Chapter 46 Déterminant d'une matrice carrée

46.1 Déterminant d'une matrice carrée

Exercice 46.1

En développant selon une ligne ou une colonne bien choisie, calculer les déterminants suivants.

$$\begin{array}{c|cccc}
\mathbf{1.} & 5 & 2 & -4 \\
-3 & 1 & 1 \\
-1 & 7 & 2
\end{array},$$

$$\begin{array}{c|ccccc}
\mathbf{2.} & 1 & 23 & 6 & -15 \\
2 & 5 & 0 & 1 \\
1 & 4 & 0 & 3 \\
0 & 1 & 0 & 1
\end{array},$$

Exercice 46.2

Soit $w \in \mathbb{R}$ et B la matrice

$$B = \begin{pmatrix} 2 & 1 & w \\ 3 & 4 & -1 \\ 1 & -2 & 7 \end{pmatrix}.$$

Déterminer les valeurs de w telles que det B = 0.

Exercice 46.3 *Matrices à petits coefficients*

Soit $n \ge 1$ et $A = (a_{i,i}) \in \mathcal{M}_n(\mathbb{R})$ vérifiant les deux conditions suivantes:

•
$$\forall (i,j) \in [[1,n]]^2, a_{i,j} \in [0,1[.$$

•
$$\forall i \in [[1, n]], \sum_{k=1}^{n} a_{i,k} \leq 1.$$

Démontrer que $|\det(A)| < 1$.

Exercice 46.4

Calculer les déterminants suivants.

1.
$$\begin{vmatrix} 5 & -3 & 13 \\ 0 & -1 & -16 \\ 0 & 0 & 2 \end{vmatrix}$$
 3. $\begin{vmatrix} 7 & 10 & 3 \\ 30 & 38 & 12 \\ 37 & 50 & 15 \end{vmatrix}$
 5. $\begin{vmatrix} 1 & 3 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 1 \end{vmatrix}$

 2. $\begin{vmatrix} 84 & 8 & 4 \\ 35 & 3 & 5 \\ 62 & 6 & 2 \end{vmatrix}$
 4. $\begin{vmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \\ 2 & 1 & -1 \end{vmatrix}$
 6. $\begin{vmatrix} 1 & 1 & 1 \\ 3 & 3 & 2 \\ 2 & 3 & 1 \end{vmatrix}$

2.
$$\begin{vmatrix} 84 & 8 & 4 \\ 35 & 3 & 5 \\ 62 & 6 & 2 \end{vmatrix}$$
.

3.
$$\begin{vmatrix} 7 & 10 & 3 \\ 30 & 38 & 12 \\ 37 & 50 & 15 \end{vmatrix}$$

$$\begin{array}{c|cccc}
\mathbf{4.} & 1 & -1 & 2 \\
0 & 1 & 3 \\
2 & 1 & -1
\end{array}$$

5.
$$\begin{vmatrix} 1 & 3 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 1 \end{vmatrix}$$

6.
$$\begin{vmatrix} 1 & 1 & 1 \\ 3 & 3 & 2 \\ 2 & 3 & 1 \end{vmatrix}$$

Évaluer le déterminant ci-dessous en utilisant des opérations élémentaires sur les lignes pour simplifier vos calculs.

$$\begin{vmatrix}
5 & 2 & -4 & -2 \\
-3 & 1 & 5 & 1 \\
-4 & 3 & 1 & 3 \\
2 & 1 & -1 & 1
\end{vmatrix}$$

Vérifier le résultat de votre calcul en utilisant cette fois des opérations élémentaires sur les colonnes.

