

План

- Выбор способа эксплуатации
- ШПТ
- Методы подбора оборудования
 - ЭЦН
 - Газлифт
- Вероятностный подбор ЭЦН

Вопросы

- Фонтанный или механизированный способ
- ЭЦН, газлифт, струйный насос?
- В каком режиме работать?

Основные способы эксплуатации скважин

Цели и актуальность работы

Актуальность:

• необходимость в быстром и точном анализе применимости различных способов эксплуатации в условиях ограничений, накладываемых при разработке в осложненных условий.

Цели:

обзор существующих методик выбора способов эксплуатации добывающих скважин;

применение рассмотренных методов для анализа способов эксплуатации добывающих скважин Ванкорского месторождения.

Выбор по упрощенным методикам

Рисунок 1 – Критерии применимости "Глубина-Дебит" для высокодебитных способов эксплуатации (от компании Weatherford)*

ШГН	Гидроприводной Поршневой насос	Электрический центробежный (погружной) насос	Газлифтная эксплуатация	Гидроприводной Струйный насос
Относительно простая конструкция системы	Нет таких ограничений по глубине – может извлекать большие	Может извлекать очень большие объемы, 20 000	Может спокойно работать с большими объемами твердой	Извлекается без подъема НКТ.
Простая перестановка установок на другие скважины с	объемы с больших глубин	баррелей в сутки (19078 м3 / сут.) на неглубоких	фазы.	Отсутствуют движущиеся части.
минимальными запратами	500 баррелей в сутки (79,49 м 3/ сут.) с гл. 15 000 футов (4572 м)	скважинах с большой обсадной колонной.	большие объемы в скважины с высоким коэффициентом	Нет проблем в наклонно- направленных
Эффективен, прост и удобен в эксплуатации для промыслового персонала.	установлен на гл. 18 000 (5486,4 м)	В настоящее время прднимает на Ближнем Востоке	продуктивности (непрерывный газлифт) 50 000	или искривленных скважинах.
Применим для скважин малого диаметра	Искривленные стволы создают минимум проблем.	± 120 000 баррелей в сутки (19 068 м3 / сут.) из водозаборных	баррелей в сутки (7 947,37 м3/сут.)	Не создает помех на городских территориях.
и многопластовых заканчиваний Может качать	Не создает помех на городских территориях.	скважин при 600 л.с. (448 кВт) в наличии и 1 000 л.с. (746 кВт) в разработке.	Довольно гибкая система - переход с непрерывного на периодический,	Применим на шельфе.
скважину до очень низкого давления (в зависимости от глубины и дебита)	Возможно удаленное расположение источника питания.	Не создает помех на городских территориях.	камерный или плунжерный лифт с падением дебита.	В качестве источника питания может использоваться вода.

Рисунок 2 – Таблицы преимуществ и недостатков разных способов эксплуатации**

^{*}Lea J.F., Nickens H.V Selection of Artificial Lift / SPE Mid-Continent Operations Symposium, 1999

^{**}Brown K.E. Overview of Artificial Lift Systems / JPT (October 1982), 1982

^{**}И.Т Мищенко, Т.Б. Бравичева, А.И. Ермолаев Выбор способа эксплуатации скважин нефтяных месторождений с трудноизвлекаемыми запасами / М.:ФГУП Из-во «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2005

Диапазоны применения методов мех. добычи

Диапазоны применения методов мех. добычи

Выбор с помощью комплексных методик

Рисунок 3 – Принципиальная схема программ для выбора способа эксплуатации

Преимущества:

- позволяют произвести точную оценку;
- критерием выбора служит технико-экономические показатели.

Недостатки:

- может занимать много времени;
- некоторые программы используют упрощенные методики расчета.

Рисунок 4 – Блок-схема построения Шаблона применения технологий*

*Кудряшов С.И., Хасанов М.М., Краснов В.А., Хабибуллин Р.А., Семенов А. А. Шаблоны Применения Технологий – эффективный способ систематизации знаний

Ванкорское нефтегазоконденсатное месторождение

Особенности месторождения:

- 1. 8 эксплуатационных объектов:
 - нефтяные: Сд-IX и Hx-I;
 - газонефтяной: Як-III-VII;
 - нефтегазоконденсатный: Hx-III-IV;
 - газовые: Дл-I-III и Як-I (газовая шапка);
 - нефтегазовые: Як-ІІ и Як-І (нефтегазовая залежь).
- 2. Разработка ведется с помощью заводнения
- Активная водоносная область
- Газовая шапка
- Средняя глубина = 2500 м
- Высокий коэффициент продуктивности
- 7. Наклонно-направленные скважины с горизонтальным окончанием

