TP 1 - Analyse d'un jeu de données

Nous allons dans ce TP analyser le jeu de données Titanic qui est très largement utilisé dans la communauté. Il concerne les informations concernant les personnes qui étaient à bord du Titanic.

Les différentes colonnes sont les suivantes :

survival: Survival (0 = No; 1 = Yes)

pclass: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

name: Name

sex: Sex age: Age

sibsp: Number of Siblings/Spouses Aboard parch: Number of Parents/Children Aboard

ticket: Ticket Number fare: Passenger Fare

cabin: Cabin

embarked: Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

Lecture du fichier

Récupérer le fichier titanic.csv et le mettre dans le répertoire Dataset.

Intégrer le contenu de ce fichier dans un dataframe pandas.

In [1]:

```
import pandas as pd

#attention le séparateur est une tabulation

df=pd.read_csv('Dataset/titanic.csv', sep='\t')

display (df.head())
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

Analyse des données

L'objectif dans un premier temps est de se familiariser avec pandas pour obtenir des informations sur le jeu de données.

Pandas

Afficher la taille du dataframe, les six premières lignes, les trois dernières lignes et 5 lignes au hasard du dataframe.

In [2]:

```
1 2 3 4 5 6 7 8 8
```

tallie du datallame :

(156, 12)

Six premières lignes du dataframe :

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583

Trois dernières lignes du dataframe :

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ca
153	154	0	3	van Billiard, Mr. Austin Blyler	male	40.5	0	2	A/5. 851	14.5000	٨
154	155	0	3	Olsen, Mr. Ole Martin	male	NaN	0	0	Fa 265302	7.3125	Ν
155	156	0	1	Williams, Mr. Charles Duane	male	51.0	0	1	PC 17597	61.3792	Ν

Cinq lignes au hasard du dataframe :

Р	assengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare

77	78	0	3	Mr. Rahamin Haim	male	NaN	0	0	374746	8.0500
122	123	0	2	Nasser, Mr. Nicholas	male	32.50	1	0	237736	30.0708
155	156	0	1	Williams, Mr. Charles Duane	male	51.00	0	1	PC 17597	61.3792
27	28	0	1	Fortune, Mr. Charles Alexander	male	19.00	3	2	19950	263.0000
78	79	1	2	Caldwell, Master. Alden Gates	male	0.83	0	2	248738	29.0000

Donner les informations sur le cinquième passager

In [3]:

1		
2		
3		
4		
5		
6		

PassengerId			5
Survived			0
Pclass			3
Name	Allen,	Mr.	William Henry
Sex			male
Age			35
SibSp			0
Parch			0
Ticket			373450
Fare			8.05
Cabin			NaN
Embarked			S
Name: 4, dtype:	object	t	
PassengerId			5
Survived			0
Pclass			3
Name	Allen,	Mr.	William Henry
Sex			male
Age			35
SibSp			0
Parch			0
Ticket			373450
Fare			8.05
Cabin			NaN
Embarked			S
Name: 4, dtype:	object	t	

In [4]:

1 2 3 4	1			
3				
4	3			
	4			

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500
12	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500
13	14	0	3	Andersson, Mr. Anders Johan	male	39.0	1	5	347082	31.2750
14	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	female	14.0	0	0	350406	7.8542
15	16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55.0	0	0	248706	16.0000
16	17	0	3	Rice, Master. Eugene	male	2.0	4	1	382652	29.1250

Donner les informations sur le passager dont le numéro (Passengerld) est 5

In [5]:

	Passenge	erId	Survived	Pclass				Name	Sex	Α
ge	SibSp	\								
4		5	0	3	Allen,	Mr.	William	Henry	male	35
. 0	0									

```
Parch Ticket Fare Cabin Embarked 0 373450 8.05 NaN S
```

Indiquer les différentes informations associées aux colonnes (Nom des colonnes, type de la colonne, place prise par le dataframe, etc).

In [6]:

```
1 2 3 4 4
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 12 columns):
PassengerId
               156 non-null int64
Survived
               156 non-null int64
Pclass
               156 non-null int64
               156 non-null object
Name
Sex
               156 non-null object
               126 non-null float64
Age
               156 non-null int64
SibSp
               156 non-null int64
Parch
               156 non-null object
Ticket
               156 non-null float64
Fare
Cabin
               31 non-null object
Embarked
               155 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 14.7+ KB
```

Quel est le type de la colonne Name?

In [7]:

