IE1204 Digital Design

L2: Logic gates and circuits, Boolean Algebra

Masoumeh (Azin) Ebrahimi
KTH/ICT
mebr@kth.se

IE1204 Digital Design

Switch

- A switch has two positions
 - Closed/On
 - Open/Off

x = 1

Implementation of logic functions

 A switch can be used to implement logic functions

L(x) is a logic functionx is a logic variable

$$L(x) = \begin{cases} 0 & \text{Light Off} \\ 1 & \text{Light On} \end{cases}$$

Operation AND

 The AND operation (·) is achieved by switches that are connected in series

$$L(x) = x_1 \cdot x_2$$

Operation OR

 The OR operation (+) is achieved by switches connected in parallel

$$L(x) = x_1 + x_2$$

Operation NOT

NOT function inverts the logic value

Truth Table

 A logic function can also be described by a truth table

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
0 0 1 1	0 1 0 1	0 0 0 0 1	0 1 1 1

1 stands for true

0 stands for false

AND

OR.

Logic gates AND gate

IEC symbol (International Electrotechnical Commission)

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = A \cdot B$$

Logic gates OR gate

IEC symbol (International Electrotechnical Commission)

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = A + B$$

Logic gates Inverter (NOT gate)

IEC symbol (International Electrotechnical Commission)

Α	Υ
0	1
1	0

$$Y = \overline{A}$$

Traditional (American)

Which function is implemented by this logic circuit?

X ₁	<i>X</i> ₂	$f(x_1,x_2)$
0	0	
0	1	
1	0	
1	1	

Truth Table

X ₁	X ₂	$f(x_1,x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Α	В
1	0
1	0
0	0
0	1

Timing Chart

Different logic circuits can implement the same function

b)
$$x_1 \longrightarrow g$$
$$x_2 \longrightarrow g = \overline{x}_1 + x_2$$

X ₁	<i>X</i> ₂	$f(x_1,x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Boolean algebra

- Since <u>several logic circuits</u> can implement the same function, we want to find the <u>most</u> <u>cost-effective implementation</u>
- Logic circuits can be very large
- A <u>mathematical base</u> is needed so that the optimization of logic circuits can be <u>performed using computers</u>

Axioms of Boolean algebra

Axiomer					
$\overline{(1a)}$	$0 \cdot 0 = 0$	(1b)	1 + 1 = 1		
(2a)	$1 \cdot 1 = 1$	(2b)	0 + 0 = 0		
(3a)	$0 \cdot 1 = 1 \cdot 0 = 0$	(3b)	1 + 0 = 0 + 1 = 1		
(4a)	If $x = 0$, then $\overline{x} = 1$	(4b)	If $x = 1$, then $\overline{x} = 0$		

Venn Diagrams

 Venn diagrams can be used to illustrate the logic operations

Boolean algebra

•
$$0 \cdot A = 0$$

•
$$\overline{A} + A = 1$$

$$\bullet$$
 $\overline{A} \cdot A = 0$

•
$$A + A = A$$

$$\bullet$$
 A \cdot A = A

Other properties of Boolean algebra with single variable

Using the axioms, we can derive new properties

	Räknelagar				
(5a)	$x \cdot 0 = 0$		x + 1 = 1		
(6a)	$x \cdot 1 = x$	(6b)	x + 0 = x		
(7a)	$x \cdot x = x$	(7b)	x + x = x		
(8a)	$x \cdot \overline{x} = 0$	(8b)	$x + \overline{x} = 1$		
(9a)	$\overline{\overline{x}} = x$				

Duality principle

- If we have a valid Boolean expression, we can get another valid expression by changing
 - All 0s to 1s and all 1s to 0s
 - All ANDs to ORs and all ORs to ANDs

x_1	x_2	$x_1 \cdot x_2$	x_1	x_2	$x_1 + x_2$
0	0	0	1	1	1
0	1	0	1	0	1
1	0	0	0	1	1
1	1	1	0	0	0

