CZWÓRNIKI

Skrypt (Czwornik.mth) napisany w języku Derive (świetny program matematyczny).

Sposób użycia

- 1. Przegrywamy skrypt Czwornik.mth do jakiegoś katalogu programu Derive.
- 2. Nastepnie uruchamiamy program Derive i wczytujemy Czwornik.mth jako Utility File.

- 3. Po wczytaniu dostępne są wszystkie funkcje zawarte w modlue. Podane zostaną dwa przykłady zastosowania.
- A. Niech będzie zadana macierz **Z** czwórnika, np. $Z = \begin{bmatrix} 1+j & 2-j \\ 2-j & 3-j \end{bmatrix}$,

(znaczek î piszemy CTRL+i), po naciśnięciu = (lub w starszej wersji CTRL+B), otrzymuje się wynik:

$$\begin{bmatrix} -\frac{3}{10} + \frac{19 \cdot \hat{1}}{10} & \frac{7}{10} - \frac{\hat{1}}{10} \\ -\frac{7}{10} + \frac{\hat{1}}{10} & \frac{3}{10} + \frac{\hat{1}}{10} \end{bmatrix}$$

Jest to macierz H czwórnika.

B. Czwórnik typu Π pracuje między rzeczywistym źródłem napięciowym o impedancji $\underline{Z}_{g} = 10 + j5$ a obciążeniem $\underline{Z}_{0} = 10 - j10$.

Wyznaczyć wzmocnienie skuteczne $\frac{\underline{U}_2}{\underline{E}_s}$. Czwórnik ma następujące wartości impedancji.

Należy wykonać komendę:

$$\parallel \vee = \leq \approx \text{kusk(mzcp(10+4î,5-3î,10),10+5î,10-10î)}$$

Po naciśnięciu = otrzymujemy wynik:

$$\frac{11908}{63473} - \frac{2336 \cdot \hat{1}}{63473}$$

Jest to szukane wzmocnienie skuteczne (jeśli naciśniemy ≈~wówczas otrzymamy wartość przybliżoną

$0.1876073291 - 0.03680305011 \cdot \hat{1}$

Funkcje dostępne w module:

- 1. ZZY(y) z podanej macierzy czwórnikowej y wyznacza macierz czwórnikową z,
- 2. ZZA(a) z podanej macierzy czwórnikowej a wyznacza macierz czwórnikową z,
- 3. ZZH(h) z podanej macierzy czwórnikowej h wyznacza macierz czwórnikową z,
- 4. ZZB(b) z podanej macierzy czwórnikowej b wyznacza macierz czwórnikowa z,
- 5. ZZG(g) z podanej macierzy czwórnikowej g wyznacza macierz czwórnikową z,
- 6. AZZ(z) z podanej macierzy czwórnikowej z wyznacza macierz czwórnikową a,
- 7. AZY(y) z podanej macierzy czwórnikowej y wyznacza macierz czwórnikową a,
- 8. AZB(b) z podanej macierzy czwórnikowej b wyznacza macierz czwórnikową a,
- 9. AZH(h) z podanej macierzy czwórnikowej h wyznacza macierz czwórnikową a,
- 10. AZG(g) z podanej macierzy czwórnikowej g wyznacza macierz czwórnikowa a,
- 11. BZZ(z) z podanej macierzy czwórnikowej z wyznacza macierz czwórnikową b,
- 12. BZY(y) z podanej macierzy czwórnikowej y wyznacza macierz czwórnikową b,
- 13. BZA(a) z podanej macierzy czwórnikowej a wyznacza macierz czwórnikową b,
- 14. BZH(**h**) z podanej macierzy czwórnikowej **h** wyznacza macierz czwórnikowa **b**,
- 15. BZG(g) z podanej macierzy czwórnikowej g wyznacza macierz czwórnikowa b,
- 13. BZG(g) Z podanej macierzy czworinkowej g wyznacza macierz czworinkową b
- 16. YZZ(z) z podanej macierzy czwórnikowej z wyznacza macierz czwórnikową y,
- 17. YZA(a) z podanej macierzy czwórnikowej a wyznacza macierz czwórnikową y,
- 18 YZH(h) z podanej macierzy czwórnikowej h wyznacza macierz czwórnikową y,
- 19. YZB(**b**) z podanej macierzy czwórnikowej **b** wyznacza macierz czwórnikową **y**,
- 20. YZG(g) z podanej macierzy czwórnikowej g wyznacza macierz czwórnikową y,
- 21. HZZ(z) z podanej macierzy czwórnikowej z wyznacza macierz czwórnikowa h,
- 22. HZY(y) z podanej macierzy czwórnikowej y wyznacza macierz czwórnikową h,
- 23. HZA(a) z podanej macierzy czwórnikowej a wyznacza macierz czwórnikowa h,
- 24. HZB(b) z podanej macierzy czwórnikowej b wyznacza macierz czwórnikową h,
- 25. HZG(g) z podanej macierzy czwórnikowej g wyznacza macierz czwórnikowa h,
- 26. GZZ(z) z podanej macierzy czwórnikowej z wyznacza macierz czwórnikową g,
- 27. GZY(y) z podanej macierzy czwórnikowej y wyznacza macierz czwórnikową g,
- 28. GZA(a) z podanej macierzy czwórnikowej a wyznacza macierz czwórnikowa g,
- 29. GZH(h) z podanej macierzy czwórnikowej h wyznacza macierz czwórnikową g,
- 30. GZB(b) z podanej macierzy czwórnikowej b wyznacza macierz czwórnikową g,

