ENGG1003 - Monday Week 9

Numerical integration: review and applications

Steve Weller

University of Newcastle

3 May 2021

Last compiled: May 1, 2021 6:04pm +10:00

Lecture overview

- Review of integration
- Applications of integration
 - average value of a function
 - area between curves
 - centre of mass
 - probability
- Interpolation revisited

1) Review of integration

2) Applications of integration:i) average value of a function

XXX

2) Applications of integration:ii) area between curves

https://tutorial.math.lamar.edu/classes/calcii/centerofmass.aspx

2) Applications of integration: ii) area between curves

- exact area between $f(x) = \sqrt{x}$ and $g(x) = x^3$, domain [0,1] is 5/12 = 0.4166667
- using code areabetweencurves.py for trapezoidal method, 1000 panels, area is 0.416660

2) Applications of integration: iii) centre of mass

Same example as area between curves, but extend to centre of mass at (\bar{x},\bar{y}) where

$$\bar{x} = \frac{1}{A} \int_{a}^{b} x (f(x) - g(x)) dx$$

$$\bar{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} ([f(x)]^{2} - [g(x)]^{2}) dx$$

where

$$A = \int_{a}^{b} f(x) - g(x) dx$$

• Python code: centreofmass.py

```
Trapezoidal, 100 sub-intervals
Area under f: 0.666463
Area under g: 0.250025
Area between f and g: 0.416438
Centre of mass: (0.4802,0.4287)
Exact centre of mass: (0.4800,0.4286)
```


2) Applications of integration: iv) probability

probability density function of normal (or Gaussian) distribution:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

 $https://onlinestatbook.com/2/calculators/normal_dist.html\\$

• Python code normalprob.py

normal pdf distribution calculator

Generate normally distributed random numbers in Python

• Python code generatenormal.py

3) Interpolation revisited

Lecture summary

blah

blah

blah