1954-332 SAS:lew

OIP K GOOT TO SEE THE PARTY OF THE PARTY OF

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Jul 0 6 2001 In re Application of

David E. COMINGS

Serial No. 09/825,922

Filed: 5 April 2001) Group Art Unit: 1614

For: METHOD OF PROFILING GENES

AS RISK FACTORS FOR ATTENTION DEFICIT

HYPERACTIVITY DISORDER

SUBMISSION OF FORMAL DRAWINGS

Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

Attached hereto are 11 sheets of formal drawings to replace the 10 sheets of informal drawings filed with the subject application.

Respectfully submitted,

Βv

Stephen A. Saxe, Ph.D. Attorney for Applicants Registration No. 38,609

ROTHWELL, FIGG, ERNST & MANBECK, p.c. Suite 701-E, 555 13th Street, N.W.

Examiner: To Be Assigned

Washington, D.C. 20004 Telephone: (202)783-6040

Enclosures

METHOD OF PROFILING GENES AS RISK FACTOR ATTENTION
DEFICIT HYPERACTIVITY DISORDER
Serial No. 09/825.922
Sheet 1 of 11

Gene	=			12			72			F-ratio	മ	Gene score
	Z	Mean	SD	Z	Mean	SD	Z	Mean	SD			
Dopamine genes												
Lit Optimized	39	20.10	10.2	164	17.58	#	133	18.30	10.9	0.848	0.43	201
DRD2 SNP Taq IA Lit Optimized	15	15.93	10.3	120	19.50	10.2	707	17.51	11.4	1.560	0.21	020 021
DRD3 SNP Mscl Lit Optimized	152	17.68	11.2 S	157	18.34	11.0	27	19.16	9.6	0.495	0.63	202 002
UKD4 148 pp repeat Lit Optimized	56	19.00	10.9	162	17.98	10.5	118	17.86	11.6	0.223	0.80	002 200
UKU3 2 dinucleotide repeat Lit Optimized	74	18.63	11.4	11	19.15	11.3	151	17.38	10.6	0.881	0.41	220 120
<i>DA11</i> 3 repeat Lit Optimized	21	15.33	12.4	142	17.41	10.9	173	19.07	10.8	1.619	0.20	012 012
Serotonin genes HTT ⁴ (SLC6A4) promoter ins/del												Ç
Optimized HTR1A SNP C-1918G	82	16.20	10.9	159	19.11	10.9	91	18.28	11.3	1.953	0.14	021
Ind Optimized	82	19.00	10.61	177	17.31	11.4	11	19.89	10.1	1.683	6'0	022 102
					i	•	٠					

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 2 of 11

	=			2		22				F-ratio	۵	Gene score
Gerre	 Z	Mean	SD	2	Mean	S N	Mean	an SD		,	-	
HTR1B (HTR1DB) SNP G861C												002
Lit Optimized	202	18.49	10.9	107	17.30	11.1	27	19.00	11.5	0.496	0.61	102
<i>HTŘ1DA</i> SNP T1350C Ind							ı					02-
Optimized	266	18,16	11.3	2	19.34	9.7	ျာ	l	1	0.641	0.43	-20
HTR2A SNP T102C Mspl												012
Optimized	28	17.88	11.2	172	18.59	11.0	106	17.61	11.0	0.279	0.76	020
/ DO2 SNP G-> A Int 668/												05-
Optimized	315	17.98	11.0	17	20.65	10.4	ا ت	ı	ı	0.951	0.33	05-
7PH SNP A 779 C												002
Optimized	99	19.00	10.4	180	17.73	10.8	ශි	19.28	7.5	0.705	0.495	202
Norepinephrine genes												
DBH SNP 1891									:		•	220
Optimized	<i>L</i> 9	18.81	10.1	168	18.78	1.1	9	16.69	1 3.3	1.285	0.28	07.7
ADRA2A SNP promoter region Mspl												012
Optimized	186	17.42	11.1	128	18.8	10.5	22	21.95	11.7	1.96	0.14	012
ADRA2B del/ins												102
Ind Optimized	155	18.14	11.5	158	18.46	10.6	23	19.73	9.6	0.215	0.81	005
ADRA2C 6 dinucleotide repeat												202
Ind Optimized	131	18.77	10.5	113	15.79	11.0	92	20.17	11.2	4.45	0.012	102
				Ī	(< <						

EG.

