Evrişimsel ve Yinelemeli Sinir Ağları

Bozkırda Yapay Öğrenme Yaz Okulu 2017

Gökberk Cinbiş

Araştırma hakkında.

unknown attributes

Initialization

Iteration 1

Iteration 4

Iteration 11

BYOYO 2017

Evrişimsel Sinir Ağlarına Giriş

[LeNet-5, LeCun 1998]

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

A bit of history

Topographical mapping in the cortex: nearby cells in cortex represented nearby regions in the visual field

Hierarchical organization

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

A bit of history:

Neurocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

A bit of history: Gradient-based learning applied to document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

"AlexNet"

Classification Retrieval

[Krizhevsky 2012]

Detection

Segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

[Farabet et al., 2012]

NVIDIA Tegra X1

self-driving cars

[Toshev, Szegedy 2014]

[Mnih 2013]

Evrişimsel Sinir Ağlarının Temelleri

32x32x3 image

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

32x32x3 image 5x5x3 filter 32 convolve (slide) over all spatial locations 32

activation map

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

22

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

23

23

BYOYO 2017

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

preview:

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

25

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Evrişimsel Sinir Ağı Örnekleri

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

- ReLU

192

- DropOut
- Data augmentation

128 Max pooling

Commonly used as feature representation

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

16.4% (AlexNet), 11.2% (ZFNet) top 5 error in ILSVRC 2013

-> 7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 \times 2	24 RGB imag	:)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-25	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
			5000 000 00000	35.05 A.G. 35.007	conv3-256
	3	max	pool	7	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
3000			pool		201 00000000000000000000000000000000000
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool	-	
		FC-	4096		
		FC-	4096		
		FC-	1000		2
		soft-	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Case Study: GoogLeNet

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)	,,,,	28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								9
inception (5a)		7 ×7×83 2	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
drepout (40%)		1×1×1024	0								9
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Fun features:

Only 5 million params!(Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

Case Study: ResNet

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Slide from Kaiming He's recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

(slide from Kaiming He's recent presentation)

CIFAR-10 experiments

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

BYOYO 2017

37

Case Study: ResNet

[He et al., 2015]

Case Study: ResNet

[He et al., 2015]

Case Study: ResNet

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

2-3 weeks of training on 8 GPU machine

at runtime: faster than a VGGNet! (even though it has 8x more layers)

(slide from Kaiming He's recent presentation)

Case Study: DenseNet

[Huang et al., 2017]

4

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures, with better connectivity
- Trend towards getting rid of POOL/FC layers (just CONV)

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Yinelemeli Sinir Ağları

e.g. **Image Captioning** image -> sequence of words

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

seq of words -> seq of words

BYOYO 2017

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

- 5

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

-52

BYOYO 2017

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector **h**:

$$h_t = f_W(h_{t-1}, x_t)$$
 \downarrow $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

57

57

Image Captioning

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al. Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

58

test image

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-512

test image

conv-256

maxpool

conv-512

maxpool

conv-512 conv-512

maxpool

FC-4096 FC-4096 FC-1000 softmax

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC 1000 sof wax

test image

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096

FC-4096

test image

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

"a young boy is holding a baseball bat."

"a cat is sitting on a couch with a remote control."

"a woman holding a teddy bear in front of a mirror."

"a horse is standing in the middle of a road."

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

<u>71</u>

71

BYOYO 2017

LSTM - main idea

Slide adapted from MIT 6.S191 (IAP 2017), by Harini Suresh

72

BYOYO 2017

[Hochreiter et al., 1997]

- c: cell state
- h: hidden state (cell output)
- i: input gate, weight of acquiring new information
- f: forget gate, weight of remembering old information
- g: transformed input ([-1,+1])
- o: output gate, decides values to be activated based on current memory

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot g$$

$$h_t^l = o \odot \tanh(c_t^l)$$

[Hochreiter et al., 1997]

f decides the degree of preservation for cell state, by scaling it with a number in [0,1]

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = \underbrace{f \odot c_{t-1}^l}_{l} + i \odot g$$

$$h_t^l = o \odot \tanh(c_t^l)$$

[Hochreiter et al., 1997]

g is a transformation of input / hidden state

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot \boxed{g}$$

$$h_t^l = o \odot \tanh(c_t^l)$$

[Hochreiter et al., 1997]

Add *g* into the *cell state*, weighted by *i* (weight of acquiring new information)

Alternative interpretation: i*g decouples the "influence of g" and "g itself".

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot g$$

$$h_t^l = o \odot \tanh(c_t^i)$$

[Hochreiter et al., 1997]

New hidden state is a scaled version of tanh(cell state).

o: output gate, decides values to be activated based on current memory

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot g$$

$$h_t^l = o \odot \tanh(c_t^l)$$

[Hochreiter et al., 1997]

Q: Why tanh?

A: Not very crucial, sometimes not used

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot g$$

$$h_t^l = o \odot \tanh(c_t^l)$$

RNN

More prone to the vanishing gradient problem

(ignoring forget gates)

Recall: "PlainNets" vs. ResNets

ResNet is to PlainNet what LSTM is to RNN, kind of.

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

LSTM for spatial attention

Sequential Processing of fixed inputs

Multiple Object Recognition with Visual Attention, Ba et al.

BYOYO 2017

Sequential Processing of fixed outputs

DRAW: A Recurrent Neural Network For Image Generation, Gregor et al.

Summary

- RNNs allow a lot of flexibility in architecture design
- Common to use LSTM (or GRU): their additive interactions improve gradient flow
- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.

Fei-Fei Li, Andrej Karpathy & Justin Johnson'dan uyarlanmıştır

BYOYO 2017

Teşekkürler!

BYOYO 2017 85