Бесконечные произведения

Определение. $\prod\limits_{i=1}^{+\infty}p_n:\prod_N:=\prod\limits_{n=1}^Np_n$ $\lim\limits_{n\to+\infty}\prod_N=P$

•
$$P\in (0,+\infty)\Rightarrow \prod\limits_{i=1}^{+\infty}p_n$$
 сходится к P

•
$$P=+\infty \Rightarrow \prod\limits_{i=1}^{+\infty} p_n$$
 расходится к $+\infty$

•
$$P=0\Rightarrow\prod_{i=1}^{+\infty}p_n$$
 расходится к 0

• $\exists \lim \prod_n :$ расходится

Пример.

$$\prod_{n=2}^{+\infty} \left(1 - \frac{1}{n^2} \right) = \frac{3}{4} \frac{8}{9} \frac{15}{16} \dots$$

$$1 - \frac{1}{n^2} = \frac{(n-1)(n+1)}{n^2} \qquad \prod_{N} = \frac{1 \cdot 3}{2^2} \frac{2 \cdot 4}{3^2} \frac{3 \cdot 5}{4^2} \dots \frac{(N-1)(N+1)}{N^2} = \frac{N+1}{2N}$$

Пример. Формула Валлиса:

$$\frac{2}{1} \frac{2}{3} \frac{4}{3} \frac{6}{5} \dots = \frac{\pi}{2}$$
$$\left(\frac{(2n)!!}{(2n-1)!!}\right) \frac{1}{2n}$$

Пример.

$$\cos\frac{\varphi}{2}\cdot\cos\frac{\varphi}{4}\cdot\cdots\cos\frac{\varphi}{2^n} = \frac{\sin\varphi}{2^n\sin\frac{\varphi}{2^n}} \xrightarrow[n \to +\infty]{} \frac{\sin\varphi}{\varphi}$$

$$\prod_{n=1}^{+\infty}\cos\frac{\varphi}{2^n} = \frac{\sin\varphi}{\varphi}$$

Определение. $\pi_m := \prod_{n=m+1}^{+\infty} p_n$

Свойства:

1.
$$\prod_{n=1}^{+\infty} p_n$$
 сходится $\Leftrightarrow \forall m \ \pi_m$ сходится

2.
$$\prod\limits_{n=1}^{+\infty}p_n$$
 сходится. Тогда $\pi_m\xrightarrow[m\to+\infty]{}1$

3.
$$\prod_{n=1}^{+\infty} p_n$$
 сходится $\Rightarrow p_n \to 1$

4.
$$\prod_{n=1}^{+\infty} p_n$$
 сходится $\Leftrightarrow \sum_{n=1}^{+\infty} \ln p_n$ сходится

$$\pi_m = \lim_{N \to +\infty} \frac{\prod\limits_{n=1}^N p_n}{\prod\limits_{k=1}^m p_n} = \frac{P}{\prod_m}$$
$$\ln\left(\prod\limits_{n=1}^{+\infty} p_n\right) = \sum_{n=1}^N \ln p_n$$

Теорема 1. 1. $a_n > 0$ НСНМ. Тогда $\prod 1 + a_n$ сходится $\Leftrightarrow \sum a_n$ сходится.

2. $\sum a_n$ сходится, $\sum a_n^2$ сходится $\Rightarrow \prod (1+a_n)$ сходится.

Доказательство. 1. $\prod (1+a_n) - \operatorname{cx.} \Leftrightarrow \sum \ln(1+a_n) - \operatorname{cx.} \Leftrightarrow \sum a_n - \operatorname{cx.}$

2.
$$\ln(1+a_n) = a_n - \frac{a_n^2}{2} + o(a_n^2)$$

$$\sum_{n=1}^{N} \ln(1+a_n) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} a_n^2 + \underbrace{\sum_{n=1}^{N} o(a_n^2)}_{\text{afc.cx, t.k.}} \underbrace{|o(a_n^2)| \le a_n^2}_{\text{afc.ex, t.k.}}$$

Лемма 1. $\prod (n,x) := \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt, x > 0$

Примечание. При $x \leq 0$ интеграл расходится.

Тогда
$$\prod (n,x) = \frac{1\cdot 2\cdots n}{x\cdot (x+1)\cdots (x+n)} n^x$$

Доказательство.

$$\prod (n,x) \stackrel{t=ny}{=} n^x \int_0^1 (1-y)^n y^{x-1} dy =$$

$$= n^x \left((1-y)^n \frac{1}{x} y^x \Big|_{y=0}^{y=1} + \frac{n}{x} \int_0^1 (1-y)^{n-1} y^x dy \right) =$$

$$= n^x \frac{n}{x} \int_0^1 (1-y)^{n-1} y^x dy =$$

М3137у2019 Лекция 14

$$= n^{x} \frac{n}{x} \frac{n-1}{x+1} \int_{0}^{1} (1-y)^{n-2} y^{x+1} dy =$$

$$= \dots = n^{x} \frac{n}{x} \frac{n-1}{x+1} \cdots \frac{1}{x+n-1} \int_{0}^{1} y^{x+n-1} dy$$

Лемма 2. $0 \le t \le n$. Тогда

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{t^2 e^{-t}}{n}$$

Доказательство. Т.к. y=1+x — график касательной к e^x в x=0 и экспонента выпуклая:

$$1 + y \le e^y$$

Произошла коллизия переменных, x стал y.

Заменим y на -y:

$$1 - y \le e^{-y}$$

Возведем в степень -1:

$$(1-y)^{-1} \ge e^y$$

Итого:

$$1+y \le e^y \le (1-y)^{-1}$$
$$y := \frac{t}{n}$$
$$1+\frac{t}{n} \le e^{\frac{t}{n}} \le \left(1-\frac{t}{n}\right)^{-1}$$
$$\left(1+\frac{t}{n}\right)^{-n} \ge e^{-t} \ge \left(1-\frac{t}{n}\right)^n$$

По правому неравенству:

$$e^{-t} - \left(1 - \frac{t}{n}\right)^n \ge 0$$

Возведем левое неравенство в степень -1:

$$\left(1 + \frac{t}{n}\right)^n \leq e^t$$

$$e^{-t} - \left(1 - \frac{t}{n}\right)^n = e^{-t} \left(1 - e^t \left(1 - \frac{t}{n}\right)^n\right) \leq e^{-t} \left(1 - \left(1 + \frac{t}{n}\right)^n \left(1 - \frac{t}{n}\right)^n\right) = e^{-t} \left(1 - \left(1 - \frac{t^2}{n^2}\right)^n\right)$$

$$e^{-t} \left(1 - \left(1 - \frac{t^2}{n^2}\right)^n\right) \overset{\text{неравенство Бернулли}}{\leq} \frac{t^2}{n} e^{-t}$$

M3137y2019 Лекция 14

 Π римечание. Неравенство Бернулли: $(1+a)^n \geq 1+an, a \geq -1,$ в данном случае $a=-\frac{t^2}{n^2}$

В неравенстве Бернулли $n \in \mathbb{N} \Rightarrow$ предположительно в лемме $n \in \mathbb{N}$, на лекции этого не было сказано.

Теорема 2. Формула Эйлера:

При x > 0

$$\lim_{n \to +\infty} \frac{1 \cdot 2 \cdots n}{x(x+1) \cdots (x+n)} n^x = \Gamma(x)$$

Примечание.

$$\Gamma(x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt$$
$$\Gamma(n+1) = n!$$
$$\Gamma(x+1) = x\Gamma(x)$$

Доказательство.

$$\Gamma(x) - \lim \Pi(n,x) = \int_0^{+\infty} t^{x-1} e^{-t} dt - \lim \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$$

$$\lim_{n \to +\infty} \left(\int_0^n \left(e^{-t} - \left(1 - \frac{t}{n}\right)^n\right) t^{x-1} dt + \int_n^{+\infty} e^{-t} t^{x-1} dt \right) \stackrel{?}{=} 0$$

ІІ $\xrightarrow[n \to +\infty]{} 0$, т.к. это "остаточный интеграл", при $n \to +\infty$ интеграл "берется по нулевому промежутку".

По лемме о приближении e пределом:

$$0 \le \mathbf{I} \le \int_0^n \frac{1}{n} t^2 e^{-t} t^{x-1} dt \le \frac{1}{n} \int_0^n e^{-t} t^{x+1} dt \le \frac{1}{n} \int_0^{+\infty} e^{-t} t^{x+1} dt = \frac{\Gamma(x+2)}{n} \xrightarrow[n \to +\infty]{} 0$$

Теорема 3. Формула Вейерштрасса.

При x > 0:

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}$$

где $\gamma = \lim_{n \to +\infty} (1 + \ldots + \frac{1}{n} - \ln n) -$ постоянная Эйлера.

M3137y2019 Лекция 14

 $\prod (1+a_k)$ сходится, если $\sum a_k$ сходится, поэтому распишем " $1+a_k$ ":

"
$$1 + a_k" = \left(1 + \frac{x}{k}\right)e^{-\frac{x}{k}} = \left(1 + \frac{x}{k}\right)\left(1 - \frac{x}{k} + \frac{x^2}{2k^2} + \dots\right) = 1 - \frac{x^2}{2k^2} + o\left(\frac{1}{k^2}\right)$$

 $\sum -rac{x^2}{2k^2} + o\left(rac{1}{k^2}
ight)$ очевидно сходится, кроме того, x может быть ≤ 0 , сходимость не изменится. $\Gamma(x)$ не определено для x < 0, но если рассматривать формулу Вейерштрасса как определение Γ , то для $x \in \mathbb{N}^ \Gamma(x) = +\infty$, т.к. $\prod 1 + a_k = 0$. Кроме того, можно подставлять и $x \in \mathbb{C}$.

Доказательство будет на следующей лекции.

Лемма 3. Об оценке нормы линейного отображения.

$$A:\mathbb{R}^m o\mathbb{R}^l\;\;A=(a_{ij})$$
. Тогда $orall x\in\mathbb{R}^m$: $|Ax|\leq C_A|x|$, где $C_a=\left(\sum\limits_{i,j}a_{ij}^2
ight)^{rac{1}{2}}$

Доказательство.

$$|Ax|^2 = \sum_j \left(\sum_i a_{ij} x_j\right)^2 \overset{\text{KBIII}}{\leq} \sum_i \left(\left(\sum_j a_{ij}^2\right) \left(\sum_j x_j^2\right)\right) = |x|^2 \sum_i \sum_j a_{ij}^2$$

Следствие. Линейное отображение непрерывно всюду:

$$|Ax - Ax_0| = |A(x - x_0)| \le C_a |x - x_0|$$

Теорема 4. • $F: E \subset \mathbb{R}^m \to \mathbb{R}^l$

- $G:I\subset\mathbb{R}^l\to\mathbb{R}^n$
- $F(E) \subset I$
- $a \in IntE$
- F дифф. в a
- $F(a) \in IntI$
- G дифф. в F(a)

Тогда $G\circ F$ дифф. в a, $(G\circ F)'(a)=G'(F(a))F'(a)$

M3137y2019 Лекция 14

Доказательство. b := F(a). По определению:

$$F(a+h) = \underbrace{F(a)}_{b} + \underbrace{F'(a)h + \alpha(h)|h|}_{k}$$

$$G(b+k) = G(b) + G'(b)k + \beta(k)|k|$$

$$G(F(a+h)) = G(F(a)) + G'(F(a))(F'(a)h + \alpha(h)|h|) + \beta(k)|k| =$$

$$= G(F(a)) + G'(F(a))F'(a)h + G'(b)\alpha(h)|h| + \beta(k)|F'(a)h + \alpha(h)|h||$$
 Надо доказать, что
$$\underbrace{G'(b)\alpha(h)|h|}_{I} + \beta(k)\underbrace{F'(a)h + \alpha(h)|h||}_{I} = \gamma(h)|h|.$$

$$|I| = |G'(b)\alpha(h)|h|| \le C_{G'(b)}|\alpha(h)||h|$$

$$|F'(a)h + \alpha(h)|h|| \le |F'(a)h| + |\alpha(h)||h| \le \underbrace{(C_{F'(a)} + |\alpha(h)|)}_{\text{orp.}} \underbrace{|h|}_{\to 0}$$

$$|II| \le \underbrace{|\beta(k)|}_{h \to 0} \underbrace{(C_{F'(a)} + |\alpha(h)|)}_{\text{orp.}} \underbrace{|h|}_{\to 0}$$

$$|II| + |III| \xrightarrow{h \to 0} 0$$

Примечание. $(F \circ G \circ H)'(x) = F'(G(H(x))) \cdot G'(H(x)) \cdot H'(x)$

$$F = (f_1, f_2 \dots f_l) \quad G = (g_1, g_2 \dots g_n) \quad H = G \circ F = (h_1 \dots h_n)$$

$$h_j(x_1...x_m) = g_j(f_1(x_1...x_m), f_2(x_1...x_m)...f_l(x_1...x_m))$$

$$\frac{\partial h_j}{\partial x_i} = \sum_k \frac{\partial g_j}{\partial y_k} \frac{\partial f_k}{\partial x_i}$$
$$h'(x) = \frac{\partial g}{\partial y_1} \frac{df_1}{dx} + \frac{\partial g}{\partial y_2} \frac{df_2}{dx} + \dots \frac{\partial g}{\partial y_m} \frac{df_m}{dx}$$

Скипнуто

Лемма 4. • $F,G:E\subset\mathbb{R}^m\to\mathbb{R}^l$

- $a \in IntE$
- $\lambda: E \to \mathbb{R}$

М3137у2019 Лекция 14

• F, G, λ дифф. в a

Тогда $\lambda F, \langle F, G \rangle - \partial u \phi \phi$. в a:

1.
$$(\lambda F)'(a)(h) = (\lambda'(a)h)F(a) + \lambda(a)F'(a)h$$

2.
$$\langle F, G \rangle'(a)(h) = \langle F'(a)h, G(a) \rangle + \langle F(a), G'(a)h \rangle$$

3десь h нигде не умножается, на него действуют операторы дифференциирования.

Доказательство. 1. Для координатной функции l=1:

$$\lambda f(a+h) - \lambda f(a) = (\lambda(a) + \lambda'(a)h + o(h))(f(a) + f'(a)h + o(h)) - \lambda(a)f(a) =$$

$$= (\lambda'(a)h)f(a) + \lambda(a)f'(a)h + o(h)$$

$$|(\lambda'(a)h)(f'(a)h)| \le C_{\lambda'(a)}|h|C_{f'(a)}|h|$$

2.

$$\langle F, G \rangle = \sum_{i=1}^{l} f_i g_i$$

По линейности всего и пункту 1:

$$\langle F, G \rangle'(a)h = \sum_{i} (f_i g_i)'(a)h \stackrel{\text{1.}}{=} \sum_{i} f_i'(a)hg_i(a) + f(a)g_i'(a)(h) = \langle F'(a)h, G(a) \rangle + \langle F(a), G'(a)h \rangle$$

Примечание. m=1:

$$\langle F, G \rangle'(a) = \langle F'(a), G(a) \rangle + \langle F(a), G'(a) \rangle$$

Теорема 5. Лагранжа для векторнозначных функций.

$$F:[a,b] \to \mathbb{R}^m$$
 — непр. на $[a,b]$, дифф. на (a,b)

Тогда
$$\exists c \in (a,b) : |F(b) - F(a)| \leq |F'(c)|(b-a)$$

Доказательство.

$$\varphi(t) := \langle F(b) - F(a), F(t) - F(a) \rangle, t \in [a, b]$$

$$\varphi(a) = 0 \quad \varphi(b) = |F(b) - F(a)|^2$$

$$\varphi'(t) = \langle F(b) - F(a), F'(t) \rangle$$

Теорема Лагранжа (для обычных функций):

$$\varphi(b) - \varphi(a) = \varphi'(c)(b-a)$$

M3137y2019 Лекция 14

$$|F(b) - F(a)|^2 = (b - a)\langle F(b) - F(a), F'(c) \rangle \stackrel{\text{KBIII}}{\leq} (b - a)|F(b) - F(a)||F'(c)|$$

Примечание. "=" не достигается, если ехать быстро и криво.

Пример. $F:[0,2\pi] \to \mathbb{R}^2 \quad t \mapsto (\cos t, \sin t) \quad F'(t) = (-\sin t, \cos t)$

 $a := 0, b := 2\pi$

$$F(b) - F(a) = 0 \stackrel{?}{=} |F'(c)|(b-a)$$

Нет.

М3137у2019 Лекция 14