Chapter 14 Report: Classifying Images with CNNs

Quan Pham

June 18, 2025

Contents

Abstract
Key Concepts
2.1 Convolutional Neural Networks
2.2 Discrete Convolution
2.3 Pooling Layers
2.4 Convolution layer
2.5 Regularization
2.6 Loss Functions
2.7 Other Techniques
Algorithms and Models Studied
Code Examples and Practical Exercises
4.1 Implementing a deep CNN using PyTorch
4.2 Smile classification from face images using CNN
Learnings and Challenges
5.1 Key Takeaways
5.2 Challenges Encountered
5.3 Opening Questions
Conclusion and Furture work
Constant and Larvary work
6.1 Conclusion

1 Abstract

In this chapter, I studied convolutional neural networks (CNNs) and their application in image classification tasks. CNNs are designed to extract hierarchical features from images, which makes them highly effective for vision-related problems.

2 Key Concepts

2.1 Convolutional Neural Networks

- CNNs mimic the human visual cortex and automatically learn features from raw data.
- Feature hierarchies: low-level features \rightarrow high-level representations.
- Key ideas: sparse connectivity and parameter sharing.
- Pooling layers reduce spatial dimensions and help with generalization.

2.2 Discrete Convolution

$$y[i] = \sum_{k=-\infty}^{+\infty} x[i-k] \cdot w[k]$$
$$Y[i,j] = \sum_{k_1} \sum_{k_2} X[i-k_1, j-k_2] \cdot W[k_1, k_2]$$

Important hyperparameters: padding (full, same, valid), stride.

2.3 Pooling Layers

- Max-pooling and mean-pooling.
- Improve robustness to noise, reduce overfitting.
- Can use overlapping or non-overlapping pooling.

2.4 Convolution layer

• Handling multiple input/output channels:

$$\begin{split} Z^{\text{conv}}&:,:,k] = \sum_{c=1}^{C_{in}} W[:,:,c,k] * X[:,:,c] \\ Z&:,:,k] = Z^{\text{conv}} + b[k] \\ A&:,:,k] = \sigma(Z[:,:,k]) \end{split}$$

2.5 Regularization

- L2 regularization (weight decay) and dropout help prevent overfitting.
- Dropout encourages robust feature learning.

2.6 Loss Functions

- Binary classification: BCEWithLogitsLoss, BCELoss
- Multiclass: CrossEntropyLoss, NLLLoss

2.7 Other Techniques

- Data augmentation: enhances generalization.
- Global average pooling: reduces parameters.

3 Algorithms and Models Studied

4 Code Examples and Practical Exercises

4.1 Implementing a deep CNN using PyTorch

Prepare the MNIST dataset:

```
import torchvision
   from torchvision import transforms
   import torch
3
   x = torch.tensor([5, 5, 5])
4
5
   from torch import nn
6
   image_path = '../data/'
   transform = transforms.Compose([
9
      transforms.ToTensor()
10
11
   mnist_dataset = torchvision.datasets.MNIST(root=image_path, train=True,
12
   13
   from torch.utils.data import Subset
14
   mnist_valid_dataset = Subset(mnist_dataset, torch.arange(10000))
15
   mnist_train_datset = Subset(mnist_dataset, torch.arange(10000,
   → len(mnist_dataset)))
   mnist_test_dataset = torchvision.datasets.MNIST(root=image_path,
```

```
from torch.utils.data import DataLoader
batch_size = 64
torch.manual_seed(1)
train_dl = DataLoader(mnist_train_datset, batch_size, shuffle=True)
valid_dl = DataLoader(mnist_valid_dataset, batch_size, shuffle=False)
```

