Aula de Inteligencia Artificial

Contornos y Segmentación

Contornos

 Contornos se corresponden con cambios de nivel de gris bruscos en la imagen

Máscaras contornos

X – Direction Kernel

-1	0	1
-2	0	2
-1	0	1

Y – Direction Kernel

-1	-2	-1
0	0	0
1	2	1

Contornos verticales

Contornos horizontales

100	100	200	200
100	100	200	200
100	100	200	200
100	100	200	200

-1	0	1
-2	0	2
-1	0	1

-100	
-200	
-100	
200	
400	
+200	
=400	

Kernel Convolution: The bigger the value at the end, the more noticeable the edge will be.

Fuente: An Implementation of Sobel Edge Detection.

https://www.projectrhea.org/rhea/index.php/An Implementation of Sobel Edge Detection

Convolución

 Aplicar la máscara a toda la imagen desplazando la máscara pixel a pixel

 $contornos\ image = contornos\ verticales + contornos\ horizontales$

Tarea operador sobel

- Analizar y probar el ejemplo "test-filtrado-sobel.py" y ejecutarlo.
- Modificar el ejemplo:
 - Calcular los contornos horizontales.
 - Combinar los contornos horizontales y verticales en una sola imagen.
 - Modificar mostrar los contornos de las imágenes de la cámara utilizando la función cv2.Canny(imagenGrises, 100, 300, 3)

Histogramas

 Representación del número de píxeles de una imagen que tiene un determinado valor (nivel de gris o componente de color)

Separación fondo-objeto basada en histograma - Umbralizado

- Marcar los píxeles como pertenecientes al fondo frente a los objetos usando el nivel de gris
 - Fondo con un color uniforme y claro (oscuro)
 - Objetos con un color oscuro (claro)
- Píxeles nivel gris > umbral → Cambiar a blanco
- Píxeles nivel gris <= umbral → Cambiar a negro

Tarea umbralizado

- Analizar y ejecutar el script "test-segmentacionhistograma.py".
- Cambiar el valor del umbral y comprobar los resultados.
- Modificar el script para abrir la imagen.
 BioID_0086.jpg y encontrar un umbral que permita separar la cara de la persona del fondo.

Detección objeto en movimiento mediante en diferencia de imágenes

- Detecta los objetos que se mueven en un vídeo.
- Diferencia entre fotogramas consecutivos.
 - Si el objeto se mueve la diferencia entre fotogramas es mayor que cero
 - Si el objeto no se mueve la diferencia entre fotogramas es cero (muy baja debido al ruido)

Detección objeto en movimiento mediante en diferencia de imágenes

Tarea diferencia imágenes

- Analizar y ejecutar el script "test-diferenciaimagenes.py".
- Modificar cambiando el valor mínimo para considerar movimiento (valor 30 en la función cv2.threshold) y ver resultado.

Separación fondo-objeto basada sustracción del fondo

- Utilizado cuando hay objetos en movimiento en un video.
- Marcar como fondo los píxeles que no cambian su nivel de gris con respecto al fondo estático.
- Diferencia con fondo estático > umbral → objeto
- Diferencia con fondo estático <= umbral → fondo

Separación fondo-objeto basada sustracción del fondo

Tarea sustracción del fondo

- Analizar y ejecutar el script "test-sustraccionfondo.py".
- Modificar el ejemplo para dibujar una línea vertical en que siga al objeto por la imagen.

My little piece of privacy, Niklas Roy, 2010