CS 61A Fall 2017

Structure and Interpretation of Computer Programs

Quiz 3

INSTRUCTIONS

•	You :	have	10	minutes	to	complete	this	quiz.
---	-------	------	----	---------	----	----------	------	-------

- \bigcirc means mark a single choice

- The exam is closed book, closed notes, closed computer, closed calculator.
- \bullet Mark your answers **on the exam itself**. We will *not* grade answers written on scratch paper.

•	For multiple choice questions, fill in each option or choice com	pletely.
	 — □ means mark all options that apply 	

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Discussion Section	
All the work on this exam is my own. (please sign)	

0. Your thoughts? What can we do to make your learning experience better?

1. Copy Machine

(a)	Peter wants to print this week's discussion handouts for all the students in CS 61A. However, both printers
	are broken! The first printer only prints multiples of n pages, and the second printer only prints multiples
	of m pages. Help Peter figure out whether or not it's possible to print exactly total number of handouts

def	<pre>has_sum(total, n, m):</pre>
	>>> has_sum(1, 3, 5) False
	>>> has_sum(5, 3, 5) # 0 * 3 + 1 * 5 = 5
	True
	>>> has_sum(11, 3, 5) # 2 * 3 + 1 * 5 = 11
	True
	if:
	return
	elif:
	return
	return

(b) The next day, the printers break down even more! Each time they are used, the first printer prints a random x copies $50 \le x \le 60$, and the second printer prints a random y copies $130 \le y \le 140$. Peter also relaxes his expectations: he's satisfied as long as there's at least lower copies so there are enough for everyone, but no more than upper copies to prevent waste.