Distributed Multiagent Systems

Boi Faltings

Laboratoire d'Intelligence Artificielle boi.faltings@epfl.ch http://moodle.epfl.ch/

Fall 2018

Degrees of interaction

- Social laws: no message exchange
- Coordination protocols: message passing
- Explicit cooperative planning: exchange of plan fragments

Social laws

- Common rules that all agents follow to avoid conflicts
- Example: Traffic laws
 - drive on the right
 - at crossings, traffic from left has right of way
- ⇒ no collisions, even though drivers do not explicitly consider each other's actions
 - Similar examples in nature: flocks of birds, insect colonies, etc.

Generating social laws

- Laws must still allow agents to achieve any goal
- Formally: exists sequence of transitions to move between any pair of a set of focal states (⊆ all states)
- ⇒ finding useful social laws is NP-complete in number of states (not just focal states)
 - Remember: number of states is already very large!
 - \Rightarrow not a paradigm for programming agent systems in general.

Multi-agent learning

Many situations repeat themselves:

- accessing resources, e.g. in wireless communication
- task allocation, e.g. distributing mail
- stock and commodity trading
- selling ice cream

Agents *learn* to coordinate their behavior.

Equilibrium

Optimal action also depends on other agents' strategies:

- A combination of strategies is in equilibrium if each strategy takes the optimal action given the other agents' strategies
- There can be multiple equilibria
- A learning algorithm is no-regret if the strategy it learns will eventually have performance equal to the best possible (deterministic) strategy
- Example: Q-learning with infinite samples is no-regret
- Theorem: under mild conditions (smoothness), agents using no-regret learning will converge to an equilibrium

Example

- 2 agents A and B want to repeatedly transmit data on frequencies 1 and 2
- Action space = (1,2), if both choose the same, they collide and fail
- 2 Equilibria:
 - (A,1) and (B,2)
 - ② (A, 2) and (B, 1)
- ullet Both start out with the same channel $1\Rightarrow {\sf reward}=0$
- If once they choose different channels, both will get higher rewards ⇒ for each agent, this choice will have better Q-value and thus be chosen more and more often in the future

Confidence bounds

Other agents' strategies are unknown ⇒ learning with uncertainty

- To learn optimal strategy, need to explore effects of all different actions
- Remaining uncertainty characterized by a confidence bound on the expected regret
- Generally interested in upper confidence bound (UCB) for each action (as in multi-armed bandits)
- However, poor convergence since opponent play is not stationary

Anti-coordination

- Agents have to learn different strategies (like in channel allocation)
- Very common scenario
- Difficult to learn because there are many different optimal strategies

Courteous learning

- Suppose that agents can also observe other agents' actions
- Courteous rule: agents that have converged on a strategy no longer change, and
- Agents that have not converged will not use conflicting actions
- \Rightarrow Fast convergence in $n \log n$ time (Cigler & Faltings 2011)

Distributed contract nets

- Explicit communication allows more complex protocols.
- Example: task allocation with contract nets.
- Each manager distributes tasks asynchronously and contacts agents directly.
- Market-based contract net does not work for such asynchronous settings.

Problems with distributed contract nets

- First come, first served
 - \Rightarrow impossible to resolve conflicts.

- $\bullet \ \mathsf{B} \to \mathsf{D} \to \mathsf{F} \to \mathsf{I} \\ \mathsf{may} \ \mathsf{block} \ \mathsf{A} \to \mathsf{D} \to \mathsf{F} \to \mathsf{H} \\$
- ⇒ idea: exchange tasks among agents to optimize allocation.

Marginal costs

Marginal cost to A_i of task t given a remaining set of tasks T:

$$c_{add}(A_i, t) = cost(A_i, T \cup t) - cost(A_i, T)$$

Principle:

- agent A_i announces t with limit $c < c_{add}(A_i, t)$
- agent A_j bids for t with bid $b > c_{add}(A_j, t)$
- t is reassigned to A_j if it is the lowest bid and b < c, agent A_i pays b to A_j

Implementation

- Agents look for tasks t that have particularly high marginal cost.
- Find other agents A_i that may have lower marginal cost.
- Announce the task to these agents.
- Agents A_j place bids for qualifying tasks and wait for decision.

