WHAT IS CLAIMED IS:

1. An apparatus comprising:				
walls enclosing a process chamber;				
a wafer susceptor positioned within the chamber;				
a first exhaust conduit in fluid communication with the chamber; and				
a processing gas source in fluid communication with the chamber through a				
gas distribution showerhead, the gas distribution showerhead comprising;				
a first channel in fluid communication with the processing gas source				
and with apertures distributed over a lower surface of the showerhead; and				
a second channel separate from the first channel and in fluid				
communication with a second exhaust conduit and with exhaust apertures				
distributed over the lower surface of the showerhead.				
2. The apparatus of claim 1 wherein the apertures define a first area and				
the exhaust apertures define a second area.				
3. The apparatus of claim 2 wherein a ratio of the first area to the second				
area is substantially constant as a function of radial distance from the center of the gas				
distribution showerhead.				
4. The apparatus of claim 2 wherein a ratio of the first area to the second				
area varies as a function of radial distance from the center of the gas distribution showerhead.				
5. The apparatus of claim 4 wherein the ratio of the first area to the				
second area varies linearly as a function of radial distance from the center of the gas				
distribution showerhead.				
6. The apparatus of claim 4 wherein the ratio of the first area to the				
second area varies nonlinearly as a function of radial distance from the center of the gas				
distribution showerhead.				
7. The apparatus of claim 4 wherein the ratio of the first area to the				
7. The apparatus of claim 4 wherein the ratio of the first area to the second area increases as a function of radial distance from the center of the gas distribution				

1	8. The apparatus of claim 4 wherein the ratio of the first area to the				
2	second area decreases as a function of radial distance from the center of the gas distribution				
3	showerhead.				
1	9. The apparatus of claim 1 wherein the first exhaust conduit and the				
2	second exhaust conduit are in fluid communication with a common foreline.				
1	10. The apparatus of claim 9 wherein the plurality of second channels are				
2	in fluid communication with the foreline through a first valve and the second exhaust conduit				
3	is in fluid communication with the foreline through a second valve.				
5	· · · · · · · · · · · · · · · · · · ·				
1	11. The apparatus of claim 1 wherein the first exhaust conduit and the				
2	second exhaust conduit are in communication with a common vacuum pump.				
1	12. The apparatus of claim 1 wherein the first exhaust conduit and the				
2	second exhaust conduit are in communication with separate vacuum pumps.				
1	13. A method of processing a semiconductor workpiece, the method				
2	comprising:				
3	flowing a process gas to a semiconductor workpiece through a first plurality of				
4	orifices positioned in a gas distribution faceplate; and				
5					
	removing gas from over the semiconductor workpiece through a chamber				
6	exhaust port and a second plurality of orifices positioned in the gas distribution faceplate.				
1	14. The method of claim 13 further comprising removing the gas through				
2	only the chamber exhaust port prior to flowing the process gas.				
1	15. The method of claim 13 further comprising removing the gas through				
2	the chamber exhaust port and the second plurality of orifices prior to flowing the process gas.				
1	16. The method of claim 13 further comprising initially removing gas				
2	through only the chamber exhaust port.				
1	17. The method of claim 13 further comprising initially removing gas				
2	through only the second plurality of orifices.				

1	18. The method of claim 13 wherein the processing chamber is evacuated				
2	to a pressure below 20 Torr.				
1	19. The method of claim 18 further comprising generating a plasma in the				
2	processing chamber prior to flowing the process gas.				
1	20. The method of claim 13 further comprising adjusting a rate of remova				
2	of gas through the chamber exhaust port during processing.				
1	21. The method of claim 13 further comprising adjusting a rate of remova				
2	of gas through the second plurality of orifices is adjusted during processing.				
1	22. A method of processing a semiconductor wafer in a chamber				
2	comprising:				
3	inserting a semiconductor wafer into the chamber;				
4	evacuating the chamber through a first exhaust port;				
5	introducing at least one process gas through a first set of orifices located on a				
6	surface of a showerhead;				
7	removing gas through the first exhaust port; and				
8	removing gas through a plurality of orifices positioned on the surface of the				
9	showerhead.				
1	23. The method of claim 22 wherein a larger volume of gas is removed				
2	through the first exhaust port than is removed through the plurality of orifices.				
1	24. The method of claim 22 wherein the chamber is evacuated to a				
2	pressure below 20 Torr.				
1	25. The method of claim 24 wherein a plasma is generated in the chamber				
2	prior to the step of introducing the at least one process gas.				
1	The most of a falling 22 and a main managed of the constitution the first				
1	26. The method of claim 22 wherein removal of the gas through the first				
2	exhaust port and through the plurality of orifices occurs substantially simultaneously.				
1	27. A method of controlling uniformity of a property of a film deposited				
2	on a semiconductor wafer, the method comprising:				
3	positioning a wafer in a processing chamber:				

4		introdu	icing gases to the wafer through a first plurality of orifices positioned on		
5	a faceplate;				
6		removing the gases through a second plurality of orifices positioned on the			
7	faceplate; and				
8		simultaneously removing the gases across a radial exhaust path.			
1		28.	The method of claim 27 further comprising evacuating the chamber		
2	across the radial exhaust path only, prior to flowing the gases.				
1		29.	The method of claim 27 further comprising evacuating the chamber		
2	across the radial exhaust path and the second plurality of orifices prior to flowing the gases.				
1		30.	The method of claim 27 further comprising initially removing the		
2	gases through only the radial exhaust path.				
1		31.	The method of claim 27 further comprising initially removing the		
2	gases through only the second plurality of orifices.				
1		32.	The method of claim 27 wherein the chamber is evacuated to a		
2	pressure below about 20 Torr.				
1		33.	The method of claim 32 further comprising generating a plasma in the		
2	chamber.				
1		34.	The method of claim 27 wherein a rate of removing gas across the		
2	radial exhaust path is adjusted during processing.				
1		35.	The method of claim 27 wherein a rate of removing gas through the		
2	second plurality of orifices is adjusted during processing.				