

Protecting Your LLMs with Information Bottleneck

Zichuan Liu^{1,2}, Zefan Wang³, Linjie Xu^{2,4}, Jinyu Wang², Lei Song², Tianchun Wang⁵, Chunlin Chen¹, Wei Cheng⁶, Jiang Bian²

¹Nanjing University

²Microsoft Research Asia

³Tsinghua University

⁴Queen Mary University of London

⁵Pennsylvania State University

⁶NEC Laboratories America

Background

> Jailbreaking with adversarial prompts

> Different forms of adversarial prompts

Motivation

How do you defend against these attacks? **Perturbation!**

Smooth and RA LLM

Source: Robey et al. and Cao et al.

Information Bottleneck Protection

$$X_{\mathrm{sub}}^* \coloneqq \underset{\mathbb{P}(X_{\mathrm{sub}}|X)}{\arg\min} \alpha \underbrace{I(X; X_{\mathrm{sub}})}_{\mathrm{Compression}} - \underbrace{I(Y; X_{\mathrm{sub}})}_{\mathrm{Prediction}},$$

where, $I(Y; X_{\mathrm{sub}}) = H(Y) - H(Y|X_{\mathrm{sub}})$

Objective:

$$X_{\mathrm{sub}}^* = \underset{\mathbb{P}(X_{\mathrm{sub}}|X)}{\operatorname{arg\,min}} \alpha I(X; X_{\mathrm{sub}}) + H(Y|X_{\mathrm{sub}}).$$

where,
$$X_{
m sub} = X \odot M$$

Objective:
$$X_{\text{sub}}^* = \underset{\mathbb{P}(X_{\text{sub}}|X)}{\operatorname{arg\,min}} \alpha I(X; X_{\text{sub}}) + H(Y|X_{\text{sub}}).$$

➤ Modify the Compression Quantifier I(X; Xsub)

$$I(X; X_{\text{sub}}) \leq \mathbb{E}_X \left[D_{\text{KL}} \left[\mathbb{P}_{\phi}(X_{\text{sub}}|X) || \mathbb{Q}(X_{\text{sub}}) \right] \right],$$

Give
$$p_{\phi} \sim \mathbb{P}_{\phi}$$
: $p_{\phi}(X_{\leq t}) = \pi_t | t \in [T]$

$$M \sim \mathbb{P}_\phi(M|X) = \prod_{t=1}^T \mathrm{Bern}(\pi_t) \quad ext{ Define } \mathbb{Q}(M) \sim \prod_{t=1}^T \mathrm{Bern}(r)$$

Reformulated as:

$$\mathcal{L}_{M} = \sum_{t=1}^{T} \left[\pi_{t} \log(\frac{\pi_{t}}{r}) + (1 - \pi_{t}) \log(\frac{1 - \pi_{t}}{1 - r}) \right]$$

Objective: $X_{\text{sub}}^* = \underset{\mathbb{P}(X_{\text{sub}}|X)}{\operatorname{arg\,min}} \alpha I(X; X_{\text{sub}}) + H(Y|X_{\text{sub}}).$

➤ Modify the Compression Quantifier I(X; Xsub)

$$\mathcal{L}_{M} = \sum_{t=1}^{T} \left[\pi_{t} \log(\frac{\pi_{t}}{r}) + (1 - \pi_{t}) \log(\frac{1 - \pi_{t}}{1 - r}) \right]$$

Enhance the coherence in X_{sub}

$$\mathcal{L}_{\text{con}} = \frac{1}{T} \cdot \sum_{t=1}^{T-1} \sqrt{(\pi_{t+1} - \pi_t)^2}$$

Objective:
$$X_{\text{sub}}^* = \underset{\mathbb{P}(X_{\text{sub}}|X)}{\operatorname{arg\,min}} \alpha I(X; X_{\text{sub}}) + H(Y|X_{\text{sub}}).$$

 \triangleright The Informativeness Quantifier H(Y| X_{sub})

$$H(Y|X_{\mathrm{sub}}) = -\sum_{X,Y} p(X\odot M,Y) \log p(Y|X\odot M)$$

> Reformulated as:

$$\mathcal{L}_{ ext{info}} = \underbrace{-\sum_{t=1}^{|Y|} \log p(Y_t | \widetilde{X}, Y_{< t})}_{ ext{Cross Entropy}} + \underbrace{\sum_{t=1}^{|Y|} D_{ ext{KL}} \Big[f_{ ext{tar}}(\widetilde{X}, Y_{< t}) || f_{ ext{tar}}(X, Y_{< t}) \Big]}_{ ext{RLHF}}$$

Information Bottleneck Protector

➤ The framework of IBProtector

Further Gradient-Free Version

Objective:
$$X_{\text{sub}}^* = \underset{\mathbb{P}(X_{\text{sub}}|X)}{\operatorname{arg\,min}} \alpha I(X; X_{\text{sub}}) + H(Y|X_{\text{sub}}).$$

> Reformulated as:

$$\max_{p_{\phi}} \ \underbrace{\mathbb{E}[r(Y; \hat{Y})] - \beta D_{\mathrm{KL}}(p_{\phi}(\widetilde{X}) || p_{\phi}^{\mathrm{ref}}(\widetilde{X}))}_{\mathrm{RL \ for \ Prediction}} - \underbrace{\alpha(\mathcal{L}_{M} + \lambda \mathcal{L}_{\mathrm{con}})}_{\mathrm{Compression}},$$

where,
$$r(Y; \hat{Y}) = -\frac{\pi(Y) \cdot \pi(\hat{Y})}{\|\pi(Y)\|^2 \|\pi(\hat{Y})\|^2}$$

Defence Experiments

Lower Attack Success Rate, Higher Benign Answering Rate!

