Facial Dynamics Analysis

- People with Autism Spectrum Disorder (ASD) show pervasive dysfunctions in social and communicative behaviors:
 - eye-contact
 - hand movements
 - speech traits
 - reciprocal social exchange
 - 0 ...

- The possible connections between ASD and facial characteristics have been studied
 - Difficulty in interpreting and regulating emotions

Literature

- Most existing works that focus on face analysis are based on images or short videos.
- Few works aim at Autism Diagnostic Observation Schedule (ADOS) videos, due to
 - complexity
 - interaction between participant and examiner
 - length
 - usually last for hours
- In this work, we attempt to fill this gap
 - facial dynamics feature

Autism Diagnostic Observation Schedule: ADOS Videos

- Structured but natural discussion
- Different scenes are designed for the analysis of different aspects of autism signs/symptoms

Scene 2

Scene 3-4

Scene 5-7, 11-14

Scene 8

Scene 9

Scene 10

Scene 15

- 1. Construction Task
- 2. Telling A Story
- 3-4. Describing A Picture & Talking
- 5-7. Conversation on School, Work, Social Difficulties & Emotions
- 8. Demonstration Task
- 9. Cartoons
- 10. Break
- 11-14. Conversation on Daily Living, Relationships, Plans
- 15. Creating A Story

- Each video ranges in 50 ~ 170 minutes
- Captures the complicated and rich behaviors
 - o Body behaviors scene 8, 9
 - o face expressions scene 5-7, 11-14
 - o hand gestures scene 1, 10, 15
 - eye contact except 1,10
 - speech traits (volume, pacing) all
 - o reciprocal social exchange with the examiner scene 2-7, 11-14
- We can use different scenes for the analysis of different aspects
 - 5-7, 11-14 high quality faces

2. Telling A Story

3-4. Describing A Picture & Talking

5-7. Conversation on School, Work, Social Difficulties & Emotions

8. Demonstration Task

9. Cartoons

10. Break

11-14. Conversation on Daily Living, Relationships, Plans

15. Creating A Story

Labelling & Categories

- Autism

- Detailed scoring is provided by the examiner
- Overall ratings are made by reliable experts Autism Spectrum
- ASD: 42 videos
 - Severity Levels
 - Autism: 17 videos
 - Autism Spectrum: 10 videos
 - Non-Spectrum: 15 videos
- Control: 9+27 videos
 - Raw: 9 videos
 - Data Augmentation:
 - Horizontal flipping: 9 videos
 - Change brightness: 9 videos
 - Histogram Equalization: 9 videos

Horizontal flipping

Change brightness

Histogram Equalization

Method

- Develop a discriminative FSL method to capture facial dynamics in data for severity level prediction of autism
 - Spatial
 - facial appearance, static expression, eye movements, etc.
 - Temporal
 - expression changes, gaze patterns, and head pose variations
 - ➤ Autism (10)
 ➤ Autism Spectrum (17)
 ➤ Non-Spectrum (15)

Pre-process

- Split the whole video into 15 separate subvideos based on the 15 activities
- For the chosen scenes (5-7, 11-14)
 - Extract key frames containing the subject of interest
 - Detect and crop square face regions

3D Spatio-Temporal Facial Feature Extraction

- LPQ-TOP
 - Local Phase Quantization in Three
 Orthogonal Planes
- Both spatial and temporal information are extracted
 - spatial
 - facial appearance, static expression, eye movements, etc.
 - temporal
 - expression changes, gaze patterns, and head pose variations

- Basic unit: 2-second long face frames
- 3-dimensional face region subvolume

Discriminative Representation Learning

 Consider a combination of Sparse Coding (K-SVD) and Dimensionality Reduction (MFA)

→ Sparse Coding

A LPQ-TOP feature is a sparse linear combination of all the dictionary atoms plus a residual or sparse errors

- K-Singular Value Decomposition
 - Learn a dictionary by lowering the reconstruction error via sparse coding

$$arg \ min_{D,X} \|Y - DX\|_2^2 \ s.t. \ \forall i, \ \|x_i\|_0 \le T,$$

 T is a positive integer specifying the sparsity level

After obtain the sparse code of all LPQ-TOP feature in the subvideo, all sparse codes are averaged as the descriptor of the subvideo.

→ MFA: Marginal Fisher Analysis

- Map the sparse feature into a new space with better discrimination
- Designs two graphs to characterize:
 - intra-class compactness
 - inter-class separability 🕦
- Optimize the corresponding equation by obtaining the optimal projection vector v̂:

$$\hat{v} = arg \; min_{\mathbf{v}} \frac{v^T X L_{intra} X^T v}{v^T X L_{inter} X^T v}$$

 $\mathbf{X} = [x_1,...,x_n]$ is input data, \mathbf{L}_{intra} within-class Laplacian matrix \mathbf{L}_{inter} between-class Laplacian matrix

Few-shot Learning

- → Distribution Calibration (DC)
 - Overfitted if trained on the data with a biased distribution
 - containing only a limited number of samples

Calibrate the
distribution of the
few-sample classes by
transferring statistics
from the classes with
sufficient examples

Classifier trained with few-shot features

- Tukey's ladder of power transformation
 - reduce skewness, more Gaussian-like

$$ilde{x} = \left\{ egin{array}{ll} x^{\lambda} & if \ \lambda
eq 0 \ log(x) & if \ \lambda = 0 \end{array}
ight.$$
 A: adjust how to correct the distribution.

 Calibrate the mean and the covariance for each class

$$\hat{\mu}=rac{\mu+ ilde{x}}{2},\hat{\sigma}=\sigma+lpha$$
 a: determines the degree of dispersion of features

Classifier trained with features sampled from calibrated distribution

→ Adaptive Posterior Learning (APL)

Key idea

 Approximate probability distributions by remembering the most surprising observations it has encountered

Classification

Scene No.	5	6	7	11	12	13	14
LPQ-TOP	61.40	61.35	52.29	55.11	51.29	47.98	44.72
LPQ-TOP+K-SVD	65.35	64.21	61.26	55.61	53.81	56.35	61.41
LPQ-TOP+K-SVD+MFA	81.45	81.51	73.49	69.58	72.09	76.50	72.00
LPQ-TOP+K-SVD+MFA+APL	88.67	87.35	79.17	79.17	83.33	87.25	83.33
LPQ-TOP+K-SVD+MFA+APL+DC (ours)	89.64	89.55	86.83	87.12	88.33	88.67	88.49

- For each scene [5-7, 11-14]
 - Three-class classification
 - 10-fold cross-validation
- Scene-level fusion
 - o Top 3, 5, 7

TABLE VI
PERFORMANCE (%) OF OUR METHOD IN FEATURE-LEVEL FUSION
(FEATURE CONCATENATION).

Features	Scenes	Accuracy	F1 Score 86.5	
TOP 3	5,6,13	90.00		
TOP 5	5,6,12,13,14	91.67	90.1	
TOP 7	5,6,7,11,12,13,14	91.72	90.11	