

CS918: LECTURE 4

Advanced Language Models: Generalisation and Zeros

Arkaitz Zubiaga, 17th October, 2018

LECTURE 4: CONTENTS

- Generalisation of Language Models and Zeros
- Smoothing Approaches for Generalisation
 - Laplace smoothing.
 - Interpolation and backoff.
 - Good Turing Smoothing.
 - Kneser-Ney Smoothing.

ESTIMATING BIGRAM PROBABILITIES

Maximum Likelihood Estimate (MLE):

$$P(W_i | W_{i-1}) = \frac{count(W_{i-1}, W_i)}{count(W_{i-1})}$$

e.g.

$$P(the \mid in) = \frac{count("in the")}{count("in")}$$

GENERALISATION OF LANGUAGE MODELS

- Language models: $P(I, am, fine) \rightarrow high$ $P(am, fine, I) \rightarrow low or 0$
- Remember: language models will work best on similarly looking data.

- If we train on social media data, that may not work for novels.
 - OMG I'm ROTFL! → may be frequent in SM, unlikely in novels!

GENERALISATION OF LANGUAGE MODELS

- Limitation: We're assuming that all n-grams in new, unseen data will have been observed in the training data.
 - Is this the reality though?

• We need to **consider the possibility of new n-grams** in unseen data.

THE SHANNON VISUALISATION METHOD

- Choose a random starting bigram
- (<s>, w) based on probability.
- While x != </s>:
 - Choose next random bigram
 (w, x) based on probability.
- Concatenate all bigrams.

```
<s> I
    I want
    want to
        to eat
        eat Chinese
        Chinese food
        food </s>
I want to eat Chinese food
```


SHANNON VIS. METHOD FOR SHAKESPEARE

Unigram

To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have

Every enter now severally so, let

Hill he late speaks; or! a more to leg less first you enter

Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Bigram

What means, sir. I confess she? then all sorts, he is trim, captain.

Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.

What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?

Trigram

Sweet prince, Falstaff shall die. Harry of Monmouth's grave.

This shall forbid it should be branded, if renown made it empty.

Indeed the duke; and had a very good friend.

Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.

Quadrigram

King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;

Will you not tell me who I am?

It cannot be but so.

Indeed the short and the long. Marry, 'tis a noble Lepidus.

SHANNON VIS. METHOD FOR SHAKESPEARE

- Significant improvement as we train longer n-grams.
- But it's a tradeoff:
 - Longer n-grams → more accurate.
 - Longer n-grams → more sparse.
- We need to find a balance.

SHAKESPEARE'S BIGRAMS

- Shakespeare used:
 - N = 884,647 tokens.
 - V = 29,066 types \rightarrow V² \approx 845M possible bigrams!
- Shakespeare only produced ~300,000 bigram types (**0.04% of all possible bigrams!**)
 - Other bigrams may be possible, but we haven't observed them.

ZEROS

- Training set:
 - ... found a penny
 - ... found a solution
 - ... found a tenner
 - ... found a book

• Test set:

- ... found a fiver
- ... found a card

$$P(card | found a) = 0$$

THE INTUITION OF SMOOTHING

- We have sparse statistics:
 - P(w | "found a")
 - $3 \rightarrow \text{penny}$
 - $2 \rightarrow solution$
 - $1 \rightarrow \text{tenner}$
 - $1 \rightarrow book$
 - $7 \rightarrow total$

THE INTUITION OF SMOOTHING

• We'd like to improve the distribution:

```
P(w | "found a")
```

$$3 \rightarrow \text{penny} \rightarrow 2.5$$

$$2 \rightarrow \text{solution} \rightarrow 1.5$$

$$1 \rightarrow \text{tenner} \rightarrow 0.5$$

$$1 \rightarrow book \rightarrow 0.5$$
other \rightarrow 2

$$7 \rightarrow \text{total}$$

FOUR POSSIBLE SOLUTIONS

- We'll see 4 possible solutions:
 - 1) Laplace smoothing.
 - 2) Interpolation and backoff.
 - 3) Good Turing Smoothing.
 - 4) Kneser-Ney Smoothing.

LAPLACE SMOOTHING

LAPLACE SMOOTHING: ADD-ONE ESTIMATION

• Intuition:

Pretend we have seen **each word one more time** than we actually did.

LAPLACE SMOOTHING: ADD-ONE ESTIMATION

• Pretend we have seen **each word one more time** than we actually did.

