Итоговый конспект 1 из 9

1 Определения

1.1 Локальный максимум, минимум, экстремум

Определение. $f:E\subset\mathbb{R}\to\mathbb{R}, x_0\in E$ — локальный максимум функции, если

$$\exists U(x_0) \ \forall x \in U(x_0) \cap E \ f(x) \le f(x_0)$$

Аналогично определеяется минимум.

Определение. Экстремум — точка минимума либо максимума.

1.2 ! Первообразная, неопределенный интеграл

$$F,f:\langle a,b
angle o\mathbb{R}$$
 $F-$ первообразная f на $\langle a,b
angle$ $orall x\in\langle a,b
angle$ $F'(x)=f(x)$

Неопределенный интеграл f на $\langle a,b\rangle$ — множество всех первообразных f:

$$\{F+c,c\in\mathbb{R}\}$$
, где F — первообразная

Обозначается $\int f = F + c$ или $\int f(x)dx$

1.3 Теорема о существовании первообразной

 $f \in C^0(\langle a,b \rangle)$ тогда у f существует первообразная.

1.4 Таблица первообразных

$$\int x^n dx = \frac{x^{(n+1)}}{n+1}, n \neq -1$$

$$\int \frac{1}{x} dx = \ln x$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int e^x dx = e^x$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \ln(x+\sqrt{1+x^2}) -$$
длинный логарифм
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x$$

$$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x$$

Почему где-то нет dx? Кохась забыл?

Итоговый конспект 2 из 9

1.5 Равномерная непрерывность

 $f:\langle a,b\rangle\subset\mathbb{R}\to\mathbb{R}$ равномерно непрерывна на $\langle a,b\rangle$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in \langle a, b \rangle : |x_1 - x_2| < \delta \ |f(x_1) - f(x_2)| < \varepsilon$$

Или для метрического пространства:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \ \rho(x_1, x_2) < \delta \ \rho(f(x_1), f(x_2)) < \varepsilon$$

Отличие от непрерывности на отрезке в том, что δ зависит только от ε и подходит для всех $x_1, x_2.$

1.6 Площадь, аддитивность площади, ослабленная аддитивность

 \mathcal{E} — множество всех ограниченных фигур в \mathbb{R}^2 ("фигура" = подмножество \mathbb{R}^2) Площадь это $\sigma:\mathcal{E}\to\mathbb{R}_+$, такое что:

- 1. $A \in \mathcal{E}$ $A = A_1 \sqcup A_2$ $\sigma A = \sigma A_1 + \sigma A_2$ (конечная аддитивность)
- 2. $\sigma([a,b] \times [c,d]) = (d-c)(b-a)$

- 1. Монотонна
- 2. Нормирована
- 3. Ослабленная аддитивность: $E\in\mathcal{E}$ $E=E_1\cup E_2$ $E_1\cap E_2$ вертикальный отрезок, E_1 и E_2 лежат каждый в своей полуплоскости относительно этого отрезка $\Rightarrow \sigma E=\sigma E_1+\sigma E_2$

Почему отрезок вертикальный?

1.7 ! Определенный интеграл

 $f:[a,b]\to\mathbb{R}$, непр.

$$\int_{a}^{b} f = \int_{a}^{b} f(x)dx := \sigma \Pi \Gamma(f_{+}, [a, b]) - \sigma \Pi \Gamma(f_{-}, [a, b])$$

1.8 Положительная и отрицательная срезки

 $f:\langle a,b
angle o\mathbb{R}$ $f_+:=\max(f,0)-$ положительная срезка $f_-:=\max(-f,0)-$ отрицательная срезка

1.9 Среднее значение функции на промежутке

Отсутствует

1.10 Кусочно-непрерывная функция

 $f:[a,b] o \mathbb{R}$, кусочно непрерывна f — непр. на [a,b] за исключением конечного числа точек, в которых разрывы I рода Пример. $f(x)=[x], x \in [0,2020]$

Итоговый конспект 3 из 9

1.11 Почти первообразная

 $F:[a,b] o \mathbb{R}$ — почти первообразная кусочно непрерывной функции f: F — непр. и $\exists F'(x)=f(x)$ всюду, кроме конечного числа точек Пример. $f= \mathrm{sign}\, x, x \in [-1,1]$ F:=|x|

