```
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import numpy as np
import pandas as pd
import sklearn
import os
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import random
np.random.seed(34)
from google.colab import drive
drive.mount('/content/drive')
 Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
dataset_path = '/content/drive/MyDrive/CMaps'
train data path = f'{dataset path}/train FD001.txt'
\verb|columns=["id","cycle","op1","op2","op3","sensor1","sensor2","sensor3","sensor4","sensor5","sensor6","sensor7","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8","sensor8",sensor8",sensor8",sensor8",sensor8",sensor8",sensor8",sensor8",sensor8",sensor8",sensor8",sensor8",sen
                    "sensor9", "sensor10", "sensor11", "sensor12", "sensor13", "sensor14", "sensor15", "sensor16", "sensor17", "sensor18", "sensor19"
                    ,"sensor20","sensor21"]
train_data = pd.read_csv(train_data_path, sep= "\s+", header = None,names=columns )
print("DataFrame Shape:",train_data.shape)
missing_values = train_data.isnull().sum()
print("Missing Values:")
print(missing_values)
           DataFrame Shape: (20631, 26)
           Missing Values:
           id
           cycle
                                     0
           op1
                                     0
           op2
                                     0
           op3
                                     0
            sensor1
                                     0
            sensor2
            sensor3
                                     0
            sensor4
                                     0
            sensor5
            sensor6
                                     0
            sensor7
                                     0
            sensor8
            sensor9
            sensor10
            sensor11
                                     a
            sensor12
            sensor13
            sensor14
            sensor15
            sensor16
                                     0
            sensor17
            sensor18
            sensor19
            sensor20
                                     0
            sensor21
                                     0
           dtype: int64
train_data.head()
```

	id	cycle	op1	op2	op3	sensor1	sensor2	sensor3	sensor4	sensor5	• • •	sensor12	sensor13	sensor14	sensor15	sensor16	s
0	1	1	-0.0007	-0.0004	100.0	518.67	641.82	1589.70	1400.60	14.62		521.66	2388.02	8138.62	8.4195	0.03	
1	1	2	0.0019	-0.0003	100.0	518.67	642.15	1591.82	1403.14	14.62		522.28	2388.07	8131.49	8.4318	0.03	
2	1	3	-0.0043	0.0003	100.0	518.67	642.35	1587.99	1404.20	14.62		522.42	2388.03	8133.23	8.4178	0.03	
3	1	4	0.0007	0.0000	100.0	518.67	642.35	1582.79	1401.87	14.62		522.86	2388.08	8133.83	8.3682	0.03	
4	1	5	-0.0019	-0.0002	100.0	518.67	642.37	1582.85	1406.22	14.62		522.19	2388.04	8133.80	8.4294	0.03	
int(t	rain_	_data.sh	nape)														

(20631, 26)

4

```
def add_rul(g):
    g['RUL'] = max(g['cycle']) - g['cycle']
    return g
train = train_data.groupby('id').apply(add_rul)
```

<ipython-input-115-951723a8a72b>:4: FutureWarning: Not prepending group keys to the result index of transform-like apply. In the future,
To preserve the previous behavior, use

```
>>> .groupby(..., group_keys=False)
```

To adopt the future behavior and silence this warning, use

```
>>> .groupby(..., group_keys=True)
train = train_data.groupby('id').apply(add_rul)
```

```
corr = train.corr()
mask = np.triu(np.ones_like(corr, dtype=bool))
f, ax = plt.subplots(figsize=(10, 10))
cmap = sns.diverging_palette(230, 10, as_cmap=True)
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})
```



```
# Import necessary libraries
import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# Load your dataset
data = train.copy()
# Select the target variable 'RUL' and the features of interest
'sensor11', 'sensor12', 'sensor13', 'sensor14', 'sensor15', 'sensor16', 'sensor17', 'sensor18', 'sensor19', 'sensor20', 'sensor21']
target_variable = 'RUL'
# Normalize the feature variables
scaler = StandardScaler()
X = data[features]
X_scaled = scaler.fit_transform(X) # Normalize the feature data
y = data[target_variable]
# Rename the columns for readability in the summary
X_with_names = pd.DataFrame(X_scaled, columns=features) # Remove 'const'
# Add a constant term (intercept) to the model
X_with_names = sm.add_constant(X_with_names)
# Create a Linear Regression model
model = sm.OLS(y, X_with_names)
# Fit the model to the training data
results = model.fit()
# Print the summary of the regression results
print(results.summary())
```

