

Digitális technika 2. BMEVIIIAA02

elődás 2020/21 tavaszi félév

Flip-flopok alkalmazása

Miről volt szó

Áramkörök kimenetei Funkcionális elemek – kombinációs hálózatok

Multiplexer

Enkóder

Dekóder/demultiplexer

Demultiplexer

Dekóder

Komparátor

Soros/párhuzamos kaszkádosítás Kettes komplemens komparálás

Interfész jelölések

74151 8/1 multiplexer

С	В	A	G	Υ	W
Х	Х	Х	1	0	1
0	0	0	0	D0	D0
0	0	1	0	D1	D1
0	1	0	0	D2	D2
			:		
1	1	0	0	D6	D6
1	1	1	0	D7	D7

'151A, 'L\$151, 'S151

'151A, 'LS151, 'S151 FUNCTION TABLE

	- 1	NPU'	rs	OUT	PUTS
	SELEC	т	STROBE		
С	6	A	Ğ		w
×	х	×	н	L	н
L	L	L	L	DO	DO
1	L	н	L	DI	D1
L	н	L	L	D2	02
Ł,	H	H	L	D3	D 3
1 14	L	L	L	D4	<u>D4</u>
Н	L	н	L	D5	D5
н	н	L	L	06	D6
н	н	н	L	D7	D7

74148 8/3 enkóder

OUTPUT

EI	0	1	 6	7	A2	A1	A0	GS	ЕО
1	х	х	 х	х	1	1	1	1	1
0	1	1	 1	1	1	1	1	1	0
0	х	х	 х	0	0	0	0	0	1
0	х	х	 0	1	0	0	1	0	1
0	Х	0	 1	1	1	1	0	0	1
0	0	1	 1	1	1	1	1	0	1

SN54/74LS148 SN54/74LS748 FUNCTION TABLE

	INPUTS									0	UTPL	JTS	
EI	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
Н	Х	Х	Х	Х	Х	X	Х	Х	н	Н	Н	н	Н
L	H	H	H	H	Н	H	H	Н	Н	H	H	н	L
L	X	X	X	X	X	X	X	L	L	L	L	L	H
L	X	X	X	X	X	X	L	Н	L	L	H	L	H
L	X	X	X	X	X	L	H	H	L	H	L	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	н	L	L	L	H
L	X	X	L	H	H	H	H	H	н	L	H	L	H
L	X	L	H	H	H	H	H	H	Н	H	L	L	H
L	L	H	H	H	H	H	H	H	Н	H	H	L	H

15

INPUTS

13

12 11

6 7 A2 A1 OUTPUTS

74138 3/8 dekóder

E1	E2	E3	A0	A1	A2	O ₀	<u>O</u> 1		O ₆	O ₇
1	Х	Х	Х	Х	Х	1	1	1	1	1
Х	1	Х	Х	х	Х	1	1	1	1	1
Х	Х	0	Х	Х	Х	1	1	1	1	1
0	0	1	0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	0	1	1	1
0	0	1	1	1	1	1	1	1	1	0

INPUTS						OUTPUTS					- 500		
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	00	01	02	03	04	05	06	07
н	X	Х	Х	X	Х	Н	н	н	H	Н	н	Н	Н
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	н
L	L	н	L	L	L	L	H	H	H	H	H	H	H
L	L	н	H	L	L	н	L	H	H	H	H	н	н
L	L	н	L	H	L	Н	H	L	H	H	H	H	H
L	L	н	H	H	L	Н	H	H	L	H	H	H	H
L	L	н	L	L	H	H	H	H	H	L	Н	H	H
L	L	H	H	L	H	Н	H	H	н	H	L	H	H
L	L	н	L	H	H	H	H	н	H	H	H	L	H
L	L	Н	H	H	H	H	H	H	H	H	H	H	L

Ajtó csengetés kijelzés – melyik ajtónál csengetnek

Ajtó csengetés kijelzés megvalósítása szimulátorban

Ajtó nyitás

Ajtó nyitás megvalósítása szimulátorban

Sorrendi hálózatok

Sorrendi hálózatok alapállapota

Összevont állapot tábla

	00	01	11	10	Z
Α	C	O	Α	Α	0
В	В	С	В	В	0
С	Α	В	C	С	1

Kódolt állapot tábla

		00	01	11	10
Α	00	11,0	11,0	00,0	00,0
В	01	01,1	11,1	01,1	01,1
С	11	00,1	01,0	11,1	11,1
	10	,-	,-	,-	,-

Megvalósítás

$$D1 = y2 \cdot \overline{x1} + y1 \cdot x1 + \overline{y1} \cdot \overline{x1} \cdot x2$$

$$D2 = \overline{y1} \cdot \overline{x1} + y2 \cdot x2 + y2 \cdot x1$$

Bekapcsolás után a hálózat néha nem működik Hol hibáztunk?

Sorrendi hálózatok

$$Z = y2$$

$$D1 = y2 \cdot \overline{x1} + y1 \cdot x1 + \overline{y1} \cdot \overline{x1} \cdot x2$$

$$D2 = \overline{y1} \cdot \overline{x1} + y2 \cdot x2 + y2 \cdot x1$$

A megvalósított hálózat kódolt állapot táblázata

	00	01	11	10
00	11,0	11,0	00,0	00,0
01	01,1	11,1	01,1	01,1
11	00,1	01,0	11,1	11,1
10	10,0	10,0	10,0	10,0

Ha bekapcsolás után D1 = 1 és D2 = $0 \rightarrow a$ hálózat nem fog működni Mit tehetünk?

