RAPD-PCR표식자에 의한 몇가지 황철나무속 품종들에서 유전적류연관계분석

김인철, 박학성

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《과학연구부문에서는 나라의 경제발전과 인민생활향상에서 전망적으로 풀어야 할 문제들과 현실에서 제기되는 과학기술적문제들을 풀고 첨단을 돌파하여 지식경제건설의 지름길을 열어놓아야 합니다.》

뽀뿌라나무는 수목생물종가운데서 처음으로 전체 게놈염기배렬이 결정된 생물종이며 산림수종의 게놈연구에서 모형생물종으로 되고있다.[1, 3, 4]

우리 나라에는 황철나무속에 4개 절 즉 뽀뿌라나무절(Aigeros), 은백양나무절(Leuce), 황 철나무절(Takamahara), 사시나무절(Tripidae)이 있으며 뽀뿌라나무절에 속하는 품종들이 경 제적의의가 높다고 보고있다.

세계적으로 여러가지 육종방법으로 경제적의의가 큰 뽀뿌라나무품종들이 육종되고있으며 황철나무속, 종들에서 유전적다양성분석을 위한 연구[2]가 심화되고있다.

우리는 몇가지 황철나무속 뽀뿌라나무품종들에서 RAPD-PCR표식자기술을 리용하여 유 전적류연관계를 밝히기 위한 연구를 하였다.

재료와 방법

재료로는 전문연구소와 원산농업종합대학에서 재배하고있는 뽀뿌라나무절의 뽀뿌라나무품종들인 《두만강 1》호, 《두만강 2》호, 《안주 1》호, 《안주 2》호, 《원산 1》호, 《경원》, 《중림 2001》과 은백양나무절의 《털백양》, 황철나무절의 《황철》, 《섬황철》품종들을 리용하였다.

게놈DNA의 분리 및 확인 뽀뿌라나무품종들의 1년생가지를 매 품종당 3반복씩 삽목하고 새로 나온 신선한 어린 잎을 100mg씩 채취하여 CTAB법[2]으로 게놈DNA를 분리하였다. 분리한 게놈DNA를 소형분광광도계(《Nanodrop》)로 순도와 농도를 결정하였다.

다형성프라이머의 선발 뽀뿌라나무에서 RAPD-PCR분석을 진행하기 위하여 RAPD-PCR 프라이머종합키트(Roth Random Primer Kits fur die RAPD-PCR-PCR)의 OPA, OPB, OPC, OPD, OPG, OPN, OPI계렬의 프라이머 30개를 리용하였다.

폴리메라제련쇄반응(PCR) 주형DNA 1μL(50~100ng), 프라이머 2μL, PCR Mix(3mmo/L MgCl₂, 0.2 mmo/L dNTP, 0.1U/μL Taq DNA폴리메라제, 2×PCR완충액포함) 12.5μL, ddH₂O 9.5μL, 총체적 25μL 되게 맞추었다. PCR조건은 94℃ 예비변성 5min→45회전의 94℃ 변성 30s, 35℃ 아닐링 1min, 72℃ 사슬연장 90s→72℃ 최종사슬연장 10min이다.

폴리메라제련쇄반응은 PCR장치(《C1000TouchTM Termal Cycler, BIORAD》)에서 우의 프로그람에 따라 진행하였다.

아가로즈겔전기영동 PCR액에 4μ L의 브롬페놀청을 첨가하여 혼합한 후 1.2% 아가로즈겔 (《Mini-Protein® Tetra System, BIORAD》)전기영동하고 겔도크장치(《Geldoc-ItTM》)로 단편띠들을 확인하였다.

유전적류연관계분석 PCR증폭산물들의 아가로즈겔전기영동띠유무는 프로그람 Gel Pro Analyzer 6.0을 리용하여 판정하였다. 유전적류연관계분석은 전기영동띠의 유무와 이동도의 차이에 기초하여 프로그람 NTSYS 2.11의 UPGMA방법[2, 3]으로 진행하였다.

결과 및 론의

1) 게놈DNA분리와 순도검사

연구재료로 리용된 10개 뽀뿌라나무품종들에서 분리한 게놈DNA를 나노핵산단백질정 량장치에서 분석한 결과 A_{260}/A_{280} 값이 $1.8\sim2.0$ 사이에 들어가고(표 1) 영동상에서 직선상에 놓였으므로(그림 1) RAPD분석에 리용할수 있다고보고 다음실험을 진행하였다.

