Scilab Textbook Companion for Elements Of Physical Chemistry by P. Atkins¹

Created by
Jeevan Lal
Chemical engineering
Chemical Engineering
IIT Bombay
College Teacher
NA
Cross-Checked by
Ganesh R

May 25, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements Of Physical Chemistry

Author: P. Atkins

Publisher: Oxford University Press, London

Edition: 3

Year: 2001

ISBN: 0198792905

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	The properties of gases	5
2	Thermodynamics The first law	8
3	Thermochemistry	11
4	Thermodynamics The second law	15
6	The properties of mixtures	18
7	Principles of chemical equilibrium	22
8	Consequences of equilibrium	27
9	Electrochemistry	31
10	The rates of reactions	36
11	Accounting for the rate laws	40
12	Quantum theory	44
13	Atomic structure	47
15	Metallic and Ionic solids	49
16	Molecular substances	5 1

17 Molecular rotations and vibrations	54
18 Electronic transistions	56
19 Magnetic resonance	58
20 Statistical thermodynamics	59
21 Introduction	62

List of Scilab Codes

Exa 1.1.e	example 1	5
Exa 1.2.i	illustration 2	5
Exa 1.3.i	Illustration 3	6
Exa 1.4.i	illustration 4	6
Exa 1.5.i	illustration 5	7
Exa 2.1.e	example 1	8
Exa 2.1.i	illustration 1	8
Exa 2.2.e	example 2	9
Exa 2.4.i	illustration 4	9
Exa 3.1.e	example 1	11
Exa 3.1.i	illustration 1	11
Exa 3.2.e	example 2	12
Exa 3.3.e	example 3	12
Exa 3.4.e	example 4	13
Exa 3.5.e	Example 5	13
Exa 3.6.e	example 6	14
Exa 4.1.e	example 1	15
Exa 4.1.i	illustration 1	15
Exa 4.2.e	example 2	16
Exa 4.2.i	illustration 2	16
Exa 4.3.i	illustration 3	17
Exa 6.1.e	example 1	18
Exa 6.2.e	example 2	18
Exa 6.3.e	example 3	19
Exa 6.4.e	example 4	19
Exa 6.5.e	example 5	20
Exa 6.6.e	example 6	21
Eva 71e	example 1	22

Exa	7.2.e	example $2 \dots \dots \dots$	
Exa	7.2.i	illustration 2	
Exa	7.3.e	example $3 \ldots \ldots \ldots$	
Exa	7.3.i	illustration 3	24
Exa	7.4.e	example 4	24
Exa	7.4.i	illustration 4	25
Exa	7.5.e	example 5	
Exa	8.1.e	example 1	
Exa	8.1.i	illustration 1	
Exa	8.2.e	example $2 \ldots \ldots \ldots$	
Exa	8.2.i	illustration 2	
Exa	8.3.e	example 3	
Exa	8.5.e	example 5	
Exa	9.1.e	example 1	
Exa	9.1.i	illustration 1	
Exa	9.2.i	illustration 2	
Exa	9.6.e	example 6	
Exa	9.7.e	example 7	
Exa	9.8.e	example 8	
Exa	9.9.e	example 9	
Exa	9.10.e	example 10	
		example 11	
		example 1	
		illustration 1	
		example 2	
		illustration 2	
		example 3	
		example 1	
Exa	11.1.i	illustration 1	41
		examlple 2	
		illustration 2	
		example 3	
		example 1	
		illustration 1	
		example 2	
		illustration 2	
		example 3	
		ovemple 4	16

Exa	13.2.i	illustration 2											47
Exa	13.3.i	illustration 3											47
		example 1											49
Exa	15.2.e	example 2											49
Exa	15.3.e	example 3											50
		example 1											51
Exa	16.1.i	illustration 1											51
Exa	16.2.e	example 2											52
Exa	16.2.i	illustration 2											52
Exa	17.1.e	example 1											54
Exa	17.1.i	illustration 1											54
Exa	18.1.e	example 1											56
Exa	18.2.e	example 2											56
Exa	19.2.i	illustration 2											58
Exa	20.1.e	example 1											59
Exa	20.1.i	illustration 1											59
Exa	20.2.i	illustration 2											60
Exa	20.3.e	example 3											60
Exa	20.3.i	illustration 3											61
Exa	20.5.e	example 5											61
Exa	0.1.e	example 1											62
Exa	0.1.i	illustration 1											62
Exa	20.2.i	illustration 2											63
Exa	21.3.i	illustration 3											63
Eva	21 4 i	illustration 4											63

The properties of gases

Scilab code Exa 1.1.e example 1

```
1 clc
2 //Initialzation of variables
3 m=1.25 //g
4 MN2=28.02 //g/mol
5 T=20+273.15 //K
6 V=0.25//L
7 //Calculations
8 P=m*8.31451*T/(MN2*V)
9 //Results
10 printf('Pressure in the gas flask =%.2f kPa',P)
```

Scilab code Exa 1.2.i illustration 2

```
1 clc
2 //Initialzation of variables
3 xN2=0.780
4 x02=0.210
5 xAr=0.009
```

Scilab code Exa 1.3.i Illustration 3

```
1 clc
2 //Initialzation of variables
3 T1=298//K
4 T2=273//K
5 //Calculations
6 factor=sqrt(T2/T1)
7 percentage=(1-factor)*100
8 //Results
9 printf('Percentage loss of speed of air molecules = %.2 f', percentage)
```

Scilab code Exa 1.4.i illustration 4

```
1 clc
2 //Initialzation of variables
3 MH2=2.016 //g/mol
4 MC02=44.01 //g/mol
5 //calculations
```

```
6 ratio=sqrt(MCO2/MH2)
7 //results
8 printf('ratio of rates of effusion =\%.3f',ratio)
```

