Thin levses

magnification
$$w = \frac{y'}{y} = -\frac{5'}{5}$$

power of lens P = + auib: diopter [m-1]

sign conventi	ou :	+	_
	object distance s	on the side of the incident light	on the side of the refracted light &
	image distance s'	on the side of retracked hight ("on the other side") -s real image	on the side of the incident light wirthal image
	focal length f	converging lens () ("positive lens")	diverging lens [("negative lens")
	magnification m	upnisht	inverted

@ a regative object distance occurs in a system of two leases where the image produced by the first lens is beyond the second lens

side of incident light

object

loui1

lons 2

side of retracted light

image of object due to lens 1 His is the "object" for less 2

rays for ray diagram: parallel ray focal ray

central ray

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

converging diethint F (5200) image is a point in F

\[\frac{1}{5} + \frac{1}{5} = \frac{1}{4} = 1 \] s'= f positive - image (f positive) f < 5' < 2f s' positive - image m = - 5 : m regative - invested lm/<1 → smaller F 2f (S=2f) $\frac{1}{5!} = \frac{1}{f} - \frac{1}{2f} \implies 5' = 2f \text{ positive simage}$ $m = -\frac{5'}{5} = -1 \quad \text{m negative } \rightarrow \text{ inverted}$ |m|=1 → same size F 2P (f<5<2f) 5 72f positive - image m negative - inverted Im >1 - enlarged $\frac{1}{5!} = \frac{1}{6} - \frac{1}{6} = 0$ => $5' = \infty$ no image (S<f) $\frac{1}{5} = \frac{1}{5} - \frac{1}{5}$ S' negative - virtual $M = -\frac{5}{5}$ M positive - upright F 2P un positive - upright Im/ >1 - enlarged

always wirtual, upright, smaller

$$(s=\infty)$$
 $\frac{1}{s'}=\frac{1}{f}$ or $s'=f$ f negative \Rightarrow s' negative \Rightarrow virtual

 $0 < S < \infty$ $\frac{1}{s'} = \frac{1}{f} - \frac{1}{s}$ where f is negative S' negative \rightarrow virtual $M = -\frac{s'}{s}$ positive \rightarrow upright |M| < 1 \rightarrow smaller

parallel ray
focal point F
focal point

Diverging (concave) lens

→ Image is always virtual, upright, and smaller