Dow AgroSciences LLC 9330 Zionsville Road Indianapolis, Indiana 46268-1054

GRM: 05.04

EFFECTIVE: 06-Jul-2005

SUPERSEDES: New



Determination of Residues of XDE-175 and its Metabolites in Agricultural Commodities by On-Line Solid Phase Extraction and Liquid Chromatography with Tandem Mass Spectrometry

### M. J. Hastings, B. M. Wendelburg

#### 1. SCOPE

This method is applicable for the quantitative determination of XDE-175-J and XDE-175-L and their metabolites XDE-175-N-demethyl-J, XDE-175-N-demethyl-L, XDE-175-N-formyl-J and XDE-175-N-formyl-L in agricultural commodities (dry crops, wet crops, oily crops and acidic crops). The method was validated over the concentration range of 0.01- $1.0~\mu g/g$  for all crops except lettuce which was validated over the concentration range of 0.01- $10.0~\mu g/g$ . The validated limit of quantitation for all crops was  $0.01~\mu g/g$ .

XDE-175-J, R1 = CH<sub>3</sub> *N*-demethyl-XDE-175-J, R1 = H *N*-formyl-XDE-175-J, R1 = C(O)H XDE-175-L, R1 = CH<sub>3</sub> *N*-demethyl-XDE-175-L, R1 = H *N*-formyl-XDE-175-L, R1 = C(O)H

Common and chemical names along with other identifying information are given in Table 1.

#### 2. PRINCIPLE

Residues of XDE-175 and its metabolites are extracted from the crop sample by homogenizing and by shaking with an acetonitrile/water solution (80:20). A mixed XDE-175 and metabolites stable isotope internal standard solution is added to each sample and the final solution is purified by on-line solid phase extraction using a C18 cartridge. The extract is loaded onto the SPE cartridge with an

GRM 05.04 Page 1 of 97

acetonitrile/methanol/water (15:15:70) solution containing 10 mM ammonium acetate. The SPE cartridge is washed with an acetonitrile/methanol/water solution (25:25:50) containing 10 mM ammonium acetate and eluted onto the analytical column with a gradient elution technique using the HPLC mobile phase. XDE-175 and its metabolites are analyzed by liquid chromatography with positive ion electrospray ionization (ESI) tandem mass spectrometry (LC/MS/MS).

#### 3. SAFETY PRECAUTIONS

- 3.1. Each analyst must be acquainted with the potential hazards of the reagents, products, and solvents used in this method before commencing laboratory work. SOURCES OF INFORMATION INCLUDE MATERIAL SAFETY DATA SHEETS, LITERATURE, AND OTHER RELATED DATA. Safety information on non Dow AgroSciences LLC products should be obtained from the container label or from the supplier. Disposal of reagents, reactants, and solvents must be in compliance with local, state, and federal laws and regulations.
- 3.2. Acetonitrile and methanol are flammable and volatile and should be used in well-ventilated areas away from ignition sources.
- 3.3. Formic acid is corrosive and can cause severe burns. It is imperative that proper eye and personal protection equipment be used when handling all chemicals.
- 4. <u>EQUIPMENT</u> (Note 12.1.)
- 4.1. Laboratory Equipment
- 4.1.1. Balance, analytical, Model AE100, Mettler-Toledo, Inc., Hightstown, NJ 08520.
- 4.1.2. Balance, pan, Model PG2002, Mettler-Toledo, Inc.
- 4.1.3. Centrifuge, with rotor to accommodate 8-oz bottles, Model Centra-GP8, International Equipment Company, Needham Heights, MA 02494.
- 4.1.4. Dispenser, Bottle-Top, adjustable, Brinkmann, 20-100 mL, catalog number 13-688-136, Fisher Scientific, Pittsburgh, PA 15219.
- 4.1.5. Hammer mill, with 1/8 and 3/16-inch screen, Model 2001, AGVISE Laboratories, Inc., Northwood, ND 58267.
- 4.1.6. Homogenizer, Omni-mixer, Model ES, Omni International, Inc., Warrenton, VA 20187.
- 4.1.7. Homogenizer generator, 20-mm probe, catalog number 15020W, Omni International, Inc.

- 4.1.8. Pipettor, adjustable, Gilson Microman M250, 50-250 μL, catalog number F148505, Gilson Inc., Middleton, WI 53562.
- 4.1.9. Pipettor, adjustable, Gilson Microman M1000, 100-1000 μL, catalog number F148506, Gilson Inc.
- 4.1.10. Shaker, variable speed reciprocating with box carrier, Model 6000, Eberbach Corporation, Ann Arbor, MI 48106.
- 4.1.11. Vortex mixer, Model G-560, Scientific Industries, Inc., Bohemia, NY 11716.
- 4.2. Chromatographic System
- 4.2.1. Column, analytical, YMC ODS-AM, 50 x 4.6 mm, 5-μm, catalog number AM12S05-0546WT, Waters, Milford, MA 01757.
- 4.2.2. Column, confirmatory, Synergi Polar RP, 75 x 4.6 mm, 4-μm, catalog number 00C-4336-E0, Phenomenex, Torrance, CA 90501.
- 4.2.3. Mass spectrometer, Model API 4000, MDS/Sciex, Foster City, CA 94404.
- 4.2.4. Mass spectrometer data system, Analyst 1.4, MDS/Sciex.
- 4.2.5. On-line SPE/Liquid chromatograph, Symbiosis Pharma, Spark Holland Inc., Plainsboro, NJ 08536.
- 5. <u>GLASSWARE AND MATERIALS</u> (Note 12.1.)
- 5.1. Bottle, 250-mL, HDPE, catalog number 03-313-4D, Fisher Scientific.
- 5.2. Bottle, 1.0-L, media bottle, catalog number 06-423-3D, Fisher Scientific.
- 5.3. Bottle, 2.0-L, media bottle, catalog number 06-423-3E, Fisher Scientific.
- 5.4. Collection plate, 96-well, 2-mL, catalog number 121-5203, Argonaut Technologies, Inc., Redwood City, CA 94063.
- 5.5. Collection plate sealing cap, catalog number 121-5205, Argonaut Technologies, Inc.
- 5.6. Cylinder, graduated, 100-mL, catalog number C7000-100, National Scientific Company, Lawrenceville, GA 30243.
- 5.7. Cylinder, graduated, 500-mL, catalog number C7000-500, National Scientific Company.

- 5.8. Cylinder, graduated, 1000-mL, catalog number C7000-1L, National Scientific Company.
- 5.9. Cylinder, graduated, 2000-mL, catalog number C7000-2L, National Scientific Company.
- 5.10. Flask, volumetric, 100-mL, catalog number 161-8987, National Scientific Company.
- 5.11. Pipet, polyethylene disposable transfer, 3-mL, catalog number, 13-711-7, Fisher Scientific.
- 5.12. Pipet, volumetric, 0.5-mL, catalog number 261-6010, National Scientific Company.
- 5.13. Pipet, volumetric, 1.0-mL, catalog number 261-6011, National Scientific Company.
- 5.14. Pipet, volumetric, 2.0-mL, catalog number 261-6012, National Scientific Company.
- 5.15. Pipet, volumetric, 3.0-mL, catalog number 261-6013, National Scientific Company.
- 5.16. Pipet, volumetric, 5.0-mL, catalog number 261-6015, National Scientific Company.
- 5.17. Pipet, volumetric, 10.0-mL, catalog number 261-6020, National Scientific Company.
- 5.18. Pipetter tips, Gilson Microman CP250, catalog number F148114, Gilson Inc.
- 5.19. Pipetter tips, Gilson Microman CP1000, catalog number F148560, Gilson Inc.
- 5.20. SPE cartridges, Hysphere C18HD, 7-µm, catalog number 0722.609, Spark Holland Inc.
- 5.21. Vial, 40-mL, with PTFE-lined screw cap, catalog number B7800-6, National Scientific Company.
- 6. REAGENTS, STANDARDS, AND PREPARED SOLUTIONS (Note 12.1.)
- 6.1. Reagents
- 6.1.1. Acetonitrile, ChromAR HPLC grade, catalog number 2856, Mallinckrodt-Baker, Inc., Paris, KY 40361.
- 6.1.2. Ammonium acetate, HPLC grade, catalog number A639-500, Fisher Scientific.
- 6.1.3. Formic acid, 96%, ACS grade, catalog number 251364, Sigma-Aldrich, Milwaukee, WI 53201.
- 6.1.4. Methanol, ChromAR HPLC grade, catalog number 3041, Mallinckrodt-Baker Inc.
- 6.1.5. Nitrogen, refrigerated liquid, BOC Group Inc., Murray Hill, NJ 07974.

6.1.6. Water, HPLC grade, catalog number WX0004-1, EM Science, Gibbstown, NJ 08027.

#### 6.2. Standards

6.2.1. Analytical standard information for XDE-175-J, XDE-175-L, XDE-175-*N*-demethyl-J, XDE-175-*N*-demethyl-L, XDE-175-*N*-formyl-J and XDE-175-*N*-formyl-L are listed in Table 1.

Compounds can be obtained from Test Substance Coordinator, Dow AgroSciences LLC, 9330 Zionsville Road, Building 304, Indianapolis, IN 46268-1054.

6.2.2. Stable isotope labeled internal standards information for XDE-175-J, XDE-175-L, XDE-175-*N*-demethyl-J, XDE-175-*N*-demethyl-L are listed in Table 1.

Obtain from Specialty Synthesis Group, Dow AgroSciences LLC, 9330 Zionsville Road, Building 306, Indianapolis, IN 46268-1054.

#### 6.3. Prepared Solutions

6.3.1. acetonitrile/methanol (1:1) containing 2 mM ammonium acetate

Weigh 0.15 g of ammonium acetate into a 40-mL vial and quantitatively transfer with 100 mL of methanol into a 1-L bottle. Add a further 400 mL of methanol to the bottle. Measure 500 mL of acetonitrile using a 500-mL graduated cylinder and then transfer to the 1.0-L bottle. Cap the bottle and mix. Allow the solution to equilibrate to room temperature before use.

6.3.2. acetonitrile/methanol/water (15:15:70) containing 10 mM ammonium acetate

Weigh 0.77 g of ammonium acetate into a 40-mL vial and quantitatively transfer with 100 mL of HPLC water into a 1-L bottle. Measure 600 mL of water, 150 mL of methanol and 150 mL of acetonitrile using a graduated cylinder and transfer to the 1.0-L bottle. Cap the bottle and mix. Allow the solution to equilibrate to room temperature before use.

6.3.3. acetonitrile/methanol/water (25:25:50) containing 10 mM ammonium acetate

Weigh 0.77 g of ammonium acetate into a 40-mL vial and quantitatively transfer with 100 mL of HPLC water into a 1-L bottle. Measure 400 mL of water, 250 mL of methanol and 250 mL of acetonitrile using a graduated cylinder and transfer to the 1.0-L bottle. Cap the bottle and mix. Allow the solution to equilibrate to room temperature before use.

6.3.4. acetonitrile/water (80:20)

Measure 1600 mL of acetonitrile using a 2-L graduated cylinder and then transfer into a 2.0-L bottle. Measure 400 mL of water using a 500-mL graduated cylinder and then transfer into the 2.0-L bottle. Cap the bottle and mix. Allow the solution to equilibrate to room temperature before use.

6.3.5. acetonitrile/water (80:20) containing 0.1% formic acid

Measure 800 mL of acetonitrile using a 1-L graduated cylinder and then transfer into a 1.0-L bottle. Measure 200 mL of water using a 500-mL graduated cylinder and then transfer into the 1.0-L bottle. Pipet 1.0 mL of formic acid into the bottle. Cap the bottle and mix. Allow the solution to equilibrate to room temperature before use.

6.3.6. water containing 2 mM ammonium acetate

Weigh 0.15 g of ammonium acetate into a 40-mL vial and quantitatively transfer with 100 mL of HPLC water into a 1-L bottle. Add a further 900 mL of HPLC water to the bottle. Cap the bottle and mix. Allow the solution to equilibrate to room temperature before use.

#### 7. PREPARATION OF STANDARD SOLUTIONS

- 7.1. Preparation of XDE-175 and Metabolite Spiking Solutions
- 7.1.1. Weigh 0.0100 g of each XDE-175 analytical standard (XDE-175-J, XDE-175-L, XDE-175-*N*-demethyl-J, XDE-175-*N*-demethyl-L, XDE-175-*N*-formyl-J, XDE-175-*N*-formyl-L) and quantitatively transfer each standard to separate 100-mL volumetric flasks with acetonitrile. Dilute to volume with acetonitrile to obtain a 100-µg/mL stock solution of each analyte.
- 7.1.2. Pipet 10.0 mL of each 100-µg/mL solution (Section 7.1.1.) into a 100-mL volumetric flask. Dilute to volume with acetonitrile to obtain a 10.0-µg/mL mixed XDE-175 and metabolite spiking solution. Further dilute the 10.0-µg/mL mixed XDE-175 and metabolite spiking solution with acetonitrile according to the following suggested scheme:

| Concentration  | Aliquot  | Final  | Spiking     | Equivalent         | Volume of        |
|----------------|----------|--------|-------------|--------------------|------------------|
| of Initial     | of Stock | Soln.  | Soln.       | Sample             | Spiking          |
| Stock Solution | Solution | Volume | Final Conc. | Conc. <sup>a</sup> | Soln.            |
| μg/mL          | mL       | mL     | μg/mL       | μg/g               | μL               |
|                |          |        | 100.0       | 10.0               | 500 <sup>b</sup> |
| 100.0          | 10.0     | 100    | 10.0        | 1.0                | 500              |
|                |          |        | 10.0        | 0.1                | 50               |
| 10.0           | 10.0     | 100    | 1.0         | 0.01               | 50               |
| 1.0            | 10.0     | 100    | 0.1         | 0.003              | 150              |
| 0.1            | 10.0     | 100    | 0.01        |                    |                  |

The equivalent sample concentration is based on fortifying a 5-g crop sample.

### 7.2. <u>Preparation of XDE-175 and Metabolite Stable Isotope Internal Standard Solutions</u>

- 7.2.1. Weigh 0.0100 g of each XDE-175 stable isotope standard (XDE-175-J IS, XDE-175-L IS, XDE-175-N-demethyl-J IS and XDE-175-N-demethyl-L IS) and quantitatively transfer each standard to separate 100-mL volumetric flasks with acetonitrile. Dilute to volume with acetonitrile to obtain a 100-μg/mL stock solution of stable isotope standard.
- 7.2.2. Pipet 10.0 mL of each 100-µg/mL solution (Section 7.2.1.) into a 100-mL volumetric flask. Dilute to volume with acetonitrile to obtain a 10.0-µg/mL mixed XDE-175 and metabolite stable isotope internal standard solution.
- 7.2.3. Pipet 1.0 mL of the 10.0-µg/mL mixed XDE-175 stable isotope internal standard solution (Section 7.2.2.) into a 100-mL volumetric flask. Dilute to volume with acetonitrile to obtain a 0.1-µg/mL mixed XDE-175 and metabolite stable isotope internal standard solution.
- 7.2.4. Pipet 5.0 mL of the 0.1-µg/mL mixed XDE-175 stable isotope internal standard solution (Section 7.2.3.) into a 100-mL volumetric flask. Add 75 mL of acetonitrile to the flask. Dilute to volume with water to obtain an acetonitrile/water solution (80:20) containing 5-ng/mL mixed XDE-175 and metabolite stable isotope internal standard solution.

#### 7.3. <u>Preparation of Mixed XDE-175 and Metabolite Calibration Solutions</u>

7.3.1. Prepare calibration standard solutions by pipeting 5.0 mL of the 1.0-µg/mL mixed XDE-175 and metabolites stable isotope solution, prepared in Section 7.2.3, into each volumetric flask and diluting the 1.0-, 0.1- and 0.01-µg/mL mixed XDE-175 spiking solutions (Section 7.1.2.) with acetonitrile/water (80:20) to give calibration standards

<sup>&</sup>lt;sup>b</sup> 500 μL of each of the XDE-175 and metabolite 100 μg/mL spiking solutions (Section 7.1.1.).

over the range 0.15–50 ng/mL. Calibration standards may be prepared following the suggested scheme:

|                  | Aliquot of |             | Calibration |                           |
|------------------|------------|-------------|-------------|---------------------------|
| Concentration of | Spiking    | Final Soln. | Soln. Final | Equivalent                |
| Stock Solution   | Solution   | Volume      | Conc.       | Sample Conc. <sup>a</sup> |
| μg/mL            | mL         | mL          | ng/mL       | μg/g                      |
| 1.0              | 5.0        | 100         | 50          | 1.0                       |
| 1.0              | 3.5        | 100         | 35          | 0.7                       |
| 1.0              | 2.0        | 100         | 20          | 0.4                       |
| 1.0              | 1.0        | 100         | 10          | 0.2                       |
| 0.1              | 5.0        | 100         | 5.0         | 0.1                       |
| 0.1              | 1.0        | 100         | 1.0         | 0.02                      |
| 0.01             | 5.0        | 100         | 0.5         | 0.01                      |
| 0.01             | 1.5        | 100         | 0.15        | 0.003                     |

The equivalent sample concentration is based on extracting a 5-g crop sample.

# 8. <u>ON-LINE SPE/LIQUID CHROMATOGRAPHY/TANDEM MASS</u> SPECTROMETRY

#### 8.1. <u>Typical Liquid Chromatography Operating Conditions</u> (Note 12.2.)

Instrumentation: Spark Holland Symbiosis Pharma

MDS/Sciex API 4000 LC/MS/MS System

MDS/Sciex Analyst 1.4 data system

Column: YMC ODS-AM, 50 x 4.6 mm, 5-um (Quantitation)

Synergi Polar RP, 75 x 4.6 mm, 4-µm (Confirmation)

Column Temperature: Ambient

Injection Volume: 20 μL

Autosampler Wash Autosampler loop and needle washed with:

Program: 1) 500 μL of acetonitrile/water (80:20) containing 0.1%

formic acid

2) 4 x 300 µL of acetonitrile/water (80:20) containing 0.1%

formic acid with valve wash

3) 500 µL of acetonitrile/water (80:20) containing 0.1%

formic acid

Run Time: Approx 5 mins 30 secs

Mobile Phase: A –acetonitrile/methanol (1:1) containing 2 mM ammonium

acetate

B –water containing 2 mM ammonium acetate

Flow: 1.0 mL/min (approx 200 μL/min split to source)

| Gradient: | Time, (min:secs) | A, % | B, % |
|-----------|------------------|------|------|
|           | 00:01            | 70   | 30   |
|           | 02:00            | 100  | 0    |
|           | 04:00            | 100  | 0    |
|           | 04:15            | 70   | 30   |
|           | 05:30            | 70   | 30   |

Flow Diverter Program: 1)  $0.0 \rightarrow 2.0$  min: flow to waste

2) 2.0→4.0 min: flow to source 3) 4.0→end of run: flow to waste

#### 8.2. Typical On-Line Solid Phase Extraction Operating Conditions

SPE Cartridge: Hysphere C18HD, 7-µm

SPE Solvation: acetonitrile, 1 mL at 5 mL/min (SSM A)

SPE Equilibration: water, 2 mL at 5 mL/min (SSM B)

Sample Extraction: acetonitrile/methanol/water (15:15:70) containing 10 mM

ammonium acetate, 750 µL at 2 mL/min (HPD1)

SPE Wash 1: acetonitrile/methanol/water (25:25:50) containing 10 mM

ammonium acetate, 750 µL at 2 mL/min (HPD1)

SPE Elution: gradient mode, HPLC mobile phase at 1.0 mL/min for 3 min

Clamp Flush 1: acetonitrile/water (80:20) containing 0.1 % formic acid,

1 mL at 5.0 mL/min (HPD2)

Clamp Flush 2: water, 2 mL at 5 mL/min (HPD2)

#### 8.3. <u>Typical Mass Spectrometry Operating Conditions</u> (Note 12.2.)

Ionization Mode: ESI
Polarity: Positive
Scan Type: MRM

Resolution: Q1 – unit, Q3 – unit

Curtain Gas (CUR): 12 psi Collision Gas (CAD): 4 psi Temperature (TEM): 425 °C Ion Source Gas 1 (GS1): 40 psi Ion Source Gas 2 (GS2): 60 psi

Period 1

Acquisition Time Delay: 2.0 mins

Period Duration: 2.0 mins Ion Spray Voltage (IS): 5500 V

| Compound:                        |             |            |          | Collision |
|----------------------------------|-------------|------------|----------|-----------|
|                                  | <u>Ion,</u> | <u>m/z</u> | Time, ms | Energy, V |
|                                  | Q1          | Q3         |          |           |
| XDE-175-J                        | 748.6       | 142.2      | 50       | 37        |
| XDE-175-L                        | 760.9       | 142.2      | 50       | 37        |
| XDE-175-N-demethyl-J             | 734.9       | 128.2      | 50       | 31        |
| XDE-175-N-demethyl-L             | 746.7       | 128.2      | 50       | 33        |
| XDE-175-N-formyl-J               | 762.8       | 156.2      | 50       | 29        |
| XDE-175-N-formyl-L               | 774.6       | 156.2      | 50       | 23        |
| XDE-175-J IS                     | 757.9       | 146.2      | 50       | 37        |
| XDE-175-L IS                     | 769.9       | 146.2      | 50       | 37        |
| XDE-175- <i>N</i> -Demethyl-J IS | 739.9       | 128.2      | 50       | 33        |
| XDE-175- <i>N</i> -Demethyl-L IS | 751.7       | 128.2      | 50       | 33        |

#### 8.4. Typical Mass Spectra

Typical mass spectra and product ion spectra of XDE-175, its metabolites and stable isotope internal standards are presented in Figures 1-20.

