Выпускная квалификационная работа магистра на тему:

Рекомендательная система с эвристикой, оптимизирующей маршрут

Актуальность

Постоянный рост рынка туризма приводит к увеличению количества объектов для посещения, однако доступное время на посещение объектов у туристов остается в прежних ограничениях

Существующие рекомендательные системы не всегда учитывают интересы туристов

Необходима система, которая **персонализирует рекомендации** и **оптимизирует маршрут**

Объем рынка туристических услуг

Цель

Разработать гибридную рекомендательную систему с маршрутной эвристикой, позволяющую формировать персонализированные маршруты с учётом интересов пользователя и ограничений по времени, для повышения эффективность планирования времени и качество опыта туристов

Задачи

1) Спроектировать архитектуру системы

- определить структуры входных данных;
- разработать логику маршрутизации и рекомендации

2) Реализовать гибридную рекомендательную систему

- разработать рекомендательную систему коллаборативной фильтрации;
- разработать рекомендательную систему на основе сходства объектов;
- реализовать алгоритм объединения рекомендаций

3) Разработать гибридный метаэвристический алгоритм

- реализовать гибридный метаэвристический алгоритм, оптимизирующий маршрут
- сравнить метаэвристики с конкурентами;

4) Визуализировать маршрут

• Интегрировать систему со сторонними сервисами для визуализации построенных маршрутов;

Схема работы приложения

Используемые технологии

Рекомендательные системы

Collaborative filtering (коллаборативная фильтрация)

- Система ищет похожих пользователей и советует то, что понравилось им
- •Основана на принципе: "пользователи с похожими вкусами выбирают похожие вещи"
- •Пример: если схожие с текущем пользователи, выбрали определённые объекты, данному пользователю система порекомендует эти объекты

Item-based (на основе содержимого)

- Система **советует объекты**, похожие на те, что **понравились пользователю**
- Сравнивает **свойства объектов** (категория, описание, тематика и т.д.)
- •Пример: если пользователю понравился исторический экспонат 20 века система предложит похожие исторические объекты

Данные рекомендательных систем

Коллаборативная фильтрация

user_id	object_id	time_spent			
0	2	95			
0	3	71			
0	5	75			
0	7	85			
0	9	63			
0	11	57			

Оценки текущего по	ользователя
--------------------	-------------

user_id	object_id	time_spent
1	2	33
1	1 3 21	
3	5	45
3	7	51
3	9	93
7	11	27
		· ·

Оценки всех пользователей

На основе содержимого

id	type	age	size	feature	
0	statue	victorian	big	bronze	
1	arch	roman	big	stone	
2	stele	baroque	med	carved	
3	wall	modern	long	names	
4	tomb	meieval	huge	marble	
5	obelisk	baroque	tall	granite	

Оптимизация маршрута

Постановка задачи оптимизации

Цель оптимизации – построить маршрут, проходящий через подмножество узлов, каждый из которых ассоциирован с определённой наградой (баллом) за посещение. При этом маршрут должен удовлетворять ограничению по общему времени, затрачиваемому на перемещение между узлами. Задача заключается в максимизации суммарной награды, собираемой вдоль маршрута, при условии, что каждый узел может быть посещён не более одного раза, и совокупное время маршрута не превышает заданного порога (Т_{тах}). Рассмотрим набор узлов $N = \{1,...,|N|\}$, где каждому узлу $i \in N$ сопоставлен неотрицательный балл S_i (награда за посещение узла). Начальный и конечный узлы – 1 и |N| соответственно. Задачу ОНЖОМ сформулировать как модель целочисленного программирования со следующими переменными: Х_{іі} = 1, если мы посетим узел і до узла ј, и 0 в противном случае. t_{іі} – время, затрачиваемое на посещение узла.

$$Max \sum_{i=2}^{|N|-1} \sum_{j=2}^{|N|} S_i X_{ij}$$
 (1)

$$\sum_{j=2}^{|N|} X_{1j} = \sum_{i=1}^{|N|-1} X_{i|N|} = 1$$
 (2)

$$\sum_{i=1}^{|N|-1} X_{ik} = \sum_{j=2}^{|N|} X_{kj} = 1; \ \forall k = 2, ..., (|N|-1)$$
 (3)

$$\sum_{i=2}^{|N|-1} \sum_{j=2}^{|N|} t_{ij} X_{ij} < T_{max} \tag{4}$$

Модель оптимизации

Алгоритм оптимизации маршрута

HSATS — **гибрид** двух методов:

