Stats2 Chapter 1: Measuring Correlation

Exponential Models

Chapter Overview

1:: Exponential Models

Recap of Pure Year 1. Using $y = ab^x$ to model an exponential relationship between two variables.

3:: Hypothesis Testing for no correlation

We want to test whether two variables have some kind of correlation, or whether any correlation observed just happened by chance.

2:: Measuring Correlation

Using the Product Moment Correlation Coefficient (PMCC), r, to measure the strength of correlation between two variables.

Teacher Notes: (1) is mostly a recap of Pure Year 1. (2) is in the old S1 module, but students now just use their calculator to calculate r; they do not need to use formulae. (3) is from the old S3 module but simplified.

RECAP:: What is regression?

What we've done here is come up with a **model** to explain the data, in this case, a line y = a + bx. We've then tried to set a and b such that the resulting y value matches the actual exam marks as closely as possible.

The 'regression' bit is the act of setting the parameters of our model (here the gradient and y-intercept of the line of best fit) to best explain the data.

Time spent revising (x)

I record people's exam marks as well as the time they spent revising. I want to predict how well someone will do based on the time they spent revising. How would I do this?

Exponential Regression

For some variables, e.g. population with time, it may be more appropriate to use an **exponential** equation, i.e. $y = ab^x$, where a and b are constants we need to fix to best match the data.

$$y = ab^{x}$$

$$\log y = \log(ab^{x})$$

$$\log y = \log a + x \log b$$

In Year 1, what did we do to both sides to end up with a straight line equation?

 \mathscr{F} If $y = kb^x$ for constants k and b then $\log y = \log k + x \log b$

Exponential Regression

If $y = kb^x$ for constants k and b then $\log y = \log k + x \log b$

Comparing the equations, we can see that if we log the y values (although leave the x values), the data then forms a straight line, with y-intercept $\log k$ and gradient $\log b$.

Example

[Textbook] The table shows some data collected on the temperature, in ${}^{\circ}$ C, of a colony of bacteria (t) and its growth rate (g).

Temperature, t (°C)	3	5	6	8	9	11
Growth rate, g	1.04	1.49	1.79	2.58	3.1	4.46

The data are coded using the changes of variable x = t and $y = \log g$. The regression line of y on x is found to be y = -0.2215 + 0.0792x.

- a. Mika says that the constant -0.2215 in the regression line means that the colony is shrinking when the temperature is 0° C. Explain why Mika is wrong
- b. Given that the data can be modelled by an equation of the form $g = kb^t$ where k and b are constants, find the values of k and b.

Example

[Textbook] The table shows some data collected on the temperature, in ${}^{\circ}$ C, of a colony of bacteria (t) and its growth rate (g).

Temperature, t (°C)	3	5	6	8	9	11
Growth rate, g	1.04	1.49	1.79	2.58	3.1	4.46

The data are coded using the changes of variable x = t and $y = \log g$. The regression line of y on x is found to be y = -0.2215 + 0.0792x.

- a. Mika says that the constant -0.2215 in the regression line means that the colony is shrinking when the temperature is 0° C. Explain why Mika is wrong
- b. Given that the data can be modelled by an equation of the form $g=kb^t$ where k and b are constants, find the values of k and b.
- When t = 0, $y = -0.2215 + (0.0792 \times 0) = -0.2215$ $y = \log g : g = 10^y = 10^{-0.2215} = 0.600 \, (3sf)$ The growth rate is positive.

b
$$g = kb^t$$

 $\log g = \log k + t \log b$
Compare to $y = -0.2215 + 0.0792x \rightarrow \log g = -0.2215 + 0.0792g$
 $\log k = -0.2215 \rightarrow k = 10^{-0.2215} = 0.600$
 $\log b = 0.0792 \rightarrow b = 10^{0.0792} = 1.20$

The textbooks starts with y = -0.2215 + 0.0792x and raises 10 to the power of each side. Alternatively start with $g = kb^t$ and then log.

