Exercício 6 - INF 280 Werikson Alves - ES96708 30/01/2022

Questão 1

	X _B	x _N	
f	0	$-c_{j}+c_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{a}_{j}$	c _B B-1
X _B	I	B N	B b

Forma Canônica da Tabela Simplex

Considere a Questão 2 do Exercício 04. Considerando a Base ótima mostrada no gabarito, responda:

- a) Usando a equação matricial mostrada na Aula 08, faça a análise de sensibilidade para o recurso b1 (reta da mão de obra, valor original = 400).
- b) Usando as equações matriciais mostradas na Aula 08, faça a análise de sensibilidade para o valor de c1 (lucro relativo à variável x1).

Obs.: você pode usar a solução dada pelo LINGO para conferir seus resultados.

x1 e x2 = quantidade de chapéus do tipo 1 e 2 por dia, respectivamente.

Modelo na Forma Padrão:

Solução ótima:

Base	x1	x2	х3	х4	x5	RHS
f	0	0	4	0	1	1800
x2	0	1	0	0	1	200
x1	1	0	0.5	0	-0.5	100
x4	0	0	-0.5	1	0.5	50

Solução

Item a

Sabendo que a base ótima é (x2, x1, x4) e partindo de $X_B = B^{-1}b \ge 0$, temos que:

$$B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x2 \\ x1 \\ x4 \end{pmatrix} = B^{-1}b = \begin{pmatrix} 0 & 0 & 1 \\ 0,5 & 0 & -0,5 \\ -0,5 & 1 & 0,5 \end{pmatrix} \begin{pmatrix} 400 \\ 150 \\ 200 \end{pmatrix} = \begin{pmatrix} 200 \\ 100 \\ 50 \end{pmatrix} \ge 0$$

Para descobrir a variação do recurso, temos

$$X_B = B^{-1}b \ge 0 \to \begin{pmatrix} 0 & 0 & 1 \\ 0.5 & 0 & -0.5 \\ -0.5 & 1 & 0.5 \end{pmatrix} \begin{pmatrix} 400 + u_1 \\ 150 \\ 200 \end{pmatrix} = \begin{pmatrix} \frac{200}{200 + u_1} \\ \frac{100 - u_1}{2} \\ \end{pmatrix} \ge 0$$

Daí, temos que $u_1 \ge -200$ e $100 \ge u_1$, dessa forma $-200 \le u \le 100$. Portanto, caso a quantidade de mão de obra (b1) for alterada, a base continuará a mesma enquanto a quantidade de b1 variar entre 200 e 500.

Item b

Agora, partindo de $-c_j + c_B B^{-1} a_j \ge 0$ e sabendo que temos duas variáveis não básicas, temos:

$$(-c_3 + c_B B^{-1} a_3 \ge 0) e (-c_5 + c_B B^{-1} a_5 \ge 0)$$

$$f = (8+d_1)x1 + 5x2 + 0x3 + 0x4 + 0x5$$

$$c_3 = 0$$

$$c_5 = 0$$

$$c_B = (5, 8+d_1, 0)$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; a_5 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$c_B B^{-1} = \begin{pmatrix} 5 & 8 + d_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0, 5 & 0 & -0, 5 \\ -0, 5 & 1 & 0, 5 \end{pmatrix} = \begin{pmatrix} \frac{8 + d_1}{2} & 0 & \frac{2 - d_1}{2} \end{pmatrix}$$
$$-c_3 + c_B B^{-1} a_3 \ge 0 \to 0 + \begin{pmatrix} \frac{8 + d_1}{2} & 0 & \frac{2 - d_1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \ge 0 \to \frac{8 + d_1}{2} \ge 0 \to d_1 \ge -8$$
$$-c_5 + c_B B^{-1} a_5 \ge 0 \to 0 + \begin{pmatrix} \frac{8 + d_1}{2} & 0 & \frac{2 - d_1}{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \ge 0 \to \frac{2 - d_1}{2} \ge 0 \to d_1 \le 2$$

Desta forma, temos que $-8 \le d_1 \le 2$. Portanto, o lucro relativo à variável x1 pode ser incrementado no máximo em 2 unidades e reduzido em 8 unidades de forma a manter a mesma solução ótima, ou seja, c_1 pode variar entre 0 e 10.

Questão 2

Usando a solução gráfica já pronta na solução do Exercício 3, faça a análise de sensibilidade gráfica para a Proteína (b2) e para o custo da porção de batata (c2).

Modelo de PL:

x1 e x2 = número de porções de Bife e Batatas, respectivamente.

```
Minimizar Custo = 4x1 + 2x2

sujeito a:

Carb) 5x1 + 15x2 >= 50 (1)

Prot) 20x1 + 5x2 >= 40 (2)

Gord) 15x1 + 2x2 <= 60 (3)
```

Solução Gráfica:

Obs.: você pode usar a solução dada pelo LINGO para conferir seus resultados.

Solução

O recurso proteína é dado pela reta 2, por meio dela observa-se que este recurso pode variar até o ponto no qual há o cruzamento com eixo vertical e até o ponto em que há o cruzamento das retas 1 e 3, permanecendo assim com a mesma solução ótima. Estes pontos são dados por:

- Ponto 1 (x1 = 0): $5x1 + 15x2 = 50 \rightarrow 15x2 = 50 \rightarrow x2 = 10/3$
- Ponto 2 (Sistema Linear): 5x1+15x2=50 e $15x1+2x2=60 \rightarrow x1=3,721$ e x2=2,093

Portanto, pelo gráfico pode-se perceber que a quantidade máxima deste recurso obtém-se quando a reta é deslocada até o ponto (3.721, 2.093), sendo esta quantidade igual a 20(3.721) + 5(2.093) = 84,885 e a quantidade mínima para este recurso obtém-se quando a reta é deslocada até o ponto (0, 3.333), sendo esta quantidade igual a 20(0) + 5(3.333) = 16.667

Portanto, caso a quantidade de proteína (b2) for alterada, a base continuará a mesma enquanto a quantidade de b2 variar entre 16.667 e 84.885.

Para manter esta solução ótima, a inclinação de f = 4x1 + 2x2 deve variar entre as retas (1) e (2), ou seja, o coeficiente angular de f deve variar entre os coeficientes angulares de (1) e (2), sendo eles 15/5 e 5/20, respectivamente e dessa forma, temos que $f = 4x1 + c_2x2$ com coeficiente de $c_2/4$, logo, $15/5 \ge c_2/4 \ge 5/20 \to 12 \ge c_2 \ge 1$. Portanto, o custo relativo à variável x2 pode variar entre 1 e 12.