D - II	A1 -	2		
Koll	NO		 	

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch: ECE Semester: 7th

Title of the Course: Electronic Instrumentation Course Code: EC 401 Time: 2 Hours

Maximum Marks: 30

Note: All the questions are compulsory. Assume any data suitably if found missing.

Q1. Calculate the meter current and indicated resistance for the ohmmeter circuit of Fig. 1 on its $R \times 100$ range when (a) $R_x = 0$ and (b) $R_x = 2.4$ K Ω where R_x is unknown resistance. The applied DC voltage is 1.5 V. Here $R_m = 3.82$ K Ω . The full-scale deflection (FSD) current of the galvanometer is 37.5 μ A.

Fig.1

Q.2. Determine the meter reading for the circuit in Fig. 2 when E= 5 V and the meter is set to its 10V range. The FET gate-source voltage is -5V, $V_p = +5$ V, $R_m = 1$ K Ω , and $I_m = 100$ μ A at full scale.

Fig.2

Q.3. A PMMC Instrument with FSD= $50\mu A$ and $R_m=1700\Omega$ is used in the half wave rectifier voltmeter circuit illustrated in Fig. 3. The silicon diode(D1) must have a minimum (peak) forward current of 100 μA when the measured voltage is 20% of FSD. The voltmeter is to indicate 50V rms at full scale. Calculate the values of R_S and R_{SH} . [6]

Fig.3

- Q.4. Explain the working principle of single and dual slope digital voltmeters and compare their performances. [6]
- Q.5 A dual slope A/D has R= 100 k Ω and C = 0.01 μ F. The reference voltage is 10 volts and the fixed integration time is 10 ms. Find the conversion time for a 6.8V input. [4]