

- O vector space V over field K, basis, linear independence, dimension, subspace, complementary subspace, internal direct sum, (V=U&U'),
- (2) isomorphism, matrix, row/column rank,
- (3) 111 rank-nullity theorem: Let TeL(V, W), then dim(kerT) + dim(ImT) = dim(V) (Visfinite dimensional)
 (2) rank theorem: rank For a mxn matrix over K, its row rank equals its column rank.
- $\text{$\Psi$ trace, $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$; $\operatorname{det} A = \sum_{\sigma} (\operatorname{sgn} \sigma) a_{\sigma(\sigma), 1} \cdots a_{\sigma(\sigma), n}$; $\operatorname{det} A = \sum_{i=1}^{n} (-1)^{k+i} a_{k, i} \not\in \operatorname{det} A_{ki}$ \\ aka = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \operatorname{det} A_{ij}.$
- (1) trace: (1) tr AB = tr BA

 (2) tr (At13) = tankstan tr A + tr B.
 - (3) If A and B are matrices w.r.t. two bases for the Same linear transformation, then tr A = tr B and det A = det B.
- 6 The solutions to Ax = b takes the form $x_{o}ty_{o}$, where x_{o} is the particular solution and y_{o} solves Ax = 0. The solution to Ax = 0 forms a subspace of dimension n-r. (recall rank-nullity theorem)
- The characteristic polynomial: For a linear transformation from Ψ V to V, its charpoly. is $G(X)=\det(XI-T)$.
 - = Cayley-Hamilton theorem: G(T) = 0, the zero transformation.

- 8 minimal polynomials: Let TELIV). The minimal polynomial my generates thy polynomial multiple) all other polymonials p s.t. p(T) = 0. And $m_T(\lambda) \mid C_T(\lambda) \mid m_T^n(\lambda)$.
- 9 & eigenvalue: A s.t. for TeLIV): IV and TV=AV. l eigenvector: the V in above.
 - =) All eigenvalues constitute the spectrum, $\sigma(T)$.

L $\lambda \in \sigma(T) \Leftrightarrow C_T(\lambda) = m_T(\lambda) = 0$. & algebraic multiplicity = multiplicity of in C7(12). → G.M. ≤ A.M.

geometric multiplicity: dimension of eigenspace w.r.t. >.

- (10 11) The eigenvectors form a basis (=) the minimal polynomial splits over 1K into distinct (2) If $C_T(\lambda)$ splits over K, then det T = T eigenvalues, tr T = \sum eigenvalues.
- Suppose A has eigenvalues $\lambda_1, \ldots, \lambda_k$, with a.m. a_1, \ldots, a_k , Tis and g.m. g., ..., gk. (Suppose CA and ma splits over 1K): diagonalizable.

Futhermore, 11) $|J_{j,1}| = m_j \times m_j$, where m_j is the multiplicity of λ_j in $m_A(t)$.

[Here we suppose $J_{j,1}$ is the largest sub-block.)

(2) companion matrix: For f(x)=X+Z a; x, its companion matrix is

C(f) =
$$\begin{cases} 0 & 0 & 0 & -a_0 \\ 1 & 0 & 0 & -a_0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \vdots & 1 & \vdots & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{cases}$$
(Note: $f(x) = x^n + \sum_{j=0}^{n-1} a_j x^j$)

Thm: $m_{C(f)}(x) = f(x)$; $C_{C(f)}(x) = f(x)$.

Rational Canonical Form I: Given A, 3 p., ..., & Pr s.t.

(Frobenius canonical form) $P_1 \mid P_2 \mid \cdots \mid P_r$ and $T \mid P_3 = C_A$, $P_r = m_A$.

Rational Canonical Form II: For A, suppose
$$S \subset A(X) = f_1(X) \dots f_r(X)$$

$$|M_A(X)| = f_1(X) \dots f_r(X),$$

where fis are irreduible. Then A is similar to a unique A': maique up to ordering of blocks)

$$A' = \begin{pmatrix} B(f_1) & D \\ B(f_2) & \\ D & B(f_3) \end{pmatrix} \text{ where } B(f_3) = \begin{pmatrix} C(f_3^{s_1}) & O \\ D & C(f_3^{s_1}) \end{pmatrix}$$

and
$$S S_1 \leq S_{1-1} \leq \cdots \leq S_1 = M_j$$

$$\sum S_{k} = N_j .$$

(3) I.P. Space: (1) <u, v>> 0 & <u, v>= 0 (2) <u, v>= \(\tau \) (3) (au+bv, w)=asu, w> Norm: 11ull = <u,u>

Cauchy-Schwarz In.eq.: 1<u,v> < 11ull·11v11 tblv,w>.

Gram-Schmidt: Given a basis $\{v_1, ..., v_n\}$ construct orthonormal $\{e_1, ..., e_n\}$ by $e_1 = \frac{v_1}{||v_1||}$. $w_j = v_j - \sum_{\ell=1}^{j-1} \langle v_j, v_{\ell}, v_{\ell} \rangle e_{\ell} = \frac{w_j}{||w_j||}$.

