Example: Microsatellite data set

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 4.1.3a [Feb-22-2015]

Using Intel AVX (Advanced Vector Extensions)

Program started at Sun Feb 22 12:45:34 2015

Program finished at Sun Feb 22 12:58:07 2015

Options

Datatype: Microsatellite data [Brownian motion]
Missing data: not included

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (from parmfile) 310705631

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population 1 2 1 population_numb * 0 2 population_numb * *

Order of parameters:

 $\begin{array}{ccc} \textbf{1} & & \Theta_1 & & \text{<displayed>} \\ \textbf{2} & & \Theta_2 & & \text{<displayed>} \end{array}$

	N /		مالم.	un la ca d		
3	M ₁₋	->2	<ui>s</ui>	splayed>		
Mutation rate	among loc	i:			Mutation rate is co	onstant for all loci
Analysis strat	tegy:				Ва	ayesian inference
Proposal dist	ributions fo	r parameter				
Parameter			Proposal			
Theta			Slice sampling			
M			Slice sampling			
Prior distribut	tion for para	ameter				
Parameter	Prior	Minimum	Mean*	Maximum	Delta	Bins
Theta	Uniform	0.000000	10.000000	20.000000	2.000000	500
Theta	Uniform	0.000000	10.000000	20.000000	2.000000	500
М	Uniform	0.000000	10.000000	20.000000	2.000000	500
М	Uniform	0.000000	10.000000	20.000000	2.000000	500
Number of Visited (san Number of Multiple Mark	nains steps [a] (record eve concurrent mpled) para discard trea cov chains: ing scheme	ry x step [b] chains (replic ameter values es per chain ([a*b*c]	1000000	3.00	Long chain 1 5000 50 2 500000 5000 ith temperatures 1.50 1.00 ping interval is 1
Data file: Haplotyping Output file: Posterior d Raw data f Print data:	g is turned of the stribution reference of the MC	aw histogram CMC run:	file: me data type]:			infile.msat NO outfile-bayes bayesfile bayesallfile.gz No None

Data summary

Data file: infile.msat
Datatype: Microsatellite data [Brownian]

[Data was used as repeat-length information]

Number of loci: 10

Locus S	Sublocus	Mutationmodel	Mutationmodel parameters	
1	1	Brownian Motion	[none]	
2	1	Brownian Motion	[none]	
3	1	Brownian Motion	[none]	
4	1	Brownian Motion	[none]	
5	1	Brownian Motion	[none]	
6	1	Brownian Motion	[none]	
7	1	Brownian Motion	[none]	
8	1	Brownian Motion	[none]	
9	1	Brownian Motion	[none]	
10	1	Brownian Motion	[none]	

Population	Locus	Gene cop	ies
		data	(missing)
1 population_number0	1	50	(0)
	2	50	(0)
	3	50	(0)
	4	50	(0)
	5	50	(0)
	6	50	(0)
	7	50	(0)
	8	50	(0)
	9	50	(0)
	10	50	(0)
2 population_number1	1	42	(0)
	2	42	(0)
	3	42	(0)
	4	42	(0)
	5	42	(0)
	6	42	(0)
	7	42	(0)
	8	42	(0)
	9	42	(0)

	10	42	(0)
Total of all populations	1	92	(0)
	2	92	(0)
	3	92	(0)
	4	92	(0)
	5	92	(0)
	6	92	(0)
	7	92	(0)
	8	92	(0)
	9	92	(0)
	10	92	(0)

