Samenvatting Databanken II TIN 2 - HoGent

Lorenz Verschingel

15 april 2015

1 SQL

1.1 Inner join

Voorbeeld van een inner join:

```
SELECT au_lastName, au_FirstName, title_id
FROM authors
JOIN titleAuthor ON authors.au_id = titleauthor.au_id
```

Hier worden alle records van authors en titleAuthor aan elkaar gekoppeld op basis van au id.

1.2 Aliassen

Het gebruik van tabel aliassen gebeurt via het keyword 'AS' of door een spatie.

```
SELECT au_lname, au_fname, title_id
FROM authors AS A
JOIN titleauthor TA ON A.au_id = TA.au_id
```

1.3 Inner join van meerdere tabellen

Gegevens kunnen ook over meerdere tabellen verspreid zitten. Hierbij moeten dan meerdere tabellen aan elkaar gekoppeld worden.

```
SELECT au_lname, au_fname, title
FROM authors A
JOIN titleauthor TA ON A.au_id= TA.au_id
JOIN titles T ON TA.title_id= T.title_id
```

Het kan zijn dat er enkel gegevens uit 2 tabellen worden getoond, maar dat er in werkelijkheid meerdere tabellen gekoppeld zijn omdat het geen directe koppeling is tussen de tabellen waaruit de gegevens komen.

1.4 Outer join

Een outer join retourneert alle records van 1 tabel, zelfs als er geen gerelateerd record bestaat in de andere tabel.

Er zijn 3 types van outer join:

1. Left outer join retourneert alle rijen van de eerst genoemde tabel in de FROM clause.

In sql is dit de LEFT JOIN

2. Right outer join retourneert alle rijen van de tweede genoemde tabel in de FROM clause.

In sql is dit de RIGHT JOIN

3. Full outer join retourneert ook rijen uit de eerste en tweede tabel die geen corresponderende entry hebben in de andere tabel.

In sql is dit de CROSS JOIN

1.5 Union

Via een UNION combineer je het resultaat van 2 of meerdere queriesin 1 resultaattabel.

```
SELECT ... FROM ... WHERE ... UNION
SELECT ... FROM ... WHERE ... ORDER BY ...
```

Regels:

- De resultaten van de 2 SELECT opdrachten moeten evenveel kolommen bevatten.
- Overeenkomstige kolommen uit beide SELECT'smoeten van hetzelfde data type zijn en beide NOT NULL toelaten of niet.
- Kolommen komen voor in dezelfde volgorde
- De kolomnamen/titels van de UNION zijn deze van de eerste SELECT
- Het resultaat bevat echter steeds alleen unieke rijen
- Aan het einde van de UNION kan je een ORDER BY toevoegen. In deze clausule mag geen kolomnaam of uitdrukking voorkomen indien kolomnamen van beide select'sverschillen. Gebruik in dat geval kolomnummers.

1.6 Subqueries

Bij een subquerykomt een selectie voor als onderdeel van een andere selectie.

SELECT ...

FROM

WHERE voorwaarde

De voorwaarde bevat in het rechterlid tussen ronde haakjes een nieuwe SELECT.

De outer level query is de eerste select. Deze bevat de hoofdvraag.

De inner level query is de tweede select deze staat in de WHERE of HAVING clause.

We gebruiken subqueries om:

- een resultaat te retourneren waarbij de subquery een proces gegeven bevat.
- gegevens uit meerdere tabellen te halen. Dit kan vergeleken worden met een JOIN. Enkel worden bij subqueries de tabellen afzonderlijk gebruikt.

Er zijn drie vormen in de WHERE clause

- 1. Geneste subvragen
- 2. Gecorreleerde subvragen
- 3. Operator exists

Subqueries kunnen ook voorkomen in de FROM en SELECT clause.

1.6.1 Geneste subvragen

De subvragen worden altijd eerst uitgevoerd en moeten steeds tussen haakjes staan. Subvragen kunnen in meerdere niveau's genest zijn.

Bij een geneste subquery kan de één waarde geretourneerd worden of een ganse lijst met waarden.

ANY en ALL keywords worden gebruikt in combinatie met de relationele operatoren en subqueriesdie een kolom van waarden retourneren.

- ALL retourneert TRUE als alle waarden geretourneerd in de subquer yvoldoenaande voorwaarde.
- ANY retourneert TRUE als minstens 1 waarde geretourneerd in de subquery voldoet aan de voorwaarde.

