Sustainable Energy Transformation Technologies, SH2706

Lecture No 1

Title:

Part II: Mechanical and Electromagnetic Energy

Henryk Anglart
Nuclear Engineering Division
Department of Physics, School of Engineering Sciences
KTH
Autumn 2022

Outline of the Lecture

- Mechanical energy
 - Forces and fields
 - Kinetic and potential energy
 - Mechanical energy losses
 - Mechanical energy storage
- Electromagnetic energy
 - Electrostatics and electric current
 - Electromagnetic energy losses
 - Electromagnetic energy storage

Forces and Fields

- A force is an influence on an object from another object or field
- Newton's second law of motion describes the action of force F on an object of mass m as:

$$\mathbf{F} = d\mathbf{p}/dt = d(m\mathbf{v})/dt$$

"Rate of change of body's momentum equals the force applied to it"

Distant Forces

Gravitational attraction force

$$\mathbf{F}_G = -\frac{GM_1M_2}{r^2}\mathbf{\hat{r}},$$

where \mathbf{F}_G is a gravitational attraction force exerted by mass M_1 on mass M_2 pointing from mass M_2 to mass M_1 , r is the distance between the centers of the masses, $\hat{\mathbf{r}}$ is a unit vector pointing from mass M_1 to mass M_2 and $G = 6.674 \times 10^{-11}$ m³ kg⁻¹ s⁻² is Newton's constant.

Electromagnetic force

$$\mathbf{F}_E = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{\mathbf{r}}, \quad (2.4)$$

where \mathbf{F}_E is an electromagnetic force exerted by body with electric charge q_1 on body with electric charge q_2 , $\hat{\mathbf{r}}$ is a unit vector pointing from charge q_1 to charge q_2 and ε_0 is the permittivity of the vacuum with $1/(4\pi\varepsilon_0) = 8.988 \times 10^9 \text{ Nm}^2 \text{ C}^{-2}$. In SI units, charge is measured in coulombs (C) and can be either positive or negative. From Eq. 2.4 it follows that same-sign charges repel and opposite-sign charges attract.

A Field

- A field is a local mechanism that mediates a force.
 - The gravitational field is responsible for the gravitational force \mathbf{F}_{G}
 - The electric field is described by a vector E(x,t) at point x and time t. This field exerts a force F = qE on charge q
- If the electric field results from a presence of charge Q, the expression for the electric field is $\mathbf{E} = \frac{Q}{4\pi \mathbf{e}_0 \mathbf{r}^2} \hat{\mathbf{r}}$,

 In general, the electric field around a set of charges Q_i is

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i} Q_i \frac{\mathbf{x} - \mathbf{x}_i}{|\mathbf{x} - \mathbf{x}_i|^3}$$

A Field

Electric field lines

- Kinetic energy of an object with mass m and speed v is given as $E_k = mv^2/2$
- For example, for air with density p and speed v we have:

v – wind speed Δt - period of time V - air volume

$$m = V \rho = A_1 L \rho = v \Delta t A_1 \rho$$

Kinetic energy of flowing wind $\sim v^3$ (!)

$$E = \frac{1}{2}mv^2 = \frac{1}{2}v^3 \Delta t A_1 \rho$$

Harvesting kinetic energy in a wind turbine

- The potential energy is energy stored in a configuration of objects that interact through forces
 - For a particle moving a distance dx in a field with force F, the change in potential energy dV in time dt is given by $dV = -dE_k = -Fdx$
- For body with mass m in gravitational field we have

$$V(z) = \int_0^z dV = \int_0^z mgdz' = mgz.$$
 $z - \text{distance above}$ Earth's surface. $V(0) = 0$

Example 4.3: Escape Velocity from Earth's Surface

Calculate the initial velocity of a body with mass m that is required for the body to reach an infinite distance from Earth with zero kinetic energy.

