אינפי 2מ' | תרגול 12 - עם ניקה

שם: איל שטיין

June 27, 2023

נושא השיעור: פונקציות בשני משתנים - רציפות וגזירות

נושא ראשון - גבול לפי הגדרה:

תרגיל 1.

• הוכיחו לפי הגדרה כי:

$$\lim_{(x,y)\to(0,0)}\frac{xy^3+xy\sin{(x+y)}}{x^2+y^2}=0$$

פתרון:

- arepsilon > 0 יהיarepsilon
- $.\delta > 0$ נחפש •
- : נבחן את הביטוי

$$\left| \frac{xy^3 + xy\sin(x+y)}{x^2 + y^2} \right|$$

י טריק ראשון - הוצאת גורם משותף:

$$\left| \frac{xy^3 + xy\sin(x+y)}{x^2 + y^2} \right| = \left| \frac{xy}{x^2 + y^2} \right| \cdot \left| y^2 + \sin(x+y) \right|$$

 $\left| \frac{xy}{x^2+y^2} \right| \leq rac{1}{2}$ כי: מכיוון שהביטוי –

$$0 \le (x - y)^2 = x^2 - 2xy + y^2$$

$$-\frac{1}{2} \leq \frac{xy}{x^2+y^2} \leq \frac{1}{2}$$

$$\left| \frac{xy}{x^2 + y^2} \right| \le \frac{1}{2}$$

- אז נקבל שמתקיים:

$$\left|\frac{xy}{x^2+y^2}\right|\cdot\left|y^2+\sin\left(x+y\right)\right|\leq \frac{1}{2}\left|y^2+\sin\left(x+y\right)\right|$$

: ולפי אי שוויון המשולש מתקיים

$$\frac{1}{2}\left|y^2+\sin\left(x+y\right)\right| \leq \frac{1}{2}\left(\left|y^2\right|+\left|\sin\left(x+y\right)\right|\right)$$

 $|y| \leq 1$ ונקבל: * נדרוש א

$$\leq \frac{1}{2} \left(\left| y^2 \right| + \left| x + y \right| \right)$$

$$\leq |x| + |y|$$

- arepsilonנדרוש כל הביטוי הזה יהיה קטן מ-arepsilon
- $|f\left(x,y
 ight)-0|<arepsilon$ יתקיים $0<|x|+|y|<\delta$ המקיימים הא לכל אז לכל $\delta=min\left\{arepsilon,1
 ight\}$ המקיים יתקיים $\delta=min\left\{arepsilon,1
 ight\}$ יתקיים י

נושא שני - חישובי גבולות:

תרגיל 2.

:סראו כי

$$\lim_{(x,y)\rightarrow(0,0)}\frac{\ln\left(1+y^2\left|x\right|\right)}{x^2+y^2}=0$$

פתרון:

: טריק שני - סנדוויץ':

:נסתכל על הערך המוחלט של הביטוי

$$0 \le \left| \frac{\ln\left(1 + y^2 |x|\right)}{x^2 + y^2} \right|$$

 $ln\left(1+x
ight) \leq x$ ולכן: א הוכחנו באינפי שמתקיים *

$$\begin{split} \left| \frac{\ln\left(1 + y^2 \left| x \right|\right)}{x^2 + y^2} \right| &\leq \frac{y^2 \left| x \right|}{x^2 + y^2} \\ &\leq \frac{y^2 \left| x \right|}{y^2} \\ &\leq \frac{y^2 \left| x \right|}{y^2} \\ &\leq \left| x \right| \xrightarrow[(x,y) \to (0,0)]} 0 \end{split}$$

.0 ולכן לפי משפט הסנדוויץ' מתקיים כי הגבול הוא

.3 הערה

• במשתנה יחיד היינו לוקחים ביטוי כמו

$$\lim_{(x,y)\to(0,0)}\frac{\sin{(xy)}}{x^2+y^2}$$

- $.\frac{\sin(xy)}{xy}$ את מצמצמים אה $\frac{\sin(xy)}{x^2+y^2}\cdot\frac{1}{xy}$ כדי לקבל כדי אותו בxy אותו ב
 - . אבל אסור לעשות את זה, כי לא בטוח שהפונקציה מוגדרת.

