

Ecole Supérieure d'Ingénieurs de Recherche en Matériaux et en Infotronique

ITC311

Rapport de fin de projet de Mathématiques: Affichage de la courbe d'une fonction rationnelle à l'aide de courbes de Bézier rationnelles.

Soumis à : Lionel Garnier Maître de conférences Aile de l'ingénieur, Laboratoire Le2i

Par:
Wilfried L. Bounsi
& Ulrich Fonkoue
IT3A TD2 TP3

Table des matières

1	Fon	lamentaux théoriques	2
	1.1	Polynômes de Bernstein	2
	1.2	Courbes polynômiales	2
	1.3	Courbes rationnelles	2
2	Rés	lution du problème	4
	2.1	Détermination des asymptotes à C_f	4
		$2.1.1 \text{Cas } (0,0) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4
		$2.1.2 \operatorname{Cas} \; (0,1) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	4
		$2.1.3 \operatorname{Cas} \ (0,2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	4
		$2.1.4 \operatorname{Cas} (1,0) \dots $	5
		2.1.5 Cas $(1,1)$	5
		$2.1.6 \operatorname{Cas} (1,2) \dots $	5
		$2.1.7 \text{Cas} \ (2,0) \dots $	5
		$2.1.8 \operatorname{Cas} \stackrel{(2,1)}{(2,1)} \dots \dots$	5
		$2.1.9 \operatorname{Cas} \ (2,2) \dots $	5
		$2.1.10 \ \operatorname{Cas} \ (3,0) \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6
		$2.1.11 \ \operatorname{Cas}\ (3,1) \ \ldots \ldots \ldots \ldots \ldots \ldots$	6
		$2.1.12 \operatorname{Cas} (3,2) \dots \dots$	6
	2.2	Détermination d'une équation paramétrique de C_f	8
	2.3	Représentation de l'arc de \mathcal{C}_f sur $[0;1]$ par une courbe de Bézier de degré idoine	8
		2.3.1 Choix du degré de la base de Bernstein	8
		2.3.2 Changement de base Canonique - Bernstein (de degré n)	8
		2.3.3 Détermination des poids et points de contrôle de C_f	9
	2.4	Représentation de chaque arc connexe de \mathcal{C}_f , par une courbe de Bézier rationnelle de degré idoine	
		· ·	15
		2.4.1 Définition des nouveaux paramètres de la courbe	15
			17
Ta	able (es figures	22

Chapitre 1

Fondamentaux théoriques

Ce chapitre est essentiellement une synthèse d'une partie du document [1].

Dans tout le document, \mathcal{P} désigne le plan affine euclidien muni du repère orthonormé direct $(\Omega; \vec{i}; \vec{j})$ et d'espace vectoriel attaché $\vec{\mathcal{P}}$.

1.1 Polynômes de Bernstein

Notation 1 : Combinaison

Soit $n \in \mathbb{N}^*$. Pour $i \in [0, n]$, nous posons

$$C_n^i = \frac{n!}{i!(n-i)!}$$

Définition 1 : Polynômes de Bernstein de degré n

Soit $n \in \mathbb{N} - \{0; 1\}$. Pour $i \in [0; n]$, le i-ème polynôme de Bernstein de degré n est :

$$B_{i,n}(t) = C_n^i t^i (1-t)^{n-i}$$

Pour les courbes quadratiques (i.e. de degré 2), ou pour les courbes cubiques (i.e. de degré 3), nous emploierons respectivement les **polynômes de Bernstein de degré 2** :

$$B_{0,2}(t) = B_0(t) = (1-t)^2$$
, $B_{1,2}(t) = B_1(t) = 2t(1-t)$, $B_{2,2}(t) = B_2(t) = t^2$

et degré 3:

$$B_{0,3}(t) = (1-t)^3, \ B_{1,3}(t) = 3t(1-t)^2, \ B_{2,3}(t) = 3t^2(1-t), \ B_{3,3}(t) = t^3$$

1.2 Courbes polynômiales

Définition 2 : Courbe de Bézier de degré n

Soit $n \in \mathbb{N}$. Soit $(M_i)_{i \in \llbracket 0:n \rrbracket}$ et O, n+2 points de \mathcal{P} .

La courbe de Bézier de degré n de points de contrôle $(M_i)_{i \in [0;n]}$ est l'ensemble des points M(t), $t \in [0;1]$ vérifiant la formule :

$$\forall t \in [0; 1], \ \overrightarrow{OM(t)} = \sum_{i=0}^{n} B_{i,n}(t) \overrightarrow{OM_i}$$

et les points $(M_i)_{i \in [0:n]}$ définissent un polygone appelé **polygone de contrôle** de la courbe de Bézier.

1.3 Courbes rationnelles

Définition 3 : Courbe de bézier rationnelle

Soit n+1 points de contrôle $(M_i)_{i\in \llbracket 0;n\rrbracket}$ de \mathcal{P} .

