张宇考研数学概率论与数理统计 基础阶段模考试卷

一、选择题 $_{:}1\sim10$ 小题,每小题 $_{5}$ 分,共 $_{50}$ 分. 下列每题给出的四个选项中,只有一	-个选项
是最符合题目要求的.	

_	、选择题 $:1\sim10$ 小题 是最符合题目要求的		^下 列每题给出的四个选项	中,只有一个选项
1.	向半径为 r 的圆内随机	.抛一点,则此点到圆心的	拒离大于 $\frac{1}{3}r$ 的概率为().
	(A) $\frac{1}{9}$	(B) $\frac{1}{3}$	(C) $\frac{2}{3}$	(D) $\frac{8}{9}$
2.	设一批产品中有 10 个〕	正品和2个次品,任意抽取	两次,每次抽一个,抽出后	不放回,则第二次
	抽出的是次品的概率为	ı(-)	diky66	
	(A) $\frac{1}{4}$	(B) $\frac{1}{6}$	(C) $\frac{1}{2}$	(D) $\frac{1}{3}$
3.	设三事件 A,B,C 两两	独立,则 A,B,C 相互独立	的充要条件为().	
	(A)A 与 BC 独立	5 77 17 0.0	(B)AB 与A U C 独立	
	(C)AB 与AC 独立		(D)A U B 与A U C 独立	Ž
4.	设随机变量 X 的概率容	图度为 $f(x) = \frac{1}{2\sqrt{\pi}} e^{\frac{(x+3)^4}{4}}$	∞< x<+∞,则下列	服从标准正态分布
	的随机变量是().			
	$(A) \frac{X+3}{2}$	$(B) \frac{X+3}{\sqrt{2}}$	(C) $\frac{X-3}{2}$	(D) $\frac{X-3}{\sqrt{2}}$
5.	设随机变量 X 服从指数	数分布,则随机变量 $Y = n$	nin{X,2} 的分布函数().
	(A) 是连续函数		(B) 至少有两个间断点	
	(C) 是阶梯函数		(D)恰好有一个间断点	
6.	设随机变量 $X_i \sim \begin{bmatrix} -1 \\ \frac{1}{4} \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix}$ ($i = 1, 2$),且满足	$P\{X_1X_2=0\}=1$,则 $P\{X_1X_2=0\}=1$	$X_1 = X_2 $ = ().
	(A)0	(B) $\frac{1}{4}$	(C) $\frac{1}{2}$	(D)1
7	设一旅客到认火车站的	的时间 X 均匀分布在早上 7	7:55 至 8 点,而火车在 7:	55 后 Y 分钟开出,

且 Y 的概率密度为 $f_Y(y) = \begin{cases} \frac{2}{25}(5-y), & 0 \leq y \leq 5, \\ 0, & \text{则旅客能乘上火车的} \end{cases}$

΄ Δ \	1
(A)	4

(B)
$$\frac{1}{3}$$
 (C) $\frac{2}{3}$

(C)
$$\frac{2}{3}$$

(D)
$$\frac{1}{2}$$

- 8. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty,$ 对 X 和 |X| 说法正确的是
 - (A)X 和 |X| 不相关,且 X 和 |X| 独立
 - (B)X 和 |X| 相关,且 X 和 |X| 不独立
 - (C)X和|X|相关,且X和|X|独立
 - (D)X 和 |X| 不相关, 目 X 和 |X| 不独立
- 9. 设 X_1, X_2, \dots, X_n 是来自正态总体 $X \sim N(0, \sigma^2)(\sigma > 0)$ 的简单随机样本,则样本二阶原点矩 $A_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ 的方差 $DA_2 = ($

(A)
$$\frac{2\sigma^4}{n}$$

(B)
$$\frac{3\sigma^4}{n}$$

(A)
$$\frac{2\sigma^4}{n}$$
 (B) $\frac{3\sigma^4}{n}$ (C) $\frac{2\sigma^4}{n-1}$

(D)
$$\frac{3\sigma^4}{n-1}$$

- 10. (数学一) 设总体 X 的数学期望为 μ , X_1 , X_2 , ..., X_n 是来自总体 X 的简单随机样本,则下列 命题正确的是().
 - (A)X₁ 是 u 的无偏估计量

 $(B)X_1$ 是 μ 的最大似然估计量

 $(C)X_1$ 是 μ 的相合估计量

 $(D)X_1$ 不是 μ 的估计量

(数学三) 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)(\sigma > 0)$ 的简单随机样本, \overline{X} 是样本均 值,记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2,$$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2, S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2,$$

