Integrasi Numerik

(Bag. 2)

Bahan Kuliah IF4058 Topik Khusus Informatika I

Oleh; Rinaldi Munir (IF-STEI ITB)

Singularitas

• Kita akan kesulitan melakukan menghitung integrasi numerik apabila fungsi tidak terdefenisi di x = t, dalam hal ini a < t < b. Misalnya dalam menghitung integrasi

$$I = \int_{0}^{1} \frac{\cos(x)}{\sqrt{x}} dx$$

• Fungsi $f(x) = \cos x/\sqrt{x}$ jelas tidak terdefinisi di x = 0 (ujung bawah selang).

Begitu juga pada perhitungan integrasi

$$I = \int_{0.5}^{2} \frac{1}{x - 1} dx$$

menggunakan h = 0.1, titik diskrit di x = 1 tidak dapat dihitung sebab fungsi f(x) = 1/(x-1) tidak terdefinisi di x = 1.

- Fungsi yang tidak terdefinisi di x = t, untuk $a \le t \le b$, dinamakan fungsi **singular**.
- Singularitas harus dihilangkan dengan cara memanipulasi persamaan fungsi sedemikian sehingga ia tidak singular lagi.

Contoh: Ubahlah fungsi integrasi

$$I = \int_{0}^{1} \frac{\cos(x)}{\sqrt{x}} dx$$

sehingga menjadi tidak singular lagi.

Penyelesaian:

Fungsi $f(x) = \cos(x)/\sqrt{x}$ tidak terdefenisi di x = 0.

Misalkan

$$x = u^2$$
 $\rightarrow dx = 2u du$

Batas-batas selang integrasi juga berubah

$$x = 0 \rightarrow u = \sqrt{x} = 0$$

$$x = 1 \rightarrow u = \sqrt{x} = 1$$

maka

$$I = \int_{0}^{1} \frac{\cos(x)}{\sqrt{x}} dx$$

$$= \int_{0}^{1} \frac{\cos(u^{2})}{u} (2u) du$$

$$I = \int_{0}^{1} 2\cos(u^{2}) du \longrightarrow \text{tidak singular lagi}$$

Contoh lain:

Ubahlah fungsi integrasi berikut sehingga menjadi tidak singular:

$$I = \int_{0}^{1} \frac{dx}{\sqrt{(\sin x)(1 - x^3)}}$$

Penyelesaian:

Fungsi $f(x) = 1/\sqrt{(\sin x)(1 - x^3)}$ tidak terdefenisi di x = 0 dan x = 1Pecah integral I menjadi dua bagian, I_1 dan I_2 :

$$I = \int_{0}^{1} \frac{dx}{\sqrt{(\sin x)(1 - x^{3})}} = \int_{0}^{a} \frac{dx}{\sqrt{(\sin x)(1 - x^{3})}} + \int_{a}^{1} \frac{dx}{\sqrt{(\sin x)(1 - x^{3})}}$$

$$I_{1}, \text{ singular di } x = 0I_{2}, \text{ singular } x = 1$$

dengan 0 < a < 1

Misalkan

$$x = u^2 \rightarrow dx = 2u du$$

Batas-batas integrasi

$$x = a \rightarrow u = \sqrt{a}$$
$$x = 0 \rightarrow u = 0$$

Maka,

$$I_{1} = \int_{0}^{\sqrt{a}} \frac{2u \ du}{\sqrt{\left(\sin u^{2}\right)\left(1 - u^{6}\right)}} = 2 \int_{0}^{\sqrt{a}} \frac{u/u}{\sqrt{\frac{\left(\sin u^{2}\right)\left(1 - u^{6}\right)}{u^{2}}}} \ du$$

Mengingat

$$\lim_{u \to 0} \frac{\sin(u^2)}{u^2} = 1$$

maka

$$I_1 = 2 \int_0^{\sqrt{a}} \frac{1}{\sqrt{1 - u^6}} du \rightarrow \text{tidak singular lagi}$$

$$I_2 = \int_a^1 \frac{1}{\sqrt{(\sin x)(1-x^3)}}$$
 \rightarrow tidak dapat diterapkan pemisalan $x = u^2$

Uraikan $(1 - x^3)$ menjadi $(1 - x)(1 + x + x^2)$:

$$I_2 = \int_{a}^{1} \frac{dx}{\sqrt{(\sin x)(1-x)(1+x+x^2)}}$$

Misalkan

$$1 - x = u^2 \rightarrow -dx = 2u \ du$$

Batas-batas integrasi:

$$x = 1 \rightarrow u = \sqrt{1-x} = 0$$

$$x = a \rightarrow u = \sqrt{1-a}$$

$$I_{2} = \int_{0}^{\sqrt{1-a}} \frac{-2u \, du}{\sqrt{\left[\sin(1-u^{2})\right]u^{2}\left[1+(1-u^{2})+(1-u^{2})^{2}\right]}}$$

$$= 2 \int_{0}^{\sqrt{1-a}} \frac{u \, du}{\sqrt{\left[\sin(1-u^{2})\right](3-3u^{2}-u^{4})}}$$

$$= 2 \int_{0}^{\sqrt{1-a}} \frac{du}{\sqrt{\left[\sin(1-u^{2})\right](3-3u^{2}-u^{4})}} \rightarrow \text{tidak singular lagi}$$

