Closed-form estimation of panels with attrition and refreshment

Grigory Franguridi

Lidia Kosenkova

University of Southern California Center for Economic and Social Research University of Virginia Department of Economics

DSE 2024 August 7

Attrition and refreshment

Nonrandom attrition in panel data is well-documented: Rubin (1976), Hausman & Wise (1979), Fitzgerald, Gottschalk & Moffitt (1998) and others

Refreshment samples to reduce attrition bias: KISH & HESS (1959), WISSEN & MEURS (1989), RIDDER (1992), LIN & SHAEFFER (1995), BHATTACHARYA (2008)

Additively nonignorable attrition:

HIRANO, IMBENS, RIDDER & RUBIN (2001): identification T=2 DENG, HILLYGUS, REITER, SI & ZHENG (2013): review SI, REITER & HILLYGUS (2015): Bayesian approach CHEN, FELT & HYUNH (2017): payment innovations and cash usage SADINLE & REITER (2019): general missingness patterns HOONHOUT & RIDDER (2019): identification T>2

Alternative identification assumptions: Nevo (2003)

Results

- ▶ New identification assumption
- ▶ Nonparametric approach without tuning parameters
- Closed-form "plug-in" estimator of the parameter defined by moment conditions
- ▶ Consistency, inference
- Nonparametric bootstrap
- ▶ Monte Carlo simulations
- ► Empirical illustration

Outline

Framework

Examples

Identification

Estimation

Asymptotics

MC

Conclusion

Framework

Framework

Panel
$$Z_t = (Y_t, X_t) \in \mathbb{R}^{d_t}$$
 over $T = 2$ periods

Attrition in period 2: stay if W = 1

Data:

- Period 1: Z_1
- Period 2: $Z_2|W=1$ and refreshment Z_2^r (independent sample)

Put differently, we have access to

- ▶ balanced panel $(Z_1, Z_2)|W = 1$ (notation: CDF F^w)
- period marginals Z_1 and Z_2^r (notation: CDFs F_1 and F_2 , resp.)

Target parameter θ_0 satisfying

$$Em(Z_1, Z_2; \theta_0) = \int m(z_1, z_2; \theta_0) dF(z_1, z_2) = 0,$$

where $F(z_1, z_2)$ is the full-panel (unselected) CDF

Example 1: linear regression with two-way fixed effects

$$y_{it} = \alpha_i + f_t + x'_{it}\beta + \varepsilon_{it}$$

 $(\alpha_i, y_{i1}, x_{i1}, y_{i2}, x_{i2})_{i=1}^n \sim \text{IID},$ allow **arbitrary correlation** between α_i and x_{it} ("fixed effects")

Drop index i:

$$y_t = \alpha + f_t + x_t'\beta + \varepsilon_t$$

Within transform in population:

$$\ddot{\zeta}_t := \psi_t(\zeta_1, \zeta_2, E\zeta_1, E\zeta_2) := \zeta_t - \frac{1}{2} (\zeta_1 + \zeta_2) - E\zeta_t + \frac{1}{2} E(\zeta_1 + \zeta_2)$$

Then

$$\ddot{y}_t = \ddot{x}_t'\beta + \ddot{\varepsilon}_t$$

Examples

Example 1: linear regression with two-way fixed effects

Under strict exogeneity and rank condition,

$$\beta = (E [\ddot{x}_t \ddot{x}_t'])^{-1} E [\ddot{x}_t \ddot{y}_t]$$

$$= (E [\psi_t(x_1, x_2, Ex_1, Ex_2)\psi_t(x_1, x_2, Ex_1, Ex_2)'])^{-1} \times$$

$$\times E [\psi_t(x_1, x_2, Ex_1, Ex_2)\psi_t(y_1, y_2, Ey_1, Ey_2)]$$

Therefore, β is a functional of the joint distribution of (y_1, x_1, y_2, x_2)

Our framework: $(z_1, z_2) = (y_1, x_1, y_2, x_2)$

Example 2: diff-in-diff

Outcomes y_{it} are tracked for individuals i over periods t = 1, 2, with some individuals treated in period 2

Classical diff-in-diff estimator:

$$DID := E[y_{i2} - y_{i1} | d_{i2} = 1] - E[y_{i2} - y_{i1} | d_{i2} = 0]$$

Under parallel trends, identifies the average treatment effect on the treated

Our framework:

DID as a functional of the joint distribution F of (y_{i1}, y_{i2}, d_{i2}) ,

$$DID = \int \frac{(y_2 - y_1)}{P(d_2 = 1)} dF(y_1, y_2, 1) - \int \frac{(y_2 - y_1)}{P(d_2 = 0)} dF(y_1, y_2, 0)$$

