Z_G$

功率自学习计算

轧制力分加热炉计算: 0.5前1+0.1前2+0.4*同炉最近(Coil for same Fce in latest coils)验证

中点设定计算及实际数据

Set speed为 "一"

辊缝设定计算信息

轧辊辊缝Roll gap

轧辊弹跳Sm

标定轧辊弹跳Sm0

油膜厚度Soil

标定油膜厚度Soil0

轧辊弯辊补偿Sb

轧辊窜辊位置补偿Swrs

轧辊磨损补偿Srw

轧辊热膨胀补偿Srh

厚度自学习Zbs

Sset=Sm0-Soil0+h-Sm+Soil+Sb+Swrs-Srh-Srw+Szset+Zbs

标定轧机刚度M0

轧制时的轧机刚度M

弯辊力bend force

平衡力blanc force

窜辊位置 shiftposition

轧辊磨损增益系数Srwgain

热膨胀增益系数Srhgain

轧辊磨损 Roll srw

轧辊热膨胀Roll srh

标定速度 zerospeed

标定轧制力 zeroforce

工作辊及支撑辊信息

直径dia

平均温度avg_t

表面温度Srf_t

膨胀量expans

磨损量wear

希区柯克常数Hitch0.0224/0.0247

杨氏模量Young's206703/190000

材质代码 matl ID

是否为CVC辊 CVC

辊形profile cvcl

轧制块数 count

轧制润滑相关数据

辊缝润滑油流量(上下)Lubri_flow

布尔型:是否要求投用(上下)on_regest

布尔型: 辊缝润滑状态 RGLconti

布尔型: 辊缝润滑头尾状态roll_lube

与一级相关数据(AGC、活套等)

轧件刚度plasticity coef

单位入口厚度变化引起的轧制力变化dforce denthick 单位出口厚度变化引起的轧制力变化dforce dexthick 单位变形抗力变化引起的轧制力变化dforce ddeform 单位前张力变化引起的轧制力变化dforce dftension 单位后张力变化引起的轧制力变化dforce dbtension 敏感因子sensitivity factor

单位入口厚度变化引起的轧制力矩变化dtorque denthick 单位出口厚度变化引起的轧制力矩变化dtorque dexthick 单位变形抗力变化引起的轧制力矩变化 dtorque ddeform 单位前张力变化引起的轧制力矩变化 dtorque dftension 单位后张力变化引起的轧制力矩变化 dtorque dbtension

喷淋设定信息(头中尾)

喷淋水导致温度的变化量dtmp

flw 、 Mod 、 eff

最大最小水量

采样点信息

头点、中点、尾点

开始位置、结束位置、采样点长度

精轧温度日志

本章节主要针对FTC Log日志的参数含义及功能进行说明。

Summary Data

Summary Data数据主要为一些控制模式的状态及计算信息,主要内容包括模拟模式(sim_mode)、模拟状态(Model mode)、设定计算次数(Count of each setup request)与状态(Setup calculation status)、控制计算状态(Control calculation status)等。

PDI Data

PDI Data数据主要为一些PDI信息,内容包括钢种(Gradename)、成品厚度及宽度(FMcold thickness / width)、终轧温度目标值(FMX temp)、热态厚度及宽度(FM hot thickness / width)等。

System Input Data from Operator

System Input Data from Operator主要为操作人员的输入信息,包括温度补偿值(tmp_ofs)、厚度补偿(thick_ofs)、穿带速度(thd_spd)、抛钢速度补偿(op_tail_spd)、最大出口速度(op_speed)、减速度补偿(decmll)、一般加速度(op_accel2)等。

Setup Status Flags

Setup Status Flags主要为设定计算时一些判断条件,内容有FTC模式(ftc1_granted、ftc2_granted)、FTS模式(fts_granted)、操作工允许搞加速(burst)、FSU数据合法(head_ok)、FTC设定合法(ftc_ok)、FSU预报穿带速度限制(thd_spd_limit)、卷取入口速度限制(clr_spd_lim)、速度控制允许(permit_ctrl)、尾部降速允许(permit_decel_su)、最大轧制速度达到(flat_top)、抛钢速度达到(tail_spd_ach)、升速模式——立即(acc_immed)、升速模式——延迟(acc_delay)、升速模式——手动(acc_manual)、卷取后加速(dly_til_clr)、HTT自由冷却温度计算(free_air)、保温罩下降(covers_down)、热卷箱投用(cbx_in_use)、保温罩斜率合法(slopes_valid)、热卷箱超时(cbx_delay)、喷淋可用(sprays_avail)等。

Control Status Flags

Control Status Flags主要为在线控制时的一些判断条件,内容有温度评价允许(classify_pce)、轧制时FTC取消(deslected)、预卷取速度限制(clr_limit)、FTC保持速度(speed_limit)、加速度限制(accel_limit)、尾部减速初始化(slwDwnInit)、新参考值要求(new_ref_req)、执行切割(div_cut)、某种速度干扰(ctrl_interfere)、切割完成(planned_dcut_done)、主传动电流限制(current_limit)、采样点温度不良(bad_temperature)、轧机传动的最高速度限制(speed_limit)、头部温度错误ok(classify_pce)、闭环状态(lpr_saturation)、干涉行动停止(reset_req)、操作干涉(opr_int)、在线喷淋改变操作(op_spray_chg)、CTC保持速度(ctc_hold)、丢失采样点(missing_smp)、板坯清除(reject)、允许尾部减速(permit_decel)等。

Mill Distance Data

Mill Distance Data主要为温度计算时用到的一些设备距离,内容有入口 到除鳞喷淋距离(entry_ds_dist)、等价入口到除鳞距离 (eq_en_ds_dist)、入口到FET温度计距离(entry_pyro_dist)、等价入 口到FET温度计距离(en_std_dist)、根据FDT的等价带钢长度 (lenEquiv)等。

Temperature Data

Temperature Data主要为温度计算时用到的一些计算参数、测量参数及修正系数等,内容有初始化ok(init_ok)、材料代码(matl_code)、FSU 预报出口表面温度(prd_tmp_surf)、喷淋效率修正 FAPP(spy_eff_mod)、FTC需要的出口目标温度(fmx_tgt_tmp)、潜热乘数(lheat_mult)、目标温度坡度率(tmp_ramp_rate)、保温辊道板坯第1段斜率(slope_hd)、总体的目标温度坡度(tmp_ramp)、保温辊道板坯第2段斜率(slope_tl)、目标温度坡度延迟距离(ramp_dly_dist)、保温辊道全长斜率(slope_full)、HTT温度数据合法(htt_data_ok)、温度斜率合法(slopes_valid)、HTT预报入口温度(temp_surf)、区域温度修正(ztmp_corr)、测量的头部穿带温度(thd_temp)、在线平均温度(avg_temp)、锁定目标温度(fmx_tgt_tmp)、平均在线目标温度(avg_targ)等。

Spray Data

Temperature Data主要为温度计算时用到的工艺水的一些模式、设定参数、测量参数及修正系数等,涉及的工艺水有入口除鳞(fdsItop)、出口除鳞(fds2top)、辊缝喷淋(fxfxrgs)、机架间冷却水(fxfxint)、逆吹水(fxfxstriptop)、消烟除尘水(fxfxfss)、机架间除鳞水(fxfxextbot)、下表冷却水(fxentbot)等,主要内容有温降(dtmp)、投用(in_srv)、自动(in_auto)、模式(in_pat)、流量(flw)、修正(mod)、效果(eff)、最小流量(flw_min)、最大流量(flw_max)等。

Speeds

Speeds主要为温度计算时用到的设定速度与计算、测量速度,内容有FSU预报穿带速度(thd_spd)、FSU最大允许速度(max_spd)、头部最大卷取入口速度(max_clr_hd_spd)、FTC预报最大速度(veloci)、抛钢速度(tail_spd)、抛钢减速度(decmll)、停止减速机架(decel_stop_std)、测量穿带速度(thd_speed)、测量最大速度(max_speed)等。

Lengths

Lengths主要为温度计算时用到的一些中间坯参数,主要内容有初次预报出口长度(pred_lgth_su)、中间坯长度(xfer_length)、保温辊道延迟距离(htt_delay_dist)、切割比例(divide_cut_pct)、加速延迟距离(acc_dly_dist)、尾部开始减速的出口长度(decel_dist)、重计算出口长度(pred_lgth_ctrl)、在线板坯积累长度(cum_dist)、在线控制长度(ctrl_dist)等。

High Acceleration Information

High Acceleration Information主要为加速度计算时用到的一些判定条件与设定参数,主要内容有高加速允许(hiaccel_permit)、手动允许高加速(burst)、实例允许高加速(zoom_permit)、实例允许高加速(burst_permit)、高加速允许(zoom_permit)、高加速允许(burst_permit)、设定高加速开始温度(hac_start_tmp)、设定高加速距离(su_hac_dist)、高加速开始延迟(hi_temp)、在线高加速距离(ctrl_hac_dist)等。

