CS 6041 Theory of Computation

Decidability

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Decidable problems concerning regular languages

- Acceptance problem for DFAs
 - whether a DFA accepts a string
- Acceptance problem for NFAs
 - whether a NFA accepts a string
- Regular expression decidability
 - Whether a regular expression generates a string
- Emptiness testing for DFAs
 - Whether a DFA is empty
- Equivalence of DFAs
 - Whether two DFAs recognize the same language

Decidability

• Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√		
Emptiness (E)	√		
Equivalence (EQ)	√		

Question

 Prove: A = {<M> | M is a DFA that doesn't accept any string containing an odd number of 1s}. Show that A is decidable.

Question

 Prove: A = {<M> | M is a DFA that doesn't accept any string containing an odd number of 1s}. Show that A is decidable.

X ="On input <M> where M is a DFA:

- 1, construct a DFA O that accepts any string contains an odd number of 1s
- 2, construct a DFA B such that $L(B)=L(M) \cap L(O)$
- 3, run TM T from E_{DFA} on input $\langle B \rangle$
- 4, if T accepts, X accepts; if T rejects, X accepts.

"

Question

 Prove: A = {<M> | M is a DFA that doesn't accept any string containing an odd number of 1s}. Show that A is decidable.

Decidable problems concerning CFL/CFGs

- CFG generation decidability
 - Whether a CFG generates a particular string
- Emptiness testing for CFGs
 - Whether a CFG is empty
- Equivalence of CFGs
 - Whether two CFGs recognize the same language
- CFL decidability
 - Whether a CFL is decidable

Decidability

• Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√	√	
Emptiness (E)	√	√	
Equivalence (EQ)	√	×	

Decidability

• Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√	√	?
Emptiness (E)	√	√	
Equivalence (EQ)	√	×	

Decidable problems for Turing Machine

- Acceptance problem for Turing Machine
 - Whether a Turing machine accepts a given input string

- Language:
 - $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and M accepts w} \}$

$$\langle M, w \rangle$$
 accept reject

Theorem 4.11

A_{TM} is undecidable

Theorem 4.11 proof

A_{TM} is undecidable

• Proof idea:

Use M as the input string

$$D_{TM} = \{ \langle M, \langle M \rangle \rangle \mid TM M \text{ accept string } \langle M \rangle \}$$

 D_{TM} is a special case of A_{TM}

If D_{TM} is undecidable, then A_{TM} must be undecidable

Proof by contradiction:

Suppose language A_{TM} is decidable, then

There exists a TM H can decide A_{TM}

$$H(\langle M, w \rangle) = \begin{cases} & \text{accept,} & \text{if M accepts w} \\ & \text{reject,} & \text{if M does not accept w} \end{cases}$$

Create TM D, D="On input $\langle M \rangle$, where M is a TM:

- (1) Run H on input <M, <M>>
- (2) If H accepts, D reject; if H rejects, D accept."

$$D(< M >) = \begin{cases} & \text{accept,} & \text{if M does not accept} < M > \\ & \text{reject,} & \text{if M accepts} < M > \end{cases}$$

$$D(< M >) = \begin{cases} & \text{accept,} & \text{if M does not accept} < M > \\ & \text{reject,} & \text{if M accepts} < M > \end{cases}$$

For TM D, what will happen when input is <D>?

$$D(\langle M \rangle) = \begin{cases} & \text{accept,} & \text{if } M \text{ does not accept } \langle M \rangle \\ & \text{reject,} & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

For TM D, what will happen when input is <D>?

$$D(\langle D \rangle) = \begin{cases} & \text{accept,} & \text{if D does not accept } \langle D \rangle \\ & \text{reject,} & \text{if D accepts } \langle D \rangle \end{cases}$$

Then we have $D(\langle D \rangle) = accept$ and $D(\langle D \rangle) = reject$ at the same time. Contradiction!