Issues for announcers

- where to announce task?
- how long to wait until picking a winner?
- how to decide whether bid is still profitable?
- \Rightarrow requires knowledge of other agents' capabilities and expected costs

Issues for bidders

- how to bid considering outstanding bids and announced tasks?
- marginal cost depends on other tasks
- large risks while offers have not been answered
- \Rightarrow very difficult to even manage the messages, almost impossible to guarantee convergence
- Need a more systematic way to solve such problems

General coordination

- Task allocation = for each task, decide what agent does it.
- Resource sharing = for each resource, decide which agent gets it at a certain time.
- Scheduling = deciding when agents do their tasks.
- All can be expressed as constraint satisfaction.
- Distributed coordination = distributed constraint satisfaction.
- Systematic approach with provable properties.

Constraint Satisfaction Problems (CSP)

Given $\langle X, D, C, R \rangle$:

- variables $X = x_1, ..., x_n$
- domains $D = d_1, ..., d_n$
- constraints $C = c_1(x_{i,1}, x_{k,1}), ..., c_m(x_{i,m}, x_{k,m})$
- relations $R = (r_1 = \{(v_1, v_2), (v_3, v_4), ...\}, ..., r_m = \{(v_o, v_p), (v_q, v_r), ...\}),$

Find solution = $(x_1 = v_1 \in d_1, ..., x_n = v_n \in d_n)$ such that for all constraints, value combinations are allowed by relations Can express most NP problems

Example of a CSP: Resource Allocation

Goal: assign ressources to tasks T1 - T4:

Resource Allocation (2)

CSP model:

- Variables = Tasks
- Domains = Resources that can carry out the task
- Constraints = between each pair of tasks that overlap in time
- Relations = inequality relations

Solving a CSP

Importance of CSP: large theory and tools for computing solutions. Common methods:

- backtrack search: assign one variable at a time, backtrack when no assignment without satisfying constraints
- dynamic programming: eliminate variables and replace by constraints until a single one remains
- local (parallel) search: start with random assignment, make changes to reduce number of constraint violations

Distributed CSP (DCSP)

- Problem is distributed in a network of agents
- Each variable belongs to one agent
- Constraints are known to all agents with variables in it
- Distributed ≠ parallel: distribution of variables to agents cannot be chosen to optimize performance

Algorithms for solving DisCSP

- ① Distributed backtracking:
 - synchronous
 - asynchronous
- ② Dynamic programming
- Local search

All algorithms require an *ordering* of agents.

Synchronous Backtracking

- first agent generates a partial solution for x1, k=2
- k-th agent generates an extension to this partial solution
- if solution cannot be extended, k=k-1
- \bullet if solution can be extended, k=k+1
- if k < 1, stop: unsolvable
- $oldsymbol{o}$ unless k > n, goto 2
- solution = current assignment

Constraint Satisfaction Problem Backtracking Dynamic Programming Distributed local search

Improvements

Synchronous backtracking allows common CSP heuristics:

- forward checking: partial instantiations extended to future agents
- dynamic variable ordering: select next variable according to domain size
- \Rightarrow strong efficiency gains

Implementing CSP heuristics

Distributed forward checking:

- $A(x_k)$ sends $(x_1 = v_1, ..., x_k = v_k)$ to all $A(x_i), j > k$
- $A(x_j)$ initiates backtrack at x_k whenever domain becomes empty

Dynamic variable ordering:

- $A(x_i)$ sends back size of remaining domain for x_i
- $A(x_k)$ chooses smallest one to be x_{k+1}

Asynchronous Backtracking

- Agents work in parallel without synchronization
- Global priority ordering among variables (ex.: unique processor id); assume x_i has higher priority than x_j whenever i < j
- Asynchronous message delivery, but all messages arrive in order in which they were sent
- Performance similar to synchronous backtracking

Distributed Monte-Carlo search

- Monte-Carlo search: search for an optimal solution by generating candidates randomly and observing their quality.
- Deliberative agent: search in 2 phases:
 - cost estimation using random sampling
 - value assignment picking the values that seem best
- Different branches of a tree are independent: sampling can run in parallel.
- Generalize to constraint graphs with cycles by using a pseudotree ordering.

