ද්වපද පුකාශන

6

පුනරික්ෂණ අභාගාසය

1. හිස්තැන් පුරවන්න.

a.
$$(a+b)^2 = a^2 + 2ab + ...$$

c.
$$(x+2)^2 = x^2 + 4x + .4.$$

e.
$$(a-5)^2 = a^2 - 10a + 25$$

$$\mathbf{g}$$
. $(4+x)^2 = 16 + .8x + .x^2$.

i.
$$(2x+1)^2 = 4x^2 + .4x + 1$$

b.
$$(a-b)^2 = a^2 - 2ab + b^2$$

d.
$$(y+3)^2 = y^2 + .6y + 9$$

f.
$$(b-1)^2 = b^2 - 2b + .1$$
.

$$\mathbf{h}. \quad (7-t)^2 = 49 - .14t + t^2$$

j.
$$(3b-2)^2 = 9b^2 - 12b + 4$$

2. පුසාරණය කරන්න.

a.
$$(2m+3)^2$$
 b. $(3x-1)^2$ **c.** $(5+2x)^2$

b.
$$(3x-1)^2$$

c.
$$(5+2x)^2$$

d.
$$(2a+3b)^2$$
 e. $(3m-2n)^2$ **f.** $(2x+5y)^2$

e.
$$(3m-2n)^2$$

f.
$$(2x + 5y)^2$$

a.
$$(2m+3)^2 = (2m)^2 + 2 \times 2m \times 3 + 3^2$$

= $4m^2 + 12m + 9$

$$\left(\begin{array}{c} 2m \\ \end{array}\right) + \left(\begin{array}{c} 3 \\ \end{array}\right)^2 = \left(\begin{array}{c} 2m \\ \end{array}\right) + \left(\begin{array}{c} 2 \\ \end{array}\right) + \left(\begin{array}{c} 3 \\ \end{array}\right)^2$$

b.
$$(3x-1)^2 = (3x)^2 - 2 \times 3x \times 1 + 1^2$$

= $9x^2 - 6x + 1$

c.
$$(5 + 2x)^2 = (5)^2 + 2 \times 5 \times 2x + (2x)^2$$

= $25 + 20x + 4x^2$

d.
$$(2a + 3b)^2 = (2a)^2 + 2 \times 2a \times 3b + (3b)^2$$

= $4a^2 + 12ab + 9b^2$

e.
$$(3m - 2n)^2 = (3m)^2 - 2 \times 3m \times 2n + (2n)^2$$

= $9m^2 - 12mn + 4n^2$

f.
$$(2x + 5y)^2 = (2x)^2 + 2 \times 2x \times 5y + (5y)^2$$

= $4x^2 + 20xy + 25y^2$

- ද්විපද පුකාශනයක වර්ගායිතයක් ලෙස ලිවීමෙන් පහත දැක්වෙන එක් එක් 3. වර්ගය අගයන්න.
 - a. 32^2
- **b.** 103^2
- **c.** 18² **d.** 99²

a.
$$32^2$$

= $(30 + 2)^2$
= $30^2 + 2 \times 30 \times 2 + 2^2$
= $900 + 120 + 4$
= 1024

b.
$$103^2$$

= $(100 + 3)^2$
= $100^2 + 2 \times 100 \times 3 + 3^2$
= $10000 + 600 + 9$
= 10609

c.
$$18^2$$

= $(20-2)^2$
= $20^2 - 2 \times 20 \times 2 + 2^2$
= $400 - 80 + 4$
= 324

d.
$$99^2$$

= $(100-1)^2$
= $100^2 - 2 \times 100 \times 1 + 1^2$
= $10000 - 200 + 1$
= 9801

6.1 අභාපාසය

1. සුදුසු වීජීය පද හෝ සංඛාහ හෝ වීජීය ලකුණු (+ හෝ –) හෝ යොදා ගනිමින් හිස්තැන් පුරවන්න.

