

溶液与溶解度复习

日期:	时间:	姓名:
Date:	Time:	Name:

初露锋芒

根据甲乙物质的溶解度曲线回答下列问题:

(1) 40℃时甲物质的溶解度是 ; 80℃时, 乙物质在 10g 水中最多可以溶解 g, 此时溶质的

质量分数是。(精确到 0.1%)

- (2) 甲中混有少量的乙,提纯甲物质的方法是
- (3) 将 b 点的甲溶液转化为 a 点的甲溶液, 采取的方法是 (选填编号)。

 - A. 增加溶质 B. 恒温蒸发溶剂 C. 升高温度
- D. 降低温度
- (4)将80℃时甲乙的饱和溶液分别降温到20℃,下列说法正确的是。

A. 析出固体的质量: 甲>乙

- B. 降温后溶质的质量分数: 甲<乙
- C. 降温后溶剂质量: 甲<乙
- D. 降温后溶质质量: 甲<乙

学习目标

- 1. 掌握并理解饱和溶液与不饱和溶液转换方法;
- 2. 掌握影响物质溶解度的因素;
- &
- 重难点
- 3. 理解溶解度曲线的含义;
- 4. 掌握物质结晶的方法。

根深蒂固

模块一:溶液、浊液与溶液酸碱性的判断

1,0		· /—/// 3////	(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	71		
1.				我们通常把物质放 。	入水中分散形成溶	液或浊液。有的物质
2.	溶液					
	由一种或一种	中以上的物质分散到	月另外一种物质里	,形成、_	的混合物,叫	作溶液。
	其中被溶解的	的物质叫作,	溶解其他物质的	物质叫作。		
3.	浊液					
	在溶液里形成	文 的不均一、不稳定	的混合物成为浊	液。		
	其中难溶固体	本小颗粒和水形成的]混合物 (分散系)) 叫作, 又	性溶液体小颗粒和7	水形成的混合物叫作
	o					
4.	溶液的 pH					
	表示稀溶液的	的酸碱性强弱				
	范围: 0~14	- 11)4-)4- P	//)	1d th 1	₩ 1d 4b	- //)
	_		; pH<7 的溶液呈 _.	性,pH 越小,	酸性越,pH	>7 的溶液呈性,
p⊦	I 越大,碱性越_	0				
5.	酸碱指示剂					
		域性的指示剂,常用]的酸碱指示剂:			
		酸碱指示剂	酸性	中性	碱性	
		石蕊				
		酚酞				
6.	酸碱盐溶液酸	碱性的检测				
	1. 使用石蕊	试液或酚酞试液:]	取少量待测液, 滴	面指示剂,观察 词	式液的颜色变化;	
	2. 使用石蕊	试纸:用干燥洁净	的玻璃棒	_待测液沾在石蕊记	式纸上,观察试纸 的	的颜色变化;
	3. 使用 pH ti	式纸:用干燥洁净的	り玻璃棒	待测液滴在 pH 试	纸上,再与标准比	色卡对照。

模块二:溶液组成的定性描述

. 佑玉	口溶液和不饱和溶液				
	饱和溶液:在	下。一完量的	甲。	再 次 解	f 的 溶
	不饱和溶液: 在 不饱和溶液: 在				
	饱和溶液和不饱和溶液				11日/风日月1日1区
)浓溶液 (填"一)			布	县不饱和滚游,
) 同一温度下, 同种溶质				-
	饱和溶液和不饱和溶液的		XIIII/风火至月	X 70071107111	11 X°
т.		,),()	
	饱和溶液←).().(上不饱和溶液
	`	, ,	, ,)	
	特例:氢氧化钙和气体的	的溶解性随温度的	升高而降低。		
、溶解					
1.	固体物质的溶解度:				
	在下,某物质在	·溶剂中达到	到状态时 _。	<u> </u>	符号:。
2.	气体的溶解度:				
	在一定的温度、		积水中达到	状态时的气体_	o
3.	影响物质溶解度大小的因				=
				要考虑的影	《呵】
4.	固体溶解性和溶解度的关 「				
		易溶	可溶	微溶	难溶
	溶解度/(g/100g 水)				
5.	溶解度曲线:				
(1)在坐标系上用线把物质	在各个温度下溶解	解度的点连接起:	来,得到该物质溶	孫解度曲线。
(2)溶解度曲线能够直观地	.体现		的差	势
(3)溶解度曲线的意义:				溶解度(5/1005水)
	①溶解度受				/
	②某温度下				
	③曲线交点表示			;	
	④ 曲线上的点 表示该物质	质在该温度下的_	 ,		(37) 温度(で)
	曲线上方的点 表示该	物质在该温度下的	饱和溶液,并有	Ī,	
	曲线下方的点表示该组	勿质在该温度下的			

