Relations Between Sigma Protocols, ZK Proofs, SNARKs, and Related Concepts

1. Sigma Protocols and Zero-Knowledge Proofs

Sigma Protocols

Sigma protocols are interactive proofs designed to prove knowledge of a witness (e.g., a secret key or discrete logarithm) without revealing it. They have the following properties:

- Completeness: An honest prover convinces an honest verifier.
- **Special Soundness**: Given two valid transcripts with the same commitment and different challenges, one can extract the witness.
- Special Honest-Verifier Zero-Knowledge (SHVZK): A transcript can be simulated without the witness if the verifier's challenge is known. Typical structure:

 $P \rightarrow V$: Commitment a $V \rightarrow P$: Challenge e $P \rightarrow V$: Response z

Relation to Zero-Knowledge Proofs

Sigma protocols are a subclass of zero-knowledge proofs under the honest verifier assumption. By applying the Fiat-Shamir transform in the Random Oracle Model (ROM), they become non-interactive and fully zero-knowledge:

Sigma Protocol $\xrightarrow{\text{Fiat-Shamir}} \text{NIZK}$ (in ROM)

2. Where PLONK and Groth16 Fit In

PLONK and Groth16 are succinct non-interactive zero-knowledge proofs (SNARKs):

- Prove arbitrary computations.
- Non-interactive.
- Zero-knowledge.
- Succinct (small proof sizes).

Scheme	Type	Interactive?	ZK?	General Purpose?	Trusted Set
Sigma	PoK, interactive	Yes	SHVZK	Limited	No
Fiat-Shamir(Sigma)	NIZK	No	Yes (ROM)	Limited	No
Groth16	zk-SNARK	No	Yes	Yes	Yes (per circ
PLONK	zk-SNARK	No	Yes	Yes	Yes (univer

3. Where PCPs, IPs, MIPs, IOPs, PCS, VRFs, and MPC Fit In

Foundational Proof Models

- IP (Interactive Proofs): General model with full interaction.
- MIP (Multi-Prover IPs): Multiple non-communicating provers. More powerful than IP.
- PCP (Probabilistically Checkable Proofs): Verifier queries a few bits of a long proof.
- IOP (Interactive Oracle Proofs): Interactive version where prover sends queryable strings (oracles).

Modern SNARKs (e.g., PLONK, STARKs) are built from IOPs combined with polynomial commitments and made non-interactive via Fiat-Shamir.

Polynomial Commitment Schemes (PCS)

A PCS allows one to:

- Commit to a polynomial f(x).
- Later reveal f(z) at a point z with a verifiable proof.

Examples:

- KZG (used in PLONK)
- FRI (used in STARKs)

Verifiable Random Functions (VRFs)

- Outputs random-looking values with a proof of correctness.
- Used in blockchains (e.g., Algorand), lotteries, and elections.
- Often constructed using group operations and sometimes zero-knowledge arguments.

Secure Multi-Party Computation (MPC)

- Enables computation over private inputs distributed across parties.
- Used to generate SNARK proofs securely or to simulate ZK proofs (e.g., MPC-in-the-head).

4. Unified Picture

Complexity Classes:

PCPs → IOPs → SNARKs

↓

Polynomial Commitments

↓

Fiat-Shamir → NIZK

Other Tools:

MPC $\mid \rightarrow$ SNARK Setup or ZK Simulation VRF $\mid \rightarrow$ Uses ZK to prove correctness of randomness

5. Summary Table

Term	Type	Interactive?	ZK?	Application
Sigma	Protocol	Yes	Yes (HVZK)	PoK
PCP	Complexity Class	No	No	Theory
IOP	Protocol	Yes	Yes	SNARKs
PLONK	zk-SNARK	No	Yes	Circuits
Groth16	zk-SNARK	No	Yes	Circuits
PCS (KZG)	Commitment	No	No	Inside SNARKs
VRF	Primitive	No	No (may include ZK)	Verifiable randomness
MPC	Protocol	Yes	Yes	Private computation