原料として、2-アミノ-5-ブロモ-4-[(1,1-ジメチル) エチル] チアゾール (例198(1)の化合物)、及び<math>4-メチルピペラジンを用いて例198(2)~(4)と同様の操作を行い、標題化合物を得た。

収率: 6.9%

(2) 2-アミノー4-[(1, 1-ジメチル) エチル] -5-(4-メチルピペ ラジン-1-イル) チアゾール

¹H-NMR (DMSO-d₆): δ 1. 25 (9H, s), 2. 12 (2H, b r s), 2. 19 (3H, s), 2. 57 (2H, b r s), 2. 72 (4H, b r s), 6. 51 (2H, s).

(3) $2-アセトキシ-N-\{4-[(1,1-ジメチル) エチル]-5-(4- メチルピペラジン-1-イル) チアゾール-2-イル<math>\}$ ベンズアミド 粗生成物のまま次反応に用いた。

 $^{1}H-NMR$ (CD₃OD): δ 1. 41 (9H, s), 2. 55 (3H, s), 2. 87 (4H, brs), 3. 03 (4H, brs), 6. 88 (1H, d, J=8. 7Hz), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 8. 11 (1H, d, J=2. 7Hz).

例201:化合物番号201の化合物の製造

原料として、2-アミノ-5-ブロモー4-[(1,1-ジメチル) エチル] チアゾール (例198(1)の化合物)、及び4-フェニルピペラジンを用いて例198(2)~(4)と同様の操作を行い、標題化合物を得た。

収率: 6.9%

(2) 2-アミノー4-[(1, 1-ジメチル) エチル] -5-(4-フェニルピペラジン-1-イル) チアゾール

 $^{1}H-NMR (CDCl_{3}): \delta$ 1. 34 (9H, s), 2. 80 (2H, brs),

3. 03 (4H, brs), 3. 55 (2H, brs), 4. 69 (2H, s), 6. 88 (1H, tt, J=7. 2, 1. 2Hz), 6. 95 (2H, dd, J=9. 0, 1. 2Hz), 7. 28 (2H, dd, J=8. 7, 7. 2Hz).

粗生成物のまま次反応に用いた。

(4) 5-プロモ-N- $\{4-$ [(1, 1-ジメチル) エチル] -5-(4-フェ ニルピペラジン-1-イル) チアゾール-2-イル $\}$ -2-ヒドロキシベンズア ミド(化合物番号201)

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 39 (9H, s), 2. 97 (4H, s), 3. 30 (4H, s), 6. 82 (1H, t, J=7. 5Hz), 6. 97 (2H, brs), 6. 99 (2H, t, J=7. 5Hz), 7. 58 (1H, brs), 8. 05 (1H, d, J=2. 4Hz), 11. 69 (1H, brs), 11. 82 (1H, brs).

例202:化合物番号202の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾール を用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:16.0%

mp 239℃ (dec.).

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=8. 4Hz), 7. 34 (1H, t, J=7.6Hz), 7. 44 (2H, t, J=7.6Hz), 7. 62 (1H, dd, J=8.4, 2.8Hz), 7. 67 (1H, s), 7. 92 (2H, d, J=7.2Hz), 8. 08 (1H, d, J=2.8Hz), 11. 88 (1H, brs), 12. 05 (1H, brs).

例203:化合物番号203の化合物の製造

 $(1) \{2 - [(5 - \overline{j} u + - 2 - E F u + \overline{j} v + \overline{j} v)] - 4 - \overline{j} u + \overline{j} v \}$

ルチアゾール-5-イル 酢酸 メチルエステル

原料として、5-プロモサリチル酸、及び2-アミノ-4-フェニルチアゾール-5-酢酸 メチルエステルを用いて例 195 (3) と同様の操作を行い、標題化合物を得た。

収率:32.1%

mp 288. 5-229. 5°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 66 (3H, s), 3. 95 (2H, s),

6. 99 (1H, d, $J = 8.0 \,\mathrm{Hz}$), 7. 42 (1H, d, $J = 6.0 \,\mathrm{Hz}$),

7. 48 (2H, brt, J = 7.6 Hz), 7. 56-7. 61 (3H, m),

8. 07 (1H, d, J=2.4Hz), 11. 85 (1H, brs), 11. 9 8 (1H, brs).

(2) $\{2-[(5-ブロモー2-ヒドロキシベンゾイル) アミノ] -4-フェニルチアゾール-5-イル] 酢酸 (化合物番号203)$

{2-[(5-ブロモー2-ヒドロキシベンゾイル)アミノ]ー4-フェニルチアゾールー5-イル}酢酸 メチルエステル (75mg, 0.17mmol)をメタノール (5mL) に溶解し、2規定水酸化ナトリウム (0.5mL, 1mmol)を添加し、次いで室温で12時間攪拌した。反応混合物を2規定塩酸にあけて酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣をnーへキサンー酢酸エチルで加熱還流下に懸濁洗浄して標題化合物の淡黄白色結晶 (56mg, 77.3%)を得た。

mp 284-286 °C.

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 84 (2H, s), 6. 98 (1H, d, J=8. 8Hz), 7. 42 (1H, d, J=6. 8Hz), 7. 49 (2H, t, J=7. 6Hz), 7. 58-7. 61 (3H, m), 8. 07 (1H, d, J=2. 8Hz), 12. 25 (H, brs).

例204:化合物番号204の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー4, 5 ージフェニルチア ゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:25.9%

mp 262-263 °C.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=8. 1Hz), 7. 34-7. 47 (10H, m), 7. 63 (1H, d, J=6. 9Hz), 8. 08 (1H, d, J=2. 4Hz), 11. 88 (1H, brs), 12. 08 (1H, brs).

[2-アミノー4, 5-ジフェニルチアゾール: 「日本化学雑誌 (Nihon Kagaku Zasshi)」, 1962年, 第83巻, p. 209参照]

例205:化合物番号205の化合物の製造

原料として、5 ーブロモサリチル酸、及び2 ーアミノー4 ーベンジルー5 ーフェ ニルチアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:28.1%

mp 198-200°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 08 (2H, s), 6. 95 (1H, d, J=8. 8Hz), 7. 15-7. 22 (3H, m), 7. 30 (2H, t, J=7. 6Hz), 7. 38-7. 43 (1H, m), 7. 47 (4H, d, J=4. 4Hz), 7. 57 (1H, brd, J=8. 8Hz), 8. 05 (1H, d, J=2. 4Hz), 11. 98 (1H, brs).

[2-アミノー 4-ベンジルー 5-フェニルチアゾール: 「ケミカル・アンド・ファーマシューティカル・ビュレティン (Chemical and Pharmaceutical Bulletin)」,1962年,第10巻,p. 376参照]

例206:化合物番号206の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-フェニル-4-(トリフルオロメチル)チアゾールを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:33.2%

mp 250° C (dec.). 1 H-NMR (DMSO- $_{6}$): δ 7. 02 (1 H, d, J=8.8Hz), 7. 51 (5H, s), 7. 63 (1H, dd, J=8.8, 2.4Hz), 8. 02 (1H, d, J=2.8Hz), 12. 38 (1 H, brs).

例207:化合物番号207の化合物の製造

原料として、1-フェニル-1, 3-ブタンジオンを用いて例195(1)~(3) と同様の操作を行い、標題化合物を得た。

収率: 8. 9% (3工程)

(1) α - ブロモ-1 - フェニル-1 , 3 - ブタンジオン

¹H-NMR (CDCl₃): δ 2. 46 (3H, s), 5. 62 (1H, s), 7. 48-7. 54 (2H, m), 7. 64 (1H, tt, J=7. 5, 2. 1Hz), 7. 97-8. 01 (2H, m).

(2) 2-アミノ-5-アセチル-4-フェニルチアゾール

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 18 (3H, s), 7. 50-7. 55 (2H, m), 7. 59-7. 68 (3H, m), 8. 69 (2H, brs).

(3) 5 − ブロモーN − (5 − アセチル − 4 − フェニルチアゾール − 2 − イル) − 2 − ヒドロキシベンズアミド (化合物番号 2 0 7)

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 44 (3H, s), 6. 99 (1H, d, J=9.0Hz), 7. 55-7. 71 (4H, m), 7. 76-7. 80 (2H, m), 8. 01 (1H, d, J=2.4Hz), 12. 36 (2H, br).

例208:化合物番号208の化合物の製造

原料として、1, 3-ジフェニル-1, 3-プロパンジオンを用いて例195(1) ~ (3) と同様の操作を行い、標題化合物を得た。

収率: 49. 7%

(1) α -ブロモー1, 3-ジフェニルー1, 3-プロパンジオン 1 H-NMR (CDC 1_{3}): δ 6. 55 (1H, s), 7. 45-7. 50 (4

H, m), 7. 61 (2H, tt, J=7. 2, 2. 1Hz), 7. 98-8. 0 1 (4H, m).

(2) 2-アミノ-5-ベンゾイル-4-フェニルチアゾール

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04-7. 18 (5H, m), 7. 22 -7. 32 (3H, m), 7. 35-7. 38 (2H, m), 8. 02 (2H, s).

(3) 5-ブロモ-N-(5-ベンゾイル-4-フェニルチアゾール-2-イル) -2-ヒドロキシベンズアミド (化合物番号 208)

¹H-NMR (DMSO-d₆): δ 7. 0 3 (1H, d, J=8. 7Hz), 7. 17-7. 3 0 (5H, m), 7. 39-7. 47 (3H, m), 7. 57-7. 6 0 (2H, m), 7. 6 4 (1H, dd, J=8. 7, 2. 7Hz), 8. 0 5 (1H, d, J=2. 4Hz), 11. 8 2 (1H, brs), 12. 3 5 (1H, brs).

例209:化合物番号210の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:69.4%

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7.5Hz), 4. 21 (2H, q, J=7.5Hz), 7. 07 (1H, d, J=8.7Hz), 7. 43-7. 47 (3H, m), 7. 53 (1H, dd, J=8.7, 2.4Hz), 7. 70-7. 74 (2H, m), 7. 92 (1H, d, J=3.0Hz), 11. 88 (1H, br), 12. 29 (1H, brs).

例210:化合物番号209の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率: 28.6%

mp 197-199°C.

¹H-NMR (DMSO-d₆): δ 1. 21 (3H, t, J=6.8Hz), 4. 20 (2H, q, J=6.8Hz), 7. 01 (1H, d, J=8.8Hz), 7. 43-7. 48 (3H, m), 7. 63 (1H, dd, J=8.8, 2.4 Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 33 (1H, brs).

例211:化合物番号211の化合物の製造

原料として、ペンタフルオロベンゾイル酢酸エチルエステルを用いて例 195 (1) \sim (3) と同様の操作を行い、標題化合物を得た。

収率:40.0%(3工程)

- (2) 2-アミノー4-(ペンタフルオロフェニル) チアゾール-5-カルボン酸 エチルエステル

 $^{1}H-NMR$ (CDCl₃): δ 1. 23 (3H, t, J=7. 2Hz), 4. 2 1 (2H, q, J=7. 2Hz), 5. 41 (2H, s).

(3) 2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-(ペンタフルオロフェニル) チアゾールー5-カルボン酸 エチル (化合物番号211) ^1H-NMR (DMSO- d_6): δ 1. 20 (3H, t, J=7. 2Hz), 2. 51 (2H, q, J=7. 2Hz), 7. 02 (1H, d, J=8. 7Hz), 7. 64 (1H, dd, J=8. 7, 2. 7Hz), 7. 90 (1H, d, J=3. 0Hz), 11. 92 (1H, br), 12. 58 (1H, br).

例212:化合物番号212の化合物の製造

(1) 2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸

2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸エチルエステル(化合物番号209)を用いて例82と同様

の操作を行い、標題化合物を得た。

収率:67.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 00 (1H, d, J=8.8Hz), 7. 42-7. 44 (3H, m), 7. 62 (1H, dd, J=8.8, 2.4Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 31 (1H, brs), 12. 99 (1H, brs).

(2) [2-(5-ブロモー2-ヒドロキシベンゾイル) アミノー4-フェニルチ アゾール-5-イル] -N-メチルカルボキサミド(化合物番号212)

2-(5-ブロモー2-ヒドロキシベンゾイル)アミノー4-フェニルチアゾールー5-カルボン酸 $(0.\ 20g,\ 0.\ 48mmol)、メチルアミン 40%メタノール溶液 <math>(0.\ 2ml)$ 、1-ヒドロキシベンゾトリアゾール 水和物 (96.

 $7 \, \mathrm{mg}$ 、 $0.72 \, \mathrm{mmo}$ 1)、 $WSC\cdot HC1$ ($137.2 \, \mathrm{mg}$, $0.72 \, \mathrm{mmo}$ 1)、テトラヒドロフラン ($15 \, \mathrm{mL}$) の混合物を室温で $18 \, \mathrm{時間}$ 攪拌した。反応混合物を 2 規定塩酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧留去して得られた残渣をシリカゲルクロマトグラフィー ($n-\wedge$ キサン:酢酸エチル=1:2) で精製し、結晶化 (ジクロロメタン/ $n-\wedge$ キサン) して標題化合物の白色粉末 ($87.9 \, \mathrm{mg}$, 42.6%) を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 70 (3H, d, J=4.5Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=9.0, 2.4Hz), 7. 68-7. 71 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 16 (1H, t, J=4.5Hz), 1 1. 88 (1H, br), 12. 15 (1H, brs).

以下の実施例において例 2 1 2 (2) の方法が引用されている場合、脱水縮合剤 としては、WSC・HC1、及び1-ヒドロキシベンゾトリアゾール水和物を用いた。また、反応溶媒としては、テトラヒドロフラン等の溶媒を用いた。

例213:化合物番号213の化合物の製造

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 05 (3H, t, J=6.9Hz), 3. 15-3. 24 (2H, m), 7. 02 (1H, d, J=8.7Hz), 7. 40 -7. 47 (3H, m), 7. 63 (1H, dd, J=8.7, 3.0Hz), 7. 69-7. 72 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 20 (1H, t, J=5.4Hz), 11. 84 (1H, br), 12. 14 (1H, brs).

例214:化合物番号214の化合物の製造

原料として、2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-フェ ニルチアゾール-5-カルボン酸(例 2 1 2 (1) の化合物)、及びイソプロピルアミンを用いて例 2 1 2 (2) と同様の操作を行い、標題化合物を得た。

収率:23.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 07 (6H, d, J=6.3Hz), 4. 02 (1H, m), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 52 (3H, m), 7. 64 (1H, dd, J=8.7, 2.7Hz), 7. 69-7. 73 (2H, m), 8. 06 (1H, d, J=2.7Hz), 11. 89 (1H, br), 12. 14 (1H, brs).

例215:化合物番号215の化合物の製造

原料として、2-(5-) ロモー2- ヒドロキシベンゾイル)アミノー4- フェニルチアゾール-5- カルボン酸(例 2 1 2 (1) の化合物)、及び2- フェネチルアミンを用いて例 2 1 2 2 2 と同様の操作を行い、標題化合物を得た。

収率:62.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 78 (2H, t, J=7.5Hz), 3. 43 (2H, q, J=7.5Hz), 7. 02 (1H, d, J=9.0Hz), 7.

 $19-7.\ 24\ (3H, m),\ 7.\ 27-7.\ 33\ (2H, m),\ 7.\ 39-7.$ $41\ (3H, m),\ 7.\ 61-7.\ 65\ (3H, m),\ 8.\ 06\ (1H, d, J=2.\ 4Hz),\ 8.\ 25\ (1H, t, J=6.\ 0Hz),\ 11.\ 85\ (1H, brs),\ 12.\ 15\ (1H, brs).$

例216:化合物番号216の化合物の製造

原料として、5 ー ブロモサリチル酸、及び2 ー アミノー4 ー (トリフルオロメチル)チアゾールー5 ー カルボン酸 エチルエステルを用いて例 1 9 5 (3)と同様の操作を行い、標題化合物を得た。

収率:88.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 32 (3H, t, J=7.2Hz), 4. 33 (2H, q, J=7.2Hz), 7. 01 (1H, d, J=8.7Hz), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 98 (1H, d, J=2.4Hz), 12.64 (1H, br).

例217:化合物番号217の化合物の製造

原料として、5-クロロ-N- $\{4-[(1,1-$ ジメチル) エチル] - 5-[(2,2-ジメチル) プロピオニル] チアゾール-2-イル $\}$ -2-ヒドロキシベンズ アミド (化合物番号195)、及びアセチルクロリドを用いて例96と同様の操作を行い、標題化合物を得た。

収率:65.3%

 $^{1}H-NMR$ (CDCl₃): δ 1. 32 (9H, s), 1. 33 (9H, s), 2. 46 (3H, s), 7. 22 (1H, d, J=8. 4Hz), 7. 56 (1H, d d, J=8. 7, 2. 4Hz), 8. 05 (1H, d, J=2. 7Hz), 9. 8 2 (1H, brs).

例218:化合物番号218の化合物の製造

原料として、4-ヒドロキシビフェニル-3-カルボン酸及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:61.7%

mp 207-208°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 23 (3H, t, J=7.2Hz), 4.

22 (2H, q, J=7.2Hz), 7.16 (1H, d, J=8.7Hz), 7.

36 (1H, t, J=7.5Hz), 7.45-7.50 (5H, m), 7.69

-7.76 (4H, m), 7.85 (1H, dd, J=8.7, 2.4Hz), 8.

31 (1H, d, J=2.4Hz), 11.73 (1H, brs), 12.60 (1H, brs).

[4-ヒドロキシビフェニル-3-カルボン酸:「テトラヘドロン(Tetrahedron)」, 1997年、第53巻、p. 11437参照]

例219:化合物番号219の化合物の製造

原料として、(4'-7)ルオロー4-ヒドロキシビフェニル)-3-カルボン酸及び2-アミノー4-フェニルチアゾールー5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:62.7%

mp 237-238°C.

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 22 (3H, t, J=7. 2Hz),

4. 21 (2H, q, J = 7. 2Hz), 7. 13 (1H, d, J = 8. 4Hz),

7. 28 (2H, t, J = 8.8 Hz), 7. 44-7.45 (3H, m), 7.

71-7.75 (4H, m), 7.81 (1H, dd, J=8.8, 2.4Hz),

8. 27 (1H, d, J=2. 4Hz), 11. 67 (1H, brs), 12. 5 8 (1H, brs).

[(4'-フルオロ-4-ヒドロキシビフェニル) -3-カルボン酸:「テトラヘドロン (Tetrahedron)」, 1997年, 第53巻, p. 11437参照]

例220:化合物番号220の化合物の製造

原料として、(2', 4'-ジフルオロ-4-ヒドロキシビフェニル)-3-カルボン酸及び<math>2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエス

テルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率:45.6%

mp 206-207°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7, 2Hz), 7. 17 (1H, d, J=9. 0Hz), 7. 21 (1H, td, J=8. 7, 2. 4Hz), 7. 38 (1H, ddd, J=11. 7, 9. 3, 2. 4Hz), 7. 44-7. 46 (3H, m), 7. 6 0-7. 75 (4H, m), 8. 13-8. 14 (1H, m), 11. 86 (1H, brs). 12. 46 (1H, brs).

例221:化合物番号221の化合物の製造

(1) [4-ヒドロキシー4'-(トリフルオロメチル) ビフェニル] -3-カルボン酸

mp 185℃ (dec.).

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 09 (1H, d, J=8.8Hz), 7. 77 (2H, d, J=8.0Hz), 7. 85 (2H, d, J=8.0Hz), 7. 90 (1H, dd, J=8.8, 2.0Hz), 8. 10 (1H, d, J=2.4Hz), 11.80 (1H, brs).

(2) $2-\{[4-ヒドロキシ-4'-(トリフルオロメチル) ビフェニル]-3$ -カルボニル $\}$ アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号 2 2 1)

原料として、[4-ヒドロキシ-4'-(トリフルオロメチル)ビフェニル]-3-カルボン酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例195(3)と同様の操作を行い、標題化合物を得た。

収率: 41. 7%

mp $236-237^{\circ}$ C.

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 21 (2H, q, J=7. 2Hz), 7. 18 (1H, d, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7. 72-7. 74 (2H, m), 7. 81 (2 H, d, J=8. 4Hz), 7. 91 (1H, dd, J=8. 8, 2. 4Hz), 7. 93 (2H, d, J=8.4Hz), 8. 36 (1H, d, J=2.4Hz), 11. 78 (1H, brs), 12. 62 (1H, brs).

例222:化合物番号222の化合物の製造

原料として、2-ビドロキシ-5-(1-ピロリル)安息香酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例 1 9 5 (3) と同様の操作を行い、標題化合物を得た。

収率:55.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7. 2Hz), 6. 26 (2H, t, J=2. 1Hz), 7. 13 (1H, d, J=8. 7Hz), 7. 32 (2H, t, J=2. 1Hz), 7. 43-7. 47 (3H, m), 7. 70-7. 75 (3H, m), 8. 09 (1H,

d, J=2.7Hz), 11.58 (1H, brs), 12.55 (1H, brs). 例223:化合物番号223の化合物の製造

(1) 2-ヒドロキシ-5-(2-チエニル) 安息香酸

5-ブロモサリチル酸(500 mg, 2.30 mm o 1)、を 1, 2-ジメトキシエタン(5 mL)に溶解し、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(80 mg, 0.07 mm o 1)を添加、室温で10 分間攪拌した。次いでジヒドロキシー2-チエニルボラン(324 mg, 2.53 mm o 1)及び 1 M 炭酸ナトリウム(7 mL)を添加し2 時間加熱還流した。反応混合物を室温まで冷却後 2 規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を定法に従いトリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して黄色液体(277 mg)を得た。これをメタノール(5 mL)に溶解し、2 規定水酸化ナトリウム(1.5 mL)を添加し、次いで60 で1時間攪拌した。反応混合物を室温まで冷却後、2 規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン-ジクロルメタンで晶析して標題化合物の白色結晶(58 mg, 11.5%)を得た。

¹H-NMR(DMSO-d₆): δ 6. 95(1H, d, J=8. 8Hz), 7. 0 9(1H, dd, J=4. 8, 3. 6Hz), 7. 37(1H, dd, J=4. 0, 1. 2Hz), 7. 45(1H, dd, J=5. 2, 1. 2Hz), 7. 74(1H, dd, J=8. 8, 2. 8Hz), 7. 96(1H, d, J=2. 8Hz).

(2) 2-[2-EFP+v-5-(2-FFP+v)] ベンゾイル] アミノー4-フェニルチアゾールー5-カルボン酸 エチルエステル (化合物番号223) 原料として、2-EFP+v-5-(2-FP+v) 安息香酸、及び2-PE-クターフェニルチアゾールー5-カルボン酸 エチルエステルを用いて例195 (3) と同様の操作を行い、標題化合物を得た。

収率:58.2%

mp 213-214°C.

 $^{1}H-NMR(DMSO-d_{6}):\delta$ 1. 22(3H, t, J=7. 2Hz), 4. 2 1(2H, q, J=7. 2Hz), 7. 10(1H, d, J=9. 2Hz), 7. 12(1 H, dd, J=4. 8, 3. 6Hz), 7. 44-7. 46(4H, m), 7. 50 (1H, dd, J=4. 8, 1. 2Hz), 7. 71-7. 74(2H, m), 7. 7 9(1H, dd, J=8. 8, 2. 4Hz), 8. 21(1H, d, J=2. 4Hz), 11. 78(1H, brs), 12. 44(1H, brs).

例301:化合物番号301の化合物の製造

(1) 5-クロロー2-メトキシーβ-フェニルスチレン

2-プロモー4-クロロアニソール($300\,\mathrm{mg}$, $1.4\,\mathrm{mmo\,1}$)、スチレン($21\,\mathrm{mg}$, $2\,\mathrm{mmo\,1}$)、トリエチルアミン($13\,\mu\,\mathrm{L}$, $0.1\,\mathrm{mmo\,1}$)、トリフェニルフォスフィン($50\,\mathrm{mg}$, $1.9\,\mathrm{mmo\,1}$)のアセトニトリル($6\,\mathrm{mL}$)溶液に酢酸パラジウム($21\,\mathrm{mg}$, $7\,\mathrm{mo\,1\,\%}$)を加え、アルゴン雰囲気下、8時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧濃縮し、得られた残渣を酢酸エチル($15\,\mathrm{mL}$)で希釈し、 $2\,\mathrm{規定塩酸}$ 、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=10:1)で精製して、標題化合物の白色粉末($118\,\mathrm{mg}$, 35.6%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 3. 85 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 7. 08 (1H, d, J=16. 8Hz), 7. 17 (1H, d d, J=8. 8, 2. 5Hz), 7. 20-7. 42 (4H, m), 7. 51-7. 55 (3H, m).

(2) 4-クロロー2-スチリルフェノール(化合物番号301)

5-クロロ-2-メトキシ- $\beta-$ フェニルスチレン($80\,\mathrm{mg}$, $0.3\,\mathrm{mmo}$ 1)のジクロロメタン($2\,\mathrm{mL}$)溶液に、アルゴン雰囲気下、 $1\,\mathrm{mo}$ 1 / Lボロントリブロミド/ジクロロメタン溶液($0.5\,\mathrm{mL}$, $0.5\,\mathrm{mmo}$ 1)を室温で加え、

12時間攪拌した。反応混合物を酢酸エチル(15mL)で希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(34.2mg,45.4%)を得た。 ^1H-NMR (CDC1₃): δ 4.95(1H,brs), δ 6.74(1H,d, δ 7.10(1H,d,J=1 δ 6.2Hz),7.09(1H,dd,=8.7,2.4Hz),7.10(1H,d,J=1 δ 6.2Hz),7.28-7.39(4H,m),7.49-7.54(3H,m).

