Московский Физико-Технический Институт (государственный университет)

PHYSTEX CLUB

(При поддержке студсовета ФРКТ)

Дифференциальные уравнения. Билеты.

(По лекциям Александра Михайловича Бишаева)

Над файлом работали:

Баранников Андрей Б01-001 Овсянников Михаил Б01-001 Филиппенко Павел Б01-001 Курневич Станислав Б01-002 Лепарский Роман Б01-003 Паншин Артём Б01-005 Глаз Роман Б01-007 Дурнов Алексей Б01-007 Талашкевич Даниил Б01-009 Сибгатуллин Булат Б01-007 Руденко Данила Б01-006 Старченко Иван Б01-005

Содержание

1		пет 1. Основные понятия, простейшие типы дифференциальных урав-				
	нен		4			
	1.1	Основные понятия	4			
	1.2	Простейшие типы уравнений первого порядка	5			
		1.2.1 Уравнения в полных дифференциалах	5			
		1.2.2 Уравнения с разделяющимися переменными	6			
		1.2.3 Однородные уравнения	7			
		1.2.4 Линейные уравнения первого порядка	7			
	1.3	Уравнения Бернулли и Риккати	9			
		1.3.1 Уравнение Бернулли	9			
		1.3.2 Уравнение Риккати	9			
	1.4	Методы понижения порядка дифференциальных уравнений	9			
	1.5	Метод введения параметра для уравнения первого порядка, не разрешенного				
		относительно производной	11			
2	Бил	пет 2. Задача Коши	13			
	2.1	Принцип сжимающих отображений	13			
	2.2	Теорема существования и единственности решения задачи Коши для нор-				
		мальной системы дифференциальных уравнений	15			
	2.3	Теорема существования и единственности решения задачи Коши для урав-				
		нения n -го порядка в нормальном виде	18			
	2.4	Теоремы о продолжении решения для нормальной системы дифференциаль-				
		ных уравнений	19			
	2.5	Непрерывная зависимость от параметров решения задачи Коши для нор-				
		мальной системы ДУ	20			
	2.6	Дифференцируемость решения по параметру	21			
	2.7	Задача Коши для уравнения первого порядка, не разрешенного относитель-				
		но производной. Особое решение	22			
3	Билет 3. Линейные дифференциальные уравнения и линейные системы					
		рференциальных уравнений с постоянными коэффициентами	2 3			
	3.1	Вводная часть	23			
		3.1.1 Понятие кольца. Рассмотрение понятия многочленов	23			
		3.1.2 Многочлен	24			
	3.2	Линейные уравнения с постоянными коэффициентами	27			
	3.3	Неоднородные линейные уравнения	30			
	3.4	Уравнение Эйлера	32			
	3.5	Матричная экспонента, ее свойства и применение к решению нормальных				
		линейных систем	32			
		3.5.1 Матричная экспонента	32			
		3.5.2 Свойства матричной экспоненты	33			
		3.5.3 Применение к решению нормальных линейных систем	34			
	_					
4		тет 4. Линейные дифференциальные уравнения и линейные системы				
		рференциальных уравнений с переменными коэффициентами	36			
	4.1	Теоремы существования и единственности решения задачи Коши для нор-				
		мальной линейной системы уравнений и для линейного уравнения n -го по-	0.0			
		рядка в нормальном виде	36			

	4.2	Фундаментальная система и фундаментальная матрица решений линейной
		однородной системы
	4.3	Структура общего решения линейной однородной и неоднородной систем
	4.4	Определитель Вронского и его свойства
		4.4.1 Определитель Вронского
		4.4.2 Свойства Вронскиана
	4.5	Фундаментальная система решений и общее решение нормальной линейной
		однородной системы уравнений
	4.6	Линейная неоднородная система уравнений в случае, когда неоднородность
		представлена векторным квазимногочленом (без доказательства)
	4.7	Формула Лиувилля-Остроградского для нормальной линейной однородной
		системы уравнений и для линейного однородного уравнения n-го порядка
	4.8	Метод вариации постоянных для линейной неоднородной системы уравне-
		ний и для линейного неоднородного уравнения n-го порядка
	4.9	Устойчивость по Ляпунову. Асимптотическая устойчивость
	4.10	Автономные линейные системы
	4.11	Теорема Штурма
		Следствия из теоремы Штурма
5	Бил	ет 5. Автономные системы дифференциальных уравнений
	5.1	Основные определения
	5.2	Типы фазовых траекторий
	5.3	Характер поведения фазовых траекторий в окрестности положения равно-
		весия двумерной автономной нелинейной системы
	5.4	Классификация положений равновесия линейной автономной системы вто-
		рого порядка
	5.5	Теорема о выпрямлении траекторий
	5.6	Устойчивость по Ляпунову. Асимптотическая устойчивость
	5.7	Автономные линейные системы
	5.8	Групповые свойства автономных систем
	5.9	Понятия фазового потока и фазового объема
	5.10	Теорема Лиувилля
	5.11	Теорема Пуанкаре
6		ет 6. Первые интегралы автономных систем
	6.1	Основные определения
	6.2	Критерий первого интеграла
	6.3	Теорема о числе независимых первых интегралов
	6.4	Применение первых интегралов для понижения порядка системы
	6.5	Дифференциальные уравнения в частных производных первого порядка
		6.5.1 Общее решение линейного однородного уравнения в частных произ-
		водных первого порядка
		6.5.2 Задача Коши для уравнения в частных производных первого порядка
		6.5.3 Примеры решения задач
7	Бил	иет 7. Элементы вариационного исчисления
•	Би л	Основные понятия
	$7.1 \\ 7.2$	Простейшие задачи вариационного исчисления
	1.4	7.2.1 Задача с закрепленными концами
		7.2.1 Задача с закрепленными концами
		7.2.2 Функционалы, зависящие от вектор-функции
		1.4.9 VO/16:16: VO VDV/V/HDDWN NUTHGWW

	7.3	Функционалы, зависящие от высших производных	83
	7.4	Условные вариационные принципы. Изопериметрическая задача	84
	7.5	Задача Лагранжа	86
R	Лот	полнительные пункты	87
_	401	полнительные пункты	01
		Элементы группового анализа ДУ	· •
J	8.1	· · · · · · · · · · · · · · · · · · ·	87

1. Билет 1. Основные понятия, простейшие типы дифференциальных уравнений

1.1. Основные понятия

Определение 1.1. Уравнение вида

$$F(x, y(x), y'(x), y''(x), \dots, y^{(n)}(x)) = 0$$

называется обыкновенным дифференциальным уравнением, где x – аргумент, y(x) – неизвестная функция, F – известная непрерывная функция в области D.

Определение 1.2. Если это уравнение удается разрешить относительно старшей производной, такое дифференциальное уравнение называется разрешённым относительно старшей производной и записывается в виде

$$y^{(n)}(x) = f(x, y(x), y'(x), y''(x), \dots, y^{(n-1)}(x))$$

Порядок уравнения определяется порядком старшей производной от y.

Определение 1.3. Функция $y = \varphi(x)$ называется решением ДУ, если она n раз дифференцируема u

$$\forall x \in G \to F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) \equiv 0, \ (x, \varphi(x), \dots, \varphi^{(n-1)}(x)) \in D,$$

где G – область определения функции $\varphi(x)$ c её производными.

Определение 1.4. Система п уравнений

$$\begin{cases} \dot{x}^1 = f_1(t, x^1(t), \dots, x^n(t)) \\ \dots \\ \dot{x}^n = f_n(t, x^1(t), \dots, x^n(t)) \end{cases}$$
 (1)

где $x^1(t), \ldots, x^n(t)$ – искомые функции, а f_i – некоторые непрерывные функции, называется нормальной системой ДУ n-го порядка.

Утверждение 1.1. Рассмотрим ДУ $y^{(n)}(x) = f(x, y(x), y'(x), y''(x), \dots, y^{(n-1)}(x))$ п-ого порядка. Это уравнение эквивалентно следующей нормальной системе ДУ:

$$\begin{cases} \dot{v}_1 = v_2 \\ \dot{v}_2 = v_3 \\ \dots \\ \dot{v}_{n-1} = v_n \\ \dot{v}_n = f_n(x, v_1, v_2, \dots, v_n) \end{cases} \Leftrightarrow y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$$
 (2)

Доказательство. Введём обозначения: $y=v_1(x),\,y'=v_2(x),\,y''=v_3(x),\,\ldots,\,y^{(n-1)}=v_n(x).$ Тогда имеем $\dot{v}_1=v_2,\,\,\dot{v}_2=v_3,\,\ldots,\dot{v}_n=f(x,v_1,v_2,\ldots,v_n),$ то есть получилась нормальная система дифференциальных уравнений n-ого порядка с неизвестными v_i .

Обратными заменами системы уравнений можно получить исходное дифференциальное уравнение $y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$.

Определение 1.5. Рассмотрим уравнение 1-ого порядка y' = f(x, y(x)). Тогда задача решить это уравнение с условием $y(x_0) = y_0$ называется задачей Коши.

Определение 1.6. Пусть $\varphi(x)$ – решение дифференциального уравнения y' = f(x, y(x)). График решения $\varphi(x)$ называется интегральной кривой. В силу определения функции f(x,y) на множестве Ω , вся интегральная кривая будет лежать в Ω .

Определение 1.7. Проведём через каждую точку интегральной кривой $(x_0, y_0) \in \Omega$ малый отрезок с углом наклона по отношению к оси х равным α , причём $\operatorname{tg} \alpha = f(x_0, y_0)$. Получим так называемое поле направлений.

Из построения интегральной кривой следует, что интегральная кривая в каждой своей точке касается поля направлений. Верно и обратное: кривая, касающаяся в каждой своей точке поля направлений, является интегральной кривой.

1.2. Простейшие типы уравнений первого порядка

1.2.1. Уравнения в полных дифференциалах

Рассмотрим следующее дифференциальное уравнение: P(x,y)dx + Q(x,y)dy = 0, причём функции P(x,y) и Q(x,y) непрерывны в некоторой области D и $\forall (x_0,y_0) \in D \to |P(x_0,y_0)| + |Q(x_0,y_0)| > 0$. Тогда кривая

$$\gamma = \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, \ t_1 \leqslant t \leqslant t_2$$
 (3)

называется интегральной кривой рассматриваемого уравнения, если $\forall t: t \in [t_1; t_2]$ функции $\varphi(t)$ и $\psi(t)$ непрерывно дифференцируемы, $(\varphi(t), \psi(t)) \in D$, $(\varphi'_t)^2 + (\psi'_t)^2 > 0$ и выполнено

$$P(\varphi(t), \psi(t))\varphi_t' + Q(\varphi(t), \psi(t))\psi_t' = 0.$$
(4)

Определение 1.8. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если $\exists F(x,y) : P(x,y)dx + Q(x,y)dy = dF(x,y)$.

Тогда $dF(x,y)=0 \Rightarrow F(x,y)=const,$ то есть F(x,y) определяет неявную функцию y(x).

Теорема 1.1. Пусть функции P(x,y) и Q(x,y) непрерывно дифференцируемы в области D. Для того, чтобы уравнение P(x,y)dx + Q(x,y)dy = 0 являлось уравнением в полных дифференциалах, необходимо выполнение условия $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, $(x,y) \in D$. Если же область D ещё и одвосвязна, то условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ является достаточным.

Доказательство. Пусть P(x,y)dx+Q(x,y)dy=0 – уравнение в полных дифференциалах, тогда $\exists F(x,y): P(x,y)dx+Q(x,y)dy=dF(x,y)\Rightarrow P=\frac{\partial F}{\partial x},\ Q=\frac{\partial F}{\partial y}$. По условию P и Q – непрерывно дифференцируемы, тогда $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ – непрерывные функции, значит

$$\frac{\partial P}{\partial y} = \frac{\partial^2 F}{\partial y \partial x} = \frac{\partial^2 F}{\partial x \partial y} = \frac{\partial Q}{\partial x}, \ (x, y) \in D. \tag{5}$$

Пусть теперь D – односвязная область. Рассмотрим значение интеграла

$$F = \int_{(x_0, y_0)}^{(x;y)} P(x, y) dx + Q(x, y) dy,$$

который берётся по кусочно гладкой кривой γ , лежащей в D и соединяющей точки (x_0,y_0) и (x;y). Пусть $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Тогда по теореме о независимости интеграла от пути интегрирования выходит, что значение интеграла не зависит от пути интегрирования γ , а является функцией от (x,y), значит F=F(x,y) — функция и P(x,y)dx+Q(x,y)dy=dF(x,y).

Определение 1.9. Непрерывно дифференцируемая функция $\mu(x,y) \neq 0$ в области G называется интегрирующим множителем для уравнения P(x,y)dx + Q(x,y)dy = 0, если уравнение $\mu(x,y)(P(x,y)dx + Q(x,y)dy) = 0$ — уравнение в полных дифференциалах, а исходное уравнение P(x,y)dx + Q(x,y)dy = 0 не является уравнением в полных дифференциалах.

Если $\mu(x,y)$ — интегрирующий множитель, то для достаточного условия имеем (с учётом требований теоремы выше)

$$\frac{\partial (\mu P)}{\partial y} = \frac{\partial (\mu Q)}{\partial x} \Leftrightarrow P \frac{\partial \mu}{\partial y} + \mu \frac{\partial P}{\partial y} = Q \frac{\partial \mu}{\partial x} + \mu \frac{\partial Q}{\partial x}.$$

Полученное уравнение не легче исходного, так как теперь задача свелась к нахождению μ . Обычно интегрирующий множитель ищут в виде $\mu(x), \ \mu(y), \ \mu(x^2+y^2), \ \mu(x^\alpha,y^\beta).$

1.2.2. Уравнения с разделяющимися переменными

Рассмотрим ДУ вида P(y)dx + Q(x)dy = 0, где $P(y) \in C^1_{[y_1;y_2]}$, $Q(x) \in C^1_{[x_1;x_2]}$. Если $\exists y_0 : P(y_0) = 0$ или $\exists x_0 : Q(x_0) = 0$, тогда

$$\begin{cases} x = t \\ y = y_0 \end{cases} \quad \text{или} \quad \begin{cases} x = x_0 \\ y = t \end{cases}$$
 (6)

являются интегральными кривыми рассматриваемого ДУ соответственно. Если же выполняется $P(y) \neq 0$ и $Q(x) \neq 0$, то применим к уравнению интегрирующий множитель

$$\mu(x,y) = \frac{1}{P(y)Q(x)},$$

получив уравнение в полных дифференциалах

$$\frac{dx}{Q(x)} + \frac{dy}{P(y)} = 0. (7)$$

Значение $\mu(x,y)$ действительно является интегрирующим множителем, так как выполняется

$$\frac{\partial}{\partial y} \left(\frac{1}{Q(x)} \right) = \frac{\partial}{\partial x} \left(\frac{1}{P(y)} \right) = 0. \tag{8}$$

Тогда

$$dF(x,y) = \frac{dx}{Q(x)} + \frac{dy}{P(y)} \Rightarrow \frac{\partial F}{\partial x} = \frac{1}{Q(x)} \Rightarrow F(x,y) = \int_{x_0}^{x} \frac{dt}{Q(t)} + C(y), \tag{9}$$

$$\frac{\partial F}{\partial y} = \frac{1}{P(y)} = C'(y) \Rightarrow C(y) = \int_{y_0}^{y} \frac{dt}{P(t)} \Rightarrow F(x, y) = \int_{x_0}^{x} \frac{dt}{Q(t)} + \int_{y_0}^{y} \frac{dt}{P(t)} = const.$$
 (10)

Точка (x_0, y_0) – произвольная точка в области определения функций P и Q.

Определение 1.10. Если дифференциальное уравнение вида $P_1(x,y)dx + Q_1(x,y)dy = 0$ может быть сведено к виду P(y)dx + Q(x)dy = 0, то такое уравнение называется уравнением с разделяющимися переменными.

Утверждение 1.2. Задача Коши уравнения с разделяющимися переменными P(y)dx + Q(x)dy = 0 задаётся в виде $y(x_1) = y_1$, а её решение в виде

$$\int_{x_1}^{x} \frac{dt}{Q(t)} + \int_{y_1}^{y} \frac{dt}{P(t)} = 0.$$
 (11)

1.2.3. Однородные уравнения

Рассмотрим дифференциальное уравнение вида

$$y' = g\left(\frac{y}{x}\right),\,$$

которое назовём уравнением с однородной правой частью, где g(z) – непрерывная функция на некотором промежутке. Сделаем замену $v(x)=\frac{y}{x}$, тогда $y(x)=v(x)\cdot x$, $y_x'=x\cdot v_x'+v=g(v)$, откуда имеем $x\frac{dv}{dx}=g(v)-v$. Если $\exists v_0:g(v_0)=v_0$, то v_0 – решение уравнения $x\frac{dv}{dx}=g(v)-v$. Если же $v\neq g(v)$, тогда

$$\frac{dv}{g(v) - v} = \frac{dx}{x} \Rightarrow \ln|x| + C = \int_{v_0}^{v} \frac{dt}{g(t) - t}.$$
 (12)

Таким образом, найдено решение исходного уравнения с однородной правой частью в квадратурах.

Определение 1.11. Функция $F(x^1, x^2, ..., x^n)$ называется однородной степени m, если $\forall \lambda > 0 \longrightarrow F(\lambda x^1, \lambda x^2, ..., \lambda x^n) = \lambda^m F(x^1, x^2, ..., x^n)$.

Пример 1.1. Рассмотрим уравнение P(x,y)dx = Q(x,y)dy. Если P(x,y) и Q(x,y) – однородные функции степени m, тогда

$$\frac{dy}{dx} = \frac{P(x,y)}{Q(x,y)} = \frac{x^m P(1,\frac{y}{x})}{x^m Q(1,\frac{y}{x})} = \frac{P(1,\frac{y}{x})}{Q(1,\frac{y}{x})} = g\left(\frac{y}{x}\right)$$
(13)

Таким образом исходное уравнение свелось к уравнению с однородной правой частью.

1.2.4. Линейные уравнения первого порядка

Определение 1.12. Дифференциальное уравнение вида y' + a(x)y = f(x) – линейное дифференциальное уравнение первого порядка. Дифференциальное уравнение вида y' + a(x)y = 0 – линейное однородное дифференциальное уравнение первого порядка. При этом $a(x) \in C_{I(x)}$, $f(x) \in C_{I(x)}$, где I(x) – область, на которой определены функции a(x) и f(x).

Введём оператор $L=\frac{d}{dx}+a(x)$, который действует на множество непрерывно дифференцируемых функций $\varphi\in C^1_{I(x)}$. Тогда уравнение y'+a(x)y=f(x) переписывается в виде L(y)=f(x), а уравнение y'+a(x)y=0 переписывается в виде L(y)=0.

Теорема 1.2. Введённые оператор $L = \frac{d}{dx} + a(x)$ – линейный оператор.

Доказательство. Рассмотрим линейную комбинацию $c_1\varphi_1(x) + c_2\varphi_2(x)$:

$$L(c_1\varphi_1(x) + c_2\varphi_2(x)) = (c_1\varphi_1 + c_2\varphi_2)' + a(x)(c_1\varphi_1 + c_2\varphi_2) = c_1L(\varphi_1) + c_2L(\varphi_2)$$
(14)

Таким образом, $L(c_1\varphi_1 + c_2\varphi_2) = c_1L(\varphi_1) + c_2L(\varphi_2)$, то есть L – линейный оператор.

Утверждение 1.3. Решением уравнения y' + a(x)y = 0 является

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (15)

Доказательство. Найдём решение уравнения y' + a(x)y = 0:

$$\frac{dy}{y} = -a(x)dx \Rightarrow \ln|y| = -\int_{x_0}^{x} a(t)dt + \ln C \Rightarrow |y| = Ce^{-\int_{x_0}^{x} a(t)dt}, C > 0$$
 (16)

Раскрывая модуль и объединяя полученное решение с нулевым $(y \equiv 0)$, имеем

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (17)

Утверждение 1.4. Решением уравнения y' + a(x)y = f(x) является

$$y = C_0 e^{-\int_{x_0}^x a(t)dt} + \int_{x_0}^x f(t)e^{-\int_t^x a(s)ds} dt, \ C_0 \in \mathbb{R}.$$
 (18)

Доказательство. Найдём решение уравнения y' + a(x)y = f(x): воспользуемся уже найденным решением однородного уравнения, применяя метод вариации постоянной. То есть будем искать решение в виде

$$y = C(x)e^{-\int_{x_0}^{x} a(t)dt}.$$
 (19)

Подставим это решение в исходное уравнение:

$$C'(x)e^{-\int_{x_0}^x a(t)dt} - a(x)C(x)e^{-\int_{x_0}^x a(t)dt} + a(x)C(x)e^{-\int_{x_0}^x a(t)dt} = f(x)$$
(20)

$$C'(x)e^{-\int_{x_0}^x a(t)dt} = f(x) \Rightarrow C(x) = \int_{x_0}^x f(t)e^{\int_{x_0}^t a(s)ds} dt + C_0$$
 (21)

Таким образом найден вид C(x). Теперь подставим эту функцию:

$$y = C_0 e^{-\int_{x_0}^x a(t)dt} + e^{-\int_{x_0}^x a(t)dt} \int_{x_0}^x f(t)e^{\int_{x_0}^t a(s)ds} dt$$
 (22)

$$y = C_0 e^{-\int_{x_0}^x a(t)dt} + \int_{x_0}^x f(t)e^{-\int_t^x a(s)ds} dt$$
 (23)

Из полученного решения видно, что оно является суммой решения однородного уравнения и частного решения. ■

Утверждение 1.5. Если $\varphi_1(x)$ и $\varphi_2(x)$ – некоторые решения уравнения y'+a(x)y=f(x), то $z(x)=\varphi_1(x)-\varphi_2(x)$ – решение однородного уравнения y'+a(x)y=0.

Доказательство. По условию $\varphi_1' + a(x)\varphi_1 = f(x)$, $\varphi_2' + a(x)\varphi_2 = f(x)$, откуда очевидно, что $(\varphi_1 - \varphi_2)' + a(\varphi_1 - \varphi_2) = 0$. Обозначив $z = \varphi_1 - \varphi_2$, получим z' + a(x)z = 0, то есть z – решение однородного уравнения.

1.3. Уравнения Бернулли и Риккати

1.3.1. Уравнение Бернулли

Определение 1.13. ДУ вида $y' + a(x) \cdot y = y^r \cdot f(x)^{(24)}$, где a(x), f(x) – непрерывные функции на $(\alpha, \beta), r \in \mathbb{R}, r \neq 1$ называется уравнением Бернулли.

Утверждение 1.6. Если r>0, то $y\equiv 0$ - тривиальное решение. Пусть $y\neq 0$, разделим ДУ на $y^r\Rightarrow \frac{y'}{y^r}+a(x)\cdot y^{1-r}=f(x)$. Замена: $u(x)=y^{1-r}\Rightarrow u'=(1-r)\cdot y^{-r}\cdot y'\Rightarrow \Rightarrow \frac{1}{1-r}\cdot u'+a(x)\cdot u=f(x)$ - свелось к линейному уравнению.

1.3.2. Уравнение Риккати

Определение 1.14. ДУ вида $y' + a(x) \cdot y^2 + b(x) \cdot y = c(x)$, где a(x), b(x), c(x) – непрерывные функции на (α, β) , называется уравнением Риккати.

Утверждение 1.7. В общем случае уравнение Риккати не допускает решений в квадратурах, однако, если известно некоторое решение $y=\varphi(x)$, то сделав замену $y=u+\varphi$, получаем: $\varphi'+a\varphi^2+b\varphi=c$ $\varphi'+u'+a\varphi^2+2a\varphi u+au^2+b\varphi+bu=c\Rightarrow u'=-au^2-(2a\varphi+b)u$ – свелось к уравнению Бернулли.

1.4. Методы понижения порядка дифференциальных уравнений

Утверждение 1.8. Рассмотрим множество преобразований плоскости

 $[\bar{x} = \varphi(x,y,\lambda), \bar{y} = \psi(x,y,\lambda)]^{(26)}$. B (26) каждому $\lambda \in \mathcal{D} \subset \mathbb{R}$ соответствует некоторое преобразование, например, $\bar{x} = \lambda x, \bar{y} = \lambda y, \lambda > 0$ - гомотетия. Множество преобразований (26) является группой преобразований, если оно содержит любую композицию (26), т.е.

$$\forall \lambda_1, \lambda_2 \,\exists \lambda_0 : \forall x, y \to \varphi(\varphi(x, y, \lambda_1), \psi(x, y, \lambda_1), \lambda_2) = \varphi(x, y, \lambda_0),$$

$$\psi(\varphi(x, y, \lambda_1), \psi(x, y, \lambda_1), \lambda_2) = \psi(x, y, \lambda_0),$$

если содержит тождественное преобразование, т.е.

$$\exists \lambda_0 : \forall x, y \to \varphi(x, y, \lambda_0) = x; \ \psi(x, y, \lambda_0) = y,$$

и если вместе с любым преобразованием содержит и обратное:

$$\forall \lambda \in \mathcal{D} \colon \exists \lambda_0 \colon x = \varphi(\bar{x}, \bar{y}, \lambda_0); \ y = \psi(\bar{x}, \bar{y}, \lambda_0)$$

Таким образом, если (26) – группа, то $x = \overline{\varphi}(\bar{x}, \bar{y}, \lambda), \ y = \overline{\psi}(\bar{x}, \bar{y}, \lambda);$ если в ДУ y' = f(x, y) осуществить переход к новым координатам, то

$$\frac{dy}{dx} = \frac{\overline{\psi}'_{\bar{x}}d\bar{x} + \overline{\psi}'_{\bar{y}}d\bar{y}}{\overline{\varphi}'_{\bar{x}}d\bar{x} + \overline{\varphi}'_{\bar{y}}d\bar{y}} = f(\overline{\varphi}(\bar{x}, \bar{y}, \lambda), \overline{\psi}(\bar{x}, \bar{y}, \lambda)) = \tilde{f}(\bar{x}, \bar{y}, \lambda) \Rightarrow$$

$$\Rightarrow \frac{\overline{\psi}'_{\bar{x}} + \overline{\psi}'_{\bar{y}} \cdot \frac{d\bar{y}}{d\bar{x}}}{\overline{\varphi}'_{\bar{x}} + \overline{\varphi}'_{\bar{y}} \cdot \frac{d\bar{y}}{d\bar{x}}} = \tilde{f}(\bar{x}, \bar{y}, \lambda) \Rightarrow \frac{d\bar{y}}{d\bar{x}} = \frac{\tilde{f} \cdot \overline{\varphi}'_{\bar{x}} - \overline{\psi}'_{\bar{x}}}{\overline{\psi}'_{\bar{y}} - \tilde{f} \cdot \overline{\varphi}'_{\bar{y}}} \tag{27}$$

(27) является записью y'=f(x,y) в новых координатах. Говорят, что y'=f(x,y) допускает группу $x=\overline{\varphi}(\bar{x},\bar{y},\lambda),\ y=\overline{\psi}(\bar{x},\bar{y},\lambda),\$ если оно не изменяется при переходе к новым переменным, т.е. $\frac{d\bar{y}}{d\bar{x}}=f(\bar{x},\bar{y}).$

Следствие 1.2.1. Рассматриваем уравнения вида F(x, y, y', y'') = 0 (28)

- 1. F(x,y',y'') = 0 Замена $y'(x) = v(x) \Rightarrow y''(x) = v'(x)$ и (29) в этом случае имеет вид $F(x,v(x),v'(x)) = 0 \xrightarrow{peuaem} v(x) = g(x,c_1)$. Тогда решение (29) запишется в виде $\frac{dy}{dx} = g(x,c_1) \Rightarrow y(x) = c_2 + \int g(x,c_1)dx$. Заметим, что (29) допускает группу сдвига $x = \bar{x}, \ y = \bar{y} + y_0$.
- 2. $\overline{F(y,y',y'')=0}^{(30)} \text{ (не содержит явно } x). \ \text{Замена: } y'=V(y), \ morдa$ $y''=\frac{dV}{dx}=\frac{dV}{dy}\frac{dy}{dx}=V\frac{dV}{dy}\Rightarrow F(y,V,V\frac{dV}{dy})=0 \ \text{-}\ \mathcal{A} \text{У первого порядка.}$ $Pешение\ V(y)=g(y,c_1)\Rightarrow \frac{dy}{dx}=g(y,c_1)\Rightarrow Peшениe\ (30): \int \frac{dy}{g(y,c_1)}=x+c_2.$ $\text{Заметим, что (30)}\ \text{допускает группу сдвигов } x=\bar{x}+x_0,\ y=\bar{y}.$
- 3. F(x,y,y',y'') = 0 и F oднородная степени m по y,y',y'', m.e. $\forall \lambda > 0 \rightarrow F(x,\lambda y,\lambda y',\lambda y'') = \lambda^m \cdot F(x,y,y',y'')$. B таком случае ДУ допускает группу $x = \bar{x}, y = \lambda \bar{y}$. Замена: $z(x) = \frac{y'}{y} \Rightarrow y' = z(x)y$ $\Rightarrow y'' = z'y + zy' = z'y + z^2y = y \cdot (z' + z^2) \Rightarrow F(x,y,zy,y(z'+z^2)) = 0$ $\Rightarrow y^m \cdot F(x,1,z,z'+z^2) = 0$ относительно z имеем уравнение первого порядка. Если его решение $z(x) = g(x,c_1)$, то $\frac{y'}{y} = g(x,c_1) \Rightarrow \frac{dy}{y} = g(x,c_1)dx \Rightarrow \ln |y| = \int g(x,c_1)dx + c_2$
- 4*. Будем говорить, что функция $F(x,y,y',y'',...,y^{(n)})$ является квазиоднородной функцией степени r, если $\exists \alpha \in \mathbb{R} : \forall \lambda > 0 : F(\lambda x, \lambda^{\alpha} y, \lambda^{\alpha-1} y',...,\lambda^{\alpha-n} y^{(n)}) = \lambda^r \cdot F(x,y,...,y^{(n)}).$

Рассмотрим множество преобразований:

$$\begin{cases} x = \lambda \bar{x} \\ y = \lambda^{\alpha} \bar{y} \end{cases}, \quad \epsilon \partial e \; \lambda > 0 \tag{31}$$

Такое множество преобразований перепишем в виде:

$$\begin{cases} x = e^{\beta} \cdot \bar{x} \\ y = e^{\alpha\beta} \bar{y} \end{cases}$$

Eсли F в (28) является квазиоднородной, то (28) допускает группу растяжений (31):

$$F(x, y, y', y'') = 0 \xrightarrow{npeo6p.} F(\lambda \bar{x}, \lambda^{\alpha} \bar{y}, \lambda^{\alpha-1} \bar{y'}, \lambda^{\alpha-2} \bar{y''}) = \lambda^{r} \cdot F(\bar{x}, \bar{y}, \bar{y'}, \bar{y''}) = 0$$

$$\downarrow \downarrow$$

$$F(\bar{x}, \bar{y}, \bar{y'}, \bar{y''}) = 0$$

Замена:
$$\begin{cases} x = e^t \\ y = z(t) \cdot e^{\alpha t} \end{cases} \Rightarrow y_x' = \frac{y_t'}{x_t'} = \frac{z_t' \cdot e^{\alpha t} + z \cdot \alpha \cdot e^{\alpha t}}{e^t} = e^{(\alpha - 1)t} \cdot (z_t' + \alpha z) \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_{xx}'' = \frac{(y_x')_t'}{x_t'} = \frac{(\alpha - 1) \cdot e^{(\alpha - 1)t} \cdot (z_t' + \alpha z) + e^{(\alpha - 1)t} \cdot (z_{tt}'' + \alpha z_t')}{e^t} =$$

$$= e^{(\alpha - 2)t} \cdot (z''_{tt} + (2\alpha - 1) \cdot z'_t + \alpha \cdot (\alpha - 1)z)$$

$$\downarrow \downarrow$$

$$F(e^t; z \cdot e^{\alpha t}; e^{(\alpha - 1)t} \cdot (z'_t + \alpha z); e^{(\alpha - 2)t}(z''_{tt} + (2\alpha - 1)z'_t + \alpha \cdot (\alpha - 1)z)) =$$

$$= e^{rt} \cdot F(1; z; z'_t + \alpha z; z''_{tt} + (2\alpha - 1)z'_t + \alpha \cdot (\alpha - 1)z) = 0$$

- не содержит t, т.е. свелось к случаю 2

1.5. Метод введения параметра для уравнения первого порядка, не разрешенного относительно производной

Утверждение 1.9. Рассмотрим F(x,y,y')=0 32), где F(x,y,y') как функция трёх переменных является непрерывно дифференцируемой в области $D\subset \mathbb{R}^3$.

Решение уравнения F(x, y, y') = 0 будем представлять как кривую в параметрическом виде:

$$\gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} t \in [t_1, t_2], \ \varphi(t), \psi(t) \in C^1_{[t_1, t_2]}$$
 (33)

Кривая (33), является интегральной кривой (32) \Rightarrow

$$\Rightarrow F\left(\varphi(t), \psi(t), \frac{\psi_t'}{\varphi_t'}\right) = 0 \quad \forall t \in [t_1, t_2]$$
(34)

Будем решать эквивалентную систему положив $p = \frac{dy}{dx}$:

$$\begin{cases} F(x, y, p) = 0 \\ dy = pdx \end{cases}$$
 (35)

Утверждение 1.10. Уравнение (32) эквивалентно системе (35).

Доказательство. Пусть γ – интегр. кривая (33). Положим $p=\frac{\psi'}{\varphi'}=\frac{dy}{dx}$ – второе уравнение в системе (35) выполнено, а первое выполнено в силу подстановки в (34). Обратно, пусть $x(t)=\varphi(t),\;y(t)=\psi(t),\;p$ – решение (34). \Rightarrow Из второго уравнения системы: $p=\frac{\psi'_t}{\varphi'_t}\to \Pi$ одставляем в первое уравнение системы и получаем само уравнение (34).

Утверждение 1.11. Рассмотрим метод решения (32), который называется методом введения параметра.

Первое уравнение в системе (35) рассмотрим как задающее в $\mathbb{R}^3_{(x,y,p)}$ гладкую поверхность S, для которой параметрическое представление имеет вид:

$$\begin{cases} x = \varphi(u, v) \\ y = \psi(u, v) \Rightarrow F(\varphi(u, v); \psi(u, v); \chi(u, v)) \equiv 0 \\ p = \chi(u, v) \end{cases}$$

Потребуем, чтобы

$$rank \begin{pmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \psi}{\partial u} & \frac{\partial \chi}{\partial u} \\ \\ \frac{\partial \varphi}{\partial v} & \frac{\partial \psi}{\partial v} & \frac{\partial \chi}{\partial v} \end{pmatrix} = 2, \ \forall u, v \in G$$

m.e. чтобы S была простой гладкой поверхностью. Тогда остаётся удовлетворить второму уравнению системы (35):

$$\frac{\partial \psi}{\partial u} du + \frac{\partial \psi}{\partial v} dv = \chi \cdot \left(\frac{\partial \varphi}{\partial u} du + \frac{\partial \varphi}{\partial v} dv \right) \Rightarrow \left(\frac{\partial \psi}{\partial u} - \chi \frac{\partial \varphi}{\partial u} \right) du = \left(\chi \frac{\partial \varphi}{\partial v} - \frac{\partial \psi}{\partial v} \right) dv \tag{36}$$

Если $P(u,v) \neq 0 \ \forall (u,v) \in G$, то из (36) получаем ДУ: $\frac{du}{dv} = \frac{Q(u,v)}{P(u,v)}$

Его решение u = u(v,c), тогда $\begin{cases} x = \varphi(u(v,c),v) = x(v,c) & \text{- является параметрическим} \\ y = \psi(u(v,c),v) = y(v,c) & \text{представлением решения (32)} \end{cases}$

Если же существует связь между u u v: $u=f(v), P(f(v),v)=Q(f(v),v)=0 \ \forall v\in G,$ то u=f(v) явл. решением $\left(\frac{\partial \psi}{\partial u}-\chi\frac{\partial \varphi}{\partial u}\right)du=\left(\chi\frac{\partial \varphi}{\partial v}-\frac{\partial \psi}{\partial v}\right)dv,$ a

$$\begin{cases} x = x(v) \\ y = y(v) \end{cases}$$
 – явл. решением (36)

2. Билет 2. Задача Коши

2.1. Принцип сжимающих отображений

Работаем в $E = \mathbb{R}^n$ – пространство точек с n координатами. E – аффинное пространство, а \vec{E} – его присоединенное линейное пространство, состоящее из векторов, натянутых на точки E.

Определение 2.1. Пусть L – это векторное пространство, u на нем задано отображение $\|\cdot\|: L \longrightarrow \mathbb{R}$ такое, что:

- 1. $\forall x \in L \longmapsto ||x|| \geqslant 0$. A marrice $||x|| = 0 \Longleftrightarrow x = 0$;
- 2. $\forall x \in L \& \forall \lambda \in \mathbb{R} \longmapsto ||\lambda x|| = |\lambda| \cdot ||x||$;
- 3. $\forall x, y \in L \longmapsto ||x+y|| \leq ||x|| + ||y||$ неравенство треугольника.

Tогда данное отображение называется нормой, а пространство L нормированным.

Пример 2.1. Приведем пример норм. Пусть $a(x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Тогда норму можно определить, допустим, так:

$$||a||_1 = \sqrt{\sum_{j=1}^n x_j^2}. (37)$$

Или так:

$$||a||_2 = \max_{j=1,\dots,n} |x_j|. \tag{38}$$

И тогда можно ввести понятие эквивалентности норм.

Определение 2.2. Пусть снова L – линейное пространство. Тогда нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на L называются эквивалентными, если $\exists C_1, C_2 > 0 : \forall x \in L \longmapsto C_1 \|x\|_1 \leqslant \|x\|_2 \leqslant C_2 \|x\|_1$.

Как видно, для определенных выше двух норм это соотношение удовлетворяется.

Утверждение 2.1. В конечномерном линейном пространстве все нормы эквивалентны.

Рассмотрим множество функций, непрерывных на отрезке [a;b] для некоторых неравных $a,b\in\mathbb{R}$ и обозначим данное множество C[a;b]. Понятно, что C[a;b] является линейным пространством. Тогда введем на нем норму.

Определение 2.3. Нормой функции $f(x) \in C[a;b]$ будем называть число

$$||f(x)|| = \max_{x \in [a;b]} |f(x)|.$$

Определение 2.4. Набор функций $f_1(x), f_2(x), \dots, f_n(x) \in C[a; b]$ будем называть векторфункцией и обозначать $f(x) = \vec{f}(x) = (f_1(x), f_2(x), \dots, f_n(x))^T$.

Определение 2.5. Вектор-функция f(x) называется непрерывной (дифференцируемой, непрерывно дифференцируемой и т.п.), если все ее компоненты непрерывны (дифференцируемы, непрерывно дифференцируемы и т.п.).

Определение 2.6. *Модулем вектор-функции* f(x) *назовем число*

$$|f(x)| = \sqrt{\sum_{j=1}^{n} f_j^2(x)}.$$
 (39)

Норму вектор-функции можно определить как

$$||f(x)||_1 = \max_{x \in [a;b]} |f(x)|.$$

Или же как

$$||f(x)||_2 = \max_{j=1,\dots,n} \max_{x \in [a:b]} f_j(x).$$

Понятно, что эти две нормы эквивалентны.

Определение 2.7. Пусть имеется функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$, где $f_n(x) \in C[a;b]$ – линейное пространство функций с нормой (1 или 2 – неважно). Тогда говорят, что данная последовательность сходится к функции f(x) по норме, если:

$$\lim_{n \to \infty} ||f_n(x) - f(x)|| = 0.$$
(40)

Аналогично все то же самое и точно так же определяется и для вектор-функций $f(x) = \vec{f}(x) \in C^n[a;b].$

Определение 2.8. Функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ называется фундаментальной, если:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n \geqslant N \ \& \ \forall m \geqslant N \longmapsto ||f_n(x) - f_m(x)|| < \varepsilon. \tag{41}$$

Определение 2.9. Функциональное пространство L называется полным по [данной] норме, если любая фундаментальная функциональная последовательность данного пространства сходится по норме к функции из этого же пространства L.

Теорема 2.1. Функциональное пространство C[a;b] с нормой $\|\cdot\|_1$ является полным.

Доказательство. Возьмем произвольную функциональную последовательность $\{f_n(x)\}_{n=1}^{\infty}$ из нашего пространства непрерывных функции. Тогда из определения фундаментальности следует, что $||f_n(x) - f_m(x)|| < \varepsilon$.

Однако
$$|f_n(x) - f_m(x)| \le ||f_n(x) - f_m(x)|| < \varepsilon \ \forall x \in [a; b].$$

А значит, последовательность $f_n(x)$ сходится к некоторой f(x), причем равномерно на [a;b] (числовая последовательность $||f_n(x)||$ мажорирует функциональную последовательность $f_n(x)$).

Так как $f_n(x) \in C[a;b]$ – непрерывны $\forall n \in \mathbb{N}$, и последовательность сходится равномерно на [a;b], то предельная функция f(x) также является непрерывной на [a;b], а значит, $f(x) \in C[a;b]$.

