

Outlines

1 - « Guidance & Control » functions of autoflight system

- Autopilot (AP), flight director (FD) and autothrust (ATHR) principles
- AP flight envelope
- Onboard integration and architectures history

2 – Modes and interfaces of autoflight system

- Classification of AP / FD and ATHR modes
- Interfaces with the crew and with the other systems
- Modes and transitions principles

3 – Introduction to autoflight control laws

- Autoflight control laws principles
- Principles and functional breakdown

1 – « Guidance & Control » functions of autoflight system

Guidance and control are not the only tasks of a flight crew

Important

- Control: act on surfaces to control the aircraft attitude
 - Short-term objectives: pitch, roll, sideslip
 - Short time response
- Guide: act on aircraft attitude to control the trajectory
 - Mid-term objectives: heading, vertical speed, speed, ...
 - Time response longer than for control
- Navigate: locate the aircraft, optimize and follow the flight plan
 - Long-term objectives: intermediate waypoints before destination
 - Constraints management: climb, descent or speed profiles
- Communicate: announce the aircraft intentions, follow ATC instructions
 - Communication means: voice, datalink

Integration of navigation, guidance & control functions

What are the missions of assistance means?

- Improve the A/C handling qualities
- Assist the crew in demanding tasks
- Alleviate the crew workload
- Manage the flight

With an appropriate level of safety

Stakeholders in « navigation, guidance & control » functions

Guidance functions: AP

- Autopilot acts on control surfaces and nose wheel to:
 - Follow targets set by the crew: heading, slope, speed...
 - Follow a flight plan provided by the Flight Management System (FMS)
 - Climb, cruise, descent, approach... and tactical phases on A400M
 - Achieve an automatic landing (including an automatic rollout on ground)
 - Achieve an automatic go-around
 - Limit the excursions outside the nominal flight envelope: protections
- Autopilot can not be engaged on ground for take-off course
 - Engagement is possible a few seconds after take-off

Guidance functions: FD and ATHR

- Flight Director displays the orders to execute
 - To help, in manual flight, to follow the guidance targets
 - To monitor, in automatic flight, the autopilot behaviour
 - Engagement is possible on ground for take-off course
- Autothrust acts on engines to:
 - Hold a thrust or a power (e.g. TOGA or idle thrust)
 - Hold a speed or a Mach number

- Autopilot, flight director and autothrust are independent
 - They can be engaged alone or together

AP flight domain

Example of AP protection

- A/C initially stabilized in descent at VS_{TGT} = -2000ft/min
- Headwind appears and makes the speed increase

AP engagement logic ("AND")

AP disengagement logic ("OR")

Integration on A320, A330 & A340

FMGEC: Flight Management Guidance (and Envelope) Computer FADEC: Full Authority Digital Engine Computer

Integration on A340-500 & A340-600

Integration on A380, A400M & A350

Autoflight systems evolution on AIRBUS aircraft

- From first generations to A330 family
 - Progressive transition to digital world
 - More and more integrated functions
 - A300B2-B4 (1974): 19 computers to support guidance and control functions
 - A330/A340 (1994): 2 computers only
 - Introduction of new functions
 - Autopilot coupling with Flight Management System (FMS)
 - Automation of autopilot modes management (operational logic)
 - Protections (speed & pitch) to limit excursions out of nominal flight domain
- Since A340-600 (2002), a stronger integration of autoflight and flight controls
 - Common interfaces with peripherals such as IRS and ADC
 - No need to duplicate acquisitions or processing of inertial and air data
 - A unique control loop common to both autoflight and manual flight
 - More efficient design, tuning and validation

A320 / A330 / A340 autoflight system architecture (1)

Redundancy level of the autoflight system shall meet the requirements set by:

- The safety analysis
- The operational objectives (system availability, cost ...)

A320 / A330 / A340 autoflight system architecture (2)

- « Split » cockpit principle retained for primary flight parameters
 - AP1 / FD1 orders computed from side 1 sensors (source 3 as a backup)
 - AP2 / FD2 orders computed from side 2 sensors (source 3 as a backup)
 - Crew is aware of discrepancies between sources through FD orders
 - In heading mode, AP1 maintains heading from IRS1 on the heading target
 - FD1 is centered (no roll demand) since heading 1 is on the target
 - FD2 will not be centered if heading from IRS2 is different from that of IRS1
 - The crew decides then to stay on AP1, to switch AP1 on IRS3 or to engage AP2
- Direct link between the AP engaged and the master FMG(E)C computer
 - AP1 / FD1 orders computed by FMG(E)C1 only
 - AP2 / FD2 orders computed by FMG(E)C2 only

A380 autoflight system architecture

Autoflight availability increased... but at the cost of system complexity

- Any PRIM can compute APx / FDx (new logic dedicated to PRIM selection)
- No direct link between the AP engaged and the master PRIM computer

2 – Autoflight: interfaces & modes

Main autoflight / pilot interface: the flight control unit (FCU)