Example 3: quantile treatment effects

T=3 periods, treatment d_3 in the last period

Data: random sample from (y_1, y_2, y_3, d_3)

Target: quantile treatment effect on the treated

$$QTT(\tau) = F_{y_3(1)|d_3=1}^{-1}(\tau) - F_{y_3(0)|d_3=1}^{-1}(\tau)$$

Callaway, Li (2019) show that, under distributional parallel trends and copula stability,

$$F_{y_3(0)|d_3=1}(y) = P \left[F_{\Delta y_3|d_3=0}^{-1} \left(F_{\Delta y_2|d_3=1}(\Delta y_2) \right) \right]$$

$$\leq y - F_{y_2|d_3=1}^{-1} \left(F_{y_1|d_3=1}(y_1) \right) \mid d_3 = 1 \right].$$

Our framework: $z_1 = (y_1, y_2), z_2 = (y_3, d_3)$

Empirical illustration: income regression

Linear dynamic panel

$$income_{it} = \alpha_i + f_t + \theta \cdot income_{i,t-1} + \beta_1 age_{it} + \beta_2 age_{it}^2 + \varepsilon_{it}$$

Data: Understanding of America Survey by USC CESR

Waves 1-2: $N_1 = 4413$, $N_2 = 3738$ (attrition 18%), refreshment sample: $N_r^1 = 4523$

Waves 2-3: $N_{2,total} = 8261$, $N_3 = 5686$ (attrition 31%), refreshment sample: $N_r^2 = 1936$, $N_{3,total} = 7622$

Identification

Key identity:

$$\underbrace{F(z_1, z_2)}_{\text{target}} = \underbrace{\frac{P(W = 1)}{P(W = 1 | Z_1 \leqslant z_1, Z_2 \leqslant z_2)}}_{\text{weight}} \cdot \underbrace{F^w(z_1, z_2)}_{\text{balanced pane}}$$

No identification without further restrictions:

- need to identify $P(W = 1 | Z_1 \leq z_1, Z_2 \leq z_2)$
- extra information $F_1(z_1), F_2(z_2)$

Assumption (Identification)

 $P(W = 1|Z_1 \le z_1, Z_2 \le z_2) = G(k_1(z_1) + k_2(z_2))$ for a know continuous strictly increasing function $G: R \to R$ and some unknown functions $k_1: R^{d_1} \to R$, $k_2: R^{d_2} \to R$.

Identification assumption by Hirano et al 2001

$$P(W = 1|Z_1 \le z_1, Z_2 \le z_2) = G(k_1(z_1) + k_2(z_2))$$

Compare with AN (additive nonignorability) HIRANO, IMBENS, RIDDER, RUBIN (2001):

$$P(W = 1|Z_1 = z_1, Z_2 = z_2) = G(k_1(z_1) + k_2(z_2)).$$

- ▶ Advantage: interpretation
- Disadvantage: computational complication

Comparing identification assumptions

Suppose $Z_1, Z_2 \in [0, 1]^2$ and the conditional probability of staying is given by

$$P(W = 1|Z_1 = z_1, Z_2 = z_2) = az_1^2 + bz_1z_2 + az_2^2.$$

$$P(W = 1 | Z_1 \leq z_1, Z_2 \leq z_2) = \int_{-\infty}^{z_1} \int_{-\infty}^{z_2} \frac{P(W = 1 | Z_1 = t_1, Z_2 = t_2)}{F(z_1, z_2)} f(t_1, t_2) dt_1 dt_2.$$

- a = 2/11, b = 7/11: our assumption holds with, but HIRR does not;
- a = 1/2, b = 0: our does not hold, while HIRR holds;
- \bullet a = 0, b = 1: both assumptions hold.

Identification

Key identity:

$$\underbrace{F(z_1, z_2)}_{\text{target}} = \underbrace{\frac{P(W = 1)}{P(W = 1 | Z_1 \leqslant z_1, Z_2 \leqslant z_2)}}_{\text{weight}} \cdot \underbrace{F^w(z_1, z_2)}_{\text{balanced panel}}.$$

Identifying restriction:

$$P(W = 1 | Z_1 \le z_1, Z_2 \le z_2) = G(k_1(z_1) + k_2(z_2)).$$

Then:

$$G(k_1(z_1) + k_2(z_2)) = \frac{P(W=1)}{P(W=1|Z_1 \le z_1, Z_2 \le z_2)} \cdot F^w(z_1, z_2).$$

Identification

Denote:

$$\Phi(p,F_{1},F_{2},F_{1}^{w},F_{2}^{w},F^{w}) = \frac{pF^{w}}{G\left(G^{-1}\left(\frac{pF_{1}^{w}}{F_{1}}\right) + G^{-1}\left(\frac{pF_{2}^{w}}{F_{2}}\right) - G^{-1}\left(p\right)\right)}.$$

Theorem (Identification)

$$F = \Phi(p, F_1, F_2, F_1^w, F_2^w, F^w)$$

Estimation

Step 1.

