Prediction of COVID-19 in North America

Student: Angela Amador

TMU Student Number: 500259095

Supervisor: Tamer Abdou, PhD

Submission Date: Nov 27th, 2023

Table of Contents

Abstract	3
Literature Review	4
Machine Learning-Based Research for COVID-19 Detection, Diagnosis, a Prediction: A Survey (Meraihi et al., 2022)	
Kalman filter based short term prediction model for COVID-19 spread (Sir 2021)	ngh et al.,
Predicting the Growth and Trend of COVID-19 Pandemic using Machine I Cloud Computing (Tuli et al., 2020)	· ·
Machine learning-based prediction of COVID-19 diagnosis based on sym (Zoabi et al., 2021)	
Forecast and prediction of COVID-19 using machine learning (Painuli et a Forecasting COVID-19 spreading through an ensemble of classical and machine learning (Painuli et a	al., 2021)7
learning models: Spain's case study (Heredia Cacha et al., 2023)	7
Approach	
Exploratory Data Analysis	9
Dataset	9
Data Dictionary	10
Metadata	11
Limiting the scope of the model to North America	18
Remove data pre-dating COVID vaccine availability	19
Feature Selection	19
One Hot Encoding in Machine Learning	19
Summary of changes on the dataset	20

Data Splitting	21
Data Cleaning and Dimensionality Reduction	21
Identify Columns That Contain a Single Value	22
Remove data columns with too many NaN values	22
Feature Selection - Correlation and P-value (Vishal, 2022)	25
Visualize the selected features	27
Low Variance Filter	28
Summary of Dimensional Reduction	29
Data subset	29
Modeling Algorithms	35
Linear Regression	36
Random Forest	37
Logistic Regression	44
Results	44
Conclusion	46
GitHuB Repository	46
References	47

Abstract

The Coronavirus disease (COVID-10) was first reported in December 2019 in Wuhan, Hubei Province, China. It created a calamitous situation throughout the world as cumulative incidents of COVID-19 rapidly increased day by day. In the absence of any medications, the only solution was to slow down the spread by exercising "social distancing" (hard lock-downs, restrictions on people mobility, limitations of the number of people in public places and the usage of protection gear (masks or gloves), among others) to block the chain of the spread of the virus. Here it is where Machine Learning models helped forecast where and when the disease was likely to spread, and support those regions, governance and entities on their decision making.

Literature Review

Several publications and studies were reviewed with emphasis placed on predicting the number of cases around the world and how these Machine Learning (ML) models helped governments and other organizations to better prepare for the pandemic.

Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey (Meraihi et al., 2022)

This paper reviews more than 160 Machine Learning based approaches developed to help with the pandemic. It addresses detection, diagnosis, and prediction approaches. From the scope of my project and based on the analysis of the paper, these are the methods and data types that have been used for prediction:

Some of the supervised learning models for prediction of COVID-19 cases:

Method Name	Data Type
Support Vector Machine (SVM) with Decision Tree (DT)	X-ray image
Support Vector Machine (SVM)	Text
Least Square-SVM (LS-SVM) and Autoregressive Integrated Moving Average (ARIMA)	Time series
Linear regression model and Random Forest	CT images
Logistic regression model	CT images
XGBoost	Time series
Linear regression model with Support Vector Machine (SVM) Model and Artificial Neural Network (ANN)	Text
Linear regression and SEIR (Susceptible, Exposed, Infectious, Recovered)	Time series
Logistic Regression with Random Forest, Partial Least Squares Regression (PLSR), Elastic Net and Bagged Flexible Discriminant Analysis (BFDA)	Time series
Support Vector Regression (SVR), Stacking Ensemble Learning (SEL),	Time series

Method Name	Data Type
Auto-Regression Integrated Moving Average (ARIMA), Cubist Regression (CUBIST), Random Forest (RF), Ridge Regression (RIDGE)	
Support Vector Regression (SVR), Linear Regression and Polynomial Regression	Text
Linear regression models (Penalized Binomial Regression (PBR), Conditional Inference Trees (CIR), Generalised Linear (GL), and SVM with linear kernel)	CT Images and clinical data
PBRR (combination of Bayesian Ridge Regression (BRR) with n-degree Polynomial for forecasting)	Text
Fine-tuned Random Forest model with AdaBoost algorithm	Text

Some of the Convolutional Neural Networks (CNN) approaches for prediction of COVID-19 cases:

Method Name	Data Type
DenseNet-121	CT images

Some of the Recurrent Neural Networks (RNN) approaches for prediction of COVID-19 cases:

Method Name	Data Type
LSTM with NLP	Text
LSTM	Text
LSTM	Time series

Specialized CNN approaches for prediction:

Method Name	Data Type
COVID-SDNet	X-ray images

Other Machine Learning approaches for prediction of COVID-19 cases:

Method Name	Data Type
Autoregressive Integrated Moving Average (ARIMA) model and Wavelet-based forecasting (WBF) model	Time series
MAchine learning and Cloud Computing	Time series
FbProphet technique and Logistic Model	Time series
Kalman Filter model	Text

Kalman filter based short term prediction model for COVID-19 spread (Singh et al., 2021)

This article analyzes various studies using data on the COVID-19 spread which includes demographic and environmental factors to be used into different ML Models like minimum temperature, maximum temperature, humidity, and rainfall in India.

Here, Kalman filter is used to forecast COVID19 incidence, and . Pearson correlation is used to find the dependencies among different features of the data. The importance of individual features in the proposed model is calculated through the random forest algorithm.

The article concludes the proposed prediction model is good for short term prediction i.e. daily and weekly. The proposed prediction model can be updated to further accommodate long term and medium term series prediction in future.

Predicting the Growth and Trend of COVID-19 Pandemic using Machine Learning and Cloud Computing (Tuli et al., 2020)

The focus of this article in addition to ML is Cloud Computing and how its power helped with the process to develop, manage and analyse big data. Cloud computing can be used to rapidly enhance the prediction process using high-speed computations.

The focus is to show that using iterative weighting for fitting Generalized Inverse Weibull (GIW) distribution, a better fit can be obtained to develop a prediction framework.

Machine learning-based prediction of COVID-19 diagnosis based on symptoms (Zoabi et al., 2021)

This paper proposed a machine-learning model that predicts a positive SARS-CoV-2 infection in a RT-PCR test by asking eight basic questions. The model was trained on data of all individuals in Israel tested for SARS-CoV-2 during the first months of the COVID-19 pandemic. The model was implemented globally for effective screening and prioritization of testing for the virus in the general population.

Because the data is coming from surveys, it has limitations, biases and missing information. Training and testing a model while filtering out symptoms of high bias in advance still achieved very high accuracy. The methodology presented in this study may benefit the health system response to future epidemic waves of this disease and of other respiratory viruses in general.

Predictions were generated using a gradient-boosting machine model built with decision-tree base-learners.

