

$$\frac{{}^{N}d^{N}\bar{H}^{B^{*}}}{dt} = 0 = \left[I_{1}\dot{\omega}_{1} - (I_{2} - I_{3})\omega_{2}\omega_{3}\right]\hat{b}_{1} + \left[I_{2}\dot{\omega}_{2} - (I_{3} - I_{1})\omega_{3}\omega_{1}\right]\hat{b}_{2} + \left[I_{3}\dot{\omega}_{3} - (I_{1} - I_{2})\omega_{1}\omega_{2}\right]\hat{b}_{3}$$

$$= \sum_{i} \text{Euler Eqns}^{i}$$

$$I_{1}\dot{\omega}_{1} - (I_{2} - I_{3})^{N}\omega_{2}\omega_{3} = 0$$

 $I_2 \dot{\omega}_2 - (I_3 - I_1) \omega_3 \omega_1 = 0$ $I_3 \dot{\omega}_3 - (I_2 - I_2) \omega_2 \omega_1 = 0$

Note: working in \hat{b} ; no advantage now to use \hat{c}

Seek a solution to these equations, analytical if possible Equations are nonlinear and coupled. However, this "standard" set of nonlinear equations also have a general solution

in terms of elliptic funcs

(As in the axisymmetric case, a problem must be put in proper form so solution is apparent!)

Review:

$$s = 0$$

$$I_1 \dot{\omega}_1 = (I_2 - I_3) \omega_2 \omega_3$$

$$I_2\dot{\omega}_2 = (I_3 - I_1)\omega_3\omega_1$$

$$I_3\dot{\omega}_3 = (I_1 - I_2)\omega_1\omega_2$$

Axisymmetric
$$I_1 = I_2 = I$$
; $I_3 = J$

Let
$$K = \frac{(I-J)}{I}$$

$$\dot{\omega}_1 = K\omega_2\omega_3$$

$$\dot{\omega}_2 = -K\omega_3\omega_1$$

$$\ddot{\omega}_{1} = K\omega_{3_{o}}\dot{\omega}_{2} = K\omega_{3_{o}}\left(-K\omega_{3_{o}}\right)\omega_{1}$$

$$\ddot{\omega}_{1} + K^{2} \omega_{3_{o}}^{2} \omega_{1} = 0 \qquad \qquad \omega_{1} = A \sin(K \omega_{3_{o}} t) + B \cos(K \omega_{3_{o}} t)$$

$$\omega_{2} = C \sin(K \omega_{3_{o}} t) + D \cos(K \omega_{3_{o}} t)$$

- \rightarrow In terms of \hat{b} 's,
- \rightarrow In terms of \hat{c} 's,
- → Not axisymmetric → elliptic fcns

$$\operatorname{sn}(x,k)$$

$$\operatorname{cn}(x,k)$$

$$\operatorname{cn}(x,k)$$
 $\operatorname{dn}(x,k)$

axisymmetric k = 0 (k is elliptic modulus)

Elliptic Functions*

A function y can be defined in terms of x by direct calculation, such as

$$y = x^2$$
 (equation that defines y in terms of x)

A function can also be defined using a differential equation and a set of initial conditions. The trigonometric function ' $\sin x$ ' is defined by

definition of
$$\sin(x)$$

$$\begin{cases} \left(\frac{dy}{dx}\right)^2 = |-y|^2 \\ I.C. \quad y = 0, \quad \frac{dy}{dx} > 0 \text{ (a) } x = 0 \end{cases}$$

since $y = \sin x$ then satisfies the differential equation.