• MLE estimate:
$$P_{MLE}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i)}{C(W_{i-1})}$$

• Add-one estimate:
$$P_{Add-1}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i) + 1}{C(W_{i-1}) + V}$$

SAMPLE OF BIGRAM COUNTS

Remember our sample of bigrams counted in a corpus of 9,222 sentences.

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	1	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

"i" is followed by another "i" on 5 occasions

"to" is followed by "eat" on 686 occasions

LAPLACE SMOOTHED BIGRAM COUNTS

• Add 1 to ALL values in the matrix.

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

LAPLACE SMOOTHED BIGRAM PROBABILITIES

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

RECONSTITUTED COUNTS

$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

COMPARING ORIGINAL VS SMOOTHED

• Original:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

• Smoothed:

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

COMPARING ORIGINAL VS SMOOTHED

• Original:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	1.5	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	O	0	0

• Smoothed:

							iviaing	by To
	i	want	to	eat	chinese	food	llunch	spend
i	3.8	527	0. 34	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	*	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

MORE GENERAL LAPLACE SMOOTHING: ADD-k

$$P_{Add-k}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i) + k}{C(W_{i-1}) + kV}$$

LAPLACE SMOOTHING IS NOT IDEAL FOR LMs

- It's generally not the best solution for language models.
 - With such a sparse matrix, we're replacing too many 0's with
 1's.

• It's still **often used for NLP**, particularly when we observe fewer 0's.

INTERPOLATION AND BACKOFF

BACKOFF AND INTERPOLATION

Different words may need different context size captured.

e.g. I may identify that:

"United States" needs to be captured as a bigram...

...but...

"look forward to" is better captured as a trigram.

BACKOFF AND INTERPOLATION

Backoff:

- use trigram if it's very common,
- otherwise bigram, otherwise unigram

Difficult to implement, define "very common"

• Interpolation:

• mix all unigram, bigram, trigram

LINEAR INTERPOLATION

• Simple interpolation:
$$\hat{P}(w_n|w_{n-1}w_{n-2}) = \lambda_1 P(w_n|w_{n-1}w_{n-2}) + \lambda_2 P(w_n|w_{n-1})$$
 $\sum_i \lambda_i = 1 + \lambda_3 P(w_n)$

Lambdas conditional on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

HOW DO WE SET THOSE LAMBDAS?

Use a held-out (or development) corpus:

Training Data

Held-Out Data

Test Data

- Fix the N-gram probabilities (on the training data)
- Then search for λs that give largest probability (or lowest perplexity) to heldout set:

$$\log P(W_1...W_n \mid M(\lambda_1...\lambda_k)) = \sum_{i} \log P_{M(\lambda_1...\lambda_k)}(W_i \mid W_{i-1})$$

OPEN VS CLOSED VOCABULARY TASKS

- Two scenarios when processing held out or test data:
 - 1) We know ALL words in advance.
 - i.e. all words were also in training data.
 - We have a fixed vocabulary V closed vocab. Task
 - 2) We may find new, unseen words (generally the case)
 - Out Of Vocabulary (OOV) words open vocab. task

HOW DO WE DEAL WITH OOV WORDS?

- We can use a token for all unknown words: <OOV>
- How to train:
 - Create a fixed lexicon L of size V.
 - While preprocessing text, change words not in L to <OOV>
 - Train the LM, where <OOV> is just another token.
- In test: new words are assigned the probability of <OOV>.

GOOD TURING SMOOTHING

INTUITION OF GOOD TURING SMOOTHING

- To estimate counts of unseen things
 - → use the **count of things we've seen once**

FREQUENCY OF FREQUENCY "C"

- N_c = count of tokens observed C times
- e.g. I am happy and I am fine and I have to go

INTUITION OF GOOD TURING SMOOTHING

- You are fishing, and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next fish is trout?
 - 1/18
 - → easy, we have the probability directly

INTUITION OF GOOD TURING SMOOTHING

- You are fishing, and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How **likely** is it that next **fish is new**, e.g. haddock?

INTUITION OF GOOD TURING SMOOTHING

- You are fishing, and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How **likely** is it that next **fish is new**, e.g. haddock?
 - Use our count of things-we-saw-once
 3 elements seen once (trout, salmon, eel) → 3/18

INTUITION OF GOOD TURING SMOOTHING

- You are fishing, and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How **likely** is it that next **fish is new**, e.g. haddock?
 - 3/18
 - → OK, but **probabilities won't add up to 1** now!

we need to revise probabilities.

