INTRODUCTION TO PYTHON FOR SCIENCE AND ENGINEERING

By Dr. Manel Velasco (Manel. Velasco@upc.edu)

Dr. Alexandre Perera (Alexandre Perera @upc.edu)

From Jan 28, 2013 to Feb 8, 2013 11.00 to 13.00

PART I

- Introduction
 - Why python? a
 - Python History
 - **Installing Python**
 - Python resources
- Working with Python
 - Workflow a.
 - ipython vs. CLI b.
 - Text Editors
 - d. **IDEs**
 - Notebook e.
- Getting started with Python
 - Introduction a.
 - b. Getting Help
 - Basic types
 - d. Mutable and in-mutable
 - Assignment operator
 - Controlling execution flow f.
 - Exception handling
- Functions and Object Oriented Programming
 - **Defining Functions**
 - Decorators b.
 - Writing Scripts and New Modules
 - Input and Output d.
 - Standard Library
 - Object-oriented programming
 - Magic Functions
- 5. Iterators and Generators
 - Iterators
 - Generators
- Creating Graphic Interfaces (optional)
- Debugging code
 - Avoiding bugs
 - Debugging workflow
 - Python's debugger
 - Debugging segfaults using gdb

PART II

- Introduction to NumPy
 - Overview
 - Arrays
 - Operations on arrays
 - d. Advanced arrays (ndarrays)
 - Notes on Performance (\%timeit in ipython) e.
- Matplotlib
 - Introduction a.
 - Figures and Subplots b.
 - Axes and Further Control of Figures c.
 - Other Plot Types
 - Animations e.
- Plotting with Mayavi 3.
 - Mlab: the scripting interface a.
 - Interactive work h
- Advanced Numpy
 - Life of ndarray a.
 - Universal functions
 - Interoperability features
 - Array siblings: chararray, maskedarray, matrix
 - Summary
 - Contributing to Numpy/Scipy

PART III

- Scipy 1.
 - Introduction a.
 - Input/Output b.
 - Statistics
 - d. Linear Algebra
 - Fast Fourier Transforms
 - Optimization f
 - Interpolation
 - Numerical Integration h.
 - Signal Processing
 - Image Processing
 - Special Functions
- Sparse Matrices in SciPy
 - Introduction
 - Storage Schemes b.
 - Linear System Solvers
 - d. Others
- Optimizing code
 - Optimization workflow a.
 - Profiling your code
 - Speeding your code c.
- Sympy
 - First Steps with SymPy a.
 - b. Algebraic manipulations
 - Calculus c.
 - **Equation solving** d.
 - Linear Algebra

PART IV

- 1. Python scikits
 - Introduction
 - b. scikit-timeseries
 - scikit-audiolab c
- 2. scikit-learn
 - Datasets a.
 - b. Sample generators
 - c. Unsupervised Learning
 - Clustering i.
 - Gaussian Mixture Models
 - iii. Novelty/Outliers Detection
 - Supervised Learning
 - i. Linear and Quadratic Discriminant Analysis
 - Nearest Neighbors
 - Support Vector Machines
 - Partial Least Squeares iv
 - Feature Selection
- Practical Introduction to Scikit-learn 3.
 - Solving an eigenfaces problem
 - Goals i.
 - Data description
 - iii Initial Classes
 - Importing data Unsupervised analysis
 - i. Descriptive Statistics
 - Principal Component Analysis
 - iii. Clustering
 - Supervised Analysis
 - k-Nearest Neighbors i.
 - Support Vector Classification
 - Cross validation