

Computer Networks

Wenzhong Li

Nanjing University Fall 2014

课程大纲

- Chapter 1. Introduction of Networking
 - Chapter 1, 2
- Chapter 2. Direct Link Networks
 - Chapter 15, 16, 17
- Chapter 3. Packet Switching Networks
 - Chapter 10, 11, 12
- Chapter 4. Internetworking
 - Chapter 18, 19, 21
- Chapter 5. End-to-End Protocols
 - Chapter 22
- Chapter 6. Congestion Control and QoS
 - Chapter 13, 20, Reference book
- Chapter 7. Network Security
 - Chapter 23, 24
- Chapter 8. Internet Applications
 - Reference book

Chapter 2. Direct Link Networks

- Link Service and Framing
- Error Detection and Reliable Transmission
- HDLC, PPP, and SONET
- Token Ring
- Ethernet
- Bridges and Layer-2 switch
- Wireless Networks
- Network Performance

Link Service and Framing

- Hosts and routers are nodes
- Communication channels that connect adjacent nodes are links
- Different types of links
 - Wired point-to-point links
 - Wired multiple access links (LANs)
 - Wireless links (WiFi)

Link Layer Services

 Data-link layer has the responsibility of transferring data over the links

Framing

 Encapsulate upper-level data into frame, adding header and trailer

Link access

- Coordinate access for shared multiple access medium
- "MAC" addresses used in frame headers to identify source and destination
- Half-duplex and full-duplex
 - If transmit and receive at the same time

- Reliable delivery over the link
 - Seldom used on low bit-error link (e.g. fiber)
 - Wireless links: high error rates
- Flow control
 - Pacing between adjacent sending and receiving nodes
- Error detection
 - Handling errors caused by signal attenuation or noise
 - Receiver detects presence of errors:
 - Signals sender for retransmission or drops frame

- In host and router (switch)
- Link layer implemented in "adaptor"
 - i.e. network interface card (NIC)
 - Ethernet card, 802.11 card
- Implements link, physical layer
- Attaches into host's system buses
- Combination of hardware, software, firmware

Sending side

- Encapsulates datagram in frame
- Adds error checking bits, flow control, etc.

Receiving side

- Looks for errors, flow control, etc.
- Extracts datagram, passes to upper layer

Error Detection and Reliable Transmission

Error Detection and Reliable Transmission

- EDC= Error Detection and Correction bits (redundancy)
- D = Data protected by error checking, may include header fields

Note: error detection not 100% reliable!

Larger EDC field yields better detection and correction

Parity Checking

Single Bit Parity:

Detect single bit errors

Two Dimensional Bit Parity:

Detect and correct single bit errors

Can detect two-bit errors

Cyclic Redundancy Check

- Widely used in hardware-based implementation
- View data bits, D, as a binary number
- Choose r+1 bit pattern (generator or polynomial), G
 G is called a Key, which is to both the sender and receiver ahead.
- Since $D * 2^r = a * G \oplus R$, so $D * 2^r \oplus R = a * G$
- Sender: send $D * 2^r \oplus R$, represented by $\langle D, R \rangle$
- Receiver: when received <D,R>
 - If <D, R> exactly divisible by G (modulo 2), no error
 - If divides <D,R> by G has non-zero remainder: error detected!
- Limit: Can detect burst errors less than r+1 bits

Example of CRC

- Since $D * 2^r = a * G \oplus R$, so $D * 2^r \oplus R = a * G$
- Obtain R by:

R = remainder[
$$\frac{D \cdot 2^r}{G}$$
]

- Question:
- D=101110, r=3, G=1001
- R=?

