

Variable Flow Sensing with Thermal Anisotropy Checkpoint 1

Objectives:

- Explore capabilities of flow sensing with thermal anisotropy in variable flow regimes (0.01 1000 mL/min)
- To build a phantom skin platform with variable vessel diameters and array of actuator geometries for testing a wide range of flow rates

Flow Rate	ultralow	low	medium	high	ultrahigh
	0.01-0.1 mL/min	0.1-1 mL/min	1-10 mL/min	10-100 mL/min	100-1000 mL/min
Vessel Diam.	•	0	0	0	
	1.6 mm	3.2 mm	4.1 mm	6.4 mm	8.0 mm

Technical Approach:

Actuator Geometries

Technical Accomplishments:

- Designed 3D printed mold (left and right) for phantom skin in SolidWorks
- Assembled and poured phantom (Sylgard170) with uniform skin thickness
- Preliminary tests of an actuator-only device at high flow (0 and 100 mL/min) with IR camera
- Measurements without insulation of sensor regions still demonstrates anisotropy
- <u>Future</u>: incorporate array of NTC sensors on different actuator geometries for sensing studies

Preliminary IR Data

Sensitivity:

∆T_{ds-us}/∆T_{actuator} (%)

1: 3.5%

2: 2%

3: 2%

Variable Flow Sensing with Thermal Anisotropy Checkpoint 2

Objectives:

- Assemble thermal actuator devices with varying NTC thermistor spacing for thermal anisotropy testing on phantom skin
- To establish a streamlined data acquisition system to perform multiple tests analyzing NTC spacing

Flow Rate	ultralow	low	medium	high	ultrahigh
	0.01-0.1 mL/min	0.1-1 mL/min	1-10 mL/min	10-100 mL/min	100-1000 mL/min
_					
/essel Diam.	•	0	0	\bigcirc	
	1.6 mm	3.2 mm	4.1 mm	6.4 mm	8.0 mm

Technical Approach: NTC 15 mm Actuator Office Actuator

Technical Accomplishments:

- Incorporated array of NTC sensors on 15 mm by 15 mm and 15 mm by 60 mm thermal actuator geometries for sensing studies
- Tests of 15 mm by 15 mm device at low flow (0 and 0.35 mL/min) with IR camera
- Assembled a circuit board utilizing a voltage divider and digital multimeter to track all NTC resistances simultaneously over time

<u>Future</u>: Continue tests with the remaining actuator geometries

15 mm by 15 mm Data

 $PD = 2 \text{ mW/mm}^2$