

N=50 N=19.75 N=0.395 N=3.457 N=3.457 N=18 to 22 P-values: 0,787 and 0258

The probability is 52.9%.

(4) Warranty issues for a refrigerator arise after a certain number of days which is normally distributed. The mean is $\mu=432$ days; the standard deviation is $\sigma=47$ days. If the warranty covers the cost of a repair within 365 days, what is the percentage of warranty issues that the company providing the warranty has to cover?

$$7 = \frac{365 - 437}{47} = -1.4255 \quad \text{p-value} : 0.07700$$
The percentage is 7.70% (good business for the warranty provider!).

(5) How many people with an IQ of over 180 would you expect to live in Canada? Use a normal distribution with mean $\mu = 100$, standard deviation $\sigma = 15$, and 36.3 million for Canada's population.

The result of this question depends on the rounding error. I get approximately 139,000 people in Canada with an IQ>140.

(6) Santiago in Chile (longitude 70° W) and Sydney in Australia (longitude 151° E) both have a latitude of 33° S. How far apart are they along a great circle? Use Napier's miraculous pentagram.

(7) Santa lives near Resolute Bay in Nunavut at 74°42′N, 94°50′W. His reindeer go to London, England, roughly south-east, covering a distance of 4687km. Santa goes roughly south-west at an exact right angle to where the reindeer went. He covers a distance of 3000km. How far is he from London?

Santa is approximately 5409.7km away from London.

```
(a) a = 16^{\circ}13', b = 59^{\circ}7' find angle A
(b) c = 107^{\circ}13', A = 63^{\circ}14' find side b
(c) A = 135^{\circ}27'15'', B = 82^{\circ}21'30'' find side a
(d) b = 0.7089, B = 1.1781 find angle A
(a) cosc= cosa. cosb

co-B co-A c= 60.471°

co-c cosA = tanb. cotc A= 18°431
                            a=58,522° or a=121.48°
 (b) sing = sinA. sinc
                                  reject 2
     sinh = fana. cotA
                                     LoQI
   h=55.47° or b=124,53°
                                 b=124032
      □ reject LoQ III
                               c= 97.835°
 (c) Cosc = cot B. cot A
                                a = 13505814711 (LOQI)
      sina = sinc sin A
 (d) sina = cot B. tan b
                                Q = 0.3631b
                                Q7 = 2.7784
  \cos A = \sin \beta \cdot \cos \alpha  A = 0.52838
                         Az= 2.6132
```

(a) V	Jancouver ($49^{\circ}15'N$	$123^{\circ}6'W)$	and Taipei	i City	$(25^{\circ}2'N,$	121°38′E)
-------	-------------	------------------	-------------------	------------	--------	-------------------	-----------

(b)
$$\cos x = \cos 40.75^{\circ} \cos 112.90^{\circ}$$

+ $\sin 40.75^{\circ} \sin 112.90^{\circ} \cdot \cos 79.90^{\circ}$
 $x = 100.91^{\circ} = 1.7613 \text{ in advisors}$

The distance between Vancouver and Rio de Janeiro is approximately 11,234km.

(c)
$$\cos x = \cos 83.867 \cos 68.967$$

 $+ \sin 83.867 \sin 68.967 \cos [01.63]$
 $x = (01.319 = 1.7682 in radians)$

The distance between Lome and Hanoi is approximately 11,278km.

(10a)

$$A = 52.217^{\circ}$$
 $C = 68.7^{\circ}$
 $B = 35.433^{\circ}$
 $Cosb = Cosc \cdot Cosa + Sincsina cos B = 0.87252$
 $Cosb = 34.662^{\circ} = 0.60496$
 $Cosb = 3858.5 \text{ km}$, where $Cosb = 6378.1 \text{ km}$
 $Cosb = 53.673^{\circ}$
 $Cosb = 53.673^{\circ}$
 $Cosb = - cosAcosb + SinAsinb cosc = -0.313$
 $Cosb = 108.27^{\circ}$

initial course:

 $Cosb = 108.27^{\circ}$

initial course:

 $Cosb = 108.27^{\circ}$

initial course:

S 53,673°W

$$b = 90^{\circ} - 0^{\circ} | 4| = 89.767^{\circ}$$

 $a = 90^{\circ} - 37^{\circ} 50^{\circ} = 52.167^{\circ}$
 $C = 136.52^{\circ}$

cosc = cos a cos b + sin a sin b cos C = -0.57055 $\Rightarrow c = 124.79^{\circ} = 2.1780 \stackrel{\sim}{=} 13891 \text{ km}$ $8inA = sina \cdot \frac{sinC}{sinc} = 0.66178$ $\Rightarrow A = 41.436^{\circ}$ cosb = -cosAcosC + sinAsinCcosb $\Rightarrow b = 56.92^{\circ}$ initial bearing: $556.92^{\circ}E$

final bearing: N48.564°E

(c)
$$\cos x = \cos 34.75^{\circ} \cos 49.183^{\circ}$$

 $+ \sin 34.75^{\circ} \sin 49.183^{\circ} \cdot \cos 111.57^{\circ}$
 $x = 67.414^{\circ} = 1.1766 \text{ in radians}; x = 7504.4km$
 $\sin 6 = \sin 111.57^{\circ}$
 $\sin 49.183^{\circ} = \sin 57.414^{\circ}$
 $\sin 49.183^{\circ} = \sin 57.414^{\circ}$

The initial course is N34.547 ow in Moscow; the final course is S40.311 ow in New York.

