Connections between generalised Baire spaces and model theory

Miguel Moreno Kurt Gödel Research Center for Mathematical Logic University of Vienna

Fifth Workshop on Generalised Baire Spaces

3 February 2020

Outline

- 1 Borel* sets
- 2 The isomorphism relation
- 3 Classifiable theories in the Borel hierarchy
- 4 The division line Classifiable vs Unclassifiable

Outline

- 1 Borel* sets
- 2 The isomorphism relation
- 3 Classifiable theories in the Borel hierarchy
- 4 The division line Classifiable vs Unclassifiable

Borel and Δ_1^1 Sets

Definition

The collection of Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

Borel and Δ_1^1 Sets

Definition

The collection of Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

Definition

 $A\subseteq \kappa^{\kappa}$ is an analytic if there is a closed subset F of the product space $\kappa^{\kappa}\times\kappa^{\kappa}$ such that its projection $\operatorname{pr}(F)=\{\eta\in\kappa^{\kappa}\mid\exists\xi\in\kappa^{\kappa}\;(\eta,\xi)\in F\}$ is equal to A.

Borel and Δ_1^1 Sets

Definition

The collection of Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

Definition

 $A \subseteq \kappa^{\kappa}$ is an analytic if there is a closed subset F of the product space $\kappa^{\kappa} \times \kappa^{\kappa}$ such that its projection $pr(F) = \{ \eta \in \kappa^{\kappa} \mid \exists \xi \in \kappa^{\kappa} \ (\eta, \xi) \in F \}$ is equal to A.

Definition

 $A \subseteq \kappa^{\kappa}$ is a Δ_1^1 set if A and $\kappa^{\kappa} \setminus A$ are analytic sets.

Borel*-code

• A tree T is a κ^+, λ -tree if does not contain chains of length λ and its cardinality is less than κ^+ . It is *closed* if every chain has a unique supremum.

Borel*-code

• A tree T is a κ^+, λ -tree if does not contain chains of length λ and its cardinality is less than κ^+ . It is *closed* if every chain has a unique supremum.

• A pair (T,h) is a Borel*-code if T is a closed κ^+, κ -tree and h is a function with domain T such that if $x \in T$ is a leaf, then h(x) is a basic open set and otherwise $h(x) \in \{\cup, \cap\}$.

For an element $\eta \in \kappa^{\kappa}$ and a Borel*-code (T,h), the *Borel*-game* $B^*(T,h,\eta)$ is played as follows. There are two players, **I** and **II**. The game starts from the root of T.

For an element $\eta \in \kappa^{\kappa}$ and a Borel*-code (T,h), the *Borel*-game* $B^*(T,h,\eta)$ is played as follows. There are two players, **I** and **II**. The game starts from the root of T.

At each move, if the game is at node $x \in T$ and $h(x) = \cap$, then I chooses an immediate successor y of x and the game continues from this y. If $h(x) = \cup$, then II makes the choice.

For an element $\eta \in \kappa^{\kappa}$ and a Borel*-code (T,h), the *Borel*-game* $B^*(T,h,\eta)$ is played as follows. There are two players, **I** and **II**. The game starts from the root of T.

At each move, if the game is at node $x \in T$ and $h(x) = \cap$, then I chooses an immediate successor y of x and the game continues from this y. If $h(x) = \cup$, then II makes the choice.

At limits the game continues from the (unique) supremum of the previous moves by player \mathbf{I} .

For an element $\eta \in \kappa^{\kappa}$ and a Borel*-code (T,h), the *Borel*-game* $B^*(T,h,\eta)$ is played as follows. There are two players, **I** and **II**. The game starts from the root of T.

At each move, if the game is at node $x \in T$ and $h(x) = \cap$, then I chooses an immediate successor y of x and the game continues from this y. If $h(x) = \cup$, then II makes the choice.

At limits the game continues from the (unique) supremum of the previous moves by player I.

Finally, if h(x) is a basic open set, then the game ends, and II wins if and only if $\eta \in h(x)$.

Borel* sets

Definition (Borel*)

A set $X \subseteq \kappa^{\kappa}$ is a Borel*-set if there is a Borel*-code (T,h) such that for all $\eta \in \kappa^{\kappa}$, $\eta \in X$ if and only if \blacksquare has a winning strategy in the game $B^*(T,h,\eta)$.

Borel* sets

Definition (Borel*)

A set $X \subseteq \kappa^{\kappa}$ is a Borel*-set if there is a Borel*-code (T,h) such that for all $\eta \in \kappa^{\kappa}$, $\eta \in X$ if and only if \blacksquare has a winning strategy in the game $B^*(T,h,\eta)$.

We will write $\mathbf{II} \uparrow B^*(T, h, \eta)$ when \mathbf{II} has a winning strategy in the game $B^*(T, h, \eta)$ and $\mathbf{I} \uparrow B^*(T, h, \eta)$ when \mathbf{I} has a winning strategy in the game $B^*(T, h, \eta)$.