Soit n+1 scalaires non nuls $(\omega_i)_{i\in \llbracket 0;n\rrbracket}$, appelés poids, vérifiant :

$$\forall t \in [0;1], \ \sum_{i=0}^{n} \omega_i B_{i,n}(t) \neq 0$$

Une courbe de Bézier rationnelle de degré n, dans l'espace affine \mathcal{P} est l'ensemble des points M(t), $t \in [0;1]$, vérifiant :

$$\overrightarrow{OM(t)} = \frac{\sum_{i=0}^{n} \omega_i B_{i,n}(t) \overrightarrow{OM_i}}{\sum_{i=0}^{n} \omega_i B_{i,n}(t)}$$
(1.1)

Cette définition se généralise au cas où pour certaines valeurs $i \in [0; n], \omega_i = 0$. Les points de la courbe de bézier sont alors définies par :

$$\overrightarrow{OM(t)} = \frac{1}{\sum_{i=0}^{n} \omega_i B_{i,n}(t)} \left[\sum_{i \in I} \omega_i B_{i,n}(t) \overrightarrow{OM_i} + \sum_{i \in J} B_{i,n}(t) \overrightarrow{V_i} \right]$$
(1.2)

où $I = \left\{i \in \llbracket 0; n
rbracket, \omega_i \neq 0 \right\} \ et \ J = \left\{i \in \llbracket 0; n
rbracket, \omega_i = 0 \right\}$

Chapitre 2

Résolution du problème

Dans ce chapitre nous allons aborder point par point, la résolution du problème posé par chaque phase du projet.

Rappel de l'objectif

Le but du projet est l'affichage de la courbe représentative d'une fraction rationnelle à l'aide de courbes de Bézier rationnelle dont le numérateur est de degrée au plus 3 et le dénominateur est de dégré au plus 2.

Les fonctions sont donc de la forme

$$f(x) = \frac{a_3x^3 + a_2x^2 + a_1x + a_0}{b_2x^2 + b_1x + b_0}$$

Réécriture de l'expression de f

Concrêtement nous traitons des fonctions f telles que $f(x) = \frac{P(x)}{Q(x)}$ où $P \in \mathbb{R}_3[X], \ Q \in \mathbb{R}_2[X]$

Détermination des asymptotes à C_f 2.1

Considérons le couple (d°P, d°Q) où P et Q les polynômes précédents. Ce couple peut prendre 12 valeurs pour les quels nous pouvons (pour chacune d'entre elles) déterminer les différentes asymptotes à la courbe \mathcal{C}_f .

2.1.1Cas (0,0)

Dans ce cas, $f(x) = \frac{a_0}{b_0}$, fonction constante. Remarquons d'ailleurs que f n'existe que si $b_0 \neq 0$ Conclusion: Pas d'asymptotes

2.1.2Cas (0,1)

Dans ce cas, $f(x) = \frac{a_0}{b_1 x + b_0}$, Q s'annule en $x_0 = -\frac{b_0}{b_1}$ <u>Conclusion</u>: La droite $(\mathcal{D}_0): x = x_0$ est asymptote verticale à \mathcal{C}_f

2.1.3Cas (0,2)

Dans ce cas, $f(x) = \frac{a_0}{b_2 x^2 + b_1 x + b_0}$, considérons Δ , discriminant de l'équation quadratique Q(x) = 0.

— Si
$$\Delta > 0$$
 alors Q admet deux raçines réelles $x_1 = \frac{-b_1 + \sqrt{\Delta}}{b_2}$ et $x_2 = \frac{-b_1 - \sqrt{\Delta}}{b_2}$
— Si $\Delta = 0$ alors Q admet une raçine réelle double $x_0 = \frac{-b_1}{b_2}$

- Si $\Delta < 0$ alors Q n'admet aucune solution.

- Si $\Delta > 0$ alors les droites $(\mathcal{D}_1): x = x_1$ et $(\mathcal{D}_2): x = x_2$ sont asymptotes verticales à \mathcal{C}_f
- Si $\Delta = 0$ alors la droite (\mathcal{D}_0) : $x = x_0$ est asymptote verticale à \mathcal{C}_f

- Si $\Delta < 0$ alors C_f n'admet pas d'asymptote verticale.
- La droite $(\mathcal{D}'): y = 0$ est asymptote horizontale à \mathcal{C}_f

$2.1.4 \quad \text{Cas} \ (1,0)$

Dans ce cas, $f(x) = \frac{a_1x + a_0}{b_0}$. Remarquons d'ailleurs que f n'existe que si $b_0 \neq 0$ Conclusion: Pas d'asympto

2.1.5 Cas (1,1)

Dans ce cas, $f(x) = \frac{a_1 x + a_0}{b_1 x + b_0}$, Q s'annule en $x_0 = -\frac{b_0}{b_1}$

- La droite $(D_0): x = x_0$ est asymptote verticale à \mathcal{C}_f
- La droite $(D'): y = \frac{a_1}{h_1}$ est asymptote horizontale à C_f

2.1.6 Cas(1,2)

Dans ce cas, $f(x) = \frac{a_1x + a_0}{b_2x^2 + b_1x + b_0}$, considérons Δ , discriminant de l'équation quadratique Q(x) = 0.