例302:化合物番号302の化合物の製造

(1) (S) -2-アミノ-3-フェニル-N-[3, 5-ビス(トリフルオロメチル)フェニル]プロピオンアミド

3,5-ビス (トリフルオロメチル) アニリン (0.20g,0.87mmo1)、 N- (tert-ブトキシカルボニル) -L-フェニルアラニン (254.8mg,0.96mmo1)、三塩化リン $(40\mu L,0.46mmo1)$ 、トルエン (4mL) の混合物を、アルゴン雰囲気下、80で1.5時間攪拌した。反応混合物を室温まで冷却した後、炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテル/n-ヘキサンで結晶化して、標題化合物の黄白色粉末(333.7mg,92.9%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 13 (1H, dd, J=13. 8, 8. 1Hz), 3. 29 (1H, dd, J=13. 8, 6. 0Hz), 4. 37 (1H, s), 7. 25-7. 38 (5H, m), 7. 86 (1H, s), 8. 30 (2H, s), 8. 48 (3H, s), 11. 95 (1H, s).

以下の実施例において例302(1)の方法が引用されている場合、酸ハロゲン 化剤としては、三塩化リンを用いた。また、反応溶媒としては、トルエン、モノ クロロベンゼン等の溶媒を用いた。

(2) (S) -2-アセトキシ-5-クロロ-N- (2-フェニル-1- {[3,

5-ビス(トリフルオロメチル)フェニル]カルバモイル}エチル)ベンズアミド

2-アセトキシ-5-クロロ安息香酸(104mg, 0.48mmol)、(S) -2-アミノ-3-フェニル-N-[3,5-ビス(トリフルオロメチル)フェニル]プロピオンアミド(0.20g,0.48mmol)、1-ヒドロキシベンゾトリアゾール(71.4mg,0.53mmol)のN,N-ジメチルホルムアミド(4mL)溶液に、WSC・HCl(184mg,0.96mmol)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-キサン:酢酸エチル=3:1→2:1)で精製して、標題化合物の白色結晶(141.4mg,51.4%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 05 (3H, s), 3. 04 (1H, d d, J=13. 8, 9. 9Hz), 3. 19 (1H, d d, J=13. 8, 4. 8 Hz), 4. 73-4. 81 (1H, m), 7. 22-7. 35 (6H, m), 7. 54 (1H, d, J=2. 4Hz), 7. 60 (1H, d d, J=8. 7, 2. 4 Hz), 7. 81 (1H, s), 8. 27 (2H, s), 8. 91 (1H, d, J=7. 8Hz), 10. 81 (1H, s).

以下の実施例において例302(2)の方法が引用されている場合、脱水縮合剤 としては、WSC・HC1、及び1-ヒドロキシベンゾトリアゾールを用いた。 また、反応溶媒としては、N, N-ジメチルホルムアミド等の溶媒を用いた。

- (3)(S)-5-クロロ-2-ヒドロキシ-N-(2-フェニル-1-{[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}エチル)ベンズアミド(化合物番号302)

 $+2\,\mathrm{m\,L}$)混合溶液に 5規定水酸化ナトリウム水溶液($0.2\,\mathrm{m\,L}$)を加え、室温で $2\,\mathrm{0}$ 分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を酢酸エチル/イソプロピルエーテル/ n $-\mathrm{n}$ $-\mathrm{n}$

以下の実施例において例302(3)の方法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例303:化合物番号303の化合物の製造

(1) $[1-({[3,5-ビス(トリフルオロメチル)フェニル] アミノ} カルボニル) メチル] カルバミン酸 1,1-ジメチルエチルエステル$

で精製して、標題化合物の白色結晶(101.9mg, 30.3%)を得た。 ^1H-NMR ($CDC1_3$): δ 1.49(9H, s), 3.99(2H, d, J=6.0Hz), 5.37(1H, t, J=6.0Hz), 7.57(1H, s), 8.00(2H, s), 9.06(1H, brs).

(2) 2-アミノ-N-[3, 5-ビス (トリフルオロメチル) フェニル]アセトアミド塩酸塩

[1-({[3,5-ビス(トリフルオロメチル)フェニル] アミノ} カルボニル) メチル] カルバミン酸 1,1-ジメチルエチルエステル(101.9 mg,0.26 mm o 1) に4規定塩酸・酢酸エチル溶液(1 mL) を加え、室温で1時間 攪拌した。反応混合物にn-ヘキサン(15 mL) を加え、析出した白色固体を 濾取して、標題化合物の白色粉末(80.8 mg,96.4%)を得た。 1 H-NMR(CD $_3$ OD): δ 3.89(2 H,s),7.71(1 H,s),8.22(2 H,s).

(3) $2-rehキシ-5-ρ--N-({[3, 5-iz, (トリフルオロメチル) フェニル] カルバモイル} メチル) ベンズアミド$

2-アセトキシ-5-クロロ安息香酸(59.1 mg, 0.28 mm o 1)、2-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]アセトアミド塩酸塩(80.8 mg,0.25 mm o 1)、<math>1-ヒドロキシベンゾトリアゾール(37.2 mg,0.28 mm o 1)のN,Nジメチルホルムアミド(3 mL)溶液にWSC・HC1(95.9 mg,0.5 mm o 1)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:2 \rightarrow 1:1)で精製して、標題化合物の白色結晶(83.7 mg,69.3%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 2. 40 (3H, s), 4. 40 (2H, d, J = 5. 4Hz), 7. 17 (1H, d. J=8. 4Hz), 7. 40 (1H, t,

J=5. 4Hz), 7. 53 (1H, dd, J=8. 4, 2. 4Hz), 7. 62 (1H, s), 7. 82 (1H, d, J=2. 4Hz), 8. 19 (2H, s), 9. 20 (1H, s).

(4) 5 - クロロー2ーヒドロキシーNー({[3, 5ービス(トリフルオロメチル)フェニル]カルバモイル}メチル)ベンズアミド(化合物番号303)2 - アセトキシー5 - クロローNー({[3, 5ービス(トリフルオロメチル)フェニル]カルバモイル}メチル)ベンズアミド(83.7mg,0.17mmo1)のメタノール/テトラヒドロフラン(2mL+1mL)溶液に、5規定水酸化ナトリウム水溶液(0.1mL)を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=2:1)で精製、nーヘキサンで懸濁洗浄して、標題化合物の白色結晶(47.7mg,63.7%)を得た。

¹H-NMR (DMSO-d₆): δ 4. 18 (2H, d, J=5.4Hz), 7. 00 (1H, d, J=9.0Hz), 7. 47 (1H, dd, J=9.0, 2.7 Hz), 7. 80 (1H, s), 7. 96 (1H, d, J=2.7Hz), 8. 27 (2H, s), 9. 25 (1H, t, J=5.4Hz), 10. 78 (1H, s), 12. 14 (1H, s).

例304:化合物番号304の化合物の製造

(1) 5-クロロサリチルヒドラジド

5-クロロー2-ヒドロキシ安息香酸 メチルエステル(0.50g, 2.7mmo1)、ヒドラジン一水和物(0.3mL, 6.2mmo1)、エタノール(5mL)の混合物を6時間加熱還流した。反応混合物を室温まで冷却後、n-ヘキサンを加え、析出した結晶を濾取して、標題化合物の白色結晶(395.9mg, 79.2%)を得た。

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 6. 90 (1H, d, J=8.7Hz), 7.

38 (1H, dd, J=8.7, 2.7Hz), 7.85 (1H, d, J=8.7Hz), 10.23 (brs).

(2) 5-クロロサリチル酸 [3, 5-ビス(トリフルオロメチル)ベンジリデン] ヒドラジド(化合物番号304)

5-クロロサリチルヒドラジド($213.9 \,\mathrm{mg}$, $1.2 \,\mathrm{mmo}$ 1)、3,5-ビス(トリフルオロメチル)ベンズアルデヒド($190 \,\mu$ L, $1.2 \,\mathrm{mmo}$ 1)、濃硫酸(3 滴)、エタノール($5 \,\mathrm{mL}$)の混合物を、 $30 \,\mathrm{分間}$ 加熱還流した。3,5-ビス(トリフルオロメチル)ベンズアルデヒド($100 \,\mu$ L, $0.61 \,\mathrm{mmo}$ 1)を追加し、さらに1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1 \to 2:1$)で精製、n-ヘキサンで懸濁洗浄して、標題化合物の白色粉末($362.6 \,\mathrm{mg}$,76.8%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 3 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=9.0, 2.7Hz), 7. 86 (1H, d, J=3.0Hz), 8. 20 (1H, s), 8. 40 (2H, s), 8. 59 (1H, s), 11. 65 (1H, s), 12. 14 (1H, s).

例305:化合物番号305の化合物の製造

(1) (S) -2-アミノ-4-メチル-N-[3, 5-ビス(トリフルオロメチル)フェニル] ペンタンアミド

原料として、N-(tert-ブトキシカルボニル)-L-ロイシン、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例<math>302(1)と同様の操作を行い、標題化合物を得た。

収率: 25. 2%

 $^{1}H-NMR$ (CDC1₃): δ 0. 98 (3H, d, J=6. 3Hz), 1. 0 1 (3H, d, J=6. 3Hz), 1. 39-1. 48 (1H, m), 1. 74-

1. 89 (2H, m), 3. 55 (1H, dd, J=9. 9, 3. 6Hz), 7. 58 (1H, s), 8. 12 (2H, s), 10. 01 (1H, s).

(2)(S)-5-クロロ-2-ヒドロキシ-N-(3-メチル-1-{[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル}ブチル)ベンズアミド(化合物番号305)

原料として、2-アセトキシー5-クロロ安息香酸、及び(S)-2-アミノー4-メチル-N-[3,5-ビス(トリフルオロメチル)フェニル]ペンタンアミドを用いて例 3 0 2 (2) \sim (3) と同様の操作を行い、標題化合物を得た。

収率: 24.8%(2工程)

 $^{1}H-NMR$ (DMSO-d₆): δ 0. 95 (3H, d, J=5.7Hz), 0. 97 (3H, d, J=6.0Hz), 1. 65-1. 84 (3H, m), 4. 65-4. 72 (1H, m), 6. 98 (1H, d, J=9.0Hz), 7. 47 (1H, dd, J=8.7, 2.4Hz), 7. 79 (1H, s), 8. 06 (1H, d, J=2.7Hz), 8. 32 (2H, s), 9. 03 (1H, d, J=8.1Hz), 10. 85 (1H, s), 12. 20 (1H, s).

例306:化合物番号306の化合物の製造

原料として、5-クロロサリチルアルデヒド、及び3, 5-ビス(トリフルオロメチル)ベンズヒドラジドを用いて例304(2)と同様の操作を行い、標題化合物を得た。

収率: 24. 7%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 97 (1H, d, J=8.7Hz), 7. 34 (1H, dd, J=9.0, 2.7Hz), 7. 73 (1H, d, J=2.4Hz), 8. 41 (1H, s), 8. 59 (2H, s), 8. 67 (1H, s), 11. 07 (1H, s), 12. 45 (1H, s).

例307:化合物番号307の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル)フェネチルアミンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:30.2%

 1 H-NMR (CDCl₃): δ 3. 10 (2H, t, J=6. 9Hz), 3. 7 1-3. 77 (2H, m), 6. 34 (1H, brs), 6. 95 (1H, d, J=8. 7Hz), 7. 23 (1H, d, J=2. 7Hz), 7. 36 (1H, dd, J=8. 7, 2. 4Hz), 7. 70 (2H, s), 7. 80 (1H, s), 12. 06 (1H, s).

例308:化合物番号308の化合物の製造

3-ヒドロキシ無水フタル酸(100 mg, 0.6 mm o 1)、3, 5-ビス(トリフルオロメチル)アニリン(168 mg, 0.7 mm o 1)、酢酸(5 mL)の混合物を、アルゴン雰囲気下、6 時間加熱還流した。反応混合物を室温まで冷却後、酢酸を減圧下留去し、得られた残渣を酢酸エチル(15 mL)で希釈、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(100 mg, 43.7%)を得た。 1 H-NMR($DMSO-d_6$): δ 7.31(1H, d, J=8.1Hz),7.42(1H, d, J=7.5Hz),7.72(1H, 1H, 1H

例309:化合物番号309の化合物の製造

2-Tミノー4-クロロフェノール(143.6mg, 1mmo1)のテトラヒドロフラン/トルエン(0.5mL+4.5mL)混合溶液に、3,5-ビス(トリフルオロメチル)フェニルイソシアネート($180\mu L$, 1.04mmo1)を加え、100で1時間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1)で精製、イソプロピルエーテル/n-ヘキサンで結晶化して、標題化合物の薄黄褐色粉末(288.5mg, 72.4%)を得た。 ^1H-NMR ($DMSO-d_6$): δ 6.84-6.91(2H, m), 7.6

 $^{1}H-NMR$ (DMSO-d₆) : δ 6. 84-6. 91 (2H, m), 7. 6 7 (1H, s), 8. 06 (2H, s), 8. 14 (1H, d, J=2. 1Hz),

8. 45 (1H, s), 10. 10 (1H, s), 10. 44 (1H, s). 例310:化合物番号310の化合物の製造

2-アミノ-4-クロロアニソール(131mg, 0.8mmo1)の48%テトラフルオロホウ酸(0.3mL)溶液に、氷冷、アルゴン雰囲気下、亜硝酸ナトリウム(57mg, 0.8mmo1)の水(1mL)溶液を加えた。0℃で1時間攪拌した後、3,5-ビス(トリフルオロメチル)スチレン(100mg, 0.4mmo1)のメタノール(3mL)溶液を加え、50℃で1時間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣を酢酸エチル(15mL)で希釈し、2規定塩酸、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色粉末(52.8mg, 33.3%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 3. 85 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 7. 08 (1H, d, J=16. 8Hz), 7. 17 (1H, d d, J=8. 8, 2. 5Hz), 7. 20-7. 42 (4H, m), 7. 51-7. 55 (3H, m).

(2) 4-クロロ-2- [3, 5-ビス(トリフルオロメチル)スチリル] フェノール(化合物番号310)

原料として、5-クロロ-2-メトキシ $-\beta-$ [3,5-ビス(トリフルオロメチル)フェニル]スチレンを用いて例 3 0 1 (2) と同様の操作を行い、標題化合物を得た。

収率:18.1%

 $^{1}H-NMR$ (CDC1₃): δ 5. 16 (1H, brs), 6. 76 (1H, d, J=8. 4Hz), 7. 15 (1H, dd, J=8. 4, 2. 7Hz), 7. 19 (1H, d, J=16. 5Hz), 7. 45 (1H, d, J=15. 5Hz), 7. 53

(1 H, d, J = 2.4 Hz), 7. 76 (1 H, s), 7. 93 (2 H, s).

例311:化合物番号311の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノインダンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率: 45.3%

¹H-NMR (DMSO-d₆): δ 2. 98 (2H, dd, J=16. 2, 5. 7Hz), 3. 29 (2H, dd, J=16. 2, 7. 5Hz), 4. 69-4. 79 (1H, m), 6. 93 (1H, d, J=8. 7Hz), 7. 16-7. 20 (2H, m), 7. 23-7. 28 (2H, m), 7. 43 (1H, dd, J=8. 7, 2. 4Hz), 8. 02 (1H, d, J=2. 4Hz), 9. 03 (1H, d, J=6. 9Hz), 12. 66 (1H, s).

例312:化合物番号312の化合物の製造

(1) 4-クロロー 2- ({[3, 5-ビス(トリフルオロメチル)フェニル] イ ミノ} メチル)フェノール

原料として、5-クロロサリチルアルデヒド、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例14(1)と同様の操作を行い、標題化合物を得た。収率:76.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=9. 0Hz), 7. 50 (1H, d d, J=9. 0, 2. 7Hz), 7. 80 (1H, d, J=2. 7Hz), 8. 01 (1H, s), 8. 12 (2H, s), 9. 03 (1H, s), 12. 09 (1H, brs).

(2) N-[(5-クロロ-2-ヒドロキシフェニル) メチル] -3,5-ビス(トリフルオロメチル) アニリン(化合物番号312)

原料として、 $4-クロロ-2-(\{[3,5-ビス(トリフルオロメチル)フェニル]イミノ\}メチル)フェノールを用いて例<math>14(2)$ と同様の操作を行い、標題化合物を得た。

収率:78.1%

 $^{1}H-NMR$ (CDC1₃): δ 4. 40 (3H, s), 6. 27 (1H, s), 6. 80 (1H, d, J=8. 4Hz), 7. 11 (2H, s), 7. 17-7. 20 (2H, m), 7. 30 (1H, s).

例313:化合物番号313の化合物の製造

¹H-NMR (CDC1₃): δ 1. 92 (3H, s), 4. 73 (2H, s), 6. 54 (1H, d, J=2. 4Hz), 6. 95 (1H, d, J=8. 4Hz), 7. 22 (1H, dd, J=8. 7, 2. 4Hz), 7. 53 (2H, s), 7. 99 (1H, s), 9. 21 (1H, s).

例314:化合物番号314の化合物の製造

 $5-クロロサリチルヒドラジド (例304 (1) の化合物; 0.1 g, 0.53 mmo1) のピリジン (3 mL) 溶液に、3,5-ビス (トリフルオロメチル) ベンゾイルクロリド (100 <math>\mu$ L, 0.55 mmo1) を加え、室温で6時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を酢酸エチル/イソプロピルエーテル/n-ヘキサンで懸濁洗浄して、標題化合物の白色粉末 (169 mg,74.7%) を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 51 (1H, dd, J=8.7, 2.4Hz), 7. 92 (1H, d, J=2.4Hz), 8. 43 (1H, s), 8. 57 (2H, s), 10. 79 (1H, s),

11. 37 (1H, s), 11. 81 (1H, s).

例315:化合物番号315の化合物の製造

¹H-NMR (CDC1₃): δ 4. 22 (2H, d, J=4.8Hz), 5. 1 3 (1H, q, J=4.8Hz), 6. 96 (1H, d, J=8.7Hz), 7. 23 (1H, d, J=2.4Hz), 7. 37 (1H, dd, J=9.0, 2.4 Hz), 7. 69 (1H, d, J=4.8Hz), 7. 85 (1H, s), 7. 88 (2H, s), 11. 54 (1H, s).

例316:化合物番号316の化合物の製造

 $^{1}H-NMR$ (CDC1₃): δ 7. 04 (1H, d, J=9.0Hz), 7. 5 4 (1H, dd, J=9.0, 2.7Hz), 7. 75 (2H, s), 7. 86 (1

H, s), 8. 02 (1H, d, J=2. 7Hz), 10. 09 (1H, s). 例317:化合物番号317の化合物の製造

5-クロロサリチル酸($35\,\mathrm{mg}$, $0.2\,\mathrm{mmo}\,1$)、3, 5-ビス(トリフルオースチル)フェニルヒドラジン($50\,\mathrm{mg}$, $0.2\,\mathrm{mmo}\,1$)、のジクロロメタン($2\,\mathrm{mL}$)溶液に、アルゴン雰囲気下、WSC・HC1($30.9\,\mathrm{mg}$, $0.2\,\mathrm{mmo}\,1$)を加え、室温で $1\,\mathrm{時間攪拌}$ した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末($56.3\,\mathrm{mg}$, 69.6%)を得た。

¹H-NMR (CDC1₃): δ 6. 61 (1H, d, J=2. 7Hz), 6. 9 9 (1H, d, J=8. 7Hz), 7. 28 (2H, s), 7. 41-7. 45 (2 H, m), 7. 62 (1H, d, J=2. 4Hz), 8. 53 (1H, brs), 1 1. 11 (1H, s).

例318:化合物番号318の化合物の製造

(1) 2- ブロモー1-(5- クロロー2- ヒドロキシフェニル) エタノン5 、 - クロロー2 、 - ヒドロキシアセトフェノン (0.20g, 1.17 mm o 1) のテトラヒドロフラン (6 m L) 溶液に、フェニルトリメチルアンモニウムトリブロミド (0.44g, 1.17 mm o 1) を加え、室温で 8 時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n- 、 - 、 + 、 + 、 + で精製して、標題化合物の黄色オイル (220.7 mg, 75.6%) を得た。

 $^{1}H-NMR$ (CDC1₃): δ 4. 41 (2H, s), 7. 00 (1H, d, J = 9. 3Hz), 7. 47 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 (1H, d, J=2. 7Hz), 11. 63 (1H, s).

(2) 2-(2-アミノチアゾール-4-イル)-4-クロロフェノール

2-ブロモー1-(5-クロロー2-ヒドロキシフェニル)エタノン(156. $9 \,\mathrm{mg}$ の. $63 \,\mathrm{mmo}$ 1)、チオ尿素($47.9 \,\mathrm{mg}$ の. $63 \,\mathrm{mmo}$ 1)、エタノール($3 \,\mathrm{mL}$)の混合物を $2 \,\mathrm{時間}$ 加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の薄黄白色粉末($98.6 \,\mathrm{mg}$, $64.5 \,\%$)を得た。

¹H-NMR (DMSO-d₆): δ 6.85 (1H, d, J=8.7Hz), 7. 14 (1H, dd, J=8.7, 3.0Hz), 7.25 (1H, s), 7.48 (2H, s), 7.79 (1H, d, J=3.0Hz), 11.95 (1H, s). (3) N-[4-(5-クロロ-2-ヒドロキシフェニル) チアゾールー2ーイル] -[3,5-ビス (トリフルオロメチル) フェニル] ベンズアミド (化合物番号318)

 $2-(2-r \le J \ne r \lor - \nu - 4 - 4 - 4 \nu) - 4 - 4 - 0 - \nu - 2 - \nu (98.6 mg, 0.41 mm o 1)、3、5 - ビストリフルオロメチル安息香酸(104.9 mg, 0.41 mm o 1)、クロロベンゼン(3 mL)、N - メチルー2 - ピロリジノン(3 mL)の混合物に三塩化リン(36 <math>\mu$ L,0.41 mm o 1)加え、3時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、で抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー($n- \infty + \psi \rightarrow 1$:酢酸エチル=4: $1 \rightarrow 2 : 1$)で精製、イソプロピルエーテル/ $n- \infty + \psi \rightarrow 1$ で懸濁洗浄して、標題化合物の白色粉末(19.6 mg, 10.3%)を得た。

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8. 4Hz), 7. 21 (1H, dd, J=8. 7, 2. 7Hz), 7. 95 (1H, s), 8. 08 (1H, d, J=2. 7Hz), 8. 45 (1H, s), 8. 77 (2H, s), 1 0. 90 (1H, s), 13. 15 (1H, s).

例319:化合物番号319の化合物の製造

(1) 3-[3,5-ビス(トリフルオロメチル)ベンジル]チアゾリジン<math>-2,4-ジオン

¹H-NMR (CDCl₃): δ 4. 01 (2H, s), 4. 87 (2H, s), 7. 84 (1H, s), 7. 86 (2H, s).

3-[3,5-ビス(トリフルオロメチル)ベンジル]チアゾリジン-2,4-ジオン(0.20g,0.58 mmo1)、ピペリジン(3滴)、酢酸(3滴)トルエン(5 mL)の混合物を、室温で10分間攪拌し、<math>5-クロロサリチルアルデヒド(92.3 mg,0.59 mmo1)を加え、1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、で抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2: $1\rightarrow 3:2$)で精製して、標題化合物の薄黄色粉末(173.2 mg,62.0%)を得た。 1 H-NMR(DMSO- $_6$): δ 5.03(2 H,s),7.00(1 H,d,J=9.0 Hz),7.33(1 H,d,J=2.4 Hz),7.38(1 H,d

07 (1H, s), 10. 95 (1H, s).

例320:化合物番号320の化合物の製造

3-ヒドロキシ無水フタル酸(3.3.5mg, 0.2mmo 1)、3,5-ビストリフルオロメチルベンジルアミン(6.2mg, 0.2mmo 1)、クロロベンゼン(5mL)の混合物を、アルゴン雰囲気下、3時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧下留去し、得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色結晶(6.8.5mg, 8.5.2%)を得た。 1 H-NMR(CDC1 $_3$): δ 4.90(2H, s), 7.19(1H, dd, J=8.4, 0.6 Hz), 7.41(1H, dd, J=7.2, 0.6 Hz), 7.61(1H, dd, J=8.4, 7.2 Hz), 7.75(1H, brs), 7.82(1H, brs), 7.85(2H, s).

例321:化合物番号321の化合物の製造

5-クロロサリチルアルデヒド($150 \,\mathrm{mg}$, $1 \,\mathrm{mmo}\,1$)、3, 5-ビス(トリフルオロメチル)フェニルヒドラジン($200 \,\mathrm{mg}$, 0. $9 \,\mathrm{mmo}\,1$)、メタノール($5 \,\mathrm{mL}$)の混合物を,アルゴン雰囲気下、1 時間加熱還流した。反応混合物を室温まで冷却後、メタノールを減圧下留去し、得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色粉末($224 \,\mathrm{mg}$, 66.6%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 6. 97(1H, d, J=8. 7Hz), 7. 1 7(1H, d, J=2. 4Hz), 7. 24(1H, dd, J=9. 0, 2. 7Hz), 7. 35(2H, s), 7. 41(1H, s), 7. 82(1H, s), 7. 87(1H, s), 10. 29(1H, s).

例322:化合物番号322の化合物の製造

原料として、6-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:86.9%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 6. 36 (2H, d, J=8. 4Hz), 7.

13 (1H, t, J=8. 4Hz), 7. 79 (1H, s), 8. 38 (2H, s), 11. 40 (2H, brs), 11. 96 (1H, brs).

例323:化合物番号323の化合物の製造

原料として、4-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 42. 9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 32 (3H, s) 6. 82 (1H, d, J=6. 6Hz) 6. 84 (1H, s) 7. 83 (1H, s) 7. 84 (1H, d, J=8. 5Hz) 8. 47 (2H, s) 10. 76 (1H, s) 11. 44 (1H, s).

例324:化合物番号324の化合物の製造

原料として、5-ブロモー4-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:82.4%

¹H-NMR (CDCl₃): δ 5. 89 (1H, s) 6. 70 (1H, s) 7. 69 (2H, s) 7. 95 (1H, s) 8. 12 (2H, s) 11. 62 (1H, s).

例325:化合物番号325の化合物の製造

原料として、4-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:29.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 37 (1H, d, J=2.5Hz), 6. 42 (1H, dd, J=8.8, 2.5Hz), 7.81 (1H, s), 7.86 (1H, d, J=8.5Hz), 8.44 (2H, s), 10.31 (1H, s), 10.60 (1H, s), 11.77 (1H, s).

