# Data Structures

Trees I

CS284

### **Objectives**

- ► To learn how to use a tree to represent a hierarchical organization of information
- ▶ To learn how to use recursion to process trees
- ► To understand the different ways of traversing a tree
- ► To understand the difference between binary trees, binary search trees, and heaps
- ► To learn how to implement binary trees, binary search trees, and heaps using linked data structures and arrays

#### Trees - Introduction

- ► All previous data organizations we've learned are linear—each element can have only one predecessor or successor
- ightharpoonup Accessing all elements in a linear sequence is  $\mathcal{O}(n)$
- Trees are nonlinear and hierarchical
- Tree nodes can have multiple successors (but only one predecessor)
- Trees are recursive data structures because they can be defined recursively

### Binary Trees

Definition and Terminology

Tree Expressions
More Examples of Trees
Binary Search Trees

### Binary Trees

- ► We first focus on binary trees
- ► In a binary tree each element has at most two successors



# Binary Trees - Terminology

- ► Node
- ► Root
- ► Branches: links between nodes
- Children: successors of a node
- Parent (how many? root?): predecessor of a node
- Siblings: nodes with the same parent



# Binary Trees – Terminology (cont.)

- ► Internal node
- ► Leaf (= external node)
- Ancestor: generalization of parent-child
- Subtree (of a node): tree whose root is a child of that node



## Binary Trees – Terminology (cont.)



#### In words:

- ▶ If node *n* is the root of tree *T*, its level is 1
- ▶ If node n is not the root of tree T, its level is 1 + the level of its parent

## Binary Trees – Terminology (cont.)

Height: number of nodes in the longest path the root to a leaf



Height is 3 in this example

### Binary Trees

Definition and Terminology

Tree Expressions

More Examples of Trees Binary Search Trees

### Tree Expressions

- ▶ We can represent trees using tree expressions
- Tree expressions are useful for pencil-and-paper analysis of properties of binary trees
- ► The set 'a btree of binary tree expressions over a set 'a can be defined recursively as follows:
  - Empty is an empty binary tree
  - Node (i,1,r) is an internal node that has information i∈'a and subtrees 1 and r

type 'a btree = Empty | Node of 'a \* 'a btree \* 'a btree

### Tree Expressions



```
Node("dog",
  Node("cat",
        Node("canine", Empty, Empty),
        Empty),
  Node("wolf", Empty, Empty))
```

### Revisiting the Height using Tree Expressions

```
let rec height = function
  | Empty -> 0
  | Node(i,lt,rt) -> 1+ max (height lt) (height rt)
```

#### Example:

### Another Example – The Number of Nodes

```
let rec no_of_nodes = function
    | Empty -> 0
    | Node(i,lt,rt) -> 1+(no_of_nodes lt)+(no_of_nodes rt)
```

#### Example:

### Another Example – Sum Tree



Exercise: Write a function <code>sumT</code> that adds all the numbers in the tree.

#### Example:

### Another Example - isEmpty

Exercise: Write a function <code>isEmpty</code> that returns true if the tree is empty and false otherwise Example:

```
isEmpty(Node(7, Node(4, Node(5, Empty, Empty)), Empty),
    Node(12, Empty, Empty)))
= false
```

### Binary Trees

Definition and Terminology Tree Expressions

More Examples of Trees

Binary Search Trees

### Arithmetic Expression Tree

- Each node contains an operator or an operand
- Operands are stored in leaf nodes
- ► Parentheses are not stored in the tree because the tree structure dictates the order of operand evaluation
- Operators in nodes at higher levels are evaluated after operators in nodes at lower levels



### Huffman

- ► A Huffman tree represents Huffman codes for characters that might appear in a text file
- As opposed to ASCII or Unicode, Huffman code uses different numbers of bits to encode letters; more common characters use fewer bits
- ▶ Many programs that compress files use Huffman codes

### Huffman Tree



To form a code, traverse the tree from the root to the chosen character, appending 0 if you turn left, and 1 if you turn right.

### Huffman Tree



Examples: d:10110 e:010

### Binary Trees

Definition and Terminology Tree Expressions More Examples of Trees Binary Search Trees

## Binary Search Tree

- All elements in the left subtree precede those in the right subtree
- ▶ A formal definition: A binary tree T is a binary search tree if either of the following is true:
  - ightharpoonup T = Empty
  - ▶ If T = Node(i, l, r), then
    - I and r are binary search trees and
    - i is greater than all values in I and i is less than all values in r



### BST Predicate using Tree Expressions

#### Note

- ▶ What is the maximum/minimum of an empty tree?
- Better to avoid computing those when lt or rt are Empty
- Can you modify the above definition accordingly?

