CS 170 DISCUSSION 9

LINEAR PROGRAM AND DUALITY

Raymond Chan raychan3.github.io/cs170/fa17.html
UC Berkeley Fall 17

- Decision Variables
 - Things you have control over.
- Linear Objective Function
 - Optimize with respect to decision variables. Maximize or minimize.
- Constraints
 - Inequality or Equality
 - Restrictions for decision variables.

- General form of linear program.
- Turn ≥ into ≤ by multiplying by -1

•
$$g(x) \ge b \longrightarrow -g(x) \le -b$$

Turn an equality into two inequalities

•
$$g(x) = b$$

- $g(x) \le b$ and $g(x) \ge b$
- \longrightarrow g(x) \leq b and -g(x) \leq -b
- Can also move b to LHS.

max
$$x_1 + 6x_2$$

s.t. $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

$$\max x_1 + 6_2$$
s.t. $x_1 - 200 \le 0$

$$x_2 - 300 \le 0$$

$$x_1 + x_2 - 400 \le 0$$

$$x_1, x_2 \ge 0$$

- Other variants:
- Going between max and min by multiplying by -1 to objective function.
- Inequalities can turned into equalities by introducing slack variable.

•
$$x_1 + x_2 \le b$$

•
$$x_1 + x_2 + s = b$$
 and $s \ge 0$

- Decision variable x has no sign restrictions.
 - Add x^+ and x^- that corresponds to positive and negative of decision variable x.

•
$$x^+, x^- \ge 0$$

max
$$x_1 + 6x_2$$

s.t. $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

$$\max x_1 + 6_2$$
s.t. $x_1 - 200 \le 0$

$$x_2 - 300 \le 0$$

$$x_1 + x_2 - 400 \le 0$$

$$x_1, x_2 \ge 0$$

$\max x_1 + 6x_2$
s.t.
$x_1 \le 200$
$x_2 \le 300$
$x_1 + x_2 \le 400$
$x_1, x_2 \ge 0$

min
$$-x_1 - 6x_2$$

s.t.

$$x_1 + s_1 = 200$$

$$x_2 + s_2 = 300$$

$$x_1 + x_2 + s_3 = 400$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- Linear program is infeasible if constraints are too tight. Points cannot simultaneous satisfy all constraints.
 - $x \le 1$ and $x \ge 2$
- Feasible region is unbounded if we can achieve arbitrarily high (low for min problem) objective values.
 - max $x_1 + x_2$ subject to $x_1, x_2 \ge 0$

FEASIBLE REGION

- Feasible region consists of all points that satisfy all constraints.
- Contour lines are objective functions at different intercepts.
- Extreme points are where constraints intersect in feasible region.
- Optimal value where objective function is tangent to the extreme point of feasible region.
 - · Otherwise the objective function crosses the feasible region.
 - Can achieve better value of objective function.
 - Feasible region forms convex set.

max $x_1 + 6x_2$ s.t. $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

- Suppose we have maximization primal LP with optimal value z*
- How do the constraints affect z*?
- Suppose we have upper bound of optimal value of LP z_u , $z^* \le z_u$
- We can minimize z_u until $z^* = z_u$
- Smallest upper bound must be optimal solution to primal LP.
- Weight the constraints to obtain upper bound of objective value.
- Minimize the upper bound (dual LP).
- If primal LP's optimal value is the same as the dual LP's optimal value, we know that the optimal value is indeed the optimal.

Add multipliers y_1 , y_2 , y_3 for the constraints (not including nonnegativity)

$$\max x_1 + 6x_2$$

s.t.

$$(y_1) x_1 \le 200 (y_1)$$

$$(y_2) x_2 \le 300 (y_2)$$

$$(y_3) x_1 + x_2 \le 400 (y_3)$$

$$x_1, x_2 \ge 0$$

Suppose $[y_1 y_2 y_3] = [1, 6, 0]$

$$x_1 + 6x_2 \le 2000$$

We have an upper bound.

Obtaining linear combination of multipliers and constraints

$$y_1x_1 + y_2x_2 + y_3(x_1 + x_2) \le 200y_1 + 300y_2 + 400y_3$$

LHS is our upper bound of optimal value. Rearranging...

$$x_1(y_1 + y_3) + x_2(y_2 + y_3) \le 200y_1 + 300y_2 + 400y_3$$

To have an upper bound of optimal value, RHS needs to be objective function

We can relax the constraints to be \geq as we minimizing over y_i . Can't be negative because that will give us a trivial optimal of 0.

max
$$x_1 + 6x_2$$

s.t.
 $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

$$y_1 + y_3 = 1$$

 $y_2 + y_3 = 6$

$$y_1 + y_3 \ge 1$$

 $y_2 + y_3 \ge 6$

Minimize RHS subject to constraints.

min
$$200y_1 + 300y_2 + 400y_3$$
 s.t.

$$y_1 + y_3 \ge 1$$

 $y_2 + y_3 \ge 6$
 $y_1, y_2, y_3 \ge 0$

Nonnegativity constraints are added to not change sign of primal LP constraints.

If we have $y_2 < 0$, then inequality sign of constraint 2 in primal LP gets flipped.

max
$$x_1 + 6x_2$$

s.t.
 $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

max
$$x_1 + 6x_2$$

s.t.
 $(y_1) x_1 \le 200 (y_1)$
 $(y_2) x_2 \le 300 (y_2)$
 $(y_3) x_1 + x_2 \le 400 (y_3)$
 $x_1, x_2 \ge 0$

If we turn constraint 2 into equality, dual becomes

min
$$200y_1 + 300y_2 + 400y_3$$
 s.t.

$$y_1 + y_3 \ge 1$$

 $y_2 + y_3 \ge 6$
 $y_1, y_3 \ge 0$

No nonnegativity for y_2 .

max
$$x_1 + 6x_2$$

s.t.
 $x_1 \le 200$
 $x_2 = 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

max
$$x_1 + 6x_2$$

s.t.
 $(y_1) x_1 \le 200 (y_1)$
 $(y_2) x_2 = 300 (y_2)$
 $(y_3) x_1 + x_2 \le 400 (y_3)$
 $x_1, x_2 \ge 0$

Primal LP

max
$$x_1 + 6x_2$$
 s.t.

$$x_1 \le 200$$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$

$$x_1, x_2 \ge 0$$

$$s.t. \quad \mathbf{A}\mathbf{x} \leq \mathbf{b}$$
$$\mathbf{x} \geq \mathbf{0}$$

min
$$200y_1 + 300y_2 + 400y_3$$
 s.t.

$$y_1 + y_3 \ge 1$$

 $y_2 + y_3 \ge 6$
 $y_1, y_2, y_3 \ge 0$

s.t.
$$\mathbf{y^T A} \ge \mathbf{x}$$

 $\mathbf{y^T} \ge \mathbf{0^T}$

$$\max \begin{bmatrix} 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
s.t.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 200 \\ 300 \\ 400 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\min \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 200 \\ 300 \\ 400 \end{bmatrix} \\
\text{s.t.} \quad \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \ge \begin{bmatrix} 1 & 6 \end{bmatrix} \\
\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \ge \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

SOLVING LINEAR PROGRAMS

- 1. Graph feasible regions and find tangency between objective function and extreme points.
- 2. Find extreme points by intersecting constraints. Try extreme points in objective function.
- 3. Solve the dual LP. Plug in y_i multipliers and objective value into primal LP and solve for unknowns (x_i) using algebra.