AP guidance modes: selected & managed

- After AP/FD engagement, 2 guidance types are possible
 - The pilot wants to impose guidance targets through FCU rotactors (SPEED/MACH, HDG/TRACK, ALT, VS/FPA)
 - → use of selected modes
 - The pilot lets the **Flight Management System** do the navigation which provide the guidance targets (lateral and vertical flight plan, speed or Mach number)
 - → use of managed modes
- How to transition from a selected mode to a managed mode and vice versa?
 - Thanks to the FCU rotactors
 - Through push/pull actions

AP guidance modes: pull/push

- Pull = « the pilot takes over control »
 - selected mode and guidance done through FCU targets

Eg: altitude preset

- Push = « the pilot gives back the controls to the FMS »
 - managed mode and guidance done though flight plan

Eg: speed target dealt by FMS

Restitution of the A/C and AFS state on the PFD

Restitution of the A/C and AFS state on the PFD: examples

TAKE-OFF

CRUISE

APPROACH

AP/FD vertical « cruise » modes

- For level changes
 - V/S / FPA Acquire and hold the **vertical speed / flight path angle** target
 - Fixed vertical speed / flight path angle set by the crew ATHR in Speed/Mach mode
 Airspeed controlled by ATHR through engines (thrust evolution)
 Engagement and target selection by acting (pull and turn) on the VS/FPA FCU rotactor
 - OPEN CLB / DES Acquire and hold the **speed/mach** target in climb / descent
 - CLIMB / DES Acquire and hold the vertical profile target
 - Fixed thrust (max climb/idle) → ATHR in Thrust mode

 Airspeed controlled by AP through elevators (flight path angle evolution)

 Engagement by acting (pull/push and turn) on the "altitude" FCU rotactor
- For level hold
 - ALT* Acquire altitude target (transition mode before ALT)
 - ALT Hold **altitude** target
 - Fixed altitude set by the crew → ATHR in Speed/Mach mode

 Airspeed controlled by ATHR through engines (thrust evolution)

 Automatically engaged when the aircraft gets close enough to the target

Level change in Vertical Speed (V/S) mode

AP/FD lateral « cruise » modes

HDG Acquire and hold the heading target

TRK Acquire and hold the track target

L

Engagement of these modes by pulling the associated FCU rotactor Target selection by turning this rotactor

BANK Acquire and hold the bank angle target (only for military aircraft)

L

Specific mode implemented on A330 MRTT & A400M Engagement by pulling the "bank" FCU rotactor Target selection by turning this rotactor

NAV Acquire and hold the FMS horizontal profile

"Managed" mode: armed by pushing the "hdg/trk" FCU rotactor

automatically engaged when A/C close enough to FMS path

Heading change to intercept & capture FMS flight plan

AP/FD « approach » modes

LOC* Acquire LOC beam (transition mode before LOC)

LOC Hold LOC beam

Armed by pushing "LOC" or "APPR" FCU push-button
Automatically engaged when A/C close enough to LOC beam

• GS* Acquire GLIDE beam (transition mode before GS)

GS Hold GLIDE beam

Armed by pushing "APPR" FCU push-button

Automatically engaged when A/C close enough to GLIDE beam

MACH SPD TRUE MAG HDG V/S

SPD HDG TRK FPA

ALT V/S

1000 • ----
FD 1000 • UP

DN

Lateral guidance only

Both lateral and yertical guidance

AP / FD modes in approach and landing

AP/FD modes dedicated to take-off and go-around

SRS Acquire and hold the speed target

SRS: "speed reference system"

Engaged by moving the thrust levers on the TOGA notch

Speed target: FMS take-off speed / current speed at go-around

Combined with a constant thrust (TOGA or FLEX)

No guidance during take-off, only FD displayed on PFD Order displayed computed with the ILS LOC axis

GA TRK Hold memorized track at go-around

Automatically engaged once SRS mode is engaged
Track target: current track at go-around

Typical AP/FD/ATHR modes sequence

3 – Introduction to autoflight control laws

Autoflight control laws principles

- The inner loop is dedicated to control
 - Control the A/C attitude (same scope as EFCS)
 - Limit the outer loop targets in amplitude and speed to limit the effects of a failure
 - Use A/C accelerations, attitude and attitude rates as main feedbacks
 - Compute orders: surfaces deflection
- The outer loop is dedicated to guidance
 - Control the center of gravity position to follow the flight plan
 - Limit FCU or FMS targets in amplitude and speed to limit the effects of a failure
 - Use A/C position and speed vector as main feedbacks to compute orders
 - Send them to the inner loop (AP) or displays (FD): load factor, bank angle
- A control law is associated to each mode
 - The link between modes and control laws is defined in « operational logic »
 - Different feedbacks are used at guidance level and control level

Autopilot orders are executed via inner loops, in charge of controlling the surfaces to their commanded deflections

Functional breakdown of Flight Control Laws

Vertical control laws breakdown

Lateral control laws breakdown

Thrust control laws breakdown

