University of Sargodha

BS 3rd Semester/Term Exam 2021

Subject: Information Technology

Paper: Linear Algebra (MATH-203)

Time Allowed: 02:30 Hours

Maximum Marks: 80

Note: Objective part is compulsory. Attempt any three questions from subjective part.

(Compulsory) **Objective Part**

Q.1. Write short answers of the following in 2-3 lines each on your answer sheet.

(2*16)

For what value of K the vectors (1, -2, K) in \mathbb{R}^3 be a linear combination of vectors (3, 0, -2) and i.

ii. Let $S = \{u = (1,2,1), v = (2,9,0), w = (3,3,4)\}$ form bases for R^3 . Find the vector v in R^3 whose coordinate vector relative to bases S is (-1,3,2).

iii. Use Wronskian to show that $f_1 = 1$, $f_2 = e^x$ and $f_3 = e^{2x}$ are linearly independent. iv.

If A is invertible matrix and n is nonnegative integer, then show that $(A^n)^{-1} = (A^{-1})^n$. v.

If B and C are both inverses of the matrix A, then B = C.

vi. Define Null space.

Show that matrix P is orthogonal if and only if P^T is orthogonal. vii.

viii. Define characteristic equation.

State Calay's Hamilton theorem. ix.

Show that matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$ is zero of $g(x) = x^2 + 3x - 10$. If A is symmetric then show that $(A^{-1})^T = (A^T)^{-1}$. X.

xi.

Normalize the vector v = (1,2,4,5). xii.

Consider the vector u = (1, -5, 3) and find $||u||_{\infty}, ||u||_{1}, ||u||_{2}$. xiii.

Show that set of all symmetric matrices is subspace of vector space of all $n \times n$ matrices. xiv.

If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$, & $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ find a & b. XV.

Write the basis and dimension of vector space V of all $M_{2\times 2}$ matrices. xvi.

Subjective part (3*16)

a) Find Eigen values and bases for Eigen spaces of $A = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$. Q.2.

b) Determine whether the vectors in \mathbb{R}^4 are linear independent or linear dependent (1,3,-1,-4), (3,8,-5,7), (2,9,4,23).

a) Determine whether the vector v = (3,3,-4) is a linear combination of Q.3.

(1,2,3), y = (2,3,7), z = (3,5,6).

b) Find the inverse of matrix A =

a) Solve the system by Gauss elimination method Q.4.

$$3x_1 + x_2 - x_3 = -4$$

$$x_1 + x_2 - 2x_3 = -4$$

$$-x_1 + 2x_2 - x_3 = 1.$$

b) Show that the set $\{1, i\}$ in \mathbb{C} is linearly independent over \mathbb{R} but linearly dependent over \mathbb{C} .

a) Consider the set $v = \mathbb{R}^n$ with standard addition and scalar multiplication defined as $rv = 0_v$ for Q.5. any $v \in \mathbb{R}^n$, $r \in \mathbb{R}$, where $F = \mathbb{R}$, Check whether the set V over F forms a vector space or not?

b) Compute the determinant of

a) Apply the Gram Schmidt process to transform the basis vectors $u_1 = (1,1,1), u_2 = (0,1,1)$ and Q 6. $u_3 = (0,0,1)$ into an orthogonal basis and then normalize the orthogonal basis vectors to obtain an orthonormal basis.

2 cannot be diagonalized. b) Show that the matrix