a.
$$(x+3)^3 = x^3 + 3 \times x^2 \times 3 + 3 \times x \times 3^2 + 3^3 = x^3 + \Box + \Box + 27$$

b.
$$(y+2)^3 = y^3 + 3 \times \square \times \square + 3 \times \square \times \square + 2^3 = y^3 + 6y^2 + \square + \square$$

c.
$$(a-5)^3 = a^3 + 3 \times a^2 \times (-5) + 3 \times a \times (-5)^2 + (-5)^3 = a^3 - \Box + \Box - 125$$

d.
$$(3+t)^3 = \square + 3 \times \square \times \square + 3 \times \square \times \square + \square = \square + 27t + \square + t^3$$

e.
$$(x-2)^3 = x^3 \square 3 \times \square \times \square + 3 \times \square \times \square + (-2)^3 = x^3 \square \square + 12x - \square$$

a.
$$(x+3)^3 = x^3 + 3 \times x^2 \times 3 + 3 \times x \times 3^2 + 3^3$$

= $x^3 + 9x^2 + 27x + 27$

b.
$$(y+2)^3 = y^3 + 3 \times y^2 \times 2 + 3 \times y \times 2^2 + 2^3$$

= $y^3 + 6y^2 + 12y + 8$

c.
$$(a-5)^3 = (a+(-5))^2 = a^3 + 3 \times a^2 \times (-5) + 3 \times a \times (-5)^2 + (-5)^3$$

= $a^3 - 15a^2 + 75a - 125$

d.
$$(3+t)^3 = 3 + 3 \times 3 \times t + 3 \times 3 \times t^2 + t^3$$

= $27 + 27t + 9t^2 + t^3$

e.
$$(x-2)^3 = (x+(-2))^2 = x^3 + 3 \times x^2 \times (-2) + 3 \times x \times (-2)^2 + (-2)^3$$

= $x^3 - 6x^2 + 12x - 8$

2. පුසාරණය කරන්න.