Proof by contradiction:

Suppose language A_{TM} is decidable, then

There exists a TM H can decide A_{TM}

• Suppose is wrong, thus A_{TM} is undecidable

Theorem 4.11

A_{TM} is undecidable

 In other words, we do not know whether a Turing machine accepts a given input string

Explanation

A_{TM} is undecidable

Explanation by using diagonalization method

Suppose language A_{TM} is decidable, then

There exists a TM H can decide A_{TM}

Results of H(<M, w>)

Because TM H can $\underline{\text{decide}}$ A_{TM} , so the result of H(M, w) is either accept or reject

M_1				
M_2				
M_3				
M_4				
M_5				
M_6				
•				

Results of H(<M, w>)

Because TM H can $\underline{\text{decide}}$ A_{TM} , so the result of H(M, w) is either accept or reject

	<w<sub>1></w<sub>	<w<sub>2></w<sub>	<w<sub>3></w<sub>	<w<sub>4></w<sub>	<w<sub>5></w<sub>	<w<sub>6></w<sub>	• • •
M ₁							
M ₂							
M_3							
M ₄							
M ₅							
M ₆							
•							

Results of H(<M, w>)

Because TM H can $\underline{\text{decide}}$ A_{TM} , so the result of H(M, w) is either accept or reject

	<w<sub>1></w<sub>	<w<sub>2></w<sub>	<w<sub>3></w<sub>	<w<sub>4></w<sub>	<w<sub>5></w<sub>	<w<sub>6></w<sub>	•••
M ₁	accept	reject	accept	reject	accept	accept	• • •
M ₂	reject	accept	reject	reject	accept	reject	• • •
M ₃	reject	reject	reject	reject	reject	reject	• • •
M ₄	accept	reject	accept	reject	accept	reject	• • •
M ₅	accept	accept	accept	accept	accept	accept	• • •
M ₆	reject	accept	reject	reject	reject	accept	• • •
•	•	•	•	•	•	•	••

Because TM H can $\underline{\text{decide}}$ A_{TM} , so the result of H(M, w) is either

accept or reject

1	1	This is H	(<m, <m="">>)</m,>				not change
	<m<sub>1></m<sub>	9	<m<sub>3></m<sub>	<m<sub>4></m<sub>	<m<sub>5></m<sub>	<m<sub>6></m<sub>	•••
M ₁	accept	reject	accept	reject	accept	accept	• • •
M ₂	reject	accept	reiect	reject	accept	reject	• • •
M_3	reject	reject	reject	reject	reject	reject	• • •
M ₄	accept	reject	accept	reject	accept	reject	• • •
M_5	accept	accept	accept	accept	accept	accept	• • •
M ₆	reject	accept	reject	reject	reject	accept	•
•	•	•	•	•	•	•	··.

The result does

Results of D(<M>) = opposite of <math>H(<M, <M>>)

Because TM H can $\underline{\text{decide}}$ A_{TM} , so the result of H(M,w) is either

accept or reject

	<m<sub>1></m<sub>	,	и, <m>>)</m>	M ₄ >	<m<sub>5></m<sub>	<m<sub>6></m<sub>	•••
M ₁ (reject	reject	accept	reject	accept	accept	• • •
M ₂	reject	reject	reject	reject	accept	reject	• • •
M_3	reject	reject	accept	reject	reject	reject	• • •
M_4	accept	reject	accept	accept	accept	reject	• • •
M_5	accept	accept	accept	accept	reject	accept	• • •
M ₆	reject	accept	reject	reject	rejeci	reject	-
•	•	•	•	•	•		•••

Results of D(<M>) = opposite of <math>H(<M, <M>>)

H(<M, <M>>)

D(<M>) = opposite of H(<M, <M>>)

	M ₁ >	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	<m<sub>5></m<sub>	<m<sub>6></m<sub>	•••
M ₁	accept	ruject	accept	reject	accept	accept	•••
M ₂	eiect	accept	re, ct	reject	accept	reject	
M ₃	reject	niect	reject	rejuct	reject	reject	•••
M ₄	accept	reject	arcept	reject	acc nt	reject	•••
M ₅	accept	accept	accept	aurept	accept	acce, t	:
M ₆	reject	accept	reject	reject	re, ct	accept	:
:	:	:	:	:	:		•

	<n></n>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	<m<sub>5></m<sub>	<m<sub>6></m<sub>	•••
M ₁	reject	rejust	accept	reject	accept	accept	•••
M ₂	, iect	reject	rejest	reject	accept	reject	•••
M ₃	reject	ı ject	accept	rejest	reject	reject	•••
M ₄	accept	reject	accept	accept	accept	reject	•••
M ₅	accept	accept	accept	accept	reject	acce, t	
M ₆	reject	accept	reject	reject	reject	reject	
:	:	:	:	:			

Results of D(<D>)?

