Introducción a los métodos estadísticos

bayesianos en Ecología Pablo Inchausti

Programa del curso:

- 1. Introducción general
- 2. Elementos básicos del análisis bayesiano

- 3. Análisis bayesiano I
- 4. Análisis bayesiano II
- 5. Modelos bayesianos jerárquicos

3. Análisis bayesiano I:

- Práctico 02
- a) GLM con variables categóricas
- b) Tests de hipótesis y tests a posteriori

a) GLM con variables categóricas

En el Teór02 se ajustó un modelo de regresión (GLM) cuyas vars explicativas eran todas numéricas.

En R (y en cualquier otro software), los modelos con vars explicativas categóricas (i.e. sexo, sitio) también se ajustan como modelos de regresión con vars explicativas binarias.

← "dummy regression"

Con estas con vars explicativas binarias, no se estiman pendientes, sino diferencias de medias entre grupos.

Es CRUCIAL entenderlo para poder interpretar el output

El Análisis de varianza de un factor evalúa las diferencias de k medias de una var. respuesta Y entre grupos definidos por una var. explicativa categórica con j:1..k> 2 grupos (o niveles).

El modelo estadístico es : Y~Normal($\mu_{Y,j}$, σ_{Y}), con $\mu_{Y,j} = \mu_{Y} + \alpha_{j} \leftarrow$ diferencial o efecto asociado al grupo j.

Con j grupos, habría que estimar $\mu_Y + j\alpha_j + \sigma_Y = j + 2$ parámetros...

Not Really
$$\mu_{\mathbf{Y}} = \frac{\sum \mu_{j,\mathbf{Y}}}{k} = \frac{\sum \mu_{j,\mathbf{Y}} + \alpha_j}{k} = \frac{k \mu_{\mathbf{Y}} + \sum \alpha_j}{k} = \mu_{\mathbf{Y}} + \frac{\sum \alpha_j}{k} \Rightarrow \sum \alpha_j = 0$$

Como $\sum \alpha_j = 0$ hay j-1 α_j a ser estimados, y por ende hay j+1 parámetros, y además σ_Y es independiente de μ_Y .

Debido a $\sum \alpha_j=0$ hay que imponer restricciones para poder estimar los parámetros. La más frecuente de éstas es definir $\alpha_1=0$ y denotar $\alpha^*_j=\mu_{Y,REF}$, como el diferencial o efecto del grupo j con respecto al grupo "de referencia".

Este procedimiento se aplica de forma genérica a toda var. explicativa categórica de modelos lineales.

SI Y~Normal(
$$\mu_{REF} + \alpha_j, \sigma_Y^2$$
), y
se emplearía g(): identidad
$$\Rightarrow E(Y) = \mu_{REF} + \alpha_j$$
SI Y~Gama($\mu_{REF} + \alpha_j, \theta$),
y se emplearía g(): log,
$$\Rightarrow \log(E(Y)) = \mu_{REF} + \alpha_j$$

En ambos casos, el modelo bayesiano empleará otra función de enlace para "el otro parámetro": σ_v y θ .

Savage & West (2007) sueño de mamíferos según dieta.

DF2=read.csv(file="Pr 02 sleep mammals.csv", header=T)

Análisis exploratorio de datos:

```
> summary(DF2[,c("vore", "sleep total")])
              sleep total
     vore
 carni :19
            Min. : 1.90
 herbi :32
            1st Ou.: 7.85
 insecti: 5
            Median :10.10
            Mean :10.43
 omni
                                    Conclusions
 NA's
             3rd Ou.:13.75
                   :19.90
             Max.
```



```
> desc.stats=function(x){c(mean=mean(x), median=median(x),sd=sd(x), n=length(x))}
> summaryBy(sleep total~vore, data=DF2, FUN=desc.stats)
                                                                    ggplot(data=DF2, aes(x=vore, y=sleep_total))+
    vore sleep total.mean sleep total.median sleep total.sd sleep total.n
                                                                     geom boxplot(size=0.5, alpha=0.9)+
                  13.33
                                   12.5
                                                3.72
   carni
   herbi
                  9.52
                                   10.9
                                                4.38
                                                                     geom jitter(size=2, width=0.1)+
                  14.05
                                   14.1
3 insecti
                                                7.99
                                                                    stat summary(fun = "mean", colour = "dark red",
                  12.24
                                   10.1
                                                4.02
    omni
                                                                    size = 4, pch=15, geom = "point")+ etc
```

