

NEWS-TEXT CLASSIFICATION BASED ON A WEIGHTED RNN

Aviral Sethi - 2016B3A70532P

Manav Kaushik - 2016B3A30472P

Neelabh Sinha - 2016B5A80600P

OBJECTIVE

- ► To implement a model which classifies news-text using a weighted RNN
- ► To do a comparative study of its performance with the performance of LSTM and Bidirectional LSTM
- To show classification results of 15 such documents

Source:

W-RNN: News text classification based on a weighted RNN (Wang, Gong, Song, Oct 2019)

Need for text classification

On the account of certainty and comprehensibility of its expression, text has become a popular way of storing information. Thus, text classification is an important research direction.

Applications of text classification -

- News classification
- Emotional analysis
- Answering question system
- Classify blog/tweet of people into various categories

Current Challenges in Text Classification -

- Simplifying text into bag of words(BOW) ignores the relationship between semantic units.
- General dimension of document representation is high resulting in semantic sparseness.
- Problem of vanishing gradients and long term dependencies.

Contributions of this model

- ► Replacing the BOW technique by Word2Vec, thus, reducing the dimensions effectively and solving the semantic sparseness problem.
- Obtaining the intermediate word vectors through units of LSTM and weighing them individually to obtain a document vector.
- Introduce the WRNN classification process in detail and classify the above document representation using a neural network.
- Compare the effectiveness of WRNN against traditional techniques.

Experimental Setup and Pre-processing

- The data set is obtained from qwone website and is split into 90% and 10%, which is used as training and testing data respectively
- It contains news articles across 20 labelled categories
- Using the text_to_word_sequence as available in keras, all the documents were tokenized and thus:-
 - Punctuations were removed
 - Entire text was converted to lowercase
 - Delimiter= "
- The above created list of lists of documents in the dataset was further fed to the word2vec model

Developing Word2vec Model

- Word2vec as available from Gensim library was used to build the vocabulary for the model
- Following were the parameters used for training the Word2vec model:
 - vector_size = 200
 - Min_count=5 (words with frequency less than this were ignored)
 - Window size = default

Vocabulary size as per our training = 43,494 Vocabulary size as mentioned in the paper = 40,439

Model Architecture

$$WD\text{-}vector = \sum_{i=1}^{seq-length} w_i *WM\text{-}vector_i$$

How is it better than standard LSTM network?

- Although LSTM can better learn textual information and selectively record semantic relationship, it still loses some of the valid information.
- W-RNN pays more attention to important vocabulary information that has positive effects on classification, and reduces attention to unimportant words during iterative training
- Weighing WM-vectors can capture central semantics of the document, and further extract information from the complete paragraph

Our Implementation

^{*} Red font colour/fill – architectures different (but used for same purpose, or for improvement) from ones specified in the paper

Results (Accuracy and Loss Function)

All models were run using early-stopping as call-back w.r.t. validation loss

Confusion Matrices and Metrics - LSTM Model

Acc	ur	racy	/: (3. 67	7812	25														
[[4	7															38	2		2	0]
	0	30		6	2	32							5	2	6					0]
	0	2	48											2						0]
	0			41	47															0]
	0			18	69		6													0]
	0	17	10			67								5						0]
	0				17		75	2												0]
	0							46	39				5				2			0]
	0								81					2						0]
	0									79	16									0]
	0									17	84									0]
	0											90								0]
	0			11	2		5	2					68		2					0]
	0												5	87	2					0]
	0									2			2		89					0]
	7															92				1]
	1																90			0]
	1																	88		0]
	0														6		48		30	0]
[1	5													2		24	6			1]]

	precision	recall	f1-score	support
	0.662	0.470	0.550	100
	0.536	0.303	0.387	
	0.658	0.706	0.681	
	0.500	0.410	0.451	100
	0.476		0.563	100
	0.604	0.670	0.635	100
	0.728	0.750	0.739	
	0.793		0.582	
	0.653	0.810	0.723	100
	0.745	0.790	0.767	100
	0.832	0.832	0.832	
11	0.928	0.900	0.914	100
12	0.701			100
13	0.644	0.870		100
14	0.840	0.890	0.864	
15		0.920	0.702	100
	0.604	0.900	0.723	100
17	0.946		0.912	
18	0.612	0.300		
19	0.500	0.019	0.037	52
accuracy			0.678	1920
macro avg	0.676	0.662	0.645	1920
weighted avg	0.681	0.678		1920

