Initial Import for Standard Libraries

```
In [0]: # importing libraries.!!

import pandas as pd
import numpy as np
import os
import seaborn as sns
from matplotlib import pyplot as plt

import warnings
warnings.filterwarnings('ignore')
In [0]: #Load the Data

df = pd.read_csv('./heart.csv')
```

In [183]: #Evaluating Non Zero Columns

df.isnull().sum()

Out[183]: 0 age sex 0 0 ср trestbps 0 chol 0 fbs 0 restecg 0 thalach 0 exang 0 oldpeak slope 0 ca 0

thal

target 0
dtype: int64

0

There are No Columns that have Non Zero Value

In [184]: df.head()

Out[184]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang
0	63	1	3	145	233	1	0	150	0
1	37	1	2	130	250	0	1	187	0
2	41	0	1	130	204	0	0	172	0
3	56	1	1	120	236	0	1	178	0
4	57	0	0	120	354	0	1	163	1

```
In [185]: f,ax=plt.subplots(1,2,figsize=(8,4))

sns.set_context("paper", font_scale = 2, rc = {"font.size": 12,
    "axes.titlesize": 15,"axes.labelsize": 12})

df.loc[df['sex']==1, 'target'].value_counts().plot.pie(explode=[
    0,0.10],autopct='%1.1f%%',ax=ax[0],shadow=True)

df.loc[df['sex']==0, 'target'].value_counts().plot.pie(explode=[
    0,0.10],autopct='%1.1f%%',ax=ax[1],shadow=True)

ax[0].set_title('Patients (male)')
ax[1].set_title('Patients (female)')

plt.show()
```



```
In [186]: plt.scatter(x=df.age[df.target==1], y=df.thalach[(df.target==1)], c="red")
    plt.scatter(x=df.age[df.target==0], y=df.thalach[(df.target==0)])
    plt.legend(["Disease", "Not Disease"])
    plt.xlabel("Age")
    plt.ylabel("Maximum Heart Rate")
    plt.show()
```



```
In [187]: pd.crosstab(df.age,df.target).plot(kind="bar",figsize=(20,6))
    plt.title('Heart Disease Frequency for Ages')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.savefig('heartDiseaseAndAges.png')
    plt.show()
```



```
In [188]: pd.crosstab(df.cp,df.target).plot(kind="bar",figsize=(15,6),colo
    r=['#2E86C1','#F1C40F' ])
    plt.title('Heart Disease Frequency According To Chest Pain Type'
    )
    plt.xlabel('Chest Pain Type')
    plt.xticks(rotation = 0)
    plt.ylabel('Frequency of Disease or Not')
    plt.show()
```


Use Pandas Profiling to Improve EDA for data.

In [189]:

pip install pandas-profiling

Requirement already satisfied: pandas-profiling in /usr/loca l/lib/python3.6/dist-packages (1.4.1)

Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling) (0.25.3)

Requirement already satisfied: jinja2>=2.8 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling) (2.10.3)

Requirement already satisfied: matplotlib>=1.4 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling) (3.1.2)

Requirement already satisfied: six>=1.9 in /usr/local/lib/pyt hon3.6/dist-packages (from pandas-profiling) (1.12.0)

Requirement already satisfied: python-dateutil>=2.6.1 in /us r/local/lib/python3.6/dist-packages (from pandas>=0.19->panda s-profiling) (2.6.1)

Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.19->pandas-profiling) (1.17.4)

Requirement already satisfied: pytz>=2017.2 in /usr/local/li b/python3.6/dist-packages (from pandas>=0.19->pandas-profilin g) (2018.9)

Requirement already satisfied: MarkupSafe>=0.23 in /usr/loca l/lib/python3.6/dist-packages (from jinja2>=2.8->pandas-profi ling) (1.1.1)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2. 1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from m atplotlib>=1.4->pandas-profiling) (2.4.5)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/loca l/lib/python3.6/dist-packages (from matplotlib>=1.4->pandas-p rofiling) (1.1.0)

Requirement already satisfied: cycler>=0.10 in /usr/local/li b/python3.6/dist-packages (from matplotlib>=1.4->pandas-profiling) (0.10.0)

