MML minor #3

Нейронные сети

Линейная классификация

- Признаки: $x = (x_1, x_2)$
- Целевая переменная: $y \in \{+1, -1\}$
- Функция принятия решения: $d(x) = w_0 + w_1 x_1 + w_2 x_2$
- Алгоритм: a(x) = sign(d(x))

Логистическая регрессия

- Предсказывает вероятность положительного класса (+1)
- Функция принятия решения: $d(x) = w_0 + w_1 x_1 + w_2 x_2$
- Алгоритм: $a(x) = \sigma(d(x))$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

А что же делать тут?

- Признаки: $x = (x_1, x_2)$
- Целевой признак: $y \in \{+1, -1\}$

Решим подзадачу

- Признаки: $x = (x_1, x_2)$
- Целевой признак: $y \in \{+1, -1\}$

Отделим минусы слева

$$z_1 = \sigma(\mathbf{w_{0,1}} + \mathbf{w_{1,1}}x_1 + \mathbf{w_{2,1}}x_2)$$

Своя линия для каждой подзадачи

- Признаки: $x = (x_1, x_2)$
- Целевой признак: $y \in \{+1, -1\}$

 $z_i = \sigma(\mathbf{w_{0,i}} + \mathbf{w_{1,i}}x_1 + \mathbf{w_{2,i}}x_2)$

Допустим, мы нашли 3 таких линии...

Используем предсказания линий

- Признаки: $x = (x_1, x_2)$
- Целевой признак: $y \in \{+1, -1\}$

-1

+1

$$z_i = \sigma(\boldsymbol{w_{0,i}} + \boldsymbol{w_{1,i}} x_1 + \boldsymbol{w_{2,i}} x_2)$$

Финальная модель

- Признаки: $x = (x_1, x_2)$
- Целевой признак: $y \in \{+1, -1\}$

$$z_i = \sigma(w_{0,i} + w_{1,i}x_1 + w_{2,i}x_2)$$

Новые признаки:

$z_1(x)$	$z_2(x)$	$z_3(x)$	y
0.6	0.3	0.8	-1
0.7	0.7	0.7	+1

$$(x_1, x_2) \rightarrow (z_1, z_2, z_3)$$

Строим финальную линейную модель:

$$a(x) = \sigma(w_0 + w_1 z_1(x) + w_2 z_2(x) + w_3 z_3(x))$$

Мы все еще не знаем как найти параметры линий

- Но понятно как все будет работать, если найти эти параметры:
 - $z_i = \sigma(w_{0,i} + w_{1,i}x_1 + w_{2,i}x_2)$
 - $a(x) = \sigma(w_0 + w_1 z_1(x) + w_2 z_2(x) + w_3 z_3(x))$

• Запишем наши вычисления в виде графа:

Вершины: вычисляемые переменные $(x_1, x_2, z_1, z_2, z_3, a)$

Ребра: зависимости (нам нужен x_1 и x_2 чтобы получить z_1)

У нашего графа вычислений есть имя

• Многослойный персептрон (MLP):

Входной слой

Скрытый слой

Выходной слой

Признаки

Каждая вершина называется нейроном:

- 1. Линейная комбинация входов
- 2. Нелинейная функция **активации** (пример: $\sigma(x)$)

Почему нейрон?

• Нейрон человека:

 $z_i = \sigma(\boldsymbol{w_{0,i}} + \boldsymbol{w_{1,i}} x_1 + \boldsymbol{w_{2,i}} x_2)$

• Математический нейрон:

Нам нужны нелинейности в нейронах!

• Давайте попробуем выкинуть $\sigma(x)$:

- Наш алгоритм становится линейной функцией!
 - $a = (w_1 w_{1,1} + w_2 w_{1,2}) x_1 + (w_1 w_{2,1} + w_2 w_{2,2}) x_2$

Обзор MLP

- MLP это простейший пример нейросети
- MLP может иметь много скрытых слоев:

- Архитектура MLP:
 - Кол-во слоев
 - Кол-во нейронов в каждом слое
 - Какую активацию использовать

- Скрытый слой в MLP называют:
 - Dense layer (плотный)
 - Fully-connected layer (полно-связный)

Хорошо, но как найти параметры MLP?

• Мы знаем как выучить параметры логистической регрессии – градиентный спуск

• Давайте здесь сделаем то же самое, ведь финальная функция дифференцируемая!