1.6.2 Gecorreleerde subqueries

Bij een gecorreleerde subquery hangt de inner query af van informatie van de outer query. Voor elke rij uit de hoofdvraag wordt de subvraag opnieuw uitgevoerd. Bijgevolg gebruikt me beter JOIN als dit mogelijk is.

```
SELECT ...
FROM tabel a
WHERE uitdrukking operator (
SELECT ...
FROM tabel
WHERE uitdrukking operator a.kolomnaam)
```

In de hoofdvraag mag je geen velden gebruiken uit de subvraag, maar wel omgekeerd.

1.6.3 Exists operator

Via de operator EXISTS wordt getest op het al dan niet leeg zijn van een resultaatset. Er bestaat ook NOT EXISTS.

2 Database architecturen

2.1 Componenten van een database

2.1.1 Hardware

- PC
- Mainframe
- Netwerk van computers \leftarrow multi-user

2.1.2 Software

- DBMS
- Applicaties
- Netwerk-software
- Operating System

2.1.3 Data

- Brug tussen machine en mens
- Operationele data \rightarrow database
- Metadata \rightarrow systeem cataloog

2.1.4 Procedures

- Hoe het DB-systeem te gebruiken
- Inloggen
- Hoe een specifiek BD-programma gebruiken
- ...

2.1.5 Mensen

- DB admins
- DB ontwerpers
- Applicatie-ontwikkelaars
- Eindgebruikers

2.2 Multi-user DB

Bij multi-user DB's gebuiken verschillende gebruikers tegelijk de data in de DB. Wanneer verschillende transacties enkel data lezen is er geen probleem. Als minstens één transactie data wijzigt kunnen wel problemen optreden.

- \Rightarrow Concurrency control: voorkomen van problemen.
- \Rightarrow Recovery: herstel in geval van problemen.

2.3 Gedistribueerde DB

Bij een gedistribueerde DB bevinden de data (en metadata) zich fysisch op verschillende plaatsen.

Gedistribueerde DBMS nodig: een logische DB die verdeeld is in fragmenten. Elk fragment is gestockeerd op één of meerdere computers.

Elke site kan autonoom beslissen over zijn eigen data.

Wanneer data nodig is uit een andere site \rightarrow global application.

2.4 Data warehouse

Geïntegreerde view van data uit heteregone data sources om beslissingen van beleidsmakers te ondersteunen.

Er wordt enkel gelezen (niet weggeschreven).

Moet snel ingewikkelde queries kunnen uitvoeren.

2.5 Hardware architectuur

Data-intensieve applicaties bevatten 5 hoofdcomponenten:

- 1. database
- 2. DBMS
- 3. dataprocessing-logica
- 4. business-logica
- 5. user interface

2.5.1 Teleprocessing

Éen centrale processor verbonden met een aantal terminals. Zie figuur 1a.

2.5.2 File-Server

Éen file-server verbonden via LAN met workstations. Zie figuur 1b.

2.5.3 2-tier client-server (Fat client)

Client via een netwerk verbonden met een server. Zie figuur 1c

2.5.4 3-tier client-server

Er is een bijkomende middle tier. Zie figuur 1d. Op deze figuur is de client tier verantwoordelijk voor de presentatie, de middle tier voor de logica en de database tier voor de data.

2.5.5 n-tier client- server

De middle tier wordt opgesplitst voor meer flexibiliteit, schaalbaarheid, beschikbaarheid...

2.5.6 Applicatieserver

Een server waarop applicaties worden aangeboden aan de client.

De clients kunnen de aangeboden applicaties op hun eigen werkplek bedienen, terwijl onderhoud, beheer en ondersteuning op afstand plaatsvinden (op de server).

Zorgt ervoor dat via een application programming interface (API) business logica en business processen kunnen gebruikt worden daar andere applicaties.

Figuur 1: Verschillende harware-architecturen

2.6 Middleware

Middleware is software die softwarecomponenten of applicaties verbindt. Dit is nodig wanner gedistribueerde systemen te complex worden zonder een gemeenschappelijke interface.

⇒ Doel: verbergen van onderliggende complexiteit van gedistribueerde systemen.

2.6.1 Asynchrone Remote Procedure Call

Bij asynchrone RCP stuurt de client een verzoek naar de server zonder te wachten op antwoord. Als de connectie verbroken wordt dan moet de client opnieuw beginnen.

⇒ Gebruiken indien integriteit niet belangrijk is.

