

Analysis

This implementation allows you to have a much higher FMAX, at the cost of more PLB usage.

Delay analysis

Delay analysis

$$t = \text{Multiptire delay} + \text{adder delay}$$
 $t = t \text{Mult} + t \text{add} * \frac{\log_e(x)}{\log_e(z)} \implies \text{frequency} = 1$

Where N is the Number of tops

To give you o rough idea

Analysis

Here you will get much slower FMAX, and the sampling maximum frequency will be greatly decreased, however you will get a much better Area/power parameter with this design

t = Mux delay + N * Mut delay + Udff delay + Mux delay + N* adder delay + adfledday = 2* truss + N* (+ mut + tadder) + 2* todff

