SP015

Physics I Semester I Session 2023/2024 2 hours LECTURER'S COPY

PRE PSPM 1

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

INSTRUCTIONS TO CANDIDATE:

The question paper consists of 8 questions.

Answer all questions.

The use of electronic calculator is permitted.

This question paper consists of 13 printed pages.

LIST OF SELECTED CONSTANT VALUES SENARAI NILAI PEMALAR TERPILIH

Speed of light in vacuum Laju cahaya dalam vakum	c	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Permeability of free space Ketelapan ruang bebas	μ_o	$= 4\pi \times 10^{-7} \text{ H m}^{-1}$
Permittivity of free space Ketelusan ruang bebas	$arepsilon_o$	$= 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
Electron charge magnitude Magnitud cas elektron	e	$= 1.60 \times 10^{-19} \mathrm{C}$
Planck constant Pemalar Planck	h	$= 6.63 \times 10^{-34} \text{ J s}$
Electron mass Jisim elektron	m_e	$= 9.11 \times 10^{-31} \text{ kg}$ $= 5.49 \times 10^{-4} \text{ u}$
Neutron mass Jisim neutron	m_n	$= 1.674 \times 10^{-27} \text{ kg}$ $= 1.008665 \text{ u}$
Proton mass Jisim proton	m_p	$= 1.672 \times 10^{-27} \text{ kg}$ $= 1.007277 \text{ u}$
Hydrogen mass Jisim hidrogen	m_H	$= 1.673 \times 10^{-27} \text{ kg}$ $= 1.007825 \text{ u}$
Deuteron mass Jisim deuteron	m_d	$= 3.34 \times 10^{-27} \text{ kg}$ $= 2.014102 \text{ u}$
Molar gas constant Pemalar gas molar	R	$= 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Avogadro constant Pemalar Avogadro	N_A	$= 6.02 \times 10^{23} \text{ mol}^{-1}$
Boltzmann constant Pemalar Boltzmann	k	= $1.38 \times 10^{-23} \text{ J K}^{-1}$
Free-fall acceleration Pecutan jatuh bebas	g	$= 9.81 \text{ m s}^{-2}$
Atomic mass unit Unit jisim atom	1 u	$= 1.66 \times 10^{-27} \text{kg}$ $= 931.5 \frac{\text{MeV}}{c^2}$