Construct the CNN model using the Sequential class:

```
model = nn.Sequential()
   model.add_module(
2
        'conv1'.
3
       nn.Conv2d(
4
            in_channels=1, out_channels=32, kernel_size=5, padding=2
5
        )
6
   model.add_module('relu1', nn.ReLU())
   model.add_module('pool1', nn.MaxPool2d(kernel_size=2))
9
   model.add_module(
10
        'conv2',
11
       nn.Conv2d(
12
            in_channels=32, out_channels=64, kernel_size=5, padding=2
13
        )
14
15
   model.add_module('relu2', nn.ReLU())
16
   model.add_module('pool2', nn.MaxPool2d(kernel_size=2))
17
   model.add_module('fc1', nn.Linear(3136, 1024))
18
   model.add_module('relu3', nn.ReLU())
19
   model.add_module('dropout', nn.Dropout(p=0.5))
20
   model.add_module('fc2', nn.Linear(1024, 10))
```

Train accuracy and validation accuracy for 20 epochs:

```
Epoch 1 accuracy: 0.9496 val_accuracy: 0.9792 ...

Epoch 10 accuracy: 0.9964 val_accuracy: 0.9902 ...

Epoch 20 accuracy: 0.9981 val_accuracy: 0.9909
```

4.2 Smile classification from face images using CNN

```
get_smile = lambda attr: attr[18]

transform_train = transforms.Compose([
    transforms.RandomCrop([178, 178]),
```

```
transforms.RandomHorizontalFlip(),
        transforms.Resize([64, 64]),
6
        transforms.ToTensor(),
   ])
8
9
   transform = transforms.Compose([
10
        transforms.CenterCrop([178, 178]),
11
        transforms.Resize([64, 64]),
12
        transforms.ToTensor().
13
   ])
14
   celeba_train_dataset = torchvision.datasets.CelebA(image_path,
```

```
celeba_train_dataset = torchvision.datasets.CelebA(image_path,

⇒ split='train', target_type='attr', download=False,

⇒ transform=transform_train, target_transform=get_smile)

celeba_train_dataset = Subset(celeba_train_dataset, torch.arange(16000))

celeba_valid_dataset = Subset(celeba_valid_dataset, torch.arange(1000))
```

```
batch_size = 32
torch.manual_seed(1)
train_dl = DataLoader(celeba_train_dataset, batch_size, shuffle=True)
valid_dl = DataLoader(celeba_valid_dataset, batch_size, shuffle=False)
test_dl = DataLoader(celeba_test_dataset, batch_size, shuffle=False)
```

```
model = nn.Sequential()
1
   model.add_module('conv1', nn.Conv2d(in_channels=3, out_channels=32,
2

    kernel_size=3, padding=1))

   model.add_module('relu1', nn.ReLU())
   model.add_module('pool1', nn.MaxPool2d(kernel_size=2))
4
   model.add_module('conv2', nn.Conv2d(in_channels=32, out_channels=64,
6

    kernel_size=3, padding=1))

   model.add_module('relu2', nn.ReLU())
7
   model.add_module('pool2', nn.MaxPool2d(kernel_size=2))
   model.add_module('conv3', nn.Conv2d(in_channels=64, out_channels=128,
10

    kernel_size=3, padding=1))

   model.add_module('relu3', nn.ReLU())
11
   model.add_module('pool3', nn.MaxPool2d(kernel_size=2))
12
13
   model.add_module('conv4', nn.Conv2d(in_channels=128, out_channels=256,

    kernel_size=3, padding=1))

   model.add_module('relu4', nn.ReLU())
15
16
   model.add_module('pool4', nn.AvgPool2d(kernel_size=8))
```

```
model.add_module('flatten', nn.Flatten())
model.add_module('fc', nn.Linear(256, 1))
model.add_module('sigmoid', nn.Sigmoid())
```

```
loss_fn = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```

```
Epoch 1 accuracy: 0.6350 val_accuracy: 0.7100 ...

Epoch 15 accuracy: 0.8899 val_accuracy: 0.8990 ...

Epoch 30 accuracy: 0.9139 val_accuracy: 0.9030
```

5 Learnings and Challenges

- 5.1 Key Takeaways
- 5.2 Challenges Encountered
- 5.3 Opening Questions
- 6 Conclusion and Furture work
- 6.1 Conclusion
- 6.2 Future work

References

[1] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. *Advances in neural information processing systems*, 2, 1989.