Borel* sets

Definition (Borel*)

A set $X \subseteq \kappa^{\kappa}$ is a Borel*-set if there is a Borel*-code (T,h) such that for all $\eta \in \kappa^{\kappa}$, $\eta \in X$ if and only if II has a winning strategy in the game $B^*(T,h,\eta)$.

We will write $\mathbf{II} \uparrow B^*(T,h,\eta)$ when \mathbf{II} has a winning strategy in the game $B^*(T,h,\eta)$ and $\mathbf{I} \uparrow B^*(T,h,\eta)$ when \mathbf{I} has a winning strategy in the game $B^*(T,h,\eta)$.

Definition (Dual sets)

We say that X and Y are duals if there is a Borel*-code (T,h) such that:

$$\eta \in X \Leftrightarrow \mathbf{II} \uparrow B^*(T, h, \eta),$$

$$\eta \in Y \Leftrightarrow \mathbf{I} \uparrow B^*(T, h, \eta),$$

Separation Theorem

Theorem (Mekler-Väänänen)

Suppose A and B are disjoint analytic sets. There are Borel* sets C_0 and C_1 such that $A \subseteq C_0$ and $B \subseteq C_1$, and C_1 and C_2 are duals.

Separation Theorem

Theorem (Mekler-Väänänen)

Suppose A and B are disjoint analytic sets. There are Borel* sets C_0 and C_1 such that $A \subseteq C_0$ and $B \subseteq C_1$, and C_1 and C_2 are duals.

Fact

X is a Borel set if and only if there is a Borel*-code (T,h) coding X with T a κ^+, ω -tree.

Separation Theorem

Theorem (Mekler-Väänänen)

Suppose A and B are disjoint analytic sets. There are Borel* sets C_0 and C_1 such that $A \subseteq C_0$ and $B \subseteq C_1$, and C_1 and C_0 are duals.

Fact

X is a Borel set if and only if there is a Borel*-code (T,h) coding X with T a κ^+, ω -tree.

Corollary

• X is Δ^1_1 if and only if there is a Borel*-code (T,h) coding X such that for all η

$$\mathbf{II} \uparrow B^*(T, h, \eta) \Leftrightarrow \mathbf{I} \not \uparrow B^*(T, h, \eta).$$

• Borel $\subseteq \Delta_1^1 \subseteq Borel^*$.

Outline

1 Borel* sets

- 2 The isomorphism relation
- 3 Classifiable theories in the Borel hierarchy
- 4 The division line Classifiable vs Unclassifiable

The isomorphism relation

Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$

The isomorphism relation

Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $\eta \in \kappa^{\kappa}$ define the structure \mathcal{A}_{η} with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta}} \Leftrightarrow \eta(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

The isomorphism relation

Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $\eta \in \kappa^{\kappa}$ define the structure \mathcal{A}_{η} with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta}} \Leftrightarrow \eta(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition

Given T a first-order complete countable theory in a countable vocabulary, we say that $\eta, \xi \in \kappa^{\kappa}$ are \cong_T equivalent if

- $\mathcal{A}_{\eta} \models T, \mathcal{A}_{\xi} \models T, \mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}$ or
- $\mathcal{A}_{\eta} \nvDash T, \mathcal{A}_{\xi} \nvDash T$

• Unstable theories

- Unstable theories
- Stable unsuperstable theories

- Unstable theories
- Stable unsuperstable theories
- Superstable theories with DOP

- Unstable theories
- Stable unsuperstable theories
- Superstable theories with DOP
- Superstable theories with OTOP

- Unstable theories
- Stable unsuperstable theories
- Superstable theories with DOP
- Superstable theories with OTOP
- Superstable theories with no DOP nor OTOP

- Unstable theories
- Stable unsuperstable theories
- Superstable theories with DOP
- Superstable theories with OTOP
- Superstable theories with no DOP nor OTOP

The tools used to construct models of a theory T, strongly depends on what kind of theory is T.

Ehrenfeucht-Fraïssé Game

Let \mathcal{A} and \mathcal{B} be structures with domain κ , and $\{X_\gamma\}_{\gamma<\kappa}$ an enumeration of the elements of $\mathcal{P}_\kappa(\kappa)$ and $\{f_\gamma\}_{\gamma<\kappa}$ an enumeration for all the functions with domain in $\mathcal{P}_\kappa(\kappa)$ and range in $\mathcal{P}_\kappa(\kappa)$. The game $\mathit{EF}_\omega^\kappa(\mathcal{A},\mathcal{B})$ is played by \mathbf{I} and \mathbf{II} as follows.

Ehrenfeucht-Fraïssé Game

Let $\mathcal A$ and $\mathcal B$ be structures with domain κ , and $\{X_\gamma\}_{\gamma<\kappa}$ an enumeration of the elements of $\mathcal P_\kappa(\kappa)$ and $\{f_\gamma\}_{\gamma<\kappa}$ an enumeration for all the functions with domain in $\mathcal P_\kappa(\kappa)$ and range in $\mathcal P_\kappa(\kappa)$. The game $EF_\omega^\kappa(\mathcal A,\mathcal B)$ is played by $\mathbf I$ and $\mathbf II$ as follows.

