Basic data manipulation

Lecture 3

Louis SIRUGUE

CPES 2 - Fall 2022

1. Distributions

• The distribution of a variable documents all its possible values and how frequent they are

• We can describe a distribution with:

1. Distributions

• The distribution of a variable documents all its possible values and how frequent they are

- We can describe a distribution with:
 - Its central tendency

1. Distributions

• The **distribution** of a variable documents all its possible values and how frequent they are

- We can describe a distribution with:
 - Its central tendency
 - And its **spread**

2. Central tendency

 The **mean** is the sum of all values divided by the number of observations

$$ar{x} = rac{1}{N} \sum_{i=1}^N x_i$$

3. Spread

• The **standard deviation** is square root of the average squared deviation from the mean

$$\mathrm{SD}(x) = \sqrt{\mathrm{Var}(x)} = \sqrt{rac{1}{N} \sum_{i=1}^N (x_i - ar{x})^2}$$

• The **median** is the value that divides the (sorted) distribution into two groups of equal size

$$\operatorname{Med}(x) = \left\{ egin{array}{ll} x[rac{N+1}{2}] & ext{if N is odd} \ rac{x[rac{N}{2}] + x[rac{N}{2} + 1]}{2} & ext{if N is even} \end{array}
ight.$$

• The **interquartile range** is the difference between the maximum and the minimum value from the middle half of the distribution

$$IQR = Q_3 - Q_1$$

4. Inference

- In Statistics, we view variables as a given realization of a **data generating process**
 - Hence, the **mean** is what we call an **empirical moment**, which is an **estimation**...
 - ... of the **expected value**, the **theoretical moment** of the DGP we're interested in
- To know how confident we can be in this estimation, we need to compute a **confidence interval**

$$ig[ar{x} - t_{n-1,\ 97.5\%} imes rac{\mathrm{SD}(x)}{\sqrt{n}}; \ ar{x} + t_{n-1,\ 97.5\%} imes rac{\mathrm{SD}(x)}{\sqrt{n}}ig]$$

- \circ It gets **larger** as the **variance** of the distribution of x increases
- \circ And gets **smaller** as the **sample size** n increases

Today we learn how to manipulate data

1. Datasets

- 1.1. What is a dataset
- 1.2. Import and eyeball data
- 1.3. Subset data

2. The dplyr grammar

- 2.1. Basic functions
- 2.2. Group by and summarise
- 2.3. Merge and append data
- 2.4. Reshape data

3. Wrap up!

Today we learn how to manipulate data

1. Datasets

- 1.1. What is a dataset
- 1.2. Import and eyeball data
- 1.3. Subset data

1.1. What is a dataset?

→ Datasets are typically tables in which each row corresponds to an observation and each column to a variable

Excerpt of a dataset on cereals

Observations can be:

- Individuals
- Countries
- Years

Variables can be:

- Age
- GDP
- Temperature

name	calories	protein	fat	sodium	fiber	vitamins
100% Bran	70	4	1	130	10.0	25
100% Natural Bran	120	3	5	15	2.0	0
All-Bran	70	4	1	260	9.0	25
All-Bran with Extra Fiber	50	4	0	140	14.0	25
Almond Delight	110	2	2	200	1.0	25
Apple Cinnamon Cheerios	110	2	2	180	1.5	25
Apple Jacks	110	2	0	125	1.0	25
Basic 4	130	3	2	210	2.0	25

1.1. What is a dataset?

- Each column of a dataset can be seen as a **vector** whose **n**th **element** is about the **n**th **individual**
 - This is how we can create a dataset: by assigning vectors to variable names in a data object

• This illustrates what datasets are made of, but the point is not to write datasets ourselves

→ We need to import data in R

1.2. Import and eyeball data

- There are various formats of datasets, and as many ways to import them in R
 - A very common format is the .csv (for Comma Separated Values), which basically looks like that:

```
1,Ain,Bourg-en-Bresse
2,Aisne,Laon
3,Allier,Moulin
4,Alpes-de-Haute-Provence,Digne-les-bains
```