Allele frequency spectra

Locus 1 Allele	Pop1	Pop2	AII	
16	0.220	0.167	0.196	
19	0.040	0.071	0.054	
18	0.060	0.119	0.087	
15	0.220	0.024	0.130	
21	0.020	0.167	0.087	
23	0.020	0.119	0.065	
17	0.280	0.095	0.196	
22	0.060	0.119	0.087	
25	0.060	0.024	0.043	
24	0.020	-	0.011	
26	-	0.024	0.011	
27	-	0.048	0.022	
29	-	0.024	0.011	
Alleles	10	12	13	
Samplesize	50	42	92	
-				
$H_{\rm exp}$	0.811	0.883	0.874	
	0.811	0.883	0.874	
H _{exp} Locus 2 Allele	0.811 Pop1	0.883 Pop2	0.874 All	
Locus 2 Allele	Pop1	Pop2	AII	
Locus 2 Allele 16	Pop1 0.520		AII 0.543	
Locus 2 Allele 16 19	Pop1 0.520 0.040	Pop2 0.571	AII 0.543 0.022	
Locus 2 Allele 16 19 18	Pop1 0.520 0.040 0.220	Pop2 0.571 - 0.119	AII 0.543 0.022 0.174	
Locus 2 Allele 16 19 18	Pop1 0.520 0.040 0.220 0.160	Pop2 0.571	AII 0.543 0.022 0.174 0.163	
Locus 2 Allele 16 19 18 17	Pop1 0.520 0.040 0.220 0.160 0.020	Pop2 0.571 - 0.119 0.167	O.543 O.022 O.174 O.163 O.011	
Locus 2 Allele 16 19 18 17 15 21	Pop1 0.520 0.040 0.220 0.160 0.020 0.020	Pop2 0.571 - 0.119 0.167 - 0.071	O.543 O.022 O.174 O.163 O.011 O.043	
Locus 2 Allele 16 19 18 17 15 21	Pop1 0.520 0.040 0.220 0.160 0.020	Pop2 0.571 - 0.119 0.167	AII 0.543 0.022 0.174 0.163 0.011 0.043 0.022	
Locus 2 Allele 16 19 18 17 15 21 20 22	Pop1 0.520 0.040 0.220 0.160 0.020 0.020 0.020 -	Pop2 0.571 - 0.119 0.167 - 0.071 0.024 0.048	AII 0.543 0.022 0.174 0.163 0.011 0.043 0.022 0.022	
Locus 2 Allele 16 19 18 17 15 21 20 22 Alleles	Pop1 0.520 0.040 0.220 0.160 0.020 0.020 - 7	Pop2 0.571 - 0.119 0.167 - 0.071 0.024 0.048 6	AII 0.543 0.022 0.174 0.163 0.011 0.043 0.022 0.022	
Locus 2 Allele 16 19 18 17	Pop1 0.520 0.040 0.220 0.160 0.020 0.020 0.020 -	Pop2 0.571 - 0.119 0.167 - 0.071 0.024 0.048	AII 0.543 0.022 0.174 0.163 0.011 0.043 0.022 0.022	
Locus 2 Allele 16 19 18 17 15 21 20 22 Alleles Samplesize H _{exp}	Pop1 0.520 0.040 0.220 0.160 0.020 0.020 - 7 50	Pop2 0.571 - 0.119 0.167 - 0.071 0.024 0.048 6 42	AII 0.543 0.022 0.174 0.163 0.011 0.043 0.022 0.022 8 92	
Locus 2 Allele 16 19 18 17 15 21 20 22 Alleles Samplesize	Pop1 0.520 0.040 0.220 0.160 0.020 0.020 - 7 50	Pop2 0.571 - 0.119 0.167 - 0.071 0.024 0.048 6 42	AII 0.543 0.022 0.174 0.163 0.011 0.043 0.022 0.022 8 92	
Locus 2 Allele 16 19 18 17 15 21 20 22 Alleles Samplesize H _{exp} Locus 3	Pop1 0.520 0.040 0.220 0.160 0.020 0.020 - 7 50 0.653	Pop2 0.571 - 0.119 0.167 - 0.071 0.024 0.048 6 42 0.624	AII 0.543 0.022 0.174 0.163 0.011 0.043 0.022 0.022 0.022 8 92 0.644	

