Aprenda Sozinho Visualmente

Cálculo

Por Dale Johnson Tradução: Turma de MAT 872

1	Um	na Introdução para Limites							
	1.1	Cálculo de Limites	4						
		LIMITE DE UMA FUNÇÃO							
		INCLINAÇÃO DE LINHA TANGENTE A UMA CURVA							
	1.4	SOMA DE RIEMANN: ÁREA SOB UMA CURVA	11						
	1.5	Cálculo de Limites	14						
	1.6	Definição do Limite de uma Função	16						
	1.7	.7 Limites Laterais							
		1.7.1 LIMITES LATERAIS DE UMA FUNÇÃO RACIONAL	20						

Capítulo 1

Uma Introdução para Limites

Este capítulo discute a importância dos limites para o estudo do cálculo diferencial e do cálculo integral. O Cálculo Diferencial envolve encontrar uma derivada - como a inclinação de uma linha tangente ou a taxa de variação do volume de um balão em relação ao seu raio - do valor máximo ou mínimo de uma função. O cálculo Integral envolve encontrar uma integral - como determinar a função de velocidade a partir de sua função de aceleração, calcular a área sob uma curva, encontrar o volume de um sólido irregular ou determinar o comprimento de um arco ao longo de uma curva. Começando com alguns exemplos de como você pode usar limites no cálculo, a seguir introduzo uma noção intuitiva de limites. A partir da definição formal de um limite, você aprende maneiras de determinar os limites das funções de seus gráficos, bem como como usar algumas propriedades básicas de limite. O capítulo conclui com uma breve discussão sobre continuidade e dois importantes teoremas relacionados à continuidade.

Cálculo de Limites

Esta seção fornece alguns exemplos de como usar técnicas algébricas para calcular limites. Isso inclui os termos de uma série infinita, a soma de uma série infinita, o limite de uma função, a inclinação de uma reta tangente ao gráfico de uma função e a área de uma região delimitada pelos gráficos de várias funções.

TERMOS DE UMA SÉRIE INFINITA

1 Vamos dar uma olhada nas séries

 $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, ..., \frac{1}{2^{n-1}}$ onde n é um número inteiro positivo. À medida que n fica maior, o termo $\frac{1}{2^{n-1}}$ fica cada vez menor.

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, ..., \frac{1}{1024}, ..., \frac{1}{524.288}...$$
Para n=1 Para n=20.

2 Se n fosse grande o suficiente (digamos n aproximado), parece que os termos se aproximam de 0. Na linguagem dos limites, você pode dizer que o limite de $\frac{1}{2^{n-1}}$ conforme n se aproxima ∞ , é 0.

$$\lim_{x \to \infty} \frac{1}{2^{n-1}} = 0$$

LIMITE DA SOMA DE UMA SÉRIE INFINITA

1 Vamos dar um passo adiante e tentar encontrar a soma dos termos da série mencionada anteriormente, pois n fica muito grande.

$$1, \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^{n-1}} + \dots$$

Uma Introdução para Limites Capítulo 1

2 Para valores crescentes de n, a soma desse Para $n = 1 \rightarrow soma = 1$ número de termos é mostrada a direita.

Para
$$n = 1 \rightarrow soma = 1$$

Para $n = 2 \rightarrow soma = 1 + \frac{1}{2} = 1\frac{1}{2}$
Para $n = 3 \rightarrow soma = 1 + \frac{1}{2} + \frac{1}{4} = 1\frac{3}{4}$
Para $n = 3 \rightarrow soma = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 1\frac{7}{8}$
Para $n = 3 \rightarrow soma = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} = 1\frac{127}{128}$

.....

3 Parece que a soma dos termos desta série está se aproximando de 2. Na linguagem dos limites, dizemos que o limite da soma dos termos $\frac{1}{2^{n-1}}$, conforme n se aproxima ∞ , é 2.