TVD Information

TVD Information主要为TVD计算时用到的一些判定条件与计算结果,主要内容有TVD计算状态(init_ok、head_ok、hiaccel_ok、body_ok、tvd_ok、tail_ok)、短坯(short_bar)、预报达到抛钢速度(tail_spd_ach)、采样长度(smp_length)、一般加速度(accel_norm)、实例延迟距离(delay_dist)、一般加速度调整(accel)、温度参考锁定延迟(lockon_delay)、实例辊道加速度(accel_rot)、加速度延迟距离(acc_dly_dist)、FM入口机架停留时间(fme_res_time)、FTC预报最大速度(pred_max_spd)、减速开始机架(decStand)、F1抛钢前减速开始距离(decDist)等。

FTHMI Operator Display Data

主要为TVD计算时用到的一些判定条件与计算结果,主要内容有加速度延迟距离(acc_dly_dist)、预卷取加速前距离(pre_clr_stp_dist)、卷取入口速度(clr_ent_spd)等。

FTPRP Model Table Data

FTPRP Model Table Data主要为FTPRP表中定义的一些参数,用于温度与TVD计算,主要内容有钢种族(family)、厚度索引代码(grt_idx)、实例延迟距离(delay_dist)、卷取后加速(dly_til_clr)、抛钢速度(tail_spd)、减速度(decmll)、头部最大卷取入口速度(max_clr_hd_spd)、停止减速机架(decel_stop_std)、实例允许高加速(burst_permit)、高加速度(accel_hi)、实例允许高加速(zoom_permit)、实例辊道加速度(accel_rot)、最小一般加速度(accel_norm_min)、总体目标温度坡度(tmp_ramp)、最大一般加速度(accel_norm_max)、目标温度坡度延迟距离(ramp_dly_dist)、移除机架(dec_std_adj)、轧制速度调整(spd_dec_adj)等。

Setup FTAPP Model Table Data

Setup FTAPP Model Table Data主要为FTAPP表中定义的一些参数,用于温度计算自学习项,主要内容有允许加速(perm_update)、更新次数(updates)、钢种族(family)、厚度索引代码(grt_idx)、加速度索引(accel_idx)、温度补偿(temp_vernier)、一般加速度(accel_norm)、温度修正第1段(temp_corr[0])、基础加速度(accel_base)、温度修正第2段(temp_corr[1])、平均全长斜率(avg_slope)等。

Feedback FTAPP Model Table Data

Feedback FTAPP Model Table Data主要为温度自学习项的计算结果,主 要内容有自学习计算ok(adapt_calcs_ok)、更新次数(updates)、加 速度计算完成(acc_calcs_done)、温度计算完成 (temp_calcs_done)、平均在线一般加速度(avg_accel)、平均在线目 标温度(avg_targ)、平均在线温度(avg_temp)、头部斜率平均加速 度调整(accAdjH)、全长斜率加速度调整(accAdjF)、在线一般加速 度调整(adj_accel)、加速度差(accDiff)、一般加速度 (accel_norm)、温度补偿(temp_vernier)、基础加速度 (accel_base)、温度修正第1段(temp_corr[0])、平均全长斜率 (avg_slope)、温度修正第2段(temp_corr[1])、测量截距第1段 (meas_intercept[0])、测量截距第2段(meas_intercept[1])、测量斜率 第1段 (meas_slope[0])、测量斜率第2段 (meas_slope[1])、测量采样 点第1段(meas_smps[0])、测量采样点第2段(meas_smps[1])、重计算 截距第1段(pred_intercept[0])、重计算截距第2段 (pred_intercept[1])、重计算截距第1段(pred_slope[0])、重计算截距 第2段(pred_slope[1])、重计算采样点第1段(pred_smps[0])、重计算 采样点第2段(pred_smps[1])等。

Performance Data

Performance Data主要为温度带分类数据,主要内容有FTC需要的出口目标温度(fmx_tgt_tmp)、锁定目标温度(fmx_tgt_tmp)、温度评价允许(classify_pce)、规格中的比例长度(percent_on)、规格范围(perf_val)等。

Basic Sample Data

Basic Sample Data主要输出了样本的数据,主要为速度、加速度、判断条件等,内容有采样点序号、轧机状态、带钢长度、逝去时间、出口速度、加速度参考值、加速、减速、测量温度、加权温度、温度参考值、最大速度、操作干涉、电流限制、CTC保持、最高速度、操作改变、新参考值、温度异常、高加速度等。

FME, Predicted and Spray SampleData

FME, Predicted and Spray SampleData主要输出了样本的数据,主要为水量与温度信息,内容有采样点序号、轧机状态、带钢长度、预报FET、加权FET、表面FET、测量FDT、预报表面FDT、前馈预报表面温度、前馈温度错误、目标温度加权、前馈温度修正、前馈调整、立即调整、温度补偿、测量温度不良、测量流量、反馈标志、设定流量、喷淋控制、高加速控制等。

SSU日志 FAQ

Profile一栏中Vrn RM和Vrn RS是什么?

Profile一栏中Vrn RM和Vrn RS一般情况下指的是长期自学习值。

pcTargtD->pcTargt->prf_vrn_sel_flag默认值为true,在cfg_targt.txt文件中设定,若此值为false,则Profile一栏中Vrn RM和Vrn RS为短期自学习的psSAMP->prf_vrn_rm和psSAMP->prf_vrn_rs。

为什么弯辊力包络线最大值和最小值相反?

标签max和min指的是ufd有效单位凸度的最大值和最小值,最大的弯辊力会计算获得最小的有效单位凸度,最小的弯辊力会计算获得最大的有效单位凸度。为保持一致性,弯辊力包络线max与min对调。

wr_crn_vrn_z是什么?

算是凸度自学习的一个初始值。当换辊算不准时restore进行补偿。配置文件里面有,据说很好用。

CFG配置文件

CFG配置文件为脚本式的参数,由TMEIC自己写的Parser进行解析。CFG 配置文件一般在Model Browser中进行热修改。脚本中的静态修改仅在进 程重启后生效。

需要注意的是重启进行后, Model Browser中的热修改全部失效。

粗轧CFG

配置名称	draft.cfg		
摘要:	Configure Static Draft object.(配置 压下静态参数)		
参数源代码	参数设定值(默 认)	参数注解(英)	参数含义
alpha	1	Initial damping factor	初始阻 尼系数
damp_mpy	1	Multiplier on damping factor, usually 1.0	阻尼乘 积系,通 常=1.0
conv_crit	0.02	Convergence criterion on loading	负载收 敛判定 准则
max_dft_iter	20	Maximum iterations for draft closure	压下循 环最大 迭代次 数
max_dftlim_iter	100	Maximum iterations for limit resolution	压下分 解最大 迭代次 数
dft_crit	0.01	Convergence criterion on resolving draft limits	压下分 解收敛 准则
frc_crit	0.01	Convergence criterion on resolving force limits	轧制力 分解收 敛准则
pwr_crit	0.01	Convergence criterion on	功率分解收敛

pwr_crit	0.01	resolving power limits	准则
dft_acc	1	Draft acceleration adjustment factor	压下加 速调节 因子
frc_acc	1	Force acceleration adjustment factor	轧制力 调节因 子
pwr_acc	1	Power acceleration adjustment factor	功率调 节因子
c_num_zlkfixed	10	Max number of Zlk fixed in iterations to resolve limits	自学习 迭代下 限
c_num_zlgfixed	15	Max number of ZIg fixed in iterations to resolve limits	自学习 迭代上 限

配置名称	edg.cfg		
摘要:	Configure Static Edger (cEDG) objects. 配置立辊静态 常数		
参数源代码	参数设定值 (默认)	参数注解 (英)	参数含义
bitangle	21°	bite angle limit	最大咬入角 限制
max edger force limit	8000KN	max edger force limit	最大轧制力 限制
gearat	6.9	gear ratio between edger and motor	立辊/马达 齿轮转速比
cof	0.35	coeficient of friction	摩擦系数
dmy_ofs	170	dummied stand gap offset	E1/E2整作 立辊空过时 辊缝补偿

chock_max_lmt	3350mm	Max chock openning – max center line openning of rolls	最大轴承座 开口度(最 大辊缝)
ddog_mlt	0.9	double dog bone multiplier	狗骨系数
max_ps_edg	0	max passes for standalone edger	单立辊最大 道次数
dmy_ofs_fwd	10	dummied stand gap offset forward pass	奇道次立辊 空过辊缝补 偿
dmy_ofs_rev	20	dummied stand gap offset reverse pass	偶道次立辊 空过辊缝补 偿
以下参数为孔型立 辊配置			
angle	0°	taper or groove angle	立辊锥形/ 孔型角度
tapered	FALSE	tapered edger indicator	有锥形为 T,无锥形F
grooved	FALSE	grooved edger indicator	有孔型为 T, 无孔型 为F
throat	0mm	working part of edger roll	立辊接触面
diam_max	0mm	max diameter of grooved– edger	立辊最大直径
diam_min	0mm	min diameter of grooved– edger	立辊最小直径
pp_mod_max_draft	10mm	Pass to Pass increase draft limit	道次与道次 间压下量增 加限制(默

