Об оценке параметров нелинейной регрессии специального вида

Нечаева Мария Леонидовна, 522 группа

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф-м.н., проф. Ермаков С.М. Рецензент: ст.научн.сотр. Солнцев В.Н.

Санкт-Петербург 2007г.

 Задача нелинейной регрессии с одной независимой переменной при отсутствии систематической ошибки:

$$y_j = \eta(x_j|\theta) + \varepsilon_j, \quad x_j \in X, \quad j = 0, \dots, N,$$

- $\eta(x|\theta)$ нелинейная функция на $X \times \Theta$, задана с точностью до набора параметров $\theta \in \Theta$, $(\Theta \subseteq \mathbb{R}^m)$;
- ullet $arepsilon_j, \quad j=0,\ldots,N,$ случайные ошибки измерений.

Требуется оценить неизвестные параметры θ .

• Рассмотрим конкретную модель:

$$\eta(x|\theta) = \eta(x|\lambda,\omega,\alpha,\beta) = \sum_{i=1}^{p} e^{\lambda_i x} (\alpha_i \cos(\omega_i x) + \beta_i \sin(\omega_i x)),$$

$$\lambda = \{\lambda_i\}_{i=1}^p, \quad \omega = \{\omega_i\}_{i=1}^p, \quad \alpha_i = \{\alpha_i\}_{i=1}^p, \quad \beta = \{\beta_i\}_{i=1}^p,$$

$$\theta = \{\lambda, \omega, \alpha, \beta\} - \text{наборы параметров}.$$

Предполагается:

- ullet число слагаемых для $\eta(x| heta): \quad p=1,2;$
- ullet в основном $x_j, \quad j=0,\dots,N,$ равноотстоящие точки из отрезка [0,1];
- $\varepsilon = (\varepsilon_0, \dots, \varepsilon_N)^T : \quad \varepsilon \sim N(0, \sigma^2 I), \quad (\sigma < \infty);$
- $\Theta = \mathbb{R}^{4p}$

$$\hat{\theta} = \left\{ \hat{\lambda}, \; \hat{\omega}, \; \hat{\alpha}, \; \hat{\beta}
ight\} = \arg\min_{\theta \in \Theta} F(\theta)$$
 — оценка МНК,

где
$$F(\theta) = \sum_{j=0}^N \left[y_j - \eta(x_j|\theta) \right]^2$$
 — целевая функция.

Задача:

- исследовать нахождение оценок $\hat{ heta}$ несколькими численными методами;
- рассмотреть зависимость ошибки в оценках от погрешности в измерениях и некоторые статистические свойства этих оценок;
- сравнить некоторые результаты оценок методом "Гусеница"-SSA и МНК при условии отсутствия систематической погрешности.

- Для проведения численных экспериментов используется среда MATLAB.
- Рассматриваются 4 метода минимизации.
- Моделирование исходных данных (p=1):
 - ullet выбор истинного набора параметров $ilde{ heta};$
 - вычисление $\eta(x_j|\tilde{\theta}) = \eta(x_j|\tilde{\lambda},\tilde{\omega},\tilde{\alpha},\tilde{\beta}) = e^{\tilde{\lambda}x_j} \big(\tilde{\alpha}\cos(\tilde{\omega}x_j) + \tilde{\beta}\sin(\tilde{\omega}x_j)\big)\big), \text{ где } x_j = jh, \quad h = \frac{1}{N}, \quad j = 0,\dots,N;$
 - генерация случайного вектора $\varepsilon \sim N(0,I)$ и умножение на различные $\sigma = \sigma(\varepsilon);$
 - ullet вычисление $y_j = \eta(x_j| ilde{ heta}) + arepsilon_j, \quad j = 0, \dots, N.$
- ullet Начальное приближение для методов: $heta_0 = ilde{ heta}$.
- ullet Выбор $ilde{ heta}$:
 - несколько наборов, взятых произвольно;
 - ullet фиксируем $ilde{lpha}=1$, для $ilde{\lambda},\, ilde{\omega},\, ilde{eta}$ берем значения в вершинах куба $[0.5,5]^3$ и случайные точки внутри него.

• Эксперимент: для каждого параметра построение зависимости оценки стандартного отклонения ошибки в оценках параметров $\hat{\sigma}(\theta) = \{\hat{\sigma}(\lambda), \hat{\sigma}(\omega), \hat{\sigma}(\alpha), \hat{\sigma}(\beta)\}$ от стандартного отклонения для случайной ошибки в измерениях $\sigma = \sigma(\varepsilon)$.

