IT2103

Mathematics for Computing 1

Logic

Algebra of Propositions

Propositions satisfy various laws. These laws are listed below.

- 1) Idempotent laws
 - a) $p \vee p \equiv p$
 - b) $p \wedge p \equiv p$

2) Associative laws

a)
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

b)
$$(p \land q) \land r \equiv p \land (q \land r)$$

- 3) Commutative laws
 - a) $p \vee q \equiv q \vee p$
 - b) $p \wedge q \equiv q \wedge p$

3) Distributive laws

a)
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

b)
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \vee r)$$

- 4) Identity laws
 - a) $p \vee F \equiv p$
 - b) $p \wedge T \equiv p$
 - c) $p \vee T \equiv T$
 - d) $p \wedge F \equiv F$

5) Complement laws

- a) $p \vee \sim p \equiv T$
- b) $p \land \sim p \equiv F$
- c) $\sim T \equiv F$
- d) $\sim F \equiv T$

6) Involution law

5) DeMorgan's laws

a)
$$\sim (p \vee q) \equiv \sim p \wedge \sim q$$

b)
$$\sim (p \wedge q) \equiv \sim p \vee \sim q$$

Order of evaluation of logical expressions

Consider the following logical expression.

$$p \vee q \wedge r$$

This expression can be interpreted in two ways as below;

a)
$$(p \lor q) \land r$$
 b) $p \lor (q \land r)$

Question: Are these two expressions logically equivalent?

Equality of $(p \lor q) \land r$ and $p \lor (q \land r)$ can be determined by constructing truth tables for these propositions as below.

р	q	r	$p \lor q$	q ^ r	(p ∨ q) ∧ r	p ∨ (q ∧ r)
Т	T	Т	Т	Т	Т	T
Т	T	F	Т	F	F	Т
Т	F	Т	Т	F	Т	Т
F	T	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	Т
F	Т	F	Т	F	F	F
F	F	T	F	F	F	F
F	F	F	F	F	F	F

From the truth tables it is clear that $(p \lor q) \land r$ and $p \lor (q \land r)$ are not logically equivalent. Therefore the meaning of the proposition $p \lor q \land r$ is ambiguous.

How can we disambiguate the meaning of such expressions?

- a) Defining precedence for logical connectives
- ~ has precedence over \(\times \) which has precedence over \(\times \).
- b) By using parenthesis.

Examples:

What is the evaluation of the expression $p \vee \neg q \wedge r$?

Solution:

The evaluation order of the expression is

$$p \vee ((\sim q) \wedge r)$$