Рисунок 5 – Профиль скважины № 1059 куст № 209*

Анализ вероятных способов эксплуатации

Текущим условиям удовлетворяет фонтанный и УЭЦН, газлифтный способ

Рисунок 6 – Матрица применимости технологий мех. добычи*

Алгоритм расчета и исходные параметры

ПЛАСТ Нх 3-4	
Исходные данные	
Н _{вд} , м	3285
Удл, м	489
Р _{буф} , атм	39
D _{HKT} , MM	73
D _{эк} , мм	160
T _{nn} , °C	59
Р _{нас} , атм	254
Удельная плотность нефти по воде, үн	0,845
Обводненность, В, %	5
b _н , м³/м³	1,46
μ, мПа⋅с	0,7
Р _{иел} , атм	120

Q варьируем от 50 до 700 м³/сут с шагом 50 м³/сут

Газовый фактор варьируем от 50 до 2500 M^3/T с шагом 100 M^3/T

Расчет забойных давления фонтанирования

								дебит,	м3/сут						
		50	100	150	200	250	300	350	400	450	500	550	600	650	700
	50	5000	5000	252	252	258	262	264	265	267	269	272	276	280	284
	100	5000	5000	5000	236	238	242	246	249	253	257	261	267	272	278
	200	5000	5000	5000	215	215	217	220	227	234	242	250	259	268	277
	300	5000	5000	5000	200	202	206	212	219	227	239	250	262	274	286
	400	5000	5000	188	189	194	200	209	219	230	242	257	272	286	301
1	500	5000	5000	178	182	189	199	210	223	236	251	268	285	303	320
1	600	5000	170	171	178	188	200	214	229	245	262	282	302	323	342
	700	5000	163	166	175	188	203	220	237	256	276	299	323	346	366
1	800	5000	158	163	175	190	208	227	247	268	292	320	346	370	391
M3/T	900	5000	153	162	176	194	214	235	258	282	311	342	370	395	417
	1000	5000	150	161	178	198	221	244	270	299	334	366	395	421	444
актор	1100	5000	148	162	181	203	228	255	283	320	358	391	421	448	472
돌	1200	5000	147	162	184	209	237	266	300	343	382	417	448	475	500
0	1300	142	146	164	188	216	246	278	321	367	408	444	476	504	529
Газовый	1400	138	145	166	193	223	256	292	344	393	435	472	504	533	559
33	1500	135	146	168	198	230	266	311	369	419	463	501	534	563	589
	1600	133	146	171	203	238	278	334	394	447	492	530	564	593	620
	1700	132	147	174	209	247	291	358	421	475	521	560	594	624	651
	1800	131	147	178	215	256	308	384	449	505	552	591	626	656	683
]	1900	130	149	182	221	266	332	411	478	535	583	623	658	688	715
	2000	129	150	186	228	277	356	439	509	566	614	655	690	721	748
	2100	128	152	190	235	290	382	468	540	598	647	688	723	754	782
	2200	128	153	194	243	305	409	498	572	631	680	721	757	788	816
	2300	127	156	199	251	327	437	530	604	664	713	755	791	823	851
	2400	127	158	204	260	352	467	563	637	698	748	790	826	858	887
	2500	127	160	209	269	378	499	596	671	732	783	825	862	894	923

Рисунок 🞖 – Карта забойных давлений фонтанирования для пласта НХ 3-4 с выделенной зоной неустойчивого фонтанирования

Расчет коэффициентов сепарации для целевого забойного давления

								дебит, і	м3/сут						
		50	100	150	200	250	300	350	400	450	500	550	600	650	700
	50	0,84	0,74	0,65	0,58	0,53	0,48	0,46	0,43	0,40	0,38	0,36	0,35	0,33	0,32
	100	0,84	0,74	0,66	0,59	0,53	0,51	0,47	0,44	0,41	0,39	0,37	0,35	0,34	0,32
	200	0,85	0,74	0,66	0,59	0,54	0,51	0,47	0,44	0,41	0,39	0,37	0,35	0,34	0,33
	300	0,85	0,74	0,66	0,59	0,54	0,51	0,47	0,44	0,41	0,39	0,37	0,35	0,34	0,33
	400	0,85	0,74	0,66	0,60	0,56	0,51	0,48	0,44	0,41	0,39	0,37	0,35	0,34	0,33
	500	0,85	0,74	0,66	0,60	0,56	0,51	0,48	0,44	0,42	0,39	0,37	0,35	0,34	0,33
	600	0,85	0,74	0,66	0,60	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,35	0,34	0,33
	700	0,86	0,74	0,66	0,60	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,35	0,34	0,33
	800	0,86	0,74	0,66	0,60	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
м3/т	900	0,86	0,75	0,66	0,60	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	1000	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
d _o	1100	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
факт	1200	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	1300	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
Газовый	1400	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
33	1500	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
<u> </u>	1600	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	1700	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	1800	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	1900	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	2000	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	2100	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	2200	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	2300	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	2400	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33
	2500	0,86	0,75	0,66	0,62	0,56	0,52	0,48	0,44	0,42	0,39	0,37	0,36	0,34	0,33

