VH03 手持读数仪高级应用

1. VH03 寄存器(参数)汇总表

寄存器地址	符号	名称	取值范围	默认值	単位	备注
0	DEV_ID	设备地址	1~255	0x81 (129)		
3	RS232_BAUD	RS232 通讯速率	12~4608	1152	百 bps	
4	RS485_BAUD	RS485 通讯速率	12~4608	1152	百 bps	
6	SPEAK	提示音开关	0/1	1		
10	TIM_LIGHT	背光时长	1~65535	300	秒	
11	TIM_SHDN	自动关机时长	1~65535	600	秒	
16	NTC_B	NTC 电阻 B 值 ^①	1~65535	3950		
17	NTC_RES	NTC 标称电阻 ^①	1~65535	3000	欧姆	
21	VM_MODTH	振弦传感器激励方法				
22	VM_TMPTYPE	温度传感器类型 ^①				
35	LORA_SF	LORA 扩频因子	6~12	8		
36	LORA_CR	LORA 编码率	1~4	2		
37	LORA_BW	LORA 信道带宽	0~9	7		
38	LORA_CH	LORA 频道号	0~15	7		
39	LORA_POW	LORA 发射功率	0~15	10		
40	LORA_PRMS	LORA 前导码时长		0	毫秒	
66	RTC_YM	实时时间-年月 BCD 码				
67	RTC_DH	实时时间-日时 BCD 码				
68	RTC_MS	实时时间-分秒 BCD 码				
71	DATA_NUM	己保存的数据条数				
74	RTC_BAT	钮扣电池电压			mV	
75	VBAT	电池电压			mV	
76	VSEN	传感器工作电压			mV	
77	SEN_VOL	电压信号值			mV	
78	SEN_CUR	电流信号值			0.01mA	
79	VM_VSEN	振弦传感器激励电压			V	
80	VM_FRE	振弦传感器频率值			0.1Hz	
81	VM_RES	振弦传感器线圈电阻			欧姆	
82	VM_QUA	振弦传感器信号质量			%	
83	VM_AMP	振弦传感器信号幅值			%	
84	TMPE	温度传感器值			0.1℃	

(1) 温度传感器参数说明

寄存器 VM_TMPTYPE 用于设置温度传感器类型,默认为3。

- ▶ 0: 测量设备内部温度。
- ▶ 1~10:表示外接 NTC 热敏电阻 1~10k。

▶ 11:表示外接 18B20。

寄存器 NTC B 用于设置外接热敏电阻的 B 值,默认为 3950。

寄存器 NTC RES 用于设置外接热敏电阻的标称阻值,默认为3000,单位欧姆。

注意: 当使用按键操作修改温度传感器类型时,VM_TMPTYPE 和 NTC_RES 会同步更新,即: 当 VM_TMPTYPE 为 1~10 时,NTC RES 自动的等于 VM TMPTYPE*1000。

注意: 当使用指令修改温度传感器 NTC 参数时,需要分别修改 VM_TMPTYPE、NTC_RES 和 NTC_B 的值。

2. 通讯协议

VH03 支持 MODBUS 协议和自定义的 AABB、字符串协议。

2.1MODBUS 协议

DLSxx 支持 MODBUS 的 03、04、06 指令码。

(1) 03 (0x03) /03 (0x04) 指令码: 读取多个连续的寄存器数据,指令格式如下指令数据帧结构

地址码	功能码 0x03	开始地址	寄存器数量	CRC 校验
1字节	1字节	2字节	2字节	2字节

返回数据帧结构

地址码	功能码 0x03	数据长度	数据	CRC 校验
1字节	1字节	2字节	n 字节	2字节

例: 读取地址为 0x01 的设备寄存器值,寄存器开始地址为 0,连续读取 10 个寄存器

主机发送指令: 0x01 0x03 0x00 0x00 0x00 0x0A 0xC5 0xCD

(2) 06 (0x06) 指令码: 修改单个寄存器的值,指令格式如下

指令数据帧结构

地址码	功能码 0x06	寄存器地址	寄存器值	CRC 校验
1字节	1字节	2字节	2字节	2字节

返回数据帧结构

地址码	功能码 0x06	寄存器地址	寄存器值	CRC 校验
1 字节	1 字节	2字节	2字节	2字节

例:将地址为 0x01 的设备中的寄存器 8 的值修改为 100

主机发送指令: 0x01 0x06 0x00 0x08 0x00 0x64 0x09 0xE3

从机返回应答: 0x01 0x06 0x00 0x08 0x00 0x64 0x09 0xE3

(3) 校验码算法

CRC16-MODBUS 算法:

```
unsigned int crc16(unsigned char *dat, unsigned int len)
{
unsigned int crc=0xffff;
unsigned char i;
while(len!=0)
{
crc^=*dat;
for(i=0;i<8;i++)
```

```
{
if((crc&0x0001)==0)
crc=crc>>1;
else
{
crc=crc>>1;
crc^=0xa001;
}
}
len==1;
dat++;
}
return crc;
}
```