Distr prob. de la var respuesta:


```
norm=fitdist(DF2$sleep_total, "norm")
lognorm=fitdist(DF2$sleep_total, "lnorm")
cdf.sleep=cdfcomp(list(norm,lognorm),
```

plot_grid(cdf.sleep, qq.sleep, ncol=2)

Conclusions

Likelihood: sleep_total~Normal($\mu_{Y,j}$, σ_{v})

Hay ahora que definir las distr previas....

```
> get prior(formula=sleep total~vore, data=DF2,family=gaussian)
                                      coef group resp dpar nlpar lb ub
                prior
                          class
                                                                            source
               (flat)
                                                                           default
               (flat)
                                                                       (vectorized)
                                 voreherbi
               (flat)
                              b voreinsecti
                                                                       (vectorized)
               (flat)
                                                                       (vectorized)
                                   voreomni
 student t(3, 11.3, 4) Intercept
                                                                           default
   student t(3, 0, 4)
                                                                           default
                          sigma
> levels(DF2$vore)
[1] "carni" "herbi" "insecti" "omni" ¿Nivel de referencia?
```

Supongamos que un mamífero podría dormir en promedio 9h/día y que es esperable un rango de $\pm 40\%$ de variación. i.e. 9*0.6=3.6h y 9*1.4=12.6h. Con este rango, se puede estimar $\sigma_{Y}\sim (max-min)/4=1.8h$ (Wan et al 2014). Entonces, intercept~Lognormal (mean=log(9), sd=??)

Lo determinaremos un poco por tanteo....

Los α_j son diferenciales de medias con respecto al grupo de referencia (carni)~Normal (mean=0, sd=1.8)

La distr previa de σ_Y es más difícil \rightarrow tanteo con gráficos??

Es CLAVE entender el significado de los parámetros en el modelo!

El modelo a ajustar:

```
m3.brms=brm(formula=sleep total~vore, data=DF2, family=gaussian, prior = prior.m3,
\sim 1000, future=TRUE, chains=3, iter=2000, thin=3)
> summary(m3.brms)
Family: gaussian
 Links: mu = identity; sigma = identity
Formula: sleep total ~ vore
  Data: DF2 (Number of observations: 20)
 Draws: 3 chains, each with iter = 2000; warmup = 1000; thin = 3;
        total post-warmup draws = 1000
Population-Level Effects:
           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                 9.03
                                         14.29 1.00
                                                        1045
                                                                  947
Intercept
              11.60
                         1.34
voreherbi
                                -3.99
                                       1.49 1.00
                                                         952
                                                                  899
              -1.35
                        1.41
               0.48
                     1.63 -2.65 3.69 1.00
                                                         950
                                                                  955
voreinsecti
                         1.45
                                 -2.76
voreomni
               0.13
                                          2.91 1.00
                                                         958
                                                                  899
Family Specific Parameters:
     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
         4.69
                   0.82
                            3.40
                                    6.58 1.00
                                                  1005
                                                            877
sigma
```


Visualización de convergencia de las 3 cadenas:

Grado de autocorrelación de los estimados en cada cadena:

 $mcmc_acf(m3.brms, regex_pars = c("^b", "sigma")) + etc$

Conclusions

Una mejor visualización del summary del modelo:

mcmc_plot(m3.brms, regex_pars = c("^b", "sigma"), type="intervals", prob_outer = 0.95)+ scale_y_discrete(labels=c("Mean carn.","diff herb.", "diff insect.","diff omni.", "sigma"))+ etc

mcmc_areas_ridges(m3.brms, regex_pars = c("^b", "sigma"), prob_outer = 0.95) + etc

Una visualización de cuánta información aportan los datos:

```
post.m3brms=as_draws_df(m3.brms)
> head(post.m3brms,2)
# A draws df: 2 iterations, 1 chains, and 7 variables
  b_Intercept b_voreherbi b_voreinsecti b_voreomni sigma lprior lp__
         13.6
                     -1.8
                                    3.5
                                             -0.31
                                                     5.6
                                                            -12 -69
2
          9.8
                     -1.7
                                              4.98
                                                     5.3
                                   -2.7
                                                            -14 -74
```

