EC-350 AI and Decision Support Systems

Week 1 Introduction

Dr. Arslan Shaukat

Acknowledgement: Lecture slides material from Stuart Russell

Faculty Introduction

- Education
 - BE and MS Computer System Engineering
 - College of EME, NUST
 - PhD Computer Science (Machine Learning)
 - The University of Manchester, U. K.
- Experience
 - More than 7 years

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

Areas of Interest

- Machine Learning & Pattern Recognition
- Digital Image & Speech Processing
- Facial and Speech Emotion Recognition

Introduction – (Yours)

- Name
- Previous institution/City
- Area/Subject of interest
- Where you see yourself in future

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

Course Information

Course Title: AI and Decision Support Systems

• Course Code: EC-350

• Credit Hours: 3-1

• Semester: Fall 2017

Email: arslan.shaukat@ce.ceme.edu.pk

• Class: Tue & Wed

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

U

Books

Textbook:

 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition 2010

Reference:

- Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th ed. G. Luger, Addison Wesley, 2009
- Artificial Intelligence: A Systems Approach. M. Tim Jones, Infinity Science Press, 2008
- Pattern Classification (2nd edition 2006), by Richard O. Duda, Peter E. Hart and David G. Stork, Wiley Inter-science.
- Pattern Recognition and Machine Learning by Christopher Bishop, Springer 2006.

27/09/2017 EC-350 AI and DSS Dr Arslan Shaukat EME (NUST) 7

Course Contents

- Introduction to Artificial Intelligence
- Agents, PEAS model, Rationality, Nature & properties of environment
- Structures of agents
- Problem solving by searching, Uninformed search strategies, Breadth first search (BFS)
- Depth first search (DFS), Depth limited search, Iterative deepening DFS
- Informed search strategies, Greedy best first search, A* search
- Genetic algorithms
- Games, Minimax algorithm, Alpha beta pruning

Course Contents

- Introduction to Machine Learning and basic types of classifiers,
 Performance parameters for evaluation
- K-Nearest Neighbor (KNN), ROC Analysis
- Bayesian Decision Theory
- Naïve Bayes Classifier
- Neural networks and single layer Perceptron
- Introduction to decision trees

27/09/2017 EC-350 AI and DSS Dr Arslan Shaukat EME (NUST) 9

Marks Distribution

_ T	T 7	٠.,	4		
• \	Λ/	r 11	ten	HV	ams

- 2 Sessional Exams 25%

- Final Exam 35-40%

• Quizzes 10%

Assignments 5%

Lab 15%

Lab project 5-10%

Policies

- No extensions in assignment deadlines.
- Quizzes will be unannounced.
- Never cheat.
 - "Better fail NOW or else will fail somewhere LATER in life"
- Plagiarism will also have strict penalties.

dapted from What is Plagiarism PowerPoint

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

11

Course Learning Outcomes

Course Learning Outcomes (CLOs)	Level of Learning	PLO
Solving problems using various uninformed and informed search strategies.	C3	2
2. Apply local search algorithms like Genetic Algorithm (GA) on optimization problems and perform Minimax search on games such as tic-tac-toe.	C3	2
3. Design machine learning systems, demonstrating understanding of machine learning concepts including feature extraction and classification.	C6	3
4. Implement projects in the lab work that use Python and MATLAB for execution of the theoretical knowledge gained during class lectures, requiring some independent reading, programming and simulations.	P2	3

Artificial Intelligence (AI)

What is Intelligence?

- A machine is intelligent if it has:
 - Ability to learn and adapt from environment
 - Ability to acquire knowledge
 - Ability to memorize and proceed
 - Ability to plan and schedule
 - Ability to recognize voice, patterns, faces
 - Ability to understand and perceive
 - Ability to solve complex problems

What is Artificial Intelligence

- If a machine could do all or most of the previously mentioned tasks, we can call that machine an intelligent machine
- The 'intelligence' in the machine is NOT natural but artificial

27/09/2017 EC-350 AI and DSS Dr Arslan Shaukat

What is Artificial Intelligence

EME (NUST)

15

- Concerned with *building* intelligence in artificial man made devices
- Making machines to behave like humans if we consider humans to be intelligent
- Making machines to behave in most rational manner
 - Thinking/reasoning intelligently
 - Acting/behaving intelligently

Main Branches of AI

- Strong AI
 - Systems that "think" like humans
 - Systems that "think" rationally
- Weak AI
 - Systems that "act" like humans
 - Systems that "act" rationally

27/09/2017 EC-350 AI and DSS Dr Arslan Shaukat EME (NUST) 17

Strong AI

- Make machines to think intelligently [like human beings] as if they have real conscious minds
- Deals with "How brain works"
- Actually tries to recreate the functions of the inside of the brain
- Advocates Machine can replace a human being
- Many researchers believe it is NOT possible to attain

Weak AI

- Machines can be made to act as if they are intelligent
- Treats brain as a black box which creates output after it receives input
- Is NOT concerned with inner functionality of brain
- Most of the research in done in this field

27/09/2017 EC-350 AI and DSS Dr Arslan Shaukat EME (NUST) 19

Acting Humanly – Turing Test

- Alan Turing (1950) "Computing Machinery and intelligence"
- Can Machine behave intelligently?
- Operational test for intelligent behavior

Turing Test

- Suggested major components of AI
 - natural language processing
 - to enable it to communicate successfully in English
 - knowledge representation
 - to store what it knows or hears
 - automated reasoning
 - to use the stored information to answer questions and to draw new conclusions
 - machine learning
 - to adapt to new circumstances and to detect and extrapolate patterns.
 - computer vision
 - · to perceive objects
 - robotics