In the *n*-th turn **I** chooses an ordinal $\beta_n < \kappa$ such that $X_{\beta_{n-1}} \subset X_{\beta_n}$, and **II** an ordinal $\theta_n < \kappa$ such that $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subset f_{\theta_n}$, the game starts with X_{β_0} and f_{θ_0} as empty sets. The game finish after ω moves.

Ehrenfeucht-Fraïssé Game

Let $\mathcal A$ and $\mathcal B$ be structures with domain κ , and $\{X_\gamma\}_{\gamma<\kappa}$ an enumeration of the elements of $\mathcal P_\kappa(\kappa)$ and $\{f_\gamma\}_{\gamma<\kappa}$ an enumeration for all the functions with domain in $\mathcal P_\kappa(\kappa)$ and range in $\mathcal P_\kappa(\kappa)$. The game $EF_\omega^\kappa(\mathcal A,\mathcal B)$ is played by $\mathbf I$ and $\mathbf II$ as follows.

In the *n*-th turn **I** chooses an ordinal $\beta_n < \kappa$ such that $X_{\beta_{n-1}} \subset X_{\beta_n}$, and **II** an ordinal $\theta_n < \kappa$ such that $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subset f_{\theta_n}$, the game starts with X_{β_0} and f_{θ_0} as empty sets. The game finish after ω moves.

The player II wins if $\bigcup_{i<\omega} f_{\theta_i}:A\to B$ is a partial isomorphism, otherwise the player I wins.

A first-order complete countable theory in a countable vocabulary is classifiable if it is a superstable theory with no DOP nor OTOP.

A first-order complete countable theory in a countable vocabulary is classifiable if it is a superstable theory with no DOP nor OTOP. We will write $\mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$ when \mathbf{II} has a winning strategy in the game $EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$.

A first-order complete countable theory in a countable vocabulary is classifiable if it is a superstable theory with no DOP nor OTOP. We will write $\mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$ when \mathbf{II} has a winning strategy in the game $EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$.

Fact

If T is a classifiable theory and A, B are models of T, then

$$\mathbf{II}\uparrow \mathit{EF}^\kappa_\omega(\mathcal{A},\mathcal{B}) \Leftrightarrow \mathcal{A}\cong \mathcal{B}.$$

A first-order complete countable theory in a countable vocabulary is classifiable if it is a superstable theory with no DOP nor OTOP. We will write $\mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$ when \mathbf{II} has a winning strategy in the game $EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$.

Fact

If T is a classifiable theory and A, $\mathcal B$ are models of T, then

$$\mathbf{H} \uparrow \mathit{EF}^{\kappa}_{\omega}(\mathcal{A},\mathcal{B}) \Leftrightarrow \mathcal{A} \cong \mathcal{B}.$$

Theorem (Friedman-Hyttinen-Kulikov)

If T is a classifiable theory, then \cong_T is Δ^1_1 . Moreover, if T is classifiable not shallow, then \cong_T is not Borel.

A first-order complete countable theory in a countable vocabulary is classifiable if it is a superstable theory with no DOP nor OTOP. We will write $\mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$ when \mathbf{II} has a winning strategy in the game $EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B})$.

Fact

If T is a classifiable theory and A, $\mathcal B$ are models of T, then

$$\mathbf{H} \uparrow \mathit{EF}^{\kappa}_{\omega}(\mathcal{A},\mathcal{B}) \Leftrightarrow \mathcal{A} \cong \mathcal{B}.$$

Theorem (Friedman-Hyttinen-Kulikov)

If T is a classifiable theory, then \cong_T is Δ^1_1 . Moreover, if T is classifiable not shallow, then \cong_T is not Borel.

Corollary

Borel $\neq \Delta_1^1$.

Outline

- Borel* sets
- 2 The isomorphism relation
- 3 Classifiable theories in the Borel hierarchy
- 4 The division line Classifiable vs Unclassifiable

Reductions

A function $f \colon \kappa^{\kappa} \to \kappa^{\kappa}$ is *Borel*, if for every open set $A \subseteq \kappa^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of κ^{κ} .

Reductions

A function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ is *Borel*, if for every open set $A \subseteq \kappa^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of κ^{κ} .

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is Borel reducible to E_2 , if there is a Borel function $f: \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$.

Reductions

A function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ is *Borel*, if for every open set $A \subseteq \kappa^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of κ^{κ} .

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is Borel reducible to E_2 , if there is a Borel function $f: \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$.

We write $E_1 \hookrightarrow_B E_2$ and we say that E_1 is as most as complex as E_2 .