Er zijn zes types middleware:

- 1. Asynchrone RPC
- 2. Synchrone RPC
- 3. Publish/Subscribe
- 4. Message oriented middleware
- 5. Object Request Broker
- 6. SQL-oriented data acces

2.6.2 Synchrone Remote Procedure Call

Bij synchrone RCP stuurt de client een verzoek naar de server wacht op antwoord. Zolang de server bezig is met het verzoek is de client geblokkeerd.

⇒ Gebruiken indien integriteit uiterst belangrijk is.

2.6.3 Publish/Subscribe

Publish/Subscribe is een asynchroon messaging protocal. De clients zijn abonnees en kunnen zich inschrijven om boodschappen van publishers te ontvangen.

Boodschappen zijn gecatalogeerd in klassen en een abonnee kan zich inschrijven in één of meerdere klassen.

2.6.4 Message Oriented Middleware

Bij MOM staat de software zowel op de client als op de server.

Er gebeuren asynchrone calls tussen client- en server-applicaties.

Er is een wachtrij die dient als tijdelijke opslag indien de bestemming bezet of niet geconnecteerd is.

2.6.5 Object Request Broker

Bij ORB is er communicatie en data-uitwisseling tussen objecten.

Common ORB Architecture (CORBA) is een standaard om software componenten, geschreven in verschillende talen en draaied op verschillende computers, met elkaat te laten communiceren.

2.6.6 SQL-oriented data access

SQL-oriented data access verbint applicaties met een database over het net. Het vertaalt SQL requests naar de eigen SQL van de database.

2.6.7 Middleware voor transactiebeheer

Transaction Processing Monitor

Complexe applicaties zijn vaak gebouwd op verschillende resource managers.

TP Monitor controleert het dataverkeer tussen clients en servers.

TP Monitor is een middleware component die toegang geeft tot de diensten van een aantal resource managers en zorgt voor een uniforme interface voor programmeurs die transactionele software ontwikkelen.

Er is een verhoogde schaalbaarheid door transaction routing.

Er is *taaklastbeheersing* want de TP monitor kan zien welke server het minst belast is en daar de client-calls naar toe dirigeren.

Er zijn hetrogene bronnen mogelijk.

Er is funneling: niet alle clients moeten constant online zijn \rightarrow TP monitor kan user requests sturen naar reeds openstaande connecties.

Kortweg kan gezegd worden dat de TP monitor een transaction manager is.

2.7 Webservices

Een webservice is een software systeem, dat ontworen wed voor interactie tussen applicaties en webservers.

Webservices delen business logica, dataen processen m.b.v. een programmeerbare interface over een netwerk.

Ontwikkelaars voegen de webservice toe aan een webpagina om specifieke functionaliteit aan te bieden aan de gebruikers.

Webservices gebruiker algemeen aanvaarde technologieën en standaarden zoals: XML, SOAP, WSDL en UDDI.

2.8 Service-Oriented Architecturen

Business-georiënteerde software-architectuur voor het bouwen van applicaties en business processen implementeren als een set van gepubliceerde services.

Granulariteit moet relevant zijn voor de service-gebruiker.

Services kunnen aangeroepen, gepubliceerd en gevonden worden op een abstracte manier, d.w.z. los van de implementatiedetails, maar gebaseerd op een unieke standaar-interface.

Laat toe dat applicaties zich snel kunnen aanpassen aan wijzigende business-processen t.g.v. bijvoorbeeld gewijzigde marktomstandigheden.

2.9 Cloud Computing

2.9.1 Kenmerken

On-demand self-service: Gebruikers kunnen clouddiensten verkrijgen, configureren en deployen zonder hulp van een provider.

Broad network acces: Toegankelijk van overal, vanaf elke standaardplatform.

Resource pooling: Computer resources van provider zitten in een pool, die meerdere gebruikers bedient. Fysieke en virtuele resources worden dynamisch toegekend volgens de behoefte van een gebruiker op een bepaald moment.

Snelle elasticiteit: Piekbehoeften van de klant worden opgevangen door pooling. Er is een sterk verminderd risico op uitval en onderbrekingen van de dienstverlening. Toekenning van de capaciteit kan geautomatiseerd gebeuren op basis van vraag $\rightarrow scalability$.

Metingen van afgenomen diensten: Provider meet gebruik van storage, CPU, bandbreedte... Deze metingen worden dan gebruik voor de Service Level Agrements (SLA) en de facturatie.

