Scilab Textbook Companion for Basic Electrical Engineering by P. S. Dhogal¹

Created by
Nishtha Rani
B.Tech
Electrical Engineering
Uttrakhand Technical University
College Teacher
Vinesh Saini
Cross-Checked by
Lavitha Pereira and Mukul Kulkarni

May 29, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Electrical Engineering

Author: P. S. Dhogal

Publisher: Tata McGraw-Hill Publishing, New Delhi

Edition: 1

Year: 2005

ISBN: 0-07-45186-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
3	electricity and its fundamental law	5
4	Work power and energy	14
5	effects of electric current	27
6	magnetism and electromagnetism	30
7	DC generators	32
8	DC motors	47
9	cells and batteries	61
11	single phase AC circuits	71
12	polyphase system	89

List of Scilab Codes

Exa 3.	.1	resistance
Exa 3.	.2	voltage
Exa 3.	.3	specific resistance 6
Exa 3.	.4	resistance
Exa 3.	.5.a	total resistance
Exa 3.	5.b	current flowing
Exa 3.		voltage
Exa 3.		total resistance
Exa 3.	.8	voltage
Exa 3.	.9	effective resistance and current 9
Exa 3.	.10	current
Exa 3.	11.a	unknow resistance
Exa 3.	11.b	potential drop
Exa 3.	.11.c	current
Exa 3.	11.d	total resistance
Exa 4.	1.b	power lost
Exa 4.	.1	resistance
Exa 4.	.2	resistance
Exa 4.	.3	resistance
Exa 4.	4.a	power taken in parallel case
Exa 4.	4.b	power taken in series case
Exa 4.	.5.a	total load
Exa 4.	.5.b	current taken
Exa 4.	.6	total cots of electric energy and total charges of bill 18
Exa 4.	.7	voltage current power and bill amount
Exa 4.	.8	current taken
Exa 4.	.9	amount of bills
Exa 4.	10.a	total load of light and fans

Exa	4.10.b	total load current
Exa	4.11	horsepower of the motor
Exa	4.12.a	Bhp of the motor
		cost of the energy
Exa	5.1	ECE of silver
Exa	5.2	thickness of coper
Exa	5.3	resistance
Exa	5.4	potential difference
Exa	6.1	field strength
Exa	6.2	force
Exa	6.3	emf induced
Exa	7.1.a	emf induced
Exa	7.1.b	emf generated
Exa	7.2.a	total armature current
Exa	7.2.b	current per armature path
Exa	7.2.c	emf generated
Exa	7.3.a	terminal voltage
Exa	7.3.b	emf generated
Exa	7.4.a	terminal voltage
Exa	7.4.b	emf generated
Exa	7.4.c	copper losses
Exa	7.4.d	Bhp metric of the primemover
Exa	7.4.e	commercial efficiency
Exa	7.5.a	total armature current
Exa	7.5.b	current
Exa	7.5.c	emf generated
Exa	7.5.d	power developed
	7.5.e	copper losses
Exa	7.5.f	stray losses
Exa	7.5.g.1	electrical efficiency
		commercial efficiency
		mechanical efficiency 45
Exa	_	speed
	8.2.a	Bhp
	8.2.b	copper losses
	8.2.c	armature torque
	8.2.d	shaft torque
		lost torque 50

Exa 8.2.f	commercial efficiency	51
Exa 8.3	speed	52
Exa 8.4.a	stray losses	52
Exa 8.4.b	horsepower of the motor	53
Exa 8.4.c	efficiency	54
Exa 8.5.a	back emf	54
Exa 8.5.b	copper losses	55
Exa 8.5.c	Bhp	55
Exa 8.5.d	total torque	56
Exa 8.5.e	shaft torque	57
Exa 8.5.f	lost torque	57
Exa 8.5.g	commercial efficiency	58
Exa 8.6	current taken	59
Exa 8.7	speed	59
Exa 9.1	value of current flowing	61
Exa 9.2	value of current flowing	61
Exa 9.3	value of current flowing	62
Exa 9.4.a	internal resistance	62
Exa 9.4.b	value of current flowing	63
Exa 9.5	emf of each cell and its internal resistance	63
Exa 9.6	ampere hour capacity	64
Exa 9.7.a	ampere hour efficiency	64
Exa 9.7.b	watt hour efficiency	65
Exa 9.8.a	initial charging current	65
Exa 9.8.b	final charging current	66
Exa 9.9.a	value and direction of current	66
Exa 9.9.b	total current	67
Exa 9.9.c	power dissipated	68
Exa 9.10	direction of current and total resistance	69
Exa 11.1	instantaneous emf	71
Exa 11.2	rms value of alternating current	71
Exa 11.3	current drawn	72
Exa 11.4	current	72
Exa 11.5.a	value of current flowing	73
Exa 11.5.b	value of current flowing	73
	value of current flowing	74
	value of current flowing	74
	inductive reactance	75

Exa 11.7.b impedance	7
Exa 11.7.c current	7
Exa 11.7.d angle of phase difference	7
Exa 11.8 inductance and phase angle	
Exa 11.9 capacitance	
Exa 11.10.aimpedance	
Exa 11.10.bcurrent	
Exa 11.10.cphase angles	
Exa 11.10.dvoltage	
Exa 11.10.evoltage across the coil	
Exa 11.10.ftotal power taken	
Exa 11.11.atotal impedance	
Exa 11.11.bcurrent taken	
Exa 11.11.cpower factor	
Exa 11.12.acurrent taken	
Exa 11.12.bphase angle	
Exa 11.12.cseries equivalent arrangement of resistance and reactance	
Exa 12.1.a line current and phase current	
Exa 12.1.b line current and phase current	
Exa 12.2.a line current and total power	
Exa 12.2.b line current and total power	
Exa 12.3.a current in each phase of the motor	
Exa 12.3.b current in each phase of the generator	
Exa 12.4 reading	_
Exa 12.5.a power factor when both readings are positive	9
Exa 12.5.b power factor	Ç

Chapter 3

electricity and its fundamental law

Scilab code Exa 3.1 resistance

```
1 //Example 3.1 // resistance
2 clc;
3 clear;
4 close;
5 //given data :
6 V=230; // in volts
7 I=10; // in A
8 R=V/I;
9 disp(R,"resistance of element, R(ohm)=")
```

Scilab code Exa 3.2 voltage

```
1 //Example 3.2 // voltage
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 R1=0.5; // minimum value of resistance in ohm
7 R2=20; // maximum value of resistance in ohm
8 I=1.2; // current in A
9 V1=I*R1;
10 V2=I*R2;
11 disp(V1," voltage drop in Ist case, V1(V) = ")
12 disp(V2," voltage drop in IInd case, V2(V) = ")
```

Scilab code Exa 3.3 specific resistance

```
//Example 3.3 // resistance
clc;
clc;
clear;
close;
//given data :
L=1000; // length of wire in cm
d=0.14; // diameter of wire in cm
R1=2.5*10^6; // resistance in micro-ohm
a=(%pi*d^2)/4; // cross section area
p=(R1*a)/L;
disp(p,"the specific resistance,p(micro-ohm-cm) = ")
```

Scilab code Exa 3.4 resistance

```
1 //Example 3.4 // resistance
2 clc;
3 clear;
4 close;
5 //given data :
6 Rt1=54.3; // resistance in ohm
7 alfa=0.0043; // the resistance temperature of coeficient in per degree celcius
```

Scilab code Exa 3.5.a total resistance

```
1 //Example 3.5.a // resistance
2 clc;
3 clear;
4 close;
5 //given data :
6 r1=30; // resistance in ohm
7 r2=35; // resistance in ohm
8 r3=45; // resistance in ohm
9 R=r1+r2+r3;
10 disp(R,"total resistance, R(ohm) = ")
```

Scilab code Exa 3.5.b current flowing

```
1 //Example 3.5.b // current
2 clc;
3 clear;
4 close;
5 //given data:
6 r1=30; // resistance in ohm
7 r2=35; // resistance in ohm
8 r3=45; // resistance in ohm
9 R=r1+r2+r3;
10 V=220;
11 I=V/R;
12 disp(I,"current, I(A) = ")
```

Scilab code Exa 3.6 voltage

```
//Example 3.6 // voltage at the generating station
clc;
clear;
close;
//given data :
I=75; // current in A
R=0.15; // resistance in ohm
v=220; // voltage in volts
V1=I*R; // voltage drop of the feeder in section AB
V2=I*R; // voltage drop of the feeder in section CD
V_total=V1+V2; // total voltage drop in the lead and return feeder
V=v+V_total;
disp(V,"voltage at the generating station, V(v) = ")
```

Scilab code Exa 3.7 total resistance

```
//Example 3.7 // total resistance
clc;
clc;
clear;
close;
//given data:
r1=6; // resistance in ohm
r2=10; // resistance in ohm
r3=15; // resistance in ohm
r=(1/r1)+(1/r2)+(1/r3);
R=1/r;
disp(R,"equivalent resistance,R(ohm) = ")
```

Scilab code Exa 3.8 voltage

```
1 //Example 3.8 // voltage
2 clc;
3 clear;
4 close;
5 //given data :
6 I=5; // current in A
7 n=2; // number of resistance in parallel of section
      BC
8 r1=15; // resistance in ohm
9 r2=20; // resistance in ohm
10 r3=60; // resistance in ohm
11 r4=64; // resistance in ohm
12 r5=64; // resistance in ohm
13 r6=2.5; // resistance in ohm
14 R1=r4/n; // equivalent resistance of section BC
15 R2=(r1*r2*r3)/((r1*r2)+(r2*r3)+(r3*r1)); //
      equivalent resistance of section CD
16 R=R1+R2+r6; // equivalent resistance of section AD
17 V = I * R;
18 \operatorname{disp}(V, \operatorname{voltage}, V(v) = \operatorname{vol})
```

Scilab code Exa 3.9 effective resistance and current

```
1 //Example 3.9 // resistance and current
2 clc;
3 clear;
4 close;
5 //given data :
6 V=240; // voltage in volts
7 r1=2; // resistance in ohm
```

```
8 r2=3; // resistance in ohm
9 r3=8.8; // resistance in ohm
10 r4=10; // resistance in ohm
11 r5=3; // resistance in ohm
12 R1=(r1*r2)/(r1+r2); // equivalent resistance of
      parallel branch
13 R2=R1+r3; // equivalent resistance of section ABC
14 R3=(R2*r4)/(R2+r4);
15 R=R3+r5; // total resistance of section AD
16 I=V/R;
17 V1=I*r5; // voltage drop across r5
18 V2=V-V1; // voltage drop across section ABC
19 I1=V2/r4; // current flowing through r4 resistance
20 I2=I-I1; // current in r3 resistance
21 V3=I2*r3; // voltage drop across r3 resistance,
      section ABC
22 V4=V2-V3; // voltage drop between section AB
23 I3=V4/r1; // current flowing through r1 resistance
24 I4=V4/r2; // current flowing through r2 resistance
25 disp(I3," current flowing through r1 (2 ohms)
      resistance, I3(A) = ")
26 disp(I4," current flowing through r2 (3 ohms)
     resistance, I4(A) = ")
27 disp(R, "total resistance, R(ohm) = ")
28 disp(V1, "voltage drop across r5(3 ohms) resistance,
     V1(V) = ")
29 \operatorname{disp}(V2, "voltage drop across section ABC, V2(V) = ")
30 disp(V3, "voltage drop across r3 resistance (8.8 ohms)
      ,V3(V) = ")
31 disp(V4," voltage drop between section AB, V4(V) = ")
```

Scilab code Exa 3.10 current

```
1 //Example 3.10 // current
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 I=44; // current in A
7 r1=6; // resistance in ohm
8 r2=12; // resistance in ohm
9 r3=18; // resistance in ohmr1
10 a=(1/r1)+(1/r2)+(1/r3);
11 R=1/a;
12 V=I*R;
13 i1=V/r1;
14 i2=V/r2;
15 i3=V/r3;
16 disp(i1, "current in 6 ohm resistance, i1(A) = ")
17 disp(i2, "current in 12 ohm resistance, i2(A) = ")
18 disp(i3, "current in 18 ohm resistance, i3(A) = ")
```

Scilab code Exa 3.11.a unknow resistance

```
//Example 3.11.A // RESISTANCE
clc;
clear;
close;
t=15;//TOTAL CURRENT IN AMPERES
i1=2;//CURRENT THROUGH UNKNOWN RESISTANCE
R1=15;//in ohms
R2=50/2;//in ohms
x=(t-i1)*((R1*R2)/(R1+2*R2));//unknown resistance in ohms)
disp(x,"unknown resistance in ohms")
```