Penerapan Ekstrapolasi untuk Integrasi

- Misalkan I(h) adalah perkiraan nilai integrasi dengan jarak antara titik data adalah h (h < 1).
- Dari persaman galat kaidah integrasi (trapesium, Simpson 1/3, dll) yang dinyatakan dalam notasi orde:

$$E = O(h^p)$$

 dapat dilihat bahwa galat E semakin kecil bila digunakan h yang semakin kecil, seperti yang ditunjukkan oleh diagram garis berikut:

- Nilai sejati integrasi adalah bila h = 0, tetapi pemilihan h = 0 tidak mungkin kita lakukan di dalam rumus integrasi numerik sebab ia akan membuat nilai integrasi sama dengan 0.
- Yang dapat kita peroleh adalah perkiraan nilai integrasi yang lebih baik dengan melakukan ekstrapolasi ke h = 0.
- Ada dua macam metode ekstrapolasi yang digunakan untuk integrasi:
 - 1. Ekstrapolasi Richardson
 - 2. Ekstrapoalsi Aitken

Ekstrapolasi Richardson

Pandang kembali kaidah trapesium

$$\int_{a}^{b} f(x)dx = \frac{h}{2} (f_0 + 2 \sum_{i=1}^{n} f_i + f_n) - \frac{(b-a)f''(t)}{12} h^2$$

yang dapat ditulis sebagai

$$\int_{a}^{b} f(x)dx = I(h) + Ch^{2}$$

dengan I(h) adalah integrasi dengan menggunakan kaidah trapesium dengan jarak antar titik selebar h dan $C = \frac{(b-a)f''(t)}{12}$.

Secara umum, kaidah integrasi yang lain dapat kita ditulis sebagai

$$\int_{a}^{b} f(x)dx = I(h) + Ch^{q}$$

dengan C dan q adalah konstanta yang tidak bergantung pada h. Nilai q dapat ditentukan langsung dari orde galat kaidah integrasi, misalnya

kaidah trapesium,
$$O(h^2)$$
 $\rightarrow q = 2$
kaidah titik-tengah, $O(h^2)$ $\rightarrow q = 2$
kaidah 1/3 Simpson, $O(h^4)$ $\rightarrow q = 4$

- Tujuan ekstrapolasi Richardson ialah menghitung nilai integrasi yang lebih baik (improve) dibandingkan dengan I.
- Misalkan J adalah nilai integrasi yang lebih baik daripada I dengan jarak antar titik adalah h:

$$J = I(h) + Ch^q \tag{1}$$

 Ekstrapolasikan h menjadi 2h, lalu hitung integrasi numeriknya

$$J = I(2h) + C(2h)^{q}$$
 (2)

• Eliminasikan C dari kedua persamaan dengan menyamakan persamaan (1) dan persamaan (2):

$$I(h) + Ch^{q} = I(2h) + C(2h)^{q}$$
 (3)

sehingga diperoleh

$$C = \frac{I(h) - I(2h)}{(2^q - 1)h^q} \tag{4}$$

Sulihkan (4) ke dalam (3) untuk memperoleh:

$$J = I(h) + \frac{I(h) - I(2h)}{2^{q} - 1}$$

yang merupakan persamaan ekstrapolasi Ricahrdson

Sebagai contoh, bila I(h) dan I(2h) dihitung dengan kaidah trapesium (q=2), maka ekstrapolasi Richardson-nya adalah

$$J = I(h) + \frac{1}{3} [I(h) - I(2h)]$$

dan bila I(h) dan I(2h) dihitung dengan kaidah 1/3 Simpson (q=4), maka ekstrapolasi Richardson-nya adalah

$$J = I(h) + \frac{1}{15} [I(h) - I(2h)]$$

Perhatikanlah bahwa suku 1/3 [I(h) - I(2h)] dan suku 1/15 [I(h) - I(2h)] merupakan **faktor koreksi**. Artinya, nilai taksiran integrasi I(h) dapat ditingkatkan menjadi nilai yang lebih baik dengan menambahkan faktor koreksi tersebut.

• **Contoh**: Hitung kembali integral $\int_{0}^{1} \frac{1}{1+x} dx$ dengan menggunakan ekstrapolasi Richardson, yang dalam hal ini I(h) dan I(2h) dihitung dengan kaidah trapesium dan h = 0.125.

