

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-05, Eq. 7-2)	20.62 psf	Sloped Roof Snow Load, $P_s =$
	1.00	$I_s =$
	0.91	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 12.72 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- portou	_	-1 000	approd and, nom are contact.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>834.30</u>	<u>4399.12</u>	k
Compressive Load =	4335.58	4673.29	k
Lateral Load =	<u>13.50</u>	2023.85	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 = 110717.0 \text{ in-lbs}$ Resisting Force Required = 1677.53 lbs A minimum 132in long x 24in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2795.88 lbs to resist overturning. Minimum Width = <u>24 in</u> in Weight Provided = 4785.00 lbs Sliding Force = 486.24 lbs Use a 132in long x 24in wide x 18in tall Friction = 0.4 Weight Required = 1215.60 lbs ballast foundation to resist sliding. Resisting Weight = 4785.00 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 486.24 lbs Cohesion = 130 psf Use a 132in long x 24in wide x 18in tall 22.00 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2392.50 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f'_c =$ Length =

Bearing Pressure				
		Ballast	Width	
	24 in	25 in	26 in	27 in
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2 \text{ ft}) =$	4785 lbs	4984 lbs	5184 lbs	5383 lbs

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	24 in	25 in	26 in	27 in	24 in	25 in	26 in	27 in	24 in	25 in	26 in	27 in	24 in	25 in	26 in	27 in
FA	1630 lbs	1630 lbs	1630 lbs	1630 lbs	1313 lbs	1313 lbs	1313 lbs	1313 lbs	2073 lbs	2073 lbs	2073 lbs	2073 lbs	-395 lbs	-395 lbs	-395 lbs	-395 lbs
F _B	1665 lbs	1665 lbs	1665 lbs	1665 lbs	1571 lbs	1571 lbs	1571 lbs	1571 lbs	2290 lbs	2290 lbs	2290 lbs	2290 lbs	-2109 lbs	-2109 lbs	-2109 lbs	-2109 lbs
F _V	187 lbs	187 lbs	187 lbs	187 lbs	879 lbs	879 lbs	879 lbs	879 lbs	786 lbs	786 lbs	786 lbs	786 lbs	-972 lbs	-972 lbs	-972 lbs	-972 lbs
P _{total}	8081 lbs	8280 lbs	8479 lbs	8679 lbs	7669 lbs	7868 lbs	8068 lbs	8267 lbs	9149 lbs	9348 lbs	9547 lbs	9747 lbs	368 lbs	487 lbs	607 lbs	727 lbs
M	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	3853 lbs-ft	3853 lbs-ft	3853 lbs-ft	3853 lbs-ft	5641 lbs-ft	5641 lbs-ft	5641 lbs-ft	5641 lbs-ft	1767 lbs-ft	1767 lbs-ft	1767 lbs-ft	1767 lbs-ft
е	0.51 ft	0.50 ft	0.49 ft	0.47 ft	0.50 ft	0.49 ft	0.48 ft	0.47 ft	0.62 ft	0.60 ft	0.59 ft	0.58 ft	4.81 ft	3.63 ft	2.91 ft	2.43 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	265.1 psf	263.2 psf	261.5 psf	259.8 psf	253.0 psf	251.6 psf	250.3 psf	249.1 psf	276.0 psf	273.6 psf	271.5 psf	269.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	469.5 psf	459.4 psf	450.1 psf	441.5 psf	444.1 psf	435.1 psf	426.7 psf	418.9 psf	555.7 psf	542.2 psf	529.7 psf	518.1 psf	176.6 psf	83.2 psf	72.1 psf	70.2 psf

Maximum Bearing Pressure = 556 psf Allowable Bearing Pressure = 1500 psf Use a 132 $\rm in \ long \ x \ 24in \ wide \ x \ 18in \ tall \ ballast \ foundation \ for \ an \ acceptable bearing \ pressure.$

Weak Side Design

Overturning Check

 $M_0 = 890.0 \text{ ft-lbs}$

Resisting Force Required = 890.04 lbs S.F. = 1.67

Weight Required = 1483.41 lbs Minimum Width = 24 in in Weight Provided = 4785.00 lbs A minimum 132in long x 24in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		24 in			24 in			24 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	250 lbs	671 lbs	250 lbs	908 lbs	2704 lbs	908 lbs	73 lbs	196 lbs	73 lbs	
F _V	1 lbs	0 lbs	1 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	6174 lbs	4785 lbs	6174 lbs	6547 lbs	4785 lbs	6547 lbs	1805 lbs	4785 lbs	1805 lbs	
M	5 lbs-ft	0 lbs-ft	5 lbs-ft	18 lbs-ft	0 lbs-ft	18 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	0.33 ft	
f _{min}	280.0 psf	217.5 psf	280.0 psf	295.2 psf	217.5 psf	295.2 psf	82.0 psf	217.5 psf	82.0 psf	
f _{max}	281.3 psf	217.5 psf	281.3 psf	300.0 psf	217.5 psf	300.0 psf	82.1 psf	217.5 psf	82.1 psf	

Maximum Bearing Pressure = 300 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 24in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.335 k 12.808 k 7.421 k <u>45%</u>	Rear Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.387 k 12.808 k 7.421 k <u>46%</u>
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.404 k 12.808 k 7.421 k <u>19%</u>	Bolt and bearing capacities are accounting fo (ASCE 8-02, Eq. 5.3.4-1)	r double shear.
	0	Struts under compression are transfer from the girder. Single	

under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, Δ_{MAX} = 0.052 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$A_b = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{\frac{\theta_y}{\theta_b} Fcy}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$c_2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 126$$

$$J = 0.432$$

$$221.673$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_1 = 28.5$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_t = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.18

$$h/t = 37.0588$$

 $\phi F_L =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \end{array}$$

$$M_{\text{max}}St = 2.788 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

1.152 k-ft

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2*\sqrt{(BpE))/(1.6b/t)} \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$

$$S2 = C_t$$

 $S2 = 141.0$

$$φF_L = φb[Bt-Dt*√(Rb/t)]$$

 $φF_L = 31.1 \text{ ksi}$

$$\phi F_{L} = 31.1 \text{ k}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi \varphi F c \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 29.4 \ ksi \\ lx = & 984962 \ mm^4 \\ & 2.366 \ in^4 \\ y = & 43.717 \ mm \\ Sx = & 1.375 \ in^3 \end{array}$$

$$y = 43.717 \text{ mm}$$
 $Sx = 1.375 \text{ in}^3$
 $M_{\text{max}}St = 3.363 \text{ k-ft}$

3.4.16.1

N/A for Weak Direction

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi c[Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_y}{\theta_x} Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$
 $k_s Rn$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
$$S1 = 1.1$$

$$S1 = \begin{pmatrix} 1.6Dt \\ S1 = 1.1 \end{pmatrix}$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDhr}$$

$$S1 = \frac{\theta_b}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

$$m = 0.65$$

 $C_0 = 27.5$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

28.2 ksi

$$0.672 \text{ in}^4$$
 = 27.5 mm

$$y = 27.5 \text{ mn}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

φF_LSt=

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$c_2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t =
$$0.0$$

$$S1 = \begin{pmatrix} Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy \\ \hline 1.6Dt \\ S1 = 1.1 \\ S2 = C_t \\ S2 = 141.0 \\ \phi F_L = 1.17 \phi y Fcy \end{pmatrix}^2$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

S1 =
$$\frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

S1 = $\frac{36.9}{m}$ m = 0.65
C₀ = 27.5
Cc = 27.5
S2 = $\frac{k_1Bbr}{mDbr}$
S2 = 77.3
 φF_L = 1.3 $\varphi \varphi F cy$
 φF_L = 43.2 ksi

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-37.24	-37.24	0	0
2	M14	V	-37.24	-37.24	0	0
3	M15	V	-58.519	-58.519	0	0
4	M16	V	-58.519	-58.519	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	85.119	85.119	0	0
2	M14	V	65.258	65.258	0	0
3	M15	V	35.466	35.466	0	0
4	M16	V	35 466	35 466	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	363.376	2	1055.763	1	.948	1	.005	1	Ö	1	Ó	1
2		min	-493.038	3	-1028.136	3	.04	15	0	15	0	1	0	1
3	N7	max	.042	1	1189.736	1	392	15	0	15	0	1	0	1
4		min	082	2	-174.928	3	-10.387	1	022	1	0	1	0	1
5	N15	max	.027	9	3335.063	1	0	2	0	2	0	1	0	1
6		min	-1.115	2	-641.771	3	0	3	0	3	0	1	0	1
7	N16	max	1475.428	2	3594.838	1	0	2	0	2	0	1	0	1
8		min	-1556.804	3	-3383.936	3	0	9	0	9	0	1	0	1
9	N23	max	.042	1	1189.736	1	10.387	1	.022	1	0	1	0	1
10		min	082	2	-174.928	3	.392	15	0	15	0	1	0	1
11	N24	max	363.376	2	1055.763	1	04	15	0	15	0	1	0	1
12		min	-493.038	3	-1028.136	3	948	1	005	1	0	1	0	1
13	Totals:	max	2200.901	2	11420.898	1	0	2	·		·		·	
14		min	-2543.256	3	-6431.836	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	110.413	1	476.399	1	-6.185	15	0	3	.263	1	0	1
2			min	4.032	15	-516.473	3	-169.918	1	013	1	.01	15	0	3
3		2	max	110.413	1	333.881	1	-4.759	15	0	3	.088	1	.513	3
4			min	4.032	15	-363.459	3	-130.697	1	013	1	.003	15	473	1
5		3	max	110.413	1	191.364	1	-3.333	15	0	3	0	12	.848	3
6			min	4.032	15	-210.445	3	-91.475	1	013	1	042	1	779	1
7		4	max	110.413	1	48.846	1	-1.907	15	0	3	004	12	1.004	3
8			min	4.032	15	-57.431	3	-52.254	1	013	1	125	1	919	1
9		5	max	110.413	1	95.583	3	482	15	0	3	006	12	.982	3
10			min	4.032	15	-93.671	1	-13.032	1	013	1	164	1	893	1
11		6	max	110.413	1	248.597	3	26.189	1	0	3	006	15	.781	3
12			min	4.032	15	-236.189	1	.571	12	013	1	156	1	701	1
13		7	max	110.413	1	401.611	3	65.411	1	0	3	004	15	.402	3
14			min	4.032	15	-378.707	1	1.996	12	013	1	102	1	342	1
15		8	max	110.413	1	554.625	3	104.632	1	0	3	0	10	.183	1
16			min	4.032	15	-521.224	1	3.422	12	013	1	003	1	156	3
17		9	max	110.413	1	707.639	3	143.854	1	0	3	.142	1	.874	1
18			min	4.032	15	-663.742	1	4.847	12	013	1	.004	12	892	3
19		10	max	110.413	1	860.653	3	183.075	1	0	3	.332	1	1.732	1
20			min	4.032	15	-806.259	1	6.273	12	013	1	.01	12	-1.807	3
21		11	max	110.413	1	663.742	1	-4.847	12	.013	1	.142	1	.874	1
22			min	4.032	15	-707.639	3	-143.854	1	0	3	.004	12	892	3
23		12	max	110.413	1	521.224	1	-3.422	12	.013	1	0	10	.183	1
24			min	4.032	15	-554.625	3	-104.632	1	0	3	003	1	156	3
25		13	max	110.413	1	378.707	1	-1.996	12	.013	1	004	15	.402	3
26			min	4.032	15	-401.611	3	-65.411	1	0	3	102	1	342	1