Confusion Matrices and Metrics - Bi-LSTM Model

D	Accur	racy	y: (8.87	7916	57														
	[[72																			21]
		84																		2]
			58																	0]
			5	77	10															01
					87															01
			5			89														øj
		2		6			72						2							øj
								97												øj
									96											01
										92						2				01
										2	99									01
												97								01
			2										88							øj
														92						øj
													2		93					0]
																98				0]
																	93			0]
																		87		3]
																	21		69	7]
																				48]]

	precision	recall	f1-score	support
		0.720	0.814	100
	0.785	0.848	0.816	
		0.853		
	0.762	0.770		
		0.870	0.837	
	0.967		0.927	
	0.935	0.720	0.814	
	0.882	0.970	0.924	100
			0.970	
	0.929	0.920	0.925	
	0.971		0.975	
11		0.970	0.975	
12	0.871		0.876	
13	0.948	0.920		
14	0.959		0.944	
15	0.867		0.920	
	0.802			
17		0.870	0.926	
18	0.852		0.762	
		0.923	0.722	52
accuracy			0.879	1920
macro avg	0.879		0.875	1920
ighted avg		0.879	0.880	1920

Confusion Matrices and Metrics - W-RNN Model

		0 01									
		0 1									
		91									
		01									
							100				
	70										

	precision	recall	f1-score	support
	0.926	0.750	0.829	100
	0.853	0.818	0.835	
	0.907	0.721	0.803	68
	0.859	0.790	0.823	100
	0.827	0.860	0.843	100
	0.925	0.990	0.957	100
	0.744	0.960	0.838	100
	0.979	0.920	0.948	100
	0.970		0.975	100
	0.950	0.950	0.950	100
10	0.971	0.990	0.980	101
11	0.980	0.990	0.985	100
12	0.955	0.850	0.899	100
13	0.906	0.960	0.932	100
14	0.960	0.970	0.965	100
15	0.900	0.990	0.943	100
16	0.766	0.950	0.848	100
17	0.978	0.880	0.926	100
18		0.700	0.782	100
19	0.650	0.750		52
accuracy			0.895	1920
macro avg	0.895	0.888	0.888	1920
weighted avg	0.901	0.895	0.894	1920

ANALYSIS OF RESULTS

	LSTM (RNN)	Bi-LSTM	W-RNN
Mean Precision	67.6%	87.9%	89.5%
Mean Recall	66.2%	88%	88.8%
F1 Measure	64.5%	87.5%	88.8%

Classification Results of 21 Documents

	Predicted	Actual	Status
0	comp.sys.ibm.pc.hardware	misc.forsale	InCorrect
1	comp.graphics	comp.sys.ibm.pc.hardware	InCorrect
2	sci.electronics	sci.electronics	Correct
3	rec.sport.baseball	rec.sport.baseball	Correct
4	talk.politics.guns	talk.politics.misc	InCorrect
5	misc.forsale	sci.electronics	InCorrect
6	misc.forsale	misc.forsale	Correct
7	comp.windows.x	comp.windows.x	Correct
8	rec.autos	rec.autos	Correct
9	misc.forsale	misc.forsale	Correct
10	comp.os.ms-windows.misc	comp.os.ms-windows.misc	Correct
11	talk.religion.misc	alt.atheism	InCorrect
12	misc.forsale	comp.graphics	InCorrect
13	comp.sys.mac.hardware	comp.sys.ibm.pc.hardware	InCorrect
14	comp.graphics	sci.electronics	InCorrect
15	talk.religion.misc	talk.religion.misc	Correct
16	sci.crypt	sci.crypt	Correct
17	comp.windows.x	comp.windows.x	Correct
18	soc.religion.christian	soc.religion.christian	Correct
19	comp.graphics	comp.graphics	Correct
20	talk.politics.guns	talk.politics.guns	Correct

An Improvement to the above model (Additional to the Paper)

- Since Bi-LSTM gives a significant improvement as compared to the standard LSTM architecture, we used the Bidirectional LSTM to obtain the WM-vectors, which would then be weighted to obtain the document vector
- This would further increase the accuracy of classification as each WM-vector would contain information of both, the past and the future.
- ▶ We would call this as Bidirectional Weighted RNN, or simply, Bi-WRNN

Results of Bi-WRNN Model

- Reaches below 0.5 loss in just 2 epochs, which takes around 15 epochs in case of W-RNN.
- ➤ It has much higher rate of convergence, takes less than ½ the number of epochs as compared to W-RNN to reach optimum accuracy
- Performs as good as the W-RNN model when compared to our implementation of both
- Shows 89% precision and recall, 5% better than the metric quoted for W-RNN as per the paper

Confusion Matrix and Metrics - Bi-WRNN

D	Acc	ur	racy	/: (8.6	9166	57														
	[[6	57																			24]
			77																		1]
				60																	0]
					88																0]
						85															0]
							92														0]
								88													0]
									87												0]
										95											0]
											95										0]
												98									0]
													97								0]
														86							0]
															90						0]
																96					1]
																	98				1]
																		94			1]
											2								95		0]
																		15		78	3]
	[2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	1	46]]

		recall	f1-score	
	0.971	0.670		
		0.778	0.815	
		0.882	0.816	
			0.815	
	0.842			
		0.920	0.929	
	0.871		0.876	
		0.870		
11				
12				
			0.947	
	0.914			
			0.947	
			0.887	
17	0.979			
			0.713	52
				1920
			0.887	1920
eighted avg		0.892		1920

THANK YOU!