Learning with Density Matrices and Random Fourier Features

Fabio González Machine Learning 2021-1

(1) Kernel density estimation (KDE)

Density estimation: Given a sample {zi}:1.1

from an unknown distribution estimate the PDF of the distribution.

$$\hat{f}_X(x) = \frac{1}{N\lambda} \sum_{i=1}^N k_\lambda(x, x_i),$$
 Bandwith

$$\hat{g}_{\gamma,X}(x) = \frac{1}{N(\pi/\gamma)^{\frac{d}{2}}} \sum_{i=1}^{N(\pi/\gamma)^{\frac{d}{2}}} \underbrace{e^{-\gamma \|x_i - x\|^2}}_{\text{cornel}}$$

Drawbacks · Memory based method: you have to shore

all the training dataset.

· Prediction time O(N) · Problems dealing with high-dumensional data

(2) Random Fourier Featives (RFF) (Rahini & Recht, 2007) **Theorem 1** (Bochner [13]). A continuous kernel $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$ on \mathcal{R}^d is positive definite if > Isotropic kernel and only if $k(\delta)$ is the Fourier transform of a non-negative measure. x_1 x_2 $k(x_1,y_1) = k(x_2,y_2)$ x_1 x_2 x_3 x_4 x_5 x_6 $x_$ If a shift-invariant kernel $k(\delta)$ is properly scaled, Bochner's theorem guarantees that its Fourier transform $p(\omega)$ is a proper probability distribution. Defining $\zeta_{\omega}(\mathbf{x}) = e^{j\omega'\mathbf{x}}$, we have $k(\mathbf{x} - \mathbf{y}) = \int_{\mathcal{D}^d} p(\omega) e^{j\omega'(\mathbf{x} - \mathbf{y})} d\omega = E_{\omega}[\zeta_{\omega}(\mathbf{x})\zeta_{\omega}(\mathbf{y})^*],$ If K is the Gaussian kernel, $K(x,y) = \langle \phi(x), \phi(y) \rangle_F$, the dimension of F is infinite RFF method: Finds an embedding $\phi_{rff}: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ such that $\forall x, y \in \mathbb{R}^n < \phi_{ref}(x), \phi_{ref}(y) > \approx \kappa(x, y)$ $W_1...W_p \sim P(W)$ $\phi_{\rm rff}: \mathbb{R}^d \to \mathbb{R}^D$ $x \mapsto \sqrt{\frac{2}{D}}(\cos(w_1^*x + b_1), \dots, \cos(w_D^*x + b_D)). \qquad \qquad b_1 \dots b_D \longrightarrow \bigcup (o, 2\pi)$ Advantage: kernel methods complexity is typically > O(N2)

With RFF you can reduce this complexity

 $= \phi_{ref}(z)^{T} \left[\sum_{i=1}^{N} \phi_{ref}(x_i) \phi_{ref}(x_i)^{T} \right] \phi_{ref}(z)$

4 Density Matrices

The state of a quantum system is represented

1 x 1: Probability of obtaining 1 1812: Probability of obtaining

Density Matrix: Representation of the state of a quantum system that can represent quantum uncertainty (superposition)

and classical uncertainty. $P = \Psi \Psi^* = \begin{bmatrix} |\alpha|^2 & \alpha \beta^* \end{bmatrix}$ $P = \begin{bmatrix} |\alpha|^2 & \alpha \beta^*$

by a vector

46H (His a Hilbert space, typically () E.g. the spin of an election 27, 13 $\psi = (\alpha, \beta) |\alpha|^2 + |\beta|^2 = 1$ Superposition: In general the a quantum state is a Combination of basis states

1: (1,0) 1: (0,1) Y = X1 + B1

Two systems:
$$Y_1 = \left(\frac{1}{12}, \frac{1}{12}\right)$$
 $Q_1 = Y_1 Y_1^* = \left[\frac{1}{2}, \frac{1}{2}\right]$ $Q_2 = \left(\frac{1}{2}, \frac{1}{2}\right)$ $Q_3 = \left(\frac{1}{2}, \frac{1}{2}\right)$ $Q_4 = \left(\frac{1}{2}, \frac{1}{2}\right)$ $Q_5 = \frac{1}{2} \cdot \frac{1}{2$

$$P(\varphi|\varphi) = Tr(\varphi\varphi^*) = \varphi^* e \varphi$$

$$P = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \quad P(\varphi|\varphi) = 1 \quad P(\varphi|\varphi) = \frac{1}{2}$$

$$(\overline{n}/\overline{n}) \quad P(\theta|\theta_1) = 1 \quad P(\theta|\theta_2) = \frac{1}{2}$$

Prediction

$$\hat{f}_{\rho}(x) = \frac{\text{Tr}(\rho\phi_{\text{rff}}(x)\phi_{\text{rff}}(x)^*)}{\mathcal{Z}} = \frac{\phi_{\text{rff}}(x)^*\rho\phi_{\text{rff}}(x)}{\mathcal{Z}}, \quad (12)$$

$$\frac{1}{z} = \phi_{rff}(x) = \frac{1}{D} \cos(\omega x + b)$$
RFF

L

Time Complexity

DMKDE

- Input. A sample set $X = \{x_i\}_{i=1...N}$ with $x_i \in \mathbb{R}^d$, parameters $\gamma \in \mathbb{R}^+$, $D \in \mathbb{N}$
- Calculate $W_{\rm rff} = [w_1 \dots w_D]$ and $b_{\rm rff} = [b_1 \dots b_D]$ using the random Fourier features method described in Section 2.1 for approximating a Gaussian kernel with parameters γ and D.
- Apply $\phi_{\rm rff}$ (eq. (1)):

$$z_i = \phi_{\rm rff}(x_i). \tag{10}$$

• Density matrix estimation:

$$\rho = \frac{1}{N} \sum_{i=1}^{N} z_i z_i^*, \tag{11}$$

Spectral Decomposition:

