Comp 251 Assignment 1

Description of algorithm

The findCircles algorithm is looping the x and y coordinates from minr to n - minr then for all radius between minr and maxr. Then it's calling findCircle with the current x, y position and radius.

The findCircle function first checking for the cardinal point to be of the good color, then for the cardinal point at r+1 and r-1 (This accelerate the process of finding potential intersections, the intersections functions won't be called, especially for all the white circle that can be detected when the background is white). Then the function is looping using the Bresenham's algorithm. If the findCircle function return true then we call the intersect function for r+1 and r-1 to check for any touching circle.

If the intersect both return false then we can consider there is a circle and so we can add it into the array (ArrayList of array of size 3 (x, y, r))

Question 2

Question 2.a

As the Bresenham's algorithm takes time $2\pi r$. The findCircle and intersect functions function also take $2\pi r$. Then 0as we are calling findCircle once and intersect twice we have $6\pi r$. Then we have $6\pi r * (n-2r)(n-2r) = 6\pi r * (n^2 - 4nr + 4r^2)$

$$6\pi r * (n^2 - 4nr + 4r^2) \le 6\pi r * (n^2 + 4r^2) = 6\pi r n^2 + 24\pi r^3$$

This gives us $O(n^2)$

Question 2.b

The best case is when the *findCircle* return false just by checking the cardinal point. Then the *findCircle* is O(1). Then as were looping twice the time depends on $(n-2r)^2$ which is $O(n^2)$.

Ouestion 2.c

The time of the algorithm is

$$f(n,r) = 6\pi r * (n-2r)^2$$

Let solve the derivative for r

$$\frac{d(f(n,r))}{d(r)} = 2\pi (n^2 - 8nr + 12r^2)$$

Solving to 0 gives us either

$$r = \frac{n}{2}$$
 or $r = \frac{n}{6}$

- $\frac{n}{2}$ Minimum is reach, for all $r \ge \frac{1}{2}$ the time is 0 $\frac{n}{6}$ Is the maximum.

Then the maximum is reach for $r = \frac{n}{6}$

Question 3

Question 3.a

As we can see the time is depending on n^2 which again validate the previously found complexity of $\mathcal{O}(n^2)$

Question 3.b

As we can see the function depends on r^3 which validate the previously found complexity if it depends on r:

$$6\pi r * (n-2r)^2 * r = O(r^3)$$

Question 4

The current algorithm is only detecting circle traced using the Bresenham's algorithm. We can add an ϵ around the expected position of the pixel. We can check for all pixel touching the one we are currently checking if any of those have to good colors then we can consider the test to work. We also need to remove the inner intersection so it includes discs.

Alternatively we can use a loop with a θ going from 0 to 2π and by taking the cosines and sinus for x and y then by checking first for a circle then for possible ellipsis with r+1 or r-1 of radius.

Annexe

Graph 1				Graph 2			
Radius	Time	Radius	Time	Size	Time	Size	Time
4	2386	104	2120	50	0	1050	623
8	2454	108	2151	100	22	1100	684
12	2359	112	2126	150	17	1150	759
16	2254	116	2038	200	23	1200	754
20	2324	120	2037	250	22	1250	870
24	2417	124	2041	300	33	1300	858
28	2429	128	2012	350	64	1350	979
32	2503	132	2022	400	63	1400	1196
36	2443	136	2034	450	119	1450	1156
40	2556	140	2002	500	124	1500	1295
44	2569	144	1994	550	143	1550	1374
48	2385	148	1997	600	162	1600	1465
52	2442	152	2046	650	224	1650	1607
56	2406	156	1946	700	247	1700	1729
60	2292	160	1883	750	264	1750	1848
64	2354	164	1814	800	285	1800	1983
68	2323	168	1813	850	348	1850	2132
72	2260	172	1842	900	425	1900	2155
76	2289	176	1782	950	490	1950	2318
80	2417	180	1809	1000	521	2000	2529
84	2218	184	1803				
88	2172	188	1763				

92	2179	192	1762
96	2178	196	1720
100	2185		