-1.870

OLS Regression Results

RUL R-squared:

Dep. Variable:

Dep. Varia	pre:			luareu:	-1.870	
Model:				R-squared:		-1.872
Method:		Least Squar	es F-st	atistic:		-839.5
Date:	F	ri, 15 Dec 20	23 Prob	(F-statist	ic):	1.00
Time:		23:49:	39 Log-	Likelihood:		-1.2747e+05
No. Observ	ations:	206	31 AIC:			2.550e+05
Df Residua	ls:	206	14 BIC:			2.551e+05
Df Model:			16			
Covariance	, ·	nonrobu				
=======	coef	std err	t	P> t	[0.025	0.975]
op1	0.1119	0.813	0.138	0.891	-1.483	1.706
op2	0.4528	0.813	0.557	0.578	-1.141	2.047
op3	2.089e-15	8.76e-16	2.384	0.017	3.71e-16	3.81e-15
sensor1	5.891e-16	4.44e-16	1.328	0.184	-2.8e-16	1.46e-15
sensor2	-3.4090	1.320	-2.582	0.010	-5.997	-0.821
sensor3	-2.7037	1.230	-2.198	0.028	-5.114	-0.293
sensor4	-6.8838	1.739	-3.958	0.000	-10.293	-3.475
sensor5	-9.377e-16	3.07e-15	-0.305	0.760	-6.96e-15	5.09e-15
sensor6	-0.7092	0.825	-0.859	0.390	-2.327	0.908
sensor7	6.0910	1.691	3.601	0.000	2.776	9.406
sensor8	-0.9395	1.764	-0.533	0.594	-4.398	2.519
sensor9	-7.7186	3.433	-2.248	0.025	-14.448	-0.989
sensor10	-4.124e-16	5.03e-16	-0.819	0.413	-1.4e-15	5.74e-16
sensor11	-9.9388	1.991	-4.992	0.000	-13.841	-6.037
sensor12	7.8355	1.865	4.201	0.000	4.180	11.491
sensor13	-0.8532	1.762	-0.484	0.628	-4.308	2.601
sensor14	-5.2231	3.376	-1.547	0.122	-11.841	1.394
sensor15	-4.4783	1.476	-3.034	0.002	-7.372	-1.585
sensor16	-2.161e-28	1.88e-28	-1.150	0.250	-5.84e-28	1.52e-28
sensor17	-2.8623	1.300	-2.201	0.028	-5.411	-0.314
sensor18	0	0	nan	nan	0	0
sensor19	0	0	nan	nan	0	0
sensor20	3.5898	1.422	2.524	0.012	0.803	6.377
sensor21	4.4471	1.433	3.103	0.002	1.638	7.256
Omnibus:		3258.3		in-Watson:	=======	0.013
Prob(Omnib	us):	0.0		ue-Bera (JB):	5724.588
Skew:	,-	1.0		(JB):	, -	0.00
Kurtosis:		4.5		i. No.		2.31e+39