Scilab code Exa 3.11.b potential drop

```
//Example 3.11.B // potential drop across the
    circuit

clc;
clear;
close;
t=15;//TOTAL CURRENT IN AMPERES
i1=2;//CURRENT THROUGH UNKNOWN RESISTANCE
R1=15;//in ohms
R2=50/2;//in ohms
x=(t-i1)*((R1*R2)/(R1+2*R2));//unknown resistance in ohms
PD=i1*x;//in volts
disp(PD, "potential drop across the circuit in volts is")
```

Scilab code Exa 3.11.c current

```
//Example 3.11.C // CURRENT IN EACH RESISTANCE
clc;
clear;
close;
t=15;//TOTAL CURRENT IN AMPERES
i1=2;//CURRENT THROUGH UNKNOWN RESISTANCE
R1=15;//in ohms
R2=50/2;//in ohms
x=(t-i1)*((R1*R2)/(R1+2*R2));//unknown resistance in ohms
PD=i1*x;//in volts
i5= PD/(2*R2);//current in 5 ohms resistance
i15=PD/R1;//current in 15 ohms resistance
disp(i5,"current in 5 ohms resistance
disp(i5,"current in 5 ohms resistance in ampere")
disp(i15,"current in 15 ohms resistance in ampere")
```

Scilab code Exa 3.11.d total resistance

```
1 //Example 3.11.d // total resistance
2 clc;
3 clear;
4 close;
5 t=15; //TOTAL CURRENT IN AMPERES
6 i1=2; //CURRENT THROUGH UNKNOWN RESISTANCE
7 R1=15; //in ohms
8 R2=50/2; //in ohms
9 x=(t-i1)*((R1*R2)/(R1+2*R2)); //unknown resistance in ohms
10 PD=i1*x; //in volts
11 RX=((1/R1)+(1/(2*R2))+(1/x)); //
12 R=1/RX; //
13 disp(R,"total resistance of the circuit in ohms")
```

Chapter 4

Work power and energy

Scilab code Exa 4.1.b power lost

```
1 //Example 4.1.b // power lost
2 clc;
3 clear;
4 close;
5 //given data :
6 I=11; // current in A
7 V1=55; // voltage in V
8 V2=220; // voltage in V
9 V=V2-V1;
10 R=V/I;
11 P=I^2*R;
12 disp(P,"power lost ,P(W) = ")
```

Scilab code Exa 4.1 resistance

```
1 //Example 4.1.a // resistance
2 clc;
3 clear;
```

```
4 close;
5 //given data :
6 I=11; // current in A
7 V1=55; // voltage in V
8 V2=220; // voltage in V
9 V=V2-V1;
10 R=V/I;
11 disp(R, "resistance ,R(ohm) = ")
```

Scilab code Exa 4.2 resistance

```
//Example 4.2 : resistance of each coil
clc;
clcar;
close;
//given data :
V=300; // voltage in volts
W=360; // power lost in one coil in watt
I=6; // current in A
R1=V/I;
R=V^2/W;
1 a=(1/R1)-(1/R);
r2=1/a;
disp(R,"resistance of 360W coil1,R(ohm) = ")
disp(r2,"resistance of second coil2,r2(ohm) = ")
```

Scilab code Exa 4.3 resistance

```
1 //Example 4.3 : resistance
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 W1=100; // in watt
7 E=110; // in volts
8 W2=60; // in watt
9 I1=W1/E; // current taken by 100 w lamp
10 I2=W2/E; // current taken by 60W lamp
11 I=I1-I2;
12 R=E/I;
13 disp(R, "resistance, R(ohm) = ")
```

Scilab code Exa 4.4.a power taken in parallel case

```
//Example 4.4.a: power in case of parallel
clc;
clear;
close;
//given data:
w=100; // in watt
V=220; // voltage in volts
R1=V^2/w;
R=R1/2; // total resistance of the circuit
I=V/R;
W=I^2*R;
disp(W,"power in case of parallel, W(watt) = ")
```

Scilab code Exa 4.4.b power taken in series case

```
1 //Example 4.4.b: power in case of series
2 clc;
3 clear;
4 close;
5 //given data:
6 w=100; // in watt
7 V=220; // voltage in volts
```

```
8 R1=V^2/w;
9 R2=V^2/w;
10 R=R1+R2; // total resistance of the circuit
11 I=V/R;
12 W=I^2*R;
13 disp(W,"power in case of series, W(watt) = ")
```

Scilab code Exa 4.5.a total load

```
//Example 4.5.a: total load
clc;
clear;
close;
//given data:
1 = 300; // number of lamps
w1 = 60; // in watt
W1 = w1 * 1; // wattage required for 300 lamps, 60 watt each
w2 = 40; // in watt
f = 100; // number of fan
W2 = w2 * f; // wattage required for 100 fans, 40 watt each
W = (W1 + W2) * 10^-3;
disp(W," total load, W(kilo - watt) = ")
```

Scilab code Exa 4.5.b current taken

```
1 //Example 4.5.b: current taken by load
2 clc;
3 clear;
4 close;
5 //given data:
6 V=220; // voltage in volts
```

```
7 l=300; // number of lamps
8 w1=60; // in watt
9 W1=w1*1;
10 w2=40; // in watt
11 f=100; // number of fan
12 W2=w2*f;
13 W=(W1+W2)*10^-3;
14 I=(W*1000)/V;
15 disp(I,"current, I(A) = ")
```

Scilab code Exa 4.6 total cots of electric energy and total charges of bill

```
1 //Example 4.6 // total cost of electric charge
2 clc;
3 clear;
4 close;
5 nl=12; //no. of lamps
6 wl=100; //wattage of lamps
7 hl=6;//each lamps work 6 hours a days
8 w12=w1*n1*h1; // wattage of 12 lamps in Wh
9 nf=6; //no. of fans
10 wf=60; //wattage of fans
11 hf=5; //each fans work 5 hours a days
12 w6=wf*nf*hf; // wattage of 12 fans in Wh
13 nc=2; //no. of electric cookers
14 wc=1500; //wattage of electric cookers
15 hc=4; //each electric cookers work 4 hours a days
16 w2=wc*nc*hc; // wattage of 2 electric cookers in Wh
17 ng=2; //no. of gysers
18 wg=1000; //wattage of each gyser
19 hg=3; //each gyser works 3 hours a day
20 w21=wg*hg*ng; //total wattage of gysers in Wh
21 tcg=(w12+w6)*10^-3; //TOTAL WATTAGE OF LAMPS AND FANS
22 \text{ Ccg} = 40; //IN PAISA
23 Ecg= (tcg*Ccg*30)/100;//TOTAL ENERGY CHARGES @40
```

```
PAISA PER UNIT

24 tcg1=(w2+w21)*10^-3; //TOTAL WATTAGE OF COOKERS AND GYSERS

25 Ccg1=35; //IN PAISA

26 Ecg1= (tcg1*Ccg1*30)/100; //TOTAL ENERGY CHARGES @35 PAISA PER UNIT

27 tc=Ecg+Ecg1; // IN RUPPES

28 disp(Ecg, "total cost of electric charge @40 paisa per unit in rupees")

29 disp(Ecg1, "total cost of electric charge @35 paisa per unit in rupees")

30 disp(tc, "total charge for ligh and power in rupees")
```

Scilab code Exa 4.7 voltage current power and bill amount

```
1 //Example 4.7 // total consumption of factory in
      killo watts
2 clc;
3 clear;
4 close;
5 nl=400; //no. of lamps
6 wl=100; // wattage of lamps
7 w400=wl*nl;//wattage of 400 lamps in W
8 nf=100; //no. of fans
9 wf=40; //wattage of fans
10 w6=wf*nf;//wattage of 100 fans in W
11 nc=200; //no. of wall scokets
12 wc=60; //wattage of wall scckets
13 w2=wc*nc; // wattage of 200 wall sockets in Wh
14 tc= w400+w6+w2; // total consumption in kW
15 tc= w400+w6+w2; //total consumption in kW
16 h=5;// hours
17 ll=tc*10^-3*h; // lightning load in kWh
18 V=250; //in volts
19 I=20; //in amperes
```

```
20 Ml=V*I*10^-3; // miscellaneous loads in kW
21 Ml=V*I*10^-3; //miscellaneous loads in kW
22 \text{ hm}=2; //\text{hours}
23 hl=50; //heating load in kW
24 Mhp=40; //BNHP
25 Mo= ((50*80*746)/(100*1000)); //MOTOR AT 80\% LOAD IN
26 tl=tc*10^-3+Ml+hl+Mo; // total load in kW
27 disp(tl, "total load is, (kW)=")
28 It= (t1*10^3)/V; //total current taken buy the
      factory in amperes
29 disp(It," total current taken by the factory is, (A)="
      )
30 r = 0.03; //IN OHMS
31 Vc=It*r; // voltage drop in the cable
32 Vs=Vc+V; //voltage at the sending end of the feeder
      in volts
33 disp(Vs," voltage at the sending end of the feeder is
      , (V)")
34 \text{ r=0.03; } //IN \text{ OHMS}
35 Vc=It*r;//voltage drop in the cable
36 Pw=It^2*r;//power wasted in kW
37 \text{ disp}(Pw*10^-3, "power wasted is ,(kW)")
38 Mlh=Ml*hm; //miscellaneous load in kWh
39 te=Mlh+ll;//TOTAL ENERGY COSNUMED PER DAY
40 Nu=te*6; //NO. OF UNITS
41 Ec=(Nu*30)/100;// ENERGY CHARGE @30 PAISA PER UNIT
42 eCM=Ec+2+34.80; //TOTAL CHARGE AFTER TAX AND RENT IN
     RUPEES
43 hl=50; //heating load in kW
44 hlh=50*4; //heating load in kWh
45 Moh=Mo*8; //MOTOR LOAD IN kWh
46 TEP=hlh+Moh; // total energy per day
47 tepl=TEP*6; // total energy in 6 days
48 tepc=(tepl*35)/100;// energy charges @35 paisa per
      unit in rupees
49 tepcl=tepc+50+78.96; // total charges in rupess
50 disp(eCM," total lightning charges including meter
```

```
rent and electricy tax is ,(Rs)=")
51 disp(tepcl, "total power charges including meter rent
         and electricy tax is ,(Rs)=")
52 gt=tepcl+eCM;//
53 disp(gt, "grand total of bills is ,(Rs)=")
```

Scilab code Exa 4.8 current taken

```
1 //Example 4.8: current taken by load
2 clc;
3 clear;
4 close;
5 //given data :
6 V=250; // voltage in volts
7 L=5*746; // 1 hp=746 watt
8 eta=80; // eficiency of motor in %
9 Input=(L*100)/80;
10 I=Input/V;
11 disp(I,"cureent, I(A) = ")
```

Scilab code Exa 4.9 amount of bills

```
1 //Example 4.9 //total of bills
2 clc;
3 clear;
4 close;
5 p=30;//horse power of motor
6 r=24;// rupees per kWh
7 ec=35;//paisa per unit
8 n=80;//percentage of load
9 t=8;// in hours
10 d=25;// total days
11 ne=96;//efficiency of motor in percentage
```

Scilab code Exa 4.10.a total load of light and fans

```
1
2 //Example 4.10.a//total load of lights and fans
3 clc;
4 clear;
5 close:
6 lp=50; //no. of light points
7 lw=60; //wattage of light points
8 fp=20; //no. of fan points
9 fw=100; //wattage of fan points
10 wpp=10; //no. of wall plug points
11 wppw=60; //wattage of wall plug points
12 bp=5; //no. of bell points
13 bpw=40; //wattage of bell points
14 ppp=8; //power plug points
15 pppw=5000; // wattage of power plug points
16 lpw=lp*lw;//wattage of 50 lamps
17 fpw=fp*fw; //wattage of 20 fans
18 wpppw=wpp*wppw;//wattage of wall plug points
19 bpww=bp*bpw;//wattage of bell points
20 tl=lpw+fpw+wpppw+bpww;//total wattage
21 disp(t1," total wattage of lightning load is in watts
      ")
```

Scilab code Exa 4.10.b total load current

```
1 //Example 4.10.b//total load of power connection
2 clc;
3 clear;
4 close;
5 V=400; //three phase voltage
6 lp=50; //no. of light points
7 lw=60; //wattage of light points
8 fp=20;//no. of fan points
9 fw=100;//wattage of fan points
10 wpp=10; //no. of wall plug points
11 wppw=60; //wattage of wall plug points
12 bp=5; //no. of bell points
13 bpw=40; //wattage of bell points
14 ppp=8; //power plug points
15 pppw=500; //wattage of power plug points
16 lpw=lp*lw;//wattage of 50 lamps
17 fpw=fp*fw;//wattage of 20 fans
18 wpppw=wpp*wppw;//wattage of wall plug points
19 bpww=bp*bpw;//wattage of bell points
20 tl=lpw+fpw+wpppw+bpww;//total wattage
21 ppppw=ppp*pppw;//wattage of power plug points
22 tw=tl+ppppw;//total wattage
23 Il=(t1/V); // CURRENT THROUGH LIGHTNING LOAD
24 Ip=ppppw/V;// current through power load
25 ttl=Il+Ip;//total load curent
26 disp(ttl, "total load current in amperes")
```

