1 the weights may be r	eaucea to zero.		
(a) L1 and L2	(b) L1	(c) L2	d None of the above
training data set.	optimal set of weight, we cho		function concerning \boldsymbol{w} over the entire
 a to increase computate b to reduce the number c to prevent overfitting d to speed up the train 	r of layers in a neural network		
4. Which of the following	regularization techniques adds	a penalty term based on t	the absolute values of the weights?
(a) L1 regularization	b L2 regularization	(c) Dropout	d Elastic Net
5. In neural networks, who	at does L2 regularization encou	ırage?	-
a Sparse weight matricc small weight values	res	(b) large weight valued (d) No impact on we	
6. How does dropout regu	llarization work in a neural net	work?	
b It randomly drops en c It adds noise to the i	put features during training ntire layers during training nput data ty term for large weights.		
7. Which regularization te	chnique combines both L1 and	L2 penalties?	
a Dropoutc Elastic Net		b Ride regressiond Batch Normaliza	ation
8. What is the purpose of	early stopping as a form of reg	ularization?	
b To prevent the mode c To speed up the con-	process when the model is und I from memorizing the training vergence of the training process t of outliers in the training data	g data s	
9. Which of the following	statements is true about the bia	as-variance tradeoff in the	context of regularization?
b Regularization alway c Regularization can h	es increases bias and decreases so increases both bias and varial elp balance bias and variance o impact on the bias-variance to	nnce	
10. In the context of neura	l networks, what does weight o	decay refer to?	
b The gradual decrease c The removal of unne	in weight values during traini in weight values during train cessary weights from the netw noise to the weight values	ing	
11. Which of the following	; is a disadvantage of using a h	igh regularization strengtl	h in a neural network?
a Increased risk of oveb Faster convergence ofc Enhanced generalizatedd Reduced capacity to	luring training		

12 . What is the role of the temperature parameter in the co	ontext of knowledge distillation as a form of regularization?
 a Controls the learning rate b Adjusts the level of noise in the input data c Regulates the softness of the target distribution d Sets the threshold for dropout during training 	
13. In the context of neural networks, what does dropout	rate refer to?
 a The percentage of training samples used during each b The rate at which weight are decayed during trainin c The probability of dropping out a unit in the hidden d The learning rate for stochastic gradient descent. 	g
14 . Which of the following is a technique used for dynamiconvergence in deep learning?	mic adjustment of the learning rate during training to improve
a Adversarial trainingc Batch Normalization	b Learning rate annealingd Feature Scaling
15. What is the purpose of adding noise to the input data	as a form of regularization?
 a To make the training process deterministic b To improve model interpretability c To reduce the impact of outliers in the input data d To prevent the model from memorizing the training 	data
16. In the context of regularization, what does the term "s	hrinkage" refer to?
 a Reducing the size of the input data b Reducing the number of hidden layers in the network c Constraining the magnitude of the weights in the media d Eliminating unnecessary features from the dataset 	
17. Which of the following statements is true about the dr	opout technique?
 a Dropout is more effective in shallow networks than b Dropout can be applied only to input layers c Dropout introduces random variations only during to d Dropout helps prevent co-adaptation of hidden units 	testing
18. What is the primary goal of ensemble methods in mac	hine learning?
 a To reduce the computational complexity of models b To increase the training time of individual models c To improve the predictive performance of a model b d To decrease the diversity among base models 	y combining multiple models
19. Which of the following statements is true about baggin	ng (Bootstrap Aggregating)?
a It trains multiple models sequentially.b It trains multiple models independently on differentc It combines models using a weighted average.	subsets of the training data.

d It is not suitable for high-variance models.