6. 物质从溶液中析出:	
(1) 结晶:具有规则的几何外形的固位	叫作晶体,形成晶体的过程叫结晶。
(2) 物质结晶的方法:	
①(或);	适用于溶解度受温度影响变化比较的固体物质。
例如:等;	
②: 适用于溶解度受温度	影响比较的固体物质。
例如:等。	
7. 结晶水合物 :含有结晶水的晶体,如	コ: 石碱、胆矾(CuSO4·5H ₂ O)、明矾。
模块三:溶液组成的定量计算	
对于饱和溶液:	, 0
2. 溶液中溶质的质量分数(c%)	
(1) c%=, 其中: m(溶液)=×
(2) 一定温度下的饱和溶液中: c%=	
(3) 用溶剂稀释浓溶液时,溶质的质量不多	乏,有以下"稀释公式":
	=
枝繁叶茂 模块一:溶液、浊液与溶液酸碱	生的判断
题型1: 溶液的形成	
【例1】(2013年上海中考)厨房中的物质质	放入足量的水中,充分搅拌,不能形成溶液的是()
A. 食用油 B. 白醋	C. 白糖 D. 食盐
【例 2】(2014年上海中考)加入足量水充分	· 分搅拌,能形成溶液的是 ()
A. 泥沙 B. 蔗糖	C. 植物油 D. 大理石
题型 2: 溶液的酸碱性	
【例 3】(2013 年上海中考) pH 是水质监测	的重要指标之一,下列水样酸性最强的是()
A. pH=1.3 的工业废水	B. pH=4.5 的雨水
C. pH=7 的蒸馏水	D. pH=7.3 的矿泉水

【例 4】下列溶液中,既能使紫色石蕊溶液变蓝,又能使无色酚酞变红的是()

①碳酸钠溶液;②白醋;③汽水;④石灰水;⑤食盐水;⑥氨水

- A. ②③
- B. (1)(4)(5)
- C. 346
- D. (1)(4)(6)

【例 5】用 pH 试纸测定食用白醋的酸碱度,如果先将 pH 试纸用蒸馏水润湿后,再把白醋滴在试纸上,测得的 pH 与白醋实际 pH 比较,则()

- A. 前者偏高
- B. 前者偏低
- C. 两者相等
- D. 无法确定

模块二:溶液组成的定性描述

【例 1】(2013年上海中考)室温时,对 100 mL 氯化钠饱和溶液作如下操作,最终甲、乙两烧杯中溶液

()

A. 溶质质量相同

B. 溶质质量分数相同

C. 均为不饱和溶液

D. 溶剂质量相同

【例 2】右图是 M、N 两种物质的溶解度曲线,在 t_2 °C时往盛有 100g 水的烧杯中先后加入 ag M 和 ag N(两种物质溶解时互不影响,且溶质仍是 M、N),充分搅拌。将混合物的温度降低到 t_1 °C,下列说法正确的是

()

- A. t_2 °C时,得到 M 的饱和溶液
- B. t₂℃时,得到 N 的不饱和溶液
- C. 温度降低到 t₁℃时, M、N 的溶质质量分数相等, 得到 M、N 的不饱和溶液
- D. 温度降低到 t_1 °C时,M、N 的溶解度相等,得到 M、N 的饱和溶液

【例 3】现有 10 ℃含 100 g 的澄清氢氧化钙饱和溶液。若把该溶液用水浴加热到 60 ℃ (水的蒸发忽略不计)。 下列说法错误的是 ()

