

Correlação e Regressão Linear Simples

Fabio Cop (fabiocopf@gmail.com) Instituto do Mar - UNIFESP Última atualização em 22 de junho de 2021

Método dos Mínimos Quadrados (MMQ)

A primeira solução para o problema da regressão (relacionar uma variável resposta Y a uma variável preditora X) foi o **Método dos Mínimos Quadrados (MMQ)**, publicado por por Gauss (1777 – 1855) em 1809, embora haja relatos históricos de que Gauss pensou e resolveu o problema quando tinha apenas 11 anos. Gauss aplicou o método para obter predições sobre as órbitas dos corpos ao redor do Sol a partir de observações astronômicas.

O termo Regressão

O termo **regressão** foi empregado por Francis Galton em 1866, um dos pais da Biometria e primo de *Charles Darwin*, no séc. XIX, para descrever o fenômeno biológico em que pais muito altos tenderiam a ter descendentes mais baixos que eles próprios e vice versa. A altura dos descendentes tenderia portanto a *regressar* à média da população.

O coeficiente de correlação de Pearson

Galton propôs o **coeficiente de correlação** para medir a associação linear entre duas variáveis quantitativas. Suas idéias foram estendidas por Udny Yule e Karl Pearson para um contexto estatístico mais geral. No modelo de Udny e Pearson assume-se que a distribuição conjunta entre a variável resposta e a variável preditora f(Y,X) é Gaussiana (Normal). Pearson cunhou também o termo **distribuição Normal**.

A formulação de Fisher

A suposição de Pearson confunde os conceitos de regressão e correlação. Esta suposição foi modificada por R. A. Fisher em 1922 e 1925. Fisher assumiu que a distribuição **condicional** da variável resposta f(Y|X) seja Gaussiana - a conjunta não precisa ser. Esta solução é mais próxima daquela formulada por Gauss. Fisher desenvolveu também o método da Máxima **Verossimilhança (MV)**. Para uma variável em que f(Y|X)é Gaussiana, a solução pelo **MMQ** e pela **MV** convergem. Fisher se dedicou também ao problema de encontrar uma distribuição estatística para o coeficiente de correlação de Pearson.

Conteúdo da aula

- 1. Medindo a intensidade de relações lineares
- 2. Variâncias e covariâncias
- 3. O coeficiente de correlação linear de Pearson
- 4. Teste de hipóteses sobre o $m{r}$ de Pearson
- 5. Regressão Linear Simples
- 6. Teste de hipóteses
- 7. Intervalos de confiança e de predição
- 8. Partição da Soma dos Quadrados e variação explicada
- 9. Os comandos em R
- 10. Pressupostos do modelo
- 11. Transformações lineares

1. Medindo a intensidade de relações lineares

Soma dos Quadrados de Y

$$SQ_Y = \sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n (y_i - \overline{y})(y_i - \overline{y})^2$$

Variância amostral de Y

$$s_Y^2 = rac{\sum_{i=1}^n (y_i - \overline{y})^2}{n-1}$$

Soma dos Quadrados de X

$$SQ_X = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x})$$

Variância amostral de X

$$s_X^2=rac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1}$$

Soma dos produtos cruzados de Y e X

$$SQ_{YX} = \sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x}).$$

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

Se

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})<0$

OU

$$(y_i-\overline{y})<0$$
; $(x_i-\overline{x})>0$

temos

$$s_{YX}=rac{\sum_{i=1}^n(y_i-ar{y})(x_i-ar{x})}{n-1}<0$$

A covariância pode ser **NEGATIVA**

Se

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})>0$

OU

$$(y_i-\overline{y})<0$$
; $(x_i-\overline{x})<0$

temos

$$s_{YX}=rac{\sum_{i=1}^n(y_i-ar{y})(x_i-ar{x})}{n-1}>0$$

A covariância pode ser **POSITIVA**

Se

$$(y_i - \overline{y}) pprox 0$$
; $(x_i - \overline{x}) pprox 0$

ou

$$(y_i - \overline{y}) pprox 0$$
; $(x_i - \overline{x}) pprox 0$

Temos

$$s_{YX} = rac{\sum_{i=1}^n (y_i - ar{y})(x_i - ar{x})}{n-1} pprox 0$$

A covariância pode ser NULA

3. O coeficiente de correlação linear de Pearson

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

Variância amostral de Y

$$s_Y^2 = rac{\sum_{i=1}^n (y_i - ar{y})^2}{n-1}$$

Variância amostral de X

$$s_X^2=rac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1}$$

O coeficiente de correlação linear de Pearson r

$$r = rac{s_{YX}}{\sqrt{s_Y^2} imes \sqrt{s_X^2}}$$

O r de Pearson é a covariância **padronizada** pelos desvios padrões de Y e X

3. O coeficiente de correlação linear de Pearson

A covariância não tem limites negativos ou positivos. A escala depende das magnitudes de Y e de X.