#### 8.5. Typical Calibration Curve

Typical calibration curves for the determination of XDE-175 and its metabolites in wet crops are shown in Figures 21-26.

#### 8.6. Typical Chromatograms

Typical chromatograms of a 0.5-ng/mL calibration standard, a control lettuce sample, a control lettuce sample fortified at 0.01  $\mu$ g/g (limit of quantitation), and a control lettuce sample fortified at 10  $\mu$ g/g (1000 times the limit of quantitation) are presented in Figures 27-32. Typical chromatograms generated using the confirmatory HPLC column are presented in Figures 33-38.

# 9. <u>DETERMINATION OF RECOVERY OF XDE-175 AND ITS METABOLITES IN AGRICULTURAL COMMODITIES</u>

#### 9.1. Method Validation Prior to Field Sample Analysis

Unless otherwise specified, a sample set should contain, at the minimum, the following samples:

At least one reagent blank

At least one control

At least one control fortified at the limit of detection

At least two controls fortified at the limit of quantitation At least two controls fortified at a higher concentration

# 9.2. <u>Sample Preparation</u>

Prepare samples for analysis by freezing the crop with dry ice or liquid nitrogen and then grinding or chopping with a hammer mill equipped with a 1/8 or 3/16-inch screen size.

- 9.3. Sample Analysis for XDE-175 and Metabolites in Agricultural Commodities
- 9.3.1. Weigh  $5 \pm 0.05$  g portions of sample into 250-mL HDPE bottles.
- 9.3.2. Add the required volume of the appropriate fortification solution to the recovery samples (Section 7.1.2.) using a positive displacement pipet.
- 9.3.3. Add 100 mL of acetonitrile/water (80:20).
- 9.3.4. Homogenize the samples with a 20-mm homogenizer probe for 1 minute. Cap the sample and shake for 30 minutes on a flat bed shaker at approximately 180 excursions per minute.
- 9.3.5. Centrifuge the sample for 5 minutes at 2000 rpm.
- 9.3.6. Pipet 500 µL of the extraction solution into a 96-well plate.
- 9.3.7. Add 25  $\mu$ L of the 0.1- $\mu$ g/mL mixed XDE-175 and metabolite stable isotope standard (Section 7.2.3.).
- 9.3.8. Add approximately 500 µL of each calibration standard (Section 7.3.1.) to empty wells of the 96-well plate, cap and vortex mix for approximately 30 seconds.
- 9.3.9. Chromatograph the samples and standard using the conditions given in Section 8, injecting the calibration standards evenly spaced throughout the run.
- 9.3.10. For sample extracts which contain XDE-175 and metabolite concentrations > 50 ng/mL (equivalent to >1 μg/g), dilute with acetonitrile:water (80:20) containing 5-ng/mL mixed XDE-175 and metabolite stable isotope standard. Determine the suitability of the chromatographic system using the following criteria:
  - a. Standard curve linearity: Determine that the correlation coefficient equals or exceeds 0.995 for the least squares equation which describes the detector response as a function of standard curve concentration.
  - b. Peak resolution: Determine visually that sufficient resolution has been achieved for the analyte relative to any background interferences.

c. Appearance of chromatograms: Visually determine that the chromatograms resemble those shown in Figures 27-32 with respect to peak response, baseline noise, and background interference. Visually determine that a minimum signal-to-noise ratio of 10:1 has been attained for the 0.5-ng/mL calibration standard (equivalent to 0.01 µg/g of XDE-175 and or metabolites in the crop sample).

#### 10. <u>CALCULATIONS</u>

# 10.1. <u>Determination of Isotopic Crossover</u>

In this assay, the analyte and internal standard are quantitated using MS/MS transitions characteristic of each compound. When using stable-isotope labeled internal standards, there is a possibility that isotopic contributions will occur between the transitions used for quantitation of the unlabeled and labeled compounds. This isotopic overlap between the analyte and the internal standard can be determined empirically by analyzing standard solutions of each compound and should be addressed for accurate determination of concentrations.

10.1.1. To determine the isotopic crossover for XDE-175 and its metabolites and their respective stable isotopes, inject a 5-ng/mL mixed XDE-175 and metabolite standard and a 5-ng/mL mixed XDE-175 stable isotope standard and determine the peak areas for the analyte and internal standard as indicated below. For example, to determine the contribution of the unlabeled XDE-175-J to the stable isotope labeled XDE-175-J internal standard:

To determine the contribution of the unlabeled XDE-175-J to the labeled XDE-175-J internal standard:

Crossover Factor (analyte  $\rightarrow$ ISTD) =  $\frac{\text{peak area of internal standard transition}}{\text{peak area of analyte transition}}$ 

Crossover Factor (analyte  $\rightarrow$  ISTD) =  $\frac{\text{peak area at } m/z \ 757.9/146.2}{\text{peak area at } m/z \ 748.6/142.2}$ 

In a similar manner, to determine the contribution of the labeled XDE-175-J stable isotope to the unlabeled XDE-175-J:

Crossover Factor (ISTD→ analyte) = peak area of analyte transition peak area of internal standard transition

Crossover Factor (ISTD
$$\rightarrow$$
 analyte) =  $\frac{\text{peak area at } m/z \ 748.6/142.2}{\text{peak area at } m/z \ 757.9/146.2}$ 

During method development, no mass spectral isotopic crossover was observed and therefore no correction of the measured quantitation ratio was performed. If isotopic crossover is encountered it should be assessed and the respective quantitation ratios corrected for accurate determination of concentrations (13.1, 13.2).

- 10.2. Calculation of Standard Calibration Curve for XDE-175 and its Metabolites
- 10.2.1. Inject a series of calibration standards (Section 7.3.) using the conditions described in Section 8 and determine the peak areas for XDE-175, its metabolites and internal standards as indicated below:

| XDE-175-J                        | m/z Q1/Q3 | 748.6/142.2 |
|----------------------------------|-----------|-------------|
| XDE-175-L                        | m/z Q1/Q3 | 760.9/142.2 |
| XDE-175- <i>N</i> -demethyl-J    | m/z Q1/Q3 | 734.9/128.2 |
| XDE-175- <i>N</i> -demethyl-L    | m/z Q1/Q3 | 746.7/128.2 |
| XDE-175- <i>N</i> -formyl-J      | m/z Q1/Q3 | 762.8/156.2 |
| XDE-175- <i>N</i> -formyl-L      | m/z Q1/Q3 | 774.6/156.2 |
| XDE-175-J IS                     | m/z Q1/Q3 | 757.9/146.2 |
| XDE-175-L IS                     | m/z Q1/Q3 | 769.9/146.2 |
| XDE-175- <i>N</i> -demethyl-J IS | m/z Q1/Q3 | 739.9/128.2 |
| XDE-175- <i>N</i> -demethyl-L IS | m/z Q1/Q3 | 751.7/128.2 |
|                                  |           |             |

Quantitation of XDE-175-*N*-formyl-J and XDE-175-*N*-formyl-L metabolites are performed using the XDE-175-*N*-demethyl-J IS and XDE-175-*N*-demethyl-L IS respectively.

10.2.2. For each standard, calculate the XDE-175 quantitation ratio.

For example, using the data for XDE-175-J from injection no. 9, Figure 21:

Quantitation Ratio =  $\frac{\text{peak area of quantitation ion}}{\text{peak area of internal standard ion}}$ 

Quantitation Ratio =  $\frac{\text{XDE-175-J peak area}}{\text{XDE-175-J IS stable isotope internal standard peak area}}$ 

Quantitation Ratio =  $\frac{51007}{379980}$ 

Quantitation Ratio = 0.1342

10.2.3. Prepare a standard curve by plotting the concentration of the analytes on the abscissa (x-axis) and the respective quantitation ratio on the ordinate (y-axis), as shown in Figures 21-26. Using linear regression analysis (13.3.) with a 1/x weighting (13.4.), determine the equation for the curve with respect to the abscissa.

For example, using the XDE-175-J data from Figure 21:

$$X = \left(\frac{Y - intercept}{slope}\right)$$

$$\frac{XDE - 175 - J \text{ conc.}}{(ng/mL)} = \left(\frac{XDE - 175 - J \text{ quantitation ratio } - intercept}{slope}\right)$$

$$\frac{XDE - 175 - J \text{ conc.}}{(ng/mL)} = \left(\frac{XDE - 175 - J \text{ quantitation ratio } - (-0.0015)}{0.2571}\right)$$

- 10.3. Calculation of Percent Recovery for XDE-175 and its Metabolites
- 10.3.1. Determine the gross concentration in each recovery sample by substituting the quantitation ratio obtained into the above equation and solving for the concentration.

For example, using the data for XDE-175-J data from injection no. 22, Figure 21:

$$\frac{\text{XDE-175-J conc.}}{(\text{ng/mL})} = \frac{\left(\frac{\text{XDE-175-J quantitation ratio} - (-0.0015)}{0.2571}\right)}{0.2571}$$

$$\frac{\text{XDE-175-J conc.}}{(\text{gross ng/mL})} = \frac{\left(\frac{0.12128 - (-0.0015)}{0.2571}\right)}{0.2571}$$

$$\frac{\text{XDE-175-J conc.}}{(\text{gross})} = \frac{0.47756 \text{ ng/mL}}{0.2571}$$

Convert the concentration of ng/mL of XDE-175-J found in the final sample extract prepared for analysis to  $\mu$ g/g of XDE-175-J in the original crop sample as follows:

XDE-175-J conc. = 
$$0.47756 \text{ ng/mL x } \frac{(100 \text{ mL})}{5 \text{ g}} \text{ x DF}$$

Where DF = Dilution Factor where applicable

XDE -175 - J conc. (gross) = 
$$9.55 \text{ ng/g or } 0.0096 \text{ } \mu\text{g/g}$$

10.3.2. Determine the net concentration in each recovery sample by subtracting the concentration found at the retention time of each analyte in the untreated control sample from that of the gross analyte concentration in the recovery sample.

For example, using the data for XDE-175-J from Figure 21:

10.3.3. Determine the percent recovery by dividing the net concentration of each recovery sample by the theoretical concentration added.

Recovery = 
$$\frac{\text{conc. found}}{\text{conc. added}} \times 100\%$$
  
Recovery =  $\frac{0.0096 \,\mu\text{g/g}}{0.01 \,\mu\text{g/g}} \times 100\%$   
Recovery = 96%

- 10.4. <u>Determination of XDE-175 and its Metabolites in Agricultural Commodities</u>
- 10.4.1. Determine the gross concentration of XDE-175 and its metabolites in each sample by substituting the respective quantitation ratio into the equation for the calibration curve and calculating the uncorrected residue result as described in Section 10.3.1.
- 10.4.2. For those samples that require correction for the method procedural recovery, use the average recovery of all the recovery samples at or above the limit of quantitation, as described in Section 9.1, from a given sample set to correct for method efficiency. For example, continuing with the data from Figure 21 and the average recovery from Table 2 for the samples analyzed on 03-Dec-2004:

$$\begin{array}{ll} XDE - 175 - J \ conc. \\ (corrected \ \mu g/g) \end{array} = & \begin{array}{ll} XDE - 175 - J \ conc. \\ (gross \ \mu g/g) \end{array} \times \left( \frac{100}{A \ verage \% \ Recovery} \right) \\ XDE - 175 - J \ conc. \\ (corrected \ \mu g/g) \end{array} = & \begin{array}{ll} 0.0096 \ \mu g/g \ x \ \frac{100}{101} \\ \end{array} \\ XDE - 175 - J \ conc. \\ (corrected) \end{array} = & \begin{array}{ll} 0.0095 \ \mu g/g \end{array}$$

#### 11. RESULTS AND DISCUSSION

#### 11.1. Method Validation

#### 11.1.1. Recovery Levels and Precision

A method validation study was conducted to determine the recovery levels and the precision of the method for the determination of XDE-175 and its metabolites in agricultural commodities. Individual results are outlined in Tables 2-5 and are summarized in Tables 6-9.

For all of the analytes, the individual recoveries for all samples in the validation study (no outliers were rejected) were between 63 and 140% with standard deviations less than or equal to 20.7%. For all analyses, the average recoveries for each analyte at each fortification level were between 70 and 110% except for the 1.0  $\mu$ g/g XDE-175-*N*-formyl-J and XDE-175-*N*-formyl-L average recoveries which were 115 and 111% respectively.

#### 11.1.2. Standard Curve Linearity

For the linear regression analysis, the coefficients of determination (r<sup>2</sup>) were greater or equal to 0.997 for all of the calibration curve determinations during the method validation. The results indicate linearity of the detector response as a function of the standard concentration.

#### 11.1.3. Calculated Limits of Quantitation and Detection

Following established guidelines (13.5.), the limits of quantitation (LOQ) and detection (LOD) were calculated for XDE-175 and its metabolites using the standard deviation for the 0.01- $\mu$ g/g (LOQ) recovery results. The LOQ was calculated as ten times the standard deviation (10s), and the LOD was calculated as three times the standard deviation (3s) of the LOQ results. The results are summarized in Tables 10-13.

The calculated method LOQ supports the validated LOQ of  $0.01 \mu g/g$  for each analyte in each crop group with one exception. The calculated LOQ for XDE-175-N-formyl-L

in oily crops was  $0.02~\mu g/g$ . Since the lowest level of fortification for recovery samples was  $0.01~\mu g/g$ , the method LOQ is considered to be  $0.01~\mu g/g$ . The calculated LOD's for XDE-175-J, XDE-175-L, XDE-175-N-demethyl-J and XDE-175-N-demethyl-L were all < $0.003~\mu g/g$  for each crop group which supports a method LOD of  $0.003~\mu g/g$ . The calculated LOD's for XDE-175-N-formyl-J were in the range 0.0020-0.0040. The calculated LOD's for XDE-175-N-formyl-L were in the range 0.0021-0.0062. In actual residue samples, numerical results should be reported as less than the LOQ (< $0.01~\mu g/g$ ) for residues that are greater than or equal to the LOD but less than the validated LOQ. For results less than the LOD, numerical results should be reported as not detected (ND).

#### 11.2. Confirmation of Residue Identity

The presence of XDE-175 and its metabolites is confirmed by comparing the liquid chromatography retention times of the analyte in the calibration standards with those found in the samples while monitoring analyte specific MS/MS transitions. According to recently published guidelines (13.6.), when detection is performed by tandem mass spectrometry methods, confirmation of the presence of the analyte requires the observation of a precursor ion plus one structurally significant product ion observed at the same retention time. Due to the lack of confirmatory MS/MS transitions, further confirmation of residue identity can be achieved, if necessary, by re-injecting the sample on the different selectivity column described in Section 8.

### 11.3. Assay Time and Stopping Points

A typical analytical run would consist of a minimum of eight standards encompassing the expected range of sample concentrations, a reagent blank, a control (a non-fortified sample), a minimum of three fortified controls (two of which must be at the LOQ), and 15 samples. This typical analytical set can be prepared in approximately 3 hours followed by the chromatographic analysis.

There are four acceptable "stopping points" in the method, where sample preparation (Section 9) may be suspended, upon completion of a step, without deleterious effects on the sample analysis. These are indicated below:

Step 9.3.1. (store frozen)

Step 9.3.4. (store refrigerated)

Step 9.3.7. (store refrigerated)

Step 9.3.8. (store refrigerated)

#### 12. NOTES

- 12.1. Equipment, glassware, materials, reagents, and chemicals considered to be equivalent to those specified may be substituted with the understanding that their performance must be confirmed by appropriate tests. Common laboratory supplies are assumed to be readily available and are, therefore, not listed.
- 12.2. Operating conditions may be modified to obtain optimal chromatographic separation and performance, if necessary.

#### 13. REFERENCES

- 13.1. Jenden, D. J.; Roch, M.; Booth, R. A. Anal. Biochem. 1973, 55, 438-448.
- 13.2. Barbalas, M. P.; Garland, W. A., J. Pharm. Sci. 1991, 80(10), 922-927.
- 13.3. Freund, J. E.; Williams, F. J. *Dictionary/Outline of Basic Statistics*; Dover: New York, 1991; p 170.
- 13.4. Neter, J.; Kutner, M. H.; Nachtssheim, C. J.; Wasserman, W. *Applied Linear Regression Models*; The McGraw-Hill Company: New York, 1996; p 409.
- 13.5. Keith, L. H.; Crummett, W.; Deegan, J., Jr.; Libby, R. A.; Taylor, J. K.; Wentler, G. *Anal. Chem.* **1983**, *55*, 2210-2218.
- 13.6. Baldwin, R.; Bethem, R. A.; Boyd, R. K.; Budde, W. L.; Cairns, T.; Gibbons, R. D.; Henion, J. D.; Kaiser, M. A.; Lewis, D. L.; Matusik, J. E.; Sphon, J. A.; Stephany, R. W.; Trubey, R. K.; *J. Am. Soc. Mass Spectrom.* **1997**, *8*, 1180-1190.

The information herein is presented in good faith, but no warranty, express or implied, is given nor is freedom from any patent owned by Dow AgroSciences LLC or by others to be inferred. In the hands of qualified personnel, the procedures are expected to yield results of sufficient accuracy for their intended purposes, but recipients are cautioned to confirm the reliability of their techniques, equipment, and standards by appropriate tests. Anyone wishing to reproduce or publish the material in whole or in part should request written permission from Dow AgroSciences LLC.

