

SEQUENCE LISTING

<110> MORAN, MAGDALENE M.
CHONG, JAYHONG A.
RAMSEY, IAN SCOTT
CLAPHAM, DAVID E.

<120> SPERM-SPECIFIC CATION CHANNEL, CATSPER-3, AND USES
THEREFOR

<130> 110313.138US2

<140> 10/523,479
<141> 2005-02-04

<150> PCT/US03/24432
<151> 2003-08-04

<150> 60/401,863
<151> 2002-08-07

<160> 7

<170> PatentIn Ver. 3.3

<210> 1
<211> 1203
<212> DNA
<213> Homo sapiens

<400> 1
atgagggata atgaaaaggc ctgggtggcag caatggaccc cccatacagg cctcgagggg 60
tggggcggga ctcaggagga ccgtatgggg tttggagggg cagtagctgc actgaggggc 120
cgcccccttc cccctgcagag taccattcac gagtcctacg gtcggccaga ggagcaagtg 180
ctcatcaacc gccaggaaac cacgaacaaa gggacgcct gggacatgca ggagttcatc 240
actcacatgt acatcaagca gctgctccga caccggcct tccaaactgt gctggccctg 300
ctgtgggtga tcaatggcat caccatcgct ctccgttacca actccatct ggaccagaaa 360
caatatgagt tttcttcata catatgtac atttgtctga ccattttctt ttgtgagggt 420
ctccttggct ggctcaatgg cttcttgatt ttcttggagg acggctggaa cattcctcaac 480
ttcatttatcg tctttatctt gctcttgcgg ttcttcatta atgaaatcaa tattccctcc 540
atcaactaca ctctcagggc gttcgtctg gtgcattgtgt gcatggcggt ggagcccctc 600
gccccggatca tccgcgtcat cctgcgtcg gtgcctgaca tggccaatat catggcctc 660
atcctcttct tcatgtctgg tttttccgtg tttggagtaa cactcttgg tgcattcgtg 720
cccaaggcatt tccagaacat acagggtcg ctgtacaccc tcttcattctg catcacccag 780
gacggctggg tggacatcta cagtgtttc cagacagaga agagggata tgcaatggag 840
attgggggtg ccatctactt taccatcttc atcaccatcg gtgccttcat tggcatcaac 900
ctgttcgtca tcgtgggtac caccacccgt gagcaatgta tgaaggcagg agagcaggga 960
caacagcaac gaataaacctt tagtgagaca ggcgcagagg aagaggagga gaatgaccag 1020
ctgccactgg tgcattgtgt ggtcgcccgcc tcggagaaat ctggcttcct ccaggaaccc 1080
cttgccggag gccccctgtc gaacctctca gaaaacacgt gtgacaactt ttgcttgggt 1140
cttgaggcaa tacaggagaa cctgaggcag tacaaggaga tccgagatga actcaacatg 1200
tag 1203

<210> 2
<211> 400
<212> PRT
<213> Homo sapiens

<400> 2
 Met Arg Asp Asn Glu Lys Ala Trp Trp Gln Gln Trp Thr Ser His Thr
 1 5 10 15
 Gly Leu Glu Gly Trp Gly Gly Thr Gln Glu Asp Arg Met Gly Phe Gly
 20 25 30
 Gly Ala Val Ala Ala Leu Arg Gly Arg Pro Ser Pro Leu Gln Ser Thr
 35 40 45
 Ile His Glu Ser Tyr Gly Arg Pro Glu Glu Gln Val Leu Ile Asn Arg
 50 55 60
 Gln Glu Ile Thr Asn Lys Ala Asp Ala Trp Asp Met Gln Glu Phe Ile
 65 70 75 80
 Thr His Met Tyr Ile Lys Gln Leu Leu Arg His Pro Ala Phe Gln Leu
 85 90 95
 Leu Leu Ala Leu Leu Leu Val Ile Asn Ala Ile Thr Ile Ala Leu Arg
 100 105 110
 Thr Asn Ser Tyr Leu Asp Gln Lys His Tyr Glu Leu Phe Ser Thr Ile
 115 120 125
 Asp Asp Ile Val Leu Thr Ile Leu Leu Cys Glu Val Leu Leu Gly Trp
 130 135 140
 Leu Asn Gly Phe Trp Ile Phe Trp Lys Asp Gly Trp Asn Ile Leu Asn
 145 150 155 160
 Phe Ile Ile Val Phe Ile Leu Leu Leu Arg Phe Phe Ile Asn Glu Ile
 165 170 175
 Asn Ile Pro Ser Ile Asn Tyr Thr Leu Arg Ala Leu Arg Leu Val His
 180 185 190
 Val Cys Met Ala Val Glu Pro Leu Ala Arg Ile Ile Arg Val Ile Leu
 195 200 205
 Gln Ser Val Pro Asp Met Ala Asn Ile Met Val Leu Ile Leu Phe Phe
 210 215 220
 Met Leu Val Phe Ser Val Phe Gly Val Thr Leu Phe Gly Ala Phe Val
 225 230 235 240
 Pro Lys His Phe Gln Asn Ile Gln Val Ala Leu Tyr Thr Leu Phe Ile
 245 250 255
 Cys Ile Thr Gln Asp Gly Trp Val Asp Ile Tyr Ser Asp Phe Gln Thr
 260 265 270
 Glu Lys Arg Glu Tyr Ala Met Glu Ile Gly Gly Ala Ile Tyr Phe Thr
 275 280 285
 Ile Phe Ile Thr Ile Gly Ala Phe Ile Gly Ile Asn Leu Phe Val Ile
 290 295 300