Penyelesaian:

Jumlah upaselang: n = (1 - 0)/0.125 = 8

Tabel titik-titik di dalam selang [0,1] dengan h = 0.125:

r	X_r	f_r
0	0	1
1	0.125	0.88889
2	0.250	0.80000
3	0.375	0.72727
4	0.500	0.66667
5	0.625	0.61538
6	0.750	0.57143
7	0.875	0.53333
8	1.000	0.50000

I(h) adalah nilai integrasi dengan kaidah trapesium menggunakan h = 0.125:

$$I(h) = \int_{0}^{1} \frac{1}{1+x} dx \approx h/2 \left(f_0 + 2f_1 + 2f_2 + 2f_3 + 2f_4 + 2f_5 + 2f_6 + 2f_7 + f_8 \right)$$
$$\approx 0.125/2 \left[1 + 2(0.88889) + 2(0.80000) + \dots + 0.500000 \right)$$
$$\approx 0.69412$$

I(2h) adalah nilai integrasi dengan kaidah trapesium menggunakan 2h = 0.250:

$$I(2h) = \int_{0}^{1} \frac{1}{1+x} dx \approx (2h)/2 (f_0 + 2f_2 + 2f_4 + 2f_6 + f_8)$$

$$\approx 0.250/2 [1 + 2(0.80000) + 2(0.66667) + 2(0.57143) + 0.50000)$$

$$\approx 0.69702$$

Nilai integrasi yang lebih baik, J, diperoleh dengan ekstrpolasi Richardson:

$$J = I(h) + \frac{I(h) - I(2h)}{2^{q} - 1}$$

yang dalam hal ini, q = 2, karena I(h) dan I(2h) dihitung dengan kaidah trapesium (yang mempunyai orde galat = 2)

$$J = 0.69412 + \frac{0.69412 - 0.69702}{2^2 - 1} = 0.69315$$

Jadi, taksiran nilai integrasi yang lebih baik adalah 0.69315. Bandingkan dengan nilai integrasi sejatinya:

$$\int_{0}^{1} \frac{1}{1+x} dx = \ln(1+x) \left| \begin{array}{c} x=1 \\ x=0 \end{array} \right| = \ln(2) - \ln(1) = 0.69314718$$

yang apabila dibulatkan ke dalam 5 angka bena, f(0.69314718) = 0.69315, hasilnya tepat sama dengan nilai integrasi yang dihitung dengan ekstrapolasi Richardson

• **Contoh**: Perlihatkan bahwa bila *I*(*h*) dan *I*(*2h*) dihitung dengan kaidah trapesium, maka persamaan ekstrapolasi Richardson menyatakan kaidah Simpson 1/3.

Penyelesaian:

Kaidah 1/3 Simpson untuk sepasang upaselang adalah (lihat Gambar 6.10) adalah

$$I = \int_{0}^{2h} f(x)dx$$

I(h) dan I(2h) adalah perkiraan hasil integrasi dengan kaidah trapesium menggunakan pias masing-masing selebar h dan 2h:

$$I(h) = {}^{h}/_{2} (f_{0} + f_{1}) + {}^{h}/_{2} (f_{1} + f_{2}) = {}^{h}/_{2} (f_{0} + 2f_{1} + f_{2})$$

$$I(2h) = {}^{(2h)}/_{2} (f_{0} + f_{2}) = h(f_{0} + f_{2})$$

Ekstrapolasi Richardson-nya (q = 2):

$$J = I(h) + \frac{1}{3} [I(h) - I(2h)]$$

$$= {}^{h}/_{2} (f_{0} + 2f_{1} + f_{2}) + {}^{1}/_{3} ({}^{h}/_{2} (f_{0} + 2f_{1} + f_{2}) - h(f_{0} + f_{2}))$$

$$= {}^{h}/_{2} (f_{0} + 2f_{1} + f_{2}) + {}^{h}/_{6} (f_{0} + 2f_{1} + f_{2}) - {}^{h}/_{3} (f_{0} + f_{2})$$

$$= {}^{h}/_{2} f_{0} + hf_{1} + {}^{h}/_{2} f_{2} + {}^{h}/_{6} f_{0} + {}^{h}/_{3} f_{1} + {}^{h}/_{6} f_{2} - {}^{h}/_{3} f_{0} - {}^{h}/_{3} f_{2}$$

$$= {}^{h}/_{2} f_{0} + {}^{h}/_{6} f_{0} - {}^{h}/_{3} f_{0} + hf_{1} + {}^{h}/_{3} f_{1} + {}^{h}/_{2} f_{2} + {}^{h}/_{6} f_{2} - {}^{h}/_{3} f_{2}$$

$$= {}^{h}/_{3} f_{0} + {}^{4h}/_{3} f_{1} + {}^{h}/_{3} f_{2}$$

$$= {}^{h}/_{3} (f_{0} + 4f_{1} + f_{2})$$

yang merupakan kaidah Simpson 1/3. J

- Persamaan ekstrapolasi Richardson memenuhi semua kaidah integrasi yang dirurunkan dengan metode pias maupun metode Newton-Cotes.
- Kita pun dapat menurunkan kaidah integrasi numerik yang baru dengan menerapkan ekstrapolasi Richardson.
- Misalkan bila I(h) dan I(2h) dihitung dengan kaidah Simpson 1/3, maka ekstrapolasi Richardson menyatakan kaidah Boole (buktikan!):

$$J = \int_{0}^{4h} f(x)dx = \frac{2h}{45} \left(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4 \right)$$

Metode Romberg

- Metode integrasi Romberg didasarkan pada perluasan ekstrapolasi Richardson untuk memperoleh nilai integrasi yang semakin baik.
- Sebagai catatan, setiap penerapan ekstrapolasi Richardson akan menaikkan order galat pada hasil solusinya sebesar dua:

$$O(h^{2N}) \rightarrow O(h^{2N+2})$$

- Misalnya, bila I(h) dan I(2h) dihitung dengan kaidah trapesium yang berorde galat $O(h^2)$, maka ekstrapolasi Richardson menghasikan kaidah Simpson 1/3 yang berorde $O(h^4)$.
- Selanjutnya, bila I(h) dan I(2h) dihitung dengan kaidah Simpson 1/3, ekstrapolasi Richardson menghasikan kaidah Boole yang berorde $O(h^6)$.

