

Distribution of Components in Event-Driven Sensor Networks

Seminar presentation

Bc. Miroslav Hájek Software Architecture

Topics outline

- Lighting control system design
- Event-based messaging
- Buliding Management Systems IoT architectures:
 - CONDE, SorBet
- OpenAIS reference architecture
 - ODM: Object data model
 - Network stack
 - OGC: Object Group Communication
 - Deployment variations
- Example app design using OpenAIS

Lighting System in Smart Building

- Part of Building Management System
- Objectives
 - Uniform and bright illumination
 - Color matching
 - Inhabitant preferences
 - Power savings by:
 - Occupancy-based lighting
 - Daylight harvesting

Hardware components for Lighting

Control Architectures for Lighting

- **Centralized:** all sensors → single controller → all fixtures
- **Decentralized:** each fixture has all components
- Distributed: local communication between fixtures

Event based system

Building blocks:

• Publisher (Producer) → Message → Channel → Subscriber (Consumer)

Design Patterns:

- Mediator decoupling of components
- Observer notitication on update

Event-driven SOA

- 1) Event can trigger the invocation of service(s)
- 2) Service execution can produce new events

Building Management System (BMS / BAS)

Building Automation:

- sensing the environment
- making decisions
- acting when needed transparently
- Centralized control single point of failures
- Mainly wired communication
- Human intervention to configure new devices
- Proprietary technology devices
- Non-scalable architectures
- Isolation approach to security

CONDE – Component view

CONDE – Communication view

Decentralized system

- for decision and control
- in smart building apps
- using WSAN

SOrBet Architecture

OpenAIS Reference Architecture

- Horizon 2020 project (https://cordis.europa.eu/project/id/644332)
- Open Architectures for Intelligent Solid State Lighting Systems (http://openais.eu/en/results)

 "OpenAIS aims at setting the leading standard for inclusion of lighting for professional applications in to IoT, with a focus on office lighting. This will enable a transition from the currently existing closed and command oriented lighting control systems"

Pilot project validation in office space

- Installation in Witte Dame, Eindhoven in 2018
- 400 luminaires with embedded sensors

OpenAIS IoL Reference Architecture

Key objectives:

- Define an open architecture with standardized APIs
- Interoperable with BAS, cloud services and other systems
- Increase the building value by combining IoT, LED technology and smart grids
- Easy to specify, buy, install, maintain and use for all stakeholders in the value chain

Viewpoints for stakeholders:

- **Logical** logical functions and their relations
- Physical mapping of logical functions to real SW and HW
- **Networking** communication stack and protocols
- Security requirements based on LWM2M (CIA triad)

Logical view: ODM - Application layer

- **Actuator** light fixtures
- Sensor presence, light-level
- **Control** lighting controller
 - Stacked control (priority)
- **DataCollect** collection, storage
- Support device / function
 Grouping and Scene setting
- **Gateway** legacy system interface

Structural support for:

- Central controller to all lighting
- Fully distributed control in every single luminaire

3.3.1.2 and 3.3.2 OpenAIS - p. 43

Logical view: ODM - Infrastructure layer

- **Communication** network stack (L1 L6 OSI)
- **Discovery** of all available application functions (Sensor, Control, Actuator, DataCollect)
- **Device** properties of a physical device
- Configuration
 - configuration parameters of the system
 - modify only by commisioning tool
- Application OpenAIS application layer
- **Security** not isolated, but in entire system

15

• **Update** – remote software updates

Logical view: ODM - Interfaces

- IData (getter) produce and send measurements
- IControl (setter)
 execute funtion based on
 caller parameters

- IDiscover advertise presence on network
- IConfig commissioning, algorithmic, regulation settings

Networking view

Recommended MAC:

Wired: Ethernet

Wireless: 6LoWPAN / Thread

Transport:

- IPv6 (+ Multicast)
- UDP + DTLS

RESTful services

- CoAP (+ Multicast, + Observe)
- LWM2M
- CBOR format

Event Messaging

- Sensors *Time and Sequence number*:
 - Push-button: CLICK, HOLD, BREAK
 - Presence detector: PRESENCE, NO PRESENCE
 - **Light sensor**: BRIGHTNESS, STATUS
- Control commands:
 - Absolute settings: go to level x
 - Relative settings: step up x
 - Referenced settings: scene x recall
- Actuator:
 - Listen to Control commands
 - Regular status report to Control

3.3.5 OpenAIS - p. 57

Group Communication Example

3.3.5.4 OpenAIS - p. 60

CoAP API - URI Path Structure

- Configuration access to OpenAIS Group Communication
 - /4006/<object-instance-id>
- Access multiple group members (CoAP multicast or serial unicast)
 - /g/<object-ID>/<group-ID>/<resource-ID>
- Access single Object instance
 - /s/<object-ID>/<object-instance-ID>/<resource-ID>

Object & Resource ID: Short IDs - 16-bit integers - LWM2M Registry & OpenAIS Appendix A

Example: Object: Logical Light-Point Actuator, **Resouce:** Switch

- /#/4001/#/117
- POST coap://<target IP address>/<dir>/<Obj ID>/<object-instance>/117 {0:false, 2:2}

3.5.6.6 OpenAIS - p. 90

Physical view - Deployment

Deployment - Area controller

Example OpenAIS Application Design

Goals:

- Compare deployment of Control function to nodes:
 - (1) Sensor, (2) Actuator, (3) AreaController (slide 21, 22)
- **Recreate** Group communication example (slide 19)

GUI Applications in Rust with Docker network

- Logical Light-Point Actuator (/4001) *Actuator*
- Logical Illuminance Sensor (/4004) *Sensor*
- Logical Push Button (/4002) Sensor

Necessary ODM resources

- Rust + Device(FLTK) + Communication(COAP + CBOR)
- IDATA, ICONFIG, ICONTROL
- 4006 "oA Group"
 - 901 "Documentary Description" string get put
 - 600 "Application Group ID" uint16 get put
 - 602 "IP Addresses" multi-instances: [union] get put post
 - 603 "Members" multi-instances: [string] get put post
- 4001 "oA Logical Light-Point Actuator"
 - 901 "Documentary Description" string get put
 - 100 "Target ON/OFF" Boolean get
 - 101 "Target Intensity" float get
 - 921 "Priority" uint8 get put
 - 106 "Dimming Time" uint16 get put
 - 109 "Step Size" float get put
 - 117 "Switch" structure post
 - 118 "Dim" boolean post
 - 120 "Step" structure post

- 4004 "oA Logical Illuminance Sensor"
 - 901 "Documentary Description" string get put
 - 404 "Sensor Value" uint16 get
 - 400 "Less Than" uint16 get put (Optional)
 - 401 "Greater Than" uint16 get put (Optional)
 - 402 "Step" uint16 get put (Optional)
 - 403 "Minimum Update Interval" uint16 get put
- 4002 "oA Logical Push-Button Sensor"
 - 901 "Documentary Description" string get put
 - 202 "Push-Button Event Value" enumeration get
 - 203 "Single Click Time" uint16 get put
- 4012 "oA Status Report Structure"
 - 850 "Status Report Structure ID" uint8 get put
 - 851 "Keys" multi-instances: [string] get put post
- Same for every sensor and actuator:
 - 903 "Application Group ID" uint16 get put
 - 904 "Status Resend Time" uint16 get put
 - 919 "Status Report Structure ID" uint8 get put