# Linear Algebra & Probability

Tim Reinhart - rtim@stanford.edu Version: November 1, 2023

# Matrices

## Matrix Multiplication

Matrices can be multiplied with each other in the following manner:

$$A \cdot B = C \implies c_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk}$$



## Associative & Distributive Laws:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
$$(A + B) \cdot C = A \cdot C + B \cdot C$$
$$A \cdot (C + D) = A \cdot C + A \cdot D$$

Warning! The commutative law does not apply! Generally,  $A \cdot B \neq B \cdot A$ .

# Transpose

The transpose of a matrix is obtained by "mirroring" it along its diagonal.

Example: 
$$\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}^T = \begin{pmatrix} a & c & e \\ b & d & f \end{pmatrix}$$

## Calculation Rules:

$$(A+B)^T = A^T + B^T \qquad (A^T)^{-1} = (A^{-1})^T$$

$$(A \cdot B)^T = B^T \cdot A^T \qquad rank(A^T) = rank(A)$$

$$(c \cdot A)^T = c \cdot A^T \qquad det(A^T) = det(A)$$

$$(A^T)^T = A \qquad eig(A^T) = eig(A)$$

## Inverse

The inverse  $A^{-1}$  of A reverses a multiplication with A. When you multiply A with  $A^{-1}$ , you get the identity matrix.

## Properties:

- Only square matrices can be invertible.
- An invertible matrix is called regular, a non-invertible one singular.
- The inverse is unique.
- $\bullet$  A is invertible if and only if A has full rank.
- A is invertible if and only if  $A^T$  is invertible.
- A is symmetric if and only if  $A^{-1}$  is symmetric.
- ullet A is a triangular matrix if and only if  $A^{-1}$  is a triangular matrix.
- A is invertible if and only if  $det(A) \neq 0$ .
- A is invertible if and only if no eigenvalue  $\lambda = 0$ .
- ullet A and B are invertible implies AB is invertible.

#### Calculation rules:

$$\begin{split} I^{-1} &= I & (A^T)^{-1} &= (A^{-1})^T \\ (A^{-1})^{-1} &= A & rang(A^{-1}) &= rang(A) \\ (A^k)^{-1} &= (A^{-1})^k & det(A^{-1}) &= det(A)^{-1} \\ (c \cdot A)^{-1} &= c^{-1} \cdot A^{-1} & eig(A^{-1} &= eig(A)^{-1} \\ (A \cdot B)^{-1} &= B^{-1} \cdot A^{-1} \end{split}$$

## Matrix Tricks

## **Probability Rules for Matrices:**

• Pull Matrix Multiply out of Variance:

$$Var[Mx] = MVar[x]M^T$$

## Eigenvalues and Eigenvectors

Eigenvalues of A: 
$$det(A - \lambda \cdot I) = 0$$

## **Verify Computation**

- Trace(A) =  $a_{11} + a_{22} + \cdots + a_{nn} = \sum \lambda_i$
- $det(A) = product of \lambda_i$

**Eigenvectors:** Kernel of the matrix  $A-\lambda_i\cdot I$ , where  $\lambda_i$  is the eigenvalue corresponding to the eigenvector.

#### Determinant

## **Block Sentence for Determinant Computation**



## Positive (Semi-)Definite Matrices

#### Definitions

A symmetric matrix  $A \in \mathbb{R}^{n \times n}$  is called:

• Positive Semi-Definite (PSD) if for any non-zero vector  $\mathbf{x} \in \mathbb{R}^n$ , we have  $\mathbf{x}^T A \mathbf{x} \ge 0$ .

• Positive Definite (PD) if for any non-zero vector  $\mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{x}^T A \mathbf{x} > 0$ .

## Properties

- All eigenvalues of a PSD matrix are non-negative, and those of a PD matrix are positive.
- A matrix is PSD if and only if it can be written as B<sup>T</sup>B, where B is any matrix.
- If A is PD (or PSD), then so is  $A^{-1}$  (if A is invertible).
- For any matrix A, the matrices  $A^TA$  and  $AA^T$  are PSD.
- The sum of two PSD matrices is also PSD.

# Checking for Positive (Semi-) Definiteness

Determining if a matrix is PSD or PD can be done in several ways:

- Eigenvalue Criterion: A symmetric matrix is PSD if and only if all its eigenvalues are nonnegative. It is PD if all eigenvalues are positive.
- **Principal Minors:** A symmetric matrix A is PD if all its leading principal minors (determinants of the top-left  $k \times k$  submatrix,  $1 \leqslant k \leqslant n$ ) are positive. For PSD, all leading principal minors should be non-negative.
- Cholesky Decomposition: A matrix is PD if and only if it has a Cholesky decomposition.
   For numerical algorithms, attempting a Cholesky decomposition and checking for failure can be an effective way to test for positive definiteness.