The Equivalence Modulo Non-stationary Ideals in GBS

Let $\lambda < \kappa$ be a regular cardinal. We say that $\eta, \xi \in \kappa^{\kappa}$ are $=_{\lambda}$ equivalent if the set $\{\alpha < \kappa | cof(\alpha) = \lambda \& \eta(\alpha) \neq \xi(\alpha)\}$ is not stationary.

The Equivalence Modulo Non-stationary Ideals in GBS

Let $\lambda < \kappa$ be a regular cardinal. We say that $\eta, \xi \in \kappa^{\kappa}$ are $=_{\lambda}$ equivalent if the set $\{\alpha < \kappa | cof(\alpha) = \lambda \& \eta(\alpha) \neq \xi(\alpha)\}$ is not stationary.

Theorem (Hyttinen-M.)

Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. Then $\cong_T \hookrightarrow_B =_{\lambda}$.

For every $\alpha < \kappa$, structures \mathcal{A} and \mathcal{B} with domain κ , the game $\mathsf{EF}^{\kappa}_{\omega}(\mathcal{A}\upharpoonright_{\alpha},\mathcal{B}\upharpoonright_{\alpha})$ is played by I and II as follows.

For every $\alpha < \kappa$, structures \mathcal{A} and \mathcal{B} with domain κ , the game $\mathsf{EF}^{\kappa}_{\omega}(\mathcal{A}\restriction_{\alpha},\mathcal{B}\restriction_{\alpha})$ is played by \mathbf{I} and \mathbf{II} as follows.

In the *n*-th turn **I** chooses an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha$, $X_{\beta_{n-1}} \subset X_{\beta_n}$, and **II** an ordinal $\theta_n < \alpha$ such that $dom(f_{\theta_n})$, $rang(f_{\theta_n}) \subset \alpha$, $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$.

For every $\alpha < \kappa$, structures \mathcal{A} and \mathcal{B} with domain κ , the game $\mathsf{EF}^{\kappa}_{\omega}(\mathcal{A}\restriction_{\alpha},\mathcal{B}\restriction_{\alpha})$ is played by \mathbf{I} and \mathbf{II} as follows.

In the *n*-th turn **I** chooses an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha$, $X_{\beta_{n-1}} \subset X_{\beta_n}$, and **II** an ordinal $\theta_n < \alpha$ such that $dom(f_{\theta_n})$, $rang(f_{\theta_n}) \subset \alpha$, $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$.

The game starts with X_{β_0} and f_{θ_0} as empty sets, and finishes when one of the players cannot choose or after ω moves.

For every $\alpha < \kappa$, structures \mathcal{A} and \mathcal{B} with domain κ , the game $\mathsf{EF}^{\kappa}_{\omega}(\mathcal{A}\restriction_{\alpha},\mathcal{B}\restriction_{\alpha})$ is played by \mathbf{I} and \mathbf{II} as follows.

In the *n*-th turn **I** chooses an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha$, $X_{\beta_{n-1}} \subset X_{\beta_n}$, and **II** an ordinal $\theta_n < \alpha$ such that $dom(f_{\theta_n})$, $rang(f_{\theta_n}) \subset \alpha$, $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$.

The game starts with X_{β_0} and f_{θ_0} as empty sets, and finishes when one of the players cannot choose or after ω moves.

The player **II** wins if $\bigcup_{i<\omega} f_{\theta_i}: A \upharpoonright_{\alpha} \to B \upharpoonright_{\alpha}$ is a partial isomorphism, otherwise the player **I** wins.

Claim

For every pair of structures, A and B with domain κ , the following holds:

- II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B}) \Longleftrightarrow II \uparrow EF^{\kappa}_{\omega}(\mathcal{A}\upharpoonright_{\alpha},\mathcal{B}\upharpoonright_{\alpha})$ for club-many α .
- $\mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Claim

For every pair of structures, A and B with domain κ , the following holds:

- II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B}) \iff$ II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A}\upharpoonright_{\alpha},\mathcal{B}\upharpoonright_{\alpha})$ for club-many α .
- $\mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Definition

Given T a first-order complete countable theory in a countable vocabulary and $\alpha \leqslant \kappa$, define the relation $R_{\mathsf{EF}}^{\alpha} \subseteq \kappa^{\kappa} \times \kappa^{\kappa}$ as η R_{EF}^{α} ξ :

Claim

For every pair of structures, A and B with domain κ , the following holds:

- II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B}) \iff$ II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A}\upharpoonright_{\alpha},\mathcal{B}\upharpoonright_{\alpha})$ for club-many α .
- $\mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Definition

Given T a first-order complete countable theory in a countable vocabulary and $\alpha \leqslant \kappa$, define the relation $R_{\mathsf{EF}}^{\alpha} \subseteq \kappa^{\kappa} \times \kappa^{\kappa}$ as η $R_{\mathsf{EF}}^{\alpha} \xi$:

• $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \nvDash T$ and $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \nvDash T$, or

Claim

For every pair of structures, A and B with domain κ , the following holds:

