MATH 2031 Introduction to Real Analysis

October 11, 2012

Tutorial Note 5

Infinite series

- (I) Definition of infinite series $\sum_{k=1}^{\infty} a_k$ and partial sum $S_n = \sum_{k=1}^n a_k$, converges $(\lim_{n \to \infty} S_n \in \mathbb{R})$ and divergence $(\lim_{n \to \infty} S_n = \infty \text{ or } \lim_{n \to \infty} S_n \text{ doesn't exist})$
- (II) List of tests for infinite series (Summarized in the transparencies P.37)

Problem 1 Determine if the following series converges or diverges.

1.
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} \left(\frac{5}{8}\right)^k$$

$$2. \sum_{k=1}^{\infty} \frac{\ln(e+k)}{k}$$

Solution:

- 1. Since $0 \le \frac{1}{k(k+1)} \left(\frac{5}{8}\right)^k \le \frac{1}{2} \left(\frac{5}{8}\right)^k$ and $\frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{5}{8}\right)^k$ converges by geometric series test, $\sum_{k=1}^{\infty} \frac{1}{k(k+1)} \left(\frac{5}{8}\right)^k$ converges by comparison test.
- 2. Since $\ln(x)$ is an increasing function as its derivative= $\frac{1}{x}$ is always positive for x>0, so $\ln(e+k)\geq \ln(e)=1$, and we get $\frac{\ln(e+k)}{k}\geq \frac{1}{k}$. From p-test, $\sum_{k=1}^{\infty}\frac{1}{k^p}$ diverges for $p\leq 1$, so $\sum_{k=1}^{\infty}\frac{1}{k}$ diverges.

Thus, $\sum_{k=1}^{\infty} \frac{\ln(e+k)}{k}$ diverges by comparison test.

Problem 2 Show that $\sum_{k=1}^{\infty} e^{(\frac{1}{k})^2}$ converges.

Solution:

Since $\lim_{k \to \infty} \frac{e^{(\frac{1}{k})^2}}{(\frac{1}{k})^2} = \lim_{x \to 0} \frac{e^{x^2}}{x^2} = \lim_{x \to 0} \frac{2xe^{x^2}}{2x} = \lim_{x \to 0} e^{x^2} = e^0 = 1$ and $e^{(\frac{1}{k})^2}$ and $\frac{1}{k^2}$ are positive for any $k \ge 1$.

Also $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges by p-test, so $\sum_{k=1}^{\infty} e^{(\frac{1}{k})^2}$ converges by limit comparison test.

Problem 3 Show that $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$ converges.

Solution

Since the series involves $(-1)^{k+1}$, we may consider the alternate series test (alt. series test).

As
$$\frac{1}{\sqrt{k}}$$
 is decreasing and $\lim_{k\to\infty}\frac{1}{\sqrt{k}}=0$, so by alt. series test $\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{\sqrt{k}}$ converges.

Remark:

From the notes, we know that $\sum_{k=1}^{\infty} a_k$ converges absolutely $\Rightarrow \sum_{k=1}^{\infty} a_k$ converges.

i.e.
$$\sum_{k=1}^{\infty} |a_k|$$
 converges $\Rightarrow \sum_{k=1}^{\infty} a_k$ converges.

However, the converse " $\sum_{k=1}^{\infty} a_k$ converges $\Rightarrow \sum_{k=1}^{\infty} |a_k|$ converges" may not generally true.

Consider the series above, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$ converges, but

$$\sum_{k=1}^{\infty}\left|\frac{(-1)^{k+1}}{\sqrt{k}}\right|=\sum_{k=1}^{\infty}\frac{1}{k^{\frac{1}{2}}}\text{ diverges by p-test.}$$

Problem 4 Show that $\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2(k^3+1)}$ converges.

Solution: As $\sin(x)$ is oscillating but bounded by 1, we may consider the absolute convergence test. $\left|\frac{\sin(k)}{k^2(k^3+1)}\right| = \frac{1}{k^2(k^3+1)} \le \frac{1}{k^2(k^3)} = \frac{1}{k^5}$.

$$\left| \frac{\sin(k)}{k^2(k^3+1)} \right| = \frac{1}{k^2(k^3+1)} \le \frac{1}{k^2(k^3)} = \frac{1}{k^5}.$$

As $\sum_{k=1}^{\infty} \frac{1}{k^5}$ converges by *p*-test and by comparison test, $\sum_{k=1}^{\infty} \left| \frac{\sin(k)}{k^2(k^3+1)} \right|$ converges.

Thus, by absolute convergence test, $\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2(k^3+1)}$ converges.

Problem 5 Let r > 0, find all values of r such that the series $\sum_{k=1}^{\infty} \frac{r^k}{k^2 + k^3}$ converges.

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{\frac{r^{(k+1)}}{(k+1)^2 + (k+1)^3}}{\frac{r^k}{k^2 + k^3}} \right|$$

$$= \lim_{k \to \infty} \frac{r(k^2 + k^3)}{(k+1)^2 + (k+1)^3}$$

$$= \lim_{k \to \infty} \frac{r(k^2 + k^3)}{(k+1)^2 + (k+1)^3} \left(\frac{\frac{1}{k^3}}{\frac{1}{k^3}}\right)$$

$$= \lim_{k \to \infty} \frac{r(\frac{1}{k} + 1)}{(\frac{1}{k})(1 + \frac{1}{k})^2 + (1 + \frac{1}{k})^3}$$

$$= r$$

By ratio test, $\sum_{k=1}^{\infty} \frac{r^k}{k^2 + k^3} \begin{cases} \text{converges} & \text{if } r < 1 \\ \text{may or may not converge} & \text{if } r = 1 \\ \text{diverges} & \text{if } r > 1 \end{cases}$.

For
$$r = 1$$
, we get $\frac{1}{k^2 + k^3} = \frac{1}{k^2(1+k)} \le \frac{1}{k(1+k)} = \frac{1}{k} - \frac{1}{1+k}$

By telescoping series test, $\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{1+k} \right) = 1 - \lim_{k \to \infty} \frac{1}{1+k} = 1$, which converges.

(or
$$\frac{1}{k^2 + k^3} = \frac{1}{k^2(1+k)} \le \frac{1}{k^2}$$
 and use *p*-test.)

Thus, by comparison test, $\sum_{k=1}^{\infty} \frac{1}{k^2 + k^3}$ converges.

Therefore, for $0 < r \le 1$, $\sum_{k=1}^{\infty} \frac{r^k}{k^2 + k^3}$ converges.