Google's quantum computer

Transmon qubits: superconducting qubit based on Josephson Junctions

A nonlinear quantum harmonic oscillator

Supercurrent: $I = I_c \sin(\phi)$

Phase difference across the

junction

Potential energy of the inductor (not harmonic potential)

$$U = \int IVdt = \frac{\phi_0 I_c}{2\pi} \int \sin(\phi) \frac{d\phi}{dt} dt = -E_J \cos\phi,$$

Energy from the capacitor

$$T = \frac{1}{2}CV^2 = \frac{1}{2}C(\frac{\phi_0}{2\pi}\dot{\phi})^2$$

Regular inductor

+ capacitor

Josephson Junction

+ capacitor

Anharmonic oscillator: energy spacing not equal, hence qubits can be introduced

A nonlinear quantum harmonic oscillator

Anharmonic oscillator: energy spacing not equal, hence qubits can be introduced

With microwave, we can couple |0> and |1>, and safely ignore the higher levels (of course, there will be some excitation leakage!)

Second quantization

Second quantization: treat the relative phase and its derivative as conjugate variables (similar to position and momentum)

$$\hat{\phi} = \kappa \frac{\hat{a}^{\dagger} + \hat{a}}{\sqrt{2}} \;,$$

$$\dot{\hat{\phi}} = \kappa^{-1} \frac{\hat{a}^{\dagger} - \hat{a}}{\sqrt{2}i} .$$

Without anharmonic terms (approximate the potential term with quadratic function), the Josephson LC circuit's Hamiltonian

$$\hat{H}_0 = \omega_0 \left(\hat{a}^\dagger \hat{a} + rac{1}{2}
ight)$$

The lowest order anharmonic term

$$\hat{H}_1 = \gamma \hat{\phi}^4 = \frac{\gamma \kappa^4}{4} (\hat{a} + \hat{a}^\dagger)^4$$

Interaction between qubits

Qubits are connected via a capacitor

The capacitive coupling between the two Josephson LC circuits

$$\hat{H}_2 = -\alpha'(t)\dot{\phi}_1\dot{\phi}_2 = -\frac{\alpha'(t)}{2\kappa_1\kappa_2}(\hat{a}_1^{\dagger} - \hat{a}_1)(\hat{a}_2^{\dagger} - \hat{a}_2)$$

It leads to an iSWAP interaction – exchange of excitation between two qubits

| 10> (1st qubit in excited state, 2nd qubit in ground state)

|01> (1st qubit in ground state, 2nd qubit in excited state)

Microwave pulse to control individual qubit

The transmon qubit resonant frequency (energy difference between |0> and |1>) ~ microwave frequency

Applying a microwave pulse of different duration can rotate the qubit quantum state, e.g.,

- π pulse
- $\pi/2$ pulse

The higher levels are off-resonant (but still there can be a small excitation)

$$\hat{H}_3 = \sum_{j=1,2} i \left(\hat{a}_j - \hat{a}_j^{\dagger} \right) f_j(t) \cos(\omega_j t + \varphi_j) ,$$

Final Bosonic Hamiltonian

After a rotating-wave approximation

$$\begin{split} \hat{H}_{\text{RWA}} &= \frac{\eta}{2} \sum_{j=1}^{2} \hat{n}_{j} (\hat{n}_{j} - 1) + g(t) (\hat{a}_{2}^{\dagger} \hat{a}_{1} + \hat{a}_{1}^{\dagger} \hat{a}_{2}) \\ &+ \sum_{j=1}^{2} \delta_{j}(t) \hat{n}_{j} + \sum_{j=1}^{2} i f_{j}(t) \left(\hat{a}_{j} e^{i \varphi_{j}(t)} - \hat{a}_{j}^{\dagger} e^{-i \varphi_{j}(t)} \right) \end{split}$$

Typical parameters

	η	g(t)	$\delta_j(t)$	$f_j(t)$	$arphi_j(t)$
amplitude	200 MHz	[-20, 20] MHz	[-20, 20] MHz	[-20, 20] MHz	$[0, 2\pi]$
error amplitude	\pm 1 MHz	\pm 1 MHz	±1 MHz	\pm 1 MHz	

η: anharmonicity of the Josephson junction. It induces a large energy gap separating the qubit subspace from higher energy subspaces.

The computational subspace is spanned by the two lowest energy levels of each bosonic mode:

$$\mathcal{H}_2 = Span\{|0\rangle_j, |1_j\rangle\}$$

If there is no leakage to higher levels ...

Each bosonic field excitation can be |0>, |1>, |2>, ...

