

Microcontroller Teil 6 Timer/Counter

DI (FH) Andreas Pötscher

HTL Litec

Anwendung von Timer-Counter-Betrieb

Timer/Counter werden als Timer verwendet, um exakt zeitgesteuerte Aufgaben zu erledigen. Sie werden als Counter verwendet, um das Auftreten von Hardware-Ereignissen zu zählen.

Die Timer/Counter des ATmega 2560

▶ Der ATmega2560 hat zwei 8-Bit-Timer/Counter und vier 16-Bit-Timer/Counter namens Timer/Counter1, 3, 4 und 5. Herzstück jedes Timer/Counters ist ein 8 bzw. 16 Bit breites Zählerstands-Register, das durch bestimmte Zähl-Impulse ständig inkrementiert wird.

Die Timer/Counter des ATmega 2560

- ▶ Der ATmega2560 hat zwei 8-Bit-Timer/Counter und vier 16-Bit-Timer/Counter namens Timer/Counter1, 3, 4 und 5. Herzstück jedes Timer/Counters ist ein 8 bzw. 16 Bit breites Zählerstands-Register, das durch bestimmte Zähl-Impulse ständig inkrementiert wird.
- ➤ Timer/Counter0 und Timer/Counter2 verwenden 8 Bit breite Register. Das bedeutet, dass das Zählerstandsregister Werte von 0 bis 255 annehmen kann. Solche Timer/Counter werden als 8-Bit-Timer/Counter bezeichnet.

Die Timer/Counter des ATmega 2560

- ▶ Der ATmega2560 hat zwei 8-Bit-Timer/Counter und vier 16-Bit-Timer/Counter namens Timer/Counter1, 3, 4 und 5. Herzstück jedes Timer/Counters ist ein 8 bzw. 16 Bit breites Zählerstands-Register, das durch bestimmte Zähl-Impulse ständig inkrementiert wird.
- ➤ Timer/Counter0 und Timer/Counter2 verwenden 8 Bit breite Register. Das bedeutet, dass das Zählerstandsregister Werte von 0 bis 255 annehmen kann. Solche Timer/Counter werden als 8-Bit-Timer/Counter bezeichnet.
- ➤ Timer/Counter1, Timer/Counter3, Timer/Counter4 und Timer/Counter5 besitzen 16 Bit breite Register. Die möglichen Werte des Zählerstandsregisters liegen daher zwischen 0 und 65535.

Auslesen des aktuellen Timer/Counter-Zählerstands im C-Program

Der aktuelle Zählerstand ist im Register TCNTn gespeichert, wobei n die Nummer des verwendeten Timer/Counters ist. Für den Timer/Counter 1 also.

```
uint16_t cnt;
cnt = TCNT1;
```

Clock-Select-Logic - Auswahl der Zähl-Impulse

Figure 1: Clock-Select-Logic von Timer/Counter 1

Der Prescaler

Prescaler-Wert	Timerfrequenz f_T	Periodendauer T_T	
1	16 MHz	$0,0625\mu s$	
8	2 MHz	$0,5\mu s$	
64	250 kHz	$4 \mu s$	
256	62,5 kHz	$16\mu s$	
1024	15,625 kHz	64 μ s	

Nach einem Reset beträgt der Zählerstand aller Timer/Counter gleich 0. Angenommen, in der Initialisierungsphase des Hauptprogramms wird beim Timer/Counter1 ein Prescaler-Wert von 256 ausgewählt. Dadurch startet der Timer/Counter1 und sein Zählerstand beginnt sich von null weg zu erhöhen. Wie lange dauert es, bis ein Zählerstand von 32000 erreicht ist?

▶ Die Frequenz des Taktsignals, das den Zählerstand erhöht, hat eine Frequenz von $f_T = \frac{f_{osc}}{256} = \frac{16MHz}{256} = 62,5kHz$

- Die Frequenz des Taktsignals, das den Zählerstand erhöht, hat eine Frequenz von $f_T = \frac{f_{osc}}{256} = \frac{16MHz}{256} = 62,5kHz$
- ▶ Die Periodendauer ist der Kehrwert daraus: $T_T = \frac{1}{f_T} = \frac{1}{62,5kHz} = 16\mu s$

- Die Frequenz des Taktsignals, das den Zählerstand erhöht, hat eine Frequenz von $f_T = \frac{f_{osc}}{256} = \frac{16MHz}{256} = 62,5kHz$
- ▶ Die Periodendauer ist der Kehrwert daraus: $T_T = \frac{1}{f_T} = \frac{1}{62.5 kHz} = 16 \mu s$
- Direkt nach dem Starten des Timer/Counter1 durch Auswahl des Prescaler-Werts von 256 beträgt der Zählerstand noch 0. Eine Zeitspanne von $16\mu s$ später (T_T) wird der Zählerstand von 0 auf 1