	认10mm)
--	---------

配置名称	edg.cfg		
摘要:	Configure Static Edger Schedule Generation object.配置立辊静态 参数		
参数源代码	参数设定值(默认)	参数注解 (英)	参数含义
accuracy	0.1mm	closure tolerance	立辊辊缝 精度误差
dft_lmt_dev	0.05	Draft near limit deviation setting	立辊压下极限偏差量
frc_lmt_dev	0.05	Force near limit deviation setting	立辊轧制 力极限偏 差量
pwr_lmt_dev	0.05	Power near limit deviation setting	立辊功率 极限偏差 量
effi_minw	0.6	average edger efficiency at minimum width	在最小宽度时立辊减宽效率
effi_maxw	0.115	average edger efficiency at maximum width	在最大宽度时立辊减宽效率
minw	800mm	Minimum width for effi_minw value	最小宽度 减宽效率 对应的最 小宽度
		Maximum width for	最大宽度 减宽效率

maxw	2150mm	width for effi_minw value	减宽效率 对应的最 大宽度
c_num_zlefixe	ed 10	Max number of Zle fixed iterations	自学习最 大迭代量

配置名称	fce.cfg		
摘要:	Configure Static Motor (cFCE) objects.配置加热 炉静态参数		
参数源代码	参数设定值(默 认)	参数注解(英)	参数含义
fce_ext_tmp_def	1240℃	Default Furnace extract temperature	默认出炉温度
fce_ext_tmp_max	1275℃	Maximum Furnace extract temperature	出炉最 高温定限 制
fce_ext_tmp_min	1170°C	Minimum Furnace extract temperature	出炉最 低温度 设定限 制
fce_rme_tim_def	15s	Default Furnace to RM entry travel time	板坯出 炉至和 时间
ext_delay	45s	Furnace extract delay	加热炉 出炉延 时
fcetbl_ofs	54m	Offset of furnace centerline into this table	加热炉 辊道补 偿值
fce_iter_max	15	Maximum number of Furnace extract temperature converged	加热炉 出炉温 度代量

fce_ofs_min	-50	Modified Fce temperature offset minimum	度修正 补偿下 限
fce_ofs_max	20	Modified Fce temperature offset maximum	出炉温 度修正 补偿上 限

配置名称	fce.cfg		
摘要:	Configure Feedback Object for RSU.配置粗轧 反馈值参数		
参数源代码	参数设定值 (默认)	参数注解 (英)	参数含义
ratio_lmt_mx	1.25	maximum ratio of repredicted to measured force	预测轧制力 与实际轧制 力之比不得 超过1.25倍
ratio_lmt_mn	0.75	minmum ratio of repredicted to measured force	预测轧制力 与实际轧制 力之比不得 低于0.75倍
ratio_pwr_mx	1.75	maximum ratio of measured to predicted power	预测功率与 实际功率之 比不得超过 1.75倍
ratio_pwr_mn	0.4	minimum ratio of measured to predicted power	预测功率与 实际功率之 比不得低于 0.4倍
ff_terr_max	15	maximum temperature error to be used	温度最大预 报误差量
		RDT upper	RDT最大预

rdt_terr_lu	50	temperature error to be used	RDT最大预 报误差量 (上限)
rdt_terr_ll	-50	RDT lower temperature error to be used	RDT最大预 报误差量 (下限)
meas_force_min	100	measured force minimum	测量最小轧制力(工作 辊)
meas_force_max	40000	measured force maximum	测量最大轧制力(工作 辊)
meas_edgforce_min	0	measured edger force minimum	测量最小轧 制力 (立 辊)
meas_edgforce_max	6000	measured edger force maximum	测量最大轧 制力(立 辊)
gap_abs_err	3	Absolute stand gap error to declare measured gap error	工作辊辊缝偏差
edg_gap_err	50	Absolute edger gap error to declare measured gap error	立辊辊缝偏差
min_temp	900	minimum RM exit temperature	板坯最低粗 轧出口温度 限制
fcerme_max	30s (1#) 40s (2#)	max time furnace to rm entry	板坯从加热 炉至粗轧入 口的最长运 输时间限制
			粗轧入口至

rmerm_max	100s	entry to stand	的最长运输 时间限制

配置名称	hdr.cfg		
摘要:	Configure Static Spray Header (cHdr) objects. 配置粗轧喷淋集管静 态参数		
参数源代码	参数设定值(默认)	参数注解(英)	参数含 义
rmds_hdr(粗 轧除鳞集管/ 喷嘴)			
capacity	100.8	header capacity	集管容 量
flw_max	100	maximum flow	最大流 量
flw_min	100	minimum flow	最小流 量
sim_min	1	minimum spray intensity multplier	最量量系 小流流 量增数
flw_est	100	establishment flow: minimum flow needed to turn spray on	阀门开 启所 明 所 最 的 流 量
rds_hdr			
capacity	113.1	header capacity	集管容 量
flw_max	100	maximum flow	最大流 量
flw_min	100	minimum flow	最小流 量
sim_min	1	minimum spray intensity multplier	最小流 量时流 量增强

			系数
flw_est	100	establishment flow: minimum flow needed to turn spray on	阀门开启所需要的最小流量
配置名称	learn.cfg		
摘要:	Configure Static System Object for Learn。配置静态自学 习参数		
参数源代码	参数设定值(默认)	参数注解(英)	参数含 义
tgt_rm_km	bd(bd=body;hd=head)	RM deformation resistance model target point	粗轧变 力 目标点
tgt_rm_p	bd(bd=body;hd=head)	RM roll force model target point	粗轧轧 制力目标点
tgt_rm_g	bd(bd=body;hd=head)	RM roll torque model target point	粗轧型 自学点
tgt_edger_km	bd(bd=body;hd=head)	Edger deformation resistance model target point	立辊力 目标点
tgt_edger_p	bd(bd=body;hd=head)	Edger roll force model target point	立辊轧 制力目标点
tgt_wid_def	bd(bd=body;hd=head)	Width deformation model target point !!@J015	宽展模型1月标点
配置名称	log.cfg		

摘要:	Configure Log Object for RSU.配 置RSU的log日志参 数		
参数源代码	参数设定值(默 认)	参数注解 (英)	参数含义
frwd	TRUE	Print setup piece state	输出板坯设 定数值
fbk_pce_state	TRUE	Print feedback piece state	输出板坯反 馈(实测) 值
output_hd_tl	FALSE	Output head and tail portions of log	输出板坯头 尾端单独log 数据
temp_curves	FALSE	Output piece temperature curves	输出板坯温 度曲线
oneline_log	TRUE	Output output oneline log	输出在线log 日志
output_tvd	TRUE	Output TVD calculated data	输出TVD计 算所得数据
output_hd	TRUE	Output hd segment data	输出头部数 据
output_bd	TRUE	Output bd segment data	输出中段数 据
output_tl	TRUE	Output tl segment data	输出尾部数 据
output_ex_spy	FALSE	Output exit sprays indicator	输出喷嘴出口流量/压力
output_lube	FALSE	output edger/stand lubrication indicator	输出立辊/ 机架润滑压 力
		Log head	板坯头部log

log_head_obj	TRUE	chain objects to system log	日志与系统 log日志捆绑
log_body_obj	TRUE	Log body chain objects to system log	板坯中段log 日志与系统 log日志捆绑
log_tail_obj	TRUE	Log tail chain objects to system log	板坯尾部log 日志与系统 log日志捆绑
log_rec_sup	FALSE	output setup logging records	输出log日志 设定记录
log_rec_fbk	FALSE	output feedback logging records	输出log日志 反馈记录
multiple_c2_file	TRUE	Generate multiple c2 files	生成C2文件

配置名称	map.cfg		
摘要:	Configure MAP Objects for RSU.配置 RSU的map策略参数		
参数源代 码	参数设定值(默认)	参数注解 (英)	参数含义
frwd	true/false	true if forward direction	精轧方向为 T,逆向轧制 为F
tndm	true/false	true if downstrean is tandem pass	串联轧制为T
sdummy	true/false		工作辊空过
edummy	true/false		入口立辊空过
xdummy	true/false		出口立辊空过
awc	true/false		使用AWC道次 T,不使用F
		maximum	

hdft_max		horizontal draft to be taken	平辊每道次最 大压下量限制
hdft_min		minimum horizontal draft to be taken	平辊每道次最小压下量限制
vdft_max		maximum edger draft to be taken	立辊每道次最 大压下量限制
vdft_min		minimum edger draft to be taken	立辊每道次最 小压下量限制
effwd	true/false	true if edger feedforward enabled	立辊前馈使用 则为T(大多 情况为F)
effgn	true/false	edger feedforward gain	立辊前馈系数
len_max		max length	最大长度
delay_ent	2s	delay on entry side of a pass	板坯入口延时 时间

配置名称	mill.cfg		
摘要:	Configure mill Objects for RSU.配置RSU的轧线(中间坯 厚度,宽度)参数		
参数源代 码	参数设定值(默认)	参数注解 (英)	参数 含义
awcWidTbl	4 (900,1200,1500,0)	Break points for width range by AWC	AWC 宽度 范围 分类
XgagTbl	10 (23, 26, 29, 32, 36, 40, 45, 50, 55, 0)	Break points for gauge range at RMX	粗轧口度类

