

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf : DE-EX-91
Indice : 3
Date : 02/12/2019

EPREUVE D'EVALUATION

Année Universitaire:	2020-2021	Date de l'Examen:	12/12/2020
Nature:	DC	Durée:	1h30min
Diplôme:	Ingénieur	Nombre de pages:	1
Section:	GM, GCV	Enseignant:	W. Ben Salah
Niveau d'études:	lère année	Doc autorisés:	Non
Matière:	Mathématiques I	Remarque:	

Exercice 1 : (04 points)

Calculer l'intégrale curviligne I le long de la courbe fermé γ constituée par les deux arcs de parabole

$$y = x^2$$
 et $x = y^2$,

orientée dans le sens direct où

$$I = \int_{\gamma} (2xy - x^{2})dx + (x + y^{2})dy.$$

Vérifier le résultat en utilisant la formule de Green-Riemann.

Exercice 2:(04 points)

calculer le volume du solide borné par le cylindre $y=x^2$ et par les plans y+z=4 et z=0.

Exercice 3:(04 points)

Soit \mathcal{D} la partie colorée en figure.

- 1. Décrire \mathcal{D} en coordonnées cartésiennes.
- 2. Trouver un changement de variables adéquat pour décrire $\mathcal D$ en coordonnées polaires.

$$\iint_{\mathcal{D}} \frac{x-y}{\sqrt{(x+2)^2 + (y-3)^2}} dx dy$$

Exercice 4:(08 points)

1. Montrer en utilisant un changement de variable adéquat que

$$\beta(a,b) = 2 \int_0^{\frac{\pi}{2}} (\sin \theta)^{2a-1} (\cos \theta)^{2b-1} d\theta, \quad \forall a > 0, b > 0.$$

- 2. Déduire que $\beta(a, a) = (\frac{1}{2})^{2a-2} \int_0^{\frac{\pi}{2}} (\sin(2\theta))^{2a-1} d\theta, \quad \forall a > 0.$
- 3. Montrer que $\beta(a, a) = (\frac{1}{2})^{2a-1}\beta(a, \frac{1}{2}), \ \forall a > 0.$
- 4. Déduire la formule de duplication de Legendre

$$\Gamma(a)\Gamma(a+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2a-1}}\Gamma(2a), \quad \forall a>0.$$