

FIG. 2a

FIG. 3

FIG. 4

FIG. 5

<u>H</u>G. &

	ion	J;	::	s on ut no	; full vith	
	normal; no cavitation	cavitatio alance ho	cavitation ane	ation; larg of bubble on eye b	avitation vitation v	
	normal; r	incipient cavitation; mainly balance hole cavitation	medium cavitation; mainly vane cavitation	full cavitation; large amount of bubbles on the suction eye but no surging	surging cavitation; full blown cavitation with surging	
GNAL	0	_	Q.	8		-
STICS SI	CLASS 0	CLASS 1	CLASS 2	CLASS 3	CLASS 4	
DIAGNOSTICS SIGNAL						
<u> </u>		206				

FIG. 9

72

FIG. 13

гід. 14a

Fig. 14b

Fig. 14d

* 4 E

Fig. 14e

Fig. 14f

* e . F*

400	
į	
	×

		404											
405		HEALTHY PUMP	PUMP FAULT 1	PUMP FAULT 2	PUMP FAULT 3	PUMP FAULT 4	PUMP FAULT 5	PUMP FAULT 6	PUMP FAULT 7	PUMP FAULT 8	PUMP FAULT 9	PUMP FAULT N-1	PUMP FAULT N
	ĻĽ	₹ ×	Ą	Ą×	A_Z	Ą×	A	Α	A _B	A	∀ [']	A _E	Ą
	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•
	f ₄	A ₈₄	A ₄₅	A ₇₈	A ₁₂	A ₄₇	A ₃₇	A ₁₂₇	A ₁₂₈	A ₂₃₄	A ₃₄	A ₃₃	A ₄₄
	f ₃	A ₇₈	A ₋₆₅	A_{56}	A ₉₀	A ₄₅	A ₆₇	A ₂₄	A ₁₂	A_{56}	A ₅₆	A ₇₆	A ₆₉
	f ₂	A ₆₇	A ₋₉₀	A ₄₅	A_7	A_3	A ₁₂	A ₄₇₈	A ₂₆	A ₈₃	A ₁₈₇	A ₇₃	A ₄₅
	- -	A ₃₄	A ₋₆₈	A ₄₅	A ₄₅	A ₃₆	A ₆₇	A ₂₇	A ₇₈	A ₉₆	A ₃₂	A ₁₆	A ₁₇
	ئ.	A ₃	A ₃₄	A ₅₆	A-23	A ₆₇	. A ₇₈	A ₂₃₄	A ₋₉₈	A ₂₆	A ₄	A ₀	A ₇₅

FIG. 14g

Divide the collected data into equal sets. Perform Hanning Windowing, FFT on each set to obtain 'Smoothed Periodogram' by averaging all the sets.

Identify the fundamental supply component by locating the component having maximum amplitude in the stator current spectrum. Record its frequency (F_s) and amplitude (FsAmp). Locate multiples of F_s (supply related components)

Calculate synchronous speed of the motor, $F_{\rm sync} = F_{\rm s}$ /polepairs. Locate the *slip frequency related* components by searching between (m $F_{\rm s}$ -2 $F_{\rm slmin}$) and (m $F_{\rm s}$ -10 $F_{\rm slmax}$) for m = 3,5 and 7.

 $F_{\text{slmax}} = F_{\text{sync}} * \text{maximum slip}$ $F_{\text{slmin}} = F_{\text{sync}} * \text{minimum slip}$

Calculate the *slip* from the above components. Locate $F_s + F_r$ and record its amplitude FrAmp where $F_r = F_{sync} * (1-slip)$

Search and locate the remaining 'slip frequency related' harmonics adjacent to other supply related components.

Eliminate all the 'slip frequency related' harmonics between F_s /2 and $3F_s$ /2 and measure the noise in the region.

noise_1 = [sum of noise between $\{(F_s - L - J) \text{ and } (F_s - L)\} + \{(F_s + L) \text{ and } (F_s + L + J)\}$]

noise_i = [sum of noise between $\{(F_s - L - J(i+1)) \text{ and } (F_s - L - Ji)\} + \{(F_s + L + Ji)\}$ and $(F_s + L + J(i+1))\}$] for i = 2 to 5, L=6*resolution, and J= F_s /10

Preprocess the attributes *slip*, *FsAmp*, *SigAmp*, *Noise_1*, *Noise_2*, *Noise_3*, *Noise_4* and *Noise_5* to make them acceptable by the Neural Network algorithms.

330

FIG. 15

328

Fig. 16

Fig. 17

Fig. 19

Fig. 20

Fig. 21

Fig. 22

IF all the attributes are NORMAL THEN condition is normal IF slip is SLLO and noise_2 is H/ THEN condition is low-cav IF noise_4 and noise_5 are VERH/ THEN condition is sev-cav IF noise_4 and noise_5 are VERH/ THEN condition is sev-cav IF noise_4 and noise_5 are SLH/ THEN condition is sev-cav IF FSAmp is SLLO and noise_5 is SLH/ THEN condition is sev-cav IF FSAmp is VERLO and noise_5 is SLH/ THEN condition is sev-cav IF FSAmp is LO and noise_4 is H/ THEN condition is sev-cav IF FSAmp is LO and noise_4 is VERH/ THEN condition is sev-cav IF FSAmp is LO and noise_4 is NORMAL and noise_5 is NORMAL THEN condition is low-block
IF FSAmp is SLLO and noise_4 is NORMAL and noise_5 is NORMAL THEN condition is sev-block
IF FSAmp is LO and noise_4 is NORMAL and noise_5 is NORMAL THEN condition is sev-block
IF slip and FSAmp are VERLO THEN condition is impel-fault
IF slip and FSAmp is WERH/ THEN condition is impel-fault
IF framp is VERH/ THEN condition is impel-fault

Fig. 23

Fig. 24

FIG. 28

FIG. 29

FIG. 30

[8b] AAV₂

FIG. 31

FIG. 32

SVAF Power [dB]

SVAF Power (dB)

FIG. 34

FIG. 36

FIG. 40

FIG. 41

FIG. 43

FIG. 44