Forecast and prediction of COVID-19 using machine learning (Painuli et al., 2021)

The article discusses Auto Regressive Integrated Moving Average (ARIMA) time series for forecasting confirmed cases for various states in India. Two classifiers, Random Forest and Extra Tree Classifier (ETC), were selected. These results can be used to take corrective measures by different government bodies and assist with forecasting and planning in the fight against infectious diseases such as COVID-19.

Forecasting COVID-19 spreading through an ensemble of classical and machine learning models: Spain's case study (Heredia Cacha et al., 2023)

This article combines both ML and classical population models, using exclusively publicly available data of incidence, mobility, vaccination and weather in Spain.

In this work the performance of four ML models were evaluated (Random Forest, Gradient Boosting, k-Nearest Neighbors and Kernel Ridge Regression), and four population models (Gompertz, Logistic, Richards and Bertalanffy) in order to estimate the near future evolution of the COVID-19 pandemic, using daily cases data, together with vaccination, mobility and weather data.

Conclusion

The COVID-19 pandemic affected everyone around the world and brought together researchers and investigation communities from different fields to apply multiple approaches and quickly learn about it. As result of this effort multiple approaches were applied using ML techniques to identify spread patterns, vulnerable demographics, effective social restrictions, and in general life-saving strategies. In this work I take the opportunity to duplicate the same strategies and replicate some of the research using the same data.

Approach

Exploratory Data Analysis

Dataset

The dataset, provided by **Our World in Data**, provides COVID-19 vaccination information collected by **Our World in Data** and made available to the **Kaggle community** https://www.kaggle.com/datasets/caesarmario/our-world-in-data-covid19-dataset/download?datasetVersionNumber=418. This dataset is updated daily, and for the purpose of this study I am analyzing the data with information up to Oct 7th, 2023.

The dataset is a comma separated values file, with 67 variables and 346,567 observations.

Data Dictionary

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 346567 entries, 0 to 346566
Data columns (total 67 columns):
  # Column
                                                                                                                                                                 Non-Null Count Dtype
 ____
                                                                                                                                                                   _____
                                                                                                                                                                   346567 non-null object
   0 iso code
   1 continent
                                                                                                                                                                  330089 non-null object
   2 location
                                                                                                                                                                  346567 non-null object
   3 date
                                                                                                                                                                  346567 non-null object

        3
        date
        346567 non-null float64

        5
        new_cases
        308672 non-null float64

        6
        new_cases_smoothed
        335769 non-null float64

        7
        total_deaths
        287169 non-null float64

        8
        new_deaths
        337072 non-null float64

        9
        new_deaths_smoothed
        335842 non-null float64

        10
        total_cases_per_million
        308672 non-null float64

        11
        new_cases_smoothed_per_million
        335769 non-null float64

        12
        new_cases_smoothed_per_million
        335769 non-null float64

        13
        total_deaths_per_million
        335769 non-null float64

        14
        new_deaths_per_million
        337072 non-null float64

        15
        new_deaths_smoothed_per_million
        335842 non-null float64

        16
        reproduction_rate
        184817 non-null float64

        17
        icu_patients
        37509 non-null float64

        18
        icu_patients
        37509 non-null float64

        19
        hosp_patients
        38759 non-null float64

        20
        hosp_patients_per_million
        38759 non-null float64

        21
        weekly_icu_admissions
        <
   4 total cases
                                                                                                                                                                308672 non-null float64
                                                                                    95927 non-null float64

94348 non-null float64

106788 non-null object

78953 non-null float64

75575 non-null float64
   31 positive rate
   32 tests per case
   33 tests_units
  34 total_vaccinations
   35 people vaccinated
```

```
36 people_fully vaccinated
                                                                                                                                                         72224 non-null float64
 total_boosters 47234 non-null float64

