Assignment Project Exam Help

https://eduassistpro.github.

Lecture Week 6 Part

Add Wechatedu_assist_pr

This Lecture is Being Recorded

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment 1

Assignment Project Exam Help

```
Assign Solutio and 6). https://eduassistpro.github.
```

Add WeChat edu_assist_pr

Set Theory

definition": (Georg Canpo) A set is a collection into a whole of permitted eistinct objects of our intuition of our thought. The permitted objects are called the elements (members) of the set.

Notati https://eduassistpro.githdb.

Examples: $4\overset{?}{2} \in \mathbb{N}$ and $\pi \notin \mathbb{Q}$.

Principle of the Princi

 $A = B \Leftrightarrow \forall x \ (x \in A \Leftrightarrow x \in B)$

Set Notation

Small sets can be specified completely: $\{-2, -1, 0, 1, 2\}$, $\{\text{Huey, Dewey, Louie}\}$, $\{\}$. We often write the last one as \emptyset . Note that by the Principle of Extensionality, order and repetition are irreleva

https://eduassistpro.github.

For large sets, including infinite sets, we have

If P is a Add of Wee Cthate edu_assist_pr

$$\{x \mid P(x)\}$$

denotes the set of things x that have the property P. Hence $a \in \{x \mid P(x)\}$ is equivalent to P(a).

Set Notation and Haskell's List Notation

Assignment Project Exam Help Set notation https://eduassistpro.github. Add WeChat edu_assist_pr

The dot-dot notation here assumes some systematic way of generating all elements (an enumeration).

Well-Foundedness

Call a set S well-founded if there is no infinite sequence $\overset{\mathcal{S}}{\underset{\leftarrow}{\text{S}}} \overset{\mathcal{S}_0}{\underset{\rightarrow}{\text{S}}} \overset{\mathcal{S}_1}{\underset{\rightarrow}{\text{S}}} \overset{\mathcal{S}_2}{\underset{\rightarrow}{\text{S}}} \cdots \text{ and consider the set-W of all well-founded}$ If $W \in$ If $W \notin \underset{W = W_0}{\text{https://eduassistpro.github.}}$ well-founded, that is, $W_1 \notin W$. This contression between the contression of the contre $R = \{x \mid x \notin x\}$ which leads to an inconsistent set theory:

$$R \in R \Leftrightarrow R \notin R$$

Sets and Types

Assignment Project Exam Help One way (a crude way) to curb set theory so as to obtain consistency is to impos

The purhttps://eduassistpro.github.

Russell's type to recept is the root of type distiplines assist programming languages. eChat eCU_assist_pr

The Subset Relation

Assignment Project Exam Help A is a subset of B iff $\forall x \ (x \in A \Rightarrow x \in B)$.

```
We write this A \subseteq B.

We write this A \subseteq B.
```

Do not Ardd wwwechatiedu_assist2}pr

The Subset Relation Is a Partial Ordering

Assignment Project Exam Help

- A (reflexivity)
- A https://eduassistpro.githurb.

These law ard dry Wrey Chath definition of assist_pr

The three laws together state that \subseteq is

Special Sets

Assignment Project Exam Help A set with just a single element is a singleton.

For example 1/2 https://eduassistpro.github.

A set with twick with twice that edu_assist_pr

Ordinarily, and in programming languages, we re pair, but in set theory we would call that an ordered pair.

s a

Algebra of Sets

Assignment Project Exam Help • $A \cap B = \{x \mid x \in A \land x \in B\}$ is the intersection of A and B;

- A https://eduassistpro.github.

In the presented a Wewlinett seedu_assist_presented a Wewlinett seedu_assist_presented a wewlinetted as a second and a second a s

• $A^c = X \setminus A$ is the complement of A.

Venn Diagrams

Assignment Project Exam Help ro.github. t edu_assist_pr

Some Laws

Assignment Project Exam Help

Comm

https://eduassistpro.github.

Associativity: $A \cap (B \cap C) = (A \cap C)$

Add WeChat edu_assist_pr

Distributivity: $A \cap (B \cup C) = (A \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

More Laws

```
Assignment: A = (A^c)^c
De Morgan: A = (A^c)^c
A = (
```

Dualit https://eduassistpro.github.

Complementation: $A \cap A^c = \emptyset$ and $A \cup A^c = X$

Subset Equivalences

Assignment Project Exam Help

Contra

https://eduassistpro.github.

Add WeChat edu_assist_pr

Subset Equivalences

Assignment Project Exam Help

Contra

https://eduassistpro.github.

```
All very similar to the equivalences we saw for propos logic—just substitute V for complete the CU assist \subseteq D I for \emptyset, and \top for X.
```

Powersets

Assignment Project Exam Help

```
The po subsets o https://eduassistpro.github.
```

```
If X is finite, of cardinality p, then \mathcal{P}(X) edu_assist_properties.
```

Generalised Union and Intersection

Suppose we have a collection of sets A_i , one for each i in some Airs in the project $\{P_i\}$ Example if it is P_i .

https://eduassistpro.github.

The interAction of Weeshat edu_assist_pr

$$\bigcap_{i\in I}A_i=\{x\mid \forall i\ (i\in I\ \Rightarrow x\in A_i)\}$$

Ordered Pairs

Aas voi control provident (Powith 1911-the left of positions? We want this to hold:

We can act the can be the can be

Add We'Chat edu_assist_preduce we can freely use the notation (meaning.

4日 → 4日 → 4 目 → 4 目 → 9 Q (~

Cartesian Product and Tuples

Assignment Project Exam Help

We definhttps://eduassistpro.github.

$$A^0 = \{\emptyset$$

Add We'Chat edu_assist_pr

Of course we shall write (a, b, c) rather than $(a, (b, (c, \emptyset)))$.

Some Laws Involving Cartesian Product

Assignment Project Exam Help

```
https://eduassistpro.github.(A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap B) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (C \cap D) = (A \times C) \cap (A \cap D) \times (A \cap D) \times (A \cap D) = (A \times C) \cap (A \cap D) \times (A \cap D) \times (A \cap D) \times (A \cap D) = (A \times C) \cap (A \cap D) \times (A \cap D
```

 $(A \times B)$

Relations

Assignment Project Exam Help

https://eduassistpro.github.

That is, the relation is a subset of some Cartesian prod $A_1 \times A_2$ Add A_n . We Chat edu_assist_property of the contract o

Or equivalently, we can think of a relation as a function from $A_1 \times A_2 \times \cdots \times A_n$ to $\{0,1\}$.