Because TM H can <u>decide</u> A_{TM} , so the result of H(M,w) is either accept or reject

	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	•••	<d></d>	•••
M	reject	reject	accept	reject	•••	accept	• • •
M ₂	reject	reject	reject	reject	•••	reject	• • •
M ₃	reject	reject	accept	reject	•••	reject	• • •
M ₄	accept	reject	accept	accept		reject	•••
•	•	•	•		•		
D	reject	reject	accept	accept		?	·
•	•	•	•	•	•		••

Results of D(<D>)?

Then we have $D(\langle D \rangle) = accept$ and $D(\langle D \rangle) = reject$ at the same time. Contradiction!

	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	•••	<d></d>	• • •
IVI	reject	reject	accept	reject	•••	accept	• • •
M ₂	reject	reject	reject	reject	•••	reject	• • •
M ₃	reject	reject	accept	reject	•••	reject	• • •
M ₄	accept	reject	accept	accept	i.	reject	• • •
•	:	•	•		٠.		
D	reject	reject	accept	accept		?	
•	:	•	•	•	•		•••
•	•	•	•	•	•	•	

Decidability

• Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√	√	×
Emptiness (E)	√	√	
Equivalence (EQ)	√	×	

Countable

 A set is countable if either it is finite, or it has the same size as N.

•
$$A = \{1, 2, 3\}$$

Set Element Relationship

• One-to-one: if different elements of source set is mapped to different elements of destination set.

Set Element Relationship

 Onto: if different elements of destination set has at least one element mapped to it from the source set.

Set Element Relationship

- correspondence: Every element in the source set is mapped to a single element in the destination set; and vice verse.
- Correspondence = one-to-one & onto

- Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9,10}.
 We describe the functions f: X→Y and g: X→Y in the following tables.
- f() is one-to-one

n	$\int f(n)$
1	6
2	7
3	6
4	7
5	6

n	g(n)
1	10
2	9
3	8
4	7
5	6

False. Because f(1) = f(3)

- Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9,10}.
 We describe the functions f: X→Y and g: X→Y in the following tables.
- f() is onto

n	$\int f(n)$
1	6
2	7
3	6
4	7
5	6

n	g(n)
1	10
2	9
3	8
4	7
5	6

False. Not exist x in X letting f(x) = 10

- Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9,10}.
 We describe the functions f: X→Y and g: X→Y in the following tables.
- g() is one-to-one

n	$\int f(n)$
1	6
2	7
3	6
4	7
5	6

n	g(n)
1	10
2	9
3	8
4	7
5	6

True.

- Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9,10}.
 We describe the functions f: X→Y and g: X→Y in the following tables.
- g() is onto

n	$\int f(n)$
1	6
2	7
3	6
4	7
5	6

n	g(n)
1	10
2	9
3	8
4	7
5	6

True.

Question: True or False

- Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9,10}.
 We describe the functions f: X→Y and g: X→Y in the following tables.
- g() is correspondence

n	$\int f(n)$
1	6
2	7
3	6
4	7
5	6

n	g(n)
1	10
2	9
3	8
4	7
5	6

True. Because g is both one-to-one and onto.

Countable

 A set is *countable* if either it is finite, or it has the same size as N or subset of N (correspondence relationship).

Mapping - -> Size of infinite set
 f(n) = n

•
$$A = \{1,2,3,...\}$$

n	f(n)
1	1
2	2
3	3
•••	•••
n	n

Countable

 A set is *countable* if either it is finite, or it has the same size as N or subset of N (correspondence relationship).