CONCLUSION

A partir de la distr posteriores marginales podemos: $\mu_{Y,i} = \mu_{REF} + \alpha_i^*$

```
> head(post.m3brms,2)
```

```
# A draws df: 2 iterations, 1 chains, and 7 variab
   Intercept b voreherbi b voreinsecti b voreomni
         13.6
                      -1.8
                                     3.5
                                               -0.31
                      -1.7
                                    -2.7
                                               4.98
```

```
> bayes R2(m3.brms)
   Estimate Est.Error
                         02.5 097.5
R2
      0.076
               0.0627 0.00388
```

```
mediasm3=data.frame(carni=post.m3brms$b Intercept,¬
                    herbi=post.m3brms$b Intercept+post.m3brms$b voreherbi,-
                    insecti=post.m3brms$b Intercept+post.m3brms$b voreinsecti,
                    omnii=post.m3brms$b Intercept+post.m3brms$b voreomni)-
```


A partir de la misma distr posterior, se puede así hacer cualquier tipo de cálculo y obtener la distr. de prob. asociada al resultado!

Análisis de residuos: validación del ajuste a los datos

res.m3.brms=residuals(m3.brms, type="pearson", ndraws=1000, summary=T) fit.m3.brms=fitted(m3.brms, scale="linear", summary=T, ndraws=1000) DF2\$fit=fit.m3.brms\$Estimate

DFZ\$II(=II(.III3.DIIIIS\$ESUIIIate

DF2\$resid=res.m3.brms\$Estimate

Curva condicional:

plot(conditional_effects(m3.brms, effects="vore",prob=0.89))[[1]]+ labs(y="Sleep total", x="Diet")+etc

b) Tests de hipótesis y tests a posteriori

Habría un consenso implícito de que no sería necesario hacer correcciones tipo Bonferrroni al hacer tests a posteriori comparando niveles de una var explicativa categórica.

¿Por qué?

1. Los marcos teóricos frecuentista y bayesiano tienen flujos de información en dirección contraria.

Frecuentista: el p-valor=Pr(datos extremos posibles | H₀ cierta) se obtiene de distr muestrales suponiendo H₀ fija. Las ajustes del p-valor corrigen por falsos positivos (R H₀) cuando los mismos datos potenciales son usados en muchos contrastes.

Bayesiano: no hay p-valor ni distr muestrales. Son los datos ya obtenidos los que están fijos y se usan una sola vez. Se obtiene una distr posterior que es invariante y refleja totalmente nuestro conocimiento actual del problema.

2. En estadística bayesiana se pueden crear modelos jerárquicos con dependencias entre parámetros a varios niveles (shrinkage) que minimiza el riesgo de detectar diferencias entre niveles de la var categórica.

El grado de información de las distr. previas permitiría "regularizar" y así prevenir la sobre-estimación de effectos.

→ Gelman et al 2012, 2014, Kruschke 2015, Banner et al 2019, Lemoine 2019, Mc Elreath 2019 y también Ogle et al 2019...

Y si se desea, se pueden realizar "tests a posteriori":

Population-Level Effects:					$\mathbf{herbi} \equiv \mu_{Y,REF} - \mu_{Y,herb}$	
Estimate Est.Error l-95% CI u-95% CI					TICIDI—WI, REF WI, nerb	
Intercept	11.60	1.34	9.03	14.29	incocti=u u	
voreherbi	-1.35	1.41	-3.99	1.49	insecti≡μ _{Y,REF} -μ _{Y,insecti}	
voreinsecti	0.48	1.63	-2.65	3.69	1 1. ! ! !	
voreomni	0.13	1.45	-2.76	2.91	herbi-insecti≡µ _{Y,insecti} -µ _{Y,herbi}	

Que es mejor ver como contrastes respecto a cualquier valor (ej. herbi>1.4h), no solamente respecto a cero.

