

2.7V 到 5.5V, 串行输入, 电压输出, 16 位数模转换器

产品简述

MS5541/MS5542 是一款单通道、16 位、串行输入、电压输出的数模转换器,采用 2.7V 至 5.5V 单电源供电,输出范围为 0V 至 V_{REF}。在输出范围内保证单调性,在温度范围为-40℃至+85℃能够提供 1LSB INL 的 14 位精度。MS5541/MS5542 提供无缓冲输出,低建立时间、低功耗和低失调误差等特性。并且具有低噪声性能和低毛刺,适合多种终端系统使用。

MS5542 能够工作在双极性模式,产生±V_{REF} 的输出摆幅。具有用于基准电压与模拟接地引脚的开尔文检测连接,以减少布局敏感度。

主要特点

- 有效精度 14 位
- 3V 和 5V 单电源
- 低功耗: 0.825mW
- 建立时间: 1.2us
- 无缓冲电压输出能够直接驱动 60 KΩ负载
- 低毛刺: 1.1nV-s
- 兼容 SPI/QSPI/MICROWIRE 和 DSP 接口标准

应用

- 精密源测量仪器
- 自动测试设备
- 数据采集系统
- 工艺过程控制

产品规格分类

产品	封装形式	丝印名称
MS5541	SOP8	MS5541
MS5541M	MSOP8	MS5541M
MS5542	SOP14	MS5542
MS5541A	MSOP10	MS5541A

MSOP8

SOP14

MSOP10

管脚排列图

管脚排列

管脚编号	管脚名称	管脚属性	管脚描述		
			MS5541/MS5541M		
1	Vout	0	DAC 的模拟输出电压		
2	AGND	POWER	模拟参考地		
3	REF	I	DAC 参考输入电压,连接外部 2.5v,电压范围 2V 至 V _{DD}		
4	c s	I	逻辑输入信号,芯片信号选择端用于串行数据的输入控制		
5	SCLK	I	时钟输入,上升沿触发数据进入寄存器		
6	DIN	I	串行数据输入,可支持 16 位数据,在 SCLK 上升沿时进入寄存器		
7	DGND	POWER	数字参考地		
8	V_{DD}	POWER	电源		
			MS5542		
1	RFB	0	电阻反馈引脚,在双极模式下,连接外部运放输出		
2	V _{OUT}	0	DAC 的模拟输出电压		
3	AGNDF	POWER	模拟参考地		
4	AGNDS	POWER	模拟参考地		
5	REFS	I	DAC 输入参考电压(加载)连接外部 2.5v,电压范围 2V 至 V _{DD}		
6	REFF	ı	DAC 输入参考电压(检测)连接外部 2.5v,电压范围 2V 至 V _{DD}		

7	<u>cs</u>	I	逻辑输入信号,芯片信号选择端用于串行数据的输入控制	
8	SCLK	I	时钟输入,上升沿触发数据进入寄存器	
9	NC		未连接	
10	DIN	I	串行数据输入,可支持 16 位,数据在 SCLK 上升沿时进入寄存器	
11	LDAC	I	当输入低电平时,DAC 寄存器与串行寄存器数据内容同步更新	
12	DGND	POWER	数字参考地	
13	INV	0	连接到 DAC 内部的缩放电阻,在双极模式下连接外部运放的 反相输入端	
14	V _{DD}	POWER	电源	
MS5541A				
1	V_{DD}	POWER	电源	
2	Vout	0	DAC 的模拟输出电压	
3	AGND	POWER	模拟参考地	
4	REF	I	DAC 参考输入电压,连接外部 2.5v,电压范围 2V 至 V _{DD}	
5	cs	I	逻辑输入信号,芯片信号选择端用于串行数据的输入控制	
6	SCLK	I	时钟输入,上升沿触发数据进入寄存器	
7	DIN	I	串行数据输入,可支持 16 位数据,在 SCLK 上升沿时进入寄存器	
8	LDAC	I	当输入低电平时,DAC 寄存器与串行寄存器数据内容同步更新	
9	DGND	POWER	数字参考地	
10	V _{LOGIC}	POWER	逻辑电源	

