PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable

Siqi Bao, Huang He, Fan Wang, Hua Wu and Haifeng Wang

Baidu Inc., China

{baosiqi, hehuang, wangfan04, wu_hua, wanghaifeng}@baidu.com

Motivation

- Pre-training models have been proved effective for a wide range of natural language processing tasks
- directly fine-tuning BERT on small conversation datasets has some problems:
- ➤ the underlying pattern of dialogue generation is different from general text
- >training mode of unidirectional dialogue generation is distinct from bidirectional model
- > there exists a one-to-many relationship in dialogue generation

framework

- large-scale Reddit and Twitter conversations are utilized to further pre-train the generation model
- to mitigate the difference in training mode, a flexible paradigm integrating unidirectional and bidirectional processing is employed in this work,
- a discrete latent variable is introduced to model the one-to-many relationship among utterances in conversations.

Framework

There are three elements : dialogue response r, latent variable K and context C. K is A K-way categorical variable , K K is conversational intent.

. Given a pair of context and response, the underlying latent speech act can be estimated as p(z|r,c)

Figure 1: Graphical illustration of response generation (gray lines) and latent act recognition (dashed blue lines).

Framework

Figure 2: Architecture of dialogue generation with discrete latent variable. In self-attention visualization, red and blue lines denote bi-directional attention, and dashed orange lines denote uni-directional attention.

Model

- our pretraining of dialogue generation contains the following two tasks response generation and latent act recognition.
- Input representation is the sum of four embeddings: corresponding token, role, turn and position embeddings.
- \triangleright Word embedding, for the latent variable .it also has an embedding matrix $E \in \mathbb{R}^{k \times D}$
- \blacktriangleright role embedding to differentiate the characters evolved in the conversation. E_A is the response, as well as the utterances generated by the same character E_B is for other characters E_C is for background knowledge

Model

- Input representation is the sum of four embeddings: corresponding token, role, turn and position embeddings.
- There are multiturn utterances and we employ relative order in the assignment of turn embeddings. We use $E_{[0]}$ for turn embedding for this turn, $E_{[-1]}$ for last utterances, etc
- ➤ Position embeddings are added according to the token position in each utterance.

Response selection

 Response selection helps distinguish whether the response is relevant with the dialogue context and consistent with the background knowledge

• The positive sample comes from context and its corresponding response (c,r) ,negative sample comes from randomly selects

response (c, r^-) ,

$$\mathcal{L}_{RS} = -\log p(l_r = 1|c,r) - \log p(l_{r^-} = 0|c,r^-)$$
 $p(l_r = 1|c,r) = \operatorname{sigmoid}(W_3h_{[M]} + b_3)$

Response generation

- the response is generated conditioned on the latent variable and the context.
- NLLloss

$$\mathcal{L}_{NLL} = -\mathbb{E}_{z \sim p(\mathbf{z}|c,r)} \log p(r|c,z)$$

$$= -\mathbb{E}_{z \sim p(\mathbf{z}|c,r)} \sum_{t=1}^{T} \log p(r_t|c,z,r_{< t}),$$
(2)

• Where z is the latent variable for this pair (c,r),

$$p(\mathbf{z}|c,r) = \operatorname{softmax}(W_1 h_{[M]} + b_1) \in \mathbb{R}^K$$

Response generation

Besides NLLloss, we also use the bag-of-words loss

$$\mathcal{L}_{BOW} = -\mathbb{E}_{z \sim p(\mathbf{z}|c,r)} \sum_{t=1}^{I} \log p(r_t|c,z)$$

$$= -\mathbb{E}_{z \sim p(\mathbf{z}|c,r)} \sum_{t=1}^{T} \log \frac{e^{f_{r_t}}}{\sum_{v \in V} e^{f_v}}$$

$$f = \operatorname{softmax}(W_2 h_z + b_2) \in \mathbb{R}^{|V|}$$

 the BOW loss discards the order of words and forces the latent variable to capture the global information of the target response.

