LMOSD

XD-LAB-ARCH-007

Lab7: Pipelined CPU Accessing

Mem in Multiple Cycle

Joseph Xu

2019-1-23

修改记录

版本号.	作者	描述	修改日期
1.0	Joseph Xu	初稿	2019-01-23

审核记录

姓名	职务	签字	日期

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 1 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

目录

修改	记录		0
审核	记录	· · · · · · · · · · · · · · · · · · ·	1
1.	实验	准备	5
	1. 1	实验目的	5
	1. 2	实验内容	5
	1. 3	实验资料	5
2.	实验	步骤	7
	2. 1	新建工程	7
	2. 1	修改文件	9
	2. 2	功能仿真	.21
	2. 3	生成 bitstream 文件	.30
	2. 4	下载验证	.31

图目录

	冬	1-1	实验资料网站		5
	图	1-2	实验文档和工程源文件		6
	冬	2-1	运行 Vivado		7
	图	2-2	打开工程		7
	冬	2-3	打开 Lab06 工程		8
	图	2-4	工程另存为		8
	图	2-5	工程另存为 lab07		9
	冬	2-6	需要修改的 lab07 工程		9
	冬	2-7	点击 Expand All 快捷按钮		10
	冬	2-8	mips_top 展开后的文件层次		10
	冬	2-9	移除所有旧文件后的源码层次		11
	图	2-10	添加新文件		11
	冬	2-11	增加 design sources		12
	冬	2-12	add files		12
	冬	2-13	切换目录		13
	图	2-14	选择文件		13
	图	2-15	lab07 添加的文件		14
	图	2-16	继续添加 hex 文件		14
	图	2-17	Next		15
	图	2-18	添加文件		15
	图	2-19	指定全部类型文件可见		16
	图	2-20	切换目录		16
	图	2-21	选择 hex 文件		17
	冬	2-22	增加到工程		17
	图	2-23	设置文件类型		18
	冬	2-24	设置类型为 Data Files		18
	冬	2-25	设置文件类型		19
	冬	2-26	设置类型为 Data Files		19
	冬	2-27	Refresh Hierarchy		20
	冬	2-28	Data Files		20
	冬	2-29	添加所有文件后的文件列表		21
			标题 Lob7: Lob7: Pinalined CDLI Accessing	文档编号	版本 页
χiι	na	DE		XD-LAB-ARCH-007	1.0 3 of 35
			作者	修改日期	

2019/1/23

Joseph Xu

图 2-30	设置仿真顶层22
图 2-31	开始仿真22
图 2-32	仿真视图23
图 2-33	仿真所需要观察的所有信号24
图 2-34	菜单中选择"Open Waveform Configuration"25
图 2-35	切换目录25
图 2-36	选择 wcfg 文件25
图 2-37	通过加载波形配置文件添加信号26
图 2-38	Restart Simulation
图 2-39	Run for
图 2-40	仿真结果 128
图 2-41	仿真结果 229
图 2-42	关闭仿真视图29
图 2-43	生成 bitstream30
图 2-44	自动运行中间步骤30
图 2-45	生成 bitstream 成功31
图 2-46	连接 SWORD4.031
图 2-47	主要控制 IO32
图 2-48	进入 Hardware Manager32
图 2-49	自动连接到 SWORD4.033
图 2-50	Program Device
图 2-51	下载 bit 文件34
图 2-52	运行效果34

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		,
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 4 of 35
	作者	修改日期	74
	Joseph Xu	2019/1/23	公开

1. 实验准备

1.1 实验目的

理解 CPU 在多时钟周期内访问 Memory 的原理机制及该机制对 CPU 的影响。掌握为流水线 CPU 实现多时钟周期访问 memory 的设计及验证方法。并在实验 6 的基础上,修改 Memory 访问机制为多个时钟周期访问时间,CPO 增加 CPU Tick 计算功能,并测试实际循环指令执行效果,分析实际存储器对 CPU 性能的影响。

1.2 实验内容

本实验内容包括:

- 重新设计 Inst. ROM 和 Data RAM;
- 修改设计 CPU 的数据通路 Datapath 和控制单元 Controller;
- 对设计的 CPU 进行行为仿真,检查功能正确性;
- 上板验证并观察 CPU 的执行过程。

1.3 实验资料

实验资料可以从网站 https://gitee.com/SWORDfpga/ComputerArchitecture 获得。

图 1-1 实验资料网站

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 5 of 35
	作者	修改日期	*
	Joseph Xu	2019/1/23	公开

为方便使用,建议建立 c:\archlabs 目录,放置实验资料和实验工程。

图 1-2 实验文档和工程源文件

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 6 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

2. 实验步骤

2.1 新建工程

首先启动 Vivado 2014.4 开发工具,如图 2-1 所示:

