Rasterization & The Graphics Pipeline

15.3 Rasterization using edge functions

In This Video

- Edge functions: finding out which pixels are covered
 - and various optimisations
- Extra: Projection matrices
 - From 3D to 2D via homogeneous coordinates

The Graphics Pipeline

- Project vertices to 2D (image)
 - We now have screen coordinates
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer

2D Scan Conversion

• Primitives are "continuous" geometric objects; screen is discrete (pixels)

2D Scan Conversion

- Primitives are "continuous" geometric objects; screen is discrete (pixels)
- Rasterization computes a discrete approximation in terms of pixels (how?)

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective!)
 - Lines map to lines, not curves

• The triangle's 3D edges project to line segments in the image (thanks to planar perspective)

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines

$$E_i(x,y) = a_i x + b_i y + c_i$$

(x, y) within triangle \Leftrightarrow $E_i(x, y) \geq 0,$ $\forall i = 1, 2, 3$

$$E_1(x,y) < 0$$

$$E_i(x,y) = a_i x + b_i y + c_i$$

(x,y) within triangle \Leftrightarrow $E_i(x,y) \geq 0,$ $\forall i=1,2,3$

$$E_2(x,y) < 0$$

$$E_i(x,y) = a_i x + b_i y + c_i$$

(x,y) within triangle

$$E_i(x, y) \ge 0,$$

$$\forall i = 1, 2, 3$$

$$E_3(x,y) > 0$$

$$E_i(x,y) = a_i x + b_i y + c_i$$

(x,y) within triangle

$$E_i(x, y) \ge 0,$$

$$\forall i = 1, 2, 3$$

- Compute E₁-E₃ from projected vertices
 - Called "triangle setup", yields a_i, b_i, c_i for i=1,2,3

- Compute E₁-E₃ from projected vertices
 - Called "triangle setup", yields a_i, b_i, c_i for i=1,2,3
- For each pixel (x, y)
 - Evaluate edge functions at pixel center
 - If all non-negative, pixel is in!

- Compute E₁-E₃ from projected vertices
 - Called "triangle setup", yields a_i, b_i, c_i for i=1,2,3
- For each pixel (x, y)
 - Evaluate edge functions at pixel center
 - If all non-negative, pixel is in!

Problem?

- Compute E₁-E₃ from projected vertices ("setup")
- For each pixel (x, y)
 - Evaluate edge functions at pixel center
 - If all non-negative, pixel is in!

,																			
	+	+	+	+	+	+	+	+	+	+	+		+	×	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	7	+	+	+	+	+	+	+	+
		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1	+	+
	+		+	+	+	+	+	+	+	F	+	+	+	+	+	+	+	+	+
	+	+		+	+	+	+	+		+	+	+	+	+	+	+	+		+
	+	+	+		+	+	+		+	+	+	+	+	+	4		+	+	+
	+	+	+	+		+	+	+	+	+	+	+		+	+	+	+	+	+
	+	+	+	+	+		F	+	+	+		+	+	+	+	+	+	+	+
	+	+	+	+	+		Y	+		+	+	+	+	+	+	+	+	+	+
	+	+	+	+	7				+	+	+	+	+	+	+	+	+	+	+
	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

If the triangle is small, lots of useless computation if we really test all pixels

• Improvement: Scan over only the pixels that overlap the *screen bounding box* of the triangle

- Improvement: Scan over only the pixels that overlap the *screen bounding box* of the triangle
- How do we get such a bounding box?

- Improvement: Scan over only the pixels that overlap the *screen bounding box* of the triangle
- How do we get such a bounding box?
 - X_{min}, X_{max}, Y_{min}, Y_{max} of the projected triangle vertices

													K						
	+	+	+	+	+	+	+	+	+	+	+		+	×	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	7	+	+	+	+	+	+	+	+
		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1	+	+
	+		+	+	+	+	+	+	+	F	+	+	+	+	+	+	+	+	+
	+	+		+	+	+	+	+		+	+	+	+	+	+	+	+		+
	+	+	+		+	+	+		+	+	+	+	+	+	+		+	+	+
	+	+	+	+		+	+	+	+	+	+	+		+	+	+	+	+	+
Ì	+	+	+	+	+		F	+	+	+		+	+	+	+	+	+	+	+
	+	+	+	+	+		L.	+		+	+	+	+	+	+	+	+	+	+
	+	+	+	+				1	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Rasterization Pseudocode

Bounding box clipping is easy, just clamp the coordinates to the screen rectangle

Can We Do Better?

