(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年10月6日(06.10.2005)

PCT

(10) 国際公開番号 WO 2005/093864 A1

(51) 国際特許分類7: H01L 35/22, C04B 35/495, 35/50, H01L 35/32, 35/34, H02N 11/00

(21) 国際出願番号:

PCT/JP2005/005133

(22) 国際出願日:

2005年3月22日(22.03.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-088290 2004年3月25日(25.03.2004)

(71) 出願人(米国を除く全ての指定国について): 独立 行政法人産業技術総合研究所 (NATIONAL INSTI-TUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY) [JP/JP]; 〒1008921 東京都千代田区 霞が関一丁目3番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 三原 敏行 (MI-HARA, Toshiyuki) [JP/JP]; 〒5638577 大阪府池田市緑 丘1丁目8番31号独立行政法人産業技術総合研 究所 関西センター内 Osaka (JP). 舟橋 良次 (FUNA-HASHI, Ryoji) [JP/JP]; 〒5638577 大阪府池田市緑丘 1丁目8番31号独立行政法人産業技術総合研究 所 関西センター内 Osaka (JP). 明渡 純 (AKEDO, Jun) [JP/JP]; 〒3058564 茨城県つくば市並木 1-2-1 独立 行政法人産業技術総合研究所内 Ibaraki (JP). 馬場 創 (BABA, Sou) [JP/JP]; 〒3058564 茨城県つくば市並木 1-2-1 独立行政法人産業技術総合研究所内 Ibaraki (JP). 三上 祐史 (MIKAMI, Masashi) [JP/JP]; 〒5638577

/続葉有/

- (54) Title: THERMOELECTRIC CONVERSION ELEMENT AND THERMOELECTRIC CONVERSION MODULE
- (54) 発明の名称: 熱電変換素子及び熱電変換モジュール

- A p-TYPE THERMOELECTRIC CONVERSION MATERIAL
- n-TYPE THERMOELECTRIC CONVERSION MATERIAL
- OVERLAPPING PART OF p-TYPE MATERIAL AND n-TYPE MATERIAL
- SUBSTRATE D

(57) Abstract: A thermoelectric conversion element comprising a thin film of p-type thermoelectric conversion material and a thin film of n-type thermoelectric conversion material that are formed on an electrically insulating substrate and connected electrically, characterized in that the p-type thermoelectric conversion material and the n-type thermoelectric conversion material are selected, respectively, from specific composite oxides having a positive Seebeck coefficient and specific composite oxides having a negative Seebeck coefficient. A thermoelectric conversion module employing the thermoelectric conversion element and a thermoelectric conversion method are also provided. In the thermoelectric conversion element, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material are formed in a thin film form on the electrically insulating substrate; since the thermoelectric conversion element can be formed on a substrate of arbitrary shape, it can be formed in a variety of shapes.

本発明は、電気絶縁性基板上に形成されたp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気 的に接続してなる熱電変換素子であって、p型熱電変換材料及びn型熱電変換材料が、それぞれ、正のゼーベック 係数を有する特定の複合酸化物と、負のゼ

大阪府池田市緑丘1丁目8番31号 独立行政法人 産業技術総合研究所 関西センター内 Osaka (JP).

- (74) 代理人: 三枝 英二, 外(SAEGUSA, Eiji et al.); 〒 5410045 大阪府大阪市中央区道修町 1-7-1 北浜TNKビル Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 WO 2005/093864 1 PCT/JP2005/005133

明細書

熱電変換素子及び熱電変換モジュール 技術分野

- [0001] 本発明は、熱電変換素子、熱電変換モジュール及び熱電変換方法に関する。 背景技術
- [0002] 我が国では、一次供給エネルギーからの有効なエネルギーの得率は30%程度であり、約70%ものエネルギーを熱として大気中に廃棄している。また、工場、ごみ焼却場などにおいて燃焼により生ずる熱も、他のエネルギーに変換されることなく大気中に廃棄されている。このように我々人類は、非常に多くの熱エネルギーを無駄に廃棄しており、化石エネルギーの燃焼等の行為から僅かなエネルギーしか獲得していない。
- [0003] エネルギーの得率を向上させるためには、大気中に廃棄されている熱エネルギーを利用することが有効である。そのためには熱エネルギーを直接電気エネルギーに変換する熱電変換は効果的な手段と考えられる。熱電変換とはゼーベック効果を利用したものであり、熱電変換材料の両端に温度差をつけることで電位差を生じさせ、発電を行うエネルギー変換法である。
- [0004] このような熱電変換を利用する発電、即ち、熱電発電では、熱電変換材料の一端を 廃熱により生じた高温部に配置し、もう一端を大気中に配置して、両端に外部抵抗を 接続するだけで電気が得られ、一般の発電に必要なモーターやタービン等の可動装 置は全く必要ない。このためコストも安く、燃焼等によるガスの排出も無く、熱電変換 材料が劣化するまで継続的に発電を行うことができる。また熱電発電は高出力密度 での発電が可能であるため、発電器(モジュール)そのものが小型、軽量化でき携帯 電話やノート型パソコン等の移動用電源としても用いることが可能である。
- [0005] この様に、熱電発電は今後心配されるエネルギー問題の解決の一端を担うと期待 されている。熱電発電を実現するためには、高い変換効率を有し、耐熱性、化学的 耐久性等に優れた熱電変換材料により構成される熱電変換モジュールが必要となる

0

- [0006] これまでに高温・空気中で優れた熱電性能を示す物質として、 $Ca_3Co_4O_9$ 等の Co_2 系層状酸化物が報告されており、熱電変換材料についての開発は、進行しつつある(例えば、下記非特許文献1参照)。
- [0007] しかしながら、熱電変換材料を用いて効率の良い熱電発電を実現するために必要となる熱電変換モジュール、すなわち発電器の開発が遅れているのが現状である。 非特許文献1:R. Funahashiら、Jpn. J. Appl. Phys. 39, L1127 (2000).

発明の開示

発明が解決しようとする課題

- [0008] 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、熱電発電を実現するために必要な高い変換効率を有し、且つ熱的安定性、化学的耐久性等に優れた熱電変換素子及び熱電変換モジュールを提供することである。 課題を解決するための手段
- [0009] 本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定の複合酸化物からなるp型熱電変換材料とn型熱電変換材料の薄膜を電気絶縁性基板上に形成し、p型熱電変換材料の一端とn型熱電変換材料の一端を電気的に接続することによって得られる素子は、高い変換効率と良好な導電性を有し、且つ熱的安定性、化学的耐久性等も良好であり、熱電変換素子として優れた性能を発揮し得るものであることを見出し、ここに本発明を完成するに至った。
- [0010] 即ち、本発明は、下記の熱電変換素子、熱電変換モジュール及び熱電変換方法を 提供するものである。
 - 1. 電気絶縁性基板上に形成されたp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続してなる熱電変換素子であって、
 - (i)p型熱電変換材料が、

一般式(2): Bi Pb M^1 Co M^2 O (式中、 M^1 は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Ca、Sr、Ba、Al、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、 M^2 は、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、 $1.8 \le f \le 2.2; 0 \le g \le 0.4$; $1.8 \le h \le 2.2; 1.6 \le i \le 2.2; 0 \le j \le 0.5; 8 \le k \le 10$ である。)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物であり、

(ii)n型熱電変換材料が、

- 一般式(3): $\operatorname{Ln}_{m} \operatorname{R}^{1} \operatorname{Ni}_{q} \operatorname{R}^{2}_{q} \operatorname{O}_{r}$ (式中、 Ln はランタノイドから選択される一種又は二種以上の元素であり、 R^{1} は、 Na_{q} K、 Sr_{q} Ca及びBiからなる群から選択される一種又は二種以上の元素であり、 R^{2} は、 Ti_{q} V、 Cr_{q} Mn、 Fe_{q} Co、 Cu_{q} Mo、W、 Nb 及び Taからなる群から選択される一種又は二種以上の元素であり、 $\operatorname{0.5} \leq \operatorname{p} \leq 1.2$; $\operatorname{0} \leq \operatorname{q} \leq \operatorname{0.5}$; $\operatorname{2.7} \leq \operatorname{r} \leq \operatorname{3.3}$ である。)で表される複合酸化物、
- 一般式(4): $(\operatorname{Ln} R^3)_2 \operatorname{Ni} R^4 \operatorname{O}_w$ (式中、 Ln はランタノイドから選択される一種又は二種以上の元素であり、 R^3 は、 Na 、 K 、 Sr 、 Ca 及びBiからなる群から選択される一種又は二種以上の元素であり、 R^4 は、 Ti 、 V 、 Cr 、 Mn 、 Fe 、 Co 、 Cu 、 Mo 、 W 、 Nb 及び Ta からなる群から選択される一種又は二種以上の元素であり、 $0.5 \le s \le 1.2$; $0 \le t \le 0.5$; $0.5 \le u \le 1.2$; $0 \le v \le 0.5$; $3.6 \le w \le 4.4$ である。)で表される複合酸化物、
- 一般式(5): $A_{x} Zn_{y} O_{z}$ (式中、AはGa又はAlであり、 $0 \le x \le 0.1$; $0.9 \le y \le 1$; $0.9 \le z \le 1.1$ である。)で表される酸化物、及び
- 一般式(6): $Sn_{xx} In_{yy} O_{zz}$ (式中、 $0 \le xx \le 1; 0 \le yy \le 2; 1.9 \le zz \le 3$ である。) で表される複合酸化物
- からなる群から選ばれた少なくとも一種の酸化物である、 ことを特徴とする熱電変換素子。
- 2. p型熱電変換材料が、一般式: $Ca_{a}^{1}Co_{4}O_{e}$ (式中、 A^{1} は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al 、Bi、 $Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、<math>2.2 \le a \le 3.6; 0 \le b \le 0.8; 8 \le e \le 10$ である。)で表される複合酸化物、及び一般式: $Bi_{f}^{1}Pb_{g}^{1}Co_{2}O_{k}$ (式中、 M^{1} は、Sr、Ca及びBaからなる群から選択される一種又は二種以上の元素であり、 $1.8 \le f \le 2.2; 0 \le g \le 0.4$

;1.8≦h≦2.2;8≦k≦10である。)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物であり、

n型熱電変換材料が、一般式: $\operatorname{Ln}_{m} \operatorname{R}^{1}_{n} \operatorname{NiO}_{r}$ (式中、 $\operatorname{Ln} \operatorname{Lip} \operatorname{Lip}$

上記項1に記載の熱電変換素子。

- 3. p型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続する方法が、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させる方法、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を導電性材料を介して接触させる方法、又はp型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させ、該接触部分を導電性材料で被覆する方法である上記項1に記載の熱電変換素子。
- 4. p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、電気絶縁性基板の同一面又は異なる面に形成されたものである上記項1に記載の熱電変換材料。
- 5. 電気絶縁性基板が、プラスチック材料からなる基板である請求項1に記載の熱電変換材料。
- 6. 293K〜1073Kの温度範囲において、熱起電力が $60 \mu V/K$ 以上である上記項1に記載の熱電変換素子。
- 7. 293K〜1073Kの温度範囲において、電気抵抗が1KΩ以下である上記項1に 記載の熱電変換素子。

- 8. 上記項1に記載された熱電変換素子を複数個用い、一個の熱電変換素子のp型熱電変換材料の未接合の端部を、他の熱電変換素子のn型熱電変換材料の未接合の端部に接続する方法で複数の熱電変換素子を直列に接続してなる熱電変換モジュール。
- 9. 上記項8に記載の熱電発電モジュールの一端を高温部に配置し、他端を低温部に配置することを特徴とする熱電変換方法。
- [0011] 本発明の熱電変換素子は、p型熱電変換材料とn型熱電変換材料として特定の複合酸化物を用い、これらの複合酸化物の薄膜を電気絶縁性基板上に形成し、p型熱電変換材料の一端とn型熱電変換材料の一端とを電気的に接続してなるものである
- [0012] この様な特定の複合酸化物を組み合わせて用いることによって、高い熱電変換効率と良好な電気伝導性を有する熱電変換素子を得ることができる。更に、薄膜状に形成することにより、各種の任意の形状の基板上に熱電変換素子を形成することが可能となり、多様な形状の熱電変換素子を容易に得ることができる。その結果、電子回路への組み込みや微細部分での利用など各種の応用が可能となる。さらにボイラーや自動車ラジエーターのように気流中で熱電変換モジュールを用いる場合、モジュールが気流を妨げ、圧損が生じないようにフィン型にする必要があるが、この様な用途においても薄膜状熱電素子が有効である。
- [0013] 以下、本発明で用いるp型熱電変換材料とn型熱電変換材料について説明する。

[0014] p型熱電変換材料

p型熱電変換材料としては、下記一般式(1)で表される複合酸化物、及び一般式(2)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物を用いることができる:

- 一般式(2): Bi Pb M^1 Co M^2 O M^2 O M^2 O M^2 (式中、 M^1 は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Ca、Sr、Ba、Al、Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、 M^2 は、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、 $1.8 \le f \le 2.2; 0 \le g \le 0.4; 1.8 \le h \le 2.2; 1.6 \le i \le 2.2; 0 \le j \le 0.5; 8 \le k \le 10$ である。)。
- [0015] 上記一般式(1)及び(2)において、ランタノイドとしては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を例示できる。
- [0017] これらの複合酸化物はp型熱電変換材料として高いゼーベック係数を有し、且つ電気伝導性も良好である。例えば、100K以上の温度で100 μ V / K程度以上のゼーベック係数と、50m Ω cm程度以下、好ましくは30m Ω cm程度以下の電気抵抗率を有し、温度の上昇とともにゼーベック係数が増加し、電気抵抗率が減少する傾向を示すものを得ることができる。

係数が増加し、電気抵抗率が減少する傾向を示すものとすることができる。

[0019] <u>n型熱電変換材料</u>

n型熱電変換材料としては、下記一般式(3)で表される複合酸化物、一般式(4)で表される複合酸化物、一般式(5)で表される複合酸化物、及び一般式(6)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物を用いることができる: 一般式(3): Ln R^1 Ni R^2 O (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、 R^1 は、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、 R^2 は、Ti、V、Cr、Mn、Fe、Co、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、 R^2 は、Ti、V、Cr、Mn、Fe、Co、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、 $0.5 \le p \le 1.2$; $0 \le q \le 0.5$; $2.7 \le r \le 3.3$ である。)、

- 一般式(4): $(\operatorname{Ln}_{s}R^3)_2\operatorname{Ni}_uR^4\operatorname{O}_w$ (式中、 Ln はランタノイドから選択される一種又は二種以上の元素であり、 R^3 は、 Na_s K、 Sr_s Ca及びBiからなる群から選択される一種又は二種以上の元素であり、 R^4 は、 Ti_s V、 Cr_s Mn、 Fe_s Co、 Cu_s Mo、W、 Nb 及びTaからなる群から選択される一種又は二種以上の元素であり、 $0.5 \le s \le 1.2$; $0 \le t \le 0.5$; $0.5 \le u \le 1.2$; $0 \le v \le 0.5$; $3.6 \le w \le 4.4$ である。)、
- 一般式(5): $A_{x} Zn_{y} O_{z}$ (式中、AはGa又はAlであり、 $0 \le x \le 0.1$; $0.9 \le y \le 1$; $0.9 \le z \le 1.1$ である。)、
- 一般式(6):Sn In O $_{xx}$ In O $_{yy}$ Cz (式中、0 \leq xx \leq 1;0 \leq yy \leq 2;1.9 \leq zz \leq 3である。)。
- [0020] 尚、上記一般式において、ランタノイド元素としては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu等を例示できる。また、一般式(3)において、m値は、0.5≤m≤1.7であり、0.5≤m≤1.2であることが好ましい。
- [0021] 上記各一般式で表される複合酸化物は、負のゼーベック係数を有するものであり、 該酸化物からなる材料の両端に温度差を生じさせた場合に、熱起電力により生じる 電位は、高温側の方が低温側に比べて高くなり、n型熱電変換材料としての特性を 示す。
- [0022] 例えば、上記一般式(3)で表される複合酸化物及び一般式(4)で表される複合酸化物は、373K以上の温度において負のゼーベック係数を有し、例えば、373K以上の温度で-1~-20 μ V/K程度のゼーベック係数を有するものとなる。更に、これら

の複合酸化物は、電気伝導性がよく、低い電気抵抗率を示し、例えば、373K以上の温度において、 $20m\Omega$ cm程度以下の電気抵抗率を有するものとすることができる。

- [0023] 上記した一般式(3)で表される複合酸化物はペロブスカイト型の結晶構造を有し、一般式(4)で表される複合酸化物は一般に層状ペロブスカイトと呼ばれる結晶構造を有するものであり、一般に前者がABO。構造、後者がA $_2$ BO。構造とも呼ばれる。どちらの複合酸化物も $_2$ Lnの一部が $_3$ で置換され、 $_2$ Niの一部が $_3$ 2又は $_3$ 4で置換されている。
- [0024] また、一般式(5)で表される複合酸化物及び一般式(6)で表される複合酸化物は、透明導電膜の材料などとして知られている酸化物であり、例えば、100K以上の温度で $-100\,\mu\,\mathrm{V/K}$ 以下のゼーベック係数を有し、更に、電気伝導性がよく、低い電気抵抗率を示し、100K以上の温度において、 $100\mathrm{m}\,\Omega\,\mathrm{cm}$ 以下の電気抵抗率である。
- [0025] これらの内で、一般式(5)で表される複合酸化物は六方晶ウルツ型構造を有し、一般式(6)で表される複合酸化物は立方晶ルチル構造または正方晶bcc構造を有するものである。
- 上記したn型熱電変換材料の内で、好ましい複合酸化物の一例として、一般式: Ln R^1 NiO (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、 R^1 は、Na、K、Sr、Ca及びBiからなる群から選択される一種又は二種以上の元素であり、 $0.5 \le m \le 1.2; 0 \le n \le 0.5; 2.7 \le r \le 3.3$ である。)で表される複合酸化物、一般式: $(Ln R^3)_2$ NiO (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、 R^3 は、Na、K、Sr、Ca及びBi からなる群から選択される一種又は二種以上の元素であり、 R^3 は、Na、K、Sr、Ca及びBi からなる群から選択される一種又は二種以上の元素であり、 R^5 Ni R^6 O (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、 R^5 Ni R^6 O (式中、Lnはランタノイドから選択される一種又は二種以上の元素であり、 R^5 は、Na、K、Sr、Ca、Bi及びNdからなる群から選択される少なくとも一種の元素であり、 R^6 は、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、 R^6 は、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、 R^5 に、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、 R^6 に、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、 R^6 に、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、 R^6 に、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、 R^6 に、Ti、V、Cr、Mn、Fe、Co及びCuからなる群から選択される少なくとも一種の元素であり、 R^6 に表される複合酸化物等を挙げることができる。
- [0027] これらの内で、一般式: $\operatorname{Ln}_{m}R^{1}_{n}\operatorname{NiO}_{r}$ で表される複合酸化物と、一般式: $\left(\operatorname{Ln}_{s}R^{3}\right)_{2}$

NiO で表される複合酸化物は、例えば100K以上の温度で-1~-30mV/K程度のゼーベック係数を有し、且つ低い電気抵抗率を示す。また、例えば、100K以上の温度において、10mΩcm程度以下の電気抵抗率を有するものとすることができる。

[0028] また、一般式: $\operatorname{Ln}_{x} \operatorname{R}^{5} \operatorname{Ni}_{p} \operatorname{R}^{6}_{q}, O_{r}$ で表される複合酸化物は、100 \mathbb{C} 以上の温度において負のゼーベック係数を有するものであり、更に、電気伝導性がよく、低い電気抵抗率を示し、100 \mathbb{C} 以上の温度において、10 \mathbb{M} \mathbb{M}

[0029] 熱電変換素子

本発明の熱電変換素子は、電気絶縁性基板上に、上記したp型熱電変換材料とn型熱電変換材料の薄膜を形成し、該p型熱電変換材料薄膜の一端と、n型熱電変換材料薄膜の一端とを電気的に接続してなるものである。

[0030] (1)電気絶縁性基板:

電気絶縁性基板としては、特に限定はなく、酸化物薄膜の形成のために熱処理を 行う場合には、熱処理温度において変質を生じないものであればよい。従って、使用 できる基板の種類が非常に多く、安価な基板を使用可能である。また、ガラス基板、 セラミックス基板などの熱伝導率が低い基板を使用できるので、この様な基板を用い ることにより、形成される複合酸化物薄膜の熱電変換性能に対する基板温度の影響 を大きく低減できる。

[0031] また、熱処理温度において変質しない材質であれば、ポリイミド等の各種プラスチック材料を基板として用いることも可能である。また、後述する薄膜形成法の内で、気相蒸着法、エアロゾル堆積法等の方法によって熱電変換材料薄膜を形成する場合には、熱処理を行わない場合にも優れた熱電変換性能を有する薄膜を形成できるので、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート(PET)等の耐熱性の比較的低いプラスチック材料を基板として、その上に優れた性能の熱電変換材料薄膜を形成することもできる。本発明によれば、この様な各種プラスチック材料を基板として用いることができ、その柔軟性、変形性などの特性を利用して幅広い用途への利用が可能となる。また、例えば、有機薄膜トランジスタ(有機TFT)等を熱的に損傷することなく熱電変換材料薄膜を形成できるので、各種フレキシ

ブルデバイスへの応用が可能となる。

- [0032] 本発明では、特に、25℃における熱伝導率が10W/m・K程度以下の低熱伝導率の基板を用いることが好ましく、より好ましく熱伝導率5W/m・K程度以下、更に好ましくは熱伝導率2W/m・K程度以下の基板を用いることがよい。
- [0033] 電気絶縁性基板の形状については、特に限定はなく、目的とする熱電変換素子の 使用方法に応じて、任意の形状とすることができる。
- [0034] 例えば、パイプ状に成形した基板を用いる場合には、その片面又は両面に複合酸化物の薄膜を形成することにより、パイプ状の熱電変換素子とすることができる。この様な形状の熱電変換素子では、例えば、パイプ内部に燃焼ガスを通過させることにより、ガスの導入部分と排出部分の温度差を利用して熱電発電を行うことができる。 斯かる熱電変換素子を利用すれば、例えば、自動車の排気ガスを利用した発電などが可能となる。
- [0035] また、柔軟な電気絶縁性プラスチックフィルムを基板とする場合には、複合酸化物 の薄膜を形成して熱電変換素子を得た後、プラスチックフィルム基板の巻き取りや折 り曲げなどを行うことにより、熱電変換素子を変形させることが可能である。
- [0036] (2)熱電変換材料薄膜:

p型熱電変換材料薄膜とn型熱電変換材料薄膜の膜厚については、特に限定的ではなく、これらの薄膜の使用態様に応じて良好な熱電変換性能を発揮できる範囲に適宜設定すればよく、例えば、 $100nm程度以上、好ましくは300nm程度以上の厚さとすることによって、良好な性能を発揮できる。また、膜厚の上限については、薄膜としての用途を考える場合には、通常、<math>10\mum2$ 度以下、好ましくは $5\mum2$ 00円をより好ましくは $2\mum2$ 10円をすればよい。

[0037] p型熱電変換材料薄膜及びn型熱電変換材料薄膜の形状についても特に限定はなく、基板の形状に応じた任意の形状、大きさとすることができる。例えば、板状の基板を用いる場合には、p型熱電変換材料薄膜とn型熱電変換材料薄膜を、基板の一方の面に同時に形成するか、或いは、一方の面にp型熱電変換材料薄膜を形成し、他方の面にn型熱電変換材料薄膜を形成することができる。これらの薄膜は、基板の一部にのみ形成してもよく、全面に形成しても良い。また、薄膜の長辺をできるだけ

長くすることにより、変換材料の薄膜の両端部の温度差を大きくして、電圧を高めることができる。また、短くすることで電気抵抗を下げることもできる。

[0038] パイプ状の基板を用いる場合にも、同様に、パイプの外面に両方の薄膜を形成してもよく、或いは、外面に一方の薄膜を形成し、内面に他方の薄膜を形成してもよい。

[0039] (3)薄膜形成法

電気絶縁性基板上にp型熱電変換材料とn型熱電変換材料の薄膜を形成する方法については、特に限定されるものではなく、上記した組成を有する単結晶薄膜又は多結晶薄膜を形成できる方法であればよい。

- [0040] 例えば、気相蒸着法を用いた薄膜製造法;ディップコート法、スピンコート法、塗布 法、スプレー噴霧法などの溶液原料を用いた薄膜製造法;複合酸化物の微粉末を 吹き付けるエアロゾル堆積法などの公知の方法を適用できる。更に、融液を用いたフラックス法や融液を用いることなく原料を溶融・凝固させる方法などの単結晶薄膜の 製造方法も適用できる。
- [0041] これらの被膜形成方法は、いずれも公知の条件に従って実施することができる。以下、これらの内の代表的な方法についてより具体的に説明する。
- [0042] (i) 気相蒸着法: 以下、気相蒸着法による薄膜製造方法について、より詳細に説明する。
- [0043] 原料物質としては、気相蒸着法によって気化させて基板上に堆積させることにより、酸化物を形成し得るものであれば特に限定なく使用できる。例えば、構成金属成分を含む金属単体、酸化物、各種化合物(炭酸塩等)等を用いることができる。また、目的とする複合酸化物の構成原子を二種以上含む原料物質を使用してもよい。
- [0044] これらの原料物質は、目的とする複合酸化物の金属成分比と同様の金属比となるように混合して、そのまま用いることが可能であるが、特に、これらの原料物質を混合し焼成して用いることが好ましい。焼成物とすることにより、後述する気相蒸着の際に原料物質の取り扱いが容易となる。
- [0045] 原料物質の焼成条件については特に限定はなく、上記した一般式で表される複合 酸化物の結晶が形成される高温度で焼成しても良く、或いは、上記複合酸化物の結

晶が生じることが無く、仮焼体が形成される程度の比較的低温度で焼成してもよい。 焼成手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。 焼成雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、不 活性雰囲気中で焼成することも可能である。

- [0046] 気相蒸着法としては、特に限定的ではなく、上記した原料物質を用いて基板上に酸化物薄膜を形成できる方法であればよい。例えば、パルスレーザー堆積法、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマアシスト蒸着法、イオンアシスト蒸着法、反応性蒸着法、レーザーアブレーション法等の物理蒸着法を好適に採用できる。これらの方法の内で、多元素を含む複合酸化物を蒸着させる際に組成変動を生じ難い点で、パルスレーザー堆積法が好ましい。
- [0047] 複合酸化物を堆積させる際に、400~600℃程度に基板を加熱してもよく、或いは、室温のままでもよい。加熱して堆積させる場合には、該複合酸化物が基板上に生成するため、通常、熱処理を行う必要はない。室温で基板上に複合酸化物を堆積させた状態では、該複合酸化物は、結晶化の程度が非常に低く、良好な熱電変換性能を発揮できないことがあるが、熱処理を行うことによって、該複合酸化物の結晶化が進行して良好な熱電変換性能を発揮できるようになる。
- [0048] 熱処理温度については、例えば、600~740℃程度とすればよい。この温度範囲で熱処理を行うことによって、複合酸化物薄膜の結晶化が進行して、良好な熱電変換性能を有するものとなる。熱処理温度が低すぎる場合には、結晶化が十分に進行せず、熱電変換性能が劣るものとなるので好ましくない。一方、熱処理温度が高すぎると、別の相が出現して、やはり熱電変換性能が低下するので好ましくない。
- [0049] 熱処理時の雰囲気については、通常、大気中や酸素を5%程度以上含む雰囲気下などの酸化性雰囲気とすればよい。この時の圧力は、特に限定的ではなく、減圧、大気圧、加圧のいずれでも良く、例えば、10⁻³Pa〜2MPa程度の範囲とすることができる。
- [0050] 熱処理時間は、被処理物の大きさや複合酸化物薄膜の厚さなどによって異なるが、該複合酸化物薄膜の結晶化が十分に進行するまで熱処理を行えばよく、通常、3 分~10時間程度、好ましくは1~3時間程度程度の熱処理時間とすればよい。

- [0051] この様な方法によって、目的とする複合酸化物の薄膜を形成することができる。
- [0052] (ii) スピンコート法: 次に、溶液原料を用いる複合酸化物薄膜の製造方法として、スピンコート法について詳細に記載する。
- [0053] 溶液原料としては、目的とする複合酸化物の構成金属元素を含む原料物物質を溶解した溶液を用いればよい。原料物質は焼成により酸化物を形成し得るものであれば特に限定されず、金属単体、酸化物、各種化合物(塩化物、炭酸塩、硝酸塩、水酸化物、アルコキシド化合物等)等を使用できる。
- [0054] 溶媒としては、水や、トルエン、キシレン等の有機溶媒を用いることができる。原料物質の濃度については、特に限定的ではないが、例えば、例えば0.01~1モル/1程度とすればよく、目的とする複合酸化物の金属成分と同様の比率で金属成分を含有する溶液を用いればよい。
- [0055] まず、この様な溶液原料を、高速回転している基板上に少量ずつ滴下する。回転による遠心力で溶液が均一に基板面に拡がり、溶媒を蒸発させることにより、目的とする複合酸化物薄膜の前駆体が形成される。基板の回転速度は特に限定されないが、溶液粘度や製造する膜厚によって、適宜回転速度を決めればよい。
- [0056] 次いで、この前駆体を空気中で熱処理することによって、複合酸化物薄膜が形成される。熱処理条件は、目的とする複合酸化物が形成される条件であればよく特に限定されないが、一般的には、300~500℃程度で1~10時間程度加熱して溶媒を除去し、その後500~1000℃程度で1~20時間程度加熱することによって、目的とする複合酸化物の多結晶体の薄膜が形成される。
- [0057] (iii)エアロゾル堆積法: エアロゾル堆積法では、目的とする複合酸化物の微粉末を搬送ガスと共に基板上

に吹き付けることによって、複合酸化物の被膜を形成できる。

[0058] 複合酸化物の微粉末は、通常、目的とする複合酸化物の金属成分比と同様の金属比となるように原料物質を混合し、酸素含有雰囲気中で焼成し、必要に応じて粉砕することによって得ることができる。複合酸化物の平均粒径は、例えば、0.5~5 μ m程度とすればよい。

- [0059] 搬送ガスとしては、例えば、窒素ガス、Heガス等を用いることができる。この様な搬送ガスを用い、圧力10Pa~8kPa程度の減圧チャンバー内で、ガス流量5~10L/分程度、ノズル基板間距離10~30mm程度で、複合酸化物粉末を基板に吹き付けることによって、複合酸化物の被膜を形成することができる。このとき、基板は加熱する必要は必ずしも無いが、200~600℃程度に加熱しておくと、形成される被膜の密着性を向上させることができる。
- [0060] また被膜後、加熱の必要はないが、必要に応じて、酸素含有雰囲気中で、膜厚に 応じて200~700℃程度で10分~4時間程度加熱することによって、形成される被 膜の結晶性をより向上させることができる。
- [0061] (iv)単結晶薄膜形成法: 次に、複合酸化物の単結晶体薄膜を形成する方法について説明する。

この方法では、目的とする複合酸化物の元素成分比率と同様の元素成分比率となるように原料物質を混合し、基板上で加熱して溶融させた後、徐々に冷却することによって単結晶体薄膜を形成することができる。原料物質としては、原料混合物を加熱した際に均一な溶融物を形成し得るものであれば特に限定されず、元素単体、酸化物、各種化合物(炭酸塩等)等を使用できる。また目的とする複合酸化物の構成元素を二種以上含む化合物を使用しても良い。

- [0062] 具体的な単結晶薄膜形成方法としては、溶融した原料混合物が均一な溶液状態となる条件で加熱した後、冷却すればよい。加熱時間については特に限定はなく、均一な溶液状態となるまで加熱すればよい。加熱手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。溶融時の雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、原料物質が十分量の酸素を含む場合には、例えば、不活性雰囲気中で溶融することも可能である。
- [0063] 冷却方法についても特に限定的ではなく、溶液状態の原料の全体を冷却しても良く、或いは、溶融した原料物質の入った容器に冷却した基板を浸漬して、その面上に単結晶を析出させてもよい。
- [0064] 冷却速度については、特に限定的ではないが、速度が大きくなると基板上に多数 の結晶が析出して、いわゆる多結晶薄膜が形成されるので、単結晶薄膜を製造する

ためには、ゆっくりと冷却することが好ましい。例えば、毎時50℃程度以下の冷却速度とすればよい。

- [0065] また、原料混合物を直接溶融することに代えて、原料混合物に、溶融物の融点調整などを目的として、その他の成分を添加し、この混合物を加熱して溶融させても良い。この様な複合酸化物の金属源となる物質以外の添加成分(フラックス成分)を加えて溶融させる方法は、いわゆる"フラックス法"と称される方法である。この方法によれば、原料混合物に含まれるフラックス成分の一部が加熱により溶融し、その化学変化、溶解作用などによって、原料物質全体が溶液状態となり、原料混合物を直接冷却する方法と比べて低い温度で溶融物を得ることができる。そして、溶液状態の原料物質の冷却速度を適度に制御して冷却することによって、冷却に伴う過飽和状態を用いて目的とする単結晶を成長させることができる。この冷却過程においては、原料物質が溶融して形成された溶液と相平衡にある固相組成の複合酸化物の単結晶が成長する。よって、互いに平衡状態にある融液相と固相(単結晶)の組成の関係に基づいて、目的とする複合酸化物単結晶の組成に対応する原料混合物における各原料物質の割合を決めることができる。
- [0066] その際、原料中に含まれるフラックス成分は融液成分として残り、成長する単結晶 の構成成分には含まれない。
- [0067] この様なフラックス成分としては、原料物質と比べて低融点であり、形成される融液中に原料物質を十分に溶解することができ、しかも目的とする複合酸化物の特性を阻害しない物質から適宜選択して用いればよい。例えば、アルカリ金属化合物、ホウ素含有化合物などを好適に用いることができる。
- [0068] アルカリ金属化合物の具体例としては、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)などのアルカリ金属塩化物、これらの水和物;炭酸リチウム(Li CO)、炭酸ナトリウム(Na CO)、炭酸カリウム(K CO)などのアルカリ金属炭酸塩などを挙げることができる。ホウ素含有化合物の具体例としては、ホウ酸(B O)などを挙げることができる。これらの任意の添加成分についても、それぞれを単独あるいは二種以上混合して用いることができる。
- [0069] これらのフラックス成分の量については特に限定的ではなく、形成される融液中へ

の原料物質の溶解度を考慮して、できるだけ高濃度の原料物質を含む溶液が形成されるように、実際の加熱温度に応じて使用量を決めればよい。

- [0070] 原料混合物を溶融させる方法については特に限定的ではなく、溶融した原料混合物が基板上で均一な溶液状態となる条件で加熱すれば良い。実際の加熱温度は、使用するフラックス成分の種類などによって異なるが、例えば、800~1000℃程度の温度範囲において、20時間~40時間程度加熱して溶融させれば良い。
- [0071] 加熱手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。溶融時の雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、原料物質が十分量の酸素を含む場合には、例えば、不活性雰囲気中で溶融させることも可能である。
- [0072] 冷却速度については、特に限定的ではないが、冷却速度が速いと多結晶薄膜が 形成され、冷却速度を遅くするほど単結晶薄膜を得やすい。例えば、毎時50℃程度 以下の速度で冷却すれば単結晶薄膜を製造することができる。
- [0073] 形成される複合酸化物単結晶薄膜の大きさ、収率などは、原料物質の種類と組成 比、溶融成分の組成、冷却速度などによって変わり得るが、例えば毎時50℃程度以 下の冷却速度で試料が固化するまで冷却する場合には、幅0.5mm程度以上、厚さ 0.5mm程度以上、長5mm程度以上の針状又は板状の形状を有する単結晶を得る ことができる。
- [0074] 次いで、冷却により形成された固化物から、目的とする複合酸化物単結晶以外の成分を除去することによって、基板面に付着した状態で目的とする複合酸化物の単結晶薄膜を得ることができる。
- [0075] 目的物以外の成分を除去する方法としては、複合酸化物単結晶に付着している水溶性の成分、例えば、塩化物などについては、蒸留水による洗浄と濾過を繰り返して行い、さらに必要に応じてエタノール洗浄などを併用することによって、目的生成物から除去することができる。
- [0076] (4)熱電変換素子:

基板上に形成されたp型熱電変換材料薄膜とn型熱電変換材料薄膜は、それぞれの一端同士を電気的に接続させることによって、熱電変換素子とすることができる。

- [0077] この場合、p型熱電変換材料とn型熱電変換材料の熱起電力の絶対値の和が、例えば、293~1073K(絶対温度)の範囲の全ての温度において $60 \mu V/K$ 程度以上、好ましくは $100 \mu V/K$ 程度以上となるように熱電変換材料を組合せて用いることが好ましい。また、両材料とも、 $293~1073K(絶対温度)の範囲の全ての温度において電気抵抗率が<math>100m\Omega cm程度以下、好ましくは50m\Omega cm程度以下、より好ましくは<math>10m\Omega cm程度以下$ であることが望ましい。
- [0078] 電気的に接続させる方法については特に限定はなく、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させて接続してもよく、或いは、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を、導電性材料を介して接続しても良い。
- [0079] p型熱電変換材料の一端とn型熱電変換材料の一端を電気的に接続するための具体的な方法については、特に限定はないが、接合した際に、293~1073K(絶対温度)の全ての範囲において素子の熱起電力が60μV/K以上、電気抵抗が1KΩ以下の特性を維持できる方法が好ましい。
- [0080] 尚、接続によって生じる電気抵抗は、接続方法や接合部分の面積、使用する導電性材料の種類、大きさなどに依存するが、一般に、熱電変換素子全体の抵抗に占める接合部の抵抗の割合が50%程度以下となるように、接続条件を設定することが好ましく、10%程度以下となるように設定することがより好ましく、5%程度以下となるように設定することが更に好ましい。
- [0081] 以下、図面を参照して、電気的に接続させる方法の具体例を説明する。各図面では、基板上においてp型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を電気的に接続して得られる熱電変換素子の正面図と平面図を示す。
- [0082] 図1(a)〜(c)は、基板1の同一平面上に形成したp型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を直接接触させた構造の熱電変換素子を示すものである。
- [0083] 図1(d)及び(e)は、薄膜の接触部分において、一方の材料が他方の材料の一部 を被覆する状態で接触させたものである。この様な構成の素子によれば、より良好な 電気的接続を得ることができる。

- [0084] 図2(a) ~ (c) は、基板1上に形成したp型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を、導電性材料4を介して接続させた構造の熱電変換素子を示すものである。
- [0085] 導電性材料としては、p型熱電変換材料とn型熱電変換材料を低抵抗で接続できるものであれば、特に限定なく使用できる。例えば、金属ペースト、ハンダ、導電性セラミックスなどを用いることができる。特に、1073K程度の高温においても溶融することなく、化学的に安定であり、低抵抗を維持できるものとして、金、銀、白金などの貴金属ペースト、導電性セラミックスなどを用いることが好ましい。また、スパッタリングなどの気相蒸着法によって、これらの導電性材料の薄膜を形成してもよい。
- [0086] 図3は、基板1上において、p型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を直接接触させ、その接触部分を、更に、導電性材料4で被覆した構造の熱電変換素子の構造を示す図面である。この様な構造の素子によれば、両薄膜に接触部分においてより良好な電気的接続を確保することができる。
- [0087] 図4(a)~(c)は、基板の同一面上にp型熱電変換材料薄膜3を接触させることなく形成し、該基板の端面において両薄膜を電気的に接続させた構造の熱電変換素子を示す図面である。これらの内で、図4の(a)は、基板の端面において、両薄膜を直接接続させた構造の素子を示すものであり、図4の(b)は、基板の端面において、導電性材料4を介して両薄膜を接触させた構造の熱電変換素子を示すものである。図4の(c)は、基板の端面に導電性材料4の薄膜を形成し、p型熱電変換材料薄膜2とn型熱電変換材料薄膜3を、基板の角部分で該導電性材料4に接触させることによって、両薄膜を電気的に接続した構造の素子を示すものである。この場合、導電性材料4としては、図2に示した素子と同様に金属ペースト、ハンダ、導電性セラミックス等を用いることができ、更に、蒸着法で形成した導電性膜でも良い。この場合、基板の端面に形成する導電性材料として、p型熱電変換材料薄膜又はn型熱電変換材料薄膜を用いてもよく、p型熱電変換材料薄膜とn型熱電変換材料薄膜とn型熱電変換材料薄膜又はn型熱電変換材料薄膜を用いてもよく、p型熱電変換材料薄膜とn型熱電変換材料薄膜の全体又は一部分が積層した状態の薄膜であっても良い。
- [0088] 更に、図4(a)に示す基板の端面で電気的に接続させた構造の熱電変換素子では 、両薄膜を直接接触させ、その接触部分を導電性材料で被覆した構造や、基板端面

において両材料の一部又は全部を積層する構造とすることによって、より良好な電気 的接続を確保することができる。

[0089] 尚、上記した図1ー図4に示す各熱電変換素子において、図5に示すような切り込み部分の入った基板を用い、p型熱電変換材料薄膜とn型熱電変換材料薄膜を、切り込み部分の両側に形成することにより、素子全体の熱伝導をより低減することができる。

[0090] 熱電変換モジュール

本発明の熱電変換モジュールは、上記した熱電変換素子を複数個用い、一個の 熱電変換素子のp型熱電変換材料の未接合の端部を、他の熱電変換素子のn型熱 電変換材料の未接合の端部に接続する方法で複数の熱電変換素子を直列に接続 したものである。

- [0091] 具体的な接続方法については、特に限定的ではなく、例えば、上記した熱電変換素子における熱電変換材料の接続方法と同様の方法を適用できる。
- [0092] 図6に、熱電変換モジュールの一例の概略図を示す。この熱電変換モジュールは、図1(a)に示した、同一平面上に形成したp型熱電変換材料薄膜2の一端とn型熱電変換材料薄膜3の一端を直接接触させた構造の熱電変換素子を用い、そのp型熱電変換材料2の未接合の端部と、n型熱電変換材料3の未接合の端部とを導電性材料5を介して接合する方法で、複数の熱電変換材料を直列に接続したものである。一つのモジュールに用いる熱電変換素子の数は限定されず、必要とする電力により任意に選択することができる。
- [0093] 熱電変換素子を接合するために用いる導電性材料5としては、図2に示す熱電変換素子を作製する場合と同様に、貴金属ペースト、ハンダ、導電性セラミックスなどを用いることができる。 導電性セラミックスとしては、p型熱電変換材料又はn型熱電変換材料と同様の複合酸化物を用いることもできる。
- [0094] また、異なる基板上に形成した複数の熱電変換素子の未接合の端子同士を接続する方法だけでなく、同一の基板上に複数個の熱電変換素子を形成し、未接合の端部同士を電気的に接続させても良い。この場合、上記した熱電変換材料の薄膜の形成方法を適用して、必要な数のp型熱電変換材料薄膜とn型熱電変換材料薄膜を同

- 一基板上に形成し、各素子の端部を接続することによって、簡単に熱電変換モジュ ールを得ることができる。
- [0095] 本発明の熱電変換モジュールは、その一端を高温部に配置し、他端を低温部に配置することによって電圧を発生することができる。例えば、図6のモジュールでは、p型熱電変換材料薄膜とn型熱電変換材料薄膜を直接接触させた部分を高温部に配置し、他端を低温部に配置すればよい。
- [0096] 更に、図7に斜視図として示すように、パイプ状の基板1を用い、その両面又は片面に、長さ方向と平行に、p型熱電変換材料2の薄膜とn型熱電変換材料3の薄膜を形成し、いずれか一方の開口部付近でp型熱電変換材料とn型熱電変換材料を電気的に接続してパイプ状基板上に熱電変換素子を形成し、更に、この様な熱電変換素子をパイプ状基板上に複数形成して、該熱電変換素子の未接合の端部同士を接続することによってパイプ状の熱電変換モジュールとすることができる。この様なパイプ状の熱電変換モジュールでは、熱電変換モジュールの一方の開口部を高温側に配置し、他方の開口部を低温部側に配置すればよいが、更に、該パイプ中に高温ガスを通過させることによって、パイプの入口部と出口部のガスの温度差を利用して熱電発電を行うことも可能である。
- [0097] 高温部の熱源としては、例えば、自動車エンジン、工場、火力乃至原子力発電所、 ごみ焼却炉、マイクロタービン、ボイラー等から出る473K程度以上の高温熱や、太 陽熱、熱湯、体温等293~473K程度の低温熱等を用いることができる。 発明の効果
- [0098] 本発明の熱電変換素子は、電気絶縁性基板上に、p型熱電変換材料とn型熱電変換材料が、薄膜状に形成されたものであり、各種の任意の形状の基板上に熱電変換素子を形成できることから、多様な形状の熱電変換素子とすることができる。その結果、電子回路への組み込みや微細部分での利用など各種の応用が可能となる。また、プラスチック基板を用いることもでき、各種フレキシブルデバイスへの応用も可能となる。
- [0099] また、本発明の熱電変換素子は、特定の複合酸化物からなるp型熱電変換材料とn型熱電変換材料を組み合わせて用いるものであり、高い熱電変換効率と良好な電気

伝導性を有する熱電変換素子である。この様な熱電変換素子は、高い熱電変換効率を有し、且つ熱的安定性、化学的耐久性等に優れた熱電変換材料により構成されており、優れた性能を有する熱電変換素子である。

- [0100] また、この様な熱電変換素子を用いた本発明の熱電変換モジュールは、熱耐久性に優れたものであり、高温部を1000K程度の高温から室温まで急冷しても、破損することがなく、発電特性も劣化し難いものである。
- [0101] この様に、本発明の熱電変換モジュールは、小型で高い出力密度を有するばかりではなく、熱衝撃にも強いことから、工場やゴミ焼却炉、火力・原子力発電所のみならず、温度変化が激しい自動車への応用も可能である。
- [0102] さらには473K程度以下の熱エネルギーからも発電が可能であり、熱電変換素子を 高集積化できることから、熱源を装着することにより、携帯電話やノートパソコンなど移 動機器用の充電が不要な電源としても利用することができる。

図面の簡単な説明

- [0103] [図1]熱電変換素子の一例を示す平面図及び正面図。
 - [図2]熱電変換素子のその他の例を示す平面図及び正面図。
 - [図3]熱電変換素子のその他の例を示す平面図及び正面図。
 - [図4]熱電変換素子のその他の例を示す平面図及び正面図。
 - [図5]切り込み部分を有する熱電変換素子用基板の平面図。
 - 「図6]パイプ状基板上に形成された熱電変換モジュールの斜視図。
 - 「図7]熱電変換モジュールの一例を示す図面。
 - 「図8]実施例1で得られた熱電変換素子の概略図。
 - [図9]実施例9~16で得られた熱電変換素子の概略図。
 - [図10]実施例17~24で得られた熱電変換素子の概略図。
 - [図11]実施例25〜40で得られた熱電変換素子の概略図。
 - 「図12]実施例41〜48で得られた熱電変換素子の概略図。
 - [図13]実施例49~51で得られた熱電変換素子の概略図。
 - [図14]実施例1で得られた熱電変換素子の電気抵抗の温度依存性を示すグラフ。 符号の説明

- [0104] 1:基板、
 - 2:p型熱電変換材料、
 - 3:n型熱電変換材料、
 - 4、5: 導電性材料

発明を実施するための最良の形態

[0105] 以下、実施例を挙げて本発明を更に詳細に説明する。

[0106] 実施例1

以下の方法で、パルスレーザー堆積法に用いるターゲット材(焼結体)を作製した 後、パルスレーザー堆積法によって熱電変換素子を作製した。

- (1)ターゲット材の作製
- (i)p型熱電変換材料用ターゲット材

酸化ビスマス($Bi_{2}O_{3}$)、炭酸ストロンチウム($SrCO_{3}$)及び酸化コバルト($Co_{3}O_{4}$)を原料として用い、これらをBi:Sr:Co(原子比)=2:2:2となるように混合し、電気炉を用い大気中で800℃で10時間仮焼した後、加圧成型し、さらに850℃で20時間焼成して、直径2cm、厚さ3mmの円板状焼結体からな3cmの型熱電変換材料用ターゲット材を作製した。

(ii)n型熱電変換材料用ターゲット材

La源として硝酸ランタン(La (NO) $_{33}$ · 6H O)、Bi源として硝酸ビスマス(Bi(NO) $_{33}$ · 6H O)、Ni源として硝酸ニッケル (Ni (NO) $_{32}$ · 6H O)を用い、La:Bi:Ni (元素比) = 0.9:0.1:1.0 となる割合でこれらの原料を蒸留水に完全に溶解させ、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300ml/分の酸素気流中で1000℃で20時間加熱して、直径2cm、厚さ3mmの円板状焼結体からなるn型熱電変換材料用ターゲット材を作製した。

(2)熱電変換素子の作製

上記した各ターゲット材を用い、8mm×8mm×1mmの石英ガラス板を基板として、アルゴン・フッ素(ArF)エキシマーレーザーを用いてパルスレーザー堆積法によりp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を順次堆積させた。この際、幅3

mm、長さ8mmで、長さ方向の一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用いて、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにして、両材料を堆積させた。尚、基板を加熱することなく、室温において各薄膜を形成した。具体的な成膜条件は下記の通りである。

- ・レーザー: ArFエキシマレーザー
- •レーザー出力:150mJ
- ・繰り返し周波数:5Hz
- ・圧力:5×10⁻⁵Torr
- ・ターゲット-基板間距離:3cm
- ・基板:石英ガラス
- •基板温度:室温

上記した方法でp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成した後、大気雰囲気中、650℃で2時間熱処理して、熱電変換素子を作製した。

[0107] 得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、 長さ8mm、幅3mm、膜厚1~2μmのp型熱電変換材料の薄膜とn型熱電変換材料 の薄膜が2mmの間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合 うことによって、電気的に接続された状態となっている。この熱電変換素子の概略図 を図8に示す。

[0108] 実施例2~8

下記表1に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例1と同様にして、実施例2~8の各熱電変換素子を作製した。尚、下記表1~表3において、eは8~10の範囲の値、kは8~10の範囲の値、rは2.7~3.3の範囲の値、wは3.6~4.4の範囲の値、r'は2.8~3.2の範囲の値である。

[0109] 実施例9~16

表1に示す各組成の熱電変換材料を用い、8mm×8mm×1mmの石英ガラス板を基板として、8mm×8mmの面上の一辺側から幅1mmの範囲に、長さ8mm、厚さ 0.5 μ mの白金薄膜をスパッタリングによって形成した。スパッタリングガスとしては、

アルゴンを用い、真空中、室温において白金薄膜を形成した。

- [0110] 次に、形成された白金薄膜の帯に垂直な一辺の縁から幅3mmの範囲に、長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料の薄膜を堆積させた反対側の辺の縁から3mmの範囲にn型熱電変換材料の薄膜を堆積させた。各薄膜は、実施例1と同様にして、パルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で熱処理を行って熱電変換素子を作製した。
- [0111] 得られた素子は、図2(c)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、 $1-2\mu$ m厚で、2mmの間隔をあけて形成され、各薄膜の一部が白金薄膜と重なることによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図9に示す。
- [0112] 実施例17~24

幅3mm、長さ8mmで、長さ方向の一端部から2mmの幅が4mmとなるL字形の開口部を有するマスクを用いて、8mm×8mm×1mmの石英ガラス基板上に、p型熱電変換材料とn型熱電変換材料の各薄膜を堆積させた。この際、各材料については、ガラス基板の中間部でL字形の堆積物の短辺の先端部分が接触するようにして堆積させた。p型熱電変換材料とn型熱電変換材料としては、表1に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様にして熱処理を行って熱電変換素子を作製した。

- [0113] 得られた素子は、図1(a)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜がそれぞれ3mm幅、8mm長、1-2 μ m厚で、2mmの間隔をあけて形成され、L字形の短辺の先端部で両薄膜が線状に接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図10に示す。
- [0114] 実施例25~32

8mm×8mm×1mmの石英ガラス基板の一端面(8mm×1mmの面)に、p型熱電変換材料を堆積させた後、その上にn型熱電変換材料を堆積させた。

[0115] 次いで、石英ガラス基板の8mm×8mmの面に、一辺の縁から幅3mmの範囲に、 長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料を形成し た側と反対側の辺の縁から幅3mmの範囲に長さ8mmのn型熱電変換材料の薄膜を堆積させた。この場合、p型熱電変換材料薄膜とn型熱電変換材料薄膜は、いずれも、長さ3mmの辺が、基板の端面に形成した熱電変換材料と接触するように堆積させた。p型熱電変換材料とn型熱電変換材料としては、表2に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で、熱処理を行って熱電変換素子を作製した。

