DataPrivacy HW2

PB18111760 王嘉梁

DataPrivacy HW2

—:

1 Concept of DP(15')

1.1

Prove that the Laplace mechanism preserves $(\epsilon, 0)$ -DP.

1.2

Please explain the difference between $(\epsilon, 0)$ -DP and (ϵ, δ) -DP. Typically, what range of δ we're interested in? Explain the reason.

1.3

Please explain the difference between DP and Local DP.

考虑任意相邻数据集x、 $y\in\mathbb{N}^{|k|}$, $(||x-y||_1\leq 1)$ 设f是 $\mathbb{N}^{|k|}\to\mathbb{R}^k$ 的映射函数,用 p_x 代表概率密度函数 $M_L(x,f,\epsilon)$,用 p_y 代表概率密度函数 $M_L(y,f,\epsilon)$ 比较两个概率密度函数在任意点 $z\in\mathbb{R}^k$ 的大小:

$$\begin{split} \frac{p_x(z)}{p_y(z)} &= \prod_{i=1}^k (\frac{exp(-\frac{\epsilon|f(x)_i - z_i|}{\Delta f})}{exp(-\frac{\epsilon|f(y)_i - z_i|}{\Delta f})}) \\ &= \prod_{i=1}^k exp(\frac{\epsilon(|f(y)_i - z_i| - |f(x)_i - z_i|)}{\Delta f}) \\ & = \exists \text{ } \exists \text{ } \exists \exp(\frac{\epsilon(|f(y)_i - z_i| - |f(x)_i - f(y)_i|}{\Delta f}) \\ & \leq \prod_{i=1}^k exp(\frac{\epsilon|f(x)_i - f(y)_i|}{\Delta f}) \\ & = exp(\frac{\epsilon\sum_{i=1}^n |f(x)_i - f(y)_i|}{\Delta f}) \\ & = exp(\frac{\epsilon\sum_{i=1}^n |f(x)_i - f(y)_i|}{\Delta f}) \\ & = \exp(\frac{\epsilon \cdot ||f(x) - f(y)||_1}{\Delta f}) \\ & \leq exp(\epsilon) \\ & = \exists \text{ } \exists \text{ }$$

综上所述, $Laplace\ mechanism\$ 满足 $(\epsilon,0)-DP$

1.2

一个算法 M满足 $(\epsilon,0)-DP$, 即对所有相邻的输入 D, D', 对所有的度量 S, $Pr[M(D)\in S]\leq e^{\epsilon}Pr[M(D)\in S]$ 一个算法 M满足 $(\epsilon,\delta)-DP$, 即对所有相邻的输入 D, D', 对所有的度量 S, $Pr[M(D)\in S]\leq e^{\epsilon}Pr[M(D)\in S]+\delta$ 也即是, $(\epsilon,0)-DP$ 在所有时候都严格控制相邻数据集输出的相似性,但 $(\epsilon,\delta)-DP$ 允许在 δ 的情况下,相邻数据集的输出不同 $(\epsilon,0)-DP$ 虽然对于隐私数据的保护比 $(\epsilon,\delta)-DP$ 好,但与之相对的,需要付出数据可用性更差的代价 $(\epsilon,\delta)-DP$ 虽然只在 $(1-\delta)$ 的概率下保证了 $(\epsilon,0)$ 隐私条件,但可以获得更好的 loss

一般的,对于一个共n条记录的敏感数据集,我们选择 $\delta << rac{1}{n}$,因为这样可以保证 $\delta * n << 1$ record。保证每条记录的安全

1.3

DP中存在一个可信的数据中心,将所有用户的数据收集到数据中心后,针对每个查询,对原始数据进行处理后返回查询结果。 然而现实中很难存在一个让所有人都相信的第三方数据中心,所以Local-DP应运而生。 在Local-DP中,不存在这样的可信数据中心,每个用户在上传自己的数据之前,都要进行加噪,以防自己的隐私大规模泄露。

二者对于隐私保护的定义都是相同的,即对于任意两个相邻数据集x,y, 他们对于查询的输出相似程度由 (ϵ,δ) 控制:

