EVAPORATING, CONDENSING

AND

COOLING APPARATUS

EXPLANATIONS, FORMULÆ AND TABLES FOR USE IN PRACTICE

By.

E. HAUSBRAND

CHIEF ENGINEER FOW C. HECKMANN, BERLIN AUTHOR OF "DRYING BY MEANS OF AIR AND STEAM." ETC.

TRANSLATED FROM THE SECOND, REVISED GERMAN EDITION BY
A. C. WRIGHT, M.A. (OXON.), B.Sc. (LOND.)
FORMERLY ASSISTANT LECTURES AND DEMONSTRATOR IN CHEMISTRY AT THE YORKSHIRE
COLLEGE, LEEDS

WITH TWENTY-ONE ILLUSTRATIONS AND SEVENTY SIX TABLES
THIRD ENGLISH EDITION

LONDON
SCOTT, GREENWOOD & SON
8 BROADWAY, LUDGATE, E.C. 4
1919

[The sale righ) of translation into English rests with the above firm]

First English Edition, 1903. Reset and Reprinted, October, 1908. Second English Edition, Revised, 1916. Third English Edition, Reprinted 1919.

PREFACE TO THE FIRST GERMAN EDITION

The problems which are to be solved in the construction of apparatus for evaporating, condensing and cooling, are intimately connected with the laws of the transfer of heat. Although, generally speaking, these physical laws can be regarded as known, yet reliable knowledge of the practical coefficients, applicable in each of the many different cases, is often wanting. Without these coefficients the constructing engineer cannot work. Numberless experiments have been conducted by more or less competent observers to supply this want, but their results are scattered through the literature, were often obtained only for very special cases, and occasionally without regard to all the prevailing conditions. Many have been kept secret by their discoverers as valuable prizes.

The very excellent work published by Professor Molier at instance of the Verein deutscher Ingenieure in the Zeitschrift des Vereines deutscher Ingenieure; 1897, Nos. 6 and 7, in which the present condition of our knowledge of these relations is very clearly displayed, does not give figures directly applicable in practice, which indeed was not its object.

For this purpose new experiments on the large scale are necessary, which shall take into consideration all the working conditions, and, in particular the absolute dimensions of the heating surfaces. Recently the Verein deutscher Ingenieure has turned its attention to this question. Its competence and ample funds permit us to anticipate the best success.

In the construction of evaporating and cooling apparatus other questions arise, which at present cannot be answered by a knowledge of the processes based on accurate and many-sided researches—for example, as to the pressures exerted by rarefred and compressed gasses and vapours on floating drops, the resistance due to the friction of rarefied vapours in wide pipes, etc.

It is very desirable that these gaps should at once be filled by orderly and reliable researches available for the requirements of the whole industry.

But before these wishes can be fulfilled, all varieties of apparatus of this order must be built, and since to the author's knowledge there is no book in which, so far as it is possible, most of the questions and conditions relating to evaporation (in particular, the chief dimensions of the apparatus and the efficiency to be anticipated) are treated in a connected manner for practical purposes, an attempt to supply the deficiency has been made in the following pages.

In this task the generally available material, also very valuable communications from well-disposed friend, and, finally, the experience and experimental results of long practice, have been employed.

It lies in the nature of the circumstances indicated above that much of these explanations must have a hypothetical character, which the friendly reader must remember.

Lack of time will often prevent an engineer who is not quite at home in this branch from seeking, by a long study of the literature, the examples which are at once required, and from making long calculations. On this account, wherever it appeared advisable, tables have been introduced, which contain easily ascertained answers to certain definite questions arising from many cases. These tables also have the advantage of affording a clear insight into the alterations produced by variations in the data of the problem, which advantage constructors know well how to prize.

In view of the extreme variety of the apparatus and machines used in the industry, the constant and rapid changes of its requirements, and also its rapid progress, a complete treatment of all possible cases cannot well be attained.

The constant motive in writing this treatise has been the desire to provide as complete and reliable assistance as possible

for the solution of the problems of the construction and working of apparatus for eyaporating, condensing and cooling. If this desire has not been quite fulfilled, the book will perhaps be regarded as a useful foundation for further endeavours.

There now remains the pleasant duty of explessing thanks to all the friends who have helped to enrich the contents of this work by communicating the results of experience, and to the publisher for the worthy appearance of the book.

THE AUTHOR.

Berlin, August, 1899.

PREFACE TO THE SECOND GERMAN EDITION

A SECOND edition of this work has become necessary in so short a time after the appearance of the first, that there has been no opportunity for extensive alterations.

Apart from small corrections, which arise in part from friendly criticisms, the present edition is an unaltered, reprint of the first. May this also participate in the favourable reception offered to the former.

THE AUTHOR.

BERLIN, April, 1900:

TRANSLATOR'S PREFACE.

The need for a book of this nature, which is sufficiently indicated in the author's preface, is perhaps not less in England than in Germany. It may therefore be permissible to hope that the translation will approach the success of the original. A number of misprints contained in the German edition have been removed and the proof-sheets have been submitted to the author, who has made certain additions and corrections. I trust therefore that the book may be found reliable and accurate.

A. C. WRIGHT.

December, 1902.

PREFACE TO THE SECOND ENGLISH EDITION.

A NUMBER of arithmetical and printers' errors have been corrected and conversion diagrams have been appended by means of which the quantities in metric units may be readily converted into British units. In using the tables given in this book for practical problems, it should be remembered that in many of the tables a larger number of significant figures is given than the formulæ upon which they are based can justify; in most practical calculations three significant figures are all that can be relied upon and that should be employed.

October, 1916

TABLE OF CONTENTS.

															PAGE
refaces														H	i-vii
ist of T							٠.		. •	,		٠.			XV
o mpa ri	son of	Metr	ic aı	nd B	ritis	h Sy	stems	of W	eight	s and	l Mea	sures			xix
lo mpar i	son of	Centi	grac	le ar	ad F	hre	nheit	Then	nome	ters	·	•			xix
ist of S	ymbol	s and	Cor	trac	tion	з.		• ,	. ^						XX
HAPTER															
1.	The C	Doeffi	cier	t of	f Tr	ansı	nissi	on of	Hea	t. k	and	the	Me	an	
		Tem							•		•			•	1
								Figs.	1-4		•.				4
		inite							. '					•.	7
11.	Paral								ble 2	. Fig	. 5				g
	Appa														12
								els, Ta							14
								k_l , T				•			16
IV.	The I														18
	Super														21
						t in	Supe	heati	ng. T	able :	5.			:	22
								team,							20
								heate			and	8.		į.	24
		he Co												·	24
VI.	Evapo								ahin						26
	The I									ind 1	Fran	afara:	nce '	h v	-
								am i						~,	28
	C							assist				ce of 1	Heat		29
								team,							80
								1 088 0			ıl Wa	ll. Ta	bles	18	
		and :													86
VIII.	The I	'rans	fere	nce	of :	Hea:	t fro	m Sa	tura	ted 8	Stes:	m in	Pin	et.	-
							Bott								• 39
	A	. Stee					.,				·	1	•	Ţ	88
				-	•		of Tr	ansmi	ggion	ŀ	in '	Evano	enti.	net.	
				ble				,		, ,,,,		штаро		ч,	40
		,				iva '	Effici	oncy o	of Cor	nar	Pines	Tabl	; 18	•	42
								smiss					. 10	•	4:
			- 46	~~ a	**0101	79 OI	TION	POTT 199	, //	4, 51	-100	· · · · · ·		•	70

.

CHAPTER		PAGB
VIII.	B. The Dimensions of Steam Tubes (Coils)	45
	The Weight of Steam which passes through Valves in	
	one hour	49
	C. Double Bottoms and Wide Jackets	53
	Their Transmission of Heat to Boiling Liquids, and to	54
	Liquids which do not Boil	55
IX.	Evaporation in a Vacuum	56
	Lowering of the Boiling Point, Table 15	59
	The Transference of Heat	60
Ÿ.	The Multiple Effect Evaporator	62
	A. The Evaporative Capacity of Each Vessel, Figs. 7 and 8	63
	The Consumption of Steam in Each Vessel, Figs. 9 and	•
	10,	67
	The Rise in the Boiling Point of the Lower Layers of	0,
	Evaporating Liquids, Table 16	72
	The Steam Evolved in Each Vessel, Table 17	76
	B. The Percentage of Dry Material in the Liquid in Each	10
	**	88
Vī	· · · · · · · · · · · · · · · · · · ·	
Δ1.	Multiple Effect Evaporators, from which Extra Steam is taken	0.5
	takeň	95 96
	B. The Strength of the Liquid in Each Vessel, Tables 20 and 21	101
wir		101
VII.	The Weight of Water which must be Evaporated from 100	
	kilos. of Liquor in order to bring its Original Per-	
	*centage of Solids from 1-25 per cent. up to 20-70 per	100
*****	cent., Table 22	109
XIII.	The Relative Proportions of the Heating Surfaces in the	
	Elements of the Multiple Evaporator and their Real	
	Dimensions	111
XIV.	The Pressure Exected upon Floating Drops of Water by	
	Currents of Steam and Air, Table 23	117
XV.	The Motion of Floating Drops of Water, upon which Press	
	Currents of Steam	122
	A. Vertical Currents of Steam upon Falling Drops	122
	B. Horizontal or Inclined Steam Currents Meet Falling Drops,	
	Fig. 12, Table 24	125
	C. A Vertical Current of Steam Meets a Drop Thrown Obliquely,	
	Fig. 13, Table 25	128
XVI.	The Splashing of Evaporating Liquids	132
	A. The Height to which the Splashes Rise when the Current of	
	Steam acts on them	132
	B. The Height to which the Splashes Rise when the Current of	
	Steam does not act on them	184
	 Steam Heaters, with Vertical Heating Tubes, Table 26, 	
	4A, B, C, D	134
	•	

TABLE OF CONTENTS.

CHAPTER		PAGE
XVI.	2. Steam Heaters in the Form of Coils and Double Bot-	
	• toms, and with Open Fire, Table 27.	138
	C. The Influence of the Current of Steam on Projected Drops .	151
	D. The Action of the Current of Steam on Projected Bubbles of	•
	• Liquid (Hollow Drops), and Means for avoiding their	
	Loss, Table 28	155
	E. The Increase ist Volume of Rising Steam Bubbles, Table 29	160
XVII.	The Diameter of Pipes for Steam, Alcohol Vapour and Air .	161
	A. For Steam	161
	Comparison of the Results of the Formulæ of Schmidt and Fischer and Gütermuth, Table 30	
	Velocity of Steam in Pipes 20 m. long, with 0.5 per cent.	162
	loss of pressure, Table 31	167
	The Weight of Steam which passes hourly through the	
	Pipes, Table 32 B. The Mixtures of Alcohol and Water Vapours	168 172
	The Velocity of the Vapour of Aqueous Alcohol in Tubes	
	3 m. long, with 0.5 per cent. loss of pressure, Table 33	
	The Weight of the Vapour which passes hourly through	
	the Tubes, Table 34	173
	C. For Air	178
	The Ve'ocity with which Air passes through Pipes with	
	0.5 per cent. loss of pressure, and the hourly Weight,	
	Table 35	176
XVIII.	The Diameter of Water Pipes, Table 36	178
	The Loss of Heat from Apparatus and Pipes to the Sur-	
	rounding Air, and Means for Preventing the Escape	
	A. The boss of Heat	190
	1. According to E. Péclet's Equations, Table 37 .	191
	Comparison of the Results of Experiment and Calcula-	
	tion, Table 38	196
	The Loss of Heat per running m. of Pipe, and per sq.	197
	m. of surface, Table 39	200
	According to more modern formulæ, Table 40 .	204
	The Loss of Heat from the Multiple-effect Evaporator	
	B. Means for Preventing the Loss of Heat	. • 20€
XX.	Condensers	207
	A. Jet Condensers	. 208
	1. General, Figs. 14, 15	209
	2. The Necessary Quantity of Cooling Water, Table 41	. 215
	3. The Diameter of the Water-supply Pipe	218
	4. The Waste-water Bipe (Fall-Pipe) of the Dry Con-	
	denser, Table 42'.	218
	5. The Distribution of the Water in the Condenser	219
	(a) By Means of Overflows, Fig. 16, Table 43	
	(b) By Means of Sieves, Table 44	220

TABLE OF CONTENTS.

HAPTER	`P	AGE
XX.	6. The Diameter of the Steam Pipe	225
	7. The Diameter of the Air Pipe	225
		226
	Comparison of the Surface and Volume of Masses of	
		227
	The Depth to which the Heat penetrates into the	
		228
	9. The Volumes occupied by 1 kilo. of Air at Various	
		288
		237
	11. The Dimensions of Wet (Parallel-Current) Jet-Con-	
	densers, Table 49	239
	• 12. The Dimensions of the Dry (Counter-Current) Fall-	
		246
	 The Heating of the Water Spray in Step Condensers, 	
	m 11	250
	B. Surface Condensers (Coolers)	255
	1. Enclosed Surface Condensers with Water Cooling, Figs.	
		255
		256
	In Condensing	258
	In Cooling	260
	AND THE PROPERTY OF THE PROPER	263
		264
	In Cooling	265
	(c) The Condensing and Cooling Surfaces, Table 54 .	266
	The Weights of Vapours and Air which hourly pass	
	through Pipes of 10-100 mm. diameter, Table 55	274
	The Weight of Water which hourly rises in Vessels	
	of 300-1250 mm. diameter, Table 56	274
	(d) The Dimensions, d and l, of the Condensing and	
	Cooling Tubes, Table 57	274
	Examples of the Dimensions of the Tubes, Table	
		280
	2. Closed Surface-Condensers with Air Gooling, Tables 59,	
		288
	3. Open Surface-Condensers, Table 61	287
XXI. H	ating Liquids by Means of Steam	293
	A. Steam Esating Coils in the Liquid	293
	1. The Liquid is not changed	295
	Without Stirring, Table 62	2 95
	With Stirring	296
		297
		298
		298
		298

	TABLE	OF C	ONTE	NTE					X 111
CHAPTE	.								PAGE
XXI.	C. The Liquid flows th	rough Tr	ibes arc	und	which	Steam :	is at r	est,	
	Table 68					· 6			298
XXII.	The Cooling of Liquids				•		• •		801
	A. The Direct Introdu								801
	B. The Direct Addition	n of Col	i to H	ot Lie	nid_	#* .			302
	C. By Partial Evapor	ration						٠.	802
	D. By Meanwof a Col								808
	1. Continuous Co	unter-Cı	irrente	, Tab	les 64	65, 66			804
	2. Periodic Cooli		e 67				٠.		81'
	E. Open Surface-Cook	lers .			٠.		•		81
	F. By Contact with A	letallic L	urfac	es Co	led by	Air.			82
	G. Direct Cooling by	Means of	Air,	ľa ble	s 69, 7	0.			82
	H. Cooling Air by Me	ans of W	ater,	lable	71 •	. •.			88
XXIII.	The Volumes to be I	Exhaust	ed fr	om •	Conde	nsers	Ъy	the	
	Air-Pumps .					.• .	Ĭ.		389
	A. General		• .						889
	B. The Volume of Air	to be Ea	hxuste	d fro	m Wet	Jet-Co	mden	sers,	,
	Table 72 .							·	341
	C. The Volume of Air	to be E	tha u st	ed fro	m Dr	y Fall-	Pips	Jet-	
	Condensers, Ta	ble 78			ٔ د		٠.		95
	D. The Volume of Air	to be Ea	ha u ste	d fro	n Sur	face-O	onder	18er8	87
XXIV.	A Few Remarks on Air								871
	A. Flap-Valve Air-Pu	mps .						•	377
	B. Slide-Valve Air-Pu	mps, Ta	ble 74						378
XXV.	The Volumetric Efficien	ncy of	Air-P	ump	3 .				882
	A. Air-Pumps without	Equali:	ation	of Pr	es sure				889
	B. Air-Pumps with E	qualisat	ion of .	Press	ure, T	able 7	i .	•	384
XXVI.	The Volumes of Air wh	ich mus	t be E	!xha	usted	from	. Ve	ssel	
	in order to Reduc								
	Lower Pressure.				Jonus C		OOI 0	OIL III	894
	#			•	•		•	•	, 001
	•	APPEND	IX.						
	Conversion Diagrams	for O	nver	ting	fron	ı Me	tric	to	
	British Units			•			•	•	398
	INDEX					,			400

LIST OF TABLES..

1. Mean Temperature Differences			
2. Comparison of Heating Surfaces with Parallel and Opposite Currents 3. The Properties of Certain Fuels 4. Heating Surface required to heat 100 kilos of Water in the Chimney from 10° to 80°-130° C. 5. Expenditure of Heat in order to Superheat 100 kilos of Steam from 10°° C, through 100° to 600° C. 6. The Volumes of 1 kilo. of Superheated Steam 7. Heating Surface required for Superheating 100 kilos of Steam through 50° to 200° C. 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface 9. The Properties of Saturated Steam 10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall 11. Comparison of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Creficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator, when Extra Steam produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 20. Percentage of Solids in the Liquid in Each Vessel, when 5.05 per cent.	30.		
3. The Properties of Certain Fuels 4. Heating Surface required to heat 100 kilos. of Water in the Chimney from 10° to 80° 130° C. 5. Expenditure of Heat in order to Superheat 100 kilos. of Steam from 10°° C. through 100° to 600° C. 6. The Volumes of 1 kilo. of Superheated Steam 7. Heating Surface required for Superheating 100 kilos of Steam through 50° to 200° C. 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface 9. The Properties of Saturated Steam 30. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall 11. Compension of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 43. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100. Percentage of Solids in the Liquid in Each Vessel, when 5.05 per cent.			
4. Heating Surface required to heat 100 kilos. of Water in the Chimney from 10° to 80°-130° C. 5. Expenditure of Heat in order to Superheat 100 kilos. of Steam from 10°° C. through 100° to 600° C. 6. The Volumes of 1 kilo. of Superheated Steam. 7. Heating Surface required for Superheating 100 kilos of Steam through 50° to 200° C. 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface. 9. The Properties of Saturated Steam. 10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall. 11. Compension of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes. 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water. 13. The Hourly Evaporation of Water by Means of Copper Tubes. 43. The Hourly Evaporation of Water by Means of Copper Tubes. 44. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids. 17. The Weight of Steam evolved in the separate Vessels of the Multiple effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in 5the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100. Percentage of Solids in the Liquid in Each Vessel, when 5.05 per cent.		•	
from 10° to 80°-130° C. 5. Expenditure of Heat in order to Superheat 100 kilos of Steam from 10°° C. through 100° to 600° C. 6. The Volumes of 1 kilo. of Superheated Steam 7. Heating Surface required for Superheating 100 kilos of Steam through 50° to 200° C. 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface 9. The Properties of Saturated Steam 10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall 11. Comperison of the Coefficients of Triinsmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100. Percentage of Solids in the Liquid in Each Vessel, when 5.05 per cent.			14
5. Expenditure of Heat in order to Superheat 100 kilos of Steam from 10°° C. through 100° to 600° C	4,	•	10
10°° C. through 100° to 600° C. 22 6. The Volumes of 1 kilo. of Superheated Steam . 28 7. Heating Sürface required for Superheating 100 kilos of Steam through 50° to 200° C. 24 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface . 25 9. The Properties of Saturated Steam . 30 10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall . 36 11. Comperison of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes . 37 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water . 43 13. The Hourly Evaporation of Water by Means of Copper Tubes . 46 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m 50 15. The Boiling Points of Certain Liquids in a Vacuum		The state of the s	In
6. The Volumes of 1 kilo. of Superheated Steam 7. Heating Surface required for Superheating 100 kilos of Steam through 50° to 200° C. 24 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface 9. The Properties of Saturated Steam 10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall 11. Comparison of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Creficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 20. Percentage of Solids in the Liquid in Each Vessel, when 5-95 per cent.	θ,	•	00
7. Heating Surface required for Superheating 100 kilos of Steam through 50° to 200° C. 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface 9. The Properties of Saturated Steam 10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall 11. Comperison of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100. Percentage of Solids in the Liquid in Each Vessel, when 5.05 per cent.	c		
50° to 200° C. 8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface 9. The Properties of Saturated Steam 10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall 11. Comperison of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100. Percentage of Solids in the Liquid in Each Vessel, when 5.05 per cent.			2.5
8. The Quantity of Steam Superheated in one hour by 1 sq. m. of Superheating Surface	1.		0.4
heating Surface			24
9. The Properties of Saturated Steam	о.		0.5
10. Decrease in the Coefficient of Transmission of Heat, k, with increasing thickness of the Metal Wall 11. Comparison of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100 20. Percentage of Solids in the Liquid in Each Vessel, when 5-95 per cent.	^	· · · · · · · · · · · · · · · · · · ·	
thickness of the Metal Wall 11. Compresson of the Coefficients of Tränsmission of Heat, k, for Copper, Iron and Lead Pipes 12. The Coefficient of Transmission of Heat, k, between Steam and Boiling Water 13. The Hourly Evaporation of Water by Means of Copper Tubes 14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100 20. Percentage of Solids in the Liquid in Each Vessel, when 5-95 per cent.		•	
11. Comparison of the Coefficients of Transmission of Heat, k, for Copper, Iron and Lead Pipes	40.		
Iron and Lead Pipes	. 1		90
12. The Coefficient of Transmission of Heat, t, between Steam and Boiling Water	11.		97
Water 13. The Hourly Evaporation of Water by Means of Copper Tubes	19		01
13. The Hourly Evaporation of Water by Means of Copper Tubes	12.		49
14. The Weight of Steam which passes through Valves in one hour with a velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100 20. Percentage of Solids in the Liquid in Each Vessel, when 5-95 per cent.	12		
velocity of 30 m. 15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 20. Percentage of Solids in the Liquid in Each Vessel, when 8-95 per cent.			#0
15. The Boiling Points of Certain Liquids in a Vacuum. 16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids 17. The Weight of Steam evolved in the separate Vessels of the Multiple-effect (without Extra Steam) 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out 100 20. Percentage of Solids in the Liquid in Each Vessel, when 8-95 per cent.	17,		50
16. The Increase in the Vapour Pressure and Rise of the Boiling Point in the Lower Layers of Evaporating Liquids	1 Ś		
the Lower Layers of Evaporating Liquids			00
17. The Weight of Steam evolved in the separate Vessels of the Multiple- effect (without Extra Steam) . 81 18. The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) . 90 19. The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out	•••		74
effect (without Extra Steam)	17.		• •
 The Amount of Evaporation, and Percentage of Dry Matter in the Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam) The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out Percentage of Solids in the Liquid in Each Vessel, when 5-25 per cent. 			81
Liquid, in Each Vessel of the Multiple Evaporator (without Extra Steam)	18.		٠.
Steam)	_0.		
 The Weight of Steam Produced in Each Vessel of a Multiple Evaporator, when Extra Steam is taken out		- ·	90
when Extra Steam is taken out	19.		
20. Percentage of Solids in the Liquid in Each Vessel, when 3-05 per cent.	_,		100
	20.		
			109

			PAGE
21,	The	Percentage of Solids in Liquors from which 1-38 per cent. of Water	
	٠.	has been taken	106
22.	The	Weight of Water which must be Evaporated from 100 kilos. of	
		Liquid in order to bring its Original Percentage of Solids to a	
		desired Higher Percentage	110
28.	The	Velocities at which Currents of Steam, Air and Carbonic Acid exert	
	. 4	upon drops of Water a pressure equal to, and double, their weight .	120
24.	The	Yelocities of the Currents of Gas and Steam which, acting upwards	
	19	at angles of 30°, 45° and 60° on floating drops, drive them in a hori-	
, ,		zontal direction	127
25.	Perr	nissible Ratio of Pressure, exerted by Currents of Gas and Steam	
		upon Drops of Water, to Weight of Drops	131
26.		Velocities with which Boiling Liquids are Splashed from Vertical	
		Heating Tubes, and the Heights to which they Rise above the	
		Level (h_i) .	139
27.	Velo	city of the Steam in the Steam Space of Vacuum Evaporators	153
28.	The	Foam Separator of Ger. Pat., 70,022, Diameter of the Central Pipe	
	•	and of the outer Vessel	157
29,	The	Increase in Volume of the Steam Bubbles which Rise in Boiling	10.
		Liquids	160
80.	The	Loss of Pressure by Steam in Pipes	164
81.	The	Velocity of Steam in Pipes	167
		Weight of Steam which passes in one hour through Pipes of 25-900	20.
		mm. Diameter	168
83.	The	Velocity of the Vapour of Aqueus Alcohol in Pipes	170
84.	The	Weight of the Vapour of Aqueous Alcohol which rasses in one hour	110
. '	•	through Pipes of 40-250 mm. Diameter	174
85.	The	Weight of Air which passes in one hour through Pipes of 40-350	
		mm. Diameter	176
36.	The	Quantity of Water which Flows in one hour through Pipes of 30-225	-10
		mm. Diameter	182
87.	The	Loss of Heat by Radiation and Conduction from Plane and Cylin-	102
٠.	,	drical Surfaces, according to Péclet	192
88.	Best	nits of Experiments on Loss of Heat	198
66.	The	I dus of Heat from Pipes and Cylinders (Péclet) .	200
40.	Tt.	Loss of Heat from Hot Surfaces per sq. m. per hour, calculated by	-00
وهج	ί.,		205
41:	The	Weight of Cooling Water required to Condense 1 kilo, of Steam .	214
42	The	Height A the Fall-Pipe of the Dry Jet-Condenser	216
48.	The	Quantity of Water which Flows i.1 one hour over Sills	221
44.	The	Quantity of Water which Flows in one hour through Holes of 2-10	221
	,	mm. Diameter, and the number of Holes required to pass 4-300 cub.	
, #4		and all TYTe Annalysis and the second	228
46.	The	Surface and Volume, and their Ratio, of Falling and Flowing Sheek,	. 440
	, W	Jets and Drops of Water	227

7	7	١	٦	

IST OF TABLES.

	_	
MU.		PAGR
40.	The Heating of Sheets, Jets and Drops of Water by direct contact with	234
477	Steam	236
	The Heights of Free Fall in 10.05-1.7 seconds	240
	Dimensions of the Wet Jet-Condenser, without Steps	244
	The Fraction by which the Original Temperature Difference between	
3 0.	Steam and Jets of Water is diminished in Dry Counter-Current	
	Jet-Condensers	250
51	The Dimensions of the Dry Counter-Current (Fall-Pipe) Jet-Condenser	252
	The Temperature Difference between Steam and Cooling Water, and	
	between Condensed Liquid and Cooling Water in Enclosed Surface-	
	Condensers	261
53.	The Coefficient of Transmission of Heat between Steam and Water	
	which does not Boil	265
54.	The Cooling Surfaces required to Condense and Cool Steam and Alcohol	
	Vapour, Parts I. and II.	268
55.	The Weights of Vapour and Air which pass per hour through Tubes of	
	10-100 mm. Diameter, with a velocity of 1 m	275
56.	The Weight of Water which Rises in one hour in Vessels of 300-1250	
	mm. Diameter, at a velocity of 0.001 m.	275
E 17	The Ratio Length $\binom{l}{d}$ of Copper Condenser Tubes	277
	2.1.1.10101 (4)	
	Examples of the Dimensions of Condenser and Cooler Tubes	280
5 9.	The Volumes of 1 kilo. of Dry Air at 760 mm. Pressure, and Tempera-	•
	tures from 20° to 400° C	284
60.	The Cooling Surfaces which Abstract 1,000 Calories per hour by Air	287
	Cooling	290
	The Cooling Syrfaces of Open Surface-Condensers	250
02.	kilos. of Water through a definite Range of Temperature	295
69	The Heating Surfaces Requisite for Heating 1,000 litres of Water per	
ŲJ.	hour by Means of Steam at rest	299
64.	The Coefficient of Transmission of heat, k^* , between Two Liquids which	
	do not Boil	804
65.	The Length of a Cooling Pipe of 10-70 mm. Diameter, when its Internal	
	Cooling Surface is 0.25-7 sq. m	307
66.	. (a) The Volumes of Liquid which pass in one hour through Tubes of	
	10-30 mm. Diameter, at velocities of 0.02-0.4 m.	808
	(b) The Lengths of Pipe necessary for Cooling a Liquid continuously .	308
67	. In Periodic Cooling: the Temperature Difference, Consumption of Soeling	
_	Water and Cooling Surface	317
	. The Cooling Surface of Open Surface-Coolers	820
69	. The Quantity of Heat Absorbed by 1 kilo. of Air in becoming Hotter, and	
	by Evaporating Water, the Weight and Wolume of Air necessary	
	to Abstract 1,000 Calories	820
	, h	

xviii

LIST OF TABLES.

NO.		PAGE
70.	Example of the Direct Cooling of Water by Means of Air	382
71.	The Cooking of Air by Water: the Temperature Difference, Consumption	
	of Heat and Cooling Surface	887
72.	The Consumption of Cooling Water and Volumes of Air to be Exhausted	
	in Contensing 100 kilos. of Steam in Wet Jet-Condensers	344
73.	The Consumption of Cooling Water and Volume of Air to be Exhausted	
	in Condensing 100 kilos, of Steam in Dry Jet-Condensers	354
74.	The Lowest Pressures which can be attained by Means of Air-Pumps,	
	• with and without Equalisation of Pressure	380
75.	Isothermal and Adiabatic Values of $\frac{p_s}{p_s}$ and the Volumetric Efficiency	
	L v	386
	of Air-Pumps, Parts I. and II.	900
76.	The Volumes which must be Exhausted from Vessels in order to Reduce	
	the Original Internal Pressure of 1 atmos. to a Definite Lower	
	Pressure	396
	Metric Conversion Diagrams	398

THE METRIC AND BRITISH SYSTEMS.

TABLE OF COMPARISON.

Metres.	Deci-	Centi-	Milli-	Inches.	Metres.	Deci-	Centi-	Milli-	Inches.
	metres.	metres.	metres.			metres.	metres.	metr 🌑	
							•		
-001	-01	•1	1 •	∙ა39	•06	•6	6	60	2.362
• 002	.02	.2.	2	.079	∙07	•7	7	. •70	2.756
•003	.03	-8	8	·118	•08	-8	8 1	80	8.150
·004	·04	•4	4	:157	-000	9.	9	90	9.548
.005	∙05	•5	5	_ ∙197	1	1	10	100	3.94
·006	.06	•6	6	236	•2	2	20	200	7.87
·007	-07	-7	7	•276	-8	3	80	300	11.81
.008	.08	•8	8	·815	•4	4	40 50	400	15 75
.009	•09	•3	9	954	-5	5		500	19.69
·01	.1	1	10•	•394	1 ⋅6	6	60	600	23.62
.02	•2	2	20	.787	.7	7 .	70	700	27.56
•03	•3	8	30	1.181	-8	8	. 80	800	31.50
•04	•4	4	40	1.575	.9	9.	90	900	35.43
∙05	•5	5	50	1.968	1	10	100	1,000	39.87
1									l

WEIGHT.

1 gramme = 15.44 grains.

283 grammes = 1 oz. avoird. 000 , = 2.20 lb. avoird. kilogramme = 1,000

LENGTH.

1 metre = 100 centimetres = 39.37 inches. Roughly speaking, 1 metre = a yard and a tenth. 1 centimetre = two-fifths of an inch. 1 kilometre = 1,000 metres = five-eighths of a mile.

VOLUME.

1 cubic metre = 1,000 litres = 35.82 cubic teet. 1 litre = 1,000 cubic centimetres = '2202 gall.

HEAT.

1 calorie = 3.96 British thermal units.

COMPARISON BETWEEN FAHRENHEIT AND CENTIGRADE THERMOMETERS.

C.	F.	C.	F.	C.	F.	C.	F.	C.	F.
- 25 - 20 - 17 - 15 - 10 - 5 0	- 13 - 4 1·4 5 14 28 82 33·8	5 8 10 12 15 17 18 20	41 46·4 50 53·6 59 62·6 64·4 68	25 30 35 40 45 50 55 60	77 86 95 104 118 122 181 140	65 70 75 80 85 90 95 100	149 158 167 176 185 194 208 212	105 110 115 120 125 130 135 140	221 230 269 248 257 266 275 284

Degrees C. to Degrees F., multiply by 9, divide by 5, then add 32.
Degrees F. to Degrees C., first subtract 32, then multiply by 5 and divide

SYMBOLS AND CONTRACTIONS.

	001(11110110110)
Atmos. = atmospheres. a _i = volume, in litres, of 1 kilo. of air. a = coefficient of expansion of air.	 γ cepth, in mm., to which heat penetrates into a body of water. F = weight of a liquid, in kilos.
B = height of the barometer in metres of water.	F_{is} = ,, of the cold liquid. F_{is} , of the warm liquid.
b == height of the barometer in mm. of mercury. 8 = the ratio J	G = 0, of a drop in kilos. g = 0 accleration due to gravity. $\gamma_{ij} = 0$ weight, in kilos., of 1 cubic metre
$= \frac{\text{useful volume of the air-pump}}{\text{volume of vessel}}$	of steam. γ_i = weight, in kilos., of 1 c. metre of
$C = \text{calories.}$ $C_{c} = \dots$ in condensing.	air. H = heating or cooling surface in sq. metres.
$C_{\epsilon} = \dots$, heating. $C_{k} = \dots$, cooling. $C_{l} = C_{\epsilon} + C_{\nu}$ calories removed by air.	H = height of the water-barometer. H_i = cooling surface for condensing. H_i = heating surface for warming.
C _v = calories in evaporating. C _I , C _{II} , C _{III} , C _{IV} = losses of heat, in calories, by the elements of the quadruple-effect evaporator.	H_{i} = cooling surface for cooling. H_{r} = heating surface for evaporating. h = vertical height (fall) in metres. h = head of water.
c = total heat in 1 kilo. of water vapour. c_1 , c_2 , c_3 , c_4 = heat in 1 kilo. of steam in the elements of the quadruple	 h_s = beight of splash of evaporating liquids. J = space traversed by the piston of
evaporator. Dia. = diameter.	the air-pump. i = volume of a mass of water, in
D_e = weight of steam, in kilos. D_e = total weight of extra steam in the multiple evaporator.	k coefficient of transmission of heat, for 1 sq. m., 1 hour, 1° C.
 d = diameter in metres. Δ = diameter of the condenser. δ = thickness of a plate of metal 	k_c = coefficient of transmission of heat in condensing. k_b = coefficient of transmission of
film, jet or drop of water, in mm.	heat in heating. k. coefficient of transmission of
$\epsilon = \text{the ratio } \frac{V_s}{J} = \frac{\text{dead space}}{\text{useful volume}} \text{ of } the air-pump.}$	heat in evaporating.
 weight of extra steam, in kilos., withdrawn from the elements of the multiple-effect evapoga- 	k _l = coefficient of transmission of heat between air and steam or water.
tor. E = weight of ice in kilos.	kilo. = Rilogram. L = weight of air in kilos.

```
= temperature at commencement.
      = length in metres.
                of fall-pipe in metres.
                                                                  " end.
                                            t_a
                                                          ,,
      = coefficent of conduction
                                                                 of steam.
λ
                                                          ,,
                                                                 ,, liquid.
         heat.
                                                 =
                                                          ٠,
      = coefficient of friction in tubes.
                                                                          at the com-
                                             t_{fa}
                                                     mencement.
      = metre. 👡
m.
mm. = millimetre.
                                                 = temperature of liquid at the end.
      = number of holes in the per-
                                                                 ,, the cold liquid.
n
                                            ta
                                                                 " " hot
         forated plate.
                                            t_{rw}
                                                         ,,
0
       = surface in sq. metres.
                                            t_{la}
                                                   🤜 • 🛴
                                                                     ,, air
                  of a mass of water in
                                                     commencement.
o
       • sq. mm.
                                            t_{le}
                                                 = temperature of air at the end.
P
      = pressure in kilos.
                                                = mean temperature.
                                                = temperature of the cold liquid at
p
                           per sq. cm.
                  of the atmosphere.
                                                     the commencement.
Pa
                                                 = temperature of the cold liquid at
p_{\bullet}
       = final pressure in the vessel.
                                            t_{k0}
      = pressure in the air-pump after
                                                     the end.
                                                 = temperature at the bottom of the
         n half strokes.
       = the lowest pressure which the
                                                     evaporating apparatus.
p_o
                                            t_0, t_1, t_2, t_3, t_4, = temperatures of the
         air-pump can create.
       = pressure in the air-pump after
                                                     steam in the elements of the
10.
                                                     quadruple effect.
         equalisation of pressure.
                                            t_{ex} = mean increase in temperature.

t_{ec} = mean increase in temperature
       = pressure in the air-pump after
p_{\alpha}
         an infinite number of strokes.
                                                = mean increase in temperature of
Q
      = section or plane surface in sq.
                                                     a jet of water.
                                                 = mean increase in temperature of
q
       = section of a pipe in sq. cms.
                                                     a drop of water.
      = percentage of solids in a liquid.
                                                 = mean increase in temperature of
r_1, r_2, r_3, r_4 = percentage strengths of
                                                     a water surface (sheet).
         the liquor in the elements of
                                            A
                                                 = temperature difference.
         the quadruple effect.
                                                                          at the com-
      = percentage strength of the eva-
                                                     mencement.
         porated liquor.
                                                 = temperature difference at the
         = square centimetre.
sq. cm.
                                                     end.
                                            \theta_m
sq. dcm. =
             ,, decimetre.
                                                 = mean temperature difference.
       =
                                            \theta_{me}
    = space traversed by a falling body
                                                     condensing.
                                            \theta_{mk}
                                                 = mean temperature difference in
    = specific gravity of steam at con-
                                                     cooling.
                                                   \theta_{m_3}, \theta_{m_4} = \text{mean temperature}
         stant pressure.
    = specific gravity of the liquid.
                                                     differences in the elements of
    = space traversed by a drop under
8.,
                                                     the quadruple effect.
         the action of a force.
                                                 = the residual weight of an evapo-
     = space traversed by a drop under
8,
                                                     rated liquid.
                                                    volume of the "equaliser" chan-
         the action of the force \hat{P}.
                                            V_a
     specific heat of steam.
                                                     nel of the air-pump.
\sigma_{ii}
                     " ice
                                                  = volumes of the steam in litres.
\sigma_{\epsilon}
                 ,,
                     " a liquid.
                                                              ,, ,, liquid ,,
\sigma_{f_1}
                 ,,
                                                        ,,
          ,,
                                                                 " steam and liquid
                     " a second liquid.
σ<sub>62</sub>
                 ,,
                     ,, air at constant
                                                     in litres.
σ
                                            V_q
         pressure.
                                                 = volume of a vessel in litres.
    = specific heat of the cold liquid.
                                                           ,, the air.
\sigma_k
                                                       ,,
                           hot
                                            V.
                                                                " dead spaces of the
σw
         ,,
                 ,,
                     ,,
                                                       11
                                                           £1,
                    ,, air at constant
                                                     pump.
\sigma_v
         volume.
                                            Ve
                                                 = volume of water in litres.
                                                 = velocity in metres.
T
     = absolute temperature.
                                            v.
    = temperature in °C.
                                           v<sub>d</sub>
                                                            of the steam.
```

€ _{f1}		S _d	= loss of pressure of steam in pipes.
v ₁₂	= ,, ., ,, second liquid.	21	= ,,´,, ,, ,,, air ,,
v ,	= ,, ,, the air.	34	= time in hours.
v.	= ,, a drop.	z,	= ,, ,, s'econds. '
ข้อ	= , the water.	Xri	= volumetric efficiency of the air-
W	= weight of water in kilos.		pump (adiabade).
w	= the weight of water evaporated	χvi	= volumetric efficiency of the air-
	by 1 sq. m. of heating surface.	0	pump (isothermal).

CHAPTER I.

THE COEFFICIENT OF TRANSMISSION OF HEAT, k; AND THE MEAN TEMPERATURE DIFFERENCE, θ_m .

The unit of heat, the calorie, is the quantity of heat required to heat 1 kilo. of water through 1° C. The necessary number of units of heat, or calories, in each case will be represented in what follows by the symbol C.

The coefficient of transmission of heat is the figure which gives the number of units of heat (calories) which pass in one hour from a warmer to a colder fluid through 1 sq. m. of the partition (for of surface, in case of direct contact) when the difference in temperature between the warmer and colder fluids is 1° C. This coefficient is represented by k. Without a knowledge of this quantity the calculation of the necessary heating and cooling surface in any case is impossible. Its magnitude varies greatly in different cases, but unfortunately it has not been found for every case by exact experiment. It will be a part of our task to fix it for various conditions, according to known and reliable data or on the ground of the author's own observations, so far as the present state of knowledge permits.

It is generally assumed that the transmission of heat through metal divisions between steam, gases and liquids, is proportional to the difference in temperature between the substances on each side of the division or surface. However, the temperature of the substances themselves is not always the same at all parts of a surface, for high pressure steam loses a portion of its pressure and temperature towards the end of the surface; gases or liquids in motion, heating or heing heated, enter, cold and leave hot.

In calculations only one temperature can be used and that is the mean; hence it is necessary to ascertain what is the mean difference in temperature in each case between the heating and the heated substance. The mean temperature difference is not perhaps always the arithmetic mean of the least and greatest temperature difference, that

Fig. 1.

is only approximately correct when the least temperature difference is at least half as large as the largest. Thus, in general, the arithmetic mean between the smallest and largest temperature differences cannot be taken as the correct mean temperature difference.

Fig. 2.

Let t_{∞} denote the initial temperature, t_{∞} the final temperature of the warmer liquid; and t_{∞} the initial, t_{∞} the final temperature of the colder liquid. Then four separate cases may occur:—

- J. The warmer liquid has a constant temperature $t_{wa} = t_{w} = t_{w}$ and the colder liquid changes from t_{ka} to t_{ka} (Fig. 1).
- 2. The colder liquid has a constant temperature $t_{ka} = t_k$ and the hotter liquid changes from t_{we} to t_{we} (Fig. 2).

3. Both liquids change in temperature; they flow parallel to one another over the two sides of the hot surface (parallel currents); t_{wa} changes to t_{we} , and t_{ka} to t_{ke} (Fig. 3).

4. Both liquids change in temperature; they flow in opposite . directions over the hot surface (opposite currents); the temperatures change as in 3 (Fig. 4).

The mean difference in temperature between the liquids is then, according to Grashof, Theoretische Maschinenlehre I.:-

80

3.
$$\theta_m = \frac{(t_{\omega\alpha} - t_{k\alpha}) - (t_{\omega\alpha} - t_{k\alpha})}{\log \frac{t_{\omega\alpha} - t_{k\alpha}}{t_{\omega\alpha} - t_{k\alpha}}}$$
 (6)

4. $\theta = \frac{(t_{\omega\alpha} - t_{k\alpha}) - (t_{\omega\alpha} - t_{k\alpha})}{\log \frac{t_{\omega\alpha} - t_{k\alpha}}{t_{\alpha} - t_{k\alpha}}}$ (4)

4.
$$\theta = \frac{(t_{wa} - t_{ke}) - (t_{we} - t_{ke})}{\log \frac{t_{wa} - t_{ke}}{t - t}}$$
 (4)

If θ_a = the difference in temperature between the two liquids as the commencement, and

 θ_{\bullet} = the difference in temperature between the two liquids at the end,

then it may at once be seen, by a glance at the four diagrams (Figs. 1-4), that the four equations may be written:-

$$\theta_m = \frac{\theta_n - \theta_s}{\log \frac{\theta_a}{\theta}} \cdot \dots$$
 (6)

$$\theta_{m} = \frac{\theta_{\alpha} - \theta_{e}}{\log \frac{\theta_{a}}{\theta_{e}}}. \qquad (7)^{\bullet}.$$

$$\theta_m = \frac{\theta_a^* - \theta_r}{\log \frac{\theta_a}{\theta_a}}$$
 (8)

The equations thus all reduce to the same form, so that the determination of the mean temperature difference for all cases is considerably facilitated.

Now we may evidently express the smaller difference in temperature as a fraction or percentage of the larger. If we suppose the larger temperature difference to be θ_a , which is manifestly permissible, and the smaller θ_o then

and the equation applicable in all cases then reads

$$= \frac{\theta_a \left(1 - \frac{p}{100} \right)}{\log \frac{100}{p}} \cdot \dots \cdot \dots \cdot (10)$$

By means of equation (10) we can obtain the mean difference in temperature θ_m between two fluids, each of which is occupied in modifying the temperature of the other, if the largest difference in temperature at their first contact, θ_a , and the smallest difference in temperature at the end of contact, θ_{\bullet} , are known, by first determining what percentage of θ_a is the difference θ_a .

Example.—In an opposite current condenser the cold liquid enters at $t_{bc}=10^{\circ}$ C. and leaves at $t_{bc}=80^{\circ}$ C. The hot liquid enters at $t_{ac}=100^{\circ}$ C. and leaves at $t_{ac}=50^{\circ}$ C. ϕ what is the mean difference in temperature θ_{cc} ?

The largest difference in temperature is $\theta_a = 50^\circ - 10^\circ = 40^\circ$; the smallest difference in temperature is $\theta_a = 100^\circ - 80^\circ = 20^\circ$; thus

$$\theta_{\bullet} \text{ is } \frac{100 \times 20}{40} = 50 \text{ per cent, of } \theta_{\bullet}, \text{ or } p = 50.$$

$$\text{Then } \theta_{m} = \frac{40 \left(1 - \frac{50}{100}\right)}{\log \frac{100}{50}} = \frac{20}{0.6931} = 28.85^{\circ} \text{ C.}$$

In Table 1 are given the values of the mean difference in temperature θ_a for the case that the largest difference in temperature $\theta_a = 1$ and the smallest $\theta_e = 0.01\theta_a$ to $1.00\theta_a$. In any individual case, in order to find the correct mean temperature difference, it is only necessary to multiply the proper figure of column 4 by the greatest temperature difference θ_a of the particular case.

• The mean difference in temperature of two fluids in motion, engaged in an exchange of heat, may also be obtained in the following manner:—

If we consider the whole heating or cooling surface (surface of separation) divided into n parts, in such a manner that the moving fluids are in contact with each part during an equal time (the nth part of the whole duration of contact z), then the increase in temperature of the colder fluid is directly proportional to the difference in temperature in each division.

If, in the first division, during the time $\frac{z}{n}$ at the temperature difference θ_a , this difference is diminished by the part $x\theta_a$, then in the second division the diminution of the difference in temperature will be

$$\theta_1 = (\theta_a - x\theta_a)x = x\theta_a(1 - x) \quad . \quad . \quad . \quad (11)$$

In the third division the decrease in the temperature difference will be

$$\theta_2 = \theta_a - x\theta_a - x\theta_a(1 - x) = x\theta_a(1 - x)^2 \quad . \quad \bullet \quad . \quad (12)$$

Similarly, in the fourth,

$$\theta_3 = x\theta_a(1 - x)^g \quad . \quad . \quad . \quad . \quad (13)$$

and in the last or nth layer

Since in each division the increase or decrease of temperature is always only a fraction of the total difference, it follows that in the last division only a part of the still remaining difference in temperature will be removed, so that complete equalisation of the temperatures of the two fluids cannot occur according to this finite conceptions.

If we suppose that the final difference in temperature between the liquids is θ_{\bullet} , then $\theta_{\bullet} - \theta_{\bullet}$ is the *sum* of the diminutions of the temperature difference produced in the *n* divisions. Thus

$$\theta_a - \theta_a = x\theta_a \left\{1 + (1-x) + (1-x)^2 + (1-x)^3 + \dots + (1-x)^{n-1}\right\}$$
 (15) or, summing the geometrical progression,

$$\frac{\theta_a - \theta_a}{\theta_a} = \frac{\alpha x \{ (1 - x)^n - 1 \}}{(1 - x)^n - 1} = \frac{x \{ (1 - x)^n - 1 \}}{-x} = \frac{(1 - x)^n - 1}{-1}$$
(16)

therefore

$$\frac{\theta_n}{\theta_n} = (1-x)^n \quad . \quad . \quad . \quad (17)^n$$

$$x = 1 - \sqrt[n]{\frac{\overline{\theta_s}}{t_a}} \qquad (19)$$

The figure x (always a proper fraction) gives the fraction of θ_a by which the temperature difference has been diminished at the end of the first layer.

As will be seen later, there is a reason for ascertaining the value of (1-x) and for knowing the temperature difference even at the end of the first layer. These values are accordingly given in Table 1, columns 2 and 3.

The value of θ_{\bullet} may be expressed as a percentage of θ_{a} , thus in Table 1 the figures are given for $\frac{\theta}{\theta_{a}}$ under the assumption of n = 100 layers, which affords a very close approximation to reality.

After finding in this manner the diminution in the difference of temperature in the first layer, $x\theta_a$, it is necessary to find the average temperature difference between the fluids during the whole period of the transference of heat.

TABLE 1.

The Mean Temperature Difference, θ_m , between two liquids (or between steam or air and liquid), which alter their temperatures during the exchange of heat.

		•			,		
1	2	3.	• 4	• 1	2	3	4
			,				
l	1 - x -	x ==	Mean		1 - x ==	x =	Mean
$\frac{\theta_{e}}{\theta_{d}}$			temp.	$\frac{\theta_c}{\theta_a}$			temp.
0.4	" $\sqrt{\frac{\theta_i}{\theta_{ij}}}$	$1 - n \sqrt[4]{\frac{\theta_{\theta}}{\theta_{a}}}$	θ_m for	θ_{u}	$n \cdot \overline{\theta_n}$	1 _n . /0.	θ_m for
1	$V_{\theta_{i}}$	γ_{θ_a}	$\theta_a = 1$		$n\sqrt{rac{ heta_{\kappa}}{ heta_{a}}}$	γ_{θ_a}	$\theta_{a} = 1$
	_						
0.0025	0.9400	0.0000	0.166	0.00	0.00404	0.01500	0 -00
0.0025	0.9482	0.0600 0.0518	0.188	0 20 0 21	0.98404	0.01596	0.500
0.009	0.9550	0.0318	0.215	0.21	0.98497	0·01548 0·01503	0.509
0.02	0.9615	0 0430	0.213	0.23	0.98541	0.01303	0.518 0.526
0.03	0:96554	0.03146	0.277	$0.23 \\ 0.24$	0.98583	0.01433	0.535
0.04	0.96833	0.03167	0.298	0.25	0.98623	0.01377	0.544
0.05	0.97048	0.02952	0.317	0.30	0.98802	0.01198	0.583
0.06	0.97226	0.02773	0 335	0.35	0.98957	0.01043	0.624
0.07	0.97376	0.02624	0.352	0.40	0.99088	0.00912	0.658
0.08	0.97506	0.02494	0.368	0.45	0.99205	0.00795	0.693
0.09	0.97621	0.02379	0.378	0.50	0.99309	0.00691	0.724
0.10	0.97724	0.02276	0.391	0.55	0.99404	0.00596	0.756
0.11	+97817	0.02183	0.405	0.60	0.99491	0.00509	0.786
0.12	0.97902	0 02098	0.418	0.65	0.99570	0.00430	0.815
0.13	0 97980	0.02020	0.430	0.70	0.99644	0.00356	0.843
0.14	0.98053	0.01947	0.440	0.75	0.99713	0.00287	0.872
0.15	0.98132	0.01868	0.451	0.80	0.99777	0.00223	0.897
0.16	0. 8184	0.01816	0:461	0.85	0.99837	0.00162	0.921
0.17	0.98244	0.01756	0.466	0.90	0.99895	0.00105	0.953
0.18	0.98300	0.01701	0.478	0.95	0.99949	0.00051	0.982
0 19	0.98353	0.01647	0.489	1.00	1.00000	0.00000	1.000
<u> </u>					1		

At the commencement of the third layer the temperature difference $=\theta_2=\theta_a(1-x)^2$. (22) ., , , last layer the temperature difference $=\theta_a$

ence $= \theta_n = \theta_{n-1} (1 - \epsilon_n)^{n-1} \bullet (23)$ The sum of the temperature differences is thus

 $S = \theta_a \{1 + (1-x) + (1-x)^2 + (1-x)^3 \dots + (1-x)^{n-1}\}$ and the mean temperature difference is the nth part of this sum.

$$\theta_m = \frac{\theta_a\{(1-x)^n - 1\}}{n\{(1-x) - 1\}} \qquad (25)$$

EVAPORATING AND CONDENSING APPARATUS.

Inserting for $(1-x)^n$ the value from equation (17), we obtain

$$\theta_{m} = \frac{\theta_{a} \left(\frac{\theta_{a}}{\bar{\theta}_{a}} - 1 \right)}{n \left(\sqrt[n]{\frac{\bar{\theta}_{a}}{\bar{\theta}_{c}}} - 1 \right)} \quad . \quad . \quad . \quad (26)$$

Since $\frac{v_a}{\hat{\theta}_a}$ is always a proper fraction, the right hand side may be nultiplied by -1, thus giving

$$\theta_{m} = \frac{1}{n\left(1 - \frac{\theta_{r}}{\theta_{m}}\right)} - \frac{\theta_{a} - \theta_{r}}{n\left(1 - \frac{n}{\sqrt{\frac{\theta_{r}}{\theta_{m}}}}\right)} - \frac{1}{2} \cdot \frac{\theta_{a} - \theta_{r}}{n\left(1 - \frac{n}{\sqrt{\frac{\theta_{r}}{\theta_{m}}}}\right)} \cdot \dots (27)$$

The results obtained by calculating the mean temperature difference by means of equation (27) are given in Table 1, column 4, and lifter very little from those given by equation (10).

CHAPTER II.

PARALLEL AND OPPOSITE CURRENTS.

Two liquids, gases, or vapours, one of which is to transfer heat to the other, may be conducted either in the same or in opposite directions over the surface of separation. If the two fluids move parallel to one another in the same direction, the condition is known as that of "parallel currents".

If, however, they move in opposite directions, the condition is that of "opposite currents".

In the case of parallel currents, the fluid to be cooled has its highest temperature at the commencement, the liquid to be heated its lowest temperature; at the end the reverse is the case.

In the case of opposite currents the fluid to be cooled and also that to be heated have their highest temperatures at one end, and their lowest temperatures at the other.

In all cases the quantity of heat lost by one fluid is exactly the same as that gained by the other.

If F_n is the weight and σ_n the specific heat of the originally hot fluid, F_k the weight and σ_k the specific heat of the originally cold fluid, and, further, if $t_{\kappa h}$ and $t_{\kappa o}$ be the highest and lowest temperatures of the originally hot fluid and t_{kh} and $t_{\kappa n}$ the highest and lowest temperatures of the originally cold fluid, then, always,

Thus the weight of cooling liquid, F_{ι} , necessary to cool the weight $F_{\iota \iota}$ of the hot fluid from $t_{\iota \iota \iota}$ to $t_{\iota \iota \iota}$ is

In every definite case F_{ω} , σ_{ω} , σ_{k} , $t_{\omega h}$, $t_{k m}$, $t_{k m}$, are known; the outflow temperature $t_{k h}$ of the cooling liquid varies with its quantity, and this quantity is greater the lower $t_{k h}$ is.

In the case of opposite currents, the cooling medium may now away at a temperature only slightly lower than the highest temperature of the hot fluid. In the case of parallel currents the cooling medium must always run off at a temperature lower than the lowest temperature of the hot fluid. Thus $t_{\lambda\lambda}$ is always lower with parallel than with opposite currents, accordingly it follows that, with parallel currents, much more cooling liquid (generally water) must be used than with opposite currents.

Similarly, in order to heat a cold fluid F_k by means of a hot fluid F_{\bullet} , much more hot fluid must be used with parallel than with opposite currents.

In the case of parallel currents the greatest difference in temperature occurs between the highest temperature of the hot and the lowest temperature of the cold fluid, the smallest difference in. temperature between the lowest temperature of the warm and the highest temperature of the cold fluid. The first-named difference is the greatest which arises under any conditions, the second is always very much less, which is also the case with opposite currents. Since with opposite currents the highest possible temperature difference can never occur, it follows at once, in general, that the mean difference in temperature is greater with parallel than with opposite currents, and, consequently, that in the former case the necessary heating or cooling surface may almost always be smaller than in the latter case. An opposite current apparatus is thus always larger than a parallel current apparatus, but is cheaper to work, and in particular, with similar materials, permits the attainment of higher temperatures in heating apparatus and lower temperatures in cooling than is possible to obtain with parallel currents.

Heating and cooling apparatus should always be constructed for opposite currents.

The following table (2) gives the dimensions of the hot surfaces necessary for cooling 100 kilos, of an aqueous liquid from 100 °C, to 50°, 40°, 30°, 20°, and 15° °C. by means of water at 10° °C. The water is supposed to leave the parallel currents apparatus 5° below the temperature of the cooled liquid, and the opposite current apparatus at 80° °C. (i.e., 20° below the temperature of the hot liquid).

Let us now consider an opposite current apparatus, upon one side of which a liquid is cooled from 100° to 10°, whilst on the other side a larger quantity of another liquid of equal specific heat is heated

Table 2.

Dimensions of the heating surfaces with parallel and opposite currents.

		Parallel C	urrents.		Opposite Currents.			
Final temp. of the cooled liquid,	Final temp. of the cooling water.	Quantity of cooling water.	Mean temp. diff.	Cooling surface.	Final temp. of the cooling water.	Quantity of cooling water.	Mean temp. diff.	Cooling surface,
_°C.	°C.	Litres.	θ,,.	Sq. m.	°C.	Litres,	θ	Sq. m.
50 40 30 • 20 15	45 35 25 15 12	140 240 465 1600 4250	29.7	0·7 0·8 0•9 1·05 1·15	80	72 86 100 115 122	29 24·6 20 14·5 10·88	0·70 0·95 1·35 2·20 3·10

from 5° to 50°, the rates of flow of the two liquids being constant but unequal. Fig. 5 gives a representation of the proportion of

the sections of the cooling surface. In order to carry over equal quantities of heat in each section, those sections, which lie between small differences in temperature, must be much larger than those which lie between large differences in temperature.

CHAPTER III.

APPARATUS FOR HEATING WITH DIRECT FIRE.

Installations for heating with a direct fire are described in detail in many excellent works; in this place only a few important remarks will be briefly recapitulated.

The weight of fuel burnt upon a certain grate in a definite time, the quantity of useful heat obtained therefrom, and that which passes through 1 sq. metre of the hot surface to be heated, the temperatures of the gases produced—in fact all the conditions, actions and results of a heating apparatus—are very variable, depending on the demands made upon it, the skill with which it is tended, and the quality of the materials. This is the more true, the smaller the apparatus.

Since there is no intention to treat of firing in detail, the data collected in Table 3 must be regarded merely as useful landmarks.

The quantity of heat passing in one hour through 1 sq. m. of boiler surface increases in direct-proportion with the difference in temperature between the liquid and the flue gases, and also probably with the square and cube root of the velocity with which the liquid and flue gases respectively pass along the wall. It diminishes, however, with the growth of the coating of soot and dust on the outside of the heating surface and of boiler-scale on the inside.

The mean difference in temperature is naturally less, and the transmission of heat per hour through 1 sq. m. correspondingly less, the colder the flue gases leave the boiler, but the economy in fuel is then preportionately greater.

The true coefficients of transmission for this case are not yet known with sufficient accuracy; many and varied experiments (which are still lacking) would be required to determine them. But a knowledge of sinese figures would not be of very great service, since the conditions which hinder the transmission of heat are very numerous and variable, and cannot be accurately taken into account either before or after construction. Thus it is necessary to be satisfied with applying the results of practical observations.

If k be the coefficient of transmission of heat, which gives the number of units of heat (galories) passing through 1 sq. m. in one hour with the total difference in temperature, then we may reckon that with steam boilers k = 8,000 to 12,000 calories; in the mean, k = 9,000 calories.

For heating surfaces, on which the liquid is not boiled, surrounded by the gases of combustion, k = 6,000 to 10,000 calories; in the mean, k = 7,000 calories.

In the case of very small boiler surfaces, transmission of 18,000-20,000 calories may occur, yet this high efficiency causes wet steam, and does not generally result in economy of fuel.

Researches on the transmission of heat from flue gases and air to water which does not boil have been performed by Joule and Ser; they show that the transmission is probably proportional to the square root of the velocity of the gases or air, v_n and that the coefficient k_i for clean wrought iron pipes is approximately

$$k_t = 16 \sqrt{v_t} \text{ to } k_t = 19 \sqrt{v_t}$$
 (30)

Having regard to the coating of the heating surface with substances which hinder the transmission of heat, which always occurs in practice, we shall assume for this case the coefficient of transmission

$$k_i = 2 + 10\sqrt{v_i}$$
 (31)

in so far as it refers to pure air. If the liquid is heated by flue gases, on account of the greater amount of coating in unfavourable cases, it is necessary to take

In the mean, for this case, k_i may be taken as about 13.

By means of this figure the following small table (4) has been calculated; it shows how large the heating surface must be in order to heat in the boiler-flue, in one hour, 100 litres of water from 10° or 15° to 80° or 130° C., when the flue gases reach the economiser at a temperature of 300°-400° C. and are there cooled to 150° or 300° by giving out heat.

TA	BLE	3.

Table 3.			The	Prope	rties of
	Wood, air-dried.	Peat:	Earthy Lignite.	Coal, long flame.	Coal, bituminous.
Weight of 1 cub. m kilos.	370- 465	260- 380	610- 700	740	
Temperature of the flame °C. Temperature with a double	1969	2149	2357	2595	2664
quantity of air °C.	800- 1000	900- 1200	900- 1200	1000- 1300	1000- 1300
1 kilo. of fuel theoretically evolves	2820	3550		6600	7500
Useful heat from 1 kilo. calories Theoretical quantity of \cub m.	3.46) per ce 4:04	4.88	6.97	7.78
air for 1 kilo. of fuel kilos. Quantity of air required cub.m.	4·65 6·92	5·30 8·08	6·34 9·76	9·5 13·95	10·8 15·56
for I kilo. in practice kilos. Theoretical volume of gas	9·3 4·20	10 60 4·759	12.68 5.44	$\frac{19}{7.42}$	121·6 1 8·20
from 1 kilo. , at 300°C. Carbonic acid in flue gas -	8.82		11:44 l4 per c		17.24
Quantity burnt kilos, per hour	70-	80-	100-	50-	50-
upon 1 sq. m.	120	120	200	120	120
of grate average.	100	100	150	75	75
Ratio of openings to total grate			٠		
surface	3-6	4-6	4-15	2-4	2-4
Thickness of the burning layer	250	200	150	100	100
Resistance to the draught m. m.	1-4	1-4	1-4	5-12	5-12
Ash per cent.	1-1.5	1-5	5-10	3-4	3-4
1 sq. m. of heating surface requires a grate of sq.m.	10 20	$\frac{1}{15}$ - $\frac{1}{30}$	$\frac{1}{15} \frac{1}{30}$	30-50	$\frac{1}{30}$ $\frac{1}{50}$
1 s. m. of heating surface eva- porates kilos. of water per hour			15-20 k	ilos.; a	verage,
1 kilo. of fuel evaporates kilos. of water	2.5.3.5	1.5-3	2-4.5	5.5-10	5.5-10
Speed of gases in m. per sec.				•	r sec.—
Section of flue sq. m.			decreasi	ng from	ı 0·375-
Section of chimney sq. m. Height of the chimney m	1/6 C	of the gr	rate	of th	ne grate metres.
Temperature of the flue			 •		250°-

Certain Fuels.

TABLE 3.

Coal, short flame.	Anthracite.,	Coke.	Charcoal.	Alcohol.	Petroleum.	Masut.	Coal Gas.	Water Gas.		
960		520-	194	* 793	785	928	0·34- 0·45	-		
2688	2734	570 2774	2104		_		2390	•, -		
1000- 1300	1000- 1300		_				, —,	-		
7760	8110	7430	7750	7184	10000	_	13745	_		
60-80 p 8-04 11-5	0.c. of the 8.49 12.5	ne theor 7·441 9·7	etical 8·01 10·30	_ 	<u>.</u> ,	10700 — —	1500 7000 1 e m. = 5500 12 16	3500 — —		
16.09 23 8.43	16.98 25 8.74	14·88 19·4 8·04	16.08 20.6 8.42			20 per cent. lgss than by con/	5 6 per cub, m. 13.6	_		
17·71	18.38	16.89	17.70	_			27·5	_		
5 0- 120		er cent. 35-80	<u> </u>	_	_		_	_		
7 5	35 -10	60			_	, —	- ,	-		
$\frac{1}{2} \cdot \frac{1}{4}$	1-1	1-1 4-6			_		_	-		
100	100	250	_		-	<u>'</u> –		-		
5 -12	_	-		<u>.</u>				-		
3-4	2	5.6	2.5	-	Tan	_	_	- 1		
30-50	30 50	30-50	_	Straw	bark	-		- 0		
1 8 kilo	s.				_	- ,	30-35 litres heat 1 litre of water from 00-1600 C.	, —		
5.5-10	5.5-10 5.5-10 4.5-8 - 1.5-2 1-1.1 - - -									
6 metres permissible—3-4 metres at the top of the chimney										
O·43 of the grate at the beginning to O·25 at the end . 1 of the grate - - - - - - otherwise 25 times the diameter of the top										
4 50°	•	ı —:		- *	1	1'-	1 -	1 -		

TABLE 4.

Heating surface, H, required to heat 100 kilos, of water in one hour in the boiler-flue from 10° to 80°-130° C.

Water heated		T emperat	Temperaturys of the flue gases.									
from	to	At eutry At exit	300° 150°	250° 200	400° 250°	450° 300°						
10°	80°	Temp. difference, θ_m Heating surface, H -	176° 3:08	226° 2·39	268° 2·0	329° 1.7 sq. m.						
10°	100°	Temp. difference, θ_m Heating surface, H -	170° 4·07	217° 3·2	267° 2·65	315° 2·0 sq m.						
10°	110°	Temp. difference, θ_m Heating surface, H -	164°, 4·7	213° 3·6	261°• 2·89	•312 2·43 sq. m.						
10°	120°	Temp. difference, $ heta_m$ Heating surface, H -	160° 5 ·29	207° 4·12	257° 3·3	311° 2:70 sq. m.						
10°	1302	Temp. difference, θ_m Heating surface, H -	153° 6·03	206° 4·48	254° 3·7	307 3·0 sq. m.						

Example.—In order to heat 100 litres of water from 10° to 100° C., 100 (100 - 10) $\approx 9,000$ units of heat are required. The flue gases enter the economiser at 300 and leave at 150° C., so that the temperature difference is at first 300 - 100 ≈ 200 .

and at the end $150-10=140^\circ$; thus, in the mean, since $200^\circ = 0.7$, $\theta_m = 168.6$ (Table 1). The necessary heating surface is therefore

$$H = \frac{9000}{\theta_m k_b} = \frac{9000}{168 \cdot 6 \times 13} = 4.07$$
 sq. m.

Observation (Zeits. d. V. d. I., 1888, 438).—5,197 litres of water per hour were forced with a velocity of 0.118 m. through six parallel iron pipes of 51 mm. internal diameter, which had a total heating surface of 315 sq. m. The water was heated from 48.5° to 180° C. by means of the flue gases from a matine boiler, which were thereby cooled from 338° to 149° C.

*There were transmitted

$$C = 5{,}179 (180 - 48.5) - 683{,}405$$
 calories.

The initial difference in temperature was

$$\theta_a = 338^\circ - 180^\circ = 158^\circ$$
.

The final difference in temperature was

$$\theta_a = 149^\circ - 48.5^\circ = 100.5^\circ.$$

Thus the mean difference in temperature, $\theta_m = 126^\circ$. The coefficient of transmission of heat was

$$k_t = \frac{C}{H \not p_m} = \frac{683,405}{315 \times 126} = 17.2.$$

The velocity of the gases over the pipes was about 1.2 m., thus the calculated coefficient of transmission was

$$k_i = 2 + 10 \sqrt{1.2} = 13.0.$$

CHAPTER IV.

THE INJECTION OF SATURATED STEAM.

SATURATED steam, directly injected, is used for heating water, for distilling low-boiling liquids (alcohol, methyl alcohol, etc.) and for carrying over high-boiling liquids.

If saturated steam be conducted into cold water, it liquefies and gives up its heat to the water. The previous pressure of the steam is immaterial, since it is lost in condensing. An almost complète vacuum would be produced throughout the steam pipe, owing to the sudden disappearance of the steam at the end where it enters the water, did not the steam always contain air; since, however, this is always the case, only a fall in pressure in the pipe results. The water is gradually heated by the steam and may reach 100° C., if it is under atmospheric pressure. If the water be under a higher pressure, as that of a column of water, it can reach that temperature which steam of this pressure would have.

Example.—The water in a closed vessel in the cellar of a house 20 m. high, from which rises a pipe, 20 m. long (2 atmospheres) and filled with water, may reach at the bottom the temperature of steam at a pressure of 2 atmospheres, 1.0.6° C. The temperature of the water in the full pipe diminishes from below upwards, a circulation takes place, the warm water rising and the colder flowing down. The rising warm water, as it gradually comes under less pressure, gives off its excessive heat by forming steam.

Thus steam gives up its heat to water which is not boiling, liquefying and increasing the weight of water by its own weight. However, if the water boils, it evolves as much steam as is led into it, and its weight remains constant.

1 kilo of steam at atmospheric pressure has 637 calories. If the temperature of the water is t, each kilo of steam brings to it (637 - t) calories.

To heat 100 kilos. of water at 0° C. (taking its specific heat as constant) through • 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° C. there must be injected 1.60 3.24 4.87 6.71 8.53 10.4 12.4 14.4 16.5 18.6 kilos. of steam.

If steam is blown into a boiling liquid (not water), with which water mixes, and the boiling point of which lies below that of water, vapours are formed composed of a mixture of steam and the vapour of the liquid. The composition of these vapours depends, according to certain laws, upon the composition of the boiling mixture of liquids, but, unfortunately, is not accurately known for most mixtures of liquids, although this property is utilised on the largest scale in the industries for the distillation of such liquids. The heat of evaporation of the mixture of vapours is the sum of the heats of evaporation of the water and the liquid. The temperature of the mixture lies between those of the single vapours.

Example. -1 kilo. of a mixture of vapours, containing 0.5 kilo. of water vapour and 0.5 kilo. of alcohol vapour, is at the boiling temperature of 92° C.; 0.5 kilo. of steam at 92° contains 271 calories of heat of evaporation, and 0.5 kilo. of alcohol vapour at 92° contains 103 calories. Thus, 1 kilo. of the mixture contains $271 + 10^{\circ}$ 374 calories.

This question has been treated in a previous work (Wirkungsweise der Rektiven- und Destillur-Apparate, Julius Springer, Berlin), which should be mentioned here.

When saturated steam is blown into a hot liquid, which does not mix with water, part of the liquid is mechanically taken away along with the steam, even when its boiling point is considerably above that of water. This process of carrying over small particles of liquid is not evaporation, and, according to the author's observations, the heat of evaporation of the vapours evolved is but little greater than that of the water alone.

The quantities of different liquids carried over by lakilo. of saturated steam are very different; they depend essentially upon the nature of the liquid, the dryness and the temperature of the steam. In almost all cases, if not exactly necessary, it is still very desirable to heat the liquid under distillation in some other manner, since by this means the work to be performed by the steam is made

considerably easier. Experience has shown that 1 kilo. of steam carries over more liquid in vacuo than at atmospheric pressure.

As approximate data it may be stated that to carry over

100 k	ilos of	toluene	there are	required	13-15	kilos.	of steam.
-------	---------	---------	-----------	----------	-------	--------	-----------

100	٠,, ٠	benzene ,	, ,,	25-28	,,
100	,,	fatty acids . ,	,,,	£ 100	,,
100	,,	tar ,,	,, ; .	• 150	,,
100	,,	glycerin ,	, ,,	250	,,
100	,,	nitrobenzene "	,,	250-300	,,
100	,,	nitrotoluene ,,	. ,,	4 00-450	,,

CHAPTER V.

SUPERHEATED STEAM

• The steam superheater consists of metal pipes, through which saturated steam is led, and which are generally surrounded outside by fire. But the superheating of steam is not of necessity done by direct fire; a sand or oil-bath, or even high pressure steam, may be used. When saturated high pressure steam is bllowed to expand, its temperature and pressure sink. If this expanded or low pressure steam at a low temperature is passed through pipes heated outside by hotter high pressure steam, the low pressure steam is brought up to the temperature of the high pressure steam, i.e., it is superheated. It is a matter of indifference by what means the superheating is accomplished.

The specific heat of superheated steam at constant pressure, which comes into consideration here, is $\sigma_a = 0.4805$. Thus, in order to superheat 1 kilo. of steam at 100° C. through 100° C., i.e., to heat it to 200° C., there are required $100 \times 0.4805 = 48.05$ units of heat. Since saturated steam always contains water, the heat required to vapourise the latter and then superheat it to the same degree must also be calculated. It is important and useful to keep as low as possible the amount of water in the steam to be superheated, since the evaporation of the water requires much heat and seriously diminishes the efficiency of the superheater. But in spite of all separating arrangements, which are always used in conjunction with superheaters, the saturated steam always carries a certain quantity of water (3-5-10 per cent.) into the superheater. The heat required to vapourise this water must be calculated.

If the whole weight of steam to be superheated is D, its original temperature t, the temperature to which it is to be superheated t_* ,

and the percentage of water w, then the amount of heat required for superheating is

,
$$C = \frac{Dw}{100}537 + D(t_h - t)0.4805$$

and, when $t = 100^{\circ}$,

$$C = D(5.37w + 0.4805(t_b - 100))$$
 (33)

Thus, in order to superheat 100 kilos: of steam, more or less heat is required according to the percentage of water.

Table 5 gives the number of units of heat required to superheat steam at 100° C. through 100°, 200°, 300°, 400°, 500° and 600° C., when it contains 0, 3, 5 or 10 per cent. of water.

TABLE 5.

Expenditure of heat, in calcries, in order to superheat 100 kilos. of steam from 100° C. through 100° to 600° C., when it contains 0-10 per cent of water.

Water-content	' Superheating through							
of the steam.	100°	200°	300°	400°	500°	600		
Per cent.	Calories.	Calories.	Calories.	Calories.	Calories.	Calories.		
0 3 5 10	4,750 6,361 7,435 10,120	*9,500 11,111 1 2 ,185 14,870	14,250 15,861 16,935 19,620	19,000 20,611 21,685 24,370	23,750 25,361 26,435 29,120	28,500 30,111 31,185 33,870		

The volume of superheated steam is, according to Zeuner,

$$pV_d = 50.9T - 192.5 \frac{4}{p}$$
 (34)

where p denotes the pressure in kilos, per sq. m., V_a the volume in cub. m. and T the absolute temperature.

In Table 6 are given the volumes, V_a , of 1 kilo of superheated steam, in tub. m., for pressures of 0.1, 0.2, 0.5, 1, 2, 3 and 4 atmospheres and temperatures from 200° to 500° C.

The quantity of heat, which is carried to the steam through 1 sq. m. of heating surface, depends, as we may readily imagine, on the velocity with which the steam to be superheated moves along the

inner face, and the heating gases or liquids pass along the outer face of the superheater. Exact figures are, however, wanting for this transference of heat, owing to lack of accurate experiments. But if these figures were known, the coating of the surfaces with ash and rust, and also the variable and generally unknown proportion of water in the steam, would make the theoretical figures useless for practical purposes, without large corrections.

TABLE 6.

		Tem	perature of	the superh	eated stean	1, <i>t</i>			
Absolute	Absolute	200°	250°	300°	400°	500°			
pressure.	p.	Absolute	Absolute emperature of the superheated steam, T.						
Atmos.	Kılos, per sq. m.	473°	523°	578°	673°	773°			
		Volumes of 1 kilo. of superheated steam, V _d in cub. m.							
0·1 0·2 0·5 1 2 3	1,000 2,000 5,000 10,000 20,000 80,000 40,000	23·000 11·390 4·496 2·215 1·089 0·718 0·534	25·540 12·670 5·005 2·469 1·217 0·803 0·597	27·987 13·890 • 5·494 2·714 1·339 0·884 0·659	33·176 16·483 6·530 3·233 1·598 1·057 0·788	38·260 19·027 7·549 3·741 1·853 1·227 0·909			

Experience shows that, by means of 1 sq. m. of superheater surface in one hour, 25-45 kilos. of high pressure steam may be superheated through 160°, 150° or 200° C., when the temperature of the hot gases is 450°-550° C., the speed of the steam in the superheater being 15-40 m. per second.

This is true for those cases in which the steam is superheated by means of waste gases; when, however, the superheater lies emmediately after the fire, so that the flames directly impinge on its tubes, the efficiency is considerably greater, especially with steam a little above

the atmospheric pressure. Under these circumstances, in one hourby means of 1 sq. m. of surface, as much as 300 kilos of steam may be superheated through 200°-300° C. The velocity of the steam may then reach 60-70 m.

If the steam is expanded, *i.e.*, if it has a lower pressure than that of the atmosphere, for example, 1 atmos. (absolute), the velocity in the pipes may attain 150, or even 400 m.; an average would be 250 m.

According to Hirn, the coefficient of transmission between hot gases and steam with cast-iron heating surfaces, k=10 to 15. Assuming it to be k=10, a number which must be regarded as extremely low, the heating surfaces necessary to superheat 100 kilos, of steam, containing 0-10 per cent. of water, through 50°, 100°, 200° and 300° C, with a mean difference in temperature between steam and hot gases of 100° and 150° C, have been calculated and arranged in the following table:—

TABLE 7.

		For superheating through										
Water content	50°	75°	100°	200°	300°							
of the steam.	with mean differences in temperature of											
Per cent.	100° 150°	100° 150°	100° . 150°	100 1500	100° 150°							
0 3 5 10	the necessary 2.38 1.65 3.18 2.15 3.72 2.5 5.07 3.35			13.76 8.6	$\begin{vmatrix} 14.2 & 9.9 \\ 19.0 & 12.9 \end{vmatrix}$							

With the same assumption, it may be found that 1 sq. m. of the heating surface of the superheater superheats the following weights of steam in one hour:—

TABLE 8.

	Superheating through										
Water- content	5	0°	7	5°	10)0°	20	0° •	3()0°	
of the steam.		with nicen differences in temporature of									
Per cent.	100°	150°	100°	150°	100°	150°	100°	150°	100°	150°	
	1 sq. m. of heating surfaces superheats kilos, of steam per hour.										
0	42.0	63.0				31.5		16	7.0	10.5	
0 3 5	31.4	47.4	19.0	28.5	15.7	23.6	7.85		5.3	8.0	
	26.8	40.2	16.0	24:0		20•1	6.7	10	4.5	6.8	
10	20	30.0	11.0	16.6	10.0	15.0	5.0	7.5	3.3	5.0	

CHAPTER VI.

EVAPORATION BY MEANS OF HOT LIQUIDS.

Occasionally liquids are evaporated by means of heating coils, through which steam is not conducted, but a strongly heated liquid of high boiling point $(400^{\circ}-500^{\circ}\text{ C.})$ is pumped. The rate at which this hot liquid is forced through the coil can rarely be very large, since the considerable length of the coiled pipe and its small internal diameter would otherwise largely increase the friction, and thus the necessary pressure. We may regard a velocity, v_{ρ} of 1 m. per second as suitable, though often this is not attained.

In estimating the quantity of heat given up in this case from the hot coil to the *boiling* liquid, the coefficient of transmission may be assumed, according to the author's observations, to be

$$k_* = 700 \sqrt{v_f}$$
 (35)

The heating surface H in sq. m., required to transfer C calories per hour, is, with the mean temperature difference θ_m ,

$$H = \frac{C}{\theta_m 700 \sqrt{v_f}} \quad . \quad . \quad . \quad (36)$$

Accordingly, 1 sq. m. of heating surface in one hour, with a velocity of the heating liquid in the coil of $v_f = 1$ m., and with mean differences in temperature of

 $\theta_m = 5^\circ$ 10° 15° 20° 50° C. would transfer 3,500 7,000 10,000 14,000 35,000 calories to the boiling liquid.

• The necessary weight of the not liquid, F_w , which must be forced in one hour through the heating coil is, if C represents the quantity of heat to be transferred in one hour,

$$F_{\mathbf{w}} = \frac{\cdot C}{\sigma_f(t_{\mathbf{w}_i} - t_{\mathbf{w}_i})} \quad . \quad . \quad . \quad (36a)$$

The diameter of the coiled pipe in metres (d) is obtained from the equation

$$\frac{d^{2\pi}}{4}100 \times v_{f} \times 10 \times 3600 = \frac{F_{w}}{s_{f}}$$

$$d = \frac{1}{1679} \sqrt{\frac{F_{w}}{s_{f}v_{f}}} (36b)$$

å

The length of the heating coil is

$$l = \frac{H}{\pi d} \quad . \quad (96c)$$

For the hot liquids considered here the specific heat, σ_n is generally 0.5 and the specific gravity, $s_j = 07$.

CHAPTER VII.

THE TRANSFERENCE OF HEAT IN GENERAL AND TRANSFERENCE BY MEANS OF SATURATED STEAM IN PARTICULAR.

The physical properties of saturated steam are the basis of many of the following considerations; a compilation of these properties, according to Zeuner, is given in Table 9.

Water and many other liquids are evaporated by means of saturated steam. The hot steam employed has usually a pressure of 3-5 atmospheres, but, frequently, for liquids of high boiling point, steam of 12-15 atmospheres must be used. It is often advantageous to heat with steam at a pressure of 1-2 atmospheres (absolute).

The temperature of the hot steam must always be some degrees higher than the boiling point of the liquid to be evaporated. The transfer of heat is greater, the larger the difference in temperature between the steam and the boiling liquid, and it may be properly assumed that the action of the heating surface increases in direct proportion with the difference in temperature, $\theta_{\rm m}$. In order to make this difference large, a vacuum is frequently maintained over the boiling liquid, i.e., the liquid is brought into a closed vessel provided with heating surfaces in contact with steam, from which the vapours are conducted through a pipe into a condenser, where they liquefy and are cooled, and then either flow away spontaneously (by a barometer column), or are drawn off by means of a pump or other apparatus.

The pressure of the hot steam is without influence on the efficiency of the heating surface. But the temperature, which is in a definite connection with the pressure of saturated steam, has considerable influence, since, other things being the same, with increasing pressure the temperature of the steam also rises to an extent which is perfectly well known, and thus proportionately increases the difference in tem-

perature between steam and liquid. In this sense the capacity of the heating surface rises with the pressure of the steam.

By many researches it has been shown that with increasing temperature of the steam, or, in general, with an increase in the temperature at which the transference of heat takes place, there is a certain increase in the efficiency; this effect is, however, not proportional to the increase in temperature, and appears again to decrease when certain limits of temperature are exceeded. The cause of this behaviour is to be found in the increasingly rapid movement of the particles of liquid over the heated surface at the higher temperatures. The effect is more noticeable in heating non-boiling liquids by means of saturated steam, than in evaporating.

The hot steam always carries air with it (Zeits. d. V. d. Ing., 1887, 284), which considerably hinders the transference of heat. It appears as if the air attached itself to the hot surface, forming a net-like layer upon it, thus hindering the action of the steam. The removal of the air from the tubes or spaces, in which the steam is to give out its heat, is extremely important for effective working. Every care must be taken to remove, as quickly and completely as possible, the air which the steam brings to the hot spaces. It naturally collects where it is driven by the moving steam, that is, as the end of the heating surface. At that place there must be provided a continuous outlet, and since diffusion between air and steam is tolerably slow, the outlet should be placed rather towards the bottom than the top of the hot space.

The pressure in the hot space is the sum of the pressures of air and steam. The total pressure in the steam space is, therefore, always rather greater than the pressure of the steam alone, and since the temperature (the most important condition) in the hot space depends upon the pressure of the steam and not on the sum of the pressures, the temperature in a steam space is always somewhat lower than would be supposed from the total pressure as indicated by a gauge. In heating experiments it is, therefore, necessary to observe the temperature of the hot steam and not its pressure, since the latter, on account of the varying amount of air, cannot give a reliable indication of the temperature.

The pressure and temperature of the steam are not equal in all parts of the steam space; they are always somewhat, often much, lower at the end of the heating surface than at the beginning. When

TABLE 9. Saturated Water Vapour—Pressure; Total Evaporation; Specific Volume

Atmospheres absolute.			,		,	
Atmospheres, absolute. mm. m. m. em. m. em. m.		Pressure.		Vacu	um.	
mm, m, m, em, m, em, m,		Mercury.	Water.	, Mercury.	Water.	
0·0086 6·53 0·089 75·347 10·247 5 0·017 9·17 0·124 75·038 10·212 10 0·023 17·39 0·238 74·261 10·098 20 0·031 23·55 0·320 73·645 10·016 25 0·042 31·55 0·434 72·845 9·902 30 0·055 41·83 0·568 71·817 9·768 35 0·072 54·91 0·744 70·509 9·592 40 0·072 54·91 0·744 70·509 9·592 40 0·155 117·48 1-602 64·252 8·734 55 0·155 117·48 1-602 64·252 8·734 55 0·196 148·79 2·026 61·121 8·340 60 0·246 1.36·95 2·543 57·305 7·768 65 0·257 195·50 2·656 56·450 7·680 66		ınm.	ın.	•°m.	m.	° C.
0·0086 6·53 0·089 75·347 10·247 5 0·017 9·17 0·124 75·038 10·212 10 0·023 17·39 0·238 74·261 10·098 20 0·031 23·55 0·320 73·645 10·016 25 0·042 31·55 0·434 72·845 9·902 30 0·055 41·83 0·568 71·817 9·768 35 0·072 54·91 0·744 70·509 9·592 40 0·072 54·91 0·744 70·509 9·592 40 0·155 117·48 1-602 64·252 8·734 55 0·155 117·48 1-602 64·252 8·734 55 0·196 148·79 2·026 61·121 8·340 60 0·246 1.36·95 2·543 57·305 7·768 65 0·257 195·50 2·656 56·450 7·680 66			(
0·012 9·17 0·124 75·038 10·212 10 0·017 1·2·70 0·176 74/730 10·160 15 0·023 17·39 0·238 74·261 10·098 20 0·031 23·55 0·320 73·645 10·016 25 0·042 31·55 0·434 72·845 9·902 30 0·055 41·83 0·568 71·817 9·768 35 0·072 54·91 0·744 70·509 9·592 40 0·094 71·39 0·972 69·861 9·085 50 0·155 117·48 1·602 64·252 8·734 55 0·155 117·48 1·602 64·252 8·734 55 0·156 148·79 2·026 61·121 8·340 60 0·246 1.36·95 2·543 57·305 7·793 65 0·257 195·50 2·656 56·150 7·793 65 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
0.017						
0·023 17·39 0·238 74·261 10·098 20 0·031 23·55 0·320 73·645 10·016 25 0·042 31·55 0·434 72·845 9·902 30 0·055 41·83 0·568 71·817 9·768 35 0·072 54·91 0·744 70·509 9·512 40 0·094 71·39 0·972 69·861 9·364 45 0·121 91·98 1·251 66·802 9·085 50 0·121 91·98 1·251 66·802 9·085 50 0·155 117·48 1·602 64·252 8·734 55 0·196 148·79 2·026 61·121 8·340 60 0·237 195·50 2·656 56·450 7·680 66 0·303 23·309 3·163 52·601 7·173 70 0·466 3·54·64 4·817 40·536 5·519 80	0.012					
0·031 23·55 0·320 73·645 10·016 25 0·042 31·55 0·434 72·845 9902 30 0·055 41·83 0·568 71·817 9·768 35 0·072 54·91 0·744 70·509 9·502 40 0·094 71·39 0·972 69·861 9·364 45 0·121 91·98 1·251 66·802 9·085 50 0·135 117·48 1·602 64·252 8·734 55 0·196 148·79 2·026 61·121 8·340 60 0·246 1.695 2·543 57·305 7·763 65 0·237 195·50 2·656 56·450 7·680 66 0·303 233·09 3·163 52·601 7·173 70 0·380 28·8·55 3·928 47·148 6·408 75 0·466 35·464 4·817 40·536 5·519 80 0				74:730		
0°042 31·55 0·434 72·845 9·902 30 0°055 '41·83 0·568 71·817 9·768 35 0°072 54·91 0·744 70·509 9·592 40 0°094 71·39 0·972 669-861 9·364 45 0°121 91·98 1·251 66-802 9·085 50 0°155 117·48 1·602 64·252 8·734 55 0°166 148·79 2·026 64·252 8·734 55 0°246 1.66·95 2·543 57·305 7·793 65 0°237 195·50 2·656 56·459 7·680 66 0°303 233·09 3·163 52·601 7·173 70 0°380 28·8·55 3·928 47·148 6·408 75 0°466 35·464 4·817 40·536 5·519 80 0°570 433·04 5·892 32·456 5·106 82						
0:055 41:83 0:568 71:817 9:768 35 0:072 54:91 0:744 70:509 9:512 40 0:094 71:39 0:972 69:861 9:364 45 0:121 91:98 1:251 66:802 9:085 50 0:155 117:48 1:602 64:252 8:734 55 0:196 148:79 2:026 61:121 8:340 60 0:246 1:56:95 2:543 57:305 7:703 65 0:237 195:50 2:656 56:450 7:680 66 0:303 2:33:09 :3:163 52:601 7:173 70 0:380 2:88:55 3:928 47:148 6:408 75 0:466 3:54:64 4:817 40:536 5:519 80 0:506 3:84:41 5:230 37:556 5:106 82 0:506 3:84:41 5:230 37:556 5:106 82						
0·072 54-91 0·744 70·509 9·592 40 0·094 71·39 0·972 69·861 9·364 45 0·155 117·48 1·251 66·802 9·085 50 0·196 148·79 2·026 64·252 8·734 55 0·196 148·79 2·026 61·121 8·340 60 0·246 1.36·95 2·543 57·305 7·703 65 0·308 2·33·09 3·163 52·601 7·173 70 0·380 2·88·55 3·928 47·148 6·408 75 0·466 3·5-64 4·817 40·536 5·519 80 0·570 43·304 5·892 32·696 4·11 8·5 9 0·506 38·44 5·230 37·556 5·106 82 9 96 4·11 8·5 9 9 9 9 9 9 9 9 9 9 9 9 <		31.55				
0-094 71:39 0-972 69:861 9:364 45 0-121 91:98 1-251 66:802 9:085 50 0-155 117:48 1:602 64:252 8:734 55 0-155 117:48 1:602 64:252 8:734 55 0-156 148:79 2:026 61:121 8:340 60 0-246 1:6:95 2:543 57:305 7:793 65 0-237 195:50 2:656 56:459 7:680 66 0:303 2:33:09 3:163 52:601 7:173 70 0:380 2:88:55 3:928 47:148 6:408 75 0:466 354:64 4:817 40:536 5:519 80 0:506 38:414 5:230 37:556 5:106 82 0:570 43:304 5:892 32:455 5:198 80 0:746 566:76 7:711 19:342 2:625 92						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
0·195 117·48 1·602 64·252 8·734 55 0·196 148·79 2·026 61·121 8·340 60 0·246 1·36·95 2·543 57·305 7·703 65 0·308 2·30·9 3·163 52·601 7·173 70 0·380 2·88·55 3·928 47·148 6·408 7.5 0·466 3·5-64 4·817 40·536 5·519 80 0·506 38·44 5·230 37·556 5·106 82 0·570 43·3·04 5·892 32·996 4·11 8·5 0·691 5·25·45 7·142 23·455 3·194 90 0·746 566·76 7·711 19·342 2·625 92 0·834 633·78 8·602 12·622 1·706 95 1·900 760·00 10·336 0 10·638 111·74 1·75 1330 18·09 12·622 1·706 95						
0·196 148·79 2·026 61·121 8·340 60 0·246 1,6:95 2·543 57·305 7·793 65 0·257 195·50 2·656 56·450 7·680 66 0·303 233·09 3·163 52·601 7·173 70 0·380 288·55 3·928 47·148 6·408 75 0·466 35·464 4·817 40·536 5·519 80 0·506 38·4·14 5·230 37·556 5·106 82 0·570 433·04 5·892 32·956 4·441 8.5 0·570 433·04 5·892 32·956 4·414 8.5 0·570 433·04 5·892 32·956 4·414 8.5 0·570 433·04 5·892 32·956 4·414 8.5 0·746 5i6·76 7·711 19·342 2·625 92 1·000 76000 10·336 0 10·0 10·0						
0-246 1.36-95 2-543 57:305 7.703 65 0-237 195-50 2-656 56-459 7680 66 0-380 238-99 3-163 52-601 7.173 70 0-380 288-55 3-928 47-148 6-408 75 0-466 354-64 4-817 40-536 5-519 80 0-506 384-14 5-230 37-556 5-106 82 0-570 433-04 5-892 32-966 4 411 85 0-691 525-45 7-142 23-455 3-194 90 0-746 566-76 7-711 19-342 2-625 92 0-884 633-78 8-602 12-622 1-706 95 1-000 760-00 10-336 0 0 100 1-25 950 12-920 116-32 12-622 1-706 95 1-50 1140 15-50 11-71 11-62 12-622	0.199	111.49	1.003	64.393	8.734	55
0-246 1.36-95 2-543 57:305 7.703 65 0-237 195-50 2-656 56-459 7680 66 0-380 238-99 3-163 52-601 7.173 70 0-380 288-55 3-928 47-148 6-408 75 0-466 354-64 4-817 40-536 5-519 80 0-506 384-14 5-230 37-556 5-106 82 0-570 433-04 5-892 32-966 4 411 85 0-691 525-45 7-142 23-455 3-194 90 0-746 566-76 7-711 19-342 2-625 92 0-884 633-78 8-602 12-622 1-706 95 1-000 760-00 10-336 0 0 100 1-25 950 12-920 116-32 12-622 1-706 95 1-50 1140 15-50 11-71 11-62 12-622	0.196	148.79	2.026	61,101	U.91n	60.1
0°257 195·50 2·656 56·450 7·680 66 0°380 233·09 3·163 52·601 7·173 70 0°380 288·55 3·928 47·148 6·408 75 0°466 354·64 4·817 40·336 5·519 80 0°506 38·4·14 5·230 37·556 5·106 82 0°570 433·04 5·892 32·696 4·111 85 0°691 5·25·45 7·142 23·455 3·194 90 0°746 5·66·76 7·711 19·312 2·625 92 0°834 63·78 8·602 12·622 1·706 95 1·000 76000 10·336 0 0 100 1·25 950 12·920 10·638 111·74 116·42 2·20 15·20 20·67 12·622 1·706 95 2·25 1710 23·26 12·435 12·435 2·75 2						
0:308 2:33:09 -3:163 52:601 7:173 70 0:380 2:88:55 3:928 47:148 6:408 75 0:466 3:54:64 4:817 40:536 5:519 80 0:506 3:84:41 5:230 3:7:556 5:106 82 0:507 43:3:04 5:892 32:696 4:411 85 0:691 5:5:45 7:142 23:455 3:194 90 0:746 566:76 7:711 19:342 2:625 92 0:834 63:3:78 8:602 12:622 1:706 95 1:00 760:00 10:336 0 0 100 1:25 950 12:920 11:40 15:50 11:40 15:50 11:40 15:50 11:41:74 11:74 1:75 13:30 18:09 11:43 11:43 12:435 12:435 12:435 12:780 12:435 12:780 12:435 12:780 12:435 12:780						
0°380 288:55 3:928 47:148 6:408 75 0°466 354:64 4:817 40:536 5:519 80 0°506 384:14 5:230 37:556 5:106 82 0°570 43:304 5:892 32:966 4:11 85 0°691 525:45 7:142 23:455 3:194 90 0°746 566:76 7:711 19:342 2:625 92 0°884 63:378 8:602 12:622 1:706 95 1°000 760:00 10:336 0 0 100 1°25 950 12:920 12:622 1:706 95 1°50 1140 15:50 111:74 11:74 1°75 1330 18:09 116:42 120:60 2°25 1710 23:26 12:780 127:80 2°75 2090 28:42 13:391 13:94 3°50 2660 36:18 139:24 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
0°466 354·64 4·817 40·536 5·519 80 0°506 384·41 5·230 37·556 5·106 82 0°570 433·04 5·892 32·696 4·411 85 0°691 5·25·45 7·142 23·455 3·194 90 0°746 566·76 7·711 19·342 2·625 92 0°834 633·78 8·602 12·622 1·706 95 1·000 760·00 10·336 0 0 100 1·25 950 12·920 10·00 100 100 1·50 1140 15·50 111·74 116·42 116·42 2·00 1520 20·67 12·62 12·435 12·435 2·50 1900 25·84 12·435 12·435 2·50 1900 25·84 13·946 13·946 3·50 2660 36·18 13i·946 14·400 4·50 3420 46·51 1						
0-506 384-44 5-230 37-556 5-106 82 0-570 433-04 5-892 32-996 4 411 85 0-691 525-45 7-142 23-455 3-194 90 0-746 566-76 7-711 19-342 2-625 92 0-884 633-78 8-602 12-622 1-706 95 1-000 760-00 10-336 0 0 100 1-25 950 12-920 106-38 117-76 95 1-50 1140 15-50 116-38 117-74 1-75 1330 18-09 116-42 2-20 1520 20-67 120-60 2-25 1710 23-26 127-80 2-75 2090 28-42 130-96 3-00 2280 31-00 13-391 3-50 2660 36-18 139-24 4-00 3040 41-34 144-90 4-50 3420						
0-570 433·04 5-892 32·096 4 411 85 0-691 525·45 7·142 23·455 3·194 90 0-746 566·76 7·711 19·342 2·625 92 0-884 633·78 8·602 12·622 1·706 95 1-000 760·00 10·336 0 0 100 1-25 950 12·920 10·638 111·74 1-50 1140 15·50 111·74 116·42 2-00 1520 20·67 120·60 116·42 2-25 1710 23·26 120·60 124·35 2-75 2090 28·42 130·96 133·91 3-50 2660 36·18 139·24 14·90 4-50 3420 46·51 148·29 5-00 3800 51·68 152·22 6-00 4560 62·02 159·22 7-00* 5320 72·35 165·34 8-00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
0-691 525-45 7-142 23-455 3-194 90 0-746 566-76 7-711 19:342 2-625 92 0-884 633-78 8-602 12-622 1-706 95 1-000 760-00 10:336 0 0 100 1-25 950 12-920 106:38 111-71 100 1-50 1140 15-50 111-74 116:42 116:42 2-00 1520 20-67 120:60 116:42 120:60 2-25 1710 23:26 124:35 127:80 124:35 127:80 120:60 13:39:11 130:96 130:96 130:96 130:96 130:96 130:96 130:96 133:91 130:96 133:91 130:96 133:91 144:90 144:90 144:90 144:90 144:90 144:90 144:90 144:90 144:90 144:90 144:90 144:90 144:90 15:2:22 15:2:22 15:2:22 15:2:22 15:2:22 <						
0·746 566·76 7·711 19·342 2·625 92 0·834 633·78 8·602 12·622 1·706 95 1·000 760·00 10·336 0 0 100 1·25 950 12·920 106·38 111·74 1·50 1140 15·50 111·74 11·74 1·75 1330 18·09 116·42 120·60 2·200 1520 20·67 120·60 120·60 2·25 1710 23·26 127·80 124·35 2·75 2090 28·42 130·96 130·96 3·00 2280 31·00 133·91 130·96 3·50 2660 36·18 139·24 14·4·00 3·50 2660 36·18 139·24 14·4·00 4·50 3420 46·51 14·20 14·20 5·00 3800 51·68 152·22 159·22 4·00 360 82·69 159·22 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
0·884 633·78 8·602 12·622 1·706 95 1·000 760·00 10·336 0 0 100 1·25 950 12·920 10·638 111·70 1·50 1140 15·50 111·74 116·42 2·00 1520 20·67 120·60 120·60 2·25 1710 23·26 127·80 127·80 2·75 2090 28·42 130·96 133·91 3·00 2280 31·00 133·91 139·24 4·50 3600 36·18 139·24 14·90 4·50 3420 46·51 148·29 15·22 5·00 3800 51·68 15·2·22 15·9·2 5·00 4560 62·02 15·9·2 15·9·2 7·00* 5320 72·35 16·5·34 16·5·34 8·00 6080 8²-69 17·0·81 18·5·31 9·00 6840 93·02 17·5·77 18·5·31						
1-000 760-00 10-336 0 0 100 1-25 950 12-920 106-38 111-74 17-50 111-74 117-74 116-42 111-74 116-42 116-42 116-42 120-60 111-74 116-42 120-60 116-42 120-60 124-35 120-60 124-35 120-60 124-35 127-80 124-35 127-80 124-35 127-80 124-35 127-80 130-96 140-96 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1·50 1140 15·50 111·74 1·75 1330 18·09 111·74 2·00 1520 20·67 120·60 2·25 1710 23·26 124·35 2·50 1900 25·84 127·80 2·75 2090 28·42 130·96 3·50 2600 36·18 139·24 4·00 3040 41·34 14·90 4·50 3420 46·51 18·29 5·00 3800 51·68 152·22 5·00 4560 62·02 159·22 7·00* 5320 72·35 165·34 8·00 6080 82·69 170·81 9·00 6840 93·02 170·81 10·00 7600 103·36 180·31 11·00 8360 113·70 184·50 12·00 9120 124·03 188·41 13·00 9880 134·37 192·08 14·00 10640	1.000	760.00				
1.50 1140 15.50 111.74 1.75 1330 18.09 111.74 2.00 1520 20-67 120.60 2.25 1710 23.26 121.63 2.75 2090 25.84 127.80 2.75 2090 28.42 130.96 3.50 2660 36.18 139.24 4.00 3040 41.34 144.90 4.50 3420 46.51 148.29 5.00 3800 51.68 152.22 5.00 4560 62.02 159.22 7.00	1.25	950	12.920			106:38
1.75 1330 18-09 116-42 2-00 1520 20-67 120-60 2-25 1710 23-26 124-35 2-50 1900 25-84 127-80 2-75 2090 28-42 130-96 3-50 2660 36-18 130-24 4-00 3040 41-34 144-90 4-50 3420 46-51 148-29 5-00 3800 51-68 152-22 6-00 4560 62-02 159-22 4-704 5320 72-35 165-34 8-00 6080 82-69 170-81 9-90 6840 93-02 175-77 10-00 7600 103-36 18-31 11-00 8360 113-70 184-50 12-00 9120 124-03 188-41 13-00 9880 34-37 192-08 14-00 10640 144-70 195-33		1140	15.50	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.75	1330	18:09			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			20.67			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1710 .	23.26		,	124:35
3-00			25.84			127.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			28.42		ļ	
3-50						
4·50 3420 46·51 143·29 5·00 3800 51·68 152·22 6·00 4560 62·02 159·22 7·00* 5320 72·85 165·34 8·00 6080 82·69 170·81 9·00 6840 93·02 175·77 10·00 7600 103·36 180·31 11·00 8360 113·70 184·50 12·00 9120 124·03 188·41 13·00 9880 134·37 192·08 14·00 10640 144·70 195·33						
5·00 3800 51·68 1.52·22 6·00 4560 62·02 1.59·22 7·00* 5320 72·35 165·34 8·00 6080 82·69 170·81 9·00 6840 93·02 175·77 10·00 7600 103·36 180·31 11·00 8360 113·70 184·50 12·00 9120 124·03 188·41 13·00 9880 134·37 192·08 14·00 10640 144·70 195·53						144.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.50	3420	46.51			148-29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			51.68			152-22
3 7·00 b 5320 72·85 165·34 8·00 6080 82·69 170·81 9·00 6840 98·02 175·77 10·00 7600 103·36 180·31 11·00 8360 113·70 184·50 12·00 9120 124·03 188·41 13·00 f 9880 134·37 192·08 14·00 10640 144·70 195·53		4560	62.02			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 7.00 €	5320				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.00	6080				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6840	93.02			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			103:36			
12·00						
13-00 9880 134-37 192-08 195-53						
1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10.00				.	
15:00 11400 155:04 198:08						
	15.00	11400	155.04	•		198-98
	1					

Heat; Heat of the Water, of the Liquid and of Table 9. and Weight (after Zeuner).

Latent heat of Specific Heat of the Specific the vapour, weight. Total heat. volume. 606.5 - 0.595tliquid, 606.5 + 0.305t $0.00002t^2 +$ - 0.00002t2 -Weight of the 0.0000003t. 1 vol. water $-0.0000003t^3$. gives vols, of vapour in kilos. vapour. per cub. m. Calories. Calories. Calories. 606:5 198567 0.00504 0 606:5 0.00696 608.03 143811 603.030 5 105170 0.0095110.02 609-55 599.548 0.01319 75824 611.08 596:074 15.006 0.01753 57087 612.60 20.010 592.590 0.0232043126 614.13 25.017 589-113 0.03086 $\frac{32423}{25168}$ 615.65 585 623 30.026 0.0397535.037 617.18582:143 618.70 19542 0.05119577:649 10.051 0.06576 620.23 1521345.068 575:162 0.08336 12001 621.75571:662 50.088 0.10519623:28 9510 568:170 55:110 76290.13114 60:137 624.80 564·763 0.16234 6163 626:33 561:163 65:167 0.16915 626-63 5915 66:172 560:158 5020 0.1992870.201 627:85-557:649 0.2442375-239 629:38 4096 554.111 0.2958280:282 630-90 3382 550.618 0.319613130 549:210 82:300 631:51 0.35744 2799 - 3:329 $632 \cdot 43$ 547:101 0.428292336 543.569 00:381 633.952177 0.45966 92 403 634.56 542:157 0.5110595 143 635:48 1958 540.037 1650-5 030590 100.500 637:00 536.500 0.74738 1338-6 531-983 106:967 638-95 1126.9 0.88740 528:173 $112 \cdot 408$ 640.58 1.0252 975.9 147:340 642.01 524 670 1.1631859.9 121:417 643 (28 521:863 776.7 1.2981 $644 \cdot 43$ $519 \cdot 193$ 125.237 1:4345 697.2 128.753 645.48 516.7271.5674 638.3 515:379 131-061 646-44 1.7024 134-989 587.5 647:34 512:351 1.9676648.97 508:2 508-532 140.438 2.2303448.1 505:110 145:310 650.42 2.4911149.708 401.4 651.73 502-022 2.7500652-93 363 6 ' 153.741 499.189 3.2632 160.938 655.02 306.4 494.122 3.771% 656.93 265.2489.687 $167 \cdot 243$ 4.2745172.888 658.60 233.9 485.712 4.7741209.5 178:017 660.11482.093 5.2704 189.7 478.791 182.719 661:50 5.7636 173.5 475.705 187.065 662:77 159.9 6.2543663.97191.126 472.814 f-7424 470.136 194-944 665.08 148.4 138-4 7-2283 467:603 198:537 666 14 7.6270667:16 127.7 465.120 202:041

hot steam is conducted into a double bottom, or a coil in contact with cold water, the pressure at the end of the heating surface is generally nil in the first moments of the entry of the steam, it gradually increases as the water becomes heated, until, finally, when boiling commences, it reaches the permanent highest point.

The following may serve as an example:-

A copper pan of 1,000 mm. diameter, with a double bottom of 1.4 sq. m., contained 720 litres of water at 13° C. Steam entry valve, 25 mm.; pressure of steam in the boiler, 3.5 atmos.; at its entry into the double bottom, about 3 atmos.

Time.	Temperature of the water in the double bottomed pan.	Pressure of the steam at the side opposite to the steam entrance. Atmos. excess	Calories transferred per 1 sq. m. in 1 hour with 1° C. difference in temperature.		
. Hrs. Mins.	° C.	pressure.			
9 20 9 25 9 30 9 35 9 40 9 45 9 48 to 10 18	13 30 47 64 80 93 100	0·0 0·4 0·7 1·2 1·75 1·85 1·95 2·2·3-2·5-2·6	1224 1530 1690 1950 2090 2045 80 litres of water eva- porated in 30 mins.		

The more rapidly the liquid moves over the heating surface, the more rapid is also the transference of heat. The larger the number of particles of liquid brought to the heating surface in a definite time, the more heat will the liquid take up in this time. The example just quoted shows this clearly: as the water becomes hotter and hotter, its circulation or movement over the heating surface is creases, and so does the number of units of heat conveyed across 1 sq. m. in a definite time per 1° difference in temperature. Also when the liquid to be heated or evaporated is moved by artificial means rapidly and frequently over the hot surface, the amount of heat transferred in a definite time is increased. This increase is, however, not directly proportional to the increase in velocity, but in a lower ratio (Chapter XXI.).

The conclusions to be drawn from the observations of Joule, Ser, and others, lead to the belief that the increase in the transference

of heat between steam and a non-boiling liquid is proportional to the cube root of the velocity of the liquid.

The rate of movement of the steam over the heating surfaces also exerts a considerable influence on the transference of heat. There is always observed close to the entry of the steam, where it first comes in contact with the heating surface, a much more lively motion of the particles of a non-boiling liquid, and a very much more rapid evaporation of a boiling liquid, than at places more distant from the entry. It is evident that the more heat will be imparted by the steam, the more of its particles rapidly touch the surface of separation.

Around coils, pipes, over double bottoms and tubular heaters, filled with steam, a very lively movement of non-boiling liquids, and an extremely energetic ebullition of boiling liquids, takes place at the entrance of the steam; towards the end the action decreases considerably, until it appears almost entirely to cease. If the hot space be opened at the end, so that steam escapes, whilst the pressure in the hot space remains constant, the transference of heat is increased; a larger portion of the heating surface takes part in the violent action. In practice this opening of the hot space cannot always be effected, since it generally results in a costly loss of steam, yet there are cases in which it is the regular condition, e.g., with several heating bodies placed one after the other, in the condensers of rectifying apparatus, etc.

