Распределения и статистики

Рябенко Евгений riabenko.e@gmail.com

10 ноября 2016 г.

Вероятность события — доля испытаний, завершившихся наступлением события, в бесконечном эксперименте.

Закон больших чисел: на больших выборках частота события хорошо приближает его вероятность.

Дискретные случайные величины

Пусть величина X принимает значения, которые можно перенумеровать. Поставим каждому в соответствие вероятность его появления:

$$\{x_1, x_2, x_3, \dots\} \implies \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \dots \end{pmatrix},$$

причем:

$$p_i \ge 0, \quad \sum_{i=1} p_i = 1.$$

 $\mathbf{P}(X=x_i)=p_i$ — функция вероятности.

Распределение Бернулли

Случайная величина X с двумя исходами:

$$P(X = 1) = p,$$

 $P(X = 0) = 1 - p.$

Биномиальное распределение

X — сумма n одинаковых бернуллиевских случайных величин с параметром p:

$$\mathbf{P}(X = 0) = (1 - p)^{n},$$

$$\mathbf{P}(X = n) = p^{n},$$

$$\mathbf{P}(X = k) = \frac{n!}{k! (n - k)!} p^{k} (1 - p)^{n - k}, k = 0, 1, \dots, n.$$

Распределение Пуассона

X — счётчик:

$$\mathbf{P}(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \lambda > 0, k = 0, 1, \dots$$

то есть спустя три года, скромницей, с чемоданчиком балерины в руке, затем — шестнадцати лет, в пачках, с газовыми крыльцами за спиной, вольно сидящей на столе, с поднятым бокалом, среди бледных гуляк, затем — лет восемнадцати, в фатальном трауре, у перил над каскадом, затем... ах, во многих еще видах и позах, вплоть до самой последней — лежачей.

При помощи ретушировки и других фотофокусов как будто достигалось последовательное изменение лица Эммочки (искусник, между прочим, пользовался фотографиями ее матери), но стоило взглянуть ближе, и становилась безобразно ясной аляповатость этой пародии на работу времени. У Эммочки, выходившей из театра в мехах с цветами, прижатыми к плечу, были ноги, никогда не плясавшие; а на следующем снимке, изображавшем ее уже в венчальной дымке, стоял рядом с ней жених, стройный и высокий, но с кругленькой физиономией м-сье Пьера. В тридцать лет у нее появились условные морщины, проведенные без смысла, без жизни, без знания их истинного значения, — но знатоку говорящие совсем странное, как бывает, что случайное движение ветвей совпадает с жестом. понятным для глухонемого. А в сорок лет

Если множество значений X нельзя перенумеровать (например, [0,1]), то её распределение нельзя задать с помощью функции вероятности, потому что $\mathbf{P}(X=x)=0 \ \ \forall x.$

$$F_{X}\left(x
ight) =\mathbf{P}(X\leqslant x)$$
 — функция распределения.

$$f\left(x
ight)$$
 : $\int_{a}^{b}f\left(x
ight)dx=\mathbf{P}ig(a\leqslant X\leqslant big)$ — плотность распределения. $F\left(x
ight)=\int_{-\infty}^{x}f\left(u
ight)du$

Непрерывное равномерное распределение

$$X \sim U[a,b]$$
:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$

Нормальное распределение

$$X \sim N\left(\mu, \sigma^2\right)$$
:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Распределение хи-квадрат

$$X_1,X_2,\ldots,X_k\sim N\left(0,1
ight)$$
 независимы,

$$X = \sum\limits_{i=1}^k X_i^2 \sim \chi_k^2$$
 — распределение хи-квадрат с k степенями свободы.

0000000000

$$X_{1}\sim N\left(0,1
ight),X_{2}\sim\chi_{
u}^{2}$$
 независимы,

$$X=rac{X_{1}}{\sqrt{X_{2}/
u}}\sim St\left(
u
ight)$$
 — распределение Стьюдента с u степенями свободы.

При больших ν очень похоже на N(0,1).

Генеральная совокупность — множество объектов, свойства которых подлежат изучению в рассматриваемой задаче.

Выборка — конечное множество объектов, отобранных из генеральной совокупности для проведения измерений.

$$X^n = (X_1, \dots, X_n).$$

n — объём выборки.

 X^n — простая выборка, если X_1, \dots, X_n — независимые одинаково распределённые случайные величины (i.i.d.).

Основная задача статистики — описание $F_X(x)$ по реализации выборки.

Функция распределения

$$F_{n}\left(x
ight)=rac{1}{n}\sum_{i=1}^{n}\left[X_{i}\leqslant x
ight]$$
 — эмпирическая функция распределения.