 $P[f(x)=t] \leq e^{\epsilon}P[f(y)=t] + \delta$

不同之处在于,DP中x,y来源是所有用户的数据总集,而LDP中x,y来源是每个用户自己的数据集。

2 Basics of DP(30')

ID	Sex	Chinese	Mathematics	English	Physics	Chemistry	Biology
1	Male	96	58	80	53	56	100
2	Male	60	63	77	50	59	75
3	Female	83	86	98	69	80	100
2000	Female	86	83	98	87	82	92

Table 1: Scores of students in School A

Table 1 is the database records scores of students in School A in the final exam. We need to help teacher query the database while protecting the privacy of students' scores. The domain of this database is $\{Male, Female\} \times \{Male, Female, Fema$

 $\{0, 1, 2, ..., 100\}^6$. In this question, assume that two inputs X and Y are neighbouring inputs if X can be obtained from Y by removing or adding one element. Answer the following questions.

2.1

What is the sensitivity of the following queries:

(1)
$$q_1 = \frac{1}{2000} \sum_{ID=1}^{2000} Mathematics_{ID}$$

(2)
$$q_2 = max_{ID \in [1,2000]} English_{ID}$$

2.2

Design ϵ -differential privacy mechanisms corresponding to the two queries in 2.1 where $\epsilon = 0.1$. (Using Laplace mechanism for q_1 , Exponential mechanism for q_2 .)

2.3

Let $M_1, M_2, ..., M_{100}$ be 100 Gaussian mechanisms that satisfy (ϵ_0, δ_0) -DP, respectively, with respect to the database. Given $(\epsilon, \delta) = (1.25, 10^{-5})$, calculate σ for every query with the composition theorem (Theorem 3.16 in the textbook) and the advanced composition theorem (Theorem 3.20 in the textbook, choose $\delta' = \delta$) such that the total query satisfies (ϵ, δ) - DP.

2.1

$$egin{align*} (1)q_1 &= rac{1}{2000} \sum_{ID=1}^{2000} Mathematics_{ID} \ &sensitivity = rac{100}{2000} = rac{1}{20} \ (2)q_2 &= max_{ID \in [1,2000]} English_{ID} \ &sensitivity = 100 (某个学生 English = 100, 其余学生 English均为0) \end{aligned}$$

$$(1)$$
对于 q_1 ,使用 $Laplace$ 机制, $\Delta f = sensitivity(q_1) = rac{1}{20}$, $\epsilon = 0.1$ 所以 $rac{\Delta f}{\epsilon} = 0.5$,所以 q_1 需要对数据加上 $Lap(0.5)$ 的噪声 (2) 对于 q_2 ,使用指数机制, $\Delta f = GS(q_2) = max_{r \in R, ||D-D'||_1 \le 1}(q_2(D,r) - q_2(D',r))$ 在这个问题中,我们关心的是成绩的最大值,所以可用性函数 $q_2(D,r)$ 应该取 $English - score$ 所以 $\Delta f = 100$, $\epsilon = 0.1$ 所以 $rac{\epsilon}{2\Delta f} = rac{1}{2000}$,所以 q_1 需要对数据加上 $E(rac{1}{2000})$ 的噪声

2.3

Theorem 3.16. Let $\mathcal{M}_i: \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}_i$ be an $(\varepsilon_i, \delta_i)$ -differentially private algorithm for $i \in [k]$. Then if $\mathcal{M}_{[k]}: \mathbb{N}^{|\mathcal{X}|} \to \prod_{i=1}^k \mathcal{R}_i$ is defined to be $\mathcal{M}_{[k]}(x) = (\mathcal{M}_1(x), \dots, \mathcal{M}_k(x))$, then $\mathcal{M}_{[k]}$ is $(\sum_{i=1}^k \varepsilon_i, \sum_{i=1}^k \delta_i)$ -differentially private.

