- ✓ 基本思想
 - ❷ 动作在变,环境不变
 - ❷ 如何获取动作信息
 - ❷ 如何获取环境信息
 - ❷ 他们俩该怎么融合呢?

```
[1.00] stand
                                       0.92] listen to person
                                       0.67] watch person
0.58] watch person
                   [1.00] sit
                                         isten to person
   talk to person[GT] sit
                 [GT] carry object [GT] watch person
   watch person
```

✓ 主要贡献

- ∅ 一个通用的行为识别框架(facebook),自己的项目轻松套用
- 郊 对比实验很丰富,网络结构设计及其预训练模均提供

- 思想比较直接,高频与低频特征通吃,直接融合特征进行预测
- 源码资源丰富,直接可以当作模板的项目

✅ 核心网络结构

∅ 1.分别获取高频与低频图像数据; 2.分别进行特征提取; 3.特征融合; 4.预测

❤ 网络结构细节

Ø datalayer: 对视频进行采样

参 需注意stride的H和W相同

stage	Slow pathway	Fast pathway	output sizes $T \times S^2$
raw clip	-/.	-	64×224 ²
data layer	stride 16, 1 ²	stride 2 , 1 ²	$Slow: 4 \times 224^2$ $Fast: 32 \times 224^2$
conv ₁	1×7^2 , 64 stride 1, 2^2	$\frac{5\times7^2, 8}{\text{stride } 1, 2^2}$	$Slow: 4 \times 112^2$ $Fast: 32 \times 112^2$
pool ₁	1×3^2 max stride 1, 2^2	1×3^2 max stride 1, 2^2	Slow: 4×56^2 Fast: 32×56^2
res ₂	$\begin{bmatrix} 1 \times 1^2, 64 \\ 1 \times 3^2, 64 \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3\times1^2,8}{1\times3^2,8}\\ 1\times1^2,32 \end{bmatrix} \times 3$	$Slow: 4 \times 56^2$ $Fast: 32 \times 56^2$
res ₃	$\begin{bmatrix} 1 \times 1^2, 128 \\ 1 \times 3^2, 128 \\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} \frac{3 \times 1^2, 16}{1 \times 3^2, 16} \\ 1 \times 1^2, 64 \end{bmatrix} \times 4$	Slow: 4×28 ² Fast: 32×28 ²
res ₄	$ \begin{bmatrix} 3 \times 1^{2}, 256 \\ 1 \times 3^{2}, 256 \\ 1 \times 1^{2}, 1024 \end{bmatrix} \times 6 $	$\left[\begin{array}{c} \frac{3 \times 1^2, 32}{1 \times 3^2, 32} \\ 1 \times 1^2, 128 \end{array}\right] \times 6$	$Slow: 4 \times 14^2$ $Fast: 32 \times 14^2$
res ₅	$ \begin{bmatrix} \frac{3 \times 1^2, 512}{1 \times 3^2, 512} \\ 1 \times 1^2, 2048 \end{bmatrix} \times 3 $	$\begin{bmatrix} \frac{3 \times 1^2, 64}{1 \times 3^2, 64} \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	Slow: 4×7^2 Fast: 32×7^2
-10	# classes		

❤ 网络结构细节

Ø resnet层:特征提取

Ø slow与fast提取特征目的不同

∅ 均使用3D卷积计算

Ø fast计算要更轻量级

stage	Slow pathway	Fast pathway	output sizes $T \times S^2$
raw clip	-/.	-	64×224 ²
data layer	stride 16, 1 ²	stride 2 , 1 ²	$Slow: 4 \times 224^2$ $Fast: 32 \times 224^2$
conv ₁	1×7^2 , 64 stride 1, 2^2	$\frac{5\times7^2, 8}{\text{stride } 1, 2^2}$	$Slow: 4 \times 112^2$ $Fast: 32 \times 112^2$
pool ₁	1×3^2 max stride 1, 2^2	1×3^2 max stride 1, 2^2	Slow: 4×56^2 Fast: 32×56^2
res ₂	$\begin{bmatrix} 1 \times 1^2, 64 \\ 1 \times 3^2, 64 \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3\times1^2,8}{1\times3^2,8}\\ 1\times1^2,32 \end{bmatrix} \times 3$	$Slow: 4 \times 56^2$ $Fast: 32 \times 56^2$
res ₃	$\begin{bmatrix} 1 \times 1^2, 128 \\ 1 \times 3^2, 128 \\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} \frac{3 \times 1^2, 16}{1 \times 3^2, 16} \\ 1 \times 1^2, 64 \end{bmatrix} \times 4$	Slow: 4×28 ² Fast: 32×28 ²
res ₄	$ \begin{bmatrix} \frac{3 \times 1^2, 256}{1 \times 3^2, 256} \\ 1 \times 1^2, 1024 \end{bmatrix} \times 6 $	$\left[\begin{array}{c} \frac{3\times1^2, 32}{1\times3^2, 32} \\ 1\times1^2, 128 \end{array}\right] \times 6$	$Slow: 4 \times 14^2$ $Fast: 32 \times 14^2$
res ₅	$\begin{bmatrix} \frac{3\times1^2}{1\times3^2}, 512\\ 1\times1^2, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 64}{1 \times 3^2, 64} \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	<i>Slow</i> : 4×7 ² <i>Fast</i> : 32×7 ²
=10	# classes		

৺ 特征融合

 \mathscr{O} slow与fast的特征图如何融合呢? slow: $\{T, S^2, C\}$ fast: $\{\alpha T, S^2, \beta C\}$

∅ 文中给出3种方案, 然后选择了最直接了当的

- (i) *Time-to-channel*: We reshape and transpose $\{\alpha T, S^2, \beta C\}$ into $\{T, S^2, \alpha \beta C\}$, meaning that we pack all α frames into the channels of one frame.
- (ii) *Time-strided sampling*: We simply sample one out of every α frames, so $\{\alpha T, S^2, \beta C\}$ becomes $\{T, S^2, \beta C\}$.
- (iii) Time-strided convolution: We perform a 3D convolution of a 5×1^2 kernel with $2\beta C$ output channels and stride $= \alpha$.

✅ 效果分析

∅ 效果还是非常不错的,原论文也做了多项对比实验

model	flow	pretrain	top-1	top-5	GFLOPs×views
I3D [5]	27)	ImageNet	72.1	90.3	108 × N/A
Two-Stream I3D [5]	1	ImageNet	75.7	92.0	$216 \times N/A$
S3D-G [61]	V	ImageNet	77.2	93.0	143 × N/A
Nonlocal R50 [56]		ImageNet	76.5	92.6	282×30
Nonlocal R101 [56]		ImageNet	77.7	93.3	359×30
R(2+1)D Flow [50]	1	-	67.5	87.2	152 × 115
STC [9]		-	68.7	88.5	$N/A \times N/A$
ARTNet [54]		-	69.2	88.3	23.5×250
S3D [61]		-	69.4	89.1	$66.4 \times N/A$
ECO [63]		-	70.0	89.4	$N/A \times N/A$
I3D [5]	√	-	71.6	90.0	$216 \times N/A$
R(2+1)D [50]		17	72.0	90.0	152×115
R(2+1)D [50]	1	-	73.9	90.9	304×115
SlowFast 4×16, R50		-	75.6	92.1	36.1×30
SlowFast 8×8, R50		.=	77.0	92.6	65.7×30
SlowFast 8×8, R101		-	77.9	93.2	106×30
SlowFast 16×8, R101		-	78.9	93.5	213×30
SlowFast 16×8, R101+NL		-	79.8	93.9	234×30

