- 1. Биссектриса угла A треугольника ABC пересекает его описанную окружность в точке L. Докажите, что BL = CL.
- 2. Биссектрисы треугольника ABC пересекают описанную окружность (ABC) в точках A_1, B_4, C_4 . Докажите, что высоты треугольника $A_1B_1C_4$ лежат на прямых AA_1, BB_1, CC_4 .
- 3. Точки A, B, C, D лежат на окружности. Точки M, N, K, L середины дуг AB, BC, CD, DA соответственно. Докажите, что $MK \perp NL$.
- 4. (Лемма Фусса) Окружности ω_1 и ω_2 пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность ω_1 в точке A_1 и окружность ω_2 в точке A_2 . Точки B_1 и B_2 для прямой через точку B определяются аналогично. Докажите, что $A_1B_1 \parallel A_2B_2$.
- 5. В трапеции ABCD проведена окружность ω , проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности ω .
- 6. В остроугольном треугольнике ABC на высоте, проведённой из вершины A, выбрана точка P. Пусть B_4 и C_4 проекции точки P на прямые AC и AB соответственно.
 - (a) Докажите, что точки B, C, B_1 , C_1 концикличны.
 - (b)* Докажите, что отрезок, соединяющий проекции точек B_1 и C_1 , на прямые AB и AC соответственно, параллелен стороне BC.
- 7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки C_1 , B_1 и A_1 соответственно. Докажите, что окружности (AB_1C_1) , (A_1BC_1) и (A_1B_1C) пересекаются в одной точке.
 - (b)* (Точка Микеля четырехсторонника) На плоскости даны четыре прямые общего положения. Эти прямые образуют 4 треугольника. Докажите, что описанные окружности этих треугольников пересекаются в одной точке.
- 8. В треугольнике ABC точки B_1 и C_1 основания высот, проведенных из вершин B и C соответственно. Точка D проекция точки B_1 на сторону AB, точка E пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB_1 . Докажите, что $EC_1 \perp BB_1$.
- 9. На гипотенузе *AC* прямоугольного треугольника *ABC* во внешнюю сторону построен квадрат с центром в точке *O*. Докажите, что *BO* биссектриса угла *ABC*.
- 10. В треугольнике ABC угол A равен 60° . Биссектрисы треугольника BB_4 и CC_4 пересекаются в точке I. Докажите, что $IB_4 = IC_4$.
- 11. Прямая ℓ касается описанной окружности треугольника ABC в точке B. Точки A_1 и C_4 проекции точки $P \in \ell$ на прямые AB и BC соответственно. Докажите, что $A_1C_1 \perp AC$.
- 12. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ касается окружностей ω_1 и ω_2 в точках P и Q соответственно (точка B^1 лежит внутри треугольника APQ). Прямая BP вторично пересекает ω_2 в точке \mathcal{T} . Докажите, что AQ биссектриса угла $\mathcal{L}PA\mathcal{T}$.

 $^{^{1}}$ Точка $\mathcal B$ называется точкой Шалтая треугольника APQ.