Taro Mieno

AECN 896-003: Applied Econometrics

What is it?

test econometric theories (prediction) via simulation

#### How is it used in econometrics?

- confirm ecoometric theory numerically
  - 1. OLS estimators are unbiased if E[u|x] = 0 along with other conditions (theory)
  - I know the above theory is right, but let's check if it is true numerically
- You kind of sense that something in your data may cause problems, but there is no proven econometric theory about what's gonna happen (I used MC simulation for this purpose a lot)
- assist students in understanding econometric theories by providing actual numbers instead of a series of Greek letters

#### Question

Suppose you are interested in checking what happens to OLS estimators if E[u|x]=0 (the error term and x are not correlated) is violated.

Can you use the real data to do this?

#### Key part of MC simulation

You generate data (you have control over how data are generated)

- You know the true parameter unlike the real data generating process
- You can change only the part that you want to change about data generating process and econometric methods with everything else fixed

## Generating data

#### Pseudo random number generator

algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers

### Examples in R: Uniform Distribution

```
runif(5) # default is min=0 and max=1
```

 $\hbox{\tt [1]} \ \ 0.11011017 \ \ 0.19312151 \ \ 0.20463320 \ \ 0.05153304 \ \ 0.75362836 \\$ 

## Examples in R: Uniform Distribution

```
x <- runif(10000)
hist(x)</pre>
```



## Pseudo random number generator

- Pseudo random number generators are not really random number generators
- ▶ What numbers you will get are pre-determined
- What numbers you will get can be determined by setting a seed
- ► An example:

```
set.seed(2387438)
runif(5)
[1] 0.0474233 0.7116970 0.4066674 0.2422949 0.3567480
```

What benefits does setting a seed have?

## Examples in R: Normal Distribution

```
x <- rnorm(10000) # default is mean=0,sd=1
hist(x)</pre>
```



## Examples in R: Normal Distribution

```
x <- rnorm(10000, mean=2, sd=2) # mean=2, sd=2
hist(x)</pre>
```



#### Other distributions

- Beta
- ► Chi-square
- ▶ F
- Logistic
- ► Log-normal
- many others

r,p,r,d

For each distribution, you have four different kinds of functions:

pnorm: distribution function

▶ *qnorm*: quantile function

▶ *dnorm*: density function

rnorm: random draw

#### pnorm



#### pnorm



#### qnorm



#### qnorm



#### qnorm



## Monte Carlo Simulation: Steps

- 1. specify the data generating process
- 2. generate data based on the data generating process
- get an estimate based on the generated data (e.g. OLS, mean)
- 4. repeat the above steps many many times
- 5. compare your estimates with the true parameter

#### Question

Why do the steps 1-3 many many times?

## Monte Carlo Simulation: Example 1

#### Question

Is sample mean really an unbiased estimator of the expected value?

$$(\frac{1}{n}\sum_{i=1}^{n}x_{i}=E[x]$$
 where  $x_{i}$  is an independent random draw from the same distribution)

the same distribution)

## Sample Mean: Steps 1-3

```
R code: Steps 1-3
#--- steps 1 and 2: ---#
# specify the data generating process and generate data
x <- runif(100) # Here, E[x]=0.5
#--- step 3 ---#
# calculate sample mean
mean_x <- mean(x)
mean_x
[1] 0.507078</pre>
```

## Sample Mean: Step 4

- Step 4: repeat the above steps many times (why?)
- ▶ We use a loop to do the same (similar) thing over and over again

```
R code: for loop

#--- the number of iterations ---#
B <- 1000

#--- repeat steps 1-3 B times ---#
for (i in 1:B){
    print(i) # print i
}</pre>
```

## Sample Mean: Step 4

```
R code: Step 4
  #--- the number of iterations ---#
  B <- 1000
  #--- create a storage that stores estimates ---#
  estimate_storage_mean <- rep(0,B)
  #--- repeat steps 1-3 B times ---#
  for (i in 1:B){
    #--- steps 1 and 2: ---#
    # specify the data generating process and generate data
    x \leftarrow runif(100) # Here, E[x]=0.5
    #--- step 3 ---#
    # calculate sample mean
    mean_x \leftarrow mean(x)
    estimate_storage_mean[i] <- mean_x</pre>
```

## Sample Mean: Step 5

#### Compare your estimates with the true parameter

```
mean(estimate_storage_mean)
[1] 0.500199
hist(estimate_storage_mean)
```

#### Histogram of estimate\_storage\_mean



## Monte Carlo Simulation: Example 2

#### Question

What happens to  $\beta_1$  if  $E[u|x] \neq 0$  when estimating  $y = \beta_0 + \beta_1 x + u$ ?