# Table 1. Identity and Structure of XDE-175, its Metabolites and Stable Isotope Internal Standards

XDE-175-J IS, R1 =  $CH_3$  *N*-demethyl-XDE-175-J IS, R1 = H *N*-formyl-XDE-175-J IS, R1 = C(O)H XDE-175-L IS,  $R1 = CH_3$ N-demethyl-XDE-175-L IS, R1 = HN-formyl-XDE-175-L IS, R1 = C(O)H

#### Common Name of Compound

#### XDE-175-J

CAS Name: 1H-as-Indaceno[3,2-d]oxacyclododecin-7,15-dione, 2-[(6-deoxy-3-O-ethyl-2,4-di-O methyl-a-L-mannopyranosyl)oxy]-13-[[(2R,5S,6R)-5-(dimethylamino)tetrahydro-6-methyl 2H-pyran-2-yl]oxy]-9-ethyl-2,3,3a,4,5,5a,5b,6,9,10,11,12,13,14,16a,16b-hexadecahydro 14-methyl-,

(2R,3aR,5aR,5bS,9S,13S,14R,16aS,16bR)

XDE-175-L

CAS Name: 1H-as-Indaceno[3,2-d]oxacyclododecin-7,15-dione, 2-[(6-deoxy-3-O-ethyl-2,4-di-O-methyl-a-L-mannopyranosyl)oxy]-13-[[(2R,5S,6R)-5-(dimethylamino)tetrahydro-6-methyl-2H-pyran-2-yl]oxy]-9-ethyl-2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-tetradecahydro-4,14-dimethyl-,

(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)

# Table 1. (Cont.) Identity and Structure of XDE-175, its Metabolites and Stable Isotope Internal Standards

XDE-175-N-demethyl-J

IUPAC Name: (2R,3aR,5aR,5bS,9S,13S,14R,16aS,16bR)-9-ethyl-14-methyl-13-{[(2S,5S,6R)-6-methyl-14-methyl-13-4]

5-(methylamino)tetrahydro-2H-pyran-2-yl]oxy}-7,15-dioxo-

2,3,3a,4,5,5a,5b,6,7,9,10,11,12,13,14,15,16a,16b-octadecahydro-1H-as-indaceno[3,2-d]oxacyclododecin-2-yl 6-deoxy-3-O-ethyl-2,4-di-O-methyl-beta-L-mannopyranoside

XDE-175-N-demethyl-L

Molecular Formula:  $C_{42}H_{67}NO_{10}$ Formula Weight: 745.995Nominal Mass: 745.5CAS Registry Number: N/A

IUPAC Name: (2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-9-ethyl-4,14-dimethyl-13-{[(2S,5S,6R)-6-

methyl-5-(methylamino)tetrahydro-2H-pyran-2-yl]oxy}-7,15-dioxo-

 $2,3,3a,5a,5b,6,7,9,10,11,12,13,14,15,16a,16b-hexadecahydro-1 H-as-indaceno \cite{A} acyclododecin-2-ylarical acyclodode$ 

6-deoxy-3-O-ethyl-2,4-di-O-methyl-beta-L-mannopyranoside

XDE-175-N-formyl-J

Molecular Formula:  $C_{42}H_{67}NO_{11}$ Formula Weight: 761.994Nominal Mass: 761.5CAS Registry Number: N/A

IUPAC Name: (2R,3S,6S)-6-({(2R,3aR,5aR,5bS,9S,13S,14R,16aS,16bR)-2-[(6-deoxy-3-O-ethyl-2,4-di-

O-methyl-beta-L-mannopyranosyl)oxy]-9-ethyl-14-methyl-7,15-dioxo-

2,3,3a,4,5,5a,5b,6,7,9,10,11,12,13,14,15,16a,16b-octadecahydro-1H-as-indaceno[3,2-d]oxacyclododecin-13-yl}oxy)-2-methyltetrahydro-2H-pyran-3-yl(methyl)formamide

XDE-175-N-formyl-L

 $\begin{array}{lll} \mbox{Molecular Formula:} & C_{43}\mbox{$H_{67}$NO}_{11} \\ \mbox{Formula Weight:} & 774.005 \\ \mbox{Nominal Mass:} & 773.5 \\ \mbox{CAS Registry Number:} & \mbox{N/A} \end{array}$ 

 $IUPAC\ Name:\ (2R,3S,6S)-6-(\{(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-2-[(6-deoxy-3-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-di-O-ethyl-2,4-d$ 

methyl-beta-L-mannopyranosyl)oxy]-9-ethyl-4,14-dimethyl-7,15-dioxo-

2,3,3a,5a,5b,6,7,9,10,11,12,13,14,15,16a,16b-hexadecahydro-1H-as-indaceno[3,2-d]oxacyclododecin-13-

yl\oxy)-2-methyltetrahydro-2H-pyran-3-yl(methyl)formamide

Table 1. (Cont.) Identity and Structure of XDE-175, its Metabolites and Stable Isotope Internal Standards

XDE-175-J, R1 =  ${}^{13}$ CD<sub>3</sub>, R2 = C<sub>2</sub>D<sub>5</sub> XDE-175-*N*-Demethyl-J, R1 = H, R2 = C<sub>2</sub>D<sub>5</sub> XDE-175-L, R1 =  ${}^{13}$ CD<sub>3</sub>, R2 = C<sub>2</sub>D<sub>5</sub> XDE-175-*N*-Demethyl-L, R1 = H, R2 = C<sub>2</sub>D<sub>5</sub>

#### Common Name of Internal Standard

XDE-175-J IS

 $\begin{array}{ll} \text{Molecular Formula:} & \text{$C_{41}$}^{13}\text{CH}_{61}D_8\text{NO}_{10} \\ \text{Formula Weight:} & 757.051 \end{array}$ 

Formula Weight: 757.05 Nominal Mass: 756.5 CAS Registry Number: N/A

XDE-175-L IS

Formula Weight: 769.06.
Nominal Mass: 768.5
CAS Registry Number: N/A

XDE-175-N-Demethyl-J IS

 $\begin{tabular}{lll} Molecular Formula: & $C_{41}H_{62}D_5NO_{10}$ \\ Formula Weight: & 739.014 \\ Nominal Mass: & 738.5 \\ CAS Registry Number: & $N/A$ \\ \end{tabular}$ 

XDE-175-N-Demethyl-L

 $\begin{tabular}{lll} Molecular Formula: & $C_{42}H_{62}D_5NO_{10}$ \\ Formula Weight: & 751.025 \\ Nominal Mass: & 750.5 \\ CAS Registry Number: & $N/A$ \\ \end{tabular}$ 

Table 2. Recovery of XDE-175-J from Wet Crops

| Sample |                               | Date of               | XDE    | -175-J       |                         |
|--------|-------------------------------|-----------------------|--------|--------------|-------------------------|
| Name   | Matrix                        | Analysis <sup>a</sup> | Added  | Found        | % Recovery <sup>b</sup> |
|        |                               |                       |        |              |                         |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004            | $NA^c$ | $ND^d$       | NA                      |
| 13155  | Grape Whole Fruit             | 3-Dec-2004            | NA     | ND           | NA                      |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004            | NA     | ND           | NA                      |
| 4301   | Onion sweet yellow            | 3-Dec-2004            | NA     | ND           | NA                      |
| 16401  | Peppers                       | 3-Dec-2004            | NA     | ND           | NA                      |
| 99301  | Cabbage Whole Head            | 3-Dec-2004            | NA     | ND           | NA                      |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004            | NA     | ND           | NA                      |
| 15812  | Succulent Green Bean          | 7-Dec-2004            | NA     | ND           | NA                      |
| 15822  | Leek Whole Plant              | 7-Dec-2004            | NA     | ND           | NA                      |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005           | NA     | ND           | NA                      |
|        |                               |                       |        |              |                         |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004            | 0.003  | $0.0028^{e}$ | NA                      |
| 13155  | Grape Whole Fruit             | 3-Dec-2004            | 0.003  | 0.0033       | NA                      |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004            | 0.003  | 0.0031       | NA                      |
| 4301   | Onion sweet yellow            | 3-Dec-2004            | 0.003  | 0.0031       | NA                      |
| 16401  | Peppers                       | 3-Dec-2004            | 0.003  | 0.0030       | NA                      |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004            | 0.003  | 0.0032       | NA                      |
| 15812  | Succulent Green Bean          | 7-Dec-2004            | 0.003  | 0.0031       | NA                      |
| 15822  | Leek Whole Plant              | 7-Dec-2004            | 0.003  | 0.0030       | NA                      |
|        |                               |                       |        |              |                         |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004            | 0.01   | 0.0097       | 97                      |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004            | 0.01   | 0.0096       | 96                      |
| 13155  | Grape Whole Fruit             | 3-Dec-2004            | 0.01   | 0.0103       | 103                     |
| 13155  | Grape Whole Fruit             | 3-Dec-2004            | 0.01   | 0.0101       | 101                     |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004            | 0.01   | 0.0095       | 95                      |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004            | 0.01   | 0.0104       | 104                     |
| 4301   | Onion sweet yellow            | 3-Dec-2004            | 0.01   | 0.0103       | 103                     |
| 4301   | Onion sweet yellow            | 3-Dec-2004            | 0.01   | 0.0108       | 108                     |
| 16401  | Peppers                       | 3-Dec-2004            | 0.01   | 0.0103       | 103                     |
| 16401  | Peppers                       | 3-Dec-2004            | 0.01   | 0.0101       | 101                     |
| 99301  | Cabbage Whole Head            | 3-Dec-2004            | 0.01   | 0.0110       | 110                     |
| 99301  | Cabbage Whole Head            | 3-Dec-2004            | 0.01   | 0.0095       | 95                      |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004            | 0.01   | 0.0102       | 102                     |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004            | 0.01   | 0.0105       | 105                     |
| 15812  | Succulent Green Bean          | 7-Dec-2004            | 0.01   | 0.0098       | 98                      |
| 15812  | Succulent Green Bean          | 7-Dec-2004            | 0.01   | 0.0104       | 104                     |
| 15822  | Leek Whole Plant              | 7-Dec-2004            | 0.01   | 0.0107       | 107                     |
| 15822  | Leek Whole Plant              | 7-Dec-2004            | 0.01   | 0.0118       | 118                     |

Table 2. (Cont.) Recovery of XDE-175-J from Wet Crops

| Sample |                               | Date of     | XDE-  | -175-J |            |
|--------|-------------------------------|-------------|-------|--------|------------|
| Name   | Matrix                        | Analysis    | Added | Found  | % Recovery |
|        |                               |             |       |        |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0   | 0.98   | 98         |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0   | 0.92   | 92         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0   | 1.02   | 102        |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0   | 1.00   | 100        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0   | 1.02   | 102        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0   | 1.03   | 103        |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0   | 0.96   | 96         |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0   | 1.03   | 103        |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0   | 0.95   | 95         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0   | 1.00   | 100        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0   | 1.01   | 101        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0   | 1.02   | 102        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0   | 0.98   | 98         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0   | 0.95   | 95         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0   | 0.96   | 96         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0   | 0.96   | 96         |
|        |                               |             |       |        |            |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0  | 9.3    | 93         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0  | 9.4    | 94         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 9.3    | 93         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 9.2    | 92         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 9.0    | 90         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 9.2    | 92         |

Table 2. (Cont.) Recovery of XDE-175-L from Wet Crops

|       |                               | Date of     | XDE   | -175-L |            |
|-------|-------------------------------|-------------|-------|--------|------------|
| Name  | Matrix                        | Analysis    | Added | Found  | % Recovery |
|       |                               |             |       |        |            |
| 10505 | Broccoli Flower Head and Stem | 3-Dec-2004  | NA    | ND     | NA         |
| 13155 | Grape Whole Fruit             | 3-Dec-2004  | NA    | ND     | NA         |
| 24801 | Lettuce Whole Leaf            | 3-Dec-2004  | NA    | ND     | NA         |
| 4301  | Onion sweet yellow            | 3-Dec-2004  | NA    | ND     | NA         |
| 16401 | Peppers                       | 3-Dec-2004  | NA    | ND     | NA         |
| 99301 | Cabbage Whole Head            | 3-Dec-2004  | NA    | ND     | NA         |
| 13210 | Tomato Whole Fruit            | 3-Dec-2004  | NA    | ND     | NA         |
| 15812 | Succulent Green Bean          | 7-Dec-2004  | NA    | ND     | NA         |
| 15822 | Leek Whole Plant              | 7-Dec-2004  | NA    | ND     | NA         |
| 24801 | Lettuce Whole Leaf            | 25-Apr-2005 | NA    | ND     | NA         |
|       |                               |             |       |        |            |
| 10505 | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.003 | 0.0032 | NA         |
| 13155 | Grape Whole Fruit             | 3-Dec-2004  | 0.003 | 0.0033 | NA         |
| 24801 | Lettuce Whole Leaf            | 3-Dec-2004  | 0.003 | 0.0032 | NA         |
| 4301  | Onion sweet yellow            | 3-Dec-2004  | 0.003 | 0.0030 | NA         |
| 16401 | Peppers                       | 3-Dec-2004  | 0.003 | 0.0030 | NA         |
| 13210 | Tomato Whole Fruit            | 3-Dec-2004  | 0.003 | 0.0033 | NA         |
| 15812 | Succulent Green Bean          | 7-Dec-2004  | 0.003 | 0.0032 | NA         |
| 15822 | Leek Whole Plant              | 7-Dec-2004  | 0.003 | 0.0031 | NA         |
|       |                               |             |       |        |            |
| 10505 | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01  | 0.0102 | 102        |
| 10505 | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01  | 0.0107 | 107        |
| 13155 | Grape Whole Fruit             | 3-Dec-2004  | 0.01  | 0.0101 | 101        |
| 13155 | Grape Whole Fruit             | 3-Dec-2004  | 0.01  | 0.0096 | 96         |
| 24801 | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01  | 0.0100 | 100        |
| 24801 | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01  | 0.0108 | 108        |
| 4301  | Onion sweet yellow            | 3-Dec-2004  | 0.01  | 0.0102 | 102        |
| 4301  | Onion sweet yellow            | 3-Dec-2004  | 0.01  | 0.0112 | 112        |
| 16401 | Peppers                       | 3-Dec-2004  | 0.01  | 0.0100 | 100        |
| 16401 | Peppers                       | 3-Dec-2004  | 0.01  | 0.0098 | 98         |
| 99301 | Cabbage Whole Head            | 3-Dec-2004  | 0.01  | 0.0114 | 114        |
| 99301 | Cabbage Whole Head            | 3-Dec-2004  | 0.01  | 0.0097 | 97         |
| 13210 | Tomato Whole Fruit            | 3-Dec-2004  | 0.01  | 0.0102 | 102        |
| 13210 | Tomato Whole Fruit            | 3-Dec-2004  | 0.01  | 0.0107 | 107        |
| 15812 | Succulent Green Bean          | 7-Dec-2004  | 0.01  | 0.0106 | 106        |
| 15812 | Succulent Green Bean          | 7-Dec-2004  | 0.01  | 0.0105 | 105        |
| 15822 | Leek Whole Plant              | 7-Dec-2004  | 0.01  | 0.0108 | 108        |
| 15822 | Leek Whole Plant              | 7-Dec-2004  | 0.01  | 0.0114 | 114        |

Table 2. (Cont.) Recovery of XDE-175-L from Wet Crops

|       |                               | Date of     | XDE   | -175-L |            |
|-------|-------------------------------|-------------|-------|--------|------------|
| Name  | Matrix                        | Analysis    | Added | Found  | % Recovery |
|       |                               |             |       |        |            |
| 10505 | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0   | 1.07   | 107        |
| 10505 | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0   | 1.04   | 104        |
| 13155 | Grape Whole Fruit             | 3-Dec-2004  | 1.0   | 0.97   | 97         |
| 13155 | Grape Whole Fruit             | 3-Dec-2004  | 1.0   | 0.97   | 97         |
| 4301  | Onion sweet yellow            | 3-Dec-2004  | 1.0   | 1.00   | 100        |
| 4301  | Onion sweet yellow            | 3-Dec-2004  | 1.0   | 1.04   | 104        |
| 16401 | Peppers                       | 3-Dec-2004  | 1.0   | 1.00   | 100        |
| 16401 | Peppers                       | 3-Dec-2004  | 1.0   | 1.00   | 100        |
| 99301 | Cabbage Whole Head            | 3-Dec-2004  | 1.0   | 1.03   | 103        |
| 99301 | Cabbage Whole Head            | 3-Dec-2004  | 1.0   | 1.00   | 100        |
| 13210 | Tomato Whole Fruit            | 3-Dec-2004  | 1.0   | 1.01   | 101        |
| 13210 | Tomato Whole Fruit            | 3-Dec-2004  | 1.0   | 1.00   | 100        |
| 15812 | Succulent Green Bean          | 7-Dec-2004  | 1.0   | 1.00   | 100        |
| 15812 | Succulent Green Bean          | 7-Dec-2004  | 1.0   | 0.95   | 95         |
| 15822 | Leek Whole Plant              | 7-Dec-2004  | 1.0   | 1.01   | 101        |
| 15822 | Leek Whole Plant              | 7-Dec-2004  | 1.0   | 1.00   | 100        |
|       |                               |             |       |        |            |
| 24801 | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0  | 9.1    | 91         |
| 24801 | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0  | 9.8    | 98         |
| 24801 | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 9.1    | 91         |
| 24801 | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 9.1    | 91         |
| 24801 | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 8.9    | 89         |
| 24801 | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0  | 9.1    | 91         |

Table 2. (Cont.) Recovery of XDE-175-N-demethyl-J from Wet Crops

| Sample |                               | Date of     | XDE-175- | N-demethyl- | <u>J</u>   |
|--------|-------------------------------|-------------|----------|-------------|------------|
| Name   | Matrix                        | Analysis    | Added    | Found       | % Recovery |
|        |                               |             |          |             |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | NA       | ND          | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | NA       | ND          | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | NA       | ND          | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | NA       | ND          | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | NA       | ND          | NA         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | NA       | ND          | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | NA       | 0.0000      | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | NA       | ND          | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | NA       | 0.0001      | NA         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | NA       | ND          | NA         |
|        |                               | •           |          |             |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.003    | 0.0030      | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.003    | 0.0029      | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.003    | 0.0027      | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.003    | 0.0027      | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.003    | 0.0027      | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.003    | 0.0027      | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.003    | 0.0033      | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.003    | 0.0031      | NA         |
|        |                               |             |          |             |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0100      | 100        |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0101      | 101        |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0102      | 102        |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0096      | 96         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0094      | 94         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0101      | 101        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0099      | 99         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0100      | 100        |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0094      | 94         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0097      | 97         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0100      | 100        |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0094      | 94         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0097      | 97         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0098      | 98         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0103      | 103        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0110      | 110        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0103      | 103        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0117      | 117        |

Table 2. (Cont.) Recovery of XDE-175-N-demethyl-J from Wet Crops

| Sample |                               | Date of     | XDE-175- | N-demethyl-J | [          |
|--------|-------------------------------|-------------|----------|--------------|------------|
| Name   | Matrix                        | Analysis    | Added    | Found        | % Recovery |
|        |                               |             |          |              |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 1.01         | 101        |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 0.95         | 95         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.99         | 99         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.94         | 94         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 1.00         | 100        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 1.00         | 100        |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 1.02         | 102        |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 0.99         | 99         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 0.99         | 99         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 1.00         | 100        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 0.99         | 99         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 0.99         | 99         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 1.05         | 105        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 0.98         | 98         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 1.02         | 102        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 1.04         | 104        |
|        |                               |             |          |              |            |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 10.1         | 101        |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 10.1         | 101        |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 9.1          | 91         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 9.0          | 90         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.9          | 89         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 9.1          | 91         |

Table 2. (Cont.) Recovery of XDE-175-N-demethyl-L from Wet Crops

| Sample |                               | Date of     | XDE-175- | N-demethyl-I | <u>L</u>   |
|--------|-------------------------------|-------------|----------|--------------|------------|
| Name   | Matrix                        | Analysis    | Added    | Found        | % Recovery |
|        |                               |             |          |              |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | NA       | 0.0000       | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | NA       | ND           | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | NA       | ND           | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | NA       | ND           | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | NA       | 0.0000       | NA         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | NA       | ND           | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | NA       | 0.0000       | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | NA       | ND           | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | NA       | ND           | NA         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | NA       | 0.0002       | NA         |
|        |                               | -           |          |              |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.003    | 0.0027       | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.003    | 0.0030       | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.003    | 0.0029       | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.003    | 0.0029       | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.003    | 0.0028       | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.003    | 0.0030       | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.003    | 0.0033       | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.003    | 0.0029       | NA         |
|        |                               |             |          |              |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0100       | 100        |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0101       | 101        |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0102       | 102        |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0094       | 94         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0095       | 95         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0101       | 101        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0109       | 109        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0106       | 106        |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0098       | 98         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0098       | 98         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0110       | 110        |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0092       | 92         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0101       | 101        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0096       | 96         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0102       | 102        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0104       | 104        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0109       | 109        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0120       | 120        |