Таким образом, последовательность $\{f_n(x)\}_{n=1}^\infty$ сходится к $f(x) \in C[a;b]$. В силу произвольности $\{f_n(x)\}_{n=1}^\infty$ заключаем, что функциональное пространство C[a;b] с нормой $\|\cdot\|_1$ является полным.

Определение 2.10. Полное нормированное линейное пространство называется Банаховым. Обозначается В.

Определение 2.11. Функциональный ряд $\sum_{k=1}^{\infty} f_k(x)$ называется сходящемся по норме, если последовательность его частичных сумм $S_n(x) = \sum_{k=1}^n f_k(x)$ является сходящейся по норме.

Определение 2.12. Пусть $\forall x \in M \subseteq B$ определен элемент $Ax \in B$. Тогда говорят, что на множестве B задан оператор A с областью определения M.

Будем рассматривать уравнение x = Ax.

Определение 2.13. *Множество* $M \subseteq B$ *называется ограниченным, если* $\exists C > 0$ *такое,* $umo \ \forall x \in M \longmapsto ||x|| \leqslant C.$

Определение 2.14. Оператор А называется сжатием на М, если:

- 1. $\forall x \in M \longmapsto Ax \in M$;
- 2. $\exists k \in (0,1): \forall x, y \in M \longmapsto ||Ax Ay|| \le k||x y||.$

Теорема 2.2 (Принцип сжимающих отображений). Пусть множество $M \subseteq B$, причём $M \neq \varnothing$, является ограниченным и замкнутым, а оператор A является сжатием. Тогда решение уравнения x = Ax существует и единственно.

Доказательство. Будем использовать итерационный метод, согласно которому мы выбираем начальное x_0 , а затем строим последовательность $x_n = Ax_{n-1}$. Тогда, если $\exists \lim x_n =$ x и \exists lim $Ax_n = Ax$, то x = Ax.

Пусть $x_n = S_n = x_0 + (x_1 - x_0) + \ldots + (x_n - x_{n-1})$. Докажем, что $||x_{n+1} - x_n|| \leqslant 2Ck^n$ для некоторого C > 0, ограничивающего последовательность x_n . Сделаем это по индукции.

База индукции: $||x_1 - x_0|| \le ||x_1|| + ||x_0|| \le 2C$.

Предположим, что $||x_n - x_{n-1}|| \leq 2Ck^{n-1}$. Тогда получаем, что $||x_{n+1} - x_n|| = ||Ax_n - x_n||$ $||Ax_{n-1}|| \le k||x_n - x_{n-1}|| \le 2Ck^n.$

И получаем, что
$$||x_0 + \sum_{j=1}^{\infty} (x_j - x_{j-1})|| \le ||x_0|| + \sum_{j=1}^{\infty} 2Ck^{n-1} < \infty$$
. А значит $\exists \lim_{n \to \infty} x_n = x$. А поскольку M замкнуто, то $x \in M$.

Теперь рассмотрим разность $||Ax_n - Ax|| \leqslant k||x_n - x|| \underset{n \to \infty}{\longrightarrow} 0$. Это означает, что $\exists \lim Ax_n = Ax.$

 $\overset{\infty}{\mathrm{V}}$ читывая, что $x_{n+1}=Ax_n$, то, перейдя к пределу с обеих частей равенства, мы получаем, что итерационный метод сходится к решению уравнения x = Ax. И таким образом, доказано существование решения. Теперь докажем его единственность.

Пойдем от противного: пусть x и y – два разных решения. Тогда $||x-y|| = ||Ax-Ay|| \leqslant$ $k\|x-y\|.$ Учитывая, что $k\in(0;1),$ то данная ситуация возможна тогда и только тогда, когда ||x-y|| = 0. Следовательно, x = y, что противоречит тому, что это два разных решения. Итак, теорема доказана.

2.2. Теорема существования и единственности решения задачи Коши для нормальной системы дифференциальных уравнений

Определение 2.15. Система вида

$$\begin{cases} \dot{x}^1 = f^1(t, \bar{x}) \\ \dot{x}^2 = f^2(t, \bar{x}) \\ \dots \\ \dot{x}^n = f^n(t, \bar{x}) \end{cases}$$

$$(42)$$

называется нормальной системой дифференциальных уравнений п-ого порядка.

Определение 2.16. Система

$$\begin{cases} x^{1}(t_{0}) = x_{0}^{1} \\ x^{2}(t_{0}) = x_{0}^{2} \\ \dots \\ x^{n}(t_{0}) = x_{0}^{n} \end{cases}$$

$$(43)$$

называется начальным условием

Утверждение 2.2. Решить задачу Коши означает решить нормальную систему дифференциальных уравнений при заданном начальном условии

Теорема 2.3 (Теорема Коши о существовании и единственности решения). Пусть $\forall i, j = \overline{1, n}$ функции $f^i, \frac{\partial f^i}{\partial x^j}$ непрерывны в области $\Omega \subset \mathbb{R}^{n+1}$, тогда, $\forall (t_0, \overline{x_0}) \in \Omega \ \exists h > 0 : \forall t \in [t_0 - h, t_0 + h]$ решение задачи Коши существует и единственно.

Лемма 2.1. Если $\bar{f}(t,\bar{x})$ - непрерывны на Ω , то система уравнений

$$\overline{x}(t) = \overline{x_0} + \int_{t_0}^{t} \overline{f}(\tau, \overline{x}(\tau)) d\tau$$
(44)

эквивалентна задаче Коши.

Доказательство. Пусть $\varphi(t)$ - решение (42) при условии (43), тогда

$$\dot{\varphi}^i = f^i(t, \varphi^1(t), \dots, \varphi^n(t))$$

Проинтегрируем полученное равенство по отрезку $[t_0, t]$

$$\int_{t_0}^t \dot{\varphi}^i(\tau)d\tau = \int_{t_0}^t f^i(\tau, \varphi^1(\tau), \dots, \varphi^n(\tau))d\tau$$
$$\varphi^i(t) - \varphi^i(t_0) = \int_{t_0}^t f^i(\tau, \bar{\varphi}(\tau))d\tau$$
$$\varphi^i(t) = x_0^i + \int_{t_0}^t f^i(\tau, \bar{\varphi}(\tau))d\tau$$

Теперь пусть $\bar{\varphi}(t)$ - решение (44). Тогда

$$\varphi^{i}(t) \equiv x_0^{i} + \int_{t_0}^{t} f^{i}(\tau, \bar{\varphi}(\tau)) d\tau$$

Отсюда видно, что функция $\varphi^i(t)$ - дифференцируемы. Тогда

$$\begin{cases} \dot{\varphi}^i(t) = f^i(t, \bar{\varphi}(t)) \\ \varphi^i(t_0) = x_0^i \end{cases}$$
(45)

Следствие 2.3.1. Из 2 части леммы следует, что решение задачи Коши непрерывно дифференцируемо.

Введем оператор $A(\bar{x}) = \bar{x}_0 + \int\limits_{t_0}^t \bar{f}(\tau,\bar{x}(\tau))d\tau$. Тогда систему интегральных уравнений (44) можно записать в виде

$$\bar{x}(t) = A(\bar{x}) \tag{46}$$

Лемма 2.2.

$$\left\| \int_{t_0}^t \bar{x}(\tau)d\tau \right\| \le \left| \int_{t_0}^t \|\bar{x}(\tau)\|d\tau \right|$$

Доказательство.

$$\left| \int_{t_0}^t x^i(\tau) d\tau \right| \le \left| \int_{t_0}^t \left| x^i(\tau) \right| d\tau \right| \le \left| \int_{t_0}^t \|\bar{x}(\tau)\| d\tau \right| \tag{47}$$

Таким образом
$$\max\{|\int\limits_{t_0}^t x^i(\tau)d\tau|\} = ||\int\limits_{t_0}^t \bar{x}(\tau)d\tau|| \le |\int\limits_{t_0}^t \|\bar{x}(\tau)\|d\tau|$$

Лемма 2.3. (Адамара) Пусть $\bar{f}(\bar{x}), \frac{\partial f^i}{\partial x_j}$ непрерывны в $\Omega \subset \mathbb{R}^n$ - замкнутой, ограниченной, выпуклой области. Тогда $\forall i = \overline{1,n}, \bar{y} \in \Omega \hookrightarrow \|\bar{f}(\bar{y}) - \bar{f}(\bar{x})\| \leq n^{3/2} K_1 \|\bar{y} - \overline{x}\|$, где $K_1 = \max_{i,j=\overline{1,n}} \{ \max_{x \in \Omega} \left\{ \left| \frac{\partial f^i}{\partial x_j} \right| \right\} \}$

Доказательство.
$$|\bar{f}| = \sqrt{\sum_{i=1}^n (f^i)^2}, \ ||\bar{f}||_C = \max_{x \in \Omega} \{|\bar{f}(\bar{x})|\}$$

 Ω - компакт, поэтому непрерывность частных производных позволяет говорить о существовании K_1 . Возьмем произвольные точки \bar{x} и \bar{y} и соединим их отрезком $\bar{x} + t(\bar{y} - \bar{x})$, где $t \in [0,1]$. Рассмотрим значение компоненты f^i на отрезке:

$$f^{i}(\bar{x} + t(\bar{y} - \bar{x})) = f^{i}(t)$$

 $f^i(t)$ - дифференцируема, тогда

$$|f^{i}(\bar{y}) - f^{i}(\bar{x})| = |f^{i}(1) - f^{i}(0)| = \left| \frac{df}{dt}(t^{*}) \cdot (1 - 0) \right| =$$

$$= \left| \sum_{j=1}^{n} \frac{\partial f^{i}}{\partial x^{j}}(t^{*}) \cdot (y^{j} - x^{j}) \right| \leq \sum_{j=1}^{n} \left| \frac{\partial f^{i}}{\partial x^{j}}(t^{*}) \right| \cdot \left| (y^{j} - x^{j}) \right| \leq K_{1} ||\bar{y} - \bar{x}|| \cdot n$$

Теперь рассмотрим вектор-функцию

$$|\bar{f}(\bar{y}) - \bar{f}(\bar{x})| = \sqrt{\sum_{k=1}^{n} (f^{k}(\bar{y}) - f^{k}(\bar{x}))^{2}} \le K_{1} n^{3/2} ||\bar{y} - \bar{x}||$$

$$\Rightarrow ||\bar{f}(\bar{y}) - \bar{f}(\bar{x})|| \le K_{1} n^{3/2} ||\bar{y} - \bar{x}||$$

Доказательство. (Основная теорема)

Докажем, что $A(\bar{x})$ из системы (46) является сжатием.

Рассмотрим $\Pi = \{\|\bar{x}(t) - \bar{x}_0(t)\| \le b, |t - t_0| \le a\} \subset \Omega$. Определим $K = \|\bar{f}\|_C = \max_{\Pi} |\bar{f}|$. K_1 тоже определено в силу условий.

Рассмотрим $\Pi_h = \{ \|\bar{x}(t) - \bar{x}_0(t)\| \le b, |t - t_0| \le h \le a \}$

Банахово пространство B - множество функций $\bar{x}(t)$ непрерывных на отрезке $|t-t_0| \le b$. $M \subset B$ - множество функций $\|\bar{x}(t) - \bar{x}_0\| \le b$. M ограничено, так как $\forall \bar{x}(t) \in M \hookrightarrow \|\bar{x}(t)\| = \|\bar{x}(t) - \bar{x}_0 + \bar{x}_0\| \le b + \|\bar{x}_0\| = C$

Докажем, что M замкнуто. Пусть $\bar{x}_n(t), n=1,2,\ldots$ - последовательность точек в M, такая что $\lim_{n\to\infty} \bar{x}_n(t) = \bar{x}(t). \|\bar{x}(t)\| = \|\bar{x}(t) - \bar{x}_n + \bar{x}_n\| \le \|\bar{x}(t) - \bar{x}_n\| + \|\bar{x}_n\| \le \varepsilon + b \Rightarrow \bar{x}(t) \in M$ Подберем h так, чтобы $A: M \to M$. То есть $\|A(\bar{x}) - \bar{x}_0\| \le b$.

$$||A(\bar{x}) - \bar{x}_0|| = ||\int_{t_0}^t \bar{f}(\tau, \bar{x}(\tau))d\tau|| \le |\int_{t_0}^t ||\bar{f}||d\tau|| \le Kh$$

Получаем условие $h \leq b/K$

Чтобы доказать, что A - сжатие, рассмотрим норму

$$||A(\bar{y}) - A(\bar{x})|| = ||\int_{t_0}^t (\bar{f}(\tau, \bar{y}(\tau)) - \bar{f}(\tau, \bar{x}(\tau))) d\tau|| \le$$

$$\le |\int_{t_0}^t ||\bar{f}(\tau, \bar{y}) - \bar{f}(\tau, \bar{x})|| d\tau| \le K_1 n^{3/2} ||\bar{y} - \bar{x}|| \cdot |\int_{t_0}^t d\tau| \le K_1 h n^{3/2} ||\bar{y} - \bar{x}||$$

Откуда второе условие: $h < \frac{1}{n^{3/2}K_1}$

Тогда оператор A будет сжатием. Соответственно решение задачи Коши существует и единственно.

2.3. Теорема существования и единственности решения задачи Коши для уравнения n-го порядка в нормальном виде

Определение 2.17. Уравнение вида

$$y^{(n)} = f(x, y, \dots, y^{(n-1)})$$
(48)

называется уравнением п-го порядка в нормальной форме.

Определение 2.18. Система

$$\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ \dots \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$
(49)

называется начальным условием уравнения п-го порядка в нормальной форме.

Утверждение 2.3. Решить задачу Коши означает найти такое решение (48), которое удовлетворяет условию (49)

Теорема 2.4 (Теорема Коши о существовании и единственности решения). *Если* f, $\frac{\partial f}{\partial y'}, \dots, \frac{\partial f}{\partial y^{(n-1)}}$ непрерывны в $\Omega \subset \mathbb{R}^{n+1}$, тогда $\forall (x_0, \bar{y}_0) \in \Omega \exists h > 0 : \forall x \in [x_0 + h, x_0 - h]$ решение задачи Коши существует и единственно.

Доказательство. Введем следующие функции: $y(x) = v_1(x), y'(x) = v_2(x), \dots, y^{(n-1)}(x) = v_n(x)$. Таким образом получаем систему уравнений в нормальной форме

$$\begin{cases}
\frac{dv_1}{dx} = v_2 \\
\dots \\
\frac{dv_n}{dx} = f(x, \bar{v})
\end{cases}$$
(50)

А для нее решение существует и единственно.

2.4. Теоремы о продолжении решения для нормальной системы дифференциальных уравнений

Теоремы Коши носят существенно локальный характер. Решение и единственность задачи Коши будет существовать на отрезке Пеано. Теперь сделаем отход от единственности и докажем, что $\vec{\varphi}(t)$ и $\vec{\psi}(t)$ есть решение задачи Коши, то они будут совпадать на промежутке, где они оба определены (отход от локальности).

Теорема 2.5. Пусть $\vec{\varphi}(t)$ решение $(42) \wedge (43)$ определенно на $\langle a, b \rangle$, а $\vec{\psi}(t)$ решение $(42) \wedge (43)$ определенно на $\langle c, d \rangle$. Тогда $\vec{\varphi}(t) \equiv \vec{\psi}(t)$ на $\langle r_1, r_2 \rangle = \langle a, b \rangle \cap \langle c, d \rangle$.

Доказательство. От противного: $\exists t^* \in \langle r_1, r_2 \rangle$, где $\vec{\varphi}(t^*) \neq \vec{\psi}(t^*)$, тогда $t^* \neq t_0$ и предположим, что $t^* > t_0$. Рассмотрим множество N точек такое, что $t \in [t_0, t^*]$ и $\vec{\varphi}(t) = \vec{\psi}(t)$. Покажем, что множество замкнуто:

Рассмотрим сходящуюся послед-сть $t_1 \dots t_n \in N$, $\lim_{n \to \infty} t_n = \bar{t}$. Нужно показать, что $\bar{t} \in N$: Рассмотрим $\lim_{n \to \infty} \vec{\varphi}(t_n) = \lim_{n \to \infty} \vec{\psi}(t_n)$ (равны по выбору множества N). И из непрерывности

выбранных функций получаем, что $\lim_{n\to\infty} \vec{\varphi}(t_n) = \lim_{n\to\infty} \vec{\psi}(t_n) = \vec{\varphi}(\bar{t}) = \vec{\psi}(\bar{t}) \Rightarrow$ замкнутость. Из замкнутости и ограниченности мн-ва $N \Rightarrow \exists \tilde{t} = \sup N, \, \tilde{t} \in N.$ Очевидно, что $\tilde{t} < t^* < r_2$. Пусть $\vec{\varphi}(\tilde{t}) = \vec{\psi}(\tilde{t}) = \vec{y_0}$. Поставим задачу Коши в $t = \tilde{t}$. По основной теореме на $[\tilde{t} - \tilde{h}; \tilde{t} + \tilde{h}]$ решения $\vec{\psi}(t)$ и $\vec{\varphi}(t)$ совпадают, что противоречит тому факту, что $\tilde{t} = \sup N$ $\Rightarrow \vec{\varphi}(t^*) = \vec{\psi}(t^*)$, а значит и $\vec{\varphi} = \vec{\psi}$ на всём $\langle r_1; r_2 \rangle$. Аналогичные рассуждения для $t^* < t_0$.

Определение 2.19. $\vec{\varphi}(t)$ определена на $\langle a,b \rangle$ и решение $(42) \wedge (43)$, если $\exists \vec{\psi}(t)$ на $\langle a,b_1 \rangle \supset \langle a,b \rangle$, и решение $(42) \wedge (43)$ и $\vec{\varphi}(t) \equiv \vec{\psi}(t)$ на $\langle a,b \rangle$, тогда $\vec{\varphi}(t)$ называется продолжаемым вправо, а $\vec{\psi}(t)$ продолжением решения $\vec{\varphi}(t)$ задачи Коши

Определение 2.20. Решение, которое нельзя продолжить ни вправо, ни влево называется непродолжаемым решением

Примечание. По сути данная теорема является усилением задачи Коши. Вместо отрезка Пеано мы получили, что решение задачи Коши может быть продолжено на промежуток, где они оба определены.

Теорема 2.6. Пусть имеется задача Коши (42) \wedge (43) и $\vec{f}(t, \vec{x}), \frac{\partial f^i}{\partial x_j}, i, j = \overline{1, n}$ непрерывны в $\Omega \subset \mathbb{R}^{n+1}$. Тогда $\forall (t_0, \vec{x_0}) \in \Omega$ $\exists !$ непродолжаемое решение задачи (42) \wedge (43).

Доказательство. Рассмотрим множество решений задач Коши (42) \wedge (43). Каждое решение задачи определенно на промежутке $\langle R_1, R_2 \rangle$, тогда пусть $T_1 = \inf R_1, T_2 = \sup R_2$.

Построим решение задачи $(42) \wedge (43)$ на (T_1, T_2) :

Выберем $t^* > t_0$, тогда $\exists \ \vec{\psi}(t)$, чей промежуток содержит t^* (в силу выбора промкежутка (T_1, T_2)). Положим $\vec{\varphi}(t^*) \stackrel{def}{=} \vec{\psi}(t^*)$. Покажем, что так можем сделать, что значение $\vec{\varphi}(t^*)$ не зависит от выбора $\vec{\psi}(t)$:

Пусть $\vec{\psi}(t)$ решение задачи Коши (42) \wedge (43) содержащее t^* , тогда $\vec{\psi}(t^*) = \vec{\psi}(t^*)$ из теоремы сущ. и единст. решения задачи Коши (будут совпадать на промежутке, где они определены и при этом t^* принадлежит этому промежутку).

Построение вниз проводится аналогично. И так, $\vec{\varphi}(t)$ решение $(42) \land (43)$ на $T_1 < t < T_2$. Это решение является продолжением любого из множества решений задачи Коши. Допустим, $\vec{\varphi}(t)$ решение $(42) \land (43)$ на $r_1 \le t \le r_2$ и $T_1 \le r_2 \le T_2 \Rightarrow \vec{\varphi}(t) = \vec{\varphi}(t)$ (продолжение решения по доказанной выше теоремы).

Покажем, что $\vec{\psi}(t)$ является непродолжаемым решением (42) \land (43): Допустим, что имеется ещё одно решение $\vec{\chi}(t)$, определённое на $(\gamma_1; \gamma_2)$ и оно является продолжением $\vec{\varphi}(t)$. Тогда, либо $\gamma_1 < T_1$, либо $\gamma_2 > T_2$, что невозможно, т.к. $T_1 = \inf R_1, T_2 = \sup R_2$ по построению. Покажем, что непродолжаемое решение $\vec{\varphi}(t)$ является единственным:

От противного, пусть $\exists \vec{\varphi}(t)$ непродолжаемое решение на (T_1, T_2) и $\vec{\psi}(t)$ на $(\widetilde{T}_1, \widetilde{T}_2)$. Для определённости $\widetilde{T}_1 < T_1$, тогда рассмотрим такое решение $\vec{\chi}(t) = \begin{bmatrix} \vec{\psi}(t) & \text{на } (\widetilde{T}_1, T_1), \\ \vec{\varphi}(t) & \text{на } (T_1, T_2); \end{bmatrix} \Rightarrow \vec{\varphi}(t)$

– продолжение $\vec{\psi}(t)$, противоречие. Аналогично строя остальные решения получаем, что $\vec{\varphi}(t) = \vec{\psi}(t)$

Примечание. В теореме не сказано, как определить T_1 и T_2 . Если усилить условия теоремы, а именно Ω есть ограниченная область, то любое непродолжаемое решение выходит на границу этой области.

Из этих утверждений следует, что если под интегральной кривой понимать график непродолжаемого решения, то через каждую точку $(x_0, y_0) \in \Omega$ проходит только одна кривая.

2.5. Непрерывная зависимость от параметров решения задачи Коши для нормальной системы ДУ

Рассматриваем уравнение

$$y' = f(x, y, \mu) \tag{51}$$

с задачей Коши $y(x_0, \mu) = y_0$, где μ – параметр.

Теорема 2.7. Пусть \mathcal{G} – область в пр-ве (x, y, μ) . Если ф-иии $f(x, y, \mu)$, $\frac{\partial f(x, y, \mu)}{\partial y}$ непрерывны в области по совокупности переменных и точка $(x_0, y_0, \mu_0) \in \mathcal{G}$, то решение задачи Коши $(51\ y(x, \mu))$ непрерывно по совокупности переменных $(x; \mu)$ в некоторой области $|x - x_0| \leq h, |\mu - \mu_0| \leq \delta$

Доказательство. Аналогично доказательство основной теоремы 2.3 сведем задачу Коши к эквивалентной её интегральному уравнению

$$y(x,\mu) = y_0 + \int_{x_0}^x f(\tau, y(\tau, \mu)) d\tau,$$
 (52)

или в операторной форме:

$$y(x,\mu) = A(y(x,\mu)), \tag{53}$$

где
$$A(y(x,\mu)) = y_0 + \int_{x_0}^x f(\tau, y(\tau,\mu)) d\tau.$$

Выберем параллелепипед $\prod = \{|x-x_0| \leq a, |\mu-\mu_0| \leq \delta, |y-y_0| \leq b\}$, целиком лежащей в области \mathcal{G} . В силу условий теоремы $\exists \ K = \max_{\Pi} |f(x,y,\mu)|, \ C = \max_{\Pi} \left| \frac{\partial f(x,y,\mu)}{\partial y} \right|$. Применим к (53) принцим сжатых отображений. В качестве B возьмём пр-во ф-ций $y(x,\mu)$

Применим к (53) принцим сжатых отображений. В качестве B возьмём пр-во ф-ций $y(x,\mu)$ непрерывных в прямоугольнике $\{|x-x_0| \leq h, |\mu-\mu_0| \leq \delta\}$, где h>0 будет выбрано с нормой $||y(x,\mu)||_C = \max_{|x-x_0| \leq h} |y(\mu,x)|$. В качестве $M \subset B$ возьмём множество функций из B таких, что $||y(x,\mu)-y_0||_C \leq b$.

1) Нужно, чтобы
$$A(y(x,\mu)) \in M$$
, если $y(x,\mu) \in M$. $||A(y) - y_0|| = \left| \left| \int_{x_0}^x f(\tau,y(\tau,\mu))d\tau \right| \le \left| \int_{x_0}^x f(\tau,y(\tau,\mu))d\tau \right| \le K \cdot h \Rightarrow \text{Hеобходимо, чтобы } K \cdot h \le b \Rightarrow h = \min \left\{ a, \frac{b}{K} \right\}.$

2) Нужно, чтобы A_x было сжатием, т. е. $||A\varphi - A\psi|| \le k \cdot ||\varphi - \psi||, \ 0 < k < 1.$

$$\begin{split} ||A\varphi - A\psi|| &= \left| \left| \int_{x_0}^x \left(f(\tau, \varphi(\tau, \mu)) - f(\tau, \psi(\tau, \mu)) \right) \cdot d\tau \right| \right| \leq \\ &\leq \left| \int_{x_0}^x ||f(\tau, \varphi(\tau, \mu)) - f(\tau, \psi(\tau, \mu))|| \cdot d\tau \right| \leq \\ &\leq (\text{По лемме Адамара}) \leq C \cdot h \cdot 1 \cdot ||\varphi - \psi|| \ \Rightarrow \end{split}$$

Необходимо, чтобы $C \cdot h < 1 \Rightarrow h < \frac{1}{C}$. Т. е. при $\begin{cases} h \leq min \ \left\{a, \frac{b}{K}\right\}, \\ h < \frac{1}{C}. \end{cases}$ оператор A является

сжатием и обладает единственным решением операторного уравнения $y(x,\mu) = A(y(x,\mu))$, а значит и задача Коши (51). Причём решение $y(x,\mu)$ непрерывно по совокупности переменных.

2.6. Дифференцируемость решения по параметру

Пусть $y(x,\mu)$ является решением задачи Коши (51). Введем функцию $z(x,\mu)$: $z(x,\mu)=\frac{\partial y(x,\mu)}{\partial \mu}$

Теорема 2.8. Если $f(x, y, \mu)$ как функция трёх переменных в области \mathcal{G} пр-ва (x, y, μ) р раз непрерывно дифференцируема по (y, μ) и p-1 раз непрерывно дифференцируема по x, тогда решение задачи Коши (51) $y(x, \mu)$ является p раз непрерывно дифференцируема по совокупности (x, μ) .

Доказательство. В 15 лекции от 10.12.20 года лектор сказал, что доказывать не будет . Запись текущего года на ютубе отсутствует. В Федорюке проводится доказательство для p=1 (см следствие).

Следствие 2.8.1.
$$\frac{\partial}{\partial \mu} \left(\frac{dy}{dx} \right) = \frac{\partial}{\partial \mu} \left(f(x, y(x, \mu), \mu) \right) = \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \mu} + \frac{\partial f}{\partial \mu}$$

$$C \text{ задачей Коши: } \frac{\partial z}{\partial \mu} (x_0) = \frac{\partial y_0}{\partial \mu} \Rightarrow$$

$$\Rightarrow \frac{d}{dx} \left(\frac{\partial y}{\partial \mu} \right) = \boxed{z_x' = \frac{\partial f}{\partial y} \cdot z + \frac{\partial f}{\partial \mu}} - \text{уравнение в вариациях для (51).}$$

Примечание. Уравнение в вариациях всегда линейное.

2.7. Задача Коши для уравнения первого порядка, не разрешенного относительно производной. Особое решение

Рассматриваем уравнение

$$F(x, y, y') = 0, (54)$$

где F(x,y,y') как функция трёх переменных является непрерывно дифференцируемой функцией в области $\mathcal{D} \subset \mathbb{R}^3$.

Теорема 2.9. Пусть $F \in C^1$ в $\mathcal{D} \subset \mathbb{R}^3$ в точке $M(x_0, y_0, y_0') \in \mathcal{D}$ выполнено $F(x_0, y_0, y_0') = 0$ и $\frac{\partial F(x_0, y_0, y_0')}{\partial y'} \neq 0$. Тогда $\exists h > 0$: $\forall x \in [x_0 - h; x_0 + h]$ существует и единственно решение (54), удовлетворяющая условиям

$$y(x_0) = y_0, y'(x_0) = y'_0.$$
 (55)

Доказательство. Из условий теоремы о неявной функции существует окрестность U точки (x_0, y_0) , в которой существует $f(x, y) \in C_U^1$ такая, что

$$y' = f(x, y). (56)$$

При этом

$$F(x, y, f(x, y)) \equiv 0, f(x_0, y_0) = y_0'.$$
(57)

Согласно основной теореме, существует отрезок Пеано, принадлжащий проекции U на ось абсцисс, на котором существует и единственно решение (56), удовлетворяющее условию $y(x_0) = y_0$.

Пусть это решение есть $y = \varphi(x), y_0 = \varphi(x_0)$. Тогда $y' = \varphi'(x) \equiv f(x, \varphi(x))$, и из (57) следует, что $F(x, \varphi(x), \varphi'(x)) \equiv 0, \varphi'(x_0) = f(x_0, \varphi(x_0)) = y_0' \Rightarrow y = \varphi(x)$ – решение задачи (54) \wedge (55)

Примечание. Второе условие в (55) возникает из-за неоднозначности разрешения F(x,y,y')=0, относительно y' в точке $\frac{\partial F}{\partial y'}=0$. Так, в ДУ $(y')^2=4x^2 \ \forall (x,y): y'=\pm 2x$. Второе условие (55) определяет одно из условий (фактически выбор ДУ).

На плоскости (x;y) рассмотрим кривую γ , определяемую системой уравнений, каждое из которых определяет поверхность.

$$\begin{cases} F(x, y, y') &= 0, \\ \frac{\partial F(x, y, y')}{\partial y'} &= 0. \end{cases}$$
 (58)

Определение 2.21. Кривая (58) называется дискриминантной кривой.

Примечание. По опредлению дискриминантной кривой, в каждой точке нарушается единственность решения (54). В приведённом выше примере дискриминантная кривая есть x = 0 и решение задачи y(0) = C, y' = 0 будет иметь четыре решения:

$$y = x^2 + C$$
, $y = -x^2 + C$, $y = \begin{bmatrix} x^2 + C, & x \le 0 \\ -x^2 + C, & x > 0 \end{bmatrix}$ $y = \begin{bmatrix} -x^2 + C, & x \le 0, \\ x^2 + C, & x > 0. \end{bmatrix}$

Определение 2.22. Решение ДУ называется особым, если в каждой ему принадлежащей точке его касается другое решение ДУ, отличное от него в любой достаточно малой окрестности этой точки.

3. Билет 3. Линейные дифференциальные уравнения и линейные системы дифференциальных уравнений с постоянными коэффициентами

3.1. Вводная часть

3.1.1. Понятие кольца. Рассмотрение понятия многочленов

Определение 3.1. Кольцом K называют множество, на котором определены две операции: сложение и умножение, сопоставляющее упорядоченным парам элементов их "сумму", "произведение", являющимся элементами этого же множества.

Рассмотрим кольцо, в котором действия + и \cdot удовлетворяют следующим условиям (первые 6 – определение кольца):

1.
$$(a+b) + c = a + (b+c) \quad \forall a, b, c \in K$$

2.
$$a+b=b+a \quad \forall a,b \in K$$

3.
$$\exists 0 \in K : a+0=a \ \forall a \in K$$

$$4. \ \forall \ a \in K \ \exists -a \in K : a + (-a) = 0 \ \forall a \in K$$

5.
$$(a+b) \cdot c = ac + bc \quad \forall a, b, c \in K$$

6.
$$c \cdot (a+b) = ca+cb \quad \forall a, b, c \in K$$

7.
$$(ab)c = a(bc) \quad \forall a, b, c \in K$$

8.
$$ab = ba \quad \forall a, b \in K$$

9.
$$\exists 1 \in K : a \cdot 1 = 1 \cdot a = a \quad \forall a \in K$$

10.
$$\exists a^{-1} \in K : a^{-1}a = aa^{-1} = 1 \quad \forall a \in K$$

Утверждение 3.1. *Если* a + x = a + y, *mo* x = y

Доказательство.

$$(-a) + (a+x) = (-a) + (a+y) \Rightarrow ((-a) + a) + x = ((-a) + a) + y = 0 + x = x = 0 + y = y$$

Отсюда следует единственность нуля и противоположного элемента:

$$(-a) \neq (-a)'$$

 $0 = a + (-a) = a + (-a)' \Rightarrow (-a) = (-a)'$

Утверждение 3.2. $a \cdot 0 = 0 \cdot a = 0 \quad \forall a$

Доказательство.
$$a\cdot 0+0=a\cdot 0=a(0+0)\Rightarrow a\cdot 0=0;$$
 аналогично $0+0\cdot a=0\cdot a=(0+0)\cdot a=0\cdot a+0\cdot a\Rightarrow 0\cdot a=0$

Утверждение 3.3. Единица единственна

Доказательство. Пусть $1 \neq 1' : 1 = 1 \cdot 1' = 1' \cdot 1 = 1'$

- Кольцо называется ассоциативным, если выполнено условие 7; коммутативным, если выполнено 8. Если выполнено условие 9, то говорят о кольце с единицей.
- Ассоциативное кольцо называется областно целостным, если из $ab=0 \Rightarrow a=0 \bigvee b=0$
- Полем называется коммутативное ассоциативное кольцо с единицей, в котором каждый отличный от нуля элемент имеет обратный.

Утверждение 3.4. Любое поле является областно целостным

Доказательство.
$$ab = 0, \ a \neq 0 \Rightarrow a^{-1} \cdot (ab) = a^{-1} \cdot 0 = 0 = (a^{-1}a) \cdot b = 1 \cdot b = b \Rightarrow b = 0$$

3.1.2. Многочлен

Пусть A — коммутативное ассоциативное кольцо с единицей. Одночленом от x с коэффициентом из A называется выражение ax^m , $a \in A$, $m \in \mathbb{N}$. По определению положим, что $ax^0 = a$. Выражение ax^m будем рассматривать как символ, для которого выпоняется по определению:

$$ax^{m} + bx^{m} = (a+b)x^{m}$$
$$ax^{m} \cdot bx^{n} = a \cdot bx^{m+n}$$

Выражение, состоящее из нескольких одночленов, соединенных знаком + назовем многочленом от x с коэффициентами из A. Без нарушения общности, в силу коммутативности сложения запишем в каноническом виде: $P_n(x) = a_0 + a_1x + \cdots + a_nx^n$

- 1. Многочлены $P_n(x) = a_0 + a_1x + \cdots + a_nx^n$ и $Q_m(x) = b_0 + b_1x + \cdots + b_mx^m$ считаем равными в том и только в том случае, если n = m и $a_k = b_k$, $k = \overline{1, n}$
- 2. Суммой двух многочленов $P_n(x)$ и $Q_n(x)$ называется многочлен, получившейся посредством объединения одночленов соответствующих слагаемых:

$$P(x) + Q_m(x) = (a_0 + a_1 x + \dots + a_n x^n) + (b_0 + b_1 x^1 + \dots + b_m x^m) = a_0 + b_0 + (a_1 + b_1) x + \dots + c_s x^s$$

$$s = \max\{n, m\}$$

$$c_s = a_s + b_s, a_s = 0$$
, если $s > n$ и $b_s = 0$, если $s > m$

Так определенное сложение многочленов коммутативно и ассоциативно.

Имеется нулевой элемент $0 = 0 \cdot x + \dots + 0 \cdot x^n$, а также противоположный $(-P_n(x)) = (-a_0) + (-a_1)x + \dots + (-a^n)x^n$

3. Произведением двух многочленов называют многочлен, составленный их произведения всех членов первого сомножителя на все члены второго.

$$P_n(x) \cdot Q_m(x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + \dots + \left(\sum_{i=k+l} a_k b_l \right) x^j + \dots + a_n b_m x^{n+m}$$

• Покажем, что так определенное умножение будет коммутативно и ассоциативно:

$$P_n(x) \cdot Q_m(x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + \dots + \left(\sum_{j=k+l} a_k b_l \right) x^j + \dots + a_n b_m x^{n+m}$$

В сумме
$$\sum_{j=k+l} a_k b_l$$
 заменим $k \leftrightarrow l \Rightarrow \sum_{j=k+l} b_k a_l = \sum_{j=k+l} b_l a_k = \sum_{j=k+l} a_l b_k \stackrel{\Rightarrow}{\Rightarrow} P_n(x) \cdot Q_m(x) = Q_m(x) \cdot P_n(x) \Rightarrow$ коммутативно.

Пусть
$$R_s(x) = c_0 + c_1 x + \dots + c_s x^s \Rightarrow (P_n(x) \cdot Q_m(x)) \cdot R_s(x) = ((a-0)b_0)c_0) + \left(\sum_{\gamma=j+\sigma} \left(\sum_{j=k+l} a_k b_l\right) c_{\sigma}\right) x^{\gamma} + (a_n b_m) c_S x^{n+m+s}), \quad j = 1, \dots, n+m+s-1.$$
 Так как
$$\sum_{\gamma=j+\sigma} \left(\sum_{j=k+l} a_k b_l\right) c_{\sigma} = \sum_{\gamma=k+l+\sigma} a_k (b_l c_{\sigma}).$$

Пусть
$$l' = l + \sigma \Rightarrow \sum_{\gamma = k + l + \sigma} a_k(b_l c_\sigma) = \sum_{\gamma = k + l'} a_k \left(\sum_{l' = l + \sigma} b_l c_\sigma\right) \underset{(1)}{\Rightarrow} (P_n(x) \cdot Q_m(x)) R_s(x) = P_n(x) \cdot (Q_m(x) \cdot R_s(x))) -$$
ассоциативно.

• Дистрибутивность аналогично (везде используются свойства одночленов)

Таким образом так построенное множество многочленов от x над A будет ассоциативным и коммутативным кольцом A(x). Роль единицы в A(x) играет единица их A.

При построении кольца многочленов вместо x положим $p=\frac{d}{dx}$ — оператор дифференцирования, который действует на множестве бесконечно дифференцируемых комплекснозначных функций. $p\cdot f(x)=p(f(x))=\frac{df}{dx}=f',\ p^2(f)=f'',\ldots,p^n(f)=f^{(n)};$ Справедлива формула $p^s\cdot p^m(f)=p^s\cdot (p^m(f))=p^s\cdot (f^{(m)})=f^{(m+s)}=p^{m+s}(f).$

По определению, множество бесконечно дифференцируемых комплекснозначных функций Φ является кольцом, содержащим поле $\mathbb C$. В качестве элементов кольца A будем брать числа из $\mathbb C$. Роль операторного одночлена в таком случае будет играть $ap^m, \ a \in \mathbb C$; $ap^m = p^m a$, так как $ap^m(f) = af^{(m)} = f^{(m)} \cdot a = p^m(f) \cdot a$; По определению положим $ap^0 = a$, что корректно, так как $ap^0 f = ap^0(f) = af = a \cdot f = a(f)$. Приведение подобных слагаемых для одночленов определим как $ap^m + bp^m = (a+b)p^m$, поскольку $(ap^{(m)})(f) + bp^{(m)})(f) = af^{(m)} + bf^{(m)} = (a+b)f^{(m)} = ((a+b)p^m)(f)$.

Аналогично вводим выражение, состоящее из нескольких операторных одночленов, соединенных знаком +, называемое операторным многочленом от p с коэффициентом из C. Из свойств дифференцирования следует, что в общем виде можно записать $L_n(p) = a_0 + a_1p + \cdots + a_np^n$

Абсолютно аналогично доказываем, что замена x на p дает множество операторных многочленов от p, которое будет кольцом из $\mathbb C$

• Пусть $x \in \mathbb{C}$. Значение многочлена $P_n(x)$ на \mathbb{C} определим как число $P_n(x) = a_0 + a_1 z + \cdots + a_n z^n \in \mathbb{C}$.

Понятие значения многочлена можно обобщить на случай, когда B является ассоциативным кольцом, содержащим кольцо A, в случае, когда элементы A коммутируют с элементами из B.

В таком случае можно определить степень элемента кольца B. Пусть $a \in B, \quad a^1 = a, \quad a^2 = a \cdot a, \dots, a^n = a^{n-1} \cdot a$

Теорема 3.1. $\forall k \in \mathbb{N}, \forall m \in \mathbb{N} \to a^k \cdot a^m = a^{k+m}$

• Значение операторного многочлена $L_n(p)$ определим на коммутативном и ассоциативном кольце Φ — бесконечно дифференцируемой комплекснозначной функцией от $x \in \mathbb{R}$: f(x)

$$L_n(F) = L_n(p)(f) = a_0 f + a_1 f' + \dots + a_n f^{(n)} \in \Phi$$

• Если $F(p) = L_n(p) + M_m(p)$ определим сумму на множестве дифф. операторов:

$$F(p) = (a_0 + b_0)f + (a_1 + b_1)f' + \dots + c_s f = L_n(p)(f) + M_m(p)(f) \Rightarrow (L_n(p) + M_m(p))(f) =$$
$$= (M_m(p) + L_m(p))(f)$$

коммутативно, ассоциативность аналогично.