2.9.2 Software as a Service

Bij SaaS bevinden zich software en data in de cloud. De toegang wordt verzorgt via een thin client (bv. web browser). De gebruiker kan hier beperkte toegang hebben tot configuratie-instellingen.

2.9.3 Platform as a Service

Bij PaaS bouwt de klant de webapplicatie zonder aankoop/onderhoud van software en infrastuctuur. De provider beheert de infrastructuur (netwerk, OS en storage). De klant beheert het deployment en de configuratie van applicaties.

2.9.4 Infrastructure as a Service

Bij SaaS levert de provider servers, storage, netwerk en OS aan de gebruikers, gebundeld al on-demand service. Dit model wordt typisch gebruikt voor platform-virtualisatie. De facturatie gebeurt volgens gebruik.

Figuur 2: Vergelijking van service-modellen

2.9.5 Voordelen van cloud computing

Kostenreductie: vermijd kapitaalintensieve investeringen voor opbrengsten.

Scalability: bijkomende resources schaf je aan volgens behoefte.

Security en betrouwbaarheid: providers kunnen expertise en resources verdelen over meerdere klanten. Een individuele klant kan dit niet betalen.

Toegang tot nieuwste technologieën: systemen moeten niet meer afgeschreven zijn om nieuwe technologieën te kunnen gebruiken, want je huurt de systemen.

Snellere ontwikkeling: platform van de provider zorgt voor software en diensten die ontwikkelingscyclus kunnen versnellen.

Prototyping/Load testing op grote schaal: de provider heeft hiervoor de resources.

Verhoogde competitiviteit: organisaties kunnen focussen op hun kerncompetenties i.p.v. op IT-infrastructuren.

Flexibeler werken: bv. toegang via mobile devices.

2.9.6 Risico's van cloud computing

Afhankelijkheid van het netwerk: Stroomonderbrekingen, bandbreedte-problemen en onderbreking dienstverlening.

Afhankelijkheid van de systemen: je vertrouwt op beschikbaarheid en betrouwbaarheid van systemen van de provider.

Afhankelijkheid van de cloud provider: deze kan failliet gaan of overgenomen worden door concurrent met mogelijk onmiddelijke stopzetting van de service.

Gebrek aan controle: je beslist niet zelf over bv. backup-policy.

Gebrek aan transparantie over achterliggende verwerking

2.10 Cloud gebaseerde databanken

Cloud gebaseerde databanken zijn een voorbeel van SaaS. Er zijn twee basiscategorieën:

- 1. Data as a Service (DaaS)
- 2. Database as a Service (DBaaS)

Het verschil tussen beiden zit hoofdzakelijk in hoe de data beheerd wordt.

2.10.1 Database as a Service

DBaaS biedt een volledige databankfunctionaliteit aan ontwikkelaars. Dit model voorziet ook in een management-laag, die continue monitoring en cofiguratie van de databank toelaat:

- geoptimaliseerde scalability
- hoge beschikbaarheid

- multi-tenancy: meerdere client-organisaites worden gelijktijdig bediend.
- effectief reource management in de cloud \rightarrow ontwikkelaar moet zich niet bezighouden met dba-taken.

2.10.2 Data as a Service

Bij DaaS zit de data-definitie en querying in de cloud.

DaaS implementeert geen typische DMBS-interface (bv SQL), maar de data is beschikbaar via API's. \rightarrow verhoogde controle door de provider.

DaaS laat toe om je data aan anderen ter beschikking te stellen.

2.11 Mobile Databases

Mobile databases dienen om data persistent te maken. Hierbij zijn er twee mogelijkheden waarbij de keuze gemaakt wordt door de app developer.

- 1. Database op afstand die verbonden wordt met het mobiele toestel (internet nodig).
- 2. Database die opgeslagen wordt op het mobiele toestel (offline gebruik mogelijk).

Vaak wordt met een middle tier zoals een mobile web service gewerkt. Hierbij is er geen rechtstreeks contact tussen de client en de databank.

De client stuurt een HTTP request naar de webservice. De client kan vaak in zijn request naar de webservice kiezen hoe hij de data wil ontvangen (=content negotiation). De webservice communiceert met de databank en haalt de data binnen. Naar gelang wat werd gevraagd, zal de web service de resultset omzetten. Dit resultaat wordt dan aangeboden aan de client. Op die manier is er nooit rechtstreeks contact tussen de databank en de client.

