SUMMARY

R&D-focused Biomedical/Mechanical Engineer with practical experience in design, verification, and integration of implantable medical devices. Proficient in system decomposition, requirements traceability, and risk management within FDA-regulated environments. Committed to collaborative innovation, continuous process improvement, and delivering safe, reliable medical technologies that enhance patient outcomes.

EDUCATION

The University of Texas at Arlington

Arlington, TX

B.S. in Biomedical Engineering | GPA: 4.0 | Graduation Date: May 2023

Southern New Hampshire University

Manchester, NH

B.S. in Computer Science | GPA: 4.0 | Graduation Date: Dec 2024

JOB EXPERIENCE

Product Development Engineer I

Resolution Medical

2023- Present

- Performed system-level design verification and testing for implantable neurostimulation and BCI devices, including hydraulic, mechanical fatigue, and accelerated aging tests aligned with FDA/ISO compliance.
- Developed and executed traceability matrices linking user needs, system requirements, and design verification protocols to ensure design outputs met inputs.
- Designed custom test fixtures and prototypes simulating biological environments; applied system thinking to integrate electrical, mechanical, and software interfaces.
- Authored and maintained design history files, risk control documentation, and engineering reports in collaboration with regulatory and QA teams.
- Contributed to cross-functional technical decisions including tolerance analysis, material selection, supplier evaluation, and DFM analysis.
- Supported preclinical animal studies with real-time engineering support, using feedback to refine product usability and risk mitigation strategies.
- Created detailed system architecture drawings and performed subsystem integration to ensure functional reliability under surgical use conditions.

PROJECT

Head Motion Tracker System Design

Course Project — The University of Texas at Arlington

- Developed a real-time motion tracking system for clinical monitoring using Arduino-integrated sensors and Python/MATLAB-based signal processing.
- Led system integration between sensors, software, and enclosures to meet ergonomic and durability constraints in medical settings.
- Applied engineering best practices in rapid prototyping, subsystem interfacing, and safety-focused system testing.

Johnson & Johnson robotics and controls job simulation

Forage - June 2025

- Completed a job simulation as a robotics & controls engineering intern at Johnson & Johnson, focusing on optimizing a surgical robotic arm's performance.
- Used Python-based tools to diagnose control system inefficiencies, identify root causes of delays, and implement targeted optimizations.
- Proposed actionable design modifications using annotated technical visuals, validating their impact on responsiveness and durability through iterative testing.
- Developed a professional design proposal outlining findings, solutions, and recommendations for improving precision and reliability in robotic systems.

TECHNICAL SKILLS

- Testing & Validation: Mechanical Fatigue, Hydraulic Testing, Accelerated Aging, Root Cause Analysis, Risk Mitigation
- Design & Engineering Tools: SolidWorks, DFM, BOM, Tolerance Analysis
- Data & Software: Python, MATLAB, Arduino, Minitab, LabVIEW
- Cross-Functional: Technical Documentation, Agile, Supplier Collaboration, Preclinical Support