```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.svm import SVC, LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn import preprocessing
df = pd.read csv('Churn Modelling.csv')
df.info()
df.head()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	RowNumber	10000 non-null	int64		
1	CustomerId	10000 non-null	int64		
2	Surname	10000 non-null	object		
3	CreditScore	10000 non-null	int64		
4	Geography	10000 non-null	object		
5	Gender	10000 non-null	object		
6	Age	10000 non-null	int64		
7	Tenure	10000 non-null	int64		
8	Balance	10000 non-null	float64		
9	NumOfProducts	10000 non-null	int64		
10	HasCrCard	10000 non-null	int64		
11	IsActiveMember	10000 non-null	int64		
12	EstimatedSalary	10000 non-null	float64		
13	Exited	10000 non-null	int64		
dtypes: float64(2), int64(9), object(3)					

memory usage: 1.1+ MB

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenu
0	1	15634602	Hargrave	619	France	Female	42	
1	2	15647311	Hill	608	Spain	Female	41	
2	3	15619304	Onio	502	France	Female	42	
3	4	15701354	Boni	699	France	Female	39	
4	5	15737888	Mitchell	850	Spain	Female	43	

df.drop(columns=['RowNumber', 'CustomerId', 'Surname'], inplace=True)

```
df.isna().sum()
```

CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

df.describe()

	CreditScore	Age	Tenure	Balance	NumOfProduc
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.0000
mean	650.528800	38.921800	5.012800	76485.889288	1.5302
std	96.653299	10.487806	2.892174	62397.405202	0.5816
min	350.000000	18.000000	0.000000	0.000000	1.0000
25%	584.000000	32.000000	3.000000	0.000000	1.0000
50%	652.000000	37.000000	5.000000	97198.540000	1.0000
75 %	718.000000	44.000000	7.000000	127644.240000	2.0000
max	850.000000	92.000000	10.000000	250898.090000	4.0000

```
X=df.iloc[:, :df.shape[1]-1].values  #Independent Variables
y=df.iloc[:, -1].values  #Dependent Variable
X.shape, y.shape

print(X[:8,1], '... will now become: ')
    ['France' 'Spain' 'France' 'France' 'Spain' 'Spain' 'France' 'Germany'] ...

label_X_country_encoder = LabelEncoder()
X[:,1] = label_X_country_encoder.fit_transform(X[:,1])
print(X[:8,1])

print(X[:6,2], '... will now become: ')
label_X_gender_encoder = LabelEncoder()
X[:,2] = label_X_gender_encoder.fit_transform(X[:,21))
```

```
print(X[:6,2])
     [0 2 0 0 2 2 0 1]
     ['Female' 'Female' 'Female' 'Female' 'Male'] ... will now become:
     [0 \ 0 \ 0 \ 0 \ 0 \ 1]
transform = ColumnTransformer([("countries", OneHotEncoder(), [1])], remainder="
X = transform.fit transform(X)
Χ
    array([[1.0, 0.0, 0.0, ..., 1, 1, 101348.88],
            [0.0, 0.0, 1.0, \ldots, 0, 1, 112542.58],
            [1.0, 0.0, 0.0, \ldots, 1, 0, 113931.57],
            [1.0, 0.0, 0.0, \ldots, 0, 1, 42085.58],
            [0.0, 1.0, 0.0, \ldots, 1, 0, 92888.52],
            [1.0, 0.0, 0.0, ..., 1, 0, 38190.78]], dtype=object)
X = X[:,1:]
X.shape
     (10000, 11)
X train, X test, y train, y test = train test split(X, y, test size=0.2, random
sc=StandardScaler()
X_{\text{train}}[:,\text{np.array}([2,4,5,6,7,10])] = \text{sc.fit\_transform}(X_{\text{train}}[:,\text{np.array}([2,4,5,6,7])])
X \text{ test}[:,np.array([2,4,5,6,7,10])] = sc.transform(X \text{ test}[:,np.array([2,4,5,6,7,1])])
sc=StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
X train
    array([[-0.5698444 , 1.74309049, 0.16958176, ..., 0.64259497,
             -1.03227043, 1.10643166],
            [ 1.75486502, -0.57369368, -2.30455945, ..., 0.64259497,
              0.9687384 , -0.74866447],
            [-0.5698444, -0.57369368, -1.19119591, \ldots, 0.64259497,
             -1.03227043, 1.48533467],
            [-0.5698444, -0.57369368, 0.9015152, \ldots, 0.64259497,
             -1.03227043, 1.41231994],
            [-0.5698444, 1.74309049, -0.62420521, ..., 0.64259497,
              0.9687384 , 0.84432121],
            [\ 1.75486502,\ -0.57369368,\ -0.28401079,\ \ldots,\ 0.64259497,
             -1.03227043, 0.32472465]])
```

Initialize & build the modelINPUT = Number columns (Independet) HIDDEN -