```
1 2 3 4 4
```

object

Donner des statistiques de base du dataframe et préciser pourquoi Name n'apparait pas dans le résultat.

In [8]: 1 2 3 4

Out[8]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	156.000000	156.000000	156.000000	126.000000	156.000000	156.000000	156.000000
mean	78.500000	0.346154	2.423077	28.141508	0.615385	0.397436	28.109587
std	45.177428	0.477275	0.795459	14.613880	1.056235	0.870146	39.401047
min	1.000000	0.000000	1.000000	0.830000	0.000000	0.000000	6.750000
25%	39.750000	0.000000	2.000000	19.000000	0.000000	0.000000	8.003150
50%	78.500000	0.000000	3.000000	26.000000	0.000000	0.000000	14.454200
75 %	117.250000	1.000000	3.000000	35.000000	1.000000	0.000000	30.371850
max	156.000000	1.000000	3.000000	71.000000	5.000000	5.000000	263.000000

Donner le nombre de survivants? Indication il faut compter combien de Passagerld ont survécu avec la fonction count.

In [9]:

```
1 2 3 4 5 6 6
```

Nombre de survivants : 54

Donner par categorie male/female le nombre de personnes qui ont ou n'ont pas survécu. Indication utilisation d'un groupby.

In [10]:

```
1
2
3
4
```

Sex	Survived	
female	0	16
	1	40
male	0	86
	1	14

Name: PassengerId, dtype: int64

Donner par categorie de classe le nombre de personnes qui ont ou n'ont pas survécu.

In [11]:

1	
2	
3	
4	

Pclass	Survived	
1	0	18
	1	12
2	0	16
	1	14
3	0	68
	1	2.8

Name: PassengerId, dtype: int64

Donner par categorie de classe et de sexe le nombre de personnes qui ont ou n'ont pas survécu.

In [12]:

```
1 2 3 4
```

Pclass	Sex	Survived	
1	female	1	9
	male	0	18
		1	3
2	female	0	1
		1	11
	male	0	15
		1	3
3	female	0	15
		1	20
	male	0	53
		1	8

Name: PassengerId, dtype: int64

Donner la liste des femmes qui ont survécu et dont l'age est supérieure à 30

In [13]:

	PassengerId	Survived	Pclass	\
1	2	1	1	
3	4	1	1	
11	12	1	1	