Рисунок 9 – Карта коэффициентов естественной сепарации

Расчет доли газа в насосе после сепарации и критического давления

		1	дебит, м3/сут												
		50	100	150	200	250	300	350	400	450	500	550	600	650	700
	50	44	47	49	53	57	61	64	68	69	70	71	72	73	73
	100	66	70	73	79	84	89	95	101	102	104	105	106	107	108
	200	88	93	97	104	111	117	125	132	135	137	139	140	141	142
	300	99	104	109	117	125	132	140	149	151	154	156	157	159	160
	400	105	111	116	124	131	140	149	158	161	164	166	168	169	170
	500	110	116	121	129	137	146	155	165	168	171	173	175	176	178
	600	113	119	124	133	141	150	160	170	173	176	178	180	181	183
	700	115	122	127	136	144	153	163	173	177	179	182	184	185	187
	800	116	124	129	138	146	156	166	176	179	182	185	187	188	190
м3/т	900	118	125	130	140	148	158	168	178	182	185	187	189	191	192
	1000	119	126	132	140	149	160	170	180	184	187	189	191	193	194
фактор,	1100	120	127	133	141	151	161	171	182	185	188	191	193	194	196
a S	1200	121	128	134	142	152	162	172	183	187	190	192	194	196	197
	1300	122	129	135	143	153	163	174	184	188	191	193	195	197	198
Газовый	1400	122	130	135	144	153	164	174	185	189	192	194	196	198	199
930	1500	123	130	136	144	154	165	175	186	190	193	195	197	199	200
	1600	123	131	136	145	155	165	176	187	190	193	196	198	200	201
	1700	124	131	137	145	155	166	177	188	191	194	197	199	200	202
	1800	124	132	137	146	156	166	177	188	192	195	197	199	201	203
	1900	125	132	138	146	156	167	178	189	192	195	198	200	202	203
	2000	125	133	138	147	157	167	178	189	193	196	198	200	202	204
	2100	125	133	138	147	157	168	179	190	193	196	199	201	203	204
	2200	125	133	139	147	157	168	179	190	194	197	199	201	203	205
	2300	126	133	139	148	158	168	179	190	194	197	200	202	204	205
	2400	126	134	139	148	158	169	180	191	194	197	200	202	204	206
	2500	126	134	139	148	158	169	180	191	195	198	200	203	204	206

Рисунок 11 – Карта критических давлений на приеме насоса ($\beta_{\rm r}$ = 25 %)

Сравнение УЭЦН и фонтанного способа

зона ус	стойчивой р	аботы УЭЦ	Н				2	2 - зона устойчивого фонтанирования							
зона ри	скованной	работы УЭІ	ДН (фонтан ч	через насо	c)		4	4 - зона не применимости (не достижения целевых Рзаб)							
		•						дебит, м3/сут							
	Ī	50	100	150	200	250	300	350	400	450	500	550	600	650	7
	50	1	1	1	1	1	1	1	1	1	1	1	1	1	
	100	1	1	1	1	1	1	1	1	1	1	1	1	1	
	200	1	1	1	1	1	1	4	4	4	4	4	4	4	
	300	1	1	1	1	4	4	4	4	4	4	4	4	4	
	400	1	1	1	4	4	4	4	4	4	4	4	4	4	
	500	1	1	4	4	4	4	4	4	4	4	4	4	4	
	600	1	1	4	4	4	4	4	4	4	4	4	4	4	
	700	1	4	4	4	4	4	4	4	4	4	4	4	4	
	800	1	4	4	4	4	4	4	4	4	4	4	4	4	
M3/T	900	1	4	4	4	4	4	4	4	4	4	4	4	4	
¥	1000	1	4	4	4	4	4	4	4	4	4	4	4	4	
фактор, I	1100	4	4	4	4	4	4	4	4	4	4	4	4	4	
귷	1200	4	4	4	4	4	4	4	4	4	4	4	4	4	
0	1300	4	4	4	4	4	4	4	4	4	4	4	4	4	
Газовый	1400	4	4	4	4	4	4	4	4	4	4	4	4	4	
330	1500	4	4	4	4	4	4	4	4	4	4	4	4	4	
Ľ	1600	4	4	4	4	4	4	4	4	4	4	4	4	4	
	1700	4	4	4	4	4	4	4	4	4	4	4	4	4	
	1800	4	4	4	4	4	4	4	4	4	4	4	4	4	
	1900	4	4	4	4	4	4	4	4	4	4	4	4	4	
	2000	4	4	4	4	4	4	4	4	4	4	4	4	4	
	2100	4	4	4	4	4	4	4	4	4	4	4	4	4	
	2200	4	4	4	4	4	4	4	4	4	4	4	4	4	
	2300	4	4	4	4	4	4	4	4	4	4	4	4	4	
	2400	4	4	4	4	4	4	4	4	4	4	4	4	4	
	2500	4	4	4	4	4	4	4	4	4	4	4	4	4	

