Computational Neuroscience: Problem set 2 Hodgkin-Huxley and Phase Plane Analysis

Exercise 1: Model of an Ion Channel

Consider the following model for an ion channel: the electrical current I_{ion} through the channel is given by

$$I_{ion} = g_{ion}r^{n_1}s^{n_2}(u - u_{ion})$$

where u is the membrane potential of the neuron, g_{ion} and u_{ion} are two constants, and $n_1 = 2$, $n_2 = 1$. The quantities r and s obey the equations

$$\frac{dr}{dt} = -\frac{r - r_0(u)}{\tau_r(u)}$$

$$\frac{ds}{dt} = -\frac{s - s_0(u)}{\tau_s(u)}$$

with r_0 , s_0 , τ_r and τ_s as shown in Fig.1.

Figure 1 Graphical representation of the variables r_0 , s_0 , τ_r and τ_s .

	1.1	What is	the	biological	inter	pretation	of the	followin	g parameters	:
--	-----	---------	-----	------------	-------	-----------	--------	----------	--------------	---

r:	• • • • • • • • • • • • • • • • • • • •	
<i>s</i> :		
gion:		
l: •		

1.2 How does the channel react (in terms of partial or full opening/closing) to a step change in membrane potential? Suppose that for t < 0, the membrane potential is clamped at a value u_0 , and that at t = 0 it instantaneously jumps to a value $u' = u_2(1 - \varepsilon)$ with $\varepsilon \ll 1$ where it is maintained for all $t \ge 0$ (see figure 1 for the values of u_0 , u', u_2 and u_{ion}).

• For $t < 0$, the channel is	because
• At $t = 1$ ms, the channel is	because
• At $t = 3$ ms, the channel is	because
• At $t = 20$ ms, the channel is	because
• At $t = 100$ ms, the channel is	because

Exercise 2: Phase Plane Stability Analysis

2.1 Linear System

Consider the following linear system:

$$\begin{bmatrix} \frac{du}{dt} &= \alpha u - w \\ \frac{dw}{dt} &= \beta u - w , \end{cases} \tag{1}$$

These equations can be written in matrix form as dx/dt = Ax where $x = \begin{pmatrix} v \\ w \end{pmatrix}$ and $A = \begin{pmatrix} \alpha & -1 \\ \beta & -1 \end{pmatrix}$. Determine the conditions for stability of the point (u=0, w=0) in the case $\beta > \alpha$ by studying the eigenvalues of the above matrix. (Hint: distinguish the cases of real and complex eigenvalues.)