Solution

The total energy of the body moving with velocity v at distance z from Earth surface is

$$E = \frac{1}{2}mv^2 - \frac{G_N m M_{\oplus}}{R_{\oplus} + z},\tag{4.11}$$

where G_N is the Newtonian constant of gravitation, M_{\oplus} is the Earth's mass and R_{\oplus} is the Earth's radius. For $z \to \infty$ both the kinetic and the potential energy become zero, thus the total energy is also zero. From the energy conservation principle, the total energy is zero as well when z = 0, thus the corresponding body velocity is obtained as,

$$v_{\oplus} = \sqrt{\frac{2G_N M_{\oplus}}{R_{\oplus}}}. (4.12)$$

Substituting data yields $v_{\oplus} = 11.2$ km/s.

Potential energy gained by water during water cycle in the hydrosphere

Tidal energy

Wave energy

Mechanical Energy Losses

- Mechanical energy can transform to thermal energy due to dissipative forces, such as:
 - friction between two bodies
 - drag force between a solid and a fluid
 - rolling resistance
- For example, the drag force is as follows

$$\mathbf{F}_D = -\frac{1}{2}C_D A \rho v^2 \hat{\mathbf{v}}$$

where $\hat{\mathbf{v}}$ is the unit relative velocity vector, A is the body's reference area (often defined as the cross-section area of the body in a plane perpendicular to $\hat{\mathbf{v}}$), ρ is the fluid density and C_D is a drag coefficient. The drag coefficient depends on the shape of the body

Mechanical Energy Losses

• Assume a body moving in air. The body drag coefficient is C_D , and the drag force \mathbf{F}_D , where

$$\mathbf{F}_D = -\frac{1}{2}C_D A \rho v^2 \hat{\mathbf{v}}$$

- After moving a distance dx during time dt, the body transfers F_D*dx energy to the fluid, and the rate of energy loss is dE/dt = F_D*dx/dt = F_D*v.
- For a body moving a distance D during time T, the total mechanical energy loss is

$$\Delta E = \int_0^T (dE/dt)dt = \int_0^D \mathbf{F}_D \cdot d\mathbf{x} = \frac{1}{2} C_D A D \rho v^2$$

Example

Calculate the energy loss of a passenger car travelling 330 km with mean speed 28 m/s. The car cross-section area is approximately 2.7 m² and its drag coefficient is C_D =0.33. Assume air density $\rho = 1.2$ kg/m³.

Solution

The total energy loss due to air resistance is found as

$$\Delta E_{air} = \frac{1}{2} C_D A D \rho v^2, \tag{4.26}$$

Substituting the given data yields $\Delta E = 138$ MJ.

Solve the same problem assuming:

- (a) the car uniformly accelerates from 25 m/s (start) to 31 m/s (finish)
- (b) the car uniformly accelerates from 25 m/s (start) to 31 m/s (half-way) and then uniformly decelerates to 25 m/s (finish)

Mechanical Energy Storage

- Attempts have been made to develop methods for a mechanical energy storage, such as:
 - pumped-storage hydropower (PSH) is storing the potential energy in the upper reservoir (efficiency up to 70-80%)

 flywheel storage, where the stored kinetic energy is

 $E_{rot} = \frac{1}{2}I\omega^2$

Mechanical Energy Storage

Example 2.6. Calculate the amount of energy stored in a flywheel made from a uniform steel disc with mass m = 5 kg and radius R = 0.3 m, rotating at 4×10^4 rpm.

Solution: The moment of inertia of a solid disk of density ρ , radius R and height H is

$$I = \int_0^R 2\pi r H \rho r^2 dr = \frac{\pi}{2} \rho H R^4, \qquad (2.28)$$

and the mass is

$$m = \int_0^R 2\pi r H \rho dr = \pi \rho H R^2. \tag{2.29}$$

Thus we have $I = mR^2/2$. At 4×10^4 rpm $\omega = 40~000 \times 2\pi/60 \approx 4200~\text{s}^{-1}$. Substituting the given data yields $E_{rot} = 2~\text{MJ}$. \square

Pumped Hydro Storage

- Used for load balancing
- Allows intermittent energy from solar and wind to be saved for periods of high demands
- The over-all (from producer to user) efficiency is 70-80%
- Will be discussed later in the course (hydropower)

