箖

浙江财经大学 2022~2023 学年第二学期 《计量经济学(双语)》课程期末考试试卷上机部分参考答案

考核方式: 上机考试

考试日期: 2023年6月14日

适用专业、班级: 20 应用统计

题号	_	=	11]	四	五	六	七	总分
得 分								
评卷人								

(共 六 大题)

1: [16 marks] Use the data in SLEEP75.dta for this exercise. The equation of interest is

$$sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 age^2 + \beta_5 ynkid + \mu$$

- (i) Estimate this equation **separately for men and women** and report the results in the usual form. Are there **notable differences** in the two estimated equations ? [4marks]
- (ii) Compute the **Chow test** for equality of the parameters in the sleep equation for men and women. Use the form of the test that adds *male* and the interaction terms *maletotwrk*, ..., *male yngkid* and uses the full set of observations. What are the relevant *df* for the test? Should you reject the null at the 5% level? [4marks]
- (iii) Now allow for a different intercept for males and females and determine whether the interaction terms involving *male* are jointly significant. [4marks] (iv) Given the results from parts (ii) and (iii), what would be your final model? [4marks]

Solutions:

(i) The estimated equation for men is

sleep =3,648.2 -.182 totwrk -13.05 educ +7.16 age-.0448 age²+ 60.38 yngkid (310.0) (.024) (7.41) (14.32) (.1684) (59.02)
$$n = 400$$
, $R^2 = .156$

and the estimated equation for women is

$$sleep = 4,238.7 - .140 \ totwrk - 10.21 \ educ - 30.36 \ age + .368 \ age^2 - 118.28 \ yngkid$$

$$(384.9) \quad (.028) \qquad (9.59) \qquad (18.53) \quad (.223) \quad (93.19)$$

小中

姓名:

· 作

专业、班级:

$$n = 306$$
, $R^2 = .098$.

There are certainly **notable differences** in the point estimates. **For example,** having a young child in the household leads to less sleep for women (about two hours a week) while men are estimated to sleep about an hour more. The quadratic in *age* is a **hump-shape** for men but a **U-shape** for women. The intercepts for men and women are also notably different.

- (ii) The F statistic (with 6 and 694 df) is about 2.12 with p-value \approx .05, and so we reject the null that the sleep equations are the same at the 5% level.
- (iii) If we leave the coefficient on *male* unspecified under H_0 , and test only the five interaction terms, $male \cdot totwrk$, $male \cdot educ$, $male \cdot age$, $male \cdot age^2$, and $male \cdot yngkid$, the F statistic (with 5 and 694 df) is about 1.26 and p-value \approx .28.
- (iv) The outcome of the test in part (iii) shows that, once an intercept difference is allowed, there is not strong evidence of slope differences between men and women. This is one of those cases where the practically important differences in estimates for women and men in part (i) do not translate into statistically significant differences. We need a larger sample size to confidently determine whether there are differences in slopes. For the purposes of studying the sleep-work tradeoff, the original model with *male* added as an explanatory variable seems sufficient.

Output:

reg sleep totwrk educ age agesq yngkid if male==1

Source	SS	df	MS		Number of obs	=	400
+					F(5, 394)	=	14. 59
Model	11806161.6	5 236	1232.32		Prob > F	=	0.0000
Residual	63763979	394 16	1837. 51		R-squared	=	0.1562
+					Adj R-squared	=	0. 1455
Total	75570140.6	399 189	398. 849		Root MSE	=	402.29
sleep	Coef.	Std. Err.	t	P > t	[95% Conf.	In	terval]
+							
totwrk	1821232	.0244855	-7.44	0.000	2302618	:	1339846
educ	-13.05238	7. 414218	-1.76	0.079	-27.62876	1.	523996
age	7. 156591	14. 32037	0.50	0.618	-20.99731	35	5. 31049
agesq	0447674	. 1684053	-0.27	0.791	3758528	. 2	2863181
yngkid	60. 38021	59. 02278	1.02	0.307	-55.65877	17	76. 4192
_cons	3648. 208	310.0393	11.77	0.000	3038.67	42	257. 747

 ${\tt reg \ \ sleep \ totwrk \ \ educ \ \ age \ \ agesq \ \, yngkid \ \ if \ \ \, male = = 0}$

Source	SS	df	MS	Number of obs =	306
+-				F(5, 300) =	6.50

Model Residual Total	6201576. 18 57288575. 9 63490152. 1	5 1240 300 190 305 2081	961. 92		Prob > F R-squared Adj R-squared Root MSE	
sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	 Interval]
totwrk educ age agesq yngkid _cons	1399495 -10. 20514 -30. 35657 . 3679406 -118. 2826 4238. 729	. 0276594 9. 588848 18. 53091 . 2233398 93. 18757 384. 8923	-5. 06 -1. 06 -1. 64 1. 65 -1. 27 11. 01	0. 000 0. 288 0. 102 0. 101 0. 205 0. 000	1943806 -29. 07506 -66. 82361 0715705 -301. 6667 3481. 299	0855184 8. 664787 6. 110464 . 8074516 65. 10154 4996. 16