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	110.413	1	236.189	_1_	571	12	.013	_1_	006	15	.781	3
28			min	4.032	15	-248.597	3	-26.189	1	0	3	156	1	701	1
29		15	max	110.413	1	93.671	_1_	13.032	1_	.013	_1_	006	12	.982	3
30			min	4.032	15	-95.583	3	.482	15	0	3	164	1	893	1
31		16	max	110.413	1_	57.431	3	52.254	1_	.013	_1_	004	12	1.004	3
32			min	4.032	15	-48.846	1	1.907	15	0	3	125	1	919	1
33		17	max	110.413	1	210.445	3	91.475	1	.013	1	0	12	.848	3
34			min	4.032	15	-191.364	1	3.333	15	0	3	042	1	779	1
35		18	max	110.413	1	363.459	3	130.697	1	.013	1	.088	1	.513	3
36			min	4.032	15	-333.881	1	4.759	15	0	3	.003	15	473	1
37		19	max	110.413	1	516.473	3	169.918	1	.013	1	.263	1	0	1
38			min	4.032	15	-476.399	1	6.185	15	0	3	.01	15	0	3
39	M14	1	max	49.85	1	500.769	1	-6.368	15	.006	3	.299	1	0	1
40			min	1.824	15	-401.249	3	-174.972	1	01	1	.011	15	0	3
41		2	max	49.85	1	358.251	1	-4.943	15	.006	3	.117	1	.4	3
42			min	1.824	15	-285.309	3	-135.751	1	01	1	.004	15	501	1
43		3	max	49.85	1	215.734	1	-3.517	15	.006	3	0	3	.666	3
44		J	min	1.824	15	-169.369	3	-96.529	1	01	1	018	1	836	1
45		4		49.85	1	73.216	<u> </u>	-2.091	15	.006	3	003	12	<u>836</u> .796	3
		4	max			-53.429									
46		_	min	1.824	15		3	-57.308	1_	01	1	108	1	<u>-1.004</u>	1
47		5	max	49.85	1	62.511	3	665	15	.006	3	005	12	.79	3
48			min	1.824	15	-69.301	1_	-18.086	1_	01	1_	152	1	<u>-1.007</u>	1
49		6	max	49.85	1	178.451	3	21.135	1	.006	3	005	15	.65	3
50			min	1.824	15	-211.819	1_	.393	12	01	1_	15	1	843	1
51		7	max	49.85	1	294.391	3	60.357	1	.006	3	004	15	.374	3
52			min	1.824	15	-354.337	1_	1.818	12	01	1_	103	1	513	1
53		8	max	49.85	1_	410.332	3	99.578	1_	.006	3	0	10	0	15
54			min	1.824	15	-496.854	1_	3.244	12	01	_1_	009	1	037	3
55		9	max	49.85	1	526.272	3	138.8	1	.006	3	.13	1	.647	1
56			min	1.824	15	-639.372	1_	4.669	12	01	1	.003	12	583	3
57		10	max	49.85	1	642.212	3	178.021	1	.006	3	.315	1	1.476	1
58			min	1.824	15	-781.889	1	6.095	12	01	1	.009	12	-1.265	3
59		11	max	49.85	1	639.372	1	-4.669	12	.01	1	.13	1	.647	1
60			min	1.824	15	-526.272	3	-138.8	1	006	3	.003	12	583	3
61		12	max	49.85	1	496.854	1	-3.244	12	.01	1	0	10	0	15
62			min	1.824	15	-410.332	3	-99.578	1	006	3	009	1	037	3
63		13	max	49.85	1	354.337	1	-1.818	12	.01	1	004	15	.374	3
64			min	1.824	15	-294.391	3	-60.357	1	006	3	103	1	513	1
65		14	max	49.85	1	211.819	1	393	12	.01	1	005	15	.65	3
66			min	1.824	15	-178.451	3	-21.135	1	006	3	15	1	843	1
67		15	max		1	69.301	1	18.086	1	.01	1	005	12	.79	3
68		13	min	1.824	15	-62.511	3	.665	15	006	3	152	1	-1.007	1
69		16	max	49.85	1	53.429	3	57.308	1	.01	<u> </u>	003	12	.796	3
70		10	min	1.824	15	-73.216	1	2.091	15	006	3	108	1	-1.004	1
71		17		49.85	1	169.369	3	96.529	1	.01	<u> </u>	108 0	3	.666	3
72		17	max	1.824		-215.734	<u> </u>	3.517	15	006	3	018	1		1
		10	min		15		_						_	836	_
73		18	max	49.85 1.824	11	285.309	3	135.751	1_15	.01	1	.117	1	<u>.4</u>	3
74		40	min		15	-358.251	1_2	4.943	<u>15</u>	006	3	.004	15	<u>501</u>	1
75		19	max	49.85	1	401.249	3	174.972	1_	.01	1	.299	1	0	1
76	NAA C	4	min	1.824	15	-500.769	1_	6.368	15	006	3	.011	15	0	3
77	M15	1	max	-1.923	15	567.778	1_	-6.367	15	.011	1_	.298	1	0	2
78			min	-52.537	1_	-213.716	3	-174.944	1_	005	3	.011	15	0	12
79		2	max	-1.923	15	405.4	_1_	-4.941	15	.011	1	.117	1	.214	3
80			min	-52.537	1	-153.387	3	-135.722	1_	005	3	.004	15	568	1
81		3	max	-1.923	15	243.022	1_	-3.515	15	.011	1_	0	3	.358	3
82			min	-52.537	1_	-93.059	3	-96.501	1	005	3	018	1	946	1
83		4	max	-1.923	15	80.644	<u>1</u>	-2.09	15	.011	_1_	003	12	.431	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
84			min	-52.537	1	-32.73	3	-57.279	1	005	3	108	1	-1.135	1
85		5	max	-1.923	15	27.598	3	664	15	.011	1	005	12	.434	3
86			min	-52.537	1	-81.734	1	-18.058	1	005	3	152	1	-1.134	1
87		6	max	-1.923	15	87.926	3	21.164	1	.011	1	005	15	.367	3
88			min	-52.537	1	-244.112	1	.422	12	005	3	15	1	944	1
89		7	max	-1.923	15	148.255	3	60.385	1	.011	1	004	15	.229	3
90			min	-52.537	1	-406.49	1	1.847	12	005	3	103	1	565	1
91		8	max	-1.923	15	208.583	3	99.607	1	.011	1	0	10	.021	3
92			min	-52.537	1	-568.868	1	3.273	12	005	3	009	1	003	9
93		9	max	-1.923	15	268.912	3	138.828	1	.011	1	.13	1	.763	1
94			min	-52.537	1	-731.246	1	4.699	12	005	3	.003	12	258	3
95		10	max	-1.923	15	329.24	3	178.05	1	.011	1	.315	1	1.711	1
96			min	-52.537	1	-893.624	1	6.124	12	005	3	.01	12	607	3
97		11	max	-1.923	15	731.246	1	-4.699	12	.005	3	.13	1	.763	1
98			min	-52.537	1	-268.912	3	-138.828	1	011	1	.003	12	258	3
99		12	max	-1.923	15	568.868	1	-3.273	12	.005	3	0	10	.021	3
100			min	-52.537	1	-208.583	3	-99.607	1	011	1	009	1	003	9
101		13	max	-1.923	15	406.49	1	-1.847	12	.005	3	004	15	.229	3
102			min	-52.537	1	-148.255	3	-60.385	1	011	1	103	1	565	1
103		14	max	-1.923	15	244.112	1	422	12	.005	3	005	15	.367	3
104			min	-52.537	1	-87.926	3	-21.164	1	011	1	15	1	944	1
105		15	max		15	81.734	1	18.058	1	.005	3	005	12	.434	3
106			min	-52.537	1	-27.598	3	.664	15	011	1	152	1	-1.134	1
107		16	max		15	32.73	3	57.279	1	.005	3	003	12	.431	3
108			min	-52.537	1	-80.644	1	2.09	15	011	1	108	1	-1.135	1
109		17	max	-1.923	15	93.059	3	96.501	1	.005	3	0	3	.358	3
110			min	-52.537	1	-243.022	1	3.515	15	011	1	018	1	946	1
111		18	max	-1.923	15	153.387	3	135.722	1	.005	3	.117	1	.214	3
112			min	-52.537	1	-405.4	1	4.941	15	011	1	.004	15	568	1
113		19	max	-1.923	15	213.716	3	174.944	1	.005	3	.298	1	0	2
114		10	min	-52.537	1	-567.778	1	6.367	15	011	1	.011	15	0	12
115	M16	1	max		15	543.601	1	-6.19	15	.011	1	.265	1	0	1
116	IVITO		min	-117.164	1	-200.783		-170.12	1	007	3	.01	15	0	3
117		2	max	-4.285	15	381.223	1	-4.765	15	.011	1	.089	1	.199	3
118			min	-117.164	1	-140.454	3	-130.899	1	007	3	.003	15	539	1
119		3	max	-4.285	15	218.845	1	-3.339	15	.011	1	0	12	.328	3
120			min	-117.164	1	-80.126	3	-91.677	1	007	3	041	1	89	1
121		4	max	-4.285	15	56.467	1	-1.913	15	.011	1	004	12	.386	3
122		7	min		1	-19.797	3	-52.455	1	007	3	125	1	-1.05	1
123		5	max	-4.285	15	40.531	3	487	15	.011	1	006	12	.374	3
124						-105.911				007	3	163	1		1
125		6	max		15		3	25.988	1	.011	1	006	15	.291	3
126			min			-268.289		.665	12	007	3	156	1	803	1
127		7	max		15	161.188	3	65.209	1	.011	1	004	15	.139	3
128			min	-117.164	1	-430.667	1	2.09	12	007	3	103	1	395	1
129		8	max		15	221.516	3	104.431	1	.011	1	0	10	.202	1
130		0	min		1	-593.045	1	3.516	12	007	3	004	1	085	3
131		9	max		15	281.844	3	143.652	1	.007 .011	1	.141	1	.989	1
132		3		-4.265 -117.164				4.941	12	007		.004	12	378	3
		10				-755.423 342.173	1	182.874	1	.007	2	.332	1	1.965	
133 134		10	max		1 <u>5</u>	-917.801	3	6.367	12	011	1	.011	12	742	3
		11									_				
135		11	max		15	755.423 -281.844	1	-4.941 -143.652	12	.007	3	.141	1	.989	3
136		12	min							011	1	.004 0	12	378	
137		12	max		15	593.045	1	-3.516	12	.007	3		10	.202	1
138		12	min	-117.164	1 1 5	-221.516	3	-104.431	1	011	1	004		085	3
139		13	max		15	430.667	1	-2.09	12	.007	3	004	15	.139	3
140			THIN	-117.164	1	-161.188	3	-65.209	1	011	1	103	1	395	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
141		14	max	-4.285	15	268.289	1	665	12	.007	3	006	15	.291	3
142			min	-117.164	1	-100.859	3	-25.988	1	011	1_	156	1_	803	1
143		15	max	-4.285	15	105.911	1	13.234	1_	.007	3	006	12	.374	3
144			min	-117.164	1	-40.531	3	.487	15	011	1	163	1	-1.021	1
145		16	max	-4.285	15	19.797	3	52.455	1	.007	3	004	12	.386	3
146			min	-117.164	1	-56.467	1	1.913	15	011	1	125	1	-1.05	1
147		17	max	-4.285	15	80.126	3	91.677	1	.007	3	0	12	.328	3
148			min	-117.164	1	-218.845	1	3.339	15	011	1	041	1	89	1
149		18	max	-4.285	15	140.454	3	130.899	1	.007	3	.089	1	.199	3
150			min	-117.164	1	-381.223	1	4.765	15	011	1	.003	15	539	1
151		19	max	-4.285	15	200.783	3	170.12	1	.007	3	.265	1	0	1
152			min	-117.164	1	-543.601	1	6.19	15	011	1	.01	15	0	3
153	M2	1		1047.078	1	2.025	4	1.029	1	0	3	0	3	0	1
154	··· -		min	-917.673	3	.477	15	.037	15	0	1	0	1	0	1
155		2		1047.457	1	1.992	4	1.029	1	0	3	0	<u> </u>	0	15
156			min	-917.389	3	.469	15	.037	15	0	1	0	15	0	4
157		3		1047.837	1	1.959	4	1.029	1	0	3	0	1	0	15
158			min	-917.104	3	.462	15	.037	15	0	1	0	15	001	4
159		4		1048.216	1	1.925	4	1.029	1	0	3	0	1	0	15
		4		-916.82	3						1		15	_	
160		-	min		_	.454	15	.037	15	0	•	0		002	4
161		5		1048.595	1	1.892	4	1.029	1	0	3	.001	1_	0	15
162			min	-916.535	3	.446	15	.037	15	0	1_	0	15	002	4
163		6		1048.975	1	1.859	4	1.029	1_	0	3	.001	1_	0	15
164		_	min	-916.251	3	.438	15	.037	15	0	1	0	15	002	4
165		7		1049.354	1	1.825	4	1.029	1	0	3	.002	_1_	0	15
166			min	-915.967	3	.43	15	.037	15	0	1_	0	15	003	4
167		8		1049.733	1_	1.792	4	1.029	1_	0	3	.002	_1_	0	15
168			min	-915.682	3	.422	15	.037	15	0	1	0	15	003	4
169		9		1050.112	1_	1.758	4	1.029	1_	0	3	.002	_1_	0	15
170			min	-915.398	3	.414	15	.037	15	0	1_	0	15	004	4
171		10		1050.492	1	1.725	4	1.029	1_	0	3	.002	_1_	001	15
172			min	-915.113	3	.407	15	.037	15	0	1	0	15	004	4
173		11	max	1050.871	1	1.692	4	1.029	1_	0	3	.003	<u>1</u>	001	15
174			min	-914.829	3	.399	15	.037	15	0	1	0	15	005	4
175		12	max	1051.25	1	1.658	4	1.029	1	0	3	.003	_1_	001	15
176			min	-914.544	3	.391	15	.037	15	0	1	0	15	005	4
177		13	max	1051.629	1	1.625	4	1.029	1	0	3	.003	1_	001	15
178			min	-914.26	3	.383	15	.037	15	0	1	0	15	006	4
179		14	max	1052.009	1	1.591	4	1.029	1	0	3	.003	1	001	15
180			min	-913.975	3	.375	15	.037	15	0	1	0	15	006	4
181		15	max	1052.388	1	1.558	4	1.029	1	0	3	.004	1	002	15
182				-913.691	3	.367	15	.037	15	0	1	0	15	006	4
183		16		1052.767	1	1.525	4	1.029	1	0	3	.004	1	002	15
184				-913.407	3	.36	15	.037	15	0	1	0	15	007	4
185		17		1053.146	1	1.491	4	1.029	1	0	3	.004	1	002	15
186				-913.122	3	.352	15	.037	15	0	1	0	15	007	4
187		18		1053.526	1	1.458	4	1.029	1	0	3	.004	1	002	15
188			min		3	.344	15	.037	15	0	1	0	15	008	4
189		19		1053.905	1	1.424	4	1.029	1	0	3	.005	1	002	15
190			min		3	.336	15	.037	15	0	1	0	15	008	4
191	M3	1		317.463	2	7.981	4	.081	1	0	3	0	1	.008	4
192	IVIO		min		3	1.877	15	.003	15	0	1	0	15	.002	15
193		2			2	7.211	4	.081	1	0	3	0	1	.002	4
194			max	-446.916		1.696	15	.003	15	0	1	0	15	.003	15
		3			3			.003			3		<u>15</u> 1		
195 196		3	min	317.122 -447.043	3	6.441	4 15	.003	15	0	<u> </u>	0	15	.002	3
		1				1.515				0		0		0	
197		4	шах	316.952	2	5.671	4	.081	_ 1	0	3	0	<u>1</u>	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-447.171	3	1.334	15	.003	15	0	1	0	15	001	3
199		5	max	316.782	2	4.901	4	.081	1	0	3	0	1	0	15
200			min	-447.299	3	1.153	15	.003	15	0	1	0	15	003	4
201		6	max	316.611	2	4.131	4	.081	1	0	3	0	1	001	15
202			min	-447.427	3	.972	15	.003	15	0	1	0	15	005	4
203		7	max	316.441	2	3.361	4	.081	1	0	3	0	1	001	15
204			min	-447.554	3	.791	15	.003	15	0	1	0	15	006	4
205		8	max	316.271	2	2.591	4	.081	1	0	3	0	1	002	15
206			min	-447.682	3	.61	15	.003	15	0	1	0	15	008	4
207		9	max	316.1	2	1.821	4	.081	1	0	3	0	1	002	15
208			min	-447.81	3	.429	15	.003	15	0	1	0	15	009	4
209		10	max	315.93	2	1.051	4	.081	1	0	3	0	1	002	15
210		10	min	-447.938	3	.248	15	.003	15	0	1	0	15	009	4
211		11	max	315.76	2	.338	2	.081	1	0	3	0	1	002	15
212			min	-448.065	3	.001	3	.003	15	0	1	0	15	009	4
213		12	max	315.589	2	114	15	.081	1	0	3	0	1	002	15
214		12	min	-448.193	3	489	4	.003	15	0	1	0	15	002	4
215		13		315.419	2	295	15	.081	1	0	3	0	1	002	15
216		13	max	-448.321	3	-1.259	4	.003	15	0	1	0	15	002	4
		14	min									-			
217		14	max	315.249	2	476	15	.081	15	0	3	0	1 15	002	15
218		4.5	min	-448.449	3	-2.029	4	.003		0		0		008	4
219		15	max	315.078	2	657	15	.081	1	0	3	0	1	002	15
220		4.0	min	-448.576	3	-2.799	4	.003	15	0	1	0	15	007	4
221		16	max	314.908	2	838	15	.081	1	0	3	0	1	001	15
222		47	min	-448.704	3	-3.569	4	.003	15	0	1	0	15	006	4
223		17	max	314.738	2	-1.019	15	.081	1	0	3	0	1	001	15
224		1.0	min	-448.832	3	-4.339	4	.003	15	0	1	0	15	004	4
225		18	max	314.567	2	-1.2	15	.081	1	0	3	0	1	0	15
226			min	-448.96	3	-5.109	4	.003	15	0	1	0	15	002	4
227		19	max	314.397	2	-1.381	15	.081	1	0	3	0	1	0	1
228			min	-449.087	3	-5.879	4	.003	15	0	1	0	15	0	1
229	<u>M4</u>	1		1186.669	1_	0	1	392	15	0	1	0	1_	0	1
230			min	-177.228	3	0	1	-10.775	1	0	1	0	15	0	1
231		2	max	1186.84	1	0	1	392	15	0	1	0	12	0	1
232			min	-177.1	3	0	1	-10.775	1	0	1	0	1	0	1
233		3	max	1187.01	_1_	0	1	392	15	0	1	0	15	0	1
234			min	-176.972	3	0	1	-10.775	1	0	1	002	1	0	1
235		4	max	1187.181	1	0	1	392	15	0	1	0	15	0	1