2.11.1 Voordelen

Er is nooit rechtstreeks contact tussen de client en de DB.

Clients kunnen kiezen in welk formaat ze de data wensen te ontvangen.

Schaalbaarheid hangt niet enkel af van de databank maar ook van de webservice \rightarrow wordt verdeeld.

Dezelfde web service (logica) kan gebruikt worden door verschillende clients/platformen \rightarrow reuse.

Request kan over https gebeuren \rightarrow veiligheid.

2.11.2 Nadelen

Performantie wordt o.a. bepaald door de internetverbinding.

Behalve een DB Server ook nog nood aan eene extra technologie voor de middle tier.

Er is steeds internetverbinding nodig.

2.11.3 Mobile database lokaal

De lokale mobile database wordt ook wel de offline storage genoemd.

De DB is platform afhankelijk, maar is wel relatief snel.

De DB neemt opslagplaats in op het device. Hierdoor is de app zelf verantwoordelijk voor het updaten van de data.

3 Database ontwerp - DDL

3.1 Database

3.1.1 Een database creëren

Bij creatie van een DB worden fysiek 2 files gemaakt: een datafile (mdf) en een logfile (ldf). Er kunnen meerdere datafiles zijn, nl. de secondary data files (ndf). Er kunnen ook meerdere logfiles zijn.

Bij creatie van een DB wordt een kopie genomen van de model database, deze bevat systeemtabellen en systeemviews.

Figuur 3: Opbouw van een database

Data wordt opgeslagen in blokken van 8 KB aaneensluitende diskspace, dit noemt met een pagina. Eén rij kan niet op meerdere pagina's bewaard worden, een rij mag maximaal 8060 b groot zijn (8KB – ruimte overhead). 8 opeenvolgende pagina's worden 1 extend (64 KB). Een tabel, index wordt opgeslagen in een extend. Dit alles is te zien op figuur 3

Logfiles bevatten informatie nodig voor recovery. De logfile-grootte is per default 25% van grootte van de datafile.

In sql creëert men een database als volgt:

CREATE DATABASE database_name

Men kan hierbij ook parameters meegeven:

3.1.2 Een database verwijderen

DROP DATABASE database_name

Hierbij dient opgemerkt te worden dat de systeem databank niet verwijderd kan worden.

3.1.3 Een database wijzigen

- beheer van de groei van de database en log file
- uitbreiden/verminderen van grootte van database en log
- toevoegen/verwijderen van secondary database files, log files

Wijzigen van de groote van het logbestand:

```
ALTER DATABASE oefenDB

MODIFY FILE (name = 'oefenDB_log', size = 10MB)

Toevoegen van een databastand:

ALTER DATABASE oefenDB

ADD FILE (

name = oefenDB2,
filename = 'C:\Program_Files\Microsoft_SQL_Server\_MSSQL
.1\MSSQL\Data\oefenDB2.ndf',
size = 10MB,
maxsize = 15MB)
```

3.2 Tabellen

3.2.1 Een tabel creëren

Bij de creatie van een tabel specifieren we:

- de naam van de tabel.
- de definitie van de kolommen (naam, datatype ...).
- definitie van de constraints.

CREATE TABLE student (

studentno int NOT NULL, lastname varchar (30) NOT NULL, firstname varchar (30) NOT NULL, gender char (1) NOT NULL, photograph image NULL)

3.2.2 Een tabel wijzigen

Mogelijke wijzigingen aan een tabel omvatten:

- toevoegen van kolommen.
- wijzigen van kolommen.
- verwijderen van kolommen.

```
ALTER TABLE student (
```

```
ADD address varchar(40) NULL,
ALTER COLUMN address varchar(50) NULL,
DROP COLUMN address)
```

3.2.3 Een tabel verwijderen

Bij het verwijderen van een tabel diet men rekening te houden met de afhankelijkheden.

