حل تمرین مبانی منطق و نظریه مجموعه ها سری دوم، اعداد اصلی و حساب اعداد اصلی

أعماد پورحسني اعداد اصلي و حساب اعداد اصلي

عماد يورحسني

یادآوری

عماد پورحستی اعداد اصلی و حساب اعداد اصلی ۴/۱

يادآورى

- اعداد اصلی
- مفهوم شهودی آن تعداد اعضای یک مجموعه است.
 - $CardA = CardB \iff A \sim B$
- عدد اصلی یک مجموعه متناهی برابر اعداد اعضای آن مجموعه است .
 - عدد اصلی N را با ۵٪ نمایش میدهیم.

يادآورى

- اعداد اصلی
- مفهوم شهودی آن تعداد اعضای یک مجموعه است.
 - $CardA = CardB \iff A \sim B$
- عدد اصلی یک مجموعه متناهی برابر اعداد اعضای آن مجموعه است .
 - عدد اصلی N را با ۵٪ نمایش میدهیم.
 - قضيه كانتور
 - $\operatorname{Card} X < \operatorname{Card} \mathcal{P}(X)$ داریم X داریم هر مجموعه X

$$x \mapsto \{x\}$$

يادآورى

- اعداد اصلی
- مفهوم شهودي آن تعداد اعضاي يک مجموعه است.
 - $CardA = CardB \iff A \sim B$
- عدد اصلی یک مجموعه متناهی برابر اعداد اعضای آن مجموعه است .
 - عدد اصلی اً را با 0 نمایش میدهیم.
 - قضيه كانتور
 - $\operatorname{Card} X < \operatorname{Card} \mathcal{P}(X)$ داریم X داریم هر مجموعه X
 - $x \mapsto \{x\}$

- فرضیه پیوستار
- عدد اصلی مانند x که در $x < 2^{\aleph_0} < x < 2^{\aleph_0}$ صدق کند وجود ندارد.

 $n < \operatorname{Card}\mathbb{N}$ ، $n \in \mathbb{N}$ هر شان دهید برای

 $n < \operatorname{Card}\mathbb{N}$ ، $n \in \mathbb{N}$ هر نشان دهید برای

- است. \mathbb{N}_n یادآوری \mathbb{N}_n هر عدد طبیعی \mathbb{N}_n کاردینال یک مجموعه متناهی \mathbb{N}_n
- در بجوعه اند. میگوییم A و A و B و A دو مجموعه اند. میگوییم A دو A ایک زیر مجموعه از A دو A دو میگوییم A دو A دو

 $n < \operatorname{Card}\mathbb{N}$ ، $n \in \mathbb{N}$ هر نشان دهید برای

- است. \mathbb{N}_n یادآوری \mathbb{N}_n هر عدد طبیعی \mathbb{N}_n کاردینال یک مجموعه متناهی \mathbb{N}_n
- یادآوری ۲ : فرض کنیم A و B دو مجموعه اند. میگوییم A CardA از A با یک زیر مجموعه از A در تناظر یک به یک قرار بگیرد.
 - بر اساس تعریف $\mathbb{N}_{\mathbb{n}}$ یک زیرمجموعه برای مجموعه اعداد طبیعی است.
 - توسط تابع همانی با خودش در تناظر یک به یک است.

 $n < \operatorname{Card}\mathbb{N}$ ، $n \in \mathbb{N}$ هر نشان دهید برای

- است. \mathbb{N}_n یادآوری \mathbb{N}_n هر عدد طبیعی \mathbb{N}_n کاردینال یک مجموعه متناهی \mathbb{N}_n
- یادآوری ۲ : فرض کنیم A و B دو مجموعه اند. میگوییم A CardA خرعه از A با یک زیر مجموعه از B در تناظر یک به یک قرار بگیرد.
 - بر اساس تعریف ™ یک زیرمجموعه برای مجموعه اعداد طبیعی است.
 - توسط تابع همانی با خودش در تناظر یک به یک است.
 - ، پس به ازای هر n طبیعی \blacksquare

 $n < \mathrm{Card} \mathbb{N}$

 $\aleph_0={
m Card}\mathbb{N}\leq a$ یک عدد اصلی ترامتناهی باشد، آنگاه a یک عدد اصلی ترامتناهی است. نتیجه بگیرید که کاردینال \mathbb{N} کوچک ترین عدد اصلی ترامتناهی است.

