# **Machine Learning**

**Lecture 9: Learning Theory** 

#### Feng Li

fli@sdu.edu.cn
https://funglee.github.io

School of Computer Science and Technology Shandong University

Fall 2018

# Why Learning Theory

- How can we tell if your learning algorithm will do a good job in future (test time)?
  - Experimental results
  - Theoretical analysis
- Why theory?
  - Can only run a limited number of experiments..
  - · Experiments rarely tell us what will go wrong
- Using learning theory, we can make formal statements/give guarantees on
  - Expected performance ("generalization") of a learning algorithm on test data
  - Number of examples required to attain a certain level of test accuracy
  - Hardness of learning problems in general

### Bias vs Variance

- Bias is a learner's tendency to consistently learn the same wrong thing
  - The bias is error from erroneous assumptions in the learning algorithm
  - High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting)
- Variance is the tendency to learn random things irrespective of the real signal
  - The variance is error from sensitivity to small fluctuations in the training set
  - High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs (overfitting)



### **Bias-Variance Tradeoff**

 Simple model have high bias and small variance, complex models have small bias and high variance



• If you modified a model to reduce its bias (e.g., by increasing the model s complexity), you are likely to increase its variance, and vice-versa (if, however, both increase then you might be doing it wrong!)

# **High Bias or High Variance**

- The bad performance (low accuracy on test data) could be due to either high bias (underfitting) or high variance (overfitting)
- Looking at the training and test error can tell which of the two is the case



- High bias: Both training and test error are large
- High variance: Small training error, large test error (and huge gap)

# **Bias-Variance Decomposition**

• For some model  $y=f(x)+\epsilon$  with  $\epsilon\sim\mathcal{N}(0,\sigma^2)$ , given its estimate  $\hat{f}$  learned by a "learner" using a finite training set, the following decomposition holds

$$E[(y - \hat{f}(x))^2] = Bias[\hat{f}(x)]^2 + Var[\hat{f}(x)] + \sigma^2$$

- The above expectation is over all choices of training set
- $Bias[\hat{f}(x)] = E[\hat{f}(x) f(x)]$ . Error due to wrong (perhaps too simple) model
- $Var[\hat{f}(x)] = E[\hat{f}(x)^2] E[\hat{f}(x)]^2$ : Learner's sensitivity to choice of training set
- The proof (E[y] = f(x))

$$\begin{split} E[(y-\hat{f})^2] &= E[y^2 + \hat{f}^2 - 2y\hat{f}] \\ &= E[y^2] + E[\hat{f}^2] - E[2y\hat{f}] \\ &= Var[y] + E[y]^2 + Var[\hat{f}] + E[\hat{f}]^2 - 2fE[\hat{f}] \\ &= Var[y] + Var[\hat{f}] + (f - E[\hat{f}])^2 \\ &= Var[y] + Var[\hat{f}] + E[f - \hat{f}]^2 \\ &= Var[y] + Var[\hat{f}] + Bias[\hat{f}]^2 \end{split}$$

### **Preliminaries**

#### The union bound

Assume  $A_1, A_2, \cdots, A_k$  be k different events (that may not be independent),

$$p(A_1 \bigcup A_2 \cdots \bigcup A_k) \le p(A_1) + \cdots + p(A_k)$$

#### Hoeffding inequality (Chernoff bound)

Let  $Z_1,\cdots,Z_m$  be m independent and identically distributed (iid) random variables drawn from a Bernoulli $(\phi)$  distribution (i.e.,  $p(Z_i=1)=\phi$  and  $p(Z_i=0)=1-\phi$ ). Let  $\hat{\phi}=\frac{1}{m}\sum_{i=1}^m Z_i$  be the mean of these random variables, and let any  $\gamma>0$  be fixed. Then

$$p(|\phi - \hat{\phi}| > \gamma) \le 2\exp(-2\gamma^2 m)$$

# Hypothesis Class, Training and Generalization Error

- ullet A hypothesis class  $\mathcal{H}$ : a set of all classifiers considered by a learning algorithm
- A training set  $S=\{(x^{(i)},y^{(i)})\}_{i=1,\cdots,m}$  with  $y^{(i)}\in\{0,1\}$  are drawn iid from some probability distribution  $\mathcal D$
- ullet The learning algorithm, given training data, learns a hypothesis  $h \in \mathcal{H}$
- The training error (or empirical risk, empirical error) is

$$\hat{\varepsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1} \{ h(x^{(i)}) \neq y^{(i)} \}$$

i.e., the fraction of the misclassified training examples

• The generalization is

$$\varepsilon(h) = P_{(x,y)\sim\mathcal{D}}(h(x) \neq y)$$

i.e., the probability that, if we now draw a new example (x,y) from the distribution  $\mathcal{D}$ , h will misclassify it