O r de Pearson varia entre -1 e +1.

3. O coeficiente de correlação linear de Pearson

$$r = rac{\sum_{i=1}^{n}(y_i - \overline{y})(x_i - \overline{x})}{\sqrt{\sum_{i=1}^{n}(y_i - \overline{y})^2}\sqrt{\sum_{i=1}^{n}(x_i - \overline{x})^2}}$$

- r=-1 (Associção linear perfeitamente **negativa**)
- ullet r=0 (Associção linear inexistente)
- r=1 (Associção linear perfeitamente **positiva**)

Dada uma **amostra** com n observações para os pares Y e X, a correlação entre Y e X na **população estatística** é diferente de zero?

 $H_0:
ho=0$

 $H_a:
ho
eq 0$

n = 10

$$H_0:
ho=0$$

 $H_a:
ho
eq 0$

Os dados segundo $H_{ m 0}$

Assumimos que distribuição conjunta entre f(Y,X) é Normal.

 $H_0: \rho = 0$

 $H_a:
ho
eq 0$

 $\alpha = 0.05$

n = 10

r = -0.32

Estatística do teste - t

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}}$$

Segundo H_0

Teste de hipótese sobre ρ

$$\overline{Y}=98.85$$
; $\overline{X}=69.94$; $n=10$

$$r = -0.32$$

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}} = rac{-0.32}{\sqrt{rac{1-(-0.32)^2}{8}}} = -0.965$$

$$p = 0.363$$

Assumindo $\alpha=0.05$, **Aceito** H_0 :

Não há evidências de correlação entre Y e X.

Cálculo do coeficiente de correlação

	Y	X	$\sum (y_i - \overline{y})^2$	$\sum (x_i - \overline{x})^2$	$(y_i-\overline{y})(x_i-\overline{x})$
1	95.9	69.63	8.72	0.10	0.92
2	101.8	66.27	8.68	13.50	-10.83
3	100.85	69.98	4.01	0.00	0.08
4	99.75	73.43	0.81	12.13	3.14
5	93.88	74.63	24.69	21.95	-23.28
6	97.33	66.9	2.30	9.27	4.62
7	96.68	71.19	4.71	1.55	-2.70
8	100.85	68.96	3.99	0.97	-1.97
9	96.14	68.52	7.36	2.03	3.87
10	105.32	69.93	41.87	0.00	-0.06
\sum			107.15	61.52	-26.21

Aumentando o tamanho amostral

$$H_0:
ho=0$$

$$H_a:
ho
eq 0$$

$$\alpha = 0.05$$

$$n = 50$$

$$r = -0.32$$

Estatística do teste - t

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}}$$

Segundo H_0

Teste de hipótese sobre ρ

$$\overline{Y}=100.41$$
; $\overline{X}=69.64$; $n=50$

$$r = -0.32$$

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}} = rac{-0.32}{\sqrt{rac{1-(-0.32)^2}{48}}} = -2.363$$

$$p = 0.022$$

Assumindo $\alpha=0.05$, **Rejeito** H_0 :

Há evidências de correlação entre Y e X

Segundo H_0

$$r = -0.32$$
; $n = 10$

$$t_{calculado}=-0.965$$
; $p=0.363$

$$r = -0.32$$
; $n = 50$

$$t_{calculado}=-2.363$$
; $p=0.022$

O r mede associações lineares

Correlação não implica causalidade

5. Regressão linear simples: descrevendo relações funcionais

Um serviço ecossistêmico essencial de bacias hidrográficas é o fornecimento hídrico. Em 1955, o Serviço Florestal americano estabeleceu a Floresta Experimental de **Hubbard Brook (HBEF)** como um centro de pesquisa hidrológica.

Podemos supor que o volume de água anual que uma bacia pode fornecer tem relação com o volume de chuva na região.