No.	시료	핵산함량 /(ng·μL ⁻¹)	$\frac{A_{260}}{A_{280}}$	$\frac{A_{260}}{A_{230}}$	No.	시료	핵산함량 /(ng·μL ⁻¹)	$\frac{A_{260}}{A_{280}}$	$\frac{A_{260}}{A_{230}}$
1	《경원》-1	822.4	1.95	1.92	11	《원산 1》호-1	475.7	2.11	1.95
2	《경원》-2	783.5	2.01	1.75	12	《원산 1》호-2	235.1	1.94	1.85
3	《두만강 1》호-1	1 573.6	2.16	1.93	13	《중림 2001》-1	1 689.7	2.18	2.17
4	《두만강 1》호-2	1 041.7	2.01	1.79	14	《중림 2001》-2	219.2	2.11	1.98
5	《두만강 2》호-1	1 203.2	1.97	1.86	15	《섬황철》-1	1 242.5	2.06	1.88
6	《두만강 2》호-2	690.7	2.08	1.67	16	《섬황철》-2	986.4	2.11	2.02
7	《안주 1》호-1	410.0	2.06	1.95	17	《황철》-1	2 466.9	2.18	2.20
8	《안주 1》호-2	823.1	2.02	1.84	18	《황철》-2	1 442.5	2.11	1.99
9	《안주 2》호-1	1 039.4	2.03	1.88	19	《털황철》-1	700.7	2.08	1.45
10	《안주 2》호-2	231.4	2.03	1.75	20	《털황철》-2	1 330.3	1.79	1.45

표 1. 몇가지 황철나무속 나무들의 잎에서 분리한 DNA의 순도와 량

그림 1. 몇가지 뽀뿌라나무품종들의 잎에서 분리한 게놈DNA의 전기영동상 1-19는 표 1의 번호와 같음.

2) 다양성프라이머선발

비교적 유전적류연관계가 먼 세가지 뽀뿌라나무품종인《경원》,《중림 2001》,《황철》에서 분리한 DNA를 주형으로 하여 다형성이 높은 RAPD-PCR프라이머를 선발하기 위하여 RAPD-PCR프라이머종합키트에서 임의로 선정한 30개의 프라이머를 가지고 PCR를 진행하

였다.(그림 2, 3)

그림 2. 세가지 뽀뿌라나무품종들인 《경원》, 《중림 2001》, 《황철》에서 OPC, OPG, OPN계렬의 프라이머를 리용한 증폭산물의 전기영동상

M은 DL2000 분자크기표식자, I-OPC-01, II-OPC-15, III-OPC-18, IV-OPG-03, V-OPG-05, VI-OPG-06, VII - OPG-08, VIII - OPG-16, IX - OPG-19, X - OPN-04; 1-《경원》, 2-《중림 2001》, 3-《황철》

그림 3. 세가지 뽀뿌라나무품종들인 《경원》、《중림 2001》、《황철》에서 OPB、 OPH계렬의 프라이머를 리용한 증폭산물의 전기영동상

M은 DL2000 분자크기표식자, I-OPB-02, II-OPB-04, III-OPB-07, IV-OPB-09, V-OPB-10, VI-OPH-01, VII-OPH-03, VIII-OPH-05, IX-OPH-12, X-OPH-13; 1-《경원》, 2-《중림 2001》, 3-《황철》

세가지 뽀뿌라나무품종인 《경원》, 《중림2001》, 《황철》에서 30개의 프라이머를 리용한 증 폭산물의 전기영동띠수에 의하여 매 프라이머들의 유전적다형성률을 계산하였다.(표 2)

표 2. 세가지 뽀뿌라나무품종들인《경원》,《중림 2001》,《황철》에서 30개의 프라이머를 리용한 증폭산물의 전기영동띠수와 다형률									
프라이머	프라이머		띠수/개		총증폭띠수	다형띠수			
이름	염기배렬	《경원》	《중림 2001》	《황철》	/개	/개			
OPA-02	TgCCgAgCTg	0	2	3	5	1			
ODA OO	OOO A A TOO	1	1	2	3	1			

