Image Processing 실습 4.

2021. 03. 28.

실습 수업 소개

- 과목 홈페이지
 - 충남대학교 사이버 캠퍼스 (http://e-learn.cnu.ac.kr)
- TA 연락처
 - 신준호
 - wnsgh578@naver.com
- 튜터 연락처
 - 19 한승오
 - sh.h4ns@gmail.com
- 실습 중 질문사항
 - 실시간 수업중 질문 or 메일을 통한 질문
 - 메일로 질문할 때 [IP] 를 제목에 붙여주세요

실습 수업 소개

- 실습 출석
 - 사이버캠퍼스를 통해 Zoom 출석
 - Zoom 퇴장 전 채팅 기록[학번 이름] 남기고 퇴장
 - 위 두 기록을 통해 출석 체크 진행 예정

목 차

- 실습
 - Image Filtering
 - Gaussian Filter
 - Separability of Gaussian Filter
- 과제
 - Average Filtering
 - Sharpening Filtering
 - Gaussian Filtering

- average filter(평균값 필터)
 - image를 부드럽게 해주는 효과
 - 잡음을 제거하는데 사용됨

original

3x3 average filter

• average filter(평균값 필터) 실습1

filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

• src : 이미지

• ddepth : 이미지 깊이(자료형 크기). -1이면 입력과 동일

• kernel : 커널 행렬

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

mask

```
import cv2
import numpy as np
def my_average_filter_3x3(src):
   mask = np.array([[1/9_{1}1/9_{1}1/9],
                     [1/9,1/9,1/9],
                     [1/9,1/9,1/9]])
   dst = cv2.filter2D(src, -1, mask)
   return dst
if __name__ == '__main__':
   src = cv2.imread("Lena.png",cv2.IMREAD_GRAYSCALE)
   dst = my_average_filter_3x3(src)
   cv2.imshow('original',src)
   cv2.imshow('average_filter',dst)
   cv2.waitKey()
   cv2.destroyAllWindows()
```


original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

mask

average filter

1/12	1/12	1/12
1/12	1/12	1/12
1/12	1/12	1/12

mask

```
import cv2
import numpy as np
def my_average_filter_3x3(src):
   mask = np.array([[1/12_1/12_1/12],
                     [1/12,1/12,1/12],
                     [1/12,1/12,1/12]])
   dst = cv2.filter2D(src, -1, mask)
    return dst
if __name__ == '__main__':
   src = cv2.imread("Lena.png",cv2.IMREAD_GRAYSCALE)
   dst = my_average_filter_3x3(src)
    cv2.imshow('original',src)
    cv2.imshow('average_filter',dst)
   cv2.waitKey()
    cv2.destroyAllWindows()
```


original

1/12	1/12	1/12
1/12	1/12	1/12
1/12	1/12	1/12

mask

average filter

1/4	1/4	1/4
1/4	1/4	1/4
1/4	1/4	1/4

mask

```
import cv2
import numpy as np
def my_average_filter_3x3(src):
   mask = np.array([[1/4,1/4,1/4],
                     [1/4,1/4,1/4],
                     [1/4,1/4,1/4]])
    dst = cv2.filter2D(src, -1, mask)
    return dst
if __name__ == '__main__':
   src = cv2.imread("Lena.png",cv2.IMREAD_GRAYSCALE)
 g dst = my_average_filter_3x3(src)
    cv2.imshow('original',src)
    cv2.imshow('average_filter',dst)
    cv2.waitKey()
    cv2.destroyAllWindows()
```


original

1/4	1/4	1/4
1/4	1/4	1/4
1/4	1/4	1/4

mask

average filter

- sharpening filter
 - image를 선명하게 해주는 효과

original

3x3 sharpening filter

• sharpening filter 실습1

0	0	0	1/9	1/9	1/9
0	2	0	1/9	1/9	1/9
0	0	0	1/9	1/9	1/9

mask

```
import cv2
import numpy as np
def my_sharpening_filter_3x3(src):
    mask = np.array([[-1/9_{L}-1/9_{L}-1/9],
                     [-1/9,17/9,-1/9],
                     [-1/9,-1/9,-1/9]])
    dst = cv2.filter2D(src, -1, mask)
    return dst
if __name__ == '__main__':
    src = cv2.imread("Lena.png",cv2.IMREAD_GRAYSCALE)
    dst = my_sharpening_filter_3x3(src)
    cv2.imshow('original',src)
    cv2.imshow('sharpening filter',dst)
    cv2.waitKey()
    cv2.destroyAllWindows()
```

