

BASIC COURSE IN ANALYSIS I

1. INTRODUCTION Sets are collections of elements, e.g. $A = \{1, 2, 3, 4\},$ $B = \{\alpha, e, i, o, u\}$

 $P = \{2, 3, 5, 7, ...\}$

(the set of prime numbers).

When we are given a set A, the order of writing the elements is not important, ie. $\{a,b\} = \{b,a\}$.

When x is an element of the set A, we write XEA. Otherwise we write X # A

There exists the set Ø = { } which does not contain any element. Ø is called the empty set.

Given two sets A, B we say A = B if $X \in A \iff X \in B$

(in other words A, B have the same elements). We say $A \subseteq B$ (A is a subset of B) if $X \in A \implies X \in B$.

Given sets A, B we can define the following operations: AUB = $\{x : x \in A \text{ or } x \in B\}$ (union)

 $A \cap B = \{z : z \in A \text{ and } x \in B\}$ (intersection)

 $A \setminus B = \{z : z \in A \text{ and } x \notin B\}$ (set-theoretic) $A \times B = \{(\alpha, b) : \alpha \in A, b \in B\}$ (Cartesian product).

E.g. when $A = \{1, 2, 5\}$, $B = \{2, 11\}$ then $A \cup B = \{1, 2, 5, 11\}$, $A \cap B = \{2\}$ $A \setminus B = \{1, 5\}$,

 $A \times B = \{(a,b) : a \in A, b \in B\}$

 $= \{(1,2),(1,11),(2,2),(2,11),(5,2),(5,11)\}$ Also when we take A=B=IR, then the Carteslan product of these two sets is

 $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$

Two sets X,Y are called disjoint if $X \cap Y = \emptyset$ (i.e. they have no common elements).

Some well-known sets of real numbers:

 $[N = \{1, 2, 3, ...\}$ $Z = \{.., -2, -1, 0, 1, 2, ...\}$ $Q = \{a : a \in Z, b \in Z \setminus \{o\}\}$

IR: the set of all real numbers.

INFZFQ and we can also show that QFR.

LEMMA 1.1: Let nEIN. Then

n is even (nº is even. PROOF

Suppose n is even. Then $n = 2k, k \in \mathbb{N} \implies n^2 = 4k^e, k \in \mathbb{N}$ Suppose n is odd. Then n = 2k+1, ke $N \Rightarrow N^2 = 4k^2+4k+1$, ke $N \Rightarrow N^2$ is odd.

PROPOSITION 1.2: VE EIRIQ. Let's assume for contradiction that $12 \in \mathbb{Q}$. Then $\sqrt{2} = \frac{P}{q}$, where $p,q \in \mathbb{N}$ and gcd(p,q) = 1. $\sqrt{2} = \frac{P}{q} \iff P = \sqrt{2} q$ \Leftrightarrow $p^2 = 8q^2$ \Rightarrow ρ^2 is even =) p is even (by Lemma 1.1). So p=2r, with $r \in \mathbb{N}$. Now $p^2 = 2q^2 \implies 4r^2 = 2q^2$ $\implies q^2 = 2r^2$ $\implies q^2 \text{ is even}$ $\implies q \text{ is even (by Lemma 1.1)},$ We have shown that both p and q are even, so sfd(p,q) > 1; a contradiction. Thus VZ \$ Ø.

Remark: Whenever a is not a "perfect square"
(i.e. 1,4,9,16,25,...) then

√a ≠ Q (the proof is similar)

A subset $I \subseteq \mathbb{R}$ is called an <u>internal</u> if for any $x,y \in I$ with x < y, we have $x < t < y \implies t \in I$.