配置名称	mtr.cfg		
摘要:	Configure Static Motor (cMTR) objects.配置静态马 达(e1,r1,e2,r2)风机 参数		
参数源代码	参数设定值(默 认)	参数注解 (英)	参数含义
E1(E2, R1,R2)见 mtr.cfg			
base_rpm	180	base rpm	基本转速
top_rpm	320	maximum rpm	最大转速
max_rpm_pu	1	maximum setup rpm as ratio of maximum rpm	最大设定转 速与实际最 大转速之比
min_rpm_pu	1	minimum setup rpm as ratio of base rpm	最小设定转 速与基本转 速之此(等 于基本转 速)
power_rate	3000	motor power rating	电机额定功 率
thd_ovrl	2.25	power limit for thread speed	穿带速度电 机标幺值限 制
base_ovrl	2.25	power limit for base speed	基本速度电 机标幺值限 制
top_ovrl	2.25	power limit for max speed	最大速度电 机标幺值限 制
effi_gear	0.99	gear and coupling efficiency	齿轮耦合效 率
bear_loss	0	bearing loss factor	轴承损耗系 数

base_revtime	1	base speed reversal time	基本速度调 头/反转时间 (reversal time)
top_revtime	3	top speed reversal time	最大速度调 头/反转时间 (reversal time)
effi	0.95	motor efficiency	电机效率
dissip	0	heat dissipation ratio, required for rms calcs	热流失比 率,需要通 过计算得出
rectim	0.1s	motor acceleration recovery time, req'd for lead speed calcs	电机加速恢 复时间,需 要通过引导 速度计算得 出
base_volts	1640	motor volts at base speed	在基本转速 下电机电压
power_fac	0.8	motor power factor	电机功率系 数
spd_fixed	FALSE	indicator for fixed speed motor	电机修正速 度指示表

配置名称	mtr.cfg		
摘要:	Configure PDI Objects for RSU_Srv.配置粗轧 静态PDI数值		
参数源代码	参数设定值(默 认)	参数注解 (英)	参数含义
slabg	225	Cold slab thickness	冷坯厚 度
slabl	7000	Cold slab length	冷坯长 度
			冷坯宽

			度
fxhaim	5	FMX gauge target (cold)	精轧目 标厚度
fxwaim	1300	FMX width target (cold)	精轧目 标宽度
rmx_thick	0	RM exit target thickness	粗轧出 口厚度
taper_slab	TRUE	taper slab flag	楔形坯 标识
taper_head_thick	225	Thickess of head of tapered slab (cold)	楔形坯 头部厚 度
taper_tail_thick	225	Thickess of tail of tapered slab (cold)	楔形坯 尾部厚 度
taper_start_thick	2000	Distance from head where thickness taper starts (cold)	头部至 楔形板 始处厚度
taper_end_thick	5000	Distance from head where thickness taper ends (cold)	头部至 楔形结 束处板 坯厚度
taper_head_width	1300	Width of head of tapered slab (cold)	楔形坯 大头宽 度
taper_tail_width	1290	Width of tail of tapered slab (cold)	楔形坯 小头宽 度
taper_start_width	2000	Distance from head where width taper starts (cold)	头部至 大头楔 形开始 距离
taper_end_width	5000	Distance from head where width taper ends (cold)	头部至 小头楔 形开始 距离

配置名称	rollbite.cfg		
摘要:			
参数源代码	参数设定值(默认)	参数注解 (英)	参数 含义
r_zlk_stra_range = 20,	R1 (1.50, 3.00, 4.50, 6.00, 7.50,9.00, 12.00, 15.00, 18.00, 0.00 R2 1.50, 3.00, 4.50, 6.00, 7.50,9.00 12.00, 15.00, 18.00, 0.00;	z_lk strain index range for RM defomation resistance.	粗变抗自习档10R2档 轧形力学分(档10) R2)
r_zIk_temp_range=40	99. 9, -99. 9, -99. 9, -99. 9, 0. 0, 1010. 0, 1025. 0, 1040. 0, 1055. 0, 1080. 0, 1095. 0, 1110. 0, 1125. 0, 1140. 0, 1170. 0, 1185. 0, 1200. 0, 0. 0, 11 R2 -99. 9, -99. 9, -99. 9, -99. 9, -99. 9, 0. 0, 1010. 0, 1025. 0, 1040. 0, 1055. 0, 1080. 0, 1095. 0, 1110. 0, 1125. 0, 1140. 0, 1155. 0, 1170. 0, 1185. 0, 1200. 0, 0. 0;	z_lk temperature index range for RM defomation resistance.	温对形力学的档20档R2的度变抗自习分(m,20)
r_zlg_ldhm_range = 20	!! R1 0.30, 0.60, 0.90, 1.20, 1.50, 1.80, 2.20, 2.60, 3.00, 0.00, ! R2 0.30, 0.60, 0.90, 1.20, 1.50, 1.80, 2.20, 2.60, 3.00, 0.00;	z_lg width draft index range for RM torque.	减量扭自习分宽对矩学的档
e_zlke_drft_range = 20	1! RIE -10.00, 0.00, 10.00, 20.00, 30.00, 40.00, 50.00, 99.99, 99.99, 0.00, !! RZE -10.00, 0.00, 10.00, 20.00, 30.00, 40.00, 50.00, 99.99, 99.99, 0.00;	z_lke width draft index range for edger defomation resistance.	减量立变抗自习影宽对辊形力学的响

配置名 称	rzterm.cfg	

摘要:	Configure Static Laerning term object. 配置粗轧自学习参数		
参数源 代码	参数设定值(默认)	参数注解(英)	参数含义
z_type	1	Learning type. mulitiplicative type	乘法自学习
z_type	2	Learning type. additive type	加法自学习
z_kind	1	Learning kind. Lot to lot learning	LOT TO LOT 自学习
z_kind	2	Learning kind. Bar to bar learning each pass Edger	立辊每道次 BAR TO BAR 自学习
z_kind	3	Learning kind. Bar to bar learning each stand	毎机架 (R1/R2) BAR TO BAR 自学习
z_kind	4	Learning kind. Bar to bar learning pass to pass	毎道次 BAR TO BAR 自学 习
cnt_max	0-3	Maximum number for executing lot to lot learning	学习多少块 更新自学习 系数

CFG文件解析报告

• class = Adaptation

```
- [ ] thickness vernier calcs parameters
     thk_vern_enabled = true; ![-] Thickness vernier
enabled
//厚度偏差修正模式开启
     thk_err_cl = 0.03; ! [mm] Thickness Error Cl
amp for vernier calcs
//厚度偏差取值范围0.03mm
    thk_vern_cl = 0.010; ! [mm] Thickness Vern Cl
amp for verniercalcs
//厚度偏差计算范围0.01mm
    thk_prp_gain = 0.300; ! [-] Thickness Vern Prop
ortional Gain
//厚度偏差局部增益值
    thk_int_gain = 0.150; ! [-] Thickness Vernier I
ntegral Gain
//厚度偏差整体增益值
- [ ] temperature vernier calcs parameters
      tmp_vern_enabled = false;  ! [-] Temperature ver
nier enabled
//温度偏差修正模式关闭
      tmp vern gain = 0.100; ! [-] Temperature vern
ier Gain
//温度偏差增益值
      tmp_err_cl = 10.0; ! [degC] Temperature E
rror Clamp for vernier calcs
//温度偏差取值范围
      tmp_vern_cl = 30.0; ! [degC] Temperature V
ern Clamp forvernier calcs
//温度自学习值计算范围
- [ ] spy_effm_enabled = false; ! [-]ispy spy eff modif
ier update enabled
```

```
//喷淋修正模式关闭
spy_effm_gain = 0.3; ! [-] ispy spy eff modi
fier gain
//喷淋修正增益系数
spy_effm_lo_lim = 0.50; ! [-] ispy spy eff modi
fier low limit
//喷淋修正最小值
spy_effm_hi_lim = 1.40; ! [-] ispy spy eff modi
fier high limit
//喷淋修正最大值
hd_bdy_tmp_fac = 1.0;
nd body temperature prop factor
//头部及中部入口温度自学习系数
```