1.12 Функция промежутка, аддитивная функция промежутка

 $Segm\langle a,b\rangle=\{[p,q]:[p,q]\subset\langle a,b\rangle\}$ — множество всевозм. отрезков, лежащих в $\langle a,b\rangle$ Функция промежутка $\Phi:Segm\langle a,b\rangle\to\mathbb{R}$ Аддитивная функция промежутка: Φ — функция промежутка и

$$\forall [p,q] \in Segm\langle a,b \rangle \ \forall r: p < r < q \quad \Phi([p,q]) = \Phi([p,r]) + \Phi([r,q])$$

1.13 Плотность аддитивной функции промежутка

Плотность аддитивной функции промежутка: $f:\langle a,b\rangle\to\mathbb{R}$ — плотность Φ , если:

$$\forall \delta \in Segm\langle a,b\rangle \quad \inf_{x \in \delta} f(x) \cdot len_{\delta} \leq \Phi(\delta) \leq \sup f \cdot len_{\delta}$$

2 Теоремы

2.1 Критерий монотонности функции. Следствия

```
f\in C(\langle a,b
angle), дифф. в (a,b) Тогда f — возрастает \Leftrightarrow \forall x\in (a,b) \;\; f'(x)\geq 0
```

Доказательство. "
$$\Rightarrow$$
" По определению $f' = \frac{f(x+h)-f(h)}{h} \ge 0$ " \Leftarrow " $x_1 > x_2$, по т. Лагранжа: $\exists c: f(x_1) - f(x_2) = f'(c)(x_1 - x_2) \ge 0$

 $\mathit{Следствие}.\ f:\langle a,b \rangle \to \mathbb{R},$ тогда:

$$f = \mathrm{const} \Leftrightarrow (f \in C(\langle a, b \rangle) - \mathrm{дифф}.\ \mathrm{на}\ \langle a, b \rangle, f' \equiv 0)$$

Cледствие. $f \in C\langle a,b \rangle$, дифф. на (a,b). Тогда:

fстрого возрастает \Leftrightarrow ① и ②

- ① $f' \ge 0$ на (a, b)
- ② $f'\not\equiv 0$ ни на каком промежутке

 \mathcal{A} оказательство. " \Rightarrow " очевидно

"←" По лемме о возрастании в отрезке

Следствие. О доказательстве неравенств

$$g, f \in C([a, b\rangle)$$
, дифф. в (a, b)
 $f(a) \le g(a); \forall x \in (a, b) \ f'(x) \le g'(x)$

$$f(a) \leq g(a), \forall x \in (a,b)$$
 $f(x) \leq g(x)$

Доказательство.
$$g - f$$
 — возр., $g(a) - f(a) \ge 0$

Итоговый конспект 4 из 9

2.2 Теорема о необходимом и достаточном условиях экстремума

 $f:\langle a,b \rangle o \mathbb{R}$ $x_0 \in (a,b)$ f — дифф. на (a,b) Тогда:

1.
$$x_0 - \text{лок.}$$
 экстремум $\Rightarrow f'(x_0) = 0$

2.
$$f - n$$
 раз дифф. в x_0

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

Если
$$f^{(n)}(x_0)>0$$
, то
$$\begin{cases} n-\text{чет.}: & x_0-\text{локальный максимум}\\ n-\text{нечет.}: & x_0-\text{не экстремум} \end{cases}$$

Если
$$f^{(n)}(x_0) < 0$$
, то
$$\begin{cases} n - \text{чет.}: & x_0 - \text{локальный минимум} \\ n - \text{нечет.}: & x_0 - \text{не экстремум} \end{cases}$$

Доказательство.

1. т. Ферма

2. ф. Тейлора

$$f(x) = T_n(f, x_0)(x) + o((x - x_0)^n)$$

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

при x, близких к x_0 :

$$sign(f(x) - f(x_0)) = sign\left(\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n\right)$$

Тогда при чётном n

$$\operatorname{sign}(f(x) - f(x_0)) = \operatorname{sign} f^{(n)}(x_0) \Rightarrow x_0 - \operatorname{экстр}.$$

При нечётном n

$$\operatorname{sign}(f(x) - f(x_0)) = \begin{cases} f^{(n)}(x_0), & x > x_0 \\ -f^{(n)}(x_0), & x < x_0 \end{cases} \Rightarrow x_0$$
 — не экстр.

