

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2016 – 2nd Year Examination – Semester 3

IT3305: Mathematics for Computing-II PART 2 - Structured Question Paper 6th May 2016 (ONE HOUR)

To be o	completed by the			
BIT	Examination	Index	No:	

Important Instructions:

- The duration of the paper is 1 (One) hour.
- The medium of instruction and questions is English.
- This paper has 3 questions and 13 pages.
- Answer all questions.

Questions Answered

- Question 1 carries 40% marks and the other questions carry 30% marks each.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Note that **The Standard Normal Distribution Table** is attached with the paper.

Indicate by a cross (×), (e.g. X) the nun	nbers of the	he questi	ions answ	vered.
To be completed by the candidate by marking a cross (x).	1	2	3	
To be completed by the examiners:				

1) Suppose X and Y are two square matrices of order n. When is Y said to be the inverse of X?

(5 marks)

(a) Consider the following square matrix of order 4.

$$\mathbf{X} = \begin{pmatrix} 2 & -2 & 1 & -1 \\ 1 & 1 & 2 & 2 \\ -1 & 1 & 2 & -2 \\ 2 & 2 & -1 & -1 \end{pmatrix}$$

(15 marks)

Show that $X(X)^T = (X)^T X$. Hence or otherwise find X^{-1} .

(b) Let
$$Y = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
.

Find the determinant of Y and the adjoint of Y. Hence find Y^{-1} .

(20 marks)

ANSWER IN THIS BOX

(1) (a)

Y is said to be the inverse of X if XY = YX = I where I is the identity matrix of order n.

$$\mathbf{XX^{T}} = \begin{pmatrix} 2 & -2 & 1 & -1 \\ 1 & 1 & 2 & 2 \\ -1 & 1 & 2 & -2 \\ 2 & 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 & 2 \\ -2 & 1 & 1 & 2 \\ 1 & 2 & 2 & -1 \\ -1 & 2 & -2 & -1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{pmatrix}$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \begin{pmatrix} 2 & 1 & -1 & 2 \\ -2 & 1 & 1 & 2 \\ 1 & 2 & 2 & -1 \\ -1 & 2 & -2 & -1 \end{pmatrix} \begin{pmatrix} 2 & -2 & 1 & -1 \\ 1 & 1 & 2 & 2 \\ -1 & 1 & 2 & -2 \\ 2 & 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{pmatrix}$$

$$\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{X}^{\mathrm{T}}\mathbf{X}$$

$$\mathbf{X}^{-1} = \frac{1}{10} \begin{pmatrix} 2 & 1 & -1 & 2 \\ -2 & 1 & 1 & 2 \\ 1 & 2 & 2 & -1 \\ -1 & 2 & -2 & -1 \end{pmatrix}$$

Index No:
Continued

(b)

Determinant of Y = |Y| = 3.

Cofactor of
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$
. Therefore adjoint of $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 3 & -1 \\ -1 & 0 & 1 \end{bmatrix}$

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 0 & 1 \\ 1 & 3 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Continued...

	Index No:
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
١	Continued
1	

2) (a) The position vectors of the points A, B and C are given by $a\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} + b\mathbf{j} + \mathbf{k}$ and i - 3k respectively. Find values for a and b such that

(Detected a misprint of the position vector of the point B. It should be corrected as i + bj - k. The following answers is given for the corrected question. However, the marking scheme will be adjusted to give maximum credit to students who attempted reasonably.)

(i). A, B and C are collinear

(6 marks)

(ii). AB is perpendicular to BC

(8 marks)

(iii). AB is parallel to OC, where O is the origin

(6 marks)

- (b) Differentiate the following functions with respect to x where x > 0.
 - (i). $f(x) = x^x$

(5 marks)

(ii). $g(x) = x^{(x^x)}$

(5 marks)

ANSWER IN THIS BOX

- (2) (a)
 - If A, B, C are collinear then $\overrightarrow{AB} = \lambda \overrightarrow{BC}$ for some $\lambda \in \mathbb{R}$. **(i)**

Therefore

$$\begin{pmatrix} 1-a \\ b-1 \\ -2 \end{pmatrix} = \lambda \begin{pmatrix} 0 \\ -b \\ -2 \end{pmatrix}$$

And hence a = 1, $\lambda = 1$, b = 0.5.