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.49e-74. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Columns with 0 SD dropped

```
subset_stats = train_data.agg(['mean', 'std']).T[2:]
ax = subset_stats.plot.bar(figsize=(18, 10), y="std")
ax.set_title("Standard Deviation of Every Sensor From Every Engine", fontsize=22)
ax.set_xlabel("Sensor", fontsize=18)
ax.set_ylabel("Standard Deviation", fontsize=18)

# Annotate each bar with its standard deviation value
for p in ax.patches:
    # Round the standard deviation value to 3 decimal places
    annotation_text = str(round(p.get_height(), 3))

# Position the annotation slightly above and to the right of the bar
annotation_position = (p.get_x() * 1.005, p.get_height() * 1.005)

# Add the annotation to the plot
ax.annotate(annotation_text, annotation_position)
```



```
import numpy as np
def process_targets(data_length, early_rul=None):
    if early_rul is None:
        return np.arange(data length - 1, -1, -1)
        early_rul_duration = data_length - early_rul
        if early_rul_duration <= 0:</pre>
            return np.arange(data_length - 1, -1, -1)
        else:
            return np.append(early_rul * np.ones(shape=(early_rul_duration,)), np.arange(early_rul - 1, -1, -1))
def process_input_data_with_targets(input_data, target_data=None, window_length=1, shift=1):
    num_batches = int(np.floor((len(input_data) - window_length) / shift)) + 1
    num_features = input_data.shape[1]
    output_data = np.full((num_batches, window_length, num_features), np.nan)
    if target_data is None:
        for batch in range(num_batches):
           output_data[batch, :, :] = input_data[(0 + shift * batch):(0 + shift * batch + window_length), :]
        return output_data
    else:
        output_targets = np.full(num_batches, np.nan)
        for batch in range(num_batches):
            output\_data[batch, :, :] = input\_data[(0 + shift * batch):(0 + shift * batch + window\_length), :] \\
            output_targets[batch] = target_data[(shift * batch + (window_length - 1))]
        return output_data, output_targets
\tt def\ process\_test\_data(test\_data\_for\_an\_engine,\ window\_length,\ shift,\ num\_test\_windows=1):
    max_num_test_batches = int(np.floor((len(test_data_for_an_engine) - window_length) / shift)) + 1
    if max_num_test_batches < num_test_windows:</pre>
        required_len = (max_num_test_batches - 1) * shift + window_length
    else:
        required_len = (num_test_windows - 1) * shift + window_length
    batched_test_data_for_an_engine = process_input_data_with_targets(
        test_data_for_an_engine[-required_len:, :],
        target_data=None,
        window_length=window_length,
    return batched_test_data_for_an_engine, min(max_num_test_batches, num_test_windows)
```

```
import pandas as pd
import numpy as np
from \ sklearn.preprocessing \ import \ StandardScaler
test_data_path = f'{dataset_path}/test_FD001.txt'
true_rul_path = f'{dataset_path}/RUL_FD001.txt'
# Load data
test_data = pd.read_csv(test_data_path, sep="\s+", header=None, names=columns)
true_rul = pd.read_csv(true_rul_path, sep='\s+', header=None)
# Parameters
window length = 30
shift = 1
early_rul = 125
num test windows = 5
# Columns to drop
columns_to_be_dropped = ['id', 'op1', 'op2', 'op3', 'sensor1', 'sensor5', 'sensor6', 'sensor7', 'sensor10',
                           'sensor16', 'sensor18', 'sensor19']