Pseudotrees

Depth-first search traversal:

- move to neighbour not yet visited
- connect neighbours already in graph by back edges
- backtrack when no new neighbour

All edges connect to ancestors

 \Rightarrow no edges *between* nodes in different

Cost Estimation

- Each variable receives a context from its ancestors.
- For each context, samples different values for its own variable and forwards to its descendants.
- Generalize from *conflicts* to *cost* of constraint (violations).
- Leaf nodes compute cost and send up to direct ancestor.
- Ancestor forms averages of samples and sends up to its own ancestor.

Cost Estimation(2)

Value Assignment

- Root picks optimal value and sends to descendants as value contexts.
- Descendants pick optimal values depending on the context received from ancestors and results of Monte-Carlo sampling.

Value Assignment (2)

Distributed UCT

- DUCT algorithm implements distributed Monte-Carlo search.
- Uses random sampling controlled by multi-armed bandit model.
- Model = upper confidence bound in trees (as in game tree search)
- Orders of magnitude faster than systematic search.

Problems with backtrack search

- Every step in the search requires at least one message ⇒ number of messages grows exponentially with variables
- Message delivery is much slower than computation ⇒ process does not scale to large problems
- Better: fewer large messages

Dynamic Programming

- Principle: replace variables by constraints
- Consider variable x having constraint with y
- For each value of x, there may be a consistent value of y
- \Rightarrow replace y by a constraint on x: x=v is allowed if there is a consistent value of y
 - Optimization version:

$$utility(x=v) = utility(x=v,y=w);$$

 $w = best possible value of y given x=v$

Example

- y sends constraint in util(x) message
- ⇒ x can decide (best) value locally
 - x informs y of value using value(x) message

Dynamic programming in trees

- Rooted tree: every node has exactly one parent
- Nodes send util messages to their parents
- Best values of x3, x4 ⇒ unary constraint on x2
- x2 sums up util messages + own constraint ⇒ unary constraint on x1
- x1 picks best value v(x1); sends $value(x1=v(x1)) \rightarrow x2$
- x2 picks best value given x1 and informs x3,x4

Dynamic Programming in Graphs

- Pseudo-trees: util messages are for all values in the context, not just the parent.
- Two messages per variable (util and value) ⇒ number of messages grows linearly with the size of the problem
- However, maximum message size grows exponentially with the tree-width of the induced graph (maximum number of backedges)

Dynamic Programming in Graphs

- Generalization to Pseudo-trees: UTIL messages are for all values in the context, not just the variable.
- Two messages per variable (Util and Value)
- ⇒ number of messages grows linearly with the size of the problem
 - However, the maximum message size grows exponentially with the tree-width of the induced graph (maximum number of backedges)
 - In many distributed problems, the tree-width is relatively small

Constraint Satisfaction Problem Backtracking Dynamic Programming Distributed local search

Distributed local search

Local search:

- initialize variables to arbitrary values
- iteratively make local improvements
- stop when no more improvements are found

Advantages: simple to implement, low complexity

Disadvantage: incomplete, usually only gets within 2-3% of the

best solution

Constraint Satisfaction Problem Backtracking Dynamic Programming Distributed local search

Min-conflicts

- Assign random value to each variable in parallel (this will conflict with some constraints)
- At each step, find the change in variable assignment which most reduces the number of conflicts
- Corresponds to search by "hill-climbing"