To **import** csv data, you can use **read.csv()**. This function has **many parameters** you can change to import the data the way you want. Here are a few of them:

- skip: how many lines to skip before reading the data
- header: whether the first row contains variables names
- sep: the **character** that **separates** each observations in the csv (usually "," or ";")
- fileEncoding: if the data contain special characters you should set the right encoding

```
iris <- read.csv("iris.csv", skip = 0, header = TRUE, sep = ",", encoding = "UTF-8")</pre>
```

1.2. Import and eyeball data

• The head function prints the **first rows** of a dataset

head(iris, 12) # Show the first 12 rows of the data

```
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                         3.5
                                     1.4
                                                0.2 setosa
## 2
              4.9
                         3.0
                                     1.4
                                                0.2 setosa
## 3
              4.7
                         3.2
                                     1.3
                                                0.2 setosa
## 4
             4.6
                         3.1
                                     1.5
                                                0.2 setosa
## 5
              5.0
                                    1.4
                                                0.2 setosa
                         3.6
## 6
              5.4
                         3.9
                                     1.7
                                                0.4 setosa
## 7
                                                0.3 setosa
              4.6
                         3.4
                                     1.4
## 8
              5.0
                         3.4
                                     1.5
                                                0.2 setosa
## 9
                                     1.4
                                                0.2 setosa
              4.4
                         2.9
## 10
             4.9
                         3.1
                                     1.5
                                                0.1 setosa
## 11
              5.4
                         3.7
                                     1.5
                                                0.2 setosa
## 12
              4.8
                         3.4
                                     1.6
                                                0.2 setosa
```

1.2. Import and eyeball data

• The view function opens the **data in a new tab** in the code panel. It should look like that:

view(iris)

1.2. Import and eyeball data

• You can obtain the **dimension** of the data with the dim() function

```
dim(iris)
## [1] 150 5
```

The data has 150 rows and 5 columns

• You can access to the **variable names** with the names() function

```
names(iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
```

1.2. Import and eyeball data

• The function summary() allows you to get a concise **description of each variable** in your data

```
summary(iris, digits = 2) # Choose how to round numeric values with 'digits'
```

```
Sepal.Length Sepal.Width
                             Petal.Length Petal.Width
                                                       Species
##
                                                     Length:150
   Min. :4.3
               Min.
                      :2.0
                            Min.
                                  :1.0
                                       Min.
                                               :0.1
                            1st Qu.:1.6
                                                     Class:character
   1st Qu.:5.1 1st Qu.:2.8
                                       1st Qu.:0.3
   Median :5.8
               Median :3.0 Median :4.3
                                       Median :1.3
                                                     Mode :character
##
   Mean :5.8
               Mean
                    :3.1 Mean
                                 :3.8
                                       Mean :1.2
   3rd Qu.:6.4
                3rd Qu.:3.3
                                       3rd Qu.:1.8
##
                            3rd Qu.:5.1
##
   Max. :7.9
               Max. :4.4
                            Max. :6.9
                                       Max. :2.5
```

→ What we learn:

- Petal/Sepal. Lengths/Widths are **numeric** while Species is a **character** variable
- From the **mean** and the **range** of numeric variables:
 - Petals tend to be smaller than sepals (for irises)
 - The range of numeric variables is quite large

1.2. Import and eyeball data

- In R you can handle datasets in **different formats**:
 - o data.frame
 - tibble
 - matrix
 - data.table
- All these formats have their specificities
 - In this course we'll focus on **data.frames** and **tibbles** (very similar)
- One specificity of the **tibble** can be observed when printing the data:
 - \circ It will display its **dimensions** (#rows \times #columns) and the **class** of each variable under its name

```
head(as_tibble(iris), 2)
```