则服从自由度为n-1的t分布的随机变量是(

$$(A)t = \frac{\overline{X} - \mu}{S_1/\sqrt{n-1}} \quad (B)t = \frac{\overline{X} - \mu}{S_2/\sqrt{n-1}} \quad (C)t = \frac{\overline{X} - \mu}{S_3/\sqrt{n}} \quad (D)t = \frac{\overline{X} - \mu}{S_4/\sqrt{n}}$$

$$(C)t = \frac{\overline{X} - \mu}{S_3 / \sqrt{n}}$$

(D)
$$t = \frac{\overline{X} - \mu}{S_4 / \sqrt{n}}$$

- 二、填空题: $11 \sim 16$ 小题,每小题 5 分,共 30 分.
- 11. 已知 $P(\overline{B} \mid A) = \frac{1}{3}, P(B \mid \overline{A}) = \frac{4}{7}, P(AB) = \frac{1}{5}, \text{则 } P(\overline{A}\overline{B}) = \underline{\hspace{1cm}}$
- 12. 设 X 服从参数为 1 的指数分布,则方程 $4x^2 + 4Xx + X + 2 = 0$ 无实根的概率为
- 13. 设随机变量 X,Y 相互独立,X 在区间[0,5] 上服从均匀分布,Y 服从参数为 5 的指数分布,令

14. 设随机变量 $X \sim N(a, \sigma^2)(\sigma > 0)$,则 $E \mid X - a \mid =$ _____

15. 设随机变量
$$F \sim F(n,n)$$
,且 $P\{F > a\} = 0.3, a$ 为常数,则 $P\{F > \frac{1}{a}\} =$ ______.

16. 设总体
$$X$$
 的概率密度为 $f(x;\theta) = \begin{cases} \frac{6x}{\theta^3}(\theta-x), & 0 < x < \theta, \\ 0, & x < \theta \end{cases}$ 其他,

的简单随机样本, θ 为未知参数, $\hat{\theta}$ 为 θ 的矩估计量,则 $\hat{D\theta} = 1$

三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.

17. (本题满分 10 分)

设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} cx(1-x), & 0 < x < 1, \\ 0, &$ 其他.

求:(1) 常数
$$c$$
;
$$(2) P\left\{ \mid X \mid \leqslant \frac{1}{2} \right\}, P\left\{ X = \frac{1}{2} \right\}, P\left\{ X \geqslant \frac{1}{3} \right\};$$

- (3)X 的分布函数 F(x);
- (4)Y = 2X 1 的概率密度 $f_{\nu}(\nu)$

18. (本题满分 12 分)

设(X,Y) 的概率密度为 f(x,y) = $\begin{cases} kx^2y, & (x,y) \in G, \\ 0, & \text{其中 } G. \end{cases}$

由 y = |x| 及 y = 1 围成的区域(见图).

- (1) 求 k;
- (2) 求 X,Y 的边缘概率密度;
- (3) 求当 Y = y(0 < y < 1) 已知条件下,X 的条件概率密度 $f_{X|Y}(x | y)$;

(4) 求
$$P\left\{X > \frac{1}{4} \mid Y = \frac{1}{2}\right\}$$
和 $P\left\{X < \frac{1}{2} \mid Y = \frac{1}{4}\right\}$;

(5) 求
$$P\left\{Y < \frac{1}{2}\right\}$$
.

微信公众号: djky66 (顶尖考研祝您上岸)

19. (本题满分 12 分)

设随机变量 X,Y 相互独立,且 $X \sim N(1,1),Y \sim N(-2,1)$. 求:

- (1)Z = 2X + Y 的概率密度;
- (2) $P\{ | 2X + Y | < \sqrt{5} \};$
- (3)D(|2X+Y|);
- $(4)W = (2X + Y)^2$ 的概率密度($\Phi(1) = 0.8413$).

20. (本题满分 12 分)

设随机变量 X,Y 相互独立,且都在区间[a,b] 上服从均匀分布,求:

 $(1)Z_1 = \max\{X,Y\}$ 的概率密度;

 $(2)Z_2 = \min\{X,Y\}$ 的概率密度.

21. (本题满分 12 分)

设 \overline{X}_n 和 S_n^2 分别是样本 X_1, X_2, \dots, X_n 的样本均值和样本方差, 即 $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, S_n^2 =$

 $\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}$,现在又获得了第 n+1 个样本 X_{n+1} ,证明:

$$(1)\overline{X}_{n+1} = \frac{n}{n+1}\overline{X}_n + \frac{1}{n+1}X_{n+1} = \overline{X}_n + \frac{1}{n+1}(X_{n+1} - \overline{X}_n);$$

$$(2)S_{n+1}^2 = \frac{n-1}{n}S_n^2 + \frac{1}{n+1}(X_{n+1} - \overline{X}_n)^2.$$

22. (本题满分 12 分)

设总体 $X \sim U[\theta, \theta + | \theta |]$,其中 θ 是未知参数,从总体 X 中抽取样本 $X_1, X_2, \dots, X_n, x_1$, x_2, \dots, x_n 为相应的样本值. 分别就(1) $\theta < 0$;(2) $\theta > 0$ 两种情况求未知参数 θ 的最大似然估计值.