- Si $\Delta > 0$ alors Q admet deux raçines réelles $x_1 = \frac{-b_1 + \sqrt{\Delta}}{b_2}$ et $x_2 = \frac{-b_1 \sqrt{\Delta}}{b_2}$ Si $\Delta = 0$ alors Q admet une raçine réelle double $x_0 = \frac{-b_1}{b_2}$
- Si $\Delta < 0$ alors Q n'admet aucune solution.

<u>Conclusion</u>:

- Si $\Delta > 0$ alors les droites $(\mathcal{D}_1): x = x_1$ et $(\mathcal{D}_2): x = x_2$ sont asymptotes verticales à \mathcal{C}_f
- Si $\Delta = 0$ alors la droite (\mathcal{D}_0) : $x = x_0$ est asymptote verticale à \mathcal{C}_f
- Si $\Delta < 0$ alors C_f n'admet pas d'asymptote verticale.
- La droite (D'): y = 0 est asymptote horizontale à \mathcal{C}_f

$2.1.7 \quad \text{Cas} \ (2,0)$

Dans ce cas, $f(x) = \frac{a_2x^2 + a_1x + a_0}{b_0}$. Remarquons d'ailleurs que f n'existe que si $b_0 \neq 0$ Conclusion: Pas d'asymptote

2.1.8Cas (2,1)

Dans ce cas, $f(x)=\frac{a_2x^2+a_1x+a_0}{b_1x+b_0},$ Q s'annule en $x_0=-\frac{b_0}{b_1}.$ De plus :

En posant
$$\alpha = \frac{a_2}{b_1}$$
 et $\beta = \frac{a_1b_1 - a_2b_0}{b_1^2}$, on montre que $\lim_{x \to +\infty} f(x) - (\alpha x + \beta) = 0$

$\underline{\text{Conclusion}}$:

- La droite $(D_0): x = x_0$ est asymptote verticale à \mathcal{C}_f
- La droite $(D'): y = \alpha x + \beta$ est asymptote oblique à C_f

2.1.9Cas(2,2)

Dans ce cas, $f(x) = \frac{a_2x^2 + a_1x + a_0}{b_2x^2 + b_1x + b_0}$, considérons Δ , discriminant de l'équation quadratique Q(x) = 0.

- Si $\Delta > 0$ alors Q admet deux raçines réelles $x_1 = \frac{-b_1 + \sqrt{\Delta}}{b_2}$ et $x_2 = \frac{-b_1 \sqrt{\Delta}}{b_2}$ Si $\Delta = 0$ alors Q admet une raçine réelle double $x_0 = \frac{-b_1}{b_2}$
- Si $\Delta < 0$ alors Q n'admet aucune solution.

Conclusion:

- Si $\Delta > 0$ alors les droites $(\mathcal{D}_1): x = x_1$ et $(\mathcal{D}_2): x = x_2$ sont asymptotes verticales à \mathcal{C}_f
- Si $\Delta = 0$ alors la droite (\mathcal{D}_0) : $x = x_0$ est asymptote verticale à \mathcal{C}_f
- Si $\Delta < 0$ alors C_f n'admet pas d'asymptote verticale.

— La droite
$$(D'): y = \frac{a_2}{b_2}$$
 est asymptote horizontale à C_f

2.1.10 Cas (3,0)

Dans ce cas, $f(x) = \frac{a_3x^3 + a_2x^2 + a_1x + a_0}{b_0}$. Remarquons d'ailleurs que f n'existe que si $b_0 \neq 0$

$2.1.11 \quad \text{Cas} (3,1)$

Dans ce cas,
$$f(x) = \frac{a_3x^3 + a_2x^2 + a_1x + a_0}{b_1x + b_0}$$
, Q s'annule en $x_0 = -\frac{b_0}{b_1}$. Conclusion : La droite $(D_0): x = x_0$ est asymptote verticale à \mathcal{C}_f

$2.1.12 \quad \text{Cas} \ (3,2)$

Dans ce cas, $f(x) = \frac{a_2x^2 + a_1x + a_0}{b_2x^2 + b_1x + b_0}$, considérons Δ , discriminant de l'équation quadratique Q(x) = 0.

— Si
$$\Delta > 0$$
 alors Q admet deux raçines réelles $x_1 = \frac{-b_1 + \sqrt{\Delta}}{b_2}$ et $x_2 = \frac{-b_1 - \sqrt{\Delta}}{b_2}$
— Si $\Delta = 0$ alors Q admet une raçine réelle double $x_0 = \frac{-b_1}{b_2}$

— Si
$$\Delta = 0$$
 alors Q admet une raçine réelle double $x_0 = \frac{-b_1}{b_2}$

— Si $\Delta < 0$ alors Q n'admet aucune solution.