Scilab code Exa 1.5.i illustration 5

```
1 clc
2 //Initialzation of variables
3 T=25+273 //K
4 sigma=0.4*10^(-18) //m^2
5 P=10^5 //Pa
6 c=481.8 //m/sec
7 //Calculations
8 Lambda=8.31451*T/(2^0.5 *6.022*10^23 *sigma*P)
9 frequency=2^0.5 *6.022*10^23 *sigma*P*c/(8.31451*T)
10 //Results
11 printf('Mean free path = %.2e m', Lambda)
12 printf('\n Collision frequency = %.2e m', frequency)
```

Thermodynamics The first law

Scilab code Exa 2.1.e example 1

```
1 clc
2 //Initialization of variables
3 A=1.23 //A
4 V = 12 / V
5 t = 123 / s
6 Temp=4.47 //C
7 rise=3.22 //C
8 // Calculations
9 q = A * V * t
10 C=q/Temp
11 Output= C*rise
12 // Results
13 printf('heat supplied during calibration = \%.1 \, \mathrm{f} J',q
14 printf('\n Heat capacity of the calorimeter = \%.1 \, \mathrm{f} J
      /\mathrm{C}', C)
15 printf('\n Heat output = \%.2 \, \text{f kJ}', Output/1000.)
```

Scilab code Exa 2.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 Cpm=75 //J/k mol
4 n=5.55 //mol
5 q=1 //kJ
6 //Calculations
7 deltaT=q*1000/(n*Cpm)
8 //results
9 printf('Change in temperature = %.1f K',deltaT)
```

Scilab code Exa 2.2.e example 2

Scilab code Exa 2.4.i illustration 4

```
1 clc
2 //Initialization of variables
3 n=5.55 //mol
4 T1=20 //C
5 T2=80 //K
6 Cpm=75.29 //J/K mol
7 //Calculations
8 H=n*Cpm*(T2-T1)
9 //results
```

 ${\tt printf}\mbox{ ('Enthalpy of the sample changes by %d kJ', H /1000.)}$

Thermochemistry

Scilab code Exa 3.1.e example 1

```
1 clc
2 //Initialization of variables
3 I=0.682 //A
4 V=12 //V
5 t=500 //s
6 m=4.33 //g
7 MW=46.07 //g/mol
8 //Calculations
9 q=I*V*t
10 n=m/MW
11 H=q/n
12 //Results
13 printf('Molar enthalpy change = %.1 f kJ/mol', H /1000.)
```

Scilab code Exa 3.1.i illustration 1

```
1 clc
```

```
2 //Initialization of variables
3 dU=-969.6 //kJ/mol
4 nN2=1/2
5 nC02=2
6 n02=9/4
7 T=298.15 //K
8 //Calculations
9 n=nC02+nN2-n02
10 H=dU+n*8.3145*T/1000.
11 //results
12 printf('Enthalpy change =%.1 f kJ/mol', H)
```

Scilab code Exa 3.2.e example 2

```
1 clc
2 //Initialization of variables
3 m=1 //g
4 MW=24.31 //g/mol
5 H=2337 //kJ/mol
6 //Calculations
7 n=m/MW
8 q=n*H
9 //results
10 printf('Heat supplied = %.1 f kJ',q)
```

Scilab code Exa 3.3.e example 3

```
1 clc
2 //Initialization of variables
3 HC=716.68 //kJ
4 HH=871.88 //kJ
5 HO=249.17 //kJ
6 Hcond=-38 //kJ
```

```
7  HCH=-412
8  HCO=-360
9  HOH=-463
10  // Calculations
11  H1=HC+HH+HO
12  H2=3*HCH+HCO+HOH
13  H3=Hcond
14  H=H1+H2+H3
15  // results
16  printf('Sum of enthalpy changes = %d kJ',H)
```

Scilab code Exa 3.4.e example 4

```
1 clc
2 //Initialization of variables
3 Hf=-124 //kJ
4 Hoxi=-2220 //kJ
5 Hwater=286 //kJ
6 //Calculations
7 H=Hf+Hoxi+Hwater
8 //results
9 printf('Standard enthalpy of combustion of propene = %d kJ/mol',H)
```

Scilab code Exa 3.5.e Example 5

```
1 clc
2 //Initialization of variables
3 nC02=6 //mol
4 nH20=3 //mol
5 n02=15/2 //mol
6 nC6H6=1 //mol
7 HC6H6=49 //kJ/mol
```

Scilab code Exa 3.6.e example 6

```
1 clc
2 //Initialization of variables
3 HH20=-241.82 //kJ/mol
4 T1=25 //C
5 T2=100 //C
6 CpH20=33.58 //J/K mol
7 CpH2=28.84 //J/K mol
8 Cp02=29.37 //J/K mol
9 //calculations
10 dCp=CpH20-CpH2-0.5*Cp02
11 dH=HH20+dCp*(T2-T1)/1000.
12 //results
13 printf('Enthalpy of fromation of water at 100 C is % .2 f kJ/mol',dH)
```

Thermodynamics The second law

Scilab code Exa 4.1.e example 1

```
1 clc
2 //Initialization of variables
3 Power=100 //W
4 time=1 //day
5 T=20 //C
6 //calculations
7 timeins=1*24*3600
8 qsurr=timeins*Power
9 Ssurr=qsurr/(T+273)
10 //results
11 printf('Heat transferred to surroundings = %d J', qsurr)
12 printf('\n Entropy production per day = %.2e J/k', Ssurr)
```

Scilab code Exa 4.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 H=100 //kJ
4 T1=273 //K
5 T2=373//K
6 //calculations
7 S1=H*1000/T1
8 S2=H*1000/T2
9 //results
10 printf('Entropy change at 273 K is %d J/K ',S1)
11 printf('\n Entropy change at 373 K is %d J/K ',S2)
```