236			min	-176.844	3	0	1	-10.775	1	0	1	003	1	0	1
237		5	max	1187.351	1	0	1	392	15	0	1	0	15	0	1
238			min	-176.717	3	0	1	-10.775	1	0	1	004	1	0	1
239		6		1187.521	1	0	1	392	15	0	1	0	15	0	1
240			min		3	0	1	-10.775	1	0	1	006	1	0	1
241		7		1187.692	1	0	1	392	15	0	1	0	15	0	1
242				-176.461	3	0	1	-10.775	1	0	1	007	1	0	1
243		8		1187.862	1	0	1	392	15	0	1	0	15	0	1
244				-176.333		0	1	-10.775	1	0	1	008	1	0	1
245		9		1188.032	1	0	1	392	15	0	1	0	15	0	1
246				-176.206	3	0	1	-10.775	1	0	1	009	1	0	1
247		10		1188.203	1	0	1	392	15	0	1	0	15	0	1
248		10		-176.078		0	1	-10.775	1	0	1	011	1	0	1
249		11		1188.373	1	0	1	392	15	0	1	0	15	0	1
250			min		3	0	1	-10.775	1	0	1	012	1	0	1
251		12		1188.543	_	0	1	392	15	0	1	0	15	0	1
252		14		-175.822	3	0	1	-10.775	1	0	1	013	1	0	1
253		13					1		15	0	1	013 0	15		1
		13		175 605		0	1	392			1			0	1
254			THILL	-175.695	3	0		-10.775	1	0		014	1_	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	1188.884	1	0	1	392	15	0	1	0	15	0	1
256				-175.567	3	0	1	-10.775	1	0	1	016	1	0	1
257		15		1189.054	<u>1</u>	0	1_	392	15	0	1	0	15	0	1
258			_	-175.439	3	0	1	-10.775	1	0	1	017	1	0	1
259		16		1189.225	_1_	0	1	392	15	0	_1_	0	15	0	1
260				-175.311	3	0	1	-10.775	1	0	1	018	1	0	1
261		17	-	1189.395	_1_	0	1	392	15	0	1	0	15	0	1
262				-175.184	3	0	1	-10.775	1	0	1	019	1	0	1
263		18		1189.565	_1_	0	1	392	15	0	1	0	15	0	1
264				-175.056	3	0	1	-10.775	1	0	1	02	1	0	1
265		19		1189.736	_1_	0	1	392	15	0	1	0	15	0	1
266				-174.928	3_	0	1	-10.775	1_	0	1	022	1	0	1
267	<u>M6</u>	1		3380.292	_1_	2.326	2	0	1_	0	_1_	0	1	0	1
268			min	-3017.398	3	.25	12	0	1	0	1	0	1	0	1
269		2		3380.671	1_	2.3	2	0	1	0	1	0	1	0	12
270		_	min	-3017.114	3	.237	12	0	1	0	1	0	1	0	2
271		3		3381.05	_1_	2.274	2	0	1	0	1	0	1	0	12
272			min	-3016.829	3	.224	12	0	1_	0	1	0	1	001	2
273		4	max		_1_	2.248	2	0	1	0	1	0	1	0	12
274		_	min		3	.211	12	0	1	0	1	0	1	002	2
275		5		3381.809	1	2.222	2	0	1	0	1	0	1	0	12
276			min	-3016.261	3	.198	12	0	1	0	1	0	1	002	2
277		6		3382.188	_1_	2.196	2	0	1	0	1	0	1	0	12
278		_	min	-3015.976	3	.185	12	0	1	0	1	0	1	003	2
279		7		3382.567	1_	2.17	2	0	1	0	1	0	1	0	12
280				-3015.692	3_	.172	12	0	1	0	1	0	1	003	2
281		8	-	3382.947	_1_	2.144	2	0	1	0	<u>1</u>	0	1	0	12
282				-3015.407	3_	.159	12	0	1	0	1	0	1	004	2
283		9		3383.326	_1_	2.118	2	0	1	0	1	0	1	0	12
284		40		-3015.123	3	.146	12	0	1	0	1	0	1	005	2
285		10		3383.705	1	2.092	2	0	1	0	1	0	1	0	12
286		4.4	min		3	.133	12	0	1_	0	1	0	1	005	2
287		11		3384.084	1_	2.066	2	0	1	0	1	0	1	0	12
288		40	min		3	.12	12	0	1_	0	1_	0	1	006	2
289		12		3384.464	1	2.04	2	0	1	0	1	0	1	0	12
290		40	min	-3014.269	3	.105	3	0	1_	0	1	0	1	006	2
291		13		3384.843	1	2.014	2	0	1	0	1	0	1	0	12
292		4.4		-3013.985	3	.086	3	0	1_	0	1	0	1	007	2
293		14		3385.222 -3013.701	1	1.988	2	0	1	0	1	0	1	0	12
294		15		3385.602	3	.066	3	0	_	0	_	0		007	2
295		15	max		1	1.962	3	0	1	0	<u>1</u> 1	0	1	0	12
296		16			3	1.026		0	1	0	1	0	1	008	12
297		16		3385.981 -3013.132	<u>1</u> 3	1.936	2	0	1	0	1	0	1	0	2
298		17		3386.36	<u> </u>	.027			1	_	1		1	008	_
300		17	min	-3012.847	3	1.91 .008	3	0	1	0	1	0	1	009	12
301		18		3386.739	<u>ა</u> 1	1.884	2	0	1	0	1	0	1	009 0	12
302		10	-	-3012.563	3	012	3	0	1	0	1	0	1	009	2
303		19		3387.119	<u> </u>	1.858	2	0	1	0	+	0	1	009 0	12
304		13		-3012.278	3	031	3	0	1	0	1	0	1	01	2
305	M7	1		1339.877	2	8.022	4	0	1	0	1	0	1	.01	2
306	IVI /			-1401.628	3	1.882	15	0	1	0	1	0	1	.01	12
307		2		1339.706	2	7.252	4	0	1	0	1	0	1	.007	2
308				-1401.756	3	1.701	15	0	1	0	1	0	1	.007	3
309		3	_	1339.536	2	6.482	4	0	1	0	1	0	1	.005	2
310		٥		-1401.884	3	1.52	15	0	1	0	1	0	1	002	3
311		4		1339.366	2	5.712	4	0	1	0	+	0	1	.002	2
OII		4	шах	1008.000		J.1 1Z	4	U		U				.002	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1402.012	3	1.339	15	0	1	0	1	0	1	004	3
313		5	max	1339.195	2	4.942	4	0	1	0	_1_	0	<u>1</u>	0	2
314			min	-1402.139	3	1.158	15	0	1	0	1	0	1_	005	3
315		6	max	1339.025	2	4.172	4	0	1	0	_1_	0	_1_	001	15
316			min	-1402.267	3	.977	15	0	1	0	1	0	1_	006	3
317		7	max		2	3.402	4	0	1	0	_1_	0	_1_	001	15
318			min	-1402.395	3	.796	15	0	1	0	1	0	1_	006	3
319		8		1338.684	2	2.632	4	0	1	0	_1_	0	_1_	002	15
320			min	-1402.523	3	.615	15	0	1	0	1	0	1_	007	4
321		9	max	1338.514	2	1.875	2	0	1	0	_1_	0	1_	002	15
322			min	-1402.65	3	.381	12	0	1	0	1	0	1	008	4
323		10	max	1338.344	2	1.275	2	0	1	0	_1_	0	<u>1</u>	002	15
324			min	-1402.778	3	.081	12	0	1	0	1	0	1_	009	4
325		11	max	1338.173	2	.675	2	0	1	0	_1_	0	_1_	002	15
326			min	-1402.906	3	362	3	0	1	0	1	0	1	009	4
327		12	max	1338.003	2	.075	2	0	1	0	1	0	1_	002	15
328			min	-1403.034	3	812	3	0	1	0	1	0	1	009	4
329		13	max	1337.832	2	29	15	0	1	0	1	0	1	002	15
330			min	-1403.161	3	-1.262	3	0	1	0	1	0	1	009	4
331		14	max	1337.662	2	471	15	0	1	0	1	0	1	002	15
332			min	-1403.289	3	-1.988	4	0	1	0	1	0	1	008	4
333		15	max	1337.492	2	652	15	0	1	0	1	0	1	002	15
334			min	-1403.417	3	-2.758	4	0	1	0	1	0	1	007	4
335		16	max	1337.321	2	833	15	0	1	0	1	0	1	001	15
336			min	-1403.545	3	-3.528	4	0	1	0	1	0	1	006	4
337		17	max	1337.151	2	-1.014	15	0	1	0	1	0	1	001	15
338			min	-1403.672	3	-4.298	4	0	1	0	1	0	1	004	4
339		18	max	1336.981	2	-1.195	15	0	1	0	1	0	1	0	15
340			min	-1403.8	3	-5.068	4	0	1	0	1	0	1	002	4
341		19	max	1336.81	2	-1.376	15	0	1	0	1	0	1	0	1
342			min	-1403.928	3	-5.838	4	0	1	0	1	0	1	0	1
343	M8	1	max	3331.996	1	0	1	0	1	0	1	0	1	0	1
344			min	-644.071	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3332.167	1	0	1	0	1	0	1	0	1	0	1
346			min	-643.943	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3332.337	1	0	1	0	1	0	1	0	1	0	1
348			min	-643.815	3	0	1	0	1	0	1	0	1	0	1
349		4	max		1	0	1	0	1	0	1	0	1	0	1
350			min	-643.688	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3332.678	1	0	1	0	1	0	1	0	1	0	1
352				-643.56	3	0	1	0	1	0	1	0	1	0	1
353		6		3332.848	1	0	1	0	1	0	1	0	1	0	1
354			min	-643.432	3	0	1	0	1	0	1	0	1	0	1
355		7		3333.018	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		3333.189	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9		3333.359	1	0	1	0	1	0	1	0	1	0	1
360				-643.049	3	0	1	0	1	0	1	0	1	0	1
361		10		3333.529	1	0	1	0	1	0	1	0	1	0	1
362		_ · ·	min		3	0	1	0	1	0	1	0	1	0	1
363		11	max		1	0	1	0	1	0	1	0	1	0	1
364			min	-642.793	3	0	1	0	1	0	1	0	1	0	1
365		12		3333.87	1	0	1	0	1	0	1	0	1	0	1
366		14	min	-642.666	3	0	1	0	1	0	1	0	1	0	1
367		13		3334.04	<u> </u>	0	1	0	1	0	1	0	1	0	1
368		'	min		3	0	1	0	1	0	1	0	1	0	1
000			111111	UTZ.000								•			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3334.211	_1_	0	1	0	1	0	1	0	1_	0	1
370			min	-642.41	3	0	1	0	1	0	1	0	1	0	1
371		15		3334.381	_1_	0	1	0	1	0	1	0	1_	0	1
372			min	-642.282	3	0	1	0	1	0	1_	0	1	0	1
373		16		3334.551	1_	0	1	0	1	0	1	0	1	0	1
374		4-	min	-642.155	3	0	1	0	1	0	1	0	1	0	1
375		17		3334.722	1_	0	1	0	1	0	1	0	1	0	1
376		40		-642.027	3	0	1	0	1_	0	1_	0	1_	0	1
377		18		3334.892	1_	0	1	0	1	0	1	0	1	0	1
378		19		-641.899	3	0	1	0	1	0	_	0	1	0	1
379 380		19		3335.063	<u>1</u> 3	0	1	0	1	0	1		1	0	1
381	M10	1	_	1047.078	<u>ა</u> 1	2.025	4	037	15	0	1	0	1	0	1
382	IVITO		min	-917.673	3	.477	15	-1.029	1	0	3	0	3	0	1
383		2		1047.457	_ <u>3_</u> 1	1.992	4	037	15	0	1	0	15	0	15
384				-917.389	3	.469	15	-1.029	1	0	3	0	1	0	4
385		3		1047.837	1	1.959	4	037	15	0	1	0	15	0	15
386				-917.104	3	.462	15	-1.029	1	0	3	0	1	001	4
387		4		1048.216	1	1.925	4	037	15	0	1	0	15	0	15
388			min	-916.82	3	.454	15	-1.029	1	0	3	0	1	002	4
389		5		1048.595	1	1.892	4	037	15	Ö	1	0	15	0	15
390				-916.535	3	.446	15	-1.029	1	0	3	001	1	002	4
391		6		1048.975	1	1.859	4	037	15	0	1	0	15	0	15
392			min	-916.251	3	.438	15	-1.029	1	0	3	001	1	002	4
393		7	max	1049.354	1	1.825	4	037	15	0	1	0	15	0	15
394			min	-915.967	3	.43	15	-1.029	1	0	3	002	1	003	4
395		8	max	1049.733	1	1.792	4	037	15	0	1	0	15	0	15
396			min	-915.682	3	.422	15	-1.029	1	0	3	002	1	003	4
397		9	max	1050.112	_1_	1.758	4	037	15	0	1	0	15	0	15
398				-915.398	3	.414	15	-1.029	1	0	3	002	1	004	4
399		10		1050.492	_1_	1.725	4	037	15	0	_1_	0	15	001	15
400				-915.113	3	.407	15	-1.029	1	0	3	002	1	004	4
401		11		1050.871	_1_	1.692	4	037	15	0	1_	0	15	001	15
402			min	-914.829	3	.399	15	-1.029	1_	0	3	003	1_	005	4
403		12	max		1_	1.658	4	037	15	0	1	0	15	001	15
404		40	min	-914.544	3	.391	15	-1.029	1_	0	3	003	1_	005	4
405		13		1051.629	1_	1.625	4	037	15	0	1	0	15	001	15
406		4.4	min	-914.26	3	.383	15	-1.029	1_	0	3	003	1_	006	4
407		14		1052.009	1	1.591 .375	4 15	037 1.030	15	0	3	0	1 <u>5</u>	001	15
409		15		<u>-913.975</u> 1052.388	<u>3</u> 1	1.558	4	-1.029 037	15	0	<u>ა</u> 1	003 0	15	006 002	15
410		13		-913.691	3	.367	15	-1.029	1	0	3	004	1	002	4
411		16		1052.767	<u> </u>	1.525	4	037	15	0	1	0	15	002	15
412		10		-913.407	3	.36	15	-1.029	1	0	3	004	1	002	4
413		17		1053.146		1.491	4	037	15	0	1	0	15	007	15
414		.,		-913.122	3	.352	15	-1.029	1	0	3	004	1	007	4
415		18		1053.526	1	1.458	4	037	15	0	1	0	15	002	15
416				-912.838	3	.344	15	-1.029	1	0	3	004	1	008	4
417		19		1053.905	1	1.424	4	037	15	0	1	0	15	002	15
418				-912.553	3	.336	15	-1.029	1	0	3	005	1	008	4
419	M11	1		317.463	2	7.981	4	003	15	0	1	0	15	.008	4
420				-446.788	3	1.877	15	081	1	0	3	0	1	.002	15
421		2	max	317.293	2	7.211	4	003	15	0	1	0	15	.005	4
422			min	-446.916	3	1.696	15	081	1	0	3	0	1	.001	15
423		3		317.122	2	6.441	4	003	15	0	1	0	15	.002	2
424				-447.043	3	1.515	15	081	1	0	3	0	1	0	3
425		4	max	316.952	2	5.671	4	003	15	0	1	0	15	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
426			min	-447.171	3	1.334	15	081	1	0	3	0	1	001	3
427		5	max	316.782	2	4.901	4	003	15	0	1	0	15	0	15
428			min	-447.299	3	1.153	15	081	1	0	3	0	1	003	4
429		6	max	316.611	2	4.131	4	003	15	0	1	0	15	001	15
430			min	-447.427	3	.972	15	081	1	0	3	0	1	005	4
431		7	max	316.441	2	3.361	4	003	15	0	1	0	15	001	15
432			min	-447.554	3	.791	15	081	1	0	3	0	1	006	4
433		8	max	316.271	2	2.591	4	003	15	0	1	0	15	002	15
434			min	-447.682	3	.61	15	081	1	0	3	0	1	008	4
435		9	max	316.1	2	1.821	4	003	15	0	1	0	15	002	15
436			min	-447.81	3	.429	15	081	1	0	3	0	1	009	4
437		10	max	315.93	2	1.051	4	003	15	0	1	0	15	002	15
438			min	-447.938	3	.248	15	081	1	0	3	0	1	009	4
439		11	max	315.76	2	.338	2	003	15	0	1	0	15	002	15
440			min	-448.065	3	.001	3	081	1	0	3	0	1	009	4
441		12	max	315.589	2	114	15	003	15	0	1	0	15	002	15
442			min	-448.193	3	489	4	081	1	0	3	0	1	009	4
443		13	max	315.419	2	295	15	003	15	0	1	0	15	002	15
444			min	-448.321	3	-1.259	4	081	1	0	3	0	1	009	4
445		14	max	315.249	2	476	15	003	15	0	1	0	15	002	15
446			min	-448.449	3	-2.029	4	081	1	0	3	0	1	008	4
447		15	max	315.078	2	657	15	003	15	0	1	0	15	002	15
448		1	min	-448.576	3	-2.799	4	081	1	0	3	0	1	007	4
449		16	max	314.908	2	838	15	003	15	0	1	0	15	001	15
450			min	-448.704	3	-3.569	4	081	1	0	3	0	1	006	4
451		17	max	314.738	2	-1.019	15	003	15	0	1	0	15	001	15
452		1	min	-448.832	3	-4.339	4	081	1	0	3	0	1	004	4
453		18	max	314.567	2	-1.2	15	003	15	0	1	0	15	0	15
454		10	min	-448.96	3	-5.109	4	081	1	0	3	0	1	002	4
455		19	max	314.397	2	-1.381	15	003	15	0	1	0	15	0	1
456		13	min	-449.087	3	-5.879	4	081	1	0	3	0	1	0	1
457	M12	1			1	0	1	10.775	1	0	1	0	15	0	1
458	IVIIZ		min	-177.228	3	0	1	.392	15	0	1	0	1	0	1
459		2	max	1186.84	1	0	1	10.775	1	0	1	0	1	0	1
460			min	-177.1	3	0	1	.392	15	0	1	0	12	0	1
461		3	max	1187.01	1	0	1	10.775	1	0	1	.002	1	0	1
462		-	min	-176.972	3	0	1	.392	15	0	1	0	15	0	1
463		4	_		1	0	1	10.775	1	0	1	.003	1	0	1
464		4	min	-176.844	3	0	1	.392	15	0	1	0	15	0	1
465		5		1187.351	1	0	1	10.775	1	0	1	.004	1	0	1
466		1		-176.717		0	1	.392	15	0	1	0	15		1
467		6		1187.521	1		1		1	0	1	.006	1	0	1
468		-	min		3	0	1	.392	15	0	1	.006	15	0	1
469		7		1187.692	1	0	1	10.775	1	0	1	.007	1	0	1
470				-176.461			1	.392	15		1	.007	15		1
		0		1187.862	3	0	1			0				0	1
471		8	1		1	0		10.775	1	0	1	.008	1_	0	
472				-176.333		0	1	.392	15	0	1	0	15	0	1
473		9		1188.032	1	0	1	10.775	1	0	1	.009	1_	0	1
474		40		-176.206	3	0	1	.392	15	0	1	0	15	0	1
475		10		1188.203	1	0	1	10.775	1_	0	1	.011	1_	0	1
476		4.4		-176.078		0	1	.392	15	0	1	0	15	0	1
477		11		1188.373	1	0	1	10.775	1	0	1	.012	1_	0	1
478		4.0	min		3	0	1	.392	15	0	1	0	15	0	1
479		12		1188.543		0	1	10.775	1	0	1	.013	1_	0	1
480		10		-175.822	3	0	1	.392	15	0	1	0	15	0	1
481		13		1188.714		0	1	10.775	1	0	1	.014	1_	0	1
482			min	-175.695	3	0	1	.392	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

