Computational Quantum Mechanics Prof. Gerson J. Ferreira INFIS/UFU 2020/1

Variational Monte-Carlo

Let's assume H has the spectrum \rightarrow where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n \phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n \phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

Any other trial wave-function can be

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n \phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

Any other trial wave-function can be written as a linear combination →

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n \phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

Any other trial wave-function can be written as a linear combination → of the eigenstates,

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n \phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

Any other trial wave-function can be written as a linear combination → of the eigenstates, and its energy is

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n\phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

Any other trial wave-function can be written as a linear combination $\psi=\sum_n c_n\phi_n$ of the eigenstates, and its energy is

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n \phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n\phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

$$E = \langle \psi | H | \psi \rangle = \sum_{n} |c_n|^2 E_n = E_0 + \sum_{n} |c_n|^2 (E_n - E_0)$$

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

> 0

$$H\phi_n = E_n\phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

$$E = \langle \psi | H | \psi \rangle = \sum_{n} |c_n|^2 E_n = E_0 + \sum_{n} |c_n|^2 (E_n - E_0)$$

Let's assume H has the spectrum → where E0 corresponds to the lowest energy, all states satisfy

$$H\phi_n = E_n \phi_n \qquad \langle \phi_n | \phi_m \rangle = \delta_{n,m}$$

$$E = \langle \psi | H | \psi \rangle = \sum_{n} |c_n|^2 E_n = E_0 + \sum_{n} |c_n|^2 (E_n - E_0)$$

$$\therefore E \geq E_0$$

Assuming: $H|\psi\rangle=E|\psi\rangle \qquad \langle\psi|\psi\rangle=1$

Assuming:
$$H|\psi\rangle=E|\psi\rangle \qquad \langle\psi|\psi\rangle=1$$

Consider the effects of an infinitesimal change $\psi + \delta \psi$, and neglect $(\delta \psi)^2$ corrections

Assuming:
$$H|\psi\rangle = E|\psi\rangle \qquad \langle \psi|\psi\rangle = 1$$

Consider the effects of an infinitesimal change $\psi + \delta \psi$, and neglect $(\delta \psi)^2$ corrections

$$E + \delta E = \frac{\langle \psi + \delta \psi | H | \psi + \delta \psi \rangle}{\langle \psi + \delta \psi | \psi + \delta \psi \rangle} = \left[E + \langle \delta \psi | H | \psi \rangle + \langle \psi | H | \delta \psi \rangle \right] \left(\frac{1}{1 + \langle \psi | \delta \psi \rangle + \langle \delta \psi | \psi \rangle} \right)$$

Assuming:
$$H|\psi\rangle = E|\psi\rangle \qquad \langle \psi|\psi\rangle = 1$$

Consider the effects of an infinitesimal change $\psi + \delta \psi$, and neglect $(\delta \psi)^2$ corrections

$$E + \delta E = \frac{\langle \psi + \delta \psi | H | \psi + \delta \psi \rangle}{\langle \psi + \delta \psi | \psi + \delta \psi \rangle} = \left[E + \langle \delta \psi | H | \psi \rangle + \langle \psi | H | \delta \psi \rangle \right] \left(\underbrace{\frac{1}{1 + \langle \psi | \delta \psi \rangle + \langle \delta \psi | \psi \rangle}}_{\frac{1}{1 + r}} \approx 1 - x \right)$$

Assuming: $H|\psi\rangle = E|\psi\rangle \qquad \langle \psi|\psi\rangle = 1$

Consider the effects of an infinitesimal change $\psi + \delta \psi$, and neglect $(\delta \psi)^2$ corrections

$$E + \delta E = \frac{\langle \psi + \delta \psi | H | \psi + \delta \psi \rangle}{\langle \psi + \delta \psi | \psi + \delta \psi \rangle} = \left[E + \langle \delta \psi | H | \psi \rangle + \langle \psi | H | \delta \psi \rangle \right] \left(\frac{1}{1 + \langle \psi | \delta \psi \rangle + \langle \delta \psi | \psi \rangle} \right)$$