• Быстрый и эффективный способ вычисления градиента для любого дифференцируемого графа вычислений называется back-propagation (обратное распространение ошибки)

Застревает в локальных минимумах

Демо: нейросети в TensorFlow Playground

• http://playground.tensorflow.org

Можно решать сложные задачи

^{*} с функцией активации ReLU

Детали градиентного спуска: цепное правило

• Умеем дифференцировать:
$$\frac{dx^2}{dx} = 2x \qquad \frac{de^x}{dx} = e^x \qquad \frac{d\ln(x)}{dx} = \frac{1}{x}$$

$$z_1 = z_1(\mathbf{x_1}, \mathbf{x_2})$$

• Возьмем сложную функцию:

$$z_2 = z_2(x_1, x_2)$$

 $z_2 = z_2(x_1, x_2)$ где z_1, z_2, p дифференцируемы

$$p = p(z_1, z_2)$$

• Цепное правило:

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

• Пример для h(x) = f(x)g(x): $\frac{\partial h}{\partial x} = \frac{\partial h}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial h}{\partial g} \frac{\partial g}{\partial x} = g \frac{\partial f}{\partial x} + f \frac{\partial g}{\partial x}$

Граф для вычисления производных

• Граф для вычисления нашей композиции:

• Построим из него граф из производных:

Каждому ребру приписана производная начала по концу

Граф для вычисления производных

• Граф для вычисления нашей композиции:

• Построим из него граф из производных:

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

Можно догадаться как работает **цепное правило**

• Добавим еще один скрытый слой:

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial x_1}$$

Несколько раз применим цепное правило!

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial x_1}$$

$$\frac{\partial h_1}{\partial x_1} = \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$z_1 = z_1(x_1, x_2)$$
 $h_1 = h_1(z_1, z_2)$

$$z_2 = z_2(x_1, x_2)$$
 $h_2 = h_2(z_1, z_2)$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial x_1}$$

$$\frac{\partial h_1}{\partial x_1} = \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial h_2}{\partial x_1} = \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

Проверим граф производных!

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

Алгоритм вычисления производной в графе

Как посчитать производную a по b:

- Находим непосещенный путь из a в b
- Перемножаем значения на ребрах в пути
- Добавляем в сумму

На примере одного нейрона

Граф вычисления производных

Граф вычисления производных

$$\frac{\partial L}{\partial \alpha} = \frac{\partial L}{\partial z} \frac{\partial \sigma}{\partial s} x_1$$

Граф вычисления производных

Цепное правило и граф производных

- Теперь у нас есть алгоритм для подсчета производных для любых дифференцируемых графов вычислений
- Осталось делать вычисления быстро!

MLP с 3 скрытыми слоями

На самом деле мы хотим менять параметры нейрона:

$$h_2 = \sigma(w_0 + w_1 z_1 + w_2 z_2)$$

Градиент:
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial w_1} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial w_1}$$

Для упрощения выкладок не будем копать вглубь нейронов!

3:
$$\frac{\partial p}{\partial h_1}$$
 $\frac{\partial p}{\partial h_2}$

2:
$$\frac{\partial p}{\partial z_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \qquad \frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial p}{\partial x_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}}$$

3:
$$\frac{\partial p}{\partial h_1}$$
 $\frac{\partial p}{\partial h_2}$

2:
$$\frac{\partial p}{\partial z_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \qquad \frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

1:
$$\frac{\partial p}{\partial x_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_2}$$

3:
$$\frac{\partial p}{\partial h_1}$$
 $\frac{\partial p}{\partial h_2}$

2:
$$\frac{\partial p}{\partial z_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1}$$

$$\frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

1:
$$\frac{\partial p}{\partial x_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_2}$$