- a.) C állapot kapja az 11 és 10 állapotkódot
- b.) Biztosítsuk, hogy a hálózat a 00 állapotból induljon
 - → Szükség van a flip-flopok számára alaphelyzetbe állító jelekre

Flip-flopok

D flip-flop

Alaphelyzet: 0 vagy 1 Két alaphelyzetbe állító bemenet

Pr aktív
$$\rightarrow$$
 Q = 1, \overline{Q} = 0

Cl aktív
$$\rightarrow$$
 Q = 0, \overline{Q} = 1

Az alaphelyzet azonnal álljon be → aszinkron bemenetek

Mi történik, ha Pr és Cl egyszerre aktív?

- a.) Prioritás
- b.) Implementáció függő

pl: Q és Q egyaránt 1

Konzisztens kimenet előállítása:

Pr prioritása nagyobb

Cl prioritása nagyobb

Flip-flopok

Flip-flop működési módok

Bemenet Kimenet mintavételezése beállítása

felfutóél-vezérelt Órajel 0→1 Órajel 0→1

lefutóél-vezérelt Órajel 1→0 Órajel 1→0

Master-slave Órajel ="1" Órajel 1→0

 Data-lock-out
 Órajel 0→1
 Órajel 1→0

 D
 D
 Q

 D
 Q
 >

Nyomógomb pergésmentesítés

Órajel felezés – aszinkron hálózat

SR

Állapot tábla

XF	0	1
а	(a,0)	b,0
b	c,1	(b,1)
С	(C,	d,1
d	a,0	d ,0

Állapot kód

00 01 11

10

Kódolt állapot tábla

X F	0	1
00	00,0	01,0
01	11,1	01,1
11	11,1	10,1
10	00,0	10,0

Vezérlési tábla - S-R flip-flop

X F	0	1
00	0- 0-	0- 10
01	10 -0	00
11	-0 -0	-0 01
10	01 0-	-0 0-

$$F = y2$$

$$S1 = y2 \cdot \overline{X}$$

$$R1 = \overline{y2} \cdot \overline{X}$$

$$S2 = \overline{y1} \cdot X$$

$$R2 = y1 \cdot X$$

Órajel felezés – aszinkron hálózat

Órajel felezés – szinkron hálózat

T flip-flop

D flin-flon (2)

D	mp-	пор	(2)	
10-	D	Q		F
Clk —	>			

В

Α

Kétfázisú órajel

$$F1 = F \cdot Clk$$
 $F2 = \overline{F} \cdot Clk$

Kétfázisú órajel

Regiszterek

Közös órajellel vezérelt D flip-flop csoport Összetartozó adatbitek tárolása A tárolás az órajel felfutó élére történik

Ha aszinkron DG flip-flop

Regiszter

LATCH

Regiszterek

Regiszter: a kimenet rögzítése az órajel **felfutó** élénél történik LATCH: a kimenet rögzítése az órajel **lefutó** élénél történik

Közös órajel, a flip-flopok egymás után kapcsolva **Léptető regiszter** (shift regiszter)

Alaphelyzetbe állítás: aszinkron

Léptető regiszter JK flip-floppal

$$JK \Rightarrow D \qquad \begin{array}{c} J = D \\ K = \overline{D} \end{array}$$

Felfutóél vezérelt flip-flopok

mintavételezés

Hazárd: rendszer hazárd (órajel csúszás)

Léptető regiszter (shift regiszter)

Soros → párhuzamos átalakítás: 8 bites shift regiszter

 $SI = A \cdot B$

Clear: aszinkron törlés

Clear	Clk	Α	В	QA	QB	 QH
L	X	Х	X	L	L	 L
Н	L	Х	Х	QA_0	QB_0	 QH_0
Н	↑	Н	Н	Н	QA _n	 QG _n
Н	↑	L	Х	L	QA _n	 QG _n
Н	↑	X	L	L	QA _n	 QG _n

Léptető regiszter (shift regiszter)

Párhuzamos → soros átalakítás: 8 bites shift regiszter

SH/LD: Léptetés/töltés (aszinkron!)

SER: Soros input

ClkInh: Léptetés áll (EN)

SH/LD	ClkInh	Clk	SER	АН	Belső kimenetek QA QB	QH
L	Х	X	х	ah	a b	h
Н	L	L	x	x	QA ₀ QB ₀	QH_0
Н	L	1	Н	х	H QA _n	QG _n
Н	L	1	L	х	L QA _n	QG _n
Н	Н	L	х	х	QA ₀ QB ₀	QH_0

Léptető regiszter (shift regiszter)

Párhuzamos → soros átalakítás: 8 bites shift regiszter

SIFT/LOAD: Léptetés/töltés (szinkron)

SERIAL: Soros input Clear: aszinkron törlés ClkInh: Léptetés áll (EN)

Clear	SHIFT/ LOAD	ClkInh	Clk	SERIAL	АН	Belső kimenetek QA QB	QH
L	x	Х	Х	Х	Х	L L	L
Н	х	L	L	Х	Х	QA ₀ QB ₀	QH_0
Н	L	L	1	Х	ah	a b	h
Н	Н	L	1	Н	Х	H QA _n	QG _n
Н	Н	L	1	L	Х	L QA _n	QG _n
Н	Х	Н	1	Х	Х	QA ₀ QB ₀	QH_0

Általános regiszter

Általános regiszter

Műveletek

- töltés
- törlés
- balra léptetés
- jobbra léptetés

Működési tábla

V1	V0	Művelet
0	0	töltés
0	1	balra léptetés
1	0	jobbra léptetés
1	1	törlés

→ D flip-flop + multiplexer a bemeneten, ahol kiválasztható mi kerüljön beírásra

