Algorithmic complexity and graphs: compatibility graphs

1er octobre 2022

- Yesterday we processed graphs describing relationship between data
- ▶ If two nodes were related, they were linked by an edge in the graph.

- Yesterday we processed graphs describing relationship between data
- ▶ If two nodes were related, they were linked by an edge in the graph.
- ► Today we are interested in building such graphs directly from the data, we call them **compatibility graphs**.

We are interested in building **compatibility graphs**. Given two nodes in a graph, should there be an edge between them?

We are interested in building compatibility graphs.

Given two nodes in a graph, should there be an edge between them?

Note: it is not the same problem as the matching problem. In the matching problem, the edges are already defined.

We are interested in building compatibility graphs.

Given two nodes in a graph, should there be an edge between them?

Note: it is not the same problem as the matching problem. In the matching problem, the edges are already defined.

However, once the edges are built, we can apply a matching to it.

Example applications

- Social networks management
- ► Recommendations

Building compatibility graphs

- ▶ We will build graphs first from simple data
- ▶ Then from more complex data.

Building a graph from simple data

▶ We will first build a graph from simple data in the 2D space.

Euclidian distance and compatibility

Consider the following data:

Figure - Data : we would like to define edge between some of them

Is this set of edges a good solution?

Figure – Some definition of edges

Is this set of edges a good solution?

Figure - Some definition of edges

This one looks ok

Figure – A proposition of edges

Backboard

Euclidian distance and threshold.

Exercice 1: Setting a threshold cd compatibility_graphs/geometric_data and set the threshold used in build_graph_1.ipynb to draw relevant edges between the nodes. Feel free to use another dataset!

Exercice 2: Changing the distance

- ► Assess the impact of changing the distance used. Possible choices :
 - ► L1 distance (Manhattan)
 - ▶ $||||_{\infty}$ distance (backboard)
 - custom distance
- use build _graph _ 2.py and edit the distances used at the end of the file.
- Try several values for the threshold.

Simple geometrical data

Simple geometrical data

Simple geometrical data

General notion of a distance

Let us generalize what we experimentally studied.

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

►
$$L_2: ||x - y||_2 = \sqrt{\sum_{k=1}^p (x_k - y_k)^2}$$
 (Euclidian distance, 2-norm distance)

$$x = (x_1, ..., x_p)$$
 and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

- ► $L_2: ||x-y||_2 = \sqrt{\sum_{k=1}^p (x_k y_k)^2}$ (Euclidian distance, 2-norm distance)
- ▶ $L_1: ||x-y||_1 = \sum_{k=1}^p |x_k y_k|$ (Manhattan distance, 1-norm distance)

 $x = (x_1, ..., x_p)$ and $y = (y_1, ..., y_p)$ are p-dimensional vectors.

- L₂: $||x y||_2 = \sqrt{\sum_{k=1}^{p} (x_k y_k)^2}$ (Euclidian distance, 2-norm distance)
- ▶ $L_1: ||x-y||_1 = \sum_{k=1}^p |x_k y_k|$ (Manhattan distance, 1-norm distance)
- weighted $L_1: \sum_{k=1}^p w_k |x_k y_k|$

- $x = (x_1, ..., x_p)$ and $y = (y_1, ..., y_p)$ are p-dimensional vectors.
 - ► $L2: ||x y||_2 = \sqrt{\sum_{k=1}^{p} (x_k y_k)^2}$ (Euclidian distance, 2-norm distance)
 - ▶ $L1: ||x y||_1 = \sum_{k=1}^{p} |x_k y_k|$ (Manhattan distance, 1-norm distance)
 - weighted $L_1: \sum_{k=1}^p w_k |x_k y_k|$
 - ▶ L_{∞} : max $(x_1, ..., x_n)$ (infinity norm distance)

Hamming distance

• $\#\{x_i \neq y_i\}$ (Hamming distance)

Hamming distance and edit distance

- $\#\{x_i \neq y_i\}$ (Hamming distance)
- ▶ linked to **edit distance** : used to quantify how dissimilar two strings are by counting the number of operations needed to transform one into the other (several variants exist)

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

▶ be symmetrical : $\forall (x,y) \in E^2, d(x,y) = d(y,x)$

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

- ▶ be symmetrical : $\forall (x, y) \in E^2, d(x, y) = d(y, x)$
- ▶ separate the values : $\forall (x,y) \in E^2, d(x,y) = 0 \Leftrightarrow x = y$

A **distance** on a set E is an application $d: E \times E \to \mathbb{R}_+$ that must :

- ▶ be symmetrical : $\forall (x,y) \in E^2, d(x,y) = d(y,x)$
- ▶ separate the values : $\forall (x,y) \in E^2, d(x,y) = 0 \Leftrightarrow x = y$
- ► respect the triangular inequality $\forall (x, y, z) \in E^3, d(x, y) \leq d(x, z) + d(z, y)$

Building compatibility graphs for non geometrical data

- Some data are not geometric
- Some features are not numbers, but could for instance be strings, or categories (categorical data)
- We will use pandas process the data from a csv file and build a compatibility graph.
- You can use compatibility_graphs_other_data/build_graph.py or the notebook.

Non geometrical data

Exercice 3: Experiment with the data, the threshold in order to build different graphs