a.
$$(m+2)^3$$

b.
$$(x+4)^3$$

c.
$$(b-2)^2$$

a.
$$(m+2)^3$$
 b. $(x+4)^3$ **c.** $(b-2)^3$ **d.** $(t-10)^3$

e.
$$(5+p)^3$$
 f. $(6+k)^3$ **g.** $(1+b)^3$ **h.** $(4-x)^3$

f.
$$(6+k)^3$$

g.
$$(1+b)^2$$

h.
$$(4-x)^3$$

m.
$$(ab+c)^3$$
 n. $(2x+3y)^3$ **o.** $(3x+4y)^3$ **p.** $(2a-5b)^3$

i.
$$(2-p)^3$$
 j. $(9-t)^3$ k. $(-m+3)^3$ l. $(-5-y)^3$

a.
$$(m+2)^3 = m^3 + 3 \times m^2 \times 2 + 3 \times m \times 2^2 + 2^3$$

= $m^3 + 6m^2 + 12m + 8$

b.
$$(x+4)^3 = x^3 + 3 \times x^2 \times 4 + 3 \times x \times 4^2 + 4^3$$

= $x^3 + 12x^2 + 48x + 64$

c.
$$(b-2)^3 = b^3 - 3 \times b^2 \times 2 + 3 \times b \times 2^2 - 2^3$$

= $\underline{b^3 - 6b^2 + 12b - 8}$

$$(b-2)^3 = \{b + (-2)\}^3$$

$$= b^3 + 3 \times b^2 \times (-2) + 3 \times b \times (-2)^2 + (-2)^3$$

$$= b^3 + 3 \times b^2 \times (-2) + 3 \times b \times 4 + (-8)$$

$$= b^3 - 6b^2 + 12b - 8$$

d.
$$(t-10)^3 = t^3 - 3 \times t^2 \times 10 + 3 \times t \times 10^2 - 10^3$$

= $t^3 - 30t^2 + 300t - 1000$

$$(t-10)^3 = \{t + (-10)\}^3$$

$$= t^3 + 3 \times t^2 \times (-10) + 3 \times t \times (-10)^2 + (-10)^3$$

$$= t^3 + 3 \times t^2 \times (-10) + 3 \times t \times 100 + (-1000)$$

$$= t^3 - 30t^2 + 300t - 1000$$

e.
$$(5+p)^3 = 5^3 + 3 \times 5^2 \times p + 3 \times 5 \times p^2 + p^3$$

= $\underline{125 + 75p + 15p^2 + p^3}$

f.
$$(6+k)^3 = 6^3 + 3 \times 6^2 \times k + 3 \times 6 \times k^2 + k^3$$

= $216 + 108k + 18k^2 + k^3$

g.
$$(1+b)^3 = 1^3 + 3 \times 1^2 \times b + 3 \times 1 \times b^2 + b^3$$

= $1 + 3b + 3b^2 + b^3$

h.
$$(4-x)^3 = 4^3 - 3 \times 4^2 \times x + 3 \times 4 \times x^2 - x^3$$

= $64 - 48x + 12x^2 - x^3$

i.
$$(2-p)^3 = 2^3 - 3 \times 2^2 \times p + 3 \times 2 \times p^2 - p^3$$

= $8 - 12p + 6p^2 - p^3$

j.
$$(9-t)^3 = 9^3 - 3 \times 9^2 \times t + 3 \times 9 \times t^2 - t^3$$

= $729 - 243t + 27t^2 - t^3$

k.
$$(-m+3)^3 = (-m)^3 + 3 \times (-m)^2 \times 3 + 3 \times (-m) \times 3^2 + 3^3$$

= $-m^3 + 9m^2 - 27m + 27$

ලහ<u>ා</u>

$$(-m+3)^3 = (3-m)^3$$

= $3^3 - 3 \times 3^2 \times m + 3 \times 3 \times m^2 - m^3$
= $27 - 27m + 9m^2 - m^3$

l.
$$(-5-y)^3 = (-5)^3 + 3 \times (-5)^2 \times (-y) + 3 \times (-5) \times (-y)^2 + (-y)^3$$

= $-125 - 75y - 15y^2 - y^3$

ලහා

$$(-5-y)^{3} = \{-1(5+y)\}^{3}$$

$$= (-1)^{3} (5+y)^{3}$$

$$= -1(5^{3} + 3 \times 5^{2} \times y + 3 \times 5 \times y^{2} + y^{3})$$

$$= -1(125 + 75y + 15y^{2} + y^{3})$$

$$= -125 - 75y - 15y^{2} - y^{3}$$

m.
$$(ab+c)^3 = (ab)^3 + 3 \times (ab)^2 \times c + 3 \times (ab) \times c^2 + c^3$$

= $\underline{a^3b^3 + 3a^2b^2c + 3abc^2 + c^3}$

n.
$$(2x + 3y)^3 = (2x)^3 + 3 \times (2x)^2 \times (3y) + 3 \times (2x) \times (3y)^2 + (3y)^3$$

= $8x^3 + 3 \times (4x^2) \times (3y) + 3 \times (2x) \times (9y^2) + (27y^3)$
= $8x^3 + 36x^2y + 54xy^2 + 27y^3$

o.
$$(3x + 4y)^3 = (3x)^3 + 3 \times (3x)^2 \times (4y) + 3 \times (3x) \times (4y)^2 + (4y)^3$$

= $27x^3 + 3 \times (9x^2) \times (4y) + 3 \times (3x) \times (16y^2) + (64y^3)$
= $27x^3 + 108x^2y + 144xy^2 + 64y^3$

p.
$$(2a-5b)^3 = (2a)^3 - 3 \times (2a)^2 \times (5b) + 3 \times (2a) \times (5b)^2 - (5b)^3$$

= $8a^3 - 3 \times (4a^2) \times (5b) + 3 \times (2a) \times (25b^2) - (125b^3)$
= $8a^3 - 60a^2b + 150ab^2 - 125b^3$

 පහත දැක්වෙන එක් එක් වීජීය පුකාශනය ද්විපද පුකාශනයක ඝනායිතයක් ලෙස ලියා දක්වන්න.