- $(L_n(p)M_m(p))(f) = (a_0b_0p^0 + (a_0b_1 + a_1b_0)p + \dots + \left(\sum_{j=k+l} a_kb_l\right)p^j + \dots + a_nb_mp^{m+n})(f) = a_0b_0f + (a_0b_1 + a_1b_0)f' + \dots + \left(\sum_{j=k+l} a_kb_l\right)f^{(j)} + \dots + a_nb_mf^{(n+m)} = (a_0p^0 + a_1p + \dots + a_np^n) + a_0b_0f' + \dots + a_nb_mf^{(m+m)} = (a_0p^0 + a_1p + \dots + a_np^n) + a_0b_0f' + \dots + a_nb_mf^{(m+n)} = L_n(p) \cdot (M_m(f)) \text{ определение действия произведения операторов на множестве <math>\Phi$. Так как $a_0b_0f + (a_0b_1 + a_1b_0)f' + \dots + \left(\sum_{j=k+l} a_kb_l\right)f^{(j)} + \dots + a_nb_mf^{(m+n)} = M_m(p) \cdot (a_0f + a_1f' + \dots + a_nf^{(n)}) \Rightarrow (L_n(p) \cdot M_m(p)) = (M_m(p) \cdot L_n(p)) \text{ коммутативность.}$
- Покажем ассоциативность и дистрибутивность

$$(L_n(p) \cdot M_m(p))K_s(p)(f) = (L_n(p) \cdot M_m(p))(K_s(p)(f)) =$$

$$= L_n(p)(M_m(p)(K_s(p)(f))) = L_n(p)(Q_m(p)R_s(p))(f)$$

ассоциативность.

$$(L_n(p) + M_m(p))K_s(p)(f) = L_n(p)(K_s(p)(f)) + M_m(p)(K_s(p)(f)) =$$

$$= (L_n(p)K_s(p))(f) + (M_m(p)K_s(p))(f)$$

дистрибутивность \cdot и +.

Таким образом, множество значений операторных многочленов является кольцом, которое содержится в Φ .

• Если для $P_n(x)$ и $Q_m(x)$ из $A(x) = \exists R_s(x) \in A(x) : P_n(x) = Q_m(x) \cdot R_s(x)$, то говорят, что $P_n(x)$ делится на $Q_m(x)$.

Теорема 3.2.

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in A(x), \ c \in A \Rightarrow \exists ! Q_m(x), r \in \mathbb{C} : P_n(x) = (x-c)Q_m(x) + r$$
 Теорема 3.3. (Безу) $P_n(x)$ делится на $x - c \Leftrightarrow P_n(c) = 0$.

Теорема 3.4. Если кольцо A является областью целостности, то число корней $P_n(x)$ не превосходит n.

Теорема 3.5. Основная теорема алгебры

Любой многочлен $P_n(x)$ над $\mathbb C$ имеет хотя бы один корень.

Утверждение 3.5. *Из* 3 *u* 5 *теоремы*

$$\forall P_n(x) \to P_n(x) = a_n(x - c_1)^{l_1} \cdot \dots \cdot (x - c_k)^{l_k}$$
 (59)

• Взаимнооднозначное соответствие φ кольца K на кольцо K' называется изоморфизмом, если $\forall a \in K$ и $\forall b \in K' \to$

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
 $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ (60)

Из (60) следует, что образом нуля кольца K будет нуль K': $\varphi(a) = a' \in K'$ и $\varphi(0) = c', \ \varphi(a) = a' = \varphi(a+o) = \varphi(a) + \varphi(0) = a' + c' \Rightarrow c' = 0$

Если кольцо K имеет единицу, то $\varphi(1)$ будет единицей кольца K': $\varphi(a) = a' = \varphi(1 \cdot a) = \varphi(1) \cdot \varphi(a) = \varphi(1)a' \Rightarrow \varphi(1) -$ единица K'.

 \bullet Обратное отображение φ^{-1} кольца K' на K существует и будет изоморфно.

Рассмотрим отображение φ , которое множеству значений $P_n(x)$ над $\mathbb C$ ставит в соответствие множество значений $L_n(p)$ на множестве бесконечно дифференцируемых комплекснозначных функций Φ по принципу:

$$\varphi(P_n(z)) = \varphi(a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 z^0) = L_n(p)(f) = a_n f^{(n)} + a_{n-1} f^{(n-1)} + \dots + a_0 f;$$

Покажем, что отображение является изоморфизмом.

Отображение взаимнооднозначно по построению.

$$\varphi(P_n(z) + Q_m(z)) = \varphi(a_0 + a_1 z + \dots + a_n z^n + b_0 + b_1 z + \dots + b_m z^m) =$$

$$= \varphi(a_0 + b_0 + (a_1 + b_1)z + \dots + (a_s + b_s)z^s) =$$

$$= (a_0 + b_0 + (a_1 + b_1)p + \dots + (a_s + b_s)p^s)(f) = (L_n(p) + L_m(p))(f)$$

$$\varphi(P_n(z) \cdot Q_m(z)) = \varphi(a_0 b_0 + \sum_{j=k+l} a_k b_l z^j + a_n b_m z^{m+n}) =$$

$$= (a_0 b_0 + \sum_{j=k+l} a_k b_l p^j + a_n b_m p^{m+n}) = L_n(p) \cdot Q_m(p)(f)$$

Таким образом, φ — изоморфизм. Тогда из (60):

$$\varphi(P_n(x)) = \varphi(a_n(z-c_1)^{l_1} \cdot \dots \cdot (z-c_k)^{l_k}) = L_n(p)(f) = a_n \cdot (p-c_1)^{l_1} \cdot \dots \cdot (p-c_k)^{l_k}(f)$$

В итоге $L_n(p) = a_n \cdot (p-c_1)^{l_1} \cdot \dots \cdot (p-c_k)^{l_k}$, где c_1, \dots, c_k — корни $P_n(z)$.

3.2. Линейные уравнения с постоянными коэффициентами

Рассмотрим ДУ вида: $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$, $a_n \neq 0$, где $a_i = const \ \forall i = \overline{1, n}$. Через введенный ранее дифференциальный оператор $L_n(p) = a_n p^n + \dots + a_0 p^0$ уравнение записывается в виде

$$L_n(p)(y(x)) = 0 (2.1)$$

Было доказано, что $L_n(p)$ является изоморфизмом характеристического многочлена (2.1): $P_n(\lambda) = a_n \lambda^n + \dots + a_0 = a_n (\lambda - \lambda_1)^{l_1} \cdot \dots \cdot (\lambda - \lambda_k)^{l_k}$ и поэтому для $L_n(p)$ справедливо разложение

$$L_n(p) = a_n(p - \lambda_1)^{l_1} \cdot \dots \cdot (p - \lambda_k)^{l_k}, \quad p = \frac{d}{dx}$$
(2.2)

Задача: найти ФСР (2.1). Из записи $L_n(p)$ ясно, что решением(2.1) будут функции из Φ , котрые являются корнями $L_n(p)$.

Лемма 3.1. Для любой n раз дифференцируемой на промежутке функции $f(x), \lambda \in \mathbb{C}$ выполняется "формула сдвига"

$$L_n(p)(e^{\lambda x}f) = e^{\lambda x} \cdot L_n(p+\lambda)(f)$$
(2.3)

Доказательство. Докажем по индукции. База n=1:

$$L_1(p)(e^{\lambda x}f) = (a_1p^1 + a_0)(e^{\lambda x}f) = e^{\lambda x}(a_0f + a_1(\lambda f + f')) = e^{\lambda x}(a_1(p + \lambda) + a_0)(f) = e^{\lambda x}L_1(p + \lambda)(f)$$

Пусть (2.3) справедлива для k = n - 1, то есть $L_{n-1}(p)(e^{\lambda x}f) = e^{\lambda x}L_{n-1}(p+\lambda)(f)$ Обозначим $L_n(p) = p - \lambda_1$, тогда по формуле (2.2) :

$$L_n(p) = a_n(p - \lambda_1) \cdot (p - \lambda_1)^{l_1 - 1} \cdot \ldots \cdot (p - \lambda_m)^{l_m} \cdot \ldots \cdot (p - \lambda_k)^{l_k} = L_1(p) \cdot L_{n-1}(p) = L_{n-1}(p) \cdot L_1(p)$$

Тогда $L_n(p)(e^{\lambda x}f) = L_{n-1}(p) \cdot L_1(p)(e^{\lambda x}f(x)) = L_{n-1}(p)(L_1(p)(e^{\lambda x}f)) = L_{n-1}(p)(e^{\lambda x} \cdot (p + \lambda)(f))$

Обозначим через $g(x) = L_1(p + \lambda)(f(x))$, имеем:

$$L_{n}(p)(e^{\lambda x}f) = L_{n-1}(p)(e^{\lambda x}g(x)) \underset{\text{индукция}}{=} e^{\lambda x}L_{n-1}(p+\lambda)(g) =$$

$$= e^{\lambda x}L_{n-1}(p+\lambda)(L_{1}(p+\lambda)(f)) = e^{\lambda x}(L_{n-1}(p+\lambda)\cdot L_{1}(p+\lambda))(f) = e^{\lambda x}\cdot L_{n}(p+\lambda)(f(x))$$

Теорема 3.6. Если λ_m является корнем $L_n(\lambda)$ кратности l_m , то функции $e^{\lambda_m x}, x e^{\lambda_m x}, \dots, x^{l_m-1} e^{\lambda_m x}$ являются решениями (2.2)

Доказательство. Из коммутативности и ассоциативности кольца операторных многочленов и формулы (2.3): $L_n(p) = a_n(p-\lambda_1)^{l_1} \cdot ... \cdot (p-\lambda_m)^{l_m} \cdot ... \cdot (p-\lambda_k)^{l_k} = L_{n-l_m}(p)(p-\lambda_m)^{l_m}$ Воспользуемся формулой сдвига для $x^s e^{\lambda_m x}$:

$$L_n(p)(x^s e^{\lambda_m x}) = e^{\lambda x} \cdot L_{n-l_m}(p + \lambda_m) \cdot p^{l_m}(x^s) =$$

$$= e^{\lambda_m x} \cdot L_{n-l_m}(p + \lambda_m)(x^s)^{(l_m)} = \begin{cases} 0, & \forall s \leq l_{m-1} \\ e^{\lambda_m x} \cdot P_{n-l_m}(x), s \geq l_m \end{cases},$$

где P_{n-l_m} многочлен степени не ниже $n-l_m$.

Таким образом $x^s e_m^{\lambda} x, \quad s = \overline{q, l_{m-1}}$ являются корнями L - n(p), а значит и решениями(2.1)

Из доказанной теоремы следует:

Все функции из набора:

$$\left\{ \{e^{\lambda_1 x}, \dots, x^{l_1 - 1} e^{\lambda_1 x}\}, \dots, \{e^{\lambda_m x}, \dots, x^{l_m - 1} e^{\lambda_m x}\}, \dots, \{e^{\lambda_k x}, \dots, x^{l_k - q} e^{\lambda_k x}\} \right\}$$
(2.4)

будут решениями (2.2). Всего таких функций n штук. Докажем линейную независимость систем функций (2.4).

Лемма 3.2. Система $1, x, ..., x^m$ линейно независима.

Доказательство. Рассмотрим линейную комбинацию функций $C_0 + C_1 x + \dots + C_n x^n = 0$ От противного: пусть $\exists C_0, \dots, C_n: \sum_{i=0}^n C_i^2 \neq 0: C_0 + C_1 x + \dots + C_n x^n = 0 \quad \forall x$

Так как у многочлена степени n не более чем n нулей, то получаем противоречие.

Теорема 3.7. Система функций $P_{n1}(x)e^{\lambda_1 x},\ldots,P_{ns}(x)e^{\lambda_s x}$, где $P_{ni}(x)$ является многочленом степени n_i , а все $\lambda_i \in \mathbb{C}$ разные, является ЛНЗ.

Доказательство. Выражение $P_n(x)e^{\lambda x}$ – квазимногочлен степени $n, \lambda \in \mathbb{C}$, коэффициенты $P_n(x) \in \Phi$ Рассмотрим $(P_n(x)e^{\lambda x})' = \lambda \cdot P_n(x)e^{\lambda x} + e^{\lambda x}\overline{P}_{n-1}(x) = e^{\lambda x}(\lambda P_n(x) + \overline{P}_{n-1}(x)) = e^{\lambda x}(\lambda$ $\widetilde{P}_n(e^{\lambda x}).$

То есть, если будем дифференцировать степени n, то останемся в множестве квазимногочленов степени n.

Докажем по индукции. База n=1- выполнена по Лемме (3.2). Пусть выполнено для n=s-1: система из s-1 квазимногочленов является ЛНЗ системой: $P_{n_1}(x)e^{\lambda_1 x},\ldots,P_{n_{s-1}}$ ЛНЗ.

Для n. От противного: пусть система $P_{n_1}(x)e^{\lambda_1 x},\ldots,P_{n_{s-1}},P_{n_s}(x)e^{\lambda_s x}$ является линейно зависимой, тогда $\exists C_1, \dots, C_l, \dots, C_s$:

$$C_1 P_{n_1}(x) e^{\lambda_1 x} + C_2 P_{n_2}(x) e^{\lambda_2 x} + \dots + C_l P_{n_l}(x) e^{\lambda_l x} + \dots + C_s P_{n_s}(x) e^{\lambda_s} x = 0$$
 (2.5)

и хотя бы одна константа, например $C_l \neq 0$ Из (2.5), перенося C_l вправо и деля на $C_l e^{\lambda_l x}$

$$\overline{C_1}P_{n_1}(x)e^{\omega_1x} + \dots + \overline{C_s}P_{n_s}(x)e^{\omega_sx} = -P_{n_l}(x)$$

где $\overline{C_i} = \frac{C_i}{C_l \neq 0}, \omega_i = \lambda_i - \lambda_l.$ Продифференцируем n_{l+1} раз последнее тождество. Перенумеровав s-1 слагаемое в левой части получим $\overline{C}_1 \cdot P_n(x)e^{\omega_1 x} + \cdots + \overline{C}_{s-1} \cdot P_{n_{s-1}}(x)e^{\omega_{s-1} x} = 0.$

По определению индукции последнее равенство возможно, только если все \overline{C}_i = $0, \ \overline{C}_i = \frac{C_i}{C_l}; C_l \neq 0 \Rightarrow C_i = 0, i = 1, \dots, l-1, l+1, \dots, s \Rightarrow C_l = 0$ противоречие предположению индукции о линейной независимости системы $P_{n_1}(x)e^{\lambda_1 x},\dots,P_{n_{s-1}}(x)e^{\lambda_{s-1} x}.$

Таким образом ФСР дифференциального уравнения (2.1) будет состоять из функций набора

$$\left\{ \{e^{\lambda_1 x}, \dots, x^{l_1 - 1} e^{\lambda_1 x}\}, \dots, \{e^{\lambda_m x}, \dots, x^{l_m - 1} e^{\lambda_m x}\}, \dots, \{e^{\lambda_k x}, \dots, x^{l_k - 1} e^{\lambda_k x}\} \right\},\,$$

где $\lambda_1,\ldots,\lambda_m,\ldots,\lambda_k$ — корни характеристического многочлена $P_n(\lambda)$ кратности $l_1,\ldots,$ l_m,\ldots,l_k .

Общее решение (2.1) будет иметь вид

$$y_0 = e^{\lambda_1 x} \left(\sum_{m=1}^{l_1 - 1} C_m^1 x^m \right) + \dots + e^{\lambda_k x} \left(\sum_{m=1}^{l_k - 1} C_m^k x^m \right)$$
 (2.6)

Фигурирующие в (2.6) константы C_i^j , вообще говоря, могут быть комплексными, если корни $P_n(\lambda)$ являются комплекснозначными. Если изначально ставится задача — найти решение ДУ во множестве действительных функций действительного переменного, то в случае комплексных корней возникает задача выделить из множества комплексных решений действительное. Это осуществимо, так как коэффициенты $P_n(\lambda)$ являются действительными числами.

Пусть $\lambda_m = \alpha + \beta i$ — корень характеристического многочлена кратности i. Ему соответствуют $\varphi_m^i = x^i e^{\alpha x} (\cos \beta x + i \sin \beta x)$

Комплексные корни идут парами, поэтому $\lambda_m = \alpha - \beta i$ тоже корень, и ему соответствует over $x^i e^{\alpha x} (\cos \beta x - i \sin \beta x)$ $\varphi_m^i, \overline{\varphi}_m^i - \Pi H 3, i = \overline{0, l-1}$

Рассмотрим функции

$$\Psi_m^i = \frac{\varphi_m^i + \overline{\varphi}_m^i}{2} = e^{\alpha x} \cdot x^i \cos \beta x = Re(\varphi_m^i)$$

$$\chi_m^i = \frac{\varphi_m^i - \overline{\varphi}_m^i}{2} = e^{\alpha x} \cdot x^i \sin \beta x = Im(\varphi_m^i)$$

Так как любая суперпозиция решений (2.2) в силу его линейности тоже является решением, то χ_m^i и Ψ_m^i являются линейно независимыми и действительными решениями (2.2). Таким образом, чтобы получить действительную ФСР, необходимо все φ_m^i и $\overline{\varphi_m^i}$, $i=\overline{0,l_m},\ m=\overline{1,k},$ отвечающих паре комплексных корней характеристического многочлена $\alpha\pm i\beta$ кратности l, заменить на вещественные $Re(\varphi_m^i)$ и (φ_m^i) . Если считать, что $\lambda_i=\alpha_i\pm i\beta_i$ — корень $P_n(\lambda)$ кратности l_i , то общее решение (2.2) имеет вид:

$$y_0 = e^{\alpha_1 x} \left(\sum_{j=0}^{l_1 - 1} x^j (A_j^1 \cos \beta_1 x + B_j^1 \sin \beta_1 x) \right) + \dots + e^{\lambda_k x} \left(\sum_{j=0}^{l_k - 1} x^j (A_j^k \cos \beta_k x + B_j^k \sin \beta_k x) \right)$$
(2.7)

3.3. Неоднородные линейные уравнения

Рассмотрим уравнение вида: $L_n(p)(y(x)) = f(x)$.

Лемма 3.3. Пусть неоднородность имеет вид $f(x) = \sum_{k=1}^m f_k(x)$ и $y_k^s(x)$ — частное решение

$$L_n(p)(y(x)) = f_k(x), \quad k = \overline{1, m}, \text{ mo ecmb } L_n(p)(y_k^s(x)) = f_k(x)$$

Тогда частное решение уравнения имеет вид $y^s(x) = \sum_{k=1} y_n^s(x)$.

Доказательство.
$$L_n(p)\Big(\sum_{k=1}^m y_k^s(x)\Big) \underset{\text{линейность L}}{=} \sum_{k=1}^m L_n(p)(y_k^s(x)) = \sum_{k=1}^m f_k(x) = f(x)$$

Примечание. Утверждение леммы остается верным и в случае переменных коэффициентов в $L_n(p)$.

Определение 3.2. Пусть $f(x) = \sum_{i=1}^{n} P_{n_i}(x)e^{\lambda x}$, где P_{n_i} — многочлен степени n_i с комплексными коэффициентами, $\lambda \in \mathbb{C}$. Тогда f(x) называется квазимногочленом.

Рассмотрим ДУ:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = L_n(p)(y(x)) = (b_k x^k + b_{k-1} x^{k-1} + \dots + b_0) e^{\lambda x} = P_k(x) e^{\lambda x}$$
(1)

Теорема 3.8. Частное решение (1) можно найти в виде

$$y^{s}(x) = x^{r}(C_{k}x^{k} + C_{k-1}x^{k-1} + \dots + C_{0})e^{\lambda x}$$
(2)

где $r=l_m,\ ecnu\ \lambda=\lambda_m,\ \ m=\overline{1,s}$ — корень $P_n(\lambda)$

 $r=0,\ ecnu\ \lambda \neq \lambda_m;\ Heonpedenehhыe константы <math>C_k\dots,C_0$ находятся из системы с треугольной матрицей.

Доказательство. • $\lambda_m = \lambda$

Подставим (2) в (1) и воспользуемся формулой сдвига.

$$y^{s}(x) = x^{r}(C_{k}x^{k} + C_{k-1}x^{k-1} + \dots + C_{0})e^{\lambda x}$$

Оператор примет вид:

$$L_n(p)(y^s(x)) = (a_n(p-\lambda_1)^{l_1} \cdot \ldots \cdot (p-\lambda_s)^{l_s})(y^s(x)) = L_{n-l_m}(p) \cdot (p-\lambda_m)^{l_m}(y^s(x)) \underset{\text{формула сдвига}}{=}$$

$$= e^{\lambda_m x} L_{n-l_m}(p+\lambda_m) \frac{d^{l_m}}{dx^{l_m}} (C_k x^{r+k} + C_{k-1} x^{r+k-1} + \dots + C_0 x^r)$$

Уравнение в таком виде имеет вид:

$$e^{\lambda x} L_{n-l_m}(p)(p+\lambda_m) \frac{d^{l_m}}{dx^{l_m}} (C_k x^{r+k} + C_{k-1}^{r+k-1} + \dots + C_0 x^r) \equiv e^{\lambda_m x} (b_k x^k + b_{k-1} x^{k-1} + \dots + b_0)$$

где
$$L_{n-l_m}(p+\lambda_m)=a_0(p+\lambda_m)^0+\cdots+a_{n-l_m}(p+\lambda_m)^{n-l_m}=d_0p^0+\cdots+d_{n-l_m}p^{n-l_m}$$

Сократим на $e^{\lambda_m x}$ и выполним дифференцирование $\frac{d^{lm}}{dx^{lm}}$ с учетом того, что $r=l_m$

$$(d_0p^0 + \dots + d_{n-l_m}p^{n-l_m})(A_kC_kx^k + A_{k-1}C_{k-1}x^{k-1} + \dots) =$$

$$= A_kC_kd_0x^k + (kA_kC_kd_1 + A_{k-1}C_{k-1}d_0)x^{k-1} + \dots \equiv$$

$$\equiv b_kx^k + b_{k-1}x^{k-1} + \dots$$

где
$$A_k = (k + l_m)(k + l_m - 1) \cdot ... \cdot (k + 1)$$

Приравнивая коэффициенты при одинаковых степенях x и получим систему

система с треугольной матрицей
$$\begin{cases} A_k C_k d_0 = b_k \\ A_{k-1} C_{k-1} d_0 + k A_k C_k d_1 = b_{k-1} \\ \dots \end{cases} \tag{61}$$

• $\lambda \neq \lambda_m$

$$y^{s} = e^{\lambda x} (C_{k} x^{k} + C_{k-1} x^{k-1} + \dots + C_{0})$$

После формулы сдвига $e^{\lambda x}L_n(p+\lambda)(f) \Rightarrow$

$$L_n(p+\lambda_m) = (a_0(p+\lambda_m)^0 + \dots + a_n(p+\lambda_m)^n) = d_0p^0 + d_1p + \dots + d_np^n \Rightarrow$$

уравнение примет вид:

$$e^{\lambda x}(d_0p^0 + d_1p + \dots + d_np^n)(C_kx^k + C_{k-1}x^{k-1} + \dots + C_0) \equiv (b_kx^k + b_{k-1}x^{k-1} + \dots + b_0)e^{\lambda x} \Rightarrow$$

$$C_kd_0x^k + (kC_kd_1 + C_{k-1}d_0)x^{k-1} + \dots \equiv b_kx^k + b_{k-1}x^{k-1} + \dots$$

После приравнивая коэффициентов при одинаковых степенях x:

Система с треугольной матрицей
$$\begin{cases} C_k d_0 = b_k \\ C_{k-1} d_0 + k C_k d_1 = b_{k-1} \\ \dots \end{cases}$$
 (62)

3.4. Уравнение Эйлера

Примечание. Источник: В. М. Ипатова, О. А. Пыркова, В. Н. Седов "Дифференциальные уравнения. Методы решений"

Определение 3.3. Уравнением Эйлера называется линейное дифференциальное уравнение с переменными коэффициентам вида $a_k(x) = b_k x^{n-k}, \quad k = \overline{0,n}, \ \textit{где}\ b_0, b_1, \dots, b_n - \textit{заданные}$ числа, причем $b_0 \neq 0$:

$$b_0 x^n y^{(n)} + b_1 x^{n-1} y^{(n-1)} + \dots + n_{n-1} x y' + b_n y = f(x)$$
(3.1)

Заменой $x = e^t$ (t = lnx) (3.1) сводится к линейному дифференциальному уравнению с постояннными коэффициентами. Действительно,

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{x} \cdot \frac{dy}{dt} = e^{-t} \frac{dy}{dt}, \quad \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = e^{-t} \frac{d}{dt} \left(e^{-t} \frac{dy}{dt}\right) = e^{-2t} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right)$$

Допустим, что k-я производная имеет вид

$$\frac{d^k y}{dx^k} = e^{-kt} \left(\frac{d^k y}{dt^k} + \alpha_1 \frac{d^k y}{dt^k} + \dots + \alpha_{k-1} \frac{dy}{dt} \right) = \frac{1}{x^k} \left(\frac{d^k y}{dt^k} + \alpha_1 \frac{d^{k-1} y}{dt^{k-1}} + \dots + \alpha_{k-1} \frac{dy}{dt} \right)$$

где $\alpha_1, \alpha_2, \dots, \alpha_{k-1}$ — постоянные Тогда (k+1)—я производная будет равна

$$\frac{d^{k+1}y}{dx^{k+1}} = \frac{d}{dx} \left(\frac{d^k y}{dx^k} \right) = e^{-t} \frac{d}{dt} \left(\frac{d^k y}{dx^k} \right) = e^{-(k+1)t} \left(\frac{d^{k+1}y}{dt^{k+1}} + (\alpha_1 - k) \frac{d^k y}{dt^k} + \dots + k\alpha_{k-1} \frac{dy}{dt} \right) = (63)$$

$$= \frac{1}{x^{k+1}} \left(\frac{d^{k+1}y}{dt^{k+1}} + (\alpha_1 - k) \frac{d^ky}{dt^k} + \dots + k\alpha_{k-1} \frac{dy}{dt} \right)$$
 (64)

Так как в преобразованном уравнении, в случае отсутствия кратных корней характеристического уравнения, решения имеют вид $y=e^{\lambda t}$, следовательно, в исходном уравнении они имеют вид $y=x^{\lambda}$. Поэтому можно непосредственно подставить его в уравнение Эйлера (3.1). Поскольку $x^k \frac{d^k x^{\lambda}}{dxk} = \lambda(\lambda-1)\dots(\lambda-k+1)$ при $k\leqslant \lambda$, то характеристическое уравнение имеет вид

$$b_0 \lambda(\lambda - 1) \dots (\lambda - n + 1) + \dots + b_{n-1} \lambda(\lambda - 1) + b_{n-1} \lambda + b_n = 1$$
 (3.2)

Каждому простому корню λ уравнения (3.2) соответствует частное решение однородного уравнения Эйлера x^{λ} ; каждому действительному корню λ кратности l ($l \geq 2$) соответсвует l линейно независимых частных решений однородного уравнения Эйлера x^{λ} , $x^{\lambda} \ln x$, . . . , $x^{\lambda} (\ln x)^{l-1}$. В случае невещественных корней λ надо учитывать, что $x^{i\beta} = e^{i\beta \ln x}$, таким образом паре комплексно сопряженных корней $\alpha \pm i\beta$ уравнения (3.2) будут соответствовать два решения однородного уравнения Эйлера $x^{\alpha} \cos(\beta \ln x)$ и $x^{\alpha} \sin(\beta \ln x)$.

3.5. Матричная экспонента, ее свойства и применение к решению нормальных линейных систем

3.5.1. Матричная экспонента

Необходимо решить ОЛДУ вида:

$$\frac{d\vec{x}}{dt} = A\vec{x}, \ \vec{x}(t_0) = \vec{x_0},\tag{65}$$

Если $A(t) = ||a^i_j||, \, a^i_j \in \mathbf{R}, \, i,j = 1, \dots, \, n,$ тогда:

$$\vec{x_0} = E\vec{x_0}, \ \vec{x_1} = E\vec{x_0} + \frac{t - t_0}{1!} A\vec{x_0} = \left(E + \frac{t - t_0}{1!} A\right) \vec{x_0},$$
$$\vec{x_n} = \left(E + \frac{t - t_0}{1!} A + \dots + \frac{(t - t_0)^n}{n!} A^n\right) \vec{x_0},$$

Этот процесс будет сходиться к задаче Коши с решением:

$$\vec{x} = \left(E + \frac{t - t_0}{1!}A + \dots + \frac{(t - t_0)^n}{n!}A^n + \dots\right)\vec{x_0} = \left(\sum_{n=0}^{\infty} \frac{(t - t_0)^n}{n!}A^n\right)\vec{x_0},$$

при условии, что $A^0 = E$.

Определение 3.4. Матричной экспонентой называют следующий степенной ряд:

$$e^{(t-t_0)A} = E + \frac{t-t_0}{1!}A + \dots + \frac{(t-t_0)^n}{n!}A^n + \dots = \sum_{n=0}^{\infty} \frac{(t-t_0)^n}{n!}A^n.$$

3.5.2. Свойства матричной экспоненты

Это квадратная матрица, по размерам аналогична матрице A, и каждый элемент этой матрицы представляет из себя степенной ряд с радиусом сходимости $+\infty$.

1. Решение задачи Коши для (65), если A = const:

$$\vec{x}(t) = e^{(t-t_0)A}\vec{x_0}, (\vec{x}(t_0) = \vec{x_0}).$$

- 2. $e^{0A} = E$.
- 3. $e^{(t_1+t_2)A} = e^{t_1A}e^{t_2A} \Rightarrow e^{t_1A}e^{t_2A} = e^{t_2A}e^{t_1A}$ (коммутативность).
- 4. $(e^{tA})^{-1} = e^{-tA}$.
- 5. $(e^{tA})' = Ae^{tA} = e^{tA}A$.

Доказательство. Так как квадратные матрицы составляют определенное кольцо, то $A^{n+m} = A^n A^m = A^m A^n$.

1.

2.
$$e^{tA} = E + \frac{t-t_0}{1!}A + \ldots + \frac{(t-t_0)^n}{n!}A^n + \ldots$$
, если $t = 0$:

$$e^{0A} = E + 0 + \dots = E$$

3. рассматриваем (65), если $\vec{x}(t)$ - решение этого ДУ, то $\vec{x}(t+t_0)$ тоже решение этого ДУ $\forall t_0 \in \mathbf{R}. \ (u=t+t_0)$:

$$\frac{d\vec{x}(t+t_0)}{dt} = \frac{d\vec{x}}{du}\frac{du}{dt} = \frac{d\vec{x}}{du} = A\vec{x}(u) = A\vec{x}(t+t_0).$$

Тогда (65), с задачей Коши $\vec{x}(0) = \vec{x_0}$ имеет решение:

$$ec{x}(t)=e^{tA}ec{x_0},$$
 $ec{x}(t+t_0)=e^{(t+t_0)}ec{x_0}$ - решение $\dfrac{dec{x}}{dt}=Aec{x}.$

Рассмотрим тогда тоже самое уравнение для функции z(t):

$$\frac{d\vec{z}}{dt} = A\vec{z}$$
, с задачей Коши $\vec{z}(0) = e^{t_0 A} \vec{x_0} \Rightarrow \vec{z}(t) = e^{tA} (e^{t_0 A} \vec{x_0}) = (e^{tA} e^{t_0 A}) \vec{x_0}$.

Рассмотрим это решение в нуле:

$$\vec{x}(0+t_0) = e^{t_0 A} \vec{x_0}$$

из основной теоремы следует, что $\vec{x}(t+t_0) = \vec{z}(t) \ \forall t.$

Тогда и получается основная формула:

$$\vec{x}(t+t_0) = e^{(t+t_0)A}\vec{x_0} = (e^{tA}e^{t_0A})\vec{x_0}$$

4.
$$E = e^{0A} = e^{(t-t)A} = e^{tA}e^{-tA} = E \Rightarrow (e^{tA})^{-1} = e^{-tA}$$
.

5. Берем представление матричной экспоненты в виде степенного ряда, который можно дифференцировать, тогда получаем:

$$(e^{tA})' = A + tA^2 + \dots + \frac{t^{n-1}}{(n-1)!}A^n + \dots = A\left(E + tA + \dots + \frac{t^{n-1}}{(n-1)!}A^{n-1}\right),$$
$$(e^{tA})' = Ae^{tA} = e^{tA}A.$$

Примечание. Формула $e^{t(A+B)} = e^{tA}e^{tB}$ не имеет места, кроме случая, если AB = BA (т.е. матрицы коммутативны).

3.5.3. Применение к решению нормальных линейных систем

Теорема 3.9. Пусть S - матрица перехода от исходного базиса κ новому базису. Тогда в новой базисе $\overline{A} = S^{-1}AS$, или $A = S\overline{A}S^{-1}$. И главное:

$$e^{tA} = S^{-1}e^{t\overline{A}}S.$$

Доказательство.

$$e^{tA} = \left(E + tA + \dots + \frac{t^n}{n!}A^n\right) = \left(E + tS^{-1}e^{t\overline{A}}S + \dots + \frac{t^n}{n!}(S^{-1}e^{t\overline{A}}S)^n\right),$$
$$(S\overline{A}S^{-1})^n = S\overline{A}^nS^{-1}, SES^{-1} = SS^{-1} = E$$
$$e^{tA} = S^{-1}e^{t\overline{A}}S.$$

Для решения нормальных линейных систем методом матричной экспоненты мы будем находить собственные вектора.

Матрица A в базисе из собственных векторов (если они соответствуют действительным собственным значениям) будет иметь диагональный вид. Произведение диагональной матрицы на диагональную — диагональная. Тогда для случая без кратных корней:

$$e^{tA} = E + t \cdot diag(\lambda_1, \dots, \lambda_n) + \frac{t^n}{n!} \cdot diag(\lambda_1^n, \dots, \lambda_n^n).$$
$$e^{tA} = diag(e^{t\lambda_1}, \dots, e^{t\lambda_n}).$$

Если λ – корень кратности l, то матрица A приводится к Жордановой клетке (диагональная матрица с единицами над главной диагональю).

$$A = \lambda E + B \Rightarrow B = A - \lambda E.$$

$$e^{tA} = e^{t(\lambda E + B)} = e^{t\lambda E}e^{tB}, \ e^{t\lambda E} = diag(e^{t\lambda}, \ \dots \ , e^{t\lambda}), \\ e^{tB} = E + tB + \ \dots \ + \frac{t^{l-1}}{(l-1)!}B^{l-1} + 0$$

тогда
$$e^{tA}=e^{\lambda t}egin{pmatrix} 1 & t & \dots & \frac{t^{l-1}}{(l-1)!} \\ 0 & 1 & t & \dots & \frac{t^{l-2}}{(l-2)!} \\ & & \dots & & \\ 0 & & \dots & & 1 \end{pmatrix}$$

Метод решения линейных неоднородных уравнений с постоянными коэффициентами (матричный метод вариации постоянной)

$$\frac{d\vec{x}}{dt} = A\vec{x} + \vec{f}(t), \;\;$$
 решение будем искать в виде $\; \vec{x}(t) = e^{tA} \vec{C}(t), \;\;$

тогда
$$Ae^{tA}\vec{C}(t) + e^{tA}\dot{\vec{C}}(t) = Ae^{tA}\vec{C} + \vec{f}(t),$$

$$e^{tA}\dot{\vec{C}}(t) = \vec{f}(t) \implies \dot{\vec{C}}(t) = (e^{tA})^{-1}\vec{f}(t) = e^{-tA}\vec{f}(t).$$

- 4. Билет 4. Линейные дифференциальные уравнения и линейные системы дифференциальных уравнений с переменными коэффициентами
- 4.1. Теоремы существования и единственности решения задачи Коши для нормальной линейной системы уравнений и для линейного уравнения n-го порядка в нормальном виде

Рассматривается система вида

$$\frac{d\vec{x}}{dt} = A\vec{x} + \vec{q}(t),\tag{66}$$

где $A=||a_j^i(t)||,\ i,j=1, \vec{n}$ — матрица, $\vec{q}(t)$ — заданная вектор-фенкция. Наряду с векторной записью также будем использовать координатную запись $\dot{x}^i=\sum\limits_{j=1}^n a_j^i x^j+q^i(t), i=1, \vec{n}$.

Необходимым условием линейности является факт того, что все A^i_j и q^i зависят только от t и не зависят от \vec{x} .

Для (66) ставится задача Коши:

$$\vec{x}(t_0) = \vec{x_0}.$$

Теорема 4.1. Основная теорема для линейных систем. Пусть $a_j^i(t)$, i,j=1, n q(t) в (66) непрерывны на отрезке [a;b]. Тогда рпешение задачи Коши существует и единственно на всем отрезке [a;b].

Предварительные замечания:

Пусть вектор-функция $\vec{f}(x) \in B$ и A – линейный оператор, действубщий из B в B, т.е. $A(\vec{f}+\vec{g})=A\vec{f}+A\vec{g}.$

Определим норму оператора:

$$||A|| = \sup_{\vec{\varphi} \in B, \ \vec{\varphi} \neq \vec{0}} \frac{||A(\vec{\varphi})||}{||\vec{\varphi}||}.$$

Тогда получаем неравенство: ||A|| legslant||A|| $||\vec{\varphi}||$.

Нормой для вектор-функции выберем $||\vec{x}(t)|| = \max_{1 \leq i \leq n} (\max_{t \in [a;b]} x^i(t))$, а нормой для опера-

тора
$$||A|| == \max_{1 \le i \le n} (\max_{t \in [a;b]} \sum_{i=1}^{n} |a_j^i(t)|)$$

Доказательство. Определим $\vec{g}(t) = \vec{x_0} + \int\limits_{t_0}^t \vec{q}(S) dS$ и построим итерационную процедуру.

Т.к
$$q^i(t) \in C_{[a;b]} \ \forall i=1, \vec{n} \Rightarrow \exists ||\vec{q}||_c = M_1$$
. Тогда $||\vec{g}||_c = ||\vec{x_0} + \int\limits_{t_0}^t \vec{q}(S)dS|| \leqslant ||\vec{x_0}|| + ||\vec{f}||_c = M_1$.

Рассмотрим интегральное уравнение $\vec{x} = \vec{g} + \int\limits_{t_0}^t A(s) \vec{x}(s) ds$.

Аналогично основной лемме доказывается, что последнее интегральное уравнение эквивалентно задаче (66).

Итерационная процедура: $\vec{x_0} = \vec{g}$; $\vec{x_k} = \vec{g} + \int_{t_0}^{t} A(s) \vec{x_{k-1}}(s) ds$, $k = 0,1, \ldots$

Оценим норму:

$$||\vec{x_1} - \vec{x_0}|| = ||\int_{t_0}^t A(s)\vec{g}(s)ds|| \leqslant |\int_{t_0}^t ||A(s)\vec{g}(s)||ds| \leqslant |\int_{t_0}^t ||A(s)|| \cdot ||\vec{g}(s)||ds| \leqslant C_1C|t - t_0|;$$

Таким образом $||\vec{x_1} - \vec{x_0}|| \leqslant C_1 C|t - t_0|$.

Теперь докажем по индукции неравенство: $||\vec{x_k} - \vec{x_{k-1}}|| \leqslant \frac{CC_1^k}{k!} |t - t_0|^k$. Базой индукции выступает полученное выше неравенство. Предположим, что верно для n=k, т.е.: $||\vec{x_k} - \vec{x_{k-1}}|| \leqslant \frac{CC_1^k}{k!} |t-t_0|^k$.

Докажем для

$$n = k + 1: ||\vec{x_{k+1}} - \vec{x_k}|| = ||\int_{t_0}^t A(s)(\vec{x_k}(s) - \vec{x_{k-1}}(s))ds|| \leq |\int_{t_0}^t ||A(s)(\vec{x_k}(s) - \vec{x_{k-1}}(s))||ds| \leq ||A(s)(\vec{x_k}(s) - \vec{x_{k-1}}(s))||ds|| \leq ||A(s)(\vec{x_k}(s) - \vec{x_{k-1}}(s))||ds||$$

$$\leqslant |\int_{t_0}^t ||A(s)|| \cdot ||(\vec{x_k}(s) - \vec{x_{k-1}}(s))||ds| \leqslant C|\int_{t_0}^t \frac{C_1 C^k |s - t_0|^k}{k!} ds| = \frac{C^{k+1} C_1 |t - t_0|^{k+1}}{(k+1)!}$$

Т.к. $|t-t_0|\leqslant (b-a)$, то предыдущее неравенство можно усилить $||\vec{x_k}-\vec{x_{k-1}}||\leqslant \frac{C_1C^k}{k!}(b-a)^k$.

