2. Probability Distribution

2.0. Introduction

- 1) Chapter Scope
 - A. Examples of probability distributions
 - B. Their properties
- 2) Purpose of Introducing Distributions
 - A. a building blocks for more complex models
 - B. a recipe to discuss some essential statistical concept, e.g., Bayesian inference
 - C. to model the probability distribution $p(\mathbf{x})$, i.e., density estimation
 - * Model Selection becomes an issue since density estimation is fundamentally ill-posed problem in that infinitely many distributions can fit the observed data set.
- 3) Parametric distribution vs. Non-Parametric distribution
 - A. Parametric distribution
 - i. binomial distribution, multinomial distribution, Gaussian distribution (continuous R.V.)
 - ii. For density estimation, the parameters shall be determined with an observed data set.
 - 1. Frequentist: specific values for parameters (earned by optimizing some criterion, e.g., likelihood function)
 - 2. Bayesian: estimate posterior distribution with introduced prior distributions over the parameters as well as the observed data
 - iii. Conjugate Priors: To simplify the Bayesian analysis, use conjugate prior which let posterior distribution be in the same form of prior distribution.
 - Exponential family of distributions is presented as it possesses a number of important properties.

B. Non-Parametric distribution

- i. Distribution form is not forced by a user but typically depends on the size of the data set
- ii. Still has the parameters but they do not determine the distribution form but the complexity
- iii. Histogram, nearest-neighbors, kernels

Table. 1 Conjugate prior with posterior distribution in exponential family

Conjugate Prior	Posterior Distribution
Dirichlet distribution	Multinomial distribution
Gaussian distribution	Gaussian distribution

2.1. Binary Variables

1) Bernoulli distribution

A. Definition

Bern(x|
$$\mu$$
) = $\mu^x (1 - \mu)^{1-x}$, where $0 \le \mu < 1$ and $x \in \{0, 1\}$ (2.1)

B. Properties

$$\mathbb{E}[\mathbf{x}] = \mu \tag{2.2}$$

$$var[x] = \mu(1-\mu) \tag{2.3}$$

C. Density estimation

$$\mathcal{D} = \{x_1, \dots, x_N\}$$

i. Frequentist

1. Estimate μ by maximizing the likelihood function, i.e., maximize the log of likelihood

$$\ln(p(\mathbf{D}|\mu)) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1-\mu)\ln(1-\mu)\}$$
 (2.4)

- 2. The above log likelihood function depends on the N observations only through their sum, i.e., *sufficient statistics*: $\sum_{n} x_{n}$.
- 3. $\mu_{ML} = \frac{m}{N}$ = sample mean

ii. Bayesian

 Flip a coin 3 times resulting all heads → what is the reasonable prediction? (overfitting)

2) Binomial distribution

A. Definition

Bin(m|N,
$$\mu$$
) = $\binom{N}{m} \mu^{x} (1-\mu)^{1-x}$ (2.5)

B. Properties

For independent events, 1) the means of the sum is the sum of the mean and 2) the variance of the sum is the sum of the variance

$$\mathbb{E}[\mathbf{m}] = N\mu \tag{2.6}$$

$$var[m] = N\mu(1-\mu) \tag{2.7}$$

1.1 The beta distribution (conjugate prior for the binomial distribution)

1) Motivation for the conjugate prior distribution

- A. Prior distribution is required in order to develop a Bayesian treatment.
- B. Make posterior distribution have the same functional form as the prior (conjugacy).

2) Definition

Beta $(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$, gamma coefficient for the normalization purpose

$$\mathbb{E}[\mu] = \frac{a}{a+b} \tag{2.8}$$

$$var[\mu] = \frac{ab}{(a+b)^2(a+b+1)}$$
(2.9)

3) Gamma function

$$\Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} du \tag{2.10}$$

$$\Gamma(x+1) = x\Gamma(x), \Gamma(1) = 1, \Gamma(x+1) = x!$$
 (2.11)

a and b controls the distribution of the parameter μ , and thus called hyperparameters

4) Posterior distribution

The posterior distribution of μ : prior distribution(beta) \times likelihood function(binomial)

→ Normalization

$$p(\mu|m, l, a, b) = \text{Beta}(\mu|a, b) \times \text{Bin}(m|N, \mu) = \frac{\Gamma(m + a + l + b)}{\Gamma(m + a)\Gamma(l + b)} \mu^{m + a - 1} (1 - \mu)^{l + b - 1}$$

$$l = N - m = \# \text{ of tails}$$

$$m = \# \text{ of heads}$$
(2.12)

A. Sequential nature

- i. a and b (in the prior): effective number of observations of x = 1 and x = 0, respectively
- ii. The posterior can act as the prior if subsequent observation is followed. If following observation is x=1(x=0), a(b) will increase by 1.
- iii. Bayesian viewpoint raises such sequential approach of learning

B. Prediction of the future outcome

$$p(\mathbf{x} = 1|\mathbf{D}) = \int_0^1 p(x = 1|\mu)p(\mu|\mathbf{D})d\mu = \int_0^1 \mu p(\mu|\mathbf{D})d\mu = \mathbb{E}[\mu|\mathbf{D}]$$
 (2.13)

$$p(x=1|\mathbf{D}) = \frac{m+a}{m+a+l+b}$$
 (2.14)

 \rightarrow Total fraction of an effective number for x = 1 (including both real&fictituous)

C. Big Data

i. Bayesian result converges to ML (general phenomenon):

$$p(x = 1|\mathbf{D}) = \mathbb{E}[\mu|\mathbf{D}] = \mu_{ML} = sample \ mean = \frac{m}{N}$$
 (2.15)

ii. $var[\mu | \mathcal{D}]$ is approaching zero (Eq 2.9):

In general, the posterior variance is smaller than the prior variance <u>on average</u> (not for every observation)

$$\mathbb{E}_{\mathcal{D}}[var_{\theta}[\theta|\mathcal{D}]] = var_{\theta}[\theta] - var_{\mathcal{D}}[\mathbb{E}_{\theta}[\theta|\mathcal{D}]]$$
 (2.16)

2.2. Multinomial Variables

2.2.1. Multinomial Distribution

Binary variable can represent the quantity with two possible states. How about the quantity with K possible states? Let's use K-dimensional vector \mathbf{x} in which one of the elements x_k equals 1, and all the other elements 0 (mutually exclusive, one-hot-code)

$$\mathbf{x} = (x_1, x_2, ..., x_K)^T$$

$$p(x_k = 1) = \mu_k$$
(2.17)

$$p(\mathbf{x}|\mathbf{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$
 (2.18)

It is the generalization of the Bernoulli distribution to more than two outcomes(states)

$$\mathcal{D} = \{x_1, \dots, x_N\}$$