Exercice 46.6 *Dérivation d'un déterminant*

Soit I un intervalle de \mathbb{R} . On considère un déterminant Δ d'ordre 3 dont les neuf coefficients sont des fonctions $a_{i,j}$ dérivables sur I:

$$\forall x \in I, \Delta(x) = \begin{vmatrix} a_{1,1}(x) & a_{1,2}(x) & a_{1,3}(x) \\ a_{2,1}(x) & a_{2,2}(x) & a_{2,3}(x) \\ a_{3,1}(x) & a_{3,2}(x) & a_{3,3}(x) \end{vmatrix}.$$

548

1. Montrer que Δ est dérivable en tout point $x \in I$ et que

$$\forall x \in I, \Delta'(x) = \begin{vmatrix} a'_{1,1}(x) & a_{1,2}(x) & a_{1,3}(x) \\ a'_{2,1}(x) & a_{2,2}(x) & a_{2,3}(x) \\ a'_{3,1}(x) & a_{3,2}(x) & a_{3,3}(x) \end{vmatrix} + \begin{vmatrix} a_{1,1}(x) & a'_{1,2}(x) & a_{1,3}(x) \\ a_{2,1}(x) & a'_{2,2}(x) & a_{2,3}(x) \\ a_{3,1}(x) & a'_{3,2}(x) & a_{3,3}(x) \end{vmatrix} + \begin{vmatrix} a_{1,1}(x) & a_{1,2}(x) & a'_{1,3}(x) \\ a_{2,1}(x) & a_{2,2}(x) & a'_{2,3}(x) \\ a_{3,1}(x) & a'_{3,2}(x) & a'_{3,3}(x) \end{vmatrix} + \begin{vmatrix} a_{1,1}(x) & a_{1,2}(x) & a'_{1,3}(x) \\ a_{2,1}(x) & a_{2,2}(x) & a'_{2,3}(x) \\ a_{3,1}(x) & a_{3,2}(x) & a'_{3,3}(x) \end{vmatrix}.$$

2. Sans aucun calcul de déterminant, montrer que le déterminant suivant est indépendant de x

$$\Delta(x) = \begin{vmatrix} \cosh(x+1) & \sinh(x+1) & -4 \\ \cosh(x+2) & \sinh(x+2) & -4 \\ \cosh(x+3) & \sinh(x+3) & -4 \end{vmatrix}.$$

Donner sa valeur.

Exercice 46.7

Prouver l'identité suivante

$$\begin{vmatrix} x & a & b & c \\ a & x & c & b \\ b & c & x & a \\ c & b & a & x \end{vmatrix} = (x + a + b + c)(x + a - b - c)(x - a + b - c)(x - a - b + c).$$

Exercice 46.8

Soit $(x, a, b, c) \in \mathbb{R}^4$. Calculer les déterminants suivants en présentant, si possible, les résultats sous forme factorisée.

1.
$$\begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix}$$
 2. $\begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix}$

Exercice 46.9

Pour $(a, b, c) \in \mathbb{R}^3$, donner une forme factorisée du déterminant

$$\begin{vmatrix} a & c & c & b \\ c & a & b & c \\ c & b & a & c \\ b & c & c & a \end{vmatrix}.$$

Exercice 46.10

Soit $(a, b, c, d) \in \mathbb{R}^4$. Calculer en mettant en évidence la factorisation

1.
$$\begin{vmatrix} 1 & 1 & 1 \\ a+b & c+a & b+c \\ ab & ca & bc \end{vmatrix}$$
2.
$$\begin{vmatrix} 2a & 2a & a-b-c \\ 2b & b-c-a & 2b \\ c-a-b & 2c & 2c \end{vmatrix}$$

Exercice 46.11

Soit $(a, b, c) \in \mathbb{R}^3$. Calculer en mettant en évidence la factorisation

1.
$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}.$$

3.
$$\stackrel{\text{(1)}}{\rightleftharpoons} \begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 & (c+a)^2 & c^2 \\ a^2 & b^2 & (a+b)^2 \end{vmatrix}$$
.

$$\mathbf{2.} \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & a^2 & b^2 \\ 1 & a^2 & 0 & c^2 \\ 1 & b^2 & c^2 & 0 \end{vmatrix}.$$

Exercice 46.12 Déterminant et suites récurrentes linéaire

Soient a et b deux réels distincts et non nuls. Pour tout $n \ge 1$, on considère le déterminant de taille n

$$\Delta_n = \begin{vmatrix} a+b & ab & 0 & \cdots & 0 \\ 1 & a+b & ab & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & ab \\ 0 & \cdots & 0 & 1 & a+b \end{vmatrix}.$$

- Déterminer une relation entre Δ_n , Δ_{n+1} et Δ_{n+2} .
- Donner l'expression de Δ_n en fonction de n.