LIST OF SELECTED CONSTANT VALUES SENARAI NILAI PEMALAR TERPILIH

Electron volt Elektron volt 1 eV

 $= 1.6 \times 10^{-19} \text{ J}$

Constant of proportionality for Coulomb's law

 $k=\frac{1}{4\pi\varepsilon_o}$

 $= 9.0 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

Pemalar hukum Coulomb

1 atm

 $= 1.013 \times 10^5 \text{ Pa}$

Atmospheric pressure Tekanan atmosfera

- 1.015 × 10 Fa

Density of water Ketumpatan air

 $ho_{\scriptscriptstyle w}$

 $= 1000 \text{ kg m}^{-3}$

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

1.
$$v = u + at$$

$$2. s = ut + \frac{1}{2}at^2$$

3.
$$v^2 = u^2 + 2as$$

$$4. s = \frac{1}{2}(u+v)t$$

5.
$$p = mv$$

6.
$$J = F\Delta t$$

7.
$$J = \Delta p = mv - mu$$

8.
$$f = \mu N$$

9.
$$W = \vec{F} \cdot \vec{s} = Fs \cos \theta$$

$$10. K = \frac{1}{2}mv^2$$

11.
$$U = mgh$$

12.
$$U_s = \frac{1}{2}kx^2 = \frac{1}{2}Fx$$

13.
$$W = \Delta K$$

14.
$$P_{av} = \frac{\Delta W}{\Delta t}$$

15.
$$P = \vec{F} \cdot \vec{v} = Fv \cos \theta$$

$$16. a_c = \frac{v^2}{r} = r\omega^2 = v\omega$$

17.
$$F_c = \frac{mv^2}{r} = mr\omega^2 = mv\omega$$

18.
$$s = r\theta$$

19.
$$v = r\omega$$

20.
$$a_t = r\alpha$$

21.
$$\omega = \omega_o + \alpha t$$

$$22. \qquad \theta = \omega_o t + \frac{1}{2} \alpha t^2$$

23.
$$\theta = \frac{1}{2}(\omega_0 + \omega)t$$

$$24. \qquad \omega^2 = \omega_o^2 + 2\alpha\theta$$

25.
$$\tau = rF \sin \theta$$

26.
$$I = \sum mr^2$$

$$27. I_{\text{solid sphere}} = \frac{2}{5}MR^2$$

28.
$$I_{\text{solid cylinder/disc}} = \frac{1}{2}MR^2$$

$$29. I_{\rm ring} = MR^2$$

30.
$$I_{\text{rod}} = \frac{1}{12} M L^2$$

31.
$$\sum \tau = I\alpha$$

32.
$$L = I\omega$$

33.
$$y = A \sin \omega t$$

34.
$$v = \omega A \cos \omega t = \pm \omega \sqrt{A^2 - y^2}$$

35.
$$a = -\omega^2 A \sin \omega t = -\omega^2 y$$

36.
$$K = \frac{1}{2}m\omega^2(A^2 - y^2)$$

$$37. \qquad U = \frac{1}{2}m\omega^2 y^2$$

$$38. E = \frac{1}{2}m\omega^2 A^2$$

$$39. \qquad \omega = \frac{2\pi}{T} = 2\pi f$$

$$40. T = 2\pi \sqrt{\frac{l}{g}}$$

$$41. T = 2\pi \sqrt{\frac{m}{k}}$$

42.
$$k = \frac{2\pi}{\lambda}$$

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

43.
$$v = f\lambda$$

44.
$$y(x,t) = A \sin(\omega t \pm kx)$$

45.
$$v_y = A\omega\cos(\omega t \pm kx)$$

46.
$$y = 2A \cos kx \sin \omega t$$

$$47. f_n = \frac{nv}{2L}$$

$$48. f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$$

49.
$$f_n = \frac{nv}{4L}$$

50.
$$v = \sqrt{\frac{T}{\mu}}$$

51.
$$\mu = \frac{m}{l}$$

52.
$$f_a = \left(\frac{v \pm v_o}{v \mp v_s}\right) f$$

53.
$$\sigma = \frac{F}{A}$$

54.
$$\varepsilon = \frac{\Delta L}{L_0}$$

55.
$$Y = \frac{\sigma}{\epsilon}$$

56.
$$U = \frac{1}{2}F\Delta L$$

57.
$$\frac{u}{v} = \frac{1}{2}\sigma\varepsilon$$

$$58. \qquad \frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$$

59.
$$\Delta L = \alpha L_o \Delta T$$

60.
$$\Delta A = \beta A_o \Delta T$$

61.
$$\Delta V = \gamma V_o \Delta T$$

62.
$$\beta = 2\alpha$$

63.
$$\gamma = 3\alpha$$

$$64. \qquad n = \frac{m}{M} = \frac{N}{NA}$$

65.
$$v_{rms} = \sqrt{\langle v^2 \rangle}$$

66.
$$v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

$$67. \qquad PV = \frac{1}{3} Nm v_{rms}^2$$

68.
$$P = \frac{1}{3} \rho v_{rms}^2$$

69.
$$K_{\text{tr}} = \frac{3}{2} \left(\frac{R}{N_A} \right) T = \frac{3}{2} kT$$