5. Regressão linear simples: descrevendo relações funcionais

Um serviço ecossistêmico essencial de bacias hidrográficas é o fornecimento hídrico. Em 1955, o Serviço Florestal americano estabeleceu a Floresta Experimental de **Hubbard Brook (HBEF)** como um centro de pesquisa hidrológica.

Podemos supor que o volume de água anual que uma bacia pode fornecer tem relação com o volume de chuva na região.

5. Regressão linear simples: descrevendo relações funcionais

Um serviço ecossistêmico essencial de bacias hidrográficas é o fornecimento hídrico. Em 1955, o Serviço Florestal americano estabeleceu a Floresta Experimental de **Hubbard Brook (HBEF)** como um centro de pesquisa hidrológica.

Podemos supor que o volume de água anual que uma bacia pode fornecer tem relação com o volume de chuva na região.

Seja uma variável aleatória Y com distribuição normal proveniente de um experimento aleatório.

Seja uma variável aleatória Y com distribuição normal proveniente de um experimento aleatório.

Para cada observação y_i é conhecida também uma informação sobre x_i .

Para cada observação y_i é conhecida também uma informação sobre x_i .

Para cada observação y_i é conhecida também uma informação sobre x_i .

Para cada observação y_i é conhecida também uma informação sobre x_i .

Para cada observação y_i é conhecida também uma informação sobre x_i .

1 - As observações em Y e X compõem um par (y_i,x_i) de modo que:

$$Y = \left[egin{array}{c} y_1 \ y_2 \ \cdots \ y_n \end{array}
ight], X = \left[egin{array}{c} x_1 \ x_2 \ \cdots \ x_n \end{array}
ight]$$

- 2 X é determinada **experimentalmente** e **sem erros**.
- 3 Y é uma variável aleatória normalmente distribuída, com μ_i variância σ^2 .

$$Y \sim \mathcal{N}(\mu_i, \sigma^2)$$

4 - μ_i é representado por um **modelo linear** que expressa o valor esperado de y_i para um dado valor de x_i . Compõe a **parcela determinística** do modelo.

$$E(Y|x_i) = \mu_i = eta_0 + eta_1 x_i$$

5 - β_0 e β_1 são as contantes a serem estimadas, representando o **intercepto** e o **coeficience de inclinação da reta**, repectivamente.

6 - σ^2 é a **variância** de Y e ser estimada. σ^2 é **constante** para todos os valores em X.

Variáveis envolvidas

Y: variável resposta (dependente);

X: variável preditora (**in**dependente);

$$E(Y|x_i) = \beta_0 + \beta_1 x_i$$

Parâmetros do modelo

 β_0 : Intercepto;

 β_1 : coeficiente de inclinação da reta (**coeficiente de regressão**);

Se o intercepto eta_0 e a inclinação eta_1 são conhecidos, podemos **PREDIZER** qualquer valor y_i para um dado valor em x_i .

$$E(Y|x_i) = eta_0 + eta_1 x_i$$

5. Regressão linear simples: a tabela e o gráfico de dispersão

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

x_i	\dot{y}_i
2.09	766.58
2.21	827.62
4.00	814.09
5.25	796.54
5.47	755.55
5.69	775.74
6.37	829.26
9.81	811.61
10.56	710.96
11.18	699.34
13.70	744.22
14.02	751.35
16.16	727.52
18.34	704.99
19.13	726.00

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

x_i	\dot{y}_i	\hat{y}_i
2.09	766.58	804.59
2.21	827.62	803.94
4.00	814.09	793.94
5.25	796.54	786.98
5.47	755.55	785.79
5.69	775.74	784.55
6.37	829.26	780.76
9.81	811.61	761.58
10.56	710.96	757.41
11.18	699.34	753.93
13.70	744.22	739.88
14.02	751.35	738.11
16.16	727.52	726.20
18.34	704.99	714.06
19.13	726.00	709.64

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

x_i	\dot{y}_i	\hat{y}_i	ϵ_i
2.09	766.58	804.59	-38.01
2.21	827.62	803.94	23.68
4.00	814.09	793.94	20.15
5.25	796.54	786.98	9.56
5.47	755.55	785.79	-30.25
5.69	775.74	784.55	-8.82
6.37	829.26	780.76	48.50
9.81	811.61	761.58	50.03
10.56	710.96	757.41	-46.45
10.56 11.18	710.96 699.34	757.41 753.93	-46.45 -54.59
			10.10
11.18	699.34	753.93	-54.59
11.18 13.70	699.34 744.22	753.93 739.88	-54.59 4.34
11.18 13.70 14.02	699.34 744.22 751.35	753.93 739.88 738.11	-54.59 4.34 13.24

