2014年全国初中数学联赛(初三年级组)试题参考答案

第一试

一、选择题: (本题满分 42 分,每小题 7 分)

1. 已知
$$x, y$$
 为整数,且满足 $(\frac{1}{x} + \frac{1}{v})(\frac{1}{x^2} + \frac{1}{v^2}) = -\frac{2}{3}(\frac{1}{x^4} - \frac{1}{v^4})$,则 $x + y$ 的可能的值有(

A. 1 个

B. 2 个

C. 3 个

D. 4 个

【答】 C.

由已知等式得 $\frac{x+y}{xy} \cdot \frac{x^2+y^2}{x^2y^2} = \frac{2}{3} \cdot \frac{x^4-y^4}{x^4y^4}$,显然 x, y 均不为 0,所以 x+y=0 或 3xy=2(x-y).

若 3xy = 2(x-y) ,则 (3x+2)(3y-2) = -4 .又 x,y 为整数,可求得 $\begin{cases} x = -1, \\ y = 2, \end{cases}$ 或 $\begin{cases} x = -2, \\ y = 1. \end{cases}$

x + y = 1 或 x + y = -1.

因此,x+y的可能的值有 3 个.

2. 已知非负实数 x, y, z 满足 x + y + z = 1,则 t = 2xy + yz + 2zx 的最大值为 ()

A. $\frac{4}{7}$

B. $\frac{5}{9}$

C. $\frac{9}{16}$

D. $\frac{12}{25}$

【答】 A.

 $t = 2xy + yz + 2zx = 2x(y+z) + yz \le 2x(y+z) + \frac{1}{4}(y+z)^2$

$$=2x(1-x)+\frac{1}{4}(1-x)^2=-\frac{7}{4}x^2+\frac{3}{2}x+\frac{1}{4}=-\frac{7}{4}(x-\frac{3}{7})^2+\frac{4}{7},$$

易知: 当 $x = \frac{3}{7}$, $y = z = \frac{2}{7}$ 时, t = 2xy + yz + 2zx 取得最大值 $\frac{4}{7}$.

3. 在 \triangle *ABC* 中,*AB* = *AC* ,*D* 为 *BC* 的中点,*BE* \bot *AC* 于 *E* ,交 *AD* 于 *P* ,已知 *BP* = 3,*PE* = 1,则 *AE* =

A. $\frac{\sqrt{6}}{2}$

B. $\sqrt{2}$

 $C. \sqrt{3}$

D. $\sqrt{6}$

【答】 B.

因为 $AD \perp BC$, $BE \perp AC$, 所以 P,D,C,E 四点共圆, 所以 $BD \cdot BC = BP \cdot BE = 12$,又 BC = 2BD , 所以 $BD = \sqrt{6}$, 所以 $DP = \sqrt{3}$.

又易知 \triangle $AEP \hookrightarrow \triangle$ BDP,所以 $\frac{AE}{BD} = \frac{PE}{DP}$,从而可得 $AE = \frac{PE}{DP} \cdot BD = \frac{1}{\sqrt{3}} \cdot \sqrt{6} = \sqrt{2}$.

4. 6 张不同的卡片上分别写有数字 2, 2, 4, 4, 6, 6, 从中取出 3 张, 则这 3 张卡片上所写的数字 可以作为三角形的三边长的概率是

B. $\frac{2}{5}$

C. $\frac{2}{3}$

D. $\frac{3}{4}$

若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的, 有 3×4=12 种取法. 所以,从 6 张不同的卡片中取出 3 张,共有 8+12=20 种取法.

要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6, 6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的 情况共有 4×2=8 种.

因此,所求概率为 $\frac{8}{20} = \frac{2}{5}$.

5. 设[*t*]表示不超过实数 *t* 的最大整数,令 $\{t\} = t - [t]$. 已知实数 *x* 满足 $x^3 + \frac{1}{x^3} = 18$,则 $\{x\} + \{\frac{1}{x}\} = 18$

A. $\frac{1}{2}$

B. $3-\sqrt{5}$ C. $\frac{1}{2}(3-\sqrt{5})$ D. 1

设 $x + \frac{1}{r} = a$,则 $x^3 + \frac{1}{r^3} = (x + \frac{1}{r})(x^2 + \frac{1}{r^2} - 1) = (x + \frac{1}{r})[(x + \frac{1}{r})^2 - 3] = a(a^2 - 3)$,所以

 $a(a^2-3)=18$, 因式分解得 $(a-3)(a^2+3a+6)=0$, 所以a=3.

由 $x + \frac{1}{x} = 3$ 解得 $x = \frac{1}{2}(3 \pm \sqrt{5})$,显然 $0 < \{x\} < 1, 0 < \{\frac{1}{x}\} < 1$,所以 $\{x\} + \{\frac{1}{x}\} = 1$.

