Injective Colouring in Circular-Convex Bipartite Graphs

Course Project Presentation

bγ

Harsh Kumar 2017MT10729 Vivek Muskan 2017MT10755 **T D M S S Pavan Srinivas** 2017MT10752

Under the supervision of
Professor B.S.Panda
Juhi Chaudhary, Priyamvada, Pooja Goyal

Department of Mathematics
INDIAN INSTITUTE OF TECHNOLOGY DELHI

CONTENTS

- 1. Problem Statement
- 2. Injective Colouring
 - Definition & Examples
- 3. Convex & Circular Convex Bipartite Graphs
 - Definition and Examples
- 4. Literature and Previous Existing Related Algorithms
 - Algorithm for Injective Colouring in Convex Bipartite Graphs
- 5. Our Approach and Results
 - Approach 1
 - Approach 2
 - Results
- 6. Conclusion and Further work
- 7. References

Find injective coloring algorithm for circular convex bipartite graph

Injective Coloring

An *Injective Colouring* of a graph G is the vertex-colouring in which vertices having common neighbour gets different colours.

The minimum number of colours required for G to be injectively coloured is its **injective chromatic number** denoted by $X_i(G)$

v1 and v2 share a common neighbor v3 and hence colored different

Note: (v1, v3) or (v2, v3) can have same colors.

Decide Injective Colouring Problem

Given a graph G and an integer K, Is it possible to Injectively color the Graphs G using K-colours.

This problem is Np-Complete in general graphs and also in bipartite graphs.

For any general graph $\Delta \leftarrow X_i(G) \leftarrow \Delta^2 - \Delta + 1$

Convex Bipartite Graph

Let $G = (U \cup V, E)$ be a bipartite graph with vertex partitions U and V. Let $N_G(v)$ denote the neighbourhood of the vertex $v \in V$.

The graph **G** is said to be convex over the vertex set **U** if the vertices in U can be indexed from 1 to |U| such that, for all $v \in V$ the vertices in the $N_G(v)$ are adjacent with respect to the indexing i.e., if d(v) = x then all $v \in N_G(v)$ have continuous indices i.e. i+1, i+2, ..., i+x.

Fig 1: Example of a Convex bipartite graph, convex over the set of white vertices

Find injective coloring algorithm for circular convex bipartite graph

Circular Convex Bipartite Graph

A Bipartite Graph $G = (U \cup V, E)$, is said to be circular convex over U if there exists a circular ordering in U such that for every $v \in V$ the neighbourhood of v forms a (continuous)circular arc

A convex bipartite graph is a circular convex bipartite, but converse is not true.

Fig 2: Example of a Circular Convex bipartite graph, convex over the set of white vertices

Literature: Algorithm for Convex Bipartite Graph

Lex-Convex Ordering: Let G = (X U Y, E) be a convex bipartite graph, then

An ordering $\sigma = (x_1, x_2, \dots, x_{nx}, y_1, y_2, \dots, y_{ny})$ is said to be a lexicographic convex(lex-convex) ordering if:

a. σ is a convex ordering &

b. for x_i and x_j with i < j, the lowest index in $N_G(x_i) \le N_G(x_j)$. Also in the case for the highest index.

- Lex-convex ordering of a graph G that is convex over Y can be determined in O(|X|log|X|) time
- Given a lex-convex ordering of a convex bipartite graph G, this below polynomial time algorithm computes an optimal injective coloring of G
- The algorithm maintains an array $L[y_i]$ of size Δ for each vertex y_i in $Y, 1 \le i \le n_y$, that stores the set of colors used by its neighbors

Algorithm 2 Convex Bipartite Graph

Input: A convex bipartite graph G = (X, Y, E) with maximum degree Δ and lex-convex ordering of G, $\sigma =$ $(x_1, x_2, \ldots, x_{n_x}, y_1, y_2, \ldots, y_{n_y}).$