Table 2. (Cont.) Recovery of XDE-175-N-demethyl-L from Wet Crops

| Sample |                               | Date of     | XDE-175- | <u>-L</u> |            |
|--------|-------------------------------|-------------|----------|-----------|------------|
| Name   | Matrix                        | Analysis    | Added    | Found     | % Recovery |
|        |                               |             |          |           |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 1.03      | 103        |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 0.95      | 95         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.99      | 99         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.98      | 98         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 1.01      | 101        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 1.00      | 100        |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 1.04      | 104        |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 1.01      | 101        |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 0.98      | 98         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 1.02      | 102        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 1.03      | 103        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 1.01      | 101        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 1.01      | 101        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 1.00      | 100        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 1.02      | 102        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 1.01      | 101        |
|        |                               |             |          |           |            |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 9.9       | 99         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 9.8       | 98         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 9.0       | 90         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.7       | 87         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.7       | 87         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.8       | 88         |

Table 2. (Cont.) Recovery of XDE-175-N-formyl-J from Wet Crops

| Sample |                               | Date of     | XDE-175- | N-formyl-J |            |
|--------|-------------------------------|-------------|----------|------------|------------|
| Name   | Matrix                        | Analysis    | Added    | Found      | % Recovery |
|        |                               |             |          |            |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | NA       | ND         | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | NA       | ND         | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | NA       | ND         | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | NA       | ND         | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | NA       | ND         | NA         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | NA       | ND         | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | NA       | ND         | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | NA       | ND         | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | NA       | ND         | NA         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | NA       | ND         | NA         |
|        |                               | -           |          |            |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.003    | 0.0033     | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.003    | 0.0023     | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.003    | 0.0026     | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.003    | 0.0028     | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.003    | 0.0021     | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.003    | 0.0022     | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.003    | 0.0030     | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.003    | 0.0020     | NA         |
|        |                               |             |          |            |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0106     | 106        |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0087     | 87         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0091     | 91         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0088     | 88         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0088     | 88         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0092     | 92         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0093     | 93         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0098     | 98         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0088     | 88         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0089     | 89         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0094     | 94         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0105     | 105        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0086     | 86         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0086     | 86         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0093     | 93         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0103     | 103        |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0086     | 86         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0100     | 100        |

Table 2. (Cont.) Recovery of XDE-175-N-formyl-J from Wet Crops

| Sample |                               | Date of     | XDE-175- | N-formyl-J |            |
|--------|-------------------------------|-------------|----------|------------|------------|
| Name   | Matrix                        | Analysis    | Added    | Found      | % Recovery |
|        |                               |             |          |            |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 1.16       | 116        |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 1.10       | 110        |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.93       | 93         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.93       | 93         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 1.01       | 101        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 1.02       | 102        |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 1.08       | 108        |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 1.04       | 104        |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 1.02       | 102        |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 1.00       | 100        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 1.03       | 103        |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 1.04       | 104        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 1.02       | 102        |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 0.97       | 97         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 0.91       | 91         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 0.91       | 91         |
|        |                               |             |          |            |            |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 10.1       | 101        |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 9.9        | 99         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 9.3        | 93         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.4        | 84         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.6        | 86         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.6        | 86         |

Table 2. (Cont.) Recovery of XDE-175-N-formyl-L from Wet Crops

| Sample |                               | Date of     | XDE-175- | N-formyl-L |            |
|--------|-------------------------------|-------------|----------|------------|------------|
| Name   | Matrix                        | Analysis    | Added    | Found      | % Recovery |
|        |                               |             |          |            |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | NA       | 0.0006     | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | NA       | ND         | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | NA       | ND         | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | NA       | ND         | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | NA       | 0.0013     | NA         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | NA       | ND         | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | NA       | ND         | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | NA       | ND         | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | NA       | ND         | NA         |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | NA       | ND         | NA         |
|        |                               | -           |          |            |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.003    | 0.0028     | NA         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.003    | 0.0033     | NA         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.003    | 0.0024     | NA         |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.003    | 0.0034     | NA         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.003    | 0.0017     | NA         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.003    | 0.0030     | NA         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.003    | 0.0022     | NA         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.003    | 0.0019     | NA         |
|        |                               |             |          |            |            |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0109     | 109        |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 0.01     | 0.0116     | 116        |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0092     | 92         |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 0.01     | 0.0094     | 94         |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0102     | 102        |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 0.01     | 0.0107     | 107        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0115     | 115        |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 0.01     | 0.0119     | 119        |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0079     | 79         |
| 16401  | Peppers                       | 3-Dec-2004  | 0.01     | 0.0086     | 86         |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0113     | 113        |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 0.01     | 0.0097     | 97         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0097     | 97         |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 0.01     | 0.0099     | 99         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0096     | 96         |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 0.01     | 0.0096     | 96         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0091     | 91         |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 0.01     | 0.0089     | 89         |

Table 2. (Cont.) Recovery of XDE-175-N-formyl-L from Wet Crops

| Sample |                               | Date of     | XDE-175- | XDE-175-N-formyl-L |            |  |
|--------|-------------------------------|-------------|----------|--------------------|------------|--|
| Name   | Matrix                        | Analysis    | Added    | Found              | % Recovery |  |
|        |                               |             |          |                    |            |  |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 1.11               | 111        |  |
| 10505  | Broccoli Flower Head and Stem | 3-Dec-2004  | 1.0      | 1.04               | 104        |  |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.91               | 91         |  |
| 13155  | Grape Whole Fruit             | 3-Dec-2004  | 1.0      | 0.92               | 92         |  |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 0.99               | 99         |  |
| 4301   | Onion sweet yellow            | 3-Dec-2004  | 1.0      | 1.00               | 100        |  |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 1.02               | 102        |  |
| 16401  | Peppers                       | 3-Dec-2004  | 1.0      | 0.99               | 99         |  |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 0.98               | 98         |  |
| 99301  | Cabbage Whole Head            | 3-Dec-2004  | 1.0      | 0.96               | 96         |  |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 1.01               | 101        |  |
| 13210  | Tomato Whole Fruit            | 3-Dec-2004  | 1.0      | 1.02               | 102        |  |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 0.98               | 98         |  |
| 15812  | Succulent Green Bean          | 7-Dec-2004  | 1.0      | 0.96               | 96         |  |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 0.97               | 97         |  |
| 15822  | Leek Whole Plant              | 7-Dec-2004  | 1.0      | 0.96               | 96         |  |
|        |                               |             |          |                    |            |  |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 9.6                | 96         |  |
| 24801  | Lettuce Whole Leaf            | 3-Dec-2004  | 10.0     | 9.5                | 95         |  |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 9.9                | 99         |  |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.2                | 82         |  |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.1                | 81         |  |
| 24801  | Lettuce Whole Leaf            | 25-Apr-2005 | 10.0     | 8.6                | 86         |  |

<sup>&</sup>lt;sup>a</sup> The date of analysis represents the date the samples were extracted.

All calculations were performed using Microsoft Excel 2002 with full precision. Recovery values corrected for control value where appropriate.

c Not Applicable.

d Not Detected.

Samples were fortified at the method's proposed limit of detection (0.003  $\mu$ g/g). Values are reported with a lower degree of confidence than values above the limit of quantitation.

Table 3. Recovery of XDE-175-J from Dry Crops

| Sample  |                    | Date of               | <u>XDE-175-J</u> |              |                         |
|---------|--------------------|-----------------------|------------------|--------------|-------------------------|
| Name    | Matrix             | Analysis <sup>a</sup> | Added            | Found        | % Recovery <sup>b</sup> |
|         |                    |                       |                  |              |                         |
| 943     | Barley Forage      | 2-Dec-2004            | $NA^c$           | $ND^d$       | NA                      |
| 923     | Barley Grain       | 2-Dec-2004            | NA               | ND           | NA                      |
| 19302   | Barley Straw       | 2-Dec-2004            | NA               | ND           | NA                      |
| 834     | Corn, Field Forage | 2-Dec-2004            | NA               | ND           | NA                      |
| 844     | Corn, Field Grain  | 2-Dec-2004            | NA               | ND           | NA                      |
| 824     | Corn, Field Stover | 2-Dec-2004            | NA               | ND           | NA                      |
| 14250   | Grass Forage       | 2-Dec-2004            | NA               | ND           | NA                      |
| 782     | Wheat Forage       | 2-Dec-2004            | NA               | ND           | NA                      |
| 762     | Wheat Grain        | 2-Dec-2004            | NA               | ND           | NA                      |
| 777     | Wheat Straw        | 2-Dec-2004            | NA               | ND           | NA                      |
|         |                    |                       |                  |              |                         |
| 943     | Barley Forage      | 2-Dec-2004            | 0.003            | $0.0027^{e}$ | NA                      |
| 824     | Corn, Field Stover | 2-Dec-2004            | 0.003            | 0.0024       | NA                      |
| 14250   | Grass Forage       | 2-Dec-2004            | 0.003            | 0.0025       | NA                      |
| 762     | Wheat Grain        | 2-Dec-2004            | 0.003            | 0.0026       | NA                      |
| , , , _ |                    |                       | ******           | ******       |                         |
| 943     | Barley Forage      | 2-Dec-2004            | 0.010            | 0.0083       | 83                      |
| 943     | Barley Forage      | 2-Dec-2004            | 0.010            | 0.0090       | 90                      |
| 923     | Barley Grain       | 2-Dec-2004            | 0.010            | 0.0085       | 85                      |
| 923     | Barley Grain       | 2-Dec-2004            | 0.010            | 0.0083       | 83                      |
| 19302   | Barley Straw       | 2-Dec-2004            | 0.01             | 0.0082       | 82                      |
| 19302   | Barley Straw       | 2-Dec-2004            | 0.01             | 0.0089       | 89                      |
| 834     | Corn, Field Forage | 2-Dec-2004            | 0.01             | 0.0081       | 81                      |
| 834     | Corn, Field Forage | 2-Dec-2004            | 0.01             | 0.0089       | 89                      |
| 844     | Corn, Field Grain  | 2-Dec-2004            | 0.01             | 0.0084       | 84                      |
| 844     | Corn, Field Grain  | 2-Dec-2004            | 0.01             | 0.0088       | 88                      |
| 824     | Corn, Field Stover | 2-Dec-2004            | 0.01             | 0.0089       | 89                      |
| 824     | Corn, Field Stover | 2-Dec-2004            | 0.01             | 0.0082       | 82                      |
| 14250   | Grass Forage       | 2-Dec-2004            | 0.01             | 0.0084       | 84                      |
| 14250   | Grass Forage       | 2-Dec-2004            | 0.01             | 0.0086       | 86                      |
| 782     | Wheat Forage       | 2-Dec-2004            | 0.01             | 0.0087       | 87                      |
| 782     | Wheat Forage       | 2-Dec-2004            | 0.01             | 0.0092       | 92                      |
| 762     | Wheat Grain        | 2-Dec-2004            | 0.01             | 0.0105       | 105                     |
| 762     | Wheat Grain        | 2-Dec-2004            | 0.01             | 0.0090       | 90                      |
| 777     | Wheat Straw        | 2-Dec-2004            | 0.01             | 0.0091       | 91                      |
| 777     | Wheat Straw        | 2-Dec-2004            | 0.01             | 0.0089       | 89                      |

Table 3. (Cont.) Recovery of XDE-175-J from Dry Crops

| Sample |                    | Date of     | XDE   | E-175-J |            |
|--------|--------------------|-------------|-------|---------|------------|
| Name   | Matrix             | Analysis    | Added | Found   | % Recovery |
| 2.42   |                    | • • • • • • |       | 0.04    | 0.4        |
| 943    | Barley Forage      | 2-Dec-2004  | 1.0   | 0.91    | 91         |
| 943    | Barley Forage      | 2-Dec-2004  | 1.0   | 0.89    | 89         |
| 923    | Barley Grain       | 2-Dec-2004  | 1.0   | 0.89    | 89         |
| 923    | Barley Grain       | 2-Dec-2004  | 1.0   | 0.91    | 91         |
| 19302  | Barley Straw       | 2-Dec-2004  | 1.0   | 0.85    | 85         |
| 19302  | Barley Straw       | 2-Dec-2004  | 1.0   | 0.86    | 86         |
| 834    | Corn, Field Forage | 2-Dec-2004  | 1.0   | 0.82    | 82         |
| 834    | Corn, Field Forage | 2-Dec-2004  | 1.0   | 0.82    | 82         |
| 844    | Corn, Field Grain  | 2-Dec-2004  | 1.0   | 0.82    | 82         |
| 844    | Corn, Field Grain  | 2-Dec-2004  | 1.0   | 0.83    | 83         |
| 824    | Corn, Field Stover | 2-Dec-2004  | 1.0   | 0.85    | 85         |
| 824    | Corn, Field Stover | 2-Dec-2004  | 1.0   | 0.81    | 81         |
| 14250  | Grass Forage       | 2-Dec-2004  | 1.0   | 0.86    | 86         |
| 14250  | Grass Forage       | 2-Dec-2004  | 1.0   | 0.96    | 96         |
| 782    | Wheat Forage       | 2-Dec-2004  | 1.0   | 0.87    | 87         |
| 782    | Wheat Forage       | 2-Dec-2004  | 1.0   | 0.90    | 90         |
| 762    | Wheat Grain        | 2-Dec-2004  | 1.0   | 0.98    | 98         |
| 762    | Wheat Grain        | 2-Dec-2004  | 1.0   | 0.94    | 94         |
| 777    | Wheat Straw        | 2-Dec-2004  | 1.0   | 0.88    | 88         |
| 777    | Wheat Straw        | 2-Dec-2004  | 1.0   | 0.88    | 88         |

Table 3. (Cont.) Recovery of XDE-175-L from Dry Crops

| Sample  |                    | Date of    | XDE    | E-175-L |            |  |
|---------|--------------------|------------|--------|---------|------------|--|
| Name    | Matrix             | Analysis   | Added  | Found   | % Recovery |  |
|         |                    |            |        |         |            |  |
| 943     | Barley Forage      | 2-Dec-2004 | NA     | ND      | NA         |  |
| 923     | Barley Grain       | 2-Dec-2004 | NA     | ND      | NA         |  |
| 19302   | Barley Straw       | 2-Dec-2004 | NA     | ND      | NA         |  |
| 834     | Corn, Field Forage | 2-Dec-2004 | NA     | ND      | NA         |  |
| 844     | Corn, Field Grain  | 2-Dec-2004 | NA     | ND      | NA         |  |
| 824     | Corn, Field Stover | 2-Dec-2004 | NA     | ND      | NA         |  |
| 14250   | Grass Forage       | 2-Dec-2004 | NA     | ND      | NA         |  |
| 782     | Wheat Forage       | 2-Dec-2004 | NA     | ND      | NA         |  |
| 762     | Wheat Grain        | 2-Dec-2004 | NA     | ND      | NA         |  |
| 777     | Wheat Straw        | 2-Dec-2004 | NA     | ND      | NA         |  |
|         |                    |            |        |         |            |  |
| 943     | Barley Forage      | 2-Dec-2004 | 0.003  | 0.0029  | NA         |  |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.003  | 0.0029  | NA         |  |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.003  | 0.0031  | NA         |  |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.003  | 0.0026  | NA         |  |
| , , , _ |                    |            | ****** | ******  |            |  |
| 943     | Barley Forage      | 2-Dec-2004 | 0.01   | 0.0095  | 95         |  |
| 943     | Barley Forage      | 2-Dec-2004 | 0.01   | 0.0108  | 108        |  |
| 923     | Barley Grain       | 2-Dec-2004 | 0.01   | 0.0105  | 105        |  |
| 923     | Barley Grain       | 2-Dec-2004 | 0.01   | 0.0107  | 107        |  |
| 19302   | Barley Straw       | 2-Dec-2004 | 0.01   | 0.0103  | 103        |  |
| 19302   | Barley Straw       | 2-Dec-2004 | 0.01   | 0.0110  | 110        |  |
| 834     | Corn, Field Forage | 2-Dec-2004 | 0.01   | 0.0106  | 106        |  |
| 834     | Corn, Field Forage | 2-Dec-2004 | 0.01   | 0.0105  | 105        |  |
| 844     | Corn, Field Grain  | 2-Dec-2004 | 0.01   | 0.0094  | 94         |  |
| 844     | Corn, Field Grain  | 2-Dec-2004 | 0.01   | 0.0106  | 106        |  |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.01   | 0.0099  | 99         |  |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.01   | 0.0114  | 114        |  |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.01   | 0.0099  | 99         |  |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.01   | 0.0094  | 94         |  |
| 782     | Wheat Forage       | 2-Dec-2004 | 0.01   | 0.0099  | 99         |  |
| 782     | Wheat Forage       | 2-Dec-2004 | 0.01   | 0.0105  | 105        |  |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.01   | 0.0097  | 97         |  |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.01   | 0.0096  | 96         |  |
| 777     | Wheat Straw        | 2-Dec-2004 | 0.01   | 0.0099  | 99         |  |
| 777     | Wheat Straw        | 2-Dec-2004 | 0.01   | 0.0104  | 104        |  |

Table 3. (Cont.) Recovery of XDE-175-L from Dry Crops

| Sample |                    | Date of    | XDE   | E-175-L |            |
|--------|--------------------|------------|-------|---------|------------|
| Name   | Matrix             | Analysis   | Added | Found   | % Recovery |
|        |                    |            |       |         |            |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0   | 1.00    | 100        |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0   | 0.93    | 93         |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0   | 1.13    | 113        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0   | 1.14    | 114        |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0   | 0.98    | 98         |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0   | 1.02    | 102        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0   | 1.01    | 101        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0   | 1.01    | 101        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0   | 1.08    | 108        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0   | 1.08    | 108        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0   | 1.04    | 104        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0   | 1.04    | 104        |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0   | 0.95    | 95         |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0   | 0.95    | 95         |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0   | 0.92    | 92         |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0   | 0.95    | 95         |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0   | 1.00    | 100        |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0   | 1.03    | 103        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0   | 1.01    | 101        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0   | 1.11    | 111        |

Table 3. (Cont.) Recovery of XDE-175-N-demethyl-J from Dry Crops

| Sample  |                    | Date of    | XDE-175- | N-demethyl- | <u>J</u>   |
|---------|--------------------|------------|----------|-------------|------------|
| Name    | Matrix             | Analysis   | Added    | Found       | % Recovery |
|         |                    |            |          |             |            |
| 943     | Barley Forage      | 2-Dec-2004 | NA       | ND          | NA         |
| 923     | Barley Grain       | 2-Dec-2004 | NA       | ND          | NA         |
| 19302   | Barley Straw       | 2-Dec-2004 | NA       | ND          | NA         |
| 834     | Corn, Field Forage | 2-Dec-2004 | NA       | ND          | NA         |
| 844     | Corn, Field Grain  | 2-Dec-2004 | NA       | ND          | NA         |
| 824     | Corn, Field Stover | 2-Dec-2004 | NA       | ND          | NA         |
| 14250   | Grass Forage       | 2-Dec-2004 | NA       | ND          | NA         |
| 782     | Wheat Forage       | 2-Dec-2004 | NA       | ND          | NA         |
| 762     | Wheat Grain        | 2-Dec-2004 | NA       | ND          | NA         |
| 777     | Wheat Straw        | 2-Dec-2004 | NA       | ND          | NA         |
|         |                    |            |          |             |            |
| 943     | Barley Forage      | 2-Dec-2004 | 0.003    | 0.0031      | NA         |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.003    | 0.0029      | NA         |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.003    | 0.0031      | NA         |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.003    | 0.0028      | NA         |
| , , , _ |                    |            | ******   | *****       |            |
| 943     | Barley Forage      | 2-Dec-2004 | 0.01     | 0.0096      | 96         |
| 943     | Barley Forage      | 2-Dec-2004 | 0.01     | 0.0099      | 99         |
| 923     | Barley Grain       | 2-Dec-2004 | 0.01     | 0.0092      | 92         |
| 923     | Barley Grain       | 2-Dec-2004 | 0.01     | 0.0104      | 104        |
| 19302   | Barley Straw       | 2-Dec-2004 | 0.01     | 0.0096      | 96         |
| 19302   | Barley Straw       | 2-Dec-2004 | 0.01     | 0.0105      | 105        |
| 834     | Corn, Field Forage | 2-Dec-2004 | 0.01     | 0.0098      | 98         |
| 834     | Corn, Field Forage | 2-Dec-2004 | 0.01     | 0.0104      | 104        |
| 844     | Corn, Field Grain  | 2-Dec-2004 | 0.01     | 0.0105      | 105        |
| 844     | Corn, Field Grain  | 2-Dec-2004 | 0.01     | 0.0114      | 114        |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.01     | 0.0105      | 105        |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.01     | 0.0110      | 110        |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.01     | 0.0103      | 103        |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.01     | 0.0098      | 98         |
| 782     | Wheat Forage       | 2-Dec-2004 | 0.01     | 0.0096      | 96         |
| 782     | Wheat Forage       | 2-Dec-2004 | 0.01     | 0.0102      | 102        |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.01     | 0.0099      | 99         |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.01     | 0.0104      | 104        |
| 777     | Wheat Straw        | 2-Dec-2004 | 0.01     | 0.0104      | 104        |
| 777     | Wheat Straw        | 2-Dec-2004 | 0.01     | 0.0103      | 103        |