Plug-in estimator of the joint CDF:

$$\hat{\mathbf{F}}(z_1, z_2) = \Phi\left(\hat{p}, \hat{F}_1(z_1), \hat{F}_2(z_2), \hat{F}_1^w(z_1), \hat{F}_2^w(z_2), \hat{F}^w(z_1, z_2)\right),\,$$

where $\hat{F}_1, \hat{F}_2, \hat{F}_1^w, \hat{F}_2^w, \hat{F}_2^w$ are empirical CDF's and $\hat{p} = \hat{P}(W=1)$

Step 2.

Let $\hat{\theta}$ s.t.

$$\int m(z_1, z_2; \hat{\theta}) d\hat{F}(z_1, z_2) = 0.$$

Estimation Algorithm

- 1. Calculate the plug-in estimator $\hat{F} = \Phi(\hat{p}, \hat{F}_1, \hat{F}_2, \hat{F}_1^w, \hat{F}_2^w, \hat{F}^w)$
- 2. Calculate its jump sizes $\hat{f}(z_1, z_2)$ at points $(z_1, z_2) \in \hat{\mathcal{Z}}_1 \times \hat{\mathcal{Z}}_2$:

$$\hat{f}(x) = \sum_{(i_1, \dots, i_d) \in \{0, 1\}^d} (-1)^{i_1 + \dots + i_d} \hat{F}\left(x_1 + (-1)^{i_1} h_1, \dots, x_d + (-1)^{i_d} h_d\right).$$

3. Set $\hat{\theta}$ such that

$$\sum_{(z_1, z_2) \in \hat{\mathcal{Z}}_1 \times \hat{\mathcal{Z}}_2} m(z_1, z_2; \hat{\theta}) \hat{f}(z_1, z_2) = 0.$$

Consistency

Lemma (Uniform Convergence)

Let the identification assumption hold and

- (i) $P(W = 1|Z_1 \le z_1, Z_2 \le z_2)$ is bounded away from zero
- (ii) $\theta_0 \in \Theta$ is compact
- (iii) $m(z;\theta)$ is of bounded variation for each $\theta \in \Theta$;
- (iv) $m(z;\theta)$ is continuous at each $\theta \in \Theta$ with probability one in F;
- (v) there exists a function d(z) such that $||m(z;\theta)|| \le d(z)$ for all $\theta \in \Theta$ and $\int d(z) dF(z) < \infty$.

Then

$$\sup_{\theta \in \Theta} \left| \int m(z;\theta) d\hat{F} - \int m(z;\theta) dF \right| \to 0 \quad a.s.$$

Consistency

Theorem (Consistency)

Let all assumptions of the uniform convergence lemma hold and

(i) θ_0 is identified from the moment conditions;

Then $\hat{\theta} \xrightarrow{p} \theta_0$.

Theorem (Inference)

Suppose $\hat{\theta}$ is a consistent estimator of θ_0 and

- (i) $\theta_0 \in interior(\Theta);$
- (ii) $m(z;\theta)$ is differentiable in a neighborhood \mathcal{N} of θ_0 ;
- (iii) $J := EDm(Z; \theta_0)$ is nonsingular. Then

 $G(\cdot)$ is differentiable

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \leadsto J^{-1} \cdot \int m(z;\theta_0) d\Phi'_{F_{\eta}}(\mathbb{O}_{F_{\eta}})(z),$$

where $\eta = (W, Z_1, WZ_2, Z_2^r)$ is data, $\mathbb{G}_{F_{\eta}}$ is the F_{η} -Brownian bridge and $\Phi'_{F_{\eta}}$ is Hadamard derivative.

Bootstrap Validity

FANG & SANTOS (2019):

 F_0 is a possibly infinite dimensional parameter and there exists an estimator \hat{F}_n s.t.

$$r_n(\hat{F}_n - F_0) \leadsto G_0$$

The parameter is interest is $\theta_0 = \phi(F_0)$:

$$r_n(\phi(\hat{F}_n) - \phi(F_0)) \leadsto \phi'_{F_0}(G_0).$$

Theorem (Fang & Santos 3.1)

Suppose the G_0 is **Gaussian** and technical assumptions hold. Then ϕ is **Hadamard differentiable** at $F_0 \in D_{\phi}$ tangentially to the support of G_0 if and only if the bootstrap is valid for $\phi(\hat{F}_n)$.

