Lesson 1.03 Constructing Bisectors

Geometry GT

Experiment

Here are two points labeled A and B, and line segment \overline{CD} .

A. Mark 5 points that are a distance CD away from point A. How could you describe all points that are a distance CD away from point A?

B. Mark 5 points that are a distance CD away from point B. How could you describe all points that are a distance CD away from point B?

 ${\bf C.}$ In a different color, mark all the points that are a distance CD away from both A and B at the same time.

Definitions

Perpendicular lines: two lines that intersect at a point to create right angles

Perpendicular bisector: a line through the midpoint of a segment that is perpendicular to the segment

Explore

Examine the two figures below.

Explain why each dashed line is *not* a perpendicular bisector of the segment it intersects.

Use compass and straightedge moves to construct the perpendicular bisector of segment \overline{PQ} .

Definition

Angle bisector: a line through the vertex of an angle that divides it into two equal angles

Discuss

Here is angle $\angle ABC$.

Use compass and straightedge moves to construct a ray that divides $\angle ABC$ into 2 congruent angles. Then, on another sheet of paper, draw another angle and have your neighbor attempt to bisect it.

Write precise instructions for constructing a perpendicular bisector and angle bisector below.

Perpendicular bisector

Angle bisector

Demonstrate

SCENARIO: You are attempting to covertly sneak through a secure room. There are two security cameras mounted to the ceiling, and they start recording whenever a moving object is closer to one that the other. However, due to some lazy programming, if a moving object is equidistant from both cameras, neither will start recording.

Using a straightedge and compass, map out the path you could take to cross the room without being caught on camera.

Practice

1. This diagram is a straightedge and compass construction. A is the center of one circle, and B is the center of the other. Select all the true statements.

- **B.** Point M is the midpoint of segment \overline{AB}
- C. The length AB is equal to the length CD
- **D.** Segment \overline{AM} is perpendicular to segment \overline{BM}

E.
$$CB + BD > CD$$

2. In this diagram, line segment \overline{CD} is the perpendicular bisector of the line segment \overline{AB} . Assume the conjecture that the set of points equidistant from A and B is the perpendicular bisector of \overline{AB} is true. Is point E closer to point A, closer to point B, or the same distance between the points? Explain how you know.

- **3.** This diagram is a straightedge and compass construction. Select **all** true statements.
 - **A.** Line \overrightarrow{DE} is the bisector of $\angle AOC$
 - **B.** Line \overrightarrow{DE} is the perpendicular bisector of segment \overline{AO}
 - C. Line \overrightarrow{DE} is the perpendicular bisector of segment \overline{CO}
 - **D.** Line \overrightarrow{DE} is the perpendicular bisector of segment \overline{AB}
 - **E.** Line \overrightarrow{DE} is parallel to line \overrightarrow{BC}