In all these cases the largest transmission of heat is observed where the most steam passes over the hot surface, and the heating surface as a whole is the more efficient, the more steam passes over its total extent, although this steam is not quite condensed. It is believed that the average evaporative efficiency of a unit of surface decreases with its size, and, in fact, approximately in proportion to the square root of the surface. Thus, if k, denotes the quantity of heat transferred through unit surface in unit time with 1° difference in temperature, then, through the surface, H, the quantity of heat, C = k, \sqrt{H} , is transferred. In the case of tubes, inside which is steam, it is probable, as observation has shown, that this relation always holds good; in the case of double bottoms, perhaps in default of accurate experiments, the connection is more uncertain, which is also true of tubular heating apparatus with the steam outside the tubes.

When the space containing the hot steam is very large, so that, only slight movement takes place in it, almost a stagnation occurs, and the influence of the absolute size of the surface is diminished.

The condensed water formed from the steam precipitated on the heating surface, considerably hinders the transference of heat, since the conductivity of water is very low. The more rapidly and completely this condensed water is rempved from the heating surface, the more efficient the latter will be. To a certain extent the condensed water drops more readily from a horizontal tube, heated externally, than from a vertical pipe, down the whole length of which the water would have to run.

The nature of the metal, of which the heating surface is composed, appears to effect the amount of heat transferred only through differences in conductivity. On the other hand, the nature of the surface, whether rough or smooth, seems to be almost entirely without action on the movement of heat.

The heat, which a heating medium (steam, water, sir) is to transmit through a metallic diaphragm to the heated medium (water, air), has three resistances to overcome, viz.:—

- 1. The entry through the surface of the metal plate.
- 2. The passage through the metal.
- 3. The exit from the metal into the heated fluid.

These resistances may be expressed by Péclet's method, taking for each a coefficient, which gives the number of calories passing through a surface of 1 sq. m. in one hour with a temperature difference of 1°. Let the entering coefficient be ϵ , the exit coefficient be a, the conductivity through a wall 1 mm. thick be λ , the thickness in millimetres be δ . Then if k be the total quantity of heat which passes through 1 sq. m. in one hour, with a temperature difference of 1° C., and a thickness of 1 mm. these coefficients are related according to the general equation (Péclet):—

The coefficients of entry and exit, ϵ and a, are practically unknown, since they are hardly capable of measurement by direct experiment.

However, for the cases dealt with here, the so-called coefficient of transmission, k, alone comes into consideration; we may thus omit the researches designed to determine the values of ϵ and a.

The conductivity coefficient, λ , of the metals has been determined by several observers; the values found are, however, comewhat different. It is probable that slight variations in the composition of the metals (impurities) exert considerable influence on the conductivity for heat. The following values for λ may be taken as the mean of many experiments, they give the number of calories which pass in one hour through a metal block of 1 sq. m. section, 1,000 mm. thick, with a temperature difference of 1° C. (Zeits. d. V. d. Ing., 1896, 46):—

Copper, 330. Tin, 54. Iron, 56·1. Zinc, 105. Steel, 22·3-40. Lead, 28·4.

If we put $\frac{1}{k}$ for the sum of the reciprocals of a and ϵ , then

and
$$k = \frac{1}{\frac{1}{k_o}} + \frac{1}{a}$$

$$k = \frac{1}{\frac{1}{k_o} + \frac{\delta}{\lambda}} \qquad (39)$$
or
$$k = \frac{k_o}{1 + k_o \frac{\delta}{\lambda}} \qquad (40)$$

If we now insert for k_o those values which are to be regarded as most nearly correct, we may form an idea of the influence exerted by the greater or less conductivity, and the greater or less thickness of the walls of the heating surface, upon, the coefficient of transmission, k.

According to Molier (and others) k_o lies between 3,500 and 7,000.

In order to obtain an idea of the retarding effect of the increasing thickness of the material of the heating surface, the Tables 10 and 11 have been calculated.

Table 10 gives, for the metals, copper, zinc, iron and lead, the values of the coefficient of transmission for thicknesses of 2-10 mm.,

when that coefficient is 100 for a thickness of 1 mm. The values, are given on two assumptions:—

- 1. The coefficient $k_o = 3,500$.
- $2. k_o = 7,000.$

In practice k_a would rarely be greater than 3,500.

TABLE 10.

If the coefficient of transmission of heat, k, is 100 for a thickness in wall of 1 mm, then for greater thickness of 2-10 mm, it has the values given in the columns.

Thickness	Corper.		Zinc.		Iron.		Lead.	
of wall. mm.	$k_o = 7000.$	$k_o = 3500.$	$k_o = 7000.$	$k_o = 3500.$	$k_o = 7000.$	$k_o = 3500.$	$k_o = 7000.$	k _o = 3500.
1 2 3 4 5 6 7 8 9	100 98 96 94 92 90 89 87 86 84	100 99 98 97 96 95 94 93 92	100 94 89 84 80 76 73 69 66 64	100 97 94 91 89 86 83 82 79	100 87 77 69 63 57 53 49 46 43	100 93 86 80 76 · 71 68 64 61	100 83 71 63 55 50 45 42 38 36	100 90 82 75 69 64 60 56 53 50

· From this table it is seen that the coefficient of transmission, k, decreases the more, with increasing thickness of wall, the worse conductor is the metal.

For copper, which is rarely used in thicknesses exceeding 1-4 mm, the decrease in k with increasing thickness of wall is unimportant, and may almost be neglected.

With wrought iron, which is generally thicker, the thickness at once exerts an unfavourable influence, and in the case of cast-iron heating surfaces, which are made 10 mm. thick and more, the efficiency is very considerably diminished at these thicknesses.

In the case of lead, which is used in thick-walled pipes, and has a low conductivity, the efficiency of the heating surface diminishes very rapidly with increasing thickness.

The next, Table 11, shows the values of the coefficient of transmission for iron and lead heating surfaces, when they are of equal thickness with copper, the coefficient of transmission for the latter being taken as 100. It will be seen that heating surfaces of iron and lead, of the same thickness of wall, have considerably lower efficiencies than those of copper; the former metals are also generally used in greater thicknesses than copper.

TABLE 11.

When the coefficient of transmission of heat for copper in thicknesser of 1-10 mm. is taken at 100, the coefficient for iron and lead of equal thickness has the values given

Thickness of	Copper.	Ir	on.	Lead.		
wall. mm.	оорраг.	$k_o = 7000.$	$k_o = 3500.$	$k_o = 1000.$	$k_o = 3500.$	
1 2 3 4 5 6 7 8 9	100 100 100 100 100 100 100 100 100	89 77 70 64 58 55 51 48 46 44	93 87 82 77 73 70 67 63 61 60	82 69 60 54 49 45 42 39 37 35	90 82 75 70 63 • 60 57 54 51	

Thick viscous liquids, which move slowly, acquire heat with more difficulty than water or dilute solutions, alcohol, etc., consequently the coefficient of transmission, k, is much lower, so that it may often be only 0.5, or even 0.2, of the coefficient for water, according to the consistency and nature of the liquid.

Finally, there is still another hindrance to the transference of heat, which arises more or less in all cases—the incrustation or coating of the heating surface with more or less solid, pasty or crystalline formations, corresponding to boiler scale. All these precipitates adhere firmly to the hot surface, they conduct heat very badly, and thus diminish the efficiency to a great extent. Since

these hindrances are different in each single case, can never be exactly estimated beforehand, and afterwards on practically never be controlled, the figures obtained in practice for the transference of heat are appreciably smaller than those found by careful researches; frequently the difference is so great that even the agreement of the action with the laws cannot be recognised.

The conditions of the exchange, of heat through metallic diaphragms between gases, vapours and liquids, have not yet been elutidated with the desirable certainty by means of careful experiments conducted with large apparatus on a practical scale. A theoretical consideration of all the different practical cases is also wanting. Theoretical results, however, would not be directly applicable to the large scale practice owing to the varying difficulties which occur there. Thus, in the present condition of our knowledge, there is no other course than to consider the results and observations of the author and others, obtained from large apparatus in industrial use, whilst giving due regard to the rules, coefficients and laws obtained by experiment, unfortunately, as a rule, from very small apparatus.

We shall at once endeavour to state such rules for the estimation of the necessary heating and cooling surfaces for the different cases which occur in practice.

In all cases it is an advantage to make the passage of the gases, vapours and liquids over the hot surface as rapid as possible. Thus, vortices and alterations in the direction of flow favour the transference of heat; the more rapidly the liquids and gases flow through the pipes, and are driven over the heating surfaces, the more rapid is the transference of heat. A current of stealn or gas, flowing rapidly through a pipe or flue of regular section, gives out heat more quickly than a current of steam, which, when led to a flat wide inciting surface, spreads out over it to all sides as soon as it reaches it. The greatest loss of heat takes place at the spot where the hot current first touches the heating surface.

Towards the end of long heating pipes and flues the temperature and pressure of vapours and gases sink, so that the end itself is almost inoperative. The shorter and narrower is a steam heating pipe, the more efficient is its surface.

The hot space should always be kept free from air, and the water should be rapidly and completely removed.

CHAPTER VIII.

THE TRANSFERENCE OF HEAT FROM SATURATED STEAM IN PIPES (COILS) AND DOUBLE BOTTOMS.

A. Evaporation and Heating by Means of Steam Pipes (Coils).

PROFESSOR R. MOLIER in a fine compilation published by request
of the Vereins deutscher Ingenieure in the society's Zeitschrift, 1897,
Nos. 6 and 7, states that the most reliable data concerning the coefficient of transmission, k, between steam and water are as follows:—

In the case of water which is not boiling, according to experiments by Ser on a horizontal tube of 10 mm. bore and 314 mm. long, the transference of heat increases approximately with the cube root of the velocity of the liquid, v_n in m. per second.

Molier calculated k_e from the experiments of Ser:

$$k_{\sigma} = 3\overline{300} \sqrt[8]{v_f} \dots \dots \dots \dots (41)$$

From numerous researches by Joule on vertical tubes of narrow bore.

$$k_c = 1750 \sqrt[3]{v_f} \cdot (42)$$

According to the experiments of G. A. Hagemann (Nogle Transmissions-Forsog) on an externally heated vertical tube, 49 mm. in external, 45 mm. in internal diameter and about 900 mm. long, through which water was passed at various velocities, in the case of non-boiling liquids the quantity of heat transmitted increases not only with the velocity of the liquid but also with the height of the temperature at which the transference of heat is effected. The higher the temperature of the hot steam, t_d , and the temperatures of the liquid, t_{fd} , and t_{fd} , the more heat is transferred in one hour per sq. m. per 1° C. difference in temperature. Molier deduces from Hagemann's experiments the following expression for k_c :—

$$k_a = 50 + \left\{ 1000 + 10 \left(t_a + \frac{t_{fa} + t_{fe}}{2} \right) \right\} \sqrt{v_b}$$
 (43)

The figures, obtained by Nichol from experiments on a brass tube of 20 mm. bore, show a considerably greater transference of heat in the dorizontal than in the vertical position. In the horizontal position about 1.5 times as many calories were transmitted as in the vertical, yet the values found by Nichol are lower than those of Ser.

It would appear that at higher temperatures the liquid is somewhat more mobile, and hence that greater differences of temperature may occur between its parts, which would then cause a greater movement over the heating surface. That the horizontal position of the hot pipe is favourable may well be explained by the immediate removal of heated particles of liquid from the hot surface, thus at once making place for fresh particles. In or about a vertical pipe many particles of liquid must remain in contact with the surface in rising.

In regard to the transference of heat to boiling water from saturated steam, experiments by C. Long, J. B. Morison and the brothers Sulzer, are quoted in the same paper; the results of these experiments, which were certainly carefully executed cannot, however, well be considered from the same point of view.

From a consideration of the above-mentioned experiments, those of Jelinek (Z. d. V. für Rubenzucker-Industrie, December, 1894), and some number of the author's own, the author comes to the conclusion that the empirical equation

most accurately expresses the transmission of heat between steam and boiling water, in so far as cylindrical copper pipes, with steam inside, are concerned.

With all due regard to such careful workers as Joule and Ser, it author is of the opinion that, from such small apparatus as that with which they worked, safe conclusions cannot be drawn as to the relations between steam and liquid on the much greater proportions of the industrial scale.

It is fuite certain that the temperature and pressure of the steam at the end of a long pipe surrounded by water in violent ebullition are considerably lower than at the beginning. It is also proved that those heating surfaces, or portions of heating surfaces, transmit the of molecules of steam. Similarly, steam at rest gives up the least

Steam which is blown into a large heating space, spreads out on all sides immediately after its entry; it does not pass over the hot surface in a regular manner, and thus gives out its heat very slowly.

In the author's opinion, observation teaches that the transmission of heat increases with decreasing diameter and with decreasing length of the tube, and apparently in such a manner that the transmission is inversely proportional to the square root of the product of these quantities. The smaller the diameter of the heating tube the more molecules of those which are passing through will come into contact with the walls. Since the largest quantity of heat is given up at the beginning, every tube becomes much less active towards the end.

The equation

is not in any way to be regarded as final; we know, indeed, that it is inaccurate. It appears that the increasing length of the heating pipe diminishes the transmission of heat in a somewhat less ratio than that of the square root. The equation is inaccurate for very short and very long tubes, but the want of results of sufficiently accurate experiments does not permit it to be corrected, and thus it must serve for the present.

For comparison with this formula certain published experimental results may be quoted:—

Jelinek, with a copper tube, 16 mm. bore, 12,000 mm. long, observed $k_* = 4494$.

Calculated,
$$k_{\nu} = \frac{1900}{\sqrt{0.016 \times 12}} = 4309.$$

Jelinek, with a copper tube, 10 mm. bore, 8200 mm. long, observed $k_* = 5890$.

Calculated,
$$k_* = \frac{1900}{\sqrt{0.01 \times 8.2}} = 6643.$$

In this case the temperature difference was taken by Jelinek as the arithmetic mean of the initial and final temperatures of the steam, whilst it should have been calculated according to the principles laid down in Chapter I., in which case it is less, and k, then becomes 6750, instead of 5890.

Jelinek, with a copper tube, 16 mm. bore, 3000 mm. long, observed $k_* = 8680$.

Calculated,
$$k_* = \frac{1900}{\sqrt{0.1016 \times 3}} = 8675.$$

Sulzer, with a copper tube, 100 mm. bore, 3000 mm. long, observed $k_* = 3400$.

Calculated,
$$k_* = \frac{1900}{\sqrt{0.1 \times 3}} = 3480.$$

C. Long, with a copper tube, 31.4 mm. bore, 2500 mm. long, observed $k_s = 6500$.

Calculated,
$$k_v = \frac{1900}{\sqrt{0.0314 \times 2.5}} = 6840.$$

In Table 12 are contained the coefficients of transmission, calculated by means of equation 44, for copper tubes of 10-150 mm. bore and 1-30 m. long. These values for k_v only apply to the evaporation of water. The thicker the liquid to be evaporated becomes, the less becomes the influence of the form and species of the heating surface upon the efficiency.

For wrought-iron pipes the coefficient, k_r , should be taken at about 0.75, for east-iron pipes about 0.5, and for lead pipes about 0.45 of the coefficients for copper, in which values allowance has been made for the greater thickness in wall of these metals.

For application in practice only $\frac{2}{3}$ of the value of k_* as so found should be used.

When not pure water, but dilute solutions of 10-25 per cent. strength are to be evaporated, the coefficient of transmission generally decreases by 20-30 per cent.

For thick, pasty, viscous or sticky liquids, or liquids largely mixed with crystals, the value of k, may become much less. The dimensions of the heating tubes are then found to be of little influence; for such cases the following values should be taken for k, in practice:—

Long heating coils, about 650-750.

Short ,, ,, ,, ,, 800-900.

Thin heating tubes (steam pipes), about 1000.

Vertical systems of pipes (tteam outside), about 600-700.

TABLE 12.

The coefficient of transmission of heat, k, for one hour, 1° C. and 1 sq. m., between steam and boiling water, for copper heating coils of 10-150 mm. bore and 1-30 m, length.

	Length, $l,$ of the tube in ${f m}.$								
Bore of the tube in mm.	1	2	• 4	6	8	10	15	20	30
	Co	Coefficient of transmission of heat, h_{s_s} for copper steam pipes, heated inside.							
10	19000	13470	9500	7714	6730	6012	4912	4290	3570
15	15580	11000	7713	6333	5495	4910	3950	3408	2833
20	13470	9500	6730	5490	4750	4220	3408	3007	2455
25	12000	8520	6012	4910	4250	3800	3100	2687	2190
• 30~	11000	7714	5490	4510	3875	3408	2835	2455	2004
35	10190	7272	4900	3900		3200	2640	2270	1850
40	9500	6730	4750	3875		3007	2455	2110	1743
45	8950	6333	4510	3600	3165	2835	2300	2004	1610
50 60 ~	8520 771a	$6012 \\ 5490$	$\frac{4253}{3875}$	3403 3170	$\frac{3007}{2740}$	$2687 \\ 2455$	$2190 \\ 2004$	1900 1743	$1558 \\ 1415$
70	7200	5080	3600	2930	2540	2270	1890	1610	1310
80	6730	4750	3363	2740	2375	2125	1711		1225
90	6333	4510	3170	2580	2245	2004	1610	1410	1157
100	6012	4290	3007	2455	i	1900	1558	1364	1100
125	5714	3800	2687	2191	1820	1700	1390	1202	982
150	4910	3408	2455	2004	1743	1555	1266	1100	905
	l	•			l	l 	į	1	

The thickness of metal of the copper tubes is taken at about 2 mm. For wrought-iron pipes, about 3:5.4 mm. thick, the coefficient $k_* = 0.75$ of that for copper.

10 mm. thick, the coefficient, $k_* = 0.50$ of that for copper.

10 mm. thick, the coefficient, $k_* = 0.45$ of that for copper.

In determining the dimensions of the heating surfaces of apparatus for the evaporation of water, the coefficient. k.. should only be taken at about & of the above values, i.e.,*

For copper tubes - 0.66 of the figures in the table.

For liquids which contain 10-25 per cent. of solid matter in solution, the coefficients, k_s , are only about 2 as large as those just given, *i.e.*,

For copper tubes - - 0.5 of the figures in the table.

The equation (44) may now be somewhat transformed. Multiplying numerator and denominator by $\sqrt{\pi}$, the expression under the square root sign becomes equal to the heating surface, H_s , thus

$$k_{\bullet} = \frac{1900 \sqrt{\pi}}{\sqrt{dl} \sqrt{\pi}} = \frac{1900 \sqrt{\pi}}{\sqrt{d\pi l}} = \frac{1900 \times 1.772}{\sqrt{H_{\bullet}}} = \frac{3367}{\sqrt{H_{\bullet}}}$$
 (45)

If we now insert this value for k_* in the equation for the total transmission of heat by the surface H_* —

$$C = H_{\bullet} \cdot \theta_m \cdot k_r,$$

we obtain

$$C = 3367 \sqrt{\overline{H_v}} \theta_m \dots \dots \dots (46)$$

which may be expressed in words: the heat transmitted in unit time by the surface, H_n is proportional to the square root of the surface.

As has been said above, this equation is not quite correct, but the efficiency of larger surfaces is somewhat greater, and of smaller surfaces somewhat smaller, than would correspond to the equation. But the results obtained by its means, of all known to the writer, agree most nearly with the reality.

Having regard to the diminution in efficiency caused by incrustations, incomplete removal of air, etc., we may take for the calculation of the actual heating surfaces the equations

$$C = 2200 \ \theta_m \sqrt{H_*}$$
 (47)
 $H_* = \left(\frac{C}{2200 \ \theta_m}\right)^2$ (48)

or

which may be applied with some confidence to copper heating tubes for the evaporation of water.

Table 13 has been calculated by means of these equations, it gives the number of kilos of water evaporated in one flour by copper tubes of 10-150 mm. diameter and 2-40 mm. length, with 1° difference in temperature between the steam and boiling water. This table will serve for the rapid calculation of the proper dimensions of the heating tubes in any case under consideration.

With sufficiently short tubes the real temperature difference, θ_{R} , to be expected, is only about 10 per cent. less than the calculated.

If not water, but a thin solution of 10-25 per cent. strength is to be evaporated, copper coils give about 0.75, wronght-iron about 0.6, cast-iron about 0.4, and lead about 0.33 of the results quoted in the table.

From viscid, thick and crystallising liquids, containing very little water, the hourly evaporation of water by means of heating coils is much smaller, viz., for copper about 0.5, wrought-iron about 0.40, cast-iron about 0.25, and lead about 0.225 of the weights given in Table 13.

Steam at a pressure of 3-4 atmospheres, in narrow and not too long copper coils, is found in practice to evaporate to the atmosphere about 100 litres of water in one hour per 1 sq. m.; with very small heating surfaces more (up to 130 litres), and with larger, less.

With 1 sq. m. of heating surface, heated by steam at 3-4 atmospheres, 800-1200 heres of water may be heated in 1 hour from 10° to 100° C. when the water is not specially moved, yet the efficiency of the heating surface varies greatly and depends on the velocity of the steam (see Chapter XXI.).

B. The Dimensions of Steam Tubes (Coils).

The ratio of the diameter to the length of a tubular heating surface is far from being without influence on the proper action of the surface. In very long pipes, in which the steam moves with great velocity, the pressure falls considerably towards the end and thus the available temperature difference sinks appreciably.

When the steam enters at high velocities the coefficient of transmission of heat is greater than when the velocity is lower, but the pressure and temperature, which sink rapidly in the first case,

TABLE 13.

Heating surface, H_{\bullet} , in sq. m., and hourly evaporation of water, W_{\bullet} of copper heating tubes of 10-150 mm. diameter and 2-40 m. length, with 1° C. difference in temperature.

h of n m.				In	terna	l dian	ieter c	f the .	icating	tube 1	n mm.		
Length of tube in m.		10	20	30	40	50	60	70	80	90	100	125	150
2	H,	0.08	0.14	0.21	0.27		0.40	0.46	0.53	0.59	0.65	0.82	0.98
١.	W	1.12			2.07	2.32	2.52	2.71	2.91	3.07	3.20	3.60	3.96
3	H.	0·12 1·36	0.21 1.83	0·31 2·22		0.50 2.83	0.60	0.69	0.80	0.89	0.99	1.22	1.47
4	H,	0.16	0.28		0.54	0:68	3·09 0·80	3·32 0·92	3.56	3.77	3.97	4.40	4.84
1 *	W	1.60	2.11		2.93	3 29	3.57	3 84	1·06 4·09	1·18 4·32	1·30 4·56	1.64 4.96	1.96 5.60
5	H	_ 00	0.36	0.51	0.68	0.85	1.00	1.16	1.34	1.49	1.65	2.04	2.46
1	W		2.40		3.29	3.68	4.00	4.03	4.60	4.88	5.12	5.71	6 26
6	H_r		0 49	0.62	0.81	1.01	1.21	1:39	1.60	1.78	₫.97	2.45	2 94
1	w		2.62	3.12	3.60	4.00	4.40	4.71	5.04	5.32	5.60	6.26	6.85
7	H_r		0.49	0.73	0.95	1.18	1.40	1.61	1.8€	2.07	2.29	2.86	3.43
1.	W'		2.80	3.41		4.32	4.72	5 08	5.45	5.75	6.09	6.76	7.40
8	H_v	i	0.56	0.84		1.36	1.60	1.84	2.12	2.36	2.60	3.28	3.92
9	W	_	2.98		4.16	,	5.04	5.41	5.84	6.13	6.46	7.24	7.90
ľ	H,			0.98 3.75	1.22	1.58 4.92	1·81 5·38	2·09 5·78	2·41 6·20	2·69 6·56	2·97 6·89	3.68 7.65	4.41
10	H_{e}			1.03		1.69	2.01	2.32	2.67	2.98	3.29	4.08	8·43 4·90
1 -~	W			4.04		5.20	6.02	6.08	6.52	6.90	7.24	8.08	8.85
11	H_r	•		1.13	1.48	1.86	2.21	2.55	2.94	3.27	3.61	4.48	5.39
1	w		-	4.24		5.45	6.04	6.38	6.84	7.25	7.60	8.46	9.28
12	H_r			1.24		2.03	2.41	2.78	3.20	3.57	3.94	4.90	5.88
1	W	-			5.08	5.68	6.20	6.66	7.06	7.55	7.93	8.85	9.69
18	H_v			1.35	1.76	2.19	2.61	3.00	3.46	3.85	4.26	5.81	6.37
	W		-	4.64	5.28	5.92	6.46	6.92	7.44	7.84	8.15	9 20	10.09
14	H_v W	_	_	1·46 4·80	1·90 5·39	2·36 6·12	2.80	3.22	3.72	4.14	4.58	5.72	6.86
15	H_{ν}	_	_	1.53	2.03	2.55	6.69 3.00	7·07	7·71 4·02	8·13 4·47	8.49	9.56	10.48
	w	_	_	4.93	5.68	6.38	6.92	7.45	8.00	8.45	4·95 8·86	6·12 9·89	7 85 10 86
16	H_{ν}			100	2.16	2.72	3.20	3.68	4.24	4.72	5.20	6.56	7.84
	w	-		-	5.88	6.58	7.30	7.67	8.23	8.68	9.14	10.24	11.20
17	H_v	1		1		2.89	3.41	3.93	4.58	5.05	5.57	6.96	8.35
	w	-	-			6.80	7:38	7.93	8.48	8.98	9.44	10.55	11.55
4 8	H					3.06	362	4.18	4.82	5.38	5.94	7.36	8 82
	W	-	-	-		6.99	7.60	8.17	8.78	9.28	9.74	10.05	11 [.] 88
19	H_r	1		- 1	•	9.22	3.82	4.41	5.08	5.67	6.26	7.76	9.81
20	W	_	-	-		7.17	7.80	8.40	9.01	9.52	10.00	11.14	12.20
20	H,	_		_		3·38 7·35	4.02	4.64	5.34	5.96	6.58	8.16	9.80
	15	-	_	- 1		1.99	8.01	8.60	9.24	9.76	10.32	11.40	12.52
<u> </u>		• !			- '		<u>•</u>		10	. 			

TABLE 13—(continued).

					-								
h of			•	1	nteri	nal d	iamete:	r of the	heatin	g tube	in 1311m	•	,
Length of tube in m		10	20	30	40	50	60	70	80	90	100.	125	150
				· '		·	•	•					
21	H_r						4:32	4.87	5.61	6.25	7.00	8.56	10.29
	w			_			8.31	8.80	9.47	10.00	10.58	11.70	12.84
22	H_{v}			1			4.42	5.10	5.88	6.24	7.28	8.96	10.78
	W					-	8 40	9.04	9.69	10.22	10.74	12.00	13.12
23	H_{ν}			1			4 62	5.83	6.14	6.84	7.55	9.38	11.27
1	w		-				8.59	9.20	9.90	10 [.] 46	10.98	12.24	13.44
24	H_r			1	İ	1	4.82	5.26	6.40	7.14	7.88	9.80	11.76
ı	W		-		-	-	8.78	9.48	10 10	10 ⁻ 69	11.20	12.52	13.72
25	H.						1	5.78	6.66	7.42	8.20	10.21	12.25
	W		-		-	-		9.60	10.32	10.89	11.45	12.80	14.00
26	H,	1	1					6 00	6.92	7.70	8.52	10.62	12.74
i	W.	-			-	-	-	9.79	10.52	11.09	11 65	13.04	14.28
27	H_r	١.		l			i	6 22	7.18	7.99	8.84	11.03	13.23
1	W		— '	T —	-		-9	9.97	10.71	11.29	11.89	13.28	14.56
2%	II,	l	1			1	1	6.44	7.44	8.28	9.16	11:44	13.72
	W	-	-					10 14	10.90	11.48	12.10	13.52	14.84
29	H,							6.70	7.74	8.61	9.53	11.84	14·24 15·08
l	W		* * * *			-		10.35	11.09	11.73	12.34	13.76	
30	H'		-		1	1	l	1	8·04 11·34	8·94 12 00	9·90 12·56	12·24 14·00	14·76 15·36
1	w			1		-	_	-		9.10	10.15	12.68	15.22
81	H_r	l		!	ì		1		8·26 11·49	12:06	12.72	14.24	15 60
0.1	W		1		-	_	-		8.48	944	10.40	13.12	15.6
82	H_r		1	1		1	1	l	11.88	12.28	12.92	14.48	15.84
33	W	-	-	1	-		1	-	11 00	9.77	10.77	13.52	16.19
33	H_v					_				12.50	13.12	14.62	16.08
34	W			_			-			10.10	11.14	13.92	16.70
J.#	H_c	I _			_	_	l _	-		12.72	13.36	14.92	16.36
35	W	1					1	-	1	10.43	11.51	14.32	17.17
1 "	H _r					_				12.92	13 60	15.12	16.56
36	H,	l	1	i		1		1		10.76	11.88	14.72	17.64
1 "	W.	_							_	13.12	13.80	15.36	16 80
37	H_{r}	1									12.20	15.12	18.13
1"	W	l						_	_	_	14.00	15.56	17.04
38	II.	1	1			1			1	1	12.52	15.52	18.62
1 ~	W	 		-	1	1_		 	-	_	14-16	15.76	17.28
39	H,	l	İ	1			1	١.		1	12.84	15.92	19.11
1	W	I _	_	_	1-	_		l <u>-</u>	<u> </u>		14.32	15.96	17 78
40	II_{ν}	l					1	1		1	14.16	16.32	19.60
1 -	W		-		_	-	-	!	- '	_	1	16.16	18 72
1	i	i	1					•	1			1	
•					_						_		

diminish the temperature difference to such an extent that the heat transferred per sq. m., with an excessive initial velocity of the steam, is really smaller than when it retains its full pressure to the end of the pipe.

The connection between diameter and length of tube, velocity and pressure of steam, may be explained in the following manner:—

The heat passing through the walk of a steam tube into the surrounding boiling water is equal to the heat set free by the condensation of the steam. Thus we have the equation:

$$2200\theta_m \sqrt{d\pi l} = \frac{d^2 \pi_b}{4} v_d 3600 c \gamma (49)$$

By a transformation of this equation (49) we obtain the connection between the length and diameter of the tube.

$$\sqrt{\frac{l}{d}} = \frac{v_d 3600 c \gamma d}{4\theta_m 2200} \sqrt{\pi} = 0.725 \frac{v_d c \gamma d}{\theta_m} . \qquad (50)$$

The external surface of the tubes should have been taken here as the heating surface, but in equation (50) the thickness of the metal was neglected in order to obtain a compact formula, the internal diameter of the tube being taken as equal to the external. This inaccuracy makes the calculated lengths of pipe about 10 per cent. too great, which must be remembered in applying equation (50).

The velocity with which the steam enters is conditioned by the dimensions of the tube, the difference in temperature and the fall in pressure in the tube. The latter cannot, however, well be calculated, not even by means of equation (143), which does not hold good

- for complete condensation, thus the proper ratio, $\frac{l}{d}$, cannot be found with certainty from equation (50). It must suffice to assume the greatest advisable length of pipe from the results of experiment.
 - The lower the pressure of the steam, and the greater the temperature difference between steam and boiling liquid, the shorter must the tube be. For differences in temperature of $30^{\circ}-40^{\circ}$ C., the following values of the ratio $\frac{l}{r}$ are suitable:—

Absolute pressure

For any other difference in temperature, θ_m , the highest value of the

ratio $\frac{l_1}{d_1}$ is then

$$\frac{l_1^{\bullet}}{d_1} = \frac{6l}{d\sqrt{\theta_{\rm m}}}.$$

For the sake of convenience in calculation it may be stated that the values of $0.725c_{Y}$ for the above steam pressures are

• If the steam is to be used in the heating tube at its original high pressure, and, consequently, its highest temperature, it must not be throttled on entering the tube. The valve admitting the steam must be of fair dimensions.

If the highest available steam pressure is required to be exerted in the coil, then the velocity of the steam on entering may be 30 m. If, on the other hand, a certain fall in pressure from the main steam pipe to the heating tube is permissible, the steam may enter with a velocity of 50-60 m. The latter is regularly the case, when the available steam pressure is higher than is required in the coil.

Table 14 may assist in the choice of the steam valve. In it are given the weights of steam at different pressures which pass in one hour with a velocity of 30 m. through valves of 10-350 mm. diameter. For higher or lower velocities the weight of steam admitted is naturally proportionately larger or smaller.

Example.—The dimensions of a steam coil are to be determined, by which in one hour 300 kilos, of water, or 300 kilos, of dilute alcohol (50 per cent. by weight). or 300 kilos, of ether, can be evaporated, when the available steam is at a pressure of 4 or 1.25 atmos, absolute.

The heat of evaporation of 1 kilo. of dilute alcohol vapour of 50 per cent, strength by weight is 375 calories, i.e., as large as for $\frac{375}{540} = 0.7$ kilo. of water. Thus, in regard to the consumption of heat, 300 kilos. of the vapour of water + alcohol are equivalent to 210 kilos. of steam.

The heat of evaporation of 1 kilo, of ether is 97 calories, thus 300 kifbs. of ether are equivalent to

$$300 \frac{97}{540} = 54 \text{ kilos, of steam.}$$

· TABLE 14.

The weight of steam which enters with the velocity $v_d = 30$ m. and at ٠, mm. diameter. without

e, e,	ړ. د.		Diam										
pressure, absolute.	ature, °	10	15	20	25	83	85	40	45	50	55	60	
Sterm Atmos.	Steam temperature,	,						Weig	ht of s	team,	in kilo	s. per	
1·00 1·25	'100 106	' 5 63	12 14·3	20 25	32 40	46 57	63 78	82 101	103 132	126 158	154 191	184 278	
1·50 2 2·5	112 121 128	7·5 10 12	17 23 28	30 39 48	47 63 76	68 88 110	92 120 149	120 157 194	164 200 245	188 245 304	227 298 367	270 35% 438	
3 4 5	134 144 152	14 19 27	32 43 53	56 76 93	89 130 146	128 170 210	173 231 285	225 300 372	285 280 472	353 471 583	428 570 705	510 680 841	
			!							٠ ٠			

Thus there are to be evaporated

300 kilos, of water, 300 kilos, of alcohol + water, 300 kilos, of ether. 210 ,, water, The boiling

or

point is 100° 92.50

37°

(a) For saturated steam at 3 atmos. (= 4 atmos. absolute) the temperature = 144° C.

The temp. diff.

44°

51.5°

We shall assume that in reality the temperature difference is about 10 per cent. less.

1 tube of

46° ..

For 1° temperature difference the heating tube must evaporate

 $\frac{210}{46} = 4.56$ kilos., $\frac{54}{96} = 0.506$ kilo, of water. $\frac{...00}{40} = 7.5$ kilos.,

From Table 13 we now find that there is required

60 mm, × 18 m. 40 mm. × 10 m.

10 mm. × 0.6 m. = 0.025 m.

= 3.62 sq. m.= 1.35 sq. m. or 2 tubes of 46 mm. x 7 m.

25 mm. x 4 m.

or 3 30 mm. × 4 m.

= 1.92 sq. m. ' = 0.72 sq. m.= 1.29 sq. m.

(b) For saturated steam of 0.25 atmos. (= 1.25 atmos. absolute) the temperature = 106·38° C.

The temp. .

diff. is

6.38°

69.389

Table 14.* pressures of 1-5 atmes, absolute in one hour, through valves of 10-350 sensible loss of pressure.

65	70	80	90	100	125	150	175	200	250	300	350	
our.	which	enter	s with a	veloci	v of 30	m.					•	
hour, which enters with a velocity of 30 m.												
					•							
215	250	325	413	505	802	1144	1560	21.92	8206	4576	625	
215 267	250 320	325 403	413 527	505 632	802 993	1144 1422	1560 1932	21,92 2529	8206 8972	4576 5688	625- 774	
267		325 403 429	413 527 657	505 632 752		1144 1422 1679						
267 317	320	403	527	632	993	1422	1932	2529	8972	5688	774	
267 317 215	320 367	403 429	527 657	632 752	993 1172	1422 1679	1932 2292	2529 3000	*8972 4686	5688 6714	774	
267 317 \$15 518	320 367 483	403 429 628	527 657 795	632 752 980	998 1172 1533	1422 1679 2209	1932 2292 3014	2529 8000 8933	*8972 4686 6148	5688 6714	774	
215 267 317 415 518 597	320 367 483 595	403 429 628 774	527 657 795 980	632 752 980 1214	993 1172 1533 1895	1422 1679 2209 2726	1932 2292 3014 3717	2529 3000 3933 4862	*8972 4686 6148	5688 6714	774	

The real temperature difference is again assumed to be about 10 per cent. less.

Thus for 1 temperature difference the hot tube must evaporate

$$\frac{300}{5\cdot 5} = 54\cdot 6 \text{ kilos}, \quad \frac{210}{12} = 17\cdot 5 \text{ kilos}, \quad \frac{54}{63} \quad 0.86 \text{ kilo}.$$

From Table 13 we now find there are required

A heating surface for evaporating may be constructed to consist of a single tube, diminishing in *diameter* towards the end either gradually or in steps, or of several parallel tubes, the *number* of which is diminished towards the end (e.g., from 4 to 3, to 1).

The researches published up to the present show that the coefficient of transmission for such heating surfaces, is not less than for short tabes of equal length of the same section throughout.

Since, however, as soon as the length becomes somewhat considerable in proportion to the diameter $(l = 600 \ d)$, the pressure of steam in the tube sinks to a great extent towards the end, the difference in temperature between steam and liquid also sinks inconveniently, and the evaporation per sq. m. becomes small.

Short tubes of relatively small diame er make the most efficient heating surface

F1G. 6.

* Example.—An actual case (see Fig. 6). Eight equal horizontal brass tubes (70 per cent. of copper), of 10 mm. bore, 12 mm. external diameter and 3000 mm. length, supplied with steam at 111.9° C. on entering, 103.2° C. on leaving, evaporated in one hour at 100° C. 141 litres of water, originally at 23°. The total heating surface is $H_o = .90$ sq. m.

The difference in temperature at the beginning is $\theta_a = 11^{\circ}9^{\circ}$.

end is $\theta_a = 3^{\circ}2^{\circ}$.

The mean temperature difference would be obtained from Table 1: (since $\frac{8\cdot2}{11\cdot9} = 0\cdot269$), $\theta_m = 0\cdot56 \times 11\cdot9 = 6\cdot68^\circ$.

Since, however, the first portion of the heating surface is larger than the second, θ_m must be taken as 7·1°, hence the observed coefficient of transmission,

$$k_* = \frac{141(635 - 23)}{7 \cdot 1 \times \cdot 9} = 13,500 \text{ approx.}$$

The average heating surface for 1 tube is $\frac{9}{8} = 0.112$ sq. m., from which we obtain the calculated coefficient (by equation 45),

$$k_* = \frac{3867}{\sqrt{0.112}} = 10,100.$$

C. Evaporation and Heating by Means of Double Bottoms and Wide Jackets.

Steam admitted to double bottoms or wide cylindrical jackets, the other surface of which is in contact with boiling liquid, does not pass over the whole heating surface as regularly, and is not forced on to the heating surface in the same manner, as in a coil. Immediately after it enters the wide space, the steam spreads and takes the shortest path to the open. This is probably the reason why the results of experiments on evaporation in jacketed pans do not show a regular relation between the transference of heat and the size of the heating surface, which was the case with heating coils. Large and small jacketed pans give almost the same transference of heat. The published values for k, vary greatly, they range from k = 1300to $k_{\star} = 3300$. The chief cause of the variation is probably the incomplete removal of air. On an average it may be taken that, in evaporating water in a copper pan with a double bettom or jacket. $k_{\bullet}^{\bullet} = 1400$ to 1800; for bottoms up to 1 m. in diameter $k_{\bullet} = 1800$, from 1 to 1.3 m. diameter $k_s = 1700$, from 1.5-2 m. diameter $k_r = 1600$, and for larger pans $k_r = 1400$. The transmission of heat by copper double bottoms for the evaporation of water is thus:-

$$C = H_m 1400 \text{ to } H\theta_m 1800 \dots$$
 (51).

In the case of small pans up to 1 m. in diameter, the mean difference in temperature during boiling may be assumed to be about 0.85 of that at the steam entrance; with pans of 1-2 m. diameter about 0.75, and with larger pans about 0.65 of the same amount. But all these figures are somewhat variable, and it is not yet possible to ascertain what causes produce, now a larger, and then a smaller, fall in pressure in the double bottom in each case. The distance from the boiler, the bore of the steam pipe, the loss of heat in it, the kind of pan, the form and nature of the steam entrance and its width all play a part.

With steam at 3-4 atmospheres pressure in the boiler it will be found that, in an open pan with a double bottom of about 1-2 sq. m., 80-100 litres of water are evaporated in one hour per sq. m. from quite dilute solutions. In larger pans the efficiency is somewhat smaller. In this case it is very advisable to arrange several entrances for the steam, by which the efficiency is considerably increased.

By means of equation (51) the following figures have been calculated, showing how great an evaporation of water per hour may be expected with popper double pans of 500-8000 mm. diameter, with one steam entrance and steam pressures of 2-5 atmospheres absolute.

Diameter of the bottom in mm.

500 800 1000 1250 1500 1750 2000 2250 2500 2750 3000

Depth of the bottom in mm.

300 400 500 550 600 600 700 800 900 1000

Heating surface of the vottom in sq. m.

Atmos. abs. Water evaporated in litres per hour. 18.5 280-583 '726

If 2-4 steam inlets are provided for the larger pans, the hourly evaporation may be half as much again as here given.

Example.—It was observed that, in a double-bottomed pan of 3450 mm. diameter (11·2 sq. m. heating surface), in one hour there were evaporated by steam of 2-2·5 atmos. absolute pressure 1200 litres = 107 litres per sq. m.; by steam of 2·5·8 atmos. absolute, 1500 litres = 134 litres per sq. m. (four steam entrances).

If the water in a double pan is not boiling, but is only to be warmed by the steam, on account of the low temperature of the water, the difference in temperature between steam and water is considerably greater than when the water boils. The pressure of the steam then usually falls considerably even at the entrance, and when the heating commences is often zero at the side opposite the entrance. As the temperature of the water rises, the pressure of the steam in the steam space also increases. It may be assumed that the mean difference in temperature θ_m , between steam and water during the whole period of heating until boiling commences, is about half the difference between the temperature of the hot steam, t_4 , and that of the liquid at first, t_6

$$\theta_m = \frac{t_d - t_f}{2}.$$

The coefficient of transmission, having regard to incrustations, is $k_* = 1400$.

Thus, during the period of warming, the following quantities of heat are conveyed to the mon-boiling liquid in one hour through a copper double bottom heated by steam:—

$$C = 1400H\theta_m = 700H(t_d - t_f)$$
. . . . (52)
to $C = 1800H\theta_m = 900H(t_d - t_f)$,

from which the heating surface may be calculated for any case.

In most cases, in which steam of about 3-5 atmospheres pressure (130°-160° C.) is supplied to the pan, 1000 litres of water can be heated in one hour from 10° to 100° C. per 1 sq. m. of double bottom. If the liquid to be heated is thicker and less mobile than water, only a smaller efficiency can be expected. As the example in Chapter VII. shows, the transmission of heat increases as the temperature of the liquid rises.

- · Examples .- The following are actual observations :-
- 720 litres of water were heated from 13° to 100° C. in 28 mins. by 1·2 sq. m. (diameter of pan 1000 mm.) by means of steam at 3½ atmos. pressure, i.e., 1285 litres per sq. m. per hour.
- 640 litres of water were heated from 12° to 100° C. in 30 mins. by 1·2 sq. m. (diameter of pan 1000 mm.) by means of steam at 3½ atmos. pressure, i.e., 1068 litres per sq. m. per bour.
- 89.6 litres of water were heated from 20° to 100° C. in 16 mins. by 1.45 sq. m. (diameter of pan 540 mm.) by means of steam at 4 atmos. pressure i.e.. 746 litres per q. m. per hour.
- 1075 litres of water were heated from 19·25° to 100° C. in 47 mins. by 1·5 sq. m. (diameter of pan 1295 mm.) by means of steam at $3\frac{1}{2}$ atmos. pressure, i.e., 921 litres pet sq. m. per hour.
- 4200 litres of mash were heated from \$2.5° to 100° C. in 45 mins. by 4.5 sq. m. (diameter of bottom of pan 2450 mm.) by means of steam at 100° to 139° C. in the double bottom, i.e., 970 litres per sq. m. per hour.
- 5000 litres of mash were heated from 65° to 100° C. in 20 mins. by 5.8 sq. m. (diameter of bottom of pan 2450 mm.) by means of steam at 3.5 atmos. absolute, i.s., 2596 litres per sq. m. per hour (two steam inlets and stirrer).
- 21,000 litres of wort were heated from 68.5° to 100° C. in 50 mins. by 11.2 sq. m. (diameter of bottom of pan 3400 mm.) by means of steam at 3.5 atmos. absolute, i.e., 2256 litres per sq. m. per hour (four steam inlets).

CHAPTER IX.

EVAPORATION IN A VACUUM.

A vacuum apparatus is a closed vessel, heated by steam, or more rarely by fire, and in which a lower pressure than that of the atmosphere is maintained by suitable arrangements. The diminished pressure—the vacuum—is obtained by leading the vapours, evolved from the liquid which is evaporating in the apparatus, through the shortest possible pipe into a second closed vessel—the condenser—where they are precipitated directly by a jet of water or on well cooled metallic surfaces.

In completely closed vessels a diminution of pressure, a vacuum, a partial absence of air, or even a perfect vacuum, would arise through the liquefaction and disappearance of vapour alone, if air did not always enter from the evaporating liquid, the injected water, or by leakages (always present) in the walls of the apparatus. Since this air must be removed, an air-pump is always essential with a vacuum apparatus.

A vacuum may be indeed obtained by condensing the vapours evolved from a closed vessel, but it will soon be decreased, since air enters from the liquid, from the water and through leaks. Without pumping out the air, a *lasting* vacuum cannot be obtained.

The dimensions of the pipes, condenser and air-pump will be treated in later chapters.

A vacuum apparatus may be made of any resistant form: spherical, egg-shaped, cylindrical, conical; it may be made of wrought-iron, casting, copper, brass, lead or tin, also of earthenware, glass or porcelain; it may be heated by steam (coils, double bottoms, systems of tubes), by hot liquids, or it may stand on the open fire. Everything depends on the properties of the material which is being treated and the results to be obtained.

Since a portion of the liquid, which is drawn into the vacuum apparatus, is evaporated and the residue remains, the capacity in most cases need not be as great as the volume of the dilute aquid to be evaporated within a definite time, but only sufficiently large to contain the evaporated liquid. In order to preserve a constant level in the apparatus the dilute liquid may be fed in as required. There are, however, occasional cases in which it is not permissible to feed after the commencement, the contents of the apparatus must then be equal to the volume of the dilute liquor.

The proportion of the heating surface to the capacity depends on the object of the vacuum apparatus. For many liquid, it is desirable to keep them in the vacuum as short a time as possible; large heating surfaces and a small capacity will then be used. In other cases, in order to obtain crystals, the charge may be gradually increased. Experience must here be the guide as to the proportion of heating surface, which depends on the duration of crystallisation no universal rule can be made, except that the capacity should be arranged to correspond with the desired output, and the heating surface with the time in which a definite amount of water (or of liquid is to be removed from the contents.

The first advantage of evaporating in a vacuum over evaporation at atmospheric pressure is that in vacuo all liquids boil and evaporate at considerably lower temperatures than under atmospheric pressure thus there is a greater difference in temperature between the heating steam and the boiling liquid, and, consequently, a much greater transmission of heat per sq. m. of heating surface. In fact for heating purpose in vacuo steam of very low pressure, at 100° C. or lower, may be used with great success. The exhaust steam from engines and other sources may be profitably utilised, for since the boiling points of most liquids are 40° C., or more, lower in vacuo, there is nearly always sufficient difference in temperature.

Liquids, which boil at higher temperatures (180°-200°-210° C.), can generally not be evaporated under atmospheric pressure by means of high pressure steam, since steam would be required of such high temperatures, and, therefore, high pressures, that its application would be inconvenient, if not dangerous. The boiling points of these liquids fall, however, in the vacuum apparatus, so that steam of moderate pressure, as generally employed, may be used. In a vacuum, rapid evaporation may be expected if there is a difference

in temperature of 10° C., or even of 5° C., if the liquid is not too viscous.

The vapour pressures of liquids in a vacuum (and under pressure) may be calculated by means of a rule found by U. Dühring and published by E. Dühring in Neue Grundzuge zur rationellen Physik und Chemie, Leipzig, 1878. This rule, which does not appear to be quite reliable in all cases, runs:—.

The difference between the boiling points $(t, and \ t^1,)$ of a liquid at any two pressures, divided by the difference between the boiling points $(t_w \ and \ t^1_w)$ of any other liquid at the same two pressures, is a constant q for these two liquids:

$$q = \frac{t_r - t_r^1}{t_w - t_w^1} \dots \dots (53)$$

Erample.—The boiling point of mercury is 357° C. at 1 atmos., 261° C. at 100 mm. pressure. The boiling point of water is 100° C. at 1 atmos., 52° C. at 100 mm. pressure.

Then
$$q = \frac{357^4 - 261}{100 - 52} = \frac{96}{48} = 2$$
.

The boiling point of mercury is 214.5° C. at 30 mm, pressure, 154.4 C. at 5 mm. The boiling point of water is 29.1° C. at 30 mm, and 1.2° C. at 5 mm, pressure, hence

$$q = \frac{214 \cdot 5 - 154 \cdot 4}{29 \cdot 1 - 1 \cdot 2} = \frac{60 \cdot 1}{27 \cdot 9} = 2 \cdot 12.$$

Similar results are obtained for other pressures and liquids.

The inaccuracy of the constant q is perhaps to be referred to insufficient knowledge of the boiling points.

Thus, if the boiling point of one liquid be known at two pressures, the boiling point of another liquid at one of these pressures, and also the constant q for these two liquids, by means of this rule the boiling point of the second liquid at all other pressures may be calculated.

Now if water be taken as the standard liquid, since its boiling points at different pressures are most accurately known, and, further, if 1 atmos, absolute be taken as one of the common pressures, since the boiling points of most liquids at this pressure have been carefully determined, then by means of this rule we can calculate the boiling points of all these liquids for all pressures, for which the constant q is known, or we can calculate the constant q for all the liquids, of which the boiling point has been observed at a second pressure.

Let t_f = the boiling point of one liquid at a pressure of 1 atmos. absolute,

t¹, = the required boiling point of the same liquid at another pressure.

$$t_w$$
 = the boiling point of water at 1 atmos. pressure,

then
$$t_w^1 = t_f - t_f^1 = t_f - t_w^1 = t_w$$
 at the other pressure, then $t_f - t_f^1 = t_f - t_w^1 = t_w - t_w^1 = t_w^1$

Erample.—The boiling point of alcohol at a pressure of 1 atmos, is $t_r = 78^{\circ}26^{\circ}$ C., that of water at 60 mm. pressure is $t^1_w = 40^{\circ}$ C., the constant for alcohol is q = 0.904 (Dühring), thus the boiling point of alcohol at 60 mm. pressure is

$$t^{1}_{1} = 78.26 - 0.904(100 - 40) = 24.02^{\circ} \cdot \text{C}$$

The constants q for about forty different liquids are given in Duhring's book (see above), by means of them Table 15 has been calculated, it gives for a number of liquids the boiling points under several diminished pressures, viz., at vacua of 526, 611, 710 and 750 mm.

Table 15.

The boiling points of certain liquids at vacua of 526, 611, 710 and 750 mm., calculated by Dühring's rule.

	Constant.	760 mm. abs.	230 mm. abs. 526 mm. vac.	abs.	50 mm. abs. 710 mm. vac.	10 ynm, • abs. 750 mm, vac.
		•	Boil	ing points	t^1 .	
Water	0.904 1.0 1.164 1.125 1.329 1.228 1.25 2	100 78·26 34·97 119·7 80·36 159·15 161·70 290 357·25 290	4.97 84.58 46.61 119.28 124.86 252.5	-5·03 • 73·17 35·36 106 111·6 240	.79·81 87·02 215	-20.9 29.54 51.2 177 5
Carbolic acid Cresol	1·2 1·2	178 190	154	145	118	82

The second great advantage of evaporating in a vacuum is that the liquid does not become as hot as at atmospheric pressure, and that also the heating surfaces, since steam of a lower pressure is used, remain at a lower temperature—both great advantages, and even necessary for certain industries which deal with organic materials, such as milk, blood, gelatine, albumin. These substances require, if they are not to turn brown, or coagulate, not only that they themselves shall be evaporated at a low temperature (60°, 50°, 40° C.), but also that the heating surface shall not be too hot, in fact, shall not exceed certain limits which are different for each liquid. Now, as we have always observed, the side of the heating surface in contact with the liquid is always at a lower temperature than the side in contact with the heating medium, so that the latter may be somewhat warmer than the liquid may become, since the liquid never attains the highest temperature.* This is, however, only the case when the liquid moves rapidly over the heating surface, so that its molecules have not time to attain a higher temperature and be injured thereby. Stirrers and violent ebullition afford a good protection against local overheating in liquids; however, these means are often insufficient, and then the best method consists in keeping the temperature of the steam so low that no damage may be done under the most unfavourable conditions. This result is achieved by the evaporation apparatus of C. Heckmann, Ger. Pat. No. 60,588.

The transference of heat between steam and liquid in vacuo is greater than at ordinary pressures, corresponding to the greater difference in temperature. Equation (47) may be used to calculate the heating surface, consisting of tubes containing steam, for vacuum

evaporating apparatus—
$$H_{\bullet} = \left(\frac{C}{2200\theta_m}\right)^2$$
.

Table 13 gives the evaporative efficiency of copper heating coils for vacuum apparatus also.

In the case of double bottoms it may be assumed that the transmission of heat takes place in vacuo according to equation (51).

EVAPORATION IN A VACUUM.

Experience shows that in a vacuum apparatus at 650 mm. vacuum, there are evaporated in one hour per 1 sq. m. of heating surface:—

mere	are evaj	orateo	i in one	nour	ber T	sq. m.	or ne	aul	ig suriace	
With	exhaust	steam	at 110	° C., fr	om wa	iter			1,00-110	itres.
,,	,,	,,	,,	,,	thin li	iquors	-	-	60- 70	**
,,	,,	17	,,	,,	thick	,,	•	-	30- 45'	,,
37	high pre	ssure	steam a	t 180°	Ç., fro	m wat	er	-	130-175	,,
,,	,,		,,	,, ,	٠,,	thin li	quors	-	80-100	,,
**			**	•	**	thick	٠,,	-	40- 55	**

CHAPTER X.

THE MULTIPLE EFFECT EVAPORATOR.

The processes which occur in a multiple evaporator, both in regard to the efficiency and the consumption of steam, are somewhat more complicated than in a simple evaporator, and not at first sight comprehensible. They will, therefore, be treated at some length. In considering these evaporators there are two questions of principal importance, which will be dealt with in the present chapter:—

- A. How much water is converted into steam in each separate vessel of the multiple evaporator, and how much heating steam does each consume?
- B. What is the composition (percentage of solid or dry matter) of the liquor in each vessel?

, A. The Evaporative Capacity of Each Vessel

depends on the following conditions:-

- 1. The temperature and pressure of the heating steam.
- The temperature and pressure of the steam produced in each separate vessel.
- The extent to which the liquid is to be thickened, and its specific gravity.
- The nature of the liquid, with regard to the ease with which it evolves steam.
- 5. The height of the boiling layer of liquid in each vessel.
- Whether steam is withdrawn only from the first, or also from the following vessels ("extra steam," which may be used for heating other apparatus).
- 7. Whether the condensed water, from the steam used for heating, is separately removed from each vessel or whether it all leaves with the temperature of the last vessel.

It will be assumed at first that the liquid to be evaporated is introduced into the first vessel at the temperature therein prevailing, so that no expenditure of heat is required for raising the temperature in the first vessel.

It will be at once seen that the influence of all the above-mentioned conditions on the evaporative capacity cannot be expressed in figures, if the results of experience and experiment are not especially employed to assist. However, the conditions of each case, though expressed definitely in figures, may change so entirely and produce so many variations, that conclusions applicable in all cases cannot be drawn from a few cases, without great inaccuracy.

The process of evaporation is as follows:---

The steam from the liquor in the first vessel, D_1 , produced by the action of the hot steam, D_0 , which is supplied externally, passes into the heating chamber of the second vessel, there in its turn produces vapour from the liquid, and is condensed, escaping with the temperature, t_{u_2} , prevailing in the lower part of the liquid in that second vessel. The weight of liquid, W, which has lost the weight of water, D_1 , by evaporation in the first vessel, and which, consequently, now weighs $W-D_1$, passes, at the mean temperature, t_{m_1} , of the first vessel, into the second vessel, in which the mean temperature is only t_{m_2} . Thus, in cooling from t_{m_1} to t_{m_2} it must form steam. If c_2 be the total heat of the steam in the second vessel, then by reason of the hotter liquid entering from the first vessel

$$s_2 = \frac{(W - D_1)(t_{m1} - t_{m2})}{c_2 - t_{m2}} \qquad (55)$$

kilos. of steam must be evolved.

In the second vessel steam is thus evolved both by reason of the heat of the hot liquid itself and also because of the steam, D_1 , coming from the first vessel.

In the *third* vessel steam is produced *both* by the heat of the entering liquor $(W - D_1 - D_2)$ and *also* by reason of the heat of the steam, D_2 , which is the total steam produced in the setting vessel.

In the fourth and following vessels similar actions are produced, so that, in addition to the repeated action of the hot steam, there is also the repeated action of the steam produced by the decrease

in temperature of the liquor. Since 1 kilo. of steam at 100° C. contains more heat than 1 kilo. of steam at 60° C., it follows that 1 kilo. of hot steam at 100° will produce more than 1 kilo. of steam at 60°. Neglecting the effects of higher boiling points and high columns of liquid, and considering simply the action of the steam, we find that 1 kilo. of steam, evolved in one vessel, must always produce more than 1 kilo. of steam in the next vessel, since the total heat (sensible and latent) of the hot steam is used, minus the quantity of heat carried away in the condensed water, the temperature of which is equal to that of the boiling liquid in the second vessel. In order to produce 1 kilo. of steam from this boiling liquid, there is thus required the heat proper to 1 kilo. of steam minus the quantity of heat contained in the liquid.

This purely schematic process suffers alterations by reason of outconditions enumerated above.

Although, as we shall see later, the somewhat complicated formulæ, based on the principles just laid down for estimating the evaporative capacity of each single vessel, have no great practical value, yet they will be given here.

Figs. 7 and 8 give diagrammatic pictures of double and triple effect evaporators, in which the subscripts represent the conditions at their respective positions:—

W = the weight of liquid introduced into the first vessel.

U = the weight of liquid drawn from the last vessel.

t_r = the temperature of the liquid to be taken into the first vessel.

 D_0 = the weight of heating steam used in the first vessel.

 c_0 = the total heat in 1 kilo. of this steam.

 D_1 , D_2 , D_3 = the total weights of steam evolved in the vessels.

 c_1, c_2, c_3 = the total heat in 1 kilo. of each of these quantities of steam.

 t_1 , t_2 , t_3 is the temperatures in the steam spaces of the vessels I., III.

t_{m1}, t_{m2}, t_{m3} = the temperatures of the middle layers of the liquor
 t_{u1}, t_{u2}, t_{u3} = the temperatures in the lowest layers of the liquor.
 b₁, b₂, b₃ = the weight of condensed water running out of

 b_1, b_2, b_3 the weight of condensed water running out of the vessels.

• The temperature of an evaporating liquid of any considerable depth is not the same at all parts; it is lowest at the top, highest at the bottom and has a mean value about the middle, since the specific gravity (which is almost always more than 1 and may reach 1.4), and the height of the column of liquid under which the vapour is evolved, cause a higher vapour pressure at the bottom, and thus a higher temperature of vapour and liquid.

In order to obtain the equations representing the consumption of theat in the separate vessels, the following facts are utilised:---

- In the condition of equilibrium the quantity of heat supplied to one vessel must be equal to that which it gives out.
- 2. The weight of the heating steam used in each vessel is equal to the weight of the condensed water formed in that vessel.

For the double effect evaporator the following equations are deduced from these conditions:---

For the triple effect evaporator the fellowing equations are deduced from the same conditions:—

It must be admitted that the formulæ for the double effect are not very elegant, and for the triple effect are already exceedingly complicated; for the quadruple effect quite cumbrous formulæ would be obtained, which are therefore not given here, and which, moreover, would not be applicable in practice.

It would be possible, by means of these equations for the double and triple effect evaporators, to calculate the evaporative efficiency of

each single element, and the consumption of steam for the whole apparatus for any definite case, if the temperatures prevailing in each vessel were known. This is, however, à priori not the case, for in order to calculate the efficiency of an evaporator only the following are given:—

- 1. The evaporation, W V, to be accomplished in unit time.
- 2. The temperature, t_0 at which the liquid enters.
- 3. The temperature of the heating steam, t_0 , and its total heat, c_{0}
- 4. The vacuum in the last vessel, hence t_3 and c_3 .

The formulæ require, however, as has been said, a knowledge of a number of temperatures, which are conditioned by the form and size of the heating surfaces, the height of the boiling layer of liquid, and the specific gravity of the liquid, all of which are not known a priori.

It would thus be necessary, if the above equations were to be utilised, to assume arbitrary values to these temperatures, without warranty that they would really be attained in the constructed apparatus.

Thus the only possible way of recognising the influence of all these conditions, on the result, lies in calculating the evaporative capacity of the single parts of the apparatus for a large number of different conditions, chosen arbitrarily, with particular attention to limiting values. If the results so calculated be arranged in tabular form, then it will be fairly easy to see in each case how the result is altered when those conditions (temperatures, pressures, etc.), are varied which are independent of the data.

It is first necessary to consider in some detail the processes in the apparatus, before performing the calculations and arranging the tables.

It is at once evident the amount of evaporation in each vessel is not the same, but rather is different in each, since the liquor, in passing from a warmer to a colder vessel, must use its excess of heat in evaporating water. The larger is the difference in temperature between two vessels, the larger will be this evaporation, which we may call the self-evaporation. The difference in temperature between the single vessels of an evaporator may be very different.

It is of considerable importance to know how much hot steam must be supplied to the first vessel in order to accomplish a certain desired evaporation in the whole apparatus. Other conditions being the same, this necessary consumption of heating steam will be the smaller, the more self-evaporation takes place in the separate vessels. On this account, also because a more accurate idea of the procedure of the evaporation will be obtained, and finally because it is the simplest course (especially if certain approximations be permitted), in the next place we shall find how much water is changed into steam by self-evaporation in each vessel of a multiple evaporator in different cases arbitrarily chosen, and then how much heating steam is used in each vessel, and especially in the first.

An inspection of Fig. 9 will facilitate the formation of the equations given below.

The specific heat, σ_{ρ} , of the liquid will in what follows always be taken as unity. Its boiling point will be taken as equal to that of water; if it is higher, the self-evaporation is somewhat larger.

In the first vessel, by means of the admitted heating steam, d_n , the weight of liquor, W, is first heated from its original temperature, t_n , to the temperature, t_{m1} , prevailing in the first vessel, and then by more heating steam, d_0 , the weight of water, d_1 , is converted into vapour. The condensed heating steam, $d_n + d_0 = b_1 = D_0$, flows away at the temperature, t_{m1} .

The consumption of heating steam in the first vessel is thus

$$D_0 = d_h + d_0 = \frac{W(t_{m_1} - t_r) + d_1(c_1 - t_{m_1})}{c_0 - t_{m_1}} . . . (64)$$

In the first vessel the steam, d_1 , is produced,

$$d_1 = D_1$$

The liquor of weight $(W - d_1)$, at the temperature t_{m_1} , enters the second vessel, in which the temperature is t_{m_2} , and hence evolves steam from itself, forming the amount of steam, s_2 , from its excess of heat $(W - d_1)$ $(t_{m_1} - t_{m_2})$.

Thus
$$s_2 = \frac{(W - d_1)(t_{m_1} - t_{m_2})}{c_2 - t_{m_2}} \quad . \quad . \quad . \quad (65)$$

The steam from the first vessel, $d_1 = D_1$, enters the heating chamber of the second and produces steam in the second vessel:

-

Thus, in the second vessel the weight of steam, D_2 ; is formed:

$$D_{2} = s_{2} + d_{2} = \frac{(W - D_{1})(t_{m_{1}} - t_{m_{2}})}{c_{2} - t_{m_{2}}} + \frac{D_{1}(c_{1} - t_{w_{2}})}{c_{2} - t_{m_{2}}} .$$
(67)

From the second vessel there goes into the third the weight $W - D_1 - D_2 = W - d_1 - s_2 - d_2$. This liquor is at the temperature t_{m_2} and falls in the third vessel to the temperature t_{m_3} . The difference in heat produces the weight of steam, s_3 .

$$s_3 = \frac{(W - d_1 - s_2 - d_2)(t_{m_2} - t_{m_3})}{c_3 - t_{m_3}}. \quad . \quad . \quad (68)$$

The steam, s_2 , produced by self-evaporation in the second vessel has the quantity of heat, c_2 ; in the *third* vessel it evaporates the weight of water, σ_{s_2}

$$\sigma_3 = \frac{s_2(c_2 - t_{u3})}{c_3 - t_{m3}} (69)$$

Finally, there comes into the third vessel the steam, d_2 , which in its turn produces the steam, d_3 .

$$d_3 = \frac{d_2(c_2 - t_{u3})}{c_3 - t_{m3}} \dots (70)$$

The total weight of steam, D_3 , produced in the third vessel is thus $D_3=s_3+\sigma_3+d_3$

$$= \frac{(W - d_1 - s_2 - d_2)(t_{m_2} - t_{m_3}) + (s_2 + d_2)(c_2 - t_{u_3})}{c_3 - t_{m_3}} \quad . \quad (71)$$

In the fourth vessel there is formed by self-evaporation the steam, s_4 ,

$$s_4 = \frac{(W - D_1 - D_2 - D_3)(t_{m_3} - t_{m_4})}{c_4 - t_{m_4}}. \qquad (72)$$

also the weight of steam, σ_4 , produced by the steam, s_3 ,

$$\sigma_4 = \frac{s_3(c_3 - t_{u_4})}{c_4 - t_{m_4}} . (73)$$

and the weight of steam, λ_4 , produced by the steam, σ_3 ,

$$\lambda_4 = \frac{\sigma_3(c_3 - t_{u_4})}{c_4 - t_{m_4}} \dots \dots (74)$$

Finally, the steam, d_3 , produces in the fourth vessel the weight of steam, d_4 ,

$$d_4 = \frac{d_3(c_3 - t_{u_4})}{c_4 - t_{m_4}}. \qquad (75)$$

In the fourth vessel there is thus produced the total weight of steam, D_4 ,

$$D_4 = s_4 + d_{4*} + \sigma_4 + \lambda_4$$

$$= \frac{\{W - (D_1 + D_2 + D_3)\}(t_{m_3} - t_{m_4}) + (d_3 + s_3 + \sigma_3)(c_3 - t_{m_4})}{c_4 - t_{m_4}}$$
(76)

It is now necessary to make a deviation, in order to simplify these still very complex equations, especially in regard to the many different temperatures.

It is known that the temperature of the boiling liquid is not the same in all parts; at its surface the boiling liquid has the temperature of the vapour evolved— t_1 , t_2 , t_3 or t_4 —but at the bottom the steam bubbles have to penetrate the layer of liquid, they must therefore overcome a pressure corresponding to the column of liquid. Thus the steam must have a greater pressure at the bottom of the liquid than at the top, and to this pressure corresponds a higher temperature of the steam.

If s_t be the specific gravity of the boiling liquid, h_t its height in metres, B the height of the water barometer = 10.333 m., then the hydrostatic pressure at the lowest level of the liquid is, in atmospheres,

$$p = \frac{s_f \cdot h_f}{B} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (77)$$

or in millimetres of mercury,

By means of this equation, the pressures of columns of liquid 0.2 to 2.0 m. in height, of specific gravities, s_n from 1.0 to 1.4, have been calculated; the pressures are given in column 3 of Table 16. By adding to this pressure, the pressure above the liquid, the total pressure is obtained at the particular place, and thence, by means of the tables of Fliegner, Zeuner, etc. (see Table 9), the temperature of the vapour or liquid. The difference, $t_{u_1} - t_1$, is the number of degrees of temperature by which the liquid at the bottom must be hotter than at the surface, in order to evolve steam.

In the diagram (Fig. 10) the abscissæ give the pressures of water vapour from 0-2 atmos. in cms., the ordinates the temperatures of the vapour at these pressures, according to Zeuner. By means of this diagram the temperatures in Table 16 were determined, by adding to the absolute pressure over the liquid the hydrostatic pressures given

in column 3, and then seeking in the diagram the temperature corresponding to the sum.

Curve showing the temperatures of steam at absolute pressures from 0 to 152 cms. of mercury.

Example.—At a vacuum of 668 mm, the absolute pressure is 92 mm, • of mercury, the temperature of water vapour 50° C. A column, h=1 m, high, of liquid of the specific gravity, $s_f=2$, exerts a hydrostatic pressure $b=\frac{2\times 1\times 760}{10\cdot 333}=147\cdot 1$ mm. (equation 78). The total pressure at the bottom of the liquid is thus $92+147\cdot 1=239\cdot 1$ mm. At this pressure the diagram in Fig. 10 gives 70° C. The temperature of the liquid at the top is 50° C., thus the difference in temperature between top and bottom is $t_{s_1}-t_1=70^\circ-50^\circ=20^\circ$ C.

It will be seen from Table 16 that in the case of liquids under a pressure of 1 atmos. or more, the differences between the boiling points at the top and bottom are not very great, and are even quite moderate when the specific gravity and the height of the column of boiling liquid are great. If, however, there is a vacuum above the liquid, the difference between the upper and lower boiling points increases considerably, and, in the case of heavy liquids and high vacua, has a very disturbing effect.

There is, as we shall at once see, a circumstance which makes the retarding action on the heat transference of high columns of liquid less sensible, but in spite of that the rule remains that it is in the interest of a great evaporative capacity to diminish as far as possible the height of the boiling layer of liquid, in order to lose as little as possible of the fall in temperature. The reason why the lower layers of violently boiling liquids, which are under the whole pressure of the column of liquid, are not at a temperature corresponding to their hydrostatic pressure, is the following:—

Consider a steam bubble rising through the liquid as divided by a horizontal plane at its greatest section, then a greater pressure is exerted on the lower half from below than on the upper from above. If the steam bubble had the shape of a cylinder with vertical axis and horizontal ends, the difference in pressure would be equal to the pressure of a column of liquid of the height of the cylinder. If the bubble were spherical, the difference in pressure would be equal to the height of a column of liquid of half the diameter of the sphere. (The upward force itself is equal to the weight of a quantity of liquid equal in volume to the bubble.)

In large vessels, in which many steam bubbles are rising at all parts, the hydrostatic pressure is not altered on this account, also in tubular heaters a small layer of liquor on the wall of the tube, connecting the liquid above and below the steam bubble, transmits the total hydrostatic pressure below. The larger and higher the bubble, the greater is the difference between the pressures acting on it from below and above, and this excess of pressure rapidly drives up the bubble and the liquid above it.

The kinetic energy of the liquid thus produced often raises considerable quantities above the surface, which then fall back and sink down at less heated parts of the apparatus. There is thus produced a circulation: the boiling liquid rises rapidly on and above the heating surface, gives off its steam and excessive heat and then returns cooled to the bottom.

The falling liquid is thus in fact cooler than it must be in order to form steam at the bottom, since it is only at the temperature of the surface. The difference in temperature (fall in temperature) between it and the heating steam is thus at first greater than it should be as a consequence of the hydrostatic pressure.

It should not be assumed that the differences of temperature, given in Table 16, between the upper and lower layers of boiling liquids, quite represent the actual conditions. These differences are in fact always less and only hold good for liquids at rest, which are not considered here.

Since the heights of the columns of liquid are generally made as

TABE 16. Increase in vapour pressure and rise in boiling point in the lowest gravities, $s_{,*}$, of $1\cdot0-1\cdot40_{\bullet}$ and steam pressures

Absolut	e of evaporation e pressure at to a at top		116·4° 1330	111·7° 1140 —	106·3° 950 —	100° 760 —			
Height of the liquid, h _f . Metres.	Specific gravity of the liquid.	Hydrostatic pressure of the liquid. mm. of mercury.	Temperature, in degrees Centigrad						
0.50	1·0	15·49	0·0	0·5	0·5	0·5			
	1·1	17·03	0·0	0·5	0·5	0·5			
	1·2	18·58	0·0	0·5	0·5	0·5			
	1·3	20·13	0·5	0·5	0·5	1			
	1·4	21·68	0·5	0·5	0·5	1			
. 0.50	•1·0	38·73	0·5	0.5 *	f	1.5			
	1·1	42·60	()·5	1	1	1.5			
	1·2	46·76	0·5	1	1	2			
	1·3	50·34	0·5	1	1:5	2			
	1·4	54·22	0·5	1	1:5	2			
0.75	1·0 1·1 1·2 · 1·3 1·4	58·10 63·90 69·72 75·53 81·34	0·5 1 1 1 1 1·5	1.5 1.5 1.5 1.5 2	1.5 1.5 1.5 2 2	2 2·5 3 3 3·5			
1.0	1:0	77·47	1·5	2	2	3·5			
	1:1	85·24	1·5	• 2	2·5	3·5			
	1:2	92·96	1·5	• 2·5	2·5	3·5			
	1:3	100·71	2	2·5	2·5	3·5			
	1:4	108·45	2	2·5	3	4			
1.5	1·0 1·1 · 1·2 1·3 1·4	111·20 122·30 133·44 144·56 151·68	2 2·5 2·5 3 3	2·5 3 3·5 3·5	3 3·5 3·5 3·5 3·5	4·5 5 5 5 5			
• 2∙0	1·0	154·91	3·5	3·5	3·5	5			
	1·1	170·40	3·5	4·5	4·5	6			
	1·2	185·89	3·5	4·5	5	6			
	1·3	201·38	4	4·5	5	7			
	.1·4	216·87	4·5	5	5·5	7.5			

TABLE 16.

layers of evaporating liquids at depths of $h_i = 0.2-2.0$ m., specific over the liquid of 1310 to 31.5 mm. of mercury.

							<u> </u>
95°	90°	80°	70°	60°	50°	40°	30°
633	525	354	233	148·7	92	54·9	• 31·5
126	234	405	526	611	668	705	728

by which the boiling point of the liquor is higher at the bottom than at the top.

0.5	0.5				• .		
0.5	0.5	$\frac{1}{1.5}$	$^1_{1\cdot 5}$	2·5 2·5	$\frac{2.5}{3}$	5 5	6·5 7
	1	1.5	1.5	2.5	3 3	5 5	8
1 1 1	1	1.5	1.5	2.5	3.5	5.5	8.5
1	1	$\frac{1}{2}$	$\frac{1}{2}.5$	3	4	5.5	9
1	1 1	۵	40	0	1		J
2	1.5	2.5	3 *5	4.5	6.5	10	15
• <u>2</u>	2.5	2.5	4	5	7	10	15.5
2.5	2.5		$\overline{4}.5$	5.5	9	11	16
2.5	$\frac{2.5}{2.5}$	3 3	5	6	9.5	$\overline{12}$	17
2.5	3	3.5	5 5	6.5	10	13	18
-0	,, ,	0.0	J	0.0	10	10	10
2.5	3	4	5	7	10.5	14	19
3	3.5	45	5.5	7.5	11	15	20
3	J·5	5	6	8	12	16 .	21
3 3	4	5	6.5	9.5	12.5	17	22
3.5	4.5	5	7	10	13	18	$\overline{24}$
	-	•					
3.5	4.5	5	7	9.5	13	18	22
4	4.5	5•	7.5	10.5	13.5	19.5	24.5
4	5	5.5	7.5	11	15	20	26
4.5	5	6	8	12	15.5	21	27.5
4 5	5 5	6.5	$\tilde{9}$	12.5	16.5	22	29
-			v		•		
5	5.5^{-1}	6.5	9.5	12.5	17	22.5	29.5
5 5 5	6	7	10	13.5	18	23	31
5	6.5	7.5	11	14.5	19.5	•25	32
6.5		8.5	12	15	20.5	26	34
6	7	9	12.5	16	21	27.5	35
	· 1	i			•		
5.5	7.5	9	12.5	16	21	27.5	35 ° 5
6.5	7.5	10	13	. 17.5	23	29.5	36.5
7	8	10	14	18.5	24·5 25·5	30	38.5
8	9	11 :	15	20	25.5	32 •	39
8.5	95	12	15.5	21	26.5	33.5	41
;		-					

small as possible, and further, since the liquor in the first vessels of the apparatus rarely has a high specific gravity, in most cases in calculating the quantity of steam developed in each vessel this difference in temperature between the top and bottom may be neglected without introducing any considerable error. In fact the error due to this approximation is for the first vessel rarely more than 0.25 per cent., for the last vessel about 1 per cent., of the steam produced by self-evaporation, and may thus safely be neglected.

• In determining the efficiency of the heating surface per sq. m. and the temperature difference, this difference between the temperature at top and bottom of the liquid should not be neglected.

To return to the equations. In agreement with the preceding remarks, by neglecting the differences in the temperatures of the liquor, and thus removing those temperatures which are à priori unknown, the equations previously given may now be written as below.

Consumption of heating steam in vessel I.:-

$$D_0 = \frac{W(t_1 - t_i) + d_1(c_1 - t_1)}{c_0 - t_1} \quad . \quad . \quad . \quad (79)$$

Steam from vessel I .:-

Steam from vessel II.:-

$$D_2 = \frac{(W - d_1)(t_1 - t_2) + d_1(c_1 - t_2)}{c_2 - t_2} \quad . \quad . \quad . \quad (81)$$

$$s_2 = \frac{(W - d_1)(t_1 - t_2)}{c_2 - t_2} \quad d_2 = \frac{d_1(c_1 - t_2)}{c_2 - t_2} \quad . \quad . \quad (82)$$

Steam from vessel III. :-

$$D_3 = \frac{(W - d_1 - s_2 - d_2)(t_2 - t_3) + (s_2 - d_2)(c_2 - t_3)}{c_3 - t_3} \quad . \quad . \quad (83)$$

$$\mathbf{s_3} = \frac{(W - d_1 - s_2 - d_2)(t_2 - t_3)}{c_3 - t_3} \quad d_2 = \frac{d_1(c_1 - t_2)}{c_2 - t_2} \quad . \quad . \quad (84)$$

Steam from vessel IV. :-

$$D_{\phi} = \frac{(W - D_1 - D_2 - D_3)(t_3 - t_4) + (d_3 + s_3 + \sigma_3)(c_3 - t_4)}{c_4 - t_4}$$
(86)

Steam from vessel V.:-

$$D_{\delta} = \frac{(W - D_{1} - D_{2} - D_{3} - D_{4})(t_{4} - t_{5}) + (s_{4} + \sigma_{4} + \lambda_{1} + d_{4})(c_{4} - t_{b})}{c_{5} - t_{5}} \qquad (90)$$

$$s_{\delta} = \frac{(W - U)(c_{4} - t_{5})}{c_{5} - t_{5}} \qquad d_{2} = \frac{d_{1}(c_{1} - t_{2})}{c_{2} - t_{2}} \cdot \cdot \cdot \cdot (91)$$

$$\sigma_{\delta} = \frac{s_{4}(c_{4} - t_{5})}{c_{5} - t_{5}} \qquad d_{3} = \frac{d_{2}(c_{2} - t_{3})}{c_{3} - t_{3}} \cdot \cdot \cdot (92)$$

$$\lambda_{5} = \frac{\sigma_{4}(c_{4} - t_{5})}{c_{5} - t_{5}} \qquad d_{4} = \frac{d_{3}(c_{3} - t_{4})}{c_{4} - t_{4}} \cdot \cdot \cdot (93)$$

$$\theta_{\delta} = \frac{\lambda_{4}(c_{4} - t_{5})}{c_{5} - t_{5}} \qquad d_{\delta} = \frac{d_{4}(c_{4} - t_{5})}{c_{5} - t_{5}} \cdot \cdot \cdot (94)$$

We proceed now, by the aid of these equations, to calculate the steam evolved in each vessel in any special case: for this calculation only the following are known:—

- 1. The quantity of liquor introduced, W, and its temperature, t.
- The quantity of evaporated liquor drawn off, U, and its temperature, t_n (i.e., t₂, t₃, t₄, or t₅).
- 3. The temperature and heat of the heating steam, t_0 and c_0 .
- 4. The temperature and heat in the last vessel, t_n and c_n

All the remaining values, especially the temperatures and pressures prevailing in the separate vessels, are unknown, for they depend essentially upon the ratio of the heating surfaces of the separate vessels to one another, and this ratio is different in almost every apparature. It must thus be our next endeavour to ascertain the most favourable proportion of the heating surfaces, in order that the conditions for the least consumption of steam (D_0) may be found, and also that dimensions corresponding to its evaporative capacity may be given to each vessel. However, it is impossible at present to calculate these values for any special cases, because of the want of knowledge of the temperatures, consequently the only course is to assume the temperatures in the separate vessels for many cases, and

especially for the limiting cases, and on these assumptions to calculate the corresponding evaporative capacity of each vessel. When these many cases have been arranged in tabular form, it will be easy to select the best in each case. It will also appear from the calculations that the amount of evaporation effected in the first vessel, and also the actual consumption of heating steam by the multiple effect evaporator, are not to any considerable extent proportional to the fall in temperature.

In Table 17 is given the amount of evaporation obtained in double, triple and quadruple effect evaporators, in the separate vessels of which different falls in temperature are assumed. The figures are for the evaporation of 100 litres of liquor to one tenth (0.1), and one quarter (0.25); intermediate cases are not given, since it is found that the extent of the evaporation has not much influence upon the output, the reason being that the larger the portion of the original liquor which is not to be evaporated, the larger is the volume of liquor taken from vessel to vessel, and consequently also its self-evaporation in the next vessel. But this self-evaporation (which is the cause of the greater evaporation in the later vessels than in the earlier) is always but a small fraction of the whole evaporation. The method of calculating Table 17 will at once be illustrated by means of an example. It is always assumed that the liquor enters at the temperature of the first vessel, t_1 . A lower temperature of the entering liquor, which frequently occurs in practice, must naturally be compensated in constructing the apparatus by increasing the heating surface of the first vessel; we shall afterwards return to this point.

In Table 17 are first given the temperatures t_1 , t_2 , t_3 , t_4 (in separate columns), which are assumed as prevailing in each vessel. This is done for many cases, as far as possible for the limiting conditions. Also apparatus is considered which works at pressures above atmospheric, without an air pump, e.g., in the second line for the triple effect:—

Vessel I., 130°; vessel II., 115°; vessel III., 100°.

Then, corresponding to each temperature, are given the total calories, c_0 , c_1 , c_2 , c_3 , c_4 , contained in 1 kilo. of steam at these temperatures.

Example.—100 litres of liquor are to be evaporated to 10 litres in a quadruple—effect evaporator, in the elements of which the temperatures 100°, 95°, 85° and 50° C, are maintained. How much water is evaporated in each vessel?

In accordance with what has gone before, the problem can only be solved by a process of trials.

If 90 litres are to be evaporated, were there no self-evaporation, each lessel would evaporate $\frac{90}{4} = 22.5$ litres; we know, however, that, as a matter of fact, by self-evaporation, the following (unknown) weights of steam are produced in the later vessels: s_2 , s_3 , $+ \sigma_3$, $s_4 + \sigma_4 + \lambda_4$. Let us, therefore, assume as a preliminary that the evaporation is divided as follows:—

These weights of steam produced by self-evaporation are found from equations 79-59, assuming the total evaporation in each vessel, as follows.—

The self-evaporation in vessels II., III., and IV. is

$$\begin{split} \mathbf{s_2^{\bullet}} &= \frac{(W-d_1)(t_1-t_2)}{c_2-t_2} = \frac{80(100-95)}{635\cdot5-95} = 0.74 \text{ kilb.} \\ \mathbf{s_3} &= \frac{(W-D_1-D_2)(t_2-t_3)}{c_3-t_3} = \frac{58(95-85)}{632-85} = 1.06 \text{ kilo.} \\ \mathbf{s_4} &= \frac{(W-D_1-D_2-D_3)(t_3-t_4)}{t_4-c_4} = \frac{35(85-50)}{691\cdot7-50} = 2\cdot14 \text{ kilos.} \end{split}$$

The evaporation produced in vessel III. by means of the steam, s_2 , is

$$\sigma_3 = \frac{s_2(c_2 - t_3)}{c_3 - t_3} = \frac{0.74(635.5 - 85)}{632 - 58} = 0.745 \text{ kilo.}$$

In the vessel IV. s_3 evaporates

$$\sigma_4 = \frac{s_3(c_3 - t_4)}{c_4 - t_4} = \frac{1.06(682 - 50)}{621.7 - 50} = 1.08 \text{ kilo.}$$

Finally, σ_3 effects in vessel IV. the evaporation, λ_4 ,

$$\lambda_4 = \frac{\sigma_3(c_3 - t_4)}{c_4 - t_4} = \frac{0.745(692 - 50)}{621.7 - 50} = 0.756 \text{ kilo.}$$

Thus the preliminary calculation gives the following series of results:-

Vessel	-	I.	II.	III.	IV.	
Evaporation -	-	20.87	21.62	22.67	24.85	litres.
Liquor introduced		100	79.13	57.51	34.85	kilos.

These results do not differ considerably, from the assumptions made. If they are made the basis of a fresh calculation, in order to obtain greator accuracy, we have in a similar manner:

$$\begin{split} \mathbf{s_2} &= \frac{79 \cdot 13(100 - 95)}{635 - 95} = 0.7325 \text{ litre}, \\ \mathbf{s_3} &= \frac{57 \cdot 51(95 - 85)}{632 - 85} = 1.051 \quad \text{,} \\ \mathbf{s_4} &= \frac{34 \cdot 85(85 - 50)}{621 \cdot 7 - 50} = 2.133 \quad \text{,,} \\ \mathbf{\sigma_3} &= \frac{0 \cdot 7325(635 - 85)}{632 - 85 \cdot \bullet} = \mathbf{0} \cdot 736 \quad \text{,,} \\ \mathbf{\sigma_4} &= \frac{1 \cdot 051(632 - 50)}{621 \cdot 7 - 50} = 1 \cdot 07 \quad \text{,,} \\ \lambda_4 &= \frac{0 \cdot 736(632 - 50)}{621 \cdot 7 - 50} = \mathbf{0} \cdot 749 \quad \text{,,} \end{split}$$

From this final calculation we obtain the figures :— Vessel - - - · · I. II. III. Self-evaporation - 0 $s_2 = 0.7325$ $s_3 = 1.051$ $s_4 = 2.133$ litres- $\sigma_3 = 0.736$ $\sigma_4 = 1.07$, $\sigma_4 = 0.749$, $\sigma_4 =$

Self-evaporation and its consequences thus produce an evaporation of 0.7325 + 1.787 + 3.952 = 6.4715 litres of water; there remain still to evaporate 90 - 6.4715 = 83.5285 kilos., which weight is divided almost, but not quite, equally between the four vessels, in such a manner that the steam from one vessel always evaporates rather *more* than its own weight from the next vessel.

$$83 \cdot 5285 = d_1 + d_1 \frac{c_1 - t_2}{c_2 - t_2} + d_1 \frac{c_1 - t_2}{c_2 - t_2} \cdot \frac{c_2 - t_3}{c_3 - t_3}$$

$$+ d_1 \frac{c_1 - t_2}{c_2 - t_2} \cdot \frac{c_2 - t_3}{c_3 - t_3} \cdot \frac{c_3 - t_4}{c_4 - t_4}$$

$$= d_1 \left(1 + \frac{637 - 95}{635 \cdot 5 - 95} + \frac{637 - 95}{635 \cdot 5 - 95} \cdot \frac{635 \cdot 5 - 85}{632 - 85} \cdot \frac{632 - 50}{621 \cdot 7 - 50} \right).$$

$$= \frac{637 - 95}{635 \cdot 5 - 95} \cdot \frac{635 \cdot 5 - 85}{632 - 85} \cdot \frac{632 - 50}{621 \cdot 7 - 50} \right).$$

$$= d_1 (1 + 1 \cdot 004 + 1 \cdot 004 \times 1 \cdot 006 + 1 \cdot 004 \times 1 \cdot 006 \times 1 \cdot 02).$$

$$= d_1 4 \cdot 044.$$
 Therefore $d_1 = \frac{83}{4} \cdot \frac{5285}{4044} = 20 \cdot 655$ litres of water.
$$d_2 = 20 \cdot 655 \times 1 \cdot 004 = 20 \cdot 791$$
 litres of water.
$$d_3 = 20 \cdot 731 \times 1 \cdot 006 = 20 \cdot 850 \qquad ,$$

$$d_4 = 20 \cdot 850 \times 1 \cdot 020 = 21 \cdot 26 \qquad ,$$

Thus each vessel, including the self-evaporation, evaporates the following quantities of water:—

 Vessel
 I.
 II.
 III.
 IV.

 Regular evaporation
 20.655
 20.781
 20.850
 21.26 litres.

 Self-evaporation
 0
 0.7325
 1.787
 3.952
 ,,

Total - 20.655 + 21.4635 + 22.637 + 25.212 = 89.9676 litres of water.

TABLE 17.

The Weights of Steam evolved in each separate vessel of a double, triple and quadruple effect evaporator per 100 litres of liquor: d_1, d_2 , etc.; s_1, s_2 , etc.; $\sigma_2, \sigma_3, \lambda_4$; by transference of heat and by self-evaporation, when the liquor is evaporated to 0·1 and 0·25 of its original weight. Regular evaporation (without extra steam) in apparatus with different falls of temperature.

	Double	effect	.	Eva	poration	1 to 0·1	W.	Evap	oration	to 0·2	5 W.	
$t_{1_{ullet}}$	c_{l}	t_2	c_2	D_1	s_2	d_2	D_2	D_1	8 ₂	d_2	D_2	
100 100 100 95 95 90 90 85 85 80 80 135 122·5 108 97·5 115	637 637 635-5 634-634 634 632 632 631 631-647-7 643-8 636-5 641-6 641-6	60 70 50 60 70 100 100 50 50 60 70	621-7 624-8 627-8 621-7 621-7 621-7 621-7 621-7 621-7 621-7 621-7 627-8 627-8 621-7 621-7 621-7 621-7 621-8 621-7 621-8 621-8 621-8	41·6 42·15 42·64 41·9 42·9 42·3 42·29 43·4 42·15 43·6 42·3 42·3 42·3 42·4 42·3 41·8 40·8 41·4 41·9 42·30	4-98 4-05 3-03 4-5* 3-49 2-52 3-71 1-99 3-7 2-49 1-96 2-96 2-96 2-96 2-96 3-67 2-38 4-72 6-77 5-60 4-59 3-486	43·42 43·8 44·33 43·6 44·11 44·58 43·99 45·22 45·01 44·0 45·22 45·14 44·89 45·4 44·03 44·76 43·48 42·43 43·40 43·51 44·2	48-40 47-85 47-36 48-1 47-6 47-71 47-70 47-71 46-60 47-85 47-47-1 48-2 48-2 48-6 48-1	34·20· 34·82 35·3	5·7 4·58 3·44 5·23 3·29 2·86 4·23 3·24 2·28 2·37 2·82 1·65 3·36 2·48 1·11 4·16 2·65 4·31 4·81 5·33 6·37 5·23	35-33 35-9 36-48 35-57 36-18 36-7 36-59 36-35 36-7 37-4 36-54 37-18 37-18 37-17 36-12 36-89 36-94 35-57 38-95 34-99 35-57	41-03 40-48 59-92 40-60 40-17 39-56 40-23 39-83 39-83 39-83 39-83 39-83 39-90 39-31 38-78 40-28 40-34 40-60 41-44 41-36	
	Aver _{be} ge Minimum Maximum				$D_1:D_2 =$	1:1·12 1:1·20 1:1·07	6	D) ₁ ; D ₂ =	35 9 40-48 36-48 39-92 36-18 40-17 36-7 39-56 36-39 39-87 36-59 39-87 36-59 39-87 36-35 40-05 36-7 39-52 37-4 39-05 36-7 38-78 36-12 40-28 36-89 39-54 36-94 40-34 35-79 40-60 35-57 40-80 35-57 40-80		
	Minimum Maximum				$d_1 : d_2 =$	1:1:04 1:1:07 1:1:04		D) ₁ : d ₂ =	1:1.0 1:1.0 1:1.0		

TABLE 17—(continued).

	,	Triple	e effect.				Evapor	ation to	0·1 W.	
t_1	c ₁	t ₂	c ₂	$t_{\rm a}$	<i>c</i> ₃	D_1	8.2	d_2	D_2	8-,
140 130 130 130 125 125 125 120 120 120 120 120 115 115 105 105 105 100 100 100 100 10	649 646 646 646 646 644 644 643 643 641 6 641 6 638 5 638 5 637 637 637 637 637 637 637 637 637 637	130 115 115 115 115 115 1105 105 1105 95 95 95 95 95 90 90 80 80 80 80 80 80 80 80 80 80 80 80 80	646 641-6 641-6 641-6 641-6 638-5 638-5 635-6 635-5 635-6 6 635-6 6 635-6 6 635-6 6 635-6 6 635-6 6 635-6 6 635-6 6 6 635-6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100 100 50 60 70 100 50 60 70 70 50 60 60 70 70 50 60 60 70 70 50 60 60 70 50 60 60 70 50 60 50 60 70 70 50 60 70 70 70 70 70 70 70 70 70 70 70 70 70	637 621·7 624·8 627·8 624·8 627·8 621·7 624·8 627·8 624·8 621·7 621·7	27-8 27-7 26-56 26-8 26-56 26-56 26-56 28-37 26-17 26-14 27-16 27-18 28-03 28-30 27-08 27-08 27-04 27-74 27-74 27-71 27-91 27-78	1·39 2·04 2·07 2·07 2·60 2·60 1·32 3·38 3·38 3·38 3·38 1·33 1·33 1·33 1·31 1·31	28 28 26·82 27 57·1 26·82 26·82 28·65 26·43 26·96 26·92 28·95 27·43 27·96 26·22 28·05 28·05 28·31 28·48 27·30 27·55 27·81 28·17 27·70 27·94 28·18 27·88 28·18 27·88	29·39 30·04 28·89 29·07 29·17 29·42 29·42 29·98 30·34 30·16 30·26 30·26 29·13 29·37 29·36 29·62 29·99 30·17 30·48 30·18 30 30·18 30·	2·84 1·17 4·78 4·10 3·4 2·8 0·78 2·6 1·86 1·94 2·60 1·94 2·6 1·94 1·94 1·45 0·70 2·2 1·45 1·18 2·2 1·45 2·6 1·18 2·6 1·45 2·6 1·76 2·76 2·76 2·76 2·76 2·76 2·76 2·76 2
95	635.5	85	632	60	624·8 verage	28·02 27·33	2.147	28.30	29.61	2.22

TABLE 17—(continued).

	: D ₃ = : 1·088 :		Evan	oration	to 0·25	W.	D_1 :	$D_2:D_3$	= :1·106	; 1·26
$D_1:d_2:$	$d_n = 1:1.01$:1.041		•			D_1 :	$d_2:d_3$	= :1·01:	1·03 9
σ_3	d_3	D_3	D_1	82	d_2	D_2	83	• σ ₃	d_3	D_3
1.44	29	32.78	22.62	1.49	22.84	24.33	3	1.51	28.54	28.05
2.12	29.1	32.39	22.62	2.20	22.84	25 04	1.5	2.24	23.54	27.28
2.15	27.62		21.10	2.23	21.31	23.54	6.15	2.27	21.95	30.35
2.15	27.95		21.395	2.23	21.6	22.83	5.25	2.37	22.26	29.78
2.15	28.49		21.74	2.23	21.95	24.18	4.18	2.27	22.63	29.08
2.7	27.62		21.31	2.9	21.52	24.42	4.18	2.96	22.18	29.34
2.7		33.12	21.57	2.9	21.78	24.68	3.35	2.96	22.44	28.75
1.37	29.77		23.34	1.4	23.57	24.97	1.0	1.42	24.27	26.69
3.51	27.22	34.03	20.83	3.6	21.03	24.63	4.2	3.67	21.67	29.54
3 51	27.5	33.61	21.10	8.6	21.31	24.91	3.36	3.67	21.96	28.99
3.51	27.71		'1.41	3.6	21.62	25.22	2.42	3.67	22.28	28.37
2.7	28.25	32.81	21.91	2.85	22.12	24.97	2.42	2.9	22.80	28.12
3.2	27.64	32.78	21.31	8.53	21.52	25 ·05	2.9	3.6	22.18	27.68
4.19	27	33 79	20.63	4.31	20.83	25.14	3.37	4.39	21.47	29.23
1.38	28.65	88.33	22.27	1.42	22.49	23.91	4.2	1.44	23.17	28.81
1.38	28.88	32.86	22.53	1.42	22.75	24.17	3.36	1.44	23.56	28.30
1.38	29.2	32.44	22.86	1.42	22.08	24.50	242	1.44	23.78	27.64
1.36	28.90	32.86	22.41	1.41	22.63	24.04	3.78	1.44	23.34	28.55
1.36	29.25	32.45	22.70	1.41	22.92	24.33	2.9	1.44	23.64	27.97
1.36	29.35	30.01	23:04	1.41	23.27	24.68	1.89	1.44	23.96	27.98
$\frac{2.72}{2.72}$	28.12	33.04	21.77	2.83	21.28	24.81	2.89	2.88	22.65	28.42
	28.38	32.55	22.09	2.83	22.31	25.14	1.89	2.88	23.00	27.77
2.72	28.65	32.12	22.40	2.83	22.62	25.45	0.97	2.88	23.30	27.15
$egin{array}{c} 2 \cdot 1 \ 2 \cdot 25 \end{array}$	29 28·52	32·13 32·97	22.94	1.81	23.16	24.97	1.35	1.84	23.90	27.09
2·25	28.79	32·49	22·31 22·64	2.0	22.53	24.53	2.89	2.04	23.23	28.16
2.34				2.0	22.86	24.86	1.89	2.04	23.57	27.5
1.35	28·79 29·06	32·26 32·61	22.52	2.36	22.74	25.10	1.53	2.4	23.45	27.38
2.68	28.41	32.54	$22.73 \\ 22.13$	1·37 2·77	22.95	24·32 25·12	2.89	1.39	23·67 23·03	27·95 27·75
1.36	28.41	32.86			22.35		1.90	2.82		
1.36	29.16	32·86 32·37	22.58	1.39	22.81	24.20	3.31	1.41	23.49	28.21
1.90	29.10	92.91	22.89	1.89	23.11	24.50	2.40	1.41	23.80	27.61
2.244	28.46	32.925	22.12	2.295	22.335	24.47	2.89	2.335	22.99	27.80

Table 17—(continued).

Ī		,						T								
		Qu	a d rup	le cffe	sct.					Ev	anora	tion t	o 1·0	W.		
		•									-		•			
_	, ,				·											
t_1	c ₁	t_2	c.,	t31-	c_3	t_{i}	c_{\downarrow}	D_1	s_2	d_2	D_2	s_3	σ_3	d_3	D_3	s_{i}
<u> </u>					ļ-,·											
140	649.7	135	647.6	125	644.6	100	637	20.9	0.732	21.0	21.73	1.051	0.735	21.15	22.9	1.63
134	647.3			112	640.5			20.15			21.91		1.67		23.19	
130	646.6	115	641.6	100	637		621°			19		1.597		19.1	22.91	
130	646.6	115	641.6	100	637	60	624	19.25				1.597		19.6	23.41	
180	646.6	115	641.6	100	637		627-8	19.46				1.597		19.7	23.51	1.89
185	647.6				641.6		621.	19.6	1.47			1.051			22.22	
135	647.6				641.6		624.	19.8	1.47	19.8	21.27	1.051	1.478	F)·9	$22 \cdot 42$	3.41
185	647.6				641.6		$627 \cdot 1$	320	1.47	20		1.051	1.478	20.1	22.62	2.84
	645.0				633.8			319.02			21.98			19.3	24.04	1.22
124		103			631.2			18.45			21.77		3.17	18.8	21.16	
	644.6		636.7		629.5			18 ·09					3.53		24.31	
115	641.6			80	631			19.07						19.34	23.67	1.83
115	641.6			80	631			19.42			21.7	2.105	2.23		23 93	
105	638.5			90	634			20.64								
105	638.5			90	634			20.8				1.051			23.72	
105	638.5			90	634	70	627 - 8	20.95	0.732	20.95	21.68	1.051	0.735			
105	638.5			80	631			19.67						19 77		
105	638.5		634	80	631			19.85						20.05		
105	638.5		634		631		627-8		2.206			1.051			23.47	
105	638.5		635.5		632			20.48				1.051		20.68		
100	687		635.5		632			20.65								
100	687 .		635.5		634			21.06								
100	687		635.5		632			21.06								
100	637		634	80	681							1.051		20.40		
100	637		634	80 80	631			20.55				1.051		20.75		
100	637 636·3		635.5		631 629· 5			20.68								
97.5	685.5		$632 \\ 632$	75	630			20·12 20·25				1•300 1•051		20.36	23.46	
95 95	635.5		632	75	630			320·25				1.051				
95	635.5		634	85	631			720·46							23.20	
95	635.5		635.5		626.8			7 19.35						19.52		
30	10000	00	ם מפטן	1 00	040'0	1 00	021.	19.90	2.200	10.44	41.04	7.099	2.22	19.92	49.99	0.94
						Ave	erage	20.0	1.326	20.07	21.74	1.29	1.67	20.19	23.14	1.60'
_		-		_				•					_			

TABLE 17—(continued).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{aligned} m{D}_1 : D_2 : D_1 \\ m{1} : 1 \cdot 087 : 1 \\ m{D}_1 : d_2 : d_3 \\ m{1} : 1 \cdot 0033 : 1 \end{aligned}$	·157 : : d ₄ =	1.258			Evap	oratio	n to	0.25	W.		$D_1: 0$	$egin{aligned} & egin{aligned} & egi$	$_{3}:d_{4}$	215 :	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	σ ₄ λ ₄	d_4	D_4	D_{i}	\boldsymbol{s}_2	d_2	D_{γ}	83	σ_3	d_3	D_3	9,	σ,	λ ₄	d_4	. D.
$1.61 2 \cdot 24 20 \cdot 71 \\ 25 \cdot 50 15 \cdot 71 \\ 2 \cdot 29 15 \cdot 78 \\ 18 \cdot 07 \\ 1 \cdot 74 \\ 2 \cdot 30 \\ 15 \cdot 85 \\ 19 \cdot 89 \\ 28 \\ 1 \cdot 75 \\ 2 \cdot 32 \\ 16 \cdot 00 \\ 21 \cdot 35 \\ 2$	1.17 1.68 1.62 2.24 1.08 1.52 2.26 1.07 1.52 1.07 1.52 1.07 1.52 2.21 3.20 2.24 3.56 2.12 2.25 1.06 2.24 1.06 2.24 1.06 2.24 1.06 2.24 1.06 2.24 1.06 1.48 1.07 0.749 0.532 0.756 1.49 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.48 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06	20·45 19·5 19·9 20·2 20·5 20·5 19·5 19·5 19·5 19·5 19·5 21·3 20·07 20·25 21·3 21·3 20·3 20·3 20·3 20·3 21·3 20·3 20·3 20·3 20·3 20·3 20·3 20·3 20	24·08 27·48 26·27 26·64 26·64 26·50 25·50 25·74 25·74 25·74 25·74 25·74 24·73 24·73 24·73 24·74 24·67 24·67 24·67 24·45 24·67 24·45 24·67 24·45 24·67 24·45 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24·67 24 24 24 24 24 24 24 24 24 24 24 24 24	$\begin{array}{c} 16.31\\ 14.72\\ 15.02\\ 15.50\\ 15.50\\ 15.77\\ 14.87\\ 14.44\\ 13.95\\ 15.4\\ 16.52\\ 17.5.41\\ 15.60\\ 16.66\\ 17.04\\ 17.1\\ 16.25\\ 16.64\\ 17.04\\ 16.25\\ 16.64\\ 17.04\\ 16.25\\ 16.64\\ 16.70\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16.90\\ 16$	1.76 2.40 2.40 1.62 1.62 2.95 3.35 3.75 2.40 0.757 0.757 0.757 0.757 0.758 0.788 1.55 0.788 0.788 1.55 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788	16:39 14:91 15:43 15:57 15:57 15:65 15:01 14:58 14:08 15:02 16:52 17 15:49 16:49 16:49 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:40 16:	18·15 17·31 17·17 17·17 17·18 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19 17·19	1.35 1.79 1.79 1.23 1.23 2.19 2.37 2.66 2.35 2.35 1.23 1.23 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	1·77 2·42 2·42 2·42 1·63 3·78 3·78 2·42 2·42 2·42 0·76 0·76 2·31 1·56 0·78 1·54 0·78 1·54 0·78 1·54 0·76 2·34 1·54 0·76 0·76 0·76 0·76 0·76 0·76 0·76 0·76	16 47 14 99 15 25 15 65 15 65 15 65 15 95 15 98 14 72 14 22 15 17 16 68 17 18 16 18 17 19 16 41 16 16 16 41 16 68 16 68 16 67 16 68 16 67 16 68 16 16 68	19·59 19·2 19·46 19·466 18·51 18·51 18·51 18·77 20·25 20·47 20·66 19·94 18·77 19·07 19·18 19·74 19·18 19·19 19·19 19·19 19·18 19·19 19·18 19·19 19·18 19·19 19·18 19·19 19·18 19·19 19·18 19·19 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18 19·18	1.09 4.36 3.43 2.57 5.58 4.78 2.10 2.57 0.88 3.40 0.88 1.68 2.60 1.76 2.57 1.73 2.60 1.32 2.57 0.90 1.82 3.00 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.32 2.57 0.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90	1.35 1.84 1.82 1.80 1.26 1.25 2.21 2.39 2.68 2.37 1.24 1.21 1.21 1.21 1.21 1.21 1.21 1.21	1·78 2·49 2·46 1·68 1·668 1·668 1·668 3·41 3·81 2·45 0·76 2·34 1·58 0·79 0·78 1·55 0·79 0·76 2·36 1·57 0·79 0·76 1·57 0·79	16·15 15·58 15·59 16·10 16·10 16·12 16·22 16·23 14·86 14·36 14·36 15·35 16·71 16·87 17·15 16·87 17·15 16·87 17·16·89 16·79 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16·94 16 16 16 16 16 16 16 16 16 16 16 16 16	20-87 24-22 23-40 22-61 24-62 23-62 23-62 22-52 22-52 22-52 21-47 22-52 21-47 21-85 21-21 21-21 21-21 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32 21-32

RESULTS OF TABLE 17.

_													
		W			liquor	are to b	e eva po	rated d	own				
l			to 0:		` !	i		25 W.	-				
l						e evapoi	ated fro	om it					
	***************************************	90	0 litres	of water	·	7	5 litres	of wate	r.				
_	In vessel	I.	II.	III.	IV.	I.	II.	III.	IV.				
If divided	Double effect - Triple "- Quadruple ", -	45 30 22·5	45 30 22·5	30 22·5	22.5	87·5 25 18·75	37·5 25 18·75	25 18·75	18.75				
	Accordi	ng to T	able 17	each ve	essel ac	tually ev	olves		•				
Double effect.	Total Thus in the ratio Through heating	43·33 1 :	47·67 1·127	-	_	84·88 1 :	40·15 1·167		<u>:</u>				
Do eff	Thus in the ratio 42-33 44-2 -												
rıple Tect.	Total Thus in the ratio Through heating	1 :		:1.2048	-	22·12 1 ;	24·47 1·106						
# T	alone - Thus in the ratio	27.33		30·90 1·1306	_	22·12 1 :	22·335 1·009	25·335 1·145	_				
Jundruple effect.	Total Thus in the ratio Through heating	20 1 :	21·74 1·087 :	23·14 1·157	25·17 : 1·258	15·94 1 :	17·79 1·16	19·34 1·215	21·929 : 1·375				
e 6	alone Thus in the ratio	20	20·07 1·0088	21·86 : 1·093	23·42 : 1·171	15·94 1 • :	16.06 1.008	17·94 : 1·125	19·47 : 1·223				
]	In the mean the tota	ıl evolut	ion of s	steam is	in the				- 1				
	Double effect	•	$-D_1$	$: D_2 =$					- 1				
	Triple effect		$D_1:D_2$: 0·5 442 7 : 1·28{			1				
	Quadruple effect $D_1: D_2: D_3: D_4 = 1:1:123:1:187:1:316$												
7	= 0.2161:0.2427:0.2585:0.2844. In the mean the evaporative capacity (without self-evaporation) is in the												
, 1	Double effect	- Potrietae	онрисі	by (With				s in the					
	Triple effect			$D_1:d$	D_1 : $(d, \pm i)$	$d_2 = 1:$ $\sigma_3) = 1:$	1.0075	1,120	1				
١.	Quadruple effec	$D_1: a$	$d_2:(d_3+$	σ_3): $(d_4$	$+\sigma_4+\lambda$	(a) = 1:	1.0055	. 1·109 :	1.196.				

Table 17 has been calculated in the manner indicated in this example (p. 80). It is now possible to make a satisfactory inspection of the evaporative action of double, triple and quadruple effect evaporators, and to see without trouble how much water each vessel really vaporises, how much heating steam is used by each vessel, and in particular how much heating steam must be supplied to the first element, in order to bring 100 litres of liquor from the initial to any desired concentration. It is assumed that the liquid enters at the temperature t_{mi}.