Цель эксперимента: исследовать результаты оценки параметров несколькими методами и рассмотреть общий характер зависимости ошибки в оценках от ошибки в измерениях.

- Используемые значения:
 - ullet фиксировано N=50; $x_0=0,\ x_{50}=1,\ x_j=jh,\ h=1/N,\ j=1,\dots,N-1;$
 - значение $\sigma(\varepsilon)$ меняется от 0 до 1 с шагом h=0.01, либо h=0.1, и на эти значения умножается каждый смоделированный вектор случайных ошибок;
 - ullet число повторений для вычисления оценки $\hat{\sigma}(heta)$ M=20.

$$\{\tilde{\lambda} = 3, \tilde{\omega} = 3, \tilde{\alpha} = 1, \tilde{\beta} = 1\}$$

$$\{\tilde{\lambda}=3,\tilde{\omega}=3,\tilde{\alpha}=1,\tilde{\beta}=1\} \qquad \quad \{\tilde{\lambda}=5,\tilde{\omega}=0.5,\tilde{\alpha}=1,\tilde{\beta}=0.5\}$$

- H матрица вторых производных целевой функции $F(\theta)$ по параметрам при $\sigma(\varepsilon)=0$ в точке истинных значений $ilde{ heta};$
- $\lambda_{min}, \, \lambda_{max}$ минимальное и максимальное собственные числа матрицы H;
- ullet $d=\lambda_{min}/\lambda_{max}$ число обусловленности матрицы H.

Результат: у "плохих" наборов параметров число обусловленности много меньше по сравнению с "хорошими" наборами.

"хорошие" наборы					"плохие" наборы				
$\tilde{\lambda}$	$\tilde{\omega}$	$\tilde{\alpha}$	\tilde{eta}	d	$\tilde{\lambda}$	$\tilde{\omega}$	$\tilde{\alpha}$	$ ilde{eta}$	d
2	3	1	4	$0.34 \cdot 10^{-3}$	1	1	1	1	$0.12 \cdot 10^{-5}$
3	3	1	1	$0.39 \cdot 10^{-3}$	0.5	0.5	1	5	$0.53 \cdot 10^{-7}$
5	5	1	0.5	$0.27 \cdot 10^{-3}$	0.3	2	1	3	$0.32 \cdot 10^{-5}$
0.5	5	1	5	$0.72 \cdot 10^{-2}$	4.3	1.4	1	1.1	$0.45 \cdot 10^{-5}$
8.0	4.4	1	2.6	$0.13 \cdot 10^{-1}$	5	0.5	1	5	$0.15 \cdot 10^{-8}$
0.5	5	1	5	$0.72 \cdot 10^{-3}$	1.7	8.0	1	0.9	$0.29 \cdot 10^{-5}$

- При $\varepsilon \backsim N(0, \sigma^2 I)$ оценки МНК являются эффективными, асимптотически состоятельными и нормальными.
- ullet Эксперимент: при различных значениях $\sigma(arepsilon)$ и N для некоторых параметров
 - построены гистограммы одномерных распределений ошибок в оценках параметров;
 - вычислена оценка смещения оценок МНК;
 - оценена матрица ковариаций вектора погрешности в оценках.
- Используемые значения:
 - рассмотрено N = 5, 10, 50;
 - значение $\sigma(\varepsilon) = 0.01, \ 0.1, \ 0.2, \ 0.5, \ 1;$
 - ullet фиксировано M=150- объем выборки оценок.

• В случае равноотстоящих точек x_j , $j=0,\dots,N$ функция $\eta(x|\theta)$ удовлетворяет уравнению:

$$\eta(x_j|\theta) = a\eta(x_{j-1}|\theta) + b\eta(x_{j-2}|\theta), \ j = 2,\dots, N.$$

- ullet Исходный временной ряд $Y=(y_0,\ldots,y_N).$
- Эксперимент: метод "Гусеница"-SSA
 - выбираем L (1 < L < N+1); строим матрицу вложения X;
 - λ_i с. ч., U_i с. в. матрицы $\mathbb{X}\mathbb{X}^{\mathrm{T}},\ i=1,\ldots,L,$ $\lambda_1\geq\ldots\geq\lambda_L\geq0,\quad d=\max\{i:\lambda_i>0\},$ $\mathbb{X}=\sum_{i=1}^d\sqrt{\lambda_i}U_iV_i^{\mathrm{T}}$ SVD-разложение матрицы \mathbb{X} ;
 - ullet берем матрицу $\hat{\mathbb{X}} = \sqrt{\lambda_1} U_1 V_1^{\mathrm{T}} + \sqrt{\lambda_2} U_2 V_2^{\mathrm{T}}$;
 - ullet $\hat{Y}=(\hat{y}_0,\ldots,\hat{y}_N)$ ряд, полученный после диагонального усреднения матрицы $\hat{\mathbb{X}}$.

