Of Symmetry and Conservation Conservation laws are connected to symmetry. - related to owe study of variations in quantities when the coordinates are shifted by infitesimal quantities (say & whose square is 0, and 8 >0). - For a simple function F(x, y) $SF(x,y) = \frac{\partial F}{\partial x} \cdot Sx + \frac{\partial F}{\partial y} \cdot Sy$ And thus we study the first order change in F (or variation in F when x, y change with infinitesimal amount). Notation - It's better to denote the Langragian as $\mathcal{L}(x, \dot{x})$ because $A = \int dt \mathcal{L}(x, \dot{x})$ means X is the devivative of X wet it, and t is not necessarily time, so x is not always the

velocity v.

(10) So the principle of least action implies the first order change in $A = \int dt \mathcal{L}(x, \dot{x})$ is minimum zero, i.e. SA =0 So change in A is from contributions to of two variables: X and X. Notational convention 1) X is replaced by q. And X contains a set of different coordinates, Xi = 90. Dog. - L'momentum conjugate to qi (Pi). $ex Z(x,\dot{x}) = \underline{1}m\dot{x}^2 - V(x)$ The Euler-Langragian equation then becomes $\frac{d}{dt} = \frac{\partial \mathcal{L}}{\partial q_i} \quad \text{and there is one such } \frac{d}{dt} = \frac{\partial \mathcal{L}}{\partial q_i} \quad \text{equation for each } i$ ex. $\mathcal{L} = \frac{9^2 + 9^2}{2} - V(9_1 - 9_2)$ If we think of 91,92 as positions, we imply that the potential depends on the difference in or the distance between them. Now. $\frac{d}{dt} \cdot \frac{\partial \mathcal{L}}{\partial i} = \frac{\partial \mathcal{L}}{\partial i} = \frac{\partial}{\partial t} P_i = -v'(q_i - q_i)$ Similarly, P2 = -(-V'(21-22)) = V'(21-22) And that simply means incremental change in 9,2 causes the distance to decrease. Now, $\frac{d}{dt}(P_1 + P_2) = 0$ [and that's a conservation] or $\frac{\partial \mathcal{L}}{\partial \mathcal{V}_1} + \frac{\partial \mathcal{L}}{\partial \mathcal{V}_2} = \text{constant}$.

1) ex.
$$J = \frac{9^2 + 9^2}{2} - V(aq_1 + bq_2)$$

2) $\frac{d}{dt} \frac{\partial J}{\partial q_1} = \frac{\partial J}{\partial q_2} \Rightarrow \frac{d}{dt} P_1 = -V'(aq_1 + bq_2) \cdot a$

where $P_1 = B$: $\frac{d}{q_1}$
 $\frac{d}{dt} \frac{\partial J}{\partial q_2} = \frac{\partial J}{\partial q_2} \Rightarrow \frac{d}{dt} P_2 = -V'(aq_1 + bq_2) \cdot b$
 $\frac{d}{dt} (P_1 + P_2) = -(a + b) V'(aq_1 + bq_2) \left[\begin{array}{c} And this \\ doesn't look \\ like conserved \end{array} \right]$

and $\frac{d}{dt} (bP_1 - aP_2) = 0$ and that is conserved.

So there is some different conservation law for this dangragianx. And by intuition, $\frac{\partial J}{\partial z}$ yields $\frac{1}{2} \cdot m \cdot 2z$
 $\frac{\partial J}{\partial z} = mx' = mV$ (which is the momentum).

And how does such a potential

come up in the first place?

Consider $J = \frac{mz'}{2} + \frac{My'^2}{2} - V(x - y)$.

To get away with m and M, we do a change of variables such that

 $mx'^2 = q_1^2$ and $My'^2 = q_2^2$
 $mx'^2 = q_1^2$ and $My'^2 = q_2^2$

So the equation becomes

 $J = \frac{q_1^2}{2} + \frac{q_2^2}{2} - V\left(\frac{q_1}{2} - \frac{q_2}{2}\right)$

So simplification of the Kinetic terms introduce those constants in the potential energy.