Table 3. (Cont.) Recovery of XDE-175-N-demethyl-J from Dry Crops

| Sample |                    | Date of    | XDE-175- | N-demethyl- | <u>J</u>   |
|--------|--------------------|------------|----------|-------------|------------|
| Name   | Matrix             | Analysis   | Added    | Found       | % Recovery |
|        |                    |            |          |             |            |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.06        | 106        |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.04        | 104        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 1.04        | 104        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 1.02        | 102        |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 0.99        | 99         |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 1.02        | 102        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 0.95        | 95         |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 1.00        | 100        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 1.07        | 107        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 1.14        | 114        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 1.02        | 102        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 1.03        | 103        |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 1.01        | 101        |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 1.04        | 104        |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 0.97        | 97         |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 0.99        | 99         |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 1.01        | 101        |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 1.02        | 102        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 1.01        | 101        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 1.03        | 103        |

Table 3. (Cont.) Recovery of XDE-175-N-demethyl-L from Dry Crops

| Sample  |                    | Date of    | XDE-175- | N-demethyl- | <u>L</u>   |
|---------|--------------------|------------|----------|-------------|------------|
| Name    | Matrix             | Analysis   | Added    | Found       | % Recovery |
|         |                    |            |          |             |            |
| 943     | Barley Forage      | 2-Dec-2004 | NA       | 0.0001      | NA         |
| 923     | Barley Grain       | 2-Dec-2004 | NA       | 0.0001      | NA         |
| 19302   | Barley Straw       | 2-Dec-2004 | NA       | 0.0002      | NA         |
| 834     | Corn, Field Forage | 2-Dec-2004 | NA       | ND          | NA         |
| 844     | Corn, Field Grain  | 2-Dec-2004 | NA       | ND          | NA         |
| 824     | Corn, Field Stover | 2-Dec-2004 | NA       | ND          | NA         |
| 14250   | Grass Forage       | 2-Dec-2004 | NA       | ND          | NA         |
| 782     | Wheat Forage       | 2-Dec-2004 | NA       | 0.0000      | NA         |
| 762     | Wheat Grain        | 2-Dec-2004 | NA       | 0.0001      | NA         |
| 777     | Wheat Straw        | 2-Dec-2004 | NA       | ND          | NA         |
|         |                    |            |          |             |            |
| 943     | Barley Forage      | 2-Dec-2004 | 0.003    | 0.0032      | NA         |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.003    | 0.0031      | NA         |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.003    | 0.0032      | NA         |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.003    | 0.0032      | NA         |
| , , , _ |                    |            | ******   |             |            |
| 943     | Barley Forage      | 2-Dec-2004 | 0.01     | 0.0102      | 102        |
| 943     | Barley Forage      | 2-Dec-2004 | 0.01     | 0.0103      | 103        |
| 923     | Barley Grain       | 2-Dec-2004 | 0.01     | 0.0107      | 107        |
| 923     | Barley Grain       | 2-Dec-2004 | 0.01     | 0.0100      | 100        |
| 19302   | Barley Straw       | 2-Dec-2004 | 0.01     | 0.0102      | 102        |
| 19302   | Barley Straw       | 2-Dec-2004 | 0.01     | 0.0110      | 110        |
| 834     | Corn, Field Forage | 2-Dec-2004 | 0.01     | 0.0110      | 110        |
| 834     | Corn, Field Forage | 2-Dec-2004 | 0.01     | 0.0101      | 101        |
| 844     | Corn, Field Grain  | 2-Dec-2004 | 0.01     | 0.0100      | 100        |
| 844     | Corn, Field Grain  | 2-Dec-2004 | 0.01     | 0.0114      | 114        |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.01     | 0.0111      | 111        |
| 824     | Corn, Field Stover | 2-Dec-2004 | 0.01     | 0.0102      | 102        |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.01     | 0.0100      | 100        |
| 14250   | Grass Forage       | 2-Dec-2004 | 0.01     | 0.0102      | 102        |
| 782     | Wheat Forage       | 2-Dec-2004 | 0.01     | 0.0099      | 99         |
| 782     | Wheat Forage       | 2-Dec-2004 | 0.01     | 0.0102      | 102        |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.01     | 0.0107      | 107        |
| 762     | Wheat Grain        | 2-Dec-2004 | 0.01     | 0.0109      | 109        |
| 777     | Wheat Straw        | 2-Dec-2004 | 0.01     | 0.0111      | 111        |
| 777     | Wheat Straw        | 2-Dec-2004 | 0.01     | 0.0105      | 105        |

Table 3. (Cont.) Recovery of XDE-175-N-demethyl-L from Dry Crops

| Sample |                    | Date of    | XDE-175- | N-demethyl- | <u>-L</u>  |
|--------|--------------------|------------|----------|-------------|------------|
| Name   | Matrix             | Analysis   | Added    | Found       | % Recovery |
|        |                    |            |          |             |            |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.05        | 105        |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.07        | 107        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 1.09        | 109        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 1.09        | 109        |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 1.03        | 103        |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 1.00        | 100        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 1.01        | 101        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 1.02        | 102        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 1.04        | 104        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 1.10        | 110        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 1.03        | 103        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 1.06        | 106        |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 1.00        | 100        |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 1.06        | 106        |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 0.96        | 96         |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 1.03        | 103        |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 1.02        | 102        |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 1.09        | 109        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 1.00        | 100        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 1.08        | 108        |

Table 3. (Cont.) Recovery of XDE-175-N-formyl-J from Dry Crops

| Sample |                    | Date of       | XDE-175- | N-formyl-J |            |
|--------|--------------------|---------------|----------|------------|------------|
| Name   | Matrix             | Analysis      | Added    | Found      | % Recovery |
|        |                    |               |          |            |            |
| 943    | Barley Forage      | 2-Dec-2004    | NA       | 0.0004     | NA         |
| 923    | Barley Grain       | 2-Dec-2004    | NA       | ND         | NA         |
| 19302  | Barley Straw       | 2-Dec-2004    | NA       | ND         | NA         |
| 834    | Corn, Field Forage | 2-Dec-2004    | NA       | ND         | NA         |
| 844    | Corn, Field Grain  | 2-Dec-2004    | NA       | ND         | NA         |
| 824    | Corn, Field Stover | 2-Dec-2004    | NA       | ND         | NA         |
| 14250  | Grass Forage       | 2-Dec-2004    | NA       | ND         | NA         |
| 782    | Wheat Forage       | 2-Dec-2004    | NA       | ND         | NA         |
| 762    | Wheat Grain        | 2-Dec-2004    | NA       | ND         | NA         |
| 777    | Wheat Straw        | 2-Dec-2004    | NA       | ND         | NA         |
|        |                    |               |          |            |            |
| 943    | Barley Forage      | 2-Dec-2004    | 0.003    | 0.0025     | NA         |
| 824    | Corn, Field Stover | 2-Dec-2004    | 0.003    | 0.0035     | NA         |
| 14250  | Grass Forage       | 2-Dec-2004    | 0.003    | 0.0030     | NA         |
| 762    | Wheat Grain        | 2-Dec-2004    | 0.003    | 0.0035     | NA         |
| , 02   | THOMAS COMMIT      | 2 2 00 2 00 . | 0.002    | 0.0055     | - 112      |
| 943    | Barley Forage      | 2-Dec-2004    | 0.01     | 0.0100     | 100        |
| 943    | Barley Forage      | 2-Dec-2004    | 0.01     | 0.0099     | 99         |
| 923    | Barley Grain       | 2-Dec-2004    | 0.01     | 0.0107     | 107        |
| 923    | Barley Grain       | 2-Dec-2004    | 0.01     | 0.0113     | 113        |
| 19302  | Barley Straw       | 2-Dec-2004    | 0.01     | 0.0108     | 108        |
| 19302  | Barley Straw       | 2-Dec-2004    | 0.01     | 0.0101     | 101        |
| 834    | Corn, Field Forage | 2-Dec-2004    | 0.01     | 0.0106     | 106        |
| 834    | Corn, Field Forage | 2-Dec-2004    | 0.01     | 0.0094     | 94         |
| 844    | Corn, Field Grain  | 2-Dec-2004    | 0.01     | 0.0077     | 77         |
| 844    | Corn, Field Grain  | 2-Dec-2004    | 0.01     | 0.0108     | 108        |
| 824    | Corn, Field Stover | 2-Dec-2004    | 0.01     | 0.0118     | 118        |
| 824    | Corn, Field Stover | 2-Dec-2004    | 0.01     | 0.0118     | 118        |
| 14250  | Grass Forage       | 2-Dec-2004    | 0.01     | 0.0107     | 107        |
| 14250  | Grass Forage       | 2-Dec-2004    | 0.01     | 0.0088     | 88         |
| 782    | Wheat Forage       | 2-Dec-2004    | 0.01     | 0.0088     | 88         |
| 782    | Wheat Forage       | 2-Dec-2004    | 0.01     | 0.0110     | 110        |
| 762    | Wheat Grain        | 2-Dec-2004    | 0.01     | 0.0122     | 122        |
| 762    | Wheat Grain        | 2-Dec-2004    | 0.01     | 0.0131     | 131        |
| 777    | Wheat Straw        | 2-Dec-2004    | 0.01     | 0.0117     | 117        |
| 777    | Wheat Straw        | 2-Dec-2004    | 0.01     | 0.0093     | 93         |

Table 3. (Cont.) Recovery of XDE-175-N-formyl-J from Dry Crops

| Sample |                    | Date of    | XDE-175- | N-formyl-J |            |
|--------|--------------------|------------|----------|------------|------------|
| Name   | Matrix             | Analysis   | Added    | Found      | % Recovery |
|        |                    |            |          |            |            |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.13       | 113        |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.10       | 110        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 1.16       | 116        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 1.15       | 115        |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 1.03       | 103        |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 1.04       | 104        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 1.11       | 111        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 1.07       | 107        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 1.09       | 109        |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 1.13       | 113        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 1.13       | 113        |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 1.10       | 110        |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 1.07       | 107        |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 1.10       | 110        |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 0.97       | 97         |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 1.06       | 106        |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 1.21       | 121        |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 1.21       | 121        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 1.10       | 110        |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 1.11       | 111        |

Table 3. (Cont.) Recovery of XDE-175-N-formyl-L from Dry Crops

| Sample |                    | Date of    | XDE-175- | <i>N</i> -formyl-L |            |
|--------|--------------------|------------|----------|--------------------|------------|
| Name   | Matrix             | Analysis   | Added    | Found              | % Recovery |
|        |                    |            |          |                    |            |
| 943    | Barley Forage      | 2-Dec-2004 | NA       | ND                 | NA         |
| 923    | Barley Grain       | 2-Dec-2004 | NA       | ND                 | NA         |
| 19302  | Barley Straw       | 2-Dec-2004 | NA       | ND                 | NA         |
| 834    | Corn, Field Forage | 2-Dec-2004 | NA       | ND                 | NA         |
| 844    | Corn, Field Grain  | 2-Dec-2004 | NA       | ND                 | NA         |
| 824    | Corn, Field Stover | 2-Dec-2004 | NA       | ND                 | NA         |
| 14250  | Grass Forage       | 2-Dec-2004 | NA       | ND                 | NA         |
| 782    | Wheat Forage       | 2-Dec-2004 | NA       | ND                 | NA         |
| 762    | Wheat Grain        | 2-Dec-2004 | NA       | ND                 | NA         |
| 777    | Wheat Straw        | 2-Dec-2004 | NA       | ND                 | NA         |
|        |                    |            |          |                    |            |
| 943    | Barley Forage      | 2-Dec-2004 | 0.003    | 0.0030             | NA         |
| 824    | Corn, Field Stover | 2-Dec-2004 | 0.003    | 0.0041             | NA         |
| 14250  | Grass Forage       | 2-Dec-2004 | 0.003    | 0.0029             | NA         |
| 762    | Wheat Grain        | 2-Dec-2004 | 0.003    | 0.0034             | NA         |
|        |                    |            |          |                    |            |
| 943    | Barley Forage      | 2-Dec-2004 | 0.01     | 0.0087             | 87         |
| 943    | Barley Forage      | 2-Dec-2004 | 0.01     | 0.0115             | 115        |
| 923    | Barley Grain       | 2-Dec-2004 | 0.01     | 0.0088             | 88         |
| 923    | Barley Grain       | 2-Dec-2004 | 0.01     | 0.0079             | 79         |
| 19302  | Barley Straw       | 2-Dec-2004 | 0.01     | 0.0108             | 108        |
| 19302  | Barley Straw       | 2-Dec-2004 | 0.01     | 0.0102             | 102        |
| 834    | Corn, Field Forage | 2-Dec-2004 | 0.01     | 0.0082             | 82         |
| 834    | Corn, Field Forage | 2-Dec-2004 | 0.01     | 0.0090             | 90         |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 0.01     | 0.0090             | 90         |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 0.01     | 0.0088             | 88         |
| 824    | Corn, Field Stover | 2-Dec-2004 | 0.01     | 0.0092             | 92         |
| 824    | Corn, Field Stover | 2-Dec-2004 | 0.01     | 0.0104             | 104        |
| 14250  | Grass Forage       | 2-Dec-2004 | 0.01     | 0.0095             | 95         |
| 14250  | Grass Forage       | 2-Dec-2004 | 0.01     | 0.0098             | 98         |
| 782    | Wheat Forage       | 2-Dec-2004 | 0.01     | 0.0095             | 95         |
| 782    | Wheat Forage       | 2-Dec-2004 | 0.01     | 0.0119             | 119        |
| 762    | Wheat Grain        | 2-Dec-2004 | 0.01     | 0.0095             | 95         |
| 762    | Wheat Grain        | 2-Dec-2004 | 0.01     | 0.0078             | 78         |
| 777    | Wheat Straw        | 2-Dec-2004 | 0.01     | 0.0107             | 107        |
| 777    | Wheat Straw        | 2-Dec-2004 | 0.01     | 0.0084             | 84         |

Table 3. (Cont.) Recovery of XDE-175-N-formyl-L from Dry Crops

| Sample |                    | Date of    | XDE-175- | N-formyl-L |            |
|--------|--------------------|------------|----------|------------|------------|
| Name   | Matrix             | Analysis   | Added    | Found      | % Recovery |
|        |                    |            |          |            |            |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.00       | 100        |
| 943    | Barley Forage      | 2-Dec-2004 | 1.0      | 1.03       | 103        |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 0.80       | 80         |
| 923    | Barley Grain       | 2-Dec-2004 | 1.0      | 0.90       | 90         |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 0.90       | 90         |
| 19302  | Barley Straw       | 2-Dec-2004 | 1.0      | 0.94       | 94         |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 0.89       | 89         |
| 834    | Corn, Field Forage | 2-Dec-2004 | 1.0      | 0.85       | 85         |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 0.78       | 78         |
| 844    | Corn, Field Grain  | 2-Dec-2004 | 1.0      | 0.83       | 83         |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 0.91       | 91         |
| 824    | Corn, Field Stover | 2-Dec-2004 | 1.0      | 0.90       | 90         |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 0.98       | 98         |
| 14250  | Grass Forage       | 2-Dec-2004 | 1.0      | 0.97       | 97         |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 1.09       | 109        |
| 782    | Wheat Forage       | 2-Dec-2004 | 1.0      | 1.12       | 112        |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 0.77       | 77         |
| 762    | Wheat Grain        | 2-Dec-2004 | 1.0      | 0.78       | 78         |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 0.99       | 99         |
| 777    | Wheat Straw        | 2-Dec-2004 | 1.0      | 1.17       | 117        |

<sup>&</sup>lt;sup>a</sup> The date of analysis represents the date the samples were extracted.

All calculations were performed using Microsoft Excel 2002 with full precision. Recovery values corrected for control value where appropriate.

c Not Applicable.

d Not Detected.

Samples were fortified at the method's proposed limit of detection (0.003  $\mu$ g/g). Values are reported with a lower degree of confidence than values above the limit of quantitation.

Table 4. Recovery of XDE-175-J from Acidic Crops

| Sample |                          | Date of               | XDE    | -175-J              |                         |
|--------|--------------------------|-----------------------|--------|---------------------|-------------------------|
| Name   | Matrix                   | Analysis <sup>a</sup> | Added  | Found               | % Recovery <sup>b</sup> |
|        |                          |                       |        |                     |                         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004            | $NA^c$ | $ND^d$              | NA                      |
| 1355   | Orange Peel              | 6-Dec-2004            | NA     | ND                  | NA                      |
| 1363   | Orange Pulp              | 6-Dec-2004            | NA     | ND                  | NA                      |
| 1373   | Apple Whole Fruit        | 7-Dec-2004            | NA     | ND                  | NA                      |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004            | NA     | ND                  | NA                      |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004            | NA     | ND                  | NA                      |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004            | NA     | ND                  | NA                      |
| 15842  | Cherry Without Seed      | 7-Dec-2004            | NA     | 0.0003              | NA                      |
| 15862  | Pear Whole Fruit         | 7-Dec-2004            | NA     | ND                  | NA                      |
|        |                          |                       |        |                     |                         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004            | 0.003  | 0.0031 <sup>e</sup> | NA                      |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004            | 0.003  | 0.0028              | NA                      |
| 15842  | Cherry Without Seed      | 7-Dec-2004            | 0.003  | 0.0031              | NA                      |
|        |                          |                       |        |                     |                         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004            | 0.01   | 0.0099              | 99                      |
| 1345   | Orange Whole Fruit       | 6-Dec-2004            | 0.01   | 0.0103              | 103                     |
| 1355   | Orange Peel              | 6-Dec-2004            | 0.01   | 0.0093              | 93                      |
| 1355   | Orange Peel              | 6-Dec-2004            | 0.01   | 0.0098              | 98                      |
| 1363   | Orange Pulp              | 6-Dec-2004            | 0.01   | 0.0098              | 98                      |
| 1363   | Orange Pulp              | 6-Dec-2004            | 0.01   | 0.0096              | 96                      |
| 1373   | Apple Whole Fruit        | 7-Dec-2004            | 0.01   | 0.0094              | 94                      |
| 1373   | Apple Whole Fruit        | 7-Dec-2004            | 0.01   | 0.0099              | 99                      |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004            | 0.01   | 0.0109              | 109                     |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004            | 0.01   | 0.0115              | 115                     |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004            | 0.01   | 0.0101              | 101                     |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004            | 0.01   | 0.0106              | 106                     |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004            | 0.01   | 0.0110              | 110                     |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004            | 0.01   | 0.0105              | 105                     |
| 15842  | Cherry Without Seed      | 7-Dec-2004            | 0.01   | 0.0106              | 106                     |
| 15842  | Cherry Without Seed      | 7-Dec-2004            | 0.01   | 0.0107              | 107                     |
| 15862  | Pear Whole Fruit         | 7-Dec-2004            | 0.01   | 0.0101              | 101                     |