	_ [- [- [1 1 / 2 11		0 0 7 11 1	-1 01 1	-10년
이름	염기배렬	《경원》	《중림 2001》	《황철》	/개	/개	/%
OPA-02	TgCCgAgCTg	0	2	3	5	1	20.0
OPA-09	gggTAACgCC	1	1	3	3	1	33.3
OPA-10	gTgATCgCAg	2	3	1	3	1	33.3
OPA-11	CAATCgCCgT	1	2	1	2	1	50.0
OPB-02	TgATCCCTgg	2	3	2	3	1	33.3
OPB-04	ggACTggAgT	7	9	8	9	1	11.1
OPB-05	TgCgCCCTTC	3	3	3	3	0	0.0
OPB-06	TgCTCTgCCC	8	8	7	8	2	25.0

다혀류

프라이머	프라이머		띠수/개		총증폭띠수	다형띠수	다형률
이름	염기배렬	《경원》	《중림 2001》	《황철》	/개	/개	/%
OPB-07	ggTgACgCAg	9	10	8	10	2	20.0
OPB-09	TgggggACTC	7	7	7	7	0	0.0
OPB-10	CTgCTgggAC	13	11	9	14	8	57.1*
OPC-01	TTCgAgCCAg	0	0	0	0	0	0.00
OPC-15	gACggATCAg	7	4	5	7	5	71.1^{*}
OPC-18	TgAgTgggTg	3	2	6	6	2	33.3
OPD-03	gTCgCCgTCA	0	0	0	0	0	0.00
OPG-03	gAgCCCTCCA	8	2	9	9	2	22.2
OPG-05	CTgAgACggA	7	9	9	9	4	44.4
OPG-06	gTgCCTAACC	9	7	11	11	6	54.5*
OPG-08	TCACgTCCAC	7	9	9	9	3	33.3
OPG-16	AgCgTCCTCC	9	8	9	9	5	55.5 [*]
OPG-19	gTCAgggCAA	6	8	8	8	3	37.5
OPH-01	ggTCggAgAA	3	3	2	3	1	33.3
OPH-03	AgACgTCCAC	6	2	7	7	2	28.5
OPH-04	ggAAgTCgCC	3	2	1	3	1	33.3
OPH-05	AgTCgTCCCC	4	3	5	5	2	40.0
OPH-12	ACgCgCATgT	4	8	9	9	5	55.5 [*]
OPH-13	gACgCCACAC	8	7	6	8	3	37.5
OPN-04	gACCgACCCA	4	7	9	8	5	62.5^{*}
OPN-06	gAgACgCACA	0	0	4	4	0	0.00
OPI-14	TgACggCggT	0	0	2	2	0	0.00
계					184	67	36.4

* 다형률이 50%이상인 프라이머

표 2에서 보는것처럼 실험에 리용된 30개의 RAPD-PCR표식자들의 다형성지수값은 0.00

~0.71사이에 있었으며 총증폭띠수는 184개이고 다형띠수는 67개로서 전체 유전적다형률은 36.4%이다. 그중에서 유전적다형률이 50%이상인 프라이머는 OPB-10, OPG-06, OPG-16, OPH-12, OPN-04인데 각각 57.1, 54.5, 55.5, 55.5, 62.5%이다. 이와 같은 다형성프라이머들은 앞으로 뽀뿌라나무품종들에서 유전적류연관계를 분석하기 위한 RAPD-PCR표식자기술에 리용할수 있다.

3) 몇가지 뽀뿌라나무품종들에서 RAPD-PCR표식자기술에 의한 유전적류연관계분석

RAPD-PCR표식자기술을 리용한 유전적류연 관계분석 몇가지 뽀뿌라나무품종들에서 유전 적다형률이 50%이상인 프라이머 OPB-10, OPG-06, OPG-16, OPH-12, OPN-04를 리용하 여 RAPD-PCR분석을 진행하였다.(그림 4-8)

그림 4. 10가지 뽀뿌라나무품종들에서 프라이머 OPB-10을 리용한 RAPD-PCR 증폭산물의 1.2% 아가로즈겔전기영동상

M은 분자크기표식자(DL2000), I -《경원》, II -《두만강 1》호, Ⅲ-《두만강 2》호, Ⅳ-《안주 1》호, Ⅴ-《안주 2》호, Ⅵ-《원산 1》호, Ⅶ-《종림 2001》, Ⅷ-《황철》, Ⅺ-《섭황철》, Ⅺ-《털백양》; 1, 2는 반복