 $\aleph_0 = {
m Card} \mathbb{N} \leq a$ یک عدد اصلی ترامتناهی باشد، آنگاه تعدد اصلی ترامتناهی است. نتیجه بگیرید که کاردینال \mathbb{N} کوچک ترین عدد اصلی ترامتناهی است.

اگر a برابر با Card ${\mathbb N}$ باشد که حکم صادق است.

در غیر اینصورت، مجموعه هایی که a میتواند عدد اصلی آن باشد را در نظر میگیریم.

 $\aleph_0={
m Card}\mathbb{N}\le a$ یک عدد اصلی ترامتناهی باشد، آنگاه a یک عدد اصلی ترامتناهی است. نتیجه بگیرید که کاردینال \mathbb{N} کوچک ترین عدد اصلی ترامتناهی است.

- اگر a برابر با CardN باشد که حکم صادق است.
- در غیر اینصورت، مجموعه هایی که a میتواند عدد اصلی آن باشد را در نظر میگیریم.
 - اگر این مجموعه متناهی باشد، آنگاه a نمیتواند عدد اصلی ترامتناهی باشد.
- اگر این مجموعه متناهی نباشد، پس یا شمارا است یا ناشمارا، میدانیم که اگر شمارا باشد، پس حتما با ۱۸ در تناظر یک به یک است.
 - در غَیر اینصورت باید مجموعه ای ناشمارا باشد. میدانیم که یعنی کاردینال آن (a) بزرگتر از کاردینال مجموعه اعداد طبیعی است.

 $\aleph_0 = {\rm Card} \mathbb{N} \leq a$ یک عدد اصلی ترامتناهی باشد، آنگاه تا عدد اصلی ترامتناهی است. نتیجه بگیرید که کاردینال \mathbb{N} کوچک ترین عدد اصلی ترامتناهی است.

اگر a برابر با Card باشد که حکم صادق است.

در غیر اینصورت، مجموعه هایی که a میتواند عدد اصلی آن باشد را در نظر میگیریم.

- اگر این مجموعه متناهی باشد، آنگاه a نمیتواند عدد اصلی ترامتناهی باشد.
- اگر این مجموعه متناهی نباشد، پس یا شمارا است یا ناشمارا، میدانیم که اگر شمارا باشد، پس حتما با ۱۸ در تناظر یک به یک است.
 - در غَیر اینصورت باید مجموعه ای ناشمارا باشد. میدانیم که یعنی کاردینال آن (a) بزرگتر از کاردینال مجموعه اعداد طبیعی است.
- پس نتیجه میشود که $a \geq Card$ و میدانیم که مجموعه اعداد طبیعی، کوچک ترین مجموعه نامتناهی است پس کاردینال آن نیز کوچک ترین عدد اصلی ترامتناهی است.

جموعه A و B مفروض اند. نشان دهید :

 $\mathsf{Card} A \leq \mathsf{Card} B \iff \exists f: A \overset{1 \text{ to } 1}{\rightarrow} B$

جموعه A و B مفروض اند. نشان دهید :

$$\mathsf{Card} A \leq \mathsf{Card} B \iff \exists f: A \overset{1 \text{ to } 1}{\rightarrow} B$$

وجود B فرض کنیم $A \leq \operatorname{Card} B$ آنگاه بنابر تعریف عملگر $A \leq \operatorname{Card} B$ نابع یک از $A \in \operatorname{Card} B$ دارد.

بمحوعه A و B مفروض اند. نشان دهید :

 $\operatorname{Card} A \leq \operatorname{Card} B \iff \exists f : A \overset{1 \text{ to } 1}{\rightarrow} B$

- وجود B فرض کنیم $A \leq \operatorname{Card} A$ آنگاه بنابر تعریف عملگر $A \leq \operatorname{Card} B$ وجود دارد.
 - فرض کنیم که تابعی مانند $F:A \to B$ وجود دارد که یک به یک است. این یعنی تمام اعضای مجموعه A بدون اینکه همپوشانی داشته باشیم، به عضوی از B تصویر میشوند. پس A نمیتواند بزرگتر از B باشد، لذا :

 $CardA \leq CardB$

هر دو طرف اگر و تنها اگر برقرار است. حکم ثابت میشود.