of Sur Symmetry $\mathcal{L} = \frac{9^2}{2}$ [a change (coordinate change) that doesn't affect the langragian]. Coordinate change can be done by -1) shifting the coordinate & center @ putting the thing in motion itself. Change is depicted by Sq = 8 (for analysis, let S be constant that is positive) $\hat{q} = \frac{q \pm \delta q}{\delta t} \Rightarrow \hat{q} = 0 \Rightarrow \frac{d d d}{d t} = 0 \text{ or } \delta d = 0$ And that is symmetry (translation symmetry). or P (canonical momentum conjugate to 9) is conserved. - Try fixing this example in earlier notions of the Langragian. ex. L = 9,2 + 92 0 V (a9, + 692) For any shift 9,' = 9, +68; 92' = 92 - a8 So no change in 9,, 92 (or effectively no change in slope). Now agi + bg' = ag, + abs + bg, - abs = aq, + bq3 Langragian remains invariant Rotational symmetry - $d = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) - \sqrt{(x^2 + y^2)}$ (here contesian coordinates are used) → x depends on distance from origin Symmetry - a change of coordinates that retains the same radius as the initial coordinate

Thus,
$$S = \frac{1}{2} \left\{ \begin{array}{c} P_{i} \cdot f_{i}(y) \cdot S \right\}$$
 using initial condition of this is a symmetry, then $SJ \left(\begin{array}{c} P_{i} \cdot f_{i}(y) \end{array} \right) = 0$

Thus, $S \cdot d \left[\begin{array}{c} P_{i} \cdot f_{i}(y) \end{array} \right] = 0$

$$= \begin{array}{c} I \cdot f_{i}(y) = constant = \left[\begin{array}{c} Q \cdot (some \ quantize \ that is \ conserved \end{array} \right]$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = S \cdot f_{i}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = S \cdot f_{i}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = S \cdot f_{i}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = S \cdot f_{i}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = S \cdot Sq_{i}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = Sq_{i}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = Sq_{i}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = Sq_{i}(q) = I = f_{2}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = S \cdot Sq_{i} = Sq_{i}(q) = I = f_{2}(q) = I = f_{2}(q)$$

$$= \begin{array}{c} X \cdot Sq_{i} = Sq_{i} = Sq_{i} = Sq_{i} = Sq_{i}(q) = I = f_{2}(q) = I = f_{2}(q)$$

Thus, $SJ \cdot Sq_{i} = S$

B
$$SL(n,n) = \frac{d}{dt} \sum_{i} P_{i} \cdot f_{i}(n) \cdot S = 0$$
 $\Rightarrow \sum_{i} P_{i} \cdot f_{i}(n) \cdot S = 0 = constant.$

Therefore, $L(P_{i} \cdot S \cdot S + P_{i}(-aS)) = 0$

where S is a constant $\Rightarrow \frac{d}{dt} (P_{i} \cdot S - a \cdot P_{i}) = 0$

EX $SX = yS$ and $Sy = -xS$ (Here $f_{i}(n)$ are not some constant functions. Hence one can deduce some kind of rotational symmetry from them).

From the same set of equations $SL(n, n) = \sum_{i} (\frac{2L}{2n} \cdot 2i + \frac{2L}{2n} \cdot n) = \sum_{i} (P_{i} \cdot n) \cdot P_{i} \cdot n$
 $= \sum_{i} (\frac{2L}{2n} \cdot 2i + \frac{2L}{2n} \cdot n) = \sum_{i} (P_{i} \cdot f_{i}(n) \cdot S) = 0$

Therefore:

 $dP_{i}(yS) + P_{i}(-xS) = 0 \Rightarrow \frac{d}{dt} (P_{i}y - P_{i}x) = 0$

Angular momentum is conserved as a consequence of rotational symmetry.

The above things were conserved as a consequence of rotational symmetry.

The above things were conserved in a momentum is relating to lack of dependence but where you put the origin of space (or invariant under translational rotational symmetry).