Test Your Understanding

Robert wants to model a rabbit population P with respect to time in years t. He proposes that the population can be modelled using an exponential model: $P = kb^t$ The data is coded using x = t and $y = \log P$. The regression line of y on x is found to be y = 2 + 0.3x. Determine the values of k and k.

Rabbit

MyHomework.com has had the following annual numbers of page views each year:

Year	2012	2013	2014	2015	2016	2017	2018	2019	nraiaetae
Views V	10115	26790	60306	180386	1119801	8.3 m	21.9 m	57.5 m [★]	projected

Determine the appropriate constants if we assume a polynomial model $V=at^b$, where t is the number of years after 2011.

Test Your Understanding

Robert wants to model a rabbit population P with respect to time in years t. He proposes that the population can be modelled using an exponential model: $P = kb^t$ The data is coded using x = t and $y = \log P$. The regression line of y on x is found to be y = 2 + 0.3x. Determine the values of k and k.

$$P = kb^{t}$$

$$\log P = \log k + t \log b$$

$$y = \log k + x \log b$$

$$\therefore \log k = 2 \rightarrow k = 100$$

$$\log b = 0.3 \rightarrow b = 2.00 (3sf)$$

Rabbit

MyHomework.com has had the following annual numbers of page views each year:

Year	2012	2013	2014	2015	2016	2017	2018	2019	projected
Views V	10115	26790	60306	180386	1119801	8.3 m	21.9 m	57.5 m [★]	projected

Determine the appropriate constants if we assume a polynomial model $V=at^b$, where t is the number of years after 2011.

$$V = at^b$$

 $\log V = \log a + b \log t$
So need to log the t values

and V values.

log t	0	0.3010	0.4771	0.6020	0.6989	0.7781	0.8450	0.9030
log V	4.0050	4.4280	4.7804	5.2562	6.0491	6.9191	7.3404	7.7597

Using calculator stats mode, y-intercept: $\log a = 3.3406$, gradient: b = 4.3025Therefore $V = 2191 \times t^{4.3025}$

DrFrostMaths has had the following annual numbers of page views each year:

Year	2012	2013	2014	2015	2016	2017	2018	2019
Views V	10115	26790	60306	180386	1119801	8.3 m	21.9 m	57.5 m

Determine the appropriate constants if we assume a polynomial model $V=at^b$, where t is the number of years after 2011.

As you can see below, this polynomial model we found produces a strong fit to the data! An exponential model would have also produced a good fit.

Exercise 1.1

Pearson Stats/Mechanics Year 2 Pages 1-2

Homework Exercise

- 1 Data are coded using $Y = \log y$ and $X = \log x$ to give a linear relationship. The equation of the regression line for the coded data is Y = 1.2 + 0.4X.
 - a State whether the relationship between y and x is of the form $y = ax^n$ or $y = kb^x$.
 - **b** Write down the relationship between y and x and find the values of the constants.
- 2 Data are coded using $Y = \log y$ and X = x to give a linear relationship. The equation of the regression line for the coded data is Y = 0.4 + 1.6X.
 - a State whether the relationship between y and x is of the form $y = ax^n$ or $y = kb^x$.
 - **b** Write down the relationship between y and x and find the values of the constants.
- 3 The scatter diagram shows the relationship between two sets of coded data, X and Y, where $X = \log x$ and $Y = \log y$. The regression line of Y on X is shown, and passes through the points (0, 172) and (23, 109).

The relationship between the original data sets is modelled by an equation of the form $y = ax^n$. Find, correct to 3 decimal places, the values of a and n.

Homework Exercise

4 The size of a population of moles is recorded and the data are shown in the table. T is the time, in months, elapsed since the beginning of the study and P is the number of moles in the population.

