

11 Veröffentlichungsnummer:

0 377 893 Δ2

(12)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 89123895.8

(9) Int. Cl.⁵: C07D 207/38, C07D 405/12, A01N 43/36

(2) Anmeldetag: 23.12.89

Priorität: 07.01.89 DE 3900301 18.08.89 DE 3927222

Veröffentlichungstag der Anmeldung: 18.07.90 Patentblatt 90/29

Benannte Vertragsstaaten:
BE CH DE ES FR GB IT LI NL

BE CH DE ES FR GB IT LI NL

BE CH DE ES FR GB IT LI NL

BE CH DE ES FR GB IT LI NL

BE CH DE ES FR GB IT LI NL

BE CH DE ES FR GB IT LI NL

7) Anmelder: BAYER AG

D-5090 Leverkusen 1 Bayerwerk(DE)

© Erfinder: Fischer, Reiner, Dr. Nelly-Sachs-Strasse 23 D-4019 Monhelm(DE) Erfinder: Baasner, Bernd, Dr.

Wagner-Strasse 23

D-5060 Bergisch-Gladbach 2(DE) Erfinder: Hagemann, Hermann, Dr.

Kandinsky-Strasse 52 D-5090 Leverkusen 1(DE) Erfinder: Krebs, Andreas, Dr.

Im Gartenfeld 70

D-5068 Odenthal-Holz(DE)

Erfinder: Marhold, Albrecht, Dr.

Carl-Duisberg-Strasse 329 D-5090 Leverkusen(DE)

Erfinder: Santel, Hans-Joachim, Dr.

Grünstrasse 9a

D-5090 Leverkusen(DE)

Erfinder: Schmidt, Robert R., Dr.

Im Waldwinkel 110

D-5060 Bergisch-Gladbach 2(DE)

Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 145 D-5060 Bergisch-Gladbach 2(DE) Erfinder: Becker, Benedikt, Dr.

Steinmannhof

I-39050 Pineta di Laives Bolzano(IT)

Erfinder: Schaller, Klaus, Dr. Am Sonnenschein 38 D-5600 Wuppertal 1(DE) Erfinder: Strang, Harry, Dr.

Heiderweg 53

D-4000 Düsseldorf 31(DE)

(54) 3-Aryl-pyrrolidin-2,4-dion-Derivate.

(I) Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel

377 893 A2

$$\begin{array}{c|c}
C^{R} & R - 0 & X \\
\hline
A - N & O
\end{array}$$

in welcher

X für Alkyl, Halogen, Alkoxy steht,

für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen -CO-R1, -CO-O-R2

steht,

wobei R¹ und R² die im Anmeldungstext angegebene Bedeutung besitzen,

- A für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Arylalkyl steht,
- B, C* unabhängig voneinander für Wasserstoff, Alkyl oder Alkoxyalkyl steht, sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Die neuen Verbindungen besitzen eine überraschende insektizide, akarizide, herbizide und antimykotische Wirksamkeit.

3-Aryl-pyrrolidin-2,4-dion-Derivate

Die Erfindung betrifft neue 3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide und Herbizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et. al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenyl-pyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger Liebigs Ann. Chem. 1985 1095 synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A 0 262 399 werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist.

Es wurden nun neue 3-Aryl-pyrrolidin-2,4-dion-Derivate gefunden, die durch die Formel (I) dargestellt sind,

in welcher

15

30

40

45

20 X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen -CO-R¹, -CO-O-R²

steht, in welchen

für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyal-koxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl oder Cycloalkyl steht,

A für gegebenenfalls durch Halogen substituiertes Alkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Arylalkyl steht,

35 B und C* unabhängig voneinander für Wasserstoff, Alkyl oder Alkoxyalkyl steht, sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Im folgenden seien die folgenden Untergruppen definiert:

(la): Verbindungen der Formel (l) worin R = Wasserstoff,

(lb): Verbindungen der Formel (l) worin R = COR1,

(Ic): Verbindungen der Formel (I) worin R = COOR2.

Weiterhin wurde gefunden, daß man 3-Aryl-pyrrolidin-2,4-dione bzw. deren Enole der Formel (la)

in welcher A, B, C*, X, Y, Z und n die oben angegebene Bedeutung haben, erhält, wenn man

(A)

N-Acylaminosäureester der Formel (II)

in welcher

O A, B, C, X, Y, Z und n die oben angegebene Bedeutung haben

und

5

R3 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B)

¹⁵ Außerdem wurde gefunden, daß man Verbindungen der Formel (lb)

$$\begin{array}{c|c}
 & 0 \\
 & R^{1}-C-O & X \\
 & C^{*} & & Z_{n}
\end{array}$$
(1b)

25

20

in welcher A, B, C, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la),

30

35

in welcher

A, B, C*, X, Y, Z und n die oben angegebene Bedeutung haben,

a) mit Säurehalogeniden der allgemeinen Formel (III)

in welcher

R1 die oben angegebene Bedeutung hat

und

Hal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

oder

50

55

B) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

(C)

Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

¹⁰ in welcher

A, B, C*, X, Y, Z, R² und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la)

20

35

15

in welcher

A, B, C*, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Chlorameisensäureester der allgemeinen Formel (V)

R²-O-CO-CI (V)

25 in welcher

R² die oben angegebene Bedeutung hat,

gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Überraschenderweise wurde gefunden, daß die neuen 3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I) sich durch hervorragende insektizide, akarizide, herbizide und antimykotische Wirkungen auszeichnen.

Bevorzugt sind 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I), in welcher

X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R1 (lb)

oder -CO-O-R2 (Ic)

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Alkylthio-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl und Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkyl-, C₁-C₆-Alkoxy-substituiertes Phenyl;

für gegebenenfalls durch Halogen-, C₁-C₆-Alkyl, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht,

für gegebenenfalls durch Halogen- und C1-C6-Alkyl-substituiertes Hetaryl steht,

für gegebenenfalls durch Halogen- und C1-C6-Alkyl-substituiertes Phenoxy-C1-C6-alkyl steht,

 $f\"{u}r\ gegebenenfalls\ durch\ Halogen,\ Amino\ und\ C_1-C_6-Alkyl-substituiertes\ Hetaryloxy-C_1-C_6-Alkyl\ steht,$

Für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-substituiertes Phenyl oder Cycloalkyl mit 3-8 Ringatomen steht,

A für gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder
gegebenenfalls durch Halogen, C₁-C₆-Alkyl-C₁-C₆-Haloalkyl-, C₁-C₆-Alkoxy-, Nitro substituiertes Aryl-C₁-C₆alkyl steht,

B, C unabhängig voneinander für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl. C₁-C₈-Alkoxyalkyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Besonders bevorzugt sind Verbindungen der Formel (I) in welcher

- 5 X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
 - Y für Wasserstoff, C1-C6-Alkyl, Halogen, C1-C4-Alkoxy, C1-C2-Halogenalkyl steht,
 - Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
 - n für eine Zahl von 0-3 steht,
 - R für Wasserstoff (la) oder für die Gruppen der Formel
- 10 -CO-R1 (lb)

oder -CO-O-R2 (Ic)

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Alkylthio-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht,

für gegebenenfalls durch Halogen-, Nitro-, C_1 - C_4 -Alkyl-, C_1 - C_4 -Alkoxy-, C_1 - C_3 -Halogenalkyl-, C_1 - C_3 -Halogenalkoxy-substituiertes Phenyl steht,

für gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht,

 $_{20}$ $\,$ für gegebenenfalls duch Halogen- und C1-C6-Alkyl-substituiertes Hetaryl steht,

 $gegebenen falls \ f\"{u}r \ durch \ Halogen- \ und \ C_1-C_4-Alkyl-substituiertes \ Phenoxy-C_1-C_5-alkyl \ steht,$

für gegebenfalls durch Halogen, Amino und C₁-C₄-Alkyl-substitulertes Hetaryloxy-C₁-C₅-alkyl steht,

R² für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₁₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,

für gegebenenfalls durch Halogen, Nitro-, C₁-C₄-Alkyl, C₁-C₃-Alkoxy-, C₁-C₃-Halogenalkyl-substituiertes Phenyl oder Cycloalkyl mit 3-7 Ringatomen steht,

A für gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Haloalkyl-C₁-C₄-Alkoxy-, Nitro substituiertes Aryl-C₁-C₄-alkyl steht,

B, C unabhängig voneinander für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxyalkyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Ganz besonders bevorzugt sind Verbindungen der Formel (I) in welcher

- X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
- Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
- für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
- o n für eine Zahl von 0-3 steht,
 - R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R1 (lb)

oder -CO-O-R2 (Ic)

steht, in welcher

- Fig. 15 R1 für gegebenenfalls durch Fluor oder Chlor substituiertes: C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkyl-C₂-C₆-Alkyl, C₁-C₄-Alkyl-C₂-C₆-Alkyl-C
 - für gegebenenfalls durch Fluor-, Chlor, Brom-, Methyl-, Ethyl, Propyl, I-Propyl, Methoxy, Ethoxy, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,
- für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Ethoxy, Trifluor-methyl, Trifluormethoxy-substituiertes Phenyl-C₁-C₃-alkyl steht,
 - für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,
 - für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy-C1-C4-alkyl steht,
- für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,
 - R^2 für gegebenenfalls durch Fluor oder Chlor substituiertes C_1 - C_{14} -Alkyl, C_2 - C_{14} -Alkenyl, C_1 - C_4 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_4 -Polyalkoxy- C_2 - C_6 -alkyl steht,

oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Cycloalkyl mit 3-6 Ringatomen steht,

A für gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C_1 - C_8 -Alkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl, C_1 - C_6 -Alkoxy- C_2 - C_4 - alkyl, C_1 - C_6 -Alkylthio- C_2 - C_4 -alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro susbtituiertes Aryl- C_1 - C_3 -alkyl steht,

B, C unabhängig voneinander für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel 1.

25

55

Verwendet man gemäß Verfahren (A) N-2,6-Dichlorphenylacetyl-N-methyl-alaninethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6-Trimethylphenyl)-1-isopropyl-pyrrolidin-2,4-dion und Pivaloylchlorid als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren B (Variante ß) 3-(2,4,6-Trimethylphenyl)-1-cyclopentyl-pyrrolidin-2,4-dion und Acetanhydrid, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

H₃C-C0

$$CH_3$$
 CH_3
 H_3C-C0
 CH_3
 CH_3

Verwendet man gemäß Verfahren C 3-(2,4-6-Trimethylphenyl)-1-methoxyethyl-5-methyl-pyrrolidin-2,4-dion und Chlorameisensäureethoxyethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

10

5

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

15

20

in welcher

A, B, C*, X, Y, Z, n und R3 die oben angegebene Bedeutung haben sind teilweise bekannt oder lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. Acyl-aminosäureester der Formel (II), wenn man

a) Aminosäureester der Formel (VI),

30

35

in welcher

R⁴ für Wasserstoff (VIa) und Alkyl (VIb) steht

und

die oben angegebene Bedeutung haben mit Phenylessigsäurehalogeniden der Formel (VII) A, B und C*

45

in welcher

X, Y, Z und n die oben angegebene Bedeutung haben und

für Chlor oder Brom steht,

acyliert (Chem. Reviews 52 237-416 (1953);

oder wenn man Acylaminosäuren der Formel (IIa),

¹⁰ in welcher

5

15

20

30

35

45

50

55

A, B, C*, X, Y, Z und n die oben angegebene Bedeutung haben und

R4 für Wasserstoff steht,

verestert (Chem. Ind. (London) 1568 (1968)).

- Beispielhaft seien folgende Verbindungen der Formel (II) genannt:
 - 1. N-Isopropyl-N-(2,4-Dichlorphenyl-acetyl)-glycin-ethylester
 - 2. N-Isopropyl-N-(2,6-Dichlorphenyl-acetyl)-glycin-ethylester
 - 3. N-(2,6-Dichlorphenyl-acetyl)-sarkosin-methylester
 - 4. N-Isopropyl-N-(2,6-dichlorphenyl-acetyl)-alanin-ethylester
 - 5. N-Methoxyethyl-N-(2,6-dichlorphenyl-acetyl)-glycin-ethylester
 - 6. N-Methoxyethyl-N-(2,6-dichlorphenyl-acetyl)-alanin-ethylester
 - 7. N-tert.-Butyl-N-(2,6-dichlorphenyl-acetyl)-glycin-ethylester
 - 8. N-Methyl-N-(2,6-dichlorphenyl-acetyl)-alanin-ethylester
 - 9. N-2-(2,4,4-trimethyl-pentyl)-N-(2,6-dichlorphenyl-acetyl)-glycin-ethylester
- 25 10. N-(2.4,6-trimethylphenyl-acetyl)-sarkosin-methylester
 - 11. N-Ethyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 12. N-Isopropyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 13. N-tert.-Butyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 14. N-iso-Butyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 15. N-sec-Butyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 16. N-neo-Pentyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 17. N-2-(2,3-Dimethyl-butyl)-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 18. N-2-(2,2,3-Trimethyl-butyl)-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 19. N-Cyclopropyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 20. N-Cyclopentyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 21. N-Cyclohexyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 22. N-Alkyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 23. N-Benzyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 24. N-2-(2,4,4-trimethyl-pentyl)-N-(2,4,6-Trimethylphenyl-acetyl)-glycin-ethylester
- 25. N-Methoxyethyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 26. N-Methoxypropyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 27. N-Methoxy-2-methyl-propyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 28. N-2-(Ethoxy-butyl)-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 29. N-2-(Methoxy-propyl)-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 30. N-Ethyl-mercaptoethyl-N-(2,4,6-trimethylphenyl-acetyl)-glycin-ethylester
 - 31. N-Methyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 32. N-Ethyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 33. N-Isopropyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 34. N-Isobutyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 35. N-sec-Butyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 36. N-Cyclopropyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 37. N-Cyclopentyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 38. N-Cyclohexyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 39. N-Methoxyethyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 40. N-Methoxypropyl-N-(2,4,6-trimethylphenyl-acetyl)-alanin-ethylester
 - 41. N-Methyl-N-(2,4,6-trimethylphenyl-acetyl)-2-amino-buttersäure-ethylester
 - 42. N-Ethyl-N-(2,4,6-trimethylphenyl-acetyl)-2-amino-buttersäure-ethylester
 - 43. N-Methyl-N-(2,4,6-trimethylphenyl-acetyl)-2-amino-valeriansäure-ethylester

- 44. N-Methyl-N-(2,4,6-trimethylphenyl-acetyl)-2-amino-iso-valeriansäure-ethylester
- 45. N-Ethyl-N-(2,4,6-trimethylphenyl-acetyl)-2-amino-valeriansäure-ethylester
- 46. N-Ethyl-N-(2,4,6-trimethylphenyl-acetyl)-2-amino-iso-valeriansäure-ethylester
- 47. N-Methyl-N-(2,4,6-trimethylphenyl-acetyl)-2-methylalanin-ethylester
- 48. N-Ethyl-N-(2,4,6-trimethylphenyl-acetyl)-2-methylalanin-ethylester
- 49. N-Isopropyl-N-(2,4,6-trimethylphenyl-acetyl)-2-methylalanin-ethylester

Beispielhaft sind folgende Verbindungen der Formel (IIa) genannt:

1. N-(2,4-Dichlorphenyl-acetyl)-sarkosin

5

10

20

- 2. N-(2,6-Dichlorphenyl-acetyl)-sarkosin
- 3. N-(2,4,6-trimethylphenyl-acetyl)-sarkosin

Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (VII) und Aminosäuren der Formel (VIa) nach Schotten-Baumann (Organikum 9, Auflage 446 (1970) VEB Deutscher Verlag der Wissenschaften, Berlin) erhältlich.

Verbindungen der Formel VI, in welchen A, B, C und R⁴ die oben angegebene Bedeutung haben, sind nach literaturbekannten Verfahren aus α-Halogencarbonsäuren bzw. -estern und Aminen erhältlich (Advanced Organic Chemistry, J. March S. 377, Mc Graw-Hill Inc. 1977).

Das Verfahren (A) ist dadurch gekennzeichnet, daß Verbindungen der Formel (II) in welcher A, B, C, X, Y, Z, m, n und R³ die oben angegebene Bedeutung haben in Gegenwart von Basen einer intramolekularen Kondensation unterwirft.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle üblichen inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glylkoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methylpyrrolidon.

Als Deprotonierungsmittel können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetall-oxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 oder TDA 1 eingesetzt werden können. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetall-alkoholate, wie Natriummethylat und Kalium-tert.-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Adogen 464 = Methyltrialkyl(C₈-C₁₀)ammoniumchlorid

TDA 1 = Tris-(methoxyethoxylethyl)-amin

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren ($B\alpha$) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Ba) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Verwendet man die entsprechenden Carbonsäurehalogenide so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Βα) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononben (DBN), Hünig-Base und N,N-Dimethyl-anilin, ferner Erdal-kalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Bα) auch bei der Verwendung von Carbonsäurehalogeniden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bα) werden die Ausgangsstoffe der Formel (la) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet.

Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (Bß) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Carbonsäurehydriden der Formel (IV) umsetzt.

Verwendet man bei dem erfindungsgemäßen Verfahren (Bß) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäurehydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Bß) auch bei der Verwendung von Carbonsäureanhydriden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Chlorameisensäureestern der Formel (V) umsetzt.

Verwendet man die entsprechenden Chlorameisensäureester so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBC, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calcium-oxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Bei Verwendung der Chlorameisensäureester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende (Chlorameisensäureester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach Üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

56

10

25

30

Beispiel 1:

3,9 g (0,13 Mol) Natriumhydrid (80%ig) werden in 70 ml abs. Toluol vorgelegt. Nach Zutropfen von 36,2 g (0,107 Mol) N-2,6-Dichlorphenylacetyl-N-Isopropyl-glycinethylester in 160 ml abs. Toluol, erhitzt man 6 h unter Rückfluß. Unter Eisbadkühlung werden 20 ml Ethanol zugetropft, der Ansatz im Vakuum einrotiert, der Rückstand in 1 N NaOH gelöst und das 3-(2,6-Dichlorphenyl)-1-isopropyl-pyrrolidin-2,4-dion bei 0-20° C mit konzentrierter Salzsäure gefällt. Das Produkt wird zur Reinigung mit Chloroform ausgekocht, anschließend wird n-Hexan zugesetzt und das ausgefallene, farblose Produkt abgesaugt. Ausbeute: 25,42 g (83 % d. Theorie) Fp. >230° C.

