

Concept-based Explainability: Challenges & Applications to Fraud Detection

<u>Vladimir Balayan</u>, <u>Catarina Belém</u>, Pedro Saleiro, Ludwig Krippahl, Pedro Bizarro

Deep Learning Sessions Lisbon - Meetup 2021, July 21st

Problem & Motivation

 Motivation
 Related Work
 Solution
 Experiment
 Conclusion

Problem

• The field of eXplainable AI (XAI) aims to tackle the lack of interpretability in ML.

Problem

- The field of eXplainable AI (XAI) aims to tackle the lack of interpretability in ML.
- State-of-the-art methods in explainable AI (XAI) either:

Problem

- The field of eXplainable AI (XAI) aims to tackle the lack of interpretability in ML.
- State-of-the-art methods in explainable AI (XAI) either:
 - produce low-level feature attributions explanations that are not suited for non-ML experts (e.g. fraud analyst).

- The field of eXplainable AI (XAI) aims to tackle the lack of interpretability in ML.
- State-of-the-art methods in explainable AI (XAI) either:
 - produce low-level feature attributions explanations that are not suited for non-ML experts (e.g. fraud analyst).

Or

2. produce concept-based explanations that do not work for tabular data.

Domain expert reasoning example

Domain expert reasoning example

Fraud Analyst

The *ideal* human-interpretable explanation for domain experts provide the *high-level* insights about the models' predictions.

Goals

• Develop a self-explainable neural network that jointly learn a predictive task and also associated domain knowledge explanations.

• Develop a self-explainable neural network that jointly learn a predictive task and also associated domain knowledge explanations.

Develop a taxonomy of fraud concepts to be used as explanations.

• Develop a self-explainable neural network that jointly learn a predictive task and also associated domain knowledge explanations.

- Develop a taxonomy of fraud concepts to be used as explanations.
- Leverage the human-in-the-loop feedback to continuously improving both predictive accuracy and explainability.

• Develop a self-explainable neural network that jointly learn a predictive task and also associated domain knowledge explanations.

- Develop a taxonomy of fraud concepts to be used as explanations.
- Leverage the human-in-the-loop feedback to continuously improving both predictive accuracy and explainability.

 Create a semantic mapping bootstrapping strategy for automatically labeling concept-based explanations dataset.

Proposed solution in a real world fraud detection setting

Background & Related Work

Motivation Related Work Solution Experiment Conclusion

XAI Personas - Different personas, different XAI needs...

Fields of expertise:

- Domain knowledge
- No ML knowledge

Data Science + ML

- Know what they want
- No domain nor MI knowledge

- Improve outcomes
- Reduce friction while feeling safe

- Regulations/law
- Limited domain & ML knowledge

Regulator

- Audit and Assess
- if the system is compliant.

Human-in-the-loop

Goals:

- Efficiency
- Better & faster decisions

- Efficiency
- Iterate and debug models

Data Scientist

Related Work Solution Experiment Motivation Conclusion © 2021 Feedzai. This presentation is proprietary

XAI Personas - Different personas, different XAI needs...

Fields of expertise:

- Domain knowledge
- No ML knowledge

Data Science + ML

Human-in-the-loop

Goals:

- Efficiency
- Better & faster decisions

Data Scientist

- Efficiency
- Iterate and debug models

- Know what they want
- No domain nor ML knowledge

Decision Subject

- Improve outcomes
- Reduce friction while feeling safe

- Regulations/law
- Limited domain & ML knowledge

Regulator

- Audit and Assess
- if the system is compliant.

The transaction is suspicious because

MCC = 7801.

The transaction is suspicious because it contains Suspicious Items.

XAI Personas - Different personas, different XAI needs...

Fields of expertise:

- Domain knowledge
- No ML knowledge

Data Science + ML

- + ML Know what they want
 - No domain nor ML knowledge

 Limited domain & ML knowledge

Human-in-the-loop

Goals:

- Efficiency
- Better & faster decisions

Data Scientist

- Efficiency
- Iterate and debug models

- Improve outcomes
- Reduce friction while feeling safe

Regulator

- Audit and Assess
- if the system is compliant.

The optimal choice of explanation depends on the end persona!

Taxonomy of Explanations' Output

Taxonomy of Explanations' Output

© 2021 Feedzai. This presentation is proprietary and confidential.

Motivation

Related Work

Solution

Experiment

Conclusion

Ghorbani, A, NeurIPS 2019, Towards Automatic Concept-based Explanations

 ACE is a global (and local), model-specific and concept-based explanation method that automatically groups input features into high-level concepts.

The concepts are represented by groups of pixels (segments).

Our Explainability Requirements

To best to our knowledge, there is state-of-the-art XAI method that satisfies our explainability requirements.

In-Model

Local

Concept-based

Tabular data

Proposed Solution

Motivation Related Work Solution Experiment Conclusion

Jointly learned cOncept-based ExpLanations (JOEL)

 JOEL, a NN-based framework to jointly learn a decision-making task and associated domain knowledge explanations.