```
61
               62
                           1
                                    1
                           1
                                    3
85
               86
               99
                                    2
98
                           1
                                    2
123
              124
                           1
                                                       Name
                                                                 Sex
                                                                        Age
SibSp
     Cumings, Mrs. John Bradley (Florence Briggs Th...
1
                                                              female
                                                                       38.0
1
3
           Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                              female
                                                                       35.0
1
11
                                 Bonnell, Miss. Elizabeth
                                                              female
                                                                       58.0
0
15
                        Hewlett, Mrs. (Mary D Kingcome)
                                                              female
                                                                       55.0
0
25
     Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...
                                                              female
                                                                       38.0
1
52
               Harper, Mrs. Henry Sleeper (Myna Haxtun)
                                                              female
                                                                       49.0
1
61
                                      Icard, Miss. Amelie
                                                              female
                                                                       38.0
0
85
     Backstrom, Mrs. Karl Alfred (Maria Mathilda Gu...
                                                              female
                                                                       33.0
3
98
                   Doling, Mrs. John T (Ada Julia Bone)
                                                              female
                                                                       34.0
0
123
                                      Webber, Miss. Susan
                                                              female
                                                                       32.5
0
     Parch
                           Fare Cabin Embarked
               Ticket
1
             PC 17599
                        71.2833
                                   C85
                                               C
3
                        53.1000
                                               S
         0
               113803
                                  C123
11
         0
               113783
                        26.5500
                                  C103
                                               S
15
          0
               248706
                        16.0000
                                   NaN
                                               S
         5
25
               347077
                        31.3875
                                               S
                                   NaN
                        76.7292
                                               C
52
          0
             PC 17572
                                   D33
61
          0
               113572
                        80.0000
                                   B28
                                             NaN
85
          0
              3101278
                        15.8500
                                   NaN
                                               S
98
          1
               231919
                        23.0000
                                               S
                                   NaN
123
          0
                27267
                        13.0000
                                  E101
                                               S
autre version sans loc:
     PassengerId
                   Survived
                              Pclass
1
                2
                           1
                                    1
3
                4
                           1
                                    1
               12
                           1
                                    1
11
15
                           1
                                    2
               16
25
                           1
                                    3
               26
```

						Name	Sex	Age
SibS	p \							
1	Cuming	s, Mrs. Jo	hn Bradle	ey (Flo	orence Briggs	Th	female	38.0
1								
3	F	utrelle, M	rs. Jacqu	ies Hea	ath (Lily May	Peel)	female	35.0
1								
11				Bonne	ll, Miss. Eli	zabeth	female	58.0
0			-					
15			Hewlett	, Mrs.	(Mary D King	(come	female	55.0
0			7 -					
25	Asplun	d, Mrs. Ca	ri Oscar	(Selma	a Augusta Emi	lla	iemale	38.0
1		II o 2020 o 20	Mma IIo		oonor (Marno I	[o ± m)	fomolo	40 0
52 1		narper,	Mrs. nei	iry Sie	eeper (Myna H	iaxtun)	remare	49.0
61				-	Icard, Miss.	Amolio	fomalo	38.0
0				-	icard, miss.	Americ	Temate	30.0
85	Backst	rom. Mrs.	Karl Alfı	red (Ma	aria Mathilda	G11	female	33.0
3	Buonbe	101117	Nair mir	100 (110	arra macmirad	· ou···	TOMATO	33.0
98		Dol	ing, Mrs	. John	T (Ada Julia	Bone)	female	34.0
0			<i>3 ,</i>		•	,		
123				7	Webber, Miss.	Susan	female	32.5
0								
	Parch	Ticket	Fare	Cabin	Embarked			
1	0	PC 17599	71.2833	C85	С			
3	0	113803	53.1000	C123	S			
11	0	113783	26.5500	C103	S			
15	0	248706	16.0000	NaN	S			
25	5	347077	31.3875	NaN	S			
52	0	PC 17572	76.7292	D33	С			
61	0	113572	80.0000	B28	NaN			
85	0	3101278	15.8500	NaN	S			
98	1	231919	23.0000	NaN	S			
123	0	27267	13.0000	E101	S			

Donner l'age max, min et moyen des personnes qui ont survécu

In [14]:

Age max : 58.0

Age min : 0.83

Age moyen : 25.61780487804878

Age moyen : 25.61780487804878

Visualisation

L'objectif est ici de visualiser quelques informations à l'aide de seaborn pour mettre en évidence les premières analyses précédentes.

Dans un premier temps à l'aide de seaborn et de la fonction countplot afficher le nombre de survivants et de non survivants

In [16]:

```
import seaborn as sns
import matplotlib.pyplot as plt

import matplotlib.pyplot as plt
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x113eedfd0>

Afficher le nombre de catégorie male/female (attribut Sex) avec countplot.

In [17]:

1			
2			
3			
4			

Out[17]:

<matplotlib.axes. subplots.AxesSubplot at 0x11492ff98>

La commande suivante affiche les survivants ou non en fonction du sexe.

sns.factorplot(x='Survived', col='Sex', kind='count', data=df)

Essayer de l'utiliser et faire de même par rapport aux attributs Pclass et Embarked. Que pouvez vous déduire dans un premier temps sur les survivants ou non.

In [18]:

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x114c0fd68>

Un peu plus loin sur l'analyse ...

Le code suivant permet de connaître la répartition par sexe et par classe : g = sns.factorplot('Pclass', data=df, hue='Sex', kind='count') g.set_xlabels('Class')

Exécuter le code. Que constatez vous ? Faire la même chose pour Embarked

In [19]:

Out[19]:

<seaborn.axisgrid.FacetGrid at 0x115184f60>

A votre factor plot ajouter col='Survived' comme paramètre pour voir la répartition par rapport au sexe des passagers. Faites de même par rapport à Embarked.