:3 תרגיל

• חשבו את הגבול:

$$\lim_{(x,y)\to(0,0)}\frac{\tan\left(x^3+y^3\right)}{\sin\left(x^2+y^2\right)}$$

: 'ננסה להיפטר מהביטויים הטריגונומטריים בעזרת סנדוויץ

$$0 \le \left| \frac{\tan(x^3 + y^3)}{\sin(x^2 + y^2)} \right| \le \left| \frac{1}{\cos(x^3 + y^3)} \right| \cdot \left| \frac{\sin(x^3 + y^3)}{\sin(x^2 + y^2)} \right|$$

. מכיוון שהביטוי x^3+y^3 מתאפס רק בראשית, מותר לנו להכפיל ולחלק בו, ולכן נקבל –

$$0 \le \left| \frac{1}{\cos(x^3 + y^3)} \right| \cdot \left| \frac{\sin(x^3 + y^3)}{\sin(x^2 + y^2)} \right| \le \left| \frac{1}{\cos(x^3 + y^3)} \right| \cdot \left| \frac{\sin(x^3 + y^3)}{\sin(x^2 + y^2)} \right| \cdot \frac{(x^3 + y^3)(x^2 + y^2)}{(x^2 + y^2)}$$

$$\le \left| \frac{x^3 + y^3}{x^2 + y^2} \right|$$

$$\le \left| \frac{x^3}{x^2 + y^2} \right| + \left| \frac{y^3}{x^2 + y^2} \right|$$

$$\le \left| \frac{x^3}{x^2} \right| + \left| \frac{y^3}{y^2} \right|$$

$$\le |x| + |y| \xrightarrow{(x,y) \to (0,0)} 0$$

תרגיל 4.

טריק שלישי - מעבר לקואורדינטות פולאריות:

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$$

פתרון:

: נעביר את הביטוי לקואורדינטות פולאריות

$$\frac{x^3 + y^3}{x^2 + y^2} = \frac{r^3 \cos^3(\theta) + r^3 \sin^3(\theta)}{r^2 \cos^2(\theta) + r^2 \sin^2(\theta)}$$

$$= \overbrace{r}^{\downarrow 0} \cdot \overbrace{\left(\cos^3(\theta) + \sin^3(\theta)\right)}^{bounded}$$

:5 תרגיל

חשבו את הגבול:

$$\lim_{(x,y)\to (0,0)} \frac{x^2y}{x^4+y^2}$$

פתרון:

: נעבור לקואורדינטות פולאריות

$$\begin{split} \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2} &= \lim_{r\to 0} \frac{r^2\cos^2\left(\theta\right)r\sin\left(\theta\right)}{r^4\cos\left(\theta\right)+r^2\sin\left(\theta\right)} \\ &= \lim_{r\to 0} \frac{r\cos^2\left(\theta\right)\sin\left(\theta\right)}{r^2\cos\left(\theta\right)+\sin\left(\theta\right)} \end{split}$$

- . ונשים לב שאנחנו לא יודעים אם יש גבול לביטוי הזה ולכן נפנה לטריק אחר.
 - טריק רביעי הוכחה שגבול לא קיים בעזרת מסלולים שונים:
 - $oldsymbol{:}(t,t)$ נבדוק על פני מסלולים –

$$\lim_{t \to 0} \frac{t^3}{t^4 + t^2} = \lim_{t \to 0} \frac{t}{t^2 + 1} = 0$$

 $\left(t,t^{2}
ight)$ נבדוק על פני מסלולים –

$$\lim_{t \to 0} \frac{t^4}{t^4 + t^4} = \frac{1}{2}$$

– קיבלנו שהגבול תלוי במסלול ולכן הגבול לא קיים.

תרגיל 6:

• נתונה פונקציה:

$$f(x,y) = \begin{cases} \frac{x-1}{y-x^2} & y \neq x^2\\ 1 & y = x^2 \end{cases}$$

f(x,y) רציפה בנקודה f(x,y) •

פתרון:

- כדי לשלול רציפות, מספיק לנו להראות שהגבול לא שווה ל-1.
 - ± 1 נחפש מסלול שעבורו הגבול שונה מ
 - :(1,t) ניקח מסלול *

$$\lim_{t\to 1}\frac{1-1}{t-1}=0$$

. כלומר הפונקציה שווה זהותית לאפס.

ולכן: •

$$\lim_{t \to 1} f\left(1, t\right) = 0 \neq f\left(1, 1\right)$$

(1,1). והפונקציה אינה רציפה ב-

:7 תרגיל

- י טריק חמישי הצבה על מנת לפשט ביטוי:
 - f(x,y) בדקו האם f(x,y) רציפה ב

$$f(x,y) = \begin{cases} \frac{x^4}{x^3 + y^3} & x \neq -y\\ 0 & x = -y \end{cases}$$

פתרון:

 $t=\sqrt[3]{t^4-t^3}$ ונקבל: x=t ונקבל: •

$$f\left(t, \sqrt[3]{t^4 - t^3}\right) = \frac{t^4}{t^3 + t^4 - t^3} = 1$$

. מצאנו מסלול שבו הגבול אינו 0 ולכן הגבול אינו קיים והפונקציה אינה רציפה בראשית.

