Key concepts on Deep Neural Networks

LATEST SUBMISSION GRADE 90%

1.	What is the "cache" used for in our implementation of forward propagation and backward propagation?
	$\bigcirc \ \ \text{It is used to keep track of the hyperparameters that we are searching over, to speed up computation.}$
	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.
	It is used to cache the intermediate values of the cost function during training.
	Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.

2. Among the following, which ones are "hyperparameters"? (Check all that apply.)

1 / 1 point

1 / 1 point

number of layers ${\it L}$ in the neural network
✓ Correct
] activation values $a^{[l]}$
size of the hidden layers $n^{[l]}$
✓ Correct
learning rate $lpha$
✓ Correct
number of iterations
✓ Correct
] weight matrices $W^{[l]}$
] bias vectors $b^{[l]}$

- 3. Which of the following statements is true?
 - The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.

1 / 1 point

	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.	
	✓ Correct	
4.	Vectorization allows you to compute forward propagation in an L -layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2,,L. True/False? True False	poi
	Correct Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},)$.	
5.	Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4, 3, 2, 1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?	poi
	<pre>1 * for(i in range(1, len(layer_dims)/2)): 2 parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01 3 parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01</pre>	


```
1 * for(i in range(1, len(layer_dims))):
2    parameter[%' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3    parameter[%' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

✓ Correct

6. Consider the following neural network.

1 / 1 point

function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False? True	 The number of layers <i>L</i> is 3. The number of hidden layers is 3. The number of layers <i>L</i> is 4. The number of hidden layers is 4. The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False 	 The number of layers <i>L</i> is 3. The number of hidden layers is 3. The number of layers <i>L</i> is 4. The number of hidden layers is 4. The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True 	 The number of layers <i>L</i> is 3. The number of hidden layers is 3. The number of layers <i>L</i> is 4. The number of hidden layers is 4. The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative. 	How many layers does this network have?	
 The number of layers <i>L</i> is 4. The number of hidden layers is 4. The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True 	 The number of layers <i>L</i> is 4. The number of hidden layers is 4. The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False 	 The number of layers <i>L</i> is 4. The number of hidden layers is 4. The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be 	 The number of layers <i>L</i> is 4. The number of hidden layers is 4. The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative. 	lacksquare The number of layers L is 4. The number of hidden layers is 3.	
 The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True 	 The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False 	 The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be 	 The number of layers <i>L</i> is 5. The number of hidden layers is 4. ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative. 	igcup The number of layers L is 3. The number of hidden layers is 3.	
 Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True 	 Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? True False 	 ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False? True False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be 	 ✓ Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False? ● True ● False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative. 	igcup The number of layers L is 4. The number of hidden layers is 4.	
Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. 7. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i> , since the gradient depends on it. True/False? True	Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. 7. During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False? © True False	Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. 7. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i> , since the gradient depends on it. True/False? ● True ► False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be	 Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. During forward propagation, in the forward function for a layer <i>l</i> you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer <i>l</i>, since the gradient depends on it. True/False? ● True ● False ✓ Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative. 	igcup The number of layers L is 5. The number of hidden layers is 4.	
function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False? True	function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False? True True False	function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False? True False Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be	function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False? True False Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.	Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The	
		Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be	Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.	function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False?	1/1 point

○ False

✓ Correct

9. Consider the following 2 hidden layer neural network:

0 / 1 point

Which of the following statements are True? (Check all that apply).

✓ Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $b^{[1]}$ will have shape (4, 1) ✓ Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $\ \ \ \ \ b^{[2]}$ will have shape (1, 1) $igspace b^{[2]}$ will have shape (3, 1) ✓ Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $lacksquare b^{[3]}$ will have shape (1, 1) ✓ Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

