Guía de Ejercicios

- 1) Aplique la definición de transformada de Laplace de las siguientes funciones:
 - f(t) = t1.
- 4. $f(t) = t^2$
- 2. $f(t) = e^{3t+1}$
- $5. \quad f(t) = \cos t$
- 3. $f(t) = \operatorname{senh} t$
- 6. $f(t) = \operatorname{sen}^2 t$
- 2) Encuentre la $\mathcal{L}{f(t)}$ aplicando la tabla.

1.
$$f(t) = 2t^4$$

9.
$$f(t) = (2t-1)^3$$

2.
$$f(t) = 4t - 10$$

10.
$$f(t) = t^2 - e^{-9t} + 5$$

3.
$$f(t) = t^2 + 6t - 3$$

11.
$$f(t) = (t+1)^3$$

4.
$$f(t) = 7t + 3$$

12.
$$f(t) = (e^t - e^{-t})^2$$

5.
$$f(t) = 1 + e^{4t}$$

12.
$$I(i) = (e^i - e^{-i})^2$$

6.
$$f(t) = (1 + e^{2t})^2$$

13.
$$f(t) = \cos 5t + \sin 2t$$

$$14. \quad f(t) = \cosh kt$$

7.
$$f(t) = 4t^2 - 5 \operatorname{sen} 3t$$

15.
$$f(t) = e^t \operatorname{senh} t$$

8.
$$f(t) = -4t^2 + 16t + 9$$

16.
$$f(t) = e^{-t} \cosh t$$

3) Encuentre la $\mathcal{L}{f(t)}$ usando primero una identidad trigonométrica.

$$f(t) = \sin 2t \cos 2t$$

3.
$$f(t) = \cos^2 t$$

2.
$$f(t) = sen(4t + 5)$$

$$4. f(t) = 10\cos\left(t - \frac{\pi}{6}\right)$$

4) Traslación en el eje s. Encontrar F(s).

Tradiadion on of ojo o. Endontrar i (o).			
1.	$\mathcal{L}\{te^{10t}\}$		
2.	$\mathscr{L}\{t^3e^{-2t}\}$		
3.	$\mathcal{L}\left\{t(e^t+e^{2t})^2\right\}$		
4.	$\mathcal{L}\{(1-e^t+3e^{-4t})\cos 5t\}$		
5.	$\mathcal{L}\{e^t \text{sen } 3t\}$		

5) Traslación en el eje t. Encuentre F(s).

1)	$\mathcal{L}\{(t-1)\mathcal{U}(t-1)\}$	3)	$\mathcal{L}\{e^{2-t}\mathcal{U}(t-2)\}$
2)	$\mathcal{L}\{t\mathcal{U}(t-2)\}$	4)	$\mathcal{L}\{(3t+1)\mathcal{U}(t-1)\}$

6) Escriba cada función en términos de funciones escalón unitario. Encuentre la transformada de Laplace de la función dada.

a)
$$f(t) = \begin{cases} 2, & 0 \le t < 3 \\ -2, & t \ge 3 \end{cases}$$
 b)
$$f(t) = \begin{cases} 1, & 0 \le t < 4 \\ 0, & 4 \le t < 5 \\ 1, & t \ge 5 \end{cases}$$

 $f(t) = \begin{cases} 0, & 0 \le t < 1 \\ t^2, & t \ge 1 \end{cases}$

 $f(t) = \begin{cases} 0, \\ \sin t \end{cases}$

 $0 \le t < 3\pi/2$

e)

pulso rectangular

f)

- 7) Use la propiedad de la derivada de la trasformada para resolver las siguientes transformadas de Laplace.
 - 1. $\mathscr{L}\{te^{-10t}\}$
- 3. $\mathcal{L}\{t \text{senh } 3t\}$
- 2. $\mathcal{L}\{t\cos 2t\}$
- 4. \mathcal{L} { te^{2t} sen 6 t}
- 8) Transformada de integrales
 - a. $\mathcal{L}\{1 * t^3\}$
 - b. $\mathcal{L}\lbrace e^{-t} * e^t \cos t \rbrace$
 - c. $\mathcal{L}\left\{\int_0^t e^{\tau} d\tau\right\}$
 - d. $\mathcal{L}\left\{\int_0^t e^{-\tau} \cos \tau d\tau\right\}$
 - e. $\mathcal{L}\left\{\int_0^t \tau e^{t-\tau} d\tau\right\}$
- 9) Transformada de una función periódica

Determinar la transformada de Laplace de cada una de las funciones periódicas.

a)

b)

c)

10) Rectificación de onda completa de sen t

Practica N° 2: Transformada de Laplace

- 1) A partir de los ejercicios asignados a su grupo, calcular la transformada de Laplace:
 - a) Analíticamente (usando propiedades/tablas).
 - b) Con **SymPy (Python)** para verificar.

Documentar en el cuaderno los pasos analíticos y el código de validación.

- 2) Creación de un Banco de Transformadas
 - a) Cada grupo debe crear un mini banco de transformadas de Laplace en Python:
 - b) Definir una función en Python mi_laplace(f) que calcule la transformada de una función simbólica.
 - c) Documentar al menos 5 funciones relevantes.
 - d) Incluir ejemplos de verificación numérica con lambdify y gráficos comparativos.

En el caso de incluir al sexto participante (IA) deberá presentar las interacciones realizadas para la realización del ejercicio.

- 3) Actividad de investigación:
 - a) Investigar sobre el origen, concepto y propiedades de la función Delta de Dirac.
 - b) Definir la trasformada de Laplace para esta ecuación y ejemplificar.
 - c) Resolver lo ejemplificado con código de validación en Python.