Printed Pa		Sub Code: KCA104										
Paper Id:	233508	Roll No.										

MCA (SEM. I) THEORY EXAMINATION 2022-23 DISCRETE MATHEMATICS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- (a) State the Distributive and Associative laws of set theory.
- (b) Write down the properties of Equivalence Relation.
- (c) Define the Hasse diagram with example.
- (d) What do you mean by Normal Form in Boolean algebra?
- (e) Define the term Proposition.
- (f) Negate the statement "He is poor and laborious"
- (g) Define Monoid with example.
- (h) Define the Commutative Ring with unity.
- (i) Solve the recurrence relation: $a_n 3 a_{n-1} + 2 a_{n-2} = 0$.
- (i) Write down the properties of Generating function.

SECTION B

2. Attempt any three of the following:

10x3 = 30

- (a) If $X = \{1,2,3\}$, $Y = \{p,q\}$ and $Z = \{a,b\}$ and the functions f and g are define as $: f: X \to Y$ be $f = \{(1,p),(2,p),(3,q)\}$, $g: Y \to Z$ be $g = \{(p,q),(q,b)\}$ then find $f \circ g$ and $g \circ f$.
- (b) Let L be the set of all factor of 12 and let '/' be the divisibility relation on L. Then show that (L, '/') is a lattice.
- (c) Show that: $(p \leftrightarrow q) \land (q \leftrightarrow r) \rightarrow (p \leftrightarrow r)$ is a Tautology.
- (d) What do mean by Order of an element in a group? Find the order of each element of the multiplicative group $g = \{1,-1,i,-i\}$.
- (e) Solve the recurrence $a_{n+2} 4a_{n+1} + 4a_n = 2^n$

SECTION C

3. Attempt any *one* part of the following:

10x1=10

- (a) Define the function and explain the difference between function and relation with example
- (b) For any set A and B, Prove that : $P(A \cap B) = P(A) \cap P(B)$.

4.	Attempt any	one part	of the	following
••	1 I C C C III p C C III y	one part	OI CIIC	10110 11111

10x1=10

- (a) Define Modular Lattice. Also Prove that: Every Distributive lattice is Modular.
- (b) Solve using K-map: $F(A, B, C, D) = \sum (0,1,2,3,4,5,6,7,8,9,11)$

5. Attempt any *one* part of the following:

10x1=10

(a) Show that s is a valid conclusion from the premises:

 $p \rightarrow q$, $p \rightarrow r$, $\sim (q \land r)$ and $s \lor p$.

- (b) If K(x): x is student, M(x): x is clever, N(x): x is successful. Express the following using quantifiers:
 - (i) There exists a student
 - (ii) Some students are clever
 - (iii) Some students are not successful.

6. Attempt any *one* part of the following:

10x1=10

- (a) Define the permutation group. If $A = \{1, 2, 3, 4, 5\}$ then find: (1 3) 0 (2 4 5) 0 (2 3).
- (b) Show that $G = \{0,1,2,3,4\}$ is a cyclic group under addition modulo 5.

7. Attempt any *one* part of the following:

10x1=10

- (a) Determine the numeric function corresponding to the following Generating function: $A(Z) = \frac{7z^2}{(1-2\pi)(1+3T)}$
- (b) Prove by mathematical induction that $n^3 + 2n$ is divisible by 3 for each positive integer n.