Вывод: для текущих условий и целевого забойного давления фонтанный способ не применим

Наличие большой зоны не применимости можно объяснить тем, что:

для расчета брались параметры типовой скважины на месторождении, по факту они могут немного отличаться

Рисунок 12 – Карта применимости УЭЦН

Критерии сравнения:

- $P_{3a6}^{9 \amalg H}(Q_{\mathbb{X}}^i, R_p^i) \leq P_{3a6}^{\Pi e \pi}$ и $P_{3a6}^{9 \amalg H}(Q_{\mathbb{X}}^i, R_p^i) < P_{3a6}^{\Phi o H}(Q_{\mathbb{X}}^i, R_p^i)$ устойчивая работа УЭЦН;
- $P_{\mathrm{3a6}}^{\mathrm{ЭЦH}}(Q_{\mathrm{ж}}^{i},R_{p}^{i}) \geq P_{\mathrm{3a6}}^{\mathrm{фон}}(Q_{\mathrm{ж}}^{i},R_{p}^{i})$ и $P_{\mathrm{3a6}}^{\mathrm{фонт}}(Q_{\mathrm{ж}}^{i},R_{p}^{i}) \leq P_{\mathrm{3a6}}^{\mathrm{цел}}$ устойчивое фонтанирование.

Расчет достижимого давления при газлифте

					Ка	рта при		ости ГАЗ							
1 - зона газ	влифта (требу	ется закач	ка газа)					2 - зона уст	тойчивого ф	онтаниров	ания				
1 - зона не	применимост	ги (не дост	ижения це	певых Рзаб	5)										
		, , ,			,			дебит, м	и3/сут						
		50	100	150	200	250	300	350	400	450	500	550	600	650	70
	50	4	4	4	4	4	4	4	4	4	4	4	4	4	
	100	4	4	4	4	4	4	4	4	4	4	4	4	4	
	200	4	4	4	4	4	4	4	4	4	4	4	4	4	
	300	4	4	4	4	4	4	4	4	4	4	4	4	4	
	400	4	4	4	4	4	4	4	4	4	4	4	4	4	
	500	4	4	4	4	4	4	4	4	4	4	4	4	4	
	600	4	4	4	4	4	4	4	4	4	4	4	4	4	
	700	4	4	4	4	4	4	4	4	4	4	4	4	4	
	800	4	4	4	4	4	4	4	4	4	4	4	4	4	
-	900	4	4	4	4	4	4	4	4	4	4	4	4	4	
M3/T	1000	4	4	4	4	4	4	4	4	4	4	4	4	4	
9	1100	4	4	4	4	4	4	4	4	4	4	4	4	4	
фактор,	1200	4	4	4	4	4	4	4	4	4	4	4	4	4	
.0	1300	4	4	4	4	4	4	4	4	4	4	4	4	4	
- A	1400	4	4	4	4	4	4	4	4	4	4	4	4	4	
Газовый	1500	4	4	4	4	4	4	4	4	4	4	4	4	4	
۳.	1600	4	4	4	4	4	4	4	4	4	4	4	4	4	
	1700	4	4	4	4	4	4	4	4	4	4	4	4	4	
Γ	1800	4	4	4	4	4	4	4	4	4	4	4	4	4	
	1900	4	4	4	4	4	4	4	4	4	4	4	4	4	
Γ	2000	4	4	4	4	4	4	4	4	4	4	4	4	4	
Γ	2100	4	4	4	4	4	4	4	4	4	4	4	4	4	
Γ	2200	4	4	4	4	4	4	4	4	4	4	4	4	4	
Γ	2300	4	4	4	4	4	4	4	4	4	4	4	4	4	
Γ	2400	4	4	4	4	4	4	4	4	4	4	4	4	4	
	2500	4	4	4	4	4	4	4	4	4	4	4	4	4	4

Критерии сравнения:

• $P_{\text{заб}}^{\text{газлифт}}(Q_{\mathbb{X}}^i, R_p^i) \leq P_{\text{заб}}^{\text{цел}}$ $P_{\mathrm{3a6}}^{\mathrm{\phi o H}}(Q_{\mathrm{ж}}^{i}, R_{p}^{i}) > P_{\mathrm{3a6}}^{\mathrm{цел}}$ газлифтный способ эксплуатации;

• $P_{3a6}^{\phi o H}(Q_{ж}^{i}, R_{p}^{i}) < P_{3a6}^{цел}$ – устойчивое фонтанирование.