## Matrix Calculus

# Gradient

The gradient of a scalar function  $f:\mathbb{R}^n\to\mathbb{R}$  with respect to a vector  $\mathbf{x}\in\mathbb{R}^n$  is a vector of partial derivatives:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

## Hessian

The Hessian matrix of a scalar-valued function  $f:\mathbb{R}^n\to\mathbb{R}$  is a square matrix of second-order partial

derivatives:

$$H(f)(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

## Examples

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

Tim Reinhart - rtim@stanford.edu

Gradient:

$$\nabla_x f = \mathbf{A}^T$$

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

Gradient:

$$\nabla_x f = (\mathbf{A} + \mathbf{A}^T)\mathbf{x} = 2\mathbf{A}\mathbf{x}$$
 if sym.

Hessian:

$$H(f) = \mathbf{A} + \mathbf{A}^T = 2\mathbf{A}$$
 if sym.

## Linear Regression Loss ( $\ell_2$ norm)

For the loss function  $L(\mathbf{w}) = ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2$ : Gradient:

$$\nabla L = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Hessian:

$$H(L) = 2\mathbf{X}^T\mathbf{X}$$

## Logistic Regression Loss

- Binary classification with labels  $y_i \in \{0, 1\}$
- Predicted probabilities  $p_i = \frac{1}{1+e^{-\mathbf{x}_i^T\mathbf{w}}}$
- $L(\mathbf{w}) = -\sum_{i} [y_i \log(p_i) + (1 y_i) \log(1 p_i)]$

Gradient:

$$\nabla L = \mathbf{X}^T (\mathbf{p} - \mathbf{y})$$

Hessian:

$$H(L) = \mathbf{X}^T \mathbf{S} \mathbf{X}$$

where **S** is a diagonal matrix with  $S_{ii} = p_i(1 - p_i)$ .

## **Basic Probability**

## Bayes Theorem

$$P(X=x|Y=y) = \frac{P(Y=y|X=x)P(X=x)}{P(Y=y)}$$

Where:

• P(X=x|Y=y) is the posterior probability: the probability of event X=x given that Y=y has occurred.

- P(Y=y|X=x) is the likelihood: the probability of observing Y=y given X=x.
- P(X=x) is the prior probability: the initial belief about X=x.
- P(Y=y) is the marginal probability: the total probability of observing Y=y under all possible outcomes of X.

## Law of Total Probability

A key concept related to Bayes' Theorem is the Law of Total Probability. It is useful for calculating P(Y=y), the marginal probability in Bayes' formula, especially when dealing with compound events. The law states:

$$P(Y=y) = \sum_{i} P(Y=y|X=x_i)P(X=x_i)$$

Where  $X\!=\!x_i$  represents all disjoint outcomes that cover the sample space. In the context of Bayes' Theorem, it's used to marginalize over the different possible states of knowledge or evidence.

## Bayes' Rule for Multiple Events

In cases involving more than two events, Bayes' Theorem can be generalized as:

$$P(X_1=x_1,...,X_n=x_n|Y=y) = \frac{P(Y=y|X_1=x_1,...,X_n=x_n) \prod_{i=1}^n P(X_n=x_n)}{P(Y=y)}$$

#### Bayes' Theorem with Continuous Variables

When dealing with continuous variables, Bayes' Theorem takes the form of probability densities:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$

Where  $f_{X|Y}(x|y)$  is the conditional density of X given Y, and so on.

## Prior and Posterior Probabilities

In Bayesian analysis, the prior probability  $P(X\!=\!x)$  represents our belief about X before observing the evidence Y, while the posterior probability  $P(X\!=\!x|Y\!=\!y)$  is our updated belief after observing Y. The transformation from the prior to the posterior, via the likelihood and marginal likelihood, is the essence of Bayesian inference.

#### **Expectation Value**

$$\begin{split} & \mathrm{E}[X] = \sum_i x_i p_i \quad \text{(for discrete var.)} \quad \text{or} \\ & \mathrm{E}[X] \equiv \int_\Omega X \, d\, \mathrm{P} = \int_{\mathbb{R}} x f(x) \, dx \quad \text{(for cont. var.)} \end{split}$$

# Properties of Expectation

**Linearity** The expectation operator is linear:

$$E[aX + bY] = aE[X] + bE[Y]$$

where a and b are constants, and X and Y are random variables.