Output: An injective coloring, f of G.

```
begin
```

```
Initialize S = \emptyset and L[y_i] = \emptyset, for each 1 \le i \le n_v;
for i = 1 to n_v do
    if (i \mod \Delta \neq 0) then
        f(y_i) = i \mod \Delta;
    else
         f(y_i) = \Delta;
i = 1;
while i \leq n_{\nu} do
    if (y_i \text{ has a neighbor } x, \text{ taken in the order } (x_1, x_2, \dots, x_{n_x}), \text{ which is not yet colored) then
         Let \{y'_1, \ldots, y'_{d_G(x)}\} be the neighbors of x:
         S = L[y'_1] \cup \ldots \cup L[y'_{d_C(x)}];
         Assign f(x) = \min \{c \in \{1, ..., n_x\} \setminus S\}
         for r = 1 to d_G(x) do
          L[y'_r] = f(x) \cup L[y'_r];
    else
      i = i + 1;
                                                                   L[y<sub>i</sub>]
return f;
                                                                    f(y)
                                                                                                              5
                                                                                                                                        3
```

Approach 1

• Similar to previous algorithm

Let $y_1 \rightarrow y_2 \rightarrow ... \rightarrow y_{nv} \rightarrow y_1$ be the circular convex ordering of the partition Y of G.

- 1. Initially find x, that has maximum degree, its neighbours forms an arc A in Y.
- 2. Starting with one end point of A, colour towards other in the fashion 1,2,..., \triangle ,1,2,....(Y done)
- 3. Later on x_i 's are coloured following the while loop of the Algorithm 2.
- The only difference is that the neighbours of any particular 'x' may be in the order something like, $\{y_i, y_{i+1}, ..., y_{nv}, y_1, ..., y_{d(x)-nv-i-1}\}$, i.e., overshooting y_{nv} .

Complexity of the algorithm is O(mn), where m = |vertex| and n = |edge| set of G.

Result 1 (Approach 1)

Result 1: A circular convex bipartite graph with $\Delta = 3$

Result 2: Failed!

Result 2: A circular convex bipartite graph with Δ = 3, but cannot be coloured using above algorithm

A circular convex bipartite graph cannot always be coloured using Δ colors injectively.

Even though with Δ = 3, every vertex in Y are adjacent to each other requiring |Y| = 4 colours.

Approach 2- Modification in Approach 1

Let $G = (X \cup Y, E)$ be a circular convex bipartite graph with convexity over Y.

Let $y_1 \rightarrow y_2 \rightarrow ... \rightarrow y_{ny} \rightarrow y_1$ be its circular convex ordering of vertex set Y.

The algorithm maintains two set of arrays $L[x_i]$, 1<= i <= nx and $L[y_i]$, 1<= j <= ny.

These arrays stores the colors used by their respective neighbours.

- 1. Now assign each \mathbf{x} a color $\min\{\{1,2,...n\mathbf{x}\}\setminus \bigcup \mathbf{L[y_i']}\}$, where " $\mathbf{y_i}$ " $1 \le i \le d_G(\mathbf{x})$ are the neighbours of \mathbf{x} .
- 2. Similarly colour each y in Y.

```
Time Complexity = O(mn)
m = number of vertices in G
n = number of edges in G
```

Algorithm implemented in python

```
# Coloring X
for x in range(1, len(X)+1):
    if(colorX[x-1] == -1):
        S = set()
        for y in X[x-1]:
            for x in Y[y-1]:
                if (colorX[_x-1] != -1): S.add(colorX[_x-1])
        for i in range(1,len(X)+1):
            if i not in S:
                colorX[x-1] = i
                break
# Coloring Y
for y in range(1, len(Y)+1):
    if(colorY[y-1] == -1):
        S = set()
        for x in Y[y-1]:
            for y in X[ x-1]:
                if (colorY[ y-1] != -1): S.add(colorY[ y-1])
        for i in range(1,len(Y)+1):
            if i not in S:
                colorY[y-1] = i
                break
```

Result 1 (previous Counterexample)

Chromatic No: 4

Results 2

Chromatic No: 5

Conclusion and Further Works

- A circular convex bipartite graph may have injective chromatic no $\geq \Delta$
- Approach 1 failed as it uses exactly Δ colors
- Approach 2 works for any bipartite graph
- Complexity of Approach 2 is O(mn)

Optimality of the Algorithm in the approach 2 needs to be proved.

REFERENCES

- 1. Fig 1 & 2: https://www.sciencedirect.com/science/article/pii/S0304397514003508
- 2. Algorithm 1: https://www.sciencedirect.com/science/article/pii/S0166218X20305217
- 3. Algorithm 2: https://www.sciencedirect.com/science/article/pii/S0166218X20305217
- 4. Fig 3 & 4: https://www.sciencedirect.com/science/article/pii/S0166218X20305217

THANK YOU