Рисунок 15 – Карта применимости газлифта

Рисунок 13 – Зависимость забойного давления от ГФ

Вывод: ни газлифт, ни фонтан не позволяют достичь целевого давления

Сравнение УЭЦН и газлифтного способа

			дебит, м3/сут												
		50	100	150	200	250	300	350	400	450	500	550	600	650	700
	50	66	49	59	70	80	90	99	110	120	129	138	145	152	158
]	100	66	49	59	70	80	90	99	110	120	129	138	145	152	158
]	200	66	49	59	70	80	90	99	105	114	122	129	136	141	147
]	300	66	49	59	70	80	84	89	94	103	111	118	124	130	135
]	400	66	49	59	69	74	79	82	87	96	104	110	117	122	128
]	500	66	49	59	66	70	75	78	83	91	99	105	112	119	126
]	600	66	49	58	63	67	72	75	79	87	95	103	111	119	127
]	700	66	49	56	61	65	70	72	76	85	94	103	112	120	129
]	800	66	48	54	59	65	68	70	74	84	94	104	114	124	133
M3/T	900	66	47	53	58	63	66	69	73	84	96	107	118	128	138
	1000	66	46	52	57	62	65	68	74	86	98	110	122	133	144
фактор,	1100	66	45	51	56	61	64	68	75	88	102	115	127	139	150
돑	1200	66	44	51	55	60	64	68	77	92	106	120	133	145	157
	1300	66	44	50	55	60	64	69	80	96	111	126	140	152	164
азовый	1400	65	43	49	54	59	64	71	83	101	117	132	146	160	172
0 0	1500	65	43	49	54	59	65	73	87	106	123	139	154	167	180
<u>66</u>	1600	64	42	49	53	59	66	76	92	111	129	146	161	175	189
1	1700	64	42	48	53	59	68	80	97	118	136	153	169	184	197
1	1800	64	42	48	53	60	70	84	103	124	143	161	177	192	206
1	1900	64	41	48	52	61	72	89	109	131	151	169	186	201	216
1	2000	63	41	47	54	63	75	94	115	138	159	178	195	211	225
1	2100	63	41	47	54	64	78	100	121	145	167	186	204	220	235
1	2200	63	41	47	55	66	81	105	128	153	175	195	213	230	245
1	2300	63	40	47	55	68	85	112	135	161	184	205	223	240	256
1	2400	63	40	47	56	70	90	118	143	169	193	214	233	251	267
	2500	62	40	47	57	72	95	125	151	178	202	224	244	262	278

На полученной карте значения > 0 соответствуют эффективности УЭЦН, < 0 эффективности газлифтного способа эксплуатации, 0 – одинаковой технологической эффективности.

Критерий построения: если $eta_{\scriptscriptstyle \Gamma}^i$ \leq 0,25, то $P_{3a6}^i = P_{3a6}^{\text{цел}}$, иначе $P_{3a6}^i =$ $\min(P_{\text{kp}}^i; P_{\text{заб.фонт}}^i)$

Критерий сравнения:
$$P_{\rm 3a6}^{\rm ЭЦH} < P_{\rm 3a6}^{\rm \Gamma a 3 \pi u \phi T} | P_{\rm 3a6}^{\rm ЭЦH} < P_{\rm 3a6}^{\rm \phi o H}$$

Рисунок 17 – Карта сравнительной эффективности УЭЦН и газлифта

Вывод:

из полученных карт следует, что эксплуатация скважин с помощью установок ЭЦН более эффективна

Анализ чувствительности

Рисунок 18 – Анализ чувствительности для давления на приеме насоса

Рисунок 19 – Анализ чувствительности для Ксеп

Вывод:

наиболее влияющими параметрами на расчет являются газовый фактор, обводненность, дебит, а также геометрические параметры насоса и скважины.

Заключение

существующих методик выбора способов эксплуатации показал, что все из них имеют как преимущества, так и недостатки. Карты применения технологий являются одним из наиболее быстрых и, в то же время, достаточно точных методов выбора. Полученный с помощью них результат подтвердил целесообразность использования УЭЦН Проведенный Ванкорском месторождении. на параметры, наиболее влияющие чувствительности выявил на результат.

