

Dr. Dan Massey

Replay Attacks:

Not In the Book Review These Slides for Exams

Key Exchange Algorithms

- Goal: Alice, Bob agree on a shared secret key
 - Key cannot be sent in clear
 - Attacker can listen in
 - Could send enciphered key... but enciphered with what key?
 - Could be derived from exchanged data plus data not known to an eavesdropper
 - Assume all cryptosystems, protocols publicly known
 - Adversary knows the protocols and cyrptosystems
 - Anything transmitted is assumed known to attacker

Trusted Third Party Exchange

- Bootstrap problem: how do Alice, Bob begin?
 - Alice can't send key to Bob in the clear!
- Assume some trusted third party, Cathy
 - Alice and Cathy share secret key k_A
 - Bob and Cathy share secret key k_B
 - Some external technique was used to establish shared keys with Cathy
- Can Alice and Bob use Cathy to exchange new Alice/Bob shared key k_s

Naïve Strategy to Lean A Secret Key

Alice

{ request for session key to Bob } k_A

Cathy

Notation: denote a message encrypted by k_A as {msg} k_A

Alice
$$\{k_s\} k_A || \{k_{s'}\} k_B$$

$$\{k_s\} k_B \}$$
Alice $\{k_s\} k_B$
Bob

Alice and Bob now share secret key Ks.

Ks is known only to Alice, Bob, and Cathy. Cathy is a trusted third party.

Alice
$$\{ Buy \ 100 \ shares \ of \ XYZ \ Stock \} k_S \\ \longrightarrow \ \mathsf{Bob}$$

Bob believes this an authentic message from Alice and places the order.

The Replay Attack Problem

- How does Bob know he is talking to Alice?
 - Replay attack: Eve records message from Alice to Bob, later replays it; Bob may think he's talking to Alice, but he isn't
 - Session key reuse: Eve replays message from Alice to Bob, so Bob re-uses session key
- Protocols must provide authentication and defense against replay

Simple Replay Attack

Eve Observed

Two week later Eve launches a replay attack

Eve
$$\{k_s\}k_B$$
 Replays Bob

Bob believes this a new key exchange with Alice, it is signed by Cathy. Eve can now replay the messages Alice previous sent to Bob using Ks.

Eve { Buy 100 shares of XYZ Stock }
$$k_S$$
 Replays Bob

Bob believes this an authentic message from Alice and places the order!

Needham-Schroeder

Alice | Bob | r₁

Alice	→ · · · · · · · · · · · · · · · · · · ·	Cathy
Alice	{ Alice Bob r ₁ k _s { Alice k _s } k _B } k _A	Cathy
Alice	{ Alice <i>k</i> _s } <i>k</i> _B	Bob
Alice	$\{r_2\}k_s$	Bob
Alice	$ \left\{ r_2 - 1 \right\} k_s $	Bob

Protecting Against A Replay (1/2)

- Second msg: { Alice || Bob || r_1 || k_s || { Alice || k_s } k_B } k_A
 - Enciphered using key only Alice and Cathy know
 - So Cathy enciphered it
 - Response to first message
 - As r_1 in it matches r_1 in first message
- Third message: {Alice $|| k_s | k_B$
 - Alice knows only Bob can read it
 - So only Bob can derive session key from message
 - Any messages enciphered with that key are from Bob

Protecting Against a Replay (2/2)

- Third message (Bob's View) : {Alice | k_s } k_B
 - Enciphered using key only Bob and Cathy know
 - So Cathy enciphered it
 - Names Alice and the session key
 - Cathy provided session key, says Alice is other party
- Fourth message. $\{r_2\}k_s$
 - Uses session key to determine if it is replay from Eve
 - If not a replay attack, Alice will respond correctly in fifth message
 - If a replay attack attempt, Eve can't decipher r₂ and so can't respond and any guess at a response is likely to be incorrect

Session Key Compromise Problem

- All keys are related to Cathy remain secret
- But Eve is able to obtain the session key
 - Maybe it was a small key, human error, etc.

Eve
$$\begin{cases} Alice \parallel k_s \} k_B \\ & \qquad \qquad \\ \{r_2\} k_s \end{cases}$$
 Bob
$$\{r_2 - 1\} k_s$$
 Eve
$$\begin{cases} r_2 - 1 \} k_s \end{cases}$$
 Bob

Solution: Denning-Sacco Modification

- In protocol above, Eve impersonates Alice
- Problem: Eve can respond to Bob's message
 - Eve knows Ks and thus can learn r2 and encode r2-1
- Solution: use time stamp T to detect replay
- Weakness: if clocks not synchronized, may either reject valid messages or accept replays
 - Parties with either slow or fast clocks vulnerable to replay
 - Resetting clock does not eliminate vulnerability

Needham-Schroeder with Denning-Sacco Modification

Alice	Alice Bob r ₁	Cathy
Alice	{ Alice Bob r ₁ k _s { Alice T k _s } k _B }	k _A Cathy
Alice	{ Alice T k _s } k _B	Bob
Alice	$\{r_2\}k_s$	Bob
Alice	$\{r_2-1\}k_s$	Bob

Heilmeier Questions

- What are you trying to do? Articulate your objectives using absolutely no jargon.
- How is it done today, and what are the limits of current practice?
- What is new in your approach and why do you think it will be successful?
- Who cares? If you succeed, what difference will it make?
- What are the risks?
- How much will it cost?
- How long will it take?
- What are the mid-term and final "exams" to check for success?