6. 在 \triangle ABC中, $\angle C=90^{\circ}$, $\angle A=60^{\circ}$,AC=1,D 在 BC 上,E 在 AB 上,使得 \triangle ADE 为等 腰直角三角形, $\angle ADE = 90^{\circ}$,则 BE 的长为

A. $4-2\sqrt{3}$ B. $2-\sqrt{3}$ C. $\frac{1}{2}(\sqrt{3}-1)$ D. $\sqrt{3}-1$

【答】 A.

过E作 $EF \perp BC$ 于F, 易知 $\triangle ACD \cong \triangle DFE$, $\triangle EFB \hookrightarrow \triangle ACB$

设 EF = x,则 BE = 2x, AE = 2-2x, $DE = \sqrt{2}(1-x)$, DF = AC = 1,

故 $1^2 + x^2 = [\sqrt{2}(1-x)]^2$,即 $x^2 - 4x + 1 = 0$.又0 < x < 1,故可得 $x = 2 - \sqrt{3}$.

故 $BE = 2x = 4 - 2\sqrt{3}$.

二、填空题: (本题满分28分,每小题7分)

1. 已知实数 a,b,c 满足 a+b+c=1, $\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}=1$,则 abc=____.

【答】 0.

由题意知 $\frac{1}{1-2c} + \frac{1}{1-2a} + \frac{1}{1-2b} = 1$,所以

(1-2a)(1-2b) + (1-2b)(1-2c) + (1-2a)(1-2c) = (1-2a)(1-2b)(1-2c)

整理得2-2(a+b+c)=8abc, 所以abc=0.

2. 使得不等式 $\frac{9}{17} < \frac{n}{n+k} < \frac{8}{15}$ 对唯一的整数 k 成立的最大正整数 n 为_____.

【答】144.

由条件得 $\frac{7}{8} < \frac{k}{n} < \frac{8}{9}$,由 k 的唯一性,得 $\frac{k-1}{n} \le \frac{7}{8}$ 且 $\frac{k+1}{n} \ge \frac{8}{9}$,所以 $\frac{2}{n} = \frac{k+1}{n} - \frac{k-1}{n} \ge \frac{8}{9} - \frac{7}{8} = \frac{1}{72}$,所以 $n \le 144$.

当 n = 144 时,由 $\frac{7}{8} < \frac{k}{n} < \frac{8}{9}$ 可得 126 < k < 128, k 可取唯一整数值 127.

故满足条件的正整数n的最大值为144.

3. 已知 P 为等腰 \triangle ABC 内一点, AB = BC , $\angle BPC = 108^\circ$, D 为 AC 的中点, BD 与 PC 交于 点 E , 如果点 P 为 \triangle ABE 的内心,则 $\angle PAC =$ ______.

【答】 48°.

由题意可得 $\angle PEA = \angle PEB = \angle CED = \angle AED$,

 $\overrightarrow{m} \angle PEA + \angle PEB + \angle AED = 180^{\circ}$,

所以 $\angle PEA = \angle PEB = \angle CED = \angle AED = 60^{\circ}$,

从而可得 $\angle PCA = 30^{\circ}$.

又 $\angle BPC = 108^{\circ}$,所以 $\angle PBE = 12^{\circ}$,从而 $\angle ABD = 24^{\circ}$.

所以 $\angle BAD = 90^{\circ} - 24^{\circ} = 66^{\circ}$,

$$\angle PAE = \frac{1}{2}(\angle BAD - \angle CAE) = \frac{1}{2}(66^{\circ} - 30^{\circ}) = 18^{\circ},$$

所以 $\angle PAC = \angle PAE + \angle CAE = 18^{\circ} + 30^{\circ} = 48^{\circ}$.

4. 已知正整数 a,b,c 满足: 1 < a < b < c, a+b+c=111, $b^2=ac$, 则 b=_____.

【答】36.

设 a,c 的最大公约数为 (a,c)=d , $a=a_1d$, $c=c_1d$, a_1,c_1 均为正整数且 $(a_1,c_1)=1$, $a_1< c_1$,则 $b^2=ac=d^2a_1c_1$,所以 $d^2\mid b^2$,从而 $d\mid b$,设 $b=b_1d$ (b_1 为正整数),则有 $b_1^2=a_1c_1$,而 $(a_1,c_1)=1$,所以 a_1,c_1 均为完全平方数,设 $a_1=m^2$,则 $b_1=mn$, m,n 均为正整数,且 (m,n)=1 , m<n .

$$\mathbb{Z} a+b+c=111$$
, $\text{th} d(a_1+b_1+c_1)=111$, $\mathbb{P} d(m^2+n^2+mn)=111$.

注意到 $m^2 + n^2 + mn \ge 1^2 + 2^2 + 1 \times 2 = 7$,所以d = 1或d = 3.

若 d=1,则 $m^2+n^2+mn=111$,验算可知只有 m=1, n=10满足等式,此时 a=1,不符合题意,故舍去.

