

公開実用 昭和62- 10613

⑩ 日本国特許庁 (JP)

⑪ 実用新案出願公開

⑫ 公開実用新案公報 (U)

昭62- 10613

⑬ Int.CI.*

G 01 B 21/10
B 65 H 23/182
23/195

識別記号

厅内整理番号
8605-2F
Z-6758-3F
Z-6758-3F

⑭ 公開 昭和62年(1987)1月22日

審査請求 未請求 (全頁)

⑮ 考案の名称 張力自動制御におけるコイル径計測調整装置

⑯ 実 願 昭60-102210

⑰ 出 願 昭60(1985)7月4日

⑱ 考案者 渋川 清 秋川市小川84-3

⑲ 考案者 平岩 紀昭 相模原市相模大野5-20-10-102

⑳ 出願人 株式会社 ニレコ 八王子市石川町2951番地4

㉑ 代理人 弁理士 奈良 武

明細書

1. 考案の名称

張力自動制御におけるコイル径計測調整装置

2. 実用新案登録請求の範囲

(1) 卷取りロール又は巻出しロール径の変化に応じて張力を制御する張力自動制御装置において、前記卷取りロール又は巻出しロールに連動する第1のパルス発生器と、材料の走行量を計測するメジャーロールに連動する第2のパルス発生器と、前記第1及び第2のパルス発生器の出力信号を入力して巻取りロール又は巻出しロールのロール径を計測し、表示し、必要な制御信号を出力する制御手段とを有し、更に、前記制御手段は、較正信号発生手段と、該較正信号に応じて前記ロール径の計測値を較正するゲイン調整手段とを備えることを特徴とする張力自動制御におけるコイル径計測調整装置。

3. 考案の詳細な説明

[考案の技術分野]

考案は巻取りロール又は巻出しロールのロール径の変化によって材料の張力制御を行う張力自動制御装置に関し、特に、ロールの巻径（コイル径）を計測し調整するコイル径計測調整装置に関する。

〔従来技術と問題点〕

紙、または薄い鋼板等（以下、材料）のロールの巻径（以下、コイル径）の計測は、巻径に応じた最適な張力自動制御を行うために欠かせない技術である。

第3図は、かかるコイル径の計測に従来から用いられてきた計測調整装置の較正を示す。

1は巻取りロール又は巻出しロールで、材料2はメジャーロール3に接触し、材料2の走行によりメジャーロール3は回動する。4は巻取りロール又は巻出しロール1の軸に取り付けられた第1のパルス発生器で、前記ロール1の回動に応じたパルスを出力しロール1の回転を検出する。5はメジャーロール3の軸に取り付けられた第2のパルス発生器で、材料2の走行に応じたパルスを出

力し材料 2 の走行量を検出する。6 はコントローラである。6 1 はゲート信号発生回路、6 2 は AND ゲート、6 3 はカウンタ／ラッチ回路、6 4 は D/A コンバータ、6 5 は第 1 のアンプ、6 6 は第 2 のアンプ、6 7 はロール径表示手段である。7 はコントローラ 6 の出力を電力増幅するパワーアンプ、8 は該パワーアンプ出力に応じてロール 1 の回動を制動するブレーキ手段を示している。

第 4 図は上記従来のコイル径計測調整装置の主要部の動作を説明する波形図である。以下、第 3 図及び第 4 図を参照して従来技術の有していた問題点を説明する。

巻取りロール又は巻出レロール 1 のコイル径を \varnothing_1 、メジャーロール 3 のロール径を \varnothing_2 とし、更に、巻取りロール又は巻出レロール 1 のロール軸回転数を n_1 、メジャーロール 3 のロール軸回転数を n_2 とする。ロール 1 及びメジャーロール 3 は材料 2 を介して運動するので、第 1 式の関係が保たれている。

$$n_1 \cdot \pi \ell_1 = n_2 \cdot \pi \ell_2 \quad (1)$$

一方、メジャーロール3に連結するパルス発生器5がロール3の1回転につき出力するパルス出力数をP、実際にパルス発生器5が出力したパルス出力数を P_n とし、その比と第1式とから第2式の関係が得られる。