reg sleep totwrk educ age agesq yngkid male mtotwrk meduc mage magesq myngkid

Source	SS	df	MS		Number of obs	
Model Residual	18187280. 8 121052555		53389. 17 4427. 313		F(11, 694) Prob > F R-squared Adj R-squared	= 0.0000 = 0.1306
Total	139239836	705 197	7503. 313		Root MSE	= 417.64
sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
totwrk	1399495	. 0264349	-5. 29	0.000	1918514	0880476
educ	-10. 20514	9. 164321	-1.11	0.266	-28.19826	7. 787983
age	-30. 35657	17.71049	-1.71	0.087	-65. 12914	4. 415998
agesq	. 3679406	. 2134519	1.72	0.085	0511483	. 7870294
yngkid	-118.2826	89.06187	-1.33	0.185	-293. 1456	56. 58047
male	-590. 5211	488. 7916	-1.21	0.227	-1550. 209	369. 1665
mtotwrk	0421737	. 036674	-1.15	0.251	- . 114179	. 0298317
meduc	-2.847243	11. 96795	-0.24	0.812	-26. 34497	20.65048
mage	37. 51316	23. 12332	1.62	0.105	-7.886888	82. 91321
magesq	4127079	. 2759136	-1.50	0.135	9544333	. 1290175
myngkid	178.6628	108.1051	1.65	0.099	-33. 5895	390. 915
_cons	4238. 729	367. 8519	11. 52	0.000	3516. 493	4960.965

test male mtotwrk meduc mage magesq myngkid

```
(1) male = 0
 (2) mtotwrk = 0
 (3) meduc = 0
 (4) mage = 0
 (5) magesq = 0
 (6) myngkid = 0
      F(6, 694) =
                       2. 12
          Prob > F =
                       0.0495
test
       mtotwrk meduc mage magesq myngkid
 (1) mtotwrk = 0
 (2) meduc = 0
 (3) mage = 0
 (4) magesq = 0
 (5) myngkid = 0
      F(5, 694) =
                       1.26
          Prob > F =
                       0.2814
```

2: [18 marks]Use the data in JTRAIN98.dta to answer this question. The variable

unem98 is a binary variable indicating whether a worker was unemployed in 1998. It can be used to measure the effectiveness of the job training program in reducing the probability of being unemployed.

- (i) What percentage of workers was unemployed in 1998, after the job training program? How does this compare with the unemployment rate in 1996? [3marks]
- (ii) Run the simple regression **unem98** on **train.** How do you interpret the coefficient on train? Is it statistically significant? [3marks]
- (iii) Add to the regression in part (ii) the explanatory variables **earn96**, **educ**, **age**, and **married**. Now interpret the estimated training effect. Why does it differ so much from that in part (ii)? [3marks]
- (iv) Now perform **full regression adjustment** by running a regression with a full set of interactions, where all variables (except the training indicator) are centered around their sample means:

```
unem98<sub>i</sub> on train<sub>i</sub>, earn96<sub>i</sub>, educ<sub>i</sub>, age<sub>i</sub>, married, train<sub>i</sub> · (earn96<sub>i</sub> - \overline{earn96}), train<sub>i</sub> · (educ<sub>i</sub> - \overline{educ}), train<sub>i</sub> · (age<sub>i</sub> - \overline{age}), train<sub>i</sub> · (married<sub>i</sub> - \overline{married}).
```

This regression uses all of the data. What happens to the estimated average treatment effect of train compared with part (iii). [3marks]

- (v) Are the **interaction terms** in part (iv) jointly significant? [3marks]
- (vi) Verify that you obtain exactly the same average treatment effect if you run two separate regressions. That is, run two separate regressions for the control and treated

groups, obtain the fitted values $unem98_i^0$ and $unem98_i^1$ for everyone in the sample,

and then compute $\tau_{ura} = \sum_{n=1}^{\infty} \frac{1}{n} [unem98_i^1 - unem98_i^0]$. Check this with the coefficient on train in part (iv). Which approach is more convenient for obtaining a standard error?

Solutions:

[3marks]

C7.17 jtrain98.dta

(i)

sum	unem98

Variable		Mean	Std. dev.	Min	Max
unem98		. 1716814		0	1
sum unem96 Variable	0bs	Mean	Std. dev.	Min	Max
unem96	1, 130	. 3123894	. 4636729	0	1

The average value for unem98 is 0.172. The average value for unem96 is 0.312. Thus, a much lower fraction of workers was unemployed in 1998 as compared to 1995 (the year in which unem96 measures). This may be due to job training, but there are many other possible explanations for this (e.g. an improved job market in 1998 compared to 1995).

reg unem98 train	
Source	

(ii)

Source	SS	df	MS	Numb	er of obs	=	1,130
 	 			F(1,	1128)	=	1.16
Model	. 165706941	1	. 16570694	l Prob	> F	=	0.2808
Residual	160. 528098	1, 128	. 142312144	4 R-sq	uared	=	0.0010
 	 			- Adj	R-squared	=	0.0001
Total	160. 693805	1, 129	. 142332866	6 Root	MSE	=	. 37724
 unem98	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
train	. 0256998	. 0238166	1.08	0. 281	02103	01	. 0724297
_cons	. 16313	. 0137384	11.87	0.000	. 13617	43	. 1900856

We estimate $un\widehat{em}98 = 0.163 + 0.026 train$. This suggests that participation in the training program increases the likelihood of being unemployed in 1998. Of course, it is more likely that we have reverse causality and those who are unemployed are more likely to participate in job training. In any event, the estimate is not significantly different from 0.

