## **Converting an NFA to a DFA**

#### Given:

A *non-deterministic* finite state machine (NFA)

#### Goal:

Convert to an equivalent <u>deterministic</u> finite state machine (DFA)

#### Why?

Faster recognizer!

#### Approach:

Consider simulating a NFA.

Work with sets of states.

**IDEA:** Each *state* in the DFA will correspond to a *set of* NFA states.

#### Worst-case:

There can be an exponential number  $O(2^N)$  of sets of states.

The DFA can have exponentially many more states than the NFA ... but this is rare.

© Harry H. Porter, 2005

#### Lexical Analysis - Part 3

### **NFA to DFA**

<u>Input:</u> A NFA  $S = States = \{ s_0, s_1, ..., s_N \} = S_{NFA}$ 

 $\delta = Move function = Move_{NFA}$ 

Move'(S, a)  $\rightarrow$  Set of states

<u>Output:</u> A DFA  $S = States = \{?, ?, ..., ?\} = S_{DFA}$ 

 $\delta = Move function = Move_{DFA}$ 

Move(s, a)  $\rightarrow$  Single state from  $S_{DFA}$ 

Main Idea: Each state in S<sub>DFA</sub> will be a set of states from the NFA

 $S_{DFA} = \{ \{...\}, \{...\}, ..., \{...\} \}$ 





NFA

DFA

(The names of the states is arbitrary and can be changed later, if desired.)



## **Algorithm: Convert NFA to DFA**

#### We'll use...

the transition function from NFA Move<sub>NFA</sub> (S, a) where s is a single state from NFA ε-Closure(s) where S is a set of states from NFA ε-Closure(S)

#### We'll construct...

the set of states in the DFA  $S_{DFA}$ Initially, we'll set  $S_{DFA}$  to  $\{\}$ Add  $\mathbf{X}$  to  $\mathbf{S}_{DFA}$  where  $\mathbf{X}$  is some set of NFA states Example: "Add  $(\{3,5,7\})$  to  $S_{DFA}$ " We'll "mark" some of the states in the DFA. Marked = "We've done this one" ( $\sqrt{\phantom{0}}$ ) Unmarked = "Still need to do this one" The transition function from DFA  $Move_{DFA}(T,b)$ To add an edge to the growing DFA... Set Move<sub>DFA</sub>(T,b) to S

...where **S** and **T** are sets of NFA states

© Harry H. Porter, 2005

**Lexical Analysis - Part 3** 





© Harry H. Porter, 2005

Lexical Analysis - Part 3





© Harry H. Porter, 2005

Lexical Analysis - Part 3





© Harry H. Porter, 2005

### Lexical Analysis - Part 3





© Harry H. Porter, 2005

#### Lexical Analysis - Part 3





© Harry H. Porter, 2005

1.

#### Lexical Analysis - Part 3





© Harry H. Porter, 2005

Lexical Analysis - Part 3





Lexical Analysis - Part 3





© Harry H. Porter, 2005

### **Lexical Analysis - Part 3**











Process  $\mathbf{B} = \{1,2,3,4,6,7,8\}$ 

 $\mathsf{Move}_{\mathbf{DFA}}({\color{red}\mathbf{B}},\!{\color{blue}\mathbf{a}})$ 

=  $\varepsilon$ -Closure (Move<sub>NFA</sub>(B,a))

=  $\varepsilon$ -Closure ({3,8})

 $= \{1,2,3,4,6,7,8\} = \mathbf{B}$ 

 $Move_{\mathbf{DFA}}(\mathbf{B},\mathbf{b})$ 

=  $\epsilon$ -Closure (Move<sub>NFA</sub>(B, $\mathfrak{b}$ ))











### **Lexical Analysis - Part 3**





Lexical Analysis - Part 3





3

#### Lexical Analysis - Part 3





3

#### Lexical Analysis - Part 3





#### Lexical Analysis - Part 3





#### Lexical Analysis - Part 3





#### **Lexical Analysis - Part 3**





4

#### **Lexical Analysis - Part 3**

```
Algorithm: Convert NFA to DFA
Add \epsilon-Closure(s<sub>0</sub>) to S<sub>DFA</sub> as the start state
Set the only state in \mathbf{S}_{\mathrm{DFA}} to "unmarked"
\underline{\text{while}} \ S_{\text{DFA}} \ \text{contains an unmarked state} \ \underline{\text{do}}
  Let {\bf T} be that unmarked state
                                                         A set of NFA states
  Mark T
   for each a in Σ do
                                                             Everywhere you could
     S = \varepsilon-Closure (Move<sub>NFA</sub> (T, a))
     \underline{\underline{\text{if}}} S is not in S_{DFA} already \underline{\text{then}}
                                                             possibly get to on an a
        Add S to S<sub>DFA</sub> (as an "unmarked" state)
     Set Move<sub>DFA</sub>(T,a) to S
                                                   i.e, add an edge to the DFA...
  endFor
<u>endWhi</u>le
for each S in SDFA do
  if any s∈S is a final state in the NFA then
     Mark S an a final state in the DFA
  <u>end</u>If
endFor
```





Is it minimal?

© Harry H. Porter, 2005

46

## Lexical Analysis - Part 3

Resulting DFA for (a|b) \*abb



Is it minimal?