Tinjau kembali persamaan ekstrapolasi Richardson:

$$J = I(h) + \frac{I(h) - I(2h)}{2^{q} - 1}$$

Misalkan I adalah nilai integrasi sejati yang dinyatakan sebagai

$$I = A_k + Ch^2 + Dh^4 + Eh^6 + ...$$

yang dalam hal ini

$$h = (b - a)/n$$

dan

 A_k = Perkiraan nilai integrasi dengan kaidah trapesium dan jumlah pias $n = 2^k$

Gunakan A_0 , A_1 ,... A_k pada persamaan ekstrapolasi Richardson untuk mendapatkan runtunan B_1 , B_2 , ..., B_k , yaitu

$$B_k = A_k + \frac{A_k - A_{k-1}}{2^2 - 1}$$

Jadi, nilai I (yang lebih baik) sekarang adalah $I = B_k + D'h^4 + E'h^6 + ...$ dengan orde galat B_k adalah $O(h^4)$.

Selanjutnya, gunakan B_1 , B_2 ,..., B_k pada persamaan ekstrapolasi Richardson untuk mendapatkan runtunan C_2 , C_3 ,..., C_k , yaitu

$$C_k = B_k + \frac{B_k - B_{k-1}}{2^4 - 1}$$

Jadi, nilai I (yang lebih baik) sekarang adalah $I = C_k + E " h^6 + ...$ dengan orde galat C_k adalah $O(h^6)$.

Selanjutnya, gunakan C_2 , C_3 ,..., C_k pada persamaan ekstrapolasi Richardson untuk mendapatkan runtunan D3, D4, ..., D_k , yaitu

$$D_k = C_k + \frac{C_k - C_{k-1}}{2^6 - 1}$$

Jadi, nilai I (yang lebih baik) sekarang adalah $I = D_k + E " h^8 + ...$ dengan orde galat D_k adalah $O(h^8)$. Demikian seterusnya.

Dari runtunan tersebut, diperoleh tabel yang dinamakan tabel
 Romberg seperti berikut ini

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$	$O(h^{10})$	$O(h^{12})$	$O(h^{14})$
A_0						
A_1	B_1					
A_2	B_2	C_2				
A_3	B_3	C_3	D_3			
A_4	B_4	C_4	D_4	E_4		
A_5	B_5	C_5	D_5	E_5	F_5	
A_6	B_6	C_6	D_6	E_6	F_6	G_6
						+
					-	Nilai integrasi

yang lebih baik

• **Contoh**: Hitung integral $\int_{1+x}^{1} dx$ dengan metode Romberg (n = 8). Gunakan 5 angka bena.

Penyelesaian:

Jarak antar titik: h = (1 - 0)/8 = 0.125

Tabel titik-titik di dalam selang [0,1] dengan h = 0.125:

r	\mathcal{X}_r	f_r
0	0	1.0000
1	0.125	0.88889
2	0.250	0.80000
3	0.375	0.72727
4	0.500	0.66667
5	0.625	0.61538
6	0.750	0.57143
7	0.875	0.53333
8	1.000	0.50000

$$A_0 = h_0/2 [f_0 + f_8] = 1/2 (1 + 0.50000) = 0.75000$$

 $A_1 = h_1/2 [f_0 + 2f_4 + f_8] = 0.5/2[1 + 2(0.66667) + 0.50000] = 0.70833$

$$A_2 = h_2/2 [f_0 + 2f_2 + 2f_4 + 2f_6 + f_8]$$

= 0.250/2[1 + 2(0.80000) + 2(0.66667) + 2(0.57143) + 0.50000] = 0.69702

$$A_3 = h_3/2 [f_0 + 2f_1 + 2f_2 + 2f_3 + 2f_4 + 2f_5 + 2f_6 + 2f_7 + f_8]$$

= 0.125/2[1 + 2(0.88889) + 2(0.80000) + ... + 2(0.53333) + 0.50000]
= 0.69412

$$B_1 = A_1 + \frac{A_1 - A_0}{2^2 - 1} = 0.69445$$
 (A_k berorde 2, jadi $q = 2$)

$$B_2 = A_2 + \frac{A_2 - A_1}{2^2 - 1} = 0.69325$$

$$B_3 = A_3 + \frac{A_2 - A_1}{2^2 - 1} = 0.69315$$

$$C_2 = B_2 + \frac{B_2 - B_1}{2^4 - 1} = 0.69317$$
 (*B_k* berorde 4, jadi *q* = 4)

$$C_3 = B_3 + \frac{B_3 - B_2}{2^4 - 1} = 0.69314$$

$$D_3 = C_3 + \frac{C_3 - C_3}{2^6 - 1} = 0.69314$$
 (*C_k* berorde 6, jadi *q* = 6)

