

(12) United States Patent

Budiman

US 12,383,164 B1 (10) Patent No.:

(45) Date of Patent: *Aug. 12, 2025

(54) NOISE REJECTION METHODS AND APPARATUS FOR SPARSELY SAMPLED ANALYTE SENSOR DATA

(71) Applicant: Abbott Diabetes Care Inc., Alameda,

CA (US)

(72) Inventor: Erwin Satrya Budiman, Fremont, CA

(US)

Assignee: ABBOTT DIABETES CARE INC.,

Alameda, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1512 days.

This patent is subject to a terminal dis-

claimer.

- (21) Appl. No.: 16/595,086
- (22) Filed: Oct. 7, 2019

Related U.S. Application Data

- Continuation of application No. 14/210,312, filed on Mar. 13, 2014, now Pat. No. 10,433,773.
- (60) Provisional application No. 61/794,549, filed on Mar. 15, 2013.
- (51) **Int. Cl.** A61B 5/145 (2006.01)A61B 5/0205 (2006.01)G01N 33/00 (2006.01)
- (52) U.S. Cl. CPC A61B 5/145 (2013.01); A61B 5/14532 (2013.01); A61B 5/0205 (2013.01); G01N 33/00 (2013.01)
- (58) Field of Classification Search

None

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

3,581,062 A	5/1971	Aston
3,926,760 A	12/1975	Allen et al.
3,949,388 A	4/1976	Fuller
3,960,497 A	6/1976	Acord et al.
3,978,856 A	9/1976	Michel
4,036,749 A	7/1977	Anderson
4,055,175 A	10/1977	Clemens et al.
4,129,128 A	12/1978	McFarlane
4,245,634 A	1/1981	Albisser et al.
4,327,725 A	5/1982	Cortese et al.
4,344,438 A	8/1982	Schultz
4,349,728 A	9/1982	Phillips et al.
4,373,527 A	2/1983	Fischell
4,392,849 A	7/1983	Petre et al.
4,425,920 A	1/1984	Bourland et al.
4,441,968 A	4/1984	Emmer et al.
4,462,048 A	7/1984	Ross
4,478,976 A	10/1984	Goertz et al.
4,494,950 A	1/1985	Fischell
4,509,531 A	4/1985	Ward
4,527,240 A	7/1985	Kvitash

4,538,616 A	9/1985	Rogoff
4,545,382 A	10/1985	Higgins et al.
4,619,793 A	10/1986	Lee
4,671,288 A	6/1987	Gough
4,703,756 A	11/1987	Gough et al.
4,711,245 A	12/1987	Higgins et al.
4,731,051 A	3/1988	Fischell
4,731,726 A	3/1988	Allen, III
4,749,985 A	6/1988	Corsberg
4,757,022 A	7/1988	Shults et al.
4,759,366 A	7/1988	Callaghan
4,777,953 A	10/1988	Ash et al.
4,779,618 A	10/1988	Mund et al.
4,854,322 A	8/1989	Ash et al.
4,871,351 A	10/1989	Feingold
4,890,620 A	1/1990	Gough
4,925,268 A	5/1990	Iyer et al.
4,947,845 A	8/1990	Davis
4,953,552 A	9/1990	DeMarzo
4,986,271 A	1/1991	Wilkins
4,995,402 A	2/1991	Smith et al.
	(Con	tinued)
	(Con	imuca)

FOREIGN PATENT DOCUMENTS

EP	0098592	1/1984		
EP	0127958	12/1984		
EP	0320109	6/1989		
EP	0353328	2/1990		
EP	0390390	10/1990		
EP	0396788	11/1990		
EP	0472411	2/1992		
EP	0286118	1/1995		
EP	0867146	9/1998		
	(Continued)			

OTHER PUBLICATIONS

Naumova et al. (Recent Patents on Computer Science (2012) vol. 5:177-187).*

(Continued)

Primary Examiner — Lori A. Clow

(74) Attorney, Agent, or Firm — Baker Botts L.L.P.

ABSTRACT (57)

Systems, methods and apparatus are provided for rejecting noise from sparsely sampled analyte sensor data. Embodiments of the present disclosure include receiving a raw set of sensor data from an on-body device including an in vivo analyte sensor, determining an interpolation-based estimate of an analyte level over time based on the raw set of sensor data, determining an extrapolation-based estimate of the analyte level over time based on the raw set of sensor data, determining a combined estimate of the analyte level over time based on the interpolation-based estimate and the extrapolation-based estimate, and displaying a representation of the combined estimate of the analyte level over time on an output device. Numerous additional aspects are disclosed.

20 Claims, 6 Drawing Sheets

(56)		Referen	ces Cited	5,628,310			Rao et al.
	TT	S DATENT	DOCUMENTS	5,628,890 5,634,468			Nigel et al. Platt et al.
	0.	S. PATENT	DOCUMENTS	5,640,954			Pfeiffer et al.
	5,000,180 A	3/1991	Kuypers et al.	5,653,239			Pompei et al.
	5,002,054 A		Ash et al.	5,660,163			Schulman et al.
	5,019,974 A	5/1991	Beckers	5,665,222			Heller et al.
	5,050,612 A		Matsumura	5,707,502		1/1998	McCaffrey et al.
	5,055,171 A			5,711,001 5,711,861			Bussan et al. Ward et al.
	5,068,536 A 5,077,476 A		Rosenthal Rosenthal	5,720,295			Greenhut et al.
	5,082,550 A		Rishpon et al.	5,724,030			Urbas et al.
	5,106,365 A		Hernandez	5,733,259			Valcke et al.
	5,113,869 A		Nappholz et al.	5,735,285			Albert et al.
	5,122,925 A			5,741,211 5,749,907		4/1998 5/1998	Renirie et al.
	5,135,004 A		Adams et al.	5,772,586			Heinonen et al.
	5,148,812 A 5,165,407 A		Verrier et al. Wilson et al.	5,785,660			van Lake et al.
	5,199,428 A		Obel et al.	5,791,344		8/1998	Schulman et al.
	5,202,261 A		Musho et al.	5,792,065			Xue et al.
	5,203,326 A			5,804,047			Karube et al.
	5,204,264 A		Kaminer et al.	5,820,551 5,822,715			Hill et al. Worthington et al.
	5,210,778 A		Massart Wernicke et al.	5,891,047			Lander et al.
	5,231,988 A 5,246,867 A		Lakowicz et al.	5,891,049			Cyrus et al.
	5,262,035 A		Gregg et al.	5,899,855		5/1999	
	5,262,305 A		Heller et al.	5,914,026			Blubaugh, Jr. et al.
	5,264,104 A			5,918,603		7/1999	
	5,264,105 A		Gregg et al.	5,925,021 5,935,224			Castellano et al. Svancarek et al.
	5,279,294 A 5,285,792 A		Anderson et al. Sjoquist et al.	5,942,979			Luppino
	5,293,877 A		O'Hara et al.	5,951,485			Cyrus et al.
	5,299,571 A		Mastrototaro	5,957,854			Besson et al.
	5,313,953 A		Yomtov et al.	5,960,797			Kramer et al.
	5,320,715 A			5,961,451 5,964,993			Reber et al. Blubaugh, Jr. et al.
	5,320,725 A		Gregg et al.	5,965,380			Heller et al.
	5,322,063 A 5,328,460 A		Allen et al. Lord et al.	5,971,922			Arita et al.
	5,330,634 A		Wong et al.	5,995,860			Sun et al.
	5,340,722 A		Wolfbeis et al.	6,001,067		12/1999	
	5,342,789 A		Chick et al.	6,016,443			Ekwall et al.
	5,356,786 A		Heller et al.	6,021,350 6,024,699			Mathson Surwit et al.
	5,360,404 A 5,365,426 A		Novacek et al. Siegel et al.	6,038,469			Karlsson et al.
	5,372,427 A		Padovani et al.	6,049,727		4/2000	Crothall
	5,376,070 A		Purvis et al.	6,071,391			Gotoh et al.
	5,379,238 A		Stark	6,073,031			Helstab et al.
	5,384,547 A		Lynk et al.	6,083,710 6,088,608			Heller et al. Schulman et al.
	5,390,671 A		Lord et al. Cheney, II et al.	6,091,976			Pfeiffer et al.
	5,391,250 A 5,400,795 A		Murphy et al.	6,091,987			Thompson
	5,408,999 A		Singh et al.	6,093,172			Funderburk et al.
	5,411,647 A	5/1995	Johnson et al.	6,103,033			Say et al.
	5,425,749 A		Adams	6,108,577 6,112,116	A	8/2000	Fischell
	5,425,868 A 5,431,160 A		Pedersen Wilkins	6,115,622		9/2000	
	5,431,921 A		Thombre	6,115,628			Stadler et al.
	5,438,983 A		Falcone	6,117,290			Say et al.
	5,462,645 A	10/1995	Albery et al.	6,119,028			Schulman et al.
	5,472,317 A		Field et al.	6,120,676 6,121,009			Heller et al. Heller et al.
	5,489,414 A		Schreiber et al. Schulman et al.	6,121,611			Lindsay et al.
	5,497,772 A 5,505,828 A		Wong et al.	6,122,351			Schlueter, Jr. et al.
	5,507,288 A		Bocker et al.	6,128,526	A		Stadler et al.
	5,509,410 A		Hill et al.	6,130,623			MacLellan et al.
	5,514,718 A	5/1996	Lewis et al.	6,134,461			Say et al. Heller et al.
	5,520,191 A		Karlsson et al.	6,143,164 6,144,837		11/2000	
	5,531,878 A 5,532,686 A		Vadgama et al. Urbas et al.	6,144,871	A	11/2000	
	5,543,326 A		Heller et al.	6,159,147	A		Lichter et al.
	5,552,997 A		Massart	6,161,095	A	12/2000	Brown
	5,568,400 A	10/1996	Stark et al.	6,162,611			Heller et al.
	5,568,806 A	10/1996	Cheney, II et al.	6,175,752		1/2001	
	5,569,186 A		Lord et al.	6,200,265			Walsh et al.
	5,582,184 A 5,586,553 A		Erickson et al. Halili et al.	6,212,416 6,219,574			Ward et al. Cormier et al.
	5,593,852 A		Heller et al.	6,223,283			Chaiken et al.
	5,601,435 A		Quy	6,233,471			Berner et al.
	5,609,575 A		Larson et al.	6,233,486			Ekwall et al.