DROP TABLE student

3.3 Contraints

3.3.1 Identity waarden

Een identity kolom bevat voor elke rij een unieke waarde, die sequentieel door het systeem gegenereerd wordt. Er is slechts één identity kolom per tabel mogelijk. De identity kolom kan niet NULL zijn en kan niet door gebruikers aangepast worden.

```
CREATE TABLE student Voorbeeld Identity (
studentno int identity (100, 5) NOT NULL,
lastname varchar (30) NOT NULL,
firstname varchar (30) NOT NULL,
gender char (1) NOT NULL,
photograph image NULL)
```

3.3.2 Data integriteit

Soorten:

- domein integriteit
- entity integriteit
- referentiële integriteit

3.3.3 Definitie van constraints

Via create table en als onderdeel van de kolomdefinitie:

```
CREATE TABLE studentVoorbeeldIdentity (
studentno int NOT NULL unique)
```

Via alter table en als aparte lijn:

```
ALTER TABLE studentVoorbeeldIdentity(
CONSTRAINT studentno_U unique(studentno)
```

Zowel bij creatie al bij wijzigen kan gekozen worden voor onderdeel van de kolomdefinitie als voor aparte lijn. NULL en DEFAULT constraints kunnen enkel bij definitie van de kolom worden opgegeven.

3.3.4 Check constraint

```
gender char(1) default 'M' check(gender in ('M', 'F')) not null
```

3.3.5 Primary key constraint

studentno int primary key

of

constraint studentno_PK primary key(studentno)

3.3.6 Foreign key constraint

De foreign key wordt gebruikt om verbanden tussen relaties uit te drukken. NULL waarden zijn niet toegelaten.

constraint class_fk foreign key(class) references class(classID)

De foreign key legt ook de trapsgewijze (cascading) referentiële integriteitsacties vast.

3.4 Views

3.4.1 Introductie

Een view is een SELECT statement die onder een eigen naam wordt bewaard. Een view is bijgevolg een soort virtuele tabel samengesteld uit andere tabellen of views.

De voordelen hiervan zijn dat de complexiteit van de database verborgen is. Gebruikers krijgen functionaliteit en rechten op maat. Views vereenvoudigen de beveiliging van de database. Data wordt ook georganiseerd voor de export naar andere applicaties.

```
CREATE VIEW view_name [(column_list)]
AS select_statement
```

Views kunnen net als tabellen verwijders en gewijzigd worden.

3.5 Indexen en performatie

De heap is een ongeordende verzameling van data-pages zonder clustered index. Dit is de standaard opslag van een tabel.

Een index is een geordende structuur die op de records uit een tabel wordt gelegd. Deze zijn snel toegankelijk dankzij een boomstructuur. Dankzij indices kan de toegang tot data versnelt worden en kan uniciteit van de rijen afgedwongen worden. Daarentegen nemen indexen veel opslagruimte in beslag en ze kunnen de performantie ook doen dalen.

3.5.1 Clustered Index

De fysische volgorde van de rijen in een tabel is deze van de clustered index. Elke tabel kan maar één clustered index hebben.

De voordelen t.o.v. table scan zijn dat een dubbel gelinkte lijst zorgt voor de volgorde bij het lezen van sequentiële records. Er zijn ook geen forward pointers. De clustered index legt unieke waarden op.

Figuur 4: Clustered index

3.5.2 Non-clustered Index

De non-clustered index is de default index, deze werkt trager dan de clustered index. Wel zijn er meerdere non clustered indexen mogelijk per tabel. Elke leaf bevat een sleutelwaarde en een row locator, deze wijst naar de positie in de clustered index als die bestaat, anders naar de heap.

Figuur 5: Non-clustered index

3.5.3 Covering index

Als een non-clustered indec een query niet volledig covert, dan moet de databank voor elke rij een lookup doen om de data op te halen. Een covering index is in wezen een non-clustered index die alle kolommen bevat die nodig zijn voor een bepaalde query.

3.5.4 Operaties op een index

Creatie:

```
CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED]
INDEX index_naamON tabel(kolom[,...n])
```

Verwijderen:

DROP INDEX table_name.index_name[,...n]

4 Postrelationele DBMS

4.1 SQL als volwaardige taal

Procedurele uitbreidingen op SQL zijn merkgebonden. Database systemen die gebruik maken van deze uitbreidingen zijn dus moeilijker om te zetten van één RDBMS op een andere.

In het vervolg van deze samenvatting gaan we verder met t-SQL, die gebruikt wordt bij SQL Server.

De meeste database systemen voorzien al een aantal standaard SQl functies zoals minimum, maximum, som, gemiddelde, aantal . . .

SQL Server heeft nog een aantal extra functies zoals datediff, substring, len, round ...

Naast deze functies is het ook nog mogelijk om user defined functies aan te maken.

