CS621/CSL611 Quantum Computing For Computer Scientists

The Leap from Classical to Quantum

Dhiman Saha Winter 2024

IIT Bhilai

Assembling Systems

Dealing with Composite Systems

Assembling Classical Probabilistic Systems

$$G_N = \begin{array}{c} \frac{1}{3} \\ a \bullet \\ & 2 \\ \hline & 2 \\ \hline & 2 \\ \hline & 3 \\ \hline & & b \\ \end{array}$$

$$M = \begin{bmatrix} 0 & \frac{1}{6} & \frac{5}{6} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{3} & 0 \end{bmatrix}.$$

$$N = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

Two-marble System: G_M for red-marble, G_N for blue marble

How does a state for a two-marble system look?

- There are $3 \times 2 = 6$ possible states of the combined system. Why?
 - The red marble can be on one of three vertices and
 - The blue marble can be on one of two vertices,
- This is the tensor product¹ of a 3-by-1 vector with a 2-by-1 vector

Example (A typical combined state)

$$X = \begin{bmatrix} 0a & \frac{1}{18} \\ 0b & 0 \\ 1a & \frac{2}{18} \\ 1b & \frac{1}{3} \\ 2a & 0 \\ 2b & \frac{1}{2} \end{bmatrix}$$

← How to interpret this?

¹More on tensor product in up-coming lectures.

Dynamics of a Composite System

• For a system to go from state ii to a state i'i' we must multiply the probability of going from state i to state i' with the probability of going from state i to state i'.

$$ij \xrightarrow{M[i',i] \times N[j',j]} i'j'$$
 [Provided systems are independent]

• What is the probability of going from state 1a to state 2b?

$$M = \begin{bmatrix} 0 & \frac{1}{6} & \frac{5}{6} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{3} & 0 \end{bmatrix}. \qquad N = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$N = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

What does it mean for the entire system? Tensor Product

Tensor Product \otimes **Captures Dynamics**

$$M \otimes N = \mathbf{1} \begin{bmatrix} 0 & \mathbf{1} & \mathbf{2} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & \frac{1}{6} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & \frac{5}{6} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \\ \mathbf{2} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & \frac{1}{2} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & \frac{1}{6} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \\ \mathbf{2} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & \frac{1}{3} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & 0 \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \\ \mathbf{2} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & \frac{1}{3} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & 0 \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \\ \mathbf{2} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & \frac{1}{3} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & 0 \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix} \\ \mathbf{2} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} & 0 \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix}$$

 The graph that corresponds to this matrix, G_M × G_N - called the Cartesian product of two weighted graphs has 28 weighted arrows.

Exercise

• Find the matrix and the graph that correspond to $N \otimes N$.

$$N = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

Visualizing $M \otimes N$ (Third Column)

	0 <i>a</i>	0 <i>b</i>	1 <i>a</i>	1 <i>b</i>	2 <i>a</i>	2 <i>b</i>
0 <i>a</i>	Γ0	0	$\frac{1}{18}$	$\frac{2}{18}$	$\frac{5}{18}$	$\frac{10}{18}$
0 <i>b</i>	0	0	$\frac{2}{18}$	$\frac{1}{18}$	$\frac{10}{18}$	$\frac{5}{18}$
1 <i>a</i>	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{6}$	$\frac{1}{18}$ $\frac{2}{6}$	$ \begin{array}{r} 5 \\ \hline $	$ \begin{array}{c c} \hline 10 \\ \hline 18 \\ \hline 2 \\ $
1 <i>b</i>	$\frac{1}{9}$ $\frac{2}{9}$ $\frac{2}{9}$ $\frac{4}{9}$	2 9 1 9 4 9 2	$\frac{1}{6}$ $\frac{2}{6}$ $\frac{1}{9}$ $\frac{2}{9}$	$\frac{1}{6}$ $\frac{2}{9}$	$\frac{2}{18}$	$\frac{1}{18}$
2 <i>a</i>	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{1}{9}$	$\frac{2}{9}$	0	0
2 <i>b</i>	$\frac{4}{9}$	$\frac{2}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	0	0

Attempt this again

• What is the probability of going from state 1a to state 2b?

Composite System State Evolution

 Tensor product of the matrices will then act on the tensor product of the vectors.

	0a	0 <i>b</i>	1 <i>a</i>	1 <i>b</i>	2a	2b	
0 <i>a</i>	0	0	$\frac{1}{18}$	$\frac{2}{18}$	$\frac{5}{18}$	$\frac{10}{18}$	
0b	0	0	$\frac{1}{18}$ $\frac{2}{18}$	$\frac{1}{18}$	$\frac{10}{18}$	$\frac{10}{18}$ $\frac{5}{18}$ $\frac{2}{18}$	
1 <i>a</i>	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{\frac{1}{6}}{\frac{2}{6}}$	$\frac{2}{6}$	$\frac{1}{18}$	$\frac{2}{18}$	
1 <i>b</i>	$\frac{1}{9}$ $\frac{2}{9}$ $\frac{2}{9}$	2 9 1 9 4 9 2	$\frac{2}{6}$	$\frac{1}{6}$ $\frac{2}{9}$	$\frac{1}{18}$ $\frac{2}{18}$	$\frac{1}{18}$	
2 <i>a</i>	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{1}{9}$		0	0	
2 <i>b</i>	$\frac{4}{9}$	$\frac{2}{9}$	29	$\frac{1}{9}$	0	0	

$$\begin{array}{c|c}
0a & \frac{1}{18} \\
0b & 0 \\
1a & \frac{2}{18} \\
1b & \frac{1}{3} \\
2a & 0 \\
2b & \frac{1}{2}
\end{array}$$

What happens to Composite Systems in Quantum Theory?

- Similar to probabilistic systems but has more!
 - The states of two separate systems can be combined using the tensor product of two vectors
 - The changes of two systems are combined by using the tensor product of two matrices
 - The tensor product of the matrices will then act on the tensor product of the vectors

Whats More?

Entangled States

- In the quantum world there are many more possible states than just states that can be **combined from smaller ones**.
- There can be states that cannot be expressed as the tensor product of the smaller states
- ullet These are the more interesting ones o **Entangled States**
- Similarly, arguments are there for operations on a combined quantum system

- How many vertices for one-bit with a marble?
- How many vertices for m-bits?
- Size of transition matrix?
- Can you see the **exponential growth**² in resources required?
- Can a classical computer simulate such a system?

The Quantum Computer

A prospective quantum computer, with its inherent ability to perform massive parallel processing, might be able to accomplish the task.

²This exponential growth is actually one of the main reasons Richard Feynman started talking (Feynman, 1982) about quantum computing in the first place.

Take-Away So Far

- A composite system is represented by the Cartesian product of the transition graphs of its subsystems.
- If two matrices act on the subsystems independently, then their tensor product acts on the states of their combined system.
- There is an exponential growth in the amount of resources needed to describe larger and larger composite systems