### **Empirical Risk Minimization**

Empirical Risk Minimization (ERM) is a principle in statistical learning theory
which defines a family of learning algorithms and is used to give theoretical
bounds on the performance of learning algorithms

$$\hat{\theta} = \arg\min_{\theta} \hat{\varepsilon}(h_{\theta})$$

where 
$$h_{\theta}(x) = \mathbf{1}\{\theta^T x \geq 0\}$$

- In another word, we aim at seeking the optimal hypothesis  $\hat{h}=h_{\hat{ heta}}$
- ERM can also be thought of a minimization over the class

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \hat{\varepsilon}(h)$$

### Finite $\mathcal{H}$

- A finite hypothesis class  $\mathcal{H} = \{h_1, \cdots, h_k\}$
- $\hat{h} \in \mathcal{H}$  denotes the optimal hypothesis function with the training error minimized by ERM
- Questions: Does there exist a guarantee on the generalization error of  $\hat{h}$ ?
  - $\hat{\varepsilon}(h)$  is a reliable estimate of  $\varepsilon(h)$  for  $\forall h$
  - ullet This implies an upper-bound on the generalization error of  $\hat{h}$

- Assume  $(x, y) \sim \mathcal{D}$
- For  $h_i \in \mathcal{H}$ , define Bernoulli random variables

$$Z = \mathbf{1}(h_i(x) \neq y)$$
  
  $Z_j = \mathbf{1}\{h_i(x^{(j)}) \neq y^{(j)}\}$ 

- The generalization error  $\varepsilon(h_i)$  is the expected value of Z (and  $Z_j$ )
- The training error  $\hat{\varepsilon}(h_i)$  can be written as

$$\hat{\varepsilon}(h_i) = \frac{1}{m} \sum_{j=1}^{m} Z_j$$

- $\hat{\varepsilon}(h_i)$  is exactly the mean of the m random variables  $Z_j$ 's that are drawn iid from a Bernoulli distribution with mean  $\varepsilon(h_i)$
- By applying Hoeffding inequality, we have

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \le 2\exp(-2\gamma^2 m)$$

- For a particular  $h_i$ , training error will be close to generalization error with high probability, assuming m is large
- Is it true for  $\forall h \in \mathcal{H}$ ?
  - Let  $A_i$  denote the event that  $|\varepsilon(h_i) \hat{\varepsilon}(h_i)| > \gamma$ , then  $P(A_i) \le 2 \exp(-2\gamma^2 m)$
  - By using the union bound, we have

$$P(\exists h \in \mathcal{H} : |\varepsilon(h) - \hat{\varepsilon}(h)| > \gamma) = P(A_1 \bigcup \cdots \bigcup A_k)$$

$$\leq \sum_{i=1}^k P(A_i)$$

$$\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 m)$$

$$= 2k \exp(-2\gamma^2 m)$$

Then, we have the following uniform convergence result

$$P(\neg \exists h \in \mathcal{H} : |\varepsilon(h) - \hat{\varepsilon}(h)| > \gamma)$$

$$= P(\forall h \in \mathcal{H} : |\varepsilon(h) - \hat{\varepsilon}(h)| \le \gamma)$$

$$\ge 1 - 2k \exp(-2\gamma^2 m)$$

- Question: Given  $\gamma$  and  $\delta>0$ , how large must m be such that we can guarantee that with probability  $\geq 1-\delta$ , training error will be within  $\gamma$  of generalization error?
- When

$$1 - 2k \exp(-2\gamma^2 m) \ge 1 - \delta \Rightarrow m \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$

with probability at least  $1 - \delta$ , we have  $|\varepsilon(h) - \hat{\varepsilon}(h)| \leq \gamma$  for all  $h \in \mathcal{H}$ 

- ullet The training set size m that a certain method or algorithm requires in order to achieve a certain level of performance is so-called the algorithm's sample complexity
- The number of training examples needed to make this guarantee is only logarithmic in the number of hypotheses in  $\mathcal{H}$  (i.e., k)