Theorem 3.20 (Advanced Composition). For all ε , δ , $\delta' \geq 0$, the class of (ε, δ) -differentially private mechanisms satisfies $(\varepsilon', k\delta + \delta')$ -differential privacy under k-fold adaptive composition for:

$$\varepsilon' = \sqrt{2k\ln(1/\delta')}\varepsilon + k\varepsilon(e^{\varepsilon} - 1).$$

$$(1)$$
对于 q_1 使用 $Theorem3.16$:

$$M_i (i \in [1,100])$$
满足 $(\epsilon_o, \delta_0) - DP$,根据 $Theorem~3.16:$

$$M_{[100]}$$
 満足 $(\sum_{i=1}^{100}\epsilon_i,\sum_{i=1}^{100}\delta_i)-DP=(100\epsilon_o,100\delta_0)-DP$

我们想要 $M_{[100]}$ 去满足的是 $\left(1.25,10^{-5}
ight)-DP$,则 $\epsilon_0=1.25*10^{-2}$, $\delta_0=10^{-5}*10^{-2}$

因为 q_1 所查询是均值,所以L2距离与L1距离相同, $\Delta f=0.05$

$$\sigma = \frac{\sqrt{2ln(\frac{1.25}{\delta_0})} * \Delta f}{\epsilon_0} \frac{\sqrt{2ln(\frac{1.25}{10^{-7}})} * \frac{1}{20}}{1.25 * 10^{-2}} = 22.8674$$

对于 q_1 使用Theorem3.20:

即
$$\epsilon'=1.25,100\delta+\delta'=10^{-5}$$
 又 有 $\delta'=\delta_0$,故 $\epsilon'=1.25=\sqrt{2*100*ln(\frac{1}{\delta'})}*\epsilon_0+100*\epsilon_0(e^{\epsilon_0}-1),\delta'=\frac{10^{-5}}{101}\approx 10^{-7}$ 解 方程 得到 $\epsilon_0=0.021208738$, $\delta_0=10^{-7}$, $\sigma=\frac{\sqrt{2ln(\frac{1.25}{\delta_0})}*\Delta f}{\epsilon_0}$ 对于 $Gaussian\ Machanisms$, $\Delta f=max_{D,D'}||f(D)-f(D')||_2$ 因为 q_1 所 查询是 均值,所以 $L2$ 距离与 $L1$ 距离相同, $\Delta f=0.05$
$$\sigma=\frac{\sqrt{2ln(\frac{1.25}{\delta_0})}*\Delta f}{\epsilon_0}\approx \frac{\sqrt{2ln(\frac{1.25}{10^{-7}})}*\frac{1}{20}}{0.021208738}=13.4776$$

(2)对于 q_2 使用Theorem 3.16

$$egin{aligned} M_i (i \in [1,100])$$
满足 $(\epsilon_o,\delta_0) - DP,$ 根据 $Theorem~3.16: \ M_{[100]}$ 满足 $(\sum_{i=1}^{100} \epsilon_i,\sum_{i=1}^{100} \delta_i) - DP = (100\epsilon_o,100\delta_0) - DP \end{aligned}$

我们想要 $M_{[100]}$ 去满足的是 $\left(1.25,10^{-5}
ight)-DP$,则 $\epsilon_0=1.25*10^{-2},\delta_0=10^{-5}*10^{-2}$

因为
$$q_2$$
所查询是最大值,所以 $L2$ 距离与 $L1$ 距离相同, $\Delta f = 100$
$$\sigma = \frac{\sqrt{2ln(\frac{1.25}{\delta_0})}*\Delta f}{\epsilon_0} = \frac{\sqrt{2ln(\frac{1.25}{10^{-7}})}*100}{1.25*10^{-2}} = 45734$$

对于 q_2 使用Theorem3.20:

又有
$$\delta'=\delta$$
,故 $\epsilon'=1.25=\sqrt{2*100*ln(\frac{1}{\delta'})}*\epsilon_0+100*\epsilon_0(e^{\epsilon_0}-1),\delta'=\frac{10^{-5}}{101}\approx 10^{-7}$ 解 方程 得到 $\epsilon_0=0.021208738,\delta_0=10^{-7},\sigma=\frac{\sqrt{2ln(\frac{1.25}{\delta_0})}*\Delta f}{\epsilon_0}$ 对于 $Gaussian\ Machanisms$, $\Delta f=max_{D,D'}||f(D)-f(D')||_2$ 因为 q_2 所查 询是最大值,所以 $L2$ 距离 与 $L1$ 距离 相同, $\Delta f=100$
$$\sigma=\frac{\sqrt{2ln(\frac{1.25}{\delta_0})}*\Delta f}{\epsilon_0}\approx\frac{\sqrt{2ln(\frac{1.25}{10^{-7}})*100}}{0.021208738}=26955$$