a.
$$a^3 + 3a^2b + 3ab^2 + b^3$$

b.
$$c^3 - 3c^2d + 3cd^2 - d^3$$

c.
$$x^3 + 6x^2 + 12x + 8$$

d.
$$v^3 - 18v^2 + 108v - 216$$

e.
$$1 + 3x + 3x^2 + x^3$$

f.
$$64 - 48x + 12x^2 - x^3$$

a.
$$a^3 + 3a^2b + 3ab^2 + b^3 = (\underline{a+b})^3$$

b.
$$c^3 - 3c^2d + 3cd^2 - d^3 = (\underline{c - d})^3$$

c.
$$x^3 + 6x^2 + 12x + 8$$

 $= x^3 + 3 \times x^2 \times 2 + 3 \times x \times 4 + 8$
 $= x^3 + 3 \times x^2 \times 2 + 3 \times x \times 2^2 + 2^3$
 $= (x+2)^3$

d.
$$y^3 - 18y^2 + 108y - 216$$

= $y^3 - 3 \times y^2 \times 6 + 3 \times y \times 36 - 216$
= $y^3 - 3 \times y^2 \times 6 + 3 \times y \times 6^2 - 6^3$
= $(y - 6)^3$

e.
$$1 + 3x + 3x^2 + x^3$$

= $1^3 + 3 \times 1^2 \times x + 3 \times 1 \times x^2 + x^3$
= $(1+x)^3$

f.
$$64 - 48x + 12x^2 - x^3$$

 $= 64 - 3 \times 16 \times x + 3 \times 4 \times x^2 - x^3$
 $= 4^3 - 3 \times 4^2 \times x + 3 \times 4 \times x^2 - x^3$
 $= (4 - x)^3$

4. රූපයේ දැක්වෙන්නේ පැත්තක දිග ඒකක (a+5) බැගින් වූ සනකයකි. එහි පරිමාව සඳහා පුකාශනයක් ලියා, එම පුකාශනය පුසාරණය කර දක්වන්න.

ඝනකයේ පරිමාව =
$$(a+5)^3$$

= $a^3+3\times a^2\times 5+3\times a\times 5^2+5^3$
= $a^3+15a^2+75a+125$

- **5.** $(x+3)^3$ යන්න පුසාරණය කර,
 - (i) x = 2
 - (ii) x = 4

අවස්ථා සඳහා පිළිතුර සතාහපනය කරන්න.

$$(x+3)^3 = x^3 + 3 \times x^2 \times 3 + 3 \times x \times 3^2 + 3^3$$

(i)
$$x = 2$$
 විට වම් පැ. $= (2+3)^3$
 $= (5)^3$
 $= 125$

දකුණු පැ. =
$$2^3 + 3 \times 2^2 \times 3 + 3 \times 2 \times 3^2 + 3^3$$

= $2^3 + 9 \times 2^2 + 27 \times 2 + 27$
= $8 + 36 + 54 + 27$
= 125
= වම පැ.

$$\therefore (2+3)^3 = 2^3 + 3 \times 2^2 \times 3 + 3 \times 2 \times 3^2 + 3^3$$
 అల్.

$$(x+3)^3 = x^3 + 3 \times x^2 \times 3 + 3 \times x \times 3^2 + 3^3$$

(ii)
$$x = 4$$
 විට වම් පැ. $= (4+3)^3$
 $= (7)^3$
 $= 343$

දකුණු පැ. =
$$4^3 + 3 \times 4^2 \times 3 + 3 \times 4 \times 3^2 + 3^3$$

= $64 + 3 \times 16 \times 3 + 3 \times 4 \times 9 + 27$
= $64 + 144 + 108 + 27$
= 343
= වම පැ.

$$\therefore (4+3)^3 = 4^3 + 3 \times 4^2 \times 3 + 3 \times 4 \times 3^2 + 3^3$$
 ඉව්.

6. ඝනායිත පිළිබඳ දැනුම භාවිතයෙන්, දී ඇති සංඛ්යාත්මක පුකාශනවල අගය සොයන්න.