Parametry robocze czwórnika.

- 1. $ZWEJ(\mathbf{z}, \mathbf{z}_0)$ impedancja wejściowa czwórnika, \mathbf{z} zadana macierz \mathbf{z} , \mathbf{z}_0 imp. obciążenia,
- 2. $ZWYJ(\mathbf{z}, z_{\mathbf{g}})$ impedancja wyjsciowa czwórnika, \mathbf{z} zadana macierz \mathbf{z} , $z_{\mathbf{g}}$ imp. generatora,
- 3. $KU(\mathbf{z}, z_0)$ wzmocnienie napięciowe ($\underline{U}_2/\underline{U}_1$), \mathbf{z} zadana macierz \mathbf{z} , z_0 imp. obiażenia,
- 4. $KI(\mathbf{z}, z_0)$ wzmocnienie prądowe ($\underline{I}_2/\underline{I}_1$), \mathbf{z} zadana macierz \mathbf{z} , z_0 imp. obiażenia,
- 5. KUSK(\mathbf{z} , $\mathbf{z}_{\mathbf{g}}$, $\mathbf{z}_{\mathbf{0}}$) skuteczne wzmocnienie napięciowe ($\underline{\mathbf{U}}_{\mathbf{2}}/\underline{\underline{\mathbf{E}}}_{\mathbf{g}}$), \mathbf{z} zadana macierz \mathbf{z} , $\mathbf{z}_{\mathbf{0}}$ imp. obiażenia, $\mathbf{z}_{\mathbf{g}}$ imp. generatora,
- 6. KPSK(\mathbf{z} , \mathbf{z}_g , \mathbf{z}_o) skuteczne wzmocnienie mocy (P_2/P_{gdys}), \mathbf{z} zadana macierz \mathbf{z} , \mathbf{z}_o imp. obiażenia, \mathbf{z}_g imp. generatora,

Macierze niektórych czwórników.

1. MACZS(z) - wyznacza macierz a czwórnika:

z - impedancja.

2. MACZR(z) - macierz a następującego czwórnika:

3. MZCOL($\underline{z}1, \underline{z}2$) - macierz z następującego czwornika:

4. MZCT(<u>z</u>1,<u>z</u>2,<u>z</u>3) - macierz **z** czwórnika typu T:

5. MZCP($\underline{z}1,\underline{z}2,\underline{z}3$) - macierz **z** czwórnika typu Π:

6. MZCK(<u>z1,z2,z3</u>, <u>z4</u>) - macierz **z** czwórnika krzyżowego:

7. $MZCTZ(\underline{z}1,\underline{z}2,\underline{z}3,\underline{z}4)$ - macierz z nastepującego czwórnika :

- 8. MZZYR(r) macierz **z** żyratora, r stała żyracji.
- 9. MATI(n) macierz a transformatora idealnego, n przekładnia tansformatora (n : 1).

Opracowane na podstawie skryptu Toria Obwodów W. Wolski, M. Uruski

Uwagi i ewentualne błędy proszę kierować na adres autora <u>Czesław.Michalik@pwr.wroc.pl</u>