강화학습 기초

2019305050 이제희

목차

1. MDP

2. 벨만 기대 방정식

3. Q함수

4. 이터레이션

MDP(Markov Decision Process)

순차적으로 행동을 결정해야 하는 문제를 풀기 위한 수학 모델 누적 보상을 최대로 하기위한 최적의 정책을 찾는 것이 목표

MDP의 5가지 요소

- 상태(state)
- 행동(action)
- 보상(reward)
- 상태변환확률(state transition probability)
- 감가율(discounting factor)

정책, 반환값

정책

각 상태에서 에이전트가 할 행동에 대한 정보

$$\pi(a|s) = P[A_t = a|S_t = s]$$

반환값

현재 시간 t를 기준으로 에피소드가 끝날 때까지 받을 보상을 감가해서 현재가치를 변환한 보상들의 합

$$G_t = R_{t+1} + \gamma R_{t+2}$$

벨만 기대 방정식(상태가치함수)

현재 상태에 대한 가치를 보여주는 방정식

Q함수(상태-행동가치함수)

상태와 행동 두 가지를 동시에 고려해 가치를 보여주는 방정식

$$q_{\pi}(s,a) = E_{\pi}[G_t|S_t = s, A_t = a]$$

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) + |S_t = s, A_t = a]$$

큐 함수로 표현한 가치함수

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s,a)$$

최적정책, 벨만 최적 방정식

최적정책

큐함수가 최대가 되는 행동을 반환

$$\pi^*(s,a) = \begin{cases} 1 & \text{if } a = argmax_{a \in A}q^*(s,a) \\ 0 & \text{otherwise} \end{cases}$$
, 최적 정책

벨만 최적 방정식

정책에 의한 확률적 요소를 배제하고 최적정책만 선택하는 것

$$v^*(s) = max_a E[R_{t+1} + \gamma v^*(S_{t+1}) | S_t = s, A_t = a]$$
$$q^*(s, a) = max_a E[R_{t+1} + \gamma q^*(S_{t+1}, a') | S_t = s, A_t = a]$$

정책 이터레이션

정책 평가와 정책 발전을 번갈아 수행하며 최적의 정책을 구하는 방법

정책 평가 : 이전 단계의 가치함수로부터 새로운 가치함수를 업데이트 이를 여러 번 반복하게 되면 참 가치함수를 알 수 있음

$$v_{k+1}(s) = \sum_{a \in A} \pi(a \mid s) (R_s^a + \gamma \sum_{s' \in s} P_{ss'}^a v_k(s'))$$

정책 발전 : 정책 평가를 바탕으로 정책을 더 좋은 방향으로 업데이트 현재 상태에서 선택가능한 가장 큰 큐함수를 가지는 행동을 수행함

가치 이터레이션

정책 평가만 수행해 가장 큰 값을 가지는 값으로 업데이트하는 방법

정책평가: 벨만 최적 방정식을 사용

$$v_{k+1}(s) \equiv max_a E[R_{t+1} + \gamma v_k(s_{t+1})) | S_t = s, A_t = a]$$

$$= max_a \sum_{s'} P_{ss'}^a [R_{t+1} + \gamma v_k(s')]$$