EX. Harmonic oscillator: $L = m \cdot n^{2} - R \cdot n^{2}$

Simplicity, $m = 1 = R$

Euler-Langragian equation $- \frac{d}{dt} \frac{3L}{2n} = \frac{2L}{2n}$

or $\frac{d}{dt} P = \frac{2L}{2n} : \frac{d}{dt} (m \cdot n) = -Rq$

or $\frac{d}{dt} P = -Rq$

Motion of a block on a free wedge. Thow much coordinates are needed to - describe the instantaneous configuration of the system? 2 coordinates - X and x (relative to X). D Langragian = KE-PE. L = 1 MX² (wedge KE) + = m ([x + x]2 + (x tan a]2) - (mg x tan a). For the block, Vx = X + ie, Vy = i tan a For PE, there is no gravitation pulling it horizontally.

only the vertical movement for m is considered. $f(X, x, \dot{X}, \dot{x}) = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m([\dot{x} + \dot{x}]^2 + [\dot{x} + an x]^2)$ - (mg x tan a). P_{X} (momentum conjugate to \hat{X}) = $\frac{\partial \hat{X}}{\partial \hat{X}}$ = $\frac{2}{2}$. M. \dot{x} + $\frac{1}{2}$ m $(2(\dot{x}+\dot{x})) = M\dot{x} + m(X+\dot{x})$ $P_{x} \neq momentum conjugate to <math>\dot{x} = \frac{\partial L}{\partial x}$ = $\frac{1}{2}m\left(\dot{x}+\dot{x}\right)+\frac{2}{2}m\left(\dot{x}\tan\alpha\right)+\frac{2}{2}m\alpha$ $p_x = m(x + i) + m i tan a$ Symmetry: SX = E; Sx = 0 Since x is a relative coordinate $Q = e \cdot \sum \left[P_i f_i(9) \right] = P_X \cdot 1 \cdot e + P_X \cdot 0 \cdot e = |P_X| e$ How is the symmetry deduced? D &X = E. There is no term containing X in L. Hence $\frac{\partial \mathcal{L}}{\partial x} = 0$ or change in x keeps \mathcal{L} invariant. $f_{x}(q) = 1$ can be deduced by the diagram itself. A small nudge ε to the right makes $\delta X = \varepsilon$ $ext{S} imes im$ Implies $P_X = constant$ or $P_X = 0$

(18) The wedge is NOT allowed to move in y
direction; nor the block does not in y direction
18) The wedge is NOT allowed to move in y direction direction; nor the block does not in y direction but the potential energy changes (implying an interest the potential energy changes (implying an interest the potential energy changes (implying an interest in the potential energy changes (implying an interest in the potential energy changes).
internal force on the system).
no symmetry there. Therefore,
$\dot{p}_{x} = 0$; $\dot{p}_{z} = 0$ $\dot{p}_{z} = 0$
I'X I
$\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x}$ $\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial}{\partial x}$
at $\partial \dot{x}$ ∂x $dt \delta x$
$\frac{d}{dt}(M\dot{x} + m(\dot{x} + \dot{x})) = 0$ $\frac{d}{dt}(m(\dot{x} + \dot{x}) + m\dot{x} \tan \alpha)$ $= mg \tan \alpha$
= mg tana
$\Rightarrow MX + mX + mX = 0$ $\Rightarrow mX + mx + mx tand$
Also V _X is the absolute x-component velocity of
the block is is the relative velocity. Therefore,
$\dot{\mathbf{x}} = \mathbf{V}_{\mathbf{x}} - \dot{\mathbf{x}} \Rightarrow \mathbf{V}_{\mathbf{x}} = \dot{\mathbf{x}} + \dot{\mathbf{x}}$
In this context, we did not need to talk about
the forces between the wedge and the block.
O Simple Euler Langragian arrangement gave the 2 equations of motions required to describe the
2 equations of mollows required the
motion. $SX = E$ and $SX = 0$ allow
(a) Symmetry laws ($SX = \varepsilon$ and $Sx = 0$) allow for the momentum conservation laws to hold.
Double Pendulum - y Double Pendulum - y Double (x',y')
$\frac{1}{x} = \frac{1}{x} (x', y')$
Double Pendulum - Y A = 1 (x', y') X M = 1 X M = 1 Y X M = 1 Y X M = 1 Y X M = 1 Y X M = 1 Y X M = 1 Y X M = 1 Y X M = 1 Y X M = 1 X
angular motion. The one obvious choice would be
Of augle of first pendulum to the wall)
Now for a? If O is fixed, and assuming no gravitational field, & would provide a better symmetry choice. We could find
is a better symmetry classes to
" . We could find

