ARCH모형의 필요성

- 지금까지의 시계열모형에서 오차항은 일정한 분산을 갖는 독립적인 백색잡음으로 <u>가정</u>
- 대부분 금융관련 시계열에서 간치는 백색잡음 처럼 보이지만 잔차의 절대값 또는 잔차 제곱항은 <u>자기상관관</u> 계를 갖음
- 또한, 오차항 분산이 시간에 따라 일정하지 않고 변한 다는 관측이 있음
- 오차항의 조건부 분산 (conditional variance)에 대한 모형을 고려
- 재무상품의 수익률 분산을 변동성 (volatility)이라 하며 이의 분석이 중요
- Engle (1982)이 ARCH (autoregressive conditional heteroskedasticity) 모형을 제시
- GARCH모형은 ARCH모형의 일반화 형태

모형의 표현

• 시계열이 예를 들어 AR(1)모형을 따른다 하자

$$Z_t = \phi Z_{t-1} + u_t$$

이 때, 오차항의 기대치와 분산은 다음과 같다.

$$E[u_t] = 0, Var[u_t] = \sigma_u^2$$

• 오차항이 서로 독립이 아니고 다음 관계를 갖는다 가정

$$u_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + w_t$$
 (w_t 는 백색잡음)

(즉, 체곱오차항이 AR(q)모형을 따른다고 가정)

• 오차항의 조건부 분산

$$\sigma_t^2 = Var[u_t | u_{t-1}, \dots] = E[u_t^2 | u_{t-1}, \dots] = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2$$

이 형태 모형을 ARCH(q) 모형이라 함.

ARCH모형의 정상성 조건

- 오차항의조건없는 분산 (unconditional variance)은 시간에 따라 일정 (상수) $Var[u_t] = E[u_t^2] = \sigma_u^2$
- 오차항의 조건부 분산 σ_t^2 은 확률변수이며 시간에 따라 변화 $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_n u_{t-n}^2$
- 오차항의 조건부 분산 과 조건없는 분산의 관계 $Var[u_t]$ 는 $\sigma_u^2 = E[\sigma_t^2] = E[\alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2]$ • ARCH모형이 정상적일 때 다음이 성립

$$\sigma_u^2 = \frac{\alpha_0}{1 - \alpha_1 - \dots - \alpha_n}$$

 $\sigma_u^2 = \frac{\alpha_0}{1 - \alpha_1 - \dots - \alpha_q}$ $\int_{\omega} \omega^2 = \lambda_0 + \lambda_1 \int_{\omega} \omega^2 + \dots + \lambda_q \int_{\omega} \omega^2$ • ARCH(q)모형의 정상적 조건 $\alpha_1 + \dots + \alpha_q < 1$ 방생 이외 거야킹 $\int_{\omega} \omega^2 = \lambda_0 + \lambda_1 \int_{\omega} \omega^2 + \dots + \lambda_q \int_{\omega} \omega^2$

$$0 = 0 + \alpha_1 0 + \cdots$$

Aprilor ation

평균 방정식과 분산 방정식

- ARCH모형은 오차항의 분산에 대한 것이므로 분산 방정식이라 함.
- 시계열 모형에서는 오차항이 포함된 평균방정식이 함께 사용되어야함.
- (예 1) AR(1)-ARCH(1) 모형
 - 평균방정식: $Z_t = \phi Z_{t-1} + u_t$
 - 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2$
- (예 2) MA(1)-ARCH(2) 모형
 - 평균방정식: $Z_t = u_t \theta u_{t-1}$
 - 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 u_{t-2}^2$
- (예3) 회귀모형-ARCH(3) 모형
 - 평균방정식: $Y_t = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u_t$
 - 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 u_{t-2}^2 + \alpha_3 u_{t-3}^2$