(iii)					
reg unem98	train	educ	earn96	married	age

reg unem98 train	educ earn96 ma	rried age					
Source	SS	df	MS	Numb	er of obs	=	1,130
				F(5,	1124)	=	67.99
Mode1	37. 3151546	5	7. 46303091	Prob	> F	=	0.0000
Residual	123. 378651	1, 124	. 109767483	R-sq	uared	=	0.2322
				Adj	R-squared	=	0.2288
Total	160.693805	1, 129	. 142332866	6 Root	MSE	=	. 33131
unem98	Coefficient	Std. err.	t	P> t	[95% con	ıf.	interval]
train	1207668	. 0241306	-5.00	0.000	- . 1681129)	0734207
educ	0130486	. 0035507	-3.67	0.000	0200154		0060818
earn96	 0132699	.0010326	-12 . 85	0.000	015296	;	0112438
married	0482881	. 0236316	-2.04	0.041	0946551		001921
age	. 0081618	. 0010464	7.80	0.000	. 0061087	,	. 010215

The estimated training effect is now **-0.121** and it is statistically **significant** at the 1% level (standard error = 0.024). This estimate suggests that participating in job training reduces the likelihood of being unemployed, as we would hope. The change in sign and significance is due to the inclusion of *earn*96, *educ*, *age*, and *married*. These variables can **help control for non-random differences** between those people who participate in job training and those who do not. We hope that conditioning upon these variables gets us closer to random assignment for training, allowing for identification of the causal effect of job training on unemployment.

0.000

4.56

. 1650013

.4141597

```
(iv)
sum earn96 educ age married
egen mearn96=mean( earn96 )
egen meduc =mean( educ )
egen mage =mean( age )
egen mmarried =mean( married )
g tmearn96= train* ( earn96 - mearn96 )
g tmage = train* ( age - mage )
g tmeduc = train* ( educ -meduc)
g tmmarried = train* ( married- mmarried)
```

_cons

. 2895805

. 0634935

reg unem98 train earn96 educ age married tmearn96 tmage tmeduc tmmarried

Source	SS	df	MS	Numb	er of ob	s =	1,130
				- F(9,	1120)	=	37.88
Model	37. 5027695	9	4. 1669743	8 Prob	> F	=	0.0000
Residual	123. 191036	1, 120	. 10999199	6 R-sq	uared	=	0.2334
				- Adj	R-square	d =	0. 2272
Total	160. 693805	1, 129	. 14233286	6 Root	MSE	=	. 33165
unem98	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
train	1225648	. 0295758	-4.14	0.000	180	595	0645347
earn96	0133338	.0011141	-11.97	0.000	0155	197	0111478
educ	0106719	.0043317	-2.46	0.014	0191	712	0021727
age	. 0079725	.0012667	6. 29	0.000	. 00548	872	. 0104578
married	0366406	. 030297	-1.21	0.227	0960	859	. 0228047
tmearn96	. 000205	.0030099	0.07	0.946	0057	007	.0061106
tmage	. 0007743	.0022675	0.34	0.733	0036	746	.0052233
tmeduc	0073046	.0075912	-0.96	0.336	0221	991	.0075899
tmmarried	0314146	. 0490643	-0.64	0.522	1276	828	. 0648536
_cons	. 2614036	. 0772305	3. 38	0.001	. 1098	709	. 4129363

The estimated average treatment effect increases in magnitude to -0.123. This is a small change from the estimate in part iii. The standard error estimate is 0.030, which is also larger than what was estimated in part iii, but does not change the results of any significance tests.

- (v) test tmearn96 tmage tmeduc tmmarried
- (1) tmearn 96 = 0
- (2) tmage = 0
- (3) tmeduc = 0
- (4) tmmarried = 0

$$F(4, 1120) = 0.43$$

 $Prob > F = 0.7896$

The interaction terms are not jointly significant, with $F_{4,1120} = 0.43$ when testing the null hypothesis that the coefficients on the interactions are all equal to 0. We **fail to reject the null**.

(vi) reg unem98 earn96 educ age married if train==1

•	•					
Source	SS	df	MS	Number of obs	=	376
				F(4, 371)	=	16. 47
Model	8. 68604493	4	2. 17151123	Prob > F	=	0.0000
Residual	48. 9070402	371	. 131824906	R-squared	=	0.1508
+				Adj R-squared	=	0. 1417

Total	57. 5930851	375 . 15358	156 Root	t MSE	= .36308	
unem98	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
earn96	0131288	. 0030611	-4. 29	0.000	019148	- . 0071096
educ	0179765	. 0068247	-2.63	0.009	0313964	0045567
age	. 0087469	. 0020589	4.25	0.000	. 0046984	. 0127954
married	0680552	. 0422496	-1.61	0.108	- . 1511339	. 0150235
_cons	. 2134445	. 1108041	1.93	0.055	0044383	. 4313273

predict y1,xb

reg unem98 earn96 educ age married if train==0

Source	SS	df	MS	Number of obs	=	754
	-+			F(4, 749)	=	72. 22
Model	28.6510176	4	7. 1627544	Prob > F	=	0.0000
Residual	74. 2839957	749	. 099177564	R-squared	=	0. 2783
	-+			Adj R-squared	=	0. 2745
Total	102. 935013	753	. 136699885	Root MSE	=	. 31492

