Financing Innovation with Innovation

Zhiyuan Chen

Minjie Deng Renmin University Simon Fraser University University of Florida

Min Fang

May 21, 2023 @Midwest Macro Clemson

► Known: Financing innovation is hard

- ► Known: Financing innovation is hard
- One essential reason: the stock of innovation cannot be used as collateral (more specifically, "patent as collateral" was not a common practice)

- ► Known: Financing innovation is hard
- One essential reason: the stock of innovation cannot be used as collateral (more specifically, "patent as collateral" was not a common practice)
- Less known: "patent as collateral" is now much more popular in the industry

- ▶ Known: Financing innovation is hard
- One essential reason: the stock of innovation cannot be used as collateral (more specifically, "patent as collateral" was not a common practice)
- Less known: "patent as collateral" is now much more popular in the industry
 - 1. What's the micro foundation of "patent as collateral"?

- ▶ Known: Financing innovation is hard
- One essential reason: the stock of innovation cannot be used as collateral (more specifically, "patent as collateral" was not a common practice)
- Less known: "patent as collateral" is now much more popular in the industry
 - 1. What's the micro foundation of "patent as collateral"?
 - 2. What's the implication of "patent as collateral" for innovation and macro?

- ▶ Known: Financing innovation is hard
- One essential reason: the stock of innovation cannot be used as collateral (more specifically, "patent as collateral" was not a common practice)
- Less known: "patent as collateral" is now much more popular in the industry
 - 1. What's the micro foundation of "patent as collateral"?
 - 2. What's the implication of "patent as collateral" for innovation and macro?
- ► Takeaway: Firms could finance innovation (R&D) with innovation (patents), and there is positive output and welfare gain from such financial development

Motivation Fact 1: Aggregate Trend

- Both numbers and ratios of pledged patents are raising
- ▶ US has a more developed "patent as collateral" market than China

- (a) Number of Pledged Patents (Aggregate)
- (b) Ratio of Pledged Patents (Aggregate)

Motivation Fact 2: An Interview with a CEO in the Industry

We interviewed a CEO who started a patent valuation company in Beijing, and below is the flow chart of how "patent as collateral" works:

Figure: Flow chart of obtaining patent-backed Loans

Motivation Fact 2: An Interview with a CEO in the Industry

We interviewed a CEO who started a patent valuation company in Beijing, and below is the flow chart of how "patent as collateral" works:

Figure: Flow chart of obtaining patent-backed Loans

- ▶ Patent valuation agents (PVA) are the key
- Two things matter: fixed inspection cost + liquidation value in the report

Motivation Fact 3: Firm-level Evidence

- Ratios of participation are increasing in both countries at firm-level
- ▶ Ratios of pledged patents are at different trends at firm-level

(a) Ratio of Participation (Firm-level)

(b) Ratio of Pledged Patents (Firm-level)

Motivation Fact 4: Financing Innovation with Innovation

▶ How firms borrow and R&D since the first time using patents as collateral?

$$Y_{it} = \alpha + \beta PC_{it} + \gamma \mathbf{Z}'_{it} + \lambda_i + \lambda_t + \xi_{it}, \tag{1}$$

 $ightharpoonup PC_{it}$ is a dummy = 1 after the firm started using patents as collateral

Motivation Fact 4: Financing Innovation with Innovation

▶ How firms borrow and R&D since the first time using patents as collateral?

$$Y_{it} = \alpha + \beta PC_{it} + \gamma \mathbf{Z}'_{it} + \lambda_i + \lambda_t + \xi_{it}, \tag{1}$$

 $ightharpoonup PC_{it}$ is a dummy = 1 after the firm started using patents as collateral

Panel (a) US Data									
		lev	erage		log(R&D)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
PC	0.008***	0.006***	0.003**	0.003**	0.068***	0.028***	0.025***	0.025***	
	(0.001)	(0.001)	(0.001)	(0.001)	(0.008)	(0.007)	(0.008)	(0.008)	
L.log(asset)		0.033***	0.046***	0.046***		0.575***	0.589***	0.602***	
		(0.001)	(0.001)	(0.001)		(0.005)	(0.007)	(0.008)	
L.Tobin's Q			0.526***	0.521***			0.028	-0.013	
			(0.003)	(0.003)			(0.021)	(0.021)	
L.ROE			-0.052***				-0.211***		
			(0.003)				(0.025)		
L.ROA				-0.105***				-0.843***	
				(0.010)				(0.070)	
N	102093	92128	48821	48822	46953	41648	20678	20679	
adj. R ²	0.754	0.778	0.890	0.889	0.944	0.960	0.970	0.970	

Motivation Fact 4: Financing Innovation with Innovation

▶ How firms borrow and R&D since the first time using patents as collateral?

$$Y_{it} = \alpha + \beta PC_{it} + \gamma \mathbf{Z}'_{it} + \lambda_i + \lambda_t + \xi_{it}, \qquad (2)$$

 $ightharpoonup PC_{it}$ is a dummy = 1 after the firm started using patents as collateral

