STP 530

Lecture 4: Multiple Regression I with Matrix Approach

Yi Zheng, Ph.D. yi.isabel.zheng@asu.edu

ARIZONA STATE UNIVERSITY SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES

September 19, 2023

Outline

- Multiple regression

Why use multiple regression model instead of simple regression model?

• If your primary purpose is **description**:

A single predictor variable in the model would have provided an inadequate description since a number of key variables affect the response variable in important and distinctive ways.

• If your primary purpose is **prediction**:

Predictions of the response variable based on a model containing only a single predictor variable are too imprecise to be useful.

(Textbook p.214)

First-order additive multiple regression model:

The hypothesized model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

With the assumption $E\{\varepsilon_i\} = 0$, we have:

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1}$$

The fitted regression function/equation:

$$\hat{Y}_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + \dots + b_{p-1} X_{i,p-1}$$

First-order additive multiple regression model

FIGURE 6.1 Response Function is a Plane—Sales Promotion Example.

0000000000

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} = \sum_{k=0}^{p-1} \beta_k X_{ik}, \text{ where } X_{i0} \equiv 1$$

- \bullet p 1: total number of predictors or independent variables.
- $X_{i1}, X_{i2}, \dots, X_{i,p-1}$: p-1 predictors of the *i*th observation.
- Y_i: the dependent/response variable of the ith observation.
- ε_i : the random error term. In normal error regression models, we assume ε_i iid $\sim N(0, \sigma^2)$
- β_0 : the Y-intercept The expected Y value when all predictors are 0.
- β_k : the slope of X_k holding all other predictors constant. The amount of increase in the expected Y value for every 1-unit increase in X_k , holding all other predictors constant.

Proof of the interpretation of slopes in multiple regression

Assume we have two data points with 1-unit difference in X_1 holding all other predictors constant:

Data point 1:
$$x_1$$
, x_2 , x_3 , y

Data point 2:
$$x_1^* = x_1 + 1$$
, $x_2^* = x_2$, $x_3^* = x_3$, y^*

Based on the hypothesized linear model, we have:

Data point 1:
$$E{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

Data point 2:
$$E\{y^*\} = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \beta_3 x_3^*$$

 $= \beta_0 + \beta_1 (x_1 + 1) + \beta_2 x_2 + \beta_3 x_3$
 $= \beta_0 + \beta_1 x_1 + \beta_1 + \beta_2 x_2 + \beta_3 x_3$

$$E\{y^*\} - E\{y\} = \beta_1$$

0000000000

To estimate the parameters (β 's) in the model with the calculus method, we need to solve the equation system

$$\begin{cases} \frac{\partial Q}{\partial \beta_0} = 0\\ \frac{\partial Q}{\partial \beta_1} = 0\\ \vdots\\ \frac{\partial Q}{\partial \beta_{p-1}} = 0 \end{cases}$$

where

$$Q = SSE = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{i1} - \dots - \beta_{p-1} X_{i,p-1})^2$$

That quickly becomes too complicated to solve analytically, which is why we now introduce the matrix approach to linear regression models.

000000000

In matrix terms, a multiple regression model is expressed by:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

000000000

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{Y}_{n\times 1} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \qquad \mathbf{X}_{n\times p} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}$$

$$oldsymbol{eta_{p imes 1}} = \left[egin{array}{c} eta_0 \ eta_1 \ dots \ eta_{p-1} \end{array}
ight] \qquad oldsymbol{arepsilon_{n imes 1}} = \left[egin{array}{c} arepsilon_1 \ arepsilon_2 \ dots \ arepsilon_n \end{array}
ight]$$

Hypothesized model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Hypothesized model (expected outcome):

$$E\{\mathbf{Y}\} = \mathbf{X}\boldsymbol{\beta}$$

Fitted regression function:

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$$

- Matrix solution to the least square estimation of multiple regression

Matrix approach to least square estimation of multiple regression

Least square estimation: Solve for model parameters $\beta_0, \beta_1, \dots, \beta_{p-1}$ that minimize $Q = SSE = \sum_{i=1}^{n} \varepsilon_i^2$.

