Multi-Core Processors

- ☐ Multi-Core Processors is a single computing unit that consists of two or more independent processing units (cores).
- ☐ Each core functions as a **separate CPU**, allowing the processor to perform multiple tasks simultaneously, improving performance and efficiency.
- Core processor (or simply core) is the processing unit within a CPU (Central Processing Unit) that executes instructions.
- A processor may have one core (single-core) or multiple cores (multi-core) to perform multiple tasks simultaneously

Multi-Core Processors Architecture

Architecture of Multi-Core Processors

multi-core processor integrates multiple cores onto a single integrated circuit (IC). The chitecture consists of:
Multiple Cores: Independent processing units executing instructions in parallel.
Cache Memory: Shared or dedicated cache (L1, L2, L3) to enhance data access speed.
Memory Controller: Manages access to system memory (RAM).
Interconnects: Enables communication between cores (e.g., ring, mesh, or bus
interconnect).
I/O Interfaces: Handles communication with peripherals.

Advantages of Multi-Core Processors

- Increased Performance: Enables parallel execution of tasks, improving processing speed.
- **Energy Efficiency**: Multiple cores can execute tasks at lower clock speeds, reducing power consumption.
- **Better Multitasking**: Handles multiple applications without slowing down the system.
- Enhanced Scalability: Modern software is optimized for multi-threading, improving responsiveness.
- Reduced Heat Generation: Lower clock speeds per core result in less heat compared to single-core processors.

Types of Multi-Core Architectures

Architecture	Description	Example
Homogeneous Multi-Core	All cores are identical in structure and capability.	Intel Core i7, AMD Ryzen 9
Heterogeneous Multi- Core	Cores have different capabilities, optimized for specific tasks.	ARM big.LITTLE, Apple M- series
Symmetric Multi-Core (SMP)	All cores share equal access to memory and resources.	Intel Xeon, AMD EPYC
Asymmetric Multi-Core (AMP)	Cores have different roles and access privileges.	Specialized DSP & GPU cores

dynamically reconfigurable processors(DRP) and graphic processing unit(GPU)

Example: Speedup Factor in Multi-Core Processors

- ☐ The **speedup factor** measures how much faster a multi-core processor executes a task compared to a single-core processor. It is calculated using the formula:
 - T₁ = Execution time on a single core
 - T_N = Execution time on N cores

$$S(N) = \frac{T_1}{T_N}$$

Example

Scenario:

A computational task takes 100 seconds to execute on a single-core processor. When executed on a quad-core processor (4 cores), the execution time reduces to 30 seconds.

Step 1: Assign Given Values

- $T_1 = 100$ seconds (single-core execution time)
- $T_4 = 30$ seconds (execution time on 4 cores)

Step 2: Compute Speedup Factor

$$S(4) = \frac{T_1}{T_4} = \frac{100}{30}$$

$$S(4) = 3.33$$

Final Answer: The quad-core processor acnieves a speedup of 3.33× compared to the single-

Interpretation of Results

 Ideal Speedup: If the task was perfectly parallelized, the expected speedup for 4 cores would be 4×, but in reality, due to synchronization overhead and non-parallelizable portions, the speedup is often less than the number of cores.

2. Efficiency Calculation:

- Efficiency = $\frac{S(N)}{N} = \frac{3.33}{4} = 0.83$ (or 83% efficiency)
- This means the multi-core execution is 83% efficient.

A p	pplications of Multi-Core Processors High-Performance Computing (HPC) — Used in supercomputers for scientific
	simulations.
	Artificial Intelligence & Machine Learning – Accelerates deep learning
	model training.
	Gaming – Enhances real-time rendering and physics computations.
	Mobile Devices – Efficient power management for extended battery life.
	Cloud Computing & Data Centers – Supports virtualization and parallel
	processing.