内部框图

图 1. MS5541/MS5541M 结构图

图 2. MS5542 结构图

图 3. MS5541A 结构图

极限参数

绝对最大额定值

所有的最小/最大特性和规格都是在具体的工作条件下取得的。典型的性能特征和规格是在额定供 电电压和 TA=25℃下测量的。

DGND = AGND = 0 V,所有的电压值都是相对于 0V。工作在这些限定的条件下可能会对设备产生永久的损害。正常工作并不保证在这些极限范围内。

注意:应用中任何情况下都不允许超过下表中的最大额定值。

参数	符号	额定值	单位	注
电源电压	V_{DD}	-0.3~+6.0	V	*1
输入电流	lin	±10	mA	
工作环境温度	Topr	-40∼+85	$^{\circ}$	*2
存储温度	Tstg	-65∼+150	$^{\circ}$	*2
ESD	НВМ	大于±3k	V	

注意项: *1: 绝对最大额定值,是指在容损范围内使用的场合。

*2: 工作环境温度,以及存储温度的项目以外,所有温度为 Ta = 25℃

工作电源电压范围

参数	符号	最小	标准	最大	单位	注
电源电压范围	V_{DD}	2.7	5	5.5	V	
参考电压范围	V_{REF}	2	2.5	V_{DD}	V	

电气参数

 $V_{DD}\text{=-}2.7V^{\sim}5.5V, \ \ V_{REF}\text{=-}2V^{\sim}V_{DD}, \ \ \text{AGND=DGND=0V}, \ \ \text{TA=TMIN to TMAX}$

注意:没有特别规定,环境温度为 Ta = 25℃ ±2℃。

参数	测试条件	最小值	典型值	最大值	单位
静态特性					
分辨率		14			bits
积分非非线性	V _{REF} =2.048V,V _{DD} =5V		±6.5	±10.5	LSB
微分非线性	TA=25°C		±4	±5	LSB
增益误差	TA=25°C		±2	±5	LSB
增益误差温度系数			±0.1		ppm/°C
单极零码误差	TA=25°C		±2	±2.5	LSB
单极零码误差温度系数			±0.05		ppm/°C
MS5542					
双极零点失调误差	TA=25°C		±2	±5	LSB
双极零点温度系数					ppm/°C
双极零码失调误差	TA=25°C		±2	±5	LSB
双极增益误差	TA=25°C		±2	±5	LSB
双极增益温度系数			±0.1		ppm/°C
输出特性					
输出电压范围	单极模式	0		V _{REF} -1LSB	V
	MS5442 双极模式	- V _{REF}		V _{REF} -1LSB	V
输出电压建立时间	C _L =10pF		1.2		us
转换速率	C _L =10pF,0%-63%		17		V/us
数字到模拟毛刺脉冲	1LSB		1.1		nV-sec
数字馈通	V _{REF} =2.048V		0.2		nV-sec
输出噪声密度	DAC 码=0×8400,f=1kHz		11.8		nV/√Hz
输出噪声电压	f=0.1Hz to 10Hz		0.134		uVp-p
电源抑制比	$\Delta V_{DD}\pm 10\%$			±1.0	LSB

参考输入范围		2.0		$V_{ extsf{DD}}$	V
参考输入阻抗	单极模式	90			kΩ
	MS5442 双极模式	72			kΩ
逻辑输入					
输入电流				±1	uA
输入低电压				0.8	V
输入高电压		2.4			V
输入电容				10	pF
滞后电压			0.15		V
电源电压					
电源电压		2.7		5.5	V
电流	数字输入为 0		165	227	uA
功耗	数字输入为 0		0.825	1.248	mW

时钟特性

在没有特别注明下: V_{DD}=2.7V~5.5V±10%, V_{REF}=2.048V, V_{INH}= V_{DD} 的 90%, V_{INL}= V_{DD} 的 10%,

AGND=DGND=0V, -40°C<TA<+85°C

参数	描述	数值	单位
fsclk	SCLK 周期频率	20	MHz
t1	SCLK 周期时间	50	ns min
t2	SCLK 高电平时间	25	ns min
t3	SCLK 低电平时间	25	ns min
t4	 CS 低到 SCLK 高的建立时间	30	ns min
t5	CS 高到 SCLK 高的建立时间	45	ns min
t6	SCLK 高到 CS 低保持时间	45	ns min
t7	SCLK 高到 CS 高保持时间	30	ns min
t8	数据启动时间	20	ns min
t9	数据保持时间	10	ns min
t10	 LDAC 脉冲宽度	60	ns min
t11	CS 高到 LDAC 低	60	ns min
t12	CS 为高的有效时间	60	ns min