.
Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14		1188.884	_1_	0	1	10.775	1	0	1	.016	_1_	0	1
484			min	-175.567	3	0	1	.392	15	0	1	0	15	0	1
485		15	max	1189.054	<u>1</u>	0	1	10.775	1	0	1	.017	<u>1</u>	0	1
486			min	-175.439	3	0	1	.392	15	0	1	0	15	0	1
487		16	max	1189.225	1	0	1	10.775	1	0	1	.018	1	0	1
488			min	-175.311	3	0	1	.392	15	0	1	0	15	0	1
489		17	max	1189.395	1	0	1	10.775	1	0	1	.019	1	0	1
490			min	-175.184	3	0	1	.392	15	0	1	0	15	0	1
491		18	max	1189.565	1	0	1	10.775	1	0	1	.02	1	0	1
492			min	-175.056	3	0	1	.392	15	0	1	0	15	0	1
493		19		1189.736	1	0	1	10.775	1	0	1	.022	1	0	1
494			min	-174.928	3	0	1	.392	15	0	1	0	15	0	1
495	M1	1	max	169.922	1	516.458	3	-4.031	15	0	1	.263	1	0	3
496			min	6.185	15	-475.052	1	-110.282	1	0	3	.01	15	013	1
497		2	max	170.412	1	515.449	3	-4.031	15	0	1	.205	1	.239	1
498		_	min	6.332	15	-476.398	1	-110.282	1	0	3	.007	15	272	3
499		3	max	265.484	3	526.257	1	-3.994	15	0	3	.147	1	.478	1
500			min	-165.127	2	-368.253	3	-109.515	1	0	1	.005	15	533	3
501		4	max	265.852	3	524.911	1	-3.994	15	0	3	.089	1	.201	1
502		7	min	-164.637	2	-369.262	3	-109.515	1	0	1	.003	15	338	3
503		5	max	266.219	3	523.565	1	-3.994	15	0	3	.003	1	003	15
504		-	min	-164.147	2	-370.272	3	-109.515	1	0	1	.001	15	143	3
505		6	max	266.587	3	522.219	1	-3.994	15	0	3	0	15	.052	3
506		-		-163.657	2	-371.281	3	-109.515	1	0	1	026	1	352	1
507		7	min	266.954				-3.994			3		15		-
			max	-163.168	3	520.873	1		1 <u>5</u>	0	1	003	15 1	.248	3
508		0	min		2	-372.291	3	-109.515		0		084		627	-
509		8	max	267.322	3	519.527	1	-3.994	15	0	1	005	<u>15</u>	.445	3
510			min	-162.678	2	-373.3	3	-109.515	1_	0		142	1_	901	1
511		9	max	277.827	3	34.241	2	-5.819	15	0	9	.083	1_	.521	3
512		40	min	-93.364	2	.409	15		1_	0	3	.003	15	-1.027	1
513		10	max	278.194	3	32.895	2	-5.819	15	0	9	001	<u>15</u>	.506	3
514		11	min	-92.874	2	.003	15	-159.392	1_	0	3		<u>1</u> 15	-1.037	1
515			max	278.562	3	31.549	4	-5.819	15	0	9	003	1	.492	3
516		12	min	-92.384	2	-1.651		-159.392				085	1	-1.045 .429	_
517 518		12	max	289.021 -58.753	<u>3</u> 10	240.076 -555.61	3	-3.896 -106.918	1 <u>5</u>	0	3	.14	15	923	3
		13	min				3				1	.005			3
519 520		13	max	289.389	3	239.067	1	-3.896	1 <u>5</u>	0	3	.003	<u>1</u> 15	.302 629	1
		14	min	-58.344	10	-556.956		-106.918			1				
521		14	max	289.756	3	238.057	3	-3.896	15	0		.027	1_	.176	3
522		4.5	min	-57.936	10	-558.302	1	-106.918	1_	0	3	0	15	335	1
523		15		290.124	3	237.048	3	-3.896	15	0	1	001	<u>15</u>	.051	3
524		40	min	-57.528	10	-559.648	1	-106.918		0	3	029	1_	04	1
525		16	max		3	236.038	3	-3.896	15	0	1	003	<u>15</u>	.255	1
526		47	min	-57.12	10	-560.994	1	-106.918		0	3	085	1_	074	3
527		17		290.859	3	235.029	3	-3.896	15	0	1	005	<u>15</u>	.552	1
528		4.0	min		10	-562.34	1	-106.918		0	3	142	1_	198	3
529		18	max		<u>15</u>	546.216	1	-4.285	15	0	3	007	<u>15</u>	.277	1
530		40	min	-170.607	1_	-199.811	3	-117.291	1_	0	1	203	1_	098	3
531		19	max		15	544.87	1	-4.285	15	0	3	01	15	.007	3
532	B 4.7	4	min		1_	-200.82	3	-117.291	1	0	1	265	1_	011	1
533	<u>M5</u>	1	max		1_	1721.251	3	0	1	0	1	0	1_	.025	1
534		_	min	12.546	12	-1604.421	1	0	1	0	1	0	1_	0	3
535		2	max		1_	1720.241	3	0	1	0	1	0	1_	.872	1
536			min	12.791	12	-1605.767	1_	0	1	0	1	0	1_	909	3
537		3	max		3	1618.473	1	0	1	0	1	0	1_	1.681	1
538		4	min		2	-1191.152	3	0	1	0	1	0	1_	-1.781	3
539		4	max	854.597	3_	1617.127	_1_	0	1	0	_1_	0	_1_	.827	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	LC_
540			min	-606.724	2	-1192.161	3	0	1	0	1	0	1	-1.152	3
541		5	max	854.965	3	1615.781	1	0	1	0	1	0	1	.009	9
542			min	-606.234	2	-1193.171	3	0	1	0	1	0	1	523	3
543		6	max	855.332	3	1614.435	1	0	1	0	1	0	1	.107	3
544			min	-605.744	2	-1194.18	3	0	1	0	1	0	1	878	1
545		7	max	855.7	3	1613.089	1	0	1	0	1	0	1	.737	3
546			min	-605.254	2	-1195.19	3	0	1	0	1	0	1	-1.73	1
547		8	max	856.067	3	1611.743	1	0	1	0	1	0	1	1.368	3
548			min	-604.764	2	-1196.199	3	0	1	0	1	0	1	-2.58	1
549		9	max	874.647	3	113.348	2	0	1	0	1	0	1	1.577	3
550				-462.815	2	.407	15	0	1	0	1	0	1	-2.919	1
551		10		875.015	3	112.002	2	0	1	0	1	0	1	1.526	3
552				-462.326	2	.001	15	0	1	0	1	0	1	-2.951	1
553		11		875.382	3	110.656	2	0	1	0	1	0	1	1.475	3
554			min	-461.836	2	-1.497	4	0	1	0	1	0	1	-2.982	1
555		12		894.054	3	765.434	3	0	1	0	<u> </u>	0	1	1.294	3
556				-319.899	2	-1733.559	1	0	1	0	1	0	1	-2.657	1
557		13	max		3	764.424	3	0	1	0	1	0	1	.89	3
558		10		-319.409	2	-1734.905	1	0	1	0	1	0	1	-1.741	1
559		14	max	894.789	3	763.415	3	0	1	0	1	0	1	.487	3
560		14		-318.919	2	-1736.251	1	0	1	0	1	0	1	826	1
561		15		895.156	3	762.405	3	0	1	0	1	0	1	.143	2
562		13		-318.429	2	-1737.597	1	0	1	0	1	0	1	004	13
		16					•	-	1	_	1		1		1
563		16		895.524	3_	761.396	3	0	1	0	1	0	1	1.008	_
564		47	min	-317.939	2	-1738.944	1	0	_	0	1	0		317	3
565		17		895.891	3	760.386	3	0	1	0		0	1	1.926	1
566		40		-317.449	2	-1740.29	1_	0	1	0	1_	0	1	719	3
567		18	max		12	1844.522	1_	0	1	0	1	0	1	.996	1
568		40		-366.243	1_	-683.572	3	0	1	0	1_	0	1	376	3
569		19	max	-12.733	12	1843.176	1	0	1	0	1	0	1	.023	1
570	140	_		-365.754	1_	-684.582	3	0	1	0	1_	0	1	015	3
571	<u>M9</u>	1	max		1_	516.458	3	110.282	1	0	3	01	15	0	3
572			min	6.185	<u>15</u>	-475.052	1_	4.031	15	0	1_	263	1	<u>013</u>	1
573		2	max	170.412	_1_	515.449	3	110.282	1	0	3	007	15	.239	1
574			min	6.332	<u>15</u>	-476.398	1_	4.031	15	0	_1_	205	1	272	3
575		3	max	265.484	3	526.257	1_	109.515	1	0	1_	005	15	.478	1
576				-165.127	2	-368.253	3	3.994	15	0	3	147	1	533	3
577		4	max		3_	524.911	_1_	109.515	1	0	_1_	003	15	.201	1
578			min	-164.637	2	-369.262	3	3.994	15	0	3	089	1	338	3
579		5	max		3_	523.565	1_	109.515	1_	0	_1_	001	15	003	15
580				-164.147	2	-370.272	3	3.994	15		3	031	1	143	3
581		6		266.587	3_	522.219	_1_	109.515	1	0	_1_	.026	1	.052	3
582			min	-163.657	2	-371.281	3	3.994	15	0	3	0	15	352	1
583		7	max	266.954	3	520.873	1	109.515	1	0	1	.084	1	.248	3
584			min	-163.168	2	-372.291	3	3.994	15	0	3	.003	15	627	1
585		8	max	267.322	3	519.527	1	109.515	1	0	1	.142	1	.445	3
586			min	-162.678	2	-373.3	3	3.994	15	0	3	.005	15	901	1
587		9	max	277.827	3	34.241	2	159.392	1	0	3	003	15	.521	3
588				-93.364	2	.409	15	5.819	15	0	9	083	1	-1.027	1
589		10	max	278.194	3	32.895	2	159.392	1	0	3	.001	1	.506	3
590				-92.874	2	.003	15	5.819	15	0	9	0	15	-1.037	1
591		11		278.562	3	31.549	2	159.392	1	0	3	.085	1	.492	3
592				-92.384	2	-1.651	4	5.819	15	0	9	.003	15	-1.045	1
593		12		289.021	3	240.076	3	106.918	1	0	3	005	15	.429	3
594		12	min	-58.753	10	-555.61	1	3.896	15	0	1	14	1	923	1
595		13	max		3	239.067	3	106.918	1	0	3	003	15	.302	3
596		'	min		10	-556.956	1	3.896	15	0	1	084	1	629	1
530			1111111	50.544	10	000.900		5.030	IJ	U		004		023	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	289.756	3	238.057	3	106.918	1	0	3	0	15	.176	3
598			min	-57.936	10	-558.302	1	3.896	15	0	1	027	1	335	1
599		15	max	290.124	3	237.048	3	106.918	1	0	3	.029	1	.051	3
600			min	-57.528	10	-559.648	1	3.896	15	0	1	.001	15	04	1
601		16	max	290.491	3	236.038	3	106.918	1	0	3	.085	1	.255	1
602			min	-57.12	10	-560.994	1	3.896	15	0	1	.003	15	074	3
603		17	max	290.859	3	235.029	3	106.918	1	0	3	.142	1	.552	1
604			min	-56.711	10	-562.34	1	3.896	15	0	1	.005	15	198	3
605		18	max	-6.338	15	546.216	1	117.291	1	0	1	.203	1	.277	1
606			min	-170.607	1	-199.811	3	4.285	15	0	3	.007	15	098	3
607		19	max	-6.19	15	544.87	1	117.291	1	0	1	.265	1	.007	3
608			min	-170.117	1	-200.82	3	4.285	15	0	3	.01	15	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.103	1	.005	3 8.239e-3	1_	NC	1_	NC	1
2			min	0	15	012	3	002	2 -9.636e-4	3	NC	1	NC	1
3		2	max	0	1	.271	3	.045	1 9.523e-3	1	NC	5	NC	2
4			min	0	15	136	1	.002	15 -9.937e-4	3	891.919	3	5819.924	1
5		3	max	0	1	.5	3	.109	1 1.081e-2	1	NC	5	NC	3
6			min	0	15	326	1	.004	15 -1.024e-3	3	492.918	3	2365.804	1
7		4	max	0	1	.638	3	.164	1 1.209e-2	1	NC	5	NC	3
8			min	0	15	434	1	.006	15 -1.054e-3	3	387.721	3	1560.106	1
9		5	max	0	1	.67	3	.192	1 1.338e-2	1	NC	5	NC	3
10			min	0	15	443	1	.007	15 -1.084e-3	3	369.614	3	1325.389	1
11		6	max	0	1	.597	3	.186	1 1.466e-2	1	NC	5	NC	3
12			min	0	15	358	1	.007	15 -1.114e-3	3	413.68	3	1369.054	1
13		7	max	0	1	.442	3	.147	1 1.594e-2	1	NC	5	NC	3
14			min	0	15	198	1	.006	15 -1.144e-3	3	555.361	3	1737.925	1
15		8	max	0	1	.245	3	.087	1 1.723e-2	1	NC	4	NC	3
16			min	0	15	011	9	.003	10 -1.174e-3	3	982.312	3	2981.372	1
17		9	max	0	1	.17	1	.026	1 1.851e-2	1	NC	4	NC	1
18			min	0	15	.005	15	003	10 -1.204e-3	3	3241.114	3	NC	1
19		10	max	0	1	.248	1	.015	3 1.98e-2	1	NC	3	NC	1
20			min	0	1	015	3	01	2 -1.234e-3	3	1735.23	1	NC	1
21		11	max	0	15	.17	1	.026	1 1.851e-2	1	NC	4	NC	1
22			min	0	1	.005	15	003	10 -1.204e-3	3	3241.114	3	NC	1
23		12	max	0	15	.245	3	.087	1 1.723e-2	1	NC	4	NC	3
24			min	0	1	011	9	.003	10 -1.174e-3	3	982.312	3	2981.372	1
25		13	max	0	15	.442	3	.147	1 1.594e-2	1	NC	5	NC	3
26			min	0	1	198	1	.006	15 -1.144e-3	3	555.361	3	1737.925	1
27		14	max	0	15	.597	3	.186	1 1.466e-2	1	NC	5	NC	3
28			min	0	1	358	1	.007	15 -1.114e-3	3	413.68	3	1369.054	1
29		15	max	0	15	.67	3	.192	1 1.338e-2	1	NC	5	NC	3
30			min	0	1	443	1	.007	15 -1.084e-3	3	369.614	3	1325.389	1
31		16	max	0	15	.638	3	.164	1 1.209e-2	1	NC	5	NC	3
32			min	0	1	434	1	.006	15 -1.054e-3	3	387.721	3	1560.106	1
33		17	max	0	15	.5	3	.109	1 1.081e-2	1	NC	5	NC	3
34			min	0	1	326	1	.004	15 -1.024e-3	3	492.918	3	2365.804	1
35		18	max	0	15	.271	3	.045	1 9.523e-3	1	NC	5	NC	2
36			min	0	1	136	1	.002	15 -9.937e-4	3	891.919	3	5819.924	1
37		19	max	0	15	.103	1	.005	3 8.239e-3	1	NC	1	NC	1
38			min	001	1	012	3	002	2 -9.636e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.153	3	.004	3 5.18e-3	1	NC	1	NC	1
40			min	0	15	336	1	002	2 -2.779e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
41		2	max	0	1	.418	3	.032	1	6.24e-3	_1_	NC	5_	NC	2
42			min	0	15	7	1	.001	15	-3.399e-3	3	693.315	<u>1</u>	8462.14	1
43		3	max	0	1	.64	3	.088	1	7.3e-3	_1_	NC	15	NC	3
44			min	0	15	<u>-1.011</u>	1	.003	15		3	373.712	_1_	2934.913	1
45		4	max	0	1	.792	3	.141	1	8.36e-3	1_	NC 004 404	<u>15</u>	NC 4045,000	3
46		-	min	0	15	-1.233	1	.005	15	-4.638e-3	3	281.134	1_	1815.002	1
47		5	max	0	1	.859	3	.172	1	9.42e-3	1_	9260.77	15	NC	3
48			min	0	15	-1.348	1	.006		-5.258e-3	3	249.153	1_	1488.975	1
49		6	max	0	15	.842 -1.356	3	.17	1	1.048e-2	1	9227.888 247.244	<u>15</u> 1	NC 4504 200	3
50 51		7	min	0	1	.756	3	.006 .136	1 <u>5</u>	-5.877e-3 1.154e-2	<u>3</u>	NC	15	1504.288 NC	3
52			max min	0	15	-1.274	1	.005	15	-6.497e-3	3	268.794	1	1879.748	1
53		8	max	0	1	.631	3	.003	1	1.26e-2	1	NC	15	NC	3
54		0	min	0	15	-1.138	1	.003		-7.117e-3	3	314.238	1	3182.663	
55		9	max	0	1	.51	3	.025	1	1.366e-2	1	NC	15	NC	1
56			min	0	15	-1.003	1	003	10		3	378.303	1	NC	1
57		10	max	0	1	.455	3	.014	3	1.472e-2	1	NC	5	NC	1
58		1.0	min	0	1	938	1	009	2	-8.356e-3	3	418.824	1	NC	1
59		11	max	0	15	.51	3	.025	1	1.366e-2	1	NC	15	NC	1
60			min	0	1	-1.003	1	003	10	-7.736e-3	3	378.303	1	NC	1
61		12	max	0	15	.631	3	.081	1	1.26e-2	1	NC	15	NC	3
62			min	0	1	-1.138	1	.003	10	-7.117e-3	3	314.238	1	3182.663	1
63		13	max	0	15	.756	3	.136	1	1.154e-2	1	NC	15	NC	3
64			min	0	1	-1.274	1	.005	15	-6.497e-3	3	268.794	1	1879.748	1
65		14	max	0	15	.842	3	.17	1	1.048e-2	1	9227.888	15	NC	3
66			min	0	1	-1.356	1	.006	15		3	247.244	1	1504.288	1
67		15	max	0	15	.859	3	.172	1	9.42e-3	1	9260.77	15	NC	3
68			min	0	1	-1.348	1	.006	15	-5.258e-3	3	249.153	1	1488.975	1
69		16	max	0	15	.792	3	.141	1	8.36e-3	1_	NC	15	NC	3
70			min	0	1	-1.233	1	.005	15	-4.638e-3	3	281.134	1_	1815.002	1
71		17	max	0	15	.64	3	.088	1	7.3e-3	_1_	NC	<u>15</u>	NC	3
72			min	0	1	-1.011	1	.003	15	-4.019e-3	3	373.712	_1_	2934.913	1
73		18	max	0	15	<u>.418</u>	3	.032	1	6.24e-3	_1_	NC	_5_	NC	2
74			min	0	1	7	1	.001	15		3	693.315	1_	8462.14	1
75		19	max	0	15	.153	3	.004	3	5.18e-3	1_	NC NC	1_	NC NC	1
76	N4.5	-	min	0	1	336	1	002	2	-2.779e-3	3	NC	1_	NC NC	1
77	M15	1_	max	0	15	.157	3	.004	3	2.337e-3	3_	NC	1_	NC NC	1
78			min	0	1	336	1	001	2	-5.288e-3	1_	NC NC	1_	NC NC	1
79		2	max	0	15	.32	3	.032	1	2.862e-3	3	NC 620.00F	5	NC	1
80 81		3	min	0	15	736 .46	3	.001 .088	1 <u>5</u>	-6.375e-3 3.386e-3	1	629.985 NC	<u>1</u> 15	8423.27 NC	3
82		3	max min	0	1	-1.076	1	.003		-7.463e-3	1	340.353	1	2927.019	
83		4	max	0	15	.562	3	.141	1	3.911e-3	3	NC	15	NC	3
84		4	min	0	1	-1.316	1	.005		-8.551e-3	1	257.053		1811.223	
85		5	max	0	15	.618	3	.172	1	4.435e-3	3	9270.963	15	NC	3
86			min	0	1	-1.435	1	.006		-9.639e-3	1	229.212	1	1486.175	
87		6	max	0	15	.628	3	.17	1	4.96e-3	3	9240.041	15	NC	3
88			min	0	1	-1.434	1	.006		-1.073e-2	1	229.57	1	1501.36	1
89		7	max	0	15	.599	3	.137	1	5.485e-3	3	NC	15	NC	3
90		T .	min	0	1	-1.332	1	.005	15	-1.182e-2	1	253.08	1	1875.271	1
91		8	max	0	15	.546	3	.082	1	6.009e-3	3	NC	15	NC	3
92			min	0	1	-1.17	1	.002	15		1	301.981	1	3170.398	
93		9	max	0	15	.491	3	.026	1	6.534e-3	3	NC	15	NC	1