Note that within the matrix context, the **norm** of the ε vector, which is also the length of the vector, is defined as $\|\varepsilon\| := \sqrt{\sum_{i=1}^{n} \varepsilon_i^2} = \sqrt{\text{SSE}}$. So minimizing SSE is equivalent with minimizing the length of the vector $\varepsilon = \mathbf{Y} - \hat{\mathbf{Y}}$

Also note that the fitted regression function $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$ implies that $\hat{\mathbf{Y}}$ lies in the space spanned by the columns of **X**. Thus the length of $\varepsilon = \mathbf{Y} - \hat{\mathbf{Y}}$ is minimized when $\hat{\mathbf{Y}}$ is the **projection** of \mathbf{Y} onto the space spanned by the columns of X, or equivalently, ε is orthogonal to the space spanned by the columns of X:

$$X'\varepsilon = X'(Y - \hat{Y}) = 0$$

Yi Zheng

From the orthogonal relationship we have

$$X'(Y - \hat{Y}) = 0$$

Thus,

$$X'Y - X'\hat{Y} = 0$$
$$X'\hat{Y} = X'Y$$
$$X'Xb = X'Y$$

Solve for **b**:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

where

$$\mathbf{b} := egin{bmatrix} b_0 \ b_1 \ dots \ b_{p-1} \end{bmatrix}$$

Outline

- Multiple regression
- 2 Matrix solution to the least square estimation of multiple regression
- 3 Inferences using matrix approach

Lecture 4

4 Appendix: Matrix notations and operation

Expectation of b

Because in linear regression models, X's are treated as known constants.

$$E\{\mathbf{b}\} = E\{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}\}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E\{\mathbf{Y}\}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta})$$

$$= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{X})\boldsymbol{\beta}$$

$$= \boldsymbol{\beta}$$

This means $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ is an **unbiased** estimator of $\boldsymbol{\beta}$.

Variance-covariance matrix of b

$$\boldsymbol{\sigma}^{2}\{\mathbf{b}\} = \begin{bmatrix} \sigma^{2}\{b_{0}\} & \sigma\{b_{0},b_{1}\} & \cdots & \sigma\{b_{0},b_{p-1}\} \\ \sigma\{b_{1},b_{0}\} & \sigma^{2}\{b_{1}\} & \cdots & \sigma\{b_{1},b_{p-1}\} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma\{b_{p-1},b_{0}\} & \sigma\{b_{p-1},b_{1}\} & \cdots & \sigma^{2}\{b_{p-1}\} \end{bmatrix}_{p \times p}$$

Note: The standard errors of each parameter estimate are the square roots of the respective diagonal elements of the above matrix.

Thus

Derivation of the variance-covariance matrix of **b**

First note that

$$\sigma^{2}\{\mathbf{Y}\} = \sigma^{2}\{\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}\} = \sigma^{2}\{\boldsymbol{\varepsilon}\} = \begin{bmatrix} \sigma^{2} \\ \ddots \\ \sigma^{2} \end{bmatrix} = \sigma^{2}\mathbf{I}_{n \times n}$$

$$\sigma^{2}\{\mathbf{b}\} = \sigma^{2}\{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}\}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\{\mathbf{Y}\}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')'$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')'$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}\mathbf{X}((\mathbf{X}'\mathbf{X})^{-1})'$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}\mathbf{X}((\mathbf{X}'\mathbf{X})')^{-1}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$

$$= \sigma^{2}\mathbf{I}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$$

The previous slide shows that the variance-covariance matrix of the vector **b** is:

$$\boldsymbol{\sigma}^2\{\mathbf{b}\} = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$$

This matrix is **estimated** by replacing σ^2 with s^2 :

$$s^{2}\{\mathbf{b}\} = s^{2}(\mathbf{X}'\mathbf{X})^{-1}$$
$$= \frac{\text{SSE}}{n-p}(\mathbf{X}'\mathbf{X})^{-1}$$
$$= \frac{\mathbf{e}'\mathbf{e}}{n-p}(\mathbf{X}'\mathbf{X})^{-1}$$

where
$$\mathbf{e}_{n \times 1} = [e_1, e_2, \cdots, e_n]' = \mathbf{Y} - \hat{\mathbf{Y}}$$

The $1 - \alpha$ confidence limits for β_k for $k = 0, 1, \dots, p - 1$, are:

$$b_k \pm t(1 - \alpha/2; df = n - p) \cdot s\{b_k\}$$

- $s\{b_k\}$ can be obtained by taking the square root of the kth element of the main diagonal of the variance-covariance matrix $s^2\{b\}$.
- $t(1-\alpha/2; df=n-p)$ can be obtained by R code: qt(p=(1-alpha/2), df=(n-p)).