例326:化合物番号326の化合物の製造

原料として、3,5-ジクロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 44.8%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 85 (1H, d, J=2.5Hz), 7. 91 (1H, s), 8. 01 (1H, d, J=2.5Hz), 8. 42 (2H, s), 11. 10 (1H, s).

例327:化合物番号327の化合物の製造

原料として、3-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率: 22. 7%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 81 (1H, t, J=8.0Hz), 7. 01 (1H, dd, J=8.0, 1.5Hz), 7. 35 (1H, dd, J=8.0, 1.5Hz), 7. 84 (1H, s), 8. 46 (2H, s), 9. 56 (1H, s), 10. 79 (1H, s), 10. 90 (1H, brs).

例328:化合物番号328の化合物の製造

原料として、3-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:54.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 22 (3H, s), 6. 94 (1H, t, J=7. 4Hz), 7. 42 (1H, d, J=7. 4Hz), 7. 84-7. 85 (2H, m), 8. 47 (2H, s), 10. 87 (1H, s), 11. 87 (1H, s).

例329:化合物番号329の化合物の製造

原料として、3-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:34.6%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 85 (3H, s), 6. 94 (1H, t,

J=8.0Hz), 7. 20 (1H, dd, J=8.0, 1. 4Hz), 7. 44 (1H, dd, J=8.0, 1. 4Hz), 7. 84 (1H, s), 8. 45 (2H, s), 10. 82 (1H, s), 10. 94 (1H, brs).

例330:化合物番号330の化合物の製造

原料として、5-[(1,1,3,3-F)トラメチル)ブチル] サリチル酸、及び 3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:64.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 0. 70 (9H, s), 1. 35 (6H, s), 1. 72 (2H, s), 6. 95 (1H, d, J=8. 4Hz), 7. 50 (1H, dd, J=8. 0, 2. 1Hz), 7. 83 (1H, s), 7. 84 (1H, d, J=2. 1Hz), 8. 46 (1H, s), 10. 77 (1H, s), 11. 20 (1H, s).

例331:化合物番号331の化合物の製造

原料として、3,5,6ートリクロロサリチル酸、及び3,5ービス(トリフルオロメチル)アニリンを用いて例16と同様な操作を行い、標題化合物を得た。収率:26.2%

¹H-NMR (DMSO-d₆): δ 7.88 (1H, s), 7.93 (1H, s), 8.33 (2H, s), 10.88 (1H, s), 11.36 (1H, s).

例332:化合物番号332の化合物の製造

原料として、3,5-ビス [(1,1-ジメチル) エチル] サリチル酸、及び3,5-ビス (トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:65.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 34 (9H, s), 1. 40 (9H, s), 7. 49 (1H, d, J=2. 2Hz), 7. 82 (1H, d, J=2. 2Hz), 7. 91 (1H, s), 8. 40 (2H, s), 10. 82 (1H, s), 12. 4

4 (1H, s).

例333:化合物番号333の化合物の製造

原料として、6-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:35.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 73-6. 82 (2H, m), 7. 32 (1H, ddd, J=1. 4, 8. 5, 15. 3Hz), 7. 83 (1H, s), 8. 39 (2H, s), 10. 50 (1H, d, J=1. 4Hz), 11. 11 (1H, s).

例334:化合物番号334の化合物の製造

原料として、3-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:61.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 05 (1H, dd, J=7. 6, 8. 0Hz), 7. 69 (1H, dd, J=1. 4, 13. 3Hz), 7. 90 (1H, s), 7. 93 (1H, dd, J=1. 4, 8. 0Hz), 8. 44 (2H, s), 11. 01 (1H, s), 11. 92 (1H, br. s).

例335:化合物番号335の化合物の製造

原料として、4-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:14.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 81 (3H, s), 6. 54 (1H, d, J=2. 5Hz), 6. 61 (1H, dd, J=2. 5, 8. 8Hz), 7. 83 (1H, s), 7. 95 (1H, d, J=8. 8Hz), 8. 45 (2H, s), 10. 69 (1H, s), 11. 89 (1H, s).

例336:化合物番号336の化合物の製造

原料として、6-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル)

アニリンを用いて例16と同様な操作を行い、標題化合物を得た。

収率:63.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 24 (3H, s), 6. 03 (1H, d, J=8. 0Hz), 6. 05 (1H, d, J=8. 5Hz), 6. 71 (1H, d d, J=8. 2, 8. 5Hz), 7. 25 (1H, s), 7. 88 (2H, s), 9. 67 (1H, s), 10. 31 (1H, s)

例337:化合物番号337の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号88)、及びメタンスルホニルクロリ ドを用いて例91と同様な操作を行い、標題化合物を得た。

収率: 22.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 93 (3H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 31 (1H, dd, J=8. 4, 2. 7Hz), 7. 68 (1H, d, J=2. 7Hz), 7. 83 (1H, s), 8. 46 (2H, s), 9. 48 (1H, s), 10. 85 (1H, s), 11. 15 (1H, s).

例338:化合物番号338の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号 <math>88)、及びベンゼンスルホニルクロリドを用いて例 91 と同様な操作を行い、標題化合物を得た。

収率: 45.3%

¹H-NMR (DMSO-d₆): δ 6.89 (1 H, d, J=8.7 Hz), 7.10 (1 H, d d, J=8.7, 2.7 Hz), 7.51-7.64 (4 H, m), 7.68-7.71 (2 H, m), 7.81 (1 H, s), 8.42 (2 H, s), 10.03 (1 H, s), 10.87 (1 H, s), 11.13 (1 H, brs). 例339: 化合物番号339の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号88)、及びアセチルクロリドを用い

て例91と同様な操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 0 2 (3H, s), 6. 9 7 (1H, d, J=8. 7Hz), 7. 61 (1H, dd, J=8. 7, 2. 7Hz), 7. 82 (1H, s), 7. 9 9 (1H, d, J=2. 7Hz), 8. 46 (2H, s), 9. 9 0 (1H, s), 10. 85 (1H, s), 10. 94 (1H, s).

例340:化合物番号340の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-スルファモイルベンズアミド(例87(2)の化合物)を用いて例80(5)と同様な操作を行い、標題化合物を得た。

収率:59.9%

¹H-NMR (DMSO-d₆): δ 7. 17 (1H, d, J=8.7Hz), 7. 31 (2H, s), 7. 85 (1H, s), 7. 86 (1H, dd, J=8.4, 2. 4Hz), 8. 26 (1H, d, J=2.7Hz), 8. 47 (2H, s), 1 0. 95 (1H, s), 11. 90 (1H, s).

例341:化合物番号341の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 46.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 36-7. 41 (2H, m), 7. 50 -7. 55 (1H, m), 7. 79 (1H, d, J=8. 2Hz), 7. 85 (1H, d, J=0.6Hz), 7. 96 (1H, d, J=8.0Hz), 8. 51 (2H, s), 10. 98 (1H, s), 11. 05 (1H, s).

例342:化合物番号342の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を

得た。

収率:30.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 27 (1H, d, J=8.8Hz), 7. 32-7. 38 (1H, m), 7. 45-7. 50 (1H, m), 7. 72 (1H, d, J=8.5Hz), 7. 82-7. 93 (3H, m), 8. 50 (1H, s), 10. 28 (1H, s), 11. 07 (1H, brs).

例343:化合物番号343の化合物の製造

(1) 4-ブロモ-3-ヒドロキシチオフェン-2-カルボン酸

4-ブロモー3-ヒドロキシチオフェンー2-カルボン酸 メチルエステル(500mg, 2. 1mmo1)、水酸化ナトリウム(261mg, 6. 3mmo1)のメタノール/水(2.5mL+2.5mL)混合溶液を2時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸を加えpHを1とした後、酢酸エチル(50mL)で希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して、標題化合物の赤褐色粉末(326mg, 69.4%)を得た。

 1 H-NMR (CDC l_{3}): δ 4.05 (1 H, b r s), 7.40 (1 H, s). (2) 4-プロモ-3-ヒドロキシ-N-[3,5-ビス (トリフルオロメチル)フェニル]チオフェン-2-カルボキサミド (化合物番号343)

原料として、4 ーブロモー3ーヒドロキシチオフェンー2 ーカルボン酸、及び3,5 ービス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:82.4%

¹H-NMR (CDCl₃): δ 7.42 (1H, s), 7.67 (1H, brs), 7.78 (1H, brs), 8.11 (2H, s), 9.91 (1H, brs). 例344:化合物番号344の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及 びオキシインドールを用いて例28と同様の操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 3. 98 (2H, s), 7. 22 (1H, t d, J=7. 8, 1. 2Hz), 7. 33-7. 40 (2H, m), 7. 87 (1H, s), 8. 02 (1H, d, J=7. 8Hz), 8. 38 (2H, s), 11. 00 (1H, s).

例345:化合物番号345の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及び5-クロロオキシインドールを用いて例28と同様の操作を行い、標題化合物を得た。

収率: 31.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 99 (2H, s), 7. 41 (1H, d d, J=8. 7, 2. 4Hz), 7. 47 (1H, d, J=2. 1Hz), 7. 8 7 (1H, s), 8. 01 (1H, d, J=8. 4Hz), 8. 38 (2H, s), 10. 93 (1H, s).

例346:化合物番号346の化合物の製造

原料として、5-クロロサリチル酸、及び3-ブロモ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:37.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03 (1H, d, J=9.3Hz), 7. 48 (1H, dd, J=8.7, 2.4Hz), 7. 72 (1H, s), 7. 84 (1H, d, J=2.7Hz), 8. 16 (1H, s), 8. 28 (1H, s), 10. 69 (1H, s), 11. 42 (1H, s).

例347:化合物番号347の化合物の製造

原料として、5-クロロサリチル酸、及び3-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.0%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3.85 (3H, s), 7.02 (1H, s),

7. 03 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2. 7Hz), 7. 61 (1H, s), 7. 77 (1H, s), 7. 88 (1H, d, J=2.7Hz), 10. 57 (1H, s), 11. 53 (1H, s).

例348:化合物番号348の化合物の製造

原料として、5-クロロサリチル酸、及び2-モルホリノ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 90 (4H, m), 3. 84 (4H, m), 7. 15 (1H, d, J=9.0Hz), 7. 48 (2H, s), 7. 50 (1H, dd, J=9.0, 2.7Hz), 8. 00 (1H, d, J=2.7Hz), 8. 91 (1H, s), 11. 24 (1H, s), 12. 05 (1H, s).

例349:化合物番号349の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 10 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.4, 2.1Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 97-7. 99 (2H, m), 8. 81 (1H, d, J=2.1Hz), 11. 03 (1H, s), 12. 38 (1H, s).

例350:化合物番号350の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-5-トリフルオロメチル 安息香酸メチルエステルを用いて例16と同様の操作を行い、標題化合物を得た。 収率:67.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 91 (3H, s), 7. 02 (1H, d, J=9. 3Hz), 7. 43 (1H, dd, J=9. 0, 2. 4Hz), 7. 57 (1H, d, J=2. 4Hz), 8. 13 (1H, s), 8. 23 (1H, s), 8. 29 (1H, s), 8. 36 (1H, s), 11. 52 (1H, s).

例351:化合物番号351の化合物の製造

5-クロロー2-ヒドロキシーN-[3-メトキシカルボニルー5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号350;105mg,0.281mmol)、メタノール(2.5mL)の混合物に2規定水酸化ナトリウム水溶液(0.6mL)を加え、室温にて3時間攪拌した。反応液に水を加え、酢酸エチルにて洗浄した。水層に希塩酸を加え酸性とした後、酢酸エチルにて抽出した。酢酸エチル層を水、飽和食塩水にて順次洗浄、無水硫酸ナトリウムにて乾燥した。溶媒を減圧留去して得られた残渣をイソプロピルエーテルで結晶化して、標題化合物の白色固体(100mg,99.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 91 (1H, d, J=2.7Hz), 7. 93 (1H, s), 8. 43 (1H, s), 8. 59 (1H, s), 10. 78 (1H, s), 11. 48 (1H, s).

例352:化合物番号352の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-ナフチルオキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:89.6%

 $^{1}H-NMR$ (CDC1₃): δ 6. 94 (1H, d, J=9.6Hz), 6. 98 (1H, d, J=9.2Hz), 7. 25-7. 41 (4H, m), 7. 48-7. 57 (3H, m), 7. 81 (1H, d, J=6.9Hz), 7. 88 (1H, d, J=6.9Hz), 7. 95 (1H, d, J=8.9Hz), 8. 72 (1H, s), 8. 83 (1H, d, J=2.0Hz), 11. 70 (1H, s).

例353:化合物番号353の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2, 4-ジクロロフェノキシ)-5- (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 4. 7%

 $^{1}H-NMR$ (CDCl₃): δ 6. 78 (1H, d, J=8. 9Hz), 7. 0 2 (1H, d, J=8. 6Hz), 7. 16 (1H, d, J=8. 6Hz), 7. 33-7. 38 (3H, m), 7. 42 (1H, dd, J=8. 6, 2. 6Hz), 7. 49 (1H, d, J=2. 6Hz) 7. 58 (1H, d, J=2. 3Hz), 8. 66 (1H, brs,), 8. 82 (1H, d, J=2. 0Hz), 11. 65 (1H, s).

例354:化合物番号354の化合物の製造

原料として、5-クロロサリチル酸、及び2-[(4-トリフルオロメチル)ピペリジノ] -5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:60.5%

 $^{1}H-NMR$ (CDCl₃): δ 1. 85-2. 05 (2H, m), 2. 15 (2H, d, J=10.9Hz), 2. 28 (1H, m), 2. 82 (2H, t, J=11.0Hz), 3. 16 (2H, d, J=12.2Hz), 7. 02 (1H, d, J=8.9Hz), 7. 31 (1H, d, J=8.3Hz), 7. 42 (2H, m), 7. 50 (1H, d, J=2.6Hz), 8. 75 (1H, s), 9. 60 (1H, s), 11. 94 (1H, s)

例355:化合物番号355の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2, 2, 2-トリフルオロエトキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:94.5%

 $^{1}H-NMR$ (CDC1₃): δ 4. 58 (2H, q, J=7. 9Hz), 6. 9 9-7. 05 (2H, m), 7. 41-7. 50 (3H, m), 8. 63 (1H, brs), 8. 79 (1H, d, J=2. 0Hz), 11. 59 (1H, s).

例356:化合物番号356の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-メトキシフェノキシ)-5 - (トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:80.6%

¹H-NMR (DMSO-d₆): δ 3. 74 (3H, s), 6. 70 (1H, d, J=8. 4Hz), 7. 02 (1H, d, J=8. 7Hz), 7. 07 (1H, dd, J=1. 5, 7. 8Hz), 7. 24-7. 39 (4H, m), 7. 49 (1H, dd, J=3. 0, 8. 7Hz), 8. 00 (1H, d, J=3. 0Hz), 8. 92 (1H, d, J=2. 1Hz), 11. 36 (1H, s), 12. 18 (1H, s).

例357:化合物番号357の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロ-3, 5-ジメチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:91.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 34 (6H, s), 7. 03 (1H, d, J=8.8Hz), 7. 05 (1H, d, J=8.1Hz), 7. 11 (2H, s), 7. 43-7. 47 (1H, m), 7. 48 (1H, dd, J=2.9, 8.8Hz), 7. 97 (1H, d, J=2.6Hz), 8. 94 (1H, d, J=2.2Hz), 11. 25 (1H, s), 12. 12 (1H, s).

例358:化合物番号358の化合物の製造

原料として、5-クロロサリチル酸、及び2-ピペリジノ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.7%

 $^{1}H-NMR$ (CDCl₃): δ 1. 68-1. 72 (2H, m), 1. 80-1. 88 (4H, m), 2. 89 (4H, t, J=5. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 31 (1H, d, J=8. 4Hz), 7. 39-7. 43 (2

H, m), 7. 55 (1H, d, J = 2. 4Hz), 8. 73 (1H, d, J = 1. 8Hz), 9. 71 (1H, s), 12. 05 (1H, s)

例359:化合物番号359の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-メチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 33 (3H, s), 6. 93 (1H, d, J=8. 8Hz), 7. 03 (1H, dd, J=0. 5, 8. 8Hz), 7. 12 (2H, d, J=8. 2Hz), 7. 29 (2H, d, J=8. 5Hz), 7. 4 3 (1H, dd, J=2. 0, 8. 6Hz), 7. 48 (1H, ddd, J=0. 8, 2. 7, 8. 8Hz), 7. 98 (1H, dd, J=0. 8, 2. 7Hz), 8. 94 (1H, d, J=2. 2Hz), 11. 29 (1H, s), 12. 15 (1H, s).

例360:化合物番号360の化合物の製造

原料として、5-クロロサリチル酸、及び<math>2-(4-クロロフェノキシ)-5-(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 01 (1H, d, J=8.8Hz), 7. 06 (1H, d, J=8.5Hz), 7. 22 (1H, d, J=8.5Hz), 7. 43-7. 48 (2H, m), 7. 50 (2H, d, J=8.2Hz), 7. 94 (1H, dd, J=0.5, 2.7Hz), 8. 92 (1H, d, J=2.2Hz), 11. 20 (1H, s), 12. 10 (1H, s).

例361:化合物番号361の化合物の製造

原料として、5-ブロモ-2-ヒドロキシ-N-[3,5-ビス(メトキシカルボニル)フェニル] ベンズアミド(化合物番号170)を用いて例351と同様

の操作を行い、標題化合物を得た。

収率:89.0%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7. 60 (1H, dd, J=8.7, 2.4Hz), 7. 24 (1H, dd, J=8.7, 2.7Hz), 8. 08 (1H, d, J=2.7Hz), 8. 24 (1H, t, J=1.5Hz), 8. 57 (2H, d, J=1.2Hz), 10. 67 (1H, s), 11. 64 (1H, s).

例362:化合物番号362の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5-[(1-メチル)エチル]アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:19.1%

¹H-NMR (CDC1₃): δ 1. 26 (6H, d, J=6. 9Hz), 2. 3 0 (3H, s), 2. 87-2. 96 (1H, m), 7. 00 (1H, d, J=8. 7Hz), 7. 08 (1H, dd, J=7. 8, 1. 8Hz), 7. 20 (1H, d, J=7. 8Hz), 7. 40 (1H, dd, J=8. 7, 2. 4Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 50 (1H, s), 7. 71 (1H, s), 11. 99 (1H, s).

例363:化合物番号363の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジエトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

¹H-NMR (DMSO-d₆): δ 1. 3 2 (3H, t, J=6.9Hz), 1. 4 1 (3H, t, J=6.9Hz), 3. 9 7 (2H, q, J=6.9Hz), 4. 0 6 (2H, q, J=6.9Hz), 6. 6 1 (1H, dd, J=9.0, 3.0 Hz), 6. 9 8 (1H, d, J=8.7Hz), 7. 10 (1H, d, J=8.7Hz), 7. 4 8 (1H, dd, J=8.7, 2.7Hz), 7. 9 7 (1H, d, J=2.7Hz), 8. 16 (1H, d, J=3.0Hz), 10. 9 6 (1

H, s), 11. 91 (1H, s).

例364:化合物番号364の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:90.5%

¹H-NMR (CDC1₃): δ 2. 28 (3H, s), 2. 35 (3H, s), 6. 99 (1H, d, J=8. 8Hz), 7. 02 (1H, brs), 7. 15 (1H, d, J=7. 7Hz), 7. 40 (1H, dd, J=8. 8, 2. 5Hz), 7. 45 (1H, brs), 7. 49 (1H, d, J=2. 5Hz) 7. 70 (1H, br), 11. 96 (1H, brs).

例365:化合物番号365の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-シアノアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:90.0%

¹H-NMR (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 82 (1H, dd, J=8.7, 2.4Hz), 7. 95 (1H, d, J=3.0Hz), 8. 07 (1H, d, J=2.4Hz), 8. 36 (1H, d, J=9.0Hz), 11. 11 (1H, s), 12. 36 (1H, s).

例366:化合物番号366の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N, N-ジエチルスルファモイル)-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (CDC1₃): δ 1. 17 (6H, t, J=7. 3Hz), 3. 2 9 (4H, q, J=7. 3Hz), 4. 05 (3H, s), 7. 00 (2H, dd, J=2. 3, 8. 9Hz), 7. 41 (1H, dd, J=2. 3, 8. 9Hz),

7. 48 (1H, d, J=2.6Hz), 7. 65 (1H, dd, J=2.3, 8.6Hz), 8. 56 (1H, br.s), 8. 84 (1H, d, J=2.3Hz), 11. 82 (1H, s).

例367:化合物番号367の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

 $^{1}H-NMR$ (CD₃OD): δ 6. 98 (1H, d, J=8.6Hz), 7. 4 3 (1H, dd, J=2.6, 8.6Hz), 7. 74 (1H, d, J=8.9Hz), 7. 99 (1H, dd, J=3.0, 8.9Hz), 8. 08 (1H, d, J=2.6Hz), 9. 51 (1H, d, J=2.6Hz)

例368:化合物番号368の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N-フェニルカルバモイル)-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。収率: 40.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 99 (3H, s), 7. 09 (2H, d d, J=6. 6, 6. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 3 5 (2H, dd, 6. 9, 7. 3Hz), 7. 49 (1H, d, J=2. 3, 8. 9Hz), 7. 77 (3H, d, J=8. 6Hz), 8. 00 (1H, s), 8. 9 7 (1H, s), 10. 17 (1H, s), 10. 91 (1H, s), 12. 11 (1H, s).

例369:化合物番号369の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.9%

 $^{1}H-NMR$ (CDC1₃): δ 3. 82 (3H, s), 3. 93 (3H, s), 6. 66 (1H, dd, J=3. 0, 8. 9Hz), 6. 86 (1H, d, J=8.

9 H z), 6. 98 (1 H, d, J = 8. 9 H z), 7. 39 (1 H, d d, J = 2. 6, 8. 9 H z), 7. 47 (1 H, d, J = 2. 6 H z), 8. 08 (1 H, d, J = 3. 0 H z), 8. 60 (1 H, b r. s), 12. 03 (1 H, s).

原料として、5-クロロサリチル酸、及び5-アセチルアミノ-2-メトキシア ニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 01 (3H, s), 3. 85 (3H, s), 7. 03 (2H, t, J=9.6Hz), 7. 49 (2H, dd, J=8.9, 9. 2Hz), 7. 96 (1H, s), 8. 51 (1H, s), 9. 87 (1H, s), 10. 82 (1H, s), 12. 03 (1H, d, J=4.0Hz).

例371:化合物番号371の化合物の製造

例370:化合物番号370の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-メチルアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:100%

 $^{1}H-NMR$ (CDC1₃): δ 2. 29 (3H, s), 3. 82 (3H, s), 6. 75 (1H, dd, J=2. 6, 8. 2Hz), 7. 00 (1H, d, J=8. 9Hz), 7. 16 (1H, d, J=8. 6Hz), 7. 38 (1H, d, 2. 3Hz), 7. 41 (1H, dd, J=2. 3, 8. 9Hz), 7. 48 (1H, d, J=2. 3Hz), 7. 70 (1H, br. s), 11. 92 (1H, s).

例372:化合物番号372の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジブトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.9%

 $^{1}H-NMR$ (CDC1₃): δ 0. 98 (3H, t, J=7. 2Hz), 1. 0 5 (3H, t, J=7. 2Hz), 1. 44-1. 65 (4H, m), 1. 72-1. 79 (2H, m), 1. 81-1. 91 (2H, m), 3. 97 (2H, t,

J=6.3Hz), 4. 07 (2H, t, J=6.3Hz), 6. 64 (1H, d d, J=9.0, 3. 0Hz), 6. 85 (1H, d, J=9.3Hz), 6. 9 (1H, d, J=9.0Hz), 7. 39 (1H, dd, J=8.7, 2. 4Hz), 7. 44 (1H, d, J=2.7Hz), 8. 08 (1H, d, J=3.0Hz), 8. 76 (1H, s), 12. 08 (1H, s).

例373:化合物番号373の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジイソペンチルオキシシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.7%

 $^{1}H-NMR$ (CDC1₃): δ 0. 97 (6H, d, J=6.6Hz), 1. 0 3 (6H, d, 6.6Hz), 1. 64-1. 98 (6H, m), 3. 99 (2H, t, J=6.6Hz), 4. 09 (2H, t, J=6.3Hz), 6. 63 (1H, dd, J=8.7, 3.0Hz), 6. 85 (1H, d, J=8.7Hz), 6. 98 (1H, d, J=8.7Hz), 7. 38 (1H, dd, J=9.0, 2.4Hz), 7. 43 (1H, d, J=2.7Hz), 8. 09 (1H, d, J=3.0Hz), 8. 75 (1H, s), 12. 08 (1H, s).

例374:化合物番号374の化合物の製造

原料として、5-クロロサリチル酸、及び5-カルバモイル-2-メトキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 31. 2%

¹H-NMR (CD₃OD): δ 4.86 (3H, s), 6.93 (1H, d, J=7.6Hz), 7.18 (1H, d, J=8.6Hz), 7.35 (1H, dd, J=3.0, 7.6Hz), 7.47 (1H, dd, J=2.0, 8.6Hz), 8.00 (1H, d, J=3.0Hz), 8.80 (1H, d, J=2.0Hz). 例375: 化合物番号375の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1, 1-ジメチル)プロピル] -2-フェノキシアニリンを用いて例 1.6 と同様の操作を行い、標題化合物を得

た。

収率:65.2%

 $^{1}H-NMR$ (CDC1₃): δ 0. 69 (3H, t, J=7.6Hz), 1. 2 9 (6H, s), 1. 64 (2H, q, J=7.6Hz), 6. 91 (1H, dd, J=1.7, 7.6Hz), 6. 96 (1H, d, J=8.9Hz), 7. 03 (2H, d, J=8.9Hz), 7. 10 (1H, dt, J=1.7, 7.6Hz), 7. 16 (1H, dt, J=1.7, 7.6Hz), 7. 6Hz), 7. 16 (1H, dt, J=1.7, 7.6Hz), 7. 40-7. 31 (4H, m), 8. 42 (1H, dd, J=2.0, 7.9Hz), 8. 53 (1H, br.s) 11. 94 (1H, s).