Scilab code Exa 4.11 horsepower of the motor

```
1 //Example 4.11: horse power
```

```
2 clc;
3 clear;
4 close;
5 //given data :
6 \text{ h=30; } // \text{ in m}
7 Fl=10; // friction loss in \%
8 H1=(F1/100)*h;
9 total_H=h+H1;
10 eta=90; // eficiency of pump
11 w=1000; // water weight in kg
12 flow_rate=243; // in per hour
13 W_done=(flow_rate*w*total_H)/60; // in kg-m/min
14 output=W_done/4500; //output of pump in hp
15 in=(output*100)/eta;
16 \quad O=in;
17 disp(0, "output of the motor, O(hp) = ")
```

Scilab code Exa 4.12.a Bhp of the motor

```
1
2 //Example 4.12.a: BHP of the motor
3 clc;
4 clear;
5 close; n=80; // efficiency
6 1=7.5; //load in tonnes
7 h=135; //height in meters
8 c=0.5; //cge weight in tonnes
9 b=3; //balance weight in tonnes
10 td=90; //time in seconds
11 onet=1000; // in kg
12 onehp=746; // watt
13 wl=l+c-b;//weight lifted during upward journey in
      tonnes
14 wld=b-c;//weight lifted during downward journey in
      tonnes
```

Scilab code Exa 4.12.b cost of the energy

```
1 //Example 4.12.b: cost of the energy
2 clc;
3 clear:
4 close; n=80; // efficiency
5 1=7.5; //load in tonnes
6 h=135; //height in meters
7 c=0.5; //cge weight in tonnes
8 b=3; //balance weight in tonnes
9 td=90; //time in seconds
10 onet=1000; // in kg
11 onehp=746; // watt
12 wl=l+c-b; //weight lifted during upward journey in
13 wld=b-c; //weight lifted during downward journey in
     tonnes
14 wdu = (wl*10^3*h*60)/td; //work done by the lift per
     minute during upward journey
15 wdd=(wld*10^3*h*60)/td;//work done by the lift per
     minute during downward journey
16 mou=wdu/4500; // in hp
17 miu=(mou*100*746)/(n*1000);// input of motor in kW
```

```
18 mod=wdd/4500; // in hp
19 mid=(mod*100*746)/(n*1000); // input of motor in kW
20 tc=miu+mid; // total energy consumption in kW
21 Eh=tc*10; // total energy consuption per hour
22 rate=40; // rate in paisa
23 ce=Eh*(rate/100); // cost of energy in rupees
24 disp(ce, "cost of energy in rupees is")
```

Chapter 5

effects of electric current

Scilab code Exa 5.1 ECE of silver

```
1 //Example 5.1: E.C.E
2 clc;
3 clear;
4 close;
5 //given data :
6 t=200; // time in sec
7 M=111.83; // silver in mg
8 I=0.5; // current in A
9 Z=(M/(I*t*1000))*1000; // electro-chemical-equivalent
10 disp(Z,"E.C.E,Z(mg/C) = ")
```

Scilab code Exa 5.2 thickness of coper

```
1 //Example 5.2: thickness
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 Z=0.329*10^-3; // IN g/C
7 I=1; // in amperes
8 t=90*60; // in seconds
9 M=Z*I*t; // in grams
10 A=200; // area in centimete square
11 S=8.9; // density in g/cc
12 T=(M)/(2*A*S); // thickness in cm
13 disp(T," thickness of copper in cm is")
```

Scilab code Exa 5.3 resistance

```
//Example 5.3 // resistance of the heater element
clc;
clear;
close;
w=15;// in kg
t1=15;// in degree celsius
t2=100;//in degree celsius
t=25;// time in minutes
I=10;// in ampere
n=85;//efficiency of conversion in percentage
ho=w*(t2-t1);//output heat required in kcal
R=((ho*4187*100)/(I^2*t*60*n));// resistance in ohms
disp(R, resistance in ohms")
```

Scilab code Exa 5.4 potential difference

```
1 //Example 5.4 // potential difference across the
    heater element
2 clc;
3 clear;
4 close;
5 w=20; // in kg
```

```
6 t1=10; // in degree celsius
7 t2=90; //in degree celsius
8 t=2*3600+19*60+34; // time in seconds
9 I=4; // in ampere
10 n=80; // efficiency of conversion in percentage
11 ho=w*(t2-t1); //output heat required in kcal
12 V=((ho*4187*100)/(I*t*n)); // POTENTIAL DROP IN VOLTS
13 disp(V," potential drop across heater element in volts is")
```

Chapter 6

magnetism and electromagnetism

Scilab code Exa 6.1 field strength

```
//Example 6.1 // field strength
clc;
clc;
clear;
close;
I=1.5; // in amperes
n=50; // turns
1=0.25; // length of coil in meter
H=(I*n)/1; // field strength in ampere-turns/m
disp(H," field strength in ampere-turns/m")
```

Scilab code Exa 6.2 force

```
1 //Example 6.2 // force
2 clc;
3 clear;
4 close;
```

```
5 I=70; // in amperes
6 B=0.4; // flus density in Wb/m^2
7 n=1; // turns
8 F=B*n*I; // in newton
9 disp(F, "force in newtons is")
```

Scilab code Exa 6.3 emf induced

```
1
2  //Example 6.3 // emf induced
3  clc;
4  clear;
5  close;
6  b=2; // in Wb/m^2
7  l=6; // in cm
8  s=0.75; // in m's
9  alpha=90; //
10  emf=b*l*s*(sind(alpha)); //
11  disp(emf, "emf induced in volts is")
```

Chapter 7

DC generators

Scilab code Exa 7.1.a emf induced

```
1 //Example 7.1.a: e.m.f
2 clc;
3 clear;
4 close;
5 // given data:
6 p=8; // number of poles
7 a=p; // in lap winding
8 fi=15*10^-3; // in wb
9 N=500; // rev/min
10 Z=800; // number of conductors on armature
11 emf=(fi*Z*N*p)/(60*a);// when the armature is lap wound
12 disp(emf, "emf(V) = ")
```

Scilab code Exa 7.1.b emf generated

```
1 //Example 7.1.b: e.m.f if the armature is wave wound 2 clc;
```

```
3 clear;
4 close;
5 // given data:
6 p=8; // number of poles
7 a=2; // in wave winding
8 fi=15*10^-3; // in wb
9 N=500; // rev/min
10 Z=800; // number of conductors on armature
11 emf=(fi*Z*N*p)/(60*a);// when the armature is wave wound
12 disp(emf, "emf(V) = ")
```

Scilab code Exa 7.2.a total armature current

```
//Example 7.2.a: total armature current
clc;
clear;
close;
// given data:
Vt=200;// terminal voltage in volts
Rsh=100; //shunt fieldresistance in ohm
Ra=0.1; // armature resistance in ohm
l=60; // number of lamps
w=40;// in watt
total_l=l*w;// in watt
Il=total_l/Vt;// load current
Ish=Vt/Rsh;// shunt field current
Ia=Il+Ish;
disp(Ia, "armature current, Ia(A) = ")
```

Scilab code Exa 7.2.b current per armature path

```
1 //Example 7.2.b: current per armature path
```

```
2 \text{ clc};
3 clear;
4 close;
5 // given data:
6 Vt=200;// terminal voltage in volts
7 Rsh=100; //shunt fieldresistance in ohm
8 Ra=0.1; // armature resistance in ohm
9 1=60; // number of lamps
10 w=40; // in watt
11 total_l=l*w;// in watt
12 Il=total_1/Vt;// load current
13 Ish=Vt/Rsh; // shunt field current
14 Ia=Il+Ish;
15 N=4; // number of poles
16 I=Ia/N;
17 disp(I,"current per path in a armature, I(A) = ")
```

Scilab code Exa 7.2.c emf generated

```
1 //Example 7.2.c: emf
2 clc;
3 clear;
4 close;
5 // given data:
6 Vt=200;// terminal voltage in volts
7 Rsh=100; //shunt fieldresistance in ohm
8 Ra=0.1; // armature resistance in ohm
9 1=60; // number of lamps
10 \text{ w=40;} // \text{ in watt}
11 total_l=l*w;// in watt
12 Il=total_1/Vt;// load current
13 Ish=Vt/Rsh; // shunt field current
14 Ia=Il+Ish;
15 N=4; // number of poles
16 I=Ia/N;
```

```
17 Va=Ia*Ra;//armature voltage drop
18 Vb=1+1; // brush contact drop for 2 pair of poles
19 E=Vt+Va+Vb;
20 disp(E,"emf,E(v) = ")
```

Scilab code Exa 7.3.a terminal voltage

```
//Example 7.3.a: terminal voltage
clc;
clear;
close;
// given data:
W=10;// output of the generator in k-w
V=250; // voltage in volts
R=0.07; // in ohm
Il=(W*1000)/V;// load current in A
Vf=Il*R;// voltage drop in feeder
Vt=V+Vf;
disp(Vt,"terminal voltage, Vt(V) = ")
```

Scilab code Exa 7.3.b emf generated

```
1 //Example 7.3.b: emf
2 clc;
3 clear;
4 close;
5 // given data:
6 W=10;// output of the generator in k-w
7 V=250; // voltage in volts
8 R=0.07; // in ohm
9 Il=(W*1000)/V;// load current in A
10 Vf=Il*R;// voltage drop in feeder
11 Vt=V+Vf;// terminal voltage
```

```
12 Rsh=63.2; // shunt resistance in ohm
13 Ra=0.05; // armature resistance in ohm
14 Vb=2; // brush contact drop
15 Ish=Vt/Rsh;
16 Ia=Il+Ish;
17 Vd=Ia*Ra; // voltage drop in the armature
18 E=Vt+Vd+Vb;
19 disp(E, "emf, E(V) = ")
```

Scilab code Exa 7.4.a terminal voltage

```
//Example 7.4.a: terminal voltage
clc;
clear;
close;
// given data:
W=20000;// in watt
V=200; // in volts
R=0.08; // in ohm
Rs=0.02; // series field resistance in ohm
I=W/V; // in A
Vf=I*R;
Vs=I*Rs;
Vs=I*Rs;
Vl=Vf+Vs; // voltage drop of feeder and series field
Vg=V+V1;
disp(Vg, "terminal voltage, Vg(V) = ")
```

Scilab code Exa 7.4.b emf generated

```
1 //Example 7.4.b: emf generated
2 clc;
3 clear;
4 close;
```

```
5 // given data:
6 \ W=20000; // in \ watt
7 V=200; // in volts
8 R=0.08; // in ohm
9 Rs=0.02; // series field resistance in ohm
10 I=W/V; // in A
11 Rsh=42; // shunt ield resistance in ohm
12 Ra=0.04; // armature resistance in ohm
13 Vf = I * R;
14 Vs = I * Rs;
15 V1=Vf+Vs; // voltage drop of feeder and series field
16 Vg=V+V1; // terminal voltage
17 Ish=Vg/Rsh; // shunt field current
18 Ia=I+Ish;
19 Vd=Ia*Ra;
20 \text{ emf} = Vg + Vd;
21 \operatorname{disp}(\operatorname{emf}, \operatorname{"emf}(V) = ")
```

Scilab code Exa 7.4.c copper losses

```
1 //Example 7.4.c: copper losses
2 clc;
3 clear;
4 close;
5 // given data:
6 W=20000; // electrical output in watt
7 V=200; // in volts
8 R=0.08; // in ohm
9 Rs=0.02; // series field resistance in ohm
10 I=W/V; // in A
11 Rsh=42; // shunt ield resistance in ohm
12 Ra=0.04; // armature resistance in ohm
13 Vf=I*R;
14 Vs=I*Rs;
15 V1=Vf+Vs; // voltage drop of feeder and series field
```

```
16  Vg=V+V1; // terminal voltage
17  Ish=Vg/Rsh; // shunt field current
18  Ia=I+Ish;
19  Vd=Ia*Ra;
20  emf=Vg+Vd;
21  Ed=emf*Ia; // in watt
22  copper_losses=Ed-W;
23  disp(copper_losses, "copper losses(Watt) = ")
```