- [0116] 得られた素子は、図4(c)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、1~2μm厚で、2mmの間隔をあけて形成され、基板の端面に形成された熱電変換材料(p型熱電変換材料とn型熱電変換材料の積層膜)からなる導電性膜と基板の角で接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図11に示す。
- [0117] 実施例33~40

8mm×8mm×1mmの石英ガラス基板の一端面(8mm×1mmの面)に、実施例 9~16と同様にして白金を蒸着させた。

- [0118] 次いで、石英ガラス基板の8mm×8mmの面に、一辺の縁から幅3mmの範囲に、長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料を形成した側と反対側の辺の縁から幅3mmの範囲に長さ8mmのn型熱電変換材料の薄膜を堆積させた。この場合、p型熱電変換材料薄膜とn型熱電変換材料薄膜については、いずれも長さ3mmの辺が、基板の端面に形成した白金薄膜と接触するようにして堆積させた。p型熱電変換材料とn型熱電変換材料としては、表2に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で、熱処理を行って熱電変換素子を作製した。
- [0119] 得られた素子は、図4(c)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、1~2 μ m厚で、2mmの間隔をあけて形成され、基板の端面に形成された白金薄膜からなる導電性膜と基板の角で接触することによって、電気的に接続された状態となっている。この熱電変換素子は、図11に示すものと同様の構造である。

[0120] 実施例41~48

8mm×8mm×1mmの石英ガラス基板の一端面(8mm×1mmの面)に、一端から4mmの長さでp型熱電変換材料を堆積させ、更に、同一の端面の反対端から4mmの長さでn型熱電変換材料を堆積させた。この場合、p型熱電変換材料とn型熱電変換材料は、長さ1mmの辺で線状に接触した状態であった。

- [0121] 次いで、石英ガラス基板の8mm×8mmの面に、一辺の縁から幅3mmの範囲に、長さ8mmのp型熱電変換材料の薄膜を堆積させ、更に、p型熱電変換材料を形成した側と反対側の辺の縁から幅3mmの範囲に長さ8mmのn型熱電変換材料の薄膜を堆積させた。この場合、p型熱電変換材料薄膜については、長さ3mmの辺が基板の端面に形成されたp型熱電変換材料と基板の角部分で接触する状態となるように堆積させ、n型熱電変換材料薄膜については、長さ3mmの辺が基板の端面に形成したn型熱電変換材料と基板の角部分で接触する状態となるように堆積させた。p型熱電変換材料とn型熱電変換材料としては、表2に示す組成の材料を用い、実施例1と同様のパルスレーザー堆積法によって堆積させた。次いで、実施例1と同様の条件で、熱処理を行って熱電変換素子を作製した。
- [0122] 得られた素子は、図4(a)に示す素子と同様の形状であり、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、それぞれ3mm幅、8mm長、1~2μm厚で、2mmの間隔をあけて形成され、基板の端面に形成された熱電変換材料の薄膜と基板の角部分で接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図12に示す。

[0123] 実施例49~51

長さ8mm、幅3mm、厚さ1mmの石英ガラス基板の短尺の一端面 $(3mm \times 1mm \circ n)$ に白金、Ca Bi Co Q 又はLa Bi NiO の薄膜からなる導電性膜を堆積させた。白金の堆積方法は、実施例9~16と同様の方法であり、Ca Bi Co Q とLa Bi NiO の薄膜の堆積方法は実施例1と同様である。

[0124] 次いで、ガラス基板の8mm×3mm面の一方にCa_{2.7} Bi_{2.7} Co_{0.3} の組成を有するp型 熱電変換材料を堆積させ、反対面にLa_{0.9} Bi_{0.1} NiO の組成を有するn型熱電変換材料 を堆積させた。この場合、各薄膜の堆積方法は実施例1と同様である。次いで、実施 例1と同様の条件で、熱処理を行って熱電変換素子を作製した。

[0125] 得られた素子は、p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、基板の端面に形成された白金、Ca Bi Co O 又はLa Bi NiO からなる導電性膜と基板の角部分で接触することによって、電気的に接続された状態となっている。この熱電変換素子の概略図を図13に示す。

[0126] 特性試験例1

実施例1で得られた熱電変換素子のp型熱電変換材料とn型熱電変換材料について、下記の方法で室温におけるゼーベック係数を測定した。

- [0127] まず、二対のK型熱電対の一方にヒーターを巻いて加熱し、二対それぞれを材料 の両端に同時に接触させ、その時の温度と発生電圧を測定した。そして、この発生電 圧を二対の熱電対の温度差で除することにより、各熱電変換材料のゼーベック係数 を得た。その結果p型熱電変換材料部分のゼーベック係数は $85 \mu V/K$ であり、n型 熱電変換材料部分のゼーベック係数は $-13 \mu V/K$ であった。
- [0128] 各実施例で得られた熱電変換素子について、同様の方法でゼーベック係数を測定したところ、p型熱電変換材料部分のゼーベック係数は $60-120\,\mu\,V/K$ であり、n型熱電変換材料部分のゼーベック係数は、 $-5-25\,\mu\,V/K$ であった。
- [0129] また、各熱電変換素子について、p型熱電変換材料とn型熱電変換材料を電気的に接続している側の反対側の両端部に銀ペーストを用いて白金線を接着させた。この白金線を電圧計に接続し、素子を電気炉に入れて、500℃まで加熱した。エアポンプを用いて熱電変換素子の白金線を接着した側を空冷し、高温側と30~40℃の温度差を生じさせ、その時の発生電圧(開放電圧)を測定した。
- [0130] 実施例1で得られた熱電変換素子では、発生電圧(開放電圧)は3.4mVであった。 各実施例で得られた熱電変換素子の発生電圧(開放電圧)を下記表1〜表3に示す。
- [0131] また、実施例1で得られた熱電変換素子の電気抵抗の温度依存性を示すグラフを 図14に示す。電気抵抗率は室温 \sim 650 $^{\circ}$ Cにおいて350 \sim 1000 $^{\circ}$ Cであった。
- [0132] p型熱電変換材料とn型熱電変換材料を電気的に接続している側を高温側として 500℃まで加熱し、他端を空冷して38℃の温度差を生じさせた場合、実施例1で得ら

れた熱電変換素子は8.3nWの発電出力を示した。各実施例で得られた熱電変換素子について、同様の方法で発電出力を求めた結果も表1~表3に示す。

[0133] [表1]

実施例	p 熱電材料組成/n 型熱電材料組成	開放電圧(mV)	電気	出力 (nw)
		高温側 500℃	抵抗(Ω)	高温側 500℃
		温度差 30~40℃	500℃	温度差 30~40℃
1	Bi ₂ Sr ₂ Co ₂ O _k /La _{0.9} Bi _{0.1} NiO _r	3.4	350	8.3
2	Bi _{2.2} Sr _{2.2} Co ₂ O _k / LaNiO _r	3.2	360	7.1
3	$Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k / LaNi_{0.9}Cu_{0.1}O_r$	3.1	365	6.6
4	Bi ₂ Ba ₂ Co ₂ O _k / La _{1.8} Bi _{0.2} NiO _w	3.3	355	7.7
5	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{0.9}Bi_{0.1}NiO_r$	2.9	490	4.3
6	Ca₃Co₄O e ∕ LaNiO r	2.6	510	3.3
7	$Ca_{3.3}Na_{0.3} Co_4O_e$ $\angle LaNi_{0.9}Cu_{0.1}O_r$.	2.7	520	3.5
8	$\text{Ca}_{2.7} ext{Bi}_{0.3} ext{Co}_4 ext{O}_{ ext{e}}$ $\angle ext{La}_{1.8} ext{Bi}_{0.2} ext{NiO}_{ ext{w}}$	2.9	530	4.0
9	$Bi_2Sr_2Co_2O_k \angle La_{0.9}Bi_{0.1}NiO_r$	3.1	370	6.5
10	Bi _{2.2} Sr _{2.2} Co ₂ O _k /LaNiO _r	3.2	375	6.8
11	$Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k / LaNi_{0.9}Cu_{0.1}O_r$	3.0	380	5.9
12	$\mathrm{Bi_2Ba_2Co_2O_k}/\mathrm{La_{1.8}Bi_{0.2}NiO_w}$	3.2	375	6.8
13	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{0.9}Bi_{0.1}NiO_r$	2.8	530	3.7
14	Ca ₃ Co ₄ O _e /LaNiO _r	2.8	550	3.6
15	Ca _{3.3} Na _{0.3} Co ₄ O _e / LaNi _{0.9} Cu _{0.1} O _r ·	2.7	530	3.4
16	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{1.8}Bi_{0.2}NiO_w$	2.9	540	3.9
17	Bi ₂ Sr ₂ Co ₂ O _k / La _{0.9} Bi _{0.1} NiO _r	3.1	370	6.5
18	Bi _{2.2} Sr _{2.2} Co ₂ O _k /LaNiO _r	3.3	370	7.4
19	$Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k / LaNi_{0.9}Cu_{0.1}O_r$	3.0	360	6.3
20	Bi ₂ Ba ₂ Co ₂ O _k / La _{1.8} Bi _{0.2} NiO _w	3.1	380	6.3
21	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{0.9}Bi_{0.1}NiO_r$	3.0	510	4.4
22	Ca ₃ Co ₄ O _e /LaNiO _r	2.9	520	4.0
23	Ca _{3.3} Na _{0.3} Co ₄ O _e / LaNi _{0.9} Cu _{0.1} O _r ·	2.9	500	4.2
24	Ca _{2.7} Bi _{0.3} Co ₄ O _e /La _{1.8} Bi _{0.2} NiO _w	2.7	530	3.4

[0134] [表2]

実施例	p 型熱電材料組成/n 型熱電材料組成	開放電圧(mV)	電気	出力(nw)
		高温側 500℃	抵抗(Ω)	髙温側 500℃
		温度差 30~40℃	500℃	温度差 30~40℃
25	Bi ₂ Sr ₂ Co ₂ O _k / La _{0.9} Bi _{0.1} NiO _r	2.9	390	5.4
26	Bi _{2.2} Sr _{2.2} Co ₂ O _k / LaNiO _r	3.0	370	6.1
27	$Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k / LaNi_{0.9} Cu_{0.1}O_r$	3.2	385	6.6
28	Bi ₂ Ba ₂ Co ₂ O _k / La _{1.8} Bi _{0.2} NiO _w	3.1	390	6.2
29	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{0.9}Bi_{0.1}NiO_r$	2.9	560	3.8
30	Ca ₃ Co ₄ O _e ∕ LaNiO _r	2.7	550	3.3
31	Ca _{3.3} Na _{0.3} Co ₄ O _e / LaNi _{0.9} Cu _{0.1} O _r ·	2.8	550	3.6
32	$\text{Ca}_{2.7} ext{Bi}_{0.3} ext{Co}_4 ext{O}_{ ext{e}} \diagup ext{La}_{1.8} ext{Bi}_{0.2} ext{NiO}_{ ext{w}}$	2.8	540	3.6
33	$Bi_2Sr_2Co_2O_k$ $\angle La_{0.9}Bi_{0.1}NiO_r$	3.1	375	6.4
34	Bi _{2.2} Sr _{2.2} Co ₂ O _k / LaNiO _r	3.3	390	7.0
35	$Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k / LaNi_{0.9}Cu_{0.1}O_r$	3.0	380	5.9
36	$\mathrm{Bi_2Ba_2Co_2O_k}/\mathrm{La_{1.8}Bi_{0.2}NiO_w}$	3.1	375	6.4
37	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{0.9}Bi_{0.1}NiO_r$	2.9	520	4.0
38	Ca ₃ Co ₄ O _e /LaNiO _r	2.8	550	3.6
39	Ca _{3.3} Na _{0.3} Co ₄ O _e / LaNi _{0.9} Cu _{0.1} O _r ·	2.9	570	3.7
40	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{1.8}Bi_{0.2}NiO_w$	2.7	555	3.3
41	Bi ₂ Sr ₂ Co ₂ O _k /La _{0.9} Bi _{0.1} NiO _r	2.9	400	5.3
42	Bi _{2.2} Sr _{2.2} Co ₂ O _k /LaNiO _r	3.1	405	5.9
43	Bi _{1.8} Pb _{0.4} Sr _{1.8} Ca _{0.4} Co ₂ O _k /LaNi _{0.9} Cu _{0.1} O _r ·	3.2	390	6.6
44	Bi ₂ Ba ₂ Co ₂ O _k / La _{1.8} Bi _{0.2} NiO _w	3.0	385	5.8
45	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{0.9}Bi_{0.1}NiO_r$	3.1	530	4.5
46	Ca₃Co₄O e ∕ LaNiO r	2.9	520	4.0
47	Ca _{3.3} Na _{0.3} Co ₄ O _e / LaNi _{0.9} Cu _{0.1} O _r ·	2.7	525	3.5
48	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{1.8}Bi_{0.2}NiO_w$	2.8	560	3.5

[0135] [表3]

実施例	導電性膜	p型熱電材料組成/n型熱電	開放電圧(mV)	電気	出力 (nw)
		材料組成	高温側 500℃	抵抗(Ω)	高温側
			温度差 30~	500℃	500℃
			40℃		温度差 30
					~40℃
49	Pt	Ca _{2.7} Bi _{0.3} Co ₄ O _e /La _{0.9} Bi _{0.1} NiO _r	2.8	490	4.0
50	Ca _{2.7} Bi _{0.3} Co ₄ O _e	$Ca_{2.7}Bi_{0.3}Co_4O_e / La_{0.9}Bi_{0.1}NiO_r$	3.2	540	4.7
51	La _{0.9} Bi _{0.1} NiO _r	${\rm Ca_{2.7}Bi_{0.3}Co_4O_e} \diagup {\rm La_{0.9}Bi_{0.1}NiO_r}$	3.0	500	4.5

[0136] 実施例52

以下の方法で、スパッタリング法に用いるターゲットを作製した後、スパッタリング法

によって、熱電変換素子を作製した。

[0137] (1)ターゲットの作製

(i)p型熱電変換材料用ターゲット

酸化ビスマス(BiO)、炭酸ストロンチウム(SrCO)及び酸化コバルト(CoO)を原料として用い、これらをBi:Sr:Co(原子比) = 2:2:2となるように混合し、電気炉を用い大気中で800℃で10時間仮焼した後、加圧成型し、さらに850℃で20時間焼成した。得られた粉末を、銅プレート上に直径10cm、厚さ2mmに敷き詰めてp型熱電変換材料用ターゲットを作製した。

(ii)n型熱電変換材料用ターゲット

La源として硝酸ランタン(La2(NO3)・6H2O)、Bi源として硝酸ビスマス(Bi(NO3)・6H2O)、Ni源として硝酸ニッケル(Ni(NO3)・6H2O)を用い、La:Bi:Ni(元素比)=0.9:0.1:1.0となる割合でこれらの原料を蒸留水に完全に溶解させ、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300ml/分の酸素気流中で1000℃で20時間加熱した。得られた粉末を、銅プレート上に直径10cm、厚さ2mmに敷き詰めてn型熱電変換材料用ターゲットを作製した。

[0138] (2)熱電変換素子の作製

上記した各ターゲットを用い、8mm×8mm×0.5mmのポリイミドフイルムを基板として、RFスパッタリング法によりp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を順次堆積させた。この際、幅3mm、長さ8mmで、長さ方向の一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用いて、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにして、両材料を堆積させた。尚、基板加熱は行わず、プラズマによる温度上昇は260℃以下となるように制御した。具体的な成膜条件は下記の通りである。

- ・スパッタリングガス: Ar
- ·RF電力:50~200W
- ・ 基板: ポリイミドフイルム

上記した方法でp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成した。

[0139] 得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、 長さ8mm、幅3mm、膜厚1~2μmのp型熱電変換材料の薄膜とn型熱電変換材料 の薄膜が2mmの間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合 うことによって、電気的に接続された状態となっている。この熱電変換素子は、図8に 示すものと同様の形状である。

[0140] 実施例53~59

下記表4に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例52と同様にして、実施例53~59の各熱電変換素子を作製した。尚、原料粉末の製造時の加熱温度については、具体的な組成に応じて700℃~1100℃の範囲で変更した。

- [0141] 下記表4において、eは8~10の範囲の値、kは8~10の範囲の値、rは2.7~3.3 の範囲の値、wは3.6~4.4の範囲の値、r'は2.8~3.2の範囲の値である。
- [0142] 実施例52~59で作製した各熱電変換素子について、実施例1と同様にして、発生電圧(開放電圧)、電気抵抗及び発電出力を測定した結果を下記表4に示す。

[0143] [表4]

実施例	P型熱電材料組成/n型熱電材料組成	開放電圧(mV)	電気	出力 (μw)
		高温側 100℃	抵抗(Ω)	高温側 100℃
		温度差 30~40℃	100℃	温度差 30~40℃
52	Bi ₂ Sr ₂ Co ₂ O _k /La _{0.9} Bi _{0.1} NiO _r	1.5	670	0.84
53	Bi _{2.2} Sr _{2.2} Co ₂ O _k /LaNiO _r	1.3	680	0.62
54	$Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k / LaNi_{0.9} Cu_{0.1}O_r$	1.2	685	0.52
55	Bi ₂ Ba ₂ Co ₂ O _k / La _{1.8} Bi _{0.2} NiO _w	1.4	675	0.72
56	Ca _{3.7} Bi _{0.3} Co ₄ O _e /La _{0.9} Bi _{0.1} NiO _r	1.1	710	0.42
57	Ca ₃ Co ₄ O _e /LaNiO _r	0.9	720	0.28
58	Ca _{3.3} Na _{0.3} Co ₄ O _e / LaNi _{0.9} Cu _{0.1} O _r	1.0	730	0.34
59	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{1.8}Bi_{0.2}NiO_w$	1.1	740	0.41

[0144] 実施例60

以下の方法で、エアロゾル堆積法に用いる原料粉末を作製した後、ポリイミド樹脂(商品名:カプトン)製のシートを基板として、エアロゾル堆積法によって熱電変換素子を作製した。

WO 2005/093864 32 PCT/JP2005/005133

[0145] (1)原料粉末の作製

(i)p型熱電変換材料粉末

炭酸カルシウム(CaCO₃)、酸化ビスマス(Bi₂O₃)及び酸化コバルト(Co₃O₄)を原料として用い、これらをCa:Bi:Co(原子比) = 2.7:0.3:4となるように混合し、電気炉を用いて、大気中で800℃で10時間仮焼した後、加圧成型し、さらに850℃で20時間焼成した。その後、ボールミルを用いて焼結体を粉砕して、平均粒径4 μ mの組成式:Ca_{2.7} Bi_{0.3} Co₄Oで表されるp型熱電変換材料の原料粉末を得た。

(ii)n型熱電変換材料粉末

La源として硝酸ランタン(La (NO) \cdot 6H O)、Bi源として硝酸ビスマス(Bi(NO) \cdot 6H O)、Ni源として硝酸ニッケル (Ni (NO) \cdot 6H O)を用い、La:Bi:Ni (元素比) = 0.9:0.1:1.0 となる割合でこれらの原料を蒸留水に完全に溶解させ、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300ml/分の酸素気流中で1000℃で20時間加熱した。その後、ボールミルを用いて、焼結体を粉砕し平均粒径4 μ mの組成式:La Bi NiO で表されるn型熱電変換材料の原料粉末を得た。

[0146] (2)熱電変換素子の作製

8mm×8mm×0.05mmのポリイミド(商品名:カプトン)シートを基板として用い、 圧力1kPaの減圧チャンバー内で、p型熱電変換材料膜とn型熱電変換材料膜を順 次堆積させて、熱電変換素子を作製した。この際、幅3mm、長さ8mm、長さ方向の 一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用い て、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにし て、両材料を堆積させた。尚、基板を加熱することなく、室温において各薄膜を形成 した。

[0147] 具体的な成膜条件としては、搬送ガスとしてHeを用い、ガス流量7L/分、ノズル基 板間距離15mmとして、p型熱電変換材料の原料粉末とn型熱電変換材料の原料粉末を順次吹き付けて、厚さ約50 μ mのp型熱電変換材料薄膜とn型熱電変換材料薄膜を形成した熱電変換素子を得た。被膜形成後も加熱は行わなかった。

[0148] 得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、 長さ8mm、幅3mmのp型熱電変換材料の薄膜とn型熱電変換材料の薄膜が2mm の間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合うことによって、 電気的に接続された状態となっている。この素子の高温部を150℃になるように電気 ヒーターで加熱し、低温部を120℃とした時、4.7nWの発電が可能であった。

[0149] 実施例61~67

下記表5に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例60と同様にして、実施例61~67の各熱電変換素子を作製した。尚、原料粉末の製造時の加熱温度については、具体的な組成に応じて700℃~1100℃の範囲で変更した。

- [0150] 下記表5において、eは8~10の範囲の値、kは8~10の範囲の値、rは2.7~3.3 の範囲の値、wは3.6~4.4の範囲の値である。
- [0151] 実施例60~67で作製した各熱電変換素子について、実施例1と同様にして、発生電圧(開放電圧)、電気抵抗及び発電出力を測定した結果を下記表5に示す。

[0152] [表5]

実施例	p 熱電材料組成/n 型熱電材料組成	開放電圧(mV)	電気	出力 (nw)
	_	高温側 100℃	抵抗(Ω)	高温側 100℃
		温度差 30~40℃	100℃	温度差 30~40℃
60	Ca _{2.7} Bi _{0.3} Co ₄ O _e /La _{0.9} Bi _{0.1} NiO _r	1.5	330	1.7
61	Ca ₃ Co ₄ O _e /LaNiO _r	1.2	360	1.0
62	$Ca_{2.7}Bi_{0.3}Co_4O_e$ $\angle La_{1.8}Bi_{0.2}NiO_w$	1.4	365	1.3
63	Ca ₃ Co ₄ O _e /La ₂ Ni _{0.9} Cu _{0.1} O _w	1.3	355	1.2
64	Bi ₂ Sr ₂ Co ₂ O _k /La _{0.9} Bi _{0.1} NiO _r	0.9	490	0.4
65	Bi _{2.2} Sr _{2.2} Co ₂ O _k /LaNiO _r	1.1	510	0.6
66	$Bi_{1.8}Pb_{0.2}Ca_2Co_2O_k \angle La_{1.8}Bi_{0.2}NiO_w$	1.1	480	0.6
67	Bi _{2.1} Ca _{0.4} Sr _{1.7} Co ₂ O _k /La ₂ Ni0.9Co0.1O _w	1.0	490	0.5

[0153] 実施例68

以下の方法で、スパッタリング法に用いるターゲットを作製した後、スパッタリング法によって、熱電変換素子を作製した。

- [0154] (1)ターゲットの作製
 - (i)p型熱電変換材料用ターゲット

酸化ビスマス($\text{Bi}_{2}\text{O}_{3}$)、炭酸ストロンチウム(SrCO_{3})及び酸化コバルト($\text{Co}_{3}\text{O}_{4}$)を原料として用い、これらをBi:Sr:Co(原子比)=2:2:2となるように混合し、電気炉を用い大気中で 800° でで10時間仮焼した後、加圧成型し、さらに 850° でで20時間焼成して得られた粉末を、銅プレート上に直径10cm、厚さ2mmに敷き詰めてp型熱電変換材料用ターゲットを作製した。

(ii)n型熱電変換材料用ターゲット

酸化亜鉛 (ZnO) に酸化ガリウム (GaO) を5wt%添加し、直径10cm、厚さ3mmの円盤 状に焼結した物をターゲットとした。

[0155] (2)熱電変換素子の作製

上記した各ターゲットを用い、8mm×8mm×0.5mmのポリイミドフイルムを基板として、RFスパッタリング法によりp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を順次堆積させた。この際、幅3mm、長さ8mmで、長さ方向の一端部から2mmについては幅が5mmとなるL字形の開口部を有するマスクを用いて、L字型の短辺部分でp型熱電変換材料とn型熱電変換材料が重なり合うようにして、両材料を堆積させた。尚、基板加熱は行わず、プラズマによる温度上昇は260℃以下となるように制御した。具体的な成膜条件は下記の通りである。

- ・スパッタリングガス:Ar、O₂
- ·RF電力:50~200W
- ・基板:ポリイミドフイルム

上記した方法でp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成した。

[0156] 得られた熱電変換素子は、図1(d)に示す素子と同様の形状を有するものであり、 長さ8mm、幅3mm、膜厚1~2μmのp型熱電変換材料の薄膜とn型熱電変換材料 の薄膜が2mmの間隔で形成され、各薄膜の端部2mmの部分で、各薄膜が重なり合 うことによって、電気的に接続された状態となっている。この熱電変換素子は、図8に 示すものと同様の構造である。

[0157] 実施例69~75

下記表6に示す組成のp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を形成すること以外は、実施例68と同様にして、実施例69~75の各熱電変換素子を作製

した。尚、原料粉末の製造時の加熱温度については、具体的な組成に応じて700℃ -1100℃の範囲で変更した。

- [0158] 下記表6において、eは8~10の範囲の値、kは8~10の範囲の値、zは0.9~1.1 の範囲の値、zzは1.9~3の範囲の値である。
- [0159] 実施例68~75で作製した各熱電変換素子について、実施例1と同様にして、発生電圧(開放電圧)、電気抵抗及び発電出力を測定した結果を下記表6に示す。

[0160] 「表6]

実施例	P 型熱電材料組成/n 型熱電材料組成	開放電圧(mV)	電気	出カ(μW)
		高温側 100℃	抵抗(Ω)	高温側 100℃
		温度差 30~40℃	100℃	温度差 30~40℃
68	$Bi_2Sr_2Co_2O_k/Ga_{0.1}Zn_{0.9}O_z$	2.9	570	3.69
69	$Bi_{2.2}Sr_{2.2}Co_2O_k/Al_{0.1}Zn_{0.9}O_z$	2.6	590	2.86
70	$Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k / In_{0.1}Zn_{0.9}O_z$	2.7	610	2.99
71	$Bi_2 Ba_2Co_2O_k / Sn_{0.1}In_{1.9}O_{zz}$	2.5	585	2.67
72	$Ca_{3.7}Bi_{0.3}Co_4O_e/Ga_{0.1}Zn_{0.9}O_z$	2.6	610	2.77
73	$Ca_3Co_4O_e$ $\angle Al_{0.1}Zn_{0.9}O_z$	2.8	600	3.27
74	$Ca_{3.3}Na_{0.3} Co_4O_e / In_{0.1}Zn_{0.9}O_z$	2.4	605	2.38
75	Ca _{2.7} Bi _{0.3} Co ₄ O _e / Sn _{0.1} In _{1.9} O _{zz}	2.2	595	2.03

[0161] 以下、各種組成の酸化物からなる熱電変換材料について、参考例として物性値を示す。

[0162] 参考例1

一般式: $Ca_aA_b^1Co_cA_d^2O_c$ 又は一般式: $Bi_fPb_gM_b^1Co_fM_j^2O_c$ で表されるp型熱電変換材料としての特性を有する複合酸化物を下記の方法で作製した。

[0163] 原料物質としては、目的とする複合酸化物の構成元素を含む炭酸塩又は酸化物を用い、表7~表74に記載した組成式と同じ元素比となるように原料物質を混合し、大気圧中において、1073Kで10時間仮焼した。次いで、得られた焼成物を粉砕し、成形して、300mL/分の酸素ガス気流中で20時間焼成した。その後、得られた焼成物を粉砕、加圧成形し、空気中で10MPaの一軸加圧下に、20時間のホットプレス焼結を行い、p型熱電変換材料用の複合酸化物を作製した。各酸化物を製造する際の焼成温度については、組成に応じて1073~1273Kの範囲で変更し、更に、ホットプレス焼結の温度についても、1123~1173Kの範囲で変更した。

- [0164] 得られた各酸化物について、700℃におけるゼーベック係数、700℃における電気 抵抗率及び700℃における熱伝導度の測定結果を下記表7~表74に示す。
- [0165] [表7]

p 型

組成	ゼーベック係数	電気抵抗率	熱伝導度
$Ca_aA^1_bCo_cA^2_dO_e$	μV/K (700℃)	mΩcm (700℃)	W/mK (700℃)
Ca ₃ Co ₄ O ₉	205	5.5	2.5
Ca _{2.7} Na _{0.3} Co ₄ O ₉	198	4. 2	2.2
Ca _{2.7} K _{0.3} Co ₄ O ₉	195	6.0	2.2
Ca _{2.7} Li _{0.3} Co ₄ O ₉	200	7. 2	2.4
$Ca_{2.7}Ti_{0.3}Co_4O_9$	205	6.8	2.6
$Ca_{2.7}V_{0.3}Co_4O_9$	198	5. 7	2.5
$Ca_{2.7}Cr_{0.3}Co_4O_9$	199	6. 2	3.0
$Ca_{2.7}Mn_{0.3}Co_4O_9$	210	6.8	2.6
Ca _{2.7} Fe _{0.3} Co ₄ O ₉	202	8.0	2.9
$Ca_{2.7}Ni_{0.3}Co_4O_9$	204	7. 9	1.9
$Ca_{2.7}Cu_{0.3}Co_4O_9$	197	6.9	2.2
$Ca_{2.7}Zn_{0.3}Co_4O_9$	205	5.9	2.6
$Ca_{2.7}Pb_{0.3}Co_4O_9$	201	7.8	2.5
$Ca_{2.7}Sr_{0.3}Co_4O_9$	196	6.3	3.0
$Ca_{2.7}Ba_{0.3}Co_4O_9$	202	6.5	1.9
$Ca_{2.7}Al_{0.3}Co_4O_9$	203	6.4	2.0
$Ca_{2.7}Bi_{0.3}Co_4O_9$	208	8. 2	2.2
$Ca_{2.7}Y_{0.3}Co_4O_9$	198	7. 5	2.3
$Ca_{2.7}La_{0.3}Co_4O_9$	199	6.9	1.9
$Ca_{2.7}Ce_{0.3}Co_4O_9$	201	8. 1	3. 1
$Ca_{2.7}Pr_{0.3}Co_4O_9$	207	7. 6	2.6
$Ca_{2.7}Nd_{0.3}Co_4O_9$	190	5. 9	2.7
$Ca_{2.7}Sm_{0.3}Co_4O_9$	198	5.8	2.4
Ca _{2.7} Eu _{0.3} Co ₄ O ₉	199	7. 2	1.9
Ca _{2.7} Gd _{0.3} Co ₄ O ₉	201	8. 2	3.0
$Ca_{2.7}Dy_{0.3}Co_4O_9$	200	7. 1	2.1
Ca _{2.7} Ho _{0.3} Co ₄ O ₉	206	6.5	2.2
$Ca_{2.7}Er_{0.3}Co_4O_9$	205	6.9	2.6
$Ca_{2.7}Yb_{0.3}Co_4O_9$	198	7.0	2. 7
Ca ₃ Co _{3.8} Ti _{0.2} O ₉	200	6.8	1.9
Ca ₃ Co _{3.8} V _{0.2} O ₉	203	7. 2	2.9
Ca ₃ Co _{3.8} Cr _{0.2} O ₉	201	5.9	2.4

[0166] [表8]

Ca ₃ Co _{3.8} Mn _{0.2} O ₉	208	8. 1	2. 6
Ca ₃ Co _{3.8} Fe _{0.2} O ₉	198	7. 2	2. 7
Ca ₃ Co _{3.8} Ni _{0.2} O ₉	199	6. 4	1. 9
Ca ₃ Co _{3,8} Cu _{0,2} O ₉	207	5. 9	3. 0
Ca ₃ Co _{3.9} Ag _{0.1} O ₉	198	6. 0	2. 7
Ca ₃ Co _{3, 9} Mo _{0, 1} O ₉	196	5. 9	2. 7
Ca ₃ Co _{3, 9} W _{0, 1} O ₉	200	7. 2	2. 8
Ca ₃ Co _{3, 9} Nb _{0, 1} O ₉	198	8. 1	2. 2
Ca ₃ Co _{3.9} Ta _{0.1} O ₉	205	6. 9	2. 5
Ca _{2.7} Na _{0.3} Co _{3.8} Ti _{0.2} O ₉	205	6. 2	2. 6
Ca _{2.7} Na _{0.3} Co _{3.8} V _{0.2} O ₉	198	6. 8	2. 0
Ca _{2.7} Na _{0.3} Co _{3.8} Cr _{0.2} O ₉	195	8. 0	1. 9
Ca _{2.7} Na _{0.3} Co _{3.8} Mn _{0.2} O ₉	200	7. 9	2. 3
Ca _{2, 7} Na _{0, 3} Co _{3, 8} Fe _{0, 2} O ₉	205	6. 9	2. 5
Ca _{2.7} Na _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	5. 9	2. 7
Ca _{2.7} Na _{0.3} Co _{3.8} Cu _{0.2} O ₉	199	7. 8	2. 5
Ca _{2.7} Na _{0.3} Co _{3.9} Ag _{0.1} O ₉	210	6. 3	2. 6
Ca _{2.7} Na _{0.3} Co _{3.9} Mo _{0.1} O ₉	202	6. 5	2. 4
Ca _{2, 7} Na _{0, 3} Co _{3, 9} W _{0, 1} O ₉	207	6. 4	2. 3
Ca _{2.7} Na _{0.3} Co _{3.9} Nb _{0.1} O ₉	198	8. 2	2. 2
Ca _{2.7} Na _{0.3} Co _{3.9} Ta _{0.1} O ₉	196	7. 5	2. 1
Ca _{2.7} K _{0.3} Co _{3.8} Ti _{0.2} O ₉	198	8. 1	1. 8
Ca _{2.7} K _{0.3} Co _{3.8} V _{0.2} O ₉	205	7. 6	2. 7
Ca _{2.7} K _{0.3} Co _{3.8} Cr _{0.2} O ₉	196	5. 9	2. 6
Ca _{2.7} K _{0.3} Co _{3.8} Mn _{0.2} O ₉	205	5. 8	2. 5
Ca _{2.7} K _{0.3} Co _{3.8} Fe _{0.2} O ₉	198	7. 2	2. 1
Ca _{2.7} K _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	8. 2	2. 3
Ca _{2.7} K _{0.3} Co _{3.8} Cu _{0.2} O ₉	195	7. 1	2. 7
Ca _{2.7} K _{0.3} Co _{3.9} Ag _{0.1} O ₉	200	6. 5	2. 8
Ca _{2.7} K _{0.3} Co _{3.9} Mo _{0.1} O ₉	203	6. 9	2. 5
Ca _{2.7} K _{0.3} Co _{3.9} W _{0.1} O ₉	201	7. 0	2. 4
Ca _{2.7} K _{0.3} Co _{3.9} Nb _{0.1} O ₉	208	7. 2	2. 8
Ca _{2.7} K _{0.3} Co _{3.9} Ta _{0.1} O ₉	198	6. 8	3. 0
Ca _{2.7} Li _{0.3} Co _{3.8} Ti _{0.2} O ₉	207	5. 9	1. 9

[0167] [表9]

	· · · · · · · · · · · · · · · · · · ·		
Ca _{2.7} Li _{0.3} Co _{3.8} V _{0.2} O ₉	198	8. 1	2. 6
Ca _{2.7} Li _{0.3} Co _{3.8} Cr _{0.2} O ₉	199	7. 2	2. 5
Ca _{2.7} Li _{0.3} Co _{3.8} Mn _{0.2} O ₉	210	6. 4	3. 0
Ca _{2,7} Li _{0,3} Co _{3,8} Fe _{0,2} O ₉	202	5. 9	1. 9
Ca _{2.7} Li _{0.3} Co _{3.8} Ni _{0.2} O ₉	204	6. 0	2. 0
Ca _{2.7} Li _{0.3} Co _{3.8} Cu _{0.2} O ₉	197	5. 9	2. 2
Ca _{2.7} Li _{0.3} Co _{3.9} Ag _{0.1} O ₉	205	7. 2	2. 3
Ca _{2.7} Li _{0.3} Co _{3.9} Mo _{0.1} O ₉	201	8. 1	1.9
Ca _{2.7} Li _{0.3} Co _{3.9} W _{0.1} O ₉	196	6. 9	3. 1
Ca _{2.7} Li _{0.3} Co _{3.9} Nb _{0.1} O ₉	202	5. 7	2. 6
Ca _{2.7} Li _{0.3} Co _{3.9} Ta _{0.1} O ₉	203	6, 2	2. 7
Ca _{2.7} Ti _{0.3} Co _{3.8} Ti _{0.2} O ₉	198	8. 0	1. 9
Ca _{2.7} Ti _{0.3} Co _{3.8} V _{0.2} O ₉	199	7. 9	3. 0
Ca _{2.7} Ti _{0.3} Co _{3.8} Cr _{0.2} O ₉	201	6. 9	2. 1
Ca _{2.7} Ti _{0.3} Co _{3.8} Mn _{0.2} O ₉	207	5. 9	2. 2
Ca _{2.7} Ti _{0.3} Co _{3.8} Fe _{0.2} O ₉	190	7. 8	2. 6
Ca _{2.7} Ti _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	6. 3	2. 7
Ca _{2.7} Ti _{0.3} Co _{3.8} Cu _{0.2} O ₉	199	6. 5	2. 5
Ca _{2.7} Ti _{0.3} Co _{3.9} Ag _{0.1} O ₉	201	6. 4	1. 9
Ca _{2.7} Ti _{0.3} Co _{3.9} Mo _{0.1} O ₉	200	5. 8	2. 9
$Ca_{2.7}Ti_{0.3}Co_{3.9}W_{0.1}O_{9}$	206	7. 2	2. 4
Ca _{2.7} Ti _{0.3} Co _{3.9} Nb _{0.1} O ₉	205	8. 2	2. 6
$Ca_{2.7}Ti_{0.3}Co_{3.9}Ta_{0.1}O_{9}$	198	7. 1	2. 7
Ca _{2.7} V _{0.3} Co _{3.8} Ti _{0.2} O ₉	196	6. 9	3. 0
Ca _{2.7} V _{0.3} Co _{3.8} V _{0.2} O ₉	202	7. 0	2. 7
Ca _{2.7} V _{0.3} Co _{3.8} Cr _{0.2} O ₉	203	7. 2	2. 7
Ca _{2.7} V _{0.3} Co _{3.8} Mn _{0.2} O ₉	208	6. 8	2. 8
Ca _{2.7} V _{0.3} Co _{3.8} Fe _{0.2} O ₉	198	7. 2	2. 2
Ca _{2.7} V _{0.3} Co _{3.8} Ni _{0.2} O ₉	199	5. 9	2. 5
Ca _{2.7} V _{0.3} Co _{3.8} Cu _{0.2} O ₉	201	8. 1	2. 7
Ca _{2.7} V _{0.3} Co _{3.9} Ag _{0.1} O ₉	207	7. 2	2. 6
Ca _{2.7} V _{0.3} Co _{3.9} Mo _{0.1} O ₉	190	6. 4	2. 0
Ca _{2.7} V _{0,3} Co _{3,9} W _{0,1} O ₉	198	5. 9	1. 9
Ca _{2,7} V _{0,3} Co _{3,9} Nb _{0,1} O ₉	199	6. 0	2. 3
. Ca _{2.7} V _{0.3} Co _{3.9} Ta _{0.1} O ₉	201	5. 9	2. 5

[0168] [表10]

$Ca_{2.7}Cr_{0.3}Co_{3.8}Ti_{0.2}O_9$	206	8. 1	2. 5
$Ca_{2.7}Cr_{0.3}Co_{3.8}V_{0.2}O_9$	207	6. 9	2. 6
Ca _{2.7} Cr _{0.3} Co _{3.8} Cr _{0.2} O ₉	198	5. 7	2. 4
$Ca_{2.7}Cr_{0.3}Co_{3.8}Mn_{0.2}O_{9}$	199	6. 2	2. 3
Ca _{2.7} Cr _{0.3} Co _{3.8} Fe _{0.2} O ₉	210	6. 8	2. 2
Ca _{2.7} Cr _{0.3} Co _{3.8} Ni _{0.2} O ₉	202	8. 0	2. 2
Ca _{2.7} Cr _{0.3} Co _{3.8} Cu _{0.2} O ₉	204	7. 9	2. 4
Ca _{2.7} Cr _{0.3} Co _{3.9} Ag _{0.1} O ₉	197	6. 9	2. 6
$Ca_{2.7}Cr_{0.3}Co_{3.9}Mo_{0.1}O_{9}$	205	5. 9	2. 5
Ca _{2.7} Cr _{0.3} Co _{3.9} W _{0.1} O ₉	201	7. 8	3. 0
Ca _{2.7} Cr _{0.3} Co _{3.9} Nb _{0.1} O ₉	196	6. 3	2. 6
Ca _{2.7} Cr _{0.3} Co _{3.9} Ta _{0.1} O ₉	202	6. 5	2. 9
Ca _{2.7} Mn _{0.3} Co _{3.8} Ti _{0.2} O ₉	208	8. 2	2. 2
Ca _{2.7} Mn _{0.3} Co _{3.8} V _{0.2} O ₉	198	7. 5	2. 6
Ca _{2.7} Mn _{0.3} Co _{3.8} Cr _{0.2} O ₉	199	6. 9	2. 5
Ca _{2.7} Mn _{0.3} Co _{3.8} Mn _{0.2} O ₉	201	8. 1	3. 0
Ca _{2.7} Mn _{0.3} Co _{3.8} Fe _{0.2} O ₉	207	7.6	1.9
Ca _{2.7} Mn _{0.3} Co _{3.8} Ni _{0.2} O ₉	190	5. 9	2. 0
Ca _{2.7} Mn _{0.3} Co _{3.8} Cu _{0.2} O ₉	198	5. 8	2. 2
$Ca_{2.7}Mn_{0.3}Co_{3.9}Ag_{0.1}O_{9}$	199	7. 2	2. 3
Ca _{2.7} Mn _{0.3} Co _{3.9} Mo _{0.1} O ₉	201	8. 2	1. 9
Ca _{2.7} Mn _{0.3} Co _{3.9} W _{0.1} O ₉	200	7. 1	3. 1
Ca _{2.7} Mn _{0.3} Co _{3.9} Nb _{0.1} O ₉	206	6. 5	2. 6
Ca _{2.7} Mn _{0.3} Co _{3.9} Ta _{0.1} O ₉	205	6. 9	2. 7
Ca _{2.7} Fe _{0.3} Co _{3.8} Ti _{0.2} O ₉	201	7. 2	1. 9
Ca _{2.7} Fe _{0.3} Co _{3.8} V _{0.2} O ₉	196	6. 8	3. 0
Ca _{2.7} Fe _{0.3} Co _{3.8} Cr _{0.2} O ₉	202	6. 4	2. 1
Ca _{2.7} Fe _{0.3} Co _{3.8} Mn _{0.2} O ₉	203	8. 2	2. 2
Ca _{2.7} Fe _{0.3} Co _{3.8} Fe _{0.2} O ₉	205	7. 5	2. 6
Ca _{2.7} Fe _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	6. 9	2. 7
Ca _{2.7} Fe _{0.3} Co _{3.8} Cu _{0.2} O ₉	195	8. 1	2. 5
Ca _{2.7} Fe _{0.3} Co _{3.9} Ag _{0.1} O ₉	200	7. 6	1. 9
Ca _{2.7} Fe _{0.3} Co _{3.9} Mo _{0.1} O ₉	205	5. 9	2. 9
Ca _{2.7} Fe _{0.3} Co _{3.9} W _{0.1} O ₉	198	5. 8	2. 4

[0169] [表11]

Ca _{2,7} Fe _{0,3} Co _{3,9} Nb _{0,1} O ₉	199	7. 2	2. 6
Ca _{2.7} Fe _{0.3} Co _{3.9} Ta _{0.1} O ₉	210	8. 2	2. 7
Ca _{2.7} Ni _{0.3} Co _{3.8} Ti _{0.2} O ₉	204	6. 5	3. 0
Ca _{2.7} Ni _{0.3} Co _{3.8} V _{0.2} O ₉	197	6. 9	2. 7
Ca _{2.7} Ni _{0.3} Co _{3.8} Cr _{0.2} O ₉	205	7. 0	2. 7
Ca _{2.7} Ni _{0.3} Co _{3.8} Mn _{0.2} O ₉	201	7. 2	2. 8
Ca _{2.7} Ni _{0.3} Co _{3.8} Fe _{0.2} O ₉	196	. 6.8	2. 2
Ca _{2.7} Ni _{0.3} Co _{3.8} Ni _{0.2} O ₉	202	4. 2	2. 5
Ca _{2,7} Ni _{0,3} Co _{3,8} Cu _{0,2} O ₉	203	6. 0	2. 7
Ca _{2.7} Ni _{0.3} Co _{3.9} Ag _{0.1} O ₉	208	7. 2	2. 6
Ca _{2.7} Ni _{0.3} Co _{3.9} Mo _{0.1} O ₉	198	6. 8	2. 0
Ca _{2.7} Ni _{0.3} Co _{3.9} W _{0.1} O ₉	199	5. 7	1.9
Ca _{2.7} Ni _{0.3} Co _{3.9} Nb _{0.1} O ₉	199	6. 2	2. 3
Ca _{2.7} Ni _{0.3} Co _{3.9} Ta _{0.1} O ₉	210	6. 8	2. 5
Ca _{2.7} Cu _{0.3} Co _{3.8} Ti _{0.2} O ₉	204	7. 9	2. 5
Ca _{2.7} Cu _{0.3} Co _{3.8} V _{0.2} O ₉	197	6. 9	2. 6
Ca _{2.7} Cu _{0.3} Co _{3.8} Cr _{0.2} O ₉	205	5. 9	2. 4
Ca _{2.7} Cu _{0.3} Co _{3.8} Mn _{0.2} O ₉	201	7. 8	2. 3
Ca _{2.7} Cu _{0.3} Co _{3.8} Fe _{0.2} O ₉	196	6. 3	2. 2
Ca _{2.7} Cu _{0.3} Co _{3.8} Ni _{0.2} O ₉	202	6. 5	2. 7
Ca _{2.7} Cu _{0.3} Co _{3.8} Cu _{0.2} O ₉	203	6. 4	2. 6
Ca _{2,7} Cu _{0,3} Co _{3,9} Ag _{0,1} O ₉	208	8. 2	2. 0
Ca _{2,7} Cu _{0,3} Co _{3,9} Mo _{0,1} O ₉	198	7. 5	1. 9
Ca _{2,7} Cu _{0,3} Co _{3,9} W _{0,1} O ₉	199	6. 9	2. 3
Ca _{2.7} Cu _{0.3} Co _{3.9} Nb _{0.1} O ₉	201	8. 1	2. 5
Ca _{2.7} Cu _{0.3} Co _{3.9} Ta _{0.1} O ₉	207	7. 6	2. 7
Ca _{2.7} Zn _{0.3} Co _{3.8} Ti _{0.2} O ₉	198	5. 8	1.9
Ca _{2.7} Zn _{0.3} Co _{3.8} V _{0.2} O ₉	199	7. 2	2. 3
Ca _{2.7} Zn _{0.3} Co _{3.8} Cr _{0.2} O ₉	201	8. 2	2. 5
Ca _{2.7} Zn _{0.3} Co _{3.8} Mn _{0.2} O ₉	200	7. 1	2. 7
Ca _{2.7} Zn _{0.3} Co _{3.8} Fe _{0.2} O ₉	206	6. 5	2. 5
Ca _{2.7} Zn _{0.3} Co _{3.8} Ni _{0.2} O ₉	205	6. 9	2. 6
Ca _{2.7} Zn _{0.3} Co _{3.8} Cu _{0.2} O ₉	198	7.0	2. 4
Ca _{2.7} Zn _{0.3} Co _{3.9} Ag _{0.1} O ₉	201	8. 2	2. 3

[0170] [表12]

Ca _{2.7} Zn _{0.3} Co _{3.9} Mo _{0.1} O ₉	201	7. 5	2. 2
$Ca_{2.7}Zn_{0.3}Co_{3.9}W_{0.1}O_{9}$	196	6. 9	2. 2
Ca _{2.7} Zn _{0.3} Co _{3.9} Nb _{0.1} O ₉	202	8. 1	2. 4
Ca _{2.7} Zn _{0.3} Co _{3.9} Ta _{0.1} O ₉	203	7. 6	2. 6
:			
Ca _{2.7} Pb _{0.3} Co _{3.8} Ti _{0.2} O ₉	198	5. 8	3.0
Ca _{2.7} Pb _{0.3} Co _{3.8} V _{0.2} O ₉	199	7. 2	2. 6
Ca _{2.7} Pb _{0.3} Co _{3.8} Cr _{0.2} O ₉	201	8. 2	2. 9
Ca _{2.7} Pb _{0.3} Co _{3.8} Mn _{0.2} O ₉	207	7. 1	1. 9
Ca _{2.7} Pb _{0.3} Co _{3.8} Fe _{0.2} O ₉	190	6. 5	2. 2
Ca _{2.7} Pb _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	6. 9	2. 6
Ca _{2.7} Pb _{0.3} Co _{3.8} Cu _{0.2} O ₉	199	7. 2	2. 5
Ca _{2.7} Pb _{0.3} Co _{3.9} Ag _{0.1} O ₉	201	8. 1	3.0
Ca _{2.7} Pb _{0.3} Co _{3.9} Mo _{0.1} O ₉	200	6. 9	1. 9
Ca _{2.7} Pb _{0.3} Co _{3.9} W _{0.1} O ₉	206	5. 7	2. 0
Ca _{2.7} Pb _{0.3} Co _{3.9} Nb _{0.1} O ₉	207	6. 2	2. 2
Ca _{2.7} Pb _{0.3} Co _{3.9} Ta _{0.1} O ₉	198	6. 8	2. 3
Ca _{2.7} Sr _{0.3} Co _{3.8} Ti _{0.2} O ₉	210	7. 9	3. 1
Ca _{2.7} Sr _{0.3} Co _{3.8} V _{0.2} O ₉	202	6. 9	2. 6
Ca _{2.7} Sr _{0.3} Co _{3.8} Cr _{0.2} O ₉	204	5. 9	2. 7
Ca _{2.7} Sr _{0.3} Co _{3.8} Mn _{0.2} O ₉	197	7. 8	2. 4
Ca _{2.7} Sr _{0.3} Co _{3.8} Fe _{0.2} O ₉	205	6. 3	1.9
Ca _{2.7} Sr _{0.3} Co _{3.8} Ni _{0.2} O ₉	201	6. 5	3. 0
Ca _{2.7} Sr _{0.3} Co _{3.8} Cu _{0.2} O ₉	196	6. 4	2. 1
$Ca_{2.7}Sr_{0.3}Co_{3.9}Ag_{0.1}O_{9}$	202	8. 2	2. 2
$Ca_{2.7}Sr_{0.3}Co_{3.9}Mo_{0.1}O_9$	203	7. 5	2. 6
$Ca_{2.7}Sr_{0.3}Co_{3.9}W_{0.1}O_{9}$	208	6. 9	2. 7
Ca _{2.7} Sr _{0.3} Co _{3.9} Nb _{0.1} O ₉	198	8. 1	2. 5
Ca _{2.7} Sr _{0.3} Co _{3.9} Ta _{0.1} O ₉	199	7. 6	1. 9
Ca _{2.7} Ba _{0.3} Co _{3.8} Ti _{0.2} O ₉	201	5. 9	2. 9
$Ca_{2.7}Ba_{0.3}Co_{3.8}V_{0.2}O_9$	207	5. 8	2. 4
Ca _{2.7} Ba _{0.3} Co _{3.8} Cr _{0.2} O ₉	190	7. 2	2. 6
$Ca_{2.7}Ba_{0.3}Co_{3.8}Mn_{0.2}O_9$	198	8. 2	2. 7
$Ca_{2.7}Ba_{0.3}Co_{3.8}Fe_{0.2}O_9$	199	7. 1	1. 9
$Ca_{2.7}Ba_{0.3}Co_{3.8}Ni_{0.2}O_9$	201	6. 5	3. 0
Ca _{2.7} Ba _{0.3} Co _{3.8} Cu _{0.2} O ₉	200	6. 9	2. 7

[0171] [表13]