Now consider the differential equation

definition of
$$\operatorname{sn}(x,k)$$

$$\begin{cases}
\left(\frac{dy}{dx}\right)^2 = \left(1 - \frac{y^2}{y^2}\right)\left(1 - \frac{k^2y^2}{y^2}\right) \\
\text{I.c. } y = 0, \quad \frac{dy}{dx} > 0 \quad \text{@ } x = 0
\end{cases}$$

The solution for this differential equation with the given initial conditions is the **elliptic function** $y = \operatorname{sn}(x,k)$ and, thus, the function is defined by II. It is noted that the function is $\operatorname{periodic}$ since $\operatorname{sn}(x+4K,k) = \operatorname{sn}(x,k)$

V5

*This discussion is a summary of that contained in Synge, J.L., and Griffith, B.A., **Principles of Mechanics**, McGraw-Hill Book Co., New York, 1959.

The period is defined through the complete elliptic integral K, i.e.,

$$K = \int_{0}^{1} \left\{ \frac{dy}{\left[(1 - y^{2})(1 - k^{2}y^{2}) \right]^{\frac{1}{2}}} \right\}$$

Other elliptic functions are defined

$$cn^2 x = |-sn^2 x$$

$$dn^2 x = |-\xi^2 sn^2 x$$

(The functions and derivatives are continuous.) In comparing I and II, note that when k=0

$$sn x = sin x$$

$$cn x = cos x$$

$$dn x = 1$$

$$4K = 2\pi$$

Curves of these functions appear on the next pages

AAE 440 Page 6

Table of $y = \sin \phi = \mathcal{G}n(u, k)$ Taken from Peirce's Table of Integrals 3rd Revised Ed. p. 122

			ard Revised	Ed. p. 122										
	Ordinate, $\mathcal{S}n(u, k) =$	Abscissa = $u = Nt = \int_0^{\phi} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}$												
φ	$\sin \phi$	k = 0	k = 0.50	k = 0.707	k = 0.866	k = 0.9848								
0°	0	0	. 0	0	0	0								
10°	0.1736	0.111	0.1037	0.0943	0.0814	0.0556								
20°	0.3420	0.222	0.2080	0.190	0.1646	0.113								
30°	0.500	0.3333	0.3140	0.289	0.2515	0.174								
45°	0.707	0.500	0.477	0.445	0.3945	0.278								
60°	0.866	0.666	0.645	0.616	0.563	0.413								
75°	0.9563	0.834	0.821	0.802	0.765	0.617								
90°	1.000	1.000	1.000	1.000	1.000	1.000								
		K	= 1.686	= 1.854	= 2.156	= 3.153								

Fig. 5.11-3. Plot of elliptic function $\mathcal{S}_n(u, k)$.

																			V9				
				An	alvtio	cal so	lutio	ns for	r @ !!	,													
											it	daaa	n't aa	am ta	a ha c	hrvio							
				inf	orma	tion a	ese ar about	orier	ntatio	n her	e. (Tł	iis sai	n t se me ol	oserva	ation	was a	us also t	rue					
				in	the ax	kisym	metr	ic cas	se at t	his st	age.)												
	The most that we can speculate: since ω_i 's are elliptic functions, is there a cyclic or periodic nature to the motion of an unsymmetric rigid body?																						
															y :								
	Number of options to discover more about orientation variables:																						
							kine te DE					sible:	num	erical	llv if	neces	sarv)	,					
													Hall	cricar	ny m	neces	,sary)	,					
					2. Cc	onside	er the	Poir	netric isot c	solu onstr	tion uctio	n											

Poinsot Construction

body principal axes

Still true

- 1. $2T_{ROT} = \overline{\omega} \cdot \overline{H}$ constant
- 2. π still tangent at point Q
- 3. σ still "rolls" on the invariable plane

But if σ NOT axisymmetric

How do angles change?

 ω_i 's now elliptic functions not constants; what is impact on angles?