张宇考研数学概率论与数理统计 基础阶段模考参考答案及评分细则

一、选择题

1. 答 应选(D).

解 (几何概率)
$$p = 1 - \frac{\pi \left(\frac{1}{3}r\right)^2}{\pi r^2} = \frac{8}{9}$$
.

- 2. 答 应选(B).
 - 解 方法一 记 $A_i = {$ 第 i 次取得次品 $}, i = 1, 2$. 则由已知得

$$P(A_1) = \frac{2}{12} = \frac{1}{6}, P(\overline{A}_1) = \frac{10}{12} = \frac{5}{6}, P(A_2 \mid A_1) = \frac{1}{11}, P(A_2 \mid \overline{A}_1) = \frac{2}{11}.$$

由全概率公式得 $P(A_2) = P(A_1)P(A_2 \mid A_1) + P(\overline{A_1})P(A_2 \mid \overline{A_1}) = \frac{1}{6} \times \frac{1}{11} + \frac{5}{6} \times \frac{2}{11} = \frac{1}{6}$. **方法二** 由抽签原理(中签的概率与抽签的先后次序无关),知第二次抽到次品的概率与第一次抽到次品的概率相同,都是 $\frac{2}{12} = \frac{1}{6}$.

【注】 抽签原理:若 n 个签中有 $m(1 \le m \le n)$ 个"有"签,n-m 个"无"签,n 个人排队依次抽签(或某人抽n 次,每次抽出一个),则第 k 个人(或某人第 k 次, $k=1,2,\dots,n$) 抽到"有"签的概率都一样,都等于 $\frac{m}{n}$. 由此原理知,其概率与各人抽签次序(各次抽签顺序)无关,与抽签方式(有放回还是无放回)也无关,仅与"有"签所占比例有关.

- 3. 答 应选(A).
 - 解 A,B,C 两两独立的意思是

$$P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C),$$

而 A,B,C相互独立的意思是在上述 3个式子的基础上加 P(ABC) = P(A)P(B)P(C),共要求 4个式子成立. 在题目已知的条件下,A,B,C 相互独立的充要条件即为 P(ABC) = P(A)P(B)P(C),而 A与BC独立的含义为 P(A(BC)) = P(A)P(BC),由于 B与C独立,即 P(BC) = P(B)P(C),故可得 P(ABC) = P(A)P(B)P(C),故选(A).

【注】 本题主要要求理解"两两独立"与"相互独立"的定义及相互关系.

4. 答 应选(B).

解 由
$$f(x) = \frac{1}{2\sqrt{\pi}} e^{\frac{(x+3)^2}{4}} = \frac{1}{\sqrt{2\pi} \cdot \sqrt{2}} e^{\frac{(x-(-3))^2}{2(\sqrt{2})^2}}, -\infty < x < +\infty, \text{知 } X \sim N(-3, (\sqrt{2})^2),$$
于是 $\frac{X - (-3)}{\sqrt{2}} \sim N(0,1)$,选(B).

5. 答 应选(D).

解 首先X的分布函数F(x)肯定是连续函数,而 $Y=\min\{X,2\}=\begin{cases} X, & X\leqslant 2,\\ 2, & X>2, \end{cases}$ 于等于2,所以Y的分布函数

$$F_Y(y) = P\{Y \le y\} = \begin{cases} 1, & y \ge 2, \\ P\{X \le y\} = F(y), & y < 2, \end{cases}$$

从而 $F_Y(y)$ 在 y=2 处有一个跳跃间断点.

6. 答 应选(A).

解 首先,列出二维随机变量 (X_1,X_2) 的分布律及其边缘分布律中的部分数值.

X_1	₹ ₩₩₩	1 / 50 -	≓ ¹)	$P\{X_1=x_{1i}\}$
-1	а	b	С	$\frac{1}{4}$
0	d	e	f	$\frac{1}{2}$
1	g	h	k	$\frac{1}{4}$
$P\{X_2=x_{2i}\}$	1/4	$\frac{1}{2}$	1/4	1

由于 $P\{X_1X_2=0\}=1$,故 $P\{X_1X_2\neq 0\}=0$. 因此 a=0,c=0,g=0,k=0. 根据边缘分布的性质,知

$$b = \frac{1}{4}, d = \frac{1}{4}, f = \frac{1}{4}, h = \frac{1}{4}, e = \frac{1}{2} - (b+h) = \frac{1}{2} - \frac{1}{2} = 0.$$

因此, (X_1, X_2) 的分布律应如下.

