如何在大模型时代找到 科研切入点?

姓名: 张绍磊

导师: 冯洋研究员

中国科学院计算技术研究所

大模型时代前的研究范式

- ■自然语言处理任务
 - □判别式:文本分类、命名实体识别、信息抽取、词性标注 •••
 - □生成式: 机器翻译、问答、生成、摘要、阅读理解 •••
- 每个任务的解决方案涉及
 - □模型架构
 - ■符号主义、连接主义(统计模型、神经网络)
 - □训练数据
 - ■高资源、低资源、少样本、零样本
 - □学习方法
 - ■监督学习、半监督学习、自监督学习、无监督学习

- 1. 选择一个任务
- 2. 确定模型架构
- 3. 确定训练数据
- 4. 选择学习方法

大模型时代的研究范式

- 现有范式: 基座模型 + 微调
 - □预训练大语言模型作为基座模型
 - □针对通用领域或垂直领域的微调
 - 全量参数微调
 - ■部分参数微调或者添加参数微调
 - ■参数不变,in-context learning
 - □与人类对齐

如何在新的研究范式中找到切入点?

- 大语言模型 ⇔ 机器翻译
 - □大模型尚未能完成的任务
 - □大模型已经能完成的任务

- 大语言模型 ⇔ 机器翻译
 - □ 大模型尚未能完成的任务: 设计新的架构将大模型适配特定任务
 - □大模型已经能完成的任务:空间更小、挑战更大

■ 大模型已经能高质量完成的任务

■ 大模型已经能高质量完成的任务

利用机器翻译增强大模型的语言能力

Llama等大模型英语强、其他语言弱

■ 英语为主的大模型 → 增强其他语言生成/指令遵循能力

■ 英语为主的大模型 → 增强其他语言生成/指令遵循能力

成本高、效率低、持续预训练效果无法保证

收集大规模多语言语料,重新预训练+微调

■ 英语为主的大模型 → 增强其他语言生成/指令遵循能力

- 通过交互式机器翻译同时提升语言生成和指令遵循能力
 - □ 语言对齐:完成语言生成能力从英语到其他语言的迁移。
 - □复合任务:同时提升多语言、指令理解、多轮交互等能力。

能力、知识是以英语的 形式储存在基座模型 增强语言对齐 将这些能力知识从英语 迁移到其他语言

- 通过交互式机器翻译同时提升语言生成和指令遵循能力
 - □ 语言对齐:完成语言生成能力从英语到其他语言的迁移。
 - □复合任务:同时提升多语言、指令理解、多轮交互等能力。
 - □数据质量高:无毒性、偏见。

	Source	Interactive	Lang	#Instances	
	Alpaca ShareGPT	Single-turn Multi-turn	Eng English-	52K 90K	
-	Interactive Translation		Instruction Languages	Translation Languages	
		Multi-turn	English, Chinese	English, Chinese German, French	160K

Shaolei Zhang, Qingkai Fang, Zhuocheng Zhang, et,al. BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models.

翻译能力:中英翻译性能

■BayLing-13B 相比 GPT-4 取得 95% 翻译性能

(a) 中英翻译上的COMET得分

(b) 英中翻译上的COMET得分

图: WMT22 中英翻译测评

指令遵循能力:通用任务上的GPT-4评测结果

- ■多轮中英指令测试集
 - □35% 优于 GPT-3.5-turbo
 - □ 50% 不差于 GPT-3.5-turbo

图: 多轮交互指令上的GPT-4评估

BayLing表现出更强的

中文能力、多轮交互能力

知识跨语言迁移: AGIEval中文高考评测结果

- ■语言对齐可以将知识从英语迁移到中文
 - □基座模型中的知识以英语形式存储
 - □通过语言对齐将知识高效地迁移到中文,避免了用大量数据重新注入中文

知识

大部分知识往往和语言 无关

数学、物理、化学、生物 提升更加明显

表: 百聆在高考测试集的得分

Systems	Avg.	GaoKao (%)								
		chinese	english	mathqa	physics	chemistry	biology	history	geography	mathcloze
GPT-3.5-turbo	43.87	42.68	86.27	30.48	21.00	44.44	46.19	59.57	63.32	0.85
BayLing -13B	32.13	29.27	69.28	29.34	21.50	36.71	30.00	34.04	38.19	0.85
BayLing-7B	28.20	27.64	55.56	26.78	24.50	29.95	29.05	33.19	27.14	0.00
ChatGLM-6B	31.83	31.71	52.29	26.50	16.00	27.54	28.10	54.04	47.74	2.54
Vicuna-13B	29.36	21.14	71.24	21.94	23.00	31.88	27.14	33.19	34.67	0.00
Alpaca-7B	20.03	24.80	36.27	17.95	6.00	20.77	20.95	24.68	27.14	1.69

机器翻译技术 → 提升大模型能力

- Transformer 最早在MT任务中展现出强大的性能,逐渐拓展到其他任务。
- 机器翻译技术具有更好的泛化性
 - □ 多语言翻译 ⇒ 大模型的低资源语言能力

- □ 交互式翻译 ⇒ 同时提升大模型的语言能力/指令遵循能力
- □ 多模态翻译 ⇒ 多模态大模型
- □ 翻译可解释性 ⇒ 大模型可解释性
- □ ...

发挥传统NLP任务积 累的研究经验

谢谢大家!

张绍磊

中国科学院计算技术研究所 zhangshaolei20z@ict.ac.cn