Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	$E_c = \frac{mv^2}{2}$
	Rezultat final: $E_c = 5.10^4 \text{ J} \cdot$
b.	
	$L = \Delta E_{c}$
	$\Delta E_{c} = E_{cf} - E_{ci}$ cu $E_{cf} = 0$
	Rezultat final: $L = -5.10^4$ J
c.	
	$L' = \Delta E_{\rm c}$
	$L' = -F_f \Delta x'$
	$L' = \Delta E'_{c}$ $L' = -F_{f} \Delta x'$ $L = -F_{f} \Delta x$
	$\Delta E_{\rm c}' = E_{\rm cf}' - E_{\rm ci} E_{\rm cf}' = 0.3 E_{\rm ci}$
	Rezultat final: $\Delta x' = 14 \text{ m}$
d.	
	$L'' = \Delta E_{c}''$
	$L'' = -F_f \Delta x'' \text{ cu } \Delta x'' = 18 \text{ m}$
	$\Delta E_{\rm c}'' = E_{\rm cf}'' - E_{\rm ci}$
	$L'' = \Delta E_{\rm c}''$ $L'' = -F_{\rm f} \Delta x'' \text{ cu } \Delta x'' = 18 \text{ m}$ $\Delta E_{\rm c}'' = E_{\rm cf}'' - E_{\rm ci}$ $E_{\rm c}'' = \frac{mv''^2}{2}$
	Rezultat final: $v'' = \sqrt{10} \approx 3,16 \text{ m}$