

Chapter 3. Vectors of Random Variables

Nguyễn Văn Hạnh Department of Applied Mathematics School of Applied Mathematics and Informatics

First semester, 2023-2024

Contents

- Joint probability distrubutions
- Marginal probability distribution
- Conditional probability distribution
- Independence
- Examples
- 6 Covariance matrix and correlation
- Examples

 In practice, it is often necessary to consider some different variables at the same time that are related and lead to the concept of a vector of random variables.

- In practice, it is often necessary to consider some different variables at the same time that are related and lead to the concept of a vector of random variables.
- Studying each variable separately may give incomplete information.

- In practice, it is often necessary to consider some different variables at the same time that are related and lead to the concept of a vector of random variables.
- Studying each variable separately may give incomplete information.
- For example: when we observed the characteristics of a machine, we are interested in some different variables at the same time, such as the weight, size, quality, material, . . .

• For simplicity, we study two-dimensional random variables (X, Y), where X and Y are one-dimensional variables.

- For simplicity, we study two-dimensional random variables (X, Y), where X and Y are one-dimensional variables.
- Most results can be extended easily to n-dimensional variables.

- For simplicity, we study two-dimensional random variables (X, Y), where X and Y are one-dimensional variables.
- Most results can be extended easily to n-dimensional variables.
- This chapter analyzes experiments that produce two random variables, X and Y.

- For simplicity, we study two-dimensional random variables (X, Y), where X and Y are one-dimensional variables.
- Most results can be extended easily to n-dimensional variables.
- This chapter analyzes experiments that produce two random variables, X and Y.
- If X and Y are discrete, we have a discrete two-dimensional random variable; if they are continuous, we have a continuous two-dimensional variable.

Definitions 4.1:

Let X and Y be two discrete random variables, where the range of X is $S_X = \{x_1, x_2, ..., x_n\}$ and the range of Y is $S_Y = \{y_1, y_2, ..., y_m\}$.

Definitions 4.1:

Let X and Y be two discrete random variables, where the range of X is $S_X = \{x_1, x_2, ..., x_n\}$ and the range of Y is $S_Y = \{y_1, y_2, ..., y_m\}$.

• The range of two-dimensional random variable (X, Y) is $S_{X,Y} = \{(x_i, y_j) : i = 1, ..., n; j = 1, ..., m\}.$

Definitions 4.1:

Let X and Y be two discrete random variables, where the range of X is $S_X = \{x_1, x_2, ..., x_n\}$ and the range of Y is $S_Y = \{y_1, y_2, ..., y_m\}$.

- The range of two-dimensional random variable (X, Y) is $S_{X,Y} = \{(x_i, y_j) : i = 1, ..., n; j = 1, ..., m\}.$
- The joint probability distrubution of (X, Y) is defined by the joint probability mass function (pmf):

$$f(x,y) = P(X = x, Y = y) = \begin{cases} p_{ij} & \text{if } x = x_i, y = y_j, \\ 0 & \text{otherwise} \end{cases}$$

such that $p_{ij} \geq 0 \forall i, j$ and $\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} = 1$.

Definitions 4.1:

• The joint probability distrubution of two-dimensional discrete random variable (X, Y) is also given by the following table:

	<i>y</i> ₁	<i>y</i> ₂		Уј		Уm
<i>x</i> ₁	p_{11}	p_{12}		p_{1j}		p_{1m}
<i>x</i> ₂	p_{21}	p_{22}		p_{2j}		p_{2m}
	•	•		•		
	•	•	•••	•	• • •	
	•	•	•••	•	•••	
x _i	p_{i1}	p_{i2}	•••	p_{ij}	•••	p_{im}
	•	•	•••	•	•••	
	•	•	•••	•	•••	
	•	•		•		
Xn	p_{n1}	p_{n2}		p_{nj}		p_{nm}

Definitions 4.2:

Let X and Y be two continuous random variables. The joint probability distrubution of (X,Y) is defined by the joint probability density function (pdf) f(x,y) that satisfies the following requirements:

Definitions 4.2:

Let X and Y be two continuous random variables. The joint probability distrubution of (X, Y) is defined by the joint probability density function (pdf) f(x, y) that satisfies the following requirements:

• For all $(x, y) \in R^2 : f(x, y) \ge 0$.

