

SDS 384 11: Theoretical Statistics

Lecture 17: Uniform Law of Large Numbers- Chaining

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

A sub-gaussian process

Definition

A stochastic process $\theta \to X_\theta$ with indexing set $\mathcal T$ is sub-Gaussian w.r.t a metric d_X if $\forall \theta, \theta' \in \mathcal T$ and $\lambda \in \mathbb R$,

$$E \exp(\lambda(X_{\theta} - X_{\theta}')) \le \exp\left(\frac{\lambda^2 d_X(\theta, \theta')^2}{2}\right)$$

This immediately implies the following tail bound.

$$P(|X_{\theta} - X_{\theta'}| \ge t) \le 2 \exp\left(-\frac{t^2}{2d_X(\theta, \theta')^2}\right)$$

1

Upper bound by 1 step discretization

Theorem

(1-step discretization bound). Let $\{X_{\theta}, \theta \in \mathcal{T}\}$ be a zero-mean sub-Gaussian process with respect to the metric d_X . Then for any $\delta > 0$, we have

$$E\begin{bmatrix} \sup_{\theta,\theta'\in\mathcal{T}} (X_{\theta} - X_{\theta'}) \end{bmatrix} \leq 2E \begin{bmatrix} \sup_{\theta,\theta'\in\mathcal{T}} (X_{\theta} - X_{\theta'}) \end{bmatrix} + 2D\sqrt{\log N(\delta;\mathcal{T},d_X)},$$
where $D := \max_{\theta,\theta'\in\Theta} d_X(\theta,\theta').$

• The mean zero condition gives us:

$$E[\sup_{\theta \in \mathcal{T}} X_{\theta}] = E[\sup_{\theta \in \mathcal{T}} (X_{\theta} - X_{\theta_0})] \leq E[\sup_{\theta, \theta' \in \mathcal{T}} (X_{\theta} - X_{\theta'})]$$

Dudley's chaining

Theorem

Let X_{θ} be zero mean sub-Gaussian process w.r.t. a metric d_X on \mathcal{T} . We have:

$$E \sup_{\theta \in \mathcal{T}} X_{\theta} \leq K \int_{0}^{D} \sqrt{\log N(\delta; \mathcal{T}, d_{X})} d\delta,$$

where
$$D := \sup_{\gamma, \gamma' \in \mathcal{T}} d_X(\gamma, \gamma')$$
.

Proof

- From before: $E \sup_{\theta \in \mathcal{T}} X_{\theta} = E \sup_{\theta, \theta' \in \mathcal{T}} (X_{\theta} X_{\theta'})$
- Recall that we first choose a δ cover T and two points θ^1 , θ^2 from T which are δ close to θ and θ' .

$$\begin{split} X_{\theta} - X_{\theta'} &= (X_{\theta} - X_{\theta^1}) + (X_{\theta^1} - X_{\theta^2}) + (X_{\theta^2} - X_{\theta'}) \\ &\leq 2 \sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) + \sup_{\substack{\theta^i, \theta^j \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta^j} - X_{\theta^j}) \end{split}$$

- For the expectation of the last part we used the finite class lemma.
- Now we will take a series of finer covers of smaller diameters.

Cont.

- For each integer i = 1, ... L,
 - Let $\epsilon_m = D2^{-m}$
 - Form the minimal ϵ_m cover T_m of T.
 - Since $T \subseteq \mathcal{T}$, $N_m := |T_m| \leq N(\epsilon_m; \mathcal{T}, d_X)$
 - When $L = \log_2(D/\delta)$, we have $T_L = T$
 - Let

$$\pi_m(\theta) := \arg\min_{\beta \in T_m} d_X(\theta, \beta)$$

- $\pi_m(\theta)$ is the best approximation of θ from T_m
- Also, $d_X(\gamma, \pi_m(\gamma)) \leq 2^{-m}D$

Picture (Courtesy: MW's book chapter 5)

Proof

- For a member θ^i of T, obtain two sequences $\{\gamma^0, \dots, \gamma^L\}$ where $\gamma^L = \theta^i$ and $\gamma^{m-1} := \pi_{m-1}(\gamma_m)$.
- Similarly form $\{\tilde{\gamma}^0, \dots, \tilde{\gamma}^L\}$ for $\theta^j \in T$.
- Note that $X_{\theta} X_{\gamma 0} = \sum_{i=1}^{L} (X_{\gamma i} X_{\gamma i-1})$

$$X_{\theta^j}-X_{\theta^j}=\sum_{i=1}^L(X_{\gamma^i}-X_{\gamma^{i-1}})-\sum_{i=2}^L(X_{\tilde{\gamma}^i}-X_{\tilde{\gamma}^{i-1}})$$

•
$$E\left[\max_{\theta,\theta'\in T}X_{\theta^i}-X_{\theta^j}\right] \leq 2\sum_{i=2}^{L}E\left[\max_{\gamma\in T_i}\left|X_{\gamma}-X_{\pi_{i-1}(\gamma)}\right|\right]$$

Proof Cont.

