

Introduction to Statistical Learning

various learning tasks & framework

송 준

고려대학교 통계학과/융합데이터과학 대학원

Course Information

Meeting

- Time: 09:20 12:30, 토요일 (09:20 10:50, 15분 휴식, 11:05 12:30)
- Location: SK미래관 4119호
- Course Website: 고려대학교 LMS https://canvas.korea.ac.kr/
- Zoom: https://korea-ac-kr.zoom.us/j/83461928135?pwd=wOoXARO3k9EC4GlcmNZ7yWM3YPndAs.1

Instructor: 송준

- Email: <u>junsong@korea.ac.kr</u>
- Office: 정경관 424호

Course Information

학습목표

- 통계적 학습이론 원리의 이해
- 다양한 통계적 학습 방법론들의 이해와 실제 사례 적용
- 모델 구현, 적용 및 분석

Course Information

수업 주요 내용

- Supervised Learning: Regression & Classification 방법론 & 예제
- Unsupervised Learning: Dimension Reduction & Clustering 방법론 & 예제
- 기계학습 방법론 적용에 있어 고려해야 할 점

참고도서

- Introduction to Statistical Learning with Python (<u>https://www.statlearning.com/</u>)
- Elements of Statistical Learning
- Hands-On Machine Learning with Scikit-Learn

Programming Language

• *Python (VS Code* 사용 권장: <u>안내페이지</u> 참고)

평가

중간과제

• 학습한 내용들을 기반으로 한 개념 확인 및 데이터 분석 실습

기말과제

- 통계적 학습의 개념 및 원리
- 데이터 분석 실습

출석

• LMS 내에서 간단한 Quiz 참여 (수업 중 2분간 공개)

중간과제	시험	출석	Total
30%	40%	30%	100%

"Learning is any process by which a system improves performance from experience."

Herbert Simon

"Machine learning ... gives computers the ability to learn without being explicitly programmed."

Arthur Samuel

Tom Mitchell: *Algorithms that*

- *improve their* **performance** *P*
- at task T
- with experience E (데이터)

A well-defined machine learning task is given by P,T,E

Example

북극 해빙 면적 변화

Example

Tom Mitchell: Algorithms that

- improve their **performance** *P*
- at **task** *T*
- with **experience** *E*

A well-defined machine learning task

is given by P,T,E

T: 2025년 북극 해빙 면적 예측

P: 오차

• *E*: 과거 데이터

• 많은 ML/AI 방법론들은 확률 기반의 통계학적 방법론을 근간으로 개발됨

Machine Learning in Action

Daily Life

COVID-19 PAYMENT D Spam x

This message seems dangerous

It contains a suspicious link that was used to steal people's personal information. Av personal information.

Good morning,

You are advised to download the attached invoice for your review. Please get back to us as soon as $\mathfrak x$ Thanks,

Jane

Document Classification

Document classification

Radiology and Medicine

Input: Brain scans

Application of machine learning in drug discovery and

development

Output: Neurological disease labels

Machine learning studies on major brain diseases: 5-year trends of 2014–2018

https://www.nature.com/articles/s41573-019-0024-5

Machine Learning in Action

ML on Images

- ☐ Face detection
- ☐ Handwritten text detection
- ☐ Image super-resolution

Anomaly Detection for Quality Control in Additive Manufacturing

	Spatter	Clean Powder
Spatter	99.0%	2.3%
Clean Powder	1.0%	97.7%

Image caption generation

- Supervised learning
 - Input: Examples of inputs (x) and outputs (y)
 - Output: Model that predicts unknown output given a new input
- Unsupervised learning
 - **Input:** Examples of some data (x) (output is not specified)
 - Output: Representation of structure in the data and further

- Supervised learning (with responses or labels (y))
 - Regression, classification
- Unsupervised learning (without responses or labels (y))
 - Density estimation, clustering, dimension reduction

Foundational problem

- Supervised learning (with responses or labels (y))
 - Regression, classification
- Unsupervised learning (without responses or labels (y))
 - Density estimation, clustering, dimension reduction

As SL/ML have become highly developed and more sophisticated, more problems have arisen in a variety of scenarios

- Reinforcement learning (interactive, maximizing reward)
- Semi-supervised learning (y's are partially observed)
- Self-supervised learning (no y, but give y manually)
- Active learning (interactive, machine-human)
- Online learning (incremental, update pre-fitted model(large) with a new data(small))
- Transfer learning (using pre-trained model in a new problem)
- Multitask learning (multi-task from one model)
- Federated learning (multi-source, privacy consideration)