Beispiel 2:

5

20

25

30

3,42 g (15 mmol) 3-(2,4,6-Trimethylphenyl)-1-methyl-pyrrolidin-2,4-dion werden in 50 ml abs. Tetrahydrofuran (THF) suspendiert und mit 1,22 ml (15 mmol) abs. Pyridin und 2,54 ml (15 mmol) Ethyldiisopropylamin versetzt. Dazu tropft man bei 0°-10°C 1,88 ml (15 mmol) Pivaloylchlorid gelöst in 5 ml abs. THF und rührt 30 Min. nach. Der Niederschlag wird abfiltriert, die Lösung im Vakuum einrotiert und der Rückstand an Kieselgel mit Cyclohexan/Essigester 1:1 chromatographiert.

Durch Kristallisation aus Ether/n-Hexan erhält man 3,8 g (80,4% der Theorie) 4-(Pivaloyloxy)-3-(2,4,6-trimethylphenyl)-1-methyl-3-pyrrolin-2-on von Schmp. 75 °C.

Beispiel 3

H₃C CH₃ CH₃

50

H₃C CH₃

CH₃

CH₃

5,18 g (20 mmol) 3-(2,4,6-trimethylphenyl)-1-isopropyl-pyrrolidin-2,4-dion werden in 70 ml tert.-Butylme-

thylether (MTB-Ether) suspendiert. Nach Zugabe von 1,63 ml (20 mmol) abs, Pyridin und 3,4 ml (20 mmol) Ethyl-diisopropylamin tropft man bei 0 ° C - 10 ° C 2,45 g (20 mmol) Chlorameisensäure-isopropylester, gelöst in 5 ml MTB-Ether, zu, rührt 30 Minuten nach, filtriert ab und rotiert ein. Der Rückstand wird an Kieselgel mit Cyclohexan/Essigester 1 : 1 chromatographiert. Durch Kristallisation aus n-Hexan erhält man 4,67 g (67,6% der Theorie) 4-Isopropoxy-carbonyloxy-3-(2,4,6-trimethylphenyl)-1-isopropyl-3-pyrrolin-2-on vom Schmelzpunkt 81 ° C.

In entsprechender Weise zu den Herstellungsbeispielen und gemäß den allgemeinen Angaben zur Herstellung erhält man die in den nachfolgenden Tabellen 1-3 formelgmäßig aufgeführten 3-Aryl-pyrrolidin-2,4-dion(e)-Derivate der Formel (la) - (lc).

Tabelle 1

5

10	Bsp. Nr.	x	Y	Z _n	λ	В	c *	Fp °C
	4	Cl	Cl	H	(сн ₃) ₂ сн-	Н	н	198
15	5	Cl	н	6-C1	сн3-	н	H	230
	6	Cl	н	6-C1	сн3-	сн ₃ -	н.	221
	7	Cl	н	6-C1	(сн ₃) ₂ сн-	CH3-	сн3-	180
20	8	Cl	н	6-C1	(сн ₃) ₃ с-	Н.,	н	> 230
	9	Cl,	н	6-C1	(сн ₃) ₃ с-сн ₂ -с(сн ₃) ₂ -	н	н	> 235
25	10	Cl	н	6-C1	(CH30-(CH2)2-	н	н	> 230
	11	Cl	Н	6-C1	CH3-0-(CH2)2-	н	н	128
	12	сн ³	снз	6-CH3	сн3-	н	н	> 230
30	13	снз	CH3	6-CH3	сн3-	сн ₃ -	н) 230
	14	снз	сн3	6-CH3	сн ₃ -	с ₂ н ₅	н	210
35	15	снз	сн3	6-CH3	сн ₃ -	с ₃ н ₇	н	
	16	снз	CH3	6-CH3	CH3-	(CH ₃) ₂ CH-	н	
	17	сн3	CH ³	6-CH ₃	сн ₃ -	сн ₃ -	сн3-	
40	18	сн3	сн3	6-CH3	C ₂ H ₅	н	H	> 230
	19	сн3	СН ^З	6-CH3	C ₂ H ₅	сн3-	Ĥ	227
45	20	сн3	СНЗ	6-CH3	c ₂ H ₅	С ₂ Н ₅ -	H	184
	21	CH3	СНЗ	6-CH3	C ₂ H ₅	C3H7-	H	
	22	снз	CH3	6-CH3	C2H5	(CH3)2CH-	H	
50	23	CH3	CH3	6-CH ₃	C ₂ H ₅	сн3-	СН3-	

Tabelle 1 (Fortsetzung)

5	Bap.	X	Y	z _n	λ	В	c*	Fp °C
	24	снз	снз	6-CH3	С ₃ Н ₇	н	н	
10	25	снз	снз	6-CH3	С ₃ H ₇	CH3-	н	
	26	СНЗ	снз	6-CH3	С ₃ Н ₇	c ₂ H ₅ -	H	
15 .	27	снз	снз	6-CH3	C ₃ H ₇	С ₃ Н ₇	H	
	28	снз	снз	6-CH3	С ₃ н ₇	(CH ₃) ₂ CH-	н	•
	29	снз	СНЗ	6-CH3	С ₃ н ₇	сн3-	CH3-	
20	30	CH3	снз	6-CH ₃	(сн ₃) ₂ сн-	н	н	> 220
	31	снз	СНЗ	6-CH3	(CH ₃) ₂ CH-	сн3-	н	228
	32	снз	СНЗ	6-CH3	(сн ₃) ₂ сн-	c ₂ H ₅	н	
25	33	СНЗ	снз	6-CH ₃	(сн ₃)2сн-	C3H7	н	
	34	CH3	сн3	6-CH ₃	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	H	
	35	CH3	снз	6-CH3	(сн ₃) ₂ сн-	CH3-	СН3-	
30	36	CH3	CH3	6-CH3	C4H9 .	Н	H	
	37	снз	СНЗ	6-CH3	C4H9	сн ₃ -	н	
35	38	СНЗ	CH3	6-CH3	(СН ₃) ₂ СН-СН ₂ -	н	H	209
	39	снз	снз	6-CH3	(сн ₃) ₂ сн-сн ₂ -	сн ₃ -	н	189
40	40	сн3	Сн3	6-CH3	с ₂ н ₅ сн-	. н	н	262
	41	CH ³	CH3	6-CH3	^С 2 ^Н 5 СН- СН ₃	сн ₃ -	н	205

50

EP 0 377 893 A2

<u>Tabelle 1</u> (Fortsetzung)

5	Bsp.	x	х ү		λ	В	_C*	Fp °C
	42	снз	снз	6-CH3	(CH3)3C-	н	н	> 230
10	43	снз	CH ³	6-CH3	(СН ₃) ₃ С-СН ₂ -	н	н	> 230
	44	CH3	сн3	6-CH3	(сн ₃)2сн-сн(сн ₃)-	н	н	> 230
15	45	снз	снз	6-CH3	(сн ₃)3с-сн(сн3)-	н	н	> 230
	46	снз	CH3	6-CH3	(CH ₃) ₃ C-CH ₂ -C(CH ₃) ₂ -	н	н	> 230
	47	снз	снз	6-CH3	сн ₂ =сн-сн ₂ -	н	н	212
20	48 .	CH3	снз	6-CH3	сн ₂ =сн-сн ₂ -	сн3-	н	
•	49	CH3	сн3	6-CH3	>	н	н	> 230
25	50	CH3	снз	6-CH3	> -	сн3-	н) 230
	51	CH3	снз	6-CH3	>	с ₂ н ₅ -	Н	
	52	CH3	снз	6-CH3	>	С ₃ Н ₇ -	н	
30	53	снз	снз	6-CH3	>	(сн3) 2сн-	н	
•	54	снз	сн ³	6-CH3)	сн3-	сн3-	
35	55	снз	снз	6-CH3		н	н	> 230
40	56	CH3	СНЗ	6-CH3	\bigcirc	сн ₃ -	н	223
4 5	57	СНЗ	CH3	6-CH3	\Box	с ₂ н ₅ -	н	
	58	СНЗ	снз	6-CH3		C ₃ H ₇ -	н	

EP 0 377 893 A2

<u>Tabelle 1</u> (Fortsetzung)

5	Bsp.	x	Y	z _n	λ	В	C*	Fp °C
10	59	снз	сн3	6-CH3	\Box	(сн ₃) 2сн-	н	
15	60	CH3	CH ³	6-CH ₃	\Box	сн ₃ -	сн3-	
	61	снз	снз	6-CH3	\bigcirc	н	н	> 230
20	62	сн3	сн3	6-CH3	\bigcirc	cH3-	н	> 230
25	63	сн3	снз	6-CH ₃	<u></u>	с ₂ н ₅ -	н	
30	64	сн3	сн3	6-CH ₃	\bigcirc	с ₃ н ₇ -	н	
	65	CH3	снз	6-CH3	\bigcirc	(CH ₃)2CH-	H	
35	66	сн3	CH3	6-СН _З	<u></u>	сн3-	CH3	-
40	67	сн3	снз	6-CH ₃		н	н) 230
45	68	снз	снз	6-CH ₃	\bigcirc	сн ₃ -	н	

EP 0 377 893 A2

<u>Tabelle 1</u> (Fortsetzung)

5	Bsp. Nr.			z _n	В	C*	Fp °C	
	69	сн3	сн3	6-CH3	СН ₃ -0-(СН ₂) ₂ -	н	н	179
10	70	снз	снз	6-CH3	CH3-0-(CH2)2-	сн3-	н	165
	71	СНЗ	СНЗ	6-CH3	сн3-о-сн5-сн(сн3)-	Н	н	220
	72	сн3	CH3	6-CH3	сн ₃ -о-сн ₂ -сн(сн ₃)-	сн3-	н	
15	73	сн3	CH3	6-CH3	CH3-0-(CH2)3-	н	н	190
	74	снз	CH3	6-CH3	CH3-0-(CH2)3-	CH3-	н	175
20	75	CH3	CH3	6-CH3	С2H5-О-(СН2)2-СН(СН3)-	н	Н	220
	76	CH3	CH3	6-CH3	С2H5-О-(СН2)2-СН(СН3)-	сн3-	H	
	77	CH3	сн ³	6-CH3	сн ₃ -о-сн ₂ -сн(сн ₃)-сн ₂ -	н	н	156
25	78	CH3	CH3	6-CH ₃	C2H5-S-(CH2)2-	н	н	165

ΔN

Tabelle 2

 $\begin{array}{c|c}
 & 0 \\
 & R^{1}-C-O & X \\
 & C & X \\
 & A & N & Q \\
\end{array}$ (1b)

	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
15	79	Cl	Cl	н	(CH ₃) ₂ CH-	н	н	сн ₃ -	128
	80	Cl	н	6-C1	CH ₃ -	CH3-	н	сн ₃ -	125
20	81	Cl	н	6-C1	СН3-	CH3-	н	(СН ₃) ₂ СН-	Öl
	82	Cl	н	6-C1	Сн3-	CH3-	н	(CH3)3C-	68
25	83	Cl.	н	6-C1	(CH3) SCH-	н	н	сн ₃ -	113
	84	Cl	н	6-C1	(CH3)SCH-	н	н	(сн ₃) ₂ сн-	105
	85	Cl	н	6-C1	(сн ₃) ₂ сн-	н	Н	(сн ₃) ₃ с-	122
30	86	Cl	н	6-C1	(CH ₃)2CH-	н	н	(CH ₃) ₂ CH-C(CH ₃) ₂ -	112
	87	Cl	н	6-C1	(CH3)3C-	H	H	СН3-	113
35	88	Cl	н	6-C1	(CH3)3C-	н	Н	. (CH ₃) ₂ CH-	117
	89	Cl	н	6-C1	(CH3)3C-	н	H	(CH3)3C-	158
	90	CH3	СНЗ	6-CH3	CH3-	H	H	CH3-	Öl
40	91	снз	CH3	6-CH3	СН ₃ -	Н	H	(CH ₃) ₂ CH-	Öl
	92	CH3	CH ³	6-CH3	сн ₃ -	H	H	(сн ₃) ₂ сн-с(сн ₃) ₂ -	45
45	93	СНЗ	CH ³	6-CH3	сн ₃ -	сн3-	H	сн3-	75
	94	CH3	CH3	6-CH3	сн ₃ -	сн3-	H	(сн ₃) ₂ сн-	Öl
	95	CH3	сн3	6-CH3	сн ₃ -	сн3-	Н	(сн ³) ³ с-	Öl

<u>Tabelle 2</u> (Fortsetzung)

Bsp. Nr.	X	Y	z _n	λ	B	c*	R ¹	Fp °C
96	снз	снз	6-CH ³	сн3-	СН3-	н	(CH ₃) ₂ CH-C(CH ₃) ₂ -	•
97	СНЗ	CH ³	6-CH3	сн3-	сн ₃ -	Н	(сн ₃) ₃ с-сн ₂ -	Öı
98	CH3	CH3	6-CH3	сн3-	сн3-	н	сн30-сн2-с(сн3)2-	Ö
99.	снз	СН ^З	6-CH3	сн3-	сн3-	н	C1CH2-C(CH3)2-	Ö:
100	сн _З	CH3	6-CH ₃	сн3-	сн3-	н	сн ³ о сн ³	
101	CH3	снз	6-CH3	сн3-	сн ³ -	н	(CH3)2C=CH-	
102	снз	СНЗ	6-сн ₃	сн3-	сн3-	н	0 <ch3< td=""><td></td></ch3<>	
103	СНЗ	сн3	6-CH3	сн3-	С ₂ Н ₅ -	н	сн3-	
104	СНЗ	сн3	6-CH ₃	сн3-	с ₂ н ₅ -	н	(СН ₃) ₂ СН-	
105	CH3	сн3	6-CH3	сн3-	с ₂ н ₅ -	н	(CH3)3C-	
106	СН3	CH3	6-CH3	CH3-	С ₂ Н ₅ -	н	(CH ₃) ₂ CH-C(CH ₃) ₂	-
107	CH3	снз	6-CH3	сн3-	C2H5-	н	(сн ₃) ₃ с-сн ₂ -	
108	снз	снз	6-CH3	сн3-	C2H5-	н	сн ₃ о-сн ₂ -с(сн ₃) ₂	-
109	снз	СНЗ	6-CH3	сн ₃ -	С ₂ Н ₅ -	Н	C1CH2-C(CH3)2-	
110	снз	сн3	6-СН _З	сн ₃ -	с ₂ н ₅ -	н	сн ₃ о сн ₃	
111	СНЗ	СНЗ	6-CH3	СН3-	C2H5-	н	(CH ₃) ₂ C=CH-	
112	СНЗ	сн3	6-СН _З	сн3-	С ₂ Н ₅ .	н	осн ₃	

..

<u>Tabelle 2</u> (Fortsetzung)

Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
113	CH3	сн ³	6-CH3	сн3-	C ₃ H ₇ -	H	сн3-	
114	СНЗ	CH3	6-CH3	CH3-	С ₃ Н ₇ -	Н	(сн ₃) ₂ сн-	
115	СНЗ	CH3	6-CH ₃	сн3-	С ₃ Н ₇ -	Н	(CH ₃)3C-	
116	снз	СН ^З	6-CH3	CH3-	С ₃ н ₇ -	H	(CH ₃) ₂ CH-C(CH ₃) ₂ -	
117	снз	снз	6-CH3	CH3-	(CH3) SCH-	н	сн ₃ -	
118	СНЗ	снз	6-CH3	СН3-	(CH ₃) ₂ CH-	н	(сн ₃) ₂ сн-	
119	снз	снз	6-CH3	CH3-	(CH3) 2CH-	н	(CH3)3C-	
120	снз	снз	6-CH3	сн3-	(CH ₃) ₂ CH-	Н	(CH ₃) ₂ CH-C(CH ₃) ₂ -	
121	снз	снз	6-CH3	сн3-	сн3-	сн3-	сн ₃ -	
122	снз	сн3	6-CH3	сн3-	сн3-	сн3-	(сн ₃) ₂ сн-	
123	снз	сн3	6-CH3	сн3-	сн ₃ -	сн3-	(сн ₃)3с-	
124	сн3	снз	6-CH3	сн3-	сн3-	сн3-	(CH ₃) ₂ -CH-C(CH ₃) ₂	-
125	снз	снз	6-CH3	с ₂ н ₅	н	Н	сн ₃ -	8
126	снз	снз	6-CH3	с ₂ н ₅	н	H	(сн ₃)2сн-	
127	CH3	СНЗ	6-CH3	C ₂ H ₅	н	H	(сн ³) ³ с-	9
128	снз	снз	6-CH3	с ₂ н ₅	н	H	(CH ₃) ₂ -CH-C(CH ₃) ₂	
129	СНЗ	сн3	6-CH3	с ₂ н ₅	H	H	(CH3)3C-CH2-	
130	снз	CH3	6-CH3	C2H5	н	H	сн ₃ о-сн ₂ -с(сн ₃) ₂ -	
131	CH3	CH ³	6-CH3	C2H5	н	H	C1CH2-C(CH3)2-	
132	снз	снз	6-СН ^З	с ₂ н ₅	н	H	сн ₃ о сн ₃	

<u>Tabelle 2</u> (Fortsetzung)

Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
133	CH3	сн3	6-СН3	с ₂ н ₅ -	н	н	(сн ₃)2с=сн-	
134	снз	СН3	6-CH3	с ₂ н ₅ -	н	н	0 CH ³	
135	снз	CH3	6-CH3	С ₂ Н ₅ -	СН3-	н	CH3-	Öl
136	сн3	снз	6-CH3	с ₂ н ₅ -	сн ₃ -	н	(CH ₃) ₂ CH-	
137	снз	сн ₃	6-CH3	с ₂ н ₅ -	сн3-	H	(CH ₃) ₃ C-	Öl
138	СНЗ	снз	6-CH3	С ₂ Н ₅ -	сн3-	н	(сн ₃)2-сн-с(с	⁴ 3 ⁾ 2 ⁻
139	CH3	CH ³	6-CH3	с ₂ н ₅ -	сн3-	н	(CH ₃) ₃ C-CH ₂ -	Öl
140	снз	CH3	6-CH3	с ₂ н ₅ -	сн3-	н	сн ₃ 0-сн ₂ -с(сн	3 ⁾ 2-
141	CH3	сн3	6-CH3	с ₂ н ₅ -	сн ₃ -	H	C1CH2-C(CH3)2	-
142	CH3	CH ³	6-CH3	с ₂ н ₅ -	сн3-	н	сн ₃ о сн	3
143	снз	снз	6-CH3	С ₂ Н ₅ -	сн ₃ -	н	(CH ₃) ₂ C=CH-	
144	сн3	сн3	6-CH ₃	с ₂ н ₅ -	сн ₃ -	н	OCH3	
145	CH3	снз	6-CH3	с ₂ н ₅ -	С ₂ Н ₅ -	H	сн3-	
146	CH3	CH3	6-CH3	C2H5-	C2H5-	н	(CH ₃) ₂ CH-	
147	CH3	CH3	6-CH3	C ₂ H ₅ -	с ₂ н ₅ -	Н	(сн ₃)3с-	
148	снз	CH3	6-CH3	C2H5-	с ₂ н ₅ -	н	(CH ₃) ₂ -CH-C(C	H ₃) ₂ -
149	СНЗ	CH3	6-CH3	с ₂ н ₅ -	с ₂ н ₅ -	H	(CH3)3C-CH2-	