Scilab code Exa 4.2.e example 2

```
1 clc
2 //Initialization of variables
3 g=9.81 //m/s^2
4 m=30*10^-3 //kg
5 d=10 //m
6 H=2.828*10^6 //j/mol
7 M=180 //g/mol
8 //calculations
9 w=g*m*d
10 n=w/H
11 m=n*M
12 //results
13 printf('Amount bird must consume = %.1e g',m)
```

Scilab code Exa 4.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 T=59.2 //K
```

Scilab code Exa 4.3.i illustration 3

```
1 clc
2 //Initialization of variables
3 SH20=70 //J/K mol
4 SH2=131 //J/K mol
5 S02=205 //J/K mol
6 //calculations
7 deltaS=2*SH20-2*SH2-S02
8 printf('Change in entropy = %d J/K mol',deltaS)
```

The properties of mixtures

Scilab code Exa 6.1.e example 1

```
1 clc
2 //Initialization of variables
3 m=0.14 //mol/kg
4 w=1 //kg Assume
5 //Calculations
6 ngly=m*w
7 nwater=w*10^3 /18.02
8 ntotal=ngly+nwater
9 xgly=ngly/ntotal
10 //results
11 printf('Mole fraction of glycerine is xgly = %.2e', xgly)
```

Scilab code Exa 6.2.e example 2

```
1 clc
2 //Initialization of variables
3 mE=50 //g
```

```
4 mW=50 //g
5 //calculations
6 nE=mE/46
7 nW=mW/18
8 ntotal=nE+nW
9 xE=nE/ntotal
10 xW=1-xE
11 disp('for the observed xE and xW')
12 vE=55 //cc/mol
13 vW=18 //cc/mol
14 V=nE*vE+nW*vW
15 //results
16 printf('\n VOlume of the mixture = %d cm^3 ',V+1)
```

Scilab code Exa 6.3.e example 3

```
1 clc
2 //Initialization of variables
3 xc=[0 0.20 0.40 0.60 0.80 1]
4 pc=[0 35 82 142 219 293]
5 pa=[347 270 185 102 37 0]
6 //calculations
7 plot(xc,pc)
8 plot(xc,pa)
9 xlabel('Mole fraction xc')
10 ytitle('Pressure /Torr')
11 disp('From the graph it is clear that KA=175 torr and KC=165 torr. They are plotted with Raoults law lines')
```

Scilab code Exa 6.4.e example 4

```
1 clc
```

```
2 //Initialization of variables
3 \text{ C=4} //\text{mg/L}
4 MO2=32 //g/mol
5 \, \text{Mw} = 18
6 \text{ w=1 } //L
7 \text{ K=3.3*10^7} // \text{torr}
8 patm=0.21*760 // torr
9 //calculations
10 \quad nO2 = C/MO2
11 \quad nH20 = w * 10^3 / Mw
12 \times 02 = n02 / (n02 + nH20)
13 p02 = x02 * K
14 if (p02>patm)
        disp('The required concentration can be
15
            maintained under normal conditions')
16 else
        disp('The required concentration cannot be
17
            maintained under normal conditions')
18 end
```

Scilab code Exa 6.5.e example 5

```
1 clc
2 //Initialization of variables
3 c=[1 2 4 7 9]
4 hbyc=[0.28 0.36 0.503 0.739 0.889]
5 R=8.3145 //J/K mol
6 T=298 //K
7 g=9.81 //m/s^2
8 d=0.9998 //g/cm^3
9 //calculations
10 plot(c,hbyc)
11 xlabel('c')
12 ylabel('hbyc')
13 vector=regress(c,hbyc)
```

```
14 intercept=vector(1)
15 intercept=intercept*10^-2
16 M=R*T/(d*g*intercept)
17 //results
18 printf('Molar mass of the enzyme is close to %d kDa'
,M/1000 -3)
```

Scilab code Exa 6.6.e example 6

```
1 clc
2 //Initialization of variables
3 nB=0.59 //mol
4 nNB=0.41 //mol
5 xN1=0.38
6 xN2=0.74
7 xNm=0.41
8 //calculations
9 disp('By lever rule')
10 ratio=(xNm-xN1)/(xN2-xNm)
11 percent=ratio*100
12 //results
13 printf("The rich phase is %d times more abundant in nitrobenzene", percent+1)
```

Principles of chemical equilibrium

Scilab code Exa 7.1.e example 1

```
1 clc
2 //Initialization of variables
3 G=-31 //kJ/mol
4 T=37+273 //K
5 Cadp=10^-3 //mmol/L
6 Cp=8*10^-3 //mmol/L
7 Catp=8*10^-3 //mmol/L
8 R=8.314 //J/K mol
9 //calculations
10 Q=Cadp*Cp/Catp
11 deltaG=G+R*T*log(Q) /1000.
12 //results
13 printf("Reaction Gibbs energy = %d kJ/mol",deltaG-1)
```

Scilab code Exa 7.2.e example 2

```
1 clc
2 //Initialization of variables
3 Hr=-285.83 //kJ/mol
4 Sr=-163.34 //J/ K mol
5 T=298.15 //K
6 //calculations
7 Gr=Hr-T*Sr/1000.
8 //results
9 printf('Gibbs energy = %.2f kJ/mol',Gr)
```

Scilab code Exa 7.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 Gr=-3.40 //kJ/mol
4 R=8.314 //J/k mol
5 T=298 //K
6 //calculations
7 lnK=Gr*10^3/(R*T)
8 K=exp(lnK)
9 //results
10 printf('Equilibrium constant K= %.2f',K)
```