MHK

- находим $\hat{\theta} = \{\hat{\lambda}, \hat{\omega}, \hat{\alpha}, \hat{\beta}\}$ оценку $\theta = \{\lambda, \omega, \alpha, \beta\}$;
- ullet вычисляем $(\hat{\eta}_0,\dots,\hat{\eta}_N)$:

$$\hat{\eta}_j = \eta(x_j|\hat{\theta}) = e^{\hat{\lambda}x_j} \left(\hat{\alpha}\cos(\hat{\omega}x_j) + \hat{\beta}\sin(\hat{\omega}x_j) \right).$$

- Используемые значения:
 - фиксировано N = 50, L = 25;
 - ullet значение $\sigma=\sigma(arepsilon)$ меняется от 0 до 2 с шагом h=0.1;
 - ullet число повторений эксперимента M=20.
- ullet Для оценок $(\hat{y}_0^{i,\sigma},\ldots,\hat{y}_N^{i,\sigma})$ и $(\hat{\eta}_0^{i,\sigma},\ldots,\hat{\eta}_N^{i,\sigma})$ вычисляются:
 - ullet отклонения от истинных значений в каждой точке $(j=0,\dots,N)$

$$res_j^{\sigma} S = \frac{1}{M} \sum_{i=1}^{M} (\hat{y}_j^{i,\sigma} - \eta(x_i | \tilde{\theta})),$$

$$res_j^{\sigma} M = \frac{1}{M} \sum_{i=1}^{M} (\hat{\eta}_j^{i,\sigma} - \eta(x_j | \tilde{\theta}));$$

• средняя сумма квадратов отклонений от истинных значений

$$res^{\sigma}S = \frac{1}{M} \sum_{i=1}^{M} \left[\frac{1}{N} \sum_{j=1}^{N} (\hat{y}_{j}^{i,\sigma} - \eta(x_{j}|\tilde{\theta}))^{2} \right],$$

$$res^{\sigma} M = \frac{1}{M} \sum_{i=1}^{M} \left[\frac{1}{N} \sum_{j=1}^{N} (\hat{\eta}_{j}^{i,\sigma} - \eta(x_{j}|\tilde{\theta}))^{2} \right].$$

$$\{\tilde{\lambda}=0.5,\ \tilde{\omega}=7,\ \tilde{\alpha}=1,\ \tilde{\beta}=5\}$$

ullet вид ряда и отклонения в каждой точке $(\sigma(arepsilon)=1)$:

• зависимость средней суммы квадратов отклонений от истинных значений от $\sigma(arepsilon)$:

- ullet Оценки МНК можно строить, когда точки $x_j \in [a,b]$, $j=0,\ldots,N$ не являются равноотстоящими.
- Исходные данные: на сетке из равноотстоящих точек $x_j \in [0,1], \ j=0,\dots,N$ "выкидываем" часть значений x_p,\dots,x_{p+k} (пропущенные наблюдения) и моделируем значения $y_0,\dots,y_p,y_{p+k},\dots,y_N.$
- ullet Вид ряда для $\{ ilde{\lambda}=2, ilde{\omega}=3, ilde{lpha}=1, ilde{eta}=4\}$ (выделен промежуток пропущенных точек, $p=25,\,k=10$):

Зависимость погрешности в оценке неизвестных параметров от ошибки в измерениях для модели без пропусков (синим) и при наличии пропущенных наблюдений (красным):

Результат: с увеличением числа пропущенных наблюдений ошибка растет.

Численные эксперименты в работе позволяют сделать выводы:

- методы, предлагаемые пакетом MATLAB, позволяют достаточно уверенно находить оценки МНК, когда матрица H хорошо обусловлена (число обусловленности не ниже порядка 10^{-3}), иначе требуется оптимизация методов;
- удалось проследить зависимость ошибок в оценках от ошибок в исходных данных; установлено, что оценки МНК нормальны при сравнительно небольшом числе наблюдений;
- при сравнении результатов отделения сигнала от шума методом "Гусеница"-SSA и восстановления регрессии с помощью МНК отмечено, что МНК дает меньшее отклонение от истинного значения, и это различие растет с ростом σ ;
- когда из равноотстоящих точек часть наблюдений пропущены, методы также работают, но ошибка в оценках, безусловно, увеличивается и зависит от положения пропущенных точек.