Ca _{2.7} Ba _{0.3} Co _{3.9} Ag _{0.1} O ₉	206	7. 0	2. 7
Ca _{2.7} Ba _{0.3} Co _{3.9} Mo _{0.1} O ₉	205	7. 2	2.8
Ca _{2.7} Ba _{0.3} Co _{3.9} W _{0.1} O ₉	198	6. 8	2. 2
Ca _{2.7} Ba _{0.3} Co _{3.9} Nb _{0.1} O ₉	201	6. 4	2. 5
Ca _{2.7} Ba _{0.3} Co _{3.9} Ta _{0.1} O ₉	196	8. 2	2. 7
Ca _{2.7} A1 _{0.3} Co _{3.8} Ti _{0.2} O ₉	203	6. 9	2. 0
Ca _{2.7} Al _{0.3} Co _{3.8} V _{0.2} O ₉	205	8. 1	1.9
Ca _{2.7} A1 _{0.3} Co _{3.8} Cr _{0.2} O ₉	198	7. 6	2. 3
Ca _{2.7} A1 _{0.3} Co _{3.8} Mn _{0.2} O ₉	195	5. 9	2. 5
Ca _{2.7} A1 _{0.3} Co _{3.8} Fe _{0.2} O ₉	200	5. 8	2. 7
Ca _{2.7} A1 _{0.3} Co _{3.8} Ni _{0.2} O ₉	205	7. 2	2. 5
Ca _{2.7} A1 _{0.3} Co _{3.8} Cu _{0.2} O ₉	198	8. 2	2. 6
Ca _{2.7} Al _{0.3} Co _{3.9} Ag _{0.1} O ₉	199	7. 1	2. 5
Ca _{2.7} Al _{0.3} Co _{3.9} Mo _{0.1} O ₉	210	6. 5	2. 7
Ca _{2.7} A1 _{0.3} Co _{3.9} W _{0.1} O ₉	202	6. 9	2. 5
Ca _{2.7} Al _{0.3} Co _{3.9} Nb _{0.1} O ₉	204	7. 0	2. 6
Ca _{2.7} Al _{0.3} Co _{3.9} Ta _{0.1} O ₉	197	7. 2	2. 4
Ca _{2.7} Bi _{0.3} Co _{3.8} Ti _{0.2} O ₉	201	4. 2	2. 2
Ca _{2.7} Bi _{0.3} Co _{3.8} V _{0.2} O ₉	196	6. 0	2. 2
Ca _{2.7} Bi _{0.3} Co _{3.8} Cr _{0.2} O ₉	202	7. 2	2. 4
Ca _{2.7} Bi _{0.3} Co _{3.8} Mn _{0.2} O ₉	203	6.8	2. 6
Ca _{2.7} Bi _{0.3} Co _{3.8} Fe _{0.2} O ₉	208	5. 7	2. 5
Ca _{2.7} Bii _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	6. 2	3. 0
Ca _{2.7} Bi _{0.3} Co _{3.8} Cu _{0.2} O ₉	199	6. 8	2. 6
$Ca_{2.7}Bi_{0.3}Co_{3.9}Ag_{0.1}O_{9}$	201	8. 0	2. 9
Ca _{2.7} Bi _{0.3} Co _{3.9} Mo _{0.1} O ₉	207	7. 9	1.9
Ca _{2.7} Bi _{0.3} Co _{3.9} W _{0.1} O ₉	190	6. 9	2. 2
Ca _{2.7} Bi _{0.3} Co _{3.9} Nb _{0.1} O ₉	198	5. 9	2. 6
$Ca_{2.7}Bi_{0.3}Co_{3.9}Ta_{0.1}O_{9}$	199	7. 8	2. 5
$Ca_{2.7}Y_{0.3}Co_{3.8}Ti_{0.2}O_9$	200	6. 9	1. 9
$Ca_{2.7}Y_{0.3}Co_{3.8}V_{0.2}O_9$	206	7. 2	2. 0
$Ca_{2.7}Y_{0.3}Co_{3.8}Cr_{0.2}O_{9}$	205	8. 1	2. 2
$Ca_{2.7}Y_{0.3}Co_{3.8}Mn_{0.2}O_{9}$	198	6. 9	2. 3
$Ca_{2.7}Y_{0.3}Co_{3.8}Fe_{0.2}O_{9}$	201	5. 7	1. 9

[0172] [表14]

Ca _{2.7} Y _{0.3} Co _{3.8} Ni _{0.2} O ₉	196	6. 2	3. 1
Ca _{2.7} Y _{0.3} Co _{3.8} Cu _{0.2} O ₉	202	6. 8	2.6
Ca _{2.7} Y _{0.3} Co _{3.9} Ag _{0.1} O ₉	203	8. 0	2. 7
Ca _{2.7} Y _{0.3} Co _{3.9} Mo _{0.1} O ₉	205	7. 9	2. 4
Ca _{2.7} Y _{0.3} Co _{3.9} W _{0.1} O ₉	198	6. 9	1. 9
Ca _{2.7} Y _{0.3} Co _{3.9} Nb _{0.1} O ₉	195	5. 9	3. 0
Ca _{2.7} Y _{0.3} Co _{3.9} Ta _{0.1} O ₉	200	7. 8	2. 1
			- 7
Ca _{2.7} La _{0.3} Co _{3.8} Ti _{0.2} O ₉	198	6. 5	2. 6
Ca _{2.7} La _{0.3} Co _{3.8} V _{0.2} O ₉	199	6. 4	2. 7
Ca _{2.7} La _{0.3} Co _{3.8} Cr _{0.2} O ₉	210	8. 2	2. 5
Ca _{2.7} La _{0.3} Co _{3.8} Mn _{0.2} O ₉	202	7. 5	1. 9
Ca _{2.7} La _{0.3} Co _{3.8} Fe _{0.2} O ₉	204	6. 9	2. 6
Ca _{2.7} La _{0.3} Co _{3.8} Ni _{0.2} O ₉	197	8. 1	2. 4
Ca _{2.7} La _{0.3} Co _{3.8} Cu _{0.2} O ₉	205	7.6	2.3
Ca _{2.7} La _{0.3} Co _{3.9} Ag _{0.1} O ₉	201	5. 9	2. 2
Ca _{2.7} La _{0.3} Co _{3.9} Mo _{0.1} O ₉	196	5.8	2. 7
Ca _{2.7} La _{0.3} Co _{3.9} W _{0.1} O ₉	202	7. 2	2. 6
Ca _{2.7} La _{0.3} Co _{3.9} Nb _{0.1} O ₉	203	8. 2	2. 0
Ca _{2.7} La _{0.3} Co _{3.9} Ta _{0.1} O ₉	208	7. 1	1. 9
Ca _{2.7} Ce _{0.3} Co _{3.8} Ti _{0.2} O ₉	199	6. 9	2. 5
Ca _{2.7} Ce _{0.3} Co _{3.8} V _{0.2} O ₉	199	7. 0	2. 7
Ca _{2,7} Ce _{0,3} Co _{3,8} Cr _{0,2} O ₉	210	7. 2	2. 5
Ca _{2.7} Ce _{0.3} Co _{3.8} Mn _{0.2} O ₉	202	6. 8	1.9
Ca _{2,7} Ce _{0,3} Co _{3,8} Fe _{0,2} O ₉	204	6. 4	2.3
Ca _{2.7} Ce _{0.3} Co _{3.8} Ni _{0.2} O ₉	197	8. 2	2. 5
Ca _{2.7} Ce _{0.3} Co _{3.8} Cu _{0.2} O ₉	205	7. 5	2. 7
Ca _{2.7} Ce _{0.3} Co _{3.9} Ag _{0.1} O ₉	201	6. 9	2, 5
$Ca_{2.7}Ce_{0.3}Co_{3.9}Mo_{0.1}O_{9}$	196	8. 1	2. 6
Ca _{2.7} Ce _{0.3} Co _{3.9} W _{0.1} O ₉	202	7. 6	2. 4
Ca _{2.7} Ce _{0.3} Co _{3.9} Nb _{0.1} O ₉	203	5. 9	2.3
Ca _{2.7} Ce _{0.3} Co _{3.9} Ta _{0.1} O ₉	208	5. 8	2. 2
$Ca_{2.7}Pr_{0.3}Co_{3.8}Ti_{0.2}O_{9}$	199	8. 2	2. 4
$Ca_{2.7}Pr_{0.3}Co_{3.8}V_{0.2}O_{9}$	201	7. 1	2. 3
Ca _{2.7} Pr _{0.3} Co _{3.8} Cr _{0.2} O ₉	207	6. 5	2. 2

[0173] [表15]

Ca _{2.7} Pr _{0.3} Co _{3.8} Mn _{0.2} O ₉	190	6. 9	2. 2
Ca _{2.7} Pr _{0.3} Co _{3.8} Fe _{0.2} O ₉	198	7. 0	2. 4
Ca _{2.7} Pr _{0.3} Co _{3.8} Ni _{0.2} O ₉	199	6. 9	2. 6
Ca _{2,7} Pr _{0,3} Co _{3,8} Cu _{0,2} O ₉	201	8. 1	2. 5
Ca _{2.7} Pr _{0.3} Co _{3.9} Ag _{0.1} O ₉	207	7. 6	3. 0
Ca _{2.7} Pr _{0.3} Co _{3.9} Mo _{0.1} O ₉	190	5. 9	2. 6
Ca _{2.7} Pr _{0.3} Co _{3.9} W _{0.1} O ₉	198	5. 8	2.9
Ca _{2.7} Pr _{0.3} Co _{3.9} Nb _{0.1} O ₉	199	7. 2	1.9
Ca _{2.7} Pr _{0.3} Co _{3.9} Ta _{0.1} O ₉	201	8. 2	2. 2
Ca _{2.7} Nd _{0.3} Co _{3.8} Ti _{0.2} O ₉	206	0.5	0.5
i	206	6. 5	2. 5
Ca _{2.7} Nd _{0.3} Co _{3.8} V _{0.2} O ₉	205	6. 9	3. 0
Ca _{2.7} Nd _{0.3} Co _{3.8} Cr _{0.2} O ₉	198	7. 0	1. 9
Ca _{2.7} Nd _{0.3} Co _{3.8} Mn _{0.2} O ₉	195	7. 2	2. 0
Ca _{2.7} Nd _{0.3} Co _{3.8} Fe _{0.2} O ₉	200	6.8	2. 2
Ca _{2.7} Nd _{0.3} Co _{3.8} Ni _{0.2} O ₉	203	6. 4	2.3
Ca _{2.7} Nd _{0.3} Co _{3.8} Cu _{0.2} O ₉	201	8. 2	1.9
Ca _{2.7} Nd _{0.3} Co _{3.9} Ag _{0.1} O ₉	208	7. 5	3. 1
Ca _{2.7} Nd _{0.3} Co _{3.9} Mo _{0.1} O ₉	198	6. 9	2. 6
Ca _{2.7} Nd _{0.3} Co _{3.9} W _{0.1} O ₉	199	8. 1	2. 7
Ca _{2.7} Nd _{0.3} Co _{3.9} Nb _{0.1} O ₉	207	7. 6	2. 4
Ca _{2.7} Nd _{0.3} Co _{3.9} Ta _{0.1} O ₉	198	5. 9	1.9
Ca _{2.7} Sm _{0.3} Co _{3.8} Ti _{0.2} O ₉	200	7. 2	2. 1
Ca _{2,7} Sm _{0,3} Co _{3,8} V _{0,2} O ₉	198	8. 2	2. 2
Ca _{2.7} Sm _{0.3} Co _{3.8} Cr _{0.2} O ₉	205	7. 1	2. 6
Ca _{2.7} Sm _{0.3} Co _{3.8} Mn _{0.2} O ₉	196	6. 5	2. 7
Ca _{2.7} Sm _{0.3} Co _{3.8} Fe _{0.2} O ₉	205	6. 9	2. 5
Ca _{2.7} Sm _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	6. 8	1.9
Ca _{2.7} Sm _{0.3} Co _{3.8} Cu _{0.2} O ₉	195	7. 2	2.6
Ca _{2.7} Sm _{0.3} Co _{3.9} Ag _{0.1} O ₉	200	5. 9	2. 4
Ca _{2.7} Sm _{0.3} Co _{3.9} Mo _{0.1} O ₉	205	8. 1	2. 3
Ca _{2.7} Sm _{0.3} Co _{3.9} W _{0.1} O ₉	198	7. 2	2. 2
Ca _{2.7} Sm _{0.3} Co _{3.9} Nb _{0.1} O ₉	199	6. 4	2. 7
Ca _{2.7} Sm _{0.3} Co _{3.9} Ta _{0.1} O ₉	210	5. 9	2. 6
2.7 0.0 0.30.1-9		J. 0	
Ca _{2.7} Eu _{0.3} Co _{3.8} Ti _{0.2} O ₉	207	5. 9	1. 9

[0174] [表16]

Ca _{2.7} Eu _{0.3} Co _{3.8} V _{0.2} O ₉	198	7. 2	2. 3
Ca _{2.7} Eu _{0.3} Co _{3.8} Cr _{0.2} O ₉	196	8. 1	2. 5
Ca _{2.7} Eu _{0.3} Co _{3.8} Mn _{0.2} O ₉	200	6. 9	2. 6
Ca _{2.7} Eu _{0.3} Co _{3.8} Fe _{0.2} O ₉	198	5. 7	2. 9
Ca _{2,7} Eu _{0,3} Co _{3,8} Ni _{0,2} O ₉	205	6. 2	1.9
Ca _{2.7} Eu _{0.3} Co _{3.8} Cu _{0.2} O ₉	196	6.8	2. 2
Ca _{2.7} Eu _{0.3} Co _{3.9} Ag _{0.1} O ₉	205	8. 0	2. 6
Ca _{2.7} Eu _{0.3} Co _{3.9} Mo _{0.1} O ₉	198	7. 9	2. 5
Ca _{2.7} Eu _{0.3} Co _{3.9} W _{0.1} O ₉	198	6. 9	3. 0
Ca _{2.7} Eu _{0.3} Co _{3.9} Nb _{0.1} O ₉	195	5. 9	1. 9
Ca _{2.7} Eu _{0.3} Co _{3.9} Ta _{0.1} O ₉	200	7.8	2. 0
Ca _{2,7} Gd _{0,3} Co _{3,8} Ti _{0,2} O ₉	201	6. 5	2. 3
Ca _{2,7} Gd _{0,3} Co _{3,8} V _{0,2} O ₉	208	6. 4	1.9
Ca _{2.7} Gd _{0.3} Co _{3.8} Cr _{0.2} O ₉	198	8, 2	3. 1
Ca _{2.7} Gd _{0.3} Co _{3.8} Mn _{0.2} O ₉	199	7. 5	2. 6
Ca _{2.7} Gd _{0.3} Co _{3.8} Fe _{0.2} O ₉	207	, 6. 9	2. 7
Ca _{2,7} Gd _{0,3} Co _{3,8} Ni _{0,2} O ₉	198	8. 1	2. 4
Ca _{2.7} Gd _{0.3} Co _{3.8} Cu _{0.2} O ₉	199	7. 6	1. 9
Ca _{2.7} Gd _{0.3} Co _{3.9} Ag _{0.1} O ₉	210	5. 9	3. 0
Ca _{2.7} Gd _{0.3} Co _{3.9} Mo _{0.1} O ₉	202	5. 8	2. 1
$Ca_{2.7}Gd_{0.3}Co_{3.9}W_{0.1}O_{9}$	204	7. 2	2. 2
Ca _{2.7} Gd _{0.3} Co _{3.9} Nb _{0.1} O ₉	197	8. 2	2. 4
Ca _{2.7} Gd _{0.3} Co _{3.9} Ta _{0.1} O ₉	205	7. 1	2. 6
$Ca_{2.7}Dy_{0.3}Co_{3.8}Ti_{0.2}O_9$	196	6. 9	3. 0
$Ca_{2.7}Dy_{0.3}Co_{3.8}V_{0.2}O_9$	202	7. 0	2. 6
$Ca_{2.7}Dy_{0.3}Co_{3.8}Cr_{0.2}O_9$	203	7. 2	2. 9
$Ca_{2,7}Dy_{0,3}Co_{3,8}Mn_{0,2}O_{9}$	208	6. 8	1. 9
$Ca_{2.7}Dy_{0.3}Co_{3.8}Fe_{0.2}O_9$	198	7. 2	2. 2
$Ca_{2.7}Dy_{0.3}Co_{3.8}Ni_{0.2}O_9$	199	5. 9	2. 6
$Ca_{2.7}Dy_{0.3}Co_{3.8}Cu_{0.2}O_9$	201	6. 2	2. 5
$Ca_{2.7}Dy_{0.3}Co_{3.9}Ag_{0.1}O_{9}$	207	6. 8	3.0
$Ca_{2.7}Dy_{0.3}Co_{3.9}Mo_{0.1}O_{9}$	190	8. 0	1.9
$Ca_{2.7}Dy_{0.3}Co_{3.9}W_{0.1}O_{9}$	198	7. 9	2.0
Ca _{2.7} Dy _{0.3} Co _{3.9} Nb _{0.1} O ₉	199	6. 9	2. 2
$Ca_{2.7}Dy_{0.3}Co_{3.9}Ta_{0.1}O_{9}$	201	5. 9	2. 3

[0175] [表17]

Ca _{2.7} Ho _{0.3} Co _{3.8} Ti _{0.2} O ₉	206	7. 8	1. 9
Ca _{2.7} Ho _{0.3} Co _{3.8} V _{0.2} O ₉	205	6. 3	3. 1
Ca _{2.7} Ho _{0.3} Co _{3.8} Cr _{0.2} O ₉	198	6. 5	2. 6
Ca _{2.7} Ho _{0.3} Co _{3.8} Mn _{0.2} O ₉	201	6. 4	2. 7
Ca _{2.7} Ho _{0.3} Co _{3.8} Fe _{0.2} O ₉	196	8. 2	2. 4
Ca _{2,7} Ho _{0,3} Co _{3,8} Ni _{0,2} O ₉	202	7. 5	1. 9
Ca _{2,7} Ho _{0,3} Co _{3,8} Cu _{0,2} O ₉	203	6. 9	3. 0
Ca _{2.7} Ho _{0.3} Co _{3.9} Ag _{0.1} O ₉	208	8. 1	2. 1
Ca _{2.7} Ho _{0.3} Co _{3.9} Mo _{0.1} O ₉	198	7. 6	2. 2
Ca _{2.7} Ho _{0.3} Co _{3.9} W _{0.1} O ₉	199	5. 9	2. 6
Ca _{2.7} Ho _{0.3} Co _{3.9} Nb _{0.1} O ₉	201	5. 8	2. 7
Ca _{2.7} Ho _{0.3} Co _{3.9} Ta _{0.1} O ₉	207	7. 0	2. 5
Ca _{2.7} Er _{0.3} Co _{3.8} Ti _{0.2} O ₉	205	6. 8	2. 6
Ca _{2.7} Er _{0.3} Co _{3.8} V _{0.2} O ₉	198	6. 4	2. 4
Ca _{2.7} Er _{0.3} Co _{3.8} Cr _{0.2} O ₉	195	8. 2	2. 3
$Ca_{2.7}Er_{0.3}Co_{3.8}Mn_{0.2}O_9$	200	7. 5	2. 2
Ca _{2.7} Er _{0.3} Co _{3.8} Fe _{0.2} O ₉	205	6. 9	2. 7
Ca _{2.7} Er _{0.3} Co _{3.8} Ni _{0.2} O ₉	198	8. 1	2. 6
Ca _{2.7} Er _{0.3} Co _{3.8} Cu _{0.2} O ₉	199	7. 6	2. 0
Ca _{2.7} Er _{0.3} Co _{3.9} Ag _{0.1} O ₉	210	5. 9	1, 9
$Ca_{2.7}Er_{0.3}Co_{3.9}Mo_{0.1}O_{9}$	202	5. 8	2. 3
$Ca_{2.7}Er_{0.3}Co_{3.9}W_{0.1}O_{9}$	198	7. 2	2. 6
Ca _{2.7} Er _{0.3} Co _{3.9} Nb _{0.1} O ₉	201	8. 2	2. 9
Ca _{2.7} Er _{0.3} Co _{3.9} Ta _{0.1} O ₉	196	7. 1	1. 9
$Ca_{2.7}Yb_{0.3}Co_{3.8}Ti_{0.2}O_{9}$	203	6. 9	2. 6
Ca _{2.7} Yb _{0.3} Co _{3.8} V _{0.2} O ₉	208	7. 0	2. 5
Ca _{2.7} Yb _{0.3} Co _{3.8} Cr _{0.2} O ₉	198	7. 2	3. 0
Ca _{2.7} Yb _{0.3} Co _{3.8} Mn _{0.2} O ₉	199	6. 8	1. 9
Ca _{2.7} Yb _{0.3} Co _{3.8} Fe _{0.2} O ₉	201	4. 2	2. 0
Ca _{2.7} Yb _{0.3} Co _{3.8} Ni _{0.2} O ₉	207	6. 0	2. 6
Ca _{2.7} Yb _{0.3} Co _{3.8} Cu _{0.2} O ₉	203	7. 2	2. 7
Ca _{2,7} Yb _{0,3} Co _{3,9} Ag _{0,1} O ₉	205	6.8	2. 4
Ca _{2,7} Yb _{0,3} Co _{3,9} Mo _{0,1} O ₉	198	5. 7	1. 9
Ca _{2.7} Yb _{0.3} Co _{3.9} W _{0.1} O ₉	201	6. 2	3. 0
Ca _{2.7} Yb _{0.3} Co _{3.9} Nb _{0.1} O ₉	196	6.8	2. 1
Ca _{2.7} Yb _{0.3} Co _{3.9} Ta _{0.1} O ₉	202	8. 0	2. 2

[0176] [表18]

組成	ゼーベック係数	電気抵抗率	熱伝導度
$Bi_{i}Pb_{g}M^{1}_{h}Co_{i}M^{2}_{j}O_{k}$	μV/K (700℃)	mΩ cm (700℃)	W/mK (700℃)
Bi ₂ Sr ₂ Co ₂ O ₉	210	6. 2	1.2
$Bi_2Sr_{1.8}Na_{0.2}Co_2O_9$	205	5.9	1.0
Bi ₂ Sr _{1.8} K _{0.2} Co ₂ O ₉	195	6. 7	1.3
Bi ₂ Sr _{1.8} Li _{0.2} Co ₂ O ₉	208	8.0	1.0
Bi ₂ Sr _{1.8} Ti _{0.2} Co ₂ O ₉	220	8. 1	0.9
Bi ₂ Sr _{1.8} V _{0.2} Co ₂ O ₉	198	8. 0	1.1
Bi ₂ Sr _{1.8} Cr _{0.2} Co ₂ O ₉	201	7.8	1.0
Bi ₂ Sr _{1.8} Mn _{0.2} Co ₂ O ₉	207	7. 2	1.2
Bi ₂ Sr _{1.8} Fe _{0.2} Co ₂ O ₉	190	9.0	1.1
Bi ₂ Sr _{1.8} Ni _{0.2} Co ₂ O ₉	198	7. 8	0.9
Bi ₂ Sr _{1.8} Cu _{0.2} Co ₂ O ₉	199	7. 5	0.8
Bi ₂ Sr _{1.8} Zn _{0.2} Co ₂ O ₉	201	8.6	1.0
Bi ₂ Sr _{1.8} Pb _{0.2} Co ₂ O ₉	200	8. 2	1.3
Bi ₂ Sr _{1.8} Ca _{0.2} Co ₂ O ₉	206	7.9	1.2
Bi ₂ Sr _{1.8} Ba _{0.2} Co ₂ O ₉	205	6.9	0.7
Bi ₂ Sr _{1.8} Al _{0.2} Co ₂ O ₉	198	8. 1	1.3
Bi ₂ Sr _{1.8} Y _{0.2} Co ₂ O ₉	201	9.0	1.4
$Bi_2Sr_{1.8}La_{0.2}Co_2O_9$	196	8. 2	1.1
Bi ₂ Sr _{1.8} Ce _{0.2} Co ₂ O ₉	202	7. 9	1.0
Bi ₂ Sr _{1.8} Pr _{0.2} Co ₂ O ₉	203	8.6	1.3
Bi ₂ Sr _{1.8} Nd _{0.2} Co ₂ O ₉	205	9. 1	0.9
Bi ₂ Sr _{1.8} Sm _{0.2} Co ₂ O ₉	198	6.9	1.1
Bi ₂ Sr _{1.8} Eu _{0.2} Co ₂ O ₉	195	7.4	1.4
Bi ₂ Sr _{1.8} Gd _{0.2} Co ₂ O ₉	200	7. 8	1.2
$Bi_2Sr_{1.8}Dy_{0.2}Co_2O_9$	205	7. 7	0.9
$Bi_2Sr_{1.8}Ho_{0.2}Co_2O_9$	198	8. 0	1.1
$Bi_2Sr_{1.8}Er_{0.2}Co_2O_9$	199	8. 2	1.2
$Bi_2Sr_{1.8}Yb_{0.2}Co_2O_9$	210	7. 9	0.9
Bi ₂ Pb _{0.2} Sr ₂ Co ₂ O ₉	204	8. 4	1.2
Bi ₂ Pb _{0.2} Sr _{1.8} Na _{0.2} Co ₂ O ₉	197	8.6	1.4
$Bi_2Pb_{0.2}Sr_{1.8}K_{0.2}Co_2O_9$	190	7. 8	0.8
$Bi_2Pb_{0.2}Sr_{1.8}Li_{0.2}Co_2O_9$	198	9.0	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Ti _{0.2} Co ₂ O ₉	199	8. 2	1.2
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co ₂ O ₉	201	8. 3	1.1

[0177] [表19]

$Bi_{2}Pb_{0.2}Sr_{1.8}Cr_{0.2}Co_{2}O_{9}$	207	8. 6	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{2}O_{9}$	190	8. 7	1.3
$Bi_{2}Pb_{0.2}Sr_{1.8}Fe_{0.2}Co_{2}O_{9}$	198	8. 3	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Ni _{0.2} Co ₂ O ₉	199	9. 0	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Cu _{0.2} Co ₂ O ₉	201	7. 9	1.0
Bi ₂ Pb _{0.2} Sr _{1.8} Zn _{0.2} Co ₂ O ₉	210	8. 1	1. 3
Bi ₂ Pb _{0,2} Sr _{1,8} Pb _{0,2} Co ₂ O ₉	206	8. 0	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Ca _{0.2} Co ₂ O ₉	205	7. 8	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co ₂ O ₉	198	7. 2	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Al _{0.2} Co ₂ O ₉	195	9. 0	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Y _{0.2} Co ₂ O ₉	200	7. 8	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co ₂ O ₉	203	7. 5	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co ₂ O ₉	201	8. 6	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Pr _{0.2} Co ₂ O ₉	208	8. 2	0.9
$Bi_{2}Pb_{0.2}Sr_{1.8}Nd_{0.2}Co_{2}O_{9}$	198	7. 9	1. 1
Bi ₂ Pb _{0,2} Sr _{1,8} Sm _{0,2} Co ₂ O ₉	199	6. 9	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}Eu_{0.2}Co_{2}O_{9}$	207	,8. 1	1. 4
Bi ₂ Pb _{0,2} Sr _{1,8} Gd _{0,2} Co ₂ O ₉	198	9. 0	0.8
$Bi_2Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_2O_9$	201	8. 2	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Ho _{0.2} Co ₂ O ₉	200	7. 9	1. 2
Bi ₂ Pb _{0,2} Sr _{1,8} Er _{0,2} Co ₂ O ₉	198	8. 6	1. 1
$Bi_{2}Pb_{0,2}Sr_{1,8}Yb_{0,2}Co_{2}O_{9}$	205	9. 1	1.0
Bi ₂ Ca ₂ Co ₂ O ₉	205	7. 4	1. 1
Bi ₂ Ca _{1.8} Na _{0.2} Co ₂ O ₉	198	7. 8	0. 9
$Bi_2Ca_{1.8}K_{0.2}Co_2O_9$	195	7. 7	0.8
Bi ₂ Ca _{1.8} Li _{0.2} Co ₂ O ₉	200	8. 0	1.0
Bi ₂ Ca _{1.8} Ti _{0.2} Co ₂ O ₉	205	8. 2	1. 3
Bi ₂ Ca _{1.8} V _{0.2} Co ₂ O ₉	198	7. 9	1. 2
Bi ₂ Ca _{1.8} Cr _{0.2} Co ₂ O ₉	199	9. 1	0. 7
Bi ₂ Ca _{1.8} Mn _{0.2} Co ₂ O ₉	210	8. 4	1. 3
$Bi_2Ca_{1.8}Fe_{0.2}Co_2O_9$	200	8. 6	1. 4
Bi ₂ Ca _{1.8} Ni _{0.2} Co ₂ O ₉	207	8. 2	1. 1
Bi ₂ Ca _{1.8} Cu _{0.2} Co ₂ O ₉	198	7. 9	1. 0
Bi ₂ Ca _{1,8} Zn _{0,2} Co ₂ O ₉	196	8. 6	1. 3
Bi ₂ Ca _{1.8} Pb _{0.2} Co ₂ O ₉	200	9. 1	0. 9
Bi ₂ Ca _{1.8} Sr _{0.2} Co ₂ O ₉	198	6. 9	1. 1

[0178] [表20]

Bi ₂ Ca _{1.8} Ba _{0.2} Co ₂ O ₉	205	7. 4	1. 4
$Bi_2Ca_{1.8}Al_{0.2}Co_2O_9$	196	7.8	1. 2
Bi2Ca1.8Y0.2Co2O9	205	7. 7	0.9
Bi ₂ Ca _{1,8} La _{0,2} Co ₂ O ₉	198	8. 0	1. 1
Bi ₂ Ca _{1,8} Ce _{0,2} Co ₂ O ₉	198	8. 2	1. 2
$Bi_2Ca_{1.8}Pr_{0.2}Co_2O_9$	195	7. 9	0.9
Bi ₂ Ca _{1.8} Nd _{0.2} Co ₂ O ₉	200	9. 1	1. 1
Bi ₂ Ca _{1.8} Sm _{0.2} Co ₂ O ₉	210	8. 4	1. 2
Bi ₂ Ca _{1.8} Eu _{0.2} Co ₂ O ₉	201	8. 6	1.4
Bi ₂ Ca _{1.8} Gd _{0.2} Co ₂ O ₉	208	7.8	0.8
$Bi_2Ca_{1.8}Dy_{0.2}Co_2O_9$	198	9. 0	1.3
Bi ₂ Ca _{1.8} Ho _{0.2} Co ₂ O ₉	199	8. 2	1.2
Bi ₂ Ca _{1.8} Er _{0.2} Co ₂ O ₉	207	8. 3	1. 1
Bi ₂ Ca _{1.8} Yb _{0.2} Co ₂ O ₉	198	8. 6	0.8
Bi ₂ Pb _{0,2} Ca ₂ Co ₂ O ₉	210	8. 3	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co ₂ O ₉	202	,9. 0	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} K _{0,2} Co ₂ O ₉	204	7. 9	1. 0
Bi ₂ Pb _{0,2} Ca _{1,8} Li _{0,2} Co ₂ O ₉	197	8. 1	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Ti _{0.2} Co ₂ O ₉	205	8. 0	0. 9
Bi ₂ Pb _{0,2} Ca _{1,8} V _{0,2} Co ₂ O ₉	208	7.8	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Cr _{0,2} Co ₂ O ₉	196	7. 2	1, 4
Bi ₂ Pb _{0,2} Ca _{1,8} Mn _{0,2} Co ₂ O ₉	202	9. 0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co ₂ O ₉	203	7. 8	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Ni _{0.2} Co ₂ O ₉	208	7. 5	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co ₂ O ₉	198	8. 6	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Zn _{0,2} Co ₂ O ₉	199	8. 2	0. 9
Bi ₂ Pb _{0,2} Ca _{1,8} Pb _{0,2} Co ₂ O ₉	201	7. 9	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Sr _{0,2} Co ₂ O ₉	207	6. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co ₂ O ₉	190	8. 1	1. 0
Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co ₂ O ₉	198	9. 0	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co ₂ O ₉	199	8. 2	1. 0
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co ₂ O ₉	201	7. 9	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Ce _{0.2} Co ₂ O ₉	190	8. 6	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co ₂ O ₉	198	9. 1	1. 0
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co ₂ O ₉	199	8. 0	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Sm _{0,2} Co ₂ O ₉	201	8. 2	1. 1

[0179] [表21]

Bi ₂ Pb _{0, 2} Ca _{1, 8} Eu _{0, 2} Co ₂ O ₉	200	7. 9	0.9
Bi ₂ Pb _{0, 2} Ca _{1, 8} Gd _{0, 2} Co ₂ O ₉	206	9. 1	0.8
Bi ₂ Pb _{0,2} Ca _{1,8} Dy _{0,2} Co ₂ O ₉	205	8. 4	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co ₂ O ₉	198	8. 6	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co ₂ O ₉	201	7.8	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Yb _{0,2} Co ₂ O ₉	196	9. 0	0.7
Bi ₂ Ba ₂ Co ₂ O ₉	203	8. 3	1.4
Bi ₂ Ba _{1.8} Na _{0.2} Co ₂ O ₉	205	8. 6	1. 1
Bi ₂ Ba _{1.8} K _{0.2} Co ₂ O ₉	198	8. 7	1.0
Bi ₂ Ba _{1.8} Li _{0.2} Co ₂ O ₉	195	8. 3	1.3
$Bi_2Ba_{1.8}Ti_{0.2}Co_2O_9$	200	9. 0	0.9
Bi ₂ Ba _{1.8} V _{0.2} Co ₂ O ₉	205	7. 9	1.1
$Bi_2Ba_{1.8}Cr_{0.2}Co_2O_9$	198	8. 1	1.4
$Bi_2Ba_{1.8}Mn_{0.2}Co_2O_9$	199	8. 0	1.2
Bi ₂ Ba _{1.8} Fe _{0.2} Co ₂ O ₉	210	7.8	0.9
Bi ₂ Ba _{1.8} Ni _{0.2} Co ₂ O ₉	202	.7. 2	1. 1
Bi ₂ Ba _{1.8} Cu _{0.2} Co ₂ O ₉	204	9. 0	1. 2
Bi ₂ Ba _{1.8} Zn _{0.2} Co ₂ O ₉	197	7.8	0.9
Bi ₂ Ba _{1.8} Pb _{0.2} Co ₂ O ₉	190	7. 5	1. 1
Bi ₂ Ba _{1.8} Ca _{0.2} Co ₂ O ₉	198	8. 6	1. 2
Bi ₂ Ba _{1.8} Sr _{0.2} Co ₂ O ₉	199	8. 2	1. 4
$Bi_2Ba_{1.8}Al_{0.2}Co_2O_9$	201	7. 9	0.8
Bi ₂ Ba _{1.8} Y _{0.2} Co ₂ O ₉	207	6. 9	1. 3
Bi ₂ Ba _{1.8} La _{0.2} Co ₂ O ₉	190	8. 1	1. 2
Bi ₂ Ba _{1.8} Ce _{0.2} Co ₂ O ₉	198	9. 0	1. 1
Bi2Ba1.8Pr0.2Co2O9	199	8. 2	0.8
Bi ₂ Ba _{1.8} Nd _{0.2} Co ₂ O ₉	201	7. 9	1.3
Bi ₂ Ba _{1.8} Sm _{0.2} Co ₂ O ₉	210	8. 6	1.4
Bi ₂ Ba _{1.8} Eu _{0.2} Co ₂ O ₉	206	9. 1	1. 1
Bi ₂ Ba _{1.8} Gd _{0.2} Co ₂ O ₉	205	6. 9	1.0
Bi ₂ Ba _{1,8} Dy _{0,2} Co ₂ O ₉	198	7. 4	1.3
Bi ₂ Ba _{1.8} Ho _{0.2} Co ₂ O ₉	195	7. 8	0.9
Bi ₂ Ba _{1.8} Er _{0.2} Co ₂ O ₉	200	7. 7	1. 1
Bi ₂ Ba _{1.8} Yb _{0.2} Co ₂ O ₉	203	8. 0	1. 4
Bi ₂ Pb _{0,2} Ba ₂ Co ₂ O ₉	208	7. 9	0. 9

[0180] [表22]

	· ·		
Bi ₂ Pb _{0,2} Ba _{1,8} Na _{0,2} Co ₂ O ₉	198	8.0	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} K _{0,2} Co ₂ O ₉	199	8. 1	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co ₂ O ₉	200	8. 0	0.9
$Bi_{2}Pb_{0.2}Ba_{1.8}Ti_{0.2}Co_{2}O_{9}$	206	7. 8	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} V _{0.2} Co ₂ O ₉	205	7. 2	1. 2
$Bi_2Pb_{0.2}Ba_{1.8}Cr_{0.2}Co_2O_9$	198	9. 0	1.4
$Bi_{2}Pb_{0.2}Ba_{1.8}Mn_{0.2}Co_{2}O_{9}$	201	7.8	0.8
Bi ₂ Pb _{0, 2} Ba _{1, 8} Fe _{0, 2} Co ₂ O ₉	196	7. 5	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co ₂ O ₉	202	8. 6	1. 2
Bi ₂ Pb _{0, 2} Ba _{1, 8} Cu _{0, 2} Co ₂ O ₉	203	8. 2	1. 1
Bi ₂ Pb _{0, 2} Ba _{1, 8} Zn _{0, 2} Co ₂ O ₉	205	7. 9	0.8
Bi ₂ Pb _{0,2} Ba _{1,8} Pb _{0,2} Co ₂ O ₉	198	6. 9	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co ₂ O ₉	195	8. 1	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co ₂ O ₉	200	9. 0	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co ₂ O ₉	205	8. 2	0. 7
Bi ₂ Pb _{0,2} Ba _{1,8} Y _{0,2} Co ₂ O ₉	198	7. 9	1.3
Bi ₂ Pb _{0, 2} Ba _{1, 8} La _{0, 2} Co ₂ O ₉	199	8. 6	1.4
Bi ₂ Pb _{0,2} Ba _{1,8} Ce _{0,2} Co ₂ O ₉	210	9. 1	1.1
Bi ₂ Pb _{0,2} Ba _{1,8} Pr _{0,2} Co ₂ O ₉	202	6. 9	1.0
Bi ₂ Pb _{0, 2} Ba _{1, 8} Nd _{0, 2} Co ₂ O ₉	207	7. 4	1.3
$Bi_2Pb_{0.2}Ba_{1.8}Sm_{0.2}Co_2O_9$	198	7. 8	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co ₂ O ₉	199	7. 7	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co ₂ O ₉	210	8. 0	1.4
Bi ₂ Pb _{0,2} Ba _{1,8} Dy _{0,2} Co ₂ O ₉	202	8. 2	1.2
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co ₂ O ₉	204	7.9	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co ₂ O ₉	197	9. 1	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co ₂ O ₉	205	8. 4	1.2
$Bi_2Sr_2Co_{1.9}Ti_{0.1}O_9$	196	7. 8	1.1
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Ti _{0.1} O ₉	202	9. 0	1.2
Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Ti _{0.1} O ₉	203	8. 2	1.4
$Bi_2Sr_{1.8}Li_{0.2}Co_{1.9}Ti_{0.1}O_9$	208	8. 3	0.8
$\mathrm{Bi}_{2}\mathrm{Sr}_{1.8}\mathrm{Ti}_{0.2}\mathrm{Co}_{1.9}\mathrm{Ti}_{0.1}\mathrm{O}_{9}$	198	8. 6	1.3
$Bi_2Sr_{1.8}V_{0.2}Co_{1.9}Ti_{0.1}O_9$	199	8. 7	1.2
$\mathrm{Bi}_{2}\mathrm{Sr}_{1.8}\mathrm{Cr}_{0.2}\mathrm{Co}_{1.9}\mathrm{Ti}_{0.1}\mathrm{O}_{9}$	201	8. 3	1.1
$\mathrm{Bi}_{2}\mathrm{Sr}_{1.8}\mathrm{Mn}_{0.2}\mathrm{Co}_{1.9}\mathrm{Ti}_{0.1}\mathrm{O}_{9}$	207	9. 0	0.8
$Bi_2Sr_{1.8}Fe_{0.2}Co_{1.9}Ti_{0.1}O_9$	190	7. 9	1.3

[0181] [表23]

$Bi_2Sr_{1.8}Ni_{0.2}Co_{1.9}Ti_{0.1}O_9$	198	8. 1	1. 4
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	8. 0	1. 1
$Bi_2Sr_{1.8}Zn_{0.2}Co_{1.9}Ti_{0.1}O_9$	201	7.8	1.0
$Bi_{2}Sr_{1.8}Pb_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	190	7. 2	1.3
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	9. 0	0.9
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	7.8	1.1
$Bi_2Sr_{1.8}A1_{0.2}Co_{1.9}Ti_{0.1}O_9$	201	7. 5	1.4
$Bi_{2}Sr_{1.8}Y_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	200	8. 6	1. 2
$Bi_2Sr_{1.8}La_{0.2}Co_{1.9}Ti_{0.1}O_9$	206	8. 2	0.9
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	7. 9	1.1
$Bi_2Sr_{1.8}Pr_{0.2}Co_{1.9}Ti_{0.1}O_9$	198	6. 9	1.2
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	8. 1	0.9
$Bi_2Sr_{1.8}Sm_{0.2}Co_{1.9}Ti_{0.1}O_9$	196	9. 0	1.1
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Ti _{0.1} O ₉	202	8. 2	1. 2
$Bi_2Sr_{1.8}Gd_{0.2}Co_{1.9}Ti_{0.1}O_9$	203	7. 9	1.4
$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}Ti_{0.1}O_9$	205	8. 6	0.8
$Bi_2Sr_{1.8}Ho_{0.2}Co_{1.9}Ti_{0.1}O_9$	198	9. 1	1. 3
Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Ti _{0.1} O ₉	195	6. 9	1.2
$Bi_2Sr_{1.8}Yb_{0.2}Co_{1.9}Ti_{0.1}O_9$	200	7. 4	1. 1
Bi ₂ Pb _{0.2} Sr ₂ Co _{1.9} Ti _{0.1} O ₉	198	7. 7	1. 2
Bi ₂ Pb _{0,2} Sr _{1,8} Na _{0,2} Co _{1,9} Ti _{0,1} O ₉	199	8.0	0.9
$Bi_{2}Pb_{0.2}Sr_{1.8}K_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	210	8. 2	1.1
$Bi_{2}Pb_{0.2}Sr_{1.8}Li_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	202	7. 9	1.2
$Bi_{2}Pb_{0.2}Sr_{1.8}Ti_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	204	9. 1	0.9
$Bi_{2}Pb_{0.2}Sr_{1.8}V_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	197	8. 4	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Cr _{0.2} Co _{1.9} Ti _{0.1} O ₉	190	8. 6	1.2
$Bi_{2}Pb_{0,2}Sr_{1,8}Mn_{0,2}Co_{1,9}Ti_{0,1}O_{9}$	198	8. 2	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Fe _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	7. 9	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}Ni_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	201	8. 6	1.3
$Bi_{2}Pb_{0.2}Sr_{1.8}Cu_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	207	9. 1	1.2
$Bi_{2}Pb_{0.2}Sr_{1.8}Zn_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	190	6. 9	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Pb _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	7. 4	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}Ca_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	199	7. 8	1. 3
$Bi_{2}Pb_{0.2}Sr_{1.8}Ba_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	201	7. 7	1.4
$Bi_2Pb_{0.2}Sr_{i.8}Al_{0.2}Co_{1.9}Ti_{0.i}O_9$	210	8. 0	1. 1
$Bi_{2}Pb_{0,2}Sr_{1,8}Y_{0,2}Co_{1,9}Ti_{0,1}O_{9}$	206	8. 2	1. 0

[0182] [表24]

Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	7. 9	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	9. 1	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Pr _{0.2} Co _{1.9} Ti _{0.1} O ₉	195	8. 4	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} Ti _{0.1} O ₉	200	8. 6	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Sm _{0.2} Co _{1.9} Ti _{0.1} O ₉	203	7. 8	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	9. 0	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} Ti _{0.1} O ₉	208	8. 2	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Dy _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	8. 3	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Ho _{0.2} Co _{1.9} Ti _{0.1} O ₉	190	8. 6	0.9
$Bi_{2}Pb_{0.2}Sr_{1.8}Er_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	8. 7	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Yb _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	8. 3	1. 2
Bi ₂ Ca ₂ Co _{1.9} Ti _{0.1} O ₉	200	7. 9	1. 3
Bi ₂ Ca _{1.8} Na _{0.2} Co _{1.9} Ti _{0.1} O ₉	206	8. 1	1.0
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	8. 0	0. 9
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	7.8	1. 1
$Bi_{2}Ca_{1.8}Ti_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	201	7. 2	1.0
Bi ₂ Ca _{1.8} V _{0.2} Co _{1.9} Ti _{0.1} O ₉	196	9. 0	1. 2
$Bi_{2}Ca_{1.8}Cr_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	202	7. 8	1. 1
$Bi_{2}Ca_{1.8}Mn_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	203	7. 5	0. 9
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	8. 6	0.8
$Bi_{2}Ca_{1.8}Ni_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	8, 2	1.0
$Bi_{2}Ca_{1.8}Cu_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	195	7. 9	1. 3
$Bi_{2}Ca_{1.8}Zn_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	200	6. 9	1. 2
$Bi_{2}Ca_{1.8}Pb_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	205	8. 1	0. 7
$Bi_{2}Ca_{1.8}Sr_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	7. 5	1. 3
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	8. 6	1. 4
$Bi_2Ca_{1.8}Al_{0.2}Co_{1.9}Ti_{0.1}O_9$	210	8. 2	1. 1
$Bi_{2}Ca_{1.8}Y_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	202	7. 9	1.0
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Ti _{0.1} O ₉	204	6. 9	1. 3
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} Ti _{0.1} O ₉	197	8. 1	0.9
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} Ti _{0.1} O ₉	190	9. 0	1. 1
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	8. 2	1.4
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	7. 9	1. 2
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	8. 6	0. 9
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Ti _{0.1} O ₉	207	9. 1	1. 1
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Ti _{0.1} O ₉	190	6. 9	1. 2

[0183] [表25]

Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	7. 4	0.9
$Bi_{2}Ca_{1.8}Er_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	199	7. 8	1. 1
$Bi_{2}Ca_{1.8}Yb_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	201	7. 7	1. 2
$Bi_2Pb_{0.2}Ca_2Co_{1.9}Ti_{0.1}O_9$	206	8. 2	0.8
Bi ₂ Pb _{0,2} Ca _{1,8} Na _{0,2} Co _{1,9} Ti _{0,1} O ₉	205	7. 9	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	8. 0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Ti _{0.1} O ₉	195	8. 1	1.1
$Bi_{2}Pb_{0.2}Ca_{1.8}Ti_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	200	7. 5	. 0.8
$Bi_{2}Pb_{0.2}Ca_{1.8}V_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	203	8. 6	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	8. 2	1.4
$Bi_{2}Pb_{0.2}Ca_{1.8}Mn_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	208	7. 9	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	6. 9	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} Ni _{0,2} Co _{1,9} Ti _{0,1} O ₉	199	8. 1	1.3
$Bi_{2}Pb_{0,2}Ca_{1,8}Cu_{0,2}Co_{1,9}Ti_{0,1}O_{9}$	200	9. 0	0.9
$Bi_{2}Pb_{0,2}Ca_{1,8}Zn_{0,2}Co_{1,9}Ti_{0,1}O_{9}$	206	8. 2	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Pb _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	.7. 9	1. 4
$Bi_{2}Pb_{0.2}Ca_{1.8}Sr_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	8. 6	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	9. 1	0.9
$Bi_{2}Pb_{0.2}Ca_{1.8}Al_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	196	6. 9	1.1
$Bi_{2}Pb_{0.2}Ca_{1.8}Y_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	202	7. 4	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Ti _{0.1} O ₉	203	7. 8	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Ce _{0.2} Co _{1.9} Ti _{0.1} O ₉	202	7. 7	1.1
$Bi_{2}Pb_{0.2}Ca_{1.8}Pr_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	203	8. 0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Ti _{0.1} O ₉	208	8. 2	1.4
$Bi_{2}Pb_{0.2}Ca_{1.8}Sm_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	7. 9	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Eu _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	9. 1	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	8. 4	1.2
$Bi_{2}Pb_{0.2}Ca_{1.8}Dy_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	207	8.6	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} Ti _{0.1} O ₉	190	7.8	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	9. 0	0.7
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	8. 2	1.3
$Bi_2Ba_2Co_{1.9}Ti_{0.1}O_9$	190	8. 6	1.1
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	8. 7	1.0
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	8. 3	1.3
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	9. 0	0. 9

[0184] [表26]

Bi ₂ Ba _{1.8} Ti _{0.2} Co _{1.9} Ti _{0.1} O ₉	200	7. 9	1.1
$Bi_{2}Ba_{1.8}V_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	206	8. 1	1. 4
Bi ₂ Ba _{1.8} Cr _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	8. 0	1. 2
$Bi_{2}Ba_{1.8}Mn_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	7. 8	0. 9
Bi ₂ Ba _{1,8} Fe _{0,2} Co _{1,9} Ti _{0,1} O ₉	201	7. 2	1.1
Bi ₂ Ba _{1.8} Ni _{0.2} Co _{1.9} Ti _{0.1} O ₉	196	9. 0	1. 2
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} Ti _{0.1} O ₉	202	7. 8	0. 9
$Bi_2Ba_{1,8}Zn_{0,2}Co_{1,9}Ti_{0,1}O_9$	203	7. 5	1. 1
Bi ₂ Ba _{1.8} Pb _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	8. 6	1. 2
Bi ₂ Ba _{1.8} Ca _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	8. 2	1.4
$Bi_2Ba_{1.8}Sr_{0.2}Co_{1.9}Ti_{0.1}O_9$	195	7. 9	0.8
$Bi_2Ba_{1.8}Al_{0.2}Co_{1.9}Ti_{0.1}O_9$	200	6. 9	1.3
$Bi_2Ba_{1.8}Y_{0.2}Co_{1.9}Ti_{0.1}O_9$	205	8. 1	1. 2
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	9. 0	1.1
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	8. 2	0.8
$Bi_2Ba_{1.8}Pr_{0.2}Co_{1.9}Ti_{0.1}O_9$	210	7. 9	1. 3
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Ti _{0.1} O ₉	202	8. 6	1. 4
$Bi_2Ba_{1.8}Sm_{0.2}Co_{1.9}Ti_{0.1}O_9$	204	9. 1	1.1
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Ti _{0.1} O ₉	197	6. 9	1.0
$Bi_2Ba_{1.8}Gd_{0.2}Co_{1.9}Ti_{0.1}O_9$	190	7. 4	1.3
$Bi_2Ba_{1.8}Dy_{0.2}Co_{1.9}Ti_{0.1}O_9$. 198	7.8	0.9
$Bi_2Ba_{1.8}Ho_{0.2}Co_{1.9}Ti_{0.1}O_9$	199	7. 7	1.1
$Bi_2Ba_{1.8}Er_{0.2}Co_{1.9}Ti_{0.1}O_9$	201	8. 0	1. 4
$Bi_2Ba_{1.8}Yb_{0.2}Co_{1.9}Ti_{0.1}O_9$	207	8. 2	1. 2
			[
$Bi_2Pb_{0.2}Ba_2Co_{1.9}Ti_{0.1}O_9$	198	9. 1	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Na _{0.2} Co _{1.9} Ti _{0.1} O ₉	199	8. 4	1.2
$Bi_{2}Pb_{0.2}Ba_{1.8}K_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	201	8. 6	0.9
$Bi_{2}Pb_{0.2}Ba_{1.8}Li_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	210	8. 2	1.1
$Bi_{2}Pb_{0,2}Ba_{1,8}Ti_{0,2}Co_{1,9}Ti_{0,1}O_{9}$	206	7. 9	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} V _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	8. 6	1.4
$Bi_{2}Pb_{0.2}Ba_{1.8}Cr_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	9. 1	0.8
$Bi_{2}Pb_{0.2}Ba_{1.8}Mn_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	195	6. 9	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} Ti _{0.1} O ₉	200	7. 4	1.2
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Ti _{0.1} O ₉	203	7. 8	1.1
Bi ₂ Pb _{0,2} Ba _{1,8} Cu _{0,2} Co _{1,9} Ti _{0,1} O ₉	201	7. 7	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Zn _{0.2} Co _{1.9} Ti _{0.1} O ₉	208	8. 0	1.2

[0185] [表27]