DICA

Lembre-se de que o símbolo \sum (sigma) representa "a soma de".

$$\lim_{t \to \infty} \left(\sum_{n=1}^{t} \frac{1}{2^{n-1}} \right) = 2$$

LIMITE DE UMA FUNÇÃO

1 O gráfico de $f(x) = (x+3)(x-2)^2$ é mostrado à direita. Conforme x fica cada vez mais perto de 2 (da esquerda e da direita), f(x) fica cada vez mais perto de 0.

$$\lim_{x \to 2} f(x) = 0??$$

Uma Introdução para Limites Capítulo 1

2 Experimente alguns valores para x próximos de 2, encontrando suas coordenadas y para verificar se o limite é realmente 0.

Valores para $f(x) = (x+3)(x-2)^2$								
x	$f(x) = (x+3)(x-2)^2$							
0.5	7.875							
1.0	4							
1.5	1.125							
1.8	0.192 x se aproxima de 2 pela esquerda							
1.9	0.049							
1.99	0.0005							
1.999	0.000005							
2	0							
2.001	0.000005							
2.01	0.0005							
2.1	0.051							
2.2	0.208 x se aproxima de 2 pela direita							
2.5	1.375							
3.0	6							
3.5	14.625							

.....

3 No gráfico, parece que à medida que x fica cada vez mais perto de 2, o valor de f(x) fica cada vez mais perto de 0.

$$\lim_{x \to 2} f(x) = 0$$

INCLINAÇÃO DE LINHA TANGENTE A UMA CURVA

① O gráfico de $f(x) = (x-2)^2 + 1$ é mostrado à baixo com uma linha tangente à curva desenhada no ponto com coordenada 3.

2 Vamos aproximar a inclinação dessa linha tangente vermelha. Selecione alguns valores de x que se aproximam de 3 do lado direito: 4, 3, 5, 3, 1, 3, 01 e, é claro, 3. Deixando Δx (leia "delta x") igual à diferença entre o valor selecionado de x e 3, você pode completar o gráfico à baixo.

S	Selecionados do Gráfico de $f(x) = (x-2)^2 + 1$							
	Δx	$3 + \Delta x$	$f(3+\Delta x)$	Ponto Resultante				
1	4	5	(4,5)	A				
0.5	3.5	3.25	(3.5, 3, 25)	В				
0.1	3.1	2.21	(3.1, 2.21)	С				
0.01	3.01	2.201	(3.01, 2.0201)	D				
0	3	2	(3.2)	T				

3 Em seguida, calcule as inclinações das linhas secantes. \overrightarrow{AT} , \overrightarrow{BT} , \overrightarrow{CT} , e \overrightarrow{DT}

Declive de
$$\overrightarrow{AT} = \frac{5-2}{4-3} = 3$$

Declive de
$$\overrightarrow{BT} = \frac{3.25 - 2}{3.5 - 3} = \frac{1.25}{0.5} = 2.5$$

Declive de
$$\overrightarrow{CT} = \frac{2.21 - 2}{3.1 - 3} = \frac{0.21}{0.1} = 2.1$$

Declive de
$$\overleftrightarrow{DT} = \frac{2.0201 - 2}{3.01 - 3} = \frac{0.0201}{0.01} = 2.01$$

INCLINAÇÃO DE LINHA TANGENTE A UMA CURVA

4 À medida que os pontos escolhidos A, B, C e D se aproximam cada vez mais do ponto T $(\Delta x \longrightarrow 0)$, a inclinação da linha tangente em x = 3 fica cada vez mais perto de 2.

A inclinação da reta tangente ao gráfico de $f(x) = (x - 2)^2 + 1$ em x = 3 é igual a 2.

.....

 \bullet Para qualquer ponto P próximo a \bullet , a inclinação de \overrightarrow{PT} é dada por:

$$= \frac{f(3+\Delta x) - f(3)}{(3+\Delta x) - 3}$$
$$= \frac{f(3+\Delta x) - f(3)}{\Delta x}$$

6 Como ($\Delta x \longrightarrow 0$), o ponto P move-se extremamente próximo ao ponto T; neste caso, a inclinação da linha tangente no ponto T será a expressão na Etapa 5 acima.

$$\lim_{\Delta x \to 0} \frac{f(3 + \Delta x) - f(3)}{\Delta x} = 2$$

7 A expressão na Etapa 6 também é conhecida como a derivada de f(x) em x=3 e é denotada por f'(3). Nos Capítulos 3–6, você aprenderá muitas técnicas para determinar a derivada de uma função.

$$f'(3) = \lim_{\Delta x \to 0} \frac{f(3 + \Delta x) - f(3)}{\Delta x}$$

Portanto, a inclinação da reta tangente ao gráfico de $f(x) = (x - 2)^2 + 1$ em x = 3 é 2.