:8 תרגיל

: מוגדרת (x,y) \neq (0,0) מוגדרת לכל f(x,y) המקיימת

$$f(tx, tx) = f(x, y)$$

t > 0 לכל –

. הוכיחו שאם הגבול $\lim_{(x,y) o (0,0)} f\left(x,y
ight)$ קיים אז הפונקציה קבועה.

פתרון:

(t,t) נסתכל על פני מסלול •

$$\lim_{t \to 0} f(t,t) = \lim_{t \to 0} f(t \cdot 1, t \cdot 1) = \lim_{t \to 0} f(1,1) \stackrel{Constant}{=} f(1,1)$$

- f(tx,ty) = f(x,y) כי לפי הנתון מתקיים –
- (at,bt) ונסתכל על מסלול ($a,b) \neq (1,1),(0,0)$ יהיו •

$$\lim_{t \to 0} f(at, bt) = \lim_{t \to 0} f(a, b) \stackrel{Constant}{=} f(a, b)$$

- . מכיוון שהפונקציה מוגדרת ב(a,b)וב-(a,b) אז הגבול קיים.
- (a,b) לכל התוצאות חייבות חייבות של הגבולות של -

$$f\left(a,b\right) = f\left(1,1\right)$$

. ולכן f זו פונקציה קבועה

נושא שלישי - נגזרות חלקיות:

תזכורת:

$$f_{x}\left(x,y\right) = f_{x}'\left(x,y\right) = \lim_{h \to 0} \frac{f\left(x+h,y\right) - f\left(x,y\right)}{h}$$

הגדרה 4. גזירות פונקציה בנקודה.

$$f(x,y) = f(x_0, y_0) + A(x - x_0) + B(y - y_0) + \varepsilon(x,y) \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

 $A=f_{y}\left(x_{0},y_{0}
ight)$ י אם $A=f_{x}\left(x_{0},y_{0}
ight)$ אזירה אז f אם •

תנאים הכרחיים לגזירות:

1. הפונקציה רציפה

2. קיימות נגזרות חלקיות

תנאי מספיק אך לא הכרחי לגזירות:

1. נגזרות חלקיות רציפות.

 $oldsymbol{arphi}(x_0,y_0)$ אלגוריתם לבדוק האם $f\left(x,y
ight)$ גזירה בנקודה

- .ם שם. אז היא אז היא f(x,y) אם אם f(x,y) האם 1.
 - 2. האם קיימות נגזרות חלקיות! אם לא, אז היא לא גזירה שם.
- (א) אם הן קיימות ורציפות אז היא גזירה בנקודה. לא תמיד כדאי לבדוק.
- . ובודקים האם הוא ובודקים האם ובודקים ו $\lim_{(x_0,y_0) o (x,y)} arepsilon (x,y)$ ובודקים האם את בול (ב)

:9 תרגיל

: f(x,y) נתונה •

$$f(x,y) = \begin{cases} \frac{xy^3 + y^4}{(x^2 + y^2)^k} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $k=1,rac{3}{2},2$ עבור (0,0) גזירה גוירה $f\left(x,y
ight)$

פתרון:

(0,0)נתחיל מלבדוק רציפות של הפונקציה ב

$$\lim_{(x,y)\rightarrow(0,0)}f\left(x,y\right)=\lim_{r\rightarrow0}\frac{r^{4}\cos^{4}\left(\theta\right)\sin^{3}\left(\theta\right)+r^{4}\sin^{4}\left(\theta\right)}{\left(r\right)^{2k}}$$

$$0 \le \left| \frac{r^4 \cos^4(\theta) \sin^3(\theta) + r^4 \sin^4(\theta)}{(r)^{2k}} \right| \le 2r^{4-2k}$$

- $r \to 0$ אנחנ חיובית בחזקה $k = 1, \frac{3}{2}$ עבור לכומר כלומר $k = 1, \frac{3}{2}$
 - f(x,y) בהכרח תהיה רציפה בf(x,y) ולכן עבורם
- k=0 ולכן נבדוק עבורו בנפרד האם הפונקציה רציפה בk=1 ולכן נבדוק עבורו א יודעים מה קורה כאשר אנחנו עד לא יודעים מה אורה כאשר

$$\begin{split} \lim_{(x,y)\to(0,0)} f\left(x,y\right) &= \lim_{(x,y)\to(0,0)} \frac{xy^3 + y^4}{\left(x^2 + y^2\right)^2} \\ &= \lim_{(x,y)\to(0,0)} \frac{r^4 \cos^4\left(\theta\right) \sin^3\left(\theta\right) + r^4 \sin^4\left(\theta\right)}{r^4} \\ &= \lim_{(x,y)\to(0,0)} \cos^4\left(\theta\right) \sin^3\left(\theta\right) + \sin^4\left(\theta\right) \end{split}$$