Exercice 46.13

Soit $\varphi \in \mathbb{R}$, tel que $\sin \varphi$ soit non nul. On note A_n la matrice de $\mathcal{M}_n(\mathbb{R})$ de coefficients $a_{i,j}$ avec $a_{i,i} = 2\cos \varphi$ pour $1 \le i \le n$, $a_{i,i+1} = a_{i+1,i} = 1$ pour $1 \le i < n$ et $a_{i,j} = 0$ sinon. On pose $D_n = \det A_n$.

Établir une formule de récurrence entre D_n, D_{n-1} et D_{n-2} pour $n \ge 3$. En déduire

$$\forall n \geq 1, D_n = \frac{\sin(n+1)\varphi}{\sin \varphi}.$$

Exercice 46.14

Soit $a \in \mathbb{C}^*$. Calculer, pour $n \in \mathbb{N}^*$, le déterminant $n \times n$

$$D_{n} = \begin{vmatrix} 2a & a & 0 & \cdots & \cdots & 0 \\ a & 2a & a & \ddots & & \vdots \\ 0 & a & 2a & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & a & 2a & a \\ 0 & \cdots & \cdots & 0 & a & 2a \end{vmatrix}$$

Exercice 46.15 Oral CCINP PC 2023

Pour $n \in \mathbb{N}^*$, soit

$$\Delta_n = \begin{vmatrix} 3 & 1 & 0 & \cdots & \cdots & 0 \\ 2 & 3 & 1 & \ddots & & \vdots \\ 0 & 2 & 3 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 3 & 1 \\ 0 & \cdots & \cdots & 0 & 2 & 3 \end{vmatrix}$$
 (matrice tridiagonale de $\mathcal{M}_n(\mathbb{R})$).

- 1. Trouver une relation de récurrence vérifiée par la suite (Δ_n) .
- **2.** En déduire une expression de Δ_n en fonction de n.

Exercice 46.16 *Oral IMT MP 2023*

Calculer

- 1. Trouver une relation de récurrence vérifiée par la suite (Δ_n) .
- **2.** En déduire une expression de Δ_n en fonction de n.

Exercice 46.17 Déterminant de Vandermonde

Pour $n \ge 2$ et $(a_1, \dots, a_n) \in \mathbb{K}^n$, on définit le déterminant de Vandermonde

$$V_n(a_1,\ldots,a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{vmatrix}.$$

- **1.** Calculer $V_2(a_1, a_2)$ et $V_3(a_1, a_2, a_3)$ sous forme factorisée.
- **2.** On suppose que a_2 , a_3 et a_4 sont deux à deux distincts, et on considère

$$f: \mathbb{K} \to \mathbb{K}, x \mapsto V_4(x, a_2, a_3, a_4).$$

- Montrer que f est une fonction polynômiale de degré 3 et déterminer le coefficient du terme de degré 3.
- Montrer que f s'annule en a_2 , a_3 et a_4 .
- En déduire une expression factorisée de $V_4(a_1, a_2, a_3, a_4)$.
- **3.** Calculer $V_n(a_1, \ldots, a_n)$ sous forme factorisée pour tout n.

Déterminants

46.2 Applications bilinéaires

46.3 Applications multilinéaires

Exercice 46.18

Soit $n \in \mathbb{N}$. Montrer que l'application φ suivante est une forme trilinéaire

$$\varphi: \left(\mathbb{R}_n[X]\right)^3 \to \mathbb{R}$$

$$(P, Q, R) \mapsto \left(\sum_{k=0}^{10} P(k)\right) \times Q'(2) \times \int_0^1 R(t) \, \mathrm{d}t$$

46.4 Déterminant d'une famille de vecteurs relativement à une base

Exercice 46.19

Soit E un espace vectoriel de dimension 3, rapporté à une base B. Prouver que quels que soient les vecteurs u, v, w,

$$\det_{\mathcal{B}}(u+v,v+w,w+u) = 2\det_{\mathcal{B}}(u,v,w).$$

Exercice 46.20 Application du déterminant de Vandermonde

Soit m < n deux entiers naturels, P_1, \ldots, P_n des polynômes de $\mathbb{R}_m[X]$ et (a_1, \ldots, a_n) des réels.

