计算理论导论 第五次作业

周书予

2000013060@stu.pku.edu.cn

May 14, 2022

1

考虑

$$f(x_1, x_2, \dots, x_n) = (x_1 \land f(1, x_2, \dots, x_n)) \lor (\neg x_1 \land f(0, x_2, \dots, x_n))$$

其中 $f(1, x_2, \dots, x_n) = f_1(x_2, \dots, x_n), f(0, x_2, \dots, x_n) = f_0(x_2, \dots, x_n)$ 是另外两个输入 n-1 比特的布尔函数,可以递归构造. 归纳可知任意 n 比特布尔函数都可以在 $10 \cdot 2^n - 5$ 的线路规模内被构造出.

 $\mathbf{2}$

考虑 k 比特布尔函数只有 2^{2^k} 个,可以使用前述方法将这些函数对应的线路全部预构造出来.修改 1 中描述的递归构造方法,在递归到 n=k 时停止递归,转而直接利用预构造得到的结果.这种构造方法的电路规模为 $2^{2^k}\cdot 10\cdot 2^k+10\cdot 2^{n-k}$,取 $k=\log n-1$,电路规模为

$$10\left(2^{n-k} + 2^{2^k + k}\right) = 10\left(\frac{2^{n+1}}{n} + 2^{n/2 + \log n - 1}\right) \leqslant 1000 \cdot \frac{2^n}{n}$$

3

Statement

证明对于任意 k>0, 都存在语言 $L\in\mathbf{PH}$ 其电路复杂性为 $\Omega(n^k)$, 即 $L\notin\mathbf{SIZE}(f(n))$ 对任意 $f(n)=o(n^k)$ 成立.

Solution

我们知道对于任意 l, 存在无法被规模为 $\frac{2^l}{10l}$ 的线路所计算的 l 比特布尔函数, 而任意 l 比特布尔函数都可以被规模为 $10l2^l$ 的线路所计算. 取 $l = k(\log n + \log\log n)$, 考虑语言

$$L_k = \{w \in \{0,1\}^n | \exists f \text{ a l-bit boolean function}, C_f \text{ a circuit of size } \in \left[\frac{2^l}{10l}, 10l2^l\right],$$

$$\forall g \text{ a l-bit boolean function}, C_g \text{ a circuit of size } \in \left[\frac{2^l}{10l}, 10l2^l\right],$$

$$\forall C_f' \text{ a circuit of size } < |C_f|, C_g' \text{ a circuit of size } < |C_g|$$

$$\exists y \in \{0,1\}^l, z_f \in \{0,1\}^l, z_g \in \{0,1\}^l,$$

$$\forall x \in \{0,1\}^l,$$

$$f(x) = C_f(x) \land g(x) = C_g(x) \land C_f(z_f) \neq C_f'(z_f) \land C_g(z_g) \neq C_g'(z_g)$$

$$\land (x \succcurlyeq y \lor f(x) = g(x)) \land f(y) < g(y) \land f(w[:l]) = 1$$

$$\}$$

也即, L_k 中包含了所有 f(w[:l]) = 1 的 $w \in \{0,1\}^n$, 其中布尔函数 f 需要满足: (a) 需要规模为至少 $\frac{2^l}{10l} = \frac{(n \log n)^k}{10k(\log n + \log \log n)} = \Omega(n^k)$ 的线路所计算, (b) 在满足前者条件下"字典序"最小的.

因此使用 $\exists C_f$ 来构造 f 的线路, 使用 $\forall C_f'$ 来保证 f 无法被比 C_f 规模更小的线路计算, 从而保证条件 a 成立, 设置 C_f 规模上界是为了满足条件保证 certificate 规模是关于 n 多项式.

为了满足条件 b, 使用相同的方式构造了任意满足条件 a 的布尔函数 g, f 的 "字典序" 小于 g 等价于存在某一个 $g \in \{0,1\}^l$, f, g 对于字典序小于 g 的输入 g(记作 g0) 的输出结果都相同, 而对于 g0 有 g0).

不难验证每个 quantifier 下的 certificate 都是关于 n 的多项式量级, 因此 $L_k \in \mathbf{PH}$. 显然 L_k 的电路复杂性 是 $\Omega(n^k)$, 于是结论得证.

4

类似 3, 我们可以构造如下语言

$$L = \{w \in \{0,1\}^n | \exists f \text{ a } n\text{-bit boolean function}, C_f \text{ a circuit of size } \in \left[\frac{2^n}{10n}, 10n2^n\right],$$

$$\forall g \text{ a } n\text{-bit boolean function}, C_g \text{ a circuit of size } \in \left[\frac{2^n}{10n}, 10n2^n\right],$$

$$\forall C_f' \text{ a circuit of size } < |C_f|, C_g' \text{ a circuit of size } < |C_g|$$

$$\exists y \in \{0,1\}^n, z_f \in \{0,1\}^n, z_g \in \{0,1\}^n,$$

$$\forall x \in \{0,1\}^n,$$

$$f(x) = C_f(x) \land g(x) = C_g(x) \land C_f(z_f) \neq C_f'(z_f) \land C_g(z_g) \neq C_g'(z_g)$$

$$\land (x \succcurlyeq y \lor f(x) = g(x)) \land f(y) < g(y) \land f(w) = 1$$

$$\}$$

也即, L 中包含了所有 f(w) = 1 的 $w \in \{0,1\}^n$, 其中 f 满足: (a) 需要规模为至少 $\frac{2^n}{10n}$ 的线路所计算, (b) 在满足前者条件下 "字典序"最小的.

注意到利用 padding 技术, 我们有 $\mathbf{P} = \mathbf{NP} \Rightarrow \mathbf{EXP} = \mathbf{NEXP}$, 如上 L 的每一个 quantifier 下的 certificate 都是关于 n 指数级, 考虑由内而外地利用 $\mathbf{EXP} = \mathbf{NEXP} = \mathbf{coNEXP}$ 的结论去掉 quantifier, 最终可以验证 $L \in \mathbf{EXP}$.

5

任取 $L \in \text{uniform-}\mathbf{NC}^1$, L 可以由 logspace-uniform 的线路族 $\{C_n\}_{n\in\mathbb{N}}$ 计算. 考虑构造判定 L 的 DTM M, 其针对输入 w, 在 $C_{|w|}$ 上 (得益于 $C_{|w|}$ 的结构是 implicitly-logspace-computable 的) 进行 DFS 并计算 $C_{|w|}(w)$. 由于 C_w 的深度为 $O(\log |w|)$, 所以 DFS 的过程只需要 $O(\log |w|)$ 的额外空间保存搜索栈. 这说明 $L \in \mathbf{SPACE}(\log n) = \mathbf{L}$. 故 uniform- $\mathbf{NC}^1 \subseteq \mathbf{L}$.

根据 Space Hierarchy Theorem 知 $\mathbf{L} = \mathbf{SPACE}(\log n) \subsetneq \mathbf{SPACE}(n) \subseteq \mathbf{PSPACE}$, 故 uniform- $\mathbf{NC}^1 \neq \mathbf{PSPACE}$.