- תוצאת הגבול תלויה בזוית שנבחר ולכן הגבול לא קיים.
 - . הפונקציה לא רציפה k=2 הפונקציה \star
- . לכן נסיק כי עבור k=2 הפונקציה גם לא גזירה בראשית.
 - 2. נבדוק קיום נגזרות חלקיות בראשית:
 - \cdot נגזרת חלקית לפי x, לפי הגדרה •

$$\frac{\partial f}{\partial x}\left(0,0\right) = \lim_{h \to 0} \frac{f\left(h,0\right) - f\left(0,0\right)}{h} = \lim_{h \to 0} \frac{0}{h}$$

 \cdot נגזרת חלקית לפי y לפי הגדרה •

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} h^{3-2k} = \begin{cases} 0 & k = 1\\ 1 & k = \frac{3}{2} \end{cases}$$

- יש לציין כי לא חישבנו את הנגזרות החלקיות אלא רק ערך מסוים שלהן בנקודות מסוימות ולכן לא נבדוק האם הן רציפות.
 - $\lim_{(x,y)\to(0,0)} \varepsilon(x,y)$ נחשב את הגבול.3
 - לפי הגדרת הנגזרת:

$$f\left(x,y\right) = f\left(0,0\right) + \frac{\partial f}{\partial x}\left(0,0\right) + \frac{\partial f}{\partial y}\left(0,0\right) + \varepsilon\left(x,y\right) \cdot \sqrt{x^{2} + y^{2}}$$

f מתקיים: - לפי החישובים של הנגזרות החלקיות ולפי הגדרת

$$\begin{split} f\left(x,y\right) &= \overbrace{f\left(0,0\right)}^{=0} + \overbrace{\frac{\partial f}{\partial x}\left(0,0\right)}^{=0} + \frac{\partial f}{\partial y}\left(0,0\right) + \varepsilon\left(x,y\right) \cdot \sqrt{x^2 + y^2} \\ &= \frac{\partial f}{\partial y}\left(0,0\right) + \varepsilon\left(x,y\right) \cdot \sqrt{x^2 + y^2} \end{split}$$

:עבור $k=rac{3}{2}$ מתקיים –

$$f(x,y) = \frac{xy^3 + y^4}{(x^2 + y^2)^{\frac{3}{2}}} = y + \varepsilon(x,y) \cdot \sqrt{x^2 + y^2}$$

: ולכן

$$\varepsilon(x,y) = \frac{xy^3 + y^4}{(x^2 + y^2)^{\frac{3}{2}}} - \frac{y}{\sqrt{x^2 + y^2}}$$

- . נשים לב שאם נעבור לקואורדינטות פולאריות אז היינו מקבלים שהגבול הזה לא קיים.
 - ולקבל: (t,mt) ולקבל מסלולים הצורה לכת אפשר לכת יותר אפשר לכת על מסלולים יותר אפשר יותר אפשר יותר אפשר לכת אפיטי

$$\lim_{t \to 0} \varepsilon(t, mt) = \lim_{t \to 0} \frac{m^3 + m^4}{(1 + m^2)^2} - \frac{m}{\sqrt{1 + m^2}}$$

- . כלומר התוצאה תלויה בבחירת המסלול ולכן הגבול לא קיים (אפשר גם לראות שניתן להגיע לתוצאה שבה הגבול אינו 0).
 - $.k=rac{3}{2}$ עבור (0,0) עבור לא גזירה לא לכן הפונקציה ל

:עבור k=1 מתקיים

$$f(x,y) = \frac{xy^3 + y^4}{x^2 + y^2} = 0 + \varepsilon(x,y) \cdot \sqrt{x^2 + y^2}$$

: ולכן

$$\lim_{(x,y)\to(0,0)} \varepsilon(x,y) = \lim_{(x,y)\to(0,0)} \frac{xy^3 + y^4}{(x^2 + y^2)^{\frac{3}{2}}} = 0$$

(0,0)מתקיים כי $f\left(x,y\right)$ גזירה ב k=1 אמתקיים \star

נושא רביעי נגזרת מכוונת וגרדיאנט:

הגדרה 5. נגזרת מכוונת.