94		Ť	min	0	1	-1.011	1	003		-1.399e-2	1	373.092	1	NC	1
95		10	max	0	1	.465	3	.013	3	7.058e-3	3	NC	5	NC	1
96			min	0	1	936	1	008	2	-1.508e-2	1	419.661	1	NC	1
97		11	max	0	1	.491	3	.026	1	6.534e-3	3	NC	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
98			min	0	15	-1.011	1	003		399e-2	1_	373.092	1_	NC	1
99		12	max	0	1	.546	3	.082		09e-3	3	NC	15	NC	3
100			min	0	15	-1.17	1	.003		29e-2	1_	301.981	1_	3170.398	
101		13	max	0	1	.599	3	.137		85e-3	3	NC	15	NC	3
102			min	0	15	-1.332	1	.005	15 -1.1	182e-2	1	253.08	1	1875.271	1
103		14	max	0	1	.628	3	.17	1 4.9	96e-3	3	9240.041	15	NC	3
104			min	0	15	-1.434	1	.006)73e-2	1	229.57	1	1501.36	1
105		15	max	0	1	.618	3	.172		35e-3	3	9270.963	15	NC	3
106			min	0	15	-1.435	1	.006		639e-3	1	229.212	1	1486.175	
107		16	max	0	1	.562	3	.141		11e-3	3	NC	15	NC	3
108			min	0	15	-1.316	1	.005		551e-3	1	257.053	1	1811.223	1
109		17	max	0	1	.46	3	.088		86e-3	3	NC	15	NC	3
110			min	0	15	-1.076	1	.003		163e-3	1	340.353	1	2927.019	
111		18	max	0	1	.32	3	.032		62e-3	3	NC	5	NC	2
112		10	min	0	15	736	1	.001		375e-3	1	629.985	1	8423.27	1
113		19	max	0	1	.157	3	.004		37e-3	3	NC	1	NC	1
114		13	min	0	15	336	1	001		288e-3	1	NC	1	NC	1
115	M16	1		0	15	_ 330 .1	1	.004		87e-3	3	NC	1	NC	1
116	IVI TO		max	001	1	052	3	004 001		728e-3	<u>ა</u> 1	NC NC	1	NC NC	1
		2	min	<u>001</u> 0	15		3			48e-3	3	NC NC	5	NC NC	2
117			max		15	.045	2	.045							
118		2	min	<u>001</u>	-	18		.002		387e-3	1	909.578	1_	5858.006	
119		3	max	0	15	.121	3	.108		09e-3	3	NC FOC. 400	5	NC 0070 040	3
120		_	min	0	1	397	1	.004		005e-2	1_	506.492	1_	2373.348	
121		4	max	0	15	.163	3	.163		37e-3	3	NC	5	NC 4500.050	3
122		-	min	0	1	523	1	.006		12e-2	1_	404.069	1_	1562.256	1
123		5	max	0	15	.163	3	.192		31e-3	3	NC	5	NC	3
124			min	0	1	538	1	.007		236e-2	1_	394.95	_1_	1325.275	1
125		6	max	0	15	.123	3	.186		92e-3	3	NC	5	NC	3
126			min	0	1	443	1	.007	15 -1.3		1_	463.361	1_	1366.633	
127		7	max	0	15	.053	3	.148		53e-3	3	NC	_5_	NC	3
128		_	min	0	1	275	2	.006		168e-2	1_	691.123	_1_	1730.097	1
129		8	max	0	15	.001	13	.087		14e-3	3	NC	3	NC	3
130			min	0	1	071	2	.003		584e-2	<u>1</u>	1641.838	2	2948.058	
131		9	max	0	15	.153	1	.027		18e-2	3	NC	4_	NC	2
132			min	0	1	107	3	002		.7e-2	1_	4582.12	3	9944.161	1
133		10	max	0	1	.241	1	.011		94e-2	3	NC	5_	NC	1_
134			min	0	1	14	3	007		316e-2	1_	1793.348	1_	NC	1
135		11	max	0	1	.153	1	.027	1 1.0	18e-2	3	NC	4	NC	2
136			min	0	15	107	3	002	10 -1	.7e-2	1	4582.12	3	9944.161	1
137		12	max	0	1	.001	13	.087	1 9.4	14e-3	3	NC	3	NC	3
138			min	0	15	071	2	.003	15 -1.5		1	1641.838	2	2948.058	1
139		13	max	0	1	.053	3	.148	1 8.6	53e-3	3	NC	5	NC	3
140			min	0	15	275	2	.006		168e-2	1	691.123	1	1730.097	
141		14	max	0	1	.123	3	.186		92e-3	3	NC	5	NC	3
142			min	0	15	443	1	.007		352e-2	1	463.361	1	1366.633	
143		15	max	0	1	.163	3	.192		31e-3	3	NC	5	NC	3
144			min	0	15	538	1	.007		236e-2	1	394.95	1	1325.275	
145		16	max	0	1	.163	3	.163		37e-3	3	NC	5	NC	3
146			min	0	15	523	1	.006		12e-2	1	404.069	1	1562.256	
147		17	max	0	1	.121	3	.108		09e-3	3	NC	5	NC	3
148			min	0	15	397	1	.004	15 -1.0		1	506.492	1	2373.348	
149		18	max	.001	1	.045	3	.045		348e-3	3	NC	5	NC	2
150		10	min	0	15	18	2	.002		387e-3	1	909.578	1	5858.006	
151		19	max	.001	1	<u>16</u> .1	1	.002		87e-3	3	NC	1	NC	1
152		13	min	0	15	052	3	001		728e-3	1	NC	1	NC	1
153	M2	1	max	.006	1	.003	2	.008		339e-6	•	NC	1	NC	2
154	1712		min	005	3	006	3	0	15 -2.2		1	NC	1	6516.743	
104			111111			.000	<u> </u>		10 2.2	-500 T		.,,		30 10.7 70	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
155		2	max	.005	1	.003	2	.008	1	-7.779e-6	15	NC	1	NC	2
156			min	005	3	006	3	0	15	-2.135e-4	1	NC	1	7108.758	
157		3	max	.005	1	.002	2	.007	1_	-7.219e-6	<u>15</u>	NC	<u>1</u>	NC	2
158			min	004	3	006	3	0	15	-1.981e-4	1	NC	1	7814.531	1
159		4	max	.005	1	.002	2	.006	1	-6.659e-6	15	NC	_1_	NC	2
160			min	004	3	006	3	0	15	-1.828e-4	1_	NC	1_	8664.286	1
161		5	max	.004	1	.001	2	.006	1_	-6.099e-6	<u>15</u>	NC	_1_	NC	2
162			min	004	3	006	3	0		-1.674e-4	<u>1</u>	NC	1_	9699.303	
163		6	max	.004	1	0	2	.005	1	-5.539e-6	15	NC	1	NC	1
164			min	004	3	006	3	0	15	-1.52e-4	_1_	NC	_1_	NC	1
165		7	max	.004	1	0	2	.004	1	-4.979e-6	<u>15</u>	NC	1	NC	1
166			min	003	3	<u>005</u>	3	0		-1.366e-4	1_	NC	1_	NC	1
167		8	max	.003	1	0	2	.004	1	-4.419e-6	<u>15</u>	NC	1	NC NC	1
168			min	003	3	005	3	0	15	-1.212e-4	1_	NC	1_	NC NC	1
169		9	max	.003	1	0	2	.003	1	-3.859e-6	<u>15</u>	NC	1	NC NC	1
170		40	min	003	3	005	3	0	15	-1.058e-4	1_	NC NC	1_	NC NC	1
171		10	max	.003	3	0 005	15	.003	1	-3.299e-6 -9.047e-5	<u>15</u>	NC NC	1	NC NC	1
172		11	min	002 .002	1	005 0	15	0			1_	NC NC	<u>1</u> 1	NC NC	1
173		11	max		3		3	.002	1	-2.739e-6 -7.509e-5	<u>15</u> 1		1	NC NC	1
174 175		12	min max	002 .002	1	004 0	15	<u> </u>	1 <u>5</u>	-7.509e-5 -2.179e-6	15	NC NC	1	NC NC	1
176		12	min	002	3	004	3	<u>.002</u>	15	-5.97e-5	1	NC	1	NC NC	1
177		13	max	.002	1	004	15	.001	1	-1.619e-6	15	NC	1	NC	1
178		13	min	002	3	003	3	0	15	-4.432e-5	1	NC	1	NC NC	1
179		14	max	.002	1	<u>005</u>	15	0	1	-1.059e-6	15	NC	1	NC	1
180		17	min	001	3	003	3	0	15	-2.894e-5	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	-4.988e-7	15	NC	1	NC	1
182		10	min	001	3	003	4	0		-1.356e-5	1	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.821e-6	1	NC	1	NC	1
184			min	0	3	002	4	0		-2.231e-7	3	NC	1	NC	1
185		17	max	0	1	0	15	0	1	1.72e-5	1	NC	1	NC	1
186			min	0	3	001	4	0	15	5.421e-7	12	NC	1	NC	1
187		18	max	0	1	0	15	0	1	3.258e-5	1	NC	1	NC	1
188			min	0	3	0	4	0	15	1.181e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	4.796e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.741e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.479e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.508e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	1.079e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	15	3.935e-7	15	NC	1	NC	1
195		3	max		3	0	15	0	1	3.666e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	1.335e-6	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	6.253e-5	1_	NC	1	NC	1_
198			min	0	2	005	4	0	15	2.276e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	.001	1	8.84e-5	1_	NC	1	NC	1
200			min	0	2	007	4	0	15	3.218e-6	15	NC	1_	NC	1
201		6	max	.001	3	002	15	.001	1	1.143e-4	1_	NC	_1_	NC	1
202			min	0	2	009	4	0	15	4.159e-6	15	NC	1	NC	1
203		7	max	.001	3	002	15	.002	1	1.401e-4	_1_	NC	1_	NC	1
204			min	0	2	<u>01</u>	4	0	15	5.1e-6		8923.064	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.66e-4	1_	NC	1	NC	1
206			min	001	2	012	4	0	15	6.042e-6		7983.869	4_	NC NC	1
207		9	max	.002	3	003	15	.002	1	1.919e-4	1_	NC	2	NC	1
208		4.0	min	001	2	013	4	0	15	6.983e-6		7425.501	4	NC	1
209		10	max	.002	3	003	15	.003	1	2.178e-4	1_	NC	2	NC NC	1
210		4.4	min	001	2	013	4	0	15	7.924e-6	<u>15</u>		4	NC NC	1
211		11	max	.002	3	003	15	.003	1	2.436e-4	<u> 1</u>	NC	3	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	002	2	013	4	0	15	8.866e-6		7115.925	4	NC	1
213		12	max	.002	3	003	15	.004	1	2.695e-4	_1_	NC	2	NC	1
214			min	002	2	013	4	0	15	9.807e-6	15	7324.356	4	NC	1
215		13	max	.003	3	003	15	.004	1_	2.954e-4	_1_	NC	_1_	NC	1
216			min	002	2	012	4	0	15	1.075e-5	15	7819.346	4	NC	1
217		14	max	.003	3	003	15	.005	1_	3.213e-4	_1_	NC	_1_	NC	1
218			min	002	2	011	4	0	15	1.169e-5	15	8712.023	4	NC	1
219		15	max	.003	3	002	15	.005	1	3.471e-4	<u>1</u>	NC	<u>1</u>	NC	1
220			min	002	2	009	4	0	15	1.263e-5	15	NC	1_	NC	1
221		16	max	.003	3	002	15	.006	1	3.73e-4	_1_	NC	_1_	NC	1
222			min	002	2	008	1	0	15	1.357e-5	15	NC	1	NC	1
223		17	max	.003	3	001	15	.007	1	3.989e-4	1_	NC	1_	NC	1
224			min	002	2	006	1	0	15	1.451e-5	15	NC	1	NC	1
225		18	max	.004	3	0	15	.007	1	4.247e-4	_1_	NC	1_	NC	1_
226			min	003	2	005	1	0	15	1.546e-5	15	NC	1	NC	1
227		19	max	.004	3	0	15	.008	1	4.506e-4	1	NC	1	NC	1
228			min	003	2	003	1	0	15	1.64e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	15	2.055e-5	1	NC	1	NC	3
230			min	0	3	004	3	008	1	7.573e-7	15	NC	1	3063.889	1
231		2	max	.003	1	.002	2	0	15	2.055e-5	1	NC	1	NC	3
232			min	0	3	004	3	007	1	7.573e-7	15	NC	1	3334.776	1
233		3	max	.003	1	.002	2	0	15	2.055e-5	1	NC	1	NC	3
234			min	0	3	004	3	007	1	7.573e-7	15	NC	1	3657.003	1
235		4	max	.002	1	.002	2	0	15	2.055e-5	1	NC	1	NC	2
236			min	0	3	003	3	006	1	7.573e-7	15	NC	1	4043.938	1
237		5	max	.002	1	.002	2	0	15	2.055e-5	1	NC	1	NC	2
238			min	0	3	003	3	005	1	7.573e-7	15	NC	1	4513.745	1
239		6	max	.002	1	.002	2	0	15	2.055e-5	1	NC	1	NC	2
240			min	0	3	003	3	005	1	7.573e-7	15	NC	1	5091.617	1
241		7	max	.002	1	.002	2	0	15	2.055e-5	1	NC	1	NC	2
242			min	0	3	003	3	004	1	7.573e-7	15	NC	1	5813.312	1
243		8	max	.002	1	.001	2	0	15	2.055e-5	1	NC	1	NC	2
244			min	0	3	002	3	004	1	7.573e-7	15	NC	1	6730.99	1
245		9	max	.002	1	.001	2	0	15	2.055e-5	1	NC	1	NC	2
246			min	0	3	002	3	003	1	7.573e-7	15	NC	1	7923.177	1
247		10	max	.001	1	.001	2	0	15	2.055e-5	1	NC	1	NC	2
248			min	0	3	002	3	003	1	7.573e-7	15	NC	1	9512.643	1
249		11	max	.001	1	.001	2	0	15	2.055e-5	1	NC	1	NC	1
250			min	0	3	002	3	002	1	7.573e-7	15	NC	1	NC	1
251		12	max	.001	1	0	2	0	15	2.055e-5	1	NC	1	NC	1
252		1-	min	0	3	002	3	002	1	7.573e-7			1	NC	1
253		13	max	0	1	0	2	0		2.055e-5	1	NC	1	NC	1
254			min	0	3	001	3	001	1	7.573e-7	15	NC	1	NC	1
255		14	max	0	1	0	2	0		2.055e-5	1	NC	1	NC	1
256		17	min	0	3	001	3	0	1	7.573e-7	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15	2.055e-5	1	NC	1	NC	1
258		10	min	0	3	0	3	0	1	7.573e-7	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	2.055e-5	1	NC	1	NC	1
260		10	min	0	3	0	3	0	1	7.573e-7	15	NC NC	1	NC NC	1
261		17		0	1	0	2	0	15	2.055e-5	1 <u>5</u>	NC NC	1	NC NC	1
262		17	max min	0	3	0	3	0	1	7.573e-7	15	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	2.055e-5	1 <u>15</u>	NC NC	1	NC NC	1
264		10	min	0	3	0	3	0	1	7.573e-7	15	NC NC	1	NC NC	1
265		10		0	1	0	1	0	1	2.055e-5		NC NC	1	NC NC	1
		19	max min	0	1	0	1	0	1		1 15	NC NC	1	NC NC	1
266 267	M6	1		.018	1	.014	2	0	1	7.573e-7	<u>15</u> 1	NC NC	3	NC NC	1
	IVIO		max		3		3		1	0	1		2		1
268			min	016	3	02	3	0		0		3873.963		NC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio			
269		2	max	.017	1	.013	2	0	1	0	_1_	NC	3	NC	1
270			min	015	3	019	3	0	1	0	1_	4263.253	2	NC	1
271		3	max	.016	1	.012	2	0	1	0	1_	NC	3	NC	1
272			min	014	3	018	3	0	1	0	1_	4735.496	2	NC	1
273		4	max	.015	1	.01	2	0	1	0	_1_	NC	1_	NC	1
274		_	min	013	3	017	3	0	1	0	1_	5315.289	2	NC	1
275		5	max	.014	1	.009	2	0	1	0	1_	NC	1_	NC	1
276		_	min	012	3	016	3	0	1	0	1_	6037.394	2	NC	1
277		6	max	.013	1	.008	2	0	1	0	1	NC	1_	NC	1
278		_	min	012	3	01 <u>5</u>	3	0	1	0	1_	6952.254	2	NC	1
279		7	max	.012	1	.007	2	0	1	0	_1_	NC	1_	NC	1
280			min	011	3	014	3	0	1	0	1_	8135.403	2	NC	1
281		8	max	.011	1	.006	2	0	1	0	1_	NC	1_	NC	1
282			min	01	3	013	3	0	1	0	1_	9704.238	2	NC	1
283		9	max	.01	1	.005	2	0	1	0	1	NC	1	NC	1
284			min	009	3	012	3	0	1	0	1_	NC	1_	NC	1
285		10	max	.009	1	.004	2	0	1	0	1	NC NC	1	NC NC	1
286			min	008	3	011	3	0	1	0	1_	NC	1_	NC	1
287		11	max	.008	1	.003	2	0	1	0	1	NC	1_	NC	1
288		4.0	min	007	3	009	3	0	1	0	1_	NC NC	1_	NC	1
289		12	max	.007	1	.002	2	0	1	0	1	NC	1	NC	1
290			min	006	3	008	3	0	1	0	1_	NC	1_	NC	1
291		13	max	.006	1	.001	2	0	1	0	1_	NC	1_	NC	1
292			min	005	3	007	3	0	1	0	1_	NC	1	NC	1
293		14	max	.005	1	0	2	0	1	0	_1_	NC	1_	NC	1
294			min	004	3	006	3	0	1	0	1_	NC	1_	NC	1
295		15	max	.004	1	0	2	0	1	0	1_	NC	1_	NC	1
296			min	004	3	005	3	0	1	0	1_	NC	1_	NC	1
297		16	max	.003	1	0	2	0	1	0	1_	NC	1_	NC	1
298			min	003	3	004	3	0	1	0	1_	NC	1_	NC	1
299		17	max	.002	1	0	2	0	1	0	1_	NC	1_	NC	1
300			min	002	3	002	3	0	1	0	1_	NC	1	NC	1
301		18	max	.001	1	0	2	0	1	0	1	NC	1	NC	1
302			min	0	3	001	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
304		_	min	0	1	0	1	0	1	0	1_	NC	1	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
306		_	min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
307		2	max	0	3	0	15	0	1	0	1_	NC	1_	NC	1
308			min	0	2	002	3	0	1	0	1_	NC	1_	NC	1
309		3	max	.001	3	0	15	0	1	0	1	NC	1	NC NC	1
310			min	001	2	004	3	0	1	0	1	NC	1_	NC	1
311		4	max	.002	3	001	15	0	1	0	1	NC	1_	NC	1
312			min	002	2	006	3	0	1	0	1_	NC	1_	NC	1
313		5	max	.003	3	002	15	0	1	0	1	NC	1	NC	1
314			min	003	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
315		6	max	.003	3	002	15	0	1	0	1	NC	1	NC	1
316		_	min	003	2	009	3	0	1	0	1_	NC	1_	NC	1
317		7	max	.004	3	002	15	0	1	0	1	NC	1_	NC	1
318			min	004	2	01	4	0	1	0	1_	9173.396	4_	NC	1
319		8	max	.005	3	003	15	0	1	0	_1_	NC	1_	NC	1
320			min	005	2	012	4	0	1	0	1_	8190.615	4	NC	1
321		9	max	.005	3	003	15	0	1	0	1	NC	1	NC	1
322			min	005	2	013	4	0	1	0	1	7604.59	4	NC	1
323		10	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
324			min	006	2	013	4	0	1	0	1_	7311.702	4	NC	1
325		11	max	.007	3	003	15	0	1	0	_1_	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