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 3 of 11

Gene	=			12			23			F-ratio	Ω	Gene score
	z	Mean	S	z	Mean SD	S	z	Mean	ß		-	
NET (SLC6A2) SNP A1970G Mnil												120
Optimized	155	17.82	11.2	144	19.04	10.6	88	16.6	11.3	0.914	0.402	120
Ind Ind	5	76 90	÷	31	10 50	9	ď	7 60	0	, 10 10	0430	012
COMT SNP val 158 met, G1947A, Nialli	≘	0.03	Ē	8	80.8	 	8	00.71	ກ. ⊝	Z.U3	0.123	170
Ind Ontimized	75	19.42	10.8	175	18.52	110	8	16.52	10.8	7.	0.212	210 210
		7	2	=	500	2	3	5	2		1.1	014

Lit, references for literature-based gene scoring; Ind, gene scoring based on our studies of an independent set of subjects; SNP, single nucleotide polymorphism. 1DRD4: 11=any<4; 12=4/4; 22=any>4. 22=any>4. 22=any>4. 22=any>4. 22=any>4. 22=any>4. 22=hor 148/hor 10; 22=10/10. 3DAT1: 11=nor 10/hor 10; 12= 10/hor 10; 22=10/10. 4HTT: 11=SS; 12=SL; 22=LL. 5HTR1DA; TDO2 since there were only 2 22s, they were combined with the 12s, 64DR42C:11=<183/<183; 12=het; 22=183/183

FIG. 1A-3

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 4 of 11

Gene F-ratio p Gene Score Other Neurotransmitter Genes HTR6 SNP (Shinkai et al. 1998) **ADHD** 2.8 12.33 9.7 27.1 18.26 10.3 70.0 18.66 11.2 .23 012 1.44 ODD 3.0 2.3 3.91 3.1 3.64 3.2 .44 .64 021 CD 2.11 1.5 3.65 2.6 3.17 2.6 2.05 .13 022 GABRB3 dinucleotide repeat (Mutirangura et al. 1992)^a ADHD 38.0 18.99 10.8 47.9 17.48 11.1 14.1 19.69 10.9 1.05 .35 102 ODD 3.57 3.1 3.55 3.2 3.1 002 4.47 1.67 .18 CD 2.2 2.97 3.01 2.4 2.91 2.4 .089 .91 200 GABBR1 dinucleotide repeat (unpublished)b 11.7 27.0 19.1 11.7 63.5 **ADHD** 9.5 17.5 18.2 10.5 .28 .752 020 **ODD** 3.54 3.7 3.66 3.1 3.72 3.1 .047 .953 012 CD 2.6 3.45 2.72 2.2 3.02 1.24 .291 201 2.4 CNR1 (Cannabinoid 1 receptor) (Dawson 1995)^C ADHD 10.6 19.35 10.9 44.7 18.25 11.0 44.7 18.13 10.9 .174 .83 200 ODD 4.67 3.1 3.54 3.56 3.2 200 3.1 1.89 .15 2.2 CD 3.09 2.90 2.3 3.03 2.4 .146 .86 202 CHRNA4 (Cholinergic, nicotinic, alpha 4) (Weiland, Steinlein 1996)d **ADHD** 22.19 9.2 36.2 10.8 55.8 11.2 8.0 18.90 17.19 2.35 .096 210 ODD 5.07 3.0 3.59 3.0 3.55 3.2 2.74 .065 200 CD 3.11 .930 2.1 2.93 2.3 2.99 2.4 .071 200

