PAGE NO: 13

24103	Linear Regression
	Input: A dataset with one independent valiable (x) and one dependent valiable
	Taitialization: set the coefficients m -1 slope => 0 L' (contexcept >1 0
TAKEN.	Training & Execution
	For each iteration:
(4)	The best fit line is represented as y= Bo + BIX + E
(± 1	Let data point be (n, y,) (n n, yn) Represent the data pinte in metric
	y = (yo) B = (B) X = (No) Exert you B = (B) X = (No) Exert you En En En En En En En E
	Y2 mn+c ran be sufresented as. Y2 mn+c ran be sufresented as. Y1 2 1 + M1

PAGE NO: DATE:

Then found &, can be determined B=((xT.x)" xT)y food for value can be used to pla the best jet line and can be us to predict future value. Multiple Linear Regrettion In multiple linear regression best fit line y 2 bo + b , M , + b , M 2 + · b , M , +? Tuitidizing bo, by, to 0 Let data pointe de (N, x2, - Mn.4) V. ifo, my where xi + i € {o, m} represent independent variables and 4 valuel are defendent variables In the form of matrix, ~ [17 x pit x zit . you 1+ 1/12+ - - × n2 I+ Min 1 - Inn where & = (x x) xf) y The above values can be used to plat De best fit dine and can be used to predict juture valuel.