Introduction to Data Management CSE 344

Lecture 12: XML and XPath

Magda Balazinska - CSE 344, Fall 2012

What We Have Learned So Far

- · A LOT about the relational model
 - Hand's on experience using a relational DBMS
 - From basic to pretty advanced SQL queries
 - Some theory: datalog and relational calculus
 - A bit about internals:
 - Relational algebra
 - · Physical query plans
 - · High-level overview of the query optimizer
 - · Physical tuning

Magda Balazinska - CSE 344, Fall 2012

Where We are Going Next

- · Semi-structured data model and XML
 - A very different way to manage data

Magda Balazinska - CSE 344, Fall 2012

XML Outline

- · What is XML?
- Syntax
- · Semistructured data
- DTDs
- XPath

Magda Balazinska - CSE 344, Fall 2012

What is XML?

- Stands for eXtensible Markup Language
 - 1. Advanced, self-describing file format
 - 2. Based on a flexible, semi-structured data model
- · Applications:
 - Data exchange
 - Storing data without a rigid schema: advertisements
 - Configuration files: e.g. Web.Config
 - Document markup: e.g. XHTML

We will study only XML as data

XML vs Relational

- · Relational data model
 - Rigid flat structure (tables)
 - Schema must be fixed in advanced
 - Binary representation: good for performance, bad for exchange
 - Query language based on Relational Calculus
- Semistructured data model / XML
 - Flexible, nested structure (trees)
 - Does not require predefined schema ("self describing")
 - Text representation: good for exchange, bad for performance
 - Query language borrows from automata theory

Magda Balazinska - CSE 344, Fall 2012

Fall 2012

XML Terminology Tags: book, title, author, ... Start tag: <book>, end tag: </book> Elements: <book>...</book>,<author>...</author> Elements are nested Empty element: <red></red> abbrv. <red/> An XML document: single root element Well formed XML document Has matching tags A short header And a root element

```
Well-Formed XML

<? xml version="1.0" encoding="utf-8" standalone="yes" ?>
<SomeTag>
...
</SomeTag>

Magda Balazinska - CSE 344, Fall 2012

11
```

```
More XML: Attributes

<br/>
<b
```


Comparison

Elements	Attributes
Ordered	Unordered
May be repeated	Must be unique
May be nested	Must be atomic

Magda Balazinska - CSE 344, Fall 2012

XML Data

- · XML is self-describing
- Schema elements become part of the data
 - Relational schema: person(name,phone)
 - In XML <person>, <name>, <phone> are part of the data, and are repeated many times
- · Consequence: XML is much more flexible
- XML = semistructured data

Magda Balazinska - CSE 344, Fall 2012

Document Type Definitions (DTD)

- An XML document may have a DTD
- XML document:

Well-formed = if tags are correctly closed **Valid** = if it has a DTD and conforms to it

- · Validation is useful in data exchange
- Use http://validator.w3.org/check to validate

Superseded by XML Schema (Book Sec. 11.4)

· Very complex: DTDs still used widely

Magda Balazinska - CSE 344, Fall 2012

Two options: • #PCDATA ("Parsed Character Data") = the text inside elements • CDATA ("Character Data") = the text inside attributes • There is no #CDATA and no PCDATA

Querying Magda Balazinska - CSE 344, Fall 2012 30

Querying XML Data

- XPath = simple navigation → today
- XQuery = the SQL of XML → Friday
- XSLT = recursive traversal
 - will not discuss in class

Magda Balazinska - CSE 344, Fall 2012

sample Data for Queries

XPath: Restricted Kleene Closure //author Result:<author> Serge Abiteboul </author> <author> <first-name> Rick </first-name> </author> </author> Victor Vianu </author> <author> Jeffrey D. Ullman </author> //bib//first-name Result: <first-name> Rick </first-name> Magda Balazinska - CSE 344, Fall 2012 35

XPath: Wildcard //author/* Result: <first-name> Rick </first-name> <last-name> Hull </last-name> * Matches any element @* Matches any attribute

XPath: Predicates /bib/book/author[first-name] Result: <author> <first-name> Rick </first-name> <|ast-name> Hull </last-name> </author> Magda Balazinska - CSE 344, Fall 2012 39

A Few Extra Examples

Run these examples on the sample xml posted on course website Follow hw4 instructions

Each line is a separate example: doc("sample-xml.xml")//book/price doc("sample-xml.xml")//book[editor]/price doc("sample-xml.xml")//book[price/text() > 100]/title

Magda Balazinska - CSE 344, Fall 2012

XPath: Summary

matches a bib element bib matches any element matches the root element /bib matches a bib element under root bib/paper matches a paper in bib bib//paper matches a paper in bib, at any depth //paper matches a paper at any depth paper|book matches a paper or a book @price matches a price attribute matches price attribute in book, in bib bib/book[@price<"55"]/author/last-name matches... bib/book[@price<"55" or @price>"99"]/author/last-name matches...

Magda Balazinska - CSE 344, Fall 2012