38 new_vaccinations 65019 non-null float64

39 new_vaccinations_smoothed 180079 non-null float64

40 total_vaccinations_per_hundred 78953 non-null float64

41 people_vaccinated_per_hundred 75575 non-null float64

42 people_fully_vaccinated_per_hundred 72224 non-null float64

43 total_boosters_per_hundred 47234 non-null float64

44 new_vaccinations_smoothed_per_million 180079 non-null float64

45 new_people_vaccinated_smoothed 179887 non-null float64

46 new_people_vaccinated_smoothed_per_hundred 179887 non-null float64

47234 non-null float64

47234 non-null float64
   46 new people vaccinated smoothed per hundred 179887 non-null float64
   47 stringency index
                                                                                                                           197651 non-null float64
                                                                                                                                            294167 non-null float64
273580 non-null float64
   48 population density
   49 median age
                                                                                                                                                         264005 non-null float64
   50 aged 6\overline{5} older
 51aged_70_older270838 non-null float6452gdp_per_capita268118 non-null float6453extreme_poverty172778 non-null float6454cardiovasc_death_rate268731 non-null float6455diabetes_prevalence282404 non-null float6456female_smokers201575 non-null float6457male_smokers198833 non-null float6458handwashing_facilities131627 non-null float6459hospital_beds_per_thousand237221 non-null float6460life_expectancy318823 non-null float6461human_development_index260466 non-null float6462population346567 non-null float6463excess_mortality_cumulative_absolute11953 non-null float6464excess_mortality_cumulative_per_million11953 non-null float6465excess_mortality_cumulative_per_million11953 non-null float64dtypes: float64(62), object(5)
   51 aged 70 older
                                                                                                                                                        270838 non-null float64
dtypes: float64(62), object(5)
memory usage: 177.2+ MB
```

Metadata

The dataset size is 91.1 MB, the Pandas data profiling is almost 300 MB. This initial analysis can be found in GitHub:

https://github.com/aamadorc/CIND820/blob/main/CIND820 EDA DataProfiling.html. Due to the size of the resulting file, it is directly stored in Git LFS so it cannot be previewed, but instead it needs to be downloaded. However, a GitHub Action is set up in the repository to make every version of the resulting ipynb and html files browseable through the corresponding GitHub Pages site. The direct link to the data profiling of the complete dataset is https://aamadorc.github.io/CIND820/47631c816631ff3a8b42bb60ff824760cc50d6c9-CIND820 EDA DataProfiling.html

Below is the metadata of the whole dataset.

Variable	Description
iso_code	ISO 3166-1 alpha-3 – three-letter country codes. Note that OWID-defined regions (e.g. continents like 'Europe') contain prefix 'OWID_'.
continent	Continent of the geographical location
location	Geographical location
date	Date of observation
total_cases	Total confirmed cases of COVID-19. Counts can include probable cases, where reported.
new_cases	New confirmed cases of COVID-19. Counts can include probable cases, where reported. In rare cases where our source reports a negative daily change due to a data correction, we set this metric to NA.
new_cases_smoothe d	New confirmed cases of COVID-19 (7-day smoothed). Counts can include probable cases, where reported.
total_deaths	Total deaths attributed to COVID-19. Counts can include probable deaths, where reported.
new_deaths	New deaths attributed to COVID-19. Counts can include probable deaths, where reported. In rare cases where our source reports a negative daily change due to a data correction, we set this metric to NA.
new_deaths_smooth ed	New deaths attributed to COVID-19 (7-day smoothed). Counts can include probable deaths, where reported.
total_cases_per_m illion	Total confirmed cases of COVID-19 per 1,000,000 people. Counts can include probable cases, where reported.
new_cases_per_mil lion	New confirmed cases of COVID-19 per 1,000,000 people. Counts can include probable cases, where reported.
new_cases_smoothed_per_million	New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people. Counts can include probable cases, where reported.
total_deaths_per_ million	Total deaths attributed to COVID-19 per 1,000,000 people. Counts can include probable deaths, where reported.
new_deaths_per_million	New deaths attributed to COVID-19 per 1,000,000 people. Counts can include probable deaths, where reported.
new_deaths_smooth	New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000

Variable	Description
ed_per_million	people. Counts can include probable deaths, where reported.
reproduction_rate	Real-time estimate of the effective reproduction rate (R) of COVID-19. See https://github.com/crondonm/TrackingR/tree/main/Estimates-Database
icu_patients	Number of COVID-19 patients in intensive care units (ICUs) on a given day
icu_patients_per_ million	Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people
hosp_patients	Number of COVID-19 patients in hospital on a given day
hosp_patients_per _million	Number of COVID-19 patients in hospital on a given day per 1,000,000 people
weekly_icu_admiss	Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week (reporting date and the preceeding 6 days)
weekly_icu_admiss ions_per_million	Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people (reporting date and the preceding 6 days)
weekly_hosp_admis sions	Number of COVID-19 patients newly admitted to hospitals in a given week (reporting date and the preceding 6 days)
<pre>weekly_hosp_admis sions_per_million</pre>	Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people (reporting date and the preceding 6 days)
total_tests	Total tests for COVID-19
new_tests	New tests for COVID-19 (only calculated for consecutive days)
total_tests_per_t housand	Total tests for COVID-19 per 1,000 people
new_tests_per_tho usand	New tests for COVID-19 per 1,000 people
new_tests_smoothe	New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window

Variable	Description
new_tests_smoothed_per_thousand	New tests for COVID-19 (7-day smoothed) per 1,000 people
positive_rate	The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case)
tests_per_case	Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate)
tests_units	Units used by the location to report its testing data. A country file can't contain mixed units. All metrics concerning testing data use the specified test unit. Valid units are 'people tested' (number of people tested), 'tests performed' (number of tests performed. a single person can be tested more than once in a given day) and 'samples tested' (number of samples tested. In some cases, more than one sample may be required to perform a given test.)
total_vaccination s	Total number of COVID-19 vaccination doses administered
people_vaccinated	Total number of people who received at least one vaccine dose
<pre>people_fully_vacc inated</pre>	Total number of people who received all doses prescribed by the initial vaccination protocol
total_boosters	Total number of COVID-19 vaccination booster doses administered (doses administered beyond the number prescribed by the vaccination protocol)
new_vaccinations	New COVID-19 vaccination doses administered (only calculated for consecutive days)
new_vaccinations_ smoothed	New COVID-19 vaccination doses administered (7-day smoothed). For countries that don't report vaccination data on a daily basis, we assume that vaccination changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window
total_vaccination s_per_hundred	Total number of COVID-19 vaccination doses administered per 100 people in the total population
people_vaccinated _per_hundred	Total number of people who received at least one vaccine dose per 100 people in the total population

Variable	Description
<pre>people_fully_vacc inated_per_hundre d</pre>	Total number of people who received all doses prescribed by the initial vaccination protocol per 100 people in the total population
total_boosters_pe r_hundred	Total number of COVID-19 vaccination booster doses administered per 100 people in the total population
new_vaccinations_ smoothed_per_mill ion	New COVID-19 vaccination doses administered (7-day smoothed) per 1,000,000 people in the total population