GOOD TURING CALCULATIONS

- You are fishing, and caught:
 - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

$$\longrightarrow P_{GT}^{*}(c=0) = \frac{N_{1}}{N} \longrightarrow 3/18$$

$$\longrightarrow P_{GT}^{*}(c>0) = \frac{C^{*}}{N} \text{ , where: } C^{*} = \frac{(C+1)N_{C+1}}{N} \longrightarrow P_{GT}^{*}(c=1) = \frac{2*N2/N1}{N} = \frac{2*1/3}{18} = \frac{1}{27}$$

GOOD TURING ISSUES

- **Problem:** what about the word "and"? (say c=12156)
 - For small c, $N_c > N_{c+1}$
 - For large c? N₁₂₁₅₇ will likely be zero.

GOOD TURING ISSUES

- Solution: to avoid zeros for large values of c.
 - Simple Good-Turing [Gale and Sampson]:
 replace N_c → best-fit power law for unreliable counts

GOOD TURING NUMBERS

Corpus with 22 million words of AP Newswire

$$C^* = \frac{(C+1)N_{C+1}}{N_C}$$

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

i.e. for every item observed c times, pretend we've seen it c* times

GOOD TURING NUMBERS

Corpus with 22 million words of AP Newswire

$$C^* = \frac{(C+1)N_{C+1}}{N_C}$$

- If you look at it, for c >= 2:
 - $c^* \approx (c .75)$
 - Can we avoid the hassle of doing all Turing calculations?

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

ABSOLUTE DISCOUNTING INTERPOLATION

• Save ourselves some time and just subtract 0.75 (or some d)!

- We need to predict the next word:
 - I can't see without my reading _______
 - BUT: we have never seen "reading X" in training data.
 - Backoff, rely only on unigrams?

- Now we need to predict the next word:
 - I can't see without my reading _____?
 - If we only look at unigrams, P("Kingdom") > P("glasses").
 - Is it "reading Kingdom" then?

- Now we need to predict the next word:
 - I can't see without my reading _____?
 - Intuition of Kneser-Ney smoothing:

"Kingdom" ALWAYS comes after "United" why would it ever come after "reading"?

- Instead of P(w): "How likely is w"
 - P_{continuation} (w): "How likely is w to appear as a novel continuation?

 For each unigram, count the number of bigram types it completes → i.e. always paired with a specific word, or likely in many bigrams?

How many times does w appear as a novel continuation:

$$P_{CONTINUATION}(W) \propto |\{W_{i-1}: C(W_{i-1}, W) > 0\}|$$

Normalized by the total number of bigram types

$$P_{CONTINUATION}(W) = \frac{\left| \{ W_{i-1} : C(W_{i-1}, W) > 0 \} \right|}{\left| \{ (W_{j-1}, W_j) : C(W_{j-1}, W_j) > 0 \} \right|}$$

- In other words, P_{continuation} is:
 - The number of # of word types seen to precede w,
 - normalised by the # of words preceding all words.
- I am

We are

You are

They are

She is

- In other words, P_{continuation} is:
 - The number of # of word types seen to precede w,
 - normalised by the # of words preceding all words.

• I am

We are

You are
P_{continuation} ("are") = 3/5

They are

She is

- In other words, P_{continuation} is:
 - The number of # of word types seen to precede w,
 - normalised by the # of words preceding all words.

I am
 We are
 You are P_{continuation} ("am") = 1/5
 They are
 She is

- In other words, P_{continuation} is:
 - The number of # of word types seen to precede w,
 - normalised by the # of words preceding all words.

• I am

We are

You are
P_{continuation} ("is") = 1/5

They are

She is

$$P_{KN}(W_i \mid W_{i-1}) = \frac{\max(C(W_{i-1}, W_i) - d, 0)}{C(W_{i-1})} + \lambda(W_{i-1})P_{CONTINUATION}(W_i)$$

λ is a normalising constant; the probability mass we've discounted

$$\lambda(W_{i-1}) = \frac{d}{C(W_{i-1})} |\{W: C(W_{i-1}, W) > 0\}|$$

the normalised discount

The number of word types that can follow w_{i-1}

- = # of word types we discounted
- = # of times we applied normalised discount 55

RESOURCES

- KenLM Language Model Toolkit: https://kheafield.com/code/kenlm/
- CMU Statistical Language Modeling Toolkit: http://www.speech.cs.cmu.edu/SLM/toolkit.html
- Google Books N-gram Counts: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

ASSOCIATED READING

 Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 3rd edition. Chapters 3.3-3.6.