Tabel Romberg:

k	$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$
0	0.75000			
1	0.70833	0.69445		
2	0.69702	0.69325	0.69317	
3	0.69412	0.69315	0.69314	0.69314

Jadi,
$$\int_{0}^{1} \frac{1}{1+x} dx \approx 0.69314$$

(Bandingkan dengan solusi sejatie
$$\int_{0}^{1} \frac{1}{1+x} dx = 0.693145$$
)

Ekstrapolasi Aitken

- Mengatasi kasus pada esktrapolasi Richradosn jika q tidak diketahui.
- Untuk kasus ini kita gunakan tiga buah perkiraan nilai I, yaitu I(h), I(2h), dan I(4h).

$$J = I(h) - \frac{[I(h) - I(2h)]^2}{I(h) - 2I(2h) + I(4h)}$$

Integral Ganda

$$\iint\limits_A f(x,y)dA = \int\limits_a^b \left[\int\limits_c^d f(x,y)dy\right]dx = \int\limits_c^d \left[\int\limits_a^b f(x,y)dx\right]dy$$

Tafsiran geometri dari integral ganda adalah menghitung volume ruang di bawah permukaan kurva f(x,y) yang alasnya adalah berupa bidang yang dibatasi oleh garis-garis x = a, x = b, y = c, dan y = d.

Volume benda berdimensi tiga adalah $V = luas alas \times tinggi$

- Solusi integral lipat dua diperoleh dengan melakukan integrasi dua kali, pertama dalam arah x (dalam hal ini nilai, nilai y tetap),
- selanjutnya dalam arah y (dalam hal ini, nilai x tetap), atau sebaliknya.
- Dalam arah x berarti kita menghitung luas alas benda,
- sedangkan dalam arah y berarti kita mengalikan alas dengan tinggi untuk memperoleh volume benda.
- Tinggi benda dinyatakan secara tidak langsung dengan koefisien-koefisien w_i pada persamaan

 Misalkan integrasi dalam arah x dihitung dengan kaidah trapesium, dan integrasi dalam arah y dihitung dengan kaidah Simpson 1/3. Maka:

$$\int_{c}^{d} \int_{a}^{b} [f(x, y)dx]dy \approx \sum_{j=1}^{m} v_{j} \sum_{i=1}^{n} w_{i} f_{ij}$$

$$\approx \frac{\Delta y}{3} \left[\frac{\Delta x}{2} (f_{0,0} + 2f_{1,0} + 2f_{2,0} + \dots + 2f_{n-1,0} + f_{n,0}) + 4 \times \frac{\Delta x}{2} (f_{0,1} + 2f_{1,1} + 2f_{2,1} + \dots + 2f_{n-1,1} + f_{n,1}) + 2 \times \frac{\Delta x}{2} (f_{0,2} + 2f_{1,2} + 2f_{2,2} + \dots + 2f_{n-1,2} + f_{n,2})$$
...

+ 2 ×
$$\frac{\Delta x}{2}$$
 ($f_{0,m-2}$ + 2 $f_{1,m-2}$ + 2 $f_{2,m-2}$ + ... + 2 $f_{n-1,m-2}$ + $f_{n,m-2}$)
+ 4 × $\frac{\Delta x}{2}$ ($f_{0,m-1}$ + 2 $f_{1,m-1}$ + 2 $f_{2,m-1}$ + ... + 2 $f_{n-1,m-1}$ + $f_{n,m-1}$)
+ $\frac{\Delta x}{2}$ ($f_{0,m}$ + 2 $f_{1,m}$ + 2 $f_{2,m}$ + ... + 2 $f_{n-1,0}$ + $f_{n,m}$)] (P.6.62)

dengan

 Δx = jarak antar titik dalam arah x,

 Δy = jarak antar titik dalam arah y,

n = jumlah titik diskrit dalam arah x,

m = jumlah titik diskrit dalam arah y.

• **Contoh**: Diberikan tabel *f*(*x*, *y*) sebagai berikut:

Diberikan tabel f(x,y) sebagai berikut:

x y	0.2	0.3	0.4	0.5	0.6
1.5	0.990	1.524	2.045	2.549	3.031
2.0	1.568	2.384	3.177	3.943	4.672
2.5	2.520	3.800	5.044	6.241	7.379
3.0	4.090	6.136	8.122	10.030	11.841

Hitung
$$\int_{0.2}^{0.6} \int_{1.5}^{3.0} f(x, y) dx dy$$

Penyelesaian:

Misalkan

- dalam arah x kita gunakan kaidah trapesium
- dalam arah y kita gunakan kaidah Simpson 1/3