[1] 0.2 0.4

1.3. Subset data: Extract values

- Just as with vectors, you can access elements of the data using []
 - But while vectors have 1 dimension, datasets have **two dimensions**: rows and columns
 - To access specific cells of the data, you must indicate the **row number(s)** and the **column number(s)** separated by a comma in the brackets

1.3. Subset data: Get variables

• The \$ allows to access a variable of the data

```
## [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 5.0 5.2 5.2 4.7 4.8 4.8 4.3 5.8 5.7 5.4 5.1 ## [19] 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0 ## [37] 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 6.4 6.9 5.5 ## [55] 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1 ## [73] 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6 5.5 ## [91] 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 ## [109] 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2 ## [127] 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8 ## [145] 6.7 6.7 6.3 6.5 6.2 5.9
```

• Alternative solutions include using **double brackets** or the **column index**

```
iris[["Sepal.Length"]]
iris[, 1]
```

1.3. Subset data: Conditional subsetting

• A **logical vector** (T and F / a condition) **before the comma** will select every **row** that meets this condition

```
iris[iris$Petal.Length > 6.5, ]

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 106     7.6     3.0     6.6     2.1 virginica
## 118     7.7     3.8     6.7     2.2 virginica
## 119     7.7     2.6     6.9     2.3 virginica
## 123     7.7     2.8     6.7     2.0 virginica
```

• A **logical vector** (T and F / a condition) **after the comma** will select every **column** that meets this condition

```
iris[iris$Petal.Length > 6.5, names(iris) %in% c("Petal.Length", "Species")]
```

```
## Petal.Length Species
## 106 6.6 virginica
## 118 6.7 virginica
## 119 6.9 virginica
## 123 6.7 virginica
```

Overview

1. Datasets ✓

- 1.1. What is a dataset
- 1.2. Import and eyeball data
- 1.3. Subset data

2. The dplyr grammar

- 2.1. Basic functions
- 2.2. Group by and summarise
- 2.3. Merge and append data
- 2.4. Reshape data

3. Wrap up!

Overview

1. Datasets ✓

- 1.1. What is a dataset
- 1.2. Import and eyeball data
- 1.3. Subset data

2. The dplyr grammar

- 2.1. Basic functions
- 2.2. Group by and summarise
- 2.3. Merge and append data
- 2.4. Reshape data

2.1. Basic functions

dplyr is a **grammar** of data manipulation, providing very **user-friendly functions** to handle the most common **data manipulation** tasks. The functions you will probably use the most are the following:

- mutate(): add/modify variables
- select(): keep/drop variables (columns)
- filter(): keep/drop observations (rows)
- arrange(): sort rows according to the values of given variable(s)
- summarise(): aggregate the data into descriptive statistics

- A very handy **operator** to use with the **dplyr** grammar is the **pipe %>%**
 - You can basically read a %>% b() as "apply function b() to object a"
 - With this operator you can easily **chain the operations** you apply to an object

2.1. Basic functions

```
iris %>%
  # Generate an new variable, the product of sepal length and width
mutate(product = Sepal.Length * Sepal.Width) %>%
  # Keep only this variable and the species in the dataset
select(product, Species) %>%
  # Keep only observations from the virginica species
filter(Species == "virginica") %>%
  # Arrange rows by decreasing value of the product variable
arrange(-product) %>%
  # Show the first 5 observations
head(5)
```

```
## product Species
## 1     30.02 virginica
## 2     29.26 virginica
## 3     25.92 virginica
## 4     23.10 virginica
## 5     23.04 virginica
```

\triangle Be careful when chaining operations with pipes, it's easy to get mixed up! \triangle

- Don't code blindfolded, view() your data at each step to make sure that it goes the way you intend it to go
- Try to work on the subset of variables you actually need to make things easier

```
iris %>%
 mutate(product = Sepal.Length * Sepal.Width) %>%
 view()
iris %>%
 mutate(product = Sepal.Length * Sepal.Width) %>%
 select(product, Species) %>%
 view()
iris %>%
 mutate(product = Sepal.Length * Sepal.Width) %>%
 select(product, Species) %>%
 filter(Species == "virginica") %>%
 view()
```