Функциональная последовательно $\vec{x_k}$ сходиться равномерно, т.к. сходится равномерно ряд $\vec{x_0} + (\vec{x_1} - \vec{x_0}) + \ldots + (\vec{x_k} - \vec{x_{k-1}}) + \ldots$, который межорируется сходящимся рядом $||\vec{x_0}|| + ||(\vec{x_1} - \vec{x_0})|| + \dots + ||(\vec{x_k} - \vec{x_{k-1}})|| + \dots \leqslant ||\vec{x_0}|| + C_1 \sum_{k=0}^{\infty} \frac{C^k |b-a|^k}{k!} = ||\vec{x_0}|| + C_1 e^{C(b-a)} < \infty \Rightarrow$ Существует (в сиду банаховости пр-ва) непрерывно дифф. $\varphi(t): \exists \lim_{n\to\infty} \vec{x_n} = \varphi(t).$

Рассмотрим $||\int\limits_{t_0}^t A\vec{x_n}dS - \int\limits_{t_0}^t A\vec{\varphi}dS|| = ||\int\limits_{t_0}^t A(\vec{x_n} - \vec{\varphi})dS|| \leqslant ||A|| \cdot |\int\limits_{t_0}^t ||\vec{x_n} - \vec{\varphi}||dS||$, где

 $||\vec{x_n} - \vec{\varphi}|| \to_{n \to \infty} 0.$

Т.о. итерационная процедура сходится в силу существования пределов слева и справа. Полученное решение эквивалентно решению задачи (66). В отличии от основной теоремы для нормальных систем ДУ: $\dot{\vec{x}} = \vec{f}(t, \vec{x})$, где существование было получено только на отрезке Пеано, для СЛДУ существование решения доказано для всего отрезка [a;b] – промежутка, где $a_i^i(t)$ и $\vec{q}(t)$ непрерывны. В нашем случае \vec{f} соответствует $\vec{f} = A\vec{x} + \vec{q}$. Она непрерывна, т.к. полученное решение $\vec{x}(t)$ непрерывно. Условие непрерывности $\frac{\partial f}{\partial x_i}$ также выполнены, т.к. в нашем случае $\frac{\partial f}{\partial x_i} = a_{ij}(t)$ – непр. на [a;b]. Отсюда следует единственность, т.к. два решения задачи (66), согласно основной теореме для нормальныэ систем, совпадает на промежутке, где они оба определены. В нашем случае это [a;b].

Т.о. теорема не носит локальных характер.

4.2. Фундаментальная система и фундаментальная матрица решений линейной однородной системы

Будем рассматривать однородную систему ДУ вида:

$$\frac{d\vec{x}}{dt} = A\vec{x}; \quad \dot{x}^i = \sum_{k=1}^n a_k^i x^k; \quad i, k = \overline{1, n}$$

$$\tag{67}$$

Утверждение 4.1. Для однородных систем линейных уравнений верен принцип суперпозиций, т.е если система функций $\varphi_1, \ldots, \varphi_n$ – решение системы уравнений, то любая их линейная комбинация тоже является решением.

Доказательство. Введем оператор L такой, что $L=\frac{d}{dt}-A$. Тогда однородная система ДУ $\frac{d\vec{x}}{dt}=A\vec{x}$ запишется в виде $L(\vec{x})=0$, неоднородная система ДУ $\frac{d\vec{x}}{dt}-A\vec{x}=q(t)$ запишется в виде $L(\vec{x})=q(t)$.

Пусть вектор-функции $\vec{\varphi}(t)$ и $\vec{\psi}(t)$ являются решениями системы $L(\vec{x})=0,$ в таком случае справедливо

$$L(\vec{\varphi}(t)) = 0; \quad L(\vec{\psi}(t)) = 0$$

Рассмотрим вектор-функцию $\vec{\chi}(t) = a\vec{\varphi}(t) + b\vec{\psi}(t)$, где a и b – произвольные коэффициенты. Применим оператор L к получившейся вектор-функции:

$$L(\vec{\chi}(t)) = \frac{d}{dt} \left(a\vec{\varphi}(t) + b\vec{\psi}(t) \right) - A \left(a\vec{\varphi}(t) + b\vec{\psi}(t) \right) =$$

$$= a \left(\frac{d}{dt} \vec{\varphi}(t) - A\vec{\varphi}(t) \right) + b \left(\frac{d}{dt} \vec{\psi}(t) - A\vec{\psi}(t) \right) =$$

$$= aL(\vec{\varphi}(t)) + bL(\vec{\psi}(t)) = 0$$

Определение 4.1. Пусть имеется система вектор-функций $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$

$$\vec{\varphi}_i(t) = \begin{pmatrix} \varphi_i^1(t) \\ \dots \\ \varphi_i^n(t) \end{pmatrix} \tag{68}$$

непрерывна на I(x), тогда такая система называется линейно-зависимой на I, если

$$\exists C_1, \dots, C_n : \sum_{i=1}^n |C_i| \neq 0 \& \sum_{i=1}^n C_i \vec{\varphi}_i(t) = 0 \ \forall t \in I$$

В противном случае, система вектор-функций называется линейно-независимой, то есть условие

$$\sum_{i=1}^{n} C_i \vec{\varphi}_i(t) = 0 \ \forall t \in I$$

выполняется только при $C_1 = C_2 = \cdots = C_n = 0$.

Определение 4.2. Пусть система вектор-функций $\vec{\varphi}_1(t), \ldots, \vec{\varphi}_n(t)$ линейно-независима на I и каждая вектор-функция $\vec{\varphi}_i(t)$ является решением системы $\mathcal{J} Y \frac{d\vec{x}}{dt} = A\vec{x}$. Тогда такая система вектор-функций называется фундаментальной системой решений (ФСР) данной системы $\mathcal{J} Y$.

Теорема 4.2. Рассмотрим систему ДУ $\frac{d\vec{x}}{dt} = A\vec{x}$. Если матрица A является непрерывной на отрезке [a,b], то система имеет ΦCP на этом отрезке.

Доказательство. матрица A является непрерывной на отрезке [a,b], тогда, согласно основной теореме, на отрезке [a,b] существует единственное решение задачи Коши.

Пусть система функций $\vec{\varphi_1}(t), \vec{\varphi_2}(t), \dots, \vec{\varphi_n}(t)$ является решением системы при следующих заданных условиях:

$$\vec{\varphi_1}(t_0) = \begin{pmatrix} 1\\0\\\dots\\0 \end{pmatrix}, \ \vec{\varphi_2}(t_0) = \begin{pmatrix} 0\\1\\\dots\\0 \end{pmatrix}, \ \dots, \ \vec{\varphi_n}(t_0) = \begin{pmatrix} 0\\0\\\dots\\1 \end{pmatrix}, \tag{69}$$

тогда вронскиан такой системы в точке t_0 (про вронскиан и его свойства подробнее смотри следующие пункты):

$$W(t_0) = |\vec{\varphi_1}(t_0), \vec{\varphi_2}(t_0), \dots, \vec{\varphi_n}(t_0)| = \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & 1 \end{vmatrix} = 1 \neq 0$$
 (70)

тогда, из свойства вронскиана следует, что данная система функций является линейнонезависимой, а так как каждая функция является решением системы ДУ, эта система вектор-функций и есть Φ CP системы ДУ.

Теорема 4.3. Пусть система вектор-функций $\vec{\varphi}_1(t), \ldots, \vec{\varphi}_n(t)$ является ΦCP системы ДУ, тогда любое решение этой системы ДУ можно представить, как линейную комбинацию компонентов ΦCP : $\vec{x}(t) = C_1 \vec{\varphi}_1(t) + \cdots + C_n \vec{\varphi}_n(t)$, где C_1 , dots, C_n – произвольные постоянные.

Доказательство. Так как для системы ДУ справедлив принцип суперпозиции, то векторфункция $\vec{x(t)} = C_1 \vec{\varphi}_1(t) + \dots + C_n \vec{\varphi}_n(t)$ является решением системы ДУ.

Предположим теперь, что существует функция $\vec{\chi}(t)$ такая, что она является решением системы ДУ, но не представима в виде $C_1\vec{\varphi}_1(t)+\cdots+C_n\vec{\varphi}_n(t)$. Пусть значение этой функции в точке t_0 :

$$\vec{\chi}(t_0) = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \chi_1(t_0) \\ \chi_2(t_0) \\ \vdots \\ \chi_n(t_0) \end{pmatrix}$$

$$(71)$$

Теперь составим следующую систему уравнений

$$\begin{cases}
C_1 \varphi_1^1(t_0) + C_2 \varphi_2^1(t_0) + \dots + C_n \varphi_n^1(t_0) = \alpha_1 \\
C_1 \varphi_1^2(t_0) + C_2 \varphi_2^2(t_0) + \dots + C_n \varphi_n^2(t_0) = \alpha_2 \\
\dots \\
C_1 \varphi_1^n(t_0) + C_2 \varphi_2^n(t_0) + \dots + C_n \varphi_n^n(t_0) = \alpha_3
\end{cases}$$
(72)

где $C_1,\ C_2,\ \dots,\ C_n$ – являются неизвестными, который надо найти. Определителем этой системы является

$$W(t_0) = \begin{vmatrix} \varphi_1^1(t_0) & \varphi_2^1(t_0) & \dots & \varphi_n^1(t_0) \\ \varphi_1^2(t_0) & \varphi_2^2(t_0) & \dots & \varphi_n^2(t_0) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^n(t_0) & \varphi_2^n(t_0) & \dots & \varphi_n^n(t_0) \end{vmatrix} \neq 0$$
 (73)

данный определитель не равен 0, поскольку функции $\vec{\varphi_i}$ $i = \vec{1n}$ являются ФСР системы ДУ, поэтому числа C_1, C_2, \ldots, C_n определяются однозначно.

С этими числами рассмотрим решение исходной системы ДУ, назовем его $\vec{z}(t) = C_1 \vec{\varphi}_1(t) + \cdots + C_n \vec{\varphi}_n(t)$. Поскольку $\vec{\chi}(t)$ и $\vec{z}(t)$ – являются решениями системы ДУ, по принципу суперпозиции функция $\vec{\psi}(t) = \vec{z}(t) - \vec{\chi}(t)$ так же является решением этой системы ДУ.

Заметим, что значение этой функции в точке t_0 : $\vec{\psi}(t_0) = \vec{z}(t_0) - \vec{\chi}(t_0) = 0$, заметим так же, что $\vec{0}$ является решением однородной системы системы $\frac{d}{dt}\vec{x} - A\vec{x}$. Тогда, в силу теоремы о существовании и единственности решения задачи Коши, выполняется:

$$\vec{\psi}(t) = 0 \ \forall \ t \in I \ \Rightarrow$$

$$\vec{\psi}(t) = \vec{z}(t) - \vec{\chi}(t) \equiv 0 \ \forall \ t \in I \ \Rightarrow$$

$$\vec{z}(t) = \vec{\chi}(t) = C_1 \vec{\varphi_1}(t) + C_2 \vec{\varphi_2}(t) + \dots + C_n \vec{\varphi_n}(t)$$

Мы получили противоречие с предположением о невозможности линейного представления решения $\vec{\chi}(t)$ через функции ФСР, таким образом, мы доказали, что любое решение системы ДУ можно представить, как линейную комбинацию компонентов ФСР.

Определение 4.3. Решение системы ДУ вида $\vec{x}(t) = C_1 \vec{\varphi}_1(t) + \cdots + C_n \vec{\varphi}_n(t)$, где C_1, \ldots, C_n называется общим решением сисстемы ДУ.

4.3. Структура общего решения линейной однородной и неоднородной систем

Введем оператор L такой, что $L=\frac{d}{dt}-A$. Тогда однородная система ДУ $\frac{d\vec{x}}{dt}=A\vec{x}$ запишется в виде $L(\vec{x})=0$, неоднородная система ДУ $\frac{d\vec{x}}{dt}-A\vec{x}=q(t)$ запишется в виде $L(\vec{x})=q(t)$.

Утверждение 4.2. Общее решение неоднородной системы ДУ $\frac{d\vec{x}}{dt} - A\vec{x} = q(t)$ представляет собой следующее выражение:

$$\vec{x} = \vec{x}^s + \vec{x}_0^{o6} \tag{74}$$

где \vec{x}^s — частное решение линейного неоднородного уравнение, т. е. $L(\vec{x}^s) = q(t)$, а \vec{x}_0^{o6} — общее решение системы линейных однородных уравнений $L(\vec{x}_0^{o6}) = 0$. Таким образом, получаем:

$$L(\vec{x}) = L(\vec{x}^s + \vec{x}_0^{ob}) = L(\vec{x}^s) + L(\vec{x}_0^{ob}) = q(t) + 0$$

4.4. Определитель Вронского и его свойства

4.4.1. Определитель Вронского

Определение 4.4. Пусть на I определена система вектор-функций $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$, тогда определитель

$$W(t) = \begin{vmatrix} \varphi_1^1(t) \dots \varphi_n^1(t) \\ \dots & \dots \\ \varphi_1^n(t) \dots \varphi_n^n(t) \end{vmatrix}$$
(75)

называется определителем Вронского, где

$$\vec{\varphi_i} = \begin{pmatrix} \varphi_i^1 \\ \dots \\ \varphi_i^n \end{pmatrix} \tag{76}$$

другими словами

$$W(t) = \left| \vec{\varphi_1}, \dots, \vec{\varphi_n} \right| \tag{77}$$

Теорема 4.4. Если $\exists t_0 \in I : W(t_0) \neq 0$, то система является линейно независимой на I. Обратное неверно, пример:

$$\varphi_1 = \begin{pmatrix} t \\ 0 \end{pmatrix}, \ \varphi_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \mathcal{J}H3, \ no \ W(t) = 0$$
(78)

Доказательство. Будем доказывать от противного: пусть система является линейно-зависимой, тогда $\exists C_1,\ldots,C_n:C_1\vec{\varphi}_1(t)+\cdots+C_n\vec{\varphi}_n(t)=0 \ \forall t\in I.$ Тогда в определителе Вронского W(t) есть хотя бы два линейно-зависымих столбца, так как $\vec{\varphi}_i(t)$ являются столбцами определителя, но тогда получам, что $W(t) = 0 \ \forall t \in I$ (хотя предпологалось, что $\exists t_0 \in I : W(t_0) \neq 0$). Таким образом, мы получили противоречие, откуда следует, что система является линейно независимой на I.

4.4.2. Свойства Вронскиана

- 1. Если $\exists t_0 \in I : W(t_0) \neq 0$, то система является линейно независимой на I (см. доказательство теоремы).
- 2. Пусть вектор-функции $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$ являются решениями системы ДУ, и существует точка $t_0 \in I$: $W(t_0) = 0$, тогда система $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$ является линейнозависимой.

зависимыми, то есть

$$\exists C_1, C_2, \dots, C_n : \sum_{i=1}^n C_i^2 \neq 0 \& \sum_{i=1}^n C_i \vec{\varphi_i}(t_0) = 0$$

Используя данные коэффициенты, построим функцию $\vec{x}(t) = C_i \vec{\varphi}_i(t)$. Заметим, что во-первых $\vec{x}(t_0) = 0$, а во-вторых данная функция является решением системы ДУ в силу теоремы о суперпозиции. Тогда, в силу теоремы о существовании и единственности решения задачи Коши выполняется: $\vec{x}(t) = C_i \vec{\varphi}_i(t) = 0 \; \forall \; t \in I$, что означает, что система $\vec{\varphi_i}$ является линейнозависимой.

4.5. Фундаментальная система решений и общее решение нормальной линейной однородной системы уравнений

Рассмотрим систему вида

$$\dot{\vec{x}} = A\vec{x} + \vec{f},\tag{79}$$

где $A = ||a_j^i||, i, j = \overline{1, n}$ — матрица системы, причём a_j^i — постоянные; $\vec{f}(t) = \begin{pmatrix} f^1(t) \\ \cdots \\ f^n(t) \end{pmatrix}$ —

вектор-столбец неоднородной системы; $\vec{x}(t) = \begin{vmatrix} x^1(t) \\ \cdots \\ x^n(t) \end{vmatrix}$ – вектор-столбец искомых функций.

Наряду с вышеприведённой записью также будем рассматривать запись вида:

$$\frac{dx^i}{dt} = \sum_{j=1}^n a_j^i x^j(t) + f^i, \ i = \overline{1, n}$$

Основная идея решения систем дифференциальных уравнений вида (79), состоит в том, что матрица системы рассматривается как матрица линейного преобразования линейного пространства \mathbb{R}^n (пространство, присоединнёное к аффинному \mathbb{R}^n), заданная в исходном базисе.

Пусть $S = \|\sigma_j^i\|$, $i,j = \overline{1,n}$ — матрица перехода от исходного базиса $\|\vec{e_1},...,\vec{e_n}\|$ к базису. Эти соотношения связаны выражением $\|\vec{e_1},...,\vec{e_n}\| = \|\vec{e_1},...,\vec{e_n}\| \cdot S$ или $\vec{e_i'} = \sum_{k=1}^n \sigma_i^k \vec{e_k}$, а координаты векторов в новом и старом базисе связаны формулой $\vec{x} = S\vec{x'}$ или $x^i = \sum_{m=1}^n \sigma_m^i x'^m$.

Матрица перехода S обратима, поэтому $\exists S^{-1} = \|\tau_j^i\|$, $i,j = \overline{1,n}$, причём $SS^{-1} = S^{-1}S = E$, т.е. $\sum_{k=1}^n \tau_k^i \sigma_j^k = \delta_j^i$. Тогда $\vec{x'} = S^{-1}\vec{x}$. Преобразуем исходную систему, умножив её справа на S^{-1} .

$$S^{-1}\frac{d\vec{x}}{dt} = \frac{d}{dt}(S^{-1}\vec{x}) = S^{-1}A\vec{x} + S^{-1}\vec{f}$$

Подставив $\vec{x} = S\vec{x}$, получим $\frac{d\vec{x}}{dt} = \bar{A}\vec{x} + \vec{f}$, где $\vec{f}(t) = S^{-1}\vec{f}(t)$, а $\bar{A} = S^{-1}AS$ является матрицей преобразования A в новом базисе. Уравнение имеет **ковариантный вид**, поэтому задачи свелись к нахождению базиса, в котором система имела бы наиболее простой вид.

Пусть A – матрица системы (79) является матрицей линейного преобразования линейного пространства $\vec{\mathbb{R}}^n$, т.е. $\forall \vec{x} \in \vec{\mathbb{R}}^n \mapsto A\vec{x} = \vec{y} \in \vec{\mathbb{R}}^n$, тогда $A = ||A\vec{e_1},...,A\vec{e_n}||$, т.е столбцы матрицы A являются компонентами образов базисных векторов.

Определение 4.5. Подпространство $L \subset \mathbb{R}^n$ называется **инвариантным** подпространством относительно преобразования A, если $\forall \vec{x} \in L \mapsto A\vec{x} \in L$.

Пусть $\vec{e}_1,...,\vec{e}_s,\vec{e}_{s+1},...,\vec{e}_n$ – базис в $\vec{\mathbb{R}}^n$, а $\vec{e}_1,...,\vec{e}_s$ – базис в L. Тогда $\forall i=\overline{1,s}\mapsto A\vec{e_i}=\sum_{k=1}^s\gamma_i^k\vec{e_k}$ и матрица A в этом базисе будет иметь вид:

$$A = \begin{vmatrix} A_1 & A_2 \\ O & A_3 \end{vmatrix}$$
, где $A_1 = \begin{vmatrix} \gamma_1^1 & \cdots & \gamma_s^1 \\ \vdots & & \vdots \\ \gamma_1^s & \cdots & \gamma_s^s \end{vmatrix}$, O - нулевая матрица размером $(n-s) \times s$.

Если $\mathbb{R}^n = L^1 \oplus ... \oplus L^k$ и L^i , $i = \overline{1,k}$ – инвариантные подпространства, то в базисе, который является базисом-объединения всех базисов инвариантных подпространств, прямая сумма которых равна \mathbb{R}^n , матрица будет иметь вид:

$$A = \begin{vmatrix} A_1 & O & \cdots & O \\ O & A_2 & \cdots & O \\ \cdots & \cdots & \cdots & \cdots \\ O & O & \cdots & A_k \end{vmatrix}$$

 $A_i,\ i=\overline{1,k}$ – квадратная матрица размерами $l_i< n,$ которая является сужением матрицы преобразования A на инвариантное подпространство $L_i.$

В таком случае искомую вектор-функцию можно переписать в виде:

$$\vec{x}(t) = \begin{vmatrix} x^1 \\ \dots \\ x^{l_1} \\ \dots \\ x^{l_1+\dots+l_{i-1}+1} \\ x^{l_1+\dots+l_i} \\ \dots \\ x^{l_1+\dots l_k+1} \\ \dots \\ x^n \end{vmatrix}$$

Обозначим через
$$X_i = \begin{vmatrix} x^{l_1 + \dots + l_{i-1} + 1} \\ \dots \\ x^{l_1 + \dots + l_{i-1} + l_i} \end{vmatrix}$$

Тогда система (79) распадается на k систем, порядок которых $l_i < n$:

$$\vec{\vec{X}}_i = A_i \vec{X}_i + \vec{f}_i(t), \ i = \overline{1, k}$$

Для приведения матрицы линейного преобразования к клеточно-диагональному виду нужно найти собственные векторы линейного преобразования. Вектор $\vec{x} \neq 0$ называется собственным вектором линейного преобразования, матрица которого равна A, если

ется собственным вектором линейного преобразования, матрица которого равна
$$A$$
, если $A\vec{x}=\lambda\vec{x}$. Пусть $A=\left\|a_j^i\right\|,\ i,j=\overline{1,n},\ \mathbf{a}\left\|\begin{matrix}x^1\\ \ddots\\ x^n\end{matrix}\right\|$ – компоненты собственного вектора. Тогда компоненты собственного вектора должны удовлетворять системе однородных линеней-

компоненты собственного вектора должны удовлетворять системе однородных линенейных уравнений вида $||A - \lambda E||\vec{x} = 0$. Чтобы эта система имела ненулевое решение необходимо, чтобы $\det ||A - \lambda E|| = P_n(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \operatorname{trace} A + ... + \det A = 0$. $P_n(\lambda)$ – характерестический многочлен матрицы A.

Случай простых корней характеристического многочлена

Рассмотрим однорудную систему с постоянными коэффициентами

$$\dot{\vec{x}} = A\vec{x} \tag{80}$$

Задача состоит в том, чтобы найти вектор функции $\vec{x}_1, \ldots, \vec{x}_n$, которые будут образовывать ФСР нашей системы.

Корни характеристического многочлена $\lambda_1, \ldots, \lambda_n$ простые и действительные.

Таким $\lambda_1, \ldots, \lambda_n$ соответствуют собственные векторы $\vec{h}_1, \ldots, \vec{h}_n$ ($A\vec{h}_i = \lambda_i \vec{h}_i$) Можно показать, что собственные вектора, соответствующие разным собственным значениям линейно независимы, поэтому существует базис из собственных векторов $\vec{h}_1, \ldots, \vec{h}_n$, в котором мат-

рица
$$A$$
 имеет вид: $\bar{A}=\begin{bmatrix} \lambda_1 & 0 & \dots \\ 0 & \lambda_2 & \dots \\ \vdots & \vdots & \ddots & 0 \\ & & 0 & \lambda_n \end{bmatrix}$ Тогда система (80) будет иметь следующий вид:

$$\begin{cases} \frac{d\vec{x}^1}{dt} = \lambda_1 \vec{x}^1 \\ \cdots \\ \frac{d\vec{x}^n}{dt} = \lambda_n \vec{x}^n \end{cases} \Longrightarrow$$

вектор-функции
$$\varphi_1=egin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}e^{\lambda_1t},...,\,\varphi_n=egin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}e^{\lambda_nt}$$
 образует ФСР этой системы, т.к. явля-

ются линейно независимыми решениями. Матрица перехода в этом случае $S = \|\vec{h}_1, ..., \vec{h}_n\|$. Тогда получим, что

$$\vec{x}_1 = \vec{h}_1 e^{\lambda_1 t}, ..., \vec{x}_n = \vec{h}_n e^{\lambda_n t}$$
 (81)

является ФСР (80), т.к. \vec{x}_i , $i = \overline{1,n}$ из (81) являются решениями (80), линейная независимость вектор-функций $\vec{x}_1,...,\vec{x}_n$ следует из того, что вронскиан (81) при t=0 является $detS \neq 0$ (свойство 10 вронскиана). Тогда любое решение (80) представимо в виде

$$\vec{x} = c_1 \vec{h}_1 e^{\lambda_1 t} + \dots + c_n \vec{h}_n e^{\lambda_n t} \tag{82}$$

Можно доказать, что $\vec{x}_1, ..., \vec{x}_n$ - Φ CP иначе:

Лемма 4.1. Система функций $e^{\lambda_1 t},...,e^{\lambda_n t}$, где все λ_i – разные, является линейно независимой.

Доказательство. Составим линейную комбинацию, равную нулю: $c_1 e^{\lambda_1 t} + ... + c_n e^{\lambda_n t} = 0$ – продифференцируем (n-1) раз и запишем получившуюся систему для поиска $c_1, ..., c_n$

$$\begin{cases} c_1 e^{\lambda_1 t} + \dots + c_n e^{\lambda_n t} = 0 \\ \lambda_1 c_1 e^{\lambda_1 t} + \dots + \lambda_n c_n e^{\lambda_n t} = 0 \\ \dots \\ \lambda_1^{n-1} c_1 e^{\lambda_1 t} + \dots + \lambda_n^{n-1} c_n e^{\lambda_n t} = 0 \end{cases}$$

Система является однородной, поэтому имеет тривиальное решение, но единственное ли оно?

$$\Delta = \begin{vmatrix} e^{\lambda_1 t} & \cdots & e^{\lambda_n t} \\ \lambda_1 e^{\lambda_1 t} & \cdots & \lambda_n e^{\lambda_n t} \\ \vdots & & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 t} & \cdots & \lambda_n^{n-1} e^{\lambda_n t} \end{vmatrix} = e^{\lambda_1 t + \dots + \lambda_n t} \begin{vmatrix} 1 & \cdots & 1 \\ \lambda_1 & \cdots & \lambda_n \\ \vdots & & \vdots \\ \lambda_1^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix} = e^{\lambda_1 t + \dots + \lambda_n t} \prod_{1 \le j < i \ge n} (\lambda_i - \lambda_j) \neq 0$$

Полученный определитель это определитель Вандермонда, который равен нулю только, если какая-то пара λ_i, λ_j совпадёт. Значит определитель не равен нулю по условию \Rightarrow система имеет только тривиальное решение по теореме Крамера \Rightarrow система линейно независима

Лемма 4.2. Система $\vec{\varphi}_1 = \vec{h}_1 e^{\lambda_1 t}, ..., \vec{\varphi}_n = \vec{h}_n e^{\lambda_n t}$ является ΦCP .

Доказательство. $\vec{\varphi}_i = \vec{h}_i e^{\lambda_i t}$ является решением по построению. Рассмотрим W(t): $W(t) = \left|\vec{h}_1 e^{\lambda_1 t} \dots \vec{h}_n e^{\lambda_n t}\right|$, при t=0: $W(0) = \left|\vec{h}_1 \dots \vec{h}_n\right| \neq 0$, т.к. собственные вектора линейно независимые. Следовательно, по 10 свойству определителя Вронского система линейно независимая.

Итак, общее решение системы (80) записывается в виде:

$$\vec{x}_0^{\text{o6}} = c_1 \vec{h}_1 e^{\lambda_1 t} + \dots + c_n \vec{h}_n e^{\lambda_n t}$$

Корни характеристического многочлена $\lambda_1, \dots, \lambda_n$ простые, но среди них есть комплексные.

Пусть есть комплексные собственное число $\lambda_k = r_k + i\omega_k$ и ему соответствующий комплексный собственный вектор $\vec{h}_k + i\vec{d}_k$, где \vec{h}_k , \vec{d}_k — действительные вектора. Так как характеристический многочлен это многочлен с действительными коэффициентами, то комплексный корень идет вместе с комплексно ему сопряженным, т.е. $\bar{\lambda}_k = r_k - i\omega_k$ тоже является корнем характеристического многочлена.

Взяв комплексное сопряжение над равенством $A(\vec{h}_k + i\vec{d}_k) = (r_k + i\omega_k)(\vec{h}_k + i\vec{d}_k)$:

$$\overline{A(\vec{h}_k + i\vec{d}_k)} = A(\vec{h}_k - i\vec{d}_k) = \overline{(r_k + i\omega_k)(\vec{h}_k + i\vec{d}_k)} = (r_k - i\omega_k)(\vec{h}_k - i\vec{d}_k)$$

Т.е. $\vec{h}_k - i \vec{d}_k$ является собственным вектором для $\vec{\lambda_k} = r_k - i \omega_k$.

Аналогично случайно действительных простых корней система принимает вид:

$$\begin{cases} \frac{d\vec{x}_1}{dt} = \lambda_1 \vec{x}_1 \\ \dots \\ \frac{d\vec{x}_k}{dt} = (r_k + i\omega_k) \vec{x}_k \\ \frac{d\vec{x}_{k+1}}{dt} = (r_k - i\omega_k) \vec{x}_{k+1} \\ \dots \\ \frac{d\vec{x}_n}{dt} = \lambda_n \vec{x}_n \end{cases}$$

ФСР такой системы будет комплексной: $\begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ e^{\lambda_1 t}; \dots; \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} e^{r_k t} (cos\omega_k t + isin\omega_k t);$

$$\begin{vmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{vmatrix} e^{r_k t} (cos\omega_k t - isin\omega_k t); \dots; \begin{vmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{vmatrix} e^{\lambda_n t}$$

$$\vdots$$

$$0$$

$$1$$

Т.к. матрица перехода $S = \|\vec{h}_1, \dots, \vec{h}_k + i\vec{d}_k, \vec{h}_k - i\vec{d}_k, \dots, \vec{h}_n\|$, то комплексная ФСР (80) будет: $\vec{h}_1 e^{\lambda_1 t}$, ..., $(\vec{h}_k + i\vec{d}_k)e^{r_k t}(\cos\omega_k t + i\sin\omega_k t)$, $(\vec{h}_k - i\vec{d}_k)e^{r_k t}(\cos\omega_k t - i\sin\omega_k t)$, ..., $\vec{h}_n e^{\lambda_n t}$

Рассмотрим систему функций, у которых первые k-1 функции являются функциями построенной выше системы. В качестве k-ой и k+1-ой функций возьмём:

$$\vec{q_k} = \frac{1}{2}((\vec{h_k} + i\vec{d_k})e^{r_kt}(cos\omega_kt + isin\omega_kt) + (\vec{h_k} - i\vec{d_k})e^{r_kt}(cos\omega_kt - isin\omega_kt)) = e^{r_kt}(\vec{h_k}cos\omega_kt - \vec{d_k}sin\omega_kt)$$

$$\vec{q}_{k+1} = \frac{1}{2i}((\vec{h}_k + i\vec{d}_k)e^{r_k t}(\cos\omega_k t + i\sin\omega_k t) - (\vec{h}_k - i\vec{d}_k)e^{r_k t}(\cos\omega_k t - i\sin\omega_k t)) = e^{r_k t}(\vec{h}_k \sin\omega_k t + \vec{d}_k \cos\omega_k t)$$

Остальные вектор-функции оставим прежними. Так построенная система будет линейно независимой, т.к. была получена линейными комбинациями линейно независимых вектор-функций. Каждая функция данной системы будет решением (80) по построению и принципу суперпозиции \Rightarrow полученная система является Φ CP (80) и содержит только действительные функции \Rightarrow

$$\vec{x}_{0}^{\text{o6}} = c_{1}\vec{h}_{1}e^{\lambda_{1}t} + ... + c_{k}e^{r_{k}t}(\vec{h}_{k}cos\omega_{k}t - \vec{d}_{k}sin\omega_{k}t) + c_{k+1}e^{r_{k}t}(\vec{h}_{k}sin\omega_{k}t + \vec{d}_{k}cos\omega_{k}t) + ... + c_{n}\vec{h}_{n}e^{\lambda_{n}t}$$

Случай кратных корней характеристического многочлена

В общем случае по основной теореме алгебры характеристический многочлен представляется в виде: $P_n(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \operatorname{trace} A + ... + \det A = (\lambda - \lambda_1)^{k_1} \cdot ... \cdot (\lambda - \lambda_m)^{k_m}$, где $\lambda_1, ..., \lambda_m$ являются собственными числами матрицы $A, k_i \geq 1, i = \overline{1, m}$. В таком случае количество собственных вектором может быть меньше размерности пространства, поэтому матрица может быть не диагонализируема.

Определение 4.6. Множество $R_s = \ker(A - \lambda_s E)^{k_s}$, $s = \overline{1, m}$, где λ_s – корень кратности k_s характеристического многочлена, называется корневым пространством

Одно из утверждений теоремы Жордана: $\vec{R}^n = R_1 \oplus ... \oplus R_m$ пространство раскладывается в прямую сумму корневых подпространств, а также $dimR_s = k_s$. Следовательно, если выбрать базис, как объединение базисов корневых подпространств, то исходная система распадается на m систем порядка k_s , $s = \overline{1,m}$, связывающих $k_s \leq n$ функций. Рассмотрим одну из таких систем.

Обозначим $\lambda_s=\bar{\lambda},\,k_s=l,$ перенумеруем и переобозначим искомые функции $x^{k_1+\ldots+k_{s-1}+1}=\bar{x}_1,\,\ldots,\,x^{k_1+\ldots+k_{s-1}+l}=\bar{x}^l$ Тогда имеем задачу: решить систему

$$\dot{\vec{x}} = \bar{A}\vec{x} \tag{83}$$

где \bar{A} является сужением A на подпространство $R_s=\ker(A-\bar{\lambda}E)^l=\ker B^l$, т.е. $\forall \vec{x}\in R_s\mapsto B^l\vec{x}=0$ по определению ядра.

Имеет место вложенность: $0 \subset \ker B \subset \ker B^2 \subset ... \subset \ker B^l$, т.к. $\forall \vec{x} : B^{i-1}(\vec{x}) = 0 \mapsto B^i(\vec{x}) = B(B^{i-1}(\vec{x})) = 0$

Обозначим $T_i = \ker B^i, i = \overline{1,k},$ где $k \leq l$

Примечание. Неравенство $k \leq l$ связано с тем, что может оказаться, что $\forall \vec{x} \in R_s \mapsto B^k \vec{x} = 0$ и строить T_i невозможно

Для $i = \overline{1,k}$ определим множество $\mathcal{V}^i = \{\vec{x} \in \mathcal{V}^i : B^i \vec{x} = 0, B^{i-1} \vec{x} \neq 0\}$. Заметим, что \mathcal{V}^1 является по построению собственным подпространством A.

В силу определения B^i и \mathcal{V}^i : $\mathcal{V}^i = \ker B^i \setminus \ker B^{i-1}$, $i = \overline{2, k}$. По построению $R_s = \mathcal{V}^1 \oplus ... \oplus \mathcal{V}^k$. Осталось выбрать базис в \mathcal{V}^i , $i = \overline{2, k}$.

Теорема 4.5. Пусть i > j, тогда $\forall \vec{h}_i \in \mathcal{V}^i \exists \vec{h}_j \in \mathcal{V}^j : \vec{h}_j = B^{i-j} \vec{h}_i$.

Доказательство. Построим такой \vec{h}_j и покажем, что он лежит в \mathcal{V}^j .

$$B^{j}\vec{h}_{j} = B^{j}(B^{i-j}(h_{i})) = (B^{j}B^{i-j})(\vec{h}_{i}) = B^{i}\vec{h}_{i} = 0$$
$$B^{j-1}\vec{h}_{i} = B^{j-1}(B^{i-j}(h_{i})) = (B^{j-1}B^{i-j})(\vec{h}_{i}) = B^{i-1}\vec{h}_{i} \neq 0$$

Рис. 1

Построение соответствующего базиса начинается с определения собственных векторов A, соответствующих числу $\bar{\lambda}$. Для этого решается уравнение $(\bar{A} - \bar{\lambda}E)\vec{x} = B\vec{x} = 0$.

Рассмотрим случай, когда имеется только один собственный вектор \vec{e} . В этом случае k=l (наше подпространство будет представимо в виде 1 жордановой клетки). Вектор \vec{e} образует базис в $\mathcal{V}=T_1$. Вектор $\vec{h}_1\in\mathcal{V}^2$ найдём как решение $B\vec{h}_1=\vec{e}$, по доказанной выше теореме такое уравнение имеет решение. Вектор \vec{h}_1 называется **присоединенным** к вектору \vec{e} . Вектора \vec{e} и \vec{h}_1 образуют базис в T_2 . Определим векторы \vec{h}_i , $i=\overline{2,l-1}$ из уравнений $B\vec{h}_i=\vec{h}_{i-1}$. Так построенные векторы $\vec{e},\vec{h}_1,...,\vec{h}_{l-1}$ образует базис в R_s . Этот базис называется жордановой цепью.

Запишем матрицу системы в этом базисе. Все построенные векторы находим из уравнений: $\bar{A}\vec{e}=\bar{\lambda}\vec{e},\; \bar{A}\vec{h}_1=\vec{e}+\bar{\lambda}\vec{h}_1,\;...,\; \bar{A}\vec{h}_{l-1}=\vec{h}_{l-2}+\bar{\lambda}\vec{h}_{l-1}$

$$\bar{A} = \begin{vmatrix} \bar{\lambda} & 1 & 0 & \cdots & \cdots \\ 0 & \bar{\lambda} & 1 & 0 & \cdots \\ \dots & \dots & \ddots & \dots \\ \cdots & \cdots & \bar{\lambda} & 1 \\ \dots & \cdots & \cdots & \bar{\lambda} & 1 \\ \dots & \cdots & \cdots & 0 & \bar{\lambda} \end{vmatrix} -$$
жорданова клетка размер l

В таком базисе системе имеет вид:

$$\begin{cases}
\frac{d\bar{x}^{1}}{dt} = \bar{\lambda}\bar{x}^{1} + \bar{x}^{2} \\
\dots \\
\frac{d\bar{x}^{n-1}}{dt} = \bar{\lambda}\bar{x}^{n-1} + \bar{x}^{n} \\
\frac{d\bar{x}^{n}}{dt} = \bar{\lambda}\bar{x}^{n}
\end{cases} (84)$$

Замена: $\bar{x}^i = \bar{y}^i e^{\bar{\lambda}t}, i = \overline{1,l} \Rightarrow \dot{\vec{y}}^i e^{\bar{\lambda}t} + \bar{\lambda} \dot{\vec{y}}^i e^{\bar{\lambda}t} = \lambda \dot{\vec{y}}^i e^{\bar{\lambda}t} + \dot{\vec{y}}^{i+1} e^{\bar{\lambda}t} \Rightarrow$ Система преобразуется к виду:

$$\begin{cases}
\frac{d\bar{y}^{1}}{dt} = \bar{y}^{2} \\
\frac{d\bar{y}^{2}}{dt} = \bar{y}^{3} \\
\dots \\
\frac{d\bar{y}^{l-1}}{dt} = \bar{y}^{l}
\end{cases}
\Rightarrow \vec{y} = \begin{vmatrix}
c_{l}\frac{t^{l-1}}{(l-1)!} + c_{l-1}\frac{t^{l-2}}{(l-2)!} + \dots + c_{2}\frac{t}{1!} + c_{1} \\
\dots \\
c_{l}t + c_{l-1} \\
c_{l}
\end{cases}
\Rightarrow (85)$$

$$\Rightarrow \vec{x} = \begin{vmatrix} c_{l} \frac{t^{l-1}}{(l-1)!} + c_{l-1} \frac{t^{l-2}}{(l-2)!} + \dots + c_{2} \frac{t}{1!} + c_{1} \\ & \ddots \\ & & \ddots \\ & & c_{l}t + c_{l-1} \\ & & c_{l} \end{vmatrix} \cdot e^{\bar{\lambda}t}$$

Переходим к старому базису:

$$\vec{x}(t) = \left\| \vec{e}, \vec{h}_1, ..., \vec{h}_{l-1} \right\| \cdot \left\| \begin{array}{c} c_l \frac{t^{l-1}}{(l-1)!} + c_{l-1} \frac{t^{l-2}}{(l-2)!} + ... + c_2 \frac{t}{1!} + c_1 \\ & \ddots \\ & \ddots \\ & c_l t + c_{l-1} \\ & c_l \end{array} \right\| \cdot e^{\bar{\lambda}t} \Rightarrow$$

$$\vec{x}_{0}^{\text{o6}} = \vec{e} \left(c_{1} + \dots + c_{l} \frac{t^{l-1}}{(l-1)!} \right) e^{\bar{\lambda}t} + \dots + \vec{h}_{l-1} c_{l} e^{\bar{\lambda}t} =$$

$$= \left[c_{1} \vec{e} e^{\bar{\lambda}t} + c_{2} (\vec{e}t + \vec{h}_{1}) e^{\bar{\lambda}t} + \dots + c_{l} \left[\vec{e} \frac{t^{l-1}}{(l-1)!} + \vec{h}_{1} \frac{t^{l-2}}{(l-2)!} + \dots + \vec{h}_{l-1} \right] \right]$$
(86)

Полагая последовательно $c_1=1, c_2=...=c_n=0; ...;$ $c_1=...=c_{i-1}=c_{i+1}=...=c_n=0,$ $c_i=1,$ $i=\overline{2,n}$ получим функции:

$$ec{ec{arphi}_1} = ec{e}e^{ar{\lambda}t}, \ ec{arphi}_1 = (ec{e}t + ec{h}_1)e^{ar{\lambda}t}, \ ..., \ ec{arphi}_{l-1} = \left(ec{e}rac{t^{l-1}}{(l-1)!} + ec{h}_1rac{t^{l-2}}{(l-2)!} + ... + ec{h}_{l-1}
ight)e^{ar{\lambda}t}. \
m Они$$

являются решениями по построению, $W(0) = \left| ||\vec{e},...,\vec{h}_{l-1}|| \right| \neq 0 \Rightarrow \vec{\varphi}_1,...,\vec{\varphi}_{l-1}$ – линейно независимы $\Rightarrow \vec{\varphi}_1,...,\vec{\varphi}_{l-1}$ – ФСР.