3 Local DP(30')

This question focuses on the problem of estimating the mean value of a numeric attributes by collecting data from individuals under ϵ -LDP. Assume that each user u_i 's data record t_i contains a single numeric attribute whose value lies in range [-1, 1]. Answer the following questions.

3.1

Prove that Algorithm 1 satisfies ϵ -LDP.

3.2

Prove that given an input value t_i , Algorithm 1 returns a noisy value t_i^* with $\mathbb{E}[t_i^*] = t_i \text{ and } Var[t_i^*] = \frac{t_i^2}{e^{\epsilon/2}-1} + \frac{e^{\epsilon/2}+3}{3(e^{\epsilon/2}-1)^2}.$

Algorithm 1

Input: tuple $t_i \in [-1, 1]$ and privacy parameter ϵ .

Output: tuple $t_i^* \in [-C, C]$;

- 1: Sample x uniformly at random from [0,1];
- 2: $C = \frac{exp(\epsilon/2)+1}{exp(\epsilon/2)-1};$ 3: $l(t_i) = \frac{C+1}{2} \cdot t_i \frac{C-1}{2};$ 4: $r(t_i) = l(t_i) + C 1;$
- 5: if $x < \frac{e^{\epsilon/2}}{e^{\epsilon/2}+1}$ then
- Sample t_i^* uniformly at random from $[l(t_i), r(t_i)]$;
- 7: **else**
- Sample t_i^* uniformly at random from $[-C, l(t_i)] \cup [r(t_i), C]$;
- 9: **end if**
- 10: return t_i^* ;

证毕!

$$\begin{split} (1)\mathbb{E}[t_{i}^{*}] &= \int_{-C}^{l(t_{i})} x * p(t_{i}^{*} = x) dx + \int_{l(t_{i})}^{r(t_{i})} x * p(t_{i}^{*} = x) dx + \int_{r(t_{i})}^{C} x * p(t_{i}^{*} = x) dx \\ &= \int_{-C}^{l(t_{i})} x * \frac{e^{\frac{\epsilon}{2}} - 1}{2e^{\epsilon} + 2e^{\frac{\epsilon}{2}}} dx + \int_{l(t_{i})}^{r(t_{i})} x * \frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2} dx + \int_{r(t_{i})}^{C} x * \frac{e^{\frac{\epsilon}{2}} - 1}{2e^{\epsilon} + 2e^{\frac{\epsilon}{2}}} dx \\ &= \frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2} * \frac{1}{2e^{\epsilon}} * [l^{2}(t_{i}) - r^{2}(t_{i})] + \frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2} [r^{2}(t_{i}) - l^{2}(t_{i})] \\ &= \frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2} (-\frac{1}{2e^{\epsilon}} + \frac{1}{2}) * \frac{2e^{\frac{\epsilon}{2}}}{e^{\frac{\epsilon}{2}} - 1} * t_{i} * \frac{2}{e^{\frac{\epsilon}{2}} - 1} \\ &= t_{i} \end{split}$$

