Lab12

October 18, 2017

0.1 SKOLTECH, Experimental Data Processing

0.2 Evgenii Safronov, Mikhail Kurenkov, Taras Melnik

```
In [1]: import numpy as np
        import scipy as sp
        from matplotlib import pyplot as plt
        from numpy.linalg import inv
        import matplotlib as mplb
        from matplotlib.font_manager import FontProperties
        %matplotlib inline
        from numpy.random import normal
        from mpl_toolkits.mplot3d import Axes3D
        mplb.rc('xtick', labelsize=5)
        mplb.rc('ytick', labelsize=5)
In [78]: def kalman(X_0, P_0, z, T, h, R, Q, dh):
             X = np.zeros((len(z),*(X_0.shape)))
             P = np.zeros((len(z),*(P_0.shape)))
             K = np.zeros((len(z), X_0.shape[0], z.shape[1]))
             XF= np.zeros_like(X)
             Xp= np.zeros_like(X)
             for i, _ in enumerate(z):
                 #Prediction
                 Xp[i] = X[i] = T.dot(X[i-1] if i > 0 else X_0)
                 P[i] = T.dot((P[i-1] if i > 0 else P_0).dot(T.transpose())) + Q
                 #Filtration
                 \#tmp1 = inv(H.dot(P[i].dot(H.transpose())) + R[i])
                 \#tmp2 = H.transpose().dot(tmp1)
                 \#K[i] = P[i].dot(tmp2)
                 tmp1 = inv(dh(Xp[i]).dot(P[i].dot(dh(Xp[i]).transpose())) + R)
                 tmp2 = dh(Xp[i]).transpose().dot(tmp1)
                 K[i] = P[i].dot(tmp2)
                 X[i] = Xp[i] + K[i].dot(z[i] - h(Xp[i]))
                 P[i] = (np.identity(X_0.shape[0]) - K[i].dot(dh(Xp[i]))).dot(P[i])
             return X, K, P, Xp
```

```
def generate_acc_trajectory(sigma_a_2, sigma_n_2, N, x_0, v_0, t, a_bias = 0):
    if sigma_a_2 == 0:
        a = np.zeros(N) + a_bias
    else:
        a = np.random.normal(0, sigma_a_2 ** 0.5, N) + a_bias
    v = np.ones(N) * v_0
    x = np.ones(N) * x_0
    for i, a_i in enumerate(a[:-1]):
        v[i+1] = v[i] + a_i*t
    dx = (v * t + a * t * t / 2)
    for i, dx_i in enumerate(dx[:-1]):
        x[i+1] = x[i] + dx_i
    \#v2 = np.ones(N) * v_0 + a.dot(np.triu(np.ones((N, N)), 1)) * t
    \#x2 = np.ones(N) * x_0 + (v2 * t + a * t * t / 2).dot(np.triu(np.ones((N, N)), 1))
    z = x + np.random.normal(0, sigma_n_2 ** 0.5, N)
    return x, z
def convert_to_polar(X):
    x = X[:,0,0]
    y = X[:,2,0]
    D = (x**2 + y**2) ** 0.5
    b = np.arctan(x / y)
    return b, D
```

1 Generate a true trajectory

```
In [5]: N = 500
    t = 1
    x_0 = 1000
    y_0 = 1000
    sigma_a_2 = 0.3 ** 2
    v_x = 10
    v_y = 10

x, _ = generate_acc_trajectory(sigma_a_2, 1, N, x_0, v_x, t)
    y, _ = generate_acc_trajectory(sigma_a_2, 1, N, y_0, v_y, t)
```

2 Generate also true values of range D and azimut β

ax.xaxis.set_tick_params(labelsize=10)
ax.yaxis.set_tick_params(labelsize=10)

True trajectory

3 Generate measurements D^m and $oldsymbol{eta}^m$

```
In [60]: sigma_D = 50
    sigma_b = 0.004
    D_n = np.random.normal(0, sigma_D, N)
    b_n = np.random.normal(0, sigma_b, N)
    D_m = D + D_n
    b_m = b + b_n
    z = np.zeros((N, 2, 1))
```

```
z[:, 0, 0] = D_m
z[:, 1, 0] = b_m
```

```
In [92]: fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111, polar=True)
    ax.set_title('Noisy trajectory', fontsize = 20)
    ax.plot(b_m, D_m, 'r', linewidth=2)
    ax.xaxis.set_tick_params(labelsize=10)
    ax.yaxis.set_tick_params(labelsize=10)
```

Noisy trajectory

4 Initial conditions for Kalman filter algorithm

```
In [12]: X_0 = \text{np.array}([[D_m[0] * \text{np.sin}(b_m[0])], [0], [D_m[0] * \text{np.cos}(b_m[0])], [0]])

P_0 = \text{np.eye}(4) * 10 ** 10
```

5 Create the transition matrix

```
In [28]: T = np.zeros((4, 4))
        T[0:2, 0:2] = np.array([[1, t], [0, 1]])
        T[2:4, 2:4] = np.array([[1, t], [0, 1]])
```