	Coefficient					interval]
	+					
earn96	0133338	.0010579	-12.60	0.000	0154106	0112569
educ	0106719	.0041133	-2.59	0.010	0187469	002597
age	. 0079725	.0012028	6.63	0.000	.0056113	.0103338
married	0366406	. 0287691	-1.27	0.203	0931183	.0198371
_cons	. 2614036	. 0733356	3. 56	0.000	. 1174358	. 4053714

predict y0,xb

sum y1 y0

Variable	0bs	Mean	Std. dev.	Min	Max
+					
y1	1, 130	. 0884216	. 203681	3831182	. 631846
у0	1, 130	. 2109865	. 1904102	2182577	. 6599041

di .0884216 - .2109865

-.1225649

or

teffects ra (unem98 earn96 educ age married)(train) ,aequations pomeans

Iteration 0: EE criterion = 1.096e-30
Iteration 1: EE criterion = 6.039e-34

Treatment-effe	ects estimatio	n		Number	of obs =	1, 130
Estimator	: regression	adjustment	t			
Outcome model	: linear					
Treatment mode	el: none					
00		Robust		DV	[OFW C	17
unem98	Coefficient	std. err.	Z	P> z	[95% conf.	interval]
POmeans	· 					
train						
0	. 2109865	.0161511	13.06	0.000	. 1793308	. 2426421
1	. 0884216	. 0203987	4.33	0.000	. 0484408	. 1284024
OMEO	+ 					
earn96	0133338	. 0012265	-10.87	0.000	0157377	0109298
educ	0106719	. 0049024	-2.18	0.029	0202804	0010634
age	. 0079725	.0014068	5. 67	0.000	. 0052153	. 0107298
married	0366406	.0291886	-1.26	0.209	0938493	. 0205681
_cons	. 2614036	. 0898368	2. 91	0.004	. 0853267	. 4374806
OME1	+ 					
earn96	0131288	. 0027166	-4.83	0.000	0184532	0078043
educ	0179765	. 0071683	-2 . 51	0.012	032026	003927
age	. 0087469	. 0024011	3.64	0.000	. 0040409	. 0134529
married	0680552	. 0415202	-1.64	0.101	1494332	. 0133228
cons	. 2134445	. 1249429	1.71	0.088	031439	. 4583281

Obtain $unem98_1$ by regressing unem98 on earn96, educ, age, married for observations for which train = 1. Run the same regression for train = 0 to obtain $unem98_0$. Calculate $\hat{\tau}_{ura} = n^{-1} \sum (unem98_{1i} - unem98_{0i}) = -0.123$, which is precisely the ATE we estimated in part iv. The regression in part iv is much more convenient in obtaining a standard error.

3: [21 marks]Use the data in LABSUP.dta to answer the following questions. These are data on almost 32,000 black or Hispanic women. Every woman in the sample is married. It is a subset of the data used in Angrist and Evans (1998). Our interest here is in determining how weekly hours worked, *hours*, changes with number of children (*kids*). All women in the sample have at least two children. The two potential instrumental variables for *kids*, which is suspected as being endogenous, work to generate exogenous variation starting with two children.

- (i) Estimate the equation
- hours = $\beta_0 + \beta_1 kids + \beta_2 nonmomi + \beta_3 educ + \beta_4 age + \beta_5 age^2 + \beta_6 black + \beta_7 hispan + u$ by OLS and obtain the **heteroskedasticity-robust standard errors**. Interpret the coefficient on *kids*. Discuss its statistical significance. [3marks]
- (ii) A variable that Angrist and Evans propose as an instrument is *samesex*, a binary variable equal to one if the first two children are the same biological sex. What do you think is the argument for why it is a relevant instrument for kids? [3marks]
- (iii) Run the regression *kids*_i on *samesex*_i, *nonmomi*_i, *educ*_i, *age*_i, *age*_i, *black*_i *hispan*_i and see if the story from part (ii) holds up. In particular, interepret the coefficient on *samesex*. How statistically significant is *samesex*? [3marks]
- (iv) Using samesex as an IV for kids, obtain the IV estimates of the equation in part
- (i). How does the *kids* coefficient compare with the OLS estimate? Is the IV estimate precise? [3marks]
- (v) Now add *multi2nd* as an instrument. Obtain the F statistic from the first stage regression and determining whether *samesex* and *multi2nd* are sufficiently strong. [3marks]
- (vi)Using *samesex* and *multi2nd* both as instruments for *kids*, What is the IV estimate coefficient on *kids*? [3marks]
- (vii) In part (vi), how many overidentification restrictions are there? Does the overidentification test pass? [3marks]

C15.13 (i) reg hours kids nonmomi educ age agesq black hispan, robust

Linear regress	sion			Number o	of obs	=	31,857
				F(7, 318	849)	=	377.87
				Prob > 1	7	=	0.0000
				R-square	ed	=	0.0727
				Root MSI	Ξ	=	18.779
		Robust					
hours	Coefficient	std. err.	t	P> t	[95%	conf.	interval]
	 						
kids	-2. 325836	. 1155164	-20.13	0.000	-2.55	2253	-2.099419
nonmomi	0578328	.0053515	-10.81	0.000	068	8322	0473436
educ	. 5860083	. 0374881	15.63	0.000	. 512	5302	. 6594865
age	2.048793	. 4483823	4. 57	0.000	1. 169	9946	2. 927639
agesq	0277198	.0076957	-3.60	0.000	0428	8036	012636
black	1.058285	1.35088	0.78	0.433	-1. 589	9492	3. 706063
hispan	-5.114147	1.35152	-3.78	0.000	-7. 76	3179	-2. 465116
_cons	-10. 44695	6. 588891	-1.59	0.113	-23.30	6143	2. 467528

Estimating this model via OLS yields a coefficient on *kids* of **-2.326** with a heteroskedasticity robust standard error of **0.116**. Thus, the OLS results suggest that each child is predicted to reduce mother's weekly hours worked by about 2.3 hours (**significant** at the 1% level).