Boolean algebra properties with multiple variables

Räknelagar					
(10a)	$x \cdot y = y \cdot x$	(10b)	x + y = y + x	kommutativ	
(11a)	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	(11b)	x + (y+z) = (x+y) + z	associativ	
(12a)	$x \cdot (y+z) = x \cdot y + x \cdot z$	(12b)	$x + y \cdot z = (x + y) \cdot (x + z)$	distributiv	
(13a)	$x + x \cdot y = x$	(13b)	$x \cdot (x + y) = x$	absorption	
(14a)	$x \cdot y + x \cdot \overline{y} = x$	(14b)	$(x+y)\cdot(x+\overline{y}) = x$		
(15a)	$\overline{x \cdot y} = \overline{x} + \overline{y}$	(15b)	$\overline{x+y} = \overline{x} \cdot \overline{y}$	DeMorgan	
(16a)	$x + \overline{x} \cdot y = x + y$	(16b)	$x \cdot (\overline{x} + y) = x \cdot y$		
(17a)	$x \cdot y + y \cdot z + \overline{x} \cdot z$	(17b)	$(x+y)\cdot(y+z)\cdot(\overline{x}+z)$	consensus	
	$=x\cdot y+\overline{x}\cdot z$		$= (x+y) \cdot (\overline{x}+z)$		

Proof that consensus property holds

17a.
$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$

$$x \cdot y + y \cdot z + \overline{x} \cdot z \quad \text{(left side)}$$

$$= x \cdot y \cdot (z + \overline{z}) + (x + \overline{x}) \cdot y \cdot z + \overline{x} \cdot (y + \overline{y}) \cdot z$$

$$= x \cdot y \cdot z + x \cdot y \cdot \overline{z} + (x \cdot y \cdot z) +$$

Notation options

Different books use different notations

$$\frac{\overline{x}}{x \cdot y} \quad x', !x, /x, \neg x$$
 $\frac{x \cdot y}{x + y} \quad xy, x \wedge y$

Analysis and synthesis

- Synthesis
 - Construction of a logic circuit that implements a given logic function
- Analysis
 - The derivation of the logic function for a given logic circuit

x_1	x_2	$\int f(x_1,x_2)$
0	0	1
0	1	1
1	0	0
1	$1 \mid$	1

x_1	x_2	$f(x_1,x_2)$
0 0 1 1	0 1 0 1	

1. Write down the logic function:

$$f = (\overline{x}_1 \overline{x}_2) + (\overline{x}_1 x_2) + (x_1 x_2)$$

$$f = (\overline{x}_1 \overline{x}_2) + (\overline{x}_1 x_2) + (x_1 x_2)$$

2. Make a direct implementation of the logic function:

2. (Better) Minimize the logic function

$$f = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + x_1 x_2$$

$$= \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \overline{x}_1 x_2 + x_1 x_2 \qquad \text{Add redundant term } \overline{x}_1 x_2 \text{ (7b)}$$

$$= \overline{x}_1 (\overline{x}_2 + x_2) + (\overline{x}_1 + x_1) x_2 \qquad \text{Distributive rule (12a)}$$

$$= \overline{x}_1 \cdot 1 + 1 \cdot x_2 \qquad \text{(8b)}$$

$$= \overline{x}_1 + x_2$$

3. Implement the minimized function

$$f = \overline{x}_1 + x_2$$

Much simpler implementation!

Discussion: Algebraic optimization

- Algebraic optimization of logic expressions can lead to efficient implementations
- But: For larger circuits, it can be very difficult to identify potential optimizations

We need a generic method that works for all logic circuits!

Minterms and Maxterms

 A minterm is a product term of a logic function in which all variables of the logic function are presented.

 A maxterm is a sum term for a logic function in which all variables of the logic function are presented.