$$\begin{split} (2) Var[t_i^*] &= E[(t_i^*)^2] - E[t_i^*]^2 \\ &= \int_{-C}^{l(t_i)} x^2 * \frac{e^{\frac{\epsilon}{2}} - 1}{2e^{\epsilon} + 2e^{\frac{\epsilon}{2}}} dx + \int_{l(t_i)}^{r(t_i)} x^2 * \frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2} dx + \int_{r(t_i)}^{C} x^2 * \frac{e^{\frac{\epsilon}{2}} - 1}{2e^{\epsilon} + 2e^{\frac{\epsilon}{2}}} dx - t_i^2 \\ &= \frac{\frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2}}{3e^{\epsilon}} [l^3(t_i) - r^3(t_i) + 2C^3] + \frac{\frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2}}{3} [r^3(t_i) - l^3(t_i)] - t_i^2 \\ &= \frac{e^{\epsilon} - e^{\frac{\epsilon}{2}}}{2e^{\frac{\epsilon}{2}} + 2} [(\frac{1}{3} - \frac{1}{3e^{\epsilon}}) \frac{6e^{\epsilon}t_i^2 + 2}{(e^{\frac{\epsilon}{2}} - 1)^3} + \frac{2}{3e^{\epsilon}} (\frac{e^{\frac{\epsilon}{2}} + 1}{e^{\frac{\epsilon}{2}} - 1})^3] - t_i^2 \\ &= \frac{t_i^2}{e^{\frac{\epsilon}{2}} - 1} + \frac{e^{\frac{\epsilon}{2}} + 3}{3(e^{\frac{\epsilon}{2}} - 1)^2} \end{split}$$

4 Random Subsampling(25')

Given a dataset $x \in \mathcal{X}^n$, and $m \in \{0, 1, ..., n\}$, a random m-sumsample of x is a new (random) dataset $x' \in \mathcal{X}^m$ formed by keeping a random subset of m rows from x and throwing out the remaining n - m rows.

4.1

Show that for every $n \in \mathbb{N}$, $\mathcal{X} \geq 2$, $m \in \{1,...,n\}$, $\epsilon > 0$ and $\delta < m/n$, the mechanism M(x) that outputs a random m-subsample of $x \in \mathcal{X}^n$ is not (ϵ, δ) -DP.

4.2

Although random subsamples do not ensure differential privacy on their own, a random subsample dose have the effect of "amplifying" differential privacy. Let $M: \mathcal{X}^m \to \mathcal{R}$ be any algorithm. We define the algorithm $M': \mathcal{X}^n \to \mathcal{R}$ as follows: choose x' to be a random m-subsample of x, then output M(x').

Prove that if M is (ϵ, δ) -DP, then M' is $((e^{\epsilon} - 1) \cdot m/n, \delta m/n)$ -DP. Thus, if we have an algorithm with the relatively weak guarantee of 1-DP, we can get an algorithm with ϵ -DP by using a random subsample of a database that is larger by a factor of $1/(e^{\epsilon} - 1) = O(1/\epsilon)$.

4.1

4.2

对于 M'算法而言,它的输出相对于原始数据的随机性来源于 M算法引入的 (ϵ,δ) 随机性以及 M'算法本身带来的m-subsample的随机性使用随机变量 $index\subseteq\{0,1,2,\ldots,n\}$,代表 M'算法中随机选择留下来的row是哪些,使用x,x'代表相邻数据集,二者相差某一个row,记为 t使用 x_t,x_t' 代表从 x,x'中随机采样的新数据集;令 S是 M'值域的任意子集

欲证明
$$M'$$
满足 $\left((e^{\epsilon}-1)*\frac{m}{n},\delta\frac{m}{n}\right)-DP$,即要证: $Pr[M'(x)\in S]\leq e^{(e^{\epsilon}-1)*\frac{m}{n}}Pr[M'(x')\in S]+\delta\frac{m}{n}$ 为简洁表达, $\phi q=\frac{m}{n}$,即证 $\frac{Pr[M'(x)\in S]-q\delta}{Pr[M'(x')\in S]}\leq e^{q(e^{\epsilon}-1)}$

将上式左值替换成有关算法M的表达式,x和x'将通过m-subsample变成 x_t 和 x_t' (规模从n维变成m维)

记 x_t 的随机变量为 $i\subseteq\{0,1,2,\ldots,n\}$,因为m-subsample随机从规模为n的x中选取m个row组成新的m维 x_t ,故 x_t 的newindex,即i有q的概率在index中,(1-q)的概率不在index中

