

Multi Class
Logistic
Regression with
Azure ML

Contents

Table of Contents

Project Expectation	4
Dataset Selection	
SQL Transformation	6
Query Script	
Select Columns	10
Split Data	11
Multi Class Logistic Regression	12
Score & Evaluate Model	14
Visualize	15
Result	15

Goals and Requirements

Estimated time to complete lab is 15-20 minutes.

Goals

- 1. Predict the Wine Quality using the dataset provided.
- 2. Multi Class Logistic Regression Model Implementation

Requirements

1. Access to an Azure subscription (with subscription administrator permissions).

Multi Class Logistic Regression

Project Expectation: To Build a Predictive Model for Wine Quality

Wine Quality Prediction

- · Fixed and Volatile Acidity
- Citric acid
- · Residual sugar
- Chlorides
- · Free and Total Sulfur dioxide
- Density
- pH
- Sulphates
- Alcohol Content

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009

Dataset Selection

Select the dataset and drop in canvas and visualize the same

Visualize the data

Considering 3 and 4 as low, 5 and 6 as medium, 7 and 8 as high from graph

SQL Transformation

Search for Apply SQL transformation

Connect the nodes

Query Script

Enter the query script in the right to categorize

Run for output

Right click and visualize for result

Result

Select Columns

Search for select columns in dataset and connect with existing dataset

Launch column selector and select all types except quality and click ok

Split Data

Search for split data and connect with select column dataset

Change the parameters as shown and stratified split as true

Launch column selector and change to wine category and click ok

Multi Class Logistic Regression

Search for multiclass logistic regression and change random number seed

Parameter as 123

Add train model in canvas and connect nodes as shown

Launch column selector and select wine category and click ok

Score & Evaluate Model

Drag and drop the Score model now and connect node1 with Train model

Connect node 2 with split data output node 2

Finally add evaluate model and connect with score model and run the module

Visualize the result

Result

As the result high and low quality is not predicted as expected due to Low observation available

