STAT 235 MIDTERM EXAM FORMULA SHEET

Summaries:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}, \ s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1} = \frac{1}{n - 1} \left[\sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n} \right]$$

 $IQR = Q_3 - Q_1$, outliers are observations 1.5*IQR below Q_1 or 1.5*IQR above Q_3

Probability:

Conditional Probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Complement Law: P(A') = 1 - P(A)

Multiplication Law: $P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B)$

If A and B are independent, $P(A \cap B) = P(A) \times P(B)$ since $P(A \mid B) = P(A)$.

Addition Law: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

If A and B are mutually exclusive, $P(A \cup B) = P(A) + P(B)$

For any two events *A* and *B*: $P(A) = P(A \cap B) + P(A \cap B')$

Permutations:
$$P_k^n = n \times (n-1) \times (n-2) \times ... \times (n-k+1) = \frac{n!}{(n-k)!}$$

Combinations:
$$C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$
, where $n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$

Linear Combinations of Random Variables:

If
$$Y = a_1X_1 + a_2X_2 + ... + a_nX_n + b$$
, $E(Y) = a_1E(X_1) + a_2E(X_2) + ... + a_nE(X_n) + b$
If $X_1, X_2, ..., X_n$ are independent, $Var(Y) = a_1^2Var(X_1) + a_2^2Var(X_2) + ... + a_n^2Var(X_n)$

Discrete Variables:

$$\mu = E(X) = \sum_{i=1}^{n} x_i p_i, F(x) = P(X \le x) = \text{Sum of probabilities } p_i \text{ for } x_i \le x,$$

$$\sigma^2 = Var(X) = E(X^2) - [E(X)]^2 = \sum_{i=1}^{n} (x_i - \mu)^2 p_i = \sum_{i=1}^{n} x_i^2 p_i - \mu^2$$

Distribution	Probability mass function	Mean	Variance
Binomial	$f(x) = P(X = x) = {n \choose x} p^{x} (1-p)^{n-x}$		Var(X) = np(1-p)
Geometric	$f(x) = P(X = x) = (1 - p)^{x-1} p$	$E(X) = \frac{1}{p}$	$Var(X) = \frac{(1-p)}{p^2}$
Negative Binomial	$f(x) = P(X = x) = {x - 1 \choose r - 1} (1 - p)^{x - r} p^{r}$	$E(X) = \frac{r}{p}$	$Var(X) = \frac{r(1-p)}{p^2}$
Poisson	$f(x) = P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$	$E(X) = \lambda$	$Var(X) = \lambda$

Continuous Variables:

$$\int_{-\infty}^{\infty} f(x)dx = 1, P(a \le X \le b) = \int_{a}^{b} f(x)dx, F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x)dx, \sigma^{2} = Var(X) = E(X^{2}) - [E(X)]^{2} = \int_{-\infty}^{\infty} x^{2}f(x)dx - \mu^{2}$$

Distribution	Density function	Mean	Variance	F(x)
Uniform	$f(x) = \frac{1}{b - a}$	$E(X) = \frac{b+a}{2}$	$Var(X) = \frac{(b-a)^2}{12}$	$F(x) = \frac{x - a}{b - a}$
Exponential	$f(x) = \lambda e^{-\lambda x}$	$E(X) = \frac{1}{\lambda}$	$Var(X) = \frac{1}{\lambda^2}$	$F(x) = 1 - e^{-\lambda x}$

Normal: If X has a normal distribution with mean μ and variance σ^2 , then $X \sim N(\mu, \sigma^2)$.

Standard normal: If
$$X \sim N(\mu, \sigma^2)$$
, then $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ and $\Phi(z) = P(Z \le z)$.

Normal approximation to binomial: If X follows a binomial distribution with parameters n and p, then

$$P(a \le X \le b) \approx P(a - 0.5 \le Y \le b + 0.5),$$

where *Y* is normal with the mean np and the variance np(1-p), under the assumption that $np \ge 15$ and $n(1-p) \ge 15$.

Sampling Distributions

Sample mean	Sample proportion	
$E(\bar{X}) = \mu$	$E(\hat{p}) = p$	
$Z = \frac{\overline{X} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\sim}{\sim} N(0, 1)$	$Z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} \pm \frac{0.5}{n} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\sim}{\sim} N(0,1)$	
Normal if $n \ge 30$ OR population is normal	Normal if $np \ge 15$ and $n(1-p) \ge 15$	