If limited to the lowest two levels, or projecting the Bosonic Hamiltonian to the qubit basis

$$\hat{H}_{\text{RWA}} = \frac{g(t)}{2} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y) + \sum_{j=1}^2 \left[\frac{\delta_j(t)}{2} \sigma_j^z - f_j(t) \left(\sin \varphi_j(t) \sigma_j^x + \cos \phi_j(t) \sigma_j^y \right) \right].$$

Due to the finite gap to the higher excitations, the higher levels $|2\rangle$, $|3\rangle$, ... will also be excited \rightarrow Leakage error.

The leakage error bound can be computed (complicated)

ARTICLE OPEN

Universal quantum control through deep reinforcement learning

Murphy Yuezhen Niu 101,2, Sergio Boixo 102, Vadim N. Smelyanskiy and Hartmut Neven 2

Emerging reinforcement learning techniques using deep neural networks have shown great promise in control optimization. They harness non-local regularities of noisy control trajectories and facilitate transfer learning between tasks. To leverage these powerful capabilities for quantum control optimization, we propose a new control framework to simultaneously optimize the speed and fidelity of quantum computation against both leakage and stochastic control errors. For a broad family of two-qubit unitary gates that are important for quantum simulation of many-electron systems, we improve the control robustness by adding control noise into training environments for reinforcement learning agents trained with trusted-region-policy-optimization. The agent control solutions demonstrate a two-order-of-magnitude reduction in average-gate-error over baseline stochastic-gradient-descent solutions and up to a one-order-of-magnitude reduction in gate time from optimal gate synthesis counterparts. These significant improvements in both fidelity and runtime are achieved by combining new physical understandings and state-of-the-art machine learning techniques. Our results open a venue for wider applications in quantum simulation, quantum chemistry and quantum supremacy tests using near-term quantum devices.

npj Quantum Information (2019)5:33; https://doi.org/10.1038/s41534-019-0141-3

A quantum circuit with two transmon qubits only

Bosonic Hamiltonian

$$\hat{H}_{RWA}(t) = \frac{\eta}{2} \sum_{j=1}^{2} \hat{n}_{j} (\hat{n}_{j} - 1) + g(t) (\hat{a}_{2}^{\dagger} \hat{a}_{1} + \hat{a}_{1}^{\dagger} \hat{a}_{2}) + \sum_{j=1}^{2} \delta_{j}(t) \hat{n}_{j}$$

$$+ \sum_{j=1}^{2} i f_{j}(t) (\hat{a}_{j} e^{-i \varphi_{j}(t)} - \hat{a}_{j}^{\dagger} e^{i \varphi_{j}(t)}),$$

The corresponding unitary evolution

$$U(T) = \mathbb{T}\left[\exp\left(-i\int_0^T \hat{H}_{RWA}(t)dt\right)\right]$$

Question

Can it be used to simulate an arbitrary target unitary evolution denoted by U_{target} ?

$$\mathcal{N}(\alpha, \alpha, \gamma) = \exp[i(\alpha\sigma_1^x \sigma_2^x + \alpha\sigma_1^y \sigma_2^y + \gamma\sigma_1^z \sigma_2^z)],$$

Gate fidelity

$$F[U(T)] = (1/16) \left| \text{Tr}(U^{\dagger}(T)U_{\text{target}}) \right|^2$$

equals to 1 if they are the same, up to a global phase

Universal control cost Function Optimization (UFO)

Minimize the cost function

Boundary constraints

To Facilitate convenient gate concatenations: microwave pulses (manipulating individual qubit) and the g-pulse (coupling between qubits) should vanish at both boundaries

RL Architecture for Quantum Gate Optimization

Objective: optimize the policy to reduce the cost function

Agent

- Policy neural network: takes the current unitary gate U_n as input and outputs a control action (Hamiltonian H_{n+1})
- Value neural network: predicts the expected future reward from the updated state U_{n+1}

Environment:

- Takes the action and simulates the systems evolution (with additional noise)
- Returns the cost function

Integerating Trust Region into Policy Optimization (TRPO)

- Avoids large, unstable updates to the policy
- Ensures safe, smooth improvements in each training step
- Especially important in high-dimensional control like quantum systems

Line search (like gradient ascent)

Trust region

How?

When updating the policy NN, add a KL-divergence constraint:

 $ext{maximize expected return subject to } D_{KL}(\pi_{ ext{new}} \| \pi_{ ext{old}}) \leq \delta$

It ensures that new Hamiltonian proposals don't deviate too far from the previous ones, helps with robust convergence under noise