Base Band Signal

Definition: Signal transmitted near zero frequency range without

frequency modulation.

A

Figure 149-Chip clock alignment with baseband eye pattern

Harry Li, Ph.D. SJSU, CMPE 242/296AA

Base Band Signal Formulation

Time domain

$$g(t) = \begin{cases} A & \text{for } [-T/2, T/2] \\ 0 & \text{otherwise } \dots(1) \end{cases}$$

Example: Calculation of bandwidth

Let equation (2) = 0, then we have Pi * f * T = k * Pi Let k=1 for the first pair of zero crossings, we have

Counting both sides of the spectrum, we have

$$BW = 2/T$$

(after modulation, otherwise, the bandwidth is half of that)

Bandwidth and Channels

Table 105—High Rate PHY frequency channel plan

CHNL_ID	Frequency (MHz)	X'10' FCC	X'20' IC	X'30' ETSI	X'31' Spain
1	2412	X	X	X	_
2	2417	X	X	X	_
3	2422	X	X	X	_
4	2427	X	X	X	_
5	2432	X	X	X	_
6	2437	X	X	X	_
7	2442	X	X	X	_
8	2447	X	X	X	_
9	2452	X	X	X	_
10	2457	X	X	X	X
11	2462	X	X	X	X
12	2467	_	_	X	_
13	2472	_	_	X	_
14	2484	_	_	_	_

Table 111—North American operating channels

Set	Number of channels	HR/DSSS channel numbers
1	3	1, 6, 11
2	6	1, 3, 5, 7, 9, 11

IEEE 802.11b, pp.

49

Figure 141—North American channel selection—non-overlapping

Figure 142—North American channel selection—overlapping

Example: find bandwidth, estimate bit rate

Eye Patterns of Base Band Signals

Reference: Digital and Analog Communication Systems, by K. Sam Shanmugam

Transmit Spectrum Mask

Frequency domain

Figure 145—Transmit spectrum mask from IEEE 802.11 b, pp. 60

Example: Using DFT (Discrete Fourier Transform)
Design to analyzes transmit spectrum mask

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$$
 $k = 0, \dots, N-1$

$$egin{bmatrix} \omega_N^{0\cdot 0} & \omega_N^{0\cdot 1} & \dots & \omega_N^{0\cdot (N-1)} \ \omega_N^{1\cdot 0} & \omega_N^{1\cdot 1} & \dots & \omega_N^{1\cdot (N-1)} \ dots & dots & \ddots & dots \ \omega_N^{(N-1)\cdot 0} & \omega_N^{(N-1)\cdot 1} & \dots & \omega_N^{(N-1)\cdot (N-1)} \ \end{bmatrix}$$

https://en.wikipedia.org/wiki/Discrete Fourier transform

Review

From Digital and Analog Communications, By S. Shanmugam, John Weiley and Sons

10-1-2018 DFT And Power Spectrum

10-1-2018 DFT And E_nxn Matrix

Based Band Signal w/o Modulation

Harry Li, Ph.D. SJSU, CMPE 242/296AA

ASK, FSK, PSK

ASK

FSK

PSK

Base Band Shaping + Analog Modulation (DSB)