Exercises: Path Independence of Line Integral 2

Judge if the following line integrals are path independent. If so, calculate the integral on a curve from point (0,0) to point (1,1) in 2d, or from point (0,0,0) to point (1,1,1) in 3d.

Problem 1. $\int_C 2e^{x^2} (x\cos(2y) dx - \sin(2y) dy).$

Solution: Let $f_1(x,y) = 2e^{x^2} \cdot x \cos(2y)$ and $f_2(x,y) = -2e^{x^2} \cdot \sin(2y)$. Thus, $\frac{\partial f_1}{\partial y} = -4xe^{x^2} \sin(2y)$ and $\frac{\partial f_2}{\partial x} = -4xe^{x^2} \sin(2y)$. Hence, the integral is path independent.

Next, we evaluate the integral. If you can observe quickly that $g(x,y)=e^{x^2}\cos(2y)$ satisfies $\frac{\partial g}{\partial x}=f_1$ and $\frac{\partial g}{\partial y}=f_2$, then you can directly give the answer $g(1,1)-g(0,0)=e\cos(2)-1$.

Suppose that you cannot observe the above g(x,y) directly. Here would be another way of solving the line integral. Choose a curve C on which the integral is easy to evaluate. Let C be the concatenation of two curves: C_1 from (0,0) to (1,0), and C_2 from (1,0) to (1,1). We first evaluate

$$\int_{C_1} 2e^{x^2} (x\cos(2y) dx - \sin(2y) dy) = \int_{C_1} 2e^{x^2} x\cos(2y) dx$$

$$= \int_0^1 2e^{x^2} x\cos(2 \cdot 0) dx$$

$$= \int_0^1 2e^{x^2} x dx$$

$$= \int_0^1 e^{x^2} d(x^2) = e - 1$$

Then evaluate

$$\int_{C_2} 2e^{x^2} (x\cos(2y) dx - \sin(2y) dy) = -\int_{C_2} 2e^{x^2} \sin(2y) dy$$
$$= -\int_0^1 2e \sin(2y) dy = e \cos(2) - e$$

Hence, $\int_C 2e^{x^2} (x\cos(2y) dx - \sin(2y) dy)$ equals $e - 1 + e\cos(2) - e = e\cos(2) - 1$.

Problem 2. $\int_C (x^2y \, dx - 4xy^2 \, dy + 8z^2x \, dz).$

Solutions: Let $f_1 = x^2y$, $f_2 = -4xy^2$, and $f_3 = 8z^2x$. Hence, $\frac{\partial f_1}{\partial y} = x^2$ and $\frac{\partial f_2}{\partial x} = -4y^2$. Since $\frac{\partial f_1}{\partial y} \neq \frac{\partial f_2}{\partial x}$, we conclude that the integral is not path independent.

Problem 3. $\int_C (e^y dx + (xe^y - e^z) dy - ye^z dz).$

Solutions: Let $f_1 = e^y$, $f_2 = xe^y - e^z$, and $f_3 = -ye^z$. Hence, $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x} = e^y$, $\frac{\partial f_1}{\partial z} = \frac{\partial f_3}{\partial x} = 0$, and $\frac{\partial f_2}{\partial z} = \frac{\partial f_3}{\partial y} = -e^z$. Hence, the integral is path independent.

Next, we evaluate the integral. If you can observe quickly that $g(x,y,z) = xe^y - ye^z$ satisfies $\frac{\partial g}{\partial x} = f_1$, $\frac{\partial g}{\partial y} = f_2$, and $\frac{\partial g}{\partial z} = f_3$, then you can directly give the answer g(1,1,1) - g(0,0,0) = 0.

Suppose that you cannot observe the above g(x, y) directly. Choose a curve C on which the integral is easy to evaluate. Let C be the concatenation of three curves: C_1 from (0, 0, 0) to (0, 0, 1),

 C_2 from (0,0,1) to (0,1,1), and C_3 from (0,1,1) to (1,1,1). We first evaluate

$$\int_{C_1} (e^y dx + (xe^y - e^z) dy - ye^z dz) = -\int_{C_1} ye^z dz$$
$$= -\int_0^1 0e^z dz = 0.$$

Then evaluate:

$$\int_{C_2} (e^y dx + (xe^y - e^z) dy - ye^z dz) = \int_{C_2} (xe^y - e^z) dy$$
$$= \int_0^1 -e dy = -e.$$

Finally evaluate:

$$\int_{C_3} (e^y dx + (xe^y - e^z) dy - ye^z dz) = \int_{C_3} e^y dx$$

$$= \int_0^1 e dx = e.$$
(1)

Hence, $\int_C (e^y dx + (xe^y - e^z) dy - ye^z dz) = 0 - e + e = 0.$

Problem 4. $\int_C (4y \, dx + (4x + z) \, dy + (y - 2z) \, dz).$

Solutions: Let $f_1 = 4y$, $f_2 = 4x + z$, and $f_3 = y - 2z$. Hence, $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x} = 4$, $\frac{\partial f_1}{\partial z} = \frac{\partial f_3}{\partial x} = 0$, and $\frac{\partial f_2}{\partial z} = \frac{\partial f_3}{\partial y} = 1$. Hence, the integral is path independent.

Next, we evaluate the integral. If you can observe quickly that $g(x, y, z) = 4xy + yz - z^2$ satisfies $\frac{\partial g}{\partial x} = f_1$, $\frac{\partial g}{\partial y} = f_2$, and $\frac{\partial g}{\partial z} = f_3$, then you can directly give the answer g(1, 1, 1) - g(0, 0, 0) = 4.

Suppose that you cannot observe the above g(x,y) directly. Choose a curve C on which the integral is easy to evaluate. Let C be the line segment given by $\mathbf{r}(t) = [x(t), y(t), z(t)]$ with x(t) = y(t) = z(t) = t, and $t \in [0,1]$. Then

$$\int_{C} (4y \, dx + (4x + z) \, dy + (y - 2z) \, dz) = \int_{0}^{1} (4t \, \frac{dx}{dt} + (4t + t) \, \frac{dy}{dt} + (t - 2t) \, \frac{dz}{dt}) dt$$
$$= \int_{0}^{1} (4t + 5t - t) \, dt = 4.$$