Bi ₂ Pb _{0.2} Ba _{1.8} Pb _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	8. 2	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Ti _{0.1} O ₉	198	7. 9	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} Ti _{0.1} O ₉	201	9. 1	1.2
Bi ₂ Pb _{0,2} Ba _{1,8} Al _{0,2} Co _{1,9} Ti _{0,1} O ₉	196	8. 4	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Ti _{0.1} O ₉	202	8. 6	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} La _{0.2} Co _{1.9} Ti _{0.1} O ₉	203	7.8	1.2
Bi ₂ Pb _{0.2} Ba _{1.8} Ce _{0.2} Co _{1.9} Ti _{0.1} O ₉	205	9. 0	1.4
$Bi_{2}Pb_{0.2}Ba_{1.8}Pr_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	198	8. 2	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} Ti _{0.1} O ₉	195	8. 3	1.3
$Bi_{2}Pb_{0.2}Ba_{1.8}Sm_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	200	8. 6	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Eu _{0,2} Co _{1,9} Ti _{0,1} O ₉	205	8. 7	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} Gd _{0,2} Co _{1,9} Ti _{0,1} O ₉	198	8. 3	0.8
$Bi_{2}Pb_{0.2}Ba_{1.8}Dy_{0.2}Co_{1.9}Ti_{0.1}O_{9}$	199	9. 0	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Ti _{0.1} O ₉	210	7. 9	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Ti _{0.1} O ₉	202	8. 1	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Ti _{0.1} O ₉	204	8. 0	1.0
$Bi_2Sr_2Co_{1,9}V_{0,1}O_9$	190	7. 2	0.9
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} V _{0.1} O ₉	198	9. 0	1.1
$Bi_2Sr_{1.8}K_{0.2}Co_{1.9}V_{0.1}O_9$	199	7. 8	1.4
Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} V _{0.1} O ₉	201	7. 5	1.2
Bi ₂ Sr _{1.8} Ti _{0.2} Co _{1.9} V _{0.1} O ₉	207	8. 6	0.9
Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} V _{0.1} O ₉	190	8. 2	1.1
Bi ₂ Sr _{1.8} Cr _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 9	1.2
Bi ₂ Sr _{1.8} Mn _{0.2} Co _{1.9} V _{0.1} O ₉	199	6. 9	0.9
Bi ₂ Sr _{1.8} Fe _{0.2} Co _{1.9} V _{0.1} O ₉	201	8. 1	1.1
Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} V _{0.1} O ₉	210	6. 9	1.2
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} V _{0.1} O ₉	206	7. 4	1.0
Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} V _{0.1} O ₉	205	7. 8	1.3
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 7	1.0
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} V _{0.1} O ₉	195	8. 0	0. 9
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} V _{0.1} O ₉	200	8. 2	1. 1
Bi ₂ Sr _{1.8} Al _{0.2} Co _{1.9} V _{0.1} O ₉	203	7. 9	1.0
Bi ₂ Sr _{1.8} Y _{0.2} Co _{1.9} V _{0.1} O ₉	201	9. 1	1. 2
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} V _{0.1} O ₉	208	8. 4	1. 1
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} V _{0.1} O ₉	201	8. 6	0. 9
Bi ₂ Sr _{1.8} Pr _{0.2} Co _{1.9} V _{0.1} O ₉	190	8. 2	0.8

[0186] [表28]

Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 9	1.0
$Bi_2Sr_{1.8}Sm_{0.2}Co_{1.9}V_{0.1}O_9$	199	8.6	1. 3
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} V _{0.1} O ₉	201	9. 1	1. 2
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} V _{0.1} O ₉	200	6. 9	1.3
$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}V_{0.1}O_9$	206	7.4	0. 9
Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} V _{0.1} O ₉	205	7.8	1. 1
$Bi_2Sr_{1.8}Er_{0.2}Co_{1.9}V_{0.1}O_9$	198	7. 7	1.4
Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} V _{0.1} O ₉	201	8. 0	1. 2
$Bi_{2}Pb_{0.2}Sr_{2}Co_{1.9}V_{0.1}O_{9}$	202	7. 9	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Na _{0.2} Co _{1.9} V _{0.1} O ₉	203	9. 1	1.2
$Bi_{2}Pb_{0.2}Sr_{1.8}K_{0.2}Co_{1.9}V_{0.1}O_{9}$	205	8.4	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Li _{0.2} Co _{1.9} V _{0.1} O ₉	198	8. 6	1.1
$Bi_{2}Pb_{0.2}Sr_{1.8}Ti_{0.2}Co_{1.9}V_{0.1}O_{9}$	195	7. 8	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}V_{0.2}Co_{1.9}V_{0.1}O_{9}$	200	9. 0	1.0
Bi ₂ Pb _{0.2} Sr _{1.8} Cr _{0.2} Co _{1.9} V _{0.1} O ₉	205	8. 2	1.3
$Bi_{2}Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}V_{0.1}O_{9}$	198	8. 3	1.0
$Bi_{2}Pb_{0.2}Sr_{1.8}Fe_{0.2}Co_{1.9}V_{0.1}O_{9}$	199	8. 6	0.9
$Bi_{2}Pb_{0,2}Sr_{1,8}Ni_{0,2}Co_{1,9}V_{0,1}O_{9}$	210	8. 7	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Cu _{0.2} Co _{1.9} V _{0.1} O ₉	202	8. 3	1.0
$Bi_{2}Pb_{0,2}Sr_{1,8}Zn_{0,2}Co_{1,9}V_{0,1}O_{9}$	204	9. 0	1.2
$Bi_{2}Pb_{0.2}Sr_{1.8}Pb_{0.2}Co_{1.9}V_{0.1}O_{9}$	197	7. 9	1.1
Bi ₂ Pb _{0,2} Sr _{1,8} Ca _{0,2} Co _{1,9} V _{0,1} O ₉	190	8. 1	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co _{1.9} V _{0.1} O ₉	198	8. 0	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}Al_{0.2}Co_{1.9}V_{0.1}O_{9}$	199	7.8	1.0
Bi ₂ Pb _{0.2} Sr _{1.8} Y _{0.2} Co _{1.9} V _{0.1} O ₉	201	7. 2	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} V _{0.1} O ₉	207	9. 0	1.2
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co _{1.9} V _{0.1} O ₉	190	7. 8	0. 7
Bi ₂ Pb _{0.2} Sr _{1.8} Pr _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 5	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} V _{0.1} O ₉	199	8. 6	1.4
$Bi_{2}Pb_{0.2}Sr_{1.8}Sm_{0.2}Co_{1.9}V_{0.1}O_{9}$	201	8. 2	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} V _{0.1} O ₉	210	7. 9	1.0
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} V _{0.1} O ₉	206	6. 9	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Dy _{0.2} Co _{1.9} V _{0.1} O ₉	205	8. 1	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Ho _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 5	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} V _{0.1} O ₉	195	8, 6	1. 4
Bi ₂ Pb _{0.2} Sr _{1.8} Yb _{0.2} Co _{1.9} V _{0.1} O ₉	200	8. 2	1. 2

[0187] [表29]

Bi ₂ Ca ₂ Co _{1.9} V _{0.1} O ₉	203	7. 9	0.9
Bi ₂ Ca _{1,8} Na _{0,2} Co _{1,9} V _{0,1} O ₉	201	6. 9	1. 1
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} V _{0.1} O ₉	208	8. 1	1. 2
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} V _{0.1} O ₉	198	9. 0	0. 9
$Bi_{2}Ca_{1.8}Ti_{0.2}Co_{1.9}V_{0.1}O_{9}$	199	8. 2	1. 1
Bi ₂ Ca _{1.8} V _{0.2} Co _{1.9} V _{0.1} O ₉	200	7. 9	1. 2
Bi ₂ Ca _{1.8} Cr _{0.2} Co _{1.9} V _{0.1} O ₉	206	8. 6	1.4
$Bi_2Ca_{1.8}Mn_{0.2}Co_{1.9}V_{0.1}O_9$	205	9. 1	0.8
$Bi_{2}Ca_{1.8}Fe_{0.2}Co_{1.9}V_{0.1}O_{9}$	198	6. 9	1. 3
$Bi_{2}Ca_{1.8}Ni_{0.2}Co_{1.9}V_{0.1}O_{9}$	206	7. 4	1. 2
Bi ₂ Ca _{1.8} Cu _{0.2} Co _{1.9} V _{0.1} O ₉	205	7. 8	1.1
$Bi_{2}Ca_{1.8}Zn_{0.2}Co_{1.9}V_{0.1}O_{9}$	198	7. 7	0.8
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} V _{0.1} O ₉	195	8. 0	1. 3
Bi ₂ Ca _{1.8} Sr _{0.2} Co _{1.9} V _{0.1} O ₉	200	8. 2	1.4
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} V _{0.1} O ₉	203	8. 0	1. 1
$Bi_2Ca_{1.8}Al_{0.2}Co_{1.9}V_{0.1}O_9$	201	7. 4	1.0
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} V _{0.1} O ₉	208	7.8	1. 3
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} V _{0.1} O ₉	201	7. 7	0.9
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} V _{0.1} O ₉	190	8. 0	1.1
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} V _{0.1} O ₉	198	8. 2	1. 4
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} V _{0.1} O ₉	199	7. 9	1. 2
$Bi_2Ca_{1.8}Sm_{0.2}Co_{1.9}V_{0.1}O_9$	201	9. 1	0. 9
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} V _{0.1} O ₉	200	8. 4	1. 1
Bi ₂ Ca _{1,8} Gd _{0,2} Co _{1,9} V _{0,1} O ₉	206	8. 6	1. 2
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} V _{0.1} O ₉	205	8. 2	0. 9
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 9	1.1
Bi ₂ Ca _{1.8} Er _{0.2} Co _{1.9} V _{0.1} O ₉	201	8. 6	1. 2
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} V _{0.1} O ₉	196	9. 1	1.4
Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} V _{0.1} O ₉	203	7. 4	1. 3
Bi ₂ Pb _{0,2} Ca _{1,8} Na _{0,2} Co _{1,9} V _{0,1} O ₉	205	7.8	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 7	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} V _{0.1} O ₉	195	8. 3	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Ti _{0.2} Co _{1.9} V _{0.1} O ₉	200	8. 6	0. 7
Bi ₂ Pb _{0.2} Ca _{1.8} V _{0.2} Co _{1.9} V _{0.1} O ₉	205	8. 7	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} V _{0.1} O ₉	198	8. 3	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Mn _{0.2} Co _{1.9} V _{0.1} O ₉	199	9. 0	1. 3

[0188] [表30]

Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} V _{0.1} O ₉	210	7. 9	1. 2
$Bi_{2}Pb_{0,2}Ca_{1,8}Ni_{0,2}Co_{1,9}V_{0,1}O_{9}$	202	8. 1	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co _{1.9} V _{0.1} O ₉	204	8. 0	0.8
Bi ₂ Pb _{0,2} Ca _{1,8} Zn _{0,2} Co _{1,9} V _{0,1} O ₉	197	7.8	1. 3
Bi ₂ Pb _{0,2} Ca _{1,8} Pb _{0,2} Co _{1,9} V _{0,1} O ₉	190	7. 2	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} V _{0.1} O ₉	198	9. 0	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Ba _{0,2} Co _{1,9} V _{0,1} O ₉	199	7.8	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} Al _{0,2} Co _{1,9} V _{0,1} O ₉	201	7. 5	1. 3
Bi ₂ Pb _{0,2} Ca _{1,8} Y _{0,2} Co _{1,9} V _{0,1} O ₉	207	8. 6	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} V _{0.1} O ₉	190	8. 2	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Ce _{0,2} Co _{1,9} V _{0,1} O ₉	198	7. 9	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co _{1.9} V _{0.1} O ₉	199	6. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} V _{0.1} O ₉	201	8. 1	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Sm _{0.2} Co _{1.9} V _{0.1} O ₉	210	9. 0	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Eu _{0.2} Co _{1.9} V _{0.1} O ₉	206	8. 2	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} V _{0.1} O ₉	205	7. 9	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Dy _{0.2} Co _{1.9} V _{0.1} O ₉	198	8.6	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} V _{0.1} O ₉	195	9. 1	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} V _{0.1} O ₉	200	6. 9	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} V _{0.1} O ₉	203	7. 4	0.8
Bi ₂ Ba ₂ Co _{1,9} V _{0,1} O ₉	208	7. 7	1. 2
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} V _{0.1} O ₉	198	8. 0	1. 1
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} V _{0.1} O ₉	199	8. 2	1.4
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} V _{0.1} O ₉	200	7. 9	1. 2
Bi ₂ Ba _{1.8} Ti _{0.2} Co _{1.9} V _{0.1} O ₉	199	9. 1	0. 9
$Bi_{2}Ba_{1.8}V_{0.2}Co_{1.9}V_{0.1}O_{9}$	210	8. 4	1. 1
Bi ₂ Ba _{1.8} Cr _{0.2} Co _{1.9} V _{0.1} O ₉	202	8. 6	1. 2
Bi ₂ Ba _{1.8} Mn _{0.2} Co _{1.9} V _{0.1} O ₉	204	8. 2	0. 9
$Bi_2Ba_{1.8}Fe_{0.2}Co_{1.9}V_{0.1}O_9$	197	7. 9	1. 1
$Bi_2Ba_{1.8}Ni_{0.2}Co_{1.9}V_{0.1}O_9$	190	8. 6	1. 2
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} V _{0.1} O ₉	198	9. 1	1. 4
$Bi_{2}Ba_{1.8}Zn_{0.2}Co_{1.9}V_{0.1}O_{9}$	199	6. 9	0.8
$Bi_{2}Ba_{1.8}Pb_{0.2}Co_{1.9}V_{0.1}O_{9}$	201	7. 4	1. 3
Bi ₂ Ba _{1,8} Ca _{0,2} Co _{1,9} V _{0,1} O ₉	207	7. 8	1.2
$Bi_2Ba_{1.8}Sr_{0.2}Co_{1.9}V_{0.1}O_9$	190	7. 7	1. 1
Bi ₂ Ba _{1.8} Al _{0.2} Co _{1.9} V _{0.1} O ₉	198	8. 0	0.8

[0189] [表31]

Bi ₂ Ba _{1.8} Y _{0.2} Co _{1.9} V _{0.1} O ₉	199	8. 2	1. 3
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} V _{0.1} O ₉	201	7. 9	1. 4
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} V _{0.1} O ₉	210	9. 1	1. 1
$Bi_{2}Ba_{1.8}Pr_{0.2}Co_{1.9}V_{0.1}O_{9}$	206	8. 4	1.0
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} V _{0.1} O ₉	205	8. 6	1.3
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} V _{0.1} O ₉	198	7.8	0.9
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} V _{0.1} O ₉	195	9. 0	1. 1
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} V _{0.1} O ₉	200	8. 2	1.4
Bi ₂ Ba _{1.8} Dy _{0.2} Co _{1.9} V _{0.1} O ₉	203	8. 3	1. 2
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} V _{0.1} O ₉	201	8. 6	0. 9
Bi ₂ Ba _{1,8} Er _{0,2} Co _{1,9} V _{0,1} O ₉	208	8. 7	1. 1
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} V _{0.1} O ₉	201	8. 3	1.2
Bi ₂ Pb _{0,2} Ba ₂ Co _{1,9} V _{0,1} O ₉	198	7. 9	1. 1
Bi ₂ Pb _{0, 2} Ba _{1, 8} Na _{0, 2} Co _{1, 9} V _{0, 1} O ₉	199	8. 1	1. 2
$Bi_{2}Pb_{0.2}Ba_{1.8}K_{0.2}Co_{1.9}V_{0.1}O_{9}$	201	8. 0	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co _{1.9} V _{0.1} O ₉	200	7. 8	1.3
$Bi_{2}Pb_{0.2}Ba_{1.8}Ti_{0.2}Co_{1.9}V_{0.1}O_{9}$	206	7. 2	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} V _{0.2} Co _{1.9} V _{0.1} O ₉	205	9. 0	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} V _{0.1} O ₉	198	7. 8	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} V _{0.1} O ₉	201	7. 5	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} V _{0.1} O ₉	196	8. 6	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} V _{0.1} O ₉	202	8. 2	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Cu _{0.2} Co _{1.9} V _{0.1} O ₉	203	7. 9	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Zn _{0.2} Co _{1.9} V _{0.1} O ₉	205	6. 9	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Pb _{0.2} Co _{1.9} V _{0.1} O ₉	198	8. 1	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} V _{0.1} O ₉	195	6. 9	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} V _{0.1} O ₉	200	7.4	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Al _{0,2} Co _{1,9} V _{0,1} O ₉	205	7.8	1. 3
Bi ₂ Pb _{0,2} Ba _{1,8} Y _{0,2} Co _{1,9} V _{0,1} O ₉	198	7. 7	1.0
Bi ₂ Pb _{0,2} Ba _{1,8} La _{0,2} Co _{1,9} V _{0,1} O ₉	199	8. 0	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Ce _{0.2} Co _{1.9} V _{0.1} O ₉	210	8. 2	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Pr _{0.2} Co _{1.9} V _{0.1} O ₉	202	7. 9	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} V _{0.1} O ₉	204	9. 1	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Sm _{0.2} Co _{1.9} V _{0.1} O ₉	197	8. 4	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} V _{0.1} O ₉	190	8. 6	0.9
Bi ₂ Pb _{0,2} Ba _{1,8} Gd _{0,2} Co _{1,9} V _{0,1} O ₉	198	8. 2	1. 1

[0190] [表32]

Bi ₂ Pb _{0, 2} Ba _{1, 8} Dy _{0, 2} Co _{1, 9} V _{0, 1} O ₉	199	7.9	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} V _{0.1} O ₉	201	8.6	0.9
Bi ₂ Pb _{0,2} Ba _{1,8} Er _{0,2} Co _{1,9} V _{0,1} O ₉	207	9. 1	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} V _{0.1} O ₉	190	6.9	1.2
$Bi_2Sr_2Co_{1.9}Mn_{0.1}O_9$	199	7. 8	0.8
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	7. 7	1.3
$Bi_{2}Sr_{1.8}K_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	210	8.0	1. 2
$Bi_2Sr_{1.8}Li_{0.2}Co_{1.9}Mn_{0.1}O_9$	206	8. 2	1.1
$Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}Mn_{0.1}O_9$	205	7. 9	0.8
$Bi_2Sr_{1.8}V_{0.2}Co_{1.9}Mn_{0.1}O_9$	198	9. 1	0.7
$Bi_2Sr_{1.8}Cr_{0.2}Co_{1.9}Mn_{0.1}O_9$	195	8. 4	1.3
$Bi_2Sr_{1.8}Mn_{0.2}Co_{1.9}Mn_{0.1}O_9$	200	8. 6	0.8
$Bi_2Sr_{1.8}Fe_{0.2}Co_{1.9}Mn_{0.1}O_9$	203	7.8	1.1
$Bi_2Sr_{1.8}Ni_{0.2}Co_{1.9}Mn_{0.1}O_9$	201	9.0	1.4
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Mn _{0,1} O ₉	208	8. 2	1.2
Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	.8, 3	0.9
$Bi_2Sr_{1.8}Pb_{0.2}Co_{1.9}Mn_{0.1}O_9$	199	8.6	1.1
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	8. 7	1. 2
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	8. 3	0.9
$Bi_2Sr_{1.8}Al_{0.2}Co_{1.9}Mn_{0.1}O_9$	205	9. 0	1. 1
$Bi_2Sr_{1,8}Y_{0,2}Co_{1,9}Mn_{0,1}O_9$	198	7. 9	1. 2
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	8. 1	1.4
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	8. 0	0.8
$Bi_2Sr_{1.8}Pr_{0.2}Co_{1.9}MN_{0.1}O_9$	195	7.8	1.3
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	7. 2	1.2
$Bi_2Sr_{1.8}Sm_{0.2}Co_{1.9}Mn_{0.1}O_9$	203	9. 0	1. 1
$Bi_2Sr_{1.8}Eu_{0.2}Co_{1.9}Mn_{0.1}O_9$	201	7. 8	0.8
$Bi_2Sr_{1.8}Gd_{0.2}Co_{1.9}Mn_{0.1}O_9$	208	7. 5	1.3
$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}Mn_{0.1}O_9$	198	8. 6	1.4
$Bi_2Sr_{1,8}Ho_{0,2}Co_{1,9}Mn_{0,1}O_9$	199	8. 2	1. 1
$Bi_2Sr_{1.8}Er_{0.2}Co_{1.9}Mn_{0.1}O_9$	200	7. 9	1.0
Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	6. 9	1.3
Bi ₂ Pb _{0.2} Sr ₂ Co _{1.9} Mn _{0.1} O ₉	202	7. 5	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Na _{0.2} Co _{1.9} Mn _{0.1} O ₉	204	8. 6	1. 4
$Bi_{2}Pb_{0.2}Sr_{1.8}K_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	197	8. 2	1. 2

[0191] [表33]

$Bi_{2}Pb_{0.2}Sr_{1.8}Li_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	190	7. 9	0. 9
$Bi_{2}Pb_{0.2}Sr_{1.8}Ti_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	198	6. 9	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	8. 1	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}Cr_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	201	9. 0	0.9
$Bi_{2}Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	207	8. 2	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Fe _{0.2} Co _{1.9} Mn _{0.1} O ₉	190	7. 9	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}Ni_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	198	8. 6	1.4
$Bi_{2}Pb_{0.2}Sr_{1.8}Cu_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	200	9. 1	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}Zn_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	203	6. 9	1. 3
$Bi_{2}Pb_{0,2}Sr_{1,8}Pb_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	201	7. 4	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}Ca_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	208	7. 8	1. 1
$Bi_{2}Pb_{0.2}Sr_{1.8}Ba_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	198	7. 7	1.4
$Bi_{2}Pb_{0,2}Sr_{1,8}A1_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	199	8. 0	1. 2
$Bi_{2}Pb_{0,2}Sr_{1,8}Y_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	200	8. 2	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	8. 0	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co _{1.9} Mn _{0.1} O ₉	210	7. 7	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}Pr_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	202	.8. 3	0. 9
$Bi_2Pb_{0.2}Sr_{1.8}Nd_{0.2}Co_{1.9}Mn_{0.1}O_9$	204	8. 6	1. 1
$Bi_2Pb_{0.2}Sr_{1.8}Sm_{0.2}Co_{1.9}Mn_{0.1}O_9$	197	8. 7	1. 2
$Bi_{2}Pb_{0,2}Sr_{1,8}Eu_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	190	8. 3	1. 4
$Bi_{2}Pb_{0.2}Sr_{1.8}Gd_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	198	9. 0	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	199	7. 9	1. 3
$Bi_2Pb_{0.2}Sr_{1.8}Ho_{0.2}Co_{1.9}Mn_{0.1}O_9$	201	8. 1	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉	207	8. 0	1. 1
$Bi_{2}Pb_{0.2}Sr_{1.8}Yb_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	190	7. 8	. 0.8
$Bi_2Ca_2Co_{1.9}Mn_{0.1}O_9$	199	9. 0	1. 4
Bi ₂ Ca _{1.8} Na _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	7. 8	1. 1
$Bi_{2}Ca_{1.8}K_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	210	7. 5	1. 0
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	8. 6	1. 3
$Bi_{2}Ca_{1.8}Ti_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	205	8. 2	0. 9
Bi ₂ Ca _{1,8} V _{0,2} Co _{1,9} Mn _{0,1} O ₉	198	7. 9	1. 1
Bi ₂ Ca _{1,8} Cr _{0,2} Co _{1,9} Mn _{0,1} O ₉	195	6. 9	1. 4
Bi ₂ Ca _{1.8} Mn _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	8. 1	1. 2
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Mn _{0.1} O ₉	203	9. 0	0.9
$Bi_{2}Ca_{1.8}Ni_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	201	8. 2	1. 1
Bi ₂ Ca _{1.8} Cu _{0.2} Co _{1.9} Mn _{0.1} O ₉	208	7. 9	1. 2

[0192] [表34]

Bi ₂ Ca _{1.8} Zn _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	8.6	0.9
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} Mn _{0.1} O ₉	190	9. 1	1. 1
Bi ₂ Ca _{1.8} Sr _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	6. 9	1. 2
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	7. 4	1. 0
Bi ₂ Ca _{1.8} Al _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	7.8	1. 3
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	7. 7	1.0
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	8.0	0. 9
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} Mn _{0.1} O ₉	205	8. 2	1. 1
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	7. 9	1.0
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	9. 1	1. 2
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Mn _{0.1} O ₉	196	8, 4	1. 1
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Mn _{0.1} O ₉	202	8. 6	0. 9
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Mn _{0.1} O ₉	203	8. 2	0.8
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Mn _{0.1} O ₉	205	7. 9	1.0
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	8. 6	1. 3
$Bi_{2}Ca_{1.8}Er_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	195	9. 1	1. 2
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	6. 9	1. 3
		·	
Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} Mn _{0.1} O ₉	198	7. 8	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	7. 7	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Mn _{0.1} O ₉	210	8. 0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Mn _{0.1} O ₉	202	8. 2	0.9
$Bi_{2}Pb_{0.2}Ca_{1.8}Ti_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	204	7. 9	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} V _{0,2} Co _{1,9} Mn _{0,1} O ₉	197	9. 1	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} Mn _{0.1} O ₉	190	6. 9	0. 9
$Bi_{2}Pb_{0.2}Ca_{1.8}Mn_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	198	9. 1	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	8. 4	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ni _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	8. 6	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co _{1.9} Mn _{0.1} O ₉	207	8. 2	1.3
$Bi_{2}Pb_{0.2}Ca_{1.8}Zn_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	190	7. 9	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} Pb _{0,2} Co _{1,9} Mn _{0,1} O ₉	198	8. 6	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	9. 1	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	6. 9	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co _{1.9} Mn _{0.1} O ₉	210	7.4	1.2
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	7.8	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Mn _{0.1} O ₉	205	7. 7	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Ce _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	8. 0	0.8

[0193] [表35]

Bi ₂ Pb _{0,2} Ca _{1,8} Pr _{0,2} Co _{1,9} Mn _{0,1} O ₉	195	8. 2	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} Nd _{0,2} Co _{1,9} Mn _{0,1} O ₉	200	7. 9	1. 3
$Bi_{2}Pb_{0,2}Ca_{1,8}Sm_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	203	7. 9	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Eu _{0,2} Co _{1,9} Mn _{0,1} O ₉	201	8. 1	0. 7
Bi ₂ Pb _{0,2} Ca _{1,8} Gd _{0,2} Co _{1,9} Mn _{0,1} O ₉	208	8. 0	1. 3
Bi ₂ Pb _{0,2} Ca _{1,8} Dy _{0,2} Co _{1,9} Mn _{0,1} O ₉	198	7. 8	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	7. 2	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	9. 0	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	7. 8	1. 3
	*		·
Bi ₂ Ba ₂ Co _{1.9} Mn _{0.1} O ₉	198	8. 6	1. 1
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	8. 2	1. 4
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	7. 9	1. 2
$Bi_2Ba_{1.8}Li_{0.2}Co_{1.9}Mn_{0.1}O_9$	207	6. 9	0. 9
Bi ₂ Ba _{1.8} Ti _{0.2} Co _{1.9} Mn _{0.1} O ₉	190	8. 1	1. 1
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	6. 9	1. 2
Bi ₂ Ba _{1,8} Cr _{0,2} Co _{1,9} Mn _{0,1} O ₉	199	. 7. 4	0. 9
$Bi_2Ba_{1.8}Mn_{0.2}Co_{1.9}Mn_{0.1}O_9$	201	7. 8	1.1
Bi ₂ Ba _{1.8} Fe _{0.2} Co _{1.9} Mn _{0.1} O ₉	210	7. 7	1. 2
Bi ₂ Ba _{1.8} Ni _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	8. 0	1.4
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} Mn _{0.1} O ₉	205	8. 2	0.8
Bi ₂ Ba _{1.8} Zn _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	7. 9	1. 3
$Bi_2Ba_{1.8}Pb_{0.2}Co_{1.9}Mn_{0.1}O_9$	195	9. 1	1. 2
Bi ₂ Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	8. 4	1. 1
$Bi_2Ba_{1.8}Sr_{0.2}Co_{1.9}Mn_{0.1}O_9$	203	8. 6	0.8
Bi ₂ Ba _{1.8} Al _{0.2} Co _{1.9} Mn _{0.1} O ₉	201	8. 2	1.3
Bi ₂ Ba _{1.8} Y _{0.2} Co _{1.9} Mn _{0.1} O ₉	208	7. 9	1. 4
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	8. 6	1. 1
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} Mn _{0.1} O ₉	199	9. 1	1.0
Bi ₂ Ba _{1.8} Pr _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	6. 9	1.3
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	7. 4	0.9
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Mn _{0.1} O ₉	205	7. 8	1. 1
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	7. 7	1. 4
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} Mn _{0.1} O ₉	206	8. 0	1. 2
Bi ₂ Ba _{1.8} Dy _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	8. 2	0. 9
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Mn _{0.1} O ₉	195	7. 9	1. 1
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	9. 1	1. 2

[0194] [表36]

Bi ₂ Ba _{1,8} Yb _{0,2} Co _{1,9} Mn _{0,1} O ₉				
BispBoson	Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉	203	8. 4	0. 9
BispBoson	Ri Ph. Ra Co. Mr. O	200	7.0	
Bi ₂ Pb _{0.2} Ba _{1.8} K _{0.2} Co _{1.8} Mn _{0.1} O ₉ 199 8. 2 0. 8 Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co _{1.8} Mn _{0.1} O ₉ 199 8. 6 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.8} Co _{1.8} Mn _{0.1} O ₉ 210 8. 7 1. 1 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.8} Mn _{0.1} O ₉ 220 8. 3 0. 8 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.8} Mn _{0.1} O ₉ 204 9. 0 0. 7 Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} Mn _{0.1} O ₉ 197 7. 9 1. 3 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 190 8. 1 0. 8 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 8. 0 1. 3 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 199 7. 8 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 201 7. 2 1. 1 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 207 9. 0 0. 8 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 7. 8 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 207 9. 0 0. 8 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 190 7. 8 1. 3 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 7. 5 1. 4 Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 8. 6 1. 1 Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 8. 6 1. 1 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 8. 6 1. 1 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 200 8. 2 1. 0 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 200 8. 2 1. 1 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 7. 5 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 7. 5 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 7. 5 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 7. 5 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 7. 5 1. 2 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 6. 9 0. 9 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 6. 9 0. 9 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 6. 9 0. 9 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉ 198 6. 9 0. 9 Bi ₂ Sp _{0.2} Ba _{1.8} Co _{2.2} Co _{1.9} Mn _{0.1} O ₉				
Bi2Pb0.2Ba1.8Li0.2Co1.9Mn0.109 199 8.6 1.2 Bi2Pb0.2Ba1.8Co1.9Mn0.109 200 8.7 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 200 8.7 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 200 8.7 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 200 8.7 1.3 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 190 8.1 0.8 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 8.0 1.3 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 199 7.8 1.2 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 200 7.2 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 199 7.8 1.2 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 200 7.2 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 190 7.8 1.3 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 200 7.8 1.3 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 190 7.8 1.3 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 7.5 1.4 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 7.5 1.4 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 8.6 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 8.6 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 8.6 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 8.6 1.1 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 7.9 1.3 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 196 7.9 1.3 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 7.5 1.2 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 7.5 1.2 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 7.5 1.2 Bi2Pb0.2Ba1.8Co2.9Co1.9Mn0.109 198 7.5 1.2 Bi2Pb0.2Ba1.8Co2.0.9Mn0.109 198 7.5 1.2 Bi2Pb0.2Ba1.8Co2.0.9Mn0.109 198 7.5 1.2 Bi2Pb0.2Ba1.8Co2.0.9Mn0.109 198 7.5 1.2 Bi2Pb0.2Ba1.8Co2.0.9Mn0.109 198 6.9 0.9 Bi2Pb0.2Ba1.8Co2.0.9M				
Bi ₂ Pb _{0,2} Ba _{1,8} Ti _{0,2} Co _{1,9} Mn _{0,1} O ₉ 199 8.6 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} V _{0,2} Co _{1,9} Mn _{0,1} O ₉ 210 8.7 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Cr _{0,2} Co _{1,9} Mn _{0,1} O ₉ 202 8.3 0.8 Bi ₂ Pb _{0,2} Ba _{1,8} Mn _{0,2} Co _{1,9} Mn _{0,1} O ₉ 204 9.0 0.7 Bi ₂ Pb _{0,2} Ba _{1,8} Mn _{0,2} Co _{1,9} Mn _{0,1} O ₉ 197 7.9 1.3 Bi ₂ Pb _{0,2} Ba _{1,8} Ni _{0,2} Co _{1,9} Mn _{0,1} O ₉ 190 8.1 0.8 Bi ₂ Pb _{0,2} Ba _{1,8} Cu _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 8.0 1.3 Bi ₂ Pb _{0,2} Ba _{1,8} Cu _{0,2} Co _{1,9} Mn _{0,1} O ₉ 199 7.8 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 201 7.2 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 190 7.8 1.3 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 207 9.0 0.8 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 190 7.8 1.3 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.4 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 8.6 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 8.6 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 196 7.9 1.3 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 202 6.9 0.9 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 203 9.0 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0,2} Ba _{1,8} Co _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0,2} Ba _{1,8} Co _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0,2} Ba _{1,8} Co _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0,2} Ba _{1,8} Co _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6.9 0.9 Bi ₂ Co _{1,9} Fe _{0,1} O ₉ 202 7.4 1.4 Bi ₂ Co _{1,9} Fe _{0,1} O ₉ 202 7.8 7.8 Bi ₂ Co _{1,}			1	
Bi ₂ Pb _{0.2} Ba _{1.8} V _{0.2} Co _{1.9} Mn _{0.1} O ₉ 210 8.7 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Mn _{0.1} O ₉ 202 8.3 3 0.8 Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} Mn _{0.1} O ₉ 204 9.0 0.7 Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} Mn _{0.1} O ₉ 197 7.9 1.3 Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Mn _{0.1} O ₉ 190 8.1 0.8 Bi ₂ Pb _{0.2} Ba _{1.8} Cu _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 8.0 1.3 Bi ₂ Pb _{0.2} Ba _{1.8} Cu _{0.2} Co _{1.9} Mn _{0.1} O ₉ 199 7.8 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 201 7.2 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 207 9.0 0.8 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 190 7.8 1.3 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 190 7.8 1.3 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.4 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 8.6 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 8.6 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 196 7.9 1.3 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 202 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 203 9.0 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 203 9.0 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Sp _{0.2} Ca _{1.9} Fe _{0.1} O ₉ 202 7.4 1.4 Bi ₂ Sp _{1.8} Ca _{0.2} Ca _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8				
Bi ₂ Pb ₀ , 2Ba ₁ , 8Cr ₀ , 2Co ₁ , 8Mn ₀ , 10 ₉ 202 8. 3 0. 8 Bi ₂ Pb ₀ , 2Ba ₁ , 8Mn ₀ , 2Co ₁ , 8Mn ₀ , 10 ₉ 197 7. 9 1. 3 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ni ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 190 8. 1 0. 8 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ni ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 8. 0 1. 3 Bi ₂ Pb ₀ , 2Ba ₁ , 8Cu ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 7. 8 1. 2 Bi ₂ Pb ₀ , 2Ba ₁ , 8D ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 7. 8 1. 2 Bi ₂ Pb ₀ , 2Ba ₁ , 8D ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 201 7. 2 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8D ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 207 9. 0 0. 8 Bi ₂ Pb ₀ , 2Ba ₁ , 8Cu ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 190 7. 8 1. 3 Bi ₂ Pb ₀ , 2Ba ₁ , 8Cu ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 7. 5 1. 4 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 7. 5 1. 4 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 8. 6 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 8. 6 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 196 7. 9 1. 3 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 202 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 203 9. 0 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 205 7. 8 1. 4 Bi ₂ Pb ₀ , 2Ba ₁ , 8D ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 195 8. 6 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 195 8. 6 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Q ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 195 8. 6 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8D ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8D ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Co ₁ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Co ₁ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8D ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 8. 1 1. 1 Bi ₂ Sr ₁ , 8Na ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 8. 1 1. 1				1. 2
Bi ₂ Pb ₀ , 2Ba ₁ , 8Mn ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 197 7. 9 1. 3 Bi ₂ Pb ₀ , 2Ba ₁ , 8Fe ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 190 8. 1 0. 8 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ni ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 8. 0 1. 3 Bi ₂ Pb ₀ , 2Ba ₁ , 8Cu ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 7. 8 1. 2 Bi ₂ Pb ₀ , 2Ba ₁ , 8Po ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 7. 8 1. 2 Bi ₂ Pb ₀ , 2Ba ₁ , 8Po ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 201 7. 2 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ca ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 207 9. 0 0. 8 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ca ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 190 7. 8 1. 3 Bi ₂ Pb ₀ , 2Ba ₁ , 8Al ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 7. 5 1. 4 Bi ₂ Pb ₀ , 2Ba ₁ , 8Al ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 8. 6 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ca ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 8. 6 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ca ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 201 8. 2 1. 0 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ca ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 201 8. 2 1. 0 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ca ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 202 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Nd ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 203 9. 0 1. 1 Bi ₂ Pb ₀ , 2Ba ₁ , 8Nd ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 205 7. 8 1. 4 Bi ₂ Pb ₀ , 2Ba ₁ , 8Ca ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 7. 5 1. 2 Bi ₂ Pb ₀ , 2Ba ₁ , 8Da ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 205 7. 9 1. 2 Bi ₂ Pb ₀ , 2Ba ₁ , 8Da ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 205 7. 9 1. 2 Bi ₂ Pb ₀ , 2Ba ₁ , 8Da ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Po ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Po ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Po ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Po ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , 2Ba ₁ , 8Po ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 8. 1 1. 1 Bi ₂ Sr ₁ , 8Na ₀ , 2Co ₁ , 9Mn ₀ , 10 ₉ 199 8. 1 1. 1		1		1. 1
Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Fe ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₈ 197 7. 9 1. 3 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ni ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 190 8. 1 0. 8 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Cu ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 8. 0 1. 3 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Da ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 199 7. 8 1. 2 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Pb ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 201 7. 2 1. 1 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 207 9. 0 0. 8 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 190 7. 8 1. 3 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Na ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 7. 5 1. 4 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Na ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 8. 6 1. 1 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 196 7. 9 1. 3 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Pr ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 202 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Nd ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 203 9. 0 1. 1 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Sm ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 8 1. 4 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 8 1. 4 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ga ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 195 8. 6 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ga ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 9 1. 2 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ga ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 9 1. 2 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ho ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Fr ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Fr ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Fr ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Fr ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Fr ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 202 7. 4 1. 4 Bi ₂ Sr ₁ , ₈ Na ₀ , ₂ Co ₁ , ₉ Fe ₀ , ₁ O ₉ 204 7. 8 0. 8 Bi ₂ Fr ₀ , ₂ Fe ₀ , ₁ O ₉ 204			8. 3	0.8
Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ni ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 190 8. 1 0. 8 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Cu ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 8. 0 1. 3 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Pa ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 199 7. 8 1. 2 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Pa ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 201 7. 2 1. 1 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 207 9. 0 0. 8 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Sr ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 190 7. 8 1. 3 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Al ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 7. 5 1. 4 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Va ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 8. 6 1. 1 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 196 7. 9 1. 3 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 202 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Nd ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 203 9. 0 1. 1 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Sm ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 8 1. 4 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 8 1. 4 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Gd ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 195 8. 6 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Gd ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 200 8. 2 1. 1 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 9 1. 2 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 205 7. 9 1. 2 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 198 6. 9 0. 9 Bi ₂ Pb ₀ , ₂ Ba ₁ , ₈ Ca ₀ , ₂ Co ₁ , ₉ Mn ₀ , ₁ O ₉ 202 7. 4 1. 4 Bi ₂ Sr ₁ , ₈ Na ₀ , ₂ Co ₁ , ₉ Ca ₀ , ₁ O ₉ 204 7. 8 0. 8 Bi ₂ Ca ₁ , ₈ Ca ₀ , ₈ Ca ₀ , ₈ Ca		204	9. 0	0. 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		197	7. 9	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Zn _{0.2} Co _{1.9} Mn _{0.1} O ₉ 199 7.8 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Pb _{0.2} Co _{1.9} Mn _{0.1} O ₉ 201 7.2 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 207 9.0 0.8 Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} Mn _{0.1} O ₉ 190 7.8 1.3 Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.4 Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 8.6 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 196 7.9 1.3 Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mn _{0.1} O ₉ 201 8.2 1.0 Bi ₂ Pb _{0.2} Ba _{1.8} Pr _{0.2} Co _{1.9} Mn _{0.1} O ₉ 202 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Pr _{0.2} Co _{1.9} Mn _{0.1} O ₉ 202 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Sm _{0.2} Co _{1.9} Mn _{0.1} O ₉ 203 9.0 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Sm _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Mn _{0.1} O ₉ 195 8.6 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Mn _{0.1} O ₉ 195 8.6 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{0.2} Co _{1.9} Mn _{0.1} O ₉ 200 8.2 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Co _{0.2} Co _{1.9} Mn _{0.1} O ₉ 205 7.9 1.2 Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Fr _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Fr _{0.2} Co _{1.9} Mn _{0.1} O ₉ 199 8.1 1.1 Bi ₂ Sr ₂ Co _{1.9} Fe _{0.1} O ₉ 202 7.4 1.4 Bi ₂ Sr _{1.8} No _{0.2} Co _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8	$Bi_{2}Pb_{0,2}Ba_{1,8}Ni_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	190	8. 1	0.8
Bi ₂ Pb _{0,2} Ba _{1,8} Pb _{0,2} Co _{1,9} Mn _{0,1} O ₉ 201 7. 2 1. 1 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 207 9. 0 0. 8 Bi ₂ Pb _{0,2} Ba _{1,8} Sr _{0,2} Co _{1,9} Mn _{0,1} O ₉ 190 7. 8 1. 3 Bi ₂ Pb _{0,2} Ba _{1,8} Al _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7. 5 1. 4 Bi ₂ Pb _{0,2} Ba _{1,8} Y _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 8. 6 1. 1 Bi ₂ Pb _{0,2} Ba _{1,8} V _{0,2} Co _{1,9} Mn _{0,1} O ₉ 201 8. 2 1. 0 Bi ₂ Pb _{0,2} Ba _{1,8} Ce _{0,2} Co _{1,9} Mn _{0,1} O ₉ 196 7. 9 1. 3 Bi ₂ Pb _{0,2} Ba _{1,8} Ce _{0,2} Co _{1,9} Mn _{0,1} O ₉ 202 6. 9 0. 9 Bi ₂ Pb _{0,2} Ba _{1,8} Pr _{0,2} Co _{1,9} Mn _{0,1} O ₉ 203 9. 0 1. 1 Bi ₂ Pb _{0,2} Ba _{1,8} Nd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 205 7. 8 1. 4 Bi ₂ Pb _{0,2} Ba _{1,8} Cd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7. 5 1. 2 Bi ₂ Pb _{0,2} Ba _{1,8} Gd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7. 5 1. 2 Bi ₂ Pb _{0,2} Ba _{1,8} Gd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 195 8. 6 0. 9 Bi ₂ Pb _{0,2} Ba _{1,8} Ho _{0,2} Co _{1,9} Mn _{0,1} O ₉ 205 7. 9 1. 2 Bi ₂ Pb _{0,2} Ba _{1,8} Fy _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6. 9 </td <td>Bi₂Pb_{0, 2}Ba_{1, 8}Cu_{0, 2}Co_{1, 9}Mn_{0, 1}O₉</td> <td>198</td> <td>8. 0</td> <td>1.3</td>	Bi ₂ Pb _{0, 2} Ba _{1, 8} Cu _{0, 2} Co _{1, 9} Mn _{0, 1} O ₉	198	8. 0	1.3
Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 207 9.0 0.8 Bi ₂ Pb _{0,2} Ba _{1,8} Sr _{0,2} Co _{1,9} Mn _{0,1} O ₉ 190 7.8 1.3 Bi ₂ Pb _{0,2} Ba _{1,8} Al _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.4 Bi ₂ Pb _{0,2} Ba _{1,8} Y _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 8.6 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉ 201 8.2 1.0 Bi ₂ Pb _{0,2} Ba _{1,8} Ce _{0,2} Co _{1,9} Mn _{0,1} O ₉ 196 7.9 1.3 Bi ₂ Pb _{0,2} Ba _{1,8} Pr _{0,2} Co _{1,9} Mn _{0,1} O ₉ 202 6.9 0.9 Bi ₂ Pb _{0,2} Ba _{1,8} Nd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 203 9.0 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Nd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 205 7.8 1.4 Bi ₂ Pb _{0,2} Ba _{1,8} Cd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Gd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 7.5 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Gd _{0,2} Co _{1,9} Mn _{0,1} O ₉ 200 8.2 1.1 Bi ₂ Pb _{0,2} Ba _{1,8} Ho _{0,2} Co _{1,9} Mn _{0,1} O ₉ 205 7.9 1.2 Bi ₂ Pb _{0,2} Ba _{1,8} Ho _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0,2} Ba _{1,8} Yb _{0,2} Co _{1,9} Mn _{0,1} O ₉ 198 6.9 0.9 <	$Bi_{2}Pb_{0,2}Ba_{1,8}Zn_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	199	7. 8	1. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Bi_{2}Pb_{0.2}Ba_{1.8}Pb_{0.2}Co_{1.9}Mn_{0.1}O_{9}$	201	7. 2	1. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Mn _{0,1} O ₉	207	9. 0	0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Bi_{2}Pb_{0,2}Ba_{1,8}Sr_{0,2}Co_{1,9}Mn_{0,1}O_{9}$	190	7.8	1.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0, 2} Ba _{1, 8} Al _{0, 2} Co _{1, 9} Mn _{0, 1} O ₉	198	7. 5	1.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	8.6	1. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0,2} Ba _{1,8} La _{0,2} Co _{1,9} Mn _{0,1} O ₉	201	8. 2	1. 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0.2} Ba _{1.8} Ce _{0.2} Co _{1.9} Mn _{0.1} O ₉	196	7. 9	1. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0.2} Ba _{1.8} Pr _{0.2} Co _{1.9} Mn _{0.1} O ₉	202	6. 9	0. 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0,2} Ba _{1,8} Nd _{0,2} Co _{1,9} Mn _{0,1} O ₉	203	9. 0	1. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0,2} Ba _{1,8} Sm _{0,2} Co _{1,9} Mn _{0,1} O ₉	205	7.8	1. 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	7. 5	1. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Mn _{0.1} O ₉	195	8. 6	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉ 198 6.9 0.9 Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉ 199 8.1 1.1 Bi ₂ Sr ₂ Co _{1.9} Fe _{0.1} O ₉ 202 7.4 1.4 Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8	Bi ₂ Pb _{0.2} Ba _{1.8} Dy _{0.2} Co _{1.9} Mn _{0.1} O ₉	200	8. 2	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉ 199 8.1 1.1 Bi ₂ Sr ₂ Co _{1.9} Fe _{0.1} O ₉ 202 7.4 1.4 Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8	Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Mn _{0.1} O ₉	205	7. 9	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉ 199 8.1 1.1 Bi ₂ Sr ₂ Co _{1.9} Fe _{0.1} O ₉ 202 7.4 1.4 Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8	Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Mn _{0.1} O ₉	198	6. 9	0.9
Bi ₂ Sr ₂ Co _{1.9} Fe _{0.1} O ₉ 202 7.4 1.4 Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8	Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Mn _{0.1} O ₉	199		
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8				
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉ 204 7.8 0.8	Bi ₂ Sr ₂ Co _{1.9} Fe _{0.1} O ₉	202	7.4	1.4
	Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉	204		
$\text{Bi}_2\text{Sr}_{1.8}\text{K}_{0.2}\text{Co}_{1.9}\text{Fe}_{0.1}\text{O}_9$ 197 7. 7 1. 3	Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Fe _{0.1} O ₉	197		
Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} Fe _{0.1} O ₉ 190 8.0 1.2				
Bi ₂ Sr _{1.8} Ti _{0.2} Co _{1.9} Fe _{0.1} O ₉ 198 8.2 1.1				
Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} Fe _{0.1} O ₉ 199 7.9 1.4		199		

[0195] [表37]

	1		
Bi ₂ Sr _{1.8} Cr _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	9. 1	1. 2
$Bi_2Sr_{1.8}Mn_{0.2}Co_{1.9}Fe_{0.1}O_9$. 207	8. 4	0. 9
$Bi_2Sr_{1.8}Fe_{0.2}Co_{1.9}Fe_{0.1}O_9$	190	8.6	1. 1
Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 2	1. 2
$Bi_{2}Sr_{1.8}Cu_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	199	7. 9	0. 9
$Bi_2Sr_{1.8}Zn_{0.2}Co_{1.9}Fe_{0.1}O_9$	201	8. 6	1. 1
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} Fe _{0.1} O ₉	210	9. 1	1. 2
$Bi_2Sr_{1.8}Ca_{0.2}Co_{1.9}Fe_{0.1}O_9$	206	6. 9	1.4
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Fe _{0.1} O ₉	205	7. 4	0.8
$Bi_2Sr_{1.8}Al_{0.2}Co_{1.9}Fe_{0.1}O_9$	198	7. 8	1.3
Bi ₂ Sr _{1.8} Y _{0.2} Co _{1.9} Fe _{0.1} O ₉	195	7. 7	1. 2
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Fe _{0.1} O ₉	200	8. 0	1. 1
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Fe _{0.1} O ₉	203	8. 2	0.8
Bi ₂ Sr _{1.8} Pr _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	7. 9	1.3
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Fe _{0.1} O ₉	208	9. 1	1.4
Bi ₂ Sr _{1.8} Sm _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 4	1.1
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	8. 6	1.0
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Fe _{0.1} O ₉	200	7. 8	1.3
$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}Fe_{0.1}O_9$	206	9. 0	0.9
Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Fe _{0.1} O ₉	205	8. 2	1.1
Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 3	1.4
Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} Fe _{0.1} O ₉	206	8. 6	1.2
Bi ₂ Pb _{0.2} Sr ₂ Co _{1.9} Fe _{0.1} O ₉	207	8. 3	1. 1
Bi ₂ Pb _{0,2} Sr _{1,8} Na _{0,2} Co _{1,9} Fe _{0,1} O ₉	190	9. 0	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}K_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	198	7. 9	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Li _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	8. 1	1.1
$Bi_{2}Pb_{0.2}Sr_{1.8}Ti_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	201	8. 0	1.2
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co _{1.9} Fe _{0.1} O ₉	210	7.8	1.0
$Bi_{2}Pb_{0.2}Sr_{1.8}Cr_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	206	7. 2	1.3
$Bi_{2}Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	205	9.0	1.0
$Bi_{2}Pb_{0.2}Sr_{1.8}Fe_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	198	8. 2	0.9
${\rm Bi_2Pb_{0.2}Sr_{1.8}Ni_{0.2}Co_{1.9}Fe_{0.1}O_9}$	195	7. 9	1. 1
$\mathrm{Bi}_{2}\mathrm{Pb}_{0,2}\mathrm{Sr}_{1,8}\mathrm{Cu}_{0,2}\mathrm{Co}_{1,9}\mathrm{Fe}_{0,1}\mathrm{O}_{9}$	200	6. 9	1. 0
$Bi_{2}Pb_{0.2}Sr_{1.8}Zn_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	203	8. 1	1. 2
$Bi_{2}Pb_{0,2}Sr_{1,8}Pb_{0,2}Co_{1,9}Fe_{0,1}O_{9}$	201	6. 9	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Ca _{0.2} Co _{1.9} Fe _{0.1} O ₉	208	7.4	0. 9

[0196] [表38]

Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	7. 8	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Al _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	7. 7	1. 0
Bi ₂ Pb _{0.2} Sr _{1.8} Y _{0.2} Co _{1.9} Fe _{0.1} O ₉	200	8. 0	1. 3
Bi ₂ Pb _{0,2} Sr _{1,8} La _{0,2} Co _{1,9} Fe _{0,1} O ₉	206	8. 2	1. 2
Bi ₂ Pb _{0, 2} Sr _{1, 8} Ce _{0, 2} Co _{1, 9} Fe _{0, 1} O ₉	205	7. 9	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Pr _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	9. 1	1.0
Bi ₂ Pb _{0,2} Sr _{1,8} Nd _{0,2} Co _{1,9} Fe _{0,1} O ₉	206	8. 4	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Sm _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 6	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Fe _{0.1} O ₉	195	8. 2	1. 2
Bi ₂ Pb _{0, 2} Sr _{1, 8} Gd _{0, 2} Co _{1, 9} Fe _{0, 1} O ₉	200	7. 9	1.1
$Bi_{2}Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	203	8. 6	0.8
Bi ₂ Pb _{0,2} Sr _{1,8} Ho _{0,2} Co _{1,9} Fe _{0,1} O ₉	201	9. 1	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} Fe _{0.1} O ₉	208	6. 9	1.4
Bi ₂ Pb _{0, 2} Sr _{1, 8} Yb _{0, 2} Co _{1, 9} Fe _{0, 1} O ₉	198	7. 4	1. 1
	,	<u> </u>	
Bi ₂ Ca ₂ Co _{1.9} Fe _{0.1} O ₉	200	7. 7	1.3
Bi ₂ Ca _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	. 8. 0	0. 9
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} Fe _{0.1} O ₉	210	8. 2	1.1
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} Fe _{0.1} O ₉	202	7. 9	1.4
Bi ₂ Ca _{1.8} Ti _{0.2} Co _{1.9} Fe _{0.1} O ₉	204	9. 1	1.2
Bi ₂ Ca _{1,8} V _{0,2} Co _{1,9} Fe _{0,1} O ₉	197	8. 4	0.9
Bi ₂ Ca _{1.8} Cr _{0.2} Co _{1.9} Fe _{0.1} O ₉	190	8. 6	1.1
Bi ₂ Ca _{1.8} Mn _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	7.8	1. 2
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	9. 0	0. 9
Bi ₂ Ca _{1.8} Ni _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	8. 2	1. 1
Bi ₂ Ca _{1.8} Cu _{0.2} Co _{1.9} Fe _{0.1} O ₉	207	8. 3	1. 2
$Bi_{2}Ca_{1.8}Zn_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	190	8. 6	1. 4
$Bi_2Ca_{1.8}Pb_{0.2}Co_{1.9}Fe_{0.1}O_9$	201	8. 7	0.8
$Bi_{2}Ca_{1.8}Sr_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	208	8. 3	1.3
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	9. 0	1. 2
Bi ₂ Ca _{1.8} Al _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	7. 9	1. 1
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} Fe _{0.1} O ₉	200	8. 1	1.4
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	8. 0	1. 2
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} Fe _{0.1} O ₉	210	7. 8	0. 9
$Bi_{2}Ca_{1.8}Pr_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	202	7. 2	1. 1
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} Fe _{0.1} O ₉	204	9. 0	1. 2
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Fe _{0.1} O ₉	197	7. 8	0. 9

[0197] [表39]

Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Fe _{0.1} O ₉	190	7.5	1. 1
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8.6	1. 2
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	8. 2	1. 4
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	7. 9	0.8
$\operatorname{Bi}_{2}\operatorname{Ca}_{1.8}\operatorname{Er}_{0.2}\operatorname{Co}_{1.9}\operatorname{Fe}_{0.1}\operatorname{O}_{9}$	207	6. 9	1.3
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} Fe _{0.1} O ₉	190	9. 0	1. 2
Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} Fe _{0.1} O ₉	200	7. 5	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉	203	8. 6	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	8. 2	1. 4
$Bi_{2}Pb_{0.2}Ca_{1.8}Li_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	208	7. 9	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Ti _{0,2} Co _{1,9} Fe _{0,1} O ₉	198	6. 9	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} V _{0,2} Co _{1,9} Fe _{0,1} O ₉	199	8. 1	1.3
$Bi_{2}Pb_{0,2}Ca_{1,8}Cr_{0,2}Co_{1,9}Fe_{0,1}O_{9}$	200	6. 9	0.9
$Bi_{2}Pb_{0.2}Ca_{1.8}Mn_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	199	7. 4	1.1
$Bi_{2}Pb_{0,2}Ca_{1,8}Fe_{0,2}Co_{1,9}Fe_{0,1}O_{9}$	210	7. 8	1.4
$Bi_{2}Pb_{0,2}Ca_{1,8}Ni_{0,2}Co_{1,9}Fe_{0,1}O_{9}$	202	7. 7	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co _{1.9} Fe _{0.1} O ₉	204	8. 0	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Zn _{0.2} Co _{1.9} Fe _{0.1} O ₉	197	8. 2	1.1
Bi ₂ Pb _{0,2} Ca _{1,8} Pb _{0,2} Co _{1,9} Fe _{0,1} O ₉	190	7. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	9. 1	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	8. 4	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	8. 6	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co _{1.9} Fe _{0.1} O ₉	207	8. 2	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Fe _{0.1} O ₉	190	7. 9	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Ce _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 6	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	9. 1	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	6. 9	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Sm _{0.2} Co _{1.9} Fe _{0.1} O ₉	210	7. 4	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Eu _{0.2} Co _{1.9} Fe _{0.1} O ₉	206	7. 8	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} Fe _{0.1} O ₉	205	7. 7	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Dy _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 0	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} Fe _{0.1} O ₉	195	8. 2	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} Fe _{0.1} O ₉	200	7. 9	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} Fe _{0.1} O ₉	203	9. 1	1.3
Bi ₂ Ba ₂ Co _{1.9} Fe _{0.1} O ₉	208	8. 6	1.3

[0198] [表40]

Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	7.8	0.9
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} Fe _{0.1} O ₉	190	9. 0	1. 1
$Bi_2Ba_{1.8}Li_{0.2}Co_{1.9}Fe_{0.1}O_9$	198	8. 2	1. 4
$Bi_{2}Ba_{1.8}Ti_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	199	9. 1	1. 2
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	8. 4	0.9
$Bi_{2}Ba_{1.8}Cr_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	200	8.6	1. 1
$Bi_{2}Ba_{1.8}Mn_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	206	7. 8	1. 2
Bi ₂ Ba _{1,8} Fe _{0,2} Co _{1,9} Fe _{0,1} O ₉	205	9. 0	0.9
Bi ₂ Ba _{1.8} Ni _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 2	1. 1
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	8. 3	1. 2
Bi ₂ Ba _{1.8} Zn _{0.2} Co _{1.9} Fe _{0.1} O ₉	196	8. 6	1.0
Bi ₂ Ba _{1,8} Pb _{0,2} Co _{1,9} Fe _{0,1} O ₉	202	8. 7	1.3
Bi ₂ Ba _{1.8} Ca _{0.2} Co _{1.9} Fe _{0.1} O ₉	203	8. 3	1.0
Bi ₂ Ba _{1.8} Sr _{0.2} Co _{1.9} Fe _{0.1} O ₉	205	9. 0	0. 9
Bi ₂ Ba _{1.8} Al _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	7.9	1.1
Bi ₂ Ba _{1.8} Y _{0.2} Co _{1.9} Fe _{0.1} O ₉	195	8. 1	1.0
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Fe _{0.1} O ₉	200	8. 0	0.9
Bi ₂ Ba _{1,8} Ce _{0,2} Co _{1,9} Fe _{0,1} O ₉	205	7. 8	1.1
Bi ₂ Ba _{1.8} Pr _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	7. 2	1.4
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	9. 0	1. 2
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Fe _{0.1} O ₉	210	8. 2	0.9
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Fe _{0.1} O ₉	202	7. 9	1.1
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} Fe _{0.1} O ₉	204	6. 9	1. 2
Bi ₂ Ba _{1.8} Dy _{0.2} Co _{1.9} Fe _{0.1} O ₉	197	8. 1	0.9
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Fe _{0.1} O ₉	190	6. 9	1.1
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	7. 4	1. 2
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	7. 8	1.4
Bi ₂ Pb _{0.2} Ba ₂ Co _{1.9} Fe _{0.1} O ₉	207	8. 0	1.3
Bi ₂ Pb _{0,2} Ba _{1,8} Na _{0,2} Co _{1,9} Fe _{0,1} O ₉	190	8. 2	1. 2
$Bi_{2}Pb_{0.2}Ba_{1.8}K_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	198	7. 9	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} Li _{0,2} Co _{1,9} Fe _{0,1} O ₉	199	9. 1	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Ti _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	8. 4	1. 2
$Bi_{2}Pb_{0,2}Ba_{1,8}V_{0,2}Co_{1,9}Fe_{0,1}O_{9}$	210	8. 6	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Fe _{0.1} O ₉	206	8. 2	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} Fe _{0.1} O ₉	205	7. 9	1. 2
$Bi_{2}Pb_{0.2}Ba_{1.8}Fe_{0.2}Co_{1.9}Fe_{0.1}O_{9}$	198	8. 6	0.9

[0199] [表41]

Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Fe _{0.1} O ₉	195	9. 1	1. 1
Bi ₂ Pb _{0, 2} Ba _{1, 8} Cu _{0, 2} Co _{1, 9} Fe _{0, 1} O ₉	200	6. 9	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Zn _{0.2} Co _{1.9} Fe _{0.1} O ₉	203	7. 4	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Pb _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	7. 8	0.8
Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Fe _{0,1} O ₉	208	7. 7	1. 3
Bi ₂ Pb _{0,2} Ba _{1,8} Sr _{0,2} Co _{1,9} Fe _{0,1} O ₉	198	8. 0	1. 2
Bi ₂ Pb _{0, 2} Ba _{1, 8} Al _{0, 2} Co _{1, 9} Fe _{0, 1} O ₉	199	8. 2	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Fe _{0.1} O ₉	200	7. 9	0.8
Bi ₂ Pb _{0, 2} Ba _{1, 8} La _{0, 2} Co _{1, 9} Fe _{0, 1} O ₉	206	9. 1	1. 3
Bi ₂ Pb _{0,2} Ba _{1,8} Ce _{0,2} Co _{1,9} Fe _{0,1} O ₉	205	8. 4	1.4
Bi ₂ Pb _{0,2} Ba _{1,8} Pr _{0,2} Co _{1,9} Fe _{0,1} O ₉	198	8. 6	1. 1
Bi ₂ Pb _{0, 2} Ba _{1, 8} Nd _{0, 2} Co _{1, 9} Fe _{0, 1} O ₉	206	7.8	1. 0
Bi ₂ Pb _{0.2} Ba _{1.8} Sm _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	9. 0	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Fe _{0.1} O ₉	207	8. 2	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Fe _{0.1} O ₉	190	8. 3	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Dy _{0.2} Co _{1.9} Fe _{0.1} O ₉	198	8. 4	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Fe _{0.1} O ₉	199	8.6	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Fe _{0.1} O ₉	201	8. 2	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Fe _{0.1} O ₉	210	7. 9	1. 1
Bi ₂ Sr ₂ Co _{1.9} Ni _{0.1} O ₉	205	9. 1	0. 9
$Bi_2Sr_{1.8}Na_{0.2}Co_{1.9}Ni_{0.1}O_9$	198	6. 9	1. 1
Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Ni _{0.1} O ₉	195	7. 4	1. 2
Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	7. 8	1.0
$Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}Ni_{0.1}O_9$	203	7. 7	1.3
$Bi_2Sr_{1.8}V_{0.2}Co_{1.9}Ni_{0.1}O_9$	201	8. 0	1.0
Bi ₂ Sr _{1.8} Cr _{0.2} Co _{1.9} Ni _{0.1} O ₉	208	8. 2	0. 9
$Bi_2Sr_{1.8}Mn_{0.2}Co_{1.9}Ni_{0.1}O_9$	198	7. 9	1. 1
$Bi_2Sr_{1.8}Fe_{0.2}Co_{1.9}Ni_{0.1}O_9$	199	9. 1	1. 0
$Bi_2Sr_{1.8}Ni_{0.2}Co_{1.9}Ni_{0.1}O_9$	200	8. 4	1. 2
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Ni _{0.1} O ₉	206	8. 6	1.1
Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	7. 8	0. 9
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	9. 0	0.8
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Ni _{0.1} O ₉	206	8. 2	1.0
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	8. 3	1. 3
$Bi_2Sr_{1.8}Al_{0.2}Co_{1.9}Ni_{0.1}O_9$	195	8. 6	1. 2
Bi ₂ Sr _{1.8} Y _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	8. 7	1.3

[0200] [表42]

Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Ni _{0.1} O ₉	203	8. 3	1.0
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	9. 0	1.3
$Bi_2Sr_{1.8}Pr_{0.2}Co_{1.9}Ni_{0.1}O_9$	208	7. 9	0.9
Bi ₂ Sr _{1,8} Nd _{0,2} Co _{1,9} Ni _{0,1} O ₉	198	8. 1	1.1
$Bi_2Sr_{1.8}Sm_{0.2}Co_{1.9}Ni_{0.1}O_9$	199	8. 0	1.4
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	7.8	1. 2
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	7. 2	0. 9
$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}Ni_{0.1}O_9$	210	9. 0	1. 1
$Bi_2Sr_{1.8}Ho_{0.2}Co_{1.9}Ni_{0.1}O_9$	202	8. 2	1. 2
$Bi_2Sr_{1.8}Er_{0.2}Co_{1.9}Ni_{0.1}O_9$	204	7. 9	0. 9
Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} Ni _{0.1} O ₉	197	6. 9	1.1
$Bi_2Pb_{0.2}Sr_2Co_{1.9}Ni_{0.1}O_9$	208	6. 9	1. 4
Bi ₂ Pb _{0.2} Sr _{1.8} Na _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	7. 4	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}K_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	199	7. 8	1. 3
Bi ₂ Pb _{0, 2} Sr _{1, 8} Li _{0, 2} Co _{1, 9} Ni _{0, 1} O ₉	200	7. 7	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}Ti_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	199	,8, 0	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	8. 2	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Cr _{0.2} Co _{1.9} Ni _{0.1} O ₉	202	7. 9	0. 7
$Bi_{2}Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	204	9. 1	1.3
Bi ₂ Pb _{0,2} Sr _{1,8} Fe _{0,2} Co _{1,9} Ni _{0,1} O ₉	197	8. 4	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Ni _{0.2} Co _{1.9} Ni _{0.1} O ₉	190	8. 6	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Cu _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	8. 2	1.4
$Bi_{2}Pb_{0.2}Sr_{1.8}Zn_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	199	7. 9	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Pb _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	8.6	0.9
Bi ₂ Pb _{0,2} Sr _{1,8} Ca _{0,2} Co _{1,9} Ni _{0,1} O ₉	207	9. 1	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co _{1.9} Ni _{0.1} O ₉	190	6. 9	1. 2
$Bi_2Pb_{0.2}Sr_{1.8}Al_{0.2}Co_{1.9}Ni_{0.1}O_9$	198	7.4	0.9
$Bi_2Pb_{0.2}Sr_{1.8}Y_{0.2}Co_{1.9}Ni_{0.1}O_9$	199	7. 8	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	7. 7	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	8. 0	1. 4
$Bi_{2}Pb_{0.2}Sr_{1.8}Pr_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	206	8. 2	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	7. 9	1. 3
$Bi_{2}Pb_{0.2}Sr_{1.8}Sm_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	198	9. 1	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Ni _{0.1} O ₉	195	8. 4	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	8. 6	0.8
$Bi_{2}Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	203	7.8	1. 3

[0201] [表43]

$Bi_{2}Pb_{0.2}Sr_{1.8}Ho_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	201	9. 0	1.4
Bi ₂ Pb _{0,2} Sr _{1.8} Er _{0.2} Co _{1.9} Ni _{0.1} O ₉	208	8. 2	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Yb _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	8. 3	1.0
*			
$Bi_2Ca_2Co_{1.9}Ni_{0.1}O_9$	198	8. 7	0.9
Bi ₂ Ca _{1.8} Na _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	8. 3	1. 1
$Bi_{2}Ca_{1.8}K_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	201	9. 0	1.4
Bi ₂ Ca _{1,8} Li _{0,2} Co _{1,9} Ni _{0,1} O ₉	200	7. 9	1. 2
$Bi_2Ca_{1.8}Ti_{0.2}Co_{1.9}Ni_{0.1}O_9$	206	8. 1	0.9
$Bi_{2}Ca_{1.8}V_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	205	8.0	1.1
$Bi_{2}Ca_{1.8}Cr_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	198	7. 8	1. 2
$Bi_{2}Ca_{1.8}Mn_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	201	7. 2	0.9
$Bi_2Ca_{1.8}Fe_{0.2}Co_{1.9}Ni_{0.1}O_9$	196	9. 0	1. 1
$Bi_2Ca_{1.8}Ni_{0.2}Co_{1.9}Ni_{0.1}O_9$	202	7. 8	1.2
Bi ₂ Ca _{1,8} Cu _{0,2} Co _{1,9} Ni _{0,1} O ₉	203	7. 5	1.4
Bi ₂ Ca _{1.8} Zn _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	8. 6	0.8
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	,8. 2	1.3
Bi ₂ Ca _{1.8} Sr _{0.2} Co _{1.9} Ni _{0.1} O ₉	195	7. 9	1. 2
Bi ₂ Ca _{1,8} Ba _{0,2} Co _{1,9} Ni _{0,1} O ₉	200	6. 9	1.1
Bi ₂ Ca _{1.8} Al _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	9. 0	1.4
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	7.8	1. 2
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	7. 5	0. 9
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	8. 6	1.1
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} Ni _{0.1} O ₉	202	8. 2	1. 2
$Bi_2Ca_{1.8}Nd_{0.2}Co_{1.9}Ni_{0.1}O_9$	204	7. 9	0.9
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Ni _{0.1} O ₉	197	6. 9	1.1
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Ni _{0.1} O ₉	190	8. 1	1. 2
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	6. 9	1.4
$Bi_{2}Ca_{1.8}Dy_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	199	7. 4	0.8
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	7.8	1.3
Bi ₂ Ca _{1.8} Er _{0.2} Co _{1.9} Ni _{0.1} O ₉	207	7. 7	1.2
$Bi_{2}Ca_{1.8}Yb_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	190	8. 0	1. 1
Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} Ni _{0.1} O ₉	199	7. 9	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	9. 1	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	8. 4	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Ni _{0.1} O ₉	206	8. 6	1. 0

[0202] [表44]

Bi ₂ Pb _{0.2} Ca _{1.8} Ti _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	8. 2	1. 3
Bi ₂ Pb _{0,2} Ca _{1,8} V _{0,2} Co _{1,9} Ni _{0,1} O ₉	198	7.9	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} Ni _{0.1} O ₉	195	8.6	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Mn _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	9. 1	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} Ni _{0.1} O ₉	203	6.9	1.2
Bi ₂ Pb _{0.2} Ca _{1.8} Ni _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	7.4	0, 9
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co _{1.9} Ni _{0.1} O ₉	208	7.8	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Zn _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	7. 7	1.2
Bi ₂ Pb _{0.2} Ca _{1.8} Pb _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	8. 0	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	8. 2	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Ni _{0.1} O ₉	206	7. 9	1.2
Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	9. 1	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} Y _{0,2} Co _{1,9} Ni _{0,1} O ₉	198	8. 4	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Ni _{0.1} O ₉	206	8. 6	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} Ce _{0,2} Co _{1,9} Ni _{0,1} O ₉	198	7. 8	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co _{1.9} Ni _{0.1} O ₉	207	9. 0	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Ni _{0.1} O ₉	190	8. 2	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Sm _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	9. 1	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Eu _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	8. 4	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	8. 6	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Dy _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	7.8	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} Ni _{0.1} O ₉	206	9. 0	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	8. 4	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	8. 6	1.2
Bi ₂ Ba ₂ Co _{1.9} Ni _{0.1} O ₉	200	9. 0	0.9
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Ni _{0.1} O ₉	203	8. 2	1. 1
$Bi_2Ba_{1.8}K_{0.2}Co_{1.9}Ni_{0.1}O_9$	201	8. 3	1.4
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} Ni _{0.1} O ₉	208	8. 6	1. 2
$Bi_2Ba_{1.8}Ti_{0.2}Co_{1.9}Ni_{0.1}O_9$	198	8. 7	0.9
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	8. 3	1. 1
Bi ₂ Ba _{1.8} Cr _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	9. 0	1. 2
$-Bi_2Ba_{1.8}Mn_{0.2}Co_{1.9}Ni_{0.1}O_9$	206	7. 9	0.9
$Bi_2Ba_{1.8}Fe_{0.2}Co_{1.9}Ni_{0.1}O_9$	205	8. 1	1.1
Bi ₂ Ba _{1.8} Ni _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	8. 0	1. 2
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	7.8	1.0
Bi ₂ Ba _{1.8} Zn _{0.2} Co _{1.9} Ni _{0.1} O ₉	200	7. 2	1. 3

[0203] [表45]

Bi ₂ Ba _{1.8} Pb _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	9. 0	1.0
Bi ₂ Ba _{1.8} Ca _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	7. 8	0. 9
Bi ₂ Ba _{1.8} Sr _{0.2} Co _{1.9} Ni _{0.1} O ₉	202	7. 5	1. 1
Bi ₂ Ba _{1.8} Al _{0.2} Co _{1.9} Ni _{0.1} O ₉	204	8. 6	1. 0
Bi ₂ Ba _{1.8} Y _{0.2} Co _{1.9} Ni _{0.1} O ₉	197	8. 2	1. 2
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Ni _{0.1} O ₉	190	7. 9	1. 1
Bi ₂ Ba _{1,8} Ce _{0,2} Co _{1,9} Ni _{0,1} O ₉	198	6. 9	0.9
Bi ₂ Ba _{1.8} Pr _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	9. 0	0.8
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	7. 8	1.0
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Ni _{0.1} O ₉	207	7. 5	1.3
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Ni _{0.1} O ₉	190	8. 6	1. 2
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	8. 2	0. 7
Bi ₂ Ba _{1.8} Dy _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	7. 9	1. 3
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	6. 9	1. 4
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	8. 1	1. 1
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} Ni _{0.1} O ₉	206	6. 9	1. 0
		•	
Bi ₂ Pb _{0, 2} Ba ₂ Co _{1, 9} Ni _{0, 1} O ₉	198	7. 8	0. 9
Bi ₂ Pb _{0, 2} Ba _{1, 8} Na _{0, 2} Co _{1, 9} Ni _{0, 1} O ₉	195	7. 7	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} K _{0,2} Co _{1,9} Ni _{0,1} O ₉	200	8. 0	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co _{1.9} Ni _{0.1} O ₉	203	8. 2	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Ti _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	7. 9	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} V _{0.2} Co _{1.9} Ni _{0.1} O ₉	196	9. 1	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Ni _{0.1} O ₉	202	8. 4	1. 2
$Bi_{2}Pb_{0.2}Ba_{1.8}Mn_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	203	8. 6	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	8. 2	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	7. 9	1. 2
Bi ₂ Pb _{0, 2} Ba _{1, 8} Cu _{0, 2} Co _{1, 9} Ni _{0, 1} O ₉	195	8. 6	1. 4
Bi ₂ Pb _{0, 2} Ba _{1, 8} Zn _{0, 2} Co _{1, 9} Ni _{0, 1} O ₉	200	9. 1	0. 8
Bi ₂ Pb _{0.2} Ba _{1.8} Pb _{0.2} Co _{1.9} Ni _{0.1} O ₉	205	6. 9	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	7. 4	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	7. 8	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Ni _{0.1} O ₉	210	7. 7	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Ni _{0.1} O ₉	202	8. 0	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} La _{0.2} Co _{1.9} Ni _{0.1} O ₉	204	8. 2	1. 4
Bi ₂ Pb _{0, 2} Ba _{1, 8} Ce _{0, 2} Co _{1, 9} Ni _{0, 1} O ₉	197	7. 9	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} Pr _{0,2} Co _{1,9} Ni _{0,1} O ₉	190	9. 1	1. 0

[0204] [表46]

BigPba_BBa_Nota_2Co_1,Nia_1O_0 198 8.4 1.3 BigPba_BBa_Nota_BCo_1,Nia_1O_0 199 8.6 0.9 BigPba_BBa_Nota_Co_1,Nia_1O_0 201 7.8 1.1 BigPba_BBa_Nota_Co_1,Nia_1O_0 207 9.0 1.4 BigPba_BBa_Nota_Co_1,Nia_1O_0 190 8.2 1.2 BigPba_BBa_Nota_Co_1,Nia_1O_0 198 8.3 0.9 BigPba_BBa_Nota_Co_1,Nia_1O_0 199 8.6 1.1 BigPba_BBa_Nota_Co_1,Nia_1O_0 199 8.6 1.1 BigPba_BBa_Nota_Co_1,Nia_1O_0 199 8.6 1.1 BigPba_BBa_Nota_Co_1,Nia_1O_0 206 9.0 1.1 BigST_Nota_Co_1,Cua_1O_0 206 9.0 1.1 BigST_Nota_Co_1,Cua_1O_0 198 8.1 1.4 BigST_Nota_Co_1,Cua_1O_0 195 8.0 0.8 BigST_Nota_Co_1,Cua_1O_0 195 8.0 0.8 BigST_Nota_Co_1,Cua_1O_0 200 7.8 1.3 BigST_Nota_Co_1,Cua_1O_0 201 9.0 1.1 BigST_Nota_Co_1,Cua_1O_0 208 8.2 0.8 BigST_Nota_Co_1,Cua_1O_0 198 7.9 0.7 BigST_Nota_Co_1,Cua_1O_0 199 6.9 1.3 BigST_Nota_Co_1,Cua_1O_0 200 8.1 0.8 BigST_Nota_Co_1,Cua_1O_0 200 8.2 1.4 BigST_Nota_Co_1,Cua_1O_0 200 8.2 1.4 BigST_Nota_Co_1,Cua_1O_0 200 8.2 1.4 BigST_Nota_Co_1,Cua_1O_0 200 8.2 1.1 BigST_Nota_Co_1,Cua_1O_0 200 8.4 1.3 BigST_Nota_Co_1,Cua_1O_0 200 8.6 0.9 BigST_Nota_Co_1,Cua_1O_0 200 8.6 0.9 BigST_Nota_Co_1,Cua_1O_0 200 8.6 0.9 BigST_Nota_Co_1,Cua_1O_0 200 8.6 0.9 BigST_Nota_Co_1,Cua_1O_0 200 7.4 1.2 BigST_Nota_Co_1,Cua_1O_0 200 7.4 1.2 BigST_Nota_Co_1,Cu				
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Ni _{0.1} O ₉	Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	8. 4	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Ni _{0.1} O ₉	$Bi_{2}Pb_{0.2}Ba_{1.8}Sm_{0.2}Co_{1.9}Ni_{0.1}O_{9}$	199	8. 6	0.9
Bi ₂ Pb _{0.2} Ba _{1.6} By _{0.2} Co _{1.6} Ni _{0.1} O ₆ 190 8.2 1.2 Bi ₂ Pb _{0.2} Ba _{1.6} Ho _{0.2} Co _{1.6} Ni _{0.1} O ₆ 198 8.3 0.9 Bi ₂ Pb _{0.2} Ba _{1.6} Er _{0.2} Co _{1.6} Ni _{0.1} O ₆ 199 8.6 1.1 Bi ₂ Pb _{0.2} Ba _{1.6} Yb _{0.2} Co _{1.6} Ni _{0.1} O ₆ 201 8.7 1.2 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{1.1} O ₆ 206 9.0 1.1 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{1.1} O ₆ 205 7.9 1.2 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 198 8.1 1.4 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 195 8.0 0.8 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 195 8.0 0.8 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 200 7.8 1.3 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 201 9.0 1.1 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 203 7.2 1.2 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 201 9.0 1.1 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 208 8.2 0.8 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 198 7.9 0.7 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 198 7.9 0.7 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 199 6.9 1.3 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 200 8.1 0.8 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 206 6.9 1.3 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 206 6.9 1.3 Bi ₂ Sr _{1.6} Cu _{0.6} Co _{1.6} Cu _{0.1} O ₆ 206 6.9 1.3 Bi ₂ Sr _{1.6} Co _{1.6} Cu _{0.1} O ₆ 206 6.9 1.3 Bi ₂ Sr _{1.6} Co _{1.6} Cu _{0.1} O ₆ 206 6.9 1.3 Bi ₂ Sr _{1.6} Co _{1.6} Cu _{0.1} O ₆ 206 6.9 1.3 Bi ₂ Sr _{1.6} Co _{1.6} Cu _{0.1} O ₆ 206 7.7 0.8 Bi ₂ Sr _{1.6} Co _{1.6} Cu _{0.1} O ₆ 198 7.8 1.1 Bi ₂ Sr _{1.6} Cu _{0.6} Co _{1.6} Cu _{0.1} O ₆ 198 7.8 1.1 Bi ₂ Sr _{1.6} Cu _{0.6} Cu _{0.6} Cu _{0.1} O ₆ 198 7.9 1.1 Bi ₂ Sr _{1.6} Cu _{0.6} Cu _{0.6} Cu _{0.1} O ₆ 198 9.1 1.0 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 199 8.4 1.3 Bi ₂ Sr _{1.6} No _{2.6} Co _{1.6} Cu _{0.1} O ₆ 199 8.4 1.3 Bi ₂ Sr _{1.6} Sn _{0.2} Co _{1.6} Cu _{0.1} O ₆ 201 8.6 0.9 Bi ₂ Sr _{1.6} Sn _{0.2} Co _{1.6} Cu _{0.1} O ₆ 206 7.9 1.4 Bi ₂ Sr _{1.6} Sn _{0.2} Co _{1.6} Cu _{0.1} O ₆ 206 7.9 1.4 Bi ₂ Sr _{1.6}	Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	7. 8	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Ni _{0.1} O ₉ 198 8. 3 0. 9 Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Ni _{0.1} O ₉ 199 8. 6 1. 1 Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Ni _{0.1} O ₉ 201 8. 7 1. 2 Bi ₂ Sr ₂ Co _{1.9} Cu _{0.1} O ₉ 206 9. 0 1. 1 Bi ₂ Sr _{1.8} No _{2.2} Co _{1.9} Cu _{0.1} O ₉ 205 7. 9 1. 2 Bi ₂ Sr _{1.8} No _{2.2} Co _{1.9} Cu _{0.1} O ₉ 198 8. 1 1. 4 Bi ₂ Sr _{1.8} Co _{1.9} Cu _{0.1} O ₉ 195 8. 0 0. 8 Bi ₂ Sr _{1.8} Ti _{0.2} Co _{1.9} Cu _{0.1} O ₉ 200 7. 8 1. 3 Bi ₂ Sr _{1.8} Vo _{2.2} Co _{1.9} Cu _{0.1} O ₉ 201 9. 0 1. 1 Bi ₂ Sr _{1.8} Vo _{2.2} Co _{1.9} Cu _{0.1} O ₉ 203 7. 2 1. 2 Bi ₂ Sr _{1.8} Vo _{2.2} Co _{1.9} Cu _{0.1} O ₉ 201 9. 0 1. 1 Bi ₂ Sr _{1.8} Vo _{2.2} Co _{1.9} Cu _{0.1} O ₉ 208 8. 2 0. 8 Bi ₂ Sr _{1.8} Vo _{2.2} Co _{1.9} Cu _{0.1} O ₉ 198 7. 9 0. 7 Bi ₂ Sr _{1.8} Fi _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 7. 9 0. 7 Bi ₂ Sr _{1.8} Fi _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 6. 9 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6. 9 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6. 9 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6. 9 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6. 9 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6. 9 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7. 7 0. 8 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 7. 8 1. 1 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 7. 8 1. 1 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 8. 0 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 8. 0 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8. 4 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 9. 1 1. 0 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8. 4 1. 3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7. 9 1. 4 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7. 9 1. 4 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7. 9 1. 4 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7. 9 1. 4 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7. 9 1.	Bi ₂ Pb _{0,2} Ba _{1,8} Gd _{0,2} Co _{1,9} Ni _{0,1} O ₉	207	9. 0	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Ni _{0.1} O ₉ 199 8.6 1.1 Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Ni _{0.1} O ₉ 201 8.7 1.2 Bi ₂ Sr ₂ Co _{1.9} Cu _{0.1} O ₉ 206 9.0 1.1 Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 8.1 1.4 Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} Cu _{0.1} O ₉ 195 8.0 0.8 Bi ₂ Sr _{1.8} Ti _{0.2} Co _{1.9} Cu _{0.1} O ₉ 200 7.8 1.3 Bi ₂ Sr _{1.8} Ti _{0.2} Co _{1.9} Cu _{0.1} O ₉ 201 9.0 1.1 Bi ₂ Sr _{1.8} Ti _{0.2} Co _{1.9} Cu _{0.1} O ₉ 203 7.2 1.2 Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Cu _{0.1} O ₉ 201 9.0 1.1 Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Cu _{0.1} O ₉ 208 8.2 0.8 Bi ₂ Sr _{1.8} Fa _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 7.9 0.7 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 6.9 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7.7 0.8 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7.7 0.8 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7.7 0.8 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 207 8.2 1.4 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 8.0 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 9.1 1.0 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 9.1 0.9	Bi ₂ Pb _{0.2} Ba _{1.8} Dy _{0.2} Co _{1.9} Ni _{0.1} O ₉	190	8. 2	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Vb _{0.2} Co _{1.9} Ni _{0.1} O ₉	Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Ni _{0.1} O ₉	198	8. 3	0. 9
Bi ₂ Sr ₂ Co _{1,9} Cu _{0,1} O ₉ 206 9.0 1.1 Bi ₂ Sr _{1,8} Na _{0,2} Co _{1,9} Cu _{0,1} O ₉ 205 7.9 1.2 Bi ₂ Sr _{1,8} Ka _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 8.1 1.4 Bi ₂ Sr _{1,8} Li _{0,2} Co _{1,9} Cu _{0,1} O ₉ 195 8.0 0.8 Bi ₂ Sr _{1,8} Ti _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.8 1.3 Bi ₂ Sr _{1,8} Cr _{0,2} Co _{1,9} Cu _{0,1} O ₉ 203 7.2 1.2 Bi ₂ Sr _{1,8} Cr _{0,2} Co _{1,9} Cu _{0,1} O ₉ 201 9.0 1.1 Bi ₂ Sr _{1,8} Cr _{0,2} Co _{1,9} Cu _{0,1} O ₉ 208 8.2 0.8 Bi ₂ Sr _{1,8} Ma _{0,2} Co _{1,9} Cu _{0,1} O ₉ 208 8.2 0.8 Bi ₂ Sr _{1,8} Ma _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 7.9 0.7 Bi ₂ Sr _{1,8} Fe _{0,2} Co _{1,9} Cu _{0,1} O ₉ 199 6.9 1.3 Bi ₂ Sr _{1,8} Ca _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 8.1 0.8 Bi ₂ Sr _{1,8} Ca _{0,2} Co _{1,9} Cu _{0,1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1,8} Ca _{0,2} Co _{1,9} Cu _{0,1} O ₀ 205 7.4 1.2 Bi ₂ Sr _{1,8} Ba _{0,2} Co _{1,9} Cu _{0,1} O ₀ 206 7.7 0.8 <td>Bi₂Pb_{0.2}Ba_{1.8}Er_{0.2}Co_{1.9}Ni_{0.1}O₉</td> <td>199</td> <td>8. 6</td> <td>1.1</td>	Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Ni _{0.1} O ₉	199	8. 6	1.1
Bi ₂ Sr _{1,8} Na _{0,2} Co _{1,9} Cu _{0,1} O ₉	Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Ni _{0.1} O ₉	201	8. 7	1. 2
Bi ₂ Sr _{1,8} Na _{0,2} Co _{1,9} Cu _{0,1} O ₉				
Bi ₂ Sr _{1,8} K _{0,2} Co _{1,9} Cu _{0,1} O ₉	Bi ₂ Sr ₂ Co _{1.9} Cu _{0.1} O ₉	206	9. 0	1. 1
Bi ₂ Sr _{1,8} Li _{0,2} Co _{1,9} Cu _{0,1} O ₉	Bi ₂ Sr _{1,8} Na _{0,2} Co _{1,9} Cu _{0,1} O ₉	205	7. 9	1. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	8. 1	1.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} Cu _{0.1} O ₉	195	8. 0	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}Cu_{0.1}O_9$	200	7.8	1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} Cu _{0.1} O ₉	203	7. 2	1.2
Bi ₂ Sr _{1,8} Fe _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 7.9 0.7 Bi ₂ Sr _{1,8} Ni _{0,2} Co _{1,9} Cu _{0,1} O ₉ 199 6.9 1.3 Bi ₂ Sr _{1,8} Cu _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 8.1 0.8 Bi ₂ Sr _{1,8} Po _{0,2} Co _{1,9} Cu _{0,1} O ₉ 206 6.9 1.3 Bi ₂ Sr _{1,8} Po _{0,2} Co _{1,9} Cu _{0,1} O ₉ 205 7.4 1.2 Bi ₂ Sr _{1,8} Po _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 7.8 1.1 Bi ₂ Sr _{1,8} Ba _{0,2} Co _{1,9} Cu _{0,1} O ₉ 206 7.7 0.8 Bi ₂ Sr _{1,8} Al _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 8.0 1.3 Bi ₂ Sr _{1,8} Al _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 8.0 1.3 Bi ₂ Sr _{1,8} La _{0,2} Co _{1,9} Cu _{0,1} O ₉ 190 7.9 1.1 Bi ₂ Sr _{1,8} La _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 1.0 Bi ₂ Sr _{1,8} Po _{0,2} Co _{1,9} Cu _{0,1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1,8} Po _{0,2} Co _{1,9} Cu _{0,1} O ₉ 201 8.6 0.9 Bi ₂ Sr _{1,8} Sm _{0,2} Co _{1,9} Cu _{0,1} O ₉ 210 8.2 1.1 Bi ₂ Sr _{1,8} Eu _{0,2} Co _{1,9} Cu _{0,1} O ₉ 206 7.9 1.4 Bi ₂ Sr _{1,8} Gd _{0,2} Co _{1,9} Cu _{0,1} O ₉ 205 8.6 1.2 Bi ₂ Sr _{1,8} Po _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Po _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Ho _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Ho _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Ho _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Ho _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Ho _{0,2} Co _{1,9} Cu _{0,1} O ₉ 195 6.9 1.1 Bi ₂ Sr _{1,8} Fe _{0,2} Co _{1,9} Cu _{0,1} O ₉ 195 6.9 1.1 Bi ₂ Sr _{1,8} Fe _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2	$Bi_2Sr_{1.8}Cr_{0.2}Co_{1.9}Cu_{0.1}O_9$	201	9. 0	1.1
Bi ₂ Sr _{1,8} Ni _{0,2} Co _{1,9} Cu _{0,1} O ₉ 199 6.9 1.3 0.8 Bi ₂ Sr _{1,8} Zn _{0,2} Co _{1,9} Cu _{0,1} O ₉ 206 6.9 1.3 0.8 Bi ₂ Sr _{1,8} Pb _{0,2} Co _{1,9} Cu _{0,1} O ₉ 205 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 206 7.7 0.8 1.1 Bi ₂ Sr _{1,8} Ba _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 8.0 1.3 Bi ₂ Sr _{1,8} Al _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 8.0 1.3 Bi ₂ Sr _{1,8} Al _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 8.0 1.3 Bi ₂ Sr _{1,8} Al _{0,2} Co _{1,9} Cu _{0,1} O ₉ 190 7.9 1.1 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 190 7.9 1.1 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 1.0 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 199 8.4 1.3 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 201 8.6 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 210 8.2 1.1 Bi ₂ Sr _{1,8} Eu _{0,2} Co _{1,9} Cu _{0,1} O ₉ 206 7.9 1.4 Bi ₂ Sr _{1,8} Eu _{0,2} Co _{1,9} Cu _{0,1} O ₉ 205 8.6 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 195 6.9 1.1 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 195 6.9 1.1 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.2 Bi ₂ Sr _{1,8} Pa _{0,2} Co _{1,9} Cu _{0,1} O ₉ 200 7.4 1.	$Bi_2Sr_{1.8}Mn_{0.2}Co_{1.9}Cu_{0.1}O_9$	208	8. 2	0.8
Bi2Sr1.8Cu0.2Co1.9Cu0.109 200 8. 1 0. 8 Bi2Sr1.8Zn0.2Co1.9Cu0.109 206 6. 9 1. 3 Bi2Sr1.8Pb0.2Co1.9Cu0.109 205 7. 4 1. 2 Bi2Sr1.8Ca0.2Co1.9Cu0.109 198 7. 8 1. 1 Bi2Sr1.8Ba0.2Co1.9Cu0.109 206 7. 7 0. 8 Bi2Sr1.8Alo.2Co1.9Cu0.109 198 8. 0 1. 3 Bi2Sr1.8Alo.2Co1.9Cu0.109 198 8. 0 1. 3 Bi2Sr1.8V0.2Co1.9Cu0.109 198 8. 2 1. 4 Bi2Sr1.8Lao.2Co1.9Cu0.109 190 7. 9 1. 1 Bi2Sr1.8Ce0.2Co1.9Cu0.109 198 9. 1 1. 0 Bi2Sr1.8Pr0.2Co1.9Cu0.109 199 8. 4 1. 3 Bi2Sr1.8M0.2Co1.9Cu0.109 201 8. 6 0. 9 Bi2Sr1.8Eu0.2Co1.9Cu0.109 206 7. 9 1. 4 Bi2Sr1.8Gd0.2Co1.9Cu0.109 205 8. 6 1. 2 Bi2Sr1.8H00.2Co1.9Cu0.109 198 9. 1 0. 9 Bi2Sr1.8H00.2Co1.9Cu0.109 198 9. 1 0. 9 Bi2Sr1.8Fc0.2Co1.9Cu0.109 198 9. 1 0. 9	Bi ₂ Sr _{1.8} Fe _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7. 9	0.7
Bi2Sr1.8Zn0.2Co1.9Cu0.109 206 6.9 1.3 Bi2Sr1.8Pb0.2Co1.9Cu0.109 205 7.4 1.2 Bi2Sr1.8Ca0.2Co1.9Cu0.109 198 7.8 1.1 Bi2Sr1.8Ba0.2Co1.9Cu0.109 206 7.7 0.8 Bi2Sr1.8Al0.2Co1.9Cu0.109 198 8.0 1.3 Bi2Sr1.8Y0.2Co1.9Cu0.109 207 8.2 1.4 Bi2Sr1.8Aa0.2Co1.9Cu0.109 190 7.9 1.1 Bi2Sr1.8Ce0.2Co1.9Cu0.109 198 9.1 1.0 Bi2Sr1.8Pr0.2Co1.9Cu0.109 199 8.4 1.3 Bi2Sr1.8Pr0.2Co1.9Cu0.109 201 8.6 0.9 Bi2Sr1.8Su0.2Co1.9Cu0.109 210 8.2 1.1 Bi2Sr1.8Eu0.2Co1.9Cu0.109 206 7.9 1.4 Bi2Sr1.8Eu0.2Co1.9Cu0.109 205 8.6 1.2 Bi2Sr1.8Dy0.2Co1.9Cu0.109 198 9.1 0.9 Bi2Sr1.8Dy0.2Co1.9Cu0.109 198 9.1 0.9 Bi2Sr1.8Er0.2Co1.9Cu0.109 195 6.9 1.1 Bi2Sr1.8Er0.2Co1.9Cu0.109 195 6.9 1.1 Bi2Sr1.8Er0.2Co1.9Cu0.109 </td <td>Bi₂Sr_{1.8}Ni_{0.2}Co_{1.9}Cu_{0.1}O₉</td> <td>199</td> <td>6. 9</td> <td>1. 3</td>	Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	6. 9	1. 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	8. 1	0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	6. 9	1. 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	7. 4	1. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7. 8	1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	7. 7	0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} Al _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	8. 0	1.3
Bi2Sr1.8Ce0.2Co1.9Cu0.109 198 9. 1 1. 0 Bi2Sr1.8Pr0.2Co1.9Cu0.109 199 8. 4 1. 3 Bi2Sr1.8Nd0.2Co1.9Cu0.109 201 8. 6 0. 9 Bi2Sr1.8Sm0.2Co1.9Cu0.109 210 8. 2 1. 1 Bi2Sr1.8Eu0.2Co1.9Cu0.109 206 7. 9 1. 4 Bi2Sr1.8Gd0.2Co1.9Cu0.109 205 8. 6 1. 2 Bi2Sr1.8Dy0.2Co1.9Cu0.109 198 9. 1 0. 9 Bi2Sr1.8Ho0.2Co1.9Cu0.109 195 6. 9 1. 1 Bi2Sr1.8Er0.2Co1.9Cu0.109 200 7. 4 1. 2	Bi ₂ Sr _{1.8} Y _{0.2} Co _{1.9} Cu _{0.1} O ₉	207	8. 2	1.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Cu _{0.1} O ₉	190	7. 9	1. 1
Bi2Sr1.8Nd0.2C01.9Cu0.109 201 8.6 0.9 Bi2Sr1.8Sm0.2C01.9Cu0.109 210 8.2 1.1 Bi2Sr1.8Eu0.2C01.9Cu0.109 206 7.9 1.4 Bi2Sr1.8Gd0.2C01.9Cu0.109 205 8.6 1.2 Bi2Sr1.8Dy0.2C01.9Cu0.109 198 9.1 0.9 Bi2Sr1.8H00.2C01.9Cu0.109 195 6.9 1.1 Bi2Sr1.8Er0.2C01.9Cu0.109 200 7.4 1.2	Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	9. 1	1.0
Bi ₂ Sr _{1.8} Sm _{0.2} Co _{1.9} Cu _{0.1} O ₉ 210 8.2 1.1 Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Cu _{0.1} O ₉ 206 7.9 1.4 Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉ 205 8.6 1.2 Bi ₂ Sr _{1.8} Dy _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉ 195 6.9 1.1 Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉ 200 7.4 1.2	Bi ₂ Sr _{1.8} Pr _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	8. 4	1.3
Bi2Sr1.8Eu0.2Co1.9Cu0.109 206 7.9 1.4 Bi2Sr1.8Gd0.2Co1.9Cu0.109 205 8.6 1.2 Bi2Sr1.8Dy0.2Co1.9Cu0.109 198 9.1 0.9 Bi2Sr1.8Ho0.2Co1.9Cu0.109 195 6.9 1.1 Bi2Sr1.8Er0.2Co1.9Cu0.109 200 7.4 1.2	Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	8. 6	0.9
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉ 205 8.6 1.2 Bi ₂ Sr _{1.8} Dy _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 9.1 0.9 Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉ 195 6.9 1.1 Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉ 200 7.4 1.2	Bi ₂ Sr _{1.8} Sm _{0.2} Co _{1.9} Cu _{0.1} O ₉	210	8. 2	1. 1
Bi ₂ Sr _{1.8} Dy _{0.2} Co _{1.9} Cu _{0.1} O ₉ 198 9. 1 0. 9 Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉ 195 6. 9 1. 1 Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉ 200 7. 4 1. 2	Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	7. 9	1.4
Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉ 195 6.9 1.1 Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉ 200 7.4 1.2	Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	8. 6	1. 2
Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉ 200 7.4 1.2	Bi ₂ Sr _{1.8} Dy _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	9. 1	0.9
D. G. W. G. G.	Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉	195	6. 9	1. 1
Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} Cu _{0.1} O ₉ 203 7.8 0.9		200	7. 4	1. 2
	Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} Cu _{0.1} O ₉	203	7. 8	0. 9

[0205] [表47]

$Bi_{2}Pb_{0.2}Sr_{2}Co_{1.9}Cu_{0.1}O_{9}$	208	8. 0	1. 2
Bi ₂ Pb _{0,2} Sr _{1,8} Na _{0,2} Co _{1,9} Cu _{0,1} O ₉	198	8. 2	1. 4
Bi ₂ Pb _{0,2} Sr _{1,8} K _{0,2} Co _{1,9} Cu _{0,1} O ₉	199	7. 9	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Li _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	9. 1	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Ti _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	8. 4	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	8. 6	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Cr _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	7. 8	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Mn _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	9. 0	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Fe _{0.2} Co _{1.9} Cu _{0.1} O ₉	195	8. 2	0. 9
Bi ₂ Pb _{0,2} Sr _{1,8} Ni _{0,2} Co _{1,9} Cu _{0,1} O ₉	200	8. 3	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉	203	8. 6	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Zn _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	8. 7	0.9
Bi ₂ Pb _{0, 2} Sr _{1, 8} Pb _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	208	8. 3	1. 1
Bi ₂ Pb _{0, 2} Sr _{1, 8} Ca _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	198	9. 0	1. 2
Bi ₂ Pb _{0, 2} Sr _{1, 8} Ba _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	199	7. 9	1. 4
Bi ₂ Pb _{0, 2} Sr _{1, 8} A1 _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	200	.8. 1	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Y _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	8. 0	1.3
Bi ₂ Pb _{0,2} Sr _{1,8} La _{0,2} Co _{1,9} Cu _{0,1} O ₉	205	7.8	1.2
Bi ₂ Pb _{0,2} Sr _{1,8} Ce _{0,2} Co _{1,9} Cu _{0,1} O ₉	198	7. 2	1. 1
$Bi_{2}Pb_{0.2}Sr_{1.8}Pr_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	206	9. 0	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7. 8	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Sm _{0.2} Co _{1.9} Cu _{0.1} O ₉	207	7. 5	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Cu _{0.1} O ₉	190	8. 6	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	8. 2	1.0
$Bi_{2}Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	199	7. 9	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	6. 9	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉	210	9.0	1.1
$Bi_{2}Pb_{0.2}Sr_{1.8}Yb_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	206	7.8	1.4
•			
$\mathrm{Bi}_{2}\mathrm{Ca}_{2}\mathrm{Co}_{1.9}\mathrm{Cu}_{0.1}\mathrm{O}_{9}$	198	8. 6	0.9
$Bi_{2}Ca_{1.8}Na_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	195	8. 2	1.1
$Bi_{2}Ca_{1.8}K_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	200	7. 9	1. 2
$Bi_{2}Ca_{1.8}Li_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	203	6. 9	0.9
$Bi_{2}Ca_{1.8}Ti_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	201	8. 1	1. 1
$Bi_{2}Ca_{1.8}V_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	208	6. 9	1. 2
$Bi_{2}Ca_{1.8}Cr_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	198	7. 4	1. 0

[0206] [表48]

Bi ₂ Ca _{1.8} Mn _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	7. 8	1. 3
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	7. 7	1.0
Bi ₂ Ca _{1.8} Ni _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	8. 0	0.9
Bi ₂ Ca _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	8. 2	1. 1
Bi ₂ Ca _{1.8} Zn _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7. 9	1. 0
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	9. 1	1. 2
Bi ₂ Ca _{1.8} Sr _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	8. 4	1. 1
Bi ₂ Ca _{1,8} Ba _{0,2} Co _{1,9} Cu _{0,1} O ₉	199	8. 6	0. 9
Bi ₂ Ca _{1.8} Al _{0.2} Co _{1.9} Cu _{0.1} O ₉	210	8. 2	0.8
Bi ₂ Ca _{1,8} Y _{0,2} Co _{1,9} Cu _{0,1} O ₉	202	7. 9	1. 0
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Cu _{0.1} O ₉	204	8. 6	1. 3
Bi ₂ Ca _{1,8} Ce _{0,2} Co _{1,9} Cu _{0,1} O ₉	197	9. 1	1. 2
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} Cu _{0.1} O ₉	190	6. 9	1. 3
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7. 4	1.0
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	7. 8	0.8
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	7. 7	1. 1
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉	207	. 8. 0	1. 2
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Cu _{0.1} O ₉	190	8. 2	0.9
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7. 9	1. 1
Bi ₂ Ca _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	9. 1	1. 2
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	8. 4	1.4
Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} Cu _{0.1} O ₉	206	7. 8	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	9. 0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	8. 2	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Cu _{0.1} O ₉	195	9. 1	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Ti _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	8. 4	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} V _{0.2} Co _{1.9} Cu _{0.1} O ₉	203	8. 6	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	7.8	1. 1
$Bi_{2}Pb_{0,2}Ca_{1,8}Mn_{0,2}Co_{1,9}Cu_{0,1}O_{9}$	203	9. 0	1. 0
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	8. 2	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Ni _{0.2} Co _{1.9} Cu _{0.1} O ₉	208	8. 3	0. 9
Bi ₂ Pb _{0, 2} Ca _{1, 8} Cu _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	198	8. 6	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Zn _{0,2} Co _{1,9} Cu _{0,1} O ₉	199	8. 7	1.4
Bi ₂ Pb _{0,2} Ca _{1,8} Pb _{0,2} Co _{1,9} Cu _{0,1} O ₉	200	8. 3	1.2
Bi ₂ Pb _{0,2} Ca _{1,8} Sr _{0,2} Co _{1,9} Cu _{0,1} O ₉	206	9. 0	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	7. 9	1.1

[0207] [表49]

Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	8. 1	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	8.0	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7.8	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Ce _{0,2} Co _{1,9} Cu _{0,1} O ₉	207	7. 2	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co _{1.9} Cu _{0.1} O ₉	190	9. 0	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	8. 2	0,8
Bi ₂ Pb _{0.2} Ca _{1.8} Sm _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	7. 9	1. 3
Bi ₂ Pb _{0,2} Ca _{1,8} Eu _{0,2} Co _{1,9} Cu _{0,1} O ₉	201	6. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉	210	8. 1	1.1
Bi ₂ Pb _{0,2} Ca _{1,8} Dy _{0,2} Co _{1,9} Cu _{0,1} O ₉	206	6. 9	1.4
Bi ₂ Pb _{0,2} Ca _{1,8} Ho _{0,2} Co _{1,9} Cu _{0,1} O ₉	205	7.4	1.2
Bi ₂ Pb _{0,2} Ca _{1,8} Er _{0,2} Co _{1,9} Cu _{0,1} O ₉	198	7. 8	0. 9
Bi ₂ Pb _{0,2} Ca _{1,8} Yb _{0,2} Co _{1,9} Cu _{0,1} O ₉	195	7. 7	1. 1
Bi ₂ Ba ₂ Co _{1.9} Cu _{0.1} O ₉	203	8. 2	0. 9
Bi ₂ Ba _{1,8} Na _{0,2} Co _{1,9} Cu _{0,1} O ₉	201	7. 9	1. 1
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} Cu _{0.1} O ₉	208	9. 1	1. 2
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	8. 4	1. 4
$Bi_2Ba_{1.8}Ti_{0.2}Co_{1.9}Cu_{0.1}O_9$	199	8. 6	0.8
$Bi_2Ba_{1.8}V_{0.2}Co_{1.9}Cu_{0.1}O_9$	200	8. 2	1. 3
$Bi_{2}Ba_{1.8}Cr_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	206	7. 9	1. 2
$Bi_2Ba_{1.8}Mn_{0.2}Co_{1.9}Cu_{0.1}O_9$	206	8. 6	1. 1
$Bi_2Ba_{1.8}Fe_{0.2}Co_{1.9}Cu_{0.1}O_9$	198	9. 1	0.8
$\mathrm{Bi}_{2}\mathrm{Ba}_{1.8}\mathrm{Ni}_{0.2}\mathrm{Co}_{1.9}\mathrm{Cu}_{0.1}\mathrm{O}_{9}$	199	6. 9	1. 3
$Bi_2Ba_{1.8}Cu_{0.2}Co_{1.9}Cu_{0.1}O_9$	200	7. 4	1. 4
$Bi_2Ba_{1.8}Zn_{0.2}Co_{1.9}Cu_{0.1}O_9$	206	7.8	1. 1
$\mathrm{Bi}_{2}\mathrm{Ba}_{1.8}\mathrm{Pb}_{0.2}\mathrm{Co}_{1.9}\mathrm{Cu}_{0.1}\mathrm{O}_{9}$	205	7. 7	1. 0
$Bi_2Ba_{1.8}Ca_{0.2}Co_{1.9}Cu_{0.1}O_9$	198	8. 0	1. 3
$Bi_2Ba_{1.8}Sr_{0.2}Co_{1.9}Cu_{0.1}O_9$	199	8. 2	0. 9
Bi ₂ Ba _{1.8} Al _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	7. 9	1. 1
$Bi_2Ba_{1.8}Y_{0.2}Co_{1.9}Cu_{0.1}O_9$	199	9. 1	1. 4
$Bi_2Ba_{1.8}La_{0.2}Co_{1.9}Cu_{0.1}O_9$	210	8. 4	1. 2
$Bi_2Ba_{1.8}Ce_{0.2}Co_{1.9}Cu_{0.1}O_9$	202	8. 6	0. 9
$Bi_2Ba_{1.8}Pr_{0.2}Co_{1.9}Cu_{0.1}O_9$	204	7. 8	1. 1
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Cu _{0.1} O ₉	197	9. 0	1. 2
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Cu _{0.1} O ₉	190	8. 2	0.9
Bi ₂ Ba _{1,8} Eu _{0,2} Co _{1,9} Cu _{0,1} O ₉	198	8. 3	1. 1

[0208] [表50]

Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	8. 4	1. 2
$Bi_2Ba_{1.8}Dy_{0.2}Co_{1.9}Cu_{0.1}O_9$	201	6. 9	1.0
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉	207	8. 1	1.3
$Bi_2Ba_{1.8}Er_{0.2}Co_{1.9}Cu_{0.1}O_9$	190	6. 9	1.0
Bi ₂ Ba _{1,8} Yb _{0,2} Co _{1,9} Cu _{0,1} O ₉	198	7. 4	0.9
Bi ₂ Pb _{0,2} Ba ₂ Co _{1,9} Cu _{0,1} O ₉	201	7. 7	1.0
Bi ₂ Pb _{0, 2} Ba _{1, 8} Na _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	210	8. 0	1.2
Bi ₂ Pb _{0.2} Ba _{1.8} K _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	8. 2	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	7. 9	0.9
Bi ₂ Pb _{0, 2} Ba _{1, 8} Ti _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	198	9. 1	0.8
Bi ₂ Pb _{0, 2} Ba _{1, 8} V _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	195	8. 4	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	8. 6	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} Cu _{0.1} O ₉	203	8. 2	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Fe _{0,2} Co _{1,9} Cu _{0,1} O ₉	200	7. 9	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Cu _{0.1} O ₉	203	8. 6	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Cu _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	9. 1	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Zn _{0.2} Co _{1.9} Cu _{0.1} O ₉	208	6. 9	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Pb _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	7. 4	1.2
Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Cu _{0,1} O ₉	199	7.8	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} Cu _{0.1} O ₉	200	7. 7	1.1
Bi ₂ Pb _{0,2} Ba _{1,8} Al _{0,2} Co _{1,9} Cu _{0,1} O ₉	206	8. 0	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Y _{0,2} Co _{1,9} Cu _{0,1} O ₉	205	8. 2	0. 9
Bi ₂ Pb _{0,2} Ba _{1,8} La _{0,2} Co _{1,9} Cu _{0,1} O ₉	198	7. 9	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Ce _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	9. 1	1. 2
$Bi_{2}Pb_{0.2}Ba_{1.8}Pr_{0.2}Co_{1.9}Cu_{0.1}O_{9}$	198	8. 4	1.0
Bi ₂ Pb _{0, 2} Ba _{1, 8} Nd _{0, 2} Co _{1, 9} Cu _{0, 1} O ₉	207	8. 6	1. 3
$Bi_2Pb_{0,2}Ba_{1,8}Sm_{0,2}Co_{1,9}Cu_{0,1}O_9$	190	7.8	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Cu _{0.1} O ₉	198	9. 0	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Cu _{0.1} O ₉	199	8. 2	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Dy _{0.2} Co _{1.9} Cu _{0.1} O ₉	201	9. 1	1. 0
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Cu _{0.1} O ₉	210	8. 4	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Cu _{0.1} O ₉	206	8. 6	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Cu _{0.1} O ₉	205	7.8	0. 9
Bi ₂ Sr ₂ Co _{1.9} Ag _{0.1} O ₉	195	8. 2	1. 0
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	8. 3	1. 3

[0209] [表51]

Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Ag _{0.1} O ₉	203	8. 6	1. 2
Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	8. 7	0. 7
$Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}Ag_{0.1}O_9$	208	8. 3	1. 3
Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	9. 0	1. 4
Bi ₂ Sr _{1.8} Cr _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	7. 9	1. 1
Bi ₂ Sr _{1.8} Mn _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 1	1. 0
Bi ₂ Sr _{1.8} Fe _{0.2} Co _{1.9} Ag _{0.1} O ₉	207	8. 0	1. 3
Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	7. 8	0. 9
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	7. 2	1. 1
Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	9. 0	1. 4
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	8. 2	1. 2
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Ag _{0.1} O ₉	210	7. 9	0. 9
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	6. 9	1. 1
Bi ₂ Sr _{1.8} Al _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	8. 1	1. 2
Bi ₂ Sr _{1,8} Y _{0,2} Co _{1,9} Ag _{0,1} O ₉	198	6. 9	0. 9
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Ag _{0.1} O ₉	195	7. 4	1. 1
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	,7 . 8	1. 2
Bi ₂ Sr _{1.8} Pr _{0.2} Co _{1.9} Ag _{0.1} O ₉	203	7. 7	1. 4
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	8. 0	0.8
Bi ₂ Sr _{1.8} Sm _{0.2} Co _{1.9} Ag _{0.1} O ₉	208	8. 2	1. 3
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	7. 9	1. 2
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	9. 1	1. 1
$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}Ag_{0.1}O_9$	200	8. 4	0.8
Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	8. 6	1. 3
Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	8. 2	1. 4
$Bi_2Sr_{1.8}Yb_{0.2}Co_{1.9}Ag_{0.1}O_9$	198	7. 9	1. 1
Bi ₂ Pb _{0,2} Sr ₂ Co _{1,9} Ag _{0,1} O ₉	200	9. 1	1. 3
Bi ₂ Pb _{0,2} Sr _{1,8} Na _{0,2} Co _{1,9} Ag _{0,1} O ₉	206	6. 9	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} K _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	7. 4	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Li _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	7. 8	1. 4
Bi ₂ Pb _{0.2} Sr _{1.8} Ti _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	7. 7	1. 2
Bi ₂ Pb _{0,2} Sr _{1,8} V _{0,2} Co _{1,9} Ag _{0,1} O ₉	200	8. 0	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Cr _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	8. 2	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Mn _{0.2} Co _{1.9} Ag _{0.1} O ₉	210	7. 9	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Fe _{0.2} Co _{1.9} Ag _{0.1} O ₉	202	9. 1	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Ni _{0.2} Co _{1.9} Ag _{0.1} O ₉	204	8. 4	1. 1

[0210] [表52]

Bi ₂ Pb _{0, 2} Sr _{1, 8} Cu _{0, 2} Co _{1, 9} Ag _{0, 1} O ₉	197	8.6	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Zn _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	7.8	1. 4
Bi ₂ Pb _{0.2} Sr _{1.8} Pb _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	9.0	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Ca _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	8. 2	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	8.3	1.2
Bi ₂ Pb _{0.2} Sr _{1.8} Al _{0.2} Co _{1.9} Ag _{0.1} O ₉	207	8.4	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Y _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	8.6	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 2	0.7
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	7. 9	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Pr _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	8. 6	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} Ag _{0.1} O ₉	210	9. 1	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Sm _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	6. 9	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	7.4	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	7.8	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Dy _{0.2} Co _{1.9} Ag _{0.1} O ₉	195	7. 7	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Ho _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	8. 0	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} Ag _{0.1} O ₉	203	8. 2	1.1
Bi ₂ Pb _{0.2} Sr _{1.8} Yb _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	7.9	1.0
Bi ₂ Ca ₂ Co _{1.9} Ag _{0.1} O ₉	201	8. 4	0. 9
Bi ₂ Ca _{1,8} Na _{0,2} Co _{1,9} Ag _{0,1} O ₉	208	8. 6	1.1
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	7.8	1.4
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	9. 0	1. 2
$Bi_{2}Ca_{1.8}Ti_{0.2}Co_{1.9}Ag_{0.1}O_{9}$	200	8. 2	0. 9
Bi ₂ Ca _{1.8} V _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	8.3	1.1
Bi ₂ Ca _{1.8} Cr _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	8. 6	1.2
Bi ₂ Ca _{1.8} Mn _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8.7	0. 9
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	8. 3	1.1
Bi ₂ Ca _{1.8} Ni _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	9. 0	1. 2
Bi ₂ Ca _{1.8} Cu _{0.2} Co _{1.9} Ag _{0.1} O ₉	207	7. 9	1.4
Bi ₂ Ca _{1.8} Zn _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	8. 1	0.8
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 0	1. 3
Bi ₂ Ca _{1.8} Sr _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	7.8	1. 2
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	7. 2	1. 1
Bi ₂ Ca _{1.8} Al _{0.2} Co _{1.9} Ag _{0.1} O ₉	210	9. 0	1. 4
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	8. 2	1. 2
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	7.9	0. 9

[0211] [表53]

Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	6. 9	1. 1
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} Ag _{0.1} O ₉	195	8. 1	1. 2
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	6. 9	0. 9
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Ag _{0.1} O ₉	203	7. 4	1. 1
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	7. 8	1. 2
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Ag _{0.1} O ₉	208	7. 7	1. 4
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 0	0.8
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	8. 2	1. 3
$Bi_{2}Ca_{1.8}Er_{0.2}Co_{1.9}Ag_{0.1}O_{9}$	200	7. 9	1. 2
$Bi_{2}Ca_{1,8}Yb_{0,2}Co_{1,9}Ag_{0,1}O_{9}$	206	9. 1	1. 1
			*
Bi ₂ Pb _{0,2} Ca ₂ Co _{1,9} Ag _{0,1} O ₉	198	8. 6	1.3
Bi ₂ Pb _{0,2} Ca _{1,8} Na _{0,2} Co _{1,9} Ag _{0,1} O ₉	199	8. 2	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	7. 9	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	8. 6	1.0
$Bi_{2}Pb_{0,2}Ca_{1,8}Ti_{0,2}Co_{1,9}Ag_{0,1}O_{9}$	205	9. 1	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} V _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	6. 9	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	7. 4	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Mn _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	7. 8	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	7. 7	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ni _{0.2} Co _{1.9} Ag _{0.1} O ₉	210	8. 0	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co _{1.9} Ag _{0.1} O ₉	202	8. 2	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Zn _{0,2} Co _{1,9} Ag _{0,1} O ₉	204	7. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Pb _{0.2} Co _{1.9} Ag _{0.1} O ₉	197	9. 1	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	8. 4	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 6	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	7. 8	1. 0
$Bi_{2}Pb_{0,2}Ca_{1,8}Y_{0,2}Co_{1,9}Ag_{0,1}O_{9}$	201	9. 0	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Ag _{0.1} O ₉	207	8. 2	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Ce _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	8. 3	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 6	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	8. 7	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Sm _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	8. 3	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Eu _{0.2} Co _{1.9} Ag _{0.1} O ₉	210	9. 0	1. 1
Bi ₂ Pb _{0, 2} Ca _{1, 8} Gd _{0, 2} Co _{1, 9} Ag _{0, 1} O ₉	206	7. 9	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Dy _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	8. 1	0.8
Bi ₂ Pb _{0,2} Ca _{1,8} Ho _{0,2} Co _{1,9} Ag _{0,1} O ₉	198	8. 0	1. 0

[0212] [表54]

Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} Ag _{0.1} O ₉	195	7. 8	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	7. 2	1. 2
Bi ₂ Ba ₂ Co _{1.9} Ag _{0.1} O ₉	200	7. 8	1.0
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Ag _{0.1} O ₉	203	7. 5	1.3
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	8. 6	0.9
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} Ag _{0.1} O ₉	208	8. 2	1.1
Bi ₂ Ba _{1.8} Ti _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	7. 9	1.4
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	6. 9	1. 2
$Bi_{2}Ba_{1.8}Cr_{0.2}Co_{1.9}Ag_{0.1}O_{9}$	200	9. 0	0.9
Bi ₂ Ba _{1.8} Mn _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	7. 8	1.1
Bi ₂ Ba _{1.8} Fe _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	7. 5	1. 2
Bi ₂ Ba _{1.8} Ni _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 6	0.9
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	8. 2	1. 1
$Bi_2Ba_{1.8}Zn_{0.2}Co_{1.9}Ag_{0.1}O_9$	198	7. 9	1.2
Bi ₂ Ba _{1.8} Pb _{0.2} Co _{1.9} Ag _{0.1} O ₉	207	6. 9	1.0
Bi ₂ Ba _{1.8} Ca _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	,8. 1	1.3
Bi ₂ Ba _{1.8} Sr _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	6. 9	1.0
$Bi_2Ba_{1.8}Al_{0.2}Co_{1.9}Ag_{0.1}O_9$	198	7. 4	0.9
$Bi_2Ba_{1.8}Y_{0.2}Co_{1.9}Ag_{0.1}O_9$	199	7. 8	1.1
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	7. 7	1. 0
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} Ag _{0.1} O ₉	210	8. 0	1. 2
$Bi_2Ba_{1.8}Pr_{0.2}Co_{1.9}Ag_{0.1}O_9$	206	8. 2	1.1
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	7. 9	0.9
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	9. 1	0.8
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Ag _{0.1} O ₉	195	8. 4	1.0
Bi ₂ Ba _{1,8} Gd _{0,2} Co _{1,9} Ag _{0,1} O ₉	200	8. 6	1. 3
Bi ₂ Ba _{1,8} Dy _{0,2} Co _{1,9} Ag _{0,1} O ₉	203	8. 2	1. 2
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	7. 9	1. 3
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} Ag _{0.1} O ₉	208	8. 6	1.0
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	9. 1	0.8
		:	
Bi ₂ Pb _{0.2} Ba ₂ Co _{1.9} Ag _{0.1} O ₉	200	7. 4	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Na _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	7. 8	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} K _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	7. 7	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 0	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Ti _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	8. 2	1. 4

[0213] [表55]

Bi ₂ Pb _{0,2} Ba _{1,8} V _{0,2} Co _{1,9} Ag _{0,1} O ₉	200	7. 9	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Ag _{0.1} O ₉	206	9. 1	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	8. 4	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 6	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	7.8	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Cu _{0.2} Co _{1.9} Ag _{0.1} O ₉	200	9. 0	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Zn _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	8. 2	1.4
Bi ₂ Pb _{0,2} Ba _{1,8} Pb _{0,2} Co _{1,9} Ag _{0,1} O ₉	210	9. 1	1.1
Bi ₂ Pb _{0, 2} Ba _{1, 8} Ca _{0, 2} Co _{1, 9} Ag _{0, 1} O ₉	202	8. 4	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} Ag _{0.1} O ₉	204	8. 6	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Ag _{0.1} O ₉	197	7. 8	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Ag _{0.1} O ₉	190	9. 0	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} La _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8. 4	1.4
Bi ₂ Pb _{0,2} Ba _{1,8} Ce _{0,2} Co _{1,9} Ag _{0,1} O ₉	199	7.8	1.2
Bi ₂ Pb _{0.2} Ba _{1.8} Pr _{0.2} Co _{1.9} Ag _{0.1} O ₉	201	9. 0	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} Ag _{0.1} O ₉	207	8. 2	1.1
$Bi_{2}Pb_{0,2}Ba_{1,8}Sm_{0,2}Co_{1,9}Ag_{0,1}O_{9}$	190	8. 3	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Ag _{0.1} O ₉	198	8.6	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Ag _{0.1} O ₉	199	8. 7	1.1
$Bi_{2}Pb_{0.2}Ba_{1.8}Dy_{0.2}Co_{1.9}Ag_{0.1}O_{9}$	201	8. 3	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Ho _{0,2} Co _{1,9} Ag _{0,1} O ₉	210	9. 0	1.4
$Bi_{2}Pb_{0,2}Ba_{1,8}Er_{0,2}Co_{1,9}Ag_{0,1}O_{9}$	206	7. 9	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Ag _{0.1} O ₉	205	8. 1	1.3
$Bi_2Sr_2Co_{1.9}Mo_{0.1}O_9$	195	7. 8	1.1
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	7. 2	1.4
Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Mo _{0.1} O ₉	203	9. 0	1. 2
$Bi_2Sr_{1.8}Li_{0.2}Co_{1.9}Mo_{0.1}O_9$	200	8. 2	0. 9
$Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}Mo_{0.1}O_9$	203	7. 9	1. 1
Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	6. 9	1. 2
$Bi_2Sr_{1.8}Cr_{0.2}Co_{1.9}Mo_{0.1}O_9$	208	8. 1	0.9
$Bi_2Sr_{1.8}Mn_{0.2}Co_{1.9}Mo_{0.1}O_9$	198	6. 9	1. 1
Bi ₂ Sr _{1.8} Fe _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	7. 4	1. 2
Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	7.8	1. 4
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	7. 7	0.8
$Bi_2Sr_{1.8}Zn_{0.2}Co_{1.9}Mo_{0.1}O_9$	200	8. 0	1. 3
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 2	1. 2

[0214] [表56]

Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	7. 9	1. 1
Bi ₂ Sr _{1,8} Ba _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	9. 1	0.8
$Bi_2Sr_{1.8}A1_{0.2}Co_{1.9}Mo_{0.1}O_9$	199	8. 4	1.3
$Bi_2Sr_{1.8}Y_{0.2}Co_{1.9}Mo_{0.1}O_9$	200	8. 6	1.4
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 2	1. 1
$Bi_2Sr_{1.8}Ce_{0.2}Co_{1.9}Mo_{0.1}O_9$	205	7. 9	1.0
$Bi_2Sr_{1.8}Pr_{0.2}Co_{1.9}Mo_{0.1}O_9$	198	8. 6	1.3
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	9. 1	0. 9
$Bi_2Sr_{1.8}Sm_{0.2}Co_{1.9}Mo_{0.1}O_9$	200	6. 9	1.1
$Bi_2Sr_{1.8}Eu_{0.2}Co_{1.9}Mo_{0.1}O_9$	199	7. 4	1.4
$Bi_2Sr_{1.8}Gd_{0.2}Co_{1.9}Mo_{0.1}O_9$	210	7. 8	1. 2
$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}Mo_{0.1}O_9$	202	7. 7	0. 9
$Bi_2Sr_{1.8}Ho_{0.2}Co_{1.9}Mo_{0.1}O_9$	204	8. 0	1.1
$Bi_2Sr_{1.8}Er_{0.2}Co_{1.9}Mo_{0.1}O_9$	197	8. 2	1. 2
$Bi_2Sr_{1.8}Yb_{0.2}Co_{1.9}Mo_{0.1}O_9$	190	7. 9	0.9
$Bi_{2}Pb_{0,2}Sr_{2}Co_{1,9}Mo_{0,1}O_{9}$	199	8. 4	1.2
Bi ₂ Pb _{0,2} Sr _{1,8} Na _{0,2} Co _{1,9} Mo _{0,1} O ₉	201	8. 6	1.0
$Bi_{2}Pb_{0,2}Sr_{1,8}K_{0,2}Co_{1,9}Mo_{0,1}O_{9}$	207	7. 8	1.3
$Bi_{2}Pb_{0.2}Sr_{1.8}Li_{0.2}Co_{1.9}Mo_{0.1}O_{9}$	190	9. 0	1.0
$Bi_{2}Pb_{0,2}Sr_{1,8}Ti_{0,2}Co_{1,9}Mo_{0,1}O_{9}$	198	8. 2	0.9
$Bi_{2}Pb_{0,2}Sr_{1,8}V_{0,2}Co_{1,9}Mo_{0,1}O_{9}$	199	8. 3	1.1
$Bi_{2}Pb_{0,2}Sr_{1,8}Cr_{0,2}Co_{1,9}Mo_{0,1}O_{9}$	201	8. 4	1.0
$Bi_2Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}Mo_{0.1}O_9$	210	8. 6	1. 2
$Bi_{2}Pb_{0,2}Sr_{1,8}Fe_{0,2}Co_{1,9}Mo_{0,1}O_{9}$	206	8. 2	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Ni _{0.2} Co _{1.9} Mo _{0.1} O ₉	205	7. 9	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Cu _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	8. 6	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Zn _{0.2} Co _{1.9} Mo _{0.1} O ₉	195	9. 1	1.0
Bi ₂ Pb _{0.2} Sr _{1.8} Pb _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	6. 9	1.3
Bi ₂ Pb _{0, 2} Sr _{1, 8} Ca _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	203	7. 4	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	7.8	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Al _{0.2} Co _{1.9} Mo _{0.1} O ₉	203	7. 7	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Y _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	8. 0	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} Mo _{0.1} O ₉	208	8. 2	1.4
$Bi_{2}Pb_{0.2}Sr_{1.8}Ce_{0.2}Co_{1.9}Mo_{0.1}O_{9}$	198	7. 9	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Pr _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	9. 1	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	8. 4	1. 1

[0215] [表57]

$Bi_{2}Pb_{0,2}Sr_{1,8}Sm_{0,2}Co_{1,9}Mo_{0,1}O_{9}$	203	8. 6	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	7. 8	0.9
Bi ₂ Pb _{0, 2} Sr _{1, 8} Gd _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	203	9. 0	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Dy _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	8. 2	1. 2
Bi ₂ Pb _{0, 2} Sr _{1, 8} Ho _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	208	8. 3	1. 0
Bi ₂ Pb _{0, 2} Sr _{1, 8} Er _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	198	8, 6	1. 3
Bi ₂ Pb _{0, 2} Sr _{1, 8} Yb _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	199	8. 7	1.0
,			
$Bi_2Ca_2Co_{1.9}Mo_{0.1}O_9$	199	9. 0	1. 1
Bi ₂ Ca _{1.8} Na _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	7. 9	1. 0
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 1	1. 2
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 0	1. 1
$Bi_2Ca_{1.8}Ti_{0.2}Co_{1.9}Mo_{0.1}O_9$	198	7. 8	0. 9
Bi ₂ Ca _{1.8} V _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	7. 2	0.8
$Bi_2Ca_{1.8}Cr_{0.2}Co_{1.9}Mo_{0.1}O_9$	200	9. 0	1.0
Bi ₂ Ca _{1.8} Mn _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 2	1. 3
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Mo _{0.1} O ₉	205	.7 . 9	1. 2
Bi ₂ Ca _{1.8} Ni _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	6. 9	0. 7
Bi ₂ Ca _{1.8} Cu _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	8. 1	1. 3
$Bi_{2}Ca_{1.8}Zn_{0.2}Co_{1.9}Mo_{0.1}O_{9}$	200	6. 9	1.4
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	7. 4	1. 1
$Bi_{2}Ca_{1.8}Sr_{0.2}Co_{1.9}Mo_{0.1}O_{9}$	210	7. 8	1.0
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} Mo _{0.1} O ₉	202	7. 7	1. 3
Bi ₂ Ca _{1.8} Al _{0.2} Co _{1.9} Mo _{0.1} O ₉	204	8. 0	0.9
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} Mo _{0.1} O ₉	197	8. 2	1.1
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Mo _{0.1} O ₉	190	7. 9	1.4
Bi ₂ Ca _{1,8} Ce _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	9. 1	1. 2
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	8. 4	0. 9
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	8. 6	1. 1
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Mo _{0.1} O ₉	207	8. 2	1. 2
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Mo _{0.1} O ₉	190	7. 9	0.9
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	8. 6	1. 1
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	9. 1	1. 2
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	6. 9	1.4
Bi ₂ Ca _{1.8} Er _{0.2} Co _{1.9} Mo _{0.1} O ₉	210	7. 4	0.8
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	7. 8	1.3

[0216] [表58]

Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} Mo _{0.1} O ₉	201	8. 0	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} Mo _{0.1} O ₉	207	8. 2	0.8
Bi ₂ Pb _{0,2} Ca _{1,8} K _{0,2} Co _{1,9} Mo _{0,1} O ₉	190	7. 9	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	9. 1	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Ti _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	8. 4	1.1
Bi ₂ Pb _{0,2} Ca _{1,8} V _{0,2} Co _{1,9} Mo _{0,1} O ₉	201	8. 6	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} Mo _{0.1} O ₉	210	7.8	1.3
Bi ₂ Pb _{0,2} Ca _{1,8} Mn _{0,2} Co _{1,9} Mo _{0,1} O ₉	206	9. 0	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} Mo _{0.1} O ₉	205	8. 2	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Ni _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	8. 3	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co _{1.9} Mo _{0.1} O ₉	195	8.6	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Zn _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	8. 7	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Pb _{0.2} Co _{1.9} Mo _{0.1} O ₉	203	8. 3	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	9. 0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Mo _{0.1} O ₉	203	7. 9	0. 9
Bi ₂ Pb _{0,2} Ca _{1,8} Al _{0,2} Co _{1,9} Mo _{0,1} O ₉	201	8. 1	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co _{1.9} Mo _{0.1} O ₉	208	8. 0	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} La _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	7.8	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Ce _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	7. 2	0.8
Bi ₂ Pb _{0,2} Ca _{1,8} Pr _{0,2} Co _{1,9} Mo _{0,1} O ₉	200	9. 0	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	7. 8	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Sm _{0,2} Co _{1,9} Mo _{0,1} O ₉	205	7. 5	1.1
Bi ₂ Pb _{0,2} Ca _{1,8} Eu _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	8. 6	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 2	0. 7
Bi ₂ Pb _{0,2} Ca _{1,8} Dy _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	7.9	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} Mo _{0.1} O ₉	207	6. 9	0.8
$Bi_{2}Pb_{0,2}Ca_{1,8}Er_{0,2}Co_{1,9}Mo_{0,1}O_{9}$	190	9. 0	. 1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} Mo _{0.1} O ₉	190	7.8	1. 2
Bi ₂ Ba ₂ Co _{1,9} Mo _{0,1} O ₉	199	8.6	0.8
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	8. 2	1. 3
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} Mo _{0.1} O ₉	210	7. 9	1.4
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	6.9	1.1
$Bi_2Ba_{1.8}Ti_{0.2}Co_{1.9}Mo_{0.1}O_9$	205	8. 1	1.0
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	6. 9	1.3
Bi ₂ Ba _{1.8} Cr _{0.2} Co _{1.9} Mo _{0.1} O ₉	195	7.4	0.9
Bi ₂ Ba _{1.8} Mn _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	7.8	1.1

[0217] [表59]

Bi ₂ Ba _{1.8} Fe _{0.2} Co _{1.9} Mo _{0.1} O ₉	203	7. 7	1. 4
Bi ₂ Ba _{1.8} Ni _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	8. 0	1. 2
Bi ₂ Ba _{1,8} Cu _{0,2} Co _{1,9} Mo _{0,1} O ₉	208	8. 2	0.9
Bi ₂ Ba _{1.8} Zn _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	7. 9	1. 1
Bi ₂ Ba _{1.8} Pb _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	9. 1	1. 2
Bi ₂ Ba _{1,8} Ca _{0,2} Co _{1,9} Mo _{0,1} O ₉	200	8. 4	0. 9
Bi ₂ Ba _{1.8} Sr _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 6	1.1
Bi ₂ Ba _{1.8} Al _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	8. 2	1. 2
Bi ₂ Ba _{1.8} Y _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	7. 9	1. 4
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	8. 6	0.8
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	9. 1	1.3
Bi ₂ Ba _{1.8} Pr _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	6. 9	1. 2
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Mo _{0.1} O ₉	205	7.4	1.1
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	7.8	1.4
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	7. 7	1. 2
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	8. 0	0.9
Bi ₂ Ba _{1,8} Dy _{0,2} Co _{1,9} Mo _{0,1} O ₉	199	8. 2	1.1
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Mo _{0.1} O ₉	210	7. 9	1. 2
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} Mo _{0.1} O ₉	202	9. 1	0.9
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} Mo _{0.1} O ₉	204	8. 4	1. 1
Bi ₂ Pb _{0.2} Ba ₂ Co _{1.9} Mo _{0.1} O ₉	190	7.8	1. 4
Bi ₂ Pb _{0,2} Ba _{1,8} Na _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	9. 0	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} K _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	8. 2	1. 3
Bi ₂ Pb _{0,2} Ba _{1,8} Li _{0,2} Co _{1,9} Mo _{0,1} O ₉	201	9. 1	1. 2
Bi ₂ Pb _{0, 2} Ba _{1, 8} Ti _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	207	8. 4	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} V _{0,2} Co _{1,9} Mo _{0,1} O ₉	190	8.6	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	7.8	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	9.0	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} Mo _{0.1} O ₉	201	8. 4	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Mo _{0.1} O ₉	210	8. 2	1.0
Bi ₂ Pb _{0,2} Ba _{1,8} Cu _{0,2} Co _{1,9} Mo _{0,1} O ₉	206	9. 1	1. 3
Bi ₂ Pb _{0, 2} Ba _{1, 8} Zn _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	205	8. 4	0. 9
Bi ₂ Pb _{0,2} Ba _{1,8} Pb _{0,2} Co _{1,9} Mo _{0,1} O ₉	198	8. 6	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} Mo _{0.1} O ₉	195	7.8	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	9. 0	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Mo _{0.1} O ₉	203	8. 2	0. 9

[0218] [表60]

Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	8. 3	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} La _{0.2} Co _{1.9} Mo _{0.1} O ₉	203	8. 6	1. 2
Bi ₂ Pb _{0, 2} Ba _{1, 8} Ce _{0, 2} Co _{1, 9} Mo _{0, 1} O ₉	201	8. 7	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Pr _{0.2} Co _{1.9} Mo _{0.1} O ₉	208	8. 3	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	9. 0	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Sm _{0,2} Co _{1,9} Mo _{0,1} O ₉	199	7. 9	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	8. 1	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Mo _{0.1} O ₉	199	8. 0	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Dy _{0.2} Co _{1.9} Mo _{0.1} O ₉	200	7. 8	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	7. 2	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Mo _{0.1} O ₉	206	9. 0	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Mo _{0.1} O ₉	198	8. 2	1. 2
Bi ₂ Sr ₂ Co _{1.9} W _{0.1} O ₉	200	6. 9	0.9
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} W _{0.1} O ₉	206	8. 1	0, 8
Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} W _{0.1} O ₉	205	6. 9	0.8
Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} W _{0.1} O ₉	198	7.4	1. 3
Bi ₂ Sr _{1,8} Ti _{0,2} Co _{1,9} W _{0,1} O ₉	199	7.8	1. 2
Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} W _{0.1} O ₉	200	7. 7	1. 1
Bi ₂ Sr _{1.8} Cr _{0.2} Co _{1.9} W _{0.1} O ₉	199	8. 0	1. 4
Bi ₂ Sr _{1.8} Mn _{0.2} Co _{1.9} W _{0.1} O ₉	210	8. 2	1. 2
Bi ₂ Sr _{1.8} Fe _{0.2} Co _{1.9} W _{0.1} O ₉	202	7. 9	0. 9
Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} W _{0.1} O ₉	204	9. 1	1. 1
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} W _{0.1} O ₉	197	8. 4	1. 2
Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} W _{0.1} O ₉	190	8. 6	0. 9
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 2	1. 1
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} W _{0.1} O ₉	199	7. 9	1. 2
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} W _{0.1} O ₉	201	8. 6	1. 4
Bi ₂ Sr _{1.8} Al _{0.2} Co _{1.9} W _{0.1} O ₉	207	9. 1	0.8
Bi ₂ Sr _{1.8} Y _{0.2} Co _{1.9} W _{0.1} O ₉	190	6. 9	1. 3
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} W _{0.1} O ₉	198	7.4	1. 2
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} W _{0.1} O ₉	199	7.8	1. 1
Bi ₂ Sr _{1.8} Pr _{0.2} Co _{1.9} W _{0.1} O ₉	201	7. 7	0.8
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} W _{0.1} O ₉	210	8.0	1.3
Bi ₂ Sr _{1.8} Sm _{0.2} Co _{1.9} W _{0.1} O ₉	206	8. 2	1.4
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} W _{0.1} O ₉	205	7.9	1.1
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} W _{0.1} O ₉	198	9. 1	1. 0

[0219] [表61]

$Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}W_{0.1}O_9$	195	8. 4	1. 3
Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} W _{0.1} O ₉	200	8. 6	0.9
Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} W _{0.1} O ₉	203	7. 8	1. 1
$Bi_{2}Sr_{1.8}Yb_{0.2}Co_{1.9}W_{0.1}O_{9}$	200	9. 0	1.4
Bi ₂ Pb _{0.2} Sr ₂ Co _{1.9} W _{0.1} O ₉	201	8. 3	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Na _{0.2} Co _{1.9} W _{0.1} O ₉	208	8. 4	1. 1
$Bi_{2}Pb_{0,2}Sr_{1,8}K_{0,2}Co_{1,9}W_{0,1}O_{9}$	198	8. 6	1. 2
$Bi_{2}Pb_{0.2}Sr_{1.8}Li_{0.2}Co_{1.9}W_{0.1}O_{9}$	199	8. 2	0.9
$Bi_{2}Pb_{0,2}Sr_{1,8}Ti_{0,2}Co_{1,9}W_{0,1}O_{9}$	200	7. 9	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co _{1.9} W _{0.1} O ₉	203	8. 6	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Cr _{0.2} Co _{1.9} W _{0.1} O ₉	200	9. 1	1.0
$Bi_{2}Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}W_{0.1}O_{9}$	203	6. 9	1. 3
$Bi_{2}Pb_{0.2}Sr_{1.8}Fe_{0.2}Co_{1.9}W_{0.1}O_{9}$	201	7. 4	1. 0
$Bi_{2}Pb_{0.2}Sr_{1.8}Ni_{0.2}Co_{1.9}W_{0.1}O_{9}$	208	7. 8	0. 9
$Bi_{2}Pb_{0.2}Sr_{1.8}Cu_{0.2}Co_{1.9}W_{0.1}O_{9}$	198	7. 7	1. 1
$Bi_{2}Pb_{0,2}Sr_{1,8}Zn_{0,2}Co_{1,9}W_{0,1}O_{9}$	199	8. 0	1. 0
Bi ₂ Pb _{0, 2} Sr _{1, 8} Pb _{0, 2} Co _{1, 9} W _{0, 1} O ₉	200	8. 2	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Ca _{0.2} Co _{1.9} W _{0.1} O ₉	199	7. 9	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co _{1.9} W _{0.1} O ₉	200	9. 1	0. 9
$Bi_{2}Pb_{0.2}Sr_{1.8}Al_{0.2}Co_{1.9}W_{0.1}O_{9}$	206	8. 4	0.8
Bi ₂ Pb _{0,2} Sr _{1,8} Y _{0,2} Co _{1,9} W _{0,1} O ₉	206	8. 6	1. 0
Bi ₂ Pb _{0, 2} Sr _{1, 8} La _{0, 2} Co _{1, 9} W _{0, 1} O ₉	198	7. 8	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co _{1.9} W _{0.1} O ₉	199	9. 0	1. 2
$Bi_{2}Pb_{0,2}Sr_{1,8}Pr_{0,2}Co_{1,9}W_{0,1}O_{9}$	200	8. 2	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} W _{0.1} O ₉	206	8. 3	1. 0
$Bi_{2}Pb_{0,2}Sr_{1,8}Sm_{0,2}Co_{1,9}W_{0,1}O_{9}$	205	8. 6	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 7	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} W _{0.1} O ₉	199	8. 3	1. 1
$Bi_{2}Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_{1.9}W_{0.1}O_{9}$	200	9. 0	1. 4
Bi ₂ Pb _{0.2} Sr _{1.8} Ho _{0.2} Co _{1.9} W _{0.1} O ₉	199	7. 9	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} W _{0.1} O ₉	210	8. 1	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Yb _{0.2} Co _{1.9} W _{0.1} O ₉	202	8. 0	1. 1
Bi ₂ Ca ₂ Co _{1.9} W _{0.1} O ₉	197	7. 2	0. 9
Bi ₂ Ca _{1.8} Na _{0.2} Co _{1.9} W _{0.1} O ₉	190	9. 0	1. 1
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 2	1. 2

[0220] [表62]

Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} W _{0.1} O ₉	199	7. 9	1. 0
Bi ₂ Ca _{1.8} Ti _{0.2} Co _{1.9} W _{0.1} O ₉	201	6. 9	1. 3
Bi ₂ Ca _{1,8} V _{0,2} Co _{1,9} W _{0,1} O ₉	207	8. 1	1.0
$Bi_{2}Ca_{1.8}Cr_{0.2}Co_{1.9}W_{0.1}O_{9}$	208	6. 9	0. 9
Bi ₂ Ca _{1.8} Mn _{0.2} Co _{1.9} W _{0.1} O ₉	198	7.4	1. 1
$Bi_{2}Ca_{1.8}Fe_{0.2}Co_{1.9}W_{0.1}O_{9}$	199	7.8	1.0
Bi ₂ Ca _{1.8} Ni _{0.2} Co _{1.9} W _{0.1} O ₉	200	7. 7	1. 2
Bi ₂ Ca _{1,8} Cu _{0,2} Co _{1,9} W _{0,1} O ₉	206	8.0	1. 1
Bi ₂ Ca _{1.8} Zn _{0.2} Co _{1.9} W _{0.1} O ₉	205	8. 2	0. 9
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} W _{0.1} O ₉	198	7.9	0.8
Bi ₂ Ca _{1.8} Sr _{0.2} Co _{1.9} W _{0.1} O ₉	206	9. 1	1.0
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 4	1. 3
$Bi_{2}Ca_{1,8}A1_{0,2}Co_{1,9}W_{0,1}O_{9}$	207	8. 6	1. 2
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} W _{0.1} O ₉	190	8. 2	1. 3
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} W _{0.1} O ₉	198	7. 9	1.0
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} W _{0.1} O ₉	199	8. 6	0.8
$Bi_{2}Ca_{1.8}Pr_{0.2}Co_{1.9}W_{0.1}O_{9}$	201	9. 1	1. 1
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} W _{0.1} O ₉	210	6. 9	1. 2
$Bi_{2}Ca_{1.8}Sm_{0.2}Co_{1.9}W_{0.1}O_{9}$	206	7. 4	0.9
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} W _{0.1} O ₉	205	7. 8	1. 1
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} W _{0.1} O ₉	198	7. 7	1. 2
$Bi_2Ca_{1.8}Dy_{0.2}Co_{1.9}W_{0.1}O_9$	195	8. 0	1. 4
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} W _{0.1} O ₉	200	8. 2	0.8
Bi ₂ Ca _{1.8} Er _{0.2} Co _{1.9} W _{0.1} O ₉	203	7. 9	1.3
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} W _{0.1} O ₉	201	9. 1	1.2
Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} W _{0.1} O ₉	198	8. 6	0.8
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} W _{0.1} O ₉	199	7. 8	1.3
$Bi_{2}Pb_{0.2}Ca_{1.8}K_{0.2}Co_{1.9}W_{0.1}O_{9}$	200	9. 0	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} W _{0.1} O ₉	206	8. 2	1. 1
$Bi_{2}Pb_{0,2}Ca_{1,8}Ti_{0,2}Co_{1,9}W_{0,1}O_{9}$	206	8. 3	1. 0
Bi ₂ Pb _{0.2} Ca _{1.8} V _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 6	1. 3
Bi ₂ Pb _{0,2} Ca _{1,8} Cr _{0,2} Co _{1,9} W _{0,1} O ₉	199	8. 7	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Mn _{0.2} Co _{1.9} W _{0.1} O ₉	200	8. 3	1. 1
$Bi_{2}Pb_{0.2}Ca_{1.8}Fe_{0.2}Co_{1.9}W_{0.1}O_{9}$	206	9. 0	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Ni _{0.2} Co _{1.9} W _{0.1} O ₉	205	7. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Cu _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 1	0.9

[0221] [表63]

Bi ₂ Pb _{0,2} Ca _{1,8} Zn _{0,2} Co _{1,9} W _{0,1} O ₉	199	8.0	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Pb _{0.2} Co _{1.9} W _{0.1} O ₉	200	7.8	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} W _{0.1} O ₉	199	7. 2	0. 9
Bi ₂ Pb _{0,2} Ca _{1,8} Ba _{0,2} Co _{1,9} W _{0,1} O ₉	210	9.0	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co _{1.9} W _{0.1} O ₉	202	7.8	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co _{1.9} W _{0.1} O ₉	204	7. 5	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} W _{0.1} O ₉	197	8. 6	0.8
Bi ₂ Pb _{0,2} Ca _{1,8} Ce _{0,2} Co _{1,9} W _{0,1} O ₉	190	8. 2	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co _{1.9} W _{0.1} O ₉	198	7. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} W _{0.1} O ₉	199	6. 9	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Sm _{0.2} Co _{1.9} W _{0.1} O ₉	201	9. 0	1. 4
Bi ₂ Pb _{0,2} Ca _{1,8} Eu _{0,2} Co _{1,9} W _{0,1} O ₉	207	7.8	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Gd _{0,2} Co _{1,9} W _{0,1} O ₉	190	7. 5	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Dy _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 6	1. 1
Bi ₂ Pb _{0, 2} Ca _{1, 8} Ho _{0, 2} Co _{1, 9} W _{0, 1} O ₉	199	8. 2	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} W _{0.1} O ₉	201	7. 9	0.9
Bi ₂ Pb _{0,2} Ca _{1,8} Yb _{0,2} Co _{1,9} W _{0,1} O ₉	210	6. 9	1.1
Bi ₂ Ba ₂ Co _{1,9} W _{0,1} O ₉	205	6. 9	1.4
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} W _{0.1} O ₉	198	7.4	0.8
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} W _{0.1} O ₉	195	7.8	1. 3
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} W _{0.1} O ₉	200	7. 7	1.2
$Bi_2Ba_{1.8}Ti_{0.2}Co_{1.9}W_{0.1}O_9$	203	8. 0	1.1
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} W _{0.1} O ₉	200	8. 2	0.8
$Bi_2Ba_{1.8}Cr_{0.2}Co_{1.9}W_{0.1}O_9$	203	7. 9	1.3
$Bi_2Ba_{1.8}Mn_{0.2}Co_{1.9}W_{0.1}O_9$	201	9. 1	1.4
Bi ₂ Ba _{1.8} Fe _{0.2} Co _{1.9} W _{0.1} O ₉	208	8. 4	1.1
$Bi_2Ba_{1.8}Ni_{0.2}Co_{1.9}W_{0.1}O_9$	198	8. 6	1.0
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} W _{0.1} O ₉	199	8. 2	1.3
$Bi_2Ba_{1,8}Zn_{0,2}Co_{1,9}W_{0,1}O_9$	200	7. 9	0.9
Bi ₂ Ba _{1.8} Pb _{0.2} Co _{1.9} W _{0.1} O ₉	206	8. 6	1.1
Bi ₂ Ba _{1.8} Ca _{0.2} Co _{1.9} W _{0.1} O ₉	205	9. 1	1.4
Bi ₂ Ba _{1.8} Sr _{0.2} Co _{1.9} W _{0.1} O ₉	198	6. 9	1.2
$Bi_2Ba_{1.8}A1_{0.2}Co_{1.9}W_{0.1}O_9$	206	7.4	0.9
Bi ₂ Ba _{1.8} Y _{0.2} Co _{1.9} W _{0.1} O ₉	198	7.8	1. 1
$Bi_2Ba_{1,8}La_{0,2}Co_{1,9}W_{0,1}O_9$	207	7. 7	1.2
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} W _{0.1} O ₉	190	8. 0	0.9

[0222] [表64]

Bi ₂ Ba _{1.8} Pr _{0.2} Co _{1.9} W _{0.1} O ₉	190	8. 2	1. 1
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} W _{0.1} O ₉	198	7. 9	1. 2
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} W _{0.1} O ₉	199	9. 1	1. 0
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} W _{0.1} O ₉	201	8. 4	1. 3
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} W _{0.1} O ₉	210	8. 6	1. 0
Bi ₂ Ba _{1.8} Dy _{0.2} Co _{1.9} W _{0.1} O ₉	206	7.8	0. 9
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} W _{0.1} O ₉	205	9. 0	1. 1
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 2	1. 0
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} W _{0.1} O ₉	195	9. 1	1. 2
Bi ₂ Pb _{0, 2} Ba ₂ Co _{1, 9} W _{0, 1} O ₉	203	8. 6	0. 9
Bi ₂ Pb _{0, 2} Ba _{1, 8} Na _{0, 2} Co _{1, 9} W _{0, 1} O ₉	201	7. 8	0.8
Bi ₂ Pb _{0,2} Ba _{1,8} K _{0,2} Co _{1,9} W _{0,1} O ₉	208	9. 0	1. 0
Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 4	1. 3
Bi ₂ Pb _{0,2} Ba _{1,8} Ti _{0,2} Co _{1,9} W _{0,1} O ₉	199	7.8	1. 2
Bi ₂ Pb _{0, 2} Ba _{1, 8} V _{0, 2} Co _{1, 9} W _{0, 1} O ₉	200	8. 0	1. 3
Bi ₂ Pb _{0,2} Ba _{1,8} Cr _{0,2} Co _{1,9} W _{0,1} O ₉	206	7. 8	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} W _{0.1} O ₉	206	7. 2	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} W _{0.1} O ₉	198	9. 0	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} W _{0.1} O ₉	199	7. 8	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Cu _{0.2} Co _{1.9} W _{0.1} O ₉	200	7. 5	0. 9
$Bi_{2}Pb_{0.2}Ba_{1.8}Zn_{0.2}Co_{1.9}W_{0.1}O_{9}$	206	8. 6	1. 1
$Bi_{2}Pb_{0.2}Ba_{1.8}Pb_{0.2}Co_{1.9}W_{0.1}O_{9}$	205	8. 2	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Ca _{0.2} Co _{1.9} W _{0.1} O ₉	198	7. 9	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} W _{0.1} O ₉	199	6. 9	1. 1
$Bi_{2}Pb_{0.2}Ba_{1.8}Al_{0.2}Co_{1.9}W_{0.1}O_{9}$	200	9. 0	1. 2
Bi ₂ Pb _{0, 2} Ba _{1, 8} Y _{0, 2} Co _{1, 9} W _{0, 1} O ₉	199	7. 8	1. 0
Bi ₂ Pb _{0,2} Ba _{1,8} La _{0,2} Co _{1,9} W _{0,1} O ₉	210	7. 5	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Ce _{0.2} Co _{1.9} W _{0.1} O ₉	202	8. 6	1. 0
Bi ₂ Pb _{0.2} Ba _{1.8} Pr _{0.2} Co _{1.9} W _{0.1} O ₉	204	8. 2	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} W _{0.1} O ₉	197	7. 9	1.1
Bi ₂ Pb _{0,2} Ba _{1,8} Sm _{0,2} Co _{1,9} W _{0,1} O ₉	190	6. 9	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 1	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} W _{0.1} O ₉	199	6. 9	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} Dy _{0,2} Co _{1,9} W _{0,1} O ₉	201	7. 4	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} W _{0.1} O ₉	207	7. 8	0. 8
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} W _{0.1} O ₉	190	7. 7	1. 0

[0223] [表65]

Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} W _{0.1} O ₉	198	8. 0	1. 3
Bi ₂ Sr ₂ Co _{1.9} Nb _{0.1} O ₉	201	7. 9	0. 7
Bi ₂ Sr _{1.8} Na _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	9. 1	1.3
Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	8. 4	1. 4
Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} Nb _{0.1} O ₉	205	8.6	1
Bi ₂ Sr _{1.8} Ti _{0.2} Co _{1.9} Nb _{0.1} O ₉		8. 2	1. 1
	198		1.0
Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} Nb _{0.1} O ₉	195	7. 9	1.3
Bi ₂ Sr _{1.8} Cr _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 6	0.9
Bi ₂ Sr _{1.8} Mn _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	9. 1	1.1
Bi ₂ Sr _{1.8} Fe _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	6. 9	1.4
Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	7. 4	1. 2
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	7. 8	0.9
Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} Nb _{0.1} O ₉	208	7. 7	1. 1
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 0	1.2
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 2	0. 9
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	7. 9	1.1
Bi ₂ Sr _{1.8} Al _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	9. 1	1. 2
Bi ₂ Sr _{1.8} Y _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 4	1. 4
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	8. 6	0.8
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	7. 8	1. 3
Bi ₂ Sr _{1.8} Pr _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	9. 0	1. 2
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 2	1. 1
Bi ₂ Sr _{1.8} Sm _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	9. 1	0.8
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	8. 4	1. 3
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Nb _{0.1} O ₉	205	8. 6	1. 4
Bi ₂ Sr _{1.8} Dy _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	7. 8	1. 1
Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	9. 0	1.0
Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 4	1. 3
Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	7. 8	0.9
Bi ₂ Pb _{0.2} Sr ₂ Co _{1.9} Nb _{0.1} O ₉	. 202	8. 2	1. 4
Bi ₂ Pb _{0.2} Sr _{1.8} Na _{0.2} Co _{1.9} Nb _{0.1} O ₉	204	8. 3	1. 2
Bi ₂ Pb _{0,2} Sr _{1,8} K _{0,2} Co _{1,9} Nb _{0,1} O ₉	197	8. 6	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Li _{0.2} Co _{1.9} Nb _{0.1} O ₉	190	8. 7	1. 1
Bi ₂ Pb _{0,2} Sr _{1,8} Ti _{0,2} Co _{1,9} Nb _{0,1} O ₉	198	8. 3	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	9. 0	0. 9

[0224] [表66]