Definitions 4.2:

Let X and Y be two continuous random variables. The joint probability distrubution of (X, Y) is defined by the joint probability density function (pdf) f(x, y) that satisfies the following requirements:

- For all $(x, y) \in R^2 : f(x, y) \ge 0$.
- $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$.

Definitions 4.2:

Let X and Y be two continuous random variables. The joint probability distrubution of (X, Y) is defined by the joint probability density function (pdf) f(x, y) that satisfies the following requirements:

- For all $(x, y) \in R^2 : f(x, y) \ge 0$.
- $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$.
- For $D \subset R^2$: $P[(X,Y) \in D] = \int \int_D f(x,y) dx dy$.

Definitions 4.3:

Let (X, Y) be a two-dimensional random variable. The joint cumulative distribution function (cdf) of (X, Y) is defined by:

$$F(x, y) = P(X < x, Y < y), \forall (x, y) \in \mathbb{R}^{2}.$$

Definitions 4.3:

Let (X, Y) be a two-dimensional random variable. The joint cumulative distribution function (cdf) of (X, Y) is defined by:

$$F(x, y) = P(X < x, Y < y), \forall (x, y) \in \mathbb{R}^2.$$

• If (X, Y) is discrete then $F(x, y) = \sum_{x_i < x} \sum_{y_i < y} P(X = x_i, Y = y_i)$.

Definitions 4.3:

Let (X, Y) be a two-dimensional random variable. The joint cumulative distribution function (cdf) of (X, Y) is defined by:

$$F(x,y) = P(X < x, Y < y), \forall (x,y) \in R^2.$$

- If (X, Y) is discrete then $F(x, y) = \sum_{x_i < x} \sum_{y_i < y} P(X = x_i, Y = y_j)$.
- If (X, Y) is continuous then $F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv$.

Definitions 4.4:

Let (X, Y) be a two-dimensional discrete random variable with the joint pmf

$$f(x,y) = P(X = x, Y = y) = \begin{cases} p_{ij} & \text{if } (x,y) = (x_i, y_j), \\ 0 & \text{otherwise} \end{cases}$$

Definitions 4.4:

Let (X, Y) be a two-dimensional discrete random variable with the joint pmf

$$f(x,y) = P(X = x, Y = y) = \begin{cases} p_{ij} & \text{if } (x,y) = (x_i, y_j), \\ 0 & \text{otherwise} \end{cases}$$

The marginal probability distribution of X is the defined by:

where
$$p_{i.} = \sum_{j=1}^{m} p_{ij}, i = 1, ..., n$$
.

Definitions 4.4:

Let (X, Y) be a two-dimensional discrete random variable with the joint pmf

$$f(x,y) = P(X = x, Y = y) = \begin{cases} p_{ij} & \text{if } (x,y) = (x_i, y_j), \\ 0 & \text{otherwise} \end{cases}$$

The marginal probability distribution of X is the defined by:

where
$$p_{i.} = \sum_{j=1}^{m} p_{ij}, i = 1, ..., n.$$

The marginal probability distribution of Y is the defined by:

where $p_{.j} = \sum_{i=1}^{n} p_{ij}, j = 1, ..., m$.