50

Tabelle 2 (Fortsetzung)

Bsp. Nr.	X	Y	Z _n	λ	В	C*	R ¹	Fp °C
150	сн3	снз	6-CH3	С ₂ Н ₅ -	с ₂ н ₅ -	н	сн ₃ о-сн ₂ -с	C(CH ₃) ₂ -
151	CH3	CH ³	6-CH3	с ₂ н ₅ -	с ₂ н ₅ -	н	C1CH2-C(CH	i ₃) ₂ -
152	снз	снз	6-CH3	с ₂ н ₅ -	с ₂ н ₅ -	н	сн ³ о сн ³ о	:н ₃
153	снз	снз	6-CH3	с ₂ н ₅ -	с ₂ н ₅ -	н	(CH3)2C=CH	i-
154	CH3	снз	6-CH3	C ₂ H ₅ -	С ₂ Н ₅ -	н	OCH:	3
155	снз	снз	6-CH ³	с ₂ н ₅ -	с ₃ н ₇ -	н	сн3-	
156	снз	снз	6-CH3	С ₂ Н ₅ -	С ₃ Н ₇ -	н	(СН3)2СН-	
157	снз	сн ₃	6-CH3	С ₂ Н ₅ -	С ₃ Н ₇ -	н	(CH3)3C-	
158	CH3	снз	6-CH3	с ₂ н ₅ -	C3H7-	н	(CH ₃) ₂ CH-	C(CH ₃) ₂ -
159	снз	сн3	6-CH3	с ₂ н ₅ -	(сн3) 2сн-	н	сн3-	
160	снэ	снз	6-CH3	с ₂ н ₅ -	(сн3)2сн-	Н	(CH ₃) ₂ CH-	
161	СНЗ	сн3	6-CH3	с ₂ н ₅ -	(сн ₃) ₂ сн-	н	(сн ³) ³ с-	
162	СНЗ	снз	6-CH3	С ₂ н ₅ -	(CH3)2CH-	H	(CH ₃) ₂ CH-	C(CH ₃) ₂ -
163	CH3	CH3	6-CH3	C ₂ H ₅ -	сн ³ -	сн3-	сн ³ -	
164	СНЗ	снз	6-CH3	C2H5-	СН ³ -	сн3-	(CH ₃) ₂ CH-	
165	CH3	CH3	6-CH3	с ₂ н ₅ -	сн3-	сн3-	(CH ³) ³ C-	
166	CH3	CH3	6-CH3	C2H5-	сн ³	СН3-	(CH ₃) ₂ CH-	C(CH3)2-
167	CH3	CH3	6-CH3	C ₃ H ₇	H	H	СН3-	

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
10	168	сн3	сн3	6-CH3	C3H7-	н	н	(сн ₃) ₂ сн-	
10	169	CH3	СНЗ	6-CH3	С ₃ Н ₇ -	н	Н	(сн ₃)3с-	
	170	CH3	снз	6-CH3	С ₃ Н ₇ -	н	н	(сн ₃)2-сн-(C(CH ₃) ₂ -
15	171	CH3	CH3	6-CH3	С ₃ Н ₇ -	н	н	(сн3)3с-сн	2 ⁻
	172	CH3	сн3	6-CH3	С ₃ Н ₇ -	Н	Н	сн ₃ 0-сн ₂ -с	(CH ₃) ₂ -
	173	CH3	сн3	6-CH ³	С ₃ Н ₇ -	н	н	C1CH2-C(CH	3)2-
20	174	снз	сн ₃	6-CH ³	С ₃ Н ₇ -	H .	н	сн ³ 0	∕сн ³
25	175	сн3	сн3	6-CH3	С ₃ Н ₇ -	н	н	(CH ₃)2C=CH-	
	176	сн3	сн3	6-CH3	С ₃ н ₇ -	н	н	Ci	3
30	177	CH3	СН ^З	6-CH3	С ₃ Н ₇ -	СН ₃ -	H	сн ₃ -	
	178	сн3	CH ³	6-CH3	С ₃ Н ₇ -	сн ₃ -	н	(CH ₃) ₂ CH-	
35	179	снз	сн3	6-CH3	С ₃ Н ₇ -	CH3-	н	(СН ₃)3С-	
	180	снз	CH ³	6-CH3	С ₃ Н ₇ -	CH3-	н	(сн ₃)2-сн-	(CH ₃) ₂ -
	181	CH3	CH ³	6-CH3	С ₃ н ₇ -	CH3-	H	(сн ₃)3с-сн	-
40	182	снз	сн3	6-CH3	С ₃ Н ₇ -	сн3-	н	сн ₃ 0-сн ₂ -с	СH ₃) ₂ -
	183	CH ³	снз	6-CH3	C3H7-	сн3-	H	C1CH2-C(CH3)2-
45	184	CH3	снз	6-CH ₃	C ₃ H ₇ -	сн ₃ -	н	CH30	, Сн ₃

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	.z _n	λ	В	c*	R ¹	Fp °C
10	185	СНЗ	СНЗ	6-CH3	с ₃ н ₇ -	сн3-	н	(СН ₃) ₂ С=СН-	
	186	сн3	СнЗ	6-CH3	с ₃ н ₇ -	сн3-	н	CH3	
15	187	CH3	СНЗ	6-CH3	С ₃ н ₇ -	с ₂ н ₅ -	н	сн ₃ -	
	188	СНЗ	снз	6-CH3	С ₃ н ₇ -	С ₂ Н ₅ -	н	(CH ₃) ₂ CH-	
•	189	снз	CH3	6-CH3	с ₃ н ₇ -	C2H5-	н	(сн ₃) ₃ с-	
20	190	снз	снз	6-CH3	с ₃ н ₇ -	с ₂ н ₅ -	н	(сн ₃) 2-сн-с (сн ₃)	2-
	191	снз	снз	6-CH3	С ₃ н ₇ -	С ₂ Н ₅ -	н	(CH3)3C-CH2-	
25	192	CH3	CH3	6-CH3	С ₃ Н ₇ -	C2H5-	Н	сн ₃ 0-сн ₂ -с(сн ₃)	2-
•	193	CH3	CH3	6-CH3	C ₃ H ₇ -	с ₂ н ₅ -	Н	с1СH2-С(СH3)2	•
30	194	СНЗ	СНЗ	6-CH3	С ₃ Н ₇ -	с ₂ н ₅ -	н	сн ₃ о сн	 3
-	195	снз	СНЗ	6-CH3	C3H7-	C2H5-	Н	(CH ₃) ₂ C=CH-	
35	196	снз	снз	6-СН ^З	С ₃ Н ₇ -	С ₂ Н ₅ -	н	0CH3	
	197	СНЗ	СНЗ	6-CH3	с ₃ н ₇ -	С ₃ н ₇ -	н	сн3-	
40	198	СНЗ	CH3	6-CH3	C3H7-	С ₃ Н ₇ -	H	(CH ₃) ₂ CH-	
	199	СНЗ	CH3	6-CH3	С ₃ н ₇ -	С ₃ н ₇ -	H	(сн ₃)3с-	
45	200	CH3	CH3	6-CH3	C ₃ H ₇ -	С ₃ H ₇	H	(CH3) 2CH-C(CH3)2-
	201	СНЗ	CH3	6-CH3	C3H7-	(CH ₃) ₂ CH-	H	СН ³ -	
	202	СНЗ	снз	6-CH3	C ₃ H ₇ -	(CH ₃) ₂ CH-	H	(CH3)2CH-	

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	C*	R ¹	Fp °C
10	203	СНЗ	CH ³	6-CH3	C3H7- (C	H ₃) ₂ CH-	н	(сн ₃) ₃ с-	
70	204	сн3	CH3	6-CH3	C3H7- (C)	H ₃ }2CH-	н	(СН ₃) ₂ СН-С(СН ₃) ₂ -	
	205	CH3	сн3	6-CH3	С ₃ н ₇ -	СН3-	сн3-	сн ₃ -	
15	206	сн3	сн3	6-CH3	С ₃ н ₇ -	сн3-	СН3-	(CH ₃) ₂ CH-	
	207	сн3	сн3	6-CH3	С ₃ н ₇ -	СН3-	сн3-	(сн ³) ³ с-	
	208	СНЗ	снз	6-CH3	С ₃ н ₇ -	сн3-	сн3-	(CH ₃) ₂ CH-C(CH ₃) ₂	-
20	209	снз	снз	6-CH3	(сн ₃) 2сн-	Н	н	сн ³ -	75
	210	снз	снз	6-CH3	(сн ₃) ₂ сн-	н	н	(сн ₃) ₂ сн-	08
25	211	снз	сн3	6-CH3	(сн ₃)2сн-	H	н	(СН ₃)3С-	86
	212	снз	снз	6-CH3	(сн ₃) ₂ сн-	Н	Н	(сн ₃) ₂ сн-с(сн ₃) ₂ -	108
	213	снз	сн3	6-CH3	(сн ₃)2сн-	н	н	(сн ₃) ₃ с-сн ₂ -	74
30	214	снз	CH3	6-CH3	(сн ₃)2сн-	н	н	сн ₃ о-сн ₂ -с(сн ₃) ₂ -	68
	215	сн3	снз	6-CH3	(сн ₃) ₂ сн-	н	H	с1сн ₂ -с(сн ₃) ₂ -	153
35	216	сн ₃	снз	6-CH3	(сн3) 5сн-	н	н	сн ₃ о сн ₃	
	217	СНЗ	СН3 .	6-CH ₃	(сн ₃)2сн-	н	Н	(сн ₃) ₂ с=сн-	67
40	218	CH3	CH3	6-CH ₃	(CH ₃)2CH-	н	Ħ	°CH3	
45	219	СНЗ	CH ₃	6-СН _З	(сн ₃)2сн-	н	н	NO ₂	

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp.	x	Y	z _n	A	В	c*	R ¹	Fp °C
10	220	СН3	СН3	. 6-СН _З	(сн ₃)2сн-	н	н	NO ₂	
15	221	снз	снз	6-CH3	(сн ₃) ₂ сн-	н	н	02N-	
20	222	СН3	CH3	6-CH3	(сн ₃) ₂ сн-	H	н	C1	
25	223	сн3	сн3	6-CH3	(CH ₃) ₂ CH-	н	н	C1	
30	224	снз	снз	6-CH3	(CH ₃) ₂ CH-	н	н	c1————	·
35	225	сн3	снз	6-CH3	(сн ₃) ₂ сн-	н	н	CH ³	
	226	снз	снз	6-СН ³	(СН3)2СН-	н	H	CH3	
40	227	СНЗ	снз	6-CH3	(CH ₃) ₂ CH-	н	н	сн3-	
45	228	снз	сн3	6-СН _З	(сн ₃)2сн-	Ħ	н	OCH ³	

50

<u>Tabelle 2</u> (Fortsetzung)

Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
229	снз	сн3	6-СН ^З	(сн ₃)2сн-	н	н	H ₃ C0	
230	CH3	сн3	6-СН ^З	(сн ₃)2сн-	н	н	насо-С	
231	CH3	CH3	.6-СН3	(CH3)2CH-	сн3	н	сн ₃ -	Öl
232	CH ³	сн3	6-CH3	(сн ₃)2сн-	сн3	н	(CH ₃) ₂ CH-	
233	сн ³	снз	6-CH3	(CH3)2CH-	CH ³	Н	(сн ₃)3с-	94
234	CH3	снз	6-CH3	(CH3)SCH-	CH3	н	(СН ₃) ₂ -СН-С(СН ₃) ₂	-
235	сн ³	снз	6-CH3	(CH ₃) ₂ CH-	сн3	H	(сн ₃) ₃ с-сн ₂ -	Öl
236	сн ³	снз	6-CH3	(CH ₃) ₂ CH-	снз	Н	сн ₃ 0-сн ₂ -с(сн ₃)	2-
237	снз	сн3	6-CH3	(CH ₃) ₂ CH-	CH ³	Н	C1CH2-C(CH3)2-	112
238	снз	сн3	6-СН ^З	(СН ₃) ₂ СН-	снз	н	сн ³ 0 сн ³	
239	снз	СНЗ	6-CH3	(CH3) 2CH-	снз	H	(сн ₃) ₂ с=сн-	
240	сн3	сн3	6-CH3	(СН ₃)2СН-	снз	H	° CH3	
241	CH3	CH3	6-CH3	(сн ₃) 2сн-	C2H5-	H	СН3-	
242	СНЗ	CH3	6-CH3	(CH ₃) ₂ CH-	C2H5-	H	(CH3)2CH-	
243	CH3	CH3	6-CH3	(сн ₃)2сн-	C ₂ H ₅ -	H	(CH3)3C-	
244	CH3	CH3	6-CH3	(CH3)SCH-	C ₂ H ₅ -	H	(СН ₃) ₂ -СН-С(СН ₃)	2-

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹ Fp °C
	245	Сн3	снз	6-CH3	(CH ₃) ₂ CH-	с ₂ н ₅ -	н	(CH ₃) ₃ C-CH ₂ -
10	246	CH3	CH3	6-CH3	(CH ₃) ₂ CH-	с ₂ н ₅ -	H	сн ₃ о-сн ₂ -с(сн ₃) ₂ -
	247	СНЗ	CH3	6-CH3	(CH3)2CH-	с ₂ н ₅ -	H	C1CH2-C(CH3)2-
15	248	снз	СН3	6-CH ₃	(CH3) 2CH-	с ₂ н ₅ -	Н	сн ₃ о сн ₃
	249	сн3	снз	6-CH3	(CH ₃) ₂ CH-	C2H5-	Н	(CH ₃) ₂ C=CH-
20	250	снз	снз	6-CH3	(CH ₃) ₂ CH-	с ₂ н ₅ -	н	0CH3
	251	снз	CH3	6-CH3	(CH3)2CH-	С ₃ Н ₇ -	Н	СН3-
25	252	снз	CH3	6-CH3	(сн ₃) ₂ сн-	с ₃ н ₇ -	н	(сн ₃) ₂ сн-
	253	снз	сн3	6-CH3	(CH ₃) ₂ CH-	С ₃ н ₇ -	н	(сн ₃)3с-
30	254	CH3	снз	6-CH3	(CH ₃) ₂ CH-	С ₃ н ₇ -	Н	(CH ₃) ₂ CH-C(CH ₃) ₂ -
	255	CH3	снз	6-CH3	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	Н	сн3-
	256	CH3	CH3	6-CH3	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	H	(сн ₃) ₂ сн-
35	257	CH3	СНЗ	6-CH3	(CH ₃) ₂ CH-	(CH3)2CH-	H	(CH3)3C-
	258	CH3	CH3	6-CH3	(CH ₃)2CH-	(CH3)2CH-	H	(CH3)2CH-C(CH3)2-
40	259	снз	сн ₃	6-CH3	(сн3) 5сн-	сн ₃ - с	H3.	- сн ₃ -
	260	СНЗ	снз	6-CH3	(CH ₃) ₂ CH-	сн ₃ - с	H3.	- (сн ₃)2сн-
	261	СНЗ	CH3	6-CH3	(CH3)2CH-	сн ₃ - с	H3.	- (сн ₃) ₃ с-
45	262	CH3	CH3	6-CH3	(сн ₃) ₂ сн-	сн3- с	:H3	- (CH ₃) ₂ CH-C(CH ₃) ₂ -

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	C ⁴	R ¹	Fp	° C
10	263	СНЗ	CH3	6-СН _З	С ₄ Н ₉ -	н	н	сн ₃ -		
70	264	СНЗ	CH3	6-CH3	C4H9-	H	н	(сн ₃) ₂ сн-		
	265	СНЗ	снз	6-CH3	C4H9-	Н	н	(сн ₃) ₃ с-		
15	266	CH3	CH3	6-CH3	C4H9-	н	Н	(CH ₃) ₂ CH-C(CH ₃) ₂	-	
	267	сн3	CH3	6-CH3	C4H9-	СН3-	н	СН ₃ -		
20	268	CH3	сн3	6-CH3	C4H9-	сн3-	H	(сн ₃) ₂ сн-		
20	269	CH3	снз	6-CH3	C4H9-	сн3-	н	(сн ₃) ₃ с-		
	270	снз	снз	6-CH3	C4H9-	сн3-	н	(CH3)2CH-C(CH3)2	-	
25	271	сн3	снз	6-CH3	(CH3)2CH-CH2	- н	н	сн ₃ -		Öl
	272	CH3	снз	6-CH3	(CH3)2CH-CH2	- н	н	(сн ₃) ₂ сн-		Öl
30	273	сн3	снз	6-CH3	(CH3)2CH-CH2	- н	Н	(сн ₃)3с-	***	Öl
30	274	CH3	снз	6-CH3	(CH3)2CH-CH2	- н	H	(CH ₃) ₂ CH-C(CH ₃) ₂	-	Öl
	275	сн3	снз	6-CH3	(сн ₃) ₂ сн-сн ₂	- сн ₃ -	н	сн ₃ -		73
3 5	276	снз	снз	6-CH3	(CH3)2CH-CH2	- сн ₃ -	Н	(сн ₃) ₃ с-		Öl
	277	CH3	СНЗ	6-CH3	(сн ₃)2сн-сн ₂ .	- сн ₃ -	н	(сн ₃)3с-сн ₂ -		Öl
40	278	CH3	СНЗ	6-CH3	(CH3)2CH-CH2	- сн3-	н	(CH ₃) ₂ CH-C(CH ₃) ₂	-	
40	279	сн3	снз	6-CH ₃	с ₂ н ₅ сн-	н	Н	СН ₃ -		Öl
45	280	СНЗ	сн3	6-CH ₃	C ₂ H ₅ CH-	н	н	(сн ₃)2сн-		66

