Support-Vektor-Maschinen: Übersicht

- Lineare Separierbarkeit
- Kernels
- VC-Dimension
- strukturelle Risiko-Minimierung

Ansatz

- Projeziere Instanzen in hochdimensionalen Raum
- Lerne lineare Trennfunktionen mit maximalem Margin
- Lernen ist hier Optimierung

Vorteile:

- Exzellente empirische Ergebnisse bei Zeichenerkennung, Textklassifikation, ...
- Theoretische Fundierung (PAC)
- vermeiden Overfitting in hochdimensionalen Räumen
- Globale Optimierungsmethode, keine lokalen Minima

Nachteile:

Anwendung des Klassifikators kann teuer sein

Lineare Separation

Suchen lineare Separation.

Dies kann als Constraint-Satisfaction-Problem angesehen werden:

$$ec{x_i} \cdot ec{w} + b \geq +1$$
 falls $y_i = f(x_i) = +1$ $ec{x_i} \cdot ec{w} + b \geq -1$ falls $y_i = f(x_i) = -1$

Äquivalente Darstellung:

$$y_i(\vec{x_i} \cdot \vec{w} + b) - 1 \ge 0$$

Lineare Separation

Suche Hyperebene mit maximalem Margin.

Maximaler Margin → minimale Norm

Optimierungsproblem:

Minimiere $||\vec{w}||$ unter den Bedingungen

$$y_i(\vec{x_i} \cdot \vec{w} + b) - 1 \ge 0, \forall i$$

Duale Repräsentation:

$$f(\vec{x}) = sgn(\vec{w} \cdot \vec{x} + b) = sgn\left(\sum \alpha_i y_i \vec{x_i} \cdot \vec{x} + b\right)$$
$$\vec{w} = \sum \alpha_i y_i \vec{x_i}$$

Lineare Separation

- reduzieren Optimierungsproblem auf Gewichte für die Beispiele
 - Fast alle Beispiele haben Gewicht 0

Margin wird nur durch wenige Beispiele bestimmt

- diese nennen wir Support-Vektoren
- Beispiele mit $\alpha_i > 0$
- Problem in Form der Support-Vektoren:

$$f(\vec{x}) = sgn\left(\sum_{s_i \in \text{support_vectors}} \alpha_i y_i \vec{s_i} \cdot \vec{x} + b\right)$$

Nicht linear-trennbare Mengen

Füge 'Schlupfvariable' $\xi_i \geq 0$ für jedes Beispiel hinzu

Neues Optimierungsproblem:

Minimiere
$$||\vec{w}||^2 + C\left(\sum_i \xi_i\right)^2$$
 unter den Bedingungen $\vec{x_i} \cdot \vec{w} + b \ge +1 - \xi_i$ falls $y_i = +1$ $\vec{x_i} \cdot \vec{w} + b \ge -1 + \xi_i$ falls $y_i = -1$

 ${\cal C}$ Konstante, 'von Hand'

Nicht-lineare SVMs

Angenommen, wir haben Beispiele aus $X=\mathcal{R}^{n_1}$ und benötigen nicht-lineare Separation.

- \rightarrow projeziere X in einen höherdimensionalen Raum $X'=\mathcal{R}^{n_2}$, in dem die Daten linear trennbar sind.
 - sei $\Phi: X \to X'$ diese Transformation

Beobachtung:

- Lernen benutzt nur Punktprodukt $\Phi(\vec{x_i}) \cdot \Phi(\vec{y_i})$
- Falls wir Funktion K mit $K(\vec{x_i}, \vec{y_i}) = \Phi(\vec{x_i}) \cdot \Phi(\vec{y_i})$ finden, kann Lernen in \mathcal{R}^{n_2} mit gleichem Aufwand wie in \mathcal{R}^{n_1} durchgeführt werden.
 - $\rightarrow K$ heißt Kernel
- Klassifikation: $f(\vec{x}) = sgn\left(\sum_{s_i \in \text{support_vectors}} \alpha_i y_i K(\vec{s_i}, \vec{x}) + b\right)$

Beispiel

$$X=\mathcal{R}^2, X'=\mathcal{R}^3$$

$$\Phi(\vec{x}) = \Phi(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

Dann kann folgender Kernel benutzt werden:

$$K(\vec{x_i}, \vec{x_j}) = \Phi(\vec{x_i}) \cdot \Phi(\vec{x_j}) = (\vec{x_i} \cdot \vec{x_j})^2$$

Wichtig:

- ullet Transformation Φ muß nicht explizit ausgeführt werden
- → Damit kann prinzipiell auch in unendlich-dimensional Räume transformiert werden

Nicht-lineare SVMs

Andere häufig benutzte Kernels:

Polynomiale Klassifikation vom Grad p

$$K(\vec{x_i}, \vec{x_j}) = (\vec{x_i} \cdot \vec{x_j} + 1)^p$$

Gaussche Radiale-Basisfunktion

$$K(\vec{x_i}, \vec{x_j}) = e^{-||\vec{x_i} \cdot \vec{x_j}||^2/2\sigma^2}$$

ullet Beispiel für Kernel, für den sich kein 'sinnvolles' Φ angeben läßt:

$$K(\vec{x_i}, \vec{x_j}) = \tanh(\kappa \vec{x_i} \cdot \vec{x_j} - \delta)$$

Vorteile von Kernels

- Trennung von allgemeinen Lernprinzipien und Domänenwissen
 - Kernels kodieren Wissen über Domäne → 'Ähnlichkeit zwischen Instanzen
 - beliebige Lernverfahren benutzbar
 - sehr günstig für Software-Engineering und Analyse
- Kernels kombinierbar (Addition, Multiplikation, . . .)
 - beliebig komplizierte Kernels konstruierbar
- über beliebigen Lernbereichen definierbar
 - Bilder, Texte, . . .

