Projet de parcours IA

LE CHENADEC Elouarn, ARNAUD Axel

Sommaire.

1

Présentation

2

Défis

Architecture(s)

Entrainement

Résultats

Retour sur le projet

Présentation du challenge

Service de gestion de catalogue destiné à la production de bibliothèques musicales

But du challenge :

Optimiser la conversion des prédictions numériques en décisions concrètes

Battre le benchmark (seuil à 0.5 sur les probabilités)

Présentation du dataset

110 000 inputs 290 features

features : probabilités pour un tag de correspondre à la musique (input)

et ~40 tags de catégories

Présentation du dataset

Indice de Gini de quasi 1 pour chaque classe

Un grand nombre de features 3 grandes classes de features quasi indépendantes Une distribution inégale intra classe

Un grand nombre de features

Espace de données complexe Difficulté computationnelle Risque de surapprentissage

Réduire le nombre de features ? Utiliser un modèle adapté aux espaces de données complexe ?

Un dataset divisé en 3

Difficulté pour un classificateur classique à classifier 3 jeux de données qui paraissent indépendants entre eux

Utiliser 3 modèles en parallèle ? Enrichir les relations interclasses ? Utiliser un modèle qui puisse traiter le dataset avec une attention multi-head ?

Distribution inégale intra classe

Les tags prédominants écraseront les tags rares pendant l'entrainement Mauvaise performance pour les tags rares Biais privilégiant les tags dominants

Effectuer une pondération ? Enrichir le dataset avant classification ? Utiliser un modèle avec une attention non uniforme ?

Plusieurs solutions envisagées

Random Forest	Distribution inégale 3 classes non corrélées	Espace de données peut-être trop complexe
Transformer	Gestion d'espace de données complexe 3 classes non corrélées	Tendance au sur-apprentissage sur données déséquilibrées
ESN	Enrichir les relations intra/inter classes	Pas d'autres avantages

Architecture(s)

Architecture retenue

Spécificités du modèle :

reservoirpy:

 Réservoirs de neurones paramétrés presque comme des Extreme Learning Machine (sans récurrence)

pytorch:

- Embedding qui concatène et compresse tous les inputs ensemble (nn.Linear)
- Transformer (nn.Transformer)
- Classifier (nn.Linear)

Entrainement

Entrainement

```
⊕ 13 Ⅲ …
😅 run model.ipynb M 💢 train transformer final.ipynb M 🗙
 music_catalogs_classifier > 🎏 train_transformer_final.ipynb > 🍖 import torch

♦ Generate + Code + Markdown | ▶ Run All S Restart 
☐ Clear All Outputs | ☐ Jupyter Variables ☐ Outline …

                                                                                                                                                                                                             .venv (Python 3.12.3)
                                                                                                                                                                                                        嘡 ▷ ▷ □ … 📵
        import torch
        import torch.nn as nn
        import torch.optim as optim
       from reservoirpy nodes import Reservoir, Ridge, ESN
       from sklearn.model_selection import train_test_split
       import numpy as np
       import pandas as pd
        # Configuration
        DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
       # EMBEDDING_SIZE = 256 # Taille des embeddings pour tous les inputs
       # NUM_HEADS = 8
       # NUM_LAYERS = 4
       # DROPOUT = 0.1
       EMBEDDING_SIZE = 285
       NUM_HEADS = 15
        NUM_LAYERS = 2
        DROPOUT = 0.2618574215322765
       LEARNING_RATE = 0.00015775441092497324
       EPOCHS = 20
       PATIENCE = 3
           y_instruments = pd.read_csv("../data/train/output_instruments_tags_data.csv")
            y_moods = pd.read_csv("../data/train/output_moods_tags_data.csv")
           # On peut garder seulement une partie des données
           X_genres = X_genres[: int(partOfData * len(X_genres))]
           X_instruments = X_instruments[: int(partOfData * len(X_instruments))]
           X_moods = X_moods[: int(partOfData * len(X_moods))]
           y_genres = y_genres[: int(partOfData * len(y_genres))]
            y_instruments = y_instruments[: int(partOfData * len(y_instruments))]
           y_moods = y_moods[: int(partOfData * len(y_moods))]
           X_genres_categories = X_genres_categories[
               : int(partOfData * len(X_genres_categories))
            X_instruments_categories = X_instruments_categories[
                : int(partOfData * len(X_instruments_categories))
nain* → ⊗ 0 <u>A</u> 21 ₩ 0
                                                                                                                                                                                           Spaces: 4 Cell 1 of 21 🔠 ✓ Prettier 🚨 ()
```