# Extract first columns
train_data_first_column = train_data["id"]
test_data_first_column = test_data["id"]
# Scale data
scaler = StandardScaler()
train_data_scaled = scaler.fit_transform(train_data.drop(columns=columns_to_be_dropped))
test_data_scaled = scaler.transform(test_data.drop(columns=columns_to_be_dropped))
# Create dataframes
train_data = pd.DataFrame(data=np.c_[train_data_first_column, train_data_scaled])
test_data = pd.DataFrame(data=np.c_[test_data_first_column, test_data_scaled])
# Get unique machine counts
num_train_machines = len(train_data[0].unique())
num_test_machines = len(test_data[0].unique())
# Process training data
processed_train_data = []
processed_train_targets = []
for i in range(1, num_train_machines + 1):
    temp_train_data = train_data[train_data[0] == i].drop(columns=[0]).values
    if len(temp_train_data) < window_length:</pre>
        raise AssertionError("Train engine {} doesn't have enough data for window_length of {}".format(i, window_length))
    temp_train_targets = process_targets(data_length=temp_train_data.shape[0], early_rul=early_rul)
    data_for_a_machine, targets_for_a_machine = process_input_data_with_targets(
        temp_train_data, temp_train_targets, window_length=window_length, shift=shift
    )
    processed_train_data.append(data_for_a_machine)
    processed_train_targets.append(targets_for_a_machine)
processed_train_data = np.concatenate(processed_train_data)
processed_train_targets = np.concatenate(processed_train_targets)
# Process test data
processed_test_data = []
num_test_windows_list = []
for i in range(1, num_test_machines + 1):
    temp_test_data = test_data[test_data[0] == i].drop(columns=[0]).values
    if len(temp_test_data) < window_length:</pre>
        raise AssertionError("Test engine {} doesn't have enough data for window_length of {}".format(i, window_length))
    test_data_for_an_engine, num_windows = process_test_data(
        temp_test_data, window_length=window_length, shift=shift, num_test_windows=num_test_windows
    )
    processed_test_data.append(test_data_for_an_engine)
    num_test_windows_list.append(num_windows)
processed_test_data = np.concatenate(processed_test_data)
true_rul = true_rul[0].values
```

```
# Shuffle training data
index = np.random.permutation(len(processed_train_targets))
processed_train_data, processed_train_targets = processed_train_data[index], processed_train_targets[index]
# Display shapes
print("Processed training data shape:", processed_train_data.shape)
print("Processed training RULs shape:", processed_train_targets.shape)
print("Processed test data shape:", processed_test_data.shape)
print("True RUL shape:", true_rul.shape)
     Processed training data shape: (17731, 30, 14)
     Processed training RULs shape: (17731,)
     Processed test data shape: (497, 30, 14)
     True RUL shape: (100,)
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
import tensorflow as tf
def create_compiled_model():
    model = Sequential([
        layers.LSTM(256, input_shape=(window_length, 14), return_sequences=True, activation="tanh"),
        layers.LSTM(128, activation="tanh", return_sequences=True),
        layers.LSTM(64, activation="tanh"),
        layers.Dense(128, activation="relu"),
        layers.Dense(64, activation="relu"),
        layers.Dense(32, activation="relu"),
        layers.Dense(1)
    ])
    model.compile(loss="mse", optimizer=tf.keras.optimizers.Adam(learning_rate=0.001))
    return model
```