Scilab code Exa 7.3.e example 3

```
1 clc
2 // Initialization of variables
3 aADP=1 //mol/L
4 aP=1 //mol/L
5 aATP=1 //mol/L
6 aH20=1 //mol/L
7 aH=10^-7 //mol/L
8 G=10 //kJ/mol
```

```
9 T=298 //K

10 R=8.314 //J/K mol

11 //calculations

12 Q=aADP*aP*aH/(aATP*aH2O)

13 Gr=G+R*T*log(Q)/1000.

14 //results

15 printf('Change in nGibbs energy =%d kJ/mol',Gr-1)
```

Scilab code Exa 7.3.i illustration 3

```
1 clc
2 //Initialization of variables
3 Hr=178 //kJ/mol
4 Sr=161 //J/K mol
5 //calculations
6 T=Hr*10^3 /Sr
7 //results
8 printf("Decompostion temperature = %.2e K",T)
```

Scilab code Exa 7.4.e example 4

```
1 clc
2 //Initialization of variables
3 Gr=1.7*10^3 //J/mol
4 T=298 //K
5 R=8.314 //J/K mol
6 K=0.5
7 //calculations
8 GbyRT=Gr/(R*T)
9 feq=K/(K+1)
10 //results
11 printf("Equivalent fraction = %.2 f ",feq)
12 disp("For the second part, Gr=1.7 + 2.48 ln(f/1-f)")
```

Scilab code Exa 7.4.i illustration 4

```
1 clc
2 //Initialization of variables
3 GC02=-394 //kJ/mol
4 GC0=-137 //kJ/mol
5 G02=0
6 //calculations
7 deltaG=2*GC02-2*GC0+G02
8 //results
9 printf('Standard reaction gibbs energy = %d kJ/mol', deltaG)
```

Scilab code Exa 7.5.e example 5

```
1 clc
2 //Initialization of variables
3 \text{ species=['N2'''H2'''NH3']}
4 change = ['-x', '-3x', '2x']
5 E = ['1-x'''3-3x'''2x']
6 disp("Concentration table")
7 disp(species)
8 disp(change)
9 disp(E)
10 K=977
11 // Calculations
12 g = sqrt(27*K/4)
13 x = poly(0, 'x');
14 vector=roots(g*x^2 - (2*g + 1)*x + g)
15 \text{ sol=vector(2)}
16 \text{ PN2} = 1 - \text{sol}
```

```
17  PH2=3-3*sol
18  PNH3=2*sol
19  K=PNH3^2/(PH2^3 *PN2)
20  // results
21  printf("Pressure of N2 gas =%.2 f bar",PN2)
22  printf("\n Pressure of H2 gas =%.2 f bar",PH2)
23  printf("\n Pressure of NH3 gas =%.2 f bar",PNH3)
24  printf("\n K final = %.1e> it is close to original value.",K)
```

Consequences of equilibrium

Scilab code Exa 8.1.e example 1

```
1 clc
2 //Initialization of variables
3 C=0.15 //M
4 Ka=1.8*10^-5
5 //calculations
6 x=sqrt(C*Ka)
7 f=x/C
8 percent=f*100
9 //results
10 printf("percent of acetic acid molecules that have donated a proton = %.1f percent", percent)
```

Scilab code Exa 8.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 ph1=6.37
4 ph2=10.25
```

```
5 ph3=7.21
6 ph4=12.67
7 //calculations
8 pH1=0.5*(ph1+ph2)
9 pH2=0.5*(ph3+ph4)
10 //results
11 printf("Equilibrium pH in case 1 = ",pH1)
12 printf("\n Equilibrium pH in case 2 = ",pH2)
```

Scilab code Exa 8.2.e example 2

```
1 clc
2 //Initialization of variables
3 pKa=4.88
4 C=0.01 //M
5 pKw=14
6 //calculations
7 pKb=pKw-pKa
8 Kb=10^(-pKb)
9 x=(sqrt(C*Kb))
10 pOH=-log(x)
11 pH=14-pOH
12 f=x/C
13 //results
14 printf("fraction protonated = %.1e",f)
15 printf("\n 1 molecule in about %d",1/f)
```

Scilab code Exa 8.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 n=2.5*10^-3 //mol
4 C=0.2 //mol/L
```

```
5 vbase=37.5*10^-3 //L
6 //calculations
7 V=n/C
8 base=n/vbase
9 H=10^-14 /base
10 disp("It follows from example 8.2 that")
11 pH=10.2
12 //results
13 printf("\n pH of the solution = %.1f",pH)
```

Scilab code Exa 8.3.e example 3

```
1 clc
2 //Initialization of variables
3 pKa2=10.25
4 //calculations
5 C=10^(-pKa2)
6 //results
7 printf("Concentration of Carbonate ions = %.1e mol/l",C)
```

Scilab code Exa 8.5.e example 5

```
1 clc
2 //Initialization of variables
3 vOH=5*10^-3 //L
4 vHCl0=25*10^-3 //L
5 C=0.2 //mol/L
6 //calculations
7 nOH=vOH*C
8 nHCl0=vHCl0*C/2
9 nrem=nHCl0-nOH
10 pH=7.53-log10(nrem/nOH)
```

```
11 //results
12 printf("Final pH= %.1f",pH)
```

