BAYESIAN LEARNING - LECTURE 9

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

LECTURE OVERVIEW

- Metropolis-Hastings within Gibbs
- ► Heteroscedastic regression
- Regularized regression with Gibbs
- ► RStan demo

METROPOLIS-HASTINGS WITHIN GIBBS

- ▶ Gibbs sampling from $p(\theta_1, \theta_2, \theta_3|\mathbf{y})$
 - ► Sample $p(\theta_1|\theta_2, \theta_3, \mathbf{y})$
 - ► Sample $p(\theta_2|\theta_1, \theta_3, \mathbf{y})$
 - ► Sample $p(\theta_3|\theta_1,\theta_2,\mathbf{y})$
- ▶ When a **full conditional is not easily sampled** we can simulate from it using MH.
- Example: at *i*th iteration, propose θ_2 from $q(\theta_2|\theta_1, \theta_3, \theta_2^{(i-1)}, \mathbf{y})$. Accept/reject.
- ▶ Gibbs sampling is a special case of MH when $q(\theta_2|\theta_1,\theta_3,\theta_2^{(i-1)},\mathbf{y}) = p(\theta_2|\theta_1,\theta_3,\mathbf{y})$, which gives $\alpha=1$. Always accept.

HETEROSCEDASTIC REGRESSION

Heteroscedastic regression:

$$y_i = x_i' \beta + \varepsilon_i$$

where the errors are heteroscedastic

$$\varepsilon_i \sim N\left[0, \sigma^2 \exp\left(x_i'\gamma\right)\right]$$
.

- ▶ Priors: Multivariate normal for β and γ . Inv- χ^2 for σ^2 .
- Gibbs sampling:
 - $\beta, \sigma^2 | \gamma, \mathbf{y}, X$ $\gamma | \beta, \sigma^2, \mathbf{y}, \mathbf{X}$

HETEROSCEDASTIC REGRESSION

▶ Draws from β , $\sigma^2 | \gamma$, \mathbf{y} , X can be easily obtained since we can rewrite the model as

$$\tilde{y}_i = \tilde{x}_i' \beta + \tilde{\varepsilon}_i$$

where

- $\tilde{y}_i = \exp\left(-x_i'\gamma/2\right)y_i$
- $\tilde{x}_i' = \exp\left(-x_i'\gamma/2\right)x_i'$
- $\tilde{\varepsilon}_i = \exp(-x_i'\gamma/2)\,\varepsilon_i.$
- ▶ Note that $Var(\tilde{\varepsilon}_i) = \sigma^2$, so **homoscedastic**.
- ▶ $p(\gamma|\beta, \sigma^2, \mathbf{y}, \mathbf{X})$ is non-standard, but we can use **MH to sample** from proposal $N(\hat{\delta}, \Sigma)$
- \triangleright $\hat{\delta}$ and Σ can be obtained from approximate maximum likelihood estimators. (but there are better proposals).

REGULARIZED REGRESSION WITH GIBBS

▶ Recap: The joint posterior of β , σ^2 and λ is

$$\begin{split} \beta|\sigma^2, \lambda, \mathbf{y}, \mathbf{X} &\sim N\left(\mu_n, \Omega_n^{-1}\right) \\ \sigma^2|\lambda, \mathbf{y}, \mathbf{X} &\sim \mathit{Inv} - \chi^2\left(\nu_n, \sigma_n^2\right) \\ \rho(\lambda|\mathbf{y}, \mathbf{X}) &\propto \sqrt{\frac{|\Omega_0|}{|X'X + \Omega_0|}} \left(\frac{\nu_n \sigma_n^2}{2}\right)^{-\nu_n/2} \cdot \rho(\lambda) \end{split}$$

where $p(\lambda)$ is the $Inv - \chi^2$ prior for λ .

► This is the conditional-marginal decomposition

$$p(\beta, \sigma^2, \lambda | \mathbf{y}, \mathbf{X}) = p(\beta | \sigma^2, \lambda, \mathbf{y}, \mathbf{X}) p(\sigma^2 | \lambda, \mathbf{y}, \mathbf{X}) p(\lambda | \mathbf{y}, \mathbf{X})$$

- ► Gibbs sampling can instead be used:
 - ► Sample $\beta | \sigma^2, \lambda, y, X$ from Normal
 - ► Sample $\sigma^2 | \beta, \lambda, \mathbf{y}, \mathbf{X}$ from Inv- χ^2
 - ► Sample $\lambda | \beta, \sigma^2, \mathbf{y}, \mathbf{X}$ from Inv- χ^2
- Note that λ is now **easy** to simulate **once we condition** on β and σ^2 .