If an average be taken of the figures in Table 17 for the whole quantity of water, D, evaporated in each vessel, and the quantity of steam, d, evolved by heating in each vessel (these averages are given at the bottom of the table), an extraordinary regularity in the evaporative capacity is seen, the extreme cases hardly varying by 5 per cent from the average. The figures (also given in the Table) for the mean ratios of the total quantities, D, evaporated in the separate vessels, to the portions, d, evaporated by heating alone in the same vessels also vary very little from one another in the extreme cases, so that these figures may well be taken as a basis for the general case in practice.

These proportions of the amounts of steam in each vessel, d_1 , d_2 , d_3 , d_4 , will form the basis for the estimation of the necessary heating surfaces of the evaporator, to be given later.

Five important conclusions may be drawn from Table 17 to assist in the division of the heating surfaces in the most efficient manner:—

- 1. The smallest amount of heating steam required to produce a certain amount of evaporation is used in all multiple evaporators, when the fall in temperature is the same in each vessel.
- 2. However the fall in temperature in the separate vessels be arranged, the weight of heating steam to be supplied to the first vessel always varies within very narrow limits. Thus the manner in which the available fall in temperature is distributed amongst the separate vessels has no great influence on the economy of steam. No considerable saving in steam can be obtained by any definite division of this fall in temperature.
- 3. The quantity of water to be evaporated in the first vessel is, on an average, of the total evaporation of the multiple evaporator:—

In the double effect
$$\frac{1}{2\cdot 147} = 0.466$$
 $D_1 = (W - U) 0.466$.

In the triple effect
$$-\frac{1}{3\cdot 333}=0\cdot 300$$
 $D_{\rm e}=(W^{\prime}-U)\ 0\cdot 300$. In the quadruple effect $\frac{1}{4\cdot 626}=0\cdot 216$ $D_{\rm l}=(W^{\prime}-U)\ 0\cdot 216$. The extreme cases are :—

For the double effect
$$P_1 = (W - U) \cdot 0.434$$
 to 0.484 . For the triple effect $P_2 = (W - U) \cdot 0.2777$ to 0.3152 . For the quadruple effect $P_3 = (W - U) \cdot 0.1926$ to 0.2335 .

4. The evaporation effected by heating is in all cases the least in the first vessel, but the increase in the following vessels is not very great—at most 4 per cent. In the mean it may be assumed that this evaporation in the separate vessels is in the

5. The total quantity evaporated in the last vessel is:

In the double effect - 0.534 In the triple effect - 0.3703 In the quadruple effect - 0.284

of the total evaporation of the apparatus (W - U).

B. The Percentage of Solids in the Liquid in Each Vessel of the Multiple Evaporator.

In the preceding section of the chapter it has been found that in performing a certain amount of evaporation, each separate vessel must evaporate its proper fraction, almost independently of the fall in temperature. In the next place, it is desirable to find the evaporative efficiency of each vessel and the percentage of solid matter in each, for liquors varying in strength both before and after evaporation; the results can only be approximate—never quite exact. The total evaporative capacity and the concentration in percentages are given in Table 18, which thus contains an answer to the questions:—

If a liquor of known strength (4-17 per cent.) is to be concentrated to another known strength (40-70 per cent.), how much water must with this intent be evaporated in each vessel and what is the concentration of the liquor in each vessel?

The following example illustrates the method of calculation of Table 18:—

Example.—100 kilos. of a liquor, containing 10 per cent. of solid matter, are to be evaporated to a strength of 50 per cent. in a triple effect evaporator. How much water is evaporated in each vessel and what is the concentration in each vessel?

In order to evaporate 100 kilos of liquor from 10 per cent. to 50 per cent. strength, 100 - (10 + 10) = 80 kilos of water must be evaporated.

Of this, according to Table 17,

Thus the first vessel contains

10 kilos, of solids in
$$100-24\cdot02=75\cdot98$$
 kilos, of solution, i.e., in the solution there is $\frac{10\times100}{75\cdot98}=13\cdot16$ per cent. of solids.

The second vessel contains

10 kins. of solids in 75:98 - 26:35 = 49:63 kilos. of solution, i.e., in the solution there is $\frac{10\times100}{49\cdot63}$ = 20:15 per cent. of solids. The third vessel contains

10 kilos, of solids in $49.63 - \frac{e}{20.62} = 20.01$ kilos, of solution, i.e., in the solution there is $\frac{10 \times 100}{20} = 50$ per cent. of solids.

TABLE 18.

The amount of evaporation, and the percentage of solids in the liquor, in each vessel of the double, triple and quadruple effect apparatus with regular evaporation (i.e., no extra steam is withdrawn) for the concentration of 100 kilos. of liquor to 0.08 - 0.34 of its weight.

The upper lines of each pair in ordinary type, give the weights of water to be evaporated in each vessel.

The lower figures, in heavy type, give the corresponding percentages of dry material in the liquor in each vessel.

ength or.	Double	effect.	Tr	iple effec	t.	Ç)uadrupl	e effect.	.
Initial strength of the liquor. Per cent.	D_1	D_2	D_1	D_2	D_3	D_1	D_2	D_3	$\nu_{\scriptscriptstyle \parallel}$
In Of 1	I.	И.	Ι.	11.	111.	I.	II. •	IJI.	IV.
4 5 6 7, 8 9	42·2 6·92 40·95 8·46 39·6 9·93 38·35 11·35 37· 12·7 35·87 14·3 34·38 15·4 32·82	47·8 40 46·55 40 45·4 40 44·15 40 41·88 40 88·62 40 89·48	27:34 5:5 26:69 6:82 25:63 8:07 24:83 9:31 23:90 10:51 11:71 22:15 12:84 21:23	29·74 9·32 29·11 11·35 25·04 13·03 27·25 14·31 26·38 16·09 25·60 17·55 24·7 18·76 23·77	27.25	20 5 19·4 6·2 18·78 7·38 18·24 8·56 17·55 9·7 17 10·84 16·33 11·95 15·67	21-7 6-86 21-07 8-4 20-35 9-86 19-71 11-28 19 12-6 18-43 17-65 15-1 16-86	28·1 11·4 22·5 13·5 21·85 15·3 21·11 16·12 20·5 18·6 19·92 20·15 19·22 21·4 18·56	25 2 40 24·63 40 24·05 40 28·44 40 23·41 40 22·41 40 21·8 40
11	16.2	40	13.96	20	40	13 [.] 04	16.3	22.49	40
4	42·86 7·0 41·64	48·26 45 47·25	27·72 5·53 26·96	30·10 9·48 29·37	38·8 45 32·57	20·28 5·02 19·72	22 6 ·9 21·42	23·88 11·68 22·84	25·45 45 24·91
5	8.88 40.52	45 •46·14	6·85 26·21	11.45 28.61	45 31.85	6·23 19·17	8·45 20·84	13·9 22·27	45 24·42
6	10.09 39.32	45 45·18	8·13 25·45	13·28 27·87	45 31·13	7·42 18·61	10 20·21	15.85 21.71	45 23.89
7	11·5 38·21	45 44·02	9·35 25·02	15·0 27·46	45 30·75	8·6 18·15	11.28 19.66	17·7 21·06	45 29:38
8	12·94 87	45 48	10.67 28.90	16.90 26.38	45	9:77 17:5	12·85 19·1	19·45 20·50	45 22.9
9	14.29	45	11.83	18.1	45	10.91	14.14	20.9	45

TABLE 18—(continued).

ength or.	Double	effect.	Tri	pleeffe	et.	Ç	uadrup)	le effect.	
Initial strength of the liquor. Per cent.	D_1	D_2	D_1	D_2	. D.,	$D_{\rm i}$	D_2	D_5	D_4
Init of t Per	I.	II.	ī.	II.	111.	I.	II.	III.	IV.
10	86 15·62	42 45	23·2 13·02	25·69 19·58	29·06 45	17·1 12·06	18·7 15·57	20·3 • 22·8	22·7 45
11	35 16·85	41 45	22·41 14·3	24·86 20·86	28·67 45	16·5 13·17	17 8 16 74	19·4 23·76	21·8 45
	48.8	48:7	28.04	30.76	88·62 ·	20.5	22.2	23.6	25.7
4	7·06 42·2	50 47.8	5·55 27·34	9·7 29·74	50 32·92	5·03	6·95 21·7	23·1	50 25·1
5	8.65	50	6.88	11.66	50	6.25	8.57	14.2	50
6	41·2 10·28	4 1·8 50	26 61 8 17	29·04 13·5	82·28 50	19·51 7·45	21·2 10 1 •	22·6 16·3	24·8 50
	40.2	45.8	26	28 ⁹ 44	31.66	19.01	20.6	22.1	24.3
7	39.1	50 44·9	9·46 25·28	15:37 27:74	50 31	8.64 18.54	11·58 20	18·3 21·5	50 23·9
8	13·13	50	10.70	17:00	50	9.81	13.01	20	50
9	38·1 14 54	43·9 50	24·56 11·93	27 18 58	30 32 50	18·04 10·9	19 5 14·4	21 21·7	23·4 50
1 1	37	43	24	26.35	29.63	17.55	19	20 5	28
10	15·87 36	50	13·16 23·22	20·15 25·7	50 29:08	12·13 17·06	15.76 18.5	23·5 20	50 22·5
11	17.19	50	14.32	21.53	50	13 [.] 26	17.07	24.7	50
12	35 18·5	50	22 5 15·49	25 22·85	28·41 50	16·58 14·37	17·9 18·31	19·5 26·29	50 50
	83.9	40.1	21.85	21.4	27.85	16.08	17.4	18.97	21.55
13	19:66 32:8	50 39·2	16.63 21.45	24·19 23·4	50 27·26	15·49 15·5	19·53 16·9	27:33 18:5	50 21·1
14	20.83	50	17.82	25.4	50	16.57	20.7	28.5	50 20 6
15	31 8 22	38·2 50	20·4 18·9	28 26·5	26·45 50	15 17:65	16·3 21·83	18 29 ·5	50 b
	30.8	37.2	19.76	22:36	25.81	14·5 18 71	15·8 23	17.5 30·6	20·1 50
16	23·12 29·8	50 36·2	19·9 19·1	27·69 21·7	50 25·15	14.0	15.3	17	19.6
17	24.2	50	21.01	28.7	50	19.78	24.05	31.6	50
	43.76	49.07	28.3	80.66	33.81	20.68	22.42	*28·78	25.83
4	7.11	55	5.57	9.74	55	5.04	7.03	12.07	55
5	43·21 8·80	48·61 55	27·96 6 9	30·34 11·76	38·52 55	20·45 6·28	22·2 8·72	23·08 14·8	25·62 55
1 1	41.74	47.35	27.03	23.43	32.63	19.75	21.47	22.87	24.97
6	12·9 40·83	55 46·44	8·22 26·41	13·18 28·84	55 82:05	7·47 19·32	10·2 20·99	16·9 22·42	55 24·57
7	11.83	55	9.5	15.65	55	8.67	11.7	18.8	55

Table 18—(continued).

gth	Double	effect.	Tri	ple effec	t. • •)uadrup	le effect	
Initial strength of the liquor. Per cent.	D_1	D ₂	D_1	D_{2}	Д,	D_1	D_2	D_3	
Initia of the Per c	I.	II.	I.	11.	ш.	I.	11.	III.	IV.
8	39·93	45·53	25·78	28·21	31·47	18·86	20·50	21·96	24·14
	13·31	55	10·78	17·4	55	9·86	13·2	20·6	55
9	38·92	44 72	25·16	27·6	30·89	18·45	20 01	21·41	23·71
	14·73	55	12·02	19·04	55	11·03	14 62	22·4	55
	38·01	43 71	24·38	27·02	30·36	18·01	19 55	20·95	23·27
10	16·13	55	13·22	20·57	55	12:2	16	24·1	55
	37	43	23·94	26·4	29.75	17:55	19	20·5	28
11	17:46	55	14·46	22:14	55	13·3	17·3	25·6	55
	36:09	42.09	23·30	25:77	29·2	17·13	18·55	20·05	22·45
12	18·77	55	15:64	23·56	55	14·48	18.68	27·1	55
	35·18	41·19	22:76	25·15	28·52	16·67	18.1	19·6	22
13	20·56	•55	16.83	24·95	55	15.6	19· 0 2	28·5	55
	34·07	40· 4 8	22	24·55	28	16.22	17·54	19·14	21.65
14	21·23 33	55 39·55	18 21·32	26·36 23·85	55 27·38	16·71 15·78	21·14 17·03	29·7 18·63	55° 21·12
15	22·36	55	19·06	27·4	55	17·8	22·15	30·8	55
	32·35	40·48	20·73	23·33	26·78	15·22	16·52	18·22	20·82
16	23·7	55	20·16	28·6	55	18·87	23.41	32·16	55
	31·9	39∙9	20·40	23·0	26·45	15·0	16.3	18·0	20∙6
17	24.95	55	21.35	30.04	. 55	20	24.74	33.5	55
•	44.62	49-21	28.48	30.85	34.0	20.83	22.59	23.96	25.97
4	7:15	60	5· 59	9·85	60	5 05	7·06	11.9	60
	44:13	48·54	27·93	30·30	33·38	20·42	22·16	23.52	25·59
5	8·79	60	6·93	11·99	60	6.28	8· 74	14·7	60
	42·2	48·59	27·34	29·74	32·92	20	21·7	23·1	25·2
6	10·39	60	8:26	13.68	60	7· 5.	10.29	17·05	60
	41·41	47 02	26:8	29.22	32·42	19·61	21.31	22·71	24·84
7	11·94	60	9·56	15·8	60	8·7	11.85	19·2	60
	40·53	46·14	26·21	28·61	31·85	19·07	20.84	22·27	24·42
8	13·45	60	10:84	17·7	60	9·88	13·33	21·2	60
	39·6	45·4	25:6	28·04	31·2	18·78	20·35	21·85	24·05
9	14·9	60	12·1	19·41	60	11.08	14·7	23.06	60
	38·77	44·57	25·05	27·50	30.79	18.4	19·94	21.84	23.66
10	16.33	60 43·74	13.34	21.08	60 30·26	12.25 17.95	16.22	24.8	60
11	37·94 17·72	60	24·48 14·56 23·94	26·94 22·64 26·4	60 29·75	13.4	19·55 17·6	20.90 26.4	23·3 60 23
12	97 19·1	43 60 42·17	15·78	24.15	29·75 60 29·17	17.55 14.5	19 18·6	20·5 27·7	60
13	86·17 20·37	60	23·35 16·96	25.82 25.56	60 28·62	17·13 15·69	18·57 20·22	20·07 29·38	22·57 60
14	35·38 21·65	41·34 60	18·13	25·26 26·89	60	16·74 16·81	18·08 21·48	19.68 30.77	22·17 60

TABLE 18—(continued).

strength iquor. it.	Double	e effect.	Tr	iple effe	ct.		Quadrup	ole effect	-
Initial strengt of the liquor. Per cent.	D_1 I.	D_2 II.	D_1 I.	D_2 .	D ₃	D_1 I.	D_2 II.	D ₃	D ₄ IV.
Per									
15	34·38 22·86	40·62 60	22·15 19·27	24·70 28·22	28·15 60	16·33 17·9	17·65 22·7	. 19·22 32	21·8 60
1	33.42	39.92	21.60	24.14	27.61	15.93	17.14 *	18.84	21.44
16	24.03	60 38·1	20·40 21·35	29·48 23·36	60 27·16	19·03 15·5	23:9 16:9	33.28 18.5	60 21.07
17	32·7 25·25	60	21.6	30.73	60	20.11	25.1	34·6	60
<u>''•</u>	20 20	00		00 10	•			010	
	44:35	49.52	28.66	31.03	34.17	20.96	22.72	24.06	26.1
4	7·18 43·55	65 48·76	5.6 28.15	9·92 30·52	65 33•66	5.06 20.58	7·1 22·32	12·4 23·68	65 25·75
5	8 85	65	6.91	12:1	65	6.28	8.75 21.91	15	65
8	42.58	48.19	27.61	30	33.17	20.19		23.29	25.87
6	10:40 41:8	65 47·43	8.29 27.1	14·16 29·5	65 32·70	7· 51 19·81	10·36 21·51	17·3 22·91	65 25⋅08
7	12 08	65	9.6	16.12	65	8.73	11.93	19.6	65
8	41	46.1	26.54	28.97	32.2	19.42	21.09	22.52	24.66
*	13·57 40·28	65 45.88	10.89 26.03	17:99 28:45	65 31·68	9.93 19.05	13·45 20·72	21.6 22.15	65 24·22
9	15.07	65	12.16	19.79	65	11.12	14.93	23.6	65
10	39·4 16·5	45·2 65	25·5 13·43	27·9 21·46	91·2 65	18·7 12·4	20·25 16·38	21.65 25.4	28·95 6 5•
10	38.5	44.0	24.98	27.42	30·7	18.3	19.90	21.3	23.6
11	17.8	65	14.66	23.11	65	13 46	17.8	27.1	65
12	37·86 19·31	43·67 65	24 93 15·75	26·9 24·8	30·2 65	17·92• 14·62	19·46 19·1	20·88 28·78	23·28 65
	37	48	23.94	26.4	29.75	17.55	19	20.5	23
13	20.63 36.25	65 42·25	17.09	26.2	65	15.77	20:49	30.28	65
14	21.94	65	28·41 18·28	25·88 27·6	29·21 65	17·18 16·90	18.61 21.80	20·12 31·70	22·6 65
	35.36	41.56	22.91	25.8	28.70	16.9	18.13	19.73	22.13
15	23·20 34·68	65 40.68	19·33 22·32	28·9 24·82	65 28·22	18.05 16.44	23·09 17·74	33·2 19·34	65 21·84
16	24.5	65	20.6	30.27	65	19.15	24:31	34.41	65
	33.72	40.13	21.77	24.31	27.78	16.07	17.26	18.96	21.56
17	25.65	65	21.73	31.5	65	20.26	25.50	. 35·63	65
	44.54	40.77	00.00	01.14	04-05	01.05	00.00	01.17	00.54
4	44·54 7·21	49·75 70	28.83 5.62	31·14 10	34·35 70	21·07 5·07	22·83 7·13	24·17 12·5	26·54 70
	43.83	49.03	28.33	30.70	33.84	20.71	22.45	23.81	25.80
5	8·89 43·01	70 48·49	7·0 27·83	12·20 30·20	70 33·4	6·31 20·36	8·79 22·1	15·15 23·46	70 25·53
6	10.53	70	8:31	14.3	70	7:53	10.43	17.5	70
			•				1		

TABLE 18—(continued).

strength iquor, it.	Double	effect.	Tri	iple effe	ot.	(Quadrup	le effect	
	D_1	D_2	D_1	D_2 .	\mathfrak{D}_{3}	D_1	D_2	D_3	D_4
Initial of the Per cer	I.	II.	I.	II.	III.	I.	11.	III.	IV.
7	42·2 · 12·11 ·	47·8 70	27·34 9·63	29.75 16:31	32 9 96 70	20 8.75	21·7 12·01	23·1 20	25·2 70
1 '	41.48	47.09	26.85	29.26	32.47	19.64	21:34	20 22 74	24·87
1 8	13 67	70	10.94	18.23	70	9.95	13.5	22.04	70
ď	40.77	46.37	26.39	28.85	32.01	19.29	20.96	22.39	24.54
1 9	15.2	70	12.22	20.11	70	11 15	15 06	24 1	70
i	40.05	45.66	25.86	28.3	31.56	18.93	20.57	22.03	24.21
10	16·52	70	13.49	21.81	70	12·33	16 53	26	70
1	39.24	45.05	25.39	27.82	31.09	18.57	20.17	21.67	23.85
11	18.1	70	14.74	23.5	70	13.5	17.9	27.78	70
1 ,,	38.52	ER OT	24.88	27:33	30.62	18.3	19:81	€1·21 00.40	23.51
12	19·5 37·81	70° 43.62	15.98 24.4	25.07 26.86	70 30·18	14·69 17·9	19·38 19·46	29·48 20·86	70 25 21
13	20.9	70	17.19	26.6	70	15.83	20.75	31.11	70
] **	37	43	23.9	26.38	29.72	17.5	19.1	20.5	22.9
14	22.2	70	18:39	28.2	70	16.97	22 08	32.63	70
1	36·28	42.27	23 42	25.9	29.24	17.2	18.65	20.15	22.56
15	23.54	70	19.59	29.6	70	18 [.] 12	23:38	34.09	70
1	35.57	41.57	22.95	25.43	28.79	16.74	18.29	19.79	22.31
16	24.83	70	20.76	30.98	70	19.21	24.59	35.33	70
i 7	34.85	40.85	22.44	24 94	28.3	16.00	17.8	19.40	21.9
177	26.09	70	21.92	32.3	70	20.38	25.91	36∙9	70
						<u> </u>		I	

CHAPTER XI.

MULTIPLE EFFECT EVAPORATORS, IN WHICH STEAM ("EXTRA STEAM") IS TAKEN FROM THE FIRST AND FOLLOWING VESSELS FOR OTHER PURPOSES THAN TO HEAT THE NEXT VESSEL.

In the foregoing, those multiple evaporators have been considered, in which the steam produced in the first vessel is only used to heat the next vessel, i.e., in which the operation of repeatedly using the steam is carried out without interference. It is, however, often the case that from the first, and frequently from later vessels, considerable quantities of steam are taken to be used for other manufacturing purposes. This method has the advantage of economising steam, for when steam is taken direct from the boiler for other purposes than for the evaporator, a certain consumption of fuel is necessitated. Naturally when this specially required steam is drawn from the first vessel of the evaporator, additional high pressure steam has to be supplied, since as much more heating steam must be supplied to the first vessel as is necessary to produce the steam taken from it. But then this extra steam is produced from the liquor, which is thus freed from the weight of water turned into steam, which weight of water has not now to be removed by a separate consumption of high pressure steam.

It is noteworthy that, when this extra steam is taken from the second or one of the following vessels, the economy in high pressure steam is still greater, for steam is now used for manufacturing purposes which has already removed several times its own weight of water in the evaporator. It would naturally be most advantageous to take the steam required for other purposes from the last vessel of the evaporator, which is indeed done, when practicable, but it must be remembered that the temperature of the steam falls considerably from the first to the lest vessel, and the extra steam must thus

be drawn from that particular earlier vessel which affords a sufficiently high temperature.

The saving for every 100 kilos. of extra steam, taken from the vessels indicated, is as follows:—

-								
	De	ouble	Triple	Quadrup	le			
	е	ffect.	effect.	effect.	•			
From	vessel I.	47.5	31	22.5	kilos.	of	heating	steam.
. ,,	" II.		62	45.0	,,		,,	,,
,,	,, III,			67.5	. ,,		,,	"

Just as in the preceding section there are here two questions to answer:—

- A. How much water must be evaporated in each vessel of a multiple evaporator, when extra steam is taken from the separate vessels?
 - B. What is then the strength of the solution in each vessel?

A. How much Water must be Evaporated in Each Vessel of a Multiple Effect Evaporator when Extra Steam is taken from the Separate Vessels?

The diagrammatic representation of the evolution of steam in the separate vessels given in Fig. 11 provides a clear idea of the process. We may suppose the production of extra steam in all the vessels completely separated from the regular evaporation of the liquor, for it may be assumed that there are separately introduced into the first vessel:—

- 1. The water, which is to be converted into steam in the various vessels by the extra evaporation, then to emerge partly as steam, partly as condensed water.
- 2. The liquor, which was originally mixed with this water but is now separate from it, and which now contains the same quantity of solid matter as originally, but less water by the amount which is to be used in the formation of extra steam. The liquor is thus to be supposed more concentrated from the beginning. We can find the quantity of water to be evaporated in each vessel and in all together for the purpose of producing extra steam. By subtracting this weight of water from the total weight of liquor, we obtain the weight of liquor to be evaporated, on our supposition, in the ordinary manner.

 $d_{\gamma}=$ produced by d_{2} (produces d_{4}). $D_{\gamma}=d_{5}^{2}+s_{3}+\sigma_{3}=$ total steam from vessel III., to vessel IV. $|\epsilon_2|$ produced from ϵ_1 (produces ϵ_2). \bullet III. ϵ_0 or escel IV. \bullet produced by self-evaporation in vessel s_4 = produced by self-evaporation in vessel $\lambda_4 = \text{produced from } \sigma_1$, $D_4 = d_4 + s_4 + \sigma_4 + \lambda_4 = \text{total}$ steam from vessel IV $d_4 = \text{produced from } d_3$. b, t and c as in Fig. 9 (p. 69). $\sigma_4 = \text{produced from } s_3$. $\sigma_3 = \text{produced from } s_2 \text{ (produces } \lambda_1).$ $s_3 = \text{produced by self-evaporation in vessel}$ $d_s = \text{heating}$ steam for the product on of $D_2 = d_0 + \hat{s}_s + \epsilon_s = \text{total}$ steam from \mathbf{v} seel extra steam (produces e_1 , e_1 , n_i). If ι_0 vessel III. $e_5 = extra steam$ taken from vessel III. (produced from \$2 which is from \$\epsilon\$. $a_2 = extra$ steam taken from vessel II. $a_2 = p$ produced from a_1 (produces a_2). III. (produces σ4). fproduces σ.).

 $\lambda_{i} + \epsilon_{i} + \mu_{i} = \text{total}$ steam from vessel LWo vessel II.

 $d_1 =$ steam from vessel I. (produces d_2). $D_1 = d_1 + \epsilon_1 + \eta_1 =$ total steam from η

€1 = D

 $\theta_1 = extra steam taken from vessel I.$ produced from d, (produces \$2). $\eta_1 = \text{produced from } d_e \text{ (produces } e_2\text{)}$

 $d_0 = \text{steam for evaporating (produces } d_1$

 $d_{h} =$ steam for heating the liquor.

W = quantity of liquor which enters. $D_0 =$ total heating steam for vessel I.

Let W = the original weight of liquid,

 r_f = its original percentage strength in solid matter,

 $r_{\bullet}=$ its percentage strength after the suppositious removal of the extra steam,

 e_1 = the weight of the extra steam to be taken from vessel I., e_2 = ,, ,, ,, ,, ,, ,, II., e_3 = ,, ,, ,, ,, ,, ,, ,, ,, III.

If from the second vessel e_2 kilos of extra steam are to be withdrawn, then for this purpose η_1 kilos of steam must be produced in the first vessel. And, if e_3 kilos of extra steam are to be removed from the third vessel, for that purpose ϵ_2 kilos must be produced in the second and ϵ_1 kilos in the first.

Thus, in order to draw off the weights of extra steam, e_1 , e_2 , and e_3 , it is necessary to develop

In vessel I.
$$e_1+\eta_1+\epsilon_1$$
 kilos. of steam. , II. $e_2+\epsilon_2$,, , III. e_3 ,,

Thus the development of extra steam withdraws from the liquor, W, the weight of water or steam, D.

$$D_{\bullet} = e_1 + e_2 + e_3 + \epsilon_1 + \epsilon_2 + \eta_1 (95)$$

Thus there remains to be evaporated in the ordinary manner the weight of liquor,

$$W - D_{\bullet} = W - (e_1 + e_2 + e_3 + 1 + \epsilon_2 + \eta_1) \quad . \quad . \quad (96)$$

The percentage of solids in the liquor rises thereby from r_i to r_i , and

$$r_{\bullet} = \frac{100r_{f}}{100 - (e_{1} + e_{2} + e_{3} + \epsilon_{1} + \epsilon_{2} + \eta_{1})} = \frac{100r_{f}}{100 - D_{e}} . \quad (97)$$

The weights of extra steam, $e_1 + e_2 + e_3$, are given; the weights, ϵ_1 , ϵ_2 , η_1 , are now to be determined.

In order to obtain usable results we shall here, as in the preceding chapter, neglect those differences in evaporative capacity produced by differences in the fall of temperature from one vessel to another. We shall also adopt the average values previously obtained for the self-evaporation and the increased evaporation due to the diminution of the total heat of the steam in the later vessels. The errors so produced are small and negligible in practice.

The conclusions of the preceding chapter lead to the following expressions:—

Thus, as a result of the removal of the extra steam, e_1 , e_2 , and e_3 , trom the quatruple effect, the total quantity of water withdrawn from the liquor is

$$D_e = e_1 + e_2 + e_3 + 0.995 e_2 + 0.9067 e_3 + 0.9022 e_3$$

= $e_1 + 1.995 e_2 + 2.8089 e_3$.

 D_e gives the quantity of water (or total weight of steam) removed from the liquor, when in the first vessel e_1 , in the second e_2 , and in the third e_3 kilos, of *extra steam* are drawn off.

In Table 19 are given for many cases the weights of water which must be evaporated in the separate vessels of a multiple evaporator in addition to the ordinary evaporation of the liquor, if the weights of extra steam e₁, e₂, e₃, are withdrawn.

If this water, evaporated for the production of extra steam, be subtracted from the weight of the liquor, and the remaining water still to be evaporated divided among the single vessels as shown in Chapter X., and finally the weight of extra steam taken from each vessel be added, the total evaporation in each vessel is obtained.

Example.-W = 100 kilos. of liquor are evaporated in a quadruple effect evaporator from the concentration $r_r = 10$ per cent. to $r_u = 65$ per cent. From the tirst vessel $e_1 = 12$, from the second $e_2 = 6$ and from the third $e_3 = 4$ kilos. of extra sleam are to be withdrawn per 100 kilos. of liquor.

100 kilos. of liquor of 10 per cent. strength will give

$$\frac{10 \times 100}{65} = 15.38 \text{ kilos. of 65 per cent. strength.}$$

TABLE 19.

The weights of steam which must be evolved in each vessel of a multiple evaporator, and the total quantity of water lost in consequence by the liquor, if e_1 , e_2 and e_3 kilos. of extra steam are taken from the vessels.

2	This weight has to be exaporated in the first vessel and the liquid loses the same weight.	28 0 8 2 5 5 5 5 5 6 8 100 kilos. of extra steam are 5 0 8 9 5 5 5 6 8 11. per 100 kilos. of liquor,	then in sessed I. η_1 kilos. mast $\frac{\eta_1}{1}$ $\frac{1}{1}$ $\frac{1}{1$	\$\\\ \frac{e_2}{1} + \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NO S 9 F 10 S 9 F 10 Per 100 kilos, of extra steam are NO S 9 F 10 Per 100 kilos, of liquor,	then in ressel II. s. kilos. 18.130. 19.960. 19.960. 19.961. 19.961. 19.960. 19.961. 19.961. 19.960. 19.961. 19.961. 19.960. 19.961. 1	and in ressel I. η_1 kilos. must 1804 9.055 17.216 9.055 17.216 9.055 17.216 9.065 17.216 18.040 19.861	5.617 11.234 16.851 22.468 28.089 33.706 39.323 56.170 61.824
---	--	--	--	---	--	--	--	---

Thus there must be evaporated 100 - 15.38 = 84.62 kilos, of water.

Next, to determine the weight of steam which must be evolved in each vessel in order to produce the extra steam.

From Table 19 we find:---

Thus in the first vessel 21.566, in the second 9.626, in the third 4.0 kilos. of steam, in all 35.192 kilos., are withdrawn from the liquor for the formation of extra steam. For evaporation in the regular manner there remain

$$84.62 - 35.192 = 49.428$$
 kilos.

The quadruple effect evaporates this weight (Chapter X., p. 86) :-

The evaporation effected by the transference of heat, i.e., without self-evaporation, in each vessel, is, on the average, according to Chapter X. (pp. 84, 85),

$$0.931 \times 49428 = 46.017$$
 kilos.,

of which are evaporated

In vessel II. III. IV. In the ratio 1.00551.109 1.196 Total. d = 12.770d = 10.685 d = 10.725 d = 11.83746.017 kilos. Add for extra steam 21.566 9.626 4.0 0.0 Total. $32 \cdot 251$ 20.351 15.837 12.77081.209 kilos.

B. What is now the Concentration of the Liquor in Each Vessel?

After finding how much water the liquor loses in each vessel, its strength or the percentage of solid matter is readily ascertained.

If the original liquor contained r, per cent. of solids (in the last example, 10 per cent.), and from 100 kilos, there were evaporated in the first vessel $D_1 + c_1 + \eta_1 + \epsilon_1$ (here 32.251 kilos.), then the percentage of dry material in the first vessel would be

$$r_1 = \frac{100\,r_f}{100-(D_1+e_1+\epsilon_1+\eta_1)} = \frac{100\times 10}{100-32\cdot 251} = 14\cdot 8 \text{ per cent.,}$$
 in the second

$$r_2 = \frac{100 \times 10}{100 - (32 \cdot 251 + 21 \cdot 626)} = 21 \cdot 7 \text{ per cent.,}$$

in the third

$$\tau_{\rm S} = \frac{100 \times 10}{100 - (32 \cdot 251 + 21 \cdot 626 + 16 \cdot 682)} = 34.2 \text{ per cent.},$$
 and in the fourth

$$r_4 = \frac{100 \times 10}{100 - (32 \cdot 251 + 21 \cdot 626 + 16 \cdot 682 + 14 \cdot 06)} = 65 \text{ per cent.}$$

Since the cases which occur in practice are so extraordinarily different, that they cannot be brought within the limits of a table, the attempt must be abandoned; when necessary the calculation must be performed.

The commonest case in practice is that in which extra steam is taken only from the first vessel; the variations are not then so numerous that they cannot be tabulated. Accordingly Table 20 has been calculated for this case; the percentage strength is given of the liquid in the different vessels of the double, triple and quadruple effect evaporator for liquids which are thickened from $r_{r_1}=6.13$ per cent. to $r_u=50.70$ per cent., when extra steam to the extent of 5, 10, 15, 20 or 25 per cent. is taken from the first vessel.

Finally, in order to facilitate numerous calculations, Table 21 is added. It gives the percentage strengths of solutions, which originally contained 1-30 per cent. of solids, after 1-38 per cent. of water has been withdrawn.

TABLE 20.

Percentage of solids in the contents of the separate vessels of the double, triple and quadruple effect evaporators, for liquids of originally $r_r - 6.13$ per cent. strength, when in the first vessel 5, 10, 15, 20 or 25 per cent. of extra steam is drawn off, and in the last vessel a liquor of 50, 60 or 70 per cent. strength is to be produced.

Original strength, per cent.	ntage of steam taken vessel I.	liquor is f brought percentage	Double effect. Triple effect.				Quadruple effect.					
Original per cent.	Percentage extra steam from vessel	The li thereby to the li strength.	I.	II.	I.	II.	III.	I.º	II.	III.	IV.	
1,	e_1	r_e	<u>r</u> 1	r_2	<i>r</i> ₁	r_2	7,	r_1	r_2	r.	r_{\downarrow}	
6	5 10 15 • 20 25 5 10 15 20 25	6·815 6·66 \$-05 7·5 8 6·815 6·66 7·05 7·5	10·7 11·2 11·7 12·4 13·13 11·1 11·4 11·94 12·69 13·45	50 50 50 50 50 60 60 60 60	8·6 8·9 9·46 10·1 10·7 8·66 9·06 9·54 10·16 10·84	14·1 14·7 15·37 16·2 17·03 14·0 14·3 15·8 16·75	50 50 50 50 60 60 60 60	7.75 8.25 8.64 9.24 9.81 7.9 8.3 8.7 9.88	12·33 13·01 10·79 11·3 11·85 12·6 13·33	17 17·4 18·3 19·75 20 17·5 18·5 19·2 20·2 21·2	50 50 50 50 50 60 60 60 60	
7	5 10 15 20 25 5	6:315 5:66 7:05 7:5 8 7:36 7:77	11.04 11.53 12.11 12.86 18.67 12.12 12.7	70 70 70 70 70 50	8·71 9·15 9·63 10·28 10·94 9·9 10·35	14·9 15·4 16·31 17·25 18·23 15·97 16·8	70 70 70 70 70 50 50	7·93 8·33 8·75 9·3 9·95 9·05 9·54	10.93 11.5 12.01 12.76 13.5 12.08 12.7	18·3 19·1 20 21 22·04 18·9 19·6	70 70 70 70 70 70 50	
7	15 20 25 5 10 15	8·235 8·75 9·33 7·36 7·77 8·235 8·75	13·48 14·1 15 12·44 13·05 13·85 14·55	50 50 50 60 60 60	11·3 11·0 12·3 10 10·5 11·15	17·4 18 19·1 16·5 17·1 18 18·6	50 50 50 60 60 60	10·1 10·7 11·2 9·1 9·6 10·18 10·78	13·36 14 14·8 12·35 12·75 13·9 14·2	20·45 21·32 22·3 19·9 20·7 21·7 22·67	50 50 50 60 60 60	
7	25 5 10 15	9·35 7·36 7·77 8·235	15·4 12·61 13·1 14	60 70 70 70	12·5 10·03 10·5 11·24	19·95 16·95 17·75 18·7	60 70 70 70	11 48 9·15 9·65 10·25	15·2 12·51 13·20 13·9	23.66 20.7 21.5 22.6	60 70 70 70	
8	20 25 5 10 15 20	8.75 9.33 8.42 8.88 9.4 10	14·87 15·6 13·8 14·4 15·2 15·87	70 70 50 50 50	11.85 12.62 11.1 11.4 12.5 13.16	19·18 20·71 17·7 18·3 19·3 20·15	70 70 50 50 50 50	10.85 11.55 10.8 10.7 11.5 12.13	14.65 15.56 13.6 14.15 15.1 15.76	23·55 24·8 20·8 21·3 22·6 23·5	70 70 50 50 50 50	
	25	10.66	16.42	50	13.75	20.83	50	12.62	16.75	24.0	50	

TABLE 20—(continued).

							'					
trength,	ge of am taken sel I.	The liquor is thereby brought to the percentage strength.	Doul effec		Trip	effec	t.	c Quadruple effect.				
Original per cent	Percentage extra steam from vessel	The li thereby to the p strength	I.	П.	I.	II.	ш	I.	II.	III.	IV.	
r,		r_e	<i>r</i> ₁	r_2	r.	r_2	r_3	r_1	r_2	r ₃	r_4	
8	5 10 15	8·42 8·88 9·4	14 14·8 15·6	60 60	11·3 11·9 12·7	18·3 19·2 20·2	60 60 60	10·3 11 11·7	13·9 14·6 15·6	21·9 22·8 23·9	60 60 60	
8	20 25 5 10	10 10.66 8.42 8.88	16·33 17·03 14·3 15	60 60 70 70	13·34 13·79 11·5 12	21.08 21.87 18.8 19.9	60 60 70 70	12·25 12·9 10·4 11	16·22 16·92 14·1 14·9	24·8 25·6 22·8 23·8	60 60 70 70	
	15 20 25	9·4 10 10·66	15·7 16·52 17·12	70 70 70	12·8 13·49 14·1	21 21·81 22·6	70 70 70	11.85 12.33 12.93	15·8 16·5 17·25	25 26 26·9	70 70 70	
9	5 10 15 20	9 48 10 10 56 11 25	15 2 15 87 16 48 17 5	50 50 50 50	12·5 13·15 13·75 14·6	20·13 20·83 21·93	50 50 50 50	11.5 13.13 12.62 13.56	15·1 15·76 16·76 18	22·6 23·5 24·1 25·1	50 r50 50 50	
9	25 5 10 15	12 9·48 10·1 10·56	18·5 15·6 16·33 17·03	50 60 60 60	15:49 12:7 13:34 13:79	22·85 20·2 21·08 21·87	50 60 60 60	14·37 11·7 12·25 12·9	18·31 15·5 16·22 16·92	26·29 23·9 24·8 25·6	50 60 60 60	
9	20 25 5 10	10·36 11·25 12 9 48 10·1	18·1 19·1 15·7 16·52	60 60 70	14.86. 15.78 12.8 13.49	23.04	60 60 70 70	13·7 14·5 11·85 12·33	17·85 18·6 15·8 16·53	26·7 27·7 25 26	60 60 70 70	
10	15 20 25 5	10·56 11·25 12 10·52	17·12 18·5 19·5 16·5	70 70 70 70 50	14·1 15·05 15·95 13·8	22 6 23·9 25·07 20·8	70 70 70 70 50	12·93 13·8 14·69 12·7	17·25 18·25 19·38 16·5	26·9 28·18 29·48 24·1	70 70 70 70 50	
10	10 15 20	11·11 11·76 12·5	17·3 18·2 19·1	50 50 50	14·43 15·2 16·09	21.66 22.5 23.5	50 50 50	13·37 14 14·9	17·71 18 18·9	24·85 25·7 26·9	50 50 50	
10	25 5 10 15	13·33 10·52 11·11 11·76	20 17 17·85 18·8	50 60 60 60	17 13·9 14·68 15·5	24·6 21·8 22·79 24·8	50 60 60 60	15·7 12·8 13·51 14·2	19·8 16·9 17·7 18·3	27·6 25·6 26·5 27·4	50 60 60 60	
10	20 25 5 10	12·5 , 13·33 10·52 12·22	19·7 20·77 17·3 18·27	60 60 70 70	16·38 17·26 14 14·86	24·85 25·86 22·7 23·65	60 60 70 70	15·1 16 12·9 13·6	19·2 20·52 17·2 18	28·5 29·7 26·9 27·95	60 60 70 70	
, 11	15 20 25 5 10	12·95 13·75 14·66 11·57 12·22	19·2 20·2 21·2 17·9 18·8	70 70 70 50 50	15·6 16·58 17·5 11·9 15·8	24·6 25·87 26·9 22·2 23·1	70 70 70 50 50	14·4 15·29 16·1 13·8 14·6	19 20 21 17.6 18.6	29 30·3 81·6 25·5 26·5	70 70 70 50 50	
	10	12.22	18.8	50	15.8	23.1	50	14.6	18-6	26.5	50	

Table 20—(continued).

Original strength, per cent.	age of eam taken ssel I.	liquor is brought percentage h.	Dou! effec		• Tri	ple effec	et.	Quadruple effect.				
Original per cent.	Percentage extra steam from vessel]	The li thereby to the p	I.	II.	I. •	II.	III.	I.	II.	III.	IV.	
7,	e_1			r ., _	r_1	r.,	r_{γ}	<u>r,</u>		r_3	<i>r</i> ,	
11	15	12.95	19.6	50 €	16.5	24.1	50	15.4	19:5	27.3	50	
	20	13.75	20.5	50	17.5	25.1	50	16.25	20.4	28.2	50	
11	25	14.66	21·5 18·80	50 60	18.5	26	50	17.2	21.4	29·1 27·1	50	
11	5 10	11·57• 12·22	19.4	60	15·1 16	23·3 24·5	60 60	13·8. 14·3	18·1 18·9		60 60	
1	15	12.22	20.3	60	16.9	25.5	60	15.6	20.2	28 29·3	60	
1 1	20	13.75	21.35	60	17.8	26.5	60	16.5	21.1	30.4	60	
1	25	14.66	21.4	60	18.8	27.5	60	17.5	22.2	31.4	60	
11	5	11.57	18.8	70	15.4	23.8	70	14.1	18.6	28.6	70	
	10	12-22	19.8	70	16.3	25.5	70	15	19.7	29.8	70	
	15	12:95	20.8	70	17.1	26.5	70	15.8	20.7	31	70	
	20	13.75	21.9	70	•18-1	27.9	70	16.6	21.7	32.3	70	
•	25	14.66	22.9	70	19.1	29	70	17.6	22.7	33.4	70	
12	5	12.63	19	50	16.1	23.5	50	14.9	18.9	26.8	50	
	10	13.33	20	50	17	24.6	50	15.49	19.8	27.6	50	
	15	14.11	20.95	50	17.93	25.5	50	16.68	20.8	28.6	50	
	20	15	22	50	18.9	26.5	50	17.65	21.8	29.5	50	
	25	16	23.12	50	19.9	27.69	50	18.71	23	30.6	50	
12	5 10	12:63 11:33	19·7 20·77	60 60	16.4	24.8	60	15.1	19.5	28.6	60	
	15	11 33 14:11	21.77	60	17·36 18·24	25·87 27·03	60 60	15·99 16·92	20.63	29.7	60 60	
	20	15	22.86	60	19.27	28.22	60	17.9	21.63 22.7	30·9	60	
i I	25	16	24.03	60	20.40	29.48	60	19.03	23.9	33.28	60	
12	5	12.63	20.3	70	16.6	25.8	70	35.3	20	30.3	70	
	10	13.33	-21.3	70	17.59	27.1	70	16.23	20.35	30.61	70	
	15	14.11	22.4	70	18.53	28.3	70	17.1	22.21	32.77	70	
	20	15	23.54	70	19.59	29.6	70	18.12	23.28	34.09	70	
	25	16	24.83	70	20.76	30.98	70	19.21	24.59	85.33	70	
13	5	13.68	20.3	50	17.2	24 ·9	50	16	20.1	27.9	50	
	10	14.44	21.3	50	18.3	25.9	50	17	21.2	29	5,0	
	15	15.28	22.8	50	19.7	27.3	50	18.4	22.7	30.3	50	
	20	16.25	23.4	50	20.2	27.9	50	19	23.3	30.9	50	
13	25 5	17.33	24.5	50	21.4	29	50	20	24.4	32	50	
19	10	13·63 14·44	$\frac{21}{22 \cdot 1}$	60	17.6	26.3	60	16.3	20.9	30.1	60	
	15	15.28	23.1	60 60	18·6 19·6	27·4 28·5	60 60	17·3 18·2	22 23	31·2 32·3	60 60	
	20	16.25	24.3	60	20.7	28.9	60	19.3	25 24·2	33.6	60	
	25	17.33	25.6	60	20.7	31.1	60	20.5	25.5	35	60	
13	5	13.68	21.6	70	17.8	27.4	70	16.4	21.4	31.9	70	
	10	14.44	22.6	70	18.8	28.7	70	17.5	22.6	33.2		
	15	15.28	23.9	70	19.9	29.9	70	18.4	23.7	34.4	70 70	
	20	16.25	25.1	70	21	81.8	70	19.5	24.9	35.7	70	
	25	17.33	26.4	70	22.3	32.2	70	20.7	26.3	37.5	70	
			_				!	l				

Table 21. Percentage of solid matter, r_v , in liquors, solids, after 1-38 per

ength,							Ιf	there l	be take	n from	100 k	ilos. of
Original strength, per cent.	1	2	3	4	5	6	7	8	9	10	11	12
orig									he res	idue co	ntains	r" per
1 2 3 4 5	1·01 2·02 3·03 4·04 5·05	1·02 2·04 3·06 4·08 5·10		1·04 2·08 3 13 4·17 5·21	1·05 2·11 3·16 4·21 5·26	1·06 2·13 3·19 4·26 5·32	1·08 2·15 3·23 4·30 5·38	1·09 2·17 3·26 4·35 5·43	1·10 2·20 3·30 4·40 5·49	1 11 2·22 3·33 4·44 5·55	1·12 2·25 3·37 4·49 5·62	1·14 2·27 3·41 4·55 5·68
6 7 8 9 10	6.06 7.07 8.08 9.09 10.10	8·16 9·18		6·25 7·29 8·34 9·37 10·41	6·32 7·36 8·42 9·48 10·52	6·38 7·45 8·52 5·57 10·64	6·45 7 53 8·60 9·67 10·75		6·59 7·69 8·79 9·89 10·99	6.66 7.77 8.88 8.99 11.11	6·74 7·8 8·9£ 10·11 11·23	
11 12 13 14 15	11·11 12·12 13·13 14·14 15·15	14.26	11 34 12·37 13·40 14·43 15·46	11·46 12·5 13·54 14·58 15·61	11·57 12·63 13·68 14·73 15·78	11·70 12·77 13·82 14·89 15·96	12·90 13·98	11·95 13·04 14·13 15·20 16·31	12·08 13·19 14·28 15·38 16·48	12·22 13·33 14·44 15·55 16·66	12·36 13·49 14·60 15·55 16·84	12·5 13·64 14·77 15·91 17·04
16 17 18 19 20	16·16 17·17 18·18 19·19 20·20		16·49 17·52 18·54 19·59 20·62	16·68 17·70 18·74 19·78 20·82	16.84 17.89 18.96 20 21.04	17·04 18·08 19·14 20·21 21·28	18·28 19·34	17·4 18·48 19·56 20·65 21·74	17.58 18.68 19.78 20.88 21.98	17·77 18·88 20·00 21·11 22·22	17·94 19·20 20·20 21·35 22·46	19·32 20·46 21·59
21 22 23 24 25	21·21 22·22 23·23 24·24 25·25	21·44 22·45 23·47 24·44 25·50	21·55 22·68 23·71 24·74 25·77	21·88 22·92 23·96 25 26·04	23.15	22·34 23·40 24·46 45·54 26·59	22·58 23·65 24·73 25·81 27·09	$\frac{25}{26.08}$	23·07 24·17 25·27 26·37 27·47	23·33 24·44 25·55 26·66 27·77	$\begin{array}{c} 23.58 \\ 24.75 \\ 25.84 \\ 26.96 \\ 28.09 \end{array}$	25 26·13 27·27
26 27 28 29 80		27·55 28·53 29·59	26·80 27·85 28·87 29·90 30·93	27·08 28·12 29·17 30·20 31·23	28·42 29·46	27·66 28·72 29·78 30·85 31·92	27.96 29.03 30.1 31.18 32.25	28·26 29·34 30·4 31·52 32·61	28·57 29·67 30·76 31·87 32·97	28·88 30 31·11 32·22 33·33	29·2 30·34 31·46 32·58 33·69	$31.82 \\ 32.95$

TABLE 21.

which originally contained $r_r = 1-30$ per cent. of cent. of water has been abstracted. •

iquor	the fo	llowing	weigh	ts of w	vater, i	n kilos							ength
13	14	15	16	17	18	19	20	21	22	23	24	25	Original strength
ent.	of solid	ls.		-									Orig
1.15	1.16	1:18	1.19	1.20	1.22	1.23	1.25	1.27	1.29	1.30	1.31	1.33	1
2.3	2.32	2.33	2.36	2.44	2.44	2.47	2.5	2.53	2.56	2.59	2.63	2.67	2
3 46	3.49	3 52	3.57	3.62	3.66	3 7	3.75	3.79	3.85	3.90	3.95	4	3
4.5	4.65	4.7	4.76	4.82	4.87	4.94	5	5.06	5.13	5.19	5.26	5.33	4
5.74	5.81	ั่5∙หห	5.95	6.02	6.09	6.17	6.25	6.33	6.43	6.49	6.58	6.66	5
6 89	6.98	7 05	7.14	7 23	7:31	7.40	7.5	7.59	7.69	7.79	6.81	8	6
8.05	8.14	8.24	8 33	8 43	8.54	8464	8.75	8.86	8.94	9.09	9.21	9.33	7
9.2	9-3	9.4	9.52	9.64	9.74	9-88	10	10.12	10.26	10.38	10.52	40.66	8
10.35	10 47	-10.56	10.71	10.84	10.98	11.1	11.25	11.37	11.55	11.68	11.85	12	9
11-49	11.63	11.76	11.9	12.04	12.19	12.35	12.5	12.65	12.86	12.97	13.13	13.33	10
L2·64	12.79	.12-92	13/20	13.95	13-41	13.58	13.75	13.83	14.10	14.28	14.47	14.66	11
13 79	13.95	14.11	14.29	: 14-46	14 63	14.81	15	15.19	15.39	15.58	15.79	16	12
14.94	15.11	15.27		15.66		16.04	16.25	16.45	16.66	16.88	17.11	17.33	13
t6·09	16.28	16.47		16.86		17.28	17.5	17.72	17.95	18 18	18.12	18.66	14
17.23	17.44	17.64	17.85	18.06	18-28	18.51	18.75	18.97	19.29	19.46	19.74	19.99	15
18.1	18.6	18.8	10.04	19-28	19-48	19.76	20	20.24	20.52	90.76	21.04	21.32	16
	19.77	19.99	20.21	20.46	20.73	20.99	21.25	21.52	21.79	22.08	22.37	22.66	17
20.70		21.12		21.68	21.96	22.2	22.5	22.75	23:10	23.36	23.70	24	18
	22.09		22.62		23.19	23.45	23.75	24.05	24.36	24.69	25	25.33	19
	23.25	23.53		24	24:38	24.69	25	25.30	25.72	25.95	26.32	26.66	20
24-14	24.42	91.75	25.08	25.3	25.61	25.92	26.25	26 58	26.91	27.50	27.63	28	21
25.29		25.85		26.5	26.83	27.16	27.5	27.87	28.20	28.57		29.33	22
26.44	26.74	27.06	27.38	27.71	28.05	28.39	28.88	29.11	29.49	29.87	30.26	30.66	23
27.5	27.9	28.22	28.57	28.92	29.26	29.62	30	30.36	30.77	31.16	31.5	32	24
8.74	29.07	29.41	29.77	30.12	30.49	30.86	31.25	31.64	32.05		32.89	33.33	25
29-89	30-33	30.57	30·95	31-32	31.70	32.09	32.5	32.91	33.33	33.77	34-21	34.66	26
31.03	31.4	31.76	32.14	32.52	32.92	33.33	33.75	34.18	34.61	35.07.		36	27
32 18	32.56		33.33	33.73	34.15	34.57	35	35.44		36.36	36.84	37·33	28
33.33	33.72	34.12	34.52	34.94	35.36	35·86	36.25	36.72	37.18	37.66		38.66	29
	34.88	35.28		36.12	36.57	37.03	37.5	37.95	38.58	38.92		39.99	30
1	.72 00	.,,, 20	99 10	00 12	00 01	01 00	010	01 00	50 50	00 02	.,,, 20	20 00	۳,

Table 21—(continued).

-														
ength	If there be taken from 100 kilos, of liquor the following weights of water, in kilos.													
Original strength per centi	26	27	28	29	30	31	32	33	34	35	36	37	38	
Original Per cent				the r	esidue	contai	ns r_u p	er cent	t. of so	lids.				
1	1.35	1.37	1.39	1.41	1.43	1.45	1.47	1.49	1.52	1.54	1.57	1.59	1.61	
2 3	2·7 4·05	2·74 4·11	2·77 4·16	2·82 4·22	2·86 4·29	2·90 4·35	2·94 4·41	2·99 4·47	3·03 4·54	3·08 4·61	3·13 4·7	3·18 4·77	3·23 4·84	
4	5.4	5.48	5.55	5.63	5.71	5.80	5.88	5.97	6.06	6.15	6.26	6.36	6.45	
5	6.75	6.85	6.93	7.04	7.14	7.25	7.35	7.46	7.58	7.69	7.83	7.95	8.07	
6	8.10	8.22	8.33	8.45	8.57	8.69	8.85	8.95	9.08	9.23	9.39	9.54	9.68	
7	9.46	9.6	9.72	9.85	10	10.14	10.29	10.45	10.6	10.77	10.96	11.13	11.29	
8	10.8	10.96	11.11	11.26	11.42	11.60	11.76	11.94	12.12	12.31	12.62	12.72	12.91	
9 10	12·15 13·51	12·33 13·7		12.66	12·87 14·29	13.05	13·23 14·71		13.63	13.83	14·09 15·66	14·31 15·90	14·52 16·14	
10	19.91	19.1	13.87	14.08	14.29	14.49	14.11	14.93	15.15	15.38	19.00	19.90	10.14	
11	14.79	15.07	15.15	15.21	15.55	15.94	16.18	16.41	16.66	16.92	17.22	17.49	17.75	
12	16.21	16.44	16.66	16.9	17.14	17.39	17.64	17.91	18.17	18.46	18.79	19.08	19.36	
13	17.56	17.81	18.55	18.31	18.57	48.84		19.33	19.69	20	20.36	20.67	20.98	
14	18.92	19.17	19.44	19.71	20	20.29	20.59	20.90	21.21	21.54		22.26	22.59	
15	20.16	20.55	20.84	21.12	21.13	21.74	22.06	22.40	22.72	23.07	23.5	23.85	24.21	
16	21.6	21.92	22.22	22.52	22.84	23.20	23.52	23.88	24.24	24.62	25.95	25.44	24.83	
17	22.97	23.29	23.61	23.94	24.29	24.64	25	25.37	25.76	26.15	26.62	27.03	27.43	
18	24.30	24.66	24.99	24.35	25.71		26.46	26 86	27.25	27.69	28.28	28.62	29.05	
19 •	25 67	26.02	26.39	26.76	27.14	27.52	27.94	28.36	28.79	29.20	29.75	30.21	30.68	
20	27:02	17.4	27.74	28.16	28.58	28.98	29.42	29.86	20.30	30.76	31.32	31.80	82.28	
21	28.38	28.77	29.16	29·46	30	30.42	30.87	81.35	31.80	32.31	32.88	33.40	33.89	
22	29.59	30.14	30.30	30.42	31.10	31.88	32.36		33.33	33.84	34.45	34.98	35.50	
23	31.08	31.51	31.94	32.39	32.86	33.33	33.82	84.33		35.38	36.0	36.57	37.12	
24	32.42	32.88	33.33	83.80	34.29	35.78	35.29	35.82	36.35	36.92	37.58	38.16	38.73	
25	33.78	34.25	34.70	35.20	35.42	36.23	36.77	37.33	37.87	38.45	39.2	39.75	40.35	
26	35.13	35.61	36-11	36-62	37.14	37.68	38.26	38.65	39.39	40	40.62	41.34	41.96	
27	36.48	37	87.44	37.98	38.61	39.15	39.69	40.23	40.86	41.49	42.28	42.93	43.57	
28	37.84	38.35	38.88	39.43	40	40.58	41.18	41.80	42.42	43.08	43.94	44.52	45.79	
29	39.19	39.72	40.27	40.84	41.41	42.03	42.79	43.29	43.94	44.61	45.41	46.11	46.90	
30	40.53	41.1	41.66	42.25	43.48	43.48	44.12	44.8	45.45	46.15	47.0	47.7	48.42	
	l	•	l	l			1	1	1	L	1		1	

CHAPTER XII.

THE WEIGHT OF WATER WHICH MUST BE EVAPORATED FROM 100 KILOS. OF LIQUOR IN ORDER TO BRING, ITS ORIGINAL PERCENTAGE OF SOLIDS, r_t, UP TO THE DESIRED HIGHER PERCENTAGE

The purpose of an evaporator is, as a rule, to increase the original strength of a liquid in solids (dry matter) from r_f per cent. to a greater strength, r_u per cent., by evaporation of water. How much water must be evaporated in each case?

If there are r, kilos, of solids in 100 kilos, of liquid, and if this r, kilos, is to become r_n per cent, in the concentrated liquor, then the weight, U, of the concentrated liquid is given by

$$r_f$$
: $U = r_u$: 100 or $U = \frac{r_f 100}{r_u}$ (98)

Thus the weight of water to be evaporated from 100 kilos. of liquid is

$$100 - U = 100 - \frac{r_r 100}{r_u} = 100 \left(1 - \frac{r_r}{r_u}\right) . . . (99)$$

and the weight of water to be evaporated from W kilos. of a liquid, which contains r, per cent. of solids, in order to concentrate it to the strength of r_a per cent., is

$$W - U = W \left(1 - \frac{r_f}{r_o} \right)$$
 . . . (100)

Example.—1000 kilos. of liquid, originally containing $r_f = 10$ per cent. of solids, are to be evaporated to such an extent that the residue will contain $r_u = 60$ per cent. Then

$$W - U = 1000 \left(1 - \frac{10}{60}\right) = 833 \text{ kilos.}$$

In Table 22 are given the weights of water which must be evaporated from 100 kilos, of liquid containing $r_r = 1-25$ per cent. of solids, in order to produce a concentrated liquid containing 20-70 per cent. of solids.

TABLE 22.

The weight of water which must be evaporated from 100 kilos. of liquid in order to bring the original percentage of solids, r, per cent., up to the desired higher r_u per cent.

	per- of solids.		Percentage of solids, r_n , to be contained in the liquid after evaporation.												
	Original centage c	20	22.5	25	27.5	30	32.5	35	40	45	50	60	70		
1	20		The weight of water in kilos, to be evaporated from												
	r, per cent.	100 kilos, of liquid.													
1	1	95	95.6	96	96.4	96.7	96-9	97.2	97.5	97.8	98	98.4	98.6		
1	2	90	91.2	92	92.8	93.8	93.8	94.3	95	95.6	96	96.7	99.1		
ı	3	85	86.7	88	89.1	90	90.8	91.43	92.5	93.3	94	95	95.7		
1	4	80	82.3	84	85.8	86.7	87.7	88-6	90	91.1	92	93.4	94.3		
1	5	75	77.8	80	81.8	83.3	84.6	85.8	87.5	88.9	90	91.8	92.9		
1	6	70	73.4	76	78.2	80	81.6	83.3	85	86.7	88	90	91.4		
1	7	65	68.4	72	74.5	76.7	78.4	80	82.5	84.5	86	89	90		
1	8	60	64.5	68	70	73.3	75.4	77.4	80	82.3	84	87.3	88.6		
1	9.	55	60	64	67.2	70	72.3	75	77.5	80	82	85	87.1		
ı	10	50	556	60	63.7	66.7	69.3	71.5	75	77.8	80	83.3	85.7		
1	11	45	51.2	56	60	63.3	66.2	68.6	72.5	75.6	78	82	84.1		
1	12	40	46.7	52	56.4	60	63.1	66.6	70	73.4	76	80	82.8		
1	13	35	42.3	48	52.7	56.7	60	62.9	67.5	71	74	79	81.4		
1	14	30	37.8	44	49	53.3		60	65.	6.83	72	77	80		
1	15	25	33.4	40	45.4	50	53.8	57.3	62.5	66:7	70	75	78 6		
ł	16	20	29	36	41.8	46.7	50.8	54.4	60	64.5	68	73.4	77.1		
1	17	15	24.5	32	38.2	43.3	48.3	51.4	57.5	62.3	66	71.7	75.7		
ı	18	10	20	28	34.6	40	44 6	50	55	60	64	70	74.3		
1	19	5	15.6	24	31	36.7	41.6	45.7	52.5	57.8	62	68	72.9		
1	20		11.2	20	27.3	33.3	38.5	43	50	55.8	60	67	71.4		
1	21		6.7	16	23.7	30	35.4	40	47.5	53.4	58	65	70		
1	22		2.3	12	20	26.7	32.3	37.2	45	51.1	56	63.4	68.6		
1	23	-	•	8	16.3	23.3	29.3	34.3	42.5	48.9	54	61.7	67.2		
1	24		-	4	12.8	20	26.2	31.5	40	46.6	52	60	65.8		
1	25		-		1.8	16.7	23.1	28.5	37.5	44.5	50	5×·3	64 4		
€_		i '		<u> </u>			1	1				1			

CHAPTER XIII.

THE RELATIVE PROPORTIONS OF THE HEATING SURFACES IN THE ELEMENTS OF, THE MULTIPLE EVAPORATOR AND THEIR REAL DIMENSIONS.

In Chapter X, we have found the ratios of the evaporative capacities (not the real quantities of steam evolved, which are somewhat larger in consequence of self-evaporation) of the separate vessels of the multiple evaporator. These ratios were found to vary with the fall in temperature in each vessel, and with the extent to which the liquid is to be concentrated, but not to deviate far from a certain average value even in the most extreme cases. These mean evaporative capacities were (; . 86):—

 $\begin{array}{lll} \text{In the double effect} & & \cdot & D_1: d_2 = 1:1\,045. \\ \text{In the triple effect} & & \cdot & D_1: d_2: (d_3+\sigma_3) = 1:1\,0075:1\,128. \\ \text{In the quadruple effect} & & \cdot & D_1: d_2: (d_3+\sigma_3): (d_4+\sigma_4+\lambda_4) \\ & & = 1:1\,0055:1\cdot109:1\cdot196. \end{array}$

Let H_1 , H_2 , H_3 and H_4 be the heating surfaces in sq. m.; θ_{m1} , θ_{m2} , θ_{m3} and θ_{m4} the mean differences in temperature between steam and liquid; k_1 , k_2 , k_3 and k_4 the coefficients of transmission (which depend upon the viscosity, the pressure of the steam, the shape and nature of the heating surface and all the other conditions); and c the heat of evaporation of 1 kilo. of steam. Then if the first vessel evolves D_1 kilos of steam,

$$D_1 = \frac{H_1 \theta_{m_1} k_1}{c_1},$$

and the heating surface required by the first vessel is

$$H_1 = \frac{D_1 c_1}{\theta_{m_1} k_1}$$
 (101)

Thus, for the quadruple effect, according to the above, 1:1.0055;1.109:1.196

$$=\frac{H_1\theta_{m_1}k_1}{c_1}:\frac{H_2\theta_{m_2}k_2}{c_2}:\frac{H_3\theta_{m_3}k_3}{c_3}:\frac{H_4\theta_{m_4}k_4}{c_4}. \quad (102)$$

and consequently

$$H_1: H_2: H_3: H_4 = \frac{c_1}{\theta_{m_1} k_1}: \frac{1.005 \frac{5}{2} c_2}{\theta_{m_2} k_2}: \frac{1.109 c_3}{\theta_{m_3} k_3}: \frac{1.196 c_4}{\theta_{m_4} k_4} \quad . \quad (103)$$

If now we assume the different values for c_1 , c_2 , c_3 and c_4 to be equal, although they may vary from 637 to 618, thus producing only a slight inaccuracy, and, further, if we put $H_1=1$ and $k_1=1$, expressing the values of H and k for the other vessels as fractions, since we are now only determining the ratio of the heating surfaces to one another, then

$$k_1 = 1$$
, $k_2 = a_2^* k_1$, $k_3 = a_3 k_1$, $k_4 = a_4 k_1$,

and the ratio of the heating surfaces to one another is

$$\frac{H_1}{H_1} : \frac{H_2}{H_1} : \frac{H_3}{H_1} : \frac{H_4}{H_1} = 1 : \frac{\theta_{m1} 1 \cdot 0055}{\theta_{m2} a_2} : \frac{\theta_{m1} 1 \cdot 109}{\theta_{m3} a_3} \cdot \frac{\theta_{m1} 1 \cdot 196}{\theta_{m4} a_4} \quad . \quad (104)$$

If the ratio to one another of the coefficients of transmission, k, were known, the proportions of the heating surfaces could be calculated from equation 104, assuming the desired temperature differences in each vessel.

•The coefficients of transmission, k, are, however, not known, they depend upon the thickness of the liquid, the construction and details of the apparatus, the completeness with which the air is extracted, the diameter of the heating tubes, whether the steam is in or outside the tubes, on the absolute size of the heating surface, its cleanliness, and finally upon the effective pressure of the heating steam in each vessel. For, whilst steam at a pressure of 1 atmos. or more strives rapidly to counteract the diminution in pressure produced by condensation on the heating surfaces, and passes over the surfaces, steam at a low pressure is little inclined to do so, and rests more sluggishly in the steam space. It is often drawn off by the air-pipe in order to conduct it more rapidly over the heating surfaces.

All these different conditions make the coefficient of transmission different for each apparatus and each vessel. At the present time sufficiently accurate estimations of the coefficient for actual apparatus are wanting. Occasional observations made on apparatus in use are

rarely quite satisfactory, since the instruments (thermometers, vacuum gauges and more rarely hydrometers) are frequently not quite correct (Zeits, angew. Chem., 5th December, 1899), and because the influence of the incrustations actually present is unknown. If we give here the coefficients of transmission calculated from a number of such observations, it is from necessity with all reserve, and merely with the object of obtaining a rough representation.

From experiments made by Dr. H. Claassen on a triple-effect evaporator of a sugar works (Zeits. des Ver. für Rübenzucker-Industrie, March, 1893), and from other observations made in similar factories, the following ratios of the transmission-coefficient for sugar juices have been calculated:—

Vessel - - - - I. • II. III. IV.

Double effect - - - 1:0·66 — —

Triple effect - - - 1:0·70:0·33 • —

Quadruple effect - - 1:0·91:0·75 • 0·55

If these figures were to some extent reliable for average conditions, and if the same temperature difference were desired in all the vessels, then the heating surfaces would be in the ratios (Equation 104):—

In the double effect

$$1:\frac{1.045}{0.66}=1:1.58.$$

In the triple effect

$$1:\frac{1.0075}{0.70}:\frac{1.138}{0.33}=1:1.44:3.414.$$

In the quadruple effect

$$1:\frac{1\cdot 0055}{0\cdot 91}:\frac{1\cdot 109}{0\cdot 75}:\frac{1\cdot 196}{0\cdot 55}=1:1\cdot 105:1\cdot 48:2\cdot 175.$$

Similarly, if it were desired to make the heating surfaces of all the vessels of equal dimensions, then the differences in temperature (fall in temperature) would be in the ratio just calculated for the heating surfaces.

Example.—If the total available difference in temperature is 50° C., the following differences in temperatures for each vessel would be at once deduced from the above ratio, if the heating surfaces of the apparatus were equal:—

Vessel - - - - I. II. III. IV.

Double effect - - 19·3° 30·7° — —

Triple effect - - 8·55° 12·31° 29·18° —

Quadruple effect - - 8·68° • 9·59° 11·845° 18·88°

Since thick sluggish liquids, such as are contained in the later ressels, and especially in the last, are only brought by considerable differences in temperature into violent ebullition and hence to a rapid absorption of heat, it is certainly more advisable, if the last heating surfaces are to work effectively and consequently also the first, to increase the differences in temperature (and not the heating surfaces) in these (later) vessels. It is always preferable to make the later vessels at the most as large as the first and perhaps even to make them somewhat smaller. In no case, however, should the heating surfaces of the later vessels be made larger than those of the first, if there are not special reasons to the contrary.

For convenience in manufacture and erection all the vessels may be made of the same size, but then sufficient heating surface must be added to the first vessel to raise the cold liquor entering it to the temperature of this vessel. When extra steam is to be taken from one vessel or more, this vessel must be given as much more heating surface as is necessary for the production of the extra steam, and then the corresponding increase must be given to the heating surfaces of the earlier vessels.

Example.—From 1250 litres of liquor (assumed to weigh 1250 kilos.) 1000 litres of water are to be evaporated in a quadruple effect evaporator. The initial temperature of the liquor is 30° C. below the temperature of boiling in the first vessel. From each of the first and second vessels 100 kilos. of extra steam are to be taken.

In order to heat 1250 kilos. of liquor, the specific heat of which is 1, through 80° C., $1250 \times 30 = 37,500$ calories must be communicated to it in the first vessel, i.e., as much heat as would be required to evaporate $\frac{37,500}{540} = 70$ kilos. of water.

Further, 100 kilos. of extra steam are to be taken from the first vessel, which quantity also must be conveyed to it.

If the second vessel is also to give 100 kilos, of extra steam, for that purpose there must, according to Table 17 (double effect, evaporation to $\frac{1}{4}$), be developed in the first vessel $\frac{100}{1\cdot042} = 96.96$ kilos, of steam.

Through extra steam and the evaporation thereby necessitated, 100 + 100 + 96.96 = 296.96 kilos. of water are taken from the liquor, and there remain 1000 - 296.96 = 703.04 kilos. to be evaporated regularly in the quadruple effect.

The single vessels evaporate this, according to Table 17 (p. 85), in the ratio, $1:1\cdot16:1\cdot215:1\cdot375$ (total = $4\cdot75$).

Since $\frac{703.04}{4.75}$ = 148, the single vessels must evaporate.

148: 171.68: 179.82: 208.54. Total, 700.04 kilos. of water.

Thus the actual work done by each vessel must correspond to the evaporation of the following quantities of water:—

The self-evaporation in the second vessel of the quadruple effect, which we must consider here in regard to the production of extra steam, for 100 litres of liquor (i.s., for 75 litres of water), is $s_2 = 1.77$ kilos. (p. 85),

thus in this case
$$\frac{196.96 \times 1.77}{75} = 4.648$$
 kilos,

and in the quadruple effect (regular evaporation), for 100 litres of liquor (p. 85), $s_s = 1.77, s_s = 1.46, s_t = 2.35,$

thus in this case

$$s_2 = \frac{703.04 \times 1.77}{75} = 16.30, \ s_3 = \frac{703.04 \times 1.46}{75} = 13.68,$$

$$s_4 = \frac{703.04 \times 2.35}{75} = 22.02.$$

The evaporation to be effected by the heating surfaces is thus 414.96, 250.70, 166.14, 181.52 kilos.

We may now correctly assume, in order to obtain greater differences of temperature in the later vessels, as we have also done in deducing the coefficients, k, from the experime ts, that 1 sq. m. of heating surface has almost the same efficiency in each vessel. Then the later vessels can undertake the greater evaporation, laid upon them by the nature of the conditions, by reason of their greater fall in temperature. The effective capacity differs in different evaporators according to construction and circumstances. If we assume for the preceding case that each sq. m. of heating surface can develop 20 kilos of steam per hour, then the following heating surfaces are indicated:—

Vessel II.
$$\frac{100}{20} + \frac{150.7}{20} - \dots = 12.54 \text{ sq. m.}$$
Vessel III. $\frac{166.4}{20} - \dots = 8.32$,
Vessel IV. $\frac{181.52}{20} - \dots = 9.76$,
Total $\dots = 51.368$,

The weight of water, which 1 sq. m. of heating surface evaporates in one hour in the multiple-effect evaporator, cannot be stated as universally applicable, since it varies greatly on account of all the reasons previously given, which cannot be expressed in calculations. It is therefore necessary to take the figures of practical experience. Ordinary vertical evaporators, with brass heating tubes of 1000 mm. length and over, evaporate from liquids which present no obstacles to evaporation:—

The same apparatus with the liquor at a low level; about 10 per cent. more.

Apparatus with wide horizontal heating tubes: the same.

Apparatus with narrow horizontal heating tubes: about 15 per cent. more.

Iron heating tubes decrease the evaporation by 10-15 per cent., chiefly on account of the greater incrustation.

Apparatus, in which the liquor flows in a thin film over the heating surface, does not evaporate more than that in which the liquor stands at a low level.

Many liquids evaporate with difficulty; the amount of evaporation from 1 sq. m. of heating surface is then very much less.

CHAPTER XIV.

THE PRESSURE EXERTED UPON FLOATING DROPS OF WATER BY CURRENTS OF STEAM AND AIR.

LARGER or smaller quantities of evaporating liquids, and in particular drops, are always thrown above the bubbling surface. The current of steam, rising along with the drops, exerts on them a driving or lifting force, to such an extent that they frequently rise very high in the boiling pans and may even be thrown out, thus giving rise to loss, which might be avoided

Finely divided jets or sprays of liquid, upon which the current of gas or vapour, intentionally or naturally produced, exerts a moving action, are often intentionally produced in condensers and cooling apparatus.

The nature of this action must be known, in order that apparatus may be suitably constructed with regard to it.

The action of a current of steam upon drops is due to the pressure it exerts upon them. This pressure depends upon the velocity of the current and the density of the air or steam. We shall therefore endeavour to ascertain the action of gas and steam of various densities, velocities and directions, upon drops of different sizes.

It must be definitely stated, that, in consequence of the want of exact research on this subject, the following considerations are based upon certain experiments not made under quite our conditions (Grashof, Theoretische Maschinenlehre, Bd. I.), and on certain incomplete observations of the author's, and must therefore be regarded as only tentative.

The pressure, which an unbounded current of steam, moving with a velocity of not more than 10 m., exerts upon a plane surface of 0·1 to 4 sq. m. at right angles to its direction, is:—

$$D = \psi \cdot \gamma_{i} \cdot Q \cdot \frac{v^{2}}{2q} \cdot \cdot \cdot \cdot \cdot (105)$$

where D = the pressure in kilos.

Q = the plane surface in sq. m.,

 γ_i = the weight of 1 c. m. of sir in kilos.,

v = the relative velocity between the air and plane in metres.

g = the acceleration of gravity (9.81),

 $\psi = a$ numerical coefficient.

This coefficient is, according to Grashof, dependent upon the size of the surface and is:—

For surfaces of
$$Q=0.1$$
 0.25 0.5 1 2 4 sq. m. $\psi=1.86$ 2.04 2.18 2.34 2.51 2.69

The same values hold good for the pressure of moving water upon a plane surface.

For spheres of 100-200 mm. diameter, which move in water, according to Piobert, Hutton, Borda (Grashof), in the mean,

$$\psi = 0.54$$
 (106)

According to experiment of Didion with spherical projectiles, of 120-150 mm. diameter, moving very rapidly through the air,

$$\psi = 0.43 (1 + 0.0023 v) (107)$$

which would give for velocities of 10-50 m. a mean value of $\psi = 0.4597$.

Now ψ decreases with decreasing surface, and hence for plane surfaces smaller than 0·1 sq. m. would be considerably less than 1·86. Also the coefficients for air and water have been foun 1 to differ little. We shall therefore take for the estimation of the pressure which air exerts upon drops of water, 0·25-10 mm. in diameter, the value $\psi=0.6$, believing that this figure is quite on the safe side.

The pressure of air upon floating drops would accordingly be

$$D = 0.6\gamma_i \cdot Q \cdot \frac{v^2}{2g} \cdot \cdot \cdot \cdot \cdot \cdot (108)$$

whence

$$v = \sqrt{\frac{2Dg}{0.6\gamma_i \cdot Q}} \quad . \quad . \quad . \quad (109)$$

We shall assume that these equations also hold good for gases and vapours, heavier or lighter than air, when the weight of 1 cub. m. of these gases is inserted for γ_i , although we believe, reasoning from known facts, that in reality the pressure of currents of air upon drops is less than that calculated from equations (108) and (109).

A drop of liquid is spherical when forces act upon it evenly; but when unequal pressures are exerted upon it, as by currents of air and steam in one direction, it is flattened upon the side on which the pressure is exerted, thus its diameter will be somewhat increased. This circumstance, which is beyond a simple calculation, must be neglected, though it increases the pressure upon the drop, i.e., a smaller velocity is required to make the pressure upon the drop equal to a given fraction of its weight.

Table 23 has been calculated by means of equation (109), it gives the velocities, which currents of carbonic acid, air, and steam at 100° - 10° C. must have, in order to exert upon drops of 0·1-10 mm. diameter pressures equal to, and double, their weight. In the case of drops of liquids lighter or heavier than water, these velocities will be less or greater; they may be calculated in each case by means of equation (108), putting for D the weight of a drop of the particular liquid.

Table 23 is to be used with caution, for probably the velocities really necessary in order to exert the pressures, G and 2G, are greater than are given. However, two conclusions may be drawn:—

- 1. The smaller the drop of water, the smaller is also the velocity of the current of steam which exerts a pressure upon it equal to its own weight.
- 2. The lower the pressure of the air or steam, the greater must be the velocity to exert a pressure equal to the weight of a drop.

Or, in other words, with increasing pressure and velocity of the current of air or steam, the danger increases that floating drops will be carried away with it.

The volume of the steam and also its velocity in the same section of the apparatus increase approximately in *simple* proportion with an increase in the vacuum (*i.e.*, approximately in inverse proportion to the absolute pressure). The pressure upon the drop, and hence the danger that it will be carried away with the steam, increase, however, with the *square* of this velocity.

From these facts the conclusion follows: that the sections of the apparatus, in which floating drops of water are not to be carried away by the current of steam which meets them, must always be determined for the greatest vacuum to be expected (i.e., for the lowest possible pressure expected).

TABLE 23.

The velocities of currents of carbonic acid, air and steam of different water, 0.1-10 mm. in diameter, equal

			water, 0	l-10 mm.	in diamet	er, equal
Diameter of	the drop in	mm.		0.10	0.25	0.50
Volume of t	he drop in a	eub. mm.		0.0005238	0.00819	0.0655
Section of th	ıe drop Q ir	1 mm	-, -6 -	0.00785	0.049	0.196
Ratio : Weig	$\frac{ght}{ght} = \frac{G}{ght}$	a kilo.	·	0.0000	Į	1
Suri	$_{\rm ace} = \frac{1}{Q \text{ in}}$	sq. m.	• • •	0.0666	0.168	0.334
2Pg						
0.6Q		• •	• • •	2.1778	5.498	10.922
					l	
	v	Tr.b.	o volositu et t	h		
		<u> </u>	e velocity of t	ne current (or gas or ste	am when
Carbonic aci	dat 0°C -	v=1:979	1 atm. abs.	1.04		1
Air at	15° C.,	v=1.925	1	1.04	1.66	2.35
Steam at	100° C.,	-1 220	"	1.93	2.11	2.98
	200 0., 7	-0000	Vacuum.	1.89	3	4.24
**	90° C., 5	-0.42829	235 mm.	2.25	0.0	F-01
,,	80° C	=0.29582	100		8.6	5.01
,,	70° ('.' ^	=0.19928	1 "	2·71 3·3	. 4.3.	6.07
11	60° C.	=0.13114	610 "		5.2	7.4
,,	50° C.	=0.08336	eco "	4:08	6.44	9.1
.,	0., /		008 ,,	5.19	8.1	11 4
**	45° C., γ	=0.06576	689 ,,	5.74	9.1	12.8
**	40° C., γ	=0.05119	706 ,,	6.5	10.3	14.59
11	35° C., γ	=0.03975	720 ,,	7.4	11.74	16.55
**	30° C., γ	=0.03086	729 ,,	8.4	12	18.8
**	25° C., γ	=0.02320	737 ,,	9.6	15.36	21.7
**	20° C., γ	=0.01753	743 ,,	11.1	17.69	24.96
٠,,	15° C., γ	=0.01319	747 .,	12.8	20.4	28.70
,,	10° C., γ	=0.00951	754 ,,	15.1	24	38.5
			"			.55 0
		The ve	locity of the	current of gr	s or steam	when its
						Wacii 108
Steam at 100	° C		1 atm. abs.	2.67	4.2	6
(10)	0.0		Vacuum.	1		
00	° C		235 m m.	3.18	5.1	7.14
	° C		406 ,,	3.82	6.1	8.6
	° C	• -	527 ,,	4.68	7.4	10.4
	° C		612 ,,	5.70	9.1	12.9
	C		6 6 8 ,,	7.35	11.4	16.18
,, 45	•C		689 ,,	8.12	12.9	18.2
,, 40°	O		706	9.2	14.0	00.0
	Ö		790 "	10.4	14.6	20.6
	Ö		790 "	11.8	16.6	23.4
	, C		797 "	13.7	17.0	26.60
	C		749 "		21.7	30.61
	C	. [747 "	15.78	25	35·7
	Č		##1 " I	18.16	28.8	40.8
., 10		1	751 ,,	21.35	32.5	48

PRESSURE OF STEAM AND AIR CURRENTS UPON DROPS. 121

TABLE 23.

pressures, at which these substances exert pressures upon drops of to, and double, the weight of the drop.

1 0·525 0·785	2 4·2 3·14	3 14·15 7·1	4 93.6 12.6	5 65.4 ● 19.6	6 113 28·8	7 179 38·5	8 271 50·2	9 382 63·6	10 525 78·5			
0.668	1.337	2.0	2.666	3.336	4.0	4.65	5.4	6.0	6.688			
21.844	43.71	65.4	87.17	109.08	130.8	152.05	176.58	196.2	218.69			
its pressure is to be equal to the weight of the drop.												
3.31												
4.22	5.95	7.3	8.42	9.43	10.3	11.1	11.9	12.6	13.3			
6	8.48	10.3	12	13.4	14.66	15.84	17	18	19			
7.14	10.03	12:3	14.14	15.96	17.46	18.84	20.2		22.5			
8.6	12.12	14.8	17.18	19.2 •	21	22.67	24.1	25.7	27.2			
10.4	14.78	18.1	20.9	23.4	25.6	27.63	29.6	31.3	33.1			
12·9 16.1	18·24 22·89	22.3	25·8 32·2	28·86 36	31·57 39	34 42·7	36.8	38.4	40.8			
10.1	22.69	26	92.2	30	39	427	46	48.5	51.2			
18.2	25.80	31.6	36.0	40.8	44	48.1	51.6	54.2	57.7			
20.6	29.2	35.5	42	46.2	50.5	54.5	59.7	62	65.4			
23.4	33.5	40.5	47	52.4	57.2	61.85	66.70	70.2	74.2			
26.6	38	46	53.2	59.5	65	70.2	75.7	79.7	84.2			
80.61	43.2	58.2	61.2	69.1	75	80.95	87.5	91.8	97.1			
35.7	50	61.1	70.6	78.9	86.5	93.3	100	105.8	112 •			
*40·8 48·0	57·8 68	70 83	81·5 96	91 106·7	99 5 117	107·2 126·4	114 136	121·8 143·5	128 155			
400	00	65	30	1007	111	120-4	P190	149.0	100			
pressur	re is to	b e e qua	l to doub	le the wei	ght of th	e drop.						
8.48	12	14.6	16.97	18-97	20.76	22.38	24.1	25.4	26.8			
10.09	14.14	17.4	20.2	22.58	24.7	26.64	28.7	30.2	32			
12.12	17.18	21	24.08	27.1	29.7	32	34.2	36.4	38.4			
14.78	20.9	25.6	29.59	33	36.8	39	42	43.4	47.2			
18.24	25.8	31.6	36.4	40.08	44.8	48.1	52	54.3	57.7			
22.9	32.2	39.2	45.6	51.1	54.6	60.4	65	68.5	72.4			
25.7	36.3	44.7	51.6	57.7	63	68	73.2	77.5	81.6			
29.2	42	50.5	58.5	65.3	71.8	77	83.9	87.5	92.4			
33	47	57.3	66.6	74	81	87.5	94.2	99.5	104.8			
87.4	53.2	65.2	75.4	84	92	99.75	107	112.6	118.7			
43.3	61.2	75.8	86.7	97	106	114.4	123	130	137.0			
50	70.6	86.5	100	111	122	131.9	141	149.6	158			
57·5 67·5	81·5 96	99 117	114·8 135·6	128 151	140 165•	151·6 178·8	163 193	172·3 203	182 220			
0,0	00		1000	101	100	1100	190	200	220			

CHAPTER XV.

THE MOTION OF FLOATING DROPS OF WATER, UPON WHICH PRESS CURRENTS OF STEAM.

A. Vertical Currents of Steam upon Falling Drops,

We shall first enquire what upward pressure a current of steam may exert upon falling drops without carrying them with it.

When a drop is loosened from a fixed point in a vacuum and falls, its velocity, v, after the time, t, and the height, h, through which it has fallen, are obtained from the well-known equations,

$$v - gt = \sqrt{2gh}, h = \frac{1}{2}gt^2 = \frac{v^2}{2q}, t = \frac{v}{q} = \sqrt{\frac{2h}{a}}.$$
 (110)

in which g is the gravity acceleration -= 9.81 m. per sec. per sec.

Since the attraction of the earth imparts a very small velocity to the drop in the first moment, and in the second, third, etc., moments adds a second, third, etc., equally small velocity to the first, the total velocity increases uniformly, and is, after one second, 9.81 m, after the second second $2 \times 9.81 = 19.62 \text{ m}$, per sec., etc.

Any constant pressure exerted upon a drop in any other direction naturally gives it an accelerated motion in that direction, and this acceleration is directly proportional to the pressure, since the mass of the drop remains the same. If the constant pressure of the gas or steam is equal to the weight of the drop, then the acceleration, which it imparts to the drop in its direction of action, is also equal to the gravity acceleration, g=9.81 m. per sec. per sec. A pressure on the drop, x times as large as its weight, communicates to it in its own direction an acceleration x times as great as gravity.

Thus if the pressure be known, which a current of air or steam exerts on a drop, the acceleration which this pressure imparts is also known. If the weight of the drop is G, and the pressure D, then the acceleration due to the pressure is

$$g_1 = \frac{D}{C}g$$
.

Now that this is clear, we may follow the motion of the drop, when the known pressure is exerted upon it in its direction of motion, in the opposite direction, or at an angle.

We shall take for consideration those cases which may occur in evaporators and condensers, in order to obtain from the results a basis for calculating the dimensions of these pieces of apparatus.

If a drop is falling vertically in a uniform current of steam, which is ascending vertically, and the pressure of which upon the drop is less than the weight of the drop, the fall takes place with increasing velocity, but decreasing acceleration, until the sum of the velocities of the steam, v_d , and of the drop, v_t , causes a pressure upon the drop which is equal to its weight. The sum of the two velocities, $v_d + v_t = v_t$, may be calculated from equation (109), and may be obtained from Table 23 for steam of known pressure and velocity. Then the velocity of the drop alone at this moment is immediately obtained by subtraction, $v_t = v - v_d$, so that v_d and v_t are then known.

The height of fall of the drop, at the moment in which the opposing pressure is equal to its weight, is obtained from the equation $v_t = \sqrt{1/2}g_1h_2$ in which g_1 is variable.

If the pressure of the steam upon the drop at the top of the fall is D and at the bottom-G, then g_1 alters during the fall from

$$g_1 = \frac{G - D}{G}g$$
 to $g_1 = \frac{G - G}{G}g = 0$,

and in fact according to a function of v. Although it is not quite accurate, yet a tolerably correct representation is obtained by assuming that the mean value of g_1 is $\frac{G-D}{2G}g$. Whence we find that the height, h, through which the drop must have fallen in order to attain its greatest velocity is

$$h = \frac{v_r^2}{\frac{G - D}{2G}g} \quad . \quad . \quad . \quad . \quad (111)$$

If the drop has fallen so far, it will theoretically continue falling in the uniform current of steam at a uniform velocity without acceleration; as a matter of fact, friction will influence this velocity.

If the velocity of the current of steam which meets the falling drop is not regular, but is large below and zero at the point from which the drop starts, thus diminishing from below upwards, then the height, to which the drop must fall in order to attain its greatest velocity, is found from a consideration of the law according to which the speed of the current of steam decreases, and the distance through which the decrease takes place.

In opposite current condensers this distance is equal to the height of the condensers from the steam entry to the water distributor. The decrease in velocity is irregular, being slower above than below; it follows approximately the law given in Chapter 1. But all the factors of influence can only be introduced hypothetically into the calculation, which is therefore omitted, especially since the results are not of great practical importance. There is no great deviation from the truth if we assume that the height of fall of the drop until it attains its

greatest velocity is
$$h = \frac{v_t^2}{q}$$
.

The drop falls with increasing velocity in the opposing current of steam, and reaches its greatest velocity at the point where the opposing pressure is equal to its weight; then its motion becomes slower and slower, until it reaches the point at which the opposing pressure of the steam, D, alone is equal to double the weight of the drop, i.e., at which D=2G. With a uniformly increasing velocity of the steam this would be at the distance, 2h, from above. Here the velocity of the drop becomes =0, but the pressure of the steam at once carries it up again. Its upward velocity now increases, and it finally oscillates about the point, at which the pressure of the steam is equal to its weight, where it may come to rest.

Although this representation of the process is not quite exact, since the velocities of the steam and the drop in the opposite current condenser are in a complicated relation to one another, and the condensation, the friction and the presence of the many other drops considerably affect the movements, yet it gives an approximate picture of the motion of the drops and allows two important conclusions to be drawn.

- 1. The condensation in an opposite current condenser must always be so conducted that all the steam, at the furthest, is liquefied at the water distributor; for if steam is still present here, there will still be currents of steam, and the possibility that drops may be carried out of the condenser.
- 2. The speed at which the steam enters an opposite current condenser (without steps), ought never to be so great that it can exert a pressure equal to double the weight of a drop of water. If the condenser has several steps the velocity of the steam ought only to exert a pressure somewhat greater than the single weight of a drop.

In the parallel current condenser the current of steam enters at the top, along with the falling drops of water, and follows their direction; it therefore exerts a pressure on them when it moves more rapidly than they fall, which is almost always the case. Consequently the drops fall faster—they more quickly reach the lower part of the condenser—and their time of fall is less than when they fall free.

Since the velocity of the steam diminishes to zero towards the bottom, but the speed of fall of the drop increases towards the bottom, the accelerating action of the steam is not very great. It rarely increases the velocity of the drop by more than one quarter.

The jets and sheets of water present in all condensers are very much less influenced by the steam currents, it may be because these currents meet them sideways.

B. Horizontal or Inclined Steam Currents meet Falling Drops.

When a current of air or steam moving in a horizontal direction strikes a drop of water falling vertically, the latter is deflected from its vertical path. If the side pressure upon the drop begins from the same moment as its fall and is equal to its weight, then the drop falls at an angle of 45° with the horizon, since the horizontal acceleration is equal to the vertical. With a lower pressure the angle is greater, with higher pressures smaller.

If the horizontal pressure is several times greater than the weight of the drop, the direction of fall may approach very nearly to the horizontal, but can never rise above the horizontal, since the forces act only from the side and downwards but never upwards.

Should the drop already have fallen vertically through a certain distance before the side current meets it. the deviation is considerably

less, since now in equal intervals of time the vertical velocity is greater than the horizontal. The danger that the drop will be carried with the side current is therefore less. The connection can be seen more clearly from the annexed Fig. 12, than it could be made by many words.

If the direction of the current of steam is inclined upwards at the angle α towards the horizon, then the drop of water will still continue to fall if the pressure of the side current, D, is less than

 $\frac{G}{\sin \alpha}$

If D is less than G, the drop cannot be driven upwards at any angle; it always falls downwards.

If the side pressure, D, is equal to the weight of the drop, G, the drop falls downward when α is less than 90°. When $\alpha = 90^{\circ}$ (i.e., $\sin \alpha = 1$) the drop is kept exactly in its place.

If D be greater than G, the danger that the drop may be carried upwards occurs even with small values of a. When D is 1.25, 1.5 or 2.0 times as great as G, the upward angle which the current of steam may make with the horizon may not be greater than

$$D \sin \alpha = G, \quad 1.25 G \sin \alpha = G, \quad \sin \alpha = \frac{1}{1.25}$$

$$\sin \alpha = \frac{1}{1.25}, \quad \frac{1}{1.5} \text{ or } \frac{1}{2};$$

$$\alpha = 53^{\circ}, \quad 41^{\circ} \text{ or } 30^{\circ}.$$

TABLE 24.

The velocities of the currents of gas and steam, which, acting upwards at an angle of 30°, 45° or 60° on floating drops, drive them in a horizontal direction.

	Diameter of the drop of water in mm.					
(0.1 0.25 0.5 1 2 3 4 5 6 7 8 9	10				
	Velocity of the current of gas and steam in m. per sec.					
$s = 1.529$ $\alpha = 45^{\circ}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\cdot 77$				
$s=1$ $a=45^{\circ}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144				
$a = 0.6233$ $a = 45^{\circ}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145				

In Table 24 are given the velocities of currents of carbonic acid, air and steam (the latter at 100° C.), at which, striking upwards at angles of 30°, 45° and 60° upon drops just beginning to fall, these

currents cause the drops to deviate into the horizontal direction. Thus if such currents are not to carry drops up with them, they should be given smaller velocities than those in the table.

A special case is that in which a drop, just falling from an edge, is met by a current moving in a circle round this edge. In this case too, D should not be greater than G? if the drop is not to be carried upwards.

Since the distance traversed by drops in apparatus is never very great, and their velocity is generally high, it follows that the time during which the drops move freely is usually very brief. Thus it often happens that before the pressure of the steam can materially deviate the course of the drop, it has arrived safely at its destination.

The cases just treated occur in dry opposite-current condensers with horizontal or inclined diaphragms. We learn that the sections between the diaphragms must be made so large, that the pressure exerted upon the drops by the velocity of the steam can never exceed their weight.

C. A Vertical Current of Steam meets a Drop thrown Obliquely.

In Heckmann's froth separator, Ger. Pat. 70,022 (Fig. 13), two other cases occur. The drops are thrown from the froth-plate either horizontally or at a downward angle and the current of steam generally meets them from below.

If the drop flies norizontally from the froth-plate, its weight draws it downwards and it falls through the space, s_p in the time, t.

$$s_f = \frac{g}{2}t^2 \quad . \quad . \quad . \quad . \quad . \quad (112)$$

The pressure of the current of steam from below forces it upwards, and it rises in the same time, t, through the space.

$$s_p = \frac{D}{G} \frac{g}{2} t^2 \qquad . \qquad . \qquad . \qquad . \qquad (113)$$

The vertical path is therefore

$$s = s_f - s_p = \frac{g}{2}t^2 - \frac{D}{G}\frac{g}{2}t^2 = \frac{gt^2}{2}\left(1 - \frac{D}{G}\right)$$
 . (114)

If $\frac{D}{7i} = 1$, then s = 0, i.e., when the upward pressure is equal to

the weight of the drop, the latter continues in the horizontal direction without deviation upwards or downwards. If the pressure D is greater than G, the drop is carried upwards by the current of steam; if the pressure is smaller, the drop falls slowly downwards.

If, in consequence of the shape of the foam-plate, the drop acquires a motion inclined downwards to the horizon at the angle a, and the velocity c, whilst a current of steam acts upon it vertically from below with the pressure D, the drop describes the downward space, s_w , in the time, t, in consequence of its original velocity.

$$s_w = ct \sin \alpha \quad . \quad . \quad . \quad . \quad . \quad . \quad (115)$$

The path downwards, due to the earth's attraction, is

$$s_f = \frac{1}{2}gt^2$$
 (116)

The path upwards, due to the current of steam, is

$$s_a = \frac{D}{G} \frac{g}{2} t^2 \quad . \quad . \quad . \quad . \quad . \quad (117)$$

Its total movement from the horizontal is therefore

$$s = s_{\omega} + s_{f} - s_{d} = ct \sin \alpha + \frac{1}{2}gt^{2} - \frac{D}{G}\frac{2}{g}t^{2}$$
. (118)

$$s = ct \sin \alpha + \frac{1}{2}gt^2\left(1 - \frac{D}{G}\right). \qquad (119)$$

Equation (119) indicates that the curve, in which the drop moves downwards, is a parabola; we shall, however, assume now for the sake of simplicity that the path is a straight line, from which, as a matter of fact, it deviates but little in the portion considered.

From equation (119) it is also seen that, when the pressure of the steam current D from below is less than the weight of the drop, the latter falls below the direction in which it was thrown off, and that when D = G, it moves in that direction, i.e., at the angle α with the horizon.

If D is greater than G, the drop will be carried on to the wall of the apparatus above the direction at which it was thrown off. If it is assumed that it rebounds at the same angle as that at which it hit the wall, and is now carried on the rebound by the upward current of steam to the same extent as before, this direction of rebound must not lie above the horizontal if the drop is not to be carried away upwards.

The pressure from below should thus at most have the effect of raising the drop through half the angle of inclination of the plate

(that is, by
$$\frac{a}{2}$$
).

Then
$$s = ct \cos a \tan \frac{a}{2} \quad . \quad . \quad . \quad . \quad (120)$$
Now
$$s_a = s_w + s_f - s,$$

therefore

$$\mathbf{s_d} = \frac{D}{G} \frac{g}{2} t^2 = ct \sin \alpha + \frac{g}{2} t^2 - ct \cos \alpha \tan \frac{\alpha}{2} . \quad . \quad (121)$$

Hence we obtain the relation between the pressure exerted by the steam and the weight of the drop:—

$$\frac{D}{G} - 1 = \frac{2c}{gt} \left(\sin \alpha - \cos \alpha \tan \frac{\alpha}{2} \right) (122)$$

The velocity, c, with which the drops are thrown off from the plate is rarely less than 20 m. per second, but is generally 30 m. or more. The vessels, in which this separation of drops takes place, are rarely more than 3000 mm. in diameter, the distance from the wall is thus 1200 mm. at a maximum, since the plate in this case would be more than 600 mm. in diameter. The time the drop requires in order to reach the wall under these circumstances is given by

$$20t = 1.2$$
 or $t = 0.06$ sec.

In this time of 0.06 sec. a drop may fall freely through 18 mm. If the plate has a downward inclination of 10° with the horizontal, then the drops flying off in a straight line from it would hit the wall 224 mm. below the horizontal. *The pressure of the steam from below thus may raise the drop (without danger of carrying it away) through: the 18 mm. through which the attraction of the earth drags it down, and then through about half 224 mm., i.e., through 18 + 112 = 130 mm., for which roughly a pressure equal to $\frac{130}{18} = 7$ times the attraction of gravity would be requisite.

If the following substitutions be made in equation (\$\frac{1}{2}\$) the results contained in Table 25 are obtained:—

$$c = 20$$
, 30 and 50 m.,
 $a = 10^{\circ}$,
 $t = 0.06$, 0.03 and 0.01 sec.

The results indicate how many times the pressure D may be greater than G before danger cocurs that the drop will be carried away. It will be seen that, under ordinary circumstances, a small angle, a, is sufficient quite to exclude this danger.

c = 50 m.c = 20 m. c = 30 m.Value of $\frac{D}{G}$ when $\alpha = 10^{\circ}$. 0.06 7.3510.5216.8813.70 20.00 32.720.0339.16 48.60 86.28 0.01

TABLE 25.

CHAPTER XVI.

THE SPLASHING OF EVAPORATING LIQUIDS.

A. The Height to which the Splashes rise when the Current
of Steam acts upon them.

When liquids are in rapid evaporation, both drops and larger volumes are thrown up above the surface. These may then be carried by the ascending current of steam, thrown out of the vessel and thus readily lost.

We shall examine to what height portions of the liquid may be raised in boiling and under what circumstances losses may occur.

Three influences affect the motion of portions of the liquid : -

- The drops, bubbles and splashes are thrown up with the constant velocity, c, by the steam bubbles produced by the boiling liquid.
- 2. The attraction of the earth draws them down and gives them the velocity: $v_r = gt$.
- 3. The current of steam rising from the liquid with the velocity, v_d, exerts an upward pressure upon the projected portions when v_d is greater than their upward velocity, c. At the level of the liquid the difference in the velocities is v_d c; when the projected portions have reached the highest point of their path, at which the velocity is zero, the difference in the velocities is v_d 0 = v_d.

If v_d is greater than c, the current of steam acts from below upon the drops, bubbles and splashes and increases the velocity of their ascent. If v_d is less than c, the current of steam exerts a pressure upon them from above and retards the velocity of ascent.

If we represent the pressure exerted upon the splashes by the current of steam, in consequence of this difference in velocity, by

 P_u at the surface and by P_o at the highest point, then the mean pressure is approximately $\pm \frac{P_u + P_o}{2}$ and the mean acceleration they receive from this pressure is $\pm \frac{P_u + P_o}{2G}g$. Consequently the velocity imparted to them in the time, t, by the current of steam is $\pm \frac{P_u + P_o}{2G}gt$.

The total velocity of the splashes will therefore be

$$v_t = c - gt + \frac{P_u + P_o}{2G}gt \qquad (123)$$

At the highest point, at which $v_i = 0$,

$$c + \frac{P_u + P_o}{2G} gt = gt \qquad . \qquad . \qquad . \qquad (124)$$

Thus the time required to reach the highest point is

$$t = \frac{c}{g\left(1 - \frac{P_u + P_u}{2(i)}\right)} \quad . \quad . \quad (125)$$

The distance described by the drop in the time, t, i.e., the height to which it has risen in the time, t, is

$$h_s = ct - \frac{1}{2}gt^2 + \frac{P_u + P_o}{2G}\frac{gt^2}{2}$$
 . . . (126)

or

$$h_{\bullet} = \frac{1}{2} \left(c + c - gt + \frac{P_{u} + P_{\bullet}}{2G} gt \right).$$
 (127)

If v_t is inserted for the value in equation (123), then

$$h_{i} = \frac{t}{2}(c + v_{i})$$
 (128)

When $v_t = 0$ (at the highest point),

$$h_{\bullet} = \frac{t}{2}c \quad . \quad . \quad . \quad . \quad . \quad (129)$$

or, inserting the value of t from equation (125),

$$h_{i} = \frac{c^{2}}{2g\left(1 - \frac{P_{u} + P_{o}}{2G}\right)} \cdot \cdot \cdot \cdot (130)$$

From this equation the height to which drops, bubbles and splashes, thrown up from boiling liquids, will rise, can be calculated in all cases for which c, P_u and P_o are known. These values must now be found.

Equation (130) shows that the current of steam will carry drops from liquids of low specific gravity to a greater height than those from liquids of higher specific gravity.

B. The Height to which the Splashes rise when the Current of Steam does not, act on them.

We shall next consider the *velocity*, c, with which, and the *height*, h, to which, portions (not drops) of the evaporating liquid will be thrown above its surface, neglecting in the case of these masses the action of the rising current of steam.

Steam Heaters, with Vertical Heating Tubes containing the Liquid, under Atmospheric Pressure.

In this case, if the liquid reaches to, but does not cover, the upper end of the tube, isolated bubbles of steam are formed on heating gently; they rise in the tube, pass above the surface and burst. When the evolution of steam increases the steam bubbles form a current of steam, which continuously leaves the top of the tube.

The velocity of the emerging steam is conditioned by its volume and the section of the tube. The volume of the steam is, however, dependent upon the dimensions of the heating surface (i.e., in this case the length and diameter of the tube), its evaporative capacity per sq. m., and the pressure of the steam. All these factors may vary greatly.

Now, however, steam does not escape alone from the tube; a considerable quantity of liquid accompanies it. When the steam evolved in the tube throws the liquid out, more liquid enters from below, from which, in its turn, steam is formed, which again carries with it the fresh liquid.

The velocity with which the fresh liquid enters the tube depends upon the pressure of the column of liquid outside the tube, the internal opposing pressure of the steam (which is generally small) and on the specific gravity of the liquid. The greater the height of the column of liquid and the density of the liquid, and the lower the pressure in the tube, the greater is the velocity with which the liquid . enters.

The pressure of the column of liquid is due to its height outside the tube minus the height of the liquid in the tube. The velocity with which the liquid enters the tube at the bottom, and consequently also the quantity of liquid carried into the tube, is greatest when the tube contains only steam throughout its entire length. This extreme case is, however, unusual. The contraction, due to sharp angles and the cylindrical form of the tube, causes the theoretical velocity of entry not to be quite attained. We shall therefore assume, by analogy with vertical jets of water, that the greatest velocity with which the liquid enters at the bottom is

The volume of liquid, V_{t} in litres, which enters at the bottom of the tube in one second, is

$$V_{f} = v \cdot \frac{d^{2}\pi}{4} 10$$

$$= 0.8 \sqrt{2gl} \frac{d^{2}\pi}{4} 10$$

$$= 2d^{2}\pi \sqrt{2gl} (132)$$

if d be the diameter of the tube in decimetres.

second, is

The volume of secam, in litres, formed in the tube in 1 second, and which thus must leave it at the top, is

$$V_{4} = \frac{\widehat{d\pi lw}1000}{10 \times 3600\gamma}$$

$$= \frac{d\pi lw}{36\gamma} \text{ litres} (133)$$

in which w is the evaporative capacity in kilos, per 1 sq. m. per hour. Thus the total volume, in litres, which must leave the tube in one

$$V_{s} = V_{f} + V_{d} = 2d^{2}\pi \sqrt{2gl} + \frac{d\pi lw}{36\gamma}$$
 . . . (134)

The velocity, in metres, with which this volume leaves the tube, is

$$c = \frac{2\pi d^2 \sqrt{2g}l + \frac{d\pi lw}{36\gamma}}{\frac{\pi d^2}{4}10}$$
$$= 0.8 \sqrt{2g}l + \frac{lw}{90\gamma d} \cdot \cdot \cdot \cdot \cdot (135)$$

and the height, in metres, to which the liquid would be thrown with this initial velocity, if no other force acted on it, is theoretically

$$h_{r} = \frac{c^{2}}{2q}$$
 (136)

This theoretical height of splashing is given in Table 26; other, necessary data for its estimation will also be found in the same place, viz.:—

- (a) The volumes of steam, V_d , in litres, produced in 1 second in tubes of 30, 50, 80 and 100 mm. bore and 1 m. length, when 10, 20, 30 and 50 litres of water are evaporated by 1 sq. m. of heating surface per hour, under atmospheric pressure and vacua of 234, 405, 611 and 705 mm.
- (b) The volume of liquid, V_p , in litres, which enters at the bottom of empty tubes of 30, 50, 80 and 100 mm. bore in 1 second, when the external pressure of the liquid is 0.333, 0.5, 0.667, 1, 1.5, 2 or 3 m.
- (c) The calculated velocities, c, with which steam and liquid are thrown out of the tubes, when the tubes are 1, 1.5, 2 or 3 m. long.
 - (a) When the height of the liquid outside the tube is equal to the length of the tube, i.e., when the hydrostatic pressure is equal to the length of the tube.
 - (β) When the height of the liquid outside the tube is only ¹/₃ of the length of the tube, i.e., when the hydrostatic pressure is equal to ¹/₃ of the length of the tube.
- (d) Finally, in the same table are given the theoretical heights, h, to which the liquid would rise, without regard to the action of the current of steam, for all these cases and also for the case that liquid stands over the ends of the tubes (denoted in the table by t.c.—tubes covered).

In regard to the last series of figures, it is to be remarked that, when the steam and liquid emerging from the tube have to penetrate a more or less thick layer of liquid before reaching the surface, they have accordingly in proportion to overcome resistance in the layer of liquid, the steam bubbles then spread out to the sides and their velocity is retarded.

In heaters with vertical tubes, which generally stand very near together, the steam spreads out as soon as it leaves the tubes to such an extent that the isolated currents from the single tubes unite into one, the section of which is equal to the whole section above the tubes.

The distances apart of tubes vary in different apparatus. The distance from centre to centre may be approximately,

with tubes of	30	5 0.	80	100 mm. bore,
about	45	6 5	95	115 mm.

Thus the ratio of the section of the tubes to the section of the open space above them is as

$$1:2.479:1.877:1.573:1.508.$$
 . . . (137)

We shall assume that the average ratio is 1:1.746; then the velocity of the current of steam above the ends of the tubes is $\frac{c}{1.746}$ and the theoretical height of the splashes, without regard to the action of the current of steam, is

The heights of the splashes for evaporating apparatus, in which the liquid covers the ends of the tubes, have been calculated by means of this equation (Table 26p, denoted by t.c.).

The velocities, c, when the height of the liquid is 1, 1.5, 2 or 3 m., are divided by 1.746 in order to obtain the velocity of steam and liquid in the larger space above the tubes. The velocity so obtained is then squared and divided by $2g = 2 \times 9.81 = 19.32$, by which the theoretical height of the splash is obtained.

