TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỔ CHÍ MINH KHOA CÔNG NGHỆ THÔNG TIN

TOÁN ỨNG DỤNG THỐNG KÊ BÁO CÁO THỰC HÀNH

LAB 04

Mã số sinh viên: 21120582

Họ và Tên: Đinh Hoàng Trung.

Mail: 21120582@student.hcmus.edu.vn.

Họ Tên: Đinh Hoàng Trung.

1. Câu 1: Xác định tính lòi lõm của một hàm số:

$$f(x) = x^{T}Ax + b^{T}x + c$$

- Ý tưởng:
 - O Xác định lòi lõm qua giá trị riêng của ma trận A.
 - Nếu hàm lòi hoặc lõm: thì tìm cực tiểu/đại qua việc tìm nghiệm bình phương tối tiểu.
- Thực hiện:
 - o Tìm các giá trị riêng qua hàm.
 - Nếu tất cả giá trị riêng đều >= 0, hàm xác định nửa dương => hàm xác định lồi.
 - Nếu tất cả giá trị riêng đều > 0, hàm xác định dương
 hàm xác định lồi ngặt.
 - Nếu tất cả giá trị riêng đều <= 0, hàm xác định nửa âm => hàm xác định lõm.
 - Nếu tất cả giá trị riêng đều < 0, hàm xác định âm => hàm xác định lõm ngặt.
 - Sau khi xác định lồi/lõm tìm điểm dừng bằng phuong pháp bình phương tối tiểu.
- 2. Câu 2: Tìm đường tuyến tính khớp với dữ liệu cho trước:
 - Ý tưởng thực hiện:
 - \circ Phương trình tuyến tính có dạng: y = ax + b.
 - o Trong đó ta có dữ liệu thực x và y, thứ ta cần tìm là a và b.
 - o Tìm a và b bằng phương trình:

$$\sum \begin{bmatrix} 1 \\ xi \end{bmatrix} [1 xi] \begin{bmatrix} a \\ b \end{bmatrix} = \sum yi \begin{bmatrix} 1 \\ xi \end{bmatrix}$$

 Có a và b ta tìm được phương trình tuyến tính khớp với dữ liệu.

Họ Tên: Đinh Hoàng Trung.

- Thực hiện bài toán.
 - Mô hình hóa dữ liệu từ 2 cột giá trị x_i, y_i:
 - Ma trận với mỗi một dòng là một mẫu [x_i, y_i]:

```
[[0, 10]
| [1, 8],
| [2, 7],
| [3, 5],
| [4, 2]]
```

• Ma trận A với mỗi dòng là [1, x_i] và ma trận b với một dòng là 1 mẫu [y_i].

- \Rightarrow Từ đó t có phương trình y = ax + b.

Họ Tên: Đinh Hoàng Trung.

Đường tuyến tính thể hiện lượng thuốc giảm theo thời gian:

3. Câu 3:

- a. Giả sử x,y thỏa mãn mô hình $y = a + bx + c.\ln(x^2 + 1)$. Hãy sử dụng phương pháp bình phương cực tiểu, ước lượng các tham số a,b,c.
- Ý tưởng làm bài: tương tự bài 2, chỉ đổi biến cần tìm từ a, b sang a, b, c và x, y mô hình hóa theo mô hình trên.
- Thực hiện bài toán:
 - Tương tự như bài 2: Mô hình hóa dữ liệu thực sang mô hình:
 - Từ dữ liệu thực:

Họ Tên: Đinh Hoàng Trung.

```
[-2,-1],
[0,1.5],
[1,3.1],
[2,6.3],
[4,11.1]]
```

Sang dữ liệu được mô hình hóa:

 Từ đó theo phương pháp bình phuong cực tiểu ta được phương trình khóp với dữ liệu:

```
Phương trình theo mô hình: y = [1.14446483] + [1.81151861]x + [0.92214453]ln(x^2 + 1) b. Vẽ biểu đồ và dự đoán y với x = 6.5.
```

```
[Với x = 6.5, y được dự đoán: [16.39305168] gram.]
```

Họ Tên: Đinh Hoàng Trung.

Trọng lượng của hợp chất theo thời gian khi tiếp xúc với không khí

Họ Tên: Đinh Hoàng Trung.

- C. Có nên dùng mô hình y=a+bx+cln(x) hoặc y=a+bx+c/x để xấp xỉ dữ liệu trên không.
 - \bigcirc Không vì trong ln(x) chỉ có nghĩa khi $x > 0 \ \forall \ x \in R$.

Thử mô hình y = a + bx + cln(x) d:\Toán ứng dụng thống kê\Thực Hành\Lab4\Lab4.py:211: RuntimeWarning: invalid value encountered in log A3c[i][2] = np.log(data3[i][0]) d:\Toán ứng dụng thống kê\Thực Hành\Lab4\Lab4.py:211: RuntimeWarning: divide by zero encountered in log A3c[i][2] = np.log(data3[i][0])

O Tương tự 1/x chỉ có nghĩa khi $x != 0 \forall x \in R$.

Thứ mô hình y = a + bx + c/x d:\Toán ứng dụng thống kê\Thực Hành\Lab4\Lab4.py:227: RuntimeWarning: divide by zero encountered in scalar divide A3c[i][2] = $1/data3[i][\theta]$

---HÉT---