

Improving Image Captioning with Conditional Generative Adversarial Nets

Chen Chen, Shuai Mu, Wanpeng Xiao, Zexiong Ye, Liesi Wu, Qi Ju

Introduction

Introduction | Image captioning

A horse carrying a large load of hay and two people sitting on it.

Bunk bed with a narrow shelf sitting underneath it.

The man at bat readies to swing at the pitch while the umpire looks on.

A female tennis player in action on the court.

A group of young men playing a game of soccer

A man riding a wave on top of a surfboard.

- •MLE
- Reinforcement Learning
- •GANs

RL-based image captioning

1: exposure bias

2: do not optimize the whole sequence

BLEU-1, BLEU-2, ...

ROUGE

METEOR

CIDER

SPICE

RL-based image captioning | Self-critical sequence training

$$\begin{aligned} \text{CE loss} \quad \theta^* &= \arg\max_{\theta} \pi_{\theta}(\omega_1, \omega_2, \cdots \omega_T) \\ &= \arg\max_{\theta} \log \pi_{\theta}(\omega_1, \omega_2, \cdots \omega_T) \\ &= \arg\max_{\theta} \log \pi_{\theta}(\omega_1, \omega_2, \cdots \omega_T) \end{aligned} \\ &= \arg\max_{\theta} \left(r(\omega_1^s, \omega_2^s, \cdots, \omega_T^s) - r(\hat{\omega}_1, \hat{\omega}_2, \cdots, \hat{\omega}_T)\right) \pi_{\theta}(\omega_1^s, \omega_2^s, \cdots, \omega_T^s) \\ &= \arg\max_{\theta} \left(r(\omega_1^s, \omega_2^s, \cdots, \omega_T^s) - r(\hat{\omega}_1, \hat{\omega}_2, \cdots, \hat{\omega}_T)\right) \log \pi_{\theta}(\omega_1^s, \omega_2^s, \cdots, \omega_T^s) \\ &= \arg\max_{\theta} \left(r(\omega_1^s, \omega_2^s, \cdots, \omega_T^s) - r(\hat{\omega}_1, \hat{\omega}_2, \cdots, \hat{\omega}_T)\right) \sum_{i=1}^T \log \pi_{\theta}(\omega_i^s \mid \omega_1^s, \cdots, \omega_{i-1}^s) \\ &\log s = -\sum_{i=1}^T \log \pi_{\theta}(\omega_i^s \mid \omega_1, \cdots \omega_{i-1}) \end{aligned} \\ &\log s = -\left(r(\omega_1^s, \omega_2^s, \cdots, \omega_T^s) - r(\hat{\omega}_1, \hat{\omega}_2, \cdots, \hat{\omega}_T)\right) \sum_{i=1}^T \log \pi_{\theta}(\omega_i^s \mid \omega_1, \cdots, \omega_{i-1}^s) \end{aligned}$$

Rennie, Steven J., et al. "Self-critical sequence training for image captioning." arXiv preprint arXiv:1612.00563 (2016).

Proposed Algorithm

$$r(\tilde{\boldsymbol{x}}|\boldsymbol{I},\boldsymbol{x}) = \lambda \cdot p + (1-\lambda) \cdot s = \lambda \cdot D_{\boldsymbol{\phi}}(\tilde{\boldsymbol{x}}|\boldsymbol{I}) + (1-\lambda) \cdot Q(\tilde{\boldsymbol{x}}|\boldsymbol{x}),$$