In the calculation it was assumed that the tubes were quite free from liquid; other retarding influences were also disregarded. The presence of liquid in the tubes diminishes the hydrostatic pressure and thus the velocity of entry and the quantity of liquid entering. The internal height of the liquid is naturally variable; it will be larger the more slowly the evaporation takes place.

Further, the thickness of the liquid and the height at which it stands over the plate, in which the tubes end, have been disregarded, since both conditions, in the lack of observed figures, cannot be introduced into the calculation.

The quantity of liquid above the plate, which is constantly being renewed by the steam from the sides, has also been disregarded in estimating the velocity. It somewhat increases the volume, thus the velocity, and therefore the height of the splash; it diminishes the height of the splash by absorbing kinetic energy.

It is also to be supposed that the vapours, when they become free from the somewhat compressed conditions in and over the tubes, expand and by the expansion still further throw up the liquid.

The height of the splash of the liquid is diminished by the friction to which the projected portions of the liquid are subjected, and which is disregarded here.

Thus, although the heights to which the liquid is theoretically splashed, as calculated here, cannot be regarded as absolutely exact, yet they make clear what conditions influence the height and in what manner.

Table 26 shows that the height of the splashes from evaporating liquids increases with decreasing diameter and increasing length of the tubes, with the pressure due to the column of liquid, with the evaporative capacity of the tube per sq. m. of heating surface and with decreasing pressure above the tubes.

 Evaporating Apparatus, not fitted with Vertical Tubes, but with Flat Bottoms, Double Bottoms, Steam Coils or Horizontal Tubes, or heated by Open Fire.

In apparatus of these constructions the section available for the escape of the steam is always very much greater in proportion to the heating surface than when vertical tubes are used. Whilst with the latter the steam space is 1.5-3 sq. dcm. in section (2.2.2 sq. dcm. on the average) to 1 sq. m. of heating surface, the former constructions give a section of 5, 7, 10 or even 20 sq. dcm. per 1 sq. m. of heating surface. Table 27 gives the velocities of the currents of steam evolved from vacuum evaporators with steam coils or double bottoms.

Thus the velocity with which the steam escapes is always much lower in the latter apparatus than in evaporators with vertical tubes, but the liquid is still raised by the steam to some extent. At the point where steam enters the double bottom or heating coils and tubes, or where fire strikes directly against the wall of the vessel, a much more rapid transference of heat and evolution of steam take place; thus the liquid will be thrown up to the greatest extent near the steam entrance. Consequently there arises a current of liquid from the warmer to the colder parts and back; the velocity of this desirable motion may be very considerable. All the liquid which moves towards the place where

[Continued on p. 151.]

• TABLES 26A, 26B, 26C, 26D.

- A. Litres of steam, which emerge in one second from the top of vertical heated tubes, 20, 50, 80 and 100 mm. bore and 1 m. long.
- B. Litres of liquid, which in one second enter these tubes from below.
- c. Velocities with which boiling liquids are projected from vertical heated tubes of 30, 50, 80 and 100 mm. bore and 1, 1.5, 2 and 3 m. height, under vacua of C, 234, 405, 611 and 705 mm., when the evaporation is 10, 20, 30 and 50 litres per sq. m. per hour, and when the height of the column of liquid is equal to the length of the tube and when it is ¹/₃ of the same length.
- D. Heights, h_s, to which the liq id will be splashed above the tubes under the same conditions, without regard to the assistance of the currents of steam.

TABLE 26A.

•			Litres o	f steam, which the tube in	nich leave one seco	the top	
Length of	Evaporation,			Bore of tu	be, mm.		1
tube, l.	w, per 1 sq.	Vacuum.	30	50	80	100	ı
	hour.		Heati	ing surface	of tube,	sq. m.	١
			0.094	0.157	0.251	0.314	١
Metres.	Litres.	mm.	Litres of steam, V_d .				
1	10	0	0.419	0.75	1.0	1.5	1
1 1	$\frac{10}{20}$	0	0·413 0·826	1.5	1·2 2·4	1·5 3	١
	30	0	1.239	2.24	3.6	4.49	١
	50	0	2.15	3.74	6	7.48	l
1	10	234	0.61	1.02	1.63	2:04	ł
1	20	234	1.22	2.08	3.25	4.07	ı
İ	30	▲ 234	1.83	3.05	4.88	6.1	İ
	50	234	3.05	5.09	8.14	10.18	Ì
1	10	- 405	0.883	1.472	2.36	2.95	ı
_	20	405	1.766	2 944	4.72	5.9	ı
	30	405	2.649	4.416	7.08	8.85	l
	50	405	4.418	7.359	11.79	14.75	I
1	10	611	1.992	3.333	5.32	6.656	I
	20	611	3.98	6.66	10.64	13.312	١
	30	611	5.98	9.99	15.96	19.96	l
	50	611	9.96	16.64	26.61	33.28	ı
1	10	705	5.09	. 8.51	12·8	17.02	١
	20	705	10.2	17.03	25.6	34.04	١
	30	705	15.3	24.53	38.4	51.06	١
	50	705	25.47	42.54	64.02	85.09	١
							ł

If the heated tube is 1.5, 2 or 3 m. long, then 1.5, 2 or 3 times as many litres escape from the tube.

TABLE 26B.

	Litres of $liquid$, which enter the tube at the bottom in one second when the velocity of entry is $v = 0.8 \sqrt{2gl}$.							
Length of the	· Dore of tube, mm.							
tube, <i>l</i> .	30	50	80	100				
	Section of tube, sq. decimetres.							
	0.0706	0.196	0.502	0.785				
Metres.		Litres o	f liquid, V_f .					
0·333 0·5 0·667 1 1·5 2	1·41 1·78 2·03 2·51 3·08 3·58 4·49	4 5 5-6 6-97 8-51 9-87 12-07	10. 12·6 14·4 17·87 21·94 25·3 30·92•	15·7 18·78 22·3 27·94 34·22 39·56 • 48·35				

TABLE 26c.

Length of tube,	Evaporation, w, per 1 sq. m. and 1 hour.	Height of liquid outside tube.	Vacuum.	Velocity, c, with which steam an liquid leave the top of the tube. Mctres per second. Bore of tube, mm. 30 50 80 100			
Metres.	Litres.	Metres.	mm.		Velo	city, c.	
1 1 1 1.5 1.5 1.5 1.5 2 2 2	10 20 30 50 10 20 30 50 10 20 30 50	1 1 1 1.5 1.5 1.5 1.5 2 2 2	000000000000000000000000000000000000000	4 4·71 5·3 6·46 5·2 6·1 7 9 6·25 7·44 8·8 11·7	3·9 4·3 4·7 5·4 4·8 5·4 5·9 7·1 5·6 6·2 7 8·5	3·9 4 4·3 4·75 4·74 5·1 5·4 6·1 5·54 6 6·5 7·4	3·8 3·9 4·1 4·5 4·66 4·93 5·21 5·8 5·55 6·15 7·68

TABLE 26c-(continued).

-		, 		E 200-	(continu	owj.			
	Length of tube,		Height of		nqui	ity, c, with d leave th Metres	which s top of t per secon	he tube.	
	l.	m. and 1 hour.	side tube.		1		tube, mn	1.	_
ĺ		1	l	ł	30	50	80	100	_
	Metres.	Litres.	Metres.	mm.		Velo	city, c.		
	3	10	3	0	8				_
1	3 3 3	20	3	ň	10	_			1
i	3	30	1 3	0	11.7				ı
1	3	50	3	0	15.7		_		1
-	1	10	1	234	4.42	3.99	3.89	3.8	ļ
ı	1	20	1	234	5.28		4.2	4.1	ı
١	1	30	1	234	6.15	5.1	4.54	4.3	١
ı	1	50	1	234	7.87	6.2	5.2	4.9	ı
1	1.5	10	1.5	234	5.6	5	4.8	4.8	ı
١	1·5 1·5	20	1.5	234	7	5.7	5.31	5.1	I
١	1.5	30	1.5	234	8.2	6.5	5.84	5.5	١
ł	2	50 10	1.5	234	10.9	8.5	6.8	6.3	ı
ı	2	20	$egin{array}{c} 2 \ 2 \end{array}$	234	6.8	5.9	5.7	5.5	١
ı	2	30	0	$\frac{234}{234}$	8.6	6.6	6.3	6	ı
ı	2	50	2 2	234	10·3 13·7	7.3	7	6.6	ı
ı	2 2 3 3 3 3	10	3	234	9	9.5	8.2	7.7	I
ı	3	20	3	234	11.6	_	_	-·	ı
ı	3	30	3	234	14.3		_		l
l	3	50	3	234	19.5				ŀ
ı	1	10	1	405	4.78	4.3	4	3.9	l
ı	ī	20	1	405	6.07	5	4.5	4.33	ı
ı	1	30	1	405	7.03	5.8	5.3	4.7	l
l	1	50	1	405	9.82	7.3	5.9	5.44	ĺ
l	1·5 1·5	10	1.5	405	6.2	5.4	5.1	4.92	ĺ
l	1.5	20 30	1.5	405	8.1	6.2	5.8	5.48	
ı	1.5	50	1·5 1·5	405	10	7.8	6.5	6.16	
ı	2	10	2	405 405	13.5	10	7.9	7.46	
l	2	20	2	405	7·62 10·15	6.5	6	5.8	İ
ı	2 2 2	30	2	405	12.5	7·5 8·5	6·9 7·6	6·5 7·3	
ı	2	50	2	405	17.7	11.5	9.7	9	
l	3 3	10	2 2 3	405	10.2	11.0	91	,	
	3	20	3	405	14	_	_	_	
	3	30	3 1	405	17.8	_	_	_	
	8	50	3	405	25.3	_	_	_	
	1 1	10	1	611	6.37	5.5	4.63	4.43	
	1	20	1 ,	611	9.2	6.9	5.7	5.37	
_				1					

Table 26c-(continued).

			TABLE	200(60				
	Length	Evapora-	w, Height of		liquid l	c, with when cave the the contract of the cont	op of the	n and tube.
	of tube,	per 1 sq.	liquid out-	Vacuum.		Bore of tul	be. mm.	
1	l.	m. and	side tube.	l	30	50	80	100
١		1 hour.		, .		Velocit		
١	Metres.	Litres.	Metres.	mm.		v elocit	.y, c.	
Τ				011	10.00	0.0	6.76	6.15
1	1	30	1	611	$12.02 \\ 17.66$	8.6	8.89	7.9
ı	1	50	1	$\frac{611}{611}$,	8.5	6.9	6	5.62
1	1.5	10	1·5 1·5	611	10.2	9.5	7.6	7.12
1	1.5	20	1.5	611	17	12	9.12	8.3
١	1.5	30 '	1.5	611	25.5	17	12.9	10.7
1	1.5	50 10	$\frac{1}{2}$,	611	10.8	7	7.2	6.8
1	2	10 20	2	611	16.4	10.4	9.3	8.65
1	2	30	9	611	22	14	11.4	10.1
1	2	50 50	2	611	33.3	20	19.7	13.5
١	2	10	3	611	15		•	
١	9	20'	3	611	23.3			
1	2 2 3 3 3	30	2 2 3 3 3	611	32.1	_ i		
١	9	50	3	611	50	_		
1	1	10	lĭ	705	10.77	7.9	6.1	5.72
1	1	20	l ī	705	18	12	8.7	8
1	î	30	l ī	705	25	16	11.2	10.1
1	ī	50	1	705	40	25	16.3	14.4
1	$\overline{1}.5$	10	1.5	705	14.5	11	8.2	7.87
	1.5	20	1.5	705	26	17.5	12	10.9
١	1.5	30	1.5	705	35	23	15.9	14.1
Í	1.5	50	1.5	705	59	37	23.6	20.6
	2	10	2	705	19	12	10	9.7
1	2	20	2	705	34	21	15·3 20·4	13·7 18·1
	2	30	2	705	48	29	30.6	26.8
-	2 2 2 3 3	50	2	705	77	47	20.0	20.0
	3	10	3	705	28	_		
	3	20	3	705	49.2	_		
	3 3	30	3	705	72.1 113.5			
	3	50	3	705	112.9	1		-
	Ι.	10	0.333	1 0	2.6	2.37	2.2	2.2
	1 1	20	0.333	lő	3	2.75	2.48	2.3
	1	30	0.333	Ιŏ	4	3.1	2.74	2.6
_	1	50 50	0.333	ŏ	5	3.87	3.2	2.75
•	1.5	10	0.50	lŏ	3.3	3	2.8	2.56
	1.5	20	0.50	ŏ	4.3	3.6	3.22	2.71
	1 10	1 40	1 5 5 5	1 -		1	1	1

Table 26c-(continued).

		*****	200(0		٠.		
Length of tube,	Evaporas tion, w, per 1 sq.	Height of liquid out-	•• Vacuum.	liquid	, c, with v leave the letres per	top of the	m and tube.
l.	m. and	side tube.	, acaann		Bore of tu		
1	1 hour.			30	50	80	100
Metres.	Litres.	Metres.	mm.		Velocity	, c.	
1.5	3 0	0.50	0	5	4.2	3.5	3.1
1.5	50	0.50	0	7	5.6	4.3	3.8
2	10	0.667	0	3.6	$3\cdot 2$	34	3
2	20	0.667	0	5	3.9	3.84	3.3
2	30	.0.667	0	5.6	4.9	4.25	3.7
2 2 2 3.	50	0.667	0	9	6.3	5.2	4.2
3.	10	1	0	5.3			
3	20	1	0	7.1		-	
3	30	1	0	8.8			_
3	50	1	0	12.8	_		
1	•10 °	0.333	234	3	2.5	2.32	2.2
1	20	0.333	234	4	3 '	2.65	2.4
1	30	0.333	234	4.5	3.5	2.95	2.8
1	50	0.333	234	6.3	4.5	3.63	3.15
1.5	10	0.5	234	4	3.25	3.00	2.6
1.5	20	0.5	234	5.2	4	3.42	3.1
1.5	30	0.5	234	6.3	4.8	4	3.5
1.5	50	0.5	234	9	6.4	5.	3.6
2	10	0.667	234	4.3	3.52	3.5	3.2
2	20	0.667	234	5.9	4.5	4.2	3·9 °
2	30	0.667	234	8	5:5	4.8	4.2
2	50	0.667	234	11.1	7.5	6	5.5
3	10	1 -	234	6.2	—		
3	20	1.	234	8.8		_	
2 2 2 3 3 3 3	30	1	234	11.4	-		
3	50	1	234	16.4			
1	10	0.333	405	3.1	2.7	2.46	2.2
1	20	0.333	405	4.5	3.5	2.9	2.4
1	30	0.333	405	6	4.2	3.41	3
1	50	0.333	405	8.8	5.7	4.3	3.8
1.5	10	0.5	405	4.5	3.6	3	2.8
1.5	20	0.5	405	5.3	4.8	3.8	3.3
1.5	30	0.5	405	8	5.8	5	3.5
1.5	50	0.5	405	12	8	5.9	4
2	10	0.667	405	4.8	3.95	3.8	3.6
2	20	0.667	405	7.6	5.5	4.8	4.15
$\frac{2}{2}$	30	0.667	405	10	6.9	5.6	5
1 2	50	0.667	405	15.5	9.9	7 ·5	6.8
	<u> </u>	1	1 .	<u> </u>	1		·

Table 26c—(continued).

	TABLE 200—(continuea).							
Length	Evapora- tion, w,	Height of	,	Velocity, c, with which steam and liquid leave the top of the tube. Metres per second.				
of tube,	per 1 sq.	liquid out-	Vacuum.					
1.	m. and	side tube.			Bore of t	ube, mm.		
i	1 hour.		, 6	30	50	80	100	
Metres.	Litres.	Metres.	mm.	Velocity, c.				
ALCOTO:-	1 111100.							
3	10	1.00	405	7.5				
3	20	1.00	405	. 11.1				
3	30	1	405	14.9				
3	50	l î	405	22.5				
1	10	0.333	611	5	3475	3	$2\cdot 3$	
ĺ	20	0.333	611	7.8	5.3	4.1	3 72	
Ιī	30	0.333	611	10	7	5.1	4.5	
Ιī	50	0.333	611	16	10	7.2	5	
1.5	10	0.5	611	5.4	5	4	3.6	
1.5	20	0.5	611	8.5	7.5	5:6	5	
1.5	30	0.5	611	11	10	7.2	6	
1.5	50	0.5	611	$\tilde{17}$	14.5	10.2	8.8	
2	10	0.667	611	-8	5.8	4.85	3.73	
2	20	0.667	611	12.7	9	7.2	5.38	
2	30	0.667	611	20	13	9.2	7:13	
1 2	50	0.667	611	30.5	19	13.5	10.5	
2 2 3 3	10	1	611	12.2				
3	20	1	611	20.6				
° 3	30	1	611	29.2		_		
3.	50	1	611	46.2		l —		
1	10	. 0.333	705	9	6.25	4.7	4	
1	20	0.333	705	17	10.5	7.2	6.3	
1	30	0.333	705	23	14.3	9.6	8	
1	50	0.333	705	27.8	23	15	12.8	
1.5	10	0.5	705	14	9	6.35	5	
1.5	20	0.5	705	24	15.5	10	8.1	
1.5	30	0.5	705	33	20.5	14.4	11.3	
1.5	50	0.5	705	58	34	20	17.8	
2	10	0.667	705	16	11.5	8.1	7.5	
$\frac{2}{2}$	20	0.667	705	3 0	20	13	10.5	
2	30	0.667	705	45	27	18	15	
2 3 3 3	50	0.667	705	75	45	29	23.7	
3	10	1	705	23	_	_	-	
3	20	1	705	45				
3	30	1	705	67				
3	50	1	705	110		_		
		1						

TABLE 26D.

			T	T			
1		i		Height	to which	the liqui	d is pro-
l	Evapora-			Jec	ted from	the tube	, h _s .
Length of tube.	tion, w,	Height of	Vacuum	i	Bore of t	ube, mm	
l.	m. and	side tube.	Vacuum	30	50	80	100
1 "	1 hour.		l	F	Ieight of	enlech 1	
1,	.	 .		1		res.	·s•
Metres.	Litres.	Metres.	mm.		TATE	res.	
1	10	t.c.	0	0.266	0.253	0.253	0.24
l ī	10	0.33	Ö	0.338	0.28	.0·242	
l į	10	1.0	ĺŏ	0.8	0.76	0.76	0.72
! i	20	t.c.	Ŏ	0.367	0.21	0.267	
Ī	20	0.333	Ŏ	0.450	0.373		0.265
Ιī	20	1.00	ŏ	1.1	0.93	0.8	0.76
lī	30	t.c.	lő	0.467	0.367	0.31	0.267
1	30	0.333	ŏ	0.8	0.48	0.375	
ĺ	30	1.0	ŏ	1.4	1.1	0.93	
1	5 0	t.c.	Ŏ	0.667	0.483	0.37	0.8
Î	50	0.333	0	1.25	0.463	0.512	0.333
Ī	50	1.0	0	2	1.45		
1.5	10	tc.	0	0.45		1.11	1
1.5	10	0.5	0		0.383	0.367	0.363
1.5	10	1.5	0	0.545	0.45	0.392	0.38
1.5	20	t.c.	0	1.35	1.15	1.1	1.09
1.5	20	0.5	0	0.624	0.488	0.417	0.4
1.5	20	1.5	0	0.92	0.648	0.517	0.48
1.5	30		Ö	1.8	1.45	1.25	1.2
1.5	30	t.c. 0:5		0.817	0.567	0.483	0 45
1.5	30		0	1.25	0.882	0.612	0.41
1.5	50 50	1.5	0	2.45	1.7	1.45	1.35
1.5	50	t.c.	0	1.35	0.817	0.617	0.56
$\frac{1.5}{1.5}$	50	0.5	0	2.45	1.57	0.924	0.722
$\frac{1}{2}$	10	1:5	0	4.05	2.45	1.85	1.68
0	10	t.c.	Ú	0.65	0.52	0.5	0.5
$rac{2}{2}$	10	0.667	0	0.646	0.514	0.48	0.45
2	20	2:0	0	1.95	1.56	1.5	1.5
0	20	t.e.	0	0.913	0.64	0.6	0.625
0		0.667	0	1.25	0.761	0.7	0.55
0	20	2.0	0	2.74	1.92	1.8	1.68
0	30	t.c.	0	1.29	0.817	0.703	0.603
0	30	0.667	0	1.57	1.2	0.9	0.68
0	30	2	0	3.87	2.45	2.11	0.81
2 2 2 2 2 2 2 3	50	t.c.	0	2.28	1.203	0.91	0.9
2 0	50	0.667	0	4	1.99	1.35	0.882
2	50	2	0	6.84	3.61	2.73	2.7
3	10	t.c.	0	1.07	_		
ฮ	10	1.00	0	1.4		-	
	•		1	1	1	-	- 1

Table 26D—(continued).

	Evapora-		ď	Height to which the liquid is pr jected from the tube, h _s .				
Length	tion, w,	Height of		Bore of tube, mm.				
of tube,	per 1 sq.	liquid out-	Vacuum.	80	50 I	80	100	
l.	m. and 1 hour.	side tube.	ا∳ م					
	1 nour.	ł	1	ь	leight of a	•		
Metres.	Litres.	Metres.	mm.		Met	res.		
3	10	3	0	3.2			-	
3	20	t.c.	0	1.67	- 1	[_	
3	20	1	0	2.5	-	_		
3	20	3	0	5	- 1			
3	30	t.c.	0	2.28		_		
3	30	1	0	3.87				
3	30	3	0	6.84	_			
3	50	t.c.	0	4.1				
3	50	1	0	8.19				
3	50	3	0 .	12.3		<u></u>		
li	10	t.c.	234	0.32	0.267	0.25	0.233	
ī	10	0.333	234	0.45	0.313	0.269	0.242	
1	10	1	234	0.96	0.8	0.75	0.7	
ī	20	t.c.	234	0.467	0.333	0.293	0.267	
ī	20 `	0.333	234	0.8	0.45	0.351	0.288	
1	20	1	234	1.4	1	0.88	0.8	
ī	30	t.c.	234	. 0.633	0.433	0.333	0.31	
ī	30	0.333	234	1.01	0.613	0.435	0.392	
î	30	1	234	1.9	1.3	1	0.93	
i . ī	50	t.c.	234	0.103	0.62	0.45	0.4	
1	50	0.333	234	1.99	1.01	0.643	0.5	
1	50	1	234	3.1	1.86	1.35	1.2	
1.5	10	t.c.	234	0.52	0.417	0.383	0.383	
1.5	10	0.5	234	0.8	0.528	0.45	0.338	
1.5	10	1.5	234	1.56	1.25	1.15	1.15	
1.5	20	t.c.	234	0.817	0.54	0 467	0.42	
1.5	20	0.5	234	1.35	0.8	0.57	0.48	
1.5	20	l	234	2.45	1.62	1.4	1.26	
1.5	30	t.c.	234	1.12	0.703	0.557	0.5	
1.5	30	0.5	234	1.99	1.15	0.8	0.61	
1.5	30	li	234	3.36	2.11	1.67	1.5	
1.5	50	t.c.	234	1.98	1.2	0.77	0.66	
1.5	50	0.5	234	4	2.05	1.25	0.65	
1.5	50	1	234	5.94	3.61	2.31	1.98	
2	10	t.c.	234	0.767	0.58	0.54	0.5	
2	10	0.667	234	0.92	0.75	0.62	0.51	
2	10	2	234	2.3-	1.74	1.62	1.5	
1 2	20	t.c.	234	1.23	•0.726	0.66	0.6	
.1 -		""	1			'		
L	1	<u> </u>			<u> </u>			

. Table 26D-(continued).

				Height to which the liquid is pro- jected from the tube, h.				
T	Evapora-	Height of	`					
Length of tube.	tion, w , per 1 sq.	liquid out-	Vacuum.			ube, mm.		
l.	m. and	side tube.		- 30	50	80	100	
	1 hour.		l]	Height of	splash, h	e -	
Metres.	Litres.	Metres.	mm.	Ì	me	res.		
111011001				- ,	I	l I	1	
2	20	0.667	234	1	1.01	0.882	0.77	
2	20	2.	254	3.69	2.18	1.98	1.8	
2 2 2 2 2 2 3 3 3	30	t.c.	234	1.77	0.887			
2	30	0.667	234	3.22	1.51	1.15	0.88	
2	30	2	234	5.3	2.66	2.45	2.18	
2	50	t.c.	234	3.13.	1.5	1.12	0.987	
$\frac{2}{2}$	50	0.667	234	6	2.81	1.8	1.51	
2	50	2	234	9.38	4.5	3.36	2.96	
3	10	t.c.	234	1.35			_	
3	10 10	$\frac{1}{3}$	$\frac{234}{234}$	1·92 4·05			_	
ა ი	20	_	234 234	2.24		•		
3 3	20	t.c. 1	234	3.87				
3	20	3	234	6.72				
3 3	30	t.c.	$\begin{array}{c} 234 \\ 234 \end{array}$	3.4			-	
3	30	1	$\frac{234}{234}$	6.5			_	
3 3	30	3	234	10.2				
ŝ	50	t.c.	234	6.33				
3	50	1	234	13.4			_	
3	50	3	234	19				
1	10	t.c.	405	0.373	0.307	0.267	0.253	
1	10	0.333*	405	0.47	0.365		0.242	
1	10	1.	405	1.1	0.92	0.8	0.76	
1	20	t.c.	405	0.62	0.417	0.333		
1	20	0.333	405	1.01	0.62	0.42	0.288	
1	. 20	1	405	1.86	1.25	1	0.88	
1	30	t.c.	405	0.82	0.56	0.417		
1	30	0.333	405	1.8	0.882	0.578		
1 1	30	1	405	2.46	1.68	1.23	1.1	
1	50 50	t.c.	405	1.6	0.883	0.6	0.483	
$\frac{1}{1}$	50 50	0.333	405	3.87	1.63	0.93	0.72	
$\frac{1}{1.5}$	50 10	1	405	4.8	3.00	1.8	1.46	
1.5	10	t.c. 0·5	405	0.64	0.487		0.403	
1.5	10 10	1.5	405	1.01	0.648		0.392	
1.5	20	t.c.	405 405	1.00	1·46 0·703	1·31 0·56	$\frac{121}{0.5}$	
1.5	20	0.5	405 405	1·09 1·4	1.15	0.50	0.55	
1.5	2)	1.5	405	3.28	2.11	1.68	1.5	
		10	±00	0 20	411	1 00	10	
				·	1	ı		

TABLE 26D—(continued).

	Evapora-		,	Height to which the liquid is jected from the tube, h.				
Length	tion, w,	Height of		l	D44			
of tube,	per 1 sq.	liquid out-	Vacuum.	30	Bore of tube, mm.			
l.	m. and	side tube.	١,		50	80	100	
	1 hour.		' '	, i	Height of	-	ı.	
Metres.	Litres.	Metres.	mm.	Metres.				
1.5	30	t.c.	405	1.67	1.01	0.703	0.62	
1.5	. 30	0.5	405 "	3.2	1.68	1.25	0.62	
1.5	30	1.5	405	5	3.04	2.11	1.86	
1.5	50 ·	t.c.	405	3.07	1.67	1.04	0.93	
1.5	50	0.5	405	7.2	3.2	1.74	0.8	
1.5	50	1.5	405	9.2	5	3.12	2.8	
2	10	t.c.	4 05	0.96	0.703	0.6	0.56	
2	10	0.667	405	1.15	0.78	0.72	0.65	
2	10	2	405	2.88	2.11	1.8	1.68	
2	20	t.c.	405	1.7	0.93	0.792	0.703	
2	20	0.667	405	2.89	1.51	1.15	0.86	
2	20	2	405	5.1	2.81	2.38	2.113	
2	30	t.c.	405	2.6	1.23	0.96	0.883	
2	30	0.667	405	5	2.28	1.57	1.25	
2	30	2	405	7.8	3.61	2.88	2.66	
2 2	50	. t.c.	405	5.2	2.03	1.57	1.53	
$\frac{2}{2}$	50	0.667	405	11.3	$\begin{array}{c c} 5 & \\ 6\cdot1 & \end{array}$	2.81	2.31	
2 2	50	2	405 405	15·6 1·73	0.1	4.7	4.6	
3 3	10 10	t.c.	405 405	$\frac{1.73}{2.81}$				
3	10	3	405	5.2		_		
3	20	t c.	405	5.27				
3	20	1	.405	6.16		_		
3	20	3	405	9.8			_	
3	30	t.c.	405	5.26	_	_	_	
š	30	1	405	11.1				
3	30	3	405	15.8		_ 1		
3	50	t.c.	405	10.7		_		
3	50	1	405	25.3		_		
3	50	3	405	32				
1	10	t.c.	611	0.66	0.487	0.353	0.33	
1	10	0.333	611	1.25	0.703	0.45	0.27	
1	10	1	611	2	1.46	1.06	0.97	
1	20	t.c.	611	1.41	0.793	0.54	0.47	
1	20	0.333	611	3.04	1.4	0.81	0.68	
1	20	1	611	4.23	2.38	1.63	1.4	
1	30	t.c.	611	2.4	1.23	0.77	0.62	
1	30	. 0.333	611	5 '	2.45	1.26	1.01	
<u> </u>			L	l	•			

. Table 26d—(continued).

			,					
	Evapora-				to which			
Length	tion, w,	Height of	1	Bore of tube, mm.				
of tube,	per 1 sq.	liquid out	Vacuum	. 30				
l.	m. and	side tube.	Ī		50	80	100	
l	1 hour.		1		Height of	splash, h	2.	
Metres.	Litres.	Metres.	mm.	Metres.				
					1	Ī	1	
1	30	1	611	7.2	3.7	$2\cdot 3$	1.86	
1	50	t.c.	611	5.17	2.4	1.32	1.04	
1	50	0.333	611	12.8	5	2.57	1.25	
1	50	1.	611	15.5	7.2	3.96	3.12	
1.5	10	t.c.	611	1.203	0.793	0.6	0.523	
1.5	10	0.5	611	1.46	1.25	0.8	0.65	
1.5	10	1.5	611	3.61	2.38	1.8	1.57	
1.5	20	t.c.	611	1.73	1.5	0.963	0.837	
1.5	20	0.5	611	3.61	2.81	1.57	1.25	
1.5	20	1.5	611	5.2	4.5	2.89	2.51	
1.5	30	t.c.	611	0.483		• 1.38	1.15	
1.5	30	0.5	611	7.5	5	2.59	1.8	
1.5	30	1.5	611	14.5	7.2	4.14	3.45	
1.5	50	t.c.	611	10.8	4.83	2.73	1.91	
1.5	50	0.5	611	14.5	10.2	5.1	3.87	
1.5	50	1.5	611	32.3	14.5	8.3	5.72	
$\frac{2}{2}$	10	t.c.	611	1.94	0.817	0.8	0.77	
2	10	0.667	611	$3\cdot 2$	1.7	1.28	0.69	
2	10	2	611	5.83	2.45	2.4	2⋅2	
2	20	t.c.	611	4.5	1.8.	1.44	1.23	
2	20	0.667	611	7.5	4	2.59	1.45	
$\frac{2}{2}$	20	2	611	13.5	5.4	4.32	3.7	
2	30	t.c.•	611	ું.07	3.27	2.17	1.7	
2	30	0.667	611	15.8	8.5	4.10	2.52	
2	30	2	611	24.2	7.8	6.5	5.1	
2	50	t.c.	611	18.5	6.67	6.47	3.03	
2 2 2 2 2 2 2 2 3 3	50	0.667	611	46.5	18.1	10	5.3	
2	50	2	611	55.5	20	19.41	9.1	
3	10	t.c.	611	3.77			- 1	
3	10	1	611	7.4	-		- 1	
3	10	3	611	11.3	. –		-	
3	20	t.c.	611	8.83			-	
3	20	$\frac{1}{2}$	611	21.2			-	
3	20	3	611	26.5	-			
3	30	t.c.	611	17	- I			
3	30 30	$\frac{1}{2}$	611	42.6				
3	50 50	3	611	51	_		- 1	
0	ยบ	t.c.	611	41	-	-	- 1	
	•							

Table 26d—(continued).

	Evapora-		/	Height to which the liquid is projected from the tube, h			
Length	tion, w,	Height of	L_		tube, mm		
of tube,	per 1 sq.	liquid out-	Vacuum.	80	50	80	100
l.	m. and 1 hour.	side tube.	, •				
				,		splash, h	
Metres.	Litres.	Metres.	mm.		Me	tres.	
3	50	1	611	106			
3	,50	3	611	125			
i	10	t.c.	705	1.9	1.04	0.62	0.57
î	10′	0.333	705	4	1.95	1.1	0.80
i i	10	1	705	5.7	3.12	1.86	1.62
ÎÎ	20	t.ć.	705	5.47		1.26	
î	20	0.333	705	14.5	5.2	2.60	1.28
î	20	1	705	16.4	7.2	3.78	3.2
l i l	30	t.c.	705	10.4	4.27	2.09	1.7
l i l	30	0.333	705	27	9-8	4.1	3.2
līl	30	1	705	$\overline{31.3}$	12.8	6.27	5.1
l i l	50	t.c.	705	26.6	10.5	4.43	3.47
1 i	50	0.333	705	39	26.5	9.8	7.6
l î	50	1	705	80	31.5	13.3	10.4
1.5	10	t.c.	705	3.5	2.03	1.12	1.0
1.5	10	. 0.5	705	7.6	4.03	1.98	1.25
1.5	10	1.5	705	10.5	6.1	3.36	3
1.5	20	t.c.	705	11.3	5.1	2.4	1.98
1.5	20	0.5	705	29	12	5	3.20
1.5	20	1.5	705	33.8	15.3	7.2	5.95
1.5	30	t.c.	705	20.4	8.83	4.3	3.3
1.5	30	0.5	705	55	20	10	6.50
1.5	30	1.5	705	61 .	26.5	12.6	9.9
1.5	50	t.c.	705	59	22.2	9.26	7.07
1.5	50	0.5	705	156	54.5	20	15.8
1.5	50	1.5	705	178	66.5	27.8	21.2
$\hat{2}$	10	t.c.	705	6	2.4	1.67	1.57
	10	0.667	705	12.8	6.15	3.2	2.81
2 2 2 2 2 2 2 2 2 2 2 2	10	2	705	18	$7.\overline{2}$	5	4.7
$\bar{2}$	20	t.c.	705	19.6	7.33	3.87	3.13
2	20	0.667	705	45	20	8.5	5.7
$\bar{2}$	20	2	705	58	22	11.6	9.4
2	30	t.c.	705	38.6	14	7	$5.\overline{4}$
2	30	0.667	705	101	36.5	16.2	11.25
$\tilde{2}$	30	2	705	115	42	21	16.2
1 2 1	50	t.c.	705	98.5	36.3	16	11.7
2	50	0.667	705	281	100	38	28
2	50	2	705	296	110	48	35
		-			-		

	Evapora-		yapora-		Height to which the liquid is projected from the tube, h_t .			
Length of tube,	tion, w, per 1 sq.	Height of liquid out-	Vacuum.	Bore of tube, mm.				
l.	m. and	side tube.		30	50	80	100	
	1 hour.	our.			Height of	splash, h	.	
Metres.	Litres.	Metres.	mm.	Metres.				
3	10	t.c.	705	13			_	
	10	1	705	27				
3 3	10	3.	705	39				
3	20	t.c.	705	40	_	_		
3	20	. 1	705	106	- •	_		
3.	20	3	705	120			_	
3	30	t.c.	705	86.7	-		- 1	
3 3	30	1	705	225	_		_	
3	30	3	705	260	_			
3	50	t.c.	705	313		_	_	
3	•50 "	$\frac{1}{3}$	705	605	<u> </u>		-	
3	50	3	705	638		-	_	
i								

Table 26D—(continued).

steam is evolved must be thrown up with the steam; it therefore increases the rising volume. It is hardly possible to state how much liquid is carried up with the steam; but occasionally it may be many times the volume of the steam.

The evaporative capacity of the heating surface at the steam entrance is much greater than the mean capacity, so that in vacuum evaporators with double bottoms and heating coils the liquid is often splashed up near the steam entrance to a height as great as in an evaporator heated by vertical tubes.

C. The Influence of the Current of Steam on Projected Drops.

In determining the height to which the larger masses of liquid are projected, we neglected the action of the rising current of steam, which can only be slight. The case is different with isolated drops. The motion of small drops may be very considerably affected by currents of steam.

The velocity, c, with which the drops are splashed out of the evaporating liquid, we shall assume to be equal to that of the larger masses, although the explosion of bursting bubbles, in combination

with the action of surface tension, may cause greater initial velocities in certain cases.

The initial upward velocity of the drops thrown up from the liquid can never be less than that of the current of steam tising in the steam space; it is always somewhat, and may be considerably, greater.

Cylindrical vessels, in which the liquid is heated by direct fire, double bottoms, coils or horizontal tubes, always provide so large a section for the escaping current of steam and the rising drops that their velocities invariably decrease and become not very different from one another. The ratio of the section to the heating surface varies in this case from 1:1 to 1:20 (see Table 27).

But in the case of heaters with vertical tubes, in which the ratio of the section, available for the escaping steam, to the heating surface is much less, viz., 1:50 to 1:100, the initial velocities of the liquid are very high, occasionally greater than that of the current of steam. At the maximum they are perhaps twice as great.

The highest initial velocities are rarely produced, but when they do occur they must be carefully considered. Generally the velocity, c, even with apparatus with vertical tubes, will not exceed 4-6 m. per second. The velocity of the steam is in this case approximately 4-8 m. per second. Similarly, in apparatus with coils, double bottoms, etc., the velocities of the drops and steam are fairly equal.

For this reason, and because, when the velocities c and v_u are different, the effect is to cause the drops to rise to a less extent, we shall neglect the pressure, P_u , which opposes the ascent of the drops (for the highest possible rise is alone to be determined), and assume that no such pressure is present. Equation (130) may then be written:

$$h_s = \frac{c^2}{2g\left(1 - \frac{P_o}{2G}\right)}$$
 : . . . (139)

This equation shows that when the velocity of the current of steam is so great that it exerts a pressure, P_o , on a drop at rest equal to twice the weight of the drop, G, $(P_o = 2G)$, the drop is carried away with the steam and lost, since the denominator of the fraction then becomes = 0.

If the pressure of the steam, P_o , upon the drop = G, i.e., is equal to its weight, then equation (139) becomes

$$h_{\bullet} = \frac{c^2}{2g} 2.$$

TABLE 27.

Velocity of the steam in the steam space of vacuum evaporators, at vacua of 0-705 mm., with evaporative capacities of 10-100 kilos. per sq. m. and ratios of section of steam space to heating surface of $\frac{1}{1}$ to $\frac{1}{20}$.

	Evapo-			section in sq ing surface i					
Vacuum.	ration in 1 hour per sq. m.	• 1 1	$\frac{1}{5}$	1 10 •	• 1 • 15	1 20			
ının.	w.	Velocii	Velocity, in metres, of the current of steam in the steam space of the vacuum apparatus.						
0	10	0.046	0.23	0.46	0.69	0.92			
0	20	0.09	0.46	0.92	1.38	1.83			
ő	30	0.14	0.69	1:38	1.76	2.75			
ŏ	50	0.23	1.15	2.30	3.44	4.59			
0	100	0.46	2.29	4.59	3.88	9.78			
234	10	0.06	0.32	0.65	0.97	1.30			
234	20	0.13	0.65	1:30	1.95	2.60			
234	30	0.19	0.97	1.95	2.92	3.90			
234	50	0.32	1.62	2.92	4.87	6:50			
234	100	0.65	3.25	4.87	.9.75	13.00			
405	10	0.05	0.47	9.75	1.41	1.58			
405	20	0.19	0.94	1.41	2.82	3.76			
405	30	0:28	1.41	2.82	4.23	5.64			
405	50	0.47	2.35	4.23	7.05	9.40			
405	100	0.94	4.70	7.05	4.10	18.80			
610	10	0.21	1.05	4.10	3.16	4.22			
610	20	0.42	2.11	3.16	6.33	8.44			
610	30	0.63	3.16	6.33	9.49	12.66			
610	50	1.05	5.27	11.05	15.80	21.10			
610	100	2.10	10.50	21.11	31.60	42.20			
705	10	0.54	2.70	5.41	8.11	10.82			
705	20	1.08	5.4	10.82	16.2	21.64			
705	30	1.62	8.1	16.23	24.3	32.46			
705	50	2.70	13.5	27.05	40.5	54.1			
705	100	5.41	27.0	54.1	81.1	108.1			

The drops then rise to twice the height to which they would rise in vacuo without the current of steam, i.e., to double the height given in Table 26.

If $P_{\bullet} = \frac{1}{2}G$, then the rise is $\frac{4}{3}$ of the theoretical.

$$h_s = \frac{c^2}{2g(\dot{1} - \frac{c\dot{\tau}}{4G})} = \frac{c^2}{2g} \cdot \frac{4}{3} .$$
 (140)

If $P_o = \frac{1}{4}G$, then the rise is $\frac{6}{7}$ of the theoretical.

These considerations and an examination of Table 26 show that the current of steam in all cases somewhat increases the height to which large drops rise, but that quite small drops must often be carried completely out of the vacuum evaporator, even with steam velocities of 5-6 m. per second. It must also be remembered that each vessel is closed at the top and has an exit pipe, of smaller section than that of the apparatus and in which, therefore, the steam will move with a greater velocity than in the steam space of the apparatus. Since the currents converge towards this exit pipe, they gradually acquire a greater velocity in the apparatus itself.

The lower the pressure of the steam, the greater must be its velocity, if equal weights are to flow in equal times through pipes of equal bore. If a certain weight of steam, at atmospheric pressure, flows through a pipe of a certain bore with 1 m. velocity, then the velocities, in order that the same weight of steam may pass through the same pipe, must be

Thus it is seen, that the current of steam in vacuum evaporators will carry with it drops the more readily, the lower the pressure, the higher the vacuum in it.

The differences in construction of apparatus, in capacities, sections and liquids do not permit us to obtain a single result for the absolute height to which liquids and drops rise. But by means of Tables 26 and 27 this height may, be estimated approximately in any separate case. It is certain that, in almost all cases, the small drops are in real danger of being carried away by the steam, and since they are generally formed from valuable liquids, endeavours are made to catch them again by artificial means.

D. The Action of the Current of Steam on Projected Bubbles of Liquid (Hollow Drops) and Means for Avoiding their Loss.

We have hitherto always assumed that whole drops of liquid, more or less large, have been splashed up; this is, however, not the case alone. Under certain conditions with every liquid, and with some liquids as a rule, hollow drops (bubbles of steam and liquid) are thrown up in every size and in great quantity. These bubbles are projected from the liquid with the same velocity, c, as the solid drops, but the ascending current of steam has more action upon them, since with equal section they present an equal surface to the pressure, but having less weight require a lower pressure to receive the same acceleration. When projected with the same velocity as a solid drop into a current of steam flowing in the same direction but with lower velocity, the hollow drops (bubbles) are more retarded by it than the solid drops and hence rise to a lower height. But when projected into a current of steam moving in the same direction with greater velocity, the bubbles are carried considerably further than solid drops and may readily be removed from the apparatus and lost.

These steam bubbles, together with the very small drops of liquid, constitute the real source of loss in evaporating liquids.

In order to determine the heights to which these bubbles rise, equation (130) may be used:

$$h_{\bullet} = \frac{c^2}{2y\left(1 - \frac{P_o + P_u}{2G}\right)},$$

inserting, instead of the weight of the solid drop, G, that of the bubble, which may be $\frac{1}{2}$, $\frac{1}{4}$, etc., of the former.

It may be seen from this equation how rapidly the height, h, must rise with decreasing weight of the drop, G. Thus a tall apparatus always offers some protection against loss by drops and even bubbles, but this protection is far from sufficient for the smaller solid drops and the lighter bubbles, which must be retained by other means.

Now these steam and foam bubbles may be retained by bringing them into a position where they are converted into solid drops, against which the current of steam is powerless. Then if the solid drops formed from the burst bubbles be given a motion in a direction different to that of the steam, directed downwards and to the side towards a protected space, they can almost all be caught and saved. The froth separating apparatus of C. Heckmann of Berlin, German Patent No. 70,022, is constructed on these principles and hence works very efficiently. See Fig. 13 (p. 129).

In order that the steam bubbles may be converted into solid drops it is necessary to let them burst. This is accomplished in this case by passing the steam, which leaves the apparatus with the pressure prevailing therein, into a space in which there is a somewhat lower pressure. The excess of pressure thus produced in the interior of the bubbles causes them to burst.

The small difference of pressure required to rupture the bubbles differs for every liquid, every degree of concentration, and for every temperature, and it cannot be exactly estimated à priori for any case. Thus it is necessary to arrange this foam separator in such a manner that the difference of pressure necessary in each case case be actually produced under eworking conditions, and can be altered when the conditions alter.

This adjustability of the foam separator is practically its indispensable property. Similar arrangements without this property are worthless.

In Table 28 are given the diameters of the central tube and of the outer vessel of this foam separator. The central tube should offer as little resistance as possible to the passage of the steam; its diameter is determined by means of the later Table 32, and with regard to the steam velocities there given, since these velocities are so low that they create very little resistance even in long tubes. The inclination of the reflecting plate is taken as 10° to the horizon; the diameter of the drops to be retained is assumed to be 0.1 mm, or more. The section of the annular space between the reflecting plate and the wall of the vessel is so determined that the velocity of the steam, obtained at the highest anticipated vacuum, may exert a pressure upon drops of 0.1 mm. not exceeding twice their weight. Thus, according to Table 25, tenfold security is obtained, so that the apparatus must retain even considerably smaller drops. By increasing the angle of inclination of the reflecting plate and the diameter of the vessel the security against loss of drops is increased.

Table 28.

The foam separator of Ger. Pat. No. 70,022, Fig. 13 (p. 129), diameter of the central pipe and of the outer vessel.

				Vacu	um.					
Evaporation of water	1	0	12	6.2	193.7		294			
per hour.	1	Diametor	of the central pipe, R , and of the outer vossel, M .							
Kilos.	R	· м	R	M	. R	М	R	М		
50	50	220	50	225	70	225	70	230		
100	70	230	70	230	80	235	80	240		
150 •	80	250	80	263	90	265	90	270		
200	90	275	90	290	100	300	100	310		
250	100	305	100	320	100	320	100	325		
300	100	330	125	350	125	355	125	359		
350	120	355	125	368	125	370	125	370		
400	125	370	125	385	150	400	150	407		
500	125	400	150	428	150	435	150	440		
600	150	440	150	458	150	470	175	480		
700	150	465	150	480	175	495	175	507		
800	150	488	175	519	175	525	175	530		
900	175	525	175	545	175	555	200	565		
1000	175	5 4 0	200	580	200	585	200	590		
1500	200	640	200	6.75	225	690	225	705		
2000	225	730	225	777	250	795	250	810		
2500	250	825	250	790	275	840	275	890		
3000	275	895	275	940	300	955	300	970		
3500	275	955	300	1010	300	1040	325	1070		
4000	300	1015	325	1100	325	1115	350	1130		
4500	325	1100	325	1155	350	1175	350	1190		
5000	325	1165	350	1220	350	1235	375	1250		
5500	350	1215	350	1270	350	1285	375	1300		
6000	350	1245	375	1330	400	1350	400	1365		
6500	350	1290	375	1370	400	1390	400	1410		
7000	375	1340	400	1420	425	1440	425	1460		
7500	375	1380	400	1460	425	1485	425	1510		
8000	400	1430	425	1520	450	1535	450	1560		
]				l						

Table 28—(continued).

		Vacuum.									
Evaporation of water	3'	75·6	. 4	5 1	. 5	64	e	310			
per hour.		Diameter of the central pipe, R, and of the outer vessel, M.									
Kilos.	R	М	R	м.	R	M	R	М			
50	80	235	90	240	100	245	100	, 250			
100	90	260	100	265	125	300	125	310			
150	100	295	100	300	125	330	150	370			
200	125	335	125	340	150	375	175	405			
250	125	360	150	385	150	2 85	.175	440			
300	125	380	150	405	175	442	200	480			
350	150	420	150	415	200	480	200	506			
400	150	435	175	435	200	500	225	545			
500	175	485	175	495	225	555	225	590			
600	175	510	200	540	225	588	250	645			
700	200	555	225	575	250	640	275	687			
800	200	585	225	610	250	675	300	730			
900	225	627	250	665	275	718	300	765			
1000	225	650	250	695	300	750	325	860			
1500	250	780	300	820	350	920	350	980			
2000	300	890	325	969	375	966	400	1120			
2500	325	1010	350	1045	400	1140	450	1245			
3000	350	1090	375	1140	425	1240	500	1355			
3500	350	1160	400	1160	450	1330	525	1445			
4000	375	1240	425	1215	500	1420	550	1550			
4500	400	1320	450	$\frac{1215}{1275}$	525	1500	575	1620			
5000	400	1380	475	1460	550	1575	600	1710			
5500	425	1440	500	1510	550	1640	625	1790			
6000	450	1505	500	1570	575	1705	650	1865			
6500	450	1555	500	1620	600	1780	650	1930			
7000	475	1600	525	1690	600	1830	675	2000			
7500	500	1655	, 550	1740	650	1905	700	2065			
8000	500	1750	550	1795	650	1960	700	2130			

Table 28—(continued).

	,		• Vac	uum.		
	64	2.5	6	68	70)5
Evaporation of water per hour.	Dia	ameter of th		pipe, R , and M .	d of the o	uter
Kilos.	R	М,	R	М	R.	М
50	100	273	125	290	145	325
100	125	315	150	* 345	175	390
150	$\frac{150}{175}$	373 440	175 200	405 455	$\frac{200}{225}$	450 510
$\frac{200}{250}$	200	440 468	$\frac{200}{225}$	508	250	575
300	200 225	508	$\frac{225}{225}$	530	$\frac{250}{275}$	605
350 350	225	532	250	588	•300	650
400	225	558	250	605	325	725
500	250	630	$\frac{200}{275}$	645	350	790
000	200	000	210	019	000	,00
600	250	660	300	710	, 375	850
700	250	697	325	790	400	910
800	300	757	350	845	425	965
900	325	830	375	885	450	1015
1000	350	880	400	940	450	1050
1500	400	1036	450	1105	500	1250
2000	450	1160	500	1255	600	1440
2500	500	1310	550	1390	650	1590
3000	550	1430	60€	1510	700	1730
9500		1500	005	1015	750	1055
3500 4000	575	1520	625	1615	750	$1855 \\ 1975$
4000 4500	$600 \\ 625$	1620	650	1720	800 850	2095
5000 5000	650	1705	700 700	1820 1870	850 850	2095
5500 5500	675	$1800 \\ 1875$	750 750	1960	900	2290
6000	700	1960	750 750	2060	900	2370
6500	700	2020	800	2150	J00	2010
7000	725	2020	800	2220		
7500	750	2155	850	2300		
8000	750	2222	850	2370		
			,		l	

E. The Change in the Size of Steam Bubbles in Boiling Liquids.

The movement of a boiling liquid is facilitated by the increase in volume, as they rise, of the steam bubbles formed in the lower layers. The volume of a small weight of steam produced at the bottom of a liquid depends upon the pressure upon it. This pressure is the sum of the pressures of the liquid and of the steam or air above it.

The pressure of the liquid upon unit section of the bubbles is proportional to the height of the layer of liquid above the bubble, h, and its specific gravity, s.

As the bubble rises, the pressure of the steam or air generally remains constant, but the height, and thence the pressure, of the layer of liquid decreases gradually. The bubble therefore increases in volume as it rises.

Table 29 shows the extent of the increase in volume of steam bubbles, when they are formed in liquids at various depths and under various pressures, and then rise upwards.

Table 29.

The increase in volume of a steam bubble of 1 cc. capacity, which is formed, in liquids of 1.0, 1.1 and 1.3 specific gravity, at depths of 250-2000 mm. below the surface and then rises, whilst over the liquid there is a vacuum of 0-720 mm.

•		•	Vacuum ov	er the liquid.		
Depth elow the surface at which	0 mm.	150 mm.	250 mm.	500 mm.	650 mm.	720 mm.
he steam bubble of 1 cc.			Specific gravit	, ,		
vapacity was formed.	1 1.1 1.	3 1 1.1 1.9	1 1.1 1.3	1 1.1 1.3	1 1.1 1.3	1 1.1 1.3
mm.		Volume of	the bubble wi	nen it reaches	the surface.	·
250	1.09 1.19 1.	33 1.03 1.13 1.8	1.041.141.01	1.001.101.4	1.101.001.50	
500	1.05 1.16 1.3	36 1-06 1-17 1-3	711 • 07 1 • 17 1 • 39	11.15 1.26 1.49	11.34 11.47 11.74	1.95 2 14 2.54
750	1.08 1.18 1.4	1011101120114	211-1111-2211-44	1.23 1.35 1.6	1.58 1.68 1.99	2.45 2.69 3.19
1000 1500	1.1 1.21 1.4	13 1.13 1.24 1.4	61.151.361.49	1.3 1.43 1.69	1.7 1.87 2.21	2.92 3.21 3.79
2000	1.2 1.321.	50 1·19 1·3 1·5 56 1·25 1·37 1·5	61.8 1.481.69	1.61 1.77 2.09	2.05 2.25 2.66	3·88 4·26 5·04 4·85 5·33 6·31
				1		00001

CHAPTER XVII.

THE DIAMETER OF PIPES FOR CONVEYING STEAM, ALCCHOL VAPOUR AND AIR.

A. For Steam.

THE pipes, through which gases and vapours are conducted, are made of as small diameter as is possible without ill effects, since such pipes are cheaper, lighter and more convenient. Thus it is necessary to ascertain the least diameter which the pipes may be given in any particular case.

Generally it is required to convey the gases or vapours through the pipes with a very small fall in pressure between inlet and outlet; the permissible extent of this fall limits the dimensions of the pipes.

The loss in pressure, which vapours undergo in pipes, depends on their diameter and length, on the density of the vapour and, in particular, on the velocity with which the movement takes place.

Let d = the diameter of the pipe in metres,

l =the length ,,

Q =the section , in sq. metres,

 v_d and v_i = the velocities with which steam and air respectively move in the pipe, in metres per second,

 z_a and z_t = the loss of pressure, in metres of water, which the air or steam respectively suffers between inlet and outlet,

 γ_d and γ_i = the weight of 1 cub. m. of steam or air respectively, in kilos.

Two formulæ are known for determining the loss in pressure:-

1. The formula of Gustav Schmidt,

$$z_i = \frac{785l}{10^{10}d} \gamma \left(5 + \frac{1}{d}\right) v_i^2 \dots$$
 (141)

applicable to air and tubes of 150-200 mm. bore.

2. The formula of Gutermuth and Fischer, applicable to steam in tubes of 70-300 mm. bore and velocities below 20 m. per second:—

$$z_{d} = \frac{15 : 10}{10^{8}} \gamma_{d} \frac{l}{d} v_{d}^{2} (142)$$

or

$$z_{d} = \frac{0.0015}{1000} \gamma_{d} \frac{l}{d} v_{d}^{2} \dots \dots \dots (143)$$

Unfortunately these two formulæ do not give the same result for the same conditions; if that were the case, then, when l, d, γ and r were the same, z_i would equal z_d . However, if z_i be put equal to z_d , and the equation transformed, it will be seen that both the formulæ give the same result for a pipe of diameter d=0.07 m., and different results in all other cases.

$$\begin{aligned} \frac{785}{10^{10}} \left(5 + \frac{1}{d}\right) &= \frac{15 \times 10}{10^8} = \frac{15}{10^7} \\ \frac{785}{10^8} \left(5 + \frac{1}{d}\right) &= 15 \\ \frac{785}{d} &= 15 \times 10^3 - 785 \times 5 \\ d &= \frac{785}{15 \times 10^3 - 785 \times 5} = 0.07 \text{ m.} \end{aligned}$$

The results obtained by Schmidt's formula (Dingl. polyt. Journal, 1880; September) are always much lower than those given by Fischer's formula (Zeits. d. V. d. Ing., 1887, pp. 718, 749). On this account the second formula must be used by preference in doubtful cases, which conclusion is strengthened by the valuable researches conducted and described by Gutermuth and others, which have shown that the values obtained by Fischer's formula correspond very closely with the reality. The equation of Fischer and Gutermuth is found to be correct for pipes of 70 – 300 mm, diameter and velocities below 20 m. per second; but, in default of any other, this formula must for the present be used for pipes of other bores and for other velocities.

Table 30 has been calculated according to the formula (143) of Fischer, in order to obtain an idea of the extent of the resistance under various conditions. For the sake of comparison and to illustrate what has been said above in regard to the two formulæ, the results (which are not used) of Schmidt's equation are also inserted. In

Table 30, a length of pipe of 20 m. is assumed, and the resistance is measured in metres of the water column. It will be seen, what the formula alro expresses, how rapidly the resistance increases with the velocity, and how considerably it increases under high pressure, i.e., with steam and air of high densities.

The important question for practical purpose is: What diameter of pipe must be used for any definite case? This question will at once be answered. Since, however, not only the bore of pipes for steam, but also for alcohol vapour and air, is required, these substances will be treated at the same time.

Through a tube of given section in a given time much or little steam or air may be sent; the quantity depends on the velocity with which the substance moves through the tube. But a high velocity requires also a large difference in pressure between the inlet and outlet of the pipe. In many cases the pressure applied at the inlet of the pipe is required to be transmitted with as little loss as possible to the other end, in other cases it is undesirable that the pressure at the inlet should appreciably exceed the pressure at the outlet, the difference in pressure between the inlet and outlet being generally regarded as loss of pressure. On the other hand too low velocities require wide and costly pipes, therefore some difference of pressure is arbitrarily chosen and the bore of the pipes determined on this assumption.

The stear pressures used in practice vary within very wide limits —20 atmos. to 0.05 atmos. Thus a constant loss of pressure cannot well be assumed for all cases. It is desirable to assume the loss of pressure as a percentage of the original pressure. If at one end of a pipe there is an absolute pressure of 50 mm. (710 mm. vacuum), then a loss of pressure of 10 mm. of mercury at the other end is quite sensible; but if there is a pressure of 4,500 mm. (5 atmos.) at one end, then 20-50 mm. can well be spared for the transmission of the steam through the pipe.

Since it is thus decided to devote a certain percentage of the original pressure to the transmission of the steam through the pipe, and since, if this percentage is fixed, the formula (143) at once gives the velocity and thence the weight of steam passing through the pipe in unit time, the equation (143) may more conveniently be written:

Table 30.

The loss of pressure, z_a , in metres of water, experienced by steam in and 50 m., according to Schmidt (S)

Absolute atmos Absolute mm. Vacuum,	pressure.		3 80	1	•5 40 —	0·7 566 21	- 6•7
Bore of pip d.	Velo- city, V _d .	. s	F	s	F	S	F
0 ·05	20 30	0·5826 1·3110	0·4086 0·9194	_	_	_	_
0.07	50 20 *	0.6632	2·5540 0·2918 0·6566	ύ·1536 0·3456	$0.1521 \\ 0.3423$	 	
0.150	50 20 30	1·8423 0·0831 0·1871	1·8240 0·1319 0·3064	0.9600 0.0433 0.0975	0.9510 0.0709 0.1607	0·0224 0·0548	0·0368 0·0827
0.300	50 20 30	0·5197 0·0297 0·0669	0·8542 0·0681 0·1531	0·2708 0·0152 0·0348	0·4437 0·0355 0·0796	0·1402 0·0091 0·0180	0·2297 0·0184 0·0414
0 :500	50 20 30	0.1860	0·4256 	0·0967 — —	0.2218	0.0501 0.0040 0.0091	0·1149 0·0111 0·0248
0.700	50 20 30		- 		, _	0·02 5 3	0.0689
0.900	50 20 30 50	_ _ _	- - -	<u>-</u> -	_	_	
	30						

The weight of steam, D, passing through the pipe in one hour is then

$$D = v_{d}\gamma_{d}\frac{d^{2}\pi}{4}3600 \quad . \quad . \quad . \quad . \quad (145)$$

whence the section of the pipe may be found.

TABLE 30.

pipes of 0.05 0.90 m. diameter and 20 m. long, at velocities of 20, 30 and Fischer and Gutermuth (F).

0° 35 <u>4</u>		0°5 195 564	·5	0·1 117 64	7·5	0·0 54 70	.9
8	F	s.	• F	s	F	s	F
			0·0135 0·0304 0·0845 0·0068 0·0152 0·0423 0·0041 0·0253				
	_ _ _	_ _ _	_ _ _	_ _ _		0·0018 0·0002 0·0005 0·0014	0·0055 0·0068 0·0015 0·0043

For pipes of equal diameter, d, and equal length, l, the velocity of the steam alters only in proportion to the quotient $\sqrt{\frac{Z_d}{\gamma_d}}$, for

$$v_d = \sqrt{\frac{1000d}{0.0015l}} \sqrt{\frac{z_d}{\gamma_d}} \quad . \quad . \quad . \quad . \quad (146)$$

If the resistance, z_d , be expressed in percentages of the original pressure (in metres of water), it may be seen that $\frac{z_d}{\gamma}$ gives the same figure exactly for all pressures of air and approximately for all pressures of steam. The factor $\frac{z_d}{\gamma}$, then remains unaltered for any one particular gas or vapour. For in the case of air, which is generally used far from its point of liquefaction, the weight of 1 cub. m. is proportional to the pressure: 1 cub. m. at a double pressure has double the weight. But with saturated steam the alteration is only approximate: saturated steam of double the pressure has only almost double the weight. This approximation is not a very close one, but may be regarded as sufficient for the present purpose, as the following figures show:—

 Steam pressure
 92
 186
 750
 1490
 2350 mm.

 In the proportion
 1
 :
 2
 :
 8:15
 :
 16:2
 :
 25:54

Weight of 1 cub. m.

of steam - 0.0822 0.162- 0.600 0.113 0.735 kilos. In the proportion - 0.12 0.13 0.13 0.13 0.13 0.13 kilos.

Thus if it is once fixed how much per cent. of the available pressure is to be expended in producing the velocity of the steam, there is found (for equal lengths and with the above-mentioned inaccuracy) for a pipe of each diameter a steam velocity peculiar to it and practically the same for all pressures.

After we have, obtained from Table 30 a view of the loss of pressure, which is to be expected with pipes of various diameters, and at different pressures and velocities, we then assume for Table 31 a permissible loss of 0.5 per cent. of the available pressure. The length of the pipe is taken at 20 m., and then, by means of equation (146), the resulting velocities are calculated. In Table 32 are next arranged the weights of steam at different pressures, which pass with these velocities through pipes of 20 - 900 mm. diameter in one hour.

Example.—Steam at atmospheric pressure (weight of 1 cub. m., $\gamma_d = 0.606$ kilo.) passes through a pipe of 0.1 m. diameter and 20 m. long. The loss in pressure is 0.5 per cent., i.e., $z_d = \frac{0.5}{100}$ 10.3 = 0.0515. The velocity is then

$$v_d = \sqrt{\frac{1000 \times 0.1}{0.0015 \times 20}} \sqrt{\frac{0.0515}{0.606}} = \sqrt{288} = 16.8 \text{ m. per second.}$$

The weight of steam, which passes through the pipe in one hour, is

$$D = 16.8 \times 0.605$$
. $\frac{3.14 \times 0.1^2}{4}$. $3600 = 288$ kilos.

Table 31.

Approximate velocity of steam in pipes of 0.025-0.9 m. diameter and 20 m. lcng, at absolute pressures of 4560-54.91 mm., for a 0.5 per cent. loss of pressure.

					,	,	
Absolute steam	4560	1520	760	694	567	195	54.9 mm.
pressure	At	mosphere	es.	1	v	acuum.	
prossure	6	2	1 1	126	193	564	705 mm.
γα	3.26	1.16	0.606	0.911	0.461	0.244	0.0512 kilos.
$\frac{z_a}{\gamma_a}$	0.0908	0.0836	0.0815	0.0822	0.0801	0.0768	0.0697
Bore of the pipe, d.		Velocity	of the ste	am in the	pipe in :	m. per sec	cond.
0.025	8.85	8.38		_	_		
0.030	9.47	9.13					
0.035	10.6	001					
0.040	10.9	10.6	10.4			•	
0.045	11.7	11.0	11.0				
0.050	12.2	11.8	11.5	-			
0.060	13·5	12.9	12.7				
0.070	14.5	13.4	13.4	13.9	_		-
0.080	15.5	14.9	14.7	14.7	14.6		
0.090	16⋅6	15.9	15.8	15.7	15.5		
0.100	17:3	16.7	16.6	16.1	15.9	15.6	15.1
0.125	19.3	18.6	18.4	18.4	18.2	17.7	17.0
0.150	21.8	21.0	20.6	20.2	19.9	18.4	18.6
0.175				21.9	21.5	21.3	20.1
0.200				23.8	23.0	23.0	21.5
0.225				24.8	24.4	23.7	22.8
0.250			-	26.1	25.7	25.0	24.1
0.300	_			28.6	28.3	27.4	26.4
0.350				30.8	30.5	29.6	28.5
0.400		_	-	33.1	32.5	31.6	30∙5
0.450	_			35.0	34.6	33.4	32.3
0.500		_		37.0	36.5	35.1	33.9
0.550					•_	37.0	35.8
0.600						39.0	37.0
0.650						40.3	38.9
0.700						41.8	40.3
0.750	_						41.6
0.800		_					43.1
0.850				,			44.3
0.900	•	_		_	_		45.6

Table 32. The weight of steam, D, in kilos., which passes in one hour through abs. to 705.09 mm. vacuum, with

						۴					
	ure, atmos. m. mercury	6 4560 —	3800 —	3040 -	3 2280 —	2 1520 —	1.5 1140 —	760 —			
Bore of the steam pipe, d .	Velocity of the steam in the pipe, m. per sec.		Weight of steam, D, in kilos., which pass								
mm.	V_d ,										
25 30 35 40 45	8.5 9 0 9·5 10·5 11·0	50 75 107 155 205	42 63 90 130 173	34 51 73 106 140	26 39 55 81 107	18 27 38 55 .73					
50	11.5	265	223	√181	138	95	72	49			
60 70 80 90 100 125 150	13 14 14·5 15·5 17 18·5 20	431 633 855 1120 1430 2590 3810 5670	363 533 720 943 1200 2170 3320 4750	294 432 684 765 977 1760 2610 3850	224 330 446 583 746 1340 1990 2940	153 225 305 398 509 929 1360 2020	117 172 232 304 388 700 1040 1530	80 117 159 208 275 478 709 1050			
200 225 250 300 350 400 450 500	21.5 23 24 26.5 28.5 30.5 32.5 34		6600	5350 7380 — — — — — —	4080 5630 — — — — —	2830 3810 4920 — — — —	2150 2910 3760 6000 8750 —	1470 1990 2560 4090 5980 8350			
550 600 650 700 750 800 850 900	35·5 37·5 38·5 40·5 41·5 43 44·5	-									

Table 32. pipes of 25-900 mm. diameter and 20 m. long, at pressures of 6 atmos. 0.5 per cent. loss of pressure.

									
0.834 664	0·746 567	0·70 525	0·5 384	0·375 288	0·257 195	0·195 149	0·155 117	0·12 92·0	0·072 54·9
126	194	234	376	471	564	611	642	668	705
		J	1			'	'		}
through	the pin	e in one	hou™, ∂	ith 0.5 r	er cent.	loss of 1	oressure.		
·	• •						•		
							•		
	1		1,	Ī -				i	
	•	-	_	_	_	•	_		
	-	-		_			_	-	
	_	-					_		
						_	_		
_		_					-		
_			_			_			
	I	_		_			_		
100	120	145	100		-	_			
175	156	147	109	84					
224		188 337	140 252	107 189	72 133	57	46	37	22.5
403 598	363 537	501	374	285	197	103 154	83 123	66 98	40 60
888	797	739	554	422	293	226	183	144	89
000	, ,,,,		332		-00		100		
1240	1120	1040	777	594	411	318	255	202	124
1680	1510	1410	1050	802	555	431	345	274	161
2160		1810	1350	. 1050	716	554	643	353	216
3450		2890	2150	1650	1140	886	709	563	345
5030	4540	4230	3150	2410	1670	1290	1040	823	505
7050 9510	6340 8550	5910 7960	4410 5930	3370 4540	2330 3140	1690 2440	1450 1950	1070 1550	706
12300		10300	7680	5870	4060	3150	2530	2000	950 1220
12000	11000	10000	1000	0010	1000	2100	2000	2000	1220
	13900	13000	9680	7400	5140	3980	3190	2530	1550
			12200	9320	6450	5000	4010	3180	1930
	_	_		11100	7770	6030	4830	4000	2350
		_		13100	9490	7350	5940	4680	2870
		_		-	11100	9700	7400	5870	3600
	_	-		-		10800	8180	6480	3980
	-	-		_	_	11900	9550	75 70	4650
	-	_		_	•	13800	11100	8780	5390
		·	l	1		:	1		

Table 33.

The velocities of mixtures of alcohol and water vapours, in pipes of loss of

Alcol	hol-water v	apour.	Weight of 1 cub. m.	Weight of 1 cub. m.		Di	ameter,
Alcohol, per cent.	Tempera-	Density.	of air at the tem- perature	of alcohol- water va- pour at the tempera-	40	50	60
by weight.	ture.		t_d .	ture t_d .		Ve	elocities.
	t_d	γa	Kilos.,	Kilos.			
0	100	0.623	1.041	0.648	11.76	13.11	14.35
5	99.5	0.643	1.043	0 670 '	11.50	12.82	14.08
10	99	0 664.	1.044	0.693	11.34		13.89
10 15	98.6	0 686	1.044	0.715			13.69
20	1 1						
20	98.3	0.709	1.046	0.742	10.94	12.19	13.30
25	98	0.735	1.047	0.768	10.82	12.06	13.25
30	97.2	0.763	1.049	0.799	10.58	11.79	
35	96.3	0.792	1.052	0.833	10.34	11.50	
40	95	0 824	1.056	0.870	10.12	11.28	12 36
45	93.8	0.859	1.059	0.909	9.92		12.12
'				1	1		i
50	92.4	0.896	1.060	0.950	9.68		11.84
55	90.9	0.937	1.067	0.999	9.42	10 50	11.53
60	89.5	0.981	1.071	1.050	9.22	10.28	11.29
. 65	87.8	1.031	1.076	1.109	8.98	10 00	11.00
70	86.3	1.088	1.081	1.176	8.72	9.72	10.68
75	84.5	1.148	1.086	1.247	8.48	9.45	10.83
75 80	82 7	1.214	1.092	1.326	8.20	9.14	10.00
85	80.5	1.214	1.092	1.418	7.92	8.83	9.70
90	79	1.378	1.103	1.520	7.66	8.54	
95	78.7	1.479	1.103	1.632	7.42	8.27	9 08
ชย	10.1	1419	1.104	1 032	1.42	0 41	9 00
100	78.4	1.593	1.105	1.750	7.14	7.96	8.74
		•	<u> </u>	<u> </u>	<u> </u>		ì

Pipes for steam of very low pressure (vacuum) are rarely longer than 20 m. Steam pipes for higher tensions are generally of much greater length. If the pipe is not 20 m. long, but has another length, ϵ_a , the weight of steam, which passes through in one hour, is then found by multiplying the weight given in Table 32 by the factor

$$\sqrt{\frac{20}{l_a}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (147)$$

Table 33. 40-250 mm. bore and 3 m. long, at a pressure of 1·1 atmos. abs. and 0·1 per cent. pressure

					•			1	1
70	80	90	100	125	150	175	200	225	250
d, of th	e alcoho	l-water	vapour i	n m. pe	r second	•	***************************************		
			-	•	<u>-</u>	!		1	
15.29	16.36	17.60	18.58	20.58	22.93	24.69	26.28	27.90	29.4
14.95	16.10	17.20	18.17	20.13	$22 \cdot 42$	24.15	25.85	27.31	28.74
14.74	1587	17.01	17.91	19.84	22.11	23.81	25.34	26.93	28:35
14.53	15.65	16.77	17:66	19.56	21.80	23.47	24.96	26.55	27:95
14.22	$15 \ 31$	16.41	17.28	19.15	21.34	22.97	24.45	25.98	27.35
	15.14	16.23	17.09	18.95	21.10	22.72	24.19	25.69	27.00
13.75	14.81	15.87	16.71	18.51	20.63	22.21	23.64		26.45
13.44	14.47	15.51	16.34	18.10	20.16	21.72	23.10	24.56	
13.1	14.17	15.18	15.99	17.71	19.74	21.25	22.61	24.13	25.30
12.89	13.89	14 88	15.67	17.36	19.34	20.80	22.17	23.56	24.80
10.57	10.54	14 50	15.0C	16.90	18.84	20.28	21.59	22.94	24:15
$12.57 \ 12.24$	13·54 13·18		15.26 14.88	16.48	18:37	19.78	21.05	22.37	$\frac{24.15}{23.75}$
$12.24 \\ 11.981$		15.83	14 56	16.13	17.98	19.36	20.60	21.89	$\frac{23.75}{23.05}$
11.67		13.47	14.17	15.71	17.51	18.85	20.07	21.33	$\frac{25.05}{22:45}$
11.33	12.21	13.08	13.77	15.26	17-51	18.31	19.49	20.71	$\frac{24}{2180}$
11 00	14 41	10 00	19 11	10 20	11	10 01	10 40	20 11	21 (10)
11.00	11.87	12.72	13.39	14:81	16.53	17:80	18.75	20.14	21.20
10.66	11.48	12.3	12.95	14.35	16	17.22	18.32	19.47	20:50
10.29	11.09	11.88	12.55	13.86	15.46	16.63	17.70	18.81	
9.96	10.72	11.49	12.10	13.40	14.96	16.10	17.12	18.19	19.15
9.65	10.39	11.13	11.72	12.88	14.47	15.58	16.58	17.62	
9.28	10.00	10.71	11.28	12.54	13.92	15	15.96	16.96	17:85

If some other loss of pressure, z_a (not 0.5 per cent.), is assumed in the pipe, then, in order to correct Table 32, the weight of steam there given must be multiplied by $\sqrt{\frac{z_a}{0.5}}$, in which expression z_a is to be inserted as a percentage.

Example.—If there be 1 per cent. loss of pressure, $z^a=1$; if 5 per cent., $z_a=5$.

In order to obtain the weights of steam for the length, l_a , and the loss of pressure, z_a , the weights in Table 32 must be multiplied by

$$\sqrt{\frac{20}{l_a}} \frac{z_{\ell}}{0.5} = \sqrt{\frac{z_{d}}{l_d}} 40$$
 (148)

Since, in practice, the weight and the original pressure of the steam to be passed through a pipe in one hour are generally known, the necessary diameter of the pipe can be found in Table 32, 34 or 35 (for lengths of 20 m. and a loss of pressure of 0.5 per cent.). For other lengths and other losses of pressure equation (148) must be used.

B. For Mixtures of Alcohol and Water Vapours.

Table 34 gives the weights of mixtures of the vapours of alcohol and water, which can be conducted in one hour through pipes of different diameters without considerable loss of pressure. In calculating this table it was assumed that the same formulae hold good for this mixture of vapours as for pure water vapour. But since such vapours are taken as a rule only through short connecting pipes between the different parts of rectifying and distilling apparatus, and since the pressure in such apparatus is always kept as low as possible, a pipe 3 m. long and a loss of pressure of 10 mm. of water (z = 0.01) were taken as the basis of the table.

In the apparatus mentioned the pressure is generally about 1·1 atmos. absolute, thus the value for p to be introduced into the calculation is 10,336 + 1033 = 11,369.

The alcohol-water vapours may have any desired composition, the mixtures vary from 1-99'8 per cent. of alcohol by weight. Each of these mixtures has a different specific gravity and boiling point, therefore it was necessary to determine for each the weight of 1 cub. m. at its temperature and at atmospheric pressure.

The temperatures of the various mixtures of vapour of alcohol and water at atmospheric pressure are known; their densities were taken from a paper published by the author. Thus the weight of 1 cub. m. of air at a pressure of 1.1 atmos. and at the temperature of each of the mixtures of vapour (calculated at intervals of 5 per cent.), multiplied by the density of the corresponding mixture of alcohol and water vapours, gives the true weight of 1 cub. m. of alcohol-water vapour at a pressure of 1.1 atmos. absolute.

By means of equation (144)

$$v_d = \sqrt{\frac{1000z_d d}{0.0015l\gamma_d}}. (149)$$

by inserting the values: l=3, $z_d=0.01$, $\gamma_d=0.648$ to 1.75, d=0.04 to 0.25, the corresponding velocities of these vapours in pipes of 40-250 mm. bore were found. The results of these calculations are arranged in Table 33.

From the velocities and the densities of the particular mixture of alcohol and water vapours (Table 33) were then readily obtained the weights which pass, at a pressure of 1.1 atmos. abs. and with a loss in pressure of $z_d = 0.01$ m. of water, through pipes 3 m. long of various bores. The results are given in Table 34.

C. For Air.

The loss of pressure of rarefied air in moderately long tubes has not, to the author's knowledge, been investigated. On the other hand, there have been the following researches on the loss of pressure of compressed air in long pipes:—

- 1. Chief Engineer H. Stockalper at the St. Gotthardt tunnel (1880), with pipes of 200 mm. bore and 4500 m. length, and 150 mm. bore and 542 m. length. Air pressure, $3\cdot6\cdot5\cdot4$ atmost, abs. Velocity, $4\cdot7\cdot11\cdot3$ m.
- 2. Prof. A. Devillez and Engineers Cornet and Mahiva at the Colliery Levant du Flénu (1881), with pipes of 125 mm. bore and 981 m. long, and 73 mm. bore and 172 m. long. Air pressure, 3.3.5.3 atmos. abs. Velocity, 2-12.2 m.
- 3. Profs. Gutermuth and Riedler at the compressed air installation in Paris (1890), with pipes of 300 mm. diameter and 16,502, 8759, 4403 and 3340 m. long. Air pressure, 6.2-8 atmos. abs. Velocity, 2.7-8-6 m.
- Prof. H. Lorenz at the compressed air installation at Offenbachon-Maine, on 17th January, 1892, with pipes of 100 mm. bore and 299 m. long. Air pressure, 6.7 atmos. abs. Velocity, 7.8-9.3 m.

Riedler and Gutermuth gave for the loss of pressure $(z_i$ in kilos. per sq. cm.), as the result of their experiments,

$$z_{t} = \frac{533}{10^{10}} \gamma \frac{l}{d} v_{t}^{2} (150)$$

$$v_{t} = \sqrt{\frac{z_{t} \cdot 10^{10} \cdot d}{533l\gamma}} (151)$$

or

Table 34.

The weight of mixtures of alcohol and water vapours, in kilos., which at 1·1 atmos. absolute pressure with 0·1 per

Alcohol	Diameter, d, of the pipe in mm.											
vapour, per cent. by	40	50	60	70	80	90						
weight.		V	Veight in ki	ilos, of the 1	nixture of a	alcohol and						
0	34	57·7	93	134	191	258						
5	35	58.3	94	137	194	261						
10	35.3	596	96	139	197	267						
15	36	60.5	97	141	201	272						
20	36.5	61· 4	101	145	204	276						
25	37.3	62.9	102	148	209	282						
30	38	63.9	103	151	213	288						
35	39	65.2	105	153	217	293						
40	40	66.6	108	156	222	300						
45	40.5	68	110	161	227	307						
50	41.4	69.5	113	163	231	311						
55	42.4	714	115	167	237	320						
60	43.6	73.4	119	173	242	330						
. 65	44.8	75.4	122	177	250	339						
70	45.5	77 ·5	126	181	257	357						
75	47:6	80	130	188	266	359						
80	48.7	82.7	133	192	273	368						
85	50.5	86.1	. 138	198	282	378						
90	52.4	88.8	143	207	292	396						
95	54.5	$92 \cdot 2$	148	215	304	410						
100	56.52	94 ·8	154	223	317	425						

For a loss of pressure of 0.5 per cent in pipes 20 m. long, the permissible air velocities would be, according to this equation, in pipes of the

Bore 50 60 70 80 90 100 125 mm. v_i 13·8 14·8 16 17·26 18·17 19·38 22·1 m. per sec.

TABLE 34.

passes in one hour through pipes of 40-250 mm. bore and 3 m. long, cent. loss in pressure (10 mm. of water).

100	125	150	175	200	225	250
ter vapo	urs which	passes throu	igh the pipe	e in one ho	ur.	··
336	587	940	1385	2045	2674	3394
34() •	594	950	1393	2077	2680	3402
347	606	970	1429	2109	2688	3470
356	617	986	1449	2134	2714	3528
359	627	1000	1472	2145	2756	3585
0.70	•	1 1000	1412	2110	2100	3000
367	643	1025	1510	2178	2817	3670
374	653	1043	1535	2184	2869	3733
378	666	1061	1564	2198	2922	3802
389	681	1081	1600	2223	2993	3889
399	693	1111	1636	2276	3060	3985
405	707	1186	1668	2317	3117	4052
417	727	1218	1714	2378	3199	4195
428	746	1251	1757	2444	3286	4275
440	767	1287	1809	2509	3381	4397
453	789	1326	1860	2576	3481	4505
467	816	1365	1913	2648	3583	4629
480	836	1400	1963	2721	3691	4770
498	868	1445	2030	2890	3813	4965
514	890	1509	2208	2040	3952	5141
524	924	1558	2230	3050	4111	5400

\mathbf{Bore}	150	175	200	225	250	300	mm.
v_{ι}	24.1	26.19	27.25	28.61	30.29	33.31	m. per sec.

Professor H. Lorenz, who published a re-calculation of the older researches and of his own in the Zeits. d. V. d. I., 1892, pp. 621 and

TABLE 35.

The weight of air, L (at 15° C.), which passes in one hour through pipes of 40.350 mm. diameter and 20 m. long at vacua of 0.740 mm. and 0.5 per cent. loss of pressure.

				Absolut	e pressi	are of t	he air i	n mm.				
Dia-	Velocity	1520	760	190	150	120	110	55	35	20		
meter of the pipe,	of the air in the		Vacuum in mm.									
d.	$_{v_{l}.}^{\mathrm{pipe,}}$	_	0 .	570	610	640	650	705	725	740		
		W	eight o	of air, I	, in kil pipe i	os., wh in one	ich pas hour.	ses thr	ough th	ıe		
mnı.	m.											
40 50 60 70 80 90 100 125 150 175 200 250 800 850	8·3 9·2 10·2 11·4 12·8 14·5 16·8 19 21 23 26·6 80 93	90 154 272 380 556 766 988 1786 2910 4380 6266 10788 18394 27574	45 77 136 190 278 383 494 893 1455 2190 8133 5894 9197	11·4 20 35 48 70 98 126 228 380 570 798 1368 2337 3515	9·2 15·7 27·5 37·5 56·2 76·4 100 180 29:3 440 625 1080 1840 2750	7.4 12.5 22 30 45 61 79 143 233 351 500 864 1470 2200	6.7 10.5 20 28 42 56 73 132 213 322 462 802 1350 2090	8·3 5·7 10 14 20 28 36 66 106 160 230 400 674 1040	2·1 3·7 6·4 9 13 18 23 42 68 102 147 252 430 641	1·2 2·9 3·7 5·0 7·4 10·8 13 24 40 60 84 144 246 370		

835, was led to the following empirical formula, which gives results in excellent agreement with all the experiments quoted:—

whence

If z_i be expressed as a percentage, x_i of p_m , then $z_i = \frac{x}{100} p_m$ and

$$v_{i} = \sqrt{\frac{x}{\frac{100}{p_{m}T}} p_{m}T} = \sqrt{\frac{xl'}{100\beta \cdot 273 \cdot l}} \cdot \dots (154)$$

In this equation, if p_a denotes the absolute pressure at the beginning, p_* at the end, then $p_m = \frac{p_a + p_*}{2}$ = the mean absolute pressure; $z_l = p_a - p_*$ = the loss of pressure in kilos. per sq. m. T is the mean absolute temperature of the air; l the length of the pipe in m.; v_l the velocity of the air; d the diameter of the pipe in mm.; β is a factor dependent on the diameter of the pipe.

The values of β , according to Lorenz, calculated for pipes of various diameters, are:—

Equation (154) gives, for the same loss of pressure, a somewhat lower velocity of the air as permissible than equation (151). In the want of decisive experiments we shall assume that equation (154) also holds good for air-pipes in which there is a considerably lower pressure than the atmospheric.

The results of the present chapter may be briefly, though somewhat inaccurately, expressed, for the most ordinary cases, as follows:—

The tubes for the evaporation of 100 kilos, of water per hour may be given the following sections:—

For the supply of heating steam at 3.00 atmos. abs. 2.5-3 sq. cm.

,,	,,	• ,,	1.25	,,		7-12	"
For exhaust	steam at	1.00 atm	os. abs.	-	•	6-12	,,
,,	,,	125 mm.	vacuum	•	-	8-16	,,
,,	;,	250	,,	-		10-20	,,
,,	,,	700	,,	٠.		60-100	,,
For exhaust	ed air at	700				1-4	

The values of β given by this formula agree with those given by Prof. Lorenz in the article referred to at the bottom of p. 175, but will not give the velocities tabulated in Table 35. The tabulated values appear to be correct so that β in equation (154) should be taken as $\frac{1}{1000}$ of the values given above [Reviser].

CHAPTER XVIII.

THE DIAMETER OF WATER PIPES.

THE quantity of water, which can flow in a definite time through a system of pipes, depends upon the pressure which produces the movement and on the hindrances (bends, branches, constrictions, roughnesses of wall) which obstruct the flow in the pipe.

It may be assumed that (apart from pumps, pressure and suction pipes, which are not considered here) the pressure, which causes the motion of the water, is provided either alone by a water-vessel placed at a high level, in which case the pressure may be that of a column of water 0.5-15 m. high, or alone by a vacuum condenser, in which case the pressure is equal to the vacuum measured in metres of water minus the height from the point at which the water enters the condenser to the water level. Since the vacuum in the condenser is always lower than the theoretical, the pressure just mentioned (even assuming that the water level is at the height at which the water enters the condenser) is at most 10 m. in practice.

Finally, the pressure causing the flow of water may be due to a water vessel at a high level and to the vacuum in the condenser. In this case the maximum pressure of 10 + 15 = 25 m. is rarely exceeded.

We shall now determine the quantities of water which can flow in one hour through pipes of various diameters with heads of 0.5-25 m. of water. It is necessary to calculate in each case the actual velocity, $v_{\rm ex}$ with which the water moves.

Let v_w = the velocity of the water in m. per second. h_w = the total available pressure in m. of water. Then the velocity theoretically produced at the end of the pipe is

This theoretical velocity is never attained, since in every system of pipes there are several conditions (resistances) which retard the flow of the water. We may assume that of the total available head or pressure of water, h_w , portions, h_1 , h_2 , h_3 , etc., must be used to overcome each of these resistances. These heads are therefore known as "heads of resistance". Each of these pressures, h_1 , h_2 , h_3 , would (if there were no resistance to overcome) impart to the water a corresponding velocity, v_1 , v_2 , v_3 , so that, if v_w be the velocity actually attained and h the head of water theoretically necessary to produce this velocity, the total available pressure, $h_w = h + h_1 + h_2 + h_3 + \dots$, would produce the velocity, $v_w + v_1 + v_2 + v_3 + \dots$, i.e.,

$$h_{*} = h + h_{1} + h_{2} + h_{3} = \frac{v_{*}^{2}}{2g} + \frac{v_{1}^{2}}{2g} + \frac{v_{2}^{2}}{2g} + \frac{v_{3}^{2}}{2g}. \quad (158)$$

Now h_1 , h_2 , h_3 may be written as fractions of the height, h, then

$$h_{\omega} = h + \zeta_1 h + \zeta_2 h + \zeta_3 h$$
 . . . (159)

in which h is the head theoretically necessary to produce the actually attained velocity, o_w .

 ζ_1 , ζ_2 , ζ_3 are known as the coefficients of resistance.

Since $h = \frac{v^2}{2g}$, therefore

$$h_{w} = \frac{v_{w}^{2}}{2g} + \zeta_{1} \frac{v_{w}^{2}}{2g} + \zeta_{2} \frac{v_{w}^{2}}{2g} + \zeta_{3} \frac{v_{w}^{2}}{2g} (160)$$

or

$$h_{w} = \frac{v_{w}^{2}}{2g}(1 + \zeta_{1} + \zeta_{2} + \zeta_{3}) \quad . \quad . \quad . \quad (161)$$

Hence the real velocity of water in pipes is

$$v_w = \frac{\sqrt{2gh_w}}{\sqrt{1+\zeta_1+\zeta_2+\zeta_3}}$$
 . . . (162)

The coefficients of resistance are estimated as parts of the height, h:—

 $\zeta_1=0.505$ is the coefficient of resistance for the entry of water from the tank into the pipe. It ranges from 0.08-0.505. If the mouth of the pipe be rounded and made conical, ζ_1 is small, but for safety it will be taken as 0.505.

 $\zeta_2=0.805$ is the coefficient for bends. For right-angled elbows, the radius of the bend of which, r=3d (d= diameter of the pipe), ζ_2 may be put 0.161. In the following Table 36, five bends are assumed for each pipe, thus $\zeta_2=5\times0.161=0.805$.

 $\zeta_3 = 0.6$ denotes the resistance of a tap or valve. If these are almost completely open, ζ_3 may be put 0.6, but as soon as the taps or valves are more or less closed the coefficient of resistance increases enormously.

 $\zeta_4=1$ is the resistance which arises through the entry of waterinto a vessel. If the section of the pipe be Q, and that of the vessel Q_1 , then the velocity, v, in the pipe becomes $v\frac{Q}{Q_1}$ in the vessel. The resistance head is therefore

$$h_4 = \frac{\left(v - v\frac{Q}{Q_1}\right)^2}{2g} = \left(1 - \frac{Q}{Q_1}\right)^2 \frac{v^2}{2g} \quad . \quad . \quad . \quad (163)$$

But $h = \frac{v^2}{2q}$ and $h_4 = \zeta_4 h$, therefore

$$\left(1 - \frac{Q}{Q_1}\right)^2 = \zeta_4 \quad . \quad . \quad . \quad . \quad . \quad (164)$$

If Q_1 be very great in proportion to Q, as is almost always the case, the fraction $\frac{Q}{Q_1}$ becomes very small and $\left(1-\frac{Q}{Q_1}\right)^2$ differs but little from unity. Thus we shall assume that $\zeta_4=1$.

 $\zeta_5 = \lambda \frac{l}{d}$ = the coefficient for the friction in the pipe. λ is found by Darcy's formula:

$$\lambda = 0.01989 + \frac{0.0005078}{d} \cdot \dots$$
 (165)

This coefficient must be separately found for every diameter and every length of pipe. In the following small table are given the values of λ for diameters from 0.020 to 0.450 m.

According to equation (165):—

For
$$d = 20$$
 25 30 35 40 45 mm.

 $\lambda = 0.04529$ 0.04019 0.03682 0.03439 0.03259 0.03120

For $d = 50$ 60 70 80 90 100 mm.

 $\lambda = 0.03004$ 0.02838 0.02718 0.02624 0.02553 0.02497

For $d = 125$ 150 175 200 225 250 mm.

 $\lambda = 0.02394$ 0.02327 0.02279 0.02231 0.02214 0.02192

For $d = 300$ 350 400 450 mm.

 $\lambda = 0.02155$ 0.02135 0.02115 0.02101

On the assumptions made above, the equation for calculating the velocity of water in cylindrical pipes is

$$v_{w} = \frac{\sqrt{2gh_{w}} \cdot \sqrt{1 + \zeta_{1} + \zeta_{2} + \zeta_{3} + \zeta_{4} + \lambda_{\overline{d}}^{l}}}{\sqrt{1 + \zeta_{1} + \zeta_{2} + \zeta_{3} + \zeta_{4} + \lambda_{\overline{d}}^{l}}} \cdot \cdot \cdot (166)$$

$$v_{w} = \frac{\sqrt{2gh_{w}}}{\sqrt{1 + 0.505 + 5 \times 0.161 + 0.6 + 1 + \lambda_{\overline{d}}^{l}}} = \frac{\sqrt{2gh_{w}}}{\sqrt{3.91 + \lambda_{\overline{d}}^{l}}} (167)$$

This equation has been employed in calculating Table 36, from it was found the velocity, v_{w} of water in pipes of 30-225 mm. diameter, for heads of $h_{w} = 0.5-25$ m., and lengths of pipe of $l = 10\cdot100$ m. The quantities of water, W, flowing through the pipe in one hour were then calculated from the velocities.

Since the figures of Table 36 always give the greatest quantity of water flowing through the pipe under the conditions assumed, it is necessary for practical use to add to the diameter of the pipe or to subtract from the quantity of water thus determined, especially in view of the possible occurrence in the pipe of a larger number of bends, branches, alterations of section and valves, and increased roughness of the inner surface.

TABLE 36. The quantity of water, W, in cub. m., which flows in 1 hour through cunder heads of water of 0.5.25 m.

	<u> </u>											
			Bore of pipe in mm.									
Head of water, hw.	Length of pipe, l.	30	35	40	45	50	60					
m.	•m.•	(Quantity o	f water, V	V, in cub.	m. per hou	ır.					
0.5	10	. 2.0	2.9	4.1	5.5	6.9	10.9					
''	20	1.5	2.2	3.1	4.2	5.5	8.7					
l	40	1.4	1.7	2.3	3.2	4.2	6.5					
l	60	0.9	1.3	1.8	2.6	3.5	5.6					
1	80	0.8	1.2	1.6	2.3	2.9	4.9					
l	100	0.7	1.1	1.5	2.1	2.7	4.4					
				<u> </u>								
1.0	10 🕠	2⋅8	4.1	' 5.8	7.8	9.8	15.3					
	20	$2\cdot 2$	3.1	4.4	6.0	7.8	12.3					
	40	1.6	2.4	3.3	4.5	5.8	9.2					
	60	1.3	1.9	2.6	3.7	4.9	7.9					
•	80	1.2	1.7	2.4	3.1	4.1	7.1					
	100	0.9	1.6	2.2	3.0	3.9	6.2					
2.0	10	4.3	5.8	8.1	11.0	13.8	21.8					
20	20	3.1	4.4	6.3	8.5	11:1	17.4					
•	40	2.3	3.3	4.7	6.3	8.3	13.1					
•	60	1.8	2.7	3.7	5.3	7.0	11.3					
	80	1.6	2.3	3.4	4.6	5.9	10.0					
	100	1.5	2.2	3.1	4.2	5.5	8.9					
0.0	10			00	<u> </u>							
3.0	10	5.0	7.1	9.8	13.5	16.0	26.6					
	20	3.8	5.5	7.7	10.4	12.8	21.3					
	40	2.8	4.1	5.7	7.8	9.6	16.0					
	60	2.2	3.3	4.6	6.5	8.0	13.8					
	80	1.9	2·9 2·7	4.1	5.6	6.9	12.3					
	100	1.6	2.7	3.8	5.2	6.4	10.8					
4.0	10	5·7 °	8.2	11.2	15.6	19.5	30.8					
	20	4.3	6.3	8.7	12.0	15.6	24.6					
	40	3.2	4.7	6.5	9.0	11.7	18.4					
	60	2.6	3.8	5.2	8.0	9.8	16.0					
	80	$2 \cdot 2$	3.4	4.7	6.6	8.9	14.3					
	100	2.1	3⋅1	4.3	6.0	7.8	12.3					

Table 36.

pipes of 30-225 mm. diameter and 10, 20, 40, 60, 80, 100 m. long. (5 elbows and 1 vaive assumed).

			Bore	e of pipe	in mm.								
70	80	90	100	125	150	175	200	225					
	Quantity of water, W, in cub. m. per hour.												
15.7	21.0	27.9	35.7	57.9	84.8	117•1	156.7	203.1					
12.6	17.5	23.2	29.6	49.7	75.0	106.4	142.4	184.6					
9.7	13.5	18.6	21.7	39.7	60:0	85.7	113.9	147.7					
8.3	11.5	15.3	20.7	34.8	55.1	81.9	109.6	142.1					
7.3	10.5	13.9	18.6	31.3	49.5	74.5	99.7	129.2					
6.5	9.6	12.8	16.3	29.8	45.0	70.2	95.1	121.7					
22.3	31.0	39.5	49.1	31.4	120.0	165.7	220.6	288.1					
17.8	25.8	32.9	41.8	70.2	106.2	150.6	202.3	261.9					
13.7	19.9	26.3	33.3	56.1	84.9	120.5	161.9	209.5					
10.7	16.0	21.7	29.2	49.1	78.0	115.9	155.8	201.6					
9.4	15.5	197	26.3	44.2	70.1	105.4	141.6	183.3					
9.4	14.2	18 1	23.0	42.1	64.3	99.8	133.5	172.8					
31.6	42.1	49.7	69.4	115.7	170.4	234.2	315.9	406.6					
25.3	35.1	41 4	59.3	99.8	150.7	212.9	287.2	369.7					
19.4	27.1	33.1	47.4	79.8	120.5	170.3	229.7	295.7					
16.7	23.2	27.3	41.5	69.8	110.8	1628	221.1	284.6					
146	21.0	24.8	37.3	62.8	99.4	149.0	201.0	258.7					
12.9	19.3	22.8	• 32.6	59.8	90.4	140.5	189.5	244.0					
39.2	52.1	68.4	85.9	141.4	209-1	287.6	386.8	504·8					
31.4	£3·0	57.0	72.9	121.9	185.1	261.4	351.6	458.0					
24.2	33.2	45.6	58.3	97.5	148.0	209.1	281.3	364.4					
20.7	28.4	37.6	51.0	85.0	136.0	201.3	270.7	352.6					
18.2	25.8	34.2	45.9	76.8	$122 \cdot 1$	188.0	248.1	319.6					
16.5	23.6	31.6	40.0	73.1	111.0	172.6	232.0	302.2					
44.6	45.0	78.8	98.1	163.9	243.5	333.3	447.7	580.9					
35.7	37.5	65.7	83.9	141.3	215.6	303.0	407.0	528.1					
27.5	28.9	52.5	67.1	113.0	172.5	242.4	325.6	422.5					
23.5	24.7	43.3	58.7	98.9	158.4	233.3	313.4	406.6					
21.4	22.5	39.4	52.8	89.0	141.2	212.1	284.9	369.6					
19.6	20.5	36.1	46.1	84.8	129.3	199.8	256.2	332.6					
				0.0	- MI/ U	2000	2002	,020					

TABLE 36—(continued).

	1						
				Bore of pi	pe in mm.	•	
Head of water, h_{vv} .	Length of pipe, l.	30	35	40	• 45	50	60
m.	m.	Ç	Quantity of	water, W	, in cub. m	. per hour	
= 0	10	C 0	0.5	10.0	15.5	00.0	94.0
5 ·0	10 20	6·3 4·9	8·6 6·6	12·9 9·9	17·5 13·4	22·8 17·5	34·0 26·1
	.40	3.6	4.9	7·4	10.1	13.1	19.6
	60	2.9	3.9	5.9	8.5	11.0	16.7
	80	2.5	3.6	5.4	7.4	9.0	14.9
	100	2.3	. გ∙2	4.9	6.7	8.7	13.1
6.0	10	7:9	10.0	14.2	19.1	25.0	36.0
	20	5.3	7.7	10.9	14.7	19:2	27.7
	40	4.0	5.8	. 8.1	11.0	14.4	20.7
	60	3.2	4.6	6.5	9.2	12.1	18.0
	80	2.7	4.2	6.0	8.1	10.9	15.7
	100	2.5	3.8	5.4	7.3	9.6	13.7
7.0	10	7.7	10.8	15.3	20.6	27.0	40.2
	20	5.7	8.3	11.8	15.9	20.8	30.9
	40	4.3	6.2	8.8	11.9	15.6	23.2
•	60	3.4	5.2	7.1	10.0	13.1	20.1
•	80	3.0	4.6	6.5	8.7	11.8	17.6
	100	2.7	4.1	5.9	7.9	10.4	15.4
8.0	10	8.1	11.6	16.3	22.1	28.8	44.9
	20	6.1	8.9	. 12.6	17.0	22.2	34.5
	40	4.6	6.7	9.4	12.7	16.6	25.9
	60	3.7	5.3	7.5	10.7	14.0	21.5
	80	3.2	4.9	6.9	9.3	12.6	19.7
	100	2.9	4.4	6.3	8.5	11.1	17.2
9.0	10	8.5	12.4	17.4	23.7	32.3	47.7
	20	6.5	9.5	13.4	18.2	24.8	36.7
	40	4.9	7.1	10.0	13.6	18.6	27.5
	60	3.9	5.7	8.0	11.4	15.7	23.8
	80	3.4	4.9	7.3	10.0	14.1	21.2
	100	3.6	4.5	6.7	9.1	12.4	18.7

Table 36—(continued).

			D	of mine				
		•	DOR	of pipe	iu mm.			
7 0	80	90	100	125	150	175	200	225
		Quant	ity of wat	er, W, in	cub. m. I	er hour.	•	
50 ·0	66.6	87.9	110.1	183.4	272.4	371.4	499.7	645.5
4 0·0	55.5	73.2	94.1	158.1	241.0	337.6	454.2	586.8
30.8	42.7	58.6	75.2	126.5	192.8	270.1	363.4	469.4
26.4	36.6	48.3	65.8	110.6	177.1	259.7	338.7	451.8
23.2	33.3	43.9	• 59.2	99.6	159.1	236.3	317.9	410.7
21.0	. 30.5	40.3	51.7	94.8	144.6	22 2·8	299.8	387.3
53.1	73.5	98.5	120.6	202.7	294.7	408.5	549.6	708.4
42.4	61.3	81.2	103.1	172.7	260.8	371.4	499.7	644.0
32.7	47.2	65.0	82.5	138.1	208.6	297.1		515.2
28.0	40.4	62.4	72.4	120.8	191.5	301.3	384.7	495.9
24.6	38.7	48.7	64.9	108.8	172.1	259.9	349.7	450.8
22.2	36.7	47.8	60.9	103.6	156.4	245.1	329.8	424.0
48.4	80.1	104.4	129.6	215.9	316.9	439.0	602.0	763.5
46.7	66.7	37∙0	110.7	185.5	280.5	399.1	538.2	694.1
35.9	51.4	71.6	88.7	148.4	224.4	319.3	430.5	635.3
30.8	44.0	57.4	77.6	129.8	206.1	305.1	314.4	534.5
27.1	40.0	53.6	69.8	116.8	185.1	279.4	376.7	
27.9	36.7	47.8	60.9	111.3	168.3	250.5	355.2	458.1
65:0	84.6	112.6	138.8	232.7	339.5	470.4	628.1	818.7
52.0	70.5	93.8	118.6	199.2	302.1	427.7	571.0	744.2
40·0	54.3	75·1	95.1	159.4	241.7	342.1	456.8	595.4
34.3	46.5	61.9	83.0	139.4	222.1	329.3	439.6	573.0
27.7	42.3	56.3	74.7	125.4	195.5	299.3	399.7	520.9
27.3	38.8	52·7	65.2	119.5	183.7	281.6	376.6	490.0
07.0	00.0	117.0	1455	045.0	000.0	405 3	050.0	0050
67.0	90.9	117.9	145.7	245.9	362.2	497.1	670.3	865.9
53.6	75:7	98.3	124.6	212.0	320.5	451.9	609.4	787.2
41.2	58.5	78.6	99.7	169.6	256.4	371.5	487.5	629.7
34.7	50.5	64.8	87.2	148.4	235.6	347.9	469.2	606.1
32.1	45.4	57.9	78.5	133.5	211.5	316.3	426.6	551.0
29.4	41.6	5 4 ·0	74.7	127.2	192.3	298.2	402.2	519.5

Table 36—(continued).

	UE 00-	(continue	, .				
Head of	T =4 b	***************************************		Bore of pi	ipe in mm	•	-
water,	Length of pipe, l.	30	35	40	45	50	60
m.	m.		Quantity o	f water, W	, in cub. 1	n. per hou	r.
` "			1 .	1			1
10.0	10	8.9	13.0	18.3	25.1	31.6	48.5
	20.	6.9	10.0	14.1	19.3	25.3	38.8
	40	5.1	7.5	10.6	14.5	19.0	29.1
	60	4.1	6.0	8.4	12.2	16.0	25.2
	80	3.6	5.5	7.7	10.6	14.4	22.5
	100	3.0	5.0	7.0	9.6	12.6	19.8
11.0	10	9.4	13.6	19.3	26 0	32.6	51.1
l	20	7.2	10.5	14.9	20.0	26:1	40.8
l	40	5.4	7.8	41.1	15.0	24.4	38.3
	60	4.3	6.3	8.9	12.6	16.5	26.5
	80	3.8	5.8	8.1	11.0	14.8	23.7
	100	3∙5	5.2	7.4	10.0	13.0	20.8
12:0	10	10.0	14.3	19.5	27:3	33.6	53.3
	20	7.5	11.0	15.0	21.1	26.8	42.7
	40	5.6	8.3	11.3	15.8	20.1	32.6
•	60	4.3	6.6	9.0	13.2	17.0	27.7
	80	3·9	6.0	8.1	11.6	15.3	24.7
	100	3.7	5.4	7.4	10.5	13.4	21.7
				1	1 •	<u> </u>	1
13.0	10	10.2	14.8	20.8	28.2	35.3	55.8
	20	7.8	11.4	16.0	21.7	28.3	44.6
	40	5.9	8.5	12.0	16.3	21.2	33.4
	60	4.7	6.8	9.6	13.6	17.9	29.0
	80	4.2	6.2	8.8	11.9	16.0	25.8
	100	' 3·8	5.6	8.0	10.8	14.0	22.7
14:0	10	10.6	15.2	20.7	29.2	38.4	59.4
110	20	8.2	11.7	16.7	22.4	29.5	45.7
į	40	6.1	8.8	12.5	16.8	22·1	34.3
	60	4.9	7.0	10.0	13.5	18.0	27.9
	80	4.4	6.4	9.1	12.3	16.2	26.0
	100	4.0	5.8	8.3	11.2	14.7	22.7
	100	1 1	00	00	11.2	TIL	44 1

Table 36—(continued).

			Bore	of pipe i	n mm.			
70	80	90	100	125	150	175	200	225
		Quanti	ity of wat	er, W, in	cub. m. p	er hour.		·
71.4	93.7	120.9	154.4	258.7	391.8	524.7	707.7	913.1
56.3	78.1	103.3	133.1	223.0	337.7	477.0	643.3	830.1
43.4	60.2	82.6	106.4	178.4	270.1	381.6	514.6	730.5
37.2	51.5	68.1	93.1	156.1	249.1	345.3	495.3	639.2
32.6	46.8	61.9	83.8	140.5	222.9	333.9	450.3	581.1
28.2	4 2·9	56.8	73.2	133.8	202.6	• 314·8	424.6	547.8
74.3	98.1	130.5	163.0	269-2	391.8	525.9	700.4	954.1
59.4	81.7	198.8	139.6	234.1	355.5	478.1	672.7	867.3
45.7°	63.0	87.0	119.6	187.2	284.4	382.5	538.2	693.8
37.2	53.9	71.8	97.7	163.8	261.3	368.1	414.4	667.8
34.4	490	65.2	87.8	147.4	234.6	334.7	370.9	607.1
29.8	44.9	59.8	76.7	140 4	213.3	315.5	355.1	572.4
75.6	102.0	 136·0	171.2	286.3	416.8	586.1	771.1	1006.0
60.5	85.0	115 3	$\frac{1712}{1455}$	245.1	368.9	523.8	701.0	914.6
46.5	66.4	90.6	116.4	216.1	295.1	419.0	560.8	731.6
39.9	56.1	74.8	101.8	171.5	271.1	403.3	539.7	704.2
35.0	51.0	68.0	91.6	154.4	243.4	366.6	490.7	640.2
30.3	46.7	62.3	~80 ·0	147.0	221.3	345.7	462.6	603.6
			•		 			
80.7	107.4	142.8	176.8	293.6	434.8	599.9	807.2	1039.1
64.6	89.5	119.0	151.1	253.9	384.8	545.4	733.8	944.6
49.7	75.9	95.2	120.9	203.1	307.8	436.3	587.1	755.7
31.6	59.0	7 8·5	105.8	177.7	284.1	419.9	565.1	727.3
37.4	53.7	71.4	95.2	160.0	253.9	381.8	513.6	661.2
32.5	49.2	65.4	83.1	152.3	230.9	359∙9	484.3	623.4
83.3	111.7	148.1	183.5	304.8	452-1	619.0	839.5	1078-4
66.6	93.8	123.4	156.8	262.8	400.1	562.7	763.2	980.4
51.3	71.8	98.7	125.4	214.2	320.0	450.2	610.5	784.3
43.9	61.4	81.4	111.7	183.4	294.0	425.6	587.6	754.9
38.6	55.9	74.0	98.8	195.5	263.0	393.9	534.2	686.3
34.9	51.2	67.8	86.2	157.6	240.0	371.4	510.0	647.0
	1	5.5	002	10.0			1 0	1

Table 36—(continued).