new_people_vaccin ated_smoothed	Daily number of people receiving their first vaccine dose (7-day smoothed)
new_people_vaccin ated_smoothed_per _hundred	Daily number of people receiving their first vaccine dose (7-day smoothed) per 100 people in the total population
stringency_index	Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response)
population_densit y	Number of people divided by land area, measured in square kilometers, most recent year available
median_age	Median age of the population, UN projection for 2020
aged_65_older	Share of the population that is 65 years and older, most recent year available
aged_70_older	Share of the population that is 70 years and older in 2015
gdp_per_capita	Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available
extreme_poverty	Share of the population living in extreme poverty, most recent year available since 2010
cardiovasc_death_ rate	Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people)
diabetes_prevalen ce	Diabetes prevalence (% of population aged 20 to 79) in 2017
female_smokers	Share of women who smoke, most recent year available

Variable	Description
male_smokers	Share of men who smoke, most recent year available
handwashing_facil ities	Share of the population with basic handwashing facilities on premises, most recent year available
hospital_beds_per_thousand	Hospital beds per 1,000 people, most recent year available since 2010
life_expectancy	Life expectancy at birth in 2019
human_development _index	A composite index measuring average achievement in three basic dimensions of human development—a long and healthy life, knowledge and a decent standard of living. Values for 2019, imported from http://hdr.undp.org/en/indicators/137506
population	Population (latest available values). See https://github.com/owid/covid-19-data/blob/master/scripts/input/un/population_latest.csv for full list of sources
excess_mortality_ cumulative_absolu te	Cumulative difference between the reported number of deaths since 1 January 2020 and the projected number of deaths for the same period based on previous years. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality
excess_mortality_cumulative	Percentage difference between the cumulative number of deaths since 1 January 2020 and the cumulative projected deaths for the same period based on previous years. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality
excess_mortality	Percentage difference between the reported number of weekly or monthly deaths in 2020–2021 and the projected number of deaths for the same period based on previous years. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality
excess_mortality_ cumulative_per_mi llion	Cumulative difference between the reported number of deaths since 1 January 2020 and the projected number of deaths for the same period based on previous years, per million people. For more information, see https://github.com/owid/covid-19-data/tree/master/public/data/excess_mortality

The overview of the initial dataset is:

Dataset statistics		Variable types	
Number of variables	67	Text	2
Number of observations	346567	Categorical	2
Missing cells	11380440	DateTime	1
Missing cells (%)	49.0%	Numeric	62
Duplicate rows	0		
Duplicate rows (%)	0.0%		
Total size in memory	177.2 MiB		
Average record size in memory	536.0 B		

The dataset has a total of 37,895 observations with NaN values for the total_cases column. As this is my predicted feature, NaNs don't add value to the model so these observations were removed.

This is the \mathtt{NaN} density over time for the features in the dataset:

Limiting the scope of the model to North America

Due to the size of the file, and the large number of different values for the <code>iso_code</code> and <code>location</code> features, I had to make the decision of dropping data from outside North America. Once I apply One Hot Encoding, the dataset is left with 552 attributes.

The initial data profiling for continent is:

After removing observations from outside of North America and without NaN in total_cases, we have a total of 53,290 observations.

Remove data pre-dating COVID vaccine availability

Multiple vaccines became available in the second semester of 2020. By December most countries had access to approved vaccines.

As vaccinations changed the behaviour of the pandemic I removed data before January 1st, 2021 and considered only data collected after vaccines became available.

Feature Selection

One Hot Encoding in Machine Learning

Machine Learning models do not work with categorical data. To fit features with categorical data into the machine learning model, it needs to be converted first into numerical data. One technique for this is One Hot Encoding.

We have four categorical variables in the dataset: iso_code, continent, location and tests_units.

Feature	Number of unique values
iso_code	41
continent	1

location	41
tests_units	4

These are the statistics after running One Hot Encoding to the categorical variables:

One hot encoding categorical variables:	Initially	iso_code	continent	location	test_units
Number of observations	41,287	41,287	41,287	41,287	41,287
Number of attributes	67	108	109	150	153
Size	2,766,229	4,458,996	4,500,283	6,193,050	6,316,911

Now, I can eliminate the original categorical attributes.

Convert attribute date to epoch

The dataset also includes a feature date in calendar format which is not numerical, and on which I tried different strategies.

I tried to use it as an index and use date as criteria to split the dataset, but this affected the accuracy of the models, see results here

https://aamadorc.github.io/CIND820/3f5e3ad354050fd83a5a352fe15caefbf26f129f-CIND820_EDA.html

Summary of changes on the dataset

Action	# Observations	# Attributes	Size
Original dataset	346,567	67	23,219,989
Eliminate records with NaN in total_cases	308,672	67	20,681,024
Eliminate records from outside North America	53,290	67	3,570,430

Action	# Observations	# Attributes	Size
Eliminate records pre-vaccine	41,287	67	2,766,229
After One Hot Encoding	41,287	149	6,151,763

Data Splitting

One of the first decisions to make is how to utilize the existing data. One common technique is to split the data into two groups typically referred to as the Training and Testing sets. The Training set is used to develop models and feature sets; it is the substrate for estimating parameters, comparing models, and all of the other activities required to reach a final model. The Testing set is used only at the conclusion of these activities for estimating a final, unbiased assessment of the model's performance. It is critical that the Testing set is not used prior to this point. Looking at the Testing set results would bias the outcomes since the Testing data will have become part of the model development process. (Kuhn & Johnson, 2020)

After applying random selection using train_test_split with 70% random selection for training dataset and 30% random selection for testing dataset:

	Source dataset	Training data (sub)set	Testing data (sub)set
Number of observations	41,287	28,900	12,387
Number of attributes	149	149	149
Size	6,151,763	4,306,100	1,845,663

Data Cleaning and Dimensionality Reduction

Data cleaning will take place only on the training dataset excluding predictive attribute total cases.

There are seven techniques for Dimensionality Reduction: Missing Values, Low Variance Filter, High Correlation Filter, PCA, Random Forests, Backward Feature Elimination, and Forward Feature Construction. (Silipo et al., 2014)

Identify Columns That Contain a Single Value

The feature continent contains only one value which is North America, then this attribute can be eliminated as it doesn't affect or influence the prediction.

Remove data columns with too many NaN values

We can calculate the ratio of missing values using a simple formula. The formula is the number of missing values in each column divided by the total number of observations. Generally, we can drop variables having a missing-value ratio of more than 60% or 70%. For my purpose I am going to use a threshold of 60% missing values and remove those attributes.

Attributes with more than 60.0% of missing values:

	column	nan_count	nan_rate
18	weekly_icu_admissions_per_million	28900	1.000000
17	weekly_icu_admissions	28900	1.000000
19	weekly_hosp_admissions	28200	0.975779
20	weekly_hosp_admissions_per_million	28200	0.975779
61	excess_mortality_cumulative_per_million	28095	0.972145
60	excess_mortality	28095	0.972145
59	excess_mortality_cumulative	28095	0.972145