Подбор УЭЦН к скважине

Последовательность

- 1. Режим планируемый
- 2. Глубина спуска и габарит
- 3. Потребный напор
- 4. Количество ступеней
- 5. Потребная мощность двигатель и электрическая часть

Рис. 3.11. Характеристики центробежного насоса на воде и вязкой жидкости

Рис. 3.20. Согласование характеристики ЭЦН с условной характеристикой скважины

Рис. 3.16. Определение технологических параметров работы УЭЦН с помощью кривых распределения давления

Подбор УЭЦН к скважине

FIGURE 4.51 Variation of motor and pump powers for Example 4.6. AC, alternating current.

FIGURE 6.5 Electrical submersible pump system performance for various flowline sizes, Example 6.3. ID, inside diameter.

Подбор газлифта

Рис. 8.2. К процессу пуска газлифтной скважины

Рис. 8.3. Зависимость изменения давления во время пуска и параллельной работы газлифтной скважины

538

Рис. 8.6. Принципиальные схемы глубинных клапанов: пружинный; б — сильфонный, срабатывающий от давления в затрубном пространстве P_* ; в — сильфонный, срабатывающий от давления в трубах P. (подъемнике); г — комбинированный; 1 — нижнее седло клапана; 2 — нижний клапан; 3 — шток клапана; 4 — сильфонная камера; 5 регулировочная гайка; 6 — пружина; 7 — упор пружины; 8 — отверстие в корпусе клапана; 9 — верхний клапан; 10 — верхнее седло клапана; 11 —

корпус клапана; 12 — стенка НКТ

Подбор газлифта: глубина спуска

Puc. 8.3. Определение возможных режимов работы скважины, оборудованной газлифтной установкой непрерывного действия (к задаче 8.1)

Удельный расход газа $\pmb{lpha}=R_{r}+\pmb{lpha}_{\text{п.л.}}\;\mathbf{M^3/M^3},$

Определяют для каждого из возможных режимов энергию, потребляемую на подъем единицы объема жидкости; при этом процесс расширения нагнетаемого газа принимают политропическим

$$W = 10^3 \frac{n}{n-1} R_{\Gamma} p_0 \left[\left(\frac{p_{\rm T}}{p_{\rm Y}} \right)^{(n-1) n} - 1 \right], \quad \kappa \text{ m/m}^3, \tag{8.7}$$

Удельный расход газа, м3м3	Глубина точки ввода газа, м	Давление в НКТ, бар	Давление в затрубе, бар	Давление в затрубе больше	УРЭ, кДж/м3
75	1436,81	84,78	71,19	ложь	32087,35
100	1030,05	51,30	67,92	ИСТИНА	31107,82
125	889,50	40,03	66,81	ИСТИНА	32304,03
150	820,20	34,65	66,26	ИСТИНА	34376,42
175	779,97	31,60	65,95	ИСТИНА	36933,20
200	754,65	29,72	65,75	ИСТИНА	39840,18
225	738,23	28,52	65,62	ИСТИНА	43052,88
250	727,74	27,76	65,54	ИСТИНА	46555,52
275	721,23	27,29	65,49	ИСТИНА	50335,83
300	716,98	26,99	65,46	ИСТИНА	54282,64

Подбор газлифта: расстановка клапанов

Рис. 8.5. Схема пуска газлифтной скважины с использованием пусковых отверстий

Рис. 8.7. Графический метод расстановки газлифтных клапанов:

 гидростатическое распределение давления (столб скважинной жидкости); 2 - кривая распределения давления при работе скважины с забойным давлением $P_{-\epsilon}$ (фонтанирование); 3 — кривая распределения давления в подъемнике газлифтной скважины, работающей с давлением на устье Р.; 4 — распределение давления компримированного газа, когда его давление на устье P_{ev} ; 5 — распределение температуры по глубине скважины; $a_1 - 6_1 = \Delta P_{xx}$

Подбор газлифта

Выбор рабочей точки газлифта

Рис. 1.17. Характеристическая кривая газожидкостного подъемника и зависимость удельного расхода R от расхода газа

Постановка задачи

Проблема: недостаточное количество качественной информации и большие неопределенности при принятии решений

Цель: повышение эффективности эксплуатации скважин с УЭЦН в условиях неопределенности

Задача: создание новой методики по подбору ЭЦН к скважине в условиях неопределенности работы пласта

