Models of Computation

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

Program memory

compute x * x

compute $x^2 * x$

CPU

output memory

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

 $f(x) = z * 2 = 8$

input memory

$$x = 2$$

Program memory

compute
$$x * x$$

compute
$$x^2 * x$$

CPU

outnut memor

f(x) = 8

output memory

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

• Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Less power

Solve more

computational problems

Languages

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

We will use small alphabets:
$$\Sigma = \{a, b\}$$

Strings

a

ab

abba

baba

aaabbbaabab

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa| = 2$$

$$|a| = 1$$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

A string with no letters: λ

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

Languages

A language is any subset of Σ^*

Example:
$$\Sigma = \{a,b\}$$

 $\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,\ldots\}$

Languages:
$$\{\lambda\}$$
 $\{a,aa,aab\}$ $\{\lambda,abba,baba,aa,ab,aaaaaa\}$

Note that:

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$|\{\ \}| = |\varnothing| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\left. egin{aligned} \lambda \\ ab \\ aabb \\ aaaaaabbbbb \end{aligned}
ight) \in L \qquad abb
otin L$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:
$$\{a,ab,ba\}\{b,aa\}$$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = \underbrace{LL \cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\left\{a,bb\right\}* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{matrix}\right\}$$

Finite Automata

Finite Automaton

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Rejection

a b a

Input finished

Another Rejection

Another Example

Input finished

Rejection Example

Input finished

Languages Accepted by FAs FA M

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring M to an accepting state}

$$L(M) = \{abba\}$$

$$L(M) = \{\lambda, ab, abba\}$$

$$L(M) = \{a^n b : n \ge 0\}$$

L(M)= { all strings with prefix ab }

 $L(M) = \{ all strings without substring 001 \}$

$$L(M) = \{awa : w \in \{a,b\}^*\}$$

Regular Languages

Definition:

A language L is regular if there is FA M such that L = L(M)

Observation:

All languages accepted by FAs form the family of regular languages

Examples of regular languages:

```
 \{abba\} \qquad \{\lambda, ab, abba\}   \{awa: w \in \{a,b\}^*\} \quad \{a^nb: n \geq 0\}   \{all \ strings \ with \ prefix \ ab\}   \{all \ strings \ without \ substring \quad 001 \ \}
```

There exist automata that accept these Languages.

Non-Deterministic Finite Automata

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet = $\{a\}$

Alphabet = $\{a\}$

First Choice

All input is consumed

Input cannot be consumed

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

There is a computation: all the input is consumed and the automaton is in an accepting state

Example

aa is accepted by the NFA:

computation accepts aa

"reject"

Rejection example

An NFA rejects a string:

when there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

One path from q_0 to an accepting state suffices

Lambda Transitions

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

Language accepted: $L = \{aa\}$

Remarks:

• The λ symbol never appears on the input tape

Theorem:

Languages
accepted
by NFAs
Regular
Languages
Languages

accepted

NFAs and FAs have the same computation power

We can show:

 Languages

 accepted

 by NFAs

 Regular

 Languages

Languages

accepted

by NFAs

Regular

Languages

Proof-Step 1

Proof: Every FA is trivially an NFA

Any language L accepted by a FA is also accepted by an NFA

Proof-Step 2

```
Languages
accepted
by NFAs
Regular
Languages
```

Proof: Any NFA can be converted to an equivalent FA

Any language L accepted by an NFA is also accepted by a FA

Properties of Regular Languages

For regular languages L_1 and L_2 :

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Non-regular languages

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages
$$a*b \qquad b*c+a$$

$$b+c(a+b)*$$

$$etc...$$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts $\,L\,$

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}* = {\lambda,a,bc,aa,abc,bca,...}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

$$L((a+b\cdot c)*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a+b)\cdot a*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings with at least two consecutive 0 }

Theorem

```
Languages
Generated by
Regular Expressions

Regular
Languages
```

Standard Representations of Regular Languages