• class = cDraft

```
dmode = dm force; ! draft by per unit of force as defau
1t
//单位轧制力计算压下量模式
     alpha = 0.75; ! ratio low limit cla
mp = (1 - alpha)
//注释?
     damp mpy = 0.75; ! damping factor mult
iplier, to get critically damped convergence
//衰减系数
     conv crit = 0.01; ! convergence criter
ion on loading
//载荷收敛标准
     max dft iter = 50;    ! maximum iterations
for draft loop
//压下量最大迭代次数
      max dftlim iter = 100;     ! maximum iterations
for draft limit resolution
//压下量限制最大迭代次数
      dft crit = 0.01; ! convergence criter
ion on resolving draft limits
//压下量收敛标准
     frc crit
               = 0.01; ! convergence criter
ion on resolving force limits
```

```
//轧制力收敛标准
      pwr crit
                    = 0.01;
                              ! convergence criter
ion on resolving power limits
//功率收敛标准
      trq crit
                    = 0.01;
                               ! convergence criter
ion on resolving torque limits
//扭矩收敛标准
      thrdpwr crit = 0.10;
                               ! max thrd speed adj
ustment to remove thrd pwr lmt
//最大穿带速度修正量
      flr load
                              ! extra load require
                    = 0.0:
d to roll floor plate product
//轧制花纹板的额外负荷
      flrpudmin
                 = 0.135; ! Desired pudraft re
quired for floor plate
//轧制花纹板的理想单位压下量
      max_dummy_passes = 3; ! Maximum number of
dummy passes allowed.
//空过道次
      fst_dummy_adjacent = 2;    ! Maximum number of
adjacent dummy passes from F1
//F1机架的最大相邻空过机架数
      lst dummy adjacent = 3;   ! Maximum number of
adjacent dummy passes from Last stand
//F7机架的最大相邻空过机架数
      !dmode auto
                     = true; ! allow auto selecti
on of drafting mode
//自动选择压下模式?
                    = 3.1; ! maximum aim PDI th
      !thick pwr
ickness for power mode
//power mode下的最大目标厚度
- [ ] for Draft-Temperature calculation
      c num zlkfixed = 6;
                               ! Max number of Zlk
fixed in draft-temperature iterations
//压下量-温度迭代最大ZLK修正次数
      ! for FRDM
      c num nrmethod = 10; ! Maximum NR-method
number
//NR-method最大次数
```

```
c frdm conv = 0.005; ! FRDM convergence c
ondition
//FRDM收敛条件
     c_num_zlkread = 3;
! Zlk read number in
FRDM iterations
//FRDM迭代时Z1k读取的数
    c_num_lmtchkmax = 4; ! Limit check max ti
mes
//限制条件检查最大次数
    c num lmtstdmax = 2; ! Limit stand max nu
mber
//限制机架最大数
    c_dlt_rfr = 0.02; ! Delta roll force r
atio for coefficient
//单位轧制力率
     c_num_lmtfrdm = 2;     ! FRDM loop number i
n limit check calculation
//在限制检查时,FRDM循环次数
    c_spdcone_mgn = 0.88; ! Speed cone limit m
argin
//速度锥限制边界
                     111
```

• class = cFeedback

```
//设定-测量厚度偏差容忍度
                     = 100.0; ! [mm] width toleranc
      wid tol
e setup-measured
//设定-测量宽度偏差容忍度
      tmp tol
                    = 100.0; ! [degC] temperature
tolerance setup-measured
//设定-测量温度偏差容忍度
      fdt terr lu = 70.0; ! [deg F] FDT upper t
emperature error to be used
//FDT上限偏差
      emperature error to be used
//FDT下限偏差
                    = 5000; ! [kN] differential fo
      dfrc tol
rce tolerance
//两侧轧制力偏差容忍度
      frc_tol
                    = 0.75; ! [-] force toleranc
e setup-measured
//设定-测量轧制力偏差容忍度
      spd tol
                    = 0.500; ! [-] speed toleranc
e setup-measured
//设定-测量速度偏差容忍
!! thk hd fact
                    = 1.0; ! [-] thickness hd a
nd very hd prop factor
//注释: ?
      tmp_cnvg_tol = 1.0; ! [degC] temperature
loop convergence tolerance
//温度循环收敛条件
      max tmp iter
                    = 20;
                             ! [-] maximum number
of iterations for temp calcs
//温度计算最大迭代次数
      spy_eff_mod_min = 0.75;
                            ! [-] Spray efficien
cy modifier (calculated minimum)
//喷淋水修改的最小值
      spy eff mod max = 1.25; ! [-] Spray efficine
cy modifier (calculated maximum)
//喷淋水修改的最大值
      min force
                    = 100.0; ! [-] minimum force
read to detect dummy stand
//检测空过机架的最小轧制力
```

```
ztmp log enable = true;
//注释:?
      shadow_mode = false; ! [-] Shadow mode in
dicator
//注释:影子模式开启?
      ds_spy_calcs_enabled = 4,   ! [-] Descalse spray
s avaliable for adaptation
             true, true, true, true;
       is_spy_calcs_enabled = 6,   ! [-] Interstand spr
ays avaliable for adaptation
             true, true, true, true, true;
       rgl flw est = 10; ! [ml/min] RGL establi
shment flow
//辊缝润滑设定流量
      massflow iter = 10; ! [-] loop num for m
assflow thickness calculation
//秒流量厚度计算的循环次数
       spy_mismatch_enable = false; ! [-] Flag of spray
mismatch enable
//喷淋水是否匹配标志
```

• class = cFTVD

```
create_object;
      obiname = ftvd:
      parentname = mill;
   end;
      crop_length = 0.0; ! [m] Typical head crop
length
//切头剪头部剪切长度
      min_run_spd = 1.0;   ! [m/sec] Minimum mill
delivery speed
//最小机架出口速度
      max_run_spd = 15.0; ! [m/sec] Maximum mill
delivery speed
//最大机架出口速度
                    = 0.0; ! [m/sec/s] acceleratio
      acc m
n rate of M stand
//M机架的加速度
```

```
n rate of crop shear tables
//切头剪辊道的加速度
    dist ds m = 0.000; ! [m] distance M stand
descaler entry to M stand(*)
//入口除鳞到M机架的距离
    dist_m_csentry = 0.000;    ! [m] distance M stand
to crop shear entry(*)
//切头剪入口到M机架的距离
     ar entry to crop shear exit(*)
//切头剪入口到出口的距离
    ar exit to f1 stand(*)
//切头剪出口到F1的距离
    thd_adj = 1.0; ! [-] thread adjustment
tuning parameter
//穿带调整协调系数?
```

- class = cFZTerm
 - 1. ZLK Deformation resistance model learning

```
cFZTerm = zlk1;
                  = 1; ![-] Learning type.
     z type
mulitiplicative type / additive type
     //自学习类型为乘法形式
     z kind
                  = 1; ![-] Learning kind.
Lot to lot learning / Bar to bar learning
     //自学习方式为长期自学习
              = 1; ![-] Maximum numbe
     cnt max
r for executing lot to lot learning
     //长期自学习执行的最大数量
  end;
  cFZTerm = z1k2;
               = 1; ![-] Learning type.
mulitiplicative type / additive type
     z kind
               = 1; ![-] Learning kind.
```

```
Lot to lot learning / Bar to bar learning
      cnt max
                    = 1; ![-] Maximum numbe
r for executing lot to lot learning
  end:
  cFZTerm = z1k3;
               = 1; ![-] Learning type.
      z type
mulitiplicative type / additive type
      z kind
                    = 1; ![-] Learning kind.
Lot to lot learning / Bar to bar learning
               = 1; ![-] Maximum numbe
      cnt max
r for executing lot to lot learning
  end:
  cFZTerm = z1k4;
               = 1; ![-] Learning type.
      z_type
mulitiplicative type / additive type
                    = 1; ![-] Learning kind.
      z kind
Lot to lot learning / Bar to bar learning
      cnt max = 1; ![-] Maximum numbe
r for executing lot to lot learning
  end;
  cFZTerm = z1k5;
                    = 1; ![-] Learning type.
      z type
mulitiplicative type / additive type
      z kind
                    = 1; ![-] Learning kind.
Lot to lot learning / Bar to bar learning
                    = 1; ![-] Maximum numbe
      cnt_max
r for executing lot to lot learning
  end:
  cFZTerm = z1k6;
                    = 1; ![-] Learning type.
      z type
mulitiplicative type / additive type
      z kind
                    = 1; ![-] Learning kind.
Lot to lot learning / Bar to bar learning
      cnt max
                    = 1; ![-] Maximum numbe
r for executing lot to lot learning
  end;
```

2. ZLPH–Roll force model learning (Thickness)

```
cFZTerm = zlph1;
                    = 1; ![-] Learning type
      z type
. mulitiplicative type / additive type
      //自学习类型为乘法类型
      z kind = 1; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
      //自学习方式为长期自学习
      cnt max = 3; ![-] Maximum numb
er for executing lot to lot learning
      //长期自学习执行最大数量为3
   end;
   cFZTerm = zlph2;
                = 1; ![-] Learning type
      z_type
. mulitiplicative type / additive type
                    = 1; ![-] Learning kind
      z_kind
. Lot to lot learning / Bar to bar learning
               = 3; ![-] Maximum numb
      cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zlph3;
                    = 1; ![-] Learning type
      z type
. mulitiplicative type / additive type
```

```
z kind = 1; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
       cnt max
               = 3; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zlph4;
                = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 1; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
                = 3; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zlph5;
       z_type
                     = 1; ![-] Learning type
. mulitiplicative type / additive type
                     = 1; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
               = 3; ![-] Maximum numb
      cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zlph6;
                = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind
               = 1; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
                     = 3; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zlph7;
                = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind
                = 1; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
       cnt max = 3; ![-] Maximum numb
er for executing lot to lot learning
```

```
end;

← III 

→
```

3. ZBP-Roll force model learning

```
cFZTerm = zbp1;
                     = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
      //自学习类型为乘法类型
       z_kind = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
       //自学习方式为短期自学习
       cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
      //长期自学习执行最大数量,因为是短期自学习,故
为0
   end;
   cFZTerm = zbp2;
                     = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
                     = 0; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zbp3;
                = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
       cnt max
                     = ∅; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbp4;
```

```
z type = 1; ![-] Learning type
. mulitiplicative type / additive type
       z kind
               = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
       cnt max
               = ∅; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbp5;
                     = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
                     = 0; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end:
   cFZTerm = zbp6;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
                     = ∅; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zbp7;
               = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
               = 0; ![-] Maximum numb
       cnt_max
er for executing lot to lot learning
   end;
                     Ш
```

