Module 5 Solid & Semiconductor

Dr. Hrishikesh Talukdar
Department of Physics
Assam Engineering College,
Guwahati-13, Assam.

Contents

□ Free electron theory of metals □ Density of States ☐ Fermi level □ Kronig Penny Model (Qualitative) Origin of Energy Bands: Metal, Semiconductor and **Insulator** □ Solar Cell □ Light Emitting Diode (LED) ☐ Hall Effect

Free Electron Theory

- The electron theory aims to describe the structure and properties of material through their electronic structure.
- **❖** The electron theory has been developed in three stages

Classical Free Electron Theory of Metals

 Drude, in 1900 assumed that metals consist of positive ion cores with the valance electrons moving freely among these cores.

Element	Symbol	Electronic configuration		
Lithium	Li	1s22s1		
Sodium	Na	1s ² 2s ² 2p ⁶ 3s ¹		
Potassium	К	$1s^22s^22p^63s^23p^64s^1$		
Rubidium	Rb	1s22s2p63s23p63d104s24p65s1		
Caesium	Cs	$1s^22s^22p^63s^23p^63d^{10}4s^2$		
		4p64d105s25p66s1 or [Xe] 6s1		
Francium	Fr	[Rn]7s1		

- The potential of the ion cores is assumed to be constant through out the volume and mutual interaction among electrons is neglected.
- The motion of the electron is quite random.

- When an electric field is applied to the metal, free electrons are accelerated in the direction opposite to the applied field.
- The behavior of electrons moving inside the metals is considered to be similar to that of atoms or molecules in perfect gas, therefore referred to as the free electron gas.
- The movement of free electron follows the classical kinetic theory of gases
- It obeys the Classical Maxwell Boltzmann Distribution.

Some definitions and relations in metals

- Drift Velocity (v_d): It is defined as the average velocity acquired by the free electrons of a metal in a particular direction by the application of electric field.
- Relaxation time (t_r): It is defined as the time taken by the free electrons to reach its equilibrium position from the disturbed position in the presence of an electric field.
- **Expression of relaxation time:**

When an external electric field is applied to a metal the electrons move opposite to the applied field. After removal

of electric field the drift velocity decays exponentially as

$$v_d = v_o e^{-t/\tau_r}$$

Where V₀ is the initial velocity of electron and

If
$$t = \tau_r$$
 then $v_d = v_o e^{-1}$ or $v_d = \frac{v_o}{e}$

Thus the relaxation time may be stated as the time taken for the drift velocity to decay to 1/e of its original initial value.

- Mean free path (λ): The average distance traveled by the electron between two successive collisions is called mean free path.
- Mobility of electrons (μ): The mobility of electrons is defined as the magnitude of drift velocity acquired by the electron in a unit field.

$$\mu = \frac{v_d}{E}$$

We know
$$\sigma = \frac{J}{E} = \frac{I}{AE} = \frac{neAv_d}{AE} = \frac{nev_d}{E} = ne\mu$$
 : $I = neAv_d$

$$\therefore \mu = \frac{\sigma}{ne} = \frac{ne^2\tau}{mne} = \frac{e\tau}{m} \qquad \because \sigma = \frac{ne^2\tau}{m}$$

Classical free electron theory: Electrical conductivity

When an electric field E is applied between the two ends of a metal of area of cross section A

Force due to electric field, F = eE According to Newton's Law, F = ma Accelertaion, a= F/m=Ee/m

The average velocity acquired by the electron

$$v_{d} = a\tau = \frac{e E \tau}{m}$$

$$v_{d} = a\tau = \frac{e E}{m} \cdot \frac{\lambda}{\bar{c}}$$

$$since \tau = \frac{\lambda}{\bar{c}}$$
(1)

The relation between current and drift velocity

$$i = neAv_d$$

$$j = nev_d \tag{3}$$

Substituting the value of v_d in equation (3)

$$j = \frac{ne^2 E \, \tau}{m}$$

Conductivity

$$\sigma = \frac{j}{E} = \frac{ne^2 \tau}{m} = \frac{ne^2 \lambda}{m \,\bar{c}}$$

Resistivity

$$\rho = \frac{m}{ne^2 \tau} = \frac{m \, \bar{c}}{ne^2 \, \lambda}$$

According to kinetic theory of gases,

$$\bar{C} = \sqrt{\frac{3KT}{m}}$$

$$\sigma = \frac{ne^2 \lambda}{\sqrt{3m \ KT}}$$

$$\rho = \frac{\sqrt{3m \ KT}}{ne^2 \ \lambda}$$

Mobility,

$$\mu = \frac{v_d}{E} = \frac{e \tau}{m}$$

$$\sigma = \frac{ne^2 \tau}{m} = ne\mu$$

Interpretation of metallic properties on the basis of classical free electron model:

Success:

- ☐ It verifies Ohm's Law, i.e V=IR
- It explain electrical conductivity of metals.
- It explain thermal conductivity of metal.
- It derives Widemann-Franz Law, i.e., the ratio between thermal conductivity (K) to electrical conductivity (σ) is proportional to absolute temperature

Failures:

- It could not explain the photoelectric effect, Compton scattering and black body radiation.
- Ferromagnetism could not be explained by this theory. The theoretical value of paramagnetic susceptibility is greater than the experimental value.
- According to classical free electron theory the specific heat of metals is given by 4.5R where as the experimental value is given by 3R.
- According to classical free electron the electronic specific heat is equal to R while the actual value is 0.01R.