Allele	Pop1	Pop2	All
18	0.080	0.095	0.087
21	0.280	0.119	0.207
22	0.120	0.048	0.087
Alleles	5	5	5
Samplesize	50	42	92
H _{exp}	0.765	0.679	0.743
SAP			
Locus 4			
Allele	Pop1	Pop2	All
16	0.080	0.071	0.076
24	0.180	0.024	0.109
15	0.020	0.048	0.033
25	0.160	0.167	0.163
14	0.020	0.048	0.033
19	0.100	0.143	0.120
12	0.060	-	0.033
20	0.080	0.190	0.130
23	0.060	0.119	0.087
28	0.020	-	0.011
22	0.060	0.024	0.043
21	0.160	0.119	0.141
13	-	0.024	0.011
26	-	0.024	0.011
Alleles	12	12	14
Samplesize	50	42	92
H _{exp}	0.882	0.875	0.892
Locus 5	Don1	Dong	All
Allele	Pop1	Pop2	All
20	0.400	0.524	0.457
21	0.420	0.357	0.391
19	0.180	0.119	0.152
Alleles	3	3	3
Samplesize	50	42	92
H _{exp}	0.631	0.584	0.615
l cours c			
Locus 6	Don4	Dong	All
Allele	Pop1	Pop2	All
19	0.060	-	0.033
20	0.100	0.024	0.065

Allele	Pop1	Pop2	All
18	0.300	0.214	0.261
22	0.200	0.119	0.163
21	0.120	0.476	0.283
16	0.060	-	0.033
24	0.160	0.048	0.109
17	-	0.119	0.054
Alleles	7	6	8
Samplesize	50	42	92
H _{exp}	0.813	0.696	0.804
Locus 7			
Allele	Pop1	Pop2	All
23	0.040	0.238	0.130
20	0.660	0.143	0.424
22	0.180	0.190	0.185
21	0.100	0.333	0.207
19	0.020	0.095	0.054
Alleles	5	5	5
Samplesize	50	42	92
lш	0.520	0.766	0.724
H _{exp}	0.320	0.700	0.724
	0.320	0.700	0.724
Locus 8 Allele	Pop1	Pop2	All
Locus 8 Allele	Pop1	Pop2	All
Locus 8 Allele	Pop1 0.520	Pop2 0.524	AII 0.522
Locus 8 Allele 19 17	Pop1 0.520 0.040	Pop2 0.524 0.048	All 0.522 0.043
Locus 8 Allele 19 17	Pop1 0.520 0.040 0.100	Pop2 0.524 0.048 0.071	AII 0.522 0.043 0.087
Locus 8 Allele 19 17	Pop1 0.520 0.040	Pop2 0.524 0.048	All 0.522 0.043
Locus 8 Allele 19 17 18 20	Pop1 0.520 0.040 0.100 0.140	Pop2 0.524 0.048 0.071 0.190	0.522 0.043 0.087 0.163
Locus 8 Allele 19 17 18 20 16	Pop1 0.520 0.040 0.100 0.140 0.080	Pop2 0.524 0.048 0.071 0.190	0.522 0.043 0.087 0.163 0.043
Locus 8 Allele 19 17 18 20 16 22	Pop1 0.520 0.040 0.100 0.140 0.080 0.100	Pop2 0.524 0.048 0.071 0.190 - 0.048	0.522 0.043 0.087 0.163 0.043 0.076