4. ZBP-Roll force model furnace devision learning

```
cFZTerm = zbpfce1 1;
       z_type = 1; ![-] Learning type
. mulitiplicative type / additive type
      //自学习类型为乘法类型
       z kind
                = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
      //自学习方式为短期自学习
      cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end:
   cFZTerm = zbpfce1_2;
                    = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
      cnt_max
               = 0; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce1_3;
               = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind
                = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
      cnt max
               = 0; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce2 1;
                    = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
      z kind
                 = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
               = 0; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce2 2;
                     = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
      z kind = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
```

```
cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce2 3;
                     = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
               = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
       cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end:
   cFZTerm = zbpfce3 1;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
       cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end:
   cFZTerm = zbpfce3 2;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
      cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce3_3;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
               = 0; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce4 1;
                = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
```

```
cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce4 2;
                     = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
               = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
       cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end:
   cFZTerm = zbpfce4 3;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
       cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end:
   cFZTerm = zbpfce5 1;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
      cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce5_2;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
               = 0; ![-] Maximum numb
       cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce5 3;
                = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
```

```
cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
   cFZTerm = zbpfce6 1;
                    = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
               = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
      cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end:
   cFZTerm = zbpfce6 2;
                     = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
                    = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
      cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end:
   cFZTerm = zbpfce6 3;
                     = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                     = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
      cnt max = 0; ![-] Maximum numb
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce7_1;
                    = 1; ![-] Learning type
       z_type
. mulitiplicative type / additive type
                    = 2; ![-] Learning kind
       z kind
. Lot to lot learning / Bar to bar learning
               = 0; ![-] Maximum numb
      cnt max
er for executing lot to lot learning
   end;
   cFZTerm = zbpfce7 2;
                = 1; ![-] Learning type
       z type
. mulitiplicative type / additive type
       z kind = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
```

```
cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
  end;
  cFZTerm = zbpfce7_3;
    z_type = 1; ![-] Learning type
. mulitiplicative type / additive type
    z_kind = 2; ![-] Learning kind
. Lot to lot learning / Bar to bar learning
    cnt_max = 0; ![-] Maximum numb
er for executing lot to lot learning
  end;
```

5. ZLGH-Roll torque model learning (Thickness)

""c cFZTerm = zlgh1;

```
z_type = 1; ![-] Learning type. mu
litiplicative type / additive type
    //自学习类型为乘法类型
    z_kind = 1; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
    //自学习方式为长期自学习
    cnt_max = 3; ![-] Maximum number fo
r executing lot to lot learning
    //长期自学习最大执行数量为3
```

end;

cFZTerm = zlgh2;

```
z_type = 1; ![-] Learning type. mu
litiplicative type / additive type
z_kind = 1; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
  cnt_max = 3; ![-] Maximum number fo
```

r executing lot to lot learning end; cFZTerm = zlgh3;![-] Learning type. mu z_type = 1; litiplicative type / additive type = 1; ![-] Learning kind. Lo z kind t to lot learning / Bar to bar learning = 3; ![-] Maximum number fo r executing lot to lot learning end; cFZTerm = zlgh4;z type = 1; ![-] Learning type. mu litiplicative type / additive type = 1; ![-] Learning kind. Lo z kind t to lot learning / Bar to bar learning cnt max = 3; ![-] Maximum number fo r executing lot to lot learning end; cFZTerm = zlgh5;![-] Learning type. mu z_type = 1;

```
litiplicative type / additive type
  z_kind = 1; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
  cnt_max = 3; ![-] Maximum number fo
r executing lot to lot learning
```

```
end;
      cFZTerm = zlgh6;
           z type
                           = 1; ![-] Learning type. mu
        litiplicative type / additive type
                          = 1; ![-] Learning kind. Lo
           z kind
        t to lot learning / Bar to bar learning
                                ![-] Maximum number fo
                          = 3;
        r executing lot to lot learning
      end;
      cFZTerm = zlgh7;
                                    ![-] Learning type. mu
           z_type
                           = 1;
        litiplicative type / additive type
                          = 1; ![-] Learning kind. Lo
           z kind
        t to lot learning / Bar to bar learning
                                 ![-] Maximum number fo
          cnt max
                          = 3;
        r executing lot to lot learning
      end;
1. ZBGRoll-torque model learning
    cFZTerm = zbg1;
                           = 1; ![-] Learning type. mu
          z_type
    litiplicative type / additive type
```

t to lot learning / Bar to bar learning

= 2; ![-] Learning kind. Lo

= 0; ![-] Maximum number for

z kind

cnt max

```
executing lot to lot learning
  end;
  cFZTerm = zbg2;
      z_type
              = 1; ![-] Learning type. mu
litiplicative type / additive type
                   = 2;
                            ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
                    = 0; ![-] Maximum number for
      cnt max
executing lot to lot learning
  end;
  cFZTerm = zbg3;
                 = 1; ![-] Learning type. mu
      z type
litiplicative type / additive type
      z kind
                     = 2; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
                     = 0; ![-] Maximum number for
      cnt max
executing lot to lot learning
  end;
  cFZTerm = zbg4;
      z_type
                    = 1; ![-] Learning type. mu
litiplicative type / additive type
                   = 2; ![-] Learning kind. Lo
      z kind
t to lot learning / Bar to bar learning
      cnt max
                    = 0; ![-] Maximum number for
executing lot to lot learning
  end;
  cFZTerm = zbg5;
      z_type = 1; ![-] Learning type. mu
litiplicative type / additive type
                    = 2;
                            ![-] Learning kind. Lo
      z kind
t to lot learning / Bar to bar learning
      cnt max = 0; ![-] Maximum number for
executing lot to lot learning
  end;
  cFZTerm = zbg6;
```

```
z type = 1; ![-] Learning type. mu
litiplicative type / additive type
                = 2; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
      cnt max
                    = 0; ![-] Maximum number for
executing lot to lot learning
  end;
  cFZTerm = zbg7;
                  = 1; ![-] Learning type. mu
      z type
litiplicative type / additive type
      z kind
                     = 2; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
      cnt max
                     = 0; ![-] Maximum number for
executing lot to lot learning
  end;
```

2. ZBS - Gaugemeter thickness model learning at Head

```
cFZTerm = zbshd1;
      z_type = 2; ![-] Learning type. mu
litiplicative type / additive type
     //自学习类型为加法
               = 2; ![-] Learning kind. Lo
      z kind
t to lot learning / Bar to bar learning
      //自学习方式为短期自学习
      cnt max = 0; ![-] Maximum number for
executing lot to lot learning
  end;
  cFZTerm = zbshd2;
               = 2; ![-] Learning type. mu
      z_type
litiplicative type / additive type
      z kind
                    = 2;
                          ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
     cnt max
                    = 0; ![-] Maximum number for
```

```
executing lot to lot learning
  end;
  cFZTerm = zbshd3;
      z_type
                = 2; ![-] Learning type. mu
litiplicative type / additive type
                   = 2; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
                   = 0; ![-] Maximum number for
      cnt max
executing lot to lot learning
  end:
  cFZTerm = zbshd4;
                  = 2; ![-] Learning type. mu
      z type
litiplicative type / additive type
                     = 2; ![-] Learning kind. Lo
      z kind
t to lot learning / Bar to bar learning
                     = 0; ![-] Maximum number for
      cnt max
executing lot to lot learning
  end:
  cFZTerm = zbshd5;
                    = 2; ![-] Learning type. mu
      z type
litiplicative type / additive type
                   = 2; ![-] Learning kind. Lo
      z kind
t to lot learning / Bar to bar learning
      cnt max
                   = 0; ![-] Maximum number for
executing lot to lot learning
  end;
  cFZTerm = zbshd6;
              = 2; ![-] Learning type. mu
      z_type
litiplicative type / additive type
                    = 2;
                             ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
      cnt_max = 0; ![-] Maximum number for
executing lot to lot learning
  end;
  cFZTerm = zbshd7;
```

```
z_type = 2; ![-] Learning type. mu
litiplicative type / additive type
    z_kind = 2; ![-] Learning kind. Lo
t to lot learning / Bar to bar learning
    cnt_max = 0; ![-] Maximum number for
executing lot to lot learning
    end;
```

3. ZBS - Gaugemeter thickness model learning at Tail

```
cFZTerm = zbstl1;
                  = 2; ![-] Learning type. m
      z_type
ulitiplicative type / additive type
      //加法
       z kind
               = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
      //短期
      cnt max
                = 0; ![-] Maximum number f
or executing lot to lot learning
   end:
   cFZTerm = zbstl2;
                    = 2; ![-] Learning type. m
       z_type
ulitiplicative type / additive type
       z kind
                   = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
                 = 0; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end;
   cFZTerm = zbst13;
               = 2; ![-] Learning type. m
       z_type
ulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
      cnt_max
                  = 0; ![-] Maximum number f
```

```
or executing lot to lot learning
   end;
   cFZTerm = zbstl4;
       z_type
                = 2; ![-] Learning type. m
ulitiplicative type / additive type
                     = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
       cnt max
                     = 0; ![-] Maximum number f
or executing lot to lot learning
   end;
   cFZTerm = zbstl5;
                   = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
                     = 0; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end:
   cFZTerm = zbstl6;
                     = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
                    = 2; ![-] Learning kind. L
       z kind
ot to lot learning / Bar to bar learning
       cnt max
                     = 0; ![-] Maximum number f
or executing lot to lot learning
   end;
   cFZTerm = zbstl7;
                = 2; ![-] Learning type. m
       z_type
ulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
       cnt_max = 0; ![-] Maximum number f
or executing lot to lot learning
   end;
```