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

x_i	y_i	\hat{y}_i	ϵ_i
2.09	766.58	804.59	-38.01
2.21	827.62	803.94	23.68
4.00	814.09	793.94	20.15
5.25	796.54	786.98	9.56
5.47	755.55	785.79	-30.25
5.69	775.74	784.55	-8.82
6.37	829.26	780.76	48.50
9.81	811.61	761.58	50.03
10.56	710.96	757.41	-46.45
11.18	699.34	753.93	-54.59
13.70	744.22	739.88	4.34
14.02	751.35	738.11	13.24
16.16	727.52	726.20	1.32
18.34	704.99	714.06	-9.06
19.13	726.00	709.64	16.36

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

Variáveis e quantias envolvidas

- y_i : variável resposta i: $1 \cdots n$;
- x_i : variável preditora i: $1 \cdots n$;
- *n*: tamanho da amostra;

Parâmetros do modelo

- β_0 : intercepto;
- β_1 : coeficiente inclinação da reta;
- ε_i : resíduo responsável pela variação de y_i em torno do valor **predito** (\hat{y}_i) pela reta de regressão.

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

O resíduo associado a cada observação diminui ou aumenta à medida que o ponto está mais próximo ou distante da reta de regressão.

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

O resíduo associado a cada observação diminui ou aumenta à medida que o ponto está mais próximo ou distante da reta de regressão.

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

Parte determinística: β_0 e β_1

 $eta_0 + eta_1 x_i$

Parte estocástica: σ^2

$$arepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

O Método dos Mínimos Quadrados

Soma dos quadrados dos resíduos (SQ_{Res})

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2$$

O método dos mínimos quadrados consiste em encontrar a reta que **MINIMIZA** o somatório dos quadrados dos resíduos.

O Método dos Mínimos Quadrados

Soma dos quadrados dos resíduos (SQ_{Res})

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2$$

O método dos mínimos quadrados consiste em encontrar a reta que **MINIMIZA** o somatório dos quadrados dos resíduos.

O Método dos Mínimos Quadrados

Soma dos quadrados dos resíduos (SQ_{Res})

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2$$

O método dos mínimos quadrados consiste em encontrar a reta que **MINIMIZA** o somatório dos quadrados dos resíduos.

O Método dos Mínimos Quadrados

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2.$$

---> Estime $\hat{\beta}_0$ e $\hat{\beta}_1$ que minimize a quantia:

$$\sum_{i=1}^n (y_i - \hat{y_i})^2 = \sum_{i=1}^n (y_i - (\hat{eta}_0 + \hat{eta}_1 x_i))^2 \, .$$

5. Lembrando a Covariância entre Y e X

Soma dos produtos cruzados de Y e X

$$SQ_{YX} = \sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x}).$$

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

5. Regressão linear simples: estimando eta_1

$$\hat{eta}_1 = rac{SQ_{YX}}{SQ_X} = rac{s_{XY}}{s_X^2}$$

5. Regressão linear simples: estimando eta_0

$$egin{aligned} ar{y} &= \hat{eta}_0 + \hat{eta}_1 \overline{x} \ \hat{eta}_0 &= \overline{y} - \hat{eta}_1 \overline{x} \end{aligned}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

5. Regressão linear simples: estimando σ^2

$$y_i = \hat{eta}_0 + \hat{eta}_1 x_i + arepsilon_i$$

O Quadrado Médio do Resíduo (QM_{Res})

$$arepsilon \sim \mathcal{N}(0,\sigma^2)$$

$$s^2 = Q M_{Res} = rac{SQ_{Res}}{n-2}$$

Hipótese nula

$$y_i = eta_0 + arepsilon_i$$

Hipótese alternativa

$$y_i = eta_0 + eta_1 x_i + arepsilon_i$$

 H_0 pode ser testada por meio do teste t para o estimador \hat{eta}_1

$$t_{calculado}=rac{\hat{eta}_1-eta_1}{s_{\hat{eta}_1}}$$
; $s_{\hat{eta}_1}=\sqrt{rac{s^2}{SQ_X}}$

