SQL on everything, in memory

Julian Hyde Strata, NYC October 16th, 2014

About me

Julian Hyde

Architect at Hortonworks

Open source:

- Founder & lead, Apache Calcite (query optimization framework)
- Founder & lead, Pentaho Mondrian (analysis engine)
- Committer, Apache Drill
- Contributor, Apache Hive
- Contributor, Cascading Lingual (SQL interface to Cascading)

Past:

- SQLstream (streaming SQL)
- Broadbase (data warehouse)
- Oracle (SQL kernel development)

SQL: in and out of fashion

```
1969 — CODASYL (network database)
```

1979 — First commercial SQL RDBMSs

1990 — Acceptance — transaction processing on SQL

1993 — Multi-dimensional databases

1996 — **SQL EDWs**

2006 — Hadoop and other "big data" technologies

2008 — NoSQL

2011 — SQL on Hadoop

2014 — Interactive analytics on {Hadoop, NoSQL, DBMS}, using SQL

SQL remains popular.

But why?

"SQL inside"

Implementing SQL well is hard

- System cannot just "run the query" as written
- Require relational algebra, query planner (optimizer) & metadata

...but it's worth the effort

Algebra-based systems are more flexible

- Add new algorithms (e.g. a better join)
- Re-organize data
- Choose access path based on statistics
- Dumb queries (e.g. machine-generated)
- Relational, schema-less, late-schema, non-relational (e.g. key-value, document)

Apache Calcite

Apache Calcite

Apache incubator project since May, 2014

Originally named Optiq

Query planning framework

- Relational algebra, rewrite rules, cost model
- Extensible

Packaging

- Library (JDBC server optional)
- Open source
- Community-authored rules, adapters

Adoption

- Embedded: Lingual (SQL interface to Cascading), Apache Drill, Apache Hive, Kylin OLAP
- Adapters: Splunk, Spark, MongoDB, JDBC, CSV, JSON, Web tables, In-memory data

Conventional DB architecture

Calcite architecture

Demo

Expression tree

SELECT p."product_name", COUNT(*) AS c FROM "splunk". "splunk" AS s JOIN "mysql"."products" AS p ON s."product id" = p."product id" WHERE s. "action" = 'purchase' GROUP BY p."product name" Splunk ORDER BY c DESC Table: splunk Key: product name Key: product_id Agg: count Condition: Key: c DESC action = 'purchase' scan join **MySQL** filter sort group scan Table: products

Expression tree (optimized)

SELECT p."product name", COUNT(*) AS c

FROM "splunk". "splunk" AS s

JOIN "mysql"."products" AS p

ON s."product id" = p."product id"

Calcite – APIs and SPIs

Relational algebra

RelNode (operator)

- TableScan
- Filter
- Project
- Union
- Aggregate
- ...

RelDataType (type)

RexNode (expression)

RelTrait (physical property)

- RelConvention (calling-convention)
- RelCollation (sortedness)
- TBD (bucketedness/distribution)

SQL parser

SqlNode SqlParser SqlValidator

Metadata

Schema

Table

Function

- TableFunction
- TableMacro

Lattice

JDBC driver

Transformation rules

RelOptRule

- MergeFilterRule
- PushAggregateThroughUnionRule
- 100+ more

Global transformations

- Unification (materialized view)
- Column trimming
- De-correlation

Cost, statistics

RelOptCost RelOptCostFactory RelMetadataProvider

- RelMdColumnUniquensss
- RelMdDistinctRowCount
- RelMdSelectivity

Calcite Planning Process

Planner

Rule Match Queue

- Add Rule matches to Queue
- Apply Rule match transformations to plan graph
- Iterate for fixed iterations or until cost doesn't change
- Match importance based on cost of RelNode and height

1. Plan Graph

- Node for each node in Input Plan
- Each node is a Set of alternate Sub Plans
- Set further divided into Subsets: based on traits like sortedness

2. Rules

- Rule: specifies an Operator sub-graph to match and logic to generate equivalent 'better' sub-graph
- New and original sub-graph both remain in contention

3. Cost Model

 RelNodes have Cost & Cumulative Cost

4. Metadata Providers

- Used to plug in Schema, cost formulas
- Filter selectivity
- Join selectivity
- NDV calculations

Based on "Volcano" & "Cascades" papers [G. Graefe]

Best RelNode Graph

Translate to runtime

Hortonworks

Demo

Analytics

Mondrian OLAP (Saiku user interface)