Todo se calcula a partir de la distr posterior antes obtenida

```
plot(hypothesis(m3.brms, "voreherbi>1.4", class="b"))[[1]]+ labs(x="Carn-herb>1.4", y="Dens Probabilidad")+etc
```

224 a 231

Se pueden hacer varios contrastes al mismo tiempo y visualizar las 3 distr posteriores resultantes...

```
> h = c("carn>herb"="Intercept> Intercept+voreherbi",
        "carn>insect"="Intercept> Intercept+voreinsecti",
        "carn>prom.herb.insect"="Intercept> (Intercept+voreherbi+Intercept+voreinsecti)/2")
> hypothesis(m3.brms, h, class="b")
Hypothesis Tests for class b:
            Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
             carn>herb
                           1.35
                                     1.41
                                              -1.04
                                                       3.61
                                                                  5.22
                                                                            0.84
                                                                                      240 a 247
                                                   2.33
                                                                  0.55
           carn>insect
                          -0.48
                                     1.63
                                             -3.12
                                                                            0.35
3 carn>prom.herb.insect
                         0.43
                                     1.12
                                             -1.34
                                                       2.32
                                                                  1.80
                                                                            0.64
```

El test de hipótesis bayesiano se basa en el cálculo de Bayes factor (BF) para las 2 hipótesis que se cotejan.

En el primer ejemplo, consideremos:

 H_0 : dif>1.4 vs H_1 : dif<1.4

Recordemos:

Dist posterior Verosimilitud Dist previa

 $Pr(\operatorname{Param}|\operatorname{datos}) \approx Pr(\operatorname{datos}|\operatorname{Param}) * Pr(\operatorname{Param})$

Evidencia Información Evidencia actual en los datos previa

Suponiendo H_i cierta, para cada hipótesis:

 $Pr(\text{Param si H}_i|\text{datos}) \approx Pr(\text{datos}|\text{Param si H}_i) * Pr(\text{Param si H}_i)$

Calculando el cociente para ambas hipótesis:

```
\frac{Pr\left(\text{Param si H}_0|\text{datos}\right)}{Pr\left(\text{Param si H}_1|\text{datos}\right)} \approx \frac{Pr\left(\text{datos}|\text{Param si H}_0\right) * Pr\left(\text{Param si H}_0\right)}{Pr\left(\text{datos}|\text{Param si H}_1\right) * Pr\left(\text{Param si H}_1\right)}
```

Cociente dists posteriores

BF= Cociente de Cociente verosimilitudes dists previas

BF: cociente de verosimilitudes → cuan más BF>1: probable es cada hipótesis después vs. antes H_0 más probable de examinar los datos (Jeffreys 1961). que H_1

El BF se puede calcular con el cociente Savage-Dickey (dens posterior/dens previa para valores específicos de los parámetros; Wagenmakers et al 2010, Heck 2019, Ly et al 2020).

. / 1		
Aquí no hay	100	Extreme evidence for M_1
significancia estadística,	100	Very strong evidence for M_1
significancia estadistica,	30	Strong evidence for M_1
ni p-valores, ni ***	10	Moderate evidence for M_1
111 p voi2010) 111	3	Anecdotal evidence for M_1
		No evidence
No muy fracuentemente	1	Anecdotal evidence for M_2
No muy frecuentemente	1/3	Moderate evidence for M_2
utilizado (mi opinión).	1/10	Strong evidence for M_2
diffizado (im opinion).	1/30	Very strong evidence for M_2

1/100

Extreme evidence for M_2

3. Análisis bayesiano I:

- Práctico 02
- a) GLM con variables categóricas
- b) Tests de hipótesis y tests a posteriori

Referencias:

Banner et al (2020) Meth Ecol Evol 11:882-889

Heck (2019) Br J Math and Stat Psyc 72: 316-333

Jeffreys (1961) Theory of probability (2nd ed) Cambridge Univ Press

Ly et al (2020) Comput Brain & Behavior 3: 153-161

Gelman et al (2012) J Res Educ Effect 5:189-211

Gelman et al (2014) Bayesian data analysis (2nd ed). CRC Chapman & Hall Kruschke (2015) Doing Bayesian Data Analysis a tutorial with R, JAGS and Stan.

(2nd ed). Academic Press

Lemoine (2019) Oikos 128: 912-928.

Mc Elreath (2019) Statistical rethinking (2nd ed) CRC Chapman & Hall

Ogle et al (2019) Meth Ecol Evol 10:553-564

Savage & West (2007) PNAS 104:1051-1056.

Wagenmakers et al (2010) Cognitive Psych. 60:158-189.

Wan et al (2004) BMC Medical Res Meth 14:135-147