

6.4.2 现代价键理论

天津大学 邱海霞

THE STY PENANCEMENT OF THE PARTY OF THE PART

现代价键理论

物理学家海特勒 (1904-1981)

物理学家伦敦 (1900-1954)

1927年用量子力学处理氢分子,提出了 现代价键理论,解释了共价键的本质

现代价键理论

两个H形成H₂

通过解薛定谔方程,得出系统能量的变化

共价键的本质

 $E = -458 \text{ kJ mol}^{-1} d = 74 \text{pm} < 2a_0 (a_0 = 53 \text{pm})$

共价键的形成动力 共价键的本质

能量降低

原子轨道重叠

电子配对原理

共价键

原子之间由于成键电子的原子 轨道发生重叠而形成的化学键 自旋相反的单电子配对成键

有多少单电子,能形成多少个键

共价单键 H_2 H $1s^1$

共价双键 O_2 O $2s^22p^4$

共价^型键 N 2s²2p³

最大重叠原理

原子轨道重叠程度越大,共价键越牢固。

HCI分子的成键示意图

对称性匹配原理

原子轨道的重叠,必须是同号重叠

原子间电子的概率密度增大,形成化学键。

 p_x -s

原子间电子的概率密度几乎等于零,难以成键。

对称性匹配原理

共价键的特征

饱和性

有

电子配对后不再与第三个电子成键

方向性

有

除s轨道,最大重叠必有方向