TALLER 4 INTELIGENCIA ARTIFICIAL

1. Usando la red neuronal del perceptron, clasificar la siguiente información

Ilustración 1 Frontera de decision

Se obtiene el vector de pesos W:

$W=[-2\ 1]$

Dado que la frontera de decisión atraviesa por el origen (0,0), el umbral de activación es cero.

b=0

Entrenamiento

$$\mathbf{p1} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
 $t\mathbf{1} = \mathbf{1};$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim\Big(\begin{bmatrix} -2 & 1\end{bmatrix}\begin{bmatrix} 0 \\ 2 \end{bmatrix} + 0\Big) = hardlim\Big((-2)(0) + (1)(2) + 0\Big)$$

$$a = hardlim(2) = 1$$

Se calcula el error:

$$e = t1 - a$$

$$e = 1 - 1$$

$$e = 0$$

Para el segundo par de entrada/salida

$$\mathbf{p2} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \quad \mathbf{t2} = \mathbf{1};$$

$$\mathbf{p2} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$
 $t2 = 1$;

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim(\begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} + 0)$$

$$a = hardlim(6) = 1$$

Se calcula el error:

$$e = t2 - a$$

$$e = 1 - 1$$

$$e = 0$$

Para el tercer par de entrada/salida

$$p3 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$
 $t3 = 1$;

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim(\begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} + 0)$$

$$a = hardlim(4) = 1$$

Se calcula el error:

$$e = t3 - a$$

$$e = 1 - 1$$

$$e = 0$$

El cuarto par de entrada/salida

V SEMESTRE Tecnologia en sistemas

$$\mathbf{p4} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \quad \mathbf{t4} = \mathbf{1};$$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim(\begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} + 0)$$

$$a = hardlim(2) = 1$$

Se calcula el error:

$$e = t4 - a$$

$$e = 1 - 1$$

$$e = 0$$

El quinto par de entrada/salida

$$\mathbf{p5} = \begin{bmatrix} \mathbf{0} \\ -\mathbf{2} \end{bmatrix} \quad \mathbf{t5} = \mathbf{0};$$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim(\begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} + 0)$$

$$a = hardlim(-2) = 0$$

Paso 2. Se calcula el error:

$$e = t5 - a$$

$$e = 0 - 0$$

$$e = 0$$

sexto par de entrada/salida

$$\mathbf{p6} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} \quad \mathbf{t6} = \mathbf{0};$$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

C.C 1112 770718

V SEMESTRE Tecnologia en sistemas

$$a = hardlim(\begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} + 0)$$

$$a = hardlim(-6) = 0$$

Se calcula el error:

$$e = t6 - a$$

$$e = 0 - 0$$

$$e = 0$$

séptimo par de entrada/salida

$$p7 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 $t7 = 0;$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim(\begin{bmatrix} -2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} + 0)$$

$$a = hardlim(-4) = 0$$

Se calcula el error:

$$e = t7 - a$$

$$e = 0 - 0$$

$$e = 0$$

octavo par de entrada/salida

$$\mathbf{p8} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad \mathbf{t8} = \mathbf{1};$$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim([-2 \ 1]\begin{bmatrix} 2 \\ 2 \end{bmatrix} + 0)$$

$$a = hardlim(-2) = 0$$

C.C 1112 770718

V SEMESTRE Tecnologia en sistemas

Se calcula el error:

$$e = t8 - a$$

$$e = 0 - 0$$

$$e = 0$$

Conclusion

Después de haber realizado el anterior procedimiento concluyo que el problema es linealmente separable y puede ser solucionado por un perceptrón simple, dado que se introduce una sola frontera de decisión separado el espacio de los patrones en dos regiones.

2. Usando la red neuronal del perceptron, clasificar la siguiente información

Ilustración 2 Frontera de decision 2

Para el primer par de entrada/salida

$$\mathbf{p1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{t1} = \mathbf{1};$$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim([1 - 0.8][1/2] + 0) = hardlim((1)(1) - (0.8)(2) + 0)$$

Jhonattan Leandro Bedoya Mejia C.C 1112 770718 V SEMESTRE Tecnologia en sistemas a = hardlim(-0.6) = 0

Se calcula el error:

$$e = t1 - a$$

$$e = 1 - 0$$

$$e = 1$$

Regla de aprendizaje del perceptrón, se modifica el vector de pesos:

$$W_{nusvo} = W_{antsrior} + ep^T$$

$$W_{nusvo} = [1 - 0.8] + (1)[1 \ 2]$$

$$W_{nuevo} = [1 - 0.8] + [1 \ 2] = [1 + 1 \ -0.8 + 2]$$

$$W_{nusvo} = \begin{bmatrix} 2 & 1.2 \end{bmatrix}$$

b

Para el umbral .