A. 溶液变浑浊

B. 溶液变为不饱和

C. 溶液仍饱和

D. 溶质质量分数变小

【例 4】右图为 A 物质的溶解度曲线。M、N 两点分别表示 A 物质的两种溶液。下列做法不能实现 M、N 间的相互转化的是(A 从溶液中析出时不带结晶水)()

- A. 从 N→M: 先向 N 中加入适量固体 A 再降温
- B. 从 N→M: 先将 N 降温再加入适量固体 A
- C. 从 $M\rightarrow N$: 先将 M 降温过滤后再将其升温
- D. 从 M→N: 先将 M 升温再将其蒸发掉部分水

【例 5】(2012 年上海中考)一定温度下,向右图所示烧杯中加入一定量水,仅有部分晶体溶解。所得溶液与原溶液相比,说法正确的是 ()

- A. 溶剂的质量增加,溶液颜色变浅
- B. 溶质溶解度不变,溶液颜色变深
- C. 溶质的质量增加,溶液颜色变深
- D. 溶质溶解度不变,溶液颜色不变

【例 6】(2012年上海中考)溶解度可表示物质溶解性的大小。

(1) 右下图是甲、乙、丙三种固体物质(均不含结晶水)的溶解度曲线。

①20℃时,甲的溶解度 (填">"、"<"或"=") 乙的溶解度。

②40°C时,乙和丙_____(填"能"或"不能")形成溶质质量分数相同的饱和溶液。

③20℃时,烧杯中分别盛有相同质量甲、乙、丙的饱和溶液,各加入等质量的对应固体,并升温至50℃。请填写下表。

烧杯中的溶质	烧杯中固体的变化
甲	
Z	固体逐渐减少至全部溶解
丙	

- (2) 气体的溶解度也有一定的变化规律。
- ①打开可乐瓶,逸出大量气泡。由此可见,压强越小, CO_2 的溶解度越____。为增大 CO_2 的溶解度,可采用的一种方法是
- ②不同温度下,氧气的溶解度随压强的变化如右图所示,图中 t_1 对应的温度为 40°C,则 t_2 对应的温度______(填编号)。
 - a. 大于 40℃

【例 7】(2011 年上海中考)下表是 KNO₃、NaCl 在不同温度下的溶解度(单位: g/100g 水)

温度 (℃)	0	10	20	30	40	50	60	70	80	90	100
KNO ₃	13.3	20.9	32	45.8	64	85.5	110	138	169	202	246
NaCl	35.7	35.8	36	36.3	36.6	37	37.3	37.8	38.4	39	39.8

- (1) 以上两种物质溶解度的变化受温度影响较小的是。
- (2) 30℃时, KNO₃ 的溶解度是 g/100g 水。
- (3) KNO3溶液中含有少量 NaCl 时,可通过_____的方法提纯。
- (4) 对(3) 析出的晶体和剩余溶液描述正确的是 (填写编号)。
 - I. 剩余溶液一定是 KNO3 饱和溶液
- II. 剩余溶液一定是 NaCl 不饱和溶液
- III. 上述方法可以将两者完全分离
- IV. 析出的晶体中只含有 KNO₃

【例8】(2013年上海中考)某实验小组对不同条件下硝酸钾的溶解情况进行了以下实验:

在甲、乙、丙三个烧杯中各放入 20.0 g 硝酸钾晶体,再分别加入 50.0 g 冷水、热水与酒精,充分搅拌后(保持各自温度不变),结果如下图所示。

- (1) 甲烧杯中溶液是_____(填"饱和"或"不饱和")溶液。
- (2) 由以上实验可得出结论: 影响物质溶解性的因素有 、 。
- (3) 将乙烧杯中的溶液缓缓降温至 t₁℃时,溶液恰好达到饱和状态。则 t₁℃时,硝酸钾的溶解度是 g/100g 水。再往乙烧杯中加入 10 g 水,改变温度至 t₂℃时,溶液又恰好达到饱和状态,则 t₁_____t₂ (填">"、"<"或"=")。
- (4) 经实验测定,获得不同温度时硝酸钾的溶解度数据。