4.6. Линейная неоднородная система уравнений в случае, когда неоднородность представлена векторным квазимногочленом (без доказательства)

Источник: Романко В.К. Курс дифференциальных уравнений и вариационного исчисления

Определение 4.7. Вектор-квазимногочленом называется вектор-функция $f(t) = e^{\mu t} P_m(t)$, где μ – заданное комплексное число, $P_m(t)$ – вектор-многочлен степени m, коэффициентами которого служат n-мерные векторы.

Теорема 4.6. Если в системе $\dot{x}(t) = Ax(t) + f(t)$ $f(t) = e^{\mu t}P_m(t)$, где $P_m(t)$ – вектормногочлен степени m, тогда для этой системы всегда существует решение вида

$$x(t) = e^{\mu t} Q_{m+k}(t)$$

где Q_{m+k} – вектор-многочлен степени (m+k), причём k=0, если μ – не собственное значение A, u k не превосходит наибольшей длины жордановой цепочки для μ , если μ – собственное значние A, а коэффициентами $Q_{m+k}(t)$ служат n-мерные числовые вектора.

4.7. Формула Лиувилля-Остроградского для нормальной линейной однородной системы уравнений и для линейного однородного уравнения n-го порядка.

Следующее свойство вронскиана рассмотрим в виде теоремы. Для начала докажем вспомогательное утверждение.

Лемма 4.3. [Формула Эйлера дифференцирования определителя]

Детерминант матрицы представим в виде: $\Delta = \begin{vmatrix} a_1^1 & \dots & a_n^1 \\ a_1^i & \dots & a_n^i \\ \dots & \dots & \dots \\ a_1^n & \dots & a_n^n \end{vmatrix} = \sum_{k=1}^n (-1)^{k+i} \cdot a_k^i M_i^k$ Тогда

для

$$\dot{\Delta}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} (-1)^{i+j} \cdot \dot{a}_{j}^{i} M_{i}^{j}$$

Теорема 4.7. [Формула Лиувилля-Остроградского]

Пусть W(x)— вронскиан решений $\vec{\varphi_1}(t),...,\vec{\varphi_n}(t)$ однородной системы $\dot{\vec{x}} = A\vec{x}$. Тогда имеет место формула:

$$\dot{W}(t) = W(t) \cdot trA$$

$$e\partial e \ trA = \sum_{k=1}^{n} a_{kk}(t)$$

Доказательство. Зафиксируем среди системы решений функцию $\vec{\varphi_j} = \begin{pmatrix} \varphi_j^1 \\ \varphi_j^2 \\ \dots \\ \varphi_j^n \end{pmatrix}$. Рассмот-

рим і - ую компоненту φ^i_j решения $\vec{\varphi_j}$. Поскольку $\vec{\varphi_j}$ решение, то $\frac{d\vec{\varphi_j}}{dt} = A\vec{\varphi_j} \Rightarrow$

$$\frac{d\varphi_j^i}{dt} = \dot{\varphi_j^i} = \sum_{k=1}^n a_k^i \varphi_j^k$$

Рассмотрим вранскиан W(t), продифференцируем его по t

$$\dot{W}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} (-1)^{i+j} \cdot \dot{\varphi_{j}^{i}} M_{j}^{i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} (-1)^{i+j} \cdot a_{k}^{i} \varphi_{j}^{k} M_{j}^{i}$$

Переставим суммы местами

$$\dot{W}(t) = \sum_{k=1}^{n} \sum_{i=1}^{n} a_k^i \sum_{j=1}^{n} (-1)^{i+j} \varphi_j^k M_j^i = \sum_{k=1}^{n} \sum_{i=1}^{n} a_k^i \delta_i^k W(t) = W(t) \sum_{k=1}^{n} \sum_{i=1}^{n} a_k^i \delta_i^k = W(t) \sum_{k=1}^{n} a_k^i \delta_i^k$$

$$\dot{W}(t) = W(t) \cdot trA$$

Также можно решить это уравнение и переписать в виде

$$W(t) = W(t_0) \exp \left(\int_{t_0}^t tr A(u) du \right)$$

4.8. Метод вариации постоянных для линейной неоднородной системы уравнений и для линейного неоднородного уравнения n-го порядка.

Рассмотрим
$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = f(x).$$
 (87)

 $\varphi_1(x), ..., \varphi_n(x)$ – Ф.С.Р. однородного уравнения $y^{(n)}+a_1(x)y^{(n-1)}+...+a_n(x)y=0$. Это означает, что

$$\forall k = \overline{1,n} \hookrightarrow \varphi_k^{(n)} + a_1(x)\varphi_k^{(n-1)} + \dots + a_n(x)\varphi_k \equiv 0$$
(88)

Перепишем уравнение (87) в эквивалентном виде. Для этого сделаем следующие замены: $y=v_1,\ y^{(1)}=v_2,\ ...,\ y^{(n-1)}=v_n.$ Тогда получим:

$$\begin{cases} \frac{dv_1}{dx} = v_2, \\ \frac{dv_2}{dx} = v_3, \\ \dots, \\ \frac{dv_n}{dx} = f(x) - a_1(x)v_n - \dots - a_n(x)v_1. \end{cases}$$
(89)

Будем искать решение (87) в виде

$$y(x) = C_1(x)\varphi_1(x) + \dots + C_n(x)\varphi_n(x)$$

Тогда получается, что решение эквивалентной системы будем искать в виде

$$\vec{v}(x) = \begin{vmatrix} v_1(x) \\ \dots \\ v_n(x) \end{vmatrix} = C_1(x) \begin{vmatrix} \varphi_1(x) \\ \dots \\ \varphi_1^{(n-1)}(x) \end{vmatrix} + \dots + C_n(x) \begin{vmatrix} \varphi_n(x) \\ \dots \\ \varphi_n^{(n-1)}(x) \end{vmatrix}$$
(90)

Рассмотрим функцию $v_k(x) = C_1(x)\varphi_1^{(k-1)} + ... + C_n(x)\varphi_n^{(k-1)}$. Продифференцируем эту функицю по x:

$$\forall k = \overline{1, n-1} \hookrightarrow \dot{v_k}(x) = \dot{C_1}(x)\varphi_1^{(k-1)} + \dots + \dot{C_n}(x)\varphi_n^{(k-1)} + C_1(x)\varphi_1^{(k)} + \dots + C_n(x)\varphi_n^{(k)}$$
(91)

С другой стороны $\dot{v}_k(x) = v_{k+1} = C_1(x)\varphi_1^{(k)} + \dots + C_n(x)\varphi_n^{(k)}$. Тогда получаем

$$\dot{v}_k(x) = C_1(x)\varphi_1^{(k)} + \dots + C_n(x)\varphi_n^{(k)} = \dot{C}_1(x)\varphi_1^{(k-1)} + \dots + \dot{C}_n(x)\varphi_n^{(k-1)} + C_1(x)\varphi_1^{(k)} + \dots + C_n(x)\varphi_n^{(k)}$$
(92)

$$\forall k = \overline{1, n-1} \hookrightarrow \dot{C}_1(x)\varphi_1^{(k-1)} + \dots + \dot{C}_n(x)\varphi_n^{(k-1)} = 0$$
(93)

$$k = n: \ \dot{v_n}(x) = \dot{C_1}(x)\varphi_1^{(n-1)} + \dots + \dot{C_n}(x)\varphi_n^{(n-1)} + C_1(x)\varphi_1^{(n)} + \dots + C_n(x)\varphi_n^{(n)} =$$

$$= f(x) - a_1(x) \left(C_1(x)\varphi_1^{(n-1)} + \dots + C_n(x)\varphi_n^{(n-1)} \right) - \dots - a_n(x) \left(C_1(x)\varphi_1 + \dots + C_n(x)\varphi_n \right)$$

$$\dot{C}_1(x)\varphi_1^{(n-1)} + \dots + \dot{C}_n(x)\varphi_n^{(n-1)} + C_1(x)\left(\varphi_1^{(n)} + a_1(x)\varphi_1^{(n-1)} + \dots + a_n(x)\varphi_1\right) + \dots + C_n(x)\left(\varphi_n^{(n)} + a_1(x)\varphi_n^{(n-1)} + \dots + a_n(x)\varphi_n\right) = f(x)$$

Из уравнения (88) следует что выражения в скобках равны нулю, тогда получим

$$k = n : \dot{C}_1(x)\varphi_1^{(n-1)} + \dots + \dot{C}_n(x)\varphi_n^{(n-1)} = f(x)$$

Т.е. мы получили следующую систему уравнений:

$$\begin{cases}
\dot{C}_{1}(x)\varphi_{1} + \dots + \dot{C}_{n}(x)\varphi_{n} = 0, \\
\dots \\
\dot{C}_{1}(x)\varphi_{1}^{(n-2)} + \dots + \dot{C}_{n}(x)\varphi_{n}^{(n-2)} = 0, \\
\dot{C}_{1}(x)\varphi_{1}^{(n-1)} + \dots + \dot{C}_{n}(x)\varphi_{n}^{(n-1)} = f(x).
\end{cases}$$
(94)

Система (94) это линейная система для определения $\dot{C}_1, ..., \dot{C}_n$. Определитель этой системы $\Delta = W(x) \neq 0$, а значит система разрешима единственным образом.

4.9. Устойчивость по Ляпунову. Асимптотическая устойчивость

Рассматривается общая система дифференциальных уравнений

$$\frac{d\bar{x}}{dt} = \bar{f}(t, x^1, \dots, x^n) \tag{95}$$

Пусть $\bar{x} = \bar{\varphi}(t, \bar{x}_0)$ – решение этой системы, такое что $\bar{\varphi}(t_0, \bar{x}_0) = \bar{x}_0$. А $\psi(t, \bar{x}_0)$ – произвольное решение, такое что $\psi(t, \bar{x}_0) = \bar{x}_0$.

Определение 4.8. Решение $\bar{x} = \bar{\varphi}(t, \bar{x}_0)$ называется устойчивым по Ляпунову, если

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \bar{x}_0 : |\bar{x}_0 - \bar{x}_0| < \delta \to |\bar{\psi}(t, \bar{x}_0) - \bar{\varphi}(t_0, \bar{x}_0)| < \varepsilon \ \forall t \in [t_0, +\infty]$$

Определение 4.9. Решение $\bar{x} = \bar{\varphi}(t, \bar{x}_0)$ называется асимптотически устойчивым, если оно устойчиво по Ляпунову, а так же

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \bar{x}_0 : |\bar{x}_0 - \bar{x}_0| < \delta \to \lim_{t \to \infty} |\bar{\psi}(t, \bar{x}_0) - \bar{\varphi}(t_0, \bar{x}_0)| = 0$$

4.10. Автономные линейные системы

Пусть в конечномерном линейном пространстве B линейный оператор задается матрицей $A = ||a_{ij}(t)||$. Если a_{ij} ограничены, тогда норма матрицы

$$||A|| = \max_{i,j=\overline{1,n}} |\sup_{t \in I(t)} (a_{ij}(t))|$$

Можно записать следующее неравенство:

$$||A\bar{x}|| < ||A|| \cdot ||\bar{x}||$$

Теперь рассмотрим систему однородных уравнений, где A постоянна

$$\frac{d\bar{x}}{dt} = A\bar{x} \tag{96}$$

Тогда $\bar{x} = 0$ – решение.

Лемма 4.4. Если однородная линейная система имеет неограниченное решение, то нулевое решение не устойчиво.

Доказательство. Будем рассматривать систему (118). Пусть решение $\bar{\varphi}(t,\bar{x}_0)$ неограниченно. То есть

$$\forall M > 0 \exists t^* : |\bar{\varphi}(t^*, \bar{x}_0)| > M$$

Обратим определение устойчивости нулевого приближения

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \exists \bar{x}_0 : |\bar{x}_0| < \delta, \exists t^* \in [t_0, +\infty) : |\bar{\varphi}(t^*, \bar{x}_0)| > \varepsilon$$

Воспользуемся неограниченностью решения

$$\forall C>0
ightarrow ar{\psi}(t,ar{x}_0)=C\cdot ar{arphi}(t,ar{x}_0)$$
 – неограниченно

Теперь для произвольного $\delta>0$ возьмем $C=\frac{\delta}{2|\bar{x}_0|}$

$$|\bar{\psi}(t_0, \bar{x}_0)| = C \cdot |\bar{\varphi}(t_0, \bar{x}_0)| = \frac{\delta |\bar{x}_0|}{2|\bar{x}_0|} = \frac{\delta}{2}$$

Таким образом

$$\exists \varepsilon_0, \exists t : |\bar{\psi}(t, \bar{x}_0)| > \varepsilon_0$$

Теорема 4.8. Пусть $\lambda_1, \ldots, \lambda_k$ – собственные числа матрицы A кратности l_1, \ldots, l_k соответственно. Тогда

- 1. Если $Re(\lambda_i) < 0, i = \overline{1,k}$, то нулевое решение асимптотически устойчиво.
- 2. Пусть $Re(\lambda_i) < 0, i \neq l, Re(\lambda_l) = 0$. И существует базис из собственных векторов e_{l_1}, \ldots, e_{l_k} . Тогда нулевое решение устойчиво по Ляпунову.
- 3. Если $\exists l: Re(\lambda_l) > 0$, или $Re(\lambda_l) = 0$, но собственные вектора не образуют базис, тогда нулевое решение не устойчиво

Доказательство. Рассмотрим решение $\bar{\varphi}(t,\bar{x}_0)$, такое что $\bar{\varphi}(0,\bar{x}_0) = \bar{x}_0$. Тогда

$$\bar{x}(t) = e^{tA} \cdot \bar{x}_0$$

где

$$e^{tA} = S \begin{vmatrix} e^{\lambda_1 t} P_{ij}^1(t) & 0 & 0 & \dots \\ 0 & e^{\lambda_2 t} P_{ij}^2(t) & 0 & \dots \\ & & \dots & \\ & & 0 & 0 & e^{\lambda_k t} P_{ij}^k(t) \end{vmatrix} S^{-1} = ||e^{\lambda_s t} P_{ij}(t)||$$

S – матрица перехода к Жорданову базису. P_{ij} – многочлены степени m

$$m \leq \max_{s=\overline{1.k}} (l_s - 1)$$

Рассмотрим случаи по порядку:

1. $e^{(\alpha_s+i\omega_s)t}P^s_{ij}(t)$ — элемент e^{tA} . $e^{(\alpha_s+i\omega_s)t}P^s_{ij}(t)=e^{\alpha_s t}(\cos{(\omega_s t)}+i\sin{(\omega_s t)})P^s_{ij}(t)$. Тогда $|e^{(\alpha_s+i\omega_s)t}P^s_{ij}(t)|=e^{\alpha_s t}|P^s_{ij}(t)|$. Положим $\alpha=\inf_{i=\overline{1,k}}|\alpha_i|$. Распишем

$$e^{tA} = e^{-\alpha t}(e^{\alpha t}e^{tA}) = e^{-\alpha t}\Phi(t)$$

Произвольный элемент матрицы $\Phi(t)$

$$\Phi_{ij}(t) = e^{-rt} P_{ij}(t)$$

где r > 0. Отсюда видно, что

$$\lim_{t \to \infty} e^{-rt} P_{ij}(t) = 0$$

Тогда все элементы матрицы $\Phi(t)$ ограничены. Обозначим норму этой матрицы

$$m = ||\Phi(t)||$$

Для произвольного ε возьмем $\delta = \frac{\varepsilon}{m}$. Теперь возьмем норму решения $\bar{x}(t)$.

$$||\bar{x}(t)|| = ||e^{tA} \cdot \bar{x}_0|| \le ||e^{tA}|| \cdot ||\bar{x}_0|| = e^{-\alpha t} ||\Phi(t)|| \cdot ||\bar{x}_0|| \le e^{-\alpha t} m ||\bar{x}_0|| \le e^{-\alpha t} m \delta \le e^{-\alpha t} \varepsilon$$

$$\lim_{t \to \infty} e^{-\alpha t} \varepsilon = 0$$

- 2. В данном случае $P_{ij}^l=const,$ тогда $e^{-\alpha t}$ не будет. Следовательно $||\bar{x}(t)||\leq \varepsilon$ устойчивость по Ляпунову.
- 3. $Re(\lambda_s) > 0$. Тогда решение

$$\bar{\varphi}(t,\bar{x}_0) = e^{(\alpha_s + i\omega_s)t} \cdot C$$
 – неограниченно

А если $Re(\lambda_s)=0$, но в базисе присутствуют присоединенные вектора, тогда решение принимает вид $P_{ij}(t)$ – неограниченно при $t\to +\infty$

4.11. Теорема Штурма

Рассмотрим на промежутке I = I(x) следующее уравнение:

$$y'' + a(x)y' + b(x)y = 0, (97)$$

где $a(x) \in C^1_{I(x)}, b(x) \in C^1_{I(x)}.$

Решение (97) такое, что y(x) тождественно не равно нулю на I(x) называется нетривиальным , а точка $x_0 \in I$ такая, что $y(x_0) = 0$ называется нулём нетривиального решения y(x).

Уравнение (97) приводится к виду:

$$z'' + q(x)z = 0. (98)$$

Для этого сделаем замену $y(x) = c(x) \cdot z(x)$, где z(x) - решение уравнения выше (далее будем считать, что c = c(x) и z = z(x):

$$z'' \cdot c + 2c' \cdot z' + c'' \cdot z + a(x)(c' \cdot z + z' \cdot c) + b(x) \cdot c \cdot z = 0,$$

здесь выберем $c \neq 0$ так, что бы для z' выполнялось:

$$z'(2c' + a(x)c) = 0.$$

Тогда получаем линейное однородное уравнение $\Rightarrow 2c' + a(x)c = 0$, которое можно преобразовать в:

$$\frac{dc}{c} = -\frac{a(x)}{2x}dx \implies c(x) = c_0 \cdot exp\left[-\frac{1}{2}\int a(x)dx\right] > 0.$$
 (99)

Возьмем $c_0 = 1 \implies c \cdot z'' + (c'' + c'a + bc)z = 0$, тогда можем ввести q(x) такое, что:

$$q(x) = \frac{c'' + c'a}{c} + b.$$

Также заметим, что из (99) следует, что c(x) > 0. Тогда в силу замены $y = c(x) \cdot z$, $x_0 \in I$ является нулём y(x) тогда и только тогда, когда x_0 является нулём z(x).

Определение 4.10. Точка x_0 является нулём $f(x) \in C^{\infty}$ кратности k, если $f(x_0) = f'(x_0) = \dots = f^{(k-1)}(x_0) = 0$, а $f^{(k)}(x_0) \neq 0$.

Лемма 4.5. Все нули нетривиального решения (98) (также как и для (97)) являются простыми, т.е. k = 1.

Доказательство. От противного: пусть x_0 является нулём кратности 2, тогда $z(x_0)=z'(x_0)=0$. Тогда в силу основной теоремы $z(x)=0 \forall x\in I$ - противоречие, т.к. z(x) - нетривиальное решение по условию.

Лемма 4.6. Пусть M - множество нулей нетривиального решения y(x) на нечетном промежутке $[x_1; x_2]$. Множество M не имеет предельной точки.

Доказательство. От противного: пусть М - множество нулей. Пусть x_0 - предельная точка и $\exists x_k$:

$$\lim_{k \to \infty} x_k = x_0 \in [x_1; x_2], \ y(x_k) = 0, \ k = 1, 2, \dots$$

Так как y(x) - непрерывно, то $\lim_{k\to\infty}y(x_k)=0=y(\lim_{k\to\infty}x_k)=y(x_0) \Rightarrow y(x_0)=0.$ Рассмотрим $[x_k;x_{k+1}]$ и y(x) на нём, т.к. $y(x_k)=y(x_{k+1})=0$, то по теореме Ролля

Рассмотрим $[x_k; x_{k+1}]$ и y(x) на нём, т.к. $y(x_k) = y(x_{k+1}) = 0$, то по теореме Ролля $\exists c_k : x_k \leq c_k \leq x_{k+1} : y'(c_k) = 0$ и т.к. $\lim_{k \to \infty} x_k = \lim_{k \to \infty} x_{k+1} = x_0 \Rightarrow \lim_{k \to \infty} c_k = x_0$. Из этого может получить, что так как y'(x) - непрерывна, то:

$$\lim_{k \to \infty} y'(c_k) = 0 = y'(\lim_{k \to \infty} c_k) = y'(x_0) = 0$$

Так как по предложению $x_0 \in [x_1; x_2]$ и $y_0(x_0) = 0$, $y'(x_0) = 0$ - получим задачу Коши для $x_0 \in [x_1; x_2] \Rightarrow$ в силу теорем существования и единственности решения задачи Коши: $y \equiv 0$ - единственное решение на $[x_1; x_2]$ - получим противоречие с нетривиальным решением.

Теорема 4.9 (Теорема Штурма). Рассмотрим уравнения:

$$y'' + q(x)y = 0 (100)$$

$$z'' + Q(x)z = 0, (101)$$

где уравнение (100) будем называть быстрым, а (101) - медленным. Пусть

$$q(x) \in C^1_{I(x)}, Q(x) \in C^1_{I(x)}, \forall x \in I \rightarrow q(x) \le Q(x).$$

Пусть y(x) - нетривиальное решение (100), z(x) - нетривиальное решение (101). Если $x_1, x_2 \in I$ - последовательное нули y(x)6 то либо $\exists x_0 \in (x_1; x_2)$, в которой $z(x_0) = 0$, либо $z(x_1) = z(x_2) = 0$.

Доказательство. Пусть x_1, x_2 - два соседних нуля y(x), т.е. $y(x) \neq 0$ на $(x_1; x_2)$, пусть для определённости y(x) > 0.

По определению:

$$y'(x_1) = \lim_{x \to x_1} \frac{y(x) - y(x_1)}{x - x_1} \ge 0; \ y'(x_2) = \lim_{x \to x_2} \frac{y(x) - y(x_2)}{x - x_2}.$$

В силу Леммы 4.5 нули x_1 и x_2 должны быть однократными, т.е. $y'(x_1) \neq 0, y'(x_2) \neq 0$. Таким образом $y'(x_1) > 0, y'(x_2) < 0$.

Умножим (101) на z(x), а (100) на y(x) и вычтем из первого второе:

$$zy'' + qyz - yz''' - Qyz = 0; \ zy'' - yz'' = (zy' - yz')' = (Q - q)zy.$$

Проинтегрируем полученное тождество на $[x_1; x_2]$:

$$(zy' - yz')\Big|_{x_1}^{x_2} = \int_{x_1}^{x_2} (Q(x) - q(x))zydx;$$

$$z(x_2)y'(x_2) - y(x_2)z'(x_2) - z(x_1)y'(x_1) + y(x_1)z'(x_1) = \int_{x_1}^{x_2} (Q(x) - q(x))zydx \Rightarrow$$

$$\Rightarrow z(x_2)y'(x_2) - z(x_1)y'(x_1) = \int_{x_1}^{x_2} (Q(x) - q(x))zydx, \tag{102}$$

здесь $z(x_2)y'(x_2) < 0$, $z(x_1)y'(x_1) > 0$, (Q(x) - q(x)) > 0 и y > 0.

Предположим противное - пусть теорема Штурма не верна. Тогда возможны варианты:

- 1. $z > 0 \forall x \in [x_1; x_2]$. Тогда левая часть (102) отрицательна, а правая положительна противоречие.
- 2. $z > 0 \forall x \in [x_1; x_2), \ z(x_2) = 0$ аналогично.
- 3. $z > 0 \forall x \in (x_1; x_2] \ z(x_1) = 0$ аналогично.

Таким образом $\exists x_0 \in (x_1; x_2): z(x_0) = 0$. Если $z(x_1) = z(x_2)$, то может быть, что $Q(x) \equiv q(x) \Rightarrow z(x) = const \cdot y(x)$, либо:

$$\exists x * \in (x_1; x_2) : \ Q(x *) > q(x *),$$

в силу непрерывности Q(x) и $q(x) \exists \triangle$:

$$\int_{x*-\triangle}^{x*+\triangle} (Q(x) - q(x))z(x)y(x)dx = 0,$$

значит $\exists x_0$, где z(x) меняет знак $\Rightarrow z(x_0) = 0$

4.12. Следствия из теоремы Штурма

Следствие 4.9.1. Пусть есть уравнение:

$$y'' + q(x)y = 0; \ q(x) \le 0 \forall x \in I(x),$$

тогда любое нетривиальное решение (101) на І имеет не более одного нуля.

Доказательство. В качестве второго уравнения можно взять z'' + Q(x)z = 0, здесь Q(x) = 0. Пусть решение уравнения (101) имеет нули x_1 и x_2 $Q(x) \ge q(x) \Rightarrow 0 \ge q(x)$. Тогда по теореме Штурма любое решение (100) должно иметь ноль на $(x_1; x_2)$. В качестве решения можем вщять $z \equiv 1$, которое не и имеет нулей \Rightarrow противоречие \Rightarrow для решения (101) не может быть больше одного нуля.

Следствие 4.9.2. Пусть $\varphi(x)$ и $\psi(x)$ - два линейно независимых нетривиальных решения (101), $x_1, x_2 \in I$ - два соседних нуля $\varphi(x)$, тогда $\psi(x)$ имеет только один нуль на $(x_1; x_2)$.

Доказательство. Применим теорему Штурма к двум одинаковым уравнениям $(Q(x) \le Q(x))$. По теореме Штурма $\psi(x)$ на $(x_1; x_2)$ имеет хотя бы один нуль. Общих нулей $\varphi(x)$ и $\psi(x)$ иметь не могут, так как они линейно независимые $(W(x_1) = 0$, если бы $\varphi(x_1) = \psi(x_1) = 0$, что означало бы, что $\varphi(x)$ и $\psi(x)$ - ЛЗ). Итак, $\psi(x)$ имеет нуль x_0 на $(x_1; x_2)$.

Докажем, что такой нуль единственный - от противного: пусть нулей два для $\psi(x): x*$ и \overline{x} . Если нулей $\psi(x)$ два, то по теореме Штурма для $\varphi(x)$ будет ноль между x* и \overline{x} - противоречие тому, что x_1 и x_2 соседние нули $\varphi(x)$.

Таким образом нули решений (97) перемешаются.

5. Билет 5. Автономные системы дифференциальных уравнений

5.1. Основные определения

Система ДУ вида:

$$\frac{dx^{i}}{dt} = f^{i}(x^{1}, ..., x^{n}); \quad \frac{d\vec{x}}{dt} = \vec{f}(\vec{x}); \quad \dot{x}^{i} = f^{i}(\vec{x}) \qquad i = \overline{1, n}$$

$$(103)$$

Называется автономной системой ДУ, если $\vec{f} = \{f_i(x^1,...,x^n)\},\ i = \overline{1,n}$ не зависит явно от аргумента $t;\ x^j = x^j(t),\ j = \overline{1,n}$ являются интегральными кривыми (103). $\vec{x}(t) = \{x^j(t)\} \in \mathbb{R}^{n+1} = t \times \mathbb{R}^n$

Определение 5.1. Пусть $\vec{x}(t)$ является решением (103). Кривая γ в \mathbb{R}^n называется фазовой траекторией (103). Само \mathbb{R}^n называется фазовым пространством (103).

$$\gamma = \begin{cases}
 x^1 = x^1(t) \\
 x^2 = x^2(t) \\
 \dots \\
 x^n = x^n(t)
\end{cases}$$
(104)

Будем предполагать, что $\vec{f} = \{f^i(x^1,...,x^n)\} \in \mathcal{D} \subset \mathbb{R}^n, i = \overline{1,n}$ непрерывно дифференцируемые функции по всей совокупности переменных.

Теорема 5.1. Если $\varphi(t)$ решение (103), то $\varphi(t+\tau)$ $\forall \tau=const \in \mathbb{R}$ тоже решение (103)

Локазательство.

Пусть
$$u=t+\tau$$
 : $\frac{d(\varphi(t+\tau))}{dt}=|t+\tau=u|=\frac{d\varphi(u)}{du}\frac{du}{dt}=\frac{d\varphi(u)}{dt}=f(\varphi(u))=f(\varphi(t+\tau))-$ - т.е. $\varphi(t+\tau)$ - решение

Следствие 5.1.1. Пусть $\vec{\varphi}(t_0, \vec{x}_0)$ – решение (103), такое что $\vec{\varphi}(t, t_0, \vec{x}_0) = \vec{x}_0$. В силу доказанной теоремы $\vec{\varphi}(t+\tau, t_0+\tau, \vec{x}_0)$ тоже решение (103). (Формально заменяем $t+\tau$ на $u, t_0+\tau$ на u_0), причём $\vec{\varphi}(t_0+\tau, t_0+\tau, \vec{x}_0) = \vec{x}_0$. Тогда, если $\vec{f}(x^1,...,x^n)$ является непрерывной функцией п переменных вместе c $\frac{\partial \vec{f}}{\partial x_i}$, то показанные решения совпадают по основной теореме.

$$\vec{\varphi}(t+\tau,t_0+\tau,\vec{x}_0) \equiv \vec{\varphi}(t,t_0,\vec{x}_0)$$
. Положим, в силу произвольности $\tau,\, \tau=-t_0 \Rightarrow \vec{\varphi}(t,t_0,\vec{x}_0) = \vec{\varphi}(t-t_0,0,\vec{x}_0) = \vec{\varphi}(t-t_0,\vec{x}_0)$

T.о. положение движущейся по фазовой траектории точки определяется начальным положением \vec{x}_0 в момент времени t_0 и длительностью $t-t_0$, отсчитываемого от начального момента времени t_0 , но не самим этим моментом. (T.e. начальный момент не существенен и можно положить его равным нулю).

Теорема 5.2. Фазовые траектории либо не имеют общих точек, либо совпадают

Доказательство.

Пусть $\varphi(t)$ и $\psi(t)$ – решения (103), причём $x_0 = \varphi(t_1) = \psi(t_2)$ Рассмотрим $\chi(t) = \psi(t+(t_2-t_1))$, согласно предыдущей теореме $\chi(t)$ тоже явл. реш. (103), причём $\chi(t_1) \stackrel{\text{по постр.}}{==} x_0 = \psi(t_2) =$

$$=\varphi(t_1)\Rightarrow \Pi$$
о основной теореме $\varphi(t)\equiv \chi(t)\stackrel{def}{=}\psi(t+(t_2-t_1))\Rightarrow$ траектории $\varphi(t)$ и $\psi(t)$ совпали.

Согласно доказаному можно считать, что фазовое пространство (103) "склеено"из фазовых траекторий.

5.2. Типы фазовых траекторий

Определение 5.2. Точка $\vec{a} \in \mathbb{R}^n$ называется положением равновесия (103), если $\vec{f}(\vec{a}) = 0$ $(f^i(a^1,...,a^n) = 0, \ i = \overline{1,n})$

Утверждение 5.1. Если $\vec{a} \in \mathbb{R}^n$ – положение равновесия (103), то $\vec{x}(t) = \vec{a}, -\infty < t < +\infty$ является решением (103)

Доказательство.

$$\vec{x}(t) \equiv \vec{a} \stackrel{(103)}{\Rightarrow} 0 = \frac{d\vec{x}}{dt} = \frac{d\vec{a}}{dt} = f(\vec{a}) = 0 \Rightarrow$$
 удовлетворяет (103)

Т.о. точка равновесия $\vec{a} \in \mathbb{R}^n$ является фазовой траекторией (103)

Следствие 5.2.1. *Решение* (103) *не может прийти в положение равновесия за конечное время.*

Доказательство.

Пусть это не так и фазовая траектория пришла в положение равновесия за конечное время. Т.о., т.к. положение равновесия тоже является фазовой траекторией, то они пересекаются, что невозможно \Rightarrow противоречие

Теорема 5.3. Фазовые траектории принадлежат одному из трёх типов:

- 1. Точка (равновесия)
- 2. Фазовая траектория, отличная от точки, есть гладкая кривая
- 3. Замкнутая кривая(цикл) периодическая

5.3. Характер поведения фазовых траекторий в окрестности положения равновесия двумерной автономной нелинейной системы.

Рассмотрим систему уравнений

$$\begin{cases} \frac{dx}{dt} = f_1(x, y) \\ \frac{dy}{dt} = f_2(x, y) \end{cases}$$
 (105)

Пусть $M_0(x_0,y_0)$ – положение равновесия данной системы, т. е. выполнено: $\begin{cases} \frac{dx}{dt}(x_0,y_0)=0\\ \frac{dy}{dt}(x_0,y_0)=0 \end{cases}$

Для того, чтобы было проще исследовать фазовые траектории линеаризуем систему нелинейных автономных уравнений. Сделать это нам позволяет теорема (5.4) (дается без доказательства)

Теорема 5.4. Если линеаризация нелинейной системы в начале координат (x = 0) является простой автономной системой u = 0 не является центром для исходной системы, то в окрестности x = 0 нелинейная система u ее линеаризация качественно эквивалентны.

Тогда, мы можем формально линеаризовать систему, используя известные методы (разложение до линейного члена):

$$\begin{cases} \frac{dx}{dt} = \frac{\partial f_1}{\partial x}(x - x_0) + \frac{\partial f_1}{\partial y}(y - y_0) + o(\rho) \\ \frac{dy}{dt} = \frac{\partial f_2}{\partial x}(x - x_0) + \frac{\partial f_2}{\partial y}(y - y_0) + o(\rho) \end{cases}$$
(106)

где $\rho = \sqrt{(x-x_0)^2 + (y-y_0)^2}$. В итоге, стандартной заменой $x = \overline{x} + x_0$ и $y = \overline{y} + y_0$ (переход в систему координат с центром в (x_0, y_0)) приводим систему к линейному виду.

$$\begin{cases}
\frac{d\overline{x}}{dt} = a_{11}\overline{x} + a_{12}\overline{y} \\
\frac{d\overline{y}}{dt} = a_{21}\overline{x} + a_{22}\overline{y}
\end{cases}$$
(107)

С этого момента, мы будем изучать виды фазвых траекторий и их поведение в окрестности положения равновесия для систем вида:

$$\begin{cases} \frac{dx}{dt} = a_{11}x + a_{12}y\\ \frac{dy}{dt} = a_{21}x + a_{22}y \end{cases}$$
 (108)

с положением равновесия в точке $M_0(0,0)$.

5.4. Классификация положений равновесия линейной автономной системы второго порядка.

Рассмотрим автономную однородную систему линейных ДУ (108) и введем матрицу системы:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \tag{109}$$

Получим собственные значения этой матрицы:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = \lambda^2 - \operatorname{trace} A \cdot \lambda - \det A = 0 \Rightarrow$$

$$\lambda = \frac{\operatorname{trace} A \pm \sqrt{\operatorname{trace}^2 A - 4 \det A}}{2}$$
(110)

 Φ азовый портрет системы зависит от собственных значений матрицы A. Рассмотрим различные виды фазовы траекторий в зависимости от собственных значений.

1. Собственные значения $\lambda_1, \lambda_2 \in \mathbb{R}$ (или $\operatorname{trace}^2 A - 4 \det A > 0$)

Тогда, в базисе собственных значений матрица A примет вид: $\overline{A} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

система (108) будет иметь вид:
$$\begin{cases} \frac{dx}{dt} = \lambda_1 x \\ \frac{dy}{dt} = \lambda_2 y \end{cases}$$

и решения данной системы в базисе собственных векторов: $\begin{cases} x(t) = c_1 e^{\lambda_1 t} \\ y(t) = c_2 e^{\lambda_2 t} \end{cases}$

Решение системы в исходном базисе:
$$\begin{cases} x(t) = c_1 e^{\lambda_1 t} h_1 \\ y(t) = c_2 e^{\lambda_2 t} h_2 \end{cases}$$

где h_1, h_2 – собственные векторы матрицы A. Общий вид этого решения справедлив для всех случаев, при которых $\lambda \in \mathbb{R}$.

Рассмотрим фазовые портреты.

(a) $\lambda_1 < 0$, $\lambda_2 < 0$ и $|\lambda_1| < |\lambda_2|$

Заметим прежде всего, что при $c_1 \neq 0$, $c_2 = 0$ и при $c_1 = 0$, $c_2 \neq 0$ мы получаем прямые линии с направляющими векторами h_1 и h_2 . Поэтому вектора h_1 и h_2 являются решениями системы.

Теперь, рассмотрим, что будет при
$$c_1 \neq 0$$
 и $c_2 \neq 0$. Из
$$\begin{cases} x(t) = c_1 e^{\lambda_1 t} \\ y(t) = c_2 e^{\lambda_2 t} \end{cases} \Rightarrow t =$$

 $\frac{1}{\lambda_1} \ln \frac{x}{c_1}$ подставляем в выражение для y и получаем в базисе собственных

векторов
$$y = c|x|^{\frac{\lambda_2}{\lambda_2}} = c|x|^r$$
, где $r = \frac{\lambda_2}{\lambda_1} > 0$.

Таким образом мы приходим к выводу, что фазовые трактории в данном случае – есть параболы (с показателем r>0), причем при $t\to 0$ фазовые траектории стремяться **к** положению равновесия.

Определение 5.3. Положение равновесия, при котором сосбтвенные значения матрицы A одного знака и фазовые трактории направлены к положению равновесия называются устойчивым узлом рис 2.

Примечание. В случае, когда положение равновесия является узлом, фазовые траектории касаются оси с меньшим по модулю собственным числом.

Рис. 2: Устойчивый узел, $\lambda_1, \lambda_2 < 0$

Рис. 3: Неустойчивый узел $\lambda_1, \lambda_2 > 0$

(b)
$$\lambda_1 > 0$$
, $\lambda_2 > 0$ и $|\lambda_1| < |\lambda_2|$

Расположение и вид траекторий (как и принцип их нахождения) остаются такими же, как и в первом случае, но направление движения по траекториям при $t\to 0$ меняется на противоположное.

Определение 5.4. Положение равновесия, при котором сосбтвенные значения матрицы A одного знака и фазовые трактории направлены от положения равновесия называются **неустойчивым узлом** рис 3.

(c) $\lambda_1 < 0 < \lambda_2$

В этом случае при $c_1=c_2=0$ получаем положение равновесия x=0, при $c_1\neq 0,\ c_2=0$ и при $c_1=0,\ c_2\neq 0$ мы получаем прямые линии с направляющими векторами h_1 и h_2 . Для $c_1\neq 0$ и $c_2\neq 0$ аналогично первому слуучаю получим $y=c|x|^{\frac{\lambda_2}{\lambda_2}}=c|x|^r$, только в этом случае $r=\frac{\lambda_2}{\lambda_1}<0$, поэтому траектории – это кривые типа гиперболы. При этом оси с направляющими векторами h_1 и h_2 служат асимптотами траекторий типа гипербол и называются **сепаратисами** 4.

Положение равновесия в этом случае называется седлом системы.

(d) $\lambda_1 = \lambda_2 = \lambda$, причем существует базис плоскости из собственных векторов h_1 и h_2 матрицы A.

В этом случае решения системы в базисе собственных векторов: $\begin{cases} x(t) = c_1 e^{\lambda t} \\ y(t) = c_2 e^{\lambda t} \end{cases}$

каждое такое решение описывает в фазовой плоскости луч, выодящий из начала координат, причем движение по лучу при $t \to +\infty$ идет к нулю для $\lambda < 0$ и от нуля для $\lambda > 0$.

При $\lambda < 0$ положение равновесия называется устойчивым дикритическим (или звездным) узлом, а при $\lambda > 0$ неустойчивым дикритическим (илм звездным) узлом рис 5 и 6.

(e) $\lambda_1 = \lambda_2 = \lambda$, причем существует базис плоскости из собственного вектора h_1 и присоединенного к нему вектора h_2 матрицы A.

Рис. 4: Седло $\lambda_1 < 0 < \lambda_2$

 $x_{\rm I}$

Рис. 5: Устойчивый дикритический узел, $\lambda < 0$

Рис. 6: Неустойчивый дикритический узел $\lambda > 0$

В этом случае
$$\begin{cases} x(t) = (c_1 + c_2 t)e^{\lambda t} \\ y(t) = c_2 e^{\lambda t} \end{cases}$$

Из этой системы видно, что прямая с направляющим собственным вектором будет являться решением, а прямая с направляющим присоединенным вектором решением являться не будет.

Подобные фазовые траектории называются устойчивыми и неустойчивыми вырожденными узлами рис 7 и 8.