- II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A},\mathcal{B}) \iff$ II $\uparrow EF^{\kappa}_{\omega}(\mathcal{A}\upharpoonright_{\alpha},\mathcal{B}\upharpoonright_{\alpha})$ for club-many α .
- $\mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathbf{I} \uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Definition

Given T a first-order complete countable theory in a countable vocabulary and $\alpha \leqslant \kappa$, define the relation $R_{FF}^{\alpha} \subseteq \kappa^{\kappa} \times \kappa^{\kappa}$ as η $R_{FF}^{\alpha} \xi$:

- $A_{\eta} \upharpoonright_{\alpha} \nvDash T$ and $A_{\xi} \upharpoonright_{\alpha} \nvDash T$, or
- $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T$, $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T$ and the player \blacksquare has a winning strategy for the restricted game $\mathsf{EF}^{\kappa}_{\omega}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\xi} \upharpoonright_{\alpha})$.

Claim

For every T first-order complete countable theory in a countable vocabulary, there are club many α such that R_{EF}^{α} is an equivalence relation.

Claim

For every T first-order complete countable theory in a countable vocabulary, there are club many α such that R_{EF}^{α} is an equivalence relation.

Define the reduction as follows.

For every $\eta \in \kappa^{\kappa}$ define the function f_{η} , as:

• $f_{\eta}(\alpha)$ is a code in $\kappa \setminus \{0\}$ for the R_{EF}^{α} equivalence class for $\mathcal{A}_{\eta} \upharpoonright_{\alpha}$, when $cf(\alpha) = \lambda$, $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T$, and R_{EF}^{α} is an equivalence relation;

Claim

For every T first-order complete countable theory in a countable vocabulary, there are club many α such that R_{EF}^{α} is an equivalence relation.

Define the reduction as follows.

For every $\eta \in \kappa^{\kappa}$ define the function f_{η} , as:

- $f_{\eta}(\alpha)$ is a code in $\kappa \setminus \{0\}$ for the R_{EF}^{α} equivalence class for $\mathcal{A}_{\eta} \upharpoonright_{\alpha}$, when $cf(\alpha) = \lambda$, $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T$, and R_{EF}^{α} is an equivalence relation;
- $f_{\eta}(\alpha) = 0$ in other case.

The Cantor Space

The isomorphism relation and the equivalence modulo non-stationary ideals can be easily define in the generalised Cantor space 2^{κ} .

The Cantor Space

The isomorphism relation and the equivalence modulo non-stationary ideals can be easily define in the generalised Cantor space 2^{κ} .

$$\cong_T^2$$
 is $\cong_T \cap (2^{\kappa} \times 2^{\kappa})$
= $_{\lambda}^2$ is = $_{\lambda} \cap (2^{\kappa} \times 2^{\kappa})$

The Cantor Space

The isomorphism relation and the equivalence modulo non-stationary ideals can be easily define in the generalised Cantor space 2^{κ} .

Theorem (Hyttinen-Kulikov-M.)

Denote by S^{κ}_{λ} the set $\{\alpha < \kappa | cf(\alpha) = \lambda\}$. Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. If $\diamondsuit(S^{\kappa}_{\lambda})$ holds, then $\cong^2_T \hookrightarrow_B =^2_{\lambda}$.

Outline

Borel* sets

- 2 The isomorphism relation
- 3 Classifiable theories in the Borel hierarchy
- 4 The division line Classifiable vs Unclassifiable

Unstable

Theorem (Friedman-Hyttinen-Kulikov)

If T is unstable, then \cong_T is not Δ_1^1 .

Unstable

Theorem (Friedman-Hyttinen-Kulikov)

If T is unstable, then \cong_T is not Δ_1^1 .

Theorem (Friedman-Hyttinen-Kulikov)

Suppose
$$\kappa = \lambda^+ = 2^{\lambda}$$
 and $\lambda^{<\lambda} = \lambda$. If T is an unstable, then $=_{\lambda}^2 \hookrightarrow_{\mathcal{B}} \cong_{\mathcal{T}}^2$.

Unstable

Theorem (Friedman-Hyttinen-Kulikov)

If T is unstable, then \cong_T is not Δ_1^1 .

Theorem (Friedman-Hyttinen-Kulikov)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$. If T is an unstable, then $=_{\lambda}^2 \hookrightarrow_{\mathcal{B}} \cong_{\mathcal{T}}^2$.

Theorem (Hyttinen-Kulikov-M.)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$, $\lambda^{<\lambda} = \lambda$ and $\Diamond(S_{\lambda}^{\kappa})$ holds. If T is a classifiable theory and T' is an unstable, then $\cong_T^2 \hookrightarrow_B =_{\lambda}^2 \hookrightarrow_B \cong_{T'}^2$.

Stable unsuperstable

Question

Can it be proved in ZFC that if T is stable unsuperstable, then \cong_T is not Δ_1^1 ?

Stable unsuperstable

Question

Can it be proved in ZFC that if T is stable unsuperstable, then \cong_T is not Δ_1^1 ?