Optimisation des hyperparamètres

Best Trial (number=5)

0.07725657431556167

Params = [num_heads: 15, embedding_size: 285, num_layers: 2, dropout: 0.2618574215322765, learning_rate: 0.00015775441092497324]

Rang	g Date	Participant(s)	Score public
1	4 avril 2021 21:11	gcanat	0,4785
2	21 novembre 2021 21:30	aho	0,4651
3	12 avril 2021 03:17	huy217	0,4650
4	15 décembre 2021 20:53	vincent,bour	0,4646
5	28 Janvier 2021 22:50	cakedev	0,4585
6	12 décembre 2021 09:40	luguedon & BaptisteBenard	0,4575
7	16 décembre 2021 12:35	ppavia & enthomas	0,4568
8	17 décembre 2021 16:55	mkouhou & Maelle_a	0,4563
9	7 avril 2021 16:42	yfe	0,4562
10	8 mars 2021 18:24	Dupin_Sylvio	0,4562
11	12 novembre 2021 10:23	serrabii & slebdaoui	0,4562
12	-	benchmark	0,4561

notre score : ~ 0.495

Rapidité du modèle :

8h pour analyser le catalogue complet de Spotify (100 millions de titres)

Impact des ESNs

	Avec ESN	Sans ESN
Weighted avg F1 Score	0.495	0.484
Accuracy	0.97	0.97
Test Loss	0.0777	0.0784

Train dataset:

Test dataset:


```
Song 1:
 Benchmark Tags: chamber-orchestra, clarinet, glockenspiel, pizzicati, relaxed, warm
 Predicted Tags: chamber-orchestra, clarinet, glockenspiel, pizzicati, woodwinds-ensemble, relaxed, warm
Song 2:
 Benchmark Tags: indie-rock, bass-quitar, drum-kit, electric-guitar, rock-band, driving, spectacular
 Predicted Tags: indie-rock, acoustic-guitar, bass-guitar, drum-kit, electric-guitar, tambourine, confident, driving, spectacular
Song 3:
 Benchmark Tags: contemporary-classical, confident, optimistic
 Predicted Tags: confident, epic, inspirational, optimistic, uplifting
Song 4:
 Benchmark Tags: contemporary-classical, symphony-orchestra, majestic
 Predicted Tags: contemporary-classical, military-march, marching-band, symphony-orchestra, epic
Song 5:
 Benchmark Tags:
 Predicted Tags: world
Song 6:
 Benchmark Tags: hard-rock, heavy-metal, bass-guitar, drum-kit, electric-guitar, male-vocals, rock-band, vocal, confident, driving
 Predicted Tags: electric-guitar, male-vocals, vocal, confident, driving
Song 7:
 Benchmark Tags: sinister, suspenseful
 Predicted Tags: drones, electronica, serious, sinister, suspenseful
Song 8:
 Benchmark Tags: bass-guitar, drum-kit, electric-guitar
 Predicted Tags: bass-guitar, drum-kit, electric-guitar, synth-pad, synthesizer, spectacular
```

Répartition

Axel

Préparation et analyse des données Code réservoirs

Elouarn

Code Transformer
Code global
Entrainement

Réflexion sur les modèles

Retour sur le projet

Une architecture farfelue pour tester et explorer le plus possible

Impact minime des ESN sur la performance du modèle

Satisfaits du projet même si on a pas pu avoir le jeu de données y_test privées du challenge

Horizon: modèle qui prend en entrée le fichier audio et retourne les probabilités de tags

Merci pour votre attention