# **Retail Sales Time Series**

## **Objective:**

Develop a predictive model using a deep learning framework (TensorFlow or PyTorch) to forecast future sales from historical time series data. You are to select a deep learning algorithm of your choice to accurately predict future time steps.

### **Dataset Explanation**

Dataset Name: Retail Sales Time Series

Format: CSV

## **Description:**

The dataset consists of monthly sales data from a major retail chain for the years 2015 to 2020, including:

• Month: Month of the sales data record.

• Sales: Total sales value in USD.

## Research 1:

Vanilla RNNs (Recurrent Neural Networks) have some limitations that make them less than ideal for sales forecasting tasks:

- **1. Short-Term Memory:** Vanilla RNNs struggle with long-term dependencies in data. This is a problem for sales forecasting because past sales data can influence future sales, but these influences might not be immediately preceding periods. Vanilla RNNs tend to focus heavily on the most recent information, neglecting potentially valuable patterns from further in the past.
- **2. Vanishing/Exploding Gradients:** During training, RNNs propagate gradients back through the network to update weights and biases. In Vanilla RNNs, these gradients can either vanish (become very small) or explode (become very large) as they travel back through the network. This makes it difficult for the network to learn long-term dependencies effectively.

Here's a breakdown of these limitations:

• Vanishing Gradients: If gradients become very small as they travel back through the network, earlier layers barely get updated during training. This hinders the network's ability to learn patterns from sequences with long-term dependencies.

• **Exploding Gradients:** Conversely, if gradients explode, they can overwhelm the network, making it unstable and leading to nonsensical predictions.

## Research 2:

LSTMs (Long Short-Term Memory) are a type of Recurrent Neural Network (RNN) that excel in tasks like sales forecasting due to their ability to address key shortcomings of vanilla RNNs:

LSTMs specifically address these limitations, making them well-suited for sales forecasting:

- Internal Memory Cell: LSTMs have a special internal cell that controls the flow of information. It can remember values for extended periods, allowing the network to capture long-term dependencies in sales data.
- Gating Mechanisms: LSTMs use gates (forget gate, input gate, output gate) to regulate information flow within the cell. These gates determine what information is remembered, forgotten, and used by the network. This helps prevent vanishing/exploding gradients, enabling the network to learn from both recent and past sales trends.

#### **Benefits of LSTMs in Sales Forecasting:**

- Improved Accuracy: By capturing long-term dependencies, LSTMs can model complex relationships between past sales data and future sales, leading to more accurate forecasts.
- **Seasonality and Trends:** LSTMs can effectively capture seasonal patterns and identify long-term trends in sales data, which is crucial for accurate forecasting.
- External Factors: LSTMs can be incorporated with additional features like marketing campaigns, holidays, or economic indicators. The model can then learn how these factors influence historical sales data and use that knowledge for future predictions.

Model: "sequential 1"

| Layer (type)    | Output Shape | Param # |
|-----------------|--------------|---------|
| lstm_1 (LSTM)   | (None, 100)  | 40800   |
| dense_1 (Dense) | (None, 1)    | 101     |

Total params: 40901 (159.77 KB) Trainable params: 40901 (159.77 KB) Non-trainable params: 0 (0.00 Byte)