For every triangle

Compute projection for vertices, compute the $E_{\rm i}$ Compute bbox, clip bbox to screen limits For all pixels in bbox

Evaluate edge functions $a_ix + b_iy + c_i$

If all > 0

Framebuffer[x,y] = triangleColor

Can We Do Better?

For every triangle

Compute projection for vertices, compute the $E_{\rm i}$ Compute bbox, clip bbox to screen limits For all pixels in bbox

Evaluate edge functions $a_ix + b_iy + c_i$

If all > 0

Framebuffer[x,y] = triangleColor

These are linear functions of the pixel coordinates (x,y), i.e., they only change by a constant amount when we step from x to x+1 (resp. y to y+1)

Incremental Edge Functions

```
For every triangle
   ComputeProjection
Compute bbox, clip bbox to screen limits
For all scanlines y in bbox
        Evaluate all E<sub>i</sub>'s at (x0,y): E<sub>i</sub> = a<sub>i</sub>x0 + b<sub>i</sub>y + c<sub>i</sub>
        For all pixels x in bbox
        If all E<sub>i</sub>>0
            Framebuffer[x,y] = triangleColor
        Increment line equations: E<sub>i</sub> += a<sub>i</sub>
```

 We save ~two multiplications and two additions per pixel when the triangle is large

Incremental Edge Functions

```
For every triangle
   ComputeProjection
Compute bbox, clip bbox to screen limits
For all scanlines y in bbox
        Evaluate all E<sub>i</sub>'s at (x0,y): E<sub>i</sub> = a<sub>i</sub>x0 + b<sub>i</sub>y + c<sub>i</sub>
        For all pixels x in bbox
        If all E<sub>i</sub>>0
            Framebuffer[x,y] = triangleColor
        Increment line equations: E<sub>i</sub> += a<sub>i</sub>
```

 We save ~two multiplications and two additions per pixel when the triangle is large

Can also zig-zag to avoid reinitialization per scanline, just initialize once at x0, y0

Questions?

- For a really HC piece of rasterizer engineering, see the hierarchical Hilbert curve rasterizer by McCool, Wales and Moule.
 - (Hierarchical? We'll look at that next..)

Can We Do Even Better?

- We compute the line equation for many useless pixels
- What could we do?

Indeed, We Can Be Smarter

Indeed, We Can Be Smarter

- Hierarchical rasterization!
 - Conservatively test blocks of pixels before going to per-pixel level (can skip large blocks at once)

Usually two levels

Conservative tests of axis-aligned blocks vs. edge functions are not very hard, thanks to linearity. See Akenine-Möller and Aila, Journal of Graphics Tools 10(3), 2005.

Indeed, We Can Be Smarter

- Hierarchical rasterization!
 - Conservatively test blocks of pixels before going to per-pixel level (can skip large blocks at once)

Usually two levels

Can also test if an entire block is **inside** the triangle; then, can skip edge functions tests for all pixels for even further speedups. (Must still test Z, because they might still be occluded.)

Oldskool Rasterization

• Compute the boundary pixels using line rasterization

Oldskool Rasterization

- Compute the boundary pixels using line rasterization
- Fill the spans

Oldskool Rasterization

- Compute the boundary pixels using line rasterization
- Fill the spans

MUCH MORE annoying to implement than edge functions

Projection

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer

Orthographic vs. Perspective

Orthographic

Perspective

• (In 3D this is a truncated pyramid.)

• We can transform the frustum by a modified projection in a way that makes it a square (cube in 3D) after division by w'.

• We can transform the frustum by a modified projection in a way that makes it a square (cube in 3D) after division by w'.

The final image is obtained by merely dropping the z coordinate after projection (orthogonal projection)

• We can transform the frustum by a modified projection in a way that makes it a square (cube in 3D) after division by w'.

• The x' coordinate does not change w.r.t. the usual flattening projection, i.e., x'/w' stays the same

The Canonical View Volume

- Point of the exercise: This gives screen coordinates and depth values for Z-buffering with unified math
 - Caveat: OpenGL and DirectX define Z differently [0,1] vs.
 [-1,1]

OpenGL Form of the Projection

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{\text{far+near}}{\text{far-near}} & -\frac{2*\text{far*near}}{\text{far-near}} \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Homogeneous coordinates within canonical view volume

Input point in view coordinates

- Details/more intuition in handout in MyCourses
 - "Understanding Projections and Homogenous Coordinates"

Recap: Projection

- Perform rotation/translation/other transforms to put viewpoint at origin and view direction along z axis
- Combine with projection matrix (perspective or orthographic)
 - Homogenization achieves foreshortening
- **Corollary**: The entire transform from object space to canonical view volume [-1,1]³ is a single matrix