Electrochemistry

Scilab code Exa 9.1.e example 1

```
1 clc
2 //Initialization of variables
3 lw=34.96 //mS m^2 /mol
4 la=4.09 //mS m^2 /mol
5 C=0.010 //M
6 K=1.65 //mS m^2 /mol
7 //calculations
8 lmd=lw+la
9 alpha=K/lmd
10 Ka=C*alpha^2
11 pKa=-log10(Ka)
12 //results
13 printf("Acidity constant of the acid = %.2f",pKa)
```

Scilab code Exa 9.1.i illustration 1

```
1 clc
2 //Initialization of variables
```

```
3 Gr=-10^5 //kJ/mol
4 v=1
5 F=9.6485*10^4 //C/mol
6 //calculations
7 E=-Gr/(v*F)
8 //results
9 printf("potential of the cell = %d V",E)
```

Scilab code Exa 9.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 V=1.1 //V
4 F=9.6485*10^4 //C/mol
5 R=8.314 //J/K mol
6 T=298.15 //K
7 //calculations
8 lnK=2*F*V/(R*T)
9 k=%e^(lnK)
10 //results
11 printf("Equilibrium constant = %.1e",k)
```

Scilab code Exa 9.6.e example 6

```
1 clc
2 //Initialization of variables
3 ER=1.23 //V
4 EL=-0.44 //V
5 //calculations
6 E=ER-EL
7 //results
8 if (E>0)
```

```
printf("The reaction is favouring products and E
    is %.2 f V",E)

printf("The reaction is not favouring products
    and E is %.2 f V",E)
```

Scilab code Exa 9.7.e example 7

```
1 clc
2 //Initialization of variables
3 ER=0.52 //V
4 EL=0.15 //V
5 //calculations
6 E=ER-EL
7 lnK=E/(25.69*10^-3)
8 K=exp(lnK)
9 //results
10 printf("Equilbrum constant K= %.1e",K)
```

Scilab code Exa 9.8.e example 8

```
1 clc
2 //Initialization of variables
3 E0=-0.11 //V
4 H=10^-7
5 //calculations
6 pH=-log10(H)
7 E=E0-29.59*pH*10^-3
8 //results
9 printf("Biological standard potential = %.2 f V",E)
```

Scilab code Exa 9.9.e example 9

```
1 clc
2 //Initialization of variables
3 ER=-0.21 //V
4 EL=-0.6 //V
5 //calculations
6 E=ER-EL
7 lnK=2*E/(25.69*10^-3)
8 K=exp(lnK)
9 //results
10 printf("Equilibrium constant for the reaction = %.1e",K)
```

Scilab code Exa 9.10.e example 10

```
1 clc
2 //Initialization of variables
3 E1=2*(-0.340)
4 E2=-0.522
5 //calculations
6 FE=-E1+E2
7 //results
8 printf("Electric potential = %.3 f V", FE)
```

Scilab code Exa 9.11.e example 11

```
1 clc
2 //Initialization of variables
3 v=2
4 F=9.6485*10^4 //C/mol
5 E=0.2684 //V
6 V1=0.2699 //V
```

```
7  V2=0.2669 //V
8  T1=293 //K
9  T=298 //K
10  T2=303 //K
11  //calculations
12  Gr= -v*F*E
13  Sr=v*F*(V2-V1)/(T2-T1)
14  Hr=Gr+T*Sr
15  //results
16  printf("Gibbs enthalpy = %.2 f kJ/mol", Gr/1000)
17  printf("\n Standard Entropy = %.1 f J /K mol", Sr)
18  printf("\n Enthalpy = %.1 f kJ/mol", Hr/1000)
```

The rates of reactions

Scilab code Exa 10.1.e example 1

```
1 clc
2 //Initialization of variables
3 I = [1 2 4 6] *10^-5
4 r1 = [1.070 \ 3.48 \ 13.9 \ 31.3] *10^-3
5 \text{ r2} = [4.35 \ 17.4 \ 69.6 \ 157] *10^-3
6 r3 = [10.69 34.7 138 313] *10^-3
7 Ar = [1 \ 5 \ 10] * 10^{-3}
8 //calculations
9 \log I = \log(I)
10 \log r1 = \log (r1)
11 \log r2 = \log(r2)
12 \log r3 = \log (r3)
13 //The calculations are approximate.hence the value
       differs from textbook a bit.
14 x = logI
15 y = logr1
16 sx=sum(x); sx2=sum(x^2); sy=sum(y); sxy=sum(x.*y); n=
      length(x);
17 A=[sx,n;sx2,sx];B=[sy;sxy];p=A\setminus B;
18 m1=p(1,1);b1=p(2,1);
19 y = logr2
```

```
20 sx=sum(x); sx2=sum(x^2); sy=sum(y); sxy=sum(x.*y); n=
       length(x);
21 A=[sx,n;sx2,sx];B=[sy;sxy];p=A\setminus B;
22 \text{ m} 2 = p(1,1); b2 = p(2,1);
23 \text{ y=logr3}
24 sx=sum(x); sx2=sum(x^2); sy=sum(y); sxy=sum(x.*y); n=
       length(x);
25 A=[sx,n;sx2,sx];B=[sy;sxy];p=A\setminus B;
26 \text{ m3=p(1,1); b3=p(2,1);}
27 \log Ar = \log (Ar)
28 kdash=[b1 b2 b3]
29 plot(logAr, kdash)
30 x = logAr
31 y = kdash
32 \text{ sx=sum}(x); \text{sx2=sum}(x^2); \text{sy=sum}(y); \text{sxy=sum}(x.*y); \text{n=}
       length(x);
33 A=[sx,n;sx2,sx];B=[sy;sxy];p=A\setminus B;
34 \text{ m4=p(1,1); b4=p(2,1);}
35 \log k = b4
36 \text{ k=\%e^logk}
37 / results
38 printf("Overall rate law is r = \%.1e [I]^2 [Ar]",k)
```

Scilab code Exa 10.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 t=28.4 //min
4 //calculations
5 n=log2(8)
6 time=n*t
7 printf("Time required = %.1f min", time)
```