**Monotonicity** If  $X \leq Y$  (i.e., X is always less than or equal to Y), then:

$$E[X] \leq E[Y]$$

Law of the Unconscious Statistician This law states that if Y=q(X) for some function q, then:

$$\mathrm{E}[Y] = \mathrm{E}[g(X)] = \sum_x g(x) P(X=x) \quad \text{(discrete case)}$$

or

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx \quad \text{(continuous case)}$$

where  $f_X(x)$  is the probability density function of X.

 $\begin{tabular}{ll} \textbf{Independence} & \textbf{If two random variables } X \ \mbox{and } Y \ \mbox{are independent, then:} \\ \end{tabular}$ 

$$E[XY] = E[X] \cdot E[Y]$$

## Conditional Expectation

$$E(X|Y = y) = \sum_{x} xP(X = x|Y = y)$$
$$= \sum_{x} x \frac{P(X = x, Y = y)}{P(Y = y)}$$

## Variance

Variance quantifies the spread or dispersion of a set of data points or the spread of a probability distribution. It is defined as the expected value of the squared deviation from the mean (denoted by  $\mu$ ):

$$Var(X) = E[(X - \mu)^2] = E[X^2] - (E[X])^2$$

## Properties of Variance

**Non-negativity** The variance is always non-negative:

$$Var(X) \ge 0$$

#### Variance of a Constant

$$Var(a) = 0$$

where  $a \in \mathbb{R}$  is a constant.

## Factor Out Constants

$$Var(aX) = a^2 Var(X)$$

where  $a \in \mathbb{R}$  is a constant.

**Variance of a Sum** For any random variables X, Y:

$$Var(aX + bY) = a^{2} Var(X) + b^{2} Var(Y)$$
$$+ 2ab Cov(X, Y)$$
$$Var(aX - bY) = a^{2} Var(X) + b^{2} Var(Y)$$
$$- 2ab Cov(X, Y)$$

If X and Y are independent, then Cov(X,Y)=0, and this simplifies to:

$$Var(aX \pm bY) = a^2 Var(X) + b^2 Var(Y)$$

## Sum of uncorrelated variables

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

## Sum of correlated variables

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$
$$= \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

## **Exponential Family**

A single-parameter exponential family is a set of probability distributions whose probability density function (or probability mass function, for the case of a discrete distribution) can be expressed in the form

$$p(y; \eta) = b(\eta) \exp \left[ \eta^T T(y) - a(\eta) \right]$$

η: natural parameter

• T(u): sufficient statistic

•  $a(\eta)$ : log partition function

## Canonical Response Funtion

$$g(\eta) = E[T(y); \eta]$$

• For the Gaussian family: identify function

• For the Bernoulli family: logistic function

# **Probability Distributions**

#### **Discrete Distributions**

## Bernoulli Distribution

One Trial. Two outcomes

PMF:

$$P(y;\phi) = \begin{cases} \phi & y=1\\ 1-\phi & y=0 \end{cases}$$
 
$$P(y;\phi) = \phi^y (1-\phi)^{1-y} \quad \text{for } y \in \{0,1\}$$

Mean and Variance:

$$\mu = p$$
,  $\sigma^2 = p(1-p)$ 

## Binomial Distribution

Distribution of the number of successes in a sequence of n independent experiments, each with two outcomes, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability  $q=1-p) \to \mathsf{Multiple}$  Trials, Two outcomes

**PMF:** The probability of getting exactly k successes in n independent Bernoulli trials (with the same rate p) is given by

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Mean and Variance:

$$\mu = np, \quad \sigma^2 = np(1-p)$$

#### Multinomial Distribution

Multiple Trials, Multiple outcomes

PMF:

$$P(\mathbf{X} = \mathbf{x}) = \frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$

Mean and Variance: For each category i,

$$\mu_i = np_i, \quad \sigma_i^2 = np_i(1-p_i)$$

Covariance for categories i and j,

$$Cov(X_i, X_j) = -np_i p_j \quad (i \neq j)$$

## Poisson Distribution

PMF:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Mean and Variance:

$$\mu = \sigma^2 = \lambda$$

Geometric Distribution

PMF:

$$P(X = k) = (1 - p)^{k - 1}p$$

Mean and Variance:

$$\mu = \frac{1}{p}, \quad \sigma^2 = \frac{1-p}{p^2}$$

### **Continuous Distributions**

Exponential Distribution

PDF:

$$f(x) = \lambda e^{-\lambda x}, \quad x \geqslant 0$$

Mean and Variance:

$$\mu = \frac{1}{\lambda}, \quad \sigma^2 = \frac{1}{\lambda^2}$$

Uniform Distribution

PDF:

$$f(x) = \frac{1}{b-a} \quad \text{for } a \leqslant x \leqslant b$$

Mean and Variance:

$$\mu = \frac{a+b}{2}, \quad \sigma^2 = \frac{(b-a)^2}{12}$$

Beta Distribution

PDF:

$$f(x; \alpha, \beta) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

Mean and Variance:

$$\mu = \frac{\alpha}{\alpha + \beta}, \quad \sigma^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Gamma Distribution