例376:化合物番号376の化合物の製造

原料として、5-クロロサリチル酸、及び2-ヘキシルオキシ-5-(メチルスルホニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:33.0%

¹H-NMR (CDC1₃): δ 0. 92 (3H, t, J=6. 9Hz), 1. 4 0-1. 59 (6H, m), 1. 90-2. 01 (2H, m), 3. 09 (3H, s), 4. 22 (2H, t, J=6. 3Hz), 7. 01 (1H, d, J=8. 9 Hz), 7. 06 (1H, d, J=8. 6Hz), 7. 40-7. 43 (2H, m), 7. 73 (1H, dd, J=8. 6, 2. 3Hz), 8. 74 (1H, brs), 8. 99 (1H, d, J=2. 3Hz), 11. 76 (1H, s).

例377:化合物番号377の化合物の製造

原料として、5-クロロサリチル酸、及び3'-アミノ-2、2、4'-トリメチルプロピオフェノンを用いて例16と同様の操作を行い、標題化合物を得た。収率:44.8%

 $^{1}H-NMR$ (CDCl₃): δ 1. 38 (9H, s), 2. 38 (3H, s), 7. 01 (1H, d, J=8. 9Hz), 7. 31 (1H, d, J=7. 9Hz), 7. 42 (1H, dd, J=8. 9, 2. 6Hz), 7. 53 (1H, d, J=2. 6Hz), 7. 57 (1H, dd, J=7. 9, 2. 0Hz), 7. 83 (1H, b)

rs), 8. 11 (1H, d, J=2. OHz), 11. 82 (1H, s).

例378:化合物番号378の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2- (1-ピロリル)アニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:53.4%

¹H-NMR (CDCl₃): δ 2. 46 (3H, s), 6. 51-6. 52 (2 H, m), 6. 82-6. 85 (3H, m), 6. 93 (1H, d, J=8. 9Hz), 7. 06 (1H, d, J=7. 9Hz), 7. 30 (1H, d, J=7. 9Hz), 7. 32 (1H, dd, J=2. 3, 8. 9Hz), 7. 61 (1H, s), 8. 29 (1H, s), 11. 86 (1H, br. s).

例379:化合物番号379の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-トシルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.0%

 $^{1}H-NMR$ (CDC1₃): δ 2. 38 (3H, s), 7. 02 (1H, d, J=8. 9Hz), 7. 25-7. 31 (3H, m), 7. 46 (1H, dd, J=2. 6, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 74 (1H, d, J=2. 3Hz), 7. 96 (1H, d, J=8. 6Hz), 8. 56 (1H, d, J=2. 0Hz), 10. 75 (1H, s), 11. 70 (1H, s).

例380:化合物番号380の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-トシルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 43.5%

 $^{1}H-NMR$ (CDC1₃): δ 2. 38 (3H, s), 7. 02 (1H, d, J = 8. 9Hz), 7. 27 (1H, d, J=7. 9Hz), 7. 29 (1H, dd, J=2. 0, 6. 6Hz), 7. 46 (1H, dd, J=2. 3, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 73 (2H, d, J=2. 3Hz),

7. 97 (1H, d, J=8.6Hz), 8. 56 (1H, d, J=2.0Hz), 10. 73 (1H, s), 11. 71 (1H, s).

例381:化合物番号381の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(メチルスルホニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.8%

 $^{1}H-NMR$ (CDC1₃): δ 3. 12 (3H, s), 7. 03 (1H, d, J=8. 9Hz), 7. 38 (1H, dd, J=8. 6, 10. 2Hz), 7. 45 (1H, dd, J=2. 3, 8. 9Hz), 7. 53 (1H, d, J=2. 3Hz), 7. 80 (1H, ddd, J=2. 3, 4. 6, 8. 6Hz), 8. 25 (1H, s), 8. 98 (1H, dd, J=2. 3, 7. 7Hz), 11. 33 (1H, br. s).

例382:化合物番号382の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-フェノキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.0%

 $^{1}H-NMR$ (CDC1₃): δ 3. 98 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 6. 90 (1H, d, J=8. 8Hz), 6. 95-7. 00 (3H, m), 7. 04-7. 09 (1H, m), 7. 29-7. 35 (2H, m), 7. 38 (1H, dd, J=8. 8, 2. 6Hz), 7. 47 (1H, d, J=2. 6Hz), 8. 19 (1H, d, J=2. 9Hz), 8. 61 (1H, brs), 11. 92 (1H, s).

例383:化合物番号383の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-メチルビフェニルを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:47.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 2.33 (3H, s), 7.06 (1H, d,

J=8.7Hz), 7. 43-7. 52 (4H, m), 7. 64-7. 67 (2H, m), 8. 04 (1H, d, J=2.7Hz), 8. 19 (1H, d, J=1.5Hz), 10. 40 (1H, s), 12. 22 (1H, s).

例384:化合物番号384の化合物の製造

¹H-NMR (CDC1₃): δ 1. 72 (6H, s), 3. 93 (3H, s), 6. 83 (1H, d, J=8. 8Hz), 6. 93 (1H, dd, J=2. 6, 8. 8Hz), 6. 96 (1H, d, J=9. 2Hz), 7. 15-7. 20 (1H, m), 7. 25-7. 28 (4H, m), 7. 36 (1H, dd, J=2. 6, 8. 8Hz), 7. 46 (1H, d, J=2. 6Hz), 8. 35 (1H, d, J=2. 6Hz), 8. 51 (1H, s), 12. 04 (1H, s).

例385:化合物番号385の化合物の製造

原料として、5-クロロサリチル酸、及び5-モルホリノ-2-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 4.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 46-3. 52 (4H, m), 3. 85-3. 94 (4H, m), 7. 03 (1H, d, J=8. 8Hz), 7. 47 (1H, dd, J=2. 9, 8. 8Hz), 7. 80 (1H, dd, J=2. 6, 8. 8Hz), 7. 82 (1H, d, J=2. 6Hz), 7. 88 (1H, d, J=8. 8Hz), 8. 20 (1H, d, J=2. 2Hz), 10. 70 (1H, s), 11. 43 (1H, s)

例386:化合物番号386の化合物の製造

原料として、5-クロロサリチル酸、及び5-フルオロ-2-(1-イミダゾリル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:33.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 99 (1H, d, J=8.8Hz), 7. 12-7. 19 (2H, m), 7. 42-7. 51 (3H, m), 7. 89 (1H, d, J=2.8Hz), 7. 93 (1H, d, J=1.1Hz), 8. 34 (1H, dd, J=11.4, 2.8Hz), 10. 39 (1H, s), 11. 76 (1H, brs).

例387:化合物番号387の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブチル-5-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:15.3%

¹H-NMR (CDC1₃): δ 0. 99 (3H, t, J=7. 3Hz), 1. 3 9-1. 51 (2H, m), 1. 59-1. 73 (2H, m), 2. 71-2. 79 (2 H, m), 7. 03 (1H, d, J=8. 9Hz), 7. 41-7. 49 (3H, m), 7. 92 (1H, s), 8. 07 (1H, dd, J=2. 3, 8. 4Hz), 8. 75 (1H, d, J=2. 4Hz), 11. 51 (1H, s).

例388:化合物番号388の化合物の製造

原料として、5-クロロサリチル酸、及び5- [(1, 1-ジメチル) プロピル] -2-ヒドロキシアニリンを用いて例 1 6 と同様の操作を行い、標題化合物を得た。

収率:36.0%

¹H-NMR (CDC1₃): δ 0. 70 (3H, t, J=7. 4Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7. 4Hz), 6. 97 (1H, d, J=6. 3Hz), 7. 00 (1H, d, J=6. 6Hz), 7. 08 (1H, s), 7. 14 (1H, dd, J=2. 5, 8. 6Hz), 7. 36 (1H, d, J=2. 2Hz), 7. 42 (1H, dd, J=2. 5, 8. 8Hz), 7. 57 (1H, d, J=2. 5Hz), 8. 28 (1H, s), 11. 44 (1H, s).

例389:化合物番号389の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシー5-メチルアニリンを

用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.2%

¹H-NMR (DMSO-d₆): δ 2. 27 (3H, s), 3. 85 (3H, s), 6. 90 (1H, dd, J=9. 0, 2. 4Hz), 6. 98 (1H, d, J=9. 0Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=3. 0Hz), 8. 24 (1H, d, J=2. 4Hz), 10. 79 (1H, s), 12. 03 (1H, s).

例390:化合物番号390の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:81.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98-7. 07 (1H, m), 7. 07 (1H, d, J=9. 0Hz), 7. 37-7. 49 (1H, m), 7. 52 (1H, dd, J=8. 7, 3. 0Hz), 7. 95 (1H, d, J=2. 7Hz), 8. 15-8. 22 (1H, m), 10. 83 (1H, s), 12. 25 (1H, s).

例391:化合物番号391の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:82.0%

¹H-NMR (DMSO-d₆): δ 7. 00 (1H, tt, J=9. 3, 2. 1), 7. 03 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=7. 5, 2. 7Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 51 (1H, d, J=2. 1Hz), 7. 82 (1H, d, J=3. 0Hz), 10. 63 (1H, s). 11. 43 (1H, brs).

例392:化合物番号392の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノー4-[(1,

1-ジメチル) エチル] チアゾール-5-カルボン酸 エチルエステル (化合物番号197) を用いて例82と同様の操作を行い、標題化合物を得た。

収率:85.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 44 (9H, s), 7. 00 (1H, d, J=9. 0Hz), 7. 62 (1H, dd, J=9. 0, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 83 (1H, brs), 12. 04 (1H, brs), 12. 98 (1H, brs).

例393:化合物番号393の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー4-フェニルチアゾール -5- 酢酸 メチルエステルを用いて例195(3) と同様の操作を行い、標題 化合物を得た。(本化合物は、例203(1) の化合物である。)

収率:32.1%

mp 288. 5-229. 5° C.

¹H-NMR (DMSO-d₆): δ 3.66 (3H, s), 3.95 (2H, s), 6.99 (1H, d, J=8.0Hz), 7.42 (1H, d, J=6.0Hz), 7.48 (2H, brt, J=7.6Hz), 7.56-7.61 (3H, m), 8.07 (1H, d, J=2.4Hz), 11.85 (1H, brs), 11.9 8 (1H, brs).

例394:化合物番号394の化合物の製造

2-(5-) ロモー 2- ヒドロキシベンゾイル)アミノー 4- フェニルチアゾールー 5- カルボン酸 エチルエステル(化合物番号 209)を用いて例 82 と同様の操作を行い、標題化合物を得た。(本化合物は、例 212(1) の化合物である。)

収率:67.0%

¹H-NMR (DMSO-d₆): δ 7.00 (1H, d, J=8.8Hz), 7. 42-7.44 (3H, m), 7.62 (1H, dd, J=8.8, 2.4Hz), 7.70-7.72 (2H, m), 8.04 (1H, d, J=2.4Hz), 12.

31 (1H, brs), 12. 99 (1H, brs).

例395:化合物番号395の化合物の製造

(1) 2-アミノー4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾ ール

3', 5'-ビス(トリフルオロメチル)アセトフェノン(0.51g, 2.0 mmo1)のテトラヒドロフラン(5 mL)溶液に、フェニルトリメチルアンモニウムトリブロミド(753 mg, 2 mmo1)を加え、室温で5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣にエタノール(5 mL)、チオウレア(152 mg, 2 mmo1)を加え、30分間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製、n-ヘキサンで懸濁洗浄して、標題化合物の薄黄白色結晶(520.1 mg, 83.3%)を得た。 1 H n NMR(CDC1。): n 5.03(2 H 5), 6.93(1 H 7 5),

¹H-NMR (CDCl₃): δ 5. 03 (2H, s), 6. 93 (1H, s), 7. 77 (1H, s), 8. 23 (2H, s).

(2) $5-\rho$ ロロー 2-ヒドロキシーNー $\{4-[3,5-$ ビス(トリフルオロメチル)フェニル]チアゾールー 2-イル $\}$ ベンズアミド(化合物番号 395) 5-クロロサリチル酸(172.6mg, 1mmo 1)、2-アミノー 4-[3,5-ビス(トリフルオロメチル)フェニル]チアゾール(312.2mg, 1mmo 1)、三塩化リン(44μ L,0.5mmo 1)、モノクロロベンゼン(5mL)の混合物を 4 時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1\rightarrow 2:1$)で精製して、標題化合物の淡黄白色粉末(109.8mg, 23.5%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 3.0Hz), 7. 94 (1H, d, J=3.0 Hz), 8. 07 (1H, s), 8. 29 (1H, s), 8. 60 (2H, s), 1. 77 (1H, s), 12. 23 (1H, s).

例396:化合物番号396の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノピリジンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:23.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=9. 3Hz), 7. 42 (1H, ddd, J=9. 0, 4. 8, 0. 6Hz), 7. 47 (1H, dd, J=8. 7, 5. 7Hz), 7. 92 (1H, d, J=2. 7Hz), 8. 15 (1H, ddd, J=8. 4, 2. 4, 1. 5Hz), 8. 35 (1H, dd, J=7. 8, 1. 5Hz), 8. 86 (1H, d, J=2. 4Hz), 10. 70 (1H, s).

例397:化合物番号397の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-ブロモピリジンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 7 (1H, d, J=8.7Hz), 7. 4 2 (1H, d, J=7.8Hz), 7. 5 1 (1H, dd, J=8.7, 2.7 Hz), 7. 8 2 (1H, t, J=7.5Hz), 7. 9 4 (1H, d, J=3.0Hz), 8. 2 4 (1H, d, J=7.8Hz), 10. 9 5 (1H, s), 11. 9 7 (1H, s).

例398:化合物番号398の化合物の製造

(1) 2-アセトキシー5-クロロ<math>-N-(ピリダジン-2-イル)ベンズアミド

原料として、2-アセトキシ-5-クロロ安息香酸、及び2-アミノピリダジン

を用いて例198(3)と同様の操作を行い、標題化合物を得た。

収率:19.7%

 $^{1}H-NMR$ (CDC1₃): δ 2. 42 (3H, s), 7. 19 (1H, d, J=8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 7Hz), 8. 01 (1H, d, J=2. 4Hz), 8. 28 (1H, dd, J=2. 4, 1. 8Hz), 8. 42 (1H, d, J=2. 4Hz), 9. 09 (1H, s), 9. 66 (1H, d, J=1. 8Hz).

(2) 5-クロロー2-ヒドロキシーN-(ピリダジン-2-イル)ベンズアミド(化合物番号398)

原料として、2-アセトキシ-5-クロロ-N-(ピリダジン-2-イル)ベンズアミドを用いて例 2 (2) と同様の操作を行い、標題化合物を得た。

収率:72.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 96 (1H, d, J=2.7Hz), 8. 44-8. 47 (2H, m), 9. 49 (1H, s), 10. 99 (1H, s), 12. 04 (1H, s).

例399:化合物番号399の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-ブロモピリミジンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:10.3%

¹H-NMR (DMSO-d₆): δ 6.98 (1H, d, J=8.8Hz), 7.59 (1H, dd, J=8.8, 2.4Hz), 8.00 (1H, d, J=2.8Hz), 8.86 (2H, s), 11.09 (1H, s), 11.79 (1H, s). 例 400: 化合物番号 400の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノー4-フェニルチアゾール-5-カルボン酸(化合物番号394)、及びプロピルアミンを用いて例212(2)と同様の操作を行い、標題化合物を得た。

収率:23.1%

¹H-NMR (DMSO-d₆): δ 0. 82 (3H, t, J=7.5Hz), 1. 39-1. 51 (2H, m), 3. 13 (2H, q, J=6.6Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 68-7. 72 (2H, m), 8. 06 (1H, d, J=2.7Hz), 8. 18 (1H, t, J=5.7Hz), 11. 87 (1H, brs), 12. 14 (1H, brs).

例401:化合物番号401の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-3, 5-ビス(トリフルオロメチル)アニリンを用いて例 16と同様の操作を行い、標題化合物を得た。収率:15. 0%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 49 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 8Hz), 7. 84 (1H, s), 7. 97 (1H, d, J=2. 8Hz), 8. 60 (1H, s), 10. 69 (1H, brs), 12. 07 (1H, brs).

例402:化合物番号402の化合物の製造

原料として、5-クロロサリチル酸、及び4-クロロ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:66.5%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, d, J=8.7 Hz), 7. 86 (1H, d, J=2.4Hz), 8. 00 (1H, dd, J=8.7, 2.4Hz), 8. 32 (1H, d, J=2.4Hz), 10. 69 (1H, s), 11. 49 (1H, s).

例403:化合物番号403の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピル-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 33.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 24 (6H, d, J=6.6 Hz), 2. 97-3.06 (1H, m), 7.06 (1H, d, J=8.7Hz), 7.51 (1H, dd, J=8.7, 2.7Hz), 7.61 (1H, s), 7.62 (1H, d, J=7.5Hz), 7.98 (1H, d, J=2.7Hz), 8.03 (1H, d, J=8.1Hz), 10.67 (1H, s), 12.21 (1H, s).

例404:化合物番号404の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメチル)アニリン を用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03 (1H, d, J=8.6Hz), 7. 46-7. 51 (2H, m), 7. 62 (1H, t, J=7.9Hz), 7. 90 (1H, d, J=3.0Hz), 7. 94 (1H, d, J=9.2Hz), 8. 21 (1H, s), 10.64 (1H, s), 11.58 (1H, brs).

例405:化合物番号405の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:18.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=9.0Hz), 7. 54 (1H, dd, J=8.7, 2.7Hz), 7. 94 (1H, d, J=2.7Hz), 8. 17 (1H, dd, J=9.0, 2.4Hz), 8. 46 (1H, d, J=1.8Hz), 8. 88 (1H, d, J=9.0Hz), 12. 19 (1H, s), 12. 25 (1H, s).

例406:化合物番号406の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジクロロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:22.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 55 (1H, dd, J=8.7, 2.7Hz), 7. 99 (1H, d, J=2.4Hz), 8. 10 (2H, s), 10. 62 (1H, s), 11. 88 (1H, s).

原料として、5-クロロサリチル酸、及び4-シアノ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:55.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.04 (1H, d, J=8.7Hz), 7.49 (1H, dd, J=8.7, 2.7Hz), 7.80 (1H, d, J=2.7Hz), 8.17 (2H, s), 8.43 (1H, s), 10.94 (1H, s), 11.34 (1H, s).

例408:化合物番号408の化合物の製造

例407:化合物番号407の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-3-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:81.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=9.0, 2.7Hz), 7.85-7.94 (3H, m), 8.31 (1H, d, J=1.8Hz), 10.67 (1H, s), 11.48 (1H, s).

例409:化合物番号409の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:41.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=9.0, 2.7Hz), 7. 93-7. 97 (3H, m), 8. 21 (1H, d, J=9.3Hz), 10. 81 (1H, s), 12. 28 (1H, s).

例410:化合物番号410の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモー4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:17.6%

¹H-NMR (DMSO-d₆): δ 7. 10 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 82 (1H, dd, J=9.0, 1.8Hz), 7. 98 (1H, d, J=3.0Hz), 8. 11 (1H, d, J=1.5Hz), 8. 67 (1H, d, J=8.7Hz), 11. 05 (1H, s), 12. 40 (1H, s).

例411:化合物番号411の化合物の製造

原料として、5-クロロサリチル酸、及び4-フルオロ-2-(トリフルオロメ チル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 36.0%

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=9.0Hz), 7. 5 2 (1H, dd, J=8.7, 2.7Hz), 7. 63 (1H, td, J=8. 7, 3. 3Hz), 7. 71 (1H, dd, J=8.7, 3.0Hz), 7. 97 (1H, d, J=2.7Hz), 8. 11 (1H, dd, J=8.7, 5.1Hz), 10. 67 (1H, s), 12. 20 (1H, s).

例412:化合物番号412の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピルオキシ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:39.2%

¹H-NMR (DMSO-d₆): δ 1. 29 (6H, d, J=5.7Hz), 4. 67-4. 79 (1H, m), 7. 04 (1H, d, J=9.0Hz), 7. 22 (1H, d, J=2.7Hz), 7. 30 (1H, dd, J=8.7, 2.7Hz), 7. 51 (1H, dd, J=8.7, 2.4Hz), 7. 86 (1H, d, J=9.

0 Hz), 7. 9 9 (1 H, d, J = 3. 0 Hz), 10. 50 (1 H, s), 12. 18 (1 H, s).

例413:化合物番号413の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジメトキシ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。収率:19.0%

¹H-NMR (CDCl₃): δ 3. 93 (3H, s), 4. 03 (3H, s), 6. 70 (1H, s), 6. 98 (1H, d, J=8. 9Hz), 7. 39 (1H, d d, J=8. 9, 2. 6Hz), 7. 45 (1H, d, J=2. 6Hz), 8. 2 9 (1H, brs,), 8. 54 (1H, s), 11. 92 (1H, s).

例414:化合物番号414の化合物の製造

原料として、5-クロロサリチル酸、及び2, 4-ジフルオロ-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。収率: 66. 0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 06 (1H, d, J=8.8Hz), 7. 51 (1H, dd, J=8.8, 2.8Hz), 7. 82 (1H, t, J=10.7Hz), 7. 94 (1H, d, J=2.8Hz), 8. 64 (1H, d, J=8.0Hz), 10. 78 (1H, s), 12. 37 (1H, brs).

例415:化合物番号415の化合物の製造

原料として、5-クロロサリチル酸、及び4-シアノ-2-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:24.8%

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=8.8Hz), 7. 52 (1H, dd, J=2.8, 8.8Hz), 7. 94 (1H, d, J=2.8Hz), 8. 17 (1H, dd, J=1.8, 8.9Hz), 8. 31 (1H, d, J=2.1Hz), 8. 63 (1H, d, J=8.9Hz), 11. 16 (1H, s), 12.45 (1H, br. s).

例416:化合物番号416の化合物の製造

原料として、5-クロロサリチル酸、及び4-クロロ-2-(4-クロロベンゼンスルホニル)-5-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.5%

¹H-NMR (CDC1₃): δ 6. 98 (1H, d, J=8. 9Hz), 7. 1 3 (1H, d, J=2. 6Hz), 7. 22 (2H, d, J=8. 6Hz), 7. 34 (2H, d, J=8. 6Hz), 7. 40 (1H, dd, J=2. 3, 8. 9 Hz), 7. 66 (1H, s), 8. 71 (1H, s), 8. 80 (1H, s), 1 1. 42 (1H, s).

例417:化合物番号417の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-ニトロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:22.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.8Hz), 7. 55 (1H, dd, J=8.8, 2.8Hz), 7. 93 (1H, d, J=2.8Hz), 8. 52 (1H, s), 9. 13 (1H, s), 12. 38 (1H, brs), 12. 45 (1H, s).

例418:化合物番号418の化合物の製造

原料として、5-クロロサリチル酸、及び2, 3-ジフルオロ-4-(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:21.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.8Hz), 7. 53 (1H, dd, J=2.9, 8.8Hz), 7. 66 (1H, dt, J=1.8, 7.7Hz), 7. 93 (1H, d, J=2.6Hz), 8. 35 (1H, t, J=7.7Hz), 11.02 (1H, d, J=1.5Hz), 12.32 (1H,

s).

例419:化合物番号419の化合物の製造

原料として、5-クロロサリチル酸、及び4, 4, -ジアミノ-2, 2, -ビス (トリフルオロメチル) ビフェニルを用いて例16と同様の操作を行い、標題化 合物を得た。

収率:35.9%

¹H-NMR (DMSO-d₆): δ 7. 05 (2H, d, J=8.8Hz), 7. 39 (2H, d, J=8.5Hz), 7. 49-7.51 (2H, m), 7. 91 (2H, d, J=2.5Hz), 7. 99 (2H, dd, J=2.0, 8.5Hz), 8. 31 (2H, d, J=1.9Hz), 10. 71 (2H, s), 11. 54 (2H, s).

例420:化合物番号420の化合物の製造

原料として、5-クロロサリチル酸、及び2, 3, 5, 6-テトラフルオロ-4 - (トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:42.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.8Hz), 7. 53 (1H, dd, J=2.9, 8.8Hz), 7. 89 (1H, d, J=2.6Hz), 10.65 (1H, br.s), 11.76 (1H, br.s).

例421:化合物番号421の化合物の製造

原料として、5-クロロサリチル酸、及び3' -アミノアセトアニリドを用いて 例 1 6 と同様の操作を行い、標題化合物を得た。

収率:22.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 05 (3H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 24-7. 39 (3H, m), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=3. 0Hz), 8. 03 (1H, s), 10. 01 (1H, s), 10. 41 (1H, s), 11. 87 (1H,

s).

例422:化合物番号422の化合物の製造

(1) 2-アセトキシ-5-クロロ-N-(3-カルバモイルフェニル)ベンズ アミド

原料として、2-アセトキシ-5-クロロ安息香酸、及び3-アミノベンズアミドを用いて例24と同様の操作を行い、標題化合物を得た。

収率:15.8%

¹H-NMR (CDCl₃): δ 2. 33 (3H, s), 5. 89 (1H, brs), 6. 31 (1H, brs), 7. 14 (1H, d, J=9. 0Hz), 7. 42-7. 49 (2H, m), 7. 55-7. 58 (1H, m), 7. 80 (1H, d, J=2. 7Hz), 7. 93 (1H, d, J=8. 1Hz), 8. 07 (1H, s), 8. 71 (1H, s).

(2) 5-クロロ-2-ヒドロキシ-N-(3-カルバモイルフェニル) ベンズ アミド (化合物番号 <math>4 2 2)

原料として、2-アセトキシ-5-クロロ-N-(3-カルバモイルフェニル) ベンズアミドを用いて例 2 (2) と同様の操作を行い、標題化合物を得た。

収率:76.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03 (1H, d, J=8.7Hz), 7. 40 (1H, brs), 7. 45 (1H, t, J=7.5Hz), 7. 48 (1H, dd, J=8.7, 2.4Hz), 7. 62-7. 65 (1H, m), 7. 86-7. 89 (1H, m), 7. 98-7. 99 (2H, m), 8. 15 (1H, t, J=1.8Hz), 10. 51 (1H, s), 11. 85 (1H, s).