• Fixing m and  $\delta$ , solving for  $\gamma$  gives

$$1 - 2k \exp(-2\gamma^2 m) \ge 1 - \delta \Rightarrow |\varepsilon(h) - \hat{\varepsilon}(h)| \le \sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}$$

• Assume  $h^* = \arg\min_{h \in \mathcal{H}} \varepsilon(h)$  denotes the best possible hypothesis in  $\mathcal{H}$ 

$$\begin{array}{rcl} \varepsilon(\hat{h}) & \leq & \hat{\varepsilon}(\hat{h}) + \gamma \\ & \leq & \hat{\varepsilon}(h^*) + \gamma \\ & \leq & \varepsilon(h^*) + 2\gamma \end{array}$$

• If uniform convergence occurs, then the generalization error of  $\hat{h}$  is at most  $2\gamma$  worse than the best possible hypothesis in  $\mathcal{H}$ 

• Theorem Let  $\mathcal{H}=k$ , and let any m and  $\delta$  be fixed. Then with probability at least  $1-\delta$ , we have that

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}$$

- If we take a large  ${\cal H}$ 
  - the first term is decreased (the bias is decreased)
  - the second term is increased (the variance is increased)
- Corollary: Let  $\mathcal{H}=k$ , and let any  $\delta$ ,  $\gamma$  be fixed. Then for  $\varepsilon(\hat{h}) \leq \min_{h \in \mathcal{H}} \varepsilon(h) + 2\gamma$  to hold with probability at least  $1-\delta$ , it suffices that

$$m \geq \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$
$$= O(\frac{1}{\gamma^2} \log \frac{k}{\delta})$$

### Infinite $\mathcal{H}$

ullet For the finite sized hypothesis class  ${\cal H}$ 

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2m}\log\frac{2k}{\delta}}$$

- What happens when the hypothesis class size  $|\mathcal{H}|$  is infinite?
  - Example: The set of all linear classifiers
- The above bound does not apply (it just becomes trivial)
- ullet We need some other way of measuring the size of  ${\cal H}$ 
  - ullet One way: use the complexity  ${\cal H}$  as a measure of its size
  - Vapnik-Chervonenkis dimension (VC dimension)
  - VC dimension: a measure of the complexity of a hypothesis class

### **Shattering**

• A set of points (in a given configuration) is shattered by a hypothesis class  $\mathcal{H}$ , if, no mater how the points are labeled, there exists some  $h \in \mathcal{H}$  that can separate the points



Figure above: 3 points in 2D (locations fixed, only labeling varies), H: set
of linear classifier

- The concept of shattering is used to define the VC dimension of hypothesis classes
- Given a hypothesis class  $\mathcal{H}$ , we then define its Vapnik-Chervonenkis dimension,  $VC(\mathcal{H})$ , to be the size of the largest set that is shattered by  $\mathcal{H}$
- Consider the following shattering game between us and an adversary
  - ullet We choose d points in an input space, positioned however we want
  - Adversary labels these d points
  - We define a hypothesis  $h \in \mathcal{H}$  that separates the points
  - ullet Note: Shattering just one configuration of d points is enough to win
- The VC dimension of  $\mathcal{H}$ , in that input space, is the maximum d we can choose so that we always succeed in the game

 $\bullet$  Even when  $VC(\mathcal{H})=3$ , there exist sets of size 3 that cannot be classified correctly



• In order words, under the definition of the VC dimension, in order to prove that  $VC(\mathcal{H})$  is at least d, we need to show only that there's at least one set of size d that  $\mathcal{H}$  can shatter.

- A measure of the "power" or the "complexity" of the hypothesis space
  - Higher VC dimension implies a more "expressive" hypothesis space)
- ullet Shattering: A set of N points is shattered if there exists a hypothesis that is consistent with every classification of the N points
- VC Dimension: The maximum number of data points that can be "shattered"
- If VC Dimension = d, then:
  - There exists a set of d points that can be shattered
  - There does not exist a set of d+1 points that can be shattered

• Theorem Let  $\mathcal H$  be given, and let  $d=VC(\mathcal H)$ . Then, with probability at least  $1-\delta$ , we have that for all  $h\in\mathcal H$ 

$$|\varepsilon(h) - \hat{\varepsilon}(h)| \le O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} + \frac{1}{m}\log\frac{1}{\delta}}\right)$$

and thus

$$\varepsilon(\hat{h}) \le \varepsilon(h^*) + O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} + \frac{1}{m}\log\frac{1}{\delta}}\right)$$