70.
$$U = \frac{1}{2} f N k T = \frac{1}{2} f n R T$$

71.
$$\Delta U = Q - W$$

72.
$$W = nRT \ln \frac{v_f}{v_i} = nRT \ln \frac{P_i}{P_f}$$

73.
$$W = \int P dV = P(V_f - V_i)$$

74.
$$W = \int P dV = 0$$

No.	Answer	Scheme	Marks
1.	L.H.S. $[P] = [\rho][g][h]$ $[P] = \frac{[m]}{[V]}[g][h]$ $[P] = ML^{-1}T^{-2}$	R.H.S. $[\rho] = \frac{[m]}{[V]}$ $[\rho] = \frac{M}{L^3}$ $[\rho] = ML^{-3}$ $[v^2] = (LT^{-1})^2$ $[v^2] = L^2T^{-2}$	
	$[P] = [P] = [b]$ $ML^{-1}T^{-2} = [b]$ $ML^{-1}T^{-2} = [b]$ $[b]$	= R.H.S. $[b\rho v^2]$ $[b][\rho][v^2]$ $[(ML^{-3})(L^2T^{-2})$ $[b](ML^{-1}T^{-2})$ = 1 ensionless	G1 G1 J1 3
2. (a)	i) Average velocity =	$= \frac{[Displacement]}{29}$ $= \frac{a \ under \ the \ v - t \ graph]}{29}$	K1
		$\frac{5)(15) + \left(\frac{1}{2}\right)(6+14)(15)}{29}$	G1
		$y = \frac{[112.5 + 150]}{29}$ $xty = 9.05 \text{ ms}^{-1}$	JU1
	a = -1.8	$\frac{0 - 15}{9 - 21}$ 875 ms^{-2} $= 1.875 \text{ ms}^{-2}$	GJU1

	iii)	
	$a = \frac{0 - v}{29 - 25}$	G1
		G1
	$-1.875 = \frac{0-v}{29-25}$	
	$v = 7.5 \text{ ms}^{-1}$	
	$S_{t=25\to 29} = \left(\frac{1}{2}\right)(v)(t)$ $S_{t=25\to 29} = \left(\frac{1}{2}\right)(7.5)(4)$	G1
	$S_{t=25\to29}=15\ m$	
	Distance moved by the car within $25s = 112.5 + 150 - 15$	K1
	$d_{\rm t = 0s \to 25s} = 247.5 m$	JU1
	OR	OR
	iii) $S_{25} = ut + \frac{1}{2}at^2$	G1
	$S_{25} = (15)(25 - 21) + \frac{1}{2}(-1.875)(25 - 21)^2$	G1
	$S_{25} = 45 m$	
	Distance moved by the car after $25s = 112.5 + 90 + 45$	K1
	$d_{\rm t = 0s -> 25s} = 247.5 m$	JU1
		8
(b)	$S_x = u_x t$	
	$100 = 10\cos 30^{\circ}t$	G1
	t = 11.55 s	
	$v_{v} = u_{v} + at$	
		G1
	$v_y = (10\sin 30^\circ) + (-9.81)(11.55)$	JU1
	$v_y = -108.31 \mathrm{m}\mathrm{s}^{-1}$	3
		3

3.(a)	$J = Area\ under\ F - t\ graph$	K1
	$(m)(v-u) = \left(\frac{1}{2}\right)(20)(4)$	
	(5)(v-0)=40	
	$v = 8 m s^{-1}$	GJU1
		2
(b)	i) N ▶	
	F $ \begin{array}{c} $	D2
	ii) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
	$\Sigma F_{\!\scriptscriptstyle \mathcal{X}} = ma$	K1
	$F_x - W_x - f_k = (15)(0.25)$	
	$Fcos20^{\circ} - Wsin20^{\circ} - f_k = (15)(0.25)$	G1
	$(200)\cos 20^{\circ} - (15)(9.81)\sin 20^{\circ} - f_k = (15)(0.25)$ $f_k = 133.9N$	JU1