Классический метод подбора ЭЦН

Параметр	Размерность	Значение
Относительная	д.ед.	0,7
плотность газа		
Плотность нефти	кг/м3	830
Плотность воды	кг/м3	1
Газосодержание	м3/м3	100
Давление	МПа	120
насыщения		
Температура пласта	С	90
Глубина ВДП	M	2000
Глубина спуска ЭЦН	M	1800
Диаметр НКТ	M	0,067
Диаметр ОК	M	0,159
Дебит жидкости	м3/сут	75,52
Обводненность	%	20
Газовый фактор	м3/м3	100
Коэффициент	м3/сут/МПа	0,7
продуктивности		
Пластовое	МПа	180
давление на ВДП		
Буферное давление	МПа	20
Давление на приеме	МПа	48
Забойное давление	МПа	70

Вариант базовый: взять предыдущий насос / тот, что есть на складе Вариант нормальный:

- На данных ШТР суточных сбить модель
 - 1. Уточнить Кпрод и Рпл по модели/фактическим данным
- Подобрать ЭЦН с помощью специального ПО
- Проверить наличие его на складе
- 4. Спустить ЭЦН
- Перейти к следующей скважине / или бороться с текущей при ошибках в определении Кпрод и Рпл

Классический метод подбора ЭЦН

Запасные варианты и опции: штуцер, изменение режима работы, в т.ч. Перевод в ПКВ

Методы учета неопределенности

Применение модели вариационного автокодироващика для верификации промысловых данных

Много методов: Анализ чувствительности, многовариантные расчеты, метод Монте-Карло, теорема Баейса и пр.

Распределение различных возможных режимов

работы скважины с рассматриваемым ЭЦН

продуктивности с течением времени по

теореме Байеса

Метод Монте-Карло

Определение детерминированной модели притока с поправкой Вогеля

Задание распределений входных параметров с учетом наличия информации

Получение оценки работы пласта с учетом неопределенности

Распределения по фактические

По фактическим данным

- 1. По всем скважинам на одно время
- 2. По одной скважине за период Можно оценить фактическое распределение и разброс

На самом деле распределения коэффициента продуктивности и пластового давления логнормальные

Модель скважины и скважинного оборудования

Гидравлическая схема скважины

Открытый модуль инженерных расчетов Unifloc

- PVT корреляции: Стендинг
- Многофазный поток: Ансари
- Модель ЭЦН: поправка на вязкость, газосодержание, плотность ГЖС

Методика подбора ЭЦН с учетом неопределенности

- 1. Определение неопределенности в пластовом давлении $P_{\pi\pi}$ и коэффициенте продуктивности $K_{\pi p o \pi}$ с помощью нормального распределения $\mathcal{N}(\mu, \sigma^2)$
- 2. Расчет распределения дебита, определяемого возможностями пласта по методу Монте-Карло ($N=10^5$)
- 3. Подбор нескольких типоразмеров ЭЦН из БД (Количество ЭЦН: 3500) по распределению дебита (K=9)
- Определение нескольких напоров (L=3) для каждого выбранного ЭЦН
- 5. Расчет модели скважины с каждым ЭЦН ($N=10^3$) и определение распределений дебита и прочих параметров
- 6. Агрегирование распределений по средним значениям и дисперсии для формирования рейтинга на основе комбинирования коэффициента эффективности
- 7. Составление сводного рейтинга и выбор наиболее оптимальной компоновки с учетом неопределенности

Методика подбора ЭЦН с учетом неопределенности

КПД, д.ед.

Методика подбора ЭЦН с учетом неопределенности

Метод ранжирования рассматриваемых ЭЦН

$$K_{\mathfrak{I}} = K_{\eta}^{\text{норм}} \cdot K_{Q}^{\text{норм}} \cdot K_{\text{HHO}}^{\text{норм}}$$

- К_Э общий коэффициент эффективности работы ЭЦН
- $K_{\eta}^{\text{норм}}$ коэффициент эффективности по КПД, учитывающий энергоэффективность работы каждого насоса
- $K_{\rm HHO}^{\rm Hopm}$ коэффициент, учитывающего снижение наработки на отказ
- $K_Q^{\text{норм}}$ коэффициент, учитывающий возможный рабочий режим по дебиту

$$M(\eta) = \sum_{i} \eta \frac{1}{N}$$
 $K_{\eta_k}^{\text{норм}} = \frac{M(\eta)_{\exists \text{ЦH}_k}}{M(\eta)_{\exists \text{ЦH}}^{max}}$

$$\sigma(\eta) = \sum \frac{\left(\eta_i - \eta_{\rm cp}\right)^2}{N} \qquad \sigma_{\eta_k}^{\rm Hopm} = \frac{\sigma(\eta)_{\rm 3 IIH}}{\sigma(\eta)_{\rm 3 IIH}^{max}}$$