Requirement already satisfied: setuptools in /usr/local/lib/p ython3.6/dist-packages (from kiwisolver>=1.0.1->matplotlib>= 1.4->pandas-profiling) (42.0.2)

In [0]: import pandas_profiling

In [191]:

pandas profiling.ProfileReport(df)

Out[191]:

Overview

Dataset info

Number of variables 14

Number of observations 303

Total Missing (%) 0.0%

Total size in memory 33.3 KiB

Average record size in memory 112.4 B

Numeric 10

Categorical 0

Boolean 4

Date 0

Text (Unique) 0

Rejected 0

Unsupported 0

Warnings

- <u>cp</u> has 143 / 47.2% zeros **Zeros**
- restecg has 147 / 48.5% zeros Zeros
- oldpeak has 99 / 32.7% zeros Zeros
- slope has 21 / 6.9% zeros Zeros
- <u>ca</u> has 175 / 57.8% zeros **Z**eros
- Dataset has 1 duplicate rows Warning

Variables

age Numeric

Distinct count 41

Unique (%) 13.5%

Missing (%) 0.0%

Missing (n)

Infinite (%) 0.0%

Infinite (n) 0

Mean 54.366

Minimum 29

Maximum 77

Zeros (%) 0.0%

Toggle details

sex

Boolean

Distinct count 2

Unique (%) 0.7%

Missing (%) 0.0%

Missing (n) 0

Mean 0.68317

1 207

0 96

Toggle details

cp Numeric

Distinct count 4

Unique (%) 1.3%

Missing (%) 0.0%

Missing (n) 0

Infinite (%) 0.0%

Infinite (n) 0

Mean 0.967

Minimum 0

Maximum 3

Zeros (%) 47.2%

Toggle details

trestbps

Numeric

Distinct count 49

Unique (%) 16.2%

Missing (%) 0.0%

Missing (n) 0

Infinite (%) 0.0%

Infinite (n) 0

Mean 131.62

Minimum 94

Maximum 200

Toggle details

chol Numeric

Distinct count 152

Unique (%) 50.2%

Missing (%) 0.0%

Missing (n)

Infinite (%) 0.0%

Infinite (n) 0

Mean 246.26

Minimum 126

Maximum 564

Zeros (%) 0.0%

Toggle details

fbs

Boolean

Distinct count 2

Unique (%) 0.7%

Missing (%) 0.0%

Missing (n) 0

Mean 0.14851

0 258

1 45

Toggle details

restecg

Numeric

Distinct count 3

Unique (%) 1.0%

Missing (%) 0.0%

Missing (n)

Infinite (%) 0.0%

Infinite (n) 0

Mean 0.52805

Minimum 0

Maximum 2

Zeros (%) 48.5%

Toggle details

thalach

Numeric

Distinct count 91

Unique (%) 30.0%

Missing (%) 0.0%

Missing (n) 0

Infinite (%) 0.0%

Infinite (n) 0

Mean 149.65

Toggle details

exang

Boolean

Distinct count 2

Unique (%) 0.7%

Missing (%) 0.0%

Missing (n) 0

Mean 0.32673

0 204

1 99

Toggle details

oldpeak

Numeric

Distinct count 40

Unique (%) 13.2%

Missing (%) 0.0%

Missing (n) 0

Infinite (%) 0.0%

Infinite (n) 0

Mean 1.0396

Minimum 0

Toggle details

slope

Numeric

Distinct count 3

Unique (%) 1.0%

Missing (%) 0.0%

Missing (n) 0

Infinite (%) 0.0%

Infinite (n) 0

Mean 1.3993

Minimum 0

Maximum 2

Zeros (%) 6.9%

Toggle details

ca

Numeric

Distinct count 5

Unique (%) 1.7%

Missing (%) 0.0%

Missing (n) 0

Infinite (%) 0.0%

 Infinite (n)
 0

 Mean
 0.72937

 Minimum
 0

 Maximum
 4

 Zeros (%)
 57.8%

Toggle details

thal

Numeric

Distinct count 4

Unique (%) 1.3%

Missing (%) 0.0%

Missing (n) 0

Infinite (%) 0.0%

Infinite (n) 0

Mean 2.3135

Minimum 0

Maximum 3

Zeros (%) 0.7%

. . l ı

Toggle details

target

Boolean

Distinct count 2

Unique (%) 0.7%

Toggle details

Correlations

Sample

	age	sex	ср	trestbps	chol	fbs	reste
0	63	1	3	145	233	1	0
1	37	1	2	130	250	0	1
2	41	0	1	130	204	0	0
3	56	1	1	120	236	0	1
4	57	0	0	120	354	0	1

