12) Fixed Effects (FE) and Random Effects (RE)

Vitor Kamada

August 2018

Fixed Effects (Time-Demeaned)

$$y_{it} = x_{it}\beta + c_i + u_{it} \quad (1)$$

$$\bar{y}_i = \bar{x}_i \beta + c_i + \bar{u}_i$$
 (2)

$$y_{it} - \bar{y}_i = (x_{it} - \bar{x}_i)\beta + u_{it} - \bar{u}_i$$

 $\ddot{y}_{it} = \ddot{x}_{it}\beta + \ddot{u}_{it}$

Fixed Effects (Estimation)

$$\ddot{y}_{it} = \ddot{x}_{it}\beta + \ddot{u}_{it}$$

FE.1:
$$E(u_{it}|x_i,c_i)=0, t=1,2,...,T$$

FE.2:
$$rank\left[\sum_{t=1}^{T} E(\ddot{x}_{i}'\ddot{x}_{i})\right] = K$$

$$\hat{\beta}_{FE} = (\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \ddot{x}_{it})^{-1} (\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \ddot{y}_{it})$$

Fixed Effects (Inference)

FE.3:
$$E(u_i u'_i | x_i, c_i) = \sigma_u^2 I_T$$

$$Avar(\hat{eta}_{FE}) = \hat{\sigma}_u^2 (\sum\limits_{i=1}^N \sum\limits_{t=1}^T \ddot{x}_{it}'\ddot{x}_{it})^{-1}$$

$$Avar(\hat{\beta}_{FE}) = (\ddot{X}'\ddot{X})^{-1} \left[\sum_{i=1}^{N} \ddot{X}'_{i} \hat{\ddot{u}}_{i} \hat{\ddot{u}}'_{i} \ddot{X}_{i}\right] (\ddot{X}'\ddot{X})^{-1}$$

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

4 / 18

FE (Dummy Variable Regression)

$$y_{it}$$
 on $d1_i, d2_{i,...}dN_i, x_{it},$

$$t = 1, 2, ..., T; i = 1, 2, ..., N$$

August 2018

5 / 18

Random Effects (RE.1)

$$y_{it} = x_{it}\beta + c_i + u_{it}$$

a)
$$E(u_{it}|x_i,c_i)=0, t=1,...T$$

b)
$$E(c_i|x_i) = E(c_i) = 0$$
, where $x_i = (x_{i1}, x_{i2}, ... x_{it})$

Random Effects (RE.2)

$$\operatorname{rank} E(X_i'\Omega^{-1}X_i) = K$$

$$\hat{\beta}_{RE} = (\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} X_i)^{-1} (\sum_{i=1}^{N} X_i' \hat{\Omega}^{-1} y_i)$$

$$v_{it} = c_i + u_{it}$$

$$\Omega = E(v_i v_i') = \begin{pmatrix} \sigma_c^2 + \sigma_u^2 & \sigma_c^2 & \cdots & \sigma_c^2 \\ \sigma_c^2 & \sigma_c^2 + \sigma_u^2 & \cdots & \vdots \\ \vdots & & \ddots & \vdots \\ \sigma_c^2 & & & \sigma_c^2 + \sigma_u^2 \end{pmatrix}$$

Random Effects (RE.3)

a)
$$E(u_i u_i' | x_i, c_i) = \sigma_u^2 I_T,$$

b) $E(c_i^2 | x_i) = \sigma_c^2$
 $v_{it} = c_i + u_{it}$
 $Corr(v_{it}, v_{is}) = \frac{\sigma_c^2}{\sigma_c^2 + \sigma_u^2}, \ t \neq s$
 $\frac{E(v_{it}, v_{is})}{E(v_{it}^2)} = \frac{E[(c_i + u_{it})(c_i + u_{is})]}{E(c_i^2) + 2E(c_i u_{it}) + E(u_{it}^2)}$

Relationship between the RE and FE Estimators

$$y_{it} - \lambda \bar{y}_i = (x_{it} - \lambda \bar{x}_i)\beta + v_{it} - \lambda \bar{v}_i$$

$$\lambda = 1 - \sqrt{\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_c^2}}$$

9 / 18

Within and Between R^2

Within
$$R^2$$
: $\rho^2\{(y_{it} - \bar{y}_i), (x'_{it}\hat{\beta} - \bar{x}'_i\hat{\beta})\}$

Between R^2 : $\rho^2(\bar{y}_i, \bar{x}_i'\hat{\beta})$

Overall R^2 : $\rho^2(y_{it}, x'_{it}\hat{\beta})$

10 / 18

State Traffic Fatality Data from Christopher Ruhm

$$Deaths_{st} = \beta_0 + \beta_1 BeerTax_{st} + X_{st} + u_{st}$$

use fatality.dta

xtset state year

vfrall: traffic fatality rate (deaths per 10,000)

unrate: unemployment rate

vmiles: average vehicle miles per driver

perinc: real income per capita (logarithm)

jaild: Mandatory jail dummy

Vitor Kamada ECO 7110 Econometrics II August 2018 11 / 18

sum vfrall beertax unrate vmiles jaild perinc

Variable	Obs	Mean	Std. Dev.	Min	Max
vfrall	336	2.040444	.5701938	. 82121	4.21784
beertax	336	.513256	.4778442	.0433109	2.720764
unrate	336	7.346726	2.533405	2.4	18
vmiles	336	7.890754	1.475659	4.576346	26.14827
jaild	335	.280597	. 449963	0	1
perinc	336	13.88018	2.253046	9.513762	22.19345