Electromagnetic Energy

- Electromagnetic energy results from forces and fields caused by electrically charged objects
- Human use of the electromagnetic energy involves: (1) generation, (2) transmission, (3) storage, (4) utilization
- Devices using electromagnetic energy are compact, clean and convenient
- Electromagnetic energy can be efficiently transformed into mechanical energy
- Electromagnetic energy can be transmitted over great distances with small losses

Electrostatics

- Electrostatics is concerned with electric fields, forces and potential, resulting from static electric charges
- Let us take a static charge distributed in space as $\rho(\mathbf{x})$: the resulting electric field satisfy the following equations

$$\nabla \cdot \mathbf{E}(\mathbf{x}) = \frac{\rho(\mathbf{x})}{\varepsilon_0} \text{ (Gauss law)} \qquad \nabla \times \mathbf{E}(\mathbf{x}) = 0 \text{ (Stokes theorem)}$$

• Once $\mathbf{E}(\mathbf{x})$ is known, the electrostatic voltage difference between two points \mathbf{x}_1 , \mathbf{x}_2 is found as $V(\mathbf{x}_1) - V(\mathbf{x}_2) = -\int_{x_1}^{x_2} \mathbf{E}(\mathbf{x}) \cdot d\mathbf{x}$

and the force exerted by the electric field on a charge q is $\mathbf{F} = q\mathbf{E}$

Electrostatics - Example

Example 2.7. A plate capacitor made of two square metal plates with 1 cm side length, separated by 1 mm gap, suffers a dielectric breakdown and conducts electric current in the presence of electric field greater than $E_{max} \approx 3.3 \times 10^6$ V/m. Calculate the maximum energy that can be stored in the capacitor and the associated energy density.

Solution: The capacitor has capacitance $C = \kappa \varepsilon_0 A/d \approx (1.00059)(8.854 \times 10^{-12} \text{ F/m})(0.01 \text{ m})^2/(0.001 \text{ m}) \approx 0.885 \times 10^{-12} \text{ F.}$ The maximum possible voltage to which the capacitor can be charged is $V_{max} = E_{max}d \approx 3.3 \times 10^3 \text{ V}$, with the maximum energy $CV^2/2 \approx 4.8 \times 10^{-6} \text{ J}$, and energy density $CV^2/(2Ad) \approx 50 \text{ J/m}^3$. This value is very small compared for example to the energy density of gasoline, which is about 32 GJ/m³. \square

Electric Current

- Electric current measures the net rate at which charges pass a given point in a wire: I = dQ/dt (ampere, A)
- I = V/R Ohm's law; $R resistance (ohm, <math>\Omega$)
- When electric charge is driven through a resistor, the electromagnetic energy is transformed into thermal energy (Joule heating)

• The rate of power dissipation is given by the **Joule's law** $P_{res} \equiv N_{Joule} = V^*I = I^{2*}R = V^2/R$ (watts)

Electromagnetic Energy Losses

- Electromagnetic energy is transformed into thermal energy due to Joule heating
- These losses occur in all types of electric devices, such as motors, generators, transformers, etc

• For example, resistive losses q_{loss} , when AC power is transmitted to a resistive load R_L through wires with resistance R_T , are the following fraction of the delivered power N_L , $\frac{q_{loss}}{N_L} \cong \frac{R_T N_L}{V_{RMS}^2} = \frac{N_L \rho l}{AV_{RMS}^2}$ Explains why electric power is transmitted at as high a voltage as possible where $V_{RMS} = \sqrt{\langle V(t)^2 \rangle}$

 I, A, ρ - length, area and resistivity of the transmission wire

Electromagnetic Energy Storage

Large-scale storage of electromagnetic energy is an important and challenging problem

Capacitive energy storage is quite limited

 The main technology currently in practical use is the storage in re-chargeable batteries

 Batteries store energy in chemical form and use electrochemical reactions to convert energy to and from electrical form

CATHODE (+)