

Expectimax Search

CSE 415: Introduction to Artificial Intelligence University of Washington Winter, 2018

Credit goes to Dan Klein and Pieter Abbeel, Univ. of California, for the slides of this lecture.

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

3

Expectimax Search

4

- Why wouldn't we know what the result of an action will

 - Explicit randomness: rolling dice
 Unpredictable opponents: the ghosts respond randomly
 Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under
- Max nodes as in minimax search
 Chance nodes are like min nodes but the outcome is
- Calculate their expected utilities
 I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

What Probabilities to Use?

- In expectimax search, we have a probability model of how the opponent (or environment behave in any state
 - Model could be a simple uniform distribution (roll a
 - Model could be sophisticated and require a great dea of computation
 - We have a chance node for any outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

- Answer: Expectimax!
 - To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
 - This kind of thing gets very slow very quickly
 - Even worse if you have to simulate your opponent simulating you...
 - ... except for minimax, which has the nice property that it all collapses into one game tree

13 14

Modeling Assumptions

15

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it's not likely

Other Game Types

17

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 2 = $20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st Al world champion in any game!

Image: Wikipedia

Multi-Agent Utilities • What if the game is not zero-sum, or has multiple players? Generalization of minimax: Terminals have utility tuples Node values are also utility tuples • Each player maximizes its own component Can give rise to cooperation and competition dynamically... 6,1,2 7,2,1

18