In [20]:

Out[20]:

<seaborn.axisgrid.FacetGrid at 0x115069cc0>

Créer la fonction suivante qui permet de créer des catégories en fonction de l'age des personnes. Ajouter dans df une colonne 'Person' qui contient la valeur de cet attribut.

```
def male female age(passenger):
     age, sex = passenger
     if age < 5:
         return 'Baby'
     if age >= 5 and age < 12:
         return 'Child'
     if age >= 12 and age < 18:
         return 'Teneeger'
     if age >=18 and age < 35:
         return 'Young Adult'
     if age >= 35 and age < 60:
         return 'Adult'
     if age >= 60:
         return 'Senior'
     else:
         return sex
Rappel: pour appliquer une fonction à une colonne
    df[['Age', 'Sex']].apply(male female child, axis=1)
```

In [21]:

```
1
      def male_female_age(passenger):
 2
          age, sex = passenger
3 ▼
          if age < 5:
              return 'Baby'
4
5
          if age >= 5 and age < 12:
6
              return 'Child'
7
          if age >= 12 and age < 18:
8
              return 'Teneeger'
9
          if age >=18 and age < 35:
10
              return 'Young Adult'
11
          if age >= 35 and age < 60:
12
              return 'Adult'
13
          if age >= 60:
14
              return 'Senior'
15
          else:
16
              return sex
```

In [22]:

1	
2	
3	
4	
5	
6	
7	

Out[22]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

Sur vos factorplot précédents remplacer hue='Sex' par hue='Person' et relancer les. Que constatez vous ?

Out[23]:

456

<seaborn.axisgrid.FacetGrid at 0x115b09828>

Enfin regarder la répartition pour les embarquements et les classes.

In [24]:

1	
2	
3	
4	
5	
6	

Out[24]:

<seaborn.axisgrid.FacetGrid at 0x1155117b8>

Quelques informations sur la distribution. A l'aide de displot afficher la distribution de Pclass et de Fare.

In [25]:

2 3 4 5	1
 4 5 	
5	
	4
6	
	6

/Users/pascalponcelet/Desktop/Sicki-learn/Tools/tools/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6521: MatplotlibDeprecationWarning:

The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.

alternative="'density'", removal="3.1")

Out[25]:

Text(0.5, 1.0, 'Distribution des classes')

In [26]:

/Users/pascalponcelet/Desktop/Sicki-learn/Tools/tools/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6521: MatplotlibDeprecationWarning:

The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.

alternative="'density'", removal="3.1")

Out[26]:

Text(0.5, 1.0, 'Distribution des tarifs')

Afficher à l'aide de la fonction boxplot une boîte à moustache pour Pclass et Fare.

In [27]:

1		
2		
3		
4		

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x11556e198>

In [28]:

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x1155bd6a0>

Faire les mêmes opérations à l'aide de la fonction violinplot.

Rappel : elle offre les mêmes fonctionnalités que les boîtes à moustache mais en plus offre des informations sur une estimation de la densité.

In [29]:

1 2 3 4 5
2
3
4
5

Out[29]:

<matplotlib.axes._subplots.AxesSubplot at 0x115af0668>

In [30]:

1	
2	
3	

Out[30]:

<matplotlib.axes._subplots.AxesSubplot at 0x11537a710>

A présent, considérons l'age des personnes. A l'aide de displot afficher l'histogramme de distribution des ages avec le code suivant :

```
age_dist=sns.distplot(df["Age"])
age_dist.set_title("Distribution des ages")
```

Que se passe-t'il?

Une erreur est levée "cannot convert float NaN to integer". NaN indique la présence de valeurs manquantes dans le jeu de données.

Ingénierie des données

Traitement des valeurs manquantes

Créer un nouveau dataframe df2 (pour créer un dataframe sans modifier le dataframe initial il faut en faire une copie : df2=df.copy()).

```
In [31]:

1 df2=df.copy()
```

Donner la liste des colonnes pour lesquelles il y a des valeurs manquantes. Pour tester si une valeur est manquante, il est possible pour un dataframe d'utiliser pour une colonne la fonction isnull(). Attention celleci retourne un dataframe. Elle doit être suivie par any() pour avoir un booléen :

```
df ['colonne'].isnull().any()
```

```
In [32]:
```

```
1 2 3 4 5 6 6
```

Age Cabin Embarked

Il est également possible d'afficher l'ensemble des données qui contiennent des valeurs NaN de la manière suivante :

sns.heatmap(df.isnull(), cbar=False)

```
In [33]:
```

1

sns.heatmap(df2.isnull(), cbar=False)

Out[33]:

<matplotlib.axes._subplots.AxesSubplot at 0x1162c4748>

Afficher le nombre de valeurs nulles Embarked, Cabin et Sex.