58	excess_mortality_cumulative_absolute	28095	0.972145
13	icu_patients	27515	0.952076
16	hosp_patients_per_million	27515	0.952076
15	hosp_patients	27515	0.952076

	column	nan_count	nan_rate
14	icu_patients_per_million	27515	0.952076
38	total_boosters_per_hundred	26212	0.906990
32	total_boosters	26212	0.906990
22	new_tests	24918	0.862215
24	new_tests_per_thousand	24918	0.862215
33	new_vaccinations	24843	0.859619
21	total_tests	24483	0.847163
23	total_tests_per_thousand	24483	0.847163
31	people_fully_vaccinated	23331	0.807301
37	people_fully_vaccinated_per_hundred	23331	0.807301
36	people_vaccinated_per_hundred	23145	0.800865
30	people_vaccinated	23145	0.800865
29	total_vaccinations	23048	0.797509
35	total_vaccinations_per_hundred	23048	0.797509
28	tests_per_case	23039	0.797197
27	positive_rate	23007	0.796090
25	new_tests_smoothed	22710	0.785813
26	new_tests_smoothed_per_thousand	22710	0.785813

	column	nan_count	nan_rate
48	extreme_poverty	21111	0.730484
52	male_smokers	20410	0.706228
51	female_smokers	19702	0.681730
53	handwashing_facilities	19670	0.680623
42	stringency_index	18185	0.629239

Feature Selection - Correlation and P-value (Vishal, 2022)

From (Vishal, 2022):

How does correlation help in feature selection?

Features with high correlation are more linearly dependent and hence have almost the same effect on the dependent variable. So, when two features have high correlation, we can drop one of the two features.

What is p-value?

The P-value, probability value or asymptotic significance is a probability value for a given statistical model that, if the null hypothesis is true, a set of statistical observations more commonly known as the statistical summary is greater than or equal in magnitude to the observed results.

How does p-value help in feature selection?

Removal of different features from the dataset will have different effects on the p-value for the dataset. We can remove different features and measure the p-value in each case. These measured p-values can be used to decide whether to keep a feature or not.

Using Feature Selection this is the resulting Correlation Heatmap:

A total of 48 attributes with correlation higher than 0.9 were deleted.

Now, selecting columns based on p_value, for this we are going to use Backwards Elimination with a SL = 0.05. Two columns were selected to be eliminated.

Visualize the selected features

Statistical distribution of the values for each one of the features:

Low Variance Filter

Another way of measuring how much information a feature has is to measure its variance. In the limit case where the feature assumes a constant value, the variance would be 0 and the column would be of no help in the discrimination of different groups of data.

The Low Variance Filter calculates each column variance and removes those columns with a variance value below a given threshold. However the variance can only be calculated for numerical columns, i.e. this dimensionality reduction method applies only to numerical columns as the variance value depends on the column numerical range. Therefore feature ranges need to be normalized to make variance values independent from the column domain range.

This plot illustrates the effect of different variance thresholds:

The line plot shows the relationship between the threshold and the number of features in the transformed dataset. I can see that with a small threshold of 0.15, 45 features are removed immediately.

Summary of Dimensional Reduction

Action	# Observations	# Attributes	Size
Original training dataset	28,900	148	4,277,200
Eliminate column(s) with single value	28,900	147	4,248,300
Eliminate columns with more than 60% NaN	28,900	113	3,265,700
Eliminate columns with correlation > 0.9	28,900	65	1,878,500
After applying p_value and correlation	28,900	63	1,820,700
Eliminating columns with variance close to 0	28,900	18	520,200

Data subset

Metadata of the subset, 18 variables:

- date
- total cases
- new cases
- total deaths
- new deaths
- total cases per million
- new_cases_smoothed_per_million
- total_deaths per million
- new_deaths_smoothed_per_mil lion

- new_vaccinations_smoothed
- new_vaccinations_smoothed_p er million
- population density
- median age
- gdp per capita
- cardiovasc death rate
- diabetes prevalence
- life expectancy
- hospital beds per thousand

After analyzing the features that were eliminated and kept, data like testing doesn't add value in the prediction of the number of cases. As well as derived columns like weekly columns are not relevant. ICU information doesn't affect the number of cases either.

Also, it is interesting to see how information like gross domestic product at purchasing power, and cardiovascular and diabetes are pretty relevant to influence the number of cases.

Analysis on the selected attributes:

hospital_beds_per_thousand

Real number (R)

HIGH CORRELATION MISSING	
Distinct	102
Distinct (%)	0.1%
Missing	80928
Missing (%)	31.7%
Infinite	0
Infinite (%)	0.0%
Mean	3.0971419

Minimum	0.1
Maximum	13.8
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

new_vaccinations_smoothed_per_million

Real number (R)

MISSING ZEROS

Distinct	12647	
Distinct (%)	7.0%	
Missing	75551	
Missing (%)	29.6%	
Infinite	0	
Infinite (%)	0.0%	
Mean	1992.9024	

Minimum	0
Maximum	117113
Zeros	3987
Zeros (%)	1.6%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

gdp_per_capita

Real number (R)

HIGH CORRELATION MISSING		
Distinct	196	
Distinct (%)	0.1%	
Missing	58011	
Missing (%)	22.7%	
Infinite	0	
Infinite (%)	0.0%	
Mean	19076.009	

Minimum	661.24
Maximum	116935.6
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

cardiovasc_death_rate

Real number (R)

HIGH CORRELATION	MISSING
Distinct	196
Distinct (%)	0.1%
Missing	57777
Missing (%)	22.6%
Infinite	0
Infinite (%)	0.0%
Mean	264.27143

79.37
724.417
0
0.0%
0
0.0%
12.0 MiB

diabetes_prevalence

Real number (R)

MISSING

Distinct	150	
Distinct (%)	0.1%	
Missing	47729	
Missing (%)	18.7%	
Infinite	0	
Infinite (%)	0.0%	
Mean	8.5609601	

Minimum	0.99
Maximum	30.53
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

population_density

Real number (R)

MISSING

Distinct	215
Distinct	210
Distinct (%)	0.1%
Missing	38878
Missing (%)	15.2%
Infinite	0
Infinite (%)	0.0%
Mean	424.20264

Minimum	0.137
Maximum	20546.766
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

total_deaths

Real number (R)

HIGH CORRELATION	MISSING
Distinct	47081
Distinct (%)	20.4%
Missing	24306
Missing (%)	9.5%
Infinite	0
Infinite (%)	0.0%
Mean	102124.29

Minimum	1	
Maximum	6960770	
Zeros	0	
Zeros (%)	0.0%	
Negative	0	
Negative (%)	0.0%	
Memory size	12.0 MiB	

total_deaths_per_million Real number (R)

HIGH CORRELATION MI	ISSING
Distinct	80704
Distinct (%)	35.0%
Missing	24306
Missing (%)	9.5%
Infinite	0
Infinite (%)	0.0%
Mean	1046.3662

Minimum	0.06
Maximum	6511.209
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

life_expectancy Real number (R)

HIGH CORRELATION M	ISSING
Distinct	220
Distinct (%)	0.1%
Missing	20761
Missing (%)	8.1%
Infinite	0
Infinite (%)	0.0%
Mean	73.724505

Minimum	53.28
Maximum	86.75
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

new_cases

Real number (R)

HIGH CORRELATION	MISSING	SKEWED	ZEROS
Distinct		24233	
Distinct (%)		9.8%	
Missing		7651	
Missing (%)		3.0%	
Infinite		0	
Infinite (%)		0.0%	
Mean		11810.9)23

Minimum	0	
Maximum	8401961	
Zeros	117681	
Zeros (%)	46.1%	
Negative	0	
Negative (%)	0.0%	
Memory size	12.0 MiB	

new_deaths_smoothed_per_million Real number (R)

HIGH CORRELATION	MISSING ZEROS	
Distinct	9492	
Distinct (%)	3.8%	
Missing	7636	
Missing (%)	3.0%	
Infinite	0	
Infinite (%)	0.0%	
Mean	0.98019728	

Minimum	0	
Maximum	148.641	
Zeros	109651	
Zeros (%)	43.0%	
Negative	0	
Negative (%)	0.0%	
Memory size	12 0 MiB	

new_deaths_smoothed

Real number (R)

HIGH CORRELATION MISSING	ZEROS
Distinct	9454
Distinct (%)	3.8%
Missing	7636
Missing (%)	3.0%
Infinite	0
Infinite (%)	0.0%
Mean	85.358373

Minimum	0
Maximum	14821.857
Zeros	109279
Zeros (%)	42.8%
Negative	0
Negative (%)	0.0%
Memory size	12.0 MiB

date

Date

Distinct	1010
Distinct (%)	0.4%
Missing	0
Missing (%)	0.0%
Memory size	12.0 MiB

Minimum	2021-01-01 00:00:00
Maximum	2023-10-07 00:00:00

total_cases Real number (R)

HIGH CORRELATION MISSING	
Distinct	115953
Distinct (%)	48.3%
Missing	14960
Missing (%)	5.9%
Infinite	0
Infinite (%)	0.0%
Mean	8362346.1

Minimum	1	
Maximum	7.7115046 × 10 ⁸	
Zeros	0	
Zeros (%)	0.0%	
Negative	0	
Negative (%)	0.0%	
Memory size	12.0 MiB	

Modeling Algorithms

The shape for my Training and Testing datasets are:

