The unreasonable effectiveness of feature hashing

Gianluca Campanella [dʒanˈluːka kampaˈnɛlla] 14th July 2019

What I do nowadays

I'm a Data Scientist at

in AzureCAT

What I do nowadays

I also run my own company

Data Science consulting and training

Contents

Background

Feature hashing

Library support

Acknowledgements

- Sharat Chikkerur
- Markus Cozowicz

Background

Supervised ML

- Observe $X_{n \times p}$ and y_n (typically $n \gg p$)
- Find the 'best' estimator of some statistic of y given X (for example $\mathbb{E}[y|X]$)

Supervised ML

- Observe $\mathbf{X}_{n \times p}$ and \mathbf{y}_n (typically $n \gg p$)
- Find the 'best' estimator of some statistic of y given X (for example \mathbb{E}[y|X])

Generalised linear models (GLMs)

- $\mathbb{E}[\mathbf{y}|\mathbf{X}] = g^{-1}(\mathbf{X}\beta)$ with g given
- Find the 'best' estimates for β

Features are often categorical

- Discretised continuous features
- One-hot encoding
- Bag-of-words representation

One-hot encoding

		ENG	NIR	SCT	WLS
country		1	0	0	0 7
		Т	U	U	V
England		0	0	0	1
Wales	\rightarrow	0	0	1	0
Scotland	·	0	0	1	0
Scotland			0	_	
		0	1	0	0
Northern Ireland		_			_

Bag-of-words representation

document

Ashley loves cats. She also likes dogs. Barbara hates cats but she loves dogs. Carol loves cats and dogs.

What's going on?

- *n* is fixed
- *p* depends on the cardinality of features

Why is this a problem?

- Online learning
- $p \rightarrow n$ breaks GLMs (though regularisation helps)

Observations in X are high-dimensional but sparse

- Ad tech
- E-commerce
- Social networks

Can we find a 'smaller' X?

- Time- and space-efficient to compute
- Fixed p
- Sparse

Recap

- Categorical and textual features are common
 - $\rightarrow p \propto$ feature cardinality (often very large)
 - \rightarrow Sparse **X**
- Want an efficiently computed, fixed-p, sparse representation

country	-	<i>i</i> Г 1 1 ⁻	1		x ₈	x	11 ···	. x ₅₄	 x ₆₂	
England Wales	\rightarrow	62					1	1	1	
Scotland	7	54						1		
Scotland Northern Ireland		8		L	1					

- Time- (%timeit: 468 ns ± 7.2 ns) and space-efficient
- Fixed p
- Sparse

Hash function

h maps any integer input onto integers in some range (e.g. int32)

Important properties

- Uniform output
- Avalanche effect
 - $h(a) \rightarrow 3001393763$
 - $h(c) \rightarrow 1701913768$

Feature hashing in Python

```
import mmh3
2
 s = "country=England"
4
 h = mmh3.hash(s, seed=42, signed=False)
 print(h) # => 1462978411
 i = h \% 100
 print(i) # => 11
```

Hashing of Unicode strings

- Strings are just (very large) integers
- Be careful when handling Unicode

```
s1 = "sch\u00f6n"
s2 = "scho\u0308n"

print(s1)  # => schön
print(s2)  # => schön
print(s1 == s2)  # => False
```

Unicode normalisation

```
import unicodedata
2
 s1 = unicodedata.normalize("NFKD", "sch\u00f6n")
 s2 = unicodedata.normalize("NFKD", "scho\u0308n")
5
 print(s1)
                  # => schön
 print(s2) # => schön
 print(s1 == s2) # => True
```

Projection

- The modulo operator is expensive
- If the hash size is a power of two, we can do better

```
%timeit h % 128
2 # => 81.3 ns ± 1.92 ns per loop
3
4 %timeit h & 127
5 # => 56.9 ns ± 1.4 ns per loop
```

Collisions

```
def h(x):
    return mmh3.hash(x, seed=42, signed=False) & 127

print(h("country=United Kingdom")) # => 6
print(h("country=Bulgaria")) # => 6
```

- Smaller hash size → more collisions
- Impact on statistical performance and interpretability

Sign function ξ

- Use another function ξ to determine the sign
- Collisions cancel out (in expectation)

```
def h(x):
    hash_ = mmh3.hash(x, seed=42, signed=True)
    return abs(hash_) & 127, (hash_ >= 0) * 2 - 1

print(h("country=United Kingdom")) # => (6, 1)
print(h("country=Bulgaria")) # => (122, -1)
```

Recap

- *h* maps any integer input onto integers in some range
- h deterministically scrambles arbitrary-length bitmaps, producing fixed-length bitmaps
- The impact of collisions on statistical performance is small

Example

Original data

user	movie	has_cats	has_dogs	rating
Ashley	A Dog's Journey	0	1	4
Ashley	Catwoman	1	0	5
Ashley	The Aristocats	1	1	5
Ashley	The Queen's Corgi	0	1	3
Barbara	A Dog's Journey	0	1	5
Barbara	The Aristocats	1	1	2
Barbara	The Queen's Corgi	0	1	5
Carol	Catwoman	1	0	5
Carol	The Aristocats	1	1	5
Carol	The Queen's Corgi	0	1	4