Theorem (Friedman-Hyttinen-Kulikov)

Suppose for all $\lambda < \kappa$, $\lambda^{\omega} < \kappa$. If T is a stable unsuperstable, then $=_{\omega}^{2} \hookrightarrow_{B} \cong_{T}^{2}$.

Stable unsuperstable

Question

Can it be proved in ZFC that if T is stable unsuperstable, then \cong_T is not Δ_1^1 ?

Theorem (Friedman-Hyttinen-Kulikov)

Suppose for all $\lambda < \kappa$, $\lambda^{\omega} < \kappa$. If T is a stable unsuperstable, then $=_{\omega}^{2} \hookrightarrow_{B} \cong_{T}^{2}$.

Theorem (Hyttinen-Kulikov-M.)

Suppose $\kappa = \lambda^+$ and $\lambda^\omega = \lambda$. If T is a classifiable theory and T' is a stable unsuperstable theory, then $\cong_T^2 \hookrightarrow_B =_\omega^2 \hookrightarrow_B \cong_{T'}^2$ and $\cong_{T'}^2 \hookrightarrow_B \cong_T^2$.

The Orthogonal Chain Property (OCP)

Definition

Given $p \in S(A)$ and $B \subseteq A$, we say $p \perp B$ if for every $q \in S(A)$ that doesn't fork over B the following holds; for every a, b, and $B' \supseteq A$, if a realizes p, b realizes q, $a \downarrow_A B'$ and $b \downarrow_A B'$, then $a \downarrow_{B'} b$.

The Orthogonal Chain Property (OCP)

Definition

Given $p \in S(A)$ and $B \subseteq A$, we say $p \perp B$ if for every $q \in S(A)$ that doesn't fork over B the following holds; for every a, b, and $B' \supseteq A$, if a realizes p, p realizes p.

Definition

A stable theory T has the property OCP if there exist $\lambda_r(T)$ -saturated models of T of power $\lambda_r(T)$, $\{\mathcal{A}_i\}_{i<\omega}$, and $a\notin \cup_{i<\omega}\mathcal{A}_i$ such that for all $i\leqslant j$, $\mathcal{A}_i\subseteq \mathcal{A}_j$, $t(a,\cup_{i<\omega}\mathcal{A}_i)$ is not algebraic and for all $j<\omega$, $t(a,\cup_{i<\omega}\mathcal{A}_i)\perp\mathcal{A}_j$.

The Orthogonal Chain Property (OCP)

Definition

Given $p \in S(A)$ and $B \subseteq A$, we say $p \perp B$ if for every $q \in S(A)$ that doesn't fork over B the following holds; for every a, b, and $B' \supseteq A$, if a realizes p, p realizes p.

Definition

A stable theory T has the property OCP if there exist $\lambda_r(T)$ -saturated models of T of power $\lambda_r(T)$, $\{\mathcal{A}_i\}_{i<\omega}$, and $a\notin \cup_{i<\omega}\mathcal{A}_i$ such that for all $i\leqslant j$, $\mathcal{A}_i\subseteq \mathcal{A}_j$, $t(a,\cup_{i<\omega}\mathcal{A}_i)$ is not algebraic and for all $j<\omega$, $t(a,\cup_{i<\omega}\mathcal{A}_i)\perp\mathcal{A}_j$.

Theorem (Hyttinen-M.)

Suppose T is a classifiable theory, T' is a stable theory with the OCP, and κ is an inaccessible cardinal. Then $\cong_T \hookrightarrow_B =_\omega \hookrightarrow_B \cong_{T'}$

Definition (a-isolation)

Denote by F_{ω}^{a} the set of pairs (p,A) with $|A| < \omega$, such that for some $B \supseteq A$, $p \in S(B)$, $a \models p$ and $stp(a,A) \vdash p$.

From this isolation the notions of *a*-saturated, *a*-primary, and *a*-minimal are defined.

Definition (a-isolation)

Denote by F_{ω}^{a} the set of pairs (p,A) with $|A| < \omega$, such that for some $B \supseteq A$, $p \in S(B)$, $a \models p$ and $stp(a,A) \vdash p$.

From this isolation the notions of *a*-saturated, *a*-primary, and *a*-minimal are defined.

Definition (DOP)

A theory T has the dimensional order property if there are a-saturated models $(M_i)_{i<3}$, $M_0 \subset M_1 \cap M_2$, $M_1 \downarrow_{M_0} M_2$, and the a-primary model over $M_1 \cup M_2$ is not a-minimal over $M_1 \cup M_2$.

Theorem (Friedman-Hyttinen-Kulikov)

If T is superstable with DOP and $\kappa > \omega_1$, then \cong_T is not Δ_1^1 .

Theorem (Friedman-Hyttinen-Kulikov)

If T is superstable with DOP and $\kappa > \omega_1$, then \cong_T is not Δ_1^1 .

