A User-Friendly Introduction to Six-Functor Formalism

Xiaoxiang Zhou Advisor: Prof. Dr. Thomas Krämer

Humboldt-Universität zu Berlin

A Small Toolkit

Basic examples.

For f!, assume Y, X are manifolds of dimension n.

	$f: Y \longrightarrow pt$	$f:p\hookrightarrow X$
f^*	constant sheaf	\mathcal{F}_p
Rf_*	cohomology	$\operatorname{sky}_p(\mathbb{Q})$
$Rf_!$	cpt supp cohomology	$\operatorname{sky}_p(\mathbb{Q})$
$f^!$	orientation sheaf $[n]$	$\mathcal{F}_p[n]$

Recollement diagram.

$$Z \stackrel{i}{\smile} X \stackrel{j}{\longleftarrow} U$$

$$D(Z) \xrightarrow{i_*=i_!} D(X) \xrightarrow{j^*=j^!} D(U)$$

$$i^! \xrightarrow{Rj_*}$$

$$j_!j^*\mathcal{F} \longrightarrow \mathcal{F} \longrightarrow i_!i^*\mathcal{F} \stackrel{+1}{\longrightarrow}$$

Compatability among functors.

A Short List of Applications

Assuming the six-functor formalism (and everything derived), let X be a smooth manifold of dimension n.

1. Define four types of cohomology and the relative cohomology. Verify that:

$$\mathrm{H}^i_\mathrm{c}(X;\mathbb{Q})\cong\mathrm{H}^i\left(ar{X},\{\infty\};\mathbb{Q}\right)$$
 $\mathrm{H}^\mathrm{BM}_i(X;\mathbb{Q})\cong\mathrm{H}^{n-i}(X;\mathrm{Or}_X)$

$$H_i(X; \mathbb{Q}) \cong H_c^{n-i}(X; Or_X)$$

Also, define the cup and cap product structures.

2. Using the projection formula, show Poincaré duality:

$$H^i_c(X; \mathbb{Q})^* \cong H^{n-i}(X; Or_X)$$

 $H^i(X; \mathbb{Q}) \cong H^{n-i}_c(X; Or_X)^*$

3. Derive the Gysin sequence for any oriented S^k -bundle $\pi: E \longrightarrow B$:

$$H^n(B) \xrightarrow{\pi^*} H^n(E) \xrightarrow{\pi_*} H^{n-k}(B) \xrightarrow{en}^{+1}$$

Derive the Mayer-Vietoris sequence and the relative cohomology sequence, and verify the equivalence of different cohomology groups.

4. Compute the upper shriek for singular spaces.

Perverse Sheaf

We will mix the usage of sheaves and complexes. For simplicity, let us fix a Whitney stratification S:

$$\varnothing \stackrel{U_0}{\subset} Z_0 \stackrel{U_1}{\subset} \cdots \stackrel{U_n}{\subset} Z_n = X$$

Denote $D^b_{cons,S}(X)$ as the category of constructible sheaves over X with respect to S.

Definition

Roughly speaking, a perverse sheaf is a type of sheaf that lies between $\pi^*\mathbb{Q}$ and $\pi^!\mathbb{Q}$. More rigorously, a perverse sheaf is a complex that belongs to the heart of the perverse t-structure.

We say that $\mathcal{F} \in D^b_{\mathrm{cons},\mathcal{S}}(X)$ is perverse if

$$\begin{cases} \mathcal{H}^{i}\left(\iota_{U_{j}}^{*}\mathcal{F}\right)=0, & \text{for any } i>-j\\ \mathcal{H}^{i}\left(\iota_{U_{j}}^{!}\mathcal{F}\right)=0, & \text{for any } i<-j \end{cases}$$

Deligne's construction

Any local system \mathcal{L} supported on U_i can be converted into a perverse sheaf through truncations. This process is known as **Deligne's construction**, and the resulting perverse sheaf is called the intersection cohomology complex, or the IC sheaf, denoted by $IC(\mathcal{L})$. IC sheaves are the simple objects in the category $Perv_{\mathcal{S}}(X)$.

To determine whether a complex ${\cal F}$ is perverse or an IC sheaf, one simply needs to complete Table 1.

Nearby Cycle

A perverse sheaf may not be so "perverse", but a nearby cycle is definitely "nearby".

