Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

Claims 1-13. (Cancelled)

Claim 14	4. (Currently Amended) A power semiconductor device with trench
gates comprising	
<u>a)</u>	_a semiconductor substrate;
<u>b)</u>	_a source layer on one surface of [[the]] said substrate and comprising a
high concentration	on of a dopant of [[one]] a first polarity;
a region	lightly doped with said one polarity;
<u>c)</u>	_a single drain region on the other surface of [[the]] said substrate;
<u>d)</u>	_a well layer beneath [[the]] said source layer doped with a dopant of a
second polarity	opposite to said first polarity;
<u>e)</u>	a region lightly doped with said one polarity positioned above said
drain region and	below said well layer;
<u>f)</u>	a plurality of trenches penetrating [[the]] said source layer and
terminating in sa	id region lightly doped with said one polarity, said trenches substantially
filled with condu	active material;
g)	_a highly conductive layer on the surface of [[the]] said source layer
comprising a ma	terial reacted from a metal and the semiconductor said substrate which
forms a highly c	onductive path extending from a first of said plurality of trenches to a
second of said p	lurality of trenches;
<u>h)</u>	an insulating layer on [[the]] said highly conductive layer and on
[[the]] said cond	uctive material in [[the]] said trenches;
<u>i)</u>	_vias formed in [[the]] said insulating layer and extending to [[the]] said
highly conductiv	e layer on the source layer; and

Appl. No. 10/618,067

Resp. Dated August 30, 2007.

Reply to Office Action of June 5, 2007.

<u>i)</u> conductive material filling [[the]] <u>said</u> vias for contacting [[the]] <u>said</u> highly conductive layer.

Claims 15-19. (Cancelled).

Claim 20. (Currently Amended) The power semiconductor device of claim 14 wherein [[the]] <u>said</u> trenches are filled with polysilicon and the top surface of [[the]] <u>said</u> polysilicon is covered with a highly conductive material reacted from a metal and the <u>semiconductor substrate</u> <u>said polysilicon</u>.

Claim 21. (Currently Amended) The power semiconductor device of claim 14 wherein [[the]] said highly conductive layer is a silicide.

Claim 22. (Cancelled).

Claim 23. (Currently Amended) The power semiconductor device of claim 20 or 21 claim 21 wherein [[the]] said silicide is reacted from platinum or titanium.

Claim 24. (Currently Amended) The power semiconductor device of claim 14 wherein [[the]] <u>said</u> insulating material on [[the]] <u>said</u> highly conductive layer is BPSG, PSG, silicon dioxide or silicon nitride.

Claim 25. (Currently Amended) The power semiconductor device of claim 14 wherein [[the]] <u>said</u> trenches are lined with a trench wall insulating material and [[the]] <u>said</u> insulating material on [[the]] <u>said</u> highly conductive layer contacts the ends of [[the]] <u>said</u> trench wall insulating [[layer]] <u>layers</u> lining [[the]] <u>said</u> walls of [[the]] <u>said</u> trenches.

Claim 26. (Currently Amended) The power semiconductor device of claim 14 wherein one or more vias terminated on [[the]] <u>said</u> surface of [[the]] <u>said</u> highly conductive layer <u>for making make</u> electrical contact between [[the]] <u>said</u> highly conductive source layer <u>and the and</u> conductive material filling <u>the via(s)</u> <u>said vias</u>.