

Evaluation of Remedial Alternatives Using a Reactive Transport Model: Cement Creek/Animas River

Rob Runkel (runkel@usgs.gov)
U.S. Geological Survey, Toxic Substances Hydrology Program

Overview

- Part I: Study Objectives & Approach
- Part II: Background Info
 - Water Chemistry
 - Reactive Transport Model (OTEQ)
- Part III: Results
 - Concentrations and WQ Standards
 - Loads and Sources
 - OTEQ calibration and remedial scenarios

Part I: Study Objectives & Approach

Study Objective

- Main Objective:
Use a reactive transport model to evaluate
remedial options for Cement Creek
- Data Requirements:
 - Synoptic data set representing “steady-state” conditions
 - Spatial profiles of streamflow and concentration
- October 2012 Synoptic

Approach

- Develop spatial profiles of streamflow & concentration
- Study Reach: Ross Basin to A72 (11.5 miles)
- October 2012:
 - Acoustic Doppler Velocimeter (ADV) to estimate streamflow
 - 2 sampling teams & 3 ADVs
 - leapfrog sampling and day-to-day overlap (replication)
- Loading analysis & modeling assume streamflow and concentration do not vary with time.

October 2012 Sample Locations

- Chemical “snapshot”
 - 30 stream sites
 - 15 inflows
- Sampled for:
 - pH, Alkalinity
 - cations (Fe, Al, Zn...)
 - anions (SO₄, Cl...)
- leapfrog sampling
- day-to-day replication
- flow from ADV

October 2012 Sample Locations

October 2012 Sample Locations

Part II: Background Info: Water Chemistry & Reactive Transport Model (OTEQ)

Background: Water Chemistry

- Mineralized Ore + (Water & Oxygen)
 - Sulfuric Acid → lowers pH → elevates metals
- “Total Recoverable”
 - unfiltered sample: dissolved + solids
 - solids: Fe and Al hydroxides precipitate Cd, Cu, Zn, etc sorb onto Fe & Al
- “Dissolved”
 - filtered sample
 - pH-dependent solubility (low pH → high conc)

Reactive Transport

Reactive Transport

Reactive Transport

pH, October 2012

Aluminum, October 2012

Precipitated
Aluminum

Reactive Transport

Reaction / Removal

Fe(III) Precip. Al Precip. Cu Sorption Zn Sorption

3.5 4.5 5.5 6.5 ??

pH

Reactive Transport

Reaction / Removal

Fe(III) Precip. Al Precip. Cu Sorption Zn Sorption

pH
3.5 4.5 5.5 6.5 ??

Reactive Transport

- Quantify interplay between:
 - Hydrology: Advection, Dispersion, Storage, Inflow*
 - Geochemistry: Precip./Dissolution, Sorption, pH*
- OTEQ: One-dimensional Transport w/ Equilibrium Chemistry

OTEQ: One-dimensional Transport w/ EQuilibrium Chemistry

Transport (OTIS)

$$\frac{\partial C}{\partial t} = -\frac{Q \partial C}{A \partial X} + \frac{1}{A} \frac{\partial}{\partial X} (AD \frac{\partial C}{\partial X}) + \frac{q_{LIN}}{A} (C_L - C) + \alpha (C_S - C)$$

= Advection + Dispersion + Inflow + Storage

&

Equilibrium Chemistry (MINTEQ)

<http://water.usgs.gov/software/OTEQ>

Part III: Results

October 2012: Data Set Quality Assurance

- Loading analysis & modeling assume streamflow and concentration do not vary with time (Steady State)
- Data “Backbone” – Spatial Streamflow Profile
 - Essential starting point for loading analysis & modeling
 - leapfrog approach indicates streamflow was ~Steady
 - Multiple means of estimating streamflow provide redundancy; mass balance calculations used to develop spatial flow profile.
- Multiple observations of concentration provided by leapfrog approach also indicate steady-state

Part III: Results

Concentrations and Water Quality Standards

Above std, top to Bakers Bridge:

Al, Cd, Zn

Above std, top to Cascade Cr:

Fe

Above std, Mogul to Mineral:

Mn

Above std, top to cement mouth:

Cu

Above std, sub1 to cement mouth:

Pb

Part III: Results – Loads & Sources

Synoptic Sampling,
October 2-4, 2012

- Synoptic Study:
 - Spatial profiles of Streamflow & Conc.
- Load (mass / time) = flow * concentration
- → Spatial profiles of mass load
- + changes in load used to identify source areas

Part IV: Results – Loads & Sources

Part III: Results – Loads & Sources

Percent Contribution to SO₄ load at A72

October 2013 (19 April 2013 Q)

Percent Contribution to Zn load at A72

October 2012 (19 Apr 2013 Q profile)

