Electrical Engineering

HW 5- Chapter 6

<1>

6.4 Repeat Problem 6.1 for the circuit of Figure P6.4. $R_1 = 300 \,\Omega$, $R_2 = R_3 = 500 \,\Omega$, $L = 4 \,\mathrm{H}$, $C_1 = 40 \,\mu\mathrm{F}$, $C_2 = 160 \,\mu\mathrm{F}$.

Figure P6.4

(Problems in 6.1)

- a. Determine the frequency response
- b. Plot the magnitude and phase of the circuit for frequencies between 10 and 10⁷ rad/s on graph paper, with a linear scale for frequency.
- c. Repeat part b, using semilog paper. (Place the frequency on the logarithmic axis.)

<2>

6.11 In the circuit shown in Figure P6.11, determine the frequency response function in the form:

$$\mathbf{H}_{v}(j\omega) = \frac{\mathbf{V}_{o}(j\omega)}{\mathbf{V}_{i}(j\omega)} = \frac{H_{vo}}{1 \pm jf(\omega)}$$

Figure P6.11

Hint: Calculate what it Hv0 and f(w).

<3>

6.12 The circuit shown in Figure P6.12 has

$$R_1 = 100 \Omega$$
 $R_o = 100 \Omega$
 $R_2 = 50 \Omega$ $C = 80 \text{ nF}$

Determine the frequency response $V_o(j\omega)/V_{in}(j\omega)$.

Figure P6.12

<4>

6.20 Compute the Fourier series expansion of the function shown in Figure P6.20, and express it in sine-cosine $(a_n, b_n \text{ coefficients})$ form.

$$x(t) = \begin{cases} \sin\left(\frac{2\pi}{T}t\right) & 0 \le t < \frac{T}{2} \\ 0 & \frac{T}{2} \le t < T \end{cases}$$

Figure P6.20

<5>

6.22 Write an expression for the signal shown in Figure P6.22 and derive its Fourier series.

Figure P6.22

6.50 Consider the circuit shown in Figure P6.50. Determine the resonant frequency and the bandwidth for the circuit.

Figure P6.50

<7>

6.53 For the filter circuit shown in Figure P6.53:

- a. Determine if this is a low-pass, high-pass, bandpass, or bandstop filter.
- b. Determine the frequency response $V_{\rm o}(j\omega)/V_{\rm i}(j\omega)$ assuming L=10 mH, C=1 nF, $R_1=50$ Ω , $R_2=2.5$ k Ω

(Hint: We may not learn the bandstop(notch) filter. Its frequency response is similar to the following frequency response)

6.57 In the filter circuit shown in Figure P6.56:

$$R_S = 5 \text{ k}\Omega$$
 $C = 0.5 \text{ nF}$
 $R_o = 100 \text{ k}\Omega$ $L = 1 \text{ mH}$

Determine:

a. The voltage frequency response

$$\mathbf{H}_{v}(j\omega) = \frac{\mathbf{V}_{o}(j\omega)}{\mathbf{V}_{i}(j\omega)}$$

- b. The resonant frequency.
- c. The half-power frequencies.
- d. The bandwidth and Q.

Figure P6.56

(Hint: Half-power frequency is the cut-off frequency. In this filter it may have more than one half-power frequency.)

<9>

6.65 Determine the frequency response $V_{out}(\omega)/V_S(\omega)$ for the network in Figure P6.65. Generate the Bode magnitude and phase plots when $R_S = R_o = 5 \text{ k}\Omega$, $L = 10 \,\mu\text{H}$, and $C = 0.1 \,\mu\text{F}$.

Figure P6.65

<10>

- **6.69** The circuit of Figure P6.69 is representative of an amplifier-speaker connection. The crossover filter allows low-frequency signals to pass to the woofer. The filter's topography is known as a π network.
 - a. Find the frequency response $\mathbf{V}_o(j\omega)/\mathbf{V}_S(j\omega)$.
 - b. If $C_1 = C_2 = C$, $R_S = R_o = 600 \Omega$, and $1/\sqrt{LC} = R/L = 1/RC = 2{,}000\pi$, generate the Bode magnitude and phase plots in the range 100 Hz $\leq f \leq 10$ kHz.