• Recall $d_X(\gamma, \pi_{i-1}(\gamma)) \le 2^{-(i-1)}D$. Now the finite class lemma gives:

$$E\left[\max_{\gamma \in T_{i}} |X_{\gamma} - X_{\pi_{i-1}(\gamma)}|\right] \leq 2^{-(i-1)} D \sqrt{2 \log 2N(2^{-i}D, \mathcal{T}, d_{X})}$$

$$\leq 42^{-(i+1)} D \sqrt{2 \log 2N(2^{-i}D, \mathcal{T}, d_{X})}$$

$$\leq 4 \int_{2^{-(i+1)}D}^{2^{-i}D} \sqrt{2 \log 2N(u; \mathcal{T}, d_{X})} du$$

Done.

$$\begin{split} E\sup_{\theta\in\mathcal{T}} X_{\theta} &= E\sup_{\theta,\theta'\in\mathcal{T}} (X_{\theta} - X_{\theta'}) \\ &\leq 2E \left[\sup_{\substack{\theta,\theta'\in\mathcal{T}\\d_{X}(\theta,\theta')\leq\delta}} (X_{\theta} - X_{\theta'})\right] + E\left[\sup_{\substack{\theta^{i},\theta^{j}\in\mathcal{T}\\d_{X}(\theta,\theta')\leq\delta}} (X_{\theta^{i}} - X_{\theta^{j}})\right] \\ &\leq 2E \left[\sup_{\substack{\theta,\theta'\in\mathcal{T}\\d_{X}(\theta,\theta')\leq\delta}} (X_{\theta} - X_{\theta'})\right] + 2\sum_{i=1}^{L} E\left[\max_{\gamma\in\mathcal{T}_{i}} |X_{\gamma} - X_{\pi_{i-1}(\gamma)}|\right] \\ &\leq 2E \left[\sup_{\substack{\theta,\theta'\in\mathcal{T}\\d_{Y}(\theta,\theta')<\delta}} (X_{\theta} - X_{\theta'})\right] + 8\int_{\delta/2}^{D} \sqrt{2\log 2N(u;T,d_{X})} du \end{split}$$

Taking $\delta = 0$ gives the desired bound.

Example

Example

Suppose \mathcal{F} is a class parametric functions $\mathcal{F}:=\{f(\theta,.):\theta\in B_2\}$, where B_2 is the unit L_2 ball in \mathbb{R}^d . Assume that \mathcal{F} is closed under negation. f is L Lipschitz w.r.t. the Euclidean distance on Θ , i.e.

$$|f(\theta,.)-f(\theta',.)| \leq L\|\theta-\theta'\|_2.$$

$$\mathcal{R}_n(\mathcal{F}) = O\left(L\sqrt{\frac{d}{n}}\right)$$

- We computed this just using the discretization bound.
- It was $O(L\sqrt{d\log(nL)/n})$
- Using chaining takes the logarithmic term away.

Proof

- Denote $f(\theta, X_1^n)$ as the vector $(f(\theta, X_1), \dots, f(\theta, X_n))$.
- $\bullet \ \ \mathsf{Recall \ that} \ \ n\mathcal{R}_n(\mathcal{F}) = E\left[\sup_{f \in \mathcal{F}} \langle \epsilon, f(\theta, X_1^n) \rangle\right] = E\left[\sup_{\theta \in \Theta} \langle \epsilon, f(\theta, X_1^n) \rangle\right]$
- The process $f(\theta, X_1^n) \to \langle \epsilon, f(\theta, X_1^n) \rangle =: Y_{\theta}$ is mean zero subgaussian.
- Note that $Y_{\theta} Y'_{\theta} \sim \textit{Subgaussian}(\textit{d}_{X}(\theta, \theta'))$
- We have:

$$d_X(\theta, \theta') = \|f(\theta, X_1^n) - f(\theta', X_1^n)\|^2 \le nL^2 \|\theta - \theta'\|_2^2$$

• So it is $L\sqrt{n}$ Lipschitz.