Theorem (Friedman-Hyttinen-Kulikov)

Suppose $\kappa=\lambda^+=2^\lambda$ and $\lambda^{<\lambda}=\lambda>2^\omega$. If T is superstable with DOP, then $=^2_\lambda \hookrightarrow_{\mathcal{B}} \cong^2_{\mathcal{T}}$.

Theorem (Friedman-Hyttinen-Kulikov)

If T is superstable with DOP and $\kappa > \omega_1$, then \cong_T is not Δ_1^1 .

Theorem (Friedman-Hyttinen-Kulikov)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda > 2^{\omega}$. If T is superstable with DOP, then $= 2^{\lambda} \hookrightarrow_{\mathcal{B}} \cong_{\mathcal{T}}^2$.

Theorem (Hyttinen-Kulikov-M.)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$, $\lambda^{<\lambda} = \lambda > 2^{\omega}$ and $\diamondsuit(S_{\lambda}^{\kappa})$ holds. If T is a classifiable theory and T' is superstable with DOP, then $\cong_T^2 \hookrightarrow_B =_{\lambda}^2 \hookrightarrow_B \cong_{T'}^2$.

Definition (S-DOP)

We say that a theory T has the strong dimensional order property if the following holds:

There are a-saturated models $(M_i)_{i<3}$, $M_0 \subset M_1 \cap M_2$, such that $M_1 \downarrow_{M_0} M_2$

Superstable with S-DOP

Definition (S-DOP)

We say that a theory T has the strong dimensional order property if the following holds:

There are a-saturated models $(M_i)_{i<3}$, $M_0 \subset M_1 \cap M_2$, such that $M_1 \downarrow_{M_0} M_2$, and for every M_3 a-primary model over $M_1 \cup M_2$, there is a non-algebraic type $p \in S(M_3)$ orthogonal to M_1 and to M_2 , that does not fork over $M_1 \cup M_2$.

Superstable with S-DOP

Definition (S-DOP)

We say that a theory T has the strong dimensional order property if the following holds:

There are a-saturated models $(M_i)_{i<3}$, $M_0 \subset M_1 \cap M_2$, such that $M_1 \downarrow_{M_0} M_2$, and for every M_3 a-primary model over $M_1 \cup M_2$, there is a non-algebraic type $p \in S(M_3)$ orthogonal to M_1 and to M_2 , that does not fork over $M_1 \cup M_2$.

Theorem (M.)

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, $\lambda=(2^\omega)^+$, and κ an inaccessible cardinal. Then $\cong_T \hookrightarrow_B =_\lambda \hookrightarrow_B \cong_{T'}$

Superstable with OTOP

Theorem (Friedman-Hyttinen-Kulikov)

If T is stable with OTOP, then \cong_T is not Δ_1^1 .

Superstable with OTOP

Theorem (Friedman-Hyttinen-Kulikov)

If T is stable with OTOP, then \cong_T is not Δ_1^1 .

Theorem (Friedman-Hyttinen-Kulikov)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$. If T is superstable with OTOP, then $=_{\lambda}^2 \hookrightarrow_B \cong_T^2$.

Superstable with OTOP

Theorem (Friedman-Hyttinen-Kulikov)

If T is stable with OTOP, then \cong_T is not Δ_1^1 .

Theorem (Friedman-Hyttinen-Kulikov)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$. If T is superstable with OTOP, then $=_{\lambda}^2 \hookrightarrow_B \cong_T^2$.

Theorem (Hyttinen-Kulikov-M.)

Suppose $\kappa=\lambda^+=2^\lambda$, $\lambda^{<\lambda}=\lambda$ and $\diamondsuit(S_\lambda^\kappa)$ holds. If T is a classifiable theory and T' is superstable with OTOP, then $\cong_T^2 \hookrightarrow_B =_\lambda^2 \hookrightarrow_B \cong_{T'}^2$.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the Borel reducibility hierarchy.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

By the Borel reducibility hierarchy.

Let $H(\kappa)$ be the following property: If T is a classifiable theory and T' is not a classifiable theory, then \cong^2_T \hookrightarrow_B $\cong^2_{T'}$ and $\cong^2_{T'}$ $\not\hookrightarrow_B$ \cong^2_T .

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the Borel reducibility hierarchy.

Let $H(\kappa)$ be the following property: If T is a classifiable theory and T' is not a classifiable theory, then $\cong_T^2 \hookrightarrow_B \cong_{T'}^2$ and $\cong_{T'}^2 \not\hookrightarrow_B \cong_T^2$.

Theorem (Hyttinen-Kulikov-M.)

Suppose
$$\kappa = \lambda^+$$
, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$.

1 If S_{ω}^{κ} and S_{λ}^{κ} hold, then $H(\kappa)$ holds.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the Borel reducibility hierarchy.

Let $H(\kappa)$ be the following property: If T is a classifiable theory and T' is not a classifiable theory, then $\cong_T^2 \hookrightarrow_B \cong_{T'}^2$ and $\cong_{T'}^2 \not\hookrightarrow_B \cong_T^2$.