Плотность распределения

Гистограммы

Продолжительность жизни крыс на строгой диете (в днях)

Гистограммы

Продолжительность жизни крыс на строгой диете (в днях)

Гистограммы

Продолжительность жизни крыс на строгой диете (в днях)

Рябенко Евгений

Характеристики распределений

• матожидание — среднее значение X:

$$\mathbb{E}X = \int x \, dF(x);$$

дисперсия — мера разброса X:

$$\mathbb{D}X = \mathbb{E}\left((X - \mathbb{E}X)^2\right);$$

• квантиль порядка $\alpha \in (0,1)$:

$$X_{\alpha}$$
: $\mathbf{P}(X \leqslant X_{\alpha}) \geqslant \alpha$, $\mathbf{P}(X \geqslant X_{\alpha}) \geqslant 1 - \alpha$;

эквивалентное определение:

$$X_{\alpha} = F^{-1}(\alpha) = \inf\{x \colon F(x) \geqslant \alpha\}.$$

- медиана квантиль порядка 0.5, центральное значение распределения;
- мода точка максимума функции вероятности или плотности:

$$\operatorname{mode}X=\operatorname*{argmax}_{x}f\left(x\right) ;$$

Статистика

Статистика $T(X^n)$ — любая измеримая функция выборки.

• выборочное среднее:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$$

выборочная дисперсия:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2};$$

вариационный ряд:

$$X_{(1)} \leqslant X_{(2)} \leqslant \ldots \leqslant X_{(n)};$$

ранг элемента выборки X_i :

$$rank(X_i) = r \colon X_i = X_{(r)};$$

- k-я порядковая статистика: $X_{(k)}$;
- ullet выборочный lpha-квантиль: $X_{([nlpha])}$;
- выборочная медиана:

$$m = \begin{cases} X_{(k+1)}, & \text{если } n = 2k+1, \\ \frac{X_{(k)} + X_{(k+1)}}{2}, & \text{если } n = 2k. \end{cases}$$

Оценки центральной тенденции

Выборочное среднее — среднее арифметическое по выборке. Выборочная медиана — центральный элемент вариационного ряда. Выборочная мода — самое распространённое значение в выборке.

Оценки центральной тенденции

(Huff, 1954):

Об ограниченности статистик

Уровень стартовой заработной платы выпускников юридических факультетов, США, 2012, данные NALP.

Об ограниченности статистик

Квартет Энскомба (Anscombe, 1973):

Nº	1	2	3	4
\bar{x}	9	9	9	9
S_x	11	11	11	11
\bar{y}	7.5	7.5	7.5	7.5
S_y	4.127	4.127	4.128	4.128
r_{xy}	0.816	0.816	0.816	0.816

Об ограниченности статистик

Точечные оценки

Пусть распределение генеральной совокупности параметрическое:

$$F(x) = F(x, \theta).$$

Статистика $\hat{\theta}_n = \hat{\theta}\left(X^n\right)$ — точечная оценка параметра θ . Какая оценка лучше?

Состоятельность: $\lim_{n \to \infty} \mathbf{P} \Big(\hat{\theta}_n = \theta \Big) = 1.$

Несмещённость: $\mathbb{E}\hat{\theta}_n = \theta$.

Асимптотическая несмещённость: $\lim_{n \to \infty} \mathbb{E} \hat{\theta}_n = \theta$.

Оптимальность: $\mathbb{D}\hat{\theta}_n = \min_{\hat{\theta} \colon \mathbb{E}\hat{\theta} = \theta} \mathbb{D}\hat{\theta}.$

Робастность: устойчивость $\hat{\theta}_n$ относительно

- ullet отклонений истинного распределения X от модельного семейства;
- выбросов, содержащихся в выборке.

Интервальные оценки

Доверительный интервал:

$$\mathbf{P}(\theta \in [C_L, C_U]) \geqslant 1 - \alpha,$$

 $1-\alpha$ — уровень доверия,

 C_L , C_U — нижний и верхний доверительные пределы.

Неверная интерпретация: неизвестный параметр лежит в пределах построенного доверительного интервала с вероятностью $1-\alpha$.

Верная интерпретация: при бесконечном повторении процедуры построения доверительного интервала на аналогичных выборках в $100(1-\alpha)\%$ случаев он будет содержать истинное значение θ .

Центральная предельная теорема

Пусть
$$X_1,\ldots,X_n$$
 i.i.d. с $\mathbb{E} X$ и $\mathbb{D} X<\infty$, тогда

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \sim \approx N\left(\mathbb{E}X, \frac{\mathbb{D}X}{n}\right).$$

Доверительный интервал

$$X\sim F\left(x, heta
ight) ,\ heta$$
 — неизвестный параметр, $heta=?$

$$X^n = (X_1, \dots, X_n),$$

 $\hat{\theta}$ — оценка θ по выборке.