20. What is the purpose of random forests in ensemble learning?

b To reduce the number of	sion trees with high correlation f trees in the ensemble as by considering a random sul			
d To eliminate the need for	r decision trees in the ensembl	e		
21. In boosting, how are the w	reights assigned to misclassifie	ed instances during training?		
a Equally to all instancesb Proportional to the difficc Sequentially, with higherd Inversely proportional to	r weights for misclassified inst	rances		
22 . Which ensemble method are learned based on the perfo	_	ase models by taking a weigh	ted av	rerage, where the weights
(a) Bagging	(b) Stacking	© Boosting	\bigcirc d	Random Forest
23. What is the primary advar	ntage of ensemble methods over	er individual base models?		
b Ensemble methods can h c Ensemble methods often d Ensemble methods are n 24. In the context of boosting, a A model with high train	ing accuracy slightly better than random cha	s. nproved robustness. rner" refer to?		
d A model that is highly o	-			
25 . Which ensemble method is sor?	s known for building a sequen	ce of weak learners, each corre	ecting	the errors of its predeces-
(a) Bagging	(b) AdaBoost	c Random Forest	\bigcirc d	Gradient Boosting
26 . Which ensemble method t	rains multiple models indeper	ndently on different subsets of	the tr	aining data?
(a) Boosting	(b) Stacking	© Bagging	\bigcirc d	Random Forest
27. What is bagging short for	in the context of ensemble me	thods?		
a Bootstrap Aggregating	(b) Boosting Algorithm	© Bagged Aggregation	\bigcirc d	Batch Aggregation
a Equally to all instancesb Proportional to the diffic	reights assigned to misclassified culty of the instance register weights for misclassified inst			
29 . Which ensemble method c	combines the predictions of bar	se models by taking a weighted	d avei	age?
a Baggingb Stackingc Boostingd Random Forest				
30. Which ensemble method is	s known for building a sequen	ce of weak learners, each corre	ecting	the errors of its predeces-

sor?

(a)	Bagging			
(b)	AdaBoost Random Forest			
$\begin{pmatrix} c \\ d \end{pmatrix}$	Gradient Boosting			
$\overline{}$	•	n ind	ividual base models?	
	What is the primary advantage of ensemble methods ove	I IIIU	ividual base inodels:	
(a)	Faster training time			
(b) (c)	Improved generalization and robustness Lower computational complexity			
(d)	Higher sensitivity to outliers			
\cup	Which ensemble method is based on constructing a fores	t of c	lecision trees with high d	liversity?
(a)	Bagging (b) AdaBoost	(c)	Random Forest	d Stacking
\bigcirc	What does the acronym "LSTM" stand for in the context of	\bigcirc		O O
(a)	Long Short-Term Memory	(b)	Linear Short-Term Mem	iory
$\begin{pmatrix} \mathbf{c} \end{pmatrix}$	Limited Short-Term Memory	(d)	Lasting Short-Term Mer	•
\bigcirc	n boosting, what is the purpose of the learning rate para	\bigcirc		1101 y
				un datad dunina aaah itanatian
(a) (b)	It controls the number of weak learners It adjusts the ar It determines the depth of decision trees	moui	it by which weights are t	apdated during each iteration
(c)	It sets the threshold for feature selection			
\bigcirc	What distinguishes Random Forest from traditional bagg	ing t	ochniquos?	
		nig i	echniques:	
(a) (b)	Random Forest uses a single decision tree			
$\begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$	Random Forest trains models sequentially Random Forest introduces randomness by considering	a rar	idom subset of features f	or each tree
(d)	Random Forest assigns equal weights to all instances	u rui	additionable of features i	or each tree
\sim	How does stacking differ from bagging and boosting in e	ensen	able methods?	
(a)	Stacking trains models independently on different subs			
(b)	Stacking combines predictions using a weighted average			
(c)	Stacking builds a sequence of weak learners	, -		
(d)	Stacking uses multiple base models to form a meta-models	del		
37. V	What role does the concept of "bias-variance tradeoff" pla	ıy in	ensemble methods?	
(a)	Ensemble methods eliminate the bias-variance tradeoff			
\widecheck{b}	Ensemble methods intensify the bias-variance tradeoff			
(c)	Ensemble methods help balance bias and variance			
$\overline{\mathbf{d}}$	Ensemble methods have no impact on bias and variance	e		
38 . V	What is the primary limitation of using too many weak le	earne	rs in boosting?	
(a)	Increased risk of overfitting	(b)	Decreased computation	al complexity
$\widetilde{\mathbb{C}}$	Improved generalization	\bigcirc	Faster training time	
39 . I1	n bagging, how are the subsets of the training data creat	ed fo	r each base model?	
(a)	Randomly and with replacement			
\widecheck{b}	Randomly and without replacement			
\bigcirc	Sequentially and with replacement			
$\overline{\mathbf{d}}$	Sequentially and without replacement			

