Dhruv Maheshwari 9001607595

## CSCI 677 - Advanced Computer Vision

## Assignment 6

This assignment uses ResNet-9 trained to withstand Iterative Gradient Sign Method (IGSM) attack.

#### Code available at:

https://colab.research.google.com/drive/1BNlYKj18RMBtga94SrTbDdGQ2PkeTYe-?usp=sharing

#### Parameters:

- Iterations = 20
- Epochs = 10
- Replacement Ratio = 0.75

## Experiment:

- 1. 1<sup>st</sup> experiment
  - $\alpha = 0.006$
  - $\epsilon = 0.12$
- 2. 2<sup>nd</sup> experiment
  - $\alpha = 0.004$
  - $\epsilon = 0.14$

### Results:

## Quantitatively

The following table shows the quantitative results (accuracy) for the two different experiments.

|                     | 1 <sup>st</sup> Experiment | 2 <sup>nd</sup> Experiment |
|---------------------|----------------------------|----------------------------|
| Without defense     |                            |                            |
| - Benign            | 74.29%                     | 74.29%                     |
| - IGSM attack       | 32.61%                     | 35.21%                     |
| Adversarial trained |                            |                            |
| - Benign            | 71.98%                     | 71.98%                     |
| - IGSM attack       | 54.17%                     | 56.90%                     |

Here we can see that both the experiments had same results for benign images for both untrained and trained models 74.29% and 71.98% respectively.

However, for IGSM attacked images, the accuracy for both untrained and trained model rose from 32.61% to 35.21% and 54.17% to 56.90% respectively.

This was as expected, because value of  $\alpha$  was decreased, which meant smaller ensured a smoother and more controlled attack. On the other hand,  $\epsilon$  was increased, allowing larger perturbations, making it more likely to fool the model.

## Qualitatively:

Dhruv Maheshwari 9001607595

# Pred1 = Without defense Pred2 = Adversarial trained

# 1st Experiment



- Here, we can see that, the original ResNet 9 model gives correct predictions (Pred 1) for 3/5
  the images in top row which aren't attacked, same for the adversarial trained model achieves
  correct prediction (Pred2) for 3/5.
- For the IGSM attacked pictures, the original model (Pred 1) has 3/5 correct predictions, but the adversarial trained model (Pred 2) can correctly predict labels for 4/5 samples, thus showing robustness against attacked images.

2<sup>nd</sup> Experiment

Dhruv Maheshwari 9001607595



- It is again proved that images that were correctly classified by original ResNet network (first row) were later incorrectly predicted when there was an IGSM attack (bottom row).
- However, the adversarial trained network withstood the attack and gave correct predictions for 3/5 compared to 1/5 for original network.

Hence, both experimental trained are robust and are able to withstand IGSM attack.