Calcolo integrale — Scheda di esercizi n. 1	
28 Febbraio 2022 — Compito n. 00170 — 🗌 🗎 🗎 🗎 🗎 🗎 🗎 🗎	
Istruzioni: le prime due caselle $(\mathbf{V} \ / \ \mathbf{F})$ permettono di selezionare la risposta vero/falso.	Nome:
La casella "C" serve a correggere eventuali errori nvertendo la risposta data.	Cognome:
Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \boxdot).	Matricola:
Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.	
1A 1B 1C 1D 2A 2B 2C	2D 3A 3B 3C 3D 4A 4B 4C 4D
v	
F	

- 1) Dire se le seguenti affermazioni sono vere o false.
- **1A)** La serie di termine generico $\frac{1}{k+1}$ convergente.
- **1B)** La serie di termine generico $\frac{4^k}{5^k}$ è convergente. **1C)** La serie di termine generico $\frac{1}{k\sqrt{k}}$ è divergente.
- **1D)** La serie di termine generico $\frac{7^k}{(-6)^k}$ converge.
- 2) Dire se le seguenti affermazioni sono vere o false.
- **2A)** La serie di termine generico $\frac{5^k}{6^k}$ converge a 5. 2B)

$$\sum_{k=2}^{+\infty} \frac{1}{2^k} = \frac{1}{2} \,.$$

2C)

$$\sum_{k=18}^{+\infty} 7^k = \frac{7^{18+1}}{6} \,.$$

2D) La serie di termine generico $\frac{7}{3^k}$ converge a $\frac{7}{2}$.

- 3) Dire se le seguenti affermazioni sono vere o false.
- **3A)** La serie di termine generico $\frac{k}{k+2}$ può essere
- **3B)** La serie di termine generico $\cos^2(\frac{1}{k+2})$ è divergente.
- **3C)** La serie di termine generico $\sin(\frac{1}{k+4})$ o converge, o diverge positivamente.
- **3D)** La serie di termine generico $\frac{(-1)^k}{k+6}$ soddisfa la condizione necessaria per la convergenza.
- 4) Dire se le seguenti affermazioni sono vere o false.
- **4A)** La serie di termine generico $e^{\frac{4}{k^2}} 1$ è convergente.
- **4B)** La serie di termine generico $\ln(1+\frac{7}{k})$ è
- **4C)** La serie di termine generico $\operatorname{tg}(\frac{k}{k+6})$ è
- **4D)** La serie di termine generico $k^3 \sin(\frac{1}{k^6})$ è divergente.

- 5) Sia $a_k=\frac{1}{k^9}$ per $k\geq 1.$ a) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} a_k.$$

 $\mathbf{b})$ Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} \frac{a_k}{a_{k+5}}.$$

c) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} \, k^2 \, \operatorname{tg}(a_k) \,.$$

d) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} \frac{1 - \cos(a_k)}{\ln(1 + a_k)}.$$

6) Sia $a_k=2^k$ per $k\geq 0.$ a) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} a_k.$$

 $\mathbf{b})$ Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} \frac{1}{a_k} .$$

 $\mathbf{c})$ Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} \frac{a_k}{3^k}.$$

d) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} \frac{k^6 a_k}{k!} \, .$$

Soluzioni del compito 00170

1) Dire se le seguenti affermazioni sono vere o false.

1A) La serie di termine generico $\frac{1}{k+1}$ è convergente.

Falso: La serie è la serie armonica (o, volendo, la serie armonica generalizzata con $\alpha = 1$), e quindi è divergente.

1B) La serie di termine generico $\frac{4^k}{5^k}$ è convergente.

Vero: Si tratta della serie geometrica di termine generico $\frac{4}{5} < 1$, ed è quindi convergente.

1C) La serie di termine generico $\frac{1}{k\sqrt{k}}$ è divergente.

Falso: Si tratta della serie armonica generalizzata con $\alpha = \frac{3}{2} > 1$, ed è quindi una serie convergente.

1D) La serie di termine generico $\frac{7^k}{(-6)^k}$ converge.

Falso: Si tratta della serie geometrica con $q=-\frac{7}{6}<-1$, che è una serie non convergente.

Ricordiamo che, se -1 < q < 1, si ha

(1)
$$\sum_{k=0}^{+\infty} q^k = \frac{1}{1-q},$$

mentre, se $q \ge 1$, si ha

(2)
$$\sum_{k=0}^{+\infty} q^k = +\infty,$$

nel senso che la serie diverge positivamente.

2A) La serie di termine generico $\frac{5^k}{6^k}$ converge a 5.