- f(x,t) המוגדרת בסביבה של f(x,t) המוגדרת
 - . יחידה יחידה $\overline{n}=(n_1,n_2)$ יהי יחידה
- (x_0,y_0) מוגדרת מכוונת בכיוון בנקודה הנארת מכוונת בכיוון -

$$\frac{\partial f}{\partial \overline{n}} = \lim_{h \to 0} \frac{f(x_0 + n_1 h, y_0 + n_2 h) - f(x_0, y_0)}{h}$$

:משפט הגרדיאנט

:אז מתקיים אם (x_0,y_0) אז נאירה בנקודה $f\left(x,y
ight)$

$$\frac{\partial f}{\partial \overline{n}}(x_0, y_0) = \nabla f(x_0, y_0) \cdot \overline{n}$$

הערה 7. לרוב נשתמש במשפט הגרדיאנט על ידי כך שנראה שהנגזרות החלקיות רציפות ואז מתקיים המשפט.

תרגיל 10 - נראה את ההיפוך של משפט הגרדיאנט:

תהי פונקציה:

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- $\overline{n}=(n_1,n_2)$ בכיוון ב(0,0) ביוות חלקיות מצאו .1
 - f נזירה ב(0,0):

פתרון:

• נבחן את הגבול:

$$\begin{split} \frac{\partial f}{\partial \overline{n}} \left(0, 0 \right) &= \lim_{h \to 0} \frac{f \left(n_1 h, n_2 h \right) - f \left(0, 0 \right)}{h} \\ &= \lim_{h \to 0} \frac{\frac{n_1^2 n_2 h^3}{\left(n_1^2 + n_2^2 \right) h^2}}{h} = n_1^2 n_2 \end{split}$$

:נמצא את הגרדיאנט של f ב(0,0) כדי לשלול גזירות:

$$\nabla f(x,y) = (f_x, f_y)|_{(0,0)}$$

x:(1,0) ניתן להתייחס לנגזרת חלקית לפי x כנגזרת כנגזרת להתייחס לנגזרת –

$$f_x(0,0) = \frac{\partial f}{\partial (1,0)} = 0$$

$$f_y\left(0,0\right) = \frac{\partial f}{\partial\left(0,1\right)} = 0$$

- כלומר מתקיים:

$$\nabla f\left(x,y\right) = (0,0)$$

הגזרת בין הארדיאנט שווה למכפלה הייתה הייתה הייתה המכוונת ביוון האוי הנגזרת המכוונת בין הארדיאנט (0,0) איי הנגזרת המכוונת ביוון הייתה הייתה הייתה הייתה בין הגדראנט f(x,y) הייתה בין הגדראנט \overline{n} ובין \overline{n}

$$n_1^2 n_2$$
We found by definition $\frac{\partial f}{\partial \overline{n}}(0,0) = \nabla f \cdot (n_1, n_2) = 0$

 $f\left(x,t
ight)$ אינה אזירה בלא מתקיים ולכן אינה אזירה בלא השוויון הזה א

:11 תרגיל

- (x,y)
 eq (0,0) ולכל t
 eq 0 לכל f(tx,ty) = f(x,y) המקיימת $f(x,y) \in \mathbb{R}^2$ ולכל המוגדרת לכל
 - ים בנוסף נתון כי קיימת נגזרת מכוונת ב(0,0) בכל כיוון.
 - . ע"ל: הפונקציה $f\left(x,y\right)$ קבועה

פתרון:

 $\overline{n}=(n_1,n_2)$ הנגזרת המכוונת בראשית בכיוון •

$$\lim_{h \to 0} \frac{f(n_1 h, n_2 h) - f(0, 0)}{h}$$

$$= \lim_{h \to 0} \frac{f(n_1, n_2) - f(0, 0)}{h}$$

- המכנה שואף לאפס והמונה הוא קבוע.
- . אך מכיוון שנתון כי הגבול הזה קיים (וסופי), הוא חייב להיות זהותית אפס. $_{\star}$

· כלומר:

$$f(n_1, n_2) = f(0, 0)$$

- $(x,y) \neq (0,0)$ תהי נקודה •
- f(x,y) = f(0,0) נראה כי •
- $x_1 + y_1 = 1$ כך שיתקיים (x, y) ב $t \cdot (x_1, y_1)$ כתוב (x, y) כלכל -

$$t = \sqrt{x^2 + y^2}$$

$$x_1 = \frac{x}{\sqrt{x^2 + y^2}}$$

$$y_1 = \frac{y}{\sqrt{x^2 + y^2}}$$

- ואז יתקיים לפי הנתון:

$$f(x,y) = f(tx_1, ty_1) = f(x_1, y_1) = f(0,0)$$