CORRECTION SESSION RATTRAPAGE D'ELECTRONIQUE NUMERIQUE 1 INF 152

Proposez Par: GROUPE GENIUS REPETITION

Par : Joël_yk
EXERCICE 01 :

1) Voici trois nombres exprimés en complément à 2 : $N_1 = 00110101; N_2 = 01101100; N_3 = 11010111; | a)$ Trouvez le complément à deux de N_1 .

Réponse : $C_2(N1) = C_1(N1) + 1 = C_1(00110101) + 1 = 11001010 + 1 = 11001011$

2) Effectuons les opérations arithmétiques ci-dessous. Utilisez le résultat de a) si nécessaire. i) $N_1 + N_2 \mid ii$) $N_1 + N_3 \mid iii$) $N_2 - N_1 \mid Réponse$:

```
i) 00110101+01101100=10100001 | ii) 00110101+11010111=00001100 |
iii) 01101100+11001011=00110111

> Dites s'il y a débordement ou non ?
i) positif + positif = négatif : Débordement
ii) positif + négatif = positif : correct
iii) positif + négatif = positif : correct
```

3) Pour la représentation des entiers relatifs en complément à 2, donner les intervalles de codage sur 8 bits & 16 bits.

Réponse:

```
Sur 8 bits : [-128,127] = [-2^7, 2^7 - 1]
Sur 16 bits : [-32768,32767] = [-(2^{15}), 2^{15} - 1]
```

4) Remplissez le tableau suivant (les cases manquantes (#1 à #8) en convertissant les chiffres suivants vers les formats indiqués. Ne pas tenir compte des sections ombragées. Réponse :

Binaire Naturel (8bits, 3 bits)	Binaire Complément a 2 (8bits, 3bits)	Binaire Signe (signe/valeur absolue (8bits,3bits)	Décimal	Hexadécimal
00100101,111	00100101,111	00100101,111	37,875	25,E
#1= 01001100,011	#2= 01001100,011	#3= 01001100,011	76,375	4C,6
	11011011,101	#4= 10100100,011	#5= -36,375	
	#6= 10000100,110	11111011,010	-123,25	
00101101,101	#7= 00101101,101	00101101,101	45,625	#8=2D,A

```
Explication du résultat Pour :
#1 = #2 = #3 = 0100 1100, 0110 (4C,6)
C2(11011011,101) = C1(11011011,101) + 0,001 = ?
00100100,010 + 0,001 = 00100100,011
#4 : On trouve la valeur positive en binaire en faisant le complément à 2 :
On place le bit le plus significatif à 1 pour indiquer que c'est une valeur négative
10100100,011
#5 = -1 * 2^7 + 1*2^6 + 1*2^4 + 1*2^3 + 1*2^1 + 1*2^0 + 1*2^1 + 1*2^2
= -128 + 64 + 16 + 8 + 2 + 1 + 0.5 + 0.125 = -36.375
Où: 1*2^5 + 1*2^2 + 1*2^3 = 32 + 4 + 0.25 + 0.125 = -36.375
#6 : La Valeur positive en binaire en enlevant le bit de signe du binaire signé :
Valeur positive = 01111011,010
Le Complément à 2 de cette valeur : C2(01111011,010) = C1(01111011,010) + 0,001 =
10000100,101 + 0,001 = 10000100,110
#7 = 00101101,101
#8 = 2D,A = > (00101101,1010)
```

EXERCICE 02:

A- Quelles sont les valeurs des nombres suivant représentés en virgule flottant en standard IEEE 754 simple précision :

Réponse:

B- Donner la valeur décimale du nombre représenté par : (44 DF A4 8A)₁₆ en standard IEEE 754.

