Laborator 12

Scopul acestui laborator este testarea unui sistem de reziliență la defecte pentru hard-disk-uri: un array de tip RAID 6.

Atenție la copy-paste unele simboluri gen "-" se copiază greșit.

Exerciții

1. Se va porni o mașină virtuală Linux în Azure cu următoarele caracteristici:

- Se va merge la Next:Disks >.
- Se vor atașa înca 4 noi disk-uri, de același tip ca în imagine.

Sisteme Tolerante la Defecte

După adăugarea celor 4 unități, ar trebui să aveți următoarea configurație:

- Se va merge la Review+Create şi se va apăsa Create.
- 2. Prin putty conectati-vă la masina virtuală.
 - o IP-ul îl puteți găsi în pagina de informații a mașinii.
 - Veţi folosi username@IP public.
- 3. Instalaţi utilitarul mdadm:
 - o sudo apt-get update
 - sudo apt-get install mdadm
- 4. Identificați cele 4 disk-uri adăugate la crearea mașinii.
 - o lsblk
- Creați array-ul RAID 6 folosind cei 4 identificatori.
 - sudo mdadm --create --verbose /dev/md0 --level=6 --raid-devices=4
 /dev/[identificator disk1] /dev/[identificator disk2]
 /dev/[identificator disk3] /dev/[identificator disk4]
 - Verificare: cat /proc/mdstat
 - Observație: puteți trece la următorii pași, chiar dacă procesul nu este finalizat.
- 6. Se va crea si monta un sistem de fisiere
 - o sudo mkfs.ext4 -F /dev/md0
 - Se crează un director ce va fi folosit ca destinație de montare:

Sisteme Tolerante la Defecte

- sudo mkdir -p /mnt/md0
- Se montează noul sistem de fișiere:
 sudo mount /dev/md0 /mnt/md0
- Verificare: df -h -x devtmpfs -x tmpfs
- Observaţie: Ar trebui ca dimensiunea sa fie egală cu jumătate din suma dimensiunilor celor 4 disk-uri.
- 7. Se va salva configurația noului array pentru a ne asigura că aceasta va fi disponibilă la următoarele reporniri ale sistemului:
 - o sudo mdadm --detail --scan | sudo tee -a /etc/mdadm/mdadm.conf
 - o sudo update-initramfs -u
 - o echo '/dev/md0 /mnt/md0 ext4 defaults,nofail,discard 0 0' | sudo
 tee -a /etc/fstab
- 8. Se va genera un fișier mare, care să nu depășească spațiul disponibil, în cadrul array-ului folosind o metodă aleasă de voi.
- 9. Folosind portalul Azure, se va detașa unul din disk-uri. Pe urmă se va apăsa pe butonul Save.

LUN ①	Disk name	Storage type	Size (GiB)	Max IOPS	Max throughput (M	Encryption ①	Host caching ①
0	disk1	Premium SSD LRS	4	120	25	SSE with PMK	None ∨ X
1	disk2	Premium SSD LRS	4	120	25	SSE with PMK	None ∨ X
2	disk3	Premium SSD LRS	4	120	25	SSE with PMK	None ∨ X
3	disk4	Premium SSD LRS	4	120	25	SSE with PMK	None ∨ X

- 10. Verificați starea array-ului RAID folosind comanda sudo cat /proc/mdstat
- 11. Se va verifica dacă fișierul creat anterior există.
 - o În cazul în care array-ul creat (md0) apare inactiv, reporniți-l rulând comanda sudo mdadm --manage /dev/md0 --run
- 12. Reluați pașii de la 9 la 10 încă o data.

Laboratorul va fi prezentat. Veți intra pe rând pe teams. Va trebui să aveți terminal putty deschis la mașina principală și să . De asemenea, va trebui să aveți deschis site-ul Azure. **Toate setările ar trebui să le faceți dinainte.**

După prezentarea laboratorului mergeți pe Azure în tab-ul Resources și ștergeți toate resursele create.

