Problema 1

Albert Ribes

10 de diciembre de 2017

Considerem un problema de classificació en dues classes, en les quals es disposa de les probabilitats de cada classe $P(C_1)$ i $P(C_2)$. Considerem tres possibles regles per classificar un objecte:

- 1. (R_1) Predir la classe més probable
- 2. (R_2) Predir la classe C_1 amb probabilitat $P(C_1)$
- 3. (R_3) Predir la classe C_1 amb probabilitat 0,5

Es demana:

- 1. Donar les probabilitats d'error $P_i(error)$ de les tres regles, i=1,2,3Sea $Q(C_i)$ la probabilidad de elegir la clase C_i . En todos los casos, la probabilidad de error es $P_{error} = Q(C_1)P(C_2) + Q(C_2)P(C_1)$
 - Para la regla R_1 , si la clase más probable es C_1 la probabilidad de error será $P_{error} = 1 \times P(C_2) + 0 \times P(C_1) = P(C_2)$, y si la más probable es C_2 el error será $P_{error} = 0 \times P(C_2) + 1 \times P(C_1) = P(C_1)$. En cualquier caso, la probabilidad de error siempre será $P_{error} = min(P(C_1), P(C_2))$
 - \blacksquare Para la regla R_2 la probabilidad de error es

$$P_{error} = P(C_1)P(C_2) + (1 - P(C_1))P(C_1)$$

$$= P(C_1)(1 - P(C_1)) + (1 - P(C_1)P(C_1))$$

$$= 2P(C_1)(1 - P(C_1))$$

$$= 2P(C_1) - 2P(C_1)^2$$

 \bullet Para la regla R_3 la probabilidad de error es

$$\begin{split} P_{error} &= 0.5P(C_2) + 0.5P(C_1) \\ &= 0.5(1 - P(C_1)) + 0.5P(C_1) \\ &= 0.5 - 0.5P(C_1) + 0.5P(C_1) \\ &= 0.5 \end{split}$$

2. Demostrar que $P_1(error) \leq P_2(error) \leq P_3(error)$

Hay que demostrar que

$$min(P(C_1), P(C_2)) \le 2P(C_1) - 2P(C_1)^2$$
 (1)

$$2P(C_1) - 2P(C_1)^2 \le 0.5 \tag{2}$$

En el caso que $P(C_1) \leq P(C_2)$, la condición 1 se puede escribir como

$$P(C_1) \le 2P(C_1) - 2P(C_1)^2$$

$$0 \le P(C_1) - 2P(C_1)^2$$

$$2P(C_1)^2 \le P(C_1)$$

$$2P(C_1) \le 1$$

$$P(C_1) \le \frac{1}{2}$$

Y esto siempre es cierto, puesto que $P(C_1) + P(C_2) = 1$ y hemos establecido que $P(C_1) \le P(C_2)$

En el caso que $P(C_1) > P(C_2)$, la condición 1 se puede escribir como

$$P(C_2) \le 2P(C_1) - 2P(C_1)^2$$
$$1 - P(C_1) \le 2P(C_1) - 2P(C_1)^2$$
$$2P(C_1)^2 - 3P(C_1) + 1 \le 0$$

La igualdad se cumple en los puntos

$$x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2}}{2 \cdot 2} = \frac{3 \pm 1}{4}$$
$$x \in \left\{\frac{1}{2}, 1\right\}$$

Y como el elemento elevado al cuadrado es positivo, eso significa que:

$$P(C_1) \in \left[\frac{1}{2}, 1\right]$$

Igual que antes, esto es cierto puesto que hemos asumido que $P(C_1) > P(C_2)$.

La condición 1 ya está demostrada. Para la condición 2:

$$2P(C_1) - 2P(C_1)^2 \le 0.5$$

 $0 \le 2P(C_1)^2 - 2P(C_1) + 0.5$

La igualdad se cumple en los puntos

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 2 \cdot 0, 5}}{2 \cdot 2} = \frac{2 \pm 0}{4}$$
$$x = \frac{1}{2}$$

 $\mathbf Y$ como el elemento elevado al cuadrado es positivo, la inecuación siempre es cierta.

Quedan demostradas las dos condiciones