Efficient Deep Learning Systems Course introduction

Max Ryabinin

What's this about?

- DL as a field is getting mature:
 - Neural networks are becoming more and more widespread in practice
 - Scaling trends everywhere (model size, dataset size, coauthor list size)
 - .ipynb-based development is no longer sustainable :)
- Each model is much more than just architecture, loss and even data
- Engineering knowledge becomes handy even for SOTA research
- For practical applications, performance and maintainability are key factors

Bird's eye view of DL

Training

Inference

How to achieve the best quality?

Is my model useful?

Is my model good enough?

Do I utilize my resources to the fullest?

Is performance good enough for my use case?

How to navigate 100s of experiments?

How do I ensure the model is maintainable?

How to avoid bugs in my pipeline?

How to avoid bugs in my pipeline? pt.2

Goal of the course

- Most DL courses do not cover practical details and overall systems:
 - Small code changes can make your training/inference much faster
 - Deployment of trained networks, both on their own and as a part of a larger system
 - Streamlined maintenance by treating ML models like any other code (testing, versioning, etc.)
- Knowledge about this is scattered around the Internet and unstructured
- We want to give you these useful bits of practical knowledge!
- ...no bleeding-edge methods or last-week papers (with some exceptions)

Plan

- 1. (You are here) Intro, basics of GPU architecture & benchmarking
- 2. Experiment tracking & versioning, testing & debugging
- 3. Profiling DL pipelines, tricks for efficient training
- 4. OS recap, distributed ML recap
- 5. Data-parallel training, All-Reduce, torch.distributed intro
- 6. Memory-efficient training, model parallelism
- 7. Basics of web service deployment
- 8. Deploying neural networks: software side
- 9. Optimizing models for inference

- Systems & better training 1
- Basically, MLOps
- Systems & better training 2

Distributed training

Deployment in production

Logistics

- Lectures&seminars: every Thursday, 18:00 21:00, via Zoom
- Course repo: github.com/mryab/efficient-dl-systems
- Anytask/LMS for handing in assignments
- Channel with announcements: see HSE FCS wiki/course page in LMS
- Resources: Yandex Cloud VM + DataSphere (HSE), YSDA GPUs + DataSphere (YSDA)

Grading

- 3 assignments:
 - 1. Fast and reliable pipelines (2 parts)
 - 2. Distributed training (3 parts)
 - 3. Deployment (3 parts)

- Each assignment consists of sub-assignments given each week (except* this one)
- Final grade: $G_{total} = 0.2G_1 + 0.4G_2 + 0.4G_3$

GPU architecture: a brief overview

- As the name suggests, originally used for graphics
- Highly parallel execution model: objects can be rendered simultaneously
- Since ~2007, simple GPGPU API started to appear (CUDA, OpenCL, Metal)
- GPU-trained AlexNet/DanNet sparked the DL revolution in early 2010s

3dfx Voodoo2: 12MB RAM

NVIDIA H200: 141GB RAM

GPU architecture: a brief overview

docs.nvidia.com/cuda/cuda-c-programming-guide

CUDA computation model

- In CUDA, we launch <u>kernels</u> from the <u>host</u> that are executed in parallel on <u>the device</u>
- Kernels are executed by <u>threads</u> grouped in <u>thread blocks</u> of limited size
- A GPU is composed of multithreaded <u>Streaming Multiprocessors</u> (SMs) that are assigned different thread blocks
- Multiple thread blocks are arranged in grids (can be 1D, 2D, or 3D)

GPU computations: hardware side

- SIMT (Single Instruction, Multiple Thread)
- On a physical level, threads are executed in groups of 32 called <u>warps</u>
- A warp executes <u>one instruction at a time</u>: in case of branching, all paths need to be taken
- This does not affect correctness but has major performance implications
- Warp-level primitives can be leveraged for parallel computation

Why does all of this matter?

- The most popular operation in DL is matrix multiplication
- Executing this in parallel can have two potential effects when dividing the work
- Tile Quantization: matrix size is not divisible by the thread block tile size

Why does all of this matter?

- The most popular operation in DL is matrix multiplication
- Executing this in parallel can have two potential effects when dividing the work
- Tile Quantization: matrix size is not divisible by the thread block tile size
- Wave Quantization: total number of tiles is quantized to the number of SMs
- Both effects can be quite noticeable for small or irregular shapes!

Memory access

- GPU has a separate memory unit (called device memory)
- Need to copy from <u>host memory</u> and back (PCle 4.0 x16 — 32GB/s peak)
- Memory transfer is often a bottleneck
- Pinned (page-locked) memory access is much faster
- Memory hierarchy is a thing, just like on CPUs!

Pageable Data Transfer

Pinned Data Transfer

Memory access

- GPU has a separate memory unit (called device memory)
- Need to copy from <u>host memory</u> and back (PCle 4.0 x16 — 32GB/s peak)
- Memory transfer is often a bottleneck
- Pinned (page-locked) memory access is much faster
- Memory hierarchy is a thing, just like on CPUs!

Asynchronous execution

- By default, CUDA kernel calls and device transfers are asynchronous
- You can send several kernels and wait for results
- Latest versions of CUDA offer better concurrency mechanisms (streams, graphs)

DL specifics

With PyTorch as an example:

- Kernel execution is asynchronous, which hides the latency of Python
- Be careful when benchmarking though!
- Calling Tensor.item() triggers a D2H copy
- Allocated memory is not released immediately to simplify caching
- torch.backends.cudnn.benchmark=True
- CUDA streams, graphs etc. are available in latest releases

nn.Conv2d with 64 3x3 filters applied to an input with batch size = 32, channels = width = height = 64.

Setting	<pre>cudnn.benchmark = False (the default)</pre>	cudnn.benchmark = True	Speedup
Forward propagation (FP32) [us]	1430	840	1.70
Forward + backward propagation (FP32) [us]	2870	2260	1.27

Measuring performance

- Benchmarking is a key step of understanding your bottlenecks and measuring the impact of optimizations
- Basically, just run the code several times or measure large workloads
- Can be done via %timeit or timeit. Timer (mind the synchronization)
- Due to possible side-effects (preallocation, caching), warmup and randomization are often necessary
- In PyTorch, you can use torch.utils.benchmark
- Don't overoptimize!