(56)		Referen	ces Cited	6,605,			Mao et al.
	U.S. 1	PATENT	DOCUMENTS	6,605, 6,607,			Mao et al. Bobroff et al.
				6,610,			
	6,248,067 B1		Causey, III et al.	6,616,			Liamos et al. Feldman et al.
	6,249,705 B1	6/2001		6,618, 6,622,			Snell et al.
	6,254,586 B1 6,256,538 B1	7/2001	Mann et al. Ekwall	6,633,	772 B	2 10/2003	Ford et al.
	6,264,606 B1		Ekwall et al.	6,635,	014 B	2 10/2003	Starkweather et al.
	6,270,455 B1	8/2001		6,635, 6,641,	167 B	10/2003	Batman et al.
	6,272,379 B1		Fischell et al. Gross et al.	6,641, 6,648,			Causey, III et al. Lebel et al.
	6,275,717 B1 6,283,761 B1	9/2001		6,650,			
	6,284,478 B1		Heller et al.	6,654,			Say et al.
	6,291,200 B1		LeJeune et al.	6,656,			Poulson et al.
	6,293,925 B1		Safabash et al.	6,658, 6,659,			Tang et al. Lebel et al.
	6,294,997 B1 6,295,506 B1		Paratore et al. Heinonen et al.	6,668,		12/2003	Villegas et al.
	6,299,757 B1		Feldman et al.	6,675,		2 1/2004	Ciuczak et al.
	6,306,104 B1		Cunningham et al.	6,676,			Mao et al.
	6,309,884 B1		Cooper et al.	6,687, 6,689,			Lebel et al. Kilcoyne et al.
	6,329,161 B1 6,338,790 B1		Heller et al. Feldman et al.	6,694,			Starkweather et al.
	6,348,640 B1		Navot et al.	6,695,			Ward et al.
	6,359,444 B1	3/2002		6,698, 6,702,	269 B	3/2004	Baber et al. Brauker et al.
	6,360,888 B1		McIvor et al. Starobin et al.	6,730,			Stewart et al.
	6,361,503 B1 6,366,794 B1		Moussy et al.	6,731,			Penn et al.
	6,377,828 B1		Chaiken et al.	6,731,			Poore et al.
	6,377,852 B1		Bornzin et al.	6,733, 6,735,			Lebel et al. O'Toole et al.
	6,377,894 B1 6,379,301 B1		Deweese et al.	6,736,			Forrow et al.
	6,381,493 B1		Worthington et al. Stadler et al.	6,740,			Lebel et al.
	6,387,048 B1		Schulman et al.	6,741,			Shults et al.
	6,400,974 B1	6/2002		6,746, 6,749,			Heller et al. Liamos et al.
	6,405,066 B1 6,413,393 B1		Essenpreis et al. Van Antwerp et al.	6,758,			Lebel et al.
	6,416,471 B1		Kumar et al.	6,764,			Forrow et al.
	6,418,346 B1	7/2002	Nelson et al.	6,770,			Schaupp et al.
	6,424,847 B1		Mastrototaro et al.	6,773, 6,790,			Lewis et al. Mault et al.
	6,427,088 B1 6,440,068 B1		Bowman, IV et al. Brown et al.	6,804,			Haller et al.
	6,461,496 B1		Feldman et al.	6,809,	653 B	10/2004	Mann et al.
	6,471,689 B1	10/2002	Joseph et al.	6,810,			Lebel et al.
	6,478,736 B1	11/2002		6,811, 6,811,			Lebel et al. Bowman, IV et al.
	6,484,046 B1 6,496,729 B2		Say et al. Thompson	6,813,			Lebel et al.
	6,497,655 B1		Linberg et al.	6,850,			Berner et al.
	6,501,983 B1		Natarajan et al.	6,862, 6,865,			Shults et al. Kimball et al.
	6,503,381 B1 6,514,460 B1		Gotoh et al. Fendrock	6,873,			Lebel et al.
	6,514,718 B2		Heller et al.	6,878,		2 4/2005	Linberg et al.
	6,520,326 B2		McIvor et al.	6,881,			Heller et al.
	6,540,891 B1		Stewart et al.	6,882, 6,892,	940 B 085 B	52 4/2005 5/2005	Potts et al. McIvor et al.
	6,544,212 B2 6,549,796 B2	4/2003	Galley et al.	6,893,			Gotoh et al.
	6,551,494 B1		Heller et al.	6,895,			Shin et al.
	6,558,320 B1	5/2003	Causey, III et al.	6,895,			
	6,558,321 B1		Burd et al.	6,912, 6,923,			Rantala et al. Kovatchev et al.
	6,558,351 B1 6,560,471 B1		Steil et al. Heller et al.	6,923,			Aceti et al.
	6,561,975 B1		Pool et al.	6,931,			Goode, Jr. et al.
	6,561,978 B1		Conn et al.	6,932, 6,932,			Chen et al.
	6,562,001 B2		Lebel et al.	6,936,			Mao et al. Sabra
	6,564,105 B2 6,565,509 B1	5/2003	Starkweather et al. Say et al.	6,940,			Kail, IV
	6,571,128 B2		Lebel et al.	6,941,			Ford et al.
	6,572,542 B1		Houben et al.	6,942, 6,950,			Liamos et al. Bowman IV et al.
	6,574,490 B2 6,574,510 B2		Abbink et al. Von Arx et al.	6,958,			Lebel et al.
	6,576,101 B1		Heller et al.	6,968,			Gutta et al.
	6,577,899 B2	6/2003	Lebel et al.	6,971,	274 B	2 12/2005	Olin
	6,579,231 B1	6/2003		6,974,			Lebel et al.
	6,579,690 B1		Bonnecaze et al.	6,990, 6,997,			Say et al. Safabash et al.
	6,585,644 B2 6,591,125 B1		Lebel et al. Buse et al.	6,997, 6,998,			Monfre et al.
	6,592,745 B1		Feldman et al.	7,003,			Holker et al.
	6,595,919 B2	7/2003	Berner et al.	7,003,	340 B	2/2006	Say et al.
	6,600,997 B2	7/2003	Deweese et al.	7,003,	341 B	2/2006	Say et al.

(56)		Referen	ces Cited	7,467,003			Brister et al.
	II S	PATENT	DOCUMENTS	7,468,125 1 7,471,972			Kraft et al. Rhodes et al.
	0.5.	17111111	DOCOMENTS	7,474,992	B2 1/20	900	Ariyur
	7,009,511 B2	3/2006	Mazar et al.	7,492,254			Bandy et al.
	7,010,345 B2		Hill et al.	7,494,465 1 7,497,827			Brister et al. Brister et al.
	7,011,630 B2 7,016,713 B2		Desai et al. Gardner et al.	7,499,002			Blasko et al.
	7,016,720 B2	3/2006		7,502,644			Gill et al.
	7,020,508 B2		Stivoric et al.	7,519,408 1 7,524,287			Rasdal et al. Bharmi
	7,022,072 B2 7,022,219 B2		Fox et al. Mansouri et al.	7,547,281			Hayes et al.
	7,024,236 B2		Ford et al.	7,565,197			Haubrich et al.
	7,024,245 B2		Lebel et al.	7,569,030 1 7,574,266 1	B2 8/2/ B2 8/2/	009 100	Lebel et al. Dudding et al.
	7,025,425 B2 7,029,443 B2	4/2006 4/2006	Kovatchev et al.	7,583,990			Goode, Jr. et al.
	7,029,444 B2		Shin et al.	7,591,801	B2 9/2	900	Brauker et al.
	7,041,068 B2		Freeman et al.	7,599,726 1 7,602,310 1			Goode, Jr. et al. Mann et al.
	7,041,468 B2 7,043,287 B1		Drucker et al. Khalil et al.	7,602,310			
	7,043,305 B2		KenKnight et al.	7,613,491	B2 11/2	900	Boock et al.
	7,052,483 B2	5/2006	Wojcik	7,615,007			
	7,056,302 B2		Douglas Nelson et al.	7,618,369 1 7,630,748 1			Hayter et al. Budiman
	7,058,453 B2 7,060,031 B2		Webb et al.	7,632,228	B2 12/2	900	Brauker et al.
	7,074,307 B2	7/2006	Simpson et al.	7,635,594			Holmes et al.
	7,076,300 B1		Kroll et al.	7,637,868 1 7,640,048 1			Saint et al. Dobbles et al.
	7,081,195 B2 7,082,334 B2		Simpson et al. Boute et al.	7,643,798			Ljung
	7,092,891 B2		Maus et al.	7,659,823			Killian et al.
	7,096,064 B2		Deno et al.	7,668,596 1 7,699,775			Von Arx et al. Desai et al.
	7,098,803 B2 7,103,412 B1	8/2006 9/2006	Mann et al.	7,699,964			Feldman et al.
	7,108,778 B2		Simpson et al.	7,736,310	B2 6/2		Taub et al.
	7,110,803 B2		Shults et al.	7,741,734 1 7,766,829 1			Joannopoulos et al. Sloan et al.
	7,113,821 B1 7,118,667 B2	9/2006 10/2006	Sun et al.	7,770,352			Shults et al.
	7,113,007 B2 7,123,950 B2		Mannheimer	7,774,145	B2 8/2	010	Bruaker et al.
	7,125,382 B2	10/2006	Zhou et al.	7,778,680 1 7,779,332 1			Goode, Jr. et al. Karr et al.
	7,134,999 B2 7,136,689 B2		Brauker et al. Shults et al.	7,782,192			Jeckelmann et al.
	7,142,911 B2		Boileau et al.	7,783,333	B2 8/2	010	Brister et al.
	7,153,265 B2	12/2006	Vachon	7,791,467			Mazar et al.
	7,167,818 B2 7,171,274 B2	1/2007	Brown Starkweather et al.	7,792,562 1 7,826,981			Shults et al. Goode, Jr. et al.
	7,171,274 B2 7,190,988 B2		Say et al.	7,831,310	B2 11/2	010	Lebel et al.
	7,192,450 B2	3/2007	Brauker et al.	7,860,574			Von Arx et al.
	7,198,606 B2 7,203,549 B2		Boecker et al. Schommer et al.	7,866,026 1 7,882,611		011 011	Wang et al. Shah et al.
	7,203,349 B2 7,225,535 B2		Feldman et al.	7,889,069			Fifolt et al.
	7,226,978 B2	6/2007	Tapsak et al.	7,899,511		011	
	7,228,182 B2		Healy et al.	7,905,833 7,912,674			Brister et al. Killoren Clark et al.
	7,237,712 B2 7,258,673 B2		DeRocco et al. Racchini et al.	7,914,450	B2 3/2		Goode, Jr. et al.
	7,267,665 B2	9/2007	Steil et al.	7,916,013			Stevenson
	7,272,436 B2		Gill et al. Goode, Jr. et al.	7,938,797 1 7,955,258 1			Estes Goscha et al.
	7,276,029 B2 7,278,983 B2		Ireland et al.	7,970,448			Shults et al.
	7,295,867 B2	11/2007	Berner et al.	7,974,672			Shults et al.
	7,297,114 B2		Gill et al.	7,999,674 1 8,072,310 1			Kamen Everhart
	7,299,082 B2 7,310,544 B2		Feldman et al. Brister et al.	8,090,445			Ginggen
	7,317,938 B2	1/2008	Lorenz et al.	8,093,991			Stevenson et al.
	7,318,816 B2		Bobroff et al.	8,094,009 1 8,098,159 1			Allen et al. Batra et al.
	7,324,850 B2 7,335,294 B2		Persen et al. Heller et al.	8,098,160			Howarth et al.
	7,347,819 B2		Lebel et al.	8,098,161			Lavedas
	7,354,420 B2		Steil et al.	8,098,201 1 8,098,208 1			Choi et al. Ficker et al.
	7,364,592 B2 7,366,556 B2		Carr-Brendel et al. Brister et al.	8,102,021			Degani
	7,379,765 B2	5/2008	Petisce et al.	8,102,154	B2 1/2	012	Bishop et al.
	7,384,397 B2	6/2008	Zhang et al.	8,102,263			Yeo et al.
	7,387,010 B2 7,399,277 B2		Sunshine et al. Saidara et al.	8,102,789 8,103,241			Rosar et al. Young et al.
	7,402,153 B2		Steil et al.	8,103,241			Swedlow et al.
	7,404,796 B2		Ginsberg	8,111,042	B2 2/2	012	Bennett
	7,419,573 B2		Gundel	8,115,488			McDowell
	7,424,318 B2 7,460,898 B2		Brister et al. Brister et al.	8,116,681 1 8,116,683			Baarman Baarman
	7,700,030 DZ	12/2008	DIISICI CI AI.	0,110,083	اک کا	J12	Daamall

