0010 Number Systems

ENGR 3410 - Computer Architecture Fall 2010

Decimal (Base 10) Numbers

• Positional system: Each digit (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) has a value that depends on its position.

• Value of Digit in position i from the right = Digit * 10^{i} (rightmost is position 0)

$$2534 = (2 * 10^3) + (5 * 10^2) + (3 * 10^1) + (4 * 10^0)$$

Base R Numbers

- Each digit in range [0 .. (R 1)] (need a glyph for each value)
 For R = 16 (base 16, hexadecimal), each digit is in
 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
 - A = 10
 - B = 11
 - C = 12
 - D = 13
 - E = 14
 - F = 15
- Digit position i = Digit * Rⁱ $D_3 D_2 D_1 D_0 \text{ (base R)} = (D_3 * R^3) + (D_2 * R^2) + (D_1 * R^1) + (D_0 * R^0)$

2

Conversion to Decimal

- Binary: (101110)₂
- Octal: (325)₈
- Hexadecimal: (E32)₁₆

Conversion Decimal

- Binary: (110101)₂
- Octal: (524)₈
- Hexadecimal: (A6)₁₆

4

Conversion of Decimal to Binary (Method 1)

- For non-negative integers
- Successively subtract the greatest power of two less than the number from the value. Put a 1 in the corresponding digit position
- $2^0 = 1$ $2^4 = 16$ $2^8 = 256$ $2^{12} = 4096$ (4K)
- $2^{1} = 2$ $2^{5} = 32$ $2^{9} = 512$ $2^{13} = 8192$ (8K)
- $2^2 = 4$ $2^6 = 64$ $2^{10} = 1024$ (1K)
- $2^3 = 8$ $2^7 = 128$ $2^{11} = 2048$ (2K)

Decimal to Binary Method 1

• Convert (2578)₁₀ to binary

• Convert (289)₁₀ to binary

6

Conversion of Decimal to Binary (Method 2)

- For non-negative integers
- Repeatedly divide number by 2. Remainder becomes the binary digits (right to left)
- Convert (289)₁₀ to binary

• Convert (85)₁₀ to binary Decimal to Binary Method 2

Converting Binary to Hexadecimal

- 1 hex digit = 4 binary digits (start grouping from right)
- Convert $(11100011010111010011)_2$ to hex
- Convert (A3FF2A)₁₆ to binary

10

Converting Binary to Octal

- 1 octal digit = 3 binary digits (start grouping from right)
- Convert $(1010010100110101011)_2$ to octal
- Convert (723642)₈ to binary

Converting Decimal to Octal/Hex

- Could divide by powers of 8/16 or use successive division.
- Let's convert to binary, then to other base
- Convert (198)₁₀ to Hexadecimal
- Convert (1983020)₁₀ to Octal

12

Arithmetic Operations

Decimal: Binary:

Decimal: Binary:

Arithmetic Operations (cont.)

Binary:

14

Fly in the ointment: Negative numbers

- Addition, subtraction, multiplication work for non-negative numbers.
- But there are negative numbers. How to represent them?
 - o Sign-Magnitude
 - o Ones Complement
 - o Twos Complement

Negative Numbers

- Need an efficient way to represent negative numbers in binary
 - Both positive & negative numbers will be strings of bits
 - Use fixed-width formats (4-bit, 16-bit, etc.)
- · Must provide efficient mathematical operations
 - Addition & subtraction with potentially mixed signs
 - Negation (multiply by -1)

16

Sign/Magnitude Representation

High order bit is sign: 0 = positive (or zero), 1 = negative

Three low order bits is the magnitude: 0 (000) thru 7 (111)

Number range for n bits = \pm (2 - 1)

Representations for 0:

Sign/Magnitude Addition

Idea: Pick negatives so that addition/subtraction works

Bottom line: Basic mathematics are too complex in Sign/Magnitude

18

Ones Complement

- Sign bit, as in sign/magnitude
- Negative number has bits flipped: -2 is represented as 1101

Idea: Pick negatives so that addition works

• Let -1 = 0 - (+1):

- Generally, represent -N by the n-bit binary representation of 2ⁿ N
- Does addition work?

• Result: Two's Complement Numbers

20

Two's Complement

- Only one representation for 0
- One more negative number than positive number
- Fixed width format for both pos. & neg. numbers
- Bits(-N) = Bits(2ⁿ N) (limited to n bits)

Negating in Two's Complement

- Flip bits & Add 1
- Negate (0010)₂ (+2)

• Negate (1110)₂ (-2)

22

Addition in Two's Complement

Subtraction in Two's Complement

- $A B = A + (-B) = A + \overline{B} + 1$
- 0010 0110
- 1011 1001
- 1011 0001

Overflow Detection in Two's Complement

5 0101

-7 1001

3 0011

-8

7

Overflow

Overflow

5 0101

-3 1101

2 0010

_5 __1011

7

-8

No overflow

No overflow

Overflow when carry in to sign does not equal carry out

26

Converting Decimal to Two's Complement

- Convert absolute value to binary, then negate if necessary
- Convert (-9)₁₀ to 6-bit Two's Complement

• Convert (9)₁₀ to 6-bit Two's Complement

Converting Two's Complement to Decimal

- If Positive, convert as normal; If Negative, negate then convert.
- Convert (11010)₂ to Decimal
- Convert (01011) $_2$ to Decimal

28

Sign Extension

- To convert from N-bit to M-bit Two's Complement (M > N), simply duplicate sign bit:
- Convert (1011)₂ to 8-bit Two's Complement
- Convert (0010)₂ to 8-bit Two's Complement