X_1 X_2	-1	. 0	1.	$P\{X_1=x_{1i}\}$
— 1	0	1/4	0	1/4
0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$
1	0	$\frac{1}{4}$	o	$\frac{1}{4}$
$P\{X_2=x_{2i}\}$	$\frac{1}{4}$	1/2	1/4	1

故 $P\{X_1 = X_2\} = P\{X_1 = -1, X_2 = -1\} + P\{X_1 = 0, X_2 = 0\} + P\{X_1 = 1, X_2 = 1\} = 0.$ 7. 答 应选(B).

解 因为 X 均匀分布在早上 7:55 至 8 点,将 7:55 作为时间轴(单位:分)的起点,则 X 在 区间[0,5] 上服从均匀分布,其概率密度为

$$f_X(x) = \begin{cases} \frac{1}{5}, & 0 \leqslant x \leqslant 5, \\ 0, & \text{其他}, \end{cases}$$

由于 X 与 Y 之间互不影响,可认为相互独立,于是可得(X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \frac{2}{125}(5-y), & 0 \le x \le 5, 0 \le y \le 5, \\ 0, & \text{i.e.} \end{cases}$$

事件"旅客能乘上火车"可以表示为"Y > X",也就是" $0 < Y - X \le 5$ ",因此问题归结为求" $0 < Y - X \le 5$ "的概率,即如图所示的阴影部分.于是,所求概率为

$$P\{0 < Y - X \le 5\} = \iint_{0 < y - x \le 5} f(x, y) dx dy$$

$$= \iint_{D} \frac{2}{125} (5 - y) dx dy = \int_{0}^{5} dx \int_{x}^{5} \frac{2}{125} (5 - y) dy$$

$$= \frac{1}{3}.$$

8. 答 应选(D).

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} x \cdot \frac{1}{2} e^{-|x|} dx = 0,$$

$$E(X \mid X \mid) = \int_{-\infty}^{+\infty} x \mid x \mid f(x) dx = \int_{-\infty}^{+\infty} x \mid x \mid \cdot \frac{1}{2} e^{-|x|} dx = 0,$$

于是, $Cov(X, |X|) = E(X|X|) - EX \cdot E|X| = 0$,所以 X 与 |X| 不相关.

$$P\{X \leqslant 1\} = \int_{-\infty}^{1} f(x) dx = \int_{-\infty}^{1} \frac{1}{2} e^{-|x|} dx = 1 - \frac{1}{2} e^{-1} < 1,$$

$$P\{|X| \leq 1\} = \int_{-1}^{1} f(x) dx = \int_{-1}^{1} \frac{1}{2} e^{-|x|} dx = 1 - e^{-1} > 0,$$

$$P\{X \leqslant 1, \mid X \mid \leqslant 1\} = P\{\mid X \mid \leqslant 1\} \neq P\{X \leqslant 1\} \cdot P\{\mid X \mid \leqslant 1\},$$

所以X与|X|不独立.

9. 答 应选(A).

解
$$DA_2 = D\left(\frac{1}{n}\sum_{i=1}^n X_i^2\right) = \left(\frac{1}{n}\right)^2 \cdot nD(X^2) = \frac{D(X^2)}{n}$$
,而

$$X \sim N(0, \sigma^2) \Rightarrow \frac{X}{\sigma} \sim N(0, 1) \Rightarrow \left(\frac{X}{\sigma}\right)^2 = \frac{X^2}{\sigma^2} \sim \chi^2(1),$$

微信公众号:djky66 (顶尖考研祝您上岸)

所以
$$D(\frac{X^2}{\sigma^2}) = 2$$
, 进而 $D(X^2) = 2\sigma^4$, 所以 $DA_2 = \frac{D(X^2)}{n} = \frac{2\sigma^4}{n}$, 选(A).

10. (数学一) 答 应选(A).

解 因为简单随机样本 X_1 , X_2 , ····, X_n 的任何不含未知参数的函数即统计量都是 μ 的估计量, X_1 是随机样本的函数且不含未知参数,因而 X_1 是 μ 的估计量,又因为 $E(X_1) = \mu$, 所以 X_1 是 μ 的无偏估计量,故(A) 的结论正确.

【注】 在总体分布未知时,无法求出最大似然估计,因而(B) 不正确,而 X_1 与 n 无 关,无法研究 $n \to \infty$ 的情况,所以(C) 也不正确.

(数学三) 答 应选(B).

