数组空间及其子空间

注: 表达形式 , 行后量 , 司后量 . (a, ..., a_n)^T.

义: 纬性组合、组络散,纬性表示

浸≥: 沒 V ⊂ Fⁿ 为 離室向量集合 ,它 觸足:

版: $V \subset F^n$ 为 3 空间 \Leftrightarrow S(1) $\vec{a}, \vec{b} \in V \Rightarrow \vec{a} + \vec{b} \in V$ \Leftrightarrow S(2) $\vec{a} \in V$, $J \in F \Rightarrow J \vec{a} \in V$

個: 4凡子至同 V= Po} 以及 V= Fⁿ.

定理: $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m \in F^n$, 园 $\langle \vec{a}_1, \vec{a}_2, \dots, \vec{a}_m \rangle := \{\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_m \vec{a}_m \mid \lambda_1, \dots, \lambda_m \in F \}$ 見 F^n 的 子空间,张为由 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 生成 的 子空间.

19: 在了, 它 ∈ 见3 不然而 三维空间的量器本定理 ⇒ 见3 = 〈在, 百, 亡〉 〈公, 〈a,b〉 牟 见3 为排华凡子空间

18): $\begin{cases} a_{11} \chi_{1} + a_{12} \chi_{2} + \cdots + a_{1n} \chi_{n} = b_{1} \\ a_{m_{1}} \chi_{1} + a_{m_{2}} \chi_{2} + \cdots + a_{m_{n}} \chi_{n} = b_{m} \end{cases}$

 \Leftrightarrow $\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$ 为 $\begin{pmatrix} a_{(1)} \\ \vdots \\ a_{(m)} \end{pmatrix}$, $\begin{pmatrix} a_{(2)} \\ \vdots \\ a_{(m)} \end{pmatrix}$, ..., $\begin{pmatrix} a_{(n)} \\ \vdots \\ a_{(m)} \end{pmatrix}$ 的线性细色,

 $\Leftrightarrow \vec{b} \in \langle \vec{a}_1, \vec{a}_2, ..., \vec{a}_m \rangle$