Table 1: Defense results of state-of-the-art methods and IBProtector on AdvBench.

Experiment		Prompt-level Jailbreak (PAIR)			Token-level Jailbreak (GCG)			TriviaQA
Model	Method	$ \overline{ASR \downarrow} $	Harm ↓	GPT-4↓	$ \overline{ASR \downarrow} $	Harm ↓	GPT-4↓	BAR ↑
Vicuna (13b-v1.5)	Original Attack Fine-tuning Unlearning LLM Self Defense Smooth LLM RA-LLM	87.5% 62.5% 66.7% 44.2% 68.3% 34.2%	4.034 2.854 2.928 2.585 3.115 <u>2.446</u>	3.008 2.457 2.496 <u>1.692</u> 2.642 1.832	82.5% 32.5% 40.8% 12.5% 24.2% 8.3%	0.244 0.089 0.123 -1.170 <u>-1.252</u> -1.133	4.300 2.114 2.537 <u>1.400</u> 1.767 1.411	97.8% 94.8% 92.2% 79.6% 90.9% 95.2%
	IBProtector	19.2%	1.971	1.483	1.7%	-1.763	1.042	96.5%
LLaMA-2 (7b-chat-hf)	Original Attack Fine-tuning Unlearning LLM Self Defense Smooth LLM RA-LLM	67.5% 47.5% 49.2% 45.0% 43.3% 40.0%	3.852 2.551 2.507 2.682 2.394 2.493	1.617 1.392 1.383 1.525 <u>1.342</u> 1.362	27.5% 12.5% 12.5% 11.7% 4.2% 4.2%	0.325 -0.024 <u>-0.084</u> 0.208 0.189 -0.070	2.517 1.233 1.258 1.492 <u>1.100</u> 1.116	98.7% 97.0% 97.4% 92.6% 95.2% 97.0%
	IBProtector	16.7%	1.315	1.125	0.8%	-1.024	1.000	97.0%

Transferability Experiments

> Defend against other attack methods:

	Vic	una (13b-	v1.5)	LLaMA-2 (7b-chat-hf)			
Method	ASR ↓	Harm ↓	GPT-4↓	ASR↓	Harm ↓	GPT-4↓	
Original Attack	88.6%	2.337	4.225	29.0%	2.167	1.883	
Fine-tuning	26.8%	1.124	1.772	5.1%	1.597	1.192	
Unlearning LLM	28.3%	1.127	1.815	5.1%	1.534	1.233	
Self Defense	28.7%	1.291	1.725	8.7%	1.439	1.792	
Smooth LLM	81.1%	1.673	2.168	35.5%	$\overline{1.720}$	1.992	
RA-LLM	54.1%	1.027	1.892	2.2%	1.484	1.253	
IBProtector	18.9%	0.031	1.854	0.7%	0.608	1.036	

➤ Protect other target models:

Low Computational Cost

Original Attack:
$$C_{\mathrm{ori}} = T \times c_X + |\hat{Y}| \times c_Y$$

Self Defense:
$$C_{\text{self def}} = C_{\text{ori}} + (|\hat{Y}| \times c_X + |\hat{Y}'| \times c_Y)$$

Smmoth LLM:
$$C_{\mathrm{smooth}} = (1-k)T \times c_X + kT \times c_\mu + |\hat{Y}| \times c_Y \approx C_{\mathrm{ori}}$$

RALLM:
$$C_{\rm ra} = (1-k)T \times c_X + |\hat{Y}| \times c_Y$$

IBProtector:
$$C_{\text{IBProtector}} = T \times c_p + (1-k)T \times c_X + kT \times c_\mu + |\hat{Y}| \times c_Y$$
 where, $c_p \ll c_X$

Method	$ $ PAIR \rightarrow Vicuna	GCG o Vicuna	$PAIR \rightarrow LLaMA-2$	$GCG \rightarrow LLaMA-2$	Avg. Time
Original Attack	4.962±0.828	5.067 ± 0.841	4.235±0.217	4.095±0.312	4.590
Fine-tuning	4.850 ± 1.380	4.726 ± 0.911	4.107 ± 0.154	3.873 ± 0.309	4.389
Unlearning LLM	5.014 ± 0.781	5.128 ± 0.643	4.233 ± 0.373	4.042 ± 0.643	4.604
Self Defense	9.551 ± 1.843	8.413 ± 1.438	8.780 ± 1.224	9.208 ± 0.988	8.988
Smooth LLM(one copy)	5.297 ± 0.717	5.015 ± 1.398	4.284 ± 0.180	4.319 ± 0.392	4.729
RA-LLM(one copy)	5.664 ± 1.268	5.351 ± 1.550	4.269 ± 0.643	4.528 ± 0.475	4.953
IBProtector	5.509±1.283	5.370±1.489	4.426±1.137	4.251±1.367	4.889

Conclusion

- ➤ We propose IBProtector, the first LLM jailbreak defending method based on the IB principle in the perspective of information compression, and give a traceable objective function.
- The proposed IBProtector is empirically generalizable to different attack strategies and target LLMs, highlighting its potential as a transferable defense mechanism.
- The results show that IBProtector can successfully defend against adversarial prompts without substantially affecting LLMs' responsiveness and inference consumption.

Future Reading

> Explaining Time Series via Contrastive and Locally Sparse Perturbations (ICLR'24)

➤ Learning Time-Series Explanations with Information Bottleneck