Homework 3

Name: Shashank Singh¹

36-705 Intermediate Statistics

Due: Thursday, September 25, 2014

1. For all $n \in \mathbb{N}$, $F \in \mathcal{F}_n$, since $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$, $\{C \cap F : C \in \mathcal{C}\} = \{A \cap F : A \in \mathcal{A}\} \cup \{B \cap F : B \in \mathcal{B}\}$, and hence $s(\mathcal{C}, F) \leq s(\mathcal{A}, F) + s(\mathcal{B}, F)$. Thus,

$$s_n(\mathcal{C}) = \sup_{F \in \mathcal{F}_n} s(\mathcal{C}, F) \le \sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F) + s(\mathcal{B}, F) \le \sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F) + \sup_{F \in \mathcal{F}_n} s(\mathcal{B}, F) = s_n(\mathcal{A}) + s_n(\mathcal{B}).$$

2. For all $n \in \mathbb{N}$, $F \in \mathcal{F}_n$, $\{C \cap F : C \in \mathcal{C}\} = \{(A \cap F) \cup (B \cap F) : C \in \mathcal{C}\}$, and hence $s(\mathcal{C}, F) \leq s(\mathcal{A}, F)s(\mathcal{B}, F)$. Thus,

$$s_n(\mathcal{C}) = \sup_{F \in \mathcal{F}_n} s(\mathcal{C}, F) \leq \sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F) s(\mathcal{B}, F) \leq \left(\sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F)\right) \left(\sup_{F \in \mathcal{F}_n} s(\mathcal{B}, F)\right) = s_n(\mathcal{A}) s_n(\mathcal{B}).$$

3. For all $n, m \in \mathbb{N}$, $F \in \mathcal{F}_{n+m}$, there exist disjoint sets $G_F \in \mathcal{F}_n$ and $H_F \in \mathcal{F}_m$ such that $F = G_F \cup H_F$, and hence $C \cap F = (C \cap G_F) \cup (C \cap H_F)$, for all $C \in \mathcal{C}$. Hence,

$$s_{n+m}(\mathcal{C}) = \sup_{F \in \mathcal{F}_{n+m}} s(\mathcal{C}, F) = \sup_{F \in \mathcal{F}_{n+m}} s(\mathcal{C}, G_F) s(\mathcal{C}, H_F)$$
$$\leq \sup_{G \in \mathcal{F}_n} s(\mathcal{C}, G) \sup_{H \in \mathcal{F}_m} s(\mathcal{C}, H) = s_n(\mathcal{C}) s_m(\mathcal{C}).$$

4. The VC dimension of \mathcal{A} is 4.

Suppose n = 4, and suppose $x_1, \ldots, x_n \in \mathbb{R}$ with $x_1 < x_2 < x_3 < x_4$. It is clear that \mathcal{A} picks any subset of $F := \{x_1, x_2, x_3, x_4\}$ of cardinality 0, 1, 2, or 4. In any subset of cardinality 3, at least two points must be consecutive. Thus, \mathcal{A} also picks out any subset of cardinality 3, and hence $2^n \ge s_n(\mathcal{A}) \ge s(\mathcal{A}, F) = 2^n$, so that $s_n(\mathcal{A}) = 2^n$ $d \ge 4$.

Suppose, on the other hand, that $n \geq 5$. Then, $\forall x_1, \ldots, x_n \in \mathbb{R}$ with $x_1 < \cdots < x_n$, \mathcal{A} cannot pick out the subset $\{x_1, x_3, x_5\}$. Hence, $s_5(\mathcal{A}) < 2^n$, and d < 5.

- 5. Problem removed.
- 6. Let $\mu_n := \mathbb{E}[X_n]$. Note that

$$\mathbb{E}[(X_n - b)^2] = \mathbb{E}[(X_n - \mu_n + \mu_n - b)^2]$$

$$= \mathbb{E}[(X_n - \mu_n)^2] + 2\mathbb{E}[(X_n - \mu_n)(\mu_n - b)] + \mathbb{E}[(\mu_n - b)^2] = \text{Var}[X_n] + (\mu_n - b)^2.$$

All terms above are non-negative, and hence, as $n \to \infty$, the left-hand side vanishes if and and only if both terms on the right-hand side vanish.

7. Since L_2 convergence implies convergence in probability, it suffices to show that $n^{-1} \sum_{i=1}^{n} X_i^2 \to p$ in L_2 as $n \to \infty$. Hence, by the previous problem, it suffices to observe that, as $n \to \infty$,

$$\mathbb{E}\left[n^{-1}\sum_{i=1}^n X_i^2\right] = \mathbb{E}[X_1^2] = p \quad \text{ and that } \quad \operatorname{Var}\left[n^{-1}\sum_{i=1}^n X_i^2\right] = n^{-1}\operatorname{Var}[X_1^2] \to 0. \quad \blacksquare$$

¹sss1@andrew.cmu.edu

8. (a) For any ε , as $n \to \infty$,

$$\mathbb{P}[X_n \ge \varepsilon] \le 1 - \mathbb{P}[X_n = 0] = 1 - e^{-1/n} \frac{1/n^0}{0!} = 1 - e^{-1/n} \to 0.$$

(b) For any ε , as $n \to \infty$, as above,

$$\mathbb{P}[nX_n \ge \varepsilon] \le 1 - \mathbb{P}[nX_n = 0] \le 1 - \mathbb{P}[X_n = 0] \to 0.$$

9. Suppose X_n approaches X in distribution. For all integers k, since X is integer valued, F is continuous at k+1/2 and k-1/2, and so $F_n(k+1/2) \to F(k+1/2)$ and $F_n(k+1/2) \to F(k+1/2)$, as $n \to \infty$. Since $\mathbb{P}[X_n = k] = F(k+1/2) - F(k-1/2)$ and each $\mathbb{P}[X_n = k] = F_n(k+1/2) - F_n(k-1/2)$, $\mathbb{P}[X_n = k] \to \mathbb{P}[X_n = k]$.

Suppose now that, $\forall k \in \mathbb{Z}$, $\mathbb{P}[X_n = k] \to \mathbb{P}[X_n = k]$ as $n \to \infty$. Since, $\forall x \in \mathbb{R}$, $F(x) = \sum_{i=1}^{\lfloor x \rfloor} \mathbb{P}[X = k]$ and each $F_n(x) = \sum_{i=1}^{\lfloor x \rfloor} \mathbb{P}[X_n = k]$, $F_n(x) \to F(x)$ as $n \to \infty$.

10. Note that, by the Central Limit Theorem,

$$\begin{bmatrix} \sqrt{n}(\overline{X}_1 - \mu_1) \\ \sqrt{n}(\overline{X}_2 - \mu_2) \end{bmatrix} \to \mathcal{N}(0, \Sigma),$$

in distribution, and that, for $g: \mathbb{R}^2 \to \mathbb{R}$ defined by $g(x_1, x_2) = x_1/x_2$, $\nabla_{\mu} := \nabla g(\mu_1, \mu_2) = (1/\mu_2, -\mu_1/\mu_2^2)^T$. Hence, assuming $\mu_1, \mu_2 \neq 0$, by the Multivariate Delta Method,

$$\sqrt{n}(Y_n - \mu_1/\mu_2) = \sqrt{n}(g(\overline{X}_1, \overline{X}_2) - g(\mu_1, \mu_2)) \to \mathcal{N}(0, \nabla_{\mu}^T \Sigma \nabla_{\mu}).$$