1 0. / \	riat is the primary advan	mage of using gradient boosti	ng ov	ei tiaditioliai Adaboost:		
a	Faster convergence		(b)	Better handling of outlie	rs	
\bigcirc	Reduced risk of overfitting	ng	(d)	Simplicity in implementa	ation	
41 . W	hich ensemble method is	s prone to becoming computa	tional	lly expensive as the numb	er of	models increases?
a	Bagging	(b) Stacking	\bigcirc	Boosting	\bigcirc	Random Forest
42. W	hat does the term "stacki	ing" refer to in ensemble lear	ning?			
(b) (c)	Constructing a sequence	ndently on different subsets of weak learners				
(d)	Using multiple base mod	dels to form a meta-model				
43. W	Thich ensemble method is	s known for its ability to hand	lle bo	th linear and non-linear re	elation	nships in the data?
a	Bagging	(b) Stacking	\bigcirc	Random Forest	\bigcirc	Gradient Boosting
44 . E	xplain the concept of "out	t-of-bag" error in the context	of bag	gging.		
\simeq	It is the error rate calculates It is the error rate on the					
\times		st error obtained from the un				
(d)	It is a measure of the mo	odel's performance on out-of-	distrik	oution data		
45. W	That is the role of the hyp	perparameter "max depth" in o	decisi	on trees within a Random	Fores	st?
\times	It controls the number of					
\simeq		epth of individual decision tr	ees			
\times	It sets the learning rate for	ŭ .	200			
\cup	,	signed to misclassified instanc				1
		methods, what is "early stop				
(a)	Early stopping involves simplicity.	terminating the training pro	ocess	when the model is under	rfittin	g, contributing to model
(b)	Early stopping prevents data.	overfitting by stopping the tra	aining	process when the model	starts	to memorize the training
\bigcirc	Early stopping introduce	es noise to the input data duri	ing tra	aining, preventing overfitt	ing.	
\bigcirc d	Early stopping is not rela	ated to regularization in enser	mble :	methods.		
47. W	hat is the impact of incre	easing the number of base mo	dels	on the computational com	plexit	ty of stacking?
a	The computational comp	plexity decreases linearly				
b	The computational comp	plexity increases linearly				
\bigcirc	The computational comp	plexity remains constant				
(d)	The computational comp	plexity depends on the type of	f base	models used		
48 . E:	xplain the concept of "adv	versarial training" in the conto	ext of	ensemble methods.		
a	Adversarial training invo	olves training models to be ro	bust a	against adversarial attacks		
b	Adversarial training focu	uses on maximizing the accur	acy o	n the training set.		
\bigcirc	· ·	ninates the need for ensemble				
(d)	Adversarial training refe	rs to using adversarial examp	les as	additional training data.		

49. How does the concept of "stacking with cross-validation" address the risk of overfitting in stacking?

c I	Decreased model performance	(d) Improved generalization
51 . Ex	plain the concept of "feature importance" in the context	of Random Forest.
(b) I	Feature importance represents the number of times a ferenture importance indicates the relevance of a feature Feature importance is not applicable to ensemble method Feature importance measures the computational cost of	in predicting the target variable.
52 . W Boosti	*	n ensemble methods such as Random Forest and Gradien
(b) I (c) I	t controls the learning rate in boosting algorithms. It sets the maximum depth of individual decision trees. It specifies the number of base models in the ensemble. It determines the subset of features considered for each	base model.
53 . Ex	plain the concept of "stacking with meta-features" in th	e context of ensemble methods.
(b) S	Stacking with meta-features involves using the output of Stacking with meta-features eliminates the need for mu Stacking with meta-features refers to combining models Stacking with meta-features involves using only one type	ltiple base models. s using a weighted average.
54 . W	nat is Dropout in the context of neural networks?	
(b) I	Adding noise to input features Removing random neurons during training Reducing the learning rate Increasing the number of hidden layers	
55. W	nat is the main purpose of Dropout in neural networks	?
(b) 7	To increase overfitting To speed up the training process To prevent co-adaptation of neurons To eliminate the need for activation functions	
56. W	nich of the following statements is true about the applie	cation of Dropout during training?
(b) I (c) I (d) I	Oropout is only applied to input layers Oropout is applied to all layers except the output layer Oropout is applied during both training and testing Oropout is never applied to neural networks	
57 . Ho	ow does Dropout contribute to regularization in neural	networks?

(b) Increased risk of overfitting

(a) It eliminates the need for cross-validation in stacking.

(c) It increases the depth of individual base models.

(d) It has no impact on the risk of overfitting.

Slower convergence

(b) It uses multiple cross-validated models, reducing overfitting.