Foundational problem

Supervised Learning

Supervised Learning: Regression vs. Classification

Predict variable : continuous

Predict variable : categorical

Supervised Learning: Regression vs. Classification

- Where does Y reside?
 - **Regression** : Real vector space
 - **Classification**: A finite set. {c1,c2, ..., ck}
- Real Number: Math operations!(+, -, *, /)
- finite set don't have the math operations. cat+dog? cat-dog?
- Differently treated in
 - modeling
 - (E) data coding
 - (T) developing a method to do the task
 - (P) measuring the performance of the method
 - etc

Supervised Learning: Regression

Regression

• Population-level Regression Setting

$$Y = f(X) + \varepsilon$$

where X is a random element in \mathbb{R}^p

• Sample-level: Based on n — paired observation, $(Y_1, \mathbb{X}_1), (Y_2, \mathbb{X}_2), \dots (Y_n, \mathbb{X}_n)$, say D_n .

Then we estimate $f(\cdot)$ using the observed data D_n .

$$\hat{f} = g(D_n): \mathbb{R}^p \to \mathbb{R}$$

Prediction of a new data point X^* is $\widehat{Y}^* = \widehat{f}(X^*) = g(D_n)(X^*)$

Supervised Learning: Linear Regression

Copyright 2014. Laerd Statistics.

Supervised Learning: Multiple Linear Regression

Regression linear regression example

- *Y: Income*
- *X*=(*X*1,*X*2)=(*Years of Ed., Seniority*)
- red dots: observed data

$$(Y_1,\mathbf{X}_1),\ldots,(Y_n,\mathbf{X}_n),$$

• yellow surface: graph of fitted \hat{f}

$$\hat{f} = g(D_n) : \mathbb{R}^p \to \mathbb{R}$$

Supervised Learning: Nonlinear Regression

Regression nonlinear regression example

- Y: Income
- X=(X1,X2)=(Years of Ed., Seniority)
- red dots: observed data

$$(Y_1,\mathbf{X}_1),\ldots,(Y_n,\mathbf{X}_n),$$

• *yellow surface*: graph of fitted \hat{f}

$$\hat{f} = g(D_n) : \mathbb{R}^p \to \mathbb{R}$$

Supervised Learning: Classification

Supervised Learning: Classification

Classification

Unsupervised Learning

Unsupervised Learning: Probability Density Estimation

Unsupervised Learning: Clustering

- Given $x_1, ..., x_n$ (no labels), output hidden structure in x's
 - E.g., clustering

Things to Consider

Danger of Out-of-Domain Application

This can easily happen with high-dimensional data in ML algorithms.

Overfitting Problem

A good machine learning algorithm

- Does not overfit training data
- Generalizes well to test data

Ethical Consideration

- 편향과 차별: What if we have biased data? Is it okay to learn the algorithm with this?
 - 입학/채용 서류절차에 ML 적용시: 과거의 인종/국적/성별에 대한 편향이 포함된 데이터로 훈련되었을 경우 특정 인종/국적/성별에 불이익을 줄 수 있음.

• 개인정보 보호

• 안정성과 보안

• 시스템에 결함이나 취약점에 이해 예기지 않은 행동으로 인해 사고 발생 가능 (특히 Blackbox-type learning algorithm 을 사용할 때)

• 의사결정의 투명성과 설명가능성

- ML/AI 모델은 종종 '블랙 박스'로 작동하여, 그 결정 과정이 불투명
- 예를 들어, 은행이 ML을 사용하여 대출 승인을 결정할 경우, 모델이 어떻게 그 결정에 도달했는지 설명하기 어려울 수 있고 이는 고객의 불만을 초래

Tentative list of topics and schedule

주차	날짜	주제	내용
1	7월 5일 (토)	Introduction	Introduction to various learning tasks
2	7월 12일 (토)	Regression 1	Linear methods for regression
3	7월 19일 (토)	Regression 2	Regularization & Feature selection
4	7월 26일 (토)	Model Assessment	Model selection & tuning methods with real examples
5	8월 2일 (토)	Classification 1	Introduction to Classification and Loss Functions
6	8월 9일 (토)	Classification 2	Various classification methods and application
7	8월 16일 (토)	기말고사	Take Home 과제 온라인 제출 (강의없음)

세부적인 강의 진행은 바뀔 수 있으며 변경 시 공지가 올라올 예정입니다.