3:
$$\frac{\partial p}{\partial h_{1}} = \frac{\partial p}{\partial h_{2}}$$
2:
$$\frac{\partial p}{\partial z_{1}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} = \frac{\partial p}{\partial z_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}}$$
1:
$$\frac{\partial p}{\partial x_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{1}} + \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{1}}$$
1:
$$\frac{\partial p}{\partial x_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}}$$

 h_2

3:
$$\frac{\partial p}{\partial h_{1}} = \frac{\partial p}{\partial h_{2}}$$
2:
$$\frac{\partial p}{\partial z_{1}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} \qquad \frac{\partial p}{\partial z_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}}$$
1:
$$\frac{\partial p}{\partial x_{1}} = \left(\frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}}\right) \frac{\partial z_{1}}{\partial x_{1}} + \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{1}}$$
1:
$$\frac{\partial p}{\partial x_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}}$$

$$x_{1} \qquad x_{2} \qquad h_{2} \qquad \theta$$

3:
$$\frac{\partial p}{\partial h_{1}} = \frac{\partial p}{\partial h_{2}}$$
2:
$$\frac{\partial p}{\partial z_{1}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} = \frac{\partial p}{\partial z_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}}$$
1:
$$\frac{\partial p}{\partial x_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{1}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{1}}$$
1:
$$\frac{\partial p}{\partial x_{2}} = \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{2}} + \frac{\partial p}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{2}} + \frac{\partial p}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{$$

$$x_1$$
 x_2
 x_2
 x_2
 x_2
 x_2
 x_3
 x_4
 x_2
 x_3
 x_4
 x_4
 x_5
 x_6
 x_7
 x_8
 x_8
 x_8
 x_9
 x_9

3:
$$\frac{\partial p}{\partial h_1}$$
 $\frac{\partial p}{\partial h_2}$

2:
$$\frac{\partial p}{\partial z_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \qquad \frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial x_1} = \left(\frac{\partial p}{\partial z_1}\right) \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

1:
$$\frac{\partial p}{\partial x_1} = \left(\frac{\partial p}{\partial z_1}\right) \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

$$\frac{\partial p}{\partial x_2} = \left(\frac{\partial p}{\partial z_1}\right) \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_2}$$

Это называется reverse-mode дифференцирование

• В теории нейросетей это называют back-propagation (обратное распространение ошибки)

• Работает быстро, потому что переиспользует вычисленные ранее значения

• На самом деле, по каждому ребру пройдемся всего раз, то есть сложность линейна по количеству ребер (т.е. параметров)!

Back-propagation (Back-prop)

Back-propagation (Back-prop)

Интерфейс прямого прохода

Реализуем сигмоидную активацию!


```
def forward_pass(inputs):
    return 1. / (1 + np.exp(-inputs))
```

Интерфейс обратного прохода

Интерфейс обратного прохода

Полносвязный слой как произведение матриц

• Пример для 2 нейронов с линейной активацией, 3 входами, без свободных членов:

$$(x_1 \quad x_2 \quad x_3) \cdot \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = (z_1 \quad z_2)$$

$$z_1 = x_1 w_{1,1} + x_2 w_{2,1} + x_3 w_{3,1}$$

$$z_2 = x_1 w_{1,2} + x_2 w_{2,2} + x_3 w_{3,2}$$

$$xW = z$$

• Быстрые матричные операции на CPU (BLAS) и GPU (cuBLAS).

• Матричные операции в NumPy сильно быстрее циклов в Python.

Обратный проход

• Прямой проход:

$$xW = z$$
 $\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{pmatrix} z_1 & z_2 \end{pmatrix}$

• Для обратного прохода нужен $rac{\partial L}{\partial W}$, где $L(z_1,z_2)$ — скалярные потери.

$$\frac{\partial L}{\partial W} = \begin{bmatrix} \frac{\partial L}{\partial w_{1,1}} & \frac{\partial L}{\partial w_{1,2}} \\ \frac{\partial L}{\partial w_{2,1}} & \frac{\partial L}{\partial w_{2,2}} \\ \frac{\partial L}{\partial w_{2,1}} & \frac{\partial L}{\partial w_{2,2}} \end{bmatrix}$$
 Удобно для SGD:
$$W_{new} = W - \gamma \frac{\partial L}{\partial W}$$

Обратный проход

• Прямой проход:

$$xW = z$$
 $\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{vmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{vmatrix} = (Z_1 \ Z_2)$

• Для обратного прохода нужен $\frac{\partial L}{\partial W}$, где $L(z_1,z_2)$ — скалярные потери.

