

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Features

- Low V_{CE (ON)} Trench IGBT Technology
- · Low switching losses
- Maximum Junction temperature 175 °C
- 5 µS short circuit SOA
- Square RBSOA
- 100% of the parts tested for 4X rated current (I_{LM})
- Positive V_{CE (ON)} Temperature co-efficient
- · Ultra fast soft Recovery Co-Pak Diode
- Tight parameter distribution
- Lead Free Package

Benefits

- High Efficiency in a wide range of applications
- Suitable for a wide range of switching frequencies due to Low V_{CE (ON)} and Low Switching losses
- · Rugged transient Performance for increased reliability
- Excellent Current sharing in parallel operation
- Low EMI

G	С	E
Gate	Collector	Emitter

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	96	
I _C @ T _C = 100°C	Continuous Collector Current	48	
I _{CM}	Pulse Collector Current	200	
I _{LM}	Clamped Inductive Load Current ①	192	Α
I _F @ T _C = 25°C	Diode Continous Forward Current	96	7
I _F @ T _C = 100°C	Diode Continous Forward Current	48	
I _{FM}	Diode Maximum Forward Current ③	192	7
V _{GE}	Continuous Gate-to-Emitter Voltage	±20	V
	Transient Gate-to-Emitter Voltage	±30	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	330	W
P _D @ T _C = 100°C	Maximum Power Dissipation	170	
T _J	Operating Junction and	-55 to +175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{eJC} (IGBT)	Thermal Resistance Junction-to-Case-(each IGBT)			0.45	°C/W
R ₀ JC (Diode)	Thermal Resistance Junction-to-Case-(each Diode)			0.92	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)		0.24		·
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (typical socket mount)			40	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Ref.Fig
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600	_	_	٧	V _{GE} = 0V, I _C = 150μΑ ④	СТ6
$\Delta V_{(BR)CES}/\Delta T_{J}$	Temperature Coeff. of Breakdown Voltage	_	0.30	_	V/°C	$V_{GE} = 0V, I_{C} = 1mA (25^{\circ}C-175^{\circ}C)$	CT6
		_	1.65	2.14		$I_C = 48A, V_{GE} = 15V, T_J = 25^{\circ}C$	5,6,7
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	_	2.0	_	٧	I _C = 48A, V _{GE} = 15V, T _J = 150°C	9,10,11
		_	2.05	_		I _C = 48A, V _{GE} = 15V, T _J = 175°C	
$V_{GE(th)}$	Gate Threshold Voltage	4.0	_	6.5	٧	$V_{CE} = V_{GE}$, $I_C = 1.4 \text{mA}$	9, 10,
$\Delta V_{GE(th)}/\Delta TJ$	Threshold Voltage temp. coefficient	_	-21	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 1.0 \text{mA} (25^{\circ}\text{C} - 175^{\circ}\text{C})$	11, 12
gfe	Forward Transconductance	_	32	_	S	$V_{CE} = 50V$, $I_C = 48A$, $PW = 80\mu s$	
I _{CES}	Collector-to-Emitter Leakage Current	_	1.0	150	μΑ	$V_{GE} = 0V, V_{CE} = 600V$	
		_	450	1000		V _{GE} = 0V, V _{CE} = 600V, T _J = 175°C	
V _{FM}	Diode Forward Voltage Drop	_	1.95	2.91	٧	I _F = 48A	8
		_	1.45	_	1	I _F = 48A, T _J = 175°C	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Ref.Fig
Q_g	Total Gate Charge (turn-on)	_	95	140		I _C = 48A	24
Q _{ge}	Gate-to-Emitter Charge (turn-on)	_	28	42	nC	V _{GE} = 15V	CT1
Q_{gc}	Gate-to-Collector Charge (turn-on)	_	35	53		$V_{CC} = 400V$	
E _{on}	Turn-On Switching Loss	_	625	1141		$I_C = 48A, V_{CC} = 400V, V_{GE} = 15V$	CT4
E _{off}	Turn-Off Switching Loss	_	1275	1481	μJ	$R_G = 10\Omega$, L = 200 μ H, L _S = 150nH, $T_J = 25^{\circ}$ C	
E _{total}	Total Switching Loss	_	1900	2622		Energy losses include tail & diode reverse recovery	
t _{d(on)}	Turn-On delay time	_	60	78		$I_C = 48A, V_{CC} = 400V, V_{GE} = 15V$	CT4
t _r	Rise time	_	40	56	ns	$R_G = 10\Omega$, L = 200 μ H, L _S = 150nH, $T_J = 25^{\circ}$ C	
t _{d(off)}	Turn-Off delay time	_	145	176			
t _f	Fall time	_	35	46			
E _{on}	Turn-On Switching Loss	_	1625	_		$I_C = 48A, V_{CC} = 400V, V_{GE} = 15V$	13, 15
E _{off}	Turn-Off Switching Loss	_	1585	_	μJ	$R_G=10\Omega$, L=200 μ H, L _S =150 n H, $T_J=175$ $^{\circ}$ C \oplus	CT4
E _{total}	Total Switching Loss	_	3210	_		Energy losses include tail & diode reverse recovery	WF1, WF2
t _{d(on)}	Turn-On delay time	_	55	_		$I_C = 48A$, $V_{CC} = 400V$, $V_{GE} = 15V$	14, 16
t _r	Rise time	_	45	_	ns	$R_G = 10\Omega$, L = 200 μ H, L _S = 150nH	CT4
t _{d(off)}	Turn-Off delay time	_	165	_		T _J = 175°C	WF1
t _f	Fall time	_	45	_			WF2
C _{ies}	Input Capacitance	_	3025	_	pF	$V_{GE} = 0V$	23
C _{oes}	Output Capacitance	_	245	_		$V_{CC} = 30V$	
C _{res}	Reverse Transfer Capacitance	_	90	_		f = 1.0Mhz	
			,			$T_J = 175^{\circ}C, I_C = 192A$	4
RBSOA	Reverse Bias Safe Operating Area	FUL	L SQUA	RE		V _{CC} = 480V, Vp =600V	CT2
						Rg = 10Ω , $V_{GE} = +15V$ to $0V$	
SCSOA	Short Circuit Safe Operating Area	5	_	_	μs	V _{CC} = 400V, Vp =600V	22, CT3
						Rg = 10Ω , V_{GE} = +15V to 0V	WF4
Erec	Reverse Recovery Energy of the Diode	_	845	_	μJ	T _J = 175°C	17, 18, 19
t _{rr}	Diode Reverse Recovery Time	_	115	_	ns	$V_{CC} = 400V, I_F = 48A$	20, 21
I _{rr}	Peak Reverse Recovery Current	_	40	_	Α	$V_{GE} = 15V$, $Rg = 10\Omega$, $L = 200\mu H$, $L_s = 150 nH$	WF3

