Selecting eigenvectors by inspection

TOTAL POINTS 6

 Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

1/1 point

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}2\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

 $lacksquare \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

✓ Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

✓ Correct

his eigenvector has eigenvalue 2 which means that it stays in the same direction but doubles in size

 $lefta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

/ Correc

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

None of the above.

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays
in the same span. In the following questions, you will try to geometrically see which vectors of a linear
transformation are eigenvectors.

1/1 point

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}3&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}3\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T^{γ}

 $left[egin{array}{c} 1 \\ 0 \end{array}]$

✓ Correct

eigenvector has eigenvalue 3, which means that it stays in the same direction but triples in size.

 \checkmark Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

None of the above.

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays
in the same span. In the following questions, you will try to geometrically see which vectors of a linear
transformation are eigenvectors.

n vector

1/1 point

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$: the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The transformation $T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the