Introduction aux communications numériques Étude de l'interférence entre symbole et du critère de Nyquist

Première année - Département Sciences du Numérique 2020-2021

1. Étude sans canal de propagation : bloc modulateur/d'démodulateur

- 1. Expliquez comment sont obtenus les instants optimaux d'échantillonnage (permettant d'échantillonner sans interférences entre symboles):
 - A partir du tracé de g.
 - A partir du tracé du diagramme de l'œil en sortie du filtre de réception.
- 2. Expliquez pourquoi le taux d'erreur binaire de la transmission n'est plus nul lorsqu'on échantillonne a $n_0 + mN_s$, avec $n_0 = 3$.

Réponse :

- 1. Expliquez comment sont obtenus les instants optimaux d'échantillonnage (permettant d'échantillonner sans interférences entre symboles):
 - A partir du tracé de g.

In order to determine the best signal S_0 sampling time, and according to the Nyquist:

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in Z^* \end{cases}$$

and figure of Global impulse response of transmission chain 1&2 in symbol as below:

We will sample when the value of the convolution is the largest.

• A partir du tracé du diagramme de l'œil en sortie du filtre de réception.

In order not to obtain les instants optimaux d'échantillonage symbole n_0 , it is necessary to sample when the interference between symbols is zero or almost zero in order to respect the Nyquist criterion in time:

$$\begin{cases} \sum_{k} G^{(t_0)} \left(f - \frac{k}{T_s} \right) = cte \\ \\ G^{(t_0)} \left(f \right) = FT \left[\frac{g(t+t_0)}{g(t_0)} \right] \end{cases}$$

To do this, we can draw le diagramme de l'œil of the signal at the output of the reception filter as below:

2. Expliquez pourquoi le taux d'erreur binaire de la transmission n'est plus nul lorsqu'on échantillonne a $n_0 + mN_s$, avec $n_0 = 3$.

There will be some interferences between symboles, so it is much more likely to make errors.

2. Étude avec canal de propagation sans bruit

Le critère de Nyquist peut-il ^être vérifié sur cette chaine de transmission :

- Pour BW = 4000 Hz?
- Pour BW = 1000 Hz?
- 1. Expliquez votre réponse (oui ou non) en utilisant le tracé, sur la même figure, de $|H(f)H_r(f)|$ et de $|H_c(f)|$, ou` H(f) est la réponse en fréquence du filtre de mise en forme, $H_r(f)$ la réponse en fréquence du filtre de réception et $H_c(f)$ la réponse en fréquence du filtre canal.
- 2. Expliquez votre réponse (oui ou non) en utilisant le tracé le diagramme de l'œil `a la sortie du filtre de réception.

Réponse :

• Pour BW = 4000 Hz

1. According to these figures,

For Canal 1:

This canal's |Hc|, it's too small to fully recover $|H \times Hr|$. And it is not satisfied with Nyquist.

For Canal 2:

This canal's |Hc|, it's large enough to fully recover $|H \times Hr|$. But it is not satisfied with Nyquist.

2. According to le diagramme de l'œil,

For Canal 1:

It is not satisfied with Nyquist, the best value of n_0 is between 2 and 3.

For Canal 2:

It is not satisfied with Nyquist, the best value of n_0 is 8.

• Pour BW = 1000 Hz

1. According to these figures,

For Canal 1:

This canal's |Hc|, it's too small to fully recover $|H \times Hr|$. And it is not satisfied with Nyquist.

For Canal 2:

This canal's |Hc|, it's too small to fully recover $|H \times Hr|$. And it is not satisfied with Nyquist.

2. According to le diagramme de l'œil,

For Canal 1:

It is not satisfied with Nyquist, there is not the best value of n_0 .

For Canal 2:

It is not satisfied with Nyquist, there is not the best value of n_0 .