Scilab code Exa 10.2.e example 2

```
1 clc
2 //Initialization of variables
3 t = [0 1000 2000 3000 4000]
4 p=[10.20 5.72 3.99 2.78 1.94]
5 \ln p = \log(p)
6 x = t
7 y = lnp
8 //hence the value differs from textbook a bit.
9 sx = sum(x); sx2 = sum(x^2); sy = sum(y); sxy = sum(x.*y); n =
      length(x);
10 A=[sx,n;sx2,sx];B=[sy;sxy];p=A\setminus B;
11 m=p(1,1); b=p(2,1);
12 k=m
13 \text{ plot}(x,y)
14 //Since first order reaction
15 //results
16 printf("rate constant = \%.2e s^-1",k)
```

Scilab code Exa 10.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 E=50*10^3 //J/mol
4 T1=25+273 //K
5 T2=37+273 //K
6 //calculations
7 ln=E/8.3145 *(1/T1-1/T2)
8 factor=%e^(ln)
9 //results
10 printf("kdash = %.2 f k", factor)
```

Scilab code Exa 10.3.e example 3

```
1 clc
2 //Initialization of variables
3 T=[700 730 760 790 810 840 910 1000]
4 k=[0.011 0.035 0.105 0.343 0.789 2.17 20 145]
5 //calculations
6 x = 1000/T
7 y = log(k)
8 // sx = sum(x)
9 / sx2 = sum(x^2)
10 // \text{sy} = \text{sum}(y)
11 / sxy = sum(x.*y)
12 //n = length(x)
13 //A = [sx, n; sx2, sx]
14 / B = [sy; sxy]
15 / p=A B
16 / \text{m=p}(1,1)
17 / b = p(2,1)
18 disp('from graph')
19 m=2.265*10^4
20 \quad \text{Ea=m*8.3145}
21 b = 27.71
22 A = \%e^(b)
23 //results
24 printf("Activation energy = %d kJ/mol", Ea/1000)
25 printf("\n Arrhenius factor = \%.2e L/ mol s",A)
```

Accounting for the rate laws

Scilab code Exa 11.1.e example 1

```
1 clc
2 //Initialization of variables
3 S = [10 20 40 80 120 180 300]
4 v = [0.32 \ 0.58 \ 0.9 \ 1.22 \ 1.42 \ 1.58 \ 1.74]
5 //calculations
6 bys=1000/S
7 by v = 1/v
8 n = size(S)
9 x = bys
10 y = byv
11 disp("From graph,")
12 m = 26.17
13 c = 0.476
14 //Sx = sum(x);
15 / Sxx = sum(x.*x);
16 //Sy = sum(y);
17 //Syy = sum(y.*y);
18 //Sxy = sum(x.*y);
19 //m = (n*Sxy - (Sx*Sy)) / (n*Sxx - (Sx*Sx));
20 / c = (Sy/n) - (m*Sx/n);
21 // \operatorname{disp}(m)
```

```
22  // disp(c)
23  //y=zeros(7)
24  // for i =1:n(1)
25  //  y(i)=m*bys(i)+c
26  //end
27
28  // clf();
29  // plot(x,y);
30  // xtitle("","x ","y ");
31  // legend([" measure points", " fitted curve"], 2);
32  vmax=1/c
33  Km=m/c
34  // results
35  printf("Max. velocity = %.2 f mumol/L s", vmax)
36  printf("\n Michaelis constant = %.1 f mumol/L", Km)
```

Scilab code Exa 11.1.i illustration 1

Scilab code Exa 11.2.e examlple 2

```
1 clc
2 //Initialization of variables
3 c=1.234
```

Scilab code Exa 11.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 F16bP=1.9*10^--5 //mmol/L
4 ADP=1.3*10^-3 //mmol/L
5 \text{ ATP} = 11.4 * 10^{-3}
                     //mmol/L
6 F6P=8.9*10^-5 //mmol/L
7 k=1.2*10^3
8 //calculations
9 \quad Q = F16bP * ADP / (F6P * ATP)
10 if (Q<k)
        printf("The reaction step is far from
11
           equilibrium and Q = \%.3 \, f",Q)
12 else
        printf("The reaction step is at equilibrium and
13
           \mathbb{Q}=\%.3\,\mathrm{f}",Q)
14 end
```

Scilab code Exa 11.3.e example 3

```
1 clc
2 //Initialization of variables
3 P=50 //J/s
4 l=313*10^-9 //m
5 h=6.62608*10^-34 //Js
6 N=6.023*10^23
```

Quantum theory

Scilab code Exa 12.1.e example 1

```
1 clc
2 //Initialization of variables
3 P=100 //W
4 t=10 //s
5 l=560 //nm
6 //calculations
7 TE=P*t
8 E1=6.626*10^-34 *2.998*10^8 /(1*10^-9)
9 N=TE/E1
10 //results
11 printf("No. of photons required = %.2e",N)
```

Scilab code Exa 12.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 lmax=4.9*10^-7 //m
4 //calculations
```

```
5 T=2.9*10^-3 /lmax
6 //results
7 printf("Surface temperature must be close to %d K",T
)
```

Scilab code Exa 12.2.e example 2