Definitions 4.4:

• The marginal probability distrubution of X and of Y:

	<i>y</i> ₁	<i>y</i> ₂		Уј		Уm	$P(x_i)$
<i>x</i> ₁	p_{11}	p_{12}		p_{1j}		p_{1m}	p_1 .
<i>x</i> ₂	p_{21}	p_{22}		p_{2j}		p_{2m}	p_{2} .
		•	•••	•			
•	•	•	•••	•			
•		•		•			
Xi	p_{i1}	p_{i2}		p_{ij}		p_{im}	p_i .
•	•	•	•••	•			
		•	•••	•	•••		
•	•	•	•••	•			.
Xn	p_{n1}	p_{n2}		p_{nj}		p_{nm}	p_n .
$P(y_j)$	$p_{\cdot 1}$	$p_{.2}$		$p_{.j}$		$p_{\cdot m}$	1

Definitions 4.5:

Let (X, Y) be a two-dimensional continuous random variable with the joint pdf f(x, y).

 The marginal probability distribution of X is the defined by the marginal pdf:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy.$$

Definitions 4.5:

Let (X, Y) be a two-dimensional continuous random variable with the joint pdf f(x, y).

 The marginal probability distribution of X is the defined by the marginal pdf:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy.$$

• The marginal probability distribution of *Y* is the defined by the marginal pdf:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx.$$

Definitions 4.6:

Let (X, Y) be a two-dimensional discrete random variable with the joint pmf

$$f(x,y) = P(X = x, Y = y) = \begin{cases} p_{ij} & \text{if } (x,y) = (x_i, y_j), \\ 0 & \text{otherwise} \end{cases}$$

Definitions 4.6:

Let (X, Y) be a two-dimensional discrete random variable with the joint pmf

$$f(x,y) = P(X = x, Y = y) = \begin{cases} p_{ij} & \text{if } (x,y) = (x_i, y_j), \\ 0 & \text{otherwise} \end{cases}$$

• The conditional probability distribution of X given that $Y = y_j$ is defined by:

since

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{ij}}, i = 1, ..., n$$

Definitions 4.7:

Let (X, Y) be a two-dimensional discrete random variable with the joint pmf

$$f(x,y) = P(X = x, Y = y) = \begin{cases} p_{ij} & \text{if } (x,y) = (x_i, y_j), \\ 0 & \text{otherwise} \end{cases}$$

• The conditional probability distribution of Y given that $X = x_i$ is defined by:

$Y X=x_i$	<i>y</i> ₁	<i>y</i> 2	 Уј	 Ут
Р	p_{i1}/p_{i}	p_{i2}/p_{i} .	 p_{ij}/p_{i} .	 p_{im}/p_{i} .

since

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i.}}, j = 1, ..., m$$

Definitions 4.7:

Let (X, Y) be a two-dimensional continuous random variable with the joint pdf f(x, y).

 The conditional probability distribution of X givent that Y = y is defined by conditional pdf:

$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}.$$

Definitions 4.7:

Let (X, Y) be a two-dimensional continuous random variable with the joint pdf f(x, y).

 The conditional probability distribution of X givent that Y = y is defined by conditional pdf:

$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}.$$

 The conditional probability distribution of Y givent that X = x is defined by conditional pdf:

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}.$$

Independence

Definitions 4.8:

• Let (X, Y) be a two-dimensional discrete random variable with the joint pmf f(x, y). X and Y are called independent if and only if:

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

for all i = 1, ..., n; j = 1, ..., m.

Independence

Definitions 4.8:

• Let (X, Y) be a two-dimensional discrete random variable with the joint pmf f(x, y). X and Y are called independent if and only if:

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

for all i = 1, ..., n; j = 1, ..., m.

• Let (X, Y) be a two-dimensional continuous random variable with the joint pdf f(x, y). X and Y are called independent if and only if:

$$f(x,y) = f_X(x)f_Y(y)$$

for all $(x, y) \in \mathbb{R}^2$.

Examples

Example 4.1:

Let X be the number of accidents per day and Y be the number of injured or dead people per day at a small town. We observed X and Y during a period of 100 days and obtained the following data:

$X \setminus Y$	0	1	2	3
0	8	0	0	0
1	22	9	1	0
2	20	10	3	1
3	8	5	2	1
4	4	3	2	1

Examples

Example 4.1:

Let X be the number of accidents per day and Y be the number of injured or dead people per day at a small town.