解 由已知得 $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$,所以 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$. 又由 $\frac{nS_2^2}{\sigma^2} \sim \chi^2(n-1)$,且 S_2^2 与 \overline{X} 相互

独立,故由
$$t$$
 分布的构成知 $\frac{\overline{X}-\mu}{\sqrt{\frac{nS_2^2}{\sigma^2(n-1)}}}\sim t(n-1)$,即 $\frac{\overline{X}-\mu}{S_2/\sqrt{n-1}}\sim t(n-1)$,故选(B).

【注】 本题主要考查 t 分布的构成. 注意 t 分布的构成中要求分子的随机变量(服从正态分布) 与分母的随机变量(根号内为 χ^2 分布除以自由度) 相互独立, 而本题的 S_1^2 , S_1^2 与 \overline{X} 没有"独立"的结论, 故(C),(D) 不可选(当然也可从自由度上看出,因为 $\frac{(n-1)S_3^2}{\sigma^2} = \frac{nS_4^2}{\sigma^2} \sim \chi^2(n)$). 若用 S_1^2 ,有 $\frac{(n-1)S_1^2}{\sigma^2} \sim \chi^2(n-1)$, S_1^2 与 \overline{X} 也独立,但根据 t 分布的构成得 $\frac{\overline{X} - \mu}{S_1/\sqrt{n}} \sim t(n-1)$, 与(A) 不符.

二、填空题

11. 答 应填 $\frac{3}{10}$.

$$\frac{1}{3!} = P(\overline{B} \mid A) = \frac{P(A\overline{B})}{P(A)} = \frac{P(A) - P(AB)}{P(A)} = \frac{P(A) - \frac{1}{5}}{P(A)} \Rightarrow P(A) = \frac{3}{10},$$

$$\frac{1}{10} = P(\overline{B} \mid A) = \frac{P(B\overline{A})}{P(A)} = \frac{P(B) - P(AB)}{1 - P(A)} = \frac{P(B) - \frac{1}{5}}{1 - \frac{3}{10}} \Rightarrow P(B) = \frac{3}{5},$$

于是
$$P(\overline{A}|\overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(AB)] = \frac{3}{10}$$

12. 答

解
$$X$$
 的概率密度为 $f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & \text{其他,} \end{cases}$ 于是所求方程无实根的概率
$$p = P\{(4X)^2 - 4 \cdot 4 \cdot (X+2) < 0\} = P\{X^2 - X - 2 < 0\} = P\{-1 < X < 2\}$$

$$= \int_{-1}^2 f(x) dx = \int_0^2 e^{-x} dx = 1 - e^{-2}.$$

13. 答 应填
$$Z \sim \begin{bmatrix} 0 & 1 \\ 1 - \frac{1}{25}(1 - e^{-25}) & \frac{1}{25}(1 - e^{-25}) \end{bmatrix}$$
.

解
$$P\{Z=1\} = P\{X \leqslant Y\} = \iint_{x \leqslant y} f_X(x) \cdot f_Y(y) dx dy$$
$$= \int_0^5 dx \int_x^{+\infty} \frac{1}{5} \cdot 5e^{-5y} dy = \int_0^5 \frac{1}{5} e^{-5x} dx = \frac{1}{25} (1 - e^{-25}),$$

从而 $P\{Z=0\}=1-P\{Z=1\}=1-\frac{1}{25}(1-\mathrm{e}^{-25})$,于是 Z 的分布律为

$$Z \sim \begin{bmatrix} 0 & 1 \\ 1 - \frac{1}{25} (1 - e^{-25}) & \frac{1}{25} (1 - e^{-25}) \end{bmatrix}.$$

14. 答 应填 $\frac{\sqrt{2}}{\sqrt{2}}\sigma$.

方法一
$$E \mid X - a \mid = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} \mid x - a \mid e^{\frac{(x-a)^t}{2d}} dx$$

$$\frac{\Rightarrow \frac{1}{\sigma}(x-a) = t}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sigma \mid t \mid e^{-\frac{t}{\tau}} dt$$

$$= \frac{2\sigma}{\sqrt{2\pi}} \int_{0}^{+\infty} t e^{-\frac{t^2}{2}} dt = \frac{\sqrt{2}}{\sqrt{\pi}} \sigma.$$

方法二 设 Y ~ N(0,1),则 $E \mid Y \mid = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} y e^{-\frac{y^2}{2}} dy = \frac{\sqrt{2}}{\sqrt{\pi}}$. 又 $\frac{X-a}{\sigma} \sim N(0,1)$,则有

$$E\left(\left|\frac{X-a}{\sigma}\right|\right) = \frac{\sqrt{2}}{\sqrt{\pi}}$$
,从而 $E\mid X-a\mid = \frac{\sqrt{2}}{\sqrt{\pi}}\sigma$.

微信公众号: djky66 (顶尖考研祝您上岸)

15. 答 应填 0.7.

