We Claim:

- 1 1. A machine readable medium that provides instructions, which when executed by a
- 2 set of processors, cause said set of processors to perform operations comprising:
- 3 receiving a packet on a circuit; and
- 4 provisioning the circuit in response to receiving the packet.
- 1 2. The machine readable medium of claim 1, wherein the circuit is associated with a
- 2 listening circuit structure before the packet is received on the circuit, and the circuit is
- 3 disassociated from the listening circuit structure after the packet is received on the circuit.
- 1 3. The machine readable medium of claim 1, wherein provisioning the circuit
- 2 comprises:
- 3 identifying the circuit;
- 4 creating a provisioned circuit structure for the circuit; and
- 5 associating the circuit to the provisioned circuit structure.
- 1 4. The machine readable medium of claim 3 wherein creating the provisioned circuit

< 5

- 2 structure comprises:
- retrieving a set of parameters corresponding to the circuit from a database; and
- 4 populating an empty circuit structure with the set of parameters.
- 1 5. The machine readable medium of claim 1 further comprising unprovisioning the
- 2 circuit upon a subscriber ending event.
- 1 6. A machine readable medium that provides instructions, which when executed by a
- 2 set of processors, cause said set of processors to perform operations comprising:

3	configuring a set of circuit as listening circuits;				
4	receiving a packet on one of the set of listening circuits;				
5	provisioning the one of the set of listening circuits in response to receiving the				
6	packet; and				
7	processing a set of subsequent packets received on the provisioned one.				
1	7. The machine readable medium of claim 6, wherein provisioning the one of the set				
2	of listening circuits comprises:				
3	retrieving a set of parameters for the one of the set of listening circuits from a				
4	database; and				
5	provisioning the one of the set of listening circuits with the set of parameters.				
1	8. The machine readable medium of claim 6, wherein configuring the set of circuits				
2	as listening circuits comprises associating the set of listening circuits to a single circuit				
3	structure, this single circuit structure being a circuit structure having an indicator				
4	indicating the circuit structure as a listening circuit structure.				
1	9. The machine readable medium of claim 6 further comprising unprovisioning the				
2	provisioned one in response to a subscriber ending event.				
3					
1	10. A machine readable medium that provides instructions, which when executed by a				
2	set of processors, cause said set of processors to perform operations comprising:				
3	listening for a packet over a set of configured circuits;				
4	receiving the packet on one of the set of configured circuits;				
5	identifying the one of the set of configured circuits;				
6	signaling a routine that the packet has been detected on the one of the set of				

configured circuits;

9

10

11

12

13

14

retrieving a set of parameters for the one of the set of configured circuits from a
database;
creating an empty circuit structure for the one of the set of configured circuits;
populating the empty circuit structure with the set of parameters, the populated
empty circuit structure becoming a provisioned circuit structure; and
associating a set of subsequent packets received on the one of the set of listening
circuits with the provisioned circuit structure.

- 1 11. The machine readable medium of claim 10, wherein listening for the packet over
- the set of configured circuits comprises associating the set of configured circuits to a
- 3 listening circuit structure.
- 1 12. The machine readable medium of claim 10, wherein signaling the routine
- 2 comprises passing the routine the listening circuit structure, the listening circuit structure
- 3 identifying the one of the set of configured circuits.
- 1 13. The machine readable medium of claim 10, wherein the database can be a remote
- 2 database or a local database.
- 1 14. The machine readable medium of claim 10 further comprising releasing the
- 2 provisioned circuit structure and listening for a new packet over the one of the set of
- 3 configured circuits in response to a subscriber ending event.
- 1 15. A machine readable medium that provides instructions, which when executed by a
- 2 set of processors, cause said set of processors to perform operations comprising:
- indicating a circuit structure as a listening circuit structure;
- associating a set of configured circuits with the listening circuit structure;

- receiving a packet on one circuit of the set of configured circuits;

 provisioning the one circuit in response to receiving the packet; and

 accepting a set of subsequent packets received on the provisioned circuit.
- 1 16. The machine readable medium of claim 15 further comprising discarding a set of
- 2 packets transmitted over an unconfigured circuit, the unconfigured circuit not being
- 3 associated with the listening circuit structure.
- 1 17. The machine readable medium of claim 15, wherein provisioning the one circuit 2 comprises:
- 3 identifying the one circuit with a circuit handle;
- retrieving a set of parameters corresponding to the circuit handle from a database;
- 5 creating an empty circuit structure; and
- 6 populating the empty circuit structure with the set of parameters.
- 1 18. The machine readable medium of claim 17, wherein the database can be a local
- 2 database or a remote database.
- 1 19. The machine readable medium of claim 15 further comprising unprovisioning the
- 2 one circuit and indicating the one circuit as the listening circuit structure in response to a
- 3 subscriber ending event.
- 1 20. A network element comprising:
- a network card having a port to couple a set of circuits; and
- a computer coupled to the network card, the computer to provision one circuit of
- 4 the set of circuits in response to receiving a packet on the one circuit.

