

Purpose

The goal of this regression problem is to train a model to predict the travel time of a cab from one city to another.

Gotham Data Processing

With reduction

Gotham Data Processing (Features)

- Drop the index, pickup_x, pickup_y, dropoff_x, dropoff_y, pickup_datetime
- Add Euclidean Distance,
 Distance X (dist_long) and
 Distance Y (dist_lat)
- Apply k-means to build grouping for the pickup and dropoff variables

Gotham Data Processing (Features)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 945458 entries, 0 to 945457
Data columns (total 13 columns):
    Column
                       Non-Null Count
                                        Dtype
    NumberOfPassengers 945458 non-null int64
    duration
                       945458 non-null int64
    euclideanDistance 945458 non-null float64
    dist long
                       945458 non-null float64
    dist lat
                       945458 non-null float64
    month
                       945458 non-null int64
    week
                       945458 non-null int64
                       945458 non-null int64
    weekday
    hour
                       945458 non-null int64
    minute
                       945458 non-null int64
    minute oftheday 945458 non-null int64
    pickup_clusters 945458 non-null int32
    dropoff_clusters 945458 non-null int32
dtypes: float64(3), int32(2), int64(8)
memory usage: 86.6 MB
```

Gotham Final Model and Result

Final Model:

Final Result:

XG Boost

```
valid-rmse:5.49944
        train-rmse:5.49782
       train-rmse:0.35047
                                valid-rmse:0.36818
[100]
       train-rmse: 0.33391
                                valid-rmse:0.36281
[200]
       train-rmse: 0.32619
                                valid-rmse:0.36224
[300]
[400]
       train-rmse:0.31989
                                valid-rmse:0.36216
       train-rmse:0.31674
                                valid-rmse:0.36207
```

```
print('RMSE score = %1.5f, n_boost_round =%d.'%(clf.best_score,clf.best_iteration))
```


Botanist

Purpose

The overall goal of this project is to train a model with images of leaves and predict a label corresponding to the type and disease of the plant.

Any questions?