Scilab code Exa 7.4.d Bhp metric of the primemover

```
1 //Example 7.4.d: bhp metric of the primemover
2 clc;
3 clear;
4 close;
5 // given data:
6 W=20000; // electrical output in watt
7 V=200; // in volts
8 R=0.08; // in ohm
9 Rs=0.02; // series field resistance in ohm
10 I=W/V; // in A
11 Rsh=42; // shunt ield resistance in ohm
12 Ra=0.04; // armature resistance in ohm
13 iron_losses=309.5; // iron and friction losses
14 Vf=I*R;
15 Vs = I * Rs;
16 V1=Vf+Vs; // voltage drop of feeder and series field
17 Vg=V+V1; // terminal voltage
18 Ish=Vg/Rsh; // shunt field current
19 Ia=I+Ish;
20 \text{ Vd=Ia*Ra};
21 \text{ emf} = Vg + Vd;
22 Ed=emf*Ia; // in watt
23 copper_losses=Ed-W;
24 mech_in=W+copper_losses+iron_losses;
```

```
25 Bhp=mech_in/735.5;
26 disp(Bhp,"bhp metric of the primemover, Bhp = ")
```

Scilab code Exa 7.4.e commercial efficiency

```
1
2 //Example 7.4.d: bhp metric of the primemover
3 clc;
4 clear;
5 close;
6 // given data:
7 W=20000; // electrical output in watt
8 V=200; // in volts
9 R=0.08; // in ohm
10 Rs=0.02; // series field resistance in ohm
11 I=W/V; // in A
12 Rsh=42; // shunt ield resistance in ohm
13 Ra=0.04; // armature resistance in ohm
14 iron_losses=309.5; // iron and friction losses
15 Vf = I *R;
16 Vs = I * Rs;
17 V1=Vf+Vs; // voltage drop of feeder and series field
18 Vg=V+V1; // terminal voltage
19 Ish=Vg/Rsh; // shunt field current
20 Ia=I+Ish;
21 Vd=Ia*Ra;
22 \text{ emf} = Vg + Vd;
23 Ed=emf*Ia; // in watt
24 copper_losses=Ed-W;
25 mech_in=W+copper_losses+iron_losses;// mechanical
     power inoput
26 Bhp=mech_in/735.5;
27 efficiency=(W/mech_in)*100;
28 disp(efficiency, "efficiency (%) = ")
```

Scilab code Exa 7.5.a total armature current

```
//Example 7.5.a: total armature current
clc;
clcar;
close;
// given data:
n=3;// number of motors
i=30; //current in A
I=i*n;// current taken by three motors
Rsh=44; // shunt field resistance
V=440; // voltage in V
Ish=V/Rsh;// shunt field current
Ia=I+Ish;
disp(Ia,"total armature current, Ia(A) = ")
```

Scilab code Exa 7.5.b current

```
//Example 7.5.b: current in each path
clc;
clear;
close;
// given data:
n=3;// number of motors
n1=4;// number of parallel path in winding
i=30; //current in A
I=i*n;// current taken by three motors
Rsh=44; // shunt field resistance
Ra=0.08; // armature resistance in ohm
V=440; // voltage in V
Ish=V/Rsh;// shunt field current
Ia=I+Ish;
```

```
15 I1=Ia/n1; // current in each path
16 disp(I1, "current in each path, I1(A) = ")
```

Scilab code Exa 7.5.c emf generated

```
1 //Example 7.5.c: e.m. f
2 clc;
3 clear;
4 close;
5 // given data:
6 n=3; // number of motors
7 n1=4; // number of parallel path in winding
8 i=30; //current in A
9 I=i*n;// current taken by three motors
10 Rsh=44; // shunt field resistance
11 Ra=0.08; // armature resistance in ohm
12 V=440; // voltage in V
13 Ish=V/Rsh; // shunt field current
14 Ia=I+Ish;
15 I1=Ia/n1;// current in each path
16 Va=Ia*Ra; // armature drop
17 Vb=2; // we know, brush contact drops
18 E=V+Va+Vb;
19 disp(E, "emf, E(V) = ")
20 // answer is wrong in a book
```

Scilab code Exa 7.5.d power developed

```
5 // given data:
6 n=3; // number of motors
7 n1=4;// number of parallel path in winding
8 i=30; //current in A
9 Bhp=65; // in hp
10 I=i*n; // current taken by three motors
11 Rsh=44; // shunt field resistance
12 Ra=0.08; // armature resistance in ohm
13 V=440; // voltage in V
14 Ish=V/Rsh; // shunt field current
15 Ia=I+Ish;
16 I1=Ia/n1;// current in each path
17 Va=Ia*Ra; // armature drop
18 Vb=2; // we know, brush contact drops
19 E=V+Va+Vb;
20 \quad E_power = E*Ia;
21 W=V*I; // in watt
22 M_power=Bhp*746; // assume Bhp=746 W
23 disp(E_power,"electrical power developed in watt = "
24 // answer is wrong in a book
```

Scilab code Exa 7.5.e copper losses

```
1 //Example 7.5.e: copper losses
2 clc;
3 clear;
4 close;
5 // given data:
6 n=3;// number of motors
7 n1=4;// number of parallel path in winding
8 i=30; //current in A
9 Bhp=65;// in hp
10 I=i*n;// current taken by three motors
11 Rsh=44; // shunt field resistance
```

```
12 Ra=0.08; // armature resistance in ohm
13 V=440; // voltage in V
14 Ish=V/Rsh; // shunt field current
15 Ia=I+Ish;
16 I1=Ia/n1; // current in each path
17 Va=Ia*Ra; // armature drop
18 Vb=2; // we know , brush contact drops
19 E=V+Va+Vb;
20 E_power=E*Ia;
21 W=V*I; // in watt
22 M_power=Bhp*746; // assume Bhp=746 W
23 Copper_losses=E_power-W;
24 disp(Copper_losses, "copper losses (W) = ")
```

Scilab code Exa 7.5.f stray losses

```
1 //Example 7.5.f: stray losses
2 clc;
3 clear;
4 close;
5 // given data:
6 n=3;// number of motors
7 n1=4; // number of parallel path in winding
8 i=30; //current in A
9 Bhp=65; // in hp
10 I=i*n;// current taken by three motors
11 Rsh=44; // shunt field resistance
12 Ra=0.08; // armature resistance in ohm
13 V=440; // voltage in V
14 Ish=V/Rsh; // shunt field current
15 Ia=I+Ish;
16 I1=Ia/n1;// current in each path
17 Va=Ia*Ra; // armature drop
18 Vb=2; // we know, brush contact drops
19 E=V+Va+Vb;
```

```
20 E_power=E*Ia;
21 W=V*I; // in watt
22 M_power=Bhp*746; // assume Bhp=746 W
23 Copper_losses=E_power-W;
24 S_loses=M_power-E_power;
25 disp(S_loses, "stray losses(W) = ")
```

Scilab code Exa 7.5.g.1 electrical efficiency

```
1 //Example 7.5.g.i: electrical efficiency
2 clc;
3 clear;
4 close;
5 // given data:
6 n=3;// number of motors
7 n1=4; // number of parallel path in winding
8 i=30; //current in A
9 Bhp=65; // in hp
10 I=i*n; // current taken by three motors
11 Rsh=44; // shunt field resistance
12 Ra=0.08; // armature resistance in ohm
13 V=440; // voltage in V
14 Ish=V/Rsh; // shunt field current
15 Ia=I+Ish;
16 I1=Ia/n1;// current in each path
17 Va=Ia*Ra; // armature drop
18 Vb=2; // we know, brush contact drops
19 E=V+Va+Vb;
20 \quad E_power = E*Ia;
21 W=V*I; // in watt
22 M_power=Bhp*746; // assume Bhp=746 W
23 Copper_losses=E_power-W;
24 S_loses=M_power-E_power;
25 eta_e=(W/E_power)*100;
26 disp(eta_e," electrical efficiency, eta_e (%) = ")
```

Scilab code Exa 7.5.g.2 commercial efficiency

```
1 //Example 7.5.g.i: commercial efficiency
2 clc;
3 clear;
4 close;
5 // given data:
6 n=3; // number of motors
7 n1=4; // number of parallel path in winding
8 i=30; //current in A
9 Bhp=65; // in hp
10 I=i*n; // current taken by three motors
11 Rsh=44; // shunt field resistance
12 Ra=0.08; // armature resistance in ohm
13 V=440; // voltage in V
14 Ish=V/Rsh; // shunt field current
15 Ia=I+Ish;
16 I1=Ia/n1; // current in each path
17 Va=Ia*Ra; // armature drop
18 Vb=2; // we know, brush contact drops
19 E=V+Va+Vb;
20 \quad E_power = E*Ia;
21 W=V*I; // in watt
22 M_power=Bhp*746; // assume Bhp=746 W
23 Copper_losses=E_power-W;
24 S_loses=M_power-E_power;
25 eta_c=(W/M_power)*100;
26 disp(eta_c, "commercial efficiency, eta_c(\%) = ")
```

Scilab code Exa 7.5.g.3 mechanical efficiency

```
1 //Example 7.5.g.i: electrical efficiency
2 clc;
3 clear;
4 close;
5 // given data:
6 n=3;// number of motors
7 n1=4; // number of parallel path in winding
8 i=30; //current in A
9 Bhp=65; // in hp
10 I=i*n; // current taken by three motors
11 Rsh=44; // shunt field resistance
12 Ra=0.08; // armature resistance in ohm
13 V=440; // voltage in V
14 Ish=V/Rsh; // shunt field current
15 \quad Ia=I+Ish;
16 I1=Ia/n1;// current in each path
17 Va=Ia*Ra; // armature drop
18 Vb=2; // we know, brush contact drops
19 E=V+Va+Vb;
20 E_power=E*Ia;
21 W=V*I; // in watt
22 M_power=Bhp*746; // assume Bhp=746 W
23 Copper_losses=E_power-W;
24 S_loses=M_power-E_power;
25 eta_m=(E_power/M_power)*100;
26 disp(eta_m, "mechanical efficiency, eta_m(\%) = ")
```

Chapter 8

DC motors

Scilab code Exa 8.1 speed

```
1 //Example 8.1 // speed
2 clc;
3 clear;
4 close;
5 //given data :
6 pi=22/7;
7 s=22; // shaft of the motor in hp
8 Tsh=210; // torue in hp
9 N=(s*60*746)/(2*pi*Tsh);
10 disp(N,"speed,N(rpm) = ")
```

Scilab code Exa 8.2.a Bhp

```
1 //Example 8.2.a: bhp
2 clc;
3 clear;
4 close;
5 //given data:
```

```
6 V=230; // voltage in volts
7 I=72; // current in A
8 W=V*I;
9 s=968; // stray losses
10 Rsh=115; // shunt field resistance in ohm
11 Ra=0.5; // armature resistance in ohm
12 Ish=V/Rsh; // shunt field resistance
13 Ia=I-Ish;
14 Eb=V-(Ia*Ra); // back emf in volts
15 Dpd=Eb*Ia; // driving power developed
16 Mpo=Dpd-s;
17 bhp=Mpo/746;
18 disp(bhp,"bhp = ")
```

Scilab code Exa 8.2.b copper losses

```
1 //Example 8.2.b: copper losses
2 clc;
3 clear;
4 close;
5 //given data :
6 V=230; // voltage in volts
7 I=72; // current in A
8 \quad W = V * I;
9 s=968; // stray losses
10 Rsh=115; // shunt field resistance in ohm
11 Ra=0.5; // armature resistance in ohm
12 Ish=V/Rsh; // shunt field resistance
13 Ia=I-Ish;
14 Eb=V-(Ia*Ra); // back emf in volts
15 Dpd=Eb*Ia; // driving power developed
16 Mpo=Dpd-s;
17 bhp=Mpo/746;
18 c_losses=W-Dpd;
19 disp(c_{losses}, "copper losses(W) = ")
```

Scilab code Exa 8.2.c armature torque

```
1 //Example 8.2.c: armature torque
2 clc;
3 clear;
4 close;
5 //given data :
6 N=955; // in r.p.m
7 V=230; // voltage in volts
8 I=72; // current in A
9 W = V * I;
10 s=968; // stray losses
11 Rsh=115; // shunt field resistance in ohm
12 Ra=0.5;// armature resistance in ohm
13 Ish=V/Rsh; // shunt field resistance
14 Ia=I-Ish;
15 Eb=V-(Ia*Ra);// back emf in volts
16 Dpd=Eb*Ia; // driving power developed
17 Mpo=Dpd-s;
18 bhp=Mpo/746;
19 c_losses=W-Dpd;
20 Ta = (9.55 * Eb * Ia) / N;
21 disp(Ta, "torque armature, Ta(N-m) = ")
```