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	Ċ*	R ¹	Fp °C
10	281	сн3	СН3	6-СН ^З	С ₂ Н ₅ СН-	н	н	(сн ₃)3с-	99
15	282	снз	CH ³	6-СН <mark>3</mark>	C2H5 CH-	н	н (сн ₃) 2сн-с(с	H ₃) ₂ - 66
	283	снз	снз	6-СН _З	с ₂ н ₅ сн-	сн3-	н	сн ₃ -	Öı
20	284	снз	CH3	6-СН _З				(сн ₃)2сн-	
25	285	снз	сн3	6-CH3	с ₂ н ₅ сн-	сн3-	н	(CH ³) ³ C-	100
30	286	сн ₃	сн3	6-CH ₃	С ₂ Н ₅ СН-	сн3-	н	(сн ₃) ₂ сн-с (с	H ₃) ₂ -
	287	СНЗ	снз	6-CH3	(CH ³) ³ C-	н	Н	(CH ₃) ₂ CH-	Öı
35	288	снз	CH ³	6-CH3	(CH3)3C-	н	н	(CH3)3C-	85
	289	CH3	CH3	6-CH ³	(сн ₃)3с-	н	Н	(CH ₃) ₂ CH-C	СH ₃) ₂ - 107
	290	CH3	CH3	6-CH3	(сн ₃) ₃ с-сн ₂	- H	н	сн ₃ -	Öl
40	291	CH3	CH3	6-CH3	(сн ₃) ₃ с-сн ₂	- н	H	(CH ₃) ₂ CH-	
	292	CH3	CH3	6-CH3	(сн ₃) ₃ с-сн ₂	- н	H	(CH ³) ³ C-	83
45	293	CH3	CH3	6-CH3	(сн ₃) ₃ с-сн ₂	- н	H	(CH3)2CH-C	(CH ₃) ₂ -

<u>Tabelle 2</u> (Fortsetzung)

Bsp.	X	Y	z _n	A	В	c*	R ¹	Fp °C
294	СН3	сн3	6-CH ₃	(сн ₃)2сн-сн(сн	3)- H	H	сн ₃ -	
295	СНЗ	CH3	6-CH3	(СН3)2СН-СН(СН	3)- H	н	(сн ₃)2сн-	
296	СН3	сн3	6-CH3	(CH ₃) ₂ CH-CH(CH	₃)- н	н	(сн ³) ³ с-	
297	сн3	снз	6-CH3	(СН3)2СН-СН(СН	3)- H	н	(сн ₃) ₂ сн-с (сн ₃)	2-
298	CH3	CH3	6-CH3	(CH3)3C-CH(CH3)- н	н	сн3-	Öl
299	снз	снз	6-CH3	(CH3)3C-CH(CH3)- H	н	(сн ₃) ₂ сн-	
300	СНЗ	CH3	6-CH3	(CH3)3C-CH(CH3)- н	Н	(сн ₃)3с-	92
301	CH3	CH3	6-CH3	(CH3)3C-CH(CH3)- H	Н	(сн ₃) ₂ сн-с(сн ₃)	2-
302	CH3	снз	6-CH3	CH2=CH-CH2-	н	н	сн3-	Öl
303	CH3	снз	6-CH3	CH2=CH-CH2-	н	н	(сн ₃) ₂ сн-	
304	снз	снз	6-CH3	CH2=CH-CH2-	н	н	(сн ₃)3с-	Öl
305	снз	сн3	6-CH3	CH ₂ =CH-CH ₂ -	н	н	(сн ₃) ₂ сн-с(сн ₃)	2-
306	CH3	снз	6-CH3	CH2=CH-CH2-	СН3-	H	сн3-	
307	снз	СНЗ	6-CH3	CH2=CH-CH2-	сн3-	н	(CH ₃) ₂ CH-	
308	снз	СНЗ	6-CH3	CH2=CH-CH2-	сн3-	н	(сн ₃) ₃ с-	
309	СНЗ	CH3	6-CH3	CH2=CH-CH2-	сн3-	н	(сн ₃) ₂ сн-с (сн ₃)	2-
310	сн3	сн3	6-CH3	>	н	н	сн3-	Öl
311	СНЗ	сн3	6-CH3	>	н	н	(CH ₃) ₂ CH-	35
312	снз	снз	6-CH3	> -	н	н	(сн ₃)3с-	75
313	СНЗ	СНЗ	6-CH3	> -	H	Н	(СН ₃) ₂ СН-С(СН ₃)	2-

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	C *	R ¹	Fp °C
	314	СНЗ	СНЗ	6-CH ₃	>	н	н	(сн ₃)3с-сн	2-
10	315	CH3	СНЗ	6-CH3	D	н	н	сн ₃ о-сн ₂ -с(сн ₃)2-
	316	СНЗ	сн3	6-CH3	>	н	н	стсн2-с(сн	3 ⁾ 2 ⁻
15	317	СН3	CH3	6-CH3	>	н	н	сн ³ о сн ³ о	< _{снз}
	318	CH3	CH3	6-CH3	>	н	H	(CH ₃) ₂ C=CH	-
20	319	CH3	СНЗ	6-CH3	> -	Н	н		Н3
25	320	CH3	СНЗ	6-CH ₃	> -	CH3	н	сн ₃ -	83
	321	CH3	сн3	6-CH3	>	CH3	н	(CH3)20	:н-
	322	сн3	CH3	6-CH3		снз	Н	(CH ₃)30	:- Ö1
30	323	сн3	снз	6-CH3	>	CH3	н	(CH ₃) ₂ -CH-0	:(сн ₃)2-
	324	сн3	снз	6-CH3	> -	сн ₃	н	(CH3)3C-	·сн ₂ - öı
35	325	CH3	CH3	6-CH3	>	CH3	Н	сн ₃ о-сн ₂ -	·с(сн ₃) ₂ -
	326	CH3	сн3	6-CH3	>	сн3	H	C1CH2-C	(сн ₃) ₂ -
40	327	CH3	СНЗ	6-CH3	D -	CH3	н	сн ₃ о√	Сн3
	328	СНЗ	СНЗ	6-CH3	> -	CH3	H	(CH ₃) ₂ C:	CH-
45	329	снз	снз	6-CH3	>	снз	н		CH3

50

<u>Tabelle 2</u> (Fortsetzung)

	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹ Fp °C
	330	CH3	СНЗ	6-CH3	>	с ₂ н ₅ -	н	CH3-
	331	CH3	снз	6-CH3	>	С ₂ Н ₅ -	н	(сн ₃) ₂ сн-
	332	CH3	CH3	6-CH3	>	с ₂ н ₅ -	H	(сн ₃) ₃ с-
i	333	CH3	CH3	6-CH3	>	С ₂ Н ₅ -	н	(CH ₃) ₂ -CH-C(CH ₃) ₂ -
	334	CH3	CH3	6-CH3	>	С ₂ Н ₅ -	н	(сн ₃) ₃ с-сн ₂ -
	365	CH3	снз	6-CH3	D —	С ₂ Н ₅ -	н	сн ₃ 0-сн ₂ -с(сн ₃) ₂ -
)	336	СНЗ	снз	6-CH3	>	с ₂ н ₅ -	н	с1сн ₂ -с(сн ₃) ₂ -
i	337	СНЗ	сн3	6-СН ^З	}	с ₂ н ₅ -	н	сн ₃ о сн ₃
	338	CH3	снз	6-CH3	>	с ₂ н ₅ -	н	(CH3)2C=CH-
)	339	снз	сн3	6-CH ₃	>	с ₂ н ₅ -	H	ОСH ³
	340	CH3	СН	3 6-СН3	>	С ₃ н ₇ -	н	сн ₃ -
;	341	CH3	СН	₃ 6-СН ₃	>	С ₃ Н ₇ -	н	(сн ₃) ₂ сн-
	342	CH3	СН	3 6-СH3	>	с ₃ н ₇ -	н	(CH ₃)3C-
	343	сн3	СН	3 6-СН _З	>	с ₃ н ₇ -	н	(CH ₃) ₂ CH-C(CH ₃) ₂ -
	344	CH3	СН	6-CH3	>	(сн ₃) ₂ сн-	H	СН3-
	345	CH3	СН	6-CH3	>	(CH ₃)2CH-	н	(СН ₃) ₂ СН-
	346	CH3	СН	6-CH3	>	(CH ₃) ₂ CH-	н	(СН ₃)3С-
	347	CH3	СН	6-CH3	>	(CH ₃) ₂ CH-	н	(CH ₃) ₂ CH-C(CH ₃) ₂ -

50

<u>Tabelle 2</u> (Fortsetzung)

Bsp. Nr.	x	Y	z _n	λ	В	C*	R ¹	Fp °C
348	снз	СН3	6-CH3	>	сн3-	сн3-	сн3-	
349	СНЗ	CH3	6-CH3	D —	СН3-	сн3-	(CH ₃) ₂ CH-	
350	CH3	CH3	6-CH3	>	сн3-	сн3-	(CH3)3C-	
351	CH3	CH ³	6-CH3	>	сн3-	CH3-	(CH ₃) ₂ CH-C(CH ₃) ₂ -
352	CH3	сн3	6-CH ₃	\bigcirc	H	н	сн3-	60
353	CH3	сн3	6-CH ₃	\bigcirc	н	н	(сн ₃) ₂ сн-	Öl
354	СН3	сн3	6-CH3	\bigcirc	н	н	(CH ₃) ₃ C-	80
355	сн3	сн3	6-CH3	\Box	н	, H ((сн ₃) ₂ -сн-с(сн ₃)	2 ^{- 85}
356	сн3	СН3	6-CH3	\Box	н	н	(сн ₃) ₃ с-сн ₂ -	74
357	сн3	СН3	6-CH3	\Box	н	н	сн ₃ о-сн ₂ -с(сн ₃)	2-
358	снз	CH3	6-СН _З .	\Box	н	н	C1CH2-C(CH3)2-	94
359	СН3	сн3	6-CH ₃	\Box	н	н	сн ₃ о сн ₃	39 }

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
10	360	СН3	СН3	6-СН3	\Box	н	Ħ	(сн _{3.}) ₂ с=сн-	Öı
15	361	снз	СН3	6-СН ³	\Box	Н	н	0 Сн ³	
	362	сн3	снз	6-сн3		сн ₃ -	н	сн ₃ -	96
20	363	снз	сн3	6-CH ₃ .	\bigcirc	сн3-	н	(сн ₃) ₂ сн-	Öl
25	364	снз	снз	6-сн ₃	\Box	сн3-	н	(CH ₃)3C-	63
30	365	CH3	снз	6-СН _З		сн3-	н ((сн ₃) ₂ сн-с(сн ₃) ₂	2- Öl
35	366	CH3	CH3	6-CH ₃	\Box	сн3-	H	(сн ₃) ₃ с-сн ₂ -	
	367	снз	СНЗ	6-CH ₃	\Box	сн3-	н	сн ₃ о-сн ₂ -с(сн ₃)	2-
40	368	СНЗ	CH3	6-CH ₃		сн3-	н	с1СH ₂ -С(СH ₃) ₂ -	
45	369	CH3	СНЗ	6-CH ₃	\Box	СН3-	н	сн30 сн3	3

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	X	Y	z _n _	` A	В	c*	R ¹	Fp °C
10	370	снз	сн3	6-сн ₃	\Box	сн3-	н	(CH ₃) ₂ C=CH-	
15	371	снз	снз	6-CH3		сн ₃ -	н	CH CH	3
	372	CH3	снз	6-CH3		С ₂ Н ₅ -	н	сн ₃ -	·
20	373	сн3	сн3	6-СН ^З	\Box	с ₂ н ₅ -	н	(сн ₃) ₂ сн-	
25	374	CH3	сн3	6-CH ₃	\Box	C2H5-	н	(CH ₃) ₃ C-	
30	375	сн3	сн3	6-CH3	\bigcirc	с ₂ н ₅ -	н	(сн ₃)2-сн-с(с	^H 3 ⁾ 2 ⁻
35	376	сн3	снз	6-CH3	\bigcirc	с _{2^Н5} -	н	(сн ₃) ₃ с-сн	2-
	377	сн3	сн3	6-CH3	\bigcirc	с ₂ н ₅ -	н	сн ₃ о-сн ₂ -с (с	H ₃) ₂ -
40	378	CH3	CH3	6-CH3	\bigcirc	с ₂ н ₅ -	н	с1сн ² -с(сн ³	,12-
45	379	CH3	CH3	6-CH ₃	\bigcirc	с ₂ н ₅ -	H	сн ³ 0	Сн ₃

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp.	x	Y	z _n	A	В	c*	R ¹	Fp °C
10	380	CH3	СН3	6-CH ₃	\Box	С ₂ н ₅ -	н	(CH ₃) ₂ C=C	н-
15	381	CH3	снз	6-СН _З		с ₂ н ₅ -	н		сн ₃
	382	снз	CH3	6-CH ₃	\bigcirc	с ₃ н ₇ -	. Н	сн ₃ -	
20	383	снз	снз	6-CH3	\Box	С ₃ Н ₇ -	н	(сн ₃) 2сн-	
25	384	снз	сн3	6-СН3	\Box	с ₃ н ₇ -	н	(сн ₃)3с-	
30	385	CH3	CH ³	6-CH3	\Box	с ₃ н ₇ -	н (сн ₃)2сн-с(СН ₃) ₂ -
35	386	снз	сн3	6-СН3		(сн ₃) ₂ сн-	- , H	сн3-	
	387	СН3	Сн3	6-сн3		(сн ₃) ₂ сн-	- н	(CH ₃) ₂ CH-	
40	388	сн3	сн3	6-СН3		(сн ₃) ₂ сн-	- н	(СН ₃)3С-	
45	389	сн3	сн3	6-CH3		(сн ₃) ₂ сн	- н ((сн ₃)2сн-с (CH ₃) ₂ -
		,							

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
10	390	снз	сн3	6-СН ^З	\Box	сн3-	сн3-	сн ₃ -	
15	391	сн3	сн3	6-CH3	\Box	сн3-	сн3-	(сн ₃) 2сн-	
.5	392	сн3	CH3	6-СН3	\Box	сн3-	сн3-	(сн ₃)3с-	
20	393	СНЗ	снз	6-CH3	\Box	сн3-	сн3-	(сн ₃)2сн-с(сн	3 ⁾ 2 ⁻
25	394	сн3	сн3	6-СН ^З	\bigcirc	н	н	сн ₃ -	78
30	395	сн3	сн3	6-СН3	\bigcirc	н	н	(сн ₃) ₂ сн-	Öı
	396	СНЗ	снз	6-CH3	<u></u>	н	н	(CH ₃)3C-	9 7
35	397	СН3	сн3	6-CH3	\bigcirc	н	н	(сн _{3).2} сн-с(сн ₃	122
40	398	снз	сн3	6-CH3	\bigcirc	н	H	(сн ₃) ₃ с-сн ₂	· -
45	399	сн3	сн3	6-CH3	<u></u>	н	н	сн ₃ 0-сн ₂ -с (сн	l ₃) ₂ -

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
10	400	Сн3	СН3	6-СН ^З	\bigcirc	н	Н	стсн ⁵ -с(сн ³) ⁵	-
15	401	CH3	сн3	6-сн3		H	н	сн ³ 0 сн	3
	402	снз	снз	6-СН3	\bigcirc	н	н	(сн ₃) ₂ с=сн-	
20	403	сн ₃	СН3	6-СН _З	<u> </u>	н	н	ОСH ³	
25	404	сн3	снз	6-СН ³	\bigcirc	сн3-	н	Сн ₃ -	84
30	405	сн ₃	CH3	6-СН3	\bigcirc	сн3-	н	(CH ₃) ₂ CH-	Öı
35	406	сн3	снз	6-CH3		сн3-	н	(CH3)3C-	72
	407	сн3	снз	6-СН3	\bigcirc	СН3-	н (СН ₃) ₂ -СН-С(СН ₃) ₂ -
40	408	сн3	сн3	6-CH ₃		СН3-	н	(сн ₃) ₃ с-сн ₂ -	118
45	409	CH3	сн3	6-СН3		сн3-	н	сн ₃ 0-сн ₂ -с(сн ₃)2-

50

. 55

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
10	410	СНЗ	CH3	6-СН _З	\bigcirc	сн3-	н	сісн ₂ -с(сн ₃) ₂ -	115
15	411	CH3	СН3	6-CH3	\bigcirc	сн3-	н	сн30	3
	412	снз	CH3	6-CH3	\bigcirc	сн3-	н	(сн ₃)2с=сн-	
20	413	сн3	сн3	6-CH3	<u></u>	сн3-	. н	0CH3	·
25	414	сн3	сн3	6-СН3	\bigcirc	с ₂ н ₅ -	н	сн ₃ -	
30	415	снз	снз	6-CH3	\bigcirc	с ₂ н ₅ -	н	(сн ₃)2сн-	
35	416	CH3	CH3	6-CH3	\bigcirc	с ₂ н ₅	н	(CH3)3C-	
	417	сн3	CH3	6-CH ₃	\bigcirc	с ₂ н ₅ -	н	(сн ₃) ² сн-с (сн ₃)	2-
40	418	сн ₃	снз	6-CH3	\bigcirc	с ₂ н ₅ -	н	(CH ₃)3C-CH ₂ -	•
45	419	СН3	сн3	6-CH3	\bigcirc	С ₂ Н ₅ -	н	сн ₃ 0-сн ₂ -с (сн	3 ⁾ 2 ⁻

50

Tabelle 2 (Fortsetzung)

5	Bsp.	x	Y	z _n	λ	В	C*	R ¹	Fp °C
10	420	сн3	снз	6-СН _З	<u></u>	с ₂ н ₅ -	н	c1CH ₂ -C(CH ₃) ₂	-
15	421	сн3	CH3	6-CH ₃	<u></u>	С ₂ Н ₅ -	н	сн ₃ о сн	3
20	422	СНЗ	снз	6-CH3	<u>_</u>	с ₂ н ₅ -	н	(CH ₃) ₂ C=CH-	
20	423	снз	СН3	6-CH ₃	\bigcirc	с ₂ н ₅ -	н	0CH3	·
25	424	CH3	СНЗ	6-CH ₃	\bigcirc	С ₃ Н ₇ -	H	сн3-	
30	425	снз	сн3	6-CH ₃	\bigcirc	С ₃ Н ₇ -	н	(сн ₃) ₂ сн-	
35	426	снз	сн3	6-CH3	\bigcirc	С ₃ н ₇ -	н	(сн ³) ³ с-	·
40	427	СНЗ	снз	6-CH3	\bigcirc	с ₃ н ₇ -	н	(сн ₃) ₂ сн-с(сн ₃)	2-
40	428	CH3	сн3	6-CH3	<u></u>	(сн ₃) ₂ сн	- н	сн3-	
45	429	сн3	снз	6-СН ^З		(сн ₃) ₂ сн	- н	(CH ₃) ₂ CH-	