例423:化合物番号423の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-N-メチルベンズアミドを用いて例 1 6 と同様の操作を行い、標題化合物を得た。

収率:19.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 79 (3H, d, J=4.5Hz), 7.

03 (1H, d, J=9.0Hz), 7. 43-7.51 (2H, m), 7. 59 (1H, dt, J=8.1, 1. 5Hz), 7. 87 (1H, ddd, J=8.1, 2. 1, 0. 9Hz), 7. 99 (1H, d, J=2.4Hz), 8. 15 (1H, t, J=1.8Hz), 8. 46 (1H, d, J=4.2Hz), 10. 52 (1H, s), 11. 84 (1H, s).

例424:化合物番号424の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジイソプロピルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.5%

¹H-NMR (DMSO-d₆): δ 1. 14 (12H, s), 2. 96-3. 1 3 (2H, m), 7. 16 (1H, d, J=8. 7Hz), 7. 23 (1H, d, J=7. 5Hz), 7. 33 (1H, dd, J=8. 4, 6. 6Hz), 7. 52 (1H, dd, J=8. 7, 2. 4Hz), 8. 11 (1H, d, J=2. 4Hz), 10. 09 (1H, s), 12. 40 (1H, s).

例425:化合物番号425の化合物の製造

原料として、5-クロロサリチル酸、及び4-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:58.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 29 (3H, s), 7. 01 (1H, d, J=8.7Hz), 7. 18 (1H, d, J=8.1Hz), 7. 47 (1H, d d, J=8.7, 2. 7Hz), 7. 58 (1H, d, J=8.4Hz), 7. 9 8 (1H, d, J=2.7Hz), 10. 35 (1H, s), 11. 94 (1H, s).

例426:化合物番号426の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:59.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 19 (6H, s), 7. 01 (1H, d, J=9.0Hz), 7. 15-7. 16 (2H, m), 7. 50 (1H, dd, J=9.0, 2. 7Hz), 8. 07 (1H, d, J=2.7Hz), 10. 03 (1H, s), 10. 10 (1H, s), 12. 29 (1H, s).

例427:化合物番号427の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:68.3%

¹H-NMR (DMSO-d₆): δ 2. 20 (3H, s), 2. 23 (3H, s), 7. 01 (1H, d, J=9.0Hz), 7. 13 (1H, d, J=8.4Hz), 7. 40-7. 47 (2H, m), 7. 47 (1H, dd, J=9.0, 2.7Hz), 7. 99 (1H, d, J=2.7Hz), 10. 29 (1H, s), 11. 97 (1H, brs).

例428:化合物番号428の化合物の製造

原料として、5-クロロサリチル酸、及び2,4,6-トリメチルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 61.0%

¹H-NMR (DMSO-d₆): δ 2. 14 (6H, s), 2. 26 (3H, s), 6. 95 (2H, s), 7. 00 (1H, d, J=9. 3Hz), 7. 48 (1H, dd, J=8. 7, 2. 7Hz), 8. 09 (1H, d, J=2. 4Hz), 10. 03 (1H, s), 12. 37 (1H, s).

例429:化合物番号429の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 41. 4%

 $^{1}H-NMR$ (CDCl₃): δ 7. 00 (1H, d, J=9.0Hz), 7. 0 9 (1H, d, J=7.5Hz), 7. 40-7. 48 (3H, m), 7. 51 (1

H, d, J = 2.4 Hz), 7. 64 (1H, s), 7. 94 (1H, s), 11. 66 (1H, s).

例430:化合物番号430の化合物の製造

原料として、5-クロロサリチル酸、及び2-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:93.3%

 $^{1}H-NMR$ (CDC1₃): δ 4. 08 (2H, s), 6. 56 (1H, d, J = 2. 5Hz), 6. 92 (1H, d, J=8. 8Hz), 7. 20-7. 46 (9 H, m), 7. 53 (1H, brs), 7. 85 (1H, d, J=8. 0Hz), 1 2. 01 (1H, brs).

例431:化合物番号431の化合物の製造

原料として、5-クロロサリチル酸、及び4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:20.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 3 (1H, d, J=9. 3Hz), 7. 3 9 (2H, d, J=9. 0Hz), 7. 4 8 (1H, dd, J=9. 0, 2. 7 Hz), 7. 8 3 (2H, d, J=9. 3Hz), 7. 9 2 (1H, d, J=2. 7Hz), 10. 5 4 (1H, s), 11. 78 (1H, s).

例432:化合物番号432の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:60.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 48-7. 54 (2H, m), 7. 75 (1H, d, J=2.1Hz), 7. 98 (1H, d, J=2.7Hz), 8. 44 (1H, d, J=8.7Hz), 10. 93 (1H, s), 12. 31 (1H, s).

例433:化合物番号433の化合物の製造

原料として、5-クロロサリチル酸、及び4-(tert-ブチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:69.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 29 (9H, s), 7. 01 (1H, d, J=8. 7Hz), 7. 39 (2H, d, J=8. 4Hz), 7. 47 (1H, d d, J=8. 7, 2. 7Hz), 7. 61 (2H, d, J=8. 4Hz), 7. 9 (1H, d, J=2. 4Hz), 10. 37 (1H, s), 11. 96 (1H, s).

例434:化合物番号434の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:79.5%

¹H-NMR (DMSO-d₆): δ 2. 14 (3H, s), 2. 29 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 06-7. 15 (2H, m), 7. 46-7. 51 (2H, m), 8. 05 (1H, d, J=3. 0Hz), 10. 3 2 (1H, s), 12. 28 (1H, s).

例435:化合物番号435の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノインダンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:80.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 98-2. 08 (2H, m), 2. 81 -2. 89 (4H, m), 7. 01 (1H, d, J=8. 8Hz), 7. 21 (1 H, d, J=8. 0, Hz), 7. 42 (1H, dd, J=8. 0, 1. 9Hz), 7. 48 (1H, dd, J=8. 8, 2. 8Hz), 7. 60 (1H, s), 7. 99 (1H, d, J=2. 8, Hz), 10. 34 (1H, s), 12. 00 (1 H, brs).

例436:化合物番号436の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジメチルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:37.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 23 (3H, s), 2. 28 (3H, s), 7. 03 (2H, d, J=8. 7Hz), 7. 10 (1H, s), 7. 49 (1H, dd, J=9. 0, 2. 7Hz), 7. 63 (1H, d, J=8. 1Hz), 8. 03 (1H, d, J=2. 4Hz), 10. 24 (1H, s), 12. 25 (1H, s).

例437:化合物番号437の化合物の製造

原料として、5-クロロサリチル酸、及び3-イソプロピルオキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.5%

¹H-NMR (CDC1₃): δ 1. 36 (6H, d, J=6.0Hz), 4. 5 2-4.64 (1H, m), 6. 75 (1H, ddd, J=8.4, 2.4, 0.9Hz), 6. 99 (1H, d, J=8.7Hz), 7. 03 (1H, ddd, J=8.1, 2.1, 0.9Hz), 7. 25-7. 31 (3H, m), 7. 39 (1H, dd, J=8.7, 2.4Hz), 7. 49 (1H, d, J=2.4Hz), 7. 81 (1H, s).

例438:化合物番号438の化合物の製造

原料として、5-クロロサリチル酸、及び2,6-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:10.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 05 (1H, d, J=8.7Hz), 7. 43 (1H, dd, J=8.7, 7.8Hz), 7. 54 (1H, dd, J=9.0, 2.7Hz), 7. 62 (1H, d, J=8.1Hz), 8. 05 (1H, d, J=2.4Hz), 10. 52 (1H, s), 12. 01 (1H, s).

例439:化合物番号439の化合物の製造

原料として、5-クロロサリチル酸、及び4-イソプロピルオキシアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.8%

¹H-NMR (DMSO-d₆): δ 1. 26 (6H, d, J=6. 3Hz), 4. 52-4. 64 (1H, m), 6. 93 (2H, dt, J=9. 0, 2. 1Hz), 7. 46 (1H, dd, J=9. 0, 2. 7Hz), 7. 58 (2H, dt, J=9. 0, 2. 1Hz), 7. 99 (1H, d, J=3. 0Hz), 10. 36 (1H, s), 11. 83 (IH, brs).

例440:化合物番号440の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモー2-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:59.2%

 $^{1}H-NMR$ (CDC1₃): δ 7. 01 (1H, d, J=9. 3Hz), 7. 4 2-7. 52 (4H, m), 8. 23 (1H, s), 8. 31 (1H, d, J=9. 3Hz), 11. 35 (1H, s).

例441:化合物番号441の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:77.6%

¹H-NMR (CDC1₃): δ 0. 89 (3H, t, J=6. 9Hz), 1. 2 7-1. 36 (6H, m), 1. 56-1. 64 (2H, m), 2. 61 (2H, t, J=7. 8Hz), 6. 99 (1H, d, J=9. 0Hz), 7. 21 (2H, d, J=8. 7Hz), 7. 39 (1H, dd, J=9. 0, 2. 7Hz), 7. 44-7. 49 (3H, m), 7. 80 (1H, s), 11. 96 (1H, s).

例442:化合物番号442の化合物の製造

原料として、5-クロロサリチル酸、及び3-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:88.3%

 $^{1}H-NMR$ (CDC1₃): δ 2. 38 (3H, s), 6. 98 (1H, d, J = 8. 8Hz), 7. 03 (1H, d, J=7. 4Hz), 7. 25-7. 40 (4H, m), 7. 48 (1H, d, J=2. 2Hz), 7. 83 (1H, brs), 11. 92 (1H, brs).

例443:化合物番号443の化合物の製造

原料として、5-クロロサリチル酸、及び4-シクロヘキシルアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:90.6%

¹H-NMR (CDCl₃): δ 1. 15-1. 47 (5H, m), 1. 56-1. 87 (5H, m), 2. 40-2. 53 (2H, m), 7. 01 (1H, d, J=8. 8Hz), 7. 21 (2H, d, J=8. 5Hz), 7. 47 (1H, dd, J=8. 8, 2. 7Hz), 7. 60 (2H, d, J=8. 5H), 8. 00 (1H, d, J=2. 7Hz), 10. 36 (1H, s), 11. 98 (1H, brs). 例 444: 化合物番号 444の化合物の製造

原料として、5-クロロサリチル酸、及び4-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:90.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 93 (2H, s), 7. 01 (1H, d, J=9.0Hz), 7. 16-7. 32 (7H, m), 7. 57 (1H, dd, J=9.0, 2. 7Hz), 7. 61 (2H, d, J=8.4Hz), 7. 96 (1H, d, J=2.4Hz), 10. 37 (1H, s).

例445:化合物番号445の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4,5-ジメトキシベン ゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 3.81 (3H, s), 3.86 (3H, s),

7. 08 (1H, d, J=8.7Hz), 7. 40 (1H, s), 7. 52 (1H, dd, J=8.7, 2. 7Hz), 7. 89 (1H, s), 7. 99 (1H, d, J=3.0Hz), 10. 93 (1H, s), 12. 31 (1H, s).

例446:化合物番号446の化合物の製造

原料として、5-クロロサリチル酸、及び6-アミノ-1,4-ベンゾジオキサンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:79.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 25 (4H, s), 6. 86 (1H, d, J=8. 8Hz), 7. 00 (1H, d, J=8. 8Hz), 7. 12 (1H, d d, J=8. 8, 2. 5Hz), 7. 33 (1H, d, J=2. 5Hz), 7. 4 6 (1H, dd, J=8. 8, 2. 5Hz), 7. 97 (1H, d, J=2. 5Hz), 10. 27 (1H, s), 11. 96 (1H, s).

例447:化合物番号447の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジクロロ-5-(イソプロピルオキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 35 (6H, d, J=6.0Hz), 4. 58-4. 66 (1H, m), 7. 07 (1H, d, J=9.0Hz), 7. 51 (1H, dd, J=8.7, 3.0Hz), 7. 68 (1H, s), 7. 98 (1H, d, J=3.0Hz), 8. 35 (1H, s), 10. 94 (1H, s), 12. 34 (1H, s).

例448:化合物番号448の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-2-クロロベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:57.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 78 (1H, d, J=2.7

Hz), 7. 82 (1H, dd, J=9. 0, 2. 1Hz), 7. 97 (1H, d, J=8. 7Hz), 8. 19 (1H, d, J=2. 1Hz), 10. 79 (1H, s), 11. 38 (1H, s).

例449:化合物番号449の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:50.6%

¹H-NMR (DMSO-d₆): δ 7. 0 3 (1H, d, J=8. 7Hz), 7. 48 (1H, dd, J=8. 7, 2. 7Hz), 7. 60 (1H, dd, J=9. 0, 1. 5Hz), 7. 76 (1H, dd, J=9. 0, 2. 4Hz), 7. 85 (1H, d, J=3. 0Hz), 8. 13 (1H, d, J=2. 4Hz), 10. 61 (1H, s), 11. 51 (1H, s).

例450:化合物番号450の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-3-メチルベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:80.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 36 (3H, s), 7. 06 (1H, d, J=8. 7Hz), 7. 49 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 (1H, dd, J=8. 4, 1. 8Hz), 7. 77 (1H, s), 7. 95 (1H, d, J=3. 0Hz), 8. 40 (1H, d, J=8. 4Hz), 10. 76 (1H, s), 12. 31 (1H, brs).

例451:化合物番号451の化合物の製造

原料として、5-クロロサリチル酸、及び2,3-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:37.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=9.0Hz), 7. 40-7.48 (2H, m), 7. 52 (1H, dd, J=9.0, 2.7Hz),

7. 98 (1H, d, J = 2.7 Hz), 8. 40 (1H, dd, J = 7.2, 2. 4Hz), 11. 00 (1H, s), 12. 32 (1H, s).

例452:化合物番号452の化合物の製造

原料として、5 ークロロサリチル酸、及び2 ークロロアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:67.3%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 20 (1H, td, J=8.1, 1.8Hz), 7. 40 (1H, td, J=8. 4, 1.8Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 57 (1H, dd, J=8.4, 1.8Hz), 8. 00 (1H, d, J=2.7Hz), 8. 40 (1H, dd, J=8.4, 1.8Hz), 10.89 (1H, s), 1 2.27 (1H, s).

例453:化合物番号453の化合物の製造

原料として、5 ークロロサリチル酸、及び4 ーイソプロピルー3 ーメチルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:21.6%

¹H-NMR (CDC1₃): δ 1. 23 (6H, d, J=6. 9Hz), 2. 3 6 (3H, s), 3. 12 (1H, m), 6. 89 (1H, d, J=9. 0Hz), 7. 15-7. 40 (5H, m), 7. 48 (1H, d, J=2. 1Hz), 7. 83 (1H, brs).

例454:化合物番号454の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノー5-[(1,1-ジメチル)プロピル]フェノールを用いて例 16と同様の操作を行い、標題化合物を得た。収率:24.9%

 $^{1}H-NMR$ (CDC1₃): δ 0. 69 (3H, t, J=7.5Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7.5Hz), 6. 98 (1H, d, J=8.7Hz), 7. 01 (1H, d, J=9.0Hz), 7. 06 (1H, s),

7. 15 (1H, dd, =8. 4, 2. 4Hz), 7. 35 (1H, d, J=2. 1Hz), 7. 42 (IH, dd, J=8. 7, 2. 4Hz), 7. 56 (1H, d, J=2. 4Hz), 8. 26 (1H, s), 11. 44 (1H, s).

例455:化合物番号455の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:64.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 28 (3H, s), 7. 05 (1H, d, J=8. 7Hz), 7. 13 (1H, td, J=7. 5, 1. 5Hz), 7. 22 -7. 30 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 7. 83 (1H, d, J=7. 8Hz), 8. 03 (1H, d, J=3. 0Hz), 1 0. 32 (1H, s), 12. 22 (1H, s).

例456:化合物番号456の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブチルアニリンを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:82.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 0. 90 (3H, t, J=7. 2Hz), 1. 24-1. 36 (2H, m), 1. 50-1. 60 (2H, m), 2. 56 (2H, t, J=7. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 19 (2H, d, J=8. 7Hz), 7. 47 (1H, dd, J=8. 7, 2. 4Hz), 7. 59 (2H, d, J=8. 4Hz), 7. 98 (1H, d, J=2. 7Hz), 10. 36 (1H, s), 11. 94 (1H, s).

例457:化合物番号457の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-クロロベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:12.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.09 (1H, d, J=8.7Hz), 7.

52 (1H, d, J=8. 1Hz), 7. 53 (1H, dd, J=9. 0, 3. 0 Hz), 7. 76 (1H, t, J=8. 7Hz), 7. 95 (1H, d, J=3. 0Hz), 8. 34 (1H, d, J=8. 4Hz), 11. 17 (1H, s), 12. 39 (1H, s).

例458:化合物番号458の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-5-メチルベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:9.0%

 $^{1}H-NMR$ (CDC1₃): δ 2. 48 (3H, s), 7. 01 (1H, d, J = 9. 0Hz), 7. 10 (1H, dd, J=8. 0, 0. 9Hz), 7. 44 (1H, d, J=9. 0, 2. 4Hz), 7. 56 (1H, d, J=8. 1Hz), 7. 62 (1H, d, J=2. 4Hz), 8. 22 (1H, s), 8. 54 (1H, brs), 11. 25 (1H, brs).

例459:化合物番号459の化合物の製造

原料として、5-クロロサリチル酸、及び4-ベンジルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率: 26.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 5. 11 (2H, s), 6. 99-7. 05 (3H, m), 7. 33-7. 49 (6H, m), 7. 60 (2H, d, J=9. 0Hz), 7. 99 (1H, d, J=2. 7Hz), 10. 33 (1H, s), 12. 02 (1H, s).

例460:化合物番号460の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-2,2-ジフルオロベン ゾ [1, 3] ジオキソールを用いて例 16 と同様の操作を行い、標題化合物を得た。

収率:66.9%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 05 (1H, d, J=8.8Hz), 7.

31-7. 32 (2H, m), 7. 51 (1H, dd, J=8. 8, 2. 8Hz), 7. 70 (1H, dd, J=5. 6, 3. 8Hz), 7. 96 (1H, d, J=2. 8Hz), 10. 59 (1H, s), 12. 05 (1H, brs).

例461:化合物番号461の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノ-2、2, 3, 3-テトラフルオロ-2、3-ジヒドロベンゾ [1, 4]ジオキシンを用いて例 1 6 と同様の操作を行い、標題化合物を得た。

収率:67.9%

¹H-NMR (CDCl₃): δ 6.99-7.03 (2H, m), 7.21-7. 27 (2H, m), 7.45 (1H, dd, J=8.9, 2.5Hz), 7.52 (1H, d, J=2.5Hz), 8.13 (1H, s), 11.44 (1H, s). 例462:化合物番号462の化合物の製造

原料として、5 ークロロサリチル酸、及び3 ークロロー4 ー (トリフルオロメチル) スルファニルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:52.3%

¹H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.8Hz), 7. 47 (1H, dd, J=2.9, 8.8Hz), 7. 80 (1H, dd, J=2.6, 8.8Hz), 7. 82 (1H, d, J=2.6Hz), 7. 88 (1H, d, J=8.8Hz), 8. 20 (1H, d, J=2.2Hz), 10. 70 (1H, s), 11. 43 (1H, s).

例463:化合物番号463の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:68.4%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 0 7 (1 H, d, J=8.8 Hz), 7. 5 2 (1 H, d d, J=2.6, 8.8 Hz), 7. 85-7. 89 (1 H, m),

7. 93 (1H, d, J=2. 6Hz), 8. 17 (1H, d, J=2. 9Hz), 8. 67 (1H, d, J=9. 5Hz), 11. 92 (1H, s), 12. 14 (1H, s).

例464:化合物番号464の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノー2, 2-ジフルオロベン ゾ [1,3] ジオキソールを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:75.8%

 1 H-NMR (DMSO-d₆): δ 7. 0 2 (1H, d, J=8.8Hz), 7. 42-7. 43 (2H, m), 7. 48 (1H, dd, J=8.8, 2.5Hz), 7. 9 0 (1H, d, J=2.5Hz), 10. 54 (1H, s), 11. 69 (1H, s).

例465:化合物番号465の化合物の製造

原料として、5-クロロサリチル酸、及び3-ベンジルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:66.4%

 1 H-NMR (CDC1₃): δ 3. 99 (2H, s), 6. 97 (1H, d, J = 9. 1Hz), 7. 06 (1H, d, J=7. 4Hz), 7. 18-7. 48 (8 H, m), 7. 37 (1H, dd, J=9. 1, 2. 5Hz), 7. 45 (1H, d, J=2. 5Hz), 7. 80 (1H, brs), 11. 88 (1H, s).

例466:化合物番号466の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:40.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 33 (3H, s), 7. 05 (1H, d, J=8. 8Hz), 7. 25 (1H, dd, J=1. 8, 8. 8Hz), 7. 33 (1H, d, J=1. 8Hz), 7. 49 (1H, dd, J=2. 9, 8. 8Hz),

7.97-8.00(2H, m), 10.37(1H, s), 12.15(1H, s). 例467:化合物番号467の化合物の製造

原料として、5-クロロサリチル酸、及び2,3,5-トリフルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:54.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 6 (1H, d, J=8.8Hz), 7. 28-7. 37 (1H, m), 7. 51 (1H, dd, J=2.6, 8.8Hz), 7. 92 (1H, d, J=2.6Hz), 7. 98-8. 04 (1H, m), 10. 93 (1H, s), 12. 27 (1H, br. s)

例468:化合物番号468の化合物の製造

原料として、5-クロロサリチル酸、及び4'-アミノベンゾー15-クラウン-5を用いて例16と同様の操作を行い、標題化合物を得た。

収率:45.1%

 $^{1}H-NMR$ (CDC1₃): δ 3. 74-3. 77 (8H, m), 3. 90-3. 92 (4H, m), 4. 10-4. 15 (4H, m), 6. 83 (1H, d, J=8. 5Hz), 6. 96-6. 99 (2H, m), 7. 24 (1H, d, J=2. 5Hz), 7. 36 (1H, dd, J=2. 5, 8. 8Hz), 7. 53 (1H, s), 8. 06 (1H, br. s), 11. 92 (1H, s).

例469:化合物番号469の化合物の製造

原料として、5-クロロサリチル酸、及び4-ブロモ-2-フルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:45.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 05 (1H, d, J=8.8Hz), 7. 43-7.53 (2H, m), 7.64-7.71 (1H, m), 7.94 (1H, d, J=1.5Hz), 8.20 (1H, dd, J=8.4, 8.8Hz), 10.70 (1H, s), 12.16 (1H, s).

例470:化合物番号470の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ビス(メタンスルホニル)ア ニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:7.2%

¹H-NMR (CDC l_3): δ 3. 13 (3H, s), 3. 21 (3H, s), 7. 04 (1H, d, J=8. 9Hz), 7. 48 (1H, dd, J=2. 2, 8. 9Hz), 7. 62 (1H, d, J=2. 2Hz), 8. 24 (1H, dd, J=2. 4, 9. 0Hz), 8. 56 (1H, d, J=2. 4Hz), 8. 91 (1H, dd, J=8. 9Hz), 10. 96 (1H, s), 11. 57 (1H, s).

例471:化合物番号471の化合物の製造

5-クロロサリチル酸(87mg, 0.5mmo1)、2,2ービス(3ーアミノー4ーメチルフェニル)ー1,1,1,3,3,3ーへキサフルオロプロパン(363mg,1mmo1)、三塩化リン(44 μ L,0.5mmo1)、トルエン(4mL)の混合物を4時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色(16mg,4.9%)を得た。(後述する例529、化合物番号529の化合物を副生成物として得た。)

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 34 (6H, s), 7. 04 (4H, d, J=8.8Hz), 7. 39 (2H, d, J=8.4Hz), 7. 48 (2H, dd, J=2.9, 8.8Hz), 7. 96 (2H, d, J=2.9Hz), 8. 19 (2H, s), 10.44 (2H, s), 12.17 (2H, s).

例472:化合物番号472の化合物の製造

原料として、5-クロロサリチル酸、及び6-アミノ-2、2、3、3-テトラフルオロ-2、3-ジヒドロベンゾ [1, 4]ジオキシンを用いて例 1 6 と同様の操作を行い、標題化合物を得た。

収率:10.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 03 (1H, d, J=8.8Hz), 7. 48 (1H, dd, J=9.0, 2.7Hz), 7. 50 (1H, d, J=9.0)

Hz), 7. 59 (1H, dd, J=8.8, 2. 2Hz), 7. 86 (1H, d, J=2.7Hz), 7. 92 (1H, d, J=2.2Hz), 10. 59 (1H, s), 11. 55 (1H, s).

例473:化合物番号473の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-5-クロロベンゾフェノンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 27.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 96 (1H, d, J=8.7Hz), 7. 43 (1H, dd, J=8.7, 3.0Hz), 7. 49-7. 56 (3H, m), 7. 64-7. 75 (5H, m), 8. 21 (1H, d, J=9.3Hz), 11. 21 (1H, s), 11. 83 (1H, s).

例474:化合物番号474の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモー4-フルオロアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:77.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 7 (1H, d, J=9.0Hz), 7. 31-7. 38 (1H, m), 7. 51 (1H, dd, J=9.0, 3.0Hz), 7. 72 (1H, d, J=8.1, 3.0Hz), 8. 00 (1H, d, J=3.0Hz), 8. 23 (1H, dd, J=9.3, 5.4Hz), 10. 70 (1H, s), 12. 24 (1H, s).

例475:化合物番号475の化合物の製造

原料として、5-クロロサリチル酸、及び4-ヘキシルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:74.8%

¹H-NMR (DMSO-d₆): δ 0. 88 (3H, t, J=6.6Hz), 1. 28-1.46 (6H, m), 2.49-2.52 (2H, m), 3.95 (2H, t, J=6.6Hz), 6.91-6.96 (2H, m), 7.00 (1H, d,

J=8.8Hz), 7. 46 (1H, dd, J=8.8, 2. 9Hz), 7. 55 -7.61 (2H, m), 8. 00 (1H, d, J=2.9Hz), 10. 31 (1H, s), 12. 03 (1H, s).

