4.6. Chứng minh các công thức

(a)
$$\int_{-\pi}^{\pi} \sin mx \sin nx dx = \begin{cases} 0 & \text{khi} & m \neq n \\ \pi & \text{khi} & m = n \end{cases} (m, n \in \mathbb{N}^*)$$

(b)
$$L_n = \int_0^{\pi/2} \cos^n x \cos nx dx = \frac{\pi}{2^{n+1}} \quad (n \in \mathbb{N})$$

(c)
$$K_n = \int_0^{\pi/2} \cos^n x \sin nx dx = \frac{1}{2^{n+1}} \sum_{k=1}^n \frac{2^k}{k} (n \in \mathbb{N}^*)$$

$$(d) I_n = \int_0^{\pi/4} tan^{2n} x dx = (-1)^n \left[\frac{\pi}{4} - \sum_{k=1}^{n-1} \frac{(-1)^{i-1}}{2i-1} \right] (n \in \mathbf{N})$$

(e) Hàm Beta
$$B_{m,n} = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \frac{(m-1)!(n-1)!}{(m+n-1)!}$$
 ((m, $n \in \mathbb{N}^*$)

4.7. Tìm chu vi và diện tích của hình giới hạn bởi các đường

(a)
$$x + y = 0$$
, $y = 2x - x^2$

(b)
$$y = x^2$$
, $y = x^2/2$, $y = 2x$

(c)
$$y^2 = 2x$$
, $x^2 + y^2 = 8$, $x \ge 0$
(e) $x = -2y^2$, $x = 1 - 3y^2$

(d)
$$y = x^2 + 2x - 3$$
, $y = -x^2 - 2x + 3$

(e)
$$x = -2y^2$$
, $x = 1 - 3y^2$