4. ZBS-Gaugemeter thickness model cycle top learning

```
cFZTerm = zbscyc1;
      cnt max = 3; ![-] Maximum number f
or executing cycle top learning
      //执行cycle自学习最大执行数量?
   end;
   cFZTerm = zbscyc2;
      cnt_max = 3; ![-] Maximum number f
or executing cycle top learning
   end;
   cFZTerm = zbscyc3;
      cnt max = 3; ![-] Maximum number f
or executing cycle top learning
   end:
   cFZTerm = zbscyc4;
      cnt_max = 3; ![-] Maximum number f
or executing cycle top learning
   end;
   cFZTerm = zbscyc5;
      cnt max = 3; ![-] Maximum number f
or executing cycle top learning
   end;
   cFZTerm = zbscyc6;
               = 3; ![-] Maximum number f
      cnt max
or executing cycle top learning
   end;
   cFZTerm = zbscyc7;
      cnt_max = 3; ![-] Maximum number f
or executing cycle top learning
   end;
```

5. ZLTCH-FM zone temperature correction

```
cFZTerm = zltch1;
       z type = 2; ![-] Learning type. m
ulitiplicative type / additive type
       //加法
       z kind
               = 1; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
       //长期
                = 3; ![-] Maximum number f
       cnt max
or executing lot to lot learning
      //最大为3
   end;
   cFZTerm = zltch2;
               = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
                     = 1; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
                     = 3; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end;
   cFZTerm = zltch3;
                  = 2; ![-] Learning type. m
       z_type
ulitiplicative type / additive type
                     = 1; ![-] Learning kind. L
       z kind
ot to lot learning / Bar to bar learning
                     = 3; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end;
   cFZTerm = zltch4;
                     = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
       z_kind = 1; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
```

```
cnt max = 3; ![-] Maximum number f
or executing lot to lot learning
   end;
   cFZTerm = zltch5;
                    = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
                     = 1; ![-] Learning kind. L
       z kind
ot to lot learning / Bar to bar learning
                     = 3; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end;
   cFZTerm = zltch6;
               = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
                   = 1; ![-] Learning kind. L
       z kind
ot to lot learning / Bar to bar learning
       cnt_max = 3; ![-] Maximum number f
or executing lot to lot learning
   end;
   cFZTerm = zltch7;
               = 2; ![-] Learning type. m
       z_type
ulitiplicative type / additive type
       z kind
                     = 1; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
       cnt max = 3; ![-] Maximum number f
or executing lot to lot learning
   end;
```

6. ZBTC-FM zone temperature correction

```
z kind = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
      //短期
                = 0; ![-] Maximum number f
      cnt max
or executing lot to lot learning
   end:
   cFZTerm = zbtc2;
       z type
                = 2; ![-] Learning type. m
ulitiplicative type / additive type
               = 2; ![-] Learning kind. L
       z kind
ot to lot learning / Bar to bar learning
                    = 0; ![-] Maximum number f
      cnt max
or executing lot to lot learning
   end;
   cFZTerm = zbtc3;
                 = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
                    = 0; ![-] Maximum number f
      cnt max
or executing lot to lot learning
   end;
   cFZTerm = zbtc4;
                   = 2; ![-] Learning type. m
       z_type
ulitiplicative type / additive type
       z_kind
                  = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
                   = 0; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end;
   cFZTerm = zbtc5;
               = 2; ![-] Learning type. m
       z type
ulitiplicative type / additive type
       z kind
                     = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
      cnt max
                     = 0; ![-] Maximum number f
```

```
or executing lot to lot learning
   end;
   cFZTerm = zbtc6;
       z_type
                  = 2; ![-] Learning type. m
ulitiplicative type / additive type
                      = 2;
                              ![-] Learning kind. L
ot to lot learning / Bar to bar learning
                      = 0; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end:
   cFZTerm = zbtc7;
                    = 2; ![-] Learning type. m
       z_type
ulitiplicative type / additive type
       z kind
                       = 2; ![-] Learning kind. L
ot to lot learning / Bar to bar learning
                      = 0; ![-] Maximum number f
       cnt max
or executing lot to lot learning
   end;
end;
```

7. class = cSetup

```
create_object;
      objname = setup;
      parentname = mill;
   end:
   cSetup = setup;
      ssu_load_enab= false; ! SSU model load distri
bution permissive
//不允许板形模型修改压下负荷
      dtloop lmt = 10;
                           ! draft-temperature ite
rations max limit
//压下量-温度迭代最大限制次数
      dtsloop_lmt = 2;
                        ! draft-temperature-sha
pe iterations max limit
//压下量-温度-板形迭代最大限制次数
```

```
clr ys mult = 0.8; ! Coiler YS multiplier
//钢卷YS 系数?
      fat mea pass = 3;
! FAT Measurement Pass
Number
//FAT测量机架数?
      fat gain = 0.3; ! FAT Gain for Level-1
//FAT增益?
!! reset_thk_vern = true; ! Reset thickness verni
ers after roll change
//换辊后厚度偏差清零
      reset_tmp_vern = true;    ! Reset temperature ver
niers after roll change
//换辊后温度偏差清零
      frdmloop lmt = 2;    ! FRDM iterations max 1
imit
//FRDM最大迭代限制
                           ! Number of LLTC calcul
      11tc std num = 8;
ate stands
//LLTC计算的机架数
      n_scan = 10; ![-] Number of scan
//扫描点数
      t_scan = 0.2; ![sec] Scan sampling pi
tch
//扫描的时间间隔
      sim_max_spd = 13.0;   ![mps] Maximum speed wh
en simulation
//模拟时的最大速度
   end;
end:
```

• class=ctemperature

```
class = cTemperature;
    create_object;
    objname = temperature;
    parentname = mill;
end;

cTemperature = temperature;
```

```
tmp tol
             = 2.0; ![degC] target tem
perature prediction closure tolerance
        //目标温度预测中止偏差
      is override perm = false; ![-] Spray pattern
override is permitted if true
        //不允许改变除鳞模式
      turnoff_perm = false; ![-] Spray turn of
f is permitted if true even with
                               ! non-zero patt
ern minimum flow
        //该项若为true,喷淋水流量为非零模式下的最小水流量
      use FME pred = true; ! Use predicted FM
E temperature when true
        //使用预计算的精轧入口温度
      dtmp_alt_thick = 500.0; ![degC] dTmp error
to call for alternate thickness
        //厚度调整所需温度差值
                = 5;
                            !
      num step
        //?
      fmePyro Name = "fepyro"; ! FME pyrometer na
me
      //精轧入口温度名字为"fepyro"
      fmxPyro_Name = "fxpyro"; ! FMX pyrometer na
me
      //精轧出口温度名字为"fxpyro"
      fmxTempTgt_Name = "fxpyro"; ! Name of object w
hose exit piece is the target location
      //出口位置为目标区域的object的名字
      FMEDSTable_Name = "f1etbl"; ! First descale sp
ray table
      //精轧一次除鳞辊道
   end;
end;
                      H
```

FTC CFG配置文件

FTC CFG配置共计33个,其中涉及到模型参数配置的有4个,故本文主要针对这4张表的参数含义及功能进行说明。

cfg_clc

参数	含义	功能
acc_corr_gain	加速度增益	加速度计算时乘数因子
err_corr_gain	温度误差校正增益	温度偏差计算时乘数因 子
imd_err_gain	直接前馈温度修正增益	立即温度偏差计算时乘 数因子
init_ffwd_gain	初始前馈温度修正增益	前馈温度偏差计算时乘 数因子
init_imd_gain	初始直接前馈温度修正 增益	前馈温度偏差计算时乘 数因子
k1_1	增益系数	温度偏差计算时乘数因 子
k1_2	增益系数	温度偏差计算时乘数因 子
lo_tmp_gain_hd	冷卷头部加速度增益	冷卷温度偏差计算时乘 数因子
lo_tmp_gain_tl	冷卷尾部加速度增益	冷卷温度偏差计算时乘 数因子
min_counter	最小控制周期	加速度控制闭环启动最 小计数
prev_ffwd_gain	前馈积分增益	前馈温度偏差计算时乘 数因子
switch_db	加速度变化开关信号的 温度死区	温度偏差的判断条件
		温度偏差计算时乘数因

td_1	超前时间	子
td_2	超前时间	温度偏差计算时乘数因 子
temp_error_db	加速度限制温度死区	加速度限制的判断条件
thread_vel_db	穿带速度死区	F7出口速度的判断条件
tn_1	滞后时间	温度偏差计算时乘数因 子
tn_2	滞后时间	温度偏差计算时乘数因 子