Neglect $(\delta \psi)^2$ corrections again to get

$$\frac{1}{3} \approx 1 - a$$

Assuming: $H|\psi\rangle = E|\psi\rangle \qquad \langle\psi|\psi\rangle = 1$

Consider the effects of an infinitesimal change $\psi + \delta \psi$, and neglect $(\delta \psi)^2$ corrections

$$E + \delta E = \frac{\langle \psi + \delta \psi | H | \psi + \delta \psi \rangle}{\langle \psi + \delta \psi | \psi + \delta \psi \rangle} = \left[E + \langle \delta \psi | H | \psi \rangle + \langle \psi | H | \delta \psi \rangle \right] \left(\frac{1}{1 + \langle \psi | \delta \psi \rangle + \langle \delta \psi | \psi \rangle} \right)$$

Neglect $(δψ)^2$ corrections again to get

$$\delta E = \langle \psi | H - E | \psi + \delta \psi \rangle + \langle \psi + \delta \psi | H - E | \psi \rangle + \mathcal{O}(\delta \psi^2)$$

Assuming:
$$H|\psi\rangle = E|\psi\rangle \qquad \langle \psi|\psi\rangle = 1$$

Consider the effects of an infinitesimal change $\psi + \delta \psi$, and neglect $(\delta \psi)^2$ corrections

$$E + \delta E = \frac{\langle \psi + \delta \psi | H | \psi + \delta \psi \rangle}{\langle \psi + \delta \psi | \psi + \delta \psi \rangle} = \left[E + \langle \delta \psi | H | \psi \rangle + \langle \psi | H | \delta \psi \rangle \right] \left(\frac{1}{1 + \langle \psi | \delta \psi \rangle + \langle \delta \psi | \psi \rangle} \right)$$

Neglect $(\delta \psi)^2$ corrections again to get

$$\delta E = \langle \psi | H - E | \psi + \delta \psi \rangle + \langle \psi + \delta \psi | H - E | \psi \rangle + \mathcal{O}(\delta \psi^2)$$

But if ψ is the eigenstate with energy E, then $\delta E = 0$

Assuming:
$$H|\psi\rangle = E|\psi\rangle \qquad \langle \psi|\psi\rangle = 1$$

Consider the effects of an infinitesimal change $\psi + \delta \psi$, and neglect $(\delta \psi)^2$ corrections

$$E + \delta E = \frac{\langle \psi + \delta \psi | H | \psi + \delta \psi \rangle}{\langle \psi + \delta \psi | \psi + \delta \psi \rangle} = \left[E + \langle \delta \psi | H | \psi \rangle + \langle \psi | H | \delta \psi \rangle \right] \left(\underbrace{\frac{1}{1 + \langle \psi | \delta \psi \rangle + \langle \delta \psi | \psi \rangle}}_{1} \right)$$

Neglect $(\delta \Psi)^2$ corrections again to get

$$\delta E = \langle \psi | H - E | \psi + \delta \psi \rangle + \langle \psi + \delta \psi | H - E | \psi \rangle + \mathcal{O}(\delta \psi^2)$$

But if ψ is the eigenstate with energy E, then $\delta E = 0$

Now we know that any trial wave-function satisfies: $E = \langle \psi | H | \psi \rangle \geq E_0$

Now we know that any trial wave-function satisfies: $E = \langle \psi | H | \psi \rangle \geq E_0$

1) Guess an initial trial function

Now we know that any trial wave-function satisfies: $E = \langle \psi | H | \psi \rangle \geq E_0$

1) Guess an initial trial function

2) <u>Sample</u> a random point and make a small change

Now we know that any trial wave-function satisfies: $E = \langle \psi | H | \psi
angle \geq E_0$

1) Guess an initial trial function

2) <u>Sample</u> a random point and make a small change

3) Calculate the new energy

$$E(\delta\psi) = \frac{\langle \psi + \delta\psi | H | \psi + \delta\psi \rangle}{\langle \psi + \delta\psi | \psi + \delta\psi \rangle}$$

Now we know that any trial wave-function satisfies: $E = \langle \psi | H | \psi
angle \geq E_0$

1) Guess an initial trial function

2) <u>Sample</u> a random point and make a small change

3) Calculate the new energy

$$E(\delta\psi) = \frac{\langle \psi + \delta\psi | H | \psi + \delta\psi \rangle}{\langle \psi + \delta\psi | \psi + \delta\psi \rangle}$$

4) If new E < old E, accept else, reject the change.