4.1.1 Voordelen van PSM

- Code modularisatie
 - reduceren redundante code: veel gebruikte queries in Stored Procedures en hergebruiken in 3GL.
 - vaak voor de CRUD-operaties
 - minder onderhoud bij schema-wijzigingen
- Security
 - rechtstreekse queries op tabellen zijn uitgesloten
 - via stored procedures vastleggen wat kan en wat niet
 - vermijd SQL-injection, door gebruik input-parameters
- Centrale administratie van (delen van) DB-code.

4.1.2 Nadelen van PSM

- Beperkte schaalbaarheid
- Vendor lock-in
 - Er is geen standaard syntax
- Twee programmeertalen
- Twee debugomgevingen
- Beperkte OO-ondersteuning

4.1.3 Vuistregels

- Vermijd PSM voor grotere business logica
- Gebruik PSM voor technische zaken: logging, auditing, validatie
- Maak keuze voor portabiliteit/vendor lock-in in overleg met de business of corporate IT policies.

4.1.4 Stored procedure

Een stored procedure is een benoemde verzameling sql en control-of-flow opdrachten (programma) die opgeslagen wordt als een database object. De stored procedure is analoog aan procedures uit andere talen. Het kan aangeroepen worden vanuit een programma, trigger of stored procedure.

4.2 Variabelen

4.2.1 Lokale variabelen

Merk bij bovenstaande code op dat de naam van een variabele steeds wordt voorafgegaan door @. Het toekennen van een waarde gebeurt via SET of SELECT

4.2.2 Control flow met Transact SQL

In een programma kan je het verloop bepalen via o.a.:

- Instructie niveau
 - BEGIN ... END
 - IF ... ELSE
 - WHILE ...
 - * BREAK
 - * CONTINUE
 - RETURN
- Rij niveau
 - CASE ... END

4.2.3 Gebruik van commentaar

- Inline commentaar
 - -commentaar
- Block commentaar
 - /*commentaar*/

4.3 Cursors

SQL statements werken standaar met een complete resultaatset en niet met individuele rijen. Cursors laten toe om met individuele rijen te werken. Een cursor is dus een database object die wijst naar een resultaatset. Via de cursor kan men aangeven met wlke rij uit de resultaatset men wenst te werken.

4.3.1 Declaratie van een cursor

```
DECLARE <cursor_name> [INSENSITIVE] [SCROLL] CURSOR FOR <SELECT_statement> [FOR {READ ONLY | UPDATE[OF <column list >]}]
```

- INSENSITIVE
 - de cursor werkt met een tijdelijke kopie van de gegevens
 - * wijzigingen in onderliggende tabellen worden niet gereflecteerd in gegevens opgehaald via de cursor.
 - * de cursor kan niet gebruikt worden om tabellen te wijzigen

 wanneer INSENSITIVE weggelaten wordt dan worden deletes en updates wel degelijk gereflecteerd in de cursor.

Dit is wel minder performant aangezien elke fetch nu resulteert in en nieuwe select opdracht.

• SCROLL

- alle soorten fetch operaties zijn bruikbaar
 - * FIRST, LAST, PRIOR, NEXT, RELATIVE en ABSOLUTE
- wanneer SCROLL weggelaten wordt dan kan je enkel via NEXT data ophalen.

• READ ONLY

- verhindert dat je via de cursor de onderliggende tabellen kan wijzigen
- per default kan je via de cursor wel de onderliggende tabellen aanpassen

• UPDATE

benoemen van specifieke kolommen die kunnen gewijzigd worden via de cursor.
 Enkel kolommen benoemd in deze clause kunnen gewijzigd worden.

4.3.2 Openen van een cursor

OPEN < cursor name>

Hiermee wordt de cursor geopend en vervolgens opgevult met het SELECT statement dat in de declaratie was meegegeven.

De cursors current row pointer wordt gepositioneerd net voor de eerste rij in de actieve set.

4.3.3 Data ophalen via een cursor

```
FETCH[NEXT | PRIOR | FIRST | LAST | {ABSOLUTE|RELATIVE < rownumber>}]
FROM < cursor name>
[INTO < variable name> [,... < last variable name>]]
```

- De cursor wordt gepositioneerd
 - op de "volgende" (of vorige, eerste, laatste...) rij
 - per default wordt gepositioneerd via NEXT, voor andere manieren moet je een SCROLL-able cursor gebruiken.
- De gegevens worden opgehaald
 - zonder INTO clause worden resulterende gegevens op het scherm getoond.

- met INTO clause worden gegevens in de opgegeven variabelen gestopt. Hierbij moet men opletten dat de variabelen gedeclareerd zijn.

