CSE-3215 Data Communication

Lecture-19

Ahmed Salman Taríq Lecturer Dept. of CSE

Multilevel Line Coding

mBnL Scheme

- A Multi level coding scheme is known as mBnL, where m is the length of the binary pattern.
 - B means binary data,
 - n is the length of the signal pattern and
 - L is the number of levels in the signaling.
- A letter is often used in place of L: B (binary) for L = 2, T (ternary) for L = 3, and Q (quaternary) for L = 4.
 Note that the first two letters define the data pattern, and the second two define the signal pattern.

m data is represented by sequence of n pulses

2B1Q

- The two binary, one quaternary (2B1Q), uses data patterns of size 2 and encodes the <u>2-bit</u> <u>patterns as one signal element belonging to a</u> <u>four-level signal.</u>
- In this type of encoding m = 2, n = 1, and L = 4 (quaternary). Figure shows an example of a 2B1Q signal.
- The 2B1Q scheme is used in DSL (Digital Subscriber Line) technology to provide a highspeed connection to the Internet by using subscriber telephone lines.

Previous level: Previous level: positive negative

Next bits	Next level	Next level
00	+1	-1
01	+3	-3
10	-1	+1
11	-3	+3

Transition table

Figure 1 Multilevel: 2B1Q scheme

8B6T

- A very interesting scheme is eight binary, six ternary (8B6T).
- The idea is to encode a pattern of 8 bits as a pattern of six signal elements, where the signal has three levels (ternary).
- Data element = 8; data patterns = 2⁸ = 256 and
- Signal element = 6; signal patterns = 3⁶ = 729.
- There are 729 256 = 473 redundant signal elements that provide synchronization and error detection.

Figure 2 Multilevel: 8B6T scheme

4D-PAM5

- The last signaling scheme in this category is called four-dimensional five-level pulse amplitude modulation (4D-PAM5).
- The 4D means that data is sent over four wires at the same time.
- It uses five voltage levels, such as -2, -1, 0, 1 and 2.
 However, one level, level 0, is used only for forward error detection.
- In other words, an 8-bit word is translated to a signal element of four different levels.
- Gigabit LANs use this technology to send 1gbps over copper wires

Figure 3 Multilevel: 4D-PAM5 scheme

Multi-Transition Line Coding MLT-3 Scheme

- NRZ-I and differential Manchester are classified as differential encoding but use two transition rules to encode binary data (no inversion, inversion).
- If we have a signal with more than two levels, we can design a differential encoding scheme with more than two transition rules.
- MLT-3 technique uses more than two transition rules.
- The multiline transmission, three-level (MLT-3) scheme uses three levels (+V, 0, and –V) and three transition rules to move between the levels.

a. Typical case

b. Worse case

- If the next bit is 0, there is no transition.
- If the next bit is 1 and the current level is 0, the next level is the opposite of the last nonzero level.
- If the next bit is 1 and the current level is not 0, the next level is 0.

c. Transition states

Figure 4 Multitransition: MLT-3 scheme

 Table 1
 Summary of line coding schemes

Category	Scheme	Bandwidth (average)	Characteristics
Unipolar	NRZ	B = N/2	Costly, no self-synchronization if long 0s or 1s, DC
Unipolar	NRZ-L	B = N/2	No self-synchronization if long 0s or 1s, DC
	NRZ-I	B = N/2	No self-synchronization for long 0s, DC
	Biphase	B = N	Self-synchronization, no DC, high bandwidth
Bipolar	AMI	B = N/2	No self-synchronization for long 0s, DC
Multilevel	2B1Q	B = N/4	No self-synchronization for long same double bits
	8B6T	B = 3N/4	Self-synchronization, no DC
	4D-PAM5	B = N/8	Self-synchronization, no DC
Multiline	MLT-3	B = N/3	No self-synchronization for long 0s

That's all for today

Thank You