$$\ell_1 = \frac{1}{n_1} \cdot \frac{P_n}{P} \cdot \ell_2 \quad (2)$$

即ち、既知のメジャーロール径 ℓ_2 、既知のP値、及びロール1を1回転したとき（上記第1式における $n_1 = 1$ ）のメジャーロール3のパルス発生器5の出力パルス数をカウントした値 P_n と第2式とから、コイル径 ℓ_1 を求めることによる。第4図符号4.1はコイル1の1回転毎にパルス発生器4の出力するパルス、6.1.1は上記回転パルス4.1を入力するゲート信号発生回路6.1の出力ゲート信号、5.1はパルス発生器5の出力するパルス、6.2.1はANDゲート6.2の出力パルスをそれぞれ示す。カウンタ6.3は該出力パルスをカウントして P_n を求め、D/Aコンバータ6.4及

び固定した増幅率を有するアンプ 6 6 を介してロール径表示手段 6 7 にコイル径 \varnothing_2 に対応したアナログ値を表示し、コイル径の計測を行うものである。しかして、かかる従来のコイル径計測調整装置の調整や較正時においては、パルス発生器 4, 5 にパルス発生比が 1 : 1 P:n となる別個な 2 台の信号発生器をそれぞれ接続し、アンプ 6 6 の固定された増幅率を調整し、被検体であるコイルの実測径に表示手段 6 7 のコイル径表示値を合わせることにより較正等をしたものである。

しかしながら、かかる従来技術によれば、メジャーロール径が変更になった場合やロール径が損耗した場合等に前記の如く 2 台の信号発生器を作業現場に持込んで結線作業や調整・較正作業を行なわなければならず、極めて作業性に欠けるものであった。そこで、メジャーロール 3 の軸と、該軸に接続するパルス発生器 5 との間のカップリング部分にギヤー等の機械的な回転数変換手段を挿着し、メジャーロール 3 のロール径 \varnothing_2 と、メジャーロールの 1 回転当りのパルス発生器 5 の出力

パルス数 P とを整合するべく機械的に調整する等を行なう方法が試みられた。

しかし、かかる改善策にもかかわらず、機構が複雑、高価となり、その割には作業性がそれ程改善されないなど未解決の問題を有するものであった。

[考案の目的]

本考案は、上記の如き従来技術の有していた未解決の問題点を解決し、簡便な較正で能率的に調整や較正作業ができる作業性に優れたコイル径計測調整装置を提供することを目的とする。

[考案の概要]

本考案は上記の目的を達成するために、巻取りロール又は巻出しロールのロール径の変化に応じて張力を制御する張力自動制御装置において、前記巻取りロール又は巻出しロールに運動する第1のパルス発生器と、材料の走行量を計測するメジャーロールに運動する第2のパルス発生器と、前記第1及び第2のパルス発生器の出力信号を入力して巻取りロール又は巻出しロールのロール径を

計測し、表示し、必要な制御信号を出力する制御手段とを有し、更に、前記制御手段は較正信号発生手段と、該較正信号に応じて前記ロール径の計測値を較正するゲイン調整手段とを備えることによりコイル径計測調整装置を構成するもので、前記制御手段が備える較正信号発生手段とゲイン調整手段とにより、電気的に適宜必要とされる場合に簡便かつ正確に表示値等の計測値の調整・較正作業が容易に行なえるようにしたものである。

[実施例]

第1図に本考案に係るコイル径計測調整装置の一実施例の構成図を示す。図中符号において、従来技術の説明図（第3図）と同一の符号は該説明図に示した部材と同一作用をなす同一部材を示し、その詳細な説明を省略する。

本考案において、制御手段であるコントローラ6は較正信号発生手段としてのパルス発生器90、デジタル入力手段であるデジタルスイッチ91、プリセットカウンタ92及び切換手段93を有し、更にゲインを所望に調整して設定できる

ゲイン調整手段としての増幅率可変アンプ 9 4 を有してなるものである。

第2図は本実施例の主要部の動作を説明する波形図である。以下、第1図及び第2図を参照して本考案の作用を説明する。

メジャーロール 3 を変更した場合等の調整・較正作業において、メジャーロール 3 の実測ロール径 \varnothing_2 、パルス発生器 5 が出力するロール 1 回転当たりの既知の発生パルス数 P 値、及びコイル 1 のその時点で実測されたコイル径 \varnothing_1 から、前記第2式により計算して P_n を求める。ここで、計算値である P_n 値は、変更等された新しいメジャーロール 3 のロール径とパルス発生器 5 の 1 回転当たりのパルス発生数 P との比率においてコイル 1 のコイル径が \varnothing_1 の値である時にパルス発生器 5 が P_n のパルスを発生することを示した値である。

