Corner Boundary Conditions in lattice Boltzmann method

Goncalo Silva

Department of Mechanical Engineering Instituto Superior Técnico (IST) Lisbon, Portugal

Outline

- Introduction
 - Corners in Boundary Value Problems
- 2 Motivation
 - Navier-Stokes Boundary Conditions: Corners
- 3 Lattice Boltzmann Boundary Conditions: Corners
 - Problem definition
 - Particulate dynamics
 - Using Chapman-Enskog

Outline

- Introduction
 - Corners in Boundary Value Problems
- 2 Motivation
 - Navier-Stokes Boundary Conditions: Corners
- 3 Lattice Boltzmann Boundary Conditions: Corners
 - Problem definition
 - Particulate dynamics
 - Using Chapman-Enskog

• Boundary value problem geometry:

• Corner: Place in between two boundaries, e.g. $\partial\Omega_1$ and $\partial\Omega_2$

- Corner: Place in between two boundaries, e.g. $\partial\Omega_1$ and $\partial\Omega_2$
- Particularly important when e.g. $\varphi(\partial\Omega_1) \neq \varphi(\partial\Omega_2)$

- Corner: Place in between two boundaries, e.g. $\partial\Omega_1$ and $\partial\Omega_2$
- Particularly important when e.g. $\varphi(\partial\Omega_1) \neq \varphi(\partial\Omega_2)$
- Smooth evolution of φ on $\partial\Omega$

- Corner: Place in between two boundaries, e.g. $\partial\Omega_1$ and $\partial\Omega_2$
- Particularly important when e.g. $\varphi(\partial\Omega_1) \neq \varphi(\partial\Omega_2)$
- Smooth evolution of φ on $\partial\Omega$
- Avoid singularities of φ on $\partial\Omega$

Outline

- Introduction
 - Corners in Boundary Value Problems
- 2 Motivation
 - Navier-Stokes Boundary Conditions: Corners
- 3 Lattice Boltzmann Boundary Conditions: Corners
 - Problem definition
 - Particulate dynamics
 - Using Chapman-Enskog

Isothermal and incompressible Navier-Stokes equations

$$\begin{cases} (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{a} \\ \nabla \cdot \mathbf{u} = 0 \end{cases} \text{ in } \Omega$$

... with boundary conditions setting $\{p, \mathbf{u}\}$ on $\partial\Omega$

Isothermal and incompressible Navier-Stokes equations

$$\begin{cases} (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{a} \\ \nabla \cdot \mathbf{u} = 0 \end{cases} \text{ in } \Omega$$

... with boundary conditions setting $\{p, \mathbf{u}\}$ on $\partial\Omega$

• Corners: Define $\{p, \mathbf{u}\}$ from adjacent locations using interpolation or extrapolation

• Isothermal and incompressible Navier-Stokes equations

$$\begin{cases} (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nu \triangle \mathbf{u} + \mathbf{a} \\ \nabla \cdot \mathbf{u} = 0 \end{cases} \text{ in } \Omega$$

... with boundary conditions setting $\{p, \mathbf{u}\}$ on $\partial\Omega$

- Corners: Define $\{p, \mathbf{u}\}$ from adjacent locations using interpolation or extrapolation
- Everything else follows the same philosophy of boundary conditions

Examples

• Examples of flow domains with corners:

Backward facing step flow

Examples

• Examples of flow domains with corners:

Lid-driven cavity flow

Outline

- Introduction
 - Corners in Boundary Value Problems
- 2 Motivation
 - Navier-Stokes Boundary Conditions: Corners
- 3 Lattice Boltzmann Boundary Conditions: Corners
 - Problem definition
 - Particulate dynamics
 - Using Chapman-Enskog

• Lattice Boltzmann method (LBM)

$$f_{\alpha}(\mathbf{x} + \mathbf{c}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \omega(f_{\alpha} - f_{\alpha}^{(eq)})|_{(\mathbf{x}, t)}$$
 in Ω

Lattice Boltzmann method (LBM)

$$f_{\alpha}(\mathbf{x} + \mathbf{c}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \omega(f_{\alpha} - f_{\alpha}^{(eq)})|_{(\mathbf{x}, t)}$$
 in Ω

Corners are subjected to the same (or even more complex)
 kind of problems of general plane boundary conditions in LBM

• Lattice Boltzmann method (LBM)

$$f_{\alpha}(\mathbf{x} + \mathbf{c}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \omega(f_{\alpha} - f_{\alpha}^{(eq)})|_{(\mathbf{x}, t)}$$
 in Ω

- Corners are subjected to the same (or even more complex)
 kind of problems of general plane boundary conditions in LBM
 - \to Solution on $\partial\Omega$ is specified for f_{α} and NOT for $\{\rho,\mathbf{u},\mathbf{\Pi}\}$

