Heart Deaseas Predictation

TEAM MEMBER

- **SNEHSIS ROY**
- **SUBHODIP ROY**
- MOUMITA MAJI
- DRIPPTA DUTTA
- **ARPITA MAJI**

PROJECT MENTOR: **PROF. ARNAB CHAKRABORTY**

Content

- Project Objective & Scope
- Data Description
- Methodology
- Data Preprocessing
- Models Used
- Accuracy Comparison
- Inference
- Future Scope of Improvements

PROJECT OBJECTIVE & SCOPE

Objective:

- **Given**: Framingham Heart disease dataset taken from Github (contains training and test data).
- **Goal**: To predict whether a patient will have Coronay Heart Disease in recent 10 years.
- **Finally**: Apply on the test dataset and compare the differences in the results

Scope:

- It is a useful project as the Classifier models can be used to quickly determine wether the patient have chance to have coronary heart disease in recent 10 years.
- The results might have some mismatch with the real-world applications. But that can be avoided if the models are trained for small datasets.

Columns	Attribute	Туре	Description	Target
	name			Attribute
Male	male	Categorical	Gender of the patient $(0/1)$	No
Age	age	Non-Categorical	Age of the patient	No
Education	Education	Categorical	Education status of the patient (1/2/3/4)	
Current Smoker	currentSmoker	Non-Categorical	The number of cigarettes that the person smoked on average in one day	No
BP Meds	BPMeds	Categorical	Whether or not the patient as on blood pressure medication.(0/1)	No
Prevalent Stroke	prevalentStroke	Categorical	Whether or not the patient had previously had a stroke.(0/1)	No
Prevalent Hypertensive	prevalentHyp	Categorical	Whether or not the patient was hypertensive.(0/1)	No
Diabetes	diabetes	Categorical	Whether or not the patient had diabetes.(0/1)	No
Total Cholestrol	totChol	Non-Categorical	Total cholesterol level	No
Systolic Blood Pressure	sysBP	Non-Categorical	Systolic blood pressure	No
Diastolic Blood Pressure	diaBP	Non-Categorical	Diastolic blood pressure	No
Body Mass Index	BMI	Non-Categorical	Body Mass Index	No
Heart Rate	heartRate	Non-Categorical	Heart Rate	No
Glucose	glucose	Non-Categorical	Glucose level	No
TenYearCHD	TenYearCHD	Non-Categorical	10 year risk of coronary heart disease CHD (binary: "1", means "Yes", "0" means "No")	Yes

DATA PROCESSING

Removing outliers from Glucose column

Before

After

MODEL USED

- Logistic Regression
- Random Forest
- K NN Classification
- Decision Tree

LOGISTIC REGRESSION

Logistic Regression is a type of regression analysis. Regression analysis is a type of predictive modelling technique which is used to find the relationship between a dependent variable (usually known as the "Y" variable) and either one independent variable (the "X" variable) or a series of independent variables. When two or more independent variables are used to predict or explain the outcome of the dependent variable, this is known as multiple regression.Logistic Regression models the data using sigmoid function.

RECEIVER OPERATING CHARACTERISTIC CURVES

ACCURACY COMPARISON GRAPH

Models Used	Accuracy %	
Logistic Regression	69.5755	
Random forest	64.7799	
K – Nearest Neighbor	81.6824	
Decision Tree	82.9403	

- •The data shown above is an accuracy score of our models.
- We see that the highest accuracy for the train dataset is in Decision Tree.
- •But we select Logistic Regression Model to predict the test dataset, because it is giving more balanced result.

INFERENCE

• The output result of the test dataset obtained by model namemodel is inferred to be accepted.

THANKYOU