# **Results:**

| Date                | Sales       | Predictions        |
|---------------------|-------------|--------------------|
| 2020-12-30 07:00:00 | 155.4529014 | 155.89523995319615 |
| 2020-12-30 08:00:00 | 155.1607117 | 154.39717185404723 |
| 2020-12-30 09:00:00 | 148.4241211 | 151.53158438999628 |
| 2020-12-30 10:00:00 | 149.8670627 | 148.2541465603917  |
| 2020-12-30 11:00:00 | 148.2827763 | 144.84135293824218 |
| 2020-12-30 12:00:00 | 145.7584813 | 141.59229772298423 |
| 2020-12-30 13:00:00 | 143.4909799 | 138.9401000934799  |
| 2020-12-30 14:00:00 | 139.6391891 | 136.9035688751502  |
| 2020-12-30 15:00:00 | 139.6659947 | 135.50797338619572 |
| 2020-12-30 16:00:00 | 141.4313437 | 134.93233622054612 |
| 2020-12-30 17:00:00 | 138.2937305 | 133.78773208591207 |
| 2020-12-30 18:00:00 | 141.8590945 | 134.13167065470563 |
| 2020-12-30 19:00:00 | 142.8270109 | 135.06038463923537 |
| 2020-12-30 20:00:00 | 140.9467795 | 136.81923565104998 |
| 2020-12-30 21:00:00 | 145.5613237 | 138.97032971512562 |
| 2020-12-30 22:00:00 | 144.4840706 | 140.96004050825434 |
| 2020-12-30 23:00:00 | 147.8902907 | 142.06430890706923 |
| 2020-12-31 00:00:00 | 150.2234874 | 143.1963872673127  |



**Root Mean Square Error (RMSE):** 4.867772251833289 **Mean Absolute Error (MAE):** 4.3651717757494595 **Coefficient of Determination (R2):** 0.028258787136851482

### **Observation:**

The model can able achieve prediction but not as expected. The accuracy is so poor.

## Research 3:

In this research I found out a new model prediction sales for both long term and short term.

The model is introduced in April 2024 reference: "https://arxiv.org/abs/2404.05192"

Model Name: ATFNet (Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting)

### Key Advantage:

- It uses Ensemble learning method, which mean it uses another model to obtain more feature.
- Two difference blocks (T-Block and F-Block) are used one is for Long Term and another one for Short term
- T\_Block (Time-domain processing): This block processes the raw time-series
  data directly. It is generally better suited for capturing short-term dependencies
  and local patterns in the data, such as recent trends and Immediate fluctuations.
- F\_Block (Frequency-domain processing): This block transforms the time-series data into the frequency domain (e.g., using Fourier Transform). It is typically used to capture long-term dependencies and periodic patterns that may not be easily discernible in the time domain.

## Training parameter:

Sequencial length: 96 Prediction length: 96 Batch size: 256

Frequency : h (hours) for T-Block

Lerning Rate : variable

Epoch : 10 (no further improvement after this)

Early Stop : 3



# **Results:**



| Predicted  | <b>Ground Truth</b> |
|------------|---------------------|
| 127.696754 | 126.8330968         |
| 128.8166   | 124.4380766         |
| 131.15747  | 129.393595          |
| 132.82845  | 128.6661867         |
| 134.03091  | 128.4597117         |
| 136.37825  | 133.6155216         |
| 137.76137  | 136.702109          |
| 139.82475  | 138.046735          |
| 141.07838  | 136.7356531         |
| 141.97379  | 142.570293          |
| 141.68964  | 139.6106288         |
| 141.0087   | 141.2663003         |
| 139.16296  | 137.4916819         |
| 137.30432  | 135.8114636         |
| 134.56682  | 135.1615538         |
| 132.44444  | 130.7874734         |
| 129.48404  | 128.9172434         |
| 126.88926  | 126.3224552         |
| 124.517876 | 120.4010079         |
| 122.50751  | 122.1670162         |

**mae**: 0.08746362454748068 **mse**: 0.011959103036423507 **rmse**: 0.10935768393864012

This model chosen by comparing with other latest high accuracy model for other datasets.