Réponse:

```
(44 DF A4 8A)_{16} = > 1789,141
```

C- Série d'exercices :

1-Simplier les expressions suivantes :

Réponse :

```
S_1 = A.B + A.B = A \oplus B \mid S_2 = A + B = A.B \mid S_3 = A + C \mid S_4 = A.B + C + D \mid S_5 = A \cdot (B + C) \mid S_6 = B \cdot (A + C)
```

2-Calculer les compléments de \$1, \$5, \$6 et les simplifier :

Réponse:

$$\overline{S_1} = \overline{A.B} + \overline{A.B} = A \oplus B \quad | S_5 = \overline{A} + \overline{B.C} | S_6 = B + \overline{A.C}$$

3-Donner les équations des fonctions \$1, \$5 et \$6 en n'utilisant que des portes NAND à 2 entrées puis en n'utilisant que des portes NOR à 2 entrées. Tracer les logigrammes de \$1, \$5 et \$6, et préciser le nombre de portes nécessaires dans chaque cas et en déduire la meilleure solution.

Réponse :

$$S_1 = A.B + A.B = A + B + A + B \qquad | S_5 = A.B.C = A + B + C | S_6 = \overline{B.A.C} = A + A + C$$

Précisions du	NAND à 2 entrées	NOR à 2 entrées
nombres de Portes		
S_1	5	5
\$ ₅	4	4
S ₆	5	3

PROBLEME

Partie A: Résolution du Problème Logique

1.Table de vérité :

Ein	E ₃	E ₂	E ₁	Eo	В	Α	E _{out}
0	X	х	Х	X	0	0	0
1	1	X	Х	X	1	1	0
1	0	1	Х	X	1	0	0
1	0	0	1	X	0	1	0
1	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1

2.Les expressions logiques des sorties A, B et Eout en fonction des entrées E₀...E₃ et E_{in}:

3. Schéma Logique du codeur est donné par l'applet :

Partie B:

➤ <u>Demi-SOUSTRACTEUR</u>

1)Table de vérité :

Ai	Bi	Di	Ri
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

2)Donner Les équations de sortie :

$$Di = Ai \oplus Bi \mid Ri = \overline{Ai}.Bi$$

3) Etablir le schéma Logique :

➤ <u>Soustracteur Complet</u>

1)Table de vérité de Di & Ri

Ri+1	Ai	Bi	Di	Ri
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

2) Table de Karnaugh + équations simplifiées de Di et Ri :

 $Di = (Ai \oplus Bi) \oplus Ri-1$

Ri = Ai. Bi + Ri-1 ($Ai \oplus Bi$)

3) Schéma du Soustracteur Complet :

4) Réalisation d'un soustracteur binaire Complet selon 02 modes :

4-a Avec 02 demi-SOUSTRACTEURS:

Pour le faire : Il faut Retrancher Ai de Bi (du 1er demi-soustracteur) , Puis retrancher Ri-1 de la différence obtenue. (En cas d'incompréhension ce diriger vers le groupe Genius Répétition) un schéma pour comprendre cela :

4-b Avec 01 demi-SOUSTRACTEURS & 01 demi-Additionneurs:

Bah Pour le faire : Additionner Bi et Ri-1 avec un demi-additionneur (DA) (cette opération peut évidemment engendrer une retenue) Puis on retranche le résultat obtenu de Ai. Hehe (;) un schéma pour comprendre cela :

5) Voir Groupe Genius R.

> Additionneur-Soustracteur :

- 1) Réalisons Ce circuit :
- a) Table de vérité :

С	Е	S
0	0	0
0	1	1
1	0	1
1	1	0

b) Equations: $S = C \oplus E$

c) schéma:

2) Réalisons ce circuit conventionnelle :

Explication:

Pour calculer la différence A - B de deux nombre signés A et B, on utilise un circuit qui calcule d'abord l'opposé -B de B puis effectue la somme de A avec -B grâce à un Additionneur. Le calcul de -B est réalisé en prenant la négation de B bit à bit puis en Ajoutant 1 au résultat obtenu. Ce dernier 1 est en fait ajouté directement à la somme de A et -B en l'injectant comme retenue CO à l'additionneur. Le circuit ci-dessous effectue une somme ou une différence suivant la valeur de la commande CMD. Si Cmd vaut 0, le circuit calcule la somme A + B. Si, au contraire, Cmd vaut 1, le circuit calcule la différence A - B. En effet, chacune des portes xor effectue la négation ou non d'une entrée Bi suivant la valeur de CMD.

Contact WhatsApp : +237 658395978 | Réaliser Par $Jo\ddot{e}l_yk$