Nome: Mateus Reis Bastos

Desafio B - Configuração de interfaces de rede do servidor

Introdução

O objetivo do desafio B é configurar as interfaces de rede do servidor no Ubuntu 22.04 a partir de um arquivo .yaml usando o software Netplan. O case técnico descreve que os servidores da GigaNuvem possuem uma arquitetura de rede específica, projetada para garantir acesso e clusterização com redundância e, por isso, as quatro interfaces são agregadas em pares utilizando o protocolo LACP. Dessa forma, há garantia da manutenção da conexão caso haja falha de alguma das interfaces.

Adaptação do ambiente de simulação

O desafio B envolve a configuração de interfaces de rede que não possuo acesso fisicamente e que não estão conectadas ao computador. Nesse sentido, foi necessário simular a existência delas a partir do módulo de kernel dummy. Ele permite criar interfaces de rede virtuais que não estão atreladas a nenhum hardware real facilitando a validação das configurações do Netplan. Primeiramente, carreguei o módulo dummy para garantir que estava ativo no sistema.

sudo modprobe dummy

Em seguida, criei as 4 interfaces:

• eno1:

sudo ip link add eno1 type dummy

• *enp4s0*:

sudo ip link add enp4s0 type dummy

• *enp1s0f0*:

sudo ip link add enp1s0f0 type dummy

• enpls0fl:

sudo ip link add enp1s0f1 type dummy

Por fim, verifiquei se as interfaces foram criadas no sistema pelo comando ip a.

Configuração das interfaces

Primeiramente, é preciso acessar a pasta do sistema /etc/netplan/ que contém os arquivos de configuração do netplan. Para isso, utilizamos o comando *cd* que é utilizado para alterar o diretório atual do sistema operacional (change directory).

cd /etc/netplan/

Com isso, acessamos a pasta do software Netplan que contém os arquivos .yaml que permitem a configuração. Em seguida, para ver se já tem algum arquivo criado utilizamos o comando *ls* (list) que listará todos os arquivos presentes na pasta (diretório).

ls

```
mateus@mateus-VirtualBox:/$ cd /etc/netplan/
mateus@mateus-VirtualBox:/etc/netplan/
mateus@mateus-VirtualBox:/etc/netplan$ ls
01-network-manager-all.yaml
```

Por padrão o arquivo que aparece é 01-network-manager-all.yaml. Caso não haja nenhum arquivo na pasta, basta utilizar o comando *touch* para criar um novo arquivo .yaml e nomeá-lo como deseja.

Exemplo: touch network-config.yaml

Considerando que o arquivo padrão já exista não há necessidade de criar um novo. Então, como a intenção é editar o texto presente nele, usaremos o comando *nano* que permite editar arquivos de texto simples.

nano 01-network-manager-all.yaml

No entanto, como algumas vezes o arquivo é acessível mesmo sem usar privilégios de administrador antes de começar a editar é interessante modificar a acessibilidade do arquivo para que apenas o usuário root consiga fazer alterações nas configurações, por segurança. Nesse sentido, o comando *chmod* é usado para alterar a permissão de acesso ao arquivo.

sudo chmod 600 /etc/netplan/01-network-manager-all.yaml

Assim, só será possível acessar o arquivo de texto que contém as configurações das interfaces de rede se o usuário for o administrador (root). Com isso, só com o comando *sudo nano* as edições poderão ser realizadas.

sudo nano 01-network-manager-all.yaml

Tendo acesso ao conteúdo do arquivo é possível editar e colocar em texto as configurações necessárias para as interfaces de rede. Depois de colocar o texto de configuração no editor, é preciso salvar (CTRL+O) e sair da edição (CTRL+X).

Aplicação da configuração e teste das interfaces

Ao voltar ao terminal, é utilizado o comando *sudo netplan generate* para validar a sintaxe e converter as configurações de rede escritas em formato .yaml para os arquivos de configuração específicos que os serviços de rede do sistema entendem.

sudo neplan generate

Por fim, falta apenas aplicar as configurações definitivamente através do comando netplan apply.

sudo netplan apply

Depois da aplicação das configurações no netplan, as interfaces estão conforme as especificações das tabelas do desafio B. Podemos ver o estado atual das configurações aplicadas pelo comando *netplan status* que resulta na listagem das interfaces eno1, enp4s0, enp1s0f0 e enp1s0f1 com seus respectivos MAC address e os bonds bond0 e bond1 com os endereços IP, DNS e gateways definidos.