解
$$P\{F>a\}=0.3$$
,于是常数 $a=F_{0.3}(n,n)$,根据" $F_a(m,n)=\frac{1}{F_{1-a}(n,m)}$ ",知 $\frac{1}{a}=\frac{1}{F_{0.3}(n,n)}=F_{0.7}(n,n)$,于是 $P\{F>\frac{1}{a}\}=P\{F>F_{0.7}(n,n)\}=0.7$.

应填 16.答

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{\theta} \frac{6x^{2}}{\theta^{3}} (\theta - x) dx = \frac{\theta}{2}.$$

记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$,由 $\frac{\theta}{2} = \overline{X}$,得 θ 的矩估计量为 $\hat{\theta} = 2\overline{X}$.由于

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_0^{\theta} \frac{6x^3}{\theta^3} (\theta - x) dx = \frac{3\theta^2}{10},$$

$$DX = E(X^2) - (EX)^2 = \frac{3\theta^2}{10} - \left(\frac{\theta}{2}\right)^2 = \frac{\theta^2}{20},$$

因此 $\hat{\theta} = 2\overline{X}$ 的方差为 $D\hat{\theta} = D(2\overline{X}) = 4D\overline{X} = \frac{4}{n}DX = \frac{\theta^2}{5\pi}$.

三、解答题

17. **A** (1)
$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} cx (1-x) dx = c \left(\frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right) \Big|_{0}^{1}$$
$$= c \left(\frac{1}{2} - \frac{1}{3}\right) = \frac{c}{6},$$

$$P\left\{ \mid X \mid \leqslant \frac{1}{2} \right\} = P\left\{ -\frac{1}{2} \leqslant X \leqslant \frac{1}{2} \right\}$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx = \int_{0}^{\frac{1}{2}} 6x(1-x) dx = \frac{1}{2}, \qquad \dots 3$$

$$P\left\{X=\frac{1}{2}\right\}=0,$$

$$P\left\{X \geqslant \frac{1}{3}\right\} = \int_{\frac{1}{3}}^{+\infty} f(x) dx = \int_{\frac{1}{3}}^{1} 6x(1-x) dx = \frac{20}{27}.$$

(3)

$$F(x) = \int_{-\infty}^{x} f(t) dt,$$

当x < 0时,F(x) = 0;

(当定》1时,F(x) = 00 $dt + \int_{0}^{t} 6t(1-t)dt + \int_{0}^{x} 0dt = 1$.

蔽 文的分布函数为 (1)

$$F(x) = \begin{cases} 0, & x < 0, \\ 3x^2 - 2x^3, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$
8 \(\frac{1}{2}\)

$$(4)y = 2x - 1(0 < x < 1)$$
 的反函数为 $x = \frac{y+1}{2}(-1 < y < 1)$,于是

$$f_Y(y) = \begin{cases} f_X\left(\frac{y+1}{2}\right) \cdot \left| \left(\frac{y+1}{2}\right)' \right| = 6 \cdot \frac{y+1}{2} \left(1 - \frac{y+1}{2}\right) \cdot \frac{1}{2} = \frac{3}{4} (1 - y^2), & -1 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

……10分

18. 解 (1) 由于
$$\iint_G kx^2 y dx dy = \int_0^1 dy \int_{-y}^y kx^2 y dx = k \cdot \frac{2}{15} = 1$$
, 故 $k = \frac{15}{2}$2 分

$$(2) f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{-x}^{1} \frac{15}{2} x^2 y dy, & -1 < x \leq 0, \\ \int_{x}^{1} \frac{15}{2} x^2 y dy, & 0 < x < 1, \\ 0, & \text{ 其他,} \end{cases}$$

故

$$f_X(x) = \begin{cases} \frac{15}{4}x^2(1-x^2), & -1 < x < 1, \\ 0, & \text{ i.e.} \end{cases}$$
.....4 \mathcal{G}

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{-y}^{y} \frac{15}{2} x^{2} y dx = 5y^{4}, & 0 < y < 1, \\ 0, &$$
其他.

(3) 当 0 < y < 1 时 $f_Y(y) = 5y^4 > 0$. 在 Y = y 条件下, X 的值域为[-y,y],

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{15}{2}x^2y \\ \frac{5y^4}{5y^4} = \frac{3x^2}{2y^3}, & -y \leqslant x \leqslant y, \\ 0, & \text{ 其他.} \end{cases}$$
6 分

(4) 由于
$$f_{X|Y}(x|\frac{1}{2}) = \begin{cases} 12x^2, & -\frac{1}{2} \leq x \leq \frac{1}{2}, \\ 0, &$$
其他.