Table 4. (Cont.) Recovery of XDE-175-J from Acidic Crops

| Sample |                          | Date of    | XDE-  | -175-J |            |
|--------|--------------------------|------------|-------|--------|------------|
| Name   | Matrix                   | Analysis   | Added | Found  | % Recovery |
|        |                          |            |       |        |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0   | 0.95   | 95         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0   | 1.01   | 101        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0   | 0.97   | 97         |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0   | 0.94   | 94         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0   | 0.98   | 98         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0   | 1.04   | 104        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0   | 1.03   | 103        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0   | 1.04   | 104        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0   | 1.02   | 102        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0   | 0.98   | 98         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0   | 1.01   | 101        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0   | 1.00   | 100        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0   | 1.05   | 105        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0   | 1.05   | 105        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0   | 1.05   | 105        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0   | 1.02   | 102        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0   | 1.02   | 102        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0   | 1.00   | 100        |

Table 4. (Cont.) Recovery of XDE-175-L from Acidic Crops

| Sample |                          | Date of    | XDE   | E-175-L |            |
|--------|--------------------------|------------|-------|---------|------------|
| Name   | Matrix                   | Analysis   | Added | Found   | % Recovery |
|        |                          |            |       |         |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | NA    | ND      | NA         |
| 1355   | Orange Peel              | 6-Dec-2004 | NA    | ND      | NA         |
| 1363   | Orange Pulp              | 6-Dec-2004 | NA    | ND      | NA         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | NA    | ND      | NA         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | NA    | ND      | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | NA    | ND      | NA         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | NA    | ND      | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | NA    | ND      | NA         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | NA    | ND      | NA         |
|        |                          |            |       |         |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.003 | 0.0032  | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.003 | 0.0031  | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.003 | 0.0033  | NA         |
|        |                          |            |       |         |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01  | 0.0106  | 106        |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01  | 0.0105  | 105        |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01  | 0.0101  | 101        |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01  | 0.0104  | 104        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01  | 0.0100  | 100        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01  | 0.0105  | 105        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01  | 0.0101  | 101        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01  | 0.0098  | 98         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01  | 0.0111  | 111        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01  | 0.0114  | 114        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01  | 0.0107  | 107        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01  | 0.0112  | 112        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01  | 0.0113  | 113        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01  | 0.0107  | 107        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01  | 0.0111  | 111        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01  | 0.0109  | 109        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 0.01  | 0.0101  | 101        |

Table 4. (Cont.) Recovery of XDE-175-L from Acidic Crops

| Sample |                          | Date of    | XDE   | E-175-L |            |
|--------|--------------------------|------------|-------|---------|------------|
| Name   | Matrix                   | Analysis   | Added | Found   | % Recovery |
|        |                          |            |       |         |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0   | 0.98    | 98         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0   | 1.02    | 102        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0   | 1.02    | 102        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0   | 0.99    | 99         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0   | 1.00    | 100        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0   | 1.03    | 103        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0   | 1.00    | 100        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0   | 1.04    | 104        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0   | 0.99    | 99         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0   | 0.96    | 96         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0   | 0.97    | 97         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0   | 0.97    | 97         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0   | 1.01    | 101        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0   | 0.97    | 97         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0   | 1.00    | 100        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0   | 1.03    | 103        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0   | 1.03    | 103        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0   | 0.92    | 92         |

Table 4. (Cont.) Recovery of XDE-175-N-demethyl-J from Acidic Crops

| Sample |                          | Date of    | XDE-175- | N-demethyl-J |            |
|--------|--------------------------|------------|----------|--------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found        | % Recovery |
|        |                          |            |          |              |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | NA       | 0.0000       | NA         |
| 1355   | Orange Peel              | 6-Dec-2004 | NA       | ND           | NA         |
| 1363   | Orange Pulp              | 6-Dec-2004 | NA       | ND           | NA         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | NA       | ND           | NA         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | NA       | 0.0001       | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | NA       | 0.0002       | NA         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | NA       | 0.0003       | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | NA       | 0.0004       | NA         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | NA       | ND           | NA         |
|        |                          |            |          |              |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.003    | 0.0029       | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.003    | 0.0027       | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.003    | 0.0030       | NA         |
|        |                          |            |          |              |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0104       | 104        |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0102       | 102        |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0098       | 98         |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0097       | 97         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0097       | 97         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0096       | 96         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0096       | 96         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0102       | 102        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0110       | 110        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0108       | 108        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0102       | 102        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0113       | 113        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0114       | 114        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0108       | 108        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0107       | 107        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0106       | 106        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 0.01     | 0.0103       | 103        |

Table 4. (Cont.) Recovery of XDE-175-N-demethyl-J from Acidic Crops

| Sample |                          | Date of    | XDE-175- | N-demethyl- | <u>.J</u>  |
|--------|--------------------------|------------|----------|-------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found       | % Recovery |
|        |                          |            |          |             |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 1.01        | 101        |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 1.04        | 104        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 0.99        | 99         |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 1.03        | 103        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 1.03        | 103        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 1.03        | 103        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 1.00        | 100        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 1.07        | 107        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 0.99        | 99         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 0.97        | 97         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 1.06        | 106        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 1.01        | 101        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 1.07        | 107        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 0.97        | 97         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 1.00        | 100        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 1.01        | 101        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 1.05        | 105        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 1.01        | 101        |

Table 4. (Cont.) Recovery of XDE-175-N-demethyl-L from Acidic Crops

| Sample |                          | Date of    | XDE-175- | -N-demethyl- | <u>L</u>   |
|--------|--------------------------|------------|----------|--------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found        | % Recovery |
|        |                          |            |          |              |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | NA       | ND           | NA         |
| 1355   | Orange Peel              | 6-Dec-2004 | NA       | 0.0004       | NA         |
| 1363   | Orange Pulp              | 6-Dec-2004 | NA       | 0.0004       | NA         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | NA       | 0.0002       | NA         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | NA       | 0.0002       | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | NA       | 0.0003       | NA         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | NA       | 0.0003       | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | NA       | 0.0003       | NA         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | NA       | ND           | NA         |
|        |                          |            |          |              |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.003    | 0.0031       | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.003    | 0.0027       | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.003    | 0.0030       | NA         |
|        |                          |            |          |              |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0108       | 108        |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0105       | 105        |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0092       | 92         |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0095       | 95         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0090       | 90         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0094       | 94         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0087       | 87         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0097       | 97         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0111       | 111        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0110       | 110        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0096       | 96         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0100       | 100        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0113       | 113        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0102       | 102        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0094       | 94         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0106       | 106        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 0.01     | 0.0102       | 102        |

Table 4. (Cont.) Recovery of XDE-175-N-demethyl-L from Acidic Crops

| Sample |                          | Date of    | XDE-175- | N-demethyl- | <u>-L</u>  |
|--------|--------------------------|------------|----------|-------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found       | % Recovery |
|        |                          |            |          |             |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 1.03        | 103        |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 1.01        | 101        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 0.96        | 96         |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 1.00        | 100        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 1.00        | 100        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 1.02        | 102        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 0.98        | 98         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 1.06        | 106        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 1.07        | 107        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 1.01        | 101        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 1.02        | 102        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 0.98        | 98         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 1.03        | 103        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 1.00        | 100        |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 0.98        | 98         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 1.02        | 102        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 1.02        | 102        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 0.96        | 96         |

Table 4. (Cont.) Recovery of XDE-175-N-formyl-J from Acidic Crops

| Sample |                          | Date of    | XDE-175- | N-formyl-J |            |
|--------|--------------------------|------------|----------|------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found      | % Recovery |
|        |                          |            |          |            |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | NA       | ND         | NA         |
| 1355   | Orange Peel              | 6-Dec-2004 | NA       | ND         | NA         |
| 1363   | Orange Pulp              | 6-Dec-2004 | NA       | ND         | NA         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | NA       | ND         | NA         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | NA       | ND         | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | NA       | ND         | NA         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | NA       | ND         | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | NA       | ND         | NA         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | NA       | ND         | NA         |
| -      |                          |            |          |            |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.003    | 0.0035     | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.003    | 0.0025     | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.003    | 0.0023     | NA         |
|        |                          |            |          |            |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0094     | 94         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0082     | 82         |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0109     | 109        |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0097     | 97         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0093     | 93         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0101     | 101        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0094     | 94         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0091     | 91         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0118     | 118        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0110     | 110        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0081     | 81         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0117     | 117        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0095     | 95         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0076     | 76         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0092     | 92         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0092     | 92         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 0.01     | 0.0106     | 106        |

Table 4. (Cont.) Recovery of XDE-175-N-formyl-J from Acidic Crops

| Sample |                          | Date of    | XDE-175- | N-formyl-J |            |
|--------|--------------------------|------------|----------|------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found      | % Recovery |
|        |                          |            |          |            |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 0.99       | 99         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 1.02       | 102        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 1.09       | 109        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 0.99       | 99         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 1.02       | 102        |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 1.01       | 101        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 1.02       | 102        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 1.06       | 106        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 1.15       | 115        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 1.18       | 118        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 1.06       | 106        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 1.05       | 105        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 1.04       | 104        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 0.94       | 94         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 0.95       | 95         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 0.98       | 98         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 1.02       | 102        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 1.00       | 100        |

Table 4. (Cont.) Recovery of XDE-175-N-formyl-L from Acidic Crops

| Sample |                          | Date of    | XDE-175- | N-formyl-L |            |
|--------|--------------------------|------------|----------|------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found      | % Recovery |
|        |                          |            |          |            |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | NA       | ND         | NA         |
| 1355   | Orange Peel              | 6-Dec-2004 | NA       | ND         | NA         |
| 1363   | Orange Pulp              | 6-Dec-2004 | NA       | ND         | NA         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | NA       | ND         | NA         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | NA       | ND         | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | NA       | ND         | NA         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | NA       | ND         | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | NA       | ND         | NA         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | NA       | ND         | NA         |
|        |                          |            |          |            |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.003    | 0.0027     | NA         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.003    | 0.0021     | NA         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.003    | 0.0022     | NA         |
|        |                          |            |          |            |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0091     | 91         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 0.01     | 0.0086     | 86         |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0107     | 107        |
| 1355   | Orange Peel              | 6-Dec-2004 | 0.01     | 0.0087     | 87         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0088     | 88         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 0.01     | 0.0086     | 86         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0090     | 90         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0094     | 94         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0096     | 96         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 0.01     | 0.0102     | 102        |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0088     | 88         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 0.01     | 0.0102     | 102        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0103     | 103        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 0.01     | 0.0087     | 87         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0098     | 98         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 0.01     | 0.0097     | 97         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 0.01     | 0.0089     | 89         |

Table 4. (Cont.) Recovery of XDE-175-N-formyl-L from Acidic Crops

| Sample |                          | Date of    | XDE-175- | <i>N</i> -formyl-L |            |
|--------|--------------------------|------------|----------|--------------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found              | % Recovery |
|        |                          |            |          |                    |            |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 0.97               | 97         |
| 1345   | Orange Whole Fruit       | 6-Dec-2004 | 1.0      | 0.98               | 98         |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 1.07               | 107        |
| 1355   | Orange Peel              | 6-Dec-2004 | 1.0      | 0.94               | 94         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 0.94               | 94         |
| 1363   | Orange Pulp              | 6-Dec-2004 | 1.0      | 1.00               | 100        |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 0.91               | 91         |
| 1373   | Apple Whole Fruit        | 7-Dec-2004 | 1.0      | 0.97               | 97         |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 1.02               | 102        |
| 20024  | Lemon Whole Fruit        | 7-Dec-2004 | 1.0      | 0.94               | 94         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 0.97               | 97         |
| 15832  | Peach Fruit Without Seed | 7-Dec-2004 | 1.0      | 0.93               | 93         |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 1.00               | 100        |
| 15852  | Plum Fruit Without Seed  | 7-Dec-2004 | 1.0      | 0.92               | 92         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 0.92               | 92         |
| 15842  | Cherry Without Seed      | 7-Dec-2004 | 1.0      | 0.94               | 94         |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 1.00               | 100        |
| 15862  | Pear Whole Fruit         | 7-Dec-2004 | 1.0      | 0.95               | 95         |

The date of analysis represents the date the samples were extracted.

All calculations were performed using Microsoft Excel 2002 with full precision. Recovery values corrected for control value where appropriate.

<sup>&</sup>lt;sup>c</sup> Not Applicable.

d Not Detected.

Samples were fortified at the method's proposed limit of detection (0.003  $\mu g/g$ ). Values are reported with a lower degree of confidence than values above the limit of quantitation.

Table 5. Recovery of XDE-175-J from Oily Crops

| Sample |                                      | Date of               | XDI      | E-175-J          |                         |
|--------|--------------------------------------|-----------------------|----------|------------------|-------------------------|
| Name   | Matrix                               | Analysis <sup>a</sup> | Added    | Found            | % Recovery <sup>b</sup> |
|        |                                      |                       |          |                  |                         |
| 13395  | Canola Seed                          | 6-Dec-2004            | $NA^{c}$ | 0.0004           | NA                      |
| 14794  | Olive Fruit Without Seed             | 6-Dec-2004            | NA       | 0.0004           | NA                      |
| 14188  | Olive Oil                            | 6-Dec-2004            | NA       | $ND^d$           | NA                      |
| 13377  | Soybean Grain                        | 6-Dec-2004            | NA       | ND               | NA                      |
| 46001  | Cotton Seed                          | 6-Dec-2004            | NA       | 0.0004           | NA                      |
|        |                                      |                       |          |                  |                         |
| 13395  | Canola Seed                          | 6-Dec-2004            | 0.003    | $0.0026^{\rm e}$ | NA                      |
| 14794  | Olive Fruit Without Seed             | 6-Dec-2004            | 0.003    | 0.0023           | NA                      |
| 14188  | Olive Oil                            | 6-Dec-2004            | 0.003    | 0.0030           | NA                      |
|        |                                      |                       |          |                  |                         |
| 13395  | Canola Seed                          | 6-Dec-2004            | 0.01     | 0.0089           | 89                      |
| 13395  | Canola Seed                          | 6-Dec-2004            | 0.01     | 0.0087           | 87                      |
| 14794  | Olive Fruit Without Seed             | 6-Dec-2004            | 0.01     | 0.0084           | 84                      |
| 14794  | Olive Fruit Without Seed             | 6-Dec-2004            | 0.01     | 0.0098           | 98                      |
| 14188  | Olive Oil                            | 6-Dec-2004            | 0.01     | 0.0098           | 98                      |
| 14188  | Olive Oil                            | 6-Dec-2004            | 0.01     | 0.0099           | 99                      |
| 13377  | Soybean Grain                        | 6-Dec-2004            | 0.01     | 0.0098           | 98                      |
| 13377  | Soybean Grain                        | 6-Dec-2004            | 0.01     | 0.0105           | 105                     |
| 46001  | Cotton Seed                          | 6-Dec-2004            | 0.01     | 0.0086           | 86                      |
| 46001  | Cotton Seed                          | 6-Dec-2004            | 0.01     | 0.0093           | 93                      |
| 12205  |                                      | ( D. 2004             | 1.0      | 0.02             | 02                      |
| 13395  | Canola Seed                          | 6-Dec-2004            | 1.0      | 0.93             | 93                      |
| 13395  | Canola Seed Olive Fruit Without Seed | 6-Dec-2004            | 1.0      | 0.89             | 89                      |
| 14794  |                                      | 6-Dec-2004            | 1.0      | 0.94             | 94                      |
| 14794  | Olive Fruit Without Seed             | 6-Dec-2004            | 1.0      | 0.99             | 99                      |
| 14188  | Olive Oil                            | 6-Dec-2004            | 1.0      | 1.00             | 100                     |
| 14188  | Olive Oil                            | 6-Dec-2004            | 1.0      | 1.02             | 102                     |
| 13377  | Soybean Grain                        | 6-Dec-2004            | 1.0      | 1.01             | 101                     |
| 13377  | Soybean Grain                        | 6-Dec-2004            | 1.0      | 1.00             | 100                     |
| 46001  | Cotton Seed                          | 6-Dec-2004            | 1.0      | 0.93             | 93                      |
| 46001  | Cotton Seed                          | 6-Dec-2004            | 1.0      | 0.92             | 92                      |

Table 5. (Cont.) Recovery of XDE-175-L from Oily Crops

| Sample |                          | Date of    | XDE   | E-175-L |            |
|--------|--------------------------|------------|-------|---------|------------|
| Name   | Matrix                   | Analysis   | Added | Found   | % Recovery |
|        |                          |            |       |         |            |
| 13395  | Canola Seed              | 6-Dec-2004 | NA    | ND      | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | NA    | 0.0008  | NA         |
| 14188  | Olive Oil                | 6-Dec-2004 | NA    | ND      | NA         |
| 13377  | Soybean Grain            | 6-Dec-2004 | NA    | ND      | NA         |
| 46001  | Cotton Seed              | 6-Dec-2004 | NA    | 0.0006  | NA         |
|        |                          |            |       |         |            |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.003 | 0.0031  | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.003 | 0.0025  | NA         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.003 | 0.0030  | NA         |
|        |                          |            |       |         |            |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.01  | 0.0103  | 103        |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.01  | 0.0105  | 105        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.01  | 0.0093  | 93         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.01  | 0.0097  | 97         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.01  | 0.0097  | 97         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.01  | 0.0099  | 99         |
| 13377  | Soybean Grain            | 6-Dec-2004 | 0.01  | 0.0106  | 106        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 0.01  | 0.0110  | 110        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 0.01  | 0.0090  | 90         |
| 46001  | Cotton Seed              | 6-Dec-2004 | 0.01  | 0.0094  | 94         |
|        |                          |            |       |         |            |
| 13395  | Canola Seed              | 6-Dec-2004 | 1.0   | 1.06    | 106        |
| 13395  | Canola Seed              | 6-Dec-2004 | 1.0   | 1.05    | 105        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 1.0   | 0.97    | 97         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 1.0   | 0.96    | 96         |
| 14188  | Olive Oil                | 6-Dec-2004 | 1.0   | 0.95    | 95         |
| 14188  | Olive Oil                | 6-Dec-2004 | 1.0   | 0.95    | 95         |
| 13377  | Soybean Grain            | 6-Dec-2004 | 1.0   | 1.03    | 103        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 1.0   | 1.07    | 107        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 1.0   | 1.03    | 103        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 1.0   | 1.03    | 103        |

Table 5. (Cont.) Recovery of XDE-175-N-demethyl-J from Oily Crops

| Sample |                          | Date of    | XDE-175- | N-demethyl-J |            |
|--------|--------------------------|------------|----------|--------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found        | % Recovery |
|        |                          |            |          |              |            |
| 13395  | Canola Seed              | 6-Dec-2004 | NA       | 0.0002       | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | NA       | 0.0005       | NA         |
| 14188  | Olive Oil                | 6-Dec-2004 | NA       | 0.0001       | NA         |
| 13377  | Soybean Grain            | 6-Dec-2004 | NA       | 0.0002       | NA         |
| 46001  | Cotton Seed              | 6-Dec-2004 | NA       | 0.0002       | NA         |
|        |                          |            |          |              |            |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.003    | 0.0026       | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.003    | 0.0022       | NA         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.003    | 0.0027       | NA         |
|        |                          |            |          |              |            |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.01     | 0.0100       | 100        |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.01     | 0.0100       | 100        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.01     | 0.0086       | 86         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.01     | 0.0090       | 90         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.01     | 0.0091       | 91         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.01     | 0.0098       | 98         |
| 13377  | Soybean Grain            | 6-Dec-2004 | 0.01     | 0.0101       | 101        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 0.01     | 0.0101       | 101        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 0.01     | 0.0096       | 96         |
| 46001  | Cotton Seed              | 6-Dec-2004 | 0.01     | 0.0105       | 105        |
| 12205  | C1- C1                   | ( D 2004   | 1.0      | 1.05         | 105        |
| 13395  | Canola Seed              | 6-Dec-2004 | 1.0      | 1.05         | 105        |
| 13395  | Canola Seed              | 6-Dec-2004 | 1.0      | 1.05         | 105        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 1.0      | 0.93         | 93         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 1.0      | 1.01         | 101        |
| 14188  | Olive Oil                | 6-Dec-2004 | 1.0      | 1.02         | 102        |
| 14188  | Olive Oil                | 6-Dec-2004 | 1.0      | 0.99         | 99         |
| 13377  | Soybean Grain            | 6-Dec-2004 | 1.0      | 1.01         | 101        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 1.0      | 1.00         | 100        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 1.0      | 1.10         | 110        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 1.0      | 1.11         | 111        |

