Statistics – Answers to Tutorial Questions

Consider the following data set: 1, 2, 3, 3, 4, 4, 4, 6, 8, 8, 10, 11, 11

Calculate:

- a) The mean
- b) The mode
- c) The median
- d) The range e) The interquartile range

Solution

a) mean =
$$\frac{1+2+3+3+4+4+4+6+8+8+10+11+11}{13} = \frac{75}{13} = 5.77$$

- b) The mode is the most common value, 4.
- The median is the middle value, 4.
- d) Range = 11 1 = 10.
- e) $\frac{13}{4} = 3.25$ Round down to 3

The 3^{rd} item is 3 -this is the lower quartile.

$$\frac{3 \times 13}{4} = 9.75$$
 Round up to 10

The 10th item is 8 – this is the upper quartile.

The interquartile range = 8 - 3 = 5.

A survey is conducted on a number of similar households to find how much they spend per week on food. The results are summarised in a box plot, as shown.

Give the value of:

b) The highest value recorded.

c) The range.

d) The median.

e) The lower quartile.

f) The upper quartile

g) The interquartile range.

a) The lowest value recorded.

Solution

- a) 106
- d) 150
- g) 166 138 = 28

- b) 206
- e) 138

- c) 206 106 = 100
- f) 166

A group of 75 UK students were surveyed to find out how many (if any) GCSE exams they had passed. The results are shown in the table on the right.

From the table find the following: a) The mean

- b) The mode
- c) The median
- d) The interquartile range

Solution

Add a column for the product *fn*.

Number of GCSE passes, n	Frequency f	Frequency <i>fn</i>
0	1	0
1	2	2
2	2	4
3	5	15
4	7	28
5	9	45
6	10	60
7	14	98
8	12	96
9	8	72
10	5	50
Total	75	470

$$mean = \frac{\Sigma fn}{\Sigma f} = \frac{470}{75} = 6.3$$

Number of GCSE passes, n	Frequency f
0	1
1	2
2	2
3	5
4	7
5	9
6	10
7	14
8	12
9	8
10	5
Total	75

b) The most commonly occurring total is 7, which occurs 14 times. The mode is 7.

For c) and d) we need a column for the cumulative frequency.

Number of GCSE passes, n	Frequency f	Cumulative frequency
0	1	1
1	2	3
2	2	5
3	5	10
4	7	17
5	9	26
6	10	36
7	14	50
8	12	62
9	8	70
10	5	75
Total	75	

c) There are 75 items. The median is therefore the 38th item.

The median is 7.

d)
$$\frac{75}{4} = 18.75$$
 Round up to 19

The 19th item is 5. This is the lower quartile.

$$\frac{3 \times 75}{4} = 56.25$$

Round down to 56

The 56th item is 8. This is the upper quartile.

The interquartile range is 8 - 5 = 3

- 4. 100 students were given an IQ test. The results are summarised in the table on right.
 - a) Find the mean IQ of this group.
 - b) What is the modal group?
 - c) What is the median group?

IQ	Frequency, f
85 ≤ <i>n</i> < 90	3
90 ≤ <i>n</i> < 95	12
95 ≤ <i>n</i> < 100	26
100 ≤ <i>n</i> < 105	22
$105 \le n < 110$	19
110 ≤ <i>n</i> < 115	8
115 ≤ <i>n</i> < 120	5
120 ≤ <i>n</i> < 125	3
125 ≤ <i>n</i> < 130	2
Total	100

Solution

a) We need a column for the mid-point, x, and a column for the product, fx.

IQ	Mid-point, x	Frequency, f	Product, fx
85 ≤ <i>n</i> < 90	87	3	261
90 ≤ <i>n</i> < 95	92	12	1104
95 ≤ <i>n</i> < 100	97	26	2522
100 ≤ <i>n</i> < 105	102	22	2244
105 ≤ <i>n</i> < 110	107	19	2033
110 ≤ <i>n</i> < 115	112	8	896
115 ≤ <i>n</i> < 120	117	5	585
120 ≤ <i>n</i> < 125	122	3	366
125 ≤ <i>n</i> < 130	127	2	254
Total		100	10265

$$\text{mean} = \frac{\Sigma f x}{\Sigma f} = \frac{10265}{100} = 102.65$$

- b) The modal group is $95 \le n < 100$, which contains 26 items.
- c) To find the median group, we need to add a column for the cumulative frequency

IQ	Frequency, f	Cumulative frequency
85 ≤ <i>n</i> < 90	3	3
90 ≤ <i>n</i> < 95	12	15
95 ≤ <i>n</i> < 100	26	41
100 ≤ <i>n</i> < 105	22	63
105 ≤ <i>n</i> < 110	19	82
110 ≤ <i>n</i> < 115	8	90
115 ≤ <i>n</i> < 120	5	95
120 ≤ <i>n</i> < 125	3	98
125 ≤ <i>n</i> < 130	2	100
Total	100	

IQ	Frequency, f
85 ≤ <i>n</i> < 90	3
90 ≤ <i>n</i> < 95	12
95 ≤ <i>n</i> < 100	26
100 ≤ <i>n</i> < 105	22
105 ≤ <i>n</i> < 110	19
110 ≤ <i>n</i> < 115	8
115 ≤ <i>n</i> < 120	5
120 ≤ <i>n</i> < 125	3
125 ≤ <i>n</i> < 130	2
Total	100

There are 100 items. The median is therefore the mean of the 50th and the 51st items.