In [34]:

False

```
1 2 3 4 5 5 6
```

```
True 1
Name: Embarked, dtype: int64

Nombre de valeurs nulles pour Cabin:
True 125
False 31
Name: Cabin, dtype: int64

Nombre de valeurs nulles pour Sex:
False 156
Name: Sex, dtype: int64
```

Nombre de valeurs nulles pour Embarked :

155

Remplacer les valeurs nulles de l'age par la moyenne des ages des passagers. Penser à vérifier que la transformation a bien été effectuée.

```
1
 2
 3
 4
 5
 6
 7
 8
Pour vérifier :
                                6
PassengerId
                                0
Survived
Pclass
                                3
Name
                Moran, Mr. James
Sex
                             male
Age
                              NaN
SibSp
                                0
Parch
                                0
Ticket
                           330877
Fare
                           8.4583
Cabin
                              NaN
Embarked
                                Q
                             male
Person
Name: 5, dtype: object
Moyenne age :
 28.141507936507935
Pour vérifier :
PassengerId
                                  6
Survived
                                0
Pclass
                                3
Name
                Moran, Mr. James
Sex
                             male
Age
                          28.1415
SibSp
                                0
Parch
                                0
Ticket
                           330877
Fare
                           8.4583
Cabin
                              NaN
Embarked
                                Q
                             male
Person
Name: 5, dtype: object
```

In [35]:

Supprimer tous les enregistrements qui contiennent encore une valeur nulle.

```
In [36]:

1
2
3
4
5
6
7
8

Pour vérification :

Nombre de valeurs nulles pour Embarked :
False 155
True 1
```

```
True
           1
Name: Embarked, dtype: int64
Nombre de valeurs nulles pour Cabin :
 True
          125
False
          31
Name: Cabin, dtype: int64
Nombre de valeurs nulles pour Embarked :
 False
          30
Name: Embarked, dtype: int64
Nombre de valeurs nulles pour Cabin :
 False
Name: Cabin, dtype: int64
```

Utiliser sns.heatmap(df.isnull(), cbar=False) sur votre dataframe pour vérifier qu'il n'y a plus de valeurs nulles.

In [37]:

3 4	1
	2
5	3
	4
6	5
	6

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x1162ad860>

Quelle est la taille de votre dataframa à présent ? Comparer le à la taille initiale.

In [38]:

(30, 13)

En fait en supprimant les valeurs manquantes de cabines de trop nombreux enregristrements ont été effacés. Nous pouvons constater qu'il y a beaucoup de valeurs manquantes pour Cabin et que dans tous les cas elle ne va donc pas pouvoir aider à faire de la classification.

Créer un nouveau dataframe df3=df.copy().

Remplacer la valeur d'age par la médiane.

Par simplification, supprimer la colonne Cabin.

Rappel: pour supprimer une colonne df.drop('Nom colonne',1). Effacer les autres valeurs manquantes. Enfin, supprimer toutes les valeurs manquantes.

Vérifier à l'aide de heatmap que votre jeu de données n'a plus de valeurs manquantes. Indiquer la taille du jeu de données.

In [39]:

(155, 12)

Afficher à présent l'histogramme des ages.

In [40]: 1 2 3 4 5

/Users/pascalponcelet/Desktop/Sicki-learn/Tools/tools/lib/python3.6/ site-packages/matplotlib/axes/_axes.py:6521: MatplotlibDeprecationWarning:

The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.

```
alternative="'density'", removal="3.1")
```

Out[40]:

Text(0.5, 1.0, 'Distribution des ages')

Suppression des colonnes inutiles

Dans cette étape il convient de supprimer les colonnes qui ne seront pas utiles pour la classification. La question à se poser est pour chaque colonne : est ce que cela a un sens de la conserver ? Il faut faire des choix qui peut être auront une conséquence sur la classification !!

Dans le jeu de données nous voyons qu'il n'y a sans doute pas d'intérêt de conserver le numéro de ticket car il ne semble pas qu'il y ait un codage particulier.

