1 Сходимость ряда.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

 S_n — частичная сумма ряда, из n членов.

Числовой ряд называется **сходящимся**, если существует конечный предел последовательности $\{S_n\}$ его частичных сумм:

$$\lim_{n\to\infty} S_n = S$$

В этом случае указанный предел называется суммой ряда.

Если $\lim_{n\to\infty} S_n$ не существует или равен бесконечности, то числовой ряд называется **расходящимся** и суммы не имеет.

1.1 Необходимый признак сходимости ряда

Если ряд сходится, то его n-й член стремится к нулю при неограниченном возрастании n.

$$\lim_{n\to\infty} a_n = 0$$

Если n-й член ряда не стремится к нулю при $n \to \infty$, то ряд расходится.

Этот признак является только необходимым, но не является достаточным, т.е. из того, что n-й член стремится к нулю, ещё не следует, что ряд сходится, — ряд может и расходиться.

1.2 Сходимость геометрического ряда

$$a + aq + aq^2 + \dots + aq^{n-1} + \dots$$

Ряд составленный из членов бесконечной геометрической прогрессии со знаменателем q и первым членом $a \neq 0$, называется **геометрическим рядом**.

Если $|q| \ge 1$, то геометрический ряд расходится.

Если |q|<1, то геометрический ряд сходится (при этом его сумма S находится по формуле $S=\frac{a}{1-a}$)

1.3 Сходимость ряда Дирихле

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

Данный ряд, или, что то же самое,

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

где p > 0, называется **рядом** Дирихле.

Ряд Дирихле сходится при p > 1.

Ряд Дирихле расходится при 0 .

Частным случаем ряда Дирихле (при p=1) является гармонический ряд. Гармонический ряд расходится.

1-й признак сравнения 1.4

Пусть $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ — ряды с положительными членами, причём $a_n\leq$

- b_n для всех номеров n, начиная с некоторого. Тогда:

 1) Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то сходится и ряд $\sum_{n=1}^{\infty} a_n$;

 2) Если ряд $\sum_{n=1}^{\infty} a_n$ расходится, то расходится и ряд $\sum_{n=1}^{\infty} b_n$;

2-й признак сравнения 1.5

Пусть $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ — ряды с положительными членами, причём существует конечный и отличный от нуля предел

$$\lim_{n\to\infty}\frac{a_n}{b_n}$$

Тогда ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ сходятся или расходятся одновременно.

Пример 1. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} \frac{n+7}{n^4 + 2n + 1}$$

Учитывая, что числитель и знаменатель дроби неограниченно растут при $n \to \infty$, запишем дробь, составленную из эквивалентных им выражений:

$$\frac{n+7}{n^4+2n+1} \sim \frac{n}{n^4} = \frac{1}{n^3} \quad (n \to \infty)$$

Сравним данный ряд с соответствующим рядом Дирихле. По 2-ому признаку сравнения.

$$\lim_{n \to \infty} \left(\frac{n+7}{n^4 + 2n + 1} : \frac{1}{n^3} \right) = \lim_{n \to \infty} \frac{n^4 + 7n^3}{n^4 + 2n + 1} = 1$$

 $1 \neq 0$, условие 2-ого признака выполняется. $\sum\limits_{n=1}^{\infty} \frac{1}{n^3}$ — есть сходящийся ряд Дирихле, так как p=3>1, значит исходный ряд тоже сходится.

Ответ: исходный ряд сходится.

Пример 2. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} \frac{n^2 + n - 1}{n+1}$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n^2+n-1}{n+1} = \infty$$

Ответ: $\infty \neq 0$, значит исходный ряд расходится так как не выполняется необходимый признак сходимости.

1.6 Признак Даламбера

Если в ряде с положительными членами

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

отношение (n+1)-го члена к n-му при $n\to\infty$ имеет (конечный) предел l, т.е.

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l,$$

TO:

- 1) в случае l < 1 ряд сходится;
- 2) в случае l > 1 ряд расходится.

(В случае l=1 признак Даламбера не даёт возможности установить, сходится ряд или расходится.)

Пример 3. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} \frac{2n^2 + 5}{(2n^2 + n)4^n}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} =$$

$$= \lim_{n \to \infty} \frac{2(n+1)^2 + 5}{(2(n+1)^2 + n + 1)4^{n+1}} \cdot \frac{(2n^2 + n)4^n}{2n^2 + 5} =$$

$$= \lim_{n \to \infty} \frac{1}{4} \cdot \frac{4n^4 + \dots}{4n^4 + \dots} = \frac{1}{4}$$

Ответ: $\frac{1}{4} < 1$, значит исходный ряд сходится по признаку Даламбера.