Falso: Dalla (1), con $q = \frac{5}{6}$, si ha

$$\sum_{k=0}^{+\infty} \frac{5^k}{6^k} = \frac{1}{1 - \frac{5}{6}} = 6 \neq 5.$$

$$\sum_{k=2}^{+\infty} \frac{1}{2^k} = \frac{1}{2} \,.$$

Vero: Si ha, usando la (1) con $q = \frac{1}{2}$,

$$\sum_{k=2}^{+\infty} \frac{1}{2^k} = \frac{1}{4} \sum_{k=2}^{+\infty} \frac{1}{2^{k-2}} = \frac{1}{4} \sum_{h=0}^{+\infty} \frac{1}{2^h} = \frac{1}{4} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2}.$$

$$\sum_{k=1.8}^{+\infty} 7^k = \frac{7^{18+1}}{6} \, .$$

Falso: Si ha, per la (2) con q = 7 > 1,

$$\sum_{k=18}^{+\infty} 7^k = 7^{18} \, \sum_{k=18}^{+\infty} \, 7^{k-18} = 7^{18} \, \sum_{h=0}^{+\infty} \, 7^h = +\infty \, .$$

2D) La serie di termine generico $\frac{7}{3^k}$ converge a $\frac{7}{2}$.

Falso: Si ha, dalla (1) con $q = \frac{1}{3}$,

$$\sum_{k=0}^{+\infty} \frac{7}{3^k} = 7 \sum_{k=0}^{+\infty} \frac{1}{3^k} = 7 \frac{1}{1 - \frac{1}{3}} = \frac{21}{2} \neq \frac{7}{2}.$$

Ricordiamo che:

- (1) se il termine generico di una serie non tende a zero, la serie non può essere convergente (condizione necessaria);
- (2) una serie a termini positivi o converge, o diverge positivamente.
- **3A)** La serie di termine generico $\frac{k}{k+2}$ può essere convergente.

Falso: Dato che

$$\lim_{k\to +\infty}\,\frac{k}{k+2}=1\neq 0\,,$$

la serie non può essere convergente per la (1). Osservando poi che la serie è a termini positivi, per la (2) si ha che la serie diverge.

3B) La serie di termine generico $\cos^2(\frac{1}{k+2})$ è divergente.

Vero: La serie è a termini positivi; per la (2), o converge o diverge. Dato che

$$\lim_{k\to +\infty}\,\cos^2\left(\frac{1}{k+2}\right)=1\,,$$

il termine generico della serie non è infinitesimo e quindi, per la (1), la serie non può convergere. Ne consegue che la serie è divergente.

3C) La serie di termine generico $\sin(\frac{1}{k+4})$ o converge, o diverge positivamente.

Vero: Si tratta di una serie a termini positivi; per la (2), quindi, la serie o converge o diverge positivamente. Dato che il termine generico della serie tende a zero, dalla (1) non si può concludere nulla.

3D) La serie di termine generico $\frac{(-1)^k}{k+6}$ soddisfa la condizione necessaria per la convergenza.

Vero: Dato che

$$\lim_{k\to +\infty}\,\frac{(-1)^k}{k+6}=0\,,$$

la serie soddisfa la condizione necessaria di convergenza.

4) Dire se le seguenti affermazioni sono vere o false.

Ricordiamo il criterio del confronto asintotico: date due successioni $\{a_k\}$ e $\{b_k\}$, entrambe a termini positivi, se si ha

$$\lim_{k \to +\infty} \frac{a_k}{b_k} = L \,,$$

con

$$(1) 0 < L < +\infty,$$

allora la serie di termine generico a_k è convergente se e solo se la serie di termine generico b_k è convergente (ricordiamo, che, essendo a termini positivi, entrambe le serie o convergono o divergono positivamente).

4A) La serie di termine generico $e^{\frac{4}{k^2}} - 1$ è convergente.

Vero: Si ha, per uno dei limiti notevoli,

$$\lim_{k \to +\infty} \frac{\mathrm{e}^{\frac{4}{k^2}} - 1}{\frac{4}{k^2}} = 1 = L \,.$$

Dato che L soddisfa (1), la serie data ha lo stesso comportamento della serie

$$\sum_{k=1}^{+\infty} \frac{4}{k^2},$$

che è convergente, essendo — a meno del fattore moltiplicativo 4 — una serie armonica generalizzata con $\alpha = 2 > 1$. Per il criterio del confronto asintotico, la serie data è dunque convergente.

4B) La serie di termine generico $\ln(1+\frac{7}{k})$ è divergente.

Vero: Si ha, per uno dei limiti notevoli,

$$\lim_{k\to +\infty}\,\frac{\ln\left(1+\frac{7}{k}\right)}{\frac{7}{k}}=1=L\,.$$

Dato che L soddisfa (1), la serie data ha lo stesso comportamento della serie

$$\sum_{k=1}^{+\infty} \frac{7}{k},$$

che è divergente, essendo — a meno del fattore moltiplicativo 7 — la serie armonica. Per il criterio del confronto asintotico, la serie data è dunque divergente.

4C) La serie di termine generico $\operatorname{tg}(\frac{k}{k+6})$ è convergente.