图 2-1 运行 Vivado

点击 Open Project,如图 2-2 所示:

图 2-2 打开工程

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 7 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

选择之前已经完成的 Lab06 工程,点击 OK 打开工程,如图 2-3 所示:

图 2-3 打开 Lab06 工程

本实验以 Lab06 工程为基础,在 File 菜单点击 Save Project As 将工程另存为,如图 2-4 所示:

图 2-4 工程另存为

如图 2-5 所示,输入新工程名 lab07,选中 Create project subdirectory,点击 OK 继续。

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 8 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

图 2-5 工程另存为 lab07

如图 2-6 所示,工程被另存为 lab07,本实验将以此工程为基础进行修改。

图 2-6 需要修改的 lab07 工程

2.1 修改文件

在 Project Manager 窗口下,首先点击 mips_top,然后点击如图 2-7 所示的 Expand All 快捷按钮展开 mips_top 下的所有文件:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 9 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

图 2-7 点击 Expand All 快捷按钮

展开后的层次如图 2-8 所示:

图 2-8 mips_top 展开后的文件层次

由于本实验在 lab06 的基础上需要修改和新增一些文件,所以我们进行一些移除旧文件,添加更新文件的操作。

首先按照 lab06 里面移除文件的方法,将下列文件依次移除:

1) inst_mem.hex

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 10 of 35
	作者	修改日期	<i>*</i> 1
	Joseph Xu	2019/1/23	公开

- 2) data_mem.hex
- 3) cp0.v
- 4) inst_rom.v
- 5) data_ram.v
- 6) datapath.v
- 7) controller.v
- 8) mips_core.v
- 9) mips.v
- 10) mips_define.vh
- 11) sim_mips.v

移除后的文件列表应如图 2-9 所示,请仔细比对该图,确保所有旧文件都已经移

除!!

图 2-9 移除所有旧文件后的源码层次

接着在 Sources 窗口内点击 Add Sources 快捷按钮,添加新文件,如图 2-10 所示。

图 2-10 添加新文件

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 11 of 35
	作者	修改日期	<i>11</i>
	Joseph Xu	2019/1/23	公开

选中 Add or create design sources,点击 Next,如图 2-11 所示:

图 2-11 增加 design sources

点击 Add Files, 如图 2-12 所示:

图 2-12 add files

进入 C:\archlabs\ComputerArchitecture\lab_source\lab07\sources\cpu 目录,如图 2-13 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		,
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 12 of 35
	作者	修改日期	**
	Joseph Xu	2019/1/23	公开

图 2-13 切换目录

选中所有文件,点击 OK 确认添加,如图 2-14 所示。

图 2-14 选择文件

如图 2-15 所示,列表中会显示要添加到工程中的文件,本次操作添加了 9 个文件,请确认添加文件的数量正确。选中 Scan and add RTL include files into project 和 Copy sources into project,点击 Finish。

本次操作新加入了一下文件:

协处理器文件 cp0.v 中增加了 CPU Tick 计算功能;

增加的 alu.v、controller.v 和 datapath.v 修改了对 CPO 的响应控制和数据通路; mips.v 和 mips core.v 作为连接 controller 和 datapath 的模块也做了对应修改;

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 13 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

mips_define.vh 里增加了对 CPU Tick 指令的支持定义;

sim_mips.v 里对应的仿真顶层文件。

图 2-15 lab07 添加的文件

接着我们添加 hex 文件,同样点击如图 2-16 所示的 Add Sources 快捷按钮:

图 2-16 继续添加 hex 文件

选中 Add or create design sources,点击 Next,如图 2-17 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		,
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 14 of 35
	作者	修改日期	<i>11</i>
	Joseph Xu	2019/1/23	公开

图 2-17 Next

用 Add Files 添加文件,如图 2-18 所示:

图 2-18 添加文件

指定文件类型为 All Files, 如图 2-19 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 15 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

图 2-19 指定全部类型文件可见

切换到 C:\archlabs\ComputerArchitecture\lab_source\lab07\data 目录 , 如图 2-20 所示:

图 2-20 切换目录

选择 data_mem.hex 和 inst_mem.hex 文件,如图 2-21 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 16 of 35
	作者	修改日期	7.
	Joseph Xu	2019/1/23	公开

图 2-21 选择 hex 文件

选中 Scan and add RTL include files into project 和 Copy sources into project, 点击 Finish 把文件加入到工程,如图 2-22 所示:

图 2-22 增加到工程

点击 "+" 展开 Unknown,在 data_mem.hex 上点击右键,点击 Set File Type,如图 2-23 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 17 of 35
	作者	修改日期	<i>*</i> 1
	Joseph Xu	2019/1/23	公开