```
Training Features Shape: (28900, 17)

Training Prediction Shape: (12387, 17)

Testing Features Shape: (28900, 1)

Testing Prediction Shape: (12387, 1)
```

Linear Regression

Linear regression is a method we can use to quantify the relationship between one or more predictor variables and a dependent variable or an outcome variable.

One of the most common reasons for fitting a regression model is to use the model to predict the values of new observations.

The steps to make predictions with a regression model are:

- 1. Collect the data.
- 2. Fit a regression model to the data.
- 3. Verify that the model fits the data well.
- 4. Use the fitted regression equation to predict the values of new observations.

Examine each of the model's coefficients:

Once the Linear Regression was trained I was able to examine each of the model's coefficients. Large coefficients on a specific variable mean that that variable has a large impact on the variable we're trying to predict. Similarly, small values have a small impact.

Feature/Variable	Coeff
date	0.012271
new_cases	14.761466
total_deaths	85.086849
new_deaths	-2325.047296
total_cases_per_million	4.360587
new_cases_smoothed_per_million	-24.709972
total_deaths_per_million	-1204.878232
new_deaths_smoothed_per_million	24674.010368

Feature/Variable	Coeff
new_vaccinations_smoothed	-8.907207
new_vaccinations_smoothed_per_m illion	7.372153
population_density	464.395830
median_age	45978.235161
gdp_per_capita	31.393894
cardiovasc_death_rate	4876.086804
diabetes_prevalence	-130696.783992
hospital_beds_per_thousand	223064.224657
life_expectancy	15407.512203

Making Predictions and Testing the Linear Regression Model

Intercept: [-23411752.86373093]

	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
Linear	0.942278440	1407548.42	8746630701	2957470.321	0.022003412246
Regression	4304934	856267	897.816	3891797	7041

Random Forest

A Random Forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the <code>max_samples</code> parameter if <code>bootstrap=True</code> (default), otherwise the whole dataset is used to build each tree.

From initial inspection I noticed that there are peaks in the measured accuracy as noted in the plots below, with the number of trees set around 15 and 80. Hence I ran estimators with the following number of trees:

- 5 to 25 in increments of 1
- 30 to 70 in increments of 5
- 75 to 85 in increments of 1
- 90 to 195 in increments of 5

Comparison	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
RandomForestRegressor(n_e stimators=1)	0.9986601702	82270.22927	20302632783	450584.42919	0.8929872512
	214833	262452	1.2694	30974	817383
RandomForestRegressor(n_e stimators=5)	0.9986313866	88533.43192	20738794908	455398.67048	3.4839599132
	144769	056188	0.44373	603	53784
RandomForestRegressor(n_e stimators=6)	0.9987379315	85011.87629	19124304353	437313.43854	3.5795426368
	412097	504049	3.13882	62432	71338
RandomForestRegressor(n_e stimators=7)	0.9987823063	83617.06081	18451885910	429556.58428	4.0489556789
	897096	260307	0.5793	265224	39819

Comparison	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
RandomForestRegressor(n_e stimators=8)	0.9987542564	84629.94237	18876931103	434475.90386	5.2669489383
	21324	910713	7.38892	279067	69751
RandomForestRegressor(n_e stimators=9)	0.9987476262	84249.02990	18977398948	435630.56537	5.3245160579
	560707	590493	6.75705	2492	6814
RandomForestRegressor(n_e stimators=10)	0.9987574212	84154.71599	18828973428	433923.65028	5.7149367332
	878082	257286	0.2123	90944	4585
RandomForestRegressor(n_e stimators=11)	0.9988111135	82395.21937	18015367017	424445.13211	7.4799201488
	408477	221574	5.35413	4098	49487
RandomForestRegressor(n_e stimators=12)	0.9987860638	83055.96855	18394949313	428893.33538	7.8914947509
	012926	574392	4.76224	161	765625
RandomForestRegressor(n_e stimators=13)	0.9987744936	83237.86503	18570273840	430932.40584	7.5599181652
	25886	219878	7.29324	492276	06909
RandomForestRegressor(n_e stimators=14)	0.9987837802	83033.57517	18429552200	429296.54320	9.6238954067
	561463	674059	5.6969	25943	23022
RandomForestRegressor(n_e stimators=15)	0.9988199345	81801.66557	17881700902	422867.60224	9.1818997859
	564605	412341	9.05594	573355	95483
RandomForestRegressor(n_e stimators=16)	0.9988246544	81499.33344	17810179037	422021.07811	10.084472894
	92339	938242	6.36057	85705	668579
RandomForestRegressor(n_e stimators=17)	0.9988071184	82246.56339	18075905730	425157.68522	10.504885911
	151399	900939	3.40192	208545	941528
RandomForestRegressor(n_e stimators=18)	0.9987876275	82753.91316	18371253166	428616.99880	11.160880088
	789557	164796	2.82303	29208	806152
RandomForestRegressor(n_e stimators=19)	0.9987799219	83145.27940	18488017079	429976.94216	11.433874845
	88766	157976	5.09818	67843	50476

Comparison	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
RandomForestRegressor(n_e stimators=20)	0.9987813174	82986.26834	18466870704	429730.97054	12.799856901
	995488	180998	4.82983	41648	168823
RandomForestRegressor(n_e stimators=21)	0.9987828048	83021.44202	18444332755	429468.65724	12.699858188
	443164	255052	9.15558	887955	62915
RandomForestRegressor(n_e stimators=22)	0.9987874471	82879.81166	18373987571	428648.89562	14.773845911
	275875	839135	7.4307	13823	026001
RandomForestRegressor(n_e stimators=23)	0.9987740021	83415.01436	18577720863	431018.80311	13.545848846
	751844	990393	6.9158	294517	435547
RandomForestRegressor(n_e stimators=24)	0.9987685010	83385.52937	18661079569	431984.71697	14.558843612
	917448	555504	9.79443	47958	670898
RandomForestRegressor(n_e stimators=25)	0.9987671777	83351.87904	18681132415	432216.75598	16.443820714
	461766	093001	1.58948	19835	95056
RandomForestRegressor(n_e stimators=30)	0.9987423054	84273.98493	19058025470	436554.98474	17.571810245
	773966	043784	9.9377	984535	513916
RandomForestRegressor(n_e stimators=35)	0.9987548487	83808.79848	18867954924	434372.59265	20.109785318
	854693	22798	8.93	396796	374634
RandomForestRegressor(n_e stimators=40)	0.9987962731	82441.18332	18240245112	427085.99968	25.429721593
	814054	32421	4.6886	23691	85681
RandomForestRegressor(n_e stimators=45)	0.9987937894	82505.50820	18277882009	427526.39695	26.366714954
	131337	483839	2.95108	456356	37622
RandomForestRegressor(n_e stimators=50)	0.9988127371	81844.36719	17990763928	424155.20659	32.138652801
	702421	786873	4.7195	86218	51367
RandomForestRegressor(n_e stimators=55)	0.9988037855	82064.21889	18126408527	425751.20114	33.232645988
	886993	517605	3.6556	1765	464355

Comparison	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
RandomForestRegressor(n_e stimators=60)	0.9988121707	81743.00311	17999346514	424256.36724	36.223610162