Lattice Boltzmann method (LBM)

$$f_{\alpha}(\mathbf{x} + \mathbf{c}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \omega(f_{\alpha} - f_{\alpha}^{(eq)})|_{(\mathbf{x}, t)}$$
 in Ω

- Corners are subjected to the same (or even more complex)
 kind of problems of general plane boundary conditions in LBM
 - ightarrow Solution on $\partial\Omega$ is specified for f_{α} and NOT for $\{\rho,\mathbf{u},\Pi\}$
 - $\rightarrow f_{\alpha}$ set in a higher DoF system than $\{\rho, \mathbf{u}, \Pi\}$, hence:
 - \circ Trivial: $f_{\alpha} \longrightarrow \{\rho, \mathbf{u}, \mathbf{\Pi}\}$
 - $\circ \quad \text{Complex:} \quad \{\rho, \mathbf{u}, \mathbf{\Pi}\} \longrightarrow f_{\alpha}$

• Lattice Boltzmann method (LBM)

$$f_{\alpha}(\mathbf{x} + \mathbf{c}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \omega(f_{\alpha} - f_{\alpha}^{(eq)})|_{(\mathbf{x}, t)}$$
 in Ω

- Corners are subjected to the same (or even more complex)
 kind of problems of general plane boundary conditions in LBM
 - \to Solution on $\partial\Omega$ is specified for f_{α} and NOT for $\{\rho, \mathbf{u}, \Pi\}$
 - \to f_{α} set in a higher DoF system than $\{\rho, \mathbf{u}, \Pi\}$, hence:
 - \circ Trivial: $f_{\alpha} \longrightarrow \{\rho, \mathbf{u}, \mathbf{\Pi}\}$
 - $\circ \quad \text{Complex:} \quad \{\rho, \mathbf{u}, \mathbf{\Pi}\} \longrightarrow f_{\alpha}$
 - ightarrow Incorrect upscaling \longrightarrow Unwanted behavior, e.g. Knudsen layers

• **Corners** why bothering?

- Corners why bothering?
 - \uparrow Corner nodes are just a few nodes on $\partial\Omega$

- Corners why bothering?
 - \uparrow Corner nodes are just a few nodes on $\partial\Omega$
 - ↓ Inaccurate corner implementation may contaminate the solution everywhere in the domain

- Corners why bothering?
 - \uparrow Corner nodes are just a few nodes on $\partial\Omega$
 - ↓ Inaccurate corner implementation may contaminate the solution everywhere in the domain
 - ↓ Interpolation or extrapolation may not be possible at corners

Lattice structure

...remember!

• D2Q9 model

$$\mathbf{c}_1 = (0,0)$$

$$\mathbf{c}_2 = (1,0)$$

$$\mathbf{c}_3 = (0,1)$$

$$\mathbf{c}_4 = (-1,0)$$

$$\mathbf{c}_5 = (0,-1)$$

$$\mathbf{c}_6 = (1,1)$$

$$\mathbf{c}_7 = (-1,1)$$

$$\mathbf{c}_8 = (-1,-1)$$

$$\mathbf{c}_9 = (-1,-1)$$

Bounceback on corner

Bottom-left Corner

Bounceback on corner

Pros

- → Mass is exactly conserved
- \rightarrow Stable for ω close to 2 (i.e. for high Re)
- \rightarrow Local
- → Flexibility in handling wall, edges, corners both in 2D and 3D
- ightarrow Very simple to implement from a programming viewpoint

Cons

- \rightarrow Velocity accuracy may decrease from 2nd to 1st
- \rightarrow Pressure accuracy may decrease from 1st to 0th
- \rightarrow In SRT model momentum is not exactly conserved (viscosity dependent slip velocity)

Bounceback on corner

Question:

Apply the half-way bounceback scheme to **top-left** and **bottom-right** corners

- → Boundary node and solid node coincide
- → Only unknown incoming populations are modified
- \rightarrow Set ρ or \mathbf{u} in $f_{\alpha}^{(0)}(\rho, \mathbf{u})$
- \rightarrow Construct $f_{\alpha}^{(1)}$ from the symmetry requirement

- ightarrow Boundary node and solid node coincide
- → Only unknown incoming populations are modified
- \rightarrow Set ρ or \mathbf{u} in $f_{\alpha}^{(0)}(\rho, \mathbf{u})$
- ightarrow Construct $f_{lpha}^{(1)}$ from the symmetry requirement
- → Additional problem: the so-called "buried links"

Known:

$$\rightarrow \mathbf{u} = \mathbf{0}$$

$$\rightarrow f_{\alpha} = (f_4, f_5, f_8)$$

Known:

$$\rightarrow \mathbf{u} = \mathbf{0}$$

$$\rightarrow f_{\alpha} = (f_4, f_5, f_8)$$

• Unknown (6 variables):

$$\rightarrow \rho$$

$$\rightarrow f_{\alpha} = (f_2, f_3, f_6, f_7, f_9)$$

Known:

$$\rightarrow \mathbf{u} = \mathbf{0}$$

$$\rightarrow f_{\alpha} = (f_4, f_5, f_8)$$

Unknown (6 variables):

$$ightarrow
ho$$
 $ightarrow f_{lpha} = (f_2, f_3, f_6, f_7, f_9)$

• 3 Equations (2 linearly independent):

1) Computing ρ ...