- Find the joint probability distribution of (X, Y).
- \bullet Find the marginal probability distribution of X and of Y.
- Find the conditional probability distribution of X given that Y=2.
- Find the conditional probability distribution of Y given that X=2.
- Are X and Y independent?

Examples

Solution of Example 4.1:

The joint probability distribution of (X, Y) is the following table:

$X \setminus Y$	0	1	2	3
0	0.08	0	0	0
1	0.22	0.09	0.01	0
2	0.2	0.1	0.03	0.01
3	0.08	0.05	0.02	0.01
4	0.04	0.03	0.02	0.01

Solution of Example 4.1:

To find the marginal probability distributions of X and of Y, we add the probabilities by rows and by columns:

$X \setminus Y$	0	1	2	3	$P(x_i)$
0	0.08	0	0	0	0.08
1	0.22	0.09	0.01	0	0.32
2	0.2	0.1	0.03	0.01	0.34
3	0.08	0.05	0.02	0.01	0.16
4	0.04	0.03	0.02	0.01	0.1
$P(y_j)$	0.62	0.27	0.08	0.03	1

Solution of Example 4.1:

• The marginal probability distribution of *X* is the following table:

X	0	1	2	3	4
Р	0.08	0.32	0.34	0.16	0.1

Solution of Example 4.1:

• The marginal probability distribution of *X* is the following table:

X	0	1	2	3	4
Р	0.08	0.32	0.34	0.16	0.1

• The marginal probability distribution of *Y* is the following table:

X	0	1	2	3
Р	0.62	0.27	0.08	0.03

Solution of Example 4.1:

• The conditional probability distribution of X given that Y=2 is the following table:

X Y=2	0	1	2	3	4
Р	0	1/8	3/8	2/8	2/8

Solution of Example 4.1:

• The conditional probability distribution of X given that Y=2 is the following table:

X Y=2	0	1	2	3	4
Р	0	1/8	3/8	2/8	2/8

• The conditional probability distribution of Y given that X=2 is the following table:

Y X=2	0	1	2	3
Р	20/34	10/34	3/34	1/34

Solution of Example 4.1:

• The conditional probability distribution of X given that Y=2 is the following table:

X Y=2	0	1	2	3	4
Р	0	1/8	3/8	2/8	2/8

• The conditional probability distribution of Y given that X=2 is the following table:

Y X=2	0	1	2	3
P	20/34	10/34	3/34	1/34

• Since $0.08 = P(X = 0, Y = 0) \neq P(X = 0)P(Y = 0) = 0.08 * 0.62 = 0.0496$ then X and Y are not independent.

Example 4.2:

Suppose that the two-dimensional continuous random variable (X, Y) has the following joint pdf:

$$f(x,y) = \begin{cases} Cxy & \text{if } 0 \le x \le 4; 1 \le y \le 5, \\ 0 & \text{otherwise} \end{cases}$$

- Find the normalizing constant C.
- ullet Find the marginal probability distribution of X and of Y.
- Find the conditional probability distribution of X given that Y = 2.
- Find the conditional probability distribution of Y given that X=2.
- Are X and Y independent?

Solution of Example 4.2:

Find the normalizing constant C.

• Since f(x,y) is a joint pdf then $f(x,y) \ge 0, \forall (x,y) \in R^2 \Leftrightarrow C \ge 0$.

Solution of Example 4.2:

Find the normalizing constant C.

- Since f(x,y) is a joint pdf then $f(x,y) \ge 0, \forall (x,y) \in R^2 \Leftrightarrow C \ge 0$.
- And $\int \int_{R^2} f(x,y) dx dy = \int_0^4 \int_1^5 Cxy dx dy = C \int_0^4 \left(x \int_1^5 y dy \right) dx = 96C = 1$, so C = 1/96.

Solution of Example 4.2:

Find the normalizing constant C.