Example

•
$$N(\delta, f(\Theta, X_1^n), d_X) \leq N(\delta/(L\sqrt{n}), \Theta, \|.\|_2) \leq (1 + 2L\sqrt{n}/\delta)^d$$

$$\mathcal{R}_n(\mathcal{F}) \leq \frac{K}{n} \int_0^D \sqrt{\log N(\delta/(L\sqrt{n}), \Theta, \|.\|_2)} d\delta$$

$$\leq \frac{K}{n} \int_0^D \sqrt{d \log(1 + 2L\sqrt{n}/\delta)} d\delta$$

$$\leq \frac{C_1 L\sqrt{2d}}{\sqrt{n}} \int_0^2 \sqrt{\log(2/u)} du$$

$$\leq \frac{C_2 L\sqrt{d}}{\sqrt{n}} \int_0^\infty v^2 e^{-v^2/2} dv$$

$$= \frac{CL\sqrt{d}}{\sqrt{n}} E[Z^2] \qquad \text{where } Z \sim N(0, 1)$$

$$= O\left(\sqrt{\frac{d}{n}}\right)$$

Example- VC class

Example

For a function class \mathcal{F} of $\{0,1\}$ valued functions with VC dimension d,

$$\mathcal{R}_{\mathcal{F}} = O\left(\sqrt{\frac{d}{n}}\right)$$

- First derive with the finite class lemma.
- Then try chaining.

Example - VC class with finite class lemma

The finite class lemma says

$$\mathcal{R}_{\mathcal{F}} \leq \frac{\sup_{f \in \mathcal{F}} \|f(X_1^n)\|_2 \sqrt{2 \log |\mathcal{F}|}}{n}$$

$$\leq \frac{\sqrt{2 \log(ne/d)^d}}{\sqrt{n}}$$

$$\leq \frac{\sqrt{2d \log(ne/d)}}{\sqrt{n}}$$

$$= O\left(\sqrt{\frac{d \log(n/d)}{n}}\right)$$

Example - VC class with chaining

- To use chaining we first need the covering number in terms of the VC dimension.
- First define the $||f g||_{L_2(\hat{F}_n)}^2 = \frac{1}{n} \sum_{i=1}^n (f(X_i) g(X_i))^2$
- Haussler et al show that (You did something similar in your homework)

$$N(\delta; \mathcal{F}, \|.\|_{L_2(P_n)}) \le c_1 d \left(\frac{c_2}{\delta^2}\right)^d$$

• Note that the map $<\epsilon, f(X_1^n)>/\sqrt{n}$ is subGaussian w.r.t. the $d_X=L_2(\hat{F}_n)$ norm.

Example VC class with chaining

• Using chaining we get:

$$\begin{split} \mathcal{R}_{\mathcal{F}} & \leq \frac{K}{\sqrt{n}} \int_{0}^{1} \sqrt{\log N\left(\delta, \mathcal{F}, \|.\|_{L_{2}(\hat{F}_{n})}\right)} d\delta \\ & \leq \frac{c_{3}}{\sqrt{n}} \int_{0}^{1} \sqrt{\log(c_{1}d) + d\log(c_{2}/\delta^{2})} d\delta \\ & \leq \frac{c_{3}}{\sqrt{n}} \int_{0}^{1} \left(\sqrt{\log(c_{1}d)} + \sqrt{d\log(c_{2}/\delta^{2})}\right) d\delta \\ & = O\left(\sqrt{\frac{d}{n}}\right) \end{split}$$

• We have again lost the log(n/d) term.

Why use chaining?

- Recall the Glivenko Cantelli lemma?
- We have $\|\hat{F}_n F\|_{\infty} \le 2\mathcal{R}_{\mathcal{F}} + \delta$ with probability at least $1 e^{-n\delta^2/2}$
- For the function class $\mathcal{F}:=\{1(-\infty,t]:t\in\mathbb{R}\}$, we used the finite class lemma in lecture 12 to show that, $\mathcal{R}_{\mathcal{F}}=O\left(\sqrt{\frac{\log(n)}{n}}\right)$.
- But, now we can use chaining to show that, in fact, $\|\hat{F}_n F\|_{\infty} \leq \frac{c}{\sqrt{n}} + \delta \text{ with probability at least } 1 e^{-n\delta^2/2} \text{ for some constant } c. \text{ This bound is un-improvable in terms of the rate.}$

When does the entropy integral exist?

• Suppose $\mathcal T$ has diameter D w.r.t d_X , and $\log N(\delta; \mathcal T, d) = O(\epsilon^{-d})$. Then

$$\int_{0}^{D} \sqrt{\log N(\delta; \mathcal{T}, d_{X})} d\delta \leq C \int_{0}^{D} \delta^{-D/2} d\delta$$
$$= O\left(\frac{D^{1-d/2}}{1 - d/2}\right)$$

• The integral only exists when d = 1.

Acknowledgement

• The slides were primarily made using Martin Wainwright's book and Peter Bartlett's lectures.