Recall axisymmetric RB

 $\omega_1, \omega_2, \omega_3$ (\hat{c}) angle ($\hat{b_3}, \overline{\omega}$) angle ($\overline{H}, \overline{\omega}$)

Unsymmetric RB

 \bar{H} constant BUT

changing nutation angle

Polhodes are closed but not circular
herpolhodes not even closed curves
- mot very use-ful

Polhodes do give much insight into the motion:

Axes NOT arbitrary

Label principal axes (same for body and σ)

0-P longest axis -> Smallest moment of inertia
0-n smallest axis -> longest =
0-m intermediate axis -> intermediate I

Geometric observations:

Polhodes are dosed Movement confined to one curve-depends on ICs that start near p or n tend to encircle that point

Interpretation:

Particular solution – maintain rotation about one principal axis

Consider rotating near axis of minimum or maximum moment of inertia (o-n)

→ will remain close to those axes

→ marginally stable by our definition

(closer from begin to axis of minimax inertia smaller changes in angle percycle.

Try starting near axis of intermediate inertia

→ will not remain close

→ no initial angle is sufficiently small to keep it close

Can we get this result using linearization and eigenvalues?

Torque-free / unsymmetric rigid body Stability investigation using linear analysis

- 1. EOM (NL)
 - Also need kinematic equations?
- 2. Particular solution to NLDE
- 3. Linearize about particular solution
- 4. Put variational equations in 1st-order form $\dot{z} = zA$ (is matrix A constant?)
- 5. Check eigenvalues

NLDE

$$\dot{\omega}_1 = \frac{I_2 - I_3}{I_1} \, \omega_2 \omega_3$$

$$\dot{\omega}_2 = \frac{I_3 - I_1}{I_2} \, \omega_3 \omega_1$$

$$\dot{\omega}_3 = \frac{I_1 - I_2}{I_3} \, \omega_1 \omega_2$$

 $\dot{\omega}_1 = \frac{I_2 - I_3}{I_1} \omega_2 \omega_3$ $\dot{\omega}_2 = \frac{I_3 - I_1}{I_2} \omega_3 \omega_1$ rewrauge of Euler's Equs

Rotation about principle axis Particular solution: Arbitrarily chose Bz

V15

$$\omega_1 = 0 + \tilde{\omega}_1$$

$$\omega_2 = \omega_{2o} + \tilde{\omega}_2$$

$$\omega_{1} = 0 + \tilde{\omega}_{1}$$

$$\omega_{2} = \omega_{2o} + \tilde{\omega}_{2}$$

$$\omega_{3} = 0 + \tilde{\omega}_{3}$$

$$\dot{\tilde{\omega}}_{1} = \frac{I_{2} - I_{3}}{I_{1}} \Big(\omega_{2_{o}} + \tilde{\omega}_{2} \Big) \tilde{\omega}_{3} = \underbrace{k_{1} \, \text{Woo} \, \, \widetilde{\mathcal{W}}_{3}}_{}$$

$$\dot{\tilde{\omega}}_2 = \frac{I_3 - I_1}{I_2} \tilde{\omega}_3 \tilde{\omega}_1 =$$

$$\dot{\tilde{\omega}}_{3} = \frac{I_{1} - I_{2}}{I_{3}} \tilde{\omega}_{1} \left(\omega_{2_{0}} + \tilde{\omega}_{2} \right) = \begin{array}{c} \mathbf{\xi}_{3} & \omega_{10} & \widetilde{\omega}_{1} \end{array}$$

linear, constant coefficients?

$$\dot{\tilde{\omega}}_2 = 0$$

$$\begin{bmatrix} \dot{\tilde{\omega}}_1 & \dot{\tilde{\omega}}_3 \end{bmatrix} = \begin{bmatrix} \tilde{\omega}_1 & \tilde{\omega}_3 \end{bmatrix} \begin{bmatrix} 0 & K_3 \omega_{2_o} \\ K_1 \omega_{2_o} & 0 \end{bmatrix}$$

Characteristic Equation

V16

3 eigenvalues:

$$\lambda = 0$$
, $\pm \omega_0 \sqrt{\frac{(I_2 - I_3)(I_1 - I_2)}{I_1 I_3}}$

For NL system, particular solution unstable → If <u>any</u> eigenvalue has a positive real part

Common to represents results of <u>linear</u> analysis in the form of a stability chart

Will this change if a gravity torque is introduced?