ARCH-M (ARCH in mean)모형

- 평균방정식에 조건부 분산을 포함시킨 모형
- 평균방정식이 회귀모형인 경우 ARCH-M 형태

- 평균방정식:
$$Y_t = \beta_0 + \beta_1 X_1 + yg(\sigma_t^2) + u_t$$

- 분산방정식:
$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2$$
 여기서 $g(\sigma_t^2)$ 는 다음 함수 사용 $g(\sigma_t^2) = \sigma_t^2; g(\sigma_t^2) = \sigma_t; g(\sigma_t^2) = \ln(\sigma_t^2)$

- GARCH (Generalized autoregressive conditional heteroskedasticity) 모형은 Bollerslev (1986)이 ARCH모형을(환경)한 것임.
- 조건부 분산항에 과거 시차의 조건부 분산항들이 추가된 것으로 다음의 형태를 가짐

$$- \sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$

- 오차항이 GARCH(Q, q) 모형을 따른다고 함
- ARCH모형은 제곱오차항이 AR모형을 따르는 반면 ,GARCH모형은 제곱오차항이 ARMA모형을 따르게 됨.

GARCH모형의 정상성 조건

• 오차항의 조건없는 분산 (unconditional variance)은 시간에 따라 일정 (상수)

$$Var[u_t] = E[u_t^2] = \sigma_u^2$$

• GARCH모형이 정상적일 때 다음이 성립

$$\sigma_u^2 = \frac{\alpha_0}{1 - \alpha_1 - \dots - \alpha_q - \beta_1 - \dots - \beta_p}$$

• ARCH(q)모형의 정상적 조건

$$\sum_{i=1}^{q} \alpha_i + \sum_{i=1}^{p} \beta_i < 1$$

GARCH 모형의 예측

- 평균방정식: $Y_t = c + u_t$ (수평적 모형) 이시
- 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2$ GARCH(1,1)
- 시계열 (반응치) 예측

$$f_{T,k} = E[Y_{T+k}|Y_T,...] = 0, k = 1,2,...$$

• 시계열 예측오차 분산

$$v_{T,1} = Var[Y_{T+1}|Y_T,...] = Var[u_{T+1}|Y_T,...] = E[\sigma_{T+1}^2|Y_T,...]$$

$$v_{T,k} = Var[Y_{T+k}|Y_T,...] = Var[u_{T+k}|Y_T,...] = E[\sigma_{T+k}^2|Y_T,...], k = 1,2,...$$

- 조건부 분산 (변동성) 예측
 - 한단계이후 예측: $h_{T,1} = E[\sigma_{T+1}^2 | Y_T, \dots] = E[\alpha_0 + \alpha_1 u_T^2 + \beta_1 \sigma_T^2 | Y_T, \dots] = \alpha_0 + \alpha_1 u_T^2 + \beta_1 \sigma_T^2$
 - 2단계이후 예측: $h_{T,2} = E[\sigma_{T+2}^2 | Y_T, \dots] = E[\alpha_0 + \alpha_1 u_{T+1}^2 + \beta_1 \sigma_{T+1}^2 | Y_T, \dots] = \alpha_0 + (\alpha_1 + \beta_1) h_{T,1}$

GARCH 모형의 변형

GARCH-M 모형

ARCH-M 모형과 같이 평균방정식에 조건부 분산을 포함시킨 모형

- 평균방정식:
$$Y_t = \beta_0 + \beta_1 X_1 + yg(\sigma_t^2) + u_t$$

- 분산방정식:
$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$

- 여기서
$$g(\sigma_t^2)$$
는 다음 함수 사용
$$-g(\sigma_t^2) = \sigma_t^2; g(\sigma_t^2) = \sigma_t; g(\sigma_t^2) = \ln(\sigma_t^2)$$
• **E-GARCH 모형**