Distributed min-conflicts

- Neighbourhood of $N(x_i)$ = variables connected to x_i through constraints
- Change to x_i can happen asynchronously with others as long as there is no other change in the neighbourhood
- ⇒ two neighbouring agents are not allowed to change simultaneously:
 - highest improvement wins
 - ties broken by fixed ordering
- ⇒ parallel, distributed execution

Example: resource allocation

Variables:

$$x_1 \in \{B, C\}$$

 $x_2 \in \{A, C\}$
 $x_3 \in \{B, C\}$
 $x_4 \in \{A, B\}$

\Rightarrow neighbourhoods:

$$N(x_1) = \{x_2, x_3, x_4\}$$

$$N(x_2) = \{x_1, x_3, x_4\}$$

$$N(x_3) = \{x_1, x_2\}$$

$$N(x_4) = \{x_1, x_2\}$$

Constraints:

$$C(x_1, x_2) : \{(B, A), (B, C), (C, A)\}$$

 $C(x_1, x_3) : \{(B, C), (C, B)\}$
 $C(x_1, x_4) : \{(B, A), (C, B), (C, A)\}$
 $C(x_2, x_3) : \{(A, B), (A, C), (C, B)\}$
 $C(x_2, x_4) : \{(A, B), (C, A), (C, B)\}$

Example (min-conflicts)

Initial assignment:

$$(x1 = B, x2 = A, x3 = B, x4 = A)$$

 \Rightarrow 2 conflicts: $c(x1,x3)$ et $c(x2,x4)$

1st step:

change	conflicts	nconf
x1 o C	c(x2,x4)	1
$x2 \to C$	c(x1,x3)	1
$x3 \rightarrow C$	c(x2,x4)	1
$x4 \to B$	c(x1,x3),c(x1,x4)	2

Accept $x_1 \to \mathcal{C}$, changes to x_2, x_3 and x_4 blocked because of neighbourhood

(Possible simultaneous change: x_3 and x_4)

Example (min-conflicts)...

$$(x1 = C, x2 = A, x3 = B, x4 = A)$$

 $\Rightarrow 1 \text{ conflict: } c(x2,x4)$

2nd step:

change	conflicts	nconf	
$x1 \rightarrow B$	c(x1,x3), c(x2,x4)	2	
$x2 \to C$	c(x1,x3), c(x2,x4) c(x1,x2)	1	
$x3 \to C$	c(x1,x3),c(x2,x4)	2	
x4 o B	-	0	
accept $(x4 \rightarrow B) \Rightarrow$ solution:			
(x1 = C, x2 = A, x3 = B, x4 = B)			

Asynchronous assignments

Basic procedure for assigning values:

- select value $x_i = v_j$
- ② send OK? $(x_i = v_j)$ message to each neighbour
- **3** receive $OK(x_k = ..)$ message from each neighbour x_k
- \Rightarrow each agent knows the values of its neighbours

Asynchronous changes

If conflicts:

- Agent view ⇒ find best possible improvement by changing own value
- broadcast improvement to neighbours
- receive improvements from neighbours

evaluate if:

- own improvement > every neighbour x_j 's, or
- own improvement ≥ every neighbour x_j's and x_i has higher priority than every x_j with equal improvement
- ⇒ assign different value if condition is satisfied

Example 2 (min-conflicts)

Initial assignment:

$$(x1 = B, x2 = A, x3 = B, x4 = A)$$

 \Rightarrow 2 conflicts: $c(x1,x3)$ et $c(x2,x4)$

1st step:

change	conflicts	nconf		
x1 o C	c(x2,x4)	1		
$x2 \to C$	c(x1,x3)	1		
$x3 \rightarrow C$	c(x2,x4)	1		
$x4 \to B$	c(x1,x3),c(x1,x4)	2		
accept (x2 \rightarrow C)				

Example 2 (min-conflicts)...

$$(x1 = B, x2 = C, x3 = B, x4 = A)$$

 $\Rightarrow 1 \text{ conflict: } c(x1,x3)$

2nd step:

conflicts	nconf
c(x1,x2)	1
c(x1,x3),c(x2,x4)	2
c(x2,x3)	1
c(x1,x3),c(x1,x4)	2
	c(x1,x2) c(x1,x3),c(x2,x4) c(x2,x3)

no improvement possible: local minimum!