例476:化合物番号476の化合物の製造

原料として、5-クロロサリチル酸、及び2, 2-ビス(3-アミノフェニル) -1, 1, 1, 3, 3, 3-ヘキサフルオロプロパンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 99 (2H, d, J=8.8Hz), 7. 11 (2H, d, J=8.0Hz), 7. 45 (2H, dd, J=8.8, 2.6 Hz), 7. 50 (2H, t, J=8.4Hz), 7. 86 (2H, d, J=2, 6Hz), 7. 88-7. 91 (4H, m), 10.53 (2H, s), 11.56 (2H, s).

例477:化合物番号477の化合物の製造

原料として、5-クロロサリチル酸、及び2,4,5-トリクロロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:38.9%

 $^{1}H-NMR$ (CDCl₃): δ 7. 02 (1H, d, J=8.6Hz), 7. 4 6 (1H, d, J=8.6Hz), 7. 49 (1H, s), 7. 57 (1H, s), 8. 41 (1H, br. s), 8. 63 (1H, s), 11. 42 (1H, s).

例478:化合物番号478の化合物の製造

原料として、5-クロロサリチル酸、及び3-イソプロピルアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:55.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 22 (6H, d, 6. 9Hz), 2. 7 6-2. 94 (1H, m), 7. 01 (1H, d, J=8. 6Hz), 7. 04 (1H, d, J=7. 9Hz), 7. 29 (1H, t, J=7. 9Hz), 7. 47 (1

H, dd, J = 8.6, 2.6 Hz), 7.54 (1H, d, J = 7.9 Hz), 7.57 (1H, s), 7.98 (1H, d, J = 2.6 Hz), 10.37 (1H, s), 11.90 (1H, brs).

例479:化合物番号479の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノベンゾニトリルを用いて例 16と同様の操作を行い、標題化合物を得た。

収率: 45. 6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03 (1H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 83 (1H, d, J=2.6Hz), 7. 84 (2H, d, J=8.9Hz), 7. 92 (2H, d, J=8.9Hz), 10. 71 (1H, s), 11. 59 (1H, brs).

例480:化合物番号480の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゾニトリルを用いて例 16と同様の操作を行い、標題化合物を得た。

収率: 97. 1%

¹H-NMR (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=9.0, 2.7Hz), 7.56-7.63 (2H, m), 7.88 (1H, d, J=2.7Hz), 7.95-8.02 (1H, m), 8.20-8.21 (1H, m), 10.62 (1H, s), 11.57 (1H, s). 例481:化合物番号481の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジメトキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (DMSO-d₆): δ 3. 75 (3H, s), 3. 76 (3H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 01 (1H, d, J=9. 0Hz), 7. 24 (1H, dd, J=8. 7, 2. 7Hz), 7. 38 (1H, d, J=2. 1Hz), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 8. 00 (1H,

d, J = 2.4 Hz), 10. 30 (1H, s), 12. 01 (1H, s).

例482:化合物番号482の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノフェニル酢酸 エチルエス テルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:66.1%

¹H-NMR (DMSO-d₆): δ 1. 19 (3H, t, J=7.5Hz), 3. 64 (2H, s), 4. 08 (2H, q, J=7.2Hz), 7. 01 (1H, d, J=8.7Hz), 7. 26 (2H, d, J=8.7Hz), 7. 47 (1H, d d, J=8.7, 3.0Hz), 7. 64 (1H, d, J=8.4Hz), 7. 9 6 (1H, d, J=2.4Hz), 10. 40 (1H, s), 11. 87 (1H, s).

例483:化合物番号483の化合物の製造

原料として、5 - クロロサリチル酸、及び3 - [(トリフルオロメチル) スルファニル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.1%

¹H-NMR (CDC1₃): δ 7. 01 (1H, d, J=8. 9Hz), 7. 4 2 (1H, dd, J=8. 9, 2. 3Hz), 7. 47-7. 53 (2H, m), 7. 51 (1H, d, J=2. 3Hz), 7. 76 (1H, dt, J=7. 6Hz, 2. 0Hz), 7. 88 (1H, brs), 7. 92 (1H, s), 11. 64 (1H, s).

例484:化合物番号484の化合物の製造

原料として、5 - クロロサリチル酸、及び4 - [(トリフルオロメチル) スルファ ニル] アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:63.2%

¹H-NMR (CDC1₃): δ 7. 01 (1H, d, J=8. 9Hz), 7. 4 3 (1H, dd, J=8. 9, 2. 3Hz), 7. 50 (1H, d, J=2. 3Hz), 7. 70 (4H, s), 7. 90 (1H, brs), 11. 60 (1H, s).

例485:化合物番号485の化合物の製造

原料として、5-クロロサリチル酸、及び4-(トリフルオロメタンスルホニル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:38.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=8.6Hz), 7. 49 (1H, dd, J=8.6, 2.6Hz), 7. 80 (1H, d, J=2.6Hz), 8. 12 (2H, d, J=9.4Hz), 8. 17 (2H, d, J=9.4Hz), 8. 16 (1H, s), 10. 95 (1H, s), 11. 37 (1H, brs).

例486:化合物番号486の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:75.4%

¹H-NMR (DMSO-d₆): δ 7.02 (1H, d, J=8.9Hz), 7. 39-7.51 (3H, m), 7.85-7.93 (2H, m), 10.51, (1H, s), 11.60 (1H, s).

例487:化合物番号487の化合物の製造

原料として、5-クロロサリチル酸、及び3-エチニルアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:35.8%

¹H-NMR (DMSO-d₆): δ 4. 22 (1H, s), 7. 02 (1H, d, J=8.6Hz), 7. 25 (1H, d, J=7.6Hz), 7. 39 (1H, t, J=7.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 70 (1H, d, J=7.6Hz), 7. 89 (1H, s), 7. 91 (1H, d, J=2.6Hz), 10. 46 (1H, s), 11. 69 (1H, brs).

例488:化合物番号488の化合物の製造

原料として、5-クロロサリチル酸、及び4-(sec-ブチル)アニリンを用

いて例16と同様の操作を行い、標題化合物を得た。

収率:40.1%

¹H-NMR (DMSO-d₆): δ 0. 77 (3H, t, 7. 4Hz), 1. 1 9 (3H, d, 6. 9Hz), 1. 50-1. 61 (2H, m), 2. 52-2. 62 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 20 (2H, d, J=8. 6Hz), 7. 47 (1H, dd, J=8. 9, 2. 6Hz), 7. 60 (2H, d, J=8. 6Hz), 7. 98 (1H, d, J=2. 6Hz), 10. 36 (1H, s), 11. 94 (1H, brs).

例489:化合物番号489の化合物の製造

原料として、5-クロロサリチル酸、及び3-クロロー4-メトキシアニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:75.7%

 $^{1}H-NMR$ (CDCl₃): δ 6. 98 (2H, t, J=9. 2Hz), 7. 3 8-7. 44 (2H, m), 7. 47 (1H, d, J=2.6Hz), 7. 66 (1 H, d, J=2.6Hz), 7. 73 (1H, br. s), 11. 81 (1H, s).

例490:化合物番号490の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゾフェノンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:34.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 2 (1H, d, J=8.6Hz), 7. 48 (1H, dd, J=9.1, 2.6Hz), 7. 52-7. 62 (4H, m), 7. 68-7. 79 (3H, m), 7. 93 (1H, d, J=2.6Hz), 8. 0 2 (1H, d, J=7.9Hz), 8. 16 (1H, s), 10. 60 (1H, s), 11. 68 (1H, brs).

例491:化合物番号491の化合物の製造

原料として、5-クロロサリチル酸、及び3-メトキシアニリンを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:23.5%

¹H-NMR (DMSO-d₆): δ 3. 76 (3H, s), 6. 69-6. 75 (1H, m), 7. 01 (1H, d, J=8. 6Hz), 7. 25-7. 28 (2H, m), 7. 39 (1H, s), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 94 (1H, d, J=2. 6Hz), 10. 39 (1H, s), 11. 8 1 (1H, brs).

例492:化合物番号492の化合物の製造

原料として、5-クロロサリチル酸、及び4'-アミノアセトアニリドを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:36.2%

¹H-NMR (DMSO-d₆): δ 2. 50 (3H, s), 7. 01 (1H, d, J=8. 6Hz), 7. 47 (1H, dd, J=8. 6, 2. 6Hz), 7. 57 (2H, d, J=9. 1Hz), 7. 61 (2H, d, J=9. 1Hz), 7. 9 8 (1H, d, J=2. 6Hz), 9. 95 (1H, s), 10. 38 (1H, s), 11. 99 (1H, brs).

例493:化合物番号493の化合物の製造

原料として、5-クロロサリチル酸、及びスルファニルアミドを用いて例16と 同様の操作を行い、標題化合物を得た。

収率:25.7%

 1 H-NMR (DMSO-d₆): δ 7. 03 (1H, d, J=8.9Hz), 7. 31 (2H, s), 7. 47 (1H, dd, J=8.9, 2.3Hz), 7. 81 (2H, d, J=8.9Hz), 7. 89 (2H, d, J=8.9Hz), 7. 89 (1H, d, J=2.3Hz), 10. 70 (1H, s), 11. 55 (1H, brs).

例494:化合物番号494の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-アミノフェニル)-1, 1, 1, 3, 3, 3-0+サフルオロ-2-プロパノールを用いて例16と同様の操

作を行い、標題化合物を得た。(後述する例498、化合物番号498の化合物との混合物を分離して得た。)

収率:11.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 2 (1H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 68 (2H, d, J=8.7Hz), 7. 85 (2H, d, J=8.7Hz), 7. 91 (1H, d, J=2.6Hz), 8. 69 (1H, s), 10. 62 (1H, s).

例495:化合物番号495の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-4-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:39.6%

¹H-NMR (CDC1₃): δ 7. 04 (1H, d, J=8. 9Hz), 7. 4 7 (1H, dd, J=2. 3, 8. 9Hz), 7. 54 (1H, d, J=2. 3Hz), 8. 25 (1H, dd, J=2. 6, 8. 9Hz), 8. 39 (1H, d, J=2. 3Hz), 8. 73 (1H, d, J=9. 2Hz), 8. 76 (1H, br. s), 11. 22 (1H, s).

例496:化合物番号496の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ジフルオロアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:67.8%

¹H-NMR (DMSO-d₆): δ 7.05 (1H, dd, J=1.7, 8.9 Hz), 7.15 (1H, dt, J=1.7, 9.2Hz), 7.41 (1H, dd, J=2.3, 8.9, 9.2Hz), 7.51 (1H, dt, J=2.3, 8.9Hz), 7.98 (1H, d, J=2.3Hz), 8.11 (1H, dd, J=8.9, 15.1Hz), 10.59 (1H, s), 12.13 (1H, s). 例497:化合物番号497の化合物の製造

原料として、5-クロロサリチル酸、及び4-(ジフルオロメトキシ)アニリン

を用いて例16と同様の操作を行い、標題化合物を得た。

収率:85.9%

¹H-NMR (DMSO-d₆): δ 7. 01 (1H, d, J=8.6Hz), 7. 19 (1H, t, J=74.2Hz), 7. 20 (2H, d, J=8.6Hz), 7. 47 (1H, dd, J=8.6, 2.6Hz), 7. 74 (2H, d, J=8. 9Hz), 7. 94 (1H, d, J=2.6Hz), 10. 47 (1H, s), 11. 80 (1H, brs).

例498:化合物番号498の化合物の製造

前述した例494において、化合物番号494の化合物との混合物を分離して 得た。

収率:11.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 2 (1H, d, J=8.6Hz), 7. 46 (1H, dd, J=8.6, 2.3Hz), 7. 83 (2H, d, J=8.1 Hz), 7. 88 (1H, d, J=2.3Hz), 7. 95 (2H, d, J=8.1 Hz), 10. 71 (1H, s).

例499:化合物番号499の化合物の製造

原料として、5-クロロサリチル酸、及び3-(メチルスルファニル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:67.2%

¹H-NMR (DMSO-d₆): δ 2. 49 (3H, s), 7. 00-7. 05 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 31 (1H, t, J=7. 9Hz), 7. 46 (1H, dd, J=8. 9, 2. 6Hz), 7. 44-7. 49 (1H, m), 7. 68 (1H, d, J=1. 7Hz), 7. 93 (1H, d, J=2. 6Hz), 10. 47 (1H, s).

例500:化合物番号500の化合物の製造

原料として、5-クロロサリチル酸、及び4-メタンスルホニルアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:28.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 20 (3H, s), 7. 03 (1H, d, J=8. 3Hz), 7. 48 (1H, dd, J=8. 3, 2. 6Hz), 7. 87 (1H, d, J=2. 6Hz), 7. 92 (2H, d, J=8. 9Hz), 7. 98 (2H, d, J=8. 9Hz), 10. 75 (1H, s), 11. 45 (1H, brs).

例501:化合物番号501の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4-メチルベンゾフェノンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:8.7%

 $^{1}H-NMR$ (CDCl₃): δ 2. 50 (3H, s), 6. 98 (1H, d, J=8. 3Hz), 6. 99 (1H, d, J=7. 3Hz), 7. 39 (1H, dd, J=2. 0, 8. 6Hz), 7. 48-7. 64 (4H, m), 7. 72 (2H, d, J=7. 6Hz), 7. 83 (1H, d, J=2. 3Hz), 8. 57 (1H, s), 12. 18 (1H, s), 12. 34 (1H, br. s).

例502:化合物番号502の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-N-ブチルベンゼンスルホンアミドを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:46.7%

¹H-NMR (DMSO-d₆): δ 0. 80 (3H, t, J=7. 3Hz), 1. 17-1. 41 (4H, m), 2. 73-2. 80 (2H, m), 7. 03 (1H, d, J=8. 9Hz), 7. 48 (1H, dd, J=8. 9, 2. 0Hz), 7. 53-7. 64 (2H, m), 7. 87-7. 92 (1H, m), 7. 92 (1H, d, J=2. 0Hz), 8. 27 (1H, s), 10. 62 (1H, s), 11. 63 (1H, s).

例503:化合物番号503の化合物の製造

原料として、5-クロロサリチル酸、及び3-(ベンジルオキシ)アニリンを用

いて例16と同様の操作を行い、標題化合物を得た。

収率:68.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 5. 11 (2H, s), 6. 79-6. 83 (1H, m), 7. 01 (1H, d, J=8. 9Hz), 7. 27-7. 49 (9H, m), 7. 93 (1H, d, J=3. 0Hz), 10. 40 (1H, s), 11. 79 (1H, brs).

例504:化合物番号504の化合物の製造

原料として、5-クロロサリチル酸、及びN-(4-アミノフェニル)-4-メチルベンゼンスルホンアミドを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:40.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 33 (3H, s), 6. 99 (1H, d, J=8. 6Hz), 7. 07 (2H, d, J=8. 6Hz), 7. 34 (2H, d, J=8. 3Hz), 7. 45 (1H, dd, J=8. 6, 2. 1Hz), 7. 53 (2H, d, J=8. 6Hz), 7. 63 (2H, d, J=8. 3Hz), 7. 9 0 (1H, d, J=2. 1Hz), 10. 14 (1H, s), 10. 33 (1H, s), 11. 81 (1H, brs).

例505:化合物番号505の化合物の製造

原料として、5-クロロサリチル酸、及び4-(モルホリノ)アニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:29.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 09 (4H, t, J=4.6Hz), 3. 74 (4H, t, J=4.6Hz), 6. 94-7. 01 (3H, m), 7. 46 (1H, dd, J=8.9, 2.6Hz), 7. 55 (2H, d, J=8.9Hz), 8. 01 (1H, d, J=2.6Hz), 10. 29 (1H, s), 12. 10 (1H, brs).

例506:化合物番号506の化合物の製造

原料として、5-クロロサリチル酸、及び3-(tert-ブチル)アニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:76.1%

 $^{1}H-NMR$ (CDC1₃): δ 1. 35 (9H, s), 6. 99 (1H, d, J = 8. 9Hz), 7. 24-7. 28 (1H, m), 7. 32-7. 35 (1H, m), 7. 40 (1H, dd, J=8. 9, 2. 3Hz), 7. 46-7. 50 (2H, m), 7. 51 (1H, d, J=2. 3Hz), 7. 81 (1H, brs), 11. 94 (1H, s).

例507:化合物番号507の化合物の製造

原料として、5-クロロサリチル酸、及び3-(5-メチルフラン-2-イル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:61.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 36 (3H, s), 6. 22-6. 23 (1H, m), 6. 81 (1H, d, J=3. 0Hz), 7. 02 (1H, d, J=8. 9Hz), 7. 36-7. 51 (3H, m), 7. 58-7. 61 (1H, m), 7. 99-8. 01 (2H, m), 10. 49 (1H, s), 11. 85 (1H, brs).

例508:化合物番号508の化合物の製造

原料として、5-クロロサリチル酸、及び3-(1-ヒドロキシエチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 37.6%

¹H-NMR (DMSO-d₆): δ 1. 80 (3H, d, J=6.6Hz), 5. 33 (1H, q, J=6.6Hz), 7. 01 (1H, d, J=8.9Hz), 7. 25 (1H, d, J=7.9Hz), 7. 38 (1H, t, J=7.9Hz), 7. 47 (1H, dd, J=8.9, 2.3Hz), 7. 65 (1H, d, J=7.9Hz), 7. 85 (1H, s), 7. 96 (1H, d, J=2.3Hz), 10. 48 (1H, s), 11. 80 (1H, brs).

例509:化合物番号509の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノベンゼンスルホンアミドを 用いて例16と同様の操作を行い、標題化合物を得た。

収率:18.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 3 (1H, d, J=8. 9Hz), 7. 41 (2H, s), 7. 48 (1H, dd, J=8. 9, 2. 6Hz), 7. 5 4 -7. 62 (2H, m), 7. 84-7. 88 (1H, m), 7. 9 3 (1H, d, J=2. 6Hz), 8. 30 (1H, s), 10. 64 (1H, s), 11. 68 (1H, brs).

例510:化合物番号510の化合物の製造

原料として、5-クロロサリチル酸、及び3-(トリフルオロメタンスルホニル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:62.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 3 (1H, d, J=8.6Hz), 7. 48 (1H, dd, J=8.6, 2.6Hz), 7. 82-7. 88 (3H, m), 8. 23-8. 26 (1H, m), 8. 67 (1H, s), 10. 88 (1H, s), 11. 45 (1H, brs).

例511:化合物番号511の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-4-(トリフルオロメトキシ)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:17.1%

 $^{1}H-NMR$ (CDC1₃): δ 7. 02 (1H, d, J=8. 9Hz), 7. 2 6-7. 31 (1H, m), 7. 44 (1H, dd, J=8. 9, 2. 6Hz), 7. 53 (2H, d, J=2. 6Hz), 8. 41 (1H, brs,), 8. 42 (1H, d, J=8. 9Hz), 11. 57 (1H, s).

例512:化合物番号512の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-(ジヘキシルオキシ)アニリ

ンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:60.5%

¹H-NMR (CDC1₃): δ 0. 91 (6H, t, J=6. 3Hz), 1. 3 4-1. 61 (12H, m), 1. 76-1. 89 (4H, m), 3. 97-4. 04 (4H, m), 6. 88 (1H, d, J=8. 9Hz), 6. 97-7. 00 (2H, m), 7. 22 (1H, d, J=2. 6Hz), 7. 38 (1H, dd, J=8. 9, 2. 6Hz), 7. 47 (1H, d, J=2. 6Hz), 7. 73 (1H, s), 11. 97 (1H, s).

例513:化合物番号513の化合物の製造

原料として、5-クロロサリチル酸、及び3,4-ジクロロアニリンを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:16.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03 (1H, d, J=8. 7Hz), 7 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 61-7. 70 (2H, m), 7. 86 (1H, d, J=2. 7Hz), 8. 11 (1H, d, J=2. 1Hz), 10. 56 (1H, s), 11. 53 (1H, s).

例514:化合物番号514の化合物の製造

原料として、5-クロロサリチル酸、及び3-ヘキシルオキシアニリンを用いて 例16と同様の操作を行い、標題化合物を得た。

収率:88.2%

¹H-NMR (DMSO-d₆): δ 0. 89 (3H, t, J=7.0Hz), 1. 28-1. 47 (6H, m), 1. 67-1. 76 (2H, m), 3. 95 (2H, t, J=6.6Hz), 6. 69-6. 73 (1H, m), 7. 01 (1H, d, J=8.8Hz), 7. 21-7. 28 (2H, m), 7. 39-7. 40 (1H, m), 7. 67 (1H, dd, J=8.8, 2.6Hz), 7. 94 (1H, d, J=2.6Hz), 10. 34 (1H, s), 11. 80 (1H, s).

例515:化合物番号515の化合物の製造

原料として、5-クロロサリチル酸、及び5-エトキシ-4-フルオロ-2-ニトロアニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:20.2%

¹H-NMR (DMSO-d₆): δ 1. 43 (3H, t, J=7.0Hz), 4. 27 (2H, q, J=7.0Hz), 7. 07 (1H, d, J=8.8Hz), 7. 52 (1H, dd, J=8.8, 2.9Hz), 7. 95 (1H, d, J=2.9 Hz), 8. 15 (1H, d, J=11.4Hz), 8. 57 (1H, d, J=8. 4Hz), 12. 16 (1H, s), 12. 26 (1H, s).

例516:化合物番号516の化合物の製造

原料として、5-クロロサリチル酸、及び4-ヒドロキシ-3-メチル-1-ナフチルアミンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:5.9%

¹H-NMR (DMSO-d₆): δ 2. 38 (3H, s), 7. 03 (1H, d, J=9. 3Hz), 7. 43 (2H, s), 7. 46 (1H, d, J=2. 4Hz), 7. 50-7. 54 (2H, m), 7. 67 (1H, d, J=2. 1Hz), 7. 78 (1H, dd, J=6. 0, 2. 7Hz), 8. 03 (1H, brs), 8. 18 (1H, dd, J=6. 0, 3. 6Hz), 11. 98 (1H, brs).

製造法が記載された文献:国際公開第99/65449号パンフレット

例518:化合物番号518の化合物の製造

例517:化合物番号517の化合物の製造

本化合物は公知化合物である。

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例519:化合物番号519の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例520:化合物番号520の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例521:化合物番号521の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例522:化合物番号522の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例523:化合物番号523の化合物の製造

本化合物は公知化合物である。

製造法が記載された文献:国際公開第99/65449号パンフレット

例524:化合物番号524の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノビフェニルを用いて例16 と同様の操作を行い、標題化合物を得た。

収率:52.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 0 3 (1H, d, J=8.7Hz), 7. 3 3-7. 3 8 (1H, m), 7. 4 4-7. 5 1 (3H, m), 7. 6 7-7. 7 2 (4H, m), 7. 8 2 (2H, d, J=8.7Hz), 7. 9 8 (1H, d, J=2.4Hz), 10. 4 9 (1H, s), 11. 8 4 (1H, s).

例525:化合物番号525の化合物の製造

 $5-スルフォサリチル酸(218mg, 1mmo1)、3, 5-ビス(トリフルオロメチル)アニリン(229mg, 1mmo1)、三塩化リン(88<math>\mu$ L, 1mmo1)、オルトーキシレン(5mL)の混合物を3時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色固体(29mg, 9.2%)を得た。

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 15 (1H, d, J=8.8Hz), 7.

65 (2H, s), 7. 73 (1H, s), 7. 81 (1H, s), 7. 82 (1H, dd, J=8. 7, 2. 5Hz), 8. 23 (1H, d, J=2. 5Hz), 8. 38 (2H, s), 10. 87 (1H, s), 11. 15 (1H, brs).

例526:化合物番号526の化合物の製造

原料として、5-クロロサリチル酸、及び2,4-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 6.9%

 $^{1}H-NMR$ (CDC1₃): δ 7. 03 (1H, dd, J=8. 7, 0. 6H z), 7. 43-7. 48 (2H, m), 7. 91 (1H, d, J=9. 0Hz), 7. 96 (1H, s), 8. 42 (1H, s), 8. 49 (1H, d, J=8. 7Hz), 11. 26 (1H, s).

例527:化合物番号527の化合物の製造

原料として、3-フェニルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:64.6%

¹H-NMR (DMSO-d₆): δ 7. 12 (1H, t, J=8. 1Hz), 7. 37 (1H, tt, J=7. 5, 1. 5Hz), 7. 43-7. 48 (2H, m), 7. 56-7. 60 (3H, m), 7. 91 (1H, s), 8. 07, (1H, dd, J=8. 1, 1. 5Hz), 8. 48 (2H, s), 11. 00 (1H, s), 12. 16 (1H, s).

例528:化合物番号528の化合物の製造

原料として、4-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:65.7%

¹H-NMR (DMSO-d₆): δ 6.81-6.90 (2H, m), 7.84 (1H, s,), 7.93-7.98 (1H, m,), 8.45 (2H, s,), 10.78 (1H, s), 11.81 (1H, s,).

例529:化合物番号529の化合物の製造

前述した例471において、化合物番号471の化合物との混合物を分離して得た。

収率:9.4%

¹H-NMR (CD₃OD): δ 2. 16 (3H, s), 2. 34 (3H, s), 6. 69 (1H, d, J=8. 2Hz), 6. 76 (1H, brs) 6. 95 (1H, d, J=8. 8Hz), 7. 02 (1H, d, J=8. 0Hz), 7. 15 (1H, d, J=8. 2Hz), 7. 29 (1H, d, J=8. 2Hz), 7. 37 (1H, dd, J=8. 8, 2. 6Hz), 7. 97 (1H, d, J=2. 6Hz), 7. 98 (1H, s).