2.1. Basic functions: common mutate usage

Generate a variable as a function of other variables

```
iris <- iris %>% mutate(new_var = (Sepal.Length * Sepal.Width) / 2)
```

• Add a variable from elsewhere (dimensions must match)

```
iris <- iris %>% mutate(new_var = 1:nrow(iris))
```

• Use ifelse(condition, value if condition is met, value if not)

```
iris <- iris %>% mutate(new_var = ifelse(Species == "virginica", 1, 0))
```

• Use case_when() when there are more than 2 cases

2.2. Group by and summarise

The group_by() function allows to modify the data **group by group** rather than on all observations

- Imagine that you are interested in **comparing**
 - The average sepal width **by iris species**
 - And the average sepal width **overall**

```
iris_groups <- iris %>% # Let's save our modifications in a new dataset
  mutate(pop_mean = mean(Sepal.Width)) %>% # First compute the mean of all observations
  group_by(Species) %>% # Then group par specie
  mutate(group_mean = mean(Sepal.Width)) # And compute the mean
```

Let's view our data to see how it went

```
view(iris_groups)
```

*	Sepal.Length ‡	Sepal.Width ‡	Petal.Length ‡	Petal.Width ‡	Species ‡	pop_mean ‡	group_mean ‡
41	5.0	3.5	1.3	0.3	setosa	3.057333	3.428
42	4.5	2.3	1.3	0.3	setosa	3.057333	3.428
43	4.4	3.2	1.3	0.2	setosa	3.057333	3.428
44	5.0	3.5	1.6	0.6	setosa	3.057333	3.428
45	5.1	3.8	1.9	0.4	setosa	3.057333	3.428
46	4.8	3.0	1.4	0.3	setosa	3.057333	3.428
47	5.1	3.8	1.6	0.2	setosa	3.057333	3.428
48	4.6	3.2	1.4	0.2	setosa	3.057333	3.428
49	5.3	3.7	1.5	0.2	setosa	3.057333	3.428
50	5.0	3.3	1.4	0.2	setosa	3.057333	3.428
51	7.0	3.2	4.7	1.4	versicolor	3.057333	2.770
52	6.4	3.2	4.5	1.5	versicolor	3.057333	2.770
53	6.9	3.1	4.9	1.5	versicolor	3.057333	2.770
54	5.5	2.3	4.0	1.3	versicolor	3.057333	2.770
55	6.5	2.8	4.6	1.5	versicolor	3.057333	2.770
56	5.7	2.8	4.5	1.3	versicolor	3.057333	2.770
57	6.3	3.3	4.7	1.6	versicolor	3.057333	2.770
58	4.9	2.4	3.3	1.0	versicolor	3.057333	2.770
59	6.6	2.9	4.6	1.3	versicolor	3.057333	2.770
60	5.2	2.7	3.9	1.4	versicolor	3.057333	2.770
61	5.0	2.0	3.5	1.0	versicolor	3.057333	2.770
62	5.9	3.0	4.2	1.5	versicolor	3.057333	2.770

2.2. Group by and summarise

- For each observation we now have the **average** sepal width of its **specie** and that of the whole **population**
 - But these results are **not conveyed clearly** because we still have individual-level info in the data
 - We should keep **only** the **aggregated** variables with one row per specie

```
iris_groups %>%
  select(Species, pop_mean, group_mean) %>% # Select only the variables of interest
  unique() # Drop duplicate rows
```

- We actually summarized the data into **descriptive statistics**
 - This is precisely what the **summarise()** function is made for