• sharpening filter 실습1

original

-1/9	-1/9	-1/9
-1/9	17/9	-1/9
-1/9	-1/9	-1/9

mask

sharpening filter

• sharpening filter 실습2

0	0	0	1/9	1/9	1/9
0	3	0	1/9	1/9	1/9
0	0	0	1/9	1/9	1/9

mask

```
import cv2
import numpy as np
def my_sharpening_filter_3x3(src):
   mask = np.array([[-1/9_{L}-1/9_{L}-1/9],
                     [-1/9,26/9,-1/9],
                     [-1/9,-1/9,-1/9]])
   dst = cv2.filter2D(src, -1, mask)
   return dst
if __name__ == '__main__':
   src = cv2.imread("Lena.png" cv2.IMREAD_GRAYSCALE)
   dst = my_sharpening_filter_3x3(src)
    cv2.imshow('original',src)
    cv2.imshow('sharpening filter'_dst)
    cv2.waitKey()
    cv2.destroyAllWindows()
```

• sharpening filter 실습2

original

-1/9	-1/9	-1/9
-1/9	26/9	-1/9
-1/9	-1/9	-1/9

mask

sharpening filter

- 실제 이미지에는 없는 가장자리 부분을 채우는 역할을 함
 - Zero padding
 - 단순히 0으로 채움
 - 실습에서 주로 사용
 - Repetition padding
 - 가장자리의 값을 복사해 옴

- zero padding
 - 단순히 0으로 채움

original

zero padding

• padding을 안한다면?

7x7 image

filtering

7x7 dst image all pixel = 0.0

7x7 image

7x7 image filtering

7x7 dst image

padding을 안한 경우

padding을 한 경우

7x7 dst image

- Gaussian filter
 - 2D Gaussian filter
 - 1D Gaussian filter

original

Gaussian filter

• 2D Gaussian filter

original

5 x 5 Gaussian filter sigma=1

13 x 13 Gaussian filter sigma = 1

• 2D Gaussian filter

13 x 13 Gaussian filter sigma = 1

5 x 5 Gaussian filter sigma=9

13 x 13 Gaussian filter sigma = 9

- 2D Gaussian filter
 - 필터의 크기와 시그마 값의 관계

출처: https://terms.naver.com/entry.naver?docId=3405308&cid=47324&categoryId=47324

<mask>

[[0.11110741 0.11111296 0.11110741] [0.11111296 0.11111852 0.11111296] [0.11110741 0.11111296 0.11110741]]

> Gaussian filter 필터크기 : 3 sigma : 100

average filtering

[[0.1111111 0.1111111 0.1111111] [0.1111111 0.1111111 0.1111111] [0.1111111 0.1111111 0.1111111]

> Average filter 필터크기 : 3

- 2D Gaussian filter
 - 필터의 크기와 시그마 값의 관계

<mask>

<mask>

[[6.96247819e-08 2.80886418e-05 2.07548550e-04 2.80886418e-05 6.96247819e-08] [2.80886418e-05 1.13317669e-02 8.37310610e-02 1.13317669e-02 2.80886418e-05] [2.07548550e-04 8.37310610e-02 6.18693507e-01 8.37310610e-02 2.07548550e-04] [2.80886418e-05 1.13317669e-02 8.37310610e-02 1.13317669e-02 2.80886418e-05] [6.96247819e-08 2.80886418e-05 2.07548550e-04 2.80886418e-05 6.96247819e-08]]

5x5 sigma:0.5

3

출처: https://terms.naver.com/entry.naver?docId=3405308&cid=47324&categoryId=47324

다음 주 실습때 필터를 시각화 하는 것을 해볼 예정

2D Gaussian filter

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$
 $x: -n \sim n$ 범위의 mask에서의 x 좌표(열) $y: -n \sim n$ 범위의 mask에서의 y 좌표(행) $\sigma:$ Gaussian 분포의 표준편차