Nelson (1991)이 제안한 것으로 로그 변동성을 모형화 이에너무지

- 분산방정식: $log(\sigma_t^2) = \alpha_0 + \sum_{i=1}^q \frac{\alpha_i |u_{t-i}| + \gamma_i u_{t-i}}{\sigma_{t-i}} + \sum_{j=1}^p \beta_j \log(\sigma_{t-j}^2)$
- 나쁜 뉴스가 좋은 뉴스보다 변동성에 더 큰 충격을 준다고 가정

GARCH 모형의 변형

T-GARCH 모형

- Glosten 등 (1993)제안
- 분산방정식: $\sigma_t^2 = \alpha_0 + \sum_{i=1}^q (\alpha_i + \gamma_i I_{t-i}) u_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$

$$- \quad \mathsf{G7}|\mathcal{M}|_{t-i} = \begin{cases} 1 & u_{t-i} < 0 \\ 0 & u_{t-i} \geq 0 \end{cases} \quad \text{and} \quad \overset{\mathsf{d}_i + \tau_i}{\underset{\mathsf{d}_i \to \mathsf{d}}{\overset{\mathsf{d}_i + \tau_i}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}{\overset{\mathsf{d}_i + \tau_i}{\overset{\mathsf{d}_i + \tau_i}{\overset{\mathsf{d}_i + \tau_i}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i + \tau_i}}}{\overset{\mathsf{d}_i + \tau_i}}{\overset{\mathsf{d}_i +$$

- 오차항의 부호에 따라 변동성에 미치는 영향을 다르게 평가하는 모형
- 즉, 오차항이 양일 때 (좋은 소식) 조건부 분산에 미치는 영향보다 오차항이 음일 때 (나쁜 소식) 미치는 영향이 크도록 고안
- 이와 유사한 비대칭 모형이 다수 있음

ARCH 모형의 추정

• 최우추정법사용 $u_t | u_{t-1}, ... \sim Nor(0, \sigma_t^2)$ • 로그우도함수 (평균방정식이 회귀모형인경우) $\ln L(\theta | y_1, ..., y_n) = -\frac{1}{2} \sum_{t=1}^n \left[\log(2\pi) + \log(\sigma_t^2) + \frac{u_t^2}{\sigma_t^2} \right] \qquad \left(-\frac{1}{2} \frac{2 \frac{h e^t}{h e^t}}{h e^t} \right)$ $u_t = y_t - x_t \beta$ $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 \quad \text{AUM}(q)$

• ARCH 시차 q 는 여러가지를 시도한 후 정보기준 (information criteria)으로 결정 ACF, PACF 한 보기 취하게 했다.

ARCH 모형의 추정

C, b, do, x1... 24

예: AR(1)-ARCH(q) 모형의 추정

• 평균방정식: $Y_t = c + \phi Y_{t-1} + u_t$

• 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2$

(분석 결과)

- SC 및 HQ 정보기준은 시차 3에서 최소가 되고 AIC 는 시차 4에서 최소이므로, 시차 3 또는 4인 모형이 적절하다고 볼 수 있다.
- 다음에서 언급할 LM 검정을 통한 잔차 진단을 사용하는 것이 바람직할 것이다. $\frac{3}{2}$

	ARCH(1)	ARCH(2)	ARCH(3)	ARCH(4)
С	1.121 (4.9)	1.181 (5.9)	1.196 (6.1)	1.198 (6.1)
φ	0.113 (2.8)	0.115 (3.1)	0.110 (3.0)	0.102 (2.8)
α_0	36.84 (12.2)	30.73(10.5)	27.26 (9.4)	24.84 (7.8)
$\begin{vmatrix} \alpha_1 \\ \alpha_2 \end{vmatrix}$	0.175 (3.4)	0.156 (2.8)	0.155 (3.0)	0.134 (2.6)
α_3		0.157 (2.3)	0.123 (1.9)	0.112 (1.5)
α_4			0.118 (2.4)	0.100 (2.1)
				0.060 (1.3)
Log L	-2929.19			
/ sc	6.635	-2916.92	-2912.09	-2909.10
/ HQ	6.622	6.615	6.612	6.621
 AIC	6.614	6.599	6.592	6.594
\'\"		6.588	6.580	6.577