FIG. 1B-1

David E. Comings

METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION

DEFICIT HYPERACTIVITY DISORDER

Serial No. 09/825,922

Sheet 5 of 11

NMDAR1	(Rupp	et al. 19	97) Hp	oa II S	SNP							
ADHD	44.2	17.31	10.7	45.7	19.31	11.0	10.1	18.56	11.3	1.19	.303	021
ODD		3.79*	3.1		3.79*	3.1		4.84	3.1	2.93	.054	002
CD		2.83	2.3		3.07	2.3		3.28	2.7	.649	.523	012
ADORA2A	(ader	osine 2	A rece	ptor)	(Decker	t et al.	1996) C	108 T <i>R</i>	sa I.			
ADHD	33.2	19.95	10.4	44.7	17.57	11.0	22.0	18.97	10.8	1.48	.229	201
ODD		4.04	3.3		3.41	3.1		4.02	3.1	1.52	.219	202
CD		3.39	2.5		2.82	2.1		2.83	2.4	2.04	.131	200
GRIN2B (glutam	ate iono	tropic,	NMC	A 2B re	ceptor) T/G (S	NP data	base V	/IAF-1	189).	
ADHD	20.9	17.94	10.6	52.3	19.35	10.6	26.8	18.10	11.1	.582	.559	021
ODD		3.03*	3.0		4.15	3.1		3.50	3.1	3.22	.041	021
CD		2.36*	2.0		3.28	2.4		2.98	2.3	3.59	.029	021
NO02/=!	uia avii	da ayında	aaa 3\	Mor	an at al	1006)						
NOS3 (nit	ric oxic	ie synin	ase 3)	(vvai	ıg et ai.	1990)						
ADHD	67.5	18.50	10.9	25.0	18.60	10.6	7.5	17.12	11.6	.186	.830	220
ODD		3.72	3.1		3.87	3.3		3.29	3.1	.311	.733	120
CD		3.00	2.3		3.12	2.2		2.33	1.9	1.08	.339	120
Opoids												
PENK (pr	oenke	ohalin) (Weber	, May	1990; (Coming	gs et al.	1999a) ^e				
ADHD	32.1	18.71	10.4	47.4	18.02	11.3	20.6	18.25	11.0	.053	.948	201
ODD		3.75	3.2		3.75	3.2		3.48	3.1	.255	.775	220
CD		3.03	2.4		3.00	2.4		2.92	2.2	.041	.959	220

FIG. 1B-2

MME (enke	ephalina	ase) (see	e Meth	ods) ^f .								
ADHD	33.9	19.44	11.0	50.9	17.34	10.9	15.2	19.53	10.9	1.26	.284	202
ODD		3.98	3.2	5	3.44	3.1		3.95	3.0	1.00	.369	202
CD		3.10	2.4		2.81	2.3		3.32	2.4	1.08	.340	202
ANPEP (ar	minono	ntidasa N	J) /\//a	# \Mills	ard 199	Λ) and	see Me	thods A	\ 257 C	`		
•											670	240
ADHD	27.7	19.25	10.7	51.6	18.37	10.9	20.8	17.60	11.4	.398		210
ODD		3.65	3.1		3.95	3.1		3.30	3.2	.945	.389	120
CD		3.12	2.4		3.05	2.4		2.42	2.0	1.96	.142	210
NAT1 (N-a	cetvl tra	ansferas	e) T 1()88 A (Dietz et	al. 199	97; Com	nings et	al. 200	0)		
•					19.00			17.86	10.8	1.11	.329	210
ADHD	5.7	21.50		34.7			J3.0					
ODD		4.94	3.7		3.51	3.2		3.68	3.1	1.58	.207	200
CD		4.11	2.8		3.00	2.3		2.88	2.2	2.26	.106	210
Hormones	and ne	europepti	ides									
ESR1 (est				nucleot	ide repe	eat (del	Senno	et al. 19	992; Co	omings	et al. 1	999).
ADHD	27.3	19.08	12.0	41.2	17.52	10.6	31.5	18.90	10.3	.673	.511	201
ODD		3.82	3.4		3.56	3.0		3.86	3.0	.293	.746	202
CD		3.26	2.6		2.53	2.0		3.33	2.5	4.09	.017	202
CYP19 (ar	romatas	se cytoch	rome	P - 450	O) dinuc	leotide	repeat	(Polym	eropou	los et a	l. 1991	b)9
ADHD	13.4	16.88	11.6	45.2	17.28	11.7	41.4	19.76	9.9	2.11	.122	012
ODD		3.50	3.1		3.33	3.0		4.11	3.3	2.16	.116	102
CD		3.07	2.4		2.52	* 2.2		3.37	2.4	4.61	.011	102