 $t_{calculado}$ depende da **magnitude de** \hat{eta}_1

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}}$$

 $t_{calculado}$ depende da **magnitude de** \hat{eta}_1

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}}$$

 $t_{calculado}$ depende da **magnitude de** \hat{eta}_1

$$t_{calculado} = rac{{{{ar eta }_1} - {eta _1}}}{{{s_{{{\hat eta }_1}}}}}$$

$$t_{calculado}$$
 depende da **variância residual** - $s_{\hat{eta}_1} = \sqrt{rac{s^2}{SQ_X}}$

$$t_{calculado} = rac{eta_1 - eta_1}{s_{\hat{eta}_1}}$$

$$t_{calculado}$$
 depende da **variância residual** - $s_{\hat{eta}_1} = \sqrt{rac{s^2}{SQ_X}}$

$$t_{calculado} = rac{eta_1 - eta_1}{s_{\hat{eta}_1}}$$

 $t_{calculado}$ depende do **tamanho da amostra** - n

$$t_{calculado} = rac{eta_1 - eta_1}{s_{\hat{eta}_1}}$$

7. Teste de hipóteses

 $t_{calculado}$ depende do **tamanho da amostra** - n

$$t_{calculado} = rac{{eta}_1 - {eta}_1}{s_{\hat{eta}_1}}$$

7. Teste de hipóteses

Na figura ao lado, os coeficientes de regressão foram estimados pelo MMQ em $\hat{eta}_0 = -568.55$ e $\hat{eta}_1 = 1.05$.

O valor de t foi:

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}} = rac{1.05 - 0}{0.06} = 17.451$$

O valor de p < 0.001 associado a este resultado, se interpretado ao nível de significância lpha = 0,05, é dito estatísticamente significativo, o que nos leva a **rejeitar** H_0 .

A conclusão é de que **existe** uma relação crescente entre a Precipitação e a Vazão na bacia hidrográfica.

8. Intervalo de confiânça para \hat{Y}

Cada repetição do experimento com amostra de tamanho n irá resultar em diferentes valores de \hat{Y} e consequentemente diferentes **retas de regressão**. O erro padrão de \hat{Y} é dado por:

$$s_{\hat{Y}|X} = \sqrt{s^2 \left(rac{1}{n} + rac{(X_i - \overline{X})^2}{SQ_X}
ight)}$$

O intervalo de confiância de \hat{Y} é dado por:

$$\hat{Y}\pm t_{(lpha,n-2)}s_{\hat{Y}|X}$$

A confiânça para \hat{Y} aumenta ao redor de \overline{X} e diminui nos extremos da distribuição de X_i

8. Intervalo de predição para Y^st

Tendo um modelo de regressão ajustado, o que esperar para Y se obtivermos **um novo dado** em X^* ? O erro padrão de Y^* é dado por:

$$s_{Y^*|X^*} = \sqrt{s^2\left(1+rac{1}{n}+rac{(X^*-\overline{X})^2}{SQ_X}
ight)}$$

O intervalo de **predição** de Y^* é dado por:

$$Y^*\pm t_{(lpha,n-2)}s_{Y^*|X^*}$$

8. Intervalo de confiânça vs intervalo de predição

Intervalo de confiânça de \hat{Y}

$$egin{aligned} s_{\hat{Y}|X} &= \sqrt{s^2 \left(rac{1}{n} + rac{(X_i - \overline{X})^2}{SQ_X}
ight)} \ \hat{Y} \pm t_{(lpha, n-2)} s_{\hat{Y}|X} \end{aligned}$$

Intervalo de predição de Y_i^st

$$s_{Y^*|X^*} = \sqrt{s^2\left(1+rac{1}{n}+rac{(X^*-\overline{X})^2}{SQ_X}
ight)} \ Y^*\pm t_{(lpha,n-2)}s_{Y^*|X^*}$$

8. Intervalos de confiânça para $\hat{eta_0}$ e $\hat{eta_1}$

Para $X_i=0$, $\hat{Y}=\hat{eta_0}$ de modo que:

$$s_{\hat{eta_0}} = \sqrt{s^2 \left(rac{1}{n} + rac{\overline{X}^2}{SQ_X}
ight)}$$