(ii) We would expect a **positive correlation** between *kids* and *samesex*. If the first two children born are of the same gender, a mother may desire to have another child if she has a preference for the opposite gender child. For example, a mother may want to have a daughter and if her first two children are boys, she is more likely to have a third child than if one of her first two children was a girl.

(iii)
reg kids samesex nonmomi educ age agesq black hispan

Source	SS	df	MS	Number of obs	=	31,857
				F(7, 31849)	=	615. 37
Model	3624. 08348	7	517.726212	Prob > F	=	0.0000
Residual	26795. 3197	31,849	. 841323736	R-squared	=	0.1191
				Adj R-squared	=	0.1189
Total	30419, 4031	31, 856	. 954903414	Root MSE	=	. 91724

kids	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
samesex	. 0703744	. 0102787	6.85	0.000	. 0502276	. 0905211
nonmomi	0027871	.0002632	-10.59	0.000	0033029	0022713
educ	0853676	.0017244	-49.51	0.000	0887474	0819877
age	. 0589312	. 0218769	2.69	0.007	. 0160516	. 1018108
agesq	1.98e-06	.000376	0.01	0.996	0007349	. 0007389
black	. 0128681	. 065929	0.20	0.845	- . 1163553	. 1420916
hispan	0424722	. 0660326	-0.64	0.520	1718985	. 0869542
_cons	2.010258	. 3209963	6.26	0.000	1. 381093	2. 639423

The coefficient on *samesex* is **0.07**, with a heteroskedasticity robust standard error of 0.01. This is **significantly positive**, supporting the theory in part ii. We predict that a group of 100 mothers with two same gendered first children will have on average 7 more children overall than a group of 100 mothers with different gendered first two children, all else equal.

(iv)

The IV estimate for *kids* is **-4.879**, which is larger in magnitude than the OLS estimate. However, this estimate is very imprecisely estimated with a standard error of 3.009 and is not significant at even the 10% level.

(v)

reg kids multi2nd samesex nonmomi educ age agesq black hispan test multi2nd samesex

- (1) multi2nd = 0
- (2) samesex = 0

$$F(2, 31848) = 118.82$$

 $Prob > F = 0.0000$

[reg kids multi2nd samesex nonmomi educ age agesq black hispan,robust

test multi2nd samesex

```
(1) multi2nd = 0
```

(2) samesex = 0 F(2, 31848) = 117.38Prob > F = 0.0000

Instrumental variables 2SLS regression

]

We strongly reject the null hypothesis that both samesex and multi2nd are jointly insignificant ($F_{2,3188} = 117.38$, p-value=0). This suggests that these are **sufficienty strong** instruments for kids.

(vi) ivreg hours (kids= samesex multi2nd) nonmomi educ age agesq black hispan

Source	SS	df	MS	Number of obs	=	31,857
 				F(7, 31849)	=	298.30
Model	868822.264	7	124117. 466	Prob > F	=	0.0000
Residual	11243074.3	31, 849	353.011848	R-squared	=	0.0717
 +-				Adj R-squared	=	0.0715
Total	12111896.6	31, 856	380. 207703	Root MSE	=	18. 789

hours	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
kids	-2. 986165	1. 332728	-2.24	0.025	-5. 598363	3739662
nonmomi	0596653	.0065372	-9 . 13	0.000	0724785	0468521
educ	. 5296332	. 1191374	4. 45	0.000	. 2961194	. 763147
age	2. 08815	. 4551064	4. 59	0.000	1.196124	2. 980176
agesq	0277261	.0077012	-3.60	0.000	0428207	0126316
black	1.067778	1.350614	0.79	0.429	-1.579477	3.715032
hispan	-5. 140945	1.353675	-3.80	0.000	-7. 7942	-2. 487691
_cons	-9.103834	7. 111779	-1.28	0.201	-23.04319	4.835527

Instrumented: kids

Instruments: nonmomi educ age agesq black hispan samesex multi2nd

Using this method, we estimate a coefficient on kids of -2.986.

(vii)

ivreg hours (kids= samesex multi2nd) nonmomi educ age agesq black hispan Instrumental variables 2SLS regression

11150101110111011		1081001011					
Source	SS	df	MS	Numb	er of obs	=	31,857
				F(7,	31849)	=	298.30
Model	868822. 264	7	124117.466	Prob	> F	=	0.0000
Residual	11243074.3	31, 849	353. 011848	R-squ	ared	=	0.0717
				Adj F	R-squared	=	0.0715
Total	12111896.6	31,856	380. 207703	Root	MSE	=	18.789
hours	Coefficient	Std. err.	t	P> t	[95% cor	ıf.	interval]
kids	-2.986165	1. 332728	-2.24	0.025	-5. 598363	}	- . 3739662
nonmomi	0596653	.0065372	-9.13	0.000	0724785	5	0468521
educ	. 5296332	. 1191374	4. 45	0.000	. 2961194	Į.	. 763147
age	2. 08815	. 4551064	4. 59	0.000	1. 196124	Į	2. 980176
agesq	0277261	.0077012	-3.60	0.000	0428207	7	0126316
black	1.067778	1.350614	0.79	0.429	-1.579477	7	3.715032
			2 00				

-3.80

-1.28

0.000

0.201

-7.7942

-23.04319

-2.487691

4.835527

Instrumented: kids

hispan

cons

Instruments: nonmomi educ age agesq black hispan samesex multi2nd

1.353675

7.111779

overid

Tests of overidentifying restrictions:

-5.140945

-9.103834

Sargan N*R-sq test 0.499 Chi-sq(1) P-value = 0.4798 Basmann test 0.499 Chi-sq(1) P-value = 0.4798

Since we have two instruments and one (potentially) endogenous variable, there is **one overidentification restriction**. To test this overidentification restriction, we take the residuals from the 2SLS regression and regress it on all exogenous variables (including our two instruments samesex and multi2nd). Doing so yields an $R^2 = 0$, which suggests that we **fail to reject the null that all of the IV's are exogenous**. Thus, the overidentification test passes.