Average traffic fatality rate is 2 per 10,000

Average real beer tax is \$0.50 per case (in 1988 dollars)

OLS, RE and FE

```
reg vfrall beertax, vce(cluster state)
estimates store OLS
reg vfrall beertax unrate vmiles jaild perinc i.year, vce(cluster state)
estimates store OLS1
xtreg vfrall beertax unrate vmiles jaild perinc i.year, re vce(cluster state)
estimates store RE
xtreg vfrall beertax, fe vce(cluster state)
estimates store FE1
xtreg vfrall beertax unrate vmiles jaild perinc i.year, fe vce(cluster state)
estimates store FE2
reg vfrall beertax unrate vmiles jaild perinc i.state i.year, vce(cluster state)
estimates store Dummies
```

estimates table OLS OLS1 RE FE1 FE2 Dummies, b(%7.4f) se

Variable	OLS	OLS1	RE	FE1	FE2	Dummies
beertax	0.3646 0.1197	0.1306	0.0687	-0.6559 0.2919	-0.5282 0.3234	-0.5282 0.3499
unrate		0.0060	-0.0830		-0.0767	-0.0767
vmiles		0.02 4 9 0.1290	0.0160 0.0209		0.0130 0.0094	0.0141 0.0094
jaild		0.0827 0.2507	0.0153 0.1263		0.0078 0.0413	0.0084 0.0413
Jaiid		0.2307	0.1263		0.1045	0.0413
perinc		-0.1006 0.0314	-0.02 43 0.0298		0.0699 0.0381	0.0699 0.0413

All models have Time Fixed Effects

14 / 18

xtreg vfrall beertax unrate vmiles jaild perinc i.year, re vce(cluster state) theta

```
Random-effects GLS regression
                                              Number of obs =
                                                                        335
Group variable: state
                                              Number of groups =
                                                                         48
                                              Obs per group:
R-sa:
    within = 0.2668
                                                           min =
    between = 0.0122
                                                                        7.0
                                                           avg =
    overall = 0.0291
                                                           max =
                                              Wald chi2(11) =
                                                                      79.98
corr(u i, X) = 0 (assumed)
                                              Prob > chi2 =
                                                                     0.0000
                   theta -
 min
          5%
                   median
                              95%
                                         max
0.8216
        0.8344
                   0.8344
                             0.8344
                                      0.8344
```

(Std. Err. adjusted for 48 clusters in state)

Random Effects: $\frac{\sigma_c^2}{\sigma_c^2 + \sigma_u^2} = \frac{0.35^2}{0.35^2 + 0.15^2} = 0.83$

vfrall	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
beertax	.0686756	.1225986	0.56	0.575	1716132	.3089644
unrate	0830162	.0159739	-5.20	0.000	1143244	051708
vmiles	.0208952	.015316	1.36	0.172	0091236	.050914
jaild	.1263044	.0920177	1.37	0.170	054047	.3066557
perinc	0242537	.0298142	-0.81	0.416	0826885	.0341811
year						
1983	0922118	.0322668	-2.86	0.004	1554536	02897
1984	2550368	.0643028	-3.97	0.000	381068	1290057
1985	3037063	.0687668	-4.42	0.000	4384868	1689258
1986	2209293	.0798166	-2.77	0.006	3773669	0644917
1987	2765892	.1027146	-2.69	0.007	4779061	0752724
1988	3272589	.1140888	-2.87	0.004	5508689	1036488
_cons	2.962533	.4509262	6.57	0.000	2.078734	3.846332
sigma u	.35710213					
sigma e	.15863836					
rho	.83517946	(fraction	of varia	nce due t	oui)	

xtreg vfrall beertax unrate vmiles jaild perinc i.year, fe vce(cluster state)

```
Fixed-effects (within) regression
                                               Number of obs =
                                                                          335
Group variable: state
                                               Number of groups =
                                                                           48
R-sa:
                                               Obs per group:
    within = 0.3560
                                                             min =
    between = 0.2723
                                                                          7.0
                                                             avg =
    overall = 0.1849
                                                             max =
                                               F(11,47)
                                                                        10.89
corr(u i, Xb) = -0.8000
                                               Prob > F
                                                                       0.0000
                                 (Std. Err. adjusted for 48 clusters in state)
```

17 / 18

Fixed Effects

vfrall	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
beertax	5282011	.3234169	-1.63	0.109	-1.178832	.1224297
unrate	0767362	.0130328	-5.89	0.000	1029548	0505177
vmiles	.0093521	.0078051	1.20	0.237	0063497	.0250539
jaild	.041324	.1045413	0.40	0.694	1689861	.251634
perinc	.0698717	.0381331	1.83	0.073	0068421	.1465855
woon						
year 1983	0004104	.0310347	-2.98	0.005	1548441	0000767
	0924104					0299767
1984	2803558	.0503522	-5.57	0.000	3816513	1790602
1985	3607624	.0546772	-6.60	0.000	4707587	250766
1986	3111751	.065962	-4.72	0.000	4438735	1784767
1987	4033538	.0825874	-4.88	0.000	5694982	2372095
1988	4871078	.0944596	-5.16	0.000	6771359	2970797
_cons	2.098344	.591725	3.55	0.001	.9079471	3.288741
sigma u	.83158573					
sigma e	.15863836					
rho	.96488615	(fraction	of warie	nce due t	o 11 i)	
1110	. 5040013	(IIaction)	or varial	icc due t	.o u_1/	

Vitor Kamada ECO 7110 Econometrics II August 2018 18 / 18