SOMA DE RIEMANN: ÁREA SOB UMA CURVA

1 O último exemplo de limite envolve a aproximação da área abaixo do gráfico de $f(x) = x^2$, acima do eixo x, à direita da linha x = 1 e à esquerda da linha x = 5.

Observação: Tente encontrar uma aproximação inferior e superior da área real. Uma aproximação inferior usa retângulos inscritos e uma aproximação superior usa retângulos circunscritos.

SOMA DE RIEMANN: ÁREA SOB UMA CURVA

Usando quatro retângulos inscritos, cada um tendo uma base de 1 unidade, seus correspondentes alturas são encontradas: f(1) = 1, f(2) = 4, f(3) = 9 e f(4) = 16. O cálculo da área é mostrado à direita.

Área =
$$1 \cdot f(1) + 1 \cdot f(2) + 1 \cdot f(3) + 1 \cdot f(4)$$

= $1 \cdot 1 + 1 \cdot 4 + 1 \cdot 9 + 1 \cdot 16$
= 30

Esta aproximação de área é menor do que a área desejada real.

3 Em seguida, usando quatro retângulos circunscritos, cada um tendo uma base de 1 unidade, suas alturas correspondentes são encontradas: f(2) = 4, f(3) = 9, f(4) = 16 e f(5) = 25. O cálculo da área é mostrado à direita.

Área =
$$1 \cdot f(2) + 1 \cdot f(3) + 1 \cdot f(4) + 1 \cdot f(5)$$

= $1 \cdot 4 + 1 \cdot 9 + 1 \cdot 16 + 1 \cdot 25$
= 54

Este cálculo de área é maior do que a área real desejada..

Cálculo de Limites

4 A área real da região destacada 1 é maior que 30 e menor que 54. Se você deseja encontrar uma aproximação mais real da área, basta usar um maior número de retângulos, cada um tendo uma base de $\Delta x = \frac{5-n}{n}$, onde n é o número de retângulos usados. A altura correspondente para cada retângulo seria então $f(x_i)$, onde i representa o 1°, ou 2°, ou 3° ou 4° retângulo dos n retângulos usados.

A soma das áreas desses retângulos é representada pela expressão à direita, um exemplo do que é chamado de Soma de Riemann, que tem o objetivo de encontrar predominantemente a soma das áreas dos retângulos sob uma curva. A área de um retângulo verde (consulte a página anterior) seria $f(x_i).\Delta x$.

 $\sum_{i=1}^{n} f(x_i).\Delta x = \text{soma da área de todos}$ os n retângulos.

6 A área real seria encontrada deixando $n \to \infty$, de modo que $\Delta \to 0$, e então encontrando o limite da Soma de Riemann.

Área= $\lim_{n\to 0} \left(\sum_{i=1}^n f(x_i) \Delta x\right)$

7 Se f(x) é definida em um intervalo fechado [a, b] e $\lim_{n\to\infty} (\sum_{i=1}^n f(x_i) \Delta x)$ existe, a função f(x) é dita integrável em [a, b] e o limite é denotado por $\int_a^b f(x) dx$.

 $\lim_{n\to\infty} \left(\sum_{i=1}^n f(x_i) \Delta x\right) = \int_a^b f(x) dx.$

8 A expressão $\int_a^b f(x)dx$. é chamada de integral definitiva de f de a ao b.

No exemplo temos, Área= $\int_1^5 x^2 dx$.

9 No Capítulo 12, você calculará esses tipos de áreas, depois de aprender algumas técnicas de integração.

Área atual = $\int_{1}^{5} x^{2} dx = 41 \frac{1}{3}$.

Definição do Limite de uma Função

Esta seção apresenta a definição precisa do limite de uma função e discute seu uso na determinação ou verificação de um limite.

