

DS-UA 111 Data Science for Everyone

Week 10: Lecture 1

Testing Hypotheses

How can we validate the assumptions in a model with data?

DS-UA 111 Data Science for Everyone

Week 10: Lecture 1

Testing Hypotheses

Announcements

- ► Please check Week 10 agenda on NYU Classes
 - ►Homework 3/4
 - Lab 6
- ► Please check the Calendar linked to NYU Classes

- **▶** Simulation
 - ► Conditional Statements
 - **▶** Loops
 - ► Random Selection
- ▶ Distributions
 - Probability
 Distribution
 - ► Empirical Distribution
 - ▶ Parameters

References

- ► Simulation:
 - ► Chapters 9.1,9.2,9.3, 10.2,10.3

- Conditional Statements
 - We use a special computational data type called Boolean for True and False in Python
 - ► Think of True/False as
 - ▶Yes/No
 - ▶1/0
 - ►Not Empty/Empty...

▶ Loops

- We can repeatedly run a block of code in Python using a loop
- ▶ for loop
 - Runs the block of code for specified number of iterations
- ▶ while loop
 - ► Combines conditional statement and for loops
 - ► Runs block of code while the logical expression is True

- ► Random Selection
 - ▶ We have random and deterministic approaches to gathering observations
 - ► Simple Random Sample (SRS) means randomly picking from the population with equal probability for each observation
 - With replacement means we put the observations back. Without replacement means we don't put the observations back.

- Distributions
 - ► Random quantity with different possible values
 - ► Probability Distribution
 - ► Chance of any possible values in population
 - ► Empirical Distribution
 - Observed values in a random sample
 - ▶ We compute chance of value in the random sample by proportion of occurrences

Exercise

Pride and Prejudice by Jane Austen

▶ Can we make guesses about the length of words in the novel through sampling instead of counting?

▶ Simulation

- ► Often we try to determine numerical attributes of the probability distribution nicknamed parameters
- ▶ If we compute a statistic to estimate the parameter across many random samples, then we expect these estimates to converge on average to the parameter

Agenda

- Testing a Hypothesis
 - ► Null hypothesis
 - Alternative hypothesis
- Comparing Distributions
 - ► Statistics for goodness of fit

References

- ► Hypothesis Testing
 - ► Chapters 11.1,11.2

- Suppose we have a sample that might come from randomly sampling a population.
- Assuming we have a guess about the probability distribution for the population, then we can simulate random sampling

- Step 1: Hypotheses
- Step 2: Statistic
- Step 3:ProbabilityDistribution

▶ If we can associate a statistic to the distributions, then we can compare the statistic of the sample to the empirical distribution of the statistics simulated from the population

- Step 1: Hypotheses
- ►Step 2: Statistic
- Step 3:ProbabilityDistribution

- ► Step 1
 - ► Test chooses between two possible possibilities
 - Null hypothesis assumes the model captures the process behind the population generating the samples
 - Alternative hypothesis assumes the model captures the process behind the population generating the samples

- Step 1: Hypotheses
- ►Step 2: Statistic
- Step 3:ProbabilityDistribution

- ► Step 2
 - ► Compute a statistic that helps us to choose between hypotheses
 - ► Statistic should estimate the parameters in the population
- ► Step 3
 - ► Under the null hypothesis we simulate random sample from the population to generate an empirical distribution of the statistic

- Step 1: Hypotheses
- ►Step 2: Statistic
- Step 3:ProbabilityDistribution

► Step 2

- ► Compute a statistic that helps us to choose between hypotheses
- ► Statistic should estimate the parameters in the population
- ► Step 3
 - ► Under the null hypothesis we simulate random sample from the population to generate an empirical distribution of the statistic

Accept:

If the observed statistic is consistent with the empirical distribution

► Step 2

- ► Compute a statistic that helps us to choose between hypotheses
- ➤ Statistic should estimate the parameters in the population
- ► Step 3
 - ► Under the null hypothesis we simulate random sample from the population to generate an empirical distribution of the statistic

Reject:

If the observed statistic is not consistent with the empirical distribution

Example

Gregor Mendel

- ► Botanist studying the genetics of pea plants.
- Nalidated
 assumptions in
 model for
 expression of
 features like color

Total Variation Distance

- ➤ Suppose we have two distributions whose values correspond to categories. In other words, the statistical data type of the values is qualitative.
- ► How can we determine a statistic to compare them?

- ►Step 1: Differences
- ►Step 2: Absolute Value
- Step 3:
 Divide by Two

Total Variation Distance

- ► Step 1
 - ► Take the difference between the proportions corresponding to each category
- ► Step 2
 - ► Apply absolute value transformation to obtain positive numbers
- ► Step 3
 - ► Add the transformed numbers. Divide the summation by 2.

- ►Step 1: Differences
- Step 2:
 Absolute Value
- ►Step 3: Summation

Example

Juries

- ► Courts need to have jurors for trials
 - ► Eligible members of community
 - ► Chosen by identification
 - Selected from a panel to sit on jury

Summary

- Testing a Hypothesis
 - ► Null hypothesis
 - Alternative hypothesis
- ComparingDistributions
 - ► Statistics for goodness of fit

Goals

- Compare a sample and simulated samples to accept / reject hypotheses
- ► Compute the total variation distance as statistic to compare two distributions with multiple categories