次に、上記の如くして得た P_n 値をデジタルスイッチ 9 1 にセットし、切換スイッチ 9 3 を第1図中符号 C 側に接続する。このときのコントローラ 6 内の要部の波形を、ゲート信号発生回路 6 1

に入力するプリセットカウンタ 9 2 の出力である波形 6 1 2、AND ゲート 6 2 に入力するパルス発生器 9 0 の出力波形 6 2 1、ゲート信号発生回路 6 1 の出力ゲート信号 6 2 2、及び AND ゲート 6 2 の出力波形 6 2 3 として第 2 図に示す。即ちプリセットカウンタ 9 2 は、デジタルスイッチ 9 1 によりセットされたカウント数 (P_n) までカウントを進めると出力パルス（第 2 図 6 1 2）をゲート信号発生回路 6 1 に入力する。

従って、プリセットカウンタ 9 2 は信号間隔 P_n のパルスを出力することとなる。かかる出力信号 6 1 2 は従来技術におけるパルス発生器 4 が出力するパルス（第 4 図 4 1）に相当するものである。しかして、一方、AND ゲート 6 2 に入力するパルス発生器 9 0 の出力波形 6 2 1 は従来技術におけるパルス発生器 5 が出力するパルス（第 4 図 5 1）に相当するものである。しかし、AND ゲート 6 2 によってゲート処理された信号 6 2 3 は P_n ケのパルスを有する図示（第 2 図 6 2 3）の信号となる。

ANDゲート62の上記出力信号623はカウンタ／ラッチ回路63に入力しカウントされラッチされる。更に、カウンタ／ラッチ回路63の出力信号はD/Aコンバータ64及び増幅率可変アンプ94を介してロール径表示手段67にアナログ表示される。

次に、上記状態において、先に P_n 値を算出する際に求めたコイル径 \varnothing_1 をロール径表示手段67が表示するように増幅率可変アンプ94増幅率を調整・設定する。

上記により、本実施例によればコイル径計測調整装置は簡便かつ能率的に調整・較正作業をなしうるものである。

その後、切換スイッチ93を第1図中符号M側に接続する。以降、コイル径 \varnothing_1 の計測は、コイル1に連動する第1のパルス発生器4及び、メジャーロール3に連動する第2のパルス発生器5の出力信号にもとづいてコントローラ6が正確なロール径表示を行うことができるものである。

なお、上記実施例の説明において、コイル径の

表示をアナログ値により行う如く説明したがそれに限られることなくデジタル表示等をなすこともでき、また、較正信号発生手段の構成も上記実施例の較正に限らず、例えばデジタルスイッチを他の入力手段とするることもできるることは勿論である。

[考案の効果]

以上、本考案によれば、コントローラに較正信号発生手段を設け、調整・較正時には、該較正手段によりコントローラに設けられたゲイン調整手段のゲインを調整・設定してコイル径計測値や表示の適正化を簡便かつ正確になすことができ、能率的かつ経済的に優れたコイル径計測調整装置を提供できるものである。

4. 図面の簡単な説明

第1図は本考案に係るコイル径計測調整装置の一実施例を示す較正図、第2図は実施例の主要部の動作を説明する波形図、第3図は従来技術を示す構成図、第4図は従来技術による動作を説明する波形図である。

- 1 … 卷取りロール又は巻出しロール
- 2 … 材料
- 3 … メジャーロール
- 4 … 第1のパルス発生器
- 5 … 第2のパルス発生器
- 6 … コントローラ
- 9 0 … パルス発生器
- 9 1 … デジタルスイッチ
- 9 2 … プリセットカウンタ
- 9 3 … 切換手段
- 9 4 … 増幅率可変アンプ

实用新案登録
出願人 株式会社ニレコ
代理人 犬理士奈良

第 1 図

176

実用新案登録

代理人 括弧士 奈 良

武

第 2 図

第 4 図

177

実開62-10613

代理人 辦理士 奈 良 武

第 3 図

178

実開62-10613

代理人 辨理士 奈 良 武