

Search via Parallel Lévy Walks on \mathbb{Z}^2

Andrea Clementi, Francesco d'Amore, George Giakkoupis, Emanuele Natale

Lévy walk

Lévy walk (informal):

A Lévy walk is a random walk whose steplength density distribution is proportional to a power-law, namely, for each $d \in \mathbb{R}^+$, $f(d) \sim 1/d^{\alpha}$, for some $\alpha > 1$

Note: the speed of the walk is constant

- Movement model -

Lévy walks are used to model **movement** patterns [Reynolds, Biology Open 2018]

Examples:

- T cells within the brain
- swarming bacteria
- midge swarms
- termite broods
- schools of fish
- Australian desert ants
- a variety of molluscs

Widely employed in the foraging theory

Lévy walk optimality -

[Viswanathan et al., Nature 1999]: the Lévy walk with $\alpha = 2$ is optimal for foraging in \mathbb{R}^n

[Guinard et Korman, Sciences Advances 2021]: the Lévy walk with $\alpha=2$ is optimal for finding targets of all shapes in \mathbb{T}^2

Lévy flight foraging hypothesis

Since Lévy flights/walks optimize random searches, biological organisms must have therefore evolved to exploit Lévy flights/walks [Viswanathan et al., Physics of Life Reviews 2008]

Seems there is a special exponent $\alpha = 2$

We test this hypothesis by focusing on a distributed search problem:

• the ANTS (Ants Nearby Treasure Search) problem

Full version of the work available at: https://arxiv.org/abs/2004.01562

$\overline{}$ The ANTS problem $\overline{}$

Introduced by [Feinerman et al., PODC 2012]:

Setting:

- k (mutually) independent agents start moving on \mathbb{Z}^2 from the origin
- \bullet time is synchronous and marked by a global clock
- one special node $\mathcal{P} \in \mathbb{Z}^2$, the *target*, placed by an adversary at unknown (Manhattan) distance ℓ from the origin

Task: find the target as fast as possible

Lower bound: for any $k \geq 1$, and for any search algorithm \mathcal{A} , the hitting time to find \mathcal{P} is $\Omega\left(\ell^2/k + \ell\right)$ both with constant probability and in expectation

· Proposed solution

- no communication, no advice
- achieves expected hitting time $\mathcal{O}((\ell^2/k + \ell) \log^{1+\varepsilon} \ell)$
- not natural (simple, lightweight)

- i fix a ball of some radius ℓ_i
- ii agents go to random nodes in the ball
- iii agents perform a spiral search of length d_i around the chosen nodes
- iv agents $\overline{\text{return}}$ to the source node
- v increase ℓ_i and d_i , and repeat (i)-(v)

- Discrete Lévy walk -

Lévy walk: $\alpha > 1$, the agent

- a) chooses a distance $d \in \mathbb{N}$ as follows: d = 0 w.p. 1/2, and $d \ge 1$ w.p. c_{α}/d^{α}
- b) chooses a destination u.a.r. among those at distance d
- c) walks along an approximating path for d steps, one edge at a time, crossing d nodes
- d) repeats the procedure

$-\alpha$ -Behavior of Lévy walks

- $1 < \alpha \le 2$ ballistic diffusion (fig.s A and B)
- $2 < \alpha < 3$ super diffusion (fig. C)
- $3 \le \alpha$ normal diffusion (fig. D)

- Input domain partition

Recall: ℓ target distance, k number of agents

Three different possible settings:

- 1. close target: $\ell \leq k/\text{polylog}(k)$
- 2. far target: $k/\text{polylog}(k) \le \ell \le \exp(k^{\Theta(1)})$
- 3. very far target: $\exp(k^{\Theta(1)}) \le \ell$

Recall: an event E depending on a parameter ℓ holds with high probability in ℓ if $\mathbb{P}(E) \geq 1 - \ell^{-\Theta(1)}$

- Hitting time

Close target

ballistic walks: any α in (1,2] hitting time $\mathcal{O}(\ell \text{polylog}(\ell))$ w.h.p.

Very far target

diffusive walks: any $\alpha \geq 3$ (brownian-like) the whalks eventually find the target w.p. 1

Far target

best strategy: ... it depends!

 $\alpha^* = 3 - \log k / \log \ell$: super-diffusive range

The following holds w.h.p. in ℓ

- if $\alpha = \alpha^* + \mathcal{O}(\log \log \ell / \log \ell)$, the hitting time is $\mathcal{O}((\ell^2/k + \ell)\operatorname{polylog}(\ell))$
- if $\alpha = \alpha^* + \epsilon$, the hitting time is $\Omega((\ell^2/k + \ell)\ell^c)$, for some constant c > 0
- if $\alpha = \alpha^* \epsilon$ the hitting time is *infinite*

- Search algorithm -

How can we find α^* ? We don't have to!

Algorithm: each agent u samples u.a.r. a real number $\alpha_u \in (2,3)$. Then, it performs a discrete Lévy walk with exponent α_u

If $\ell \leq \exp(k^{\Theta(1)})$, the hitting time is $\mathcal{O}\left((\ell^2/k + \ell)\operatorname{polylog}(\ell)\right)$ w.h.p.

Natural, time-homogeneus, almost-optimal solution for the ANTS problem