故

同理有

$$f_{X|Y}(x | \frac{1}{4}) = \begin{cases} 96x^2, & -\frac{1}{4} \leq x \leq \frac{1}{4}, \\ 0, & \text{ 其他.} \end{cases}$$

得
$$P\left\{X < \frac{1}{2} \mid Y = \frac{1}{4}\right\} = \int_{-\frac{1}{4}}^{\frac{1}{4}} f_{X|Y}\left(x \mid \frac{1}{4}\right) dx = \int_{-\frac{1}{4}}^{\frac{1}{4}} 96x^2 dx = 1.$$
 ……10 分

(5) 方法一 记
$$B = \{(x,y) \mid y < \frac{1}{2}\}.$$
 故 $B \cap G = \{(x,y) \mid |x| < y < \frac{1}{2}\},$

$$P\left\{Y < \frac{1}{2}\right\} = \iint_{B} f(x,y) dx dy = \iint_{B \cap G} \frac{15}{2} x^{2} y dx dy = \int_{0}^{\frac{1}{2}} dy \int_{-y}^{y} \frac{15}{2} x^{2} y dx = \frac{1}{32}.$$

方法二 由(2)可得

$$P\left\{Y < \frac{1}{2}\right\} = \int_{-\infty}^{\frac{1}{2}} f_Y(y) dy = \int_{0}^{\frac{1}{2}} 5y^4 dy = \frac{1}{32}.$$
12 \(\frac{1}{2}\)

19. 解 Z = 2X + Y 是独立正态随机变量线性组合,故仍服从正态分布.

$$EZ = 2EX + EY = 0, DZ = 4DX + DY = 5,$$

所以 $Z = 2X + Y \sim N(0.5)$.

$$(1) f_Z(z) = \frac{1}{\sqrt{10\pi}} e^{-\frac{z^2}{10}}, -\infty < z < +\infty.$$
4 \(\frac{1}{2}\)

$$(2)P\{|Z|<\sqrt{5}\} = P\{\left|\frac{Z}{\sqrt{5}}\right|<1\} = 2Φ(1)-1=2\times0.8413-1=0.6826. \dots 6 分$$

 $(3)D \mid Z \mid = E(\mid Z \mid^2) - (E \mid Z \mid)^2 = E(Z^2) - (E \mid Z \mid)^2$. 因为 $E(Z^2) = DZ = 5$,

$$E \mid Z \mid = \frac{1}{\sqrt{10\pi}} \int_{-\infty}^{+\infty} e^{-\frac{z'}{10}} \mid z \mid dz = \frac{2}{\sqrt{10\pi}} \int_{0}^{+\infty} z e^{-\frac{z'}{10}} dz = \sqrt{\frac{10}{\pi}},$$

所以

$$D(|2X+Y|) = 5 - \frac{10}{\pi}.$$
8 \(\frac{1}{2}\)

 $(4)W = Z^2$ 定义域为 $(0, +\infty)$. 当 $w \ge 0$ 时,

$$F_{W}(w) = P\{W \leqslant w\} = P\{Z^{2} \leqslant w\} = P\{-\sqrt{w} \leqslant Z \leqslant \sqrt{w}\}$$
$$= \frac{1}{\sqrt{10\pi}} \int_{-\sqrt{w}}^{\sqrt{w}} e^{-\frac{z^{2}}{10}} dz;$$

当w < 0时, $F_w(w) = 0$.

……10分

对 $F_{\mathbf{w}}(\mathbf{w})$ 求导得到 W 的概率密度为

$$f_{\mathbf{w}}(w) = \begin{cases} \frac{1}{\sqrt{10\pi w}} e^{-\frac{w}{10}}, & w > 0, \\ 0, & w \leq 0. \end{cases}$$
12 \(\frac{\frac{1}{2}}{2}\)

20. 解 (1) Z₁ 的分布函数为

$$F_{Z_1}(z) = P\{Z_1 \leq z\} = P\{\max\{X,Y\} \leq z\}$$

$$= P\{X \leq z, Y \leq z\}$$

$$= P\{X \leq z\} P\{Y \leq z\}, \qquad \cdots 2$$

当 $a \leqslant z \leqslant b$ 时,

$$F_{Z_i}(z) = \frac{z-a}{b-a} \cdot \frac{z-a}{b-a} = \left(\frac{z-a}{b-a}\right)^2;$$

当 z < a 时, $F_{Z_i}(z) = 0$;

$$F_{Z_{i}}(z) = \begin{cases} 0, & z < a, \\ \left(\frac{z-a}{b-a}\right)^{2}, & a \leq z \leq b, \\ 1, & z > b. \end{cases} \dots \dots 5$$