OPG-06을 리용한 RAPD-PCR증폭산물의 1.2% 아가로즈겔전기영동상 M은 분자크기표식자(DL2000), I-X은 그림 4에서와 같음, 1, 2는 반복

그림 5, 10가지 뽀뿌라나무품종들에서 프라이머 그림 6, 10가지 뽀뿌라나무품종들에서 프라이머 OPG-16을 리용한 RAPD-PCR증폭산물의 1.2% 아가로즈겔전기영동상 M은 분자크기표식자(DL2000), I-X은 그림 4에서와 같음, 1, 2는 반복

OPH-17을 리용한 RAPD-PCR증폭산물의 1.2% 아가로즈겔전기영동상 M은 분자크기표식자(DL2000), I-X은 그림 4에서와 같음, 1, 2는 반복

그림 7. 10가지 뽀뿌라나무품종들에서 프라이머 그림 8. 10가지 뽀뿌라나무품종들에서 프라이머 OPN-04을 리용한 RAPD-PCR증폭산물의 1.2% 아가로즈겔전기영동상 M은 분자크기표식자(DL2000), I-X은 그림 4에서와 같음, 1, 2는 반복

그림 4-8에서 보는바와 같이 OPB-10의 증폭범위는 200~2 000bp, OPG-06의 증폭범 위는 200~2 000bp, OPG-16의 증폭범위는 200~1 500bp, OPH-17의 증폭범위는 150~2 500bp, OPN-04의 증폭범위는 150~1 500bp이다. 유전적다형률이 높은 프라이머 OPB-10, OPG-06, OPG-16, OPH-12, OPN-04를 리용하여 RAPD-PCR분석을 진행하였을 때 프라이머종류에 따 라 영동띠의 수와 위치에서 차이가 있었으며 같은 프라이머로 증폭하였을 때에도 뽀뿌라 나무품종에 따라 단편의 크기와 증폭량은 차이가 명백하게 나타났다.

10개 뽀뿌라나무품종에서 OPB-10프라이머를 리용하면 총단편띠수는 14개이고 OPG-06. OPG-16, OPH-12에서 각각 12개씩이며 OPN-04에서는 14개로서 5개의 프라이머에서 총단편 띠수는 64개였다.

프로그람 NTSYS 2.11을 리용한 유전적류연관계분석 RAPD-PCR분석 프로그람 NTSYS 2.11를 리 용하여 10개 뽀뿌라나무품종들사이의 유전거리를 계산하고(표 3) 계통도를 작성하였다.

표 3에서 보는바와 같이 《두만강 1》호와 《두만강 2》호사이의 유전거리가 0.088 0~0.111 6 으로서 제일 작았고 《안주 1》호와 《안주 2》호사이에는 0.112 5였으며 《털백양》과 《경원》사 이에는 0.461 0~0.475 1로서 제일 멀었다. 이에 기초하여 작성한 계통도(덴드로그람)는 그 림 9와 같다.

표 3. 프로그람 NTSYS 2.11를 리용한 10개 뽀뿌라나무품종들사이의 유전거리

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1										10	- ' '	12	10	17	10	10		10	10	
1 -	0																			
2	0	0																		
_	0.320 9	0.320 9	0																	
4	0.288 1	0.288 1	0.022 5	0																
5	0.330 7	0.3307	0.111 6	$0.088\ 0$	0															
6	0.3307	0.3307	0.1116	$0.088\ 0$	0	0														
7	0.278 1	0.278 1	0.1148	0.0907	0.0868	0.0868	0													
8	0.278 1	0.278 1	0.1148	0.0907	0.0868	0.0868	0	0												
9	0.376 6	0.3766	0.139 5	0.114 8	0.042 3	0.0423	0.112 5	0.112 5	0											
10	0.376 6	0.3766	0.139 5	0.114 8	0.042 3	0.0423	0.112 5	0.112 5	0	0										
11	0.309 9	0.3099	0.1148	0.139 5	0.157 4	0.1574	0.186 6	0.186 6	0.186 6	0.186 6	0									
12	0.309 9	0.3099	0.1148	0.139 5	0.157 4	0.1574	0.186 6	0.186 6	0.186 6	0.186 6	0	0								
13	0.392 5	0.392 5	0.208 8	0.238 6	0.251 3	0.2513	0.291 1	0.291 1	0.260 3	0.260 3	0.230 5	0.230 5	0							
14	0.392 5	0.392 5	0.208 8	0.238 6	0.251 3	0.2513	0.2911	0.291 1	0.260 3	0.260 3	0.230 5	0.230 5	0	0						
15	0.253 6	0.253 6	0.188 6	0.188 6	0.259 4	0.2594	0.2104	0.210 4	0.267 5	0.267 5	0.238 6	0.238 6	0.174 3	0.174 3	0					
16	0.253 6	0.253 6	0.188 6	0.188 6	0.2594	0.2594	0.2104	0.2104	0.267 5	0.267 5	0.238 6	0.238 6	0.174 3	0.174 3	0	0				
17	0.295.9	0.295 9	0.3138	0.346.6	0 324 6	0.324.6	0.402.2	0.402.2	0.368.3	0.368.3	0.273.0	0.273.0	0.242.2	0.242.2	0.216.8	0.216.8	0			
		0.295 9															0	0		
	*****	0.475 1											**	***			0.378.1	v	0	
		0.461 0																	0	0
_20	v.401 V	v.401 V	0.3/39	U.411 /	U.381 I	U.381 I	0.433 9	0.4339	0.433 9	U.433 Y	U.339 8	U.339 8	0.3314	0.3314	0.3/04	0.3/04	0.390 0	0.390 0	U	U