(56)	Referen	ces Cited	2004/0054263			Moerman et al. DeNuzzio et al.
IIS	PATENT	DOCUMENTS	2004/0064068 2004/0077962		4/2004	
0.0.		DOCOMENTO	2004/0078065		4/2004	
8,116,837 B2	2/2012		2004/0093167			Braig et al.
8,117,481 B2		Anselmi et al.	2004/0099529 2004/0106858			Mao et al. Say et al.
8,120,493 B2 8,124,452 B2	2/2012 2/2012		2004/0122353			Shahmirian et al.
8,130,093 B2		Mazar et al.	2004/0133164			Funderburk et al.
8,131,351 B2		Kalgren et al.	2004/0135684			Steinthal et al.
8,131,365 B2		Zhang et al.	2004/0138588 2004/0138716			Saikley et al. Kon et al.
8,131,565 B2 8,132,037 B2		Dicks et al. Fehr et al.	2004/0146909		7/2004	Duong et al.
8,135,352 B2		Langsweirdt et al.	2004/0152622		8/2004	Keith et al.
8,136,735 B2		Arai et al.	2004/0167801 2004/0171921			Say et al. Say et al.
8,138,925 B2 8,140,160 B2		Downie et al. Pless et al.	2004/0171321			Gruber
8,140,168 B2		Olson et al.	2004/0176672		9/2004	Silver et al.
8,140,299 B2	3/2012		2004/0186362			Brauker et al.
8,150,321 B2		Winter et al.	2004/0186365 2004/0193025			Jin et al. Steil et al.
8,150,516 B2 8,160,900 B2		Levine et al. Taub et al.	2004/0193090			Lebel et al.
8,179,266 B2		Hermle	2004/0197846			Hockersmith et al.
8,211,016 B2		Budiman	2004/0199056			Husemann et al.
8,216,137 B2		Budiman McGarrayah at al	2004/0199059 2004/0204687			Brauker et al. Mogensen et al.
8,216,138 B1 8,224,415 B2		McGarraugh et al. Budiman et al.	2004/0208780			Faries, Jr. et al.
8,231,531 B2		Brister et al.	2004/0225338			Lebel et al.
8,255,026 B1	8/2012		2004/0236200 2004/0249253			Say et al. Racchini et al.
8,282,549 B2 8,457,703 B2		Brauker et al. A1-Ali	2004/0249233			Olson et al.
8,532,935 B2		Budiman	2004/0254433			Bandis et al.
9,113,828 B2		Budiman	2004/0254434			Goodnow et al.
2001/0041831 A1		Starkweather et al.	2004/0260478 2004/0263354			Schwamm Mann et al.
2002/0019022 A1 2002/0042090 A1		Dunn et al. Heller et al.	2004/0267300		12/2004	
2002/0042090 A1 2002/0065454 A1		Lebel et al.	2005/0003470			Nelson et al.
2002/0068860 A1	6/2002		2005/0004439			Shin et al.
2002/0072784 A1		Sheppard et al.	2005/0004494 2005/0010087			Perez et al. Banet et al.
2002/0103499 A1 2002/0106709 A1		Perez et al. Potts et al.	2005/0010269			Lebel et al.
2002/0120186 A1		Keimel	2005/0016276			Guan et al.
2002/0128594 A1		Das et al.	2005/0017864 2005/0027177		2/2005	Tsoukalis Shin et al.
2002/0143266 A1 2002/0143372 A1	10/2002	Snell et al.	2005/0027177			Goode et al.
2002/0161288 A1		Shin et al.	2005/0027181			Goode et al.
2002/0169635 A1	11/2002		2005/0027462 2005/0027463		2/2005 2/2005	Goode et al.
2002/0193679 A1 2003/0004403 A1	1/2002	Malave et al. Drinan et al.	2005/0021403			Shults et al.
2003/0004403 A1 2003/0023317 A1		Brauker et al.	2005/0038332	A1	2/2005	Saidara et al.
2003/0023461 A1	1/2003	Quintanilla et al.	2005/0043598			Goode, Jr. et al.
2003/0028184 A1		Lebel et al.	2005/0049179 2005/0070774		3/2005	Davidson et al. Addison et al.
2003/0032867 A1 2003/0032874 A1		Crothall et al. Rhodes et al.	2005/0090607			Tapsak et al.
2003/0042137 A1		Mao et al.	2005/0096511	A1	5/2005	Fox et al.
2003/0050546 A1		Desai et al.	2005/0096512 2005/0112169			Fox et al. Brauker et al.
2003/0065308 A1 2003/0100821 A1		Lebel et al. Heller et al.	2005/0112103			Fox et al.
2003/0100821 A1 2003/0125612 A1		Fox et al.	2005/0114068	A1		Chey et al.
2003/0130616 A1		Steil et al.	2005/0115832			Simpson et al.
2003/0134347 A1		Heller et al.	2005/0121322 2005/0131346			Say et al. Douglas
2003/0168338 A1 2003/0176933 A1		Gao et al. Lebel et al.	2005/0143635			Kamath et al.
2003/0187338 A1		Say et al.	2005/0154271			Rasdal et al.
2003/0191377 A1		Robinson et al.	2005/0176136 2005/0177398			Burd et al. Watanabe et al.
2003/0199744 A1 2003/0199790 A1	10/2003	Buse et al. Boecker et al.	2005/0177398		8/2005	
2003/0199/90 A1 2003/0208113 A1		Mault et al.	2005/0187720	A1	8/2005	Goode, Jr. et al.
2003/0212317 A1		Kovatchev et al.	2005/0192494			Ginsberg
2003/0212379 A1		Bylund et al.	2005/0192557 2005/0195930			Brauker et al. Spital et al.
2003/0216630 A1 2003/0217966 A1	11/2003 11/2003	Jersey-Willuhn et al. Tapsak et al.	2005/0193930			Say et al.
2004/0010186 A1		Kimball et al.	2005/0203360	A1		Brauker et al.
2004/0010207 A1		Flaherty et al.	2005/0214892			Kovatchev et al.
2004/0011671 A1	1/2004		2005/0239154			Feldman et al.
2004/0024553 A1 2004/0039298 A1	2/2004 2/2004		2005/0239156 2005/0241957			Drucker et al. Mao et al.
2004/0040840 A1	3/2004		2005/0241797			Goode, Jr. et al.
2004/0045879 A1		Shults et al.	2005/0245799		11/2005	Brauker et al.

(56)	Referen	ces Cited	2007/0073			3/2007 4/2007	Shah et al.
IIS	PATENT	DOCUMENTS	2007/0078 2007/0078				Stafford Mazza et al.
0.5.	17111111	DOCOMENTO	2007/0078			4/2007	Stafford
2005/0245839 A1	11/2005	Stivoric et al.	2007/0078			4/2007	Reggiardo et al.
2005/0245904 A1		Estes et al.	2007/0095 2007/0106				Wang et al. Sloan et al.
2005/0277164 A1		Drucker et al.	2007/0108				Wang et al.
2005/0277912 A1 2005/0283208 A1	12/2005	Von Arx et al.	2007/0118				Campbell et al.
2005/0287620 A1		Heller et al.	2007/0124			5/2007	Estes et al.
2005/0288725 A1	12/2005	Hettrick et al.	2007/0129				Kellogg et al.
2006/0001538 A1		Kraft et al.	2007/0149 2007/0156				Ouyang et al. Causey, III et al.
2006/0004270 A1 2006/0010098 A1		Bedard et al. Goodnow et al.	2007/0163				Woo et al.
2006/0010098 A1 2006/0015020 A1		Neale et al.	2007/0168				Letzt et al.
2006/0015024 A1		Brister et al.	2007/0173				Neinast et al.
2006/0016700 A1		Brister et al.	2007/0173				Petisce et al.
2006/0017923 A1		Ruchti et al.	2007/0173 2007/0173				Petisce et al. Kanderian et al.
2006/0019327 A1 2006/0020186 A1		Brister et al. Brister et al.	2007/0179				Hoyme et al.
2006/0020180 A1 2006/0020187 A1		Brister et al.	2007/0179				Randlov et al.
2006/0020188 A1		Kamath et al.	2007/0179				Weinert et al.
2006/0020189 A1		Brister et al.	2007/0191 2007/0199				Feldman et al.
2006/0020190 A1		Kamath et al.	2007/0199				Petyt et al. Curry et al.
2006/0020191 A1 2006/0020192 A1		Brister et al. Brister et al.	2007/0203				Hoss et al.
2006/0025152 A1 2006/0025662 A1		Buse et al.	2007/0203	966	A1	8/2007	Brauker et al.
2006/0025663 A1		Talbot et al.	2007/0213				Jennewine et al.
2006/0029177 A1		Cranford, Jr. et al.	2007/0227			10/2007 10/2007	Wang et al.
2006/0031094 A1		Cohen et al.	2007/0232 2007/0232				Kovatchev et al.
2006/0036139 A1 2006/0036140 A1		Brister et al. Brister et al.	2007/0232				Siddiqui et al.
2006/0036141 A1		Kamath et al.	2007/0233			10/2007	Schoenberg et al.
2006/0036142 A1		Brister et al.	2007/0235			10/2007	
2006/0036143 A1		Brister et al.	2007/0244 2007/0249				Talbot et al.
2006/0036144 A1		Brister et al.	2007/0249				Peyser et al. Mehta et al.
2006/0036145 A1 2006/0058588 A1		Brister et al. Zdeblick	2007/0255				Mehta et al.
2006/0091006 A1		Wang et al.	2007/0255				Gerber et al.
2006/0142651 A1		Brister et al.	2007/0255			11/2007	
2006/0155180 A1		Brister et al.	2007/0258 2007/0270			11/2007	Jollota et al.
2006/0166629 A1 2006/0167365 A1		Reggiardo Bharmi	2007/02/0			12/2007	
2006/0167503 A1 2006/0167517 A1		Gill et al.	2007/0285			12/2007	
2006/0167518 A1		Gill et al.	2007/0299			12/2007	
2006/0167519 A1		Gill et al.	2008/0004 2008/0004				Jennewine et al. Jennewine et al.
2006/0173260 A1		Gaoni et al.	2008/0009				Stafford
2006/0173406 A1 2006/0173444 A1		Hayes et al. Choy et al.	2008/0017				Heller et al.
2006/0183984 A1		Dobbles et al.	2008/0018				Pitt-Pladdy
2006/0183985 A1		Brister et al.	2008/0021				Goode, Jr. et al.
2006/0189851 A1		Tvig et al.	2008/0029 2008/0030				Mao et al. Mann et al.
2006/0189863 A1 2006/0193375 A1		Peyser et al. Lee	2008/0033				Kamath et al.
2006/0193575 A1 2006/0222566 A1		Brauker et al.	2008/0039	702	A1	2/2008	Hayter et al.
2006/0224109 A1		Steil et al.	2008/0045				Tapsak et al.
2006/0226985 A1		Goodnow et al.	2008/0058 2008/0064				McGarraugh et al. McGarraugh et al.
2006/0229512 A1 2006/0247508 A1		Petisce et al. Fennell	2008/0064				Talbot et al.
2006/0247685 A1		Bharmi	2008/0066				Wang et al.
2006/0247710 A1		Goetz et al.	2008/0071				Brister et al.
2006/0247985 A1		Liamos et al.	2008/0071				McGarraugh et al. McGarraugh et al.
2006/0258929 A1	11/2006	Goode et al. Dring et al.	2008/0071 2008/0071				Haubrich et al.
2006/0264785 A1 2006/0272652 A1		Stocker et al.	2008/0081				Hayter et al.
2006/0281985 A1		Ward et al.	2008/0083			4/2008	Simpson et al.
2006/0287691 A1	12/2006		2008/0086				Brister et al.
2007/0016381 A1		Kamath et al.	2008/0086 2008/0086				Brister et al. Shults et al.
2007/0027381 A1		Stafford	2008/0097				Steil et al.
2007/0032706 A1 2007/0033074 A1		Kamath et al. Nitzan et al.	2008/0102				Chen et al.
2007/0038044 A1		Dobbles et al.	2008/0108				Brister et al.
2007/0055799 A1		Koehler et al.	2008/0119				Brister et al.
2007/0056858 A1		Chen et al.	2008/0119				Patel et al.
2007/0060803 A1		Liljeryd et al.	2008/0119				Budiman Mastratatara et al
2007/0060814 A1 2007/0066873 A1		Stafford Kamath et al.	2008/0139 2008/0148			6/2008	Mastrototaro et al.
2007/0068807 A1		Feldman et al.	2008/0154			6/2008	Kovatchev et al.
2007/0071681 A1		Gadkar et al.	2008/0161				Feldman et al.

