2017级《高等数学下》试卷

一、填空题

1、函数
$$z = \ln(x^2 + y^2 - 1)$$
,则 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{(1,1)} = \underline{\hspace{1cm}}$

2、曲面
$$z = e^{yz} + x \cdot \sin(x + y)$$
 在点 $(\frac{\pi}{2}, 0, 1 + \frac{\pi}{2})$ 处的切平面方程为 ______

3、若函数
$$z = 2x^2 + 2y^2 + 3xy + ax + by + c$$
 在点 $(-2,3)$ 处取得极小值 -3 , 则 $a \cdot b \cdot c =$ _____

4、设
$$f(x,y)$$
 连续,改变二次积分的积分次序: $\int_0^1 dy \int_{y^2}^y f(x,y) dx =$ ______

5、设
$$f(x,y)$$
 连续, 化积分 $\int_0^1 dx \int_x^1 f(x,y) dy$ 为极坐标下的二次积分,则
$$\int_0^1 dx \int_x^1 f(x,y) dy = \underline{\hspace{1cm}}$$

6、计算对弧长的曲线积分
$$\int_L (y-x)ds$$
,其中 L 为连接点 $(-3,0)$ 到点 $(0,3)$ 的直线段,则
$$\int_L (y-x)ds = \underline{\hspace{1cm}}$$

8、计算对面积的曲面积分
$$\iint_{\Sigma} (3x+2y+2z-2)dS$$
, 其中 Σ 为平面 $x+y+z=1$ 在第一卦限中的部分,则 $\iint_{\Sigma} (3x+2y+2z-2)dS =$ ______

9、若级数 $\sum_{p=1}^{\infty} \frac{1}{n^p}$ 收敛,则 p 的取值范围是______

二、计算题

10、设z=z(x,y)由方程F(cx-az,cy-bz)=0确定,其中a,b,c为常数,F具有连续

偏导数,且
$$aF_u + bF_v \neq 0$$
,证明: $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c$.

11、已知空间上三点 $A(x_1,y_1,z_1)$, $B(x_2,y_2,z_2)$, $C(x_3,y_3,z_3)$,在此空间上求一点M,使其到点A、B、C 的距离平方和为最小.

12、计算 $I = \iint_D [\cos(x-1)^2 + e^{y^2}] dx dy$, 其中区域 D 是由 x = 0, y = x, y = 1 所围成的闭区域.

13、验证 $(3x^2y+8xy^2)dx+(x^3+8x^2y+12e^y)dy$ 是某函数u(x,y)的全微分,并求u(x,y).

14 、 计 算 $\bigoplus_{\Sigma} 2xzdydz + yzdzdx - z^2dxdy$,其 中 Σ 由 曲 面 $z = \sqrt{x^2 + y^2}$ 与 曲 面 $z = \sqrt{2 - x^2 - y^2}$ 所围立体 Ω ($\sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2}$) 的边界曲面的外侧.

15、将函数 $f(x) = \frac{1}{x}$ 展开成关于 x-2 的幂级数.