2.3 Теорема Кантора о равномерной непрерывности

f:X o Y,X — комп., f — непр. на X Тогда f — равномерно непр.

Доказательство. От противного.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x_{\delta}, \overline{x}_{\delta} : \rho(x_{\delta}, \overline{x}_{\delta}) < \delta \quad \rho(f(x_{\delta}), f(\overline{x}_{\delta})) \ge \varepsilon$$
$$\delta := \frac{1}{n} \ \exists x_{n}, \overline{x}_{n} : \rho(x_{n}, \overline{x}_{n}) < \delta \quad \rho(f(x_{n}), f(\overline{x}_{n})) \ge \varepsilon$$

Выберем $x_{n_k} \to \tilde{x}, \overline{x}_{n_k} \to \tilde{\tilde{x}}$

$$\rho(\tilde{x}, \tilde{\tilde{x}}) \le \lim_{n \to \infty} \delta = 0 \Rightarrow \tilde{x} = \tilde{\tilde{x}}$$

Тогда
$$f(x_{n_k}) \to f(\tilde{x}), f(\overline{x}_{n_k}) \to f(\tilde{x})$$
, противоречие с $\rho(f(x_n), f(\overline{x}_n)) \ge \varepsilon$

M3137y2019

Итоговый конспект 5 из 9

2.4 Теорема Брауэра о неподвижной точке

 $f:[0,1]\times[0,1]\to[0,1]\times[0,1]$, непр.

Тогда $\exists x \in [0,1]^2 : f(x) = x$, т.е. есть неподвижная точка.

Обобщенный вариант:

1.
$$f:[0,1]^m \to [0,1]^m$$
 — непр.

2.
$$f: B(0,1) \subset \mathbb{R}^m \to B(0,1)$$
 — непр.

3.
$$f: S(0,1) \subset \mathbb{R}^m$$
 — непр.

Доказательство. $\rho:[0,1]^2\to\mathbb{R}$

 $\rho(x,y) = \max(|x_1 - y_1|, |x_2 - y_2|)$ — непр. в $[0,1]^2$

От противного — пусть $\forall x \in [0,1]^2$ $f(x) \neq x$

Тогда $\forall x \quad \rho(f(x), x) > 0 \quad x \mapsto \rho(f(x), x) - \text{непр.}, > 0$

По т. Вейерштрасса $\exists \varepsilon > 0 \ \forall x \in [0,1] \ \rho(f(x),x)) \geq \varepsilon$

По т. Кантора для f: для этого $\varepsilon \exists \delta < \varepsilon$:

$$\forall x, \overline{x} : ||x - \overline{x}|| < \delta \quad ||f(x) - f(\overline{x})|| < \varepsilon$$

Можно писать не $||\cdot||$, а ρ .

Возьмём $n: \frac{\sqrt{2}}{n} < \delta$

Построим доску Hex(n+1,n+1), где n+1- число узлов.

Логические координаты узла (v_1, v_2) $v_1, v_2 \in \{0 \dots n\}$ имеют физические координаты, то есть узлу сопоставляется точка на квадрате с координатами $\left(\frac{v_1}{n}, \frac{v_2}{n}\right)$

$$K(V) := \min\{i \in \{1, 2\} : |f(\frac{v}{n}) - \frac{v_i}{n}| \ge \varepsilon\}$$

Продолжение на следующей лекции.

2.5 Теорема о свойствах неопределенного интеграла

f,g имеют первообразную на $\langle a,b \rangle$. Тогда

1. Линейность:

$$\int (f+g) = \int f + \int g$$
$$\forall \alpha \in \mathbb{R} \quad \int \alpha f = \alpha \int f$$

2. $\varphi(c,d) \to \langle a,b \rangle$

$$\int f(\varphi(t)) \cdot \varphi'(t)dt = \left(\int f(x)dx\right)|_{x=\varphi(t)} = F(\varphi(t))$$

Частный случай: $\alpha, \beta \in \mathbb{R}$:

$$\int f(\alpha t + \beta)dt = \frac{1}{\alpha}F(\alpha t + \beta)$$

3. f, g — дифф. на $\langle a, b \rangle$; f'g — имеет первообр.