Minterms and Maxterms

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}$	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 x_2 \overline{x}_3 \ m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

Introduction to SOPs and POSs

 Describe the following logic function by a Boolean expression

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	
2	0	1	0	0
3	0	1	1	0
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	0

Sum-of-Products (SOPs)

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array}$	0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	$egin{pmatrix} 0 & & & & & & & & & & & & & & & & & & $
7	1	1	$\stackrel{\circ}{1}$	0

$$f = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3 = \sum m(1, 4, 5, 6)$$

Sum-of-Products

- A sum-of-products is a logic expression which is obtained by <u>adding minterms for</u> <u>which f equals to 1</u>
 - Also called disjunctive normal form (DNF)

Product-of-Sums

Row number	$ x_1 $	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	M_0
1	0	0	1	\parallel 1
2	0	1	0	0 M_2
3	0	1	1	M_3
4	1	0	0	1
5	1	0	1	1
6	1	1	0	\parallel 1
7	1	1	1	O M_7

$$f = (x_1 + x_2 + x_3) \cdot (x_1 + \overline{x}_2 + x_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + \overline{x}_3) = \prod M(0, 2, 3, 7)$$

Product-of-Sums

- A product-of-sums is a logic expression which is obtained by multiplying maxterms for which f equals to 0
 - Also called conjunctive normal form (CNF)

Duality: Minterms and Maxterms, SOP and POS

• For each minterm, there is a corresponding maxterm $\overline{m}_i = M_i$

$$M_{0} = \overline{m_{0}} = \overline{\overline{x_{1}} \cdot \overline{x_{2}} \cdot \overline{x_{3}}} = \overline{x_{1}} + x_{2} + x_{3} = x_{1} + x_{2} + x_{3}$$
(by DeMorgan 15a)

For each SOP, there is a corresponding POS

$$f = \sum m(1,4,5,6) = \prod M(0,2,3,7)$$

Logic gates: NAND gate

IEC symbol (International Electrotechnical Commission)

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

$$Y = \overline{A \cdot B}$$

Logic gates: NOR gate

IEC symbol (International Electrotechnical Commission)

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

$$Y = \overline{A + B}$$

Only one gate is needed!

 All Boolean functions can be implemented using only NAND or NOR gates

Illustration of DeMorgan's theorem

Inverter with NAND gates

$$Y = \overline{A} = \overline{A \cdot A}$$

AND gate with NAND gates

OR gate with NAND gates

Implementation of logic functions using only NAND gates

X5

AND-OR function

Universal sets of gates

- A set of gates called universal or functionally complete if all Boolean functions can be implemented using this set
- Examples of universal sets:

```
{AND, OR, NOT} -> (DeMorgan) -> {AND, NOT} -> {NAND}
```

{AND, OR, NOT} -> (DeMorgan) -> {OR, NOT} -> {NOR}

Logic gates: XOR gate (Exclusive OR)

IEC symbol (International Electrotechnical Commission)

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

$$Y = A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

Logic gates: XNOR gate (Exclusive NOR)

IEC symbol (International Electrotechnical Commission)

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

$$Y = \overline{A \oplus B} = \overline{A} \cdot \overline{B} + A \cdot B$$

Example: Three-way light control

Brown/Vranesic: 2.8.1

Suppose that we need to be able to turn on / off the light from three different places.

Viss avvikelse kan förekomma. Skala och mått kan avvika från verkligheten.

X_1	\mathcal{X}_2	x_3	\int
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
		-	

X_1	\mathcal{X}_2	x_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	
1	0	0	1
1	0	1	
1	1	0	
1	1	1	

x_1	\mathcal{X}_2	X_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	
1	1	0	
1	1	1	
			•

x_1	\mathcal{X}_2	x_3	$\int f$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	O	1
1	0	1	0
1	1	0	0
1	1	1	

One should always be able to change the light by changing *any* switch.

The truth table now corresponds with the specifications!

X_1	\mathcal{X}_2	\mathcal{X}_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	↓ 1	1

$$f = \sum m(1,2,4,7) = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

(a) Sum-of-products realization

$$f = \prod M(0,3,5,6) = (x_1 + x_2 + x_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + x_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$$

(b) Product-of-sums realization

Summary

- Logic functions can be described using rules of Boolean algebra
- There are logic gates for many two-variable Boolean functions
- A logic function can be expressed as
 - SOP form (Sum of minterms) or
 - POS form (Product of maxterms)