			·				
'			: 	Bore of pi	pe in mm.	•	
Head of water, h_w .	Length of pipe, l .	30	35	40	45	50	60
m	m.	Q	uantity of	water, W,	in cub. m	. per hour	•
15.0	10 20 40 60 80	10·9 8·4 6·3 5·0 4·6	15·7 12·1 9·0 7·2 6·6	22·3 17·1 12·9 10·4 9·3	30·4 23·4 17·5 14·2 12·8	39·6 30·4 22·8 18·3 16·7	62·1 47·7 35·8 29·2 26·2
	100	4.1.	6.0	8.5	11.7	15.2	23.9
16.0	10 20 40 60 80 100	11·3 8·7 6·5 5·2 4·7 4·3	16·4 12·6 9·4 7·6 6·9 6·2	23·3 17·9 13·4 10·8 9·7	31·2 24·0 18·0 14·5 13·2 12·0	41·2 91·6 23·7 19·1 17·4 15·8	64·1 49·3 36·9 30·0 27·1 24·7
18.0	10 20 40 60 80 100	12·0 9·2 6·9 5·5 4·9 4·5	17·5 13·4 10·0 8·0 7·2 6·6	24·6 18·9 14·2 11·4 10·2 9·3	33·0 25·4 19·0 15·4 14·0 12·7	42·2 32·4 24·3 26·1 17·8 16·2	68·0 52·3 39·2 31·8 28·8 26·2
20•0	10 20 40 60	12·7 9·8 7·3 5·8	18·4 14·1 10·6 8·5	25·9 19·9 14·9 12·0	35·1· 27·0 20·2 16·3	45·4 34·9 26·2 18·0	72·0 55·4 41·5 33·6
25.0	10 20 40 60 80 100	14·3 11·0 7·2 6·6 6·0 5·4	20·5 15·9 11·9 9·5 8·6 7·9	29·0 22·3 16·7 13·4 12·1 11·0	37·7 29·0 21·7 17·9 15·9 14·5	48·9 39·1 27·0 24·7 21·6 19·5	77·4 61·9 46·4 40·2 31·1 30·9

TABLE 36—(continued).

		Bore of pipe in mm.											
70	80	90	100	125	150	175	200	225					
***************************************		Quanti	ty of wat	er, W, in	cub. m. p	er hour.		_					
86.7	114.4	153.6	190.9	319.4	467.2	642.8	864.4	1117.8					
69.4	96.2	128.0	163.1	273.0	413.4	$584 \cdot 4$	7 85·8	1016.2					
53.4	74.1	102.4	130.5	*218.4	330.7	467.5	618.6	812.9					
45.8	63.5	84.4	114.2	191.1	303.8	457.6	605.0	782.4					
40.2	57.7	76.8	102.7	171.9	272.0	409.0	550.0	711.3					
36.5	52.9	70.4	89.7	163.8	248.0.	385.7	518.6	670.7					
91.0 1	119.0	161.4	196.7	327.4	485.1	661.7	888.0	1149.3					
72.8	99.4	i34·5	168.1	282.2	429.3	601.7	807.3						
56.1	76.6	107.6	134.5	225.7	343.4	481.3	645.7	835.8					
48.0	65.6	88.7	117.7	197.5	315.5	463.3	621.6	804.5					
42.2	59.6	80.7	105.9	177.8	282.6	423.3	565.1	731.3					
38.3	54.7	73.9	92.4	169.3	257.6	397·1	532.8	689.7					
94.5	127.6	172.8	208.3	345.8	515.3	703·1	951.4	1243.7					
	106.3	144.0	178.0	298.1	451.6	639.1	864.9	1130.7					
58.2	81.9	115.2	142.4	238.5	361.3	511.3	691.9	904.5					
49.9	70.1	95.0	124.6	208.7	331.9	492.1	666.0	870.6					
42.8	63.8	86.6	111.5	187.8	297.8	447.4	605.4	• 791.5					
39.7	58.4	79.2	97.9	178.8	270.9	421.8	559.8	746.2					
	<u> </u>			<u> </u>									
99.6	132.5	177.2	219.9	363.8	535.0	743.8	1001.2	1291.0					
	110.5	147.7	187.9	313.6	477.0	676.1	910.2	1173.6					
61.4	85.1	118.1	150.3	250.8	381.6	531.9	728.1	938.9					
52.6	72.9	97.4	131.5	219.5	340.1	520.6	700.8	903.7					
111.0	140.5	105.0		407.0	FOR 5		11000	1450					
	149.7	197.8	244.2	407.2	587.7	833.3	1106.9	1459.4					
	124.8	164.8	210.5	351.1	534.3	757.5	1006.3	1326.8					
68.9	96.1	131.9	168.4	280.9	427.4	666.0	905.0	1261.4					
59.0	82.3	97.9	147.3	245.8	392.0	621.6	852.3	1123.8					
53.7	74.8	88.9	132.6	221.2	352.6	583.3	774.8	1021.6					
49.2	68.6	90.6	126.0	210.6	320.5	499-9	664.1	875.6					

CHAPTER XIX.

THE LOSS OF HEAT FROM APPARATUS AND PIPES TO THE SUR-ROUNDING AIR AND MEANS FOR PREVENTING THE ESCAPE.

A. The Loss of Heat.

1. According to E Péclet's Equations.

E. Peclet, in his classic work, Traité de la chaleur, has laid down the principles for calculating the loss of heat from hot bodies. We ought not, however, to omit the many later researches and methods of calculation; we shall therefore give the losses of heat according to Péclet and also according to more recent and simpler estimations. Unfortunately the results of the two methods of calculation differ considerably, Péclet's equations giving too low numbers, the more recent equations too high figures. The observed losses of heat, although they also are not all in agreement, lie approximately in the mean of those calculated according to the two formulæ.

According to Péclet, the total hourly loss of heat, M, expressed in calories, from 1 sq. m. of hot surface is composed of two parts, viz.:—

(a) The loss due to radiation, R, which only depends upon the material and the nature of the radiating surface, in addition to the temperature of the air, θ , and the difference in temperature, t, between the hot body and the surrounding air. The influence of the material and nature of the surface is expressed by the coefficient, k, which is for:—

Copper	-	-	-	-	-	0.16
Wrought iron	-	-	-	-	-	2.77
Cast iron -					-	3.36

According to Péclet's empirical equation,

$$R = 124.72ka^{\theta}(a^{t} - 1) (168)$$

in which a = 1.0077.

(b) The loss caused by contact with the surrounding air, A. In this case the shape of the body, in addition to the difference in temperature, has a considerable influence upon the loss, which influence is expressed by the coefficient, k₁.

According to Péclet

$$A = 0.552 k_1^4 t^{1.233}$$
 (169)

The total loss of heat from the body is therefore, for 1 sq. m., one hour and the difference in temperature, t.

$$M = R + A = 124.72ka^{\theta} (a^{t} - 1) + 0.552k_{1}t^{1.233} \qquad (170)$$

The coefficient, k_1 , was determined by Péclet for many forms of surface; it is different for flat plane surfaces, for horizontal and vertical cylinders, and also depends on the diameter of the cylinder.

In Table 37 are given the following values, calculated according to Péclet's data:—

- (a) The loss of heat by radiation, R, from copper, wrought and cast iron, for 1 sq. m., one hour, and for temperature differences of 20° - 180° C.
 - (b) The loss of heat by conduction, A, for 1 sq. m. and one hour:—
 - (a) From horizontal pipes of 20-1000 mm. diameter, and differences in temperature of 20°-180° C.
 - (β) From vertical cylinders of 1-3 m. diameter, 1-5 m. high, for temperature differences of 20°-150° C.
 - (γ) From plane surfaces of 1.5 m. height and differences in temperature of 20°-180° C.
- (c) The coefficient, k₁, for horizontal pipes, with differences in temperature of 20°-180° C.
- (d) The coefficient, k_1 , for vertical cylindrical surfaces of 1-3 m. diameter, and 1-5 m. high.
 - (e) The coefficient, k, for vertical plane surfaces.

From Table 37 the calculated loss of heat (per sq. m. per hour) can be read off for the most usual cases. For this purpose the loss by radiation, R, for the particular material and the prevailing difference in temperature, is added to the loss by conduction, A,

Table 37.

Loss of heat by radiation, R, by conduction, A (also the coefficients, k and cast iron, at temperature differences of 20° - 180° C.,

			····	<u>;</u>		<u> </u>		
		`	Tem	perature	Differen	ce.		
	20°	30°	40°	50°	60°	70°	80°	90°
		(a) Los	s of heat	by radia	tion, R , j	per 1 sq.	m., from o	opper,
R =	3.7	5.8		ot copper			19	22.2
R =	64	100	Wro 138·5	ught iroi 181		77). 27 5	328	384
1	l		C	ast iron (k = 9:36)			
R=	78	121	400	219	274	334	396	466
Diameter of the	٠,					(b) (a)) Loss of l	neat b y
pipe, mm. 20	130	215	306	404	505	610	716	832
30	101	168	241	316	396	479	562	754
40	88	145	207	272	340	412	483	561
50	79.4	131	186	246	307	372	436	505
60	74	121	173	228 .	285	345	404	470
70	70	115	164	216	270	328	384	444
. 80	66.6	109.8	156.6	205.8	258	312	367	426
90	65	107.5	153	202	252	305	360	415
100	62.6	103	147	193	242	293	345	399
150	57	94	133	176	220	266	313	364
200 300	54 51	89	$127 \\ 120$	167 158	210 197 8	249	298	344
400	49.9	84 82	117	156	1978	239 234	282	326
500	48.6	81	115	151	190	234	276 271	319 313
600	48.4	80	113.7	148	187	227	267	309
800	47.7	78.7	112	147	185	223	263	305
1000	47	. 76.7	111	146	183	221	260	298
Height						40.4		
of the cylinder.						(b) (£) Loss of	heat by
mm.				er of the				
1000	59	96	138	182	228	275	323	375
2000	52	86	123	162	202	245	289	334
3000	50	82	117	154	194	235	275	333
4000	48.8	81	116	152	191	227.	267	309
5000	48.4	80	113.7	148	187	222	261	299
	<u>'</u>	!	 		1		1.	

TABLE 37.

and k₁) from plane and cylindrical surfaces of sheet copper, wrought in calories per sq. m. per hour, according to E. Péclet.

	Temperature Difference.												
100°	110°	120°	130°	140°	150°	160°	170°	180°					
wrought	wrought iron and cast iron, as temperature differences of 20°-180° C.												
25.7	29.7	33.8	Sheet o	opper (k 43		54'	60	67					
Wrought iron (k = 2·77). 447 ·506 585 662 746 836 939 1045 1159													
54 1	622	709	Cast 803	iron ($k = 904$		1139	1269	1406					
couduction, A, from horizontal pipes.													
948 742 638 586 536 507 484 477 454 414 393 371 363 357 352 347 342	1065 837 717 648 601 567 544 534 511 465 441 417 408 400 396 390 383	931 800 724 671 636 606 595 570 517 493 465 454 446 440 434 430	1309 1028 883 798 740 669 655 629 572 544 513 502 493 486 479 475	1432 1125 966 873 810 768 733 717 688 626 595 562 550 540 532 525 519	1561 1226 1053 952 883 838 798 782 750 683 649 612 599 588 580 572 566	1691 1328 1140 1031 957 907 864 847 812 739 703 662 648 636 628 619 613	1822 1431 1229 1112 1030 978 931 913 875 796 758 714 698 686 677 667 633	1955 1535 1318 1192 1105 1048 999 979 - 939 853 812 766 756 726 716 709					
conduc	ion, A, fi	rom vertic	al cylind	lers.									
400	1 400			the cylin		or.							
428 381 364 352 344	480 427 408 396 385	535 477 457 440 432	591 526 504 477 486	646 575 551 532 516	705 627 601 580 569								

TABLE 37—(continued).

TYRL	E 31—(comm	ieu).					
Height of the			Ter	mperatur	e Differe	nçe.	•	
cylinder.	20°	30°	40°	50°	60°	70°	80°	90°
mm.	20	- 50	10		00	,,	00	50
			Diamet	er of the	aulindar	1.5 m		
1000	59	95	137	180	226	273	320	371
2000	51	86	121	159	199	242	286	330
3000	49	82	115	151	191	231	272	315
4000	48.6	81	114	149	189	229	270	312
5000	48	79	112.5		185	225	265	306
			Diame	ter of the	cylinde	r = 2 m.		
1000	58	94	136	179	224	270	317	368
2000	50	84	121	159	199	· 240	283	328
3000	48.8	82	116	152	191	225	271	308
4000	48.6	79.5	113	148	187	222	265	299
5000	47	76.7	•	146	183	221	260	298
	,			er of the	•			
1000	56	91	132	173	217	262	307	357
2000	51	84	120	158	197.8	239	282	326
3000	48.6	81	115	151	190	230	271	313
4000	48	79	113	147	186	224	264	307
5000	47	76.7	,	146	183	221	260	298
1000	E.E.	. 01	131	eter of the	e cynnae 216	r= 5 m. 260	905	955
2000	55 51	91 84	120	157	197	238	305 280	355 324
3000	48.6	81	114	150	189	229	270	312
4000	47·7	78.7	112	147	185	223	263	305
5000	47	76.7	1 .	146	183	221	260	298
				1			eat by con	1
1000	53.2	53.2	87.8	125.3	206	253	294	349
2000	48.6	81	115	151	190	230	271	313
3000	47.0	76.7	111	146	183	221	260	298
4000	46· 4	76.1	108.5	142.6	178.3	219	255	284
5000	45.1	75	107	140.5	176.3	213	251	290
l								
I	(c) \	alue of		cient, k,		zontal pi	pes.	
1	_	·		ameter ir				
	<i>d</i> =			30 40			mm.	
1	$\mathbf{k}_1 =$	5.87	5.11 4	61 3	96 3·5	8 3.32	1	
	$\overline{d} =$	70	80	90 10	0 150	200	mm.	
	k, =			94 2		67 2·44		
1								
1				00 80		•		٤
1	k ₁ =	3.3	2.25 2	21 2	18 2 ·1	5 2·13	•	*

Table 37—(continued).

	Temperature Difference.											
100°	110°	120°	130°	140°	150°	160°	170°	180°				
		Dia	meter of	the cylin	der = 1.5	m.						
424	475	530	585	640	698		1 1	_				
377	420	470	522	570	617							
358	401	448	495	546	591		_					
355	398	444	490	537	585		*					
348	392	436	481	527	575	-	-					
		Die	ameter of	the cylin	der = 2	m.						
420	470	525	580	633	690	l —						
373	419	467	516	565	615							
350	395	438	484	530	577	_						
344	385	432	477	521	569			_				
342	383	430	475	519	566		_					
		Dia	meter of	the cylin	der = 2·5	m.		•				
405	456	509	562	615	670	1						
371	417	465	513	562	612							
357	400	466	493	540	588							
348	392	436	482	528	575		-					
342	382	430	475	519	566		_ <u>:</u>					
-		Dia	meter of	the cylin	der = 3	ms.	•	'				
403	452	505	560	612	667	I	1	١				
369	415	463	510	560	609	_						
355	398	444	490	537	585		_	_				
347	390	434	479	525	572		•	•				
342	383	430	475	579	566							
		lane surf		1 010	, 500	1	1	t				
388	426	484	535	586	638	691	745	800				
363	408	454	502	550	599	648	698	750				
342	383	430	475	519	566	613	660	709				
336	379	420	463	508	553	599	645	692				
331	369	414	451	501	545	590	637	682				
001	•	Value of	'			1		1 002				
	(4)	Y de luc oi	h = height		diamete		ueis.					
			h = 10				5000 m	m.				
	d =	1000	$k_1 = 2 \cdot \epsilon$	5 2.36	2.26	2.22	2.18	•				
	d =		$\mathbf{k}_1 = 2 \cdot 6$			2.20	2.16					
	d =	2000	$k_1 = 2.6$	30 2 ·31	2.22	2.17	2.13					
	d =		$k_1 = 24$		2.21	2.16	2.13					
	d =		$\mathbf{k}_1 = 2 \cdot b$		9 2.20	2.15	2.13					
	(e) Vs	lue of the				plane s	urfaces.					
	h	= 1000		height in 3000	mm. 4000	5000 m						
			2.21	2.13	2.08	2·05	ш.					
	k ₁	44	2.21	2 10	4 00	⊿.00						

which depends on the form of the body and its position at the present difference in temperature.

Example.—A horizontal cast-non pipe of 200 mm. external diameter loses, with a temperature difference of 100° C.,

M = R + A = 541 + 393 = 934 calories per sq. m. per hour.

These calculated losses of heat probably approximate to the truth, but it is still necessary to state what values have been obtained by more recent experiments conducted both on a large and small scale. It may be assumed a priori, that experiments with larger objects in larger rooms will show somewhat greater losses of heat, since they, being generally undertaken for practical purposes, do not so completely exclude all the subsidiary conditions (e.g., the rapid motion of the air about the warm body under the experiment), as Péclet's purely laboratory experiments did. We have endeavoured to collect the accounts of researches on loss of heat dispersed throughout the literature of the subject. The results of the search are collected in Table 38; it should be remarked that these experiments do not all appear to be of equal value, since some were certainly not carried out with regard to all the circumstances to be considered.

.. In Table 38 are given the quantities of condensed water found in the different experiments, and thence are calculated the calories given out per sq. m. per hour. Then in the next column is given the loss of heat calculated for the particular case by means of Péclet's formulæ.

Comparison of these figures shows that in reality hot surfaces lose about 25 per cent. more heat than Péclet's formula indicates, which is without doubt explained by the ever-present air currents, which, as is well known, considerably facilitate the loss of heat to the air. The irregularity of the results of the experiments is due to the same cause and to the variable quantity of air in the steam.

It is not possible to arrange in one table the losses of heat from all these hot podies of such various shapes and sizes. The loss must generally be determined as the product of the calculated exterior surface and the loss from unit surface, obtained from Table 37 or 39.

For the most ordinary apparatus—horizontal pipes and vertical cylinders of cast-iron, wrought-iron and copper—the losses of heat per hour calculated by Péclet's equations are given in Table 39, for pipes of 20-1000 mm. diameter per running metre and for vertical

cylinders of 1-5 m. height per 1 sq. m. of surface, for temperature differences of 30°-160° C. $^{\bullet}$

In order to find one loss of heat really to be expected, the figures of Table 39 must be multiplied by about 1 275, i.e., increased by about 25 per cent.

2. According to more Modern Formulæ.

The second, more modern, and somewhat simplified formula for the determination of the loss of heat, M, from warm bodies to the surrounding air, runs as before,

$$M = R + A$$
 (171)

The loss by radiation is here, according to Dulong and Petit,

$$R = 125k(1.0077t_1 - 1.0077t_2) \quad . \quad . \quad . \quad (172)$$

. The coefficient of radiation, k, according to Péclet, for copper = 0·16, wrought iron = 2·77, cast iron = 3·36; t_1 is the temperature of the hot space, t_2 , of the cold space.

The loss by conduction is

$$A = 0.55b(t_1 - t_2)^{1.233} (173)$$

in which b is the coefficient of conduction, which is, according to Valerius, for air at rest, 4, for air in motion, 5-6.

Thus the formula for the loss of heat from hot bodies to the surrounding air becomes

$$M = 125k(1.0077/_1 - 1.0077/_2) + 0.55b(t_1 - t_2)^{1.233}$$
 (174)

^aBy means of this equation the loss of heat from east-iron, wrought-iron, and copper surfaces, to the surrounding air, per hour and per eq. m., has been calculated for differences in temperature of 20°-180° C. The results are given in Table 40.

These figures (Table 40) will be found to be considerably higher than those calculated by neans of Péclet's formula (Table 39), and even greater than the losses experimentally determined. • As is often the case, the truth lies in the mean.

In the compilation of experimental results (Table 38), the values calculated by both formulæ are introduced, in order to facilitate comparison.

The loss of heat from multiple effect evaporators is greater than would be due to their simple surface. Let C_I , C_{II} , C_{II} , C_{IV} calories [Continued on p. 202.

Table 38.

Compilation of the results of experiments, on the loss of heat, by Ordway, Gutermuth, Pasquay, Russner and Paul Müller.

	,	Jrdway, G	10011,	144-	,	Mean	· · · · · · · · · · · · · · · · · · ·			1		
	1	2	'3	4	5	6	7	8	9	10	11	12
	Author.	Internal diameter = d External " = D Length = l	External surface	Freshure of the steam in the pipe.	o Internal temperature.	S External temperature.	Steam condensed soli per hour.	Steam condensed in per hour per 1 sq. m. s of surface.	O Loss of heat per	D Loss calculated	C Loss calculated by equation (174).	Loss of heat, in calories, when covered with
0	Boston 14. Report 14.	d=50 D=59.7 l=304.8	0.057	4	150	15	_	Naked 3:176	1594	1628	2060	Felt 363
	1885, Gutermuth, Zeits. d. V. d. I., 1887, No. 33, p. 653.	Cast iron d = 150 D = 174 l = 3000	1.677 1.677 1.677 1.677 1.677 1.677 1.677	2·50 2·87 2·50 2·50 2·60	140 187 189 138 139 139	16·2 18·3 15·5 18·2 15·8 18·2 23·2 19·2	5·49 5·73 5·37 5·59 5·25 5·46	3.28	1672	Averag	1700	Kiesel- guhr 561 Cork 495
	'. d. I., 188	Cast iron d=75 D=88 l=33000	97 · 8 97 · 8 0 97 · 8	5 4 5 6	152 159 165·8	20 ? 20 ? 20 ?	107·0 115 120	1·04 1·18 1·23				552 585 605 437
	Zeits. d. V	Cast iron d=140 D=168 l=32300	184 184	3 4 5 6	144 152 159 165-8	1	2 168 2 186 2 205	1.11	4			460 508 546
	utermuth,	Cast iron d=75 D=88 l=33000		3 4 5 6	144 152 159 165	20 20 20 20 20	9 312 9 328	0.92 1.10 1.14 1.13	9			470 555 565 556
	1885, Gı	plus d=140 D=168 l=32300	Total, 281-5	8 4 5 6	144 152 159 165	20 20 20 20 20	? 300 ? 301	0.9 1.06 1.11	7			455 588 529 546

Table 38—(continued).

			•								
1	2	3	4	5	6	7	8	9	10	11	12
Author.	Internal diameter = d External "= D I Length = l	External surface	square of the steam in the pipe.	Internal temperature.	External temperature.	Soli Steam condensed soli per Hour.	X Steam condensed ii. per hour per 1 sq. m.	C Loss of heat per	D. Loss calculated	C Loss calculated by equation (174).	Loss of heat, in calories,
Pasquay, Private Communication, 1895 ().	Cast iron d - 140 D 160- 178 l 1870		•1•7	115 145 189 135 135 129 129 129	15 14·5 21 15 10 25 20 22	Naked 2:332 3:547 3:06 3:145 4:08 2:769 3:061 2:433	Naked 3,932 3.547 3.06 3.145 4.08 2.769 3.061 2.433	Naked 1230 1791 1561 1613 2093 1431 1581 1267	Naked 954 1968 1221 1221 1299 1148 954 954	1431 2052 1710 1824 1935 1720 1431 1431	Kiesel- guhr 309
J. Kussner. Jahresb. d. tech. Staatsanstalt Muhlhausen. Oct., 1891.	$ \begin{vmatrix} d = 120 \\ D = ? \\ l = ? \\ d = ? \\ D = 88.5 \\ l = 3600 $	Wrought	1.0	99-3	10.8	1.676	1.97	1058	805 688	•	•
P. Muller, Aug. 24, 1895. Pamphlet.	Cast iron $d = ?$ D = 159 l = 8008	4	3.6 1.7 1.7 1.2 3.6 4.5 3.6 4.5 5.5 1.2 1.7 3.6 5.5	139·8 115·5 115·1 106·6 140·3 148·2 140·1 148 148·4 154·6 105 115 140 155			2·98 2·54 2·48 2·84 2·66 2·93 2·68 3·00 2·76 2·99	1685 1038 958 871-5 1432 1567 1538 1584 1439 1663	1080 756 650 594 1020 1030 1020 1030 1072 1100	1612 1050 990 907 1590 1590 1525 1550 1650	

EVAPORATING AND CONDENSING APPARATUS.

TABLE 39.

- (a) Loss of heat, in calories, from cast-iron (C), wrought-hour, according
 - (b) Loss of heat from vertical cylinders, 1-5 m.

 The real loss is about 25 per cent.

e of 3, d.	External diameter of pipe, d_a .	Cooling surface per 1 m. of length.	Material.		Tempera	ture Diff	erence.	
B Bore	Ext en dist	oo Coo Ta face	M	30°	40°	50°	60°	70°
							\ T	
00	oc	0.081	W	1	0	(a) Loss	or near,
20 20	26 23	0.075	"K	_				
30	38	0.120	\vec{w}		_			
30	33	0.103	K			-		
40	44.5	0.140	W				78	95
40	43	0.135	K W	-			45 100	$\frac{51}{110}$
50 50	54 54	4 0·169 0·169	W K	_			51	72
1			W				100	121
60 60	66 64	0·207 0·201	W K				57	72
70	76	0.238	w	_			117	142
70	74	0.232	K				64	78
80	100	0.314	C	·			162	135
80	89	0.279	W_{-}			_	197	162
80	85	0.267	K		_		71	86
90	110	0.345	C_{-}			_	176	214
90	98	0.307	W			_	145 76	175 97
90 100	95 120	0·300 0·377	C	_			190	232
100	108	0.339	l ™				166	192
100	105	0.330	"K				83	100
125	145	0.455	C		136	175	225	273
125	133	0.417	W	 	113	150	189	228
125	131	0.411	K		57	78	100	118
150	172	0.050	C	-	162	210	264	320
150	159	0.499	W	-	136	177	222	270
150	157	0.493	C	-	70 210	90 284	110 350	130 420
200	223 210	0·700 0·659	W		174	284	287	346
200	208	0.653	" _K	_	86	114	144	174
250	276	0.867	C	_	258	337	424	511
250	260	0.817	W		218	287	358	433
250	258	0.810	K	-	113	250	188	228
	1	<u> </u>	<u> </u>	<u> </u>	1	1	e	<u>.</u>

TABLE 39.

iron (W) and copper (K) pipes per running metre in one to E. Péclet. high, per sq. m. per hour, according to E. Péclet. greater than that calculated here.

				.				********
			Temper	rature Di	fference.			
80°	90°	100°	110°	120°	130°	140°	150°	160°
a calorie	es, per ru	nning m.	in 1 hou	ır.		•		
76	94	102	113	129	1 143	160	177	193
48.	60	65	70	80	85	95	105	11
96	115	130	144	165	185	205	225	25
53	71	81	85	95	105	110	120	13
110	127	149	165	190	210	235	257	28
64	75	95	100	105	118	130	141	15
124	143	170	190	217	245	268	293	32
75	86	90	110	125	138	150	163	18
150	168	200	220	250	280	310	340	39
85	97	112	125	138	154	165	185	19
167	195	224	225	286	309	356	396	* 43
90	105	120	135	152	166	185	201	21
231	171	318	355	403	448	500	553	610
192	224	258	294	340	368	408	450	500
103	118	135	152	170	190	207	226	24
254	297	349	388	438	490	546	607	670
205	235	276	305	350	390	430	477	52
112	129	150	165	184	195	225	244	26
276	322	377	422	477	533	593	659	72'
227	264	311	344	391	438	483	537	591
118	138	168	178	198	217	240	265	280
322	377	434	494	558	625	696	772	854
267	310	367	413	468	515	585	643	710
141	161	188	211	225	251	380	310	338
379	442	510	580	707	733	815	907	1004
319	372	431	483	577	616	688	758	839
160	190	210	240	270	300	325	360	390
511	588	700	770	875	980	1092	1211	1330
410	477	574	623	706	792	877	976	1082
214	234	275	305	345	376	410	456	490
607	705	814	924	1048	1178	1308	1466	1612
513	600	689	777	888	995	1107	1225	1358
273	313	356	400	446	495	542	592	643
	•	1			·			

Table 39—(continued).

:							r		
-	Bore of pipe, d .	External diameter of pipe, d_a .	Cooling surface per 1 m. of length.	Material.		Temper	sture• Di	fference.	
			l .	Ms	3 ₽ °	40°	50°	60°	70°
1	mm	mm.	sq. m.		<u> </u>	<u> </u>	<u> </u>	1	!
								(a) Loss	of heat,
1	300	332	1.043	C	205	295	378	471	575
	300	310	0.974	W	177	250	329	409	498
1	300	308	0.967	K	87	124	163	203	247
1	400	410	1!288	W	233	326	441	537	651
1	400	408	1.282	K	113	150	215	266	322
1	500	510	1.60	•W	289	404	531	665	.808
1	500	509	1.60	K	154	197	257	324	394
ł	000	410							ĺ
ı	600	612	1.92	W	345	480	628	792	969
1	700	712	2.23	W	404	559	733	918	1115
1	800	813	8.55	W	448	642	841	1057	1275
1	900	913	2.87	W	505	723	947	1190	1435
1	1000	1013	3.18	W	556	791	1040	1299	1578
			Height. m.					(b) Loss	of heat
ı			1	C.	216	305	399	500	607
١				W	195	275	361	452	548
ı				K	101	145	191	240	290
1	` .		2	C	207	289	378	473	576
ı			٠.	W	186	259	340	425	517
				K	92	129	170	211	260
1			3	c .	203	283	370	465	565
١				w l	182	253	332	418	506
J				"K	88	124	162	204	247
١			4	c^{-1}	201	282	367	463	563
١			_	w	181	252	330	415	494
١				K	87	123	160	202	245
١			5	c	200	280	365	460	560
I			-	\overline{w}	179	250	328	411	500
1		,		K	85	121	158	200	241
l				'	- 1				

be the losses of heat from the separate vessels. It is evident that heat lost from one vessel cannot produce evaporation in the following vessels.

Table 39-(continued).

	TABLE 55—(continues).										
			Tempera	ture Diff	ierence.						
80°	90°	100°	110°	120°	130°	140°	150°	160°			
in calorie	s, per ru	nning m.	in 1 hour	:							
702	820	947	1077	1213	1469	1517	1683	1865			
588	689	793	895	1038	1129	1268	1404	1553			
292	356	375	433	496	544	589	• 640	694			
773	900	1037	1170	1330	1490	1658	1837	2032			
380	439	494	565	659	688	764	834	905			
960	1015	1286	1350	1649	1848	2057	2272	2520			
464	535	•612	688	768	849	932	1017	1104			
1148	1357	1636	1722	1978	2213	2463	2718	2818			
1322	1540	1774	2007	2279	2551	2845	3146	3639			
1505	1746	2014	2269.	2601	2907	3238	3595	3978			
1693	1932	2252	2615	2927	3272	3715	4047	4477			
1762	2162	2501	2820	3226	3612	4017	4458	4931			
from ver	tical cylii	nders per	sq. m. pe	er hour.							
716	832	965	1097	1242		•		٠			
648	755	871	981	1115 •	_			: :			
340	395	450	505	564				-			
682	796	918	1042	1180				-			
614	714	824	926	1055		_	,				
305	352	403	4 50	505		' -	,	-			
668	781	899	1023	1157		_	_	! _			
600	699	805	907	1033		_					
291	337	384	431	481	_	-		_			
666	778	896	1020	1152				-			
598	696	802	904	1029	_						
289	334	381	428	478			_	-			
665	772	889	1014	1145		-	-				
593	690	795	898	1021			-	-			
284	328	374	422	470		_		-			
			1	1	•			1			

In the double effect the first vessel loses C_I calories, and since these C_I calories cannot evaporate anything in the second vessel, as much again is lost, *i.e.*, altogether $2C_I$ calories. The second vessel in its turn loses C_{II} calories.

Thus there are lost :---

In the double effect : $2C_{I} + C_{II}.$ In the triple effect : $3C_{I} + 2C_{II} + C_{II}.$ In the quadruple effect : $4C_{I} + 3C_{II} + 2C_{III} + C_{I}.$

TABLE 40.

	Difference in temperature.	Cast- iron.	Wrought- iron.	Copper.	Difference in temperature.	Castiron.	Wrought- iron.	Copper.		
-			ries per so ctive diffe erature.		Loss of heat in calories per sq. m. pe hour at the respective differences in temperature.					
	20 30 40 50 60 70 80 90	200 324 456 • 590 741 907 1074 1248 1431	192 312 440 570 710 877 1034 1200 1380	133 210 292 384 475 552 686 794 901	110 120 130 140 150 160 170 180	1612 1824 2052 2246 2485 2725 2945 3240	1550 1652 1968 2156 2380 2610 2820 3100	986 1134 1252 1386 1496 1625 1747 1880		

In vertical evaporators the cooling surface per sq. m. of heating surface ranges from 0·12·0·36 sq. m., as a rule it is 0·16·0·2 sq. m.

Example.—In a quadruple effect evaporator, with vessels of equal size, the cooling surface = 0.18 sq. m. per sq. m. of heating surface. The temperatures are:—

In vessel	•	•		-	-	-	I.	II.	III.	IV.
							100°	95°	86°	60°
Thus the te		ma + 111 m	A 416	Samo			0.00	750	CK9	400

If the vessels are of wrought iron, the loss of heat in each, per 1 sq. m. of heating surface, is (Table 39)

0·18 × 600 0·18 × 550 0·18 × 460 0·18 × 258, i.e., 108 99 88 45·5 calories. The whole loss of heat is thus

effect	effect evaporator of			-	30 C	400	600	800	sq. m.
The loss of	f heat	is ab	out		70,500	94,000	141,000	188,000	calories
Or about	-	-	-	-	130	195	260	345	kilos. of steam
Or about	-	-	-	-	22	, 33	45	58	kilos. of coal
per hour.	Rath	er m	ore tl	nen	less.	•			*

The loss of heat from a large apparatus is thus not inconsiderable, and it is very advisable to protect from such losses.

B. Means for Preventing Loss of Heat and their Efficacy.

The results obtained in different experiments, which are in tolerable agreement, show that the best protection against loss of heat is afforded by porous substances, which contain air. The order of efficiency, the best first, is as follows: silk, hair, wool, cotton, straw, turf, cork, wood, ashes, kieselguhr, sawdust, powdered coke, slag wool, mixtures of clay, lime and gypsum, with or without hair. The coating should not be too thick or the surface is unduly increased; a larger and cooler surface may easily lose more heat than a smaller and hotter surface. The coating should be light, incombustible and fairly resistant to external injury. The conductivities of the various protective materials, as determined by Pasquay, appear to be reliable; silk waste is the best non-conducting material.

Pasquay found the following conductivities for heat:-

Silk	٠.	-	•	•	-	•	0.045-0.048
Cow-hair felt	-	-		-	-	-	0.057
Cork shavings	-	-	-	•	-		0.073
Chopped turf	-	-	-	-	. •	-	0.073-0.0997
Kieselguhr		-	-	-	-	-	0.077-0.144
Leroy's mixture	•	-	•	٠.	-		0.089 - 0.125
Knoch's mixtur	e e	-	-		-	•	0.090-0.240
Slag wool -	-	-	-	-	-	-	0.101
Grünzweig and	Hart	mann	's (K	ieselg	uhr)	•	0.122
Einsiedel's mix	ture	-					0.139

The coefficient of radiation for the protective mass was taken as 3.65.

Pasquay also found (Wärmeschutz im Dampfbetrieb, 1895) the following amounts of condensed steam in a naked and covered pipe, other conditions being the same. The temperature of the steam was 185° C.; of the air, 13.5°-16° C. (mean, 15°).

The pipe condensed per sq. m. of surface in one hour:-Naked -- 2.972-3.087 kilos, of steam. When covered with a cushion of silk 25 mm. thick -0.446When covered 55 mm, thick with cork shavings -0.467When covered with kieselguhr 0.640 - 0.895When covered with Leroy's mixture 25 mm. thick -- 0.672-0.871 When covered with Knoch's mixture 25 mm, thick -- 0.845-1.216 When covered with Klehmet's mix-- 1:396

It is to be observed that the composition of the compound nonconducting materials, has considerable influence on their efficiency, and that the composition is in reality not always the same. Price also influences the choice of a non-conducting material.

By using the best protective coating, in the most favourable case about 80-85 per cent, of the loss which occurs from a naked pipe may be avoided.

Johannes Russner proposes for steam pipes a double covering of tin-plate, fitting tight, which is said to be still better than silk. This covering appears to be rather expensive. In this case the width of the space between the pipe and its jacket is important, it should not be too small or too large; about 10 mm is stated to be suitable.

CHAPTER XX.

CONDENSERS.

The appliances by means of which vapours (or gases) are liquefied or condensed are known as condensers. Sometimes the vapours or gases are to be condensed at atmospheric pressure, but more frequently it is desired to produce and maintain a vacuum by means of the condensation. In the latter case the condensation must naturally be effected in a space shut off from the air. The condensation is accomplished almost without exception in the cases under consideration by the withdrawal of heat, for which purpose cold water is generally used, cold air more rarely, since the former is the cheapest and most convenient means. It may be used in two ways: either the cooling water is injected directly into the vapour to be condensed, or the vapour is conducted over surfaces cooled by water or air. Thus there are obtained:—

A. Jet-condensers.

B. Surface-condensers.

The former are cheaper and are therefore always used, unless it is required to separate the vapours of valuable liquids (alcohol, ether, benzene, etc.) or to obtain pure condensed water.

Of the jet-condensers, which are employed to create a vacuum and must therefore be connected to an air-pump, two different kinds may be distinguished, namely:—

(a) The so-called wet condensers, from which the air-pump extracts the condensed vapours and injected water together with the air and uncondensed vapours. The principle of opposite currents between vapour and cooling water may be utilised in these condensers, but is not of great service. Wet condensers are generally arranged for parallel currents.

(b) The so-called dry condensers, from which the air-pump extracts only the air and uncondensed vapour, whilst the condensed vapour and injected water are carried off automatically in another way. The principle of opposite or counter-currents is almost always applied in this class, and with great effect, thus they are also called dry counter-current condensers.

Surface-condensers, since they generally require a large surface, are almost always tubular; they are constructed of one or several long pipes or of many short tubes. The vapour may then pass through, and the cooling water outside, the tubes, but the opposite arrangement is also used. In both cases the whole mass of the water may flow slowly, generally upwards (opposite currents), in a closed space over the condensing surface. Thus these condensers are called closed surface-condensers. In many cases it is not only necessary to liquefy the vapours in the condenser, but also to cool the liquid. A cooling surface must then be attached to the condensing surface; this apparatus is then known as a cooler. If the vapour is passed through the tubes and the cooling water allowed to flow down outside exposed to the air, the apparatus is known as an open surface-condenser.

A. Jet-Condensers.

1. General.

When a definite weight of steam at a determined pressure is admitted into a condenser, perfectly closed and quite empty, and sufficient cold water is injected, almost the whole of the steam is converted into water and the injected or cooling water becomes considerably hotter by the exchange of heat. After the condensation there remain in the condenser: warm water, and over it, an absolutely empty space, in which the pressure would be zero (i.e., a vacuum of 760 mm.) if the space were not immediately filled by:—

- (a) The vapour, evolved by the warm water. Its pressure, which depends on the temperature of the water, is always known.
- (b) Air, which is always introduced into the condenser along with the steam and cooling water.

¹ It will be seen that the differentiation of jet-condensers into "wet" and "dry" in no way corresponds to the true meaning of the words. These expressions have been once introduced and are now almost universally employed in interested circles. We might propose to call "dry" condensers fall-pipe condensers.

If, as a matter of reality, no air at all entered the condenser, after the condensation there would be in the condenser only water and vapour at a pressure corresponding to the temperature of the water. Since, however, air is always introduced by the steam and water, to this vapour pressure is to be added the pressure of the air introduced. The pressure in the condensor is then the sum of the pressures of air and vapour.

Warm water, which has been used for condensing, then artificially cooled and again led into the condenser, contains little air, but still always some quantity.

In a closed vessel, partially filled with hot water, in which a considerable air pressure is produced by artificial means, the water would still evolve steam of a pressure corresponding to its temperature, which would increase by its own amount the pressure already existing.

The air-pumps are used to exhaust as rapidly and completely as possible the air introduced by steam and water, so that there may be in the condenser only the pressure of the steam, which depends on the temperature of the water.

The pressure in the condenser should be as low as possible, for as it decreases the boiling point also falls and the evaporative capacity of the heating surface in the vacuum increases.

There can be no intention of exhausting, by means of the air-pump, the vapour formed from the water together with the air, in order to increase the vacuum, since the volume of this vapour is so great that it cannot be dealt with by pumps of reasonable size. If it were desired to exhaust steam from the condenser with the air-pump, and thus to form fresh vapour from the water, which process would cool the warm water and so produce a higher vacuum, the air-pump would have to be of quite impossible dimensions.

Example.—In order to condense 100 kilos, of steam, under certain circumstances, 8090 kilos, of water are required, which become heated from 15°-85° C.

In order to cool these 3030 kilos, of water through 5° C. (to 30°) it would be necessary to deprive them of 15,150 calories, i.e., to evaporate $\frac{15,150}{586} = 26.1$ kilos. Now 1 kilo. of steam at 30°.35° C. has a volume on the average of 28,750 litres, thus 26·1 kilos, measure 750,875 litres. Such great volumes can naturally not be pumped out in a short time.

It is therefore necessary to restrict the operation to removing the air alone from the condenser as completely as possible,

Since the pressure in the condenser is always the sum of the pressures of air and steam, it follows that the pressure of the air is found if that of the steam be deducted from the total pressure. The pressure of the steam is, however, dependent on the temperature

Parallel Current Jet-Condenser.

of the injected water when warmed by the condensed steam, since the two are in contact.

The temperature of the water at different parts of the same condenser is different, so must also be the pressures of the steam and air. The total pressure cannot be the same in all parts of the condenser, because currents of air and steam must be produced, but this total pressure must always be somewhat lower than the pressure in the evaporating apparatus, the vapours of which are to be liquefied in the condenser, since the friction of the vapour in the pipes between the evaporator and condenser naturally absorbs a certain amount of pressure. .

There must be a somewhat higher pressure in the evaporator than in the condenser, in order to impart their velocity to the exhausted vapours. This difference of pressure will be the less, the shorter the connecting pipe and the slower the movement of the steam in it. On this subject see Chapter XVII.

The higher the temperature of the water in the condenser at the place where the air is exhausted, the higher is also the corresponding vapour pressure at this point. With a fixed total pressure in the condenser, the pressure of the air must be lower (i.e., a definite weight will occupy a proportionately larger volume, which is to be removed

from the condenser) the higher the temperature the water with which it is last in contact. •

Thus it follows that, other things being equal, the volume of air to be extracted is least when it is directly or indirectly in contact with cold water at its removal from the condenser. This is the case in opposite current and surface-condensers, whilst in parallel current condensers the warm water goes into the pump in common with the air and steam.

The amount of cooling water used in a condenser must always be so great that the temperature of the waste water is somewhat lower than corresponds to the vacuum, since only then can the vacuum in the condenser be maintained somewhat higher than in the evaporator (i.e., the pressure somewhat lower), which we found to be necessary.

In wet (parallel current) jet-condensers the steam enters the closed condenser at the top, together with the water in the finest spray, and both move downwards with diverse velocities. The steam then gives up its heat to the cooling water and is liquefied, and the cooling water takes up this heat and becomes warmer. The velocity of the steam diminishes to zero in its downward path, the velocity of the water increasing downwards in accordance with the laws of falling bodies. Air, water and uncondensed gases collect at the lower part of the condenser and are exhausted by the air-pump.

Wet condensers are constructed in many different ways. Fig. 14 indicates one construction, which is quite practical and permits of the necessary injected water being pumped direct from a well.

Opposite currents may also be arranged in Fig. 15.

a wet condenser, by admitting the steam below

and exhausting the air above, by which means the latter, since it is

last in contact with cold water, may be removed colder, which is in itself an advantage. However, the air in the pump cylinder, or even earlier, is in contact with the warm water, above which is steam of corresponding pressure. Thus an advantage of this construction can hardly be recognised, for the air is intimately mixed with the water and very rapidly acquires its temperature, when the condition of things is then the same as if air and water were exhausted by the same passage. The pressure in the wet air-pump, which is still in question, is always dependent on the temperature of the water pumped out.

In dry (counter-current, fall-pipe) condensers the steam enters below and the cooling water in fine spray above. The steam rises with decreasing velocity, the cooling water falls. It is endeavoured to arrange that the cooling water, when it leaves, shall be as nearly as possible at the temperature of the entering steam and the air as nearly as possible at that of the cold water. It is often assumed that the temperature of the steam is the same throughout the condenser, which cannot, strictly speaking, be the case. From the bottom of the condenser the injected water and condensed steam flow away spontaneously through a vertical pipe at least 10.7 m. long. In the most favourable case the pressure in this condenser corresponds to the temperature of the cooling water as it enters.

Dry condensers also may be constructed in different ways. Fig. 15 shows, with details omitted, an ordinary design, which is quite clear without further explanation.

. We shall next consider separately the factors which affect the dimensions of 'jet-condensers, and then use the results in determining these dimensions.

2. The Necessary Quantity of Cooling Water.

The quantity of cooling water required in each case depends in particular on its original temperature, on that at which it is to leave the condenser, and, finally, on the total heat of the steam, which depends on the vacuum to be produced.

Let D = the weight of steam to be condensed, in kilos.,

c = the total heat of 1 kilo. of this steam,

W = the weight of the cooling water in kilos.,

 t_a = original temperature of this water in °C.,

t_e = the final temperature of the waste water after the condensation.

$$Dc + Wt_a = (W + D)t_o \qquad . \qquad . \qquad . \qquad (175)$$

Thus the weight of cooling water,

$${}^{\bullet}W = \frac{D(c - t_e)}{t_e - t_a}$$
 (176)

Example.—D = 100 kilos. of steam are to be condensed by water at $t_a = 10^\circ$, so that the waste water is at $t_a = 40^\circ$. How much cooling water is required?

At 40° C. 1 kilo. of steam has c = 618.7 calories, therefore

$$W = \frac{D(c - t_e)}{t_e - t_a} = \frac{100(618 \cdot 7 - 40)}{40 - 10} = 1929 \text{ kilos.}$$

Thus in this case W = 1929 kilos, of cooling water are necessary.

It is occasionally convenient to have these data at hand, accordingly Table 41 has been drawn up, giving the number of kilos. of water required to condense 1 kilo. of steam under various conditions—water injected at temperatures of $5^{\circ}-40^{\circ}$ C., and waste water at $20^{\circ}-60^{\circ}$ C. The heat of the steam is taken throughout at c=630 calories, whilst in reality it varies somewhat in each case.

3. The Diameter of the Water Supply Pipe.

The diameter of the pipe, which conveys the water to the condenser, depends on the quantity to be supplied in unit time and on the pressure with which it is injected into the condenser. The quantities of water necessary in each case may be taken from Table 41, the available pressure depends on the special conditions of each installation and may vary greatly. If the water tank (or well) is at the same level as the condenser, the whole excess of the pressure of the atmosphere over the pressure in the condenser is available for drawing the water into the condenser. If there is a vacuum in the condenser of 700 mm. of mercury, corresponding to a water column of H = 9.525m., then the head of water in this case is also $h_{\omega} = H = 9.525$ m. If the water-tank is at the height h_{λ} above the condenser, then this difference in height is to be added to the vacuum expressed as a head of water. The total head is then $h_w = H + h_h$. If the water is at a lower level than the condenser, viz, at the distance h_i below it, then the pressure of the water is equal to the difference of these heights: $h_w = H - h_i$. The heights h_h and h_i must always be measured from the point where the water enters the condenser.

Tempera- ture of the injected		т,	empera	ture of	the was	te wate	r, <i>t_e</i> , in '	, C.	
water, <i>t</i> ₄. ° C.	20°	25°	30°	,35 [£]	40°	45°	50°	55°	60°
	Weig	ht of in	jected y	water, i	n kilos.,	requir	ed for 1	kilo. of	steam.
5	44.3	30	23.8	19.7	16.7	14.5	12.7	11.4	10.3
6	43.2	31.5	24.7	20.5	17.2	14.9	13	11.6	10.5
7	46.5	33.3	25.6	21.3	17.8	15.2	13.3	11.8	10.7
8	50.5	35.3	27	22	18.3	15.7	13.7	12.13	10.9
9	55	37.5	28.3	23	18.9	16.1	14	12.4	11.1
10	60.5	40	29.3	24	19.6	16.4	14.4	12.7	11.3
11	66.2	42.9	31.3	24.6	20	17.1	14.8	13	11.5
12	75.6	46.2	33	25.6	20.9	17.6	15.1	13.25	11.8
13	86.4	50	35	26.5	21.3	18.1	15.4	13.6	12
14	101	55	37.2	28.1		19	16	14	12.3
15	121	60	39.6	29.5	23.4	19.7	16.4	14.25	12.6
16	152	66	42.5	31.1	24.1	20	16·9	14 [.] 6	12.85
17	202	75	45.6	33	25.4	20.7	17.4	15	13.15
18	303	86	49.6	34.5	26.6	21.5	18	15.4	13.4
19		100	54.1	36.5	27.8	22.3	18.5	16	13.8
20		120	59.5	39.5	29.3	23.2		16·3	14.1
21	l —	150	65	42.1	30.8	24.1	19.8	17	14.5
• 22		200	74.4	45.4	32.4	25.1	20.6	17.3	14·8
23 *	_ ^	 —	84.4	49.5	34.4	26.4	21.3	17.8	15.3
24			99.2	53.6	36.5	27.6	22.1	18.4	15.7
25	l —		119	59	38.5	29.3	23	19	16
26		l	149	65.6	42	30.5	23.9	19.6	16.4
27	l —			74.3	45	32.2	25	20.5	17.1
2 8	-			84.3	49	*34.1	26.14	20.7	17.7
29				98.3	53.2	36.2	27.4	21.5	18.2
30	i —			147	58.5	38.6	28.75	22.4	19.2
31				197	65	41.4		23.3	19.5
32	 				73	44.6	32	24.1	20.2
33	·		a		97.5	48.3	33.8	25.4	20.5
34	l —	-			117	53	35.9	26.7	21.7
35	-	_	_	-	149	58	38.3	28	22.6
36	-	_					41	29.4	23.5
37				-	: —		44.2	31.1	24.6
38				·		_	48	33	25.7
39	 	-	ļ	_	-		52.5	35	27
40		-	-	<u>-</u>			57.5	37.3	28.3
	1			,		<u> </u>			7

If it is desired to avoid forcing the water into the condenser by means of a pump, the apparatus must never be arranged so that $H = h_i$, for a certain excess of pressure is required to overcome the resistance to the movement of the water and to give the water a definite velocity. This excess of head should never be made less than 3 m., and more would be better.

The dimensions of the water supply pipe for the different cases are to be found in Chapter XVIII, and Table 36.

4. The Waste-Water Pipe (Fall-Pipe) of the Dry Condenser (Fig. 15).

The fall-pipe of the dry condenser is used to conduct away continuously the condensed steam and the water used to condense it. Since there is a more or less complete vacuum in the condenser, the pressure of the external atmosphere will keep the water in the fall-pipe at a corresponding height, just as it supports the mercury in the barometer.

The pressure of the atmosphere is equal to that of a column of water 10·336 m, high at its maximum density, i.e., at 4° C.; it is 1·0336 kilo, per sq. cm. Since, however, there is never a complete vacuum in the condenser, the height at which the column of waste water is kept by the atmosphere is always less. If b be the vacuum in the condenser measured in mm. of mercury, and the temperature of the water 4° C., then the height of the column of water in the fall-pipe is, in metres,

$$H = 10.336 \frac{b}{760}$$
 (177)

Now the waste water is always somewhat warmer than 4° C., hence its specific gravity is less and its volume greater; the column of water must accordingly be higher in proportion.

According to Volkmann (1881), the volume of water V_w , when it is unity at 4° C., is:—

At 4° 30° 40° 50° 60° 70° C,
$$V_{\nu} = 1.0$$
 1.00425 1.007700 1.01197 1.01694 1.02261 At 80° 100° C, $V_{\nu} = 1.02891$ 1.04323

Table 42.

The height of the water barometer at vacua of 570-750

r			
Vacuum, mm. mercury Temperature °C. Water barometer, mm. at 4° C. Water volumes at above temperatures Water barometer, mm., at above temperatures	570 65 7798 1·01966 7945	611 60 8910 1•01695 .8450	642 55 8734 1.01441 8856
The velocity of fall of	the water,	v _w , and th	e quantity
Diameter of the pipe, mm.	100	125	150
The head, $h = 0.10$ m	0·63 17·8	0·66 29·3	0·695 44·2
The head, $h = 0.20$ m. $v_{w} = 0.20$ The length of the fall-pipe, $l = 0.0117 + 200 + 500 = 10817$ mm.	0.89	0·93 40·8	0·98 62·65
The head, $h = 0.30 \text{ m.}$	1·09 30·8	1·10 48·2	1·21 76·9
The head, $h = 0.40 \text{ m.}$	1·26 35·0	1·33 58·5	1·40 89·1
The height of th	e water ba	rometer, J	H = 10.117

Thus the height of the column of water when at rest is, more accurately, for each vacuum and each temperature,

$$H = 10.336 \frac{b}{760} V_w = 0.0136 b V_w (178).$$

Now the fall-pipe must convey a certain quantity of water in

TABLE 42.

mm. of mercury and at the corresponding temperatures.

668 50 90% 1.011877 9184	705 40 9592 1:007627 9665	718 35 9768 1.00593 8817	728 30 9902 1.00425 9944	736 25 •10016 1·00300 10046	742 20 10100 1·00173 10117	750 10 10212 1.00090 10212	
f water,	₩, flowing	away, in	rub. m. pe	r hour.		٠.	
175	200	225	250	. 300	350	400	450
0.70	0.74	0.75	0.761	0.785	0.81	0.81	0.81
60.5	83.7	103.5	134.4	199·5	280.5	366-2	466.5
1.00	1.04	1.06	1.08	1.11	1.13	1.14	1.15
86.4	117.5	145.0	190.8	282.2	391.3	575.4	658.8
1.25	1.28	1.30	1.32	1.36	1.38	1.40	1.41
108:0	144.3	17 7 ·8	234.1	355.9	477.9	633.0	807.0
1.44	1.47	1.50	1.53	1.57	1.59	1.61	1.63
124.4	166.2	205.2	270.3	399.0	552.4	727.9	933.0

 \mathbf{m} .; the addition for safety, $\mathbf{s} = 0.5 \ \mathbf{m}$.

unit time, therefore the water must attain a certain velocity of fall, which can only be imparted to it by a certain head, h.

This head, h, is that column of water, by which the water must stand higher in the fall-pipe than the difference between the external atmospheric pressure and the absolute pressure in the condenser. It is designed in the first place to overcome the resistances offered to the downward flow of the water, and, in the second, to impart the necessary velocity to the water.

If this head of water, h, be assumed for a definite case, the velocity of the fall of the water, and hence the quantity of water, which flows through a pipe of known section in a certain time, are found from well-known formulæ [Chapter XVIII., Equation (162)]. Or, inversely, a certain velocity of fall may be required, and the head, h, necessary to create this velocity may be calculated; since we have adopted the plan of always calculating the efficiency of apparatus of known dimensions, the former course is taken here.

Let (compare Fig. 15)

H = the height of the water in the fall-pipe maintained by the vacuum,

h = the head of pressure, then H + h = the length of pipe traversed by the water in metres, *i.e.*, the theoretical height of the fall-pipe.

 v_w = the velocity of fall of the water in m. per sec.,

d =the diameter of the pipe in m.,

 ζ_1 = the equivalent for the resistance of the water on entering the fall-pipe = 0.505 (see p. 180),

λ = the coefficient for the friction of the water against the walls of the pipe (see p. 180),

then the following equation holds good :--

$$v_w = \frac{\sqrt{2gh}}{\sqrt{1 + \zeta_1 + \lambda \frac{H + h}{d}}} \quad . \quad . \quad . \quad (179)$$

H *, the length of the pipe traversed by the water, we may assume for purposes of calculation, with a slight error, to be always 10 m., we may then, by inserting various values for h, determine the resulting velocity of fall, v_w , for all diameters of the pipe, d, to be considered.

In Table 42 may be found the velocities of fall calculated from equation (179), and thence the *quantities* of water flowing in one hour through the fall-pipe, for pipes of diameter d=100-450 mm., and for heads, h, of 0·100-0·400 m.

The waste water thus always stands in the pipe at the height H+h above the lower level of the water. However, this position of the water is not steady, but rises and falls in consequence of slight variations in the vacuum and in the water supply. Safety also demands that there shall be a certain space, s, above the water in the pipe, so that

the water may never collect in the condenser. Thus the fall-pipe must have at least the height, l = H + h + s. The length, s, may be chosen as desired; it has been taken as 0.5 m.

With these assumptions there are given in Table 42, for various degrees of vacuum, pressure heads and diameters of pipe, the lengths of the fall-pipe, l, and the quantities of waste water, W, per hour. If the length of the waste pipe be increased its diameter may be decreased, and vice versa. In making the choice of a diameter of pipe for a definite quantity of waste water, a high vacuum (750 mm.) in the condenser will naturally be assumed.

The mean atmospheric pressure at the level of the sea is 760 mm. of mercury. At inland places, which always lie higher, it is less, but may there even reach 780 mm.

The vacuum in the condenser will rarely be higher than 740 mm., but it would be well to calculate for a vacuum of at least 750 mm.

In order to facilitate the entry of water into the fall-pipe, it should commence with a conical portion connected to the convex (downwards) bottom of the condenser. The angle enclosed by the sides of the cone should be 30°.

5. The Distribution of the Water in the Condenser,

After determining the weight of water required to condense a definite weight of steam, it is necessary to calculate the dimensions of the appliances for distributing the water in the condenser.

There are two principal methods used for distributing the water:-

- (a) The production of a falling sheet (veil) of water by overflow over a straight or circular edge (sill).
- (b) The production of water jets or drops by means of flat plates, provided with a rim and perforated by holes, by means of perforated pipes, roses, etc.
- (a) Overflows.—The following equation may be used to determine the quantity of water which passes over an overflow in one hour:—

$$W = \frac{2}{3}\mu bh \sqrt{2gh} 3600 \times 1000 (180)$$

excluding the not very considerable alterations due to-

in which

W = the quantity of water flowing over in litres per hour, μ = a coefficient of contraction, which we shall take as 0.6, shape and inclination of the edge by selecting an average section,

 $g = \text{acceleration of gravity} \neq 9.81 \text{ m.,}$

h =the head in metres.

b =the width of the overflow (sill) in metres.

If the constants in equation (\$80) be replaced by their numerical values we obtain

$$W = 6,400,000 \, b \, \sqrt{h^3} \, \text{(approx.)} \, . \, . \, . \, . \, (181)$$

By means of this equation the necessary dimensions may be calculated for any case, but in order to avoid this calculation the quantities of water, W, in cub. m. per hour which pass over sills of b = 0.5.5 m. in width, with heads, h, of 0.005.0.050 m., are given in Table 43.

Example.—If the width of the edge of the overflow (i.e., the length of the sill) be b=3 m., the head h=0.020 m., then the quantity of water flowing per hour is

$$W = 6,400,000 \times 3 \times \sqrt{(0.02)^3} = 54,200 \text{ litres.}$$

(b) Sieves.—The quantity of water, in litres, which flows in one hour through a hole of diameter d decimetres in the bottom of a vessel, in which the water stands at the constant height, h, without regard to all the contractions which diminish the rate of flow, is

$$W = 10 \frac{d^2\pi}{4} \sqrt{2gh} \ 3600 \ \text{litres} \ . \ . \ . \ (182)$$

Table 43.

The quantity of water, in cub. m., which flows in one hour over sills 0.5-5 m. wide, with heads of 5-50 mm.

			-								
				Head	, <i>h</i> , in mn	n. ,					
Width of			ī	•			l				
overflow,	5	10	15	20	25	30	40	50			
b.							<u> </u>				
		Quanti	ty of wat	er flowi	ng over, i	n cub. m	. per hou	r,			
m.											
				L			١ .				
0.5	1.1	3.2	6.3	9.0	12.6	16.6	25.6	35.6			
0.6	1.3	3.8	7.6	10.8	15.2	19.9	30.7	42.7			
0.7	1.5	4.4	8.8	12.7	17.7	23.2	35.8	49.8			
0.8	1.7	5.2	10.1	14.5	20.3*	26.6	41.0	57 ·0			
0.9	2.0	5.7	11.4	16·3	22.8	29.9	46.1	64.1			
1.0	2.2	6.4	12.6	18.1	25.3	33.5	51.2	71.2			
1.1	2.4	7.0	139	19.9	27.9	36.5	56.3	78.4			
1.2	2.6	7.6	15.2	21.7	30.4	39.9	61.5	85.5			
1.3	2.9	8.3	16.4	23.5	32.9	43.2	• 66.7	92.6			
1.4	3.1	8.9	17.7	25.4	35.5	46.5	71.7	98.7			
1.5	3.3	9.6	19.0	27.2	38.0	49.8	76.8	106.9			
1.6	3.5	10.5	20.2	29.0	40.6	53.2	82.0	114.0			
1.7	3.7	10.8	21.5	30.8	43.1	ŏ6 ∙5	87.1	121.1			
1.8	4.0	11.5	22.8	32.6	45.6	59.8	92.2	128.3			
1.9	4.2	12.1	24.0	34.4	48.2	63.1	97.4	135.4			
2.0	4.4	12.8	25.3	36.2	50.7	66.5	102.5	142.5			
2.1	4.6	13.4	26.6	38.1	53.2	69.8	107.6	149.6			
2.2	4.9	14.1	27.8	39.9	55.8	$73\cdot1$.	112.7	1568			
2.3	5.1	14:7	29.1	41.7	58.3	76.5	117.9	163.9			
2.4	5.3	15.3	30.4	43.5	60.9	79.8	123.0	171.0			
2.5	5.5	16.0	•31.6	45.8	•63·4	82.5	128.1	178.2			
2.6	5.8	16.6	32.9	47.1	65.9	85.2	133.3	185.3			
2.7	6.0	17.3	34.2	48.1	68.5	89.2	138.4	191.4			
2.8	6.2	17.9	35.4	49.2	71.0	93.1	143.5	199.5			
2.9	6.4	18.5	36.7	52.6	73.6	96.4	148.6	205.7			
3.0	6.6	19.2	38.0	54.2	76.1	99.7	153.7	213.8			
3.1	6.9	20.1	39.2	56.2	78.6	103.1	158.9	220.9			
3.2	7.1	21.0	40.5	58.0	81.2	106.4	164.0	228.0			
3.3	7.3	21.1	42.6	59.8	83.7	109.7	169.1	235.2			
3.4	7.5	21.6	43.0	60.8	86.2	113.0	174.2	242.3			
3.5	7.8	22.4	44.3	63.5	88.8	116.4	179.4	249.4			
3.6	8.0	23.0	45.6	65.3	91.3	119.7	184.5	256.6			
3.7	8.2	23.7	46.8	67.1	93.9	123.0	189.6	263.7			
'	•		-0 0	5. 2							
							<u> </u>	~			

						•						
		Head, h, in mm.										
Width of overflow, b.	5	10	15	20	25	30	40	50				
m,		Quantity of water flowing over, in cub. m. per hour.										
3·8 3·9	8·4 8·7	24·3 24·9	48·1 49·4	68·9 70·7	96·4 98·9	126·3 129·6	194·8 199·9	270·8 277·9				
4·0 4·1	8·9 ·	25·6 26·2	50·6 51·9	72·5 74·3	101·5 104·0	133·0 136·3	205.0	285·1 292·2				
4·2 4·3 4·4	9·3 9·5 9·8	26·9 27·5 28·1	53·2 54·4 55·7	76·2 78·0 79·8	106·5° 109·1 111·6	139·6 143·0 146·3	215·3 220·4 225·5	299·3 306·5 313·6				
4·5 4·6	10·0 10·2	28·8 29·4	57·0 58·2	81·6 83·4	114·1 116·7	149·6 153·0	230·6 235·8	320·7 327·8				
$\begin{array}{c} 4.7 \\ 4.8 \\ 4.9 \end{array}$	10.4 10.7 10.9	30·1 30·7 31·3	59·5 60·8 62·1	85·2 87 ° 0 88·9	119·2 121·8 124·3	156·3 159·6 162·3	240·9 246·0 251·1	335·0 342·1 348·2				
5.0	11.1	32.0	63.3	90.7	126.9	165.1	256.3	356.4				

Table 43—(continued).

This theoretical amount of flow is, however, diminished by the shape of the opening, the form of the edges of the orifice, the roughness of the walls of the hole and the thickness of the bottom, to such an extent that in reality only a fraction of the theoretical quantity of water can flow through the hole. The holes to be considered here are such as are bored without any great care in the sieve-plate. The amount of flow is also affected in high degree by the violent motion in which the water is kept, before its escape, by the supply of fresh water falling into the sieve.

Thus since it cannot be assumed that the quantities of water, even when calculated by well-known formulæ with regard to the contractions, are realised in practice, we have determined by direct observation the quantities of water which flow through holes of 3, 4, 5, 6, 7 and 8 mm. in diameter from vessels which are kept constantly filled with water to heights of 10, 15, 30, 40, 50 and 200 mm. It was found that the real amounts of flow were very different in each case from those calculated without regard to all the disturbing influences—to

TABLE 44.

- (a) The volume of water, in litres, which runs from a sprinkler in one hour through holes 2-10 mm. in diameter, with the water at heights of h=10-200 mm. (Taken at 15 per cent. less than the calculated.)
- (b) The number of holes of 2-10 mm. diameter required to pass 4-300 cub. m. of water per hour, when h=10 mm.

Height of the water			Diam	eter of tl	1 1									
of the water	1		Diameter of the holes in mm.											
water				_	_		<u> </u>	Γ.						
	2	3	4	5	6	7	8	9	10					
on the sieve, h.	(A) (T) 11 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1													
31010, 711.	(a) The volume of water, in litres, flowing through one hole in one hour.													
mm.	in one nour.													
10	4.75	9	17	27	38	52	68	86	106					
15	5.2	11	20	31	47	64	83	105	130					
30	7.46	16	29	45	65	87	100	149	184					
40	8.5	18	34	53	77	104	136	172	213					
50	9.67	24	38	59	86	120	153	196	242					
200	19.88	42.4	76	119	171	227	300	402	. 497					
					•									
Hourly														
flow of water.	(b) The necessary number of holes as when the weter stands													
Walley,	(b) The necessary number of holes, n , when the water stands at the height, $h = 10 \text{ mm}$.													
cub. m.								٠						
4	842	423	235	150	. 105	77	59	46	38					
6	1263	634	353	226	157	115	88	70	56					
8	1684	846	470	301	210	154	118	93	75					
10	2105	1057	້ 588	376	262	192	147	116	94					
15	3158	1585	882	564	393	289	220	175	141					
20	4210	3214	1176	752	524	382	294	232	148					
25	5264	2643	1470	940	655	481		291	236					
30	6315	3171	1764	1126	786	576	441	348	282					
35 40	7368	3699	2058	1316	917	672	514	406	329					
	8420 10527	$\frac{4228}{5285}$	2352	1504	1048		588	464	376					
	12630	6342	2940 3528	1880 2256	1309 1572	$962 \\ 1152$	734 882	582 696	472 564					
	14735	7399	4116	2632	1834	1344	1029	812	658					
'	12100	1000	#110	4004	100#	1044	1023	012	000					

	Diameter of the holes in mm.											
2	3 •	4	5	6	7	8	9	10				
(b) ¹	(b) The necessary number of holes, n , when the water stands at the height, $h=10$ mm.											
16840 18947 21053 26362 31580 36889	8456 9513 10570 13212 15850 18497	4704 5292 5880 7350 6820 10290	3008 3384 3759 4699 5639 6579	2096 2357 2618 3272 3927 4581	1536 1730 1923 2404 2885 3366	1176 1322 1468 1832 2202 2566	928 1046 1163 1454 1745 2036	752 848 943 1179 1415 1651				
42106 47415 52733	$\begin{array}{c} 21140 \\ 23782 \\ 26425 \end{array}$	11760 13230 14700 16170 17640	7518 8458 9398 10338 11278	5236 5890 6545 7199 7954	3846 4327 4808 4289 5770	2936 3300 3670 4034 4404	2326 2617 2908 3199 3490	1886 2122 2358 2594 2830				
	16840 18947 21053 26362 31580 36889 42106 47415 52733 57942	(b) The nece 16840 8456 18947 9513 21053 10570 26362 13212 31580 15850 36889 18497 42106 21140 47415 23782 52733 26425 57942 29062	2 8 4 (b) The necessary nu at the second se	2 8 4 5 (b) The necessary number of at the heighth of the heighth	2 8 4 5 6 (b) The necessary number of holes, at the height, h = 1 16840 8456 4704 3008 2096 18947 9513 5292 3384 2357 21053 10570 5880 3759 2618 26362 13212 7350 4699 3272 31580 15850 6820 5639 3927 36889 18497 10290 6579 4581 42106 21140 11760 7518 5236 47415 23782 13230 8458 5890 52733 26425 14700 9398 6545 57942 29062 16170 10336 7199	2 8 4 5 6 7 (b) The necessary number of holes, n, when at the height, h = 10 mm. 16840 8456 4704 3008 2096 1536 18947 9513 5292 3384 2357 1730 21053 10570 5880 3759 2618 1923 26362 13212 7350 4699 3272 2404 31580 15850 6820 5639 3927 2885 36889 18497 10290 6579 4581 3366 42106 21140 11760 7518 5236 3846 47415 23782 13230 8458 5890 4327 52733 26425 14700 9398 6545 4808 57942 29062 16170 10336 7199 4289	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				

Table 44—(continued).

such an extent that they were 1-30 per cent less. The mean difference in the flow from that calculated without regard to the contraction was 8.3 per cent less.

In Table 44 are given the probable amounts of flow, as shown by the experiments, through holes of 2-10 mm. diameter in one hour, when the water stands upon the sieve at heights of 10-200 mm.

Since it is always known how much water per hour is to be sprayed into the condenser, the number of holes required in the sieve can be at once calculated by the aid of this table. The sieve naturally passes the more water, the greater the height at which it stands on the sieve, so that the height of the water itself regulates the varying supplies of water required in working every condenser.

Table 44 also gives the number of holes, n, of 2-10 mm. diameter, necessary to transmit 4-300 cub m. of water per hour, when the water stands at a height of 10 mm. If the water stands at any other height, h_a , in metres, the necessary number of holes in the sieve is then

Accordingly, if n holes are necessary to pass a certain volume of water, when the height of the water is 10 mm, the number of holes, n_a , required to pass the same quantity of water, when it stands at some other height, h_a^{\bullet} is

$$h_a = 15$$
 30 40 50 200 mm.
 $h_a = 0.82n$ 0.58n (.5n 0.447n 0.224n

6. The Diameter of the Steam Pipe.

The weight of steam, D, to be condensed in a certain time is known in each case, as also the desired vacuum. The diameter of the pipe-conveying the steam can therefore be found from Table 32 (Chapter XVII.). It is there assumed, in calculating the bore of the pipe, that it is 20 m. long, and that the loss of pressure is 0.5 per cent. If the pipe leading from the evaporator to the condenser has another length, l_a , the weight of steam passing with 0.5 per cent. loss of pressure is obtained by multiplying that given in Table 32 by $\sqrt{\frac{2Q}{l_a}}$. If a greater loss of pressure is allowed in order that a narrower pipe may be used,

the weight of steam passing through the pipe with z_a per cent. loss of pressure is obtained by multiplying that given in Table 32 by $\sqrt{\frac{z_a}{\sqrt{z_a}}}$.

For another length, l_a , and another loss of pressure, z_a , the weight of steam passing through the pipe in one hour is obtained by multiplying the weight in Table 32 by $\sqrt{40\frac{z_a}{L}}$.

Example.—Through a pipe 20 m. long and 200 mm. in diameter, at a vacuum of 750 mm., and with 0.5 per cent. loss of pressure, 124 kilos, of steam pass in one hour. Through a similar pipe, $l_a=30$ m. long, and with 5 per cent. loss of pressure allowed, pass

$$D = 124 \sqrt{\frac{40s_a}{l_a}} = 124 \sqrt{\frac{5 \times 40}{30}} = 318.47$$
 kilos. of steam.

7. The Diameter of the Air Pipe.

The diameter of the pipe leading from the condenser to the airpump is determined by the hourly weight of air to be exhausted, which we assume (somewhat extravagantly, see Chapter XXIII.) to be 0.25 kilo. per 1000 kilos. of injected water. Table 35 gives the weight of air passed through pipes of various diameters, 20 m. long, with 0.5 per cent. loss of pressure, in one hour. For any other length, l_a , and another loss of pressure, z_a , the weights given in Table 35 are to be

multiplied by $\sqrt{\frac{40Z_s}{l_a}}$ in order to obtain the weights of air conveyed under these conditions.

8. The Heating of the Injected Water.

The injected water is heated through the medium of its surface by the steam, with which it comes into direct contact. The greater the surface of a quantity of water in proportion to its volume, the more rapidly will it be heated by the surrounding steam. With regard to this point, the division of the water in the jet-condenser may be effected in four different ways:—

The cooling water may flow over surfaces across which passes the steam to be condensed.

It may fall down in plane or curved sheets, which are in contact with the steam on both sides.

It may fall in jets into the steam in the condenser.

It may be sprinkled into the condenser in the form of drops.

The ratio of the surface of the water to its volume depends on the thickness of the sheets of flowing or falling water and on the diameter of the jets or drops. The following short Table 45 has been arranged in order to form an idea of these conditions. The ratio is given of the surface (o) in sq. mm. to the volume in cub. pm. (i) for thicknesses (d) or diameters (d) of 2-10 mm.

Of the conditions considered here, assumed by the water in the condenser, the ratio of the surface to the volume $\left(\frac{o}{i}\right)$ is the least in the case of water flowing over surfaces and the greatest in the case of spherical drops. Thus water divided into drops will ceteris paribus most rapidly acquire the temperature of the surrounding steam in a condenser. Regarded from this point of view, it would be best to spray the water into the condenser in the smallest drops possible; but this is not easily effected, since it is difficult to divide water up into uniform drops.

TABLE 45.

The surface and volume, and their ratio, of flowing and falling sheets, jets and dreps of water.

_											
	Thickness or meter, 8 -	dia-	2	8	4	•5	6	7	8	9	10
	Surface of sphere	9 0	12.56	29-27	50.2	78·5 ,	113.08	153.92	201.04	254.47	31 4·1 6
	Volume of spher	e i	4·1887	14·187	85.51	65.48	113.08	1.796,	268.07	981·8	523.58
I	Surface of jet -	0	12.56	28.27	50.2	78.5	113· 0 8	158.92	201.04	254.4	314·16
	Volume of jet	i	6.28	21.2	50.2	98·15	169-6	26 9·3	401	572	785
	Sheet (flowing) -	0	0.2	0.333	0.25	0.2	0·1667	0.1429	0.125	0.111	0.1
	Sheet (falling)	0	1.0	0.667	0.5	0.4	0.883	0.2859	U·25	0.222	0.2
100	Jet	0 1	2	1.938	1.0	0.80	0.666	0.5718	0.5	0.4447	0.4
	Drop	· ;	3	2	1.5	1.2	1.00	0.855	0.75	0.666	0.6
	Sheet (flowing)	. 1/0	2	8	4	5	6	7	8	9	10
	Sheet (falling)	$\frac{i}{o}$	1.	1.2	2	2.5	8	3.5	4	4.5	5
	Jet	. i -	0.5	0.75	1	1.25	1.5.	1.75	2.	2 25	2.5
	Drop -	. <u>i</u>	0.333	0.50	0.666	0.833	1	1.17	1.333	1.5	1.666

All methods of distributing water are employed in condensers; thus it is important to consider each, and to see what time each requires in order that the injected water may be heated from its original low temperature to the desired higher temperature.

In most cases heat is transferred to liquids by means of movements, circulations and currents, naturally or artificially produced in them; but in this case, in which the water falls free, such movements cannot be assumed, since, apart from the friction exerted by the steam on its surface, and the motions due to the vibrating opening of the orifices, only gravity acts upon the particles of water. This force, on account of the complete uniformity of its action on all parts, cannot cause internal movements. Thus the heat is transferred from the exterior to the interior of the masses of water principally by conduction.

The conductivity of 'water for heat is very low. According to several concordant researches its coefficient, $\lambda=0.093$ gram-calories (i.e., per 1 sq. cm., 1 minute, 10 mm. thickness of the water layer and 1° C. difference in temperature on the two sides of the mass of water) or

$$\lambda = \frac{0.093 \times 10,000 \times 10}{60 \times 1000} = 0.155$$
 calories (i.e., per 1 sq. m., 1 second

1 mm. thickness and 1° difference in temperature); or in other words, through a layer of water 1 sq. m. in surface and 1 mm. thick, the two surfaces of which are kept constantly at a difference in temperature of 1° C., 0·155 calories pass in 1 second.

It will further be assumed that the quantity of heat passing through a layer of water in the condition of equilibrium is directly proportional to the section (Q in sq. m.), the time (z, in seconds), the constant difference of temperature (θ_* in °C.), and inversely proportional to the thickness of the layer of water to be penetrated (η in mm.). Thus in the condition of equilibrium,

$$C = \frac{Q\lambda z_s \theta_a}{\eta} \text{ calories} \quad . \quad . \quad . \quad . \quad (184)$$

However, in warming water, which is falling in a condenser in the form of sheets, jets or drops, we have not to do with a condition of equilibrium, but with the initial period of the heating, in which the heat penetrates the water from outside by conduction. In this period it is true that the temperature difference between the steam and the last layer just reached by the heat wave is constant = θ_a , but the resistance, which the thickness of the sheet of water opposes to the

penetration of the heat, is zero at the commencement of the heating (at the surface) and increases with the depth, η , to which the heat has penetrated. The thickness of the sheet of water is on the average only $\frac{\eta}{2}$. The quantity of heat, which all the more or less heated layers together have taken up, is equal to the weight of these layers multiplied by the average increase in temperature of all layers (if $\sigma_f = 1$).

The equation for the initial period of the heating has thus the following form:—

$$\overset{\bullet}{C} = \frac{Q\lambda z_i \theta_a}{\frac{\eta}{2}} \quad . \quad . \quad . \quad . \quad (185)$$

Now the heat does not advance from the surface into the interior in such a manner that the thin layer first in contact with the steam completely acquires its temperature, and then a second, third, etc., acquire the same temperature. The process is that the layer of contact first acquires a small increase in temperature, which gradually rises, but during this rise in temperature the first layer is already communicating heat to the second, this to the third, and so on. Whilst the heat advances in succession from one layer to the following colder layers, the riready heated layers are becoming hotter and hotter at the same time. The law is: As the distance from the surface of contact (between the two substances which are becoming equal in temperature) increases in arithmetical progression, the temperature decreases in geometrical progression.

The decrease in temperature from layer to layer follows the same law as the decrease in the temperature difference from moment to moment in heating by stram, as explained in Chapter I.

At the commencement of heating water by conduction, after the layer of contact has almost attained the temperature of the steam, the temperatures of the following layers increase at first rapidly, then very slowly.

The average rise in temperature of the mass of the water at the commencement of heating may be determined, as in Chapter I., by equation (8), but it may also be found in a finite manner, with tolerable accuracy, just as the mean temperature difference was there found.

If the whole difference in temperature between steam and water

at first be θ_a , then, after a certain time, when the heat has penetrated the water to some distance, and assuming that the sections of the layers remain of equal size, the difference in temperature

Between the steam and the first layer = $x\theta_a$.

first and second layers
$$=x(\theta_a|-x\theta_a)=x\theta_a(1-x).$$

second and third layers $=x\{(\theta_a-x\theta_a)-x\theta_a(1-x)\}.$
 $=x\theta_a(1-x)^2.$

,, last but one and the

last layer =
$$x\theta_a(1-x)^{n-1}$$
.

If, as in Chapter I., we represent by θ_{ϵ} the difference in temperature between the last, or *n*th, layer, which is just warmed, and the first layer, which is not warmed at all, then from the above considerations, just as before,

$$x = 1 - \sqrt[n]{\frac{\overline{\theta_o}}{\theta_o}} \quad . \quad . \quad . \quad . \quad . \quad (186)$$

We may now, just as before with the differences in temperature, sum the increases in temperature of the single layers, and divide by the number of layers, in order to obtain the average increase in temperature. The increases in temperature of the single layers are:—

Of the first layer - -
$$\theta_a$$
.
,, second layer - $\theta_a - x\theta_a = \theta_a(1-x)$.
,, third ,, - $\theta_a(1-x)^2$.
,, n th ,, - $\theta_a(1-x)^{n-1}$.

The sum

$$S_{\epsilon} = \theta_a \{1 + (1-x) + (1-x)^2 + (1-x)^3 + \dots + (1-x)^{n-1} \}$$
. Thus the mean increase in temperature of the water is

$$t_{em} = \frac{\theta_a - \theta^{a_i}}{n \left(1 - \sqrt[n]{\frac{\overline{\theta}^a}{\overline{\theta}^a}}\right)} (187)$$

If we now express, as before, θ_a as a fraction of θ_a , then $\frac{\theta_a}{\theta_a}$ is always

a proper fraction. The value of $\frac{\theta_s}{\theta_a}$ must, in fact, with an infinite number of layers, almost become zero. We assume its value, on account of the finite nature of our calculation, as in Chapter I., to be 0.01 = 1 per cent. The inaccuracy is not of much importance.

The average, or mean, increase in temperature, t_{em} of the 100 ideal parallel and equal layers in the sheet of water is, assuming that the whole difference in temperature at the beginning is θ_a and at the end is $\theta_1 = 0.01\theta_d$, according to Table 1, $t_{em} = 0.215\theta_a$.

The quantity of heat which the water has absorbed, when it is heated to the depth, η , in mm., is therefore

$$C = 0.215 \theta_a Q \eta$$
 (188)

Now, in order to obtain an expression for the time, z_n during which the quantity of heat, C, has penetrated through the surface (or section), Q, at the constant difference in temperature, θ_a , into a sheet of water to the depth, η , the expressions (185) and (188) are put equal to one another. We obtain

$${}^{\bullet}2Q_{\eta}^{\lambda}z_{,}\theta_{a} = 0.215\theta_{a}Q_{\eta}. \qquad (189)$$

$${}^{\bullet}2\lambda z_{,} = 0.215\eta^{2};$$

$${}^{\lambda} = 0.155,$$

$${}^{z} = 0.694\eta^{2}. \qquad (190)$$

$${}^{\eta} = \sqrt{\frac{z_{,}}{0.694}}. \qquad (191)$$

Equation (190) gives the time, z, in seconds, in which a sheet of water, η mm. thick, heated by steam on one side, acquires the temperature of the steam on the heated side and is just beginning to get warmer on the other side.

From equation (191) the thickness, η , of the sheet which is heated in this manner in the time, z_* , may be calculated. It is seen very plainly from equations (190) and (191) that the steam rapidly heats the external layers of the water with which it is in contact, and that the heat then proceeds only slowly (at a speed inversely as the square of the thickness) into the interior of the body of water.

The principal quantity of heat, which is conducted in a definite time into the water, remains in and near the outer layers. Little heat is transmitted to the interior, and this little only after the lapse of time.

From these considerations follow the conditions for a rapid heating of water to a high temperature by direct contact with steam :—

- 1. The surface of the water must be very great.
- 2. The surface must rapidly change.

or, since

and

The period of contact between steam and water must be as long as possible. In order to express these statements precisely in figures, Table 46 is added. It gives the depth in mm. to which the heat penetrates in 0.1-1.2 seconds into a sheet of water in contact with steam on one side, the number of calories which are taken up in this time, and to what fraction of the total difference in temperature, θ_a , the total quantity of water, 1-7 mm. thick, would be heated if the heat were supposed to be uniformly distributed throughout. These values are given for sheets, jets and spheres.

It is clearly seen from Table 46, that the quantity of heat which enters in no way increases proportionately with the time, but that much more heat is taken up by the water at the first contact than later.

If the heat has entered a sheet of water from one surface and has warmed it (decreasingly) only to the depth η , of the whole thickness, δ , then, as we have seen, the quantity of heat which has entered is as great as if the volume, Q_{η} , of a portion of the sheet had received the increase in temperature, $0.215\theta_{a}$, or as if the whole sheet of thickness, δ , had attained the increase in temperature of

$$t_{p} = \frac{\eta}{8} \cdot 215\theta_{a} \text{ in } ^{\circ}\text{ C.} \quad . \quad . \quad . \quad (192)$$

In a jet (cylinder) of diameter, δ , which is heated from its surface, the heat spreads as in a sheet. But since the volumes of the cylindrical layers decrease from outside inwards, and also the temperatures of the layers, we obtain the following equation, if t_{c_0} be the hypothetical increase in temperature of the whole jet:—

$$t_{cc} = \frac{\delta^2 \pi}{4} = 0.215 \theta_a \eta (\delta - 2 \times 0.2 \eta) \pi \qquad (193)$$
or
$$t_{cc} = \frac{0.86 \theta_a \eta (\delta - 0.4 \eta)}{\delta^2} \qquad (194)$$

In drops (spheres) something similar takes place. The average increase in temperature, $t_{\rm cs}$, is found by multiplying the volume of the heated hollow sphere by its mean increase in temperature and dividing by the volume of the whole drop. The volume heated is equal to the thickness of the heated hollow sphere multiplied by the central surface of that sphere.

$$t_{\rm sk} \frac{\delta^3 \pi}{6} = 0.215 \theta_a \eta (\delta - 2 \times 0.2 \eta)^2 \pi \quad . \quad . \quad . \quad (195)$$

$$t_{\epsilon k} \delta^{3} = 6 \times 0.215 \theta_{\alpha} \eta (\delta - 2 \times 0.2 \eta)^{2}$$

$$t_{\epsilon k} = \frac{1.29 \theta_{\alpha} \eta (\delta - 0.40 \eta)^{2}}{\delta^{3}} \dots$$
(196)

Table 46 gives, in column 3, the depth, η , to which, according to equation (191), the heat would penetrate in $z_* = 0.1-1.2$ seconds into a sheet of water warmed on one side, and in column 4 the quantity of heat in calories which enters in this time through 1 sq. m. of the water surface with a temperature difference of $\theta_4 = 1^\circ$ C. Columns 6-12 give, for sheets of water, jets and dropp of $\delta = 1.7$ mm. thickness or diameter respectively, the mean increase in temperature of the whole mass in the times given, for each 1° difference in temperature.

It is clearly seen from this Table 46 that the greatest transference of heat takes place at the moment of contact of water and steam, and that it then becomes much slower, since the difficulty experienced by the heat in entering the water increases with the depth.

It is not maintained that this method of consideration, and the conclusions drawn therefrom, lead to infallible figures to be at once applied in construction. They appear, however, to approach very nearly to the truth and to give very valuable indications.

9. The Volumes occupied by 1 kilo. of Air at Various Pressures below 1 Atmosphere and at Various Temperatures.

In determining the dimensions of condenser and air-pump, it is necessary to know the volume occupied by 1 kilo. of air under diminished pressure and at various temperatures. Table 47 gives these volumes for most ordinary cases. It has been calculated in the following manner:—

Let γ_i = the weight of 1 cub. m. of air in kilos.

 a_i = the volume of 1 kilo. of air in cub. m.,

 t_i = the temperature of the air in ° C.,

T =the absolute temperature,

 $= \frac{1}{a} + t_0, \text{ in which } a \text{ is the coefficient of expansion of air.}$ According to Dronke, for air under very low pressures $\frac{1}{a} = 274.6$. Therefore $T = 274.6 + t_0$.

p = the mean atmospheric pressure = 10,336 kilos. per sq. m., when the barometer stands at 760 mm.,

R = a constant, which for air is 29.27.

TABLE 46.

The heating of sheets, jets and drops of water by direct contact with steam.

The depth, η , to which the heat penetrates in the time, z, (column 3). The fraction of the original difference in temperature, through which the whole mass of the water is warmed in the times, z = 0.1-1.2 seconds $(t_{me}\theta_a \text{ for } \theta_a = 1)$.

	fall e, z,.	ce to heat in	ich passes l sq. m. in s at 1° tem- difference.	•	Thi		or dia sheets,			nm., of	the
Period of heating.	Height of fall in the time, z,	The distance to which the heat penetrates in the time, s.	Heat which passes through 1 sq. m. in z, seconds at 1° ten perature difference	(S). (D).	1	•2	8	4	5	6	7
8ecs.	h mm.	η mm.	early Calories.	Sheet (J). Jet (J). Drops	Mea		ease in	_		, t _{ue} of	the
0·1	49.05	0.38	0.085		0.272	0.148	0.102	0.079	0.061	0·014 0·052	0.043
0.2	196-2	0.532	0.116	$egin{smallmatrix} D \ S \ J \end{smallmatrix}$	0·115 —	0·058 0·205	$0.038 \\ 0.142$	0·029 0·109	0·023 0·088	$0.078 \\ 0.019 \\ 0.074$	0·017 0·064
0· 2 85	400	0.640	0.138	$S_{\cdot J}^{D}$	0·138 —	0·069 0·2 4 0	0·046 0·156	0·03 4 0·129	0·028 0·104	0·106 0·023 0·088	0:020 0:076
ó∙3 0	441 •	0.660	0.141	$\begin{bmatrix} S & D \\ J & D \end{bmatrix}$	0·141 —	0·070 0·247	$0.047 \\ 0.172$	0·035 0·133	0·028 0·105	0·126 0·024 0·090	0·020 ()·078
0.35	59 8	0.710	0.153	$egin{array}{c} D \ & S \ & J \end{array}$	0·153	0.077	0·051	0·039	0.031	0·128 0·026 0·091	0.022
0·4 0	785	0.756	0.164	S_{J}^{D}	 0·164	$0.334 \\ 0.082$	0·251 0·055	0·196 0·041	0·157 0·033	$0.139 \\ 0.028 \\ 0.104$	0·113 0·023
0.45	993	0.808	0:173	$egin{smallmatrix} D \ S \ J \end{bmatrix}$	0·173 	0·087 0·293	0·058 0·220	0·044 0·160	0·035 0·135	$0.147 \\ 0.029 \\ 0.110$	0·025 0·095
0.50	122 6	0.848	0.183	S T	0·183	0.092	0.061	0.046	0.037	0·156 0·031	0.026
				J						0·118 0·163	

Table 46—(continued).

			<u> </u>								
	fall e, za	nce to heat in z.	passes . m. in 1° tem- erence	•	Thj			meter, jets o			the
Period of heating.	Height of fall in the time, z.	distar h the trater ime,	Heat which passes through 1 sq. m. in z, seconds at 1° ten perature difference	(S). (D).	1 .	2	3	4	5	6	7
Pe Pe	Ĭ.≘ h		Heat throu z, sec perat	Sheet (J.). Jet (J). Drops (Mea			ı tempe water f			of the
secs.	mm	η mm.	Calories.	02 -5 14							
0.60	1766	0.930	0.200		0.200	0.100	0.067	0.050	0.150	0.034	0.029
0.70	2403	1.0	0.217	$\begin{bmatrix} J \\ S \end{bmatrix}$		0.396	0.308	$0.182 \\ 0.244 \\ 0.055$	0.200	0.176	0.143
	2100	10	0 2 4	J_{D}		0.344	0.248		0.158	0.134	0.116
0.80	3139	1.070	0.231	S				0·058 0·199			$0.033 \\ 0.123$
0 ·90	3971	1.41	0.245	$egin{array}{c} D \ S \ J \end{array}$	_	 0·123	0·338 0·082	$0.272 \\ 0.062 \\ 0.216$	0·223 0·0 4 9	0·199 0·041	0·161 0·035
1.0	4905	1.20	0.259	S_{J}^{D}		 0·129	0·351 0·086	0.286 0.065 0.227	0·234 0·052	0·210 0·043	0·170 0·037
•				D	_						0.178
1.1	5935	1.26	0.271	S_{J}	-			0·068 0·240			0·039 0·147
1.2	6953	1.315	0·283°	$s^{-\mathcal{D}}$	_	- 0-142	0·37 4 0•091	0·306 0·071	$0.254 \\ 0.057$	0·228 0·046	0·187 0·041
				D	_	_		0·245 0·314			$0.150 \\ 0.192$
							I	1	!		1

Then the law is

$$\frac{a_i p}{T} = R \quad . \quad . \quad . \quad . \quad . \quad . \quad . \quad (197)$$

The volume of 1 kilo. of air at the pressure, p, and the temperature, $t_{\rm b}$ is therefore

$$a_i = \frac{1}{\gamma_i} = \frac{29 \cdot 27(274 \cdot 6 + t_i)}{p}$$
 . . . (198)

TABLE 47.

The volumes, in cub m., of 1 kilo. of air, at absolute pressures of b = temperatures

			•		,Va	cuum.					
	757-39	755	753	750	748	745	748	740	735	730	725
ture				Al	bsolute	pressu	ıre, b.				
Temperature	261	5	7	10	12	15	17.	20	25	30	35
t _l			Volu	mes, a	. in cu	bm,	of 1 ki	lo: of a	ir.		
	170·35 174·46							30·05 30·58			
20	178·58 182·69 186·81	126.60	90.44	63:31	52·76	42.25	37.24	31·11 31·66	25.31	21.10	18.09
30	190·93 ,	130·91 ,	93.51	65· 4 5	54 ·55	43.70	38.50	32.73	26·16	21.81	18·7 0
40	195·04 199·16 203·27	135.21	96 58	67 60	56.34	45.14	39.77	33.80	27.02	22.53	19· 31
50 85	207·39 211:51	139·51 141·67	99·65 101·67	69·75 70·81	58·13 59·02	46·60 47·32	41·03 41·67	34·88 35·42	27·87 28·29	23·25 23·60	19·93 20·2 3
60	215.63	143.8	102.72	71 .9 0	60.12	48.05	42.30	35.92	¥8·75	23.96	20.54

When the barometer is at b mm. of mercury, the absolute pressure on 1 sq. m. is

$$p = \frac{10,336b}{760} \dots \dots \dots (199)$$

Thus the volume of 1 kilo, of air is

$$a_i = \frac{2.15(274.6 + t_i)}{b}$$
 (200)

Table 47 has been calculated by inserting the various values for b and t_i .

TABLE 47.

2.61-210 mm. of mercury, i.e., at vacua of 757.39-550 mm., and at from 5°-60° C.

	Vacuum.													
	670	675	680	685	690	695	700	705	710	715	720			
i.e.	,				sure, b	e pres	Absolu	,	_					
Temperature.	40 45 50 55 6Q 67 70 75 80 85 90													
La Li			air.	ilo. of	, of 1 l	ub. m.	a_l , in c	umes,	Vol					
5 10	6·67	7·07 7·19	7·51 7·64	8·01 8·15						13·34 13·59				
15 20	6·91 7·03	7·32 7·44	7·78 7·91	8·29 8·44	8·89 9·04	9·60 9·77	10·36 10·55	11·32 11·51	12·43 12·65	13·82 14·06	15·55 15·82			
	7·15 7·27	7·57 7·70	8·04 8·18	8·58 8· 72						14·29 14·54				
40	7·39 7·51		8·31 8·44	9.04	9.66	10.43	11.28	12.30	13.51	14·77 15·01	16.89			
50 -	7·63 7·75 7·87	8·07 8·20 8·33	8·58 8·77 8·84	9.31		10.76	11.63	12.68	13.94	15:24 15:49	17.43			
	7·87 7·99	8.46	8.98		10.12									

10. The Time of Fall of the Injected Water.

In Table 48 are given the distances through which drops of water fall in 0.05-1.7 secs., when gravity alone acts on them, without the interference of currents of steam or gas. It is seen that water, when it falls free, passes through condensers even 4 m. high in 0.9 sec., and remains a still shorter time in lower condensers.

If the current of steam moves downwards in the same direction as the water (wet condensers), the time of fall is somewhat further decreased, but if the steam moves upwards against the falling water (dry counter-

Table 47—(continued).

	₹,												
						•	Vacuu	m.					
		665	660	655	650	645	640	635	630	625	620	615	610
	re.		··········			Absolu	te pro	essure,	<i>b</i> .		'	 ,	
	Temperature.	95	100	105	110	115	120	125	130	135	140	145	150
	.t Tei		·	Volu	mes,	a ^l , in o	eub. m	ı., of 1	kilo.	of air			
	5 10 15	6·32 6·44 6·55	$6.12 \\ 6.22$	5·72 5·825 5·92	5·56 5·66	5.41	5·09 5·18	4·89 4·97	4·70 4·78	4.61	4·37 4·44	4·22 4·29	4·08 4·15
-	20 25 30	6·67 6·78 6·88	6.44	6·03 6·13 6·24	5·75 5·85 5·95	5.66	5.36	5.15		4.77	4.60		4.29
	35 40 45	7·00 7·11 7·22	6:76	6·33 6·44 6·54	6·05 6·15 6·24	5.88		5.41		5.01	4.83		4.51
200	50 55 60	7·34 7·45 7·57	6·98 7·08	6·65 6·75 6·85	6·34 6·44 6·53	!	5·80 5·89 5·98			5·17 5·24	4·98 5·06	4·80 4·88 4·95	4.72
ł		J j		J		1		l	<u> </u>	1	1		L

current condensers), the time is somewhat longer. In any case large drops of water can experience but a slight and insufficient heating in this short time, as Table 46 shows. Since the distances fallen through in the first moments are much smaller than those in the succeeding moments, steps or catch-plates, placed at short distances apart, and continually bringing the water again to rest after brief intervals of falling, serve to lengthen considerably the time of fall.

By the aid of the preceding separated considerations of the requirements of jet-condensers, we can now determine their principal dimensions for the most usual cases; this is done in Tables 49 and 51. The principles upon which these tables have been calculated must first be briefly indicated.

TABLE 47—(continued).

	Yacuum. *													
	550	555	560	565	570	575	580	585	590	595	600	605		
ure.					re, b.	pressu	olute j	Abs			•			
Temperature.	155 160 165 170 175 180 185 190 195 200 205 210													
E t _t			uir.	lo. of a	of 1 ki	. m.,	in cub	es, a_i ,	olume	v				
_	2·86 2·91		3·06	3·08 3·14		3.24	3·33 3·39	3.43		3.64	3.75			
7 15	2·97 3·01	3.03	3·10 3·16	3.18	3.27	3.36	3.45	3.56	3.66	$3.77 \\ 3.83$	3.89	4.01		
	3·06 3·12		3·22 3·27	3·35			3·57 3·63			3·90 3·97				
	$\frac{3.17}{3.22}$		3·32 3·37	3·40 3·46						6: 4 ·03 8: 4 ·09	-			
7 45 2 50	3·27 3·22	3·34 3·40	3·43 3·49	$\frac{3.52}{3.58}$	3·61 3·67	3·70 3·77	3·81 3·87	3·92 3·98	4·04 4 10	4·16 4·23	4·29 4·36	4·43 4·50		
	3·37 3·42	3·45 3·50	3 54 3·60				3·99 3·93	4·05 4·11		4·29 4·35		4·57 4·64		

11. The Dimensions of Wet (Parallel-Current) Jet-Condensers.

Wet condensers are used with advantage in connection with evaporators of small and medium capacity, evaporating 100-3000 kilos. per hour, for which limits Table 49 has been calculated (Fig. 14, p. 210).

The wet parallel-current condenser is a closed vessel, which is entered at the top by the steam to be condensed and the cooling water, and from which the liquefied vapours, the heated cooling water and the uncondensed gases are together exhausted by means of a "wet" air-pump. The diameter and height of the condenser and the diameter of the pipes, by which the steam and water enter and the water leaves, are to be calculated.

Table 48.

Distance in mm. traversed in a free fall during 0.05-1.7 seconds.

Time,	Height of fall.	Time,	Height of fall.	Time,	Height of fall.	Time,	Height of fall.
BCC.				Sec.	шш.	sec.	mm,
0·05 0·06 0·07 0·08 0·09 0·10 0·11 0·12 0·18 0·14 0·15 0·16 0·17 0·18 0·19 0·20	12·5 17·62 • 23·8 31·36 39·69 49·05 59·35 70·6 82·8 96·1 110·4 125·5 141·7 158·9 177·1 196·2	0·30 0·325 0·35 0·375 0·40 0·425 0·475 0·50 0·525 0·55 0·60 0·625 0·675	#41·45 517·4 597·9 699 784·8 884·9 993·2 1105·4 1226·3 1350·4 1483·7 1629·9 1765·8 1926 2069 2232	0·775 0·80 0·825 0·875 0·90 0·925 0·95 0·975 1·00 1·025 1·075 1·10 1·125 1·15	2943 3139 3335 3541 •3751 4193 4414 4658 4905 5169 5507 5659 5935 6188 6483	1·25 1·275 1·30 1·325 1·35 1·375 1·40 1·425 1·45 1·475 1·50 1·525 1·575 1·60 1·625	7663 7947 8289 8604 8936 9260 9613 9947 10000 10657 10996 11417 11823 12132 12544 12936
0·225 0·25 0·275	247;9 306·5 370·4	0·70 0·725 0·75	2403 2575 2756	1 175 1·20 1·225	6771 6953 7350	1.650 1.675 1.70	13343 13750 14161

This species of condenser is called "wet," since it is always connected with a "wet," air-nump, i.e., an air-nump which exhausts the water together with the air.

"Dry" condensers are so called because they are connected with a "dry" air-pump, i.e., a pump which extracts only air, without water. The waste water of dry condensers generally passes away by its own weight by means of a fall-pipe (Fig. 15, see observations on p. 208).

A wet condenser should never be connected with a dry air-pump, which cannot take the waste water.

The diameter of the steam-pipe leading to the condenser may be found by means of Table 32, in which is given the weight of steam passing in one hour through pipes 20 m. long with a loss of pressure of 0.5 per cent. In settling the conditions for Table 49 we have, however, assumed that the resistance in the pipe between evaporator and condenser may take 2 per cent. of the absolute pressure. In this case double the quantity of steam passes through the same pipe, and for the desired capacity the pipe will be narrower and therefore cheaper. This condition is taken because in reality the assumed high vacuum (705 mm.) is not always maintained, and since, in order to meet fluctuations in working, condensers are generally made very large in proportion to the work required of them Steam-pipes of very much smaller diameter are frequently found.

The difference in temperature between steam and cooling water, when they enter at the top, ranges between about 55°-30° C.

The temperature difference at the end (bottom) is 35° -20° C., since the waste water should never be allowed to become very warm. The temperature difference at the bottom accordingly is to that at the top in the ratio $\frac{36}{55}$ or $\frac{20}{30}$, i.e., at the mean, is about 0.66 of the difference at the top. The cooling water is therefore only heated through about $\frac{1}{3}$ of the original difference in temperature between steam and water, or $t_* = 0.33\theta_a$, for which the following times are sufficient, according to Table 46, for drops of

In order that the drops may be in the condenser during these times, the following neights of free fall are necessary:—

$$h = 49$$
 441 1765 5935 mm.

When the water is very finely divided, a very short time suffices to warm it; for drops of 1-2½ mm. diameter, condensers 1000 mm. high, without steps, are approximately sufficient. Much larger drops cannot be sufficiently heated by similar condensers of great height. Experience shows that in practice, when the water is well divided, good results are obtained with these dimensions. If thicker masses of water are intended, one step is, in general, sufficient.

The free section of the wet condenser need not be much greater than that of the steam pipe, if the latter has the proper dimensions; but it may be larger without harm, since the velocity of the steam diminishes in the condenser, from its entrance downwards, to zero, and is on the average about half as large as at its entrance.

The section of the condenser is generally diminished by the pipe through which the water is injected, and also by the jets and drops of water. Since the friction of the great number of particles of water against the current of steam is not inconsiderable, it is well to enlarge the section of the condenser correspondingly, in order to prevent loss of pressure. For condensers without steps we adopt a section about 20 per cent. greater than that of the steam pipe of liberal dimensions. If there are one or two steps in the condenser, the section must be at least double that of the pipe by which the steam enters.

The mean pressure, which the current of steam exerts on the falling drops in their direction of motion, increasing their acceleration and thus decreasing the time during which they are falling through the condenser, is calculated only at about one-quarter of that which the entrant velocity of the steam would exert; this is because the drops, by their velocity of fall, themselves diminish the influence of this pressure. Even if the velocity of the steam on entering the top of the condenser were 30 m. per second, it would only slightly shorten the time of fall of small drops of 2 mm. diameter, and this all the less when the drops, thrown violently about, touch the walls and are retarded.

The internal height of condensers without steps, from the steam entrance to the water exit, is therefore taken for small apparatus at not less than 1000 mm., and somewhat greater for larger apparatus, since in the latter the water is not perhaps quite so thoroughly divided. This height is also sufficient when one step is introduced. With two steps the total height may be 1.25 times as great.

The diameter of the water-pipe. The limits of the temperature of the steam to be condensed are about 40°-45° C, the limits of the initial temperature of the injected water are about 8°-25° C. Thus we find from Table 41 that the condensation of the steam rarely requires more, and generally much less, cooling water than 45 times the weight of the steam.

The water may be conveyed to the condenser from a tank at a more or less high level in such a manner that the natural suction of the vacuum in the condenser, together with the hydrostatic pressure from the condenser to the tank, causes the velocity of the water in the supply pipe. The suction of the condenser alone may also draw the water direct from a vessel, well or tank at a lower level (Chapter XVIII.).

In the former case the pressure which moves the water is con-

siderable, being equal to the vacuum (measured in metres of water column) plus the hydrostatic pressure. In the latter case it is very small, being equal to the vacuum minus the distance from the water level to the point at which the water enters the condenser. It is not advisable to employ a lower pressure than 3 m., since, otherwise, variations in the level of the water and in the vacuum may be dangerous, although it is always possible to work with a very slight excess of pressure, even only 200-300 mm. In that case, however, very wide supply pipes must be used, and there arises the danger that the supply of water to the condenser may be stopped by any accident. With a vacuum of 680 mm. of mercury (9:248 m. of water) the greatest permissible normal depth of the water level below the water entrance into the condenser would be 9:248 - 3.0 = 6:248 m.

In Table 49 are given, by the aid of Table 36, the diameters of the water supply pipe for the four cases of an excess pressure of 1, 3, 6, and 9 m., and under the assumption that the largest quantity of water mentioned (45 times the weight of the steam) is to be introduced into the condenser.

The spraying of the water in the condenser is generally accomplished by means of perforated pipes or plates. The holes in the pipes and plates should be small, since the water always passes through them at a considerable velocity, on account of the tolerable excess of pressure. The number of holes has been calculated for diameters of 2 and 3 mm.

If the injector pipes are vertical and enter from below, too many holes are no disadvantage, since, when a number of them remain unused, the water is still well divided.

The injector pipe must be closed at the end in the condenser, so that the water may remain in it under at least a part of the excess of pressure. The water will then be thrown, with a certain velocity, from the small holes on to the condenser wall, where it is broken up into fine drops. A portion of the water will doubtless flow down the condenser wall, by which its surface is diminished, but since the water flows down much more slowly on the wall than when it falls free, the disadvantage of the smaller surface is to a great extent counterbalanced by the longer contact with the steam.

The outlet pipe of the condenser leads directly to the air-pump. It must be wide enough to carry off air and water together. The lower part of the section of this pipe, which is required for the water, is determined on the permissible assumption that it has a velocity of

Table 49.

The dimensions of wet (parallel-current) jet-condensers with-vacuum of

17 - AFF 1 PP (AFF 1) TO A A A A A A A A A A A A A A A A A A	100
The necessary cooling) weight of steam × 15 water, in litres	1500 4500 160 1000 150 40 35 30 25 75 40 50

0.5 m. per second, corresponding to a pressure-head of about 25 mm. The upper part of the section is for the air, and is obtained from Table 35; the section of the pipe there given for the quantity of air is added to that necessary for the water. It is assumed that 1000 litres of cooling water contain 0.25 kilos, of air.

Example.—For the condensation of 1000 kilos. of steam per hour, the diameter of the steam pipe, at a vacuum of 705 mm., is 350 mm. by Table 32, if a loss in pressure of 2 per cent. is permitted; the section of the condenser without steps should be 20 per cent. greater, hence its diameter is 400 mm.

The height of the condenser we take at 1400 mm.

The maximum quantity of water is, according to our assumption, $45 \times 1000 = 45,000$ kilos, per hour. The supply pipe must, therefore, by Table 36, be 80 mm, in diameter for a length of 20 m, with 3 m, excess of pressure.

Through a hole, 2 mm. in diameter, 25 litres pass in one hour at 0.5 m. excess pressure, according to Table 44. The perforated pipe must therefore have, in the

TABLE 49.

out steps, for condensing 100-3000 kilos. of steam per hour at a 705 mm.

200	300	500	1000	1500	2000	3000
3000 9000	4500 13500	7500 22500	15000 45000	•22500 €7500	30000 90000	45000 135000
185	215	280	400	440	500	• 555
1000	4200	1300	1400	1500	•1600	1800
$\begin{array}{c} 175 \\ 55 \end{array}$	200 60	250 75	350 100	$\begin{array}{c} 400 \\ 125 \end{array}$	450 140	$\frac{500}{165}$
$\frac{45}{40}$	55 45	60 55	80 70	95 80	115 95	$125 \\ 115$
30 90	40 110	50 150	65 190	75 ·235	85 270	100 325
45	50	60	75	80	90	100
60	80	90	100	125	160 •	200
					•	•
360	580	900	1800	2700	3600	5400
160	250	400	7 80	1200	1600	2400

present case, $\frac{45,000}{25} = 1800$ •holes. On account of possible stoppages we take 2000 holes.

The injector pipe is takened 100 mm. diameter.

The weight of air to be exhausted in one hour is $\frac{4500 \times 0.25}{1000} = 11.25$ kilos., and at a vacuum of 705 mm., according to Table 35, the air_suction pipe (if such were used) must have a diameter of 65 mm., i.e., a section of 0.38 sq. dcm.

The pipe leading from the condenser to the air-pump must have this section for the air—0.33 sq. dom.—and also that required for the water, which is, for a velocity of 0.5 m. per second, $\frac{45,000}{8600 \times 5} = 2.5$ sq. dcm. The connection to the air-pump has therefore a section of 0.33 + 2.5 = 2.33 sq. dcm., equal to a diameter of 190 mm.