(56)	Referen	ices Cited	2009/0036747			Hayter et al.
ZII	PATENT	DOCUMENTS	2009/0036758 2009/0036760		2/2009 2/2009	
0.5.	17111/11	DOCOMENTS	2009/0036763		2/2009	
2008/0167543 A1		Say et al.	2009/0043181		2/2009	Brauker et al.
2008/0167572 A1	7/2008		2009/0043182 2009/0043525		2/2009	Brauker et al. Brauker et al.
2008/0172205 A1 2008/0177149 A1		Breton et al. Weinert et al.	2009/0043523		2/2009	
2008/0177165 A1		Blomquist et al.	2009/0043542		2/2009	Brauker et al.
2008/0183060 A1		Steil et al.	2009/0045055		2/2009	
2008/0183061 A1		Goode et al.	2009/0048503 2009/0054737		2/2009	Dalal et al. Magar et al.
2008/0183399 A1 2008/0188731 A1		Goode et al. Brister et al.	2009/0054745		2/2009	Jennewine et al.
2008/0188796 A1		Steil et al.	2009/0054748	A1		Feldman et al.
2008/0189051 A1	8/2008	Goode et al.	2009/0054753			Robinson et al.
2008/0194934 A1		Ray et al.	2009/0055149 2009/0062633		2/2009	Hayter et al. Brauker et al.
2008/0194935 A1		Brister et al. Goode et al.	2009/0002033			Brauker et al.
2008/0194936 A1 2008/0194937 A1		Goode et al.	2009/0062767		3/2009	VanAntwerp et al.
2008/0194938 A1		Brister et al.	2009/0063402		3/2009	
2008/0195232 A1		Carr-Brendel et al.	2009/0069649		3/2009	
2008/0195967 A1		Goode et al.	2009/0076356 2009/0076360		3/2009 3/2009	Simpson et al. Brister et al.
2008/0197024 A1 2008/0200788 A1		Simpson et al. Brister et al.	2009/0076361		3/2009	Kamath et al.
2008/0200789 A1		Brister et al.	2009/0082693		3/2009	Stafford
2008/0200791 A1	8/2008	Simpson et al.	2009/0085768		4/2009	
2008/0201325 A1		Doniger et al.	2009/0099436 2009/0105554		4/2009 4/2009	Brister et al. Stahmann et al.
2008/0208025 A1 2008/0208113 A1		Shults et al. Damiano et al.	2009/0105550		4/2009	Solomon Solomon
2008/0208113 A1 2008/0214910 A1	9/2008		2009/0105570		4/2009	Sloan et al.
2008/0214915 A1		Brister et al.	2009/0105636		4/2009	,
2008/0214918 A1		Brister et al.	2009/0112478 2009/0118589		4/2009 5/2009	Mueller, Jr. et al. Ueshima et al.
2008/0228051 A1		Shults et al.	2009/0118389			Goode, Jr. et al.
2008/0228054 A1 2008/0234943 A1		Shults et al. Ray et al.	2009/0124878		5/2009	
2008/0235469 A1	9/2008		2009/0124879		5/2009	
2008/0242961 A1		Brister et al.	2009/0124964			Leach et al.
2008/0242963 A1		Essenpreis et al.	2009/0131768 2009/0131769		5/2009	Simpson et al. Leach et al.
2008/0255434 A1 2008/0255437 A1	10/2008	Hayter et al.	2009/0131776		5/2009	Simpson et al.
2008/0255438 A1		Saidara et al.	2009/0131777		5/2009	Simpson et al.
2008/0255808 A1	10/2008		2009/0137886		5/2009	Shariati et al.
2008/0256048 A1	10/2008		2009/0137887 2009/0143659		5/2009 6/2009	Shariati et al. Li et al.
2008/0262469 A1 2008/0267823 A1		Brister et al. Wang et al.	2009/0143660		6/2009	Brister et al.
2008/0207823 A1 2008/0275313 A1		Brister et al.	2009/0143725			Peyser et al.
2008/0287761 A1	11/2008		2009/0150186		6/2009	Cohen et al.
2008/0287762 A1	11/2008		2009/0156919 2009/0156924		6/2009 6/2009	Brister et al. Shariati et al.
2008/0287763 A1 2008/0287764 A1	11/2008	Hayter Rasdal et al.	2009/0130924		6/2009	Brister et al.
2008/0287765 A1		Rasdal et al.	2009/0163791		6/2009	Brister et al.
2008/0287766 A1		Rasdal et al.	2009/0163855		6/2009	Shin et al.
2008/0288180 A1	11/2008		2009/0164190		6/2009	
2008/0288204 A1 2008/0296155 A1		Hayter et al.	2009/0164239 2009/0164251		6/2009	Hayter et al. Hayter
2008/0390133 A1 2008/0300572 A1		Shults et al. Rankers et al.	2009/0178459		7/2009	Li et al.
2008/0306368 A1		Goode et al.	2009/0182217			Li et al.
2008/0306434 A1		Dobbles et al.	2009/0182517			Gandhi et al. Hermle
2008/0306435 A1		Kamath et al. Brister et al.	2009/0189738 2009/0192366		7/2009	
2008/0306444 A1 2008/0312518 A1		Jina et al.	2009/0192380		7/2009	
2008/0312841 A1	12/2008		2009/0192722		7/2009	
2008/0312842 A1	12/2008		2009/0192724 2009/0192745			Brauker et al. Kamath et al.
2008/0312844 A1		Hayter et al.	2009/0192743			Kamath et al.
2008/0312845 A1 2008/0314395 A1		Hayter et al. Kovatchev et al.	2009/0198118			Hayter et al.
2008/0319279 A1		Ramsay et al.	2009/0203981		8/2009	Brauker et al.
2009/0005665 A1		Hayter et al.	2009/0204341		8/2009 8/2009	Brauker et al.
2009/0005666 A1		Shin et al.	2009/0216103 2009/0234200		9/2009	Brister et al. Husheer
2009/0006034 A1 2009/0006061 A1	1/2009	Hayter et al. Thukral et al.	2009/0240120		9/2009	Mensinger et al.
2009/0006001 A1 2009/0006133 A1		Weinert et al.	2009/0240128		9/2009	Mensinger et al.
2009/0012376 A1	1/2009	Agus	2009/0240193		9/2009	Mensinger et al.
2009/0012379 A1		Goode et al.	2009/0242399		10/2009	Kamath et al.
2009/0018424 A1		Kamath et al.	2009/0242425			Kamath et al.
2009/0018425 A1 2009/0030293 A1	1/2009	Ouyang et al. Cooper et al.	2009/0247855 2009/0247856		10/2009 10/2009	Boock et al. Boock et al.
2009/0030293 A1 2009/0030294 A1		Petisce et al.	2009/0247857		10/2009	Harper et al.
2009/0033482 A1		Hayter et al.	2009/0253973		10/2009	Bashan et al.

(56)	Referer	nces Cited		/0208027 A1		Wagner et al.
U.S	. PATENT	DOCUMENTS		/0208155 A1 /0210830 A1		Palerm et al. Talty et al.
0.0				/0213225 A1		Bernstein et al.
2009/0267765 A1 2009/0281407 A1	10/2009 11/2009	Greene et al. Budiman		/0224523 A1 /0257495 A1		Budiman Hoss et al.
2009/0287073 A1	11/2009	Boock et al.		/0257895 A1		Brauker et al.
2009/0287074 A1 2009/0289796 A1		Shults et al. Blumberg		/0263958 A1 /0288574 A1		Brauker et al. Curry et al.
2009/0291634 A1		Saarisalo	2011	/0319729 A1	12/2011	Donnay et al.
2009/0294277 A1 2009/0299155 A1		Thomas et al. Yang et al.		/0320130 A1 /0320167 A1		Valdes et al. Budiman
2009/0299156 A1		Simpson et al.	2012	/0010642 A1	1/2012	Lee et al.
2009/0299162 A1 2009/0299276 A1		Brauker et al. Brauker et al.		/0078071 A1 /0084053 A1		Bohm et al. Yuen et al.
2010/0010324 A1		Brauker et al.	2012	/0108931 A1	5/2012	Taub
2010/0010331 A1 2010/0010332 A1		Brauker et al. Brauker et al.		/0108934 A1 /0165626 A1		Valdes et al. Irina et al.
2010/0010332 A1 2010/0057040 A1		Hayter	2012	/0165640 A1	6/2012	Galley et al.
2010/0057041 A1		Hayter Hayter		/0173200 A1 /0209099 A1		Breton et al. Ljuhs et al.
2010/0057042 A1 2010/0057044 A1		Hayter	2012	/0215462 A1	8/2012	Goode et al.
2010/0057057 A1		Hayter et al.		/0233679 A1 /0238851 A1		Shedrinsky Kamen et al.
2010/0063372 A1 2010/0081906 A1		Potts et al. Hayter et al.	2012	/0245447 A1	9/2012	Karan et al.
2010/0081909 A1		Budiman et al.		/0255875 A1 /0277565 A1		Vicente et al. Budiman
2010/0081953 A1 2010/0121167 A1		Syeda-Mahmood et al. McGarraugh et al.		/0309302 A1	12/2012	Buhot
2010/0141656 A1	6/2010	Krieftewirth		/0035575 A1 /0184547 A1		Mayou et al. Taub et al.
2010/0160759 A1 2010/0160761 A1		Celentano et al. Say et al.		/0121480 A1	5/2014	Budiman et al.
2010/0168538 A1	7/2010	Keenan et al.		/0121488 A1 /0221966 A1	5/2014	Budiman Buckingham et al.
2010/0168546 A1 2010/0174266 A1	7/2010	Kamath et al. Estes		/0221500 A1 /0216456 A1		Budiman
2010/0190435 A1	7/2010	Cook et al.		/0366510 A1 /0022221 A1		Budiman Ou et al.
2010/0191085 A1 2010/0191472 A1		Budiman Doniger et al.	2010	70022221 A1	1/2010	ou et al.
2010/0198034 A1	8/2010	Thomas et al.		FOREIC	3N PATE	NT DOCUMENTS
2010/0198142 A1 2010/0204557 A1		Sloan et al. Kiaie et al.	EP	104	8264	11/2000
2010/0213057 A1	8/2010	Feldman et al.	EP	141	9731	5/2004
2010/0230285 A1 2010/0234710 A1		Hoss et al. Budiman et al.	EP EP		9602 0909	9/2004 4/2010
2010/0265073 A1	10/2010	Harper et al.	EP	167	7668	7/2010
2010/0274515 A1 2010/0277342 A1		Hoss et al. Sicurello et al.	EP WO	2 498 WO-1996/02		9/2012 8/1996
2010/0280441 A1	11/2010	Willinska et al.	WO	WO-1996/03		11/1996
2010/0280782 A1 2010/0312176 A1		Harper et al. Lauer et al.	WO WO	WO 97/1 WO-1997/01		5/1997 5/1997
2010/0313105 A1	12/2010	Nekoomaram et al.	WO	WO-2000/04	9940	8/2000
2010/0317952 A1 2010/0324392 A1		Budiman et al. Yee et al.	WO WO	WO-2000/05 WO-2000/07		10/2000 12/2000
2010/0326842 A1	12/2010	Mazza et al.	WO	WO-2001/05	2935	7/2001
2011/0004276 A1 2011/0021889 A1		Blair et al. Hoss et al.	WO WO	WO-2001/05 WO-2002/01		8/2001 2/2002
2011/0024043 A1	2/2011	Boock et al.	WO	WO-2003/07		9/2003
2011/0024307 A1 2011/0027127 A1		Simpson et al. Simpson et al.	WO WO	WO-2003/08 WO-2004/06		10/2003 7/2004
2011/0027453 A1	2/2011	Boock et al.	WO	WO-2005/06	5542	7/2005
2011/0027458 A1 2011/0028815 A1		Boock et al. Simpson et al.	WO WO	WO-2006/02 WO-2006/08		3/2006 8/2006
2011/0028816 A1	2/2011	Simpson et al.	wo	WO-2007/09		8/2007
2011/0029247 A1 2011/0040163 A1		Kalathil Telson et al.	WO WO	WO-2008/00 WO-2008/08		1/2008 7/2008
2011/0058485 A1	3/2011	Sloan	wo	WO 2013/01		2/2013
2011/0060530 A1 2011/0077490 A1		Fennell Simpson et al.				
2011/0077494 A1	3/2011	Doniger et al.		TO	HER PU	BLICATIONS
2011/0081726 A1 2011/0082484 A1		Berman et al. Saravia et al.	"Rloo	d oluçose moni	torino" ra	trieved from "https://web.archive.
2011/0105873 A1	5/2011	Feldman et al.		-	-	n.wikipedia.org/wiki/Blood_glucose_
2011/0106126 A1 2011/0112696 A1		Love et al. Yodfat et al.	_	oring" on Aug.	-	
2011/0112090 A1 2011/0148905 A1		Simmons et al.	"In Vi	vo Glucose Sen	sing", Che	emical Analysis, A Series of Mono-
2011/0152637 A1		Kateraas et al.		on Analytical (2010).	Chemistry	and its Applications, vol. 174, 62
2011/0184268 A1 2011/0190603 A1	7/2011 8/2011	Taub Stafford			cation" re	trieved from "http://en.wikipedia.
2011/0191044 A1	8/2011	Stafford	org/w	/index.php?ti	tle=Near	_field_communication&oldid=
2011/0193704 A1	8/2011	Harper et al.	54374	0757" on Jun. 2	27, 2014, 1	14 pages.

