

Introduction – Possible interpretations The Aperture Problem. Based on A Practical Introduction to Computer Vision with OpenCV by Kenneth Dawson-Howe © Wiley & Sons Inc. 2014

Moravec - Binary Example Minimum difference: 2 Minimum difference: 0 Based on A Practical Introduction to Computer Vision with OpenCV by Kenneth Dawson-Howe © Wiley & Sons Inc. 2014

1.	Scale Space Extrema Detection
	✓ Scale Space
	C Locate Extrema
2.	Accurate Keypoint Location
	Filter response – remove low contrast and features primarily along an edge
3.	Keypoint Orientation assignment
4.	Keypoint Descriptors
-	Matching Descriptors – including dropping poor ones
•	Applications

22

SIFT - Keypoint Orientation

- For scale invariance, the keypoint scale is used to select the smoothed image with the closet scale
- For orientation invariance we describe the keypoint wrt. the principal orientation
- Create an orientation histogram (36 bins)

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

- Weight by gradient magnitude
- Sample points around the keypoint
- Highest peak + peaks within 80%
 - Oriented keypoint(s)
- Stable results....

Based on A Practical Introduction to Computer Vision with OpenCV by Kenneth Dawson-Howe © Wiley & Sons Inc. 2014

Slide 23

23

SIFT – Keypoint Description

Could sample image intensity at relevant scale

- Match using normalized cross correlation
- Sensitive to
 - r affine transformations,
 - 3D viewpoint changes and
 - non-rigid deformations
- A better approach (Edelman et al. 1997)
 - Based on a model of biological vision
 - Consider gradients at particular orientations and spatial frequencies
 - Location not required to be precise

Features

Based on A Practical Introduction to Computer Vision with OpenCV by Kenneth Dawson-Howe © Wiley & Sons Inc. 2014

Slide 24

