Bresenham's Algorithm

In order to remove floating point operations in line drawing algorithm, we need to remove *m* from the operations which is used in algorithms.

It's an accurate and efficient raster line algorithm. The most important decision to make is once a pixel is turned on, which is the next pixel will be turned on? I.e. if we had plotted pixel on (X_k, Y_k) then next pixel would be either (X_{k+1}, Y_k) or (X_{k+1}, Y_{k+1}) .

Let us try to understand the decision variables. Let us assume that we are drawing a line y=mx+b that passes through a point (Xo,Yo). Here, 0<m<1. Let us also assume that the last pixel turned on is (X_k,Y_k) and the decision to be made for the next step that is for the vertical distance X_{k+1} .

Now let us assume vertical row of pixel which passes through horizontal distance X_{k+1} . There are 3 vertical points, (X_{k+1}, Y_k) , (X_{k+1}, Y) and (X_{k+1}, Y_{k+1}) , fall on this assumed line .In addition, the assumed distance between (X_{k+1}, Y_k) and (X_{k+1}, Y) is d1 and that between (X_{k+1}, Y) and (X_{k+1}, Y_{k+1}) is d2.

The Y coordinate on the mathematical line at pixel column position Xk+1 is calculated as,

$$Y = m (X_{k+1}) + b$$

Therefore,

$$d1 = Y - Y_k$$

$$= m (X_k + 1) + b - Y_k$$

$$d2 = Y_k + 1 - Y$$

$$= Y_k + 1 - m (X_k + 1) - b$$

Therefore,

$$d1 - d2 = m (X_k + 1) + b - Y_k - Y_k - 1 + m (X_k + 1) + b$$
$$= 2m(X_k + 1) + 2b - 2Y_k - 1$$

Now, we want integer calculation so we will remove m by substituting m=dy/dx.

$$d1 - d2 = 2 \frac{dy}{dx} (X_k + 1) + 2b - 2Y_k - 1$$

$$dx(d1 - d2) = 2 \frac{dy}{(X_k + 1)} + 2b \frac{dx}{dx} - 2Y_k \frac{dx}{dx} - dx$$

$$= 2 \frac{dy}{(X_k + 2)} + 2b \frac{dx}{dx} - 2Y_k \frac{dx}{dx} - dx$$

$$P_k = 2 \frac{dy}{(X_k - 2Y_k)} \frac{dx}{dx} + c$$

Where, c = 2 dy + 2b dx - dx and it is independent of pixel position and P_k is a decision parameter for k^{th} step.

The sign of decision parameter is same as sign of d1 - d2 as for our case 0 < m < 1, that is dx > 0

So, if P_k is positive that is dx (d1 – d2) > 0, and d1 > d2. Therefore, the upper pixel at position $Y_k + 1$ is closer to the line than the pixel Y_k , hence the pixel at position $Y_k + 1$ will be activated. In case of negative P_k , that is dx (d1- d2) < 0, d2 > d1 and therefore the pixel at position Y_k will be activated.

Now for the $(k + 1)^{st}$ step,

$$P_{k+1} = 2 dy X_{k+1} - 2Y_{k+1} dx + c$$

Therefore,

$$P_{k+1} - P_k = 2 \text{ dy } X_{k+1} - 2Y_{k+1} \text{ dx} + c - (2 \text{ dy } X_k - 2Y_k \text{ dx} + c)$$

$$= 2 \text{ dy } (X_{k+1} - X_k) - 2 \text{ dx } (Y_{k+1} - Y_k)$$

$$= 2 \text{ dy} - 2 \text{ dx } (Y_{k+1} - Y_k) \text{ , since } X_{k+1} - X_k = 1$$

$$P_{k+1} = P_k + 2 \text{ dy} - 2 \text{ dx } (Y_{k+1} - Y_k)$$

Where value of (Y_{k+1} - Y_k) will be 0 or 1. If P_k < 0 then it is 0 and 1 if P_k > 0.

But 1st parameter calculation P₀ is evaluated using,

$$P_0 = 2 dy - dx$$

Note: - for m > 1 replace the role of X and Y and equations remains same in positive and negative slope case.