02_Aufgabenblatt_AlexDixon

02_Aufgabenblatt.pdf

Aufgabe 1

Grammatiken

Gegeben sei die folgende Grammatiken:

$$egin{aligned} G &= (T,\ V,\ S,\ P) \ mit\ T &:= \{a,\ b,\ c,\ d\}, \ V &:= \{S,\ A,\ D,\ M\} \ P &:= \{S
ightarrow AMD\ |\ M,\ A
ightarrow AA\ |\ a,\ D
ightarrow DD\ |\ d,\ M
ightarrow bMc\ |\ \epsilon\} \end{aligned}$$

 $S \rightarrow aMD \rightarrow aMd \rightarrow ad$

 $S \rightarrow M \rightarrow bMc \rightarrow bc$

 $S \rightarrow AMD \rightarrow AAMD \rightarrow aAMD \rightarrow aaMD \rightarrow aaD \rightarrow aad$

$$L=\{w\in\{a,b,c,d\}^*\ |\ (a^xb^yc^yd^z)\}$$

Aufgabe 2

Pumping-Lemma für reguläre Sprachen

Gegeben sei die Sprache $L = \{w \in \{a,b\}^* \mid w \text{ enthält gleich viele a wie b}\}$ Zeigen Sie mit Hilfe des Pumping-Lemmas, dass L nicht regulär ist.

$$egin{aligned} w &= \{a,b\}^m \ |w| \geq m \ w &= xyz, \ y
eq ext{leeres Wort}, \ |xy| \leq m \ x &= a^i \ y &= a^j \ z &= a^{m-i-j}b^m \ y
ightarrow y^2 : a^ja^j &= a^{2j} \ w &= xyyz \ w &= a^i \ a^{2j} \ a^{m-i-j}b^m \ w &= a^{j+m} \ b^m \end{aligned}$$

Da |a| > |b|, liegt w nicht in der Sprache L. Somit ist gezeigt, dass L nicht regulär ist.

q.e.d.

Aufgabe 3

Pumping-Lemma für reguläre Sprachen

$$egin{aligned} wcw^R &= abab\ c\ baba \ &x &= ab \ &y &= abc \ &z &= baba \ &y
ightarrow y^2: y^2 &= abcabc \ &xy^2z &= aba\ abcabc\ baba \end{aligned}$$

 xy^2z liegt nicht in der Sprache L. Somit ist gezeigt, dass L nicht regulär ist. q.e.d.

Aufgabe 4

Gegeben ist die Sprache

$$L = \{w_1w_2 \in \sum * \mid w_1 \in \{a,b\}^*, w_2 \in \{b,c\}^*, \#_aw_1 + \#_bw_1 = \#_bw_2 + \#_cw_2\}$$

für das Alphabet $\sum = \{a,b,c\}$

 $\#_x w$ Häufigkeit des Vorkommens eines Zeichens $x \in \sum$ in einem Wort $w \in \sum *$ an

1. Zeigen Sie, dass L nicht regulär ist.

Pumping-Lemma für reguläre Sprachen

$$w_1 = abab\ bcbc \ x = ab \ y = abb \ z = cbc \ y
ightarrow y^2 : y^2 = abbabb \ w_2 = xy^2z = ab\ abbabb\ cbc \ \#_a w_1 + \#_b w_1 = \#_b w_2 + \#_c w_2 \ 3 + 6
eq 6 + 2$$

 w_2 liegt nicht in der Sprache L. Somit ist gezeigt, dass L nicht regulär ist. q.e.d

2. Geben Sie eine Chomsky-2-Grammatik an, durch die die Sprache L erzeugt werden kann.

Chomsky-Hierarchie

 $egin{aligned} G(T,V,S,P) \ T &= \{a,b,c\} \ V &= \{A,B,C,S\} \ P &= \{S
ightarrow ASB \,|\; \epsilon,\; A
ightarrow a \,|\; b,\; B
ightarrow b \,|\; c\} \end{aligned}$