2. Собственные значения $\lambda_1,\ \lambda_2\ \in\ \mathbb{C}$ (или ${\rm trace}^2\,A-4\det A<0)$

В этом случае собственные значения матрица A будут комплексными, запишем их в следующем виде: $\lambda_{1,2} = r \pm i \omega$. Так же, запишем выражения для собственных векто-

ров матрицы:
$$\vec{h_{1,2}} = \vec{a} \pm i \vec{b}$$
. Тогда решение в базисе собственных векторов запишется в следующем виде:
$$\begin{cases} x(t) = c_1 e^{rt} (\cos(\omega t) + i \sin(\omega t)) \\ y(t) = c_2 e^{rt} (\cos(\omega t) - i \sin(\omega t)) \end{cases}$$
 где $c_1, c_2 \in \mathbb{C}$. Выделим действи-

тельное решение. Один из способов выделения действительного решения: положим комплексные константы таковыми: $c_1=ce^{i\varphi},\ c_2=\overline{c_1}=ce^{-i\varphi},\ \mathrm{где}\ c\in\mathbb{R}.$ Подставим константы в решение и получим:

Рис. 7: Устойчивый вырожденный узел, $\lambda < 0$

Рис. 8: Неустойчивый вырожденный узел $\lambda>0$

$$\begin{cases} x(t) = ce^{rt}e^{i(\omega t + \varphi)} \\ y(t) = ce^{rt}e^{-i(\omega t + \varphi)} \end{cases}$$
(111)

это вид решения в базисе собственных векторов, перейдем обратно в исодный базис и получим:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \vec{a} + i\vec{b} \\ \vec{a} - i\vec{b} \end{pmatrix} e^{rt} \begin{pmatrix} e^{i(\omega t + \varphi)} \\ e^{-i(\omega t + \varphi)} \end{pmatrix}$$
(112)

отсюда несложно выразить:

$$\begin{pmatrix} x \\ y \end{pmatrix} = ce^{rt} (2\vec{a}\cos(\omega t + \varphi) - 2\vec{b}\sin(\omega t + \varphi))$$
 (113)

переходя к базису независимых векторов \vec{a} и \vec{b} получим:

$$\begin{cases} x = ce^{rt}\cos\chi\\ y = ce^{rt}\sin\chi \end{cases}$$
 (114)

где $\chi = \omega t + \varphi$. Чтобы понять вид фазовой траектории перейдем к полярным координатам:

$$\begin{cases} \rho = ce^{r\frac{\chi - \varphi}{\omega}} \\ \chi = \omega t + \varphi \end{cases} \tag{115}$$

рассмотрим полученные уравнения и выделим два принципиальных случая.

(a) $r \neq 0$

В этом случае видно, что фазовая траектория представляет собой спираль, причем если r>0 спираль раскручивается, а если r<0 – закручивается. Такое

положение равновесия называется фокусом рис 9, 10, 11, 12. Заметим, что направление закручивания (или раскручивания) определяется направлением фазовой скорости.

Рис. 9: Устойчивый фокус

Рис. 10: Устойчивый фокус

Рис. 11: Неустойчивый фокус

Рис. 12: Неустойчивый фокус

(b) r = 0

В этом случае в базисе векторов \vec{a} и \vec{b} фазовые траектории будут представлять собой окружности, что видно из уравнений $\begin{cases} x = c\cos\chi \\ y = c\sin\chi \end{cases}$ соответственно, в исходном базисе траекториями будут концентрические эллипсы. Подобное положение равновесия называется **центром системы** рис 13, 14.

5.5. Теорема о выпрямлении траекторий.

Пусть точка x_0 не является особой точкой автономной системы

$$\frac{dx_i}{dt} = f_i(x) \tag{116}$$

т. е. $f(x_0) \neq 0, x_0 \in D \subset \mathbb{R}^n$, где D — область фазового пространства.

Рис. 13: Центр системы

Рис. 14: Центр системы

Пусть при этом $\varphi(t, x_0)$ – решение этой системы, такое, что $\varphi(0) = x_0$. В этом случае справедлива **теорема о выпрямлении** (дается без доказательства):

Теорема 5.5. Существует окрестность точки x_0 , такая что в этой окрестности фазовая траектория с точностью до o(t) является прямой линией с направляющим вектором $\vec{q} = \frac{\vec{f}(x)}{|f(x)|}$.

5.6. Устойчивость по Ляпунову. Асимптотическая устойчивость

Рассматривается общая система дифференциальных уравнений

$$\frac{d\bar{x}}{dt} = \bar{f}(t, x^1, \dots, x^n) \tag{117}$$

Пусть $\bar{x} = \bar{\varphi}(t, \bar{x}_0)$ – решение этой системы, такое что $\bar{\varphi}(t_0, \bar{x}_0) = \bar{x}_0$. А $\psi(t, \bar{x}_0)$ – произвольное решение, такое что $\psi(t, \bar{x}_0) = \bar{x}_0$.

Определение 5.5. Решение $\bar{x} = \bar{\varphi}(t, \bar{x}_0)$ называется устойчивым по Ляпунову, если

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \bar{x}_0 : |\bar{\tilde{x}}_0 - \bar{x}_0| < \delta \to |\bar{\psi}(t, \bar{\tilde{x}}_0) - \bar{\varphi}(t_0, \bar{x}_0)| < \varepsilon \ \forall t \in [t_0, +\infty]$$

Определение 5.6. Решение $\bar{x} = \bar{\varphi}(t, \bar{x}_0)$ называется асимптотически устойчивым, если оно устойчиво по Ляпунову, а так же

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \bar{x}_0 : |\bar{\tilde{x}}_0 - \bar{x}_0| < \delta \to \lim_{t \to \infty} |\bar{\psi}(t, \bar{\tilde{x}}_0) - \bar{\varphi}(t_0, \bar{x}_0)| = 0$$

5.7. Автономные линейные системы

Пусть в конечномерном линейном пространстве B линейный оператор задается матрицей $A = ||a_{ij}(t)||$. Если a_{ij} ограничены, тогда норма матрицы

$$||A|| = \max_{i,j=\overline{1,n}} |\sup_{t\in I(t)} (a_{ij}(t))|$$

Можно записать следующее неравенство:

$$||A\bar{x}|| \le ||A|| \cdot ||\bar{x}||$$

Tеперь рассмотрим систему однородных уравнений, где A постоянна

$$\frac{d\bar{x}}{dt} = A\bar{x} \tag{118}$$

Тогда $\bar{x} = 0$ – решение.

Пемма 5.1. Если однородная линейная система имеет неограниченное решение, то нулевое решение не устойчиво.

Доказательство. Будем рассматривать систему (118). Пусть решение $\bar{\varphi}(t,\bar{x}_0)$ неограниченно. То есть

$$\forall M > 0 \exists t^* : |\bar{\varphi}(t^*, \bar{x}_0)| > M$$

Обратим определение устойчивости нулевого приближения

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \exists \bar{x}_0 : |\bar{x}_0| < \delta, \exists t^* \in [t_0, +\infty) : |\bar{\varphi}(t^*, \bar{x}_0)| > \varepsilon$$

Воспользуемся неограниченностью решения

$$\forall C>0
ightarrow ar{\psi}(t,ar{x}_0) = C\cdot ar{arphi}(t,ar{x}_0)$$
 – неограниченно

Теперь для произвольного $\delta>0$ возьмем $C=\frac{\delta}{2|\bar{x}_0|}$

$$|\bar{\psi}(t_0, \bar{x}_0)| = C \cdot |\bar{\varphi}(t_0, \bar{x}_0)| = \frac{\delta |\bar{x}_0|}{2|\bar{x}_0|} = \frac{\delta}{2}$$

Таким образом

$$\exists \varepsilon_0, \exists t : |\bar{\psi}(t, \bar{x}_0)| > \varepsilon_0$$

Теорема 5.6. Пусть $\lambda_1, \ldots, \lambda_k$ – собственные числа матрицы A кратности l_1, \ldots, l_k соответственно. Тогда

- 1. Если $Re(\lambda_i) < 0, i = \overline{1,k}$, то нулевое решение асимптотически устойчиво.
- 2. Пусть $Re(\lambda_i) < 0, i \neq l, Re(\lambda_l) = 0$. И существует базис из собственных векторов e_{l_1}, \ldots, e_{l_k} . Тогда нулевое решение устойчиво по Ляпунову.
- 3. Если $\exists l: Re(\lambda_l) > 0$, или $Re(\lambda_l) = 0$, но собственные вектора не образуют базис, тогда нулевое решение не устойчиво

Доказательство. Рассмотрим решение $\bar{\varphi}(t,\bar{x}_0)$, такое что $\bar{\varphi}(0,\bar{x}_0) = \bar{x}_0$. Тогда

$$\bar{x}(t) = e^{tA} \cdot \bar{x}_0$$

где

$$e^{tA} = S \begin{vmatrix} e^{\lambda_1 t} P_{ij}^1(t) & 0 & 0 & \dots \\ 0 & e^{\lambda_2 t} P_{ij}^2(t) & 0 & \dots \\ & & \dots & \\ & & 0 & 0 & e^{\lambda_k t} P_{ij}^k(t) \end{vmatrix} S^{-1} = ||e^{\lambda_s t} P_{ij}(t)||$$

S – матрица перехода к Жорданову базису. P_{ij} – многочлены степени m

$$m \le \max_{s=1,k} (l_s - 1)$$

Рассмотрим случаи по порядку:

1. $e^{(\alpha_s+i\omega_s)t}P^s_{ij}(t)$ — элемент e^{tA} . $e^{(\alpha_s+i\omega_s)t}P^s_{ij}(t)=e^{\alpha_s t}(\cos{(\omega_s t)}+i\sin{(\omega_s t)})P^s_{ij}(t)$. Тогда $|e^{(\alpha_s+i\omega_s)t}P^s_{ij}(t)|=e^{\alpha_s t}|P^s_{ij}(t)|$. Положим $\alpha=\inf_{i=\overline{1,k}}|\alpha_i|$. Распишем

$$e^{tA} = e^{-\alpha t}(e^{\alpha t}e^{tA}) = e^{-\alpha t}\Phi(t)$$

Произвольный элемент матрицы $\Phi(t)$

$$\Phi_{ij}(t) = e^{-rt} P_{ij}(t)$$

где r > 0. Отсюда видно, что

$$\lim_{t \to \infty} e^{-rt} P_{ij}(t) = 0$$

Тогда все элементы матрицы $\Phi(t)$ ограничены. Обозначим норму этой матрицы

$$m = ||\Phi(t)||$$

Для произвольного ε возьмем $\delta = \frac{\varepsilon}{m}$. Теперь возьмем норму решения $\bar{x}(t)$.

$$||\bar{x}(t)|| = ||e^{tA} \cdot \bar{x}_0|| \le ||e^{tA}|| \cdot ||\bar{x}_0|| = e^{-\alpha t} ||\Phi(t)|| \cdot ||\bar{x}_0|| \le e^{-\alpha t} m ||\bar{x}_0|| \le e^{-\alpha t} m \delta \le e^{-\alpha t} \varepsilon$$

$$\lim_{t \to \infty} e^{-\alpha t} \varepsilon = 0$$

- 2. В данном случае $P_{ij}^l = const$, тогда $e^{-\alpha t}$ не будет. Следовательно $||\bar{x}(t)|| \leq \varepsilon$ устойчивость по Ляпунову.
- 3. $Re(\lambda_s) > 0$. Тогда решение

$$\bar{\varphi}(t,\bar{x}_0) = e^{(\alpha_s + i\omega_s)t} \cdot C$$
 – неограниченно

А если $Re(\lambda_s)=0$, но в базисе присутствуют присоединенные вектора, тогда решение принимает вид $P_{ij}(t)$ – неограниченно при $t\to +\infty$

5.8. Групповые свойства автономных систем

1.
$$\vec{\varphi}(t_1 + t_2, \vec{x}_0) = \varphi(t_2, \vec{\varphi}(t_1, \vec{x}_0)) = \vec{\varphi}(t_1, \vec{\varphi}(t_2, \vec{x}_0))$$

Доказательство.

Рассмотрим $\vec{\varphi}(t, \vec{\varphi}(t_1, \vec{x}_0))$ – решение (103); $\vec{\varphi}(t + t_1; \vec{x}_0)$ – тоже решение (103)

$$\vec{\varphi}(0, \vec{\varphi}(t_1, \vec{x}_0)) = \vec{\varphi}(t_1, \vec{x}_0)$$

$$\vec{\varphi}(0 + t_1, \vec{x}_0) = \vec{\varphi}(t_1, \vec{x}_0)$$

$$\xrightarrow{\text{основная теорема}} \vec{\varphi}(t + t_1; \vec{x}_0) \equiv \vec{\varphi}(t, \vec{\varphi}(t_1, \vec{x}_0))$$

Аналогично, $\vec{\varphi}(t+t_2,\vec{x}_0) \equiv \vec{\varphi}(t,\vec{\varphi}(t_2,\vec{x}_0))$

$$2. \ \vec{\varphi}(-t; \vec{\varphi}(t, \vec{x}_0)) = \vec{x}_0$$

Доказательство.

Из 1):
$$\vec{\varphi}(t+\tau,\vec{x}_0)=\vec{\varphi}(\tau,\vec{\varphi}(t,\vec{x}_0))$$
. В силу произвольности τ при $\tau=-t$: $\vec{\varphi}(-t,\vec{\varphi}(t,\vec{x}_0))\stackrel{1)}{=}\vec{\varphi}(0,\vec{x}_0)=\vec{x}_0$

5.9. Понятия фазового потока и фазового объема

Определение 5.7. Рассматриваем давно привычную нам систему $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x})$.

Пусть $\mathscr{D} \subset \mathbb{R}^n$ – это область в ее фазовом пространстве. Возъмем произвольную точку $\vec{x}_0 \in \mathscr{D}$ и выпустим из нее фазовую траекторию. Таким образом, с течением времени t мы будем двигаться по этой траектории. Обозначим точку на данной траектории в момент времени t как $g^t \vec{x}_0$.

Теперь можно определить преобразование области $\mathscr{D}: \forall \vec{x}_0 \in \mathscr{D}$ сделаем отображение $\vec{x}_0 \to g^t \vec{x}_0$. Получаем $\mathscr{D} \to g^t \mathscr{D}$. Другими словами, каждую точку \mathscr{D} сносим по фазовой траектории на время t.

 $Ta\kappa$ вот преобразование g^t и называется фазовым потоком.

Перечислим несколько полезных свойств введенного нами фазового потока:

- $g^{t_1+t_2} = g^{t_1} \cdot g^{t_2} = g^{t_2} \cdot g^{t_1};$
- $g^t \cdot g^{-t} = g^{-t} \cdot g^t = \text{Id}$ тождественное преобразование;
- Фазовый поток является группой;
- И еще сильнее, фазовый поток однопараметрическая группа, то есть каждому числу $t \in \mathbb{R}$ соответствует единственное преобразование $g^t: \mathscr{D} \to g^t \mathscr{D}$.

Определение 5.8. Пусть у нас опять есть область \mathscr{D} фазового пространства \mathbb{R}^n . Подействуем на \mathscr{D} фазовым потоком g^t . Тогда $\mathscr{D}(t) = g^t \mathscr{D}$ и $\vec{x} = g^t \vec{x}_0$. Определим следующую величину как фазовый объем:

$$V_{\mathscr{D}}(t) = \int_{\mathscr{D}(t)} d\vec{x} = \int_{g^t \mathscr{D}} d(g^t \vec{x}_0).$$

5.10. Теорема Лиувилля

Теорема 5.7. В автономной системе дифференциальных уравнений $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x})$ производная фазового объема $V_{\mathscr{D}}(t)$ области $\mathscr{D} \subset \mathbb{R}^n$ фазового пространства может быть вычислена по формуле:

$$\frac{dV_{\mathscr{D}}(t)}{dt} = \int\limits_{\mathscr{Q}} \operatorname{div} \vec{f} \cdot d\vec{y},$$

где
$$\operatorname{div} \vec{f} = \sum_{i=1}^n \frac{\partial f^i}{\partial x^i}$$
 — дивергенция \vec{f} , а $\vec{y} = \vec{x}(0)$.

Доказательство.

Докажем, что производная равна этому при t=0, а в силу автономности системы это будет верно в каждой точке.

Пишем производную по определению: $\frac{dV_{\mathscr{D}}}{dt}(0) = \lim_{t \to 0} \frac{V_{\mathscr{D}}(t) - V_{\mathscr{D}}(0)}{t}.$

Из системы имеем $\vec{x} = \vec{y} + \int_{0}^{t} \vec{f}(\tau) d\tau$.

При малых значениях t получаем следующее: $x^i = y^i + f^i(\vec{y})t + o(t), t \to 0$.

На все это дело можно смотреть как на замену координат $x^i \longrightarrow y^i$. Тогда получаем следующее выражение для фазового объема:

$$V_{\mathscr{D}}(t) = \int\limits_{\mathscr{D}(t)} d\vec{x} \xrightarrow{\mathscr{D}(0) = \mathscr{D}} \int\limits_{\mathscr{D}} |J| d\vec{y},$$

где $J=rac{\partial(x^1,x^2,\ldots,x^n)}{\partial(y^1,y^2,\ldots,y^n)}$ – якобиан преобразования.

Посчитаем этот якобиан

$$J = \begin{vmatrix} 1 + \frac{\partial f^1}{\partial y^1} t & \frac{\partial f^1}{\partial y^2} t & \cdots & \frac{\partial f^1}{\partial y^n} t \\ \frac{\partial f^2}{\partial y^1} t & 1 + \frac{\partial f^2}{\partial y^2} t & \cdots & \frac{\partial f^2}{\partial y^n} t \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^n}{\partial y^1} t & \frac{\partial f^n}{\partial y^2} t & \cdots & 1 + \frac{\partial f^n}{\partial y^n} t \end{vmatrix} = \left(1 + \frac{\partial f^1}{\partial y^1} t\right) \left(1 + \frac{\partial f^2}{\partial y^2} t\right) \dots \left(1 + \frac{\partial f^n}{\partial y^n} t\right) + o(t).$$

Здесь мы все, что имеет множители t^2, t^3, \ldots, t^n , завернули в o(t). Однако если раскрыть скобки, то такие слагаемые все еще остаются. Раскроем эти скобки и опять впихнем все ненужное в o(t):

$$J = 1 + \left(\frac{\partial f^1}{\partial y^1} + \frac{\partial f^2}{\partial y^2} + \dots + \frac{\partial f^n}{\partial y^n}\right)t + o(t) = 1 + t\operatorname{div}\vec{f} + o(t).$$

Ну, а теперь считаем эту производную:

$$\frac{dV_{\mathscr{D}}}{dt} = \lim_{t \to 0} \frac{V_{\mathscr{D}}(t) - V_{\mathscr{D}}(0)}{t} = \lim_{t \to 0} \frac{\int_{\mathscr{D}} \left(1 + t \operatorname{div} \vec{f} + o(t)\right) d\vec{y} - \int_{\mathscr{D}} d\vec{y}}{t} = \int_{\mathscr{D}} \operatorname{div} \vec{f} \cdot d\vec{y}.$$

5.11. Теорема Пуанкаре

Теорема 5.8. Пускай g^t – непрерывное взаимнооднозначное отображение, сохраняющее фазовый объем и переводящее ограниченную область \mathscr{D} саму в себя, то есть $g^t\mathscr{D} = \mathscr{D}$. Тогда:

$$\forall x_0 \in \mathscr{D} \longmapsto \forall U(x_0) \ \exists \overline{x} \in U(x_0) : g^n \overline{x} \in U(x_0) \ (n = t_0),$$

 $rde\ U(x_0)$ – некоторая окрестность точки x_0 .

Другими словами, для любой окрестности U любой точки x_0 области \mathscr{D} найдется точка \overline{x} , возвращающаяся обратно в эту же окрестность.

6. Билет 6. Первые интегралы автономных систем

6.1. Основные определения

Определение 6.1. Рассмотрим неавтономную систему дифференциальных уравнений $\vec{x} = \vec{f}(\vec{x}, t)$. Пусть в некоторой области $G \subset \mathbb{R}^{n+1}_{t, \vec{x}}$ выполнены условия основной теоремы. Пусть функция $u(t, \vec{x})$ непрерывно дифференцируема в G, а $\vec{x} = \vec{x}(t)$ – решение системы. Тогда величину

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{\partial x_i}{\partial t} = \frac{\partial u}{\partial t} + \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{dx_i}{dt} = \frac{\partial u}{\partial t} + \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} f_i(t, \vec{x}) = \frac{\partial u}{\partial t} + (\nabla u, \vec{f}) \quad (119)$$

будем называть производной функции и в силу системы, или производной Ли.

Для автономной системы $\frac{du}{dt} = (\nabla u, \vec{f}).$

Определение 6.2. Первым интегралом автономной системы $\dot{\vec{x}} = \vec{f}(\vec{x})$ в области \mathscr{D} ее фазового пространства называется функция $u = u(\vec{x})$, сохраняющая постоянное значение вдоль каждой траектории из \mathscr{D} , то есть u = C = const для каждой траектории в области \mathscr{D} .

6.2. Критерий первого интеграла

Теорема 6.1. Для того, чтобы некоторая функция $u(\vec{x})$ была первым интегралом системы $\dot{\vec{x}} = \vec{f}(\vec{x})$, необходимо и достаточно, чтобы она удовлетворяла соотношению $(\nabla u, \vec{f}) = 0$.

Доказательство.

Необходимость

Пусть $u = u(\vec{x})$ – первый интеграл системы. Тогда:

$$0 = \frac{du}{dt} = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \dot{x}_i = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} f_i(\vec{x}) = (\nabla u, \vec{f})$$
(120)

Достаточность

Пусть условие выполнено. Тогда:

$$0 = (\nabla u, \vec{f}) = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} f_i(\vec{x}) = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \dot{x}_i = \frac{du}{dt}, \tag{121}$$

откуда и следует, что u – первый интеграл системы.

6.3. Теорема о числе независимых первых интегралов

Определение 6.3. Система первых интегралов $u_1(\vec{x}), u_2(\vec{x}), \dots, u_k(\vec{x}), \ \epsilon \partial e \ k < n$ называется функционально независимой в области \mathcal{D} , если:

$$rank\left(\frac{\partial u_{i}}{\partial x_{k}}\right) = rank \begin{pmatrix} \frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} & \cdots & \frac{\partial u_{1}}{\partial x_{n}} \\ \frac{\partial u_{2}}{\partial u_{2}} & \frac{\partial u_{2}}{\partial x_{2}} & \cdots & \frac{\partial u_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial u_{k}}{\partial x_{1}} & \frac{\partial u_{k}}{\partial x_{2}} & \cdots & \frac{\partial u_{k}}{\partial x_{n}} \end{pmatrix} = k$$

$$(122)$$

Другими словами, если их градиенты $\nabla u_i(\vec{x})$ линейно независимы.

Примечание. Из линейной зависимости первых интегралов следует их функциональная зависимость. Обратное утверждение неверно.

Теорема 6.2. Пусть точка $M(\vec{x}_0) \in \mathscr{D}$ не является положением равновесия системы $\dot{\vec{x}} = \vec{f}(\vec{x})$. Тогда в окрестности $U(\vec{x}_0)$ этой точки существуют n-1 функционально независимых первых интегралов системы. Теорема имеет локальный характер.

Доказательство.

Пусть $\vec{x}(t)$ является решением: $\vec{x}(0) = \vec{x}_0$.

Так как $M \in \mathscr{D}$ не является положением равновесия, то через нее проходит единственная фазовая траектория, и хотя бы одна из компонент $\vec{f}(\vec{x}_0)$ не равна нулю. Пускай без ограничения общности это будет $f_n(\vec{x}_0)$.

В силу непрерывности $f_n(\vec{x})$ существует окрестность $U(\vec{x}_0)$, в которой $f_n(\vec{x}) \neq 0$. Поделим каждое уравнение нашей системы на последнее. Получим следующее:

$$\begin{cases}
\frac{dx_1}{dx_n} = \frac{f_1}{f_n} = \widetilde{f}_1 \\
\frac{dx_2}{dx_n} = \frac{f_2}{f_n} = \widetilde{f}_2 \\
\vdots & \vdots \\
\frac{dx_{n-1}}{dx_n} = \frac{f_{n-1}}{f_n} = \widetilde{f}_{n-1}
\end{cases}$$
(123)

Все \widetilde{f}_i непрерывно дифференцируемы, поэтому существует окрестность $U(\vec{x}_0)$, где выполнены условия основной теоремы. Значит $\forall \vec{\xi} \in U(\vec{x}_0)$ $\exists !$ решение системы выше такое, что при $x_n = \xi_n$ мы имеем $x_1(\xi_n) = \xi_1, x_2(\xi_n) = \xi_2, \ldots, x_{n-1}(\xi_n) = \xi_{n-1}$.

Давайте запишем это решение. Оно имеет вид:

$$\begin{cases} x_1 = \varphi_1(x_n, \xi_1, \xi_2, \dots, \xi_{n-1}) \\ x_2 = \varphi_2(x_n, \xi_1, \xi_2, \dots, \xi_{n-1}) \\ \vdots & \vdots \\ x_{n-1} = \varphi_{n-1}(x_n, \xi_1, \xi_2, \dots, \xi_{n-1}) \end{cases}$$
(124)

На все это дело можно смотреть как на систему уравнений относительно $\xi_1, \xi_2, \dots, \xi_{n-1}$. Якобиан этой системы имеет вид:

$$J(x_n) = \begin{vmatrix} \frac{\partial \varphi_1}{\partial \xi_1} & \cdots & \frac{\partial \varphi_1}{\partial \xi_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_{n-1}}{\partial \xi_1} & \cdots & \frac{\partial \varphi_{n-1}}{\partial \xi_{n-1}} \end{vmatrix}$$
(125)

В силу того, что
$$J(x_n^0)=\begin{vmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{vmatrix}=|E|=1\neq 0,$$
 и все производные $\frac{\partial \varphi_i}{\partial \xi_k}$ непрерывны,

то существует окрестность точки $\vec{\xi}$, в которой $J(x_n) \neq 0$. Тогда по теореме о неявно заданной функции можно разрешить систему относительно ξ_k :

$$\begin{cases} \xi_1 = \psi_1(x_1, x_2, \dots, x_n) \\ \vdots & \vdots \\ \xi_{n-1} = \psi_{n-1}(x_1, x_2, \dots, x_n) \end{cases}$$
 (126)

Проинтегрируем формально последнее уравнение системы $\dot{\vec{x}} = \vec{f}(\vec{x})$ с условием, что при $t = \tau$: $x_n(\tau) = \xi_n$:

$$x_n = \xi_n + \int_{\tau}^t f_n(\vec{x}(\tau))d\tau = x_n(t). \tag{127}$$

Подставим это и (124) в (126). Тогда:

$$\forall k = \overline{1, n} : const = \xi_k = \psi_k(x_n, x_1, x_2, \dots, x_{n-1}) =$$

$$= \psi_k(x_n, \varphi_1(x_n, \xi_1, \dots, \xi_{n-1}), \varphi_2(x_n, \xi_1, \dots, \xi_{n-1}), \dots, \varphi_{n-1}(x_n, \xi_1, \dots, \xi_{n-1})) =$$

$$= \psi_k(\widetilde{\varphi}_1(t + \tau, \xi_1, \dots, \xi_{n-1}), \widetilde{\varphi}_2(t + \tau, \xi_1, \dots, \xi_{n-1}), \dots, \widetilde{\varphi}_{n-1}(t + \tau, \xi_1, \dots, \xi_{n-1}))$$
(128)

Так как $\vec{\xi}$ – произвольная точка из окрестности U, где выполняется основная теорема, то функции $\widetilde{\varphi}_1(t+\tau,\xi_1,\ldots,\xi_{n-1}),\widetilde{\varphi}_2(t+\tau,\xi_1,\ldots,\xi_{n-1}),\ldots,\widetilde{\varphi}_{n-1}(t+\tau,\xi_1,\ldots,\xi_{n-1})$ являются решениями исходной системы. Тогда система (126) является системой первых интегралов.

Таких интегралов n-1 штук. Причем:

$$\begin{vmatrix} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_{n-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_{n-1}}{\partial x_1} & \cdots & \frac{\partial \psi_{n-1}}{\partial x_{n-1}} \end{vmatrix} = \frac{1}{J(x_n)} \neq 0.$$
 (129)

Откуда следует, что данная система первых интегралов функционально независима.

6.4. Применение первых интегралов для понижения порядка системы

Теорема 6.3. Пусть $u_1(\vec{x}), u_2(\vec{x}), \dots, u_k(\vec{x}), \ \textit{где } k < n - \textit{система первых интегралов системы <math>\dot{\vec{x}} = \vec{f}(\vec{x})$. Тогда порядок системы может быть понижен на k.

Доказательство.

Если u_1, u_2, \ldots, u_k – первые интегралы, то они постоянны на любом решении системы. На систему первых интегралов

$$\begin{cases}
 u_1(\vec{x}) = C_1 \\
 u_2(\vec{x}) = C_2 \\
 \vdots & \vdots \\
 u_k(\vec{x}) = C_k
\end{cases}$$
(130)

можно смотреть как на систему уравнений относительно неизвестных x_1, x_2, \ldots, x_n , где C_1, C_2, \ldots, C_k – известные константы.

Система первых интегралов функционально независима, поэтому ранг матрицы Якоби равен k. Пусть базисный минор матрицы Якоби расположен в первых k столбцах (иначе просто меняем порядок переменных). Тогда по теореме о неявно заданной функции получаем:

$$\begin{cases}
x_1 = \varphi_1(x_{k+1}, \dots, x_n, C_1, \dots, C_k) \\
\vdots & \vdots \\
x_k = \varphi_k(x_{k+1}, \dots, x_n, C_1, \dots, C_k)
\end{cases} \Longrightarrow
\begin{cases}
\dot{x}_{k+1} = f_{k+1}(\varphi_1, \dots, \varphi_k, x_{k+1}, \dots, x_n) \\
\vdots & \vdots \\
\dot{x}_n = f_n(\varphi_1, \dots, \varphi_k, x_{k+1}, \dots, x_n)
\end{cases} (131)$$

Решив последнюю систему относительно x_{k+1}, \ldots, x_n , то есть понизив порядок системы на k, найдем остальные x_1, x_2, \ldots, x_k .

6.5. Дифференциальные уравнения в частных производных первого порядка

6.5.1. Общее решение линейного однородного уравнения в частных производных первого порядка

Определение 6.4. Рассмотрим уравнение

$$\sum_{i=1}^{n} f^{i}(\overrightarrow{x}, u) \frac{\partial u}{\partial x^{i}} = F(\overrightarrow{x}, u)$$
(132)

Функция $u(\overrightarrow{x})$ называется решением уравнения (132), если $u(\overrightarrow{x}) \in C^1(\mathbb{R}^n)$ и после подстановки в (132) получаается тождество, причём $f^i(\overrightarrow{x},u) \in C^1(\mathbb{R}^n \times \mathbb{R})$ – некоторые заданные функции. Уравнение (132) называется квазилинейным уравнением в частных производных первого порядка.

Определение 6.5. Рассмотрим систему ДУ:

$$\begin{cases}
\dot{x}^1 = f^1(\overrightarrow{x}, u) \\
\dots \\
\dot{x}^n = f^n(\overrightarrow{x}, u)
\end{cases}$$
(133)

Система (133) называется характеристической системой уравнения (132), а $\overrightarrow{x}(t)$ – фазовые кривые (133) – называются характеристиками (132).

Основное свойство характеристик состоит в том, что уравнение для $u\left(\overrightarrow{x}\right)$ в силу (133) имеет вид

$$\frac{du}{dt} = F(\overrightarrow{x}(t), u) -$$

обыкновенное ДУ. Действительно, пусть u – решение (132), тогда

$$\frac{du}{dt} = \sum_{i=1}^{n} \frac{\partial u}{\partial x^{i}} \frac{\partial x^{i}}{\partial t} = \sum_{i=1}^{n} \frac{\partial u}{\partial x^{i}} f^{i} = F\left(\overrightarrow{x}\left(t\right), u\right)$$

Будем рассматривать уравнения вида

$$\sum_{i=1}^{n} f^{i}(\overrightarrow{x}, u) \frac{\partial u}{\partial x^{i}} = F(\overrightarrow{x}, u)$$
(134)

Определение 6.6. Уравнения вида (134) называются линейными однородными уравнениями первого порядка в частных производных. Характеристической системой для (134) будем называть систему вида

$$\begin{cases}
\dot{x}^1 = f^1(\overrightarrow{x}) \\
\dots \\
\dot{x}^n = f^n(\overrightarrow{x})
\end{cases}$$
(135)

Теорема 6.4. Пусть $\nu_1(\overrightarrow{x}) = C_1, \dots, \nu_k(\overrightarrow{x}) = C_k$ являются независимыми первыми интегралами системы (135). Тогда функция $u(\overrightarrow{x}) = F(\nu_1(\overrightarrow{x}), \dots, \nu_k(\overrightarrow{x}))$ является решением уравнения (134).

Доказательство. Запишем уравнение (134) следующим способом:

$$\sum_{i=1}^{n} f^{i}(\overrightarrow{x}) \frac{\partial u}{\partial x^{i}} = \sum_{i=1}^{n} f^{i}(\overrightarrow{x}) \sum_{l=1}^{k} \frac{\partial u}{\partial \nu_{l}} \frac{\partial \nu_{l}}{\partial x^{i}} = \sum_{l=1}^{n} \frac{\partial u}{\partial \nu_{l}} \sum_{i=1}^{k} f^{i}(\overrightarrow{x}) \frac{\partial \nu_{l}}{\partial x^{i}} = 0$$

Получили тождество, значит $u(\overrightarrow{x}) = F(\nu_1(\overrightarrow{x}), \dots, \nu_k(\overrightarrow{x}))$ действительно решение уравнения (134).

Теорема 6.5. Пусть функция $u(\overrightarrow{x}) = F(\nu_1(\overrightarrow{x}), \dots, \nu_k(\overrightarrow{x}))$ является решением уравнения (134). Тогда $\nu_1(\overrightarrow{x}) = C_1, \dots, \nu_k(\overrightarrow{x}) = C_k$ являются независимыми первыми интегралами системы (135).

Доказательство. Так как $u(\overrightarrow{x})$ – решение, то

$$\sum_{i=1}^{n} f^{i} \frac{\partial u}{\partial x^{i}} = 0$$

Значит $u(\overrightarrow{x})$ – первый интеграл системы (135) по критерию первого интеграла. Этот первый интеграл может зависеть только от независимых переменных $\nu_1(\overrightarrow{x}), \ldots, \nu_k(\overrightarrow{x})$, причём $u(\nu_1(\overrightarrow{x}), \ldots, \nu_k(\overrightarrow{x})) = C_0$, где $\nu_1(\overrightarrow{x}), \ldots, \nu_k(\overrightarrow{x})$ – первые интегралы системы (135).

6.5.2. Задача Коши для уравнения в частных производных первого порядка

Пусть $S: g(\overrightarrow{x}) = 0$ – гладкая поверхность в \mathbb{R}^n и

$$\nabla g = \left| \left| \frac{\partial g}{\partial x^1}, \dots, \frac{\partial g}{\partial x^n} \right| \right| \neq \overrightarrow{0}$$

Определение 6.7. Точка $\overrightarrow{a} \in S$ называется некритической точкой поверхности, если в системе (135) $\overrightarrow{f}(\overrightarrow{a}) \neq \overrightarrow{0}$ и $\left(\nabla g(\overrightarrow{a}), \overrightarrow{f}(\overrightarrow{a})\right) \neq 0$ (фазовые траектории не лежат на S).

Пусть на S задана функция $U_0\left(\overrightarrow{x}\right)$ и $U_0\left(\overrightarrow{x}\right) \in C^1\left(\mathbb{R}^n\right)$. Задача Коши: найти такое решение $u\left(\overrightarrow{x}\right)$ уравнения (134), что $u\left(\overrightarrow{x}\right) = U_0\left(\overrightarrow{x}\right) \ \forall \overrightarrow{x} \in S$.

Теорема 6.6. Пусть на гладкой поверхности S задана непрерывно дифференцируемая функция $U_0(\overrightarrow{x})$. Тогда если точка $\overrightarrow{a_0} \in S$ является некритической, то существует окрестность этой точки, в которой решение задачи Коши $u(\overrightarrow{x}) = U_0(\overrightarrow{x})$ для уравнения (134) существует и единственно.

Доказательство. Запишем параметризацию поверхности S в \mathbb{R}^n : $x^i = \varphi^i (u_1, \dots, u_{n-1})$, $i = \overline{1,n}$. Поверхность S может быть параметризована, поскольку требование $\nabla g \neq \overline{0}$ означает, что

$$rank \left| \left| \frac{\partial g}{\partial x^1}, \dots, \frac{\partial g}{\partial x^n} \right| \right| = 1 \neq 0.$$

Значит по теореме о неявной функции параметризация поверхности S задаётся следующим образом:

$$\begin{cases} x^1 = \varphi(x^2, \dots, x^n) \\ x^2 = x^2 \\ \dots \\ x^n = x^n \end{cases}$$

Значит $u\left(\overrightarrow{x}\right)=u\left(x^{1},\ldots,x^{n}\right)=u\left(\varphi\left(x^{2},\ldots,x^{n}\right),\ldots,x^{n}\right)=U_{0}\left(x^{2},\ldots,x^{n}\right).$ Так как $\overrightarrow{a_{0}}\in S$ является некритической по условию, то существует такая окрестность этой точки $\mathcal{U}(\overrightarrow{a_0})$, где существуют n-1 независимых первых интегралов системы (135): $\nu_1(\overrightarrow{x}) = C_1, \dots, \nu_{n-1}(\overrightarrow{x}) = C_{n-1}$, а общее решение уравнения (134) $u = u(\nu_1(\overrightarrow{x}), \dots, \nu_{n-1}(\overrightarrow{x}))$. Рассмотрим систему уравнений относительно x^1, \ldots, x^n :

$$\begin{cases}
\nu_1(\overrightarrow{x}) = C_1 \\
\dots \\
\nu_{n-1}(\overrightarrow{x}) = C_{n-1} \\
g(\overrightarrow{x}) = 0
\end{cases}$$
(136)

Допустим, что систему удалось разрешить и была получена параметризация поверхности $S g(\overrightarrow{x}) = 0$:

$$\begin{cases} x_S^1 = x_S^1(C_1, \dots, C^{n-1}) \\ \dots \\ x_S^n = x_S^n(C_1, \dots, C^{n-1}) \end{cases}$$

Рассмотрим

$$J\left(\overrightarrow{a_0}\right) = \begin{vmatrix} \frac{\partial \nu_1}{\partial x^1} & \cdots & \frac{\partial \nu_1}{\partial x^n} \\ \vdots & \vdots & \vdots \\ \frac{\partial \nu_{n-1}}{\partial x^1} & \cdots & \frac{\partial \nu_{n-1}}{\partial x^n} \\ \frac{\partial g}{\partial x^1} & \cdots & \frac{\partial g}{\partial x^n} \end{vmatrix} \left(\overrightarrow{a_0}\right)$$

Так как $\overrightarrow{f}(\overrightarrow{a_0}) \neq 0$, то умножим i-ый столбец определителя $J(\overrightarrow{a_0})$ на $r^i = f^i(\overrightarrow{a_0})$ и прибавим к первому столбцу все те столбцы, которые умножились $r^i = f^i(\overrightarrow{a_0}) \neq 0$. Учтём, что $\forall i = \overline{1, n-1}$:

$$\sum_{i=1}^{n} \frac{\partial \nu_i}{\partial x^j} \left(\overrightarrow{a_0} \right) f^j \left(\overrightarrow{a_0} \right) = 0$$

так как ν_i – первый интеграл. Преобразованный определитель будет выглядеть следующим образом:

$$J'\left(\overrightarrow{a_0}\right) = \begin{vmatrix} 0 & \frac{\partial \nu_1}{\partial x^2} r^2 & \dots & \frac{\partial \nu_1}{\partial x^n} r^n \\ \dots & & & \\ 0 & \frac{\partial \nu_{n-1}}{\partial x^2} r^2 & \dots & \frac{\partial \nu_{n-1}}{\partial x^n} r^n \\ \left(\nabla g, \overrightarrow{f}\right) & \frac{\partial g}{\partial x^2} r^2 & \dots & \frac{\partial g}{\partial x^n} r^n \end{vmatrix} \left(\overrightarrow{a_0}\right) = (-1)^{n+1} \left(\nabla g, \overrightarrow{f}\right) \begin{vmatrix} \frac{\partial \nu_1}{\partial x^2} r^2 & \dots & \frac{\partial \nu_1}{\partial x^n} r^n \\ \dots & & \\ \frac{\partial \nu_{n-1}}{\partial x^2} r^2 & \dots & \frac{\partial \nu_{n-1}}{\partial x^n} r^n \end{vmatrix} \neq 0$$

Утверждение справедливо, так как $\left(\triangledown g, \overrightarrow{f} \right) \neq 0$ в нехарактеристической точке $\overrightarrow{a_0}$ и

$$rank \begin{vmatrix} \frac{\partial \nu_1}{\partial x^2} & \cdots & \frac{\partial \nu_1}{\partial x^n} \\ \cdots & & \\ \frac{\partial \nu_{n-1}}{\partial x^2} & \cdots & \frac{\partial \nu_{n-1}}{\partial x^n} \end{vmatrix} = n - 1$$

так как первые интегралы функционально независимы.

Таким образом в силу непрерывности рассматриваемых функций существует окрестность $\mathcal{U}\left(a_{0}\right)$ в которой исходный определитель

$$J\left(\overrightarrow{a_0}\right) = \begin{vmatrix} \frac{\partial \nu_1}{\partial x^1} & \cdots & \frac{\partial \nu_1}{\partial x^n} \\ \vdots & \vdots & \vdots \\ \frac{\partial \nu_{n-1}}{\partial x^1} & \cdots & \frac{\partial \nu_{n-1}}{\partial x^n} \\ \frac{\partial g}{\partial x^1} & \cdots & \frac{\partial g}{\partial x^n} \end{vmatrix} \neq 0,$$

то есть определитель матрицы Якоби исходной системы (136) не равен нулю. Тогда по теореме о системе неявных функций система однозначно разрешима и существуют единственным образом определённые функции $x_S^1 = x_S^1\left(C_1,\ldots,C^{n-1}\right),\ldots,x_S^2 = x_S^2\left(C_1,\ldots,C^{n-1}\right)$, а значит $u = u\left(x_S^1\left(C_1,\ldots,C^{n-1}\right),\ldots,x_S^n\left(C_1,\ldots,C^{n-1}\right)\right)$ является решением уравнения (134) и $u\left(\overrightarrow{x_S}\right) = U_0\left(\overrightarrow{x}\right) \, \forall \, \overrightarrow{x} \in S$. Единственность следует из однозначности решения.