De plus:

En posant
$$\alpha = \frac{a_3}{b_2}$$
 et $\beta = \frac{a_2b_2 - a_3b_1}{b_2^2}$, on montre que $\lim_{x \to +\infty} f(x) - (\alpha x + \beta) = 0$

Conclusion:

- Si $\Delta > 0$ alors les droites $(\mathcal{D}_1): x = x_1$ et $(\mathcal{D}_2): x = x_2$ sont asymptotes verticales à \mathcal{C}_f
- Si $\Delta = 0$ alors la droite (\mathcal{D}_0) : $x = x_0$ est asymptote verticale à \mathcal{C}_f
- Si $\Delta < 0$ alors C_f n'admet pas d'asymptote verticale.
- La droite (D'): $y = \alpha x + \beta$ est asymptote oblique à C_f

Asymptotes à
$$\mathcal{C}_f$$
 telle que $f(x) = \frac{x^3 + \frac{1}{2}x^2 + \frac{1}{2}x}{x^2 + x}$

 $Figure\ 2.1-D\'{e}mo\ Asymptotes$

2.2 Détermination d'une équation paramétrique de C_f

Nous optons pour la paramétrisation suivante :

$$\overrightarrow{OM(t)} = \begin{cases} x(t) = t \\ y(t) = f(t) \end{cases}$$

Toutefois pour des raisons de compatibilité, notamment au niveau du dénominateur de chaque composante du vecteur $\overrightarrow{OM(t)}$, avec les expressions (1.1) et (1.2) de la **Définition 3**, nous devons en modifier légèrement l'écriture de la manière suivante :

$$\overrightarrow{OM(t)} = \begin{cases} x(t) = \frac{tQ(t)}{Q(t)} \\ y(t) = \frac{P(t)}{Q(t)} \end{cases}$$
(2.1)

2.3 Représentation de l'arc de C_f sur [0;1] par une courbe de Bézier de degré idoine

2.3.1 Choix du degré de la base de Bernstein

Ayant reçu l'expression de notre fonction f de l'utilisateur, l'une des première à faire est de déterminer le degré de la base de Bernstein avec laquelle nous allons travailler. Pour cela il faut garder à l'esprit deux expressions du vecteur $\overrightarrow{OM(t)}$, celle de l'expression (1.2) ainsi que celle de l'expression (2.1). On doit choisir le plus petit degré permettant de représenter les polynômes P, Q et tQ dans la base de Bernstein. Il devient ainsi clair que nous devons travailler avec la base de Bernstein de degré n tel que :

$$n = \max(d^{\circ}P, d^{\circ}Q + 1) \tag{2.2}$$

2.3.2 Changement de base Canonique - Bernstein (de degré n)

Définition 4 : Matrice de changement de base Canonique - Bernstein Notons $M_{\mathcal{C}_n \to \mathcal{B}_n}$ la matrice définie par :

$$M_{\mathcal{C}_n \to \mathcal{B}_n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}, telleque \ \forall j \in [0;n], t^j = \sum_{i=0}^n a_{i,j} B_{i,n}(t)$$

Notation 2 *Soit* $P \in \mathbb{R}_n[X]$. *Notons :*

- $-(P)_{\mathcal{C}_n}$, P écrit comme vecteur colonne de ses coordonnées dans la base canonique
- $(P)_{\mathcal{B}_n}$, P écrit comme vecteur colonne de ses coordonnées dans la base de Bernstein.

Propriété 1 Soit $P \in \mathbb{R}_n[X]$. On a :

$$(P)_{\mathcal{B}_n} = M_{\mathcal{C}_n \to \mathcal{B}_n} \times (P)_{\mathcal{C}_n} \tag{2.3}$$

En pratique, dans ce projet, puisqu'on aura toujours $n \in [1, 3]$, nous n'aurons besoin que des matrices :

$$M_{\mathcal{C}_1 \to \mathcal{B}_1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, M_{\mathcal{C}_2 \to \mathcal{B}_2} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & \frac{1}{2} & 0 \\ 1 & 1 & 1 \end{pmatrix}, M_{\mathcal{C}_3 \to \mathcal{B}_3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & \frac{1}{3} & 0 & 0 \\ 1 & \frac{2}{3} & \frac{1}{3} & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

2.3.3 Détermination des poids et points de contrôle de C_f

• Pour $n = max(d^{\circ}P, d^{\circ}Q + 1)$, nous déterminons à l'aide de la **Propriété 1**, les familles de réels $(\alpha_i)_{i \in [0;n]}$, $(\beta_i)_{i\in \llbracket 0;n\rrbracket}$, et $(\gamma_i)_{i\in \llbracket 0;n\rrbracket}$ tels que :

$$(P)_{\mathcal{B}_n} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}; (Q)_{\mathcal{B}_n} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}; (tQ)_{\mathcal{B}_n} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix}$$

$$(2.4)$$

• Dès lors, l'équation paramétrique (2.1) devient :

$$\overrightarrow{OM(t)} = \begin{cases}
x(t) = \frac{\sum_{i=0}^{n} \gamma_{i} B_{i,n}(t)}{\sum_{i=0}^{n} \beta_{i} B_{i,n}(t)} \\
y(t) = \frac{\sum_{i=0}^{n} \alpha_{i} B_{i,n}(t)}{\sum_{i=0}^{n} \beta_{i} B_{i,n}(t)}
\end{cases} (2.5)$$