Учет снижения наработки на отказ ЭЦН

$$K_{\eta}^{\text{дегр}} = \frac{\eta}{\eta_{max}}$$

 η – КПД ЭЦН на текущем режиме работы с учетом влияние вязкости, газосодержания

 η_{max} - максимальный КПД ЭЦН для исходной напорно-расходной характеристики

$$K_{\text{HHO}} = f(K_{\eta}^{\text{дегр}}) = 1 - (1 - K_{\eta}^{\text{дегр}})^2$$

Метод ранжирования рассматриваемых ЭЦН

Количественная оценка эффективности работы ЭЦН с учетом риска

ЭЦН

Краткая информация о месторождении Х

Параметры	Размерность	БС ₉	БС ₁₀
Относительная плотность газа	д.ед.	0,7	0,71
Плотность нефти	кг/м3	844	845
Плотность воды	кг/м3	1,014	1,011
Газосодержание	м3/м3	85,54	74,52
Давление насыщения	МПа	12,3	10,9
Температура пласта	С	86	84
Объемный коэффициент нефти	м3/м3	1,166	1,138
Вязкость нефти	мПа*с	1,01	1,09
Содержание серы в нефти	%	0,46	0,68
Содержание парафина в нефти	%	3,9	2,3
Коэффициент пористости	доли ед.	0,18	0,17
Проницаемость	MKM ²	0,022	0,013
Начальное пластовое давление	МПа	28,2	27,7

- Расположено в Западной Сибири
- Основные запасы расположены в двух пластах EC_9 и EC_{10}^2
- На 3 стадии разработки
- Безводные добывающие скважины отсутствуют
- Применяется система ППД с закачкой воды
- Механизированный способ добычи ЭЦН
- Применяемые методы интенсификации добычи: ГРП, РИР, бурение горизонтальных скважин, забуривание боковых стволов

Тестирование алгоритма на скважине Ү

Параметр	Размерность	Значение	
Относительная		0,7	
плотность газа	д.ед.		
Плотность нефти	кг/м3	844	
Плотность воды	кг/м3	1,014	
Газосодержание	м3/м3	85,54	
Давление			
насыщения	МПа	12,3	
Температура пласта	С	86	
Объемный		1,166	
коэффициент нефти	м3/м3		
Вязкость нефти	мПа*с	1,01	
Глубина ВДП	M	2776	
Глубина спуска ЭЦН	М	2661	
Диаметр НКТ	M	0,0678	
Диаметр ОК	M	0,159	
Дебит жидкости	м3/сут	101,04	
Обводненность	%	22	
Газовый фактор	м3/м3	85,54	
Коэффициент	0/ /845	9	
продуктивности	м3/сут/МПа		
Пластовое давление		18,8	
на ВДП	МПа		
Буферное давление	МПа	1,5	
Давление на приеме	МПа	5,7	
Забойное давление	МПа	6,5	

- Наклонно-направленная скважина
- ЭЦН5-80-2800
- Адаптация по давлению на приеме

Тестирование алгоритма на скважине Ү

Влияние неопределенности на итоговое решение

Приложение

Влияние неопределенности на итоговое решение

Приложение

Развитие метода

- Ускорение расчета
- Теорема Байеса
- Улучшение модели
- Неопределенность в PVT, Глубине спуска, Характеристики ЭЦН – любых параметро
- Компоновка газлифта и фонтана
- Компоновка других модулей: газосепаратора и двигателя

Заключение

- Предложена новая методика по подбору погружного оборудования с учетом неопределенности в исходных данных
- Подтверждена ценность алгоритма в качестве продвинутого и автоматического анализа чувствительности
- Установлено изменение итогового решения при изменении степени уверенности во входных данных при тестировании алгоритма на скважине Y месторождения X в Западной Сибири
- Предложенная методика может быть расширена с помощью уточнения физической модели скважины, возможности задания распределений для других параметров
- Для модели сохраняются большие требования по скорости вычислений и плотной интеграции с промысловыми базами данных для оценки разброса в неопределенности для исследуемых параметров

Контакты

ИС «ДАРС»: Динамический Анализ Работы Скважин

Кобзарь Олег Сергеевич (964) 573-66-87

Главный разработчик Разработка аналитических промысловых систем Kobzar.OS@gazpromneft-ntc.ru

Фонтан через затруб

Кривые распределения давления в скважине, фонтанирующей по затрубному пространству

а – нормальная работа ЭЦН без фонтанирования через затрубное пространство

b – фонтанирование через затрубное пространство при наличии отрицательного давления ЭЦН

с – фонтанирование через затрубное пространство при наличии положительного давления ЭЦН

Рисунок 4.7 - Графический расчет глубины установки газлифтных клапанов