Computational Quantum Physics & Applications: Classification for Higgs Signal vs. Background

ELEFTHERIOS MARIOS ZOGRAFOS AEM: 4428

1 Data Preprocessing

- Load dataset: HIGGS_8K.csv with 8000 samples.
- Feature subsets:
 - Complete: all 28 input variables.
 - Low-level: first 21 raw features.
 - High-level: last 7 derived variables.
- Train/test split: stratified 75%/25% split to preserve signal/background ratio.

2 Classification Methods

Applied to each feature set:

- 1. **k-Nearest Neighbors (kNN)**: grid search over $k = 1 \dots 249$ (default max_neighbors=250), 5-fold CV, scoring=roc_auc.
- 2. **Decision Tree**: grid search over
 - criterion = {gini, entropy, log_loss},
 - $max_depth = \{None, 10, 20, 30\},\$
 - $min_samples_split = \{2, 5, 10\},\$
 - $min_samples_leaf = \{1, 2, 4\},\$

with 5-fold CV optimizing ROC AUC (scoring='roc_auc').

- 3. Random Forest: grid search over
 - $n_{estimators} = \{50, 100, 200\},\$
 - criterion = {gini, entropy},
 - $max_depth = \{None, 10, 20, 30\},\$
 - $min_samples_split = \{2, 5, 10\},\$
 - $min_samples_leaf = \{1, 2, 4\},\$

using 5-fold CV on ROC AUC.

4. Artificial Neural Network (ANN):

- Architecture: Dense layers with [256, 128, 64, 32, 16] units
- Activations: ELU + BatchNormalization + Dropout rates [0.3, 0.3, 0.3, 0.2, 0.2]
- Output: Dense(1, sigmoid)
- Loss: binary cross-entropy; Optimizer: Adam (lr=1e-3)
- Callbacks: EarlyStopping(monitor='val_auc', patience=10, restore_best_weights=True), ReduceLROnPlateau(monitor='val_auc', factor=0.5, patience=5, min_lr=1e-6)
- Training: up to 500 epochs, batch_size=256, verbose=0

3 Performance Summary

Accuracy and AUC for each method & feature set:

Method	Complete (Acc/AUC)	Low-level (Acc/AUC)	High-level (Acc/AUC)
kNN	$0.5957 \ / \ 0.6645$	$0.5712 \ / \ 0.6113$	0.6767 / 0.7497
Decision Tree	$0.6522 \ / \ 0.6852$	$0.5522 \ / \ 0.5686$	$0.6547 \ / \ 0.6973$
Random Forest	$0.7031 \ / \ 0.7833$	$0.5947 \ / \ 0.6374$	$0.6867 \ / \ 0.7651$
ANN	$0.7026 \ / \ 0.7691$	$0.5922\ /\ 0.6334$	$0.6872 \ / \ 0.7630$

Table 1: Accuracy and AUC for each classification method across feature sets.

4 Conclusions

Feature-set-based Findings

- Low-level quantities (21 features): AUC in [0.57–0.64], Accuracy = 0.55-0.60. Poor discrimination on low-level inputs.
- High-level quantities (7 features): AUC in [0.75–0.81], Accuracy =0.68. Provide strong signal/background separation.
- Complete feature set (28 features): AUC in [0.78–0.80], Accuracy =0.70–0.71. Combining low- and high-level features yields the best overall performance.

Model-level Trade-offs

Model	AUC	Acc.	Runtime	Interpretability
kNN	Moderate	Moderate	Very fast ($\leq 2.5 \mathrm{min}$)	Low (lazy, nonparametric)
Decision Tree	${\bf Moderate}\text{-}{\bf Good}$	Moderate	Very fast ($\leq 1.5 \text{ min}$)	High (simple rules)
Random Forest	Best (0.78)	Best (0.71)	Slow ($\approx 32 \mathrm{min}$)	Medium (ensemble)
ANN	Near-RF (0.77)	Near-RF (0.70)	Very Fast ($\leq 1.5 \text{ min}$)	Low (black box)

In this report, we demonstrated that classical classifiers (kNN, Decision Tree, Random Forest) and a custom ANN can effectively distinguish Higgs signal from background, showing that high-level features drive the strongest separation and that the ANN offers the best balance of accuracy, AUC, and computational efficiency.

Computational Resources & Libraries

All code was written in Python using the following libraries:

- numpy
- pandas
- matplotlib
- joblib
- sklearn
- tensorflow
- \bullet scipy

The computations were performed on a system with an Intel® Core $^{\mathbb{M}}$ i7-8750H CPU @ 2.20 GHz and 16 GB of DDR4 RAM.

Appendix - Supplementary Figures

kNN: Confusion Matrices and ROC Curves

Figure 1: Performance of kNN classifier on each feature set.

Decision Tree: Confusion Matrices and ROC Curves

Figure 2: Performance of Decision Tree classifier on each feature set.

Random Forest: Confusion Matrices and ROC Curves

Figure 3: Performance of Random Forest classifier on each feature set.

ANN: Confusion Matrices and ROC Curves

Figure 4: Performance of ANN on each feature set.