MA 1201 Spring Sem, 2025

1. Verify whether the following pairs (A, B) of sets are having same cradinality. If yes, establish an explicit bijection. If not, prove.

- (a) $A := \mathbb{N}$; $B := \{n \in \mathbb{N} : n \text{ is a power of } 2\}$.
- (b) $*A := \mathbb{N}; B := \mathbb{Z}.$
- (c) $A := \mathbb{Z}$; $B := \mathbb{N}$.
- (d) $A := \{1, 2\}; B := \{x \in \mathbb{R} : x^2 + bx + c = 0\}, \text{ where } b, c \in \mathbb{R} \text{ are given and } b^2 4ac = 0.$
- (e) $A := \{1, 2\}; B := \{x \in \mathbb{R} : x^2 + bx + c = 0\}, \text{ where } b, c \in \mathbb{R} \text{ are given and } b^2 4ac > 0.$
- (f) $A := \{1, 2\}; B := \{x \in \mathbb{R} : x^2 + bx + c = 0\}, \text{ where } b, c \in \mathbb{R} \text{ are given and } b^2 4ac < 0.$
- (g) $A = \{1, 2, 3, 4\}; B := \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : m^2 + n^2 = 169\}.$
- (h) $A := (0, \infty); B := (-\infty, 0).$
- (i) $A := (0, \infty); B := (1, \infty).$
- (j) $A := (1, \infty); B := (-\infty, -3).$
- (k) A := (0,1); $B := (1,\infty)$.
- (1) *A := (0,1); B := (a,b), where a < b, $a, b \in \mathbb{R}$.
- (m) A := (0,1); $B := (0,\infty)$.
- (n) $*A := (0,1); B := \mathbb{R}.$
- (o) A := (0,1); B := [0,1].
- 2. Let X be a set and $A, B \subseteq X$. Let $A \sim B$ if and only if A and B have same cardinality. Show that \sim is an equivalence relation on $\mathcal{P}(X)$.
- 3. *If A is a finite set and $B \subseteq A$, then show that B is finite and $|B| \leq |A|$.
- 4. *If A is a finite set and B is a proper subset of A, then show that |B| < |A|.
- 5. If A is a finite set and $a \notin A$, then prove $|A \cup \{a\}| = |A| + 1$.
- 6. *If A, B are finite sets, then prove that $A \cup B$ is a finite set and

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

7. If A, B are finite sets, then prove that $A \times B$ is finite and

$$|A \times B| = |A||B|$$
.

- 8. Let X be a finite set and $f: X \to X$ be a map. Show that the following are equivalent:
 - (a) f is a bijection.

- (b) f is 1-1.
- (c) f is onto.
- 9. Let A and B be finite sets and $f:A\to B$ be a map. Prove the following:
 - (a) If f is 1 1, then $|A| \le |B|$.
 - (b) If f is onto, then $|A| \ge |B|$.
 - (c) If $f: A \to B$ and $g: B \to A$ are 1-1, then |A| = |B|, and f and g are bijections.
- 10. Show that every infinite set contains a countable subset.
- 11. *Prove that any subset of a countable set is atmost countable.
- 12. *Prove that finite union of countable set is countable.
- 13. (a) Let A be an infinite set and $B \subseteq A$ a finite set. Show that $A \setminus B$ is infinite.
 - (b) Let A be uncountable and $B \subseteq A$ a countable set. Show that $A \setminus B$ is uncountable.
- 14. *Show that for any infinite set A and a countable set B, the sets A and $A \cup B$ are of same cardinality.
- 15. *For a nonempty subset A, prove that the following are equivalent:
 - (a) A is atmost countable.
 - (b) There exists a 1-1 map of A to \mathbb{N} .
 - (c) There exists an onto map of \mathbb{N} to A.
- 16. *Suppose that $A \subseteq B$ then prove that
 - (a) B is finite $\implies A$ is finite.
 - (b) A is infinite $\implies B$ is infinite.
 - (c) B is countable $\implies A$ is at at at a tour table.
 - (d) A is uncountable $\implies B$ is uncountable.
- 17. *Suppose $f: A \to B$ is injective then prove that
 - (a) B is finite $\implies A$ is finite.
 - (b) A is infinite $\implies B$ is infinite.
 - (c) B is countable $\implies A$ is at at a transfer countable.
 - (d) A is uncountable \implies B is uncountable.
- 18. Suppose $f: A \to B$ is surjective then prove that
 - (a) A is finite $\implies B$ is finite.
 - (b) B is infinite $\implies A$ is infinite.
 - (c) A is countable \implies B is atmost countable.
 - (d) B is uncountable $\implies A$ is uncountable.