Interpretation:

- We are $(1 \alpha)100\%$ sure that the true population parameter β_k falls within this interval.
- (For the slope parameters only) With a $(1 \alpha)100\%$ confidence, we estimate that expected Y value changes by somewhere between LL and UL for each 1-unit increase in X_k while holding all other predictors constant. 4 D > 4 P > 4 E > 4 E > E 900

Assume we would like to estimate the mean response value $E\{Y_h\}$ given the predictor vector $\mathbf{X}'_{h} = [1, X_{h1}, X_{h2}, \cdots, X_{h,p-1}].$

The **point estimator** of $E\{Y_h\}$ is: $\hat{Y}_h = \mathbf{X}'_h \mathbf{b}$

The **standard error** of \hat{Y}_h as an estimator of $E\{Y_h\}$ is:

$$\sigma\{\hat{Y}_h\} = \sigma\sqrt{\mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h}$$

The above is estimated by replacing σ with s:

$$s\{\hat{Y}_h\} = s\sqrt{\mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h}$$

where

$$s = \sqrt{\frac{\text{SSE}}{n-p}} = \sqrt{\frac{\mathbf{e}'\mathbf{e}}{n-p}}$$

The $1 - \alpha$ **confidence interval** for $E\{Y_h\}$ is given by the following confidence limits:

$$\hat{Y}_h \pm t(1 - \alpha/2; df = n - p) \cdot s\{\hat{Y}_h\}$$

Interpretation: We are $(1 - \alpha)100\%$ sure that the mean value of Y for all observations with \mathbf{X}_h falls within this interval.

Derivation of $\sigma^2\{\hat{Y}_h\}$:

$$\sigma^{2}\{\hat{Y}_{h}\} = \sigma^{2}\{\mathbf{X}_{h}'\mathbf{b}\}$$

$$= \mathbf{X}_{h}'\sigma^{2}\{\mathbf{b}\}\mathbf{X}_{h}$$

$$= \mathbf{X}_{h}'\sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_{h}$$

$$= \sigma^{2}\mathbf{X}_{h}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_{h}$$

Note that using \hat{Y}_h to predict a single case given \mathbf{X}_h involves two steps:

$$\hat{Y}_h \longrightarrow E\{Y_h\} \longrightarrow Y_h$$

So the **prediction variance** of \hat{Y}_h comes from two **independent** sources:

- **1** The **sampling variance** when using \hat{Y}_h to predict $E\{Y_h\}$ (i.e., the variation of the fitted line), that is, $\sigma^2\{\hat{Y}_h\}$.
- 2 The **residual variance** when using $E\{Y_h\}$ to predict Y_h (i.e., the variation from the line to the point), that is, σ^2 .

Thus the **prediction variance** of \hat{Y}_h (i.e., the variance of using \hat{Y}_h to predict a single case) is:

$$\sigma_{\text{pred}}^2\{\hat{Y}_h\} = \sigma^2\{\hat{Y}_h\} + \sigma^2 = \sigma^2(1 + \mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)$$

Prediction interval of \hat{Y}_h

The variance of using Y_h to predict a single case is:

$$\sigma_{\text{pred}}^2\{\hat{Y}_h\} = \sigma^2(1 + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)$$

which is estimated by replacing σ^2 with s^2 :

$$s_{\text{pred}}^2\{\hat{Y}_h\} = s^2(1 + \mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)$$

The $1 - \alpha$ **prediction interval** for Y_h is given by the following prediction limits:

$$\hat{Y}_h \pm t(1 - \alpha/2; df = n - p) \cdot s_{\text{pred}} \{\hat{Y}_h\}$$

Interpretation: With a $(1 - \alpha)100\%$ confidence, we predict that the value of Y for the next observation with a X_h falls within this interval.