Scilab code Exa 8.2.d shaft torque

```
//Example 8.2.d: shaft torque
clc;
clear;
close;
//given data :
```

```
6 pi = 22/7;
7 N = 955; // in r.p.m
8 V=230; // voltage in volts
9 I=72; // current in A
10 W = V * I;
11 s=968; // stray losses
12 Rsh=115; // shunt field resistance in ohm
13 Ra=0.5;// armature resistance in ohm
14 Ish=V/Rsh; // shunt field resistance
15 Ia=I-Ish;
16 Eb=V-(Ia*Ra);// back emf in volts
17 Dpd=Eb*Ia; // driving power developed
18 Mpo=Dpd-s;
19 bhp=Mpo/746;
20 c_losses=W-Dpd;
21 Ta = (9.55 * Eb * Ia) / N;
22 Tsh=(bhp*60*746)/(2*pi*N);
23 disp(Tsh, "shaft torque, Tsh(N-m) = ")
```

Scilab code Exa 8.2.e lost torque

```
//Example 8.2.e: lost torque
clc;
clear;
close;
//given data:
pi=22/7;
N=955; // in r.p.m
V=230; // voltage in volts
I=72; // current in A
W=V*I;
s=968; // stray losses
Rsh=115; // shunt field resistance in ohm
Ra=0.5; // armature resistance in ohm
Ish=V/Rsh; // shunt field resistance
```

Scilab code Exa 8.2.f commercial efficiency

```
1 //Example 8.2.f: commercial efficiency
2 clc;
3 clear;
4 close;
5 //given data :
6 pi=22/7;
7 N=955; // in r.p.m
8 V=230; // voltage in volts
9 I=72; // current in A
10 W = V * I;
11 s=968; // stray losses
12 Rsh=115; // shunt field resistance in ohm
13 Ra=0.5; // armature resistance in ohm
14 Ish=V/Rsh; // shunt field resistance
15 Ia=I-Ish;
16 Eb=V-(Ia*Ra); // back emf in volts
17 Dpd=Eb*Ia; // driving power developed
18 Mpo=Dpd-s;
19 bhp=Mpo/746;
20 \text{ c_losses=W-Dpd};
21 Ta = (9.55 * Eb * Ia) / N;
22 Tsh=(bhp*60*746)/(2*pi*N);
```

```
23 Tl=Ta-Tsh;
24 eta=(Mpo/W)*100;
25 disp(eta, "commercial efficioency, eta(%) = ")
```

Scilab code Exa 8.3 speed

```
1 //Example 8.3 // speed
2 clc;
3 clear;
4 close;
5 V=230; // in volts
   I=5;// in amperes
7
    rpm=914; //turns
    ra=0.5; //resistance of armature in ihms
    rsh=115; //shunt field in ohms
10
    I1=30;// in amperes
    ar=10; // in percent
11
    Ish=V/rsh;// in amperes
12
    anl=I-Ish; //armature current in amperes at no load
13
    al=Il-Ish; //armature currentin amperes at load
14
    Eb1=(V-anl*ra);//back emf at no load
15
    Eb2=(V-al*ra); //back emf at load
16
17
    ph1=100; //
18
    ph2=90; //
19
    Ns=(rpm*Eb2*ph1)/(Eb1*ph2);//speed when loaded in
    disp(Ns, "speed when loaded in rpm")
20
```

Scilab code Exa 8.4.a stray losses

```
1 //Example 8.4.a // stray losses
2 clc;
3 clear;
```

```
4 close;
5 I1=83; // WHEN LOADED IN AMPERES
6 \text{ V=110;} // \text{ in volts}
7 I=5; // in amperes without load
8 ra=0.5; //armature resistance in ohms
9 rsh=110; //shunt field in ohms
10 Ish=V/rsh; // in ampere
    anl=I-Ish; //armature current in amperes at no load
11
12
    al=Il-Ish; //armature currentin amperes at load
13
   Eb1=(V-anl*ra); //back emf at no load
   Eb2=(V-al*ra); //back emf at load
14
15
   Dp=Eb1*anl; // driving power at no load in watt
16
   Dpl=Eb2*al; // driving power at load in watt
    mo=Dpl-Dp;//out of motor in watt
17
18 disp(Dp, "stray losses in watt")
```

Scilab code Exa 8.4.b horsepower of the motor

```
1 //Example 8.4.b // horse power
2 clc:
3 clear;
4 close;
5 I1=83; // WHEN LOADED IN AMPERES
6 V=110;// in volts
7 I=5; // in amperes without load
8 ra=0.5; //armature resistance in ohms
9 rsh=110;//shunt field in ohms
10 Ish=V/rsh;// in ampere
    anl=I-Ish; //armature current in amperes at no load
11
    al=Il-Ish; //armature currentin amperes at load
12
    Eb1=(V-anl*ra); //back emf at no load
13
    Eb2=(V-al*ra);//back emf at load
14
   Dp=Eb1*anl; // driving power at no load in watt
15
    Dpl=Eb2*al;//driving power at load in watt
16
17
    mo=Dpl-Dp;//out of motor in watt
```

```
bhp=mo/746; // horse power
find disp(bhp, "horse power in ampere is")
```

Scilab code Exa 8.4.c efficiency

```
1 //Example 8.4.c // efficiency
2 clc;
3 clear;
4 close;
5 I1=83; // WHEN LOADED IN AMPERES
6 V=110; // in volts
7 I=5; // in amperes without load
8 ra=0.5; //armature resistance in ohms
9 rsh=110; //shunt field in ohms
10 Ish=V/rsh; // in ampere
11
    anl=I-Ish; //armature current in amperes at no load
12
    al=Il-Ish; //armature currentin amperes at load
    Eb1=(V-anl*ra); //back emf at no load
13
   Eb2=(V-al*ra); //back emf at load
14
15
   Dp=Eb1*anl; // driving power at no load in watt
   Dpl=Eb2*al; // driving power at load in watt
16
   mo=Dpl-Dp; //out of motor in watt
17
   bhp=mo/746; //horse power
18
19
   mi=V*al;//input power in watt
   n=(mo/mi)*100; // efficiency in percentage
20
21 disp(n," efficiency of motor when it is work on full
      , load in percentage is")
22 //answer is wrong in the textbook
```

Scilab code Exa 8.5.a back emf

```
1 //Example 8.5.a // back emf
2 clc;
```

```
3 clear;
4 close;
5 \text{ V=} 230; // \text{ in } \text{volts}
    I=60; // in amperes
6
7
    rpm=955; //turns
    ra=0.2; // resistance of armature in ihms
9
    rsh=0.15; //shunt field in ohms
    sl=604; //stray losses in watts
10
11
    Rm=ra+rsh; // in ohms
    Eb=(V-I*Rm);// back emf in volts
12
    disp(Eb, "back emf in volts")
13
```

Scilab code Exa 8.5.b copper losses

```
1 //Example 8.5.b // copper losses
2 clc;
3 clear;
4 close;
5 V=230; // in volts
   I=60; // in amperes
7
    rpm=955; //turns
    ra=0.2; // resistance of armature in ihms
    rsh=0.15; //shunt field in ohms
9
10
    sl=604; //stray losses in watts
    Rm=ra+rsh; // in ohms
11
    Eb=(V-I*Rm); // back emf in volts
12
    Dp=Eb*I; // driving power in watts
13
    mi=V*I; //input power in watts
14
15
    Cl=mi-Dp;// copper losses in watts
    disp(C1, "copper losses in watts")
16
```

Scilab code Exa 8.5.c Bhp

```
1 //Example 8.5.c //horse power
2 clc;
3 clear;
4 close;
5 V=230; // in volts
   I=60; // in amperes
7
    rpm=955; //turns
    ra=0.2; // resistance of armature in ihms
9
    rsh=0.15; //shunt field in ohms
10
    sl=604; //stray losses in watts
11
    Rm=ra+rsh; // in ohms
12
    Eb=(V-I*Rm); // back emf in volts
13
    Dp=Eb*I; // driving power in watts
    mi=V*I; //input power in watts
14
    Cl=mi-Dp;// copper losses in watts
15
    mo=Dp-sl;//output of motor
16
17
    bhp=mo/746; // horse power in bhp
18 disp(bhp, "horse power is")
```

Scilab code Exa 8.5.d total torque

```
1 //Example 8.5.d //total torque
2 clc;
3 clear;
4 close;
5 V=230; // in volts
   I=60; // in amperes
6
   rpm=955; //turns
7
8
    ra=0.2; //resistance of armature in ihms
    rsh=0.15; //shunt field in ohms
9
    sl=604; //stray losses in watts
10
11
    Rm=ra+rsh; // in ohms
12
    Eb=(V-I*Rm); // back emf in volts
    Dp=Eb*I; // driving power in watts
13
14
    mi=V*I; //input power in watts
```

```
Cl=mi-Dp;// copper losses in watts
mo=Dp-sl;//output of motor
bhp=mo/746;// horse power in bhp
Ta=(9.55*Eb*I)/rpm;//total torque in N-m
disp(Ta,"total torque in N-m")
```

Scilab code Exa 8.5.e shaft torque

```
1 //Example 8.5.e //shaft torque
2 clc;
3 clear;
4 close;
5 V=230; // in volts
   I=60; // in amperes
6
    rpm=955; //turns
7
    ra=0.2; // resistance of armature in ihms
9
    rsh=0.15; //shunt field in ohms
    sl=604;//stray losses in watts
10
11
    Rm=ra+rsh; // in ohms
12
    Eb=(V-I*Rm); // back emf in volts
    Dp=Eb*I; // driving power in watts
13
    mi=V*I; //input power in watts
14
15
    Cl=mi-Dp;// copper losses in watts
16
    mo=Dp-sl;//output of motor
17
    bhp=mo/746; // horse power in bhp
18
     Ta=(9.55*Eb*I)/rpm;//total torque in N-m
    Ts=(bhp*60*746)/(2*%pi*rpm);//shaft torque in N-m
19
20 disp(Ts, "shaft torque in N-m")
```

Scilab code Exa 8.5.f lost torque

```
1 //Example 8.5.f //lost torque 2 clc;
```

```
3 clear;
4 close;
5 V=230; // in volts
    I=60; // in amperes
6
7
    rpm=955; //turns
8
    ra=0.2; //resistance of armature in ihms
9
    rsh=0.15; //shunt field in ohms
    sl=604; //stray losses in watts
10
11
    Rm=ra+rsh; // in ohms
12
    Eb=(V-I*Rm); // back emf in volts
13
    Dp=Eb*I; // driving power in watts
14
    mi=V*I;//input power in watts
15
    Cl=mi-Dp; // copper losses in watts
    mo=Dp-sl;//output of motor
16
    bhp=mo/746; // horse power in bhp
17
     Ta=(9.55*Eb*I)/rpm;//total torque in N-m
18
19
    Ts = (bhp*60*746)/(2*\%pi*rpm); //shaft torque in N-m
20
    Tl=Ta-Ts; //lost torque in N-m
21 disp(Tl, "lost torque in N-m")
```

Scilab code Exa 8.5.g commercial efficiency

```
1 //Example 8.5.g //commercial efficiency
2 clc;
3 clear;
4 close;
5 V=230; // in volts
   I=60; // in amperes
7
    rpm=955; //turns
    ra=0.2; // resistance of armature in ihms
    rsh=0.15; //shunt field in ohms
9
10
    sl=604; //stray losses in watts
11
    Rm=ra+rsh; // in ohms
12
    Eb=(V-I*Rm); // back emf in volts
13
    Dp=Eb*I; //driving power in watts
```

```
14
    mi=V*I; //input power in watts
    Cl=mi-Dp; // copper losses in watts
15
    mo=Dp-sl;//output of motor
16
    bhp=mo/746; // horse power in bhp
17
18
    Ta=(9.55*Eb*I)/rpm;//total torque in N-m
    Ts = (bhp*60*746)/(2*\%pi*rpm); //shaft torque in N-m
19
    Tl=Ta-Ts; //lost torque in N-m
20
    nc=(mo/mi)*100; //commercial efficiency in percentge
21
22 disp(nc, "commercial efficiency in percentge")
```

Scilab code Exa 8.6 current taken

```
//Example 8.6 //current
clc;
clc;
clear;
close;
V=220;// in volts
I=60;// in amperes
rpm=728;//turns
Ts=150;//shaft torque in N-m
nc=80;//commercial efficiency in percentge
I=((Ts*2*%pi*rpm*746)/(60*746*(nc/100)*V));//
CURRENT TAKEN IN AMPERES
disp(round(I), "current taken in amperes is")
```