50. What is the primary drawback of using a high learning rate in boosting algorithms?

a	By increasing the number of parameters
(b)	By introducing noise to the input data
(c)	By reducing the model's capacity
(d)	By promoting co-adaptation of neurons
58 . I	n terms of training, what does it mean if a neuron is "dropped out"?
a	The neuron's weights are set to zero
(b)	The neuron is removed from the network temporarily
\bigcirc	The neuron's activation function is bypassed
(d)	The neuron's output is squared
59. V	Vhat challenge does Dropout aim to address in neural networks?
a	Underfitting (b) Overfitting (c) Vanishing gradients (d) Exploding gradients
60 . F	How does Dropout affect the training time of a neural network?
a	Slows down the training process
b	Speeds up the training process
\bigcirc	No impact on training time
\bigcirc d	Depends on the type of activation function used
61 . V	What is the recommended range for Dropout rates in neural networks?
(a)	0.0 to 0.1
\widecheck{b}	0.2 to 0.5
(c)	0.5 to 0.8
$\overline{\mathbf{d}}$	0.9 to 1.0
62 . F	How does Dropout contribute to model generalization?
a	By memorizing the training data
(b)	By promoting co-adaptation of neurons
\bigcirc	By reducing the sensitivity of neurons to specific input features
\bigcirc	By increasing the number of hidden layers
63. V	When applying Dropout, which phase is used for adjusting the weights of the neural network?
(a)	Training phase
(b)	Testing phase
(c)	Both training and testing phases
$\overline{\mathbf{d}}$	Neither training nor testing phases
64 . E	explain the term "co-adaptation of neurons" in the context of neural networks and how Dropout addresses it.
a	Co-adaptation refers to neurons relying too much on each other, and Dropout breaks these dependencies by randomly dropping neurons during training.
b	Co-adaptation is a form of regularization, and Dropout exacerbates co-adaptation by introducing noise.
\bigcirc	Co-adaptation occurs when neurons are independent, and Dropout enforces co-adaptation by removing dependencies
\bigcirc	Co-adaptation is unrelated to Dropout; Dropout only affects the learning rate.
65 . F	How does the effectiveness of Dropout vary with the size and complexity of a neural network?
a	Dropout is more effective in small and simple networks
(b)	Dropout is more effective in large and complex networks
$\overline{\mathbf{c}}$	Dropout is equally effective across all network sizes and complexities
(d)	Dropout is irrelevant to network size and complexity

66. What is the relationship between Dropout and the concep	pt of ensemble learning?	
a Dropout is a type of ensemble learning		
(b) Ensemble learning and Dropout are unrelated concepts	3	
(c) Dropout and ensemble learning achieve the same result	t in terms of model diversity	7
d Dropout eliminates the need for ensemble learning		
67. Explain the trade-off between using a high Dropout rate	and a low Dropout rate in n	eural networks.
(a) High Dropout rates lead to overfitting, while low Drop	out rates may result in unde	erfitting.
b High Dropout rates always improve model generalization	ion, while low Dropout rates	reduce model capacity.
(c) There is no trade-off; the Dropout rate does not impact	model performance.	
d The trade-off depends on the type of activation function	n used in the network.	
68. How does Dropout contribute to mitigating the vanishing	g gradient problem in deep 1	neural networks?
(a) a. By increasing the learning rate		
(b) By preventing co-adaptation of neurons		
© By introducing noise to the input data		
d By reducing the sensitivity of neurons to specific input	features	
69. What is the primary goal of data augmentation in machin	ne learning?	
(a) To decrease the size of the dataset		
b To increase the computational complexity		
(c) To improve model performance by increasing the diver	sity of the training data	
d To eliminate the need for validation data		
70. Which of the following is a common technique used in d	ata augmentation for image	data?
(a) Principal Component Analysis (PCA)	(b) Feature scaling	
(c) Image rotation	d Lasso regularization	
71. How does data augmentation contribute to preventing ov	verfitting in machine learning	g models?
(a) By reducing the size of the training dataset		
(b) By increasing the number of layers in the model		
(c) By introducing noise to the input data		
d By providing a more diverse set of training examples		
72. In text data augmentation, what technique involves repla	cing words with their synon	ıyms?
(a) Tokenization (b) Embedding	© Word substitution	d Lemmatization
73. Which of the following is a disadvantage of data augmer	itation?	
(a) Increased model generalization		
(b) Potential introduction of unrealistic patterns		
(c) Improved model robustness		
d Decreased computational efficiency		
74. What is the purpose of random cropping in image data a	ugmentation?	
(a) To decrease the image resolution		
(b) To remove irrelevant features from the image		
(c) To create variations in the spatial location of objects		
d To increase the image contrast		

