Statement: t-alkyl halides undergo much faster S_N1 reaction than methyl/primary halides

1: t-alkyl halides undergo much faster S_N1 reaction than methyl/primary halides because t-alkyl carbocations are more stable than methyl/primary carbocation

2: t-alkyl halides undergo much faster S_N1 reaction than methyl halides because the activation energy for the formation of t-alkyl carbocations is lower than methyl carbocation

Relative Stability of Carbocations

> The stability of the tertiary, secondary, primary and methyl carbocations follows the order:

✓ This is generally explained by the +I effect of the -CH₃ groups

➤ However, there is another effect called *Hyperconjugative Effect* (VBT) by which the alkyl groups release electrons

✓ Can we understand this based on MO considerations?

Stabilization of Tertiary Carbocations by C-H

(σ-Conjugation)

of planar carbocation

- \triangleright Interaction between the C-H σ -bonding MOs with the vacant 2p orbital of the carbon
- > This interaction lowers the energy of the electrons in the C-H bonding orbitals

No σ-conjugation for CH_3^+

no stabilization: no electrons to donate into empty p orbital note: The C-H bonds are at 90° to the empty p orbital and cannot interact with it

- ✓ It is true that a t-butyl carbocation is more stable than methyl or primary carbocations
- \checkmark However, the rate of a S_N1 reaction is dependent on the activation energy of the formation of carbocation, not on their stability

Fact 1: The activation energy of the formation (E_a) of a t-alkyl carbocation is smaller than methyl/primary: *Important* for $S_N 1$ reactions

Fact 2: t-alkyl halides undergo much faster S_N1 reaction than methyl/primary halides because the activation energy for the formation of t-alkyl carbocation is lower than methyl/primary carbocation

Hammond Postulate: Correlation between transition state with reactant or product structure

Solvent Effects in S_N Reactions

Solvent Effect: S_N2

✓ Typical choices: a less polar solvent for the S_N^2 reaction (just polar enough to dissolve the ionic reagents)

 \checkmark The most common S_N2 reactions use an anion as the nucleophile and the transition state is less polar than the localized anion as the charge is spread between two atoms

- ✓ A polar solvent solvates the anionic nucleophile and slows the reaction down
- ✓ A nonpolar solvent destabilizes the starting materials more than it destabilizes the transition state and speeds up the reaction

The following table presents rate data for the reactions of CH_3I with azide ion:

$$CH_3I \xrightarrow{N_3^-} CH_3N_3$$

Solvent	Relative Rate	Dielectric Constant
Methanol	1	33
DMF	4.5 X 10 ⁴	37

 \checkmark The dielectric constant (ϵ) of a solvent is a measure of its polarity