Bi ₂ Pb _{0, 2} Sr _{1, 8} Cr _{0, 2} Co _{1, 9} Nb _{0, 1} O ₉	201	7. 9	1. 1
$Bi_{2}Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}Nb_{0.1}O_{9}$	207	8. 1	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Fe _{0.2} Co _{1.9} Nb _{0.1} O ₉	190	8. 0	1. 4
Bi ₂ Pb _{0.2} Sr _{1.8} Ni _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	7.8	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Cu _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	7. 2	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Zn _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	9. 0	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Pb _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	8. 2	1. 1
Bi ₂ Pb _{0, 2} Sr _{1, 8} Ca _{0, 2} Co _{1, 9} Nb _{0, 1} O ₉	206	7. 9	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Ba _{0.2} Co _{1.9} Nb _{0.1} O ₉	205	6. 9	0. 7
Bi ₂ Pb _{0.2} Sr _{1.8} Al _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 1	1. 3
Bi ₂ Pb _{0,2} Sr _{1,8} Y _{0,2} Co _{1,9} Nb _{0,1} O ₉	195	6. 9	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	7. 4	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Ce _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	7. 8	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Pr _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	7. 7	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	8. 0	0.8
Bi ₂ Pb _{0.2} Sr _{1.8} Sm _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	8. 2	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Nb _{0.1} O ₉	208	7. 9	1.4
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	9. 1	1. 1
Bi ₂ Pb _{0,2} Sr _{1,8} Dy _{0,2} Co _{1,9} Nb _{0,1} O ₉	199	8. 4	1.0
Bi ₂ Pb _{0,2} Sr _{1,8} Ho _{0,2} Co _{1,9} Nb _{0,1} O ₉	200	8. 6	1. 3
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	8. 2	0.9
Bi ₂ Pb _{0,2} Sr _{1,8} Yb _{0,2} Co _{1,9} Nb _{0,1} O ₉	200	7. 9	1. 1
Bi ₂ Ca ₂ Co _{1.9} Nb _{0.1} O ₉	201	9. 1	1. 2
Bi ₂ Ca _{1.8} Na _{0.2} Co _{1.9} Nb _{0.1} O ₉	208	6. 9	0. 9
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	7. 4	1. 1
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	7. 8	1. 2
Bi ₂ Ca _{1.8} Ti _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	7. 7	0. 9
Bi ₂ Ca _{1.8} V _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 0	1. 1
Bi ₂ Ca _{1.8} Cr _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 2	1. 2
Bi ₂ Ca _{1.8} Mn _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	7. 9	1. 4
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	9. 1	0.8
Bi ₂ Ca _{1.8} Ni _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 4	1. 3
Bi ₂ Ca _{1.8} Cu _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 6	1. 2
Bi ₂ Ca _{1.8} Zn _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	7. 8	1. 1
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	9. 0	1.4
Bi ₂ Ca _{1.8} Sr _{0.2} Co _{1.9} Nb _{0.1} O ₉	205	8. 2	1. 2

[0225] [表67]

Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 3	0.9
Bi ₂ Ca _{1.8} A1 _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 4	1. 1
Bi ₂ Ca _{1.8} Y _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 6	1. 2
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 2	0.9
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	7. 9	1. 1
Bi ₂ Ca _{1.8} Pr _{0.2} Co _{1.9} Nb _{0.1} O ₉	202	8. 6	1. 2
Bi ₂ Ca _{1.8} Nd _{0.2} Co _{1.9} Nb _{0.1} O ₉	204	9. 1	1. 4
Bi ₂ Ca _{1.8} Sm _{0.2} Co _{1.9} Nb _{0.1} O ₉	197	6. 9	0.8
Bi ₂ Ca _{1.8} Eu _{0.2} Co _{1.9} Nb _{0.1} O ₉	190	7. 4	1. 3
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	7.8	1. 2
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	7. 7	1. 1
Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	8. 0	0.8
Bi ₂ Ca _{1.8} Er _{0.2} Co _{1.9} Nb _{0.1} O ₉	207	8. 2	1.3
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} Nb _{0.1} O ₉	190	7. 9	1.4
		:	
Bi ₂ Pb _{0,2} Ca ₂ Co _{1,9} Nb _{0,1} O ₉	199	8. 4	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	8. 6	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	7.8	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	9. 0	1. 1
$Bi_{2}Pb_{0.2}Ca_{1.8}Ti_{0.2}Co_{1.9}Nb_{0.1}O_{9}$	200	8. 2	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} V _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	8. 3	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Cr _{0,2} Co _{1,9} Nb _{0,1} O ₉	201	8. 6	0.9
$Bi_{2}Pb_{0,2}Ca_{1,8}Mn_{0,2}Co_{1,9}Nb_{0,1}O_{9}$	208	8. 7	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Fe _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 3	1.2
Bi ₂ Pb _{0,2} Ca _{1,8} Ni _{0,2} Co _{1,9} Nb _{0,1} O ₉	199	9. 0	0. 9
Bi ₂ Pb _{0,2} Ca _{1,8} Cu _{0,2} Co _{1,9} Nb _{0,1} O ₉	200	7. 9	1. 1
Bi ₂ Pb _{0,2} Ca _{1,8} Zn _{0,2} Co _{1,9} Nb _{0,1} O ₉	206	8. 1	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Pb _{0,2} Co _{1,9} Nb _{0,1} O ₉	206	8. 0	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Sr _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	7.8	1.3
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	7. 2	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} A1 _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	9. 0	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	8. 2	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Nb _{0.1} O ₉	205	7. 9	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} Ce _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	6. 9	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Pr _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 1	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	6. 9	1.0
Bi ₂ Pb _{0,2} Ca _{1,8} Sm _{0,2} Co _{1,9} Nb _{0,1} O ₉	199	7. 4	0. 9

[0226] [表68]

Bi ₂ Pb _{0.2} Ca _{1.8} Eu _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	7.8	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} Nb _{0.1} O ₉	202	7. 7	1.0
Bi ₂ Pb _{0, 2} Ca _{1, 8} Dy _{0, 2} Co _{1, 9} Nb _{0, 1} O ₉	204	8. 0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} Nb _{0.1} O ₉	197	8. 2	1.1
Bi ₂ Pb _{0,2} Ca _{1,8} Er _{0,2} Co _{1,9} Nb _{0,1} O ₉	190	7.9	0.9
Bi ₂ Pb _{0,2} Ca _{1,8} Yb _{0,2} Co _{1,9} Nb _{0,1} O ₉	198	9. 1	0.8
Bi ₂ Ba ₂ Co _{1.9} Nb _{0.1} O ₉	201	8. 6	1. 3
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Nb _{0.1} O ₉	207	8. 2	1. 2
Bi ₂ Ba _{1.8} K _{0.2} Co _{1.9} Nb _{0.1} O ₉	190	7. 9	1. 3
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 6	1.0
Bi ₂ Ba _{1.8} Ti _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	9. 1	0.8
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	6. 9	1.1
Bi ₂ Ba _{1.8} Cr _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	7. 4	1. 2
Bi ₂ Ba _{1.8} Mn _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	7. 8	0.9
Bi ₂ Ba _{1.8} Fe _{0.2} Co _{1.9} Nb _{0.1} O ₉	205	7. 7	1.1
Bi ₂ Ba _{1.8} Ni _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 0	1.2
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} Nb _{0.1} O ₉	195	8. 2	1.4
Bi ₂ Ba _{1.8} Zn _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	7. 9	0.8
Bi ₂ Ba _{1.8} Pb _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	9. 1	1.3
Bi ₂ Ba _{1.8} Ca _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 4	1.2
Bi ₂ Ba _{1,8} Sr _{0,2} Co _{1,9} Nb _{0,1} O ₉	203	8. 6	1. 1
Bi ₂ Ba _{1,8} Al _{0,2} Co _{1,9} Nb _{0,1} O ₉	201	7. 8	0.8
Bi ₂ Ba _{1.8} Y _{0.2} Co _{1.9} Nb _{0.1} O ₉	208	9. 0	1.3
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 2	1.4
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 3	1. 1
Bi ₂ Ba _{1.8} Pr _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 6	1.0
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 7	1.3
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 3	0. 9
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	9. 0	1. 1
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	7. 9	1.4
Bi ₂ Ba _{1,8} Dy _{0,2} Co _{1,9} Nb _{0,1} O ₉	198	8. 1	1. 2
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 0	0. 9
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	7. 8	1. 1
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} Nb _{0.1} O ₉	206	7. 2	1. 2
Bi ₂ Pb _{0.2} Ba ₂ Co _{1.9} Nb _{0.1} O ₉	198	7. 8	1. 1

[0227] [表69]

Bi ₂ Pb _{0.2} Ba _{1.8} Na _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	7. 5	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} K _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 6	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Li _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 2	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Ti _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	7. 9	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} V _{0.2} Co _{1.9} Nb _{0.1} O ₉	202	6. 9	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Nb _{0.1} O ₉	204	9. 0	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Mn _{0.2} Co _{1.9} Nb _{0.1} O ₉	197	7.8	1. 4
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} Nb _{0.1} O ₉	190	7. 5	1.2
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	8. 6	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Cu _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	8. 2	1.1
Bi ₂ Pb _{0, 2} Ba _{1, 8} Zn _{0, 2} Co _{1, 9} Nb _{0, 1} O ₉	201	7. 9	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Pb _{0,2} Co _{1,9} Nb _{0,1} O ₉	207	6.9	0. 9
Bi ₂ Pb _{0, 2} Ba _{1, 8} Ca _{0, 2} Co _{1, 9} Nb _{0, 1} O ₉	190	8. 1	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Sr _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	6. 9	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Nb _{0.1} O ₉	199	7. 4	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Y _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	7.8	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} La _{0.2} Co _{1.9} Nb _{0.1} O ₉	210	7. 7	1. 3
Bi ₂ Pb _{0, 2} Ba _{1, 8} Ce _{0, 2} Co _{1, 9} Nb _{0, 1} O ₉	206	8. 0	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} Pr _{0,2} Co _{1,9} Nb _{0,1} O ₉	205	8. 2	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} Nb _{0.1} O ₉	198	7. 9	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} Sm _{0.2} Co _{1.9} Nb _{0.1} O ₉	195	9. 1	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 4	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	8. 6	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Dy _{0.2} Co _{1.9} Nb _{0.1} O ₉	200	8. 2	1.0
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Nb _{0.1} O ₉	203	7. 9	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Nb _{0.1} O ₉	201	8. 6	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Nb _{0.1} O ₉	208	9. 1	1. 1
$Bi_2Sr_2Co_{1.9}Ta_{0.1}O_9$	199	7. 4	1. 2
$Bi_2Sr_{1.8}Na_{0.2}Co_{1.9}Ta_{0.1}O_9$	200	7. 8	0. 9
Bi ₂ Sr _{1.8} K _{0.2} Co _{1.9} Ta _{0.1} O ₉	203	7. 7	1. 1
Bi ₂ Sr _{1.8} Li _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 0	1. 2
$Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}Ta_{0.1}O_9$	203	8. 2	0. 9
Bi ₂ Sr _{1.8} V _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	7. 9	1. 1
$Bi_2Sr_{1.8}Cr_{0.2}Co_{1.9}Ta_{0.1}O_9$	208	9. 1	1. 2
$\mathrm{Bi}_{2}\mathrm{Sr}_{1.8}\mathrm{Mn}_{0.2}\mathrm{Co}_{1.9}\mathrm{Ta}_{0.1}\mathrm{O}_{9}$	198	8. 4	1. 0
$Bi_2Sr_{1.8}Fe_{0.2}Co_{1.9}Ta_{0.1}O_9$	199	8. 6	1.3

[0228] [表70]

Bi ₂ Sr _{1.8} Ni _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	7.8	1.0
Bi ₂ Sr _{1.8} Cu _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	9. 0	0.9
Bi ₂ Sr _{1.8} Zn _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 2	1.1
Bi ₂ Sr _{1.8} Pb _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	9. 1	1.0
Bi ₂ Sr _{1.8} Ca _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	8.4	1. 2
Bi ₂ Sr _{1.8} Ba _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	8. 6	1. 1
Bi ₂ Sr _{1.8} Al _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	7. 2	0.9
Bi ₂ Sr _{1.8} Y _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	9.0	0.8
Bi ₂ Sr _{1.8} La _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	8. 2	1. 0
Bi ₂ Sr _{1.8} Ce _{0.2} Co _{1.9} Ta _{0.1} O ₉	205	7. 9	1, 3
Bi ₂ Sr _{1.8} Pr _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	6. 9	1. 2
Bi ₂ Sr _{1.8} Nd _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	8. 1	1. 3
Bi ₂ Sr _{1.8} Sm _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	6. 9	0. 9
Bi ₂ Sr _{1.8} Eu _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	7. 4	1. 1
Bi ₂ Sr _{1.8} Gd _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	7.8	1. 4
Bi ₂ Sr _{1.8} Dy _{0.2} Co _{1.9} Ta _{0.1} O ₉	202	7. 7	1. 2
Bi ₂ Sr _{1.8} Ho _{0.2} Co _{1.9} Ta _{0.1} O ₉	204	8. 0	0.9
Bi ₂ Sr _{1.8} Er _{0.2} Co _{1.9} Ta _{0.1} O ₉	197	8. 2	1. 1
Bi ₂ Sr _{1.8} Yb _{0.2} Co _{1.9} Ta _{0.1} O ₉	190	7. 9	1. 2
Bi ₂ Pb _{0,2} Sr ₂ Co _{1,9} Ta _{0,1} O ₉	199	8. 4	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Na _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	8. 6	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} K _{0.2} Co _{1.9} Ta _{0.1} O ₉	207	8. 2	1.0
Bi ₂ Pb _{0,2} Sr _{1,8} Li _{0,2} Co _{1,9} Ta _{0,1} O ₉	190	7. 9	1.3
Bi ₂ Pb _{0.2} Sr _{1.8} Ti _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	8. 6	1.0
Bi ₂ Pb _{0.2} Sr _{1.8} V _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	9. 1	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Cr _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	6. 9	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Mn _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	7.4	1.0
Bi ₂ Pb _{0.2} Sr _{1.8} Fe _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	7.8	1. 2
Bi ₂ Pb _{0,2} Sr _{1,8} Ni _{0,2} Co _{1,9} Ta _{0,1} O ₉	206	7. 7	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Cu _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	8. 0	0.9
Bi ₂ Pb _{0.2} Sr _{1.8} Zn _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	8. 2	0.8
$Bi_{2}Pb_{0,2}Sr_{1,8}Pb_{0,2}Co_{1,9}Ta_{0,1}O_{9}$	199	7. 9	1.0
$Bi_{2}Pb_{0.2}Sr_{1.8}Ca_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	200	9. 1	1.3
Bi ₂ Pb _{0,2} Sr _{1,8} Ba _{0,2} Co _{1,9} Ta _{0,1} O ₉	206	8. 4	1.2
Bi ₂ Pb _{0.2} Sr _{1.8} Al _{0.2} Co _{1.9} Ta _{0.1} O ₉	205	8.6	0.7
Bi ₂ Pb _{0.2} Sr _{1.8} Y _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	7.8	1.3

[0229] [表71]

Bi ₂ Pb _{0.2} Sr _{1.8} La _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	9. 0	1. 4
$Bi_{2}Pb_{0.2}Sr_{1.8}Ce_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	200	8. 2	1. 1
$Bi_{2}Pb_{0.2}Sr_{1.8}Pr_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	199	8. 3	1. 0
Bi ₂ Pb _{0.2} Sr _{1.8} Nd _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	8. 4	1. 3
$Bi_{2}Pb_{0,2}Sr_{1,8}Sm_{0,2}Co_{1,9}Ta_{0,1}O_{9}$	202	8. 6	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Eu _{0.2} Co _{1.9} Ta _{0.1} O ₉	204	8. 2	1. 1
Bi ₂ Pb _{0.2} Sr _{1.8} Gd _{0.2} Co _{1.9} Ta _{0.1} O ₉	197	7. 9	1. 4
$Bi_{2}Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	190	8. 6	1. 2
Bi ₂ Pb _{0.2} Sr _{1.8} Ho _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	9. 1	0. 9
Bi ₂ Pb _{0.2} Sr _{1.8} Er _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	6. 9	1. 1
$Bi_{2}Pb_{0.2}Sr_{1.8}Yb_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	201	7. 4	1. 2
Bi ₂ Ca ₂ Co _{1.9} Ta _{0.1} O ₉	190	7. 7	1. 1
Bi ₂ Ca _{1,8} Na _{0,2} Co _{1,9} Ta _{0,1} O ₉	198	8. 0	1. 2
Bi ₂ Ca _{1.8} K _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	8. 2	1. 4
Bi ₂ Ca _{1.8} Li _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	7. 9	0.8
Bi ₂ Ca _{1.8} Ti _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	9. 1	1. 3
Bi ₂ Ca _{1.8} V _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	8. 4	1. 2
Bi ₂ Ca _{1.8} Cr _{0.2} Co _{1.9} Ta _{0.1} O ₉	205	8. 6	1. 1
$Bi_{2}Ca_{1.8}Mn_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	198	7. 8	0.8
Bi ₂ Ca _{1.8} Fe _{0.2} Co _{1.9} Ta _{0.1} O ₉	195	9. 0	1.3
Bi ₂ Ca _{1.8} Ni _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 2	1.4
$Bi_{2}Ca_{1.8}Cu_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	203	8. 3	1. 1
$Bi_2Ca_{1.8}Zn_{0.2}Co_{1.9}Ta_{0.1}O_9$	200	8. 6	1.0
Bi ₂ Ca _{1.8} Pb _{0.2} Co _{1.9} Ta _{0.1} O ₉	203	8. 7	1.3
$Bi_{2}Ca_{1.8}Sr_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	201	8. 3	0. 9
Bi ₂ Ca _{1.8} Ba _{0.2} Co _{1.9} Ta _{0.1} O ₉	208	9. 0	1. 1
$Bi_2Ca_{1.8}Al_{0.2}Co_{1.9}Ta_{0.1}O_9$	198	7. 9	1. 4
Bi ₂ Ca _{1,8} Y _{0,2} Co _{1,9} Ta _{0,1} O ₉	199	8. 1	1. 2
Bi ₂ Ca _{1.8} La _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 0	0. 9
Bi ₂ Ca _{1.8} Ce _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	7.8	1. 1
Bi ₂ Ca _{1,8} Pr _{0,2} Co _{1,9} Ta _{0,1} O ₉	200	7. 2	1. 2
Bi ₂ Ca _{1,8} Nd _{0,2} Co _{1,9} Ta _{0,1} O ₉	206	9. 0	0. 9
$Bi_2Ca_{1.8}Sm_{0.2}Co_{1.9}Ta_{0.1}O_9$	206	8. 2	1.3
$Bi_{2}Ca_{1.8}Eu_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	198	7. 9	1.4
Bi ₂ Ca _{1.8} Gd _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	6. 9	1. 1
Bi ₂ Ca _{1.8} Dy _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 1	1. 0

[0230] [表72]

Bi ₂ Ca _{1.8} Ho _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	6. 9	1. 3
Bi ₂ Ca _{1.8} Er _{0.2} Co _{1.9} Ta _{0.1} O ₉	205	7.4	0. 9
Bi ₂ Ca _{1.8} Yb _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	7.8	1. 1
Bi ₂ Pb _{0.2} Ca ₂ Co _{1.9} Ta _{0.1} O ₉	200	8.0	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Na _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	8. 2	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} K _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	7. 9	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Li _{0.2} Co _{1.9} Ta _{0.1} O ₉	202	9. 1	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ti _{0.2} Co _{1.9} Ta _{0.1} O ₉	204	8.4	0.9
Bi ₂ Pb _{0,2} Ca _{1,8} V _{0,2} Co _{1,9} Ta _{0,1} O ₉	197	8. 6	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Cr _{0.2} Co _{1.9} Ta _{0.1} O ₉	190	8. 2	1. 2
Bi ₂ Pb _{0, 2} Ca _{1, 8} Mn _{0, 2} Co _{1, 9} Ta _{0, 1} O ₉	198	7. 9	1. 4
Bi ₂ Pb _{0,2} Ca _{1,8} Fe _{0,2} Co _{1,9} Ta _{0,1} O ₉	199	8. 6	0.8
Bi ₂ Pb _{0, 2} Ca _{1, 8} Ni _{0, 2} Co _{1, 9} Ta _{0, 1} O ₉	201	9. 1	1. 3
Bi ₂ Pb _{0, 2} Ca _{1, 8} Cu _{0, 2} Co _{1, 9} Ta _{0, 1} O ₉	207	6. 9	1. 2
Bi ₂ Pb _{0,2} Ca _{1,8} Zn _{0,2} Co _{1,9} Ta _{0,1} O ₉	190	7. 4	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Pb _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	7. 8	0.8
Bi ₂ Pb _{0, 2} Ca _{1, 8} Sr _{0, 2} Co _{1, 9} Ta _{0, 1} O ₉	199	7. 7	1. 3
Bi ₂ Pb _{0.2} Ca _{1.8} Ba _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	8. 0	1. 4
Bi ₂ Pb _{0.2} Ca _{1.8} Al _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	8. 2	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Y _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	7. 9	1.0
Bi ₂ Pb _{0.2} Ca _{1.8} La _{0.2} Co _{1.9} Ta _{0.1} O ₉	205	9. 1	1.3
Bi ₂ Pb _{0,2} Ca _{1,8} Ce _{0,2} Co _{1,9} Ta _{0,1} O ₉	198	8. 4	0.9
Bi ₂ Pb _{0,2} Ca _{1,8} Pr _{0,2} Co _{1,9} Ta _{0,1} O ₉	195	8.6	1.1
Bi ₂ Pb _{0.2} Ca _{1.8} Nd _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	7. 8	1.4
Bi ₂ Pb _{0.2} Ca _{1.8} Sm _{0.2} Co _{1.9} Ta _{0.1} O ₉	203	9. 0	1.2
Bi ₂ Pb _{0.2} Ca _{1.8} Eu _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 2	0.9
Bi ₂ Pb _{0.2} Ca _{1.8} Gd _{0.2} Co _{1.9} Ta _{0.1} O ₉	203	8. 3	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Dy _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	8. 6	1. 2
Bi ₂ Pb _{0.2} Ca _{1.8} Ho _{0.2} Co _{1.9} Ta _{0.1} O ₉	208	8. 7	0. 9
Bi ₂ Pb _{0.2} Ca _{1.8} Er _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	8. 3	1. 1
Bi ₂ Pb _{0.2} Ca _{1.8} Yb _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	9. 0	1. 2
Bi ₂ Ba ₂ Co _{1.9} Ta _{0.1} O ₉	203	8. 1	0.8
Bi ₂ Ba _{1.8} Na _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 0	1. 3
$Bi_{2}Ba_{1.8}K_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	203	7.8	1.2
Bi ₂ Ba _{1.8} Li _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	7. 2	1. 1
Bi ₂ Ba _{1,8} Ti _{0,2} Co _{1,9} Ta _{0,1} O ₉	208	9. 0	0.8
Bi ₂ Ba _{1.8} V _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	7.8	0. 7

[0231] [表73]

$Bi_2Ba_{1.8}Cr_{0.2}Co_{1.9}Ta_{0.1}O_9$	199	7. 5	1. 3
Bi ₂ Ba _{1.8} Mn _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 6	0.8
Bi ₂ Ba _{1.8} Fe _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	8. 2	1. 3
$Bi_2Ba_{1.8}Ni_{0.2}Co_{1.9}Ta_{0.1}O_9$	200	7. 9	1. 2
Bi ₂ Ba _{1.8} Cu _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	6. 9	1.1
Bi ₂ Ba _{1.8} Zn _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	9. 0	0.8
$Bi_{2}Ba_{1.8}Pb_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	198	7. 8	1.3
Bi ₂ Ba _{1,8} Ca _{0,2} Co _{1,9} Ta _{0,1} O ₉	199	7. 5	1.4
Bi ₂ Ba _{1.8} Sr _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 6	1.1
Bi ₂ Ba _{1.8} Al _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	8. 2	1.0
$Bi_2Ba_{1.8}Y_{0.2}Co_{1.9}Ta_{0.1}O_9$	205	7. 9	1.3
Bi ₂ Ba _{1.8} La _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	6. 9	0.9
Bi ₂ Ba _{1.8} Ce _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	8. 1	1. 1
Bi ₂ Ba _{1.8} Pr _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	6. 9	1.4
Bi ₂ Ba _{1.8} Nd _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	7. 4	1. 2
Bi ₂ Ba _{1.8} Sm _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	7. 8	0.9
Bi ₂ Ba _{1.8} Eu _{0.2} Co _{1.9} Ta _{0.1} O ₉	202	7. 7	1.1
Bi ₂ Ba _{1.8} Gd _{0.2} Co _{1.9} Ta _{0.1} O ₉	204	8. 0	1. 2
Bi ₂ Ba _{1.8} Dy _{0.2} Co _{1.9} Ta _{0.1} O ₉	197	8. 2	0.9
Bi ₂ Ba _{1.8} Ho _{0.2} Co _{1.9} Ta _{0.1} O ₉	190	7. 9	1. 1
Bi ₂ Ba _{1.8} Er _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	9. 1	1. 2
Bi ₂ Ba _{1.8} Yb _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	8. 4	1. 4
Bi ₂ Pb _{0, 2} Ba ₂ Co _{1, 9} Ta _{0, 1} O ₉	207	8. 2	1.3
Bi ₂ Pb _{0.2} Ba _{1.8} Na _{0.2} Co _{1.9} Ta _{0.1} O ₉	190	7. 9	1.2
Bi ₂ Pb _{0.2} Ba _{1.8} K _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	8. 6	1. 1
Bi ₂ Pb _{0, 2} Ba _{1, 8} Li _{0, 2} Co _{1, 9} Ta _{0, 1} O ₉	199	9. 1	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Ti _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	6. 9	1. 2
Bi ₂ Pb _{0,2} Ba _{1,8} V _{0,2} Co _{1,9} Ta _{0,1} O ₉	210	7. 4	0.9
Bi ₂ Pb _{0.2} Ba _{1.8} Cr _{0.2} Co _{1.9} Ta _{0.1} O ₉	198	7.8	1.1
$Bi_{2}Pb_{0.2}Ba_{1.8}Mn_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	200	7. 7	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Fe _{0.2} Co _{1.9} Ta _{0.1} O ₉	203	8. 0	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Ni _{0.2} Co _{1.9} Ta _{0.1} O ₉	201	8. 2	1. 1
$Bi_{2}Pb_{0.2}Ba_{1.8}Cu_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	208	7. 9	1. 2
$Bi_{2}Pb_{0.2}Ba_{1.8}Zn_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	198	9. 1	1. 4
$Bi_{2}Pb_{0.2}Ba_{1.8}Pb_{0.2}Co_{1.9}Ta_{0.1}O_{9}$	199	8. 4	0.8
Bi ₂ Pb _{0,2} Ba _{1,8} Ca _{0,2} Co _{1,9} Ta _{0,1} O ₉	200	8.6	1. 3
$Bi_{2}Pb_{0,2}Ba_{1,8}Sr_{0,2}Co_{1,9}Ta_{0,1}O_{9}$	206	7.8	1. 2

[0232] [表74]

Bi ₂ Pb _{0.2} Ba _{1.8} Al _{0.2} Co _{1.9} Ta _{0.1} O ₉	206	9. 0	1. 1
Bi ₂ Pb _{0,2} Ba _{1,8} Y _{0,2} Co _{1,9} Ta _{0,1} O ₉	198	8. 2	0.8
Bi ₂ Pb _{0.2} Ba _{1.8} La _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	9. 1	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Ce _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	8. 4	1. 4
Bi ₂ Pb _{0,2} Ba _{1,8} Pr _{0,2} Co _{1,9} Ta _{0,1} O ₉	206	8. 6	1. 1
Bi ₂ Pb _{0.2} Ba _{1.8} Nd _{0.2} Co _{1.9} Ta _{0.1} O ₉	205	7.8	1.0
Bi ₂ Pb _{0,2} Ba _{1,8} Sm _{0,2} Co _{1,9} Ta _{0,1} O ₉	198	9. 0	1. 3
Bi ₂ Pb _{0.2} Ba _{1.8} Eu _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	7. 8	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Gd _{0.2} Co _{1.9} Ta _{0.1} O ₉	200	7. 5	1.1
Bi ₂ Pb _{0.2} Ba _{1.8} Dy _{0.2} Co _{1.9} Ta _{0.1} O ₉	199	8. 6	1.4
Bi ₂ Pb _{0.2} Ba _{1.8} Ho _{0.2} Co _{1.9} Ta _{0.1} O ₉	210	8. 2	1. 2
Bi ₂ Pb _{0.2} Ba _{1.8} Er _{0.2} Co _{1.9} Ta _{0.1} O ₉	202	7. 9	0. 9
Bi ₂ Pb _{0.2} Ba _{1.8} Yb _{0.2} Co _{1.9} Ta _{0.1} O ₉	204	6. 9	1. 1
Bi ₂ Sr _{1.9} Na _{0.1} Co ₂ O ₉	199	8.6	1. 2
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Ti _{0.1} O ₉	201	8. 2	1. 0
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} V _{0.1} O ₉	207	7. 9	1. 3
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Cr _{0.1} O ₉	190	6. 9	1.0
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Mn _{0.1} O ₉	198	8. 1	0.9
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Fe _{0.1} O ₉	199	6. 9	1.1
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Cu _{0.1} O ₉	201	7. 4	1.0
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Ag _{0.1} O ₉	210	7.8	1.2
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Mo _{0.1} O ₉	206	7. 7	1.1
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} W _{0.1} O ₉	205	8. 0	1.0
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Nb _{0.1} O ₉	198	8. 2	0. 9
Bi ₂ Sr _{1.9} Na _{0.1} Co _{1.9} Ta _{0.1} O ₉	195	7. 9	1. 1
Bi ₂ Sr _{1.9} K _{0.1} Co ₂ O ₉	203	8. 4	1.2
$Bi_2Sr_{1.9}K_{0.1}Co_{1.9}Ti_{0.1}O_9$	200	8. 6	1. 1
$Bi_2Sr_{1.9}K_{0.1}Co_{1.9}V_{0.1}O_9$	203	8. 2	0. 9
Bi ₂ Sr _{1.9} K _{0.1} Co _{1.9} Cr _{0.1} O ₉	201	7. 9	0.8
$Bi_2Sr_{1.9}K_{0.1}Co_{1.9}Mn_{0.1}O_9$	208	8.6	1. 0
$Bi_2Sr_{1.9}K_{0.1}Co_{1.9}Fe_{0.1}O_9$	198	9. 1	1. 3
Bi ₂ Sr _{1,9} K _{0,1} Co _{1,9} Cu _{0,1} O ₉	199	6. 9	1. 2
Bi ₂ Sr _{1.9} K _{0.1} Co _{1.9} Ag _{0.1} O ₉	200	7.4	1. 3
$Bi_2Sr_{1.9}K_{0.1}Co_{1.9}Mo_{0.1}O_9$	199	7. 8	1. 0
$Bi_2Sr_{1.9}K_{0.1}Co_{1.9}W_{0.1}O_9$	200	7. 7	0.8
Bi ₂ Sr _{1.9} K _{0.1} Co _{1.9} Nb _{0.1} O ₉	206	8. 0	1. 1
Bi ₂ Sr _{1.9} K _{0.1} Co _{1.9} Ta _{0.1} O ₉	206	8. 2	1. 2

[0233] 以上の結果から明らかなように、表7~表74に示された各酸化物は、p型熱電変換材料として優れた特性を有し、導電性も良好である。従って、上記各実施例におけるp型熱電変換材料に代えて、これらの酸化物を用いる場合にも、良好な熱電発電性能が発揮されるものと考えられる。

[0234] 参考例2

一般式: $\operatorname{Ln}_{m}\operatorname{R}^{1}\operatorname{Ni}_{p}\operatorname{R}^{2}\operatorname{O}$ 又は一般式: $(\operatorname{Ln}_{s}\operatorname{R}^{3})_{2}\operatorname{Ni}_{u}\operatorname{R}^{4}\operatorname{O}_{w}$ で表されるn型熱電変換材料としての特性を有する複合酸化物を下記の方法で作製した。

- [0235] 原料物質としては、目的とする複合酸化物の構成元素を含む硝酸塩を用い、表75~表121に記載した各組成式と同じ元素比となる割合で、各原料物質を蒸留水に完全に溶解し、アルミナるつぼ中で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、加圧成形後、300mL/分の酸素気流中で20時間焼成して複合酸化物を合成した。焼成温度及び焼成時間については、目的とする酸化物が生成するように700~1100℃の範囲で適宜変更した。
- [0236] 下記表75~表121に、得られた各複合酸化物における元素比、700℃におけるゼ ーベック係数、700℃における電気抵抗率、及び700℃における熱伝導度を示す。

[0237] [表75]

n型

組成	ゼーベック係数	電気抵抗率	熱伝導度
$L n_m R^1_n N i_p R^2_q O_r$	μV/K (700℃)	mΩcm (700°C)	W/mK (700℃)
LaNiO ₃	-22	2.2	4.2
CeNiO ₃	-19	1.9	4.1
PrNiO ₃	-25	1.8	3.9
NdNiO ₃	-30	2.9	4.0
SmNiO ₃	-28	3.1	3.8
EuNi O ₃	-27	2.2	3.7
GdNiO ₃	-25	2.1	4.0
DyNiO ₃	-18	3.0	3.9
HoNiO ₃	-22	2.8	3.6
ErNiO ₃	-10	3. 2	4.1
YbNiO ₃	-26	3.1	3.9
La _{0.9} Na _{0.1} NiO ₃	-19	2.4	4.3
La _{0.9} K _{0.1} NiO ₃	-17	2.8	4.0
$La_{0.9}Sr_{0.1}NiO_3$	-23	2.9	4.7
$La_{0.9}Ca_{0.1}NiO_3$	-22	3.0	4.2
$La_{0.9}Bi_{0.1}NiO_3$	-18	2.8	4.3
	-20	3.5	4.9
$Ce_{0.9}Na_{0.1}NiO_3$	-21	4.0	3.9
Ce _{0.9} K _{0.1} NiO ₃	-21	3.9	4.2
Ce _{0.9} Sr _{0.1} NiO ₃	-22	2.1	4.0
Ce _{0.9} Ca _{0.1} NiO ₃	-18	2.6	4.7
Ce _{0.9} Bi _{0.1} NiO ₃	-25	2.8	4.6
Pr _{0.9} Na _{0.1} NiO ₃	-28	3. 9	4.2
Pr _{0.9} K _{0.1} NiO ₃	-19	3.8	4.7
Pr _{0.9} Sr _{0.1} NiO ₃	-20	2.7	4.8
Pr _{o.9} Ca _{o.1} NiO ₃	-26	1.9	4.1
Pr _{0.9} Bi _{0.1} NiO ₃	-23	2.8	3.8
$Nd_{0.9}Na_{0.1}NiO_3$	-19	3.4	4.6
$Nd_{0.9}K_{0.1}NiO_3$	-17	2.8	4. 2
$Nd_{0.9}Sr_{0.1}NiO_3$	-20	3.0	4.5
Nd _{0.9} Ca _{0.1} NiO ₃	-22	2.9	4.3

[0238] [表76]

			
$Nd_{0.9}Bi_{0.1}NiO_3$	-20	1.8	4. 2
$Sm_{0.9}Na_{0.1}NiO_3$	-23	3. 1	3. 9
$Sm_{0.9}K_{0.1}NiO_3$	-18	2. 2	4. 0
$Sm_{0.9}Sr_{0.1}NiO_3$	-28	2. 1	3. 8
$Sm_{0.9}Ca_{0.1}NiO_3$	-19	3. 0	3. 7
$Sm_{0.9}Bi_{0.1}NiO_3$	-24	2. 8	4. 0
Eu _{0.9} Na _{0.1} NiO ₃	-16	3. 1	3. 6
$Eu_{0.9}K_{0.1}NiO_3$	-20	3. 0	4. 1
Eu _{0.9} Sr _{0.1} NiO ₃	-22	2. 4	3. 9
Eu _{0.9} Ca _{0.1} NiO ₃	-24	2. 8	4. 6
Eu _{0.9} Bi _{0.1} NiO ₃	-23	2. 9	4. 3
Gd _{0.9} Na _{0.1} NiO ₃	-28	2. 8	4. 7
$Gd_{0.9}K_{0.1}NiO_3$	-19	3. 5	4. 2
Gd _{0.9} Sr _{0.1} NiO ₃	-21	4. 0	4. 3
Gd _{0.9} Ca _{0.1} NiO ₃	-22	3. 9	4. 9
Gd _{0.9} Bi _{0.1} NiO ₃	-24	2. 1	3. 9
Dy _{0,9} Na _{0,1} NiO ₃	-29	2. 8	4. 0
$Dy_{0.9}K_{0.1}NiO_3$	-17	2. 7	4. 7
$Dy_{0.9}Sr_{0.1}NiO_3$	-18	3. 9	4.6
Dy _{0.9} Ca _{0.1} NiO ₃	-24	3.8	4. 5
$Dy_{0,9}Bi_{0,1}NiO_3$	-22	2. 7	4. 2
Ho _{0.9} Na _{0.1} NiO ₃	-27	2. 8	4. 8
$Ho_{0.9}K_{0.1}NiO_3$	-21	3. 7	4. 1
Ho _{0.9} Sr _{0.1} NiO ₃	-23	3. 4	3. 8
Ho _{0.9} Ca _{0.1} NiO ₃	-19	2. 8	4. 0
Ho _{0.9} Bi _{0.1} NiO ₃	-23	3. 0	4. 6
Er _{0.9} Na _{0.1} NiO ₃	-25	2. 2	4. 5
$Er_{0.9}K_{0.1}NiO_3$	-16	1. 9	4.3
Er _{0.9} Sr _{0.1} NiO ₃	-20	1.8	4. 1
Er _{0.9} Ca _{0.1} NiO ₃	-22	2. 9	3. 9
Er _{0.9} Bi _{0.1} NiO ₃	-29	3. 1	4. 0

[0239] [表77]

			,
Yb _{0.9} Na _{0.1} NiO ₃	-22	2. 2	3. 8
$Yb_{0.9}K_{0.1}NiO_3$	-19	2. 1	3. 7
$Yb_{0.9}Sr_{0.1}NiO_3$	-25	3. 0	4. 0
Yb _{0.9} Ca _{0.1} NiO ₃	-30	2. 8	3. 9
Yb _{0.9} Bi _{0.1} NiO ₃	-28	3. 2	3. 6
LaNi _{0.9} Ti _{0.1} O ₃	-25	3. 0	3. 9
LaNi _{0.9} V _{0.1} O ₃	-18	2. 4	4. 6
LaNi _{0.9} Cr _{0.1} O ₃	-22	2. 8	4. 3
LaNi _{0.9} Mn _{0.1} O ₃	-10	2. 9	4. 0
LaNi _{0.9} Fe _{0.1} O ₃	-26	3. 0	4. 7
LaNi _{0.9} Co _{0.1} O ₃	-20	2.8	4. 2
LaNi _{0.9} Cu _{0.1} O ₃	-19	3. 5	4. 3
LaNi _{0.9} Mo _{0.1} O ₃	-17	4. 0	4. 9
LaNi _{0.9} W _{0.1} O ₃	-23	3. 9	3. 9
LaNi _{o.9} Nb _{o.1} O ₃	-22	2. 1	4. 2
LaNi _{0.9} Ta _{0.1} O ₃	-18	2. 6	4. 0
CeNi _{0.9} Ti _{0.1} O ₃	-21	2. 7	4. 6
CeNi _{0.9} V _{0.1} O ₃	-21	3. 9	4 . 5
CeNi _{0.9} Cr _{0.1} O ₃	-22	3. 8	4. 2
CeNi _{0.9} Mn _{0.1} O ₃	-18	2. 7	4. 7
$CeNi_{0.9}Fe_{0.1}O_3$	-25	1. 9	4. 8
CeNi _{0.9} Co _{0.1} O ₃	-24	2. 8	4. 1
CeNi _{0.9} Cu _{0.1} O ₃	-28	3. 7	3. 8
CeNi _{0.9} Mo _{0.1} O ₃	-19	3. 4	4. 0
CeNi _{0.9} W _{0.1} O ₃	-20	2. 8	4. 6
CeNi _{0.9} Nb _{0.1} O ₃	-26	3. 0	4. 2
CeNi _{0.9} Ta _{0.1} O ₃	-23	2. 9	4. 5
PrNi _{0.9} Ti _{0.1} O ₃	-19	2. 9	4. 2
PrNi _{0.9} V _{0.1} O ₃	-17	3. 1	4. 1
PrNi _{0.9} Cr _{0.1} O ₃	-20	2. 2	3. 9
PrNi _{0.9} Mn _{0.1} O ₃	-22	2. 1	4. 0
PrNi _{0.9} Fe _{0.1} O ₃	-20	3. 0	3. 8
PrNi _{0.9} Co _{0.1} O ₃	-21	2. 8	3. 7
PrNi _{0.9} Cu _{0.1} O ₃	-23	3. 2	4. 0

[0240] [表78]

PrNi _{0.9} Mo _{0.1} O ₃	-18	3. 1	3. 9
PrNi _{0.9} W _{0.1} O ₃	-28	3. 0	3. 6
PrNi _{0.9} Nb _{0.1} O ₃	-19	2. 4	4. 1
PrNi _{0.9} Ta _{0.1} O ₃	-24	2.8	3. 9
NdNi _{0.9} Ti _{0.1} O ₃	-16	3. 0	4. 3
NdNi _{0,9} V _{0,1} O ₃	-20	2.8	4. 0
NdNi _{0.9} Cr _{0.1} O ₃	-22	3. 5	4. 7
NdNi _{0.9} Mn _{0.1} O ₃	-24	4.0	4. 2
NdNi _{0.9} Fe _{0.1} O ₃	-23	3. 9	4. 3
NdNi _{0.9} Co _{0.1} O ₃	-26	2. 1	4. 9
NdNi _{0.9} Cu _{0.1} O ₃	-28	2. 6	3. 9
NdNi _{0.9} Mo _{0.1} O ₃	-19	2. 2	4. 2
NdNi _{0.9} W _{0.1} O ₃	-21	1. 9	4.0
NdNi _{0.9} Nb _{0.1} O ₃	-22	1.8	4. 7
NdNi _{0,9} Ta _{0,1} O ₃	-24	2. 9	4.6
SmNi _{0.9} Ti _{0.1} O ₃	-29	2. 2	4. 2
SmNi _{0.9} V _{0.1} O ₃	-17	2. 1	4. 7
$SmNi_{0.9}Cr_{0.1}O_3$	-18	3. 0	4.8
$SmNi_{0.9}Mn_{0.1}O_3$	-24	2. 8	4. 1
SmNi _{0.9} Fe _{0.1} O ₃	-22	3. 2	3. 8
SmNi _{0.9} Co _{0.1} O ₃	-21	3. 1	4. 0
SmNi _{0.9} Cu _{0.1} O ₃	-27	3.0	4. 6
$SmNi_{0.9}Mo_{0.1}O_3$	-25	2. 4	4. 2
SmNi _{0.9} W _{0.1} O ₃	-30	2.8	4.1
SmNi _{0.9} Nb _{0.1} O ₃	-28	2. 9	3. 9
$SmNi_{0.9}Ta_{0.1}O_3$	-27	3. 0	4.0
EuNi _{0.9} Ti _{0.1} O ₃	-18	3. 5	3. 7
EuNi _{0.9} V _{0.1} O ₃	-22	4. 0	4.0
EuNi _{0.9} Cr _{0.1} O ₃	-10	3. 9	3. 9
EuNi _{0.9} Mn _{0.1} O ₃	-26	2. 1	3. 6
EuNi _{0.9} Fe _{0.1} O ₃	-20	2. 6	4.1
EuNi _{0.9} Co _{0.1} O ₃	-19	2.8	3.9
EuNi _{0.9} Cu _{0.1} O ₃	-17	2. 7	4. 6
EuNi _{0.9} Mo _{0.1} O ₃	-23	3. 9	4. 3

[0241] [表79]

EuNi _{0.9} W _{0.1} O ₃	-22	3. 8	4. 0
EuNi _{0.9} Nb _{0.1} O ₃	-18	2. 7	4. 7
EuNi _{0.9} Ta _{0.1} O ₃	-20	1.9	4. 2
GdNi _{0.9} Ti _{0.1} O ₃	-21	3. 7	4. 9
GdNi _{0.9} V _{0.1} O ₃	-22	3. 4	3.9
GdNi _{0.9} Cr _{0.1} O ₃	-18	2.8	4. 2
GdNi _{0.9} Mn _{0.1} O ₃	-25	3. 0	4.0
GdNi _{0,9} Fe _{0,1} O ₃	-24	2. 9	4. 7
GdNi _{0.9} Co _{0.1} O ₃	-28	1.8	4. 6
GdNi _{0.9} Cu _{0.1} O ₃	-19	2. 9	4. 5
GdNi _{0.9} Mo _{0.1} O ₃	-20	3. 1	4. 2
GdNi _{0.9} W _{0.1} O ₃	-26	2. 2	4. 7
GdNi _{0.9} Nb _{0.1} O ₃	-23	2. 1	4. 8
GdNi _{0.9} Ta _{0.1} O ₃	-22	3. 0	4. 1
DyNi _{0.9} Ti _{0.1} O ₃	-17	3. 2	4. 0
DyNi _{0.9} V _{0.1} O ₃	-20	3. 1	4. 6
DyNi _{0.9} Cr _{0.1} O ₃	-22	3. 0	4. 2
DyNi _{0.9} Mn _{0.1} O ₃	-20	2. 4	4.5
DyNi _{0.9} Fe _{0.1} O ₃	-21	2. 8	4. 3
DyNi _{0.9} Co _{0.1} O ₃	-23	2. 9	4. 2
DyNi _{0.9} Cu _{0.1} O ₃	-18	3. 0	4. 1
DyNi _{0.9} Mo _{0.1} O ₃	-28	2. 8	3. 9
DyNi _{0.9} W _{0.1} O ₃	-19	3. 5	4. 0
DyNi _{0.9} Nb _{0.1} O ₃	-24	4. 0	3.8
DyNi _{0.9} Ta _{0.1} O ₃	-25	3. 9	3.7
$HoNi_{0.9}Ti_{0.1}O_3$	-20	2. 6	3. 9
HoNi _{0.9} V _{0.1} O ₃	-22	2.8	3. 6
HoNi _{0.9} Cr _{0.1} O ₃	-24	2. 7	4. 1
HoNi _{o.9} Mn _{o.1} O ₃	-23	3. 9	3. 9
HoNi _{0.9} Fe _{0.1} O ₃	-26	1.8	4. 6
HoNi _{0.9} Co _{0.1} O ₃	-28	2. 9	4. 3
HoNi _{0.9} Cu _{0.1} O ₃	-19	3. 1	4. 0
HoNi _{0.9} Mo _{0.1} O ₃	-21	2. 2	4. 7
HoNi _{0.9} W _{0.1} O ₃	-22	2. 1	4. 2

[0242] [表80]

			
HoNi _{0.9} Nb _{0.1} O ₃	-24	3. 0	4. 3
HoNi _{0.9} Ta _{0.1} O ₃	-21	2.8	4. 9
$ErNi_{0.9}Ti_{0.1}O_3$	-17	3. 1	4. 2
ErNi _{0.9} V _{0.1} O ₃	-18	3. 0	4.0
$\operatorname{ErNi}_{0.9}\operatorname{Cr}_{0.1}\operatorname{O}_3$	-24	2. 4	4. 7
$ErNi_{0.9}Mn_{0.1}O_3$	-22	2.8	4.6
ErNi _{0.9} Fe _{0.1} O ₃	-21	2. 9	4. 5
ErNi _{0.9} Co _{0.1} O ₃	-27	3. 0	4. 2
ErNi _{0.9} Cu _{0.1} O ₃	-21	2.8	4. 7
ErNi _{0.9} Mo _{0.1} O ₃	-23	3. 5	4.8
ErNi _{0.9} W _{0.1} O ₃	-19	4.0	4. 1
ErNi _{0.9} Nb _{0.1} O ₃	-23	3.9	3. 8
ErNi _{0.9} Ta _{0.1} O ₃	-24	2. 1	4. 0
YbNi _{0.9} Ti _{0.1} O ₃	-16	2. 8	4. 2
$YbNi_{0.9}V_{0.1}O_3$	-20	2. 7	4. 5
YbNi _{0.9} Cr _{0.1} O ₃	-22	3. 9	4. 3
YbNi _{0.9} Mn _{0.1} O ₃	-29	3.8	4. 1
YbNi _{0.9} Fe _{0.1} O ₃	-28	2. 7	3. 9
YbNi _{0.9} Co _{0.1} O ₃	-27	1. 9	4. 0
YbNi _{0.9} Cu _{0.1} O ₃	-25	2. 8	3. 8
YbNi _{0.9} Mo _{0.1} O ₃	-18	3. 7	3. 7
YbNi _{0.9} W _{0.1} O ₃	-22	3. 4	4. 0
YbNi _{0.9} Nb _{0.1} O ₃	-10	2. 8	3. 9
YbNi _{0.9} Ta _{0.1} O ₃	-26	3. 0	3. 6
La _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-19	1.8	3. 9
La _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-17	2. 9	4.6
La _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-23	3. 1	4.3
La _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-22	2. 2	4.0
La _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-18	2. 1	4. 7
La _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-20	3. 0	4. 2
La _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-21	2. 8	4. 3
La _{0.9} Na _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-21	3. 2	4. 9
La _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-22	3. 1	3. 9
La _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-18	3. 0	4. 2

[0243] [表81]

La _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-25	2. 4	4.0
$La_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-28	2. 9	4. 6
$La_{0,9}K_{0,1} Ni_{0,9}V_{0,1}O_3$	-19	3. 0	4.5
La _{0.9} K _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-20	2.8	4. 2
La _{0.9} K _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-26	3. 5	4. 7
La _{0.9} K _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-23	4.0	4. 8
La _{0.9} K _{0.1} Ni _{0.9} Co _{0.1} O ₃	-22	3. 9	4. 1
La _{0.9} K _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-19	2. 1	3.8
La _{0.9} K _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-17	2. 6	4.0
La _{0.9} K _{0.1} Ni _{0.9} W _{0.1} O ₃	-20	2.8	4.6
La _{0.9} K _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-22	2. 7	4. 2
La _{0.9} K _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-20	3.9	4.5
La _{0.9} Sr _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-23	2. 7	4. 2
La _{0.9} Sr _{0.1} Ni _{0.9} V _{0.1} O ₃	-18	1. 9	4. 1
La _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-28	2.8	3. 9
La _{0.9} Sr _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-19	3. 7	4.0
La _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-24	3. 4	3.8
La _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-25	2.8	3. 7
La _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-16	3. 0	4.0
La _{0.9} Sr _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-20	2. 9	3.9
La _{0.9} Sr _{0.1} Ni _{0.9} W _{0.1} O ₃	-22	2. 2	3.6
La _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	1. 9	4. 1
La _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-23	1. 8	3.9
			İ
La _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-28	3. 1	4.3
La _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-19	2. 2	4. 0
La _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-21	2. 1	4. 7
La _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-22	3. 0	4. 2
La _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-24	2.8	4. 3
La _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-21	3. 2	4. 9
La _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-29	3. 1	3. 9
La _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-17	3. 0	4. 2
La _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-18	2. 4	4. 0
La _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	2.8	4. 7
La _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-22	2. 9	4. 6