	1	21.	The network element of claim 20 further comprising a remote database to store
	2	param	eters for provisioning the one circuit.
	1	22.	The network element of claim 20, wherein the computer comprises:
	2		a database to store a set of parameters;
	3		a memory element to store a listening circuit structure and a set of provisioned
	4		circuit structures; and
	5		an operating system to associate a set of the set of circuits with the listening
	6		circuit structure, and to provision the one circuit.
N			
	1	23.	The network element of claim 22 wherein to provision the one circuit comprises:
	2		to identify the one circuit;
	3		to disassociate the one circuit from the listening circuit structure;
	4		to create an empty circuit structure;
	5		to populate the empty circuit structure with the set of configuration parameters,
	6		making the empty circuit structure a provisioned circuit structure; and
	7		to associate the one circuit to the provisioned circuit structure.
	1	24.	The network element of a claim 20 further comprising the computer to
	2 ·	unpro	vision one circuit of the set of circuits in response to a subscriber ending event.
	I	25.	An apparatus comprising:
	2		a port to couple a set of circuits;
	3		a memory element to store a listening circuit structure and a set of provisioned
	4		circuit structures;
	5		a database to store a set of parameters for a subset of the set of circuits; and
	6		a computer to provision one of the subset of circuits.

1	26.	The apparatus of claim 25, wherein the database can be a local or remote			
2	database.				
1	27.	The apparatus of claim 25, wherein the computer to provision the one of the set of			
2	circuits comprises:				
3		retrieving the set of parameters corresponding to the one circuit from the			
4		database;			
5		creating an empty circuit structure for the one circuit, and			
6		populating the empty circuit structure with the set of configuration parameters.			
1	28.	The apparatus of claim 25, wherein the computer provisions one of the subset of			
2	circui	ts in response to a packet being detected on the one circuit.			
1	29.	The apparatus of claim 25 further comprising unprovisioning the one of the subset			
2	of circuits in response to a subscriber ending event.				
3	•				
1	30.	An apparatus comprising:			
2		a port to couple a set of circuits;			
3		a memory element to store a set of circuit structures;			
4		a storage to store a set of parameters; and			
5		a computer to provision one circuit of the set of circuits in response to a packet			
6		being received on the one circuit.			

- 1 31. The apparatus of claim 30, wherein one of the set of circuit structures is a
- 2 listening circuit structure.

- 1 32. The apparatus of claim 30, wherein the storage can be a local or remote storage.
- 1 33. The apparatus of claim 30, wherein the computer to provision one circuit of the
- 2 set of circuits comprises:
- 3 to identify the one circuit;
- 4 to retrieve the set of parameters corresponding to the identified one circuit from
- 5 the storage;
- 6 to create an empty circuit structure for the one circuit, and
- 7 to populate the empty circuit structure with the set of parameters.
- 1 34. The apparatus of claim 30 further comprising unprovisioning the one circuit of the
- 2 set of circuits in response to a subscriber ending event.
- 1 35. A computer implemented method comprising:
- 2 receiving a packet on a circuit; and
- provisioning the circuit in response to receiving the packet.
- 1 36. The method of claim 35, wherein the circuit is associated with a listening circuit
- 2 structure before the packet is received on the circuit, and the circuit is disassociated from
- 3 the listening circuit structure after the packet is received on the circuit.
- 1 37. The method of claim 35, wherein provisioning the circuit comprises:
- 2 identifying the circuit;
- 3 creating a provisioned circuit structure for the circuit; and
- 4 associating the circuit to the provisioned circuit structure.

- 2 subscriber ending event.
- 1 39. The method of claim 37 wherein creating the provisioned circuit structure
- 2 comprises:
- retrieving a set of parameters corresponding to the circuit from a database; and
- 4 populating an empty circuit structure with the set of parameters.