- Since f(x,y) is a joint pdf then $f(x,y) \ge 0, \forall (x,y) \in R^2 \Leftrightarrow C \ge 0$.
- And $\int \int_{R^2} f(x,y) dx dy = \int_0^4 \int_1^5 Cxy dx dy = C \int_0^4 \left(x \int_1^5 y dy \right) dx = 96C = 1$, so C = 1/96.
- Then

$$f(x,y) = \begin{cases} \frac{1}{96}xy & \text{if } 0 \le x \le 4; 1 \le y \le 5, \\ 0 & \text{otherwise} \end{cases}$$

Solution of Example 4.2:

Find the marginal probability distribution of X.

• The marginal pdf of X is $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$.

Solution of Example 4.2:

Find the marginal probability distribution of X.

- The marginal pdf of X is $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$.
- If $x \notin [0, 4]$ then $f_X(x) = \int_{-\infty}^{+\infty} 0 dy = 0$.

Solution of Example 4.2:

Find the marginal probability distribution of X.

- The marginal pdf of X is $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$.
- If $x \notin [0, 4]$ then $f_X(x) = \int_{-\infty}^{+\infty} 0 dy = 0$.
- If $x \in [0,4]$ then $f_X(x) = \int_{-\infty}^1 0 dy + \int_1^5 \frac{1}{96} xy dy + \int_5^{+\infty} 0 dy = \frac{1}{8} x$.

Solution of Example 4.2:

Find the marginal probability distribution of X.

- The marginal pdf of X is $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$.
- If $x \notin [0, 4]$ then $f_X(x) = \int_{-\infty}^{+\infty} 0 dy = 0$.
- If $x \in [0,4]$ then $f_X(x) = \int_{-\infty}^1 0 dy + \int_1^5 \frac{1}{96} xy dy + \int_5^{+\infty} 0 dy = \frac{1}{8} x$.
- Then

$$f_X(x) = \begin{cases} \frac{1}{8}x & \text{if } 0 \le x \le 4, \\ 0 & \text{otherwise} \end{cases}$$

Solution of Example 4.2:

Find the marginal probability distribution of Y.

• The marginal pdf of Y is $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$.

Solution of Example 4.2:

Find the marginal probability distribution of Y.

- The marginal pdf of Y is $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$.
- If $y \notin [1,5]$ then $f_Y(y) = \int_{-\infty}^{+\infty} 0 dx = 0$.

Solution of Example 4.2:

Find the marginal probability distribution of Y.

- The marginal pdf of Y is $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$.
- If $y \notin [1, 5]$ then $f_Y(y) = \int_{-\infty}^{+\infty} 0 dx = 0$.
- If $y \in [1,5]$ then $f_Y(y) = \int_{-\infty}^0 0 dx + \int_0^4 \frac{1}{96} xy dx + \int_4^{+\infty} 0 dx = \frac{1}{12} y$.

Solution of Example 4.2:

Find the marginal probability distribution of Y.

- The marginal pdf of Y is $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$.
- If $y \notin [1, 5]$ then $f_Y(y) = \int_{-\infty}^{+\infty} 0 dx = 0$.
- If $y \in [1,5]$ then $f_Y(y) = \int_{-\infty}^0 0 dx + \int_0^4 \frac{1}{96} xy dx + \int_4^{+\infty} 0 dx = \frac{1}{12} y$.
- Then

$$f_Y(y) = \begin{cases} \frac{1}{12}y & \text{if } 1 \leq y \leq 5, \\ 0 & \text{otherwise} \end{cases}$$

Solution of Example 4.2:

Find the conditional probability distribution of X given that Y=2.

• The conditional pdf of X given that Y = 2 is

$$f_{X|Y=2}(x) = \frac{f(x,2)}{f_Y(2)} = \begin{cases} \frac{(1/96)x \cdot 2}{2/12} = \frac{1}{8}x \text{ if } 0 \le x \le 4, \\ \frac{0}{2/12} = 0 \text{ otherwise} \end{cases}$$

Solution of Example 4.2:

Find the conditional probability distribution of Y given that X=2.