Jointly learned cOncept-based ExpLanations (JOEL)

- JOEL, a NN-based framework to jointly learn a decision-making task and associated domain knowledge explanations.
- JOEL is a self-explainable model, i.e., it incorporates the interpretability architecturally, allowing to produce the decision and also the explanations related to its decision.

Jointly learned cOncept-based ExpLanations (JOEL)

- JOEL, a NN-based framework to jointly learn a decision-making task and associated domain knowledge explanations.
- JOEL is a self-explainable model, i.e., it incorporates the interpretability architecturally, allowing to produce the decision and also the explanations related to its decision.
- JOEL provides high-level insights about the model's predictions that very much resemble the domain experts' own reasoning.

JOEL architecture

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}_E, \boldsymbol{y}_D) = \mathcal{L}_D(\hat{\boldsymbol{y}}_D, \boldsymbol{y}_D) + \mathcal{L}_E(\hat{\boldsymbol{y}}_E, \boldsymbol{y}_E)$$

Concept-Based Explainability and its limitations

Our problem is characterized by having:

- High-resources for the decision task but low-resources for the explainability task;
- Out-of-the-shelf domain knowledge (with no added cost).

Research Question:

Can we do better than the fully supervised and low-resources baseline?

Label Scarcity

(insufficient concept labels)

- Good DL generalization requires massive datasets;
- Labeling campaigns are arduous and expensive to carry;

Multi-task Learning

(how to explain the model's predictions?)

- Explainability task should explain the decision task;
- Explanations must reflect the human-in-the-loop's reasoning.

Possible solutions

- Explore Weak Supervision techniques;
 - Can we leverage domain expertise and already existing components in Human-Al system?

Possible solutions

- Explore Weak Supervision techniques;
 - Can we leverage domain expertise and already existing components in Human-Al system?

- 2. Explore different Learning Strategies;
 - Use noisy labels only?
 - Use noisy labels and then fine-tune using golden labels?
 - Mix both labels?

Implementation Workflow

Label Scarcity

Implementation Workflow

Domain Expert defines concepts that will be used as explanations.

2 Apply Distant Supervision.

Run a grid search to find the best hyperparameters for Distant Supervision and Supervised Learning.

JOEL's online loop generates concept-based explanations and collects human feedback in a fraud detection setting.

Fraud Taxonomy: Fraudulent Concepts

9 Fraudulent concepts (+ **1** Other)

Fraud Taxonomy: Legitimate Concepts

3 Legitimate concepts (+ **1** Other)

Implementation Workflow

Distant Supervision and Supervised Learning.

Domain Expert defines concepts that will be used as explanations.

2 Apply Distant Supervision.

and collects human feedback in a fraud detection setting.

Tackle Label Scarcity through Weak Supervision

1. Apply a **Distant Supervision** technique using available domain knowledge.

Rules-Concepts Mapping for Distant Supervision

One rule can be associated with one or more fraud concepts.

Rules-Concepts Mapping for Distant Supervision

- One rule can be associated with one or more fraud concepts.
- By having a Rules-Concepts mapping, we can use "noisy labels" (mapped concepts) for each transaction using the rules that were triggered.

Rules-Concepts Mapping for Distant Supervision

- One rule can be associated with one or more fraud concepts.
- By having a Rules-Concepts mapping, we can use "noisy labels" (mapped concepts) for each transaction using the rules that were triggered.

Canonical rule name	Description	Associated concepts
amount_rule	Transaction amount larger than \$N	Suspicious Items
expl_shippingip_mismatch	Shipping and IP mismatch	Suspicious IP, Suspicious billing shipping
jpcard_id_count_NK_m	The payment card id was detected more than N times in less than K minutes.	Suspicious Payment, High speed ordering

Implementation Workflow

Domain Expert defines concepts that will be used as explanations.

2 Apply Distant Supervision.

Run a grid search to find the best hyperparameters for Distant Supervision and Supervised Learning.

JOEL's online loop generates concept-based explanations and collects human feedback in a fraud detection setting.

Implementation Workflow

Domain Expert defines concepts that will be used as explanations.

2 Apply Distant Supervision.

3 Run a grid search to find the best hyperparameters for Distant Supervision and Supervised Learning.

JOEL's online loop generates concept-based explanations and collects human feedback in a fraud detection setting.

Human Feedback

JOEL's explanations and prediction are shown to analyst through Web UI;

• A human-in-the-loop (e.g., fraud analyst) makes a decision based on this information;

 When submitting its review, it also gives feedback about the concepts that led to his decision (and also about the decision task);

• This feedback can be used to continuously improve predictive accuracy, and also explainability of the model.

Experiments

Motivation Related Work Solution Experiment Conclusion

Payment retailer aims to deploy multi-task approach for concept-based explanations.

- **Binary decision task**: detect fraudulent transactions;
- Multi-Label explainability task (with 14 concepts): output high-level explanation about the model's prediction.