Locus 8 Allele 19 17 18 20 16 22 15	Pop1 0.520 0.040 0.100 0.140 0.080 0.100	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.048	0.522 0.043 0.087 0.163 0.043 0.076 0.033
Locus 8 Allele 19 17 18 20 16 22 15 23	Pop1 0.520 0.040 0.100 0.140 0.080 0.100 0.020 -	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.048 0.071	0.522 0.043 0.087 0.163 0.043 0.076 0.033 0.033
Locus 8 Allele 19 17 18 20 16 22 15 23 Alleles	Pop1 0.520 0.040 0.100 0.140 0.080 0.100 0.020 - 7	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.048 0.071 7	0.522 0.043 0.087 0.163 0.043 0.076 0.033 0.033
Locus 8 Allele 19 17 18 20 16 22 15 23 Alleles Samplesize	Pop1 0.520 0.040 0.100 0.140 0.080 0.100 0.020 - 7 50	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.048 0.071 7 42	0.522 0.043 0.087 0.163 0.043 0.076 0.033 0.033 8 92
Locus 8 Allele 19 17 18 20 16 22 15 23 Alleles Samplesize H _{exp}	Pop1 0.520 0.040 0.100 0.140 0.080 0.100 0.020 - 7 50	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.048 0.071 7 42	0.522 0.043 0.087 0.163 0.043 0.076 0.033 0.033 8 92
Locus 8 Allele 19 17 18 20 16 22 15 23 Alleles Samplesize H _{exp} Locus 9	Pop1 0.520 0.040 0.100 0.140 0.080 0.100 - 7 50 0.682	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.071 7 42 0.672	All 0.522 0.043 0.087 0.163 0.043 0.076 0.033 0.033 8 92 0.682
Locus 8 Allele 19 17 18 20 16 22 15 23 Alleles Samplesize H _{exp} Locus 9 Allele	Pop1 0.520 0.040 0.100 0.140 0.080 0.100 - 7 50 0.682	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.071 7 42 0.672	All 0.522 0.043 0.087 0.163 0.043 0.076 0.033 0.033 8 92 0.682 All
Locus 8 Allele 19 17 18 20 16 22 15 23 Alleles Samplesize H _{exp} Locus 9 Allele 24	Pop1 0.520 0.040 0.100 0.140 0.080 0.100 - 7 50 0.682 Pop1 0.080	Pop2 0.524 0.048 0.071 0.190 - 0.048 0.071 7 42 0.672 Pop2	AII 0.522 0.043 0.087 0.163 0.043 0.076 0.033 0.033 8 92 0.682 AII