```
from tensorflow.keras.models import Sequential
# Initializing the ANN
classifier = Sequential()
```

```
from tensorflow.keras.layers import Dense
# The amount of nodes (dimensions) in hidden layer should be the average of inpu
# This adds the input layer (by specifying input dimension) AND the first hidden
classifier.add(Dense(activation = 'relu', input dim = 11, units=256, kernel init
# Adding the hidden layer
classifier.add(Dense(activation = 'relu', units=512, kernel initializer='uniform
classifier.add(Dense(activation = 'relu', units=256, kernel initializer='uniform
classifier.add(Dense(activation = 'relu', units=128, kernel_initializer='uniform
# Adding the output layer
# Notice that we do not need to specify input dim.
# we have an output of 1 node, which is the the desired dimensions of our output
# We use the sigmoid because we want probability outcomes
classifier.add(Dense(activation = 'sigmoid', units=1, kernel initializer='unifor
# Create optimizer with default learning rate
# sgd optimizer = tf.keras.optimizers.SGD()
# Compile the model
classifier.compile(optimizer='adam', loss='binary crossentropy', metrics=['accur
```

Model: "sequential"

classifier.summary()

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 256)	3072
dense_1 (Dense)	(None, 512)	131584
dense_2 (Dense)	(None, 256)	131328
dense_3 (Dense)	(None, 128)	32896
dense_4 (Dense)	(None, 1)	129

Total params: 299009 (1.14 MB) Trainable params: 299009 (1.14 MB) Non-trainable params: 0 (0.00 Byte)

```
classifier.fit(
X_train, y_train,
validation data=(X test,y test),
epochs=20,
batch size=32
 Epoch 1/20
 250/250 [============== ] - 4s 9ms/step - loss: 0.4234 - acc
 Epoch 2/20
 Epoch 3/20
 Epoch 4/20
 250/250 [============= ] - 3s 11ms/step - loss: 0.3430 - ac
 Epoch 5/20
 Epoch 6/20
 Epoch 7/20
 Epoch 8/20
 Epoch 9/20
 Epoch 10/20
 Epoch 11/20
 Epoch 12/20
 Epoch 13/20
 Epoch 14/20
 250/250 [============= ] - 2s 9ms/step - loss: 0.3094 - acc
 Epoch 15/20
 250/250 [============= ] - 3s 11ms/step - loss: 0.3030 - ac
 Epoch 16/20
 Epoch 17/20
 250/250 [============= ] - 3s 12ms/step - loss: 0.2988 - ac
 Epoch 18/20
 Epoch 19/20
 Epoch 20/20
 <keras.src.callbacks.History at 0x786149a80af0>
y pred = classifier.predict(X test)
y pred
 array([[0.43192458],
```

5 of 7 12/10/23, 13:01

[0.21820262].

```
[0.10865229],
            [0.22263762],
            [0.25179225],
            [0.2263274 ]], dtype=float32)
# To use the confusion Matrix, we need to convert the probabilities that a custo
# So we will use the cutoff value 0.5 to indicate whether they are likely to exi
y pred = (y pred > 0.5)
y_pred
    array([[False],
            [False],
            [False],
            [False],
            [False],
            [False]])
##Print the Accuracy score and confusion matrix
from sklearn.metrics import confusion matrix, classification report
cm1 = confusion matrix(y test, y pred)
cm1
    array([[1486, 109],
           [ 185, 220]])
```

print(classification report(y test, y pred))

accuracy_model1 = ((cm1[0][0]+cm1[1][1])*100)/(cm1[0][0]+cm1[1][1]+cm1[0][1]+cm1 print (accuracy model1, '% of testing data was classified correctly')

	precision	recall	f1-score	support
0 1	0.89 0.67	0.93 0.54	0.91 0.60	1595 405
accuracy macro avg weighted avg	0.78 0.84	0.74 0.85	0.85 0.75 0.85	2000 2000 2000

85.3 % of testing data was classified correctly