Question

1. RecEvSR

1.1 评估Metric RMSE是对SR ECM计算?还是SR Event stream计算?

如果是对SR ECM计算,不就意味着在训练、评估时都忽略了从SR ECM恢复到SR Event stream的temporal 误差吗?但是Event SR任务的目标不是基于LR Event stream超分得到HR Event stream。

1.2 为什么Event SR任务不像Reconstruction、VFI任务,选择voxel作为Event representation,而是 ECM? 不会损失很多temporal information吗?

1.3 为什么不显示使用额外的loss约束,就可以确保DCN能将 F_1 align到 F_2 的timestamp呢?

1.4 为什么如此设计ASTF的结构?

ASTF在fusion同一scale下不同timestamp特征前,先计算attention建模temporal context。

通常,计算attention是以当前时间戳特征作为Q,所有时间戳特征作为K,V。为什么这里是反过来,以其它时间戳特征为Q,当前时间戳特征作为K,V,这样设计的目的是什么呢?

2. EVA2

2.1 为什么在align得到intermediate outputs后,还需要再额外aggregate event data来提升性能?

Align和Aggregate本质上都是在Fusion Event data和RGB data。如果说Aggregate event data的目的是利用Event data消除corruption,那为什么在Align时fusion event data时没有这个效果呢?

2.2 为什么concat image效果这么好,这是VFI的特点吗?还是low-level vision的特点?

encoder提取各scale特征,还不如直接下采样image有用?感觉很不符合常理。

Method	#Params. (M)	PSNR
EGA -w/o Event	3.68	35.98
EGA -w/o Image	3.68	36.30
EGA -w/o Feature	3.67	36.41
EGA - wider	3.90	36.63
EGA - deeper	3.90	36.65
EGA - rescale	3.69	36.15
EGA	3.69	36.51

3.Event-based Blurry Frame Interpolation under Blind Exposure

3.1 作为一个end2end系统,怎么保证Exposure prior就是 T_{ex} / (T_{ex} + T_{re})?

3.2 为什么需要做成多步骤?每步的controlling coefficients是一样的,也没有改变scale

3.3 KPN就是Dynamic Conv?

3.4 为什么最后执行相乘、相加操作?

相乘是单纯为了fusion两个特征吗? 既然都已经是feature, 与完全EDI不一样了吧。

3.5 为什么不考虑更大范围的Blurry frame和Event?

4. Conclusion

- a) Standard camera会损失exposure期间的信息,导致帧率低。且如果exposure期间相机和物体存在相对移动,还会导致blurry
- b) 引入Event data改善这一点,理想情况 i) Event无噪声干扰,ii) threshold是常数:

根据EDI可以得到任意timestamp的latent sharp frame,凭此可以提升大多数frame-based task效果 (VSR)

4.1 video的exposure time外为什么还有间隔?

为了近似这一理想状况:

a) 降低Event噪声干扰: Representation大多采用window of event

b) threshold未知: 建模threshold的时空分布

a) 显式地align到 latent sharp frame, 隐式建模地threshold

4.2 为什么在Turning Frequency to Resolution,Dynamic Conv可以直接用于align?

Specifically, given a set of successive LR frames $\{\mathcal{I}_{t_i}^{LR}\}$ and also the uniform event representations $\{E_u\}_{[t_{i-1},t_i]}^{LR}$ in the corresponding time intervals, the proposed LR-BAI loss can then be formulated as:

$$\mathcal{L}_{BAI}^{LR} = \sum_{i} \left(\left\| f_{\theta^*} \left(\mathcal{I}_{t_{i-1}}^{LR}, \{ E_u \}_{[t_{i-1}, t_i]}^{LR} \right) - \mathcal{I}_{t_i}^{LR} \right\| + \left\| f_{\theta^*}^{-1} \left(\mathcal{I}_{t_i}^{LR}, \{ E_u \}_{[t_{i-1}, t_i]}^{LR} \right) - \mathcal{I}_{t_{i-1}}^{LR} \right\| \right),$$
(5)

where f_{θ^*} is the dynamic convolutional operation. According to the property of event data, with the optimal adaptively generated parameters θ^* from $\{E_u\}_{[t_{i-1},t_i]}^{LR}$, the LR frame $\mathcal{I}_{t_{i-1}}^{LR}$ at a specific timestamp can be convolved into the frame $\mathcal{I}_{t_i}^{LR}$ at the next timestamp, which inspires the design of the proposed loss function. Furthermore, we impose a bi-directional interpolation constraint in Eq. 5, where the aforementioned transformation should be conducted in both directions via a pair of dynamic convolution f_{θ^*} and reverse dynamic convolution f_{θ^*} as shown in Fig. 5.

b) 显式地建模threshold, 隐式地align

a) Concat

b) Optical Flow

c) Offset

d) Deformable Conv

e) Attention

f) Dynamic Conv

4.3 c) Offset 和 b) Optical flow 的区别是什么? EVA2中对区别的解释没看懂

4.4 可以解释一下为什么Dynamic Conv > Concat > attention吗?

- 因为Dynamic kernel比concat更显式地对threshold进行建模,所以效果更好?
- 为什么Concat比attention要好? (attention比concat更显式建模threshold)
- 为什么Dynamic Conv比attention要好? (除了product和conv操作不一样,同样都对每个pixel建模了threshold)

Method	#Params. (M)	PSNR
EDA - Concat	3.69	36.37
EDA - Attention	3.60	36.28
EDA - DynamicConv	3.68	36.39
EDA - wider	3.78	36.58
EDA - deeper	3.78	36.60
EDA	3.69	36.51

4.5 输入Dynamic Conv,channel恢复到Bin,显式对每个Bin建模threshold是不是更好?

更符合threshold对时空都变化的特点

4.5 为什么后续不怎么采用transformer结构了?