(10a)
$$a = 38^{\circ} b = 45^{\circ} 8 = 65^{\circ}$$

NON-ABC

 $\frac{\sin A}{\sin a} = \frac{\sin b}{\sinh b} \rightarrow \sin A = \sin a \frac{\sin b}{\sinh b} = 0.78910$
 $\Rightarrow A = 52.102^{\circ} \text{ or } A = 127.90^{\circ}$
 $\Rightarrow \text{ reject } OSTLIE: A < B$
 $\Rightarrow \tan C = \tan \left(\frac{1}{2}(a - b)\right) \cdot \frac{\sin \left(\frac{1}{2}(A + B)\right)}{\sin \left(\frac{1}{2}(A - B)\right)}$
 $\Rightarrow c = 49.833^{\circ} \quad c = 49^{\circ}50^{\circ}0^{\circ}$

(10b)
$$B = 110^{\circ}10^{1}$$
 $E = 132^{\circ}59^{1}$ $b = 146^{\circ}6^{1}$
NON-ABC

 $\frac{\sin c}{\sin c} = \frac{\sinh c}{\sin b} \rightarrow \sin c = \sin c \cdot \frac{\sinh c}{\sin b} = 0.43467$
 $c = 27.764^{\circ}$ or $c = 154.24^{\circ}$

(5) reject

C > b

 $\cos c = 154^{\circ}14^{\circ}9^{\circ}$
 $\cos c = 154^{\circ}14^{\circ}19^{\circ}$
 $\cos c = 154^{\circ}14^{\circ}19^{\circ}19^{\circ}$
 $\cos c = 154^{\circ}14^{\circ}19^{\circ}19^{\circ}19^{\circ}19^{\circ}19^{\circ}19^{\circ}19^{\circ}19^{\circ}19^{\circ}19^{\circ}$

$$\cos A = -\cos \beta \cos C + \sin \beta \sin C \cos \alpha = 0.33384$$

$$A = 70^{\circ} 29^{\circ} 52^{\circ}$$

(10c)
$$a = \frac{13\pi}{36}$$
 $b = \frac{7\pi}{9}$ $c = \frac{11\pi}{18}$

ABC-type

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$
 $\Rightarrow \cos A = \frac{\cos a - \cos b \cos c}{\sinh \sin c} = 0.26591$
 $\Rightarrow \sin b = \frac{\sin A}{\sin a} \Rightarrow \sin b = \sinh \cdot \frac{\sin A}{\sin a} = 0.68370$
 $\Rightarrow \cos C = -\cos A \cos C + \sin A \sin C \cos C = -0.031371$

-> P=1.6022

(10a)
$$A = 176^{\circ}14^{\circ}18 = 115^{\circ}37^{\circ}1 = 43^{\circ}15^{\circ}1$$

ABC-type

 $\cos C = -\cos A \cos B + \sin A \sin B \cos c = 0.27422$
 $\Rightarrow C = 74^{\circ}15^{\circ}11$
 $\frac{\sin b}{\sin b} = \frac{\sin c}{\sin c} \Rightarrow \sin b = \sin b \cdot \frac{\sin c}{\sin c} = 0.64246$
 $\Rightarrow b = 39.976^{\circ} \text{ or } b = 140.02^{\circ}$
 $\Rightarrow cos = \cos b \cos c + \sin b \sin c \cos A = -0.81836$

 $\cos a = \cosh \cos c + \sinh \sin c \cos A = -0.81836$ $\rightarrow a = 1440551141$

(10e)
$$A = 128^{\circ} |9|$$
 $B = 112^{\circ} |3|$ $C = 78^{\circ} |4|$
 $ABC - type$
 $COSC = - COSACOSB + SINASINBCOSC$
 $COSC = \frac{COSC + COSACOSB}{SINASINB} = 0.60351$
 $C = 52^{\circ} 52^{\circ} 42^{\circ} 11$
 $\frac{SIND}{SIND} = \frac{SINC}{SINC} \rightarrow SIND = SIND \cdot \frac{SINC}{SINC} = 131.000$
 $C = 48.939^{\circ} \quad Or \quad b = 131.000$
 $C = 131^{\circ} 3^{\circ} 41^{\circ} 11$
 $C = 131^{\circ} 3^{\circ} 41^{\circ} 11$
 $C = 131^{\circ} 3^{\circ} 41^{\circ} 11$

 $\cos a = \cosh \cos c + \sinh \sin c \cos A = -0.76918$ $a = |40^{\circ}| |6| |49||$

(116)
$$A = 31°5', b = 78°10', c = 91°7', R = 24.2$$

COSO = COSO COS C + Sind Sinc COS A

 $Q = 0.58437 + in readions$

(11a)
$$A=60^{\circ}$$
 $B=70^{\circ}$ $C=100^{\circ}$ $R=90$

$$co_1A = -co_3b_{co_3}C + sinb_{sin}C_{co_3}q$$

$$co_3A + co_3b_{co_3}C = 0.47612$$

$$co_3A + co_3b_{co_3}C = 0.47612$$