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp.	x	Y	z _n	λ	В	C *	R ¹	Fp °C
10	430	CH3	сн3	6-СН ^З	\bigcirc	(CH3)5	сн- н	(сн ₃)3с-	
15	431	сн3	сн3	6-CH3	\bigcirc	(CH ₃) ₂	СН- Н	(СН ₃) ₂ СН-С(сн ₃) ₂ -
	432	сн3	сн3	6-CH3	\bigcirc	сн3-	сн3-	сн ₃ -	
20	433	сн3	снз	6-CH ³	\bigcirc	сн3-	сн3-	(сн ₃)2сн-	
25	434	сн3	сн ₃	6-сн3	<u> </u>	сн3-	сн3-	(сн ₃) ₃ с-	
30	435	сн3	сн3	6-CH ³	<u></u>	сн3-	сн3-	(сн ₃) ₂ сн-с(CH ₃) ₂ -
35	436	сн ₃	сн3	6-СН ³		Н	н	сн ₃ -	Öı
35	437	снз	CH3	6-СН3			н	(сн ₃) ₂ сн-	
40	438	сн ₃	СН3	6-CH3		. H	н	(сн ₃)3с-	104
45	439	СНЗ	сн3	6-CH ₃		H	H ((сн ₃) ₂ -сн-с (с	:H ₃) ₂ -

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp Nr.	. x	Y	z _n	λ	В	c*	R ¹	Fp °C
	440	СН3	сн3	6-CH3	сн ₃ -о-сн ₂ -сн(с	H ₃)- H	н	сн3-	76
10	441	сн3	CH3	6-CH3	сн3-о-сн5-сн(с	:H ₃)- H	н	(CH ₃) ₂ CH-	
	442	снз	СНЗ	6-CH ³	сн3-о-сн2-сн(:H3)- H	н	(CH3)3C-	Öl
15	443	сн3	сн3	6-CH3	сн ₃ -о-сн ₂ -сн (с	:H ₃)- H	н	(сн ₃) ₂ сн-с(сн ₃) ₂	-
	444	снз	СНЗ	6-CH3	сн ₃ 0-(сн ₂)2	- н	н	сн3-	Öl
	445	сн3	снз	6-CH3	сн ₃ 0-(сн ₂)	- н	н	(CH ₃) ₂ CH-	Öl
20	446	сн3	снз	6-CH3	сн ₃ 0-(сн ₂)	2- н	н	(CH3)3C-	Öl
	447	снз	снз	6-СН ^З	CH30-(CH2)	2- н	н	(CH ₃) ₂ CH-С(CH ₃) ₂ -	Öl
25	448	снз	снз	6-СН ^З	CH30-(CH2)	₂ - сн ₃ -	н	сн3-	Öl
	449	снз	сн3	6-CH3	СН ₃ 0-(СН ₂)	2- сн ₃ -	Н.	(CH ₃) ₂ CH-	Öl
	450	сн3	сн3	6-CH3	CH30-(CH2)	2- CH3-	н	(CH3)3C-	Öl
30	451	СН3	снз	6-CH3	CH30-(CH2)	2- CH3-	н	(CH ₃) ₂ CH-C(CH ₃) ₂ -	Öl
	452	CH3	CH3	6-CH3	CH30-(CH2)	3- Н	н	сн3-	Öl
35	453	СН3	CH3	6-CH3	CH30-(CH2)	з- н	н	(CH ₃) ₂ CH-	Öl
	454	CH3	CH3	6-CH3	СН ₃ 0-(СН ₂)	3- н	н	(сн ₃)3с-	Öl
	455	СНЗ	CH3	6-CH3	сн ₃ о-(сн ₂);	3- н	Н	(CH ₃) ₂ CH-C(CH ₃) ₂ -	- Öl
40	456	CH3	СНЗ	6-CH3	сн ₃ 0-(сн ₂)	3- сн ³ -	- н	снз-	Öl
	457	CH3	СНЗ	6-CH3	сн ₃ о-(сн ₂)	3- СН3·	- н	(сн ₃) ₂ сн-	Öl
45	458	CH3	СНЗ	6-CH3	сн ₃ 0-(сн ₂)	3- СН ³ -	• н	(сн ₃)3с-	Öl
	459	CH3	СНЗ	6-CH3	СН ₃ 0-(СН ₂)	3- CH3	- н	(CH ₃) ₂ CH-C(CH ₃) ₂	2- Ö1

50

<u>Tabelle 2</u> (Fortsetzung)

5	Bsp.	X	Y	z _n	λ		В	c*	R ¹ F	p ° C
	460	СНЗ	СНЗ	6-CH3	C2H50-(CH2)	2-CH(CH3)-	н	н	CH3-	Öl
10	461	снз	снз	6-CH3	C2H5O-(CH2)	2-CH(CH3)-	H	н	(CH3) ^S CH-	Öl
	462	СН3	снз	6-CH3	C2H50-(CH2)	2-CH(CH3)-	H	н	(CH3)3C-	Öl
15	463	СНЗ	сн3	6-СН ^З	C2H50-(CH2)	2-ch(ch3)-	H	н	(CH3)2CH-C(CH3)2	- Ö1
	464	СНЗ	снз	6-CH3	сн ₃ о-сн ₂ -сн	(сн ₃)-сн-	Н	н	сн ₃ -	Öl
	465	CH3	сн3	6-CH3	сн ₃ 0-сн ₂ -сн	(сн ₃)-сн-	Н	н	(CH ₃) ₂ CH-	Öl
20	466	CH3	снз	6-CH3	сн ₃ о-сн ₂ -сн	(сн ₃)-сн-	н	H	(сн ₃)3с-	Öı
	467	CH3	снз	6-CH3	сн30-сн5-сн	(сн ₃)-сн-	н	Н	(CH ₃) ₂ CH-C(CH ₃) ₂	- Ö1
25	468	СНЗ	снз	6-CH3	C2H5-8-(0	H ₂) ₂ -	Н	H	сн ₃ -	Öl
	469	снз	сн3	6-CH3	c ₂ H ₅ -s-(0	(H ₂) ₂ -	н	н	(CH ₃) ₂ CH-	Öl
	470	СНЗ	CH3	6-CH3	C2H5-S-((CH ₂) ₂ -	н	н	(CH3)3C-	Öl
30	471	CH3	CH3	6-CH ³	C2H5-2-(CH ₂) ₂ -	H	Н	(CH ₃) ₂ CH-C(CH ₃) ₂	- Öl

Tabelle 3

15	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
	472	СНЗ	снз	6-CH3	сн3-	н	н	сн ₃ -	
20	473	сн3	сн3	6-CH3	CH3-	н	н	С ₂ Н ₅ -	
	474	снз	снз	6-CH3	CH3-	н	H	(сн ₃) 2сн-	
	475	СНЗ	снз	6-CH3	сн3-	н	н	(сн ₃) ₂ сн-сн ₂ -	
25	476	снз	сн3	6-CH3	сн3-	н	н	с ₂ н ₅ сн-	
30	477	снз	CH3	6-CH3	сн3-	H	н	(CH3)3C-CH2-	
	478	сн3	снз	6-СН _З	сн3-	н	н	\bigcirc	
35	479	СНЗ	снз	6-сн3	сн3-	н	H		
40	480	CH3	СНЗ	6-CH3	сн3-	сн ₃ -	н	сн ₃ -	
	481	снз	снз	6-CH3	сн3-	СН3-	н	C ₂ H ₅ -	Öl -
45	482	CH3	СНЗ	6-CH3	сн3-	CH3-	H	(сн ₃) ₂ сн-	Öl
.0	483	CH3	снз	6-CH3	сн3-	сн3-	н	(CH ₃) ₂ CH-CH ₂ -	Öl

50

<u>Tabelle 3</u> (Fortsetzung)

Bsp. Nr.	X	Y	z _n	λ	В	C*	R ¹	Fp °C
484	CH3	СНЗ	6-CH ₃	сн ₃ -	сн ₃ -	H	С ₂ Н ₅ СН-	Öl
485	CH3	CH3	6-CH3	сн3-	сн3-	н	(сн ₃) ₃ с-сн ₂ -	146.
486	сн3	сн3	6-CH3	сн3-	сн3-	н	\bigcirc	
487	снз	сн ₃	6-СН3	сн3-	сн3-	н		
488	CH3	сн ₃	6-CH3	сн3-	с ₂ н ₅ -	Н	сн3-	
489	CH3	CH3	6-CH3	сн3-	с ₂ н ₅ -	н	C ₂ H ₅ -	
490	CH3	снз	6-CH3	сн3-	С ₂ Н ₅ -	н	(CH3)2CH-	
491	снз	снз	6-CH3	сн3-	C ₂ H ₅ -	н	(сн ₃) ₂ сн-сн ₂ -	
492	снз	снз	6-CH ³	сн3-	с ₂ н ₅ -	н	С ₂ н ₅ Сн-	
493	сн ³	снз	6-CH3	СН3-	C ₂ H ₅ -	н	(CH ₃) ₃ C-CH ₂ -	
494	снз	сн ₃	6-СН ^З	СН3-	с ₂ н ₅ -	н	\bigcirc	
495	СН3	снз	6-CH ₃	СН3-	С ₂ Н ₅ -	н	\bigcirc	
496	CH3	CH3	6-CH ₃	сн3-	С _З Н ₇ -	н	с ₂ н ₅ -	
497	CH3	СНЗ	6-CH3	CH3-	С ₃ Н ₇ -	н	(CH ₃) ₂ CH-	

50

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c *	R ¹	Fp °C
	498	сн3	сн3	6-CH3	CH3-	C ₃ H ₇ -	Н	(сн ₃)2сн-сн ₂ -	
10	499	сн3	сн3	6-CH3	сн ₃ -	с ₃ н ₇ -	н	сн ₃ сн-	
15	500	СНЗ	CH3	6-CH3	сн3-	(CH3)2CH-	н	(CH ₃)3C-CH ₂ -	
15	501	CH3	CH3	6-CH3	сн3-	(сн ₃) 2сн-	н	с ₂ н ₅ -	
	502	снз	CH ₃	6-CH3	сн3-	(сн ₃) ₂ сн-	н	(CH ₃) ₂ CH-	
20	503	CH3	CH3	6-CH3	CH3-	(сн ₃) ₂ сн-	H	(сн ₃) 2сн-сн ₂ -	
	504	CH3	CH3	6-CH3	сн3-	(CH ₃) ₂ CH-	н	сн ₃ сн-	
25	505	CH ₃	CH3	6-CH3	CH3-	(CH ₃) ₂ CH-	н	(СН ₃) ₃ С-СН ₂ -	
	506	CH ₃	CH3	6-CH ₃	C ₂ H ₅ -	H	н	СН ₃ -	
	507	CH3	CH ₃	6-СН _З	C ₂ H ₅ -	н	н	С ₂ Н ₅ -	
30	508	CH ₃	CH3	6-СН _З	с ₂ н ₅ -	н	н	(CH ₃) ₂ CH-	Öl
	509	СН3	CH3	6-CH ₃	С ₂ Н ₅ -	н	н	(CH ₃) ₂ CH-CH ₂ -	
35	510	СНЗ	CH3	6-CH ₃	С ₂ н ₅ -	H	н .	C2H5 CH-	
	511	СНЗ	CH3	6-CH3	C ₂ H ₅ -	н	н	(сн ₃) ₃ с-сн ₂ -	
40	512	снз	снз	6-CH ₃	с ₂ н ₅ -	н	н		
45	513	СНЗ	сн3	6-СН _З	с ₂ н ₅ -	н	н	<u></u>	

50

<u>Tabelle 3</u> (Fortsetzung)

Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp ° (
514	сн3	снз	6-CH3	C2H5-	сн ₃ -	н	сн3-	
515	снз	сн3	6-CH3	C2H5-	сн3-	H	C ₂ H ₅ -	Öl
516	снз	снз	6-CH3	C ₂ H ₅ -	CH3-	н	(CH3)2CH-	
517	снз	снз	6-CH3	С ₂ Н ₅ -	сн3-	H	(CH ₃) ₂ CH-CH ₂ -	
518	CH3	снз	6-CH3	С ₂ Н ₅ -	сн ₃ -	н	С ₂ Н ₅ Сн- СН ₃	
519	снз	CH3	6-CH ₃	С ₂ Н ₅ -	сн3-	н	(СН ₃) ₃ С-СН ₂ -	
520	сн3	CH3	6-CH3	С ₂ н ₅ -	СН3-	н	\bigcirc	
521	снз	снз	6-CH3	С ₂ Н ₅ -	сн ₃ -	н		
522	CH3	снз	6-CH3	с ₂ н ₅ -	C ₂ H ₅ -	н	сн ₃ -	
523	CH ³	сн3	6-CH3	С ₂ Н ₅ -	c ₂ H ₅ -	Н	с ₂ н ₅ -	
524	CH ³	снз	6-CH3	с ₂ н ₅ -	с ₂ н ₅ -	Н	(сн ³) ² сн-	
525	CH3	CH3	6-CH3	c ₂ H ₅ -	с ₂ н ₅ -	н	(CH3)2CH-CH2	-
526	CH ³	CH3	6-CH3	с ₂ н ₅ -	с ₂ н ₅ -	н	С ₂ Н ₅ СН-	
527	СНЗ	СН3	6-CH3	С ₂ Н ₅ -	С ₂ Н ₅ -	н	(сн ₃) ₃ с-сн ₂	-
528	CH3	CH3	6-CH ₃	с ₂ н ₅ -	с ₂ н ₅ -	н	\bigcirc	

50

EP 0 377 893 A2

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	C*	R ¹ Fp ° C
10	529	снз	снз	6-CH ₃	с ₂ н ₅ -	С ₂ Н ₅ -	H	
	530	сн3	сн3	6-CH3	с ₂ н ₅ -	с ₃ н ₇ -	н	С ₂ Н ₅ -
45	531	СНЗ	снз	6-CH3	с ₂ н ₅ -	С ₃ Н ₇ -	Н	(сн ₃) ₂ сн-
15	532	снз	CH3	6-CH3	C2H5-	C3H7-	н	(сн ₃) ₂ сн-сн ₂ -
20	533	сн3	сн3	6-СН ^З	с ₂ н ₅ -	С ₃ Н ₇ -	н	СН ₃ СН- С ₂ Н ₅
	534	CH3	снз	6-CH3	с ₂ н ₅ -	(CH3)2CH-	Н	(сн ₃) ₃ с-сн ₂ -
	535	CH3	СНЗ	6-CH3	с ₂ н ₅ -	(CH ₃) ₂ CH-	Н	C ₂ H ₅ -
25	536	СНЗ	CH3	6-CH3	С ₂ Н ₅ -	(сн ₃)2сн-	н	(сн ₃) ₂ сн-
	537	CH3	CH3	6-CH3	С ₂ Н ₅ -	(CH ₃) ₂ CH-	H	(CH ₃) ₂ CH-CH ₂ -
30	538	снз	CH3	6-сн3	с ₂ н ₅ -	(сн ₃) ₂ сн-	н	сн ₃ с ₂ н ₅
	539	сн3	сн3	6-CH3	С ₂ Н ₅ -	(сн ₃) 2сн-	н	(CH ₃) ₃ C-CH ₂ -
35	540	СНЗ	снз	6-CH3	С ₃ Н ₇ -	н	н	сн3-
	541	сн3	СНЗ	6-CH ₃	C3H7-	н	H	C ₂ H ₅ -
40	542	снз	снз	6-CH3	С ₃ Н ₇ -	H	н	(CH ₃) ₂ CH-
	543	сн3	CH3	6-CH3	С ₃ Н ₇ -	H	н	(CH ₃) ₂ CH-CH ₂ -
45	544	СН3	CH ³	6-CH ₃	С _З Н ₇ -	н	н	CH-CH3

50

Tabelle 3 (Fortsetzung)

5	Bsp. Nr.	X	Y	z _n	λ	В	C*	R ¹	Fp °C
	545	сн3	снз	6-CH3	с ₃ н ₇ -	H	н	(сн ₃) ₃ с-сн ₂ -	
10	546	снз	CH3	6-CH3	С ₃ н ₇ -	н	н	\bigcirc	
15	547	сн3	сн3	6-CH ₃	с ₃ н ₇ -	н	н		
20	548	снз	снз	6-CH3	C3H7-	сн3-	н	сн ₃ -	
	549	CH3	CH3	6-CH3	С ₃ н ₇	сн3-	н	с ₂ н ₅ -	
	550	сн3	CH3	6-CH3	С ₃ н ₇ -	сн3-	Н	(CH ₃) ₂ CH-	
25	551	сн3	CH3	6-CH3	С ₃ Н ₇ -	сн3-	н	(CH ₃) ₂ CH-CH ₂ -	
30	552	CH3	снз	6-CH3	С ₃ Н ₇ -	сн ₃ -	н	с ₂ н ₅ сн-	-
00	553	снз	снз	6-CH3	С ₃ Н ₇ -	сн3-	Н	(CH3)3C-CH2-	
35	554	CH3	снз	6-CH3	с ₂ н ₅ -	сн3-	н	\bigcirc	
40	555	CH3	CH3	6-CH3	С ₂ Н ₅ -	СН3-	н		
	556	CH ₃	СНЗ	6-CH3	C ₃ H ₇ -	C ₂ H ₅	н	ch3-	
	557	CH ³	СНЗ	6-CH ₃	C ₃ H ₇ -	с ₂ н ₅ -	н	С ₂ Н ₅ -	
45	558	CH3	СНЗ	6-CH3	C3H7-	C ₂ H ₅ -	н	(CH3)2CH-	

50

<u>Tabelle 3</u> (Fortsetzung)