326		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
328	326			min		2	013		0	1	_	1		4	NC	1
13			12	max					0		0	1		1_		1
330												•				
331			13													
333			4.4									_		•		
333			14													_
334			45													
336			15													
336			10					-								•
338			16													
338			17									_		_		-
339			17													
3440			10						-			•		_		
341			10													•
342			10									_				
343 M8			13													
344		M8	1			_								•		
345		IVIO	'													1
346			2											1		1
347			_			-										
348			3							1		1		1		1
349										1		1		1		1
350			4						0	1	0	1		1		1
351						3			0	1	0	1		1		1
352			5			1	.008		0	1	0	1	NC	1	NC	1
354	352				001	3	01	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.006	1	.007	2	0	1	0	1	NC	1	NC	1
356	354			min	001	3	009	3	0	1	0	1	NC	1	NC	1
357			7	max		-			0	1		1_		1_		1_
358												1		1_		-
359			8	max					0	1	0	1		1_		1
360				min					0			•		1_		1
361			9													
362					•						_	_				
363			10													
364 min 0 3 005 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .004 2 0 1 0 1 NC 1 NC 1 366 min 0 3 005 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 368 min 0 3 004 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 003 3 0 1 0 1						_										
365 12 max .003 1 .004 2 .0 1 .0 1 .NC 1 .NC 1 366 min 0 .3005 3 .0 1 .0 1 .NC 1 .NC 1 367 13 max .003 1 .003 2 .0 1 .0 1 .NC 1 .NC 1 368 min 0 .3004 3 .0 1 .0 1 .NC 1 .NC 1 369 14 max .002 1 .003 2 .0 1 .0 1 .NC 1 .NC 1 370 min 0 .3003 3 .0 1 .0 1 .NC 1 .NC 1 371 15 max .002 1 .002 2 .0 1 .0 1 .NC 1 .NC 1 372 min 0 .3003 3 .0 1 .0 1 .NC 1 .NC 1 373 16 max .001 1 .002 2 .0 1 .0 1 .NC 1 .NC 1 374 min 0 .3002 3 .0 1 .0 1 .NC <td< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_1_</td><td></td><td>1</td></td<>			11											_1_		1
366 min 0 3 005 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 368 min 0 3 004 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 003 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1			40		_						_			1_		1
367 13 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 368 min 0 3 004 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 003 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 0 1 0 1 <td>365</td> <td></td> <td>12</td> <td>max</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	365		12	max				2								
368 min 0 3 004 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 003 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1			40													
369 14 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 1 NC 1 <td< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			13													
370 min 0 3 003 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1			1.1									•		•		
371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 <			14			_				-						
372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC			15									_		_		
373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC <td></td> <td></td> <td>10</td> <td></td>			10													
374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			16													
375 17 max 0 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .003 2 0 15 2.289e-4 1			10													
376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .003 2 0 15 2.289e-4 1 NC 1 NC 2			17													•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .003 2 0 15 2.289e-4 1 NC 1 NC 2			17			-										
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .003 2 0 15 2.289e-4 1 NC 1 NC 2			18		_							_		_		-
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .003 2 0 15 2.289e-4 1 NC 1 NC 2			10	_	_											
380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .003 2 0 15 2.289e-4 1 NC 1 NC 2			19						-			•		_		
381 M10 1 max .006 1 .003 2 0 15 2.289e-4 1 NC 1 NC 2			1.5				-									
		M10	1		•	1				15		1		1		
,, , , , , , , , , , , , , , , , ,	382			min	005	3	006	3	008		8.339e-6	15	NC	1	6516.743	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.003	2	0	15	2.135e-4	_1_	NC	_1_	NC	2
384			min	005	3	006	3	008	1	7.779e-6	15	NC	1_	7108.758	1
385		3	max	.005	1	.002	2	0	15	1.981e-4	<u>1</u>	NC	_1_	NC	2
386			min	004	3	006	3	007	1	7.219e-6	15	NC	1	7814.531	1
387		4	max	.005	1	.002	2	0	15	1.828e-4	1_	NC	1_	NC	2
388			min	004	3	006	3	006	1	6.659e-6	15	NC	1	8664.286	1
389		5	max	.004	1	.001	2	0	15	1.674e-4	1	NC	1	NC	2
390			min	004	3	006	3	006	1	6.099e-6	15	NC	1	9699.303	1
391		6	max	.004	1	0	2	0	15	1.52e-4	1	NC	1	NC	1
392			min	004	3	006	3	005	1	5.539e-6	15	NC	1	NC	1
393		7	max	.004	1	0	2	0	15	1.366e-4	1	NC	1	NC	1
394			min	003	3	005	3	004	1	4.979e-6	15	NC	1	NC	1
395		8	max	.003	1	0	2	0	15	1.212e-4	1	NC	1	NC	1
396			min	003	3	005	3	004	1	4.419e-6	15	NC	1	NC	1
397		9	max	.003	1	<u>.000</u>	2	0	15	1.058e-4	1	NC	1	NC	1
398		9	min	003	3	005	3	003	1		15	NC NC	1	NC	1
399		10		.003	1	003	15	003 0	15	9.047e-5		NC	1	NC	1
		10	max								1_		1		
400		4.4	min	002	3	005	3	003	1_		<u>15</u>	NC NC		NC	1
401		11	max	.002	1	0	15	0	15	7.509e-5	1_	NC	1	NC	1_
402			min	002	3	004	3	002	1_		<u>15</u>	NC	1	NC	1
403		12	max	.002	1	0	15	0	15	5.97e-5	_1_	NC	_1_	NC	1_
404			min	002	3	004	3	002	1	2.179e-6	15	NC	1_	NC	1
405		13	max	.002	1	0	15	0	15	4.432e-5	_1_	NC	_1_	NC	1_
406			min	002	3	003	3	001	1	1.619e-6	15	NC	1	NC	1
407		14	max	.002	1	0	15	0	15	2.894e-5	1	NC	1	NC	1
408			min	001	3	003	3	0	1	1.059e-6	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	1.356e-5	1	NC	1	NC	1
410			min	001	3	003	4	0	1		15	NC	1	NC	1
411		16	max	0	1	0	15	0	15	2.231e-7	3	NC	1	NC	1
412		10	min	0	3	002	4	0	1	-1.821e-6	1	NC	1	NC	1
413		17	max	0	1	0	15	0	15	-5.421e-7	12	NC	1	NC	1
414		17	min	0	3	001	4	0	1	-1.72e-5	1	NC NC	1	NC	1
		10			1						1.5		1		
415		18	max	0	-	0	15	0	15		<u>15</u>	NC NC		NC	1
416		40	min	0	3	0	4	0	1	-3.258e-5	1_	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1		<u>15</u>	NC	1	NC	1_
418			min	0	1	0	1	0	1	-4.796e-5	1_	NC	1_	NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	1.508e-5	1_	NC	1_	NC	1
420			min	0	1	0	1	0	1		15	NC	1_	NC	1
421		2	max	0	3	0	15	0	15	-3.935e-7	15	NC	_1_	NC	1
422			min	0	2	002	4	0	1	-1.079e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	15	-1.335e-6	15	NC	1	NC	1
424			min	0	2	003	4	0	1	-3.666e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15	-2.276e-6	15	NC	1	NC	1
426			min	0	2	005	4	0	1		1	NC	1	NC	1
427		5	max	0	3	002	15	0	15	-3.218e-6	15	NC	1	NC	1
428			min	0	2	007	4	001	1	-8.84e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15		15	NC	1	NC	1
430			min	0	2	009	4	001	1	-1.143e-4	1	NC	1	NC	1
431		7	max	.001	3	002	15	0	15	-5.1e-6	15	NC	1	NC	1
432			min	0	2	00 <u>2</u> 01	4	002	1	-1.401e-4	1	8923.064	4	NC	1
433		8	1 1	.002	3	003	15	<u>002</u> 0	15	-6.042e-6		NC	1	NC NC	1
		0	max	002 001				002				7983.869			
434		_	min		2	<u>012</u>	4		1_	-1.66e-4	1_		4	NC NC	1
435		9	max	.002	3	003	15	0	15	-6.983e-6		NC	2	NC	1
436			min	001	2	013	4	002	1_	-1.919e-4	1_	7425.501	4	NC	1
437		10	max	.002	3	003	15	0	15	-7.924e-6		NC	2	NC	1
438			min	001	2	013	4	003	1	-2.178e-4	1_	7149.826	4	NC	1
439		11	max	.002	3	003	15	0	15	-8.866e-6	<u>15</u>	NC	3	NC	1_