Reduced

$$\hat{f}_{\rho}(x) = \frac{1}{\mathcal{Z}} \|\Lambda^{\frac{1}{2}} V \phi_{\text{rff}}(x)\|^2$$

Time Complexity

Renal density classification Density estimation $\hat{Pr}(Y=j|X=x) = \frac{\pi_j f_j(x)}{\sum_{k=1}^K \pi_k \hat{f}_k(x)}$ Posterior Probability
Prior

Density Matrix Estimation

1. Use the RFF method to calculate
$$W_{\rm rff}$$
 and $b_{\rm rff}$.

- 2. For each class i:
 - (a) Estimate π_i as the relative frequency of the class i in the dataset.
 - (b) Estimate ρ_i using eq. (11) and the training samples from class i.
 - (c) Find a factorization of rank r of ρ_i :

$$\rho_i = V_i^* \Lambda V_i.$$

Stochastic Gradient Descent $L = \sum_{i=1}^{K} y_i \log (\widehat{y}_i)$

Kernel density classification Density
$$\hat{\mathbf{P}}_{\mathbf{r}}(Y=j|X=x) = \frac{\pi_{j}f_{j}(x)}{\sum_{k=1}^{K}\pi_{k}\hat{f}_{k}(x)}$$
Posterior Probability Prior Class remaliable
$$\hat{\mathbf{y}}_{i} = \frac{\hat{\mathbf{y}}_{i}}{\sum_{j=1}^{K}\hat{\mathbf{y}}_{i}}$$
Class remaliable
$$\hat{\mathbf{y}}_{i} = \hat{\mathbf{n}}_{i} || \mathbf{N}_{i}^{k} \mathbf{v}_{i} \mathbf{z}^{i} ||^{2} \dots \hat{\mathbf{y}}_{k} = \hat{\mathbf{n}}_{k} || \mathbf{N}_{k}^{k} \mathbf{v}_{k} \mathbf{z}^{i} ||^{2}$$
Quantum Measure m.

$$\hat{\mathbf{z}}_{i} = \frac{2}{\|\mathbf{z}\|}$$
Normalizat.

$$\hat{\mathbf{z}}_{i} = \hat{\mathbf{v}}_{fif}(x) = |\hat{\mathbf{z}}_{i}^{k} \cos(\omega x + b)$$

Generalizes Bayesian Inference

Proposition 1. Let $T = \{(x_i, y_i)\}_{i=1,...,n}$ be a set of training samples, x^* a sample to classify, with $x_i, x^* \in \{1, ...m\}$ and $y_i \in \{1, 2\}$. Let ρ_{train} be the state calculated using the mixed state, eq. (8) or equivalently the classic mixture eq. (9), and a one-hot encoding feature map for both x_i and y_i . Then the diagonal elements of the density matrix $\rho_{\mathcal{Y}}$ calculated using eq. (12) correspond to an estimation, using Bayesian inference, of the conditional probabilities $P(y_i = |x^*|)$:

$$\rho'_{\mathcal{Y}_{i},i} = P(y = i|x^{\star}) = \frac{P(x^{\star}|y = i)P(y = i)}{P(x^{\star})}, \quad (13)$$

where $P(x^{\star}|y=i),\ P(y=i)$ and $P(x^{\star})$ are estimated from T.

Can be seen as a kernel method

Proposition 2. Let $T = \{(x_i, y_i)\}$ be a set of training samples, x^* a sample to classify, with $x_i, x^* \in \mathcal{X}$ and $y_i \in \mathcal{Y}$. Let ρ_{train} be the state calculated using a mixed state (eq. [8]) and quantum feature maps $\psi_{\mathcal{X}}$ and $\psi_{\mathcal{Y}}$. Then the density matrix $\rho'_{\mathcal{Y}}$, calculated with eq. [12], can be expressed as:

$$\rho_{\mathcal{Y}}' = \mathcal{M} \sum_{i=1}^{N} |k(x^*, x_i)|^2 |\psi_{\mathcal{Y}}(y_i)\rangle \langle \psi_{\mathcal{Y}}(y_i)|, \qquad (14)$$

where $k(x^*, x_i) = \langle \psi_{\mathcal{X}}(x^*) | \psi_{\mathcal{X}}(x_i) \rangle$ and $\mathcal{M}^{-1} = \text{Tr}[\pi(x^*)\rho_{train}\pi(x^*)]$.

References

González, F. A., Vargas-Calderón, V., & Vinck-Posada, H. (2021). Classification with Quantum Measurements. Journal of the Physical Society of Japan, 90(4), 044002. https://arxiv.org/pdf/2004.01227.pdf

González, F. A., Gallego, A., Toledo-Cortés, S., & Vargas-Calderón, V. (2021). Learning with Density Matrices and Random Features. arXiv preprint arXiv:2102.04394 https://arxiv.org/abs/2102.04394

https://github.com/fagonzalezo/qmc