Breakout Algorithm

- ullet Similar to min-conflict, but assign dynamic priority to every conflict (constraint), initially =1
- Modify variable which reduces the most the sum of the priority values of all conflicts.
- When local minimum:

increase weight of every existing conflict

Eventually, new conflicts will have lower weight than existing ones ⇒ breakout

Constraint Satisfaction Problem Backtracking Dynamic Programming Distributed local search

Local minima

If all improvements = 0:

- increase weight of all constraint violations
- restart asynchronous changes

Termination detection

- If constraint violation: $t count \leftarrow 0$
- If no constraint violation: $t count \leftarrow t count + 1$
- Send t count to neighbours
- When receiving $t count_j$ from another agent: $t count \leftarrow min(t count, t count_j)$
- Termination when t count > d, d = max. distance of any agent
- Requires synchronous communication with time bounds

Assume initial choice = local minimum:

$$(x1 = B, x2 = C, x3 = B, x4 = A)$$

1 conflict $c(x1, x3)$

- A1: $x1 \rightarrow C$: c(x1,x2); improvement = 0
 - A2: $t count \leftarrow 1$
 - A3: $x3 \rightarrow C$: c(x2, x3); improvement = 0
 - A4: $t count \leftarrow 1$
- \Rightarrow local minimum for A1, A3
- \Rightarrow increase weight of existing conflict c(x1, x3)

```
Increased weight \rightarrow conflict weight = 2 A1: \times 1 \rightarrow C: c(\times 1, \times 2); improvement = 1 A2: t-count \leftarrow min(1,0) = 0 A3: \times 3 \rightarrow C: c(\times 2, \times 3); improvement = 1 A4: t-count \leftarrow min(1,0) = 0 \Rightarrow A1 higher in priority order \Rightarrow accept change \times 1 \Rightarrow C
```

- (x1 = C, x2 = C, x3 = B, x4 = A)1 conflict c(x1, x2)
- A1: $x1 \rightarrow B$: c(x1, x3); improvement = -1A2: $x2 \rightarrow A$: c(x2, x4); improvement = 0A3: $t - count \leftarrow 1$ A4: $t - count \leftarrow 1$
- local minimum for A1,A2
- increase weight of existing conflict c(x1, x2)

- ullet Increased weight o conflict weight =2
- A1: $x1 \rightarrow B$: c(x1, x3); improvement = 0

A2:
$$x2 \rightarrow A$$
: $c(x2, x4)$; improvement = 1

A3:
$$t - count \leftarrow min(1,0) = 0$$

A4:
$$t - count \leftarrow min(1, 0) = 0$$

- ⇒ A2 higher improvement
- \Rightarrow accept change $x2 \Rightarrow A$

- (x1 = C, x2 = A, x3 = B, x4 = A)1 conflict c(x2, x4)
- A1: $t count \leftarrow 1$ A2: $x2 \rightarrow C$: c(x1, x2); improvement = -1
 - A3: $t count \leftarrow 1$
 - A4: $x4 \rightarrow B$: consistent; improvement = 1
- \Rightarrow change $x4 \rightarrow B$

Detecting Termination

```
A1: t - count \leftarrow 1 \leftarrow 2 > d

A2: t - count \leftarrow 1 \leftarrow 2 > d

A3: t - count \leftarrow 1 \leftarrow 2 \leftarrow 3 > d

A4: t - count \leftarrow 1 \leftarrow 2 \leftarrow 3 > d

\Rightarrow solution: (x1 = C, x2 = A, x3 = B, x4 = B)
```

Summary

- Distributed coordination = no central coordinator.
- Social Laws rarely feasible.
- Distributed Contract Nets: problems with convergence
- Distributed Constraint Satisfaction
 - Backtrack search algorithms
 - Dynamic Programming
 - Local search