 $x:-n \sim n$ 범위의 mask에서의 x좌표(열)

sum

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

5 x 5 gaussian filter

σ	=	1

0.0029	0.0133	0.0219	0.0133	0.0029
0.0133	0.0596	0.0983	0.0596	0.0133
0.0219	0.0983	0.1621	0.0983	0.0219
0.0133	0.0596	0.0983	0.0596	0.0133
0.0029	0.0133	0.0219	0.0133	0.0029

밝기 유지를 위해 총합은 1

5×5 gaussian filter $\sigma = 1$

$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+0}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+0}{2}}$	$\frac{1}{2\pi}e^0$	$\frac{1}{2\pi}e^{-\frac{1+0}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+0}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$

- 2D Gaussian filter 만드는 법1
 - 단순하게 n^2번 반복하기

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$
 $x: -n \sim n$ 범위의 mask에서의 x좌표(열) $y: -n \sim n$ 범위의 mask에서의 y좌표(행) $\sigma:$ Gaussian 분포의 표준편차

 $x:-n \sim n$ 범위의 mask에서의 x좌표(열)

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Gaussian filter

sigma = 1

y = -2

0.0029	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

- 2D Gaussian filter 만드는 법1
 - 단순하게 n^2번 반복하기

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$
 $x: -n \sim n$ 범위의 mask에서의 x 좌표(열) $y: -n \sim n$ 범위의 mask에서의 y 좌표(행) $\sigma:$ Gaussian 분포의 표준편차

 $x:-n \sim n$ 범위의 mask에서의 x좌표(열)

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

0.0029	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Gaussian filter

y = -2sigma = 1

0.0029	0.0131	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

- 2D Gaussian filter 만드는 법1
 - 단순하게 n^2번 반복하기

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$
 $x: -n \sim n$ 범위의 mask에서의 x 좌표(열) $y: -n \sim n$ 범위의 mask에서의 y 좌표(행) $\sigma:$ Gaussian 분포의 표준편차

 $x:-n \sim n$ 범위의 mask에서의 x좌표(열)

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

0.0029	0.0131	 	
		 	•••
		 	0

Gaussian filter

$$x = 2$$

 $y = 2$
 $sigma = 1$

$$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$$

0.0029	0.0131			
•••	•••	•••	•••	•••
				•••
•••				0.0029

- 2D Gaussian filter 만드는 법1
 - 단순하게 n^2번 반복하기

$$G_{\sigma} = \frac{1}{2\pi\sigma^{2}} e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}} \qquad \begin{cases} x:-n \sim n \text{ 범위의 mask에서의 x좌표(열)} \\ y:-n \sim n \text{ 범위의 mask에서의 y좌표(행)} \\ \sigma: \text{ Gaussian 분포의 표준편차} \end{cases}$$

 $x:-n \sim n$ 범위의 mask에서의 x좌표(열)

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

[[0.00291502 0.01306423 0.02153928 0.01306423 0.00291502] [0.01306423 0.05854983 0.09653235 0.05854983 0.01306423] [0.02153928 0.09653235 0.15915494 0.09653235 0.02153928] [0.01306423 0.05854983 0.09653235 0.05854983 0.01306423] [0.00291502 0.01306423 0.02153928 0.01306423 0.00291502]]

[[0.00296902 0.01330621 0.02193823 0.01330621 0.00296902] [0.01330621 0.0596343 0.09832033 0.0596343 0.01330621] [0.02193823 0.09832033 0.16210282 0.09832033 0.02193823] [0.01330621 0.0596343 0.09832033 0.0596343 0.01330621] [0.00296902 0.01330621 0.02193823 0.01330621 0.00296902]]

Gaussian filter

총 합을 1로 만들기

- 2D Gaussian filter 만드는 법2
 - numpy를 이용해 한 번에 만들기

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$
 $x: -n \sim n$ 범위의 mask에서의 x 좌표(월) $y: -n \sim n$ 범위의 mask에서의 y 좌표(행) $\sigma:$ Gaussian 분포의 표준편차

 $x:-n \sim n$ 범위의 mask에서의 x좌표(열)

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0.0029	0.0131	•••	•••	•••
	•••			
		•••	•••	
				0.0029

Gaussian filter

Gaussian filter (총 합을 1로 만들기 전)

