

PROBLEM:

Figure: Liquidity Frequency Distribution

PROBLEM:

 How do we increase trading volume on stagnated liquidity in pool over some time interval t?

Figure: Liquidity Frequency Distribution

We call this inefficiency the Stagnant Liquidity Problem

SOLUTION: LIQUIDITY TREES

SOLUTION

· Instead of adjusting the price curve as individual LPs

SOLUTION: LIQUIDITY TREES

SOLUTION

 Instead of adjusting the price curve as individual LPs, we address the problem via a system of LPs called Liquidity Trees

SOLUTION: LIQUIDITY TREES

SOLUTION

 Instead of adjusting the price curve as individual LPs, we address the problem via a system of LPs called Liquidity Trees

Figure: Full CPT liquidity tree represented as a computational tree structure comprised of left-sided, right-sided and synthetic pools

SUMMARY

ETHDENVER 2024:

- · Defining the stagnant liquidity problem
- Addressing the problem using a new DeFi primitive, which we call Liquidity Trees
- Show simulations to support our reasoning
- Discuss how we will be integrating Liquidity Trees for the Pachira token launch (\$CHIR)