Московский авиационный институт

(национальный исследовательский институт)

Институт «Компьютерные науки и прикладная математика»

Курсовая проект «Эвристический поиск на графах» по курсу

«Дискретный анализ»

V семестр

Студент: Меркулов Ф. А. *Группа: М8О-307Б-21*

Руководитель: Сорокин С. А.

Оценка:

Дата:

Условие

Ваша программа должна читать входные данные из стандартного потока ввода и выводить ответ на стандартный поток вывода. Реализуйте алгоритм A* для неориентированного графа. Расстояние между соседями вычисляется как простое евклидово расстояние на плоскости.

Формат ввода

В первой строке вам даны два числа n и m ($1 \le n \le 10^4$, $1 \le m \le 10^5$) — количество вершин и рёбер в графе. В следующих n строках вам даны пары чисел xy ($-10^9 \le x, y \le 10^9$), описывающие положение вершин графа в двумерном пространстве. В следующих m строках даны пары чисел в отрезке от 1 до n, описывающие рёбра графа. Далее дано число q ($1 \le q \le 300$) и в следующих q строках даны запросы в виде пар чисел ab ($1 \le a, b \le n$) на поиск кратчайшего пути между двумя вершинами.

Формат вывода

В ответ на каждый запрос выведите единственное число— длину кратчайшего пути между заданными вершинами с абсолютной либо относительной точностью 10^{-6} , если пути между вершинами не существует выведите –1.

Метод решения

Требуется реализовать алгоритм поиска кратчайшего пути во взвешенном графе. С этой задачей отлично справляется алгоритм Дейкстры, но в силу особенности задачи так же применим алгоритм поиска A*.

Алгоритм Дейкстры хранит для каждой вершины длину кратчайшего пути до неё и на каждом шаге ищет вершину с минимальной такой величиной. Алгоритм обходит все смежные вершины и запоминает, что текущая вершина с минимальным кратчайшим путем была посещена.

Изначально пути до всех вершин равны бесконечности, а в старте значение равно нулю. Алгоритм имеет сложность $O(n^2+m)$ в простой реализации и $O(n \log n + m)$ в реализации с использованием двоичной кучи.

Алгоритм поиска A^* работает похожим образом, но для выбора вершины на каждом шаге использует функцию f(v) = g(v) + h(v), где g(v) — кратчайший путь от стартовой вершины до v, h(v) — эвристическая функция, которая вычисляет приближённое значение кратчайшего пути до финиша. В моём случае функции h(v) — евклидово расстояние на плоскости между координатами вершин v и финиша. Алгоритм имеет временную сложность O(|E|) и пространственную O(|V|), где V — множество вершин в графе, а E — множество дуг графа.

Описание программы

В функции **main** программа считывает входные данные, включая количество вершин и рёбер, координаты точек и связи между ними, формируя граф. Затем она считывает количество запросов на поиск пути, для каждого запроса сбрасывает информацию о стоимости пути и закрытых вершинах, и запускает функцию **aStar** для нахождения и вывода кратчайшего пути между парой точек.

Функция **euclideanDistance** вычисляет Евклидово расстояние между двумя точками, которое используется в алгоритме как эвристическая функция h(v).

Функция **aStar** реализует сам алгоритм A*. Она инициализирует открытое множество вершин с помощью очереди с приоритетами. Вершины извлекаются из очереди по одной, и для каждой из них:

- Если вершина является целевой, функция возвращает стоимость пути до неё.
- Для каждого соседа рассматриваемой вершины проверяется, не был ли он уже посещён (закрыт).
- Если новый путь к соседу короче, чем известный ранее, обновляется стоимость пути до соседа, и сосед добавляется в открытое множество с новым приоритетом, который включает в себя стоимость пути и эвристическое расстояние до цели.

Дневник отладки

Очень много раз получал TL4 в связи с тем, что в приоритетной очереди использовал 3 элемента вместо 2, причём третий элемент был фиктивным и никак не использовался в алгоритме.

Потом все остальные посылки до OK получал TL5, что было вызвано использование типа long double (в эвристической функции, которая используется чуть ли не больше всех остальных операций в программе, используется функция sqrt, которой приходилось делать больше действий на вычисление значений с большей точностью и следовательно тратилось больше времени), замена на double решила эту проблему.

Тест производительности

В тесте сравниваются алгоритм Дейкстры и алгоритм поиска А*.

Каждый тест содержит 50 запросов на поиск.

В тестах представлены несвязные и плотные графы, чтобы сравнить алгоритмы в разных условиях.

Количество	Количество	Алгоритм А*,	Алгоритм Дейкстры,
вершин (n)	рёбер (m)	MC	MC
100	50	0.875	0.890
100	200	3.625	8.834
100	10 ³	3.586	34.628
10^{3}	500	4.184	4.289
10^{3}	2 * 10 ³	90.385	172.436
10^{3}	10 ⁴	40.902	397.362
4	. 2		
10^4	$5 * 10^3$	9.567	11.228
10^{4}	2 * 10 ⁴	980.609	2034.514
10 ⁴	10 ⁵	663.586	5719.548

Видно, что А* не сильно побеждает алгоритм Дейкстры при несвязных графах, потому что алгоритм Дейкстры так же быстро как А* определяет, что пути нет.

Чем плотнее граф, тем быстрее оказывается А*, так как он сразу выбирает наиболее подходящую вершину с использованием эвристики.

Выводы

В ходе выполнения курсового проекта я изучил алгоритмы поиска кратчайших путей в графах и реализовал алгоритм Дейкстры и А* с эвристикой, применяемой к своему заданию.

Почти во всех реализациях задачах мы каким-либо образом можем оценить расстояние до цели (расстояние в пространстве или Манхэттенское расстояние), поэтому алгоритм A* становится применим.

Как было видно выше в сравнении скорости работы алгоритмов Дейкстры и A*, A* в несколько раз быстрее на больших и плотных графах. С учётом того, как быстро растут города, улицы и жилые кварталы, граф города становится всё плотнее и плотнее из-за чего актуальность алгоритма A*, только повышается и повышается.