Labels	Availability
Golden decision	High (~6M, ~2% fraud rate)
Noisy Explainability	High (~6M, ~2% fraud rate)
Golden* explainability	Low (~1.3k, ~37% fraud rate)

Decision Task

Fraud recall @ 5% FPR

Explainability Task

Mean Average Precision (mAP)

$$AP = rac{\sum_{k=1}^{n} (P(k) * rel(k))}{number\ of\ relevant\ items}$$

$$MAP = rac{1}{Q} \sum_{q=1}^{Q} AP(q)$$

Can we do better than the fully supervised and low-resources baseline?

Model development:

- Run the same hyperparameter grid for each variant; (i.e., number and dimension of hidden layers, learning rate, explainability task importance)

Run 2 random seeds.

Fully Supervised (baseline) - Test set

Full supervised learning on a small dataset yields **poor results** in the decision task.

Fully Supervised (baseline) - Test set

Full Supervision

Recall [0.04; 0.15]

mAP [0.52; 0.54]

First stage:

Train base models using Distant Supervision (Noisy Labels).

Second stage:

Fine-tune base models with Golden Labels.

Main goal:

improve **explainability** task without hurting the **decision** task.

	Full Supervision	Two-stage (base models)	Two-stage (w/ fine tuning)
Recall	[0.04; 0.15]		
mAP	[0.52; 0.54]		

Base models (random seeds 10 and 42)

	Full Supervision
Recall	[0.04; 0.15]
mAP	[0.52; 0.54]

- Explainability performance degrades when using the larger but noisy explainability dataset.
- Training with larger dataset improves decision task;

Base models (random seeds 10 and 42)

	Full Supervision	Two-stage (base models)
Recall	[0.04; 0.15]	[0.6; 0.78]
mAP	[0.52; 0.54]	[0.24; 0.29]

Second stage:

Fine-tune base models with Golden Labels.

Main goal: improve explainability task without hurting the decision task.

	Full Supervision	Two-stage (base models)	Two-stage (w/ fine tuning)
Recall	[0.04; 0.15]	[0.6; 0.78]	
mAP	[0.52; 0.54]	[0.24; 0.29]	

Second stage:

Fine-tune base models with Golden Labels.

Main goal: improve explainability task without hurting the decision task.

Pick **Pareto Optimal** models from Stage 1.

Fine-tune them with:

- Hyperparameters;
 (e.g., learning rate, epochs, batch size)
- Loss scalers;(e.g., 0.75, 0.5, 0.25)
- Freeze and unfreeze of layers;
- Different batch techniques. (e.g., hybrid batching - add % of noisy labels in each batch)

Second stage:

Fine-tune base models with Golden Labels.

Main goal: improve explainability task without hurting the decision task.

Base models (random seeds 10 and 42)

Fine-tuned models

For same decision task performance, we can improve explainability task.

Base models (random seeds 10 and 42)

	Full Supervision	Two-stage (base models)	Two-stage (w/ fine tuning)
Recall	[0.04; 0.15]	[0.6; 0.78]	[0.74; 0.78]
mAP	[0.52; 0.54]	[0.24; 0.29]	[0.24; 0.63]

Each training batch contains a fraction of Explainability Golden Labels (Our experiments use 10%).

Hybrid learning - Test set

	Full Supervision	Two-stage (base models)	Two-stage (w/ fine tuning)	Hybrid
Recall	[0.04; 0.15]	[0.6; 0.78]	[0.74; 0.78]	[0.65; 0.71]
mAP	[0.52; 0.54]	[0.24; 0.29]	[0.24; 0.63]	[0.4; 0.49]

Better than **fully supervised** in decision and **two-stage base** models in explainability, but seems to be worse than **two-stage fine-tuned**.

Experiment Motivation Related Work Solution Conclusion © 2021 Feedzai. This presentation is proprietary

All Pareto from learning strategies - test set

Preliminary results seem to be **promising** but further experiments (more seeds and more runs) to gain statistical confidence.

Conclusions

Motivation Related Work Solution Experiment Conclusion

Recap

- Concept-based explainability through multi-task learning poses challenges:
 - Label scarcity;
 - Joint learning of decision and associated explanations.

- This work proposes to:
 - Use Distant Supervision and exploit the available off-the-shelf domain knowledge;
 - Use different Learning Strategies and combine label qualities to improve performance at both tasks.

- The explanations should be tailored to the persona's knowledge and task performed;
 - Concept-based explanations are suitable to domain experts that make ML-informed decisions but lack ML knowledge!

- Experiment in a real-world e-commerce fraud detection dataset show:
 - 1. JOEL is able to learn both domain concept explanations and fraud decisions;
 - Distant supervision allows us to overcome the label scarcity problem;
 - 3. There is no clear winner learning strategy. (it might depend on business requirements)

Questions?

vladimir.balayan@feedzai.com catarina.belem@feedzai.com a4338@fct.unl.pt pedro.saleiro@feedzai.com pedro.bizarro@feedzai.com