Пример 4. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} \frac{n!2^n}{(n+1)!}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} =$$

$$= \lim_{n \to \infty} \frac{(n+1)!2^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{n!2^n} =$$

$$= \lim_{n \to \infty} \frac{2(n+1)}{n+2} = 2$$

Ответ: 2 > 1, значит исходный ряд расходится по признаку Даламбера.

1.7 Признак Коши

Если для ряда с положительными членами

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

величина $\sqrt[n]{a_n}$ имеет конечный предел l при $n \to \infty$, т.е.

$$\lim_{n\to\infty} \sqrt[n]{a_n} = l,$$

TO:

- 1) в случае l < 1 ряд сходится;
- 2) в случае l > 1 ряд расходится.
- (В случае l=1 признак Коши не даёт возможности установить, сходится ряд или расходится.)

Пример 5. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} \frac{(3n^2 - 2n + 3)^n}{(2n^3 + 2n - 3)^n}$$

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{3n^2 - 2n + 3}{2n^3 + 2n - 3} = 0$$

Ответ: 0 < 1, значит исходный ряд сходится по признаку Коши.

Пример 6. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} \frac{(3n^2 + n - 2)^n}{(n+6)^{2n}}$$

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{3n^2 + n - 2}{(n+6)^2} = 3$$

Ответ: 3 > 1, значит исходный ряд расходится по признаку Коши.

1.8 Признак Лейбница.

Рассмотрим знакочередующийся ряд. Знакочередующимся называется ряд, в котором любые два соседних члена имеют разные знаки. Например:

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1}a_n + \dots$$

где $a_1, a_2, a_3, ... a_n, ...$ положительны. Иначе можно записать как:

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

Если в рассматриваемом ряде члены таковы, что

$$a_1 > a_2 > a_3 > \dots > a_n > \dots$$

(абсолютные величины членов ряда монотонно убывают) и

$$\lim_{n\to\infty} a_n = 0,$$

(общий член ряда стремится к нулю при $n \to \infty$), то ряд сходится, его сумма положительна и не превосходит первого члена.

1.9 Знакопеременные ряды

Ряд, содержащий и положительные и отрицательные члены, называется знакопеременным. В частности, всякий знакочередующийся ряд является знакопеременным.

Если знакопеременный ряд $\sum\limits_{n=1}^{\infty}a_n$, таков, что составленный из абсолютных величин его членов ряд $\sum\limits_{n=1}^{\infty}|a_n|$ сходится, то и данный ряд $\sum\limits_{n=1}^{\infty}a_n$ также сходится. В этом случае знакопеременный ряд называется абсолютно сходящимся.

Если же знакоперменный ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, а ряд $\sum\limits_{n=1}^{\infty}|a_n|$ расходится, то данный ряд $\sum\limits_{n=1}^{\infty}a_n$ называется **условно сходящимся**.

Для ответа на вопрос об абсолютной сходимости ряда $\sum\limits_{n=1}^{\infty}a_n$ к ряду $\sum\limits_{n=1}^{\infty}|a_n|$ можно применять все признаки, используемые при исследовании рядов с положительными членами.

Пример 7. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} (-1)^n \frac{4}{(n+4)(n+23)}$$

1) Абсолютные величины членов данного ряда положительны и монотонно убывают при $n \to \infty$, так как в числителе константа.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4}{(n+4)(n+23)} = 0$$

2) Общий член ряда стремится к нулю при $n \to \infty$.

Ответ: исходный ряд сходится по признаку Лейбница.

Пример 8. Исследовать сходимость ряда.

$$\sum_{n=1}^{\infty} (-1)^n \frac{(n+2)5^n}{(n+10)(n+30)}$$

Исследуем на сходимость ряд из абсолютных величин членов данного ряда используя признак Даламбера.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+3)5^{n+1}}{(n+11)(n+31)} \cdot \frac{(n+10)(n+30)}{(n+2)5^n} =$$

$$= \lim_{n \to \infty} \frac{5n^3 + \dots}{n^3 + \dots} = 5$$

5>1, по признаку Даламбера этот ряд расходится, а значит исходный ряд не является абсолютно сходящимся. Из полученного результата $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=5>1$ следует, что при $(n\to\infty)$, a_n не стремится к нулю, а значит не выполняется необходимый признак сходимости, исходный ряд расходится.

Ответ: исходный ряд расходится.