- 2D Gaussian filter 만드는 법2
 - numpy를 이용해 한 번에 만들기

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$
 $x: -n \sim n$ 범위의 mask에서의 x좌표(열) $y: -n \sim n$ 범위의 mask에서의 y좌표(행) $\sigma:$ Gaussian 분포의 표준편차

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

$\boxed{\frac{1}{2\pi}e^{-\frac{4+4}{2}}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+0}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+0}{2}}$	$\frac{1}{2\pi}e^0$	$\frac{1}{2\pi}e^{-\frac{1+0}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+0}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$
$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$

<<- Gaussian filter (총 합을 1로 만들기 전)

- 2D Gaussian filter 만드는 법2
 - numpy를 이용해 한 번에 만들기

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$
 $x: -n \sim n$ 범위의 mask에서의 x좌표(열) $y: -n \sim n$ 범위의 mask에서의 y좌표(행) $\sigma:$ Gaussian 분포의 표준편차

 $x:-n \sim n$ 범위의 mask에서의 x좌표(열)

n = mask의 행or열 길이// 2 ex) mask의 크기가 5이면 n = 5//2 = 2

4+4	1+4	0+4	1+4	4+4
4+1	1+1	0+1	1+1	4+1
4+0	1+0	0+0	1+0	4+0
4+1	1+1	0+1	1+1	4+1
4+4	1+4	0+4	1+4	4+4

_					
	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$
	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$
	$\frac{1}{2\pi}e^{-\frac{4+0}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+0}{2}}$	$\frac{1}{2\pi}e^0$	$\frac{1}{2\pi}e^{-\frac{1+0}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+0}{2}}$
	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+1}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+1}{2}}$
	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{0+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{1+4}{2}}$	$\frac{1}{2\pi}e^{-\frac{4+4}{2}}$

- 2D Gaussian filter 만드는 법2
 - numpy를 이용해 한 번에 만들기

4+4	1+4	0+4	1+4	4+4
4+1	1+1	0+1	1+1	4+1
4+0	1+0	0+0	1+0	4+0
4+1	1+1	0+1	1+1	4+1
4+4	1+4	0+4	1+4	4+4

<<- 만드는 방법은?

- 1. np.zeros((5,5)) 를 하고 각각 값을 채운다.
- 2. np.mgrid[] 를 사용한다.

- 2D Gaussian filter 만드는 법2
 - numpy를 이용해 한 번에 만들기

```
x = np.array([[1, 2], [3, 4]])
print(x)

[[1 2]
[[3 4]]
[[0.1 0.2]
x = x / np.sum(x)
print(x)
```

< numpy 를 사용해서 총 합을 1로 만드는 방법 >

• 1D Gaussian filter

original

1 x 5 Gaussian filter sigma=1

5 x 1 Gaussian filter sigma = 1

1D Gaussian filter

$$G(x) = \left(\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-x^2}{2\sigma^2}}\right)$$

$$G(y) = \left(\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-y^2}{2\sigma^2}}\right)$$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

- 2차 Gaussian 식을, 각 축에 대해서 분리한 식.
- 1x5 Gaussian kernel

0.0544	0.2442	0.4026	0.2442	0.0544

- 5x1 Gaussian kernel

0.0544
0.2442
0.4026
0.2442

0.0544

2D Gaussian filter and 1D Gaussian filter

original

(5 x 1), (1 x 5) Gaussian filter sigma=3

 (5×5) Gaussian filter sigma = 3

- average filter 및 sharpening filter 구현
 - my_filtering()함수 완성

original

3x3 average filter

3x3 sharpening filter

- average filter 및 sharpening filter 구현
 - my_filtering()함수 완성

original

11x13 average filter

11x13 sharpening filter

- get_average_mask(fshape):
 - fshape: mask size
- get_sharpening_mask(fshape):
 - fshape: mask size
- my_filtering(src, mask, pad_type='zero')
 - src : 흑백 이미지
 - mask : filtering에 사용할 mask
 - pad_type : padding 타입 : 'zero' or 'repetition'

return

• dst : filtering 결과 이미지

sharpening filter

• (3x3)

0	0	0
0	2	0
0	0	0

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

-1/9	-1/9	-1/9
-1/9	17/9	-1/9
-1/9	-1/9	-1/9

• (5x5)