Scilab code Exa 8.7 speed

```
1 //Example 8.7 //SPEED
2 clc;
3 clear;
4 close;
5 V=220; // in volts
6 rpm=2100; //turns
```

```
7  ra=0.5; // resistance of armature in ihms
8  rsh=220; // shunt field in ohms
9  Il=21; // in amperes
10  R1=220; // in ohms
11  Ish=V/rsh; // in amperes
12  Ifs=V/(rsh+R1); // shunt field current in second case in ampere
13  ph1=50; //
14  ph2=100; //
15  n2=(rpm*ph2)/ph1; // speed in rpm
16  disp(n2," speed in rpm is")
```

Chapter 9

cells and batteries

Scilab code Exa 9.1 value of current flowing

```
1 //Example 9.1 // current
2 clc;
3 clear;
4 close;
5 //given data :
6 n=20; // dry cells of emf
7 E=1.5; // emf in volts
8 R=5; // external resistance in ohm
9 r=0.5; // internal resistance in ohm
10 I=(n*E)/(R+(n*r));
11 disp(I,"current flowing, I(A) = ")
```

Scilab code Exa 9.2 value of current flowing

```
1 //Example 9.2 // current
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 n=10; // dry cells of emf
7 E=1.5; // emf in volts
8 R=4.9; // resistance in ohm
9 r=1; // internal resistance in ohm
10 I=(n*E)/((n*R)+(r));
11 disp(I," current flowing, I(A) = ")
```

Scilab code Exa 9.3 value of current flowing

```
1 //Example 9.3 // current
2 clc;
3 clear;
4 close;
5 //given data :
6 m=3;
7 n=10; // dry cells of emf
8 E=1.5; // emf in volts
9 R=2.5; // resistance in ohm
10 r=0.5; // internal resistance in ohm
11 I=(m*n*E)/((m*R)+(n*r));
12 disp(I," current flowing, I(A) = ")
```

Scilab code Exa 9.4.a internal resistance

```
//Example 9.4.a // internal resistance of each cell
clc;
clear;
close;
n=10;// no. of cells
Rl=4;// LOAD RESISTANCE
V=12;// in volts
Va=18;// IN VOLTS
```

```
9 r=((Va-V)*R1)/(n*V);// internal resistance in ohms
10 disp(r,"internal resistance in ohms is")
```

Scilab code Exa 9.4.b value of current flowing

```
//Example 9.4.b // current
clc;
clc;
clear;
close;
n=10;// no. of cells
Rl=4;// LOAD RESISTANCE
V=12;// in volts
Va=18;// IN VOLTS
r=((Va-V)*R1)/(n*V);// internal resistance in ohms
Il=V/Rl;// IN AMPERES
disp(Il,"load current in amperes is")
```

Scilab code Exa 9.5 emf of each cell and its internal resistance

```
//Example 9.5 // emf and internal resistance of each
cell

close;
clear;
close;
n=6;// no. of cells
Rl=3;// LOAD RESISTANCE
I=2.5;// IN AMPERES
r1=9;// in ohms
I2=1.25;// om amperes
r=((r1*I2)-(R1*I))/(n*(I-I2));// internal resistance
in ohms
E=((I*(R1+n*r))/n);// emf of each cell in volts
disp(E,"emf of each cell in volts is")
```

Scilab code Exa 9.6 ampere hour capacity

```
//Example 9.6 //find ampere-hour capacity of a
    batery
clc;
clear;
close;
I=20;// in amperes
t=15;// in hours
Ah=I*t;// ampere hour capacity of the battery
disp(Ah, "ampere hour capacity of the battery")
```

Scilab code Exa 9.7.a ampere hour efficiency

```
//Example 9.7.a //find ampere-hour efficiency
clc;
clear;
close;
I=30;// in amperes
t=6;// in hours
Vt=2;// terminal voltage
Ic=40;// in amperes
tc=5;// in hours
Vc=2.5;// in volts
Aho=I*t;// ampere hour output of the battery
Ahi=Ic*tc;// ampere hour input of the battery
nAh=(Aho/Ahi)*100;// ampere hour efficiency
disp(nAh, "ampere hour efficiency of the battery in percentage is")
```

Scilab code Exa 9.7.b watt hour efficiency

```
//Example 9.7.b //find watt-hour efficiency
clc;
clear;
close;
I=30; // in amperes
t=6; // in hours
Vt=2; // terminal voltage
Ic=40; // in amperes
tc=5; // in hours
Vc=2.5; // in volts
Who=I*t*Vt; // watt hour output of the battery
Whi=Ic*tc*Vc; // watt hour input of the battery
Nh=(Who/Whi)*100; // ampere hour efficiency
disp(nWh," watt hour efficiency of the battery in percentage is")
```

Scilab code Exa 9.8.a initial charging current

```
//Example 9.8.a //initial charging current
clc;
clear;
close
    n=50;// no. of cells
    Vc=250;// in volts
    Vd=1.8;//in volts
    Vcs=2.2;//in volts
    r=0.01;//internal resistance of each cell in ohms
    rl=0.1;//lead resistance in ohms
    Re=19.4;//external resistance in ohms
    Ib=n*r;// internal resistance of battery
```

```
13 Tb=rl+Ib;//total resistance of battery
14 Eb=Vd*n;//total rmf of battery
15 I=(Vc-Eb)/(Re+Tb);// initial charging current in amperes
16 disp(I,"initial charging current in amperes is")
```

Scilab code Exa 9.8.b final charging current

```
1 //Example 9.8.b //final charging current
2 clc;
3 clear;
4 close
5 \text{ n=50;} // \text{ no. of cells}
6 Vc=250; // in volts
7 Vd=1.8; //in volts
8 \text{ Vcs}=2.2; //\text{in volts}
9 r=0.01;//internal resistance of each cell in ohms
10 rl=0.1; //lead resistance in ohms
11 Re=19.4;//external resitance in ohms
12 Ib=n*r; // internal resistnce of battery
13 Tb=rl+Ib;//total resistance of battery
14 Eb=Vd*n;//total rmf of battery
15 Ebf=Vcs*n; //emf of the battery at the end of
      charging
16 I=(Vc-Ebf)/(Re+Tb);// initial charging current in
      amperes
17 disp(I, "final charging current in amperes is")
```

Scilab code Exa 9.9.a value and direction of current

```
1 //Example 9.9.a //value and direction of the current
2 clc;
3 clear;
```

```
4 close
5 V=230; // in volts
6 emf1=122; //in volts
7 r=0.4; //internal resistance in ohms
8 \text{ emf2=130;} //\text{in volts}
9 r1=0.5; //in ohms
10 //apllying kirchoff's low
11 // x ampere is the total current taken by battery
12 // x1 ampere is the total current taken by battery A
13 // x-x1 ampere is the total current taken by battery
       В
14 // 5*x+0.4*y=180 is the equation in mesh ABEF
15 // 5.5*x+0.5*y=100 equation in the mesh CDEF
16 // equation 1 is 25*x+2*y=540 and equation 2 is 22*x
      -2*y=400
17 A = [25 \ 2 \ ; 22 \ -2]; // EQUATIONS
18 B=[540;400]; // VALUES
19 X=A\setminus B; // UNKNOW VALUES
20 \text{ x=X(1,1);} //\text{TOTAL CURRENT IN AMPERES}
21 x1=X(2,1); // current taken by battery A
22 \times 2 = 20 - 20; //
23 disp(x1,"current in battery A in amperes (
      discharging)")
24 disp(x2, "current in bettery B in amperes")
```

Scilab code Exa 9.9.b total current

```
1 //Example 9.9.b //total current
2 clc;
3 clear;
4 close
5 V=230; // in volts
6 emf1=122; //in volts
7 r=0.4; //internal resistance in ohms
8 emf2=130; //in volts
```

```
9 r1=0.5; //in ohms
10 //apllying kirchoff's low
11 // x ampere is the total current taken by battery
12 // x1 ampere is the total current taken by battery A
13 // x-x1 ampere is the total current taken by battery
14 // 5*x+0.4*y=180 is the equation in mesh ABEF
15 // 5.5*x+0.5*y=100 equation in the mesh CDEF
16 // equation 1 is 25*x+2*y=540 and equation 2 is 22*x
      -2*y=400
17 A = [25 \ 2 \ ; 22 \ -2]; // EQUATIONS
18 B=[540;400]; // VALUES
19 X = A \setminus B; // UNKNOW VALUES
20 \text{ x=X(1,1); }/\text{TOTAL CURRENT IN AMPERES}
21 x1=X(2,1); // current taken by battery A
22 	 x2 = 20 - 20; //
23 disp(x," total current in battery A and B in amperes
      (charging)")
```

Scilab code Exa 9.9.c power dissipated

```
//Example 9.9.c //tpower dissipated
clc;
clear;
close
R=5;// in ohms
V=230;// in volts
emf1=122;//in volts
r=0.4;//internal resistance in ohms
emf2=130;//in volts
r1=0.5;//in ohms
//apllying kirchoff's low
// x ampere is the total current taken by battery
// x1 ampere is the total current taken by battery
// x-x1 ampere is the total current taken by battery
```

Scilab code Exa 9.10 direction of current and total resistance

```
1 //Example 9.10 //value and direction of the current
2 clc;
3 clear;
4 close
5 V=34; // in volts
6 emf1=2; //in volts
7 r1=6; //in ohms
8 \text{ r2=1;}//\text{in ohms}
9 r3=2; //in ohms
10 r4=4; // in ohms
11 //apllying kirchoff's low
12 // x ampere is the current in branch AB
13 // x1 ampere is the current in branch AC
14 //x2 ampere is the current in the Branch BD
15 // x-x^2 ampere is the current in the branch BC
16 // x1+x2 ampere is the current in the branch DC
17 // x-6*x1+8*x2=2 in mesh ABD
18 // 2*x-4*x1-14*x2=-2 in mesh BCD
19 // 10*x1+4*x2=34;//in \text{ mesh ADCEF}
```

```
20 A = [1 -6 8; 2 -4 -14; 0 10 4]; // EQUATIONS
21 B = [2; -2; 34]; // VALUES
22 X=A\setminus B; // UNKNOW VALUES
23 x=X(1,1);//TOTAL CURRENT IN AMPERES
24 x1=X(2,1);//current taken by battery A
25 \text{ x} 2 = X(3,1); //
26 b1=x-x2; // in amperes
27 b2=x1+x2; //in amperes
28 R = ((r1*x1+r4*(x2+x1))/(x+x1)); //total resistance in
29 disp(x," current in 1 ohms resistance from A to B in
       amperes ")
30 disp(x1," current in 6 ohms resistance from A to D
      in amperes ")
31 disp(x2," current in 8 ohms resistance from B to D
      in amperes ")
32 disp(b1, "current in 2 ohm resistance from B to C in
      amperes")
33 disp(b2, "current in 4 ohm resistance from D to C in
      amperes")
34 disp(R,"total reistance in ohms is")
```

Chapter 11

single phase AC circuits

Scilab code Exa 11.1 instantaneous emf

```
//Example 11.1 // instantaneous value
clc;
clear;
close;
//given data:
E_max=500; // emf in volts
thita=30; // in degree
e=E_max*sind(thita);
disp(e,"instantaneous value,e(v) = ")
```

Scilab code Exa 11.2 rms value of alternating current

```
1 //Example 11.2 // rms value
2 clc;
3 clear;
4 close;
5 //given data :
6 I_max=1.414; // maximum value of current in A
```

```
7 I_rms=I_max*0.707;
8 disp(round(I_rms), "rms value of current, I_rms(A)")
```

Scilab code Exa 11.3 current drawn

```
1 //Example 11.3 // current drawn
2 clc;
3 clear;
4 close;
5 //given data :
6 f=50; // frequency in Hz
7 L=0.2; // inductance in H
8 V=220; // voltage in volts
9 pi=22/7;
10 XL=2*pi*f*L;// in ohm
11 Z=XL;
12 I=V/Z;
13 disp(I,"current drawn, I(A) = ")
```

Scilab code Exa 11.4 current

```
1 //Example 11.4 // current flowing
2 clc;
3 clear;
4 close;
5 //given data :
6 f=50; // frequency in Hz
7 C=100*10^-6; // capacitor in Farad
8 V=210; // voltage in volts
9 pi=22/7;
10 XC=(1/(2*pi*f*C));
11 Z=XC;
12 I=V/Z;
```

```
13 disp(I,"current flowing, I(A) = ")
```

Scilab code Exa 11.5.a value of current flowing

```
1
2 //Example 11.5.a // current
3 clc;
4 clear;
5 close;
6 //given data :
7 f=50; // frequency in Hz
8 L=0.4; // inductance in H
9 V=220; // voltage in volts
10 pi = 22/7;
11 XL=2*pi*f*L;
12 I=V/XL;
13 f1=25; // when frequency is halved
14 \text{ pi}=22/7;
15 XL1=2*pi*f1*L;
16 I1=V/XL1;
17
18 disp(I,"current flowing, I(A) = ")
19 disp(I1,"current when frequency is halved, I(A) = ")
```