图 2-23 设置文件类型

选择 Data Files,点击 OK,如图 2-24 所示:

图 2-24 设置类型为 Data Files

如图 2-25 所示,同样设置 inst_mem.hex 的类型。

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 18 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

图 2-25 设置文件类型

设置为 Data Files , 如图 2-26 所示:

图 2-26 设置类型为 Data Files

在 data_mem.hex 上点击右键,点击 Refresh Hierarchy 更新视图,如图 2-27 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 19 of 35
	作者	修改日期	*
	Joseph Xu	2019/1/23	公开

图 2-27 Refresh Hierarchy

如图 2-28 所示,现在 data_mem.hex 和 inst_mem.hex 都在 Data Files 下了,这两个文件包含指令存储器和数据存储器的初始化信息。

图 2-28 Data Files

添加的文件列表应如图 2-29 所示,**请仔细比对该图,确保所有新文件都已经添加!!**

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 20 of 35
	作者	修改日期	<i>*</i> 1
	Joseph Xu	2019/1/23	公开

图 2-29 添加所有文件后的文件列表

2.2 功能仿真

如图 2-30 所示,在 Vivado 的 Sources 窗口的 Simulation Source 子项依次展开,然后将 sim_mips 设置为仿真顶层:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing	'	
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 21 of 35
	作者	修改日期	**
	Joseph Xu	2019/1/23	公开

图 2-30 设置仿真顶层

点击 Run Simulation 下的 Run Behavioral Simulation,如图 2-31 所示:

图 2-31 开始仿真

仿真编译成功后,进入仿真视图,如图 2-32 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing	•	
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 22 of 35
	作者	修改日期	*
	Joseph Xu	2019/1/23	公开

图 2-32 仿真视图

按照之前实验的仿真操作,将如下信号添加到波形列表中:

- 1. /sim mips/clk
- 2. /sim mips/rst
- 3. /sim mips/uut/MIPS CORE/DATAPATH/if rst
- 4. /sim mips/uut/MIPS CORE/DATAPATH/if en
- 5. /sim mips/uut/MIPS CORE/DATAPATH/if valid
- 6. /sim_mips/uut/MIPS_CORE/DATAPATH/inst_addr[31:0]
- 7. /sim mips/uut/MIPS CORE/DATAPATH/inst data[31:0]
- 8. /sim mips/uut/MIPS CORE/DATAPATH/inst ren
- 9. /sim mips/uut/MIPS CORE/DATAPATH/inst stall
- 10. /sim mips/uut/MIPS CORE/DATAPATH/id rst
- 11. /sim_mips/uut/MIPS_CORE/DATAPATH/id_en
- 12. /sim_mips/uut/MIPS_CORE/DATAPATH/id_valid
- 13. /sim mips/uut/MIPS CORE/DATAPATH/inst addr id[31:0]
- 14. /sim mips/uut/MIPS CORE/DATAPATH/inst data id[31:0]
- 15. /sim_mips/uut/MIPS_CORE/DATAPATH/fwd_a_ctrl[1:0]
- 16. /sim mips/uut/MIPS CORE/DATAPATH/fwd b ctrl[1:0]
- 17. /sim mips/uut/MIPS CORE/CONTROLLER/reg stall
- 18. /sim mips/uut/MIPS CORE/DATAPATH/exe rst
- 19. /sim mips/uut/MIPS CORE/DATAPATH/exe en
- 20. /sim mips/uut/MIPS CORE/DATAPATH/exe valid
- 21. /sim_mips/uut/MIPS_CORE/DATAPATH/inst_addr_exe[31:0]
- 22. /sim_mips/uut/MIPS_CORE/DATAPATH/inst_data_exe[31:0]
- 23. /sim mips/uut/MIPS CORE/CONTROLLER/wb rst
- 24. /sim_mips/uut/MIPS_CORE/CONTROLLER/wb_valid
- 25. /sim mips/uut/MIPS CORE/DATAPATH/wb wen wb
- 26. /sim mips/uut/MIPS CORE/DATAPATH/regw addr wb[4:0]
- 27. /sim mips/uut/MIPS CORE/DATAPATH/regw data wb[31:0]
- 28. /sim mips/uut/MIPS CORE/CP0/ir in
- 29. /sim mips/uut/MIPS CORE/CP0/oper[1:0]
- 30. /sim mips/uut/MIPS CORE/CP0/addr r[4:0]
- 31. /sim_mips/uut/MIPS_CORE/CP0/data_r[31:0]

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 23 of 35
	作者	修改日期	74
	Joseph Xu	2019/1/23	公开

