Large-scale distributed computing SS2013

Presentation of the mid term results

Sebastian Geiger 1127054 Peter Patonai Kung Wong 0625998

Architecture

- Layered Architecture
 - Domain Logic (VM, PM, Application)
 - Application Logic (Scheduler A-C)
- Spring Application Context
 - Dependency Injection for Csv{Parser,Writer} and Schedulers
- Unit Tests
 - Domain Logic
 - Schedulers

Interfaces

Application

- Elasticity Manager loads Applications and invokes
 Schedulers
- Schedulers keep track of internal time as it starts and stops Applications

application

«interface»
application::

Scheduler

- ~ schedule(Event): void
- ~ addApplication: PhysicalMachine
- ~ removeApplication: void
- ~ setMaxNumberOfPhysicalMachines: void
- ~ handleEvents(List): void
- + getOverAllInfo: CloudOverallInfo

«class» application::

E2CElasticityManager

events: Set;

startSchedulers(List) startScheduler(Scheduler)

Scheduler C

- Scheduler C uses overcommitting for CPU and RAM resources of PMs
- Applications on overcommitted PMs are slowed down by the ratio of overcommitted resources
- We define a threshold how much we can overcommit (15 % - chosen arbitrarily)
- We optimize RAM-to-CPU utilization in PMs
- We calculate a penalty to delay the application stop events for each overcommitted PM
- When a stop event is handled and a penalty exists, the event is rescheduled

Open Tasks

- Finish implementation of schedulers
- Federation
- Test schedulers with several input scenarios
- Datastructure optimizations

Live Demo