Table 5. (Cont.) Recovery of XDE-175-N-demethyl-L from Oily Crops

| Sample |                          | Date of      | XDE-175- | N-demethyl- | <u>L</u>   |
|--------|--------------------------|--------------|----------|-------------|------------|
| Name   | Matrix                   | Analysis     | Added    | Found       | % Recovery |
|        |                          |              |          |             |            |
| 13395  | Canola Seed              | 6-Dec-2004   | NA       | 0.0008      | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | NA       | 0.0008      | NA         |
| 14188  | Olive Oil                | 6-Dec-2004   | NA       | 0.0004      | NA         |
| 13377  | Soybean Grain            | 6-Dec-2004   | NA       | 0.0006      | NA         |
| 46001  | Cotton Seed              | 6-Dec-2004   | NA       | 0.0007      | NA         |
|        | comon see                | 0 2 00 200 . | 1,112    | 0.0007      | 1,112      |
| 13395  | Canola Seed              | 6-Dec-2004   | 0.003    | 0.0022      | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 0.003    | 0.0025      | NA         |
| 14188  | Olive Oil                | 6-Dec-2004   | 0.003    | 0.0029      | NA         |
|        |                          |              | ******   | *****       |            |
| 13395  | Canola Seed              | 6-Dec-2004   | 0.01     | 0.0090      | 90         |
| 13395  | Canola Seed              | 6-Dec-2004   | 0.01     | 0.0092      | 92         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 0.01     | 0.0084      | 84         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 0.01     | 0.0092      | 92         |
| 14188  | Olive Oil                | 6-Dec-2004   | 0.01     | 0.0094      | 94         |
| 14188  | Olive Oil                | 6-Dec-2004   | 0.01     | 0.0094      | 94         |
| 13377  | Soybean Grain            | 6-Dec-2004   | 0.01     | 0.0091      | 91         |
| 13377  | Soybean Grain            | 6-Dec-2004   | 0.01     | 0.0101      | 101        |
| 46001  | Cotton Seed              | 6-Dec-2004   | 0.01     | 0.0083      | 83         |
| 46001  | Cotton Seed              | 6-Dec-2004   | 0.01     | 0.0083      | 83         |
|        |                          |              |          |             |            |
| 13395  | Canola Seed              | 6-Dec-2004   | 1.0      | 0.96        | 96         |
| 13395  | Canola Seed              | 6-Dec-2004   | 1.0      | 0.99        | 99         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 1.0      | 0.93        | 93         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 1.0      | 0.99        | 99         |
| 14188  | Olive Oil                | 6-Dec-2004   | 1.0      | 1.02        | 102        |
| 14188  | Olive Oil                | 6-Dec-2004   | 1.0      | 1.00        | 100        |
| 13377  | Soybean Grain            | 6-Dec-2004   | 1.0      | 1.00        | 100        |
| 13377  | Soybean Grain            | 6-Dec-2004   | 1.0      | 0.99        | 99         |
| 46001  | Cotton Seed              | 6-Dec-2004   | 1.0      | 0.92        | 92         |
| 46001  | Cotton Seed              | 6-Dec-2004   | 1.0      | 0.96        | 96         |

Table 5. (Cont.) Recovery of XDE-175-N-formyl-J from Oily Crops

| Sample |                          | Date of      | XDE-175- | N-formyl-J |            |
|--------|--------------------------|--------------|----------|------------|------------|
| Name   | Matrix                   | Analysis     | Added    | Found      | % Recovery |
|        |                          |              |          |            |            |
| 13395  | Canola Seed              | 6-Dec-2004   | NA       | 0.0005     | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | NA       | ND         | NA         |
| 14188  | Olive Oil                | 6-Dec-2004   | NA       | ND         | NA         |
| 13377  | Soybean Grain            | 6-Dec-2004   | NA       | ND         | NA         |
| 46001  | Cotton Seed              | 6-Dec-2004   | NA       | ND         | NA         |
|        | comon see                | 0 2 00 200 . | 1111     | 1,2        | 1,112      |
| 13395  | Canola Seed              | 6-Dec-2004   | 0.003    | 0.0039     | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 0.003    | 0.0028     | NA         |
| 14188  | Olive Oil                | 6-Dec-2004   | 0.003    | 0.0034     | NA         |
| 11100  | 311, <b>2</b> 311        | 0 200 200 1  | 0.005    | 0.0031     | 1111       |
| 13395  | Canola Seed              | 6-Dec-2004   | 0.01     | 0.0093     | 93         |
| 13395  | Canola Seed              | 6-Dec-2004   | 0.01     | 0.0082     | 82         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 0.01     | 0.0098     | 98         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 0.01     | 0.0096     | 96         |
| 14188  | Olive Oil                | 6-Dec-2004   | 0.01     | 0.0112     | 112        |
| 14188  | Olive Oil                | 6-Dec-2004   | 0.01     | 0.0103     | 103        |
| 13377  | Soybean Grain            | 6-Dec-2004   | 0.01     | 0.0102     | 102        |
| 13377  | Soybean Grain            | 6-Dec-2004   | 0.01     | 0.0117     | 117        |
| 46001  | Cotton Seed              | 6-Dec-2004   | 0.01     | 0.0108     | 108        |
| 46001  | Cotton Seed              | 6-Dec-2004   | 0.01     | 0.0120     | 120        |
|        |                          |              |          |            |            |
| 13395  | Canola Seed              | 6-Dec-2004   | 1.0      | 1.08       | 108        |
| 13395  | Canola Seed              | 6-Dec-2004   | 1.0      | 1.13       | 113        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 1.0      | 1.10       | 110        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004   | 1.0      | 1.02       | 102        |
| 14188  | Olive Oil                | 6-Dec-2004   | 1.0      | 1.08       | 108        |
| 14188  | Olive Oil                | 6-Dec-2004   | 1.0      | 1.08       | 108        |
| 13377  | Soybean Grain            | 6-Dec-2004   | 1.0      | 1.24       | 124        |
| 13377  | Soybean Grain            | 6-Dec-2004   | 1.0      | 1.25       | 125        |
| 46001  | Cotton Seed              | 6-Dec-2004   | 1.0      | 1.16       | 116        |
| 46001  | Cotton Seed              | 6-Dec-2004   | 1.0      | 1.40       | 140        |

Table 5. (Cont.) Recovery of XDE-175-N-formyl-L from Oily Crops

| Sample |                          | Date of    | XDE-175- | <i>N</i> -formyl-L |            |
|--------|--------------------------|------------|----------|--------------------|------------|
| Name   | Matrix                   | Analysis   | Added    | Found              | % Recovery |
|        |                          |            |          |                    |            |
| 13395  | Canola Seed              | 6-Dec-2004 | NA       | ND                 | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | NA       | ND                 | NA         |
| 14188  | Olive Oil                | 6-Dec-2004 | NA       | ND                 | NA         |
| 13377  | Soybean Grain            | 6-Dec-2004 | NA       | ND                 | NA         |
| 46001  | Cotton Seed              | 6-Dec-2004 | NA       | ND                 | NA         |
|        |                          |            |          |                    |            |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.003    | 0.0024             | NA         |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.003    | 0.0028             | NA         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.003    | 0.0033             | NA         |
|        |                          |            |          |                    |            |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.01     | 0.0091             | 91         |
| 13395  | Canola Seed              | 6-Dec-2004 | 0.01     | 0.0115             | 115        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.01     | 0.0114             | 114        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 0.01     | 0.0095             | 95         |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.01     | 0.0115             | 115        |
| 14188  | Olive Oil                | 6-Dec-2004 | 0.01     | 0.0104             | 104        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 0.01     | 0.0122             | 122        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 0.01     | 0.0138             | 138        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 0.01     | 0.0063             | 63         |
| 46001  | Cotton Seed              | 6-Dec-2004 | 0.01     | 0.0091             | 91         |
| 13395  | Canola Seed              | 6-Dec-2004 | 1.0      | 0.99               | 99         |
| 13395  | Canola Seed              | 6-Dec-2004 | 1.0      | 1.16               | 116        |
| 13393  | Olive Fruit Without Seed | 6-Dec-2004 | 1.0      | 1.18               | 118        |
| 14794  | Olive Fruit Without Seed | 6-Dec-2004 | 1.0      | 1.09               | 109        |
| 14188  | Olive Oil                | 6-Dec-2004 | 1.0      | 1.10               | 110        |
| 14188  | Olive Oil                | 6-Dec-2004 | 1.0      | 1.09               | 109        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 1.0      | 1.28               | 128        |
| 13377  | Soybean Grain            | 6-Dec-2004 | 1.0      | 1.39               | 139        |
| 46001  | Cotton Seed              | 6-Dec-2004 | 1.0      | 0.76               | 76         |
| 46001  | Cotton Seed              | 6-Dec-2004 | 1.0      | 1.02               | 102        |

<sup>&</sup>lt;sup>a</sup> The date of analysis represents the date the samples were extracted.

All calculations were performed using Microsoft Excel 2002 with full precision. Recovery values corrected for control value where appropriate.

<sup>&</sup>lt;sup>c</sup> Not Applicable.

d Not Detected.

Samples were fortified at the method's proposed limit of detection (0.003  $\mu$ g/g). Values are reported with a lower degree of confidence than values above the limit of quantitation.

Table 6. Recovery Summary of XDE-175 and its Metabolites from Wet Crops

|                               |               |          | Recover  |      |      |    |
|-------------------------------|---------------|----------|----------|------|------|----|
|                               | Fortification | Average  | y        |      |      |    |
|                               | Level         | Recovery | Range    | SD   | RSD  |    |
| Compound                      | $(\mu g/g)$   | (%)      | (%)      | (%)  | (%)  | n  |
|                               |               |          |          |      |      |    |
|                               | 0.01          | 100      | 79 - 119 | 11.2 | 11.2 | 18 |
| XDE-175-N-formyl-L            | 1.0           | 99       | 91 - 111 | 4.8  | 4.9  | 16 |
|                               | 10.0          | 90       | 81 - 99  | 7.8  | 7.8  | 6  |
|                               | 0.01 - 10.0   | 98       | 79 - 119 | 9.2  | 9.3  | 40 |
| XDE-175-N-formyl-J            | 0.01          | 93       | 86 - 106 | 6.7  | 7.2  | 18 |
| ·                             | 1.0           | 101      | 91 - 116 | 7.0  | 6.9  | 16 |
|                               | 10.0          | 91       | 84 - 101 | 7.1  | 7.6  | 6  |
|                               | 0.01 - 10.0   | 96       | 84 - 116 | 7.9  | 8.3  | 40 |
| XDE-175- <i>N</i> -demethyl-L | 0.01          | 102      | 92 - 120 | 6.8  | 6.6  | 18 |
| ·                             | 1.0           | 101      | 95 - 104 | 2.3  | 2.3  | 16 |
|                               | 10.0          | 91       | 87 - 99  | 5.5  | 5.4  | 6  |
|                               | 0.01 - 10.0   | 100      | 87 - 120 | 6.3  | 6.3  | 40 |
| XDE-175- <i>N</i> -demethyl-J | 0.01          | 100      | 94 - 117 | 5.9  | 5.8  | 18 |
| ·                             | 1.0           | 100      | 94 - 105 | 2.8  | 2.8  | 16 |
|                               | 10.0          | 94       | 89 - 101 | 5.5  | 5.5  | 6  |
|                               | 0.01 - 10.0   | 99       | 89 - 117 | 5.2  | 5.3  | 40 |
| XDE-175-L                     | 0.01          | 104      | 96 - 114 | 5.5  | 5.3  | 18 |
|                               | 1.0           | 101      | 95 - 107 | 3.0  | 3.0  | 16 |
|                               | 10.0          | 92       | 89 - 98  | 3.3  | 3.2  | 6  |
|                               | 0.01 - 10.0   | 101      | 89 - 114 | 6.0  | 6.0  | 40 |
| XDE-175-J                     | 0.01          | 103      | 95 - 118 | 5.8  | 5.6  | 18 |
|                               | 1.0           | 99       | 92 - 103 | 3.5  | 3.5  | 16 |
|                               | 10.0          | 92       | 90 - 94  | 1.3  | 1.3  | 6  |
|                               | 0.01 - 10.0   | 100      | 90 - 118 | 5.7  | 5.7  | 40 |

Table 7. Recovery Summary of XDE-175 and its Metabolites from Dry Crops

|                               |               |          | Recover  |      |      |    |
|-------------------------------|---------------|----------|----------|------|------|----|
|                               | Fortification | Average  | y        |      |      |    |
|                               | Level         | Recovery | Range    | SD   | RSD  |    |
| Compound                      | $(\mu g/g)$   | (%)      | (%)      | (%)  | (%)  | n  |
|                               |               |          |          |      |      |    |
| XDE-175-N-formyl-L            | 0.01          | 95       | 78 - 119 | 11.5 | 12.1 | 20 |
|                               | 1.0           | 93       | 77 - 117 | 11.6 | 12.5 | 20 |
|                               | 0.01 - 1.0    | 94       | 77 - 119 | 11.4 | 12.2 | 40 |
| XDE-175-N-formyl-J            | 0.01          | 105      | 77 - 131 | 13.2 | 12.5 | 20 |
| 1122 170 17 10111191 0        | 1.0           | 110      | 97 - 121 | 5.9  | 5.3  | 20 |
|                               | 0.01 - 1.0    | 108      | 77 - 131 | 10.4 | 9.7  | 40 |
| XDE-175- <i>N</i> -demethyl-L | 0.01          | 105      | 99 - 114 | 4.5  | 4.3  | 20 |
| ADL-175-1V-demetry i-L        | 1.0           | 103      | 96 - 110 | 3.8  | 3.6  | 20 |
|                               | 0.01 - 1.0    | 105      | 96 - 114 | 4.1  | 4.0  | 40 |
|                               |               |          |          |      |      |    |
| XDE-175-N-demethyl-J          | 0.01          | 102      | 92 - 114 | 5.2  | 5.1  | 20 |
|                               | 1.0           | 102      | 95 - 114 | 3.9  | 3.8  | 20 |
|                               | 0.01 - 1.0    | 102      | 92 - 114 | 4.5  | 4.4  | 40 |
| XDE-175-L                     | 0.01          | 102      | 94 - 114 | 5.7  | 5.5  | 20 |
| ADL-175-L                     | 1.0           | 102      | 92 - 114 | 6.3  | 6.2  | 20 |
|                               | 0.01 - 1.0    | 102      | 92 - 114 | 5.9  | 5.8  | 40 |
|                               |               |          |          |      |      |    |
| XDE-175-J                     | 0.01          | 88       | 81 - 105 | 5.2  | 6.0  | 20 |
|                               | 1.0           | 88       | 81 - 98  | 4.9  | 5.6  | 20 |
|                               | 0.01 - 1.0    | 88       | 81 - 105 | 5.0  | 5.7  | 40 |

Table 8. Recovery Summary of XDE-175 and its Metabolites from Acidic Crops

|                               |               |          | Recover  |      |      |     |
|-------------------------------|---------------|----------|----------|------|------|-----|
|                               | Fortification | Average  | y        |      |      |     |
|                               | Level         | Recovery | Range    | SD   | RSD  |     |
| Compound                      | $(\mu g/g)$   | (%)      | (%)      | (%)  | (%)  | n   |
|                               |               |          |          |      |      |     |
| XDE-175-N-formyl-L            | 0.01          | 94       | 86 - 107 | 7.0  | 7.4  | 17  |
|                               | 1.0           | 97       | 91 - 107 | 4.1  | 4.2  | 18  |
|                               | 0.01 - 1.0    | 95       | 86 - 107 | 5.8  | 6.1  | 35  |
| XDE-175-N-formyl-J            | 0.01          | 97       | 76 - 118 | 12.1 | 12.4 | 17  |
|                               | 1.0           | 103      | 94 - 118 | 6.1  | 6.0  | 18  |
|                               | 0.01 - 1.0    | 100      | 76 - 118 | 9.8  | 9.8  | 35  |
| XDE-175- <i>N</i> -demethyl-L | 0.01          | 100      | 87 - 113 | 7.9  | 7.8  | 17  |
|                               | 1.0           | 101      | 96 - 107 | 2.9  | 2.9  | 18  |
|                               | 0.01 - 1.0    | 100      | 87 - 113 | 5.8  | 5.8  | 35  |
| XDE-175- <i>N</i> -demethyl-J | 0.01          | 104      | 96 - 114 | 5.8  | 5.6  | 17  |
| TIBE THE THE GENEVALUE OF     | 1.0           | 102      | 97 - 107 | 3.1  | 3.1  | 18  |
|                               | 0.01 - 1.0    | 103      | 96 - 114 | 4.6  | 4.5  | 35  |
| XDE-175-L                     | 0.01          | 106      | 98 - 114 | 4.9  | 4.6  | 17  |
| ADE-1/3-E                     | 1.0           | 100      | 92 - 104 | 3.0  | 3.0  | 18  |
|                               | 0.01 - 1.0    | 103      | 92 - 114 | 5.2  | 5.0  | 35  |
| VDF 155 I                     | 0.01          | 102      | 02 115   |      | 6.0  | 1.7 |
| XDE-175-J                     | 0.01          | 102      | 93 - 115 | 6.1  | 6.0  | 17  |
|                               | 1.0           | 101      | 94 - 105 | 3.3  | 3.3  | 18  |
|                               | 0.01 - 1.0    | 102      | 93 - 115 | 4.9  | 4.8  | 35  |

Table 9. Recovery Summary of XDE-175 and its Metabolites from Oily Crops

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fortification<br>Level | Average<br>Recovery | Recovery<br>Range | SD   | RSD  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|-------------------|------|------|----|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level<br>(μg/g)        | (%)                 | (%)               | (%)  | (%)  | n  |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (μβ/β)                 | (70)                | (70)              | (70) | (70) |    |
| XDE-175-N-formyl-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                   | 105                 | 63 - 138          | 20.7 | 19.7 | 10 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                    | 111                 | 76 - 139          | 17.0 | 15.4 | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 - 1.0             | 108                 | 63 - 139          | 18.7 | 17.3 | 20 |
| XDE-175-N-formyl-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                   | 103                 | 82 - 120          | 11.6 | 11.2 | 10 |
| Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                    | 115                 | 102 - 140         | 11.3 | 9.8  | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 - 1.0             | 109                 | 82 - 140          | 12.8 | 11.7 | 20 |
| XDE-175- <i>N</i> -demethyl-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                   | 90                  | 83 - 101          | 5.8  | 6.4  | 10 |
| , and the second | 1.0                    | 98                  | 92 - 102          | 3.3  | 3.4  | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 - 1.0             | 94                  | 83 - 102          | 5.9  | 6.2  | 20 |
| XDE-175-N-demethyl-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                   | 97                  | 86 - 105          | 6.0  | 6.2  | 10 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                    | 103                 | 93 - 111          | 5.2  | 5.1  | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 - 1.0             | 100                 | 86 - 111          | 6.3  | 6.3  | 20 |
| XDE-175-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                   | 99                  | 90 - 110          | 6.3  | 6.3  | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                    | 101                 | 95 - 107          | 4.7  | 4.7  | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 - 1.0             | 100                 | 90 - 110          | 5.5  | 5.5  | 20 |
| XDE-175-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                   | 94                  | 84 - 105          | 6.9  | 7.4  | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                    | 96                  | 89 - 102          | 4.7  | 4.9  | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01 - 1.0             | 95                  | 84 - 105          | 5.9  | 6.2  | 20 |