Val Val Thr Thr Asn Leu Glu Gln Met Met Lys Ala Gly Glu Gln Gly
 305 310 315 320
 Gln Gln Gln Arg Ile Thr Phe Ser Glu Thr Gly Ala Glu Glu Glu
 325 330 335
 Glu Asn Asp Gln Leu Pro Leu Val His Cys Val Val Ala Arg Ser Glu
 340 345 350
 Lys Ser Gly Leu Leu Gln Glu Pro Leu Ala Gly Gly Pro Leu Ser Asn
 355 360 365
 Leu Ser Glu Asn Thr Cys Asp Asn Phe Cys Leu Val Leu Glu Ala Ile
 370 375 380
 Gln Glu Asn Leu Arg Gln Tyr Lys Glu Ile Arg Asp Glu Leu Asn Met
 385 390 395 400

<210> 3
 <211> 1329
 <212> DNA
 <213> Mus musculus

<400> 3
 atgtctgaaa aacacaagtg gtggcagcag gtggagaaca tcgacatcac acacctggc 60
 cctaagagaa aagcctatga actcctgggt cggcatgagg agcaagtgc catcaaccgc 120
 agagatgtca tggagaagaa ggtatgcctgg gatgtacagg aattcatcac tcaaatgtat 180
 atcaagcagt tgctccgcca tccggccttc cagctgctgc tggccttct gctgctgtcc 240
 aacgccatca ccattgcctc tcgcaccaac tcttatctcg gtcagaaaaca ctacgagcta 300
 ttctcgacca tagatgcacat tggatgttgcg atccttatct gcggaggttct gcttggttgg 360
 cttaacggct tctggatttt ctggaggat ggctggaaata tcctcaactt cgcaattgtc 420
 ttatattgtt cttcataaaa caacttgaca tggttgccc cacctaccct 480
 ctcagggtgc tccggctggt gcatgtgtg atggcgggtgg aaccctggc cagaatcatc 540
 aaggttatcc tgcagtgcgt gccagacttg gccaatgtca tggctctcat cctttcttc 600
 atgctggat tctctgtgtt tggggtcacg ctcttcgggtg catttgtgcc caagcatttc 660
 cagaacatgg gggttgcctt gtacacgctc ttcatctgca tcactcagga tggatggctg 720
 gacatctaca ctgacttcca gatggatgaa agagagtagc cgatggaggt cggggggcggc 780
 atctactttc cctgttttat caccctcggt gccttcattt gtcacttgcgtt 840
 gtgggtgacca caaacacgtt gacaatgtat aagacccggc aggaagaggg acacctgaac 900
 ataaagttt ctgagacaga agaggatgag gactggaccc acgagctgcc actgggtgc 960
 tgtacagagg cccgcaaggg tacttccact gtcggccagg aaccactggt tggggggcccc 1020
 ctgagtaacc tcacagaaaaa gacctgcgt aacttctgtc tgggtgcttga agcaatacag 1080
 gagaacttga tggagtacaa agagatccga gaggaactca acatgatcgt ggaggaagtg 1140
 tcctccatcc ggttcaacca ggagcagcaa aatgtgatcc tacacaagta tacctccaaa 1200
 agcgccaccc tcctaagcga gccccccagaa ggggctaaaca agcaagactt gatcactgcg 1260
 ctgggtcagca gggaaaaggt gtctgattct aacataaaca tggtaacaa acacaagttc 1320
 agccactga 1329