从而, Z_1 的概率密度为

$$f_{Z_i}(z) = \begin{cases} \frac{2(z-a)}{(b-a)^2}, & a \leqslant z \leqslant b, \\ 0, & \text{其他.} \end{cases}$$
6 分

(2)Z₂的分布函数为

$$F_{Z_{1}}(z) = P\{Z_{2} \leq z\} = 1 - P\{Z_{2} > z\}$$

$$= 1 - P\{\min\{X, Y\} > z\}$$

$$= 1 - P\{X > z, Y > z\}$$

$$= 1 - P\{X > z\}P\{Y > z\}$$

$$= 1 - [1 - P\{X \leq z\}]^{2} \qquad \dots 8 \frac{f_{2}}{f_{2}}$$

$$= \begin{cases} 0, & z < a, \\ 1 - \left(1 - \frac{z - a}{b - a}\right)^{2}, & a \leq z \leq b, \\ 1, & z > b. \end{cases}$$
.....10 \frac{f_{2}}{f_{2}}

从而 Z₂ 的概率密度为

$$f_{Z_{i}}(z) = \begin{cases} \frac{2(b-z)}{(b-a)^{2}}, & a \leq z \leq b, \\ 0, &$$
其他.
$$\overline{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} X_{i} = \frac{n}{n+1} \left(\frac{1}{n} \sum_{i=1}^{n} X_{i} + \frac{1}{n} X_{n+1}\right) \qquad \qquad \cdots 2$$
 分

$$= \frac{n}{n+1} \overline{X}_n + \frac{1}{n+1} X_{n+1}$$
3 \(\frac{1}{n+1}\)\(\frac{1}{n+1}\)\(\frac{1}{n+1} X_n + \frac{1}{n+1} X_{n+1}\)

$$= \overline{X}_n + \frac{1}{n+1}(X_{n+1} - \overline{X}_n). \qquad \cdots 4 \mathcal{D}$$

(2)
$$(1)$$
 (2) (3) (3) (3) (3) (3) (4) (3) (3) (4) (4) (4) (5)

$$= \frac{1}{n} \sum_{i=1}^{n+1} \left[(X_{i} - \overline{X}_{n})^{2} + \left(\frac{1}{n+1}\right)^{2} (X_{n+1} - \overline{X}_{n})^{2} - 2(X_{i} - \overline{X}_{n}) \frac{1}{n+1} (X_{n+1} - \overline{X}_{n}) \right]$$

$$\cdots 6$$

$$= \frac{1}{n} \left[\sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2} + (X_{n+1} - \overline{X}_{n})^{2} \left(1 + \frac{1}{n+1}\right) - \frac{2}{n+1} (X_{n+1} - \overline{X}_{n}) \sum_{i=1}^{n+1} (X_{i} - \overline{X}_{n}) \right]$$

$$\cdots 8$$

$$\Rightarrow \frac{n-1}{n} S_{n}^{2} + \frac{1}{n} \left[1 + \frac{1}{n+1} - \frac{2}{n+1} \right] (X_{n+1} - \overline{X}_{n})^{2}$$

$$= \frac{n-1}{n} S_{n}^{2} + \frac{1}{n+1} (X_{n+1} - \overline{X}_{n})^{2}.$$

$$\cdots 12$$

$$\Rightarrow \cdots 12$$

22. 解 先求似然函数

$$L = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \prod_{i=1}^{n} \frac{1}{|\theta|}, & \theta \leqslant x_i \leqslant \theta + |\theta|, \\ 0, & \text{其他} \end{cases}$$

$$= \begin{cases} \frac{1}{|\theta|^n}, & \theta \leqslant x_i \leqslant \theta + |\theta|, \\ 0, & \text{其他}. \end{cases}$$
......4分

(1) 若 θ <0,即 θ 的取值范围为($-\infty$,0)

$$L = \begin{cases} \frac{1}{\mid \theta \mid^n}, & \theta \leqslant x_i \leqslant 0, \\ 0, & \text{if th.} \end{cases}$$

(2) 若 $\theta > 0$,即 θ 的取值范围为(0, $+\infty$),

$$L = \begin{cases} \frac{1}{\theta'}, & \theta \leqslant x_i \leqslant 2\theta, \\ 0, & \text{其他,} \end{cases}$$

可见欲使 L 达最大,须在 $\theta \leqslant \min_{1 \leqslant i \leqslant n} \{x_i\} \leqslant \max_{1 \leqslant i \leqslant n} \{x_i\} \leqslant 2\theta$ 的限制下,让 θ 达最小, θ 最小只能取 $\frac{1}{2} \max_{1 \leqslant i \leqslant n} \{x_i\}$,即 $\hat{\theta} = \frac{1}{2} \max_{1 \leqslant i \leqslant n} \{x_i\}$12 分