温度	溶解度(g/100g 水)
20	31.6
40	63.9
50	145
60	110
70	140
80	169

分析上述数据,某温度时的硝酸钾溶解度数据可能存在较大的误差,该温度时_____℃。 请根据表中的数据,在坐标图中描点、绘制符合硝酸钾溶解度变化规律的曲线。

【例9】(2014年上海中考)氯化钠是一种重要的资源,在海水中储量很丰富。

(1) 海水晒盐是海水在常温下蒸发得到氯化钠的过程,实验室用氯化钠溶液模拟该过程:

已知 B 溶液恰好是氯化钠的饱和剂	容液,与 B 溶液中溶质质量相等的溶液是_	(填编号); 与B溶
液中溶质质量分数相等的溶液是	(填编号).	溶解度(g/100g)
(2) 氯化钠、硝酸钾、硒酸镉的溶解	度曲线如图 2 所示。据图回答:	前酸钾 50 ——————氯化钠
溶解度变化受温度影响最大的是_	o	
t℃时,溶解度最小的是。		图2
t°C时,将 25g 研酸镉加入	ο 水中, 完全溶解后, 恰好得到饱和溶液。	要讲一步提高该溶液的溶质

质量分数,可进行的操作是 (3) 硝酸钾溶液中含有少量氯化钠杂质, 提纯的方法是

模块三:溶液组成的定量计算

【例 1】(2013 年上海中考) 右图为市售盐酸标签的部分内容, 其中 36.0%~38.0%表示该盐酸中

技术条件 HCl 含量 36.0%~38.0% 外观 合格

- A. 氯元素的含量 B. 溶质溶解度
- C. 溶质质量分数
- D. 溶质式量

【例 2】已知 t₁℃时,物质 c 的溶解度为 20 g/100g 水,则在该温度下,向 80g 的水中加入 20 g c 物质,充分搅 拌, 所得溶液的质量是 g;

【例 3】农业生产常用溶质的质量分数为 10%~20%的 NaCl 溶液来挑选种子。现将 300g 25%的 NaCl 溶液稀 释为 10%的 NaCl 溶液,需要加水的质量为 g。

【例 4】已知 40℃时,KCl 的溶解度为 40.0 g/100g 水,则 40℃时,将 70 g KCl 的饱和溶液稀释成质量分数为 20%的溶液,需加水 g。

青藤教育 KEYTELL EDUCATION

【例 5】右图 A、B、C 三种固态物质(不含结晶水)的溶解度曲线。

【方法技巧】在 ag 水中加入 bg X 物质, 完全溶解后, 对所得溶液的溶质质量分数 w 讨论如下:

- (2) 若 $w < \frac{b}{a+b}$,则 X 物质可能是 CuSO₄·5H₂O 等;
- (3) 若 $w > \frac{b}{a+b}$, 则 X 物质可能是 CaO 等。

KETTELL EDUC	ATTON						成长	为梦相中的日己
(4) t ₂ ℃时, a. 发现有 不变,通过加 b. t ₁ ℃时 c. t ₁ ℃时	7	解度 ab 质加入到 50g 量比为。 为质在 m 点页 写一种即可 。	(填">"或"水中充分溶上,	'<"或"=") 注解,所得溶剂 变为 p 点的溶 饱和溶液分 溶质字母, ,使用溶剂 。 、小比较	; 该的质量为_ F液,可采用 别降温到 t ₁ ° 下同),析出; 质量大小为_ _。	的方法是 C时: 溶质质量大/	外为	
温度/℃		0	20	40	60	80	100	
解度 (g/100g	NaCl	35.7	36.0	36.6	37.3	38.4	39.8	1
水)	KNO ₃	12.2	31.6	63.9	110	169	246	

•		•
(1) 根据上表数据,	设计一个室温下鉴别 NaCl 和 KNO3 的实验方法:	0

- (2) 配制 150kg 质量分数为 7%的 KNO3 植物营养液,需要水的质量为 kg。
- (3) 60℃时, 向一个盛有 18gNaCl 和 60gKNO3 的烧杯中, 加入 50g 的水, 充分溶解后所得溶液中 KNO3 的质 量分数是 。(KNO₃和 NaCl 溶解度互不影响,保留到 0.1%)
- (4) 采用一种操作方法,将上述(3) 烧杯中处于不饱和状态的溶质变为饱和状态,下列说法正确的是