 θ — оценка θ по выборке

Если мы знаем распределение $\hat{\theta}$ $F_{\hat{\theta}}(x)$, то:

$$\mathbf{P}\left(F_{\hat{\theta}}^{-1}\left(\frac{\alpha}{2}\right) \leqslant \theta \leqslant F_{\hat{\theta}}^{-1}\left(1 - \frac{\alpha}{2}\right)\right) = 1 - \alpha.$$

Доверительный интервал для среднего

$$X \sim F(x), \;\; X^n = (X_1, \dots, X_n)\,, \ ar{X}_n$$
 — оценка $\mathbb{E} X,$

$$ar{X}_n pprox \sim N\left(\mathbb{E}X, rac{\mathbb{D}X}{n}
ight)$$
 (ЦПТ) \Rightarrow

доверительный интервал для $\mathbb{E} X$:

$$\mathbf{P}\left(\bar{X}_n - z_{1-\frac{\alpha}{2}}\sqrt{\frac{\mathbb{D}X}{n}} \leqslant \mathbb{E}X \leqslant \bar{X}_n + z_{1-\frac{\alpha}{2}}\sqrt{\frac{\mathbb{D}X}{n}}\right) \approx 1 - \alpha.$$

Имеется продукт, определена его целевая аудитория. Как оценить его узнаваемость?

$$X = egin{cases} 1, & \text{член ЦА знает продукт,} \ 0, & \text{не знает.} \end{cases}$$

$$\hat{p}_n = \bar{X}_n$$

Опрос 1:
$$n = 10, \hat{p}_n = 0.6$$

Опрос 2:
$$n = 100, \hat{p}_n = 0.44$$

ЦПТ:
$$\hat{p}_n = \bar{X}_n \sim N\left(p, \frac{p(1-p)}{n}\right) \approx N\left(\hat{p}_n, \frac{\hat{p}_n(1-\hat{p}_n)}{n}\right)$$

Правило двух сигм:

$$\mathbf{P}\left(\hat{p}_n - 2\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}} \leqslant p \leqslant \hat{p}_n + 2\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}\right) \approx 0.95 \Rightarrow$$

Опрос 1:
$$p \in [0.29; 0.91]$$

Опрос 2:
$$p \in [0.34; 0.54]$$

Построение доверительных интервалов

Как можно оценить $F_{\hat{\theta}_n}(x)$ — выборочное распределение статистики $\hat{\theta}_n$? (Hesterberg, 2005):

• параметрический метод:

НОРМАЛЬНАЯ ПОПУЛЯЦИЯ неизвестное среднее μ

Выборочное распределение

Сделать предположение, что X распределена по закону $F_X(x)$, при выполнении которого закон распределения θ_n известен.

Построение доверительных интервалов

• наивный метод:

Случайность

Извлечь из генеральной совокупности N выборок объёма n и оценить выборочное распределение $\hat{ heta}_n$ эмпирическим.

Построение доверительных интервалов

• бутстреп:

Сгенерировать N «псевдовыборок» объёма n и оценить выборочное распределение $\hat{\theta}_n$ «псевдоэмпирическим».

Бутстреп

Извлечение выборок из генеральной совокупности — сэмплирование из неизвестного распределения $F_{X}\left(x
ight)$.

Лучшая оценка $F_{X}\left(x\right)$, которая у нас есть — $F_{X^{n}}\left(x\right)$:

Сэмплировать из неё — это то же самое, что делать из X^n выборки с возвращением объёма n.

Бутстреп-распределение

 X^{1*},\dots,X^{N*} — бутстреп-псевдовыборки из X^n объёма n, $\hat{\theta}_n^{1*},\dots,\hat{\theta}_n^{N*}$ — значения статистики на них, $F_{\hat{\theta}_n}^{boot}(x)$ — бутстреп-распределение $\hat{\theta}_n$ — эмпирическая функция распределения, построенная по значениям статистики на псевдовыборках.

По $F^{boot}_{\hat{\theta}_n}(x)$ можно строить доверительные интервалы для $\theta!$

Доверительные интервалы

• Посчитаем S_n^{boot} — выборочное стандартное отклонение $\hat{\theta}_n$ на псевдовыборках;

$$\mathbf{P}\Big(\hat{\theta}_n - t_{n-1, 1-\frac{\alpha}{2}} S_n^{boot} \leqslant \theta \leqslant \hat{\theta}_n + t_{n-1, 1-\frac{\alpha}{2}} S_n^{boot}\Big) \approx 1 - \alpha.$$

Это стьюдентизированный бутстреп.

• Возьмём выборочные квантили бутстреп-распределения:

$$\mathbf{P}\left(\left(F_{\hat{\theta}_n}^{boot}\right)^{-1}\left(\frac{\alpha}{2}\right) \leqslant \theta \leqslant \left(F_{\hat{\theta}_n}^{boot}\right)^{-1}\left(1-\frac{\alpha}{2}\right)\right) \approx 1-\alpha.$$

Это базовый бутстреп.

Справочники по статистике:

- Кобзарь А.И. Прикладная математическая статистика, 2006.
- Kanji G.K. 100 statistical tests, 2006.

Вводные учебники по статистике:

- Good P.I., Hardin J.W. Common Errors in Statistics (and How to Avoid Them), 2003.
- Reinhart A. Statistics Done Wrong. The woefully complete guide, http://www.statisticsdonewrong.com/

Бутстреп:

- Hesterberg T., Monaghan S., Moore D.S., Clipson A., Epstein R. Bootstrap methods and permutation tests. In Introduction to the Practice of Statistics, 2005. http://statweb.stanford.edu/~tibs/stat315a/ Supplements/bootstrap.pdf
- Efron B., Tibshirani R. An Introduction to the Bootstrap, 1993.