Algoritmo: α Distance Borderline-ADASYN-SMOTE

Algoritmo: α Distance Borderline-ADASYN-SMOTE

Referencia: Feng & Li, 2021.

1. División de vecinos:

Para cada muestra minoritaria p_i , obtener sus m vecinos más cercanos y dividirlos en:

- Vecinos de clase minoritaria: cantidad pnum
- Vecinos de clase mayoritaria: cantidad nnum

2. Cálculo de pesos inversos:

Para cada vecino p_j de p_i , calcular el peso basado en la distancia:

$$\alpha_j = \frac{1}{\operatorname{dist}(p_i, p_j)}$$

donde p_j es uno de los m vecinos más cercanos de p_i .

3. Suma de pesos por clase:

$$\alpha_p' = \sum \alpha_j$$
 (de vecinos minoritarios), $\alpha_n' = \sum \alpha_j$ (de vecinos mayoritarios)

4. Identificación de muestras peligrosas:

Si $\alpha'_n > \alpha'_p$, entonces p_i se considera una muestra peligrosa.

5. Cálculo total de ejemplos sintéticos:

$$G = (N - n) \cdot \beta$$

Donde:

- \bullet N: número de muestras de la clase mayoritaria
- n: número de muestras de la clase minoritaria
- $\beta \in [0,1]$: proporción deseada de balance. Ejemplos:
 - $-\beta = 1$: balance total (igualar ambas clases)
 - $-\ \beta = 0.4$: generación del 40% de la diferencia

6. Distribución proporcional del total:

Para cada muestra peligrosa p_i , calcular:

$$r_i = \frac{\Delta_i}{m}, \quad \hat{r}_i = \frac{r_i}{\sum r_i}, \quad g_i = \hat{r}_i \cdot G$$

Donde:

- Δ_i : número de vecinos mayoritarios de p_i
- m: cantidad total de vecinos
- $\bullet \ r_i$: proporción de vecinos mayoritarios para p_i
- \hat{r}_i : proporción normalizada
- g_i : cantidad de muestras sintéticas a generar para p_i

7. Generación de muestras sintéticas:

Para cada p_i , generar g_i muestras sintéticas mediante interpolación:

$$s = p_i + \lambda \cdot (p_z - p_i), \quad \lambda \in [0, 1]$$

Donde p_z es un vecino minoritario aleatorio de p_i .