12. The Dimensions of the Dry (Counter-current) Fall-pipe Jet-Condenser.

The "dry" jet-condensers, which are almost always constructed to work with counter-currents, are closed vessels, which the steam to be condensed enters at the bottom, and the well-sprayed cooling water at the top. The heated water flows away spontaneously together with the condensed steam by means of a fall-pipe (barometer tube) at the bottom, whilst the air and gases are exhausted cold at the top. Dry condensers are often used for small and medium capacities, for large almost invariably. Their chief dimensions are given in Table 51 for an hourly condensation of 300-12,000 kilos. (See Fig. 15, p. 211.)

If the cooling water has in the condenser a free fall of

$$h = 1$$
 2 3 4 5 m.

its theoretical

time of fall, $z_1 = 0.46$ 0.64 0.79 0.91 1.015 seconds.

In these times a jet of water of thickness δ mm. takes up such an amount of heat (according to Table 46) from the surrounding steam that it is neated through the following fractions of the original temperature difference, θ_a :—

If
$$\delta=1$$
, the heating is $0.460\theta_a$ — — — — — — — — — — — — $\delta=2$, ,, $0.300\theta_a$ $0.335\theta_a$ — — — — — — — — — — — — — — — — $\delta=3$, ,, $0.225\theta_a$ $0.225\theta_a$ $0.247\theta_a$ $0.278\theta_a$ $0.290\theta_a$; $\delta=4$, ,, $0.163\theta_a$ $0.188\theta_a$ $0.193\theta_a$ $0.217\theta_a$ $0.227\theta_a$.

Example.—If a jet of water of thickness $\delta = 3$ mm., at a temperature of 10° C., falls through 4 m. in steam of 55° C., it is heated through (55 - 10) 0.278 = 12.6° C., and thus has finally the temperature 10 + 12.5 = 22.6° C.

From the above figures it may be gathered that, although the increases of temperature just given may not be exact, a condenser, in which the water fell straight to the bottom without stops, must be very high, and the water very finely divided, if it is to be heated nearly to the temperature of the steam. A very fine spray of water is not easily obtained and necessitates a slowly rising current of steam. Therefore dry condensers without steps must be of great height and diameter.

The water may be made much hotter if it is allowed to fall through the same total height in several short stages, by each of which it given a fresh surface. This is made clear by the example below. For since the velocity of fall is the least at the beginning, the period during which the water is in the condenser increases with the number of steps, as also does the number of changes of surface.

 $Example._{ullet}$ If a jet of water, $\delta=3$ mm. in diameter, at 10° C., falls down five steps, of 800 mm. each, through steam at 55° C., the heating is:—

• At the end of the first fall (Table 46): (55 - 10) 0.200 = 9.0°; the temperature of the jet is then 10 + 9.0 = 19.0°.

After the second fall: $(55 - 19.0) \cdot 0.200 = 7.2^{\circ}$;

the temperature of the jet is then $19.0 + 7.2 = 26.2^{\circ}$.

After the third fall: $(55 - 26.2) \cdot 0.200 = 5.76^{\circ}$;

the temperature of the jet is then $26.2 + 5.76 = 31.96^{\circ}$.

After the fourth fall: $(55 - 31.96) 0.200 = 4.61^{\circ}$; the temperature of the jet is then $31.96 + 4.61 = 36.57^{\circ}$.

After the fifth fall: $(55 - 36.57) \cdot 0.200 = 3.69^{\circ}$;

the temperature of the jet is then $36.57 + 3.69 = 40.26^{\circ}$.

In a straight fall without steps the heating would only be through 22.51°.

The determination of the number and the height of the steps is accomplished by the method in the following paragraph, in which it is assumed that the temperature of the steam to be condensed remains, the same from bottom to top of the condenser. This assumption is not quite accurate, for the pressure in the counter-current condenser must be somewhat less at the top than below, because only so would there be a current of steam towards the top. The pressure at the bottom is due almost alone to the steam, at the top to the air almost entirely; between the extremes the pressure of the air diminishes towards the bottom, that of the steam towards the top, consequently the temperature at the steam also must diminish towards the top. But these differences are not very considerable at the places where condensation is still really taking place (which condition we are considering here), therefore we neglect them for the sake of simplicity. In what follows it is assumed that all the steps are of equal height.

If the whole temperature difference between steam and cooling water be θ_a , and this be diminished below the top step by the fraction, $a\theta_a$, by absorption of heat by the water from the steam, then, of the residual difference, $\theta_a - a\theta_a$, a fraction, $a(\theta_a - a\theta_a) = a\theta_a(1 - a)$, is removed below the second step. Below the third step the remaining temperature difference, $\theta_a - a\theta_a - a\theta_a(1 - a) = \theta_a(1 - a) - a\theta_a(1 - a) = \theta_a(1 - a)^2$, is diminished by $a\theta_a(1 - a)^2$, and by the last (lowest or activated by the fraction, $a\theta_a(1 - a)^{n-1}$.

The sum of all these intervals of temperature would be, in the most favourable case, equal to the whole temperature difference, θ_a , but is, in reality, only a more or less large part of the whole difference. It is naturally endeavoured to make the temperature of the waste water approximate as nearly as possible to that of the steam.

Let p be a percentage and $\frac{p\theta_a}{100}$ the portion of the original temperature difference removed, *i.e.*, the sum of all the separate intervals of temperature given above, then

$$\frac{p}{100}\,\theta_a = \alpha\theta_a\{1\,+\,(1\,-\,a)\,+\,(1\,-\,a)^2\,+\,(1\,-\,a)^3\,+\,\ldots\,(1\,-\,a)^{n\,+\,1}\}\,;$$

or, summing the geometrical progression,

$$\frac{p}{100}\theta_a = \frac{a\theta_a\{(1-a)^n - 1\}}{(1-a)-1}$$

$$\frac{p}{100} = 1 - (1-a)^n (201)$$

or

If the increase in temperature of the water, a, in the highest step is known, and also the number of steps, then this equation gives the fraction of the whole difference in temperature which is removed by all the steps, i.e., by how much the temperature of the water approaches that of the steam.

The value of α depends on the time during which the water drops are exposed to the action of the steam, which time is obtained directly from the height of fall of the drop.

Table 50 gives, by the aid of equations (110) and (194) and Tables 46 and 48, figures which show by what fraction the original temperature difference, θ_a, is diminished in condensers with 1-8 steps of equal heights of 200-1000 mm., when the water-falls in jets of 2-7 mm. thickness. The table shows to what extent the temperature of the waste water increases with the smallness of the drops and the number and height of the steps.

In reality there are in the condenser not only jets of every size but also drops and sheets of water. A very fine water-dust is formed, which is heated, and then unites with the other water, because of the currents of steam and the fall, or is carried to the wall. This circumstance, and also the presence of sheets of water moving in the condenser, from which drops are thrown off, in conjunction with the

inaccuracy of the formulæ which have been given to represent the process of heating, often cause the water to be heated to a greater extent in actual practice than would be expected from Table 50. This table is to be regarded as giving only a general picture of what occurs, without being an exact representation of fact.

Experience shows that with 5-6 steps, and a total height of 2500-3000 mm., very warm waste water may be obtained, even when the water is injected in jets of 5-6 or even 8 mm. diameter. A finer spray of water and more steps improve the action.

The maximum velocity of the steam at the bottom of a condenser without steps should be that velocity which exerts a pressure on a falling drop equal to double its weight (Chapter XV.). If there are steps in the condenser, the greatest velocity should only be somewhat greater than that which exerts a pressure equal to the single weight of a drop.

Thus, according to Table 23, the greatest velocities for steam at 40° C. (706 mm. vacuum) would be:—

For drops of diameter $0.1 \ 0.25 \ 0.5 \ 1 \ 2 \ 3 \ 4 \ 5 \ mm$. In condensers

without steps 9·2 14·6 20·6 29·2 42 50·5 58·5 65·3 m. In condensers

with steps 6.5 10.3 14.59 20.6 29.2 35.3 .42 46.2 m.

In the author's opinion, founded on observations made on condensers, these calculated velocities are too low. In order to exert the pressures mentioned the velocities must be about 1:33-1:5 times as great. Also in all condensers it is a question not only of drops, but also of jets of water, upon which the current of steam has much less action. The majority of the drops, however small, are heated by the current of steam and then unite with the other water or are thrown against the walls and thus prevented from being carried forward. Finally, in almost all condensers a portion of the steam (10-15 per cent.) is condensed before it comes to the vertical rise.

On all these grounds, according to experience, the first and lowest contraction of a condenser without steps may have such a section that steam of 705 mm. vacuum attains in it a velocity of about 65 m. per second. In a condenser with steps the velocity may be 55 m. per second. If there is a lower vacuum in the condenser, the volume

TABLE 50.

The fractions by which the original difference in temperature, θ_* , between steam and water is diminished in dry counter-current condensers with 1-8 steps, each 200-1000 mm. in height. The water is in jets of $\delta=2\text{-7mm}$ diameter.

 $(t_{\epsilon}\theta_a \text{ when } \theta_a = 1.)$

				(1,0	, 1111011	$v_u = 1$,			•
	Number of equal steps.	Height of each step.	Time of fall through one step.	Height of the condenser.	Dia	meter o	the wa	ter jets,	δ, in m	n.
		H S	15 E	H go	2	3	4	5	.6	7
İ	n		z_s	, h	_		-		• •	
							•			
1	1	200	0.20	200	0.205	0.142	0.109	0.088	0.074	0.064
	2	,,	,,	400	0.368	0.264	0.199	0.158	0.143	0.124
	3	,,	,,	600	0.498	0.368	0.293	0.229	0.220	0.178
	3 4 6 8 1 2 3 4.	,,	,,	800	0.600	0.459	0.359	0.293	0.266	0.233
-	6	,,	,,	1200	0.748	0.600	0.500	0.408	0.378	0.324
i	8	,,	.,,	16001	0.841	D.706	0.580	0.500	0.462	0.418
	1	300	0.25	300	0.225	0.150	0.120	0.097	0.082	0.071
	2	,,,	,,	600	0.400	0.298	0.242	0.185	0.157	0.137
	3	,,	,,	900	0.535	0.386	0.340	0.264	0.227	0.198
	4.	,,	,,	1200	0.630	0.479	0.427	0.336	0.290	0.245
	6	,,	;,	1800	0.784	0.623	0.564	0.460	0.403	0.357
	8	,,	, ,,	2400	0.87,1	0.730	0.672	0.559	0.496	0.445
	1	400	0.285	400	0.240	0.156	0.129	0.104	0.088	0.076
	. 2	,,	,,	800	0.423	0.288	0.242	0.198	0.168	0.146
1	3	,,	,,	1200	0.562	0.388	0.340	0.281	0.242	Ŏ·211
	4	• ,,	,,	1600	0.668	0.493	0.426	0.357	0.308	0.271
	8 1 2 4 6	,,	,,	2400	0.808	0.695	0.565	0.483	0.426	0.378
-	8	,,	,,	3200	0.890	0.743	0.671	0.587	0.521	0.469
	$\frac{8}{1}$	600	0.35	600	0.261	0.184	0.142	0.115	0.091	0.083
	2 ^	,,	,,	12 00	0.436	0.335	0.264	0.237	0.174	0.159
	. 3	,,	,,	1800	0.596	0.457	0.369	0.307	0.249	0.229
	4	,,	,,	2400	0.682	0.558	0.458	0.387	0.318	0.293
	6	,,	,,	3600	0.837	0.705	0.602	0.590	0.436	0.406
	8	,,	,, .	4800	0.899	0.805	0.706	0.624	0.535	0.500
	1	800	0.41	800	0.277	0.196	U·151	0.121	0.105	0.091
	2	,,	,,	1600	0.476	0.352	0.279	0.229	0.199	0.174
	2 3 4 6 8 1 2 3	,,	,,	2400	0.622	0.481	0.388	0.321	0.283	0.249
1	4	,,	,,	3200	0.727	0.580	0.480	0.404	0.358	0.318
-	6	,,	,,	4800	0.857	0.731	0.625	0.531	0.456	0.425
1	* 8	,,	"	6400	0.927	0.824	0.730	0.645	0.588	0.534
1			"					İ		
	<u>`</u>						`			

Number of equal steps.	Height of each step.	Thue of fall through one step.	Height of the condenser.	Die	ameter o	of the w	ater jets	, ð , in n	ım.
Numl sof equ steps.	He	Thue throu	y of H	2	8	4	5	6	7
1 2 3 4 6 8	1000	0·46 "" ""	1000 2000 3000 4000 6000 8000	0·294 0·502 0·651 0·752 0·878 0·939	0·221 0·393 0·527 0·632 0·776 0·865	0·161 0·297 0·410 0·505 0·652 0·756	0·136 0·254 0·355 0·443 0·584 0·691	0·116 0·200 0·297 0·376 0·505 0·611	0·096 0·183 0·262 0·333 0·455 0·555

Table 50—(continued).

of the steam will be lower, and the velocity, and hence also the danger of carrying drops away with the steam, less.

Since about 10 per cent. of the steam to be condensed is already liquefied *before* it enters the lowest narrow section, this section may be based upon a velocity of 70 m, for the whole quantity of steam.

1 kilo. of steam at a vacuum of 705 mm. has a volume 19,500 litres, therefore 1000 kilos. of steam at 7\(\ext{R}_{\text{i}}\text{m}\), velocity require, without steps, a section of

$$\frac{19500 \times 1000}{3600 \times 700} = 7.5$$
 sq. dem. (approx.).

In condensers with steps the velocity may reach 55 m., therefore 1000 kilos, of steam at 705 mm, vacuum require a section of

$$\frac{19500 \times 1000}{3600 \times 550} = 10$$
 sq. dem. (approx.).

Since, however, only half the section of a condenser is left free for the passage of steam by reason of the inserted plates, sieves and divisions, the whole section of the condenser without steps should be 15 sq. dcm. for 1000 kilos, of steam, and the section of the condenser with steps 20 sq. dcm., from which the diameter may be obtained.

For the smaller capacities, to condense 1000-2000 kilos, per hour, the diameters, as determined by this rule, must be somewhat increased, in order to allow for the greater friction, the inaccuracies

TABLE 51.

The dimensions of (dry counter-current) fall-µipe jet-condensers, with

. "				
Steam to be condensed in one hour in kilos.	300	υ00	1000	1500
The necessary quantity \ Weight of steam \times 10, litres of cooling water \ \ Weight of steam \times 40, litres \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	400	20000 450 t least 550	3000 : 600	60000

and contractions. The diameters in Table 51 are determined in this manner.

If the diameter of the condenser, Δ dcm., is fixed, then the height of the lowest stage, e_{u} , for condensing the weight of steam, D, in one hour is t least

$$e_u = \frac{10D}{1000 \Delta} \text{dcm}.$$

Accordingly,

For
$$D = 1000$$
 2000 5000 10,000 kilos. of steam, and $\Delta = 600$ 775 1175 1600 mm. $e_{\rm w} = 170$ 255 440 630 mm.

But, on account of the vortex and friction occurring at this place, the height of the lowest stage should be increased to about

$$e_u = 220 \quad 330 \quad 550 \quad 700 \quad \text{mm}.$$

The succeeding upper steps may then be put nearer and nearer together. There may be 3-4 whole stops or 6-8 half stops.

TABLE 51.

and without steps for condensing 300-12,000 kilos. of steam per hour of 705 mm.

	1 0		1		1	1		•	1		
2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	
	20000	40000	*0000	00000	20000	00000	20000				
20000		40000	50000	60000	70000	80000		100000			
80000				240000			360000				
700	775	900	1000	1100	1200	1275	1350	1400	1450	1550	
Holes in perforated plate not larger than 2 mm. diameter.											
775						1450	1550	1600	1675	1750	
• • •		-			1000		1000	1000	1010	1100	
2800	2800	3200	3200	\$200	3200	3600	3600	3600	3600	3600	
1											
450	500	575	650	700	750	800	850	900	950	1000	
105	125	185	155	170	180	190	205	215	225	230	
90	110	120	135	145	155	165	175	185	190	195	
85	100	115	125	135	145	150	160	170	175	185	
100	115	125	135	145	155	160	165	175	180	190	
200	235	280	300	330	350	380	• 400	420	440	460	
150	175	190	215	225	250	275	285	300	315	325	
825	1240	1660	2070	2480	2895	9800	3720	4135	4550	4960	
580	865	1150	1440	1730	2090	2305	2595	2880	3165	3455	
420	685	845	1060	1270	1480	1690	1905	2115	2335	2545	
	300	310	2000	1210	1100	1000	1000	2210	2000	2090	

The diameter of the steam pipe is obtained as with wet-condensers.

*It is determined by means of Table 32.

The diameter of the water pipe may also be determined as before. The limits of the temperatures of the steam are about 35°-60°-C., of the water about 8°-30° C., and consequently, according to Table 41, 10-40 kilos of water are required to condense 1 kilo. of steam. The diameter of the water supply pipe is then obtained from Table 36, if the available pressure is known or assumed in each case. In Table 51 the diameters are given for heads of 3, 6 and 9 m.

The water is sprayed in the condenser in many different ways. If the water is distributed by means of an overflow (sill), or an overflow is used as a preliminary, Table 43 serves to fix the dimensions. The width or circumference of the overflow (length of the sill) is generally known from the diameter of the condenser. Table 43 then gives the depth of the layer of water running over. The sheet of water so formed naturally diminishes in thickness during its fall.

When the water is distributed through a perforated plate, by

assumption of the diameter of the holes, the number may be at once obtained from Table 44, and then from the size of the plate the distances between the holes can be determined.

In calculating the number of holes, n, in the sieve, their diameter must be taken according to discretion. The smaller they are, the more thoroughly is the water divided, but they are the more readily stopped up.

The number of holes is determined for the smallest probable consumption of water, assuming a suitable height for the water (10 mm. in Tables 44 and 51). An increased head of water causes the flow of an increased quantity of water sprayed to the same extent.

The perforated plates have naturally a high rim, in order to make possible a large pressure.

In Table 51 the number of holes is given for the minimum quantity of water, a head of 10 mm. and holes of 5, 6 and 7 mm. diameter.

The section of the air-pipe follows from the weight of air to be hourly exhausted, which is taken at 0.25 kilo. per 1000 kilos. of water, calculating from the greatest consumption of water. Table 35 gives the necessary measurements.

The diameter of the fall-pipe or barometer pipe is obtained from the maximum quantity of injected water, to which is to be added the weight of the condensed steam. It is found in Table 42.

 $I_{\rm T}$ Table 51 the diameter of this waste pipe is given for two heights—10.7 and 11.02 m.

It hardly appears to be necessary to calculate an example, which would be merely repetition, in view of the example calculated of a wet condenser.

The loss of heat from the warm condenser walls is an advantage, but it is insignificant compared with the weight of steam hourly condensed.

Example.—The condenser for condensing 1000 kilos. of steam per hour has a surface of 7 sq. m. (Table 51). It therefore loses in one hour, if its average temperature is 55° C. and that of the atmosphere 10° C., 7 × 505 = 3585 calorise (Table 39). Thus it condenses about 6 kilos. of steam per hour on the inace wall, which is equal to 0.6 per cent. of the total condensation.

The surface of the cold water, on the perforated plate and in the feed box inside the condenser, does not condense steam, which should always be completely liquefied below the plate, but it serves to cool

the air. For this purpose the jets and sheets of water formed above the perforated plate are also useful.

B. Surface-Condensers (Coolers).

Surface-condensers are designed to condense vapours from the most diverse sources, and generally also to cool the condensed liquid (hence they are often known as coolers), without the cooling medium—generally cold water, more rarely air—coming into direct contact with the substance. The exchange of heat takes place through a metal wall.

The space in which condensation occurs may be under the pressure of an atmosphere or under a lower pressure (vacuum).

There are at present no certain observations to show that the vapours of different liquids have different coefficients of transmission of heat (which might perhaps depend on the specific gravity of the vapour). Thus it must for the present be assumed that these coefficients are the same for all vapours, and also that they do not alter for different pressures. It may be left an open question whether the coefficient is not in fact less at very low pressures.

Surface-condensers may be formed from systems of tubes, through which the vapours pass, whilst the water flows outside, or the water may pass through the tubes and the vapours outside. They may be made from coils, bundles of pipes, and cylindrical or plane surfaces, which are cooled by water or air on one side, whilst the other is in contact with the vapour.

If water is used as the condensing agent, it may rise en masse about the surfaces or flow down in a thin layer over them.

If the air is used as the cooling agent, it is forced through pipes round which moves the liquid to be cooled.

Thus this species of condenser may be separated into :-

- 1. Enclosed surface-condensers cooled by water.
- 2. Enclosed surface condensers cooled by air.
- 3. Open surface-condensers.
- 1. Enclosed Surface-Condensers with Water Cooling (Coolers).

Figs. 17, 18 and 19 show typical forms of these condensers.

(a) The Mean Temperature Differences, θ_{mc} and θ_{mk} .

If there are not particular reasons for another arrangement, this species of apparatus is naturally constructed for opposite currents, i.e., in vertical condensers the steam enters at the top and the water below. Generally the vapout passes through and the water around the tubes: occasionally, however, for convenience in cleaning the tubes, the

vapour is sent round and the water through them. This latter arrangement influences the exchange of heat only in so far as it generally diminishes the velocity of the steam and increases that of the water.

From what was said in Chapter I. it is evident that two periods must be distinguished in condensers which also cool, viz., the period during which the vapour is condensed and the period during which the condensed liquid is cooled.

If the vapour brought no air with it, it would retain the same temperature to the end of the first period in which the condensation occurs, since its pressure would remain almost the same. In proportion as it advanced over the cooling surface, its quantity, and hence its velocity, would gradually diminish until both became zero, but it would remain at a constant temperature so long as it existed. If then all the vapour had disappeared at a certain place in the condenser, the remaining space would be filled with air at a pressure equal to that of the vapour. The spaces filled with vapour and air would be

marked off with tolerable sharpness, and this would also be the case if the condensation occurred in vacuo. In reality, however, the vapour always contains more or less air, which increases in pressure the more the quantity of the vapour is diminished by condensation. Thus there is a gradual transformation from the space in which there is only vapour to that in which there is only air, through a space in which the two are mixed.

This air, which is introduced by the vapours to be condensed, must be conducted away, either into the atmosphere or to the air-

pump. Thus condensers or coolers must be provided with a pipe, which leads the air from their interior into the open or to the air-pump. This pipe must not be obstructed by fiquid, since the variations in the pressure and amount of air introduced into the condenser would cause currents backwards and forwards in this pipe in order to equalise the pressure. The presence of liquid in the pipe would prevent the free movement of the air and might cause irregularities in working.

Since condensation, i.e., the production of liquid from the vapour, commences immediately the vapour enters the condenser, its walls are at once covered by liquid flowing downwards, the quantity and velocity of which increase towards the bottom. This liquid forms an obstacle to the transfer of heat which cannot well be disregarded. The liquid flowing down has not the temperature of the vapour nor that of the cooling medium (water); its temperature lies between the two. At that place in the condenser at which condensation is practically finished, the condensed liquid is always cooler than the vapour from which it was formed. Unfortunately, in the lack of suitable experiments, it is not accurately known what relation its temperature bears to those of the vapour and cooling water.

For this reason, and because we wish to avoid other arbitrary assumptions, and finally also because this condition has only a slight influence on the estimation of the size of the cooling surface, we shall assume in what follows (though incorrectly) that the liquid condensed has at the end of the condensation the temperature of the vapour, and that in the following period it is cooled from the temperature of the vapour to the desired lower temperature.

The transfer of heat is universally assumed to be directly proportional to the difference in temperature between the two substances engaged in the process. Therefore, in the first place, we must determine the mean temperature difference between vapour and cooling water and then that between the condensed liquid and the water.

We know, from Chapter I., that the mean difference in temperature is in most cases not equal to the arithmetic mean of the initial and final differences, but is (equation 10):

$$\theta_m = \frac{\theta_a \left(1 - \frac{p}{100}\right)}{\log \frac{100}{p}},$$

in which θ_a denotes the greatest and p the least difference in temperature, the latter expressed as a percentage of the former.

Example.—If the greatest difference, $\theta_a = 60^\circ$, the least difference = 6° , then $p = \frac{6 \times 100}{60} = 10$ per cent.

In Table 1 are found the values of θ_m calculated for the case in which $\theta_a = 1$, and for p = 1 - 100 per cent.

Example.—For $\theta_n = 60^\circ$ and p = 10, Table 1 gives $\theta_m = 0.391 \times 60 = 23.46^\circ$.

In order to determine the cooling surfaces, it is necessary to know the mean temperature difference for each of the two periods singly, i.e., for the period of condensation of the vapour and for that of cooling the condensed liquid. It would, however be inconvenient to calculate this specially every time. Table 52 is therefore given, in which the mean differences are given for a large number of cases—for steam at atmospheric pressure at the temperature of 100° C., for steam of lower pressure at vacua of 611 and 705 mm. (temperatures of 60° and 40° C.), and also for alcohol vapour at 80° C., always cooling by water.

The cooling water may have various original temperatures, those of $t_{ka}=2.5^{\circ}$, 5° , 10° , 15° and 20° C. are considered in the Table. The water may also flow away at various temperatures; the final temperatures, $t_{le}=20^{\circ}$, 30° , 40° , 50° , 60° , 70° and 80° C., are given in Table 52. Finally, the condensed liquid is obtained at different temperatures; the cases are considered in which it leaves 2° , 5° , 10° , 15° , 20° and 25° C. hotter than the cooling water.

In Table 52 the mean difference in temperature between vapour and cooling water in the first period (condensation) is represented by θ_{mc} , the mean difference between condensed liquid and cooling water in the second period (cooling) is represented by θ_{mk} .

Example.—The steam to be condensed is at 100°, the cooling water is originally at 10° and is to flow away at 60°. The condensed liquid is required to be at 15° C.

According to our assumption, the steam is only to be condensed in the first period, not cooled. 1 kilo. of steam at 100° C. has a total heat of 687 calories, of which 537 must be withdrawn in condensation. The condensed steam, the liquid, has still 100 calories; therefore, in order to cool it down to 15° C., 85 units of heat must still be removed (in all 537 + 85 = 622 calories). In the

sooling period, therefore, $\frac{85}{697-15} = \frac{85}{622}$ of the total heat is to be removed, and in the condensing period $\frac{597}{622}$ of the total heat.

The cooling water becomes heated in all from 15° to 60° C., i.e., through 45°, of which $\frac{85 \times 45}{622} \approx 6.15$ ° is accounted for by the period of cooling.

Thus, at the end of the condensation period, when the condensed liquid is still at 100° , the cooling water is at $10^\circ + 6.15^\circ = 16.15^\circ$ C.

The steam enters at -					· 100°
The water is finally at -	•		•	-	- 60°
Difference				•	- '40°
The steam is finally at			-	•	- 100°
The water at the same pla	ace is	at	•	, -	· 16·15
Difference		-	-		- 83.85

40° is the following percentage of 83.85°:— $p = \frac{40 \times 100}{83.85} = 47.70$ per cent.

The mean temperature difference between steam and water in the first period is, therefore according to Table 1, $\theta_{me} = 0.7 \times 83.85 = 58.7^{\circ}$.

The condensed liquid at the top is at - The cooling water at the top is at	•	•	100° 16·15
Difference - '			83.85
The condensed liquid at the bottom is at			15°
The cooling water at the bottom is at -	•	-	10°
Difference			5°

5° is the following percentage of 88.85°:— $p = \frac{5 \times 100}{83.85} = 5.96$ per cent.

The mean temperature difference between the condensed liquid and the cooling water during the second period, according to Table 1, is $\theta_{mk} = 0.339 \times 88.85 = 28.42^{\circ}.$

Table 52 has been calculated in this manner. It shows:-

1. That the mean temperature difference between vapour and covered water (first period) decreases with the increase in temperature of the waste water, but that it is very little affected by the extent to which the condensed liquid is cooled. In the latter respect the differences may be neglected in practice.

TABLE 52.

The temperature differences between vapour and cooling water, θ_{mo} , and between condensed liquid and cooling water, θ_{mk} , for steam at 100°, 60° (611 mm. vacuum), 40° C. (705 mm. vacuum), for alcohol vapour at 80° C. (83.6 per cent. by weight) in closed surface-condensers.

The figures printed vertically are the temperatures of the cooling water at the place where condensation ceases and cooling begi: s.

rature r.	of nid.	Steam at 100° C. (atmospheric pressure). Latent heat = 537 calories. Final temperature of the cooling water, t_{ke} .													
iginal tempera cooling water.	ature c ed liqu	2	0°•	ą	٥°	40	0°	5	0°	• 6	0°	7	0°	80)°
Original temperature of cooling water.	Temperature of condensed liquid		Mean temperature differences.												
t _{ka}	lve	0 mc	θ_{mk}	θ_{mc}	θ_{mk}	θ_{mc}	θ _{mk}	θ_{uc}	θ _{mk}	θ_{mc}	θ_{mk}	θ [♠] _{mc}	θ_{mk}	θ_{mc}	θ _{mk}
2.50	5 7·5 12·5 17·5	",'⁴ '','⁴	26 8 32 38 44·1	82 7. ° ° ° 8	25·5 31 36·8 43·4		25·1 30·6 37·2 42·76	,,α	25·7 30·8 36·8 42	62·1 " ".6	24·3 29·3 36 42·3	58·4 ,",[]	25·9 29 36 41·7	,, <u>2</u>	24·5 29 36 42
5°	7 10 15 20 25 30	85·5 ,,t- ,,	25·1 31 37·2 42·8 48·8 51	30 ,,∞ ,,∞	24·8 29·2 36·7 42·4 47 49·8		23·4 30 36 42·4 46·8 49·5	,,	24 29·8 35·8 42·6 46·5 49	60·9 17 17 18	28·45 29 34·8 41·9 45·2 49	53·9 ;; II; ;	23·4 29 34·8 41·8 45·2 49	,,	23·9 23·9 34·7 41·7 45 1 49
10°	12 15 20 25 30 35	84 , 7, 11 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	22·9 29·2 36·4 42·2 46·28 49·84	77°, °, °, °, °, °, °, °, °, °, °, °, °, °	22.6 28.8 36.2 41.7 45.76 49.36		22·3 28·4 36 41·2 44·7 48·1		22 28 35·7 40·8 44 47·4	56, 2,91	21·8 27·7 35 40·2 43·42 46·72	1,71	21 5 27·4 34·3 39·8 42·98 46·5	19.3	21 27·2 33·6 39·2 42·1 45·8
15°	17 20 25 30 35 40	82·7 ,, 9· <u>9</u> 1	22.7 28.2 34.6 39.6 44.7 48.1	76.9 16.1 16.1	22·4 27·7 34·8 39·6 43·6 48	71 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22·4 27·7 34·8 39·6 43·8 47·8	63·9 19 19	21·5 27 34 38·9 43·7 47	58·8 ; 02 • ; ;	21·8 26·8 33·9 38·8 42·6 46·6	51·5 ,,, 17 ,,,	21 26·5 93·5 38·3 42·1 46		19 8 25 8 32 7 38 2 41 45
20°	22 25 30 85	=	=	74·1 "	21·4 27·1 33·5 39	67·7 "	21 26·6 32·8 38·4	,,	20·6 26·25 32·25 37·52	i .,	20·2 25·7 31·7 37·1	48 '' ''	19·7 25·8 31·3 36·9	40·7 ,, ,,	19·3 25 30·7 36·7

Table 52—(continued).

	<u> </u>									,					
erature er.	of nid.	1	eam a Lat al tem	ent h	168t =	= 564	calc	ries		Steam at 40° C. (705 mm. vac.) latent heat = 578 calories. Final temp. of cool'g water, t_{ke}					
Original temperature of cooling water.	Temperature of condensed liquid	2	0°	3	0°	4	10°		50°	20°		30°			35°
Origin of cool	Tempe conden		Mean	tem	perat	ure d	liffere	nces	,	Mean temperature differen				ences.	
* ka	t_{we}	θ _{mc}	θ_{mk}	θ_{mc}	θ_{mk}	θ _{mc}	θ_{mk}	θ,,,,	θ _m k	θmc	θ_{mk}	θ_{mc}	θ_{mk}	θ_{mc}	θ _{mk}
2.50	5 7·5 12·5 17·5 22·5	47·7 ,, ,,→	17·3 21·2 26·9 30·8 35·3	"4	17·3 \$1·2 26·9 30·8 35·8	34.4	17·5 20·7 26·1 30 85·4	25·8 ,,,,,,,,,,	17·2 20·4 25·8 29·5 33·8	27·5	12·7 16 20·4 24 28	20 ,,,,,	12 15·8 20 24 28·5	15·9 ,,	12·7 16 19·9 24·3 28·5
5°	7 10 15 20 25	.,,	16·2 20 8 26·1 31 34·7	" "	15·6 20 2 25·4 30·1 33·8	, 3.4	15·6 20·2 25·4 30·1 33·8	, , , , 6,	15·3 :9·9 25 29·6 33·1	27 ,, ç.9	12·2 14·4 19·9 23·6 26·5	19•7 ,, 6•9 ,,	12 14 19 23.6 26.5	" 15·1 "	11·3 14 19 23 26·5
10°	12 15 20 25 30	, <u>1</u> 0.7	15·7 13·7 24·7 28·5 33	11.3	15·5 19·4 24·2 28 82·5	, 12°,	15·8 19·2 24 27·8 82	12.3	15·2 19 23·8 27·55 31·6	, i i i i i i i i i i i i i i i i i i i	10·9 13· 7 17·8 21·2 25	, , , , , , , , , , , , , , , , , , ,	10·9 18·7 17 8 21·2 25	13·6 ,,	9·25 13·6 17·8 21·2 24·3
15%	17 20 25 30 35	15,	14·4 18 ·45 23·8 27·9 31	15.8	14 18 23·4 27·2 30·2	16.2°	18·7 17·1 22·8 26·6 29·6	16.8	18·7 17·6 22·8 26·6 29·6	15.1	9·87 12·5 16·2 19·5 22·5	15.3	9·87 12·5 16·2 19·5 22·5	",	9·25 12·5 16·25 19·5 22·25
20°	22 25 30 35 40	=	34-9 13-6 28 13-8 20-9 13 15-9							_		୍ନ,ଷ	8·4 10·8 14·4 17·4	"	8·4 10·8 14·4 17·4 20

^{2.} That the mean temperature difference between the condensed liquid and the cooling water (second period) is considerably affected by the extent to which the final temperature of the condensed liquid is to approach that of the cooling water, but that it does not depend to any great degree on the temperature of the waste water. In the latter respect the variations may be disregarded, and the mean temperature

Table 52-continued.

erature er.	ıid.	Alco	Alcohol vapour at 80° C., about 90'4 per cent. strength by volum = 86'3 per cent. by weight. Specific heat, σ = 0'8. Latent heat = 205 calories. Final temperature of the cooling water, t_{ke} .										ume	
l temp ng wat	sture c	2	20° 30° 40° 50° 60° 70°											
Original temperature of cooling water.	Temperature of condensed liquid		Mean temperature differences.											
t _{ka}	t_{we}	A _{nic}	· · · · · · · · · · · · · · · · · · ·											
2.5°	5 7·5 12·5 17·5	79 ,, 9	21:0 60:4 20:8 53:9 20:5 46:9 20:3 38:2 19:8 29:4 19:8 25:9 25:2 70 24:5 73 29:9 77 77 29:4 29:7 77 29:4 29:7 77 29:4 29:7 77 77 29:4 29:7 77 29:7 29:7 29:7 29:7 29:7 29:7 2											
5°	7 10 15	67 ,∵∞ ,,	2)·8 24·4 31·6	58·8 10 10	20·3 24·4 30·8	52 ;; ,,	19·7 28·9 28·8	45 ,,•∓	19·1 23·1 29	37·1 791 7,	18·5 22·4 2 8·1	28·5 ;;81	17 9 21·7 27·2	
10°	12 15 20	64-6 21,	19·7 24·4 80·6	55·4 55·4	19·1 23·7 29·7	50·5 19 19	18·6 23 29·9	43·4 ","¤	18 22·3 27·9	36·6 30.	17·4 21·6 27	27· ","	16·8 20·9 26·1	
15°	17 20 25	62· 7 ",91	7 17.9 55.1 17.3649.2 16.8 42.3 16.2635.2 15.6826.1 15.1											
20°	92 25 9)	- -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											

difference for the second period may be taken for all cases as the mean of the temperature differences calculated for waste water temperatures of 20°-80°, without regard to the actual temperature of the waste water in the particular case.

(b) The Coefficients of Transmission of Heat, ke and ke

The coefficient, k_o , for the passage of heat from steam to non-boiling water (first period) in open copper or brass tubes, is obtained from the empirical expression:

$$k_c = 750 \sqrt[2]{v_d} \sqrt[3]{0.007 + v_f} \dots$$
 (202)

This formula is founded on observations made in actual practice on

large and small condensers of most varied forms; v_d denotes the velocity of the steam when it enters the condenser (initial velocity), v_r , the mean velocity of the cooling water. It appears to be unquestionable that the coefficient of transmission of heat in these cases (condensation of vapours in spaces connected with the atmosphere or with an air-pump) increases with the velocity of the steam and water.

The velocity of the current of steam naturally decreases in the condenser from the beginning to the end, when it is zero. This decrease is in no way uniform, but is first rapid, then slower, following a curve outside our present scope. Since, however, the decrease in velocity must take place in almost all cases in the same manner, because the essential conditions, which cause the decrease, are the same in all condensers, it is permissible to assume that the mean velocity of the steam, which is the factor to be considered here, is in a simple proportion to the initial velocity.

As already mentioned in Chapter VII., there are many causes besides the velocities which influence the transmission of heat. These influences may be very great and often of such a nature that they cannot be expressed mathematically. The incrustations, which always occur to a greater or less extent, and are à priori quite indeterminable, often make any calculation deceptive; but also the position and direction of the surfaces, the width, shape and capacity of the hot space, the air mixed with the vapour, all alter the action to a considerable extent. No equation can be given for k_{σ} which expresses all these factors.

For coils and tubular coolers, through which the vapours pass equation (202) may be used with some confidence. It is already corrected for an average diminution in efficiency due to the furring of the cooling surface. For extraordinary cases k_c may be taken somewhat larger or smaller. Equation (202) holds good for cooling surfaces of copper and brass; these have walls of colerably equal thickness, which may therefore be disregarded. For iron surfaces, partly because they generally are more furred than copper surfaces, the value of k_c should be diminished by about 15 per cent., for thick lead surfaces by about 30 per cent.

In Table 53 are collected the values for k_c , calculated by means of equation (202), for initial velocities of steam of 1-65 and velocities of the cooling liquid of 0·001-4 m. These values, k_c , are for the first period—that of condensation.

For the second period, that of cooling, in which the transfer of heat

TABLE 53.

The coefficient of the transmission of heat, k_e , between steam at low pressures and water, which does not boil, with copper tubes, for initial velocities of the steam, v_d , of 1-65 m. and velocities of the water, $v_r = 0.001 \, 4.0 \, \text{m}$. (First period).

n	Ve	locity	y of t	he st	eam	wher	ı it e	nters	the	cond	enser	tub	e, v_d ,	in n	1.
Velocity of the cooling	1	2	4	6	9	12	16	2Ó	25	30	36	42	49	56	65
liquid in m. v,	•				Cod	efficie	ent o	traı	smis	sion,	ke.				
0·001 0·008 0·020 0·035 0·056 0·085 0·117 0·160 0·210 0·266 0·335 0·415 0·505 0·607	150 187 225 262 300 337 975 412 450 487 525 502 600 637 675	262 315 367 425 528 590 634 685 742 792 846 897 915	875 450 524 600 674 750 824 900 975 1050 1124 1200 1271 1350	563 655 750 842 937 1030 1110 1230 1325 1417 1500 1592 1687	562 675 786 900 1011 1125 1236 1350 1461 1575 1686 1800 1912 2025	655 788 917 1050 1179 1312 1442 1575 1704 1937 2100 2230 2362	750 900 1048 1200 1348 *500 1648 1800 1948 2100 2248 2400 2548 2700	848 1018 1179 1350 1516 1687 1884 2025 2191 2862 2529 2700 2866 3037	937 1125 1310 1500 1685 1875 2060 2250 2435 2727 2810 3000 3185 3375	1030 1238 1441 1650 1858 2062 2266 2475 2678 2987 3091 3508 3712	1125 1350 1595 1800 2022 2250 2472 2700 2922 3150 3872 3600 3822 4050	1218 1468 1706 1950 2190 2437 2678 2925 3165 3412 3653 3900 4140 4387	1312 1575 1884 2100 2356 2625 2884 3150 8409 3675 3984 4200 4459	1125 1405 1688 1965 2250 2527 2812 3090 3875 3692 3937 4216 4500 4777 5062	1500 1800 2100 2400 2696 3000 3296 3640 3896 4200 4496 4800 5096 5400
0.850 1.00 1.50 2.00 2.50 3.0 3.5 4.0	750 862 945 1013 1087 1140	1057 1207 1323 1418 1521 1596	155) 1724 1892 026 2174 2280	1925 2155 2362 2532 2717 2850	2350 2586 2835 3039 3261 3420	2625 3017 3307 3545 3804 8990	3000 3448 3780 4052 4348 4520	3375 3879 4252 4558 4891 5130	3750 4310 4725 5065 5435 5700	4125 4741 5197 5571 5978 6270	4500 5172 5670 6078 6522 6340	4875 5603 6142 6584 7065	5250 6034 6034 7091 7603	5390 6025 6465 7087 7597 8152 8550 9000	6000 6896 75 0 8104 8696 0120

is between the condensed liquid and the cooling liquid—between two liquids—another coefficient, k_k , holds good.

The coefficient of transmission, k_z , for the transfer of heat between two liquids moving with different velocities, is taken from equation (231) in the following chapter, for copper tubes:

$$k_k = \frac{200}{\frac{1}{1+6\sqrt{v_{1}}} + \frac{1}{1+6\sqrt{v_{2}}}}.$$

In this expression v_{1} denotes the velocity of one liquid, v_{2} of the other.

Table 64 gives, by equation (232), the values of k_z for velocities of the two liquids, v_{cl} and v_{cl} , from 0'001-2 m,

The velocity, v_n , of the cooling liquid (generally water), which is rising and being heated, may be determined in any case after the construction of the apparatus, but is generally calculated previously; it is usually very low. As a rule, in cooling vessels the water rises with a velocity of 1-3 mm. per sec., although there is at times an endeavour to attain a higher velocity. Occasionally 150 or even 200 mm. per sec. is reached.

Apart from the uniform initial velocity, the cooling water acquires, through being heated on the hot surfaces, particular movements, the velocity of which may depend very largely on the temperature difference, the absolute temperature and the shape of the cooling surface. Thus the original velocity alone is not all. The warmer the cooling water is, the more readily it takes up heat (see the example on p. 32).

The velocity, v_{r2} , of the condensed liquid running down in the condenser is not known. It is generally greater than that of the cooling liquid. Certain observations lead to the conclusion that it is rarely more than 1 m. pe: second; v_{r2} is therefore taken at 0.800. This holds good for cooling surfaces, which are wetted all over by the condensed liquid which is to be cooled. It is almost universal in practice to find only a portion of the cooling surface wetted. Therefore, for writical tubes the calculated surfaces must be approximately doubled. In coil coolers, in which the liquid only runs down on the lower part of the inner wall of the pipe, the upper and larger part remains unused, therefore the calculated cooling surface, H_k , for coils, must be multiplied approximately by 3.

(c) The Condensing and Cooling Surfaces, H. and H.

We have now determined the dimensions of the principal factors, θ_{mk} , k_o and k_b , upon which depend the size of the condensing surface, H_o , and cooling surface, H_b ; we now proceed to calculate the whole surface necessary. It is

$$H_{e_k} = H_e + H_k = \frac{C_e}{\theta_{m_s} k_e} + \frac{C_k}{\theta_{m_s} k_k}$$
 . . . (203)

In order to facilitate the estimation of the condensing and cooling surfaces necessary in each separate case, Table 54 is given, from which may be taken the surfaces for condensing and cooling 100 kilos of water or alcohol vapour per hour.

Table 54 consists of two parts. Part I. gives the surface, H_{\star} , required for condensing 100 kilos of steam at 100°, 60° and 40° C., and of aqueous alcohol vapour at 80° C. (86°3 per cent. by weight), in one hour, with vapour velocities of 1-64 m. and cooling water velocities of 0.001-1.00 m. per sec. Part II. then, gives the surface, H_{h} , required for cooling the condensed liquid.

In using Table 54 it is therefore necessary first to seek in Part I. the surface necessary for condensation, and to add to this the surface required for cooling, obtained from Part II. and multiplied by 2 or 3.

It was assumed in calculating this table that the cooling water enters at 10° C., which is its ordinary temperature. If the water is colder in any particular case, the surfaces may be somewhat smaller, if warmer, they must be increased in proportion to the temperature differences given in Table 54. The figures are for copper heating surfaces. Iron surfaces must be 10-20 per cent. larger, lead surfaces 20-30 per cent. larger. An addition must also be made for exceptionally thick walls.

The first part of Table 54 is based on the assumption that all the vapour which enter, the condenser is to be condensed. If this is not the case, but only a part of the entering vapour is to be liquefied, the other part leaving the condenser as vapour, then the capacity of the cooling surface increases considerably. The increase depends on the velocity with which the vapour leaves. In such cases the sum of the initial and final velocities of the vapour is to be taken as the basis of calculation.

The cooling surfaces given for the condensation of steam at 40° C. are probably too low; it would be well in constructing apparatus to make them somewhat larger than is indicated in Table 54—say 15-20 per cent. larger. It appears that highly rarefied steam communicates its heat less rapidly than high pressure steam; this may be on account of the greater distance apart of the molecules or on account of the sluggishness due to this cause. Table 54 assumes that the vapour passes through the tubes and the water flows outside them. If the reverse be the case, the greater velocity of the water is more favourable and the lower velocity of the steam less favourable, but generally

TABLE 54. PART I.

The cooling surfaces, H_c and H_k , in sq. m., requisite to condense and cool in one hour 100 kilos, of steam at 100° C., 100 kilos, of steam at 60° C., 100 kilos, of steam at 40° C., and 100 kilos, of aqueous alcoholic vapour at 80° C. (86·3 per cent. by weight).

The steam enters at velocities, v_a from 1-64 m. The cooling water has velocities, v_a from 0-001-1-00 m.

The initial temperature of the cooling water, $t_{ka} = 10^{\circ}$ C. The final temperature of the cooling water, $t_{kc} = 20^{\circ} - 80^{\circ}$ C.

The condensed liquid leaves at $2^{\circ}-25^{\circ}$ C. above the initial temperature of the cooling water.

(
	Steam at 1	100° C. (atmospl	eric pre	ssure), d	597.								
		Fi	nal tem	perature	of the	cooling v	water, t	e.						
Initial velocity of the	Velocity of the cooling	20	30	40	50	60	70	80						
steam.	water.	The		surface				to						
v_d	. v,	condense 100 kilos, of steam per hour.												
1.0	0.001	4·29 4·62 5 5·45 6·20 6·90 8·40 3°43 3 69 4 4·36 4·96 5·52 6·72												
1	• 0.009	3°43 3 69 4 4·36 4·96 5·52 6·72												
1	0.020	2.86	3.08	3.24	3.64	4.14	4.60	5.60						
1	0.210	1.43	1.54	1.67	1.82	2.07	2.30	2.80						
١,	1.000	0.86	0.93	1.00	1.09	1.24	1.40	1.68						
1.5	0.001	3.52	3.78	4.10	4.47	5.10	5.66	7.00						
1	0.009	2.81	3.00	3.28	3.58	4.08	4.53	5.60						
I	0.020	2.36	2.52	2.74	2.98	3.40	3.78	5.34						
1	0.210	1.18	1.26	1.37	1.49	1.70	1.89	2.67						
1	1.00	0.71	0.76	0.82	0.89	1.02	1.13	1.40						
2	0.001	3.01	3.27	3.54	3.83	4.40	4.90	6.00						
1	0.009	2.41	2.61	2.83	3.06	3.52	3.92	4.80						
Į.	0.020	2.02	2.18	2.36	2.56	2.94	3.28	4.00						
4	0.210	1.01	1.05	1.18	1.28	1.47	1.64	2.00						
1	1.00	0.61	0.66	0.71	0.77	0.88	0.98	1.20						
1	0.001	2.15	2.31	2.50	2.73	3.10	3.45	4.20						
Į.	0.009	1.72	1.85	2.00	2.18	2.48	2.76	3.36						
1	0.020	1.44	1.54	1.66	1.82	2.08	2.30	2.80						
1	0.210	0.72	0.77	0.83	0.91	1.04	1.15	1.40						
1	1.000	0.43	0.46	0.50	0.55	0.62	0.70	0.84						
]			}			1								
L							-							

TABLE 54. PART I .- (continued).

	Steam at 100° C. (atmospheric pressure), c = 587.												
		F	inal tem	peratur	e of the	cculing	water, t	:0•					
Initial velocity of the	Velocity of the cooling	20	30	40	50	60	7 0	٠٥					
steam.	water.			surface				to					
v.,	v_{f}												
9	0.001	1.49	1.54	1.67	1.00	10·07	2.30	2.80					
9	0.001	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
	0.020	$ \begin{vmatrix} 1 \cdot 14 & 1 \cdot 25 & 1 \cdot 50 & 1 \cdot 38 & 1 \cdot 66 & 1 \cdot 84 & 2 \cdot 24 \\ 0 \cdot 90 & 1 \cdot 02 & 1 \cdot 12 & 1 \cdot 22 & 1 \cdot 38 & 1 \cdot 54 & 1 \cdot 88 \end{vmatrix} $											
	0.210	0.45	0.51	0.56	0.61	0.69	0.77	0.94					
ł	1.000	0.29	0.31	0.36	0.37	0.42	0.46	0.56					
1 6	0.001	1.08	1.16	1.25	1.36	1.55	1.73	2.10					
į.	0.009	0.86	0.95	1.00	1.09	1.24	1.38	1.68					
	0.020	0.58	0.64	0.68	0.74	0.84	0.92	1:12					
i	0.210	0.29	0.32	0.34	0.37	0.42	0.46	0.56					
1	1.000	0.22	0.24	0.25	0.27	0.31	0.35	0.42					
20	0.001	0.96	1.04	1.12	1.22	1.38	1.54	1.88					
l	0.009	C·77	0.83	0.89	0.97	1.10	1.23	1.50					
	0.020	0.64	0.70	0.75	0.82	0.90	1.02	1.26					
1	0.210	0.32	0.35	0.38	0.41	0.45	0.51	0.63					
1	1.000	0.20	0.21	0.23	0.25	0.28	0.31	0.38					
25	0.001	0.86	0.93	1.00	1.09	1.24	1.38	1.68					
1	0.009	0.71	0.75	0.80	0.87	1.00	1.10	1.34					
l	0.020	058	0.62	0.67	0.72	0.64	0.90	1.12					
1	0.210	0.59	0.31	0.34	0.36	0.32	0.45	0.56					
1	1.000	0.17	0.19	0.20	0.29	0.25	0.28	0.34					
<u> </u>	1		J	}		1							

difficult to ascertain. The efficiency of the condensing surfaces may then be taken at about 20 per cent. less than that given in the table, to which extent the surfaces should therefore be increased.

k.xampls.—100 kilos of steam at 100° C. are to be condensed and the liquid cooled to 15° C. The cooling water is originally at 10° and is to flow away at 60° C. The steam enters with the velocity, $v_d = 30$ m., the water with the velocity, $v_t = 0.002$ m.

In order to condense 100 kilos, of steam, (687-100) 100 = 53,700 calories must be withdrawn from it. In order to cool 100 kilos, of water from 100° to 15° (100-15) 100 = 8500 calories must be abstracted.

TABLE 54. PART I.—(continued).

<u> </u>	Steam at 100° C. (atmospheric pressure), $c=537$.														
	1.	F	inal tem	peratur	e of the	cooling	water, t	te.							
Initial velocity of the steam.	Velocity of the cooling water.	20	30	40	50	60	70 .	80							
v_{d}	v _f .	TV ₁₆	The cooling surface, H_c , in sq. m., required to condense 100 kilos. of steam per hour.												
1															
30	0.001	0.78													
1	0.009	0.62	0.62 0.67 0.73 0.80 0.92 1.00 1.23												
1	0.020	0.52													
1	0.210	0.26	0.28	0.31	0.34	0.38	0.42	0.52							
i	1.000	0.16	0.17	0.19	0.20	0.23	0.26	0.31							
36	0.001	0.72	0.77	0.83	0.91	1.04	1.15	1.40							
1	0.009	0:57	0.61	0.66	0.73	0.83	0.92	1.12							
	∙ 0.020	0.48	0.52	0.56	0.62	0.76	0.78	0.95							
1	0.210	0.24	0.26	0.28	0.31	0.38	0.39	0.47							
	1.000	0.15	0.16	0.17	0.19	0.21	0.23	0.28							
49	0.001	0.62	0.66	0.72	0.78	0.89	1.00	1.20							
,	0.009	0.50	0.53	0.58	0.62	0.72	0.80	0.96							
	0.020	0.42	0.44	0.48	0.58	0.60	0.68	0.80							
[0.210	0.21	6.22	0.24	0.29	0.30	0.34	0.40							
	1.000	0.13	0.14	0.15	0.16	0.18	0.20	0.24							
64	0.001	0.54	0.58	0.63	0.68	0.78	0.87	1.05							
	0.009	0.44	0.47	0.51	0.55	0.62	0.71	0.84							
	0.020	0.36	0.38	0.42	0.46	0.52	0.58	0.70							
	0.210	0.18	0.19	0.21	0.23	0.26	0.29	0.35							
	1.000	0.11	0.12	0.13	V·14	0.16	0.18	0.21							

According to Table 52, the temperature differences for the present case are $\theta_{mc} = 58.7^{\circ}$ and $\theta_{mk} = 27.7^{\circ}$, and the coefficient of transmission, according to Table 53, is in the first period (condensation) $k_c = 830$, and in the second period (cooling), according to Table 63, $k_k = 212$.

The cooling surface for the (first) period of condensation is therefore

$$H_c = \frac{C}{\kappa^2 \theta_{mc}} = \frac{58700}{890 \times 58^{\circ}7} = 1.13 \text{ sq. m.}$$
 The cooling surface for the (second) period of cooling would be

$$H_k = \frac{C}{k_k \theta_{mk}} = \frac{8500}{212 \times 27.7} = 1.44 \text{ sq. m.}$$

if it were all used. The cooler, however, is to be made in the form of a coil; the

TABLE 54. PART I .- (continued).

	Ste	and at 60)° C.		•	Ste	eam at 4	о° С.		
	•	v	acuum = C =	= 611 m = 564.	m.	Vacu	um = 70 c = 57			
Initial velocity	Velocity of the	Fi	nal tem	peratur	e of the	cooling	water, t	ke-		
of the steam.	cooling water.	20	30	40 °	50	20	30	35		
			Cooling	surface,	H_c , in s	sq. m., required to steam per hour.				
v_d	v,	•				P.				
	1	,]		•		1			
4	0.001	4.05	4.68	5.50	7.14	6.76	10.20	13.42		
1	0.009	3.24	3.90	4.20	5.85	5.41	8.16	10.73		
l	0.020	2.70	2.12	3.68	4.76	4.52	6.80	8.96		
	0.210	1.35	1.56	1.84	.2.38	2.26	3.40	4.48		
9	1.000	0.81	0.94	1.10	1.45	1.36	2:04	2.69		
9	0·001 0·009	2·70 2·16	3.13	3.70	4.76	4.51	6.80	8.95		
1	0.009	1.80	2·50 2·10	2.96	3·81 3·18	3·61 3·02	5•44 4·54	7·16 5·98		
1	0.210	0.90	1.05	1.24	1.59	1.51	2.27	2-99		
1	1.000	0.54	0.63	0.74	0.96	0.91	1.36	1.79		
16	0.001	2.03	2.34	2.75	3.57	3.38	•5.10	6.70		
10	0.001	1.62	1.87	2.20	2.86	2.71	4.08	5.16		
	0.020	1.36	2.56	1.84	2.38	2.26	3.40	4.46		
•	0.210	0.68	0.78	0.92	1.19	1.13	1.70	2.23		
1	1.000	0.41	0.47	0.55	0.72	0.68	102	1.34		
25	0.001	1.62	1.88	2.22	2.86	2.71	4.08	5.37		
] -	0.009	1.30	1.50	1.77	2.31	2.19	3.26	4.30		
]	0.020	1.08	1.26	1.48	1.92	1.86	2.72	3.58		
]	0.210	0.54	0.63	0.74	0.96	0.93	1.36	1.79		
	1.000	0.33	0.38	0.44	0.58	0.55	0.82	1.08		
36	0.001	1.36	1.57	1.86	2.38	2.26	3.40	4.48		
1	0.009	1.09	1.26	1.51	1.90	1.81	2.72	3.59		
1	0.020	0.92	1.06	1.24	1.58	1.52	2.28	2.98		
]	0.210	0.46	0.53	0.62	0.79	0.76	1.14	1.49		
	1.000	0.27	0.32	0.38	0.48	0.46	0.68	0.90		
		L		· ·			•	1		

cooling surface must therefore be increased to about $3 \times 1.44 = 4.32$ sq. m., since only one-third is really active. The total surface is therefore $H_{\rm ct}=1.18+4.32=5.45$ sq. m.

TABLE 54. PART I .- (continued).

Aqueous al	cohol vapous at 80	0° C. (80	3 per ce	nt. stre	ngth by	weight =	= 90
	per	centi by	7 Volume	e). •	•		
				c =	252.	r	
Initial	Walasian at	Final	temper	ature of	the cou	ing wat	er, t _{ke} .
velocity of	Velocity of the cooling				T 1		
the vapour.	water.	20	30	40	50	60	70
							
		Cooli	ng surfa	ces. Hc.	in sa. n	., requi	red to
	•	con	dense 10	00.kilos.	of vapo	ur per h	our.
v_d		l					
1	0.001	2.60	3.03	3.33	3.87	4.59	6.18
1	0.003	2.08	2.42	3.66	3.11	3.67	4.95
	0.020	1.74	2.02	2.22	2.58	3.06	4.12
	0.210	0.87	1 01	1.11	1.29	1.53	2.06
	1.000	0.52	0.61	0 66	0.78	0.92	1.24
2	0.001	1.84	2.15	2.36	2.74	3.25	4.38
•	0.009	1.47	1.72	1.89	2.19	2.60	3.50
	0.020	1.24	1.44	1.58	1.84	2.18	2.98
'	0.210	0.62	0.72	0.79	0.92	1.09	1.49
	1.000	0.37	0.43	0.48	0.55	0.65	0.88
4	0.001	1.30	1.57	1.67	1.94	2.30	3.09
	0.009	1.04	1.26	1.34	1.55	1.84	2.47
	0.020	0.88	1.06	1.12	1.30	1.54	
	0.210	0.44	0.53	0.56	0.65	0.77	1.03
	1.000	0.26	0.32	0.34	0.39	0.46	0.62
6	0.001	1.04	1.21	1:33	1.55	1.84	2.47
	. 0.009	0.83	0.96	1.06	1.24	1.47	1.97
	0.020	0.70	0.82	0.90	1.06	1.24	1.66
	0.210	0.35	0.41	0.45	0.53	0.62	0.83
	1.000	0.21	0.24	0.27	0.32	0.37	0.50
9	0.001	0.87	1.01	1.11	1.29	1·53 1·22	2.06
	0.009	0.71	0.81	0.89	1·02 0·86	1.04	1.65 1.38
Ī	* 0.020 0.210	0.58	0.34	0.74	0.43	0.52	0.69
1	1.000	0.18	0.34	0.22	0.45	0.32	0.42
	1.000	0.10	0 21	0 42	0 20	0.01	0 42
	'	1 6		1		1	1

In the practical construction of apparatus the original temperature of the water is frequently unknown, and also several other conditions

TABLE 54. PART II.

	The cooling surface, H_k , for cooling.	
ng water.	100 kilos, of condensed steam at 100° C. per hour. 100 kilos, of condensed steam at 60° C. (611 mm. vacuum) per hour.	ıg water.
Velocity of the cooling water.	Temperature difference between initial temperature of the cooling water and final temperature of the condensed liquid.	Velocity of the cooling water.
locity	2° 5° 10° 15° 20° 25° 2° 5° 10° 15° 20°	elocity o
v _r	Cooling surface in sq. m.	v ,
0·001 0·009 0·020 0·210 1·000	$\begin{array}{c} 2\cdot00 & 1\cdot52 & 1\cdot15 & 0\cdot92 & 0\cdot80 & 0\cdot70 & 1\cdot60 & 1\cdot18 & 0\cdot83 & 0\cdot63 & 0\cdot50 \\ 1\cdot60 & 1\cdot21 & 0\cdot92 & 0\cdot73 & 0\cdot64 & 0\cdot56 & 1\cdot28 & 0\cdot95 & 0\cdot66 & 0\cdot54 & 0\cdot40 \\ 1\cdot40 & 1\cdot06 & 0\cdot81 & 0\cdot64 & 0\cdot56 & 0\cdot49 & 1\cdot12 & 0\cdot83 & 0\cdot58 & 0\cdot44 & 0\cdot35 \\ 0\cdot86 & 0\cdot65 & 0\cdot48 & 0\cdot40 & 0\cdot35 & 0\cdot31 & 0\cdot69 & 0\cdot51 & 0\cdot36 & 0\cdot27 & 0\cdot22 \\ 0\cdot60 & 0\cdot46 & 0\cdot34 & 0\cdot28 & 0\cdot24 & 0\cdot21 & 0\cdot48 & 0\cdot85 & 0\cdot25 & 0\cdot19 & 0\cdot45 \\ \end{array}$	
•	100 kilos, of condensed steam at 40° C. (705 mm. vacuum) per hour. 100 kilos, of condensed aqueous alcohol at 80° C. (86.3 per cent. by weight).	
	Cooling surface in sq. m.	
0.210	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0·001 0·009 0·020 0·210 1·000

The initial temperature of the cooling water is taken at $t_{ke} = 10^{\circ}$ C.

These cooling surfaces hold good only for surfaces entirely wetted. In the case of vertical tubular coolers these surfaces must be at least doubled, in worm coolers they must be at least trebled.

cannot be exactly estimated beforehand; it is therefore necessary to make allowances for these uncertainties. The following assumptions appear to be quite reasonable:—

		Aqueous alcohol vapour.		
The vapour to be condensed is at	100° - 30-50 - 20-30 - 0.001 - 10° - 70°-80° - 15°	60° 40-60 20-30 0:001 10° 40°-50° 15°	40° 45-65 25-35 0.001 10° 30° 15°	80° 4-5 m. 2-3 m. 0.001 m. 10° 60° 12°

For the sake of convenience in making similar calculations two other tables are given, the first of which, Table 55, contains the weights of steam at 100°, 60°, 40° and 35° C., and of alcohol vapour, ether vapour and air, which pass through pipes of 10-100 mm. diameter in one hour with a velocity of 1 m. per second. At any other velocity, $v_{\rm s}$, the weight of vapour passing is $v_{\rm s}$ times as great.

The second Table, 56, gives the quantity of water which rises in one hour with a velocity of 0.001 m. in vessels of 300-1250 mm. diameter. If the velocity be v_{Λ} the quantity of water is v_{Λ} times as great. If the quantity of water and the diameter of the vessel are known, Table 56 gives the velocity, v_{Λ} .

(d) Estimation of the Dimensions, d and l, of the Cooler Tubes.

As with evaporator tubes (Chapter VIII., Table 13) so also with condenser tubes, in which vapour is to be liquefied, it is necessary to calculate not only their cooling surface, H_c , but also the actual measurements, *i.e.*, to estimate their length and diameter, since too long tubes would be inactive at the end.

TABLE 55.

The weight of steam, in kilos., which passes through tubes of 10-100 mm. in diameter in one hour at the velocity, $v_d = 1$ m. per second.

Stea	am.		Diameter of the tube in mm.											
Pres- sure.	Tem- pera-													
Atmos.	ture. • C.	10	15	20	25	80	85	40	50	60	70	80	90	100
3 2·5	134 128		1.08 0.91	1·92 1·60						17·2 14·5		30·6 25·7	38·9 32·7	48·9 40·0
2 1.5	112	0.25	0.74	1·31 1·00	2·05 1·56	2·96 2·24	4·00 3·00	5•28 4•00	7·95 6·03	11.8 8.99	12.8	20·9 15·9		93·0 25·0 17·0
0·196 0·1/1	60 50	0·04 0·028	0·088 0·058	0·148 0·093	0·23 0·15	0·33 0·21	0·48 0·29	0· 5 9 0·38	0.60	1.33 0.87	1·79 1·14	2.26 1.50	3·00 1·90	3·66 2·34
0·072 0·055	40 35		0 083 0 01 5	0.049	0.07	0:10	0.14	0.18	0.28	0.40		0.72	0.91	
1	80°	0.39	10.88	The w	-			-		_				3 9·0
1	37·5°	0.80	1.70	8•10			_		ether 20:0	-		5 3·0	66.0	82.0
			The weight of air. 0.35 0.78 1.38 2.16 3.11 4.21 5.54 8.65 12.5 16.9 21.1 28.0 34.6											
1	150	0.85	0.78	1.38	2.16	3.11	4.21	5.24	8.65	12.5	16.9	21.1	28.0	34.6

TABLE 56.

The weight of water, W, which rises in one hour at the velocity, $v_{I} = 0.001$ m., through wessels of 300-1250 mm. diameter.

Diameter of vessel- Weight of water, W	800 252	350 345	400 452	450 572	500 705		650 1194	
Diameter of vessel- Weight of water, W	800 1800						11 5 0 3738	

From the condition, that the quantity of heat given up by the condenser tube to the cooling water in unit time must be equal to

the heat of evaporation (or condensation) of the vapour introduced, we obtain the equation:

$$H_c k_c \theta_{mc}^* = \frac{d^2 \pi}{4} v_q 3600 e_{\gamma} (204)$$

Inserting the values of H_o and k_o , we obtain

$$d\pi l 750 \sqrt{v_a} \sqrt[3]{0.007 + v_f} \theta_{mc} = \frac{d^2\pi}{4} v_a 3600 c \gamma_r$$

from which

$$\frac{l'}{d} = 1.2 \frac{c\gamma}{\theta_{mc}} \frac{\sqrt[2]{v_d}}{\sqrt[3]{0.007 + v_f}}.$$
 (205)

From this equation, the most advantageous proportion of the length to the diameter of the condenser tube may be calculated for each special case.

The great number of possible variations, due to the many variable factors, compels a restricted choice of the cases to be treated in tabular form.

In Table 57 are arranged the ratios of the dimensions of the tube, $\frac{l}{d}$, calculated by means of equation (205), for the condensation of steam at 134°, 121°, 100°, 60° and 40° C., and alcohol vapour at 80° C. (86·3 per cent. by weight = 90·4 per cent. by volume), which enter the tube with velocities, $v_d = 4.64$ m., for water velocities of $v_t = 0.001.3.0$ m. and mean temperature differences, $\theta_m = 10^\circ.70^\circ$.

The following is the method of using the table: After fixing the desired entrant velocity of the steam, v_a , the suitable diameter of the tube is obtained, for the quantity of steam to be condensed, from Table 55 by a slight calculation. Table 52 gives also the temperature differences in both periods (condensing and cooling) for the known or assumed initial and final temperatures of the cooling water. Table 57 gives from these the proper ratio of the length of the tube to its diameter.

The size of the resulting surface of condensation, H_c , may then be calculated from the dimensions of the tube.

The surfaces, H_{i} , required for *cooling* may be taken direct from Part II. of Table 54 and multiplied by 2 or 3 before use.

All these assumptions and tables are for copper and brass tubes for those of iron or lead the additions, already frequently mentioned must be made.

Table 57.

The ratio, diameter of pipe $= \frac{l}{d}$, of copper condensing pipes (coils) for steam at 134°, 121°, 100°, 60°, 40° °C., and aqueous alcohol vapour at 80° °C. (86·3 per cent. by weight), when the vapour enters at velocities of $v_d = 1$ -64 m. and the cooling water has velocities of $v_f = 0.001$ -30 m., with temperature differences between vapour and cooling water of $\theta_m = 10^\circ$ -70° °C.

Velocity of cooling water.	Mean tempera- ture difference.	Steam at 121° C. (2 atmos. abs.) Velocity of steam on entering, vi, in m.	Velocity of cooling water.	Mean tempera- ture difference.	Steam at 134° C. (3 atmos. abs.). Velocity of steam on entering, v _d , in m.
v_{ℓ}	θ_m	4 9 10 25 46 49 64	υı	θ,,,	4 9 16 25 36 49 64
m.	°C.	Ratio, $\frac{l}{d}$.	m.	°C.	• Ratio, $\frac{l}{d}$.
		40 00 100 1 20 100 010		00	مرا موارسا موا فموا موا
0 020	90 80	60 90 120 150 180 210 240	0.020	90	88 132 174 220 264 308 350
	70	67 102 136 170 204 238 270		80	98 146 198 244 294 342 394 112 168 224 280 336 392 450
1	60	$egin{array}{c c c c c c c c c c c c c c c c c c c $		70 60	112 168 224 280 836 892 450 182 198 264 320 396 462 526
1	50	108 162 216 270 324 378 432		50	158 236 316 394 474 580 630
	40	136 202 270 340 406 476 540	l	40	196 294 394 490 588 686 788
1	30	180 270 360 490 540 630 720	l	30	264 396 526 660 792 924 1052
	20	270 410 5 46,370 810 938 1080	Ι,	20	394 590 788 980 1182 1372 1578
0.210	90	30 45 60 75 90 105 120	0.210	90	44 66 87 110 132 154 175
• .	80	34 51 68 85 102 119 185		80	49 73 98 122 147 171 197
	70•	38 57 77 95 114 183 154		- 70	56 84 112 140 168 196 225
	60	45 68 90 111 135 157 180		60	66 99 132 160 198 981 263
	. 50 40	54 81 10° 135 162 189 216 68 101 135 170 203 238 270		50	79 118 158 197 297 275 315
	30	90 125 180 245 270 315 360		40 30	98 147 197 245 , 294 343 394 182 108 263 390 396 462 526
1	20	135 205 270 335 405 469 540		20	197 295 894 490 591 686 789
1.00	90	18 27 30 45 54 63 72		90	26 39 52 65 78 91 105
- *-	80	20 80 40 50 60 70 81		80	29 48 59 72 87 101 118
	70	23 34 46 56 69 80 98	1	70	34 51 68 85 102 119 135
	60	27 40 54 67 81 94 108		60	39 58 79 97 117 129 158
1	50	33 50 65 82 99 115 129		50	47 70 94 117 141 164 189
1	40	40 60 81 100 120 140 169		40	59 88 118 177 177 206 236
1	30	54 81 108 135 162 189 216		30	79 118 157 195 281 306 315
9.00	20	81 121 162 205 243 288 824 10 15 21 25 30 35 49		20	118 177 237 295 354 413 473
3.00	90	10 15 21 25 30 35 42 12 18 24 30 36 42 48		90	19 28 37 47 57 66 73 21 31 42 52 68 71 89
1	70	14 21 28 35 42 49 58		70	21 31 42 52 68 71 89 24 36 47 60 72 84 94
1	60	16 24 32 40 48 56 64		60	27 40 54 67 81 94 109
1 .	50	19 28 88 47 57 69 76		50	33 50 66 82 99 115 131
1	40	24 86 48 60 72 84 9		40	41 61 82 102 123 143 165
1	80	32 48 64 80 96 112 12		30	55 82 110 137 165 178 219
1 .	20	47 71 95 117 141 164 196	PI .	20	83 125 165 206 249 290 826
	<u> </u>		<u> </u>		

Table 57—(continued).

	•																
Velocity of cooling water,	Mean tempera- ture difference.		Velo	city	at 10 of st g, v _d ,	ean	on		Velocity of cooling water.	Mean tempera- ture difference.	•	Vel	ocity	of	60° (stean ₄ , in	n on	
υ γ	Mean s ture	4 9 16 25 36 49 64					64	v _f	ω Me	4	9	16	25	86	49	64	
m.	°C.	Ratio, \overline{d} .						m.	°C.			R	atio	$\frac{l}{d}$.			
0.001	70 60 50	65 97 130 162 195 227 26 78 117 156 195 234 278 31				220 260 312	,	50 40 30	18 22 29	26 33 44	35 44 59	44 55 74	53 67 88	62 78 103	71 89 118		
0.009	40 30 70	97 130 44·6	146 195 67	194 260 89	243 325 111	282 390 133	340 455 156	890 520 178	0.009	20 50 40	144 14 18	66 21 26	88 28 35	110 36 44	138 43 53	145 50 62	177 57 71
	60 50 40 30	52 62 78 ₹02€	78 93 117 156	125 156	180 156 195 260	187 £34	182 218 278 364	208 249 312 416	0.020	30 20 50 40	24 85 12 15	35 53 18 22	47 71 24 30	59 89 30 37	70 106 34 44	83 124 41 52	94 142 47 59
0·02 0	70 60 50	37 43 52	55 65 78	74 86 104	93 108 130	117 130 156	130 151 182	148 173 208	1 .	30 20 50	20 80 6	30 44 9·1	40 58 12	50 74 15	59 89 17	69 104 20	79 118 24
0•210	40 30 70 60	64 87 19 22	97 130 28 33	130 173 37 44		195 259 55 66	227 303 65 77.	260 346 75 88	,	40 30 20 50	7·5 10 15 3·6	11 15 22 5·8	15 20 30 7:1	18 25 37 9	22 30 44 11	26 35 52 12	30 40 59 14
11200	50 40 30	26 33 44	39 49 65	52 65 86	65 81 108	78 97 130	91 114 152	104 130 178		40 30 20	4·4 6 8·9	6·7 9	8·9 12 17·7	11 15 22	13·3 17 ·27		17·7 24 35
1500	70 60 50 40	11 13 16 20	16 19 28 29	22 26 31 39	28 33 39 49	34 39 47 59	40 46 55 69	52 62 76									
8·0(0	90 70 60	26 8 9	39 12 13·5	52 16 18	65 20 22.5	78 24 27	91 28 31·5	104 32 36		n (,							
	50 40 80	11 17·5 18	16 20 5 27	21 27 36	27 84 45	82 41 54	88 48 63	49 55 72	l								

In the case of oily substances, or of steam which is bringing oily substances with it, the calculated heating surfaces must be approximately doubled for practical use, because oily matter sticks to the walls and considerably diminishes the conduction of heat.

The figures apply only to pipes of circular section, which are generally used; for pipes of other sections different values must be taken.

Table 57—(continued).

Velocity of cooling water.	Mean tempera- ture difference.	4	Ve)	ocity	at 4 of st g, v _d ,	eam	on	64	velocity of cooling water.	a Mean tempera- ture difference.	Aqueous at 80° cent. by per cent Velocity entering	C. = v weight. by of verify, v_d	86.3 ght volume pour , in	pe = 90 ume or ou m.	r 0
'n.	oC.		Ratio, $\frac{l}{d}$.							°C.	F	atio,	$\frac{l}{d}$.		
0.001	30 20 15	12 18	12						0.001	60 50 40	30·7 48 37 52 46 65	74	74 89 1 11 1		48
0.009	10 80 20 15	36 9 14 19 28	54 14 21 28 42	72 19 28 37 56	90 23 85 46		126 33 49 65	144 37 56 74 112	0.009	90 20 60 50 40	61 85 92 124 24·5 34 29 40 37 52	122 1 184 2 49 58 74	46 1 216 2 59 69	83 2 76 3 78 87 1	244
0 020	30 20 15 10	8 12 16 24	12 18 24 35	16 24 32 47	20 80 40 59	24	27 •41 56 88	31 47 64 94	0.020	30 20 60 50	49 60 74 104 20·5 29 24·6 34	98 1 148 41 49	50 59	61 74	82 98
0.210	30 20 15 10	4 6 8 12	6 9 12 18	8 12 16 24	10 15 20 80	12 18 24 36	14 21 28 42	16 24 32 48	0.210	40 30 20 60	30·8 43 41 58 61 85 10·2 15	82 122 20	74 99 1 146 1 25	183 31	164
1.000	30 20 15 10	2·3 8·5 4·7 7·1	3·5 5·3 7·1 10·6	4·6 7·1 9·5 14·2	6 8·9 11·8 17·7	7·0 10·6 14·2 19·3	8·3 12·5 16·5 24·8	14·0 19·0	1.000	50 40 30 20 60	12·3 17 15·3 21 20·4 29 30·6 43 6·1 8•		29 36 49 74 15	18	61 81 122 24
				•	•					50 40 30 20	7·4 10· 9·2 12· 12·3 17 18·4 26		18 22 29 44	22 28 87 55	29 37 49 78

Example.—300 kilos. of steam at 100° C. are to be condensed, and the condensed water cooled down to 20° C., by means of water which becomes heated from 10° to 70°.

The velocity at which the steam enters is taken to be about 40 m. and the upward velocity of the cooling water to be $v_r = 0.001$ m.

According to Table 55, 800 kilos. of steam pass through a pipe of 65 mm. bore in one hour with a velocity of 42 m. Thus the bore of the tube is fixed at 65 mm.

Table 52 shows that, under the conditions given, the mean temperature difference in condensing, $\theta_{me} = 52.5^{\circ}$, and in cooling, $\theta_{mt} = 84.3^{\circ}$.

It then follows from Table 57 (by interpolation) that $\frac{l}{d} = 242$, hence the

Table 58.

Examples of the dimensions of condensing and cooling tubes of 10-100 nm. diameter, for steam at 100°, 60°, 40°, and aqueous alcohol vapour at 80° C., for velocities of 40-20 and 2 m. respectively.

Diameter of tube, mm.	10	15	20	25	30	35	40	50	60	70	80	90	100
	1	Waton	heat	ed fro	m 10°	to 70 , , , θ,)°; ve ₁₀ = 5	locity 32·5°,	of w	ater, 1	$= 40 1$ $v_f = 0$ $v_f = \frac{l}{d} = 0$	·001 n	
Steam condensed by tube per hour, kilos. For condensation sq. m. Hength sq. m. Total length of tube, l	2·95 0·07 10·5 0·30	3.52 0.165 15.0 0.69	4·70 0·295 21·5 1·38	5·87 0·40 24 0 1·84	33·0 3·14	84·0 8·21 1·00 36·0 3·84	1·1′ 40·0 4·9′	171 8 11·7 7 1·84 50·0 7 7·80	14·3 2·68 60·0 11·2	3·79 71·0 15·5	18·8 4·7(80·0 20·0	90.0	28·5 7·87 99·0 30·9
Steam condensed by		Steam at 100°, entoring with the velocity, $v_d = 20 \text{ m}$. Water heated from 10° to 70°; velocity of water, $v_f = 0.001 \text{ m}$. Condensed liquid at 15°; $\theta_{me} = 52.5^{\circ}$, $\theta_{mk} = 27.4^{\circ}$, $\frac{l}{d} = 170$. Vortical cooling tubes.											
tube per hour, kilos. For cor- densation 23, m. For cooling length sq. m. Total length of tube, l	1·70 0·059 4·00 0·12	2·35 0·11 4·80 0·25 7 61	3·40 0·25 6·80 0·45 10·2	4·08 0·33 8·00 0·69 19·1	5·10 0·51 0·51 10·0 0·93 15·1	5.78 0.6 11.81 1.26 17.6	6.8 0.8 13.0 1.6 19.8	0 8·50 5 1·8: 16·3 4 2·5: 25·0	10·2 1·9: 20·0 3·7 30·2	11.9 2.0 23.2 5.0 35 5	13.6	15 3 4·26 29·8 8·89 45·5	17·0 5·20 82·4 10·2
Status and award by		Wate	r heat	ed fro	om 10°	to 40)°; ve 9 _{mo} =	locity	of w	ator, 1	$v_j = 0$ $2^{\circ}, \frac{l}{d}$	001 n	4
Steam condensed by tube per hour, kilos. For con-length sq. m. length for cooling sq. m. Total length of tube, l	1·48 0·95 0·08 1·10 0·084 2·05	1.48 0.07 1.76 0.08	1 90 0 12 2 20 0 13	2·38 0·18 2·80 0·29	0.28 3.20 2.0.80	3.35 0.37 4.00 0.41	3·8 7 0·4 9 4·4 1 0·5	0 4 7 5 0 7 0 5 6 5 0 8	5 5·70 4 1·00 6 6·60 3 1·20	0 6.6 6 1.4 0 7.7 8 1.6	97·4 7·6 6 1·9 0 8·8 2·2 66·4	0 2·8 0 10·0 2 2·8	9.50 8.00 11.1 8.44

TABLE 58—(continued).

Diameter of tube, mm.	10	15³	20	25	30	35	40	50	60	70	80	90	100
•		Vater	heate	d fro	m 10°	to 40 15°;)°; ve	locity 81·7°	elocit	ater,	$v_f = 0$	001 r	
Steam condensed by tube per hour, kilos. For condensation sq. m. For cooling length sq. m. Total length of tube, l	0.65 0.02 0.55 0.02	0.97 0.04 0.88 0.04	2.86 1.30 0.08 1.10 0.07 2.30	1.63 0.12 1.40 0.11	1·95 0·19 1·60	2·27 0·25 2·00 0·21	2·6 0·33 2·20 0·28	3·25 0·51 2·80 0·44		4.55 1.00 3.90 0.84	5·10 1·27 4·40 1·11	5·85 1·63 5·00 1·42	6.50 2.00 5.50
	W	ater	heate	d from	a 10°	to 30	b; ve	locity = 18°,	of we $\theta_{mk} =$	ter,	$y_f = 0$	·001 r	n.
Steam condensed by tube per hour, kilos. For con- length densation sq. m. For cooling length sq. m. Total length of tube, l	0·45)·014 0·16 0·005	0.68 0.03 0.26 0.012	0.90 0.06 0.34 0.021	1·10 0·087 0·42 0·032	1·35 0·13 0·48	1.58 0.17 0.60 0.063	1.80 0.25 0.70 0.083	2·25 0·85 0·83 0·19	0.50 1.00 0.18	3.12	3.60 0.90 1.40 0.84	4:05 1:18 1:60 0:42	4·50 1·4 1·70 0·51
	_	ater l	ıçate	d fron	n 10°	to 60'	'; vel	ocit y	of wa	ter, v	f = 0	001 n	n,
		Ve	rtical	tube	3.				ا و	Coils.			V
Vapour condensed by tube per hour, kilos. For con-length densetion seq. m. For cooling length sq. m. Total length of tube, l	0 023 (0·7 0 022	1·13 0·052 1·06	1·50 0·095 1·40	1.88	2·25 0·22	2·63 0·28 2·50 0·25	3.00	3·75 0·58 5·10 0·81	28·0 4·50 0·84 6·25 1·17 10·8	5·25 1·16 7·00 1·59	6·00 1·50 8·10 2·03	6.75 1.87 9.90 2.75	

length of pipe for the condensation is $l=0.065\times 242=15.78$ m, and the condensing surface $H_c=8.21$ sq. m.

According to Table 54, the cooling surface must be $H_k=8\times8\times115=10$ -50 sq. m., i.e., a pipe of 65 mm. diameter must be 50.8 m. long. The whole condensing and cooling pipe has therefore a length of 15.78 + 50.8 = 66.53 m. and a surface of $H_{ck}=3.21+10.5=13.71$ sq. m.

Since it is impossible to unite all cases, tome important ones, chosen from the great number, are alone given in Table 58.

Observations.—Several experiments, calculated out, are now given.

								
,		Wate	r. '	93 pe	ohol, r cent. eight.	W	ater +	Oil.
Weight of vapour, D, condensed per hour - kilos.	345	295	9750	189.5	120	315	84	88-2
Oily matter carried in the vapour			, 5,55	1300	,	1		
kilos.' Temperature of the vapour on	-	-	_	\ -	-	77	326	31
entering	100°	100°	100°	79°	79°	121°	88°	110°
Temperature of the condensed liquid	84°	250	100°	50	790	26°	220	220
Material of the cooling surface -	brass	brass	wrought	copper		cast	lead	copper
Number and diameter of the tubes	2×67	2×67	$ifon$ 160×27	1	55 × 29	iron	1×50	1×40
Initial temperature of the cooling				ĺ				
water Final temperature of the cooling	10°	10°	40°	2·5°	8°	6°	10°	13°
water	75°	65°	96°	20°	61°	48°	420	38°
Velocity of the cooling water v_f	0.001	0.001	0.032	0.0015		0.001		0.001
Actual cooling surface - sq. m.	, 9·1	9.5	67	6	7	32(a)	14·5(a)	6·3 (a)
Calculation.								· ·
Calories to be abstracted in con- densing -	185262	157841	2130000	32177	68964	170100	45696	47628
Calories to be abstracted in cooling		21976		7562	00001	13310	5540	6864
Temperature of the water at the	22110	21310		1002	_	2000(ե,	3476(b)	860(b)
point of condensation Mean temperature difference in	17·1 [™]	16·6°		5·6°	-	31·5°	25°	17°
condensing θ_{mc} Mean temperature difference in	48.6	55·8°	21.6⁰	67°	42·9°	70°	54·8°	75°
cooling θ_{mk}	48°	89·8°		20·1°	-	39∙7°	31·5°	32.20
Entering velocity of the vapour v_d	22.9	19.5	36	2.73	1·7 0·5	32.8	29	32
Coefficient of transmission in condensing k.	718.5	663	1425	240	222	855	807	847
Coefficient of transmission in cooling k_k	200	200		580		200	200	200
Cold surface for condensing H_c	5 80	4.26	69	1.96	7.2	3.31	1.00	0.79
Cold surface for cooling $-H_k$	4.74	5.40		3 78	-	12.80	8.88	2.34
Calculated cold surface sq. m.	10.04	9.66	69	5.74	7.2	16.1	9.88	3.16
							1	1

⁽a) The exterior surface of the tubes.

⁽b) The upper figures, 13310, 5540, 6864, are the numbers of calories to be abstracted from the water, the lower figures, 2000, 8476, 860, the calories to be abstracted from the oil.

2. Closed Surface-Condensers with Air Cooling.

In certain rare cases the condensation or cooling is effected by means of air instead of water. The air is then driven over the cooling surfaces by artificial means (fans) or by a natural draught. In both cases it is in the first place necessary to know the quantity of air required to abstract a definite amount of heat, so that the dimensions of the fan and flues may be determined.

Let L be the weight of the air in kilos., $\sigma_l = 0.2375$ its specific heat at constant pressure, which is in this case always that of the atmosphere, t_m the initial and t_m the final temperatures of the air, C the heat, in calories, to be transferred, then

$$L \doteq \frac{C}{\sigma_i(t_{la} - t_{la})} (206)$$

Thus there are required, in order to take up 100 units of hea. from or by the air, if it is to be cooled or heated through

The volume of the dry air, when the pressure remains constant (which is the case here), depends only on its temperature. 1 cub. m. of dry air at 0° C. and 760 mm. pressure weighs 1.293 kilos., thus under these conditions 1 kilo. of air occupies a space of

$$\frac{1000}{1.293} = 773$$
 litres.

The increase in volume of the air is proportional to the increase in temperature, measured from absolute zero; 1 kilo. of air at the temperature t_{is} thus occupies a space of

$$a_i = \frac{1000(273 + t_{to})}{1\cdot293 \times 273} = 773\left(1 + \frac{t_{to}}{273}\right) \text{ litres}$$
 . (207)

Example.—At 50° C. and 760 mm. pressure 1 kilo. of air occupies a space of

$$773\left(1 + \frac{50}{273}\right) = 915$$
 litres.

In Table 59 are given the volumes, a_0 in litres, calculated by means of equation (207), occupied by 1 kilo. of dry air, at the normal barometric height of 760 mm. and various temperatures from -20° to 400° C. Now, atmospheric air always contains some water vapour—at 15° C. about 0.5-1 per ceut. of its weight. The specific heat of

TABLE 59,

The volumes, a_n of 1 kilo. of dry air at the normal barometric 1	heigh t
of 760 mm. and at temperatures from $= 20^{\circ}$ to 400° C.	-

Temperature of the air.	1 kilo. of air has the volume, ar.	Temperature of the air.	1 kilo. of air has the volume, a.	Temperature of the air.	1 kilo. of air has the volume. ar.	Temperature of the air.	1 kilo. of air has the volume, a _t .	Temperature of the air.	1 kilo. of air has the volume, a.
°C.	Litres.	°C.	Litres.	°C.	Litres.	°C.	Litres.	°C.	Litres.
- 20 - 15 - 10 - 5 0 1 5 10 15 20 25 36 40 45 50 55	716 730 745 759 773 775 789 802 816 881 847 858 872 886 900 914 928	60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140	942 956 970 984 999 1013 1027 1038 1056 1070 1081 11126 1140 1154 1169	145 150 155 160 165 170 175 180 185 190 200 205 210 215 220 225 230	1183 1197 1211 1225 1249 1254 1268 1282 1296 1319 1330 1344 1367 1381 1396 1410	235 240 245* 250 255 260 265 270 275 280 285 290 295 300 805 315	1438 1452, 1466 1480 1494 1509 1513 1537 1551 1565 1579 1694 1608 1623 1637 1651	320 325 330 335 340 345 350 355 360 365 370 375 380 385 395 400	1679 1693 1708 1721 1736 1750 1764 1778 1793 1807 1821 1835 1849 1853 1876 *1890 1905

When the barometer is at 740 mm. the volume of the air is about 3 per cent. larger, at 780 mm. the volume is about 3 per cent. less.

water vapour is $\sigma_a = 0.475$, about double that of air, but the small quantity of vapour in the air causes such a slight increase in the amount of heat required to raise its temperature that we may neglect it in the present case.

The transfer of heat between air in motion and a metal surface (heating surface) may be expressed by the following equation, according to the results of the researches of Joule and Ser and the work of Molier:

$$k_i = 2 + 10 \sqrt{v_i}$$
 (208)

in which v_i is the velocity of the air in m. per second. Thus the heating surface, H_i , necessary for the transference of the quantity of heat, C_i in the time, z_i (in hours), with the temperature difference, θ_m , is

$$H_{i} = \frac{C}{z_{h}\theta_{m}k_{l}} = \frac{C}{z_{h}\theta_{m}(2+10\sqrt{v_{0}^{2}})} (209)$$

The state of rest, or of motion over the heating surface, of the vapour or water to be cooled is not regarded in the equation (208) which gives the transmission coefficient, k. It is always found, however, that the rapidity of the circulation of vapour or water over heating and cooling surfaces influences very considerably the quantity of heat transferred. There is no doubt this would also be the case with cooling by air, hence we cannot regard the expression (208) as quite correct. Reliable researches on this point are, however, not yet known, and the author has no observations of his own; it is therefore necessary for the present to be content with the above value for k_r . It may be assumed that, in the experiments of which the formula (208) is the result, the velocities of steam and water were not very great, so that with a rapid motion of these substances the transference will be rather greater than calculation indicates.

The temperature difference between air and heating surface is to be taken as the mean. If the entering and leaving temperatures of the water or vapour to be cooled are known, the mean temperature difference, θ_m , is easily found by Table 52, by supposing the cooling air in phase of the cooling water.

Example.—The iemperature of the vapour to be condensed and cooled is 100° C., the temperature of the condensed liquid is to be 20°; the air enters at 15° and leaves at 60° C. Then the mean difference in temperature, according to Table 52, is:

For the period of condensation $\cdot \cdot \cdot \theta_{mc} = 56.8^{\circ}$. For the period of cooling $\cdot \cdot \cdot \cdot \theta_{mk} = 26.8^{\circ}$.

If the temperature difference be obtained in this way and the velocity of the air then fixed, then, in Table 60, calculated by means of equation (209), is found the cooling surface required to transfer 1000 calories in one hour with air velocities of 1-36 m. per second and temperature differences of 5°-100° C.

Finally, the section is to be determined across which the air must flow, which depends on the velocity given to the air.

or

If V_i be the volume of air, in litres, to be sent through the condenser in one hour, q the section of the air channel in sq. dem., and v the relocity of the air in m. per second, then

$$V_{i} = q v_{i} 3600 \times 10^{-4}. \qquad (210)$$

$$q = \frac{V_{i}}{v_{i} 36000} \qquad (211)$$

An example is calculated in order to make clear, the method of estimating the heating surface and section of the air passage.

Example.—100 kilos, of steam at 100° C, are to be condensed in one hour and the condensed water cooled to 20° C. The cooling air is to be heated in the process from $15^{\circ}.80^{\circ}$ C.

In order to convert 100 kilos, of steam at 100° into water at 100° C, 100(697 - 100) = 53,700 units of heat must be withdrawn.

In order to cool the 100 kilos, of condensed water from 100° to 20°, there must be abstracted (100 - 20)100 = 8000 calories. Thus, in all, 53,700 + 8000 = 61,700 calories.

The weight of air required to absorb this heat is, according to equation (206),

$$L = \frac{c}{\sigma_l(t_{lc} - t_{lc})} = \frac{61,700}{0.2375(80 - 15)} = 4000 \text{ kilos. of air.}$$

4000 kilos, of air at 15° have (Table 59) a volume of 3,264,000 litres.

4000 kiles. of air have at 80° (Table 59) a volume of 4,000,000 litres.

The mean temperature difference between steam and air is, according to Table 52, $\theta_{mc}=41.8^{\circ}$.

The mean temperature difference between condensed liquid and air is, according to Table 52, $\theta_{mk}=25.8^{\circ}$

If we assume the velocity of the air to be 20 m. per second, then the cooling surface required for condensation is, by equation (209),

$$H_l = \frac{C}{z_h \theta_m k_l} = \frac{53,700}{1 \times 41.8(2 + 10\sqrt{20})} = 28.7 \text{ sq. m.,}$$

or, by Table 60, for a difference in temperature of 40° (in round numbers),

$$53.7 \times 0.545 = 29 \text{ sq. m. (approx.)}.$$

For cooling there are required $\frac{8000}{25\cdot8(2+10\sqrt{20})} = 6\cdot64$ sq. m. (or, by Table 60,

for an approximate difference in temperature of 25° , $\frac{0.972 \times 8000}{1000} = 6.98$ sq. m.). The total cooling surface is thus about 36 sq. m.

The section, across which the air is to pass with a velocity of 20 m., is, by equation (211),

$$q = \frac{V_I^4}{v_0 8600} = \frac{3.264,000}{20 \times 86,000} = 4.53 \text{ sq. dcm.}$$

A tubular heating surface of 36 sq. m., which is to have a section of 4.63 sq. dom., consists of 147 tubes of 20 mm. bore, each 4000 mm. long.

TABLE 60.

The cooling surface, H_{il} in sq. m., required to transfer 1000 balories in one hour, when cooled by air at velocities of $v_l = 1.36$ m. and at mean differences in temperature of $\theta_m = 5^{\circ}.100^{\circ}$ C.

	C								
perature between air ig surface.	•		Velocity	of the a	i r, <i>v</i> ,, ir	ı дı. per	sec.		
n temperature rence between cooling surface	1	2	8	4	9.	16	20	25	36
Mean tem	Coolin	g surface	, in sq. m	., requir	ed to tr	ausfer l	000 calo	ries per	hou r .
5 10 15 20 25 30 40 50 60 70 80 90	16·66 8·33 5·55 4·17 3·33 2·78 2·09 1·67 1·39 0·19 1·05 0·92 •0·83	2·07 1·503 1·242 1·035 0·888 (·752 0·690	,	9·10 4·55 3·033 2·258 1·820 1·517 1·129 0·910 0·759 0·565 0·506 0·455	0·446 0·390- 0·347	1·190 0·952 0·793 0·595 0·476 0·397 0·340 0·298 0·272	$\begin{array}{c} 4 \cdot 36 \\ 2 \cdot 18 \\ 1 \cdot 453 \\ 1 \cdot 090 \\ 0 \cdot 873 \\ 0 \cdot 727 \\ 0 \cdot 545 \\ 0 \cdot 436 \\ 0 \cdot 364 \\ 0 \cdot 364 \\ 0 \cdot 273 \\ 0 \cdot 242 \\ 0 \cdot 218 \end{array}$	0.640 0.480 0.384 0.320 0.275 0.240 0.214	0.805 0.644 0.535 0.403

3. Open Surface-Condensers.

Steam at atmospheric or lower pressures, or other gases or vapours, are condensed in open surface-condensers; it is rarely required also to cool the condensed liquid. In these condensers the vapour to be liquefied flows simultaneously through a number of parallel horizontal tubes, straight or curved, and arranged vertically over one another, or through vertical tubes. The cooling water, in a thin sheet, flows over the uppermost tube, it then flows down over the outside of the tubes and leaves heated at the bottom. The tubes are generally of equal size, but, since in the first case the cooling water is colder when it flows over the upper than the lower tubes, the temperature difference between vapour and water is greater

above than below. The upper tubes therefore condense more vapour and even cool the condensed liquid. The upper tubes have therefore a greater capacity than the lower.

The quantity of heat, C, to be abstracted from the vapour in condensation is known in each case:

$$C = D(c - t_d) \quad . \quad . \quad . \quad . \quad . \quad (212)$$

The requisite condensing surface, H_c , is obtained from the well-known equation:

$$H_o = \frac{C^{\bullet}}{k_c \theta_m} \quad . \quad . \quad . \quad . \quad (213)$$

The temperature difference, θ_m , must here be the mean difference calculated for the whole apparatus, as found in the ordinary manner by means of Table 1.

The coefficient of transmission for copper and brass tubes may be taken as

$$k_c = 750 \sqrt[2]{v_d} \sqrt[3]{0.007 + v_c}$$
. . . . (214)

For iron tubes it is, at the most, 0.75 times as great.

In this form of condenser there is frequently a very considerable incrustation on the outside of the tubes, the inside is also occasionally coated by slimy or solid deposits. Thus the cooling action often sinks to one-half or to even one-third of the original. This is particularly the case with iron tubes, and must be considered in settling the dimensions.

The initial velocity of the vapour, v_d , may be determined in every case from its weight and volume and the section of the tubes.

The velocity with which the cooling water flows drwn, v, depends on the quantity which is to flow in one hour over 1 m. in length of the apparatus, and increases with that quantity, just as in surface coolers.

With a somewhat economical consumption of water, the velocity, v_r , of flow over the surface of horizontal tubes cannot be taken at more than 0.200 m., then $\sqrt[3]{0.007} + v_r = 0.6$.

On vertical tubes v_t may be about 0.400 m., in which case $\sqrt[3]{0.007} + v_t = 0.74$.

The ratio between the length and the diameter of the tube, $\frac{l}{d}$, is obtained as in the former similar cases—the quantity of heat transmitted in one hour through the cooling surface must be equal to the

latent heat of the weight of vapour condensed in the tube during one hour. Therefore

$$d\pi l k_c \theta_m = \frac{d^2\pi}{4} v_a 3600 \gamma (c - \ell_a),$$

$$\frac{l}{d} = \frac{v_a 3600 \gamma (c - t_a)}{4k \cdot \theta_m}.$$

or

Inserting the value for k_c from equation (214) we obtain

$$\frac{l}{d} = \frac{\sqrt[3]{v_d} \cdot 2\gamma(c - l_d)}{\theta_m \sqrt[3]{0 \cdot 007} + v_c}$$

and, since for horizontal tubes $\sqrt[3]{0.007 + v_f} = 0.6$ (see above),

$$\frac{l}{d} = \frac{2\sqrt{v_d\gamma(c-t_d)}}{\theta_m} \qquad (215)$$

Experimental Observation.—8000 kilos, of steam at a vacuum of 640-650 mm. (53-5° C.) were condensed per hour by 500 vertical iron tubes of 40 mm. bore, 4000 mm. long. The mean temperature of the cooling water was 45°-47°, the cooling surface 250 sq. m.

The amount of heat to be transierred per nour was

$$C = 8000(623 - 53.5) = 4,556,600$$
 calories.

The volume of steam entering the tubes per second was

$$V_d = \frac{8000 \times 9510}{3600} = 21,140$$
 litres.

The free section of the 500 tubes amounted to

$$q = 0.125 \times 500 = 62.5$$
 sq. dem.,

hence the entrant velocity of the steam was

$$v_u^* = \frac{21,140}{62.5 \times 10} = 38.9 \text{ m}.$$

The velocity of the cooling water flowing down the vertical tubes was about 0.400 m., consequently the transmission coefficient would have been, for copper,

$$k_c = 750 \sqrt{33.9} \sqrt[3]{0.007 + 0.400} = 8282.$$

Since, however, iron tubes were used,

$$k_c = 3 \times 8232 = 2424$$
.

The temperature difference was $\theta_m = 53.5 - 46 = 7.5^{\circ}$. Consequently the calculated cooling surface was

$$H_c = \frac{4,556,000}{2424 \times 7.5} = 250 \text{ sq. m.},$$

which agrees exactly with the real cooling surface of 250 sq. m.

TABLE 61.

The cooling surface, H_m of copper or brass in open surface-condensers, the consumption of cooling water, W, and the mean temperature difference, θ_m , requisite to condense per hour 100 kilos. of steam at 100°, 60°, 50° and 40° C., by means of cooling water at 15°-50° C.

ure of r.	of the	θ,,cool- cooling					Temp	eratu	re of t	he stea:	m, t_d			
Initial temperature the cooling water.	Entrant velocity of the steam.	o. diff., θ_m , cool- W, and cooling		100°			60°			50°			40°	
itial te	Entrant steam.				-	Final	tempe	ratui	e of th	e cooli	ng wate	er, <i>t</i> .		
t a. di	v _d .	Mean ing wa surfac	80°	90°	98°	40°	50°	5 8°	30°	40°	48°	20°	30°	38°
15°	25	θ_m W H_c	45 830 0·53	35 733 0.70	21·2 651 1·13	31 2820 0.83	23·4 1660 1·11	13·5 1350 1·93	27 3933 1·00	20 2360 1·31	11·2 1788 2·34	22·5 12500 1·18	16·5 4000 1·62	9·2 2610 2·96
	50	$\frac{l}{d}$ H_c $\frac{l}{d}$	73 0[°]3 8	0·20	155 0·8 0	54 0:58	82 0·79	56 1·3 7	18 0:71	24 0 [.] 93	43 1.66	14 0·83	19 1·15	33 2·10
			102	131	217	38	44	78	25	83	60	20	27	46
20°	25	$egin{array}{c} heta_m \ W \ H_c \ l \end{array}$	43·2 890 0 ·55	786	20·8 692 1·15	28·8 2900 0·90	21.6 1933 1.18	12·7 1525 2·03	25 . 5900 1.05	18 2950 1.40	10·3 2110 2·55	_	14·4 6000 1·85	7·8 8838 3·42
	50	\overline{d} H_c	l	()	158 0·82		86 0:84	60 1·44	19 0·74	27 1·00	48 1·80	, — -	21 1:31	. 40 2·42
25°		$\frac{l}{d}$	106 42	135 83	221 19:8	36 26·6	50 20	84 11·4	27	97 16·5	67 9·2	-	29 12·3	56 6 90
	25	θm W H _o	982 0·57	846 0.73	740 1.23	3870 1:00	2320 1.28	1760 2·2 6	11800 1·15	3930 1.60	2580 2:85	=	12500 2:16	4616 3.86
	50	d He	78 0:41	99 0·5 6	165 0·88	29 0·71	89 0:91	66 1.60	22 0.82	31 1·10	54 2·02	 -	25 1:53	44 2:73
		$\frac{l}{d}$	109	189	231	40	51	92	30	43	75	_	85	61
80°	25	θ _m W H _c	40 1080 0 ·60		18·9 800 1·27	24·6 5800 1·05	18·8 2900 1·41	10·4 2075 2·47	-	14·4 5900 1·82	7·8 3280 3·36	=	=	5 7500 5:33
	50	$\frac{l}{d}$ H_c	82 0·43	105 0·56	175 0·89	31 0·75	1·00	75 1:74	_	33 1·29	65 2·38	-	_	60 3.77
	•	$\frac{l}{d}$	114	149	24 5	43	57	105	-	46	91	-	-	84

Table 61—(continued).

re of	ot the	cool- ooling				•	Tempe	ratur	e of th	e stean	n, t _d .			
perati g water	slocity	p. diff., θ_m , cool- W., and cooling		100°			60°			50°			40°	
Initial temperature of the cooling water.	Entrant velocity of the steam.	ter, W .				Final	tempe	ratur	of th	e coolir	ng wate	r, <i>t</i> .		
ini et fe	e Entra	Mean temp. diff., θ ing water, W ., and surface. H_c .	80°	90°	98°	40°	50°	58°	80°	40°	48°	20° •	30°	38°
35°		$egin{pmatrix} heta_m \ W \end{bmatrix}$	38 1200	29·2 1000		22·5 11600		9·2 2522 2·81	_	12·3 11800 2·13	6·4 4540 4·10	_	_	2·8 20000 8·00
	25	$\frac{H_c}{l}$	0·63 87	0.82 112	180	1·10 85	1.58 46	84	_	40	75	_	_	91
l	50	H_{o}	0.45	0.28	0.80	0.78	1.12	2.00		1.51	2.90	_		5.7
1		$\frac{l}{d}$	121	156	252	49	64	117		56	-1 05	_	-	127
40°	25	θ_m W H_c	86 1850			_	14·5 5640 1·80	8 3130 3·10	_	=	5 9500 5·25	-	=	_
1	20	l	90	118	t i		52	94	_	_	97	_	-	_
1	50	H_c	0.21	1	1.60		1.37	2.70	l – .	_	4.01	_	-	-
١.		l d	126	1	266	-	88	131	-	-	135	_	_	-
45	25	θ_{m}^{\bullet} W H_{c}	1540	264 0 1200 1 0 3	16 1020		12 11280 2·16	6·6 4340 3·9 5		=	3·3 57000 8·00	•	=•	-
1	-0	$\frac{1}{d}$	95	124		•	63	114	_	•	147	_	_	-
1	50	H_c	0.5	4 0.71	1.16	-	1.65	3.00	 -	•-	6.10	 -	-	-
		$\frac{l}{d}$	142	173	280	-	88	159	-	-	195	-	-	-
50	,	θ_m	32· 180	5 25 0 135	 15 112!	_	=	-	_	_		=	_	=
1	25	H_c		4 0.9				-	-	-	•	-		-
1		$\frac{l}{d}$	100	1	1] -	-	-	-	-	-	-	_
1	50		05.	1	3 1.2	1	-	-	-	•-	-			_
		$\frac{\ddot{d}}{d}$	140	189	308	-	-		1 -		_			

Cooling surfaces of iron must be at least 1.33 times as great.

The annexed Table 61 gives for a number of cases the requisite cooling surface (in copper tubes) for the hourly condensation of 100 kilos. of steam at different pressures, which enters the tubes at velocities of 25 or 50 n., and for cooling water at 15°-50° C.

Generally the condensed liquid does not leave the condenser much colder than the steam; if, however, the condensed liquid is intended to be cooled considerably, the cooling surface must be correspondingly increased.

The consumption of cooling water, W, given is the theoretical. In practice, on account of evaporation, it would be 3-5 per cent less.

CHAPTER XXI.

HEATING LIQUIDS BY MEANS OF STEAM.

A. Steam Heating Coils or Systems of Tubes in the Liquid to be Heated.

1. The Liquid is not Changed.

The heating of liquids by steam has already been mentioned (Chapter VIII.). The steam used for heating liquids (if it is not superheated, a case which is rare and therefore remains untreated here) must condense, and sometimes the condensed water must be cooled. The weight of steam required to heat a given quantity of water through a given range of temperature can always be found. On that account, and because it is convenient to the course of our subject, we proceed to the calculation of the requisite heating surface by first determining the weight of steam required for heating and thence the surface requisite for its condensation.

The weight of steam, D, required to heat F kilos, of a liquid of specific heat, σ_D from t_{jk} to t_{jw} , is

$$D = \frac{F_{\sigma}(t_{r_{\sigma}} - t_{r_{i}})}{640 - \frac{t_{r_{\sigma}} + t_{r_{\sigma}}}{2}} \cdot \dots$$
 (216)

Example.—In order to heat F=100 kilos, of water from $30^{\circ}-90^{\circ}$ C., there are required 100(90-30)=6000 calories.

Assuming the condensed water escapes at the mean temperature of the water, $\frac{t_{fe}+t_{fk}}{2}=\frac{90+30}{2}=60^{\circ}, \text{ then 1 } \text{ file. of steam gives up 640}-60=580 \text{ calories,}$ and $D=\frac{6000}{580}=10^{\circ}346 \text{ kilos. of steam are required.}$

The difference in temperature between the steam and the liquid decreases during the process of heating; it is clear from previous explanations that the mean temperature difference is determined from the greatest difference at the beginning, θ_a , and the least at the end, θ_a (Chapter I., Table 1).

Example.—If the steam is at 100° C., with the data of the last example, $\theta_a = 100^\circ - 30^\circ = 70^\circ$, $\theta_s = 900^\circ - 90^\circ = 10^\circ$. Consequently

$$\frac{\theta_c}{\theta_r} = \frac{10}{70} = 0.143.$$

The mean temperature difference is then, from Table 1, $\theta_m = 0.442\theta_a = 0.442 \times 70 = 30.94^{\circ} \text{ U.}$

Table 62 gives the number of units of heat required to warm 100 kilos. of water under different conditions, also the consumption of steam and the mean difference in temperature.

If the warming vessel is to be provided with coils or systems of tubes, through which the heating steam passes, its entrant velocity, v_s , can generally be selected (30-40 m, for coils, 10-20 m, for short vertical tubes, would be suitable). From this and the hourly consumption of steam, D, the proper diameter of the coil or tubes can be ascertained by means of Table 55.

