<u>Página inicial</u> / Meus cu	ursos / <u>CSA30 S73</u> / NP-Completude / <u>Questões 10</u>	
	Wednesday, 25 Aug 2021, 13:10	
	inalizada Wednesday, 25 Aug 2021, 13:13	
	8 minutos 2 segundos	
empregado		
Notas 6		
Avaliar 1	1 0,00 de um máximo de 10,00(100 %)	
Questão 1		
Correto		
Atingiu 1,00 de 1,00		
Assumindo $P eq NP$, então:	
Escolha uma opção:		
$@$ $NP ext{-completo} \cap P = \emptyset$		
$\bigcirc \ NP$ -difícil $= NP$	P	
$\bigcirc \ \ NP ext{-completo} = NP$		
\bigcirc $\mathit{NP} ext{-}completo = \mathit{P}$		
V		
Your answer is correct		
A resposta correta é: NP -completo $\cap \ P = \emptyset$		
Ouestão 2		
Correto		
Atingiu 1,00 de 1,00		
Um problema NP é T	NP-completo se:	
Escolha uma ou mais:		
o 3SAT pode ser	reduzido a ele em tempo polinomial.	
ele pode ser red	uzido em tempo polinomial para qualquer outro problema NP .	
ele pode ser red	uzido em tempo polinomial para o 3SAT.	
algum problema	em NP pode ser reduzido a ele em tempo polinomial.	
Your answer is correct	t.	
	o 3SAT pode ser reduzido a ele em tempo polinomial.	

Questão 3			
Correto			
Atingiu 1,00 de 1,00			
Considere que $A \leq_p B$, $C \leq_p B$ e $B \leq_p D$. Quais afirmações estão corretas?			
Escolha uma ou mais:			
$lacksquare A \in P$ se, e somente se, $C \in P$.			
$\ \square$ Se $A \in P$ ou $C \in P$, então $B \in P$.			
$lacksquare Se \ D \in P$ então $A \in P$ e $C \in P$.			
Your answer is correct.			
As respostas corretas são: Se $D \in P$ então $B \in P$.			
, Se $D \in P$ então $A \in P$ e $C \in P$.			
Questão 4			
Correto			
Atingiu 1,00 de 1,00			
Quais afirmações são verdadeiras?			
Escolha uma ou mais:			
Se um problema \(A\) é \(NP\)-completo então existe um algoritmo não-determinístico polinomial para \(A\).	~		
O problema de determinar se há um ciclo em um grafo não direcionado pertence a \(NP\).	~		
O problema de determinar se há um ciclo em um grafo não direcionado pertence a \(P\).	~		
Your answer is correct.			
As respostas corretas são: O problema de determinar se há um ciclo em um grafo não direcionado pertence a \(P\).			
, O problema de determinar se há um ciclo em um grafo não direcionado pertence a \(NP\).			
, Se um problema \(A\) é \(NP\)-completo então existe um algoritmo não-determinístico polinomial para \(A\).			

Questão 5	
Correto	
Atingiu 1,00 de 1,00	
Se \(A\) é um problem \(NP\), então:	
Escolha uma opção:	
○ \(A\) não pode ser decidido em tempo polinomial.	
se \(A\) pode ser decidido em tempo polinomial, então \(P = NP\).	
se \(A\) é \(NP\)-difícil, então \(A\) é \(NP\)-completo.	~
Your answer is correct.	
A resposta correta é: se \(A\) é \(NP\)-difícil, então \(A\) é \(NP\)-completo.	
Questão 6	
Correto	
Atingiu 1,00 de 1,00	
Seja \(S\) um problema \(NP\)-completo e \(Q\) e \(R\) dois problemas que não se sabe se pertencem a \(NP\). Se \(QR\), qual das seguintes afirmações é correta? Escolha uma opção:	\leq_p S\) e \(S \leq_p
○ \(Q\) é \(NP\)-completo	
○ \(Q\) é \(NP\)-difícil	
	~
○ \(R\) é \(NP\)-completo	
Your answer is correct.	
A resposta correta é: \(R\) é \(NP\)-difícil	
→ NP-Completude	
Seguir para	