	804315	886116	5.0096	156496	734985
RandomForestRegressor(n_e stimators=65)	0.9988180850	81551.46219	17909726958	423198.85348	40.115570068
	355254	79619	8.8007	23797	359375
RandomForestRegressor(n_e stimators=70)	0.9988049026	81884.31705	18109482254	425552.37344	41.900545597
	026444	58996	8.60403	961904	076416
RandomForestRegressor(n_e stimators=75)	0.9988185463	81325.35768	17902736837	423116.25869	48.929470300
	339694	251662	4.02917	733386	67444
RandomForestRegressor(n_e stimators=76)	0.9988168812	81380.78447	17927967848	423414.31067	46.561502456
	661616	056125	6.8634	79262	66504
RandomForestRegressor(n_e stimators=77)	0.9988169035	81391.59413	17927630225	423410.32374	46.672489404
	469272	041951	0.49323	104107	678345
RandomForestRegressor(n_e stimators=78)	0.9988242978	81150.85959	17815582646	422085.09386	50.911448955
	925018	328742	1.11118	27319	53589
RandomForestRegressor(n_e stimators=79)	0.9988295123	80962.03258	17736566792	421148.03563	48.878473758
	784766	520315	3.08737	95924	69751
RandomForestRegressor(n_e stimators=80)	0.9988281354	81004.05895	17757431609	421395.67640	49.657460689
	485199	898928	4.12863	65439	54468
RandomForestRegressor(n_e stimators=81)	0.9988345145	80797.44987	17660767705	420247.16186	52.033439636
	80627	427081	7.41666	71763	23047
RandomForestRegressor(n_e stimators=82)	0.9988307409	80940.96626	17717950134	420926.95488	50.270454645
	458331	183628	9.62244	602587	15686
RandomForestRegressor(n_e stimators=83)	0.9988312978	80956.42509	17709511170	420826.70032	64.421304464
	57623	976939	7.41144	61692	34021

Comparison	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
RandomForestRegressor(n_e stimators=84)	0.9988240208	81209.26644	17819780161	422134.81449	55.209399223
	862749	773514	1.94598	88115	32764
RandomForestRegressor(n_e stimators=85)	0.9988197927	81359.03999	17883849631	422893.00812	53.336431026
	555991	259185	6.94797	019577	45874
RandomForestRegressor(n_e stimators=90)	0.9988172699	81499.48456	17922078351	423344.75727	71.180228471
	312318	715373	1.3894	400876	75598
RandomForestRegressor(n_e stimators=95)	0.9988241669	81202.36896	17817566401	422108.59268	61.443334102
	787062	321696	6.30707	23891	630615
RandomForestRegressor(n_e stimators=100)	0.9988160304	81532.13136	17940860550	423566.53020	70.593231916
	392695	837007	6.0231	04198	42761
RandomForestRegressor(n_e stimators=105)	0.9988111991	81660.51091	18014069302	424429.84464	73.578202009
	808335	889731	5.4936	513516	20105
RandomForestRegressor(n_e stimators=110)	0.9987951170	82212.84323	18257763397	427291.04129	66.548284769
	988314	887948	5.09204	982885	05823
RandomForestRegressor(n_e stimators=115)	0.9987942083	82271.46510	18271533755	427452.14650	78.325154066
	528611	19126	5.23032	909207	08582
RandomForestRegressor(n_e stimators=120)	0.9987942498	82239.17462	18270904389	427444.78461	92.156005859
	865728	662469	2.3335	23912	375
RandomForestRegressor(n_e stimators=125)	0.9988061890	81870.09755	18089988736	425323.27395	76.034178256
	366128	711634	4.4623	10763	98853
RandomForestRegressor(n_e stimators=130)	0.9988004757	82011.18269	18176563612	426339.81297	89.354034900
	087775	028944	5.013	20153	66528
RandomForestRegressor(n_e stimators=135)	0.9988076606	81751.64833	18067689729	425061.05125	110.41380882
	129543	980666	0.98596	14478	263184

Comparison	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
RandomForestRegressor(n_e stimators=140)	0.9988090330	81731.88605	18046892476	424816.34239	90.377018213
	841201	450414	6.9468	627223	2721
RandomForestRegressor(n_e stimators=145)	0.9988158065	81448.08690	17944252436	423606.56789	97.860944271
	988454	200796	6.50937	82201	08765
RandomForestRegressor(n_e stimators=150)	0.9988086415	81634.36264	18052824801	424886.15888	119.17171311
	9277	309355	2.6586	57168	378479
RandomForestRegressor(n_e stimators=155)	0.9988081890	81615.82210	18059682332	424966.84967	102.61188960
	443534	694355	3.2549	56599	075378
RandomForestRegressor(n_e stimators=160)	0.9988040347	81776.13230	18122632592	425706.85444	108.69582533
	736479	352386	1.03717	450757	836365
RandomForestRegressor(n_e stimators=165)	0.9988056243	81716.51331	18098545380	425423.85194	134.41155004
	588128	430068	1.32126	217926	501343
RandomForestRegressor(n_e stimators=170)	0.9988058618	81693.57210	18094946651	425381.55403	108.73582243
	493673	073179	6.9991	942836	919373
RandomForestRegressor(n_e stimators=175)	0.9988101197	81592.81173	18030426105	424622.49239	106.28985452
	478612	718991	1.83047	98144	651978
RandomForestRegressor(n_e stimators=180)	0.9988129997	81506.80163	17986785168	424108.30183	142.30246543
	401566	16389	9.02185	93083	884277
RandomForestRegressor(n_e stimators=185)	0.9988115696	81537.38752	18008455831	424363.70994	112.79077553
	300917	964638	8.13327	48223	749084
RandomForestRegressor(n_e stimators=190)	0.9988120278	81514.88231	18001512014	424281.88760	114.04177045
	727799	932459	6.39786	11535	822144
RandomForestRegressor(n_e stimators=195)	0.9988085740	81601.85500	18053847615	424898.19505	105.09187006
	942615	431593	8.46445	202	950378

From the results above, the optimal estimators are found with $n_{estimators=16}$ and $n_{estimators=81}$. The latter shows smaller MAE, MSE and RMSE. I will proceed then with $n_{estimators=81}$.

Logistic Regression

Logistic regressions, also referred to as Logit Models, are powerful alternatives to linear regressions that allow to model a dichotomous, binary outcome (i.e., 0 or 1) and provide notably accurate predictions on the probability of said outcome occurring given an observation. The parameter estimates within Logit Models can provide insights into how different explanatory variables or features contribute to the model predictions.

Making Predictions and Testing the Logistic Regression Model

Intercept: [1.73814779e-18 -1.24853695e-19 1.15253590e-18 ... 3.71401863e-19 3.69880204e-19 - 3.92605189e-19]

	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
Logistic	0.0129974973	2175357.53	129518516.8	11380.62023	930.340165138
Regression	76281586	9032857	3426173	0649194	2446

Results

Model	Accuracy	MAE	MSE	RMSE	Training Time (seconds)
Linear Regress ion	0.94227844043049 34	1407548.42856 267	8746630701897. 816	2957470.321389 1797	0.022003412246 7041
Random Forest	0.99883451458062 7	80797.4498742 7081	176607677057.4 1666	420247.1618671 763	52.03343963623 047

As expected, the least accurate model is Logistic Regression as this model is used for classification and not prediction.

Both Linear regression and Random Forest show good accuracy. For Random Forest the best accuracy was calculated with 81 decision trees.