6 Calculate state noise covariance matrix Q

```
In [27]: G = np.zeros((4, 2))
    G[0:2, 0:1] = np.array([[t ** 2 / 2], [t]])
    G[2:4, 1:2] = np.array([[t ** 2 / 2], [t]])
    Q = G.dot(G.transpose() * sigma_a_2)
```

7 Create the measurement noise covariance matrix R

```
In [74]: R = np.array([[sigma_D ** 2, 0], [0, sigma_b ** 2]])
```

8 linearize measurement equation

```
In [75]: def h(X):
             x = X[0]
             y = X[2]
             H = np.zeros((2, 1))
             H[0] = (x ** 2 + y ** 2) ** 0.5
             H[1] = np.arctan(x / y)
             return H
         def dh(X):
             x = X[0, 0]
             y = X[2, 0]
             dH = np.zeros((2, 4))
             dH[0, 0] = x / (x ** 2 + y ** 2) ** 0.5
             dH[0, 2] = y / (x ** 2 + y ** 2) ** 0.5
             dH[1, 0] = y / (x ** 2 + y ** 2)
             dH[1, 2] = -x / (x ** 2 + y ** 2)
             return dH
```

9 Develop Kalman filter algorithm

```
In [90]: X, K, _, Xp = kalman(X_0, P_0, z, T, h, R, Q, dh)
```

```
In [91]: b_f, D_f = convert_to_polar(Xp)
    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111, polar=True)
    ax.set_title('Noisy trajectory', fontsize = 20)
    ax.plot(b_f, D_f, 'r', linewidth=2)
    ax.xaxis.set_tick_params(labelsize=10)
    ax.yaxis.set_tick_params(labelsize=10)
```

Noisy trajectory

10 Run Kalman filter algorithm over M=500 runs

```
In [99]: M = 500
N = 500
```

```
x_0 = 1000
         y_0 = 1000
         sigma_a_2 = 0.3 ** 2
         v x = 10
         v_y = 10
         sigma D = 50
         sigma_b = 0.004
         error_b_f = np.zeros((N, M))
         error_D_f = np.zeros((N, M))
         error_b_p = np.zeros((N, M))
         error_D_p = np.zeros((N, M))
         for i in range(M):
             x, _ = generate_acc_trajectory(sigma_a_2, 1, N, x_0, v_x, t)
             y, _ = generate_acc_trajectory(sigma_a_2, 1, N, y_0, v_y, t)
             D = (x**2 + y**2) ** 0.5
             b = np.arctan(x / y)
             D_n = np.random.normal(0, sigma_D, N)
             b_n = np.random.normal(0, sigma_b, N)
             D_m = D + D_n
             b_m = b + b_n
             z = np.zeros((N, 2, 1))
             z[:, 0, 0] = D_m
             z[:, 1, 0] = b_m
             X_0 = \text{np.array}([[D_m[0] * \text{np.sin}(b_m[0])], [0], [D_m[0] * \text{np.cos}(b_m[0])], [0]])
             P_0 = np.eye(4) * 10 ** 10
             X, K, _{-}, Xp = kalman(X_{-}0, P_{-}0, z, T, h, R, Q, dh)
             b_f, D_f = convert_to_polar(X)
             b_p, D_p = convert_to_polar(Xp)
             error_b_f[:,i] = (b - b_f) ** 2
             error_D_f[:,i] = (D - D_f) ** 2
             error_b_p[:,i] = (b - b_p) ** 2
             error_D_p[:,i] = (D - D_p) ** 2
In [109]: fig, ax = plt.subplots(2,1, figsize=(6,4), dpi = 600, sharex = True)
          ax[0].set_title(r'Error $\beta$', fontsize = 10)
          ax[0].plot( (np.sum(error_b_f,axis=1)/(M-1))**0.5, label = 'filtration')
          ax[0].plot( (np.sum(error_b_p,axis=1)/(M-1))**0.5, label = 'prediction')
          ax[0].set_ylabel('magnitude', fontsize = 7)
          ax[0].axhline(sigma_b, label = "measurament error", linestyle='--')
          ax[0].legend(loc='upper right')
```

t = 1

```
ax[1].set_title('Error D', fontsize = 10)
ax[1].plot( (np.sum(error_D_f,axis=1)/(M-1))**0.5, label = 'filtration')
ax[1].plot( (np.sum(error_D_p,axis=1)/(M-1))**0.5, label = 'prediction')
ax[1].set_xlabel('points', fontsize = 7)
ax[1].set_ylabel('magnitude', fontsize = 7)
ax[1].axhline(sigma_D, label = "measurament error", linestyle='--')
ax[1].legend(loc='upper right');
```


10.1 One can see from this plot that measurement error is times higher than true estimation error of filtration and prediction

11 Conclusion

11.1 Today we have learned extended Kalman filter

In []: