Spectrum theory (Compact operators)

let $A: X \longrightarrow X$ be a bounded operator. $\lambda \in \mathbb{C}$ is called a regular point of A if and only if the inverse operator $(A-\lambda I)^{-1}: X \longrightarrow X$ exists and is a bounded operator. If X is not regular, we will call a point of the spectrum.

To the set of all points of this form we will call as the spectrum of A and it will be denoted by $\tau(A)$. Then $\tau(A) \leq C$.

Proposition: All XEC, with IXI>11All is a regular point.

$$A - \lambda I = -\lambda \left(I - \frac{1}{\lambda}A\right)$$
 and $\left\|\frac{A}{\lambda}\right\| < 1$.

by the property (11), the operator A-XI is invertible.

Proposition: T(A) is closed.

Koof: Y X regular, exists & 70 such that, YM, IX-MIXE, M is regular.

Let
$$A - MI = A - MI + (\lambda - M)I$$

= $(A - \lambda I)(I + (\lambda - M)(A - \lambda I)^{-1})$

Which is invertible since $A - \lambda I$ is invertible and $I + (\lambda - M)(A - \lambda I)^{-1}$ is invertible by

$$||(\lambda - M)(A - \lambda I)^{-1}|| = ||\lambda - M|| ||(A - \lambda I)^{-1}|| < 1$$

 $||\lambda - M| < ||(A - \lambda I)^{-1}||^{-1}$
 $\in \text{ wanted}.$

Spectrum clasification

16

1. The point spectrum $\nabla_P(A)$, is the set of eigenvalues of an operator A, i.e., $\lambda \in \nabla_P$ if and only if there exists $x \in X \setminus \{0\}$ and $Ax = \lambda X$.

This is equivalent to say that $Ker(A-\lambda I) \neq 0$ and the dimension of $Ker(A-\lambda I)$ is called multiplicity of the eigenvalue λ .

Now, let's assume that $Ker(A-\lambda I)=0$, means that $A-\lambda I: X\to X$ is one-to-one, between X and $Im(A-\lambda I)$.

By the open mapping theorem if $Im(A-\lambda I)=x$, then exists an inverse bounded operator $(A-\lambda I)^{-1}$ such that λ is regular.

In our classification of T(A), if $X \notin T_{p}(A)$ but $X \in T(A)$, then $Im(A-XI) \neq X$.

Lemma: Let $A: X \longrightarrow X$ be a bounded operator, and let $(X)_{i=1}^n$ different eigenvalues of A.

Let $X_i = 0$ and $Ax_i = \lambda_i X_i$ (eigenvectors of different eigenvalues). Then $X_i := 1$ are linearly indepents.

11. The continuous spectrum $T_c(A)$, $\lambda \in T_c(A)$ if and only if $\lambda \in T(A) \setminus T_p(A)$ and $Im(A-\lambda I)$ is dense in X.

Example: In $L_2([0,1])$, A: $L_2([0,1]) \longrightarrow L_2([0,1])$

III. The residual spectrum $\sigma(A) = \sigma(A) \setminus (\sigma(A) \cup \sigma(A))$, for $\lambda \in \sigma(A)$, we have $\operatorname{Im}(A - \lambda I) \neq X$, and $\operatorname{Ker}(A - \lambda I) = 0$.

Example: Let the traslation operator in lz

Ali=li+1

0 E (T(A).

Fredholm Theory

let $T:X \longrightarrow X$ be compact. Let Tx the operator T-xI and $\Delta x=Im Tx$

lemma: let E_1 be a closed subspace such that $E \neq E_1 \subseteq E \subseteq X$. Exists $Y_0 \in E$ with $||Y_0|| = 1$ such that the distance from Y_0 to Y_1 is $\frac{d(Y_0, E)}{2}$

Proof: Let y E E \ E1 and d(y, E1) = a70 (such y exists since E1 is closed).

Let XoEE1, such that 114-Xol1<2a. Then

$$V_0 = \frac{(Y - X_0)}{\|Y - X_0\|}$$

satisfy the properties, since $\|Y_0\|=1$ and for all $x \in E_1$ $\|Y_0-X\|=\left\|\frac{(Y_0-X_0)}{\|Y_0-X_0\|}-X\right\|$

 $= \frac{\|Y - (X_0 - \|Y - X_0\|X)\|}{\|Y - X_0\|} = \frac{1}{2\alpha}$

Corollary: If $\dim X = \infty$, the identity operator $I : X \longrightarrow X$ is not compact

Proof: We have to prove that the unitary ball $D(X) = 1 \times : ||X|| \le 1$

is not relatively compact.

Let n be a family of subspaces $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq \ldots$ with dim $E_n = n$. Are closed subspaces. By the above lemma there is a sequence $y_i \in E_i$ with $||y_i|| = 1$ such that

 $d(Y_{i}, E_{i-1}) \frac{7}{2}$

Then i \(\frac{1}{2}\), ||4i-4j||7/2, which is not Cauchy, therefore it not has a Cauchy subsequence, thus, I is not compact.

Proposition: For all compact operators T, O E T(T)

Proof: let T-OI=T, then T-1.T=I.