Plot the Split of Diseases across Male and Female

75.0 % of Women Suffer from Heart Diseases 45.0 % of Men Suffer from Heart Diseases

Train Test Split

```
In [0]: X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
```

```
In [0]: from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_s
    ize = 0.2, random_state = 0)
```

```
Model Evaluation

In [0]: # Importing Models that needs to be evaluated

from sklearn import model_selection
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.svm import SVC
    from sklearn.calibration import CalibratedClassifierCV
    from sklearn.ensemble import AdaBoostClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
In [0]: # prepare models

model_list = []
```

```
In [0]: # Variable to Score Results
  results = []
  names = []
  scoring = 'accuracy'
  seed = 5
```

Cross Validation Score

```
In [200]: # Evaluation of Each Model One by One (Cross Validation Score)

for name, model in model_list:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)

    cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.s
td())
    print(msg)
```

```
Multinomial NB: 0.740000 (0.086165)

Decision Tree: 0.764833 (0.073088)

SVM: 0.831000 (0.066396)

ADA Boost With Decision Tree: 0.802333 (0.060755)

Logistic Regression: 0.831167 (0.070392)

Random Forest: 0.814667 (0.067814)
```

Preparing a DataFrame to Plot the Scores

```
In [0]: def insert(df, row):
    insert_loc = df.index.max()
    if np.isnan(insert_loc):
        df.loc[0] = row
    else:
        df.loc[insert_loc + 1] = row
```

Out[202]:

Model_Name CV_Score

In [204]: cv_score

Out[204]:

	Model_Name	CV_Score
0	Multinomial NB	74.000000
1	Decision Tree	76.483333
2	SVM	83.100000
3	ADA Boost With Decision Tree	80.233333
4	Logistic Regression	83.116667
5	Random Forest	81.466667

In [205]:

```
sns.set_context("paper", font_scale = 1, rc = {"font.size": 12,

"axes.titlesize": 15,"axes.labelsize": 12})

plot = sns.catplot(x="Model_Name", y="CV_Score", hue="CV_Score",
kind="point", data=cv_score,height=5,aspect=1.5,markers="^")
```


Libaries to explain the Models

```
In [214]:
```

pip install eli5

Requirement already satisfied: eli5 in /usr/local/lib/python 3.6/dist-packages (0.10.1)

Requirement already satisfied: numpy>=1.9.0 in /usr/local/li b/python3.6/dist-packages (from eli5) (1.17.4)

Requirement already satisfied: graphviz in /usr/local/lib/pyt hon3.6/dist-packages (from eli5) (0.10.1)

Requirement already satisfied: scikit-learn>=0.18 in /usr/loc al/lib/python3.6/dist-packages (from eli5) (0.21.3)

Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.6/dist-packages (from eli5) (0.8.6)

Requirement already satisfied: scipy in /usr/local/lib/python 3.6/dist-packages (from eli5) (1.3.3)

Requirement already satisfied: attrs>16.0.0 in /usr/local/lib/python3.6/dist-packages (from eli5) (19.3.0)

Requirement already satisfied: six in /usr/local/lib/python3. 6/dist-packages (from eli5) (1.12.0)

Requirement already satisfied: jinja2 in /usr/local/lib/pytho n3.6/dist-packages (from eli5) (2.10.3)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn>=0.18->eli5) (0.14.0)

Requirement already satisfied: MarkupSafe>=0.23 in /usr/loca l/lib/python3.6/dist-packages (from jinja2->eli5) (1.1.1)

In [0]:

#Libraries for Explaning ML Models

import eli5 #for purmutation importance
from eli5.sklearn import PermutationImportance

In [0]:

df1 = df[df.columns.difference(['target'])]

In [0]:

perm_list =[]