Part III: Results – Loads & Sources

Oct. 2012: Sources of Zinc

Focus Area: Upper Cement Creek

Oct. 2012: Sources of Iron

Focus Area: Lower Cement Creek

Oct. 2012: Sources of Cadmium

Focus Areas: Lower Cement Creek
Upper Cement Creek
Upper Animas

Oct. 2012: Sources of Aluminum

Focus Areas: Lower Cement Creek
Mineral Creek

Part III Results: Reactive transport modeling

Study Objective

- Main Objective:
Use a reactive transport model to evaluate remedial options for Cement Creek
- Data Requirements:
 - Synoptic data set representing “steady-state” conditions
 - Spatial profiles of streamflow and concentration
- Doing the 2-Step:
 - Model Calibration: Reproduce existing conditions
 - Prediction: Modify calibrated model to reflect remediation

Model Calibration: Reproduce existing conditions

- Components:
 - Al, As, Cd, Cu, Fe(II), Fe(III), H⁺, Ni, Pb, SO₄, Zn, Ca, CO₃
- Reactions:
 - precipitation: Fe(OH)₃, Al(OH)₃
 - sorption of As, Cd, Cu, Pb, and Zn onto HFO
 - oxidation of Fe(II)
 - degassing of CO₂
- Model Input:
 - spatial streamflow profile (1 flow / site based on QA)
 - inflow chemistry (synoptic sampling)
 - equilibrium constants (MINTEQ database)

Model Calibration: Inflow Chemistry (C_L)

Set C_L to reproduce stream data; Zinc input values realistic

Model Calibration: Modify Reaction Constants

adjust Al(OH)₃ K_{sp} to reproduce precipitation below Cement/Animas confluence

Adjust K_{sp} to
reproduce precipitation

Predicting Effects of Remediation

- Modify calibrated model to reflect proposed remedial action
- Remedial Scenarios:
 - Plug Red & Bonita Adit (100% reduction)
 - 1996 Treatment Plant Conditions

Predicting Effects of Remediation

Role of Uncertainty

- Sources of Uncertainty:
 - Equilibrium “constants” describing precipitation and sorption vary over a wide range
 - degassing of CO₂ may or may not be an important process effecting pH
 - variation in low-flow water quality

Role of Uncertainty

Factor #1: Equilibrium Constants

- Solubility Products for Precipitation of Al & Fe
 - known to vary over a wide range
 - default values modified during calibration
- Surface complexation constants for sorption of As, Cd, Cu, Ni, Pb, Zn
 - defaults based on best estimates of Dzombak & Morel
 - default values modified during calibration
- Dealing w/ Uncertainty:
 - consider predictive simulations w/ both calibrated values and defaults

Role of Uncertainty

Factor #2: degassing effect on pH

- pH can be difficult to measure; pH data are uncertain
- Calibrated models with and without degassing have been developed
- Dealing w/ Uncertainty:
 - consider predictive simulations w/ and w/o degassing

Role of Uncertainty

Factor #3: Variation in low-flow water quality

Inflow concentrations are set during calibration

Inflow concentrations are known to vary:

Dealing w/ Uncertainty:

Conduct “worst case” simulations where Mineral Creek and Upper Animas inflow concentrations are set equal to the max concentrations (2006/2012)

Dealing w/ Uncertainty

- Sensitivity Analysis
 - Equilibrium constants: calibrated vs. defaults
 - Degassing: with vs. without
 - Inflow concentrations: calibrated vs. worst case
- 8 simulations for each remedial scenario
 - provides range of possible outcomes
 - “best estimate” = calibrated degas model (B)
 - compare results based on median (M)

Remedial Scenario #1: 100% removal of R&B load

Modify the calibrated model such that no water enters between the two stream sites that bracket the Red & Bonita

Results: 100% removal of Red & Bonita load

pH & Al – v. similar to existing conditions

Results: 100% removal of Red & Bonita load

Normalized Results

- Concentrations vary between constituents
 - normalize to allow for comparison

$$C_n = 100 * (\text{Prediction} - \text{Standard})$$

$$-----$$
$$(\text{Observed Data} - \text{Standard})$$

If:

$$\text{Prediction} = \text{Observed Data (2012)} \rightarrow C_n = 100$$

$$\text{Prediction} = \text{Standard} \rightarrow C_n = 0$$

Normalized Results: 100 % Removal of Red & Bonita load

Note: Al and Fe results assume all precipitated mass is removed (standards are in terms of totals; Cd is based on dissolved)

Remedial Scenario #2: 1996 Treatment Conditions

1996: Gladstone treatment system collected most of the water upstream of the South Fork

Move upstream boundary (above Mogul) to just above South Fork.

Specify upstream boundary chemistry based on 1996 data for Cement Creek, just downstream of the treatment system

Results: 1996 Treatment Conditions

pH

Al

Cd, 1996 Treatment Conditions

Zn, 1996 Treatment Conditions

Model “Validation”

Comparison of Treatment Simulation w/1996 Data

Results: 1996 Treatment Conditions

Note: Al and Fe results assume all precipitated mass is removed (standards are in terms of totals; Cd is based on dissolved)

Normalized Results, Revisited

Best Estimate Simulations

Summary

- Neither scenario results in the attainment of chronic water quality standards at A72
- Cement Creek is an appropriate focus for Fe & Zn
- Cd: need to consider Upper Animas
- Al: need to consider Mineral Creek