Тогда fg' имеет первообразную и

$$\int fg' = fg - \int f'g$$

Доказательство. 1. Опущено

2.
$$(F(\varphi(t)))' = f(\varphi(t)) \cdot \varphi'(t)$$

3.
$$(fq - \int f'q)' = f'q + fq' - f'q = fq'$$

Итоговый конспект 6 из 9

Интегрирование неравенств. Теорема о среднем

 $f,g \in C[a,b]$ $f \leq g$. Тогда

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Доказательство.

$$\Pi\Gamma(f_{+}) \subset \Pi\Gamma(g_{+}) \Rightarrow \sigma\Pi\Gamma(f_{+}) \leq \sigma\Pi\Gamma(g_{+})$$

$$\Pi\Gamma(f_{-}) \supset \Pi\Gamma(g_{-}) \Rightarrow \sigma\Pi\Gamma(f_{-}) \geq \sigma\Pi\Gamma(g_{-})$$

$$\sigma\Pi\Gamma(f_{+}) - \sigma\Pi\Gamma(f_{-}) \leq \sigma\Pi\Gamma(g_{+}) - \sigma\Pi\Gamma(g_{-})$$

Кто такая теорема о среднем

2.7 Теорема Барроу

 $f \in C[a,b]$ Ф — интеграл с переменным верхним пределом. Тогда

$$\forall x \in [a, b] \quad \Phi'(x) = f(x)$$

Доказательство. Зафиксируем $x \in [a,b]$ $y > x, y \le b$

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{\int_a^y f - \left(\int_a^y f + \int_y^x f\right)}{y - x} = \frac{\int_x^y f}{y - x} \underset{\exists c \in [x, y]}{=} \frac{c(y - x)}{y - x} = c \xrightarrow[y \to x+0]{} f(x)$$

x > y

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{1}{x - y} \int_{y}^{x} f(x) dx dx$$

Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функ-2.8

Теорема 1. $f \in C[a,b]$ F — первообр. fТогда $\int_a^b f = F(b) - F(a)$

Доказательство. $\Phi(x)=\int_0^x f$ — первообр. $\exists C: F=\Phi+C$

$$\int_{a}^{b} f = \Phi(b) - \Phi(a) = F(b) - F(a)$$

Что с кусочно-непрерывными?

Итоговый конспект 7 из 9

2.9 Лемма об ускоренной сходимости

1. $f,g:D\subset X o \mathbb{R}$ a — предельная точка D

$$\exists U(a):$$
 при $x\in \dot{U}(a)\cap D$ $f(x)\neq 0, g(x)\neq 0$

Пусть
$$\lim_{x \to a} f(x) = 0$$
 $\lim_{x \to a} g(x) = 0$

Тогда

$$\forall x_k \to a \quad (x_k \neq a, x_k \in D) \quad \exists y_k \to a (y_k \neq a, y_k \in D)$$

такое, что

$$\lim_{k \to +\infty} \frac{f(y_k)}{g(x_k)} = 0 \quad \lim_{k \to +\infty} \frac{g(y_k)}{g(x_k)} = 0$$

Таким образом, $g(y_k) \to 0$ быстрее, чем $g(x_k) \to 0$

2. То же самое, но $\lim f(x) = +\infty$, $\lim g(x) = +\infty$

Доказательство. 1. Очевидно.

$$\forall k \quad \exists N \quad \forall n > N \quad |f(x_n)| < |g(x_k)| \frac{1}{k} \quad |g(x_n)| < |g(x_k)| \frac{1}{k}$$

 $\varepsilon := |g(x_k)|$

$$k=1$$
 $y_1:=$ какой-нибудь $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<1$ $\left|rac{g(x_n)}{g(x_k)}
ight|<1$

$$k=2$$
 $y_2:=$ какой-нибудь $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<rac{1}{2}$ $\left|rac{g(x_n)}{g(x_k)}
ight|<rac{1}{2}$

:

2. (а) Частный случай: Пусть $g(x_n)$ возрастает. Берем $k:m:=\min\{n:|f(x_n)|\geq \sqrt{g(x_k)}$ или $|g(x_n)|\geq \sqrt{g(x_k)}\}$

$$y_k := x_{m-1}$$

$$\left| \frac{f(y_k)}{g(x_k)} \right| \le \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

Зачем нужно возрастание? Кохась не знает.