```
1 clc
2 //Initialization of variables
3 V=1000 //V
4 //calculations
5 l=6.626*10^-34 /sqrt(2*9.11*10^-31 *1.602*10^-19 *V)
6 //results
7 printf("Wavelength of electrons = %.2e m",1)
```

Scilab code Exa 12.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 k=516 //N/m
4 m=1.67*10^-27 //kg
5 //calculations
6 v=sqrt(k/m) /(2*%pi)
7 E=6.624*10^-34 *v
8 //results
9 printf("Separation between adjacent levels frequency
, %.2 e Hz",v)
10 printf("\n Energy = %.2 e",E)
```

Scilab code Exa 12.3.e example 3

```
1 clc
2 //Initialization of variables
3 r1=0 //multiply by a0
4 r2=1 //multiply by a0
5 //calculations
6 ratio=%e^r1 /%e^(-2*r2)
7 //results
8 printf("It is more propable that electron would be found %.2f times more at r1", ratio)
```

Scilab code Exa 12.4.e example 4

```
1 clc
2 //Initialization of variables
3 m=1 //g
4 v=10^-6 //m/s
5 //calculations
6 dx=1.054*10^-34 /(2*m*10^-3 *v)
7 //results
8 printf("Uncertainity in position = %.1e m",dx)
```

Atomic structure

Scilab code Exa 13.2.i illustration 2

Scilab code Exa 13.3.i illustration 3

```
1 clc
2 //Initialization of variables
3 dr=1 //pm
4 r=52.9 //pm
```

```
5 // calculations
6 Probability=4*%e^(-2) *dr/r
7 // results
8 printf("About 1 inspection in %d",1/Probability +3)
```

Metallic and Ionic solids

Scilab code Exa 15.1.e example 1

```
1 clc
2 //Initialization of variables
3 Hs=89 //kJ/mol
4 HI=418 //kJ/mol
5 HD=244 //kJ/mol
6 HE=-349 //kJ/mol
7 Hf=-437 //kJ/mol
8 //calculations
9 HL=Hs+HD/2 +HI+HE-Hf
10 //results
11 printf("Lattice energy = %d kJ/mol", HL)
```

Scilab code Exa 15.2.e example 2

```
1 clc
2 //Initialization of variables
3 a=0.82 //nm
4 b=0.94 //nm
```

```
5 c=0.75 //nm
6 h=1
7 k=2
8 l=3
9 //calculations
10 invd=sqrt(h*h/(a*a) + k*k/(b*b) + 1*1/(c*c))
11 d=1/invd
12 invd2=sqrt(h*h*4/(a*a) + k*k*4/(b*b) + 1*1*4/(c*c))
13 d2=1/invd2
14 //results
15 printf("In case 1, separation = %.2 f nm",d)
16 printf("\n In case 2, separation = %.2 f nm",d2)
```

Scilab code Exa 15.3.e example 3

```
1 clc
2 //Initialization of variables
3 l=154 //pm
4 theta=11.2 //degrees
5 //calculations
6 d=1/(2*sind(theta))
7 a=d*sqrt(3)
8 //results
9 printf("Length of the side of the unit cell = %d pm", a+1)
```

Molecular substances

Scilab code Exa 16.1.e example 1

Scilab code Exa 16.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 EH=2.1
```

```
4 EBr=2.8
5 //calculations
6 diff=-EH+EBr
7 //results
8 printf("Prediced dipole moment = %.1 f D", diff)
```

Scilab code Exa 16.2.e example 2

```
1 clc
2 //Initialization of variables
3 Na=6.023*10^23 // /mol
4 e=1.60228*10^-19 //C
5 e0=8.85419*10^-12 //C^2/J m
6 //calculations
7 factor=Na*e^2 /(4*%pi*e0)
8 //Multiply by Z^2/R to get the value of potential energy. Plot the graph
9 //results
10 printf("Potential energy = %.3e Z*Z/R kJ/mol", factor)
```

Scilab code Exa 16.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 mu1=1.4 //D
4 mu2=1.4 //D
5 angle=180 //degrees
6 d=3 //nm
7 D=4.7*10^-30 //C m
8 //calculations
9 Vmol=D*D*(1-3*(cosd(angle))^2)/(4*%pi*8.854*10^-12 *(d*10^-9)^3)
```

```
10  V=Vmol*(6.023*10^23)
11  //results
12  printf("Potential energy = %.1 f J/mol", V)
```

Molecular rotations and vibrations

Scilab code Exa 17.1.e example 1

```
1 clc
2 //Initialization of variables
3 mH=1.673*10^-27 //kg
4 mCl=5.807*10^-26 //kg
5 R=127.4 *10^-12//m
6 //calculations
7 mu=mH*mCl/(mH+mCl)
8 I=mu*R^2
9 B=1.05457*10^-34 /(4*%pi*I)
10 f=2*B
11 //results
12 printf("Frequency of transistion = %.1f GHz",f/10^9)
```

Scilab code Exa 17.1.i illustration 1

```
1 clc
```

```
2 //Initialization of variables
3 v=89.6*10^12 //Hz
4 //calculations
5 1=3*10^8 /v
6 wn=10^-2 /1
7 //results
8 printf("Wavenumber = %d cm^-1",wn)
9 printf("\n Wavelength = %.2 f mu m",1*10^6)
```

Electronic transistions

Scilab code Exa 18.1.e example 1

```
1 clc
2 //Initialization of variables
3 wl=256*10^-9 //m
4 t=1 //mm
5 C=0.050 //mol/L
6 T=0.16
7 t2=2 //mm
8 //calculations
9 E=-log10(T) /(C*t)
10 A1=-log10(T)
11 A2=E*C*t2
12 Tr=10^(-A2)
13 //results
14 printf("Transmittance = %.3f",Tr)
```