2.2. Group by and summarise

- The **summarise()** function was made to **do it all** that by itself:
 - Step 1: Indicate at which level you want to aggregate the data by putting the grouping variable in group_by()
 - <u>Step 2:</u> Generate the aggregate variables by specifying **which variable** you want **to aggregate** and what **group-level information** you want about it (min, max, sum, number of observations, ...)

```
## # A tibble: 3 x 6
   Species mean length min length max length sum width nb obs
##
   <chr>
       <dbl>
                      <dbl>
                           <dbl>
                                     <dbl> <int>
## 1 setosa 5.01 4.3
                                5.8 171.
                                            50
## 2 versicolor 5.94 4.9 7 138. 50
## 3 virginica
           6.59
                        4.9
                               7.9
                                  149.
                                            50
```

2.2. Group by and summarise

Note that group_by() generally applies to all operations until you apply the ungroup() function

• After computing the average sepal length by species, you may want to get the maximum value of that average:

```
iris %>%
  group_by(Species) %>% # Group by species
mutate(mean_length = mean(Sepal.Length)) %>% # Compute the mean (by species)
  select(Species, mean_length) %>% # Select the two variables we're interested in
  unique() %>% # Drop duplicate row
  mutate(forgot_ungroup = max(mean_length)) %>% # Compute max without ungroup
  ungroup() %>% # Ungroup
  mutate(did_not_forget = max(mean_length)) # Compute max after ungroup
```

If you do not ungroup the data, the maximum value is computed by specie and not across species.

Practice

1) Import starbucks.csv using the following command and see what's wrong

```
starbucks <- read.csv("YOUR_DIRECTORY/starbucks.csv")</pre>
```

Your directory must look like "C:/Users/...", make sure to use / instead of \

- 2) Set the sep and encoding arguments of read.csv function to import the data correctly
- **3)** Use summarise() to **compute** for each **beverage category** the average number of **calories** and the number of different **declinations** (there is 1 row per declination)
- **4)** Create a **subset** of the data called maxcal containing the **variables** Beverage_category, Beverage_prep, and Calories, for the **10 observations** with the **highest calorie** values

You can use the row_number() function which gives the row numbers as a vector

You've got 10 minutes!

Solution

1) Import starbucks.csv using the following command and see what's wrong

```
read.csv("starbucks.csv") %>% view()
```

2) Set the sep and encoding arguments of read.csv function to import the data correctly

5 Classic Espresso Drinks Caffè Latte Short Nonfat Milk 70 0.1

```
starbucks <- read.csv("starbucks.csv", sep = ";", encoding = "UTF-8")
head(starbucks[4:5, 1:5])

## Beverage_category Beverage Beverage_prep Calories Total.Fat
## Coffee Brewed Coffee Venti 5 0.1</pre>
```

Solution

starbucks %>%

3) Use summarise() to compute for each beverage category the average number of calories and the number of different declinations (there is 1 row per declination)

```
group_by(Beverage_category) %>%
  summarise(Declinations = n(),
            Mean_cal = mean(Calories))
## # A tibble: 9 x 3
    Beverage_category
                                       Declinations Mean cal
   <chr>
                                              <int>
                                                       <dbl>
## 1 Classic Espresso Drinks
                                                      140.
## 2 Coffee
                                                      4.25
## 3 Frappuccino® Blended Coffee
                                                      277.
## 4 Frappuccino® Blended Crème
                                                      233.
## 5 Frappuccino® Light Blended Coffee
                                                      162.
## 6 Shaken Iced Beverages
                                                 18
                                                      114.
## 7 Signature Espresso Drinks
                                                      250
                                                 40
## 8 Smoothies
                                                      282.
## 9 Tazo® Tea Drinks
                                                      177.
```

Solution

4) Create a subset of the data called maxcal containing the variables Beverage_category, Beverage_prep, and Calories, for the 10 observation with the highest calorie values

```
maxcal <- starbucks %>%
  arrange(-Calories) %>%
  select(Beverage_category, Beverage_prep, Calories) %>%
  filter(row_number() <= 10)
maxcal</pre>
```