- Die Frequenz des Taktsignals, das den Zählerstand erhöht, hat eine Frequenz von $f_T = \frac{f_{osc}}{256} = \frac{16MHz}{256} = 62,5kHz$
- ▶ Die Periodendauer ist der Kehrwert daraus: $T_T = \frac{1}{f_T} = \frac{1}{62.5 kHz} = 16 \mu s$
- Direkt nach dem Starten des Timer/Counter1 durch Auswahl des Prescaler-Werts von 256 beträgt der Zählerstand noch 0. Eine Zeitspanne von $16\mu s$ später (T_T) wird der Zählerstand von 0 auf 1
- ▶ Der Zählerstand erhöht sich genau alle $16\mu s$ um 1. Er ist somit eine Stufenfunktion der Zeit.

Figure 2: Zählerstand am Anfang

Insgesamt dauert es bis ein Zählerstand von 32000 erreicht wird dann $32000*T_T=32000*16\mu s=512ms$

- Insgesamt dauert es bis ein Zählerstand von 32000 erreicht wird dann $32000 * T_T = 32000 * 16\mu s = 512ms$
- ▶ Bei einem Zählerstand von 32000 ist die Stufenfunktion Aufgrund der vielen Punkte nicht mehr zu sehen.

Figure 3: Nach 512 ms wird ein Wert von 32000 erreicht

Progammieren der Clock-Select-Logic

Die Auswahl der Taktquelle geschieht durch das Setzen der Bits CSn2, CSn1 und CSn0 (CS steht für Clock Select) im Timer/Counter Control Register B (TCCRnB). Dabei steht das "n" für die Nummer des jeweiligen Timer/Counters und ist entsprechend zu ersetzen.

Bit	7	6	5	4	3	2	1	0
TCCR1B:	_	_	_	WGM13	WGM12	CS12	CS11	CS10

Progammieren der Clock-Select-Logic

CSn2	CSn1	CSn0	Taktquelle für Timer/Counter
0	0	0	keine Taktquelle der Timer ist gestoppt.
0	0	1	Prescaler 1 $f_T = 16MHz$
0	1	0	Prescaler 8 $f_T = 2MHz$
0	1	1	Prescaler 64 $f_T = 250 kHz$
1	0	0	Prescaler 256 $f_T = 62,5kHz$
1	0	1	Prescaler 1024 $f_T = 15,625kHz$
1	1	0	Fallende Flanke am GPIO Pin mit der Funktion "Tn"
1	1	1	Steigende Flanke am GPIO Pin mit der Funktion "Tn"

► Timer/Counter3 soll als Timer mit einem Prescaler-Wert von 256 betrieben werden.

- ► Timer/Counter3 soll als Timer mit einem Prescaler-Wert von 256 betrieben werden.
- ▶ Im Register TCCR3B müssen die Bits CS32, CS31, CS30 gesetzt werden.

- ▶ Timer/Counter3 soll als Timer mit einem Prescaler-Wert von 256 betrieben werden.
- ▶ Im Register TCCR3B müssen die Bits CS32, CS31, CS30 gesetzt werden.

CSn2	CSn1	CSn0	Taktquelle für Timer/Counter
1	0	0	Prescaler 256 $f_T = 62,5kHz$

```
TCCR3B \mid= (0x01 << CS32);
TCCR3B &= \sim (0x01 << CS31) | (0x01 << CS30));
```


Eine Variable vom Datentyp uint 16_t (also ein 16-Bit breiter, vorzeichenloser Integer) kann Werte im Bereich von 0 bis $2^{16} - 1$ annehmen, also von 0 bis 65.535.

Was passiert, wenn eine solche Variable ihren maximalen Wert hat und anschließend inkrementiert wird? Welchen Wert enthält die Variable a nach Ausführung des folgenden Programmcodes?

```
uint16_t a;
a = 65535;
a++;
```


Der Wert 65535 + 1 = 65536 (also 2^{16}) liegt außerhalb des darstellbaren Wertebereichs einer uint 16_{t} -Variablen. Man spricht in diesem Fall von einem sogenannten Überlauf (Overflow). Die Variable erhält dann wieder den Wert 0.

Figure 4: Tacho kurz vor dem Überlauf

▶ Gleichzeitig wird bei einem Overflow ein Interrupt-Flag gesetzt.

- ▶ Gleichzeitig wird bei einem Overflow ein Interrupt-Flag gesetzt.
- ▶ Beim Timer/Counter1 heißt dieses Flag TOV1 (Timer Overflow 1).

