Tribhuvan University Institute of Science and Technology 2073

苁

Bachelor Level / First Year/ First Semester/ Science Computer Science and Information Technology (MTH. 104) (Calculus and Analytical Geometry) Full Marks: 80 Pass Marks: 32 Time: 3 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Attempt all questions.

Group A

(10x2=20)

If
$$f(x) = \sin x$$
 and $g(x) = -x/2$ find $g(f(x))$.

2. Define critical point. Find the critical point of $f(x) = 2x^2$.

3. Evaluate
$$\lim_{n\to\infty} \frac{a-bn^4}{n^4+a}$$
.

A. Find the equation of the parabola with vertex at the origin and directrix at x = 7.

5. Find a vector parallel to the line of intersection of the planes 3x + 6y - 2z = 7 and 2x + y - 2z = 5.

6. Evaluate
$$\int_{-1}^{0} \int_{-1}^{1} (x+y+1)dx \ dy$$
.

7. Find
$$\frac{\partial t}{\partial x}$$
 and $\frac{\partial t}{\partial y}$ if $f(x, y) = x^2 + y^2$.

8. Evaluate
$$\lim_{(x,y)\to(0,1)} \frac{x - xy + k}{x^2y + 5xy - y^3}$$
.

9. Show that $y = ax^2 + b$ is the solution of xy'' + y' = 0.

10. Solve
$$\frac{d^2y}{dx^{2x}} - y = 0$$
.

Group B

(5x4=20)

11. Verity Rolle's theorem for
$$f(x) = x^3, x \in [-3,3]$$
.

12, Find the Taylor series expansion of case at e^x , at x = 0.

13. Find a Cartesian equivalent of the polar equation $r \cos (\theta - \pi/3) = 3$.

IOST,TU

MTH 104-2073❖

14 Evaluate it

$$(x, y) \to (0,0) \frac{2y^2}{\sqrt{x^2 + xy}}$$

Obtain the general solution of $(y-z)\frac{\partial z}{\partial x} + (x-y)\frac{\partial z}{\partial y} = z - x$.

Group C

(5x8=40)

16. Evaluate the integrals and determine whether they converge or diverge

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{x}$$
 (b) $\int_{-\infty}^{\infty} \frac{dx}{x^2}$.

OR

Find the area bounded on the parabola $y = 2 - x^2$ and the line y = -x.

17. Find the curvature of the helix

$$\vec{R}(t) = (a\cos\omega t)\vec{i} + (a\sin\omega t)\vec{j} + (bt)\vec{k}?$$

18. Find the volume enclosed between the surfaces

$$z = x^2 + 3y^2$$
 and $z = 8 - x^2 - y^2$.

19. Find the extreme values of the function

$$f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4.$$

OR

Find the extreme values of f(x, y) = xy subject to $g(x, y) = x^2 + y^2 - 10 = 0$.

20. Define second order partial differential equation. Define initial boundary value problem. Derive the heat equation or wave equation in one dimension.