Recall for finite hypothesis space

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2m}\log\frac{2k}{\delta}}$$

• VC(H) is like a substitute for k = |H|

# Select The Right Model

- Given a set of models  $M = \{M_1, M_2, ..., M_R\}$ , choose the model that is expected to do the best on the test data. M may consist of:
  - Same learning model with different complexities or hyperparameters
    - Nonlinear Regression: Polynomials with different degrees
    - K-Nearest Neighbors: Different choices of K
    - Decision Trees: Different choices of the number of levels/leaves
    - SVM: Different choices of the misclassification penalty hyperparameter C
    - Regularized Models: Different choices of the regularization parameter
    - Kernel based Methods: Different choices of kernels
    - ... and almost any learning problem
  - Different learning models (e.g., SVM, KNN, DT, etc.)
- Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue (e.g., how many clusters when doing clustering)

# Hold-Out Cross Validation (Simple Cross Validation)

- Given a training set S, do the following
  - Randomly split S into  $S_{train}$  (say, 70% of the data) and  $S_{cv}$  (the remaining 30%). Here,  $S_{cv}$  is called the hold-out cross validation set.
  - Train each model  $M_i$  on  $S_{train}$  only, to get some hypothesis  $h_i$ .
  - Select and output the hypothesis  $h_i$  that had the smallest error  $\hat{\varepsilon}_{S_{cv}}(h_i)$  on the hold-out cross validation set (Recall,  $\hat{\varepsilon}_{S_{cv}}(h)$  denotes the empirical error of h on the set of examples in  $S_{cv}$ )
- Option: After selecting  $M^* \in \mathcal{M}$  such that  $h^* = \arg\min_i \hat{\varepsilon}_{S_{cv}}(h_i)$ , retrain  $M^*$  on the entire training set S
- Weakness: It seems we are trying to select the best model based on only part of the training set

#### k-Fold Cross Validation

- Randomly split S into k disjoint subsets of m/k training examples each. Lets call these subsets  $S_1, \dots, S_k$ .
- For each model  $M_i$ , we evaluate it as follows:
  - For  $j=1,\dots,k$ , train the model  $M_i$  on  $S_1\bigcup\dots\bigcup S_{j-1}\bigcup S_{j+1}\bigcup\dots\bigcup S_k$  (i.e., train on all the data except  $S_j$ ) to get some hypothesis  $h_{ij}$ , and then test the hypothesis  $h_{ij}$  on  $S_j$ , to get  $\hat{\varepsilon}_{S_j}(h_{ij})$ .
  - The estimated generalization error of model  $M_i$  is then calculated as the average of the  $\hat{\varepsilon}_{S_j}(h_{ij})$ 's (averaged over j).
- Pick the model  $M_i$  with the lowest estimated generalization error, and retrain that model on the entire training set S. The resulting hypothesis is then output as our final answer.

#### **Feature Selection**

- n features result in  $2^n$  possible feature subsets
- The question is which one is optimal (i.e., the most relevant features to the learning problem)
- Forward search:
  - Initialize  $\mathcal{F} = \emptyset$
  - Until  $|\mathcal{F}| = \epsilon \ or \ |\mathcal{F}| = n$ , repeat
    - (a) For  $i=1,\cdots,n$ , if  $i\notin\mathcal{F}$ , let  $\mathcal{F}_i=\mathcal{F}\bigcup\{i\}$ , and use cross validation to evaluate  $\mathcal{F}_i$
    - (b) Set  ${\mathcal F}$  to be the best feature subset found in (a)
- Backward search: Start with  $\mathcal{F}=\{1,\cdots,n\}$ , and repeatedly deletes features one at a time until  $|\mathcal{F}|=\epsilon$
- The above two methods are so-called wrapper model, which is a procedure that "wraps" around your learning algorithm
- Wrapper feature selection algorithms usually have considerable computational cost
  - $O(n^2)$  calls to the learning algorithm

### **Filter Feature Selection**

- · Heuristic but computationally efficient
- Basic idea: Compute a score S(i) to measure how informative each feature  $x_i$  is about the class labels y; then, select the k features with the largest scores S(i)
- Mutual information  $MI(x_i, y)$  between  $x_i$  and y

$$MI(x_i, y) = \sum_{x_i \in \{0,1\}} \sum_{y \in \{0,1\}} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i)p(y)}$$

with  $p(x_i, y)$ ,  $p(x_i)$  and p(y) estimated according their empirical distributions on the training set

- How to choose a right k?
  - Use cross validation

# Thanks!

Q & A