Name:

Quiz Chapter 18

Indicate the answer choice that best completes the statement or answers the question.

	1	2	3	4	5	6	7	8	9	10
а										
b										
С										
d										
е										

1. Here is an assignment of probabilities to the face that comes up when rolling a die once:

Outcome	1	2	3	4	5	6		
Probability	1/7	2/7	0	3/7	0	1/7	, reall	lyuds of
						_ H	we was so	
nich of the fol	10001	no is	tr	1167				MU

Which of the following is true?

X a. This isn't a legitimate assignment of probability, because every face of a die must have probability 1/6.

- × b. This isn't a legitimate assignment of probability, because it gives probability zero to rolling a 3 or a 5.
 - c. This isn't a legitimate assignment of probability, because the probabilities do not add to exactly 1.

- d. This isn't a legitimate assignment of probability, because we must actually roll the die many times to learn the true probabilities.
- e. This is a legitimate assignment of probability.
- 2. For a certain random experiment, let's consider four different outcomes, which we'll call A, B, C, and D. It has been determined that the probabilities of these outcomes are as follows: $P(C) = 1 \left(\frac{A}{C} + 0 + \frac{A}{C}\right)$

A	В	C	D
1/6	0	?	2/6

•	0			6	> /	
= 1-	1	1.1	1>	2	0.	7

What is the probability of outcome C?

- a. 0.75
- (b.) 0.50
 - c. 0.25
 - d. 0
 - e. There is a mistake in the table, because a probability cannot be 0.
- 3. A die has six faces, showing 1 to 6 pips (spots). If a die is balanced, all six faces are equally likely. What must be the probability of each face?

- a. 1/10
- b.)1/6
 - c. 1/36
 - d. Could be any number between 0 and 1.
- 4. At the beginning of the 2019–2020 season, the odds of the New England Patriots winning the Super Bowl were 7 to 1. This means the probability of the Patriots winning the Super Bowl is
 - a. 1/6
 - b. 1/7
 - (c.) 1/8

d. 7/8

P=	₩ <u></u>	1	_ 1
	L+W	7+1	D

If an American household were chosen at random and asked how many tablet computers it owned, here are the probabilities as determined by a recent survey:

Number of tablet	0	1	2	3
computers				
Probability	0.20	0.64	0.12	0.04

5. This is a legitimate assignment of probabilities because it

Name: Class: Date:

satisfies these rules:

- a. All the probabilities are between 0 and 1. 🗸
- b. All the probabilities are between -1 and 1.
- c. The sum of all the probabilities is exactly 1.
- d. Answers A and C.
- e. Answers B and C. ← \\officerrow \(\text{L} \)

6. The _____ (blank) of a statistic indicates what values the statistic takes in repeated samples from the same population and how often it takes those values.

- × a. formula
- ≺ b. parameter
- × c. line graph
- (d.) sampling distribution
- × e. standard deviation

furely, flag are also be tween -1 and 1. BAD PPOBLEM!

An SRS of 1000 American adults is asked, "What do you think is the most important problem facing our country?" Suppose that in fact 40% of all adults would answer "dysfunctional government" if asked this question. The proportion \hat{p} of the sample who answers "dysfunctional government" will vary in repeated sampling. The sampling distribution of \hat{p} is approximately Normal with mean 0.40 and standard deviation 0.015.

7. What is the probability that \hat{p} does not lie between 0.37

- a) 0.05
 - b. 0.32
 - c. 0.60
 - d. 0.94

8. What percentage of many samples will have a sample proportion \hat{p} that is 0.37 or less?

- a. 2.5%
- b. 5%
- c. 95%
- d. 97.5%

$$0.05 - 0.021$$

$$= 2.5\%$$

If an American household were chosen at random and asked how many tablet computers it owned, here are the probabilities as determined by a recent survey:

Number of tablet	(0)	1	2	3
computers	\bigvee '			
Probability	0.20	0.64	0.12	0.04

0.20+0.64=0.84

9. What is the probability that a randomly chosen household owns fewer than two tablet computers?

- a. 0.20
- b. 0.64
- (c.)0.84
 - d. 0.96
 - e. It is not possible to tell from the given information.

10. The probability that the sum is 7 when you roll two dice is 1/6; the probability that the sum is 11 is 1/18. Suppose you play a game where you win if the sum is 7 or 11. What is the probability that you win?

- a. 2/6
- b. 2/18
- c. 7/6
- d. 2/9
 - e. 2/24

$$= P(7) + P(11) = \frac{1}{6} + \frac{1}{18}$$
$$= \frac{3}{10} + \frac{1}{18} = \frac{4}{18}$$

Name: Class:	Date:
--------------	-------

Answer Key

1. **e**

2. b

3. b

4. c

5. d

6. d

7. a

8. a

9. c

10. d