Mapping - -> Size of infinite set

$$of(n) = 2n$$

B	= {	[2]	4.	6.	}	•
		l ΄	, ' <i>,</i>	Ο,	•••]	

n	f(n)
1	2
2	4
3	6
•••	•••
n	2n

Countable and Diagonalization method

• Q = $\{\frac{m}{n} \mid m, n \in N\}$ be the set of positive rational numbers, Q is countable

 A mapping between of N and Q (prove by construction)

$$k \longrightarrow \frac{m}{n}$$

Uncountable

Theorem: R is uncountable

Proof by construction:

Suppose R is countable, then there exist a mapping f between N and R

n	f(n)
1	3.14159
2	55.55555
3	0.12345
4	0.50000
:	:

Uncountable

• Proof:

Then we construct a value x: the ith digit of x is different than that in f(n)

$$x = 0.4641...$$

for each n, and x,

$$x \notin f(n)$$

n	f(n)
1	3.14159
2	55.55555
3	0.12345
4	0.50000
:	:

$$n$$
 $f(n)$

 1
 $3.\underline{1}4159...$

 2
 $55.5\underline{5}555...$

 3
 $0.12\underline{3}45...$

 4
 $0.500\underline{0}0...$
 \vdots
 \vdots

So there is no mapping between N and R

Countable vs. Uncountable

- To prove a set is countable
 - Finite or find a f(n)

- To prove a set is uncountable
 - Prove by construction that no f(n) exists

Question: True or False?

Odd number set (e.g., {1,3,5, ...}) is countable.

True.

Mapping - -> Size of infinite set

$$f(n) = 2n-1$$

n	f(n)
1	1
2	3
3	5
•••	•••
n	2n-1

Question: True or False?

Integer number set Z (e.g., {..., -2,-1,0,1,2 ...}) is countable.

True.

Mapping $Z \rightarrow N$

Z	N
-k	2k-1
•••	
-2	3
-1	1
0	0
1	2
•••	•••
k	2k

Review of Theorem 4.11

A_{TM} is undecidable

Theorem 4.22

• Complement of A: \overline{A}

$$\overline{A} = \sum^* - A$$

- Theorem 4.22
 - A is decidable \Leftrightarrow A and \overline{A} are Turing-recognizable

Operation on languages

	RL: DFA/NFA/RE	CFL: CFG/PDA	TM-decidable
Union	close	close	close
Concatenation	close	close	close
Intersection	close	not close	close
Star	close	close	close
Complement	close	not close	close
Boolean operation	close	/	close

A is decidable \Longrightarrow A and \overline{A} are Turing-recognizable

Proof:

If A is decidable, as the operation on decidable language is close, thus \overline{A} is also decidable

Because all Turing-decidable languages are Turing-recognizable, therefore, A and \overline{A} are Turing-recognizable

A is decidable \Leftarrow A and \overline{A} are Turing-recognizable

Proof:

If A and \overline{A} are Turing-recognizable. Let M_1 is recognizer TM of A and M_2 is recognizer TM of \overline{A} . Create a TM M as a decider for A,

M = "On input w:

Run both M_1 and M_2 on input w in parallel.

If M₁ accepts, accept;

if M₂ accepts, reject."

Theorem 4.22 proof

Because for each string w, it is either in A or \overline{A} . Thus for M_1 and M_2 , one TM must accept w. When M_1 or M_2 accepts w, M will halt

Also, because M accepts all strings in A (for M_1) and reject all strings not in A (\overline{A} for M_2). Thus, A is decidable

Corollary 4.23

- Corollary 4.23
 - $\overline{A_{TM}}$ is not Turing-recognizable
 - In other words, is there a language that TM cannot recognize?

Corollary 4.23 proof

- Corollary 4.23: $\overline{A_{TM}}$ is not Turing-recognizable
 - $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w} \}$ is not decidable

Proof:

Suppose $\overline{A_{TM}}$ is Turing-recognizable

because A_{TM} is Turing-recognizable (based on definition)

So A_{TM} is Turing-decidable (theorem 4.22)

However, A_{TM} is undecidable (theorem 4.11)

Contradiction.

Conclusion on decidability

Decidable?

	DFA/NFA/RE	CFG	TM
Acceptance (A)	√	V	×
Emptiness (E)	√	√	×
Equivalence (EQ)	√	×	×

 Diagonalization method to prove a language is undecidable

• Non Turing-recognizable language $\overline{A_{TM}}$ exists