TRIGONOMETRY Chapter 17

REDUCCIÓN AL PRIMER CUADRANTE II

MOTIVATING | STRATEGY

¿ CÓMO REPRESENTAMOS EL SENO Y EL COSENO DE UN ÁNGULO NEGATIVO?

REDUCCIÓN AL PRIMER CUADRANTE II

3er CASO: PARA ÁNGULOS MAYORES A UNA VUELTA

Si a un ángulo positivo a mayor de una vuelta, se le elimina de su medida el número entero de vueltas que contiene, entonces los valores de sus razones trigonométricas no varían, es decir:

$$\begin{array}{c|c} \alpha & 360^{\circ} \\ \text{(θ)} & n \end{array} \qquad \begin{array}{c} \text{RT}(\alpha) = \text{RT}(360^{\circ} \, n + \theta) = \text{RT}(\theta) \\ 0^{\circ} < \theta \end{array}$$

$$n \in z^+$$

$$0^0 < \theta < 360^0$$

Nota: "n" indica el número entero positivo de vueltas contenidas en el ángulo, que podemos eliminar.

Ejemplo:

4to CASO: PARA ARCOS NUMÉRICOS CON FACTOR π

A) Para arcos fraccionarios de la forma $\frac{a\pi}{h}$; donde a > 2b

$$\frac{a\pi}{b}$$
; donde a > 2b

(r)
$$\frac{2b}{q}$$
 $RT(\frac{a\pi}{b}) = RT(\frac{r\pi}{b})$

Ejemplo:
$$\csc\left(\frac{33\pi}{4}\right) = \csc\left(\frac{1\pi}{4}\right) = \sqrt{2}$$

4to CASO: PARA ARCOS NUMÉRICOS CON FACTOR π

B | Para arcos enteros de la forma $n\pi$; donde $n \in \mathbb{Z}$

RT (par.
$$\pi \pm \theta$$
) = RT($\pm \theta$)
RT (impar. $\pi \pm \theta$) = RT($\pi \pm \theta$)

Ejemplos:

$$\cot(6\pi - \frac{\pi}{3}) = \cot(-\frac{\pi}{3}) = -\cot\frac{\pi}{3} = -\frac{\sqrt{3}}{3}$$

$$\operatorname{sen}(9\pi - \frac{\pi}{6}) = \operatorname{sen}(\pi - \frac{\pi}{6}) = \operatorname{sen}\frac{\pi}{6} = \frac{1}{2}$$
impar

DEBEMOS RECORDAR

$$\mathbf{RT} \left\{ \begin{array}{c} \mathbf{180}^{\circ} \pm \Theta \\ \mathbf{360}^{\circ} - \Theta \end{array} \right\} = \pm \mathbf{RT}(\Theta)$$

$$RT \left\{ \frac{90^{\circ} \pm \Theta}{270^{\circ} \pm \Theta} \right\} = \pm Co_RT(\Theta)$$

$$cos(-\alpha) = cos\alpha$$

 $sec(-\alpha) = sec\alpha$

$$sen(-\alpha) = -sen\alpha$$

 $tan(-\alpha) = -tan\alpha$
 $cot(-\alpha) = -cot\alpha$
 $csc(-\alpha) = -csc\alpha$

1) Calcule cos1110°

RESOLUCIÓN:

$$\cos\theta = \frac{CA}{H}$$

Calculamos: cos1110° = cos30°

$$\therefore \cos 1110^{\circ} = \frac{\sqrt{3}}{2}$$

2) Calcule sen4020°

RESOLUCIÓN:

Calculamos: sen4020°= sen60°

$$\therefore \text{ sen4020}^\circ = \frac{\sqrt{3}}{2}$$

3) Reduzca E = cos780°. sec1485°

RESOLUCIÓN:

$$\cos\theta = \frac{CA}{H}$$

$$\sec\theta = \frac{H}{CA}$$

360°

Calculamos:

$$E = \cos 60^{\circ} \cdot \sec 45^{\circ}$$

$$\mathsf{E} = \left(\frac{1}{2}\right) \left(\sqrt{2}\right)$$

$$\therefore \mathbf{E} = \frac{\sqrt{2}}{2}$$

4) Reduzca

$$A = sen(24\pi + x)$$

$$B = tan(12\pi - x)$$

RESOLUCIÓN:

Recordemos que:

RT (par.
$$\pi \pm \theta$$
) = RT($\pm \theta$)
RT (impar. $\pi \pm \theta$) = RT($\pi \pm \theta$)

$$\tan(-\alpha) = -\tan\alpha$$

Luego:

$$A = sen(24\pi + x)$$

$$B = \tan(12\pi - x)$$

$$B = tan(-x)$$

5) Reduzca

a)
$$\operatorname{sen}\left(\frac{13\pi}{2} + x\right)$$

b)
$$\tan\left(\frac{23\pi}{2} + x\right)$$

RESOLUCIÓN:

Recordemos que:

$$RT\left(\frac{a\pi}{b}\right) = RT\left(\frac{r\pi}{b}\right)$$
 a $\frac{2b}{q}$

$$RT \left\{ \frac{90^{\circ} \pm \Theta}{270^{\circ} \pm \Theta} \right\} = \pm Co_RT(\Theta)$$

Luego:

a)
$$\operatorname{sen}\left(\frac{13\pi}{2} + x\right) = \operatorname{sen}\left(\frac{1\pi}{2} + x\right)$$

b)
$$\tan\left(\frac{23\pi}{2} + x\right) = \tan\left(\frac{3\pi}{2} + x\right)$$

6) Mabel le comenta a su hermana Margarita, que Milagros cumplirá la mayoría de edad dentro de 5 cos($35\pi + x$) . sec ($23\pi + x$) años. Calcule la edad que tendrá Milagros dentro de 2 años.

RESOLUCIÓN: Recordemos que: RT (par. $\pi \pm \theta$) = RT($\pm \theta$) RT (impar. $\pi \pm \theta$) = RT($\pi \pm \theta$) **Todas** 180 360° IV C III C $= \pm RT(\theta)$

Luego:

E =
$$5\cos(35\pi + x) \cdot \sec(23\pi + x)$$

$$impar$$

$$E = $5\cos(\pi + x) \cdot \sec(\pi + x)$

$$III C$$

$$E = 5(-\cos x) (-\sec x)$$

$$E = 5\cos x \cdot \sec x$$

$$E = 5$$$$

7) El gasto diario de Jhon en pasajes es de S/. A ¿ Cuál será el gasto total a la semana?. Para calcular dicho valor deberás reducir lo siguiente:

$$A = \frac{\text{sen}(42\pi + x)}{\text{sen}(31\pi - x)} + \frac{\tan(\frac{21\pi}{2} - x)}{\tan(\frac{39\pi}{2} + x)} + 3$$

RESOLUCIÓN

$$A = \frac{\frac{1\pi}{\sin(42\pi + x)}}{\frac{\sin(31\pi - x)}{\sin(31\pi - x)}} + \frac{\tan(\frac{21\pi}{2} - x)}{\tan(\frac{39\pi}{2} + x)} + 3 = \frac{\sin(\pi - x)}{\sin(\pi - x)} + \frac{\tan(\frac{1\pi}{2} - x)}{\tan(\frac{3\pi}{2} + x)} + 3$$

$$A = \frac{\sin x}{\sin(31\pi - x)} + \frac{\cot x}{\tan(\frac{39\pi}{2} + x)} + 3 = 1 - 1 + 3 = 3$$

$$\tan(\frac{3\pi}{2} + x)$$

∴ Gasto semanal = S/. 21