例530:化合物番号530の化合物の製造

原料として、5-クロロサリチル酸、及び4-アミノ-3-(トリフルオロメトキシ)ベンゾニトリルを用いて例 1 6 と同様の操作を行い、標題化合物を得た。収率:7 5 . 2 %

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 13 (1H, d, J=8.8Hz), 7. 54 (1H, dd, J=8.8, 2.6Hz), 7. 94 (1H, dd, J=8.4, 1.6Hz), 7. 95 (1H, d, J=2.6Hz), 8. 15 (1H, t, J=1.5Hz), 8. 75 (1H, d, J=8.8Hz), 11. 25 (1H, s), 12. 45 (1H, s).

例531:化合物番号531の化合物の製造

原料として、5-クロロサリチル酸、及び4-[2-アミノ-4-(トリフルオロメチル)フェノキシ]ベンゾニトリルを用いて例16と同様の操作を行い、標題化合物を得た。

収率:11.6%

 $^{1}H-NMR$ (CD₃OD): δ 6. 88 (1H, d, J=8. 6Hz), 7. 1 9 (2H, d, J=8. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 33 (1H, dd, J=8. 8, 2. 8Hz), 7. 46 (1H, dd, J=8.

9, 1. 9 Hz), 7. 76 (2H, d, J = 8.9 Hz), 7. 98 (1H, d, J = 2.7 Hz), 8. 96 (1H, s).

例532:化合物番号532の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-(4-メトキシフェノキシ)ベンゾトリフルオライドを用いて例16と同様の操作を行い、標題化合物を得た。

収率:88.1%

¹H-NMR (CDC1₃): δ 3. 85 (3H, s) 6. 81 (1H, d, J = 8. 5Hz), 6. 97-7. 02 (3H, m), 7. 08 (2H, d, J=8. 8Hz), 7. 30 (1H, m), 7. 40 (1H, dd, J=8. 8, 1. 9Hz), 7. 45 (1H, d, J=2. 2Hz), 8. 70 (1H, s), 8. 78 (1H, d, J=1. 6Hz), 11. 76 (1H, s).

例533:化合物番号533の化合物の製造

原料として、サリチル酸、及び2,5-ビス(トリフルオロメチル)アニリンを 用いて例16と同様の操作を行い、標題化合物を得た。

収率: 47.8%

 $^{1}H-NMR$ (CD₃OD): δ 7. 00-7. 06 (2H, m), 7. 48 (1H, dt, J=1.5, 7.5Hz), 7. 74 (1H, d, J=8.4Hz), 8. 01-8. 08 (2H, m), 8. 79 (1H, s), 11. 09 (1H, s), 12. 03 (1H, s).

例534:化合物番号534の化合物の製造

(1) 2-アミノー4-(2, 4-ジクロロフェニル) チアゾール

原料として、2', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例 395(1)と同様の操作を行い、標題化合物を得た。

収率:97.1%

¹H-NMR (CDCl₃): δ 5. 01 (2H, s), 7. 09 (1H, s), 7. 28 (1H, dd, J=8. 4, 2. 1Hz), 7. 45 (1H, d, J=2.

1 Hz), 7. 82 (1H, d, J=8. 4Hz).

(2) 5-クロロー 2-ヒドロキシ-N- [4-(2, 4-ジクロロフェニル) チアゾール-2-イル] ベンズアミド (化合物番号 5 3 4)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(2,4-ジクロロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。収率:8.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 50-7. 55 (2H, m), 7. 72-7. 76 (2H, m), 7. 91 (1H, d, J=8.4Hz), 7. 95 (1H, d, J=2.4Hz), 11. 87 (1H, brs), 12. 09 (1H, brs).

例535:化合物番号535の化合物の製造

原料として、3-イソプロピルサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。

収率:99.2%

¹H-NMR (CDCl₃): δ 1. 26 (6H, d, J=6. 9Hz), 3. 4 4 (1H, Hept, J=6. 9Hz), 6. 92 (1H, t, J=7. 8Hz), 7. 38 (1H, dd, J=8. 1, 1. 2Hz), 7. 44 (1H, d, J=7. 5Hz), 7. 69 (1H, s), 8. 13 (3H, s), 11. 88 (1H, s). 例 5 3 6: 化合物番号 5 3 6 の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー3-イソプロピルベンズアミド(化合物番号535;100mg,0.26mmo1)の四塩化炭素(5mL)溶液に、アルゴン雰囲気下、臭素(14.4 μ L,0.28mmo1)及び鉄粉(1.7mg,0.03mmo1)を加え、室温で2時間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色固体(110mg,91.5%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 1. 25 (6H, d, J=6. 9Hz), 3. 3 9 (1H, Hept, J=6. 9Hz), 7. 49-7. 51 (2H, m), 7. 71 (1H, brs), 8. 11-8. 14 (3H, m), 11. 81 (1H, brs).

例537:化合物番号537の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシー3-メチルベンズアミド(化合物番号328;150mg,0.41mmo1)のメタノール/水(3:1)混合溶液(5mL)に、N-ブロモコハク酸イミド(88.2mg,0.50mmo1)を加え、室温で10分間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を10%チオ硫酸ナトリウム水溶液、水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色粉末(167mg,91.5%)を得た。 1 H-NMR(CDC1 $_3$): δ 2.28(3H,s),7.47(1H,s),7.50(1H,d,J=2.4Hz),7.71(1H,s),8.08(1H,brs),8.13(2H,s),11.71(1H,s).

例538:化合物番号538の化合物の製造

4, 4, 4-トリフルオロ-1-フェニル-1, 3-ブタンジオン(4 3 2. 3 mg, 2mmo 1)、3-ニトロフェニルヒドラジン塩酸塩(3 7 9. 2 mg, 2 mmo 1)、濃塩酸(0. 2 mL)、エタノール(8 mL)の混合物を 2 時間加熱還流した。反応混合物を冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $4:1\rightarrow 3:1$)で精製して、標題化合物の薄黄白色粉末(6 3 1. 5 mg, 9 4. 7%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 6. 80 (1H, s), 7. 23-7. 26 (2 H, m), 7. 35-7. 45 (3H, m), 7. 54 (1H, t, J=8. 4H z), 7. 63 (1H, ddd, J=8. 1, 1. 8, 1. 2Hz), 8. 19-8. 25 (2H, m).

1-(3-ニトロフェニル)-5-フェニル-3-(トリフルオロメチル)ピラ ゾール(0.59g, 1.77mmol)、5%パラジウム炭素(0.06g)に 酢酸(3mL)、エタノール(2mL)を加え、水素雰囲気下,室温で2時間水素 添加した。不溶物を濾別後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題 化合物の白色固体(491.1mg, 91.4%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 3. 78 (2H, s), 6. 54 (1H, ddd, J=7. 8, 1. 8, 0. 6Hz), 6. 65 (1H, ddd, J=8. 4, 2. 4, 0. 9Hz), 6. 73-6. 75 (2H, m), 7. 07 (1H, t, J=8. 1Hz), 7. 24-7. 36 (5H, m).

(3) $5-クロロ-2-ヒドロキシ-N-\{3-[5-フェニル-3-(トリフルオロメチル) ピラゾール-<math>1-$ イル]フェニル $\}$ ベンズアミド(化合物番号 5 38)

原料として、5-クロロサリチル酸、及び1-(3-アミノフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:74.4%

 $^{1}H-NMR$ (CDCl₃): δ 6. 77 (1H, s), 6. 97-7. 03 (2 H, m), 7. 27-7. 45 (8H, m), 7. 65 (1H, ddd, J=8. 4, 2. 1, 0. 9Hz), 7. 74 (1H, t, J=2. 1Hz), 7. 93 (1 H, s), 11. 63 (1H, s).

例539:化合物番号539の化合物の製造

(1) 5-(tert-ブチル) -1-(4-ニトロフェニル) -3-(トリフルオロメチル) ピラゾール

原料として、1, 1, 1-トリフルオロ-5, 5-ジメチル-2, 4-ヘキサンジオン、及び4-ニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作を行い、標題化合物を得た。

収率:94.7%

 $^{1}H-NMR$ (CDCl₃): δ 1. 23 (9H, s), 6. 51 (1H, s), 7. 62 (2H, d, J=9.0Hz), 8. 37 (2H, d, J=9.0Hz).

(2) 1-(4-アミノフェニル) -5-(tert-ブチル) -3-(トリフルオロメチル) ピラゾール

原料として、5-(tert-ブチル)-1-(4-ニトロフェニル)-3-(トリフルオロメチル) ピラゾールを用いて例<math>538(2)と同様の操作を行い、標題化合物を得た。

収率:98.9%

 $^{1}H-NMR$ (CDC1₃): δ 1. 20 (9H, s), 4. 00 (2H, br), 6. 40 (1H, s), 6. 69 (2H, d, J=8. 7Hz), 7. 14 (2H, d, J=9. 0Hz).

(3) N- $\{4-[5-(tert-ブチル)-3-(トリフルオロメチル) ピラゾール-1-イル] フェニル<math>\}-5-クロロ-2-ヒドロキシベンズアミド(化合物番号539)$

原料として、5-クロロサリチル酸、及び1-(5-アミノフェニル)-5-(te r t -ブチル)-3-(トリフルオロメチル)ピラゾールを用いて例 16と同様の操作を行い、標題化合物を得た。

収率:57.6%

 $^{1}H-NMR$ (CDCl₃): δ 1. 23 (9H, s), 6. 47 (1H, s), 7. 00 (1H, d, J=9.0Hz), 7. 40-7. 44 (3H, m), 7.

57 (1H, d, J=2.4Hz), 7.72 (2H, d, J=8.7Hz), 8.15 (1H, s), 11.58 (1H, s).

例540:化合物番号540の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-フェニルベンズアミド(化合物番号 5 2 7)を用いて例 5 3 7 と同様の操作を行い、標題化合物を得た。

収率:67.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 36-7. 50 (3H, m), 7. 55 -7. 59 (2H, m), 7. 71 (1H, d, J=2. 1Hz), 7. 93 (1 H, brs), 8. 28 (1H, d, J=2. 1Hz), 8. 45 (2H, s), 1 1. 06 (1H, brs), 12. 16 (1H, brs).

例541:化合物番号541の化合物の製造

(1) 2-アミノ-4-(3, 4-ジクロロフェニル) チアゾール

原料として、3¹,4¹-ジクロロアセトフェノン、及びチオウレアを用いて例 395(1)と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 17 (2H, s), 7. 24 (1H, s), 7. 62 (1H, d, J=8. 4Hz), 7. 78 (1H, dd, J=8. 7, 2. 7Hz), 8. 22 (1H, d, J=2. 4Hz).

(2) 5-クロロー 2-ヒドロキシ-N- [4-(3, 4-ジクロロフェニル) チアゾール-2-イル]ベンズアミド(化合物番号 541)

原料として、5-クロロサリチル酸、及び2-アミノー4-(3, 4-ジクロロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。収率: 15.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 71 (1H, d, J=8.4 Hz), 7. 91 (1H, d, J=1.8Hz), 7. 94 (1H, s), 8. 18

(1 H, d, J=1.5 Hz), 12.09 (2 H, bs).

例542:化合物番号542の化合物の製造

(1) 2-アミノ-4-[4-(トリフルオロメチル)フェニル] チアゾール 原料として、4'-(トリフルオロメチル) アセトフェノン、及びチオウレアを 用いて例395(1) と同様の操作を行い、標題化合物を得た。

収率:77.5%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 18 (2H, s), 7. 26 (1H, s), 7. 72 (2H, d, J=8. 4Hz), 8. 00 (2H, d, J=8. 1Hz).

(2) 5-クロロー2-ヒドロキシーN-{4-[4-(トリフルオロメチル)フェニル]チアゾール-2-イル〉ベンズアミド(化合物番号542)

原料として、5-クロロサリチル酸、及び2-アミノ-4-[4-(トリフルオロメチル)フェニル]チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 81 (2H, d, J=8.4 Hz), 7. 96 (1H, d, J=2.4Hz), 7. 98 (1H, s), 8. 16 (2H, d, J=8.1Hz), 11. 91 (1H, bs), 12. 13 (1H, bs).

例543:化合物番号543の化合物の製造

(1) 2-rセトキシ $-N-\{4-[3,5-r$ ス(トリフルオロメチル)ピラ ゾール-1-4ル〕フェニル $\}-5-2$ クロロベンズアミド

原料として、2-アセトキシー5-クロロ安息香酸、及び1-(4-アミノフェニル)-3、5-ビス(トリフルオロメチル)ピラゾールを用いて例 24と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR$ (CDCl₃): δ 2.36 (3H, s), 7.78 (1H, s),

7. 14 (1H, d, J=8.7Hz), 7. 48-7. 51 (3H, m), 7. 77 (2H, d, J=9.0Hz), 7. 83 (1H, d, J=2.7Hz), 8. 25 (1H, s).

[1-(4-r)]フェニル)-3, 5-r (トリフルオロメチル)ピラゾール:「ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry)」,2000年,第43巻,第16号,p. 2975-2981参照](2)N $-\{4-[3,5-r]$ (トリフルオロメチル)ピラゾール-1-4ル]フェニル $\}$ -5-クロロ-2-r ドロキシベンズアミド(化合物番号543)原料として、2-r セトキシーN $-\{4-[3,5-r]$ (トリフルオロメチル)ピラゾール-1-4ル]フェニル $\}$ -5-クロロベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:73.1%

¹H-NMR (DMSO-d₆): δ 7.04 (1H, d, J=8.7Hz), 7.48 (1H, dd, J=8.7, 2.7Hz), 7.63 (2H, d, J=8.7 Hz), 7.84 (1H, s), 7.89 (1H, d, J=3.0Hz), 7.94 (2H, d, J=9.0Hz), 10.65 (1H, s), 11.58 (1H, s). 例 544: 化合物番号 544の化合物の製造

(1) 3, 5-ビス(トリフルオロメチル)-1-(3-ニトロフェニル)ピラ ゾール

原料として、ヘキサフルオロアセチルアセトン、及び3-ニトロフェニルヒドラジン塩酸塩を用いて例538(1)と同様の操作を行い、標題化合物を得た。

収率:94.0%

 $^{1}H-NMR$ (CDC1₃): δ 7. 16 (1H, s), 7. 77 (1H, dd, J=8. 7, 8. 1Hz), 7. 88-7. 91 (1H, m), 8. 42-8. 4 5 (2H, m).

(2) 1-(3-アミノフェニル) -3, 5-ビス(トリフルオロメチル) ピラゾール

原料として、3,5-ビス(トリフルオロメチル)-1-(3-ニトロフェニル)ピラゾールを用いて例538(2)と同様の操作を行い、標題化合物を得た。

収率:73.1%

 $^{1}H-NMR$ (CDC1₃): δ 3. 89 (2H, s), 6. 77-6. 87 (3 H, m), 7. 04 (1H, s), 7. 26 (1H, t, J=8. 7Hz).

(3) $2-アセトキシ-N-{3-[3,5-ビス(トリフルオロメチル)ピラ ゾール-1-イル]フェニル<math>}-5-クロロベンズアミド$

原料として、2-アセトキシ-5-クロロ安息香酸、及び<math>1-(3-アミノフェニル)-3, 5-ビス(トリフルオロメチル)ピラゾールを用いて例<math>24と同様の操作を行い、標題化合物を得た。

収率:84.4%

 1 H-NMR(CDCl₃): δ 2. 33(3H, s), 7. 09(1H, s), 7. 11(1H, d, J=9. 0Hz), 7. 30(1H, d, J=7. 8Hz), 7. 45-7. 52(2H, m), 7. 67(1H, d, J=8. 4Hz), 7. 78(1H, d, J=2. 4Hz), 7. 95(1H, s), 8. 29(1H, s). (4)N-{3-[3,5-ビス(トリフルオロメチル)ピラゾールー1ーイル]フェニル}-5-クロロー2ーヒドロキシベンズアミド(化合物番号544)原料として、2ーアセトキシーN-{3-[3,5-ビス(トリフルオロメチル)ピラゾールー1ーイル]フェニル}-5-クロロベンズアミドを用いて例2(2)と同様の操作を行い、標題化合物を得た。

収率:69.9%

¹H-NMR (CDCl₃): δ 7. 01 (1H, d, J=8. 7Hz), 7. 1 0 (1H, s), 7. 34-7. 37 (1H, m), 7. 42 (1H, dd, J=8. 7, 2. 4Hz), 7. 50 (1H, d, J=2. 4Hz), 7. 56 (1H, t, J=8. 1Hz), 7. 69-7. 73 (1H, m), 7. 95-7. 98 (2H, m), 11. 57 (1H, s).

例545:化合物番号545の化合物の製造

(1) 2-メトキシー4-フェニル安息香酸メチル

 $^{1}H-NMR$ (CDC1₃): δ 3. 91 (3H, s), 3. 98 (3H, s), 7. 17 (1H, d, J=1. 5Hz), 7. 20 (1H, dd, J=8. 1, 1. 5Hz), 7. 31-7. 50 (3H, m), 7. 59-7. 63 (2H, m), 7. 89 (1H, d, J=8. 1Hz).

(2) 2-メトキシー4-フェニル安息香酸

2-メトキシー4-フェニル安息香酸メチル(410mg, 1.69mmol)のメタノール(5mL)溶液に2規定水酸化ナトリウム水溶液(5mL)を加え、1時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧留去した。得られた残渣に2規定塩酸を加え、析出した結晶を濾取して、標題化合物の粗生成物(371mg, 96.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 93 (3H, s), 7. 29 (1H, d d, J=8. 1, 1. 5Hz), 7. 34 (1H, d, J=1. 5Hz), 7. 4 0-7. 53 (3H, m), 7. 73-7. 77 (3H, m), 12. 60 (1H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシー4-フェニルベンズアミド

原料として、2-メトキシー4-フェニル安息香酸、及び3,5-ビス(トリフ

ルオロメチル)アニリンを用いて例16と同様の操作を行い、標題化合物を得た。 収率:97.5%

¹H-NMR (CDC1₃): δ 4. 19 (3H, s), 7. 25 (1H, m), 7. 38-7. 53 (4H, m), 7. 62-7. 65 (3H, m), 8. 12 (2H, s), 8. 35 (1H, d, J=8. 1Hz), 10. 15 (1H, brs). (4) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシー4-フェニルベンズアミド (化合物番号545)

N-[3,5-ビス(トリフルオロメチル)フェニル] -2-メトキシ-4-フェニルベンズアミド(100mg,0.24mmol)のジクロロメタン(5mL)溶液に1M三臭化ホウ素-ジクロロメタン溶液(0.71mL,0.71mmol)を加え、室温で1時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-n+y):酢酸エチル=5:1)で精製して、標題化合物の白色粉末(69.3mg,71.6%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 20 (1H, dd, J=8. 4. 1. 8Hz), 7. 30 (1H, d, J=1. 8Hz), 7. 39-7. 51 (3H, m), 7. 60-7. 64 (3H, m), 7. 70 (1H, brs), 8. 15 (2H, s), 8. 19 (1H, brs), 11. 59 (1H, s).

例546:化合物番号546の化合物の製造

(1) 2-アミノ-4-(2,5-ジフルオロフェニル)チアゾール 原料として、2',5'-ジフルオロアセトフェノン、及びチオウレアを用いて 例395(1)と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 45 (1H, d, J=2.7Hz), 7. 11-7. 17 (1H, m), 7. 19 (2H, s), 7. 28-7. 36 (1H, m), 7. 65-7. 71 (1H, m).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(2,5-ジフルオロフェニル) チアゾール-2-イル] ベンズアミド (化合物番号 546)

原料として、5-クロロサリチル酸、及び2-アミノー4-(2, 5-ジフルオロフェニル)チアゾールを用いて例 1 6 と同様の操作を行い、標題化合物を得た。収率:3 6. 5 %

¹H-NMR (DMSO-d₆): δ 7. 0 9 (1H, d, J=8.7Hz), 7. 22-7. 30 (1H, m), 7. 37 (1H, m), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 72 (1H, d, J=2.4Hz), 7. 77-7. 84 (1H, m), 7. 94 (1H, d, J=3.0Hz), 11. 89 (1H, bs), 12. 12 (1H, bs).

例547:化合物番号547の化合物の製造

(1) 2-アセトキシー4-クロロ安息香酸

原料として、4-クロロサリチル酸、濃硫酸、及び無水酢酸を用いて例34(1) と同様の操作を行い、標題化合物を得た。

収率:88.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 25 (3H, s), 7. 42 (1H, d, J=1.8Hz), 7. 48 (1H, dd, J=8.4, 2.4Hz), 7. 94 (1H, d, J=8.1Hz), 13. 31 (1H, s).

(2) $2-アセトキシ-N-\{4-[3, 5-ビス (トリフルオロメチル) ピラ ゾール-1-イル] フェニル <math>-4-$ クロロベンズアミド

原料として、2-アセトキシ-4-クロロ安息香酸、及び<math>1-(4-アミノフェニル)-3, 5-ビス(トリフルオロメチル)ピラゾールを用いて例 <math>24 と同様の操作を行い、標題化合物を得た。

収率:74.0%

¹H-NMR (CDC1₃): δ 2. 37 (3H, s), 7. 08 (1H, s), 7. 23 (1H, d, J=1.8Hz), 7. 37 (1H, dd, J=8.1, 2.1Hz), 7. 50 (2H, d, J=8.7Hz), 7. 77 (2H, d, J=8.

7 Hz), 7. 82 (1H, d, J = 8. 1Hz), 8. 23 (1H, s).

(3) N- $\{4-[3,5-ビス(トリフルオロメチル)ピラゾール-1-イル]$ フェニル $\}$ -4-クロロ-2-ヒドロキシベンズアミド(化合物番号547)原料として、2-アセトキシーN- $\{4-[3,5-ビス(トリフルオロメチル)ピラゾール-1-イル]フェニル<math>\}$ -4-クロロベンズアミドを用いて例2(2)

収率:56.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03-7. 06 (2H, m), 7. 61 (2H, d, J=8. 7Hz), 7. 81 (1H, s), 7. 89-7. 95 (3H, m), 10. 62 (1H, s), 11. 82 (1H, s).

例548:化合物番号548の化合物の製造

と同様の操作を行い、標題化合物を得た。

(1) 1-(4-ニトロフェニル)-5-フェニル-3-(トリフルオロメチル) ピラゾール

原料として、4, 4, 4 ートリフルオロー1ーフェニルー1, 3 ーブタンジオン、及び4 ーニトロフェニルヒドラジン塩酸塩を用いて例 5 3 8 (1) と同様の操作を行い、標題化合物を得た。

収率:95.2%

 $^{1}H-NMR$ (CDC1₃): δ 6. 80 (1H, s), 7. 22-7. 26 (2 H, m), 7. 37-7. 45 (3H, m), 7. 51 (2H, d, J=9. 3H z), 8. 22 (2H, d, J=9. 0Hz).

原料として、1-(4-=トロフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例 538(2)と同様の操作を行い、標題化合物を得た。

収率:73.0%

 $^{1}H-NMR$ (CDC1₃): δ 3.80 (2H, s), 6.62 (2H, d, J

 $= 8.7 \,\mathrm{Hz}$), 6. 72 (1 H, s), 7. 08 (2 H, d, J=8.7 Hz), 7. 22-7. 26 (2 H, m), 7. 30-7. 33 (3 H, m).

(3) $5-クロロ-2-ヒドロキシ-N-\{4-[5-フェニル-3-(トリフルオロメチル) ピラゾール-1-イル] フェニル<math>\}$ ベンズアミド(化合物番号 548)

原料として、5-クロロサリチル酸、及び1-(4-アミノフェニル)-5-フェニル-3-(トリフルオロメチル)ピラゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:73.2%

¹H-NMR (CDC1₃): δ 7. 02 (1H, d, J=8.7Hz), 7. 2 1 (1H, s), 7. 30-7. 42 (7H, m), 7. 47 (1H, dd, J= 8. 7, 2. 7Hz), 7. 79 (2H, d, J=8.7Hz), 7. 89 (1H, d, J=2. 7Hz), 10. 56 (1H, s), 11. 61 (1H, s).

例549:化合物番号549の化合物の製造

(1) 2-アミノー4-(4-メトキシフェニル) チアゾール

原料として、4'ーメトキシアセトフェノン、及びチオウレアを用いて例395

(1) と同様の操作を行い、標題化合物を得た。

収率:85.2%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 76 (3H, s), 6. 82 (1H, s), 6. 92 (2H, d, J=9. 0Hz), 7. 01 (2H, s), 7. 72 (2H, d, J=8. 7Hz).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(4-メトキシフェニル) チアゾール-2-イル] ベンズアミド (化合物番号<math>549)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(4-メトキシフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率:16.4%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 80 (3H, s), 7. 01 (2H, d,

J = 9. 0 H z), 7. 07 (1H, d, J = 8. 7 H z), 7. 50-7. 55 (2H, m), 7. 86 (2H, d, J = 9. 0 H z), 7. 96 (1H, d, J = 2. 7 H z), 11. 90 (1H, bs), 12. 04 (1H, bs).

例550:化合物番号550の化合物の製造

(1) 2-アミノ-4-[3-(トリフルオロメチル)フェニル] チアゾール 原料として、3'-(トリフルオロメチル)アセトフェノン、及びチオウレアを 用いて例395(1)と同様の操作を行い、標題化合物を得た。

収率:94.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 19 (2H, s), 7. 27 (1H, s), 7. 61 (2H, dd, J=3. 9, 1. 5Hz), 8. 07-8. 13 (2H, m).

(2) $5-\rho$ ロロー 2-ヒドロキシー N- $\{4-[3-(トリフルオロメチル)$ フェニル] チアゾールー 2-イル $\}$ ベンズアミド (化合物番号 5 5 0 0 原料として、5-クロロサリチル酸、及び2-アミノー4-[3-(トリフルオロメチル) フェニル] チアゾールを用いて例 <math>1 6 と同様の操作を行い、標題化合物を得た。

収率:31.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 13 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 2.7Hz), 7. 70 (1H, d, J=2.4 Hz), 7. 71 (1H, d, J=1.2Hz), 7. 95 (1H, d, J=2.7Hz), 8. 00 (1H, s), 8. 24-8. 27 (2H, m), 12. 16 (2H, bs).