Welchen Kernel wählen?

Einschub: VC-Dimension

- Es gibt (meistens) mehrere Hypothesen, die mit den gegebenen Daten konsistent sind
 - → Welche davon auswählen?
- Wähle einfachste Hypothese (Occams Razor)
 - → Welches ist die einfachste?
 - Minimum-Description-Length-Principle: Wähle die kürzeste
 - * Ist die kürzeste auch die einfachste?
 - → Hängt von der Kodierung ab.

Was tun?

Vapnik-Chervonenkis-Dimension

Definition: Sei X eine Menge von Objekten und H eine Menge von Funktionen $f:X \to \{0,1\}.$

H zerschmettert X gdw. für jede Zuordnung von Objekten zu Labels $\{0,1\}$ (sog. Dichotonomien) existiert eine Funktion $f\in H$, die diese Zuordnung repräsentiert.

Beispiel:

 ${\cal H}$ Menge aller (gerichteten) Geraden im Raum

X folgende 3 Punkte:

Dichotonomien:

Wie sieht es mit 4 Punkten aus?

Vapnik-Chervonenkis-Dimension

Definition: Sei X eine Menge von Objekten und H eine Menge von Funktionen $f:X \to \{0,1\}.$

Die VC-Dimension von H (notiert als $\mathrm{VC}(H)$) ist die Kardinalität der größten endlichen Teilmenge von X, die H zerschmettert.

Wenn H beliebig große Teilmengen von X zerschmettert, dann setzen wir $\mathrm{VC}(H)=\infty.$

Achtung: VC(H) = d bedeutet lediglich, daß mindestens eine Teilmenge dieser Kardinalität existiert, die zerschmettert wird. Es bedeutet nicht, daß alle Teilmenge dieser Kardinalität zerschmettert werden.

Beispiel:

Vapnik-Chervonenkis-Dimension: Aufgaben

- 1. $X=\mathcal{R}$ alle reelen Zahlen, H = Menge aller geschlossenen endlichen Intervalle über \mathcal{R} Wie groß ist die VC-Dimension?
- 2. Wie müssen vier Punkte liegen, so so daß sie von beliebigen Geraden (analog dem Beispiel der vorigen Folien) zerschmettert werden?
 Wie groß ist die VC-Dimension beliebiger Geraden im 2-dimensionalen Raum?
- 3. Wie groß ist die VC-Dimension aller Polynome der Form $y=ax^2+by+c$ im 2-dimensionalen Raum?
- 4. Wie groß ist die VC-Dimension aller achsenparalleler Rechtecke im 2-dimensionalen Raum?

Ende Einschub: VC-Dimension

- Es gibt (meistens) mehrere Hypothesen, die mit den gegebenen Daten konsistent sind
 - → Welche davon auswählen?
- Wähle einfachste Hypothese (Occams Razor)
 - → Welches ist die einfachste?
 - → Antwort: VC-Dimension beschreibt Einfachheit der Hypothesenräume

Structural Risc Minimization

- Gliedere Hypothesenraum in (sinnvolle) Teilklassen
- unter allen konsistenten Hypothesen wähle eine aus einer Teilklasse mit minimaler VC-Dimension

Welchen Kernel wählen?

Aus PAC-Theorie wissen wir, daß mit Wahrscheinlichkeit $(1-\delta)$ gilt:

$$\operatorname{error}_{\mathcal{D}} \leq \operatorname{error}_{T} + \sqrt{\frac{\operatorname{VC}(H)(\log(2m/\operatorname{VC}(H)) + 1) - \log(\delta/4)}{m}}$$

- ullet error $_{\mathcal{D}}$: tatsächlicher Fehler, error $_T$: Trainingsfehler
- VC(H): VC-Dimension von H
- m Anzahl der Beispiele

Wähle nun denjenigen Kernel Φ , der obigen Ausdruck minimiert

- → Strukturelle Risiko-Minimierung
 - ullet Trade-Off zwischen error_T und $\mathrm{VC}(H)$ (analog MDL)

Zusammenfassung SVM

- Lerne lineare Separatoren
 - Wähle Separatoren, die den Margin maximieren
 - Schlupfvariablen f
 ür unseparierbare Daten
 - Standard-Algorithmen der quadratischen Optimierung
- Lernen von nicht-linearen Funktionen mittels Kernels
 - Projektion in h\u00f6herdimensionalen Raum
 - Kernel-Funktionen führen diese Projektion implizit aus, ohne zusätzlichen Rechenaufwand
 - Wähle Hypothese (Support-Vektoren und Wahl von Φ), die strukturelles Risiko minimieren
- Fast alle (numerischen) Lernalgorithmen lassen sich mittels Kernels darstellen
 - Neuronale Netze, Nearest Neighbour, Naive Bayes, ...