I. 溶剂的质量一定减小

II. 该溶质的质量分数一定增大

III. 该溶质的质量可能不变

IV. 可降低温度或增加溶质

- (5) 工业上要从类似上述(3)的混合溶液中分离出 NaCl 和 KNO3。
 - ①要使 KNO₃ 尽量析出, NaCl 尽量不析出, 可采用的方法是。
 - ②对①析出的晶体和剩余溶液的描述和处理正确的是。
 - I. 析出的 KNO₃ 晶体为 44.2g
 - II. 剩余溶液一定是 KNO₃ 的饱和溶液
 - III. 将剩余溶液降温结晶、过滤,可获得较纯的 KNO3 晶体
 - IV. 将剩余溶液蒸发结晶、趁热过滤,可获得较多的 NaCl 晶体

【例 9】取 10g 某氯化钠溶液,滴入足量硝酸银溶液,得到 0.02mol 白色沉淀。

- (1) 计算该氯化钠溶液的溶质质量分数(根据化学方程式列式计算);
- (2) 用 15%的氯化钠溶液浸泡瓜果片刻可以起到消毒作用。要使①中氯化钠溶液的溶质质量分数变为 15%,可向其中加入一定量的_____(填"氯化钠"或"水")。

【例 10】向盛有 100g 稀硫酸的烧杯中加入一定量的镁粉,固体完全溶解后,再向所得溶液中加入 NaOH 溶液,所得沉淀质量与加入 NaOH 溶液的质量关系如图所示:

- (1) 计算氢氧化钠溶液的溶质质量分数 (要求写出计算过程)
- (2) 与氢氧化钠溶液反应所消耗硫酸溶质的质量为 克。

瓜熟蒂落

- 1. (2015年上海中考) 生活中的常见物质属于溶液的是()
 - A. 草莓酱
- B. 蒸馏水
- C. 蔗糖水
- D. 玉米糊
- 2. (2016年上海中考) 放入水中不能形成溶液的物质是()
 - A. 花生油
- B. 食盐
- C. 白糖
- D. 白酒

- 3. (2015 年上海中考)溶解是生活中常见的现象,不同物质在水中的溶解能力不同。
- (1) 下表是 KNO₃、NaCl 在不同温度下的溶解度(单位: g/100g 水)。

温度 (℃)	0	20	40	60	80	100
KNO ₃	13.3	31.6	63.9	110	169	246
NaCl	35.7	36.0	36.6	37.3	38.4	39.8

①上表中的两种物质在 40℃时, 的溶解度较大;请用相应的数据列式表示该温度是 KNO;饱和 溶液的质量分数 (不要求计算)。

- ②请写出一种将 KNO₃ 的不饱和溶液转化为饱和溶液的方法
- ③20℃时,将 20gNaCl 放入 50g 水中,所得溶液的质量是
- ④从 NaCl 溶液中得到 NaCl 晶体的方法是 。
- (2) 用硫酸铜进行如下图所示的实验,完成下列填空(用编号表示)。

所得三个溶液中:一定属于饱和溶液的是,溶液中溶剂质量的大小关系是。。

4. (2016年上海中考)根据下表回答问题

温度 (℃)		20	40	50	60	80
溶解度	NaCl	36.0	36.6	37.0	37.3	38.4
(g/100g 水)	NH4Cl	37.2	45.8	50.4	55.2	65.6
	KNO ₃	31.6	63.9	85.5	110	169

- (1) 20℃时,溶解度最大的物质是。
- (2) 50℃时,100g 水中最多溶解 NaCl g。
- (3)量筒的局部示意见图,量取水时应沿 视线(选填"a"或"b")进行读数, 视线(选填"a" 或"b")对应的读数较大。
- (4) A 是 80℃含有 120g 水的 KNO₃ 溶液, 经过如下操作, 得到 102gKNO₃ 固体。

- ①A 溶液为 (选填"饱和"或"不饱和")溶液;
- ②对以上过程的分析,正确的是 (选填编号)
 - a. A 到 B 的过程中,溶质质量没有改变
 - b. B中溶质与溶剂的质量比为 169:100
 - c. 开始析出 KNO3 固体的温度在 60℃至 80℃之间
 - d. A 溶液的质量等于 222g