1. Calculer

$$\begin{vmatrix} P_{1}(a_{1}) & \cdots & P_{1}(a_{n}) \\ P_{2}(a_{1}) & \cdots & P_{2}(a_{n}) \\ \vdots & & \vdots \\ P_{n}(a_{1}) & \cdots & P_{n}(a_{n}) \end{vmatrix}.$$

À quelle condition le déterminant est-il non nul?

2. En déduire pour m < n, la valeur de

$$\begin{vmatrix} 1^{m} & 2^{m} & \cdots & n^{m} \\ 2^{m} & 3^{m} & \cdots & (n+1)^{m} \\ \vdots & & \vdots & \\ n^{m} & (n+1)^{m} & \cdots & (2n-1)^{m} \end{vmatrix}.$$

Exercice 46.21

Déterminer selon le paramètre réel α si la famille de vecteurs de \mathbb{R}^3 suivante est libre ou liée:

$$a = (4, -1, 3),$$
 $b = (2, 2, 1),$ $c = (\alpha, 1, \alpha - 2).$

Exercice 46.22

Soit E un \mathbb{K} -espace vectoriel de dimension 3 dont on considère un base $e = (e_1, e_2, e_3)$. Pour quelles valeurs de $\lambda \in \mathbb{K}$, la famille $(e_1 + \lambda e_2, e_2 + \lambda e_3, e_3 + \lambda e_1)$ est-elle une base de E?

46.5 Déterminant d'un endomorphisme

Exercice 46.23

Calculer les déterminants des endomorphismes de $\mathbb{R}_2[X]$ suivants :

1.
$$P(X) \mapsto P(X+1)$$

3. $P \mapsto P(2) + P(1)X + P(0)X^2$ 4. $P \mapsto (X^2 - 1)P' - 2(X + 3)P$

2.
$$P \mapsto (X+1)P' + P$$

4.
$$P \mapsto (X^2 - 1)P' - 2(X + 3)P$$

Exercice 46.24

Pour tout $P \in \mathbb{R}_2[X]$, on note f(P) le polynôme donné par

$$\forall x \in \mathbb{R}, \widetilde{f(P)}(x) = \int_{x}^{x+1} \widetilde{P}(t) dt.$$

Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$ puis calculer son déterminant.

Exercice 46.25 *Oral CCP MP 2015*

Soient E un \mathbb{R} -espace vectoriel de dimension 3 et $f \in \mathcal{L}(E) \setminus \{0\}$ tel que $f^3 + f = 0$.

- 1. Soit $x \in E$. Démontrer que si x = y + z où $y \in \ker f$ et $z \in \ker(f^2 + \operatorname{Id})$ alors $y = x + f^2(x)$ et $z = -f^2(x).$
- **2.** Montrer que $E = \ker f \oplus \ker(f^2 + \operatorname{Id})$.
- **3.** Prouver que dim $\ker(f^2 + \operatorname{Id}) \ge 1$. Montrer que, si $x \in \ker(f^2 + \operatorname{Id}) \setminus \{0\}$, alors (x, f(x)) est une famille libre de ker $(f^2 + Id)$.
- **4.** Que vaut det(-Id)? En déduire que $dim \ker(f^2 + Id) = 2$.
- **5.** Déterminer une base \mathcal{B} de E dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

46.6 Applications aux déterminants de matrices

Exercice 46.26

Soit A une matrice (3,3) telle que det A = 7.

Déterminer det(2A), $det(A^2)$, $det(2A^{-1})$ et $det((2A)^{-1})$.

Exercice 46.27 Factorisation d'un déterminant circulant

Soit $a, b, c \in \mathbb{C}$. On considère les deux matrices U et V de $\mathcal{M}_3(\mathbb{C})$ définies par

$$U = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$
 et
$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}.$$

- 1. Calculer le produit UV.
- **2.** Calculer det(UV) en le mettant sous la forme

$$\det(UV) = P(1)P(j)P(j^2)\det(V).$$

où
$$P(x) = a + bx + cx^2$$
.