19) some simple conservation law hore. Kinetic energy > simpler to form in Cartesian coordinates and then transform into angles. Considering Cartesian coordinates X and Y, $x = 1.\sin \theta$; $y = 1.\cos \theta$; $\dot{x} = \dot{\theta}.\cos \theta$; $\dot{y} = (\dot{\theta}\sin \theta) - 1$ Now for the second bendulum: (x', Y') $X' = X + \sin(\theta + \alpha); Y' = Y + \cos(\theta + \alpha)$ $\dot{x}' = \dot{x} + \cos(\theta + \alpha) \cdot (\dot{\theta} + \dot{\alpha}) ; \dot{y}' = \dot{y} - \sin(\theta + \alpha)(\dot{\theta} + \dot{\alpha})$ O formed in Cautesian coordinates: X, Y, X, Y @ then applied geometrical conditions. KE of first penduluh: $\frac{1}{3}(\dot{x}^2 + \dot{y}^2) = \frac{1}{3}\dot{\theta}^2$ Second pendulum: 1 (x12+ y12) $=\frac{1}{2}\left(\frac{1}{2}\theta\cos^2\theta+\cos^2(\theta+\alpha)\cdot(\theta+\alpha)^2+2\cos(\theta+\alpha)(\theta+\alpha)\right)$ + $\Theta \sin^2 \Theta + \sin^2 (\Theta + \alpha) \cdot (\Theta + \alpha)^2 - 2 \cdot y \sin (\Theta + \alpha)$ $= \frac{1}{2} \left(2 \cdot \dot{0}^2 + (\dot{0} + \dot{\alpha})^2 + 2 \cdot \dot{0} (\dot{0} - \dot{\alpha}) \cdot \cos \alpha \right)$ $KE = \left[0^{2} + \left(0 + \dot{\alpha}\right)^{2} + o\left(0 - \dot{\alpha}\right) \cdot \cos \alpha\right]$ For the time being, if we assume no gravitational feld, L = KE and we have a conserved quantity here, wit O. Thus. DL shall be conserved as $\frac{\partial \mathcal{L}}{\partial \theta} = 0$ ($\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = \sin \theta f$ angular momentum of both pendulum bobs). $\frac{\partial \mathcal{L}}{\partial 0}$ is the symmetry we were looking for (Langragian invariance under Small changes in θ such that $5\theta = f(\theta).E.$)

20) Considering the potential field: considering point A as Zero potential, PE of first pendulum =-Y =-cos O. 9 Y' is alrund
PE of Second pendulum = -(\forall Y'). 9 relative to A $= -\left(\cos O + \cos (O + \alpha)\right)$ $V(X) = [-\cos \theta - 2\cos(\theta + \alpha)] - g$ L = KE - V(X) now no longer independent of any coordinate. Hence 32 \$ 0 and there is no symmetry Also, energy is conserved. Thus, T+V = fixed and 1x = fixed Equations of motion: $\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\rho}} \right) = \frac{\partial \mathcal{L}}{\partial \rho}$ and $\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) = \frac{\partial \mathcal{L}}{\partial x}$ Absence of fir V(x) $0(\dot{\theta}-\dot{\alpha}).\dot{\alpha} + \dot{\theta}\cos\alpha\dot{\alpha} = \dot{\theta}(\dot{\theta}-\dot{\alpha})(-\sin\alpha).\dot{\alpha}$ + 9 sin (0+x). à Better find. Po and Part $(\hat{o} - \hat{\alpha})$. $+ (\hat{o} - \hat{\alpha})$ co and then Po and Part $(\hat{o} - \hat{\alpha})$. $\frac{\partial \mathcal{L}}{\partial \dot{o}} = 2\dot{o} + 2(\dot{o} - \dot{\alpha}) + (2\dot{o} - \dot{\alpha}) \cdot \cos \alpha$ $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right) = 2\ddot{\theta} + \ddot{\theta} - \dot{\alpha} + \left(2\dot{\theta} - \dot{\alpha}\right)(\sin\alpha) \cdot \dot{\alpha}(-1)$ + (2.0 - x) cos x And $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{o}} \right) = 0$ ② Similarly $\frac{\partial \mathcal{L}}{\partial \dot{x}}$ and $\frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) = \frac{\partial}{\partial t}$ @ Sum of momenta is conserved, not individual motions.