CSC-252: Database Management System

General Information

Course Number	CSC-252
Credit Hours	3+1 (Theory Credit Hour = 3, Lab Credit Hours = 1)
Course Coordinator	Not Specified

Course Objectives

The aim of this course is to build the foundation of database design, implementation and management from theory and practical perspectives. The focus of this course would be on design and development of relational model and relational query languages associated with such model. It will also introduce some recent developments in databases such as semi-structured data and the relationship between databases. The basic concepts of concurrency control, Normalization, ER Model and transaction processing will also be covered. In addition to the theoretical concepts, the course through the lab section, and programming assignments and projects, will require students to use the Oracle and optionally MySQL database systems and develop term projects.

Catalog Description

CSC-252

Course Content

Session No.	Week No.	Suggested Readings (Chapters)			
01-05	1-2	Introduction to DBMS Database-System Applications Views of Data Database Languages Relational Databases Database Design Data Storage and Querying Transaction Management Database Architecture Database Users and Administrators	1		
06-10	2-3	Introduction to the Relational Model Structure of Relational Databases Database Schema Keys Schema Diagrams Relational Query Languages Relational Operations	2		
11-14	4- 5	Relational Model Relational Operations Formal Relational Query Language Relational Algebra	6		

14-18	5- 6	An algebraic Query Language				
	O	o Natural Joins				
		o Theta- Joins o Combining operations to form queries	6			
		o Naming and renaming				
		o Relationships among operations				
		First Mid Exams				
18-23	7	Functional-Dependency Theory				
	&	Functional Dependencies (FDs)				
	8	o Definition of FD				
		o Keys of relations				
		o Super Keys	8			
		Rules about FDs				
		o Reasoning about FDs				
		o Armstrong's Axiom and inferencing Rule				
24.55		o Computing the closure of Attributes				
24-26	9	Design of relational database schema o Anomalies				
		o Anomalies o Decomposing Relations using FDs	0			
		o Third Normal Form (3NF) and Boyce-Codd Normal	8			
		Form (BCNF)				
27-29	10	Overview of the Design Process				
		The Entity-Relationship Model				
		Constraints Removing Redundant Attributes in				
		Entity Sets	7			
		Entity-Relationship Diagrams	,			
		Reduction to Relational Schemas				
		Entity-Relationship Design Issues				
20.22	11	Extended E-R Features				
30-33	11	Enhanced ER design				
		From ERD to Relational Designs (translation)				
		o From Entity sets to relations o From ER Relationships to Relations				
		o Combining relations				
		Second Mid Exams				
40-42	4.4	Transaction Management				
	14	Concurrency Control				
		Concurrency Control with locking methods	14-15			
		• 2PL				
		Deadlock				
43-45	15	Project Presentations and				
		Revision				
		Final Exams				

Text Book

Avi Silberschatz, Henry F. Korth, S. Sudarshan: "Database System Concepts", 6th Edition, McGraw-Hill

Reference Material

Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom:, "Database Systems: The Complete Book", 3rd edition, Pearson Prentice Hall

Thomas Connolly, Carolyn Begg:, "Database Systems: A practical approach to design, implementation and Management", 5th edition, Addison Wesley

Course Learning Outcomes

	Course Learning Outcomes (CLO)
1	Demonstrate core database concepts and explain database management system software components.
2	Apply normalization process to develop database design
3	Use database tools to design and develop abstract models in ERD.
4	Use SQL queries in Oracle DBMS using various IDEs for the development of application programs.
5	Express relational queries using Relational Algebra.
6	Understand XML technologies.

CLO-SO Map

		SO IDs										
CLO ID	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CLO 1	1	0	0	0	0	0	0	0	0	0	0	0
CLO 2	1	0	0	0	0	0	0	0	0	0	0	0
CLO 3	0	0	1	0	0	0	0	0	0	0	0	0
CLO 4	0	0	1	0	0	0	0	0	0	0	0	0
CLO 5	0	0	0	0	1	0	0	0	0	0	0	0
CLO 6	0	0	0	0	1	0	0	0	0	0	0	0

Approvals

Prepared By	Muhammad Faiz Lakhani.		
Approved By	Not Specified		
Last Update	01/01/2020		