2-6 환경

이전 강의 요약

01

로봇

Link

Joint

Actuator

URDF

02

로봇 좌표계

절대 좌표계

상대 좌표계

회전변환 / 평행이동

03

로봇 기구학

Forward Kinematics

Inverse Kinematics

Jacobian

04

로봇 동역학

기구학 vs. 동역학

환경 정의

환경 정의

환경 정의

로봇이 움직이는 환경을 어떻게 설명할 것인가?

환경 구성요소

01

02

03

장애물 (Obstacle) 공간 해상도 (Spatial Resolution) 시간 해상도 (Time Resolution)

장애물 (Obstacles)

로봇이 피해야 하는 제한 영역 물체와 같은 구체적 공간, 안전 구역과 같은 가상의 공간

장애물 (Obstacles) - 충돌 (Collision)

"충돌"은 언제 일어나는가?

- 로봇 자체 링크끼리의 충돌
- 다른 물체와의 충돌
- 제약조건 (안전구역, 로봇 안정성 등)

충돌을 어떻게 검출할 것인가?

 $\phi:\mathbb{Q} o \{ ext{True}, ext{False}\}$

1

충돌 검출 함수

Broad Phase vs. Narrow Phase

Broad Phase

물체를 경계 볼륨(bounding volumes)으로 표현하고 각 볼륨들이 서로 겹치는지 확인

- 교차하지 않으면, 해당 쌍을 제거
- 교차한다면, 더 세밀하게 판단

Broad Phase

물체를 경계 볼륨(bounding volumes)으로 표현하고 각 볼륨들이 서로 겹치는지 확인

- 교차하지 않으면, 해당 쌍을 제거
- 교차한다면, 더 세밀하게 판단

Narrow Phase

브로드 페이즈(broad-phase)에서 제거되지 않은 모든 쌍에 대해 정확한 충돌 검출

- 모든 객체를 볼록 형태로 분해
- 모든 볼록 형태 쌍 사이의 충돌을 검사.

Broad Phase vs. Narrow Phase

공간 해상도 (Spatial Resolution)

로봇이 이동할 수 있는 공간을 얼마나 세밀하게 나누어서 표현할 것인지

- 높은 공간 해상도: 더 정확한 경로를 찾을 수 있지만 계산량이 급격히 증가
- 낮은 공간 해상도: 계산은 빠르지만 경로 정확도가 떨어지거나 충돌 가능성이 생김

시간 해상도 (Time Resolution)

로봇의 움직임을 계산할 때 시간을 얼마나 세밀하게 나누어서 표현할 것인지

- 높은 시간 해상도: 더 정확한 경로를 찾을 수 있지만 계산량이 급격히 증가
- 낮은 시간 해상도: 계산은 빠르지만 경로 정확도가 떨어지거나 충돌 가능성이 생김
- 특히, 동역학 (dynamics) 에서 단위 시간에 결정적인 영향을 미침

환경 예시

환경 예시

Offline

사전에 수집된 정보를 바탕으로 환경을 정의 (CAD 도면, 미리 스캔된 맵, 지도 데이터 등)

Online

Offline

사전에 수집된 정보를 바탕으로 환경을 정의 (CAD 도면, 미리 스캔된 맵, 지도 데이터 등)

- 환경 전체를 고려한 플래닝
- 연산 비용이 적음

Online

Offline

사전에 수집된 정보를 바탕으로 환경을 정의 (CAD 도면, 미리 스캔된 맵, 지도 데이터 등)

- 환경 전체를 고려한 플래닝
- 연산 비용이 적음
- 환경 변화에 취약 (장애물 추가, 이동)
- 정확한 위치 추정이 필요

Online

Offline

사전에 수집된 정보를 바탕으로 환경을 정의 (CAD 도면, 미리 스캔된 맵, 지도 데이터 등)

- 환경 전체를 고려한 플래닝
- 연산 비용이 적음
- 환경 변화에 취약 (장애물 추가, 이동)
- 정확한 위치 추정이 필요

Online

환경 정보를 실시간으로 업데이트 (카메라, 라이다 등)

동적환경에 대응 가능

Offline

사전에 수집된 정보를 바탕으로 환경을 정의 (CAD 도면, 미리 스캔된 맵, 지도 데이터 등)

- 환경 전체를 고려한 플래닝
- 연산 비용이 적음
- 환경 변화에 취약 (장애물 추가, 이동)
- 정확한 위치 추정이 필요

Online

- 동적환경에 대응 가능
- 연산 비용이 큼
- 환경 전체를 고려하지 못 할 수 있음

환경 해석 방법 - Grid vs. Roadmap

환경 해석 방법 - Grid vs. Roadmap

강의 요약

01

장애물 (Obstacle)

충돌검출

Broad Phase

Narrow Phase

02

공간 해상도 (Spatial Resolution) 03

시간 해상도 (Time Resolution) 04

환경 해석 방법

Offline vs. Online