Programozáselmélet 9. gyakorlat

Boda Bálint 2022. őszi félév

3. (10. feladatsor) Lássa be, hogy az S program megoldja a következő feladatot:

$$A = (x : \mathbb{Z}^n)$$

 $B = (x' : \mathbb{Z}^n)$
 $Q = (x = x')$
 $R = (\forall k \in [1..n] : x[k] = x'[k] + 1)$

Informálisan: adott egy egész számokat tartalmazó vektor. Növeljük meg az összes elemét eggyel.

Az program állapottere $(x : \mathbb{Z}^n, i : \mathbb{N})$.

 $\cfrac{i\coloneqq 1}{i\neq n+1}$ $Q'=(Q\wedge i=1)$ a szekvencia közbülső állítása

x[i] := x[i] + 1 $Q'' \wedge n + 1 - i = t_0$ a ciklusmag mint szekvencia közbülső állítása, ahol $Q'' = P^{i \leftarrow i + 1}$

Legyen továbbá:

t = n + 1 - i a termináló függvény és

$$P = (\forall k \in [1..i-1]: x[k] = x'[k] + 1 \land i \in [1..n+1] \land \forall k \in [i..n]: x[k] = x'[k]) \text{ a ciklusinvariáns.}$$

Megoldás.

A szekvencia levezetési szabálya szerint azt kell belátni, hogy:

1.
$$Q \implies \text{lf}(i := 1, Q')$$

$$\begin{array}{c} Q \implies (Q')^{i \leftarrow 1} \\ Q \implies (Q \land 1 = 1) \checkmark \end{array}$$

2. $Q' \implies \text{lf}(DO, R)$, ahol DO jelöli a struktogramban szereplő ciklust. A ciklus levezetési szabálya alapján:

(a)
$$Q' \implies P$$
. Q' miatt $i = 1$, így:

$$(Q \land i = 1) \implies (\underbrace{\forall k \in [1..0] : x[k] = x'[k] + 1}_{\forall x \in \emptyset \text{ típusú állítás igaz}} \land \underbrace{1 \in [1..n+1]}_{n \text{ egy tömb hossza}} \land \underbrace{\forall k \in [1..n] : x[k] = x'[k]}_{\iff x = x', \text{ ami } Q})$$

$$(Q \wedge i = 1) \implies Q \checkmark$$

(b)
$$(P \land \neg \pi) \implies R$$
. Mivel $\neg \pi \iff (i = n + 1)$:

$$(\underbrace{\forall k \in [1..n] : x[k] = x'[k] + 1}_{R} \land \underbrace{n+1 \in [1..n+1]}_{igaz} \land \underbrace{\forall k \in [n+1..n] : x[k] = x'[k]}_{\forall x \in \emptyset : ... \text{ igaz}}) \implies R \checkmark$$

(c)
$$P \implies (\pi \vee \neg \pi)$$

$$P \implies \left((i \neq n+1) \lor (i = n+1) \right)$$

Ez nyilván teljesül, mert az egyenlőségvizsgálat eredménye csak igaz vagy hamis lehet.

1

(d) $(P \land \pi) \implies t > 0$. π miatt $i \neq n+1$ így: $(\forall k \in [1..i-1] : x[k] = x'[k] + 1 \land i \in [1..n] \land \forall k \in [i..n] : x[k] = x'[k]) \implies n+1-i > 0$

Mivel i értéke maximum n lehet ezért n+1-i>0.

(e) $(P \wedge \pi \wedge t = t_0) \implies \text{lf}(S_0, P \wedge t < t_0)$, ahol S_0 a DO ciklus ciklusmagja. Igy a szekvencia levezetési szabálya alapján:

i.
$$(P \land \pi \land t = t_0) \implies \text{lf}(x[i] := x[i] + 1, Q'' \land n + 1 - i = t_0)$$

$$Q'' = P^{i \leftarrow i + 1}$$

$$= (\forall k \in [1..i] : x[k] = x'[k] + 1 \land i + 1 \in [1..n + 1] \land \forall k \in [i + 1..n] : x[k] = x'[k])$$

$$= \begin{pmatrix} \forall k \in [1..i - 1] : x[k] = x'[k] + 1 \land \\ x[i] = x'[i] + 1 \land \\ i + 1 \in [1..n + 1] \land \\ \forall k \in [i + 1..n] : x[k] = x'[k] \end{pmatrix}$$

Mivel értékadás tömbelemekkel dolgozik be kell vezetünk az $i \in [1..n]$ feltételt, hogy elkerüljük a túlindexelést. Így:

$$(P \land \pi \land n + 1 - i = t_0) \implies (Q'' \land n + 1 - i = t_0 \land i \in [1..n])^{x[i] \leftarrow x[i] + 1}$$

