Education presentation (20 min.)

Paolo Toccaceli

Centre for Reliable Machine Learning Royal Holloway, University of London

https://cml.rhul.ac.uk/people/ptocca/HomePage/

March 2021

This slide set is available at:

https://ptocca.github.io/UoE-2021/Education_Presentation.pdf

Feature selection

- ML setting: data set with ℓ examples z_i , each a pair of an object \mathbf{x}_i and a label $y_i \in Y$ \mathbf{x}_i is a vector of p features $x_{ij} \in X_j$, where X_j and Y can be a continuous or discrete set.
- **Objective**: building a model with satisfactory performance (e.g. accuracy, F1-score, etc.) on a subset of the available features.
- Different from feature extraction, feature engineering, dimensionality reduction
- A wide variety of techniques are available, to cater for the wide variety of problems

Motivation

- Some features may be completely irrelevant
- Faster model convergence, fewer training examples needed
- Mitigate the curse of dimensionality
- Over-parameterized models may give the illusion of higher accuracy
- The cost of collecting data
- Potentially better interpretability

Types of feature selection methods

- Wrappers: generic combinatorial optimization approach
- Embedded methods: take advantage of efficient estimates of relevance offer by some ML methods
- Filters: model-independent preprocessing step, based on estimation of informational content and mutual dependence

Wrappers

- Method-agnostic: the ML method is treated as a black box
- FS is framed as a problem of combinatorial optimization: Identify the choice of variables resulting in the best metric value
- The brute force exploration of the space of combinations is unfeasible
 - In principle, FS is an NP-complete problem
- Many algorithms available from combinatorial optimization
- Greedy approach
 - Step-wise Forward selection: start from an initial selection and add feature(s) that improve the target metric the most
 - Step-wise Backward selection: start from the full set of features and remove feature(s) that degrade the target metric the least

Embedded

- Some methods provide by-products relevant for FS
- Random Forests and Regularized methods
 - Random Forests:
 Efficient estimates of Variable Importance
 - Regularized methods
 Feature weights shrink as regularization increases

FS with Random Forests

- Estimate of Variable Importance: Mean Decrease in Impurity
- MDI computes the average reduction in loss or impurity contributed by a given feature k.
 - For each tree:
 - Find all the nodes in which the split was on feature k.
 - Sum the decrease in impurity, weighted by the fraction of samples in the node.
 - Compute average across trees
- Interpretation can be tricky
 - Low values do correspond to low actual importance
 - High values do not necessarily reflect actual importance (feature selection bias)
 - Mitigated with judicious choice of maximum depth, minimum leaf size

FS with LASSO

- Regularized methods: loss function contains a regularization term, a penalty for "model complexity"
- Let's assume $f(\mathbf{x}_i) = w_0 + \sum_{i=1}^p w_i x_i$
- A regularized model chooses parameters W to minimize

$$\sum_{i=1}^{\ell} L(y_i, f(\mathbf{x}_i)) + \lambda \cdot \Omega(\mathbf{W})$$

- When the complexity penalty is an L1 metric, i.e. $\Omega(\mathbf{W}) = \sum_{j=0}^{p} |w_i|$, as in LASSO, some weights go to zero as the regularization coefficient λ increases.
- λ is usually chosen on the basis of *bias-variance* tradeoff (or balance between underfitting and overfitting)

FS with LASSO

- Paths of the variable coefficients as λ varies in a LASSO model for the credit data set.

 Chart taken from Fig 6.6 in James et al., An Introduction to Statistical Learning
- The variables with null coefficients can be removed from the model.
- With L2 metric, the weights "shrink" towards zero, but do not reach zero.
 - One can remove those below a threshold

Filters

 Rank and select feature based on estimates of their information content and dependence with the label; preprocessing independent of ML method

Variance thresholding

- Compute the (empirical) variance of each variable
- Remove the variables with variance below a chosen threshold

Correlation

- Between features:
 One of two highly correlated features is redundant
- With the label
 Features with high correlation with the label are desirable but...
 lack of correlation does not imply independence!

From Wikipedia entry "Correlation and dependence"

Filters

Mutual Information

 The mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables

$$I(X; Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(\frac{p_{(X,Y)}(x,y)}{p_X(x) p_Y(y)} \right)$$

- An information theory notion, with solid theoretical backing
- Estimating densities can be challenging
- Looking at single variables can be misleading
 - Variables that have no predictive value on their own can become relevant in combination (XOR example)

Pragmatic considerations

- We showed only a few simple methods.
- First, use domain knowledge to
 - Identify irrelevant features
 - Investigate interdependence of features
 - Prioritize features to keep and to discard
- Then, use the FS techniques, possibly starting with the simplest

Recap

- Feature selection aims at building a model with satisfactory performance on a subset of the existing features
- Three main classes of FS techniques
 - Wrappers: generic combinatorial optimization approach
 - Embedded: take advantage of efficient estimates of relevance offer by some ML methods
 - Filters: model-independent preprocessing step, based on estimation of informational content and mutual dependence

References

- James, Witten, Hastie, Tibshirani
 An Introduction to Statistical Learning
 Springer, 2013
 Available online at: https://www.statlearning.com/
- Guyon, Elisseeff
 An Introduction to Variable and Feature Selection
 Journal of Machine Learning Research 3 (2003) 1157-1182
- Li, Wang, et al.
 A Debiased MDI Feature Importance Measure for Random Forests NeurIPS 2019, Vancouver, Canada