##		Beverage_ca	ategory	В	everage_	prep	Calories
##	1	Signature Espresso	Drinks		2%	Milk	510
##	2	Signature Espresso	Drinks		Soy	/milk	460
##	3	Frappuccino® Blended	Coffee		Whole	Milk	460
##	4	Signature Espresso	Drinks	Venti	Nonfat	Milk	450
##	5	Tazo® Tea	Drinks		2%	Milk	450
##	6	Frappuccino® Blended	Coffee		Soy	/milk	430
##	7	Frappuccino® Blended	Coffee	Venti	Nonfat	Milk	420
##	8	Signature Espresso	Drinks		2%	Milk	400
##	9	Tazo® Tea	Drinks		Soy	/milk	390
##	10	Frappuccino® Blended	Coffee		Whole	Milk	390

2.3. Merge and append data

- Research projects often imply to **combine data** from different sources
 - To add observations (append rows)
 - To **add variables** (merge columns)

Dataset 1 on attainment

country	year	share_tertiary
FRA	2015	44.68760
GBR	2015	49.94341
USA	2015	46,51771

2.3. Merge and append data

- Research projects often imply to **combine data** from different sources
 - Either to **add observations** (append rows)
 - Either to **add variables** (merge columns)

Dataset 1 on attainment

country	year	share_tertiary
FRA	2015	44.68760
GBR	2015	49.94341
USA	2015	46.51771

Dataset 2 on attainment

country	year	share_tertiary
ITA	2015	25.14996
ESP	2015	40.95978

2.3. Merge and append data

- Research projects often imply to **combine data** from different sources
 - Either to **add observations** (append rows)
 - Either to **add variables** (merge columns)

Dataset 2 on attainment

country	year	share_tertiary
ITA	2015	25.14996
ESP	2015	40.95978

2.3. Append data: The bind_rows() function

```
read.csv("attainment FR UK US.csv")
                                                      read.csv("attainment IT SP.csv")
##
    country year share_tertiary
                                                     ##
                                                          country year share_tertiary
## 1
         FRA 2015
                        44,68760
                                                     ## 1
                                                              ITA 2015
                                                                              25,14996
## 2
        GBR 2015
                       49.94341
                                                     ## 2
                                                              ESP 2015
                                                                              40,95978
## 3
        USA 2015
                        46,51771
attainment <- read.csv("attainment FR UK US.csv") %>%
  bind rows(read.csv("attainment IT SP.csv"))
attainment
```

```
##
     country year share tertiary
## 1
         FRA 2015
                        44,68760
## 2
         GBR 2015
                        49.94341
## 3
        USA 2015
                        46.51771
## 4
        ITA 2015
                        25,14996
## 5
         ESP 2015
                        40.95978
```

Variables in the two datasets should be the same:

- Same name
- Same class

2.3. Join data: *_join() functions

- Join functions all work the same way:
 - A dataset A with a variable X and other variables
 - A dataset B with a variable X and other variables
 - X is the common variable, so datasets will be **joined** by X

The 4 main join functions

Function	For X in A & B	For X in A only	For X in B only	Summary
A %>% left_join(B, by = "X")	Kept	Kept	Dropped	Only keeps what's in A
A %>% right_join(B, by = "X")	Kept	Dropped	Kept	Only keeps what's in B
A %>% inner_join(B, by = "X")	Kept	Dropped	Dropped	Only keeps what's common
A %>% full_join(B, by = "X")	Kept	Kept	Kept	Keeps everything

⚠ Beware of NAs! **⚠**

- When you have **values** of X that are **not common** to both datasets
 - Any other join than the inner_join() will generate NAs

```
attainment %>% full_join(read.csv("spending.csv"), by = "country")
##
    country year.x share tertiary year.y share gdp
## 1
        FRA
              2015
                         44,68760
                                    2015
                                            3,398
## 2
              2015
                                     NA
        GBR
                        49.94341
                                               NA
## 3
              2015
                    46.51771
        USA
                                  2015
                                          3,207
## 4
                    25.14996
        ITA
              2015
                                               NA
## 5
        ESP
              2015
                    40,95978
                                     NA
                                               NA
## 6
        RUS
                NA
                                    2015
                                            1.843
```