• Nous pouvons encore la réécrire comme suit :

$$\overrightarrow{OM(t)} = \begin{cases}
x(t) = \frac{1}{\sum_{i=0}^{n} \beta_i B_{i,n}(t)} \left[\sum_{i \in I} \left(\frac{\gamma_i}{\beta_i} \right) \beta_i B_{i,n}(t) + \sum_{i \in J} \gamma_i B_{i,n}(t) \right] \\
y(t) = \frac{1}{\sum_{i=0}^{n} \beta_i B_{i,n}(t)} \left[\sum_{i \in I} \left(\frac{\alpha_i}{\beta_i} \right) \beta_i B_{i,n}(t) + \sum_{i \in J} \alpha_i B_{i,n}(t) \right]
\end{cases} (2.6)$$

où
$$I = \left\{i \in \llbracket 0; n \rrbracket, \beta_i \neq 0 \right\}$$
 et $J = \left\{i \in \llbracket 0; n \rrbracket, \beta_i = 0 \right\}$

- Posons maintenant $\forall i \in I, x_i = \frac{\gamma_i}{\beta_i} \text{ et } y_i = \frac{\alpha_i}{\beta_i}$ (1)
- L'équation (2.6) devient donc :

$$\overrightarrow{OM(t)} = \begin{cases} x(t) = \frac{1}{\sum_{i=0}^{n} \beta_i B_{i,n}(t)} \left[\sum_{i \in I} \beta_i B_{i,n}(t) x_i + \sum_{i \in J} B_{i,n}(t) \gamma_i \right] \\ y(t) = \frac{1}{\sum_{i=0}^{n} \beta_i B_{i,n}(t)} \left[\sum_{i \in I} \beta_i B_{i,n}(t) y_i + \sum_{i \in J} B_{i,n}(t) \alpha_i \right] \end{cases}$$

- Nous pouvons ainsi définir :
 - La famille des points $(M_i)_{i \in I}$ telle que $\forall i \in I, M_i \begin{pmatrix} x_i \\ y_i \end{pmatrix}$ (2)
 - La famille des vecteurs $(\overrightarrow{V_i})_{i \in J}$ telle que $\forall i \in J, \overrightarrow{V_i} \begin{pmatrix} \gamma_i \\ \alpha_i \end{pmatrix}$ (3)
- \bullet On about it donc finalement à l'équation :

$$\overrightarrow{OM(t)} = \frac{1}{\sum_{i=0}^{n} \beta_i B_{i,n}(t)} \left[\sum_{i \in I} \beta_i B_{i,n}(t) \overrightarrow{OM_i} + \sum_{i \in J} B_{i,n}(t) \overrightarrow{V_i} \right]$$
(2.7)

où
$$I = \left\{i \in [0; n], \beta_i \neq 0\right\}$$
 et $J = \left\{i \in [0; n], \beta_i = 0\right\}$

$\underline{\text{Conclusion}}$:

Ansi les points de C_f vérifient l'équation (2.7), qui correspond au cas général de la définition des points d'une courbe de Bézier de degré n caractérisée par :

- † Les points de contrôle $(M_i)_{i\in I}$ et les $(\overrightarrow{V_i})_{i\in J}$, définis en (1), (2) & (3) † Les poids $(\beta_i)_{i\in \llbracket 0;n\rrbracket}$ de ces points, définis en (2.4) i.e simplement, les coordonnées de $(Q)_{\mathcal{B}_n}$

Représentation sur [0;1] de l'arc de \mathcal{C}_{f_1} telle que $f_1(x)=\frac{2x^2-1}{x^2+2x-3}$ par une courbe de bézier de degré $\mathbf{n}=\mathbf{3}.$

FIGURE 2.2 – Démo courbe \mathcal{C}_{f_1} de bézier sur $[0\,;1]$

Représentation sur [0;1] de l'arc de \mathcal{C}_{f_2} telle que $f_2(x)=\frac{x^3-4x^2-11x+16}{x^2+2x-3}$ par une courbe de bézier de degré $\mathbf{n}=\mathbf{3}$.

FIGURE 2.3 – Démo courbe \mathcal{C}_{f_2} de bézier sur $[0\,;1]$

Représentation sur [0;1] de l'arc de \mathcal{C}_{f_3} telle que $f_3(x)=\frac{x^2-x-1}{2x-3}$ par une courbe de bézier de degré $\mathbf{n}=\mathbf{2}.$

FIGURE 2.4 – Démo courbe \mathcal{C}_{f_3} de bézier sur $[0\,;1]$

Représentation sur [0;1] de l'arc de \mathcal{C}_{f_4} telle que $f_4(x)=x^2$ par une courbe de bézier de degré $\mathbf{n}=\mathbf{2}.$

FIGURE 2.5 – Démo courbe \mathcal{C}_{f_4} de bézier sur $[0\,;1]$

2.4 Représentation de chaque arc connexe de C_f , par une courbe de Bézier rationnelle de degré idoine via un changement de paramètre homographique

2.4.1 Définition des nouveaux paramètres de la courbe

Soit a,b,c et d, quatre réels vérifiants la condition :

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

Considérons la fonction homographique suivante :

$$h: \left| \begin{array}{ccc} \overline{\mathbb{R}} & \longrightarrow & \overline{\mathbb{R}} \\ x & \longmapsto & \frac{ax+b}{cx+d} \end{array} \right|$$

Nous allons à présent déterminer les poids et les points de contrôle de la courbe de Bézier rationnelle de la fonction $f \circ h$.

