Data Structure and Algorithm Analysis(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Work Sheet 15

Mengxuan Wu

Question 15.1

Prim's Algorithm

Suppose we begin with the vertex a.

Edges with order considered:

Edge	Weight	Order
ac	1	1
cb	1	2
be	1	3
ef	1	4
fd	2	5
fh	3	6
hg	1	7

The total weight is 10.

Kruskal's Algorithm

Edges with order considered:

Edge	Weight	Order
ac	1	1
cb	1	2
be	1	3
ef	1	4
hg	1	5
fd	2	6
fh	3	7

The total weight is 10.

Question 15.2

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Question 15.3

Here is an example where the claim can be false.

This is a directed acyclic graph. The shortest path from a to d is $a \to b \to c \to d$ with weight -6. The lower path, $a \to d$, has weight -3.

However, if we add a constant weight to all edges to make them positive, the graph becomes:

Here c represents a non-negative constant. In this case, the shortest path from a to d is $a \to d$ with weight c. The upper path, $a \to b \to c \to d$, has weight 3 + 3c.

The real problem with this claim is that: for two distinct paths p_1 and p_2 from s to t, the number of edges in p_1 and p_2 can be different. Let n_1 and n_2 be the number of edges in p_1 and p_2 respectively. If the sum of weights of edges in p_1 is W_1 before adding a constant weight c to all edges, then the sum of weights of edges in p_1 after adding c is $W_1 + n_1 c$. Similarly, the sum of weights of edges in p_2 after adding c is $W_2 + n_2 c$. In this case, the difference $W_1 - W_2$ will change after adding c, becomes $W_1 + n_1 c - W_2 - n_2 c = (W_1 - W_2) + (n_1 - n_2)c$. It is possible that $W_1 - W_2 < 0$ but $n_1 - n_2 > 0$, making $W_1 + n_1 c - W_2 - n_2 c > 0$. Then the shortest path changes from p_1 to p_2 after adding c.