Flow Control

- Ensuring the sender not overwhelm the receiver
 - Preventing buffer overflow
- Methods
 - Stop and Wait
 - Sliding window

Stop and Wait

- Source: transmits frame
- Destination: receives frame and replies with ACK
- Source: waits for ACK before sending next frame
- Destination can stop flow by not send ACK

Work well for large frames

Sliding Window

- Allow multiple frames to be in transit
- Receiver has buffer (window) sized Win
- Sender can send up to Win frames without ACK
- Each frame is numbered
- ACK includes number of next frame expected
- Sequence number bounded by field of size (k)
 - Frames are numbered modulo 2^k
- Question: how to set k given Win

Illustration of Sliding Window

Illustration of Sliding Window

Error Handling in Sliding Window

Go Back N

- If error, reply with rejection (NAK)
- The error frame and all future frames need be retransmitted

Selective Reject

- Only rejected error frames need be retransmitted
- Receiver must maintain large enough buffer

HDLC, PPP, and SONET

HDLC, PPP, and SONET

HDLC: Bit-Oriented Protocols

PPP: Byte-Oriented Protocols

SONET: Clock-Based Framing (per 125us)

HDLC

High level data link control

Station Types

- Primary station
 - Controls operation of link, issues commands
- Secondary station
 - Under control of primary station, issues responses
- Combined (peer) station

Link Configurations

- Unbalanced
 - One primary and several secondary stations
- Balanced
 - Between 2 combined stations

Unbalanced configuration

- Normal Response Mode
 - Secondary may only transmit data in response to command from primary
 - Host computer with many Terminals
- Asynchronous Response Mode
 - Secondary may initiate transmission without permission form primary (rarely used)

Balanced configuration

- Asynchronous Balanced Mode
 - Either station can initiate transmission

- Flag
 - 01111110, delimit frame at both ends
- Bit Stuffing
 - Sending: 0 inserted after every sequence of five 1s in other fields
 - Receiving: after five 1s, if sixth is 0, delete 0; if sixth starts with 10, delimiter
 Original pattern:

- Address
 - Identifies secondary stations, all 1s means broadcast

	1	2	3	4	5	6	7	8
I: Information	0	N(S)			P/F	N(R)		
S: Supervisory	1	0	s		P/F		N(R)	
U: Unnumbered	1	1	M		P/F		M	

N(S): send sequence number

N(R): receive sequence number

S: supervisory function bits

M: unnumbered function bits

I帧: information, 信息帧 S帧: supervisory, 监控帧

U帧: unnumbered, 无编号帧

P/F: poll/final bit

Supervisory

- Flow and error control (no sending data)
- Receive Ready (RR), Receive Not Ready (RNR); Reject (REJ), Selective Reject (SREJ)

Unnumbered

Supplementary link control: setting modes, reset link

Poll/Final

If solicits response; and does be the (end of) response

Examples of HDLC Operation

SABME: Set asynchronous balanced extended mode

UA: Unnumbered Acknowledgment

DISC: Disconnect RR: Receive ready RNR: Receive not ready

Point-to-Point Protocol

Design requirements

- Packet framing: encapsulation of network-layer datagram in data link frame
- Bit transparency: carry any bit pattern in the data field
- Connection liveness: detect, signal link failure to network layer
- Network layer address negotiation: endpoint can learn/configure each other's network address
- Working upon different physical networks: PPPoE (Ethernet),
 PPPoA (ATM)

Non-requirements

- No error correction/recovery
- No flow control
- May delivery out of order
- No need to support multipoint links

PPP Data Frame

- Flag: delimiter
- Address, Control: does nothing
- Protocol: upper layer protocol (e.g. PPP-LCP, IP, LCP: Link Control Protocol for PPP IPCP)

IPCP: Internet Protocol Control Protocol, a special LCP for IP

Check: cyclic redundancy check

Byte Stuffing

Q: How to include flag pattern <01111110> in other fields

Sender:

 Adds extra <01111101> (stuffs) before <011111110> (byte)

Receiver:

- When receives < 01111101, 01111110>: discard first byte, continue data reception
- If two < 01111101, 01111101> in a row: discard first byte, continue data reception
- Single <01111110>: delimiter

PPP Link Control Protocol

Before exchanging networklayer data, data link peers must

- Configure PPP link (max. frame length, authentication)
- Learn/configure network layer information

