Densimètre tube en U

On place de l'eau dans un tube en U puis on ajoute une huile de masse volumique ρ_h dans la partie gauche.

- 1. Expliquer pourquoi les points A et B ont la même pression.
- 2. Exprimer le principe fondamental de l'hydrostatique pour la colonne d'huile AF, puis pour la colonne d'eau BE. En déduire l'expression de ρ_h en fonction de ρ_{eau} , d et h.
- 3. Si d vaut 9 cm et h 10 cm, que vaut ρ_h ?

Fontaine de Héron

Supposons que la pression en A et en H vaille la pression atmosphérique P_0 et supposons que la pression P_B dans l'air du ballon du bas vaut la pression P_C dans l'air du ballon du haut.

En utilisant le principe fondamental de l'hydrostatique, déduire la hauteur théorique maximale h du jet de la fontaine.

Deux pailles pour un évier

Au départ, la paille jaune est sous la paille rouge, le bouchon est fermée et la bouteille est remplie d'eau.

L'eau commence à s'écouler par la paille rouge puis cet écoulement s'arrête de lui-même assez rapidement.

- 1. Que peut-on dire de la pression en A, P_A , au niveau de l'ouverture de la paille rouge dans la bouteille lorsque l'écoulement s'arrête?
- 2. En déduire une inégalité sur la pression P_{C} au niveau de la surface libre de l'eau dans la bouteille grâce au principe fondamental de la statique des fluides.
- 3. En déduire une inégalité sur la pression P_B au niveau de l'ouverture de la paille jaune dans la bouteille.
- 4. Et que devient cette inégalité sur P_B lorsqu'on élève l'extrémité basse de la paille jaune au-dessus de la paille rouge ?
- 5. Expliquer alors l'apparition de bulles d'air en B et l'écoulement de l'eau par la paille rouge.