Monte Carlo simulation: discrete data

DGP: discrete Markov process

 $Z_1 \sim \text{uniform over } \{1, \dots, m\}$

 $Z_2 \in \{1, \ldots, m\}$, positive transition matrix

Attrition rate P(W=0) = 0.3

Target parameter $\theta(m) = P_m(Z_2 = 1 | Z_1 = 1)$ true value $\theta(5) = 0.23, \ \theta(10) = 0.12, \ \theta(20) = 0.05$

Monte Carlo: number of repetitions 1000, warp speed bootstrap.

		$n_1 = n_r = 1000$		$n_1 = n_r = 10,000$	
		$\hat{ heta}$	$\hat{ heta}_{naive}$	$\hat{ heta}$	$\hat{\theta}_{naive}$
	bias	0.000	-0.018	-0.001	-0.019
	rmse	0.017	0.024	0.024	0.030
=	mae	0.014	0.020	0.019	0.025
m = 5	coverage 99%	0.993		0.979	
	coverage~95%	0.954		0.946	
	coverage 90%	0.887		0.897	
	bias	0.000	-0.013	0.000	-0.014
	rmse	0.019	0.022	0.027	0.029
m = 10	mae	0.015	0.018	0.022	0.023
m = 10	coverage 99%	0.993		0.992	
	coverage 95%	0.945		0.944	
	coverage 90%	0.909		0.912	
	bias	0.000	-0.005	0.001	-0.005
	rmse	0.019	0.018	0.028	0.025
m = 20	mae	0.015	0.015	0.022	0.020
m = 20	coverage~99%	0.992		0.993	
	coverage~95%	0.949		0.953	
	coverage 90%	0.885		0.922_{-}	 ← 분 → ← 분

Monte Carlo simulation: continuous data

DGP:
$$(Z_1, Z_2) = (Z_{11}, Z_{12}, Z_{21}, Z_{22}) \in [0, 1]^4$$
, where

- \triangleright Z_{11}, Z_{21} are independent of Z_{12}, Z_{22}
- $Z_{11}, Z_{21} \sim \text{iid uniform}[0,1]$
- \triangleright Z_{12}, Z_{22} have CDF

Gumbel
$$(z_{12}, z_{22}; \nu) = \exp \left[-\left((-\log z_{11})^{\nu} + (-\log z_{22})^{\nu} \right)^{1/\nu} \right]$$

(Gumbel copula with dependence parameter $\nu > 1$)

Attrition rate P(W=0)=0.70

Target parameter $\theta(\nu) = E_{\nu}[Z_{12}Z_{22}],$ true values $\theta(2) \approx \theta(10) \approx \theta(20) = 0.3$

		$n_1 = n_r = 1000$		$n_1 = n_r = 5000$	
		$\hat{ heta}$	$\hat{\theta}_{naive}$	$\hat{ heta}$	$\hat{\theta}_{naive}$
	bias	0.009	0.009	0.004	0.009
	rmse	0.024	0.018	0.012	0.011
$\nu = 2$	mae	0.020	0.015	0.009	0.010
$\nu = z$	coverage 99%	0.998		0.997	
	coverage 95%	0.985		0.984	
	coverage 90%	0.958		0.948	
	bias	0.003	0.012	0.000	0.011
	rmse	0.028	0.021	0.014	0.013
$\nu = 10$	mae	0.022	0.017	0.011	0.012
$\nu = 10$	coverage 99%	0.997		0.992	
	coverage 95%	0.976		0.964	
	coverage 90%	0.942		0.921	
	bias	0.004	0.014	0.001	0.013
	rmse	0.030	0.022	0.014	0.015
20	mae	0.024	0.018	0.011	0.013
$\nu = 20$	coverage 99%	0.997		0.994	
	coverage 95%	0.985		0.968	
	coverage 90%	0.949		0.951) 4

Empirical illustration

Static linear model

$$\sinh^{-1}(\text{income}_{it}) = \alpha_i + f_t + \theta_1 \cdot \text{age}_{it} + \theta_2 \cdot \text{age}_{it}^2 + \varepsilon_{it}$$

Data: Understanding of America Survey (USC CESR)

Period 1: $N_1 = 7909$, **period 2**: $N_2 = 5424$ (attrition 31%),

refreshment sample: $N_r = 1894$

	naive		with refreshment		
	$\hat{ heta}_1$ $\hat{ heta}_2$		$\hat{ heta}_1$	$\hat{ heta}_2$	
coeff.	0.128**	-0.0004	0.116***	-0.000	
s.e.	0.047	0.0003	0.034	0.112	

Conclusion

Panels with attrition and refreshment This project:

- New identification assumption
- ▶ Nonparametric approach without tuning parameters
- Closed-form "plug-in" estimator of the parameter defined by moment conditions
- Consistency, inference
- Nonparametric bootstrap
- Monte Carlo simulations
- Empirical illustration

