Deep Learning – 103 Deconvolution and more

Arun Aniyan SKA SA / Rhodes University arun@ska.ac.za

Convolutional Neural Network

Instead of predicting a class for an object in an image, can you classify each pixel in the image to which the object belongs?

Instead of predicting a class for an object in an image, can you classify each pixel in the image to which the object belongs?

Semantic Segmentation

How to do it with ConvNets?

ConvNets maps your input into a lower dimensional space in the forward direction

Something like a downsampled version of your input in another dimension

How to do it with ConvNets?

So what happens if you can do the reverse operation?

Learnable Upsampling

Convolution revisited

Convolution revisited

3 x 3 Convolution, Stride 1, Pad 0

3 x 3 Convolution, Stride 1, Pad 0

Learn the weights using backpropagation

Learnable Upsampling

How do you learn?

Input is actual image is output is the pixel labels (mask)

Learnable Upsampling

How do you learn?

Just mirror image your input convolutional layers and optimize for the masked output

U-Net for Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies,

U-Net for Segmentation

Autoencoders

LSTMs

Restricted Boltzmann Machine

Deep Belief Nets

Recurrent Networks

Deep Q networks

AutoEncoders

ConvNets

Supervised Learning

- 1. Convolutional Neural Networks [Text, Images, Time Series]
- 2. Recurrent Nets [Time Series, Text data, Speech data]
- 3. Deep Belief Networks (DBN) [Images]
- 4. Recurrent Neural Tensor Network (RNTN) [Text]

Unsupervised Learning, Feature Extraction

- 1. Autoencoders
- 2. Restricted Boltzmann Machines (RBM)

Reinforcment Learning

1. Deep Q Networks (DQN)