75. V	Which type of data augm	entation is commonl	y used for time	series data?	
a	Image rotation	b Time warping	g c	Word substitution	d Feature scaling
76 . I	Explain the concept of "jit	ttering" in the contex	t of data augme	ntation.	
(a) (b) (c) (d)	Jittering refers to the int Jittering involves the ran Jittering is a synonym for Jittering is irrelevant to	ndom selection of a sor image rotation	-	oints	
77. I	n the context of image da	ata augmentation, w	hat is the purpo	se of horizontal flippir	ng?
(a) (c)	To rotate images clockw To adjust the image brig		(b) (d)	To create mirror image To resize images	ges
78 . I	How does data augmenta	ition differ from feat	ure engineering	?	
a b c d	Data augmentation focus Feature engineering is I Data augmentation invo Feature engineering and	limited to image data olves scaling features	a, while data aug s, while feature o	gmentation is applicab engineering involves ra	7.5
79. V	What is the role of dropou	ut in the context of d	lata augmentatio	on?	
a b c d	Dropout is not related to Dropout enhances data Dropout is a type of data Dropout prevents data a	augmentation by rate augmentation tech	ndomly removir nnique		ning
80. V	Which data augmentation	n technique is commo	only used for au	dio data to introduce	variations in pitch?
a c	Time warping Random cropping		(b) (d)	Spectrogram augmen Jittering	ntation
81 . V	What is the purpose of ela	astic deformation in	image data aug	mentation?	
a b c d	To adjust the image con To introduce non-linear To resize the image To rotate the image		nage		
	In natural language pro mentation?	cessing, which tech	nique involves 1	randomly removing w	vords from sentences during data
a b c d	Tokenization Word substitution Sentence splitting Sentence dropout				
83. I	Explain the concept of "ac	dversarial training" i	n the context of	data augmentation and	d how it addresses robustness.
a		cuses on creating adv			obustness against unseen patterns
(b)	Adversarial training is i	irrelevant to data au _{	gmentation.		
c d	Adversarial training inv Adversarial training enl	_			e during the augmentation process.

(d) Data augmentation reduces the need for addressing class imbalance
85. What challenges might arise when applying data augmentation to non-image data types, such as tabular data?
 a Difficulty in implementing data augmentation for non-image data b Limited applicability of data augmentation to non-image data c The potential introduction of unrealistic patterns d No challenges; data augmentation is equally effective for all data types
86 . Explain the term "mixup" in the context of data augmentation and how it differs from traditional augmentation techniques.
 a Mixup involves blending two or more samples, creating new synthetic samples with averaged labels. b Mixup is a synonym for image rotation. c Mixup refers to the addition of random noise to input features. d Mixup is irrelevant to data augmentation.
87. How does data augmentation impact the interpretability of machine learning models?
 a Data augmentation improves model interpretability by providing more diverse training examples. b Data augmentation has no impact on model interpretability. c Data augmentation reduces model interpretability due to the introduction of synthetic samples. d Data augmentation improves model interpretability by eliminating the need for validation data.
88. What is the role of "cutout" in image data augmentation?
 a To remove random portions from images b To blur the edges of images c To rotate images d To resize images
89. In the context of data augmentation, explain how the technique of "shearing" is applied to image data.
 a Shearing involves adjusting the brightness of images. b Shearing is irrelevant to data augmentation. c Shearing introduces non-linear distortions to the image by tilting it along one of its axes. d Shearing is a synonym for image rotation.

84. How does data augmentation contribute to handling class imbalance in classification tasks?

Data augmentation generates additional samples for minority classes, addressing class imbalance

a Data augmentation exacerbates class imbalanceb Data augmentation is not related to class imbalance

