Math 234A Lecture Notes

Lance Remigio

September 8, 2024

Chapter 1

Week1

1.1 Lecture 1

1.1.1 Why do we need complex analysis?

We need it for:

- Solving polynomials with either coefficients in either \mathbb{R} or \mathbb{C} . For example, the polynomial $x^2 + 1$ does not have a solution in \mathbb{R} , but it does have a solution \mathbb{C} .
- Solving real integrals that may be difficult to deal with using standard techniques developed in \mathbb{R} ; that is, something like

 $\int_0^\infty \frac{\sin x}{x} \ dx.$

• Solving problems in physics, particularly, in the Quantum Field Theory.

1.1.2 What is the goal?

Our goal is to find the "smallest" field $\mathbb C$ such that

- (i) \mathbb{R} is "contained" in \mathbb{C} .
- (ii) For any polynomial $f \in \mathbb{C}$, there exists a solution for f in \mathbb{C} .

Let's assume for a moment that we CAN solve the equation $x^2 + 1 = 0$. Then we define the following set

$$\zeta = \{\alpha + i\beta : \alpha, \beta \in \mathbb{R}\}.$$

Note that in this set, we are using the properties of \mathbb{R} as a vector space, and using the operations defined on that vector space to define the operations of \mathbb{C} . Recall from Linear Algebra that ζ is just the span of the basis vectors 1 and i. In other words, we have

$$\zeta = \{\alpha + i\beta : \alpha, \beta \in \mathbb{R}\} = \operatorname{span}_{\mathbb{R}}\{1, i\}.$$

Now, let's define the two operations, addition and multiplication, on \mathbb{C} .

Definition (Operations on \mathbb{C}). Let $z, w \in \mathbb{C}$ and set $z = \alpha_1 + i\beta_1$ and $w = \alpha_2 + i\beta_2$ for any $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$. We define the two operations, addition + and multiplication \cdot , in the following way:

• Addition:

$$z + w = (\alpha_1 + i\beta_1) + (\alpha_2 + i\beta_2)$$

= $(\alpha_1 + \alpha_2) + i(\beta_1 + \beta_2)$.

1

1.2. Lecture 2

• Multiplication:

$$z \cdot w = (\alpha_1 + i\beta_1) \cdot (\alpha_2 + i\beta_2)$$

= $(\alpha_1 \alpha_2 - \beta_1 \beta_2) + i(\alpha_1 \beta_2 + \beta_1 \alpha_2).$

Proposition. The defined operations of \mathbb{C} form a field.

Proof. To do.

Lemma (Existence of a Square Root). Let $\alpha + i\beta \in \zeta$. Then there exists $\gamma + i\delta \in \zeta$ such that $(\gamma + i\delta)^2 = \alpha + i\beta$.

Proof. To do.

1.2 Lecture 2

1.2.1 Topics

- ullet Discuss the complex plane $\mathbb C$ as a working model for complex numbers.
- \bullet Discuss the Euclidean Topology on $\mathbb{C}.$
- Discuss polar representation of a complex number.

1.3 Complex Plane \mathbb{C} as a working model for Complex Numbers

Lemma. Let F be a field containing \mathbb{R} and the equation $x^2 + 1 = 0$ contains a solution $i \in F$.

(i) Let

$$\mathbb{C} = \{ \alpha + i\beta : \alpha, \beta \in \mathbb{R} \}.$$

Then \mathbb{C} is a **subfield** of F.

(ii) Let F be another field containing \mathbb{R} and containing a solution i' of $x^2 + 1 = 0$ and

$$\mathbb{C}' = \{ \alpha + \beta i' : \alpha, \beta \in \mathbb{R} \}.$$

Then \mathbb{C} and \mathbb{C}' are isomorphic as fields.

The second part of this lemma is simply saying that \mathbb{C} is a unique subfield of F.