O intervalo de confiância de \hat{eta}_0 é dado por:

$$\hat{eta_0} \pm t_{(lpha,n-2)} s_{\hat{eta_0}}$$

Para \hat{eta}_1 temos:

$$s_{\hat{eta_1}} = \sqrt{\left(rac{s^2}{SQ_X}
ight)}$$

O intervalo de confiância de \hat{eta}_1 é dado por:

$$\hat{eta}_1 \pm t_{(lpha,n-2)} s_{\hat{eta}_1}$$

$$SQ_Y = SQ_{Reg} + SQ_{Res}$$

A Análise de Variância da Regressão

	gl	SQ	QM	F	р
Χ	1	9294.914	9294.914	77.49312	8e-07
Resíduo	13	1559.285	119.945	NA	NA

- gl: graus de liberdade
- ullet SQ: soma dos quadrados
- ullet QM: quadrado médio
- F: estatística F
- ullet p: valor de probabilidade na distribuição F

A Análise de Variância da Regressão

$$F_{calculado} = rac{QM_{Reg}}{QM_{Res}}$$

A Análise de Variância da Regressão

$$F_{calculado} = rac{QM_{Reg}}{QM_{Res}}$$

O Coeficiente de Determinação

$$R^2 = rac{SQ_{Reg}}{SQ_Y} = rac{SQ_{Reg}}{SQ_{Reg} + SQ_{Res}}$$

 ${\cal R}^2$ estima a proporção da variação em Y que pode ser atribuída ao modelo de regressão linear.

$$0 < R^2 < 1$$

Numericamente, o \mathbb{R}^2 é igual ao coeficiente de correlação linear de Pearson elevado ao quadrado.

10. Os comandos em R

```
m_regressao = lm(Flow ~ Precipitation , data = st_ref)
summary(m_regressao)
```

```
##
## Call:
## lm(formula = Flow ~ Precipitation, data = st ref)
##
  Residuals:
             1Q Median
     Min
                           30
                                Max
  -87.86 -41.68 -14.03 30.64 153.09
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
  (Intercept)
               -568.54529 78.88794 -7.207 6.2e-08 ***
                 1.05130
  Precipitation
                              0.06024 17.451 < 2e-16 ***
## Signif. codes:
  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 61.51 on 29 degrees of freedom
## Multiple R-squared: 0.9131, Adjusted R-squared: 0.9101
## F-statistic: 304.5 on 1 and 29 DF, p-value: < 2.2e-16
```


10. Os comandos em R

anova(m_regressao)

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i,x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i,x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i,x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

$$Y \sim \mathcal{N}(\mu_i, \sigma^2)$$
 $E(Y|x_i) = \mu_i = eta_0 + eta_1 x_i$

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i,x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i,x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

12. Transformações lineares

Um modelo de regressão linear **NÃO** precisa ser uma linha reta

O que define um modelo estatístico como linear é a posição dos seus parâmetros com relação a(s) variável(is) preditora(s). Os parametros a serem estimados devem estar na **MESMA LINHA** da variável dependente.

Os métodos discutidos para regressão linear simples também também se aplicam aos modelos de regressão múltipla e aos modelos polinomiais.

$$Y_i = eta_0 + eta_1 X_i + \epsilon_i$$
: Regressão Linear Simples

$$Y_i=eta_0+eta_1X_{i1}+eta_2X_{i2}+\cdots+eta_pX_{ip}\epsilon_i$$
: Regressão Linear Múltipla

$$Y_i = eta_0 + eta_1 X_i + eta_2 X_i^2 \epsilon_i$$
: Regressão Polinomial

12. Transformações lineares

Outros modelos podem ser linearizados por meio de uma função de ligação do tipo:

$$\eta=g(eta_i X_i)$$

Modelos Lineares Generalizados

$$\eta=eta_0+eta_1X_i$$

 $Y \sim \mathcal{N}(\mu = eta_0 + eta_1 X_i, \sigma^2)$: Modelo Normal (ex. Regressão Linear Simples)

$$\eta = log(eta_0 X_i^{eta_1}) = log(eta_0) + eta_1 log(X_i)$$

 $Y \sim \mathcal{P}ois(\lambda = e^{\eta})$: Modelo de Poisson (ex. variáveis de contagem)

$$\eta = logit(\eta) = log\left(rac{\eta}{1-\eta}
ight)$$

 $Y\sim \mathcal{B}inon(n=1,p=rac{e^{eta_0+eta_1X_i}}{1+e^{eta_0+eta_1X_i}})$: Modelo Binomial ou Regressão Logística (ex. variáveis categóricas binárias)