O $\Delta - E$ DEFINIÇÃO DO LIMITE DE UMA FUNÇÃO

Seja f uma função definida para números em algum intervalo aberto contendo c, exceto possivelmente no próprio número c. O limite de f(x) quando x se aproxima de c em L, escrito como $\lim_{x\to c} f(x) = L$, se para qualquer $\epsilon > 0$, há um número correspondente $\delta > 0$ tal que se $<|x-c|<\delta$, então $|f(x)-L|<\epsilon$.

1 Vamos decompor a definição do limite con- Como $x \to c$, então $f(x) \to L$, de modo que forme indicado acima. Uma vez que |x-c| é a distância entre $x \in C$, e |f(x)-L| é a distância entre f(x) e L, a definição poderia ser expressa: $\lim_{x\to c} f(x) = L$, o que significa que a distância de f(x) a L pode ser tão pequena quanto quisermos, tornando o distância de x para c suficientemente pequeno (mas não 0).

 $\lim_{x\to c} f(x) = L.$

2) Observe que $0 < |x - c| < \delta$ implica que x está no intervalo $(c - \delta, c)$ ou em $(c, c + \delta)$. Além disso, $|f(x)-9|<\epsilon$ implica que L está no intervalo $(L - \epsilon, L + \epsilon)$.

0 < |f(x) - L| < E $0 < |x - c| < \delta$

Usando a Definição de $\delta - \epsilon$ para verificar o Limite

Use a definição de $\delta - \epsilon$ para verificar que $\lim_{x \to 3} x^2 = 9$.

.....

1 Você deve mostrar que para qualquer $\epsilon > 0$, existe um correspondente $\delta > 0$ tal que: $|f(x) - 9| < \epsilon$ sempre que $< |x - 3| < \delta$. Visto a escolha de δ depende de escolha de ϵ , você precisa encontrar uma conexão entre $|x^2 - 9|$ e |x - 3|.

$$|x^2 - 9| = |x + 3||x - 3|$$

Se você mover para a esquerda e para a direita de x=3 apenas 1 unidade, x estaria no intervalo (4,5) de modo que <|x+3|<8

2 Seja $\delta \in \frac{\epsilon}{8}$.

Segue que quando o resultado é $\det |x-3| < \delta = \frac{\epsilon}{8}$ O resultado de $|x^2-9| = |x+3||x-3| < 8\left(\frac{\epsilon}{8}\right)$

ENCONTRANDO UM VALOR DE $\Delta,$ DADO UM VALOR ESPECÍFICO DE E

Dado que $\lim_{x\to 2}(3x-1)=5$, encontre o valor de δ tal |(3x-1)-5|<0.01 sempre que $|x-2|<\delta$.

1 Primeiro, encontre uma conexão entre $|(3x-1)-5| \ {\rm e} \ |x-2| < \delta.$

$$|(3x-1)-5| = |3x-6| = 3|x-2|$$

Definição do Limite de uma função

2 Você têm que |(3x-1)-5| < 0.01.

$$|(3x-1)-5| < 0,01$$

$$3|(x-2) < 0,01$$

$$|(x-2) < \frac{0,01}{3}$$

Esta escolha de δ funciona desde que $0<|x-2|<\delta \text{ implique em}$

$$|(3x-1)-5| = 3|x-2|$$

$$< 3(\delta)$$

$$< 3\left(\frac{0,01}{3}\right)$$

<0,01 o requisito dado.

Limites Laterais

Aqui, serão mostrado os limites pela esquerda e pela direita, por exemplo, conhecidos como limites laterais.

Notações para Limites Laterais e exemplos

1 Para a função $f(x) = \frac{1}{x}$ à direita, não existe o $\lim_{x\to 0} f(x)$. Observe que quando $x\to 0$ pela da esquerda, $f(x) \to -\infty$ mas quando $x \to 0$ pela direita, $f(x) \to +\infty$.

2 Cada limite na Etapa 1 é chamado de limite unilateral.

"O limite de f(x) quando x se aproxima de c pela esquerda é L" é escrito como:

$$\lim_{x \to c^{-}} f(x) = L$$

"O limite de f(x) quando x se aproxima de cpela esquerda é M" é escrito como:

$$\lim_{x \to c^{-}} f(x) = M$$

1.7.1 LIMITES LATERAIS DE UMA FUNÇÃO RACIONAL