Table 10. Calculated Limits of Detection and Quantitation for XDE-175 and its Metabolites in Wet Crops

| Compound             | Average<br>Recovery<br>(µg/g) | Standard<br>Deviatio<br>n (s) | Calculated Limit of Detection (3s) | Calculated Limit of Quantitation (10s) | Number<br>of<br>Samples<br>(n) |
|----------------------|-------------------------------|-------------------------------|------------------------------------|----------------------------------------|--------------------------------|
|                      |                               |                               |                                    |                                        | _                              |
| XDE-175-N-formyl-L   | 0.00999                       | 0.00112                       | 0.00335                            | 0.01117                                | 18                             |
| XDE-175-N-formyl-J   | 0.00929                       | 0.00067                       | 0.00202                            | 0.00673                                | 18                             |
| XDE-175-N-demethyl-L | 0.01022                       | 0.00068                       | 0.00203                            | 0.00676                                | 18                             |
| XDE-175-N-demethyl-J | 0.01003                       | 0.00059                       | 0.00176                            | 0.00585                                | 18                             |
| XDE-175-L            | 0.01044                       | 0.00055                       | 0.00165                            | 0.00549                                | 18                             |
| XDE-175-J            | 0.01028                       | 0.00058                       | 0.00174                            | 0.00579                                | 18                             |

Table 11. Calculated Limits of Detection and Quantitation for XDE-175 and its Metabolites in Dry Crops

| Compound            | Average<br>Recovery<br>(µg/g) | Standard<br>Deviatio<br>n (s) | Calculated Limit of Detection (3s) | Calculated Limit of Quantitation (10s) | Number<br>of<br>Samples<br>(n) |
|---------------------|-------------------------------|-------------------------------|------------------------------------|----------------------------------------|--------------------------------|
|                     |                               |                               | •                                  |                                        |                                |
| XDE-175-N-formyl-L  | 0.00949                       | 0.00115                       | 0.00345                            | 0.01149                                | 20                             |
| XDE-175-N-formyl-J  | 0.01053                       | 0.00132                       | 0.00396                            | 0.01320                                | 20                             |
| XDE-175-N-demethl-L | 0.01049                       | 0.00045                       | 0.00136                            | 0.00455                                | 20                             |
| XDE-175-N-demethl-J | 0.01018                       | 0.00052                       | 0.00155                            | 0.00515                                | 20                             |
| XDE-175-L           | 0.01022                       | 0.00057                       | 0.00170                            | 0.00567                                | 20                             |
| XDE-175-J           | 0.00875                       | 0.00052                       | 0.00157                            | 0.00525                                | 20                             |

Table 12. Calculated Limits of Detection and Quantitation for XDE-175 and its Metabolites in Acidic Crops

| Compound            | Average<br>Recovery<br>(µg/g) | Standard<br>Deviatio<br>n (s) | Calculated Limit of Detection (3s) | Calculated Limit of Quantitation (10s) | Number<br>of<br>Samples<br>(n) |
|---------------------|-------------------------------|-------------------------------|------------------------------------|----------------------------------------|--------------------------------|
|                     |                               |                               |                                    |                                        | •                              |
| XDE-175-N-formyl-L  | 0.00936                       | 0.00070                       | 0.00209                            | 0.00696                                | 17                             |
| XDE-175-N-formyl-J  | 0.00970                       | 0.00121                       | 0.00362                            | 0.01208                                | 17                             |
| XDE-175-N-demethl-L | 0.01001                       | 0.00079                       | 0.00236                            | 0.00785                                | 17                             |
| XDE-175-N-demethl-J | 0.01038                       | 0.00058                       | 0.00173                            | 0.00577                                | 17                             |
| XDE-175-L           | 0.01062                       | 0.00049                       | 0.00148                            | 0.00492                                | 17                             |
| XDE-175-J           | 0.01024                       | 0.00061                       | 0.00183                            | 0.00610                                | 17                             |

Table 13. Calculated Limits of Detection and Quantitation for XDE-175 and its Metabolites in Oily Crops

| Compound            | Average<br>Recovery<br>(µg/g) | Standard<br>Deviatio<br>n (s) | Calculated Limit of Detection (3s) | Calculated Limit of Quantitation (10s) | Number<br>of<br>Samples<br>(n) |
|---------------------|-------------------------------|-------------------------------|------------------------------------|----------------------------------------|--------------------------------|
|                     |                               |                               |                                    |                                        |                                |
| XDE-175-N-formyl-L  | 0.01049                       | 0.00207                       | 0.00621                            | 0.02070                                | 10                             |
| XDE-175-N-formyl-J  | 0.01030                       | 0.00116                       | 0.00347                            | 0.01158                                | 10                             |
| XDE-175-N-demethl-L | 0.00903                       | 0.00058                       | 0.00173                            | 0.00576                                | 10                             |
| XDE-175-N-demethl-J | 0.00967                       | 0.00060                       | 0.00179                            | 0.00597                                | 10                             |
| XDE-175-L           | 0.00994                       | 0.00063                       | 0.00189                            | 0.00631                                | 10                             |
| XDE-175-J           | 0.00936                       | 0.00069                       | 0.00207                            | 0.00689                                | 10                             |



Figure 1. Mass Spectra of XDE-175-J Showing  $(M+H)^+$  at m/z 748.7



Figure 2. Product-Ion Mass Spectra of XDE-175-J Showing Fragment Ion at m/z 142.1



Figure 3. Mass Spectra of XDE-175-L Showing  $(M+H)^+$  at m/z 760.8



Figure 4. Product-Ion Mass Spectra of XDE-175-L Showing Fragment Ion at m/z 142.1



Figure 5. Mass Spectra of XDE-175-*N*-demethyl-J Showing  $(M+H)^+$  at m/z 734.7



Figure 6. Product-Ion Mass Spectra of XDE-175-N-demethyl-J Showing Fragment Ion at m/z 128.0



Figure 7. Mass Spectra of XDE-175-*N*-demethyl-L Showing  $(M+H)^+$  at m/z 746.9



Figure 8. Product-Ion Mass Spectra of XDE-175-*N*-demethyl-L Showing Fragment Ion at m/z 128.0



Figure 9. Mass Spectra of XDE-175-N-formyl-J Showing  $(M+H)^+$  at m/z 762.8



Figure 10. Product-Ion Mass Spectra of XDE-175-N-formyl-J Showing Fragment Ion at m/z 156.1



Figure 11. Mass Spectra of XDE-175-N-formyl-L Showing (M+H)<sup>+</sup> at m/z 774.8



Figure 12. Product-Ion Mass Spectra of XDE-175-*N*-formyl-L Showing Fragment Ion at m/z 156.0



Figure 13. Mass Spectra of XDE-175-J Stable Isotope Internal Standard Showing (M+H)<sup>+</sup> at *m/z* 757.8



Figure 14. Product-Ion Mass Spectra of XDE-175-J Stable Isotope Internal Standard Showing Fragment Ion at m/z 146.1



Figure 15. Mass Spectra of XDE-175-L Stable Isotope Internal Standard Showing (M+H)<sup>+</sup> at *m/z* 769.8



Figure 16. Product-Ion Mass Spectra of XDE-175-L Stable Isotope Internal Standard Showing Fragment Ion at m/z 146.1



Figure 17. Mass Spectra of XDE-175-*N*-Demethyl-J Stable Isotope Internal Standard Showing  $(M+H)^+$  at m/z 739.6



Figure 18. Product-Ion Mass Spectra of XDE-175-*N*-Demethyl-J Stable Isotope Internal Standard Showing Fragment Ion at *m/z* 128.0



Figure 19. Mass Spectra of XDE-175-*N*-Demethyl-L Stable Isotope Internal Standard Showing  $(M+H)^+$  at m/z 751.6



Figure 20. Product-Ion Mass Spectra of XDE-175-*N*-Demethyl-L Stable Isotope Internal Standard Showing Fragment Ion at *m/z* 127.9

Analytical Set I.D.: 041021 set 2b Compound: XDE-175 J

# **Calibration Data**

Linear with 1/x Weighting

| Efficial with 1/X Weighting |         |
|-----------------------------|---------|
| Slope =                     | 0.2571  |
| Intercept =                 | -0.0015 |
| $r^2 =$                     | 0.9997  |

| Standard<br>Concentration (ng/mL) | Injection<br>Number | Analyte<br>Peak Area | ISTD<br>Peak Area | Quantitation<br>Ratio | Response<br>Factor | Calculated<br>Concentration | Percent of<br>Theoretical |
|-----------------------------------|---------------------|----------------------|-------------------|-----------------------|--------------------|-----------------------------|---------------------------|
| 0.15                              | 1                   | 19607                | 545738            | 0.036                 | 0.2395             | 0.14543                     | 97                        |
| 0.5                               | 9                   | 51007                | 379980            | 0.134                 | 0.2685             | 0.52776                     | 106                       |
| 1                                 | 17                  | 104824               | 418307            | 0.251                 | 0.2506             | 0.98027                     | 98                        |
| 5                                 | 25                  | 527104               | 421216            | 1.251                 | 0.2503             | 4.87245                     | 97                        |
| 10                                | 33                  | 1167023              | 451851            | 2.583                 | 0.2583             | 10.05026                    | 101                       |
| 20                                | 41                  | 2170012              | 416761            | 5.207                 | 0.2603             | 20.25555                    | 101                       |
| 35                                | 49                  | 3243716              | 353419            | 9.178                 | 0.2622             | 35.70006                    | 102                       |
| 50                                | 50                  | 4550286              | 360324            | 12.628                | 0.2526             | 49.11821                    | 98                        |



| Sample                       | Injection | Analyte   | ISTD      | Quantitation |
|------------------------------|-----------|-----------|-----------|--------------|
|                              | Number    | Peak Area | Peak Area | Ratio        |
| 24801                        | 5         | 0         | 468460    | 0.00000      |
| $24801 + 0.003  \mu g/g$     | 13        | 15927     | 416450    | 0.03824      |
| $24801 + 0.01 \mu\text{g/g}$ | 22        | 54482     | 449216    | 0.12128      |
| $24801 + 0.01 \mu\text{g/g}$ | 23        | 49945     | 377032    | 0.13247      |

Figure 21. Typical Calibration Curve for the Determination of XDE-175-J in Wet Crops

Analytical Set I.D.: 041021 set 2b Compound: XDE-175 L

# **Calibration Data**

Linear with 1/x Weighting

| Emedi with 1/X Weighting |         |
|--------------------------|---------|
| Slope =                  | 0.2607  |
| Intercept =              | -0.0031 |
| $r^2 =$                  | 0.9995  |

| Standard              | Injection<br>Number | Analyte<br>Peak Area | ISTD      | Quantitation<br>Ratio | Response | Calculated    | Percent of  |
|-----------------------|---------------------|----------------------|-----------|-----------------------|----------|---------------|-------------|
| Concentration (ng/mL) | Number              |                      | Peak Area |                       | Factor   | Concentration | Theoretical |
| 0.15                  | 1                   | 16704                | 451049    | 0.037                 | 0.2469   | 0.15397       | 103         |
| 0.5                   | 9                   | 46144                | 369983    | 0.125                 | 0.2494   | 0.49027       | 98          |
| 1                     | 17                  | 95990                | 380881    | 0.252                 | 0.2520   | 0.97852       | 98          |
| 5                     | 25                  | 463299               | 361670    | 1.281                 | 0.2562   | 4.92502       | 99          |
| 10                    | 33                  | 1060375              | 400707    | 2.646                 | 0.2646   | 10.16128      | 102         |
| 20                    | 41                  | 2010441              | 381074    | 5.276                 | 0.2638   | 20.24621      | 101         |
| 35                    | 49                  | 2969918              | 317965    | 9.340                 | 0.2669   | 35.83568      | 102         |
| 50                    | 50                  | 4180007              | 328204    | 12.736                | 0.2547   | 48.85905      | 98          |



Figure 22. Typical Calibration Curve for the Determination of XDE-175-L in Wet Crops

Analytical Set I.D.: 041021 set 2b Compound: XDE-175 N-demethl J

# **Calibration Data**

Linear with 1/x Weighting

| Ellied With 1/K Weighting |             |        |
|---------------------------|-------------|--------|
|                           | Slope =     | 0.2625 |
|                           | Intercept = | 0.0030 |
|                           | $r^2 =$     | 0.9992 |

| Standard<br>Concentration (ng/mL) | Injection<br>Number | Analyte<br>Peak Area | ISTD<br>Peak Area | Quantitation<br>Ratio | Response<br>Factor | Calculated<br>Concentration | Percent of<br>Theoretical |
|-----------------------------------|---------------------|----------------------|-------------------|-----------------------|--------------------|-----------------------------|---------------------------|
|                                   | Nullioci            |                      |                   |                       |                    |                             |                           |
| 0.15                              | 1                   | 38180                | 823858            | 0.046                 | 0.3090             | 0.16515                     | 110                       |
| 0.5                               | 9                   | 55457                | 426504            | 0.130                 | 0.2601             | 0.48395                     | 97                        |
| 1                                 | 17                  | 118038               | 451070            | 0.262                 | 0.2617             | 0.98549                     | 99                        |
| 5                                 | 25                  | 522115               | 394648            | 1.323                 | 0.2646             | 5.02852                     | 101                       |
| 10                                | 33                  | 1123179              | 455449            | 2.466                 | 0.2466             | 9.38315                     | 94                        |
| 20                                | 41                  | 2317491              | 444940            | 5.209                 | 0.2604             | 19.83049                    | 99                        |
| 35                                | 49                  | 3545876              | 392903            | 9.025                 | 0.2579             | 34.36850                    | 98                        |
| 50                                | 50                  | 4759780              | 352658            | 13.497                | 0.2699             | 51.40475                    | 103                       |



Figure 23. Typical Calibration Curve for the Determination of XDE-175-*N*-demethyl-J in Wet Crops

Analytical Set I.D.: 041021 set 2b Compound: XDE-175 N-demethl L

# **Calibration Data**

Linear with 1/x Weighting

| Ellieur With Till Weighting |             |        |
|-----------------------------|-------------|--------|
|                             | Slope =     | 0.2709 |
|                             | Intercept = | 0.0023 |
|                             | $r^2 =$     | 0.9998 |

| Standard<br>Concentration (ng/mL) | Injection<br>Number | Analyte<br>Peak Area | ISTD<br>Peak Area | Quantitation<br>Ratio | Response<br>Factor | Calculated<br>Concentration | Percent of<br>Theoretical |
|-----------------------------------|---------------------|----------------------|-------------------|-----------------------|--------------------|-----------------------------|---------------------------|
|                                   | Nullibei            |                      |                   |                       |                    |                             |                           |
| 0.15                              | 1                   | 20358                | 472565            | 0.043                 | 0.2872             | 0.15065                     | 100                       |
| 0.5                               | 9                   | 45360                | 345467            | 0.131                 | 0.2626             | 0.47634                     | 95                        |
| 1                                 | 17                  | 99872                | 360985            | 0.277                 | 0.2767             | 1.01300                     | 101                       |
| 5                                 | 25                  | 468072               | 338900            | 1.381                 | 0.2762             | 5.09053                     | 102                       |
| 10                                | 33                  | 989000               | 358467            | 2.759                 | 0.2759             | 10.17717                    | 102                       |
| 20                                | 41                  | 1912725              | 356179            | 5.370                 | 0.2685             | 19.81701                    | 99                        |
| 35                                | 49                  | 3017151              | 313131            | 9.635                 | 0.2753             | 35.56365                    | 102                       |
| 50                                | 50                  | 4160993              | 311151            | 13.373                | 0.2675             | 49.36166                    | 99                        |



Figure 24. Typical Calibration Curve for the Determination of XDE-175-*N*-demethyl-L in Wet Crops

Analytical Set I.D.: 041021 set 2b Compound: XDE-175 N-formyl J

# **Calibration Data**

Linear with 1/x Weighting

| Ellical With 1/K Weighting |             |        |
|----------------------------|-------------|--------|
|                            | Slope =     | 0.0281 |
|                            | Intercept = | 0.0009 |
|                            | $r^2 =$     | 0.9990 |

| Standard              | Injection<br>Number | Analyte<br>Peak Area | ISTD<br>Peak Area | Quantitation<br>Ratio | Response<br>Factor | Calculated<br>Concentration | Percent of<br>Theoretical |
|-----------------------|---------------------|----------------------|-------------------|-----------------------|--------------------|-----------------------------|---------------------------|
| Concentration (ng/mL) | Number              |                      |                   |                       |                    |                             |                           |
| 0.15                  | 1                   | 2655                 | 472565            | 0.006                 | 0.0375             | 0.16921                     | 113                       |
| 0.5                   | 9                   | 4587                 | 345467            | 0.013                 | 0.0266             | 0.44146                     | 88                        |
| 1                     | 17                  | 10089                | 360985            | 0.028                 | 0.0279             | 0.96293                     | 96                        |
| 5                     | 25                  | 47510                | 338900            | 0.140                 | 0.0280             | 4.95247                     | 99                        |
| 10                    | 33                  | 103206               | 358467            | 0.288                 | 0.0288             | 10.20314                    | 102                       |
| 20                    | 41                  | 202557               | 356179            | 0.569                 | 0.0284             | 20.18354                    | 101                       |
| 35                    | 49                  | 320254               | 313131            | 1.023                 | 0.0292             | 36.32269                    | 104                       |
| 50                    | 50                  | 424079               | 311151            | 1.363                 | 0.0273             | 48.41456                    | 97                        |



Figure 25. Typical Calibration Curve for the Determination of XDE-175-*N*-formyl-J in Wet Crops

Analytical Set I.D.: 041021 set 2b Compound: XDE-175 N-formyl L

# **Calibration Data**

Linear with 1/x Weighting

| Ellieur With Till Weighting |             |         |
|-----------------------------|-------------|---------|
|                             | Slope =     | 0.0268  |
|                             | Intercept = | -0.0004 |
|                             | $r^2 =$     | 0.9997  |

| Standard              | Injection | Analyte   | ISTD      | Quantitation | Response | Calculated    | Percent of  |
|-----------------------|-----------|-----------|-----------|--------------|----------|---------------|-------------|
| Concentration (ng/mL) | Number    | Peak Area | Peak Area | Ratio        | Factor   | Concentration | Theoretical |
| 0.15                  | 1         | 1868      | 472565    | 0.004        | 0.0264   | 0.16307       | 109         |
| 0.5                   | 9         | 4463      | 345467    | 0.013        | 0.0258   | 0.49780       | 100         |
| 1                     | 17        | 8952      | 360985    | 0.025        | 0.0248   | 0.94133       | 94          |
| 5                     | 25        | 45115     | 338900    | 0.133        | 0.0266   | 4.98547       | 100         |
| 10                    | 33        | 94451     | 358467    | 0.263        | 0.0263   | 9.85248       | 99          |
| 20                    | 41        | 185769    | 356179    | 0.522        | 0.0261   | 19.48746      | 97          |
| 35                    | 49        | 298082    | 313131    | 0.952        | 0.0272   | 35.55526      | 102         |
| 50                    | 50        | 417976    | 311151    | 1.343        | 0.0269   | 50.16712      | 100         |



Figure 26. Typical Calibration Curve for the Determination of XDE-175-*N*-formyl-L in Wet Crops



Figure 27. Typical MRM Chromatograms for the Determination of XDE-175-J in Lettuce



Figure 28. Typical MRM Chromatograms for the Determination of XDE-175-L in Lettuce



Figure 29. Typical MRM Chromatograms for the Determination of XDE-175-*N*-demethyl-J in Lettuce



Figure 30. Typical MRM Chromatograms for the Determination of XDE-175-*N*-demethyl-L in Lettuce



Figure 31. Typical MRM Chromatograms for the Determination of XDE-175-*N*-formyl-J in Lettuce



Figure 32. Typical MRM Chromatograms for the Determination of XDE-175-*N*-formyl-L in Lettuce



Figure 33. Typical MRM Chromatograms for the Confirmation of XDE-175-J Residues in Lettuce



Figure 34. Typical MRM Chromatograms for the Confirmation of XDE-175-L Residues in Lettuce



Figure 35. Typical MRM Chromatograms for the Confirmation of XDE-175-*N*-demethyl-J Residues in Lettuce



Figure 36. Typical MRM Chromatograms for the Confirmation of XDE-175-*N*-demethyl-L Residues in Lettuce



Figure 37. Typical MRM Chromatograms for the Confirmation of XDE-175-*N*-formyl-J Residues in Lettuce



Figure 38. Typical MRM Chromatograms for the Confirmation of XDE-175-*N*-formyl-L Residues in Lettuce