• Rappelons tout d'abord l'équation paramétrique (2.5) de f dans la base de Bernstein de degré n,

$$\overrightarrow{OM(t)} = \begin{cases} x(t) = \frac{\displaystyle\sum_{i=0}^{n} \gamma_i B_{i,n}(t)}{\displaystyle\sum_{i=0}^{n} \beta_i B_{i,n}(t)} \\ \\ y(t) = \frac{\displaystyle\sum_{i=0}^{n} \alpha_i B_{i,n}(t)}{\displaystyle\sum_{i=0}^{n} \beta_i B_{i,n}(t)} \end{cases}$$

Où évidemment, $(\alpha_1, \alpha_2, \dots, \alpha_n)^T = (P)_{\mathcal{B}_n}$, $(\beta_1, \beta_2, \dots, \beta_n)^T = (Q)_{\mathcal{B}_n}$ et $(\gamma_1, \gamma_2, \dots, \gamma_n)^T = (tQ)_{\mathcal{B}_n}$

 \bullet Effectuons y le changement de paramètre t par h(t) :

$$\overrightarrow{OM(h(t))} = \begin{cases} x(h(t)) = \frac{\sum_{i=0}^{n} \gamma_{i} B_{i,n} \left(\frac{at+b}{ct+d}\right)}{\sum_{i=0}^{n} \beta_{i} B_{i,n} \left(\frac{at+b}{ct+d}\right)} \\ y(h(t)) = \frac{\sum_{i=0}^{n} \alpha_{i} B_{i,n} \left(\frac{at+b}{ct+d}\right)}{\sum_{i=0}^{n} \beta_{i} B_{i,n} \left(\frac{at+b}{ct+d}\right)} \\ \Longrightarrow \overrightarrow{OM(h(t))} = \begin{cases} x(h(t)) = \frac{\sum_{i=0}^{n} \gamma_{i} C_{n}^{i} \left(\frac{at+b}{ct+d}\right)^{i} \left(1 - \frac{at+b}{ct+d}\right)^{n-i}}{\sum_{i=0}^{n} \beta_{i} C_{n}^{i} \left(\frac{at+b}{ct+d}\right)^{i} \left(1 - \frac{at+b}{ct+d}\right)^{n-i}} \\ y(h(t)) = \frac{\sum_{i=0}^{n} \alpha_{i} C_{n}^{i} \left(\frac{at+b}{ct+d}\right)^{i} \left(1 - \frac{at+b}{ct+d}\right)^{n-i}}{\sum_{i=0}^{n} \beta_{i} C_{n}^{i} \left(\frac{at+b}{ct+d}\right)^{i} \left(1 - \frac{at+b}{ct+d}\right)^{n-i}} \end{cases}$$

$$\iff \overrightarrow{OM(h(t))} = \begin{cases} x(h(t)) = \frac{\sum_{i=0}^{n} \gamma_{i} C_{n}^{i} (at+b)^{i} ((c-a)t+d-b)^{n-i}}{\sum_{i=0}^{n} \beta_{i} C_{n}^{i} (at+b)^{i} ((c-a)t+d-b)^{n-i}} = \frac{R(t)}{S(t)} \\ y(h(t)) = \frac{\sum_{i=0}^{n} \alpha_{i} C_{n}^{i} (at+b)^{i} ((c-a)t+d-b)^{n-i}}{\sum_{i=0}^{n} \beta_{i} C_{n}^{i} (at+b)^{i} ((c-a)t+d-b)^{n-i}} = \frac{U(t)}{S(t)} \end{cases}$$

• Réécrivons sous une forme plus utile les polynômes R, S et U ainsi définis

$$R(t) = \sum_{i=0}^{n} \sum_{p=0}^{n-i} \sum_{k=0}^{i+p} \gamma_i C_n^i C_n^{k-p} C_{n-i}^p a^{k-p} b^{i-k+p} (c-a)^p (d-b)^{n-i-p} \times t^k$$

$$S(t) = \sum_{i=0}^{n} \sum_{p=0}^{n-i} \sum_{k=0}^{i+p} \alpha_i C_n^i C_n^{k-p} C_{n-i}^p a^{k-p} b^{i-k+p} (c-a)^p (d-b)^{n-i-p} \times t^k$$

$$U(t) = \sum_{i=0}^{n} \sum_{p=0}^{n-i} \sum_{k=0}^{i+p} \beta_i C_n^i C_n^{k-p} C_{n-i}^p a^{k-p} b^{i-k+p} (c-a)^p (d-b)^{n-i-p} \times t^k$$

Ces écritures nous donnent de manière itérative les coefficients des polynômes R, S et U dans la base Canonique de degré n i.e $(R)_{\mathcal{C}_n}$, $(S)_{\mathcal{C}_n}$ et $(U)_{\mathcal{C}_n}$.

