EOSC 211: Some Numerical Integration - Assignment 2 background

Movies

Sketch how you think the spacecraft's flight path and speeds in the two other trajectories will compare with the one shown.

Sketching out the Problem:

1. sketch the direction of the force and acceleration on the spacecraft in A.

2. sketch the spacecraft's position, velocity and acceleration at some time $t = \Delta t$ later in B.

Calculations:

We will use the initial conditions from Part 5 of the assignment:

$$s_{x0} = -3050 \text{ km}$$

$$S_{v0} = -3 * R_{merc}$$

 $v_{v0} = 7$ km/s in the positive y-direction

$$v_{x0} = 0$$

The values for the mass and radius of Mercury and the gravitational constant, G, are

$$M_{merc} = 3.3 \times 10^{23} \text{ kg}$$

$$R_{merc} = 2440 \text{ km}$$

$$R_{merc} = 2440 \text{ km}$$

 $G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$

Step 1: Fill in the initial conditions – ie the x-y coordinates of speed and position of the spacecraft at time t=0 in cols 5-8 of row 1 of the table. Calculate, s the distance of the spacecraft from the planet, and s².

t (s)	Δv_x (m/s)	Δv _y (m/s)	Δs_x (m)	Δs _y (m)	v _x (m/s)	v _y (m/s)	s _x (m)	s _y (m)	s ² (m)	a (m/s ²)	a_x (m/s^2)	$\frac{a_y}{(m/s^2)}$
0	XXX	XXX	XXX	XXX								
60												
00												
120												

Step 2: Calculate the magnitude of the acceleration, a, on the spacecraft at time, t=0 due to the planet and add it to the table above. Resolve the acceleration into its x- and y- coordinates and fill these in $(a_x \text{ and } a_y)$.

Step 3: If we assume the acceleration is constant over a time interval Δt , then after the time Δt there is a change in velocity due to this acceleration. This is in the direction of the acceleration vector so the easiest thing is to work in terms of the x- and y- components of the change in velocity.

Write down the equations for the x- and y- components of the *change in velocity* in terms of the x- and y- components of acceleration and the time interval Δt .

$$\Delta v_x = \underline{\hspace{1cm}} \Delta v_y = \underline{\hspace{1cm}}$$

Similarly there is a change in position, which depends both on the velocity at the beginning of the time interval and on the acceleration:

$$\Delta s_x = v_x \, \Delta t + \frac{1}{2} \, a_x \, \Delta t^2 \qquad \qquad \Delta s_y = v_y \, \Delta t + \frac{1}{2} \, a_y \, \Delta t^2$$

Fill in these changes in velocity and position (occurring after 60 seconds) in row 2, columns 1-4 of the table.

Step 4: The new velocity after a time Δt is the initial velocity plus the change in velocity. So in our table above we can calculate the x- and y-components of velocity at t=60 seconds using

$$v_x^{t=60} = v_x^{t=0} + \Delta v_x \qquad \qquad v_y^{t=60} = v_y^{t=0} + \Delta v_y$$

and the x- and y- components of position at t= 60 seconds using

$$s_x^{t=60} = s_x^{t=0} + \Delta s_x$$
 $s_y^{t=60} = s_y^{t=0} + \Delta s_y$

Calculate the new v_x , v_y , s_x , s_y and fill in columns 5-8 of the second row of the table.

Step 5: You can now see that you can essentially repeat steps 2-4 for each successive 60 seconds of the spacecraft's trajectory using Steps 2-4 above. To calculate the entire spacecraft trajectory you would repeat steps 2-4 until you have reached a time $t = t_{final}$ (given as 40 minutes in part 5 of the assignment). **Hint:** If you do this by hand (correctly!) for the first 3 rows given you can of course check your MATLAB code using this table....