Рассмотрим уравнение

$$a(x,y)\frac{\partial z}{\partial x} + b(x,y)\frac{\partial z}{\partial y} + c(x,y)z = f(x,y)$$
(137)

Функция z(x,y) – искомая функция, а функции a(x,y), b(x,y), c(x,y) непрерывно дифференцируемы в некоторой области D. Имеется кривая

$$\gamma = \begin{cases} x = \varphi(s) \\ y = \psi(s) \end{cases}, s \in I = [s_1, s_2],$$

которая является непрерывно дифференцируемой в I и $(\varphi'(s), \psi'(s)) \neq (0,0) \ \forall s \in I$. На кривой γ задано значение функции $z\big|_{\gamma} = h(s)$, то есть $z(\varphi(s), \psi(s)) = h(s)$ и h(s) непрерывно дифференцируемая функция при $s \in I$.

Характеристическая система для уравнения (137) имеет вид

$$\begin{cases} \dot{x} = a(x, y) \\ \dot{y} = b(x, y) \end{cases}$$
(138)

Теорема 6.7. Пусть кривая γ в кажедой своей точке не касается характеристик. Тогда задача Коши для (137) и (138) однозначно разрешима в некоторой окрестности кривой γ .

Доказательство. Касательным вектором к фазовым траекторям (138) является вектор $\overrightarrow{\varphi} = (a(x,y),b(x,y))$, поэтому если кривая γ в каждой своей точке не касается фазовых характеристик, то $\overrightarrow{\varphi} \not \parallel \overrightarrow{\tau} = (\varphi'(s),\psi'(s))$, а значит

$$\begin{vmatrix} a(\varphi(s), \psi(s)) & \varphi'(s) \\ b(\varphi(s), \psi(s)) & \psi'(s) \end{vmatrix} \neq 0 \ \forall s \in I$$
 (139)

Выпустим из каждой точки кривой γ характеристику, то есть решим систему (138) с начальными условиями $x\big|_{t=0}=\varphi(s), y\big|_{t=0}=\psi(s).$ Пусть $x=x(t,s),\ y=y(t,s)$ – некоторые решения системы.

Уравнение (137) в силу системы (138) имеет вид $\frac{dz}{dt}+cz=f$. Поставим задачу Коши для этого уравнения с $z\big|_{t=0}=h(s)$. По основной теореме и теореме о непрерывной зависимости решения от параметра (от начальных данных) существует решение поставленной задачи $z=\omega(t,s)$ — непрерывно дифференцируемая функция в $G\subset D$. На соотношения $x=x(t,s),\ y=y(t,s)$ можно смотреть как на систему уравнений относительно t и s, выразим их через x и y.

Так как

$$I(t,s) = \begin{vmatrix} \frac{\partial x}{\partial t} & \frac{\partial x}{\partial s} \\ \frac{\partial y}{\partial t} & \frac{\partial y}{\partial s} \end{vmatrix} = \begin{vmatrix} a(x(t,s), y(t,s)) & \frac{\partial x}{\partial s}(t,s) \\ b(x(t,s), y(t,s)) & \frac{\partial y}{\partial s}(t,s) \end{vmatrix}$$
$$I(0,s) = \begin{vmatrix} a(\varphi(s), \psi(s)) & \varphi'(s) \\ b(\varphi(s), \psi(s)) & \psi'(s) \end{vmatrix} \neq 0 \ \forall s \in I,$$

поскольку I(t,s) – непрерывная от t и s функция. Тогда

$$I(0,s) = \begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} \end{vmatrix} = \begin{vmatrix} \varphi'(s) & \psi'(s) \\ a(x,y) & b(x,y) \end{vmatrix} \Big|_{(x,y)\in\gamma} \neq 0.$$

Поэтому существует окрестность кривой γ , в которой $I(t,s) \neq 0$. Тогда по теореме о неявных функциях можно выразить $t = t(x,y), \ s = s(x,y)$ и подставить их в выражение для решения $z = \omega(t,s) = \omega(t(x,y),s(x,y)) = \widetilde{\omega}(x,y)$ – доказано существование решения.

Докажем единственность решения. Пусть имеется ещё одно решения задачи Коши для уравнения (137) с начальным условием $z\big|_{\gamma}=h(s)$, то есть $z(\varphi(s),\psi(s))=h(s)$ и h(s) непрерывно дифференцируемая функция при $s\in I$. Тогда, следуя тем же самым рассуждениям, получим существование решения $z=\overline{\widetilde{\omega}}(x,y)$. Пусть $\overline{z}=\widetilde{\omega}-\overline{\widetilde{\omega}}$. Как уже было показано, уравнение (137) вместе с (138) при решении \overline{z} имеет вид

$$\frac{d\overline{z}}{dt} + c\overline{z} = 0, \ \overline{z}\big|_{t=0} = 0.$$

По основной теореме $z\equiv 0$ — единственное решение, то есть $\widetilde{\omega}=\overline{\widetilde{\omega}}$. Доказана единственность решения.

Важно понимать, что для решения однородного линейного уравнения в частных производных определяют только функционально независимые первые интегралы характеристической системы. Тогда как при решении уравнения типа (137) используют выражения для характеристик, то есть сами решения характеристических уравнений.

6.5.3. Примеры решения задач

1.

$$2\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial x} = 0$$

Характеристическая система для этого уравнения имеет вид

$$\begin{cases} \dot{x} = 2 \\ \dot{y} = 3 \end{cases} \Rightarrow \frac{dy}{dx} = \frac{3}{2} \Rightarrow 3x - 2y = C - \text{первый интеграл} \Rightarrow$$

$$\Rightarrow u = f(3x - 2y)$$
 – общее решение

Поставим задачу Коши: u=10, 3x-2y=1 (характеристика), откуда $10=f(1)\Rightarrow$

$$\Rightarrow \begin{bmatrix} u = 10 \cdot (3x - 2y)^2 - \text{решение} \\ u = 10 \cdot \frac{\sin(3x - 2y)^2}{\sin 1} - \text{тоже решениe} \end{bmatrix}$$

Решение не однозначно, так как задача Коши была задана на характеристике.

Поставим задачу Коши: $u = \cos x$, 3x - 2y = 1, откуда $const \neq \cos x = f(1) = const$ – противоречие, так как $u \neq const$ в начальных условиях.

2.

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial x} = -z \tag{140}$$

Характеристическая система для этого уравнения имеет вид

$$\begin{cases} \dot{x} = a \\ \dot{y} = b \end{cases} \Rightarrow \frac{dy}{dx} = \frac{b}{a} \Rightarrow bx - ay = const - первый интеграл \Rightarrow$$

В силу характеристической системы уравнений имеет вид

$$\frac{dz}{dt} = -z$$
 – соотношение на характеристике $z \Rightarrow \ln|z| = -t + C$,

где C является константой на характеристике $c = g(bx - ay) \Rightarrow$

$$\Rightarrow z = F(bx - ay)e^{-t} = F(bx - ay)e^{-\frac{x - x_0}{a}} = F(bx - ay)e^{-\frac{y - y_0}{b}},$$

где x_0, y_0 – произвольные постоянные.

Рассмотрим задачу Коши $z(2, y) = \sin y, x_0 = 2$, тогда

$$F(bx - ay) = \widetilde{F}\left(y - \frac{(x-2)b}{a}\right) \Rightarrow z = \widetilde{F}\left(y - \frac{(x-2)b}{a}\right)e^{-\frac{x-2}{a}}$$

При $x = 2 \ \widetilde{F}(y) = \sin y \Rightarrow$

$$z = \sin\left(y - \frac{(x-2)b}{a}\right)e^{-\frac{x-2}{a}}$$

- 3. Для уравнения (140) поставим задачу Коши: bx-ay=2 (на характеристике), $z=e^{-\frac{x-5}{a}},\ x_0=5\Rightarrow F(2)=1,$ то есть начальным условиям удовлетворяет любая функция F такая, что F(2)=1 неоднозначное решение.
- 4. Для уравнения (140) поставим задачу Коши: bx-ay=2 (на характеристике), $z=\sin(\frac{x-x_0}{a})$ решение не существует, так как

$$\frac{e^{-\frac{x-x_0}{a}}}{\sin\left(\frac{x-x_0}{a}\right)} \neq const = F(2)$$

5. Рассмотрим уравнение Хопфа:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}, \ u > 0, \ u(0, x) = \varphi(x)$$

Уравнение характеристик:

 $\frac{dt}{d\tau}=1, \ \frac{dx}{d\tau}=u(x,t)$ – нелинейное уравнение, так как характеристика содержит искомое решег

Замена: независимую x будем считать искомой функцией x = x(t, u).

$$u = -\frac{\frac{\partial u}{\partial t}}{\frac{\partial u}{\partial x}} = \frac{\frac{\partial u, x}{\partial t, x}}{\frac{\partial u, t}{\partial x, t}} = \frac{\partial (u, x)}{\partial (u, t)} = \begin{vmatrix} \frac{\partial u}{\partial u} & \frac{\partial u}{\partial t} \\ \frac{\partial x}{\partial u} & \frac{\partial x}{\partial t} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ \frac{\partial x}{\partial u} & \frac{\partial x}{\partial t} \end{vmatrix} = \begin{pmatrix} \frac{\partial x}{\partial t} \\ \frac{\partial x}{\partial t} & \frac{\partial x}{\partial t} \end{vmatrix}$$

 $\Rightarrow u = F(x - ut)$ – общее решение (распространение волны)

7. Билет 7. Элементы вариационного исчисления

7.1. Основные понятия

Определение 7.1. Пусть M – множество функций y(x), а \mathcal{J} – отображение M в \mathbb{R} такое, что $\mathcal{J} = \{\mathcal{J}(y(x)) \in \mathbb{R} : \forall y(x) \in M\}$. Такое отображение называется функцианалом, а – область его определения.

$$\forall y(x) \in C^1_{[a;b]}$$
 рассмотрим функционал $\mathcal{J}(y(x)) = \int\limits_a^b F(x,y(x),y'(x))dx$

Будем считать, что F(x,y(x),y'(x)) как функцию трех независимых переменных $x_1=x,\ x_2=y(x),\ x_3=y'(x),$ непрерывна вместе с $\frac{\partial F}{\partial x_i},\ \frac{\partial^2 F}{\partial x_i\partial x_j},\ i,j=\overline{1,3}$

Постановка вариационной задачи

Вариационная задача состоит в том, чтобы среди функций $y(x) \in D \subset C^1_{[a;b]}$ (в случае наличия дополнительного условия) найти такую функцию $y_0(x)$, что $\mathcal{J}(y_0(x))$ принимает минимальное (максимальное) значение. Будет рассматривать $y(x) \in C^1_{[a;b]}$.

Определение 7.2. Множество функций D, которые удовлетворяет свойствам, которые мы наложим, называется **множеством варьируемых функций**.

Определение 7.3. $y_0(x)$ такое что $\mathcal{J}(y_0(x)) \leq \mathcal{J}(y(x))[\mathcal{J}(y_0(x)) \geq \mathcal{J}(y(x))] \, \forall y(x) \in D$ называется абсолютным экстремумом \mathcal{J} .

Введём норму на $C^1_{[a;b]}$ для определения типа экстремумов: $\|y(x)\|=\max_{x\in[a;b]}|y(x)|+\max_{x\in[a;b]}|y'(x)|$ — все свойства нормы выполнены.

Определение 7.4. Пусть $y(x) \in D$. Функцию $\delta y(x) \in C^1_{[a;b]}$ будем называть **допусти-** мый вариацией y(x), если $\forall y \colon y + \delta y \in D$

Определение 7.5. Множество функций $V_{\varepsilon}(y_0(x)) = \{y(x) \in C^1_{[a;b]} : \|y(x) - y_0(x)\| \le \varepsilon\}$ будем называть ε -окрестностью $\mathbf{y_0}(\mathbf{x})$

Основной принцип

Пусть $y_0(x) \in D$ фиксирована, а $\delta y(x)$ какая-либо фиксированная допустимая вариация такая, что $\forall t \in [-1;1] \mapsto y_0(x) + t \delta y(x) \in D \Rightarrow$

$$\mathcal{J}(y(x)) = \mathcal{J}(y_0(x) + t\delta y(x)) = \int_a^b F(x, y_0(x) + t\delta y(x), y_0'(x) + t(\delta y(x))') dx = \mathcal{J}(t)$$

В силу определения F, у него существуют 1 и 2 непрерывные производные по t, т.е $\mathcal{J}(t)$ – дважды непрерывно дифференцируемая по t функция. Следовательно из формулы Тейлора:

$$\mathcal{J}(y_0 + t\delta y(x)) = \mathcal{J}(0) + \frac{d\mathcal{J}}{dt}(0) + \frac{1}{2}\frac{d^2\mathcal{J}}{dt^2}(0) \cdot t^2 + o(t^2) = [$$
обозначим $(\delta y(x))' = \delta y'$] =

$$\frac{d\mathcal{J}}{dt}(t) = \int_{a}^{b} \left[\frac{\partial F}{\partial y}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y + \frac{\partial F}{\partial y'}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y' \right] dx$$

$$\frac{d\mathcal{J}}{dt}(0) = \int_{a}^{b} \left[\frac{\partial F}{\partial y}(x, y_0, y_0') \delta y + \frac{\partial F}{\partial y'}(x, y_0, y_0') \delta y' \right] dx = \delta \mathcal{J}$$
- первая вариация (141)

$$\frac{d^2 \mathcal{J}}{dt^2}(t) = \int_a^b \left[\frac{\partial^2 F}{\partial y^2}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y^2 + \frac{\partial^2 F}{\partial y \partial y'}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y\delta y' + \frac{\partial^2 F}{\partial y'^2}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y'^2 \right] dx$$

$$\frac{d^2 \mathcal{J}}{dt^2}(0) = \int_a^b \left[\frac{\partial^2 F}{\partial y^2}(x, y_0, y_0') \delta y^2 + \frac{\partial^2 F}{\partial y \partial y'}(x, y_0, y_0') \delta y \delta y' + \frac{\partial^2 F}{\partial y'^2}(x, y_0, y_0') \delta y'^2 \right] dx = \delta^2 \mathcal{J} \quad (142)$$

 $\delta^2 \mathcal{J}$ - вторая вариация

$$\boxed{ } \boxed{ } \mathcal{J}(y_0) + \delta \mathcal{J} \cdot t + \delta^2 \mathcal{J} \cdot t^2 + o(t^2)$$

Определение 7.6. Функция $y_0(x) \in D$ называется слабым экстремумом функцианала \mathcal{J} , если $\exists \varepsilon > 0 : \mathcal{J}(y_0(x)) \leq \mathcal{J}(y(x)) [\mathcal{J}(y_0(x)) \geq \mathcal{J}(y(x))] \, \forall y(x) \in V_{\varepsilon}(y_0(x)), m.e. \, \forall y(x) : \|y(x) - y_0(x)\| \leq \varepsilon$

Теорема 7.1 (Основная теорема). Пусть $y_0(x) \in D \subset C^1_{[a;b]}$ является слабым экстремумом функцианала $\mathcal{J}(y(x))$. Тогда первая вариация $\delta \mathcal{J}(y_0, \delta y) = 0$ $\forall \ donycmumo\ \delta y$

Доказательство. Не нарушая общности рассуждений докажем для минимума.

При $\delta y = 0$ из (141) следует, что $\delta \mathcal{J}(y_0, \delta y) = 0$. Пусть какая-либо допустимая $\delta y \neq 0$. Т.к. $y_0(x)$ – слабый экстремум \mathcal{J} , то $\exists \varepsilon > 0 : \forall y(x) = y_0(x) + t \delta y(x) : \|y(x) - y_0(x)\| < \varepsilon \mapsto \mathcal{J}(y_0) \leq \mathcal{J}(y)$. Зафиксируем $\delta y \neq 0$. Т.к. $\|y(x) - y_0(x)\| = \|y_0 + t \delta y(x) - y_0(x)\| < \varepsilon$, то $\|t \cdot \delta y\| < \varepsilon$. Таким образом $t \in \left(-\frac{\varepsilon}{\|\delta y(x)\|}; \frac{\varepsilon}{\|\delta y(x)\|}\right)$

Т.к
$$y_0(x)$$
 – локальный минимум, то $\mathcal{J}(y_0) \leq \mathcal{J}(y)$ или $\mathcal{J}(0) \leq \mathcal{J}(t) \ \forall t \in \left[-\frac{\varepsilon}{\|\delta y(x)\|}; \frac{\varepsilon}{\|\delta y(x)\|} \right]$

Таким образом $\mathcal{J}(t)$ является непрерывно дифференцируемой функцией t, достигающий минимум при t=0. Следовательно по теореме Ферма $\frac{d\mathcal{J}}{dt}(0)=0=\delta\mathcal{J}$

Ввиду произвольности δy теорема доказана.

Лемма 7.1 (Основная лемма вариационного исчисления). Пусть $f(x) \in C^1_{[a;b]}$ и $\int\limits_a^b f(x) \cdot h(x) dx = 0 \ \forall h \in C^1_{[a;b]}$ и такой, что h(a) = h(b) = 0. Тогда $f(x) = 0 \ \forall x \in [a;b]$

Доказательство. От противного: пусть $\exists x_0 \in [a;b]: f(x_0) \neq 0$. Тогда в силу непрерывности функции $f(x) \exists \delta > 0$ такое, что $\forall x \in (x_0 - \delta; x_0 + \delta) \mapsto f(x) \neq 0$. Для определенности рассмотрим $f(x) > 0 \, \forall x \in (x_0 - \delta; x_0 + \delta)$. Если так случилось, что $(x_0 - \delta; x_0 + \delta) \not\subset [a;b]$, то уменьшим δ , не нарушив при этом это условие: f(x) > 0 на отрезке ненулевой длины.

Обозначим $I_{\delta} = (x_0 - \delta; x_0 + \delta)$ и рассмотрим

$$h_{\delta}(x) = \begin{cases} \left[(x - x_0 + \delta)(x - x_0 - \delta) \right]^2 & x \in I_{\delta} \\ 0 & x \notin I_{\delta} \end{cases}$$
 (143)

Т.к. $h_{\delta}(x) > 0 \, \forall x \in I_{\delta}$, то $\int_{a}^{b} f(x) \cdot h_{\delta}(x) dx = \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) \cdot h_{\delta}(x) dx > 0$ – противоречие с условием $\int_{a}^{b} f(x) \cdot h(x) dx = 0 \Rightarrow \nexists x_{0} \in [a;b] : f(x_{0}) \neq 0$

Примечание. Лемма остаётся в силе, если в условии лемми $\int_a^b f(x) \cdot h(x) dx = 0 \, \forall h \in C^n_{[a;b]}$ и $h^{(i)}(a) = h^{(i)}(b) = 0$, $i = \overline{0, n-1}$. В (144) достаточно взять

$$h_{\delta}(x) = \begin{cases} \left[(x - x_0 + \delta)(x - x_0 - \delta) \right]^{2n} & x \in I_{\delta} \\ 0 & x \notin I_{\delta} \end{cases}$$
 (Модифицированная лемма) (144)

7.2. Простейшие задачи вариационного исчисления

7.2.1. Задача с закрепленными концами

Требуется найти экстремум функционала $\mathcal{J}(y) = \int_a^b F(x,y(x),y'(x))dx$ среди функций $y(x) \in C^1_{[a;b]}$ таких, что y(a) = A, y(b) = B, а где A и B являются заданными константами. Таким образом экстремум ищется на множестве $D = y(x) : y(a) = A, y(b) = B \subset C^1_{[a;b]}$. Пусть $y_0(x)$ — экстремум нашего функционала. Через $H_\delta(y_0)$ обозначим $\delta y(x) \in C^1_{[a;b]}$: $\delta y(a) = \delta y(b) = 0$ Покажем, что $H_\delta(y_0)$ является множеством допустимых вариаций: $\forall \delta y(x) \in H_\delta(y_0)$ для $y(x) = y_0(x) + \delta y(x) \mapsto y(a) = A, y(b) = B \Rightarrow y_0(x) + \delta y \in D$

Теорема 7.2. Пусть $y_0(x) \in C^2_{[a;b]}$ является слабым экстремумом функцианала $\mathcal J$ на D. Тогда $y_0(x)$ удовлетворяет уравнению Эйлера-Лагранжа.

$$\frac{\partial F}{\partial y}(x, y_0(x), y_0'(x)) - \frac{d}{dx}\frac{\partial F}{\partial y'}(x, y_0(x), y_0'(x)) = 0$$
Обозначение:
$$\frac{\partial F}{\partial y}(x, y_0(x), y_0'(x)) = \frac{\partial F}{\partial y}; \frac{\partial F}{\partial y'}(x, y_0(x), y_0'(x)) = \frac{\partial F}{\partial y'}$$

Доказательство. Т.к. $y_0(x)$ является слабым экстремумом, то $\forall \delta y(x) \in H_{\delta}(y_0) \mapsto$

$$\delta \mathcal{J} = \int\limits_a^b \left(\frac{\partial F}{\partial y} \delta y + \underbrace{\frac{\partial F}{\partial y'} \delta y'}_{\text{проинтегрируем по частям}} \right) dx = 0$$
 (по основной теореме)

Концы закреплены:

$$\int_{a}^{b} \frac{\partial F}{\partial y'} \delta y' dx = \frac{\partial F}{\partial y'} \delta y \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \delta y dx = - \int_{a}^{b} \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \delta y dx$$
$$\delta \mathcal{J} = \int_{a}^{b} \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \right) dx = 0 \quad \forall \delta y \in H_{\delta}(y_{0})$$

Заметим, что $\forall \delta y \in H_{\delta}(y_0)$ и $\delta \mathcal{J}$ удовлетворяют уловиям основной леммы \Rightarrow

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0$$

Примечание. Требование $y_0(x) \in C^2_{[a;b]}$ является естественным, т.к. (145) для $y_0(x)$ является ДУ второго порядка: $\frac{d}{dx} \frac{\partial F}{\partial y'}(x, y_0(x), y_0'(x)) = \frac{\partial^2 F}{\partial x \partial y'} + \frac{\partial^2 F}{\partial y \partial y'} y' + \frac{\partial^2 F}{\partial y'^2} y''$

Определение 7.7. Функцию $y_0(x)$, удовлетворяющую уравнению Эйлера и условиям множества D будем называть **допустимой экстремалью**.

7.2.2. Функционалы, зависящие от вектор-функции

Рассмотрим

$$\mathcal{J}(\vec{y}) = \int_{a}^{b} F(x, y_1(x), y_2(x), ..., y_n(x), y_1'(x), y_2'(x), ..., y_n'(x)) dx = \int_{a}^{b} F(x, \vec{y}(x), \vec{y}'(x)) dx, \quad (146)$$

где $\vec{y}(x) = \|y_1,...,y_n\|, \ \vec{y}'(x) = \|y_1',...,y_n'\|$

Рассмотрим задачу с закрепленными концами:

$$\vec{y}(a) = \vec{A} = ||y_1(a), ..., y_n(a)|| = ||A_1, ..., A_n||, \vec{y}(b) = \vec{B} = ||y_1(b), ..., y_n(b)|| = ||B_1, ..., B_n||$$
(147)

Считаем, что $F(x,y_1,...,y_n,z_1,...,z_n)$ - дважды непрерывно дифференцированна по совокупности переменных $a \le x \le b, -\infty < y_1,...,y_n,z_1,...,z_n < +\infty$. Минимум (146) \wedge (147), без нарушения общности будем искать в классе $y_i(x) \in C^1_{[a;b]}, i = \overline{1,n}$. Введём $|\vec{y}| = \sqrt{\sum_{k=1}^n y_k^2}$

и $\|\vec{y}\| = \max_{x \in [a;b]} |\vec{y}| + \max_{x \in [a;b]} \|\vec{y}'\|$

Множество допустимых вариаций $H_{\delta}(\vec{y}_0) = \delta \vec{y}(x) = ||\delta y_1(x), ..., \delta y_n(x)|| : \delta \vec{y}(a) = \delta \vec{y}(b) = 0$ Пусть $\vec{y}_0(x) \in C^1_{[a;b]}$ – слабый минимум ($\Rightarrow \delta \mathcal{J} = 0$), (146) \land (147). При условии (147) получаем:

$$\mathcal{J}(\vec{y}_{0}(x) + t\delta\vec{y}(x)) = \int_{a}^{b} F(x, \vec{y}_{0}(x) + t\delta\vec{y}(x), \vec{y}'_{0}(x) + t(\delta\vec{y}(x))') dx = \mathcal{J}(t) = \mathcal{J}(0) + t \cdot \delta\mathcal{J} + o(t) =$$

$$= \mathcal{J}(0) + \int_{a}^{b} \left(\sum_{k=1}^{n} \frac{\partial F}{\partial y_{k}} \delta y_{k} + \sum_{k=1}^{n} \frac{\partial F}{\partial y'_{k}} (\delta y_{k})' \right) dx + o(t) = \mathcal{J}(0) + \int_{a}^{b} \left(\sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_{k}} - \frac{d}{dx} \frac{\partial F}{\partial y'_{k}} \right) \delta y_{k} \right) dx +$$

$$+ \sum_{k=1}^{n} \left(\frac{\partial F}{\partial y'_{k}} (b) \underbrace{(\delta y_{k}(b))}_{=0} \right) - \sum_{k=1}^{n} \left(\frac{\partial F}{\partial y'_{k}} (a) \underbrace{(\delta y_{k}(a))}_{=0} \right) + o(t)$$

$$\delta \mathcal{J} = \int_{a}^{b} \left(\sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_{k}} - \frac{d}{dx} \frac{\partial F}{\partial y'_{k}} \right) \delta y_{k} \right) dx = 0 \quad \boxed{\forall \delta \vec{y}(x) \in H_{\delta}(\vec{y}_{0})}$$

Итак, $\delta \mathcal{J}=0\ \forall \delta \vec{y}(x)\in H_{\delta}(\vec{y}_0)$, тогда в силу произвольности выбора $\delta \vec{y}(x)$: пусть $\delta y_1=\delta y_2=...=\delta y_{k-1}=0,\ \delta y_k=((x-a)(x-b))^2,\delta y_{k+1}=...=\delta y_n=0.$ Тогда

$$\delta \mathcal{J} = 0 + \int_{a}^{b} \sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_k} - \frac{d}{dx} \frac{\partial F}{\partial y_k'} \right) \delta y_k dx + 0 = 0$$

 \Rightarrow Основная лемма \Rightarrow проходим все $k = \overline{1, n}$

$$\left[\frac{\partial F}{\partial y_k} - \frac{d}{dx}\frac{\partial F}{\partial y_k'} = 0, \ k = \overline{1,n} \right]$$
 (Система уравнений Эйлера-Лагранжа)

7.2.3. Задача со свободными концами

Рассмотрим нахождение экстремума функцианала $\mathcal{J}(y)=\int\limits_a^bF(x,y(x),y'(x))dx$ среди $y(x)\in C^1_{[a,b]}.$ В этом случае $D=C^1_{[a;b]},$ $H_\delta(y_0)=\delta y(x)\in C^n_{[a;b]},$ т.е на $\delta y(x)$ не наложено условий. На F наложены обычные условия: дважды непрерывной дифференцируемости всех переменных в совокупности.

Пусть $y_0(x) \in C^2_{[a;b]}$ является минимум функционала. $y = y_0 + t \cdot \delta y$

$$\delta \mathcal{J} = \int_{a}^{b} \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} (\delta y)' \right) dx = \int_{a}^{b} \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\delta y'} \right) \delta y dx + \frac{\partial F}{\partial y'} (y_0(b)) \delta y(b) - \frac{\partial F}{\partial y'} (y_0(a)) \delta y(a) = 0$$

По основной теореме $\forall \delta y(x) \in C^1_{[a;b]}$

В силу произвольности δy :

$$\begin{cases}
\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0, & (1) \\
\frac{\partial F}{\partial y'}(b; y_0(b); y'_0(b)) = 0, & (2) \\
\frac{\partial F}{\partial y'}(b; y_0(a); y'_0(a)) = 0, & (3)
\end{cases}$$

Таким образом, если $y_0(x) \in C^2_{[a;b]}$ является слабым экстремумом функцианала со свободными концами, то $y_0(x)$ удовлетворяет уравнению Эйлера (1) с граничными условиями (2 и 3)

7.3. Функционалы, зависящие от высших производных

Рассмотрим функционал

$$\mathcal{J}(y) = \int_{a}^{b} F(x, y(x), y'(x), \dots, y^{(n)}(x)) dx$$
 (2.3)

с условием

$$y(a) = A_0, \dots, y^{(n-1)}(a) = A_{n-1}; \quad y(b) = B_0, \dots, y^{(n-1)}(b) = B_{n-1}$$
 (2.4)

Будем считать, что $F(x,z_0,\ldots,z_n)$ n раз дифференцируема по совокупности всех переменных на $a\leqslant x\leqslant b; -\infty < z_0,\ldots,z_n<\infty.$ Пусть $y(x)\in C^n_{[a;b]}.$ Норму на этом множестве функций определим как

$$||y|| = \sum_{k=0}^{n} \max_{x \in [a;b]} |y^{(k)}(x)|$$

Пусть $y_0(x)$ является слабым минимумом $2.3 \land 2.4$.

Множество допустимых вариаций: $H_{\delta}(y_0) = \{\delta y(x) \in C^n_{[a;b]}, \delta y^{(i)}(a) = \delta y^i(b) = 0, i = \overline{1,n-1}\} \Rightarrow \mathcal{D} = \{y_0(x) + t\delta y(x) : \delta y(x) \in H_{\delta}(y_0) \text{ (доказательство аналогично)}.$

$$\mathcal{J}(y_0(x) + t\delta y(x)) = \int_a^b F(x, y_0(x) + t\delta y(x); \dots; y_0^{(n)}(x) + t(\delta y(x))^{(n)}) dx = \mathcal{J}(t) = \mathcal{J}(0) + \delta \mathcal{J}t + o(t)$$

, где
$$\delta \mathcal{J} = \int\limits_a^b \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y' + \dots + \frac{\partial F}{\partial y^{(n)}} \delta y^{(n)} \right)$$
, где $\frac{\partial F}{\partial y^{(i)}} = \frac{\partial F(x, y_0(x), \dots, y_0^{(n)})}{\partial y^{(i)}}$; $i = \overline{0, n}$

Определение слабого максимума 2.3 аналогично пределено в пункте 1.

Аналогично доказывается, что если $y_0(x)$ — слабый минимум $2.3 \land 2.4$, то $\forall \delta y(x) \in H_{\delta}(y_0) \to \mathcal{J} = 0$.

Доказательство. Если $\delta y(x) \in H_{\delta}(y_0)$, то

$$\forall k = \overline{1,n} \to \int_a^b \frac{\partial F}{\partial y^{(k)}} (\delta y)^{(k)} dx = \frac{\partial F}{\partial y^{(k)}} (b) (\delta y(b))^{(k-1)} (=0) - \frac{\partial F}{\partial y^{(k)}} (a) (\delta y(a))^{(k-1)} (=0) - \int_a^b \frac{d}{dx} \frac{\partial F}{\partial y^{(k)}} (\delta y)^{(k-1)}$$
$$= [аналогично] = \int_a^b \frac{d^2}{dx^2} \frac{\partial F}{\partial y^{(k)}} (\delta y)^{(k-2)} dx = \dots = \int_a^b (-\frac{d}{dx})^k \frac{\partial F}{\partial y^{(k)}} \delta y dx$$

. Тогда, если $y_0(x)$ слабый минимум $2.3 \land 2.4$, то имеем:

$$\delta \mathcal{J} = \int_{a}^{b} \left(\sum_{k=0}^{n} \left(-\frac{d}{dx} \right)^{k} \frac{\partial F}{\partial y^{(k)}} \delta y \right) dx = \int_{a}^{b} \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} + \frac{d^{2}}{dx^{2}} \frac{\partial F}{\partial y''} + \dots + \left(-\frac{d}{dx} \right)^{k} \frac{\partial F}{\partial y^{(k)}} \right) = 0 \quad (2.5)$$

Тогда, если $y_0(x) \in C^{n+1}_{[a;b]}$ — слабый экстремум $2.3 \wedge 2.4$, то из 2.5 и из основной леммы следует, что $y_0(x)$ удовлетворяет **уравнению Эйлера**:

$$\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial F}{\partial y''} + \dots + (-\frac{d}{dx})^n \frac{\partial F}{\partial y^{(n)}} = 0$$
 (2.6)

7.4. Условные вариационные принципы. Изопериметрическая задача.

Среди функций $y(x) \in C^1_{[a;b]}$ найти такую, что $y(a) = A, \ y(b) = B,$ которая дает экстремум функционалу

$$\mathcal{J}(y) = \int_{a}^{b} F(x, y(x), y'(x)) dx \tag{3.1}$$

и на которой функционалы $\mathcal{G}(y) = \int_a^b g(x,y(x)my'(x))dx$ принимет заданное значение l:

$$G(y) = \int_{a}^{b} g(x, y(x), y'(x)) dx = l$$
 (3.2)

Пусть F и g дважды непрерывно дифференцируемы по совокупности переменных $D=\{y(x)\in C^1_{[a;b]}:y(a)=A\ y(b)=B,G(y(x))=l\}$ $H_\delta(y_0)=\{\delta y\in C^1_{[a;b]}:\delta y(a)=\delta y(b)=0\}$

Теорема 7.3. Пусть $y_0(x) \in C^2_{[a;b]}$ и является слабым экстремумом 3.1 на множестве D и $\exists \delta y_0 \in H_\delta(y_0(x)) : \delta \mathcal{G}(y_0, \delta y_0) \neq 0$.

Положим
$$\Phi = \mathcal{J} + \lambda \mathcal{G}$$
. Тогда $\exists \lambda \in \mathbb{R} : \delta \Phi(y_0, \delta y) = 0 \quad \forall \delta y \in H_{\delta}(y_0)$

Доказательство. Пусть $y_0(x) \in D$ является слабым экстремумом 3.1 на D и по условию теоремы $\exists \delta_0 \in H_\delta(y_0) : \delta \mathcal{G}(y_0, \delta y_0) \neq 0$. Рассмотрим числа t_1, t_2 и $y(x) = y_0(x) + t_1 \delta y_0 + t_2 \delta y \in D$, где δy_0 зафиксированно. При фиксировании $\delta y : \mathcal{J}(y_0(x) + t_1 \delta y_0 + t_2 \delta y) = \mathcal{J}(t_1, t_2)$ и

$$\mathcal{G}(y_0(x) + t_1 \delta y_0 + t_2 \delta y) = \mathcal{G}(t_1, t_2) = l$$
(3.3)

По условию $y_0(x)$ — экстремум $\mathcal{J}(y(x)) \Rightarrow$ при $t_1 = t_2 = 0$ $\mathcal{J}(t_1, t_2)$ имеет экстремум при условии 3.2.

Из 3.2 и условия теоремы: в

$$y(x) = y_0 + t_1 \delta y_0 + t_2 \delta y \Rightarrow \delta \mathcal{G}(y_0, \delta y_0) = \frac{\partial \mathcal{G}}{\partial t_1}$$

$$\delta \mathcal{G}(y_0, \delta y_0) = \frac{\partial \mathcal{G}}{\partial t_1} \Big|_{t_1 = t_2 = 0} = \int_a^b (\frac{\partial g}{\partial y} \delta y_0 + \frac{\partial g}{\partial y'} (\delta y_0)') dx \neq 0 = \frac{\partial \mathcal{G}}{\partial \overline{t_1}}$$

$$\frac{\partial \mathcal{G}}{\partial t_2} \Big|_{t_1 = t_2 = 0} = \int_a^b (\frac{\partial g}{\partial y} \delta y + \frac{\partial g}{\partial y'} (\delta y)') dx \neq 0 = \frac{\partial \mathcal{G}}{\partial \overline{t_2}}$$

$$(3.4)$$

Так как в $3.4 \frac{\partial \mathcal{G}}{\partial t_1} \neq 0$, то по теореме о неявно заданной функции можно сказать, что 3.3 определяет неявную функцию $t_1 = t_1(t_2)$. По теореме о неявной функции эта функция непрерывно дифференцируема в окрестности точки (0;0) и

$$\frac{dt_1}{dt_2} \mid_{t_2=0} = -\frac{\frac{\partial \mathcal{G}}{\partial t_2}}{\frac{\partial \mathcal{G}}{\partial t_1}} \tag{3.5}$$

Функция $\mathcal{J}(t_1(t_2);t_2)=\overline{\mathcal{J}}(t_2)$ при $t_2=0$ имеет экстремум по условию. Тогда

$$\frac{d\mathcal{J}(t_1(t_2);t_2)}{dt_2}\mid_{t_2=0} = \frac{\partial\mathcal{J}}{\partial \overline{t_2}} + \frac{\partial\mathcal{J}}{\partial \overline{t_1}} \cdot \frac{dt_1}{dt_2}\mid_{t_2=0} = 0$$
(3.6)

В силу 3.5 продолжим 3.6: $\frac{d\mathcal{J}}{dt_2}\mid_{t_2=0}=\frac{\partial\mathcal{J}}{\partial \overline{t_2}}-\frac{\partial\mathcal{J}}{\partial \overline{t_1}}\cdot\frac{\frac{\partial\mathcal{G}}{\partial \overline{t_2}}}{\frac{\partial\mathcal{G}}{\partial \overline{t_1}}}=0$

Оюозначим через $\lambda = -\frac{\frac{\partial \mathcal{J}}{\partial t_1}}{\frac{\partial \mathcal{G}}{\partial t_1}} 3.6$

$$\frac{\partial \mathcal{J}}{\partial \overline{t_2}} + \lambda \frac{\partial \mathcal{G}}{\partial \overline{t_2}} = 0 \quad \forall \delta y \tag{3.8}$$

B 3.6:

$$\frac{\partial \mathcal{J}}{\partial \overline{t_1}} = \frac{\partial \mathcal{J}}{\partial t_1} \mid_{t_1 = t_2 = 0} = \int_a^b (\frac{\partial F}{\partial y} \delta y_0 + \frac{\partial F}{\partial y'} (\delta y_0)') dx, \tag{3.7}$$

$$\frac{\partial \mathcal{J}}{\partial \overline{t_2}} = \frac{\partial \mathcal{J}}{\partial t_2} \mid_{t_1 = t_2 = 0} = \int_a^b (\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} (\delta y)') dx$$

Введем $\Phi \mathcal{J} + \lambda \mathcal{G} \Rightarrow \delta \Phi \mid_{t_2=0} = \frac{d\mathcal{J}}{dt_2} + \lambda \frac{d\mathcal{G}}{dt_2} = 0(3.8)$, тогда в силу 3.4 и 3.7

$$\int_{a}^{b} \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} (\delta y)' \right) dx + \lambda \int_{a}^{b} \left(\frac{\partial g}{\partial y} \delta y + \frac{\partial g}{\partial y'} (\delta y)' \right) dx = 0 \Rightarrow$$

$$\delta\Phi = \int_{a}^{b} \left[\left(\frac{\partial F}{\partial y} + \lambda \frac{\partial g}{\partial y} \right) \delta y + \left(\frac{\partial F}{\partial y'} + \lambda \frac{\partial g}{\partial y'} \right) \delta y' \right] dx = 0 \quad \forall \delta y \in h_{\delta}(y_0) \Rightarrow$$

аналогично получаем уравнение Эйлера

$$\frac{\partial(\mathcal{F} + \lambda \mathcal{G})}{\partial y} - \frac{d}{dx} \frac{\partial(\mathcal{F} + \lambda \mathcal{G})}{\partial y'} = 0$$

В силу произвольности $\delta y \in H_{\delta}(y_0)$ теорема доказана

7.5. Задача Лагранжа

Среди всех кривых $y = y(x), \ z = z(x)$, лежащих на поверхности $g(x,y,z) = 0 \ (g(x,y(x),z(x)) =$

0) найти те, которые дают экстремум функционалу $\mathcal{J} = \int_{a}^{b} F(x,y(x),y'(x),z(x),z'(x))dx$.