## Example 2

#### R code: Example 2

```
#--- Preparation ---#
B <- 1000 # the number of iterations
N <- 100 # sample size
estimate_storage <- rep(0,B) # estimates storage</pre>
#--- repeat steps 1-3 B times ---#
for (i in 1:B){
  #--- steps 1 and 2: ---#
  mu <- rnorm(N) # the common term shared by both x and u
  x <- rnorm(N) + mu # independent variable
  u <- rnorm(N) + mu # error
  y \leftarrow 1 + x + u \# dependent variable
  data <- data.table(y=y,x=x)</pre>
  #--- OLS ---#
  reg <- lm(y~x,data=data) # OLS
  estimate_storage[i] <- reg$coef['x']</pre>
```

## Example 2

hist(estimate\_storage)



#### MC Simulation: Exercise 1

#### **Problem**

Using MC simulations, find out how the variance of error term affects the variance of OLS estimators

#### Model set up

$$y = \beta_0 + \beta_1 x + u_1$$
$$y = \beta_0 + \beta_1 x + u_2$$

- ▶  $x \sim N(0,1)$
- $u_1 \sim N(0,1)$  and  $u_2 \sim N(0,9)$
- $E[u_1|x] = 0$  and  $E[u_2|x] = 0$

#### Question

What should you expect?

## Example 3: Estimation of the Variance of OLS Estimators

True Variance of  $\hat{\beta}_1$ 

$$V(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{SST_X}$$
 (1)

Estimated Variance of  $\hat{\beta}_1$ 

$$\hat{V}(\hat{\beta}_1) = \frac{\hat{\sigma}^2}{SST_X} = \frac{\sum_{i=1}^n \hat{u}_i^2}{n-2} \times \frac{1}{SST_X}$$
 (2)

# R code: Example 3 **set.seed**(903478)

```
#--- Preparation ---#
B <- 10000 # the number of iterations
N <- 100 # sample size
beta_storage <- rep(0,B) # estimates storage for beta
V_beta_storage <- rep(0,B) # estimates storage for V(beta)</pre>
x <- rnorm(N) # x values are the same for every iteration
SST_X \leftarrow sum((x-mean(x))^2)
#--- repeat steps 1-3 B times ---#
for (i in 1:B){
 #--- steps 1 and 2: ---#
  u <- 2*rnorm(N) # error
  y \leftarrow 1 + x + u \# dependent variable
  data <- data.frame(y=y,x=x)</pre>
  #--- OIS ---#
  reg <- lm(y~x,data=data) # OLS
  beta_storage[i] <- reg$coef['x']</pre>
  V_beta_storage[i] <- vcov(reg)['x','x']</pre>
```

## Example 3

#### True Variance

$$V(\hat{\beta}) = 4/112.07 = 0.0357 \tag{3}$$

#### check

var(beta\_storage)

[1] 0.03562348

## Your Estimates of Variance of $\hat{\beta}_1$ ?

```
#=== mean ===#
mean(V_beta_storage)
[1] 0.03579118
```



#### MC Simulation: Exercise 2

#### **Problem**

Using MC simulations, find out how the variation in  $\boldsymbol{x}$  affects the OLS estimators

#### Model set up

$$y = \beta_0 + \beta_1 x_1 + u$$
$$y = \beta_0 + \beta_1 x_2 + u$$

- $x_1 \sim N(0,1)$  and  $x_2 \sim N(0,9)$
- ▶  $u \sim N(0,1)$
- $E[u_1|x] = 0$  and  $E[u_2|x] = 0$

#### Question

What should you expect?