### Binary Search Tree

- ► A binary search tree never has to be sorted because its elements always satisfy the required order relations
- ► When new elements are inserted (or removed) properly, the binary search tree maintains its order
- ▶ In contrast, an array must be expanded whenever new elements are added, and compacted when elements are removed—expanding and contracting are both  $\mathcal{O}(n)$

### BST - Find - Using Tree Expressions

► Search for a target key

```
let rec find key = function
  | Empty -> failwith("Not found")
  | Node(i,lt,rt) when key=i -> true
  | Node(i,lt,rt) ->
    if (key<i)
    then find key lt
    else find key rt</pre>
```

- ▶ Each probe has the potential to eliminate half the elements in the tree, so searching can be  $O(\log n)$
- ▶ In the worst case though, it is  $\mathcal{O}(n)$

## Full, Perfect, and Complete Binary Trees (cont.)

A full binary tree is a binary tree where all nodes have either 2 children or 0 children (the leaf nodes)



## Full, Perfect, and Complete Binary Trees (cont.)

- ► A perfect binary tree is
  - 1. a full binary tree of height *n*
  - 2. all leaves have the same depth
- Above def. equivalent to requiring that the tree have exactly  $2^n 1$  nodes, n being the height
- ln this case, n=3 and  $2^n-1=7$



# Full, Perfect, and Complete Binary Trees (cont.)

A complete binary tree is a perfect binary tree through level n-1 with some extra leaf nodes at level n (the tree height), all toward the left



### General Trees

Nodes of a general tree can have any number of subtrees



#### Binary Trees

Definition and Terminology Tree Expressions More Examples of Trees Binary Search Trees

- Often we want to determine the nodes of a tree and their relationship
- We can do this by walking through the tree in a prescribed order and visiting the nodes as they are encountered
- This process is called tree traversal
- ▶ Three common kinds of tree traversal
  - Inorder
  - Preorder
  - Postorder

- Preorder: visit root node, traverse TL, traverse TR
- ▶ Inorder: traverse TL, visit root node, traverse TR
- ▶ Postorder: traverse TL, traverse TR, visit root node

| Algorithm for<br>Preorder Traversal |                                          | Algorithm for<br>Inorder Traversal |                                        | Algorithm for<br>Postorder Traversal |                                         |
|-------------------------------------|------------------------------------------|------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|
| 1.                                  | if the tree is empty                     | 1.                                 | if the tree is empty                   | 1.                                   | if the tree is empty                    |
| 2.                                  | Return.                                  | 2.                                 | Return.                                | 2.                                   | Return.                                 |
| else                                |                                          | else                               |                                        | else                                 |                                         |
| 3.<br>4.                            | Visit the root.<br>Preorder traverse the | 3.                                 | Inorder traverse the<br>left subtree.  | 3.                                   | Postorder traverse the<br>left subtree. |
|                                     | left subtree.                            | 4.                                 | Visit the root.                        | 4.                                   | Postorder traverse the                  |
| 5.                                  | Preorder traverse the<br>right subtree.  | 5.                                 | Inorder traverse the<br>right subtree. | 5.                                   | right subtree.<br>Visit the root.       |

# Visualizing Tree Traversals

- You can visualize a tree traversal by imagining a mouse that walks along the edge of the tree
- If the mouse always keeps the tree to the left, it will trace a route known as the Fuler tour
- ➤ The Euler tour is the path traced in blue in the figure on the right



## Visualizing Tree Traversals

- ► An Euler tour (blue path) is a preorder traversal
- ► The sequence in this example is a b d g e h c f i j
- ► The mouse visits each node before traversing its subtrees (shown by the downward pointing arrows)



## Preorder Traversal using Expression Trees

► Here [] denotes the empty list and @ denotes list concatenation

## Visualizing Tree Traversals

- ▶ If we record a node as the mouse returns from traversing its left subtree (horizontal black arrows in the figure) we get an inorder traversal
- ► The sequence is d g b h e a i f j c



# Visualizing Tree Traversals

- If we record each node as the mouse last encounters it, we get a postorder traversal (shown by the upward pointing arrows)
- ► The sequence is g d h e b i j f c a



## Traversals of Binary Search Trees and Expression Trees

An inorder traversal of a binary search tree results in the nodes being visited in sequence by increasing data value

canine, cat, dog, wolf

