

卷积神经网络之目标检测

下一个将被攻克的堡垒?

▶计算机视觉领域当前主要任务

个简单的直觉

滑动窗体 (slide window)

是猫吗?有点像

▶另一个简单的直觉

VGG:
7x7x512 flatten → 1x1x4096 fully connection → 1x1xclass number

不使用7x7而是使用1x1的卷积核的话 7x7x512 conv 7x7x4096 fully connection 7x7xclass number

合并

▶问题在哪?

- 方法?
- 阈值?
- 可靠性?
- 窗体大小和间距?
- 速度?

保留高置信度区域

合并

- 改造卷积网络
 - · 方法?
 - 阈值?
 - 可靠性?
 - 区域大小和间距?
 - 速度?
- 最主要的问题是:都不太准。

► 定位 (localization)

输入: 图片

输出: • 物体类别

位置(坐标)

全连接

softmax

鸡:0.0003 鸭: 0.0002

猫:0.91 狗:0.01

鹅:0.0003

交叉熵损失

分类

飞机: 3e⁻⁷

L2/平滑L1损失

回归

bounding box (x1, y1, x2, y2)

全连接

▶定位 (Localization)

total_loss = classification_loss + α ·regression_loss

ground_truth_cls = 分类(分类数的one-hot) ground_truth_reg = bounding box坐标值(4维向量)

这带来了一些问题和思考:

- 训练数据需要给出bounding box的坐标ground truth
- loss中的α是个超参数,需要指定
- 最后得到的特征向量包括空间信息吗?

▶包含位置信息的公开数据集

PASCAL VOC

http://host.robots.ox.ac.uk/pascal/VOC/voc2012

- 20个分类
- 11540张图片
- 27450个物体

http://cocodataset.org/

- 80个分类
- 123,287张图片
- 886,284个物体

Imagenet

http://www.image-net.org/

- 200个分类
- 476,688张图片
- 534,309个物体

检测

bounding box

猫:(x1, y1, x2, y2)

bounding box

鸭	:	(x1,	y1,	x2,	y2)
鸭	:	(x1,	y1,	x2,	y2)
		(x1,			

▶目标检测常用名词

IoU:

Intersection over Union

$$IoU = \frac{Area(b_p \cap b_t)}{Area(b_p \cup b_t)}$$

mAP:

Mean Average Precision

$$mAP = \int_0^1 precision(r)dr$$

Region of Interest

▶目标检测的发展历程

▶ DPM到Overfeat

滑动窗口

提取特征

分类判断

R-CNN

- R-CNN系列开山之作
- By Ross B. Girshick
- arXiv: 1311.2524
- 精度提升极为明显(0.3→0.5)
- 速度超级慢
 - Selective search生成阶段很慢
 - 每个Proposal都要CNN做一次inference
 - 每个步骤单独训练,微调困难

候选区域

Selective search

特征提取

CNN

区域分类

SVM

边框回归

Region Proposal → Feature extraction → Region classification → Bounding-box regression Linear Regression

$$\hat{G}_x = P_w d_x(P) + P_x$$

$$\hat{G}_y = P_h d_y(P) + P_y$$

$$\hat{G}_w = P_w \exp(d_w(P))$$

$$\hat{G}_h = P_h \exp(d_h(P)).$$

Fast R-CNN

候选区域

Selective search

特征提取

CNN(RoI pooling)

R-CNN系列进阶

仍然By Ross B. Girshick

arXiv: 1504.08083

精度进一步提升(0.5->0.6)

还有点慢,但是已经好多了

将边框回归纳入到网络结构

加入了RoI pooling , 共享了一部分卷积操作

Selective search还是很慢

区域分类

Region Proposal → Feature extraction → Region classification Softmax

边框回归

Bounding-box regression Linear Regression

Faster R-CNN

- R-CNN系列再次进阶
- 任少卿,何凯明, Ross B.G.,孙剑
- arXiv: 1506.01497
- 精度进一步提升(0.6->0.7)
- 已经很快了,虽然离实时还差点
 - 用神经网络来替代selective search
 - Region的Anchor选择机制