*괄호안 숫자는 t값임

ARCH 효과 검정

LM (Lagrange multiplier) 검정

- Breusch-Pagan (1979) 제안
- 잔차 진단에 사용토록 Engle (1982) 추천
- 가설: H_0 : $\alpha_1 = \cdots = \alpha_q = 0$
- 검정 절차
 - 1. 모형 추정으로 부터 잔차 u_t 를 얻는다.
 - 2. 잔차제곱을 사용하여 다음 회귀모형의 R^2 을 산출한다. $u_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \varepsilon_t$
 - 3. 검정통계량 $LM = nR^2$ 산출
 - 4. $LM > \chi^2(q,\alpha)$ 이면 가설 기각 $\rightarrow ARCH$ 화와 있다.

ARCH 효과 검정

(예) 다음은 어떤 평균 방정식 추정후의 잔차에 대한 ARCH 효과를 검정한 결과 (Eviews)이다.

Heteroscedasticity Test: ARCH

122.992 Prob. F(4,155) F-statistic

0.0000

Obs*R-squared (LM) 121.667 Prob. Chi-Square(4)
Test Equation:

0.0000 6x42735

Dependent Variable: RESID^2

Included observation: 160 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.23E-24	2.91E-24	2.1416	0.0338
RESID^2(-1)	0.99761	0.08049	12.3949	0.0000
RESID^2(-2)	-0.24527	0.11185	-2.1929	0.0298
RESID^2(-3)	0.22998	0.11181	2.0570	0.0414
RESID^2(-4)	-0.12037	0.08092	-1.4875	0.1389

분석결과: 잔차에 ARCH효과가 남아 있으므로 간차에 대한 ARCH모형을 추가하여 (자시 분석해야 함.

GARCH 모형의 추정

• 최우추정법사용

$$u_t|u_{t-1},...\sim Nor(0,\sigma_t^2)$$

• 로그우도함수 (평균방정식이 회귀모형인 경우)

$$\ln L(\theta|y_1, ..., y_n) = -\frac{1}{2} \sum_{t=1}^n \left[\log(2\pi) + \log(\sigma_t^2) + \frac{u_t^2}{\sigma_t^2} \right]$$

$$u_t = y_t - x_t \beta$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$

GARCH 모형의 추정

(예) 다음은 2017.7 ~ 2018.6 간의 kospi200의 수익률에 대한 GARCH(1,1) 모형의 추정결과이다.

- ARCH항은 유의하지 않으나 GARCH항은 유의하다.

$$\alpha_1 + \beta_1 = 0.9654$$

< | > 2000 32 013

GARCH 모형의 추정

(예) 다음은 어떤 자산의 수익률 (RET)을 모 형화하는데 GARCH(3,3)을 사용하고 Eviews로 추정한 결과이다.

- 시차 3에서 ARCH 항이 유의하며 시차 3 에서 GARCH 항 역시 5%에서 유의함을 알수있다.
- $-\alpha_1 + \alpha_2 + \alpha_3 + \beta_1 + \beta_2 + \beta_3 = 0.4553$

	Coefficient	Std. Error	z-Statistic	Prob.			
C	1.99E-05	1.43E-05	1.3908	0.1643			
- C			1.3700	0.1043			
Variance Equation							
С	2.94E-08	7.73E-09	3.81	0.0001			
RESID(-1)^2	0.0491	0.0460	1.07	0.2862			
RESID(-2)^2	-0.0567	0.0518	-1.10	0.2729			
RESID(-3)^2	0.1778	0.0564	3.15	0.0016			
GARCH(-1)	0.5208	0.2745	1.90	0.0578			
GARCH(-2)	0.1133	0.3179	0.36	0.7216			
GARCH(-3)	-0.3490	0.1595	-2.19	0.0286			

R-squared -0.00163

Adjusted R-squared -0.02849