0	0	0	0	0
0	0	0	0	0
0	0	2	0	0
0	0	0	0	0
0	0	0	0	0

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

-1/25	-1/25	-1/25	-1/25	-1/25
-1/25	-1/25	-1/25	-1/25	-1/25
-1/25	-1/25	49/25	-1/25	-1/25
-1/25	-1/25	-1/25	-1/25	-1/25
-1/25	-1/25	-1/25	-1/25	-1/25

average filter

• (3x3)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

• (3x5)

1/15	1/15	1/15	1/15	1/15
1/15	1/15	1/15	1/15	1/15
1/15	1/15	1/15	1/15	1/15

• (5x5)

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

• 1차 Gaussian filter 완성 및 2차 Gaussian filter와 시간 비교

original

1차 Gaussian filter sigma =1

2차 Gaussian filter sigma = 1

• 1차 Gaussian filter 완성 및 2차 Gaussian filter와 시간 비교

```
def my_qet_Gaussian2D_mask(msize, sigma=1):
   # ToDo
   # 2D qaussian filter 만들기
   y, x = ???
   y, x = np.mgrid[-1:2, -1:2]
  y = [[-1, -1, -1],
      [ 0, 0, 0],
     [ 1, 1, 1]]
   x = [[-1, 0, 1],
     [-1, 0, 1],
      [-1, 0, 1]
   # 2차 qaussian mask 생성
   gaus2D = ???
   # mask의 총 합 = 1
   gaus2D /= ???
  return gaus2D
```

```
def my_get_Gaussian1D_mask(msize, sigma=1):
  # ToDo
  # 1D gaussian filter 만들기
  x = ???
  111
  x = np.full((1, 3), [-1, 0, 1])
  x = [[-1, 0, 1]]
  x = np.array([[-1, 0, 1]])
  x = [[-1, 0, 1]]
  111
  gaus1D = ???
  # mask의 총 합 = 1
  gaus1D /= ???
  return gaus1D
```

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

$$G(x) = \left(\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-x^2}{2\sigma^2}}\right)$$

$$G(y) = \left(\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-y^2}{2\sigma^2}}\right)$$

- my_get_Gaussian2D_mask(msize, sigma=1)
 - msize: mask size
- my_get_Gaussian2D_mask(msize, sigma=1)
 - msize: mask size
- 1차 Gaussian filter 완성 및 2차 Gaussian filter와 시간 비교
 - Gaussian filter 만드는 코드 완성 및 시간 비교하기

• 보고서 작성 방법

- 과제 1
 - 2개의 mask 작성 함수 및 filtering 함수 작성하여 작성 방법에 대한 내용 포함
 - Original 이미지 및 4개의 필터링을 적용한 이미지(3x3 average_filter, 3x3 sharpening filter, 11x13 average filter, 11x13 sharpening filter)를 보고서에 비교 및 작성
- 과제 2
 - 2d gaussian mask와 1d gaussian mask를 만드는 함수 작성 및 방법에 대한 내용 포함
 - Original image 및 1d gaussian, 2d gaussian filtering을 적용한 이미지를 보고서에 포함
 - 1d gaussian과 2d gaussian filtering의 속도 차이를 비교한 내용을 작성할 것

• 제출 방법

- 코드 파일
 - 구현 결과가 포함된 python 파일(.py)
 - 이번 과제에서는 my_filtering과 my_gaussian을 모두 사용
- 보고서
 - [IP]201900000_홍길동_2주차_과제.pdf
 - 보고서 양식 사용
 - PDF 파일 형식으로 제출(pdf가 아닌 다른 양식으로 제출시 감점)
- 제출 파일
 - [IP]201900000_홍길동_2주차_과제.zip
 - .py 파일과 pdf 보고서를 하나의 파일로 압축한 후, 양식에 맞는 이름으로 제출

- 주의사항
 - 결과 이미지가 이상하게 보임
 - 오버플로우 문제를 해결하면 결과가 제대로 나옴
 - 4중 for문을 사용하면 시간이 너무 오래 걸림
 - numpy 기초 실습때 배운 내용을 한번 다시 보기
 - 과제 1 구현에 cv2.filter2D() 함수 사용 금지
 - filtering을 바로 수행해주는 cv2 함수 사용 금지

출석체크

• Zoom 퇴장 전, [학번 이름]을 채팅창에 올린 후 퇴장해 주시기 바랍니다.

QnA