Contents

1	Cla	sses		
	1.1	factor	c.misc – miscellaneous functions related factoring	
		1.1.1	allDivisors – all divisors	
		1.1.2	primeDivisors – prime divisors	
		1.1.3	primePowerTest – prime power test	
		1.1.4	squarePart – square part	
		1.1.5	FactoredInteger – integer with its factorization	
			1.1.5.1 is divisible by	
			1.1.5.2 exact_division	
			1.1.5.3 divisors	
			1.1.5.4 proper divisors	
			1.1.5.5 prime divisors	
			1.1.5.6 square part	
			1.1.5.7 squarefree part	
			1.1.5.8 copy	

Chapter 1

Classes

- 1.1 factor.misc miscellaneous functions related factoring
 - Functions
 - allDivisors
 - primeDivisors
 - primePowerTest
 - squarePart
 - Classes
 - $\ {\bf Factored Integer}$

1.1.1 allDivisors – all divisors

```
allDivisors(n: integer) \rightarrow list
```

Return all factors divide n as a list.

1.1.2 primeDivisors – prime divisors

```
primeDivisors(n: integer) \rightarrow list
```

Return all prime factors divide **n** as a list.

1.1.3 primePowerTest – prime power test

```
primePowerTest(n: integer) \rightarrow (integer, integer)
```

Judge whether n is of the form p^k with a prime p or not. If it is true, then (p, k) will be returned, otherwise (n, 0).

This function is based on Algo. 1.7.5 in [1].

1.1.4 squarePart – square part

```
squarePart(n: \mathit{integer}) \rightarrow \mathit{integer}
```

Return the largest integer whose square divides n.

Examples

```
>>> factor.misc.allDivisors(1001)
[1, 7, 11, 13L, 77, 91L, 143L, 1001L]
>>> factor.misc.primeDivisors(100)
[2, 5]
>>> factor.misc.primePowerTest(128)
(2, 7)
>>> factor.misc.squarePart(128)
8L
```

1.1.5 FactoredInteger – integer with its factorization

Initialize (Constructor)

Integer with its factorization information.

If factors is given, it is a dict of type prime:exponent and the product of $prime^{exponent}$ is equal to the integer. Otherwise, factorization is carried out in initialization.

A class method to create a new **FactoredInteger** object from partial factorization information partial.

Operations

operator	explanation
F * G	multiplication (other operand can be an int)
F ** n	powering
F == G	equal
F != G	not equal
F % G	remainder (the result is an int)
F // G	same as exact division method
str(F)	string
int(F)	convert to Python integer (forgetting factorization)

Methods

1.1.5.1 is divisible by

```
\begin{array}{c} \text{is\_divisible\_by(self, other: } integer/\overline{\textbf{FactoredInteger}}) \\ \rightarrow bool \end{array}
```

Return True if other divides self.

1.1.5.2 exact division

```
\begin{array}{c} \text{exact\_division(self, other: } integer/\overline{\textbf{FactoredInteger}}) \\ \rightarrow \overline{\textbf{FactoredInteger}} \end{array}
```

Divide by other. The other must divide self.

1.1.5.3 divisors

```
	ext{divisors(self)} 	o 	ext{\it list}
```

Return all divisors as a list.

1.1.5.4 proper divisors

```
proper\_divisors(self) \rightarrow \mathit{list}
```

Return all proper divisors (i.e. divisors excluding 1 and self) as a list.

$1.1.5.5 \quad \text{prime_divisors}$

```
	ext{prime divisors(self)} 	o 	ext{\it list}
```

Return all prime divisors as a list.

1.1.5.6 square part

```
square\_part(self, as factored: \textit{bool} = False) \rightarrow \textit{integer} / \textbf{FactoredInteger object}
```

Return the largest integer whose square divides self.

If an optional argument asfactored is true, then the result is also a **Factored-Integer object**. (default is False)

1.1.5.7 squarefree part

 $squarefree \quad part(self, as factored: \textit{bool} = False) \rightarrow \textit{integer} / Factored Integer \ object$

Return the largest squarefree integer which divides self.

If an optional argument asfactored is true, then the result is also a **Factored-Integer object** object. (default is False)

1.1.5.8 copy

 $\mathbf{copy}(\mathbf{self}) \to \mathbf{FactoredInteger} \ \mathbf{object}$

Return a copy of the object.

Bibliography

[1] Henri Cohen. A Course in Computational Algebraic Number Theory. GTM138. Springer, 1st. edition, 1993.