iii) $\Sigma F_{y} = 0$ $N - W_{y} - F_{y} = 0$ $N - (15)(9.81)\cos 20^{\circ} - (200)\sin 20^{\circ} = 0$ $N = 206.68 N$ $f_{k} = 133.9N$ $\mu_{k}(206.68) = 133.9N$ $\mu_{k} = 0.65$ $\mathbf{E}I_{l} = \Sigma E_{f}$ $K = U_{g}$ $(\frac{1}{2})(m)(v) = mgh$ $(\frac{1}{2})(m+M)(v)^{2} = (m+M)gh$ $(\frac{1}{2})(1.005)(v)^{2} = (1.005)(9.81)(0.05)$ $v = 0.99 \text{ m s}^{-1}$ \mathbf{M}_{x} \mathbf{M}_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ $\mathbf{G}I$ $\mathbf{M}II$ $\mathbf{G}I$ $\mathbf{M}II$ $\mathbf{G}I$			
$\Sigma F_{y} = 0$ $N - W_{y} - F_{y} = 0$ $N - (15)(9.81)\cos 20^{\circ} - (200)\sin 20^{\circ} = 0$ $N = 206.68 N$ $f_{k} = 133.9N$ $\mu_{k}N = 133.9N$ $\mu_{k}(206.68) = 133.9N$ $\mu_{k} = 0.65$ \mathbf{G} \mathbf{H} \mathbf{G} $$		iii)	K 1
$N - (15)(9.81)\cos 20^{\circ} - (200)\sin 20^{\circ} = 0$ $N = 206.68 N$ $f_{k} = 133.9N$ $\mu_{k}(206.68) = 133.9N$ $\mu_{k} = 0.65$ $SE_{l} = \Sigma E_{f}$ $K = U_{g}$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(1.005)(v)^{2} = (1.005)(9.81)(0.05)$ $v = 0.99 \text{ m s}^{-1}$ $Sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ GI JUI g GI JUI g GI JUI GI		$\Sigma F_{y} = 0$	KI
$N - (15)(9.81)\cos 20^{\circ} - (200)\sin 20^{\circ} = 0$ $N = 206.68 N$ $f_{k} = 133.9N$ $\mu_{k} N = 133.9N$ $\mu_{k} = 0.65$ 9 $\mathbf{4.(a)}$ $\Sigma E_{i} = \Sigma E_{f}$ $K = U_{g}$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(1.005)(v)^{2} = (1.005)(9.81)(0.05)$ $v = 0.99 \ m \ s^{-1}$ 3 $\mathbf{(b)}$ \mathbf{M}_{x} \mathbf{M}_{y} \mathbf{M}_{y		$N - W_{\mathcal{Y}} - F_{\mathcal{Y}} = 0$	C1
$f_{k} = 133.9N$ $\mu_{k} (206.68) = 133.9N$ $\mu_{k} = 0.65$ $\frac{5}{9}$ 4.(a) $\Sigma E_{l} = \Sigma E_{f}$ $K = U_{g}$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(1.005)(v)^{2} = (1.005)(9.81)(0.05)$ $v = 0.99 \text{ m s}^{-1}$ $\frac{1}{3}$ (b) $S_{k} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G_{l}		$N - (15)(9.81)\cos 20^{\circ} - (200)\sin 20^{\circ} = 0$	Gi
$\mu_k N = 133.9N \\ \mu_k (206.68) = 133.9N \\ \mu_k = 0.65$ G1 JU1 9 4.(a) $\Sigma E_i = \Sigma E_f \\ K = U_g \\ \left(\frac{1}{2}\right) (m)(v) = mgh \\ \left(\frac{1}{2}\right) (1.005)(v)^2 = (1.005)(9.81)(0.05) \\ v = 0.99 \ m \ s^{-1}$ JU1 3 (b) $N_x \qquad N_y \qquad N$		N = 206.68 N	
$\mu_k N = 133.9N \\ \mu_k (206.68) = 133.9N \\ \mu_k = 0.65$ G1 JU1 9 4.(a) $\Sigma E_i = \Sigma E_f \\ K = U_g \\ \left(\frac{1}{2}\right) (m)(v) = mgh \\ \left(\frac{1}{2}\right) (1.005)(v)^2 = (1.005)(9.81)(0.05) \\ v = 0.99 \ m \ s^{-1}$ JU1 3 (b) $N_x \qquad N_y \qquad N$			
$\mu_{k}(206.68) = 133.9N$ $\mu_{k} = 0.65$ $SE_{i} = \Sigma E_{f}$ $K = U_{g}$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(1.005)(v)^{2} = (1.005)(9.81)(0.05)$ $v = 0.99 \text{ m s}^{-1}$ W_{x} W_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ GI JUI GI JUI GI JUI		$f_k = 133.9N$	
$\mu_{k}(206.68) = 133.9N$ $\mu_{k} = 0.65$ $2E_{l} = \Sigma E_{f}$ $K = U_{g}$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(1.005)(v)^{2} = (1.005)(9.81)(0.05)$ $v = 0.99 \text{ m s}^{-1}$ 3 (b) $\sin 30^{2} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ $G1$		$\mu_k N = 133.9N$	C1
4.(a) $\Sigma E_i = \Sigma E_f$ $K = U_g$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(1.005)(v)^2 = (1.005)(9.81)(0.05)$ $v = 0.99 \ m \ s^{-1}$ 3 (b) $w_x = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ $G1$		$\mu_k(206.68) = 133.9N$	
4.(a) $\Sigma E_{i} = \Sigma E_{f}$ $K = U_{g}$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(1.005)(v)^{2} = (1.005)(9.81)(0.05)$ $v = 0.99 \ m \ s^{-1}$ 3 (b) $V = 0.99 \ m \ s^{-1}$ $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$		$\mu_k = 0.65$	
$K = U_g$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(m+M)(v)^2 = (m+M)gh$ $\left(\frac{1}{2}\right)(1.005)(v)^2 = (1.005)(9.81)(0.05)$ $v = 0.99 \text{ m s}^{-1}$ W_x W_y $\sin 30^\circ = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ $G1$			9
$K = U_g$ $\left(\frac{1}{2}\right)(m)(v) = mgh$ $\left(\frac{1}{2}\right)(m + M)(v)^2 = (m + M)gh$ $\left(\frac{1}{2}\right)(1.005)(v)^2 = (1.005)(9.81)(0.05)$ $v = 0.99 \text{ m s}^{-1}$ 3 W_x W_y $\sin 30^\circ = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ $G1$	4.(a)	$\Sigma E_i = \Sigma E_f$	K 1
$ \frac{\left(\frac{1}{2}\right)(m+M)(v)^2 = (m+M)gh}{\left(\frac{1}{2}\right)(1.005)(v)^2 = (1.005)(9.81)(0.05)} $ G1 $ v = 0.99 \ m \ s^{-1} $ JU1 $ 3$ (b) $ W_x \qquad W_y \qquad W_y $ $ \sin 30^\circ = \frac{h}{s} $ $ 0.5 = \frac{1.5}{s} $ $ s = 3m $ G1		$K = U_g$	111
$ \frac{\left(\frac{1}{2}\right)(m+M)(v)^2 = (m+M)gh}{\left(\frac{1}{2}\right)(1.005)(v)^2 = (1.005)(9.81)(0.05)} $ G1 $ v = 0.99 \ m \ s^{-1} $ JU1 $ 3$ (b) $ W_x \qquad W_y \qquad W_y $ $ \sin 30^\circ = \frac{h}{s} $ $ 0.5 = \frac{1.5}{s} $ $ s = 3m $ G1		$\left(\frac{1}{2}\right)(m)(v) = mgh$	
(b) $ \frac{\left(\frac{1}{2}\right)(1.005)(v)^2 = (1.005)(9.81)(0.05)}{v = 0.99 \text{ m s}^{-1}} $ $ \frac{30^{\circ}}{30^{\circ}} $ $ W_x \qquad W_y \qquad W_y $ $ \sin 30^{\circ} = \frac{h}{s} $ $ 0.5 = \frac{1.5}{s} $ $ s = 3m $			
(b) $v = 0.99 m s^{-1}$ W_{x} W_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ $JU1$ 3 $G1$		$\left(\frac{1}{2}\right)(m+M)(v)^2 = (m+M)gh$	
(b) $W_{x} \qquad W_{y}$ $W_{x} \qquad W_{y}$ $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$		$\left(\frac{1}{2}\right)(1.005)(v)^2 = (1.005)(9.81)(0.05)$	G1
(b) $W_{x} \qquad W_{y}$ $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$		$v = 0.99 \ m \ s^{-1}$	JU1
w_{x} \overline{w} w_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G1			3
w_{x} \overline{w} w_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G1	(b)		
W_{x} W_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G1		Ñ Š	
W_{x} W_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G1			
W_{x} W_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G1			
W_{x} W_{y} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G1		300	
\overrightarrow{W} $\sin 30^{\circ} = \frac{h}{s}$ $0.5 = \frac{1.5}{s}$ $s = 3m$ G1			
$0.5 = \frac{1.5}{s}$ $s = 3m$		$ec{W}$ $^{VV_{y}}$	
$0.5 = \frac{1.5}{s}$ $s = 3m$		$\sin 30^\circ = \frac{h}{s}$	
s = 3m		$0.5 = \frac{1.5}{1.5}$	G1
		S	
^		8 - 3m	