例551:化合物番号551の化合物の製造

(1) 2-アミノー4-(2, 3, 4, 5, 6-ペンタフルオロフェニル) チアゾール

原料として、2', 3', 4', 5', 6'-ペンタフルオロアセトフェノン、及びチオウレアを用いて例 3 9 5 (1) と同様の操作を行い、標題化合物を得た。

収率:86.7%

 1 H-NMR(CDC1₃): δ 5. 19(2H, s), 6. 83(1H, s). (2) 5- ρ ロロー2ーヒドロキシーNー [4-(2, 3, 4, 5, 6-ペンタフルオロフェニル)チアゾールー2ーイル]ベンズアミド(化合物番号551)原料として、5- ρ ロロサリチル酸、及び2-rミノー4-(2, 3, 4, 5, 6-ペンタフルオロフェニル)チアゾールを用いて例16と同様の操作を行い、標題化合物を得た。

収率: 23.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, s), 7. 93 (1H, d, J=2.7Hz), 11. 85 (1H, bs), 12. 15 (1H, bs).

例552:化合物番号552の化合物の製造

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 92-7. 98 (1H, m), 8. 06 (1H, d, J=2. 1Hz), 8. 09 (1H, d, J=8. 4Hz), 8. 2 (1H, d, J=2. 1Hz), 8. 27-8. 32 (1H, m), 11. 31 (1H, s).

例553:化合物番号553の化合物の製造

原料として、2,3-ジヒドロキシベンズアルデヒド、及び3-[3,5-ビス

(トリフルオロメチル) ベンジル] チアゾリジン-2, 4-ジオン(例 3 1 9 (1) の化合物) を用いて例 3 1 9 (2) と同様の操作を行い、標題化合物を得た。 収率: 8 8 8 5 %

 $^{1}H-NMR$ (DMSO-d₆): δ 5. 0 2 (2H, s), 6. 88 (1H, d, J=7.8Hz), 7. 00-7. 0 4 (2H, m), 7. 79 (1H, s), 8. 0 3 (2H, s), 8. 0 7 (1H, s), 9. 49 (1H, s), 9. 91 (1H, s).

例554:化合物番号554の化合物の製造

5-クロロサリチルアルデヒド (157mg, 1mmo1)、2-アミノー4- t e r t -アミルフェニル フェニル エーテル (255mg, 1mmo1)、エタノール (2mL) の混合物を室温で18 時間撹拌した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=100:1)で精製して、標題化合物の白色固体 (57mg, 14.4%) を得た。

 $^{1}H-NMR$ (CDC1₃): δ 0. 66 (3H, t, J=7.5Hz), 1. 2 6 (6H, s), 1. 61 (2H, q, J=7.5Hz), 6. 88-6. 94 (3 H, m), 7. 04 (1H, dd, J=8.0, 1.6Hz), 7. 15-7. 3 2 (7H, m), 8. 61 (1H, s), 13. 20 (1H, s).

例555:化合物番号555の化合物の製造

 $4-\rho$ ロロー2ー({[2-フェノキシー5-(tert-アミル)フェニル] イミノ}メチル)フェノール(化合物番号554;13mg,0.03mmol)、水素化ホウ素ナトリウム(1.2mg,0.03mmol)、メタノール(1mL)の混合物を室温で5分間撹拌した。溶媒を減圧留去して得られた残渣を薄層シリカゲルクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の無色油状物(13mg,100%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 0. 69 (3H, t, J=7.6Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7.6Hz), 4. 41 (2H, s),

6. 78 (1H, m), 6. 93-6. 83 (5H, m), 7. 03 (1H, m), 7. 15 (2H, m), 7. 28 (3H, m).

試験例1:SCF及びIL-3刺激下でのマスト細胞増殖抑制試験

NC/Nga マウスの骨髄由来培養マスト細胞(10^5 cells/ml)を rmIL-3(100U/ml)、SCF(100ng/ml)と被験薬剤存在または非存在下でウシ胎児血清を 10%含むフェノールレッド非含有の α -Modified Eagle's Medium 中で培養し、トリパンブルー染色を行い、生細胞数の計測した。結果を下記表に示す。

	培養時間	細胞数 (×10 ⁵ /m1)			
化合物番号	濃度(μM)	0 hr	24hr	48hr	72hr
_	0	1.0	1.3	1.7	2.6
5 0	1	1.0	0.86	0.84	1. 16
	5	1.0	0.7	0.52	0. 22

試験例2:マスト細胞の脱顆粒抑制試験

抗 DNP IgE で4日間処理し、IgE レセプターを発現させたマウス骨髄由来の培養マスト細胞 (BMCMC) に抗 DNP IgE を加え3日間培養し、被験物質添加または未添加で1時間処理した。その後、培地をウシ胎児血清を10%含むフェノールレッド非含有の α -Modified Eagle's Medium に交換し、rmIL-3(100U/ml)、DNP-BSA(50ng/ml)と被験物質存在または非存在下で60分培養後、培養液中と細胞中の β -hexosaminidase の濃度を定量し、その量比より脱顆粒の進行を測定した。薬剤による脱顆粒の阻害率は、被験化合物なしの時の脱顆粒を100%、抗 DNP-IgE単独で被験物質なしの時の脱顆粒を0%として算出した。結果を下記表に示す。

	薬物濃度 10 μ M における	
化合物番号	脱顆粒阻害率(%)	
5 0	>99	
5 6	92	
6 3	62	

91
83
90
93
88
91
88
72

試験例3:脾臓B細胞のIgE産生抑制試験

マウス脾臓より分離したB細胞を200U/mlのrmIL-4と100ng/mlのsoluble mCD40 ligand および被験物質の存在または被存在下でウシ胎児血清を10%含むPRM I 1640 培地中で9日間培養し、培養液中のIgE 量をELISA 法にて測定した。結果を下記表に示す。

濃度 (μM)	IgE 量(ng/ml)			
化合物番号	O	0. 1	1. 0	
	45.6		_	
5 0		24	ND	

ND = not detect

試験例4:即時型アレルギー反応抑制試験 (Ear swelling test)

抗DNP-IgE を静脈内投与して感作した NC/Nga マウスに、薬物投与群には被験 化合物をコントロール群には被験薬物なしの希釈剤を腹腔内投与した。投与2時間後耳介にオリーブオイルに溶解したピクリルクロライドを塗布して即時型アレルギーを惹起し、耳介の腫脹を経時測定し、薬物投与群とコントロール群と比較した。化合物番号50(投与量:15mg/kg)についての結果を第1図に示す。

試験例 5:NC/Nga マウスを用いたアトピー性皮膚炎モデルによる皮膚炎抑制試験 すでに重度の皮膚炎を発症している conventional NC/Nga マウスに治療群として

1%披検物質含有軟膏を、コントロール群として軟膏基材を一日一回塗布し、経日的に臨床症状をスコア化して記録した。また、試験前と試験終了後の血液中の IgE 量を ELISA にて測定した。化合物番号 5 0 についての結果を第 2 図に示す。

試験例6:繊維肉腫細胞(HT-1080)のPDGF 刺激下での増殖抑制試験 HT-1080 細胞を1%FBS およびNEAA 含有 EMEM 培地にて被験物質の存在または非存在下で2時間培養後、PDGF を添加し48時間培養し、細胞の増殖をMTT アッセイにて測定した。結果を下記表に示す。

	増殖阻害率(%)			
化合物番号	薬物濃度			
	500nM	250nM		
50	96.6	65.4		
51	97.6	62.4		
67	70.9	38.5		
73	84.9	52.0		
63	77.9	48.3		
114	95.7	48.8		
163	80.8	16.9		
71	83.1	57.9		
56	96.9	37.5		
98	59.4	26.4		
196	80.2	47.3		
122	51.1	32.9		
195	81.7	44.7		
199	24.2	26.2		
201	76.2	60.3		

532	91.8	42.2
552	19.4	24.0
101	80.0	53.2

産業上の利用可能性

本発明の医薬はアレルギー性疾患及び/又は子宮内膜症及び/又は子宮筋腫の予防 及び/又は治療のための医薬として有用である。

請求の範囲

1. 下記一般式(I):

(式中、

Xは、主鎖の原子数が2ないし5である連結基(該連結基は置換基を有していてもよい)を表し、

Aは、水素原子又はアセチル基を表し、

Eは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表し、

環 Z は、式 - O - A (式中、A は上記定義と同義である)及び式 - X - E (式中、 X 及び E は上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン、又は式 - O - A (式中、A は上記定義と同義である)及び式 - X - E (式中、X 及び E は上記定義と同義である)で表される基の他に更に置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む、アレルギー性疾患及び/又は子宮内膜症及び/又は子宮筋腫の予防及び/又は治療のための医薬。

2. Xが、下記連結基群 α より選択される基(該基は置換基を有していてもよい)である請求の範囲第 1 項に記載の医薬。

「連結基群α] 下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する)

3. Xが、下記式:

(式中、左側の結合手が環 Z に結合し右側の結合手が E に結合する) で表される 基 (該基は置換基を有していてもよい) である請求の範囲第 2 項に記載の医薬。

- 4. Aが、水素原子である請求の範囲第1項ないし第3項のいずれか1項に記載の医薬。
- 5. 環Zが、 $C_6 \sim C_{10}$ のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)、又は5ないし13員の $^-$ クーアレーン(該 $^-$ クーアレーンは、式 $^-$ O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である請求の範囲第1項ないし第4項のいずれか

- 1項に記載の医薬。
- 6. 環Zが、下記環群 β:

[環群β] ベンゼン環、ナフタレン環、チオフェン環、ピリジン環、インドール環、キノキサリン環、及びカルバゾール環

より選択される環(該環は、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよい)である請求の範囲第5項に記載の医薬。

- 7. 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に更に置換基を有していてもよいベンゼン環である請求の範囲第6項に記載の医薬。
- 8. 環Zが、式-O-A (式中、Aは一般式(I)における定義と同義である) 及び式-X-E (式中、X及びEは一般式(I)における定義と同義である)で表される基の他にハロゲン原子を更に有するベンゼン環である請求の範囲第7項に記載の医薬。
- 9. 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-X-E(式中、X及びEは一般式(I)における定義と同義である)で表される基の他に置換基を更に有していてもよいナフタレン環である請求の範囲第6項に記載の医薬。
- 10. Eが、置換基を有していてもよい $C_6 \sim C_{10}$ のアリール基、又は置換基を有していてもよい5ないし13員の $^$ テロアリール基である請求の範囲第1項ないし第9項のいずれか1項に記載の医薬。
- 11. Eが、置換基を有していてもよいフェニル基である請求の範囲第10項 に記載の医薬。
- 12. Eが、3,5-ビス(トリフルオロメチル)フェニル基である請求の範囲第11項に記載の医薬。

13. Eが、置換基を有していてもよい5員のヘテロアリール基である請求の 範囲第10項に記載の医薬。

14. Ig E産生抑制作用、活性化マスト細胞からの脱顆粒抑制作用、及び/ 又はマスト細胞の増殖抑制作用を有する請求の範囲第1項ないし第13項のいず れか1項に記載の医薬。

15. 下記一般式 (I-1):

$$z^1$$
 E^1
 $(I-1)$

(式中、 Z^1 は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、 又は5位に置換基を有していてもよい2-アセトキシフェニル基を表し、

E¹は、置換されていても良いフェニル基を表す)で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物。

16.

 E^1 が、2,5-ビス(トリフルオロメチル)フェニル基又は3,5-ビス(トリフルオロメチル)フェニル基を表す)で表される請求の範囲第15項に記載の化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物(ただし、下記の化合物を除く:

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド、

N-[3, 5-ビス (トリフルオロメチル) フェニル] <math>-5-クロロ-2-ヒド ロキシベンズアミド、

N-[3, 5-ビス (トリフルオロメチル) フェニル] <math>-5- ブロモー 2- ヒドロキシベンズアミド、

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ョードベンズアミド、及び

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-

ニトロベンズアミド)。

17. Z^1 が、5位にハロゲン原子を有する2ーヒドロキシフェニル基、又は5位にハロゲン原子を有する2ーアセトキシフェニル基である請求の範囲第15項ないし第16項に記載の化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物。

18. 下記一般式 (I-2):

(式中、Z²は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、 又は5位に置換基を有していてもよい2-アセトキシフェニル基を表し、

 E^2 は、2,5-ジ置換フェニル基(該置換基のうち1個はトリフルオロメチル基である)、又は3,5-ジ置換フェニル基(該置換基のうち1個はトリフルオロメチル基である)を表す)で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物(ただし、下記の化合物を除く:

5-クロロ-N-[5-クロロ-3-(トリフルオロメチル) フェニル]-2-ヒドロキシベンズアミド、

5-フルオロ-2-ヒドロキシ-N-[2-(2, 2, 2-トリフルオロエトキシ) <math>-5-(トリフルオロメチル) フェニル] ベンズアミド、

5-フルオロ-2-ヒドロキシ-N-[2-(6,6,6-トリフルオロヘキシルオキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド、

5-クロロ-N-[2-(4-クロロフェノキシ)-5-(トリフルオロメチル) フェニル]-2-ヒドロキシベンズアミド、

5-クロロ-2-ヒドロキシ-N-[2-(4-メチルフェノキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド、

5-クロロ-N- [2-(4-クロロフェニル) スルファニル-5-(トリフルオロメチル) フェニル]-2-ヒドロキシベンズアミド、

5-クロロ-2-ヒドロキシ-N-[2-(1-ナフチルオキシ)-5-(トリフルオロメチル)フェニル]ベンズアミド、及び

19. Z^2 が、5位にハロゲン原子を有する2-ヒドロキシフェニル基、又は5位にハロゲン原子を有する2-アセトキシフェニル基である請求の範囲第18項に記載の化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物。

20. 下記一般式(I-3):

$$Z^3$$
 N
 E^3
 $(I-3)$

(式中、 Z^3 は、5位に置換基を有していてもよい2-ヒドロキシフェニル基、 又は5位に置換基を有していてもよい2-アセトキシフェニル基を表し、 E^3 は、下記式:

(式中、R^{3 e 2}及びR^{3 e 3}は、一方が水素原子、他方が置換基を有していてもよい い炭化水素基又は置換基を有していてもよいヒドロキシ基を表し、

 $R^{3 \circ 5}$ は、置換基を有していてもよい $C_2 \sim C_6$ の炭化水素基を表す))で表される化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物。

21. Z³が、5位にハロゲン原子を有する2ーヒドロキシフェニル基、又は5位にハロゲン原子を有する2ーアセトキシフェニル基である請求の範囲第20項に記載の化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物。

22. 下記一般式(I-4):

(式中、 Z^4 は、5位に置換基を有していてもよい2-Eドロキシフェニル基、 又は5位に置換基を有していてもよい2-Pセトキシフェニル基を表し、 E^4 は、下記式:

(式中、R^{4e4}は、置換基を有していてもよい炭化水素基を表し、

R^{4 e 5}は、ハロゲン原子、シアノ基、置換基を有していてもよいアシル基、又は 置換基を有していてもよいヘテロ環基を表す))で表される化合物若しくはその塩、 又はそれらの水和物若しくはそれらの溶媒和物。

23. Z⁴が、5位にハロゲン原子を有する2ーヒドロキシフェニル基、又は5位にハロゲン原子を有する2ーアセトキシフェニル基である請求の範囲第22 項に記載の化合物若しくはその塩、又はそれらの水和物若しくはそれらの溶媒和物。

第1図

第2図

International application No.

PCT/JP03/07120

Δ	CLAS	OITI22	ATION	OF SI	BIFCT	'MATTER

Int.Cl⁷ A61K31/427, 31/5375, 31/055, 31/137, 31/15, 31/167, 31/18, 31/357, 31/381, 31/403, 31/4035, 31/404, 31/421, 31/422, 31/445, 31/4453, 31/455, 31/47, 31/498, 31/606, 31/609, 31/616, 31/63, According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ A61K31/427, 31/5375, 31/055, 31/137, 31/15, 31/167, 31/18, 31/357, 31/381, 31/403, 31/4035, 31/404, 31/421, 31/422, 31/445, 31/4453, 31/455, 31/47, 31/498, 31/606, 31/609, 31/616, 31/63,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAPLUS (STN), REGISTRY (STN), Medline (STN), BIOSIS (STN), EMBASE (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99/65449 A2 (SMITHKLINE BEECHAM CORP.), 23 December, 1999 (23.12.99),	1-8,10,11, 14,15,17
Y	Full text & JP 2002-518307 A	21,23
X	US 6117859 A (The Research Foundation of State University of New York),	1-8,10-12, 14-16,18
Y	12 September, 2000 (12.09.00), Full text (Family: none)	21
Х	EP 221211 A1 (UNILEVER PLC), 13 May, 1987 (13.05.87),	1-7,10-16, 18,20,22
Y	Full text & JP 62-99329 A & US 4560549 A	21,23

×	Further documents are listed in the continuation of Box C.	See patent family annex.		
* "A"	Special categories of cited documents: document defining the general state of the art which is not	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to		
"E"	considered to be of particular relevance earlier document but published on or after the international filing date	"X" understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive		
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is		
"O"	document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such documents, such combination being obvious to a person skilled in the art		
"P"	document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent family		
Date	of the actual completion of the international search	Date of mailing of the international search report		
12 August, 2003 (12.08.03)		26 August, 2003 (26.08.03)		
Name and mailing address of the ISA/		Authorized officer		
	Japanese Patent Office	·		
Facsimile No.		Telephone No.		

International application No. PCT/JP03/07120

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X Y	WO 02/28819 A1 (THE RESEARCH FOUNDATION OF STATE UNIVERSITY), 11 April, 2002 (11.04.02), Full text & EP 1328507 A1 & US 2002/065322 A1 & US 6407288 B2	1-7,10-12, 14-16,18 21		
Х	WO 99/55663 A1 (VERTEX PHARMACEUTICALS INC.), 04 November, 1999 (04.11.99), Full text & EP 1076641 A1	1-6,9-11,14		
X A	GB 996074 A (HASELTINE, LAKE & Co.), 23 June, 1965 (23.06.65), Particularly, page 1, right column (Family: none)	15,17-19 16,20,21		
X A	US 3331874 A (Herbert C. Stecker), 18 July, 1967 (18.07.67), Table 1 (Family: none)	15,17-19 16,20,21		
Х	US 4358443 A (The Research Foundation of State University of New York), 09 November, 1982 (09.11.82), Particularly, column 10; example 4; table 1 & US 4287191 A & EP 38192 A1 & JP 57-112360 A	15		
P,X	WO 02/49632 A1 (Institute of Medicinal Molecular Design Inc.), 27 June, 2002 (27.06.02), Full text & AU 2002/22683 B	1-23		
P,X	WO 02/076918 A1 (Suntory Ltd.), 03 October, 2002 (03.10.02), Full text & EP 1314712 A1	1-7,10-12, 14-16,18,20		
P,X	WO 02/051397 A1 (Ishihara Sangyo Kaisha, Ltd.), 04 July, 2002 (04.07.02), Full text & JP 2002-249473 A	1-8,10,11, 13-15,17		

International application No.

PCT/JP03/07120

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 1–23
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:
(See extra sheet)
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
because they are dependent claims and are not diarted in decordance with the second and third contended of these or (a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.
A large of the remainded divined according to worst in all a said by the applicant this interactional search report covers
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

International application No.

PCT/JP03/07120

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ A61P11/06, 17/00, 17/04, 37/08, 15/00, A61K31/426, C07D277/44, C07C311/29, 309/88, 335/22, 311/21, 311/46, 317/40, 323/42, C07F7/08, C07C235/60, 251/86, 245/08, 235/84, 235/64, 235/66, 237/44, 243/38, 251/48, 255/41, 255/57, 255/60, 275/34, 275/42

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched(International Patent Classification (IPC))

Int.Cl⁷ A61P11/06, 17/00, 17/04, 37/08, 15/00, A61K31/426, C07D277/44, C07C311/29, 309/88, 335/22, 311/21, 311/46, 317/40, 323/42, C07F7/08, C07C235/60, 251/86, 245/08, 235/84, 235/64, 235/66, 237/44, 243/38, 251/48, 255/41, 255/57, 255/60, 275/34, 275/42

Minimum documentation searched (classification system followed by classification symbols)

Continuation of Box No.I-2 of continuation of first sheet(1)

The active ingredient or compound in the medicinal compositions of claims 1-23 involves an extremely wide range of various compounds. It is hence difficult to make a complete search for all of them. On the other hand, the active ingredients or compounds which are supported by the description in the meaning of Article 6 of the PCT and are disclosed in the description in the meaning of Article 5 of the PCT are limited to an extremely small part of the active ingredients or compounds for medicinal compositions of claims 1-23.

Consequently, claims 1-23 and the description do not comply with the given requirements to such a degree that a meaningful international search can be made.

In this international search report, a search with respect to claims 1-23 was hence made for compounds specified in the description through prior art documents within the range of a reasonable burden.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ A61K31/427, 31/5375, 31/055, 31/137, 31/15, 31/167, 31/18, 31/357, 31/381, 31/403, 31/4035, 31/404, 31/421, 31/422, 31/445, 31/4453, 31/455, 31/47, 31/498, 31/606, 31/609, 31/616, 31/63, A61P11/06, 17/00, 17/04, 37/08, 15/00, A61K31/426, C07D277/44

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ A61K31/427, 31/5375, 31/055, 31/137, 31/15, 31/167, 31/18, 31/357, 31/381, 31/403, 31/4035, 31/404, 31/421, 31/422, 31/445, 31/4453, 31/455, 31/47, 31/498, 31/606, 31/609, 31/616, 31/63, A61P11/06, 17/00, 17/04, 37/08, 15/00, A61K31/426, C07D277/44

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN) , REGISTRY (STN) , Medline (STN) , BIOSIS (STN) , EMBASE (STN)

C. 関連すると認められる文献

- DAL / O CHOS ON O SAIN				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する		
747 - 7 - 7	5/70人間の 及び、前の間別が関連するとさは、その関連する間別の表示	請求の範囲の番号		
X	WO 99/65449 A2 (SMITHKLINE BEECHAM CORPORATION) 1999.12.23、全文	1-8, 10, 11, 14, 15, 17		
Y	& JP 2002-518307 A	21, 23		
X	US 6117859 A (The Research Foundation of State University of New York) 2000.09.12、全文	1-8, 10-12, 14-16, 18		
Y	(ファミリーなし)	21		

|X|| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

12.08.03

国際調査報告の発送日

26.08.03

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 伊藤 幸司 4C 9450

電話番号 03-3581-1101 内線 3452

(佐ま)	(信を) 間油ナスト辺みとレッナ中		
C (続き). 引用文献の	関連すると認められる文献 関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号	
X	EP 221211 A1 (UNILEVER PLC) 1987.05.13、全文 & JP 62-99329 A & US 4560549 A	1-7, 10-16, 18, 20, 22 21, 23	
X Y	WO 02/28819 A1 (THE RESEARCH FOUNDATION OF STATE UNIVERSITY) 2002.04.11、全文 & EP 1328507 A1	1-7, 10-12, 14-16, 18 21	
	& US 2002/065322 A1 & US 6407288 B2	3	
X	WO 99/55663 A1 (VERTEX PHARMACEUTICALS INCORPORATED) 1999.11.04、全文 & EP 1076641 A1	1-6, 9-11, 14	
X A	GB 996074 A (HASELTINE, LAKE & CO) 1965.06.23、 特に第1頁右欄 (ファミリーなし)	15, 17–19 16, 20, 21	
X A	US 3331874 A (Herbert C. Stecker) 1967.07.18、 TABLE I (ファミリーなし)	15, 17–19 16, 20, 21	
х .	US 4358443 A (The Research Foundation of State University of New York) 1982.11.09、特に第10欄EXAMPLE 4及びTABLE 1 & US 4287191 A & EP 38192 A1 & JP 57-112360 A	15	
Р, Х	WO 02/49632 A1 (株式会社医薬分子設計研究所) 200 2.06.27、全文 & AU 2002/22683 B	1-23	
Р, Х	WO 02/076918 A1 (サントリー株式会社) 2002.10.03、全文 & EP 1314712 A1	1-7, 10-12, 14-16, 18, 20	
Р, Х	WO 02/051397 A1 (石原産業株式会社) 2002.07.04、 全文 & JP 2002-249473 A	1-8, 10, 11, 13-15, 17	

第 I 欄 請求の範囲の一部の調査ができないときの意見(第 1 ページの 2 の続き)		
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。		
1. 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、		
2. 🛛 請求の範囲 1-23 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい		
ない国際出願の部分に係るものである。つまり、		
別紙参照		
3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に		
3. [] 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。		
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)		
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。		
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。		
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。		
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。		
11~202 27と 27~2 時間が1~2~24 で 1下が2 070。		
4.		
追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の納付と共に出願人から異議申立てがあった。		
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。		

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1⁷ C07C311/29, 309/88, 335/22, 311/21, 311/46, 317/40, 323/42, C07F7/08, C07C235/60, 251/86, 245/08, 235/84, 235/64, 235/66, 237/44, 243/38, 251/48, 255/41, 255/57, 255/60, 275/34, 275/42

B. 調査を行った分野

Int. Cl⁷ C07C311/29, 309/88, 335/22, 311/21, 311/46, 317/40, 323/42, C07F7/08, C07C235/60, 251/86, 245/08, 235/84, 235/64, 235/66, 237/44, 243/38, 251/48, 255/41, 255/57, 255/60, 275/34, 275/42

第 I 欄の 2. について

請求の範囲1-23の発明の医薬組成物の有効成分又は化合物は、極めて広範囲且つ多彩な化合物を包含し、その全てについて完全な調査を行うことは困難である。一方、PCT条約第6条の意味において明細書に裏付けられ、また、PCT条約第5条の意味において明細書に開示されているものは、請求の範囲1-23の発明の医薬組成物の有効成分又は化合物の中のごく僅かな部分に過ぎない。

したがって、請求の範囲1-23及び明細書は、有意義な国際調査を行うことができる程度まで所定の要件を満たしていない。

そこで、この国際調査報告では、請求の範囲1-23の発明について、明細書に具体的に記載された化合物に基づいて、合理的な負担の範囲内で、先行技術文献調査を行った。