Soru-3 (30 P)

Bir GPS (Küresel konumlama sistemi) cihazı ile bir mikrodenetleyici haberleştirilmektedir. GPS alıcısının her 250 us'de (mikrosaniye) bir 3 byte'lık bir paketi mikrodenetleyicinin P1 portuna gönderdiği varsayılmaktadır. Dolayısı ile mikrodenetleyicinin de her 250 us'de bir, P1 portunu okuduğu kabul edilecektir. Program, P1 portunu okuduktan sonra sonsuz döngülü ve boş *bekle* altprogramına dallanmaktadır.

GPS alıcısının veri gönderim kuralı şu şekildedir:

Art arda gönderilen 3 baytın ilk ikisi, verinin türünü, son bayt ise veriyi gösterir. Örneğin; 414CFF (41h='A', 4Ch='L', FFh=255m (yüksekliğin verisi)). "AL" karakterleri yükseltinin gönderildiğini belirtmektedir. Eğer bunların dışında bir karakter dizisi gelirse mikrodenetleyici bu mesajı dikkate almaz. Verilen bilgilere göre, P1 portundan okunan veriler <u>yükseklik verisi</u> ise bu yükseklik verisini 5000h adresine yazan programı 8051 assembly dilinde **T0 ile kesme tabanlı** olarak tasarlayınız. İşlemcinin her makine çevrimi 1mikrosaniyedir (MC=1us).

Önemli NOT: SFR atamalarını BAYT ve HEX tabanlı olarak yapınız

Soru-4 (35 P)

İtici, P1.0 pinine; Sensor, harici kesme INT0'a; Motor, P1.1'e bağlıdır... Sistem şu şekilde çalışmaktadır:

- Sistem ilk başladığında motor =1 (bantı yürüt), itici=0 (dur) olmalıdır
- Kontrol noktasına gelen şişe dolu ise herhangi bir eylem yapılmayacaktır. Boş bir şişe kontrol noktasına erişirse normalde lojik-1 üreten sensor, düşen bir kenar üretip tekrar lojik-1'e dönmektedir. Bu durumda, bant durdurulur ve itici 60ms boyunca lojik-1 yapılır ve boş şişe "Boş" isimli sepete itilir. 60ms sonunda itici lojik-0 yapılarak ilk konumuna ayarlanır ve bant tekrar yürütülmeye başlanır.

Yukarıdaki senaryoyu 1us makine çevrimine sahip bir mikrodenetleyici kullanarak kesme ve T1 zamanlayıcısını kullanarak tasarlayınız.

Önemli NOT: SFR atamalarını BAYT ve HEX tabanlı olarak yapınız

Soru-1 (Her şık 2p, toplam 20p)

Aşağıdaki boşlukları doldurunuz

- a) Z/S biriminin saat darbesi harici olarak uygulanıyorsa Z/S birimi Counter/Sayıcı modunda çalıştırılmalıdır.
- **b)** 8051 8 bitlik bir denetleyicidir.
- c) Reset vektörü hariç tüm kesmeler için 8.bayt yer ayrılmıştır.
- d) Kesme öncelikleri .IP .kaydedicisi ile belirlenir
- e) Z/S konfigürasyon (ayar) kaydedicileri SFR belleğinde bulunur
- f) Harici kesme birimlerinin düşen kenarda etkin olmaları için ITO/IT1 bitleri kullanılır
- g) SJMP ile geri yönde 128.bayt ve ileri yönde 127.bayt dallanalabilir
- h) e) AJMP komutu 2 bayt yer kaplar
- i) f) Kesme rutininden dönerken **RETI** .komutu kullanılmalıdır
- j) Bir kesme oluştuğunda bir sonraki adres değeri .STACK/ YIĞIN .belleğe kaydedilir

Soru-2 (5p+5p+5p)

