計算機ソフトウェア 第一回

電気電子工学科 黒橋禎夫

アルゴリズムと計算量

アルゴリズム 与えられたデータから:「入力」

目的の情報を:「出力」

見つけ出す or 作り出す:「手続き」

最近は一般語になりつつありますね!

アルゴリズムと計算量

アルゴリズム 一種のモデル化 抽象的な問題を正確に表現

計算量 アルゴリズムの「良さ」を表す専門用語 (「評価」=工学の基本)

アルゴリズムの記述

例. 「自然数, 3, 8, 16, 4, 9, の最大値を求める」

言葉をいっぱい使う 「順番に大きなものを覚えておく」 曖昧性 複雑さの議論できない

• 計算機がわかるように記述

アルゴリズムの記述

• ある程度抽象化

(厳密さと簡潔さの)バランス感覚です

入力: 正の整数値 n と n個の実数値

出力: X₁, X₂, ..., X_n の中の最大値

手続き: 1. y ← x₁

2. for i 2 until n do if $x_i > y$ then $y \leftarrow x_i$

3. return y

演習 手続きを記述せよ

- 入力: 正の整数値n と, n個の実数値x1, x2, ..., xn と, y
- 出力: x1, x2, ..., xn の中で最も y に近いもの

計算量

入力の大きさ n に対してどれくらいの計算が 必要か

•「入力の大きさ n」= 問題の大きさ

少し抽象化する(オーダ)

オーダの定義

f(n) と p(n) を自然数の上で定義された関数とする 任意の n に対して

をみたす n によらない定数Cが存在するとき f(n) = O(p(n))

という

この定義は理解しておいてほしい!

オーダの意味

p(n)はできるだけ簡単なもので議論すればよい 議論する = 最悪の場合を考える

例. $f(n) = 3n^2 + n$ に対して C = 3 とか C = 4 を考えれば $p(n) = n^2$ で f(n) を抑えられる

多項式だと一番大きな(次数の)項をとればいい!

演習 オーダを示せ

「最大値を求めるアルゴリズム」の場合

1. $y \leftarrow x_1$

代入 a秒

2. for i 2 until n do

代入 (n-1)c秒

d秒 3. return y

計算量の感覚

	n	1	1,000	1,000,000
O(1)	理想的	1 ms	1 ms	1 ms
O(logn)	0	1 ms	7 ms	14 ms
O(n)	0	1 ms	1 sec	17 min
O(nlogn)	0	1 ms	7 sec	4 hours
O(n2)	Δ	1 ms	17 min	30 years
O(n3)	Δ-			
O(cn)	×			

計算量 補足

- ・ 本当は複雑度、計算量は二種類ある
 - 空間複雑度(space complexity)
 - cpuの数やメモリの量による制約があるため 普段は意識しない(=そんなプログラム書かない)
 - 時間複雑度(time complexity)
 - だから基本的にはこちらを考えます
 - 一応、両方あるってことを覚えといてください

本講義の位置付け

プログラミング演習:実際のインプリメント

本講義: 抽象化して「良さ」や「設計」を扱う