Panel (b) Chinese Data									
		lev	erage	log(R&D)					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
PC	0.031***	0.022**	0.021**	0.020**	0.168***	0.105**	0.100*	0.098*	
	(0.010)	(0.009)	(0.009)	(0.009)	(0.056)	(0.053)	(0.053)	(0.053)	
L.log(asset)		0.052***	0.072***	0.072***		0.610***	0.633***	0.634***	
		(0.003)	(0.003)	(0.003)		(0.022)	(0.023)	(0.023)	
L.Tobin's Q			0.016***	0.018***			0.044***	0.042***	
			(0.001)	(0.001)			(0.009)	(0.009)	
L.ROE			-0.237***				1.017***		
			(0.017)				(0.129)		
L.ROA			, ,	-0.777***			, ,	2.605***	
				(0.030)				(0.222)	
N	24000	20971	20325	20327	21901	19204	18651	18653	
adj. R ²	0.725	0.752	0.763	0.774	0.808	0.840	0.844	0.845	

Takeaways from the Motivation Facts

- ▶ "Patent as collateral" is getting more and more popular in the aggregation
- ► The valuation agents are key: inspection cost + liquidation value
- ► Ratios of participation are raising at firm-level
- Firms' leverage and innovation increase upon starting using "patent as collateral"

A Minimum Het-Firm GE Model

Innovative Firms

Production:

$$y_{it} = (z_{it}a_{it}^{\gamma})k_{it}^{\alpha}l_{it}^{\gamma}, \gamma + \alpha + \nu < 1; \log(z_{it}) = \rho_z \log(z_{it-1}) + \sigma_z \varepsilon_{it}$$

Optimal labor/capital choices:

$$l_{it}^* = \left[\left(\frac{\nu}{w_t} \right)^{1-\alpha} \left(\frac{\alpha}{r_t^k} \right)^{\alpha} z_{it} a_{it}^{\gamma} \right]^{\frac{1}{1-\alpha-\nu}} \text{ and } k_{it}^* = \left[\left(\frac{\nu}{w_{it}} \right)^{\nu} \left(\frac{\alpha}{r_t^k} \right)^{1-\nu} z_{it} a_{it}^{\gamma} \right]^{\frac{1}{1-\alpha-\nu}}$$

Net revenue:

$$f(z_{it}, a_{it}) = \max_{k,l} \left\{ y_{it} - w_t l_{it} - r_t^k k_{it} \right\} = \left(\frac{\nu}{w_t} \right)^{\frac{\nu}{1 - \alpha - \nu}} \left(\frac{\alpha}{r_t^k} \right)^{\frac{\alpha}{1 - \alpha - \nu}} \left(z_{it} a_{it}^{\gamma} \right)^{\frac{1}{1 - \alpha - \nu}}$$

Financing: inspection cost is uniformly distributed $\xi \in [0, \bar{\xi}]$ paid in labor units.

$$b_{it}(1+r_t) \leqslant \begin{cases} \chi(1-\delta_a)a_{it} & \text{if } F_{it} = A\\ 0 & \text{if } F_{it} = N \end{cases}$$

Recursive Problem for Innovation Firm

First stage: optimal choices of pledge, innovation, and debt:

$$\pi^*(z_{it}, n_{it-1}, F_{it}) = \max_{a_{it}, b_{it}} \{ f(z_{it}, a_{it}) + (1 - \delta^a) q_t^a a_{it} - (1 + r_t) b_{it} \},$$
 (3)

$$\xi^*(z_{it}, n_{it-1}) = \frac{\pi^*(z_{it}, n_{it-1}, A) - \pi^*(z_{it}, n_{it-1}, N)}{w_t}.$$
 (4)

subject to both constraints

$$q_t^a a_{it} = n_{it-1} + b_{it}, (5)$$

$$b_{it}(1+r_t) \leqslant F_{it} \cdot \chi(1-\delta_a)a_{it}. \tag{6}$$

Second stage: optimal dividend policy

$$v(z_{it}, n_{it-1}, F_{it}) = \max_{d_{it}} \left\{ d_{it}(z_{it}, n_{it-1}, F_{it}) + E[\Lambda_{t+1}v(z_{i,t+1}, n_{it})] \right\}$$
(7)

subject to net worth accumulation

$$n_{it}(z_{it}, n_{it-1}, F_{it}) = \pi^*(z_{it}, n_{it-1}, F_{it}) - d_{it}(z_{it}, n_{it-1}, F_{it}) - \xi_{it}$$
(8)

Other Firms, Household, and GE

- ▶ Physical Capital Producer: $\Phi(I_t^k/K_t) = I_t^k + \frac{1}{2} \Phi_k (I_t^k/K_t \delta_k)^2 K_t$
- ▶ Innovation Capital Producer: $Φ(I_t^a/A_t) = \left(\frac{I_t^a/A_t}{\delta_a}\right)^{1/\Phi_a}$
- ► Households: $E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\eta}}{1-\eta} \psi L_t \right)$ s.t. $C_t + \frac{1}{1+r_t} B_t \leqslant B_{t-1} + W_t L_t$
- ► Households FOCs:

$$W_t = -\frac{U_t(C_t, L_t)}{U_c(C_t, L_t)} = \psi C_t^{\eta}; \Lambda_{t+1} = \frac{1}{1+r_t} = \beta \frac{U_c(C_{t+1}, L_{t+1})}{U_c(C_t, L_t)} = \beta \left(\frac{C_t}{C_{t+1}}\right)^{\eta}$$