model.summary()

Model: "sequential_6"

Layer (type)	Output Shape	Param #				
 lstm_15 (LSTM)	(None, 30, 256)	277504				
lstm_16 (LSTM)	(None, 30, 128)	197120				
lstm_17 (LSTM)	(None, 64)	49408				
dense_15 (Dense)	(None, 128)	8320				
dense_16 (Dense)	(None, 64)	8256				
dense_17 (Dense)	(None, 32)	2080				
dense_18 (Dense)	(None, 1)	33				
Total paper 5/2721 /2 07 MD						

Total params: 542721 (2.07 MB) Trainable params: 542721 (2.07 MB) Non-trainable params: 0 (0.00 Byte)

```
print(processed_train_data.shape)
print(processed_val_data.shape)
print(processed_train_targets.shape)
print(processed_val_targets.shape)
print(true_rul.shape)
```

```
(14184, 30, 14)
(3547, 30, 14)
(14184,)
(3547,)
(100,)
```

```
from tensorflow.keras import callbacks
def scheduler(epoch, lr):
    if epoch < 5:
        return lr
    else:
        return lr * tf.math.exp(-0.1)
lr_scheduler = callbacks.LearningRateScheduler(scheduler, verbose=1)
model = create_compiled_model()
history = model.fit(
    processed_train_data, processed_train_targets,
   epochs=10,
   validation_data=(processed_val_data, processed_val_targets),
   callbacks=[lr_scheduler],
   batch_size=128,
    verbose=2
)
```

```
Epoch 1: LearningRateScheduler setting learning rate to 0.0010000000474974513.
Epoch 1/10
111/111 - 66s - loss: 3051.0122 - val_loss: 1759.7078 - lr: 0.0010 - 66s/epoch - 590ms/step
Epoch 2: LearningRateScheduler setting learning rate to 0.0010000000474974513.
Epoch 2/10
111/111 - 51s - loss: 1747.6793 - val_loss: 1756.3828 - lr: 0.0010 - 51s/epoch - 461ms/step
Epoch 3: LearningRateScheduler setting learning rate to 0.0010000000474974513.
Epoch 3/10
111/111 - 53s - loss: 1741.1545 - val_loss: 1653.6035 - lr: 0.0010 - 53s/epoch - 482ms/step
Epoch 4: LearningRateScheduler setting learning rate to 0.00100000000474974513.
Epoch 4/10
111/111 - 52s - loss: 616.4809 - val_loss: 310.1664 - lr: 0.0010 - 52s/epoch - 472ms/step
Epoch 5: LearningRateScheduler setting learning rate to 0.0010000000474974513.
111/111 - 53s - loss: 262.9413 - val_loss: 197.0415 - lr: 0.0010 - 53s/epoch - 473ms/step
Epoch 6: LearningRateScheduler setting learning rate to 0.0009048374486155808.
Epoch 6/10
111/111 - 51s - loss: 198.0380 - val_loss: 172.2691 - lr: 9.0484e-04 - 51s/epoch - 463ms/step
Epoch 7: LearningRateScheduler setting learning rate to 0.0008187307976186275.
Epoch 7/10
111/111 - 54s - loss: 173.1290 - val_loss: 190.4802 - lr: 8.1873e-04 - 54s/epoch - 490ms/step
Epoch 8: LearningRateScheduler setting learning rate to 0.0007408182718791068.
111/111 - 58s - loss: 164.0929 - val_loss: 160.9714 - lr: 7.4082e-04 - 58s/epoch - 519ms/step
Epoch 9: LearningRateScheduler setting learning rate to 0.0006703201215714216.
Epoch 9/10
111/111 - 51s - loss: 186.0141 - val_loss: 188.5288 - lr: 6.7032e-04 - 51s/epoch - 461ms/step
Epoch 10: LearningRateScheduler setting learning rate to 0.0006065307534299791.
Epoch 10/10
111/111 - 51s - loss: 179.1188 - val_loss: 165.6290 - lr: 6.0653e-04 - 51s/epoch - 460ms/step
```

```
tf.keras.models.save_model(model, "FD001_LSTM_piecewise_RMSE_"+ str(np.round(RMSE, 4)) + ".h5")
#We will now compute the RMSE by taking only last example of each engine.

indices_of_last_examples = np.cumsum(num_test_windows_list) - 1
preds_for_last_example = np.concatenate(preds_for_each_engine)[indices_of_last_examples]

RMSE_new = np.sqrt(mean_squared_error(true_rul, preds_for_last_example))
print("RMSE (Taking only last examples): ", RMSE_new)

def compute_s_score(rul_true, rul_pred):
    """
    Both rul_true and rul_pred should be 1D numpy arrays.
    """
    diff = rul_pred - rul_true
    return np.sum(np.where(diff < 0, np.exp(-diff/13)-1, np.exp(diff/10)-1))
s_score = compute_s_score(true_rul, preds_for_last_example)
print("S-score: ", s_score)

RMSE (Taking only last examples): 14.766835291811162</pre>
```

```
# Plot true and predicted RUL values
plt.plot(true_rul, label = "True RUL", color = "red")
plt.plot(preds_for_last_example, label = "Pred RUL", color = "blue")
plt.legend()
```

tf.keras.models.save_model(model, "FD001_LSTM_piecewise_RMSE_"+ str(np.round(RMSE, 4)) + ".h5")

<ipython-input-126-c11554ff9415>:1: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is consi

