Мини к/р №1. Алгебра логики: введение. В1

Фамилия/Имя:	Группа:
	- r,

Ех. 1. Постройте таблицу истинности для функции $f = (x_1 \oplus x_2) \to x_3$.

Ех. 2. Докажите формулу разложения:

$$f(x_1,\ldots,x_n)=(x_1\vee f(0,x_2,\ldots,x_n))\wedge (\neg x_1\vee f(1,x_2,\ldots,x_n)).$$

Мини к/р №1. Алгебра логики: введение. В2

Фамилия/Имя: ______ Группа: _____

Ex. 1.	Постройте таблицу истинности для функции f = $\neg ((x_1 \wedge \neg x_2) \wedge x_3)$.
Ex. 2.	Выразите через конъюнкцию, дизъюнкцию и отрицание функции
	$f = x_1 \rightarrow x_2$, $g = x_1 \oplus x_2 \oplus x_1 x_2$.

Ех. 3. Выполняется ли дистрибутивность для следующих операций:

- a) $x \wedge (y \rightarrow z) \stackrel{?}{=} (x \rightarrow y) \wedge (x \rightarrow z);$
- b) $x \oplus (y \equiv x) \stackrel{?}{=} (x \oplus y) \equiv (x \oplus z)$.

Ех. 4. Докажите, что не существует булевой функции f(x,y), существенно зависящей от обеих переменных, такой что

$$\overline{f(x,y)} = f(\overline{x}, \overline{y}).$$