The diameter of the tube, the temperature difference and the entrant velocity, all of which are known, then give, by means of equation (205) and Table 57, the necessary length of tube, and thence the cooling surface, H_c , if the velocity of the liquid about the tube is known. If this velocity is unknown, the smaller value of k from equation (217) should be inserted in the expression:

$$H_{\epsilon} = \frac{C}{k_{\epsilon}\theta_{rr}}$$

' If the Fquid is not driven artificially over the heating surface, the rapidity of its motion about this surface increases with the rise in temperature. The real extent of this velocity depends then on the form and dimensions of the surrounding vessel and the arrangement of the heating surface, which naturally is placed at the bottom.

The mean velocity of the liquid over the heating surface, in heating without stirrers, may vary in different cases approximately between $v_r = 0.02$ and 0.300 m. The smaller figure is for large vessels and liquids at low temperatures, below 60° C.; the larger figure for small vessels and liquids at higher temperatures, 60° - 100° C.

The coefficient of transmission should be taken in this case of steam coils, used for heating without stirrers, as

$$k_e = 225 \sqrt{v_d} \text{ to } 450 \sqrt{v_d} \dots \dots$$
 (217)

TABLE 62.

The requisite number of calories, C, weight of steam, D, and mean temperature difference θ_m , between steam and water, for lifeating 100 kilos. of water from the temperature, t_{la} , to the higher temperature, t_{la} .

	ture	Ste	am.	Units of heat, C.									
	Initial temperature of the water.	Pressure, atmos. abs.	Temperature.	Weight of steam, D. Mean		Final	temp		reoft oro#=		ited w	ater, t	fa
	riut re	Pressur abs.	ue Tem	temp. diff., θ_m .	30	40	50	60	70	• 80	90	100	
ı	10			C ==	2000	3000	4000	5000	6000	7000	8000	9000	cals.
ı	••			$\tilde{D} =$	8.3	5.5	7.0	9.0	10.5	12.5	14.5	16.7	kilos.
ı		1	100°	$\theta_m =$	81	75	67	62	54	46	36		° C.
ı		1·5 2	111° 121°	,,	90	85	79	72	65°	60	50	40	,,
ı		3	134°	"	100 125	95 1 40	89 101	83 97	77	68 _•	62 79	52 73	"
ı	20	Ů	101	<i>c</i> "₌∍	1000	2000	3000	4000	5000	6000	79 7000	8000	cals.
1				D .:	1.7	3.3	5.5	7.2	8.7	11.0	12.7	14.8	kilos.
ı	1	1	100°	$\theta_m =$	73	69	60	57	52	43	88	• —	°C.
ı		1·5 2	111° 121°	"	85	81	75	69	61	54	46	87	- ,,
ł		3	134°	"	95 108	90 102	85 95	79 92	73 86	66 79	59 •75	50 66	•»]
ı	30	"	101	<i>c</i> "=		1000	2000	3000	4000	5000	6000	7000	cals.
١				$\tilde{D}=$		1.7	3.5	5.5	7.0	9.1	10.9	19.0	kilos.
		1	100°	θ_m	-	64	59	55	46	40	30	-	°C.
ı		1.5	111°	"	-	75	72	65	58	51	43	95	٠,,
ı		2°	121°	,,	-	85	81	74	67	61	55	46	".
ı	40	o .	134°	<i>c</i> '= <i>D</i> =	_	95	90 1000	85 2000	80 3000	73 4000	67 5000	6000 6000	cals.
ł	10			D = 0		_	1.75	3.7	5.3	7.2	9.1	11.1	kilos.
ı		1	100°	$\theta_m =$	۰		54	50	43•	35	28	_	° C.
ı		1.5	111°	,,		_	64	₹8	5 4	45	41	32	,,
1		2	121°	,,	-	_	76	70	64	57	52	43	,,
ı	50	3	134°	<i>c</i> "≔	0	-	91	84	79	70	66	58	
١	ĐŪ			D := D :=	_	_	_	1000 1.8	2000 3·5	3000 5.5	4000 7·2	5000 9·2	cals. kilos.
ı		1	100°	θ,		_	_	45	39	32	25	-	° C.
ı		1.5	111°	"	_		_	54	50	43	36	29	,,
١		2	121°	",	—	<u> </u>	-	66	59	54 •	47	40	",
١		3	134°	,,	=	_	-	79	74	68	62	57	٠,
1	60			C = D =		_	-	-	1000	2000	3000	4000	cals.
ı		1	100°	$\theta_m =$	_		_	_	1·7 35	3·7 29	5·5 ·	7.3	kilos. ° C.
1		1.5	111°	,,			_ •	- 1	45	39	32	25	1 1
١		2	121°	,,		_		_	54	50	43	36	",
١		3	134°	",		-	-		70	62	57	51	•,,
ı											L	•	1

The section of the steam valve may be determined by the aid of Table 14.

When the motion of the liquid is artificially accelerated by stirrers, its velocity can in some degree be determined, it will be 1-3 m. A higher velocity is without advantage, for the transmission of heat does not then increase to any great extent, whilst the power required increases considerably. The stirrer should naturally be, as far as possible, constructed so that it always conveys freely liquid to the heating surface.

The coefficient of transmission for the heating of thin liquids by steam in copper tubes, with stirrers, is

$$k_a = 750 \sqrt{v_a} \sqrt[3]{0.007 + v_f} ... (218)$$

The true velocity of the liquid obtained by means of a stirrer is not easy to estimate, either before or after the construction of the apparatus.

The application of a stirrer is still more necessary in heating and cooling thick sticky masses than with thin and readily mobile liquids. The former named be brought into rapid circulation even by very unequal heating. A stirrer is also necessary in the case of those liquids which would be damaged if their particles were heated almost to the temperature of the hot surface.

Example.--5000 litres of water are to be heated in one hour from 20° to 80° C, by steam at 100° by means of a heating pipe.

According to Table 62 there are required for this purpose $50 \times 6000 = 6800,000$ calories and $11 \times 50 = 550$ kilos, of steam. The temperature difference is 43° C.

The entrant velocity of the steam is taken at 40 m. The diameter of the heating tube must be 90 mm., for, from Table 55, $13.9 \times 40 = 556$ kilos. of steam pass through a pipe of 90 mm. bore in one hour.

If there is no stirrer in the vessel, the probable velocity of the water about the heating pipe may be assumed to be 0.020 m... Then we obtain the necessary length of pipe from Table 55,

$$l = 194 \times 0.090 = 17.46 \text{ m.},$$

and the heating surface,

$$H_c = a \pi l = 4.92$$
 sq. m.

The steam valve should be 65 or, better, 80 mm. wide.

If a stirrer is applied in the heating vessel, and it moves the liquid with a velocity of 1 m. over the het surface, then, with the other conditions the same, according to Table 57, the ratio $\frac{l}{d}=66$. Consequently $l=66\times0.090=5.94$ m. and hence the heating surface, H=1.69 sq. m. It will be observed that a stirrer considerably decreases the necessary heating surface.

2. A Continuous Current, in and out, of the Liquid to be heated.

If the liquid to be heated flows continuously in and out, its velocity, v_n over the heating surface is known. Also the entrant velocity of the steam into the heating space is known or can be fixed. If all the steam introduced into the heating space is not condensed, there, but a portion passes out, then in the equation for k^c the sum of its velocities at entering and leaving is to be inserted. This equation is

$$k_{e} = 750 \sqrt{v_{d}} \sqrt[3]{0.007 + v_{f}}$$

From the constant difference in temperature at the entry and exit of the liquid, the mean temperature difference, θ_m , is obtained from Table 1.

The quantity of heat to be transferred is

$$C = F\sigma_{l}(t_{l\omega} - t_{lk}) \qquad (219)$$

and the heating surface

$$H_{\epsilon} = \frac{C}{k_{\epsilon}\theta_{m}}$$

The consumption of steam, according to equation (216), is

$$D = \frac{F\sigma_f(t_{fw} - t_{ft})}{640 - \frac{t_{fw} + t_{fw}}{2}} \quad . \quad . \quad . \quad (220)$$

Example.—20,000 litres of water are to be heated per hour from 10° - 60° C.; the water flows past the heating surface with the velocity, $v_{\ell} = 0.20$ m. The steam is at 3 atmos. absolute.

In one hour C = 20,000(60 - 10) = 1,000,000 calories are to be transferred, for which $D = \frac{20,000(60 - 10)}{640 - \left(\frac{60 + 10}{2}\right)} = 1627$ kilos. of steam are required.

The steam is at the temperature, $t_d = 134^{\circ}$ C. (180° is used instead).

The temperature difference at the beginning is $\theta_a = 130^{\circ} - 10^{\circ} = 120^{\circ}$.

The temperature difference at the end is $\theta_0 = 130^{\circ} - 60^{\circ} = 70^{\circ}$; thus the mean temperature difference is

(by Table 1, since
$$\frac{\theta_0}{\theta^a} = \frac{70}{120} = 0.583$$
) $\theta_m = 0.77 \times 120 = 92 4^\circ$.

The steam is to be completely condensed and the velocity at which it enters is to be $v^4 = 20 \text{ m.}$, therefore

$$k_{\rm s} = 750 \sqrt{20} \sqrt[8]{0.007 + 0.200} = 1984$$

coasequently the heating surface.

$$H_e = \frac{1,000,000}{92.4 \times 1984} = 5.45 \text{ sq. m.}$$

In order to admit 1627 kilos, of steam per hour at a velocity of 20 m., according to Table 55, 7 tubes of 50 mm, bore, and with a heating surface of 545 sq. m., are required. Each tube must therefore be l = 5 m. long.

B. Steam Vessels with Double Bottoms.

If a liquid is heated, not by steam coils, but in a vessel with a double bottom, then neither the velocity of the liquid nor that at which the steam enters is known. It is necessary to fall back on equation (52) for the heating surface, when there is no stirrer:—

$$H_{\epsilon} = \frac{\cdot C}{1400 \text{ to } 1800\theta_m} \quad . \quad . \quad (221)$$

If the double-bottomed vessel is provided with a suitable stirrer, then the expression for estimating the heating surface is

$$H_{\epsilon} = \frac{C}{3500\theta_m} \quad . \quad . \quad . \quad . \quad (222)$$

Example.—2000 litres of water are to be heated from 10° to 100° C. in one hour by means of steam at a pressure of 1 atmos. (121° C.) in a double-bottomed vessel.

According to Table 62, $20 \times 9000 = 180,000$ calories are required, and the temperature difference is 52° . The necessary heating surface, without a stirrer, is therefore

$$H_{\epsilon} = \frac{180,000}{1400 \times 52}$$
 to $\frac{180,000}{1800 \times 52} = 2.48$ to 1.98 sq. m. (about 2.25 sq. m.).

. If the vessel has a diameter of 1600 mm., then the surface of the double bottom is about 3 sq. m., consequently the 2000 litres will, on the average, be heated in $\frac{60 \times 2 \cdot 25}{3} = 45$, minutes.

If the double vessel is provided with an efficient stirrer, the necessary heating surface is

$$H_e = \frac{C}{3500\theta_m} = \frac{180,000}{3500 \times 52} = \text{about 1 sq. m.}$$

The same vessel will then heat the 2000 litres of water in about 20 minutes.

Thick, syrupy or pasty masses are heated much more slowly.

C. The Liquid to be Heated Flows Through Tubes around which is Steam at Rest.

Steam is hardly ever completely at rest, but we understand in the following pages by steam at rest, steam which moves in a definite direction with a lower velocity than 0.5 m. per second.

TABLE 63.

Copper heating surfaces required to heat per hour 1000 litres of water at 10° or 25° to 50°-90° C., moving through tubes with the velocity 0.01.04 m., by means of steam at fest at a temperature of 80°, 90°, 100°, or 120° C.

iquid.	enn:	diff., θ_m , surface,		Temj	perat	ure of t	he h	ot va	pour	(alco	hol o	r water), t_d .	
Velocity of the liquid.				80°		•	90°			100°		1	20°	
elocity		Mean temp. and heating H, on sq. m.		Fir	al te	mperat	ure c	of the	e liqu	id to	be h	cated,	t _f .	
v_{f}	$\operatorname*{t}_{a}$	N Br H	50°	60°	75%	50°.	70°	85°	60°	80°	90°	60°	80°	90°
0.010	10 25	$\theta_m = II_t = \theta_m = I$	47·6 4·3 41	6·4 34·6	21	58 3.6 51	43·5 7·0 37·7		55·5	46·5 7·7 1 1	11·5 32	83 3 ·1 76	69 5 ·2 64	56
0.050	10 25	$H_{\epsilon} = $ $\theta_m = $ $H_{\epsilon} = $ $\theta_m = $	3·1 47·6 3·0 41	40		2:4 58 2:4 51	5.9 43.5 5.0 37.7		62	46·5 5 ·2		2·4 83 · 2·1 76 •	4·4 69 3·5 64	62
0.100	10	$H_{e} = \theta_{m} = H_{e} = 0$	2·1 47·6 2·4	3·5 4∪ 3·5	8·0 24·5 7·4	17 58 20	43.5 3.9	8·8 27 8·0	2·3 62 2 6	4·7 46·5 4·2	7·2 86 6·3	1.6 83 1.7	3·6 69 2·9	4·0 62 3·7
0.200	25 10	$ \theta_m = H_{\epsilon} = \theta_m = \theta_m = \theta_m $	1.7 47.0		6·7	51 1.4 58	37·7, 3·4 43·5	7.2	55.5 1.8 62	3·8 46·5	36	76 1·3 83	64 2·4 69	62
	25	$H_{\epsilon} = \theta_m = H_{\epsilon} = 0$	2:0 1:4	340	21	1·6 51 1·1	3·1 37·7 2·7	6·3 23 5·7	55.5	41	32	1:4 76 1:1	2·3 64 2·0	56
0.300	10 25	$ \theta_m = H_{\epsilon} = \theta_m = H_{\epsilon} = H_{\epsilon} $	47.6 1.7 41 1.2	2·5 34·6	21.	1·4 51	43·5 2·7 37·7 2·4	5.5	1·9 55·5	41	4·5 32	83 1·2 76 0·9	69 2·0 64 1·7	56
0.400	10 25	$\theta_m = H_{\epsilon} = \theta_m = 0$	47·6 1·6	40	24·5 4·8	58	43·5 2·5 37 7	27 5·0	62	46·5 2·7	36	83	69 1.8	62
		$H_{\epsilon} =$	1:1											

If the liquid to be heated is passed with the velocity, 'r, through tubes, whilst the steam moves round the tubes with its slight velocity, then the transmission coefficient for copper tubes and thin liquids may be taken as

$$k_{\epsilon} = 750 \sqrt[3]{0.007 + v_f}$$
 (223)

se that the requisite heating surface is

For thick liquids k_i is about 10-15 per cent. lower, H_i consequently about as much greater.

For iron tubes k_i is about 15 per cent, lower.

The temperature difference is obtained in the ordinary manner, by Table 1, from the temperature of the steam, which is generally constant, and the initial and final temperatures of the liquid.

If the liquid is sent simultaneously through a considerable number of (vertical) tubes, round which the steam passes, if only at velocities of 0.5-1 m. per second, the efficiency of the heating surface is greater, and may easily be in this case 1.5 times as great as with steam at rest.

The next, Table 63, gives the temperature differences and requisite heating surfaces for a number of cases. The figures given for steam at 80° and 90° C. apply also to aqueous alcohol vapour of 86 and 58 per cent. strength by weight respectively.

Experimental Example. - 5890 kilos. of wort were heated in one hour from 31° to 49° °C. by aqueous alcohol vapour at rest (velocity about 0.3 m.) at a temperature of 79.1° C. The wort was passed with a velocity of 0.205 m. through a copper pipe, with a bore of 100 mm. and the heating surface, $H_{\epsilon} = 6.9$ sq. m.

The specific heat of the liquor being taken as $\sigma_f = 1$, there were to be transferred in one hour

$$C = 5890(49 - 31) = 106,020$$
 calories.

The temperature difference at the beginning was $\theta_a = 79 \cdot 1^{\circ} - 31^{\circ} = 48 \cdot 1^{\circ}$.

The temperature difference at the end was $\theta_c = 79.1^{\circ} - 49^{\circ} = 30.1^{\circ}$.

Then $\frac{\theta_s}{\theta_s} = \frac{30.1}{48.1} = 0.625$, accordingly, by Table 1, the mean temperature difference is

$$\theta_m = 0.8 \times 48.1 = 38.48^\circ$$
.

The coefficient of transmission is

$$k_e = 705 \sqrt{0.007 + 0.205} = 447.75$$

The calculated heating surface is therefore

$$H_c = \frac{106,020}{88.48 \times 447.75} = 6.15 \text{ sq. m.}$$

On account of the thickness of the liquid, 10 per cent. is to be added, which gives 6.15 + 0.615 = 6.8 sq. m., which agrees well with the actual heating surface.

CHAPTER XXII.

THE COOLING OF LIQUIDS.

THERE are various different methods for cooling liquids, in most of which the liquid is cooled by the consequent heating of the means of cooling. Thus the consideration of the cooling of liquids may also serve for the operation of heating, for which what is about to be said may also be useful.

Liquids may be artificially cooled by the following methods:-

- A. By the direct introduction of ice.
- B. By the direct addition of cold to hot liquids.
- C. By the evaporation of a portion of the liquid without the application of heat.
- D. By flowing over metal surfaces which are in contact with a colder liquid (surface or closed coolers).
- E. By flowing free over surfaces which are in contact with the colder liquid on the other side, by which means the surrounding air takes up a portion of the heat (open coolers).
- F. By contact with metal surfaces which are traversed by cold air. .
- G. By spreading out and dividing the liquid in the open, and subjecting it to the action of air in natural or artificial motion (as in cooling water).

These methods of cooling will be dealt with in turn.

A. The Direct Introduction of Ice.

This method of cooling is only employed when it is desired to produce very low temperatures. The ice employed is generally only a few degrees below 0° C., its latent heat is 79 calories. Having

regard to its specific heat ($\sigma_{\epsilon} = 0.504$) for the 2°-3° through which it must be heated before melting, it may be assumed that each kilo. of ice in melting to water at 0° C. takes up 80 units of heat. If t_{α} and t, be the temperatures of the liquid before and after cooling, and σ, its specific heat, then the amount of heat to be withdrawn is

The weight of ice to be used is

be used is
$$E = \frac{F\sigma_f(t_{fa} - t_{fe})}{80 + t_{fe}} (226)$$

In order to cool 100 kilos, of water from

B. The Direct Addition of Cold to Hot Liquid.

If F kilos, of a cold liquid at the temperature, t_{ℓ} , be added to F. kilos. of a warmer liquid, of the same specific heat, at the temperature, t_{fee} the temperature of the mixture is

$$t_{m} = \frac{F_{w}t_{fw} + F t_{fk}}{F_{w} + F_{k}} \quad . \quad . \quad . \quad . \quad (227)$$

Example. – $F_w = 100$ kilos. of water at $t_{fw} = 80^{\circ}$, and $F_k = 200$ kilos. of water at $t_f = 20^\circ$, give

$$\overline{v}_w + F_k = 300$$
 kilos, of water at the temperature
$$t_m = \frac{100 \times 80 + 200 \times 20}{100 + 200} = 40^{\circ}.$$

C. Cooling Liquids by Evaporation.

Liquids are best cooled in this manner by bringing them into a vacuum. If a space be provided over a hot aqueous liquid, in which a lower pressure is maintained than corresponds to steam at the temperature of the liquid, the latter is cooled down to that temperature, the steam at which corresponds to the pressure over the liquid, the heat of the liquid given out in falling from the original temperature to the lower being utilised in the formation of steam. The temperatures of steam (and also of liquid) corresponding to every degree of vacuum are to be obtained from Table 9.

If the weight of liquid, F_{ω} , at the original temperature, $t_{\rho,\lambda}$, is cooled in vacuo to $t_{\rho,\lambda}$, then the weight of steam evolved is

$$D = \frac{F_w(t_{lw} - t_{lh})}{640 - \frac{t_{lw} + t_{lh}}{2}}...$$
 (228)

whence we obtain the following small table:-

ŕ	* ÷	100		ueous liquid aperature, t	l at the origi	inal
Vacuum.	ture of the cooled liquid, t _A .	100°	90°	80°	70°	, 60°
mm.	°C.		oled to the		of steam, D , es, t_{ik} , given 1 mu.	
234 405 526 611 668 705	90 80 70 60 50 40	1·82 3·67 5·25 7·00 8·50 10·00	1·82 3·50 5·25 6·80 8·33	1·75 3·50 5·10 6·66	1·75 3·40 5·00	1·70 3·33

D. Cooling a Hot Liquid by means of a Colder Liquid.

The cooling of a hot liquid by another colder liquid, or, what is the same thing, the heating of a cold liquid by a hot one, may be effected in two different ways, viz.:—

 By sending the two liquids continuously in opposite directions (counter-currents) with the highest possible velocity over the common wall of separation.

In this method the warm liquid falls through straight or bent tubes (coils) or channels, whilst the cold liquid rises in the surrounding vessel or in a surrounding tube concentric with the first, or rises, whilst being warmed, in a channel surrounding the first.

If we put σ_w for the specific heat of the warm liquid, σ_k for that of the cold, t_{wa} and t_{ws} for the temperature of the warm, t_{ka} and t_{ks} for the temperatures of the cold liquid, then the quantity of heat to be transferred is

$$C = F_{w}\sigma_{w}(t_{wa} - t_{we}) = F_{k}\sigma_{k}(t_{ke} - t_{ka}) \qquad (229)$$

Table 64.

The transmission coefficient, k_k , between two liquids, the one taking or brass diaphragm with the

		٠,						
$v_{f_2} \parallel$	0.001	ა∙002	0.004	0.000	0.008	0.01	0.02	0.04
0·001 0·002 0·004 0·006 0·008 0·01 0·02 0·04 0·06 0·08 0·10 0·20 0·40 0·60 0·80	119 122 128 130 132 136 144 155 160 165 190 196 200	122 128 132 136 140 142 150 160 168 172 176 188 200 206 212	128 132 138 140 144 148 157 170 177 183 186 200 214 222 226	130 136 140 145 150 153 162 175 183 188 194 208 224 232 238 240 247	132 140 144 150 154 156 169 176 188 196 200 214 232 240 246 252 256	136 142 148 153 156 160 170 185 194 200 206 224 240 250 256 259 266	144 150 157 162 168 170 185 200 210 218 225 246 286 285 294	155 160 170 173 176 185 200 210 234 242 250 274 302 316 328 336 344
1·25 1·50 ·2·0	206 208 210	218 222 225	234 238 240	247 250 253	260 264	266 270 274	302 308	350 358

From this equation is also obtained the necessary weight of hot liquid, F_{ν} for heating the weight of cold liquid, F_{ν} .

If θ_m be the mean temperature difference and k_k the coefficient of transmission, then the surface required for the cooling is obtained from the known equation:—

$$H = \frac{C}{k_k \theta_m} = \frac{F_w \sigma_w (t_{wa} - t_{we})}{k_k \theta_m} \quad . \quad . \quad (230)$$

The coefficient of transmission of heat, k_s , between two moving liquids at different temperatures is found from an equation calculated by Molier from Joule's researches (Zeits. d. V. d. Ing., 1897, Nos. 6 and 7) on copper and brass separating walls. The equation, which

Table 64.° heat from the other, which flow in opposite directions over a copper different velocities, v_{r1} and v_{r2} .

			•							
0.06	0.08	0.10	0.2	0.4	0.6	0.8	1.0	1.25	1.50	2.0
160	165	169	180	190	196	200	204	206	208	210
168	172	176	188	200	206	212	•214	218	222	225
176	183	186	200	214	222	226	230	234	238	240
183	188	194	208	224	232	238	240	247	250	253
188	196	200	216	232	-240	246	252	256	260	264
1		•								
194	200	206	224	240	250	256	259	266	270	274
210	218	225	246	266	280	285	294	298	302	308
234	242	250	274	302	316	328	336	344	350	358
250	256	267	296	324	344	356	362	377	380	392
256	270	276	312	344	362	376	392	400	408	420
267	276	289	328	362	384	400 •	408	425	440	449
296	312	328	370	416	454	464	486	500	512	443 531
324	344	362	416	476	530	540	570	588	606	636
344	362	384	454	530	570	606	624	660	680	709
356	376	400	464	540	606	644	666	700	724	782
									,	1,52
362	392	408	486	570	624	666	700	735	762	810
377	400	425	500	588	660	•700	735	768	800	850
380	408	440	512	606	680	724	762	800	833	888
392	420	443	531	636	709	782	810	850	888	947
									•	

neglects the thickness of the diaphragm (of little influence because of the thinness and high conductivity of the metal), is

$$k = \frac{300}{\frac{1}{1+6\sqrt{v_A}} + \frac{1}{1+6\sqrt{v_{A^2}}}} \dots (231)$$

which v_{1} and v_{2} are the velocities of the two liquids.

In order to allow for the furring of the pipes, which is never wanting in practice, we shall take, in estimating the coefficient of transmission, k_{ν} , for practical purposes, the expression

$$k_{k} = \frac{200}{1 + 6\sqrt{v_{f1}}} + \frac{1}{1 + 6\sqrt{v_{f2}}} . . . (232)$$

The coefficients, k_h , calculated from this equation for velocities of 0.01-2 m. are collected in Table 64, from which most actual cases may be taken.

The mean temperature difference, θ_m , is obtained by means of Table 1 from the ratio

$$\frac{t_{wa} - t_{ke}}{t_{we} - t_{ka}} = \frac{\theta_e}{\theta_a}$$

The mean difference in temperature for certain special conditions may be taken from the later Table 68, in which it is given for open surface-coolers.

When the cooling surface is formed of tubes of circular section it can be calculated from the dimensions of the tube, $H = d\pi l$, and the weight of liquid, F'_{ω} passing through per hour, may be expressed as the product of the section of the tube, the velocity and the specific gravity:—

$$F_w = \frac{d^2\pi}{4} v_s 3600 s_e 1000 (233)$$

The quantity of heat passing through the cooling surface in one hour must be equal to that lost in this period by the liquid:—

$$d\pi l k_k \theta_m = \frac{d^2\pi}{4} v_f . 3600 s_w . 1000 . \sigma_w (t_{wa} - t_{se}) . . . (234)$$

Hence follows the length of the cooling pipe:--

$$l = \frac{{}^{o}d}{k_{k}\theta_{m}} 900,000 v_{j}. s_{w}. \sigma_{w}(t_{wu} - t_{we}) \qquad . \qquad . \qquad (235)$$

is which, for water, σ and s = 1.

The desired velocity of flow and diameter of pipe, required to cool a definite weight of liquid through a definite range of temperature, cannot be arbitrarily chosen, and from them the length of the pipe calculated, because in most cases impossibly long pipes would be the result. The diameter of the pipe, the velocity and quantity of liquid depend one on the other. It requires some practice to select proper proportions.

In order to racilitate the selection, two tables are here given.

- Table 65, which gives the necessary lengths of tube for the required inner surface of 0.5-7 sq. m. in tubes of 10-70 mm. diameter.
 - 2. Table 66, which shows :-
- (a) The volume of liquid, V_0 , which flows per hour through pipes of 10:30 mm. diameter with velocities from 0:02-0.4 m. (b) The

TABLE 65.

The length of a cooling pipe of 10-70 mm. diameter, when its internal surface is 0.25-7 sq. m.

	•	• 1	n ord	er tl	at a	hea cooli	ting ng s	or c urfa	oolir ce, <i>I</i>	ng pi I_k , in	pe n 1 sq.	ay h m., o	ave e f	ın in	terna	1
	Bore of pipe.	0.25	49 ·5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
	mm.	it	must	hav	e th				ngth he si			1., wi	th th	ıe di	amete	rs
Í		1.00	16:1	10.0	40.0	64.5	loo.r	00.0			•		Ī			
1	· 10									04.0	05.4	106.0	_	_	_	-
ı	20		80											05.4	103.4	-
١	2 5	3.20							44.5					79.2		
١		2.65							37.1						68.9	
l	35	2:30	4.6	9.1	18.7	18.2	22.8	27.3	31.9	36.4	41.0	45.5	50.1	54.6	59.2	63.7
ı	40		4.0						28.0					48.0		
1	45	1.80	3.6						24.9						46.2	
١	50	1.58	3.15	6.3	10.0	12.6	15.9	18.9	22.6	25.2	28.9				41.5	
١	55	1.45	2.9	5.8	8.7	11.6	14.5	17.4	20.3	23.2	26.1	29.0	31· 9	348	37·7	40.6
١	60	1.35	2.7	5 3	8.0	10.3	18.8	15·6	18.3	20.1	23∙€	26.5	29.2	31.2	88.9	36-2
1	65	1.25		1.9					17.2				27.0	29.4	31.9	34.3
	70	1.15	2.3	4.6	6.9	9.2	11.4	13.8	16.1	18.4	20.7	22.7	25.0	27.6	29.9	32.2

lengths of tube, l (and thence the cooling surface), required to cool the volumes of liquid, V_p , given in column 3 (in this case evater: $\sigma = 1$, s = 1) from the initial temperature, t_{ws} , to the final temperature, t_{ws} , by means of cooling water at the different initial and final temperatures, t_{ka} and t_{ke} , and of different velocities, $v_f = 0.02-0.4$ m.

This Table 66 is calculated by means of equation (235). The very great number of the possible variations of all cases has permitted only a restricted selection of variables. The table shows that, if the pipe is not to be too long, the velocity of the liquid to be cooled may only be low. Therefore, in the case of a large quantity of liquid, many narrow pipes, arranged parallel to one another, must be used in place of one long pipe.

If it is expected that the cooling surface will be very clean, the number of tubes found from Table 66, or their length, may be diminished by about 25 per cent.

Тавье 66.

velocities of $v_r = 0.02$, 0.05, 0.1, 0.2 and 0.4 m. per second.

(b) The necessary length of pipe, l, ii. m., by which, with continuous working, the above volumes of water, V_r may be cooled from the initial temperature, l_{ext} to l_{ext} by means of cooling water with the temperatures, l_{ext} to l_{ext} (a) The volume of liquid, V, in litres, which passes through tubes of 10-30 mm. diameter in one hour, with

(a) (b) (c) (c) (d) (e) (e) (e) (e) (f) (f) (f) (e) (f) (f	1						-			ľ	ŀ	-	-	-	-	-		-	I -	ŀ	
(a) Can 100° S0° G0° G0° S0°	- 1	67	အ	4	.5	9	7	8	6	10	11	1	3 1	4 1	1	3 17		13	30	21	22
Color 11:35 18:9 6:0		,	;						Init	ial te	mper	ture	of th	е тап	Ħ Jị	ıuid,	t.				
Final temperature of the warm liquid, \$t_{eac}\$ Final temperature of the warm liquid, \$t_{eac}\$ Final temperature of the cooling water, \$t_{eac}\$ Final temp		,	<u>(a)</u>			90	2			~	00				99	•				200	
S			וגי						Fin	al ten	pera	nre c	f the	War	n liq	nid, t				•	
Final temperature of the cooling water, t ₁ . Final temperature of the cooling water, t ₁ . Final temperature of the cooling water, t ₂ . Final temperature of the cooling water, t ₂ . Final temperature of the cooling water, t ₃ . Final temperature of the cooling water, t ₄ . Final temperature of the cooling water, t ₂ . Final temperature of the cooling water, t ₃ . Final temperature of the cooling water, t ₄ . Final temperature of temperature of the cooling water, t ₄ . Final temperature of temperature of the cooling water, t ₄ .		p	gnie rod r		ec	60	15	25	10							- 6	30				8
d. d. d. d. d. d. d. d. d. d. d. d. d. d		iupil	∌red ≉red	,					Fin	al ten	perat	nre o	f the	cooli	w ga	ater,	t,e.		ľ		
December December			biupi lig en		છ	8	8	8	ક	8		-	-	4	4	-			-	38	8
2 5.6 0.001 11.35 18.9 6.2 9.56 8 7.0 5 4.62 9.8 18.5 5 9.3 9.6 9.3 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8			1 10 8 13 u 13						Initi	al ten	pera	nre c	f the	cooli	w ga	ater,	t,				
56 0.001 11.35 18.9 6-2.9.56 8 7.0 5 4.62 3.6 18.5 5 3.3 36 3 13.8 36 3.3 0.00 5.6 0.4 0.4 13.5 18.9 13.8 3.5 3.3 2.8 3.3 3.5 3.5			Litre		67	67	9	10	35		15	0 1			17					-	15
5·6 0·001 11:35 18:9 6·2 9·56 8 7·0 5 4·62 9·6 18:6 5 9·8 3·6 9·8 9		r_{c_1}	4						(b)	Requ	isite 1	engtl	o Jo	guiloc	g pip	n ui e	d		•		
		0.05	5.6	0.001 0.10	11.35 8.2 5.6	18-9		3.56 -2.2 -8.2				6.23	<u> </u>						-		i

	20 1.4 1.4	6 4 7:2	13 8.) 4.6	21.6 13.9 7	21.1	4.5 6.9	9.1 5.8 4.2	18 11·6 5	2.7 1.8 1.4
	7.5 4.8 3.5	14.5 9.8 6.5	880	42 21	3.7 2.5	12 7.8 5.4	10 14 25	41 14 14	6.6 4.1 3.3
	8.5 9.7	16 10.2 7.2	30 11 11	1 68 88	3.5 4.5 7.7	12:2 7:8 5:4	#25 116 116 116 116 116 116 116 116 116 11	45 29 16	7·1 4·5 3·6
	8 9 9 9 9	17 10.8 .7.7	34 22 12	44	9.6 9.6 9.8	13 8·2 6	26 16·6 12	30 18	7.2 4.6 3.6
	6.8 4.4 3.1	13 8·2 6	26 5 16 9	33 19	4 2 2 5 6 6	10-2 7-1 4-5	19.5 13 9	38-2 25 13	3.8
	8 5.73 4.	15 10 3 6.8	29 18:4 10	38	33.54	12 •7·8 •5·4	22:5 14:2 10:5	27 15	7·1 4·5 3·6
	7- 4 € 10 € €	14 9 6·3	28 18 10	37	29.57	12 7.8 5.4	21 13.5 9.5	41 26 15	6.6 4.1 3.3
	11.5 7.5 5.3	22 10 10	42 27 15	4 85	 4.8 8.8	17.5 11.3 8	33 21	61 38·6 21	10 7·1 5
	42 27 19	80 27 30 30	ا ا ا	111	81 4	33 33 33 33 33	• ₂	111	37 24 18·5
	8.1 5.2 3.4	15·3 10 7	29.2 18.5 10	39 21	5.5 2.7	12.2 7.8 5.5	23 15·2 11·5	44 28 16	7·1 4·5 3·6
	10.5 7.2 5	280 130		118	6.9 8.5 3.5	15·8 10·1 7·2	30.£	559 38 21	9·3 6 4·7
	16 10:2 7:2	21 <u>4</u> 2	43 27.6 15	1128	r- 4.00 ro io io	17 11 7	33 21 15	2.03 7.0	10 7·1 5
	16 10.2 7.2	884	1 23 23	1 8	10.5 7 5.3	24 15.5 11	45 29 20·5	20.00	14 9 7
	8 12 8	34.5 22.5 16	165	40	12 7·7 6	27 17 12:5	252 44	118	16 10·2 8
	9 5 5 5	15 6 10-2 7	:3 20 10:3	23	00 00 01 00 00 01	12.2 7.7 5.6	23·4 15·4 11	45 29 16	7·1 4·5 3·6
•	14 9 6·3	26.6 18.5	52 83 17	118	10·3 7 5·2	21 13·5 9·5	25 18	78 49 27	12:4 7:9 6:2
	43 26·5 19	81.5 52 37	111,	111	28:5 18 14:3	64.5 29	111	114	37.8 24.4 1.9
	25.8 16.5 12	49 31·5 22	111	111	17 11 8·5	28.7 26 18	47 . -7 49 36	111	22.7 14.4 11.4
	0.10	0.001 0.10 1.00	0.001 0.10 1.00	0.001 0.10 1.00	0.001 0.10 1.00	0.001 0.10 1.00	0.001 0.10 1.00	0.00 0.10 1.00	0.001 0.10 1.00
	14:1	28.7	56.4	112.8	12.7	31.7	63:5	127	22·6
	0-02	0.10	0.30	0:40	0.03	0.02	e O	0.50	0.05
					15				87

(continued)
98
ABLE

25				30		30		15	c.		3.6 2.7	12 7.8 5.4	24 15.6
12		°0		8,		30		10			15 9.8	23 23 23	37 119
8		2		8		40		10			37 11 8	32 20 <u>.</u> 8 15	14.88
13				15		30		10		_	8 11	34 16	44 44
18				30		20		15		_	13·6·117 9 111 6 8	26 16-6 12	51 32 18
17	d, ten		d, t.	22	er, the	28	er, t,	10.	in m	_	24 11	14 80 14 80	21
16	ligui	900	ligui	8	y wat	40	g wat	12	pipe		10 10	13 13 13	13
15	78.Tm		arm	12	oling	40	oling	2	ling	_	23 15.4 10.5	488 88 88	118
14	Initial temperature of the warm liquid, two		Final temperature of the warm liquid, twe	e *	Final temperature of the cooling water, the	જ	Initial temperature of the cooling water, $t_{k\sigma}$	C1	(b) Requisite length of cooling pipe in m.	ļ.	848	1111	111
13	jo e		e of t	30	o of t	9	e of t	15	gth c	_	16.2 10.3 7.4	30 19·6 14·5	58 37 20
12 13	ratur		Stur	25	atur	20	ratur	10	e len	_	21 13.5 9.5	40.2 26.7 18	27
10 11	oduc	8	ed u	97	m per	8	adwe	15.	luisit	-	23 15.4 10.5	4 883	118
10	sial te		nal te	8	al te	8	ial te	10	Rec	-	35 10 12	888	। । द्व
6	Ini		Ē	9	Fir	8	Init	2	(9)	-	36.2 23 17	69 7 7 7 8 7 8	<u> 0</u>
œ		1		25		8		10		-	16·3 10·5 7·3	31.2 5 20 14.5	2468 1148
1-				15		8		2	-	-	28 118 13	53 33.5 34	<u>. 98</u>
9	4	100		က		8		64			8 3 3 8 8	163 104 76	111
5						8		C3		-	52 33 24	97 89 89	111
4						q. q.	i io y iupil	disole gailo	00°	Dr.s	0.001 0.10	0.00 0.10 1.00	0.001 0.10 1.00
20		(g)		unoų 8	nissa 194	q bir eqiq	pil le edt r	eerd grot	ty I'i	1,1	56.5	113	98
2		•			e pint	pil od	t lo t belo	locity be co	о 3 ө V	2,1	0-02	0.10	06.50
-	1						eqiq	lo er	ea '	q	8		
١	<u> </u>									_	•		

7.5 9.4 4.8 6.1 3.8 4.7	17 22 11 14 8 10	23 43 21 27.4 15 19.5	38 96 33 1	5·1 6·4 3·4 4·3 2·8 3·5	6.8 8.6 6.3 7.6 4.5 5.7	22 27 13•2 16 10 12·8	45 51 23·5 30 16·2 21	40 51 33 52
9 7.4	0816	37·5 64·4 17	48 29	5.6 3.7 3.1	7.5 6.6	24° 14.5	98 18 18	1418
00 70' 44 60 6162	3 12 8 12 8-7	35 22•4 16	40 27	8.6 5.4 4.7	11.5 10.6 7.5	87 25 . 17	40 27	1 92
12.5 7.9 6.3	34.5 22.3 16	30 8	111	စစအ	13.6 8	18 33 4.4	23 62	118
46 29.2	47	111	11.1	24.2 16 13	23.5 23.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	- 88	111	111
0 10 40 6 50 44	13 9	38 24 17	, 24 8	8.7 8.7 8.1	7.6	24 13·8 11	45 26 18:5	1 20 00
12.5 111.5 17.9 7.5 6.8 5.8	26·3 16·7 12	50.3 23 23	118	2.4 4.2	10.5 9	34 20 15.6	36	118
5 17.6	29 18.5 13.5	25 55	1 67	7 10.8 2 7.2 6	10·2 14·4 1 9 11 7·1 9·6	748 K	48	50
21 13.5 10.5	25 17 18 18	118	111	5.5	200.5	2 33 7 20 15	8 g.	64 37
0 4 0 1 4 0	54.5 34.5 25	86.5 55 39	111	12.2 3 8 6.7	15-9 15 10-8	5-2 31-7 24	57 40	
8 70 A 6 70	21 13·5 9·5	39 24:4 12	143	8.7 5.8	11.6 10.7 7.8	35 22.6 17	14.82	57
16.5 10.6 8.3	35 33.5 16.5	67 80 80	111	10 6·7 5·5	13.3 12 9	488	33	l g
	187 68 49	204 134 92	111	30·3 20 16·5	39.5 37 27	132 78 60	111	111.
18:3	4.14.02 29.02	122 78 55	JII	18 2 12 9	24·3 22 16·2	47 36	111	111
0.001 0.10 1.00	0.00 0.10 1.00	0.001 0.10 1.00	0.00 1.00 1.00	0.001 0.10 1.00	0.001 0.10 1.00	0.001 0.10 1.00	0.001 0.10 1.00	0.001 0.10 1.00
32.3	8	176	352	25.4	20.8	127	254	208
0.03	0.05	0.10	0.50	0.01	20.03	0.05	0:10	0.50
					-			

From tubes must be about 20 per cent, greater in number. In cooling thick liquids the same increase is necessary.

If the specific gravity and specific heat of the liquid to be cooled are not equal to unity, but are s and o respectively, the number of tubes is to be multiplied by so.

Example.-2000 litres of water are to be cooled per hour from 80° to 30° C. by means of cooling water which becomes heated from 15° to 60° C. The velocity of the warm water is 0.02 m., that of the cold water 0.01 m., the cooling pipe is to have a diameter of 20 mm.

According to equation (229) the amount of heat to be transferred is

$$C = F_w \sigma_w s_w (t_{w\alpha} - t_{w\alpha}) = 2000 \times 1 \times 1 (80 - 30)$$

= 100,000 calories.

The volume of cooling water is

$$F_k = \frac{C}{t_{ca} - t_{ba}} = \frac{100,000}{60 - 15} = 2222 \text{ litres}$$

 $F_k = \frac{C}{t_{*a} - t_{ka}} = \frac{100,000}{60 - 15} = 2222 \text{ litres.}$ Through a tube of 20 mm. diameter there flow, in one hour at $V_r = 0.02$ m. per second, according to Table 66, 22.6 litres. There must therefore be $\frac{2000}{22.6}$ 89 tubes.

The length of each tube is obtained from equation (235):

$$l = \frac{d}{k_b \theta_m} 900,000 v_f(t_{wa} - t_{we}),$$

in which, by equation (282) and Table 64, $k_k = 170$.

$$\frac{30-15}{80-60} = \frac{15}{20} = 0.75$$
, therefore, by Table 1,

$$\theta_m = 0.872 \times 20 = 17.44^\circ$$

$$\theta_m = 0.012 \times 20 = 17.42^{\circ},$$
thus $l = \frac{0.02}{170 \times 17.44} 900,000 \times 0.02(60 - 80) = 6.07 \text{ m}.$

The cooling surface is therefore $H = 89 \ dl = 35.8 \ \text{sq. m.}$

If 2000 litres of alcohol (86.3 per cent. by weight), for which $\sigma_w = 0.7$ and $s_w = 0.8$, are to be cooled under the same conditions of temperature as above, then

$$C = 100,000 \times 0.7 \times 0.8 = 56,000$$
 calories;
$$F_k = \frac{56,000}{60 - 15} = 1244 \text{ litres}.$$

$$F_k = \frac{56,000}{60 - 15} = 1244$$
 litres.

The number of tube is, as above, 89

The length of each tube, $l = 6.07 \times 0.7 \times 0.8 = 3.4$ m.

The cooling surface, H_k , is about 19 sq. m. •

Experiment.-Hentschel's wort cooler. A hollow spiral (conveyor) of 850 mm. diameter turns in an open trough of about 360 mm. diameter at 40-45 revolutions per minute, and carries the wort from end to end. The cooling water flows in the hollow spiral in the opposite direction to the wort in the trough ...

2800 litres of warm wort were in this way cooled by means of 14 sq. nf. of cooling surface from 58.8° to 16.25° C. in 45 minutes by 2400 litres of cooling water, which was heated from 10° to 40° C.

Now,
$$\theta_a = 58.8 - 40 = 18.8^{\circ}$$

 $\theta_r = 16.25 - 10 = 6.25^{\circ}$
thus $\frac{\theta_s}{\theta_s} = \frac{6.25}{18.8} = 0.3$.

Therefore, by Table 1 the mean temperature difference is

$$\theta_m = 0.588 \times 18.8 = 10.96^{\circ}.$$

It was observed, in regard to the wort, that

$$k_k = \frac{4 \times 2800(58.8 - 16.25)}{3 \times 14 \times 10.96} = \text{about 1035},$$

or in regard to the water :-

$$k_k = \frac{4 \times 2400(40 - 10)}{3 \times 14 \times 10.96} = \text{about 621}.$$

The velocity of the work over the cooling surface is

$$v_{\text{fl}} = \frac{0.350 \cdot \pi \cdot 45}{2 \times 60} = 0.41 \text{ m. per second.}$$

The velocity of the water is equally great, but there is to be added to it the velocity in the hollow spiral, which is, if the section of the spiral be 0.15 sq. dcm.:

$$v_{/2} = \frac{2400 \times 4}{60 \times 6030 \times 15 \times 10} = \text{about 0.6 m. per second.}$$

Thus the water is carried with a velocity of 0.41 + 0.60 = 1.01 m, over the diaphragm between water and wort.

The coefficient of transmission for the water, calculated by equation (232), is

$$k_k = \frac{200}{\frac{1}{1 + 6\sqrt{0.41}} + \frac{1}{1 + 6\sqrt{1.01}}} = 572 \text{ (approx.)}.$$

This result agrees with the observed coefficient $k_k = 626$ with sufficient accuracy, since the metal surface is always kept clean by the wash of the liquid, and the coefficient thus somewhat increased.

The transmission coefficient for the wort appears to be considerably higher, because it is in contact with the air and is thus cooled by evaporation to a considerable extent, which is the advantage of this method of cooling.

In refrigerating machines the exchange of heat generally takes place at a low temperature; for this reason, and because the liquids used are not always as mobile as water, the coefficient of transmission appears to be somewhat lower. H. Lorenz (Zeits. f. d. gesammte Kälteindustrie, 1897, Heft 9) found, for liquid carbonic acid which was cooled in an iron pipe from 34.58° to 21.61° C. by means of water which became heated from 9.9° to 21.61° C., $k_k = 105$. In another

case, when the liquid carbonic acid was cooled from 19.45° to 11.8° C., and the cooling water warmed from 9.9° to 11.08°, k_k was 125 (when the feal mean temperature difference was used in the calculation).

2. The second method (discontinuous or periodic) consists in bringing the whole quantity of liquid to be cooled at once into a vessel and allowing the cooling fluid (usually water) to flow round the external walls of the vessel, or through pipes or plates, at rest or in motion, until the liquid is sufficiently cooled. The operation is shortened if the liquid to be cooled is moved artificially at a fair speed over the cooling surface or the cooling surface is moved through the liquid, since the very small differences of temperature existing at the same time in the liquid cause only a slow circulation. The amount of heat to be extracted from the weight of liquid, F_w , which is cooled from t_w , to t_w , and thus to be taken up by the cooling agent is

$$C = F_{\nu}\sigma_{\nu}(t_{\nu\alpha} - t_{\nu\sigma}) \, . \qquad (236)$$

The cooling surface required for the transfer of this amount of heat is

$${}^{\bullet}H_{k} = \frac{C}{kk\theta_{m}} = \frac{C}{\frac{200}{1+6\sqrt{v_{f1}}} + \frac{1}{1+6\sqrt{v_{f2}}}} \cdot . \quad (237)$$

. If we assume that a uniform temperature prevails throughout the warm liquid at any instant, so that all portions take a regular part in the cooling, then the mean temperature difference between the liquid and the cooling medium diminishes continuously, the latter being beated from its constant initial temperature to a final temperature which decreases during the progress of the operation.

The mean temperature difference at the beginning, θ_{ma} , is obtained from the greatest and least temperature differences between the warm liquid and the cooling medium at the beginning, θ_{a1} and θ_{c1} . The mean temperature difference at the end, θ_{me} , is obtained from the greatest and least temperature differences at the end, θ_{ap} and θ_{c2} .

The true mean temperature difference, θ_m , for the whole operation, is obtained from the two mean temperature differences at the beginning and the end, θ_{ma} and θ_{ms} .

By means of Table 1, $\frac{\theta_{e1}}{\hat{\theta}_{a1}}$ gives the mean temperature difference of the beginning: $\theta_{ma} = a\theta_{e1}$; similarly, $\frac{\theta_{e2}}{\theta_{e2}}$ gives the mean tempera-

ture difference at the end: $\theta_{me} = \beta \theta_{a2}$. Finally, $\frac{\theta_{ma}}{\theta_{ma}}$ gives the true mean temperature difference:

$$\theta_m = \gamma \theta_{ma} = \gamma a \theta_{a1}$$
 (238)

When the true mean temperature difference, θ_m is found, and also the mean temperature, t_m , of the warm liquid calculated in the well-known simple manner, then by subtraction the mean escape temperature of the cooling water is found: $t_{ke} = t_m - \theta_m$; from this the mean increase in temperature is obtained: $t_{em} = t_{kr} - t_{ka}$, and thence the weight of cooling water requisite to extract the quantity of heat, C:

$$W = \frac{C}{t_{em}} = \frac{C}{t_{ke} - t_{ka}} \qquad (239)$$

If we now arrange that the ratios $\frac{\theta_{e_1}}{\theta_{a_1}}$ and $\frac{\theta_{e_2}}{\theta_{a_2}}$ are equal, i.e., that

 $s = \beta$, the calculation and explanation are simplified. We shall therefore now assume that the ratio of the temperature differences at the beginning is equal to the ratio of the temperature differences at the end—a very good and natural condition.

In order to estimate the necessary cooling surfaces we still require to know the velocities of the liquid and the cooling water, v_{r1} and v_{r2} . The former may be taken at about 0.02 m. if there is no stirrer and the cooling surfaces are favourably arranged.

If the cooling vessel be provided with a stirrer it may be arranged so as to give the mass a velocity of 1 m. or rather more, but not more than 3 m.

The velocity of the cooling water, when it flows through pipes, may be determined by means of Table 66. It will generally be very low.

Example.—2000 litres of water are to be cooled in 1 hour from 80° to 20° C. by water at 10° C. which is to be heated at first to 60°.

The quantity of heat to be transferred is

$$C = 2000(80 - 20) = 120,000$$
 calories.

The mean temperature difference at the beginning is, by Table I.

$$\left(\text{ since } \frac{\theta_{e1}}{\theta_{a1}} = \frac{80 - 60}{80 - 10} = \frac{20}{70} = 0.286\right)$$

$$\theta_{ma} = 0.575\theta_{a1} = 0.575 \times 70 = 40.25^{\circ}$$
.

At the end.

$$\left(\text{ since } \frac{\theta_{e2}}{\theta_{a2}} \text{ is to be equal to } \frac{\theta_{e1}}{\theta_{a1}}\right)$$

$$\theta_{me} = 0.575\theta_{a2} = 0.575(20 - 10) = 5.75^{\circ}.$$

The true mean temperature difference is therefore

$$\left(\text{ since } \frac{\theta_{me}}{\theta_{ma}} = \frac{5.75}{40.25} = 0.143\right)$$

$$\theta_{m} = 0.575 \times 0.441 \times 70 = 17^{6}7^{\circ}.$$

The mean temperature of the liquid is

$$\begin{pmatrix} \mathbf{t}_{we} & \frac{t_{we}}{t_{we}} = \frac{20}{80} = 0.25 \\ \mathbf{t}_{m} & = 0.544 \times 80 = 40.52^{\circ}. \end{pmatrix}$$

Consequently the mean temperature at which the cooling water leaves is

$$t_{ke} = 48.52 - 17.7 = 25.82^{\circ}$$
.
Now $t_{em} = 25.82 - 10 = 15.82^{\circ}$,
and $C = 2000(80 - 20) = 120,000$,
therefore $W = 7580$ litres.

If the water flows through the pipe with a velocity of 0.1 m., and if the stirrer gives the liquid to be cooled a velocity of 1 m. over the cooling surface, then, by Pable 64, kk = 408.

The requisite cooling surface is therefore

$$H_k = \frac{C}{l_k \theta_m} = \frac{120,000}{408 \times 17.7} = 16.7 \text{ sq. m.}$$

Since the velocity in the pipe is to be 0.1 m., the cooling surface may consist of :--

The desired data for a few cases are collected in Table 67.

Experiment.—In the mash-tun of a distillery, with 8.4 sq. m. of cooling surface in the shape of brass tubes of 45 mm. bore and 48 mm. external diameter, 3000 litres of wort were cooled in 105 minutes from 62.5° to 16.25° C., by means of 9632 litres of cooling water (91.73 litres for minute) at 10.62° C., which was heated to 50° at the commencement, to 13.4° at the end.

The average velocity of the water in the cooling pipe was 0.877 m., that of the wort over the cooling surface about 0.85 m. per second. (Tub 2300 mm. in diameter, stirrer gives 30 revolutions per minute, hence its mean velocity is 1.7 m. The motion of the liquid moved by the stirrer was assumed to be half as great.) The wort lost 3000(62.5 - 16.25) = 138,750 calories. The water gained

TABLE 67.

Discontinuous (periodic) cooling. Mean temperature difference θ_m , mean temperature of outflow of cooling water, t_{kc} , the requisite quantity of cooling water, W, and cooling surface, H_k , for velocities, of the liquid of 1 m., of the cooling water of 0·1 m., in order to cool 100 kilos. of water in one hour.

		•	•														
nperature	Liquid to	be cooled.	Cooling water,	temp. of outflow.	erature	Mean temperature of cooling water outflow.	rer r 100 uid.	rface for $t_2 = 0.1.$	Original temperature of cooling water.	Liquid to	be cooled.	Cooling water,	temp. of outflow.	perature	Mean temperature of cooling water outflow.	wafer for 100 liquid.	surface for $v_d' = 0.1$.
Original temperature	1	to	Beginning.	End.		1	Cooling water required for 100 kilos, of liquid.	Cooling surface for $v_{f,1} = 1, v_{f,2} = 0.1.$	1	From	t to	Beginning.	End.	Mean temperature	Mean ten	Cooling water = required for 100 kilos of liquid.	Cooling surface for $v_{f1} = 1$, $v_{g'} = 0.1$.
t_{ka}	twa	t_{we}			θ,,	$\frac{t_{ke}}{}$	$-\frac{W}{}$	H_{k}	$t_{\iota a}$	t_{wa}	twe	•					
°C 100	100 100 100 100 100 100 100 100 100 100	80 60 60 40 40 40 40 40 40 40 40 40 40 40 40 40	80 60 80 60 80 60 60 60 60 40 60 60 60 60 60 60 60 60 60 6	31.4 31.4 28 17.6 19.6 19.6	• C. 41 41 41 45 46 48 48 48 48 48 48 48 48 48 48	°C. 48-6 34-7 43-6 31-8 36-8 36-3 25-5 50-1 46-3 30-5 32-8 30-5 32-9 52-6 30-5 22-9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	311 375 590 3 147 220	sq. m. (0·12) 0·00 0·28 0·21 0·50 0·40 1·00 0·80 0·23 0·36 1·00 0·15 0·11 0·37 0·28 0·63 0·63 0·63 0·63 0·63 0·63 0·63 0·63	°C. 10 °° °° °° °° °° °° °° °° °° °° °° °° °°	° C. 70 "" 70 "" 60 "" 50 "" 50 "" 50 ""	20 20 50 30 20 20 30	60 50 60 50 60 50 60 50 60 50 40 50 40 40 40 30 40 30	28 9 18 9 17 9 25 20 17 9 15	29 14-5 20 10-3 14 19-6 25-5 16-6 17-6 20-5 5-11-6 15-6 15-6 15-6 11-6	25.9 29.6 23.5 24.7 26.2 28.2 24.6 7.23.6 9.21.6 9.21.6	255 315 102 150 272 374 7 120 2 178 2 178 2 188 3 408 6 147 4 238 0 273 1 330 7 190 4 315	sq. m. 0·60 0·44 1·00 0·73 0·23 0·17 0·68 0·49 1·20 0·87 0·25 0·18 0·39 0·29 1·10 0·80 0·34 0·63 0·48 0·36 0·38
-		, 4	0 60	32.	3 24 6 6 38	7 33·2 20	2 220 817	0·40 0·27	,,	" "	20 20	•30	17.	1 12.	1 20	7 526	0.61
1	, iö 7	, 2 0 5 5	0 6 0 4 0 6	0 18. 0 17 0 48.	4 18 18 4 22	7 29 8 9 24 6 6 36 9 29 9	8 405 6 625 9 74	1·08 0·80	10	١.,	20	20) 13· 18	3 15 8	17· 13· 3 20· 2 17	9 513 6 35 5	0.45 0.33 0.60 0.44

 $9632 \times 12 \cdot 1 = 116,547$ calories. The difference, 138,750 - 116,547 = 22,208 calories, was lost by radiation and evaporation.

The mean temperature difference was $\theta_m=12^{\circ}03^{\circ}$, hence the observed coefficient of transmission is:

$$k_k = \frac{C}{R_k^3 \theta_m x_h} = \frac{116,547}{8\cdot 4 \times 12\cdot 1 \times \frac{105}{60}} = 665 \text{ calories.}$$

The calculated coefficient of transmission is:

$$\begin{split} k_k &= \frac{200}{\frac{1}{1+6\sqrt{v_{f_1}}} \times \frac{1}{1+6\sqrt{v_{f_2}}}} \\ &= \frac{200}{1+6\sqrt{0.877}} + \frac{1}{1+6\sqrt{0.85}} = 656 \text{ calories.} \end{split}$$

The agreement is sufficiently good.

The following table gives the course of the experiment

After minutes. Temperature of wort.	Temperature of waste water.	• T	emper	ture diffe	rences.		emperature water.
After minutes. Tempera of wort.	Tempera of waste	At outlet.	At inlet.	Observed mean.	Total mean.	Observed.	Mean.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	36·25 5 81·25 27·5 5 22·5 20 18·5 16·25 14·4	12·5 10 8·75 5	6 _a 51·9 45·65 89·4 83·15 26·9 20·65 14·4 11·9 9·4 6·9 5·65	28 27 24·6 21·1 17·4 13·58 9·21 7·1 6·18 4·9 4·1	θ _m 5 × 27·5 6 × 25·8 6 × 25·8 8 × 19·6 8 × 15·5 25 × 11·25 6 × 8·15 10 × 6·95 16 × 5·5 15 × 4·5 1263 =12·03°	39·4 80·65 25·65 20·65 16·9 11·9 9·9 7·9 5·65 8·8 2·8	5 × 35·2 • 6 × 28·15 • 6 × 28·15 • 8 × 18·77 • 8 × 14·4 25 × 10·9 • 0 × 6·77 • 16 × 4·73 • 15 × 3·3 • 1267 • 12·10

E. Open Surface-coolers.

Many hot liquids are cooled by allowing them to flow down, exposed to the atmosphere, over metallic surfaces, on the other side of which passes cold water. This form of apparatus is here called the open surface-cooler. Its cooling surfaces consist of straight or

m.,

bent tubes arranged one above the other; the section of a tube is circular, oval or approximately triangular. More rarely plane surfaces, vertical or inclined, or vertical tubes, are used.

The liquid flows down over the cooling surface with various velocities, which increase with the smoothness of the surface, the height of flow, and with the quantity of liquid which flows in unit time over unit length of the apparatus, i.e., with the thickness of the flowing layer. The velocity decreases with the inclination of the surfaces to the horizon and with the consistency, thickness or viscosity of the liquid.

Over smooth plane vertical surfaces, the fieight of which is

1 2 3 4

the mean velocity at which

water flows down is about 0.5-0.7 0.6-0.9 0.8-1.1 0.5-1.3 m.

The quantity of liquid, which flows down in one hour over 1 m. length of the cooling surface, may be greater in larger apparatus than in smaller. With an apparatus which can cool in one hour

100 300 500 800 1000 2000 3000 (or more) litres,

there may flow

over a length

of 1 m. in

one hour 125 300 390 420 550 700 800 litres.

The cooling water enters below and leaves above; it is desirable that it should pass through the cooling tubes with a tolerable velocity, which may be about 0.5 mm. in small apparatus, 1.0 m. or more in a large apparatus.

TABLE 68.

The copper or brass cooling surface, H_k , in sq. m., and the cooling water, W, in litres, for open surface coolers, required to cool $F_w=100$ kilos. of aqueous liquid in one hour from $t_{wa}=100^\circ$. 30° C. down to $t_{we}=30^\circ.3^\circ$ C., by means of cooling water at $t_{ka}=2^\circ.15^\circ$ C.

oling water, t_{la} .
oning water, ti
15,
iquid, t_{uv} .
25° 16° 20° 30°
2 0 3 91 7 24 12 40 604 2 16 1 11 0 56
94 112 106 94 7·44 6·81 10 88 17·44 D :43 1·33 O :74 O :40
108 130 123 108 5·60 10·56 16·96 25·60 0·29 0·8 0·48 0·27 150 187 179 155
2·40 3·91 7·24 12·40 0·45 1:61 0·83 0.45
92 116 110 90 7·44 6·84 10·88 17·44 0·34 1·01 0·56 0·34
110 144 133 110 0.60 10.56 16.96 25.60 0.22 0.60 0.36 0.20
184 260 240 200 2·40 3·91 7·24 12·40
0.28 1.15 0.56 0.25 88 126 114 89 0.44 6.34 10.88 17.44
0·20 0·72 0·37 0·20 117 180 160 120 2·40 8·91 7·24 12·40
0.22 0.80 0.42 0.17 83 136 120 80
7·44 6·34 10·88 17·44 0·17 0·55 0·28 0·12 125 226 200 138

TABLE 68-(continued).

b e		• Original temperature of the cooling water, tra-										
tempel he liqui	ature of lowed water.	•	2°	٠	5°		(10°	,		15°	
Original tempers ture of the liquid to becooled.	Temperature the outflowed cooling water.			Te	mper	ture	of the	cool	ed liq	uid, <i>t</i> ,	e s	
t _{wa}	t _{ka}		3°	6%	10°	20^	11°	15°	25°	16°	20°	30°
40°	30°	$\theta_m = II_k$	3·91 0·90	3·91 0·80		12·40 0·16		7·24 0:35	12·40 0·1 2			12·40 0·09
	20 °	$W = \theta_m = \theta_{II} = W = W = W$	132 6·34 0·61 200	136 6:34	120 10:88	80 17•44	145 6·34	125 10 88	75 17•44	160 6·34 0·40	133	66 17·44 0:06
30°	25° 20°	$ \begin{array}{c} \theta_m = \\ H_k = \\ W = \\ \theta_m = \\ H_k = \\ W = \end{array} $	2·5 1·09 118 3 91 0·7 0 150	2 5 0 97 120 3 91 0 64 160		9·0 0·12 50 12·40 0 09 67	180 3.91		9 0.06 63 12.40 0.05 50	140 991	5 0.2 100 7.24 0.15 280	

The cooling action of this apparatus is generally very good, because the thin layer of liquid greatly favours the transfer of heat, and because the velocity of both liquids—the cooling and the cooled—may be greater here than in closed coolers, since the air itself takes up heat and by evaporation accelerates the cooling, and, finally, because the surfaces are easily accessible and can therefore always be kept clean and active. A small amount of the heat is also lost by radiation.

As a rule, open coolers are placed inside the works, and occasionally air is blown over the surfaces in order to increase the cooling action. The surrounding air rises very slowly over the liquid, with small coolers and not very warm liquids, at a velocity of 0.2-0.3 m.; with higher apparatus and warmer liquids, at about 1 m. per second. The air is heated approximately in proportion to the temperature of the liquid to be cooled, and, in proportion to the degree of heating and its original amount of moisture, it takes up water, as will be described in treating of cooling water. The liquid loses by evaporation 1-3 per cent. of its weight, according to circumstances.

There are no reliable experimental figures as to the heating of the air and its evaporative effect in this form of cooler; it is therefore necessary to calculate the quantities of heat taken up by the air and by the cooling water separately in open surface-coolers. It would appear that the heat-given up to the air is approximately proportional to the mean temperature difference between water and air.

The hotter is the liquid to be cooled when it reaches the cooler, the better the apparatus works, since then ϵ tolerable quantity of heat is taken up by evaporation. It is of considerable importance to the cooling capacity that the liquid should flow down quietly over the whole surface, without splashing. It will be assumed that in this case the coefficient of transmission, $k_k = 1000$. The amount of moisture in the surrounding air also affects the cooling action.

Experiments.—1. An open surface-cooler with a cooling surface of 18 4 sq. m. cooled r600 litres of beer per hour from 70° to 13° C, by means of cooling water at 10°, which left the apparatus at 33° C. This gives $k_k = 800$.

- 2. A similar apparatus with a surface of 13.5 sq. m. cooled 3500 litres of beer per hour from 70° to 18° C. by means of cooling water at 15° C., which flowed away at about 40° Č. This gives $k_k = 1010_4$
- 3. A similar apparatus with a surface of 20 sq. m. (16 tubes of 55 mm. external diarreter and 4200 mm. long = 11·5 sq. m., fed by water at 8·75·25°, plus 12 tubes of the same size = 8·66 sq. m., fed by ice-water at 1°-7·5° C, cooled 6000 litres of beer per hour from 43·7°-6° C. The temperature of the beer at the outlet of the ice water was 14·1° C. This gives for the 11·5 sq. m. $k_k = 1000$, for the 8·66 sq. m. $k_k = 670$.

As a result of these and other similar experiments not given here, we assume that it is permissible, in estimating the necessary coolingsurface of open coolers, to take

$$k_* = 1000$$
 (240)

and thence the surface required to abstract C calories is

$$H_k = \frac{C}{1000\delta_m z_h} \quad . \quad . \quad . \quad . \quad . \quad (241)$$

This expression is applicable to copper and brass cooling tubes, cooled by water, and to thin warm liquids.

If the original temperature of the liquid is low, say under 15° C., we may only take

$$k_* = 700 \dots (242)$$

If the cooling surface is of iron, then for warm liquids $k_k = 800$.

If the liquid to be cooled is somewhat thicker than water, H_* must be increased by about 20 per cent.

Table 68, which is clear without further explanation, has been compiled in this manner.

Example.—In one hour $F_{\rm w}=1000$ kilos, of an aqueous liquid at $t_{\rm ext}=80^{\circ}$ C. are to be cooled to $t_{\rm ext}=17^{\circ}$. The cooling water is at 15°, and is to flow away at 60° C.

Now,
$$z_h = 1$$
, $C = F(t_{wa} - t_{we}) = 1000(80 - 17) = 60,000$ calories.

The greatest temperature difference is: $\theta_a = 80^{\circ} - 60^{\circ} = 20^{\circ}$.

. The least temperature difference is : $\theta_e = 17^{\circ} - 15^{\circ} = 2^{\circ}$.

Since
$$\frac{\theta_c}{\theta_a} = \frac{2}{20} = 2.1$$
, it follows, from Table 1, that $\theta_m = 2.391 \times 20 = 7.88^\circ$.

Thus the necessary cooling surface is

$$H_k = \frac{C}{k_k \theta_m s_k} = \frac{63,000}{1000 \times 7.88 \times 1} = 8 \text{ sq. m.}$$

The requisite weight of cooling water is given by

$$C = W(t_{ke} - t_{ka}) = W(60 - 15),$$

or $W = 1400$ litres,

F. Cooling by Contact with Metallic Surfaces which are Traversed by Cold Air.

This method has been sufficiently treated in Chapter, NX., B. 2, page 283.

G. Cooling Water by Air.

In cooling large quantities of water, the method is generally used of exposing the water with the greatest possible surface to air at rest or in motion. The water is allowed to stand in shallow tanks with a great surface, to flow through a long shallow channel, to flow down in sheets over terraces or over vertical or inclined plane walls; it also falls in the form of jets and drops down cooling towers or is finely divided and sprayed by reses, to sink down as dust.

The cooling air either moves with its natural velocity, or is artificially driven, over the water. In these arrangements it is endeavoured to bring the greatest volume of air in direct contact with water in the finest possible state of division.

The cold air has a twofold cooling action on the warm water; in the first place it acts directly by abstracting heat and itself becoming hotter. If the atmospheric air, at its first contact with the water, has the temperature t_{i*} and leaves it at t_{i*} , then L kilos. of air take from the water in being heated:

$$C_e = L0.2375(t_{le} - t_{le}) \dots$$
 (243)

In the second place the air cools the water by causing a portion of it to evaporate. The atmospheric air, which is practically never saturated with moisture, readily takes up more, especially when it is warmed, as by the water in this case.

In regard to the quantity of water which can be taken up by air, and other questions of interest here, more detail will be found in the author's work, *Drying by Means of Steam and Air* (Scott, Greenwood & Co., London), from which the numerical values required below are taken.

If 1 kilo. of air before contact wifn the water contains d_a kilo. of vapour, and on leaving the water, d_a kilo., this 1 kilo. of air has taken up during the contact $(d_a - d_a)$ kilo. of water vapour. If the mean temperature of the water was t_{wm} , the number of calories withdrawn from the water for the evaporation of the water taken up by 1 kilo. of air was

$$C_{\bullet} = L(d_{\bullet} - d_{\alpha}) (640 - t_{\omega m}) ... (244)$$

Thus, in all, L kilos, of air take from the water

$$C_k = C_c + C_o = L[0.2375(t_{lo} - t_{la}) + (d_o - d_a) (640 - t_{wm})]$$
 (245) calories.

If W kilos, of water at the temperature t_{∞} are to be cooled to the temperature t_{∞} , then there are to be withdrawn for that purpose $W(t_{\infty} - t_{\infty})$ calories; the *principal equation* is therefore $C_k = C_c + C_r = W(t_{\infty} - t_{\infty})$

$$= L[0.2375(t_{le} - t_{le}) + (d_e - d_e) (640 - t_{win})]. \quad (246)$$

The temperature of the external air, t_{1a} , is very variable, and so also is the quantity of moisture in it; the temperature of, and moisture in, the air when it leaves are variable, and the temperature of the cooling water is different in each case. In order to obtain a view of the prevailing conditions and actions in the many different and varying cases, Table 69 has been calculated for temperatures of the outer air, of $t_{1a} = -20^{\circ}$ to $+30^{\circ}$ C. and of the emergent air of $t_{1a} = 5^{\circ}$ to 40° C:

For Table 69, the amount of heat required for the evaporation of 1 kilo. of water was taken at 600 calories, which is perhaps somewhat low. It is also assumed that the atmospheric air is completely saturated at the prevailing temperature, but that it leaves the cooler at temperatures from 5° to 40° C. only three-fourths saturated. The

values of d_a and d_a , which give the amount of water in 1 kilo. of air, are taken from Tables I. and III. of the above-mentioned work.

Table 69 gi.es, in the first lines, the number of units of heat taken up from the water by 1 kilos of air in becoming heated $[0.2375(t_{l_s}-t_{la})]$, and, in the lines 2, the number of calories abstracted by the same kilos of air through partial evaporation of the water $[(d_s-d_a) (600-t_{um})]$. The sum of these two lines would then show how many galories are withdrawn in all by 1 kilos of air.

The lines 3 give the *ratio of the absorption of heat through heating to that through evaporation.

The fourth lines give the weight of air, L, required to abstract 1000 calories from the water.

Example.—If the air reaches the water at 0° C. and leaves it at 20° C., the ratio of the heat withdrawn by heating the air to that by evaporation is, by section 5, line 3, 0.527; 0.4734

If a total of 1000 calories is to be abstracted, then the air must take for heating itself C_e : $_{\bullet}1000 \times 0.527 = 527$ calories, and by $_{\bullet}$ evaporation $C_{\bullet} = 1000 \times 0.473 = 473$ calories.

Now, by equation (243),

 $C_{\epsilon} = L0.2375(t_{le} - t_{la}) = L0.2375(20 - 0) = 527$ calories. and thence the necessary weight of air (Table 69, section 5, line 1) is

$$L = \frac{527}{4.75} = 111$$
 kilos. (approx.).

[To confirm. These 111 kilos., if the air is quite saturated at 0° and only three-fourths saturated at 20° C., can in fact take up for evaporation $C_* = 1000 \times 0.473 \pm 478$ salories, for, by Table 1 (see Drying by Means of Steam and Air), the amount of water which can be absorbed by 1 kilo. of air under these conditions is $d_a - d_a = 0.01103 - 0.00387 = 0.00716$ kilo., therefore 111 kilos. absorb 111 $(d_r - d_a) = 0.79476$ kilo. of water, for which (on our assumption) $C_* = 0.79476 \times 600 = 476.8$ calories are required.]

The fifth lines contain the volume, v_{ii} of the weight of air, L, at the external temperature, ϵ_{ii} . This volume of air is obtained by dividing the weight of air, L, by the weight of 1 cub. m. of dry air at the proper temperature (obtained from Table 1, column 8, of Drying by Means of Steam and Air).

In the above example, 111 kilos, of air at 0° C, occupy a space of $\frac{111}{1.288} = 86$ cub. m.

The sixth lines then give the weight of vapour which is evaporated from the water by the calculated weight of air, L, which weight may thus be regarded as loss in the cooling apparatus. This is for a total

TABLE 69.

The heat taken up by 1 kilo, of air in becoming heated, C_{\bullet} , and by evaporation, C_{\bullet} . The fraction of the total absorption of heat due to heating, $\frac{c_{\bullet}}{C_{\bullet} + C_{\bullet}}$, and to evaporation, $\frac{C_{\bullet}}{C_{\bullet} + C_{\bullet}}$. The requisite weight of air, L, and volume, V_{ia} , and also the evaporation of water for the abstraction of 1000 calories. For temperatures of the completely saturated external air of -20° to $+30^{\circ}$ C. and temperatures of the outlet of the three-fourths saturated air from 5° to 40° C.

Number of line.	Temp.		Temperature of the air outlet, t _{le} .								
Nur of 1	atmos. air. t_{la}		5°	10°	15°	20°	25°	30°	35°	40°	
-				-		<u> </u>	-				
1	-20 ($(t_{le} - t_{la}) 0.2375 =$	5;94	r·12	8.30	9.50	10.68	11.78	12.9	14.22	
2	For kilo.	$(d_e - d_a) (640 - t_w) = 1$						11.86			
3	S Ki	By heating - •	0.744	0.704	0.659	0.607	0:5[1.490	0.449	0.407	
	### (- J	0			0.898	38/0 M	_ <u>2</u> 10	0001	0000	
4	# S ₹ (Weight of air, L =	125 90	100	80	64	1/4	0.0	35	29	
5 6	For 1000 cals	Volume of air, $V_{la} = V_{la}$		70	57.6	46	180.0	.0.2	25.2	21	
o l	7 0	Water evap't'd, kilos.	0.444	0.901	0 204	0.090	U 141	0∙82 8	0.899	0.995	
1	-15	$(t_{lo} - t_{la}) \cdot 0.2375 = .$	4.75	5.04	7.195	8.30	0.50	10.68	11.78	19.0	
2	-10	$(d_a - d_a) 640 - t_w =$								20.34	
3										0.389	
								0.521			
4		Weight of air, $L =$	153	115	90	70	57	45	37	30	
5 6		Volume of air, $V_{1a} =$	112	84	65.7	51.2	11.7	33	27	22	
6		Water evap't'd, kilos.	0.457	0.521	0.633	0.692	0.780	0· 7 0	0.966	1.019	
					1						
1	-10	$(t_{le} - t_{la}) \otimes 2375 = $								11.78	
2		$(d_e - d_a) (640 - t_w) =$						11.27			
3	,	By heating	0.700	0.661	0.610	0.572	0 514	0.458	0.413	0.870	
L	1									0.630	
5		Weight of air, $L = V_{\text{observed}}$	200	139	103	80	62	48	39	31	
6		Volume of air, $V_{la} = Water evap't'd$, kilos.	149.5							23.1	
1	l	Water evap tu, knos.	0 404	0.002	0.099	0.149	0.100	เบายบอ	0.909	1.094	
1	-5	$(t_{le} - t_{la}) \ 0.2875 =$	2.375	8.57	4.75	5.94	7-195	8.30	9.50	10.68	
1 2		$(d_a - d_a) (640 - t_w) =$		1.95						19.33	
2 8	٠.									0.856	
	l									0.644	
4	٠	Weight of air, L =	300	180	124	96	70	58	40	84	
5		Volume of air, $V_{la} = 1$	228	136	94.3	73	53	40.8	30.4		
6.		Water evap't'd, kilos.	0.480	0.581	0.671	0.815	0.813	0.951	0.978	1.106	
L_	٠	<u> </u>								1	

Table 69—(continued).

e e	Temp. of the atmos									
Number of line.	atmos. air. t _{ia}	•	5°	10°	15°	20°	,25°	30°	85°	40°
1 2	• 0	$(d_e - d_a) (640 - t_w) =$	1·187 0·162	1.14	9·57 2·52 0·586		5·94 6·55 0·475	9.96	8·30 13·87 0·374	18.78
3 4 5		By evaporation Weight of air, $L = V_{\text{olume of air}} V_{olume$	0·120 746 581	0·325 284 221	0·414 •165 128·5	0·473 111 86·5	0·525 81 73	0.582 60 46.7	0.626 45 85	35·5 27·6
$\begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix}$	5	Water evap't'd, kilos. $(t_{10} - t_{10}) 0.2975 = (d_0 - d_0) (640 - t_w) = 0.0000$		1·187 0·160	2·37 1·53	3·57 3·30	4·75 5·58	5·94 8·94	7·125 12·90	8·30 17·70
3 4		By Reating \bullet By evaporation Weight of air, $L =$	_ 	0·885 0·115 750	0·608 0·392 252	0·518 0·482 145	10:458	0.400	0.356	0.9184
$\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	10	Volume of air. $V_{la} =$ Witter evap't'd, kilos. $(t_{lo} - t_{la}) \ 0.2375 =$		600 0·180		116 0797 2.37	0·745 9·57	0·998	1·073 5·94	1·123 7·13
3		$(d_e - d_e) (640 - t_w) -$ By heating By evaporation -	<u>-</u>		0.21 0.854 0.146 720	1.97 0.546 0.454 280	0·457 0·543	0.882	11.52 0.840 0.660 57	0.325
4 5 6		Weight of air, $L = V$ olume of air, $V_{la} = V$ water evap't'd, kilos.	=	=	583	186·5 0·759	104·5 0·916	65 1·02 4	46·2 1·100	36 1.216
1 2 3	15	$(t_{la} - t_{la}) 0.2375 = (d_a \cdot d_a) (640 - t_w) = $ By heating	=	-	=		2·4 0·495	0.347	9·72 0·928	5·94 14·58 0·290 0·710
4 5 6		By evaporation Weight of air, $L = V$ Volume of air, $V_{la} = V$ Water evap't'd, kilos.		=	=	765 635	208 172·6	97 80·5	69 57·8	49 40·6 1·191
1 2 3	20	$(t_{ls} - t_{la}) \cdot 2875 = (d_s - d_a) (640 - t_v) = $ By heating	-	=	=	-	1·187	3·42 0·40	0.327	0.281
4 5 6		By evaporation Weight of air, $L = V$ Volume of air, $V_{la} = V$ Water evap't'd, kilos	=	=	=	=	=	172 146	90 76·5	0·719 59 50 1·192
1 2	25	$ (t_{lc} - t_{la}) \ 0.2875 = (d_{\bullet} - d_{a}) (640 - t_{w}) = $	_	_	-	=	-	0.18	4·08 0·369	8·57 8·98 0·284
3 4 5 6		By heating By evaporation Weight of air, $L =$ Volume of air, $V_{la} =$ Water evap't'd, kilos		•	-	- -	-	730 631	156 135	0.716 80 69.2 1 ▶.192

umber line.	Temp. of the atmos.			Temp	erası	re of	the a	ir ou	ilet, "	ar par
Nun of lin	air.		50	10°	15°	20°	25°	3€°	85°	40°
1 2 3	90	$(t_{le} - t_{la})$ 0·2375 = $(d - d_a)$ (640 - t_w) = By heating . By evaporation . Weight of air, L^e = Volume of air, V_{la} =		-		*		=	1.181	2·87 4·56 0·342 0·658 145 180
6	•	Water evap't'd, kilos.			-	-	-,	-	-	1.098

Table 69—(continued).

abstraction of heat of 1000 calories and on the assumption that the external air is completely, and the emerger air three-fourths, saturated with water vapour.

It often happens that the external-air is not completely and the emergent air is more than three-fourths saturated. In that case 1 kilo. of water absorbs more moisture than is assumed in the table. Consequently less air is used for cooling the water and, on the other hand, more water is evaporated. In many cases $\frac{1}{40}$ to $\frac{1}{30}$ of the water to be cooled is removed by the air.

In using Table 69, it is first necessary to calculate how many calories must be withdrawn in one hour from the water to be cooled; the table then gives the weight and volume of the air and the evaporation of water per 1000 calories.

The surface of the water, which must be in contact with the air in order to produce the desired cooling, is still to be calculated.

If C_i be the heat to be taken from the water to warm the air, not by evaporation, O the surface of the water in sq. m., z_h the time of cooling in hours, θ_m the mean difference in temperature between water and air, k_i the coefficient of transmission, v_i the velocity in m. per sec. with which the air passes over the water, then, by the usual principles,

$$C_{\epsilon} = z_h O k_i \theta_m$$
 (247)

and the surface requisite for the cooling by means of air is

$$Q = \frac{C_e}{z_b k_b \theta_m} \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (248)$$

The transmission coefficient for towers, in which drops, are abundantly formed, is

$$k_i = 2 + 18 \sqrt{v_i}$$

for plane surfaces over which the water flows.

$$k_i = 2 + 12 \sqrt{v_i}$$
 (249)

for water quite at rest a smaller coefficient must be taken,

•
$$k_i = 2 + 10 \sqrt{v_i}$$
 (250)

The velocity of the air, v_o in the atmosphere is very variable; it may be as high as 40 m., but even when there is no wind it is generally about 1.5-2 m., which figures must be employed in calculation. In cooling apparatus made after the fashion of a chimney, in which the air rises in consequence of being heated, it moves with a velocity of about 3 m. When the air is blown by fans where the chimney, the velocity may be arbitrarily fixed at 6-12 m. The large volumes of air required are rarely moved by artificial means on account of the cost.

The fresh air from fans is naturally made to enter below in order to obtain counter-currents of air and water.

The mean difference in temperature, θ_m , is to be determined by means of Chapter 1., Table 1.

It may be seen from the third lines of Table 69 that the heat to be abstracted by warming the air, in proportion to the whole amount to be given up, is least when the air is heated by the water to about 15° C., on the hypothesis that the atmospheric air enters the apparatus completely saturated and leaves it three-fourths saturated.

If the external air is cold, the emergent air will also be cool, and the temperature difference between air and water will then be large. On the other hand, if the external air is warm, it leaves still warmer, and the mean temperature difference is then much less. As Table 69 shows, in the former case the air takes up more heat by being warmed, in the latter case more by the formation of vapour.

The consumption of air is the least when it enters very cold and leaves very warm. The necessary water-surface is the least when unlimited quantities of air flow over it. If, in a definite case, the air is always to receive the same increase in temperature, then, whilst the temperatures of the water remain the same, a lower temperature of the air necessitates more air and a smaller surface for the water.

Lir which is originally cold naturally is warmed through a greater range of temperature than air originally warm; thus the consumption of air is approximately constant, but the former takes up more heat from the same surface. Ceteris paribus, cold air cools better than warm air.

Example.—In $z_h = 1$ hour, 10,000 kilos, of water are to be cooled from 40° to 22° C., for which $C_k = 10,000(40 - 22) = 180,000$ calories are to be abstracted. The air moves with a velocity of 2 m.—(1) it is originally at C°, and is warmed to 25° C.; (2) it is at 20° , and is warmed to 35° C. The temperature-differences between air and water are:—

1. Air warmed from 0° to 25%-

at the top, $\theta_{\mu} = 40^{\circ} - 25^{\circ} = 15^{\circ}$; at the bottom $\theta_{\bullet} = 22^{\circ} - 0^{\circ} = 22^{\circ}$.

The mean difference is, by Table 1 (since $\frac{1}{2}$ \$ = 0.682),

$$\theta_m = 0.44 \times 22 = 9.69^\circ$$

2. Air warmed from 20° to 35°-

at the top, $\theta_a = 40^{\circ} - 35^{\circ} = 5^{\circ}$, at the bottom, $\theta_{\theta} = 29^{\circ} - 20^{\circ} = 2^{\circ}$.

The mean difference, by Table 1 (since $\frac{2}{5} = 0.4$) is $\theta_m = 0.658 \times 5 = 3.39^\circ$.

In the first case, from Table 69, 0.475 of the total amount of heat is to be withdrawn by heating the air, $C_t = 180,000 \times 0.475 = 85,590$ calories. In the second case, $C_t = 180,000 \times 0.927 = 58,960$ calories.

Thus, when cold air enters, the water-surface necessary in a cooling tower is

$$O = \frac{85,000}{(2 + 18\sqrt{2})9.68} = 300 \text{ sq. m. (approx.)},$$

and when warm air enters

$$O = \frac{58,860}{(2+18\sqrt{2})9.39} = 730 \text{ sq. m. (approx.)}.$$

The requisite weight of air is in the first case

$$L = \frac{85,500}{0.2375(25-0)} = 14,400$$
 kilos. (= 11,250 cub. m.),

in the second case

$$L = \frac{58,860}{0.2375(35-20)} = 16,900$$
 kilos. (= 14,360 cub. m.).

The surface which the water presents to the air must change as frequently and rapidly as possible. For heat penetrates slowly into a mass of water at rest (Chapter XX., 8, Table 46), rapidly warming the external layers to a slight depth, but then entering the interior very slowly, and the laws which govern this action also apply, if the expression be permitted, to the penetration of cold into the mass of water. The figures given in Table 50 hold good also for the decrease in temperature of jets of water which fall from step to step in a current of cold air.

The best cooling apparatus will thus always be in the form of a staging with the greatest possible number of low steps, over which the

air passes rapidly, either sideways or drawn upwards by a chimzey.

Mechanical acceleration of the motion of the air will be advantageous in but a few rate cases.

1000 litres of water, which fall through 5 m. in the finest state of division, form a surface of about 4-6 sq. m., which is however insufficient to cool the water. The remaining surface required must be provided in another way, as by surfaces over which the water flows, which must be of ample dimensions since they are generally not wetted throughout.

We now give a few examples, collected in Table 70, of open stagings (cooling towers) through which air circulates freely. In quite open stagings without a chimney the temperature difference is greater, which is an advantage, but then the motion of the air is somewhat slower than with a chimney.

Observed Examples.—By means of a cooling tower, with many steps and a natural access of air, $3\times 12=36$ sq. m. in ground area, 4800 mm. high, and with 322.5 sq. m. of weeden surface over which the water flewed, 22,800 litres of water were cooled in one hour from 50° to 20° C., when the air entered at 2.5° C. and left at the different stages at 8.5°, 14.0°, 20.5° C. From the water were to be abstracted

$$C_k = 22,800(50 - 20) = 684,000$$
 calories.

1 kilo, of saturated air at 2.5° contains 0.0046 kilo, of water.

The mean of the last three numbers is 0.01096 kilo.

If the per which leaves the staging is only saturated to the extent of 80 per cent., then 1 kilo. contains $0.01096 \times 0.8 = 0.008768$ kilo. of water.

1 kilo, of air thus taken up by evaporation 0.008768 - 0.0046 = 0.00416 kilo, of vapour, which corresponds to 2.496 calories.

The air is heated on the average from 2.5° to 12.5° , i.e., through 10° C., consequently 1 kilo. taken up by being heated $10 \times 0.2375 = 2.375$ calories.

Thus 1 kilo. of air takes up a total of 2.496 + 2.375 = 4.871 calonies.

Of the total quantity of heat to be abstracted from the water, the air takes

by evaporation,
$$\frac{2\cdot496\times684,000}{4\cdot871} = 380,438$$
 calories;
by heating, $\frac{2\cdot875\times684,000}{4\cdot871} = 293,562$ calories.

Total -
$$O = 518.5$$

TABLE 70.

Examples of the direct cooling by air

•					
1000 kilos, of water per hour t_{wo}	40	40	40	40	40
are to be cooled to t_{ω_c}	20	20	15	10	10
The air enters the cooler at - $ullet$ - $ullet$ t_{la}	25	10	10	10	- 10
And leaves it at t_{le}	35	25	\$0	20	5
The temp. difference is at the top θ_{\bullet} °C.	5	.15	•10	20	35
The temp. diff. is at the pottom - θ_a ° C.	5	10	5	10	20
The ratio of the temperature differences $\frac{\theta_s}{\theta_a}$	<u>5</u>	10 15	$\frac{5}{10}$	10 20	30 85
Hence the mean temp. diff. by Table 1 θ_m	5	12:3	7.24	14.48	19-9
Total calories to be withdrawn from the water	20000	20000	25000	30000	30000
Of above to warm the air C.	7380	9140	9550	15810	21000
Of above to evaporate the water \cdot - C_*	12620	10860	15450	14190	9000
The water loses by evaporation - kilos.	21.1	18-1	25.75	24	15
Necessary surface of the water, in sq. m. O	50	26	45	37.5	36
Necessary weight of air at entry, in kilos. L	3108	2570	2000	3330	5900
Necessary volume of air at entry, in cub. m. V_i	2716	2085	1625	2440	4400

. TABLE 70.

of water in a fine state of division.

50	50	50	50	50	* 50	50	50	e 60	60	60
80	25	20	15	20	80	35	25	25	40	30
25	10	0	- 10	5	10	20	• 10	10	10	15
35	25	20	15	20	25	35	20	30	25	25
15	25	30	•35	30	25	15	30	30	85	_ 155
5	15	20	25	15	20	15	15 •	15	30	35
					•00		4.5			
$\frac{5}{15}$	15	20	25	15	20	15	• 15	15	•30	15
15	25	3Õ	35	80	25	15	30	80	85	35
9	19.65	24.6	29.75	21.7	21.8	15	21.7	21.7	32.2	24.1
20000	25000	30000	85000	30000	29000	15000	25000	35000	20000	30000
7380	11425	15810	21350	15540	18253	4905	12950	13370	9140	12750
12620	18575	14190	18650	14460	15747	10095	12050	21620	10860	17250
21	22.6	22	22.8	249	26.2	16.8	20.1	36	18.1	28.7
. 24	19	21	23	28	19.5	11	19.5	20	11	17
8108	3208	8330	8600	4370	4800	1380	5450	2810	2600'	5850
2716	2620	2440	2700	3470	8500	1190	4420	2280	2100	4460
										<u> </u>

The mean temperature-difference was 27°, hence the coefficient of transmission

$$k_{i} = \frac{C}{O\theta} = \frac{293,562}{518.5 \times 27} = 21.1.$$

The weight of air required for cooling is

$$_{\bullet}L = \frac{299,562}{2.875} = 123,600 \text{ kilos.}$$

The volume $V_t = \frac{123,600}{1.27} = 100,000$ cub. m. (approximately), i.e., 28 cub. m.

per sec. If the air meets the apparatus oblique'y, the velocity would be about 1.2 m., and the calculated coefficient would be

$$k = 2 + 18 \sqrt{1.2} = 22.$$

2. A chimney cooler with 18 plates, 1500 by 4800 mm., having a total wetted surface of 259 sq. m., cooled 18,500 litrey of water per hour from 39° to 22° C. by means of 44,000 cub. m. of air, blown in by a fan (110°, mm. diameter, 300 recolutions) at 12·5° C. and leaving at 18·8° C. at the top. The air was saturated originally to the extent of 67 per cent.

From the water are to be taken

$$C^k = 18,500(39 - 22) = 314,500$$
 calories.

1 kilo, of air at 12.5 contains 0.00926 kilo, of water when completely saturated.

Thus, 1 kilo, of air takes up by evaporation,

0.014 - 0.0062042 = 0.0078 kilo. of water, which requires 4.68 calories.

I kilo. of air absorbs in being heated from 12.5° to

Total - 6:176

Accordingly the air takes up

by evaporation,
$$\frac{4.68 \times 314,500}{6.176} = 238,307$$
 calories;

by heating,
$$\frac{1.496 \times 314,500}{6.176} = 76.193$$
 calories.

The velocity of the air was 3.8 m. per sec., the temperature-difference 14° C., consequently the absorved coefficient of transmission

$$k_l = \frac{C}{H\theta_m} = \frac{76,193}{259 \times 14} = 28.8$$

The calculated coefficient of transmission is

$$k = 2 + 12 \sqrt{3.6} = 24.$$

H. Cooling Air by Water.

Atmospheric air always contains more or less moisture, in the form of vapour. The maximum amount of vapour in 1 cub. m. of air is equal to the weight of 1 cub. m. of saturated vapour at the temperature of the air. If air which contains much moisture is considerably cooled, it generally reaches a condition in which it can contain only a smaller weight of vapour, and consequently the excess of vapour must separate, i.e., be condensed.

Thus, if a certain volume of air is to be artificially cooled in a certain time, it is necessary to take from it as much heat as is required.

- 1. To cool the dry air itself.
- 2. To condense the vapour which must be separated.

Let L =weight of air to be cooled,

 σ_i = its specific heat = 0.2375,

 t_{la} = its temperature before cooling (at the beginning),

 $t_{ie} =$, after , (at the end),

 d_a = the weight of vapour in 1 kilo. of air before cooling,

d = after

c = the total heat of 1 kilo. of vapour.

Then in order t cool the air from t_{la} to t_{le} it is necessary to abstract the following amount of heat:—

$$C = L\sigma_{l}(t_{la} - t_{le}) + L(d_{a}' - d_{a}) (c - t_{le}).$$

In atmospheric air there is rarely more than 95 per cent. of the maximum quantity of vapour possible, generally there is considerably less. Even when moist air is strongly cooled, so that it deposits water, it does not remain saturated with vapour.

If we assume that the atmospheric air is saturated to the extent of 80 per cent, and also that its degree of saturation is 80 per cent. after cooling through a certain range of temperature, then the above equation gives, for cooling 100 cub. m. of air, the quantities of heat which are arranged in the table on the next page.

^{&#}x27;See Drying by Means of Steam and Air for amount of vapour in air at different temperatures.

o	ij		Origin	al temp	erature	of the a	ir, <i>t_{la}.</i>
r 18 t	cube m. de.	·	30°	25°	20°	15°	10°
Temperature to which the air is to be cooled, t_{io} .	H.#		kilo	s., when	saturate extent of	ed with	mois-
to whic	pour		1.1412	1.1630	1.1881	1.2154	1.2408
sture t	Weight of vapour in		Weigl		meistur . m. of tl		kilos.
mper	eight		0.0244	0.01849	0.0141	0.01041	0.0076
•C.	≱. kilo.		Numl		lories rec		o cool
25°	0.01849	Cals. for cooling the air	193 373	1,1	•==	_	_
		Total	506	_	-	_	_
20°	0.0141	Cals. for cooling the air ,, ,, condensing vapour	265 644	136 275		_	_ `
		Total	909	411		-	_
1,5°	0.01041	Cals. for cooling the air ,, ,, condensing vapour	398 875	272 505	145 221	=	_
		Total	1273	777	366	-	_
10°	0.0076	Cals. for cooling the air ,, ,, condensing vapour	530 1060	407 686	279 385	143 177	_
		Total	1590	1098	667	320	_
5°	0.0063	Cals. for cooling the air ,, ,, condensing vapour	669 1198	544 821	418 507	286 308	146 130
		Total	1861	1365	925	594	276

The necessary quantity of cooling water depends on its initial and The necessary quantity of the final temperatures, t_a and t_e , it is $W = \frac{C}{t_e - t_a} \qquad (251)$

$$W = \frac{C}{t_{-} - t_{-}} \quad . \quad . \quad . \quad . \quad (251)$$

The cooling surface, for the cooling of definite quantities of air, is obtained from the ordinary equation:

$$H_{k} = \frac{C_{k}}{k \cdot \theta_{m}} \quad . \quad . \quad . \quad . \quad . \quad (252)$$

TABLE 71.

The temperature difference, θ_m , consumption of cooling water, W, and the necessary surface, H_t , of water in rapid motion, in order to cool hourly 100 cub. m. of air, which flows with the velocity, $v_i = 1 \text{ m.s.}$ from 30°-10° C. down to 20°-5° C.

		,								
peloc	of the	Mean temp. diff. θ_m	Initial temp. of the air, t_{la} .							
the cooled		Consumption of cooling water W	30°	25°	20)°	15	o	10°	
Temp. of sir.	Initial temp.	Cooling surface H_k	Final t	emp.	of the	cooli	ng wa	ster, <i>t</i>	ø •	
Ter Bir.	t _a	For $v_i = 1$ and metal walls.	20° 15°	15°	15°	12°	12°	۔ 100ء	- 5₽	
20°	15°	$ heta_m$	7·24 — 185 —		_		_	_	_	
	10°	$egin{array}{c} oldsymbol{\mathcal{I}}_k \ oldsymbol{ heta}_m \ oldsymbol{W} \ oldsymbol{H}_k \end{array}$	6 35 — 10 12·8 92·5 185 4·61 3·74	10 82·2 2·06	-	_ ·	<u>-</u>		= = = = = = = = = = = = = = = = = = = =	
15°	10°	$ heta_m$	7·24 8·4 127 255	7·24 156	5 73·2	6·4 189	-		<u>.</u>	
10°	5'●	$egin{array}{c} H_k \ heta_m \ W \ H_k \end{array}$	8·80 7·6 7·24 .8·4 107 150 11·0 9·5	5:40 7:24 109 7:60	3·60 5 66·7 6·69	2:74 6:4 95	3·9 45 4·10	5 32	_	
	2°	$egin{array}{c} eta_m \ W \end{array}$	8·97 11·3 89 123	•	6·4 51·1	5·18 8 66·7	5·2 32	3·20 6·4 40	•_	
5°	2°	$egin{array}{c} H_k \ heta_m \ W \end{array}$	8.90 7.1 5.85 7.5 104 148	6·10 6·1•	5·18 8·9 71·2	7·15 3·8 92·5	3·07 3 60	2·50 3·9 75	3·9 92	
		H_k	16.0 12.6	11.2	11.9	17:0	10.0	8.00	3-20	

If the velocity of the air is greater than 1 m. per sec., vis.,

the surfaces of direct contact with the rapidly moving cooling water, $H_{\rm s}$, required to cool 100 cub. m. per hour, are obtained by multiplying the figures in the above Table by 1 | 0.73 | 0.60 | 0.53 | 0.48 | 0.44 If the air flows past a cooled metallic surface, its necessary superficies is obtained by multiplying the above surfaces, $H_{\rm b}$, by

1.66 | 1.06 | 1.04 | 0.90 | 0.82 | 0.75

,	
. The coefficient of transmission of heat, k_0 in this equation assumed to be:	may be
1. When the corling surfaces are metallic walls,	
$k_i = 2 + 10 \sqrt{v_i} $. (253)
2. When the cooling surface consists of moving and changing surfaces of water, jets or drops,	- 1
$k_i = 2 + 18 \sqrt{v_i} $. ' (254)
The mean temperature difference is obtained from the in	itial and

The mean temperature difference is obtained from the initial and final differences in temperature between air and cooling water, and must be calculated in the usua! manner for each case by means of Chapter I., Table 1.

CHAPTER XXIII.

THE VOLUMES TO BE EXHAUSTED FROM CONDENSERS BY THE AIR-PUMPS.

A. General.

In this chapter we proceed to determine the volume of gas and vapour which the air-pump must exhaust from any condenser, whence the dimensions of the pump are obtained.

The air and incondensible gases which obtain admittance to the condenser are derived from:

- 1. The liquid to be evaporated.
- 2. The injected cooling water.
- Leaks in the apparatus and pipes, which are rarely entirely absent.

The volume of air, introduced into the condenser by each of these sources separately, is seldom to be ascertained in any particular case. It is therefore necessary to be content with an approximate estimate of the total quantity of air introduced in all three ways and afterwards to be removed. It is usual to express this total quantity of air as a fraction of the injected water. Although there are certain connections between the quantity of the cooling water and that of the air to be exhausted, yet the latter is certainly not directly proportional to the quantity of cooling water. If we however assume such a proportionality, as is the custom, it is done because only in this manner is a basis for our considerations to be found. It will of course be permissible to modify or specialise for particular conditions the assumptions here made.

In view of the large volumes of gas which cold water can contain (97 volumes per cent. of carbonic acid at 17° C., 15,200 per cent. of

sulphurous acid at 14° C., 326 per cent. of sulphuretted hydrogen at 14·6°, 73,700 per cent. of ammonia at 14·14) it is necessary to assume that the injected we ser used for condensation may frequently contain considerable quantities of gases.

On the other hand, it is usual to assume (after Bunsen, Gasometrische Methodor, 1857) that rain water and most spring waters contain about 2.5 volumes per cent. of atmospheric air. Springs are known the water of which contains 12 volumes of gas per cent.

The liquids to be evaporated also contain very variable, and often considerable, quantities of gases, especially ammonia. In this case also 2.5 per cent. may be taken as the average.

Finally, the leakages in the apparatus and pipes are to be considered. We assume that the quantity of air entering through faulty joints, cracked glasses and defective metallic connections, is equal to 10 volumes per cent of the cooling water employed.

Thus the air introduced into the condenser is $2 \cdot 5 + 2 \cdot 5 + 10 = 15$ volumes per cent. of the cooling water. For safety, and in order to allow for the possible presence of other gases than air in the cooling water, this number will be still further increased. We shall assume that incondensible gases to the extent of about 20 volumes per cent, of the cooling water are carried into the condenser, i.e., that for every 1000 litres of cooling water 200 litres of air (and other gases) enter the condenser.

Now 1 cub. m. of air under atmospheric pressure at 0° U. weighs 1.294 kilo. and at 15° C. 1.2266 kilo., thus 200 litres of air weigh about 0.25 kilo.; therefore we shall take as the basis of the following calculation the assumption that, for every 1000 litrec of cooling water, 0.25 kilo. of air is introduced into the condenser and must be pumped out.

From equation (176),
$$W = \frac{D(c - t_s)}{t_s - t_s}$$
, and Table 41, we know the

quantity of cocling water required in each case; therefore we can at once find, on the basis of the above somewhat arbitrary but sufficient assumption, the weight of air to be exhausted from the condenser.

The so-called wet and dry air-pumps must now be considered separately.

B. The Volume of Air to be exhausted from Wet Jet-Condensers.

By a "wet" air-pump is understood a pump which, together with the air, takes in the whole of the water from the condenses and forces it away.

The air to be removed from the condenser is invariably mixed with vapour at the same temperature as the air. The common temperature of the air and vapour depends on that of the water with which they were last in contact. In web condensers the mixture of air and vapour remains together with the quite warm water to be drawn off (formed from the injected water and the condensed steam), and goes with it into the pump. It has therefore almost the same temperature as the water. In counter-current condensers the air is last in contact with cold injected water, which has just entered, and thus is cold when it reaches the air-pump.

A wet condenser can be so arranged that the air-pump exhausts the warm water from the botton, and the air, which is then cold, because it was last in contact with the injected water, at the top. The cold air, however, then enters the pump along with the warm water, and is rapidly heated by it and the vapours rising from it, since its weight is small in proportion to that of the water. The final condition between air and vapour is thus also in this case quite similar to the ordinary condition in which air and water are taken off together, although not quite the same. The vapour, which is mixed with the air, has always the temperature of the waste water in wet condensers, consequently the pressure it exerts is the greater the warmer the water which flows away. The pressure of the air (and thus its weight per cub. m.), which, together with the pressure of the vapour, gives the tetal pressure, is the greater the colder the water exhausted by the pump.

The volume of the air depends on its pressure (which is only a portion of the total pressure in the condenser) and its temperature; it may be calculated as was done in Chapter XX., 9, and in Table 47.

Let W = the weight of injected water.

L = the weight of air in the water. On our assumption

$$L = W \frac{0.25}{1000}$$
 kilos. (255)

 V_{ln} = the volume of air in cub. m., which is to be exhausted from the wet condenser, V_{lc} from the dry condenser, and V_{lc} from the surface condenser.

 a_i = the volume of 1 kilo. of air in cub. m.

 γ_i = the weight of 1 cub. m. of air in kilos.

p = the pressure of the atmosphere in kilos! per sq. m. = 10,336 kilos.

t, = the temperature of the waste water.

a =the coefficient of expansion of air = 0.003665.

b = the pressure of the air in the condenser in mm. of mercury.

T= the absolute temperature, $T=\frac{1}{a}+t_a=\overset{\bullet}{273}+t_a.$

By the laws of Mariotte and Gay Lussac $\frac{\nabla p_i}{T} = R$, a constant, which for air is 29.27.

Thus 1 kilo. of air has the volume

$$a = \frac{279 + 1}{p} \cdot 29.27 \dots (256)$$

and L kilos. of air have the volume

$$V_{ln} = \frac{L(273 + t_{\rm e})}{p} 29.27 \qquad (257)$$

For a pressure, which is $\frac{b}{760}$ of the atmospheric when measured in mm. of mercury, the volume of the L kilos, of air is

$$V_{ln} = \frac{L(273 + t_{\bullet})}{p} 29.27 \frac{760}{b} \cdot \dots (258)$$

or, inserting the numerical values,

$$V_{\text{in}} = \frac{W0.25(273 + t_{\circ})29.27 \times 760}{1000pb} = 0.5385 \frac{W(273 + t_{\circ})}{b}$$
 (259)

In the case of every evaporator the weight of steam passed into the condenser, which is equal to the weight of water to be evaporated, is given. The weight of the injected water, W, then follows by means of equation (176) and Table 41, if its initial and final temperatures are known. Both these temperatures may be given under certain circumstances, but under others they must be assumed after examining the case. From the weight of the injected water there follows, on our hypothesis, the weight of the air introduced into the condenser.

The vacuum, or, what is the same thing, the ab clute pressure in the condenser, c.r. generally be fixed as desired. It will naturally be endeavoured to reach the highest possible vacuum, i.e., the lowest possible pressure.

The volume of air to be exhausted is obtained at once, from its known weight and the vacuum decided upon, by equation (200) and Table 47.

Example.—Water at $t_a=10^\circ$ C. is at disposal to condense 100 kilos. of steam; it is to flow away $a\theta t_a=40^\circ$ C. The vacuum is to be 680 mm, i.e., the absolute pressure is to be 760 – 680 = 80 mm. By Chapter XX., Table 41, the injected water is then W=1960 kilos.; the tension of the vapour is 54.9 mm. at 40° C., and since the total pressure is 80 mm., the pressure of the air, b=80-54.9=26.1 mm. All the negessary figures for calculating out the equations are now given.

The weight of the air
$$L = \frac{1960 \times 0.25}{1000} = 0.484$$
 kilo.

The volume of 1 kilg, of air at 40° C. and 25° 1 mm. pressure is, by Table 47, $a_i = 27,020$ litres. Consequently the volume of 0.484 kilo. of air is (for 400 kilos. of steam)

$$V_{ln} = La_l = 0.484 \times 27,020 = 18,070$$
 litres.

The wet air-pump has therefore to remove, in the condensation of 100 kilos, of steam, 1960 kilos, of water + 100 kilos, from steam and 13,070 litres of air, in all 15,130 litres.

In Table 72 are given the quantities of injected water and the volumes of air, which must be exhausted by wet air-pumps, for vacua of 600-740 mm., for initial temperatures of the cooling water of $t_a = 5^{\circ}-35^{\circ}$ C., and final temperatures of $t_a = 10^{\circ}-50^{\circ}$ C.

If the injected water and the liquid to be evaporated contain more or less air and gases, and the apparatus is more or less air-tight than we have assumed, the volume of air given in Table 72 must be increased or diminished in proportion to the altered circumstances. The figures in the table are determined for actual use, and for most cases are to be regarded as abundant. But if the water employed contains, e.g., net 20 per cent. (by volume), but 15 per cent. of gases, the volume of air to be exhausted is $\frac{1}{15}$ of that given in Table 72.

Table 72 not only gives the actual quantities of water and air to be exhausted, it also shows that for any determined vacuum and any temperature of the injected water there is a definite most favourable temperature for the waste water, at which the volume of air to be exhausted is least. The reason for this is, that the higher the temperature of the waste water the less water is required, and consequently the less air is introduced into the condenser; but the warmer the waste

TABLE 72.

The cooling water required, and the volume of air to be exhausted, in lifes, for the evaporation of 100 kiles, of water at vacua of 600-740 mm., with the cooling water at initial temperatures of $t_c = 5^{\circ}-30^{\circ}$ C., and at final temperatures of $t_s = 10^{\circ}.50^{\circ}$ C., for wet jet-coudensers.