Scilab code Exa 11.5.b value of current flowing

```
1 //Example 11.5.b // current if frequency is halved
2 clc;
3 clear;
4 close;
5 //given data :
6 //given data :
7 f=50; // frequency in Hz
```

```
8 L=0.4; // inductance in H
9 V=220; // voltage in volts
10 f2=100; // when frequency is doubled
11 pi=22/7;
12 XL=2*pi*f2*L;
13 I=V/XL;
14 disp(I,"current when frequency is halved, I(A) = ")
```

Scilab code Exa 11.6.a value of current flowing

```
1 //Example 11.6.a // current
2 clc;
3 clear;
4 close;
5 //given data :
6 f=50; // frequency in Hz
7 C=28*10^-6; // capacitor in Farad
8 V=250; // voltage in volts
9 pi = 22/7;
10 XC=1/(2*pi*f*C);
11 I1=V/XC;
12 f=50; // frequency in Hz
13 C=28*10^-6; // capacitor in Farad
14 V=250; // voltage in volts
15 \text{ pi} = 22/7;
16 f1=25; // when frequency is halved
17 XC=1/(2*pi*f1*C);
18 I2=V/XC;
19 disp(I1,"current flowing, I(A) = ")
20 disp(I2, "current flowing when frequency is halved, I(
     A) = ")
```

Scilab code Exa 11.6.b value of current flowing

```
//Example 11.6.b // current if frequency is halved
clc;
clear;
close;
//given data:
f=50; // frequency in Hz
C=28*10^-6; // capacitor in Farad
V=250; // voltage in volts
pi=22/7;
f2=100; // when frequency is doubled
XC=1/(2*pi*f2*C);
I=V/XC;
disp(I,"current flowing when frequency is doubled, I
(A) = ")
```

Scilab code Exa 11.7.a inductive reactance

```
1 //Example 11.7.a // inductive reactance
2 clc;
3 clear;
4 close;
5 R=40; // in ohms
6 L=0.07; // IN HENRY
7 v=223; // IN VOLTS
8 F=50; // IN HERTS
9 X1=2*%pi*F*L; // inductive reactance in ohms
10 disp(round(X1), "inductive reactance in ohms is")
```

Scilab code Exa 11.7.b impedance

```
1 //Example 11.7.b // impedence
2 clc;
3 clear;
```

```
4 close;
5 R=40;//in ohms
6 L=0.07;//IN HENRY
7 v=223;//IN VOLTS
8 F=50;// IN HERTS
9 X1=2*%pi*F*L;// inductive reactance in ohms
10 Z=sqrt(R^2+X1^2);//IMPEDENCE IN OHMS
11 disp(Z,"impedence in ohms is")
```

Scilab code Exa 11.7.c current

```
//Example 11.7.c // current
clc;
clc;
clear;
close;
R=40; // in ohms
L=0.07; // IN HENRY
V=223; // IN VOLTS
F=50; // IN HERTS
X1=2*%pi*F*L; // inductive reactance in ohms
L=v/Z; // in amperes
disp(I," current in amperes is")
```

Scilab code Exa 11.7.d angle of phase difference

```
1 //Example 11.7.d // angle of phase differnce
2 clc;
3 clear;
4 close;
5 R=40; //in ohms
6 L=0.07; //IN HENRY
7 V=223; //IN VOLTS
```

```
8 F=50; // IN HERTS
9 X1=2*%pi*F*L; // inductive reactance in ohms
10 Z=sqrt(R^2+X1^2); //IMPEDENCE IN OHMS
11 I=V/Z; //in amperes
12 csp=R/Z; //pf
13 phi=acosd(csp); // angle of phase difference in degree
14 x=floor(phi); //
15 y=phi-x; //
16 disp("angle of phase difference is "+string(x)+" degree and "+string(y*60)+" minutes ")
```

Scilab code Exa 11.8 inductance and phase angle

```
1 //Example 11.8 // inductance and phase angle between
       voltage and current
2 clc;
3 clear:
4 close;
5 \text{ V=200;}//\text{in volts}
6 I=2.5; // in amperes
7 Vo=250;// in volts
8 f=50; // in hertz
9 R=V/I;// in ohms
10 Z=Vo/I; // in ohms
11 Xl=sqrt(Z^2-R^2); //inductive reactance in ohms
12 L=(X1/(2*\%pi*f)); //inductance in henry
13 pf=R/Z;//power factor
14 phi=acosd(pf);//angle of phase differnce in degree
15 x=floor(phi);//
16 y=phi-x; //
17 disp(L, "inductance in henry is")
18 disp("angle of phase difference is "+string(x)+"
      degree and "+string(round(y*60))+" minutes ")
```

Scilab code Exa 11.9 capacitance

```
1 //Example 11.9 // capacitance
2 clc;
3 clear;
4 close;
5 W=100; //in watts
6 V=110; //in volts
7 Vc=220; //in volts
8 f=50; //in hertz
9 I=W/V; // in amperes
10 R=V/I; //in ohms
11 Z=Vc/I; // in ohms
12 Xc=sqrt(Z^2-R^2); // IN OHMS
13 C=(1/(2*%pi*f*Xc)); // in farads
14 disp(C*10^6, "capacitance in micro farads is")
```

Scilab code Exa 11.10.a impedance

```
1 //Example 11.10.a // impedence
2 clc;
3 clear;
4 close;
5 R=5.94; //in ohms
6 L=0.35; //IN HENRY
7 C=35; // in micro farads
8 V=220; //IN VOLTS
9 F=50; // IN HERTS
10 Xc=(1/(2*%pi*F*C*10^-6)); // capacitive reactance in ohms
11 X1=2*%pi*F*L; // inductive reactance in ohms
12 Z=sqrt(R^2+(X1-Xc)^2); // impedence in ohms
```

Scilab code Exa 11.10.b current

```
//Example 11.10.B // CURRENT
clc;
clc;
clear;
close;
R=5.94; //in ohms
L=0.35; //IN HENRY
C=35; // in micro farads
V=200; //IN VOLTS it is given wrong in the book
F=50; // IN HERTS
Xc=(1/(2*%pi*F*C*10^-6)); // capacitive reactance in ohms
Xl=2*%pi*F*L; // inductive reactance in ohms
Z=sqrt(R^2+(Xl-Xc)^2); // impedence in ohms
I=V/round(Z); // in amperes
disp(I,"current in amperes is")
```

Scilab code Exa 11.10.c phase angles

```
//Example 11.10.c // angle of phase diffenrce
clc;
clear;
close;
R=5.94; // in ohms
L=0.35; // IN HENRY
C=35; // in micro farads
V=200; // IN VOLTS it is given wrong in the book
F=50; // IN HERTS
Xc=(1/(2*%pi*F*C*10^-6)); // capacitive reactance in ohms
```

```
11 Xl=2*%pi*F*L;// inductive reactance in ohms
12 Z=sqrt(R^2+(Xl-Xc)^2);// impedence in ohms
13 I=V/round(Z);// in amperes
14 pf=R/round(Z);// power factor
15 disp(pf, "angle of phase diffence between voltage and current is")
```

Scilab code Exa 11.10.d voltage

```
1 //Example 11.10.d // voltage across te coil
2 clc;
3 clear;
4 close;
5 R=5.94; //in ohms
6 L=0.35; //IN HENRY
7 C=35; // in micro farads
8 V=200;//IN VOLTS it is given wrong in the book
9 F=50; // IN HERTS
10 Xc = (1/(2*\%pi*F*C*10^-6)); // capacitive reactance in
     ohms
11 X1=2*%pi*F*L;// inductive reactance in ohms
12 Z=sqrt(R^2+(X1-Xc)^2);// impedence in ohms
13 I=V/round(Z);// in amperes
14 pf=R/round(Z);// power factor
15 Zc=sqrt(R^2+X1^2); //impedence of the coil
16 Vl=I*Zc;//voltage drop across the coil
17 disp(V1, "voltage across the coil in volts is")
```

Scilab code Exa 11.10.e voltage across the coil

```
1 //Example 11.10.e // voltage across the capacitor
2 clear;
3 close;
```

```
4 clc;
5 R=5.94;//in ohms
6 L=0.35;//IN HENRY
7 C=35;// in micro farads
8 V=200;//IN VOLTS it is given wrong in the book
9 F=50;// IN HERTS
10 Xc=(1/(2*%pi*F*C*10^-6));// capacitive reactance in ohms
11 Xl=2*%pi*F*L;// inductive reactance in ohms
12 Z=sqrt(R^2+(Xl-Xc)^2);// impedence in ohms
13 I=V/round(Z);// in amperes
14 pf=R/round(Z);// power factor
15 Vc=I*Xc;//voltage drop across the capacitor
16 disp(Vc,"voltage across capacitor in volts is")
```

Scilab code Exa 11.10.f total power taken

```
2 //Example 11.10.f // total power taken
3 clear;
4 close;
5 clc;
6 R=5.94; //in ohms
7 L=0.35; //IN HENRY
8 C=35; // in micro farads
9 V=200; //IN VOLTS it is given wrong in the book
10 F=50; // IN HERTS
11 Xc = (1/(2*\%pi*F*C*10^-6)); // capacitive reactance in
     ohms
12 X1=2*%pi*F*L; // inductive reactance in ohms
13 Z=sqrt(R^2+(X1-Xc)^2);// impedence in ohms
14 I=V/round(Z);// in amperes
15 W=I^2*R; //total power taken in watts
16 disp(W," total power taken in watts is")
```

Scilab code Exa 11.11.a total impedance

```
1 //Example 11.11.a // impedence
2 clc;
3 clear;
4 close;
5 \text{ r1=6;} //\text{in ohms}
6 r2=3.95; //in ohms
7 R=r1+r2; //in ohms
8 L1=0.21; //IN HENRY
9 L2=0.14; //in henry
10 C1=30; // in micro farads
11 C2=60; //in micro farads
12 V=220; //IN VOLTS
13 F=50; // IN HERTS
14 Xc1=(1/(2*\%pi*F*C1*10^-6));// capacitive reactance
15 Xc2=(1/(2*\%pi*F*C2*10^-6));// capacitive reactance
      in ohms
16 Xc=Xc1+Xc2; //IN OHMS
17 Xl1=2*%pi*F*L1;// inductive reactance in ohms
18 X12=2*%pi*F*L2;// inductive reactance in ohms
19 X1=X11+X12; //in ohms
20 Z=sqrt(R^2+(X1-Xc)^2);// impedence in ohms
21 disp(round(Z), "impedence in ohms is")
```

Scilab code Exa 11.11.b current taken

```
1 //Example 11.11.b // current taken
2 clc;
3 clear;
4 close;
```

```
5 \text{ r1=6;}//\text{in ohms}
6 r2=3.95; //in ohms
7 R=r1+r2; //in ohms
8 L1=0.21; //IN HENRY
9 L2=0.14; //in henry
10 C1=30; // in micro farads
11 C2=60; //in micro farads
12 V=200; //IN VOLTS
13 F=50; // IN HERTS
14 Xc1 = (1/(2*\%pi*F*C1*10^-6)); // capacitive reactance
      in ohms
15 Xc2=(1/(2*\%pi*F*C2*10^-6));// capacitive reactance
     in ohms
16 Xc=Xc1+Xc2;/IN OHMS
17 Xl1=2*%pi*F*L1;// inductive reactance in ohms
18 X12=2*%pi*F*L2;// inductive reactance in ohms
19 X1=X11+X12; //in ohms
20 Z=sqrt(R^2+(X1-Xc)^2);// impedence in ohms
21 I = V/Z; //
22 disp(round(I), "current in amperes is")
```

Scilab code Exa 11.11.c power factor

```
1 //Example 11.11.c // power factor
2 clc;
3 clear;
4 close;
5 r1=6; //in ohms
6 r2=3.95; //in ohms
7 R=r1+r2; //in ohms
8 L1=0.21; //IN HENRY
9 L2=0.14; //in henry
10 C1=30; // in micro farads
11 C2=60; //in micro farads
12 V=200; //IN VOLTS
```

```
13 F=50; // IN HERTS
14 Xc1=(1/(2*%pi*F*C1*10^-6)); // capacitive reactance in ohms
15 Xc2=(1/(2*%pi*F*C2*10^-6)); // capacitive reactance in ohms
16 Xc=Xc1+Xc2; // IN OHMS
17 X11=2*%pi*F*L1; // inductive reactance in ohms
18 X12=2*%pi*F*L2; // inductive reactance in ohms
19 X1=X11+X12; // in ohms
20 Z=sqrt(R^2+(X1-Xc)^2); // impedence in ohms
21 I=V/Z; //
22 pf=R/Z; // leading power factor
23 disp(pf, "power factor (leading) is")
```