1.3.1 A model for \mathbb{C}

Let $\mathbb{C} = \mathbb{R}^2$. Then define addition + and multiplication · as

$$(\alpha_1, \beta_1) + (\alpha_2, \beta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2)$$

and

$$(\alpha_1, \beta_1) \cdot (\alpha_2, \beta_2) = (\alpha_1 \alpha_2 - \beta_1 \beta_2, \alpha_1 \beta_2 + \alpha_2 \beta_1),$$

respectively.

Lemma. The complex numbers $\mathbb C$ have the following properties

- (i) $(\mathbb{C}, +, \cdot)$ is a field.
- (ii) Let $\mathcal{J}: \mathbb{R} \to \mathbb{C}$ by $x \to (x,0)$. Then \mathcal{J} is a subfield and forms an isomorphism between \mathbb{R} and $\mathcal{J}(\mathbb{R})$.

Proof. Rough outline of proof:

- (i) Prove that $\mathcal{J}(\mathbb{R})$ is a subfield.
- (ii) Prove that $\mathcal{J}(\mathbb{R})$ is a field homorphism.
- (iii) Prove that $\mathcal{J}(\mathbb{R})$ is an isomorphism; that is, show that \mathcal{J} is a bijective map.

Definition (Constructing a solution for $x^2 + 1 = 0$). Define i = (0,1) as our imaginary number in \mathbb{C} and let $i^2 = (-1,0)$.

Proposition. Given $\alpha, \beta \in \mathbb{R}$, show that $(\alpha, 0) + (0, 1)(\beta, 0) = (\alpha, \beta)$.

Proof. To do.

Definition (Real and Imaginary part of Complex Number). Let $z = \alpha + i\beta$ for $\alpha, \beta \in \mathbb{R}$. Then

$$\Re(z) = \alpha \text{ and } \Im(z) = \beta,$$

are the real and imaginary of z, respectively.

Geometrically, this is viewed as a reflection of the ordered pair $z = (\alpha, \beta)$ over the x-axis.

Proposition. For any $z,w\in\mathbb{C}$, we have the following properties:

- (i) $\overline{\overline{z}} = z$.
- (ii) $\overline{z \pm w} = \overline{z} \pm \overline{w}$.
- (iii) $\overline{zw} = \overline{z} \cdot \overline{w}$.
- (iv) $\Re(z) = \frac{1}{2}(z + \overline{z}).$
- (v) $\Im(z) = \frac{1}{2i}(z \overline{z}).$
- (vi) $z\overline{z} = \alpha^2 + \beta^2 \ge 0$.

Proof. To do.

Definition (Modulus of a Complex Number). Let $z \in \mathbb{C}$. We define the **modulus** $|z| = \sqrt{z\overline{z}}$.

Proposition (More Properties of Complex Numbers). Given $z, w \in \mathbb{C}$, we have the following properties:

- (i) |z| = 0 if and only if z = 0.
- (ii) |zw| = |z||w|.
- (iii) $|\Re(z)| \le |z|$.
- (iv) $|\Im(z)| \le |z|$.
- (v) $|z + w| \le |z| + |w|$.
- (vi) For any $z\in\mathbb{C}$ and $z\neq 0$, then $\frac{1}{z}=\frac{\overline{z}}{|z|^2}.$

1.4 Viewing \mathbb{C} as a Metric Space

In \mathbb{C} , the metric we will be using is d(z, w) = |z - w|.

Definition (Metric Space). For $z, w \in \mathbb{C}$, we all \mathbb{C} a metric space if it satisfies the following properties:

- (i) d(z, w) = d(w, z).
- (ii) d(z,w)=0 if and only if z=w and d(z,w)>0 if and only if $z\neq w$.

Now we have \mathbb{C} is a metric space endowed with the metric d(z, w) = |z - w|.

1.5 Lecture 3

1.5.1 Topics

- Polar Representation of complex numbers.
- Convergence of sequences in \mathbb{C} .

1.5.2 Polar Representation of Complex Numbers

If $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we can represent this as

$$(x,y) = (\gamma \cos \varphi, \gamma \sin \varphi)$$

where $\gamma = \sqrt{x^2 + y^2}$ and $\tan(\varphi) = \frac{y}{x}$ is a polar representation of (x, y).