Bsp. Nr.	x	Y	z _n	λ	В	C*	R ¹	Fp °
559	сн3	сн3	6-сн _З	С ₃ н ₇ -	С ₂ Н ₅ -	н	(сн ₃) ₂ сн-сн ₂ -	
560	снз	сн3	6-СН ^З	С ₃ Н ₇ -	С ₂ Н ₅ -	н	с ₂ н ₅ сн-	
561	сн3	снз	6-CH3	C3H7-	с ₂ н ₅ -	н	(сн ₃) ₃ с-сн ₂ -	
562	снз	снз	6-CH3	с ₃ н ₇ -	C ₂ H ₅ -	н	<u></u>	
563	снз	CH ³	6-CH3	с ₃ н ₇ -	с ₂ н ₅ -	н	<u></u>	
564	CH3	CH3	6-CH3	С ₃ н ₇ -	С ₃ Н ₇ -	H	с ₂ н ₅ -	
565	сн3	снз	6-CH3	C3H7-	С ₃ Н ₇ -	н	(сн ₃) ₂ сн-	
566	снз	снз	6-CH3	C3H7-	С ₃ н ₇ -	H	(сн ₃)2сн-сн ₂	-
567	сн3	снз	6-СН _З	С ₃ н ₇ -	с ₃ н ₇ -	н	сн ₃ сн- с ₂ н ₅	
568	сн ₃	снз	6-CH3	С ₃ Н ₇ -	с ₃ н ₇ -	H	(сн ₃) ₃ с-сн ₂	-
569	CH3	CH3	6-CH3	C3H7-	(CH ₃) ₂ CH-	н	с ₂ н ₅ -	
570	CH3	снз	6-CH3	C3H7-	(CH3) SCH-	Н	(CH ₃)2CH-	
571	сн3	снз	6-CH3	C3H7-	(сн ₃)2сн-	H	(сн ₃) ₂ сн-сн ₂	2-
572	сн3	снз	6-CH3	с ₃ н ₇ -	(сн ₃)2сн-	н	СН ₃ СН- С ₂ Н ₅	
573	СНЗ	CH3	6-CH3	С ₃ Н ₇ -	(CH3)2CH-	H	(сн ₃)3с-сн	2-

<u>Tabelle 3</u> (Fortsetzung)

Bsp. Nr.	х	Y	z _n	λ	В	c*	R ¹	Fp °C
574	сн ₃	снз	6-CH3	(CH ₃) ₂ CH-	H	н	сн ₃ -	67
575	снз	сн3	6-CH3	(CH ₃) ₂ CH-	H	н	C2H5-	87
576	CH3	СНЗ	6-CH3	(CH ₃) ₂ CH-	Н	H	(CH ₃) ₂ CH-CH ₂	41
577	снз	снз	6-CH ₃	(СН ₃) ₂ СН-	н	н	с ₂ н ₅ сн-	83
578	CH3	снз	6-CH3	(CH ₃) ₂ CH-	н	н	(сн3)3с-сн5-	Öl
579	снз	снз	6-сн ₃	(сн ₃)2сн-	н	н	\bigcirc	
580	снз	сн3	6-CH ₃	(CH ₃) ₂ CH-	сн3-	н	сн3-	
581	сн ₃	снз	6-CH3	(сн ₃)2сн-	сн3-	н	с ₂ н ₅ -	
582	снз	снз	6-CH ₃	(CH ₃) ₂ CH-	СН3-	Н	(CH ₃) ₂ CH-	
583	сн3	сн3	6-CH3	(CH ₃) ₂ CH-	сн3-	Н	(сн ₃)2сн-сн ₂ -	
584	сн ₃	снз	6-CH ³	(сн ₃) ₂ сн-	сн3-	Н	с ₂ н ₅ сн-	
585	снз	снз	6-CH3	(CH ₃) ₂ CH-	сн3-	н	(сн ₃) ₃ с-сн ₂ -	83
586	снз	CH3	6-CH3	(CH3)2CH-	сн3-	Н	\bigcirc	
587	CH3	CH3	6-СН _З	(CH ₃) ₂ CH-	сн3-	Н		

50

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
	588	сн3	снз	6-CH ₃	(сн ₃)2сн-	С ₂ н ₅ -	н	сн ₃ -	
10	589	сн3	СНЗ	6-CH3	(сн ₃)2сн-	С ₂ н ₅ -	н	С ₂ Н ₅ -	
	590	снз	СНЗ	6-CH3	(сн ₃) ₂ сн-	С ₂ н ₅ -	н	(CH ₃) ₂ CH-	
15	591	снз	CH3	6-CH3	(CH ₃) ₂ CH-	с ₂ н ₅ -	н	(CH ₃) ₂ CH-CH ₂ -	
	592	сн3	сн3	6-CH3	(сн ₃) ₂ сн-	С ₂ н ₅ -	н	с ₂ н ₅ сн-	
20	593	CH3	снз	6-CH3	(сн ₃)2сн-	с ₂ н ₅ -	н	(сн ₃) ₃ с-сн ₂ -	
25	594	СНЗ	сн3	6-СН _З	(сн ₃) ₂ сн-	с ₂ н ₅ -	Н	\bigcirc	
	595	снз	сн3	6-CH3	(сн ₃) ₂ сн-	С ₂ Н ₅ -	н		
30	596	CH3	снз	6-CH ₃	(CH ₃) ₂ CH-	С ₃ н ₇ -	н	С ₂ Н ₅ -	
	597	CH3	СН3	6-CH ₃	(CH ₃) ₂ CH-	с ₃ н ₇ -	н	сг.,5 (сн ₃)2сн-	
35	598	CH3	CH3	6-CH ₃	• -	с _з н ₇ -	н	СН ₃) ₂ СН-СН ₂ -	
	599	снз	сн3	6-CH3	(сн ₃)2сн-	С ₃ н ₇ -	н	сн ₃ сн-	
40	600	CH3	снз	6-CH3	(CH ₃) ₂ CH-	С ₃ н ₇ -	н	(сн ₃) ₃ с-сн ₂ -	
	601	СНЗ	сн3	6-CH3	(CH3)2CH-	(сн ₃)2сн-	н	с ₂ н ₅ -	
45	602	CH3	сн3	6-CH3	(CH ₃) ₂ CH-	(сн ₃)2сн-	H	(сн ₃)2сн-	
	603	CH3	СНЗ	6-CH ₃	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	H	(сн ₃) ₂ сн-сн ₂ -	•

50

<u>Tabelle 3</u> (Fortsetzung)

5 .	Bsp. Nr.	x	Y	Z _n	λ -	В	C*	R ¹	Fp °C
10	604	сн3	сн3	6-СН _З	(сн ₃) ₂ сн-	(сн ₃)2сн-	н	сн ₃ сн- с ₂ н ₅	
	605	снз	сн3	6-CH3	(сн ₃) ₂ сн-	(CH ₃) ₂ CH-	Н	(CH ₃) ₃ C-CH ₂ -	
15	606	сн3	снз	6-CH3	C4H9-	н	H	C2H ₅ -	
	607	снз	СНЗ	6-CH3	C4H9-	н	Н	(CH ₃) ₂ CH-	
	608	снз	сн3	6-CH3	C4H9-	н	H	(сн ₃) ₂ сн-сн ₂ -	
20	609	СНЗ	сн3	6-CH ₃	C4H9-	Н	н	сн ₃ сн- с ₂ н ₅	
25	610	снз	снз	6-CH3	C4H9-	н	Н	(CH ₃) ₃ C-CH ₂ -	
	611	сна	снз	6-CH3	C4H9-	СН3-	н	С ₂ Н ₅ -	
	612	снз	снз	6-CH3	C4H9-	сн3-	н	(сн ₃)2сн-	
30	613	снз	снз	6-CH3	C4H9-	CH3-	Н	(CH ₃) ₂ CH-CH ₂ -	
35	614	снз	сн3	6-CH3	C4H9-	сн3-	н	сн ₃ сн- с ₂ н ₅	•
	615	снз	снз	6-CH3	C4H9-	сн3-	H	(сн ₃) ₃ с-сн ₂ -	
•	616	снз	CH3	6-CH3	(сн ₃) ₂ сн-с	н ₂ - н	H	С ₂ н ₅ -	
40	617	CH3	СНЗ	6-CH3	(сн ₃) ₂ сн-с	н ₂ - н	H	(сн ₃) ₂ сн-	
	618	СНЗ	СНЗ	6-CH3	(CH ₃) ₂ CH-C	н ₂ - н	H	(CH ₃) ₂ CH-CH ₂ -	
45	619	снз	сн3	6-CH3	(сн ₃)2сн-с	н ₂ - н	H 	сн ₃ с ₂ н ₅	
	620	СНЗ	СНЗ	6-CH3	(CH ₃)2CH-C	н ₂ - н	H	(CH ₃) ₃ C-CH ₂ -	

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp. Nr.	x	Y.	z _n	λ	В	c*	R ¹	Fp °C
10	621	CH3	CH3	6-CH ₃	(CH ₃) ₂ CH-CH ₂ -	сн ₃ -	Н	с ₂ н ₅ -	
	622	CH3	сн ³	6-CH3	(СН ₃) ₂ СН-СН ₂ -	сн3-	H	(CH ₃) ₂ CH-	
15	623	CH3	сн3	6-CH3	(сн ₃) ₂ сн-сн ₂ -	сн3-	н	-	
-	624	сн3	сн3	6-CH ₃	(сн ₃) 2сн-сн ₂ -	сн3-	H	сн ₃ сн-	
20	625	снз	CH3	6-CH3	(CH ₃) ₂ CH-CH ₂ -	сн3-	н	(CH ₃) ₃ C-CH ₂ -	
	626	сн3	сн3	6-CH3	С ₂ Н ₅ СН-	н	н	с ₂ н ₅ -	
25	627	снз	снз	6-CH ₃	с ₂ н ₅ сн-	н	н	(CH ₃) ₂ CH-	
30	628	сн3	CH3	6-CH ₃	с ₂ н ₅ сн-	н	н	(сн ₃) ₂ сн-сн ₂ -	٠
35	629	сн3	сн ₃	6-CH3	С ₂ Н ₅ СН-	H	н	сн ₃ с ₂ н ₅	
40	630	CH3	CH3	6-CH ₃	с ₂ н ₅ сн-	Н	H	(сн ₃) ₃ с-сн ₂ -	
	631	снз	СНЗ	6-CH ₃	С ₂ Н ₅ СН-	СН3-	н	с ₂ н ₅ -	
45	632	снз	СНЗ	6-СН _З	C2H5 CH-	сн3-	н	(CH ₃) ₂ CH-	

55

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp.	x	Y	z _n	λ	В	c *	R ¹	Fp °C
10	633	сн3	CH3	6-СН _З	С ₂ Н ₅ СН-	сн3-	H .	(сн ₃) ₂ сн-сн ₂ -	
15	634	снз	CH3	6-CH3	С ₂ Н ₅ СН-	сн3-	н	сн ₃ с ₂ н ₅	
	635	снз	сн3	6-CH ₃	С ₂ Н ₅ СН-	сн3-	Н	(сн ₃) ₃ с-сн ₂ -	
20	636	CH3	CH3	6-CH3	сн2≖сн-сн2-	н	Н	C ₂ H ₅ -	
	637	CH3	CH3	6-CH3	CH2=CH-CH2-	н	Н	(CH ₃) ₂ CH-	Öl
	638	CH3	CH3	6-CH ₃	сн ₂ =сн-сн ₂ -	н	H	(сн ₃) ₂ сн-сн ₂	-
25	639	снз	CH3	6-CH ₃	CH ₂ =CH-CH ₂ -	н	н	СН ₃ СН- С ₂ Н ₅	
30	640	снз	сн3	6-CH3	сн ₂ =сн-сн ₂ -	н	Ĥ	(сн ₃) ₃ с-сн ₂ -	
	641	сн ₃	снз	6-CH3	<u>_</u> ^	н	н	с ₂ н ₅ -	
35	642	сн3	сн3	6-CH ₃	<u>_</u> ^	н	н	(сн ₃) ₂ сн-	Ö1
40	643	СНЗ	СНЗ	6-CH3	<u>_</u> ^	H	н	(сн ₃) ₂ сн-сн ₂ -	
45	644	снз	CH3	6-CH ₃	○ ^	H	Н	сн ₃ сн- с ₂ н ₅	
	645	сн3	сн3	6-CH3	<u>_</u> ^	н	н	(сн ₃) ₃ с-сн ₂ -	

55

<u>Tabelle 3</u> (Fortsetzung)

Bsp. Nr.	x	Y	z _n	λ	В	C*	R ¹	Fp °C
646	снз	сн ₃	6-СН _З	> -	Н	н	сн ₃ -	
647	снз	снз	6-CH3	> -	н ·	Н	С ₂ н ₅ -	
648	снз	снз	6-CH ₃	>	н	Н	(сн ₃) 2сн-	
649	снз	CH ³	6-CH3	>	H	Н	(CH ₃) ₂ CH-CH ₂ -	
650	снз	сн3	6-сн ³	>	н	н	с ₂ н ₅ сн-	Öı
651	снз	сн3	6-CH ₃	>	н	н	(сн ₃) ₃ с-сн ₂ -	
652	снз	сн3	6-СН _З	>	н	H	\bigcirc	
653	снз	снз	6-CH3	>	H	н		
654	СНЗ	снз	6-CH ₃	>	CH3-	н	сн ₃ -	
655	СНЗ	сн3	6-CH ₃	>	сн ₃ -	Н	С ₂ Н ₅ -	
656	снз	снз	6-CH3	>	сн ₃ -	н	(сн ₃) ₂ сн-	
657	CH3	сн3	6-CH3	>	сн3-	н	(сн ₃)2 сн-сн ₂ -	
658	сн3	сн3	6-CH ₃	>	сн ₃ -	H	с ₂ н ₅ сн-	
659	СНЗ	сн3	6-CH3	b —	сн3-	н	(CH ₃) ₃ C-CH ₂ -	
66D	снз	снз	6-CH3	>	СН3-	Н	\bigcirc	
661	снз	СН3	6-CH3	>	сн ₃ -	н		

Tabelle 3 (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	C*	R ¹	Fp °C
	662	СНЗ	CH3	6-CH3	> -	С ₂ н ₅ -	н	сн3-	
10	663	CH3	CH3	6-CH ₃	>	C ₂ H ₅ -	н	C2H5-	
	664	СНЗ	снз	6-CH ₃	>	С ₂ Н ₅ -	н	(CH ₃) ₂ CH-	
15	665	снз	снз	6-CH3	>	C ₂ H ₅ -	Н	(сн ₃) ₂ сн-сн ₂ -	
	666	снз	сн3	6-CH ₃	>	с ₂ н ₅ -	н	С ₂ Н ₅ СН-	Öl
20	667	СНЗ	снз	6-CH ₃	> -	С ₂ Н ₅ -	Н	(сн ₃) ₃ с-сн ₂ -	
25	668	снз	снз	6-CH3	>	с ₂ н ₅ -	н	\bigcirc	
	669	CH3	снз	6-CH3	>	С ₂ н ₅ -	н	<u></u>	
30	670	CH3	снз	6-CH ₃	> -	C3H7-	н	С ₂ Н ₅ -	
	671	снз	СНЗ	6-CH ₃	> -	C3H7-	Н	(CH ₃) ₂ CH-	
35	672	CH3	снз	6-CH3	>	С ₃ Н ₇ -	н	(сн ₃)2сн-сн ₂	•
33	673	снз	снз	6-CH ₃	> -	с ₃ н ₇ -	н	сн ₃ сн- с ₂ н ₅	
40	674	СНЗ	сн3	6-CH3	> -	с ₃ н ₇ -	H	(сн ₃) ₃ с-сн ₂	-
	675	снз	СНЗ	6-CH3	>	(CH ₃) ₂ CH-	Н	C ₂ H5-	
45	676	СНЗ	СНЗ	6-CH ₃	D -	(CH ₃) ₂ CH-	Н	(CH ₃) ₂ CH-	
₩.	677	CH3	CH3	6-CH ₃	D -	(CH ₃) ₂ CH-	Н	(СН ₃) ₂ СН-СН ₂	-

50

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	z _n	λ	В	C*	R ¹	Fp °C
. 10	678	сн ₃	сн ₃	6-СН ^З	b —	(сн ₃)2сн-	н	сн ₃ сн-	
	679	сн3	снз	6-CH3	> -	(CH3)2CH-	Н	(сн ₃) зс-сн ₂ -	
15	680	сн ³	сн3	6-СН _З	\bigcirc	н	Н	сн ₃ -	70
20	681	CH3	сн3	6-СН3		Н	н	с ₂ н ₅ -	56
	682	сн3	сн3	6-CH3		н	н	(сн ₃) ₂ сн-	84
25	683	сн3	сн3	6-CH3		н	н	(сн ₃)2сн-сн ₂ -	69
30	684	CH3	сн3	6-СН3		н	н	с ₂ н ₅ сн-	64 -
35	685	сн3	снз	6-CH ₃		н	н	(CH ₃) ₃ C-CH ₂ -	114
	686	CH3	СНЗ	6-CH3	\bigcirc	н	н	\bigcirc	
40	687	сн3	сн3	6-CH3		н	н	\bigcirc	

<u>Tabelle 3</u> (Fortsetzung)

688 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - 689 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H C ₂ H ₅ - 690 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₂ CH- 691 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₂ CH-CH ₂ - 692 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₂ CH-CH ₂ - 693 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₃ C-CH ₂ - 694 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - H 695 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - 696 CH ₃ CH ₃ 6-CH ₃ CC ₂ H ₅ - H CH ₃ - 697 CH ₃ CH ₃ 6-CH ₃ CC ₂ H ₅ - H CH ₃ -	Bsp.	x	Y	z _n	λ	В	C*	R ¹	Fp °C
690 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₂ CH- 691 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₂ CH-CH ₂ - 692 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H C ₂ H ₅ CH- 693 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₃ C-CH ₂ - 694 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - 695 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ -	688	сн3	сн3	6-CH ₃		сн ₃ -	н	сн ₃ -	
691 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₂ CH-CH ₂ - 692 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H C ₂ H ₅ CH- 693 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H (CH ₃) ₃ C-CH ₂ - 694 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - 695 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ -	689	CH3	CH3	6-CH3	\Box	сн3-	н	С ₂ Н ₅ -	
692 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ 693 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ 694 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 695 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ 6-CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ 696 CH ₃ CH ₃ CH ₃ 6-CH ₃ CH ₃	690	снз	сн3	6-CH3	\Box	сн3-	H	(CH3)2CH-	
692 CH ₃ CH ₃ 6-CH ₃ CH ₃ - CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃	691	снз	снз	6-CH ₃	\bigcirc	сн3-	н	(сн ₃) ₂ сн-сн ₂ -	
694 CH ₃ CH ₃ 6-CH ₃ CH ₃ - H CH ₃ - CH ₃ - H CH ₃ -	692	снз	снз	6-CH3	\Box	сн3-	н	_Un⁻	
695 CH ₃ CH ₃ 6-CH ₃ СН ₃ - Н СН ₃ -	693	снз	СНЗ	6-CH3	\Box	сн3-	н	(сн ₃) ₃ с-сн ₂ -	
696 СН3 СН3 6-СН3 С2Н5- Н СН3-	694	снз	снз	6-CH ₃	\Box	сн3-	н	<u> </u>	
	695	сн3	снз	6-СН ^З	\Box	сн ₃ -	н	<u></u>	
697 СН3 СН3 6-СН3 С2Н5- Н С2Н5-	696	сн3	снз	6-CH3	\Box	с ₂ н ₅ -	н	сн ₃ -	
	697	СН3	снз	6-СН _З	\Box	с ₂ н ₅ -	н	с ₂ н ₅ -	