(56) References Cited

OTHER PUBLICATIONS

Decuir, "Bluetooth 4.0:Low Energy", Standards Architect, CSR Technology, Councilor, Bluetooth Architecture Review Board, IEEE Region 6 Northwest Area Chair, 104 pages (2012).

Dementyev, et al., "Power Consumption Analysis of Bluetooth Low Energy, ZigBee and ANT Sensor Nodes in a Cyclic Sleep Scenario", IEEE International Wireless Symposium (IWS), 5 pages (2013). Klonoff, "A Review of Continuous Glucose Monitoring Technology", Diabetes Technology & Therapeutics, 7(5):770-775 (2005). Klonoff, "Continuous Glucose Monitoring: Roadmap for 21st century diabetes therapy", Diabetes Care, 28(5):1231-1239 (2005).

Morak, et al., "Design and Evaluation of a Telemonitoring Concept Based on NFC-Enabled Mobile Phones and Sensor Devices", IEEE Transactions on Information Technology in Biomedicine, 16(1):17-23 (2012).

Movassaghi, et al., "Wireless Technologies for Body Area Networks: Characteristics and Challenges", IEEE, International Symposium on Communications and Information Technologies (ISCIT), pp. 42-47 (2012).

Specification of the Bluetooth System, Experience More, Specification vol. 0, Covered Core Package Version: 4.0, 2 302 pages (2010).

Townsend, et al., "Getting Started with Bluetooth Low Energy [Book]", O'Reilly, retrieved from https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch01.html on May 5, 2020, 26 pages.

Arnold, M. A., et al., "Selectivity Assessment of Noninvasive Glucose Measurements Based on Analysis of Multivariate Calibration Vectors", *Journal of Diabetes Science and Technology*, vol. 1, No. 4, 2007, pp. 454-462.

Boyne, M. S., et al., "Timing of Changes in Interstitial and Venous Blood Glucose Measured With a Continuous Subcutaneous Glucose Sensor", *Diabetes*, vol. 52, Nov. 2003, pp. 2790-2794.

Eren-Oruklu, M., et al., "Estimation of Future Glucose Concentrations with Subject-Specific Recursive Linear Models", *Diabetes Technology& Therapeutics* vol. 11(4), 2009, pp. 243-253.

Hovorka, R., et al., "Nonlinear Model Predictive Control of Glucose Concentration in Subjects with Type 1 Diabetes", *Physiological Measurement*, vol. 55, Jul. 2004, pp. 905-920.

Kovatchev, B. P., et al., "Graphical and Numerical Evaluation of Continuous Glucose Sensing Time Lag", *Diabetes Technology & Therapeutics*, vol. 11, No. 3, 2009, pp. 139-143.

Steil, G. M., et al., "Determination of Plasma Glucose During Rapid Glucose Excursions with a Subcutaneous Glucose Sensor", *Diabetes Technology & Therapeutics*, vol. 5, No. 1, 2003, pp. 27-31.

Steil, G.M., et al., "Closed-Loop Insulin Delivery—the Path of Physiological Glucose Control", *Advanced Drug Delivery Reviews*, vol. 56, 2004, pp. 125-144.

Armour, J. C., et al., "Application of Chronic Intravascular Blood Glucose Sensor in Dogs", *Diabetes*, vol. 39, 1990, pp. 1519-1526. Bennion, N., et al., "Alternate Site Glucose Testing: A Crossover Design", *Diabetes Technology & Therapeutics*, vol. 4, No. 1, 2002, pp. 25-33.

Blank, T. B., et al., "Clinical Results From a Non-Invasive Blood Glucose Monitor", Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.

Bremer, T. M., et al., "Benchmark Data from the Literature for Evaluation of New Glucose Sensing Technologies", *Diabetes Technology & Therapeutics*, vol. 3, No. 3, 2001, pp. 409-418.

Brooks, S. L., et al., "Development of an On-Line Glucose Sensor for Fermentation Monitoring", *Biosensors*, vol. 3, 1987/88, pp. 45-56.

Cass, A. E., et al., "Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose", *Analytical Chemistry*, vol. 56, No. 4, 1984, 667-671.

Cheyne, E. H., et al., "Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers", *Diabetes Technology & Therapeutics*, vol. 4, No. 5, 2002, pp. 607-613.

Choleau, C., et al., "Calibration of a Subcutaneous Amperometric Glucose Sensor Implanted for 7 Days in Diabetic Patients Part 2. Superiority of the One-Point Calibration Method", *Biosensors and Bioelectronics*, vol. 17, No. 8, 2002, pp. 647-654.

Csoregi, E., et al., "Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on 'Wired' Glucose Oxidase", *Analytical Chemistry*, vol. 67, No. 7, 1995, pp. 1240-1244.

Diabetes Control and Complications Trial Research Group, "The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus," *New England J. Med.* vol 329, 1993, pp. 977-986.

Feldman, B., et al., "A Continuous Glucose Sensor Based on Wired EnzymeTM Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes", *Diabetes Technology & Therapeutics*, vol. 5, No. 5, 2003, pp. 769-779.

Feldman, B., et al., "Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change", Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004, 1 page.

Georgescu, B., et al., "Real-Time Multimodel Tracking of Myocardium in Echocardiography Using Robust Information Fusion", *Medical Image Computing and Computer-Assisted Intervention*, 2004, pp. 777-785.

Goldman, J. M., et al., "Masimo Signal Extraction Pulse Oximetry", *Journal of Clinical Monitoring and Computing*, vol. 16, No. 7, 2000, pp. 475-483.

Guerci, B., et al., "Clinical Performance of CGMS in Type 1 Diabetic Patients Treated by Continuous Subcutaneous Insulin Infusion Using Insulin Analogs", *Diabetes Care*, vol. 26, 2003, pp. 582-589.

Isermann, R., "Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction", *Control Engineering Practice*, vol. 5, No. 5, 1997, pp. 639-652.

Isermann, R., et al., "Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes", *Control Engineering Practice*, vol. 5, No. 5, 1997, pp. 709-719.

Johnson, P. C., "Peripheral Circulation", *John Wiley & Sons*, 1978, pp. 198.

Jungheim, K., et al., "How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?", 2002, pp. 250.

Jungheim, K., et al., "Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm", *Diabetes Care*, vol. 24, No. 7, 2001, pp. 1303-1304.

Kaplan, S. M., "Wiley Electrical and Electronics Engineering Dictionary", *IEEE Press*, 2004, pp. 141, 142, 548, 549.

Kovatchev, B. P., et al., "Evaluating the Accuracy of Continuous Glucose-Monitoring Sensors", *Diabetes Care*, vol. 27, No. 8, 2004, pp. 1922-1928.

Kuure-Kinsey, M., et al., "A Dual-Rate Kalman Filter for Continuous Glucose Monitoring", *Proceedings of the 28th IEEE, EMBS Annual International Conference*, New York City, 2006, pp. 63-66. Lodwig, V., et al., "Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria", *Diabetes Technology & Therapeutics*, vol. 5, No. 4, 2003, pp. 573-587.

Lortz, J., et al., "What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology", *Smart Computing Learning Series, Wireless Computing*, vol. 8, Issue 5, 2002, pp. 72-74. Maher, "A Method for Extrapolation of Missing Digital Audio

Data", Preprints of Papers Presented at the AES Convention, 1993, pp. 1-19.

Maher, "Audio Enhancement using Nonlinear Time-Frequency Filtering", AES 26th International Conference, 2005, pp. 1-9.

Malin, S. F., et al., "Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy", *Clinical Chemistry*, vol. 45, No. 9, 1999, pp. 1651-1658.

Mcgarraugh, G., et al., "Glucose Measurements Using Blood Extracted from the Forearm and the Finger", *TheraSense, Inc.*, 2001, 16 Pages.

(56) References Cited

OTHER PUBLICATIONS

Mcgarraugh, G., et al., "Physiological Influences on Off-Finger Glucose Testing", *Diabetes Technology & Therapeutics*, vol. 3, No. 3, 2001, pp. 367-376.

Mckean, B. D., et al., "A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors", *IEEE Transactions on Biomedical Engineering*, vol. 35, No. 7, 1988, pp. 526-532.

Morbiducci, U, et al., "Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation", *Clinical Science*, vol. 112, 2007, pp. 257-263.

Mougiakakou, et al., "A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients", *Proceedings of the 2005 IEEE*, 2005, pp. 298-301.
Panteleon, A. E., et al., "The Role of the Independent Variable to

Panteleon, A. E., et al., "The Role of the Independent Variable to Glucose Sensor Calibration", *Diabetes Technology & Therapeutics*, vol. 5, No. 3, 2003, pp. 401-410.

Parker, R., et al., "Robust Hoo Glucose Control in Diabetes Using a Physiological Model", *AIChE Journal*, vol. 46, No. 12, 2000, pp. 2537-2549.

Pickup, J., et al., "Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy", *Biosensors*, vol. 3, 1987/88, pp. 335-346.

Pickup, J., et al., "In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer", *Diabetologia*, vol. 32, 1989, pp. 213-217.

Pishko, M. V., et al., "Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels", *Analytical Chemistry*, vol. 63, No. 20, 1991, pp. 2268-2272

Quinn, C. P., et al., "Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors", *The American Physiological Society*, 1995, E155- E161.

Roe, J. N., et al., "Bloodless Glucose Measurements", *Critical Review in Therapeutic Drug Carrier Systems*, vol. 15, Issue 3, 1998, pp. 199-241.

Sakakida, M., et al., "Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations", *Artificial Organs Today*, vol. 2, No. 2, 1992, pp. 145-158.

Sakakida, M., et al., "Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane", Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.

Salehi, C., et al., "A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors", *Analytical Letters*, vol. 29, No. 13, 1996, pp. 2289-2308.

Schmidtke, D. W., et al., "Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin", *Proceedings of the National Academy of Sciences*, vol. 95, 1998, pp. 294-299.