SONET/SDH

- SONET: Synchronous optical networking, used in USA and Canada
- SDH: synchronous digital hierarchy, used in the rest of the world

SDH:同步数字系列,STM-1

Transmission hierarchy

- Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1)
 - 51.84Mbps
- Multiple STS-1 combined into STS-N signal
- Synchronous Transport Module level 1 (STM-1)
 - 155.52Mbps, equivalent to STS-3c/OS-3c

Token Ring

Token Ring

- A protocol for LAN, IEEE 802.5
- Developed from IBM's commercial token ring
- Because of IBM's presence, token ring has gained broad acceptance
- Never achieved popularity of Ethernet

Ring Operation

- Each repeater connects to two others via unidirectional transmission links
- Repeater acts as attachment point

- Data transferred bit by bit from one repeater to the next
 - Repeater regenerates and retransmits each bit
 - Repeater performs data insertion, data reception, data removal
- Frame removed by transmitter after one trip round ring

Listen State

- Scan passing bit stream for patterns
 - Address of attached station vs. destination address
 - Token permission to transmit
- Copy incoming bit and send to attached station
 - If destination address matched
 - Whilst forwarding each bit
- Modify bit as it passes
 - e.g. to indicate a packet has been copied (ACK)
 - Or make reservation

Ring Repeater States

Transmit state

- Reclaim frame and pass back to station for checking (ACK)
- May buffer other's frame for retransmission later

Bypass state

Do nothing more than a connector

802.5 MAC Protocol

- Small frame (token) circulates when idle
- Station waits for token
- Changes one bit in token to make it SOF (Start of Frame) for data frame
- Append rest of data frame
- Frame makes round trip and is absorbed by transmitting station
- Station then inserts new token when transmission has finished (leading edge of returning frame arrives)
- Under light loads, some inefficiency
- Under heavy loads, round robin

Token Ring Operation

C receives, and the

emits a new token.

FDDI

- FDDI: Fiber Distributed Data Interface(光纤分布式数据接口)
- 100 Mbps Token Ring
- Use multi-mode or single-mode optical fiber transmission links
- Span up to 200 kms and permits up to 500 stations

FDDI Operation

传输完成后, 马上释放令牌, 无需等待数据 帧完成循环

NAME TO SHAPE

Token Ring Frame Format (1)

Starting delimiter

J K 0 J K 0 0 0

Access control

PPP T M RRR

Ending delimiter

J K 1 J K 1 I E

J, K non-data symbols (line code)

J begins as "0" but no transition

K begins as "1" but no transition

PPP=priority; **T=token bit**

M=monitor bit; RRR=reservation

T=0 token; T=1 data

I = intermediate-frame bit

E = error-detection bit

1	1	1	6	6		4	1	1
SD	AC	FC	Destination	Source	Information	FCS	ED	FS
			address	address				

Frame control

FF Z Z Z Z Z

FF = frame type; FF=01 data frame FF=00 MAC control frame ZZZZZZ type of MAC control

Addressing

48 bit format as in 802.3

Information

Length limited by allowable token holding time

FCS

CCITT-32 CRC

Frame status

A C xx A C xx

A = address-recognized bit

xx = undefined

C = frame-copied bit

802.5 Physical Layer

Data Rate (Mbps)	4	16	100	100	1000
Medium	UTP, STP, Fiber	UTP, STP, Fiber	UTP, STP	Fiber	Fiber
Signaling	Differential Manchester	Differential Manchester	MLT-3	4B5B NRZI	8B/10B
Max Frame Len	4,550	18,200	18,200	18,200	18,200
Access Control	TR or DTR	TR or DTR	DTR	DTR	DTR

- Note: 1 Gbit specified in 2001
 - Uses 802.3 physical layer specification

Summary

- 链路层服务
- 错误检测: 奇偶校验, CRC的计算
- 流控制: Stop and Wait, Sliding Window
- 三种直接相连技术
 - HDLC, PPP, SONET
- ■局域网
 - 令牌环
 - ■以太网
 - 无线局域网