For our dataset, directly chosen this best model because ATFNet

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                  |                                           | former                           | RLi                              | near                                           | Patch                            | TST                              | Crossf                                    | ormer                            | THE                              | Œ                                | Time                             | sNet                             | DLin                                     | car                              | SCIP                                     | let :                            | FEDR                             | rmer                             | Stati                            | onary                            | Autof                            | ormer                            |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSE                              | MAE                              | MSE                                       | MAE                              | MSE                              | MAE                                            | MSE                              | MAE                              | MSE                                       | MAE                              | MSE                              | MAE                              | MSE                              | MAE                              | MSE                                      | MAE                              | MSE I                                    | MAE                              | MSE                              | MAE                              | MSE                              | MAE                              | MSE                              | MAE                              |
| E 15.72                                      | 92<br>36<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.423<br>0.436<br>0.530          | 0.431 $0.452$ $0.520$            | 0.386<br>0.441<br>0.487<br>0.503          | 0.436 $0.458$ $0.491$            | 0.437<br>0.479<br><b>0.481</b>   | 0.424 $0.446$ $0.470$                          | 0.460<br>0.501<br><u>0.500</u>   | 0.445<br>0.466<br><u>0.488</u>   | 0.423<br>0.471<br>0.570<br>0.653          | $0.474 \\ 0.546 \\ 0.621$        | 0.525<br>0.565<br>0.594          | 0.492<br>0.515<br>0.558          | 0.436<br>0.491<br>0.521          | 0.429<br>0.469<br>0.500          | 0.437 0<br>0.481 0<br>0.519 0            | 0.432 0<br>0.459 0<br>0.516 0    | 0.719 C<br>0.778 C<br>0.836 C            | 0.631<br>0.659<br>0.699          | 0.420<br>0.459<br>0.506          | 0.448<br>0.465<br>0.507          | 0.534<br>0.588<br>0.643          | 0.504<br>0.535<br>0.616          | 0.500<br>0.521<br>0.514          | 0.482<br>0.496<br>0.512          |
| BTTE:                                        | 92<br>36<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.326                            | 0.368<br>0.373<br>0.438          | 0.297<br>0.380<br>0.428<br>0.427          | 0.400<br>0.432<br>0.445          | 0.374 $0.415$ $0.420$            | 0.390 $0.426$ $0.440$                          | 0.388<br>0.426<br>0.431          | 0.400<br>0.433<br>0.446          | 0.745<br>0.877<br>1.043<br>1.104          | 0.656 $0.731$ $0.763$            | 0.528<br>0.643<br>0.874          | 0.509<br>0.571<br>0.679          | 0.402 $0.452$ $0.462$            | 0.414<br>0.452<br>0.468          | 0.477 (<br>0.594 (<br>0.831 (            | 0.476<br>0.541<br>0.657          | 0.860 C<br>1.000 C<br>1.249 C            | 0.689<br>0.744<br>0.838          | 0.429<br>0.496<br>0.463          | 0.439 $0.487$ $0.474$            | 0.512 $0.552$ $0.562$            | 0.493 $0.551$ $0.560$            | 0.456<br>0.482<br>0.515          | 0.452<br>0.486<br>0.511          |