Out[220]:

```
In [0]:
         # Evaluation of Each Model One by One (Cross Validation Score)
         for name, model in model list:
             model.fit(X_train, y_train)
             perm = PermutationImportance(model, random state=1).fit(X te
         st, y_test)
             perm_list.append(perm)
```

In [0]: for index,value in enumerate(perm_list): eli5.show_weights(perm_list[index], feature_names = df1.colu mns.tolist())

In [220]: # Feature Importance using MultinomialNB eli5.show weights(perm list[0], feature names = df1.columns.toli st())

Feature

Weight 0.0230 ± 0.0445 restecg 0.0131 ± 0.0131 ca 0.0098 ± 0.0533 chol 0.0033 ± 0.0382 slope 0 ± 0.0000 trestbps 0 ± 0.0000 thal 0 ± 0.0000 fbs -0.0033 ± 0.0321 sex

> -0.0098 ± 0.0161 oldpeak -0.0131 ± 0.0131 exang -0.0131 ± 0.0245 ср -0.0262 ± 0.0334 age -0.0393 ± 0.0533 thalach

In [221]: # Feature Importance using DecisionTreeClassifier eli5.show_weights(perm_list[1], feature_names = df1.columns.toli st())

Out[221]:	Weight	Feature
	0.0787 ± 0.0564	chol
	0.0754 ± 0.0445	restecg
	0.0590 ± 0.0161	trestbps
	0.0459 ± 0.0435	age
	0.0164 ± 0.0415	exang
	0.0131 ± 0.0131	thal
	0.0131 ± 0.0131	oldpeak
	0.0131 ± 0.0435	thalach
	0.0066 ± 0.0161	slope
	0.0033 ± 0.0245	ср
	0 ± 0.0000	sex
	0 ± 0.0000	fbs
	-0.0131 ± 0.0482	ca

st())

Out[222]: Weight Feature

 0.0164 ± 0.0293 trestbps

 0.0164 ± 0.0464 ca

 0.0131 ± 0.0759 slope

 0.0131 ± 0.0482 chol

0.0033 ± 0.0525 thalach

 0 ± 0.0000 thal

 0 ± 0.0000 exang

 0 ± 0.0000 age

 -0.0033 ± 0.0131 cp

-0.0066 ± 0.0161 oldpeak

 -0.0098 ± 0.0161 fbs

 -0.0164 ± 0.0207 sex

 -0.0197 ± 0.0131 restecg

In [223]: # Feature Importance using AdaBoostClassifier eli5.show_weights(perm_list[3], feature_names = df1.columns.toli st())

Out[223]:	Weight	Feature
	0.0787 ± 0.0382	chol
	0.0754 ± 0.0675	trestbps
	0.0656 ± 0.0549	age
	0.0492 ± 0.0359	slope
	0.0492 ± 0.0207	ca
	0.0328 ± 0.0994	thalach
	0.0164 ± 0.0415	restecg
	0.0131 ± 0.0435	exang
	0.0131 ± 0.0245	fbs
	0.0066 ± 0.0262	thal
	0.0066 ± 0.0161	sex
	0.0033 ± 0.0321	oldpeak
	-0.0066 ± 0.0572	ср

In [224]: # Feature Importance using LogisticRegression eli5.show_weights(perm_list[4], feature_names = df1.columns.toli st())

Out[224]:	Weight	Feature
	0.0918 ± 0.0334	chol
	0.0492 ± 0.0464	ca
	0.0328 ± 0.0207	trestbps
	0.0262 ± 0.0334	restecg
	0.0197 ± 0.0525	slope
	0.0164 ± 0.0549	thalach
	0.0164 ± 0.0207	thal
	0.0131 ± 0.0131	exang
	0.0066 ± 0.0161	ср
	0 ± 0.0000	fbs
	0 ± 0.0000	age
	-0.0033 ± 0.0245	oldpeak

 -0.0066 ± 0.0262

sex

In [225]: # Feature Importance using RandomForestClassifier
 eli5.show_weights(perm_list[5], feature_names = df1.columns.toli
 st())

