GIF-3007 Physique des composantes électroniques Examen Final - Hiver 2020 22 Avril 2020 de 15h30 à 17h30 (120 minutes) Professeur : Mohamed Haj Taieb

Cet examen comporte 6 questions sur 6 pages (incluant celle-ci), comptabilisées sur un total de 100 points. L'examen compte pour 35% de la note totale pour la session.

- Vous avez droit à tous vos document;
- Utiliser du papier libre pour donner vos réponses.
- À la fin de l'epreuve, numériser ou prendre en photo votre copie.
- Assurez vous que ce que vous allez remettre est bien lisible.
- La remise de l'examen se fait dans la boite électronique du portail du cours (tout comme les devoirs).
- Vous devez également soumettre la déclaration d'intégrité dans la boite de dépôt électronique. https://www.ulaval.ca/sites/default/files/bse/continuite/Declaration_d_integrite_Ulaval.pdf
- Donner les formules et les équations utilisées avant d'effectuer le calcul numérique.
- L'examen contient quatre (3) annexes :
 - l'annexe A (p. 4) contient les constantes et la conversion d'unités;
 - l'annexe B (p. 5) contient propriétés des semiconducteurs;
 - l'annexe C (p. 6) contient les énergies d'ionisation des donneurs et des accepteurs;

Question	Points	Score
1	10	
2	10	
3	15	
4	25	
5	15	
6	25	
Total:	100	

1. (10 points) Considérer un semiconducteur à une température $T=300~{\rm K}$ avec un niveau de Fermi se trouvant à 0.35 eV de la bande de valence.

Déterminer la probabilité qu'un état soit vide pour une énergie :

- (a) (5 points) $E = E_v \frac{kT}{2}$.
- (b) (5 points) $E = E_v \frac{3kT}{2}$.
- 2. (10 points) Considérer le silicium à $T=300~{\rm K}$ avec un niveau de Fermi se trouvant à 0.22 eV de la bande de conduction.

Dans l'équilibre thermique, déterminer :

- (a) (5 points) La concentration des électrons.
- (b) (5 points) La concentration des trous.
- 3. (15 points) Calculer la concentration intrinsèque des porteurs de charge dans le GaAs pour :
 - (a) (5 points) Une température T = 400 K,
 - (b) (5 points) Une température T = 250 K
 - (c) (5 points) Comment varie la concentration des porteurs de charge en fonction de la température?

Supposer que le gap d'énergie est constant en fonction de la température.

- 4. Déterminer la position du niveau de Fermi intrinsèque par rapport au centre du gap d'énergie $(E_{Fi} E_{midgap})$ pour le
 - (a) (5 points) GaAs à T = 300 K,
 - (b) (5 points) GaAs à T = 400 K,
 - (c) (5 points) Ge à T = 300 K,
 - (d) (5 points) Ge à T = 400 K,
 - (e) (5 points) Que peut on conclure sur la variation du niveau de Fermi intrinsèque en fonction de la température?

Supposer que les masses effectives sont constantes en fonction de la température.

5. (15 points) Considérer le dopage du silicium avec du bore avec une concentration $N_a = 10^{17}$ cm⁻³.

Déterminer la fraction des trous qui ne sont pas ionisés pour :

- (a) (5 points) Une température T = 400 K,
- (b) (5 points) Une température T = 300 K
- (c) (5 points) Une température T = 250 K

- 6. (25 points)
 - (a) Considérer le GaAs avec un niveau de Fermi se trouvant à 0.25 eV de la bande de valence $(E_F-E_v=0.25 \text{ eV})$ pour une température de T=300 K.
 - i. (5 points) Déterminer la concentration des électrons dans la bande de conduction n_0 .
 - ii. (5 points) Déterminer la concentration des trous dans la bande de valence p_0 .
 - iii. (5 points) Quel est le type de ce semiconducteur? Justifier votre réponse.
 - (b) On augmente la température à $T=400~{\rm K}$ et on constate que p_0 garde la même valeur.
 - i. (5 points) Déterminer la valeur de $E_F E_v$.
 - ii. (5 points) Déterminer la valeur de n_0 .

