Absolument, je comprends! Version ultra-condensée, ultra-lisible, avec tableaux et schémas pour fiche de révision.

Fiche de Notes - Sécurité & Crypto (Cours 2)

1. Hachage & Authentification

Terme	Définition / Utilité
Collision	$H(x1) = H(x2)$ pour $x1 \neq x2$
Salage	y = H (mdp + sel) Sel unique/utilisateur, long, stocké avec hash. Jamais réutiliser!
But du sel	Empêcher attaques par tables arc-en-ciel
Outils	PBKDF2, bcrypt, scrypt

2. Fonctions à Sens Unique (FSU)

Terme	Définition / Exemple
FSU	Facile: y=f(x) Difficile: x=f ⁻¹ (y)
FSU à brèche secrète	Facile si clé k connue : fk (x) (ex : chiffrement symétrique)
Oracle Attack	Serveur donne indices (ex: padding OK/KO) \rightarrow fuite d'infos

3. Chiffrement Symétrique

Réseau de Feistel (ex: DES)

Entrée	Tour i	Sortie
Lį		L _{i+1} = R _i
R _i	F(R _i , K _i)	$R_{i+1} = L_i \oplus F(R_i, K_i)$

• Déchiffrement : même structure, clés inversées.

Mode CBC (Cipher Block Chaining)

CBC - Chiffrement & Déchiffrement

Chiffrement

Déchiffrement

$$C_0 = IV$$
 $C_0 = IV$ $C_1 = E_1 \times (P_1 \oplus C_1 \oplus$

• Padding PKCS#7:

Cas	Ajout
Bloc incomplet (manque N octets)	Ajouter N octets de valeur N
Bloc plein	Ajouter bloc entier de valeur B
Exemple (B=8): $"ABC" \rightarrow "ABC\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05$	

• Padding Oracle Attack:

Étape	Idée
Kevin envoie C'_{i-1} C_i	Oracle indique si padding correct
En testant octets de C'_{i-1}	Kevin déduit D_k (C_i) puis P_i

4. Corps de Galois (GF)

Notion	Exemple
Existence	GF (p^n) existe ssi p premier
	Ex: $GF(8) = GF(2^3)$, $GF(9) = GF(3^2)$, $GF(14)$ n'existe pas

Notion	Exemple
Représentation	Polynômes degré < n à coeffs dans {0,1} Ex: 110_bin → x^2 + x
Addition	XOR bit à bit Ex: $(x^2+x) + (x+1) = (110) \oplus (011) = (101) = x^2+1$
Multiplication	Multiplier polynômes puis modulo polynôme irréductible $m(x)$ Ex: (x^2+x) $(x+1)$ mod (x^3+x+1) reste 1
Inverse	Euclide étendu pour polynômes : trouver A^{-1} tel que $A*A^{-1} \equiv 1 \mod m(x)$

5. AES (Advanced Encryption Standard)

Élément	Description
Bloc	128 bits (16 octets)
Clés	128, 192, 256 bits
État	Matrice 4x4 octets
Tours	10, 12, 14 (selon clé)

Tour AES:

Étape	Description
SubBytes	Substitution S-Box (inverse dans GF(2^8) + affine)
ShiftRows	Décalage circulaire lignes
MixColumns	Multiplication colonne par matrice fixe dans GF(2^8)
AddRoundKey	XOR avec clé de tour

MixColumns:

	02	03	01	01
d0	c0	c1	c2	c3
d1	c 1	c2	c3	c0
d2	c2	c3	c0	c1
d3	c3	c0	c1	c2

• **KeyExpansion** : Génère clés de tour.

• Déchiffrement : Opérations inverses.

6. Diffie-Hellman (DH)

Élément	Description
Public	Grand premier p, générateur g
Secret Alice	a
Secret Bob	b
Échange	Alice:A = g^a mod p Bob:B = g^b mod p
Clé partagée	Alice:S = B^a mod p Bob:S = A^b mod p

Diffie-Hellman (schéma)

Sécurité	Basée sur la difficulté du logarithme discret		
EDH (éphémère)	a et b changent à chaque session (PFS)		
Vulnérabilité	MitM si non authentifié (remède : signatures/certificats)		

Astuce: privilégie schémas, tableaux, et exemples pour l'exam!