Primer parcial de Matemática DiscretaII-28 de abril de 2023.

Escriba su nombre EN CADA HOJA y numere cada hoja de la forma n/N donde n es el número de la hoja y N el número total de hojas que entrega (sin contar esta). La nota del examen es el mínimo entre 10 y la suma de los puntos obtenidos.

1): (3 puntos) En el siguiente network, x es igual a 4 mas la cifra de las unidades de su DNI. Hallar un flujo maximal en el, usando Edmonds-Karp durante los tres primeros caminos aumentantes y de ahi en mas Dinitz. Dar tambien un corte minimal y mostrar que el valor del flujo maximal es igual a la capacidad del corte minimal.

sA:9x	DB:9x	JI : 500	$NE: 8x+x^2-5$
sJ:500	DL : 900	$JK:x^2$	NM:500
sR:4000	$EF: 9x + x^2$	$KE:x^2$	$NP:x^2$
AB:9x	$EQ:x^2$	KP:1	PF:5
AE:x	$Ft:9x+x^2$	LJ:5	$PQ:x^2$
$AN:x^2$	$GH:x^2$	$LM:x^2$	Qt:1200
Bt:9x	$HI:x^2$	Mt:500	RC:900
CD:900	IN:500	MH:1	$RG:x^2$

2): (2 puntos) Dado un flujo f en un network, definimos en el teórico la función $d_f(x,z) =$ menor longitud de un f-camino aumentante de Ford-Fulkerson entre x y z. Luego, dados $f_0, f_1, ...$ los flujos producidos por Edmonds-Karp, definimos $d_i(x) = d_{f_i}(s,x)$ y $b_i(x) = d_{f_i}(x,t)$, y demostramos que $d_i \leq d_{i+1}$ y dejamos como ejercicio demostrar que $b_i \leq b_{i+1}$. Una pregunta natural sería ¿Por qué no demostrar ambas simultaneamente demostrando directamente que $d_{f_i}(x,z) \leq d_{f_{i+1}}(x,z)$ para todo i,x,z? La respuesta es que esta última proposición es falsa: dar un ejemplo de un network N tal que si se corre Edmonds-Karp en N, entonces existen i,x,z tales que $d_{f_{i+1}}(x,z) < d_{f_i}(x,z)$

3): (3,5 puntos) Recordemos que \mathbb{Z}_n denota el conjunto $\{0,1,...,n-1\}$. Dados $p,q\geq 3$ definimos el grafo $G_{p,q}$ como el grafo con conjunto de vertices $v_{i,j}$ con $i\in\mathbb{Z}_p, j\in\mathbb{Z}_q$ y cuyo conjunto de lados es $E=E_1\cup E_2$ donde E_1,E_2 son los siguientes: (en los subindices, la operación de suma en el primer índice es módulo p, y en el segundo modulo q, es decir, donde dice i+1 es (i+1)mod p y donde dice j+1 es (j+1)mod q)

$$E_1 = \{v_{i,j}v_{i+1,j} : i \in \mathbb{Z}_p, j \in \mathbb{Z}_q\}$$

$$E_2 = \{v_{i,j}v_{k,j+1} : i, k \in \mathbb{Z}_p, j \in \mathbb{Z}_q\}$$

Calcular $\chi(G_{p,q})$ para todos los valores posibles de $p \geq 3$ y $q \geq 3$ y demostrar lo afirmado.

4): (2 puntos) Usar Wave en este network, hallando un flujo bloqueante en el primer NA.

sG 250 sH 3000 sK 2000	$AC \ 10$ $AD \ 5$ $AF \ 5$ $BD \ 10$ $BF \ 1000$	$Ct \ 10$ $Dt \ 20$ $EC \ 10$ $ED \ 20$ $EF \ 100$	$Ft \ 3555$ $GA \ 10$ $GB \ 200$ $GN \ 1000$	$HA\ 20$ $HB\ 2500$ $HE\ 10$ $HI\ 1470$	KB 100 KE 100 IF 1470 Jt 1000 NJ 1000
------------------------------	---	--	--	---	---

5): (0,5 puntos): Obtener al menos 1 punto en cada uno de los tres primeros ejercicios.