1-《경원》-1, 2-《경원》-2, 3-《두만강 1》호-1, 4-《두만강 1》호-2, 5-《두만강 2》호-1, 6-《두만 강 2》호-2, 7-《안주 1》호-1, 8-《안주 1》호-2, 9-《안주 2》호-1, 10-《안주 2》호-2, 11-《원산 1》호-1, 12-《원산 1》호-2, 13-《중림 2001》-1, 14-《중림 2001》-2, 15-《황철》-1, 16-《황철》-2, 17-《섬황철》-1, 18-《섬황철》-2, 19-《털백양》-1, 20-《털백양》-2

그림 9. 프로그람 NTSYS 2.11를 리용한 10개 뽀뿌라나무품종들사이의 계통수

그림 9에서 보는바와 같이 RAPD-PCR표식자기술을 리용하여 10개의 뽀뿌라나무품종들의 유전적류연관계를 분석하여보면 품종별로 크게 4개 무리로 구분되였다.(표 4)

무리 절 및

품종이름

《두만강 2》호, 《원산 1》호,

《안주 1》호, 《안주 2》호

	표 4. 10가지 뽀뿌라나무눔옹글아	에서 RAPD-PCR표적사기	돌에 의안 구리구문	
	Ι	${\rm I\hspace{1em}I}$	Ш	IV
1	베키미 러. #드미카 1V 중	•		_

뽀뿌라나무절: 《중림 2001》.

황철나무절:《황철》.《섬황철》

뽀뿌라나무

절:《경원》

은백양나무

절: 《털백양》

표 4에서 보는바와 같이 I무리에는 뽀뿌라나무절의 《두만강 1》호, 《두만강 2》호, 《원 산 1》호,《안주 1》호,《안주 2》호가 속하며 Ⅱ무리에는 뽀뿌라나무절의《중림 2001》과 황 철나무절의《황철》,《섬황철》이, Ⅲ무리에는 뽀뿌라나무절의《경원》이, Ⅳ무리에는 은백양 나무절의 《털백양》이 속한다.

I무리에 속하는 뽀뿌라나무절의《두만강 1》호와《두만강 2》호사이의 유전거리가 0.08 8∼ 0.111 6으로서 제일 작고 다음으로 《두만강 1》호와 《안주 1》호사이에는 0.090 7~0.114 8. 《두 만강 1》호와 《안주 2》호사이에는 0.114 8~0.139 5, 《두만강 1》호와 《원산 1》호사이에는 0.114 8~0.139 5였다.《두만강 2》호와《안주 1》호사이에는 0.086 8,《두만강 2》호와《안주 2》호 사이에는 0.042 3이고 《두만강 2》호와 《원산 1》호사이에는 0.157 4였다. 또한 I무리에서 《안 주 1》호와《안주 2》호품종사이의 유전거리는 0.112 5이고 《안주 1》호와 《원산 1》호사이에 는 0.186 6, 《안주 2》호와 《원산 1》호사이에도 0.186 6이였다. 다시말하여 I무리에 속하는 뽀뿌라나무절가운데서 제일 가까운 품종들은 《두만강 2》호와 《안주 2》호이고(0.042 3) 이 무 리가 《안주 1》호와 가까우며(0.086 8~0.112 5) 이 3개의 품종이 《두만강 1》호(0.086 8~0.139 5) 와 한 무리를 이루었다. 이 4개 품종이 다시 《원산 1》호(0.114 8~0.186 6)와 다시 무리를 지 어 I무리를 형성하였다.