$$b_{nusvo} = b_{anterior} + e$$

$$b_{nusno} = 0 + 1 = 1$$

segundo par de entrada/salida

$$\mathbf{p2} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \mathbf{t2} = \mathbf{0};$$

salida utilizando la función de activación propia de la red (Con los Nuevos Pesos):

$$a = hardlim (Wp + b)$$

$$a = hardlim([2 \ 1.2] \begin{bmatrix} -1 \\ 2 \end{bmatrix} + 1) = hardlim((2)(-1) + (1.2)(2) + 1)$$

$$a = hardlim(1.4) = 1$$

Se calcula el error:

$$e = t2 - a$$

$$e = 0 - 1$$

$$e = -1$$

Usando la regla de aprendizaje del perceptrón, se modifica el vector de pesos:

$$W_{nusvo} = W_{antsrior} + ep^T$$

C.C 1112 770718

V SEMESTRE Tecnologia en sistemas

$$W_{nusvo} = \begin{bmatrix} 2 & 1.2 \end{bmatrix} + (-1)[-1 & 2]$$

$$W_{nusvo} = \begin{bmatrix} 2 & 1.2 \end{bmatrix} + \begin{bmatrix} 1 & -2 \end{bmatrix}$$

$$W_{nuevo} = \begin{bmatrix} 3 & -0.8 \end{bmatrix}$$
 (b)

Para el umbral

$$b_{nusvo} = b_{anterior} + e$$

$$b_{nusvo} = 1 - 1 = \mathbf{0}$$

tercer par de entrada/salida

$$p3 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad t3 = 0;$$

salida utilizando la función de activación propia de la red:

$$a = hardlim(Wp + b)$$

$$a = hardlim(\begin{bmatrix} 3 & -0.8 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + 0)$$

$$a = hardlim(0.8) = 1$$

Se calcula el error:

$$e = t3 - a$$

$$e = 0 - 1$$

$$e = -1$$

regla de aprendizaje del perceptrón, se modifica el vector de pesos:

$$W_{nusvo} = W_{antsrior} + ep^{T}$$

$$W_{nusvo} = [3 -0.8] + (-1)[0 -1]$$

$$W_{nuevo} = [3 - 0.8] + [0 \ 1]$$

$$W_{nusvo} = [3 \ 0.2]$$

(b)

Para el umbral

$$b_{\it nusvo} = \, b_{\it anterior} + \, e$$

$$b_{nusvo} = 0 - 1 = -1$$

Jhonattan Leandro Bedoya Mejia C.C 1112 770718 V SEMESTRE Tecnologia en sistemas primer par de entrada/salida

$$p1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $t1 = 1$;

función de activación propia de la red:

$$a = hardlim([3 \ 0.2][1/2] + 0) = hardlim((3)(1) + (0.2)(2) + 0)$$

$$a = hardlim(3.4) = 1$$

Se calcula el error:

$$e = t1 - a$$

$$e = 1 - 1$$

$$e = 0$$

segundo par de entrada/salida

$$p1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 $t2 = 0$;

función de activación propia de la red:

$$a = hardlim(\begin{bmatrix} 3 & 0.2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} + 0)$$

$$a = hardlim(-2.6) = 0$$

Se calcula el error:

$$e = t2 - a$$

$$e = 0 - 0$$

$$e = 0$$

tercer par de entrada/salida

$$\mathbf{p3} = \left[\begin{array}{c} \mathbf{0} \\ -\mathbf{1} \end{array} \right] \quad \mathbf{t3} = \mathbf{0};$$

función de activación propia de la red:

$$a = hardlim(\begin{bmatrix} 3 & 0.2 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + 0)$$

$$a = hardlim(-0.2) = 0$$

Se calcula el error:

$$e = t3 - a$$

$$e = 0 - 0$$

$$e = 0$$

los valores de W y b son:

Jhonattan Leandro Bedoya Mejia C.C 1112 770718 V SEMESTRE Tecnologia en sistemas $W = \begin{bmatrix} 3 & 0.2 \end{bmatrix}$ b = 0

Conclusion

Podemos observar que en la frontera de decisión (perpendicular al vector de pesos) pasando por el origen, esto último se debe a que el valor del umbral b es cero.