候选区域 Region Proposal RPN 特征提取 Feature extraction CNN(RoI pooling) 区域分类 Region classification Softmax 边框回归 Bounding-box regression Linear Regression

Faster R-CNN

Faster R-CNN

- R-CNN系列再次进阶
- 任少卿,何凯明,Ross B.G.,孙剑
- arXiv: 1506.01497
- 精度进一步提升(0.6->0.7)
- 已经很快了,虽然离实时还差点
 - 用神经网络来替代selective search
 - Region的Anchor选择机制

候选区域 Region Proposal RPN 特征提取 & Feature extraction CNN(RoI pooling)

区域分类 Region classification Softmax

边框回归 Bounding-box regression Linear Regression

R-FCN

- 全卷积模型
- 代季峰 , Yi Li , 何凯明 , 孙剑
- arXiv: 1605.06409
- 精度进一步提升(0.7->0.8)
- 又快了一点
 - 用全卷积结构代替全连接

候选区域 Region Proposal RPN 特征提取 Feature extraction CNN(RoI pooling) 区域分类 Region classification Softmax 边框回归 Bounding-box regression Linear Regression

YOLO (you only look once) 回归系的开创者

特征提取 Feature extraction **CNN**

- 仍然有RBG的影子
- arXiv: 1506.02640
- 精度和同期的fast rcnn差不多,比faster差
- 快得不是一点半点

&

- 把region方法转化成了一个回归方法
- 只跑一次卷积
- 每个小块里面只能给出一个分类的物体,不超过2个

边框、分类回归 Bounding-box, class regression Linear Regression

► SSD (Single Shot multibox Detector)

特征提取 Feature extraction **CNN**

arXiv: 1512.02325

- 比YOLO准得多,和faster差不多
 - 不是每个分块预测一个类两个框
 - 吸收了faster rcnn的anchor思想
 - 多尺度feature map上提取特征
- 仍然是回归,仍然非常快

边框、分类回归 Bounding-box, class regression Linear Regression

&

- (a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

	Fps	VOC 2007	
Overfeat	0.5		
R-CNN	0.077	48-66%	
SPP-net		63.1-82.4%	
Fast R-CNN		66.9%-70%	
Faster R-CNN	15(ZF Model)	73.2%-85.6%	
R-FCN	6	83.6%	
YOLO	45-150	58.8%	
SSD	58-72	75.1%	

B-Box regression的损失函数:平滑L1损失

smooth_{L₁}
$$(x) = \begin{cases} 0.5x^2 & |x| < 1\\ |x| - 0.5 & |x| \geqslant 1 \end{cases}$$

- Non-max suppression:抑制较小置信度的bounding box
 - A.将所有框按置信度排序,选择最高的一个
 - B.剩余所有框中删掉与当前选中框IoU>threshold的
 - C.将当前选择框记录,重复A-C,直到
 - 没有剩余 或者
 - 达到最大值

一些细节

• ROI pooling:将输入的roi features调整为相同大小

			_				
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

一些细节

RPN的实现:

输入:conv5-3的feature map(h,w,512)

结构: 3x3 conv/relu→1x1conv/sigmoid(cls)

 \rightarrow 1x1conv/linear(reg)

输出: k=9(3 scale * 3 aspect ratio)

cls:(h,w,2k)

reg:(h,w,4k)

LOSS:
$$L(\{p_i\},\{t_i\}) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i,p_i^*)$$
 交叉熵
$$+\lambda \frac{1}{N_{reg}} \sum_i p_i^* L_{reg}(t_i,t_i^*). \quad L1$$

Gound truth:

对每个anchor进行标注(由原图ground truth计算得出) IoU最大或者>threshold(0.7)则为正样本 IoU<0.3为负样本,0.3~0.7的不用于训练 均衡采样

一些细节

CSDN 不止于代码

- Selective search:
 - 在颜色、纹理等空间中映射特征
 - 计算不同区域中的特征距离
 - 合并相似区域
 - 小区域优先
 - 外接矩形的重合度高

THANK YOU