$$\frac{\partial L}{\partial W} = \begin{bmatrix} \frac{\partial L}{\partial w_{1,1}} & \frac{\partial L}{\partial w_{1,2}} \\ \frac{\partial L}{\partial w_{2,1}} & \frac{\partial L}{\partial w_{2,2}} \\ \frac{\partial L}{\partial w_{3,1}} & \frac{\partial L}{\partial w_{3,2}} \end{bmatrix} \qquad \frac{\partial L}{\partial w_{i,j}} = \sum_{k} \frac{\partial L}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{i,j}} = \frac{\partial L}{\partial z_{j}} \frac{\partial z_{j}}{\partial w_{i,j}} = \frac{\partial L}{\partial z_{j}} x_{i}$$

$$z_{j} = x_{1}w_{1,j} + x_{2}w_{2,j} + x_{3}w_{3,j}$$

Обратный проход

• Прямой проход:

$$xW = z$$
 $\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{vmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{vmatrix} = (Z_1 \ Z_2)$

• Для обратного прохода нужен $\frac{\partial L}{\partial W}$, где $L(z_1,z_2)$ – скалярные потери.

$$\frac{\partial L}{\partial W} = \begin{bmatrix} \frac{\partial L}{\partial w_{1,1}} & \frac{\partial L}{\partial w_{1,2}} \\ \frac{\partial L}{\partial w_{2,1}} & \frac{\partial L}{\partial w_{2,2}} \\ \frac{\partial L}{\partial w_{3,1}} & \frac{\partial L}{\partial w_{3,2}} \end{bmatrix}$$

Перепишем в матричном виде:

$$\frac{\partial L}{\partial W} = \begin{bmatrix} \frac{\partial L}{\partial w_{1,1}} & \frac{\partial L}{\partial w_{1,2}} \\ \frac{\partial L}{\partial w_{2,1}} & \frac{\partial L}{\partial w_{2,2}} \\ \frac{\partial L}{\partial w_{3,1}} & \frac{\partial L}{\partial w_{3,2}} \end{bmatrix} \qquad \frac{\partial L}{\partial w_{i,j}} = \sum_{k} \frac{\partial L}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{i,j}} = \frac{\partial L}{\partial z_{j}} \frac{\partial z_{j}}{\partial w_{i,j}} = \frac{\partial L}{\partial z_{j}} x_{i}$$

$$\frac{\partial L}{\partial z_{i}} = \left(\frac{\partial L}{\partial z_{i}} & \frac{\partial L}{\partial z_{i}}\right) \quad \text{градиент}$$

$$\frac{\partial L}{\partial w_{i,j}} = \left(\frac{\partial L}{\partial z_{i}} & \frac{\partial L}{\partial z_{i}}\right) \quad \text{градиент}$$

$$\frac{\partial L}{\partial w_{i,j}} = \left(\frac{\partial L}{\partial z_{i}} & \frac{\partial L}{\partial z_{i}}\right) \quad \text{градиент}$$

Прямой проход для мини-батча

Батч из 2:
$$\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \end{pmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{pmatrix} z_{1,1} & z_{1,2} \\ z_{2,1} & z_{2,2} \end{pmatrix}$$

Матричный вид: XW = Z

1 нейрон для 2 примера: $z_{2,1} = x_{2,1}w_{1,1} + x_{2,2}w_{2,1} + x_{2,3}w_{3,1}$

Обратный проход для мини-батча

Батч из 2:
$$\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \end{pmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{pmatrix} z_{1,1} & z_{1,2} \\ z_{2,1} & z_{2,2} \end{pmatrix}$$

SGD war:
$$\frac{\partial L_b}{\partial W} = \frac{\partial L(z_{1,1}, z_{1,2})}{\partial W} + \frac{\partial L(z_{2,1}, z_{2,2})}{\partial W}$$

Для одного семпла:
$$\frac{\partial L}{\partial w_{i,j}} = \frac{\partial L}{\partial z_j} \frac{\partial z_j}{\partial w_{i,j}} = \frac{\partial L}{\partial z_j} x_i \quad \text{ это уже знаем}$$

Для 2 семплов:
$$\frac{\partial L_b}{\partial w_{i,j}} = \frac{\partial L}{\partial z_{1,j}} x_{1,i} + \frac{\partial L}{\partial z_{2,j}} x_{2,i}$$

Обратный проход для мини-батча

Батч из 2:
$$\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \end{pmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{pmatrix} z_{1,1} & z_{1,2} \\ z_{2,1} & z_{2,2} \end{pmatrix}$$

SGD war:
$$\frac{\partial L_b}{\partial W} = \frac{\partial L(z_{1,1}, z_{1,2})}{\partial W} + \frac{\partial L(z_{2,1}, z_{2,2})}{\partial W}$$