PDF:

$$f(x; \alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)} \quad \text{for } x > 0$$

Mean and Variance:

$$\mu = \frac{\alpha}{\beta}, \quad \sigma^2 = \frac{\alpha}{\beta^2}$$

Dirichlet Distribution

PDF:

$$f(\mathbf{x}; \boldsymbol{\alpha}) = \frac{1}{\mathrm{B}(\boldsymbol{\alpha})} \prod_{i=1}^{K} x_i^{\alpha_i - 1}$$

Where  $\mathrm{B}(\alpha)$  is the multivariate beta function.

**Mean and Variance:** For each component i,

$$\mu_i = \frac{\alpha_i}{\sum_{j=1}^K \alpha_j}$$

## **Gaussian Distributions**

#### Univariate Gaussian

The probability density of a univariate Gaussian distribution is given by:

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Where  $\mu$  is the mean and  $\sigma^2$  is the variance.

#### Multivariate Gaussian

The probability density of a multivariate Gaussian distribution in d dimensions is:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

Where  $\mu \in \mathbb{R}^d$  is the mean vector,  $\Sigma \in \mathbb{R}^{d \times d}$  is the covariance matrix.

Mean Vector and Covariance Matrix

- The mean vector  $\mu$  represents the mean of each dimension. If  $\mathbf{x}$  is an n-dimensional random vector, then  $\mu$  is given by  $\mu = \mathbb{E}[\mathbf{x}]$ .
- The covariance matrix  $\Sigma$  is symmetric and positive semi-definite. It represents how each pair of dimensions of the random vector  $\mathbf{x}$  co-varies. If  $\mathbf{x}$  has dimensions  $x_1, x_2, ..., x_n$ , then the element  $\Sigma_{ij}$  of the matrix  $\Sigma$  is the covariance between  $x_i$  and  $x_j \colon \Sigma_{ij} = \operatorname{Cov}(x_i, x_j)$ .
- The determinant of  $\Sigma$  (denoted as  $|\Sigma|$ ) and its inverse  $\Sigma^{-1}$  play a key role in defining the shape and orientation of the multivariate Gaussian distribution in its multi-dimensional space.

## **Multinomial Distribution**

The multinomial distribution is a generalization of the binomial distribution. It models the probabilities of the various outcomes of a categorical variable over n trials.

## **Optimization Methods in Machine Learning**

#### Newton's Method

Given a twice-differentiable function  $f(\mathbf{x})$ , Newton's method updates the parameter vector  $\mathbf{x}$  as follows:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x} - \left[\nabla^2 f(\mathbf{x})\right]^{-1} \nabla f(\mathbf{x})$$

where  $\nabla f(\mathbf{x})$  and  $\nabla^2 f(\mathbf{x})$  are the gradient and Hessian matrix of f at  $\mathbf{x}$ , respectively. Despite its quadratic convergence rate, Newton's method can be computationally expensive due to the need to compute and invert the Hessian matrix.

## Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent is a simplification of the traditional gradient descent algorithm. It updates the parameters using the gradient of the loss function with respect to a **single** data point (or a small subset) chosen randomly in each iteration. The update rule is:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x} - \eta \nabla f_i(\mathbf{x})$$

where  $\eta$  is the learning rate, and  $\nabla f_i(\mathbf{x})$  is the gradient computed for the ith data point. While SGD can be noisy compared to full-batch gradient descent, it allows for more frequent updates, which can be beneficial for large datasets.

## Mini-Batch Gradient Descent

Mini-Batch Gradient Descent is a variation of SGD where instead of using a single sample at each iteration, a mini-batch of samples is used. This method aims to balance the efficiency of using batches with the reduced variance of the gradient estimate. The update rule for a mini-batch is:

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x} - \eta \nabla f_{\mathbf{B}}(\mathbf{x})$$

where  ${\bf B}$  represents a mini-batch of samples and  $\nabla f_{\bf B}({\bf x})$  is the gradient of the loss function averaged over all samples in the mini-batch.