图 4. 时序图

图 5.积分非线性 vs 码

图 6.微分非线性 vs 码

工作原理

MS5541/MS5542 是一款单通道、16 位、串行输入、电压输出 DAC。工作电压范围是 2.7 V 至 5.5 V,采用 5 V 电源时的典型功耗为 165uA。数据通过三线或四线式串行接口,以 16 位字格式写入该器件。为确保处于已知上电状态,该器件设计具有上电复位功能。MS5541 单极性模式下,输出为 0V,在双极性模式下的 MS5542 输出为-V_{REF}。MS5542 具有开尔文检测连接的参考电压和模拟地。

1. 数模转换部分

DAC 架构包含两个匹配的 DAC 部分。图 7 所示为简化电路图。MS5541/MS5542 采用分段式 DAC 架构。16 位数据中的高 4 位通过解码后,可驱动 E1 到 E15 的 15 个开关。每个开关都将 15 个匹配电阻中的一个连接到 AGND 或 V_{REF} 。16 位数据中的其余 12 位驱动电压模式 R-2R 梯形网络的 S0 至 S11 开关。

图 7. DAC 结构

采用这种 DAC 配置,输出阻抗与代码无关,而基准电压源的输入阻抗则与代码高度相关。输出电压与基准电压相关,如下式所示:

$$V_{OUT} = \frac{V_{REF} \times D}{2^N}$$

其中: D 为载入 DAC 寄存器的十进制数据字。N 为 DAC 的分辨率。对于 2.5 V 基准电压,上述公式可简化为下式:

$$V_{OUT} = \frac{2.5 \times D}{65536}$$

这样, DAC 载入中间电平代码时 Vour 为 1.25V, 载入满量程代码时 Vour 为 2.5V。LSB 大小为 VREF /65536。

2. 串行接口

MS5541/MS5542 由多功能三线或四线式串行接口控制,能够以最高 20MHz 的时钟速率工作,并

与 SPI、QSPI、MICROWIRE 和 DSP 接口标准兼容。时序图见图 4 所示。除 16 位 DAC 寄存器外,MS5541/MS5542 还有一个独立的串行输入寄存器,新数据值可以预载到该串行输入寄存器中,而不会干扰现有 DAC 输出电压。

输入数据由片选输入 CS 使能帧传输。CS 上发生高低跃迁之后,数据在串行时钟 SCLK 的上升沿同步移入,并锁存在串行输入寄存器中。16 个数据位全部载入串行输入寄存器之后,CS 上发生低高跃迁,如果 LDAC 处于低电平,则将移位寄存器的内容传输至 DAC 寄存器。如果 LDAC 此时处于高电平,则 上的低高跃迁只会将该内容传输至串行输入寄存器。新值完全载入串行输入寄存器之后,可以通过选通引脚,将其异步传输到 DAC 寄存器。数据以 16 位字形式载入,MSB 优先。只能在 CS 处于低电平时将数据载入器件。

3. 单极性输出结构

该 DAC 能够驱动 60KΩ的无缓冲负载。无缓冲操作导致电源电流(典型值 300uA)和失调误差都很低。MS5541 的单极性输出摆幅为 0V 至 V_{REF}。图 8 所示为一个典型的单极性输出电压电路。该示例使用了 2.5V 基准和低失调、零漂移基准电压缓冲器 MS8629。

图 8. 单极性输出电路结构

假设使用理想的基准电压源,则单极性最差情况输出电压可以通过下式计算:

$$V_{OUT-UNI} = \frac{D}{2^{16}} \times \left(V_{REF} + V_{GE}\right) + V_{ZSE} + INL$$

其中: Vour-uni 为单极性模式最差情况输出。D 为载入 DAC 的代码。VREF 为施加于器件的基准电压。VGE 为增益误差,单位伏特(V)。VzsE 为零电平误差,单位伏特(V)。INL 为积分非线性,单位伏特(V)。