The Mean Absolute Error (MAE) represents the average of the absolute difference between the actual and predicted values in the dataset. It measures the average of the residuals in the dataset. This means that the smaller the difference the better the prediction is.

Similar results are obtained for Mean Squared Error (MSE) which represents the average of the squared difference between the original and predicted values in the dataset. It measures the variance of the residuals. as well as with Root Mean Squared Error (RMSE) which is the square root of Mean Squared error. It measures the standard deviation of residuals.

This means that the best model for this use case is Random Forest configured with 81 decision trees.

Conclusion

In this document, various prediction techniques are proposed and evaluated for predicting the number of COVID-19 cases based on a publicly available dataset of observations.

Due to the large size of the dataset both in terms of the number of features and the number of observations a selection of the data is recommended for efficient processing and manipulation. The original dataset includes 346,567 observations and 67 features. After One Hot Encoding, a total of 552 columns remained. However:

- Even with this reduction the processing of the file was slow, with the Backwards Elimination algorithm run taking 90 minutes to complete.
- Additional compute resources were required to prevent the Jupyter Kernel from crashing, but the dataset was manageable only after restricting the observations to only those from North America.

Performance significantly improved using only data from North America, but it would have been great to run the models against the whole dataset.

It was also interesting to see the impact on how the split is performed. Based on some of the articles, some models were run by selecting training and testing dataset based on the observation date. At that moment my approach was to split the dataset selecting observations from 2021 and 2022 as the training dataset and observations from 2023 as the testing dataset. But this ended up affecting the models and yielding low accuracy. The best approach was to use a random split with 70% for training dataset and 30% for testing dataset.

It is interesting to see that attributes like testing or ICU don't add value in the prediction of the number of cases and that derived weekly columns are not relevant.

On the other hand, it is also interesting to see how information like gross domestic product, purchasing power, cardiovascular and diabetes are highly relevant in how they influence the number of cases.

The best models to predict the number of COVID-19 cases are Linear Regression and Random Forest. Random Forest has a higher accuracy and smaller MAE, MSE and RMSE.

GitHuB Repository

https://github.com/aamadorc/CIND820

https://aamadorc.github.io/CIND820/changes

References

- Ahouz, F., & Golabpour, A. (2021, June 7). Predicting the incidence of COVID-19 using data mining. *BMC Public Health*, *21*(1), 1087.
- Barua, A., Hridoy, M., Uddin, K., Chowdhury, R., & Ahamed, J. (n.d.). Analysis and Prediction of the Spread of COVID-19 in Bangladesh Using Statistical and Machine Learning Approach. Retrieved from https://ssrn.com/abstract=4592228
- Brownlee, J. (2020). *Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python.* Machine Learning Mastery.
- Gangloff, C., Rafi, S., Bouzillé, G., Soulat, L., & Cuggia, M. (2021). Machine learning is the key to diagnose COVID-19: a proof-of-concept study. *Scientific Reports*, *11*(1), 7166.
- Gothai, E., Thamilselvan, R., Rajalaxmi, R., Sadana, R., Ragavi, A., & Sakthivel, R. (2023). Prediction of COVID-19 growth and trend using machine learning approach. *Materials Today: Proceedings*, *81*(2), 597-601.
- Heredia Cacha, I., Sáinz-Pardo Díaz, J., Castrillo, M., & López García, Á. (2023). Forecasting COVID-19 spreading through an ensemble of classical and machine learning models: Spain's case study. *Scientific Reports*, *13*(1).
- Iwendi, C., Bashir, A., Peshkar, A., Sujatha, R., Chatterjee, J., Pasupuleti, S., . . . Jo, O. (2020, July 3). COVID-19 patient health prediction using boosted random forest algorithm. *Frontiers in Public Health*, 8, 357.
- Koehrsen, W. (2018, 1). Random Forest in Python. A Practical End-to-End Machine Learning. Retrieved November 26, 2023, from Towards Data Science: https://towardsdatascience.com/random-forest-in-python-24d0893d51c0
- Kuhn, M., & Johnson, K. (2020). Feature Engineering and Selection: A Practical Approach for Predictive Models. CRC Press, Taylor & Francis Group.
- McCullum, N. (n.d.). *Linear Regression in Python A Step-by-Step Guide*. Retrieved November 26, 2023, from https://www.nickmccullum.com/python-machine-learning/linear-regression-python
- Meraihi, Y., Gabis, A., Mirjalili, S., Ramdane-Cherif, A., & Alsaadi, F. (2022, 5 12). Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. *SN computer science, 3*(4).

- Painuli, D., Mishra, D., Bhardwaj, S., & Aggarwal, M. (2021). Forecast and prediction of COVID-19 using machine learning. *Data Science for COVID-19*, 381–397.
- Saqib, M. (2020, September 10). Forecasting COVID-19 Outbreak Progression Using Hybrid Polynomial-Bayesian Ridge Regression Model.
- Silipo, R., Adae, I., Hart, A., & Berthold, M. (2014). Seven Techniques for Dimensionality Reduction. Retrieved November 26, 2023, from KNIME: https://www.knime.com/sites/default/files/inline-images/knime_seventechniquesdatadimreduction.pdf
- Singh, H. (2021, April 5). *Missing Value Ratio Implementation in Python.* Retrieved November 26, 2023, from Analytics Vidhya: https://www.analyticsvidhya.com/blog/2021/04/beginners-guide-to-missing-value-ratio-and-its-implementation/
- Singh, K., Kumar, S., Dixit, P., & Bajpai, M. (2021). Kalman filter based short term prediction model for COVID-19 spread. *Applied Intelligence*, *51*(5), 2714–2726.
- Tuli, S., Tuli, S., Tuli, R., & Gill, S. (2020, September). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. *Internet of Things (Netherlands)*, 11.
- Vishal, R. (2022, 4). Feature Selection Correlation and P-value. Retrieved November 26, 2023, from Kaggle: https://www.kaggle.com/code/bbloggsbott/feature-selection-correlation-and-p-value
- Wang, L., Shen, H., Enfield, K., & Rheuban, K. (2021). COVID-19 Infection Detection Using Machine Learning. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 4780-4789). IEEE.
- Zoabi, Y., Deri-Rozov, S., & Shomron, N. (2021). Machine learning-based prediction of COVID-19 diagnosis based on symptoms. *npj Digital Medicine*, *4*(1).