• Maintenant nous multiplions chacun de ces polynômes par la matrice $M_{\mathcal{C}_n \to \mathcal{B}_n}$ pour revenir à la base de Bernstein de degré n.

$$(R)_{\mathcal{B}_n} = M_{\mathcal{C}_n \to \mathcal{B}_n} \times (R)_{\mathcal{C}_n} = \begin{pmatrix} \gamma_1 \\ \gamma_2' \\ \vdots \\ \gamma_n' \end{pmatrix}$$

$$(S)_{\mathcal{B}_n} = M_{\mathcal{C}_n \to \mathcal{B}_n} \times (S)_{\mathcal{C}_n} = \begin{pmatrix} \beta_1' \\ \beta_2' \\ \vdots \\ \beta_n' \end{pmatrix}$$

$$(U)_{\mathcal{B}_n} = M_{\mathcal{C}_n \to \mathcal{B}_n} \times (U)_{\mathcal{C}_n} = \begin{pmatrix} \alpha_1' \\ \alpha_2' \\ \vdots \\ \alpha_n' \end{pmatrix}$$

ullet L'équation paramétrique de la courbe \mathcal{C}_f avec le changement de paramètre devient donc :

$$\overrightarrow{OM'(t)} = \overrightarrow{OM(h(t))} = \begin{cases} x'(t) = x(h(t)) = \frac{\sum_{i=0}^{n} \gamma_i' B_{i,n}(t)}{\sum_{i=0}^{n} \beta_i' B_{i,n}(t)} \\ y'(t) = y(h(t)) = \frac{\sum_{i=0}^{n} \alpha_i' B_{i,n}(t)}{\sum_{i=0}^{n} \beta_i' B_{i,n}(t)} \end{cases}$$

Il ne reste plus alors qu'à redéterminer les points et les poids de la courbe C_f selon la même démarche qu'à la section 2.3.3

• On définit ainsi :

- La nouvelle famille des points $(M'_i)_{i \in I'}$ telle que $\forall i \in I', M'_i \begin{bmatrix} \frac{\alpha_i}{\beta'_i} \\ \underline{\alpha'_i} \end{bmatrix}$
- La nouvelle famille des vecteurs $(\overrightarrow{V_i'})_{i \in J'}$ telle que $\forall i \in J', \overrightarrow{V_i'} \begin{pmatrix} \gamma_i' \\ \gamma_i' \end{pmatrix}$

Et on écrit l'expression finale :

$$\overrightarrow{OM'(t)} = \overrightarrow{OM(h(t))} = \frac{1}{\sum_{i=0}^{n} \beta_i' B_{i,n}(t)} \left[\sum_{i \in I'} \beta_i' B_{i,n}(t) \overrightarrow{OM_i'} + \sum_{i \in J'} B_{i,n}(t) \overrightarrow{V_i'} \right]$$
(2.8)

où
$$I'=\left\{i\in [\![0;n]\!],\beta_i'\neq 0\right\}$$
 et $J'=\left\{i\in [\![0;n]\!],\beta_i'=0\right\}$

2.4.2Les changements de paramètre à utiliser

Les arcs connexes de \mathcal{C}_f peuvent exister sur trois types d'intervalles :

- De la forme $]-\infty;\alpha]$ (1)
- De la forme $[\alpha; \beta]$ (2)
- Ou encore, de la forme $[\beta; +\infty[$ (3)

Pour chacun des ces intervalles, il est question pour nous de déterminer la fonction homographique h telleque :

$$h([0;1]) = I$$

I étant l'intervalle considéré.

On montre par étude des limites et variations que les fonctions suivantes conviennent :

$$\begin{array}{c|ccc} h_2: & [0;1] & \longrightarrow & [\alpha;\beta] \\ & t & \longmapsto & \alpha + t(\beta - \alpha) \end{array}$$

$$\begin{array}{c|cccc} h_3: & [0;1] & \longrightarrow & [\beta;+\infty[\\ & t & \longmapsto & \frac{(\beta-1)t+1}{t} \\ & & & & \end{array}$$

t	0	1
$h_1'(t)$	+	
$h_1(t)$		~ α

t	0 1
$h_2'(t)$	+
$h_2(t)$	β

t	0	1
$h_3'(t)$	_	
$h_3(t)$	+∞	В

Représentation de chaque arc connexe de C_{f_1} telle que $f_1(x) = \frac{2x^2 - 1}{x^2 + 2x - 3}$ par une courbe de bézier de degré n = 3.