#### Normal Equation for Linear Least Squares

The Normal Equation is a method to analytically solve the linear least squares problem for finding the best-fitting parameters in a linear regression model. Given a design matrix  ${\bf X}$  and a target vector  ${\bf y}$ , the optimal parameter vector  ${\bf w}$  is given by:

$$\mathbf{w} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}$$

This equation directly computes the parameters that minimize the squared difference between the predictions and the actual values. It's computationally efficient for small to moderate-sized datasets but can be computationally expensive or numerically unstable for very large datasets.

## Important Theorems

## Jensen's Inequality

Let X be an integrable real-valued random variable and  $\phi$  a convex function. Then:

$$\varphi(E[X]) \leq E[\varphi(X)]$$



#### Concavity

A real-valued function f on an interval (or, more generally, a convex set in vector space) is said to be concave if, for any x and y in the interval and for any  $\alpha \in [0,1]$ :

$$f((1-\alpha)x + \alpha y) \ge (1-\alpha)f(x) + \alpha f(y)$$

## **Decision Trees**

## Feature Split selection

Given a subset of data M (node in a tree).

- 1. For each feature  $h_i(x)$ :
  - (a) Split data of M according to feature  $h_i(x)$
  - (b) Compute misclassification error of split:

2. Choose feature  $h^*$  with lowest error

#### Threshold Split Selection

- 1. Sort the values of a feature  $h_j(x)$ . Let  $\{v_1,\ldots,v_n\}$  denote sorted values.
- 2. For  $i = 1 \dots n 1$ :
  - (a) Consider split  $t_i = \frac{v_i + v_{[i+1]}}{2}$
  - (b) Compute error for split  $h_i(x) \ge t_i$
- 3. Choose  $t^*$  with lowest error

Threshold split caveat: same feature can be used multiple times!

#### Greedy Decision Tree Learning

- 1. Start with empty tree
- 2. Select a feature to split on (see above)
- 3. For each split of tree:
  - (a) If done, make predictions → Stopping Cond.
  - (b) Otherwise, go to step 2 and recurse on this split

## Stopping Conditions

- ullet All data agrees on y
- Already split on all features
- NOT: Error does not decrease!

## Tree Pruning Algorithm

Repeat for every split in Tree:

1. Compute total cost C(T) of split using nr. of leaves L(T):

$$C(T) = \mathsf{Error}(T) + \lambda L(T)$$

- 2. Undo the split to get  $T_{small}$  and calculate cost of smaller tree
- 3. Prune split if total cost is lower

# Boosting

Classification  $y=\pm 1$  from input x. Ensemble model consists of classifiers  $f_1(x),\ldots,f_T(x)$  and coefficients  $\hat{w}_1,\ldots,\hat{w}_T$ . Prediciton:

$$\hat{y} = sign\left(\sum \hat{w}_t f_t(x)\right) \tag{1}$$

Boosting: focus learning on 'hard' points, using weighted data. Each  $x_i,y_i$  weighted by  $\alpha_i$ . Loss function becomes:

$$\sum_{i=1}^{n} \alpha_i \ell(x_i, y_i; \theta)$$

Gradient of loss will be multiplied by  $\alpha_i$ , in a decision tree a data point counts  $\alpha_i$  times.

## AdaBoost Algorithm

- 1. Start with  $\alpha_i = \frac{1}{n}$  for all data points
- 2. For t = 1, ..., T:
- (a) Learn  $f_t(x)$  with data weights  $\alpha_i$
- (b) Compute coefficients  $\hat{w}_t$  using:

$$\hat{w}_t = \frac{1}{2} \ln \left( \frac{1 - \text{weightederr}(f_t)}{\text{weightederr}(f_t)} \right)$$

$$\mathsf{weightederr}(f_t) = \sum_{i=1}^n \alpha_i 1\{f_t(x_i) \neq y_i\}$$

(c) Recompute weights  $\alpha_i$  using:

$$\alpha_i := \begin{cases} \alpha_i \exp(-\hat{w}_t) & \text{if } f_t(x_i) = y_i \\ \alpha_i \exp(\hat{w}_t) & \text{if } f_t(x_i) \neq y_i \end{cases}$$

which decreases the weight for data points where the classifier got it right and increases the weights otherwise.

(d) Normalize weights

$$\alpha_i := \frac{\alpha_i}{\sum_{j}^{n} \alpha_j}$$

Training error of Ensemble will go to zero (under some conditions).