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	002	2	013	4	003	1	-2.436e-4	1_	7115.925	4	NC	1
441		12	max	.002	3	003	15	0	15		15	NC	2	NC	1
442			min	002	2	013	4	004	1	-2.695e-4	1_	7324.356	4	NC	1
443		13	max	.003	3	003	15	0	15		15	NC	_1_	NC	1
444			min	002	2	012	4	004	1	-2.954e-4	1_	7819.346	4_	NC	1
445		14	max	.003	3	003	15	0	15		<u>15</u>	NC 0740,000	1	NC NC	1
446		45	min	002	2	011	4	005	1	-3.213e-4	1_	8712.023	4	NC NC	1
447		15	max	.003	3	002	15	0	15		<u>15</u>	NC NC	1_	NC NC	1
448		4.0	min	002	2	009	4	005	1	-3.471e-4	1_	NC NC	1_	NC NC	1
449		16	max	.003	3	002 008	15	0 006	15	-1.357e-5 -3.73e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	002 .003	3		15	<u>006</u> 0	15	-3.73e-4 -1.451e-5	1_	NC NC	1	NC NC	1
451		17	max	003	2	001 006	1	007	1	-3.989e-4	<u>15</u>	NC NC	1	NC NC	1
452		18	max	.002	3	<u>006</u> 0	15	<u>007</u> 0	15		<u>1</u> 15	NC NC	1	NC NC	1
454		10	min	003	2	005	1	007	1	-4.247e-4	1	NC	1	NC	1
455		19	max	.004	3	005 0	15	<u>007</u> 0	15	-1.64e-5	15	NC	1	NC	1
456		13	min	003	2	003	1	008	1	-4.506e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.008	1	-7.573e-7	15	NC	1	NC	3
458	IVIIZ	'	min	0	3	004	3	0	15		1	NC	1	3063.889	1
459		2	max	.003	1	.002	2	.007	1	-7.573e-7	15	NC	1	NC	3
460			min	0	3	004	3	0	15	-2.055e-5	1	NC	1	3334.776	
461		3	max	.003	1	.002	2	.007	1	-7.573e-7	15	NC	1	NC	3
462			min	0	3	004	3	0	15	-2.055e-5	1	NC	1	3657.003	1
463		4	max	.002	1	.002	2	.006	1	-7.573e-7	15	NC	1	NC	2
464			min	0	3	003	3	0	15	-2.055e-5	1	NC	1	4043.938	1
465		5	max	.002	1	.002	2	.005	1	-7.573e-7	15	NC	1	NC	2
466			min	0	3	003	3	0	15	-2.055e-5	1	NC	1	4513.745	1
467		6	max	.002	1	.002	2	.005	1	-7.573e-7	15	NC	1	NC	2
468			min	0	3	003	3	0	15	-2.055e-5	1	NC	1	5091.617	1
469		7	max	.002	1	.002	2	.004	1	-7.573e-7	<u>15</u>	NC	1_	NC	2
470			min	0	3	003	3	0	15	-2.055e-5	1_	NC	1	5813.312	1
471		8	max	.002	1	.001	2	.004	1	-7.573e-7	15	NC	_1_	NC	2
472			min	0	3	002	3	0	15	-2.055e-5	1_	NC	1_	6730.99	1
473		9	max	.002	1	.001	2	.003	1	-7.573e-7	<u>15</u>	NC	_1_	NC	2
474			min	0	3	002	3	0	15	-2.055e-5	1_	NC	1_	7923.177	1
475		10	max	.001	1	.001	2	.003	1	-7.573e-7	<u>15</u>	NC	_1_	NC	2
476			min	0	3	002	3	0	15	-2.055e-5	1_	NC	1_	9512.643	1
477		11	max	.001	1	.001	2	.002	1	-7.573e-7	<u>15</u>	NC	1_	NC NC	1
478		40	min	0	3	002	3	0	15	-2.055e-5	1_	NC	_1_	NC NC	1
479		12	max	.001	1	0	2	.002	1	-7.573e-7	<u>15</u>	NC	1_	NC NC	1
480		40	min		3	002	3	0		-2.055e-5		NC NC	1	NC NC	1
481		13	max	0	3	0	2	.001	1	-7.573e-7 -2.055e-5		NC NC	1	NC NC	1
482		1.1	min	0	1	<u>001</u>	2	0			1_	NC NC	<u>1</u> 1	NC NC	1
483		14	max	<u> </u>	3	0	3	0 0	1 1 5	-7.573e-7		NC NC	1	NC NC	1
484 485		15	min max	0	1	001 0	2	0	1 <u>5</u>	-2.055e-5 -7.573e-7	<u>1</u> 15	NC NC	1	NC NC	1
486		15	min	0	3	0	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-7.573e-7		NC	1	NC	1
488		10	min	0	3	0	3	0	15		1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-2.055e-5 -7.573e-7	15	NC NC	1	NC NC	1
490		17	min	0	3	0	3	0	15		1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-7.573e-7	15	NC	1	NC	1
492		10	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.573e-7		NC	1	NC	1
494		1.0	min	0	1	0	1	0	1	-2.055e-5	1	NC	1	NC	1
495	M1	1	max	.005	3	.103	1	.001	1	1.781e-2	1	NC	1	NC	1
496			min	002	2	012	3	0		-2.093e-2	3	NC	1	NC	1
											_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio L		o LC
497		2	max	.005	3	.051	1	0	15	8.656e-3	_1_	NC 3		1
498			min	002	2	005	3	006	1	-1.036e-2	3	2178.901 1		1
499		3	max	.005	3	.007	3	0	15	1.758e-5	10	NC 5		1
500			min	002	2	007	1	009	1	-1.709e-4	1	1041.764		1
501		4	max	.005	3	.029	3	0	15	4.804e-3	_1_	NC 5		1
502			min	002	2	073	1	008	1	-3.69e-3	3	650.288		1
503		5	max	.005	3	.058	3	0	15	9.779e-3	1_	NC 1		1
504			min	002	2	143	1	005	1	-7.279e-3	3	464.926		1
505		6	max	.005	3	.089	3	0	15	1.475e-2	1	NC 1	5 NC	1
506			min	002	2	211	1	002	1	-1.087e-2	3	363.542	NC NC	1
507		7	max	.005	3	.12	3	0	1	1.973e-2	1	9674.843 1	5 NC	1
508			min	002	2	273	1	0	12	-1.446e-2	3	304.052	NC NC	1
509		8	max	.004	3	.145	3	0	1	2.47e-2	1	8592.37 1	5 NC	1
510			min	002	2	322	1	0	15	-1.804e-2	3	269.016	NC NC	1
511		9	max	.004	3	.162	3	0	15	2.72e-2	1	8028.295 1	5 NC	1
512			min	002	2	353	1	0	1	-1.806e-2	3	250.834	NC NC	1
513		10	max	.004	3	.168	3	0	1	2.804e-2	1	7856.573 1	5 NC	1
514			min	001	2	363	1	0	12	-1.57e-2	3	245.388 1		1
515		11	max	.004	3	.164	3	0	1	2.889e-2	1	8028.101 1		1
516			min	001	2	352	1	0	15	-1.335e-2	3	251.131 1		1
517		12	max	.004	3	.15	3	0	15	2.727e-2	1	8591.965 1		1
518			min	001	2	321	1	001	1	-1.105e-2	3	269.945 1		1
519		13	max	.004	3	.128	3	0	15	2.193e-2	1	9674.131 1		1
520			min	001	2	271	1	0	1	-8.846e-3	3	306.356		1
521		14	max	.004	3	.099	3	.002	1	1.659e-2	1	NC 1		1
522			min	001	2	208	1	0	15	-6.64e-3	3	368.518		1
523		15	max	.004	3	.067	3	.005	1	1.125e-2	1	NC 1		1
524		-10	min	001	2	139	1	0	15	-4.434e-3	3	475.232		1
525		16	max	.004	3	.034	3	.008	1	5.913e-3	1	NC 5		1
526		10	min	001	2	069	1	0	15	-2.228e-3	3	672.109		1
527		17	max	.004	3	.002	3	.008	1	5.744e-4	1	NC 5		1
528		- ' '	min	001	2	004	2	0	15	-2.213e-5	3	1091.372		1
529		18	max	.004	3	.051	1	.006	1	1.04e-2	1	NC 4		1
530		10	min	001	2	026	3	0	15	-3.552e-3	3	2305.296		1
531		19	max	.004	3	<u>020</u> .1	1	0	15	2.058e-2	1	NC 1		1
532		19	min	001	2	052	3	001	1	-7.217e-3	3	NC 1		1
533	M5	1	max	.015	3	.248	1	0	1	0	1	NC 1		1
534	IVIO		min	01	2	015	3	0	1	0	1	NC 1		1
535		2	max	.015	3	.121	1	0	1	0	1	NC 5		1
536			min	01	2	005	3	0	1	0	1	900.345	NC NC	1
		2							1		1			1
537 538		3	max	.015 01	2	.022 023	3	0 0	1	0	1	NC 1 421.076 1	5 NC NC	1
		4	min	.015	3		3		1		1			1
539		4	max		2	.083	1	<u> </u>	1	0	1			1
540		F	min	009		199					_			
541		5_	max	.015	3	.167	3	0	1	0	1	6386.094 1 178.788 1		1
542		_	min	009	2	391	1	0		0	1			•
543		6	max	.014	3	.261	3	0	1	0	1	4918.287 1		1
544		-	min	009	2	582	1	0	1	0	1_	137.544 1		1
545		7	max	.014	3	.353	3	0	1	0	1_	4070.299 1		1
546			min	009	2	<u>756</u>	1	0	1	0	1_	113.718 1		1
547		8	max	.014	3	.431	3	0	1	0	1_	3577.092 1		1
548		_	min	009	2	896	1	0	1	0	1_	99.861 1		1
549		9	max	.013	3	<u>.481</u>	3	0	1	0	1	3324.107 1		1
550			min	009	2	984	1	0	1	0	1_	92.758 1		1
551		10	max	.013	3	.499	3	0	1	0	1	3247.877 1		1
552			min	008	2	<u>-1.013</u>	1	0	1	0	1_	90.643 1		1
553		11	max	.013	3	.486	3	0	1_	0	<u>1</u>	3324.174 1	5 NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