Population velocity set at corner node:

$$egin{aligned}
ightarrow & C_{+} = \{ \mathbf{c}_{3}, \mathbf{c}_{6}, \mathbf{c}_{7} \} \ &
ightarrow & C_{0} = \{ \mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{4} \} \ &
ightarrow & C_{-} = \{ \mathbf{c}_{5}, \mathbf{c}_{8}, \mathbf{c}_{9} \} \end{aligned}$$

1) Computing ρ ...

Population velocity set at corner node:

$$egin{aligned}
ightarrow C_+ &= \{ \mathbf{c}_3, \mathbf{c}_6, \mathbf{c}_7 \} \
ightarrow C_0 &= \{ \mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_4 \} \
ightarrow C_- &= \{ \mathbf{c}_5, \mathbf{c}_8, \mathbf{c}_9 \} \end{aligned}$$

• Not possible to compute ρ as in boundary planes

1) Computing ρ ...

Population velocity set at corner node:

$$\rightarrow C_+ = \{\mathbf{c}_3, \mathbf{c}_6, \mathbf{c}_7\}$$

$$\rightarrow C_0 = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_4\}$$

$$\rightarrow C_{-} = \{\mathbf{c}_5, \mathbf{c}_8, \mathbf{c}_9\}$$

- Not possible to compute ρ as in boundary planes
- Inevitable **solution**: extrapolate ρ from adjacent nodes

2) Computing $\{f_2, f_3, f_6, f_7, f_9\}...$

- Symmetry of $f_{\alpha}^{(1)}$ (3 equations):
 - → Bounceback of non-equilibrium populations

2) Computing $\{f_2, f_3, f_6, f_7, f_9\}$...

- Symmetry of $f_{\alpha}^{(1)}$ (3 equations):
 - → Bounceback of non-equilibrium populations
- Still 2 unknowns left:
 - → Populations of buried link $\{f_7, f_9\}$

2) Computing $\{f_2, f_3, f_6, f_7, f_9\}$...

- Symmetry of $f_{\alpha}^{(1)}$ (3 equations):
 - → Bounceback of non-equilibrium populations
- Still 2 unknowns left:
 - \rightarrow Populations of buried link $\{f_7, f_9\}$
- Problem underspecified:
 - \rightarrow 5 eqs. and 6 unknowns

2) Computing $\{f_2, f_3, f_6, f_7, f_9\}...$

Non-equilibrium bounceback:

$$f_2 - f_2^{(0)} = f_4 - f_4^{(0)}$$

$$f_3 - f_3^{(0)} = f_5 - f_5^{(0)}$$

$$f_6 - f_6^{(0)} = f_8 - f_8^{(0)}$$

2) Computing $\{f_2, f_3, f_6, f_7, f_9\}$

 Solution for some of the unknown incoming populations (from non-equilibrium bounceback):

$$f_2 = f_4 + \frac{2}{3}u_x$$

$$f_3 = f_5 + \frac{2}{3}u_y$$

$$f_6 = f_8 + \frac{1}{6}(u_x + u_y)$$

2) Computing $\{f_2, f_3, f_6, \frac{f_7}{f_7}, \frac{f_9}{f_9}\}$

Buried populations:

$$u_x = (f_2 + f_6 + f_9) - (f_4 + f_7 + f_8)$$
$$u_y = (f_3 + f_6 + f_7) - (f_5 + f_8 + f_9)$$

2) Computing $\{f_2, f_3, f_6, f_7, f_9\}$

Buried populations:

$$u_x = (f_2 + f_6 + f_9) - (f_4 + f_7 + f_8)$$
$$u_y = (f_3 + f_6 + f_7) - (f_5 + f_8 + f_9)$$

Possible solution:

$$f_7 = \frac{1}{12}(u_y - u_x)$$
$$f_9 = \frac{1}{12}(u_x - u_y)$$

2) Computing f_1

- Recall density has been extrapolated. Therefore, to ensure proper upscaling between macroscopic parameters and LB populations:
 - 1) Set $f_1 = 0$
 - 2) Compute $f_1 = \rho \sum f_{\alpha}$

Question:

Apply Zou He boundary condition scheme to **top-left** and **bottom-right** corners

Exercise III

Exercise III:

Backward facing step flow