(b) Общий случай: $\tilde{g}(x_k) := \inf\{g(x_n), n = k, k+1 \ldots\}$ $\tilde{g}(x_k) \uparrow, \tilde{g}(x_k) \leq g(x_k)$. Как в пункте (a) построим y_k

$$\frac{f(y_k)}{g(x_k)} \le \frac{f(y_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

$$\frac{g(y_k)}{g(x_k)} \le \frac{g(x_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \to 0$$

2.10 Правило Лопиталя

$$\begin{array}{l} f,g:(a,b)\to\mathbb{R}\quad a\in\overline{\mathbb{R}}\\ f,g-\text{дифф.,}\ g'\neq 0\ \text{на}\ (a,b)\\ \Piусть\ \frac{f'(x)}{g'(x)}\xrightarrow[x\to a+0]{}A\in\overline{\mathbb{R}} \end{array}$$

Пусть $\lim_{x \to a} \frac{f(x)}{g(x)}$ — неопределенность $\left\{\frac{0}{0}, \frac{+\infty}{+\infty}\right\}$

Тогда
$$\exists \lim_{x \to a} \frac{f(x)}{g(x)} = A$$

Доказательство. $g' \neq 0 \Rightarrow g' - \exp$. знак $\Rightarrow g - \text{монотонна}$.

Для $\frac{0}{0}$ $g(x) \neq 0$ в (a,b)

По Гейне $x_k \to a \ (x_k \neq a, x_k \in (a,b))$

Выберем y_k по лемме

$$rac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = rac{f'(\xi_k)}{g'(\xi_k)}$$
 — т. Коши

$$\frac{f(x_k)}{g(x_k)} - \frac{f(y_k)}{g(x_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)} \right)$$

$$x_k \to a \quad y_k \to a \quad \xi_k \to a$$

2.11 Теорема Штольца

Это дискретная версия правила Лопиталя.

 $y_n \to 0, x_n \to 0$ — строго монот.

$$\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a \in \mathbb{R}$$

Тогда
$$\exists \lim \frac{x_n}{y_n} = a$$

Доказательство.

1.
$$a > 0 \quad (a \neq +\infty)$$

$$\forall \varepsilon > 0 \ [\varepsilon < a] \ \exists N_1 \ \forall n > N_1 \ a_{\varepsilon} < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Берем $N > N_1$

$$a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon$$

:

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

По неправильному сложению: (оно применимо, т.к. все дроби положительные)

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

$$n \to +\infty$$

$$a - \varepsilon < \frac{x_N}{y_N} < a + \varepsilon$$

Итоговый конспект 9 из 9

- 2. $a = +\infty$ доказывается так же
- 3. a < 0 поменяем знак и докажем так же
- 4. a=0 т.к. знаки x_n-x_{n-1} и y_n-y_{n-1} фикс., a=+0 или a=-0 Для a=+0 $\lim \frac{y_n-y_{n-1}}{x_n-x_{n-1}}=+\infty$

...

2.12 Пример неаналитической функции

Отсутствует

2.13 Интегральное неравенство Чебышева. Неравенство для сумм

Неравенство Чебышева $f,g\in C[a,b]$ монот. возр. Тогда

$$\int_{a}^{b} f \int_{a}^{b} g \le (b - a) \int_{a}^{b} f g$$

Доказательство. $x,y \in [a,b]$ $(f(x)-f(y))(g(x)-g(y)) \ge 0$

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \ge 0$$

Интегрируем по x по [a,b]

$$I_{fg} - f(y)I_g - g(y)I_f + f(y)g(y) \ge 0$$

Интегрируем по y по [a,b]

$$I_{fg} - I_f I_g - I_g I_f + I_{fg} \ge 0$$

Дискретное неравенство Чебышева

$$a_1 \le a_2 \le \ldots \le a_n, b_1 \le b_2 \le \ldots \le b_n$$

$$\frac{1}{n} \sum_{i=1}^{n} a_i \cdot \frac{1}{n} \sum b_i \le \frac{1}{n} \sum a_i b_i$$

Доказательство.

$$f(x)=a_i, x\in (i-1,i], i=1\dots n$$
— задана на $(0,n]$
$$g(x)=\dots b_i$$

$$I_fI_g\leq I_{fg}$$

2.14 Свойства определенного интеграла: линейность, интегрирование по частям, замена переменных

Дано выше. (2.5, стр. 5)

M3137y2019