Vertex Connectivity

- Given connected unweighted graph G = (V, E), how many vertices need to be removed to disconnect it?
 - -G is called "k-connected" if removing any k-1 vertices leaves the remaining graph connected.

- Theorem. We can test whether G is k-connected in $O(k^2mn)$ time, m = |E|.
- <u>Proof.</u> Pick k sources $s_1, ..., s_k$. For each s_i and every t, compute an $(s_i)_{out}$ - t_{in} flow in G_0 with value $\leq k$.

Randomized Vertex Connectivity

- Theorem. [Forster, Nanongkai, Saranurak, Yang, and Yingchareonthawornchai 2020] k-connectivity can be tested in $\tilde{O}(k^2m)$ time, w.h.p.
- Uses a few basic facts about random sampling:
 - Suppose an urn contains N balls, ∈N are green and the rest are purple.
 - If you pick $O(\epsilon^{-1} \log N)$ balls, at least one will be green with probability $1 1/N^{10}$.

$$1 - (1 - \epsilon)^{\epsilon^{-1} \cdot 10 \ln N} \ge 1 - 1/N^{10}.$$

• If you pick ϵ^{-1} balls, all of them are purple with constant probability.

$$(1-\epsilon)^{\epsilon^{-1}} \approx e^{-1}$$
.

• ...and if you do this experiment $O(\log N)$ times, at least one will find only purple balls with probability $1 - 1/N^{10}$.

Soldy interest & Celegral autoni

- If A is a set of vertices, $vol(A) = \sum_{u \in A} \deg(u)$.
- Suppose G is not (k + 1)-connected and has a k-cut X separating A from B.
- · Two possibilities:
 - Balanced: vol(A), vol(B) ≥ m/k.
 - Unbalanced: vol(A) < m/k.

• Claim: if there is a Balanced k-cut, we can find a k-cut in $\tilde{O}(k^2m)$ time.

=> vd(C) 2 vd(H)+ vol(B)

So nox flow using Ford Folkonson K bryst

Unbalanced Cuts

• Suppose X is an unbalanced cut separating (A, B) and vol(A) = L.

- Sample $E' \subset E$, $|E'| = O\left(\frac{m}{L}\log n\right)$, S = the endpoints of E'. Then $S \cap A \neq \emptyset$ with high probability $1 1/n^{10}$.
- New problem: given $s \in A$, if $vol(A) \approx L$, find a k-cut separating s in $\tilde{O}(k^2L)$ time.

121 = 0) (m	(mgn))
trick ra	soul me	. L -	00
		· , 21	1 <u>k</u>
& Pro	sceen no	gr 20	Coanect
C2 - 2) 2	7- 1	いっつ	
>omb/6	E1 1	121 - 0	(F BN

Unbalanced Cuts

- Given s, L, s.t. \exists a k-cut X separating (A, B) with $s \in A$, $vol(A) \leq L$, find a k-cut in $\tilde{O}(k^2L)$ time.
- Repeat k+1 times:
 - -f=0 (start off with zero flow)
 - $-G_f$ = residual network of directed graph w.r.t. f.
 - Run DFS from s in ${\it G_f}$, stop after scanning $k\cdot L$ edges.
 - T =the DFS tree
 - F = the non-tree edges scanned
 - Pick an edge (u, v) ∈ $T \cup F$ uniformly at random.
 - -f' = one unit of flow from s to u in T.
 - -f = f + f'; update G_f .

Led 10 WW Lives

in (K+1) Ct ilou

(Nif unt explose KL

eoles

Luai

 $O((k+1)(k+1)) = O(k_5 + 10k_3 + 10k_$