Notes:

- \bigcirc V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 200 $\mu H,~R_{G}$ = 10 $\!\Omega.$
- ② This is only applied to TO-247AC package.
- ③ Pulse width limited by max. junction temperature.
- $\ \, \mbox{ } \mbox$

Fig. 1 - Maximum DC Collector Current vs.

Case Temperature

Fig. 3 - Forward SOA $T_C = 25^{\circ}C$, $T_J \le 175^{\circ}C$; $V_{GE} = 15V$

Fig. 5 - Typ. IGBT Output Characteristics $T_J = -40^{\circ}\text{C}$; tp = 80µs

Fig. 2 - Power Dissipation vs. Case Temperature

Fig. 4 - Reverse Bias SOA $T_J = 175$ °C; $V_{GE} = 15V$

Fig. 6 - Typ. IGBT Output Characteristics $T_J = 25$ °C; $tp = 80\mu s$

Fig. 7 - Typ. IGBT Output Characteristics $T_J = 175^{\circ}\text{C}$; tp = 80 μ s

Fig. 9 - Typical V_{CE} vs. V_{GE} $T_{J} = -40^{\circ}C$

Fig. 11 - Typical V_{CE} vs. V_{GE} $T_J = 175^{\circ}C$

Fig. 8 - Typ. Diode Forward Characteristics $tp = 80\mu s$

Fig. 10 - Typical V_{CE} vs. V_{GE} $T_{J} = 25^{\circ}C$

Fig. 12 - Typ. Transfer Characteristics $V_{CF} = 50V$; tp = $10\mu s$

Fig. 13 - Typ. Energy Loss vs. I_C T_J = 175°C; L = 200µH; V_{CE} = 400V, R_G = 10 Ω ; V_{GE} = 15V

Fig. 15 - Typ. Energy Loss vs. R_G T_J = 175°C; L = 200 μ H; V_{CE} = 400V, I_{CE} = 48A; V_{GE} = 15V

Fig. 17 - Typ. Diode I_{RR} vs. I_F $T_J = 175^{\circ}C$

Fig. 14 - Typ. Switching Time vs. I_C T_J = 175°C; L = 200 μ H; V_{CE} = 400V, R_G = 10 Ω ; V_{GE} = 15V

Fig. 16 - Typ. Switching Time vs. R_G T_J = 175°C; L = 200 μ H; V_{CE} = 400V, I_{CE} = 48A; V_{GE} = 15V

Fig. 18 - Typ. Diode I_{RR} vs. R_G $T_J = 175^{\circ}C$

Fig. 19 - Typ. Diode I_{RR} vs. di_F/dt $V_{CC} = 400V$; $V_{GE} = 15V$; $I_F = 48A$; $T_J = 175$ °C

Fig. 21 - Typ. Diode E_{RR} vs. I_F $T_{.J} = 175^{\circ}C$

Fig. 23 - Typ. Capacitance vs. V_{CE}

Fig. 20 - Typ. Diode Q_{RR} vs. di_F/dt $V_{CC} = 400V; V_{GE} = 15V; T_{J} = 175^{\circ}C$

