#### Sobre Mí

Q





En Blockchain desde el 2013 Creador de meetup de blockchain Montevideo Fundador y CEO de Infuy Co-Fundador de ZirconTech Referente blockchain en la CUTI

Ingeniero en computación

**Hobbies** 

Jugar con mis hijas, Arte, Carpinteria, Esqui.

Universidad ORT Uruguay

# INTRODUCCION A BLOKCHAIN



Alejandro Narancio ale.narancio@gmail.com @anarancio

### Agenda

Características principales

Algoritmos criptográficos

Otras características

Estructura de un bloque

Conceptos básicos de algoritmos de consenso

### Características principales



transacciones

#### Características principales



transacciones



DLT (Distributed Ledger Technology)





DLT (Distributed Ledger Technology)



Acuerdos descentralizados



**Inmutabilidad** 



**Inmutabilidad** 



**Escasez digital** 



**Inmutabilidad** 



**Escasez digital** 



Aumento de confignza

### Criptografía

**HASHES** 



Criptografía

https://colab.research.google.com/drive/1XIJipyS0OpAfNYOx0\_xjEcIjlJdoAxz#scrollTo=ymcuXV9CpN4

HASHES



### Criptografía

# **TASHES**



#### **Integridad de Datos**

Cualquier cambio aunque sea el más mínimo (de un bit) provocará un hash completamente distinto

### Criptografía

# **HASHES**



#### **Integridad de Datos**

Cualquier cambio aunque sea el más mínimo (de un bit) provocará un hash completamente distinto

#### Referencia a Bloques

Los bloques se referencian por medio de los hashes, esto provoca que el último bloque de la cadena comparta información con el primer bloque de la misma

### Criptografía

# **HASHES**



#### **Integridad de Datos**

Cualquier cambio aunque sea el más mínimo (de un bit) provocará un hash completamente distinto

#### Referencia a Bloques

Los bloques se referencian por medio de los hashes, esto provoca que el último bloque de la cadena comparta información con el primer bloque de la misma

#### **PoW (Proof of Work)**

Algoritmo utilizado para resolver el algoritmo de PoW de Bitcoin

### Criptografía

# **HASHES**



#### **Integridad de Datos**

Cualquier cambio aunque sea el más mínimo (de un bit) provocará un hash completamente distinto

#### Referencia a Bloques

Los bloques se referencian por medio de los hashes, esto provoca que el último bloque de la cadena comparta información con el primer bloque de la misma

#### **PoW (Proof of Work)**

Algoritmo utilizado para resolver el algoritmo de PoW de Bitcoin

#### **Merkle Trees**

Utilizado para resumir o referenciar todas las transacciones de un bloque en su header

### Criptografía

# **HASHES**



#### **Integridad de Datos**

Cualquier cambio aunque sea el más mínimo (de un bit) provocará un hash completamente distinto

#### Referencia a Bloques

Los bloques se referencian por medio de los hashes, esto provoca que el último bloque de la cadena comparta información con el primer bloque de la misma

#### **PoW (Proof of Work)**

Algoritmo utilizado para resolver el algoritmo de PoW de Bitcoin

#### **Merkle Trees**

Utilizado para resumir o referenciar todas las transacciones de un bloque en su header

#### Firma digital

### Criptografía

Algoritmos Asimétricos



Criptografía

Algoritmos Asimétricos



### Criptografía



#### Firmas digitales

Todas las transacciones son firmadas con la clave privada de una cuenta

### Criptografía

Algoritmos Asimétricos

#### Firmas digitales

Todas las transacciones son firmadas con la clave privada de una cuenta

#### Generaciones de direcciones (address) de billeteras

Una billetera posee por atrás al menos una clave privada

### Criptografía

Algoritmos Asimétricos



#### Firmas digitales

Todas las transacciones son firmadas con la clave privada de una cuenta

#### Generaciones de direcciones (address) de billeteras

Una billetera posee por atrás al menos una clave privada

#### Validación y consenso

Durante las reglas de consenso una de las validaciones serán las firmas digitales utilizando las claves públicas

### Criptografía

Firma Digital



### Criptografía



#### **Autenticación**

Se puede validar que el emisor del mensaje es realmente quien dice ser.

### Criptografía



#### **Autenticación**

Se puede validar que el emisor del mensaje es realmente quien dice ser.

#### No repudio

El emisor del mensaje no puede negar que el lo emitió

### Criptografía



#### **Autenticación**

Se puede validar que el emisor del mensaje es realmente quien dice ser.

#### No repudio

El emisor del mensaje no puede negar que el lo emitió

#### **Integridad**

Se garantiza que el mensaje es exactamente el que quiso enviar el emisor y no fue modificado

### Criptografía

Firma Digital



### Criptografía

# Firma Digital



### Criptografía

Firma Digital (firma)















Alice envía a Bob



Documento



Bob

Firma digital del hash del documento



hash del documento

### Criptografía

# Firma Digital (verificación)





Documento





Firma digital del hash del documento

### Criptografía





Firma digital del hash del documento





Criptografía

Firma Digital



## Criptografía

**Merkle Trees** 



▶ Taller de Tecnologías II

BLOCKCHAIN 2025

# **Merkle Trees**

tx1

Criptografía

tx2

tx3

tx4

Universidad ORT Uruguay

## Criptografía



Universidad ORT Uruguay

## Criptografía



Universidad ORT Uruguay

## Criptografía



Criptografía



**Merkle Trees** 

Criptografía

**Merkle Trees** 



## Otras características

## **Blockchain**



#### Orientado a transacciones

Cada vez que se realiza una acción se crea una transacción

## Otras características

## Blockchain



#### Orientado a transacciones

Cada vez que se realiza una acción se crea una transacción

#### **Bloques**

Las transacciones se agrupan en bloques

### Otras características

## Blockchain



#### Orientado a transacciones

Cada vez que se realiza una acción se crea una transacción

#### **Bloques**

Las transacciones se agrupan en bloques

#### Referencia al bloque anterior

Cada bloque (excepto el genesis) posee una referencia al bloque anterior, formando una cadena

### Otras características

## Blockchain



#### Orientado a transacciones

Cada vez que se realiza una acción se crea una transacción

#### **Bloques**

Las transacciones se agrupan en bloques

#### Referencia al bloque anterior

Cada bloque (excepto el genesis) posee una referencia al bloque anterior, formando una cadena

#### Unico camino al genesis

Desde cualquier bloque de la cadena solo existe un camino hacia el génesis block

### Estructura básica de un bloque

Bloque



#### **HEADER**

(número de bloque, hash bloque anterior, timestamp, otros campos)

### Estructura básica de un bloque

Bloque





## Estructura básica de un bloque

Bloque





(número de bloque, hash bloque anterior, timestamp, otros campos)

**DATOS** 

FIRMA DIGITAL

## Algoritmos de consenso

Consenso



#### Para qué sirven?

Permite a un grupo diverso tomar decisiones

## Algoritmos de consenso

## Consenso



#### Para qué sirven?

Permite a un grupo diverso tomar decisiones

#### Características necesarias

Se requiere que todos los participantes acepten las mismas reglas y reconocen que todos son iguales respecto al consenso

## Algoritmos de consenso

Consenso



#### Para qué sirven?

Permite a un grupo diverso tomar decisiones

#### Características necesarias

Se requiere que todos los participantes acepten las mismas reglas y reconocen que todos son iguales respecto al consenso

#### **Ejemplos**

PoW, PoS, DPoS, etc.