2. 2AABB 协议

读取寄存器:

	帧头	设备地址	寄存器地址	和校验
16 进制	AA BB	1字节	1字节	1字节

设备响应:

	帧头	设备地址	寄存器地址	寄存器值	和校验
16 进制	AA BB	1字节	1字节	2字节	1字节

例如:读取地址为129的DLS设备的寄存器10的值。

向设备发送(HEX): AA BB 81 0A F0

设备返回(HEX): AA BB 81 0A 04 80 74, 0x0480 是 10 进制的 1152。

修改寄存器:

	帧头	设备地址	寄存器地址	寄存器数据	和校验
16 进制	AA BB	1字节	1 字节 0x80	2字节	1字节

设备响应:

	帧头	设备地址	寄存器地址	寄存器值	和校验
16 进制	AA BB	1字节	1字节	2字节	1字节

例如:修改地址为 129 的 DLS 设备的寄存器 10 的值为 1152 (0x0480)。

向设备发送: AA BB 81 8A 04 80 F4

设备返回: AA BB 81 OA O4 80 74

注意: AABB 协议仅可访问地址为 0~127 的寄存器。

提示: AABB 协议中, OxFF 为通用地址。

2.3 \$字符串协议

(1) 读取单个寄存器

读取指令	寄存器地址
\$GETP=	XXX

读取指令: 固定为"\$GETP="。

寄存器地址:数字字符表示的要读取的寄存器地址。

例如:读取寄存器 10 的值 向 DLS 发送: \$GETP=10 DLS 返回: \$REG[10]=01152

(2) 修改单个寄存器

修改指令	寄存器地址	寄存器值
\$SETP=	XXX	, XXX

修改指令: 固定为"\$SETP="。

寄存器地址:数字字符表示的要读取的寄存器地址。

寄存器值:数字字符表示的寄存器值例如:修改寄存器 10 的值为 96。

向 DLS 发送: \$SETP=10,96

DLS 返回: OK

2.4 其它指令

指令	功能描述
\$INFO	读取设备基本信息
\$REST	重启
\$STFC	将当前参数写入到出厂区
\$STDF	恢复为默认参数
\$GTDA=xxx	读取已存储的第 xxx 条数据
\$STNM=0	清空已存储的所有数据
\$STDT=xxxx	设置日期时间。例如: \$STDT=2015/12/21 18:37:05
\$TEST	测试指令,返回"VH03\r\nOK"
\$KEYn	n 为 0~8, 代表 9 个按键, 相当于短按按键一次

按键号码定义

按键号码	按键名称	功能描述(短按)
0	开/关机	切换背光
1	保存	保存一组实时数据
2	上	上一个
3	下	下一个
4	左	修改振弦传感器激励方法
5	右	修改温度传感器类型
6	中	切换提示音开关
7	主页	进入主测量页面
8	表格	进入历史数据表格页面

3. 蓝牙测试(手机)

VH03 内置有基于 SPP(Serial Port Profile)协议的蓝牙接口,蓝牙名称为"VH03"。 使用任何支持 SPP 协议的蓝牙设备均可实现与 VH03 的连接。当蓝牙建立连接后,可向 VH03 发送指令进 行交互(前述 MODBUS、AABB、字符串指令协议)。以下使用手机演示通过蓝牙与 VH03 进行信息交互。

(1) 下载并安装 APP

在任意的手机 APP 市场平台内搜索"蓝牙串口助手",下载并安装。

如下图所示(下图为多步骤合成图片),打开蓝牙串口助手,点击右上角菜单【connect】,在弹出窗口中点击

红色背景的【SCAN FOR DEVICES】按钮搜索读数仪 VH03。

在搜索到后点击 VH03, APP 自动连接 VH03 并返回主界面,数秒后窗口提示"Connected to VH03"表示已连接。

输入测试指令"\$GETP=0",点击【SEND】按键发送指令(读取读数仪的寄存器 0),VH03 接收到指令后经由蓝牙返回"\$REG[0]=1",返回内容显示于APP界面。

界面中"Me:"表示由 App 发送出去的内容,"VH03:"表示 App 接收到的内容,如左图示。

SCAN FOR DEVICES

Me: \$GETP=0

VH03: \$REG[0]=1

此 App 有三个主窗口,分别为"Chat (会话)"、"Dashboard (操作托盘)"、"About (关于)",上述操作均在会话窗口。

托盘窗口:预设了9个按钮,可以为每个按钮设置名称以及点击后自动发送的文字指令,如下图示例,我们分别为每个按键设置了"\$KEY0"~"\$KEY8"的指令。

在托盘窗口,点击【Edit】激活按钮的编辑功能,此时可点击任意一个按钮进行按钮名称和对应要发送指令的编辑,编辑完成后再次点击【Edit】关闭按钮编辑功能,再次点击按钮时会自动发送对应的指令内容。