(ii) If AB is perpendicular to BC, then, $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$

$$\begin{pmatrix} 1-a \\ b-1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -b \\ -2 \end{pmatrix} = 0$$

Therefore 0 + (-b)(b-1) + 4 = 0

$$-b^2 + b + 4 = 0$$

$$b^2 - b - 4 = 0$$

$$(b-0.5)^2 = \frac{17}{4}$$

Therefore $b = \frac{1 \pm \sqrt{17}}{2}$ and $a \in R$.

Continued...

(iii) If AB is parallel to OC, then $\overrightarrow{AB} = \mu \overrightarrow{OC}$ for some $\mu \in R$.

$$\begin{pmatrix} 1-a \\ b-1 \\ -2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

Therefore b = 1, $\mu = \frac{2}{3}$ and $a = \frac{1}{3}$.

(b) (i)
$$f(x) = x^x = e^{x \ln x}$$

$$f'(x) = e^{x \ln x} \cdot \frac{d}{dx} [x \ln x]$$
$$= x^{x} (1 + \ln x)$$

(ii)
$$g(x) = x^{(x^x)}$$

$$g(x) = x^{f(x)} = e^{f(x)lnx}$$

$$\therefore g'(x) = e^{f(x)lnx} \cdot \frac{d}{dx} [f(x)lnx]$$

$$= x^{x^{x}} \cdot \left[\frac{f(x)}{x} + f'(x) \ln x \right]$$

$$= x^{x^{x}} [x^{x-1} + x^{x} (1 + \ln x) lnx]$$

Index No:
Continued

Index	No:																			
HIGCA	110.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	 •

3) The call center of a certain web-based shopping company has five hot-line numbers. Let *X* denote the number of hot-lines in use (busy) at a specific time. The probability function of *X* is given in the table below

X	0	1	2	2 3		5	More than 5		
Probability	b	2a	0.15	2a	2b	0.20	0		

From experience the company knows that the probability that less than three hotline numbers being busy in a specific time is 0.4.

(a) Calculate the values of a and b.

(5 marks)

In a specific time;

(b) what is the mode of the number of busy hot-lines?

(5 marks)

(c) calculate the probability that at least one hot-line is busy.

(5 marks)

(d) calculate the probability that less than 4 hot-lines are busy.

(5 marks)

(e) calculate the probability that less than 2 hot-lines or more than 4 hot-lines will be busy.

(5 marks)

(f) calculate the expected value of X.

(5 marks)

ANSWER IN THIS BOX
(a)

$$P(X<3) = 0.4 \implies b+2a+0.15 = 0.4$$

$$b+2a = 0.25 \qquad ------(1)$$

$$Total probability = 1$$

$$b+2a+0.15+2a+2b+0.2 = 1$$

$$3b+4a = 0.65 \qquad ------(2)$$

$$(2) - 2x(1) \implies (3b+4a) - (2b+4a) = 0.65-0.5$$

$$b = 0.15$$

$$by (1) \qquad 0.15+2a = 0.25$$

$$2a = 0.1$$

$$a = 0.05$$
Continued...

(b)

Value with the highest probability is the mode. Here it is 4.