- 32. /sim_mips/uut/MIPS_CORE/CP0/addr_w[4:0]
- 33. /sim mips/uut/MIPS CORE/CP0/data w[31:0]
- 34. /sim_mips/uut/MIPS_CORE/CP0/jump_en
- 35. /sim_mips/uut/MIPS_CORE/CP0/jump_addr[31:0]
- 36. /sim_mips/uut/MIPS_CORE/CP0/epcr[31:0]
- 37. /sim_mips/uut/MIPS_CORE/CP0/ehbr[31:0]
- 38. /sim_mips/uut/MIPS_CORE/DATAPATH/REGFILE/regfile[1:31][31:0]

添加后将所有 4 位以上宽度的信号都设置成 16 进制显示。添加并设置后的波形列表如图 2-33 所示:

图 2-33 仿真所需要观察的所有信号

另外为了方便操作,可以直接加载预先提供的波形列表配置文件,具体操作如下: 在仿真视图下,选择 File→Open Waveform Configuration,如图 2-34 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 24 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

图 2-34 菜单中选择"Open Waveform Configuration"

切换到 C:\archlabs\ComputerArchitecture\lab_source\lab07\simulation 目录,如图 2-35 所示:

图 2-35 切换目录

选择 lab7 sim.wcfg 文件, 然后点击 OK。如图 2-36 所示:

图 2-36 选择 wcfg 文件

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 25 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

添加后的信号如图 2-37 所示 ,:

图 2-37 通过加载波形配置文件添加信号

增加信号后需要使用 Run 菜单下的 Restart,重新开始,如图 2-38 所示:

图 2-38 Restart Simulation

使用 Run for...仿真指定时间长的波形,如图 2-39 所示:

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 26 of 35
	作者	修改日期	<i>*</i> 1
	Joseph Xu	2019/1/23	公开

图 2-39 Run for...

通过键盘 Shift+ "-"和 Shift+ "+"可以对波形图进行缩放。 将仿真出的波形和下面 2 张图对比,可以知道设计的电路是否正常工作。

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 27 of 35
	作者	修改日期	<i>1</i> /
	Joseph Xu	2019/1/23	公开

图 2-40 仿真结果 1

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 28 of 35
	作者	修改日期	74
	Joseph Xu	2019/1/23	公开

图 2-41 仿真结果 2

仿真结束后,在菜单中选择 File→Close Simulation,关闭仿真视图。如图 2-42 所示:

图 2-42 关闭仿真视图

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 29 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

2.3 生成 bitstream 文件

回到 Vivado 主界面后,确认 mips_top.v 被设置为顶层文件后。点击 Generate Bitstream 生成 FPGA 配置文件。如图 2-43 所示:

图 2-43 生成 bitstream

在询问对话框中选择 Yes,自动运行 synthesis 和 implementation,如图 2-44 所示:

图 2-44 自动运行中间步骤

如图 2-45 所示,当显示 Bitstream Generation Completed 时表示文件成功生成,点击 Cancel 结束。

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 30 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开

图 2-45 生成 bitstream 成功

2.4 下载验证

仿真完成后,下载 bit 文件到 SWORD4.0 开发平台查看真实效果。按图连接 SWORD4.0 的 12V 电源和 JTAG,然后打开开关。

图 2-46 连接 SWORD4.0

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 31 of 35
	作者	修改日期	<i>(</i> 1
	Joseph Xu	2019/1/23	公开

SWORD4.0 的控制开关主要有拨码开关、键盘矩阵、复位按钮等。

图 2-47 主要控制 IO

在 Vivado 中点击 Open Hardware Manager。

图 2-48 进入 Hardware Manager

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 32 of 35
	作者	修改日期	74
	Joseph Xu	2019/1/23	公开

点击 Open target, 然后点击 Auto Connect。

图 2-49 自动连接到 SWORD4.0

右键点击找到的 xc7k325t_0,选择 Program Device。

图 2-50 Program Device

点击 Program 下载 bit 文件。

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing	'	
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 33 of 35
	作者	修改日期	7.
	Joseph Xu	2019/1/23	公开

图 2-51 下载 bit 文件

下载完成后 SWORD4.0 上的反应,液晶屏上会显示调试信息。

图 2-52 运行效果

通过将拨码开关 DSWO 拨向上,可以开启单步模式。之后每按一下键盘矩阵左下角的 BTNX4YO,CPU 就执行一条指令。按复位键 FPGA RST 按钮回到初始状态。

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 34 of 35
	作者	修改日期	74
	Joseph Xu	2019/1/23	公开

在单步模式下,通过每一步液晶屏显示的数据与仿真波形的对比,查看流水线 cpu 是否正常工作。

	标题	文档编号	版本 页
	Lab7: Lab7: Pipelined CPU Accessing		
xingdeng	Mem in Multiple Cycle	XD-LAB-ARCH-007	1.0 35 of 35
	作者	修改日期	
	Joseph Xu	2019/1/23	公开