Machine Learning

Importação e Leitura dos dados

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Breve análise para compreender o conjunto de dados

INFORMAÇÕES DO DATASET:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	SepalLengthCm	150 non-null	float64
1	SepalWidthCm	150 non-null	float64
2	PetalLengthCm	150 non-null	float64
3	PetalWidthCm	150 non-null	float64
4	Class	150 non-null	object
4+45	oc. floa+64/4)	object(1)	

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

DESCRIÇÃO DO DATASET:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

DISTRIBUIÇÃO DAS ESPÉCIES DE IRIS:

Class
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
dtype: int64

Análise visual dos dados

Classificador - Modelo 1 - Todo o Conjunto de dados

Separando os dados e aplicando o algoritmo (DecisionTreeClassifier)

São 120 dados para treinamento e 30 dados para teste.

```
['Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa'
```

Análisando a performance do algoritmo

Precisão do modelo: 100.0

SepalLengthCm: 0.0

SepalWidthCm: 0.01875390706397166 PetalLengthCm: 0.5825299672521005 PetalWidthCm: 0.3987161256839277

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	11
Iris-versicolor	1.00	0.90	0.95	10
Iris-virginica	0.90	1.00	0.95	9
accuracy			0.97	30
macro avg	0.97	0.97	0.96	30
weighted avg	0.97	0.97	0.97	30

Renderizando a árvore graficamente

Navegando na estrutura da arvore de decisão

Número de nós: 9

A arvore binária tem 9 nós e a seguinte estrutura: nó = 0 (nó teste): vai para o nó 1 se o valor do atributo PetalWidt hCm <= 0.800000011920929 se não, vai para o nó 2. nó = 1 (nó folha).nó = 2 (nó teste): vai para o nó 3 se o valor do atributo P etalWidthCm <= 1.75 se não, vai para o nó 6. nó = 3 (nó teste): vai para o nó 4 se o valor do at ributo PetalLengthCm <= 4.950000047683716 se não, vai para o nó 5. nó = 4 (nó folha).nó = 5 (nó folha).nó = 6 (nó teste): vai para o nó 7 se o valor do at ributo PetalLengthCm <= 4.8500001430511475 se não, vai para o nó 8. nó = 7 (nó folha).nó = 8 (nó folha).

Classificador - Modelo 2 - Dados correspondentes às sépalas

Preparação dos dados

São 120 dados das sépalas para treinamento e 30 dados para teste.

Aplicando o algoritmo

```
['Iris-virginica' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-setos
```

Precisão do modelo: 94.1666666666667

Classificador - Modelo 3 - Dados correspondentes às pétalas

Preparação dos dados

São 120 dados das pétalas para treinamento e 30 dados para teste.

Aplicando o algoritmo

```
['Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor'
'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa'
'Iris-versicolor' 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-setosa']
```

Precisão do modelo: 99.1666666666667