5554		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L	_C ((n) L/z Ratio	LC
1556	554			min	008	2		1	0		_			1		
1556			12	max	.013	3	.444	3	0	1	0	1	3577.253 1	15	NC	1
18									0	1	0	1				1
			13					3	0	1	0	1		15		1
559										1		1				
Fight Figh			14							1		•		•		
Secondary Seco										1	_					_
Sec			15									•		_		
Feb			10													
Feel			16							-				•		
See			10													
Se66			17									•		•		•
Secondary Color			17													
See			12								-			_		
Fig. 19			10													
S70			10											•		
ST1			13											_		_
572		MO	1								-			•		
S73		IVIS												_		
S74			2									•		•		
STEEL NOT STEEL NOT																_
576			2											•		•
577 4 max .005 3 .029 3 .008 1 3.69e-3 3 NC 5 NC 1 578 min 002 2 073 1 0 15 - 4.804e-3 1 650.288 1 NC 1 579 5 max .005 3 .005 1 7.279e-3 3 NC 15 NC 1 580 min 002 2 143 1 0 15 - 9.779e-3 1 464.926 1 NC 1 581 6 max .005 3 .089 3 .002 1 1.087e-2 3 NC 15 NC 1 582 min 002 2 211 1 0 15 - 1.475e-2 1 363.542 1 NC 1 583 7 max .004 3 .145 3 0 15 - 1.486e-2 3			3													
578			4											_		
579			4													
S80			-									•		•		
581 6 max .005 3 .089 3 .002 1 1.087e-2 3 NC 15 NC 1 582 min 002 2 211 1 0 15 -1.475e-2 1 363.542 1 NC 1 583 7 max .005 3 .12 3 0 12 1.446e-2 3 9674.843 15 NC 1 584 min 002 2 273 1 0 1 -1.973e-2 1 304.052 1 NC 1 585 8 max .004 3 .145 3 0 15 1.804e-2 3 8592.37 15 NC 1 586 min 002 2 353 1 0 1 -2.47e-2 1 269.016 1 NC 1 587 9 max .004 3 <t< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			5													_
582 min 002 2 211 1 0 15 -1.475e-2 1 363.542 1 NC 1 583 7 max .005 3 .12 3 0 12 1.446e-2 3 9674.843 15 NC 1 584 min 002 2 273 1 0 1 -1.973e-2 1 304.052 1 NC 1 585 8 max .004 3 .145 3 0 15 1.804e-2 3 8592.37 15 NC 1 586 min 002 2 352 1 0 1 -2.47e-2 1 269.016 1 NC 1 587 9 max .004 3 .168 3 0 1 1.806e-2 3 8028.295 15 NC 1 588 10 max .004 3														_		
583 7 max .005 3 .12 3 0 12 1.446e-2 3 9674.843 15 NC 1 584 min 002 2 273 1 0 1 -1.973e-2 1 304.052 1 NC 1 585 8 max .004 3 .145 3 0 15 1.804e-2 3 8592.37 15 NC 1 586 min 002 2 322 1 0 1 -2.47e-2 1 269.016 1 NC 1 587 9 max .004 3 .162 3 0 1 1.806e-2 3 8028.295 15 NC 1 588 min 002 2 353 1 0 15 -2.72e-2 1 250.834 1 NC 1 590 min 001 2 363			6													
584 min 002 2 273 1 0 1 -1.973e-2 1 304.052 1 NC 1 585 8 max .004 3 .145 3 0 15 1.804e-2 3 8592.37 15 NC 1 586 min 002 2 322 1 0 1 -2.47e-2 1 269.016 1 NC 1 587 9 max .004 3 .162 3 0 1 1.806e-2 3 8028.295 15 NC 1 588 min 002 2 353 1 0 15 -2.72e-2 1 250.834 1 NC 1 589 10 max .004 3 .168 3 0 12 1.57e-2 3 7856.573 15 NC 1 590 min 001 2 352												_		•		
585 8 max .004 3 .145 3 0 15 1.804e-2 3 8592.37 15 NC 1 586 min 002 2 322 1 0 1 -2.47e-2 1 269.016 1 NC 1 587 9 max .004 3 .162 3 0 1 1.806e-2 3 8028.295 15 NC 1 588 min 002 2 353 1 0 15 -2.72e-2 1 250.834 1 NC 1 589 10 max .004 3 .168 3 0 12 1.57e-2 3 7856.573 15 NC 1 590 min 001 2 363 1 0 1 -2.804e-2 1 245.388 1 NC 1 591 11 max .004 3 .164 3 0 15 1.335e-2 3 8028.101 15 NC 1 592 min 001 2 352 1 0 1 -2.889e-2 1 251.131			/													
586 min 002 2 322 1 0 1 -2.47e-2 1 269.016 1 NC 1 587 9 max .004 3 .162 3 0 1 1.806e-2 3 8028.295 15 NC 1 588 min 002 2 353 1 0 15 -2.72e-2 1 250.834 1 NC 1 589 10 max .004 3 .168 3 0 12 .157e-2 3 7856.573 15 NC 1 590 min 001 2 363 1 0 1 -2.804e-2 1 245.388 1 NC 1 591 11 max .004 3 .164 3 0 15 1.335e-2 3 8028.101 15 NC 1 592 min 001 2 321												•		•		•
587 9 max .004 3 .162 3 0 1 1.806e-2 3 8028.295 15 NC 1 588 min 002 2 353 1 0 15 -2.72e-2 1 250.834 1 NC 1 589 10 max .004 3 .168 3 0 12 1.57e-2 3 7856.573 15 NC 1 590 min 001 2 363 1 0 1 -2.804e-2 1 245.388 1 NC 1 591 11 max .004 3 .164 3 0 15 1.335e-2 3 8028.101 15 NC 1 592 min 001 2 352 1 0 1 -2.889e-2 1 251.131 1 NC 1 593 12 max .004 3 .128 3 0 <th< td=""><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			8													
588 min 002 2 353 1 0 15 -2.72e-2 1 250.834 1 NC 1 589 10 max .004 3 .168 3 0 12 1.57e-2 3 7856.573 15 NC 1 590 min 001 2 363 1 0 1 -2.804e-2 1 245.388 1 NC 1 591 11 max .004 3 .164 3 0 15 1.335e-2 3 8028.101 15 NC 1 592 min 001 2 352 1 0 1 -2.889e-2 1 251.131 1 NC 1 593 12 max .004 3 .15 3 .001 1 -2.889e-2 1 251.131 1 NC 1 594 min 001 2 321 <td></td> <td>_</td> <td></td> <td></td>														_		
589 10 max .004 3 .168 3 0 12 1.57e-2 3 7856.573 15 NC 1 590 min 001 2 363 1 0 1 -2.804e-2 1 245.388 1 NC 1 591 11 max .004 3 .164 3 0 15 1.335e-2 3 8028.101 15 NC 1 592 min 001 2 352 1 0 1 -2.889e-2 1 251.131 1 NC 1 593 12 max .004 3 .15 3 .001 1 1.105e-2 3 8591.965 15 NC 1 594 min 001 2 321 1 0 15 -2.77e-2 1 269.945 1 NC 1 595 13 max .004 3			9													
590 min 001 2 363 1 0 1 -2.804e-2 1 245.388 1 NC 1 591 11 max .004 3 .164 3 0 15 1.335e-2 3 8028.101 15 NC 1 592 min 001 2 352 1 0 1 -2.889e-2 1 251.131 1 NC 1 593 12 max .004 3 .15 3 .001 1 1.105e-2 3 8591.965 15 NC 1 594 min 001 2 321 1 0 15 -2.727e-2 1 269.945 1 NC 1 595 13 max .004 3 .128 3 0 1 8.846e-3 3 9674.131 15 NC 1 596 min 001 2 271<												•		•		
591 11 max .004 3 .164 3 0 15 1.335e-2 3 8028.101 15 NC 1 592 min 001 2 352 1 0 1 -2.889e-2 1 251.131 1 NC 1 593 12 max .004 3 .15 3 .001 1 1.105e-2 3 8591.965 15 NC 1 594 min 001 2 321 1 0 15 -2.727e-2 1 269.945 1 NC 1 595 13 max .004 3 .128 3 0 1 8.846e-3 3 9674.131 15 NC 1 596 min 001 2 271 1 0 15 -2.193e-2 1 306.356 1 NC 1 597 14 max .004 3 <td></td> <td></td> <td>10</td> <td></td> <td>_</td>			10													_
592 min 001 2 352 1 0 1 -2.889e-2 1 251.131 1 NC 1 593 12 max .004 3 .15 3 .001 1 1.105e-2 3 8591.965 15 NC 1 594 min 001 2 321 1 0 15 -2.72Te-2 1 269.945 1 NC 1 595 13 max .004 3 .128 3 0 1 8.846e-3 3 9674.131 15 NC 1 596 min 001 2 271 1 0 15 -2.193e-2 1 306.356 1 NC 1 597 14 max .004 3 .099 3 0 15 6.64e-3 3 NC 15 NC 1 598 min 001 2 208 1 002 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>														_		
593 12 max .004 3 .15 3 .001 1 1.105e-2 3 8591.965 15 NC 1 594 min 001 2 321 1 0 15 -2.727e-2 1 269.945 1 NC 1 595 13 max .004 3 .128 3 0 1 8.846e-3 3 9674.131 15 NC 1 596 min 001 2 271 1 0 15 -2.193e-2 1 306.356 1 NC 1 597 14 max .004 3 .099 3 0 15 6.64e-3 3 NC 15 NC 1 598 min 001 2 208 1 002 1 -1.659e-2 1 368.518 1 NC 1 599 15 max .004 3 .067 3 0 15 4.434e-3 3 NC <			11													
594 min 001 2 321 1 0 15 -2.727e-2 1 269.945 1 NC 1 595 13 max .004 3 .128 3 0 1 8.846e-3 3 9674.131 15 NC 1 596 min 001 2 271 1 0 15 -2.193e-2 1 306.356 1 NC 1 597 14 max .004 3 .099 3 0 15 6.64e-3 3 NC 15 NC 1 598 min 001 2 208 1 002 1 -1.659e-2 1 368.518 1 NC 1 599 15 max .004 3 .067 3 0 15 4.434e-3 3 NC 15 NC 1 600 min 001 2 139								-				•		•		
595 13 max .004 3 .128 3 0 1 8.846e-3 3 9674.131 15 NC 1 596 min 001 2 271 1 0 15 -2.193e-2 1 306.356 1 NC 1 597 14 max .004 3 .099 3 0 15 6.64e-3 3 NC 15 NC 1 598 min 001 2 208 1 002 1 -1.659e-2 1 368.518 1 NC 1 599 15 max .004 3 .067 3 0 15 4.434e-3 3 NC 15 NC 1 600 min 001 2 139 1 005 1 -1.125e-2 1 475.232 1 NC 1 601 min 001 2 069			12											15		1
596 min 001 2 271 1 0 15 -2.193e-2 1 306.356 1 NC 1 597 14 max .004 3 .099 3 0 15 6.64e-3 3 NC 15 NC 1 598 min 001 2 208 1 002 1 -1.659e-2 1 368.518 1 NC 1 599 15 max .004 3 .067 3 0 15 4.434e-3 3 NC 15 NC 1 600 min 001 2 139 1 005 1 -1.125e-2 1 475.232 1 NC 1 601 16 max .004 3 .034 3 0 15 2.228e-3 3 NC 5 NC 1 602 min 001 2 069								_						1		1
597 14 max .004 3 .099 3 0 15 6.64e-3 3 NC 15 NC 1 598 min 001 2 208 1 002 1 -1.659e-2 1 368.518 1 NC 1 599 15 max .004 3 .067 3 0 15 4.434e-3 3 NC 15 NC 1 600 min 001 2 139 1 005 1 -1.125e-2 1 475.232 1 NC 1 601 16 max .004 3 .034 3 0 15 2.228e-3 3 NC 5 NC 1 602 min 001 2 069 1 008 1 -5.913e-3 1 672.109 1 NC 1 603 17 max .004 3 .002 3 0 15 2.213e-5 3 NC 5 NC <td< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			13													
598 min 001 2 208 1 002 1 -1.659e-2 1 368.518 1 NC 1 599 15 max .004 3 .067 3 0 15 4.434e-3 3 NC 15 NC 1 600 min 001 2 139 1 005 1 -1.125e-2 1 475.232 1 NC 1 601 16 max .004 3 .034 3 0 15 2.228e-3 3 NC 5 NC 1 602 min 001 2 069 1 008 1 -5.913e-3 1 672.109 1 NC 1 603 17 max .004 3 .002 3 0 15 2.213e-5 3 NC 5 NC 1 604 min 001 2 004												•		_		
599 15 max .004 3 .067 3 0 15 4.434e-3 3 NC 15 NC 1 600 min 001 2 139 1 005 1 -1.125e-2 1 475.232 1 NC 1 601 16 max .004 3 .034 3 0 15 2.228e-3 3 NC 5 NC 1 602 min 001 2 069 1 008 1 -5.913e-3 1 672.109 1 NC 1 603 17 max .004 3 .002 3 0 15 2.213e-5 3 NC 5 NC 1 604 min 001 2 004 2 008 1 -5.744e-4 1 1091.372 1 NC 1 605 18 max .004 3 .051 1 0 15 3.552e-3 3 NC 4 N			14													
600 min 001 2 139 1 005 1 -1.125e-2 1 475.232 1 NC 1 601 16 max .004 3 .034 3 0 15 2.228e-3 3 NC 5 NC 1 602 min 001 2 069 1 008 1 -5.913e-3 1 672.109 1 NC 1 603 17 max .004 3 .002 3 0 15 2.213e-5 3 NC 5 NC 1 604 min 001 2 004 2 008 1 -5.744e-4 1 1091.372 1 NC 1 605 18 max .004 3 .051 1 0 15 3.552e-3 3 NC 4 NC 1 606 min 001 2 026												•		_		_
601 16 max .004 3 .034 3 0 15 2.228e-3 3 NC 5 NC 1 602 min 001 2 069 1 008 1 -5.913e-3 1 672.109 1 NC 1 603 17 max .004 3 .002 3 0 15 2.213e-5 3 NC 5 NC 1 604 min 001 2 004 2 008 1 -5.744e-4 1 1091.372 1 NC 1 605 18 max .004 3 .051 1 0 15 3.552e-3 3 NC 4 NC 1 606 min 001 2 026 3 006 1 -1.04e-2 1 2305.296 1 NC 1			15									3				
602 min 001 2 069 1 008 1 -5.913e-3 1 672.109 1 NC 1 603 17 max .004 3 .002 3 0 15 2.213e-5 3 NC 5 NC 1 604 min 001 2 004 2 008 1 -5.744e-4 1 1091.372 1 NC 1 605 18 max .004 3 .051 1 0 15 3.552e-3 3 NC 4 NC 1 606 min 001 2 026 3 006 1 -1.04e-2 1 2305.296 1 NC 1														_		
603 17 max .004 3 .002 3 0 15 2.213e-5 3 NC 5 NC 1 604 min 001 2 004 2 008 1 -5.744e-4 1 1091.372 1 NC 1 605 18 max .004 3 .051 1 0 15 3.552e-3 3 NC 4 NC 1 606 min 001 2 026 3 006 1 -1.04e-2 1 2305.296 1 NC 1			16							15						
604 min 001 2 004 2 008 1 -5.744e-4 1 1091.372 1 NC 1 605 18 max .004 3 .051 1 0 15 3.552e-3 3 NC 4 NC 1 606 min 001 2 026 3 006 1 -1.04e-2 1 2305.296 1 NC 1				min								•		_		
605			17							15		3		5		1
606 min001 2026 3006 1 -1.04e-2 1 2305.296 1 NC 1				min	001			2	008	1		1		1		1
			18	max	.004				0	15	3.552e-3	3		4		1
	606			min	001	2	026	3	006	1	-1.04e-2	1	2305.296	1	NC	1
	607		19	max	.004	3	.1	_	.001	1	7.217e-3	3	NC ·	1	NC	1
608 min001 2052 3 0 15 -2.058e-2 1 NC 1 NC 1	608			min	001	2	052	3	0	15	-2.058e-2	1	NC ·	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.