| 15 15 15 15 15 15 15 15 15 15 15 15 15 1     | 6 6<br>92 6<br>36 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.306<br>0.340<br>0.379<br>0.426 | 0.354<br>0.380<br>0.402<br>0.434 | 0.383<br>0.334<br>0.377<br>0.426<br>0.491 | 0.368<br>0.391<br>0.420<br>0.459 | 0.355<br>0.391<br>0.424<br>0.487 | 0.376 $0.392$ $0.415$ $0.450$                  | 0.329 $0.367$ $0.399$ $0.454$    | 0.367 $0.385$ $0.410$ $0.439$    | 0.942<br>0.404<br>0.450<br>0.532<br>0.666 | 0.426 $0.451$ $0.515$ $0.589$    | 0.364<br>0.398<br>0.428<br>0.487 | 0.387<br>0.404<br>0.425<br>0.461 | 0.338 $0.374$ $0.410$ $0.478$    | 0.375<br>0.387<br>0.411<br>0.450 | 0.345 0<br>0.380 0<br>0.413 0            | 0.372<br>0.389<br>0.413<br>0.453 | 0.418 C<br>0.439 C<br>0.490 C<br>0.595 C | 0.438<br>0.450<br>0.485<br>0.550 | 0.379<br>0.426<br>0.445<br>0.543 | 0.419<br>0.441<br>0.459<br>0.490 | 0.386<br>0.459<br>0.495<br>0.585 | 0.398<br>0.444<br>0.464<br>0.516 | 0.505<br>0.553<br>0.621<br>0.671 | 0.475<br>0.496<br>0.537<br>0.561 |
| 9 11 33 72 A                                 | 6 6<br>92 6<br>36 6<br>20 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.174<br>0.231<br>0.294<br>0.386 | 0.262<br>0.301<br>0.345<br>0.402 | 0.180<br>0.250<br>0.311<br>0.412          | 0.264<br>0.309<br>0.348<br>0.407 | 0.182<br>0.246<br>0.307<br>0.407 | 0.265<br>0.304<br><b>0.342</b><br><b>0.398</b> | 0.175 $0.241$ $0.305$ $0.402$    | 0.259<br>0.302<br>0.343<br>0.400 | 0.287<br>0.414<br>0.597<br>1.730          | 0.366 $0.492$ $0.542$ $1.042$    | 0.207<br>0.290<br>0.377<br>0.558 | 0.305<br>0.364<br>0.422<br>0.524 | 0.187 $0.249$ $0.321$ $0.408$    | 0.267<br>0.309<br>0.351<br>0.403 | 0.193 0<br>0.284 0<br>0.369 0            | 0.292<br>0.362<br>0.427<br>0.522 | 0.286 C<br>0.399 C<br>0.637 C<br>0.960 C | 0.377<br>0.445<br>0.591<br>0.735 | 0.203<br>0.269<br>0.325<br>0.421 | 0.287<br>0.328<br>0.366<br>0.415 | 0.192<br>0.280<br>0.334<br>0.417 | 0.274 $0.339$ $0.361$ $0.413$    | 0.255<br>0.281<br>0.339<br>0.433 | 0.339<br>0.340<br>0.372<br>0.432 |
| 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | 6   6<br>92   6<br>36   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.375<br>0.393<br>0.407<br>0.437 | 0.262<br>0.271<br>0.278<br>0.298 | 0.395<br>0.417<br>0.433<br>0.467          | 0.268<br>0.276<br>0.283<br>0.302 | 0.649<br>0.601<br>0.609<br>0.647 | 0.389<br>0.366<br>0.369<br>0.387               | 0.462<br>0.466<br>0.482<br>0.514 | 0.295<br>0.296<br>0.304<br>0.322 | 0.522<br>0.530<br>0.558<br>0.589          | 0.290<br>0.293<br>0.305<br>0.328 | 0.805<br>0.756<br>0.762<br>0.719 | 0.493<br>0.474<br>0.477<br>0.449 | 0.593<br>0.617<br>0.629<br>0.640 | 0.321<br>0.336<br>0.336<br>0.350 | 0.650 0<br>0.598 0<br>0.605 0            | 0.396<br>0.370<br>0.373<br>0.394 | 0.788 C<br>0.789 C<br>0.797 C<br>0.841 C | 0.499<br>0.505<br>0.508<br>0.523 | 0.587<br>0.604<br>0.621<br>0.626 | 0.366<br>0.373<br>0.383<br>0.382 | 0.612<br>0.613<br>0.618<br>0.653 | 0.338<br>0.340<br>0.328<br>0.355 | 0.613<br>0.616<br>0.622<br>0.660 | 0.388<br>0.382<br>0.337<br>0.408 |