We solve both steady states and transaction paths for both US and China

Parameterization of Steady States

Table: Fixed Parameters

Parameter	Description	Value
β	Discount factor	0.96
η	Log utility	1
ψ	Leisure preference	2
α	Physical capital share	0.20
γ	Innovation capital share	0.15
ν	Labor share	0.50
δ_k	Physical capital depreciation rate	0.10
δ_a	Innovation capital depreciation rate	0.20

Table: Fitted Parameters

Parameter	Description	U.S.	China
ξ	Inspection cost of innovation collateral	0.0011	1.21
χ	Innovation capital liquidation value	0.32	0.117
ρ_z	Productivity persistence (fixed)	0.90	0.90
σ_z	Productivity volatility	0.032	0.10

Table: Targeted Average Firm-level Moments

	1	US	Ch	nina
	Data	Model	Data	Model
Ratio of pledged patents (%)	13.91	14.20	0.47	0.47
Ratio of participation firms (%)	55.84	54.75	1.06	1.09
Patent assets std/mean (%)	56.60	55.03	121.70	121.20 =

The Roles of Patent Collateral Barriers

The Dynamics of Patent Collateral Barriers

(c) Dynamics of Inspection Cost

(d) Dynamics of Liquidation Value

Financing Innovation with Innovation in the Model

Table: Responses of Leverage and R&D to Patent Collateral in the Model

Panel (a) US Model										
		lev	erage		log(R&D)					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
PC	0.0674***	0.0588***	0.0426***	0.0336***	0.2012***	0.2502***	0.0498***	0.0516***		
	(0.0004)	(0.0005)	(0.0005)	(0.0006)	(0.0020)	(0.0022)	(0.0015)	(0.0015)		
L.log(asset)		0.0011***	-0.0005	0.0847***		-0.1240***	-0.1217***	0.0636***		
		(0.0004)	(0.0004)	(0.0012)		(0.0018)	(0.0013)	(0.0042)		
L.tobin's Q			0.2588***	0.1890***			3.6309***	3.4030***		
			(0.0016)	(0.0019)			(0.0067)	(0.0076)		
L.ROE			-1.3473***				-11.1536***			
			(0.0555)				(0.3489)			
L.ROA				-0.8417***				-1.9852***		
				(0.0112)				(0.0401)		
N	500000	450000	400000	400000	449931	449931	399938	399938		
adj. R ²	0.073	0.043	0.123	0.138	0.016	0.030	0.594	0.591		

Financing Innovation with Innovation in the Model

Panel (b) Chinese Model									
		leve	rage		log(R&D)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
PC	0.0235***	0.0255***	0.0257***	0.0265***	0.1407***	0.0636***	0.1113***	0.1065***	
	(0.0003)	(0.0004)	(0.0004)	(0.0004)	(0.0081)	(0.0073)	(0.0057)	(0.0056)	
L.log(asset)		-0.0001***	0.0001***	-0.0008***		0.1281***	0.1901***	0.1893***	
		(0.0000)	(0.0000)	(0.0000)		(0.0015)	(0.0012)	(0.0013)	
L.tobin's Q			0.0037***	0.0067***			1.3326***	1.3322***	
			(0.0001)	(0.0002)			(0.0040)	(0.0049)	
L.ROE			0.1238***				-0.1999***		
			(0.0043)				(0.0720)		
L.ROA			, ,	0.0139***			, ,	0.0073	
				(0.0004)				(0.0078)	
N	500000	450000	400000	400000	426936	426936	379459	379459	
adj. R ²	0.127	0.134	0.180	0.185	0.002	0.053	0.445	0.445	

What if China has US-level Barriers?

Table: What if China has US-level barriers?

Model Outcomes	Benchmark	$\hat{\xi}^{CN} = \bar{\xi}^{US}$	$\hat{\chi}^{CN} = \chi^{US}$	Both as US
Financing Innovation				
Ratio of pledged patents	0.47%	5.53%	4.30%	16.69%
Ratio of participation firms	1.09%	29.53%	3.09%	30.71%
Economic Outcomes				
Changes in Total Output	-	1.50%	1.02%	4.67%
Changes in Total Capital	-	1.50%	1.00%	4.68%
Changes in Total Patent	-	2.88%	1.54%	8.97%
Changes in Total Consumption	-	0.44%	0.63%	1.40%
Changes in Total Welfare		0.42%	0.13%	1.27%

- ▶ Both changes are good for innovation, output, and welfare
- But reducing fixed inspection costs (or subsidizing evaluation) is much more effective than improving the liquidation value of patents

Conclusion

- ▶ "Financing innovation with innovation" is possible and beneficial
- ▶ The key is the development of evaluation agents in the financial market
- ▶ Both fixed inspection costs and liquidation value of patents matters
- Gains in innovation, output, and welfare if further relaxing
- ▶ Reducing fixed inspection costs is the first priority for the early-stage economy