Shaw, G. W., et al., "In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients", *Biosensors & Bioelectronics*, vol. 6, 1991, pp. 401-406. Shichiri, M., et al., "Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas", *Diabetologia*, vol. 24, 1983, pp. 179-184.

Shichiri, M., et al., "In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers", *Hormone and Metabolic Research Supplement Series*, vol. 20, 1988, pp. 17-20.

Shichiri, M., et al., "Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor", *Diabetes Nutrition and Metabolism*, vol. 2, 1989, pp. 309-313.

Shichiri, M., et al., "Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas", *Implantable Sensors for Closed-Loop Prosthetic Systems*, Chapter 15, 1985, pp. 197-210.

Shichiri, M., et al., "Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals", *Diabetes Care*, vol. 9, No. 3, 1986, pp. 298-301.

Shichiri, M., et al., "Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor", *The Lancet*, 1982, pp. 1129-1131. Shults, M. C., et al., "A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors", *IEEE Transactions on Biomedical Engineering*, vol. 41, No. 10, 1994, pp. 937-942.

Sternberg, R., et al., "Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors", *Biosensors*, vol. 4, 1988, pp. 27-40.

Thompson, M., et al., "In Vivo Probes: Problems and Perspectives", *Clinical Biochemistry*, vol. 19, 1986, pp. 255-261.

Turner, A., et al., "Diabetes Mellitus: Biosensors for Research and Management", *Biosensors*, vol. 1, 1985, pp. 85-115.

Updike, S. J., et al., "Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)", *Biosensors in the Body: Continuous in vivo Monitoring*, Chapter 4, 1997, pp. 117-137.

Velho, G., et al., "Strategies for Calibrating a Subcutaneous Glucose Sensor", *Biomedica Biochimica Acta*, vol. 48, 1989, pp. 957-964. Whipple, G., "Low Residual Noise Speech Enhancement Utilizing Time-Frequency", *Proceedings of the International Conference on Acoustics, Speech, and Signal Processing*, vol. 19, 1994, pp. 15-18. Wilson, G. S., et al., "Progress Toward the Development of an Implantable Sensor for Glucose", *Clinical Chemistry*, vol. 38, No. 9, 1992, pp. 1613-1617.

Wolfe, P. J., et al., "Interpolation of Missing Data Values for Audio Signal Restoration Using a Gabor Regression Model", 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, 2005, pp. 517-520.

^{*} cited by examiner

100

NOISE REJECTION METHODS AND APPARATUS FOR SPARSELY SAMPLED ANALYTE SENSOR DATA

RELATED APPLICATION

The present application claims priority under 35 U.S.C. § 119 (e) to U.S. Provisional Application No. 61/794,549 filed Mar. 15, 2013, entitled "Noise Rejection Methods and Apparatus For Sparsely Sampled Analyte Sensor Data," the ¹⁰ disclosure of which is incorporated herein by reference for all purposes.

BACKGROUND

The detection of the concentration level of glucose or other analytes in certain individuals may be vitally important to their health. For example, the monitoring of glucose levels is particularly important to individuals with diabetes or pre-diabetes. People with diabetes may need to monitor 20 their glucose levels to determine when medication (e.g., insulin) is needed to reduce their glucose levels or when additional glucose is needed.

Devices have been developed for automated in vivo monitoring of analyte time series characteristics, such as 25 glucose levels, in bodily fluids such as in the blood stream or in interstitial fluid. Some of these analyte level measuring devices are configured so that at least a portion of a sensor of an on-body device is positioned below a skin surface of a user, e.g., in a blood vessel or in the subcutaneous tissue 30 of a user. As used herein, the term analyte monitoring system is used to refer to any type of in vivo monitoring system that uses a sensor disposed with at least a subcutaneous portion to measure and store sensor data representative of analyte concentration levels automatically over time. Analyte moni- 35 toring systems include both (1) systems such as continuous glucose monitors (CGMs) which transmit sensor data continuously or at regular time intervals (e.g., once per minute) to a processor/display unit and (2) systems that transfer stored sensor data in one or more batches in response to data 40 request from a processor/display unit (e.g., based on an activation action and/or proximity using, for example, a near field communications protocol).

Some analyte monitoring systems may store samples relatively infrequently. For example, the sensor data may 45 only include measurements or samples taken once every ten or fifteen minutes. In some cases, such sparsely sampled analyte sensor data may not accurately reflect the analyte concentration levels, particularly if signal noise is present. Thus, what are needed are systems, methods and apparatus 50 that can reliably represent the analyte concentration level even of sparsely sampled data is used.

SUMMARY

As mentioned above, accurate monitoring of analyte levels can be important to a person's health. To insure that sensor data does accurately reflect analyte concentration, embodiments of the present disclosure provide systems, methods, and apparatus for rejecting noise from sparsely 60 sampled analyte sensor data that does not alter or distort true sensor data excursions. Conventional noise filtering from sparsely sampled sensor data can result in undesirable side effects such as over-filtering, particularly where an actual rapid change (e.g., a relatively fast change compared to the 65 sample rate) in analyte concentration (i.e., a fast true sensor data excursion) occurs. In effect, conventional analyte sen-

2

sor data filtering methods may not reliably distinguish between noise that should be rejected and rapid changes in analyte concentration that should be preserved. As a result, the analyte sensor can appear less responsive, and, in addition, can lag as compared to reference analyte measurements. The present disclosure provides novel noise rejection methods that take advantage of the similarities and differences of interpolation-based and extrapolation-based estimation methods to filter noise without attenuating fast true sensor data excursions.

In some embodiments, the present disclosure provides systems, methods and apparatus for rejecting noise from sparsely sampled analyte sensor data. The invention includes receiving a raw set of sensor data from an on-body device including an in vivo analyte sensor, determining an interpolation-based estimate of an analyte level over time based on the raw set of sensor data, determining an extrapolation-based estimate of the analyte level over time based on the raw set of sensor data, determining a combined estimate of the analyte level over time based on the interpolation-based estimate and the extrapolation-based estimate, and displaying a representation of the combined estimate of the analyte level over time on an output device.

The invention also includes a computer system and a computer program product for rejecting noise in sparsely sampled analyte monitoring system sensor data. Numerous other aspects and embodiments are provided. Other features and aspects of the present disclosure will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated herein, form part of the specification. Together with this written description, the drawings further serve to explain the principles of, and to enable a person skilled in the relevant arts, to make and use the present disclosure.

FIG. 1 depicts an example graph illustrating a Least Squares fit of a straight line to estimate a sensor data value in accordance with some embodiments of the present disclosure.

FIG. 2 depicts an example graph illustrating the smoothing effect of the Least Squares fit based calculation in accordance with some embodiments of the present disclosure.

FIG. 3 depicts an example graph illustrating the Least Squares fit based calculation applied outside the measurement window in accordance with some embodiments of the present disclosure.

FIG. 4 depicts an example graph illustrating the combination of an interpolation-based calculation and an extrapolation-based calculation in accordance with some embodiments of the present disclosure.

FIG. 5 depicts an example graph illustrating the effectiveness of applying methods of the present disclosure to noisy sensor data in accordance with some embodiments of the present disclosure.

FIG. 6 is a flow chart depicting an example method of noise rejection for sparsely sampled analyte sensor data in accordance with some embodiments of the present disclosure.

DETAILED DESCRIPTION

Before the embodiments of the present disclosure are described, it is to be understood that this invention is not

limited to the particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the embodiments of the invention will be limited only by the appended claims.

The present disclosure provides systems, methods, and apparatus to reject noise from sparsely sampled analyte sensor data that does not alter or distort true sensor data excursions. As used herein, the term "sparsely sampled" is 10 intended to mean a sample rate that is low enough such that first phase responses to meal and/or insulin may be difficult to discern in real-time. For example, based on average human physiology, a sample rate of once every ten minutes or slower is a sparsely sampled rate. The invention can be 15 applied to sensor data from an analyte monitoring system, such as, for example, any type of in vivo monitoring system that uses a sensor disposed with at least a subcutaneous portion to measure and store sensor data representative of analyte concentration levels automatically over time. Ana- 20 lyte monitoring systems may include CGMs which are programmed to transmit sensor data according to a predetermined transmission schedule, continuously, or at regular time intervals to a processor/display unit and systems that transfer stored sensor data in one or more batches in 25 response to a request from a processor/display unit, i.e., not according to a predetermined transmission schedule. Without requiring a patient to provide blood samples for in vitro reference glucose readings, the present disclosure is operable to reject noise from sparsely sampled data from an in 30 vivo analyte sensor.

According to some embodiments of the present disclosure, a dataset representative of a patient's monitored analyte concentration level (herein referred to as "sensor data") over time is received from an on-body device that includes 35 sensor electronics operatively coupled to an analyte sensor that is in fluid contact with interstitial fluid. In some embodiments, the sensor data may represent a collection of data received from the on-body device at several different times during a wear period of the on-body device. In some other 40 embodiments, the sensor data may represent data collected and stored over an entire wear period of the on-body device and only received from the on-body device at the end of the wear period or at the end of the useful life of the on-body device. In other words, the sensor data can be transmitted 45 continuously, on a regular schedule, in multiple batches over time, in batches on demand, or in a single batch.

Embodiments of the present disclosure may be applied to any analyte concentration level determination system that may exhibit or at least be suspected of exhibiting, or that 50 may be susceptible to noise in the sensor data. Embodiments of the invention are described primarily with respect to continuous glucose monitoring devices and systems but the present disclosure may be applied to other analytes and analyte characteristics, as well as data from measurement 55 systems that transmit sensor data from a sensor unit to another unit such as a processing or display unit in response to a request from the other unit. For example, other analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonado- 60 tropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., 65 gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be

monitored. In the embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times. The present disclosure also provides numerous additional embodiments.

Embodiments of the present disclosure may include a programmed computer system adapted to receive and store data from an analyte monitoring system. The computer system may include one or more processors for executing instructions or programs that implement the methods described herein. The computer system may include memory and persistent storage devices to store and manipulate the instructions and sensor data received from the analyte monitoring system. The computer system may also include communications facilities (e.g., wireless and/or wired) to enable transfer of the sensor data from the analyte monitoring system to the computer. The computer system may include a display and/or output devices for identifying dropouts in the sensor data to a user. The computer system may include input devices and various other components (e.g., power supply, operating system, clock, etc.) that are typically found in a conventional computer system. In some embodiments, the computer system may be integral to the analyte monitoring system. For example, the computer system may be embodied as a handheld or portable receiver unit within the analyte monitoring system.

The various methods described herein for performing one or more processes also described herein may be embodied as computer programs (e.g., computer executable instructions and data structures) developed using an object oriented programming language that allows the modeling of complex systems with modular objects to create abstractions that are representative of real world, physical objects and their interrelationships. However, any practicable programming language and/or techniques may be used. The software for performing the inventive processes, which may be stored in a memory or storage device of the computer system described herein, may be developed by a person of ordinary skill in the art based upon the present disclosure and may include one or more computer program products. The computer program products may be stored on a computer readable medium such as a server memory, a computer network, the Internet, and/or a computer storage device. Note that in some cases the methods embodied as software may be described herein with respect to a particular order of operation or execution. However, it will be understood by one of ordinary skill that any practicable order of operation or execution is possible and such variations are contemplated by this specification of the present disclosure.

Rejecting noise can be essential in generating an accurate representation of an analyte concentration level using an analyte monitoring system. In some analyte monitoring systems, for example, the sensor data can include a window of sparsely sampled data long enough to cover a significant portion of a day, e.g., a 6 to 12 hour window with datapoints every 10 to 20 minutes. In addition to noise, some of the data points may not be available due to data quality issues. A reliable analyte measurement system according to the present disclosure can reject noise and recover missing data using the remaining sparsely sampled data.