- Any variable from A (B) other than those stated in by= will be NA for observations that are only in B (A)
- This holds when a variable that is not mentioned in the by= argument appears in both datasets:
 - In that case, R adds a data-specific suffix to the names and keeps them both
 - The variable from B (here year.y) will be NA for observations that are only in A only (here GBR, ITA, ESP)

2.3. Join data: example

```
attainment %>% left_join(read.csv("spending.csv"), by = "country")
    country year.x share_tertiary year.y share_gdp
##
## 1
        FRA
              2015
                        44.68760
                                 2015
                                           3.398
## 2
        GBR
             2015
                                 NA
                   49.94341
                                             NA
## 3
        USA
             2015
                   46.51771
                                 2015 3.207
## 4
        ITA
             2015
                       25.14996
                                    NA
                                             NA
## 5
        ESP
             2015
                       40.95978
                                    NA
                                             NA
attainment %>% right_join(read.csv("spending.csv"), by = "country")
##
    country year.x share_tertiary year.y share_gdp
                                        3.398
## 1
        FRA
             2015
                        44.68760
                                 2015
                                2015 3.207
## 2
        USA
             2015
                       46.51771
        RUS
                                  2015
## 3
               NA
                             NA
                                         1.843
```

→ What would be the result of an inner_join() here?

2.4. Reshape data

- It is important to be able to **switch from** the **long to** the **wide** format and conversely
 - Some computations should be done in one format or the other

Wi	d	e	fo	rm	at
	_	_			• •

country	year	share_tertiary	share_gdp
FRA	2015	44.69	3.40
USA	2015	46.52	3.21

Long format

country	year	Variable	Value
FRA	2015	share_tertiary	44.69
FRA	2015	share_gdp	3.40
USA	2015	share_tertiary	46.52
USA	2015	share_gdp	3.21

2.4. Reshape data: From wide to long with pivot_longer()

→ Pivoting to **long format** can be seen as putting **variables on top of each other** rather side to side

46.51771 3.207

• We need to indicate:

USA 2015

2

- Which variables to stack
- The name of the variable in which we want the values of the stacked variables to be stored
- The **name of** the variable that will indicate to which **variable** corresponds each value

2.4. Reshape data: From wide to long with pivot_longer()

2.4. Reshape data: From long to wide with pivot_wider()

- To **pivot in a wide** format we need to indicate:
 - Which variable contains values of the variables we want to put side to side
 - Which variable indicates which variable correspond to each value

Overview

1. Datasets ✓

- 1.1. What is a dataset
- 1.2. Import and eyeball data
- 1.3. Subset data

2. The dplyr grammar ✓

- 2.1. Basic functions
- 2.2. Group by and summarise
- 2.3. Merge and append data
- 2.4. Reshape data

3. Wrap up!

3. Wrap up!

Read data

```
starbucks <- read.csv("C:/User/Documents/folder/starbucks.csv", sep = ";", encoding = "UTF-8")</pre>
```

→ Make sure to use / and not \

Chaining operations

```
starbucks %>%
  arrange(-Calories) %>%
  select(Beverage_category, Beverage_prep, Calories) %>%
  filter(row_number() <= 3)

## Beverage_category Beverage_prep Calories
## 1 Signature Espresso Drinks 2% Milk 510
## 2 Signature Espresso Drinks Soymilk 460
## 3 Frappuccino® Blended Coffee Whole Milk 460</pre>
```

→ Make sure to view your data at each step

3. Wrap up!

Important functions of the dplyr grammar

Function	Meaning
mutate()	Modify or create a variable
select()	Keep a subset of variables
filter()	Keep a subset of observations
arrange()	Sort the data
group_by()	Group the data
summarise()	Summarizes variables into 1 observation per group
bind_rows()	Append data
left/right/inner/full_join()	Merge data
pivot_longer/wider()	Reshape data