(c)
$$P(X\geq 1) = 1 - P(X < 1) = 1 - [P(X=0)]$$
$$= 1 - [0.15]$$
$$= 1 - 0.15 = 0.85$$

(d)
$$P(X<4) = 1 - P(X \ge 4) = 1 - [P(X=4) + P(X=5)]$$

$$= 1 - [0.3 + 0.2] = 0.5$$

(e)
$$P(X<2) + P(X>4) = P(X=0) + P(X=1) + P(X=5)$$
$$= 0.15 + 0.1 + 0.2$$
$$= 0.45$$

(f)

X	P(x)	Xp(x)
0	0.15	0
1	0.1	0.1
2	0.15	0.3
3	0.1	0.3
4	0.3	1.2
5	0.2	1
Total	1	2.9

The expected value = $E(X) = \sum xp(x) = 2.9$

Continued...

Index No:
Continued

Index No:

The Standard Normal Distribution Table

The distribution tabulated is that of the normal distribution with mean **zero** and standard deviation 1. For each value of Z, the standardized normal deviate, (the proportion P, of the distribution less than Z) is given. For a normal distribution with mean μ and variance σ^2 the proportion of the distribution less than some particular value X is obtained by calculating $Z = (X - \mu)/\sigma$ and reading the proportion corresponding to this value of Z.

Z	P	Z	P	Z	P
-4.00	0.00003	-1.00	0.1587	1.05	0.8531
-3.50	0.00023	-0.95	0.1711	1.10	0.8643
-3.00	0.0014	-0.90	0.1841	1.15	0.8749
-2.95	0.0016	-0.85	0.1977	1.20	0.8849
-2.90	0.0019	-0.80	0.2119	1.25	0.8944
-2.85	0.0022	-0.75	0.2266	1.30	0.9032
-2.80	0.0026	-0.70	0.2420	1.35	0.9115
-2.75	0.0030	-0.65	0.2578	1.40	0.9192
-2.70	0.0035	-0.60	0.2743	1.45	0.9265
-2.65	0.0040	-0.55	0.2912	1.50	0.9332
-2.60	0.0047	-0.50	0.3085	1.55	0.9394
-2.55	0.0054	-0.45	0.3264	1.60	0.9452
-2.50	0.0062	-0.40	0.3446	1.65	0.9505
-2.45	0.0071	-0.35	0.3632	1.70	0.9554
-2.40	0.0082	-0.30	0.3821	1.75	0.9599
-2.35	0.0094	-0.25	0.4013	1.80	0.9641
-2.30	0.0107	-0.20	0.4207	1.85	0.9678
-2.25	0.0122	-0.15	0.4404	1.90	0.9713
-2.20	0.0139	-0.10	0.4602	1.95	0.9744
-2.15	0.0158	-0.05	0.4801	2.00	0.9772
-2.10	0.0179	0.00	0.5000	2.05	0.9798
-2.05	0.0202	0.05	0.5199	2.10	0.9821
-2.00	0.0228	0.10	0.5398	2.15	0.9842
-1.95	0.0256	0.15	0.5596	2.20	0.9861
-1.90	0.0287	0.20	0.5793	2.25	0.9878
-1.85	0.0322	0.25	0.5987	2.30	0.9893
-1.80	0.0359	0.30	0.6179	2.35	0.9906
-1.75	0.0401	0.35	0.6368	2.40	0.9918
-1.70	0.0446	0.40	0.6554	2.45	0.9929
-1.65	0.0495	0.45	0.6736	2.50	0.9938
-1.60	0.0548	0.50	0.6915	2.55	0.9946
-1.55	0.0606	0.55	0.7088	2.60	0.9953
-1.50	0.0668	0.60	0.7257	2.65	0.9960
-1.45	0.0735	0.65	0.7422	2.70	0.9965
-1.40	0.0808	0.70	0.7580	2.75	0.9970
-1.35	0.0885	0.75	0.7734	2.80	0.9974
-1.30	0.0968	0.80	0.7881	2.85	0.9978
-1.25	0.1056	0.85	0.8023	2.90	0.9981
-1.20	0.1151	0.90	0.8159	2.95	0.9984
-1.15	0.1251	0.95	0.8289	3.00	0.9986
-1.10	0.1357	1.00	0.8413	3.50	0.99977
-1.05	0.1469			4.00	0.99997