Simulation of Muscle Reflex Control System And Observing the Implication of Positive Feedback in the Control of Movement

Presented By:

Asfina Hassan Juicy

ID: 1818017
Department of Biomedical Engineering,
Bangladesh University of Engineering and Technology(BUET)
Dhaka, Bangladesh

Introduction

Generally in our body

Negative Feedback System

(Muscle response opposes change)

- Force feedback loop tends to hold force constant in face of disturbances.
- Displacement feedback loop tends to hold length constant.

Where does Positive Feedback System work?

In load-bearing tasks such as locomotion

In Positive Feedback System: Signals from force-sensing afferents reflexly increase the force the receptors sense

Introduction

Positive Feedback System Example

In spinal and decerebrate cats, heteronymous reflexes mediated by tendon organ lb afferents switch from being inhibitory in static postures to excitatory during locomotion

But Positive Feedback Systems show INSTABILITY

The paper verifies the stability of positive feedback system:

- For gain between 0 to 1 (Between this range the loop gain automatically becomes attenuated when muscles actively shorten and reduce their force producing capability)
- Addition of reflex delay stabilizes the system

Control System

Neglected:

- Length and Velocity Dependence of Muscle Force Production
- **Tendon Compliance**
- **Dynamic Transfer Functions**

Non-Linear Reflex Model

Included:

- Length-Tension and Force Velocity Relationships are represented
- Tendon Compliance Included
- Viscoelastic Stiffness Included

Literature Used for Model Reference: Implications of Positive Feedback in the Control of Movement

Modelling of Elements

Source of Model:

https://journals.physiology.org/doi/full/10.1152/jn.1997.77.6.3237

Modelling of Elements

Source of Model:

https://journals.physiology.org/doi/full/10.1152/jn.1997.77.6.3237

Non-Linear Reflex Model

 The contractile element is modeled as a first-order low-pass filter with a cutoff frequency of 3.2 Hz. Feedback via the series (tendon) compliance adds a second pole, also at 3 Hz

 The length-tension curve is a sigmoidal relationship made up of two exponential functions

 The force-velocity curve made up of a Hill-type hyperbolic function for negative (shortening) velocities and an exponential function for positive and an exponential function for positive (stretch) velocities

Force Feedback and spindle IA feedback represented by a linear transfer function

Constructed Simulink Model

Simple Reflex Model

Non-Linear Reflex Model

Results

Simple Reflex Model

Non-Linear Reflex Model

Conclusions

This analysis provides the conclusion that that positive force feedback confers useful load compensation in case of animal movement.

Delays and displacement gains provide stabilizing influences.

THANK YOU

Appendix

force gain root locus - simple reflex model