Scilab code Exa 11.12.a current taken

```
1
2 //Example 11.12.a // current
3 clc;
4 clear;
5 close;
6 V=200; // in volts
7 L=0.04; // in henry
8 C=100; //in micro fards
9 f=50;// hertz
10 X1=2*%pi*f*L;//inductive reactance in ohms
11 Xc = (1/(2*\%pi*f*C*10^-6)); //CAPACITIVE REACTANCE IN
     OHMS
12 Z1 = 10; //ohms
13 R1=10; // in ohms
14 X1=0; // in ohms
15 R2=5; // in ohms
16 Z2=sqrt(R2^2+X1^2);//in ohms
17 X2=X1; //
18 R3=15; // in ohms
```

```
19 Z3=sqrt(R3^2+Xc^2); // IN OHMS
20 X3=Xc; //
21 g1=R1/(Z1)^2; // conductance of branch 1 in mho
22 b1=X1/(Z1)^2; // susceptance in mho in branch 1
23 g2=R2/(Z2)^2; // conductance of branch 2 in mho
24 b2=X2/(Z2)^2; // susceptance in mho in branch 2
25 g3=R3/(Z3)^2; // conductance of branch 3 in mho
26 b3=X3/(Z3)^2; // susceptance in mho in branch 3
27 G=g1+g2+g3; // total conductance in mho
28 B=b1+b2-b3; // total susceptance in mho
29 Y=sqrt(G^2+B^2); // in ohms
30 I=V*Y; // curent in ampere
31 disp(I," current in amperes is")
```

Scilab code Exa 11.12.b phase angle

```
1
  //Example 11.12.b // PHASE ANGLE OF CURRENT AND
     VOLTAGE
3 clc;
4 clear;
5 close;
6 V = 200; // in volts
7 L=0.04; // in henry
8 C=100; //in micro fards
9 f=50;// hertz
10 X1=2*%pi*f*L;//inductive reactance in ohms
11 Xc = (1/(2*\%pi*f*C*10^-6)); //CAPACITIVE REACTANCE IN
     OHMS
12 Z1 = 10; //ohms
13 R1=10; // in ohms
14 X1=0; // in ohms
15 R2=5; // in ohms
16 Z2 = sqrt(R2^2 + X1^2); //in ohms
17 X2=X1; //
```

```
18 R3=15; // in ohms
19 Z3=sqrt(R3^2+Xc^2);//IN OHMS
20 X3 = Xc; //
21 g1=R1/(Z1)^2; // conductance of branch 1 in mho
22 b1=X1/(Z1)^2;//susceptance in mho in branch 1
23 g2=R2/(Z2)^2;// conductance of branch 2 in mho
24 b2=X2/(Z2)^2; //susceptance in mho in branch 2
25 g3=R3/(Z3)^2;// conductance of branch 3 in mho
26 b3=X3/(Z3)^2; //susceptance in mho in branch 3
27 G=g1+g2+g3; // total conductance in mho
28 B=b1+b2-b3;// total susceptance in mho
29 Y = sqrt(G^2+B^2); //in \text{ ohms}
30 I=V*Y; //curent in ampere
31 theta=acosd(G/Y); //
32 x=round(theta);//
33 \text{ y=theta-x;} //
34 disp("phase angle is "+string(x)+" degree and "+
     string(60*y)+" munutes ")
35 //answer is wrong in the textbook
```

Scilab code Exa 11.12.c series equivalent arrangement of resistance and reactance

```
//Example 11.12.c // series equivalent arrangement
    of resistance and reactance

clc;
clear;
close;
V=200;// in volts
L=0.04;// in henry
C=100;//in micro fards
f=50;// hertz
X1=2*%pi*f*L;//inductive reactance in ohms
Xc=(1/(2*%pi*f*C*10^-6));//CAPACITIVE REACTANCE IN
OHMS
```

```
11 Z1 = 10; //ohms
12 R1=10; // in ohms
13 X1=0; // in ohms
14 R2=5; // in ohms
15 Z2 = sqrt(R2^2 + X1^2); //in ohms
16 X2=X1; //
17 R3=15; // in ohms
18 Z3=sqrt(R3^2+Xc^2); // IN OHMS
19 X3 = Xc; //
20 g1=R1/(Z1)^2; // conductance of branch 1 in mho
21 b1=X1/(Z1)^2; //susceptance in mho in branch 1
22 g2=R2/(Z2)^2;// conductance of branch 2 in mho
23 b2=X2/(Z2)^2; //susceptance in mho in branch 2
24 g3=R3/(Z3)^2;// conductance of branch 3 in mho
25 b3=X3/(Z3)^2;//susceptance in mho in branch 3
26 G=g1+g2+g3; // total conductance in mho
27 B=b1+b2-b3; // total susceptance in mho
28 I=V/Z3; //curent in amperes
29 pf3=R3/Z3;//power factor
30 phi=acosd(pf3); //angle of phase differnce in degree
31 x=floor(phi);//
32 \text{ y=phi-x;} //
33 tc3=pf3;//
34 ts3=sind(phi)
35 \text{ pf1}=R1/R1; //
36 tc1=pf1;//
37 ts1=sind(acosd(pf1)); //
38 I1=V/Z1;//
39 E1=I1*tc1;// energy component in branch 1
40 EL1=I1*ts1; // idel current component in branch 1
41 I2=V/Z2;//
42 \text{ pf2=R2/Z2;} //
43 tc2=pf2;//
44 ts2=sind(acosd(pf2));//
45 E2=I2*tc2; //ENERGY COMPONENT IN BRANCH2
46 EL2=I2*ts2; //idele current component in branch 2
47 E3=I*tc3;//energy component in branch3
48 EL3=I*ts3; //idle component of current in branch 3
```

```
49 E=E1+E2+E3;//sum of energy component of current
50 EL=EL1+EL2-EL3;//sum of idel component of current
51 It=sqrt(E^2+EL^2);// total current
52 pft=E/It;//power factor of the complete circuit
53 phi=acosd(0.95);//angle of phase differnce in degree
54 x=round(phi);//
55 y=phi-x;//
56 Zt=V/It;//in ohms
57 R=Zt*pft;//equivalent series resistance
58 X=Zt*(sind(phi));//equivalent series reactance
59 disp(R,"equivalent series resistance in ohms is")
60 disp(X,"euivalent series reactance in ohms is")
```

Chapter 12

polyphase system

Scilab code Exa 12.1.a line current and phase current

```
//Example 12.1.a // line current
clc;
clc;
clear;
close;
L=30;//load in kW
pf=0.8;//power factor
Vl=250;//line voltage in volts
I=((L*10^3)/(Vl*pf*sqrt(3)));//line current in ampers
Ip=I;// in star connection
disp(I,"line current (star connection) in ampere is")
disp(Ip,"pahse current (start connection) in ampere is")
```

Scilab code Exa 12.1.b line current and phase current

```
1 //Example 12.1.b // phase current
```

```
2 clc;
3 clear;
4 close;
5 L=30;//load in kW
6 pf=0.8;//power factor
7 V1=250;//line voltage in volts
8 I=((L*10^3)/(V1*pf*sqrt(3)));//line current in ampers
9 Ip=I/(sqrt(3));//phase current
10 I1=sqrt(3)*Ip;//line current in amperes
11 disp(Ip,"phase current in ampere is")
12 disp(I1,"line current (delta connection ) in amperes is")
```

Scilab code Exa 12.2.a line current and total power

```
1 //Example 12.2.a // line current and power abosrbed
2 clc;
3 clear;
4 close;
5 R=11.88; //coil resistance in ohms
6 L=0.07; //inductance in henry
7 f=50; // in hertz
8 pf=0.48;//power factor
9 V1=433; //line voltage in volts
10 Vp= V1/(sqrt(3));//phase voltage
11 X1 = (2*\%pi*f*L); //in ohms
12 Zb=sqrt(R^2+X1^2); // in ohms
13 Ie=Vp/Zb;//current in each winding in amperes
14 Il=Ie; //line current in amperes
15 W=sqrt(3)*V1*I1*pf;//power in watts
16 disp(Il, "line current in ampere is")
17 disp(W*10^-3, "power taken in connection in kW")
```

Scilab code Exa 12.2.b line current and total power

```
1 //Example 12.2.b // line current and power abosrbed
2 clc;
3 clear;
4 close;
5 R=11.88; //coil resistance in ohms
6 L=0.07; //inductance in henry
7 f=50; // in hertz
8 pf = 0.48; //power factor
9 V1=433;//line voltage in volts
10 Vp= V1; // phase voltage
11 X1 = (2*\%pi*f*L); //in ohms
12 Zb = sqrt(R^2 + Xl^2); // in ohms
13 Ie=Vp/Zb;//current in each winding in amperes
14 Il=sqrt(3)*Ie;//line current in amperes
15 W=sqrt(3)*V1*I1*pf;//power in watts
16 disp(Il, "line current in ampere is")
17 disp(W*10^-3, "power taken in connection in kW")
```

Scilab code Exa 12.3.a current in each phase of the motor

```
1
2 //Example 12.3.a // motor current in each phase
3 clc;
4 clear;
5 close;
6 Vl=1100; //line voltage in volts
7 n=99; //motor efficiency in percentage
8 Mo=n*735.5; //output of the motor
9 Mi=(Mo*100)/75; // INPUT OF THE MOTOR IN WATTS
10 pf= 0.8; //power factor
```

```
11 Il=(Mi)/(sqrt(3)*Vl*pf);//line current in amperes
12 Ip=Il/(sqrt(3));//phase current in amperes
13 Ipm=Il;//phase curent of the motor
14 Ac=Ip*pf;//active component of phase current in the motor
15 Rc=Ip*(sqrt(1-pf^2));//reactive component of phase current of motor
16 disp(Ip, "phase current of motor in amperes is")
17 disp(Ac, "active component of phase current in the motor in amperes")
18 disp(Rc, "reactive component of phase current in the motor in amperes")
```

Scilab code Exa 12.3.b current in each phase of the generator

```
1
2 //Example 12.3.b // motor generator in each phase
3 clc;
4 clear;
5 close;
6 Vl=1100; //line voltage in volts
7 n=99; //motor efficiency in percentage
8 Mo=n*735.5; //output of the motor
9 Mi=(Mo*100)/75;// INPUT OF THE MOTOR IN WATTS
10 pf = 0.8; //power factor
11 Il=(Mi)/(sqrt(3)*Vl*pf);//line current in amperes
12 Ip=Il/(sqrt(3));//phase current in amperes
13 Ipm=Il; //phase curent of the motor
14 Ac=Ipm*pf;//active component of phase current in the
      generator
15 Rc=Ipm*(sqrt(1-pf^2));//reactive component of phase
     current of generator
16 disp(Ipm," phase current of the genertor in ampere is
17 disp(Ac," active component of phase current in the
```

```
generator in amperes")
18 disp(Rc, "reactive component of phase current in the generator in amperes")
```

Scilab code Exa 12.4 reading

```
1 //Example 12.4 // reading
2 clc;
3 clear;
4 close;
5 ni=74.6; //efficiency
6 Mo=40; //HP OF MOTOR
7 mo=Mo*ni;//output of motor in watts
8 mi=(mo*100)/(ni*1000);//input of motor in kW
9 tw=40; //total in kW
10 pf=0.8; //power factor
11 theta=acosd(pf); //in degree
12 v=tand(theta);//
13 dw = (v*tw)/(sqrt(3)); //
14 w1=(tw+dw)/2;//FIRST READING IN kW
15 w2=tw-w1; //second reading in kW
16 disp(w1, "first reading in kW")
17 disp(w2, "second reading in kW")
```

Scilab code Exa 12.5.a power factor when both readings are positive

```
1 //Example 12.5.a // power factor
2 clc;
3 clear;
4 close;
5 w1=4.5; // first reading in kW
6 w2=3; // second reading in kW , this value is given wrong in question
```

Scilab code Exa 12.5.b power factor

```
//Example 12.5.b // power factor
clc;
clear;
close;
w1=4.5; // first reading in kW
w2=-3; // second reading in kW, this value is given
wrong in question
tw=w1+w2; // in kW
dw=w1-w2; // in kW
pfa=atand(sqrt(3)*(dw/tw));
pf=cosd(pfa); // // power factor when second reading is
obtained by reversing the connection
disp(pf, "power factor when second reading is
obtained by reversing the connection
```