Remark. This representation may not be unique!

If we insist, we can make φ unique by restricting the domain to $-\pi < \varphi \le \pi$ where φ is denoted as the **argument of** z.

Definition (Principle Argument). If $-\pi < \varphi \le \pi$, we call this angle the **principle argument** which we denote as

$$\varphi = Arg((x, y)).$$

Remark. For any other domain, we denote the argument by $\varphi = \arg((x,y))$.

Lemma. Let
$$z = \gamma(\cos \varphi + i \sin \varphi)$$
 and $w = \gamma'(\cos(\varphi') + \sin(\varphi'))$ in $\mathbb{C} \setminus \{0\}$. Then

$$zw = \varphi \varphi' [\cos(\varphi + \varphi') + i \sin(\varphi + \varphi')].$$

Proof. Using the addition formula, we can write

$$zw = \gamma \gamma' (\cos \varphi + i \sin \varphi)(\cos \varphi' + i \sin \varphi')$$

= $\gamma \gamma' [(\cos \varphi \cos \varphi' + \sin \varphi \sin \varphi') + i (\sin \varphi \cos \varphi' + \sin \varphi \cos \varphi')]$
= $\gamma \gamma' (\cos(\varphi + \varphi') + i \sin(\varphi + \varphi')).$

Corollary (De Moivre's Theorem). Let $z = \gamma(\cos \varphi + i \sin \varphi) \in \mathbb{C} \setminus \{0\}$ and let $n \in \mathbb{Z}$. Then $z^n = \gamma^n(\cos n\varphi + i \sin n\varphi)$.

Remark. If n is a negative integer, then $z^n = (z^{-1})^{-n}$.

The corollary above allows us to compute the *n*th roots of a non-zero complex number.

5 1.5. Lecture 3

Example 1.5.1 (An example of De Moivre's Theorem). Suppose we had the complex number

$$z = \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

Suppose we want to find z^{10} . First, we need to find the angle that makes this complex number. Since the x and y coordinates are both positive this means that the angle must lie in the first quadrant. Thus, we have

$$\varphi = \arg(z) = \frac{\pi}{3}.$$

Using De Moivre's Theorem, we can write

$$z^{10} = \cos\left(10 \cdot \frac{\pi}{3}\right) + i\sin\left(10 \cdot \frac{\pi}{3}\right)$$
$$= -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

Some notations we would like to establish are the following:

- (i) The set of all positive real numbers $\mathbb{R}_+ = \{r \in \mathbb{R} : r > 0\}$
- (ii) The set of all complex numbers excluding zero $\mathbb{C}^{\cdot} = \mathbb{C} \setminus \{0\}$.

Proposition. The map $\mathbb{R}_+ \times \mathbb{R} \longrightarrow \mathbb{C}$ defined by

$$(r, \varphi) \longrightarrow \gamma(\cos \varphi + i \sin \varphi)$$

is surjective.

Remark. This gives us the tool we need to show that every non-zero $z \in \mathbb{C}$ has a polar representation.

1.5.3 Convergence of Sequences in $\mathbb C$

Definition (Convergence in \mathbb{C}). Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{C} . We say that $\{z_n\}$ converges to $z \in \mathbb{C}$ if for all $\varepsilon > 0$, we can find $N_{\varepsilon} \in \mathbb{N}$ such that

$$|z_n - z| < \varepsilon$$

for all $n \geq N_{\varepsilon}$.

If (z_n) converges to z, then we write $z_n \to z$.

Proposition (Properties of Convergent Sequences). Assume $(z_n) \to z$ and $(w_n) \to w$.

- (i) Let $\alpha, \beta \in \mathbb{C}$, then $\alpha z_n + \beta w_n \to \alpha z + \beta w$.
- (ii) $z_n w_n \to z w$.
- (iii) $z_n^{-1} \to z^{-1}$.
- (iv) $(z_n) \to z$ if and only if $\Re(z_n) \to \Re(z)$ and $\Im(z_n) \to \Im(z)$ as a sequences in \mathbb{R} .

Proof.