Medical Image Processing for Diagnostic Applications

Defect Pixel Interpolation

Online Course – Unit 16 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Defect Interpolation by Bandlimitation

Further Readings

Defect Interpolation by Bandlimitation

The initial idea for defect pixel interpolation using frequency domain methods is based on a fundamental result of signal theory:

- According to the sampling theorem, the ideal signal f(n) is required to be bandlimited regarding to a certain band frequency ξ .
- Defect detector elements bring intensities of corresponding pixels down to zero.
- Defect pixels cause high differences in intensities of neighboring pixels and thus imply higher frequencies in the 2-D image function. These higher frequencies cause a violation of the required bandlimitation.

Idea for defect interpolation: Replace defect pixels iteratively by enforcing bandlimitation.

Remark: Discrete signals are inherently bandlimited, consider this as a conceptual approach in the first place.

Defect Interpolation by Bandlimitation

compute FT of input signal $g(n)$	
	set $G(\xi)=0$ for $\xi < B_{ m lower}$ or $\xi > B_{ m upper}$
	compute inverse FT of corrected $G(\xi)$
	replace defect samples in $g(n)$ with values of the bandlimited signal
	UNTIL changes are below a threshold

Figure 1: Interpolation by enforcing a bandlimited signal in a frequency range of $[B_{lower}, B_{upper}]$

Drawbacks of Bandlimitation

The proposed method is quite simple and intuitive, but there exist a few serious practical issues:

- The bandlimitation B_{lower} , B_{upper} must be known.
- The interpolation scheme is computationally expensive, because each iteration requires the Fourier transform of the signal twice. This prohibits its straightforward practical use.
- The proposed interpolation algorithm is not optimal w. r. t. the minimum number of non-zero frequencies.
- Extrapolations decay outside the observation interval.
- The application of adaptive thresholding during interpolation is advantageous.

Topics

Summary Take Home Messages **Further Readings**

Take Home Messages

- Bandlimitation can iteratively be applied to a defect pixel image.
- Be careful when applying defect pixel interpolation.

Further Readings

 The method presented for defect pixel interpolation in the frequency domain was published by Til Aach and Volker Metzler in 2001:

> Til Aach and Volker Metzler. "Defect Interpolation in Digital Radiography: How Object-Oriented Transform Coding Helps". In: Proc. SPIE 4322. Medical Imaging 2001: Image Processing. Vol. 4322. San Diego, CA: SPIE, Feb. 2001, pp. 824-835. DOI: 10.1117/12.431161

 A recent article about defect pixel interpolation with respect to image quality issues can be found here:

Jan Kuttig et al. "Effects of Defect Pixel Correction Algorithms for X-ray Detectors on Image Quality in Planar Projection and Volumetric CT Data Sets". In: Measurement Science and Technology 26.9 (Aug. 2015). 095406 (14pp). DOI: 10.1088/0957-0233/26/9/095406