(14) Let T be a linear map in V, its adjoint operator is T^* s.t. <Tx,y> = <x, Ty) YxyeV.

If V is complex then T* is Tt (when V is bounded)

(1) (S+T)* = S*+T*; (2) (T*)* = T; (3) (ST)* = T*S*. (4) tr T* = trT, det T*=det T

More special:

- (1) T is self-adjoint/Hermitian if $T^* = T$. (In IR, it's called symmetric)
- (2) T is skew-Hermitian if T*=-T.

 (3) R: without orthogonal if T*T=I. -> unitary if T*T=TT*=I.

 Ly (i.e. <x,y>= <Tx,Ty>.)

 (11)
- (4) normal if TT*=T*T.
- (1) If T is { self-adjoint, then $\forall \lambda \in \sigma(T)$, $f\lambda \in \mathbb{R}$. | skew-symmetric | λ is purely imaginary | whitary (orthogonal) | $|\lambda| = 1$ ($\lambda = \pm 1$)
 - (2) Rayleigh: For a Hermitian T, $\forall v \neq 0$, $\lambda_{min} \leq \frac{\langle v, v \rangle}{\langle v, v \rangle} \leq \lambda_{max}$.

Equality attained only when V is eigenvector of Amin/Amax.

(b)	For a	self-adjoint	7,	it is	s positive positive	semidefinite definite		{ <tx,y> >0</tx,y>	<tx,x> > ● D ∀x ≠ o .</tx,x>
								(LIX 11/2 20	$\langle T_{X}, X \rangle > 0$ 2 to be self-adjoint)
								C CC adeshit how	10 62 354 550

Theorem: T is positive semidefinite \iff $\exists \underline{self-adjoint} \ B\& \& such that T=B^2=C^*C$.

And, sif we require B to be positive semidefinite, B is unique. $\exists B\& C$ are invertible $\rightleftarrows T$ is positive definite.

(2) Theorem: T is positive - semidefinite (>) YAE O(T), X>0. (definite (>) >0)

(3) T is pos-def. $\not\equiv \iff \det T_k > 0$, where T_k is the first k-k submatrix of T. Ly then $\langle u,v \rangle_{\not R} = \langle Tu,v \rangle$ defines a new inner product.

Polar decomposition: For any $T \in L(V)$, T = UP,

positive

where daP is unique, semidefinite, and P is unitary.

If T is invertible, then daP is pos-def and P is also unique.

P= JT*T.

Unitary: 11Tull=11v11

(=) rows of T are orthonormal basis of 1k".

(=) columns - - - - -

(1) If A is normal, then A is diagonalizable and 3 unitary U s.t. UAU* is diagonal.

12) If A is symmetric real motrix, then A is diagonalizable and 3 orthogonal U s.t. UAU* is diagonal.

Orthogonal matrix can be represented as

and $\begin{bmatrix} R_1 & \dots & 0 \\ 0 & R_K \end{bmatrix}$ if n is odd.

Here
$$R_j = \begin{pmatrix} \cos \theta_j - \sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$
 or $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

- U Vandermonde mostrix: $\begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & \vdots & \vdots & \vdots \\ 1 & \vdots &$
- Change of basis: Suppose we want to change from basis B, to B2, let WEV, and assume B_= {u,...,un}, B_z= {BE V1,..., Vn}. => V1, ..., Vn are lin. comb. of U1, ..., Un. Suppose $[V_1]_{B_1} = {m_{11} \choose \vdots}$, ..., $[V_n]_{B_1} = {m_{nn} \choose \vdots}$

Let
$$A=\{[V_1]_{B_1}, \dots, [V_n]_{B_1}\}$$
, then $A[V]_{B_2}=[V]_{B_1}$.

Matrix representation: Let $\{V_1,\dots,V_n\}$ and $\{w_1,\dots,w_m\}$ be bases for $V \& W$.

Then $([T]_{B}^{Y})_{ij}$ can be obtained by $T(v_{j}) = \sum_{i=1}^{m} a_{ij} = u_{ij} w_{i}$. and $\frac{1}{12} \frac{1}{12} \frac{1$

3) diagonalizable: A is d-able (=> =1P s.t. PAP-1 is diagonal (=> sum of climensions of eigenspace is n. (=>) = a basis consisting of A's eigenvectors.

inverse $(A^{-1})_{ij} = \underbrace{-11 \det(A^{ji})}_{\text{det}(A^{ji})}$, where A^{ij} is A without ith row & jth column. $= \underbrace{(-1)^{i+j} \det(A^{ji})}_{\text{det}(A} = \underbrace{(-1)^{i+j} \det(A^{ij})}_{\text{det}(A}$

Cramer's rule: If Ax = b, and A is nonsingular, then if we denote A: by A with ith column replaced by b, then x: $= \frac{\det A}{\det A}$.