• The conditional pdf of Y given that X = 2 is

$$f_{Y|X=2}(y) = \frac{f(2,y)}{f_X(2)} = \begin{cases} \frac{(1/96)2y}{2/8} = \frac{1}{12}y \text{ if } 1 \le y \le 5, \\ \frac{0}{2/8} = 0 \text{ otherwise} \end{cases}$$

Solution of Example 4.2:

Find the conditional probability distribution of Y given that X = 2.

• The conditional pdf of Y given that X = 2 is

$$f_{Y|X=2}(y) = \frac{f(2,y)}{f_X(2)} = \begin{cases} \frac{(1/96)2y}{2/8} = \frac{1}{12}y & \text{if } 1 \le y \le 5, \\ \frac{0}{2/8} = 0 & \text{otherwise} \end{cases}$$

Are X and Y independent?

• Since $f(x,y) = f_X(x)f_Y(y), \forall (x,y) \in \mathbb{R}^2$ then X and Y are independent.

Functions of random vectors

Let (X, Y) be a two-dimensional random variable and $g: R^2 \to R$ be a function. The random variable Z is defined by Z = g(X, Y). Then

• $E(Z) = E[g(X, Y)] = \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_i, y_j) p_{ij}$ if (X, Y) is discrete.

Functions of random vectors

Let (X, Y) be a two-dimensional random variable and $g: R^2 \to R$ be a function. The random variable Z is defined by Z = g(X, Y). Then

- $E(Z) = E[g(X, Y)] = \sum_{i=1}^{n} \sum_{j=1}^{m} g(x_i, y_j) p_{ij}$ if (X, Y) is discrete.
- and $E(Z) = E[g(X, Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dxdy$ if (X, Y) is continuous.

Definitions 4.9:

Let (X, Y) be a two-dimensional random variable. The covariance of (X, Y) is defined by:

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

Definitions 4.9:

Let (X, Y) be a two-dimensional random variable. The covariance of (X, Y) is defined by:

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

where

- $E(X) = \sum_{i=1}^{n} x_i p_{i\cdot} = \sum_{i=1}^{n} \sum_{i=1}^{m} x_i p_{ij\cdot}$
- $E(Y) = \sum_{j=1}^{m} y_j p_{j,j} = \sum_{i=1}^{n} \sum_{j=1}^{m} y_j p_{ij}$
- $E(XY) = \sum_{i=1}^n \sum_{j=1}^m x_i y_j p_{ij}$,

if (X, Y) is discrete.

Definitions 4.9:

Let (X, Y) be a two-dimensional random variable. The covariance of (X, Y) is defined by:

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

Definitions 4.9:

Let (X, Y) be a two-dimensional random variable. The covariance of (X, Y) is defined by:

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

where

- $E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy$,
- $E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x, y) dx dy$,
- $E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x,y)dxdy$,

if (X, Y) is continuous.

Properties:

• If X and Y are independent then cov(X, Y) = 0, but the opposite is not always true.

- If X and Y are independent then cov(X, Y) = 0, but the opposite is not always true.
- If $cov(X, Y) \neq 0$ then X and Y are called to be related and if cov(X, Y) = 0 then X and Y are not related.

Covariance matrix

Definitions 4.10:

Let (X, Y) be a two-dimensional random variable. The covariance matrix of (X, Y) is defined by:

$$\Gamma(X,Y) = \begin{bmatrix} V(X) & cov(X,Y) \\ cov(Y,X) & V(Y) \end{bmatrix}$$

where cov(Y, X) = cov(X, Y).

Definitions 4.11:

Let (X, Y) be a two-dimensional random variable. The coefficient of correlation between X and Y is defined by:

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}}.$$

Definitions 4.11:

Let (X, Y) be a two-dimensional random variable. The coefficient of correlation between X and Y is defined by:

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}}.$$

Properties:

• If X and Y are independent then $\rho(X, Y) = 0$, but the opposite is not always true.

