# Lab1

# MAP and Gaussian Datasets



#### Discriminants for Gaussian classes

- MAP decision rule  $\omega_{MAP} = \arg \max_{\omega_i} \Pr(\omega_i | \mathbf{x})$
- Density function for class i:  $f_{\mathbf{x}}(\mathbf{x}|\omega_i) \sim N(\mathbf{\mu}_i, \mathbf{C}_i)$
- A priori probability:  $\Pr(\omega_i)$
- Discriminant function for MAP  $h_i(\mathbf{x}) = \ln f_{\mathbf{x}}(\mathbf{x} | \omega_i) + \ln \Pr(\omega_i) = \\ = -\frac{1}{2} (\mathbf{x} \boldsymbol{\mu}_i)^T \mathbf{C}_i^{-1} (\mathbf{x} \boldsymbol{\mu}_i) \frac{d}{2} \ln(2\pi) \frac{1}{2} \ln |\mathbf{C}_i| + \ln \Pr(\omega_i)$

$$C_i = \sigma^2 I$$

• Three cases for the covariance matrix:  $C_i = C$   $C_i = arbitrary$ 





### Synthetic Gaussian datasets

• Case 1:  $f(x | w_c) = N(\mu_c, \sigma^2 I)$ 

example with c=2 classes, d=3 features (Mlearn\_lab1\_1.ipynb)

in Lab1 code: Variables M means and M covar

• Case 2:  $f(x | w_c) = N(\mu_c, C)$ 

example with c=4 classes, d=2 features (Mlearn\_lab1\_2.ipynb)

Apply MAP for cases 1 or 2:

- discriminant is a linear function
- decision boundaries are hyperplanes (lines for d=2, planes for d=3)
- decision boundary:

$$w^t x + w_0 = 0$$

$$w_1 x_1 + w_2 x_2 + \dots + w_d x_d + w_0 = 0$$





### Synthetic Gaussian datasets

• Case 3:  $f(x \mid w_c) = N(\mu_c, C_c)$  in Lab1 code: Variables M\_means and M\_covar example with c=4 classes, d=2 features (Mlearn\_lab1\_2.ipynb)

#### Apply MAP for case 3:

- discriminant is a quadratic function
- decision boundaries are hyper-quadratic (lines, spheres, ellipsoids, paraboloids, hyperboloids...)

example d=2 
$$x_1^2 A_{11} + x_2^2 A_{22} + x_1 A_{12} x_2 + x_2 A_{21} x_1 + w_1 x_1 + w_2 x_2 + w_0 = 0$$





### Synthetic Gaussian datasets

#### In the Notebooks:

• Case1: c=2 classes, d=3 features (Mlearn lab1 1.ipynb)

$$f(\mathbf{x}|\boldsymbol{\omega}_{c}) = N(\mathbf{m}_{c}, \mathbf{C}); \quad c = 1, 2$$

$$\mathbf{C} = \frac{1}{d}\sigma^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad d = 3 \qquad SNR = 10\log_{10} \left(\frac{average\ energy}{\sigma^{2}}\right) = 10\log_{10} \left(\frac{\mathbf{m}_{c}^{T}\mathbf{m}_{c}}{\sigma^{2}}\right)$$

Run the code several times, using different SNR values (SNR = 3, 0, -3, -10)

Case2: c=4 classes, d=2 features (Mlearn\_lab1\_2.ipynb)

$$f(\mathbf{x}|\omega_c) = N(\mathbf{m}_c, \mathbf{C}); \quad c = 1,...,4$$
  $\mathbf{C} = \frac{1}{d}\sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}; \quad d = 2$ 

Case2: c=4 classes, d=2 features (Mlearn\_lab1\_2.ipynb)



#### Scikit-learn

- <a href="https://scikit-learn.org/stable/">https://scikit-learn.org/stable/</a> open source ML library in Python
- Data representation:
  - feature matrix [n\_samples, n\_features] (NumPy array o Pandas DataFrame)
  - target array [n\_samples] (NumPy array o Pandas Series)
- Scikit-learn Estimator API provides a consistent interface for a wide range of ML applications
- Typically, the steps for using the Scikit-Learn estimator API are the following:
  - 1. Choose a class of model by importing the appropriate estimator class from Scikit-Learn
  - 2. Choose model hyperparameters by instantiating this class with desired values.
  - 3. Arrange data into a features matrix and target vector.
  - 4. Fit the model to the data by calling the fit() method of the model instance
  - 5. Apply the Model to new data:
  - For supervised learning, often we predict labels for unknown data using the predict() method.
  - For unsupervised learning, we often transform or infer properties of the data using the transform() or predict() method.