Dalam arah x (y tetap):

$$y = 0.2 \quad ; \int_{1.5}^{3.0} f(x, y) dx \approx \int_{1.5}^{3.0} f(x, 0.2) dx$$
$$\approx \Delta x/2 \left(f_{0,0} + 2f_{1,0} + 2f_{2,0} + f_{3,0} \right)$$
$$\approx 0.5/2 \left(0.990 + 2 \times 1.658 + 2 \times 2.520 + 4.090 \right)$$
$$\approx 3.3140$$

$$y = 0.3 \quad ; \int_{1.5}^{3.0} f(x, y) dx \approx \int_{1.5}^{3.0} f(x, 0.3) dx$$
$$\approx \Delta x/2 (f_{0,1} + 2f_{1,1} + 2f_{2,1} + f_{3,1})$$
$$\approx 0.5/2 (1.524 + 2 (2.384 + 2 \times 3.800 + 6.136))$$
$$\approx 5.0070$$

$$y = 0.4$$
; $\int_{1.5}^{3.0} f(x, y) dx \approx \int_{1.5}^{3.0} f(x, 0.4) dx \approx 6.6522$

$$y = 0.5$$
; $\int_{1.5}^{3.0} f(x, y) dx \approx \int_{1.5}^{3.0} f(x, 0.5) dx \approx 8.2368$

$$y = 0.6$$
; $\int_{1.5}^{3.0} f(x, y) dx \approx \int_{1.5}^{3.0} f(x, 0.6) dx \approx 9.7345$

Dalam arah y:

$$\int_{0.2}^{0.6} f(x, y)dy \approx \Delta y/3 (3.3140 + 4 \times 5.0070 + 2 \times 6.6522 + 4 \times 8.2368 + 9.7435)$$

$$\approx 0.1/3 (3.3140 + 4 \times 5.0070 + 2 \times 6.6522 + 4 \times 8.2368 + 9.7435)$$

$$\approx 2.6446$$

Jadi,

$$0.6 3.0$$

 $\int_{0.2}^{0.6} \int_{1.5}^{3.0} f(x, y) dx dy \approx 2.6446$

Kuadratur Gauss

dengan c_1 , c_2 , x_1 , dan x_2 adalah sembarang nilai.

• Perhatikan bahwa bila dipilih $x_1 = -1$, $x_2 = 1$, dan $c_1 = c_2 = 1$, maka persamaan kuadratur Gauss menjadi kaidah trapesium:

$$I = \int_{-1}^{1} f(x)dx \approx \frac{h}{2} [f(1) + f(-1)] \approx f(1) + f(-1)$$

dengan h = (1-(-1)) = 2.

 Jadi, kaidah trapesium memenuhi persamaan kuadratur Gauss

- Persamaan kuadratur Gauss mengandung empat buah peubah yang tidak diketahui (unknown), yaitu x_1 , x_2 , c_1 , dan c_2 .
- Kita harus memilih x_1 , x_2 , c_1 , dan c_2 sedemikian sehingga galat integrasinya minimum.
- Karena ada empat buah peubah yang tidak diketahui, maka kita harus mempunyai empat buah persamaan simultan yang mengandung x_1 , x_2 , c_1 , dan c_2 .

- Di atas telah dikatakan bahwa kaidah trapesium bersesuaian dengan kuadratur Gauss.
- Dapat dilihat bahwa nilai integrasi numerik dengan kaidah trapesium akan tepat (galatnya = 0) untuk fungsi tetap dan fungsi lanjar. Misalnya untuk f(x) = 1 dan f(x) = x

$$f(x) = 1 \rightarrow \int_{-1}^{1} 1 dx = x \begin{vmatrix} x = 1 \\ x = -1 \end{vmatrix} = 1 - (-1) = 2 = c_1 + c_2$$

$$f(x) = x \to \int_{-1}^{1} x dx = \frac{1}{2} x^2 \quad \begin{vmatrix} x = 1 \\ x = -1 \end{vmatrix} = \frac{1}{2} (1)^2 - \frac{1}{2} (-1)^2 = 0 = c_1 x_1 + c_2 x_2$$

Kita memerlukan dua buah persamaan lagi agar x_1 , x_2 , c_1 , dan c_2 dapat ditentukan.

Dari penalaran bahwa kaidah trapesium sejati untuk fungsi tetap dan fungsi lanjar, maka penalaran ini juga kita perluas dengan menambahkan anggapan bahwa integrasinya juga sejati untuk

$$f(x) = x^2 \text{ dan } f(x) = x^{3}$$

$$f(x) = x^2 \to \int_{-1}^{1} x dx = \frac{1}{3} x^3 \Big|_{x=-1}^{x=1} = \frac{2}{3} = c_1 x_1^2 + c_2 x_2^2$$

$$f(x) = x^3 \to \int_{-1}^{1} x^2 dx = 1/4 x^4 \Big|_{x=-1}^{x=1} = 0 = c_1 x^3 + c_2 x^3$$