A Annexe: Unités et constantes

A.1 Constantes

Constante de Planck : $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s} = 4.135 \times 10^{-15} \text{ eV} \cdot \text{s}$

Constante de Planck réduite : $\hbar = \frac{h}{2\pi}$ = $1.0545 \times 10^{-34} \text{ J} \cdot \text{s}$ = $6.581 \times 10^{-16} \text{ eV} \cdot \text{s}$

Vitesse de la lumière

dans le vide : $c \approx 3 \times 10^8 \text{ m/s}$

Produit : $hc \approx 1240 \text{ eV} \cdot \text{nm}$

Masse d'un proton : $m_{proton} = 1.67 \times 10^{-27} \text{ kg}$

Masse d'un électron : $m_{electron} = 0.9109 \times 10^{-30} \text{ kg}$

Charge d'un électron : $e = 1.602 \times 10^{-19}$ coulombs

Constante de Boltzmann : $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1} = 8.617 \times 10^{-5} \text{ eV K}^{-1}$

Pour T = 300 K: $k_B T = 0.0259 \text{ eV}$

Permittivité ou constante

diéléctrique du vide : $\epsilon_0 = 8.85418 \times 10^{-12} \; \mathrm{F \; m^{-1}}$ ou $\mathrm{m^{-3} \; kg^{-1} \; s^4 \; A^2}$

A.2 Unités

$$kg \cdot m^2 \cdot s^{-2} = J$$
.

$$1eV = 1.6 \times 10^{-19} J$$
.

$$1W = 1J/s$$
.

$$T(K) - 273.15 = T(^{\circ}C)$$
.

B Annexe : Propriétés des semiconducteurs

Silicon, gallium arsenide, and germanium properties (T = 300 K)