Definitions 4.11:

Let (X, Y) be a two-dimensional random variable. The coefficient of correlation between X and Y is defined by:

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}}.$$

- If X and Y are independent then $\rho(X, Y) = 0$, but the opposite is not always true.
- If $\rho(X, Y) \neq 0$ then X and Y are related and if $\rho(X, Y) = 0$ then X and Y are not related.

Definitions 4.11:

Let (X, Y) be a two-dimensional random variable. The coefficient of correlation between X and Y is defined by:

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}}.$$

- If X and Y are independent then $\rho(X, Y) = 0$, but the opposite is not always true.
- If $\rho(X, Y) \neq 0$ then X and Y are related and if $\rho(X, Y) = 0$ then X and Y are not related.
- The range of $\rho(X, Y)$ is [-1, 1]: $-1 \le \rho(X, Y) \le 1$.

Definitions 4.11:

Let (X, Y) be a two-dimensional random variable. The coefficient of correlation between X and Y is defined by:

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}}.$$

- If X and Y are independent then $\rho(X, Y) = 0$, but the opposite is not always true.
- If $\rho(X, Y) \neq 0$ then X and Y are related and if $\rho(X, Y) = 0$ then X and Y are not related.
- The range of $\rho(X, Y)$ is [-1, 1]: $-1 \le \rho(X, Y) \le 1$.
- If Y = a + bX with b > 0 then $\rho(X, Y) = 1$ and if Y = a + bX with b < 0 then $\rho(X, Y) = -1$.

Example 4.3:

Let X be the number of accidents per day and Y be the number of injured or dead people per day at a small town. We observed X and Y during a period of 100 days and obtained the following data:

$X \setminus Y$	0	1	2	3
0	8	0	0	0
1	22	9	1	0
2	20	10	3	1
3	8	5	2	1
4	4	3	2	1

- Find the covariance matrix of (X, Y).
- Find the coefficient of correlation between X and Y.
- Are X and Y related?

Solution of Example 4.3:

Find the covariance matrix of (X, Y).

•
$$E(XY) = 0 * 0 * 0.08 + 1 * 0 * 0.22 + ... + 4 * 3 * 0.01 = 1.25$$

Solution of Example 4.3:

Find the covariance matrix of (X, Y).

•
$$E(XY) = 0 * 0 * 0.08 + 1 * 0 * 0.22 + ... + 4 * 3 * 0.01 = 1.25$$

Then

• The covariance of (X, Y) is cov(X, Y) = E(XY) - E(X)E(Y) = 0.2724

Solution of Example 4.3:

Find the covariance matrix of (X, Y).

•
$$E(XY) = 0 * 0 * 0.08 + 1 * 0 * 0.22 + ... + 4 * 3 * 0.01 = 1.25$$

Then

- The covariance of (X, Y) is cov(X, Y) = E(XY) E(X)E(Y) = 0.2724
- The covariance matrix of (X, Y) is

$$\Gamma(X,Y) = \begin{bmatrix} V(X) & cov(X,Y) \\ cov(Y,X) & V(Y) \end{bmatrix} = \begin{bmatrix} 1.1856 & 0.2724 \\ 0.2724 & 0.5896 \end{bmatrix}$$

Solution of Example 4.3:

Find the coefficient of correlation between X and Y.

• The coefficient of correlation between X and Y is

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{0.2724}{\sqrt{1.1856 * 0.5896}} = 0.823$$

Solution of Example 4.3:

Find the coefficient of correlation between X and Y.

• The coefficient of correlation between X and Y is

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{0.2724}{\sqrt{1.1856 * 0.5896}} = 0.823$$

Are X and Y related?

• Since $\rho(X,Y) = 0.823 \neq 0$ then X and Y are related and since $\rho(X,Y) = 0.823$ is close to 1, then X and Y have a strong positive linear relationship.