<210> 4
 <211> 442
 <212> PRT
 <213> Mus musculus

<400> 4
Met Ser Glu Lys His Lys Trp Trp Gln Gln Val Glu Asn Ile Asp Ile
1 5 10 15
Thr His Leu Gly Pro Lys Arg Lys Ala Tyr Glu Leu Leu Gly Arg His
20 25 30
Glu Glu Gln Val Leu Ile Asn Arg Arg Asp Val Met Glu Lys Lys Asp
35 40 45
Ala Trp Asp Val Gln Glu Phe Ile Thr Gln Met Tyr Ile Lys Gln Leu
50 55 60
Leu Arg His Pro Ala Phe Gln Leu Leu Leu Ala Phe Leu Leu Leu Ser
65 70 75 80
Asn Ala Ile Thr Ile Ala Leu Arg Thr Asn Ser Tyr Leu Gly Gln Lys
85 90 95
His Tyr Glu Leu Phe Ser Thr Ile Asp Asp Ile Val Leu Thr Ile Leu
100 105 110
Ile Cys Glu Val Leu Leu Gly Trp Leu Asn Gly Phe Trp Ile Phe Trp
115 120 125
Lys Asp Gly Trp Asn Ile Leu Asn Phe Ala Ile Val Phe Ile Leu Phe
130 135 140
Met Gly Phe Phe Ile Lys Gln Leu Asp Met Val Ala Ile Thr Tyr Pro
145 150 155 160
Leu Arg Val Leu Arg Leu Val His Val Cys Met Ala Val Glu Pro Leu
165 170 175
Ala Arg Ile Ile Lys Val Ile Leu Gln Ser Met Pro Asp Leu Ala Asn
180 185 190
Val Met Ala Leu Ile Leu Phe Phe Met Leu Val Phe Ser Val Phe Gly
195 200 205
Val Thr Leu Phe Gly Ala Phe Val Pro Lys His Phe Gln Asn Met Gly
210 215 220
Val Ala Leu Tyr Thr Leu Phe Ile Cys Ile Thr Gln Asp Gly Trp Leu
225 230 235 240
Asp Ile Tyr Thr Asp Phe Gln Met Asp Glu Arg Glu Tyr Ala Met Glu
245 250 255
Val Gly Gly Ala Ile Tyr Phe Ala Val Phe Ile Thr Leu Gly Ala Phe
260 265 270
Ile Gly Leu Asn Leu Phe Val Val Val Val Thr Thr Asn Leu Glu Gln
275 280 285
Met Met Lys Thr Gly Glu Glu Gly His Leu Asn Ile Lys Phe Thr
290 295 300