After feature hashing

user	movie	has_cats	has_dogs
2-	5-		110^{-}
2-	1^-	9^+	
2^-	104^{-}	9^+	110^{-}
2^{-}	67^{+}		110^{-}
19^{+}	5-		110^{-}
19^+	104^{-}	9^+	110^{-}
19^{+}	67^{+}		110^{-}
77 ⁺	1^-	9^+	
77 ⁺	104^{-}	9^+	110^{-}
77+	67+		110^{-}

After feature hashing

Model

$$rating \sim user + movie + has_cats + has_dogs$$

- Average effect for users
- Average effect for movies
- Average effect for movie-related features

Model

$$rating \sim user + movie + has_cats + has_dogs$$

- Average effect for users
- Average effect for movies
- Average effect for movie-related features

Model

$$\texttt{rating} \sim \texttt{user} + \texttt{movie} + \texttt{has_cats} + \texttt{has_dogs}$$

- Average effect for users
- Average effect for movies
- Average effect for movie-related features

$$rating \sim user + movie + has_cats + has_dogs$$

- Average effect for users
- Average effect for movies
- Average effect for movie-related features

Interactions

$$rating \sim user + movie + user \times (has_cats + has_dogs)$$

- Average effect for users
- Average effect for movies
- Average effect for movie-related features
- User correction

Interactions with feature hashing

```
h(user=Ashlev) = 2^{-}
                                        h(has\_cats) = 9^+
def interact(h1, h2):
    i1. s1 = h1
  i2. s2 = h2
    return ((i1 ^ i2) * 16777619) & 127, s1 * s2
h(user=Ashley \times has\_cats) = 81^{-1}
```

After feature hashing with interactions

user	movie	has_cats	has_dogs	likes_cats	likes_dogs
2-	5-		110-		4+
2-	1-	9+		81^{-}	
2^{-}	104^{-}	9^+	110^{-}	81^{-}	4+
2-	67^{+}		110^{-}		4+
19^+	5-		110^{-}		71^{-}
19^+	104^-	9^+	110^{-}	110^{+}	71^{-}
19^+	67^{+}		110^{-}		71^{-}
77 ⁺	1^-	9^+		12+	
77 ⁺	104^{-}	9^+	110^{-}	12+	25-
77+	67+		110-		25-

After feature hashing with interactions

Pros and cons

Pros

- ullet Time- and space-efficient o online learning
- Sparsity-preserving
- Implicit handling of missing data

Cons

- Collisions → statistical performance
- Inverse mapping → interpretability

Feature hashing

Use case

Scenario

- Business directory service (think Yelp)
- Want to improve relevance of and personalise search results

Scenario

- Business directory service (think Yelp)
- Want to improve relevance of and personalise search results

CTR optimisation

Maximise probability of click on top results

Personalisation

Take into account past user interactions

Data

user	query	business	click
Α	Italian restaurant	Bocca di Lupo	1
Α	Italian restaurant	Brasserie Zédel	0
Α	Italian restaurant	Emilia's Crafted Pasta	0
Α	Italian restaurant	Fucina	1
Α	Italian restaurant	Trullo	0

- 3.5×10^8 observations (250 days)
- ullet 4.5 imes 10 businesses with many (sparse) attributes

$$\label{eq:click} \begin{split} \textit{click} \sim \textit{user} + \textit{query} + \textit{business} + \\ \textit{query} \times \textit{business} + \textit{user} \times \textit{business} \end{split}$$

- Average effects
- Relevance correction
- User correction

$$\label{eq:click} \begin{split} \text{click} \sim & \text{user} + \text{query} + \text{business} + \\ & \text{query} \times \text{business} + \text{user} \times \text{business} \end{split}$$

- Average effects
- Relevance correction
- User correction

$$\label{eq:click} \begin{split} \textit{click} \sim \textit{user} + \textit{query} + \textit{business} + \\ \textit{query} \times \textit{business} + \textit{user} \times \textit{business} \end{split}$$

- Average effects
- Relevance correction
- User correction

$$\label{eq:click} \begin{split} \textit{click} \sim \textit{user} + \textit{query} + \textit{business} + \\ \textit{query} \times \textit{business} + \textit{user} \times \textit{business} \end{split}$$

- Average effects
- Relevance correction
- User correction

- Fixed $p = 2^{23} \approx 8.4 \times 10^6$
- Regularised logistic regression (Spark ML)
- Grid search over elastic net hyperparameters

Results

- ullet Estimated pprox 5% increase in CTR based on train/test split
- \bullet A/B testing showed $\approx 10\%$ increase in CTR

Library support

Vowpal Wabbit (VW)

- C++ with Python bindings
- Linear, logistic and Poisson regression with interactions
- Extremely fast and scalable

scikit-learn

- Some support for feature hashing: feature_extraction.FeatureHasher and feature_extraction.text.HashingVectorizer
- No interactions

Apache Spark

- Some support for feature hashing in MLlib:
 ml.feature.FeatureHasher and ml.feature.HashingTF
- PySpark transformers (hashing and interactions)
- VW bindings coming soon to MMLSpark

Recap

Feature hashing is...

- Great for online training on lots of data
- Well-suited for high-cardinality features (sparse X)
- Even better with interactions

Thank you!

If you want to keep in touch...

◎ gianluca@campanella.org o gcampanella ■ gcampanella