Netplan status

Para testes adicionais é necessário baixar o pacote net-tools no Ubuntu que contém ferramentas básicas de rede, para isso basta usar o comando seguinte: *sudo apt install net-tools*.

```
mateus@mateus-VirtualBox:-$ sudo apt install net-tools
Lendo listas de pacotes... Pronto
Construindo árvore de dependências... Pronto
Lendo informação de estado... Pronto
OS NOVOS pacotes a seguir serão instalados:
net-tools
0 pacotes atualizados, 1 pacotes novos instalados, 0 a serem removidos e 0 não atualizados.
É preciso baixar 204 kB de arquivos.
Depois desta operação, 819 kB adicionais de espaço em disco serão usados.
Obter:1 http://br.archive.ubuntu.com/ubuntu jammy-updates/main amd64 net-tools amd64 1.60+git20181103.0eebece-1ubuntu5.4 [204 kB]
Baixados 204 kB em 6s (32,3 kB/s)
A seleccionar pacote anteriormente não seleccionado net-tools.
(Lendo banco de dados ... 183792 ficheiros e directórios actualmente instalados.)
A preparar para desempacotar .../net-tools_1.60+git20181103.0eebece-1ubuntu5.4_amd64.deb ...
A descompactar net-tools (1.60+git20181103.0eebece-1ubuntu5.4) ...
Configurando net-tools (1.60+git20181103.0eebece-1ubuntu5.4) ...
A processar 'triggers' para man-db (2.10.2-1) ...
mateus@mateus-VirtualBox:-$
```

Em seguida, podemos testar a aplicação das configurações nas interfaces utilizando os comandos do pacote net tools como, por exemplo, *ifconfig* para ver os endereços IP, máscaras de rede e outras informações da interface de rede, *route -n* para verificar as rotas da rede e *resolvectl status* para verificar as configurações do servidor DNS.

```
Donds: flags=51874UP_BROADCAST_RUNNING_MASTER_MULTICAST> ntw 1500
intel 0.1.0.1 netwask 255.255.255.0 broadcast 10.1.0.255
intel6 fe00:1346212617:fe61:4305 prefixlen 64 scopetd 0x20-tinks
exists 14621261746180 to toqueculen 1000 (Ethernet)
BX errors 0 dropped 0 overruns 0 frame 0
TX packets 150 bytes 10902 (10.9 KB)
TX errors 0 dropped 60 roverruns 0 carrier 0 collisions 0

bond1: flags=51874UP_BROADCAST_RUNNING_MASTER_MULTICAST> ntw 1500
intel 01.2.0.1 netwask 255.255.255.0 broadcast 10.2.0.255
intel6 fe00:cc51:36ff:fe03:1470 prefixlen 64 scopeid 0x20-tinks
ether cc51:3683167.10 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 8)
TX errors 0 dropped 80 overruns 0 frame 0
TX errors 0 dropped 80 overruns 0 error of collisions 0

enol: flags=2243-UP_BROADCAST_RUNNING_MOADP_SLAVE> ntw 1500
ether 3cd;226514-1925 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 80 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 80 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 8)
RX errors 0 dropped 0 overruns 0 errirer 0 collisions 0

enp03: flags=41544D_BROADCAST_RUNNING_NULTICAST> ntw 1500
enth f600::205717:205605656ab:4413 prefixine 64 scopetd 0x0c4clinks intel6 f610:625c:f6077:213660565ab:4413 prefixine 64 scopetd 0x0c4clinks intel6 f610:625c:f6077:2136050665ab:4410 prefixine 64 scopetd 0x0c4clinks intel6 f610:625c:f6077:2136050666ab:4410 prefixine 64 s
```

```
Protocols: -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported resolv.conf mode: stub
Link 2 (enp0s3)
Current Scopes: DNS
 Protocols: +DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
Current DNS Server: fd17:625c:f037:2::3
DNS Servers: 10.0.2.3 fd17:625c:f037:2::3
Link 3 (eno1)
  urrent Scopes: none
Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
      ent Scopes: none
Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
Link 5 (enp1s0f0)
      Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
 Link 6 (enp1s0f1)
      Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
  Current Scopes: DNS
Protocols: +DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
urrent DNS Server: 10.1.0.100
DNS Servers: 10.1.0.100
      Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
  Tabela de Roteamento IP do Kernel
 Destino
0.0.0.0
                                                                                                            Uso Iface
                         Roteador
                                                   MáscaraGen.
                                                                                     Métrica Ref
                                                                                                               0 enp0s3
                                                   255.255.255.0
                                                                                      100
 10.1.0.0
                          0.0.0.0
                                                   255.255.255.0
                                                                                                                 bond0
                                                   255.255.255.0
 10.2.0.0
                                                   255.255.0.0
```

Conclusão

A configuração de interfaces de rede para o servidor via Netplan foi concluída com sucesso, seguindo o desenho da arquitetura e as tabelas propostas. Para validar o seu funcionamento, a configuração foi testada em uma máquina virtual, resultando em um arquivo netplan pronto para implementação no servidor final, atendendo a todos os requisitos do desafio.

Para a fase de testes, optou-se por utilizar o Ubuntu desktop em vez do Ubuntu server. Essa escolha se baseia na conveniência da interface gráfica, que simplifica a manipulação de arquivos e a visualização do ambiente. O Ubuntu desktop se mostrou suficiente para a simulação, pois o Netplan permite o uso do mesmo renderizador (systemd-networkd) em ambas as plataformas. Com isso, o comportamento de rede do Ubuntu server é replicado com fidelidade, garantindo a validade técnica da simulação sem abrir mão da praticidade do ambiente gráfico.