Le nom des passager semble inutile. Pourtant si l'on regarde un peu attentivement (df3.display()) on peut se rendre compte qu'il existe des titres différents (Mr., Master, Miss, Rev., Mrs. etc) qui pourraient avoir un impact sur la classification.

L'identifiant du passager n'apporte pas d'information.

Effacer les différentes colonnes : 'Ticket', 'Name' et 'Passengerld'.

In [41]: 1 2 3 4

Un petit retour sur la colonne Person.

A l'aide de display(df3.iloc[131] que constatez vous ?

In [42]:

```
1 2 3 4
```

Survived 0 Pclass 3 female Sex 47 Age SibSp 1 Parch 0 14.5 Fare Embarked S Person Adult

Name: 132, dtype: object

La fonction ayant été appliquée avant le traitement des valeurs manquantes toutes celles qui étaient manquantes ont été remplacées par le sexe de la personne. Supprimer la colonne Person.

In [43]:

```
1 2 3 4 4
```

Attributs continus

Il y a deux attributs continus dans le jeu de données. Age et Fare.

Transformer à l'aide de la fonction cut l'attribut Age de manière à ce que les valeurs puissent prendre en compte les valeurs suivantes : bins = (0, 5, 12, 18, 25, 35, 60, 120) group_names = ['Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior']

Transformer à l'aide de la fonction cut l'attribut Fare de manière à ce que les valeurs puissent prendre en compte les valeurs suivantes : bins = (0, 8, 15, 31, 1000) group_names = ['1_quartile', '2_quartile', '3_quartile', '4_quartile']

In [44]: 1 2 3 4 5 6 7 8

mŀ	Survived barked	Pclass	Sex	Age	SibSp	Parch	Fare E
0	0	3	male	Student	1	0	1_quartile
S 1	1	1	female	Adult	1	0	4 quartile
C 2	1	3	female	Young Adult	0	0	 1 quartile
S	1	3	Temate	Toung Addic	U	U	i_quartire
3 S	1	1	female	Young Adult	1	0	4_quartile
4	0	3	male	Young Adult	0	0	2_quartile
S							

Attribut catégoriel

Pour connaître les attributs catégoriels faire un df.info(). Les attributs catégoriels apparaissent avec comme type object ou category.

In [45]:

```
print (df3.info())
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 155 entries, 0 to 155
Data columns (total 8 columns):
Survived 155 non-null int64
            155 non-null int64
Pclass
Sex
            155 non-null object
            155 non-null category
Age
SibSp
            155 non-null int64
            155 non-null int64
Parch
            155 non-null category
Fare
            155 non-null object
Embarked
dtypes: category(2), int64(4), object(2)
memory usage: 9.3+ KB
None
```

Il y a 4 attributs catégoriels à présent dans le jeu de données. Pour chacun d'entre eux transformer les en valeur numérique à l'aide de la fonction LabelEncoder().

In [46]: 1 2 3 4 5 6 7 8

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
46	0	3	1	6	1	0	2	1
117	0	2	1	6	1	0	2	2
74	1	3	1	6	0	0	3	2
31	1	1	0	6	1	0	3	0
148	0	2	1	0	0	2	2	2

Sauvegarde du fichier transformé

A présent sauvegarder le fichier modifié en titanic2.csv avec comme tabulateur des ';' en conservant l'entête.

```
2
 3
 4
 5
 6
 7
<class 'pandas.core.frame.DataFrame'>
Int64Index: 155 entries, 0 to 155
Data columns (total 8 columns):
Survived
            155 non-null int64
Pclass
            155 non-null int64
Sex
            155 non-null int64
            155 non-null int64
Age
            155 non-null int64
SibSp
            155 non-null int64
Parch
Fare
            155 non-null int64
Embarked
            155 non-null int64
dtypes: int64(8)
memory usage: 10.9 KB
None
(155, 8)
Affichage du fichier sauvegardé avec ; comme séparateur et avec entê
te
Vérifier que votre fichier a été correctement sauvegardé.
In [49]:
 1
      df=pd.read csv('titanic2.csv', sep=';')
 2
      df.head()
```

Survived Pclass Sex Age SibSp Parch Fare Embarked

4

0

6

6

6

1

1

0

1

0

0

0

0

0

0

3

1

2

0

2

2

2

1

0

0

0

1

3

1

3

1

3

In [47]:

Out[49]:

0

1

1

0

0

2

3

1