Return to step 2 and loop until convergence (?)

Now we know that any trial wave-function satisfies: $E = \langle \psi | H | \psi \rangle \geq E_0$

1) Guess an initial trial function

2) Sample a random point and make a small change

3) Calculate the new energy

4) If new E < old E, accept else, reject the change.

Return to step 2 and loop until convergence (?)

Simple process to orthogonalize a set of vectors

Simple process to orthogonalize a set of vectors

1) Let's define the projection of v into u as: $\operatorname{proj}_u(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle}u$

Simple process to orthogonalize a set of vectors

- 1) Let's define the projection of v into u as: $\operatorname{proj}_u(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle}u$
- 2) Say that we want to orthogonalize the set $\{v_1, v_2, v_3\}$.

Simple process to orthogonalize a set of vectors

- 1) Let's define the projection of v into u as: $\operatorname{proj}_u(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle}u$
- 2) Say that we want to orthogonalize the set $\{v_1, v_2, v_3\}$.
 - → let's start with v1, and subtract it's projection from v2, and so on...

Simple process to orthogonalize a set of vectors

- 1) Let's define the projection of v into u as: $\operatorname{proj}_u(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle}u$
- 2) Say that we want to orthogonalize the set $\{v_1, v_2, v_3\}$.
 - → let's start with v1, and subtract it's projection from v2, and so on...

$$u_1 = v_1$$

Simple process to orthogonalize a set of vectors

- 1) Let's define the projection of v into u as: $\operatorname{proj}_u(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle}u$
- 2) Say that we want to orthogonalize the set $\{v_1, v_2, v_3\}$.
 - → let's start with v1, and subtract it's projection from v2, and so on...

$$u_1 = v_1$$

$$u_2 = v_2 - \operatorname{proj}_{u_1}(v_2)$$

Simple process to orthogonalize a set of vectors

- 1) Let's define the projection of v into u as: $\operatorname{proj}_u(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle}u$
- 2) Say that we want to orthogonalize the set $\{v_1, v_2, v_3\}$.
 - → let's start with v1, and subtract it's projection from v2, and so on...

$$u_1 = v_1$$

 $u_2 = v_2 - \text{proj}_{u_1}(v_2)$
 $u_3 = v_3 - \text{proj}_{u_1}(v_3) - \text{proj}_{u_2}(v_3)$

Simple process to orthogonalize a set of vectors

- 1) Let's define the projection of v into u as: $\operatorname{proj}_u(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle}u$
- 2) Say that we want to orthogonalize the set $\{v_1, v_2, v_3\}$.
 - → let's start with v1, and subtract it's projection from v2, and so on...

$$u_1 = v_1$$

 $u_2 = v_2 - \text{proj}_{u_1}(v_2)$
 $u_3 = v_3 - \text{proj}_{u_1}(v_3) - \text{proj}_{u_2}(v_3)$

3) Normalize the new set {u₁, u₂, u₃} at the end only

Gram-Schmidt orthogonalization: example

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

$$\operatorname{proj}_{u}(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle} u$$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

Gram-Schmidt orthogonalization: example

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

1)
$$u1 = (1, 0, 0)$$

$$\operatorname{proj}_{u}(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle} u$$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

Gram-Schmidt orthogonalization: example

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

1)
$$u1 = (1, 0, 0)$$

2)
$$proj_{u1}(v2) = (1, 0, 0) \rightarrow u2 = (0, 1, 1)$$

$$\operatorname{proj}_{u}(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle} u$$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

1)
$$u1 = (1, 0, 0)$$

2)
$$proj_{u1}(v2) = (1, 0, 0) \rightarrow u2 = (0, 1, 1)$$

3)
$$proj_{u1}(v3) = (2, 0, 0) \& proj_{u2}(v3) = (0, -\frac{1}{2}, -\frac{1}{2})$$

$$\operatorname{proj}_{u}(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle} u$$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

1)
$$u1 = (1, 0, 0)$$

2)
$$proj_{u1}(v2) = (1, 0, 0) \rightarrow u2 = (0, 1, 1)$$

3)
$$\text{proj}_{u1}(v3) = (2, 0, 0) \& \text{proj}_{u2}(v3) = (0, -\frac{1}{2}, -\frac{1}{2})$$

