L'esperança de vida es paga?

Estadística: Pràctica 2

Adrià Julià Parada Laura Guàrdia Vela

Introducció

Per què hem triat aquestes dades?

• Què esperem veure?

Dades

X1: Despesa en salut pública %PIB

X2: Despesa sanitària privada interna per càpita \$

Y: Esperança de vida

- 183 països
- any 2014

Dades gràficament

• Si x1 creix aleshores y també creix

• Si x2 creix aleshores y també creix

$y = 46.53 + 0.64 \times 1 + 4.15 \times 2$

X2: Despesa sanitària privada interna per càpita

X1: Despesa pública en salut %PIB

Resultats analítics

COEFICIENT DE DETERMINACIÓ R^2

Càlcul:

$$R^2 = \frac{SS_{REG}}{SS_{TOT}}$$

Resultat:

$$R^2 = 0.5346 \rightarrow 53.46\% \rightarrow Model moderadament bo$$

Resultats analítics

TEST F PER AL MODEL SENCER

$$\begin{cases} H_0: \beta_1 = \dots = \beta_k = 0 \\ H_A: \text{ almenys un } \beta_j \neq 0 \end{cases} \rightsquigarrow F \sim F_{\alpha,k,n-k-1}$$

 $F_{a,k,n-k-1} = F_{0.05, 2, 180} = 3.05 \rightarrow \mathcal{R} = [3.05, +\infty) \rightarrow \text{Test de cua dreta}$

F estadístic
$$F = \frac{MS_{REG}}{MS_{ERR}}$$
 F = 103.39

$$F = 103.39$$

- Com que F = 103.39 està dins de la regió de rebuig $R \rightarrow Rebutgem H_0$ i acceptem H_A .
 - → És una bona regressió
- P value = 0

$$\begin{cases} \alpha < P \Rightarrow \text{ acceptem H}_0 \\ \alpha > P \Rightarrow \text{ rebutgem H}_0 \end{cases}$$

$$\begin{cases} P > 0.10 \Rightarrow \text{ acceptem H}_0 \\ P < 0.01 \Rightarrow \text{ rebutgem H}_0 \end{cases}$$

Resultats analítics

TEST T PER A BJ

$$\begin{cases} \mathbf{H}_0 \colon \beta_j = 0 \\ \mathbf{H}_A \colon \beta_j \neq 0 \end{cases} \iff t = \frac{b_j}{\sqrt{s^2 (\boldsymbol{X}^T \boldsymbol{X})_{jj}^{-1}}} \sim t_{\alpha/2, n-k-1}$$

 $t_{a/2,n-k-1} = t_{0.05/2,180} = 1.97 \rightarrow A = (-1.97, 1.97) \rightarrow \text{Test de dues cues}$

t estadístics:

$$t_1 = 0.36 \rightarrow Acceptem la H_0 \rightarrow b_1 és un mal regressor$$

$$t_2 = 26.93 \rightarrow \text{Rebutgem la H}_0 \rightarrow b_2 \text{ \'es un bon regressor}$$

P value:

$$P_{t1} = 0.3596$$

 $P_{t2} = 0.0014$

$$\begin{cases} \alpha < P \Rightarrow \text{acceptem } \vdash \\ \alpha > P \Rightarrow \text{rebutgem } \vdash \end{cases}$$

$$\begin{cases} \alpha < P \Rightarrow \text{ acceptem H}_0 \\ \alpha > P \Rightarrow \text{ rebutgem H}_0 \end{cases} \qquad \begin{cases} P > 0.10 \Rightarrow \text{ acceptem H}_0 \\ P < 0.01 \Rightarrow \text{ rebutgem H}_0 \end{cases}$$

Interpretació dels resultats

- Sabent la despesa en salut pública %PIB (x1) i despesa sanitària privada interna per càpita \$(x2):
 - Podem saber l'esperança de vida
- Sabent només la despesa en salut pública %PIB (x1):
 - No podem saber l'esperança de vida
- Sabent la despesa sanitària privada interna per càpita \$ (x2):
 - Podem saber l'esperança de vida

CONCLUSIÓ: Com més diners invertits en sanitat privada millor és l'esperança de vida. La inversió en sanitat pública influeix menys en l'esperança de vida

Esperança de vida s'ha de pagar

Possibles extensions de l'experiment

- Agafar més països (n més gran)
- Agafar els següents regressors (a més dels que ja tenim)
 - Hores treballades anualment per càpita
 - Hores de son mitjana
 - Salaris mitjans
- L'esperança de vida està relacionada amb les hores de son i les hores treballades?
- L'esperança de vida està relacionada amb els salaris i el que la gent paga per la sanitat privada?