Sekarang, kita sudah mempunyai empat buah persamaan simultan

$$c_1 + c_2 = 2$$

 $c_1 x_1 + c_2 x_2 = 0$
 $c_1 x_1^2 + c_2 x_2^2 = 2/3$
 $c_1 x_1^3 + c_2 x_2^3 = 0$

yang bila dipecahkan menghasilkan:

$$c_1 = c_2 = 1$$

 $x_1 = 1/\sqrt{3} = 0.577350269$
 $x_2 = -1/(3 = -0.577350269$

Jadi,

$$\int_{-1}^{1} f(x)dx \approx f(1/\sqrt{3}) + f(-1/\sqrt{3})$$

- Persamaan ini dinamakan kaidah Gauss-Legendre 2-titik.
- Dengan kaidah ini, menghitung integral f(x) di dalam selang [-1, 1] cukup hanya dengan mengevaluasi nilai fungsi f di x = $1/\sqrt{3}$ dan di x = $-1\sqrt{3}$.

Transformasi $a \int b f(x) dx$ Menjadi $-1 \int f(t) dt$

Untuk menghitung integrasi

$$I = \int_{-1}^{1} f(x) dx$$

kita harus melakukan transformasi:

- a. selang [a, b] menjadi selang [-1, 1]
- b. peubah *x* menjadi peubah *t*
- c. diferensial dx menjadi dt

Selang [a, b] dan [-1, 1] dilukiskan oleh diagram garis berikut:

Dari kedua diagram garis itu kita membuat perbandingan:

$$\Leftrightarrow \frac{x-a}{b-a} = \frac{t-(-1)}{1-(-1)}$$

$$\Leftrightarrow \frac{x-a}{b-a} = \frac{t+1}{2}$$

$$\Leftrightarrow 2x-2a = (t+1)(b-a)$$

$$\Leftrightarrow 2x = (t+1)(b-a) + 2a$$

$$\Leftrightarrow x = \frac{bt-at+b-a+2a}{2}$$

$$\Rightarrow x = \frac{a+b+bt-at}{2}$$

$$\Leftrightarrow x = \frac{(a+b)+(b-a)t}{2}$$

$$dx = \frac{b-a}{2} dt$$

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left[\frac{(a+b)+(b-a)t}{2}\right] \frac{(b-a)}{2} dt = \frac{(b-a)}{2} \int_{-1}^{1} f\left[\frac{(a+b)+(b-a)t}{2}\right] dt$$

Contoh:

Hitung integral

$$\int_{1}^{2} (x^2 + 1) dx$$

dengan kaidah Gauss-Legendre 2-titik

Penyelesaian:

$$a = 1, b = 2$$

$$x = \frac{(1+2)+(2-1)t}{2} = 1.5 + 0.5 t$$

$$dx = \frac{2-1}{2} dt = 0.5 dt$$

Transformasikan $\int_{1}^{2} f(x)dx$ menjadi $\int_{-1}^{1} f(t)dt$:

$$\int_{1}^{2} (x^{2} + 1)dx = \int_{-1}^{1} [(1.5 + 0.5t)^{2} + 1]0.5dt = 0.5 \int_{-1}^{1} [(1.5 + 0.5t)^{2} + 1]dt$$

Jadi, dalam hal ini

$$f(t) = (1.5 + 0.5 t)^2 + 1$$

maka

$$f(1/\sqrt{3}) = (1.5 + 0.5 \times 1/\sqrt{3})^2 + 1) = 4.1993587371$$

 $f(-1/\sqrt{3}) = (1.5 + 0.5 \times -1/\sqrt{3})^2 + 1) = 2.4673079295$

Dengan demikian

$$\int_{1}^{2} (x^{2} + 1)dx = 0.5 \, _{-1} \int_{1}^{1} (1.5 + 0.52 \, t)^{2} + 1) \, dt \approx 0.5 \times \{ f(1/\sqrt{3}) + f(-1/\sqrt{3}) \}$$

$$\approx 3.333333333$$

Nilai integrasi sejatinya adalah:

$$\int_{1}^{2} (x^{2} + 1)dx = \frac{1}{3}x^{3} + x \begin{vmatrix} x = 2 \\ x = 1 \end{vmatrix} = (8/3 + 2) + (1/3 + 1) = (7/3 + 1)$$
$$= 3.3333333333$$

- Dibandingkan dengan metode Newton-Cotes (trapesium, 1/3 Simpson, dll), kaidah Gauss-Legendre 2-titik lebih sederhana dan lebih mangkus dalam operasi aritmetika,
- karena Gauss-Legendre 2-titik hanya membutuhkan dua buah evaluasi fungsi.
- Selain itu, ketelitiannya lebih tinggi dibandingkan dengan metode Newton-Cotes.
- Namun, kaidah Gauss-Legendre tidak dapat digunakan jika fungsi f(x) tidak diketahui secara eksplisit

Kaidah Gauss-Legendre 3-Titik

Metode Gauss-Legendre 3-Titik dapat ditulis sebagai

$$I = \int_{-1}^{1} f(x)dt \approx c_1 f(x_1) + c_2 f(x_2) + c_3 f(x_3)$$

Parameter x_1 , x_2 , x_3 , c_1 , c_2 , dan c_3 dapat ditemukan dengan membuat penalaran bahwa kuadratur Gauss bernilai tepat untuk 6 buah fungsi berikut:

$$f(x) = 1$$
; $f(x) = x$; $f(x) = x^2$
 $f(x) = x^3$; $f(x) = x^4$; $f(x) = x^5$