	$W = \Delta K$	K1
	$(\sum F_x) \bullet s = K_f - K_i$	
	$(-f_k - W_r)(s)(\cos \theta) = K_B - K_A$	K1
	$(-f_k - W\sin\theta)(s)(\cos\theta) = K_B - K_A$	
	$[(-\mu_k N) - mg \sin 30^\circ](s)(1) = K_B - \frac{1}{2}mu^2$	
	$[-(0.20)(mg\cos 30^\circ) - mg\sin 30^\circ](3) = K_B - \frac{1}{2}(2)(14.14)^2$	G1
	$[-(0.20)(2.0)(9.81)(\cos 30^\circ) - (2)(9.81)(\sin 30^\circ)](3) = K_B - 199.94$	G1
	$-10.19 - 29.43 + 199.94 = K_B$	
	$K_B = 160.32J$	JU1
		6
5.(a)	$\sum F_{y} = ma_{c}$	K1
	$T + mg = \frac{mv^2}{r}$	
	$I + mg = {r}$	
	$T = \frac{mv^2}{r} - mg$	
	,	
	$T = \frac{(0.4)(4.0)^2}{(0.5)} - (0.4)(9.81)$	
	(0.5)	GJU1
	= 8.876N	2
(b)	$\sum F_x = F_c$	
	$\sum F_x = F_c$ $F_c = \frac{mv^2}{r}$	
	$r_c = \frac{1}{r}$	G1
	$=\frac{(1000)(15)^2}{(50)}$	
	(50)	
	=4500N	
	$f_s = \mu_s N$	
	= (0.30)(mg)	
	= (0.30)(1000)(9.81)	G1
	= 2943N	
	$\therefore f_s < F_c$	
	∴ 2943 <i>N</i> < 4500 <i>N</i>	J1
	The car cannot go round the curve safely when the road is wet with the coefficient	3
	of static friction $\mu_s = 0.30$	