					Keep Only Eucli	ado Cour S	sectors				r >≡ Reset M
Top 5 P	Product Lines by	Territory								<u>F</u>	View As:
1 Filter in	use						₹ ¥	our report is read	y. Rows: 20 C	columns: 9 XML	Log MDX Clear
	I	Years									
		2003			2004			2005			
Territory	Line	Sales	Quantity	Unit Sales	Sales	Quantity	Unit Sales	Sales	Quantity	Unit Sales	
	Classic Cars	\$115,011	1,052	\$109	\$199,372	1,785	\$112	\$97,574	1.015	\$96	
APAC	Vintage Cars	\$111.639	1,243	\$90	\$147,212	1,587	\$93	\$105,688	1.067	\$22	
	Motorcycles	\$60,789	654	\$93	\$63,159	540	\$117	\$65,870	658	\$100	
	Trucks and Buses	\$11,298	91	\$124	\$80,634	801	\$101	\$53,735	488	\$110	
	Planes	\$42,663	456	594	\$67,681	723	\$94	\$11,082	151	\$73	
APAC Total		\$341,400	3,496	\$98	\$558,057	5,436	\$103	\$333,948	3,379	\$99	
	Classic Cars	\$691,273	\$,853	\$118	\$1,015,790	8,976	\$113	\$384,538	3,463	\$111	
	Vintage Cars	\$263,695	3,094	\$85	\$504,062	5,472	\$92	\$83,324	1,094	\$76	
MEA	Motorcycles	\$141,836	1,428	\$99	\$204,042	2,177	\$94	\$161,260	1.501	\$107	
	Trucks and Buses	\$228,699	2,261	\$101	\$185,421	1,558	\$119	\$86,859	836	\$104	
	Planes	\$154,519	1,723	\$90	\$209,128	2,326	\$90	\$128,008	1,464	\$87	
EMEA Total		\$1,480,021	14,359	\$103	\$2,118,443	20,509	\$103	\$843,989	8,358	\$101	
	Classic Cars	\$120,696	898	\$134	\$42,071	307	\$137	\$18,835	122	\$154	
	Planes	\$60,556	677	282	\$49,177	547	\$90			-	
lapan	Trucks and Buses	\$44,498	415	\$107	\$13,349	102	\$131			-	
	Motorcycles	\$16,485	205	\$80	\$31,959	380	\$84	\$4,176	44	\$95	
hanna Watai	Vintage Cars	\$22,888	308	<u>\$74</u>	\$21,470	229	\$94	\$7,979	84	\$95	
lapan Tota		\$265,123	2,503	\$106	\$158,026	1,565	\$101	\$30,990	250	\$124	
	Classic Cars	\$587,428	4,959	\$118	\$581.043	5,017	\$116	\$237,791 \$191,727	2,105 1,871	\$113	
IA.	Vintage Cars Motorcycles	\$281,727	3,268	\$86	\$324.815	3,576	\$91			\$102	
	Trucks and Buses	\$178,109	1,744	\$102	\$291,421	2,809	\$104	\$55,020	568	\$97	
	Planes	\$135,936 \$90,016	1,289 977	\$105 \$92	\$252,572 \$202,942	2,563	\$99	\$61,281 \$60,985	597 592	\$103 \$103	
	Figures	\$1,273,216	12,237	\$104	\$1,652,792	16,189	\$91 \$102	\$606,803	5,733	\$106	
LA Total	NA Total Grand Total		32,595	\$104	\$4,487,319	43,699	\$102	\$1,815,730	17,720	\$100	

Interactive queries on NoSQL

Typical requirements

NoSQL operational database (e.g. HBase, MongoDB, Cassandra)

Analytic queries aggregate over full scan

Speed-of-thought response (< 5 seconds first query, < 1 second second query)

Data freshness (< 10 minutes)

Other requirements

Hybrid system (e.g. Hive + HBase)

Star schema

Star schema

Simple analytics problem?

System

100M US census records1KB each record, 100GB total4 SATA 3 disks, total read throughput 1.2GB/s

Requirement

Count all records in < 5s

Solution #1

It's not possible! It takes 80s just to read the data

Solution #2

Cheat!

How to cheat

Multiple tricks

Compress data

Column-oriented storage

Store data in sorted order

Put data in memory

Cache previous results

Pre-compute (materialize) aggregates

Common factors

Make a copy of the data

Organize it in a different way

Optimizer chooses the most suitable data organization

SQL query is unchanged

Filter-join-aggregate query

SELECT product.id, sum(sales.units), sum(sales.price), count(*) FROM sales ... JOIN customer ON ... JOIN time ON ... JOIN product ON ... JOIN product class ON ... WHERE time.year = 2014 AND time.quarter = 'Q1' AND product.color = 'Red' GROUP BY ... Time Sales Inventory Customer

Froduct

ProductClass

Warehouse

Materialized view, lattice, tile

Materialized view

A table whose contents are guaranteed to be the same as executing a given query.

Lattice

Recommends, builds, and recognizes summary materialized views (tiles) based on a star schema.

A query defines the tables and many:1 relationships in the star schema.

Tile

A summary materialized view that belongs to a lattice.

A tile may or may not be materialized.

Materialization methods:

- Declare in lattice
- Generate via recommender algorithm
- Created in response to query

(FAKE SYNTAX)

CREATE MATERIALIZED VIEW t AS
SELECT * FROM emps
WHERE deptno = 10;

CREATE LATTICE star AS

SELECT *

FROM sales_fact_1997 AS s

JOIN product AS p ON ...

JOIN product_class AS pc ON ...

JOIN customer AS c ON ...

JOIN time_by_day AS t ON ...;

CREATE MATERIALIZED VIEW zg IN star
SELECT gender, zipcode,
 COUNT(*), SUM(unit_sales)
FROM star
GROUP BY gender, zipcode;

Lattice

```
() 1
> select count(*) as c, sum(unit_sales) as s
> from star;
     C
  1,000,000 | 266,773.0
1 row selected
> select * from star;
1,000,000 rows selected
```


m month (12)

Demo

Tiled, in-memory materializations

In-memory materialized queries

Tables on disk

Where we're going... smart, distributed memory cache & compute framework http://hortonworks.com/blog/dmmq/

Kylin OLAP engine

Hortonworks

Thank you!

@julianhyde

http://calcite.incubator.apache.org

http://www.kylin.io