- **4:** [18marks] Use the data **CPS91.dta** for this exercise. These data are for married women, where we also have information on each husband's income and demographics.
- (i) What fraction of the women report being in the labor force? [3marks]
- (ii)Using only the data for working women--you have no choice--estimate the wage equation

 $\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 exper^2 + \beta_4 black + \beta_5 hispanic + u$

by ordinary least squares (OLS). Do there appear to be significant wage differences by race and ethnicity? [3marks]

(iii) Estimate a **probit model** for *inlf* that includes the explanatory variables in the wage equation from part (ii) as well as *nwifeinc* and *kidlt6*. Do these last two variables have coefficients of the **expected sign**? **Are they statistically significant**? [3marks]

(iv)Test hypothesis $\beta_2 = \beta_3 = 0$. Report the value of likelihood ratio (LR) statistic.

[3marks]

- (v)Compute the average partial effect (APE) for *educ* from t probit model in part (iii). [3marks]
- (vi)Compute the inverse Mills ratio (for each observation) and add it as additional regressor to the wage equation from part (ii). What is its two-sided p-value?

[3marks]

Solutions:

C17.11 (i) tab inlf

=1 if wife			
in labor			
force	Freq.	Percent	Cum.
0	2,348	41.68	41.68
1	3,286	58.32	100.00
Total	5,634	100.00	

The fraction of women in the work force is $3,286/5,634 \approx .5832$

(ii) reg lwage educ exper expersq black hispanic

Source	SS	df	MS	Number of obs	=	3, 286
				F(5, 3280)	=	169.08
Model	185. 581829	5	37. 1163657	Prob > F	=	0.0000
Residual	720. 007572	3, 280	. 219514504	R-squared	=	0.2049
				Adj R-squared	=	0.2037
Total	905. 589401	3, 285	. 275674095	Root MSE	=	. 46852

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	. 0991502	. 0035898	27. 62	0.000	. 0921118	. 1061887
exper	. 0198554	. 0032856	6.04	0.000	. 0134133	. 0262974

```
0.000
            -. 0003489
                          .000077
                                      -4. 53
                                                         -.0004999
                                                                      -.0001979
 expersq
   black
             -. 0295532
                          . 0343431
                                      -0.86
                                               0.390
                                                         -. 0968892
                                                                       .0377828
                                               0.708
hispanic
             .0136158
                          . 0363565
                                       0.37
                                                         -. 0576679
                                                                       . 0848996
               . 648842
                          . 0599659
                                               0.000
                                                          . 5312675
                                                                       . 7664164
   cons
                                      10.82
```

test black hispanic

- (1) black = 0
- (2) hispanic = 0

$$F(2, 3280) = 0.46$$

 $Prob > F = 0.6324$

The OLS results using the selected sample are

$$\log(wage) = .649 + .099 \ educ + .020 \ exper - .00035 \ exper^2$$

$$(.060) \quad (.004) \quad (.003) \quad (.00008)$$

$$- .030 \ black + .014 \ hispanic$$

$$(.034) \quad (.036)$$

$$n = 3,286, \ R^2 = .205.$$

While the point estimates imply blacks earn, on average, about 3% less and Hispanics about 1.3% more than the base group (non-black, non-Hispanic), **neither coefficient is statistically significant** — or even very close to statistical significance at the usual levels. The joint F test gives a p-value of about .6324. So, there is **little evidence** for differences by race and ethnicity once education and experience have been controlled for.

(iii) probit inlf educ exper expersq black hispanic nwifeinc kidlt6, nolog

Probit regress	ion			Number o	of obs	=	5,634
				LR chi2	(7)	=	578. 98
				Prob > c	ehi2	=	0.0000
Log likelihood	= -3537.254	4		Pseudo F	R2	=	0.0756
inlf	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
educ	. 0964837	. 0077854	12. 39	0.000	. 081	2246	. 1117428
exper	. 0077141	. 0072385	1.07	0.287	006	4732	. 0219014
expersq	0006143	.0001577	-3.90	0.000	0009	9234	0003052
black	. 0167548	. 0755896	0. 22	0.825	- . 1313	3981	. 1649077
hispanic	1219554	. 0704695	-1.73	0.084	260	0073	. 0161623
nwifeinc	0091239	. 0006775	-13. 47	0.000	010	4518	007796
kidlt6	500167	. 0452776	-11.05	0.000	5889	9096	4114245
_cons	4393231	. 1338545	-3. 28	0.001	701	6732	- . 176973

The coefficient on *nwifeinc* is -.0091, with t = -13.47, and the coefficient on *kidlt*6 is -.500, with t = -11.05. We **expect** both coefficients to be **negative**. If a woman's spouse earns more, she is

less likely to work. Having a young child in the family also reduces the probability that the woman works. Each variable is very statistically **significant**. (Not surprisingly, the joint test also yields a *p*-value of essentially zero.)