Proposed algorithm | CNN-based discriminator

$$\boldsymbol{arepsilon} = ar{oldsymbol{v}} \oplus oldsymbol{E} \cdot oldsymbol{x}_1 \oplus oldsymbol{E} \cdot oldsymbol{x}_2 \oplus \cdots \oplus oldsymbol{E} \cdot oldsymbol{x}_T,$$

$$\boldsymbol{h}_{t+1} = \begin{cases} \text{LSTM}(\bar{\boldsymbol{v}}, \boldsymbol{h}_t) & t = 0\\ \text{LSTM}(\boldsymbol{E} \cdot \boldsymbol{x}_t, \boldsymbol{h}_t) & t = 1, 2, \cdots, T \end{cases}$$

$$p = \sigma(\boldsymbol{W}_R \cdot \boldsymbol{h}_{T+1} + \boldsymbol{b}_R),$$

Algorithm 1 Image Captioning Via Generative Adversarial Training Method

Require: caption generator G_{θ} ; discriminator D_{ϕ} ; language evaluator Q, e.g. CIDEr-D; training set $\mathbb{S}_r =$ $\{(I, x_{1:T})\}\$ and $\mathbb{S}_w = \{(I, \hat{x}_{1:T})\}.$

Ensure: optimal parameters θ , ϕ .

- 1: Initial G_{θ} and D_{ϕ} randomly.
- 2: Pre-train G_{θ} on \mathbb{S}_r by MLE.
- 3: Generate some fake samples based on G_{θ} to form $\mathbb{S}_f =$ $\{(\boldsymbol{I}, \tilde{\boldsymbol{x}}_{1:T})\}.$
- 4: Pre-train D_{ϕ} on $\mathbb{S}_r \cup \mathbb{S}_f \cup \mathbb{S}_w$ by Eq. (12).
- 5: repeat
- for g-steps=1: q do
- 7: Generate a mini-batch of image-sentence pairs $\{(\boldsymbol{I}, \tilde{\boldsymbol{x}}_{1:T})\}$ by $G_{\boldsymbol{\theta}}$.
- Calculate p based on Eqs. (7)-(9) or Eqs. (10)-(11). 8:
- Calculate s based on Q. 9:
- Calculate reward r according to Eq. (6). 10:
- Update generator parameters θ by SCST method 11: via Eq. (5).
- 12: end for
- for d-steps=1: d do 13:
- 14: Generate negative image-sentence pairs $\{(I, \tilde{x}_{1:T})\}$ by G_{θ} , together with negative samples $\{(I, \hat{x}_{1:T})\}\subseteq \mathbb{S}_w$ and positive samples $\{(\boldsymbol{I}, \boldsymbol{x}_{1:T})\} \subseteq \mathbb{S}_r$.
- Update discriminator parameters ϕ via Eq. (12). 15:
- end for 16:
- 17: until generator and discriminator converge

$$L_D(\boldsymbol{\phi}) = \mathbb{E}_{(\boldsymbol{I},\boldsymbol{x}_{1:T}) \in \mathbb{S}_r} \left[\log D_{\boldsymbol{\phi}}(\boldsymbol{I},\boldsymbol{x}_{1:T}) \right]$$

$$+ 0.5 \cdot \mathbb{E}_{(\boldsymbol{I},\tilde{\boldsymbol{x}}_{1:T}) \in \mathbb{S}_r} \left[\log(1 - D_{\boldsymbol{\phi}}(\boldsymbol{I},\tilde{\boldsymbol{x}}_{1:T})) \right]$$

$$+ 0.5 \cdot \mathbb{E}_{(\boldsymbol{I},\hat{\boldsymbol{x}}_{1:T}) \in \mathbb{S}_m} \left[\log(1 - D_{\boldsymbol{\phi}}(\boldsymbol{I},\hat{\boldsymbol{x}}_{1:T})) \right]$$

Experiments

	Table 2: λ selection									
	fixed parameters: $g=1$; $d=1$; Metric=CIDEr-D									
λ	λ BLEU-4 METEOR ROUGE-L CIDEr SPICE									
0	0.363	0.277	0.569	1.201	0.214					
0.3	0.383	0.286	0.586	1.232	0.221					
0.5	0.368	0.285	0.581	1.215	0.220					
0.7	0.353	0.280	0.565	1.169	0.215					
1	0.341	0.268	0.555	1.116	0.205					