S-score: 280.10231252596407

```
# Set a seed for random number generation
np.random.seed(42) # Use any integer seed you prefer
import pandas as pd
import numpy as np
# Define the columns for engine ID and cycle (replace with actual column names)
engine_id_column = 'id'
cycle_column = 'cycle'
# Define initial engine ID and engine ID until which the attack should happen
engineId = 1
engineIdEnd = 37
# Define the cycle start (period of the attack)
cycleStart = 1
# Define the sensors where noise should be added
sensors = ['sensor2', 'sensor8', 'sensor14'] # Update with your column names
# Define the noise to be added (biased noise)
bound = [-0.06, -0.04, -0.02, -0.002, 0]
rmse_plot=[]
for x in bound:
    df = pd.read_csv(test_data_path, sep="\s+", header=None, names=columns)
    # Iterate through engine IDs
    for l in range(engineId, engineIdEnd + 1):
       Table = df[(df[engine_id_column] == 1) & (df[cycle_column] > cycleStart)].copy()
        # Iterate through selected sensors
       for sensor in sensors:
           # Generate random noise
           noise = np.random.uniform(-x, x)
            Table[sensor] = np.round(Table[sensor] * (1 + noise), 2)
        # Update the original DataFrame with modified values
       df.loc[(df[engine_id_column] == 1) & (df[cycle_column] > cycleStart)] = Table
    # Parameters
    window_length = 30
    shift = 1
    early_rul = 125
    num_test_windows = 5
    columns_to_be_dropped = ['id', 'op1', 'op2', 'op3', 'sensor1', 'sensor5', 'sensor6', 'sensor7', 'sensor10',
                             'sensor16', 'sensor18', 'sensor19']
    new_test_data_first_column = df["id"]
    new_test_data_scaled = scaler.transform(df.drop(columns=columns_to_be_dropped))
    new_test_data = pd.DataFrame(data=np.c_[new_test_data_first_column, new_test_data_scaled])
    new_num_test_machines = len(new_test_data[0].unique())
    # Process test data
    new_processed_test_data = []
    new_num_test_windows_list = []
    for i in range(1, new_num_test_machines + 1):
       new_temp_test_data = new_test_data[new_test_data[0] == i].drop(columns=[0]).values
        if len(new_temp_test_data) < window_length:</pre>
           raise AssertionError(
               "Test engine {} doesn't have enough data for window_length of {}".format(i, window_length))
       new_test_data_for_an_engine, new_num_windows = process_test_data(
            new_temp_test_data, window_length=window_length, shift=shift,num_test_windows=num_test_windows
       new_processed_test_data.append(new_test_data_for_an_engine)
       new_num_test_windows_list.append(new_num_windows)
    new_processed_test_data = np.concatenate(new_processed_test_data)
    new_rul_pred = model.predict(new_processed_test_data).reshape(-1)
    new_preds_for_each_engine = np.split(new_rul_pred, np.cumsum(num_test_windows_list)[:-1])
    new_mean_pred_for_each_engine = [
       np.average(new_ruls_for_each_engine, weights=np.repeat(1 / new_num_windows, new_num_windows))
        for \ new\_ruls\_for\_each\_engine, \ new\_num\_windows \ in \ zip(new\_preds\_for\_each\_engine, \ new\_num\_test\_windows\_list)
    # Calculate RMSE
    RMSE = np.sqrt(mean_squared_error(true_rul,new_mean_pred_for_each_engine))
    rmse_plot.append(RMSE)
    print(f'RMSE for the bound {x} is: {RMSE}')
     RMSE for the bound -0.06 is: 34.405310328590396
     RMSE for the bound -0.04 is: 39.69423892929466
```

```
import matplotlib.pyplot as plt
# Create a plot
plt.figure(figsize=(10, 6))
plt.plot(bound, rmse_plot, marker='o')

# Adding title and labels
plt.title('RMSE vs Noise Bound')
plt.xlabel('Noise Bound')
plt.ylabel('RMSE')

# Show grid
plt.grid(True)

# Display the plot
plt.show()
```

RMSF vs Noise Round