| electricity 2.2 E E E                        | 6   6<br>92   6<br>36   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.130<br>0.149<br>0.165<br>0.200 | 0.227<br>0.245<br>0.264<br>0.295 | 0.148 $0.162$ $0.178$ $0.225$             | 0.240<br>0.253<br>0.269<br>0.317 | 0.201<br>0.201<br>0.215<br>0.257 | 0.281 $0.283$ $0.298$ $0.331$                  | 0.181<br>0.188<br>0.204<br>0.246 | 0.270<br>0.274<br>0.293<br>0.324 | 0.219<br>0.231<br>0.246<br>0.280          | 0.314<br>0.322<br>0.337<br>0.363 | 0.237<br>0.236<br>0.249<br>0.284 | 0.329<br>0.330<br>0.344<br>0.373 | 0.168 $0.184$ $0.198$ $0.220$    | 0.272<br>0.289<br>0.300<br>0.320 | 0.197 (<br>0.196 (<br>0.209 (<br>0.245 ( | 0.282<br>0.285<br>0.301<br>0.333 | 0.247 (<br>0.257 (<br>0.269 (<br>0.299 ( | 0.345<br>0.355<br>0.369<br>0.390 | 0.193<br>0.201<br>0.214<br>0.246 | 0.308<br>0.315<br>0.329<br>0.355 | 0.169<br>0.182<br>0.200<br>0.222 | 0.273 $0.286$ $0.304$ $0.321$    | 0.201<br>0.222<br>0.231<br>0.254 | 0.317<br>0.334<br>0.338<br>0.361 |
| 16 33 72                                     | 6   92   636   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630   630 | 0.162<br>0.199<br>0.247<br>0.313 | 0.216<br>0.251<br>0.288<br>0.337 | 0.174<br>0.221<br>0.278<br>0.358          | 0.214<br>0.254<br>0.296<br>0.347 | 0.192<br>0.240<br>0.292<br>0.364 | 0.232 $0.271$ $0.307$ $0.353$                  | 0.177<br>0.225<br>0.278<br>0.354 | 0.218<br>0.259<br>0.297<br>0.348 | 0.244<br>0.158<br>0.206<br>0.272<br>0.398 | 0.230<br>0.277<br>0.335<br>0.418 | 0.202<br>0.242<br>0.287<br>0.351 | 0.261<br>0.298<br>0.335<br>0.386 | 0.172<br>0.219<br>0.280<br>0.365 | 0.220<br>0.261<br>0.306<br>0.359 | 0.196 0<br>0.237 0<br>0.283 0<br>0.345 0 | 0.255<br>0.296<br>0.335<br>0.381 | 0.221 C<br>0.261 C<br>0.309 C<br>0.377 C | 0.306<br>0.340<br>0.378<br>0.427 | 0.217<br>0.276<br>0.339<br>0.403 | 0.296<br>0.336<br>0.380<br>0.428 | 0.173 $0.245$ $0.321$ $0.414$    | 0.223<br>0.285<br>0.338<br>0.410 | 0.266<br>0.307<br>0.359<br>0.419 | 0.336<br>0.367<br>0.395<br>0.428 |
| 16 33 72                                     | 6   6<br>92   6<br>36   6<br>20   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.182<br>0.201<br>0.206<br>0.209 | 0.239<br>0.263<br>0.268<br>0.274 | 0.203<br>0.233<br>0.248<br>0.249          | 0.287<br>0.261<br>0.273          | 0.322<br>0.359<br>0.397<br>0.397 | 0.339<br>0.356<br>0.369<br>0.356               | 0.234<br>0.267<br>0.290<br>0.289 | 0.286<br>0.310<br>0.315<br>0.317 | 0.310<br>0.734<br>0.750<br>0.769          | 0.331<br>0.725<br>0.735<br>0.765 | 0.312<br>0.339<br>0.368<br>0.370 | 0.399<br>0.416<br>0.430<br>0.425 | 0.250<br>0.296<br>0.319<br>0.338 | 0.292<br>0.318<br>0.330<br>0.337 | 0.290 (<br>0.320 (<br>0.353 (<br>0.356 ( | 0.378<br>0.398<br>0.415<br>0.413 | 0.237 (<br>0.280 (<br>0.304 (<br>0.308 ( | 0.344<br>0.380<br>0.389<br>0.388 | 0.242<br>0.285<br>0.282<br>0.357 | 0.342<br>0.380<br>0.376<br>0.427 | 0.215<br>0.254<br>0.290<br>0.285 | 0.249<br>0.272<br>0.296<br>0.295 | 0.884<br>0.834<br>0.941<br>0.882 | 0.711<br>0.692<br>0.723<br>0.717 |

## **Conclusion:**

- The model performs very well and the accuracy level also high.
- The use of attention mechanism and combination of time domain and frequency domain to obtain both long and short term features also the model uses ensemble learning method improved the model performance in prediction