

Agenda:

- An inspiring history from Bangkok
- Trench/Route-concept as a bridge between geographical data and complex network modelling data
- Examples of how the trench-concept in combination with native cloud technology can be used to optimze utility processes

Inspiring history

Overhead-to-underground cable conversion project in Bangkok

All power and telecom lines are "moved" into the ground

> 250 km tunnel network holding power transmission and telecom-backbone

Pipe-jacking / micro-tunnelling
30-50 meters deept below metro lines
Price around 15 mill euro per kilometer

A piece of "bad ass" tunnel route seen from the inside

Street- food arriving ©

Telecombackbone fibercables In multiconduits

230 kV water cooled power lines

2.450 km access-network as we know from Denmark (multi conduit technology)

Graph-based modelling is a bless dealing with complex multi-level topology

Non-geographical part, modelled as a multi-level graph:

- Duct banks
- Multi conduits (outer and inner ducts)
- Power and fiber cables
- Eletrical wires / Ttubes and fibres in fiber cables
- Physical connectivity
- Logical/topological connectivity
- Network models inside nodes

Example geographical view of the route network

Example view of the equipments related to a specific route element

Danish LER 2.0 support

Composite parent-child strukture

One route segment can hold segments (i.e. Conduits), that again can hold segments (i.e. telco or power lines),

Maps 1:1 to graph-strukture

Ledning (line segment) = graph link. Ledningskomponent (komponent) = graph vertex

CIM Diagram Layout to facilitate flexible and automated schematic functionality

Flexible query API using GraphQL and distributed database technology

DAX

Fast traversal queries on graph structures