T	2	3	5	7	8	9
P	72	86	125	179	214	257

- a Plot a scatter diagram showing log P against T.
- **b** Comment on the correlation between log *P* and *T*.
- c State whether your answer to b supports the fact that the original data can be modelled by a relationship of the form $P = ab^T$.
- **d** Approximate the values of *a* and *b* for this model.
- e Give an interpretation of the value of b you calculated in part d.

Hint Think about what happens when the value of T increases by 1. When interpreting coefficients, refer in your answer to the context given in the question.

- 5 The time, t m s, needed for a computer algorithm to determine whether a number, n, is prime is recorded for different values of n. A scatter graph of t against n is drawn.
 - **a** Explain why a model of the form t = a + bn is unlikely to fit these data.

The data are coded using the changes of variable $y = \log t$ and $x = \log n$. The regression line of y on x is found to be y = -0.301 + 0.6x.

b Find an equation for t in terms of n, giving your answer in the form t = ank, where a and k are constants to be found.

Homework Exercise

7 The heights, $h \, \text{cm}$, and masses, $m \, \text{kg}$, of a sample of Galapagos penguins are recorded. The data are coded using $y = \log m$ and $x = \log h$ and it is found that a linear relationship exists between x and y. The equation of the regression line of y on x is y = 0.0023 + 1.8x.

Find an equation to describe the relationship between m and h, giving your answer in the form $m = ah^n$, where a and n are constants to be found.

8 The table shows some data collected on the temperature, t $^{\circ}$ C, of a colony of insect larvae and the growth rate, g, of the population.

Temp, t (°C)	13	17	21	25	26	28
Growth rate, g	5.37	8.44	13.29	20.91	23.42	29.38

The data are coded using the changes of variable x = t and $y = \log g$. The regression line of y on x is found to be y = 0.09 + 0.05x.

- a Given that the data can be modelled by an equation of the form $g = ab^t$ where a and b are constants, find the values of a and b. (3 marks)
- **b** Give an interpretation of the constant b in this equation. (1 mark)
- c Explain why this model is not reliable for estimating the growth rate of the population when the temperature is 35 °C. (1 mark)

Challenge

The table shows some data collected on the efficiency rating, E, of a new type of super-cooled engine when operating at a certain temperature, T.

Temp, T (°C)	1.2	1.5	2	3	4	6	8
Efficiency, E	9	5.5	3	1.4	0.8	0.4	0.2

It is thought that the relationship between E and t is of the form $E = aT^b$.

- a By plotting an appropriate scatter diagram, verify that this relationship is valid for the data given.
- **b** By drawing a suitable line on your scatter diagram and finding its equation, estimate the values of *a* and *b*.
- Give a reason why the model will not predict the efficiency of the engine when the temperature is 0 °C.

Homework Answers

- 1 a $y = ax^n$
- **b** a = 15.8 (3 s.f.), n = 0.4
- $2 \quad \mathbf{a} \quad y = kb^x$
- **b** k = 2.51, b = 39.8 (3 s.f.)
- 3 $a = 1 \times 10^{172}$, n = -2.739 (3 d.p.)
- 4 a

T	2	3	5	7	8	9
$\log P$	1.86	1.93	2.10	2.25	2.33	2.41

- b Strong positive correlation
- c Yes the variables show a linear relationship when log P is plotted against T.
- **d** a = 50.1 (3 s.f.), b = 1.2
- e For every month that passes, the population of moles increases by 20%.

- 5 **a** t = a + bn would show a linear relationship. This graph is not a straight line.
 - **b** a = 0.5, k = 0.6
- 6 $r = 0.389c^{1.31}$
- 7 a = 1.0, n = 1.8
- 8 **a** $\alpha = 1.23$ (3 s.f.), b = 1.12 (3 s.f.)
 - **b** b is the rate of change of g per degree.
 - c 35 °C is outside the range of the data (extrapolation).

Challenge

- A graph of $\log T$ against $\log E$ shows a straight line.
- **b** $\log E = 1.09 1.96(\log T)$, a = 12.3 (3 s.f.), b = -1.96 (3 s.f.)
- c log 0 is undefined.