Corrigé du devoir surveillé n°1

Exercice 1

1. f est de la forme $f = u^n$, avec u(x) = 5x - 3, u'(x) = 5 et n = 4. Donc pour tout réel x:

$$f'(x) = n \times u'(x) \times (u(x))^{n-1} = 4 \times 5 \times (5x-3)^{4-1} = 20(5x-3)^3$$
.

2. g est de la forme $g = e^u$, avec $u(x) = x^2 - x + 1$, u'(x) = 2x - 1. Donc pour tout réel x:

$$g'(x) = u'(x)e^{u(x)} = (2x-1)e^{x^2-x+1}.$$

Exercice 2

- 1. (a) La fonction f s'écrit comme un produit : $f = u \times v$, avec
 - u(x) = 4x 2, u'(x) = 4,
 - $v(x) = e^{-x}$, $v'(x) = -e^{-x}$.

Donc pour tout $x \in [0;6]$:

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 4 \times e^{-x} + (4x - 2) \times (-e^{-x})$$

$$= 4 \times e^{-x} - 4x \times e^{-x} + 2 \times e^{-x}$$

$$= (4 - 4x + 2) e^{-x}$$

$$= (-4x + 6) e^{-x}.$$

(b) On étudie le signe de f' et on en déduit les variations de f :

х	0		1.5		6
-4x + 6		+	0	-	
e^{-x}		+		+	
f'(x)		+	0	_	
f(x)	/		<i>y</i> \		`*

2. (a) On admet que

$$f''(x) = (4x - 10)e^{-x}$$

pour tout $x \in [0, 6]$. On peut donc construire le tableau de signe :

x	0		2.5		6
4 <i>x</i> – 10		-	0	+	
e ^{-x}		+		+	
f"(x)		_	0	+	

Par conséquent :

- f'' est négative sur [0;2,5], donc f est concave sur cet intervalle.
- f'' est positive sur [2,5;6], donc f est convexe sur cet intervalle.
- (b) f'' change de signe en 2,5, donc il y a un unique point d'inflexion A, dont l'abscisse vaut 2,5. La tangente T en ce point A a pour équation

$$y = f'(2,5)(x-2,5) + f(2,5).$$

On calcule:

•
$$f(2,5) = (4 \times 2, 5 - 2)e^{-2,5} = 8e^{-2,5},$$

• $f'(2,5) = (-4 \times 2, 5 + 6)e^{-2,5} = -4e^{-2,5},$

$$T: y = -4e^{-2.5}(x-2.5) + 8e^{-2.5}$$
$$T: y = -4e^{-2.5}x + 10e^{-2.5} + 8e^{-2.5}$$

$$T: y = -4e^{-2.5}x + 18e^{-2.5}$$

(c) Le point B est le point d'intersection de T avec l'axe des abscisses. Pour obtenir ses coordonnées, on remplace donc y par 0 dans l'équation de T, puis on résout pour trouver x:

$$0 = -4e^{-2.5}x + 18e^{-2.5} \iff 4e^{-2.5}x = 18e^{-2.5} \iff x = \frac{18e^{-2.5}}{4e^{-2.5}} \iff x = 4.5.$$

Conclusion : B a pour coordonnées (4,5; 0).

Exercice 3

Un mobile se déplace sur un axe [Ox) gradué en cm. On observe son déplacement pendant une durée de 6 secondes.

Sa position sur l'axe est donnée en fonction du temps t (en s), par la fonction

$$f(t) = \frac{1}{3}t^3 - 4t^2 + 12t.$$

1. Pour tout $t \in [0;6]$:

$$f'(t) = \frac{1}{3} \times 3t^2 - 4 \times 2t + 12 \times 1 = t^2 - 8t + 12.$$

Pour obtenir le signe de f', on résout l'équation $t^2 - 8t + 12 = 0$:

$$\Delta = (-8)^2 - 4 \times 1 \times 12 = 16$$
.

donc il y a deux racines:

$$t_1 = \frac{-(-8) + \sqrt{16}}{2 \times 1} = \frac{8+4}{2} = 6,$$

$$t_2 = \frac{-(-8) - \sqrt{16}}{2 \times 1} = \frac{8-4}{2} = 2.$$

On en déduit le signe de f' et les variations de f:

t	0		2		6
f'(t)		+	0	_	0
f(t)	0		32/3		0

- 2. D'après le tableau de variations de la question précédente, le mobile part du point O, puis se déplace vers la droite, jusqu'à la graduation $\frac{32}{3}$ cm, qu'il atteint au temps t = 2 s. Ensuite il revient au point O, qu'il atteint au temps t = 6 s.
- 3. Lorsqu'il retourne au point O, donc au temps t = 6 s, la vitesse du mobile est f'(6) = 0 cm/s.