Lec 15 Strategic Issues in DA algorithm

Consider the new-proposing version of this algorithm The earlier example of a preference profile

	Pm,	Pm2	P _{m3}	Pw,	Pw2	Pws			
	wz	ω_1	ω_1	imi	mz	m,	i	1	m
	wı	ω_3	W2	m3				31	m2
				1m2/				nzz	
			1	· - <					
Touth	nl:	$w_1 \rightarrow w$	2	m,-W2		$m_2 \rightarrow$	ω_3	m ₂	- W3
		$m_2 \rightarrow$	W,	m2-w					

Can anyone improve by a misneport of the preference let we report more many my my my

$$m_1 \rightarrow w_2$$
 $m_1 - w_2$ $m_3 \rightarrow w_2$ $w_2 \times m_1$ $w_2 - m_3$ $m_2 \rightarrow w_1$ $m_2 - w_1$ $m_1 \rightarrow w_1$ $w_1 - w_1$

Theorem: The men (women)-proposing DA algorithm is strategyproof for men (women).

d: Can there be a mechanism that is truthful for both?

Theorem: No stable matching algorithm can be Strategyproof for both men and women.

- Some open nesearch directions in matching
 - · Fairness considerations is there a stable match that is more egalitarian for both men and women
 - · Feasibility / multiple attributes Be the kidney exchange problem- it is a house allocation but not everyone can neceive any kidney.
 - Similarly, if preferences are multiglimensional, one preference for each attribute -
 - students to universities
 - advertisers to viewers
 - · Monetary transfero classical quasi-linear setting - questions of nevenue can be asked.

Strategic Network Formation

Networks are formed via connections between individuals. We ask for the incentives for individuals to form links - and neason for which sont of networks may result due to their strategic choices.

Game Theonetic model of network formation

- costs and benefits for agents associated with networks
- agents are The nodes, and they choose links
 - · countries with trade relations

 - · people choosing friends · researchers with nesearch an collaborations · employees with companies
- Contrast individual and social choices.

Modeling choices for adding/forming links

- consensus needed (undinected/directed)

- coordinate changes (network structures, influence)

- dynamic on static

- sophisticated agents - can compute the values

- can they compensate each other to form links?

- links adjustable in intensity.

questiono:

1. Which networks are likely to form?

2. Stable against perturbations?

3. Efficient from a global perspective? - Government subsidies

4. How inefficient they are if not efficient?

5. Can intervention help improve efficiency?

Jackson-Wolinsky (996) model of network formation

· $u_i(g)$: payoff to agent i if the a network

Connections model (JW 1996)

- · 0 (8 ij < 1 ··· a benefit parameter for connection between i and j
- 0 < Cij cost to i to maintain a link with j
- l(i,j) length of the shortest path between i and j

utility model: $u_i(g) = \sum_{j \in N \in \mathcal{I}} \ell(i,j)$ - ∑ cik KENi(g)

- Nach equilibrium: no agent can gain from a unilateral deviation.

Not a good notion:

Both are NE but unsatisfactory since it says anything can happen

Any reasonable model should allow to form the link.

Other equilibrium notions have similar trouble - The off-the-shelf concepts from now-cooperative game theory may not work.

Pairise stability

Corrent links
No single agent gain by deleting a link
No pair of agent gains by adding a link

b) $\forall (ij) \notin g \quad \forall \quad u_i(g + (ij)) > u_i(g)$ Them $u_j(g + (ij)) < u_j(g)$.

This is weak assumption - minimal to work with

pair mise 2.33 2.33 2.78 2.5

Note: The paintise stable network gives wonse payoff than the some mustable ones.

- Individual incentives drag the network from that optimal network.

15-6)
Pareto efficiency
A network g is PE if If g' s.t.
ui(g') > ui(g) tien and strict for some jew.
Efficiency: $g \in argmax \Sigma u_i(g)$. $g \in l_x \in M$
uti litariam
Efficient => PE. IPE => I EFF.
Explanation using the previous example.
-> Back to connections model (8, C) - symmetric version
Thomasion Consider efficient networks
Theonem: When $C < 8 - 8^2$ [low cost]
classical - complete network is uniquely office.
classical - complete network is uniquely efficient. market . When $8-8^2 < c < 8 + (n-2)8^2/2$ [medium wst]
twazon/ - star networks with all agents are uniquely Tlipkart efficient.
Flipkart efficient.
. When $8+(n-2)8^2/2 < C$ [high cost]
RIP trade platformé - empty network is uniquely efficient.
1411 - Cl-> 0 2
Why Staro? 48+282-40 With given number of links, staro are
48+282-40 0 With given number of links, staro are
links, staro are
most efficient way.
to connect in dividuals.
$68 + 68^2 - 6c$ $68 + 48^2 + 28^3 - 6c$
indirect connections are longer
U

88 +482-8c

made some indinect connections direct - There by more benefit so but in creased the cost

When is the gain more than the west if $8-8^2 > e$, adding direct link is beneficial.

Proof: If ij are not directly connected Than the benefit is at most 82. If they are connected, 8-c is the west benefit but 8-c>82 have in the low cost region. Hence adding the edge is always beneficial. Others are excelly better.

Part 2: c>8-82: first show that The value of a component is maximum when the component is a star

· value of a star with k players is $2(k-1)(8-c) + (k-1)(k-2) 8^{2}$

· value of a network with k players and m links (m), k-1 is at most $2m(8-c) + (262) 2(k/2) - 2m) 6^2$

The difference between value of star (2)—m mais and value of any other network is at least counted twice 2 (m-(k-1)) [82-(8-c)]>0 if m>k-1 in a negion 82 >8-c

 $\binom{k}{2}$ -m indirect links for each player

If m=k-1 and not a star, then some pair of modes is at a distance of more than 2, so less value than a star: - star is better. Can two stars be better than one star?

Exercise: show that two stars to with k and k' nodes give less uti welfare than one consolidated star.

Part 3: Finally, whether to keep a star on empty look at a star of size n - if the total utility is >0 Then & star is optimal

 $2(n-1)(8-c) + (n-1)(n-2)8^2 > 0$ \Rightarrow c < $\delta + (n-2)\delta^2/2$

else empty is better [giver cases 2 and 3] II.

Pair mise stability

Low cost: c < 8-82 - complete network is pairwise stable medium/low cost: $8-8^2 < c < 8$

- star is pair wise stable

- Others are too

medium/high wst: SCC \ St(n-2)82/2

- star is not pairwise stable

high wst: c) 8+(n-2)82/2

- empty is pairwise stable.