Ⅱ 무리에 속하는 뽀뿌라나무절의 《중립 2001》은 뽀뿌라나무절에 속하는 I무리의 품종 들과 유전거리가 0.208 8~0.291 1로서 유전거리에서의 차이가 명백히 나타났다.

Ⅲ무리에 속하는 뽀뿌라나무절의《경원》은 뽀뿌라나무절에 속하는 I무리의 품종들과 유전거리가 0.278 1∼0.330 7이고 Ⅱ무리의 품종《중림 2001》과 유전거리가 0.392 5로서 차 이가 있었다.

IV무리에 속하는 은백양나무절의 《털백양》과 황철나무절의 《황철》사이에는 0.364 8∼

그림 10. 프로그람 NTSYS 2.11을 리용한 10개 뽀뿌라나무품종들사이의 계통수작성의 정확성을 보여주는 만텔검정

0.390 6, 《섬황철》사이에는 유전거리가 0.378 1~ 0.390 6이고 황철나무절의 《황철》과 《섬황철》 사이에는 유전거리가 0.216 8로서 차이가 있었 다. IV무리에 속하는 은백양나무절의 《털백양》, 황철나무절의 《황철》, 《섬황철》은 뽀뿌라나무 절에 속하는 I무리의 품종들과 유전거리가 0.273 0~0.433 9로서 제일 멀고 Ⅱ무리에 속하 는 뽀뿌라나무절의 《중림 2001》과는 0.174 3~ 0.365 4이며 Ⅲ무리에 속하는 뽀뿌라나무절의 《경 원》과는 0.253 6~0.475 1이다.

계통수작성이 정확히 되였는가를 검증하기 위하여 만텔검정을 진행하였다.(그림 10)

그림 10에서 보는바와 같이 r=0.78로서

계통수는 비교적 정확하게 작성되였다고 볼수 있다.(r=0.7이상이면 정확하다고 본다.)

이상과 같이 RAPD-PCR표식자에 기초하여 황철나무속 뽀뿌라나무품종들사이의 유전 적류연관계를 해석하고 계통도를 작성함으로써 앞으로 새 품종의 육종과 품종등록사업의 과 학화를 위한 기초를 마련하였다.

맺 는 말

몇가지 황철나무속 뽀뿌라나무품종들에서 I무리에는 뽀뿌라나무절의 《두만강 1》호, 《두만강 2》호, 《원산 1》호, 《안주 1》호, 《안주 2》호가 속하며 Ⅱ 무리에는 뽀뿌라나무절의 《중림 2001》과 황철나무절의 《황철》, 《섬황철》이, Ⅲ 무리에는 뽀뿌라나무절의 《경원》이, IV무리에는 은백양나무절의 《털백양》이 속한다.

참 고 문 헌

- [1] G. Brundu et al.; Annals of Botany, 102, 6, 997, 2008.
- [2] S. Castiglione et al.; Plant Biosystems, 144, 3, 656, 2010.
- [3] T. Fossati et al.; Plant Breeding, 123, 4, 382, 2004.
- [4] B. Kersten et al.; Plant Biology, 16, 411, 2014.

주체107(2018)년 10월 5일 원고접수

Analysis of Genetics Relationship in Poplar Species by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR)

Kim In Chol, Pak Hak Song

We analyzed the genetic polymorphism in poplar species using random amplified polymorphic DNA-polymerase chain reaction.

There are four main clusters: in I cluster "Tumangang No. 1", "Tumangang No. 2", "Wonsan No. 1", "Anju No. 1" and "Anju No. 2"(*Populus nigra*) of Aigeros, in II cluster "Jungrim 2001" of Aigeros, "Hwangchol" and "Somhwangchol"(*P. maximowiczii*) of Takamahara, in III cluster "Kyongwon"(*Populus nigra*) of Aigeros and IV cluster "Tholbaekyang"(*P. alba*) of Leuce.

Key words: poplar species, RAPD-PCR, genetics relationship