Table 3: Metric selection										
fixed parameters: $g=1$; $d=1$; $\lambda=0.3$										
Metric	Metric BLEU-4 METEOR ROUGE-L CIDEr SPICE									
CIDEr CIDEr-D BLEU-4 ROUGE-L METEOR	0.381 0.383 0.383 0.368 0.377	0.280 0.286 0.279 0.283 0.287	0.580 0.586 0.574 0.585 0.576	1.248 1.232 1.182 1.195 1.180	0.213 0.221 0.209 0.217 0.214					

Table 4: Step size combination selection										
	fixed parameters: λ =0.3; Metric=CIDEr-D									
Step Sizes	Step Sizes BLEU-4 METEOR ROUGE-L CIDEr SPICE									
g=1; d=5 g=1; d=1 g=5; d=1 g=10; d=1	0.378 0.383 0.383 0.381	0.284 0.286 0.285 0.284	0.582 0.586 0.585 0.583	1.209 1.232 1.231 1.228	0.220 0.221 0.220 0.220					

Table 5: Performance comparisons on MSCOCO Karpathy test set. The baseline algorithms are using resnet101 or bottom-up mechanism as the image feature extractor and SCST as the training method. Results of algorithms denoted by * are provided by original papers and the remaining experimental results are implemented by us for comparison. "None" means RL training method without discriminator. "CNN-GAN" and "RNN-GAN" mean training with our proposed approach by CNN-based and RNN-based discriminator, respectively. "Ensemble" indicates an ensemble of 4 CNN-GAN and 4 RNN-GAN models with different initializations. All values are reported in percentage (%).

Generator	Discriminator	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE	CNN-D	RNN-D
resnet101+att2in (Rennie et al. 2017)	none* CNN-GAN RNN-GAN ensemble	78.1 78.0 78.5	61.3 61.4 61.8	46.4 46.3 47.1	33.3 34.4 34.3 35.0	26.3 26.6 26.5 27.1	55.3 56.1 56.0 56.6	111.4 112.3 112.2 114.8	20.3 20.4 20.5	47.9 46.0 48.0	45.8 48.1 48.2
bottom-up+att2in (Rennie et al. 2017)	none CNN-GAN RNN-GAN ensemble	79.0 80.1 80.0 80.5	62.1 63.8 63.9 64.8	48.2 49.0 49.1 50.0	35.5 37.0 36.8 37.9	27.0 27.9 27.8 28.4	56.3 57.7 57.6 58.2	117.0 118.0 118.1 119.5	20.9 21.4 21.3 21.5	45.6 51.2 49.5 51.4	44.5 49.7 51.9 51.5
resnet101+att2all (Rennie et al. 2017)	none* CNN-GAN RNN-GAN ensemble	78.4 78.3 79.0	62.6 62.5 62.8	47.6 47.6 48.2	34.2 35.4 35.2 35.8	26.7 27.4 27.3 27.7	55.7 56.8 56.9 57.6	114.0 115.2 115.1 117.8	20.6 20.6 20.9	49.0 47.1 49.5	47.2 48.8 49.1
bottom-up+att2all (Rennie et al. 2017)	none CNN-GAN RNN-GAN ensemble	79.6 80.7 80.6 81.1	63.5 64.7 64.8 65.7	49.1 50.1 50.0 50.8	36.1 38.0 38.1 39.0	27.8 28.4 28.3 28.6	56.7 58.4 58.3 58.7	119.8 122.1 122.0 124.1	21.2 21.9 21.8 22.0	46.3 53.5 50.6 53.7	45.9 50.8 53.2 53.5
resnet101+top-down (Anderson et al. 2018)	none* CNN-GAN RNN-GAN ensemble	76.6 78.5 78.4 79.3	62.7 62.7 63.2	48.0 48.0 48.6	34.0 35.6 35.5 36.0	26.5 27.3 27.2 27.6	54.9 56.7 56.6 57.1	111.1 113.0 112.7 115.5	20.2 20.6 20.5 20.8	49.5 47.0 50.0	47.6 49.2 49.3
bottom-up+top-down (Anderson et al. 2018)	none* CNN-GAN RNN-GAN ensemble	79.8 81.1 81.0 81.8	65.0 64.8 66.1	50.4 50.2 51.6	36.3 38.3 38.2 39.6	27.7 28.6 28.5 28.9	56.9 58.6 58.4 59.1	120.1 123.2 122.2 125.9	21.4 22.1 22.0 22.3	53.6 50.9 54.3	51.1 54.0 54.5
Average Improvements	CNN-GAN RNN-GAN	1.71 1.59	2.31 2.47	1.85 1.85	4.44 4.15	2.59 2.22	2.53 2.38	1.50 1.28	2.75 2.27	13.93 8.92	11.17 16.26