27/09/2017

to manipulate objects and move about.
 EC-350 AI and DSS
 Dr Arslan Shaukat

EME (NUST)

21

Thinking Humanly - Cognitive Science

- A system is intelligent if it *thinks* like a human.
- If a system uses the same reasoning processes as a human, then it is intelligent
- Requires scientific theories of internal working of brain
- Two ways:
 - Try to catch our own thoughts as they go by
 - Through psychological experiments
- Cognitive Science brings together computer models from AI and experimental techniques from psychology
- To construct theories of the workings of human mind

Thinking Rationally – Laws of Thought

- A system is intelligent if it thinks *rationally*.
- An intelligent system is one that follows sound reasoning processes that always lead to correct outcomes.
- Logicians in the 19th century developed a precise notation for statements about all kinds of objects in the world and the relations among them.
- This leads to the study of logic and formal reasoning
- However, logic has its problems.
 - Formalizing common-sense knowledge
 - Computational issues

27/09/2017 EC-350 AI and DSS Dr Arslan Shaukat EME (NUST) 23

Acting Rationally

- A system is intelligent if it acts rationally.
- A rational agent is one that acts so as to achieve the best possible (expected) outcome, given its knowledge and ability.
- We can build agents that do certain tasks intelligently without having human-level intelligence.
- All the skills needed for Turing Test also allow an agent to act rationally.

Foundation of AI

- Many disciplines provided the foundation for Artificial Intelligence. Few to mention are as follows:
- Philosophy (428 BC Present)
- Mathematics (800 Present)
- Economics (1776 Present)
- Neuroscience (1861 Present)
- Psychology (1879 Present)
- Computer Engineering (1940 Present)
- Control theory & Cybernetics (1948 Present)
- Linguistics (1957 Present)

27/09/2017 EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

25

Few applications using AI

- Games
- Robotics
- Tutoring systems
- Medicine
- Biometrics
- Natural Language Processing
- etc...

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

Few applications using AI

- Deep Blue
 - <u>http://www-</u> 03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
- Mars pathfinder
 - <u>http://www.nasa.gov/mission_pages/mars-pathfinder/</u>
- Aaron the Robot as an Artist
 - http://www.scinetphotos.com/aaron.html
- Speech recognition
 - http://www.nuance.com/

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

27

Few applications using AI

- Honda Humanoid Robot
 - http://world.honda.com/ASIMO/
- Mars rover curiosity
 - http://mars.jpl.nasa.gov/msl/mission/overview/
- Association for the Advancement of AI
 - http://www.aaai.org
- Al Book
 - http://aima.cs.berkeley.edu/

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

Intelligent Agents

Intelligent Agent

- An *agent* is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.
- Agent Examples
 - A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth and other body parts for actuators
 - A robotic agent substitutes cameras and infrared range finders for the sensors and various motors for the actuators.
 - A software agent receives keystrokes, network packets, file contents as sensory input and acts upon the environment by displaying on screen, sending network packets and writing files.

Percept & Percept Sequence

- Percept refers to agent's perceptual input at any given instance
- Percept sequence is the complete history of everything agent has ever perceived
 - An agent's choice of action at any given instance can depend on the entire percept sequence observed to-date

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

31

Agent Function

- Mathematically, an agent's behavior is described by the agent function that maps any given percept sequence to an action
 - For most agent this would become a very large table. May be of infinite size
 - Have to put a bound on the length of the percept sequence we want to consider
 - This table is an external characterization of an agent
 - Internally, agent function for an artificial agent shall be an agent program
 - Agent Function is a mathematical description
 - Agent Program is a concrete implementation

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

1	V	acuum-	\mathbb{C}^{1}	leaner	A	Agent
	•	***************************************	_		-	

Percept	t Sequence		Action
[A, Clea	an]		Right
[A, Dirt	ty]		Suck
[B, Clea	an]		Left
[B, Dirt	y]		Suck
9/2017	FC-350 AI and DSS	Dr Arslan Shaukat	EME (NUST)

Good Behavior - Rationality

- Rational Agent is the one which does the "right thing" based on what it perceives and the actions it performs.
- Every entry in the table for the agent function is filled out correctly
- The right action is the one that will cause the agent to be most successful
- How can we say an agent is successful?
- We need some criterion to measure its success

Performance Measure

- An objective criterion for success of an agent's behavior
- e.g., performance measure of a vacuum-cleaner agent could be amount of dirt cleaned up, amount of time taken, amount of electricity consumed, amount of noise generated, etc
- No single universal criterion for every agent
- As a general rule, it is better to design a performance measure according to what one actually wants in the environment rather than according to how one thinks the agent should behave
- The selection of performance measure is not always easy

27/09/2017 EC-350 AI and DSS Dr Arslan Shaukat EME (NUST) 37

Rationality

- What is rational at given time depends upon four things
 - The performance measure that defines criterion for success
 - The agent's prior knowledge of the environment
 - The actions that agent can perform
 - The agent's percept sequence to-date

Rational Agent

- For each possible *percept sequence*, a rational agent should select an *action* that is expected to maximize its *performance measure*, given the evidence provided by the percept sequence and whatever *built-in knowledge* the agent has.
- Vacuum-cleaner agent?

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)

39

Vacuum-Cleaner Agent

- The performance measure awards one point for each clean square at each time step, over a "lifetime" of 1000 time steps.
- The "geography" of the environment is known a priori but the dirt distribution and the initial location of the agent are not.
- The only available actions are Left, Right, and Suck.
- The agent correctly perceives its location and whether that location contains dirt.

27/09/2017

EC-350 AI and DSS

Dr Arslan Shaukat

EME (NUST)