-	Wet jeb-outwelled is.											
		ıre.	Stee	am.	Go	ooling	water.	r r	, Áir.	•		
i Be	i vacuum.	Absolute pressure.	o Temperature.	റ Totai heat.	Initial remperature.	Final temperature.	soli Weight, W.	H Pressure.	kilos.	e mnlo A Litres.		
	000	160	61.5	625	5 , , , , , , , , , , , , , , , , , , ,	10 15 20 35 40 45 •50 15 20 25 30 35 40 45 25 30 35 40 45 45 25 30 35 40 45 40 45 40 45 40 45 40 45 40 45 40 45 40 45 40 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	12300 6100 4033 3000 2380 1967 1671 1450 6050 4000 2975 2360 1950 1686 1438 12100 6000 3966 2950 2340 1933	150·8 147·3 142·61 136·45 128·45 118·17 105·1 88·61 136·45 128·45 118·17 105·1 88·61 68·02 142·61 136·45 128·45 118·17 105·1 88·61 188·45 118·17 105·1 88·61 188·45 118·17 105·1	3*075 1-525 1-008 0-750 0-595 0-492 0-360 3-050 1-512 1-000 0-744 0-590 0-488 0-488 0-360 3-033 1-500 0-992 0-738 0-738 0-785 0-483	12484 6451 4496 3541 3032 2775 2690* 3284 12902 6744 4721 3789 3328 3137* 3524 3696 13527 7081 4162 3844 3743*		
	" "	, ,, ,, ,, ,,,	22 22 22 22 22 23	33 61 33 61 33 33 33 33	20 	50 25 30 35 40	1643 12000 5950 3933 2925	68·02 136·45 128·45 118·17 105·1	0.411 3.000 1.488 0.983 0.732	4952 14163 7587 5543 4706		

^{*}Indicates the most favourable condition.

Table 72—(continued).

ſ		re.	Stea	m.	O a	oling v	vater.		Air.	
	Vacuum.	Absolute pressure.	Temperature.	Tetal heat.	Initial temperature.	Final temperature.	Weight, W.	Pressures	Weight.	Volume.
	mm.	mm.	°C.	c.	t _a .	t _o .	kiles.	ıħm.	kilos.	Litres.
	600	160	61:5	625	20 25 30 30 35 35 37 37 37 37 37 37 37 37 37 37 37 37 37	45. 50 35 40 45 50 40. 45 50 40. 45 50 40. 45 50 40. 45 50 40. 45 50 40. 45 50 40. 45 50 40. 45 50 40. 45 50 40. 45 40. 45 40. 40. 40. 40. 40. 40. 40. 40.	2320 1917 11900 5900 2900 2900 2300 11800 5850 3866 2875 11700 5800 12280 6090 4026 29950 2376 1963 1669 1448 1276 12180 6040 3993 2970 2356 1947 1683	88 61 68 92 128 45 118 17 105 1 88 61 68 92 118 17 105 1 88 61 130 8 127 3 122 61 116 45 108 45 98 17 85 1 68 61 116 45 116 0·580 0·479 2·975 1·475 0·975 0·575 2·950 1·463 0·967 0·719 2·925 1·450 3·070 1·522 1·006 0·749 0·594 0·491 0·491 0·319 3·045 1·510 0·998 0·487 0·491	4495* 4924 15155 8319 6274 6061 5911 16638 9414 8080 7389* 18892 12122* 14346 7314 5191 4143 3588 3331 3312* 3594 4645 14634 7792 5520 4485 3996 3868*	
	"	,, ,,	,,	,,	15	50 20	1435 12080	$48.02 \\ 122.61$	0·359 3·020	5227 15568
4	"	"	"	"	"	25 30	5990 3960	116·45 108·45	1·498 0·990 0·736	8291 5980
	,,	"	"	"	,, ,,	35 40 45	2945 2336 1930	98·17 85·1 68·61	0.736 0.584 0.483	•5053 4638* 4834
1	"	"			"		1.000	"	1 230	

TABLE 72—(continued).

	-			TA	ea). 					
	6.	ıre.	Stea	21.	Co	oling v	vater.		Air.	
	Vacuum.	Absolute pressure.	Temperature.	Total heat.	Initial temperature.	Final temperature,	Weight, W.	Pressure.	Weight.	Vol ůme.
١	mm.	mm.	°C.	c.	ta.	to.	kilos.	mm.	kilos.	Litres.
I					اا			,		
	620	1 4 0	58.5	624	15	50	1640	48.02	0.410	5970
ı	"	"	,,	٠,,	20	25	11980	116.45	2.995	16565
1	,,	,,	"	"	,,	30	5940	108.45	1.485	8969
	-,"	"	"	"	,,	35	3927	98.17	0.982	6662
ı	"	"	"	"	,,	40	2920	85.1	0.730	5798*
1	,,	,,	,,	"	,,	45	2316	68.61	0.579	5802
1	,,	"	,,	f,,	"	50	1913	48.02	.0.478	6960
1	,,	,,	776	,,	25	30	11880	108.45	2.970	17939
1	,,	" " €	,,	,,	, ,,	35	5890	98.17	1.473	9991
1	.,,	,,	,,	,,	,,	40	3893	85.1	0.973	7727
1	,,	;,	,,	,,	,,	45	2895	68.61	0.724	7168*
	,,	,,	,,	,,	"	50	2296	48.02	0.574	8357
	٠٠,	,,	,,	٠,,	30	35	11780	98.17	2.945	19982
1	,,	,,	٠,,	,,	,,	40	· 5840	85.1	1.460	11595
1	,,	۰,,٠	,,	,, •	,,	45	3860	68.61	0.965	9581*
	,,	,,	,,	,,	,,	50	2870	48.02	0.718	10447
1	,,	,,	,,	,,	35	40	11680	85.1	2.920	23191
	٠,,	,,	,,	,,	,,	.45	5790	68.61	1.448	14377*
1	640	120	55	623	5	10	12260	110.8	3.062	16908
-	,,	٠,,	,,	,,	,,	15	6080	107.3	1.520	8811
	,,	,,	٠,,	٠,,	۰,,	20	4020	102.61	1.005	6205
' '	,,	,,	١,,	•,,	,,	25	2990	96.45	•0.748	5014
	,,	v	,,	,,	,,	30	2372	88.45	0.593	4390
1	,,	,,	,,	,,	,,	35	1960	78.17	0.490	4171*
1	,,	,,	٠,,	,,	,,	40	1666	65.1	0.417	4280
-	,,	٠,,	,,	,,	,,	45	1445	48.61	0.361	5103
	1.7	,,	* ,,	,,	,,	50	1273	28.02	0.318	7956
	,,	. "	,,	,,	10	15	12160	107.3	3.040	17632
	,,	,,	,,	,,	,,	20	6030	102.61	1.508	9310
	,,,	,,'	,,) C	,,	25	3991	96.45	0.998	6675
	,.	,,*	,,	,, •	,, c	30	2965	88.45	0.741	5488
1	,,	,,	,,	,,	,,	35	2352	78.17	0.588	5005
	,5	,,	,,	,,	Ϊ,	40	1943	65.1	0.486	5061
Į	,,	٠,,	67	,,	,,	45	1680	48.61	0.420	5937
1	,,	"	,,	,,	,,	50	1433	₽ 8∙02	0.358	8957
-	,,	,, .	1,	. ,,	15	20	12060	102.61	3.015	18618
	i i	•					•			% 3

TABLE 72—(continued).

,	TABLE 12—(convinued).											
		Ire.	8,30	m.	• Co	oling v	water.		"Air.			
	Vacuum.	Absolute pressure.	Tothpersture.		Initial temperature.	Final temperature.	Weight, W.	Pressure.	Weight.	Volume.		
۱	mm.	mm.	°C.	c.	t_a .	•te.	kilos.	mm.	kilos.	Litres.		
	640	120	565 ,,	623	15 ",•	25 30 38	5980 3953 2940	96·45 88·45 78·17	1·495 0·988 0·735	*9990 7316 6262		
l	"	,,	",•	5	,,	40	2332	65.1	0.583	6085*		
	,, ,,	"	"	"	,,	45 50 25	1927 1637	48.61 28.02 96.45	0·482 0·409 2·990	8599 10233.		
	"	,, ,,	" "	,, ,,	20	30 35	11960 5930 3920	98·45 88·45 78·17	1·482 0·980	21979 10971 7342*		
١	"	"	",	",	"	40	2915	65.1	0.729	7592		
۱	,,	,,	,,	٠,,	,,	45 50	2312 1910	48·61 28·02	0.578	8167 11959 •		
١	,,	"	"	,,	25	30	11860	88.45	0·478 2·965	219 5)		
١	",	,,	,,	,,	"	35	5880	78.17	1.470	12513		
l	,,	*,	,,	,,	"	40 45	3857 2890	65·1 48·61	0.972 0.723	10122* 10213		
١	"	,,•	,, ,,	"	"	50	2292	28.02	0.573	14336		
١	,,	,,	"	13.	30	35	11760	78.17	2.940	25025		
I	,,	,,	,, ●	,,	,,	40	5830 3854	65·1 48·61	1.458 0.964	15184 13620*		
١	"	"	"	"•	"	50	2865	28.02	0.716	17914		
	"	"	; ;	,,	35	40	11660	65.1	2.915	30357		
ı	,,	,,	2,2	,,,		45	5780	48.61	1.445			
I	660	100	52	622	5	10 15	12240 6070	90·8 87·3	3·060 1·518	20869 10823		
ı	- ,,	,, ,,	" "	"	"	20	4013	82.61	1.003	7692		
1	,,	,,	,,	,,	,,,	25	2985	76.45	0.746	6284		
	"	,,	,,	,,	,,	30 35	2368 1957	68·45 58·17	0·592 0·489	• 5673 5599*		
1	,,	"	"	>>	"	40	1663	45.1	0.416	6232		
	"	,, ,,	"	"	"	45	944 3	28.61	0.361	8718		
	"	,,	"	"	,,	50	1271	8.02	0.318	28458		
	'99	, ,,	"	,,	10	15 20	12140 6020	87·3 82·61	3·035 1·505	21840 11543		
	,,	,,,	"	,,	"	25	3980	76.45	0.995	8382		
	"	,,	",	,,	",	30	.2960	68.45	0.740	7091		
			<u> </u>	•		•	١			Þ		

Table 72—(continued).

•								1			
	•	ej.	Steş	m.	Co	oling	water.		Air.		
	Vacuum.	Absolute pressure.	Temperature.	Total heat.	Initial temperature.	Final temperature.	Weight, W.	Pressure.	Weight.	Volume.	
	mm.	m m.	°C.	c.	ta.	t_s .	Kllos.	mm.	kilos.	Litres.	
1	660	100	52	622	10	35 40	2348 1940	58·17 45·1	ਹੈ·587 0·485	6721* 7265	
1		,,	,,	,,,	,,	45	1677	28.61	0.419	10118	
1	"		",	,,	,,	50	1430	6.03	0.358	31791	
1	47	"	"	",	l ",	20	12040	82.61	3.010	22966	
	"	"	l ",	1	۱",	25	5970	76.45	1.493	12578	
	"	"	,,	,,	",	30	3946	68.45	0.987	9462	
	"	"	,,	1	",	35	2935	58.17	0.734	8403*	
	",	"	"	,,	۱",	40	2328	45.1	0 582	8718	
	,,	"	",	,,	"	45	1923	28.61	0.481	11611	
	,,	23,	1	1)	1	50	1634	8.02	0.409	36555	
	"	"	"	,,	20	25	11940	76.45	2.985	25164	
	"	"	"	,,	1	30	5920	68.45	1.480	14181	
ļ	"	,,	"	"	"	35	3913	58.17	0.978	11098	
	"	"	"	,, .	"	40	2910	45.1	0.728	11020*	
	,,	"	"	,,	"	45	2308	28.61	0.577	13715	
	,,	"	"	"	"	50	1907	8.02	0.477		
į	٠,٠	"	"	,,	25	30	11840	68.45	2.960	28364	
	`,,	"("	,,	1	35	5870	58.17	1.468	16803	
	,,	,,	"	,,	"	40	3880	45.1	0.970	14331*	
1	,,	,,	"	¥	,,	45		28.61	0.721	17219	
!	, ,,	"	"	E	,, ·		2885				
	,,	,,	"	,,		50	2288	8.02	0.572	51188	
ĺ	,,	,,	"	,,	30	35	11740	58 17 45·1	2·935 1·455	33306 21796*	
]	37	,,	"	,,	"	40 45	5820 3847	28.61	0.962	23232	
	,,	"	"	"	"		2860	8.02	0.715	63965	
Į	"	,,	ر»	,,	,, 95	50				43592	
	,,	,,	", '	,,	35	40	11640	45·1 28·61	2·910 1·443		
1	,,,	',,	"	601	"	45	5770			34836* 24759	
	680,,	80 ,	48	621	5	10	12220	70.8	3.073		
į	,,	,, ,	"	,, '	, "	15	6060	67:3	1.515	14053	
I	"	,,	"	,,	,,	20	4006	62·61 56·45	1.001	10150 8508	
1	<i>"</i> ,	"	"	",	,,	25 30	2980	48.45	0·745 0·591	6961*	
	"	,,,	"	"	,,,,		2364				
ł	37	"	995	,,	,,	35	1453	38.17	0.488	8535	
. 1	.,,	,,	97	. ,,	,,	40	1660	25.1	0.415	- 11176	
	" 29 .	"	"	`,,	,,	4.5	1440	8.61	0.360	29635	
1				l,	<u> </u>	1					

THE AIR FROM WET CONDENSERS. TABLE 72—(continued).

	.g.	Stee	ım.	Co	oli ng	water.	,	Air.	,
g Vacuum.	B Absolute pressure.	ို့ Temperature.	் Total heat.	intinal temperature.	Final temperature.	so Weight, W.	B Pressure.	weight.	omnoo A
				<u> </u>			•		
680	80	48	621	5	50 •	1269		_	•
,,	,,	,,	,,	10	15	12120	67:3•	3.030	28106
,,	,,	,,	,,	٠,, •	20	6010	62.61	1.502	15230
,,	,,	", •	.2	,,	25	3970	56 45	0.993	11334
,,	,,	,,	"	٠,,	30	2955	48.45	0.739	\$\$52*
,,	,,	,,	"	,,	35	2344	38.17	0.586	10249
,,	,,	,, e	,,	,,	40	1937	25.1	0.484	13070
٠,,	,,	,,	,,	,,	45	1674	8.61	0.419	44492
,,	,,	,,	,,	15	6.2	12020	62.61	3.005	30501
,,	,,	,,	,,	,,	25	5960	56.45	1.490	17016
,,	,,	,,	,,	,,	30	3940	48.45	0.985	• 13337
,,	,,	,,	,,	"	35	2930	36 17	0.732	12600*
,,	,,	,,	"	,,	40	2324	25.1	0.581	15646
,,	,,	,,	,,	1 22	45	1920	8.61	0.480	39513
,,	,,	,,	,,	20	25	11920 5910	56.45	2.980	34034
٠,,	,,	,,	٠,	,,	30 35	3903	48·45 38·17	1·478 0·976	19909 17070*
"	150	"	"	"	40	2905	25.1	0.726	19602
"	,,	"	".	,"	45	2304	8.61	0.576	47992
,,	,,	", ●	"	25	30	11820	48.45	2.960	39804
"	"	"	"	•	35	5860	38.17	1.465	25623*
"	"	"	"	"	40	3877	251	0.969	26102
"	"	,,•	,,	"	45	2880	8.61	0.720	59270
,,	,,,	"	,,	30	35	11720	38.17	2.930	51246
,"	"	"	"	ı	40	5810	25.1	1.453	39116*
"	"	"	,,	"	45	3840	8.61	0.996	79027
"	"	"	,,	35	40	11620	25.1	2.905	78234*
"	"	"	"		45	5760	8.61	1.440	118541
700	60	44	619	5	10	12180	50.8	3.045	36723
1	.,,	,,	,,	"	15	6040	47.3	1.510	17818
"	l ",	"	"	"	20	3993	•42.61	0.998	14870
'',	"	,,	,,	"	25	2970	36.45	0.743	13166*
] ",	" ,"	",	,,	",	30	2356	28.45	0.589	13641
1 ,,	_,,	"	,,	"	35	1947	18.17	0:487	17946
,,	,,,	,,	,,	,,	40	1654	5.1	0.414	51936
1 ,,	,,,	,,	,,	10	15	12080	47:3	₹020	37616
	l		•		١.	<u> </u>	<u>l · </u>	1	19

TABLE 72—(continued).

	TABLE 12—(constitues).												
	ire.	Stea	n.	Cod	oling v	vater.		Air.					
H Vacuum.	B Absolute pressure.	Ö Temperature.	் Total heat.	initial temperature.	Final temperature,	is weight, W	B Prossure.	weight.	ounio A				
700	60	44 ,,	619 ' ,,	10	20 · 25 30	5990 3960 2945	42·61 36·45 28·45	J.498 0.990 0.736	22320 17543 17046*				
,;; \	" "	"	,,' ,,	" " 15	35 40 20	2336 1930 11980	18·17· 5·1 42·61	0·584 0·483 2·995	21520 60520 44495				
" "	"	7) 2) 2);	" "	"	25 30 35,	5940 3927 £920	36·45 28·45 18·17	.1·485 0·982 0·730	26314 22743* 27500				
",	. ", "))))	" "	20	40 25 30	2316 11880 5890	5·1 36·45 28·45	0.579 2.970 1.473	77169 52628 34115*				
" "	" "	"	"	"	35 40	3893 2895	18·17 5·1	0.976 0.724	35965 90826				
,, ,,	" "	" "	" "	25	30 35 40	11780 5840 3860	28·45 18·17 5·1	2·945 1·460 0·965	68204 53801* 121059				
,,,	" "	"	"	30 35	35 40 40	11680 5790 11580	18·17 5·1 5·1	2.920 1.448 2.895	107602* 181640 363177				
710	50 ,,	38 ,,	618	5. "	10 15 20	12160 6059 3986	40·8 37·3 32·61	3.040 1.508 0.997	45661 25259 18474				
" "	" "),),))	" "	" "	25 30 35	2965 2352 1943	26·45 18·45 8·17	0.741 0.588 0.486	18147* 20997 40780				
,, ,,	,, ,,	,, _,	" "	10 ,,	15 20 25	12060 5980 3953	37·3 32·61 26·45	3.015 1.495 0.988	50501 27601 24460*				
,,,,	"· "·	,, ,,	" 6	,, 15	30 435 20	2940 2332 11960	18·45 8·17 32·61	0.735 0.583 2.990	26247 48920 58375				
,,c ,,	" "	" "	" "	" " "	25 30 35	5930 3920 2915	26·45 18·45 8·17	1·483 0·980 0·729	36322 35106* 51268				
e, 99	. 130	۰,۶	•,,	20	25	11860	26.45	2.965	73013				

TABLE 72—(continued).

	ż	Stee	ım.	Co	oling v	water.	·	Air.	,
Vacuum.	Absolute pressure.	Temperature.	Botal heat.	Initial temperature.	Final . temperature.	Weight, W.	Pressure.	Weight.	Volume.
mm.	mm.	° O.	c.	t _a .	sto.	kilos.	mm.	kilos.	Litres.
710	50	38	618	20 25	3C. 35 30 35	5880 3887 11760 5830	18·45 8·17 18·45 6·17	1·470 0·972 2·940 1·458	52494* 81544 104587* 122341
720 ,,	" 40 "	34.5	617	.30 5 ,,	35 10 15	11660 12140 6020	8·17 30·8 27·3 22·61	2·915 3·035 1·505	24:1 5 97 " 60457 34404
,, ,,	" "	"	;; ;;	" " "	20 25 30 15	3980 2960 2348 12040	22.61 16.45 8.45 27.3	0.995 0.740 0.587 3.010	27108* 28986 45937 68809
" " "	" " "	"	19 19 21	" "	20• 25 30	5970 3946 2935	22.61 16.45 8.45	1·493 0·987 0·734	42312 38641* 58690
" " "	"。	" "	", ",	15 ,, 20	20 25 30 25	11940 5920 3913 11840	\$2.61 16.45 8.45 16.45	2·985 1·480 0·978 2·960	84565 58134* 79472 116269
730	" " 30	" • 29	", 615	25 5	30 30 10	5870 11740 12110	8·45 8·45 20·8	1·468 2·935 3·028	
" " "	" "	, o ,,	" "	" "	15 20 25	6000 3966 2950	17.8 12.61 6.45	1.500 0.991 0.738	54090 4 50174* 123277
,, ,, ,,	"	" "))))	10 ,, 15	15 20 25 20	12000 5950 3933 11900	17·3 12·61 6·45 12·61	3·000 1·488 0·\$83 2·975	108180 75337* 100065 147709
" 740	", • ",	" 21	" 613	20	25 25 10	5900 11800 12 9 60	6·45 6·45 .10·8	1·475 2·950° 3·015°	150553 300605 172126
"	" "	" "	" "	" 10	15 20 15	5980 3950 11960'	7·3 2·61 7·3	1.495 0.985 2.990	128929* 179950 257858
"	"• "	"	,, ,,	" 15	20 20	5930 11860	2·61 2·61	1.483 2.965	270858 541676

water, the higher is the vapour pressure over it, and therefore the lower is the pressure of the air and the greater its specific volume.

On the supposition that the weight of air to be exhausted is directly proportional to that of the injected water, this most favourable condition (the exhaustion of the least volume of air), which is inditated in Table 724 by an asterisk (*), also occurs at the same temperatures of the outflow if the cooling water has a proportion of air different to that which we assumed. Unfortunately our supposition of the complete proportionalith between air and water is not quite reliable. In reality, therefore, the most favourable condition frequently occurs at another temperature, which cannot be determined beforekand. It must suffice to know that there is a most favourable temperature, which can well be found for apparatus at work.

Since wet air-pumps must carly off the air in addition to the injected water, their dimensions must be so taken that to the volume of air to be exhausted, as given in Table 72, is added the injected water, W.

C. The Volume of Air to be Exhausted from Dry Fall-pipe Jet-condensers.

A dry air-pump is one which exhausts the air and uncondensed gases from the condenser, but not the water. It takes the air from the condenser at the place where the cooling water enters, and thus the exhausted air has quite or almost the temperature of this in jected water, t_a .

On our assumption, the weight of air taken from the condenser—that to be exhausted by the air-pump—is directly proportional to the quantity of the injected water; therefore equation (255) gives here also the weight of air:

$$L = \frac{W0.25}{1000} \quad . \quad . \quad . \quad . \quad (260)$$

Equation (259) is used to determine the volume of air, V_u , which the dry air-pump has to carry away, with the difference, that instead of inserting the temperature of the waste water, t_a , for that of the air, that of the entering water, t_a , is to be used.

$$V_{u} = \frac{W0.25(273 + t_{a})29.27 \times 760}{1000pb} = 0.5385 \frac{W(273 + t_{a})}{b}$$
 (261)

Table 73 has been calculated by means of this equation. In this case, as with wet condensers, a larger or smaller proportion of air in the injected water increases or diminishes the volume of air to be exhausted.

The chief differences between wet and dry condensers (almost entirely to the advantage of the latter) are the following:—

The temperature of the water from dry (fall-pipe) condensers may be higher than from wet condensers, since, as we know, it may almost attain the temperature of the wapours passing into the condenser. Dry condensers, therefore, require much less water than wet condensers of the same capacity.

The smaller quantity of water brings a correspondingly smaller quantity of air into the apparatus, and, since this air is almost at the temperature of the entering cooling water, i.e., much colder than in the wet condenser, the smaller weight of air has also a smaller specific volume. Also the vapour mixed with the air has a lower temperature, and therefore a lower pressure, and there remains a larger fraction of the total pressure in the condenser for the air. Thus there is almost always a smaller volume of air to be exhausted from a dragge energe.

Dry air-pumps may run at a greater speed than wet, because they have no water to overcome; for the same reason they may always be smaller than wet pumps for the same evaporative capacity.

Comparing the very different volumes of air to be exhausted in the different cases considered in Table 73, the following conclusions may be drawn:—

- 1. Even with very warm cooling water fairly good vacua may be reached by mean of dry condensation. Such conditions require only much cooling water and large air-rumps. The cooling water is still usable when it is only a few degrees cooler than the temperature of the evaporating liquid.
- 2. The more nearly the temperature of the exhausted air approaches to that of the entering cooling water, and that of the waste water to the temperature of the evaporating liquid, i.e., the more completely the cooling water is utilised, the better is the condensation and the smaller may the air-pump be. When the air-pump is only just large enough under given conditions, the sensation can never be improved, but only made worse, by a larger water supply.
- 3. It is very important to take the air quite cold from the condenser. The colder the air, the better the vacuum.

TABLE 73

The consumption of cooling water and volume of air, in litres, to be exhausted, for the condensation of 100 kilos, of steam at vacua of 600-740 mm.

Initial temperature of the cooling water, $t_a = 5^{\circ}$ to 50° C. Final , , , , $t_{e} = 10^{\circ}$ to 61.5° C. in dry, fall-pipe jet-condensers.

	J. J. J. Web Pol	,,				
Vacu Tem	oum, 600 m perature, 6	m. 1·5° C?			oressure, 160 , c = 625 ca	
, c	ooling wate	r.		A	Air.	
Initial tempera- tu.c.	Final tempera- ture.	Weight.	Tempera- ture.	Pressu.e.	Waight.	Volume.
t _a .	, t _e .	kilos.	t _{ia} .	mın.	kilos.	Litres.
5 👡	61.5	997,	5 10	153·5 150·8	0.25	978 1017
"	,,	"	15	147.3		1055
"	55	1140	5	153.5	0.285	1114
".	1	l	10	150.8		1159
i.e	,,,	,,	15	147.3	,,	1205
"	50	1277	5	153.5	0.319	ر 1247
"	,,	,,	10	150.8	,,	1298
"	,,	"	15	147.3	"	. 1346
10	61.5	1094	. 10	150.8	0.274	1115
i		,,	15	147.3	,,	1156
,,	,,	,,	20	142.6		1210
80 "	55	⊥ 266	10	150.8	0.317	1289
"	,,,	,,	15	147.3	,,	1338
",	,,	,,	20	1426	٠,,	1400
,,	50	1437	10	150.8	0.359	1460
,,	,,	,,	15	147.3	,,	1515
,,	,,,	"	20	142.6	,,	1586
15	61.5	1212	15	147.3	0.303	1279
,,	٠,,	51	20	142.6	,,	1238
,,	۱ ,,,	,, ,	c 25	136.5	,,	1430
,,	55	1425	15	147.3	0.356	1502
,,	,,	,,	20	142.6	,,	1572
	<u> </u>					G

TABLE 73—(continued).

. Vacu	uum, 600 m perature, 6	na. I·5° C.		Absolute p	ressare, 160 c = 625 ca	my.
C	looling wate	or.	1	Α	ir.	
Initial tempera- ture.	Rinal tempera- ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.
t_a .	t,	kilos.	t_{la} .	•mm.	kilos.	Litres.
15 "" 20 "" ""	55 50 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1425 1642 • "," 1385 "," 1629 "," 1917	25 15 20 20 25 30 25 30 25 30	136·5 147·3 142·6 136·5 142·6 136·5 142·6 136·5 142·6 136·5 148·5 148·5	0·356 0·41 "" 0·346 "" 0·407	1921 2088 • 2 11 6 2259 2449
25 • • • • • • • • • • • • • • • • • • •	61·5 55 50 61·5 61·5 7 61·5 7 7 7 7 7 7 7 7 7 7 7 7 7	1544 ''' 1900 ''' 2300 ''' 1772 ''' 2280	25 30 35 25 30 35 25 30 35 40 30 35 40	136·5 128·5 118·2 136·5 128·5 118·2 136·5 118·2 128·5 118·2 105·1 129·5 118·2	0·386 0·475 0·575 • 0·443 	1831 1981• 2173 2242 2438 2674 2714 2953 3237 2274 • 2494 2856 2926 3209 3675

TABLE 73—(continued).

	um, 600 m perature, 61		Absc ² ute pressure, 160 mm Total heat, $c = 625$ cals.			
^ C	Cooling water.			A	ir.	
Initial tempera- ture.	Final tempera- ture.	Weight.	Tompera- ture.	Presure.	Veight.	Volume.
t _a .	t _e .	kilos.	t _{ia} .	mm.	kilos.	Litres.
30 35 37 30 37 30 30 31 31 32 33 34 30 31 31 32 33 34 35 37 37 37 37 37 37 37 37 37 37	50 " 61·5 " 55 " 50 " 61·5 " 55 " 50 " 55 " 50 " 55 " 50	2875 '' 2125 '' 2850 '' 3833 '' 2626 '' 3800 '' '' 5750 '' '' 11500	30 35 40 35 40 45 31 40 45 30 40 45 50 40 45 50 40 45 50 45 50 55 45 50 55 45 50 50 50 50 50 50 50 50 50 50 50 50 50	128·5 118·2 105·1 88·6 118·2 105·1 88·6 118·2 105·1 88·6 68 105·1 88·6 68 105·1 88·6 68 42·5 88·6 68 42·5 88·6	0·719" 0·531 0·712 0·958 0·657 0·950 1·437 0·854 1·425 2·875	3691 4048 4635 2992 3426 4128 4011 4593 5524 5394 6175 7427 4299 5094 6747 6124 7365 9756 9263 11141 14758 6621 8770 14262 11047 14634 23798 22090

TABLE 73—(continued).

Vacu Tem	um, 699 m perature, 61	n. •5° C.•	Absolute pressure, 160 mm. Total heat, $c = 625$ cals.			
Co	oding water		Air.			
Imtial tempera- ture.	Final tempora- ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.
t _a .	t _e .	kilos.	t_{la} .	• mm.	kilos.	Litres.
45 ,,	5 0	11500	50 55	68 42·5	2·875 ,,	29526 58013
50 ,, ,,	61·5 ,, 55	4895 ,, 11300	50 55 60 50	68 42·2 12 68	1·224 ,,,• 2·825	.12450 20300 169500 29013
	um, 620 m perature, 5		•	Absolute p Total hea:	pressure, 140, $c = 624$ ca	0 mm. ls.
5	58·5	1057 ,,, 1276 ,, 1447 ,,, 1166	5 10 • 15 5 10 15 • 5 10 15 10 15 20	133·5 130·8 127·3 133·5 130·8 127·3 133·5 130·8 127·3 130·8 127·3 122·6	0.260 0.319 0.362 0.291	1185 1215 1269 1454 1489 1557 1650 1692 1767
" " " " " " " " " " " "	50 45 	1435 " 1654 "	10 15 20 10 15 •	130.8 127.3 122.6 130.8 127.3 122.6	0.359	•1678 • 1752 1856 1935 2020 2140

Table 73—(continued).

	Vạcu Tem;	Vacuum, 620 mm. Temperature, 58 % C.			Absolute p	ressure, 140, $c = 624$ ca) mm. ls.
	. 0	ooling wate	r _b (Air.			
	Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera-	Pressure.	We.ght.	Volume.
	ta.	t_e .	kilos.	t_{la} .	mm.	kilos.	Litres.
	15	58 30 30 45 30 30 30 30 45 30 30 45 30 30 45 30 45 30 45 30 45 45 45 45 45 45 45 45 45 45	1300 ". 1640 ". 1930, ". 1516 ". 1913 ". 2315	15 20 25 15 20 25 15 20 25 25 30 20 25 30 20 25 30 20 25	127 3 122 6 116 5 127 3 122 6 116 5 127 3 122 6 116 5 122 6 116 5 122 6 116 5 122 6 116 5 122 6 116 5	0 325 0 410 0 482 0 379 0 478 0 579	1586 1680 1797 2001 2120 2267 2355 2495 2668 1959 2094 2310 2471 2703 2993 3202
,	" ^{Jac} 25 "	58 ' ,,	" 1715 "	30 , 25 30 35	108·5, 116·5 108·5 98·2	0·420 "	3529 2372 2615 2913
	11 11 12 22 23 4	50 " 45 45	2296 ,,,, 2895 ,,,	25 30 35 25 30 35	116·5 108·5 98·2 116·5 108·5 98·2	0·574 " 0·724	3174 3498 3892 4004 4413 4968
	30	58	2021	30	108.5	0.505	3078

Table 73—(continued).

Vacu Tem	um, 620 m perature, 58	m. 3·5° C.	•	Absolute r Total heat	pressure, 140 $c = 624$ ca.) mm. ls.
C	Cooling water.			. A	ir.	
Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.
t_a .	t _e .	kilos.	t_{la} .	•mm.	kilos.	Litres.
	•	- 0001	0,5	00.0 •	0.505	3424
30	58	2021	35 40	98·2 • 85·1	0.909	4020
"	50 •	2870	30	$\begin{array}{c} 85.1 \\ 108.5 \end{array}$	0.718	4376
"	"	,90	35	98.2	,, .	4868
,,	,,	,,	40	$\cdot85^{\cdot}1$,,	5715
,,	45	3860	30	108.5	0.965	5855
,,	,,	,,	35	98.2	• ,,	6543
"	,,	"	• 40	85.1	"	- 7 681
35	58	2304	35	98.2	0.576	3905
,,	,,	,,	4 0	85 ° 1	,,•	4585 •
,,	"	,,	45	68.6	,,	5777
,,	50	3 827	35 40	$\frac{98 \cdot 2}{85 \cdot 1}$	0.937	6488 7618
,, •	,,	"	45	68.6	"	9599
"	45	5 7 90	35	98.2	1.448	9817
"	,,	۸ ,,	40	85.1	,,	11526
,,	"•	"	45	68.6	"	14523
40	58	3144	40	85.1	0.786	6257
,,	,,	,,	45	68.6	"	7884
, i	,,	,, ,	50	48		11444
,,	50	57 4 0	40	85.1	1.435	11022
",	,,	,,	45 50	68·6 48	,,	14393 20893
"	45	11580	40	±0 85·1	2.895	20093 28044
",	,,	,,	45	68.6	2000	29037
".	",	"	50	48	",	42151
•		4074		20.0	1,000	10000
45	58	4354	45 • 50	68·6 •48	1.089	$10923 \\ 15856$
,,	,,	,,	50	40	,,	10000

TABLE 73—(continued).

Yac Tem	uum, 620 m perature, 5	m. 1·5°•C.	Absolute pressure, 140 mm. Total heat, c - 624 cals.				
. •0	ooling wate	3r. (,	A	ir.		
Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera-	Pressure.	Weight.	Volume.	
t _a .	t _e .	kilos.∢	t_{la} .	mm.	kilos.	Litres.	
45 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	58 50 ,,,	*4354 11480 ,,, 7075	55 45 50 55 55	22·5 · 68·6 · 48 · 22·5 · 48	1·089 2·870 , 1·739	34685 28786 41787 91410 25766	
Vaci	Vacuur, 640 mm. Temperature, 55° C.			Absolute pressure, 120 mm. Total heat, $c = 623$ cals.			
10	555 "", 500 ", 455 ", 555 ", 560 ", 545	1136 ;; 1251 ;; 1445 ;; 1262 ;; 1432 ;; 1651 ;;	5 10 15 5 10 15 10 15 10 15 20 10 15 20 10	113·5 110·8 107·3 113·5 110·8 107·3 113·5 110·0 107·3 100·8 107·3 102·6 110·8 107·3 102·6 110·8	0·284 " 0·313 " 0·3615. " 0·358 " 0·418 "	1503 1568 1647 1656 1728 1815 1924 1995 2096 1739 1828 1943 1976 2076 2209 2280 2395 2548	

Table 73—(continued).

	um, 640 mr perature, 55		Absolute pressure, 120 mm. • Total heat; $c = 628$ cals.						
O	oling water		, Air.						
Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.			
t _a .	t.	kilos.	t _{la} .	amm.	kilos.	Litres.			
15	55 50 25 45 30 45 30 45 30 45 30 45 30 45 30 45 30 45 30 45 30 45 30 45 30 45 30 45 45 45 46 47 47 47 47 47 47 47 47 47 47	1420 "," 1637 "," 1927 "," 1625 "," 1910 "," 2312	15 20 25 15 20 25 15 80 25 25 20 25 30 20 25 30	107·3 102·6 96·5 107·2 102·6 96·5 107·2 102·6 96·5 88·5 102·6 96·5 88·5 102·6 96·5 88·5	0·355 " 0·409 " 0·482 " 0·406 " 0·486 " 0·578 "	2004 2190 2382 2372 2574 2732 2796 2974 3218 2505 2712 3039 2962 3206 3593 3566 3861 4326			
25	55 50 45	1893 .;,• 2292 .;, 2890	25 30 35 25 30 35 25 30 35	96.5 88.5 78.2 96.5 88.5 78.2 96.5 88.5 78.2	0·473 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3160 3540 4026 3828 4289 4877 4824 5408 6150			
30	55	2272	30	88.5	0.568	4241			

	num, 640 m perature, 56				pressure, 12 , c = 623 cs	
0	ooling wate	ŗ. ·		Α	ir.	
Initial tempera- ture.	Final tempera- ture.	Weight.	Tompera-	Pressure.	Weight.	Volume.
t _a .	t _e .	kilos. •	t _{la} .	mm.	kilos.	Litres.
30	55 50 .,,	2272 2865 ,,	35 40 30 35 40	78·2 ·65·1 ·88·5 ·78·2 ·65·1	0·568 .0·716 	4766 5927 5359 6094 7471
"	45	3833 ", •	30 35 40,	88·5 78·2 65·1	0·956 ,,	7156 8137 9976
35 	55 ;; 50 ,,, 45	2840 ;; 3820 ;; 5780	35 40 45 35 40 45 35 40 45 40	78·2 65·1 48·6 78·2 65·1 48·6 78·2 65·1 48·6	0·710 ., 0·955 ., 1·445	6043 7409 10039 8128 • 9965 • 13504 • J2298 15079 20342
40	55 ,,, 50 ,,, 45	9787 ,,, 5730 ,,, 11560	40 45 50 40 45 50 40 45 50	65·1 48·6 28 65·1 48·6 28 65·1 48·6 28	0·947 ,,* 1·432 ,, 2·89	9882 13391 22018 14943 20248 33294 30157 40685 67193
45 ".	'55 "	5680,	•45 50	48·6 28	1.420	20779 35684

TABLE 73—(continued).

• Vacu	ium, 640 m perature, 55	m. i° C.		Absolute p Total heat	oressure, 120 • c = 628 ca	ls. , v			
С	ooling wate	r.		. eA	ir.				
Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.			
t _a .	t _e .	kilos.	t _{la} .	men.	kilos.	Litres.			
45 ,, ,, 50	55 50 ,,	5680 11460 ", 11360	55 45 53 55 55	2.5 48.6 28. 2.5	1:420 2:865 ,, ,,,	295360 40511 71997 595920 71369			
Vas	Vacuum, 660 mm. Absolute pressure, 106 mm.								
Tem	perature, 5	2° C.	•		c = 622 cs				
5	52 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1213 ,,, 1440 ,,, 1660 ,,, 1357 ,,, 1650 ,,, 1940 ,,,	5 10 15 5 10 15 5 10 15 10 15 20 10 15 20 10	93·5 90·8 87·3 93·5 90·8 87·3 90·8 87·3 82·6 90·8 87·3 82·6 90·8 87·3 82·6	0·303 0·360 0·415 0·339 0·412 1 	1947 1865 2160 2313 2216 2567 2666 2555 2958 2087 2417 2600 2539 2941 3164 2986 4458 3720			

Table 73—(continued).

u Vacu Tem	um, 660 m perature, 72	m. 1º J.			ressure, 100 , c = ,622 ca	
, с	ooling wate	r,	Air.			
Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.
t _a .	t _o .	kilon	t _{la} .	mm.	kilos.	Litres.
15 """"""""""""""""""""""""""""""""""""	52 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1540 " 1923 " 2328 " 1781 " 2308	15 20 25 15 20 25 15 20 25 15 20 25 25 25 20 25 30 25 30 25 30 25 30 25 30 25 30 25 30 30 30 30 30 30 30 30 30 30 30 30 30	87·3 82·6 76·5 87·3 82·6 76·5 82·6 76·5 82·6 76·5 82·6 76·5 82·6 76·5 82·6 76·5 82·6	0.385 , 0.481 , 0.582 , 0.445 , 0.577 , 0.782	2745 2953 3241 3429 3689 4049 4149 4464 4899 3413 3746 4326 4426 4457 5610 5584
"	,, ,,	,,	25 30	76·5 68·5	,,,	6128 7078
25	52 ,,, 45 ,,, 40	2111 2885 3800	25 30 35 25 30 35 25 30 35 25	76·5 68·5 58·2 76·5 68·5 58·2 76·5 68·5 58·2	0·528 ,, 0·721 ,, 0·950 ,,	74445 5133 6040 6069 7010 8248 7997 9236 10868
30	52	259f	30	68 ·5	0.648	6300

Table 73—(continued).

	um, 660 m perature, 5			Absolute x Total heat	pressure, 10 c, $c = 622$ cs	0 mm#	
	ooling wate	r. •		, O Airs			
Initial tempera- ture.	Final 4 tempera- ture.	Weight.	Tempera-	Pressure.	Weight.	Volume.	
t _a .	, t _o .	kilos.	t _{la} .	mm.	kilos.	Litres.	
30	52	2591	\$ 5	58.2	0.648	7413	
,,	45	9040	40	45.1	0.962	9662	
,,	40	3848	30	68.5	0.867	9358	
,,	"	,,	35 40	58·2 45·1	٠,,	11005	
"	40	5820	30	68.5	1.455	14478	
"	1		35	58°2	1,455	14146 16645	
"	"	,,	40	45.1	"	21898	
,,	"	"	±0	401	ن در	41090	
3 5	52	3354	35	58.2	0.839	9599	
,,	,,	,,	40	45.1	,,	12627	
,,	?2	-,,	45	28.6	,,,•	20208	
,,	45	5770	35	58-2	1.442	16502	
"	• "	"	40	45.1	,,	21709	
,,	• "	11040	45 35	28·6 58·2	2.910	34946	
,,	40	11640	40	45·1		33290 43796	
"	" •	,,	45	28.6	"	v 43796 70297	
"	"	"	40	200	"	10291	
40-	52.	4750	40	45.1	1.188	17879	
			45	28.6		28699	
"	"	" •	. 50	8	,,	106540	
,,	45	11540	40	45·1	2.885	43419	
1 ",	"		45	28.6	",	69693	
",	",	"	50	8	,, ,,t)	258727	
1 "	"	"	b		# '''	- 1	
45	52	8143	45	28.63	2.036	49180	
,,	,,	,,	50	8	,, •	182108	
50	52		_ 0		·		
1							
-		•	-				

TABLE 73—(continued).

ĩ			•					
	Vacu Tem	um, 680 m perature, 48	m. 3°,C	Absolute pressure, 80 mm. Total heat, $c = 621$ cals.				
	Cooling water.			• (ir.		
	Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.	
	t_a .	t _o .	kilor.	t _{la} .	mm.	kilos.	Litres.	
	5 "" "" "" "" "" "" "" "" "" "" "" "" ""	48 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1356 1718 1953 1509 1937 2344 1737 2324 2324	5 10 15 5 10 15 5 10 15 15 20 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20 10 10 10 10 10 10 10 10 10 10 10 10 10	73:5 70:8 61:3 73:5 70:8 67:3 73:5 70:8 67:3 62:6 70:8 67:3 62:6 67:3 62:6 67:3 62:6 67:3 62:6 67:3 62:6 67:3 62:6 67:3 62:6 67:3 62:6 67:3	0·369 0·4295 0·498 0·377 0·484 0·586 0·434 0·581	2773 2963 3145 3512 3754 3984 3992 4158 4527 3295 3497 3827 4230 4912 5122 5436 5948 4026 4405 4405 4405 4405 4405 8589 5897 6638	
	" ",	35 ,,	2930 "	15 20 25	67·3 62·6 56·5	0·732 "	6790 7 4 35 8 3 69	
	20	48	2040	20	62.6	0.510	5177	

Table 073—(continued).

Vacu Tem	Vacuum, 680 mm. Temperature, 48° C. Absolute pressure, 80 mm. Total heat, c = 621 cals.) mm. als. ()	
Cooling water.			Air.				
lnitial tempera- ture.	Hinal tempera ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.	
t_a .	to.	kilos.	t_{la} .	⊕mm.	kilos.	Litres.	
20	48 40 35 35 48 36 40 37 40 37 40 37 40 40 40 40 40 40 40 40 40 40	2040 2005 3908 3908 3866 3866	25 30 20 25 30 20 25 30 25 35 25 30 35 35 35	55.5 48.5 62.6 55.5 48.5 62.6 55.5 48.2 56.5 48.2 56.5 48.2 56.5 38.2	0·510 0·726 , 0·977 0·623 , 0·967 ,	5827 7043 7369 78295 10026 9917 11162 13492 7118 8603 16470 11047 13354 16903 16475 19901 25215	
30 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	48 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3184 "5810 • 11720 "4408	30 35 40 30 35 40 30 35 40 35 40	48·5 48·5 48·5 48·5 48·5 48·5 48·5 25·1 48·5 25·1 48·5 25·1 48·5 25·1	" 0.796 " 1.453 " 2.950 " " 1.102	10993 13949 22246 20070 25433 41059 40460 51196 80780 19263 30382	

TABLE 73—(continued).

Vi Tr	mperature, 4	m. 8° C.			pressure, 80 t, $c = 621$ c		
Cooling water.			Air,				
Initial tempera ture.		Weight.	Tempera- ture.	Pressure.	Weigh.	Volume.	
t_a .	t.	kilos,	t _{la} .	mm.	kilos,	Litres.	
35 " • ",	48 40 ",	4408 11620 ;;	45 35 40 45	8·6 38·2 25·1, 8·6	1·102 2·905	242247 50769 80090 91895	
40 ,,	48	7043	40 45	25·1 8·6	1·761 "	48561 146850	
45	. ',48	19100 '	45°	8.6	4.775	_	
Vacuum, 700 mm. Temperature, 44° C.			Absolute pressure, 60 mm. Total heat, $c = 619$ cals.				
5	36 30 30 34 35 35 36 37 38	1474 " 1945 " 2356 " 1691 " 2535	5 10 15 5 10 15 5 10 15 10 15 20 10	53.5 50.8 47.3 53.5 50.8 47.3 53.5 50.8 47.3 42.6 50.8 47.3 42.6 50.8	0·369 ", 0·496 ", 0·599 ", 0·425 ", 0·584 ", 0·736	4149 4446 4863 5465 5816 6405 6623 7097 7763 5121 5502 6333 7037 7697 8702 8869	

TABLE 73—(continued).

Vacuum, 700 mm.Absolute pressure, 60 mm.Temperature, 44° C.Total heat, $c = 619$ cals.							
Cooling water.				Á	ir.		
Initial tempera- ture.	Final tempera- ture.	₩eight.	Tempera- ture.	Pressure.	Weight.	Volume.	
ta.	t _e .	kilos.	t _{la} .	mm.	kilos.	Litres.	
10	30°	2945	15	47.3	0.736	9700	
"	,,	,,	20.	42.6	,,	10966	
15	44	1983	15	473	0.496	6537	
"	,,	,,,	20	42.6	• ,,	6390	
. "	,". •	,,	25	36.5	0.720	87.79 9621	
**	35	2920	15 20	47·3 42•6	0.730	10877	
**	,,	,,	20	36.5	"	12921	
,,	,,	3926	15	47.3	0.981	• 12936	
"	30	1	20	42.6		14624	
"	,,	"	25	36.5	", •	17363	
· 20	44	2396	20	426	0.599	8925	
	- ",	,,	25	• 36.5	,,	10602	
"•	• ",	,,	30	28.5	,,	14364	
• ",	• 35	3890	20	42.6	0.972	14483	
"	,,	٠,,	25	36.5	,,	• 17204	
"	,, •	,,	30	28.5		23309	
"	30	5890	20	42.6	1.472	21933	
,, ●	"•	,,	25	36.5	,,	26063, 35310	
,,	,,	,,	30	28.5	,,	99910	
25	44	3026	25	36.5•	0.757	13399	
**	"	,,	30	28.5	,,	18153	
,,	,,	,,	35	18.2	,,●	27858	
"	35	5840	25 •	36.5	1-460	25842	
"	,,	,,	30	28.5	,,	35011 53728	
"	,,	,,,	35	18.2	2.945	52126	
"	30	11780	25 30	36·5 28·5		70621	
,,	"	,,	35	18.2	,,•	108376	
,,	,,	,,	30	10.4	,,	10000	

TABLE 73—(continued).

Vaci	um, 700 mr perature, 44	n.	Absolute pressure, 60 mm. Total heat, $c = 619$ cals.					
	cooling water		Air.					
Initial tempera ture.	Final temperature.	Weight.	Tempera-	Pressure.	Weight.	Volume.		
t_a .	t. kilos.		t_{la} .	mm.	kilos.	Litres.		
30 "" '" "" 35 "	" " " " " " " " " " " " " " " " " " "		30 35 40 30 35 40 35 40 46	28·5 18·2 ' 5·1 28·5 15·2 5·1 18·2 5·1 5·1	1·627 2·920 1·603 3·606	24627 37794 143780 70022 10746 408800 58990 224420 504840		
Vac Ten	uum, 710 m aperature, 3	m. 3° C.		0 mm.				
5 """""""""""""""""""""""""""""""""""""	38 "30 "25 "38 "30 "30	1758 " 2352 " 2965 " 2071 " 2690	5 10 15 5 10 15 5 10 15 10 15 20 10	43·5 40·8 37·3 43·5 40·8 37·3 43·5 40·8 37·3 32·6 40·8 37·3	0·440 " 0·588 0·741 " 0·518 0·672	6090 7542 7366 8138 16078 9843 10255 12601 12404 8878 8668 10117 11527 11257		

THE AIR FROM DRY CONDENSERS. 371

Table 73—(continued).

•										
	Vacu Tem	um, 710 m perature, 38	m. 3° C.	Absolute pressure, 50 mm. Total beat, $c = 618$ cals.						
	C	ooling water	r. •	Air.						
	Initial tempera- ture.	Figal temperas ture.	Weight.	Tempera- ture.	Pressure.	Weight.	Volume.			
1	t_a .	t _e .	kilos.	t _{les} .	amm.	kilos.	Litres.			
1		•		•						
1	10	30	2690	.20	32.6	0.672	13124			
1	"	25	3953 •	•10•	40:8	0.988	16934			
1	,,	,, •	"	15	34.3	رنو	16539			
1	,,	,,	,••	20	32.6	,,,	19295			
1					•					
1	15	38•	2 609	15	37∙3 •	0.652	10914			
ł	,,	,,	,,	20	32.6	• ,,	12732			
1	,,	,,	,,	• 25	2 6·5	,, ●	15935			
1	,,	30	3920	15	37:3	0.980	16405			
1	,,	,,	,,	20	32.6	,,	19239			
1	,,	"	"	25	26.5	,, •	23951 •			
1	"	25	5930	15	37.3	1.482	13649			
1	"	,,	,,	20	32.6	,,	28943			
1	,, •	"	,,	25	26.5	,, •	36220			
4	•	•					,			
1	• 20 .	- 38	3277	20	32.6	0.819	15995			
1	,,	,,	.4 ,,	25	26.5	,,	20016			
1	,,	,, ن	,,	30	18.5	,,	30745			
1	,,	30	5888	20	32.2	1.470	18709			
	"	,,	,,	25	· 26·5	,,	35927			
1	"	,, •	,,	30	18.5	,,	55184			
	¥	25	11860	20	32.6	2.970	58004			
1	"	,,	ħ	25	26.5	"	72587			
	"	"	,,	30	18.5	"	111494			
	25	38	4530	25	26.5	1.132	27678			
-	,, .	"	,,	30	18.5	,,	4 2514			
ł	,,	,,	,,,	35	8.2		96263			
1	,,•	30	11760	25	, 26· 5	2.940	71854			
	,,	,,	"	30 ●	18.5	**	110368			
-	"	,,	,,	35	• 8⋅2	,,	249900			
							•			

Table 73—(continued).

Yacu	um, 710 mm perature, 38°	ı,	Absolute pressure, 50 mm. Total heat, c = 618 cals.						
Temp	erature, or	.	1000. 1000, 0 = ,000 000.						
• , Co	ooling water		Air.						
Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera-	Pressure.	Meight.	Volume.			
t_a .	t _a .	kilos.	t_{la} .	mm.	kilos.	Litres.			
30	38	7250	30 35;	18·5 • 8·2	1·812	68022 154700			
35 '	, 3 8	19333	35	8.2	4·833	410805			
Vac *Tem	uum, 720 m perature, 34	m. 1·5° C.	4 "		pressure, 4 at, c = 617	0 mm. cals.			
5	34·5 .,, .95 .,, 20 .,, 34·5 .,, 25 .,,	1974 "2960 "3980 "3980 "3948 "5970	5, 10 15, 5, 10 15, 5, 10 15, 20, 10, 15, 20, 10, 15, 20, 10, 15, 20, 10, 15, 20, 10, 15, 20, 10, 15, 20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	33·5 30·8 27·3 33·5 30·8 27·3 30·8 27·3 22·6 30·8 27·3 22·6 30·8 27·3 22·6 30·8 27·3 22·6 30·8 27·3 22·6 30·8 27·3	0·494 0·740 0·995 0·594 0·987 1·493	8916 9840 11288 113355 14541 116909 17955 19820 22736 11832 13573 16846 19651 22533 27991 29740 34121			
15	34.5	3000.	20 15 20	22·6 27·3 22·6	0.750	17138 21270			

Table •73—(continued).

Vacu Tem	um, 720 m perature, 34	m. •5° C. •	•	Absolute Total hes	pressure, 40 t , $c = 617$ c	mm.
С	ooling wate	r.	•	A	ir.	
Initial temperature. t_a .	Final temperature. t_s .	Weight.	Temperature. t_{la} .	Pressure.	Weight.	Volume. Litres.
15 ,, ,, ,, ,, 20 ,, ,, ,, 25 ,, 30	34·5 25 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3000 5920 ,, 11940 ,, 3949 ,, 11840 ,, 6131 ,,	25 15 20 25 15 20 25 20 25 30 25 30 25 30 25 30	16·5 27·3 22·6 16·5 22·6 16·5 8·5 22·6 16·5 8·5 25·6 16·5 8·5	0·750 1·480 .,, •2·985 .,, 0·987 .,, 2·960 .,, 1·533 ., 3·236	29108 33818 41973 57439 68207 84654 115850 27991 38305 87676 85945 114878 262936 59466 136176
Vac • Tem	uum, 730 m perature, 2	m. 9° C.		Absolute Total he	pressure, 3 at, $c = 615$	0 mm.
5 ., .	29 ,, 20 ,, 15	2443 ,,, • 3966 ,, 6000	5 10, 15 5 10 15	23·5 20·8 17·8 23·5 20·8 47·3 23·5	0.611 ,, 0.991 ,, 1.500	15782 18087 21972 25697 29440 35636 38740

Table 73—(continued).

Vacu Tem	num, 730 m peraturé, 29	m. P° C,			pressure, 8			
,c	ooling wate	r.	Air.					
Initial tempera- ture.	Final tempera- ture.	Weight.	Tempera-	Pressure.	Weight.	Volume.		
t _a .	t _e .	kilos.	t _{la} .	mm.	kilos.	Litres.		
5 "	15 ,,	6000 '1	10 15 ;	20·8 .17·3	1.500	44382 53940		
10	29	3084 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 15 20 10 15, 20 10 15, 20 15 20 25 15 20 25 25 20 25	20.8 17.3 12.6 20.8 17.3 12.6 20.8 17.3 12.6 6.5 17.3 12.6 6.5 6.5	0·771 ,,, 1·488 ,, 3·000 ,, 1·046 ,,, 2·975 ,, ,, 1·628 ,, 3·660	20612 27725 39051 44027 53508 75367 88764 106788 151950 37494 52980 101012 86981 150684 287296 82458 157916		
	ium, 740 m perature, 2		6	Absolute Total he	pressure, 2 at, $c = 613$	0 mm.		
5 ",	21.	3694°,	5 10	13·5 10·8	0.924	41626 52742		

Table •73—(continued).

	ium, 740 m perature, 2		, ,	Absolute pressure, 20 m/m. Total heat, $c=619$ cals.							
	ooling water	n,	•	Airc.							
Initial tempera- ture.	Final temperature.	Weight.	Tempera- ture.	Pressure.	Weight.	Vol u me.					
t_a .	t _e .	kilos.	t _{la} ,	mm.	kilos.	Litres.					
			<u> </u>			•					
5	21	3694	.15	7.3	0.924	79679					
,,	15	6863	5	13.5	1.495	67350					
,,	,, ••		10	10.8	•,,	85835					
,,	,,	,,	15 .	. 7·3	. "•	128718					
,,	10	12060	5	13.5	3.015	135600					
"	,,	,,	10	10.8	, ,,	171280					
"	,,	"	. 15	•7∙3	"。	258699					
10	21	5382	10	10.8	1.345	76773					
,,	,,	,,	15	7 €3	1010	115983					
"	,,	,,	20	2.6	" ;	245718					
"	15	11960	10	10.8	2.990	170670					
"	,,	,,	15	7 ·3	"•	257836					
230	,,	"	20	2.6	,,	566243					
15 ••	21	9867	15	7.3	2.467	212737					
"	"•	,,	20	2.6	" •	450696					
20	"	5 9 200	20	2.6	14.800	2703812					
•	•			•							

D. The Volume of Air to be Exhausted from Surfacecondensers.

The cooling water does not come in contact with the interior of surface-condensers, from which the air-pump exhausts; hence the air carried by this water has not in this case to be taken away by the pump. In surface-condensers the air-pumps have only to extract the air introduced from the liquid to be evaporated or distilled and

by leakages in the apparatus. The pumps may, therefore, be smaller for surface than for jet condensers.

Since there is no experimental guide to the quantity of air introduced by these means, we can only rely on the general experience that the volume of air to be exhausted from surface-condensers is about 0.6 of that from jet-condensers. The temperature of this air is that of the condensed liquid after it has been cooled. If the condensed liquid has the temperature $t_{\rm es}$, which is a few degrees higher than that of the entering cooling water, then the volume of air to be exhausted per 100 kiles, of condensed liquid is:

$$V_{lo} = 0.6 \frac{J_{l}(273 + t_{ee})29.27 \times 760}{pb} (262)$$

These volumes of air may be found by multiplying by 0.6 those given in Table 73 for dry jet-condensers.

Both wet and dry air-pumps may be used it connection with surface-condensers,—the former when the condensed liquid is to be taken together with the air, the latter when the distillate is caught and carried away separately.

The wet air-pump of a surface-condenser has to exhaust, per 100 kilos. of distiliate, the volume:

$$V_{in} = 100 + iV_{io}$$
 litres (263)

The dry air pump has to exhaust the volume:

$$V_{ln} = V_{lo}$$
 litres (264)

CHAPTER XXIV.

A FEW REMARKS ON AIR-PUMPS AND THE VACUA THEY PRODUCE.

THERE are two chief forms of air-pump used in connection with evaporating apparatus—(A) air-pumps with flap-valves; (B) with slide-valves.

•A. Air-pumps with Flap-valves.

The valves of these pumps are sheets of rubber or metal, which are opened and closed by the pressure of the air without mechanical aid. They are called "wet" air-pumps if they are to exhaust the warm (condensed) water together with the air. Since the water can never be given as high a velocity in the pump as the air, these pumps must possess much larger valves if they are to exhaust water than when they extract air only. The speed also should not be very high in the former case—about 30-50 revolutions per minute. There is another reason why the speed of wet air-pumps should not be too high-it is desirable to expel at each stroke the whole quantity of air brought in during that stroke, which can only be accomplished when the air is first expelled through the water, which must be as quiescent as possible, and which is then itself expelled. If the air and water are mixed, which is the case when the water is in too violent motion in the pump, they are both expelled together through the valve, but only a portion of each, and there remains much air in the cylinder, which condition diminishes the efficiency of the next stroke. The larger valves and passages of the wet pumps cause them to have as a rule greater dead spaces than the slide valve pumps described later. We shall at once see what influence this has upon the action of the pump.

When a pump with flap-valves is used as a dry pump, i.e., when, along with the air, it does not take in water which would fill the dead space and to a great extent neutralise its effect, it is advisable to allow a

small regulated quantity of cold water or glycerin to enter the pump at each stroke and, be expelled, in order to overcome the dead space (German Pat. No. 24,052 of C. Heckman, Berlin).

If the water which is sucked in is cold and the pump does not work too rapidly, very good results can be obtained with wet airpumps. Vacua of 700-720, or even 730 mm., can be permanently maintained in the evaporating apparatus.

Generally speaking, the flap-valve pumps are less sensitive and less exposed to slight accidents than slide-valve pumps, so that they are suitable for small and medium capacities. They have the further advantage, that they can themselves pump from the well the water for the condenser, which it is convenient to attach directly to the pump. Thus no special water pump is required, which is necessary with dry condensers in the great majority of cases. This suction of the water from a tank or well at a lower level is always permissible if the water level is not more than 5 m. below the middle of the pump. It is, however, advisable to arrange, for starting and special requirements, a small cold water supply-pipe, which can be used for a short time to commence the condensation, when the apparatus is first set in motion.

B. Slide-valve Air-pumps.

In these pumps the ports by which the air enters and leaves are mechanically opened. As a rule they should exhaust no water with the air, and are, therefore, called "dry" pumps. Their dead spaces are smaller, their speed can be greater (60-200 revolutions per minute), and they are specially suitable for large capacities. They require a surface- or a dry-condenser (if possible counter-current), and they use eless power than wet pumps. But since the dry (fall-pipe) condensers must lie at least 10·2 m. above the water level, they almost always require a special water pump to remove the injected water.

In order to remove the diminution in efficiency produced by the dead spaces, Wekner proposed many years ago to equalise the pressure at the dead-point, and now almost all air-pumps are provided with arrangements of this kind.

When the piston of the ail-pump has nearly reached the deadpoint, in the small space, V_{σ} in front of the piston there is air at the atmospheric pressure, p_a , and in the large space behind the piston, J+V, there is air at a very much lower pressure. At this moment, the entrance and exit to the cylinder being closed, the two ends of the cylinder are put in communication. After the equalisation there is on both sides of the piston the same pressure:

$$\dot{p} = \frac{p_u V}{J + 2\bar{V}} \qquad (265)$$

The communication between the two ends of the cylinder is then shut off, the new stroke begins, and almost at once the suction commences.

The details of the arrangements for equalising the pressure are different with different makers, and will not be further considered here.

The question, to what vacuum (to what lowest absolute pressure, p_{-}) a vessel can be exhausted, is answered in the following manner:—

A vessel of the volume V_o is to be exhausted by a double-action pump, without equalisation of pressure, with a cylinder of volume J; let the ratio, $\frac{J_o}{V_o} = \beta$, the original pressure in the vessel = p, and the pressure after n half-strokes = p_n .

This pressure is (after A. v. Ihering, Die Gebläse):

$$p_{n} = p \left[\frac{1}{b^{n}} + \frac{\epsilon \beta}{b-1} \left(1 - \frac{1}{b^{n}} \right) \right] (266)$$

in which the ratio of the dead spaces to the volume traversed by the piston, $T = \epsilon$ and $b = 1 + a(1 + \epsilon)$.

After an infinite number of strokes the pressure in the vessel is, therefore:

$$p_{\infty} = \frac{p_{\xi}}{1 + \epsilon} \quad . \quad . \quad . \quad (267)$$

If the pump is provided with a complete equalisation of pressure, then the pressure in the vessel after n half-strokes is:

$$p_n = p \left[\frac{1}{b^n} + \frac{\epsilon \beta}{b_n} + \frac{\epsilon \beta}{ac} \left\{ \frac{\epsilon \beta}{b - 1} \left(\frac{1}{a} - \frac{b}{b^n} \right) + \frac{p_n}{p} \left(1_{p^n} - \frac{b^{n-1}}{b^n} \right) \right\} \right]$$
 (268)

in which $c = 1 + 2\epsilon + \epsilon_1$. After an infinite number of strokes the pressure is very nearly

$$p_{\infty} = \frac{p\epsilon^2}{(1+\epsilon)(1+2\epsilon+\epsilon_1)} = \frac{p\epsilon}{1+\epsilon} \cdot \frac{1}{1+2\epsilon+\epsilon_1} \quad . \quad (269)$$

TABLE 74.

The lowest pressures, p_{∞} , which can be reached by air-pumps, with and without complete equalisation of pressure, at proportions of the dead space, $\epsilon = \frac{V_{\star}}{J}$, from 0.01 - 0.20.

						<u> </u>	
ce to mp.	Lowest pres	sure reac	hed after	an infinite nu	mber oi	strokes.	• •
dead spa of the pu	Pumps with of p	out equal ressure.	isat/on	Pumps with isation	complete of pressur	equal- re.	Ratio
Ratio of the dead space to the volume of the pump.	Kilos, per sq. cm.	Millimetres of Mercury	Measured as Vacuum.	Kilos, per 8q. cm.	Millimetres of Mercury.	Measured as Vacuum.	<u></u> ;
6.	p_{∞}^* .	b_0 .	760 – b ₀	p_∞ .	b_m .	760 – b _m .	
0·01 0·02 0·03 0·04 0·05 0·06 0·07 0·08 0·09 0·10 0·125 0·135 0·150 0·165 0·175 0·185	0·010233• 0·020266 0·039105 0·03975 0·04904 0·05851 0·06761 0·07055 0·08534 0·0939 0·1024 0·1148 0·1229 0·1348 0·1464 0·1539 0·1614 0·1723	7 52 14 91, 22 15 29 23 36 2 43 2 49 72 56 3 62 75 69 0 75 3 84 4 91 2 100 107 6 113 6 118 6 127	752·5 745·1 727·9 730·8 716·8 710·3 703·7 697·2 691 676·6 668·8 660 652·4 646·8 641·4 633	0.0001003 0.000388 0.000626 0.00143 0.00216 0.00309 0.00409 0.00643 0.00773 0.00912 0.01133 0.01290 0.01587 0.01796 0.01985 0.02156 0.02435	0·074 0·285 0·620 1·050 1·622 2·281 3·013 3·834 4·722 5·678 6·707 8·39 9·576 11·4 13·20 14·60 15·84 17·95	754-43 753-3 751-67 750-42 748-2	0.0528 0.0606 0.0681 0.0750 0.0828 0.0891 0.0987

In order to obtain a representation of the effect of the dead spaces and of the equalisation of pressure, Table 74 has been drawn up. It gives, by means of equation (269), the final pressure obtained after an infinite number of strokes in a vessel, in which the pressure was originally p, for pumps with and without the equalisation of pressure.

Various dimensions are assumed for the dead spaces ($\epsilon = 0.01 - 0.20$) and for the ratio of the volume of the equalising channel to the volume traversed by the piston— $\epsilon_a = \frac{V_a}{J} = 0.015$.

This Table 74 shows the great extent to which the injurious action of the dead spaces is reduced by the equalisation of pressure, even when it is not equite complete, which would be the case in practice. It also shows what vacua can theoretically be obtained with dry air-pumps under various conditions.

CHAPTER XXV.

THE VOLUMETRIC EFFICIENCY OF AIR-PUMPS.

(See A. v. Ihering, Die Gebläse.)

A. Air-pumps without Equalisation of Pressure.

When the piston reaches the end of its stacke, after the air has been expelled there remains in a small portion of the cylinder—the dead space—the volume, V_n at the pressure of the atmosphere, p. As soon as the piston recedes, this volume, V_n expands, and continues to expand until its pressure is equal to that in the vessel to be evacuated, p_0 . Let the space through which the piston has then travelled = V_n . (These conditions are the same both for air-pumps, which are to create or maintain the very small pressure, p_0 , in a vessel and which expel the exhausted air into the atmosphere at the pressure; p, and also for compressors, which press the air from the atmosphere, where the pressure is p_0 , into a vessel, in which the pressure, p_n is to be maintained.)

Air is warmed by compression; this is the case when air at a very small absolute pressure (a partial vacuum) is brought to the pressure of the atmosphere, just as when air at atmospheric pressure is compressed.

Let the temperature of the compressed air be T, its temperature after expansion to the pressure, p_0 , be T_0 , then by Mariotte's law

whence
$$V_{z} = \frac{V_{z} + V_{z}}{T_{0}} p_{0} \dots (270)$$

$$V_{z} = \frac{V_{z} - V_{z}}{p_{0}} T_{0} \dots (271)$$

If V, is the volume through which the piston travels whilst exhausting, and J the total volume it describes, then

$$J - V_z = V_s.$$

Therefore . -

$$v_{\bullet} = J - \frac{\left(\frac{V_{\bullet}p}{T} - \frac{V_{\bullet}p_{0}}{T_{0}}\right)T_{0}}{p_{0}}, \qquad (272)$$

and since $V_{\bullet}^{\bullet} = \epsilon J$

$$V_{e} = J - \frac{\left(\frac{\epsilon J p}{T} - \frac{\epsilon J p_{0}}{T_{0}}\right) T_{0}}{\frac{p_{0}}{T_{0}}} \cdot \dots \quad (273)$$

The ratio of the volume during exhaustion, V_s (the useful work), to the whole volume of the stroke, J_s , i.e., the volumetric efficiency, χ_{∞} , is, therefore,

$$\chi_{re} = \frac{V_e}{J} = 1 - \frac{\left(\frac{ep}{T} - \frac{ep_0}{T_0}\right)T_0}{p_0} \qquad (274)$$

$$\chi_{\text{ed}} = 1 - \epsilon \left(\frac{p}{p_0} \frac{T_6}{T} - 1 \right)$$
 (275)

This is the volumetric efficiency for the condition that the heat produced in compression is in no way lost. This is called *adiabatic* compression.

From this equation we see that the volumetric efficiency is greater:-

- The smaller the dead space, ε.
- 2. The lower the ratio of the pressure of compression to the pressure of the exhausted air (i.e., in compressors, the lower the air pressure to be attained; in vacuum pumps, the smaller is the vacuum to be produced).
- 3. The higher the temperature of the compressed air and the lower that of the exhausted air (i.e., the greater the difference in temperature between exhausted and compressed air).

Thus in order to obtain high volumetric efficiency artificial cooling during compression is not advantageous, but is advantageous during the period of expansion.

The cooling may be effected by mysans of a jacket or by injecting water; the latter is more effective, but necessitates a slower speed and readily causes fouling.

If complete cooling were attained, so that the air was at a constant temp rature during the whole operation, then $T=T_0$, and the efficiency equation would be

$$\chi_{\rm ri} = 1 - \epsilon \left(\frac{p}{p_0} - 1\right) \qquad (276)$$

Compression under these conditions is called isothermal.

Generally complete cooling is not obtained, although attempts are made; a condition occurs which is a mean between complete cooling and absence of cooling, which is known as polytropic compression. The useful work may then be expressed as the mean of the results of equations (275) and (276):—

$$\chi_{red} = 1 - \epsilon \left(\frac{p}{p_0} \frac{T_0}{T} - 1 \right) \text{ and } \chi_{re} = 1 - \epsilon \left(\frac{p}{p_0} - 1 \right). \tag{277}$$

Now in determining the useful work in adjabatic compression the temperatures T and T_0 are not known; if the useful work is to be calculated these factors must be replaced by others which are known. This is effected by means of Poisson's law (the so-called involuted Mariotte's law), by which the pressures may be put in place of the temperatures.

$$T_0 = \left(\frac{p_0}{p}\right)^{\frac{k-1}{k}} = \frac{p_0}{p} \left(\frac{p}{p_0}\right)^{\frac{1}{k}}. \qquad (278)$$

in which

$$k = \frac{\sigma_l}{\sigma_*} = \frac{0.23751}{0.16847} = 1.41 \dots (279)$$

$$\frac{1}{L} = 0.7092 \dots (280)^n$$

or

 σ_i is the specific heat of air at constant pressure = 0.2375.

σ, is the specific heat of air at constant volume = 0.16847.

If these values be inserted in equation (275), we obtain an equation for the *adiabatic* efficiency, from which numerical results can be obtained:—

$$\chi_{\infty} = \epsilon \mathbf{1} - \epsilon \left[\left(\frac{p}{p_0} \right)^{\frac{1}{\kappa}} - 1 \right] = 1 - \epsilon \left[\left(\frac{p}{p_0} \right)^{0.7092} - 1 \right]. \quad (281)$$

B. Air-pumps, with Equalisation of Pressure.

When the piston reaches the end of its stroke, the condition of the air in the dead space before the equalisation of pressure, assuming

that the equalising channel, V_a , is always in communication with the compressed air, is:-

$$\frac{V_{\bullet}+V_{a}}{T}p \dots \qquad (282)$$

in the other and larger space the condition is:-

After the equalisation of pressure has taken place the condition is:---

and since the conditions before and after equalisation must be equal:-

$$\frac{V_{\bullet} + V_{\bullet}}{T} p + \frac{J + V_{\bullet}}{T_{0}} p_{0} = \frac{J + 2V_{\bullet} + V_{\bullet}}{T_{\bullet}} p_{\bullet}.$$

$$\frac{\left(V_{\bullet} + V_{\bullet}}{T} p_{0} + \frac{J + V_{\bullet}}{T_{0}} p_{0}\right) \Gamma_{\bullet}^{*}}{\left(V_{\bullet} + V_{\bullet} p_{0} + \frac{J + V_{\bullet}}{T_{0}} p_{0}\right) \Gamma_{\bullet}^{*}}.$$
(286)

or

If we put $V_{\bullet} = \epsilon J$ and $V_{a} = \epsilon_{a}J$ and eliminate J, then

$$p_{\bullet} = \frac{\left(\frac{(\epsilon + \epsilon_{o})p}{T} + \frac{(1 + \epsilon)p_{o}}{T_{o}}\right)T_{o}}{1 + 2\epsilon + \epsilon_{o}} \qquad (287)$$

or

$$\frac{P_{\bullet}}{T_{0}} = \frac{\left(\frac{(\epsilon + \epsilon_{\bullet})}{T} \frac{p}{p_{0}} + \frac{1 + \epsilon}{T} \right) T_{\bullet}}{1 + 2\epsilon + \epsilon_{\bullet}} . \qquad (288)$$

In isothermal compression, in which all the temperatures remain constant, $T = T_0 = T_0$, and

$$\frac{p_{\epsilon}}{p_{0}} = \frac{(\epsilon + \epsilon_{0})\frac{p}{p_{0}} + (1 + \epsilon)}{1 + 2\epsilon + \epsilon_{0}} \qquad (289)$$

In finding the equation for the adiabatic compression (291), it is permissible to put $T_a = T_0^c$ which is not correct, but causes only an inconsiderable error. Equation (288) then becomes

$$\frac{p_{\bullet}}{p_{0}} = \frac{(\epsilon + \epsilon_{\bullet}) \frac{p}{p_{0}} \frac{T_{0}}{T} + (1' + \epsilon)}{1 + 2\epsilon + \epsilon_{\bullet}} \qquad (290)$$

TABLE 75. PART I. The isothermal and adiabatic values of $\frac{p_s}{p_0} = \frac{\text{pressure after equalisation}}{\text{pressure in empty vessel}}$, 0.01-0.20, and for isothermal and adia-

١			90.	1-0.20, 1	and for	rao. net.	mar and	adia-
				, _				
-				Is	otherma.	landad	iabatic v	alues of
Dead	Isothermal,	G ,	•		-			<u>, , , , , , , , , , , , , , , , , , , </u>
space.	i.	•					•	.1
v.	Adiabatic,			<u>p</u>	pressu Pressu	ire ρt in	e atmos	onere or
$\frac{V_i}{J} = \epsilon$.	a.	· ·		<i>p</i> ₀	pressu	re in eve	scusion v	ABBBET
1		1	1			_ 1		
Ì		1.1	15	2	2.5	8	8.5	4.11
 -						:		
0.01	i	1.001	1.011	1.094	1.036	1.048	1.060	1.075
001	a	1.005	1.012	1.019	1.026	1.032	1.038	1.046
0.09	i		1.016	1.033	1.049	1060	1.083	1.106
] " "	a	1.000	1.016	1.018	1 025	1.034	1.041	1.052
0.03	in	1.003	1.020	1.042	1.063	1.083	1.105	1.130
	a	0.988	1.000	1.012	1.023	1.035	1.046	1.058
i		ļ	. 1					
0.04	°i,	1.004	1.025	1 350	1.075	1.100	1.125	1.165
	a i	0.980	0.999	1.009	1.023	1.036	1.048	1.063
0.05	1	1.005	1.029	1.058	1.087	1.116	1.143	1.181
0.00	a	0.972	0.985	1.005	1.020	1.037	1.051	1.068
0.06	i	1.006	1·033 -0·985	1.066 1.005	1·099 1·025	1·132 1·038	1·165 1·054	1·209 1·074
l.	a	0.965	0.900	1.009	1.025	1.099	1.004	1.074
0.07	i	1.007	1.037	1.075	1.111	1.144	1.174	1.237
1001	a	0.955	0.960	0.999	1.019	1.039	1.065	1.077
0.00	,i	1.008	1.045	1.088	1.121	1.160	1.200	1.259
1 33	a	0.950	0.971	0.993	1.017	1.040	1.059	1.085
0.09	i	0.940	1.044	1.091	1.140	1.176	1.230	1.273
1	a	1.099	0.963	0.990	1.017	1.040	1.062	1.896
1 "		1						
0.10	i	1.010	1.048	1.095	1 155	1.189	1.260	1.337
	a	0.936	0.960	0.975	1.015	1.042	1.065	1.093
0.125	ł	1.012	1.053	1.115	1.169	1.230	1.280	1.370
0.470	a (0.920		0.982	1.015	1.046	1.073	1.103
0.150		0.90\$	1.062	1.126	1.011	1.256	1.313	1.400 1.112
1	'\ a	0.908	0.9/2	0.919	1.011	1.046	1 077	1,112
0.175	i	1.017	1.070	1.139	1.200	1.286	1.350	1.483
1 0 210	a .	0.000			1.009	1.047	1.080	
0.200	i	1.090			1.228	1.300		
1	i a	0.879		0.972	1.00%	1.048	1.085	1.125
1		ľ			e .			

TABLE 75. PART I.

and the volumetric efficiency, χ_{σ} , for air-pumps and compressors, with and without equalisation of pressure, with dead spaces, ϵ , from batic compression. ϵ_a is taken at 0.015.

		7						
m. mmon	sure after	- Annalica	ion	•				
$\frac{p_0}{p_0} = \frac{\text{pres}}{\text{pres}}$	sure in e	botones	NOCCO N					i
po pres	sure in e	Astridonnost	V CDBC1					
					· ·			
pressure i	n committe	egion vas	sel n					
	of the a				•			
Pressure	or one w	unioapner	p_0					
,		1	1	• 1	. 1	1	1	
4.74	5.38	6.33	7.6	•9·5	12.67	19	86	76.0
					•	j		
1.090	1.105	1.128	1:150	1.203	1.280	1.434	1.845	2.84
1.053	1.060	1.063	1.082	1.100	1.125	1.174	1.285	1.48
1.135	1.150	1.182	1.226	1.281	1.395	1.615	2.164	• 3.50
1.061	1.071	1.084	1.101	1.124	1.161	1.237	1.392	1.68
1.156	1.185	1.222	1.274	1.355	1.487	1.752	2.464	4.14
1.070	1.084	1.095	1.120	1.153	1.195	1.280	1.475	1.86
1010	1 004	1 050	1 120	1 100	• 100	£ 200	-	100
4.10	1.000	1.007	1.331	1.447	1.585	1.904	2.758	4.78
1.187	1.220	1.267			1.219	1.330	1.564	2.03
1.070	1.092	1.112	1.138	1.178				5.40
1.918	1.255	1.310	1.375	1.485	1.675	2.050	3.044	
1.085	1.102	1.117	1.155	1.201	1.260	1.377	1 650	2.20
1.246	1.290	1.351	1.436	1.540	1.770	2.222	3.314	5.95
1.092	1.112	1.138	1.172	1.225	1.280	1.42€	1.733	2.36
. •				•				
1.275.	1.323	1.390	1.486	1.625	1.859	2.325	3.576	6.55
1.100	1.121	1.155	1.185	1.247	1.322	1.465	1.813	2.51
1.302	1.358	1.430	1.533	1.690	1.950	2.440	3.825	7.06
1.106	1.130	1.163	1.213	1.260	1.384	1.510	1.895	2.66
1:327	1.377	1.470	1.580	1.747	2.025	2.590	4.075	7.55
$1\overline{1}12$	1.139	1.174	1.218	1.285	1.375	1.553	1.900	• 2.82
1114	1100	1111	1 210	1 200	2.010	1 333	1	
1.354	1.414	1.504	1.625	1.805	2.137	2.704	4.313	8.10
1.119	1.145	1.185	1 232	1.309	1.895	1.590	2.015	2.95
				1.940	2.300	2.990	4.842	9.33
1.471	1.484	1.590	1.670			1.685	2.206	3.28
1.134	1.165	1.212	1.283	1.356	1.466		5.292	11.17
1.485	1.514	1.668	1.750	2.061	2.464	3.180		
1.147	1.178	1.227	1.291	1.403	1.529	1.790	2.365	3.58
•		1						
1.520	1.534	1.741	1.917	2.183	2.660	3.560	5.768	11.80
1.161	1.210	1.251	1.325	1.439		1.935	2.511	3.87
1.561	1.665	1.810	2.010	2.292	2.775	3.733	6.320	12.55
1466	1.219	1.275	1.350	1.477	1.625	1,940	2647	4.14
4			•			•		l .
		1		<u>' </u>	L			\

Table 75. Part 11.

	,										
(,	* 6 1	· n	o = without the contract of th	out equali equalisati	sation of ion of pre	pressure. ssure.	, 				
		€ 0	· m	0 -	m	, 0	. 198				
Dead	Isothermal,		Vaću	um in mi	n. of mer	ou ry o					
spáce.	Adiabatic.	7	0	' 20	50 (88	30 , ,				
J = 4.	a.	•	$\frac{p}{p_0}$ pressure in evacuated vessel								
		1·1	, 1·1	1.5	1.5	2	2				
		V	olumetriq	efficiency	, χ _e , of ai	r-pumps	and com-				
0.01	i	0.999	0.999	•0.995	0.999	0.990	0.999				
0.02	a.	0.998 0.999	0.999	0·997 0·990	0.999 0.999	0.993	0.999				
	a .	0.998	0.999	0.994	0.999	0.987	0.999				
0.08	i	0.997	0.999	0.995	0.999	0.970	0.999				
0.04	a c	0·997 0·996	0·997 0·999	0:990 0:980	0.999 0.999	0.981 0.960	0·999 0·998				
	1,1	0.997	0.999	0.987	1.012	0.975	0.99\$				
0.05	ì	0.995	0.999	0.975	0.999	0.950	0.997				
٠	a	0.996	0.999	0.984	0.969	0.967	0.999				
0.06	i	0.994	0.999	0.970	0.998	0.940	0.996				
0.07	a	0.995	0.999	0.980	0.999	0.962 0.930	0 [.] 999 0:995				
007	i	0·998 0·995	0.999	0·965 0·977	0·998 0·999	0.955	0.999				
0.08	a	0.992		0.960	0.997	0.920	0.993				
1	0 4 .	0.994	0.999	0.973	0.999	£0.950	0.999				
0.09	i	0.991	0.999	0.955	0:996	0.910	0.992				
1	a	0.994	Q :999	0.970	0.999	0.943	0.999				
0.10	i	0.990	0.999	0.950	0.995	0.900	0.991				
	a	0.998	0.999	0.967	0.999	0.937	0.999				
1.125	i	0.988	0.998	0.937	0.993	0.875	0.986				
	'a	0.991	0.999	0.959	0.999	0.916	0.999				
0.150	io	0.985	0.998	0.925	0.991	0.850	0.981				
0.155	i u	0 220	9.999	0.950	0.999	0.905	0.999				
0.175	i, i	0.983 0.987	0.999	0·912 0·942	0.988	0·825 0·880	0.977				
0.200	a	0.980	0.999	0.942	0.999	0.820	0.599				
0 200	a a	0.986	0.999	0.934	0.985	0.874	0.970				
	"	""		****			NV S				

TABLE 75. PART II.

				Т	ABLE 75	. PART	II.			
		o = witho m = with	ut equalis equalisatio	ation of po on of press	ressure. ure.					
	mi .	0 0	m	0	m	0	m			
<u>'</u>	• '		m in mm	of mercu	ry.		•			
4.5	<u> </u>	507		548		580				
	6				<u>` </u>					
or pressur	e in compr	ession vesse	<u>el</u> .				1			
pressu	ire of the a	tmosphere								
2.5	2.5	3	8	3.5	3.5	4.11	4.11			
pressors w	pressors with and without equalisation of pressure.									
	0.000	0.980	0.999	0.975	0.999	0.969	0.999			
0.985	0.999	0.989	0.999	0.986	0.999	0.983	0.999			
0.991	0.999 ⊶	0.960	0.998	0.950	0.998	0.938	0.998			
0.970	0.999	0.977	0.999	0.972	0.999	0.066	0.999			
0.982	0.998	0.940	0.998	0.925	•0.997	0.907	0.996			
0.955	0.999	0.965	0.999	0.958	0.859	0.949	0.998			
0.973	0.997	0.920	0 99	0.900	0.995	0.876	0.994			
0 ⋅940	0.999	0.953	0.999	0.944	0.999	0.032	0.998			
0.964	0.996	0.900	0.994	0.875	0.993	0.844	0.991			
0.925	0.999	•0.941	0.999	0.929	0.999	0.915	0.998			
0.954	0 333	JII	0 000	0 0 0 0		4				
0.910	0.99*	0.883	0.992	0.850	0.991	0.814	0.988			
0.945	0.999	0.930	0.999	0.915	0.998	0.893	0.997			
0.895	0.992	0.860	0.991	0.825	0.989	0.783	0.983			
0.936	0.999	0.912	0.997.	0.900	0.997	0.881	0.996			
0.880	0.991	• 0·840	0.988	0.780	0.984	0.751	0 980			
0.927	0.999	0.906	0.998	•0.886	0.997	0.863	0.996			
0.865	0.998	0'820	0.985	0.775	0.980	0.720	0.976			
0.817	0.999	0.894	0.998	0.872	0.997	0.847	995			
0 -11	•			i		İ				
0.850	0.985	0.800	0.981	0.750	0.974	0-689	0.966			
0.909	0.999	0.882	0.998	0.857	0.996	0.828	0.994			
0.812	0.980	0.750	0.971	0.688	0.965	0.612	0.954			
0.884	0.999	0.853	0.996	0.822	0.995	0.827	0.992			
0.775	0.973	0.700	• 0·962 •		0.953	0.533	0.940			
0.860	0.999	0.823	0.996	0,786	0.991	0.785	0.989			
0738	0.965	0.650	0.951	0.563	0.938	0.456				
0.838	0.999	0.794	0.968	ე∙750		•0.742	0.985			
0.700	0.999	0.600	0.940	0.500	0.924		0.983			
0.814	0.955	0.765	0.994	0.714	0.989	0.655	0.906			
				•		<u> </u>	1			

TABLE 75. PART II.—(continued).

				,						
	•			, 0 = m =	withou with e	t equali qualisat	sation of p	f pressu ressure.	re.	
		Iso-	0'	* m	o	m	0	m°	0	e m
١	Dead	thermal,	·	,	Vacuu	m in m	m. of me	ercury.	•	
١	space.	, i. Adia-	6	00 '	62	10	[*] 64	ur.	66	0 ,
	$\frac{V_s}{J} = \epsilon.$	batic,		,		$\frac{p}{p_0}$			ile atmo	
١			4.74	4.74	£-38	5.38	6.33	6.83	7.6	7.6
				V	olumetr	c efficie	noy, χ,	of air-p	umps an	d com-
	0.01	i	0.963	0.999	0.956	04999	0.947	0.999	0.934	0.998
	0.02°	a • i	0.980 0.925	0.999 0.998	0·977 0·912	0·999 0·997		0.999 0.997	0·968 0·868	0·999 0·996
	0.03	a	0.960 0.888	0.999 0.995		0·999 0·994	0·947 0·840		0·936 0·802	0·999 0·992
	0.04	a in	0·940 0·851	0.998		0.998		0.998		
	0.05		0.920 0.813		0.908			0.997	0·872 0·670	0·996 0·987
	•	a	0.900	0.998	0.885	0'997	0.866	0.996	0.840	0.995
	0.06	i	0·776 0·880	0.986 0.997	0·738 0·862	0·983 0·996	0.680 0.839	0·879 0·994	0·604 0·808•	0:975
	0.07	a i	0.738	0.982	0.694	0.978	0.627	0.973	0.538	0.966
	0.08	a i	0·860 0·701		0.839 0.650				0.472	0.989 0.958
	0.09	d i	0.840 0.664	0.995 0.972	0.816 0.606	0·993 0·967	0.520	0.960	0.406	0.989 0.948
	c	а	0.820	0.994	0.793	0.992	0.760	0.990	0.712	0:987
	0.10	i. a	0.620 0.800	0.965 0.963		0·959 0·990	0·467 0·731	0.950 0.988		0.938 0.985
	0.125	i, a	0·533 0·748	0.941 0.989	0.463	0·949 0·986	0.334	0.926	0.175	0.916 0.976
	0.150	· i	0 439 0 698	0.928	0.343	0.923 0.982	0.201	0.900	0.010 0.520	0.887
	0.175	· a	0·344 0·650	0.909 0.981	0.234 0.600	0·906 0·976	0.063 0.500		0.440	0 840 0 962
	0.200	i	0·252 0·598	0.978 0.888			0.460	0.963 0.838	0.360	0.954
L		, a	บ.อลด	0.909	0.940	0.000	0.400	0.099	0.900	0.598

TABLE 75. PART II.—(continued).

 o = without equalisation of pressure. m = with equalisation of pressure. 									
•	1	1	•	 -	 -	<u> </u>			
0	m	0	<i>m</i> •	0	<i>m</i> ,	0	74	0	m
	•	•	Vgcu	um in m	m. of m	ercury.			
	80	70		. 72	0	74	.0	.75	i0 °
or press	sure in c	compres	sion vess	el.					
pressure of the atmosphere									
9.5	9•5	12.67	12.67	19	19	9 6	36	75.0	75.0
pressor	s with a	nd with	out equa	lisation	of pressy	re.		·	,
				•				•	
0.915	0.998	0.883	0.997	0.820	0.996	0.650	0.992	0.26	0.982
0.961	0.999	0.953	0.999	0.930	0.999	0.883	0.998	-	0.997
0.830	0.994		0.993	0.640	0.987	0.300	0.977	_	0.950
0.922	0.999		0.999	0.860	0.998	0.767	0.995	-,	0.991
0.745	0.989		0.987	0.460	0.978	0.050	0.957	. —	0.936
0.882	0.997	0.850	0.996	1	0.996	0.650	0.991	_	0.984
0.660	0.983	0.534	0.970	0.280	0.964	0.599	0.932	_	0.849
0.853 0.575	0·996 0·976		0.994 0.967	0:726 0:100	0.993 0.953		0.980	•	0.7974
0.804		0·417 0·750		0.650	0.989	0.416	0.890	. –	0.780
0.904	0.993	0.190	0.991	0.090	0.909	0.410	0.979	_	0.963
0.490	0.968	0.300	0.954		0.941		0.862		0 703
0.765	0.997	0.700	0.988	0.580	0.985	0.299	0.977		0.951
0.405	0.957	0.183	0.941	0 000	0.928	•	0.824		0.612
0.725	0.988		0.985	0.510	0.981	0.182	0.962		0.937
0.310	0.944		0.924	0010	0.917	-	0.776	_	0.516
0.686	0.986		0.981	0.440		0.045	0.955	l	0.923
0.235	0.934		0.909		0:859		0.784	·	0.411
0.647	0.983	0.550	0.967	0.370	0.970		0.949	l	0.903
J J = 1			• • • •			١.		l	1
0.150	0.920	L —	0.886		0.830	<u> </u>	0.669	_	6.290
0.607	0.980	0.500	0.970	0.300	0.963	l	0.937		0.885
•	0.883	_	0:838	_	0.750		0.520	1 —	_
0.509	0.971	0.377	0.968	0.118	0.945	•-	0:908		0.835
	0.841		0.771	l —	0.673		0.338	·-	
0.410	0.960	0.246	0.948	l —	0.925	-	0.976		0:780
	0.792	-	0.712	1 —	0.552	_	0.167	T	
0.330,	0.940	0.130	0.935	-	0.898	-	0.848	<u> </u>	0.720
	0.934	_	0.909	I —	0.860	I	1 - '	'l•	•
0.214	0.542	-	0.445	-	0.259	l <i>`</i>	0.805	-	0.652
-	<u> </u>			<u> </u>	•	<u> </u>	1	<u> </u>	<u> </u>

or, applying Poisson's law,

$$\frac{p_{\epsilon}}{p_{0}} = \frac{\left(\epsilon + \epsilon_{a}\right) \left(\frac{p}{p_{0}}\right)^{\frac{1}{\epsilon}} + \left(1 + \epsilon\right)}{1 + 2\epsilon + \epsilon_{a}} .$$
(291)

After equalisation has taken place, the equalising channel at the piston end of the cylinder is closed, and the piston in returning mast-pass through the space, V_x , in order to reduce the pressure, p_a , existing after the equalisation to that to be attained, p_0^* . When this is the case, the exhaustion begins, therefore,

$$\begin{split} &\frac{V_s p_s}{T_a} = \frac{V_s + V_z}{T_0} p_0 = \frac{V_s p_0}{T_0} + \frac{V_s p_0}{T_0} \\ &V_s = \left(\frac{V_s p_s}{T_a} - \frac{V_s p_0}{T_0}\right) \frac{T_0}{p_0} \\ & \sim : V_z = V_s \left(\frac{p_s}{p_0} \frac{T_0}{T_a} - 1\right). \end{split}$$

or

The isothermal volumetric efficiency is, since $T_a = T_a$,

$$\chi_{.} = 1 - \frac{V_{z}}{J} = 1 - \left(\frac{p_{z}}{p_{0}} - 1\right) .$$
 (292)

or, inserting the value of $\frac{p_i}{p_0}$ from equation (289),

$$\chi_{\text{c.t.}} = 1 - \epsilon \left[\frac{(\epsilon + \epsilon_a) \frac{p}{p_0} + (1 + \epsilon)}{1 + 2\epsilon + \epsilon_a} - 1 \right] (203)$$

The adiabatic volumetric efficiency is

$$\chi_{\text{eq}} = 1 - \frac{V_{\tilde{J}}}{J'} = 1 - \epsilon \left(\frac{p_{\bullet}}{p_0} \frac{T_0}{T_a} - 1 \right) \quad . \quad . \quad (294)$$

$$= 1 - \epsilon \left\{ \left(\frac{p'}{p_0} \right)^{\frac{1}{4}} - 1 \right\} \qquad (295)$$

or, inserting the value of $\frac{p_i}{p_0}$ from equation (291),

$$\chi_{\text{eq}} = 1 - \epsilon \left[\sqrt{\frac{\left(\epsilon + \epsilon_a\right)\left(\frac{p}{p_0}\right)^{\frac{1}{k}} + (1 + \epsilon)}{1 \cdot 2\epsilon^{\epsilon} + \epsilon_a}} \right]^{\frac{1}{k}} - 1 \right] \qquad (296)$$

All these equations, which appear more unwieldy than they really are, are calculated out in Table 75 for many cases, indeed for most ordinary cases.

In the first place will be found the values of $\frac{p}{r_0}$, calculated by means of equations (289) and (291) for most degrees of evacuation and compression. The isothermal and adjabatic volumetric efficiencies can then readily be determined by the aid of equations (298) and (296). The calculated values of these efficiencies are given in the second part of Table .75, together with those for pumps without equalisation of pressure (equations (276) and (281)), so that all calculable efficiencies may be examined together, which was the purpose of this table. From this comparison it may be seen that the volumetric efficiency is the greatest when no hear is taken from the air-pump, and that the cooling of the cylinder of the air-pump, when only the volumetric effect is in contemplation, is rather injurious than useful. But all these figures do not quite represent actual practice, for, whether artificial cooling is applied or not, a certain and not inappreciable cooling takes place through the metal walls. The so-called polytropic compression then occurs, which is approximately represented by taking for each case the mean between completely cooled and uncooled air-pumps. This assumpt on corresponds best to the reality, and in most ordinary cases the difference is not very great.

CHAPTER XXVI-

DETERMINATION OF THE WOLUME OF AIR, V_i , WHICH MUST BE EXHAUSTED FROM A VESSEL CONTAINING THE VOLUME V_p , AT THE PRESSURE p_a , IN ORDER TO REACE THE LOWER PRESSURE, p_e .

SOMETIMES it is required to know how large an air-pump must be in order to exhaust a vessel of known capacity in a definite time down to a certain degree of vacuum, or the reverse: in what time a certain vessel can be exhausted down to a certain vacuum by means of the pump provided.

Let V_g = the volume of the vessel in litres.

' J = the useful volume of the air-pump in litres.

 p_a = the initial pressure in the vessel in atmos.

 p_{\bullet} = the final pressure in the vessel in atmos.

 V_i = the volume in litres which must be exhausted in order to reduce the pressure from p_a to p_a^* .

If the pressure in the vessel after the

$$\frac{p_s}{p_a} = \left(\frac{V_s}{V_s + J}\right)^{\bullet} \quad . \quad . \quad (801)$$

895

whence

$$n = \frac{\log \frac{p_s}{p_a}}{\log \frac{V_s}{V_s + J}}.$$
 (302)

If $\frac{V_g}{V_g+J}$ be expanded in a binomial series and the higher powers of $\frac{J}{V}$ neglected because of their smallness, then

$$\frac{V_g}{V_o + J} = 1 - \frac{J^o}{V_o} \qquad (303)$$

or:

$$\log \frac{\overline{V_{g}}}{\overline{V_{g}+J}} = \log \left(1 - \frac{J}{\overline{V_{g}}}\right) \qquad (304)$$

If now log $\left(1_{\bullet} - \frac{J}{V_s}\right)$ be expanded in a series and higher powers neglected, we obtain

$$\log\left(1 - \frac{J}{\overline{V}_s}\right) = -\frac{J}{\overline{V}_s}.$$
 (305)

When this value is inserted in equation (302) we have:

$$n = \frac{\log \frac{p}{p_a}}{\sqrt{V_a}} \qquad (306)$$

or

$$nJ = V_{s} \left(-\log \frac{p_{s}}{p_{a}} \right) . \qquad (307)$$

Now nJ is the total volume, which is to be exhausted from the ressel i.e., through which the piston has to run, in order to reduce the contents from the pressure p_a to the pressure p_a , therefore

$$nJ = V_{i_{\bullet}} = V_{s} \left(-\log \frac{p_{s}}{p_{a}} \right).$$
 (308)

 p_a is always less than p_a , therefore $\log \frac{p_a}{p_a}$ is always negative, and consequently $-\log \frac{p_a}{p_a}$ always positive.

TABLE 76.

Examples of the volume, V_i , in litres, which must be exhausted from vessels containing $V_{\sigma} = 500$ to 4,500 litres of air, in order to reduce the original internal pressure $p_a = 1$ atmos. abs. (760 mm. of mercury) to 0.8-0.01 atmos. abs. (vacua of 76 to 754.4 mm.).

1	2	3	4	5	6	7	8	9	. i 0	ft	12
The pressu the vessel be dimini from t	is to shed he	T	If the	pro pro	pacity essure exi	V _g is p _e at:	mos., the following the follow	brough ne air-p wing vo	ump hi		el of
atmosph pressure	p _a to	Log p.	•	v			the ves	3000 s		4000	4500
p_{e}	acuum of	•	500		1500	2000	2500				44 57 38
atmos.	mm.			` '	Volum	e to t	e exhau	istea, r	2, 111 III	·	
-0.9 0.8	152	0·105 0·223	112	105 223		446	558			892	1004 1760
0·7 0·6 0·5	228 334 380	0·357 0·511 0·693	176 256 347	351 511 693	527 767 1040	702 1022 1386	1288	1535	1789 2426	2044 2762	2310 3119
0.4	456 532	0·916 1·204	458 602	916 1204	1374 1806	1832 2408	2 2290 3 3010	\$612	4214	4816	5418
0.25 0.2 0.15	570 608 646	1·385 1·61 1·90	810	1610	2078 2418 2850	3220	4020	4830 5700	563 665	6440 7600	7245 8550
0·1 0·09	684 691-6	2·30 2·41	$\frac{1150}{1205}$	$\frac{2300}{2410}$) 345() 4600 5 4820	0 5750 0 602	7230	843	-1	10550 1084 1138
0·08 0·07 0·06	699·2 796·8 717·4	2·53 2·66 3·81	1330 1405	2660 2810) 3990 421	5 532 5 562	0 6650 0 702	7980 5 8430	931 983	0 10640 5 11240 0 1200	1197 1264
0:05 0:04 0:03	722 729·6 737·2		1610	3220	0 4 5 0 0 483 0 526	0 644	0 805	966	0 1127 0 1228	0 1288 5 1404	01449 01579
0.03 0.02 0.01	751·1 753·4	3.91	4050	roel	าโรยส	5 722	AL 977.	5 1173 5 1383	0 1368 0 1618	5 1564 5 1844	01759 02074

If $p_i = 1$, i.e., if the absolute pressure in the vessel at the beginning is 1 atmos, then $\log p_i = 0$, and the expression becomes $V_i = V_j$ ($-\log p_i$), which is always positive since p_i must be less than 1.

Table 76 has been calculated by means of this formula. It gives immediately the volume, V_i , which must be exhausted from vessels of $V_i = 500$ to 4,500 littles capacity, in order to reduce the contents from the absolute pressure of 1 atmos, to the desired lower pressure, p_i . The number of strokes required for this purpose is obtained from the dimensions of the pump. If the time be given in which the desired effect is to be produced, the dimensions can readily be found. The table shows at once that almost as many strokes (or as much time) are required to reduce the pressure of 1 atmos. down to 0.1 atmos., as 0.1 to 0.01 atmos.

If it is required to reduce the pressure in a vessel from p_m , which is lower than 1 atmost, to the still lower pressure p_m , in order to find the volume of air to be exhausted in that case, it is only necessary to subtract the volume, which must be exhausted in order to reduce the pressure from 1 to p_m , from that required to reduce the pressure from 1 to p_m .

Examples.—(a) A vessel of the capacity of $V_g = 2,000$ litres, in which the absolute pressure $p_0 = 1$ atmos., is to be evacuated down to 0.2 atmos.

Table 76, column 7, line 9 shows that 3,220 litres must be exhausted for this purpose.

(b) The Pressure in a vessel of the capacity, $V_{\rho} = 2,000$ litres is 0.5 atmos.; it is to be reduced to 0.2 atmos. What volume must be exhausted?

From Table 76, column 7, line 9 it is seen that, in order to reduce the pressure in the vessel from 1 atmos. to 0.2 atmos., 3,220 litres must be exhausted, and column 7, line 5, shows that 1,886 litres must be exhausted in order to reduce the pressure in the vessel from 1 atmos. so 0.5 atmos.

Thus, to reduce the pressure in the vessel from 0.5 to 0.2 atmos., 3,220 - 1,886 = 1,884 litres must be pumped out, whence the dimensions of the air-pumpon be determined.

APPENDIX.

METRIC CONVERSION DIAGRAMS. [COFYRIJHT.]

To facilitate the use of this book by designers working in British units, the following diagrams have been prepared.

Taking the first three diagrams, we read the metric unit on the bottom or top scale as the case may be, and run up vertically until the diagonal line is reached; we then run horizontally to the right or left and read off the result on the British scale.

To convert 5 kilos, for example, into lb, we find 5 on the bottom scale of diagram 1, run up vertically to the diagonal line and then move horizontally to the right, reading 11 1 lb.

To convert 6 sq. metres to sq. feet, we take the point 6 on the top scale of diagram 2, run down vertically until we meet the diagonal and then run out horizontally to the left, reading 64.5 sq. feet.

In diagram 4 we read litres on the bottom scale and run up to the diagonal, then moving horizontally to either side according as cub. feet or gallons are required. This diagram may be used to convert cub. feet to gallons direct by running straight across.

In diagram 5, we read mm. of mercury on the left and run right across to convert to ib. per sq. inch and down vertically from the intersection with the diagonal to read atmospheres. For higher pressures the same diagram may be used by shifting the decimal point.

INDEX.

Acestic acid, 69. Air, cooling by, 283. — water, 385. — water by, 321. — in steam, 29. — pipes, 173, 176. — diameter of, 225. — pumps, 209, 341, 376, 396. — efficiency of, 323. Alcohol, 59. — vapour in pipes, 170, 172, 174 B. Bends in pipes, 180. Finitene, 59. Bending points in evaporating liquids, 74. — waccuo, 59. Bending bending 165. — steam, 160. Butyric acid, 59.	Conductivity co-efficient, 85. Contents, table of, ix. Contractions, list of, xxi. Contersion diagrams, 398. Coolers, 255. — oper surface, 318. — dimensions of, 321. Cooler tubes, 274. Cooling by air, 283. — eva_oration, 302. — discontinuous, 317. — liquid3, 301. — periodic, 317. — pipe, dimensions of, 3(— surfaces, 266, 290. — towers, 331. — water, 212, 259. Counter-currents, 9. — condensers, 297. Cresol, 66. Currents, counter-, 9. — of steam and air, pressure of, 117. — parallel, 9.
C.	D,
Carbolic acid, 59. Coefficient of conductivity, 35. — transmission of heat, 1, 24, 35, 36, 39, 48, 263, 265, 304. Coils dimensions of, 30. — steam, 38, 49, 138, 298. Comparison of weights and measures, xix. Comdensed water, 34.	Diameter of pipes, 161. — C**water-pipes, 178. Distribution in steam, 1.1. Distribution of water, 219, 243, 253. Double bottom evaporators, 53, 138, — 298. — effect evaporator, 65, 81, 90, 59. Drops of water, 227, 234.
Condensers, 207.	E.
	Elbows in pipes, 130. Equalisation of pressure, 878.
87, 219, 246, 852.	Escape of heat, 198. Ether, 59. Everyorating liquids, boiling rount of 74.
Condinating pipes, 277. Strifaces, 266.	Evaporating liquids, boiling point of, 74. —— spleahing of, 1.2. — surface, 51.
Gondaction. 191.	Evaporation, 26, 48.

The recipies, 56. Evaporative capacity, 62.
Evaporator, double effect, 55, 81, 90, 99. - multiple -, 62, 197. - quadrupte -, 81, 90, 9). – triple –, 66. Extra steam, 62, 95, 114,

F. , Fall in temperature, 72. pipe, 215. Falling drops, 122. Fire, heating by, 12, 138. Flap valves, 378. Froth separator, 128, 156. Fuels, properties of, 14.

Œ.

Glycerin, 59.

Ħ.

Heat, escape of, 193. - loss of, 190 ⊱ — experiments on, 198. required in superheating, 22. Heating surfaces, 16, 84.

— of multiple evaporator, 111 Height of splashes, 182, 199. Horizontal tubes, 138.

I.

es, introduction of, 801. pustations, 37, 55, pested water, 226. - fall of, 287.

J. lackets, 58. dry, 212, 246, 852, was, 211, 244, 841. of water, 927, 284.

bubbles of, 185.

a multiple evaporator, strength of, Radiation, 190.

R frigerating machine. 88, 108, 109.

Loss of heat, 1900 190 - experiments on, 198. pressure in ripes, 166.

M.

Machines, refrigerating, 818 Mercury 59. Metal, heating surface Metric conversion diam Motion of floating drops of Multiple effect evapore - evaporator, lik sid .a.

Naphthol, 59. Non-conducting materials, 205.

0.

Oily matter, 278, 282. Open suip se condensers, 987. — coolers, 818. — — dimensions of 621. Overflows, 219, 221, 258.

Parallel currents. 9.

19**2**2

urrent condensers. 287 Pipes, bends in, 180. diameter of, 161. - elbows in, 180. - loss of pressure in, 165.2 velocity of steam in, 188. – water in, 181, 189, 🕷 waste water, 215 waster, water, alo,
water, diameter of, 178.
— supply, 218.
Prefaces, iii, vi, vii.
Pressure, loss of, in pipes, 3
— of oursents of steam and — upon drops of weer, 117. — vapour, 58,

Quadruple effect syap

8.

Seff-evaporation, 67. Separator, froth, 128, 156. Sheets of water, 227. Sieves, 220, 223. Silla, 219, 221, 258.
Silla valves, 578.
Splashes, height of, 182, 199,
velocity of, 183. Splashing of evaporating liquids, 182. Sprinkler, 228. Steam at rest, 298.
— bubbles, 160. -- coils, 88, 89, 42, 45, **29**3. - - dimensions of, 45. - extra, 62, 95, 114, - heaters, 134. - in pipes, velocity of, 157. - pipes, 161. - diameter of, 225, 240. - pressure of currents of, 117. - saturated, 18, 28. - injection of, 18. - properties of, 80. - superheated, 21. -- through valves, 60. Stirrers, 60. Strength of liquor, 88, 108, 109. Superheating steam, 22. Waste-water pipe, 215. Surface-condensers, 207, 255, 975.

T.

ables, list of, xv. 'emperature difference, 1 mean, 7, 256.

- coolers, open, 318, 218. - evaporating, 67. Juriaces, condensing, 266.

- open, 287.

- coding, 266, 290. Symbols list of, xxi.

Temperature fall in, 72. Towers, cooling, 831. Transference of heat, 28 Transmission of heat, 1, 13. Triple-effect exaporator, 66, 81, 98, 99. Tubes, condenser, 275. - coofer, 274. - horizontal, 138. Tabular heaters, 33. Turpentine, 59.

V.

Vacuum, **2**8, 56. apparatus, 56 alves, 50, 180, 870. Wapour, Cleohol, 170, 172, 174. pressures, 58, 74. Velocity in pipes, 181, 308 of splashes, 183.

steam and gases, 120.
Viscous liquids, 37.

Water, condensed, 34. - cooling, 212, 259. air by, 385.by all, 323. — by ar, 525.
— distribution of 219, 248, 258.
— drops of, 117, 122, 227, 234.
— injected, 226.
— jets of, 227, 234.
— pipes diameter of, 178, 242.
— sheets of, 219, 227, 284.
— supply rise, 218 supply pipe, 213. - to e evaporated, 109. relocity in pipes, 181, 182, 808. Weights and measures, xix.