The Hat-Matrix H

We define the Hat-Matrix **H** by

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$$

Because $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$ and $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$, we have

$$\hat{\mathbf{Y}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

So that Hat-Matrix

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

Note the Hat-Matrix is symmetric and idempotent:

$$HH = H$$

The variance-covariance matrix of the residual vector

Recall
$$\mathbf{e}_{n \times 1} = [e_1, e_2, \dots, e_n]' = \mathbf{Y} - \hat{\mathbf{Y}}$$

$$\boldsymbol{\sigma}^2 \{ \mathbf{e} \} = \boldsymbol{\sigma}^2 \{ \mathbf{Y} - \hat{\mathbf{Y}} \}$$

$$= \boldsymbol{\sigma}^2 \{ (\mathbf{I} - \mathbf{H}) \mathbf{Y} \}$$

$$= (\mathbf{I} - \mathbf{H}) \boldsymbol{\sigma}^2 \{ \mathbf{Y} \} (\mathbf{I} - \mathbf{H})'$$
(Because $\mathbf{I} - \mathbf{H}$ is a constant matrix)
$$= (\mathbf{I} - \mathbf{H}) \boldsymbol{\sigma}^2 \mathbf{I} (\mathbf{I} - \mathbf{H})'$$

$$= \boldsymbol{\sigma}^2 (\mathbf{I} - \mathbf{H}) (\mathbf{I} - \mathbf{H})'$$

$$= \boldsymbol{\sigma}^2 (\mathbf{I} - \mathbf{H}) \quad \text{(Because } \mathbf{I} - \mathbf{H} \text{ is symmetric and idempotent)}$$

$$s^{2}\{\mathbf{e}\} = s^{2}(\mathbf{I} - \mathbf{H}) = \frac{\text{SSE}}{n-p}(\mathbf{I} - \mathbf{H}) = \frac{\mathbf{e}'\mathbf{e}}{n-p}(\mathbf{I} - \mathbf{H})$$

The main diagonal elements of this matrix are used to compute the "real" studentized residuals:

$$r_i = \frac{e_i}{s\{e_i\}} = \frac{e_i}{s\sqrt{1 - h_{ii}}}$$

Note: Compare the above with the "semistudentized" residual:

$$e_i^* = \frac{e_i}{s}$$

- Appendix: Matrix notations and operation

Matrix transpose

$$\mathbf{A}_{3\times 2} = \begin{bmatrix} 2 & 5 \\ 7 & 10 \\ 3 & 4 \end{bmatrix}$$

$$\mathbf{A}'_{2\times3} = \begin{bmatrix} 2 & 7 & 3 \\ 5 & 10 & 4 \end{bmatrix}$$

R code:

A = matrix(c(2, 7, 3, 5, 10, 4), nrow=3, ncol=2)t (A)

$$\mathbf{A}_{3\times2} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad \mathbf{B}_{3\times2} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1+1 & 4+2 \\ 2+2 & 5+3 \\ 3+3 & 6+4 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 4 & 8 \\ 6 & 10 \end{bmatrix}$$

$$k\mathbf{A} = k \begin{bmatrix} 2 & 7 \\ 9 & 3 \end{bmatrix} = \begin{bmatrix} 2k & 7k \\ 9k & 3k \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix}$$

Note: $AB \neq BA$

Regression model in matrix notation

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times 2} \, \mathbf{\beta}_{2\times 1} + \mathbf{\varepsilon}_{n\times 1}$$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 + \beta_1 X_1 \\ \beta_0 + \beta_1 X_2 \\ \vdots \\ \beta_0 + \beta_1 X_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} \beta_0 + \beta_1 X_1 + \varepsilon_1 \\ \beta_0 + \beta_1 X_2 + \varepsilon_2 \\ \vdots \\ \beta_0 + \beta_1 X_n + \varepsilon_n \end{bmatrix}$$

$$\begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{bmatrix}$$

Identity matrix

$$\mathbf{I}_1 = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \cdots, \quad \mathbf{I}_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$AI = IA = A$$

Scalar matrix

$$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix} = k \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = k\mathbf{I}$$

The zero vector, the one vector, and the matrix of ones

$$\mathbf{0}_{r\times 1} = \begin{bmatrix} 0\\0\\\vdots\\0 \end{bmatrix} \qquad \mathbf{1}_{r\times 1} = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} \qquad \mathbf{J}_{r\times r} = \begin{bmatrix} 1&\cdots&1\\\vdots&&\vdots\\1&\cdots&1 \end{bmatrix} = \mathbf{11}'$$

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

Inverse of a diagonal matrix

$$\mathbf{A}_{3\times 3} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{A}_{3\times 3}^{-1} = \begin{bmatrix} 1/3 & 0 & 0\\ 0 & 1/4 & 0\\ 0 & 0 & 1/2 \end{bmatrix}$$

Lecture 4

How the inverse of the other forms of matrices is calculated manually is nuanced. We will leave it to the computer.