FIGURE 2.6 – Démo courbe \mathcal{C}_{f_1} de bézier

```
Courbe de Bezier de f dans l'interval ]-inf, -3]

-> Vecteur 1 : (-1, 0)
-> Point 2 : (-7, 2) de poids 0.333333
-> Point 3 : (-3, 3) de poids 1.33333
-> Point 4 : (9, -9.57015e+15) de poids -1.77636e-15

Courbe de Bezier de f dans l'interval [-3, 1]
-> Point 1 : (1, -5.98134e+14) de poids -2.84217e-14
-> Point 2 : (-3, -0.1875) de poids -5.33333
-> Point 3 : (1, 0.8125) de poids -5.33333
-> Vecteur 4 : (0, 1)

Courbe de Bezier de f dans l'interval [1, +inf]

Courbe de Bezier de f dans l'interval [1, +inf]
-> Vecteur 1 : (1, 0)
-> Point 3 : (1, 1) de poids 0.333333
-> Point 3 : (1, 1) de poids 1.33333
-> Vecteur 4 : (0, 1)
```

Listing 2.1 – Extrait du fichier enregistrement fonction f_1

Représentation de chaque arc connexe de \mathcal{C}_{f_2} telle que $f_2(x)=\frac{x^3-4x^2-11x+16}{x^2+2x-3}$ par une courbe de bézier de degré n=3.

FIGURE 2.7 – Démo courbe C_{f_2} de bézier

```
Courbe de Bezier de f dans l'interval ]-inf, -3]

-> Vecteur 1 : (-1, -1)
-> Point 2 : (-7, -13) de poids 0.333333
-> Point 3 : (-3, -10) de poids 1.33333
-> Point 4 : (9, 7.8813e+15) de poids -1.77636e-15

Courbe de Bezier de f dans l'interval [-3, 1]
-> Point 1 : (1, 4.92581e+14) de poids -2.84217e-14
-> Point 2 : (-3, -7.375) de poids -5.33333
-> Point 3 : (1, -4.375) de poids -5.33333
-> Vecteur 4 : (0, 2)

Courbe de Bezier de f dans l'interval [1, +inf]
-> Vecteur 1 : (1, 1)
-> Point 2 : (5, -1) de poids 0.333333
-> Point 3 : (1, -4) de poids 1.33333
-> Point 3 : (1, -4) de poids 1.33333
-> Vecteur 4 : (0, 2)
```

Listing 2.2 – Extrait du fichier enregistrement fonction f_2

Représentation de chaque arc connexe de \mathcal{C}_{f_3} telle que $f_3(x)=\frac{x^2-x-1}{2x-3}$ par une courbe de bézier de degré n=2.

FIGURE 2.8 – Démo courbe \mathcal{C}_{f_3} de bézier

```
Courbe de Bezier de f dans l'interval ]-inf, 1.5]

-> Vecteur 1 : (2, 1)
-> Point 2 : (1.5, 1) de poids -1
-> Vecteur 3 : (0, -0.25)

Courbe de Bezier de f dans l'interval [1.5, +inf[

-> Vecteur 1 : (2, 1)
-> Point 2 : (1.5, 1) de poids 1
-> Vecteur 3 : (0, -0.25)
```

Listing 2.3 – Extrait du fichier enregistrement fonction f_3

Représentation de chaque arc connexe de l'arc de \mathcal{C}_{f_4} telle que $f_4(x)=x^2$ par une courbe de bézier de degré n=2.

FIGURE 2.9 – Démo courbe \mathcal{C}_{f_4} de bézier

```
Courbe de Bezier de f dans l'interval ]-inf, 0]

-> Vecteur 1 : (0, 1)
-> Vecteur 2 : (-0.5, 0)
-> Point 3 : (0, 0) de poids 1

Courbe de Bezier de f dans l'interval [0, +inf[

-> Vecteur 1 : (0, 1)
-> Vecteur 2 : (0.5, 0)
-> Point 3 : (0, 0) de poids 1
```

Listing 2.4 – Extrait du fichier enregistrement fonction f_4

Table des figures

2.1	Démo Asymptotes
2.2	Démo courbe \mathcal{C}_{f_1} de bézier sur $[0;1]$
2.3	Démo courbe \mathcal{C}_{f_2} de bézier sur $[0;1]$
2.4	Démo courbe \mathcal{C}_{f_3} de bézier sur $[0;1]$
2.5	Démo courbe \mathcal{C}_{f_4} de bézier sur $[0;1]$
2.6	Démo courbe \mathcal{C}_{f_1} de bézier
2.7	Démo courbe \mathcal{C}_{f_2} de bézier
2.8	Démo courbe \mathcal{C}_{f_3} de bézier
2.9	Démo courbe \mathcal{C}_{f_4} de bézier

Listings

2.1	Extrait du fichier enregistrement fonction f_1	18
2.2	Extrait du fichier enregistrement fonction f_2	19
2.3	Extrait du fichier enregistrement fonction f_3	20
2.4	Extrait du fichier enregistrement fonction f_4	21

Bibliographie

[1] L. GARNIER. Courbes de Bézier et coniques. Master MIGS, seconde année, Université de Bourgogne.