Fig. 22 - V_{GE} vs. Short Circuit Time $V_{CC} = 400V; T_{C} = 25^{\circ}C$

Fig. 24 - Typical Gate Charge vs. V_{GE}

Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.3 - S.C. SOA Circuit

Fig.C.T.5 - Resistive Load Circuit

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.4 - Switching Loss Circuit

Fig.C.T.6 - BVCES Filter Circuit

Fig. WF1 - Typ. Turn-off Loss Waveform @ $T_J = 175^{\circ}$ C using Fig. CT.4

Fig. WF3 - Typ. Diode Recovery Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF2 - Typ. Turn-on Loss Waveform @ $T_J = 175$ °C using Fig. CT.4

Fig. WF4 - Typ. S.C. Waveform @ T_J = 25°C using Fig. CT.3

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONING AND TOLERANCING AS PER ASME Y14,5M 1994

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC

		DIMEN	ISIONS			
SYMBOL	INC	HES	MILLIN	ETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4,65	5,31		1
A1	.087	,102	2.21	2,59		
A2	.059	.098	1.50	2.49		
ь	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1,35		LEAD ASSIGNMENTS
b2	.065	.094	1.65	2.39		
b3	.065	.092	1,65	2.34		HEXFET
b4	.102	,135	2.59	3,43		1
b5	.102	.133	2.59	3.38		1 GATE
c	.015	.035	0,38	0.89		2 DRAIN
c1	.015	,033	0,38	0,84		3 SOURCE
D	.776	.815	19.71	20.70	4	4 DRAIN
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
Ε	.602	.625	15.29	15.87	4	IGBTs, CoPACK
E1	.530	-	13,46	-		1 GATE
E2	.178	.216	4,52	5.49		2,- COLLECTOR
e	.215	BSC	5.46	BSC	1	3 EMITTER
øk	.0	10	0.	25		4 COLLECTOR
L	.559	.634	14.20	16.10		
L1	.146	.169	3.71	4.29		
øP	.140	.144	3.56	3.66		DIODES
øP1	-	.291	-	7,39		
Q	,209	.224	5,31	5,69		1,- ANODE/OPE
S	,217	BSC	5,51	BSC		2 CATHODE
						J 3,- ANODE

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-247AD Package Outline

Dimensions are shown in millimeters (inches)

NOTES:						
1. Dif	MENSIONING	AND TOLE	RANCING A	s per asi	E Y14.5N	1994.
2. Dif	MENSIONS .	ARE SHOWN	IN INCHES			
Δια	ONTOUR OF	SLOT OPTI	ONAL.			
) Flash shall not exceed .005" (0.127) OuterNost extremes of the plastic bo
<u> </u>	IERMAL PAI	CONTOUR	OPTIONAL	WITHIN DIV	ENSIONS	D1 & E1.
	AD FINISH	UNCONTROL	LED IN L1.			
A of		A MAXIMUN .154 INCH.		IGLE OF 1,	5 ° TO TH	HE TOP OF THE PART WITH A MAXIMUM HO
8. 00	JTLINE CON	FORMS TO	JEDEC OUT	.INE TO-24	I7AD.	
		DIVEN	ISIONS			
SYMBOL	INC	HES	VILLIV	ETERS		
	Min.	MAX.	MIN.	MAX.	NOTES	
A	183	209	4.65	5.31		

SYMBOL	INC	HES	VILLIA	ETERS		
i	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2,59		
A2	.059	.098	1,50	2,49		
b	.039	.055	0.99	1.40		
ь1	.039	.053	0.99	1,35		LEAD ASSIGNMENTS
b2	.065	.094	1,65	2,39		
b3	.065	.092	1.65	2.34		HEXFET
b4	.102	.135	2.59	3.43		inchie.
b5	.102	.133	2,59	3,38		1 GATE
c	.015	.035	0.38	0.89		2 DRAIN
c1	.015	.033	0.38	0.84		3 SOURCE
D	,776	.815	19,71	20.70	4	4 DRÁIN
D1	.515	-	13,08	-	5	
D2	.020	.053	0.51	1,35		
E	.602	.625	15.29	15.87	4	IGBTs, CoPACK
E1	.530	-	13,46	-		1 GATE
E2	.178	.216	4.52	5.49		2 COLLECTOR
e	.215	BSC	5.46	BSC	1	3 EMITTER
Øk	.0	10	0.	25	1	4 COLLECTOR
L	.780	.827	19.57	21.00	1	4, GOLLLOTON
L1	.146	.169	3.71	4.29		
₽P	.140	,144	3,56	3,66	1	DIODES
øP1	-	.291	-	7,39		
0	.209	.224	5.31	5.69		1 ANODE/OPE
s	.217	BSC	5.51	BSC	1	2 CATHODE 3 ANODE

TO-247AD Part Marking Information

EXAMPLE: THIS IS AN IRGP30B120KD-E WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2000
IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AD package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice.

This product has been designed and qualified for Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd.., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.