Allele	Pop1	Pop2	All
23	0.180	0.143	0.163
22	0.080	0.024	0.103
18	0.020	0.071	0.043
21	0.040	0.095	0.065
25	-	0.048	0.022
Alleles	7	8	8
Samplesize	50	42	92
H _{exp}	0.773	0.751	0.775
Locus 10	D 4	D 0	A 11
Allele	Pop1	Pop2	All
22	0.100	0.214	0.152
20	0.440	0.214	0.337
23	0.080	0.167	0.120
24	0.020	-	0.011
19	0.160	0.167	0.163
21	0.060	0.048	0.054
18	0.080	-	0.043
15	0.020	0.071	0.043
17	0.040	0.048	0.043
25	-	0.071	0.033
Alleles	9	8	10
Samplesize	50	42	92
$H_{\rm exp}$	0.752	0.838	0.813
Average exp			•
Po	p1 Po	pp2 All	
Ц 0.7	720 0	727 0.0	200
H _{exp} 0.7	728 0.	737 0.0	000

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	8.84000	13.60000	15.58000	18.52000	20.00000	14.86000	14.61700
1	Θ_2	4.24000	14.28000	19.14000	19.80000	20.00000	14.54000	13.60393
1	M _{1->2}	0.000	0.000	0.740	2.000	14.400	2.020	3.874
2	Θ_1	2.44000	4.56000	7.10000	8.36000	12.56000	6.98000	7.22636
2	Θ_2	1.92000	2.28000	3.58000	6.20000	19.40000	9.98000	10.26078
2	M _{1->2}	7.320	14.720	19.140	19.560	20.000	15.140	14.630
3	Θ_1	2.76000	5.28000	7.90000	10.20000	17.04000	8.74000	9.33329
3	Θ_2	1.40000	1.80000	3.90000	9.56000	15.12000	8.82000	9.56871
3	M _{1->2}	2.480	4.480	8.700	10.240	19.000	8.740	9.417
4	Θ_1	12.56000	17.12000	19.18000	19.76000	20.00000	17.42000	17.03526
4	Θ_2	5.36000	8.20000	11.66000	12.72000	19.88000	12.50000	12.53930
4	M _{1->2}	0.720	1.520	2.900	6.600	11.360	6.060	7.999
5	Θ_1	0.04000	0.88000	1.50000	2.56000	5.20000	2.18000	2.43874
5	Θ_2	1.44000	3.88000	6.06000	6.96000	19.60000	10.42000	10.47412
5	M _{1->2}	5.280	13.840	18.780	19.720	20.000	14.180	13.515
6	Θ_1	2.80000	4.76000	6.98000	9.44000	16.28000	8.26000	8.83058
6	Θ_2	0.00000	0.20000	0.82000	1.48000	5.00000	1.34000	1.70128
6	M _{1->2}	1.120	2.640	4.900	9.120	15.440	7.820	8.894
7	Θ_1	0.88000	1.80000	2.74000	4.20000	8.84000	3.78000	4.31644
7	Θ_2	0.76000	1.04000	1.74000	8.80000	18.72000	8.58000	9.19534
7	M _{1->2}	0.000	0.440	1.300	3.160	9.640	2.900	3.591
8	Θ_1	3.84000	6.08000	8.94000	10.88000	16.92000	9.42000	9.80119
8	Θ_2	2.80000	5.88000	9.38000	12.04000	19.84000	10.98000	11.10548
8	M _{1->2}	5.000	14.720	19.180	19.880	20.000	14.940	13.979
9	Θ_1	4.64000	7.20000	10.22000	12.36000	18.04000	10.62000	10.91378
9	Θ_2	3.36000	5.08000	6.14000	12.08000	19.72000	11.14000	11.28512
9	M _{1->2}	2.440	13.440	16.060	19.480	19.760	11.220	11.123

10	Θ_1	8.60000	14.84000	18.66000	19.44000	20.00000	15.38000	14.97991
10	Θ_2	0.84000	1.40000	2.94000	7.56000	17.48000	7.06000	8.19014
10	M _{1->2}	0.480	1.480	4.820	7.280	16.720	7.260	7.990
All	Θ_1	0.04000	0.72000	1.50000	2.36000	10.16000	4.50000	4.96088
All	Θ_2	5.16000	9.24000	11.26000	14.76000	19.68000	11.62000	11.04517
All	M _{1->2}	0.000	1.720	2.700	3.960	9.720	4.300	5.825
ΛII	111-57		-					

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Migrate 4.1.3a: (http://popgen.sc.fsu.edu) [program run on 12:45:34]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel)

or as LBF = 2 (In(Prob(D | thisModel) - In(Prob(D | otherModel))

shows the support for thisModel]

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-11224.80	-1926.70	-125.35
2	-1394.99	-315.24	-91.21
3	-2748.49	-539.43	-99.85
4	-7648.82	-1358.22	-117.22
5	-1002.82	-232.57	-65.48
6	-9972.00	-1702.10	-75.87
7	-751.08	-211.03	-85.50
8	-2443.76	-494.06	-91.75
9	-2315.88	-477.72	-100.19
10	-8335.71	-1458.77	-108.78
All	-47839.07	-8716.57	-961.94

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains [Scaling factor = -0.720889

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	832079/832079	1.00000
Θ_2	833455/833455	1.00000
$M_{1\rightarrow 2}$	832531/832531	1.00000
Genealogies	792401/2501935	0.31672

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.84631	8652.46
Θ_2	0.67816	19866.10
$M_{1\rightarrow 2}$	0.85783	7783.23
Ln[Prob(D G)]	0.97390	1323.03

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

Param 4 (Locus 2): Upper prior boundary seems too low!

Param 4 (Locus 5): Upper prior boundary seems too low!

Param 4 (Locus 8): Upper prior boundary seems too low!

Param 4 (Locus 9): Upper prior boundary seems too low!