若 d=3,则 $m^2+n^2+mn=37$,验算可知只有 m=3, n=4满足等式,此时 a=27, b=36, c=48,符合题意.

因此,所求的b=36.

第二试

一、(本题满分 20 分) 设实数 a,b 满足 $a^2(b^2+1)+b(b+2a)=40$, a(b+1)+b=8, 求 $\frac{1}{a^2}+\frac{1}{b^2}$ 的值.

解 由已知条件可得 $a^2b^2 + (a+b)^2 = 40$, ab + (a+b) = 8.

设a+b=x, ab=y, 则有 $x^2+y^2=40$, x+y=8,

联立解得(x, y) = (2, 6)或(x, y) = (6, 2).

若(x,y)=(2,6),即a+b=2,ab=6,则a,b是一元二次方程 $t^2-2t+6=0$ 的两根,但这个方程的判别式 $\Delta=(-2)^2-24=-20<0$,没有实数根;

若(x,y)=(6,2),即a+b=6,ab=2,则a,b是一元二次方程 $t^2-6t+2=0$ 的两根,这个方程的判别式 $\Delta=(-6)^2-8=28>0$,它有实数根.所以

$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{a^2 + b^2}{a^2 b^2} = \frac{(a+b)^2 - 2ab}{a^2 b^2} = \frac{6^2 - 2 \times 2}{2^2} = 8.$$

二.(本题满分 25 分)如图,在平行四边形 ABCD中, E 为对角线 BD上一点,且满足 $\angle ECD = \angle ACB$, AC 的延长线与 \triangle ABD 的外接圆交于点 F.证明: $\angle DFE = \angle AFB$.

证明 由 ABCD 是平行四边形及已知条件知 $\angle ECD = \angle ACB = \angle DAF$.

又 A、B、F、 D 四点共圆, 所以 $\angle BDC = \angle ABD = \angle AFD$, 所以 $\triangle ECD$ $\triangle DAF$,

所以
$$\frac{ED}{DF} = \frac{CD}{AF} = \frac{AB}{AF}$$
.

又 $\angle EDF = \angle BDF = \angle BAF$, 所以 $\triangle EDF \hookrightarrow \triangle BAF$, 故 $\angle DFE = \angle AFB$.

三. (本题满分 25 分)设 n 是整数,如果存在整数 x, y, z 满足 $n = x^3 + y^3 + z^3 - 3xyz$,则称 n 具有性质 P. 在 1,5,2013,2014这四个数中,哪些数具有性质 P,哪些数不具有性质 P?并说明理由.

解 取 x=1, y=z=0, 可得 $1=1^3+0^3+0^3-3\times1\times0\times0$, 所以 1 具有性质 P.

取 x = y = 2, z = 1, 可得 $5 = 2^3 + 2^3 + 1^3 - 3 \times 2 \times 2 \times 1$, 所以 5 具有性质 P.

为了一般地判断哪些数具有性质 P, 记 $f(x,y,z) = x^3 + y^3 + z^3 - 3xyz$, 则

$$f(x, y, z) = (x + y)^{3} + z^{3} - 3xy(x + y) - 3xyz$$

$$= (x + y + z)^{3} - 3(x + y)z(x + y + z) - 3xy(x + y + z)$$

2014年全国初中数学联合竞赛初三年级试题参考答案 第 4 页 (共 5 页)

$$= (x+y+z)^{3} - 3(x+y+z)(xy+yz+zx)$$

$$= \frac{1}{2}(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)$$

$$= \frac{1}{2}(x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}].$$

$$\mathbb{H} f(x,y,z) = \frac{1}{2}(x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}]$$
①

不妨设 $x \ge y \ge z$,

如果
$$x-y=1$$
, $y-z=0$, $x-z=1$, 即 $x=z+1$, $y=z$, 则有 $f(x,y,z)=3z+1$;

如果
$$x-y=0, y-z=1, x-z=1$$
, 即 $x=y=z+1$, 则有 $f(x,y,z)=3z+2$;

如果
$$x-y=1$$
, $y-z=1$, $x-z=2$, 即 $x=z+2$, $y=z+1$, 则有 $f(x,y,z)=9(z+1)$;

由此可知,形如3k+1或3k+2或9k(k为整数)的数都具有性质P.

因此, 1, 5和 2014都具有性质 P.

若 2013 具有性质 P ,则存在整数 x ,y ,z 使得 2013 = $(x+y+z)^3 - 3(x+y+z)(xy+yz+zx)$. 注意到 $3 \mid 2013$,从而可得 $3 \mid (x+y+z)^3$,故 $3 \mid (x+y+z)$,于是有 $9 \mid (x+y+z)^3 - 3(x+y+z)(xy+yz+zx)$,即 $9 \mid 2013$,但 2013 = $9 \times 223 + 6$,矛盾,所以 2013 不具有性质 P .