

Reverse Neo Process

IRVINE SENSORS CORPORATION

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation.
This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

Reverse Neo Process

IRVINE SENSORS CORPORATION

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation.
This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

Reverse Neo Process

IRVINE SENSORS CORPORATION

Fig. 1k

Fig. 1l

- 1k) Apply field metal
- 1l) Apply photoresist
- 1m) Image & develop photoresist. Gold electroplate
- 1n) Strip photoresist & field metal etch

Fig. 1m

Fig. 1n

NOTE: For additional layers, steps 1g through 1n are repeated.

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation. This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

Reverse Neo Process

IRVINE SENSORS CORPORATION

Solder Bumping Of Die

- 2a) Retrieve die
- 2b) Apply underbump metallurgy
- 2c) Apply solder bump

Fig. 2a

Fig. 2b

Fig. 2c

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation. This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

Reverse Neo Process

IRVINE SENSORS CORPORATION

Flip-Chip Bonding

K16, 3a

Retrieve substrate assembly and
bumped die

3a) Flip chip bumped die to substrate

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation.
This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

Reverse Neo Process

IRVINE SENSORS CORPORATION

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation.
This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

Reverse Neo Process

IRVINE SENSORS CORPORATION

Fig. 3d

- 3d) Thin wafer
- 3e) Release wafer from aluminum substrate
- 3f) Mask wafer for test pad etch

Fig. 3e

Fig. 3f

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation.
This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

Reverse Neo Process

IRVINE SENSORS CORPORATION

Fig 3g

- 3g) Etch polyimide to expose test pads
3h) Remove etch mask & test wafer
3i) Dice wafer

Fig 3h

Fig 3i

PROPRIETARY INFORMATION Not to be duplicated, used, or disclosed in whole or part for any purpose other than evaluation.
This restriction does not limit the right to use information contained herein if it is obtained from another source without restriction.

Copyright © 2000 Irvine Sensors Corporation
Unpublished work - all rights reserved.

High Volume Reverse NEO Process

#1) Wafer Built Up Assembly

General Process Steps

- 1) Screen Print Electrically Conductive Epoxy on Built-Up Laminate Substrates
- 2) Place Flip Chip Devices
- 3) Cure Epoxy
- 4) Underfill Devices
- 5) Xfer. Mold Devices

ISSUE - V1P1

High Volume Reverse NEO Process

2) Stacked Wafer Strip Assembly

General Process Steps

- 6) Release Carrier Film from Substrate
(If Required)
- 7) Attach Memory and ASIC Wafers
- 8) Cut/Saw Wafers to Strips

Figs

3) Stacked Wafer Strip Assembly

General Process Steps

- 9) Interconnect or Bus Wafers by
Metallizing Wafer Stacks

150E - 150P

High Volume Reverse NEO Process

General Process Steps

4) Thinned and Sawed Assembly

Figs. 4 &
80 →

10) Thin Stack Assembly

5) Thinned and Sawed Assembly

Figs. 4 &
80 →

General Process Steps

- 11) Solder Bump Stack
- 12) Singulate (Saw) into Individual Stacks

186 - VPP