Theorem (Hyttinen-Kulikov-M.)

Suppose
$$\kappa = \lambda^+$$
, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$.

- 1 If S_{ω}^{κ} and S_{λ}^{κ} hold, then $H(\kappa)$ holds.
- 2 It is consistent that $H(\kappa)$ holds and there are 2^{κ} equivalence relations strictly between \cong_T^2 and $\cong_{T'}^2$.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the different analytic sets.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the different analytic sets.

Theorem (Friedman-Hyttinen-Kulikov)

• If T is classifiable and Shallow, then \cong_T is Borel.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the different analytic sets.

- If T is classifiable and Shallow, then \cong_T is Borel.
- If T is classifiable but not shallow, then \cong_T is Δ^1 but not Borel.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the different analytic sets.

- If T is classifiable and Shallow, then \cong_T is Borel.
- If T is classifiable but not shallow, then \cong_T is Δ_1^1 but not Borel.
- If T is stable unsuperstable, then \cong_T is analytic but not Borel.

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the different analytic sets.

- If T is classifiable and Shallow, then \cong_T is Borel.
- If T is classifiable but not shallow, then \cong_T is Δ_1^1 but not Borel.
- If T is stable unsuperstable, then \cong_T is analytic but not Borel.
- If T is unstable or stable with OTOP, then \cong_T is analytic but not Δ^1_1 .

Shelah's division lines can be studied in generalised descriptive set theory with two different approaches.

• By the different analytic sets.

- If T is classifiable and Shallow, then \cong_T is Borel.
- If T is classifiable but not shallow, then \cong_T is Δ_1^1 but not Borel.
- If T is stable unsuperstable, then \cong_T is analytic but not Borel.
- If T is unstable or stable with OTOP, then \cong_T is analytic but not Δ^1_1 .
- If T is superstable with DOP and $\kappa > \omega_1$, then \cong_T is analytic but not Δ^1_1 .

By using both approaches at the same time:

By using both approaches at the same time:

Let $G(\kappa)$ be the following property: If T is a countable first-order theory in a countable vocabulary, not necessarily complete, then one of the following holds:

- $\cong_{\mathcal{T}}$ is Δ_1^1 .
- $\cong_{\mathcal{T}}$ is Σ_1^1 -complete.

By using both approaches at the same time:

Let $G(\kappa)$ be the following property: If T is a countable first-order theory in a countable vocabulary, not necessarily complete, then one of the following holds:

- $\cong_{\mathcal{T}}$ is Δ^1_1 .
- $\cong_{\mathcal{T}}$ is Σ_1^1 -complete.

Theorem (Hyttinen-Kulikov-M.)

Suppose V = L. $G(\kappa)$ holds for all κ successor of a regular uncountable cardinal λ .

By using both approaches at the same time:

Let $G(\kappa)$ be the following property: If T is a countable first-order theory in a countable vocabulary, not necessarily complete, then one of the following holds:

- $\cong_{\mathcal{T}}$ is Δ_1^1 .
- $\cong_{\mathcal{T}}$ is Σ_1^1 -complete.

Theorem (Hyttinen-Kulikov-M.)

Suppose V = L. $G(\kappa)$ holds for all κ successor of a regular uncountable cardinal λ .

Theorem (Fernandes-M.-Rinot)

Suppose $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda > \omega$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension, in which $G(\kappa)$ holds.

Fake reflection

It is a consequence of Π_1^1 -filter reflection with \diamondsuit , $Dl_S^*(\Pi_1^1)$.

Fake reflection

It is a consequence of Π_1^1 -filter reflection with \diamondsuit , $Dl_S^*(\Pi_1^1)$.

Definition (Filter reflection with ♦)

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

- 1 We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is nonstationary;
- 2 We say that $X \not F$ -reflects with \diamondsuit to S iff $\vec F$ captures clubs and there exists a sequence $\langle Y_\alpha \mid \alpha \in S \rangle$ such that, for every stationary $Y \subset X$, the set $\{\alpha \in S \mid Y_\alpha = Y \cap \alpha \& Y \cap \alpha \in \mathcal F_\alpha^+\}$ is stationary.

Fake reflection

It is a consequence of Π_1^1 -filter reflection with \diamondsuit , $Dl_S^*(\Pi_1^1)$.

Definition (Filter reflection with ♦)

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

- 1 We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is nonstationary;
- 2 We say that $X \not F$ -reflects with \diamondsuit to S iff $\not F$ captures clubs and there exists a sequence $\langle Y_\alpha \mid \alpha \in S \rangle$ such that, for every stationary $Y \subset X$, the set $\{\alpha \in S \mid Y_\alpha = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_\alpha^+\}$ is stationary.

It can be forced by Sakai's forcing, Friedman-Holy's forcing, and Holy-Wu-Welch's forcing. It can be killed by $\mathrm{Add}(\kappa,\kappa^+)$. It follows from V=L but also from Martin's Maximum.

The division line Classifiable vs Unclassifiable

Thank you