Scilab code Exa 18.2.e example 2

```
1 clc
```

```
2 //Initialization of variables
3 Q=[1 2 3 4 5]
4 t1=[5.2 9.4 13.7 18 22.2]
5 t2=[1.1 2 2.9 4 4.5]
6 //calculations
7 kqbykf=regress(Q,t1)
8 \text{ slope1=kqbykf(2) } *10^3
9 kq=regress(Q,t2)
10 \text{ slope2=kq(2) } *10^10
11 kq=slope2
12 kf=kq/slope1
13 thalf=log (2) /kf
14 // results
15 printf("Quenching rate constant = \%.1e L ml^-1 s^-1"
      ,kq)
16 printf("\n Half life= %.1e s", thalf)
```

Magnetic resonance

Scilab code Exa 19.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 A=5.1 //Hz
4 B=-1.4 //Hz
5 C=3.2 //Hz
6 an1=120 //degrees
7 an2=180 //degrees
8 //calculations
9 j1=A+B*cosd(an1) + C*cosd(2*an1)
10 j2=A+B*cosd(an2) + C*cosd(2*an2)
11 //results
12 printf("Spin-spin coupling constant = %d Hz",j1)
13 printf("\n Spin-spin coupling constant = %d Hz",j2
+1)
```

Statistical thermodynamics

Scilab code Exa 20.1.e example 1

```
1 clc
2 //Initialization of variables
3 E=22 //kJ/mol
4 R=8.214 //J/K mol
5 T=293 //K
6 //Calculations
7 q=1+%e^(-E*10^3 /(R*T))
8 //results
9 printf("At 20 C, partition function = %.4f",q)
```

Scilab code Exa 20.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 E=22*10^3 //kJ/mol
4 T=293 //K
5 //calculations
6 ratio=%e^(-E/(8.31451*T))
```

Scilab code Exa 20.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 g2=5
4 g1=3
5 E2=6
6 E1=2
7 k=1.38*10^-23 //J/K
8 h=6.626*10^-34 //J s
9 B=3.18*10^11 //Hz
10 //calculations
11 ratio=g2/g1 *(%e^((E1-E2)*h*B/(k*T)))
12 //results
13 printf("Ratio= %.2f", ratio)
```

Scilab code Exa 20.3.e example 3

```
1 clc
2 //Initialization of variables
3 k=1.38*10^-23 //J/K
4 h=6.626*10^-34 //J s
5 B=3.18*10^11 //Hz
6 T=298 //K
7 R=8.314 //J/K mol
8 //calculations
9 Sm=R*(1+log(k*T/(h*B)))
10 //results
```

```
11 printf ("Contribution to rotational motion= \%.1\,\mathrm{f} J/ K mol", Sm)
```

Scilab code Exa 20.3.i illustration 3

```
1 clc
2 //Initialization of variables
3 T=298 //K
4 m=32*1.66054*10^-27 //kg
5 k=1.38066*10^-23 //j/k
6 V=10^-4 //m^3
7 h=6.62608*10^-34 //J/s
8 //calculations
9 q=(2*%pi*m*k*T)^1.5 *V/h^3
10 //results
11 printf("Translational partition function = %.2e",q)
```

Scilab code Exa 20.5.e example 5

```
1 clc
2 //Initialization of variables
3 me=9.10939*10^-31 //kg
4 k=1.38*10^-23 //J/K
5 h=6.626*10^-34 //J s
6 p=10^5 //Pa
7 T=1000 //K
8 R=8.314 //J/K mol
9 I=376*10^3 //J/mol
10 //calculations
11 K=(2*%pi*me)^1.5 *(k*T)^2.5 /(p*h^3) *%e^(-I/(R*T))
12 //results
13 printf("Equilibrium constant = %.2e",K)
```

Introduction

Scilab code Exa 0.1.e example 1

```
1 clc
2 //Initialization of variables
3 P=1.115 //bar
4 //Calculations
5 Conv_fac=1/1.01325
6 FinalP=Conv_fac*P //Final pressure
7 //Results
8 printf ('Final pressure in atmospheres (atm)= %.3f', FinalP)
```

Scilab code Exa 0.1.i illustration 1

```
1 clc
2 //Initialization of variables
3 h=0.760 //m
4 d=1.36*10^4 //kg/m^3
5 //Calculations
6 P=9.81*d*h
```

```
7 //Results 8 printf ('Pressure at the foot of the column (Pa)= \% .3 e',P)
```

Scilab code Exa 20.2.i illustration 2

```
1 clc
2 //Initialization of variables
3 h=0.1 //m
4 d=10^3//Kg/m^3
5 Patm=100021 //Pa
6 //Calculations
7 P=9.81*h*d
8 //Results
9 printf('Hydrostatic pressure(Pa) = %.3f',P)
10 printf('\n Pressure in apparatus(kPa) = %.3f',(Patm-P)/1000.)
```

Scilab code Exa 21.3.i illustration 3

```
1 clc
2 //Initialization of variables
3 N=8.8*10^22
4 NA=6.023*10^23 //mol^-1
5 //Calculations
6 n=N/NA
7 //Results
8 printf('No. of moles of Cu ( mol Cu)= %.2f',n)
```

Scilab code Exa 21.4.i illustration 4

```
1 clc
2 //Initialization of variables
3 m=21.5 //g
4 Mc=12.01 //g/mol
5 //Calculations
6 nc=m/Mc
7 //Results
8 printf('Amount of C atoms= %.2 f mol C',nc)
```