Weight Out[225]: **Feature** 0.1082 ± 0.0894 trestbps thalach 0.0262 ± 0.0572 0.0066 ± 0.0262 sex 0.0066 ± 0.0262 exang 0.0066 ± 0.0262 ca 0.0033 ± 0.0382 restecg -0.0066 ± 0.0334 chol oldpeak -0.0098 ± 0.0161 fbs -0.0098 ± 0.0161 -0.0098 ± 0.0262 age thal -0.0131 ± 0.0382 slope -0.0131 ± 0.0321 -0.0492 ± 0.0359 ср

Accuracy & RoC Curve

```
In [0]: from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import roc_curve from sklearn.metrics import f1_score from sklearn.metrics import auc

from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score
```

```
In [0]:
        def plotting(true,pred):
             fig,ax=plt.subplots(1,2,figsize=(10,5))
             precision,recall,threshold = precision recall curve(true,pre
        d[:,1])
             ax[0].plot(recall, precision, 'g--')
             ax[0].set_xlabel('Recall')
             ax[0].set_ylabel('Precision')
             ax[0].set_title("Average Precision Score : {}".format(average)
         e_precision_score(true,pred[:,1])))
             fpr,tpr,threshold = roc curve(true,pred[:,1])
             ax[1].plot(fpr,tpr)
             ax[1].set_title("AUC Score is: {}".format(auc(fpr,tpr)))
             ax[1].plot([0,1],[0,1],'k--')
             ax[1].set_xlabel('False Positive Rate')
             ax[1].set ylabel('True Positive Rate')
```

```
In [0]: sns.set_context("paper", font_scale = 1.5, rc = {"font.size": 11
,"axes.titlesize": 14,"axes.labelsize": 11})
```

Random Forest

In [230]: plotting(y_test,RandomForestClassifier.predict_proba(X_test))
 plt.figure()

Out[230]: <Figure size 800x550 with 0 Axes>

<Figure size 800x550 with 0 Axes>

MultinomialNB

In [231]: MultinomialNB = MultinomialNB(alpha=0.1)
 MultinomialNB.fit(X_train,y_train)

Out[231]: MultinomialNB(alpha=0.1, class_prior=None, fit_prior=True)

In [232]: plotting(y_test,MultinomialNB.predict_proba(X_test))
 plt.figure()

Out[232]: <Figure size 800x550 with 0 Axes>

<Figure size 800x550 with 0 Axes>

DecisionTreeClassifier

In [233]: DecisionTreeClassifier = DecisionTreeClassifier()
 DecisionTreeClassifier.fit(X_train,y_train)

Out[233]: DecisionTreeClassifier(class_weight=None, criterion='gini', m ax_depth=None,

max_features=None, max_leaf_nodes=None, max_lea

max_features=None, max_leaf_nodes=Non

e,

min_impurity_decrease=0.0, min_impurit

y_split=None,

min samples leaf=1, min samples split=

2,

min_weight_fraction_leaf=0.0, presort=

False,

random_state=None, splitter='best')

In [234]: plotting(y_test,DecisionTreeClassifier.predict_proba(X_test))
 plt.figure()

Out[234]: <Figure size 800x550 with 0 Axes>

<Figure size 800x550 with 0 Axes>

Linear SVC

In [235]: LinearSVC = SVC(kernel='linear',probability=True)
 LinearSVC.fit(X_train,y_train)

In [236]: plotting(y_test,LinearSVC.predict_proba(X_test))
 plt.figure()

Out[236]: <Figure size 800x550 with 0 Axes>

<Figure size 800x550 with 0 Axes>

AdaBoostClassifier

In [237]: AdaBoostClassifier = AdaBoostClassifier()
 AdaBoostClassifier.fit(X_train,y_train)

Out[237]: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1.0,

n_estimators=50, random_state=None)

In [238]: plotting(y_test,AdaBoostClassifier.predict_proba(X_test))
 plt.figure()

Out[238]: <Figure size 800x550 with 0 Axes>

<Figure size 800x550 with 0 Axes>

LogisticRegression

In [239]: LogisticRegression = LogisticRegression(solver='liblinear')
 LogisticRegression.fit(X_train,y_train)

In [240]: plotting(y_test,LogisticRegression.predict_proba(X_test))
 plt.figure()

Out[240]: <Figure size 800x550 with 0 Axes>

<Figure size 800x550 with 0 Axes>