### Linear and quadratic discriminant analysis in scikit-learn

#### Obtaining linear and quadratic classifiers using scikit-learn:

Classifier design using the training dataset: features in matrix X\_train, labels in vector y\_train

```
# Linear Discriminant Analysis
lda = LinearDiscriminantAnalysis(solver="svd",store_covariance=True)
ldamodel = lda.fit(X_train, y_train)

# Quadratic Discriminant Analysis
qda = QuadraticDiscriminantAnalysis(store_covariance=True)
qdamodel = qda.fit(X_train, y_train)
```

Predicted labels for data in matrix X\_test, labels in y\_test

```
y_tpred_lda = ldamodel.predict(X_test)
y_tpred_qda = qdamodel.predict(X_test)
```





### **Metrics**

- Confusion matrix: provides a by-class comparison between the results of the predicted and the actual classes.
  - Correct classifications are in the diagonal

|                 |        | Predicted class |        |        |
|-----------------|--------|-----------------|--------|--------|
|                 |        | class1          | class2 | class3 |
| Actual<br>class | class1 | x(1,1)          | x(1,2) | x(1,3) |
|                 | class2 | x(2,1)          | x(2,2) | x(2,3) |
|                 | class3 | x(3,1)          | x(3,2) | x(3,3) |

|                 |        | Predicted class |        |        |
|-----------------|--------|-----------------|--------|--------|
|                 |        | class1          | class2 | class3 |
| Actual<br>class | class1 | 5               | 3      | 0      |
|                 | class2 | 2               | 3      | 1      |
|                 | class3 | 0               | 2      | 11     |

Accuracy: measures the proportion of correct classifications (no distinction between classes)

$$A = \frac{\sum_{i=1}^{n} x(i,i)}{\sum_{i=1}^{n} \sum_{j=1}^{n} x(i,j)}$$

• Error rate: 1 - accuracy

$$E = 1 - A$$



## Metrics for binary problems

 Binary classification problem: 2 classes. The class of interest is commonly called the positive class, and the other negative class.

|              |          | Predicted class      |                      |  |
|--------------|----------|----------------------|----------------------|--|
|              |          | positive             | negative             |  |
| Actual class | positive | True positive<br>TP  | False negative<br>FN |  |
|              | negative | False positive<br>FP | True negative<br>TN  |  |

- Accuracy:  $A = \frac{TP + TN}{all} = \frac{TP + TN}{TP + FP + TN + FN}$
- Recall (sensitivity, true positive rate):
- Precision
- False positive rate:

**Error rate:** E = 1 - A

$$R = TPR = \frac{TP}{actual\ positives} = \frac{TP}{TP + FN}$$

$$P = \frac{TP}{predicted\ positive} = \frac{TP}{TP + FP}$$

$$FPR = \frac{FP}{actual\ negative} = \frac{FP}{TN + FP}$$

### Metrics for binary problems

- Receiver Operating Characteristics or ROC curve is a plot of the true positive rate (TPR) against the false positive rate (FPR), obtained varying the classifier threshold.
- One classifier produces a single point in ROC space; plotting the point for each possible threshold results in a curve





Figures: Wikipedia ROC





#### **Metrics**

• Mahalanobis distance: squared Mahalanobis distance between an observation x and a sample distribution with mean  $\mu_2$  and covariance matrix  $C_2$ :

$$D_{M}(x, \boldsymbol{\omega}_{2}) = (x - \mu_{2})^{T} C_{2}^{-1} (x - \mu_{2})$$

squared Mahalanobis distance between two classes:

$$D_{M}(\omega_{1}, \omega_{2}) = \sum_{x \in \omega_{1}} (x - \mu_{2})^{T} C_{2}^{-1} (x - \mu_{2})$$

where the mean and covariance matrix are estimated using the training dataset. Note that this is not a symmetric measure





#### Metrics in scikit-learn

Metrics module: from sklearn.metrics import

Error and confusion matrix:

```
linear_error = 1. - accuracy_score(y_test,y_test_lda)
confusion_matrix(y_test,y_test_lda)
```

Note: ConfusionMatrixDisplay can be used to visually represent a confusion matrix

Receiver Operating Characteristic (ROC)

```
ldaroc = RocCurveDisplay.from_estimator(ldamodel,X_test,y_test, ax=ax[0])
```

- Mahalanobis distance:
  - See def mahalanobis(x=None, data=None, cov=None)