имитации отжига (Simulated Annealing) — для глобального поиска;

табу поиска (Tabu Search) — для избежания повторений и локальных минимумов

Алгоритм работы:

- 1. Начинается с начального допустимого маршрута;
- 2.Итеративно улучшает его с помощью одного из **4 типов изменений (окрестностей):**
 - вставка новой точки;
 - удаление точки;
 - смена порядка посещения (2-opt);
 - замена одной точки на другую

Сравнение с другими алгоритмами

Nº	Алгоритм	N	TL	т	ov	MR	OV/MR (%)
1	OR-Tools	50	20	1.00263	304	1252	24.281
	HSATS			0.05637	278		22.204
	Жадный алгоритм			0.01845	234		18.690
2	OR-Tools	50	50	1.00271	696	1263	55.106
	HSATS			0.19117	654		51.781
	Жадный алгоритм			0.05236	615		48.693
3	OR-Tools	50	100	1.00269	1006	1208	83.278
	HSATS			0.18015	975		80.712
	Жадный алгоритм			0.061012	905		74.917

где N – общее количество узлов, TL – ограничение по времени, T – время работы алгоритма, OV – значение целевой функции, MR – сумма наград за посещение всех вершин.

Визуализация построенного маршрута

Перспективы развития

Направления интеграции

🎹 Музеи и выставки

•маршруты по экспонатам с учётом интересов

Ш Городские приложения

•маршруты по достопримечательностям

👊 Туристические агентства

•автоматическое планирование экскурсий

📮 Экскурсионные автобусы

• рекомендации остановок в пути

🧮 Торговые центры

• навигация по магазинам и акциям

17 Культурные платформы

• рекомендации по афише и мероприятиям

Перспективы развития

🤏 Улучшение персонализации

- учёт контекста: местоположение, погода, настроение;
- добавление **машинного обучения** на пользовательских данных для точной подстройки предпочтений

Расширение функциональности

• поддержка **групповых маршрутов** с согласованием интересов

П Научное и прикладное развитие

• использование **новых эвристик** и моделей оптимизации

Полученные результаты

1) Спроектирована архитектура системы

- определена структура входных данных
- разработана логика маршрутизации и рекомендации

2) Реализована гибридная рекомендательная система

- разработана рекомендательная система коллаборативной фильтрации;
- разработана рекомендательная система на основе сходства объектов;
- реализован алгоритм объединения рекомендаций с учетом влияния каждой системы на конечный результат

3) Разработан гибридный метаэвристический алгоритм

- реализован гибридный метаэвристический алгоритм HSATS в рамках которого также реализованы табу-поиск алгоритм имитации отжига
- произведено сравнение скорости и качества работы реализованного с конкурентами (OR-TOOLS и жадный алгоритм);

4) Визуализирован маршрут

• для визуализации маршрута произведена интеграция со сторонними сервисами для визуализации построенных маршрутов;

Публикации

- Шекунов М.А. Интеграция рекомендательных алгоритмов и решения задачи оптимизации для улучшения опыта туристов / Тезисы докладов 21-й Всероссийской конференции с международным участием "Математические методы распознавания образов (ММРО-21)" (Москва, 2023). М.: Российская Академия наук, 2023. С. 57.
- Шекунов М.А. Система рекомендаций на основе стохастической оптимизации / Материалы I Всероссийской школы Национального центра физики и математики по искусственному интеллекту и большим данным в технических, промышленных, природных и социальных системах для студентов, аспирантов, молодых ученых и специалистов (Саров, 2023). Саров: ИПЦ ФГУП «РФЯЦ-ВНИИЭФ», 2023. С. 109.
- Барашов Е.Б., Шекунов М.А. Анализ гибридного имитационного отжига с табу поиском для стохастической задачи ориентирования / Труды 14-го Всероссийского совещания по проблемам управления (ВСПУ-2024). М.: ИПУ РАН, 2024. С. 1193-1197.

Код разработки

Спасибо за внимание!