Elvégezve a behelyettesítést:

$$(P \wedge \pi \wedge \underline{n+1-i} = t_0) \implies ((Q'')^{x[i]\leftarrow x[i]+1} \wedge \underline{n+1-i} = t_0 \wedge i \in [1..n])$$

Az aláhúzott rész mindkét oldalon teljesül ezért az kell még belátni, hogy:

$$\begin{pmatrix} \forall k \in [1..i-1] : x[k] = x'[k] + 1 \land \\ i \in [1..n+1] \land \\ \forall k \in [i..n] : x[k] = x'[k] \land \\ i \neq n+1 \end{pmatrix} \implies \begin{pmatrix} \forall k \in [1..i-1] : x[k] = x'[k] + 1 \land \\ x[i] + 1 = x'[i] + 1 \land \\ i + 1 \in [1..n+1] \land i \in [1..n] \land \\ \forall k \in [i+1..n] : x[k] = x'[k] \end{pmatrix}$$

Összevonva a bal oldal $i \in [1..n+1]$ és $i \neq n+1$ feltételét:

$$\begin{pmatrix} \forall k \in [1..i-1] : x[k] = x'[k] + 1 \land \\ i \in [1..n] \land \\ \forall k \in [i..n] : x[k] = x'[k] \land \end{pmatrix} \implies \begin{pmatrix} \frac{\forall k \in [1..i-1] : x[k] = x'[k] + 1 \land \\ x[i] + 1 = x'[i] + 1 \land \\ i + 1 \in [1..n+1] \land i \in [1..n] \land \\ \forall k \in [i+1..n] : x[k] = x'[k] \end{pmatrix}$$

Az első állítás mindkét oldalon szerepel, azzal több teendőnk nincs. Az $i \in [1..n]$ állítás szintén megtalálható mindkét oldalon. Nyilván emiatt a jobb oldal $i+1 \in [1..n+1]$ állítása igaz lesz. Vegyük észre, hogy, ha azt mondjuk, hogy x[i]+1=x'[i]+1, az ugyan az mintha azt mondanánk, hogy x[i]=x'[i], ezért ezt a feltételt összevonhatjuk a $\forall k \in [i+1..n]: x[k]=x'[k]$ kifejezéssel. Így a két oldal megegyezik:

$$\left(\begin{array}{l} \forall k \in [1..i-1] : x[k] = x'[k] + 1 \land \\ i \in [1..n] \land \\ \forall k \in [i..n] : x[k] = x'[k] \land \end{array} \right) \implies \left(\begin{array}{l} \forall k \in [1..i-1] : x[k] = x'[k] + 1 \land \\ i+1 \in [1..n+1] \land i \in [1..n] \land \\ \forall k \in [i..n] : x[k] = x'[k] \end{array} \right)$$

ii.
$$Q'' \wedge n + 1 - i = t_0 \implies \operatorname{lf}(i := i + 1, P \wedge (t < t_0))$$

$$Q'' \wedge n + 1 - i = t_0 \implies \operatorname{lf}(i := i + 1, P \wedge (n + 1 - i < t_0))$$

$$Q'' \wedge n + 1 - i = t_0 \implies (P \wedge (n + 1 - i < t_0))^{i \leftarrow i + 1}$$

$$P^{i \leftarrow i + 1} \wedge n + 1 - i = t_0 \implies (P^{i \leftarrow i + 1} \wedge n + 1 - (i + 1) < t_0)$$

$$P^{i \leftarrow i + 1} \wedge n + 1 - i = t_0 \implies (P^{i \leftarrow i + 1} \wedge n - i < t_0)$$

Mivel $t_0 = n + 1 - i$, ezért n - i < n - i + 1 nyilván teljesül.

Így S megoldja a specifikált feladatot.

 $\bf 2.$ Lássa be, hogy az S program megoldja a következő feladatot:

$$A = (n : \mathbb{N}, s : \mathbb{N})$$

$$B = (n' : \mathbb{N})$$

$$Q = (n = n' \land n > 2)$$

$$R = (Q \land s = Fib(n))$$

$$Fib(n) = \begin{cases} 0 & \text{ha } n = 1 \\ 1, & \text{ha } n = 2 \\ Fib(n-1) + Fib(n-2), & \text{ha } n > 2 \end{cases}$$

Informálisan: Adjuk meg az n. Fibonacci számot.

Az program állapottere $(n : \mathbb{N}, s : \mathbb{N}, z : \mathbb{N}, i : \mathbb{N})$.

$$\frac{(S)}{i,s,z\coloneqq 3,1,0}$$

$$\frac{i\le n}{[i,s,z\coloneqq i+1,s+z,s]}$$
 $Q'=(Q\wedge i=3\wedge s=1\wedge z=0)$ a szekvencia közbülső állítása

Legyen továbbá:

$$t=n+1-i$$
 a termináló függvény és
$$P=(Q\wedge s=Fib(i-1)\wedge z=Fib(i-2)\wedge i\in [3..n+1])$$
 a ciklusinvariáns.