Een voorbeeld:

```
DECLARE @au_lname varchar(40), @au_fname varchar(20)
FETCH NEXT FROM authors_cursor
INTO @au_lname, @au_fname
WHILE @@FETCH_STATUS = 0 BEGIN
PRINT 'Author:_' + @au_fname + '_' + @au_lname
FETCH NEXT FROM authors_cursor
INTO @au_lname, @au_fname
```

END

4.3.4 Sluiten van een cursor

CLOSE <cursor_name>

- de cursor wordt gesloten
 - de definitie van de cursor blijft bestaan
 - * er mogelijkheid om de cursor te heropenen

4.3.5 Dealloceren van een cursor

DEALLOCATE < cursor_name >

- de cursordefinitie wordt verwijderd
 - wanneer dit de laatste referentie naar de cursor was dan worden alle resources voor die cursor vrijgegeven
 - indien de cursor nog niet gesloten is da deallocate de cursor automatisch sluiten
 - * een close opdracht net voor een deallocatie opdracht hoeft dus niet

4.3.6 Updaten via een cursor

```
UPDATE 
SET ...
WHERE CURRENT OF <cursor name>
```

4.3.7 Verwijderen via een cursor

```
DELETE FROM 
WHERE CURRENT OF < cursor name>
```

4.4 Stored Procedures

4.4.1 Creatie van een SP

<sql_statements>

- aanmaken db-object: via DDL instructie
- controle op syntax
 - enkel indien syntactisch correct wordt de stored procedure opgeslaan in de catalogus.

4.4.2 Wijzigen van een SP

4.4.3 Verwijderen van een SP

DROP PROCEDURE proc_name>

4.4.4 Uitvoeren van een SP

EXCUTE c_name> [parameters]

- bij eerste uitvoering
 - compilatie en optimalisatie
- hercompilatie forceren
 - wenselijk bij wijzigingen aan structuur databank
 execute uspOrdersSelectAll with recompile
 execute sp_recompile uspOrdersSelectAll

4.4.5 De returnwaarde van een SP

- Bij uitvoering keert een SP een returnwaarde terug
 - deze waarde is een int
 - de default return waarde is 0.
- return statement

- uitvoering van de SP wordt gestopt
- laat toe om de returnwaarde te bepalen

Creatie van een SP met expliciete returnwaarde:

```
CREATE PROCEDURE usp_OrdersSelectAllAS
select * from orders
return @@ROWCOUNT
```

Gebruik van een SP met een returnwaarde:

```
DECLARE @returnCode int
EXEC @returnCode = usp_OrdersSelectAll
PRINT 'Er_zijn_' + str(@returnCode) + '_records.'
```

4.4.6 SP met parameters

Via een input parameter kan men een waarde doorgeven aan de SP.

Via een output parameter kan men eventueel een waarde doorgeven aan de SP en krijgt men een waarde terug van de SP.

```
CREATE PROCEDURE usp_OrdersSelectAllForCustomer @customerIDnchar(5) = 'ALFKI', @count intOUTPUT

AS
SELECT @count = count(*)
FROM orders WHERE customerID= @customerID
```

Merk op dat 'ALFKI' een default waarde is die ingesteld wordt.

- aanroepen van de SP
 - voorzie steeds het keyword OUTPUT voor output parameters
 - twee manieren om actuele parameters door te geven
 - * gebruik formele parameternaam
 - * positioneel

Parameters via formele naam doorgeven:

```
DECLARE @aantal int
EXECUTE usp_OrdersSelectAllForCustomer
@customerID= 'ALFKI',
@count= @aantal OUTPUT
PRINT @aantal
```

Parameters positioneel doorgeven:

DECLARE @aantalint **EXEC** usp_OrdersSelectAllForCustomer 'ALFKI', @aantalOUTPUT PRINT @aantal

4.4.7 Error handling

@@erroris een systeemfunctie die het foutnummer bevat van de laatst uitgevoerde opdracht. De waarde 0 wijst op succesvolle uitvoering.

Alle foutboodschappen zitten in de systeemtabel sysmessages.

 $\begin{array}{lll} \textbf{SELECT} & * & \textbf{FROM} & \text{master.dbo.sysmessages} \\ \textbf{WHERE} & \text{error} & = @@ERROR \\ \end{array}$

Eigen fouten kan men genereren via raiseerror(msg,severity,state)