Концы кривых закреплены, т.е. $y(a) = A_1$, $y(b) = B_1$, $z(a) = A_2$, $z(b) = B_2$. Должно выполняться $g(a,A_1,A_2) = g(b,B_1,B_2) = 0$. К обычным условиям на F, y(x), z(x) добавляется условие, что g(x,y,z) должна быть непрерывно дифференцируемой по совокупности переменных и $(g'_y)^2 + (g'_x)^2 \neq 0 \ \forall x \in [a;b]$, т.е g — простая гладкая поверхность без особых точек, назовем ее S;

Среди всех кривых, лежащих на S и имеющих заданные концы, найти те, которые дают минимум $\mathcal J$

Теорема 7.4. Пусть кривая $j: a \leq x \leq b, y_0 = y_0(x), z_0 = z_0(x)$ является слабым экстремумом Лагранжа. ТОгда $\exists \lambda = \lambda(x):$ первая вариация $F + \lambda g,$ т.е. $\delta(F + \lambda g) = 0$ $\forall \delta y, \delta z$ (у является стационарной кривой для $\int_a^b (F + \lambda g) dx$), т.е.

$$\begin{cases} \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} + \lambda(x) g'_y = 0 & - \partial \Lambda A \ y(x) \\ \frac{\partial F}{\partial z} - \frac{d}{dx} \frac{\partial F}{\partial z'} + \lambda(x) g'_y = 0 & - \partial \Lambda A \ z(x) \end{cases}$$

Доказательство. $y(x) = y_0(x) + y\delta y; \ z(x) = z_0(x) + \delta z.$ Рассматриваем кривые, лежащие на поверхности, т.е. $g(x; y_0 + t\delta y; z_0 + t\delta z) = 0 \Rightarrow g(x, y_0(x), z_0(x)) + g_y'\delta yt + g_z'\delta zt + o(t^2) = 0$

$$0 \underset{t \to \infty}{\Rightarrow}$$

$$g_y' \delta y t g_z' \delta z = 0 \tag{3.9}$$

Таким образом в задаче Лагранжа допустимые вариации $\delta y, \delta z$ всегда связаны условием 3.9. Пусть $g_z' \neq 0$. Тогда

$$\forall x : \delta z = -\frac{g_y'}{g_z'} \delta y \neq 0 \Rightarrow (\delta z)' = -\left(\frac{g_y'}{g_z'}\right) \delta y - \left(\frac{g_y'}{g_z'}\right) (\delta y)'$$

В таком случае:

$$\delta \mathcal{J} = \int\limits_{a}^{b} (F_y' \delta y + F_{y'}'(\delta y)' + F_z' \delta z + F_{z'}'(\delta z)') dx = \int\limits_{a}^{b} \left[\left(\frac{\partial F}{\partial y} - \frac{g_y'}{g_z'} \frac{\partial F}{\partial z} - \left(\frac{g_y'}{g_z'} \right)' \frac{\partial F}{\partial z'} \right) \delta y + \left(\frac{\partial F}{\partial y'} - \left(\frac{g_y'}{g_z'} \right) \frac{\partial F}{\partial z'} \right) \delta y' \right] dx = \int\limits_{a}^{b} \left[\left(\frac{\partial F}{\partial y} - \frac{g_y'}{g_z'} \frac{\partial F}{\partial z} - \left(\frac{g_y'}{g_z'} \right)' \frac{\partial F}{\partial z'} \right) \delta y + \left(\frac{\partial F}{\partial y'} - \left(\frac{g_y'}{g_z'} \right) \frac{\partial F}{\partial z'} \right) \delta y' \right] dx = \int\limits_{a}^{b} \left[\left(\frac{\partial F}{\partial y} - \frac{g_y'}{g_z'} \frac{\partial F}{\partial z} - \left(\frac{g_y'}{g_z'} \right)' \frac{\partial F}{\partial z'} \right) \delta y + \left(\frac{\partial F}{\partial y'} - \left(\frac{g_y'}{g_z'} \right) \frac{\partial F}{\partial z'} \right) \delta y' \right] dx = \int\limits_{a}^{b} \left[\left(\frac{\partial F}{\partial y} - \frac{g_y'}{g_z'} \frac{\partial F}{\partial z} - \left(\frac{g_y'}{g_z'} \right)' \frac{\partial F}{\partial z'} \right) \delta y + \left(\frac{\partial F}{\partial y'} - \left(\frac{g_y'}{g_z'} \right) \frac{\partial F}{\partial z'} \right) \delta y' \right] dx = \int\limits_{a}^{b} \left[\left(\frac{\partial F}{\partial y} - \frac{g_y'}{g_z'} \frac{\partial F}{\partial z'} - \left(\frac{g_y'}{g_z'} \right)' \frac{\partial F}{\partial z'} \right) \delta y' \right] dx = \int\limits_{a}^{b} \left[\left(\frac{\partial F}{\partial y} - \frac{g_y'}{g_z'} \frac{\partial F}{\partial z'} \right) \delta y' \right] dx$$

интегрируем по частям и учитываем закрепленные концы

$$=\int\limits_a^b \Big(\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} + \Big(\frac{g_y'}{g_z'}\Big)\Big(\frac{\partial F}{\partial z}\Big) - \frac{d}{dx}\frac{\partial F}{\partial z'}\Big)\delta y dx = 0, \text{ так как слабый экстремум } \forall \delta y, \delta z, 3.9 \text{ осн. демма} \Rightarrow$$

$$\Rightarrow \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} - \left(\frac{g_y'}{g_z'}\right) \left(\frac{\partial F}{\partial z} - \frac{d}{dx} \frac{\partial F}{\partial z'}\right) = 0$$

Обозначим $\lambda(x)=-rac{\frac{\partial F}{\partial z}-rac{d}{dx}rac{\partial F}{\partial z'}}{y_z'}\Rightarrow$ уравнение для y(x) принимает вид из условия

Аналогично, выражая $\delta, y(\delta y)'$

$$-\lambda(x)g_z'-\left(rac{\partial F}{\partial z}-rac{d}{dx}rac{\partial F}{\partial z'}
ight)=0$$
 — уравнение для $z(x)$

Дополнительные пункты 8.

8.1. Элементы группового анализа ДУ

Уравнение первого порядка в общем виде:

$$P(x,y)dx + Q(x,y)dy = 0 (148)$$

Если выполняется $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \Rightarrow F(x,y) = const$ – решение уравнения в полных дифференциалах.

Если же $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, то ищется интегрирующий множитель $\mu(x,y)$:

 $\mu P dx + \mu Q dy = 0$ – уже уравнение в полных дифференциалах.

$$P\frac{\partial\mu}{\partial y} - Q\frac{\partial\mu}{\partial x} = \mu\frac{\partial Q}{\partial x} - \mu\frac{\partial P}{\partial y}$$
(149)

$$P(y)dx + \varphi(x)dy = 0, (150)$$

уравнение с разделяющимися переменными.

Если ДУ может быть приведено к виду (150), то оно интегрируемо. Рассмотрит, к каким переменным нужно перейти, чтобы уравнение $y' = \frac{dy}{dx} = f(x,y)$ свелось бы к уравнению с разделяющимися переменными.

8.2. Однопараметрические группы

Пусть имеется множество взаимно однозначных преобразований \mathbb{R}^n : $\tau(\mathbb{R}^n)$. Это множество образуем группу (относительно композиции). Каждому $a \in \mathbb{R}$ соответствием φ сопоставим преобразованние $g_a = \varphi(a) \in \tau(\mathbb{R}^n)$.

Следует ответить, что ассоциативность следует из ассоциативности матричного умножения.

Причем $\varphi(a+b)=\varphi(a)\cdot\varphi(b)$ и $\varphi(0)=E$, т.е. φ осуществляет изоморфизм коммутативной группы $\mathbb R$ на группу $\tau(\mathbb R^n)$. Образ $\varphi(R) \in \tau(\mathbb R^n)$ называется однопараметрической группой преобразований.

Было доказано, что однопараметрической группой будет фазовый поток автоновной системы ДУ. Эта группа $g_a = g_a(M(\vec{x})) = M(\overrightarrow{x})$ задается в виде: $\overline{x^i} = \varphi^i(x^1, \ldots, x^n) = \varphi^i(\vec{x}, a), i = \overline{1, n}$ или

$$\overline{x^i}=arphi^i(x^1,\;\ldots\;,x^n)=arphi^i(\vec{x},a),\;i=\overline{1,n}$$
 или

$$\overrightarrow{\overline{x}} = \overrightarrow{\varphi}(\overrightarrow{x}, a) \tag{151}$$

Т.к. группа коммутативна, то $\vec{\varphi}(\vec{x}, a + b) = \vec{\varphi}(\vec{\varphi}(\vec{x}, a), b) = \vec{\varphi}(\vec{\varphi}(\vec{x}, b), a)$, а $\vec{\varphi}(\vec{x}, 0) = \vec{x}$. Будем предпологать, что вектор-функция $\vec{\varphi}(\vec{x},a)$ непрерывно дифференцируема по всем своим аргументами.

Рассмотрим однопараметрическую группу преобразований плоскости $(x,y)(\mathbb{R}^2)$ –

$$g_a = g_a(M(x,y)) \Rightarrow \vec{x} = \varphi(x,y,a) , \ \vec{y} = \psi(x,y,a),$$

$$\varphi(x,y,0) = x, \psi(x,y,0) = y$$
(152)

Определение 8.1. траекторией (или орбита группы) – параметрическое предстачление кривой γ , проходящей через (x;y), при фиксированных x,y (152).

Кривая γ при сделанных предположениях является **гладкой кривой**, поэтому с ней можно связать векторное поле, т.е. в каждой точке M(x,y) поставим в соответствие вектор $\vec{h}(\xi(x,y),\zeta(x,y))$, касательный к γ , проходящей через эту точку.

Компоненты вектора \vec{h} , касательного к кривой γ в точке (x,y) равны

$$\xi(x,y) = \frac{\partial \varphi}{\partial a}|_{a\to 0}, \ \zeta(x,y) = \frac{\partial \psi}{\partial a}|_{a\to 0},$$

а само векторное поле определено как отображение:

$$(x,y) \to \partial g_a(M(x,y)) = \vec{h}(\xi(x,y), \zeta(x,y)) = \frac{dg_a}{da}|_{a\to 0}$$
(153)

Это векторное поле называется касательным векторным полем группы. Рассмотрим

$$\frac{dg_{a+b}(M)}{db}|_{b\to 0} = \frac{d(g_a \cdot g_b)}{db}|_{b\to 0} = \frac{d(g_b \cdot g_a)}{db}|_{b\to 0} =$$

$$= (\frac{dg_a}{db}|_{b\to 0})g_a = \partial g_a(g_a(M(x,y))) = \partial g_a(x,y,a) = \vec{h}(\xi(x,y),\zeta(x,y)).$$
(154)

Т.к. $\vec{h}(\xi(x,y),\zeta(x,y))$ является косательным к γ при фиксированным a, то кривая γ является фазовой траекторией автономной системы.

$$\begin{cases}
\frac{d\vec{x}}{da} = \xi(\vec{x}, \vec{y}) = \varphi_a'(\vec{x}, \vec{y}), \\
\frac{d\vec{y}}{da} = \zeta(\vec{x}, \vec{y}) = \psi_a'(\vec{x}, \vec{y}),
\end{cases} (155)$$

Система (155) (она можеть записываться в виде $\partial_a g(x,y,a) = \vec{h}(g_a(x,y,a)))$ называется уравнением Π и.

Ранее было получено, что любая автономная система определяет однопараметрическую группу преобразований (фазовый поток).

Оператор
$$X = \xi \frac{\partial}{\partial x} + \zeta \frac{\partial}{\partial y}$$
 — генератор группы. (156)

Т.к. $X(u) = \xi \frac{\partial u}{\partial x} + \zeta \frac{\partial u}{\partial y}$, то становится ясно, что генератор группы является оператором дифференцирования в силу системы Ли (группы Ли) или оператором дифференцирования по направлению векторного поля группы.

Определение 8.2. Функция F(x,y) называется **инвариантом группы** (152), если $F(\vec{x}, \vec{y}) = F(x,y) \, \forall a, m.e. \, F$ постоянна на любой траектории (152).

Т.о., если функция F(x,y) является инвариантом группы, то $X(F(x,y))=\xi\frac{\partial F}{\partial x}+\zeta\frac{\partial F}{\partial y}=\xi\cdot 0+\zeta\cdot 0=0$, и т.о. инвариант группы (152) является просто первым интегралом (155).

Расммотрим группы $\vec{x} = x + a, \ \vec{y} = y$ – группа смещений \Rightarrow генератор группы $X = 1 \frac{\partial}{\partial x} + 0 \frac{\partial}{\partial y} = \frac{\partial}{\partial x}$, а инвариантом этой группы является любой F(x,y) = f(y).

Теорема 8.1. Любая однопараметрическая группа с генератором 156 может быть с помощью подходящей замены

$$t = t(x,y), u = u(x,y)$$
 (157)

приведена к группе смещений

$$\vec{t} = t + a, \ \vec{u} = u. \tag{158}$$

Замечание: в новых переменных генератор имеет вид $X = \frac{\partial}{\partial t}$, и инвариант группы остается инвариантом и в новых переменных (см. инвариантность ПИ относительно гладкой замены).

Доказательство. Имеется

$$\xi \frac{\partial}{\partial x} + \zeta \frac{\partial}{\partial y} = \xi (\frac{\partial}{\partial t} t_x' + \frac{\partial}{\partial u} u_x') + \zeta (\frac{\partial}{\partial t} t_y' + \frac{\partial}{\partial u} u_y') = X(t) \frac{\partial}{\partial t} + X(u) \frac{\partial}{\partial u}.$$

Отсюда получаем, что функции (157), которые приводят группу к группе смещений, должны удовлетворять условиям:

$$X(t) = 1 \Rightarrow \xi \frac{\partial t}{\partial x} + \zeta \frac{\partial t}{\partial y} = 1; \ X(u) = 0 \Rightarrow \xi \frac{\partial u}{\partial x} + \zeta \frac{\partial u}{\partial y} = 0.$$
 (159)

Так, определенные переменные t и u называются **каноническими переменными**. Заметим, что переменные и являются инвариантом исходной группы, поскольку X(u)=0

Теорема 8.2. Орбиты группы либо совпадают, либо не пересекаются.

Доказательство. Пусть произошло пересечение: $g_a(M,a) = g_b(M_1,b)$, причем M_1 не принадлежит орбите точки M. Пусть b < a, подействуем g_{-b} на последнее равенство:

$$g_{-b}(g_a(M,1)) = g_{-b}(g_b(M_1,b)) \Rightarrow g_{-b+a}(M,a) = E(M_1) \Rightarrow$$

т. M_1 принадлежит орбите т.M – противоречие.

Рассмотрим ДУ:

$$y' = \frac{dy}{dx} = f(x,y) \tag{160}$$

Будем говорить, что группа g_a является **группой симметрии** ДУ (160) (или (160) допускает группу g_a), если форма ДУ (160) остается неизменной после замены переменных при замене

$$\begin{cases} \overline{x} = \varphi(x, y, a), \\ \overline{y} = \psi(x, y, a) \end{cases}$$
 (161)

т.е. $\frac{d\overline{y}}{d\overline{x}} = f(\overline{x}, \overline{y})$, где f то же самое, что и в (160).

Если ДУ (160) допускает группу, то тогда $f(\overline{x}, \overline{y}) = f(x,y) \, \forall a$, и правая часть (160) является инвариантом группу. Тогда, перейдя к каноническим переменным, получим, что в таких переменных t и u уравнение примет вид:

$$\frac{du}{dt} = g(u),\tag{162}$$

т.е. получили уравнение с разделяющимися переменными.

8.3. Построение Жорданова базиса

Для характеристического многочлена справедливо разложение:

$$\frac{1}{P_n(\lambda)} = \frac{1}{(\lambda - \lambda_1)^{k_1} ... (\lambda - \lambda_m)^{k_m}} = \sum_{i=1}^m \sum_{l=1}^{k_1} \frac{A_l^i}{(\lambda - \lambda_i)^l}, A_l^i \in \mathbb{R}$$

После сложения по внутренней сумме:

$$\frac{1}{P_n(\lambda)} = \frac{1}{(\lambda - \lambda_1)^{k_1} \cdot \ldots \cdot (\lambda - \lambda_m)^{k_m}} = \frac{f_1(\lambda)}{(\lambda - \lambda_1)^{k_1}} + \ldots + \frac{f_s(\lambda)}{(\lambda - \lambda_s)^{k_s}} + \ldots + \frac{f_m(\lambda)}{(\lambda - \lambda_m)^{k_m}}$$

где $f_s(\lambda)$ — многочлен степени не выше $k_{s-1}, s=\overline{1,m}$. Умножим на $P_n(\lambda)$:

$$1 = Q_1(\lambda) + \dots + Q_m(\lambda)$$

$$Q_s(\lambda) = f_s(\lambda) \cdot \frac{P_n(\lambda)}{(\lambda - \lambda_s)^{k_s}} = f_s(\lambda) \cdot (\lambda - \lambda_1)^{k_1} \cdot \dots \cdot (\lambda - \lambda_{s-1})^{k_{s-1}} \cdot (\lambda - \lambda_{s+1})^{k_{s+1}} \cdot \dots \cdot (\lambda - \lambda_m)^{k_m}$$
(163)

Рассмотрим множество квадратных матриц одного порядка. Это множество является ассоциативным кольцом с единицей, поэтому

$$A^n \cdot A^m = A^{n+m} = A^m \cdot A^n$$
; $A^0 \stackrel{def}{=} E$

Определено коммутативное и ассоциативное сложение матриц. Нулевую матрицу примем за ноль. Согласно свойствам умножения матриц на числа:

$$A^k \cdot \alpha = \alpha A^k, \ \alpha A^k + \beta A^k = (\alpha + \beta) A^k$$

Таким образом правила приведения подобных членов аналогично правилу для многочленов.

$$A^k + (-1 \cdot A^k) = A^k + (-A^k) = 0$$

В качестве символа x в определении многочлена можно взять квадратную матрицу A и получить множество матричных многочленов $\{P_n(A)\}$

$$P_n(A) = a_0 E + a_1 A + \dots + a_n A^n$$

На множестве $\{P_n(A)\}$ сложение и умножение определяются как обычные матричные действия, поэтому $\{P_n(A)\}$ является кольцом.

1.
$$P_n(A) + P_m(A) = P_m(A) + P_n(A)$$

2.
$$(P_n(A) + P_m(A)) + P_s(A) = P_n(A) + (P_m(A) + P_s(A))$$

3.
$$P_n(A) \cdot P_m(A) = P_m(A) \cdot P_n(A)$$

4.
$$(P_n(A) \cdot P_m(A)) \cdot P_s(A) = P_n(A) \cdot (P_m(A) \cdot P_s(A))$$

5.
$$P_n(A) \cdot (P_m(A) + P_s(A)) = P_n(A) \cdot P_m(A) + P_n(A) \cdot P_s(A)$$

За ноль в этом множестве принимается нулевая матрица.

Определение 8.3. Отображение φ кольца K на кольцо K' называется гомоморфизмом, если $\forall a \in K, \forall b \in K$:

$$\varphi(a+b) = \varphi(a) + \varphi(b); \ \varphi(ab) = \varphi(a) \cdot \varphi(b)$$

В отличие от изоморфизма гомоморфизм не обязательно является взаимно однозначным отображением, т.е. не предполагается, что образы K заполняют все кольцо K', и различным элементам из K соответствуют разные элементы из K'.

В силу определения множеств $\{P_n(A)\}$ и $\{P_n(\lambda)\}$, кольца $\{P_n(A)\}$ и $\{P_n(\lambda)\}$ гомоморфны:

$$\varphi: \varphi(P_n(\lambda)) \longrightarrow P_n(A)$$

Неоднозначность отображения φ возникает в силу того, что существуют такие квадратные матрицы $A \neq 0$: $\exists n \in \mathbb{N} : A^m = 0 \ \forall m \geq n$.

Теорема 8.3 (Гамильтона-Кэли). Пусть $P_n(\lambda)$ — характерестический многочлен матрицы A, тогда $P_n(A) = 0$.

В силу построения гомоморфизма между $\{P_n(A)\}$ и $\{P_n(\lambda)\}$ имеет место разложение:

$$P_n(A) = A^n + a_1 \cdot A^{n-1} + \dots + a_n \cdot E = (A - \lambda_1 E)^{k_1} \cdot \dots \cdot (A - \lambda_m E)^{k_m}$$

где $\lambda_1, ..., \lambda_m$ – корни $P_n(A)$.

Подействуем гомоморфизмом φ на (163) :

$$E = Q_1(A) + \dots + Q_m(A)$$

$$Q_s(A) = f_s(A) \cdot (A - \lambda_1 E)^{k_1} \cdot \dots \cdot (A - \lambda_{s-1})^{k_{s-1}} \cdot (A - \lambda_{s+1})^{k_{s+1}} \cdot \dots \cdot (A - \lambda_m)^{k_m} \qquad (164)$$

$$Q_s(A) - \text{линейные преобразования}$$

Порядок сомножетелей в (164) не важен, т.к. матрицы $(A - \lambda_s E)$ такого вида перестоновочны между собой.

Рассмотрим $Q_i(A)$. Покажем, что $\forall i, j = \overline{1,m} \longmapsto$

$$Q_{i}(A) \cdot Q_{j}(A) = \begin{cases} 0, i \neq j \\ Q_{i}^{2}, i = j \end{cases} \quad \text{if } Q_{i}(A) = Q_{i}^{2}(A)$$
 (165)

Доказательство. $Q_i(A)\cdot Q_j(A)=f_i(A)\cdot f_j(A)\cdot (A-\lambda_1 E)^{k_1}\cdot ...\cdot (A-\lambda_{i-1} E)^{k_{i-1}}\cdot (A-\lambda_{i+1} E)^{k_{i+1}}\cdot ...\cdot (A-\lambda_m E)^{k_m}\cdot (A-\lambda_1 E)^{k_1}\cdot ...\cdot (A-\lambda_{j-1} E)^{k_{j-1}}\cdot (A-\lambda_{j+1} E)^{k_{j+1}}\cdot ...\cdot (A-\lambda_m E)^{k_m}=M(A)\cdot P_n(A)= ($ Теорема Гамильтона-Кэли)=0

В силу (164):

$$\vec{x} = E\vec{x} = Q_1(\vec{x}) + \dots + Q_i(\vec{x}) + \dots + Q_m(\vec{x})$$

$$\Rightarrow Q_i(\vec{x}) = (Q_iQ_1)(\vec{x}) + \dots + (Q_i^2)(\vec{x}) + \dots + (Q_iQ_n)(\vec{x}) = Q_i^2(\vec{x})$$

Пусть $R_i = ImQ_i(A), i = \overline{1,m}$ — образ $Q_i(A)$. Из (165) следует, что R_i — инвариантное подпространство A. Тогда, если $\vec{x} \in R_i \to \exists \vec{y} \in A, \ Q_i(\vec{y}) = \vec{x}$, то $A(\vec{x}) = A(Q_i(\vec{y})) = (A \cdot Q_i)(\vec{y}) = (Q_iA)(\vec{y}) = Q_i(A(\vec{y})) \in R_i$ — инвариантное подпространство.

При доказательстве (165) было получено, что:

$$\vec{x} = E\vec{x} = Q_1(\vec{x}) + \dots + Q_i(\vec{x}) + \dots + Q_m(\vec{x}) = \vec{x_1} + \dots + \vec{x_i} + \dots + \vec{x_m}$$
(166)

где $\vec{x_i} = Q_i(\vec{x}) \in R_i, i = \overline{1,m}.$

(165) означает, что R^n является суммой подпространств R_i . Покажем, что такое разложение единственно:

Доказательство. Предположим, что хотя бы для одного $k=\overline{1,m}$ $\exists \vec{y_k}=Q_k(z_k)\neq \vec{x_k}: \vec{x}=\sum_{k=1}^mQ_k(\vec{z_k})=\vec{y_1}+\ldots+\vec{y_i}+\ldots+\vec{y_m}.$ Тогда $Q_i(\vec{x})=\vec{x_i}=Q_i\left(\sum_{k=1}^mQ_k(\vec{z_k})\right)^{Th}\stackrel{\Gamma.K.}{=}Q_i^2(\vec{z_i})=Q_i(\vec{z_i})=\vec{y_i}\Rightarrow \vec{x_i}=\vec{y_i}$

Т.к. единственное разложение эквивалентно тому, что сумма подпространств прямая, то:

$$\vec{R^n} = R_1 \oplus R_2 \oplus \dots \oplus R_m$$

Тогда A в таком базисе будет иметь вид:

$$\begin{vmatrix} A_1 & & & 0 \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_m \end{vmatrix}$$

Подпространства R_i называются корневыми подпространствами $\vec{R^n}$.

Теорема 8.4.
$$\forall s = \overline{1,m} : R_s = ker(A - \lambda_s E)^{k_s} \ \forall \vec{x} \in R_i \longmapsto (A - \lambda_i E)^{k_i} \vec{x} = 0$$

Доказательство. Пусть $\vec{x} \in R_s \Rightarrow \exists \vec{y} \in R_s : \vec{x} = Q_i(\vec{y})$ в силу инвариантности R_s . Тогда $(A - \lambda_s E)^{k_s} \vec{x} = (A - \lambda_s E)^{k_s} \cdot f_s(A) \cdot (A - \lambda_1 E)^{k_1} \cdot \ldots \cdot (A - \lambda_{s-1} E)^{k_{s-1}} \cdot (A - \lambda_{s+1} E)^{k_{s+1}} \cdot \ldots \cdot (A - \lambda_m E)^{k_m} \vec{y} = f_s(A) \cdot P_n(A) \vec{y} = 0 \Rightarrow R_s \subseteq \ker(A - \lambda_s E)^{k_s}$.

Пусть $\vec{x} \in ker(A - \lambda_s E)^{k_s}$. Тогда $\forall j \neq s : Q_j(\vec{x}) = 0$, поскольку множитель $(A - \lambda_s E)^{k_s}$ как множитель входит в представление Q_j . Поэтому из (166) в этом случае: $\vec{x} = 0 + ... + Q_s(\vec{x}) + ... + 0 \Rightarrow \vec{x} \in R_s \Rightarrow ker(A - \lambda_s E)^{k_s} \subseteq R_s$

Рассмотрим структуру корневого подпространства. Покажем, что

$$dim(R_s = ker(A - \lambda_s E)^{k_s}) = k_s$$

Лемма 8.1. Пусть B является линейным преобразованием $\vec{R^n}$ и $R = ker(B^l)$, n < l. Тогда, если $\exists \vec{x} \in R : B^{l-1} \vec{x} \neq 0$, то $dim R \geq l$.

Доказательство. Рассмотрим систему векторов $\vec{x}, B\vec{x}, ..., B^{l-1}\vec{x} \in R$. Ни один из векторов этой системы не равен нулю. Покажем, что эта система линейно независима. С этой целью рассмотрим нулевую линейную комбинацию этих векторов.

$$a_0\vec{x} + a_1(B\vec{x}) + \dots + a_{n-1}(B^{l-1}\vec{x}) = 0$$
(167)

Подействуем последовательно l-1 раз преобразованием B на (167):

$$\begin{cases} a_0(B\vec{x}) + a_1(B^2\vec{x}) + \dots + a_{n-2}(B^{l-1}\vec{x}) = 0\\ \dots\\ a_0(B^{l-2}\vec{x}) + a_1(B^{l-1}\vec{x}) + 0 + \dots + 0 = 0\\ a_0(B^{l-1}\vec{x}) = 0 \end{cases}$$

$$(B^{l-1}\vec{x}) \neq 0$$
 по условию $\Rightarrow a_0 = a_1 = \dots = a_{l-1} = 0 \Rightarrow$ Вектора ЛНЗ

Таким образом в R лежит как минимум l ЛНЗ векторов, а значит базис в R не может содержать меньше, чем l векторов $\Rightarrow dim R \geq l$.

Было доказано, что пространства R_i , $i=\overline{1,s}$ образуют прямую сумму, равную $\overrightarrow{R^n}$, поэтому размерность $\overrightarrow{R^n}$ является суммой размерностей подпространств, которые составляют эту прямую сумму. Т.к. $k_1+k_2+...+k_s=n$, то $\forall i\longmapsto dim R_i=k_i$, поскольку если $\exists j: dim R_j>k_j$, то тогда должно существовать R_i , у которого размерность меньше, чем k_i , что в силу леммы невозможно.

Пусть $\{\vec{e}_1^{\{\lambda_l\}},...,\vec{e}_{k_l}^{\{\lambda_l\}}\}$, $l=\overline{1,m}$ является базисом в корневом подпространстве $R_l=Ker(A-\lambda_l E)^{k_l}$. Тогда в базисеб образованном из объединения базисов корневых подпространств систем $\vec{x}=A\vec{x}$ имеет вид:

$$\frac{d\overline{x}^5}{dt} = \sum_{j=1}^{k_l} \gamma_j^5 \overline{x}^j, \ l = \overline{1, m},\tag{168}$$

где
$$A\vec{e}_j^{(\lambda_l)} = \sum_{s=1}^{kl} \gamma_j^s \vec{e}_s^{(\lambda_l)}$$
.

Дальнейшее рассмотрение будет связано с выбором базиса (Жорданова) в корневом подпространстве R_i так, чтобы упростить (168).

Рассмотрим сужение преобразования A на подространство R_i . Обозначим $k_l = l, \lambda_i = \overline{\lambda}$, а $A - \overline{\lambda}E = B$, тогда $\forall \vec{x} \in R_i : B^l(\vec{x}) = 0$ по определению R_i .

Выполним вложение:

$$0 \subseteq KerB \subseteq KerB^2 \subseteq ... \subseteq KerB^{i-1} \subseteq KerB^i \subseteq ... \subseteq KerB^l.$$

Действительно, $\forall \vec{x}: B^{i-1}(\vec{x}) = 0 \mapsto B^i(\vec{x}) = B(B^{i-1}(\vec{x})) = B(\vec{0}) = 0$ Обозначим $T_i = KerB^i, i = \overline{1,l}$ и определим:

$$\nu^{i}: \nu^{i} = {\vec{x}: B^{i}\vec{x} = 0, B^{i-1}\vec{x} \neq 0}, i = \overline{1,m} < l$$

По построению получаем, что $\nu^i = T_i \ T_{i-1}, \ i=2,3,...,m.$

Теорема 8.5. Пусть $j \ll i \leq m$, тогда:

$$\forall \vec{h}_i \in \nu^i \exists \vec{h}_j \in \nu^j : \vec{h}_j = B^{i-j} \vec{h}_i \tag{169}$$

Доказательство. Построим такой \vec{h}_i и покажем, что он лежит в ν_i .

$$B^{j}\vec{h}_{j} = B^{j}(B_{i-j}(\vec{h}_{j})) = (B^{i-j} \cdot B^{j})(\vec{h}_{i}) = B^{i}\vec{h}_{i} = 0;$$

$$B^{j-1}\vec{h}_j = B^{j-1}(B^{j-1}(\vec{h}_i)) = (B^{i-j} \cdot B^{j-1})(\vec{h}_i) = B^{i-1}\vec{h}_i neq0,$$

Таким образом $\vec{h}_j \in \nu^j$ по определению ν^j .

Определение 8.4. Система векторов $\{\vec{h}_i^{\alpha}\} \in \nu^i$, $\alpha = 1,...,r$ называется линейно независимой относительно T_{i-1} , если $\alpha_1\vec{h}_i^1 + ... + \alpha_r\vec{h}_i^r \in T_{i-1}$ тогда и только тогда, когда $\alpha_1 = ... = \alpha_r = 0$

Доказательство. Из теоремы 10 следует, что если система векторов $\{\vec{h}_i^{\alpha}\} \in \nu^i, \ \alpha = \overline{1,r}$ линейно независима относительно T_{i-1} , то система векторов $\{\vec{h}_j^{\alpha} = B^{i-j}(\vec{h}_i^{\alpha})\} \in \nu^j, \ \alpha = \overline{1,r}$ будет линейно независимой относительно T_{j-1} .

Действительно, пусть вектор $\alpha_1 \vec{h}_i^1 + ... + \alpha_r \vec{h}_i^r \in T_{i-1}$. Тогда

$$B^{j-1}(\alpha_1 \vec{h}_j^1 + \dots + \alpha_r \vec{h}_j^r) = 0 = B^{j-1}(B^{i-j}(\alpha_1 \vec{h}_i^1 + \dots + \alpha_r \vec{h}_i^r)) = B^{i-1}(\alpha_1 \vec{h}_i^1 + \dots + \alpha_r \vec{h}_i^r)$$

$$\Rightarrow \alpha_1 \vec{h}_j^1 + \dots + \alpha_r \vec{h}_j^r \in T_{j-1} \Leftrightarrow \alpha_1 = \dots = \alpha_r = 0$$

Перейдем к построению Жорданова базиса. Пусть в (169) i=1,j=0. $B\overline{h}_1=0$. Тогда $\nu=KerB=T_1$ является собственным подпространством преобразования A и векторы $h_1,\alpha=\overline{1,r}$ являются ЛНЗ собственными векторами A, соответсвующими числу $\overline{\lambda}$. Если ранг B (сужение $A-\overline{\lambda}E$ на $Ker(A-\overline{\lambda}E)^l$) равен $m\ leq l-1$, тогда $r=l-m\geq 1$, и векторы $\overline{h}_1^1,...,\overline{h}_1^r$ образуют базис в T_1 .

Допустим rangB=l-1. Тогда существует только один собственный вектор \vec{h}_1^1 и T_1 , является одномернам собственным подпространством. Дальнейшее построение будем вести по индукции. При i=1 базис в $\nu^1=T_1$ состоит из одногособственного вектора \vec{h}_1^1 . Предположим, что при k=i-1 < l базис в ν^{i-1} также состоит из одного вектора \vec{h}_{i-1}^1 . В силу Теоремы 8.5 уравнение $B\vec{h}_i^1=\vec{h}_{i-1}^1, c^1\in\Re$.

Утверждение 8.1. ν^{i} может быть представлено в виде:

$$\nu^{i} = \left\{ \vec{h}_{i} : \vec{h}_{i} = \alpha_{1} \vec{h}_{i}^{1} + C^{1} \vec{h}^{1}, \alpha_{1} \in \Re, \alpha_{1} \neq 0 \right\}$$
(170)

Доказательство. Запишем:

$$\begin{cases} B^{i}(\alpha_{1}\vec{h}_{i}^{1}+c^{1}\vec{h}_{1}^{1})=B^{i-1}(B(\alpha_{1}\vec{h}_{i}^{1}))=B^{i-1}(\alpha_{1}\vec{h}_{i-1}^{1})=0\\ B^{i-1}(\alpha_{1}\vec{h}_{i}^{1}+c^{1}\vec{h}_{1}^{1})=B^{i-2}(B(\alpha_{1}\vec{h}_{i}^{1}))=B^{i-2}(\alpha_{1}\vec{h}_{i-1}^{1})\neq0 \end{cases}$$

Из этого следует, что $\vec{h}_i \in \nu^i$. В силу равенства

$$B\vec{h}_i^1 = \vec{h}_{i-1}^1 \mapsto \forall \vec{y} \in \nu^i \; \exists \alpha_1 \in \Re : B\vec{y} = \alpha_1 \vec{h}_{i-1}^1 \Rightarrow \vec{y},$$

имеет представление в (170).

Система ЛНЗ векторов в ν^i относительно T_{i-1} будет состоять из одного вектора \vec{h}_i^1 , т.к. $\vec{h}_i \in T_1 \subseteq T_{i-1} \Leftrightarrow \alpha_1 = 0$.

Продолжим описанный выше процесс, построим веторы $\vec{h}_1^1,...,\vec{h}_i^1,...,\vec{h}_l^1$. Эти векторы ЛНЗ (Лемма (8.1)) и образуют базис в T_i , т.к. $R_i = \nu^1 \bigoplus ... \bigoplus \nu^i \bigoplus ... \bigoplus \nu^l$ в силу линейной независимости ν^i от T_{i-1} .

Все эти векторы удовлетворяют системе:

$$(A - \overline{\lambda}\vec{h}_1) = 0, (A - \overline{\lambda}\vec{h}_i^1) = \vec{h}_{i-1}^1, \ i = 2,...,l$$
 (171)

Вектор \vec{h}_2^1 называется первым присоединенным к \vec{h}_1^1 , соответственно \vec{h}_i^1 - i-1 присоединенный к \vec{h}_1^1 .

Из (171): $A\vec{h}_1^1 = \overline{\lambda}\vec{h}_1^1$, $A\vec{h}_i = \overline{\lambda}\vec{h}_i^1 + \vec{h}_{i-1}^1$, $i = \overline{2,l}$. Тогда матрица сужения A на R_i в построенном базисе называется Жордановой клеткой и имеет вид:

$$\begin{vmatrix} \overline{\lambda} & 1 & & & 0 \\ 0 & \overline{\lambda} & 1 & & 0 \\ & & \ddots & & \\ 0 & & 0 & \overline{\lambda} & 1 \\ 0 & & & 0 & \overline{\lambda} \end{vmatrix}$$

В случае, если ранг B равен m < l-1, то существует r=l-m>1 ЛНЗ собственных вектора, которые образуют базис в $\nu^1=T_1$: $\vec{h}_1^1,...,\vec{h}_1^r$.

Пусть при i-1 < l имеется $\vec{h}_{i-1}^1,...,\vec{h}_{i-1}^p,\ p \le r$ векторов образующих базис в $\nu^{i-1},$ т.е. максимальная, линейно независимая относительно $T_{i-2},$ система векторов из $\nu^{i-1}.$ Из теоремы (8.5) следует, что системы уравнений $B\vec{h}_i = \gamma_1\vec{h}_{i-1}^1 + ... + \gamma_p\vec{h}_{i-1}^p$ должна иметь

решение, поэтому согласно теореме Кронекера-Капелли, ранг B должен равняться рангу расширенной матрицы системы. При помощи элементарных преобразований сделаем нулевыми последние r=l-m строк матрицы B. Чтобы ранги совпали, числа $\gamma_1,...,\gamma_p$ должны удовлетворять системе из r однородных линейных уравнений, которая получается из требования обращения в ноль всех последних r элементов дополнительного столбца B. Из теоремы (8.5) следует, что эта система уравнений оносительно $\gamma_1,...,\gamma_p$ будет иметь хотя бы одно ненулевое решение. Тогда ранг этой системы $q \leq p-1$ и будет существовать p-q наборов:

$$\vec{\gamma}^1 = \begin{bmatrix} \gamma_1^1 \\ \dots \\ \gamma_p^1 \end{bmatrix}, \dots, \vec{\gamma}^{p-q} = \begin{bmatrix} \gamma_1^{p-q} \\ \dots \\ \gamma_p^{p-q} \end{bmatrix},$$

при которых уравненя $B\vec{h}_i=\vec{h}_{i-1}^k\equiv\gamma_1^k\vec{h}_{i-1}^1+...+\gamma_p^k\vec{h}_{i-1}^p,\ k=\overline{1,p-q}$ будут иметь решения.

Каждый из наборов $\vec{\gamma}^i$ определени с точностью до константы и столбцы представляющие соответствующие наборы, линейно независимы, как Φ CP системы.

Множетсво ν^{i} в этом случае представимо в виде:

$$\nu^{i} = \left\{ \vec{h}_{i} : \vec{h}_{i} = \sum_{k=1}^{p-q} \alpha_{k} \vec{h}_{i}^{k} + \sum_{k=1}^{r} c_{k} h_{1}^{k} \right\}, \tag{172}$$

где $\alpha_k \in \Re$, $B\vec{h}_i^k = \vec{h}_{i-1}^k$, $c_k \in \Re$; $k = \overline{1, p-q}$ и все α_k одновременно не равны нулю. Аналогично (169), проверяем корректность (172), то есть ν^i записано в виде из (172). Если $\vec{y} \in \nu^i$, то существуют такие $\alpha_k, k = \overline{1, p-q}$, что:

$$B\vec{y} = \sum_{k=1}^{p-q} \alpha_k \vec{h}_{i-1}^k.$$

Тогда \vec{y} как решение этого уравнения имеет представление (172).

Покажем, что так полученные векторы $\vec{h}_i^1,...,\vec{h}_i^{p-1}$ ЛНЗ относительно T_{i-1} . Рассмотрим $\alpha_1\vec{h}_i^1+...+\alpha_{p-q}\vec{h}_i^{p-q}=0$. По предположению индукции $\vec{h}_{i-1}^1,...,\vec{h}_{i-1}^{p-q}$ ЛНЗ относительно T_{i-2} . Имеем:

$$B(\alpha_1 \vec{h}_i^1 + \ldots + \alpha_{p-q} \vec{h}_i^{p-q}) = 0 = \alpha_1 \vec{h}_{i-1}^1 + \ldots + \alpha_{p-q} \vec{h}_{i-1}^{p-q}.$$

Откуда, в силу ЛНЗ векторов $\vec{h}_{i-1}^1,...,\vec{h}_{i-1}^{p-q}$ относительно T_{i-2} , имеем $\alpha_1=...=\alpha_{p-q}=0$, что доказывает ЛНЗ векторов $\vec{h}_i^1,...,\vec{h}_i^{p-q}$ относительно T_{i-1} . Из (172) следует, что векторы $\vec{h}_i^1,...,\vec{h}_i^{p-q}$ образуют базис в ν^i т.к. $\vec{y}\in T_1\subseteq T_{i-1}\Leftrightarrow \alpha_1=...=\alpha_k=0$.

Таким образом, построим базис в ν^i . Из доказательства следует, что $dim\nu^i < dim\nu^{i-1}, \forall i$. Полагая i=2,...,m< l, строим $R_l=\nu_1 \bigoplus ... \bigoplus \nu^i \bigoplus ... \bigoplus \nu^m$, что возмонжно, поскольку ν^i ЛНЗ относительно $T_{i-1}, \ i=\overline{2,m}$.