

Ex. 03 - DIC

Exercício 01. Planeje um experimento na sua área de atuação no delineamento inteiramente casualizado.

Exercício 02. Obtenha um conjunto de dados da sua área, coletado num experimento instalado no delineamento inteiramente casualizado, faça a análise de variância e interprete os resultados.

EXERCÍCIO 01

Áreas de atuação:

- 1. Genética Quantitativa;
- 2. Melhoramento de Plantas;
- 3. Hortaliças;

• Título do experimento:

o Uso de radiação gama na obtenção de mutantes de alho

Hipóteses testadas:

- o H0: O desenvolvimento vegetativo de plantas de alho não é afetado pela mutagênese;
- o Ha: O desenvolvimento vegetativo de plantas de alho são afetados em, pelo menos, um dos tratamentos mutantes;

· Objetivos:

o Verificar o potencial uso de mutagênese por radiação gama sobre dentes de alho na obtenção de novas cultivares.

Fatores e níveis:

- Intensidade de radiação gama (Gy);
- Níveis do tratamento:
 - a. 2,5 Gy
 - b. 5,0 Gy
 - c. 7,5 Gy
 - d. 10,0 Gy
 - e. 12,5 Gy
 - f. 15,0 Gy
 - g. Testemunha (0,0 Gy)

• Design Experimental:

```
# Plota o croqui da área
croquiDIC \leftarrow ggplot(SampleDIC, aes(x = LINHA, y = COLUNA, fill = DOSE)) +
 geom_tile(color = "white", lwd = 1) +
 geom_text(aes(label = REPETIÇÃO), color = "white", size = 4) +
 scale_color_continuous() +
 scale_x_continuous(breaks = unique(SampleDIC$LINHA), labels = unique(SampleDIC$LINHA),
                     expand = c(0, 0) +
 \verb|scale_y_continuous(breaks = unique(SampleDIC$COLUNA), labels = unique(SampleDIC$COLUNA), \\
                     expand = c(0, 0) +
 labs(
   x = "Coluna",
   y = "Linha",
   title = "DIC Alho | Croqui",
   fill = "Raios Gama (Gy)") +
  theme_light() +
 theme(
    axis.text.x = element_text(angle = 0, vjust = 0.5, hjust = 0.5),
```

```
axis.text.y = element_text(angle = 0, vjust = 0.5, hjust = 0.5),
panel.grid = element_blank(),
plot.title = element_text(hjust = 0.5)
)
print(croquiDIC)
```


A coloração foi realizada em função da exposição á radiação gama em dentes de alho da variedade Ito.

· Variáveis resposta:

- o Altura de plantas aos 42 dias após o plantio;
- o Taxa de sobrevivência aos 42 dias após o plantio;

EXERCÍCIO 02

Para esse exercício, será utilizada apenas a variável altura de plantas.

▼ Análise exploratória:

1. Gráfico de pontos:

```
ggplot(DICgarlic, aes(x = DOSE, y = ALTURA)) +
  geom_point() +
  expand_limits(y = 0) +
  labs(
    x = "Dose (Gy)",
    y = "Altura (cm)",
    title = "DIC Alho | Diagrama de Dispersão") +
  theme(
    plot.title = element_text(hjust = 0.5))
```


2. Gráfico BoxPlot:

```
ggplot(DICgarlic, aes(x = DOSE, y = ALTURA)) +
  geom_boxplot() +
  expand_limits(y = 0) +
  labs(
    x = "Dose (Gy)",
    y = "Altura (cm)",
    title = "DIC Alho | BoxPlot") +
  theme(
    plot.title = element_text(hjust = 0.5))
```


▼ Validação das pressuposições da ANOVA:

• Levene | Teste de homogeneidade de variâncias

```
with(DICgarlic,
  levene.test(ALTURA, DOSE, location = "mean"))
```

Resultado:

```
data: ALTURA
Test Statistic = 3.742, p-value = 0.0109
```

Portanto → De acordo com o teste de Levene a 5% de probabilidade de erro, as variâncias não podem ser consideradas homogêneas.

• Shapiro-Wilk | Teste de normalidade dos resíduos

```
# Modelo linear
lmDIC = lm(ALTURA~DOSE, DICgarlic)
resDIC <- residuals(lmDIC)  # Residuos
resStudDIC <- rstandard(lmDIC)  # Residuos studentizados
shapiro.test(resStudDIC)</pre>
```

Resultado:

```
data: resStudDIC
W = 0.95789, p-value = 0.3104
```

Portanto → De acordo com o teste de Shapiro-Wilk a 5% de probabilidade de erro, os resíduos podem ser considerados normais.

🚀 Visto que o conjunto de dados não atende as pressuposições da ANOVA, deverá ser realizada uma transformação de dados. Para isso, será utilizada a análise do gráfico Box-Cox para a obtenção de um lambda aproximado que defina a transformação adequada.

Gráfico Box-Cox

```
with(DICgarlic, {
       plot_boxcox <- boxcox(ALTURA ~ DOSE,</pre>
                              ylab = "Logaritmo da verossimilhança")
       title(main = "DIC Alho | Gráfico Box-Cox")
       print(plot_boxcox)
    })
```

DIC Alho | Gráfico Box-Cox

• Transformação de dados

Portanto → Com lâmbida próximo á 0, aplica-se a transformação log(y+0,5) para a variável altura de planta.

```
DICgarlic$ALTURAt <- log(DICgarlic$ALTURA)
```

• Levene | Teste de homogeneidade de variâncias

```
with(DICgarlic,
    levene.test(ALTURAt, DOSE, location = "mean"))
```

Resultado:

```
data: ALTURAt
Test Statistic = 1.8169, p-value = 0.1443
```

Portanto → De acordo com o teste de Levene a 5% de probabilidade de erro, as variâncias podem ser consideradas homogêneas.

• Shapiro-Wilk | Teste de normalidade dos resíduos

```
# Modelo linear após transformação
lmDICt = lm(ALTURAt~DOSE, DICgarlic)
resDICt <- residuals(lmDICt)</pre>
                                         # Resíduos
resStudDICt <- rstandard(lmDICt)</pre>
                                         # Resíduos studentizados
shapiro.test(resStudDICt)
```

Resultado:

```
data: resStudDICt
W = 0.97689, p-value = 0.7706
```

Portanto → De acordo com o teste de Shapiro-Wilk a 5% de probabilidade de erro, os resíduos podem ser considerados normais.

▼ ANOVA - Análise de variância

• Anova utilizando funções do Rbase:

```
# Code:
anova(lmDICt)

# ANOVA por meio do Rbase:
Analysis of Variance Table

Response: ALTURAt

Df Sum Sq Mean Sq F value Pr(>F)

DOSE 6 12.4883 2.08138 283 < 2.2e-16 ***
Residuals 21 0.1545 0.00735

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• Anova utilizando funções do pacote ExpDes.pt:

- Interpretações:
 - A hipótese nula é rejeitada, aceitando-se a hipótese alternativa de que há diferenças significativas a 5% de probabilidade de erro entre, pelo menos, dois tratamentos.
 - o Logo, é possível dizer que a radiação gama promoveu influência sobre a variável altura de plantas de alho.