4. 双极性输出结构

对于外围所连接的运算放大器, MS5542 能够提供双极性输出, 典型的电路结构如下图 9 所示。

其中典型值为 28KΩ的 Rinv和 RfB作为反馈电阻连接到运放的输入和输出端,实现双极性输出。

图 9. 双极性输出电路结构

假设使用理想的基准电压源,则双极性最差情况输出电压可以通过下式计算:

$$V_{OUT-BIP} = \frac{\left[\left(V_{OUT-UIN} + V_{OS}\right)\left(2 + RD\right) - V_{REF}\left(1 + RD\right)\right]}{1 + \left(2 + RD\right) / A}$$

其中,V_{OUT-BIP} 为双极性模式最差情况输出。V_{OUT-UIN} 为单极性模式最差情况输出。V_{OS} 为外部运放的输入 失调电压。RD 为 R_{FB} 何 R_{INV} 电阻的匹配误差。A 为运放的开环增益。

典型应用

1. 布局指南

在任何注重精度的电路中,精心考虑电源和接地回路布局有助于确保达到规定的性能。安装 MS5541/MS5542 所用的印刷电路板(PCB)应采用模拟部分与数字部分分离设计,并限制在电路板的一定 区域内。如果 MS5541/MS5542 所在系统有多个器件要求模拟地-数字地连接,则只能在一个点上进行 连接。星形接地点尽可能靠近该器件。MS5541/MS5542 应当具有足够大的 10μF 电源旁路电容,与每 个电源上的 0.1μF 电容并联,并且尽可能靠近封装,最好是正对着该器件。10μF 电容为钽珠型电容。 0.1μF 电容应具有低有效串联电阻(ESR)和低有效串联电感(ESI),如高频时提供低阻抗接地路径的普通陶 瓷型电容,以便处理内部逻辑开关所引起的瞬态电流。

2. 光耦合器电路

MS5541/MS5542 是施密特触发的数字输入,使得它们可以接受缓慢的数字传输。这些适合在工业中应用,其中可能需要通过光耦合器将 DAC 与控制器隔离,下图 10 所示光耦合器隔离电路结构。

图 10. 光耦合器接口电路框图

3. 多通道译码电路

MS5541/MS5542 具有片选引脚 CS,能够选择一个或者多个 DAC 一起工作。所有芯片接受相同的时钟串和数据串,但是在一个时间上只能有一个芯片接受 CS 信号。DAC 的地址有译码器决定。在数字通路上存在数字馈通现象,使用突发时钟能够将数字馈通对模拟信号通道的影响降至最低。典型电路结构如图 11 所示。

图 11. 多路 DAC

封装外形图

MSOP8:

符号		尺寸(毫米)	
	最小	典型	最大
А			1.10
A1	0.05		0.15
A2	0.75	0.85	0.95
b	0.28		0.36
С	0.15		0.19
D	2.90	3.00	3.10
E	2.90	3.00	3.10
E1	4.70	4.90	5.10
е		0.65BSC	
L	0.40		0.70
θ	0		8°

SOP8:

A2

SOP14:

符号	尺寸(毫米)				
	最小	典型	最大		
А	1.35		1.75		
A1	0.10		0.25		
A2	1.25		1.65		
A3	0.55		0.75		
D	8.53		8.73		
E	5.80		6.20		
E1	3.80		4.00		
e		1.27 BSC			
L	0.45		0.80		
L1		1.04 REF			
L2		0.25 BSC			
R	0.07				
R1	0.07				
h	0.30		0.50		
θ	0 °		8°		
θ1	6 °	8°	10 °		
θ2	6 °	8°	10 °		
θ3	5 °	7°	9 °		
θ4	5 °	7°	9°		

MSOP10:

符号		尺寸(毫米)				
	最小	典型	最大			
А			1.10			
A1	0.05		0.15			
A2	0.75	0.85	0.95			
A3	0.30	0.35	0.40			
b	0.18		0.26			
С	0.15		0.19			
D	2.90	3.00	3.10			
E	2.90	3.00	3.10			
E1	4.70	4.90	5.10			
e		0.50BSC	,			
L	0.40		0.70			
L1		0.95REF	,			
θ	0		8°			

包装规范

一、印章内容介绍

MS5541、MS5541M、MS5542、MS5541A: 产品型号

XXXXXX: 生产批号

二、印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三、包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS5541	SOP8	2500	1	2500	8	20000
MS5541M	MSOP8	3000	1	3000	8	24000
MS5542	SOP14	2500	1	2500	8	20000
MS5541A	SOP10	2500	1	2500	8	20000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路1号 高新软件园9号楼701室

http://www.relmon.com