(iv) probit inlf educ exper expersq black hispanic nwifeinc kidlt6,nolog

probit inlf educ black hispanic nwifeinc kidlt6,nolog di 2*(-3537.2544 -(-3589.9891))

105.4694

(v) margins,dydx(*)

Average marginal effects Number of obs = 5,634

Model VCE : OIM

Expression : Pr(inlf), predict()

dy/dx w.r.t. : educ exper expersq black hispanic nwifeinc kidlt6

]	Delta-method	ł			
	dy/dx	Std. Err.	Z	P > z	[95% Conf.	Interval]
educ	. 0346142	. 002685	12.89	0.000	. 0293518	. 0398767
exper	. 0027675	. 0025962	1.07	0.286	0023209	. 0078559
expersq	0002204	. 0000564	-3.91	0.000	0003308	0001099
black	. 0060109	. 0271181	0.22	0.825	0471396	.0591614
hispanic	0437523	. 0252626	-1.73	0.083	093266	.0057613
nwifeinc	0032733	.0002314	-14. 14	0.000	0037268	0028197
kidlt6	1794385	. 0157159	-11.42	0.000	2102411	1486358

(vi) qui probit inlf educ exper expersq black hispanic nwifeinc kidlt6,nolog

predict xb,xb

gen lambda= normalden(xb)/normal(xb)

reg lwage educ exper expersq black hispanic lambda

Source		SS	df	MS	Number of obs	=	3, 286
	-+-		 		F(6, 3279)	=	141.52
Model		186. 268673	6	31. 0447788	Prob > F	=	0.0000
Residual		719. 320728	3, 279	. 219371982	R-squared	=	0.2057
	-+-		 		Adj R-squared	=	0. 2042
Total		905. 589401	3, 285	. 275674095	Root MSE	=	. 46837

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	t					
educ	. 1032796	. 0042807	24. 13	0.000	. 0948865	. 1116726
exper	. 0204788	. 0033034	6. 20	0.000	. 0140019	. 0269557
expersq	0003781	. 0000787	-4.80	0.000	0005325	0002237
black	0251464	. 0344221	-0.73	0.465	0926374	. 0423447
hispanic	. 0056534	. 0366222	0.15	0.877	0661514	. 0774581
lambda	. 0918995	. 0519368	1.77	0.077	0099322	. 1937313
_cons	. 538856	. 0863552	6.24	0.000	. 3695403	. 7081716

The *t* statistic on the inverse Mills ratio is **1.77**, and the *p*-value against the two-sided alternative is **.077**. With 3,286 observations, this is not a very small *p*-value. The test on $\hat{\lambda}$ does not provide strong evidence against the null hypothesis of no selection bias.

- **5:** [11 marks]Use the data in JTRAIN98 to answer the following questions. Here you will use a **Tobit model** because the outcome, *earn98*, sometimes is zero.
- (i) How many observations (men) in the sample have earn98 = 0? Is it a large percentage of the sample? [3marks]
- (ii)Estimate a Tobit model for *earn98*, using train, earn96, educ, and married as the explanatory variables. Report the β_{train} and its standard error. Is the sign what you expect? How statistically significant is it? [4marks]
- (iii) In part (ii), obtain the average partial effect—which is the average treatment effect—of train, and obtain its standard error. [4marks]

C17.17 (i)

table earn98

di 194/1130

.17168142

194 out of 1,130 observations have earn98 = 0. This represents 17.2% of the sample, a non-trivial proportion.

(ii)

tobit earn98 train earn96 educ married, 11(0)

Refining starting values:

Grid node 0: $\log 1$ ikelihood = -3378.7988

Fitting full model:

Iteration 0: $\log 1$ ikelihood = -3378.7988

Iteration 1: $log\ likelihood = -3347.5418$ Iteration 2: $log \ likelihood = -3346.5943$ Iteration 3: $\log 1$ ikelihood = -3346.5939Iteration 4: $log\ likelihood = -3346.5939$ Tobit regression Number of obs = 1,130 Uncensored = 936 Limits: Lower = 194 Left-censored = Upper = +infRight-censored = LR chi2(4) = 505.23 Prob > chi2 = 0.0000 Log likelihood = -3346.5939Pseudo R2 = 0.0702P > |t|earn98 | Coefficient Std. err. [95% conf. interval] t. 3.754894 . 5370196 6.99 0.000 2.701222 4.808565 train earn96 . 4920415 . 0226626 21.71 0.000 .4475759. 5365072 9.36 0.000 educ .7004805 .0748021 . 5537133 . 8472476 married | 1.017523 . 4903724 2.08 0.038 . 0553766 1.979669 -6.4998081.021731 -6.360.000 -8.504519 -4.495098 cons var (e. earn98) 51.24396 2.449745 46.65592 56. 28318

Running a Tobit regression yields $\hat{\beta}_{train} = 3.75$ and $SE(\hat{\beta}_{train}) = 0.54$, statistically significant at the 1% level. This positive coefficient suggests that those in job training have higher earnings. This makes sense given that job training is intended to increase productivity and in turn earnings.

(iii) margins,dydx(*)

Average marginal effects Number of obs = 1,130

Model VCE: OIM

Expression: Linear prediction, predict() dy/dx wrt: train earn96 educ married

Delta-method P>|t| dy/dx std. err. [95% conf. interval] train | 3.754894 . 5370196 6.99 0.000 2.701222 4.808565 . 5365072 earn96 . 4920415 . 0226626 21.71 0.000 . 4475759 educ . 7004805 .0748021 9.36 0.000 . 5537133 .8472476 1.017523 . 4903724 2.08 0.038 . 0553766 1.979669 married

The estimated average marginal effect of train is 3.755 with a standard error of 0.537.