Dengan cara yang sama seperti pada penurunan kaidah Gauss-Legendre 2-titik, diperoleh 6 buah persaman simultan yang solusinya adalah

$$c_1 = 5/9$$
 ; $x_1 = -\sqrt{3/5}$

$$c_2 = 8/9$$
; $x_2 = 0$

$$c_3 = 5/9$$
 ; $x_1 = \sqrt{3/5}$

Jadi,

$$\int_{-1}^{1} f(x) dx \approx \frac{5}{9} f \left[-\sqrt{(3/5)} \right] + \frac{8}{9} f(0) + \frac{5}{9} f \left[\sqrt{(3/5)} \right]$$

Kaidah Gauss-Legendre n-Titik

Penurunan kaidah Gauss-Legendre 2-titik dan Gauss-Legendre 3-titik dapat dirampatkan untuk menghasilkan kaidah Gauss-Legendre n-titik

$$\int_{-1}^{1} f(x)dt \approx c_1 f(x_1) + c_2 f(x_2) + \dots + c_n f(x_n)$$

Metode Gauss-Legendre n-titik

$$\int_{-1}^{1} f(x)dt \approx c_1 f(x_1) + c_2 f(x_2) + \dots + c_n f(x_n)$$

n	Faktor bobot	Argumen fungsi	Galat pemotongan
2	$c_1 = 1.000000000$	$x_1 = -0.577350269$	$\approx f^{(4)}(c)$
	$c_2 = 1.0000000000$	$x_2 = 0.577350269$	
3	$c_1 = 0.555555556$	$x_1 = -0.774596669$	$\approx f^{(6)}(c)$
	$c_2 = 0.888888889$	$x_2 = 0$	
	$c_3 = 0.555555556$	$x_1 = 0.774596669$	
4	$c_1 = 0.347854845$	$x_1 = -0.861136312$	$\approx f^{(8)}(c)$
	$c_2 = 0.652145155$	$x_2 = -0.339981044$	
	$c_3 = 0.652145155$	$x_3 = 0.339981044$	
	$c_3 = 0.347854845$	$x_4 = 0.861136312$	
5	$c_1 = 0.236926885$	$x_1 = -0.906179846$	$\approx f^{(10)}(c)$
	$c_2 = 0.478628670$	$x_2 = -0.538469310$	
	$c_3 = 0.568888889$	$x_3 = 0$	
	$c_4 = 0.478628670$	$x_4 = 0.538469310$	
	$c_5 = 0.236926885$	$x_5 = 0.906179846$	
6	$c_1 = 0.171324492$	$x_1 = -0.932469514$	$\approx f^{(12)}(c)$
	$c_2 = 0.360761573$	$x_2 = -0.661209386$	
	$c_3 = 0.467913935$	$x_3 = -0.238619186$	
	$c_4 = 0.467913935$	$x_4 = 0.238619186$	
	$c_5 = 0.360761573$	$x_5 = 0.661209386$	
	$c_6 = 0.171324492$	$x_6 = 0.932469514$	

Contoh Soal Terapan

Seorang penerjun payung terjun dari sebuah pesawat. Kecepatan penerjun sebagai fungsi dari waktu adalah [CHA91]:

$$v(t) = \frac{gm}{c} (1 - e^{-(c/m)t})$$

yang dalam hal ini

v = kecepatan penerjun dalam m/dt

 $g = \text{tetapan gravitasi} = 9.8 \text{ m/dt}^2$

m = massa penerjun = 68.1 kg

c = koefisien tahanan udara = 12.5 kg/detik

Misalkan kita ingi mengetahui seberapa jauh penerjun telah jatuh seteleh waktu tertentu t. Karena kecepatan merupakan turunan pertama dari fungsi jarak, maka jarak penerjun dari titik terjun (t = 0) adalah :

$$d = \int_{0}^{t} v(t)dt = \int_{0}^{t} \frac{gm}{c} (1 - e^{-(c/m)t})dt$$

Hitung seberapa jauh penerjun telah jatuh setelah waktu t = 10 detik dengan bermacam-macam metode integrasi numerik.

Penyelesaian:

Persoalan kita adalah menghitung integrasi

$$d = \int_{0}^{10} \frac{gm}{c} (1 - e^{-(c/m)t}) dt$$

Nilai *d* dengan bermacam-macam metode integrasi numerik diringkas dalam tabel berikut:

Metode Integrasi	d (meter)	Keterangan
Trapesium	289.4309571611	n = 128
Titik-tengah	289.4372411810	n = 128
Simpson 1/3	289.4351464539	n = 128
Simpson 3/8	289.4351465013	n = 243
Romberg	289.4351465113	n = 128
Gauss-Legendre 2-Titik	290.0144778200	
Gauss-Legendre 3-Titik	289.4392972900	
Gauss-Legendre 4-Titik	289.4351622600	