Falso: Dato che

$$\lim_{k \to +\infty} \operatorname{tg}\left(\frac{k}{k+6}\right) = \operatorname{tg}(1) \neq 0,$$

la serie non soddisfa la condizione necessaria di convergenza. Essendo a termini positivi, la serie diverge.

4D) La serie di termine generico $k^3 \sin(\frac{1}{k^6})$ è divergente.

Falso: Si ha, ricordando uno dei limiti notevoli,

$$\lim_{k\to +\infty}\frac{k^3\,\sin\left(\frac{1}{k^6}\right)}{\frac{1}{k^3}}=\lim_{k\to +\infty}\frac{\sin\left(\frac{1}{k^6}\right)}{\frac{1}{k^6}}=1=L\,.$$

Dato che L soddisfa (1), la serie data ha lo stesso comportamento della serie

$$\sum_{k=1}^{+\infty} \frac{1}{k^3} \,,$$

che è convergente essendo una serie armonica generalizzata con $\alpha=3>1$. Per il criterio del confronto asintotico, la serie data è convergente.

- **5)** Sia $a_k = \frac{1}{k^9}$ per $k \ge 1$.
- a) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} a_k.$$

b) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} \frac{a_k}{a_{k+5}} \, .$$

c) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} k^2 \operatorname{tg}(a_k).$$

d) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=1}^{+\infty} \frac{1 - \cos(a_k)}{\ln(1 + a_k)}.$$

Soluzione:

- a) Si tratta di una serie armonica generalizzata con $\alpha = 9 > 1$; la serie, pertanto, converge.
- b) Dato che

$$\lim_{k \to +\infty} \, \frac{a_k}{a_{k+5}} = \lim_{k \to +\infty} \, \frac{(k+5)^9}{k^9} = \lim_{k \to +\infty} \left(\frac{k+5}{k}\right)^9 = 1^9 = 1 \, ,$$

la serie non soddisfa la condizione necessaria di convergenza. Dato che è a termini positivi, la serie diverge.

c) Dato che, essendo a_k infinitesima, si ha $\operatorname{tg}(a_k) \approx a_k$, per il criterio del confronto asintotico, la serie data ha lo stesso comportamento della serie

$$\sum_{k=1}^{+\infty} k^2 a_k = \sum_{k=1}^{+\infty} \frac{1}{k^7}.$$

Quest'ultima serie è convergente, essendo una serie armonica generalizzata con $\alpha=7>1$. Ne segue che la serie data converge.

d) Ricordando che, essendo a_k infinitesima, si ha $1 - \cos(a_k) \approx \frac{a_k^2}{2}$ e $\ln(1 + a_k) \approx a_k$, per il criterio del confronto asintotico la serie data ha lo stesso comportamento della serie

$$\sum_{k=1}^{+\infty} \frac{a_k^2}{2a_k} = \frac{1}{2} \sum_{k=1}^{+\infty} a_k \,,$$

che è convergente (si veda l'esercizio a)). Ne segue che la serie data converge.

- **6)** Sia $a_k = 2^k \text{ per } k \ge 0.$
- a) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} a_k.$$

b) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} \frac{1}{a_k}.$$

c) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} \frac{a_k}{3^k}.$$

d) Dire (motivando la risposta) se è convergente o no la serie

$$\sum_{k=0}^{+\infty} \frac{k^6 a_k}{k!}.$$

Soluzione:

- a) Si tratta di una serie geometrica di ragione q=2>1; la serie, pertanto, diverge positivamente.
- b) Si tratta di una serie geometrica di ragione $q=\frac{1}{2}<1$; la serie, pertanto, converge e si ha

$$\sum_{k=0}^{+\infty} \frac{1}{2^k} = \frac{1}{1 - \frac{1}{2}} = 2.$$

c) Si tratta di una serie geometrica di ragione $q=\frac{2}{3}<1$; la serie, pertanto, converge e si ha

$$\sum_{k=0}^{+\infty} \frac{2^k}{3^k} = \frac{1}{1 - \frac{2}{3}} = 3.$$

d) Applichiamo il criterio del rapporto alla serie di termine generico

$$b_k = \frac{k^6 a_k}{k!} = \frac{k^6 2^k}{k!} \,.$$

Si ha

$$\frac{b_{k+1}}{b_k} = \frac{(k+1)^6 \, 2^{k+1}}{(k+1)!} \, \frac{k!}{k^6 \, 2^k} = 2 \left(\frac{k+1}{k}\right)^6 \frac{1}{k+1} \,,$$

da cui segue che

$$\lim_{k\to +\infty}\,\frac{b_{k+1}}{b_k}=\lim_{k\to +\infty}\,2\left(\frac{k+1}{k}\right)^6\frac{1}{k+1}=2\cdot 1^2\cdot 0=0\,,$$

e quindi la serie converge (dato che 0 < 1).