Embedded Systems

4a. Example Network Processor

Lothar Thiele

Contents of Course

Software-Based NP

Network Processor: Programmable Processor Optimized to Perform Packet Processing

- How to Schedule the CPU cycles meaningfully?
 - Differentiating the level of service given to different flows
 - Each flow being processed by a different processing function

Our Model – Simple NP

- Real-time flows have deadlines which must be met
- Best effort flows may have several QoS classes and should be served to achieve maximum throughput

Task Model

Packet processing functions may be represented by directed acyclic graphs

End-to-end deadlines for RT packets

voice processing

Architecture

- First Schedule RT, then BE (background scheduling)
 - Overly pessimistic
- ▶ Use EDF Total Bandwidth Server
 - EDF for Real-Time tasks
 - Use the remaining bandwidth to server Best Effort Traffic
 - WFQ (weighted fair queuing) to determine which best effort flow to serve; not discussed here ...

▶ As discussed, the basis is the TBS:

computation demand of best effort packet

$$d_k = \max\{r_k, d_{k-1}\} + c_k/U_s$$
 deadline of best effort packet
$$\text{utilization by real-time flows}$$
 arrival of best effort packet

- But: utilization depends on time (packet streams)!
 - Just taking upper bound is too pessimistic
 - Solution with time dependent utilization is (much) more complex – BUT IT HELPS ...

Before

After