Glu Thr Glu Glu Asp Glu Asp Trp Thr Asp Glu Leu Pro Leu Val His
 305 310 315 320

Cys Thr Glu Ala Arg Lys Asp Thr Ser Thr Val Pro Lys Glu Pro Leu
 325 330 335

Val Gly Gly Pro Leu Ser Asn Leu Thr Glu Lys Thr Cys Asp Asn Phe
 340 345 350

Cys Leu Val Leu Glu Ala Ile Gln Glu Asn Leu Met Glu Tyr Lys Glu
 355 360 365

Ile Arg Glu Glu Leu Asn Met Ile Val Glu Glu Val Ser Ser Ile Arg
 370 375 380

Phe Asn Gln Glu Gln Gln Asn Val Ile Leu His Lys Tyr Thr Ser Lys
 385 390 395 400

Ser Ala Thr Phe Leu Ser Glu Pro Pro Glu Gly Ala Asn Lys Gln Asp
 405 410 415

Leu Ile Thr Ala Leu Val Ser Arg Glu Lys Val Ser Asp Ser Asn Ile
 420 425 430

Asn Met Val Asn Lys His Lys Phe Ser His
 435 440

<210> 5
 <211> 2079
 <212> DNA
 <213> Homo sapiens

<400> 5
 gggctgccgg gggtaggagg tggggataaaa caacagggcg tggagctcag acagaaaacc 60
 tctgtcttt ccaccctgc tgcagcccag ccctgctcaa gctggagtc ccctccatgg 120
 agacacatca cctgcagcca cccccacaca ggcgcagccca cggacacttc ttggctctct 180
 gacagggtct gggctggagt tggagctgg gctggggct ggggtggca cattcctatc 240
 ctgtcttcc ctccccacaga cagcagtcaa gaggcactgg aaggaatggt acgggggctg 300
 aggccagggtg ggtgtccct ccttagccag ccacagcccc tgaccaggaa acagtggcgg 360
 agctcttca tgcggcgcaa ccggagaccct cagctcaatg agcgagtgc a cctgtgcgg 420
 ggcgtacaga gcacactcaa ggtcagctgg ggggctctgg gcacagcaag ggactaggct 480
 ctgggctca ggctttgggt tgcggctgtc acctccaccc tgggcaccag actccagact 540
 ccagactcag ctccggaccct tgggcttagc agctgacagc gggctcagct gtggactggg 600
 ccaggctctg ggttcccgagt ggggatttga gtctcaccta ggctccctgt ggcacgctgg 660
 ccaggtgctg gcttcccgagg accggaccc tcggagtgaag tctggcctcg ggctctgccc 720
 actccctgg gtgatcatgg tcccttagcc cttccctctcc acacaggcaa agctgcaggaa 780
 gctgcaggctc ctagaagaag tgctgggtga ccctgagctg acaggagaga agttccgcca 840
 gtggaaaggag cagaaccggg agctgtactc agagggcctg ggggcctggg gagtggcaca 900
 ggctgaaggc agctcccaca tcttgaccc t gactccaca gaacagtc cccactccct 960
 gccctctgac cctgaagagc actcccatct ctgcgggctg acctcagaga gca gctcc 1020
 acctccctgac ctctgaccct ggccagcact ctgactcctg acctttgacc cgagggccac 1080
 ctcaacccca gcttctgac tgcaggac agagcatccc tggattctgt tcagggtggg 1140
 aagtagtact gctagtcatg gtctcacccc gagctgaccc ctctgctgg gctttgtgcc 1200
 accctctccc ttgccaaga agaaaacttc ccccaaaatc ctccaaacctc tggggccaca 1260
 gccctgcccc tccagttct tggcagttct ccccaaaacc aggtctgtac aggtgttctt 1320
 tattttacat gagggtactt tcccaaccaa ataaaagtcaa tttttctaag aatgagtc 1380

catgttaactt tacttccata ttcgaattgg aaatctgccc ccctgtgggg actggggta 1440
 gtgctttgg ccagagggtg ggtggcagac cttcggtca gcccgttggc ctgggctctg 1500
 tacccgagct ccaagcctgc caggatggtg gggatgacc catggcta at gagggctccg 1560
 actcatgtcc acctctcccc agctcttga aggcta atgg tgatctccta ccccatctcc 1620
 gggggcaca caatgagaaa cttccactt gtagatgggg aaatgcactt tgacggaaa 1680
 ggtgggtggg acagtccctgg agactgggc ggtggacag ggcagctggt gggaaagggt 1740
 gcaggtttag gtctgccctg ggaaggccct gggaaaaca cttctctct tcactcctca 1800
 ttccagcctc acctccaccc cctggatcca aggcaggac atgtccctgt gactccattc 1860
 aggctgcacg gaaaaatctga cctgctccca tcagcctctg acttccaacc ccagcccagc 1920
 atccccacag catccccaga cttccctctgt gggatgcggg ggagggccaa tggaggagc 1980
 ttctctccag gttggaattc ctcagtagaa tgcagacggc tggaggtcac agaggcctct 2040
 gtgatatac cacgaggggg agtgagacca cttggagtg 2079

<210> 6
 <211> 36
 <212> DNA
 <213> Homo sapiens

<400> 6
 aagattcttt gaggagaagg aagagactga gcaaac

36

<210> 7
 <211> 478
 <212> DNA
 <213> Homo sapiens

<400> 7
 gggagggtag tggggctgccc cccaaatcat gtgagtcaag gctggggcggg ggcgtcagagt 60
 cttctggcct tcacgcccacc accattata aggcagagcc tggggcccccac agaggtcccc 120
 caccctattt gttggaggaac tggaaatccag actccaggtt cttccatct cacacaagg 180
 cacagctcggt cctgggtctc tgtcagggtc gctgtggaga gctaaacgggg ggtgacgcca 240
 gggaaagggt gggagggctg cttccctccc ctgaggcctt ctgaaaggca ctcactgctc 300
 caccggcagg attgtggagg aggtgcgtgc aatccgcttc aaccaggagc aggagtcaga 360
 ggtgttgaac aggcgcgtcg cgtacggcgg gtcgttggag actacgtcat ccaaggacat 420
 ccggccagatg tctcaacacgc aagacttgct cagtgcgtc gtttagcatgg aaaagggtg 478