Solutions to the Exercises

- 1. (b) L1
- 2.
- 3. (c) to prevent overfitting
- 4. (a) L1 regularization
- 5. (c) small weight values
- 6. (b) It randomly drops entire layers during training
- 7. (c) Elastic Net
- 8. (b) To prevent the model from memorizing the training
- 9. (c) Regularization can help balance bias and variance
- **10**. (b) The gradual decrease in weight values during training
- 11. (d) Reduced capacity to capture complex patterns
- 12. (c) Regulates the softness of the target distribution
- **13**. **(c)** The probability of dropping out a unit in the hidden layers during training
- **14**. **(b)** Learning rate annealing
- 15. (c) To reduce the impact of outliers in the input data
- 16. (c) Constraining the magnitude of the weights in the model
- 17. (d) Dropout helps prevent co-adaptation of hidden units
- **18**. **(c)** To improve the predictive performance of a model by combining multiple models
- **19**. **(b)** It trains multiple models independently on different subsets of the training data.
- **20**. **(c)** To introduce randomness by considering a random subset of features for each tree
- **21**. **(c)** Sequentially, with higher weights for misclassified instances
- **22**. **(b)** Stacking
- 23. (c) Ensemble methods often generalize better and have improved robustness.
- **24**. **(b)** A model that performs slightly better than random chance
- 25. (b) AdaBoost
- 26. (c) Bagging
- 27. (a) Bootstrap Aggregating
- **28**. **(c)** Sequentially, with higher weights for misclassified instances
- **29**. **(b)** Stacking
- **30**. **(b)** AdaBoost
- 31. (b) Improved generalization and robustness
- 32. (c) Random Forest
- 33. (a) Long Short-Term Memory
- **34**. (a) It adjusts the amount by which weights are updated during each iteration
- **35**. (c) Random Forest introduces randomness by considering a random subset of features for each tree
- **36**. **(d)** Stacking uses multiple base models to form a metamodel
- 37. (c) Ensemble methods help balance bias and variance
- 38. (a) Increased risk of overfitting
- 39. (a) Randomly and with replacement
- **40**. **(b)** Better handling of outliers
- 41. (c) Boosting

- 42. (d) Using multiple base models to form a meta-model
- 43. (c) Random Forest
- 44. (c) It is an estimate of the test error obtained from the unused samples during training
- **45**. (b) It limits the maximum depth of individual decision trees
- **46**. (b) Early stopping prevents overfitting by stopping the training process when the model starts to memorize the training data.
- 47. (b) The computational complexity increases linearly
- **48**. (a) Adversarial training involves training models to be robust against adversarial attacks.
- **49**. **(b)** It uses multiple cross-validated models, reducing overfitting.
- 50. (b) Increased risk of overfitting
- **51**. **(b)** Feature importance indicates the relevance of a feature in predicting the target variable.
- **52**. (c) It specifies the number of base models in the ensemble.
- 53. (a) Stacking with meta-features involves using the output of base models as features for a meta-model.
- 54. (b) Removing random neurons during training
- 55. (c) To prevent co-adaptation of neurons
- **56**. **(b)** Dropout is applied to all layers except the output layer
- **57**. **(c)** By reducing the model's capacity
- **58**. **(b)** The neuron is removed from the network temporarily
- 59. (b) Overfitting
- 60. (a) Slows down the training process
- **61**. **(b)** 0.2 to 0.5
- **62**. **(c)** By reducing the sensitivity of neurons to specific input features
- 63. (a) Training phase
- **64**. **(a)** Co-adaptation refers to neurons relying too much on each other, and Dropout breaks these dependencies by randomly dropping neurons during training.
- **65**. (b) Dropout is more effective in large and complex networks
- **66**. **(c)** Dropout and ensemble learning achieve the same result in terms of model diversity
- **67**. **(a)** High Dropout rates lead to overfitting, while low Dropout rates may result in underfitting.
- 68. (c) By introducing noise to the input data
- **69**. **(c)** To improve model performance by increasing the diversity of the training data
- **70**. **(c)** Image rotation
- 71. (d) By providing a more diverse set of training examples
- 72. (c) Word substitution
- 73. (b) Potential introduction of unrealistic patterns
- 74. (c) To create variations in the spatial location of objects
- 75. (b) Time warping
- **76.** (a) Jittering refers to the introduction of noise to input features
- 77. (b) To create mirror images
- **78**. (a) Data augmentation focuses on creating new samples, while feature engineering manipulates existing features.

- **79**. **(b)** Dropout enhances data augmentation by randomly removing features during training
- 80. (b) Spectrogram augmentation
- 81. (b) To introduce non-linear distortions to the image
- 82. (d) Sentence dropout
- 83. (a) Adversarial training focuses on creating adversarial examples to test the model's robustness against unseen patterns introduced by data augmentation.
- **84**. **(c)** Data augmentation generates additional samples for minority classes, addressing class imbalance
- 85. (c) The potential introduction of unrealistic patterns
- **86**. (a) Mixup involves blending two or more samples, creating new synthetic samples with averaged labels.
- 87. (c) Data augmentation reduces model interpretability due to the introduction of synthetic samples.
- 88. (a) To remove random portions from images
- **89**. (c) Shearing introduces non-linear distortions to the image by tilting it along one of its axes.