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp. Nr.	X	Y	z _n	λ	В	C *	R ¹	Fp °C
10	698	сн ₃	снз	6-CH ₃	\Box	с ₂ н ₅ -	н	(CH ₃) ₂ CH-	
15	699	снз	снз	6-CH ₃	\Box	с ₂ н ₅ -	н	(сн ₃) ₂ сн-сн ₂ -	
,0	700	сн3	снз	6-CH _{3.}		С ₂ Н ₅ -	н	с ₂ н ₅ сн-	
20	701	снз	CH ₃	6-CH ₃	\Box	с ₂ н ₅ -	H	(сн ₃)3с-сн ₂ -	
25 ·	702	снз	снз	6-CH ₃		С ₂ Н ₅ -	н	\bigcirc	
30	703	снз	снз	6-CH ₃	\Box	с ₂ н ₅ -	н	<u></u>	
35	704	снэ	снз	6-CH3		С ₃ Н ₇ -	н	С ₂ Н ₅ -	
33	705	снз	снз	6-CH3	\Box	С ₃ н ₇ -	н	(сн ₃) ₂ сн-	
40	706	снз	снз	6-CH ₃	\Box	С ₃ н ₇ -	Н	(сн ₃) ₂ сн-сн2	-
45	707	снз	снз	6-CH ₃	\Box	С ₃ Н ₇ -	н	CH ₃ CH-	
50	708	CH3	снз	6-СН ^З	\Box	с ₃ н ₇ -	Н	(СН _З) _З С-СН2	• . !=

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp.	x	Y	z _n	A B	C*	R ¹	Fp °C
10	709	CH3	СНЗ	6-СН _З	(CH ₃) ₂ CH-	н	с2н ₅ -	
15	710	снз	снз	6-CH ₃	(CH ₃) ₂ CH-	Н	(CH ₃) ₂ CH-	
	711	сн3	снз	6-CH3	(CH ₃) ₂ CH-	н	(сн ₃)2сн-с	:H2-
20	712	снз	сн ₃	6-СН _З	(CH ₃) ₂ CH-	н	сн ₃ с ₂ н ₅	
25	713	CH3	CH3	6-CH3	(CH ₃) ₂ CH-	H	(сн ₃)3с-	CH2-
30	714	снз	снз	6-CH ₃	— н	н	СН3-	
35	715	сн ₃	сн _З	6-CH3	— н	н	С ₂ Н ₅ -	
	716	сн3	снз	6-CH3	— н	н	(CH ₃) ₂ CH-	
40	717	сн3	снз	6-CH ₃	— н	н	(сн ₃)2сн-с	:H ₂ -
45	718	сн ₃	снз	6-СН _З	— н	н	с ₂ н ₅ сн-	

50

Tabelle 3 (Fortsetzung)

5	Bsp. Nr.	x .	Y	Z _n	λ	В	C *	R ¹	Fp °C
10	719	CH3	сн3	6-CH3	\bigcirc	Н	н	(сн ₃) ₃ с-сн ₂ -	
	720	снз	сн3	6-CH ₃	\bigcirc	н	н	\bigcirc	
15	721	снз	снз	6-CH ₃	\bigcirc	H	н		
20	722	снз	сн3	6-CH ₃	<u></u>	сн ₃ -	н	сн ₃ -	
25	723	снз	сн3	6-CH ₃	<u></u>	сн3-	н	С ₂ Н ₅ -	
30	724	снз	снз	6-CH ₃	\bigcirc	сн3-	Н	(сн ₃) ₂ сн-	
	725	сн3	снз	6-CH3	\bigcirc	сн3-	н	(сн ₃) ₂ сн-сн ₂ -	
35	726	снз	снз	6-CH3	<u></u>	сн ₃ -	н	с ₂ н ₅ сн- сн ₃	
40	727	снз	снз	6-СН _З	\bigcirc	СН ₃ -	Н	(сн ₃)3с-сн ₂ -	
45	728	снз	снз	6-СН _З	\bigcirc	CH ₃ -	н	\bigcirc	
; 50	729	CH3	CH3	6-CH ₃	\bigcirc	сн3-	н		

<u>Tabelle 3</u> (Fortsetzung)

	Bsp. Nr.	x	Y	z _n	λ	В	c*	R ¹	Fp °C
0	730	снз	снз	6-CH ₃	\bigcirc	с ₂ н ₅ -	н	сн ₃ -	
	731	сн3	снз	6-СН _З	<u></u>	с ₂ н ₅ -	н	с ₂ н ₅ -	
5	732	сн ₃	снз	6-CH3	\bigcirc	с ₂ н ₅ -	н	(СН ₃) ₂ СН-	
0	733	СН3	снз	6-CH3	\bigcirc	с ₂ н ₅ -	н	(сн ₃) ₂ сн-сн ₂	2-
5	734	сн ₃	снз	6-CH3	\bigcirc	С ₂ Н ₅ -	н	с ₂ н ₅ сн-	
10	735	сн3	снз	6-CH ₃	\bigcirc	С ₂ Н ₅ -	н	(сн ₃) ₃ с-сн	2-
	736	сн3	снз	6-CH ₃	<u></u>	С ₂ Н ₅ -	н	\bigcirc	
35	737	сн ₃	CH3	6-CH ₃		с ₂ н ₅ -	н		
10	738	сн ₃	сн ₃	6-CH ₃	·	C ₃ H ₇ -	н	c ₂ н ₅ -	
45	739	сн _з	сн ₃	6-CH	, <u> </u>	С ₃ Н ₇ -	H	(сн ₃) ₂ сн-	

55

<u>Tabelle 3</u> (Fortsetzung)

Bsp.	х	Y	z _n	λ	В	C*	R ¹	Fp
740	снз	сн3	6-CH3	<u></u>	С ₃ Н ₇ -	н	(CH ₃) ₂ CH-C	н ₂
741	CH ₃	сн3	6-CH3	\bigcirc	с ₃ н ₇ -	н	сн ₃ сн-	
742	снз	CH3	6-CH ₃	\bigcirc	С ₃ н ₇ -	н	(сн ₃) ₃ с-0	:H ₂ -
743	снз	сн3	6-СН _З	\bigcirc	(СН ₃) ₂ СН-	H	с ₂ н ₅ -	
744	снз	сн3	6-CH ₃	<u></u>	(СН ₃) ₂ СН-	н	(сн ₃) ₂ сн-	
745	сн ₃	CH ₃	6-CH ₃	\bigcirc	(CH ₃) ₂ CH-	н	(CH ₃) ₂ CH-	СН ₂
746	снз	снз	6-CH ₃	\bigcirc	(сн ₃) ₂ сн-	н	сн ₃ с ₂ н ₅	·
747	сн3	сн3	6-CH ₃	\bigcirc	(сн ₃) ₂ сн-	Н	(CH3)3C-	сн ₂ -
748	CH3	CH3	6-CH ₃	CH3-0-(C)	H ₂) ₂ - H	Н	С ₂ Н ₅ -	
749	CH3	CH3		CH3-0-(C		Н	(CH ₃) ₂ CH-	•
750	CH3	CH ₃	6-CH ₃	CH3-0-(C	H ₂) ₂ - H	H	(CH ₃)2CH-	-CH ₂
751	CH3	CH3	6-CH ₃	сн ₃ -о-(с	н ₂) ₂ - н	н	СН ₃ СН ₅	-

<u>Tabelle 3</u> (Fortsetzung)

5	Bsp. Nr.	x	Y	Zn	λ	В	c*	R ¹	Fp °C
	752	CH3	CH3	6-CH ₃	CH3-0-(CH2)2-	н	н	(сн ₃) ₃ с-сн ₂ -	
10	753	СНЗ	СНЗ	6-CH3	сн3-0-(сн5)5-	сн3-	Н	C2H5-	
	754	CH3	сн3	6-CH3	CH3-0-(CH2)2-	сн3-	H	(CH ₃) ₂ CH-	
15	755	снз	снз	6-CH ³	CH3-0-(CH2)2-	СН3-	H	(CH ₃) ₂ CH-CH ₂ -	57
	756	сн3	снз	6-CH3	CH3-0-(CH2)2-	сн ₃ -	н	сн ₃ сн-	54
20	757	снз	CH3	6-CH3	CH3-0-(CH2)2-	сн3-	Н	(сн ₃) ₃ с-сн ₂ -	
	758	CH3	СНЗ	6-CH3	сн ₃ -о-сн ₂ -сн(сн ₃)- н	н	с ₂ н ₅ -	60
	759	снз	CH3	6-CH3	сн ₃ -о-сн ₂ -сн(сн ₃	3)- Н	Н	(сн ₃) ₂ сн-	
25	760	CH3	снз	6-CH3	сн3-о-сн5-сн(сн3)- H	Н	(сн ₃) ₂ сн-сн ₂ -	
30	761	СНЗ	СНЗ	6-CH ₃	сн ₃ -о-сн ₂ -сн(сн ₃	₃)- H	Н	СН ₃ СН- С ₂ Н ₅	·
	762	CH3	CH3	6-CH3	сн3-0-сн5-сн(сн3)- H	Н	(CH ₃) ₃ C-CH ₂ -	
	763	СНЗ	снз	6-CH3	сн3-о-сн5-сн(сн3)- CH ₃ -	Н	C ₂ H ₅ -	
35	764	СНЗ	CH3	6-CH3	сн3-о-сн5-сн(сн3	3)- CH3-	Н	(CH ₃) ₂ CH-	
	765	CH3	CH3	6-CH3	сн3-о-сн5-сн(сн3	3)- CH3-	Н	(сн ₃)2сн-сн ₂ -	
40	766	сн3	сн3	6-CH3	сн ₃ -о-сн ₂ -сн(сн ₃	₃)- сн ₃ -	Н	сн ₃ сн-	·
	767	CH3	СНЗ	6-CH3	сн ₃ -о-сн ₂ -сн(сн ₃	3)- CH3-	Н	(CH3)3C-CH2-	

Herstellung der Zwischenprodukte

Beispiel I

55

11,25 g (0,15 Mol) Sarkosin und 3 g (0,075 Mol) NaOH werden in 210 ml Wasser gelöst. Unter Wasserbadkühlung werden 9 g (0,225 Mol) NaOH, gelöst in 45 ml Wasser, und 29,6 g (0,15 Mol Mesitylenessigsäurechlorid synchron zugetropft, wobei die Temperatur auf < 40°C gehalten wird. Nach 1 Stunde säuert man bei 0 bis 20°C mit konz. HCl, saugt ab und trocknet im Vakuum bei 70°C über P₂O₅. Es werden 37,1 g (99,3 % der Theorie N-(2.4.6-Trimethylphenyl-acetyl)-sarkosin vom Schmelzpunkt 140°C erhalten.

Beispiel II

5

15

20 CH₃ CH₃ CH₃

37,1 g (0,149 Mol) N-(2.4.6-Trimethylphenyl-acetyl)-sarkosin werden in 150 ml Methanol suspendiert, mit 22 ml (0,165 Mol) Dimethoxypropan versetzt und nach Zugabe von 1,43 g (7,5 mmol) p-Toluolsulfonsäure-monohydrat 3 Stunden unter Rückfluß erhitzt.

Nach Abdampfen des Lösungsmittels wird der Rückstand in CH₂Cl₂ aufgenommen, mit Bicarbonatlösung gewaschen, getrocknet und einrotiert. Man erhält 34 g (ca. 86,7% der Theorie) N-(2.4.6-Trimethylphenyl-acetyl)-sarkosin-methylester als hellgelbes ÖI.

¹H-NMR(200 MHz, CDCl₃):

 δ = 2,18, 2,2, 2,28 (s, 9H Ar-CH₃); 3,0, 3,2 (s, 3H, NCH₃), 3,64, 3,67 (s, 2H, CH₂-Ar), 3,66, 3,69 (s, 3H, OCH₃), 3,79, 4,14 (s, 2H, N-CH₂-CO), 6,82 (s, 2H, Ar 3-H, 5-H)

Beispiel III

40

45

50

17,4 g (0,12 Mol) N-Isopropylglycin-ethylester werden in 180 ml abs. THF gelöst und mit 16,8 ml (0,12 Mol) Triethylamin versetzt. Bei 0 - 10 °C werden 26,82 g (0,12 Mol) 2.6-Dichlorphenylessigsäurechlorid in 20 ml abs. THF zugetropft. Nach 1 Stunde rührt man in 1 l Eiswasser + 100 ml 1 NHCl ein, extrahiert mit CH₂Cl₂, trocknet und engt ein. Es werden 36,8 g (89,1 % der Theorie) eines gelben Öls erhalten. ¹H-NMR(200 MHz, CDCl₃):

 δ = 1,11 - 1,32 (m, 9H CH₂-CH₃ CH(CH₃)₂), 7,08 - 7,15 (1H, m, Ar 4-H), 7,25 - 7,32 (m, 2H, Ar-3-H, 5-H). Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und

Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

5 Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

10 Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

5 Aus der Ordnung der Isoptera z.B. Reticulitermes spp...

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium comi, Saissetia oleae, Laodelphax striatellus,

Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretel-

la, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima,

Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Acanthoscelides obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp.,

Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.:

Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Zu den pflanzenparasitären Nematoden gehören Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp..

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel

und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Charakteristisch für die erfindungsgemäßen Verbindungen ist, daß sie eine selektive Wirksamkeit gegen monokotyle Unkräuter im Vor- und Nachlaufverfahren (Pre- und Postemergence) bei guter Kulturflanzenverträglichkeit aufweisen.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Dabei zeigen die erfindungsgemäßen Wirkstoffe neben einer hervorragenden Wirkung gegen Schadpflanzen gute Verträglichkeit gegenüber wichtigen Kulturpflanzen, wie z. B. Weisen, Baumwolle, Sojabohnen, Citrusfrüchten und Zuckerrüben, und können daher als selektive Unkrautbekämpfungsmittel eingesetzt werden.

Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stofen und in Hüllmassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

25

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgas, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von

Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden Herbiziden oder Fungiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Die erfindungsgemäßen Wirkstoffe können femer in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Die erfindungsgemäß verwendbaren Wirkstoffe eignen sich auch zur Bekämpfung von Milben, Zecken usw. auf dem Gebiet der Tierhaltung und Viehzucht, wobei durch die Bekämpfung der Schädlinge bessere Ergebnisse, z.B. höhere Milchleistungen, höheres Gewicht, schöneres Tierfell, längere Lebensdauer usw. erreicht werden können.

Die Anwendung der erfindungsgemäß verwendbaren Wirkstoffe geschieht auf diesem Gebiet in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale bzw. äußerliche Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießens (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion sowie ferner durch das "feed-through"-Verfahren. Daneben ist auch eine Anwendung als Formkörper (Halsband, Ohrmarke) möglich.

Beispiel A

30

Nephotettix-Test

Lösungsmittel: 7 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (5), (54), (55), (56), (57), (58).

Die erfindungsgemäßen Verbindungen der Formel (I) weisen antimikrobielle, insbesondere starke antibakterielle und antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sproßpilze sowie biphasische Pilze, z.B. gegen Candida-Arten wie Candida albicans, Epidermophyton-Arten wie Epidermophyton floccosum, Aspergillus-Arten wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Arten wie Trichophyton mentagrophytes, Microsporon-Arten wie Microsporon felineum sowie Torulopsis-Arten wie Torulopsis glabrata. Die Aufzählung dieser Mikroorganismen stellt keinesfalls eine Beschränkung der bekämpfbaren Keime dar, sondern hat nur erläuternden Charakter.

Als Indikationsbeispiele in der Humanmedizin können beispielsweise genannt werden:

Dermatomykosen und Systemmykosen durch Trichophyton mentagrophytes und andere Trichophytonarten, Microsporonarten sowie Epidermophyton floccosum, Sproßpilze und biphasische Pilze sowie Schimmelpilze hervorgerufen.

Als Indikationsgebiet in der Tiermedizin können beispielsweise aufgeführt werden:

Alle Dermatomykosen und Systemmykosen, insbesondere solche, die durch die obengenannten Erreger hervorgerufen werden.

Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nicht toxischen, inerten pharmazeutisch geeigneten Trägerstoffen einen oder mehrere erfindungsgemäße Wirkstoffe enthalten oder die aus einem oder mehreren erfindungsgemäßen Wirkstoffen bestehen.

Zur vorliegenden Erfindung gehören auch pharmazeutische Zubereitungen in Dosierungseinheiten. Dies bedeutet, daß die Zubereitungen in Form einzelner Teile, z.B. Tabletten, Dragees, Kapseln, Pillen, Suppositorien und Ampullenvorliegen, deren Wirkstoffgehalt einen Bruchteil oder einem Vielfachen einer Einzeldosis entspricht. Die Dosierungseinheiten können z.B. 1,2,3 oder 4 Einzeldosen oder 1/2, 1/3 oder 1/4 einer Einzeldosis enthalten. Eine Einzeldosis enthält vorzugsweise die Menge Wirkstoff, die bei einer Applikation verabreicht wird und die gewöhnlich einer ganzen, einer halben oder einem Drittel oder einem Viertel einer Tagesdosis entspricht.

Unter nicht toxischen, inerten pharmazeutisch geeigneten Trägerstoffen sind feste, halbfeste oder flüssige Verdünnungsmittel, Füllstoffe oder Formulierungshilfsmittel jeder Art zu verstehen.

Als bevorzugte pharmazeutische Zubereitungen seien Tabletten, Dragees, Kapseln, Pillen, Granulate, Suppositorien, Lösungen, Suspensionen und Emulsionen, Pasten, Salben, Gele, Cremes, Lotions, Puder oder Sprays genannt.

