IIIT-Bangalore Probability and Statistics Problem Set 11

(Convergence 'In Probability', Limit Theorems)

Instructor: Dr. A. Chattopadhyay

Definition 1. (Convergence in Probability) Let $\{X_n\}$ be a sequence of random variables. $\{X_n\}$ is said to converge in probability to 'a' if given $\epsilon > 0$,

$$\lim_{n\to\infty}P(|X_n-\alpha|<\varepsilon)=1,\ \text{i.e.}\ \text{if}\ \lim_{n\to\infty}P(|X_n-\alpha|\geq\varepsilon)=0.$$

If $\{X_n\}$ converges in probability to 'a' we write $X_n \xrightarrow[in\ P]{} a$ as $n\to\infty$.

Important results to prove: 1-6

1. (Tchebycheff's inequality) If X is a random variable having a finite variance, then prove for any $\epsilon > 0$

$$P(|X - m| \ge \epsilon) \le \frac{\sigma^2}{c^2}$$

where m and σ respectively denote the mean and standard deviation of X.

- 2. (Tchebycheff's Theorem) Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of random variables such that mean and S.D. of X_n are m_n and σ_n respectively (both exists finitely). If $\sigma_n \to 0$ as $n \to \infty$ then $X_n \xrightarrow[\text{in P}]{} m_n$ as $n \to \infty$.
- 3. (Bernoulli's Theorem) Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of random variables such that $X_n \sim \text{Binomial } (n,p).$ Then $\frac{X_n}{n} \xrightarrow[\text{in } P]{} p$ as $n \to \infty.$
- 4. (Law of large numbers) Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of random variables such that $S_n = X_1 + X_2 + \ldots + X_n$ has a finite mean M_n and finite S.D. Σ_n for all n. If $\Sigma_n = o(n)$, i.e. $\frac{\Sigma_n}{n} \to 0$ as $n \to \infty$, then $\frac{S_n M_n}{n} \xrightarrow[n]{} 0$ as $n \to \infty$.
- 5. (Law of large numbers with equal components) Let (i) $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of random variables so that all of them have same distribution with mean m and S.D. σ and (ii) X_1, X_2, \ldots, X_n are mutually independent for all n. Then $\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} \xrightarrow[\text{in P}]{} m$ as $n \to \infty$.
- 6. If X possess a finite second order moment and c is any fixed number then for any $\epsilon>0$

1

$$P(|X-c| \ge \varepsilon) \le \frac{E\{(X-c)^2\}}{\varepsilon^2}.$$

- 7. Show by Tchebycheff's inequality that in 2000 throws of a coin, the probability that the number of heads lies between 900 and 1100 is at least $\frac{19}{20}$.
- 8. If X is a $\gamma(n)$ variate prove that $P(0 < X < 2n) \ge \frac{n-1}{n}$.

Definition 2. (Asymptotically Normal Distribution.) Let $\{X_n\}$ be a sequence of random variables and $\{a_n\}$, $\{b_n\}$ be two real sequences. If the distribution function $F_n(x)$ of $\frac{X_n-a_n}{b_n}$ converges pointwise to the distribution function $\Phi(x)$ of standard normal distribution, then we say that X_n is asymptotically normal (a_n,b_n) .

Theorem 1. (Limit theorem of characteristic functions.) Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of random variables with corresponding distribution functions $F_1(x)$, $F_2(x), \ldots, F_n(x), \ldots$ and characteristic functions $\chi_1(t), \chi_2(t), \ldots, \chi_n(t), \ldots$

- 1. If $F_n(x) \to F(x)$ as $n \to \infty$, $\forall x$, then $\chi_n(t) \to \chi(t)$, the characteristic function determined by F(x).
- 2. Conversely, if $\chi_n(t) \to \chi(t)$ as $n \to \infty$, then $F_n(x) \to F(x)$, $\forall x$, F(x) being the distribution function determined by $\chi(t)$.
- 9. (Application) Show that Poisson distribution can be obtained as a limit of Binomial distribution.

Theorem 2. (Central Limit Theorem for the case of equal components) Let

- 1. $\{X_n\}$ be a sequence of random variables each having same distribution with mean m and standard deviation σ and
- 2. $X_1, X_2, ..., X_n$ are mutually independent for all n.

Then $S_n=X_1+X_2+\ldots+X_n$ is asymptotically normal $(nm,\sigma\sqrt{n})$, i.e. the distribution function of $\frac{S_n-nm}{\sigma\sqrt{n}}$ converges pointwise to the distribution function $\Phi(x)$ of standard normal distribution.

Cor. Then $\bar{X} = \frac{X_1 + X_2 + ... + X_n}{n}$ is asymptotically normal $(m, \frac{\sigma}{\sqrt{n}})$, i.e. the distribution function of $\frac{\bar{X} - m}{\frac{\sigma}{\sqrt{n}}}$ converges pointwise to the distribution function $\Phi(x)$ of standard normal distribution.

- 10. (Application) A random sample of size n=81 is taken from an infinite population with mean $\mu=128$ and S.D. $\sigma=6.3$. What is the probability that \bar{X} will not fall between 126.6 and 129.4 if we use Central Limit Theorem?
- 11. By applying the Central Limit Theorem to a sequence of random variables with Poisson distribution prove that

$$\lim_{n\to\infty}e^{-n}\sum_{r=0}^n\frac{n^r}{r!}=\frac{1}{2}.$$

Theorem 3. (DeMoivre-Laplace limit theorem.) Let X_n be a binomial (n,p) variate (0 , the corresponding standardised variate being

$$X_n^* = \frac{X_n - np}{\sqrt{npq}}, (q = 1 - p).$$

Then for any fixed numbers a, b(>a)

$$\lim_{n\to\infty} P(\alpha < X_n^* \leq b) = \int_a^b \phi(x) dx$$

where $\boldsymbol{\phi}$ is the probability density function of the standardised normal variate.

12. (Application): If a die is thrown 1,800 times, find the probability that the frequency of the event 'multiple of three' lies between 600 ± 50 .