1

Assignment 15

Mtech in AI Department Priya Bhatia AI20MTECH14015

Abstract

This document show that matrix A such that $A^2 = A$ is similar to a diagonal matrix.

Download the latex-tikz codes from

 $https://github.com/priya6971/matrix_theory_EE5609/tree/master/Assignment 15$

1 Problem

Every matrix A such that $A^2 = A$ is similar to a diagonal matrix.

2 **DEFINITIONS**

Characteristic Polynomial	For an $n \times n$ matrix \mathbf{A} , characteristic polynomial is defined by, $p(x) = \left x\mathbf{I} - \mathbf{A} \right $
Cayley-Hamilton Theorem	If $p(x)$ is the characteristic polynomial of an $n \times n$ matrix \mathbf{A} , then, $p(\mathbf{A}) = 0$
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$ Every root of characteristic polynomial should be the root of minimal polynomial
Theorem	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V Then T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1)(x - c_k)$, where $c_1, c_2,, c_k$ are distinct elements of F .

TABLE 1: Definitions

3 Solution

Proof	$A^2 = A$ (Given) $\implies A$ satisfies the polynomial $x^2 - x = x(x - 1)$
Minimal Polynomial	$p(x) = x^a (x-1)^b$, $a \le 1, b \le 1$ Minimal Polynomial $m_A(x)$, of A divides $x^2 - x$, that is $m_A(x) = x$ or $m_A(x) = x - 1$ or $m_A(x) = x(x-1)$ If $m_A(x) = x$, then $A = 0$. If $m_A(x) = x - 1$, then $A = I$. If $m_A(x) = x(x-1)$ In all above three cases, the minimal polynomial factors into distinct linears. So, it follows A is diagonisable.
Conclusion	In all three cases, the minimal polynomial splits into distinct linear factors, so it follows that A is diagonalisable according to the Theorem mentioned in definitions section.

TABLE 2: Illustration of Proof