cfg_hiaccel

参数	含义	功能
burst_start_db	brust加速开始死区	加速度开始判断条件
burst_stop_db	brust加速停止死区	加速度结束判断条件
cold_tmp_lim	冷极限	低温度偏差判断条件
del_temp_lim	温度变化极限值	加速度结束判断条件
fdbk_pred_gain	预报温升增益	预报温差计算的乘数因子
ffwd_corr_lim	前馈修正限制	温度偏差修正限制
ffwd_err_gain	前馈预报错误增益	温度偏差计算的乘数因子
ffwd_permit	前馈控制允许	前馈控制判断条件
hot_tmp_lim	热极限	高温度偏差判断条件
min_hac_lgth	最小高加速长度	Zoom加速判断条件
norm_acc_permit	保持加速度喷淋控 制允许	喷淋控制的判断条件
num_vrn_spys	反馈喷嘴数	反馈喷嘴数
pre_acc_permit	保持加速度前喷淋 控制允许	卷取前加速判断条件
pre_clr_permit	卷取前喷淋控制允 许	卷取前加速判断条件
reg_lockon_db	温度调节设定值	区域温度计算判断条件

reg_permit	区域温度调节允许	区域温度计算判断条件
reverse_ctrl	反转控制	反转控制判断条件
spy_ctrl_dly	喷淋控制延迟时间	头部喷淋控制延迟时间
tmp_err_lim	最大错误允许修正	温度误差边界条件
tot_pred_gain	排除预报温升增益	剩余预报温度偏差计算时 的乘数因子
vrn_permit	反馈允许	最后一个喷淋可用做vernier 的判断条件
zoom_start_db	zoom加速开始死区	Zoom加速开始判断条件
zoom_stop_db	zoom加速停止死区	Zoom加速结束判断条件

cfg_model

参数	含义	功能
acc_dev	加速度偏差	一般加速度的限制偏差
acc_lim	自学习限制	加速度偏差自学习限制
accel_max	最大加速度	一加加速度最大值
accel_min	最小加速度	一加加速度最小值
corr_err_gain	温度斜率增益	分段斜率自学习计算增 益
corr_err_lim	温度斜率限制	分段斜率自学习计算判 断条件
corr_limit	温度斜率修正限制	分段斜率自学习计算判 断条件
fbk_percent	反馈比例	反馈控制长度比例
fbk_permitted	反馈允许	反馈控制判断条件
hd_slope_gain	头部斜率增益	头部加速度计算增益
hi_acc_gain	加速度高增益	一般加速度计算时的大 的增益
hi_terr_lim	适应温度误差高的限制	一般加速度计算时的大 的限制

min_adapts	最小适应数	一般加速度计算的判断 条件
neg_slope_gain	负斜率增益	全长斜率负斜率计算增 益
norm_acc_gain	一般加速度增益	一般加速度计算时的增 益
norm_terr_lim	正常适应温度误差限制	一般加速度计算时的限 制
pos_slope_gain	正斜率增益	全长斜率正斜率计算增 益
shadowing	遮蔽	分段斜率计算的判断条 件
skid_limit	水印限制	反馈控制的判断条件
slope_dev_lim	中间-头部温度斜率偏 差限制	头部加速度计算偏差限 制
terr_gain	温度误差增益	温度偏差计算增益
vern_err_gain	温度偏差补偿增益	温度偏差计算增益
vern_err_lim	温度偏差补偿限制	温度偏差计算的进入限 制
vernier_limit	温度补偿限制	分段温度自学习计算判 断条件

cfg_temperature

参数	含义	功能
classify	温度带分类允许	温度带分类
fbk_smp_offset	反馈采样点补偿	反馈喷淋控制的判断条件
filter_time	锁定过滤时间	FDT温度过滤时间
fme_dtmp_lim	FME样本温差限制	FME样本间温差极限值
fme_pyro_lim	FME下限	FME温度低温极值
fmx_dtmp_lim	FMX样本温差限制	FMX样本间温差极限值
head_trim	头倾度	头部开始位置

hi_fme_filter	FME过滤上增益	FME高增益系数
hi_fmx_filter	FMX过滤上增益	FMX高增益系数
hi_lockon_filter	上锁定增益	锁定加权温度计算的大系数
is_override_perm	忽略喷淋模式	喷淋模式忽略的判断条件
limit	温度带锁定限制	温度带区分类极限值
lo_fme_filter	FME过滤下增益	FME低增益系数
lo_fmx_filter	FMX过滤下增益	FMX低增益系数
lo_lockon_filter	下锁定增益	锁定加权温度计算的小系数
lockon	温度带锁定锁定 限制	温度带区锁定极限值
min_cover_down	最小覆盖数	保温罩投用判断条件
pu_dist_err	长度错误比例	前馈计算停止判断条件
restart_delay	重启延迟	参考温度计算的判断条件
slope_limit	温度斜率限制	温度斜率合法的判断条件
smp_gauge	样本厚度	厚度分档
smp_length	样本长度	长度分档
spy_err_marg	喷淋失配补偿	单位流量偏差的判断条件
spy_sts_err_pu	喷雾失配单位阈 值	喷雾变化的判断条件
tail_trim	尾倾度	头部开始位置
temp_corr_db	温度修正死区	前馈温度控制的偏差的判断 条件
tmp_tol	温度公差	温度计算收敛判断条件
turnoff_perm	喷淋关闭	允许喷淋不投用
use_FME_pred	采用FME预报	采用FME预报温度标志位

CFG模型参数整理

TARGT

```
class = cTargt;
  cTargt = targt;
      flt_err_lim = 2,
                                         ! [kN] flatn
ess errorlimits
                      -250.,
                                         ! minimu
m
                       250.;
                                         ! maximu
   // 平直度自学习当中的平直度偏差极限范围
      flt_vrn_bled = 0.9;
                                         ! [-] target
flatness vernierbleed-off
   // 平直度自学习衰减系数
                                         ! [kN] targe
      flt vrn lim = 2,
t flatnessvernier limits
                                         ! minimu
                      -800.0,
m
                       800.0;
                                       ! maximu
   // 平直度自学习极限范围
     flt_vrn_i_gn = 0.6;
                                       ! [-] target
flatness controlloop integral gain
      flt_vrn_p_gn = 0.3;
                                        ! [-] target
flatness controlloop proportional gain
   // 平直度自学习PI控制系数
      prf dev lim = 0.010;
                                         ! [mm] targe
t profile deviationlimit
   // 凸度波动极限
      prf_err_lim = 2,
                                        ! [mm] profi
le error limits
                      -0.100,
                                        ! minimu
m
```

```
0.100;
                                                maximu
m
   // 凸度自学习偏差极限
      prf_lim = 2,
                                          ! [mm] absol
ute limits
                       0.000,
                                          !
                                                minimu
m
                                          !
                                              maximu
                       0.250:
m
   // 凸度最大范围
      prf tol
                   = 2,
                                          ! [mm] targe
t profiletolerances
                       -0.050,
                                          !
                                               minimu
m
                                          ! maximu
                        0.050;
m
   // 凸度精度要求
                                          ! [-] target
      prf vrn bled = 0.9;
profile vernier (re-predicted -setup) bleed-off
   // 凸度自学习衰减系数
      prf vrn lim = 2,
                                          ! [mm] targe
t profilevernier limits
                       -0.070,
                                          !
                                               minimu
m
                        0.070;
                                          1
                                               maximum
   // 凸度自学习极限
      prf_vrn_rm_i_gn = 0.4;
                                         ! [-] target
profile vernier (re-predicted - measured) control loop inte
gral gain
      prf_vrn_rm_p_gn = 0.2;
                                          ! [-] target
profile vernier (re-predicted - measured) control loop prop
ortional gain
   // 凸度自学习rm的PI控制系数
      prf_vrn_rs_i_gn = 0.2;
                                         ! [-] target
profile vernier (re-predicted - setup) control loop integra
l gain
   // 凸度自学习rs的PI控制系数
      flt err thrshld = 100;
                                          ! [kN] Flatn
ess errorthreshold minimum for flatness feedback
   // 平直度自学习,学习的临界点
```

```
m operator correction in WRONG direction and still doflatne
ss feedback
  // 操作工如果调整错误,但仍然进行自学习的弯辊力临界点
     apc_start_std = 1;
                                   ! [-] APC Co
rrection startstand
  // APC修正开始的机架
     exit strain calculation
  // 是否允许计算出口应变差
     ex strn thk = 10.00;
                                  ! [mm] Exit
strain match forthinkness less than or equal to.
   // 出口应变差对应的最大厚度
                          ! [-] Exclude
     exclude stainless = false;
stainless steel
   // 是否排除不锈钢钢种
!@(CC087) start
                         ! [-] Vernie
     prf_vrn_sel_flag = true;
r selection flag(false=samp, true=slfg)
  // 凸度自学习,长短期以哪个为主的标识,默认长期自学习
     flt vrn sel flag = true;
                                ! [-] Vernie
r selection flag(false=samp, true=slfg)
  // 平直度自学习,长短期以哪个为主的标识,默认长期自学习
!@(CC087) end
!@2ND(LC060) start
     wr_crn_off_sel_flag = true;! [-] Work rol
1 offset selection flat (false= slfg, true = slfg+sprp)
  // 工作辊凸度补偿,标识是否使用sprp数据,默认使用长期自学习
和sprp
!@2ND(LC061) end
  end;
end;
```