Morse Theory for Wasserstein Spaces

Joshua Mirth (joint with Henry Adams)

Department of Mathematics, Colorado State University

Motivation

Applied topology uses simplicial complexes to approximate a manifold based on data. This approximation is known not to always recover the homotopy type of the manifold. In this work-in-progress we investigate how to compute the homotopy type in such settings using techniques inspired by Morse theory.

Background

Points in simplices can be described with barycentric coordinates:

These can be interpreted as probability measures:

$$\sum_{i=0}^{n} \lambda_i x_i \iff \sum_{i=0}^{n} \lambda_i \delta_{x_i}$$

The set of finitely-supported probability measures on a metric space X admits a natural metric.

Definition: Let μ and ν be probability measures on X. Denote by $\Gamma(\mu,\nu)$ the set of all measures on $X\times X$ with marginals μ and ν . The p-Wasserstein distance is defined to be

$$d_W(\mu, \nu) = \inf_{\pi \in \Gamma} \left(\int d(x, y)^p d\pi \right)^{1/p}.$$

Definition: A metric simplicial complex on X is a metric space (S, d_W) where S is a collection of finitely-supported probability measures on X which satisfies:

- For all $x \in X$, the point mass δ_x is in S, and
- **2** If $\mu \in S$ and $\nu \ll \mu$, then $\nu \in S$.

Main Example: The Vietoris–Rips metric complex, $VR^m(X; r)$, contains all finitely-supported measures, μ , such that the diameter of the support of μ is less than r.

Questions

Main Question: Given a known metric space (e.g. a compact Riemannian manifold), M, what is the homotopy type of $VR^m(M;r)$ for all values of r?

Question: How is $VR^m(X;r)$ related to the ordinary Vietoris–Rips simplicial complex, VR(X;r), with the simplicial complex topology? (Partial answer: if X is finite then $VR^m(X;r) \cong VR(X;r)$.)

Question: Given X and Y and some operation on metric spaces \star , how is $\operatorname{VR}^m(X \star Y; r)$ related to $\operatorname{VR}^m(X; r) \star \operatorname{VR}^m(Y; r)$?

Morse Theory

Classical Morse theory is based on two lemmas [6]. Given a smooth manifold, M, and a smooth function $F \colon M \to \mathbb{R}$ with no degenerate critical points, then

- If $[a,b] \subseteq \mathbb{R}$ contains no critical values of F, then $F^{-1}(-\infty,a] \simeq F^{-1}(-\infty,b]$, and
- If a is an index-k critical point of F, then $F^{-1}(-\infty, a + \varepsilon) \simeq F^{-1}(-\infty, a \varepsilon) \cup D^k \text{ where } D^k \text{ is a k-cell.}$

We propose to answer the questions above using a form of Morse theory for metric simplicial complexes. In particular, [4] and [5] develop a form of differential geometry for Wasserstein spaces, which should be amenable to Morse theory.

What Can Happen at Higher Scales?

The homotopy type of the Vietoris–Rips complex of S^1 is known for all r [1], and the results are surprising:

$$\operatorname{VR}_{\leq}(S^1;r) \simeq \begin{cases} S^{2\ell+1} & \frac{\ell}{2\ell+1} < r < \frac{\ell+1}{2\ell+3} \\ \bigvee^{\infty} S^{2\ell} & r = \frac{\ell}{2\ell+1} \end{cases}.$$

Conjecture: $VR_{<}^m(S^1;r) \simeq VR_{<}(S^1;r)$ for all r, and $VR_{\leq}^m(S^1;r) \simeq VR_{\leq}(S^1;r)$ except when $r = \frac{\ell}{2\ell+1}$.

Preliminary Results

Theorem: For small r, $VR^m(M;r) \simeq M$.

Proof sketch: Appears in [2] and [3] for different types of M.

Theorem: For any metric spaces X and Y, and any $r \in [0, +\infty]$, we have $\operatorname{VR}^m(X \times Y; r) \simeq \operatorname{VR}^m(X; r) \times \operatorname{VR}^m(Y; r)$ and $\operatorname{VR}^m(X \vee Y; r) \simeq \operatorname{VR}^m(X; r) \vee \operatorname{VR}^m(Y; r)$.

Proof sketch: For products, the homotopy equivalence is given by forming the product measure:

$$\left(\sum_{i} \lambda_{i} \delta_{x_{i}}, \sum_{j} \lambda_{j} \delta_{y_{j}}\right) \mapsto \sum_{i,j} \lambda_{i} \lambda_{j} \delta_{(x_{i}, y_{j})}.$$

This has a homotopy inverse

$$\sum_{i,j} \lambda_{i,j} \delta_{(x_i,y_j)} \mapsto \left(\sum_i \sum_j \lambda_{i,j} \delta_{x_i}, \sum_j \sum_i \lambda_{i,j} \delta_{y_j} \right)$$

given by taking the marginals of a distribution.

Additional Known Results:

- For any convex $K \subseteq \mathbb{R}^d$, $VR^m(K;r)$ is contractible for all r.
- For $0 \le r < 1/3$, $VR^m(S^1; r) \simeq S^1$, and $VR^m(S^1; 1/3) \simeq S^3$.
- If X is a simply-connected space of non-positive curvature, then $VR^m(X;r) \simeq X$ all $r \in [0,+\infty]$.

References

[1] Michał Adamaszek and Henry Adams.

The vietoris—rips complexes of a circle.

Pacific Journal of Mathematics, 290(1):1–40, 2017.

[2] Michał Adamaszek, Henry Adams, and Florian Frick.

Metric reconstruction via optimal transport.

SIAM Journal on Applied Algebra and Geometry, 2(4):597–619, 2018.

[3] Henry Adams and Joshua Mirth.

Metric thickenings of euclidean submanifolds.

Topology and its Applications, 254:69–84, 2019.

[4] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré.

Gradient Flows in Metric Spaces and in the Space of Probability Measures.

[5] Wilfrid Gangbo, Hwa Kil Kim, and Tommaso Pacini.

Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems.

American Mathematical Soc., 2010.

[6] John Milnor.

2008.

Morse Theory.

Annals of Mathematics Studies. Princeton University Press, 1969.