6: [16 marks]Use the data in wagepan.dta for this exercise.

(i)Estimate the model

$$lwage_{it} = \beta_0 + \beta_1 exper_{it} + \beta_2 expersq_{it} + \beta_3 educ_{it} + \beta_4 black_{it} + \beta_5 hisp_{it} + v_{it}, v_{it} = a_i + u_{it}$$

by **pooled OLS**, and report the estimates and standard errors in the usual form. [4marks]

- (ii) Estimate the **random effects model** (thinking that $v_{it} = a_i + u_{it}$), and then carry out
- the **Lagrange multiplier test** of the hypothesis that the classical model without the unobserved effect applies. [4marks]
- (iii) Estimate the **fixed effects model** and then test the hypothesis that the constant $term(a_i)$ is the same for all i. [4marks]
- (iv) Carry out **Hausman's test** for the random versus the fixed effect model. [4marks]

Stata output and solutions:

(i) reg lwage exper expersq educ black hisp

Source	SS	df	MS		Number of obs	= 4360
+					F(5, 4354)	= 160.42
Model	192. 362033	5 3	8. 4724067		Prob > F	= 0.0000
Residual	1044. 16761	4354 .	239818008		R-squared	= 0.1556
+					Adj R-squared	= 0.1546
Total	1236. 52964	4359 .	283672779		Root MSE	= .48971
lwage	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
+						
exper	. 1068858	. 010137	9 10.54	0.000	. 0870104	. 1267613
expersq	0036707	.000717	′1 –5 . 12	0.000	0050765	0022648
educ	. 102369	. 00474	1 21.59	0.000	. 0930742	. 1116639
black	140472	. 023554	-5.96	0.000	1866513	0942927
hisp	. 0251073	. 021171	8 1.19	0.236	0164002	. 0666147
_cons	054339	. 065390	7 -0.83	0.406	1825381	. 0738601

(ii)

. xtreg lwage exper expersq educ black hisp, re theta

Random-effects Group variable	GLS regression: nr	Number of obs Number of groups	=	4360 545
between	= 0. 1727 = 0. 1410 = 0. 1553	Obs per group: min avg	=	8 8. 0 8
corr(u_i, X) theta	= 0 (assumed) = .65631589	Wald chi2(5) Prob > chi2	=	883. 75 0. 0000

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
exper expersq educ black hisp _cons	. 1201973 0044098 . 1029853 1416532 . 0256586 1109867	. 0080601 . 0005894 . 0092493 . 0492947 . 0443106 . 1145815	14. 91 -7. 48 11. 13 -2. 87 0. 58 -0. 97	0. 000 0. 000 0. 000 0. 004 0. 563 0. 333	. 1043998 005565 . 0848571 2382691 0611885 3355624	. 1359948 0032546 . 1211135 0450372 . 1125057 . 1135889
sigma_u sigma_e rho	. 34034385 . 35230378 . 48273817	(fraction	of varia	nce due t	co u_i)	

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects $\,$

lwage[nr, t] = Xb + u[nr] + e[nr, t]

Estimated results:

(iii) xtreg lwage exper expersq educ black hisp,fe

note: educ omitted because of collinearity
note: black omitted because of collinearity
note: hisp omitted because of collinearity

Fixed-effects	(within) reg	ression		Number o	f obs	= 4360
Group variable	: nr			Number o	f groups	545
R-sq: within	= 0.1727			Obs per	group: min	= 8
between	= 0.0067				avg	8.0
overall	= 0.0458				max	= 8
				F(2, 3813)	= 397.97
corr(u_i, Xb)	= -0.1483			Prob > F	:	0.0000
lwage	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
exper	. 122257	. 0081889	14.93	0.000	. 106202	. 1383121
expersq	0045228	. 0006025	-7. 51	0.000	0057042	0033415
educ	0	(omitted)				
black	0	(omitted)				
hisp	0	(omitted)				
_cons	1.080743	. 0262616	41.15	0.000	1. 029255	1. 132231
sigma_u	. 40747307					
sigma_e	. 35230378					
rho	. 57223164	(fraction	of variar	nce due to	u_i)	
F test that al	1 u_i=0:	F(544, 3813) = 10). 98	Prob >	F = 0.0000

(iv)
qui xtreg lwage exper expersq educ black hisp,fe
est store fe
qui xtreg lwage exper expersq educ black hisp,re
est store re
hausman fe re

	Coeffi	cients		
	(b)	(B)	(b-B)	$\operatorname{sqrt}\left(\operatorname{diag}\left(V_{b}-V_{B}\right)\right)$
	fe	re	Difference	S. E.
+-				
exper	. 122257	. 1201973	. 0020598	. 0014467
expersq	0045228	0044098	000113	. 0001252

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

 $Test: \hspace{0.2cm} \hbox{Ho:} \hspace{0.2cm} \hbox{difference in coefficients not systematic} \\$

hausman fe re, sigmamore

 $b = consistent \ under \ Ho \ and \ Ha; \ obtained \ from \ xtreg$ $B = inconsistent \ under \ Ha, \ efficient \ under \ Ho; \ obtained \ from \ xtreg$

Test: Ho: difference in coefficients not systematic