(i)
$$64 - 3 \times 16 \times 3 + 3 \times 4 \times 9 - 27$$

(ii)
$$216 - 3 \times 36 \times 5 + 3 \times 6 \times 25 - 125$$

(i)
$$64 - 3 \times 16 \times 3 + 3 \times 4 \times 9 - 27$$

 $= 4^3 - 3 \times 4^2 \times 3 + 3 \times 4 \times 3^2 - 3^3$
 $= (4 - 3)^3$
 $= (1)^3$
 $= \underline{1}$

(ii)
$$216 - 3 \times 36 \times 5 + 3 \times 6 \times 25 - 125$$

 $= 6^3 - 3 \times 6^2 \times 5 + 3 \times 6 \times 5^2 - 5^3$
 $= (6 - 5)^3$
 $= (1)^3$
 $= \underline{1}$

- 7. පහත දැක්වෙන එක එකක අගය, ද්විපද පුකාශනයක ඝනායිතයක් ලෙස ලියා සොයන්න.
 - $a. 21^3$
- **b.** 102^3

 $c. 17^3$

 $d. 98^3$

a.
$$21^3 = (20+1)^3$$

 $= 20^3 + 3 \times 20^2 \times 1 + 3 \times 20 \times 1^2 + 1^3$
 $= 8000 + 3 \times 400 + 60 + 1$
 $= 8000 + 1200 + 60 + 1$
 $= 9261$

b.
$$102^3 = (100 + 2)^3$$

 $= 100^3 + 3 \times 100^2 \times 2 + 3 \times 100 \times 2^2 + 2^3$
 $= 1000000 + 3 \times 10000 \times 2 + 3 \times 100 \times 4 + 8$
 $= 1000000 + 60000 + 1200 + 8$
 $= 1061208$

c.
$$17^3 = (20-3)^3$$

 $= 20^3 - 3 \times 20^2 \times 3 + 3 \times 20 \times 3^2 - 3^3$
 $= 8000 - 3 \times 400 \times 3 + 3 \times 20 \times 9 - 27$
 $= 8000 - 3600 + 540 - 27$
 $= 4913$

හෝ

$$17^{3} = (10 + 7)^{3}$$

$$= 10^{3} + 3 \times 10^{2} \times 7 + 3 \times 10 \times 7^{2} + 7^{3}$$

$$= 1000 + 3 \times 100 \times 7 + 3 \times 10 \times 49 + 343$$

$$= 1000 + 2100 + 1470 + 343$$

$$= 4913$$

d.
$$98^3 = (100 - 2)^3$$

 $= 100^3 - 3 \times 100^2 \times 2 + 3 \times 100 \times 2^2 - 2^3$
 $= 1000000 - 3 \times 10000 \times 2 + 3 \times 100 \times 4 - 8$
 $= 1000000 - 60000 + 1200 - 8$
 $= 941192$

8. පැත්තක දිග 2a-5 cm වූ ඝනකයක පරිමාව a ඇසුරෙන් සොයන්න.

සනකයේ පරිමාව =
$$(2a-5)^3$$

$$= (2a)^3 - 3 \times (2a)^2 \times 5 + 3 \times (2a) \times 5^2 - 5^3$$

$$= 8a^3 - 3 \times 4a^2 \times 5 + 3 \times (2a) \times 25 - 125$$

$$= 8a^3 - 60a^2 + 150a - 125 cm^3$$

9. $x^3 - 3x^2y + 3xy^2 - y^3$ යන්න ඝනායිතයක් ලෙස ලියා දක්වා එනයින් $25^3 - 3 \times 25^2 \times 23 + 3 \times 25 \times 23^2 - 23^3$ හි අගය සොයන්න.

$$x^3 - 3x^2y + 3xy^2 - y^3 = (x - y)^3$$

 x වෙනුවට 25 ද y වෙනුවට 23 ද ආදේශයෙන්,
 $25^3 - 3 \times 25^2 \times 23 + 3 \times 25 \times 23^2 - 23^3 = (25 - 23)^3$
 $= (2)^3$
 $= 8$