6.(a)	i) $\omega = 2\pi f$ $= 2\pi (15)$ $= 30\pi \text{ rad } s^{-1}$ $v = A\omega \cos \omega t$ $= (3)(30 \pi)\cos [30\pi (1.5)]$ $= -282.74 \text{ m s}^{-1}$	G1 G1 JU1
	ii) $y = 3 - 1 = 2 \text{ m}$ $v = \omega \sqrt{A^2 - y^2}$	K1
	$v = 30\pi\sqrt{3^2 - 2^2}$	G1
	$v = 210.74 m s^{-1}$	JU1
	iii) $a \text{ (m s}^{-2}$ $ \begin{array}{c} a = A\omega^{2} \\ = (3)(30\pi)^{2} \\ = 2.66 \times (10)^{4} \text{ m s}^{-2} \end{array} $ $ \begin{array}{c} \omega = \frac{2\pi}{T} \\ T = \frac{2\pi}{30\pi} \\ T = 0.067 \text{ s} \end{array} $ Correct shape (graph negative sin) - D1 Label y axis and x axis and unit - D1 Label value of a_{max} and T - D1	D3
(b)	i) $\omega = 2\pi f$ $= 2\pi (21)$ $= 42\pi \operatorname{rad} s^{-1}$	Gl
	$k = \frac{2\pi}{\lambda}$ $= \frac{2\pi}{2}$ $= \pi \text{ cm}^{-1}$	G1
	$y(x, t) = 5 \sin (42\pi t - \pi x)$ x and y are in cm, and t is in s.	JU1