Table 6: Performance of different models on the MSCOCO evaluation server. All values are reported in percentage (%), with the highest value of each entry highlighted in boldface. It is worth pointing out that almost all the metrics of our method (ensemble of 4 CNN-GAN and 4 RNN-GAN models in the last row) ranked in top two at the time of submission (5 Sep., 2018).

Algorithms	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE
	c5 c40 c	c5 c40	c5 c40					
NIC (Vinyals et al. 2015)	71.3 89.5	54.2 80.2	40.7 69.4	30.9 58.7	25.4 34.6	53.0 68.2	94.3 94.6	18.2 63.6
PG-BCMR (Liu et al. 2017)	75.4 91.8	59.1 84.1	44.5 73.8	33.2 62.4	25.7 34.0	55.0 69.5	101.3 103.2	18.7 62.2
Adaptive (Lu et al. 2017)	74.8 92.0	58.4 84.5	44.4 74.4	33.6 63.7	26.4 35.9	55.0 70.5	104.2 105.9	19.7 67.3
Actor-Critic (Zhang et al. 2017)	77.8 92.9	61.2 85.5	45.9 74.5	33.7 62.5	26.4 34.4	55.4 69.1	110.2 112.1	20.3 68.0
Att2all (Rennie et al. 2017)	78.1 93.7	61.9 86.0	47.0 75.9	35.2 64.5	27.0 35.5	56.3 70.7	114.7 116.7	20.7 68.9
Stack-Cap (Gu et al. 2017)	77.8 93.2	61.6 86.1	46.8 76.0	34.9 64.6	27.0 35.6	56.2 70.6	114.8 118.3	- -
LSTM-A ₃ (Yao et al. 2017)	78.7 93.7	62.7 86.7	47.6 76.5	35.6 65.2	27.0 35.4	56.4 70.5	116.0 118.0	- -
Up-down (Anderson et al. 2018)	80.2 95.2	64.1 88.8	49.1 79.4	36.9 68.5	27.6 36.7	57.1 72.4	117.9 120.5	21.5 71.5
CAVP (Liu et al. 2018)	80.1 94.9	64.7 88.8	50.0 79.7	37.9 69.0	28.1 37.0	58.2 73.1	121.6 123.8	- -
RFNet (Jiang et al. 2018)	80.4 95.0	64.9 89.3	50.1 80.1	38.0 69.2	28.2 37.2	58.2 73.1	122.9 125.1	- -
Ours	81.9 95.6	66.3 90.1	51.7 81.7	39.6 71.5	28.7 38.2	59.0 74.4	123.1 124.3	- -

Experiments | Examples

Up-Down		a man with a beard and tie wearing a tie		a group of zebras and a zebra standing in the water
	a purse and personal items laid out on a wooden table	a man in a suit and tie looking at the camera	a desk with a laptop computer and a desktop on it	a group of zebras and other animals in the water
RNN-GAN	a purse and other items laid out on a wooden table	a man in a suit and tie is smiling	a desk with a laptop computer and books on it	a group of zebras and other animals standing in the water
	a purse and other personal items laid out on a wooden table	a man in a suit and tie looking at the camera with smile	a desk with a laptop and a desktop sitting on top of it	a group of zebras and other animals standing near the water

Part V

Conclusion

