A quick view of Principal Component Analysis

Alberto Paccanaro

EMAp - FGV

What we want

A space of lower dimensionality such that the orthogonal projection of the datapoints:

- 1) maximizes the variance of the projected points
- 2) minimizes the sum of square of the projection errors

A.PACCANARO – FGV INTERNAL USE ONLY – DO NOT DISTRIBU

The math

 $\{x_n\}$ n = 1 ... N, points in D dimensional space (column) We want to project them into M < D dimensions

Consider M = 1, defined by u_1 unit vector (column). Each point is projected into a scalar $u_1^T x_n$

 \overline{x} mean of projected data:

$$\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

variance of projected data:

$$rac{1}{N}\sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{\mathrm{T}}\mathbf{x}_{n}-\mathbf{u}_{1}^{\mathrm{T}}\overline{\mathbf{x}}
ight\}^{2}=\mathbf{u}_{1}^{\mathrm{T}}\mathbf{S}\mathbf{u}_{1}$$

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\mathrm{T}}$$

We want to maximize the projected variance $u_1^T S u_1$ with respect to u_1 .

To enforce $u_1^T u_1 = 1$ we use a Lagrange multiplier, λ_1 , and maximize:

$$\mathbf{u}_1^{\mathrm{T}}\mathbf{S}\mathbf{u}_1 + \lambda_1 \left(1 - \mathbf{u}_1^{\mathrm{T}}\mathbf{u}_1\right)$$

Setting the derivative w.r.t. u_1 equal to zero:

$$\mathbf{S}\mathbf{u}_1 = \lambda_1\mathbf{u}_1$$
 So \mathbf{u}_1 must be an eigenvector of \mathbf{S} ! $\mathbf{u}_1^{\mathrm{T}}\mathbf{S}\mathbf{u}_1 = \lambda_1$

 \rightarrow the variance is maximized by setting u_1 equal to the eigenvector having the largest eigenvalue

We can define additional components incrementally, choosing new directions to be the ones that maximize the projected variance among the directions orthogonal to those already considered...

CANARO – FGV INTERNAL USE ONLY – DO NOT DISTRIBUTE

To summarize...

The optimal linear projection for which the variance of the projected data is maximized is defined by

the M eigenvectors $u_1 \dots u_M$ of the data covariance matrix S corresponding to the M largest eigenvalues $\lambda_1 \dots \lambda_M$

Computational complexity:

- for a DxD matrix, $O(D^3)$
- Top eigenvalues and eigenvectors, $O(M D^2)$

A.PACCANARO – FGV INTERNAL USE ONLY – DO NOT DISTRIBUTE

Important – don't forget the mean ©

- The projection onto the Principal Components makes more sense once you have subtracted the mean from your data.
- But when you want to reconstruct your points in the original space you will need to:
 - 1. Get back onto the original coordinate system
 - 2. Add the mean back!