```
15.085 Midterm Cheat Sheet
by Shreyas V. Srinivasan, page 1 of 1
```

(b) $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A) = 1$ if events A_n , $n \in \mathbb{N}$ indep.

1 Prob. Models & Measures

Prob. Experiments

Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$

 $-\Omega$ samplé space

 $-\mathcal{F}$ σ -field -ℙ prob. measure

Disc. Prob. Space

 Ω finite or countable, \mathcal{F} set of all subsets of Ω $\mathbb{P}:\Omega\to[0,1]$ sums to 1

 σ -fields

(a) $\emptyset \in \mathcal{F}$

(b) $A \in \mathcal{F} \implies A^c \in \mathcal{F}$

(c) $\{A_i\} \subseteq \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ Set $A \in \mathcal{F}$ "event"/"measurable," (Ω, \mathcal{F}) measurable space

 $\mathcal{F} = \bigcap_{s \in S} \mathcal{F}_s$ also σ -field

Prob. Measures

Measure: $\mu: \mathcal{F} \to [0, \infty]$

(a) $\mu(\emptyset) = 0$;

(b) Countable additivity: $\{A_i\} \subseteq \mathcal{F}$ disjoint

 $\implies \mu(\cup_i A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

Prob. measure also has $\mathbb{P}(\Omega) = 1$ *Field*: like σ -field but finite

Continuity

Sequence of sets converge to union/intersection

2 Fundamental Models

Carathéodory's extension thm.

 \mathcal{F}_0 field, \mathcal{F} σ -field $\mathbb{P}_0: \mathcal{F}_0 \to [0,1], \mathbb{P}_0(\Omega) = 1$ \mathbb{P}_0 yields \mathbb{P} on (Ω, \mathcal{F})

Lebesgue measure

Uniform measure on [0,1]

Borel σ -field

 \mathcal{B} : smallest σ -field including every interval $[a, b] \subset [0, 1]$ $A \subset [0,1], A \in \mathcal{B}$ Borel set

3 Conditioning & Independence

Conditional probability

 $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ $\mathbb{P}_B(A) = \mathbb{P}(A \mid B)$

Bayes' rule: $\mathbb{P}_A(B_i) = \frac{\mathbb{P}(B_i)\mathbb{P}_{B_i}(A)}{\mathbb{P}(A)}$

$\mathbb{P}\left(\cap_{i=1}^{\infty} A_i\right) = \mathbb{P}(A_1) \prod_{i=2}^{\infty} \mathbb{P}\left(A_i \mid \cap_{i=1}^{i-1} A_i\right)$ Independence

Defn.: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ \mathcal{F}_1 , \mathcal{F}_2 σ -fields indep. iff any $A_1 \in \mathcal{F}_1$ and $A_2 \in \mathcal{F}_2$ indep.

Borel-Cantelli lemma

Sequence of events $\{A_n\}$, $A = \{A_n \text{ i.o.}\} = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$ (a) $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \Longrightarrow \mathbb{P}(A) = 0$

Summation lemma

If $0 \le p_i \le 1$, $\forall i \in \mathbb{N}$, and $\sum_{i=1}^{\infty} p_i =$ ∞ , then $\prod_{i=1}^{\infty} (1-p_i) = 0$

4 Combinatorial prob.

 $\lim_{n\to\infty} \left(1+\frac{r}{n}\right)^n = e^r$

Stirling's approx.

 $n! \approx \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$

5 Random Variables

Definition

(a)
$$X: \Omega \to \mathbb{R}$$
 s.t. $\{\omega \mid X(\omega) \le c\}$ \mathcal{F} -measurable $\forall c \in \mathbb{R}$

(b) Extended-valued r.v. if $\forall c \in \overline{\mathbb{R}} =$ $\mathbb{R} \cup \{\pm \infty\}$

 $X^{-1}(B) = \{X \in B\} = \{\omega \mid X(\omega) \in B\}$ Prob. law: $\mathbb{P}_X : \mathcal{B} \to [0,1], B \mapsto$

 $\mathbb{P}(X \in B)$ (measure on $(\mathbb{R}, \mathcal{B})$)