Using matrix inverse to solve equation systems

To solve for Y in the following equation system

$$\mathbf{AY} = \mathbf{C}$$

we pre-multiply the inverse of **A** to both sides:

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{Y} = \mathbf{A}^{-1}\mathbf{C}$$

Because $A^{-1}A = AA^{-1} = I$, and IY = YI = Y, we have obtained the solution:

$$\mathbf{Y} = \mathbf{A}^{-1}\mathbf{C}$$

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \tag{5.25}$$

$$(A + B) + C = A + (B + C)$$
 (5.26)

$$(\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A}(\mathbf{B}\mathbf{C}) \tag{5.27}$$

$$C(A+B) = CA + CB (5.28)$$

$$k(\mathbf{A} + \mathbf{B}) = k\mathbf{A} + k\mathbf{B} \tag{5.29}$$

$$(\mathbf{A}')' = \mathbf{A} \tag{5.30}$$

$$(A + B)' = A' + B'$$
 (5.31)

$$(\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}' \tag{5.32}$$

$$(\mathbf{ABC})' = \mathbf{C'B'A'} \tag{5.33}$$

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \tag{5.34}$$

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$
 (5.35)

$$(A^{-1})^{-1} = A (5.36)$$

$$(A')^{-1} = (A^{-1})'$$
 (5.37)

Expectation of a random vector

$$\mathbf{E}\{\mathbf{Y}\} = \begin{bmatrix} E\{Y_1\} \\ E\{Y_2\} \\ \vdots \\ E\{Y_n\} \end{bmatrix}_{n \times 1}$$

Lecture 4

$$\mathbf{E}\{\boldsymbol{\varepsilon}\} = \mathbf{0}_{n \times 1}$$

which means:

$$\begin{bmatrix} E\{\varepsilon_1\} \\ E\{\varepsilon_2\} \\ \vdots \\ E\{\varepsilon_n\} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Variance-covariance matrix of a random vector

$$\boldsymbol{\sigma}^{2}\{\mathbf{Y}\} = \begin{bmatrix} \sigma^{2}\{Y_{1}\} & \sigma\{Y_{1}, Y_{2}\} & \cdots & \sigma\{Y_{1}, Y_{n}\} \\ \sigma\{Y_{2}, Y_{1}\} & \sigma^{2}\{Y_{2}\} & \cdots & \sigma\{Y_{2}, Y_{n}\} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma\{Y_{n}, Y_{1}\} & \sigma\{Y_{n}, Y_{2}\} & \cdots & \sigma^{2}\{Y_{n}\} \end{bmatrix}_{n \times n}$$

Yi Zheng

Variance-covariance matrix of the error vector

$$oldsymbol{\sigma}^2\{oldsymbol{arepsilon}\} = egin{bmatrix} \sigma^2 & 0 & \cdots & 0 \ 0 & \sigma^2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}_{n imes n}$$

OR

$$\boldsymbol{\sigma}^2\{\boldsymbol{\varepsilon}\} = \sigma^2 \mathbf{I}$$

Some properties of expectation matrices and variance-covariance matrices:

Assume A is a constant matrix, Y is a random matrix,

$$\mathbf{E}\{\mathbf{A}\} = \mathbf{A}$$

$$E\{AY\} = A\ E\{Y\}$$

$$\sigma^2{\mathbf{AY}} = \mathbf{A} \ \sigma^2{\mathbf{Y}} \ \mathbf{A}'$$

Orthogonality

Two vectors v and w are orthogonal when their dot/inner product $\mathbf{v} \cdot \mathbf{w} = 0$, or

$$\mathbf{v}'\mathbf{w} = 0$$

A vector w is orthogonal to the space spanned by the columns of a matrix A when

$$\mathbf{A}'\mathbf{w}=\mathbf{0}$$

Lecture 4

000000000000