Example 4.4:

Suppose that the two-dimensional continuous random variable (X, Y) has the following joint pdf:

$$f(x,y) = \begin{cases} \frac{1}{96}xy & \text{if } 0 \le x \le 4; 1 \le y \le 5, \\ 0 & \text{otherwise} \end{cases}$$

- Find the covariance matrix of (X, Y).
- Find the coefficient of correlation between X and Y.
- Are X and Y related?

Solution of Example 4.4:

•
$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^4 \frac{1}{8} x^2 dx = \frac{8}{3}$$

Solution of Example 4.4:

- $\mu_X = E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^4 \frac{1}{8} x^2 dx = \frac{8}{3}$
- $V(X) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx \mu_X^2 = \int_0^4 \frac{1}{8} x^3 dx (8/3)^2 = \frac{8}{9}$

Solution of Example 4.4:

•
$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^4 \frac{1}{8} x^2 dx = \frac{8}{3}$$

•
$$V(X) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx - \mu_X^2 = \int_0^4 \frac{1}{8} x^3 dx - (8/3)^2 = \frac{8}{9}$$

•
$$\mu_Y = E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_1^5 \frac{1}{12} y^2 dy = \frac{31}{9}$$
.

Solution of Example 4.4:

•
$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^4 \frac{1}{8} x^2 dx = \frac{8}{3}$$

•
$$V(X) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx - \mu_X^2 = \int_0^4 \frac{1}{8} x^3 dx - (8/3)^2 = \frac{8}{9}$$

•
$$\mu_Y = E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_1^5 \frac{1}{12} y^2 dy = \frac{31}{9}$$
.

•
$$V(Y) = \int_{-\infty}^{+\infty} y^2 f_Y(y) dy - \mu_Y^2 = \int_1^5 \frac{1}{12} y^3 dy - (31/9)^2 = \frac{92}{81}$$
.

Solution of Example 4.4:

•
$$\mu_X = E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^4 \frac{1}{8} x^2 dx = \frac{8}{3}$$

•
$$V(X) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx - \mu_X^2 = \int_0^4 \frac{1}{8} x^3 dx - (8/3)^2 = \frac{8}{9}$$

•
$$\mu_Y = E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_1^5 \frac{1}{12} y^2 dy = \frac{31}{9}$$
.

•
$$V(Y) = \int_{-\infty}^{+\infty} y^2 f_Y(y) dy - \mu_Y^2 = \int_1^5 \frac{1}{12} y^3 dy - (31/9)^2 = \frac{92}{81}$$
.

•
$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x, y) dxdy = \frac{1}{96} \int_{0}^{4} \int_{1}^{5} x^{2}y^{2} dxdy = \frac{248}{27}$$

Solution of Example 4.4:

Then

• The covariance of (X, Y) is $cov(X, Y) = E(XY) - E(X)E(Y) = \frac{248}{27} - \frac{8}{3}\frac{31}{9} = 0.$

Solution of Example 4.4:

Then

- The covariance of (X, Y) is $cov(X, Y) = E(XY) E(X)E(Y) = \frac{248}{27} \frac{8}{3}\frac{31}{9} = 0.$
- The covariance matrix of (X, Y) is

$$\Gamma(X,Y) = \begin{bmatrix} V(X) & cov(X,Y) \\ cov(Y,X) & V(Y) \end{bmatrix} = \begin{bmatrix} \frac{8}{9} & 0 \\ 0 & \frac{92}{81} \end{bmatrix}$$

Solution of Example 4.4:

• The coefficient of correlation between X and Y is

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{0}{\sqrt{(8/9)(92/81)}} = 0$$

Solution of Example 4.4:

• The coefficient of correlation between X and Y is

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{0}{\sqrt{(8/9)(92/81)}} = 0$$

Are X and Y related?

• Since $\rho = 0$ then X and Y are not related.