同理 x_t' 的 newindex,即 i也有 q的 概率在 index中,(1-q)的 概率不在 index中 故可以得到:

$$\frac{Pr[M'(x) \in S] - q\delta}{Pr[M'(x') \in S]} = \frac{qPr[M(x_t) \in S|i \in index] + (1 - q)Pr[M(x_t) \in S|i \notin index] - q\delta}{qPr[M(x_t') \in S|i \in index] + (1 - q)Pr[M(x_t') \in S|i \notin index]}$$

```
因为M算法是满足(\epsilon,\delta)-DP的,所以我们可以得到M\leq e^{\epsilon}min\{Pr[M(x'_t)\in S|i\in index],Pr[M(x'_t)\in S|i\not\in index]\}+\delta
      所以qPr[M(x_t) \in S | i \in index] + (1-q)Pr[M(x_t) \in S | i \notin index] - q\delta
          \leq q(e^{\epsilon}min\{Pr[M(x'_t) \in S | i \in index], Pr[M(x'_t) \in S | i \notin index]\} + \delta) + (1-q)Pr[M(x_t) \in S | i \notin index] - q\delta
          1 \leq q(min\{Pr[M(x_t') \in S|i \in index], Pr[M(x_t') \in S|i \notin index]\}
                   +(e^{\epsilon-1})min\{Pr[M(x'_{\epsilon})\in S|i\in index], Pr[M(x'_{\epsilon})\in S|i\notin index]\}+\delta)
            +(1-q)Pr[M(x_t)\in S|i
otin index]-q\delta
      0 \leq q(min\{Pr[M(x_t') \in S|i \in index], Pr[M(x_t') \in S|i 
otin index]\}
                   +(e^{\epsilon-1})(qPr[M(x'_t)\in S|i\in index]+(1-q)Pr[M(x'_t)\in S|i
otin index])+\delta)
            +(1-q)Pr[M(x_t) \in S|i \notin index] - q\delta
          \leq q(Pr[M(x'_t) \in S|i \in index] + (e^{\epsilon-1})(qPr[M(x'_t) \in S|i \in index] + (1-q)Pr[M(x'_t) \in S|i \notin index]) + \delta)
             +(1-q)Pr[M(x_t) \in S|i \notin index] - q\delta
          \leq q(Pr[M(x_t') \in S|i \in index] + (e^{\epsilon-1})(qPr[M(x_t') \in S|i \in index] + (1-q)Pr[M(x_t') \in S|i \not\in index]))
             +(1-q)Pr[M(x_t) \in S|i \notin index]
          \leq (qPr[M(x_t') \in S|i \in index] + (1-q)Pr[M(x_t') \in S|i \not\in index])
             +(q(e^{\epsilon-1}))(qPr[M(x_t')\in S|i\in index]+(1-q)Pr[M(x_t')\in S|i
otin index])
          \leq (1 + q(e^{\epsilon - 1}))(qPr[M(x'_{+}) \in S|i \in index] + (1 - q)Pr[M(x'_{+}) \in S|i \notin index])
      由e^x \ge 1 + x,得
          0 \leq e^{q(e^{\epsilon-1})}(qPr[M(x'_{\epsilon}) \in S|i \in index] + (1-q)Pr[M(x'_{\epsilon}) \in S|i 
otin index])
      qPr[M(x_t) \in S|i \in index] + (1-q)Pr[M(x_t) \in S|i \notin index] - q\delta
      0 \leq e^{q(e^{\epsilon-1})}(qPr[M(x_t') \in S|i \in index] + (1-q)Pr[M(x_t') \in S|i 
otin index])
      \frac{qPr[M(x_t) \in S|i \in index] + (1-q)Pr[M(x_t) \in S|i \not\in index] - q\delta}{qPr[M(x_t') \in S|i \in index] + (1-q)Pr[M(x_t') \in S|i \not\in index]} \leq e^{q(e^{\epsilon-1})}
      \frac{Pr[M'(x) \in S] - q\delta}{Pr[M'(x') \in S]} \leq e^{q(e^\epsilon - 1)}
      Pr[M'(x) \in S] \leq e^{(e^{\epsilon}-1)*rac{m}{n}} Pr[M'(x') \in S] + \delta rac{m}{n}
证毕!
```