## Assignment 1

## Jaswanth Chowdary Madala

- 1) A die is thrown, find the probability of following events:
  - a) A prime number will appear
  - b) A number greater than or equal to 3 will appear
  - c) A number less than or equal to one will appear
  - d) A number more than 6 will appear
  - e) A number less than 6 will appear

**Solution:** The given information is summarized in the following table 1

| RV    | Description    | Probability           |
|-------|----------------|-----------------------|
| X = 1 | Die rolls to 1 | $\frac{1}{6}$         |
| X = 2 | Die rolls to 2 | $\frac{1}{6}$         |
| X = 3 | Die rolls to 3 | $\frac{1}{6}$         |
| X = 4 | Die rolls to 4 | $\frac{1}{6}$         |
| X = 5 | Die rolls to 5 | $\frac{\tilde{l}}{6}$ |
| X = 6 | Die rolls to 6 | $\frac{1}{6}$         |

TABLE 1: Random variable X



Fig. 1: Graph

The CDF of the random variable X is given by,

$$F_X(n) = \Pr(X \le n) \tag{0.0.1}$$

From the equation (0.0.1) we get,

$$F_X(n) = \begin{cases} 0 & n < 1 \\ \frac{n}{6} & 1 \le n \le 6 \\ 1 & \text{otherwise} \end{cases}$$
 (0.0.2)

The graph of the CDF function is shown in the figure 1

a) The set of possible prime numbers in a die roll contains 2,3,5

$$Pr(X \in \{2, 3, 5\}) = p_X(2) + p_X(3) + p_X(5)$$
(0.0.3)

$$=\frac{1}{2}$$
 (0.0.4)

b) The probability that a number greater than or equal to 3 will appear is given by

$$Pr(X \ge 3) = 1 - Pr(X \le 2)$$
 (0.0.5)

$$= 1 - F_X(2) \tag{0.0.6}$$

$$=\frac{2}{3}$$
 (0.0.7)

 c) The probability that a number less than or equal to 1 will appear is given by

$$\Pr(X \le 1) = F_X(1)$$
 (0.0.8)

$$=\frac{1}{6}$$
 (0.0.9)

d) The probability that a number greater than 6 will appear is given by

$$Pr(X > 6) = 1 - Pr(X \le 6)$$
 (0.0.10)

$$= 1 - F_X(6) \tag{0.0.11}$$

$$= 0 (0.0.12)$$

e) The probability that a number less than 6 will appear is given by

$$Pr(X < 6) = Pr(X \le 5)$$
 (0.0.13)

$$= F_X(5) \tag{0.0.14}$$

$$=\frac{5}{6}\tag{0.0.15}$$