(If an interval contains two real numbers, it will contain all other numbers in between),

Intervals of IR have one of the following forms:

$$[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\} \text{ (closed interval)}$$

$$(a,b) = \{x \in \mathbb{R} : a \leq x < b\} \text{ (open interval)}$$

$$[a,b) = \{x \in \mathbb{R} : a \leq x < b\}$$

$$(a,b) = \{x \in \mathbb{R} : a < x \leq b\}.$$

$$[a, b] = \{x \in \mathbb{R} : a \leq x < b\}$$

$$(a, b] = \{x \in \mathbb{R} : a < x \leq b\}.$$

$$E.g. \quad [0,1] = \{x \in \mathbb{R} : 0 \leq x \leq 1\}.$$

$$[1,+\infty) = \{x \in \mathbb{R} : x > 1\}$$

$$(-\infty, 0) = \{x \in \mathbb{R} : x < 0\}$$

$$Note that
$$\mathbb{R} = (-\infty, +\infty) \text{ and } \emptyset$$$$

We wount to introduce a way to measure distances between real numbers.

are also intervals.

The absolute value |z| of $x \in \mathbb{R}$ is defined by $|x| = |x|, \quad \text{if } x \ge 0$ $|-x|, \quad \text{if } x < 0.$ E.g. |5| = 5, $\left|\frac{3}{2}\right| = \frac{3}{2}$, |-1| = 1, $|-\sqrt{2}| = \sqrt{2}$, |0| = 0.

The following hold:
$$|z| = 0 \iff x = \pm 0 \quad (where 9>0)$$

 $|x| \le \theta \iff -\theta \le x \le \theta$ (0>0) $|x| > \theta \iff (x < -\theta \text{ or } x > \theta).$

The distance between x, y & IR is defined to be 12-yl.

x,y EIK
yl.

THEOREM 1.3 (Triangle Inequality): For any XyER, 1x-y) ≤ |x| + |y| PROOF $|z-y| \le |z| + |y| \iff |x-y|^2 \le (|x| + |y|)^2$

 $\iff (z-y)^2 \leqslant |z|^2 + |y|^2 + 2|xy|$

True (because It | > t for any teR), so the equivalent initial inequality will

 $|x+y| \leq |z|+|y|$ for any $x,y \in \mathbb{R}$. To see this, note that |x+y| = |x-(-y)|

< 1x + 1-41 = 125 + 141 For any $x \in \mathbb{R}$, |x| = |-x|Also $|z|^2 = x^2$ (by definition).

also be correct. Note that this implies also that

In two dimensions, we have the set $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$. Let $\mathbf{X} = (x_1, x_2) \in \mathbb{R}^2$, $\mathbf{Y} = (y_1, y_2) \in \mathbb{R}^2$.

The distance between $\mathbf{X} \cdot \mathbf{V}$ The distance between x, y is defined as $d(X_1,Y) = \sqrt{(X_1 - Y_1)^2 + (X_2 - Y_2)^2}$. The triangle inequality in two dimensions is the following: $d(x,y) \leq d(x,z) + d(z,y)$ for any xyzet? The "triangle inequality" states that every side of the trangle is less than the sum of the other two sides. A circle in R with center (x,y) and radius R>O is the set of points (XIY) with distance from (Xo14) is equal to R. What is the equation of this circle? $d(P, P_0) = R \iff \sqrt{(x-x_0)^2 + (y-y_0)^2} = R$ $\iff (x-x)^2 + (y-y)^2 = R^2$

Given two sets A,B a function f:A -> B is a procedure by which every element of A is mapped to a unique element of B. For each a \(A \), the unique element of B

A function $f:A \rightarrow B$ is a subset $f \subseteq A \times B$ with the property that for all $a \in A$, there exists a unique $b \in B$

Formal Definition of a function:

We write $f: A \rightarrow B$,

Such that $(a,b) \in f$. The unique such beB is written as f(a). (Here $A \times B$ is the Cartesian product).

 $x \mapsto f(x)$.

The set A is called the <u>Jomain</u> of f (or domain of definition of f)

The set B is ralled the codomain of f. the set

 $f(A) = \{b \in B : \text{there exists } a \in A \text{ s.t. } b = f(a)\}$ is ealled the range or image of f.

In the first example, A is the domain, B is the codomain and the range of f is $f(A) = \{b_1, b_3\}$.

 $f(A) \approx \{b_1, b_3\}$

$$= \{f(a) : a \in A\}$$