ORG 0h MOV R6, #1Ah MOV R7, #44h MOV R4,#22h MOV R5,#0DBh CALL SUB JMP \$ SUB:MOV A,R7 ADD A,R5 MOV R3, A MOV A, R6 ADDC A,R4 MOV R2, A MOV A, #00h ADDC A, #00h MOV R1, A RET

a) Yandaki programın amacı nedir? (5p)

Program 16-bit toplama yapmaktadır.

b)Program sonsuz döngüye girdikten sonra R2 ve R3'ün değerleri nedir?(5p+5p)

R2=.....<mark>03Dh</mark> R3=...<mark>1Fh</mark>

CEVAP-4 (35P)

;RESET VEKTÖRÜ ORG OH **JMP MAIN** ;ANA PROGRAMA GİT ;INTO KESME VEKTÖRÜ ORG 03H 10 PUAN MOV P1,#01 ; iTiCi=1, MOTOR=0 ;60ms=60000 SAYMA, 65536-60000=5536 MOV TL1,#LOW(5536) ; DÜŞÜK BAYT MOV TH1,#HIGH(5536); YÜKSEK BAYT MOV TCON,#41H ;TIMER1 RUN, ITO=1 RETI 10 PUAN ;T1 KESME VEKTÖRÜ ORG 1BH MOV P1,#01 ; iTiCi=0, MOTOR=0 MOV TCON,#0H ;TIMER1 STOP RETI ORG 30H ;ANA BAŞLANGIÇ MAIN: MOV P1,#02 ;iTiCi=0, MOTOR=1 ;SETB EXO, ET1, EA MOV IE.#89H 15 PUAN MOV TMOD,#10H ;T1- 16-BİT TİMER ;SONSUZ DÖNGÜ JMP \$ END

CEVAP-3 (30p)

		ORG 0H	;RESET VEKTÖRÜ
		JMP MAIN	;ANA PROGRAMA DALLAN
		ORG 0BH	;T0 KESME VEKTÖRÜ
5P		JMP TO_ISR	;TO_ISR DALLAN
			· -
		ORG 30H	;ANA PROGRAM BAŞLANGICI
	MAIN:	MOV IE,#82H	;EA=1, ET0=1
		MOV TMOD,#02H	;T0=8-OTOMATİK YÜKLEME
10P		MOV TL0,#6	; 256-250=6 DAN DOLAYI
		MOV TH0,TL0	; THO OTO YÜKLEME DEĞERİ
		MOV TCON,#10H	;SETB TRO KABUL DEĞİL, SORU ŞARTI
		MOV DPTR,#5000	;XRAM BAŞLANGIÇ ADRESİ
		CLR A	;AKÜ=0, KARAKTER SAYICI
	BEKLE:	JMP \$;SONSUZ BOŞ DÖNGÜ
	TO_ISR:	CJNE A,#2,KOMT	;AKÜ≠2 DEĞİLSE OKUMAYA DEVAM
		MOV A,P1	;AKÜ=2 İSE VERİYİ AKÜYE KAYDET
		MOVX @DPTR,A	;VERİYİ 5000 ADRESİNE YAZ
		JMP CLR_A	;AKÜYÜ SIFIRLA, YENİ VERİ BEKLE
	KOMT:	JZ ILK_CH	;AKÜ=0 İSE İLK KARAKTERİ OKU
15P		MOV R1,P1	;DEĞİLSE IKINCI KARAKTERI OKU
		CJNE R1,#4CH,CLR_A	;'L' KARAKTERİ DEĞİLSE RESETLE
		INC A	;OKUNAN 'L', AKÜ=2
		RETI	; ANA PROGRAMA DÖN
	ILK_CH:	MOV R0,P1	; İLK CHAR OKUNDU
		CJNE RO,#41H,CLR_A	,'A' KARAKTERİ DEĞİLSE RESETLE
		INC A	; OKUNAN CHAR='A', AKÜ=1
		RETI	; ANA PROGRAMA DÖN
	CLR_A:	CLR A	; 'A' DEĞİL O ZAMAN SIFIRLA
		RETI	; ANA PROGRAMA DÖN
		END	
		END	