3. Diseñe una red neuronal que clasifique dos frutas

Primer par de entrada/salida

$$p1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$t1 = 0$$

la función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$\begin{split} a &= hardlim \Bigg(\begin{bmatrix} 0.5 & -1 & -0.5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + 0.5 \Bigg) \\ &= hardlim \Big((0.5)(1) + (-1)(-1) + (-0.5)(-1) + 0.5 \Big) \end{split}$$

$$a = hardlim(2.5) = 1$$

Se calcula el error:

$$e = t1 - a$$

$$e = 0 - 1$$

$$e = -1$$

regla de aprendizaje del perceptrón, se modifica el vector de pesos:

$$W_{nusvo} = W_{antsrior} + ep^T$$

C.C 1112 770718

V SEMESTRE Tecnologia en sistemas

$$W_{nusvo} = \begin{bmatrix} 0.5 & -1 & -0.5 \end{bmatrix} + (-1)[1 - 1 & -1]$$

 $W_{nusvo} = \begin{bmatrix} 0.5 & -1 & -0.5 \end{bmatrix} + \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$
 $W_{nusvo} = \begin{bmatrix} -0.5 & 0 & 0.5 \end{bmatrix}$

b

Para el umbral

$$b_{nusvo} = b_{antsrior} + e$$

$$b_{nuevo} = 0.5 - 1 = -0.5$$

segundo par de entrada/salida

$$p2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$t2 = 1$$

la función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim(\begin{bmatrix} -0.5 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} 1\\1\\-1 \end{bmatrix} - 0.5)$$

$$a = hardlim(-1.5) = 0$$

Se calcula el error:

$$e = t2 - a$$

$$e = 1 - 0$$

la regla de aprendizaje del perceptrón, se modifica el vector de pesos:

$$W_{nusvo} = W_{antsrior} + ep^T$$

$$W_{nusvo} = [-0.5 \ 0 \ 0.5] + (1)[1 \ 1 \ -1]$$

$$W_{nusvo} = [-0.5 \ 0 \ 0.5] + [1 \ 1 \ -1]$$

$$W_{nusvo} = [0.5 \ 1 \ -0.5]$$

Jhonattan Leandro Bedoya Mejia C.C 1112 770718 V SEMESTRE Tecnologia en sistemas

b

Para el umbral

$$b_{\it nusvo} = \, b_{\it antsrior} + \, e$$

$$b_{nusvo} = -0.5 + 1 = 0.5$$

Segunda época

Para el primer par de entrada/salida (Primera iteración)

$$p1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$t1 = 0$$

función de activación propia de la red:

$$a = hardlim (Wp + b)$$

$$a = hardlim(\begin{bmatrix} 0.5 & 1 & -0.5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + 0.5)$$

$$a = hardlim(0.5) = 1$$

Se calcula el error:

$$e = t1 - a$$

$$e = 0 - 1$$

$$e = -1$$

Regla de aprendizaje del perceptrón, se modifica el vector de pesos:

$$W_{nusvo} = W_{antsrior} + ep^{T}$$

$$W_{nusvo} = [0.5 \ 1 \ -0.5] + (-1)[1 \ -1 \ -1]$$

 $W_{nusvo} = [0.5 \ 1 \ -0.5] + [-1 \ 1 \ 1]$
 $W_{nusvo} = [-0.5 \ 2 \ 0.5]$

(b)

Para el umbral

$$b_{\it nusvo} = \, b_{\it antsrior} + \, e$$

Jhonattan Leandro Bedoya Mejia C.C 1112 770718 V SEMESTRE Tecnologia en sistemas $b_{nusvo}=0.5-1=-0.5$

Para el segundo par de entrada/salida

$$p2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \\ t2 = 1$$

función de activación propia de la red:

a = hardlim (Wp + b)

$$a = hardlim(\begin{bmatrix} -0.5 & 2 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} - 0.5)$$

$$a = hardlim(0.5) = 1$$

Se calcula el error:

$$e = t2 - a$$

$$e = 1 - 1$$

$$e = 0$$

$$p1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$t1 = 0$$

función de activación propia de la red:

a = hardlim (Wp + b)

$$a = hardlim(\begin{bmatrix} -0.5 & 2 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} - 0.5)$$

$$a = hardlim(-3.5) = 0$$

Se calcula el error:

$$e = t1 - a$$

$$e = 0 - 0$$

$$e = 0$$

Jhonattan Leandro Bedoya Mejia C.C 1112 770718 V SEMESTRE Tecnologia en sistemas

Por lo tanto, los valores finales de **W** y **b** son:

$$W = [-0.5 \quad 2 \quad 0.5]$$

$$b = 0.5$$

CONCLUSIÓN. De acuerdo a la regla de aprendizaje del perceptrón se ha alcanzado un mínimo por lo que se obtienen valores estables para la matriz de pesos \mathbf{w} y el umbral \mathbf{b} .