(Late policy: 0% credit)

- 1. (50 points)
- *Problem 2.27 Consider the double delta-function potential

$$V(x) = -\alpha[\delta(x+a) + \delta(x-a)],$$

where α and a are positive constants.

- (a) Sketch this potential.
- (b) How many bound states does it possess? Find the allowed energies, for $\alpha = \hbar^2/ma$ and for $\alpha = \hbar^2/4ma$, and sketch the wave functions.
- 2. (50 points)
- *Problem 2.22 The gaussian wave packet. A free particle has the initial wave function

$$\Psi(x,0) = Ae^{-ax^2},$$

where A and a are constants (a is real and positive).

- (a) Normalize $\Psi(x, 0)$.
- (b) Find $\Psi(x, t)$. Hint: Integrals of the form

$$\int_{-\infty}^{+\infty} e^{-(ax^2+bx)} dx$$

can be handled by "completing the square": Let $y = \sqrt{a} [x + (b/2a)]$, and note that $(ax^2 + bx) = y^2 - (b^2/4a)$. Answer:

$$\Psi(x,t) = {2a \choose \pi}^{1/4} \frac{e^{-ax^2/[1+(2i\hbar at/m)]}}{\sqrt{1+(2i\hbar at/m)}}.$$

(c) Find $|\Psi(x,t)|^2$. Express your answer in terms of the quantity

$$w \equiv \sqrt{\frac{a}{1 + (2\hbar at/m)^2}}.$$

- Sketch $|\Psi|^2$ (as a function of x) at t = 0, and again for some very large t. Qualitatively, what happens to $|\Psi|^2$, as time goes on?
- (d) Find $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, σ_x , and σ_p . Partial answer: $\langle p^2 \rangle = a\hbar^2$, but it may take some algebra to reduce it to this simple form.
- (e) Does the uncertainty principle hold? At what time t does the system come closest to the uncertainty limit?