Для 2 семплов:
$$\frac{\partial L_b}{\partial w_{i,j}} = \frac{\partial L}{\partial z_{1,j}} x_{1,i} + \frac{\partial L}{\partial z_{2,j}} x_{2,i}$$

$$\frac{\partial L_b}{\partial W} = X^T \frac{\partial L}{\partial Z} \quad X^T = \begin{pmatrix} x_{1,1} & x_{2,1} \\ x_{1,2} & x_{2,2} \\ x_{1,3} & x_{2,3} \end{pmatrix} \quad \frac{\partial L}{\partial Z} = \begin{pmatrix} \frac{\partial L}{\partial z_{1,1}} & \frac{\partial L}{\partial z_{1,2}} \\ \frac{\partial L}{\partial z_{2,1}} & \frac{\partial L}{\partial z_{2,2}} \end{pmatrix}$$

Обратный проход для мини-батча

Батч из 2:
$$\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \end{pmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{pmatrix} z_{1,1} & z_{1,2} \\ z_{2,1} & z_{2,2} \end{pmatrix}$$

SGD war:
$$\frac{\partial L_b}{\partial W} = \frac{\partial L(z_{1,1}, z_{1,2})}{\partial W} + \frac{\partial L(z_{2,1}, z_{2,2})}{\partial W}$$

Для 2 семплов:
$$\frac{\partial L_b}{\partial \boldsymbol{w_{3.2}}} = \frac{\partial L}{\partial z_{1.2}} x_{1,3} + \frac{\partial L}{\partial z_{2.2}} x_{2,3} \qquad \text{Проверка!}$$

$$\frac{\partial L_b}{\partial W} = X^T \frac{\partial L}{\partial Z} \quad X^T = \begin{pmatrix} x_{1,1} & x_{2,1} \\ x_{1,2} & x_{2,2} \\ x_{1,3} & x_{2,3} \end{pmatrix} \quad \frac{\partial L}{\partial Z} = \begin{pmatrix} \frac{\partial L}{\partial z_{1,1}} & \frac{\partial L}{\partial z_{1,2}} \\ \frac{\partial L}{\partial z_{2,1}} & \frac{\partial L}{\partial z_{2,2}} \end{pmatrix}$$

Обратный проход для X (для глубоких слоев)

Батч из 2:
$$\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \end{pmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{pmatrix} z_{1,1} & z_{1,2} \\ z_{2,1} & z_{2,2} \end{pmatrix}$$

SGD war:
$$\frac{\partial L_b}{\partial X} = \frac{\partial L(z_{1,1}, z_{1,2})}{\partial X} + \frac{\partial L(z_{2,1}, z_{2,2})}{\partial X}$$

Для 1 семпла: Применим цепное правило!

Примеры независимы!
$$ightharpoonup rac{\partial L(z_{\pmb{i},1},z_{\pmb{i},2})}{\partial x_{\pmb{i},j}} = \sum_k rac{\partial L}{\partial z_{i,k}} rac{\partial z_{i,k}}{\partial x_{i,j}} = \sum_k rac{\partial L}{\partial z_{i,k}} w_{j,k} = \sum_k rac{\partial L}{\partial z_{i,k}} w_{k,j}^T$$

Для 2 семплов:
$$\frac{\partial L_b}{\partial X} = \frac{\partial L}{\partial Z} W^T$$
 дает одну ненулевую строку!

Быстрая реализация в NumPy

• Прямой ход:

def forward_pass(X, W):
 return X.dot(W)
$$XW = Z$$

• Обратный ход:

- Еще одна причина иметь $\frac{\partial L}{\partial Z}$ в интерфейсе обратного шага:
 - Иначе пришлось бы считать $\frac{\partial Z}{\partial X}$ и $\frac{\partial Z}{\partial W}$, а это тензоры (многомерные массивы)!

Резюме

• Плюсы:

- Универсальные аппроксиматоры (приближают сложные функции)
- Сложные композиции простых функций (легко дифференцировать)

• Минусы:

- Архитектуру надо подбирать руками
- Сильное переобучение (нужна регуляризация)

Ссылки

- https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
- http://www.machinelearning.ru/wiki/images/c/c2/Voron-ML-NeuralNets-slides.pdf