 $\rightarrow u3 = (2, -1, 0) - (2, 0, 0) - (0, -\frac{1}{2}, -\frac{1}{2})$

$$\operatorname{proj}_{u}(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle} u$$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

1)
$$u1 = (1, 0, 0)$$

2)
$$proj_{u1}(v2) = (1, 0, 0) \rightarrow u2 = (0, 1, 1)$$

3)
$$\text{proj}_{u1}(v3) = (2, 0, 0) \& \text{proj}_{u2}(v3) = (0, -\frac{1}{2}, -\frac{1}{2})$$

 $\rightarrow u3 = (2, -1, 0) - (2, 0, 0) - (0, -\frac{1}{2}, -\frac{1}{2})$
 $\rightarrow u3 = (0, -\frac{1}{2}, \frac{1}{2})$

$$\operatorname{proj}_{u}(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle} u$$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

1)
$$u1 = (1, 0, 0)$$

2)
$$proj_{u1}(v2) = (1, 0, 0) \rightarrow u2 = (0, 1, 1)$$

3)
$$proj_{u1}(v3) = (2, 0, 0) \& proj_{u2}(v3) = (0, -\frac{1}{2}, -\frac{1}{2})$$

 $\rightarrow u3 = (2, -1, 0) - (2, 0, 0) - (0, -\frac{1}{2}, -\frac{1}{2})$
 $\rightarrow u3 = (0, -\frac{1}{2}, \frac{1}{2})$

4) normalize to get

$$\operatorname{proj}_{u}(v) = \frac{\langle u|v\rangle}{\langle u|u\rangle} u$$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

$$V1 = (1, 0, 0)$$

 $V2 = (1, 1, 1)$
 $V3 = (2, -1, 0)$

1)
$$u1 = (1, 0, 0)$$

2)
$$proj_{u1}(v2) = (1, 0, 0) \rightarrow u2 = (0, 1, 1)$$

3)
$$\text{proj}_{u1}(v3) = (2, 0, 0) \& \text{proj}_{u2}(v3) = (0, -\frac{1}{2}, -\frac{1}{2})$$

 $\rightarrow u3 = (2, -1, 0) - (2, 0, 0) - (0, -\frac{1}{2}, -\frac{1}{2})$
 $\rightarrow u3 = (0, -\frac{1}{2}, \frac{1}{2})$

4) normalize to get

$$u_1 = (1, 0, 0)$$
 $u_2 = \frac{1}{\sqrt{2}}(0, 1, 1)$ $u_3 = \frac{1}{\sqrt{2}}(0, -1, 1)$

$$\begin{aligned}
\operatorname{proj}_{u}(v) &= \frac{\langle u|v\rangle}{\langle u|u\rangle} u \\
u_{1} &= v_{1} \\
u_{2} &= v_{2} - \operatorname{proj}_{u_{1}}(v_{2}) \\
u_{3} &= v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})
\end{aligned}$$

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

The rejection method

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

The rejection method

• Sample a random x

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1
- Accept if q > P

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1
- Accept if q > P
- Otherwise try a different x

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

The rejection method

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1
- Accept if q > P
- Otherwise try a different x

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

The rejection method

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1
- Accept if q > P
- Otherwise try a different x

Exercise:

→ Write a code to sample points with a Gaussian distribution P(x) within the interval -5<x<5.</p>

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

The rejection method

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1
- Accept if q > P
- Otherwise try a different x

- → Write a code to sample points with a Gaussian distribution P(x) within the interval -5<x<5.</p>
- → Plot the histogram with

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

The rejection method

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1
- Accept if q > P
- Otherwise try a different x

- → Write a code to sample points with a Gaussian distribution P(x) within the interval -5<x<5.</p>
- → Plot the histogram with plt.hist(points)

Small changes in regions where ψ is small, won't affect E. It's better to focus on regions where ψ is large.

The rejection method

- Sample a random x
- Let $P = |\psi(x)|^2$ will be the probability to accept x
 - \rightarrow Normalize P by the maximum value of $|\psi(x)|^2$
- Sample an uniform number 0 < q < 1
- Accept if q > P
- Otherwise try a different x

- \rightarrow Write a code to sample points with a Gaussian distribution P(x) within the interval -5<x<5.
- → Plot the histogram with