Megoldás.

(c) $P \implies (\pi \vee \neg \pi)$

A szekvencia levezetési szabálya alapján a következőket kell belátni:

1.
$$Q \implies \text{lf}(i, s, z := 3, 1, 0; Q')$$

$$Q \implies (Q \land i = 3 \land s = 1 \land z = 0)^{i \leftarrow 3, s \leftarrow 1, z \leftarrow 0}$$

$$Q \implies (Q \land 3 = 3 \land 1 = 1 \land 0 = 0) \checkmark$$

2. $Q' \implies lf(S_2, R)$, ahol S_2 egy ciklus ezért a ciklus levezetési szabálya alapján:

(a)
$$Q' \implies P$$

$$(Q \land \underline{i = 3 \land s = 1 \land z = 0}) \implies (Q \land s = Fib(i - 1) \land z = Fib(i - 2) \land i \in [3..n + 1])$$
$$(Q \land i = 3 \land s = 1 \land z = 0) \implies (Q \land \underbrace{1 = Fib(2)}_{} \land \underbrace{0 = Fib(1)}_{} \land \underbrace{3 \in [3..n + 1]}_{}) \checkmark$$

(b)
$$(P \land \neg \pi) \implies R$$

$$((Q \land s = Fib(i-1) \land z = Fib(i-2) \land i \in [3..n+1]) \land i > n) \implies (Q \land s = Fib(n))$$

$$((Q \land s = Fib(i-1) \land z = Fib(i-2) \land \underline{i = n+1}) \implies (Q \land s = Fib(n))$$

$$((Q \land s = Fib(n) \land z = Fib(n-1)) \implies (Q \land s = Fib(n))$$

A bal oldal a jobb oldal egy szigorúbb változata ezért a maga után vonás igaz. ✓

A bal oldal igaz a jobb oldal pedig minden lehetséges esetet lefed ezért a feltétel teljesül. ✓

(e)
$$(P \wedge \pi \wedge t = t_0) \implies \text{lf}(i, s, z := i + 1, s + z, s; P \wedge t < t_0)$$

 $(P \wedge \pi \wedge t = t_0) \implies (P \wedge t < t_0)^{i \leftarrow i + 1, s \leftarrow s + z, z \leftarrow s}$
 $(P \wedge \pi \wedge t = t_0) \implies (Q \wedge s + z = Fib(i) \wedge s = Fib(i - 1) \wedge i + 1 \in [3..n + 1] \wedge n + i < t_0)$

A bal oldalból tudjuk, hogy: $t_0 = n + 1 - i$, így a termináló függvény csökkenésére vonatkozó feltétel nyilván teljesül. Így már csak a következőt kell belátni:

$$Q \wedge s = Fib(i-1) \wedge z = Fib(i-2) \wedge i \in [3..n+1] \wedge i \le n$$

$$\implies Q \wedge s + z = Fib(i) \wedge s = Fib(i-1) \wedge i + 1 \in [3..n+1]$$

Átalakítva a bal oldalt és $i \leq n$ miatt:

$$Q \wedge s = Fib(i-1) \wedge z = Fib(i-2) \wedge i \in [3..n]$$
$$\implies Q \wedge s + z = Fib(i) \wedge s = Fib(i-1) \wedge i \in [2..n]$$

További átalakítások után:

$$Q \wedge s = Fib(i-1) \wedge z = Fib(i-2) \wedge i \in [3..n]$$
$$\implies Q \wedge s = Fib(i-1) \wedge z = Fib(i) - s \wedge i \in [2..n]$$

Q miatt tudjuk, hogy n > 2 ezért, mivel $2 < i \le n$ ezért s = Fib(i-1) így:

$$Q \wedge s = Fib(i-1) \wedge z = Fib(i-2) \wedge i \in [3..n]$$

$$\implies Q \wedge s = Fib(i-1) \wedge z = Fib(i) - Fib(i-1) \wedge i \in [2..n]$$

Mivel n > 2, Fib(i) = Fib(i-1) + Fib(i-2), ezért Fib(i-2) = Fib(i) - Fib(i-1):

$$Q \wedge s = Fib(i-1) \wedge z = Fib(i-2) \wedge i \in [3..n]$$

$$\Longrightarrow Q \wedge s = Fib(i-1) \wedge z = Fib(i-2) \wedge i \in [2..n]$$

A bal oldalon a jobb oldal egy szigorúbb változata van, ezért a maga után vonás igaz. \checkmark Így az S program megoldja a feladatot.