Tabletten, Dragees, Kapseln, Pillen und Granulate können den oder die Wirkstoffe neben den üblichen Trägerstoffen enthalten, wie (a) Füll- und Streckmittel, z.B. Stärken, Milchzucker, Rohrzucker, Glucose, Mannit und Kieselsäure re, (b) Bindemittel, z.B. Carboxymethylcellulose, Alginate, Gelantine, Polyvinylpyrrolidon, (c) Feuchthaltemittel, z.B. Glycerin, (d) Sprengmittel, z.B. Agar-Agar, Calciumcarbonat und Natriumbicarbonat, (e) Lösungsverzögerer, z.B. Paraffin und (f) Resorptionsbeschleuniger, z.B. quarternäre Ammoniumverbindungen, (g) Netzmittel, z.B. Cetylalkohol, Glycerinmonostearat, (h) Adsorptionsmittel, z.B. Kaolin und Bentonit und (i) Gleitmittel, z.B. Talkum, Calcium- und Magnesiumstearat und feste Polyethylenglykole oder Gemische der unter (a) bis (i) aufgeführten Stoffe.

Die Tabletten, Dragees, Kapseln, Pillen und Granulate können mit den üblichen gegebenenfalls Opakisierungsmittel enthaltenden Überzügen und Hüllen versehen sein und so zusammengesetzt sein, daß sie den oder die Wirkstoffe nur oder bevorzugt in einem bestimmten Teil des Intestinaltraktes, gegebenenfalls verzögert abgeben, wobei als Einbettungsmassen z.B. Polymersubstanzen und Wachse verwendet werden können.

Der oder die Wirkstoffe können gegebenenfalls mit einem oder mehreren der oben angegebenen Trägerstoffe auch in mikroverkapselter Form vorliegen.

Suppositorien können neben dem oder den Wirkstoffen die üblichen wasserlöslichen oder wasserunlöslichen Trägerstoffe enthalten, z.B. Polyethylenglykole, Fette, z.B. Kakaofett und höhere Ester (z.B. C₁₄-Alkohol mit C₁₅-Fettsäure) oder Gemische dieser Stoffe.

Salben, Pasten, Cremes und Gele können neben dem oder den Wirkstoffen die üblichen Trägerstoffe enthalten, z.B. tierische und pflanzliche Fette, Wachse, Paraffine, Stärke, Tragant, Cellulosederivate, Polyethylenglykole, Silicone, Bentonite, Kieselsäure, Talkum und Zinkoxid oder Gemische dieser Stoffe.

Puder und Sprays können neben dem oder den Wirkstoffen die üblichen Trägerstoffe enthalten, z.B. Milchzucker, Talkum, Kieselsäure, Aluminiumhydroxid, Calciumsilikat und Polyamidpulver oder Gemische dieser Stoffe, Sprays können zusätzlich die üblichen Treibmittel z.B. Chlorfluorkohlenwasserstoffe enthalten.

Lösungen und Emulsionen können neben dem oder den Wirkstoffen die üblichen Trägerstoffe wie Lösungsmittel, Lösungsverzögerer und Emulgatoren, z.B. Wasser, Ethylalkohol, Isopropylalkohol, Ethylcarbonat, Ethylacetat, Benzylalkohol, Benzylbenzoat, Propylenglykol, 1,3-Buty lenglykol, Dimethylformamid, Öle, insbesondere Baumwollsaatöl, Erdnußöl, Maiskeimöl, Olivenöl, Ricinusöl und Sesamöl, Glycerin, Glycerinformal, Tetrahydrofurfurylalkohol, Polyethylenglykole und Fettsäureester des Sorbitans oder Gemische dieser Stoffe enthalten.

Zur parenteralen Applikation können die Lösungen und Emulsionen auch in steriler und blutisotonischer Form vorliegen.

Suspensionen können neben dem oder den Wirkstoffen die üblichen Trägerstoffe, wie flüssige Verdünnungsmittel, z.B. Wasser, Ethylalkohol, Propylalkohol, Suspendiermittel, z.B. ethoxylierte Isostearylalkohole, Polyoxyethylensorbit- und -sorbitanester, mikrokristalline Cellulose, Aluminiummetahydroxid, Bentonit, Agar-Agar und Tragant oder Gemische dieser Stoffe enthalten.

Die genannten Formulierungsformen können auch Färbemittel, Konservierungsstoffe sowie geruchsund geschmacksverbessernde Zusätze, z.B. Pfefferminzöl und Eukalyptusöl und Süßmittel, z.B. Saccharin enthalten.

Die therapeutisch wirksamen Verbindungen sollen in den oben angeführten pharmazeutischen Zubereitungen vorzugsweise in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von 0,5 bis 95 Gew.-% der

Gesamtmischung vorhanden sein.

Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungsgemäßen Wirkstoffen auch weitere pharmazeutische Wirkstoffe enthalten.

Die Herstellung der oben aufgeführten pharmazeutischen Zubereitungen erfolgt in üblicher Weise nach bekannten Methoden, z.B. durch Mischen des oder der Wirkstoffe mit dem oder den Trägerstoffen.

Zur vorliegenden Erfindung gehört auch die Verwendung der erfindungsgemäßen Wirkstoffe, sowie von pharmazeutischen Zubereitungen, die einen oder mehrere erfindungsgemäße Wirkstoffe enthalten, in der Human- und Veterinärmedizin zur Verhütung, Besserung und/oder Heilung der oben aufgeführten Erkrankungen.

Die Wirkstoffe oder die pharmazeutischen Zubereitungen können lokal, oral, parenteral, intraperitoneal und/oder rektal, vorzugsweise parenteral, insbesondere intravenös appliziert werden.

Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 2,5 bis etwa 200, vorzugsweise von 5 bis 150 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben zur Erzielung der gewünschten Ergebnisse zu verabreichen.

Bei oralen Applikationen werden die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 2,5 bis etwa 200, vorzugsweise von 5 bis 150 mg/kg Körpergewicht je 24 Stunden und bei parenteraler Applikation in Gesamtmengen von etwa 2,5 bis etwa 50, vorzugsweise von 1 bis 25 mg/kg Körpergewicht je 24 Stunden verabreicht.

Es kann jedoch erforderlich sein, von den genannten Dosierungen abzuweichenund zwar in Abhängigkeit von der Art und dem Körpergewicht des zu behandelnden Objektes, der Art und Schwere der Erkrankung, der Art der Zubereitung und der Applikation des Arzneimittels sowie dem Zeitraum bzw. Intervall, innerhalb welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der obengenannten Menge Wirkstoff auszukommen, während in anderen Fällen die oben angeführte Wirkstoffmenge überschritten werden muß. Die Festlegung der jeweils erforderlichen optimalen Dosierung und Applikationsart der Wirkstoffe kann durch jeden Fachmann aufgrund seines Fachwissens leicht erfolgen.

30 Beispiel B

35

10

Antimykotische in-vitro-Wirksamkeit

Versuchsbeschreibung:

Die in-vitro-Prüfungen wurden mit Keiminokula von durchschnittlich 1 x 10⁴ Keimen/ml Substrat durchgeführt. Als Nährmedium diente Yeast Nitrogen Base-Medium für Hefen und Kimmig-Medium für Schimmelpilze und Dermatophyten.

Die Bebrütungstemperatur betrug 37 °C bei Hefen und 28 °C bei Schimmelpilzen und Dermatophyten, die Bebrütungsdauer lag bei 24 bis 96 Stunden bei Hefen und 96 bis 120 Stunden bei Dermatophyten und Schimmelpilzen.

Die Beurteilung der Fungizide erfolgt durch Ausplattieren und erneutes Bebrüten voll gehemmter Ansätze, wobei fungizide Konzentrationen weniger als 100 Keime c.f.n. (colony forming unit) pro ml enthalten

In diesem Test zeigen die erfindungsgemäßen Verbindungen der Formel (I) gemäß den Herstellungsbeispielen 45, 46, 47 eine stark ausgeprägte antimykotische Wirksamkeit.

Ansprüche

1. 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I)

55

$$\begin{array}{c|cccc}
C^* & R-O & X \\
\hline
A-N & O
\end{array}$$

in welcher

5

10

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen -CO-R¹, -CO-O-R² steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes tes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl oder Cycloalkyl steht,

A für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Arylalkyl steht,

B, C unabhängig voneinander für Wasserstoff, Alkyl oder Alkoxyalkyl steht, sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

2. 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I) gemäß Anspruch 1, in welcher

X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

30 Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R1 (lb)

oder -CO-O-R² (Ic)

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_1 - C_8 -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Alkylthio- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_2 - C_8 -alkyl und Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkoxy-substituiertes Phenyl;

für gegebenenfalls durch Halogen-, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_6 -alkyl steht,

für gegebenenfalls durch Halogen- und $C_1\text{-}C_5\text{-}Alkyl\text{-}substituiertes}$ Hetaryl steht,

für gegebenenfalls durch Halogen- und C₁-C₅-Alkyl-substituiertes Phenoxy-C₁-C₅-alkyl steht,

für gegebenenfalls durch Halogen, Amino und C₁-C₆-Alkyl-substituiertes Hetaryloxy-C₁-C₆-Alkyl steht,

R² für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₅-Alkyl-, C₁-C₅-Alkoxy-, C₁-C₅-Halogenalkyl-substituiertes Phenyl oder Cycloalkyl mit 3-8 Ringatomen steht,

A für gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈- alkyl, C₁-C₁₀-Alkylthio-C₂-C ₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl-C₁-C ₆-Haloalkyl-, C₁-C₆-Alkoxy-, Nitro substituiertes Aryl-C₁-C₆-alkyl steht,

B, C unabhängig voneinander für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

- 3. 3-Aryl-pyrrolidin-2,4-dion-Derivat der allgemeinen Formel (I) gemäß Anspruch 1, in welcher
- X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
- Y für Wasserstoff, C₁-C₅-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
- Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
- 5 n für eine Zahl von 0-3 steht,
 - R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R1 (lb)

oder -CO-O-R2 (lc)

steht, in welchen

für gegebenenfalls durch Halogen substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Alkylthio-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht,

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl steht,

15 für gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht,

für gegebenenfalls duch Halogen- und C1-C6-Alkyl-substituiertes Hetaryl steht,

gegebenenfalls für durch Halogen- und C1-C4-Alkyl-substituiertes Phenoxy-C1-C5-alkyl steht,

für gegebenfalls durch Halogen, Amino und C1-C4-Alkyl-substituiertes Hetaryloxy-C1-C5-alkyl steht,

R² für gegebenenfalls durch Halogen substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₁₆-Alkoxy-C₂-C₆-alkyl, steht,

für gegebenenfalls durch Halogen, Nitro-, C₁-C₄-Alkyl, C₁-C₃-Alkoxy-, C₁-C₃-Halogenalkyl-substituiertes Phenyl oder Cycloalkyl mit 3-7 Ringatomen steht,

A für gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann oder geebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Halogenalkyl-C₁-C₄-Alkoxy-, Nitro substituiertes Aryl-C₁-C₄-alkyl steht,

B, C unabhängig voneinander für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxyalkyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

- 4. 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I) gemäß Anspruch 1, in welcher
- für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
- Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
 - Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
 - n für eine Zahl von 0-3 steht,
 - R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R1 (lb)

oder -CO-O-R² (lc)

steht, in welcher

für gegebenenfalls durch Fluor oder Chlor substituiertes: C_1 - C_1 4-Alkyl, C_2 - C_1 4-Alkenyl, C_1 - C_4 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_4 -Alkylthio- C_2 - C_6 -alkyl, C_1 - C_4 -Polyalkoxyl- C_2 - C_4 -alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht,

für gegebenenfalls durch Fluor-, Chlor, Brom-, Methyl-, Ethyl-, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Ethoxy, Trifluor-methyl, Trifluormethoxy-substituiertes Phenyl-C₁-C₃-alkyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl sound Pyrazolyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy-C1-C4-alkyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,

R² für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht

oder

für gegebenenfalls durch Fluor-, Chlor-, Nitro-, Methyl-, Ethyl-, Propyl-, i-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-substituiertes Phenyl oder Cycloalkyl mit 3 bis 6 Ringatomen steht,

A für gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkenyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro susbtituiertes Aryl-C₁-C₃-alkyl steht,

B, C unabhängig voneinander für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel I.

5. Verfahren zur Herstellung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der allgemeinen Formel (I)

 $\begin{array}{c|cccc}
C^* & R-O & X \\
\hline
A-N & C & X
\end{array}$

in welcher

10

15

25

40

50

X für Alkyl, Halogen, Alkoxy steht,

20 Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen -CO-R¹, -CO-O-R² steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl oder Cycloalkyl steht,

A für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Haloalkyl-, Alkoxy-, Nitro substituiertes Arylalkyl steht,

B für Wasserstoff, Alkyl oder Alkoxy steht,

dadurch gekennzeichnet,

(A) daß man zum Erhalt der Verbindungen der Formel (Ia)

45 N-Acylaminosäureester der Formel (II)

ss in welcher

A, B, C * , X, Y, Z und n die oben angegebene Bedeutung haben und

R3 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert, (B) oder, daß man zum Erhalt von Verbindungen der Formel (Ib)

Verbindungen der Formel (la),

15

5

10

20

in welcher

A, B, C*, X, Y, Z und n die oben angegebene Bedeutung haben, entweder

25 α)mit Säurehalogeniden der allgemeinen Formel (III)

Hal- C-R1 (III)

in welcher

R1 die oben angegebene Bedeutung hat

³⁰ und

Hal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

oder

5 B) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

(C) oder, daß man zum Erhalt von Verbindungen der Formel (Ic)

45

$$\begin{array}{c|c}
R^{2}0-C-0 & X \\
\hline
C^{*} & & \\
\hline
A & N &
\end{array}$$
(Ic)

50

in welcher

A, B, C, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la)

in welcher

5

A, B, C*, X, Y, Z und n die oben angegebene Bedeutung haben mit Chlorameisensäureester der allgemeinen Formel (V)

R2-O-CO-CI (V)

in welcher

R² die oben angegebene Bedeutung hat,

gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

- 6. Insektizide und/oder akarizide und/oder herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I).
- 7. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) auf Spinnentiere und/oder Unkräutern und/oder deren Lebensraum einwirken läßt.
- 8. Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern.
- 9. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden Mitteln, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.
 - 10. 3-Aryl-pyrrolidin-2,4-dion-Derivate gemäß Ansprüchen 1 bis 4 zur Bekämpfung von Mykosen.
 - 11. Antimykotische Mittel enthaltende 3-Aryl-pyrrolidin-2,4-dion-Derivate gemäß Ansprüchen 1 bis 4.
- 12. Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten gemäß Ansprüchen 1 bis 4 bei der Bekämpfung von Mykosen.
- 13. Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten gemäß Ansprüchen 1 bis 4 bei der Herstellung von Arzneimitteln zur Bekämpfung von Mykosen.

35

40

45

50

(2)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 89123895.8

Anmeldetag: 23.12.89

(a) Int. Cl.5: **C07D 207/38**, C07D 405/12, A01N 43/36

Priorität: 07.01.89 DE 3900301 18.08.89 DE 3927222

Veröffentlichungstag der Anmeldung: 18.07.90 Patentblatt 90/29

Benannte Vertragsstaaten: BE CH DE ES FR GB IT LI NL

Veröffentlichungstag des später veröffentlichten Recherchenberichts: 24.04.91 Patentblatt 91/17

(7) Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

2 Erfinder: Fischer, Reiner, Dr. Nelly-Sachs-Strasse 23 W-4019 Monheim(DE) Erfinder: Baasner, Bernd, Dr.

Wagner-Strasse 23

W-5060 Bergisch-Gladbach 2(DE) Erfinder: Hagemann, Hermann, Dr.

Kandinsky-Strasse 52 W-5090 Leverkusen 1(DE) Erfinder: Krebs, Andreas, Dr.

Im Gartenfeld 70

W-5068 Odenthal-Holz(DE) Erfinder: Marhold, Albrecht, Dr. Carl-Duisberg-Strasse 329 W-5090 Leverkusen(DE)

Erfinder: Santel, Hans-Joachim, Dr.

Grünstrasse 9a

W-5090 Leverkusen(DE)

Erfinder: Schmidt, Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch-Gladbach 2(DE)

Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 145 W-5060 Bergisch-Gladbach 2(DE) Erfinder: Becker, Benedikt, Dr.

Steinmannhof

I-39050 Pineta di Laives Bolzano(IT)

Erfinder: Schaller, Klaus, Dr. Am Sonnenschein 38 W-5600 Wuppertal 1(DE) Erfinder: Strang, Harry, Dr.

Heiderweg 53

W-4000 Düsseldorf 31(DE)

3-Aryl-pyrrolidin-2,4-dion-Derivate.

Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I)

in welcher

für Alkyl, Halogen, Alkoxy steht,

für Wasserstoff, Alkyl, Halogen, Alkoxy,

Halogenalkyl steht,

für Alkyi, Halogen, Alkoxy steht,

für eine Zahl von 0-3 steht,

für Wasserstoff oder für die Gruppen -CO-R1, -CO-O-R2

wobei R1 und R2 die im Anmeldungstext angegebene Bedeutung besitzen,

für gegebenenfalls durch Halogen substituier-Α tes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Arylalkyl steht,

unabhängig voneinander für Wasserstoff, B, C*

Alkyl oder Alkoxyalkyl steht, sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Die neuen Verbindungen besitzen eine überraschende insektizide, akarizide, herbizide und antimykotische Wirksamkeit.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 89 12 3895

	EINSCHLÄGIG			
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
X,D	EP-A-0 262 399 (TA * Tabelle 7; Ansprü	KEDA) che 1,3 *	1	C 07 D 207/38 C 07 D 405/12
Χ,Ο	Weinheim, DE; R. SC "Cyclisierung von N N-Acylalycinestern"	agsgesellschaft mbH, HMIERER et al.: -Acylalanin- und	1,5	A 01 N 43/36
				RECHERCHIERTE SACHGEBIETE (Int. Cl.5) C 07 D 207/00
		·		
Der v	orliegende Recherchenbericht wur-	de für alle Patentausprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prüfer
D	EN HAAG	13-02-1991	KISS	SLER B.E.
Y:voi an A:tex O:nl:	KATEGORIE DER GENANNTEN in besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindun deren Veröffentlichung derselben Kate innologischer Hintergrund chtschriftliche Offenbarung sischenliteratur	E: âlteres Paten nach dem An g mit einer D: in der Anmel egorie L: aus andern G	idokument, das jedo meldedatum veröffer dung angeführtes D ründen angeführtes	ntlicht worden ist