

Travel Review Segmentation

Abstract:

Understanding the tastes of each user and the characteristics of each product is necessary to predict how a user will respond to a new product. This latent user and product dimensions can be discovered with the help of user feedback. A numeric rating and its accompanying text review is the most widely available form of user feedback. A measure which encapsulates the contents of such reviews is often necessary as they have been found to significantly influence the shopping behaviour of users. A fine-grained form of such measure that could act as perfect feedback about the product is a star rating. The review rating prediction tries to predict a rating corresponding to the given review.

Problem Statement:

Given the google rating data, use a hierarchical clustering algorithm to cluster reviews.

Dataset Information:

This data set is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and the average user rating per category is calculated.

Variable Description:

Column	Description
User	Unique user id
Attribute 1	Average ratings on churches
Attribute 2	Average ratings on resorts

Attribute 3	Average ratings on beaches
Attribute 4	Average ratings on parks
Attribute 5	Average ratings on theatres
Attribute 6	Average ratings on museums
Attribute 7	Average ratings on malls
Attribute 8	Average ratings on zoo
Attribute 9	Average ratings on restaurants
Attribute 10	Average ratings on pubs/bars
Attribute 11	Average ratings on local services
Attribute 12	Average ratings on burger/pizza shops
Attribute 13	Average ratings on hotels/other lodgings
Attribute 14	Average ratings on juice bars
Attribute 15	Average ratings on art galleries
Attribute 16	Average ratings on dance clubs
Attribute 17	Average ratings on swimming pools
Attribute 18	Average ratings on gyms
Attribute 19	Average ratings on bakeries
Attribute 20	Average ratings on beauty & spas
Attribute 21	Average ratings on cafes
Attribute 22	Average ratings on viewpoints
Attribute 23	Average ratings on monuments
Attribute 24	Average ratings on gardens

Scope:

- Analyzing the existing data and getting valuable insights about the review pattern
- Data pre-processing including missing value treatment
- Cluster the reviews based on the optimum number of clusters ('k') with the help of dendrogram

Learning Outcome:

The students will get a better understanding of how the variables are linked to each other and will be able to apply hierarchical clustering to determine review types.