Conventional filtering methods can apply a relatively simple approach that is robust to intermittent signal loss and noise. This method includes fitting one or more parameters of a pre-determined polynomial structure over a window of sensor data using the Least-Squares Error (LS) fit method. An analytical solution can be derived for each of the parameters, as long as there is sufficiency of excitation and the number of parameters identified remain small (e.g. up to

4

3 parameters). This means that polynomials with up to three degrees of freedom (e.g., linear (a straight line with 0 intercept); affine (straight line with general intercept); or parabolic) can be considered. For numerical robustness with respect to noise, affine functions are considered. Up to two 5 parameters are estimated, namely the slope and intercept.

FIG. 1 is a graph 100 of sensor data values plotted over time. The graph 100 illustrates an example of a LS fit of a straight line 102 to estimate a value at a time of interest 104 and the rate of change (i.e. the slope of the LS fit), whether 10 or not the source data at time of interest 104 is available. In the example shown in FIG. 1, the time of interest 104 is inside the measurement window 106. The filled solid circles represent available and valid data points within the measurement window 106. As will be shown in more detail with 15 respect to FIG. 2, the LS fit method allows recovery of missing data based on neighboring raw sensor data. However, as will also be illustrated below, obtaining an estimate outside the window 106, whose instance is relatively distant from the center of the measurement window **106** and large 20 relative to the size of the measurement window 106, can exaggerate the negative effects of extrapolation.

LS fit of a straight line of data in a measurement window can be used to achieve robust signal recovery and noise rejection. For example, suppose an LS fit of a straight line 25 is determined using three data points spaced fifteen minutes apart and the LS fit estimate at the center data point is used as the output. FIG. 2 depicts a graph 200 of an example of a raw sensor data set plot z stored at fifteen minute intervals. In this example, curve y_c is the resulting LS fit estimate 30 using the method described above with respect to FIG. 1, based on three z neighboring values and estimating the center value. In general, curve \mathbf{y}_c is a smoother representation of the sensor data values compared to plot z. However, the values around fast transitions (e.g., around the peak at 26 35 Hr. and valley at 27 Hr.) are severely attenuated, which is evident from the reduced dynamic range (or roughly peakto-peak distance) of the LS fit result compared to plot z.

When the LS fit is used to estimate a value at the edge of the window or slightly outside of the window, the attenua- 40 tion rounding effect is replaced by noise amplification associated with extrapolation. However, when results of two extrapolations (or near extrapolation in the case where the estimate lies on the edge of the window) are combined such that the estimate lies on the same sample instance, and one 45 window uses past data while the other uses future data, the result is a reasonably smooth signal with exaggerated sharp apexes. This result is shown as curve y_s in the graph 300 of FIG. 3, which is generally smoother than plot z, but errs on the opposite side of plot z compared to curve y_c .

To overcome the attenuation around fast transitions introduced by interpolation filtering methods and the exaggerated fast transitions introduced by extrapolation filtering methods, the methods of the present disclosure combine interpolation based estimates and extrapolation based estimates. 55 As shown in the graph 400 of FIG. 4, when the interpolationbased calculation for curve y_c (LS fit based calculation inside the measurement window) and the extrapolationbased calculation for curve y_s (LS fit based calculation outside the measurement window) are combined, the result 60 least-squares estimate at the center: is curve y_a. Note that curve y_a traces plot z relatively accurately in this example that does not contain significant noise to reject and/or data loss to recover. However, turning now to FIG. 5, the efficacy of this combination in rejecting noisy sensor data is graphically demonstrated.

FIG. 5 is a graph 500 that depicts methods of the present disclosure applied to an example of a noisy sensor data

6

segment. Plot z represents noisy raw sensor data sampled and presented in one minute increments. Curve y_b represents reference glucose measurements taken every fifteen minutes, visually connected by dotted lines. When the noisy sensor data of plot z is used for a sensor output calculation that involves a rate of change calculation, the resulting output at fifteen minute intervals is shown as curve y_h . Plot z_c represents conditioned sensor data sampled and presented in fifteen minute increments. If the same sensor output calculation uses the conditioning of the present disclosure (i.e., uses plot z_c as the input data) instead of plot z, the resulting output at fifteen minute intervals is shown as curve y_b". As can be seen in FIG. 5, using the methods of the present disclosure, there is a significant reduction of the noise in the analyte measurement system output in the presence of noisy raw analyte sensor data input. Further, as illustrated in FIG. 4, the estimation methods of the present disclosure do not attenuate the amplitude of true analyte sensor data excursions and sensor data segments with low noise are not affected.

Turning now to FIG. 6, a flow chart 600 depicting example methods of the present disclosure is provided. As indicated above, the methods of the present disclosure can be implemented on a computer or other processing device. In some embodiments, raw sensor data is received from an on-body device that includes an in vivo analyte sensor (602). The raw sensor data may represent data sampled over a period of time during the use of the on-body device. The sample rate may be less than ten or fifteen minutes such that the data collected is sparsely sampled as defined above. In some embodiments, the set of data received may include data collected and stored over an entire wear period.

An interpolation-based estimate of the analyte level over time is determined based on the raw set of sensor data (604). The interpolation-based estimate can be computed based on a least squares fit based calculation of analyte sensor data values within a predefined measurement window. For example, given values z(t0), z(t1), z(t2), up to z(tN), the estimate $y_c(te)$ at time te as well as the slope $v_c(te)$ at time te based on a least-squares fit of a line can be computed by the following equation:

$$\begin{bmatrix} yc(te) \\ vc(te) \end{bmatrix} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

$$Y = \begin{bmatrix} z(t0) \\ \vdots \\ z(tN) \end{bmatrix}, \ \Phi = \begin{bmatrix} 1 & t0 - te \\ \vdots & \vdots \\ 1 & tN - te \end{bmatrix}$$

where:

Without loss of generality, suppose only up to three values of z are used to form a window at any time, and that the values are spaced at regular sample interval Ts. Then, for the

$$t1=te-Ts$$

$$t2=te$$

t3=te+Ts

7

The estimated values $y_c(te)$ and $v_c(te)$ are then computed as follows:

$$\begin{bmatrix} yc(te) \\ vc(te) \end{bmatrix} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

$$Y = \begin{bmatrix} z(t1) \\ z(t2) \\ z(t3) \end{bmatrix}, \Phi = \begin{bmatrix} 1 & t1 - te \\ 1 & t2 - te \\ 1 & t3 - te \end{bmatrix} = \begin{bmatrix} 1 & -Ts \\ 1 & 0 \\ 1 & Ts \end{bmatrix}$$

where:

Likewise, an extrapolation-based estimate of the analyte level over time is determined based on the raw set of sensor data (606). The extrapolation-based estimate can be computed based on a least squares fit based calculation of analyte sensor data values outside or at the left edge of a predefined measurement window. Then, for the least-squares estimate yl(te) and vl(te) at the left of a window of data values z(t2), z(t3), z(t4) with te at t2:

t2=te

t3=te+Ts

t4=te+2Ts

The estimated values yl(te) and vl(te) are then computed as follows:

$$\begin{bmatrix} yl(te) \\ vl(te) \end{bmatrix} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

$$Y = \begin{bmatrix} z(t2) \\ z(t3) \\ z(t4) \end{bmatrix}, \Phi = \begin{bmatrix} 1 & t2 - te \\ 1 & t3 - te \\ 1 & t4 - te \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & Ts \\ 1 & 2Ts \end{bmatrix}$$

where:

Similarly, the extrapolation-based estimate of the analyte level over time can be computed based on a combination of an extrapolation using a least squares fit based calculation of analyte sensor data values from the right side or at the right edge of a predefined measurement window of preceding values and a second extrapolation using a least squares fit based calculation of analyte sensor data values from the right side or at the right edge of a predefined measurement window of succeeding values. Then, for the least-squares estimate y_r (te) and v_r (te) at the right of a window of data values z(t0), z(t1), z(t2) with te at t2:

t0=te-2Ts

t1=te-Ts

t2=te

The estimated values $y_l(te)$ and $v_l(te)$ are then computed as ⁶⁰ follows:

$$\begin{bmatrix} yr(te) \\ vr(te) \end{bmatrix} = [\Phi^T \Phi]^{-1} \Phi^T Y$$

8

$$Y = \begin{bmatrix} z(t0) \\ z(t1) \\ z(t2) \end{bmatrix}, \Phi = \begin{bmatrix} 1 & t0 - te \\ 1 & t1 - te \\ 1 & t2 - te \end{bmatrix} = \begin{bmatrix} 1 & -2Ts \\ 1 & -Ts \\ 1 & 0 \end{bmatrix}$$

where:

A combined estimate of the analyte level over time is determined based on the interpolation-based estimate and the extrapolation-based estimate (608). For example, when all calculations yc, yr, and yl are available, an estimate can be calculated by taking the average of the left and right:

ys(te)=[yr(te)+yl(te)]/2

Which is then combined with the interpolation based esti-15 mate to obtain a final estimated value:

$$ya(te)=[ys(te)+y_c(te)]/2$$

Alternatively, a final estimate can be obtained by a weighted average of the calculations yc, yr and yl in a more general manner:

ya(te)= $Kc\ y_c(te)$ + $Kl\ yl(te)$ + $Kr\ yr(te)$

where the sum of Kc, Kl and Kr equals 1.

In a more general embodiment, when the number of analyte data points z within a predetermined window may vary, the weights applied to each element of the estimate, for example, yc, yl, and yr, can be a function of the number of available data points. The number of data points available can vary due to certain data points having been disqualified by an upstream data integrity check, having been disqualified by an upstream physiological feasibility check, or having been provided with varying time gaps by an upstream process. Conceptually, elements of the estimate such as yc, yl, or yr, whose number of available points are lower than the desired amount, will have a lower weighting factor in order for the less reliable measurement to exert less influence into the final estimate ya.

In some embodiments, yc, yl, and yr are calculated in the same manner as previously described. Instead of fixed weights Kc, Kl, and Kr as previously described, Kc, Kl, and Kr can take on different values as a function of the number of available data points z in their respective windows. Let the number of available data points be denoted Qc, Ql, and Qr. Then, Kc, Kl, and Kr are such that when Qc, Ql, and Qr is equal to the maximum number of points, Kc, Kl, and Kr will take on their largest possible respective values. As Qc, Ql, and Qr approach zero, then Kc, Kl, and Kr will take on their smallest possible respective values, which may or may not be zero. One way to achieve this is to use a smooth function that relates Kc, Kl, and Kr to Qc, Ql, and Qr, respectively. Alternatively, Qc, Ql, and Qr may affect the weights Kc, Kl, and Kr in stepwise thresholds.

A numerical example of the embodiment described, using stepwise thresholds is described as follows. For the calculation of y_c , find 3 available data points z as previously described. If the number of valid points is greater than 2 (i.e., Qc \geq 2), set Kc to 5. If the number of valid points is equal to 2 (i.e., Qc \geq 2), set Kc to 2.5. Otherwise, set Kc to 0. This can be achieved by using a function evaluated at the discrete available number of points Qc, or by evaluating Qc against threshold value 2. For the calculation of yl, find 3 available data points z as previously described. If Ql>2, set Kl to 1. If Ql=2, set Kl to 0.4. Otherwise, since there is insufficient number of points, set Kl to 0. For the calculation of yr, find 3 available data points z as previously described. If Qr>2, set Kr to 1. If Qr=2, set Kr to 0.4. Otherwise, set Kr to 0. In addition, if both yl and yr can be calculated, calculate the

mean of both values, ym=[yl+yr]/2. A new weight Km is assigned the value 6 if both can be calculated or 0 otherwise. Finally, an estimate that is robust to data loss and can generate results under partially missing data, yf, can be computed by taking the weighted average:

$$yf = [Kc*yc + Kl*yl + Kr*yr + Km*ym]/[Kc + Kl + Kr + Km],$$

when at least one of the weights Kc, Kl, Kr, or Km is nonzero. If all of the weights are zero, there is insufficient data to generate a reliable estimate, and no estimate yf is 10 given.