Pretraing steps

- 1) latent act recognition
- Given a pair of context and target response pair, estimate the posterior distribution
- Randomly select r^- to calculate L_{RS}
- 2) Response Generation
- -With the sampled latent value $z \sim p(z|c,r)$, calculate L_{NLL} and L_{BOW}
- 3) Optimization
- Sum up to obtain L, update network parameters with back-propagation

Fine-tuning and Inference

• 1)Candidate Response Generation

Conditioned on each latent value $z \in [1, K]$, generate corresponding response r

2) Response Selection

Calculate the probability for each response $p(l_r=1|c,r)$,and choose the one with the highest response

Dataset

- Persona –chat a knowledge grounded conversation dataset.
- Daily Dialog, which contains high-quality human conversations about daily life
- DSTC7-AVSD, in which the system need to generate an answer given dialogue context and background knowledge. (with caption and summary as

Dataset	Type	Knowledge	# Train	# Valid	# Test	
Persona-Chat	Chit-chat with persona	Persona profiles	8,939 dialogues 131,438 turns	1,000 dialogues 15,602 turns	968 dialogues 15,024 turns	
Daily Dialog Chit-chat		N/A	11,118 dialogues 87,170 turns	1,000 dialogues 8,069 turns	1,000 dialogues 7,740 turns	
DSTC7-AVSD	Conversational QA	Video caption & summary	7,659 dialogues 153,180 turns	1,787 dialogues 35,740 turns	1,710 dialogues 13,490 turns	

Experiment

Dataset	Model	Automatic Evaluation			Human Evaluation			
		BLEU-1/2	Distinct-1/2	Knowledge R/P/F1	Fluency	Coherence	Informativeness	Overall
Persona- Chat	Seq2Seq	0.448 / 0.353	0.004 / 0.016	0.004 / 0.016 / 0.006	1.82	0.37	0.85	0.34
	LIC	0.405 / 0.320	0.019 / 0.113	0.042 / 0.154 / 0.064	1.95	1.34	1.09	1.29
	Our w/o Latent	0.458 / 0.357	0.012 / 0.064	0.085 / 0.263 / 0.125	1.98	1.36	1.04	1.30
	Our Method	0.406 / 0.315	0.021 / 0.121	0.142 / 0.461 / 0.211	1.99	1.51	1.70	1.50
Daily Dialog	Seq2Seq	0.336 / 0.268	0.030 / 0.128	-	1.85	0.37	0.44	0.33
	iVAE _{MI}	0.309 / 0.249	0.029 / 0.250	-	1.53	0.34	0.59	0.30
	Our w/o Latent	0.405 / 0.322	0.046 / 0.246	-	1.91	1.58	1.03	1.44
	Our Method	0.397 / 0.311	0.053 / 0.291	.*	1.97	1.57	1.23	1.48

Human evaluation:randomly chooses 100 sentences, score the response quality on a scale of [0,1,2], from four aspects – fluency, coherence, informativeness and overall.

Experiment

Persona Profiles [P2]	Context		
i love trying barbeque restaurants . i am an administrative assistant . i am looking forward to retiring in five years . i like ot play racquetball .	[P2] hi , do you like bbq ? [P1] hello yes i love bbq [P2] i love restaurants with bbq , they are a lot of fun . [P1] my poor toes are so webbed [P2] really ? afterwards , i go and play racquetball to loose some calories . [P1] cool i like to paint [P2] what do you do as a profession ? i work as administrative assistant [P1] i dig in people trash for things to build [P2] sounds unique but that is more of a hobby instead of a profession [P1] true . i paint for a living		
Seq2Seq	that sounds like a lot of work . do you have a job?		
LIC	yeah it is a lot of fun		
Our w/o Latent	do you have any hobbies ?		
Our Method	that is cool, i am looking forward to retiring in 5 years		