3. En déduire une factorisation complexe de det(U).

Exercice 46.28

Pour quelles valeurs de λ la matrice

$$A = \begin{pmatrix} 7 - \lambda & -15 \\ 2 & -4 - \lambda \end{pmatrix}$$

n'est pas inversible?

Exercice 46.29

On considère la matrice A définie par

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

- 1. Déterminer l'ensemble Γ de tous les réels λ tels que $A \lambda I_3$ n'est pas inversible.
- **2.** Soit $\lambda \in \mathbb{R}$. Résoudre l'équation

$$AX = \lambda X \iff (A - \lambda I_3)X = 0$$

d'inconnue $X \in \mathcal{M}_{3,1}(\mathbb{R})$.

Exercice 46.30 Une famille de matrices inversibles

Soient $A \in \operatorname{GL}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$.

Démontrer qu'il existe $\alpha > 0$ tel que

$$\forall x \in]-\alpha, \alpha[, A + xB \in \mathbf{GL}_n(\mathbb{R}).$$

Exercice 46.31

Soit *u* l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $e = (e_1, e_2, e_3)$ est

$$A = \frac{1}{4} \begin{pmatrix} 5 & 3 & -6 \\ -9 & -7 & 6 \\ -9 & -3 & 2 \end{pmatrix}.$$

- 1. Pour quelles valeurs du réel λ la matrice $A \lambda I_3$ n'est-elle pas inversible ?
- 2. Pour chacune des valeurs trouvées à la question précédente, déterminer le sous-espace vectoriel $\ker(u \lambda \operatorname{Id}_{\mathbb{R}^3})$.
- **3.** En déduire une base e' de \mathbb{R}^3 dans laquelle la matrice D de u soit une matrice diagonale puis exprimer le lien entre A et D.

Exercice 46.32

On note u l'endomorphisme canoniquement associé à

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 4 \end{pmatrix}.$$

- 1. Déterminer les droites vectorielles de \mathbb{R}^3 stables par u. En déduire une base relativement à laquelle la matrice de u est diagonale.
- **2.** Résoudre dans $\mathcal{M}_3(\mathbb{R})$ l'équation $M^2 = A$.

Exercice 46.33

Soient $\alpha_1, \dots, \alpha_n$ des réels et A la matrice de coefficient général $a_{i,j} = \sin(\alpha_i + \alpha_j)$. Montrer que det A = 0 si $n \ge 3$. Qu'en est-il pour n = 2?

46.7 Comatrice

Exercice 46.34 Matrices à coefficients entiers et inversibilité

Soit $M \in \mathcal{M}_n(\mathbb{Z})$ une matrice dont tous les coefficients sont dans \mathbb{Z} .

Déterminer une condition nécessaire et suffisante pour que M soit inversible et que son inverse ait tous ses coefficients dans \mathbb{Z} .

Exercice 46.35

Soient des matrices $A, B \in \mathcal{M}_n(\mathbb{Z})$ tels que $\det(A)$ et $\det(B)$ soient premiers entre eux. Montrer l'existence de $U, V \in \mathcal{M}_n(\mathbb{Z})$ telles que

$$UA + VB = I_n$$
.

Compléments

46.8 Formules de Cramer

Exercice 46.36

Résoudre les systèmes linéaires suivants par la méthode du pivot de Gauß puis à l'aide des formules de Cramer.

1.
$$\begin{cases} x - 2y = 5 \\ 2x + 3y = -2 \end{cases}$$
 2.
$$\begin{cases} 2x + 3y + z = 4 \\ x + y - 2z = 1 \\ 4x + 4y + z = 1 \end{cases}$$

Exercice 46.37

1. Pour tout $(a, b, c) \in \mathbb{R}^3$, calculer le déterminant de Vandermonde

$$V(a,b,c) = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}.$$

2. Soit $(a,b,c,d) \in \mathbb{R}^4$ avec a,b,c deux à deux distincts. Résoudre le système

$$\begin{cases} x + y + z = 1 \\ ax + by + cz = d \\ a^{2}x + b^{2}y + c^{2}z = d^{2} \end{cases}$$
 (S)