A representation of the combined estimate of the analyte level over time can then be displayed on an output device operatively coupled to the processor (610). The representation can be, for example, in the form of a graphical plot, a 15 numerical display, or a combination thereof.

In the manner described above, in certain embodiments of the present disclosure, there is provided a method of estimating an analyte level using sparsely sampled analyte sensor data comprising: determining, using a processor, a 20 composite estimate of an analyte level over time based on a combination of an interpolated estimate of the analyte level and an extrapolated estimate of the analyte level, and displaying a representation of the composite estimate of the analyte level over time on an output device.

In certain embodiments, the interpolated estimate of the analyte level and the extrapolated estimate of the analyte level are computed based on a raw set of sensor data.

In certain embodiments, the raw set of sensor data is received from an on-body device including an in vivo 30 analyte sensor.

In certain embodiments, the interpolated estimate of the analyte level over time is computed based on a least squares fit based calculation of analyte sensor data values within a predefined measurement window, and further, wherein the 35 extrapolated estimate of the analyte level over time is computed based on more than one least squares fit based calculation of analyte sensor data values outside or at the edge of the predefined measurement window.

In certain embodiments, the interpolated estimate of the 40 analyte level over time is computed based on a least squares fit based calculation of analyte sensor data values within a predefined measurement window, and further, wherein the extrapolated estimate of the analyte level over time is computed based on a combination of a first extrapolation 45 using a least squares fit based calculation of analyte sensor data values outside or at the edge of a first predefined measurement window and a second extrapolation using a least squares fit based calculation of analyte sensor data values outside or at the edge of a second predefined measurement window.

In certain embodiments, the first predefined measurement window uses analyte sensor data values from a time before a data point of interest and wherein the second predefined measurement window uses analyte sensor data values from 55 a time after the data point of interest.

A computer-implemented method in certain embodiments includes receiving a raw set of sensor data from an on-body device including an in vivo analyte sensor, determining an interpolation-based estimate of an analyte level over time 60 based on the raw set of sensor data, determining an extrapolation-based estimate of the analyte level over time based on the raw set of sensor data, determining a combined estimate of the analyte level over time based on the interpolation-based estimate and the extrapolation-based estimate, and 65 displaying a representation of the combined estimate of the analyte level over time on an output device.

10

In certain embodiments, the interpolation-based estimate of the analyte level over time based on the raw set of sensor data is computed based on a least squares fit based calculation of analyte sensor data values within a predefined measurement window.

In certain embodiments, the extrapolation-based estimate of the analyte level over time based on the raw set of sensor data is computed based on more than one least squares fit based calculation of analyte sensor data values outside or at the edge of a predefined measurement window.

In certain embodiments, the extrapolation-based estimate of the analyte level over time based on the raw set of sensor data is computed based on a combination of a first extrapolation using a least squares fit based calculation of analyte sensor data values outside or at the edge of a first predefined measurement window and a second extrapolation using a least squares fit based calculation of analyte sensor data values outside or at the edge of a second predefined measurement window.

In certain embodiments, the first predefined measurement window uses analyte sensor data values from a time before a data point of interest and wherein the second predefined measurement window uses analyte sensor data values from a time after the data point of interest.

In certain embodiments, the raw set of sensor data includes data sampled at a rate less than once per ten minutes.

In certain embodiments, the representation of the combined estimate of the analyte level over time includes at least one of a graph and a numeric display.

A system for monitoring analyte concentration in certain embodiments includes a processor, and a memory coupled to the processor, the memory storing processor executable instructions to: receive a raw set of sensor data from an on-body device including an in vivo analyte sensor, determine an interpolation-based estimate of an analyte level over time based on the raw set of sensor data, determine an extrapolation-based estimate of the analyte level over time based on the raw set of sensor data, determine a combined estimate of the analyte level over time based on the interpolation-based estimate and the extrapolation-based estimate, display a representation of the combined estimate of the analyte level over time on an output device operatively coupled to the processor.

In certain embodiments, the instruction to determine the interpolation-based estimate of the analyte level over time based on the raw set of sensor data includes an instruction to determine the interpolation-based estimate based on a least squares fit based calculation of analyte sensor data values within a predefined measurement window.

In certain embodiments, the instruction to determine the extrapolation-based estimate of the analyte level over time based on the raw set of sensor data includes an instruction to determine the extrapolation-based estimate based on more than one least squares fit based calculation of analyte sensor data values outside or at the edge of a predefined measurement window.

In certain embodiments, the instruction to determine the extrapolation-based estimate of the analyte level over time based on the raw set of sensor data includes an instruction to determine the extrapolation-based estimate based on a combination of a first extrapolation using a least squares fit based calculation of analyte sensor data values outside or at the edge of a first predefined measurement window and a second extrapolation using a least squares fit based calculation of analyte sensor data values outside or at the edge of a second predefined measurement window.

In certain embodiments, the first predefined measurement window uses analyte sensor data values from a time before a data point of interest and wherein the second predefined measurement window uses analyte sensor data values from a time after the data point of interest.

In certain embodiments, the raw set of sensor data includes data sampled at a rate less than once per ten

In certain embodiments, the instruction to display the representation of the combined estimate of the analyte level over time on the output device includes an instruction to display at least one of a graph and a numeric display.

A computer-implemented method in certain embodiments includes receiving a raw set of sensor data from an on-body device including an in vivo analyte sensor, determining an interpolation-based estimate of an analyte level over time based on the raw set of sensor data, determining an extrapolation-based estimate of the analyte level over time based on estimate based on the number of available sensor data used to compute each estimate, determining a combined estimate of the analyte level over time based on the weighted average of the interpolation-based estimate and the extrapolationbased estimate, displaying a representation of the combined 25 estimate of the analyte level over time on an output device.

Various other modifications and alterations in the structure and method of operation of the embodiments of the present disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the present 30 disclosure. Although the present disclosure has been described in connection with certain embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such embodiments. It is intended that the following claims define the scope of the present 35 disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.

The invention claimed is:

1. A method of monitoring a glucose concentration using 40 a glucose sensor having a processor configured to be positioned in contact with a fluid under a skin layer of a subject, the method comprising:

receiving a plurality of data points within a period of time, the plurality of data points corresponding to a glucose 45 level of the subject;

determining, based on the plurality of data points, interpolated estimates of the glucose level of the subject;

determining, based on a first portion of the plurality of data points, a first set of extrapolated estimates of the 50 glucose level of the subject;

determining, based on a second portion of the plurality of data points, a second set of extrapolated estimates of the glucose level of the subject, wherein the second portion of the plurality of data points correspond to 55 time points associated with later time points than the first portion of the plurality of data points;

determining, using the processor of the glucose sensor, composite estimates of the glucose level of the subject based on a combination of the interpolated estimates, 60 the first set of extrapolated estimates, and the second set of extrapolated estimates, wherein determining the composite estimates comprises applying weights to the interpolated estimates and the first and second sets of extrapolated estimates, the weights being determined 65 based on a function of a number of the plurality of data points; and

12

providing, to a display associated with the glucose sensor, the composite estimate of the glucose level of the

- 2. The method of claim 1, wherein the plurality of data 5 points within the period of time are sparsely sampled data generated by the glucose sensor.
 - 3. The method of claim 1, wherein the interpolated estimates of the glucose level and the first set and the second set of extrapolated estimates of the glucose level are computed based on a raw set of data from the glucose sensor.
 - 4. The method of claim 3, wherein the raw set of data from the glucose sensor includes data sampled at a rate less than once per minute.
- 5. The method of claim 1, wherein glucose sensor is an in vivo analyte sensor.
- 6. The method of claim 1, wherein the interpolated estimates of the glucose level are based on a least squares fit based calculation.
- 7. The method of claim 1, wherein each of the first set and the raw set of sensor data, determining weights of each 20 the second set of extrapolated estimates of the glucose level are based on a more than one least squares fit based calculation.
 - 8. The method of claim 1, wherein each of the first set and the second set of extrapolated estimates of the glucose level are based on a combination of a first extrapolation based on a least squares fit based calculation and a second extrapolation based on a least squares fit based calculation.
 - 9. The method of claim 1, wherein the display associated with the glucose sensor is configured to display the first set of extrapolated estimates or the second set of extrapolated estimates based at least an estimated glucose value outside the period of time.
 - 10. A system for monitoring glucose concentration, the system comprising:

a processor; and

memory coupled to the processor, the memory storing instructions to:

receive a plurality of data points within a period of time, the plurality of data points corresponding to a glucose level of a subject;

determine, based on the plurality of data points, interpolated estimates of the glucose level of the subject;

determine, based on a first portion of the plurality of data points, a first set of extrapolated estimates of the glucose level of the subject;

determine, based on a second portion of the plurality of data points, a second set of extrapolated estimates of the glucose level of the subject, wherein the second portion of the plurality of data points correspond to time points associated with later time points than the first portion of the plurality of data points; and

determine composite estimates of a glucose level of the subject based on a combination of the interpolated estimates, the first set of extrapolated estimates, and the second set of extrapolated estimates, wherein the composite estimates of the glucose level are determined based on data sampled by a glucose sensor that is configured to be positioned in contact with a fluid under a skin layer of the subject, wherein determining the composite estimates comprises applying weights to the interpolated estimates and the first and second sets of extrapolated estimates, the weights being determined based on a function of a number of the plurality of data points.

11. The system of claim 10, wherein the instructions are further configured to cause the system to display a representation of the composite estimates of the glucose level.

13

- 12. The system of claim 10, wherein the plurality of data points within the period of time are sparsely sampled analyte sensor data generated by the glucose sensor.
- 13. The system of claim 10, wherein the interpolated estimates of the glucose level and the first set and the second 5 set of extrapolated estimates of the glucose level are computed based on a raw set of data from the glucose sensor.
- 14. The system of claim 13, wherein the raw set of data from the glucose sensor includes data sampled at a rate less than once per minute.
- 15. The system of claim 10, wherein glucose sensor is an in vivo glucose sensor.
- 16. The system of claim 10, wherein the interpolated estimates of the glucose level are based on a least squares fit based calculation.
- 17. The system of claim 10, wherein each of the first set and the second set of extrapolated estimates of the glucose level are based on a more than one least squares fit based calculation.
- **18**. The system of claim **10**, wherein the instructions are 20 further configured to cause the system to display the first set of extrapolated estimates or the second set of extrapolated estimates based at least an estimated glucose value outside the period of time.
- **19**. An apparatus for monitoring analyte concentration, ₂₅ the apparatus comprising:
 - an on-body device including an in vivo glucose sensor that is configured to be positioned in contact with a fluid under a skin layer of a subject, wherein the apparatus is configured to:

14

receive a plurality of data points within a period of time, the plurality of data points corresponding to a glucose level of a subject;

determine, based on the plurality of data points, interpolated estimates of the glucose level of the subject:

determine, based on a first portion of the plurality of data points, a first set of extrapolated estimates of the glucose level of the subject;

determine, based on a second portion of the plurality of data points, a second set of extrapolated estimates of the glucose level of the subject, wherein the second portion of the plurality of data points correspond to time points associated with later time points than the first portion of the plurality of data points; and

determine composite estimates of a glucose level based on a combination of the interpolated estimates, the first set of extrapolated estimates, and the second set of extrapolated estimates, wherein determining the composite estimates comprises applying weights to the interpolated estimates and the first and second sets of extrapolated estimates, the weights being determined based on a function of a number of the plurality of data points.

20. The apparatus of claim 19, wherein the apparatus is further configured to send instructions to an associated display for displaying the first set of extrapolated estimates or the second set of extrapolated estimates based at least an estimated glucose value outside the period of time.

* * * * *