FIG. 1B-3

SHBP (se	x horm	none bin	ding p	rotein)	(Xu,Li 19	998)						
ADHD	59.8	18.39	11.2	35.2	18.38	10.4	5.0	17.44	11.4	.057	.944	220
ODD		3.61	3.1		3.76	3.1		3.50	3.1	.108	.897	120
CD		2.85	2.3		3.11	2.3		3.06	1.8	.465	.628	021
CRH (cort	icoste	rioid rele	easing	hormo	ne) (<i>Xm</i>	n I, Ge	nome	Database	e)			
ADHD	89.8	18.25	11.1		18.78		1.5	25.00	7.9	1.189	.285	012
ODD		3.66	3.2		3.71	2.8		5.60	3.2	.972	.380	012
CD		2.96	2.4		3.10	2.1		3.80	3.3	.370	.691	012
OXTR (ox	ytocin	recepto	r) (Lia	o et al.	1996) s	ilent C	->T in	exon 3				
ADHD	47.1	18.48	10.5	44.3	1 8.0	11.5	8.7	20.11	10.7	.431	.650	102
ODD		3.59	3.1		3.65	3.2		4.39	2.8	.776	.461	012
CD		2.77	2.3		3.14	2.3		3.14	2.4	1.06	.347	022
CCK C-45	T(Ish	iguro et	al. 199	99)								
ADHD	77.0	18.57	10.8	20.4	17.66	11.0	2.2	19.71	14.3	.227	.797	102
ODD		3.83	3.2		3.30	2.9		3.00	3.0	.909	.404	210
CD		3.04	2.4		2.71	2.2		3.14	2.3	.555	.574	102
INS (Hoba	an,Kel	sey 199	1; Gad	le-Anda	avolu et	al. 199	9)					
ADHD	58.6	18.04	10.8	36.7	18.47	11.1	4.7	19.46	11.2	.147	.863	012
ODD		3.68	3.2		3.70	3.1		3.66	3.6	.0014	.998	120
CD		2.95	2.3		2.98	2.4		3.47	1.6	.334	.716	002
CD8 (Poly	ymeroj	ooulos e	t al. 19	991a)h								
ADHD	23.2	17.5	11.3	44.3	18.54	10.9	32.5	18.42	10.9	.122	.885	021
ODD		3.31	3.2		4.09	3.2		3.44	3.0	1.95	.143	021
CD		2.53	2.1		3.27			2.92		2.44	.088	021
					•							

FIG. 1B-4

INFG (Wu, Comings 1998)

ADHD	21.8	18.22	10.9	58.3	18.17	10.9	27.9	18.82	10.8	.109	.896	102
ODD		3.78	2.97		3.69	3.2		3.60	3.2	.068	.934	210
CD		3.11	2.4		3.01	2.4		2.82	2.0	.333	.717	210
PSI (Scott	et al. 1	1996)										
ADHD	36.0	17.78	11.1	48.0	18.56	10.6	15.2	18.19	11.6	.215	.806	021
ODD		3 44	3.3		3 92	3.1		3.57	3.1	.828	.438	021

2.4

3.30

2.5

3.18

2.68

.069 012

- a 11 = <188/<188, 12 = het. 22 = =188/=188
- b 11 = =10/=10, 12 = het. 22=>10/>10
- c 11 = <5/<5 12=het. 22 = =5/=5

2.59

CD

2.1

- d 11 = =131/=131 12 = het. 22 = >131/>131
- e 11 = =178/=178 12 = het. 22 = >178/>178
- f 11 = a-c/a-c 12 = het. 22 = d-g/d-g
- 9 11 = <4/<4 12 = het. 22 = =4/=4

FIG. 1B-5

^{*}Significantly lower than highest value by tukey test at α = .05.

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 9 of 11

r	r2	adjusted r2	E		
400		adjuotog /-	Г	р	# genes
.466	.217	.16	3.82	<.0001	22
.443	.196	1./	0.50		22
4=-		.17	3.58	<.0001	20
.451	.203	.15	3.94	<.0001	19
	r .466 .443 .451	.466 .217 .443 .196	.466 .217 .16 .443 .196 .14	.466 .217 .16 3.82 .443 .196 .14 3.58	.466 .217 .16 3.82 <.0001 .443 .196 .14 3.58 <.0001

FIG. 2

GABRB3

GABBR1

CNR1 1 CHRNA4

NMDAR1

GRIN2B

NOS3

ADOA2A

FIG. 3B

GENES

COMT

NET

PNMT

ADRA2A

DBH

FIG. 3C

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 11 of 11