- Gleichzeitig wird bei einem Overflow ein Interrupt-Flag gesetzt.
- ▶ Beim Timer/Counter1 heißt dieses Flag TOV1 (Timer Overflow 1).
- ▶ Ist zusätzlich das zugehörige Interrupt-Enable-Flag gesetzt, wird das Hauptprogramm unterbrochen und die zugehörige Interrupt Service Routine (ISR) ausgeführt in diesem Fall die Routine mit dem Vektor TIMER1_OVF_vect.

▶ Timer/Counter1 verwendet als Clock-Source die mit einem Prescaler-Wert von 8 geteilte CPU-Taktfrequenz (16MHz). In welchem Zeitabständen erfolgen die Overflows des Zählerstand-Registers?

- ▶ Timer/Counter1 verwendet als Clock-Source die mit einem Prescaler-Wert von 8 geteilte CPU-Taktfrequenz (16MHz). In welchem Zeitabständen erfolgen die Overflows des Zählerstand-Registers?
- Der Zählerstand wird wegen des Prescaler-Werts von 8 mit einer Frequenz von $f_T = \frac{f_{osc}}{8} = 2MHz$ inkrementiert.

- ▶ Timer/Counter1 verwendet als Clock-Source die mit einem Prescaler-Wert von 8 geteilte CPU-Taktfrequenz (16MHz). In welchem Zeitabständen erfolgen die Overflows des Zählerstand-Registers?
- Der Zählerstand wird wegen des Prescaler-Werts von 8 mit einer Frequenz von $f_T = \frac{f_{osc}}{8} = 2MHz$ inkrementiert.
- ▶ Die Periodendauer ist der Kehrwert daraus: $T_T = \frac{1}{f_T} = \frac{1}{2MHz} = 0,5\mu s$

- ▶ Timer/Counter1 verwendet als Clock-Source die mit einem Prescaler-Wert von 8 geteilte CPU-Taktfrequenz (16MHz). In welchem Zeitabständen erfolgen die Overflows des Zählerstand-Registers?
- Der Zählerstand wird wegen des Prescaler-Werts von 8 mit einer Frequenz von $f_T = \frac{f_{osc}}{8} = 2MHz$ inkrementiert.
- ▶ Die Periodendauer ist der Kehrwert daraus: $T_T = \frac{1}{f_T} = \frac{1}{2MHz} = 0,5\mu s$
- ▶ Die Zeitdauer zwischen zwei Overflows beträgt 6553**6** bzw. 2^{16} mal dieser Zeitspanne (Zählerstände 0 bis 6553**5** bzw. 0 bis $2^{16} 1$).

- ▶ Timer/Counter1 verwendet als Clock-Source die mit einem Prescaler-Wert von 8 geteilte CPU-Taktfrequenz (16MHz). In welchem Zeitabständen erfolgen die Overflows des Zählerstand-Registers?
- Der Zählerstand wird wegen des Prescaler-Werts von 8 mit einer Frequenz von $f_T = \frac{f_{osc}}{8} = 2MHz$ inkrementiert.
- ▶ Die Periodendauer ist der Kehrwert daraus: $T_T = \frac{1}{f_T} = \frac{1}{2MHz} = 0,5\mu s$
- ▶ Die Zeitdauer zwischen zwei Overflows beträgt 6553**6** bzw. 2^{16} mal dieser Zeitspanne (Zählerstände 0 bis 6553**5** bzw. 0 bis $2^{16} 1$).
- ▶ Die Zeitdauer zwischen den Overflows T_{OVF} berechnet sich dann aus $T_{OVF} = T_T * 2^{16} = 32,768 ms$

- ▶ Timer/Counter1 verwendet als Clock-Source die mit einem Prescaler-Wert von 8 geteilte CPU-Taktfrequenz (16MHz). In welchem Zeitabständen erfolgen die Overflows des Zählerstand-Registers?
- Der Zählerstand wird wegen des Prescaler-Werts von 8 mit einer Frequenz von $f_T = \frac{f_{osc}}{8} = 2MHz$ inkrementiert.
- ▶ Die Periodendauer ist der Kehrwert daraus: $T_T = \frac{1}{f_T} = \frac{1}{2MHz} = 0,5\mu s$
- ▶ Die Zeitdauer zwischen zwei Overflows beträgt 6553**6** bzw. 2^{16} mal dieser Zeitspanne (Zählerstände 0 bis 6553**5** bzw. 0 bis $2^{16} 1$).
- ▶ Die Zeitdauer zwischen den Overflows T_{OVF} berechnet sich dann aus $T_{OVF} = T_T * 2^{16} = 32,768 ms$
- ▶ Die Frequenz der Overflows $f_{OVF} = \frac{1}{T_{OVF}} = \frac{1}{32,768ms} = 30,53Hz$

Blinklicht mit Timer Overflow Interrupt.

WokiWi Link