The 50th and 51st item lie in the group $100 \le n < 105$. This is the median group.

- 5. A survey was undertaken to find out the ages of people (from 10 onwards) visiting a particular museum over the bank holiday period. A histogram was produced, and is shown below.
 - a) How many visitors were there in the age range of $60 \le n < 80$?
 - b) In which range was there a total of 900 visitors? Explain your answer.

Solution

a) frequency = frequency density x width

$$= 20 \times 40 = 800$$

b) There were 900 visitors in the range $10 \le n < 40$

 $frequency\ density\ x\ width\ = 30\ x\ 30 = 900$

6. A class of 190 students took an examination. The results were entered into a table and a histogram was produced.

Incomplete versions of the table and histogram are show here.

- a) Work out the scale of the vertical axis and show this on the table.
- b) Complete the table and histogram.

Marks, x	Frequency, f
$0 \le x < 30$	
30 ≤ <i>x</i> < 40	34
40 ≤ <i>x</i> < 50	38
50 ≤ <i>x</i> < 60	
60 ≤ <i>x</i> < 80	32
80 ≤ <i>x</i> ≤ 100	

Solution

a) We need a group that is filled in both in the table and on the chart. We can use the second group.

$$frequency\ density = \frac{frequency}{width} = \frac{34}{10} = 3.4$$

The height of this bar is 3.4, enabling us to calibrate the axis – the height of each square represents a frequency density of 1.

b) We can now use the formula $frequency = frequency density \times width$ to complete the table and the histogram.

Marks, x	Frequency, f	5											
0 ≤ <i>x</i> < 30	/30												
30 ≤ <i>x</i> < 40	34	4											
40 ≤ <i>x</i> < 50	38												
50 ≤ <i>x</i> < 60	40	ensi											
60 ≤ <i>x</i> < 80	32	φ > 3											
80 ≤ <i>x</i> ≤ 100	16	Frequency density											
		requ											
30 x 1.0 = 30	$20 \times 0.8 = 16$	5 42											
10 x 4.0	= 40												
		4											
		1											
38 ÷ 10 = 3.8													
	$32 \div 20 = 1.6$												
		(0 10	20	30	40	50 Marks (out	60 of 100)	70	80	90	100	

7. Draw a bar chart to represent the information in question 3.

Solution

Number of GCSE passes, n	Frequency f
0	1
1	2
2	2
3	5
4	7
5	9
6	10
7	14
8	12
9	8
10	5
Total	75

8. Draw a frequency polygon to represent the data in question 4.

Solution

IQ	Frequency, f
85 ≤ <i>n</i> < 90	3
90 ≤ <i>n</i> < 95	12
95 ≤ <i>n</i> < 100	26
100 ≤ <i>n</i> < 105	22
105 ≤ <i>n</i> < 110	19
110 ≤ <i>n</i> < 115	8
115 ≤ <i>n</i> < 120	5
120 ≤ <i>n</i> < 125	3
125 ≤ <i>n</i> < 130	2
Total	100

Advanced Question

9. Using formulae, estimate the median and the mode of the data shown in question 4.

IQ	Frequency, f	Cumulative frequency
85 ≤ <i>n</i> < 90	3	3
90 ≤ <i>n</i> < 95	12	15
95 ≤ <i>n</i> < 100	26	41
100 ≤ <i>n</i> < 105	22	63
105 ≤ <i>n</i> < 110	19	82
110 ≤ <i>n</i> < 115	8	90
115 ≤ <i>n</i> < 120	5	95
120 ≤ <i>n</i> < 125	3	98
125 ≤ <i>n</i> < 130	2	100
Total	100	

Solution

Estimated Median =
$$L + \frac{n/2 - cf_b}{f_m} \times w$$

Where: L is the lower class boundary of the median group

n is the total number of items

 cf_b is the cumulative frequency of the groups before the median group.

 f_m is frequency of the median group

w is the group width

We saw that the median group is $100 \le n < 105$

Estimated Median =
$$100 + \frac{100/2 - 41}{22} \times 5 \approx 102$$

Estimated Mode =
$$L + \frac{f_m - f_{m-1}}{(f_m - f_{m-1}) + (f_m - f_{m+1})} \times w$$

The modal group is $95 \le n < 100$

Where: L is the lower class boundary of the modal group f_{m-1} is the frequency of the group before the modal group f_m is the frequency of the modal group f_{m+1} is the frequency of the group after the modal group w is the group width

Estimated Mode =
$$95 + \frac{26-12}{(26-12)+(26-22)} \times 5 \approx 99$$