Given $\mathcal{F} \in D^b(\mathbb{C})$, one can construct the **nearby** cycle

$$\psi \mathcal{F} := i^* R j_* p_* p^* j^* \mathcal{F} \in D^b(\{0\}),$$

which can be roughly viewed as the fiber \mathcal{F}_x for x sufficiently close to 0. By quotienting out the non-vanishing cycle $i^*\mathcal{F}$, one obtains the vanishing cycle

$$\varphi \mathcal{F} := \operatorname{cone} \left[i^* \mathcal{F} \xrightarrow{sp} \psi \mathcal{F} \right] \in D^b(\{0\}).$$

In general, \mathcal{C} can be replaced by any disk \mathcal{D} , as the problem is local, and \mathcal{F} can be a sheaf over any space X over \mathcal{D} .

The same construction yields a distinguished triangle in $D^b(X_0)$:

$$i^*\mathcal{F} \longrightarrow \psi_f\mathcal{F} \longrightarrow \varphi_f\mathcal{F} \stackrel{+1}{\longrightarrow}$$

NMD and CC

Normal Morse Data

We work with a fixed complex variety embedding $X \subseteq \mathbb{C}^n$, equipped with a Whitney stratification S. Let $S \subseteq X$ be a connected component of some U_i . Fix $x_0 \in S$, and let N be a normal slice of S at x_0 .

For any sheaf $\mathcal{F} \in D^b_{\mathrm{cons},\mathcal{S}}(X)$, the normal Morse data is defined as

$$NMD(\mathcal{F}, S) := \left(\varphi_{g|_{N\cap X}}(\mathcal{F}|_{N\cap X})\right)_{x_0}[-1]$$

where $g:\mathbb{C}^n\longrightarrow\mathbb{C}$ is a holomorphic function, and f:=Re(g) such that

- $g(x_0) = 0;$
- $df_{x_0} \in T_S^*\mathbb{C}^n$, $df_{x_0} \notin T_{S'}^*\mathbb{C}^n$ for any $S' \neq S$;
- x_0 is a non-degenerate critical point of $f|_S$.

Characteristic Cycle

With normal Morse data, one can define the characteristic cycle

$$\operatorname{CC}(\mathcal{F}) := \sum_{S} m_{S}[T_{S}^{*}\mathbb{C}^{n}] \in H_{2n}^{\operatorname{BM}}\Big(\bigcup_{S} T_{S}^{*}\mathbb{C}^{n}\Big),$$

where

$$m_S := \chi \left(\text{NMD}(\mathcal{F}, S) [-\dim S] \right) \in \mathbb{Z}.$$

The characteristic cycle can be computed when the geometry is well-understood. For example, we can compute $\mathrm{CC}(\mathrm{IC}(\underline{\mathbb{Q}}_{X\smallsetminus\{0\}}))$ when $X\subseteq\mathbb{C}^m$ is a cone over a smooth hyperplane.

References

[1] Masaki Kashiwara and Pierre Schapira.

Sheaves on manifolds. With a short history "Les débuts de la théorie des faisceaux" by Christian Houzel, volume 292 of Grundlehren Math. Wiss.

Berlin etc.: Springer-Verlag, 1990.

[2] Thomas Krämer and Rainer Weissauer. Vanishing theorems for constructible sheaves on abelian varieties.

J. Algebr. Geom., 24(3):531–568, 2015.

[3] Laurenţiu G. Maxim. Intersection homology & perverse sheaves. With applications to singularities, volume 281 of Grad. Texts Math. Cham: Springer, 2019.

[4] Laurenţiu G. Maxim.
Notes on vanishing cycles and applications.

J. Aust. Math. Soc., 109(3):371–415, 2020.

[5] Laurenţiu G. Maxim and Jörg Schürmann. Constructible sheaf complexes in complex geometry and applications.

In Handbook of geometry and topology of singularities III, pages 679–791. Cham: Springer, 2022.

[6] Peter Scholze.
Six-Functor Formalisms.
2022.

[7] Claire Voisin.

Hodge theory and complex algebraic geometry. I. Translated from the French by Leila Schneps, volume 76 of Camb. Stud. Adv. Math. Cambridge: Cambridge University Press, 2007.

$\mathcal{H}^i(-)$	-3	-2	-1	0	1	2	3
$\iota_{U_2}^*\mathcal{F}=\iota_{U_2}^!\mathcal{F}$	×		×	×	×	×	×
$\iota_{U_1}^*\mathcal{F}$			×	×	×	×	×
$\iota^!_{U_1}\mathcal{F}$	×	×	×				
$\iota_{Z_0}^*\mathcal{F}$				×	×	×	×
$\iota^!_{Z_\circ}\mathcal{F}$	X	X	X	×			

Table 1. Sheaf verification for $\dim_{\mathbb{C}} X = 2$.