Logic Exercises 1

We employ the conventions about binding priorities of the logical connectives from propositional logic put forward in Convention 1.3.

- 1. Use \neg , \rightarrow , \wedge and \vee to express the following declarative sentences in propositional logic; in each case, state what your propositional atoms p, q, r etc. mean:
 - (a) If the sun shines today, then it won't shine tomorrow.
 - (b) Robert was jealous of Yvonne, or he was not in a good mood.
 - (c) If the barometer falls, then either it will rain or it will snow.
 - (d) Alzheimer's disease will not be cured unless its cause is determined and a new drug for it is found.
 - (e) No shoes, no shirt, no service.
- 2. The formulas below use the binding priorities from Convention 1.3. Reinsert as many brackets as possible (except the outermost ones). For example, $p \land q \rightarrow r$, is changed into $(p \land q) \rightarrow r$, since \land binds more tightly than \rightarrow .
 - (a) $\neg p \land q \rightarrow r$
 - (b) $(p \to q) \land \neg (r \lor p \to q)$
 - (c) $p \vee (\neg q \to p \wedge r)$
 - (d) Why is the expression $p \vee q \wedge r$ problematic?
- 3. Remove as many brackets as possible from the formulas below, using the binding priorities from Convention 1.3 as well as associativity of \wedge and \vee .
 - (a) $(\neg(p \land (q \land r)) \rightarrow (\neg(p) \lor \neg(r)))$
 - (b) $((\neg(p \land (q \lor r)) \to \neg(p)) \lor \neg(r))$
- 4. Draw the parse trees of the following formulas:
 - (a) $\neg((\neg q \land (p \to r)) \land (r \to q))$
 - (b) $(p \land q) \rightarrow (\neg r \lor (q \rightarrow r))$
- 5. Draw the parse tree of a propositional logic formula ϕ which is a disjunction whose disjuncts are both conjunctions.

1

- 6. Draw the parse tree of $\neg(s \to (\neg(p \to (q \lor \neg s))))$, and list all its subformulas.
- 7. For the following parse tree, find the propositional logic formula that it represents.

- 8. Determine the truth value of the formula represented by the parse tree in exercise 7 by means of the parse tree in a bottom-up fashion, for the following values of p, q and r.
 - (a) p is F, q is T, and r is F.
 - (b) p is F, q is F, and r is F.
- 9. For the following formulas, compute the complete truth table, and indicate whether it is a tautology, a contingent formula, or a contradiction:
 - (a) $((p \to \neg q) \to \neg p) \to q$
 - (b) $(p \to q) \lor (p \to \neg q)$
- 10. Which of the following formulas are semantically equivalent to $p \to (q \lor r)$?
 - (a) $q \vee (\neg p \vee r)$
 - (b) $q \land \neg r \to p$
 - (c) $p \land \neg r \to q$
- 11. Is bi-implication \leftrightarrow associative? If so, prove this via a truth table. If not, give a counterexample.
- 12. Go to https://infinity.few.vu.nl/logic/ and try your hand at some of the interactive exercises for week 1.