Formulário - Electromagnetismo

Carga elementar	e=1.6x10 ⁻¹⁹ C			
Massa do electrão	m _e =9.1x10 ⁻³¹ kg			
Massa do protão	$m_e=1.67x10^{-27} \text{ kg}$			
Permitividade eléctrica do vazio	$\epsilon_0 = 8.854 \text{x} 10^{-12} \text{ F/m}$			
Permeabilidade magnética do vazio	μ ₀ =1.257x10 ⁻⁶ H/m			
Constante de Coulomb	$k = \frac{1}{4\pi\varepsilon_0} \approx 9x10^9 Nm^2 C^{-2}$			
Densidade linear de carga	$\lambda = \frac{Q}{L}$			
Densidade superficial de carga	$\sigma = \frac{Q}{A}$			
Densidade volúmica de carga	$\sigma = \frac{Q}{A}$ $\rho = \frac{Q}{V}$			
Lei de Coulomb	$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}$ $\vec{E} = \frac{\vec{F}}{q}$			
Campo Eléctrico de uma carga pontual	$\vec{E} = \frac{\vec{F}}{q_0}$			
Lei de Gauss	$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\varepsilon_{o}}$			
Aplicações da Lei de Gauss	Magnitude do campo eléctrico			
Carga pontual (q)	$E = k \frac{q}{r^2}$			
Placa isoladora infinita com densidade superficial de carga (σ)	$E = \frac{\sigma}{2\varepsilon_0}$			
Linha de carga infinita com densidade linear de carga (λ)	$E = \frac{\lambda}{2\pi\epsilon_0 r}$			
Esfera isoladora (raio a) com carga Q uniformemente distribuída	$E = \frac{1}{4\pi\epsilon_o} \frac{Q}{r^2} (r \ge a)$ $E = \frac{1}{4\pi\epsilon_o} \frac{Q}{a^3} r (r < a)$			
Casca esférica de (raio a) com carga Q	$E = \frac{1}{4\pi\varepsilon_o} \frac{Q}{r^2} (r \ge a)$ $E = 0 \qquad (r < a)$			
Placa condutora infinita com densidade superficial de carga (σ)	$E=0 \qquad (r < a)$ $E = \frac{\sigma}{\varepsilon_0}$			
Esfera condutora (raio a) com carga Q	$E = \frac{1}{4\pi\varepsilon_o} \frac{Q}{r^2} (r \ge a)$ $E=0 \qquad (r < a)$			
Variação da energia potencial eléctrica de uma carga pontual	$\Delta U_{A\to B} = U_B - U_A = -W_{A\to B}$			
Energia potencial eléctrica de um sistema de duas cargas pontuais	$U_{P} = k \frac{q_1 q_2}{r_{12}}$			
Potencial de uma carga pontual	$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$			
	· · · · · · · · · · · · · · · · · · ·			

Diferença de potencial				ΔV :	$= V_f - V_i = -\frac{W}{q} = \frac{U_f}{q} - \frac{U_i}{q} = \frac{\Delta U}{q}$ $V_i = -\int_i^f \vec{E} \cdot d\vec{s}$		
V _f -					$V_i = -\int_i^{\infty} \vec{E} \cdot d\vec{s}$		
Diferença de Potencial r uniforme	$\Delta V_{A\to B} = -E d$						
Capacidade do Condensador de placas paralelas					$C = \frac{Q}{V} = \varepsilon_0 \frac{A}{d}$		
Capacidade Equivalente: associação em série					$\frac{1}{C_{eq}} = \sum_{i=1}^{n} \frac{1}{C_i}$		
Capacidade Equivalente	$C_{eq} = \sum_{i=1}^{n} C_{i}$						
Energia Potencial Electro carregado	$U = \frac{Q^2}{2C}$						
Capacidade de um cond	$C = \kappa C_o$						
Força magnética	$\vec{F}_B = q\vec{v} \times \vec{B}$						
Movimento de uma particula			Raio da trajectória		$r = \frac{mv}{ q B}$		
carregada num campo magnético uniforme Frequênc					$f = \frac{\omega}{2\pi} = \frac{1}{T}$		
Força magnética num fi percorrido por uma corr			rectilíneo		$\vec{F}_{B} = I\vec{L} \times \vec{B}$		
num campo magnético	uniforme		não rectilíne		$d\vec{F}_{B} = Id\vec{s} \times \vec{B}$		
Magnitude do momento espira de corrente	μ=NIA (N= nº de enrolamentos)						
Momento da força magr corrente	$\vec{\tau} = \vec{\mu} \times \vec{B}$						
Lei de Biot-Savart	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2}$						
Magnitude do campo	fio longo e rectilíneo				$B = \frac{\mu_0 I}{2\pi R}$		
magnético criado por uma corrente	arco cir arco)	rcula	ar (no centro d	0	$B = \frac{\mu_0 I \phi}{4\pi R}$		
	solenói	de			$B=\mu_0In$		
Magnitude da força mag	$F_{_{1/2}} = \frac{\mu_oLI_2I_1}{2\pid}$						
Lei de Ampère	$\oint \vec{B} \cdot d\vec{s} = \mu_o I_{in}$						
Fluxo do campo magnético					$\Phi_{B} = \int \vec{B} \cdot d\vec{A}$		
					$\varepsilon = -\frac{d\Phi_{B}}{dt}$		
Lei de Faraday			$\varepsilon = -\frac{d\Phi_{B}}{dt}$ $\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{B}}{dt}$				
Relação entre f.e.m e in	ε=RI						

Área da esfera	$A=4\pi r^2$	Volume da esfera	$V = \frac{4}{3}\pi r^3$	
Área do círculo	$A=\pi r^2$	Perímetro da circunferência		2πr