Atoms (cm ⁻³) 5.0×10^{22} 4.42×10^{22} 4.60×10^{22} 4.32×10^{22} 4.33×10^{22} 4.42×10^{22} </th <th>Property</th> <th>Si</th> <th>GaAs</th> <th>Ge</th>	Property	Si	GaAs	Ge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Lattice constant (Å) 5.43 5.65 5.65 Melting point (°C) 1415 1238 937 Dielectric constant 11.7 13.1 16.0 Bandgap energy (eV) 1.12 1.42 0.66 Electron affinity, χ (V) 4.01 4.07 4.13 Effective density of states in conduction band, N_c (cm ⁻³) Effective density of states in valence band, N_v (cm ⁻³) 1.04 × 10 ¹⁹ 7.0 × 10 ¹⁸ 6.0 × 10 ¹⁸ valence band, N_v (cm ⁻³) 1.5 × 10 ¹⁰ 1.8 × 10 ⁶ 2.4 × 10 ¹³ Mobility (cm ² /V-s) Electron, μ_n 1350 8500 3900 Hole, μ_p 480 400 1900 Effective mass $\left(\frac{m^*s}{m_0}\right)$ Electrons $m_h^* = 0.98$ 0.067 1.64 $m_h^* = 0.19$ 0.082 Holes $m_h^* = 0.16$ 0.082 0.044 $m_h^* = 0.49$ 0.45 0.28 Density of states effective mass Electrons $\left(\frac{m_{d_0}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{d_0}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{d_0}^*}{m_o}\right)$ 0.26 0.067 0.12	•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.43	5.65	5.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Melting point (°C)	1415	1238	937
Electron affinity, χ (V) 4.01 4.07 4.13 Effective density of states in conduction band, N_c (cm ⁻³) 2.8 × 10 ¹⁹ 7.0 × 10 ¹⁸ 6.0 × 10 ¹⁸ valence band, N_v (cm ⁻³) Intrinsic carrier concentration (cm ⁻³) 1.5 × 10 ¹⁰ 1.8 × 10 ⁶ 2.4 × 10 ¹³ Mobility (cm ² /V-s) Electron, μ_n 1350 8500 3900 Hole, μ_p 480 400 1900 Effective mass $\left(\frac{m^*}{m_0}\right)$ 2.1 × 10 ¹⁰ 1.64 0.082 0.082 Holes $m_h^* = 0.19$ 0.082 0.044 $m_h^* = 0.49$ 0.45 0.28 Density of states effective mass $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dn}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12		11.7	13.1	16.0
Electron affinity, χ (V) 4.01 4.07 4.13 Effective density of states in conduction band, N_c (cm ⁻³) Effective density of states in valence band, N_c (cm ⁻³) 1.04 × 10 ¹⁹ 7.0 × 10 ¹⁸ 6.0 × 10 ¹⁸ valence band, N_v (cm ⁻³) 1.5 × 10 ¹⁰ 1.8 × 10 ⁶ 2.4 × 10 ¹³ Mobility (cm ² /V-s) Electron, μ_n 1350 8500 3900 Hole, μ_p 480 400 1900 Effective mass $\left(\frac{m^*}{m_0}\right)$ Electrons $m_t^* = 0.98$ 0.067 1.64 $m_t^* = 0.19$ 0.082 Holes $m_{th}^* = 0.16$ 0.082 0.044 $m_{th}^* = 0.49$ 0.45 0.28 Density of states effective mass Electrons $\left(\frac{m_{del}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{del}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{en}^*}{m_o}\right)$ 0.26 0.067 0.12	Bandgap energy (eV)	1.12	1.42	0.66
Effective density of states in conduction band, N_c (cm ⁻³) Effective density of states in valence band, N_v (cm ⁻³) Intrinsic carrier concentration (cm ⁻³) Electron, μ_n Hole, μ_p Electrons $m_h^* = 0.19$ $m_h^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass Electrons $m_{dn}^* = 0.49$ Density of states effective mass		4.01	4.07	4.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Effective density of states in	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Electron, μ_n 1350 8500 3900 Hole, μ_p 480 400 1900 Effective mass $\left(\frac{m^*}{m_0}\right)$ 2 2 3 480 400 1900 Electrons $m_l^* = 0.98$ 0.067 1.64 $m_t^* = 0.19$ 0.082 400 Holes $m_l^* = 0.19$ 0.082 0.044 $m_l^* = 0.49$ 0.45 0.28 Density of states effective mass Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12	Intrinsic carrier concentration (cm ⁻³)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Hole, μ_p 480 400 1900 Effective mass $\left(\frac{m^*}{m_0}\right)$ Electrons $m_I^* = 0.98$ 0.067 1.64 $m_t^* = 0.19$ 0.082 Holes $m_{lh}^* = 0.16$ 0.082 0.044 $m_{lh}^* = 0.49$ 0.45 0.28 Density of states effective mass Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12	Mobility (cm ² /V-s)			
Effective mass $\left(\frac{m^*}{m_0}\right)$ Electrons $m_t^* = 0.98$ 0.067 1.64 $m_t^* = 0.19$ 0.082 Holes $m_{th}^* = 0.16$ 0.082 0.044 $m_{th}^* = 0.49$ 0.45 0.28 Density of states effective mass Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hole, μ_p	480	400	1900
Holes $m_t^* = 0.19$ 0.082 0.044 $m_{hh}^* = 0.16$ 0.082 0.044 $m_{hh}^* = 0.49$ 0.45 0.28 Density of states effective mass Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12	Effective mass $\left(\frac{m^*}{m_0}\right)$			
Holes $m_{lh}^* = 0.16$ 0.082 0.044 $m_{hh}^* = 0.49$ 0.45 0.28 Density of states effective mass Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12	Electrons	$m_I^* = 0.98$	0.067	1.64
Density of states effective mass Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12		$m_t^* = 0.19$		0.082
Density of states effective mass Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12	Holes	$m_{lh}^* = 0.16$	0.082	0.044
Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$ 1.08 0.067 0.55 Holes $\left(\frac{m_{dp}^*}{m_o}\right)$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12		$m_{hh}^* = 0.49$	0.45	0.28
Holes $\frac{m_{dp}^*}{m_o}$ 0.56 0.48 0.37 Conductivity effective mass Electrons $\frac{m_{cn}^*}{m_o}$ 0.26 0.067 0.12				
Conductivity effective mass Electrons $\frac{m_{cn}^*}{m_o}$ 0.26 0.067 0.12	(1.08	0.067	0.55
Electrons $\left(\frac{m_{cn}^*}{m_o}\right)$ 0.26 0.067 0.12	Holes $\frac{\left(m_{dp}^*\right)}{\left(m_o\right)}$	0.56	0.48	0.37
	Conductivity effective mass			
Holes $\binom{m_{cp}^*}{}$ 0.37 0.34 0.21	Electrons $\frac{m_{cn}^*}{m_o}$	0.26	0.067	0.12
(m_o)	Holes $\frac{\left(m_{cp}^*\right)}{\left(m_o\right)}$	0.37	0.34	0.21

C Annexe : Énergie d'ionisation d'impureté

Impurity ionization energies in silicon and germanium

	Ionization energy (eV)		
Impurity	Si	Ge	
Donors Phosphorus Arsenic	0.045 0.05	0.012 0.0127	
Acceptors Boron Aluminum	0.045 0.06	0.0104 0.0102	

Impurity ionization energies in gallium arsenide

Impurity	Ionization energy (eV)
Donors	
Selenium	0.0059
Tellurium	0.0058
Silicon	0.0058
Germanium	0.0061
Acceptors	
Beryllium	0.028
Zinc	0.0307
Cadmium	0.0347
Silicon	0.0345
Germanium	0.0404