	Displacement, y (cm) At $t = 0$ s, $y = 5 \sin(-\pi x)$ $= -5 \sin(\pi x)$ Distance, x (cm) Correct shape (graph negative sin) -D1 Label y axis and x axis with unit -D1 Label value of A and λ -D1	D3
(c)	i) $\mu = \frac{m}{l}$ $= \frac{5x10^{-3}}{1.5}$ $= 3.33x10^{-3} kg m^{-1}$	G1
	$f_n = \frac{nv}{2l}, \text{ n} = 1$ $100 = \frac{1v}{2(1.5)}$ $V = 300 \text{ m s}^{-1}$ $v = \sqrt{\frac{T}{l}}$	G1
	$v = \sqrt{\frac{T}{\mu}}$ $v^{2} = \frac{T}{\mu}$ $300^{2} = \frac{T}{3.33 \times 10^{-3}}$ $T = 299.7 \text{ N}$	GJU1
	ii) $f_n = \frac{nv}{2l}$, n = 8 $f_8 = \frac{8(300)}{2(1.5)} = 800 \text{ Hz}$	
	OR $f_8 = 8f_1$ $f_8 = 8(100)$ $f_8 = 800 Hz$	GJU1
(d)	Frequency received by the wall: $f_a = \frac{v + v_o}{v - v_s} f$ $f_a = \frac{340 + 0}{340 - 1.5} (700)$	4 K1
	$f_a = \frac{340 + 0}{340 - 1.5} (700)$ $f_a = 703.10 Hz$	G1

	Frequency reflected from the wall to the girl:	
	$f_a' = \frac{v + v_o}{v - v_s} f$ $f_a' = \frac{340 + 1.5}{340 - 0} (703.10)$	
	$f_a' = 706.20 Hz$	GJU1
	·	3
7 (a)	$\sigma = \frac{F}{A}$	
	$500x10^6 = \frac{F}{\frac{\pi (0.2x10^{-2})^2}{4}}$	G1
	F = 1570.8 N	JU1
		2
(b)	$\frac{Q}{t} = -kA\frac{dT}{x}$ $\frac{Q}{t} = -0.84 (4x4) \frac{(10 - 30)}{14x10^{-2}}$ $\frac{Q}{t} = 1920 W$	G1
	Number of bulb = $\frac{1920}{160}$	K1
	= 12 bulbs	JU1
		3
(c)	Contract: $\Delta l = \alpha l_0 \Delta T$ $\Delta l = 12x10^{-6}(200)(-30 - 32)$ $\Delta l = -0.15 m$	G1
	Expand:	JU1
	$\Delta l = \alpha l_0 \Delta T$ $\Delta l = 12x 10^{-6} (200)(42 - 32)$ $\Delta l = 0.024 m$	GJU1
		3

8 (a)	PV = nRT	
	$(2.9x1.013x10^{5})(5) = 2100(8.31)(T)$ $T = 84.17 K$	G1
	$V_{rms} = \sqrt{\frac{3RT}{M}}$ $V_{rms} = \sqrt{\frac{3(8.31)84.17}{0.028}}$ $V_{rms} = 273.75 m s^{-1}$	G1 JU1
		3
(b)	isobaric A isobaric A isochoric 1.75 Isobaric - D1 Isochoric - D 1 Label y axis and x axis with unit & value (A to B and B to C) - D1	D3
	ii) $W_{AB} = PdV$ $W_{AB} = 3x1.013x10^{5}(550x10^{-6} - 320x10^{-6})$ $W_{AB} = 69.90 J$ $W_{BC} = 0$ $W_{T} = W_{ABC} = 69.90 + 0$ $= 69.90 J$	G1 K1 GJU1
	iii) $\Delta U_{ABC} = 0$ $Q_{ABC} = \Delta U_{ABC} + W_{ABC},$ $Q_{ABC} = 0 + 69.90$ $Q_{ABC} = 69.90 \text{ J}$	K1 GJU1
		8