[0244] [表82]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
La _{0.9} Bi _{0.1} Ni _{0.9} Cr _{0.1} O ₃ -21 3.5 4.7 La _{0.9} Bi _{0.1} Ni _{0.9} Mn _{0.1} O ₃ -23 4.0 4.8	
La _{0.9} Bi _{0.1} Ni _{0.9} Mn _{0.1} O ₃ -23 4.0 4.8	
I D' W D O	
Is Bi Ni Fo O	
$La_{0.9}Bi_{0.1} Ni_{0.9}Fe_{0.1}O_3$ -19 3.9 4.1	
La _{0.9} Bi _{0.1} Ni _{0.9} Co _{0.1} O ₃ -23 2.1 3.8	
$\begin{bmatrix} La_{0.9}Bi_{0.1} Ni_{0.9}Cu_{0.1}O_3 & -24 & 2.6 & 4.0 \end{bmatrix}$	
$\begin{bmatrix} \text{La}_{0.9}\text{Bi}_{0.1} & \text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_3 & -25 & 2.8 & 4.6 \end{bmatrix}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
La _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃ -20 3.9 4.7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Ce _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$Ce_{0.9}Na_{0.1} Ni_{0.9}Cr_{0.1}O_3$ -10 3.7 4.2	
$Ce_{0.9}Na_{0.1} Ni_{0.9}Mn_{0.1}O_3$ -26 3.4 4.0	
Ce _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃ -20 2.8 4.7	
$Ce_{0.9}Na_{0.1} Ni_{0.9}Co_{0.1}O_3$ -19 3.0 4.6	
Ce _{0,9} Na _{0,1} Ni _{0,9} Cu _{0,1} O ₃ -17 2.9 4.5	
$Ce_{0.9}Na_{0.1} Ni_{0.9}Mo_{0.1}O_3$ -23 1.8 4.2	
$Ce_{0.9}Na_{0.1} Ni_{0.9}W_{0.1}O_3$ -22 2.9 4.7	
Ce _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃ -18 3.1 4.8	
Ce _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃ -20 2.2 4.1	
$Ce_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$ -21 3.0 4.0	
$Ce_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$ -22 2.8 4.6	
$Ce_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$ -18 3.2 4.2	
$Ce_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$ -25 3.1 4.5	
$Ce_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$ -24 3.0 4.3	
$Ce_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$ -28 2.4 4.2	
$Ce_{0.9}K_{0.1} Ni_{0.9}Cu_{0.1}O_3$ -19 2.8 4.1	
$Ce_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$ -20 2.9 3.9	
$Ce_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$ -26 3.0 4.0	ļ
$Ce_{0.9}K_{0.1}Ni_{0.9}Nb_{0.1}O_3$ -23 2.8 3.8	
$Ce_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$ -22 3.5 3.7	
$Ce_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$ -17 3.9 3.9	

[0245] [表83]

Ce _{0.9} Sr _{0.1} Ni _{0.9} V _{0.1} O ₃	-20	2. 1	3. 6
Ce _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	2. 6	4. 1
Ce _{0.9} Sr _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-20	2. 2	3. 9
Ce _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-21	1. 9	4. 6
Ce _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-23	1.8	4. 3
Ce _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-18	2. 9	4. 0
Ce _{0.9} Sr _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-28	3. 1	4. 7
Ce _{0.9} Sr _{0.1} Ni _{0.9} W _{0.1} O ₃	-19	2. 2	4. 2
Ce _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	2. 1	4. 3
Ce _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-25	3. 0	4. 9
Ce _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-20	3. 2	4. 2
Ce _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-22	3. 1	4. 0
Ce _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-24	3. 0	4. 7
Ce _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-23	2.4	4. 6
Ce _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-26	2.8	4. 5
Ce _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-28	2. 9	4. 2
Ce _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-19	3. 0	4. 7
Ce _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-21	2. 8	4. 8
Ce _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-22	3. 5	4. 1
Ce _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	4. 0	3. 8
Ce _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-21	3. 9	4. 0
Ce _{0.9} Bi _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-29	2. 1	4. 6
Ce _{0.9} Bi _{0.1} Ni _{0.9} V _{0.1} O ₃	-17	2. 6	4. 2
Ce _{0.9} Bi _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-18	2. 8	4. 5
Ce _{0.9} Bi _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-24	2. 7	4. 3
Ce _{0.9} Bi _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	3. 9	4. 1
Ce _{0.9} Bi _{0.1} Ni _{0.9} Co _{0.1} O ₃	-21	3. 8	3. 9
Ce _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-27	2. 7	4. 0
Ce _{0.9} Bi _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-21	1. 9	3. 8
$Ce_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$	-23	2. 8	3. 7
Ce _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-19	3. 7	4. 0
Ce _{0.9} Bi _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-23	3. 4	3. 9
Pr _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-25	3. 0	4. 1
Pr _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-16	2. 9	3. 9
Pr _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-20	1.8	4. 6

[0246] [表84]

Pr _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-22	2. 9	4. 3
Pr _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-29	3. 1	4. 0
Pr _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-22	2. 2	4. 7
Pr _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-19	2. 1	4. 2
Pr _{0.9} Na _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-25	3. 0	4. 3
Pr _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-30	2.8	4. 9
Pr _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-28	3. 2	3. 9
Pr _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-27	3. 1	4. 2
$Pr_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-18	2. 4	4. 7
Pr _{0.9} K _{0.1} Ni _{0.9} V _{0.1} O ₃	-22	2.8	4. 6
$Pr_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-10	2. 9	4. 5
$Pr_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-26	3. 0	4. 2
$Pr_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$	-20 .	2. 8	4. 7
$Pr_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$	-19	3. 5	4.8
$Pr_{0.9}K_{0.1} Ni_{0.9}Cu_{0.1}O_3$	-17	4. 0	4. 1
$Pr_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-23	3. 9	3.8
$Pr_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$	-22	2. 1	4. 0
$Pr_{0.9}K_{0.1} Ni_{0.9}Nb_{0.1}O_3$	-18	2. 6	4. 6
$Pr_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-20	2. 8	4. 2
$Pr_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-21	2. 9	4. 3
Pr _{0.9} Sr _{0.1} Ni _{0.9} V _{0.1} O ₃	-22	3. 1	4. 2
Pr _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-18	2. 2	4. 1
Pr _{0.9} Sr _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-25	2. 1	3. 9
Pr _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-24	3. 0	4. 0
Pr _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-28	2. 8	3.8
Pr _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-19	3. 2	3. 7
$Pr_{0.9}Sr_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-20	3. 1	4.0
Pr _{0.9} Sr _{0.1} Ni _{0.9} W _{0.1} O ₃	-26	3. 0	3. 9
Pr _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-23	2. 4	3.6
Pr _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-22	2.8	4. 1
Pr _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-17	3.0	4. 6
Pr _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-20	2. 8	4. 3
Pr _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	3, 5	4. 0
Pr _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-20	4.0	4. 7

[0247] [表85]

Pr _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-21	3. 9	4. 2
Pr _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-23	2. 1	4. 3
Pr _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-18	2. 6	4. 9
Pr _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-28	2.8	3. 9
Pr _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-19	2. 7	4. 2
Pr _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	3. 9	4.0
Pr _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-25	3.8	4.7
$Pr_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-16	2. 7	4. 6
$Pr_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$	-20	1. 9	4.5
Pr _{0.9} Bi _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	2.8	4. 2
Pr _{0.9} Bi _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-24	3. 7	4. 7
Pr _{0.9} Bi _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-23	3. 4	4. 8
$Pr_{0.9}Bi_{0.1} Ni_{0.9}Co_{0.1}O_3$	-26	2.8	4. 1
Pr _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-28	3. 0	3. 8
$Pr_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-19	2. 9	4. 1
Pr _{0.9} Bi _{0.1} Ni _{0.9} W _{0.1} O ₃	-21	1.8	3. 9
Pr _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-22	2.9	4. 6
Pr _{0.9} Bi _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-24	3. 1	4. 3
Nd _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-29	2. 1	4. 7
Nd _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-17	3. 0	4. 2
Nd _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-18	2.8	4. 3
Nd _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-24	3. 2	4. 9
Nd _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	3. 1	3. 9
Nd _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-21	3. 0	4. 2
Nd _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-27	2. 4	4. 0
Nd _{0.9} Na _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-25	2. 8	4.7
Nd _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-30	2. 9	4. 6
Nd _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-28	3.0	4. 5
Nd _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-27	2.8	4. 2
Nd _{0.9} K _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-18	4.0	4.8
Nd _{0.9} K _{0.1} Ni _{0.9} V _{0.1} O ₃	-22	3. 9	4. 1
Nd _{0.9} K _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-10	2. 1	3.8
Nd _{0.9} K _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-26	2. 6	4.0
Nd _{0.9} K _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-20	2. 2	4.6
Nd _{0.9} K _{0.1} Ni _{0.9} Co _{0.1} O ₃	-19	1. 9	4. 2

[0248] [表86]

$Nd_{0.9}K_{0.1} Ni_{0.9}Cu_{0.1}O_3$	-17	1.8	4. 5
$Nd_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-23	2. 9	4. 3
$Nd_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$	-22	3. 1	4. 1
Nd _{0.9} K _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-18	2. 2	3. 9
Nd _{0.9} K _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-20	2. 1	4. 0
Nd _{0.9} Sr _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-21	2. 8	3. 7
$Nd_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$	-22	3. 2	4. 0
Nd _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-18	3. 1	3. 9
$Nd_{0.9}Sr_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-25	3. 0	3. 6
$Nd_{0.9}Sr_{0.1} Ni_{0.9}Fe_{0.1}O_3$	-24	2. 4	4. 1
Nd _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-28	2. 8	3. 9
Nd _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-19	2. 9	4. 6
$Nd_{0.9}Sr_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-20	3. 0	4. 3
$Nd_{0.9}Sr_{0.1} Ni_{0.9}W_{0.1}O_3$	-26	2. 8	4. 0
Nd _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-23	3. 5	4. 7
Nd _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-22	4. 0	4. 2
Nd _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-17	2. 1	4. 9
Nd _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-20	2. 6	3. 9
Nd _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	2.8	4. 2
Nd _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-20	2. 7	4. 0
Nd _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-21	3. 9	4. 7
Nd _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-23	3. 8	4. 6
Nd _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-18	2. 7	4.5
Nd _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-28	1. 9	4. 2
Nd _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-19	2. 8	4. 7
Nd _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	3. 7	4.8
Nd _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-25	3. 4	4. 1
$Nd_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-16	2. 8	3.8
$Nd_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$	-20	3. 0	4. 0
$Nd_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-22	2. 9	4. 6
$Nd_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-24	1.8	4. 2
$Nd_{0.9}Bi_{0.1} Ni_{0.9}Fe_{0.1}O_3$	-23	2. 9	4. 5
$Nd_{0.9}Bi_{0.1} Ni_{0.9}Co_{0.1}O_3$	-26	3. 1	4. 3
$Nd_{0.9}Bi_{0.1} Ni_{0.9}Cu_{0.1}O_3$	-28	2. 2	4. 2
$Nd_{0.9}Bi_{0.1}Ni_{0.9}Mo_{0.1}O_3$	-19	2. 1	4. 1

[0249] [表87]

	· · · · · · · · · · · · · · · · · · ·		
$Nd_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$	-21	3. 0	3. 9
Nd _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-22	2. 8	4.0
Nd _{0.9} Bi _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-24	3. 2	3.8
Sm _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-29	3. 0	4. 0
Sm _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-17	2. 4	3. 9
Sm _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-18	2.8	3. 6
Sm _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-24	2. 9	4. 1
Sm _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	3. 0	3. 9
Sm _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-21	2.8	4. 6
Sm _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-27	3. 5	4. 3
Sm _{0.9} Na _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-21	4.0	4. 0
$Sm_{0.9}Na_{0.1} Ni_{0.9}W_{0.1}O_3$	-23	3. 9	4. 7
Sm _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-19	2. 1	4. 2
Sm _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-23	2. 6	4. 3
$Sm_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-25	2. 7	3. 9
$Sm_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$	-16	3. 9	4. 2
$Sm_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-20	1.8	4. 0
$Sm_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-22	2. 9	4. 7
$Sm_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$	-22	3. 1	4. 6
Sm _{0.9} K _{0.1} Ni _{0.9} Co _{0.1} O ₃	-10	2. 2	4. 5
Sm _{0.9} K _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-26	2. 1	4. 2
$Sm_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-20	3. 0	4. 7
Sm _{0.9} K _{0.1} Ni _{0.9} W _{0.1} O ₃	-19	2. 8	4.8
Sm _{0.9} K _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-17	3. 2	4. 1
$Sm_{0.9}K_{0.1}$ $Ni_{0.9}Ta_{0.1}O_3$	-23	3. 1	3.8
$Sm_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-18	2. 4	4.0
$Sm_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$	-20	2. 8	4. 7
$Sm_{0.9}Sr_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-21	2. 9	4. 2
Sm _{0.9} Sr _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-21	3. 0	4. 3
Sm _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	2. 8	4. 9
$Sm_{0.9}Sr_{0.1} Ni_{0.9}Co_{0.1}O_3$	-18	3. 5	3. 9
Sm _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-25	4. 0	4. 2
$Sm_{0.9}Sr_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-24	3. 9	4. 0
Sm _{0.9} Sr _{0.1} Ni _{0.9} W _{0.1} O ₃	-28	2. 1	4. 7

[0250] [表88]

$Sm_{0.9}Sr_{0.1} Ni_{0.9}Nb_{0.1}O_3$	-19	2.6	4. 6
$Sm_{0.9}Sr_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-20	2.8	4. 5
$Sm_{0.9}Ca_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-23	3. 9	4. 7
Sm _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-22	3.8	4.8
Sm _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-19	2. 7	4. 1
$Sm_{0.9}Ca_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-17	1. 9	3.8
Sm _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-20	2. 8	4. 0
Sm _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-22	3. 7	4. 6
Sm _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-20	3. 4	4. 2
Sm _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-21	2.8	4. 5
Sm _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-23	3. 0	4. 3
Sm _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-18	2. 9	4. 2
Sm _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-28	1.8	4. 1
$Sm_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-19	2. 9	3. 9
Sm _{0.9} Bi _{0.1} Ni _{0.9} V _{0.1} O ₃	-24	3. 1	4.0
$Sm_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-25	2. 2	3. 8
Sm _{0.9} Bi _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-16	2. 1	3. 7
Sm _{0.9} Bi _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-20	3. 0	4. 0
$Sm_{0.9}Bi_{0.1} Ni_{0.9}Co_{0.1}O_3$	-22	2. 8	3. 9
Sm _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-24	3. 2	3. 6
$Sm_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-23	3. 1	4. 1
Sm _{0.9} Bi _{0.1} Ni _{0.9} W _{0.1} O ₃	-26	3. 0	3. 9
Sm _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-28	2. 4	4. 6
Sm _{0.9} Bi _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-19	2. 8	4. 3
Eu _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-22	3. 0	4. 7
Eu _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-24	2. 8	4. 2
Eu _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-21	3. 5	4. 3
Eu _{0,9} Na _{0,1} Ni _{0,9} Mn _{0,1} O ₃	-29	4. 0	4. 9
Eu _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-17	3. 9	3. 9
Eu _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-18	2. 1	4. 2
Eu _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-24	2. 6	4.0
Eu _{0.9} Na _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-22	2. 8	4. 7
Eu _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-21	2. 7	4. 6
Eu _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-27	3. 9	4. 5
Eu _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-21	3. 8	4. 2

[0251] [表89]

$Eu_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-19	1. 9	4. 8
$Eu_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$	-23	2. 8	4. 1
$Eu_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-24	3. 7	3. 8
$Eu_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-25	3. 4	4. 1
$Eu_{0,9}K_{0,1}$ $Ni_{0,9}Fe_{0,1}O_3$	-16	2.8	3. 9
$Eu_{0,9}K_{0,1} Ni_{0,9}Co_{0,1}O_3$	-20	3.0	4. 6
Eu _{0.9} K _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-22	2.9	4.3
$Eu_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-29	2. 2	4.0
$Eu_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$	-22	1. 9	4. 7
Eu _{0.9} K _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-19	1.8	4.2
$Eu_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-25	2. 9	4.3
Eu _{0.9} Sr _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-28	2. 2	3. 9
$Eu_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$	-27	2. 1	4. 2
Eu _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-25	3. 0	4.0
$Eu_{0.9}Sr_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-18	2. 8	4.7
Eu _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	3. 2	4. 6
Eu _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-10	3. 1	4.5
Eu _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-26	3. 0	4. 2
Eu _{0.9} Sr _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-20	2. 4	4.7
Eu _{0.9} Sr _{0.1} Ni _{0.9} W _{0.1} O ₃	-19	2.8	4.8
Eu _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-17	2. 9	4.1
Eu _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-23	3. 0	3.8
Eu _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-18	3.5	4.6
Eu _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-20	4.0	4. 2
Eu _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-21	3. 9	4.5
Eu _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-21	2. 1	4. 3
Eu _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	2. 6	4. 1
Eu _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-18	2.8	3.9
Eu _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-25	2. 7	4.0
Eu _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-24	3. 9	3.8
$Eu_{0.9}Ca_{0.1} Ni_{0.9}W_{0.1}O_3$	-28	3.8	3. 7
$Eu_{0.9}Ca_{0.1} Ni_{0.9}Nb_{0.1}O_3$	-19	2. 7	4.0
$Eu_{0.9}Ca_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-20	1. 9	3.9
$Eu_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-26	2. 8	3. 6
			·

[0252] [表90]

$Eu_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$	-23	3. 7	4. 1
Eu _{0.9} Bi _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	3. 4	3. 9
$Eu_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-19	2. 8	4. 6
Eu _{0.9} Bi _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-17	3. 0	4. 3
Eu _{0.9} Bi _{0.1} Ni _{0.9} Co _{0.1} O ₃	-20	2. 9	4. 0
Eu _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-22	1.8	4. 7
Eu _{0.9} Bi _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-20	2. 9	4. 2
Eu _{0.9} Bi _{0.1} Ni _{0.9} W _{0.1} O ₃	-21	3. 1	4. 3
Eu _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-23	2. 2	4.9
Eu _{0,9} Bi _{0,1} Ni _{0,9} Ta _{0,1} O ₃	-18	2. 1	3. 9
Gd _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-19	2.8	4. 0
Gd _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-24	3. 2	4.7
Gd _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-25	3. 1	4.6
Gd _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-16	3. 0	4. 5
Gd _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-20	2. 4	4. 2
Gd _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-22	2.8	4.7
Gd _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-24	2. 9	4.8
$Gd_{0.9}Na_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-23	3. 0	4. 1
Gd _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-26	2.8	3.8
Gd _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-28	3. 5	4.0
Gd _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-19	4.0	4. 6
$Gd_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-22	2. 1	4. 5
$Gd_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$	-24	2. 6	4. 3
$Gd_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-21	2. 2	4. 2
$Gd_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-29	1.9	4. 1
Gd _{0.9} K _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-17	1. 8	3.9
$Gd_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$	-18	2. 9	4.0
Gd _{0.9} K _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-24	3. 1	3.8
Gd _{0.9} K _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-22	2. 2	3. 7
$Gd_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$	-21	2. 1	4.0
Gd _{0.9} K _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-27	3. 0	3.9
$Gd_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-25	2. 8	3.6
Gd _{0.9} Sr _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-28	3. 1	3. 9
Gd _{0.9} Sr _{0.1} Ni _{0.9} V _{0.1} O ₃	-27	3. 0	4. 6

[0253] [表91]

$Gd_{0.9}Sr_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-25	2. 4	4. 3
Gd _{0.9} Sr _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-18	2.8	4.0
Gd _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	2. 9	4.7
Gd _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-10	3. 0	4. 2
Gd _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-26	2.8	4. 3
$Gd_{0.9}Sr_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-20	3. 5	4. 9
$Gd_{0.9}Sr_{0.1} Ni_{0.9}W_{0.1}O_3$	-19	4.0	3. 9
Gd _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-17	3. 9	4. 2
Gd _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-23	2. 1	4. 0
	*	:	
Gd _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-18	2.8	4. 6
Gd _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-20	2. 7	4. 5
Gd _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-21	3. 9	4. 2
Gd _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-21	3.8	4. 7
Gd _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	2. 7	4. 8
Gd _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-18	1.9	4. 1
Gd _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-25	2.8	3.8
Gd _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-24	3. 7	3, 9
Gd _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-28	3. 4	4. 6
Gd _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-19	2.8	4.3
Gd _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-20	3. 0	4. 0
Gd _{0.9} Bi _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-26	2. 9	4. 7
Gd _{0.9} Bi _{0.1} Ni _{0.9} V _{0.1} O ₃	-23	1.8	4. 2
Gd _{0.9} Bi _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	2. 9	4.3
Gd _{0.9} Bi _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-19	3. 1	4. 9
Gd _{0.9} Bi _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-17	2. 2	3. 9
Gd _{0.9} Bi _{0.1} Ni _{0.9} Co _{0.1} O ₃	-20	2. 1	4.2
Gd _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-22	3. 0	4.0
$Gd_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-20	2. 8	4. 7
Gd _{0.9} Bi _{0.1} Ni _{0.9} W _{0.1} O ₃	-21	3. 2	4. 6
Gd _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-23	3. 1	4. 5
Gd _{0.9} Bi _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-18	3. 0	4. 2
Dy _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-19	2. 8	4.8
$Dy_{0.9}Na_{0.1} Ni_{0.9}V_{0.1}O_3$	-24	2. 9	4.1
$Dy_{0.9}Na_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-25	3. 0	3. 8
Dy _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-16	2. 8	4. 3

[0254] [表92]

Dyα, 9Na, 1 Nia, 9Fea, 103 −20 3.5 4.0 Dyα, 9Na, 1 Nia, 9Ca, 103 −22 4.0 4.7 Dyα, 9Na, 1 Nia, 9Ca, 103 −24 3.9 4.2 Dyα, 9Na, 1 Nia, 9Ma, 103 −23 2.1 4.3 Dyα, 9Na, 1 Nia, 9Na, 103 −28 2.8 3.9 Dyα, 9Na, 1 Nia, 9Ta, 103 −19 2.7 4.2 Dyα, 9Na, 1 Nia, 9Ta, 103 −19 2.7 4.2 Dyα, 4Na, 1 Nia, 9Ta, 103 −22 2.4 4.7 Dyα, 4Na, 1 Nia, 9Ta, 103 −22 2.4 4.7 Dyα, 4Na, 1 Nia, 9Ca, 103 −24 2.8 4.6 Dyα, 4Na, 1 Nia, 9Ca, 103 −24 2.8 4.6 Dyα, 4Na, 1 Nia, 9Ca, 103 −24 4.0 4.1 Dyα, 4Na, 1 Nia, 9Ca, 103 −24 4.0 4.1 Dyα, 4Na, 1 Nia, 9Ca, 103 −24 4.0 4.1 Dyα, 4Na, 1 Nia				
Dy _{0, N} Na _{0,1} Ni _{0, S} Cu _{0,1} O ₃ −24 3.9 4.2 Dy _{0, S} Na _{0,1} Ni _{0, S} Mo _{0,1} O ₃ −23 2.1 4.3 Dy _{0, S} Na _{0,1} Ni _{0, S} Mo _{0,1} O ₃ −26 2.6 4.9 Dy _{0, S} Na _{0,1} Ni _{0, S} Nb _{0,1} O ₃ −28 2.8 3.9 Dy _{0, S} Na _{0,1} Ni _{0, S} Nb _{0,1} O ₃ −28 2.8 3.9 Dy _{0, S} Na _{0,1} Ni _{0, S} Ta _{0,1} O ₃ −22 2.4 4.7 Dy _{0, S} Na _{0,1} Ni _{0, S} Ta _{0,1} O ₃ −22 2.4 4.7 Dy _{0, S} Na _{0,1} Ni _{0, S} Ta _{0,1} O ₃ −24 2.8 4.6 Dy _{0, S} Na _{0,1} Ni _{0, S} Ta _{0,1} O ₃ −21 2.9 4.5 Dy _{0, S} Na _{0,1} Ni _{0, S} Ma _{0,1} O ₃ −29 3.0 4.2 Dy _{0, S} Na _{0,1} Ni _{0, S} Ma _{0,1} O ₃ −29 3.0 4.2 Dy _{0, S} Na _{0,1} Ni _{0, S} Ma _{0,1} O ₃ −29 3.0 4.2 Dy _{0, S} Na _{0,1} Ni _{0, S} Ma _{0,1} O ₃ −24 4.0 4.1 Dy _{0, S} Na _{0,1} Ni _{0, S} Ma _{0,1} O ₃ −22 3.9 3.8 Dy _{0, S} Na _{0,1} Ni _{0, S} Ma _{0,1} O ₃ −21 2.1 4.0	Dy _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-20	3. 5	4. 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-22	4.0	4. 7
Dy ₀ , Na _{0,1} Ni ₀ , Wa ₀ , O ₃ −26 2.6 4.9 Dy ₀ , Na _{0,1} Ni ₀ , Nb ₀ , 10 ₃ −28 2.8 3.9 Dy ₀ , Na _{0,1} Ni ₀ , Na ₀ , Ta ₀ , 10 ₃ −19 2.7 4.2 Dy ₀ , Ka ₀ , Ni ₀ , Ni ₀ , Pa ₀ , O ₃ −22 2.4 4.7 Dy ₀ , Ka ₀ , Ni ₀ , Pa ₀ , O ₃ −24 2.8 4.6 Dy ₀ , Ka ₀ , Ni ₀ , Pa ₀ , O ₃ −24 2.8 4.6 Dy ₀ , Ka ₀ , Ni ₀ , Pa ₀ , O ₃ −21 2.9 4.5 Dy ₀ , Ka ₀ , Ni ₀ , Pa ₀ , O ₃ −29 3.0 4.2 Dy ₀ , Ka ₀ , Ni ₀ , Pa ₀ , O ₃ −29 3.0 4.2 Dy ₀ , Ka ₀ , Ni ₀ , Pa ₀ , O ₃ −17 2.8 4.7 Dy ₀ , Sa ₀ , Ni ₀ , Ni ₀ , Pa ₀ , O ₃ −18 3.5 4.8 Dy ₀ , Sa ₀ , Ni ₀ , Ni ₀ , Pa ₀ , O ₃ −24 4.0 4.1 Dy ₀ , Sa ₀ , Ni ₀ , Ni ₀ , Na ₀ , O ₃ −21 2.1 4.0 Dy ₀ , Sa ₀ , Ni ₀ , Na ₀ , Na ₀ , O ₃ −21 2.1 4.0 Dy ₀ , Sa ₀ , Ni ₀ , Na ₀ , Na ₀ , O ₃ −23 1.8 4.2	Dy _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-24	3. 9	4. 2
Dy _{0.} yNa _{0.1} Ni _{0.} yTa _{0.1} O ₃ −28 2.8 3.9 Dy _{0.} yNa _{0.1} Ni _{0.} yTa _{0.1} O ₃ −19 2.7 4.2 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −22 2.4 4.7 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −24 2.8 4.6 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −21 2.9 4.5 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −29 3.0 4.2 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −29 3.0 4.2 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −29 3.0 4.2 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −24 4.0 4.1 Dy _{0.} yK _{0.1} Ni _{0.} yCu _{0.1} O ₃ −24 4.0 4.1 Dy _{0.} yK _{0.1} Ni _{0.} yCu _{0.1} O ₃ −21 2.1 4.0 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −21 2.1 4.0 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −27 2.6 4.6 Dy _{0.} yK _{0.1} Ni _{0.} yTa _{0.1} O ₃ −23 1.8 4.2 Dy _{0.} ySr _{0.1} Ni _{0.} yTa _{0.1} O ₃ −23 1.8 4.2 Dy _{0.} yS	Dy _{0,9} Na _{0,1} Ni _{0,9} Mo _{0,1} O ₃	-23	2. 1	4. 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-26	2. 6	4. 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-28	2.8	3. 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Na_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-19	2. 7	4. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-22	2. 4	4. 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$	-24	2.8	4. 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-21	2. 9	4. 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-29	3.0	4. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$	-17	2.8	4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$	-18	3. 5	4.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Cu_{0.1}O_3$	-24	4. 0	4. 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-22	3. 9	3. 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$	-21	2. 1	4. 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Nb_{0.1}O_3$	-27	2. 6	4. 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-21	2.8	4. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-19	3. 9	4. 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$	-23	1.8	4. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-24	2. 9	4. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-25	3. 1	3.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-16	2. 2	4.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}Co_{0.1}O_3$	-21	2. 1	3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}Cu_{0.1}O_3$	-23	3. 0	3. 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-19	2. 8	4. 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Dy_{0.9}Sr_{0.1} Ni_{0.9}W_{0.1}O_3$	-23	3. 2	3.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	3. 1	3. 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-25	3.0	4. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-20	2.8	4. 6
$Dy_{0.9}Ca_{0.1} Ni_{0.9}Mn_{0.1}O_3$ -22 2.8 4.7	Dy _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-22	2. 9	4.3
		-29	3.0	4.0
$Dy_{0.9}Ca_{0.1} Ni_{0.9}Fe_{0.1}O_3$ -19 3.5 4.2		-22	2. 8	4. 7
	Dy _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-19	3. 5	4. 2

[0255] [表93]

			
$Dy_{0.9}Ca_{0.1} Ni_{0.9}Co_{0.1}O_3$	-25	4. 0	4. 3
$Dy_{0.9}Ca_{0.1} Ni_{0.9}Cu_{0.1}O_3$	-30	3. 9	4. 9
Dy _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-28	2. 1	3. 9
$Dy_{0.9}Ca_{0.1} Ni_{0.9}W_{0.1}O_3$	-27	2. 6	4. 2
Dy _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-25	2.8	4. 0
$Dy_{0.9}Ca_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-18	2. 7	4. 7
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-22	3. 9	4.6
$Dy_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$	-10	3.8	4. 5
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-26	2. 7	4. 2
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-20	1.9	4. 7
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Fe_{0.1}O_3$	-19	2.8	4.8
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Co_{0.1}O_3$	-17	3. 7	4. 1
Dy _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-23	3. 4	3.8
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-22	2.8	4. 1
$Dy_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$	-18	3. 0	3. 9
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Nb_{0.1}O_3$	-20	2. 9	4. 6
$Dy_{0.9}Bi_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-21	1.8	4. 3
$\text{Ho}_{0.9}\text{Na}_{0.1} \text{Ni}_{0.9}\text{Ti}_{0.1}\text{O}_3$	-22	3. 1	4. 7
$\text{Ho}_{0.9}\text{Na}_{0.1} \text{Ni}_{0.9}\text{V}_{0.1}\text{O}_3$	-18	2. 2	4. 2
$\text{Ho}_{0.9}\text{Na}_{0.1} \text{Ni}_{0.9}\text{Cr}_{0.1}\text{O}_3$	-25	2. 1	4. 3
$\text{Ho}_{0.9}\text{Na}_{0.1} \text{ Ni}_{0.9}\text{Mn}_{0.1}\text{O}_3$	-24	3. 0	4. 9
Ho _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-28	2. 8	3. 9
Ho _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-19	3. 2	4. 2
$Ho_{0.9}Na_{0.1} Ni_{0.9}Cu_{0.1}O_3$	-20	3. 1	4.0
$Ho_{0.9}Na_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-26	3. 0	4. 7
$Ho_{0.9}Na_{0.1} Ni_{0.9}W_{0.1}O_3$	-23	2. 4	4.6
Ho _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-22	2. 8	4. 5
Ho _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-19	2. 9	4. 2
$Ho_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-20	2. 8	4.8
$Ho_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$	-22	3. 5	4. 1
$\text{Ho}_{0.9}\text{K}_{0.1} \text{Ni}_{0.9}\text{Cr}_{0.1}\text{O}_3$	-20	4. 0	3.8
$Ho_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-21	3. 9	4.0
Ho _{0.9} K _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-23	2. 1	4.6
Ho _{0.9} K _{0.1} Ni _{0.9} Co _{0.1} O ₃	-18	2. 6	4. 2
Ho _{0.9} K _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-28	2.8	4. 5

[0256] [表94]

$\text{Ho}_{0.9}\text{K}_{0.1} \ \text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_3$	-19	2. 7	4. 3
$\text{Ho}_{0.9}\text{K}_{0.1} \text{Ni}_{0.9}\text{W}_{0.1}\text{O}_3$	-24	3. 9	4. 1
$Ho_{0.9}K_{0.1} Ni_{0.9}Nb_{0.1}O_3$	-25	3.8	3. 9
$Ho_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-16	2. 7	4. 0
$Ho_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-22	2. 8	3. 7
$Ho_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$	-24	3. 7	4.0
Ho _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-23	3. 4	3. 9
Ho _{0.9} Sr _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-26	2.8	3. 6
Ho _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-28	3. 0	4. 1
Ho _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-19	2. 9	3. 9
Ho _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-21	2. 2	4. 6
Ho _{0.9} Sr _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-22	1. 9	4. 3
Ho _{0.9} Sr _{0.1} Ni _{0.9} W _{0.1} O ₃	-24	1.8	4. 0
Ho _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-21	2. 9	4. 7
$Ho_{0.9}Sr_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-29	3. 1	4. 2
Ho _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-18	2. 1	4. 9
Ho _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-24	3. 0	3. 9
Ho _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	2. 8	4. 2
Ho _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-21	3. 2	4.0
Ho _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-27	3. 1	4. 7
Ho _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-25	3. 0	4. 6
Ho _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-30	2. 4	4. 5
$Ho_{0.9}Ca_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-28	2.8	4. 2
$\text{Ho}_{0.9}\text{Ca}_{0.1} \ \text{Ni}_{0.9}\text{W}_{0.1}\text{O}_3$	-27	2. 9	4. 7
$\text{Ho}_{0.9}\text{Ca}_{0.1} \text{ Ni}_{0.9}\text{Nb}_{0.1}\text{O}_3$	-25	3. 0	4.8
$Ho_{0.9}Ca_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-18	2. 8	4. 1
$\text{Ho}_{0.9}\text{Bi}_{0.1} \ \text{Ni}_{0.9}\text{Ti}_{0.1}\text{O}_3$	-22	3. 5	3.8
$\text{Ho}_{0.9} \text{Bi}_{0.1} \ \text{Ni}_{0.9} \text{V}_{0.1} \text{O}_3$	-10	4. 0	4. 0
$\text{Ho}_{0.9} \text{Bi}_{0.1} \ \text{Ni}_{0.9} \text{Cr}_{0.1} \text{O}_3$	-26	3. 9	4.6
$\text{Ho}_{0.9}\text{Bi}_{0.1} \ \text{Ni}_{0.9}\text{Mn}_{0.1}\text{O}_3$	-20	2. 1	4. 2
$\text{Ho}_{0.9}\text{Bi}_{0.1} \ \text{Ni}_{0.9}\text{Fe}_{0.1}\text{O}_3$	-19	2. 6	4.5
$Ho_{0.9}Bi_{0.1} Ni_{0.9}Co_{0.1}O_3$	-17	2. 8	4.3
Ho _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-23	2. 7	4.2
$Ho_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-22	3. 9	4. 1
$Ho_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$	-18	3. 8	3. 9
Ho _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-20	2. 7	4. 0

[0257] [表95]

Ho _{0.9} Bi _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-21	1.9	3.8
$\text{Er}_{0.9} \text{Na}_{0.1} \ \text{Ni}_{0.9} \text{Ti}_{0.1} \text{O}_3$	-22	3. 7	4.0
Er _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-18	3. 4	3. 9
Er _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-25	2. 8	3. 6
Er _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-24	3. 0	4. 1
Er _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-28	2. 9	3. 9
Er _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-19	1.8	4. 6
Er _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-20	2. 9	4. 3
Er _{0.9} Na _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-26	3. 1	4. 0
Er _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-23	2. 2	4. 7
Er _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-22	2. 1	4. 2
Er _{0.9} Na _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-19	3. 0	4. 3
$Er_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-20	3. 2	3. 9
$Er_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$	-22	3. 1	4. 2
Er _{0.9} K _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-20	3. 0	4. 0
Er _{0.9} K _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-21	2. 4	4. 7
$Er_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$	-23	2. 8	4. 6
Er _{0.9} K _{0.1} Ni _{0.9} Co _{0.1} O ₃	-18	2. 9	4. 5
Er _{0.9} K _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-28	3. 0	4. 2
$\text{Er}_{0.9}\text{K}_{0.1} \text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_3$	-19	2. 8	4. 7
$\text{Er}_{0.9}K_{0.1} \text{Ni}_{0.9}W_{0.1}O_3$	-24	3. 5	4.8
$\text{Er}_{0.9}\text{K}_{0.1} \text{Ni}_{0.9}\text{Nb}_{0.1}\text{O}_3$	-25	4. 0	4. 1
$Er_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-16	3. 9	3. 8
Er _{0.9} Sr _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-22	2. 6	4. 7
Er _{0.9} Sr _{0.1} Ni _{0.9} V _{0.1} O ₃	-24	2. 2	4. 6
Er _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-23	1.9	4. 5
Er _{0.9} Sr _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-26	1.8	4. 2
Er _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-28	2. 9	4. 7
Er _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-19	3. 1	4.8
Er _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-21	2. 2	4. 1
Er _{0.9} Sr _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-22	2. 1	3.8
Er _{0.9} Sr _{0.1} Ni _{0.9} W _{0.1} O ₃	-24	3. 0	4. 1
Er _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-21	2.8	3.9
Er _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-29	3. 2	4. 6
Er _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-18	3. 0	4. 0
Er _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-24	2. 4	4. 7
Er _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	2. 8	4. 2

[0258] [表96]

$Er_{0.9}Ca_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-21	2. 9	4. 3
Er _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-27	3. 0	4. 9
Er _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-21	2. 8	3. 9
Er _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-23	3. 5	4. 2
Er _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-19	4. 0	4. 0
Er _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-23	3. 9	4. 7
Er _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-24	2. 1	4. 6
Er _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-25	2. 6	4. 5
$Er_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-16	2.8	4. 2
$Er_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$	-20	2.7	4. 7
Er _{0.9} Bi _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-22	3. 9	4.8
$Er_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-22	3.8	4. 1
Er _{0.9} Bi _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-10	2. 7	3. 8
$\mathrm{Er_{0.9}Bi_{0.1}\ Ni_{0.9}Co_{0.1}O_3}$	-26	1. 9	4. 0
Er _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-20	2. 8	4. 6
$Er_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-19	3. 7	4. 2
Er _{0.9} Bi _{0.1} Ni _{0.9} W _{0.1} O ₃	-17	3. 4	4. 5
Er _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-23	2.8	4. 3
$\text{Er}_{0.9}\text{Bi}_{0.1} \text{Ni}_{0.9}\text{Ta}_{0.1}\text{O}_3$	-22	3. 0	4. 1
Yb _{0.9} Na _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-20	1.8	4. 0
Yb _{0.9} Na _{0.1} Ni _{0.9} V _{0.1} O ₃	-21	2. 9	3.8
Yb _{0.9} Na _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-21	3. 1	3, 7
Yb _{0.9} Na _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-22	2. 2	4. 0
Yb _{0.9} Na _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-18	2. 1	3. 9
Yb _{0.9} Na _{0.1} Ni _{0.9} Co _{0.1} O ₃	-25	3. 0	3. 6
Yb _{0.9} Na _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-24	2. 8	4. 1
Yb _{0.9} Na _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-28	3. 2	3. 9
Yb _{0.9} Na _{0.1} Ni _{0.9} W _{0.1} O ₃	-19	3. 1	4.6
Yb _{0.9} Na _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-20	3. 0	4. 3
$Yb_{0.9}Na_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-26	2. 4	4. 0
Yb _{0.9} K _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-22	2. 9	4. 2
Yb _{0.9} K _{0.1} Ni _{0.9} V _{0.1} O ₃	-19	3. 0	4.3
$Yb_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$	-17	2. 8	4.9
Yb _{0.9} K _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-20	3. 5	3. 9
Yb _{0.9} K _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-22	4. 0	4. 2
Yb _{0.9} K _{0.1} Ni _{0.9} Co _{0.1} O ₃	-20	3. 9	4. 0
Yb _{0.9} K _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-21	2. 1	4. 7

[0259] [表97]

$Yb_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$	-23	2. 6	4.6
$Yb_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$	-18	2.8	4. 5
$Yb_{0.9}K_{0.1} Ni_{0.9}Nb_{0.1}O_3$	-28	2. 7	4. 2
$Yb_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$	-19	3. 1	4. 7
$Yb_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$	-25	2. 1	4. 1
$Yb_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$	-16	3. 0	3. 8
Yb _{0.9} Sr _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-20	2. 8	4. 0
$Yb_{0.9}Sr_{0.1} Ni_{0.9}Mn_{0.1}O_3$	-22	3. 2	4. 6
Yb _{0.9} Sr _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-24	3. 1	4. 2
Yb _{0.9} Sr _{0.1} Ni _{0.9} Co _{0.1} O ₃	-23	3. 0	4. 5
Yb _{0.9} Sr _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-26	2. 4	4. 3
Yb _{0.9} Sr _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-28	2.8	4. 2
$Yb_{0,9}Sr_{0,1} Ni_{0,9}W_{0,1}O_3$	-19	2. 9	4. 1
Yb _{0.9} Sr _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-21	3. 0	3. 9
Yb _{0.9} Sr _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-22	2.8	4. 0
Yb _{0.9} Ca _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-21	4. 0	3. 7
Yb _{0.9} Ca _{0.1} Ni _{0.9} V _{0.1} O ₃	-29	3.9	4. 0
Yb _{0.9} Ca _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-17	2. 1	3. 9
Yb _{0.9} Ca _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-18	2. 6	3. 6
Yb _{0.9} Ca _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-24	2. 8	4. 1
Yb _{0.9} Ca _{0.1} Ni _{0.9} Co _{0.1} O ₃	-22	2. 7	3. 9
Yb _{0.9} Ca _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-21	3. 9	4. 6
Yb _{0.9} Ca _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-27	3.8	4. 3
Yb _{0.9} Ca _{0.1} Ni _{0.9} W _{0.1} O ₃	-21	2. 7	4. 0
Yb _{0.9} Ca _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-23	1. 9	4. 7
Yb _{0.9} Ca _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-19	2. 8	4. 2
Yb _{0.9} Bi _{0.1} Ni _{0.9} Ti _{0.1} O ₃	-23	3. 7	4.3
Yb _{0.9} Bi _{0.1} Ni _{0.9} V _{0.1} O ₃	-24	3. 4	4.9
Yb _{0.9} Bi _{0.1} Ni _{0.9} Cr _{0.1} O ₃	-25	2. 8	3. 9
Yb _{0.9} Bi _{0.1} Ni _{0.9} Mn _{0.1} O ₃	-16	3. 0	4. 2
Yb _{0.9} Bi _{0.1} Ni _{0.9} Fe _{0.1} O ₃	-20	2. 9	4.0
Yb _{0.9} Bi _{0.1} Ni _{0.9} Co _{0.1} O ₃	-22	1.8	4.7
Yb _{0.9} Bi _{0.1} Ni _{0.9} Cu _{0.1} O ₃	-29	2. 9	4.6
Yb _{0.9} Bi _{0.1} Ni _{0.9} Mo _{0.1} O ₃	-22	3. 1	4. 5
Yb _{0.9} Bi _{0.1} Ni _{0.9} W _{0.1} O ₃	-19	2. 2	4. 2
Yb _{0.9} Bi _{0.1} Ni _{0.9} Nb _{0.1} O ₃	-25	2. 1	4. 7
Yb _{0.9} Bi _{0.1} Ni _{0.9} Ta _{0.1} O ₃	-30	3. 0	4.8

[0260] [表98]

組成	ゼーベック係数	電気抵抗率	熱伝導度
$(Ln_sR_t^3)_2Ni_uR_v^4O_w$	μ V/K (700℃)	mΩcm (700°C)	W/mK (700°C)
La ₂ NiO ₄	-25	6. 1	4. 3
Ce ₂ NiO ₄	-28	5. 0	4. 2
Pr ₂ NiO ₄	-28	7. 0	4. 3
Nd ₂ NiO ₄	-22	4. 9	4. 5
Sm ₂ NiO ₄	-20	5. 0	4. 6
Eu ₂ NiO ₄	-25	6. 0	4. 7
Gd ₂ NiO ₄	-27	5. 2	4. 4
Dy ₂ NiO ₄	-30	7. 0	4. 9
Ho ₂ NiO ₄	-29	8. 1	4.7
Er ₂ NiO ₄	-30	6. 9	4. 6
Yb ₂ NiO ₄	-28	6. 7	4.6
La _{1.8} Na _{0.2} NiO ₄	-25	6. 9	4. 2
La _{1.8} K _{0.2} NiO ₄	-18	5. 9	4.7
La _{1.8} Sr _{0.2} NiO ₄	-22	6. 3	4. 8
La _{1.8} Ca _{0.2} NiO ₄	-10	7. 0	4.1
La _{1.8} Bi _{0.2} NiO ₄	-26	7. 1	3.8
Ce _{1.8} Na _{0.2} NiO ₄	-19	7. 0	4. 6
Ce _{1.8} K _{0.2} NiO ₄	-17	6. 8	4. 2
Ce _{1.8} Sr _{0.2} NiO ₄	-23	6. 9	4. 5
Ce _{1.8} Ca _{0.2} NiO ₄	-22	6. 7	4. 3
Ce _{1.8} Bi _{0.2} NiO ₄	-18	7. 1	4. 1
Pr _{1.8} Na _{0.2} NiO ₄	-21	6. 3	4. 0
$Pr_{1.8}K_{0.2}NiO_4$	-21	7. 1	3.8
Pr _{1.8} Sr _{0.2} NiO ₄	-22	6. 4	3. 7
Pr _{1.8} Ca _{0.2} NiO ₄	-18	5. 9	4. 0
Pr _{1.8} Bi _{0.2} NiO ₄	-25	6. 4	3. 9
$Nd_{1.8}Na_{0.2}NiO_4$	-28	7. 0	4. 1
$Nd_{1.8}K_{0.2}NiO_4$	-19	6. 8	3.9
Nd _{1.8} Sr _{0.2} NiO ₄	-20	7. 1	4. 6
$Nd_{1.8}Ca_{0.2}NiO_4$	-26	6. 8	4. 3
Nd _{1.8} Bi _{0.2} NiO ₄	-23	5. 9	4.0

[0261] [表99]

$Sm_{1.8}Na_{0.2}NiO_4$	-19	7. 0	4.2
$Sm_{1.8}K_{0.2}NiO_4$	-17	6. 8	4. 3
$Sm_{1.8}Sr_{0.2}NiO_4$	-20	5. 0	4. 9
$Sm_{1.8}Ca_{0.2}NiO_4$	-22	7. 0	3. 9
Sm _{1.8} Bi _{0.2} NiO ₄	-20	4. 9	4. 2
		1	
Eu _{1.8} Na _{0.2} NiO ₄	-23	6. 0	4. 7
Eu _{1.8} K _{0.2} NiO ₄	-18	5. 2	4. 6
Eu _{1.8} Sr _{0.2} NiO ₄	-28	7.0	4. 5
Eu _{1.8} Ca _{0.2} Ni O ₄	-19	8. 1	4. 2
Eu _{1.8} Bi _{0.2} NiO ₄	-24	6. 9	4. 7
Gd _{1.8} Na _{0.2} NiO ₄	-16	7. 2	4. 1
$Gd_{1.8}K_{0.2}NiO_4$	-20	6. 9	3. 8
Gd _{1.8} Sr _{0.2} NiO ₄	-22	5. 9	4. 0
Gd _{1.8} Ca _{0.2} NiO ₄	-24	6. 3	4. 6
Gd _{1.8} Bi _{0.2} NiO ₄	-23	7.0	4. 2
Dy _{1.8} Na _{0.2} NiO ₄	-28	7. 3	4. 3
Dy _{1.8} K _{0.2} NiO ₄	-19	7. 0	4. 2
$Dy_{1.8}Sr_{0.2}NiO_4$	-21	6. 8	4. 1
Dy _{1.8} Ca _{0.2} NiO ₄	-22	6. 9	3. 9
Dy _{1.8} Bi _{0.2} NiO ₄	-24	6. 7	4. 0
Ho _{1,8} Na _{0,2} NiO ₄	-29	5. 8	3. 7
Ho _{1.8} K _{0.2} NiO ₄	-17	6. 3	4. 0
Ho _{1.8} Sr _{0.2} NiO ₄	-18	7. 1	3. 9
Ho _{1.8} Ca _{0.2} NiO ₄	-24	6. 4	3.6
Ho _{1.8} Bi _{0.2} NiO ₄	-22	5. 9	4. 1
Er _{1.8} Na _{0.2} NiO ₄	-27	7. 1	4. 6
Er _{1.8} K _{0.2} NiO ₄	-25	7. 0	4. 3
Er _{1.8} Sr _{0.2} NiO ₄	-30	6. 8	4. 0
Er _{1.8} Ca _{0.2} NiO ₄	-28	7. 1	4. 7
Er _{1.8} Bi _{0.2} NiO ₄	-24	6. 8	4. 2
Yb _{1.8} Na _{0.2} NiO ₄	-25	5. 9	4. 3

[0262] [表100]

$Yb_{1.8}K_{0.2}NiO_4$	-16	6. 5	4. 9
$Yb_{1.8}Sr_{0.2}NiO_4$	-20	7.0	3. 9
Yb _{1.8} Ca _{0.2} NiO ₄	-22	6.8	4. 2
Yb _{1.8} Bi _{0.2} NiO ₄	-24	5. 8	4.0
La ₂ Ni _{1.8} Ti _{0.2} O ₄	-26	7. 1	4.6
La ₂ Ni _{1.8} V _{0.2} O ₄	-28	6. 4	4. 5
La ₂ Ni _{1.8} Cr _{0.2} O ₄	-19	5. 9	4. 2
La ₂ Ni _{1.8} Mn _{0.2} O ₄	-21	6. 4	4. 7
La ₂ Ni _{1.8} Fe _{0.2} O ₄	-22	7. 1	4.8
La ₂ Ni _{1.8} Co _{0.2} O ₄	-24	7. 0	4. 1
La ₂ Ni _{1.8} Cu _{0.2} O ₄	-21	6.8	3. 8
La ₂ Ni _{1.8} Mo _{0.2} O ₄	-29	7. 1	4.0
La ₂ Ni _{1.8} W _{0.2} O ₄	-17	6. 8	4. 7
La ₂ Ni _{1.8} Nb _{0.2} O ₄	-18	5. 9	4. 6
La ₂ Ni _{1.8} Ta _{0.2} O ₄	-24	6. 5	4. 5
Ce ₂ Ni _{0.9} Ti _{0.1} O ₄	-21	5. 0	4. 7
Ce ₂ Ni _{0.9} V _{0.1} O ₄	-27	7. 0	4.8
Ce ₂ Ni _{0.9} Cr _{0.1} O ₄	-25	4. 9	4. 1
Ce ₂ Ni _{0.9} Mn _{0.1} O ₄	-30	5. 0	3. 8
Ce ₂ Ni _{0.9} Fe _{0.1} O ₄	-28	6. 0	4. 1
Ce ₂ Ni _{0.9} Co _{0.1} O ₄	-27	5. 2	3. 9
Ce ₂ Ni _{0.9} Cu _{0.1} O ₄	-25	7. 0	4. 6
Ce ₂ Ni _{0.9} Mo _{0.1} O ₄	-18	8. 1	4. 3
Ce ₂ Ni _{0.9} W _{0.1} O ₄	-22	6. 9	4. 0
Ce ₂ Ni _{0.9} Nb _{0.1} O ₄	-10	6. 7	4. 7
Ce ₂ Ni _{0.9} Ta _{0.1} O ₄	-26	7. 2	4. 2
Pr ₂ Ni _{0,9} Ti _{0,1} O ₄	-19	5. 9	4.9
$Pr_2Ni_{0.9}V_{0.1}O_4$	-17	6. 3	3. 9
Pr ₂ Ni _{0.9} Cr _{0.1} O ₄	-23	7. 0	4. 2
Pr ₂ Ni _{0.9} Mn _{0.1} O ₄	-22	7. 1	4. 0
Pr ₂ Ni _{0.9} Fe _{0.1} O ₄	-18	7. 3	4. 7
Pr ₂ Ni _{0.9} Co _{0.1} O ₄	-20	7. 0	4.6
$Pr_2Ni_{0.9}Cu_{0.1}O_4$	-21	6. 8	4. 5
Pr ₂ Ni _{0.9} Mo _{0.1} O ₄	-21	6. 9	4. 2

[0263] [表101]

Pr ₂ Ni _{0.9} W _{0.1} O ₄	-22	6. 7	4. 7
Pr ₂ Ni _{0.9} Nb _{0.1} O ₄	-18	7. 1	4.8
Pr ₂ Ni _{0.9} Ta _{0.1} O ₄	-25	5. 8	4. 1
Nd ₂ Ni _{0.9} Ti _{0.1} O ₄	-28	7. 1	4.0
Nd ₂ Ni _{0.9} V _{0.1} O ₄	-19	6. 4	4. 6
Nd ₂ Ni _{0.9} Cr _{0.1} O ₄	-20	5. 9	4. 2
Nd ₂ Ni _{0.9} Mn _{0.1} O ₄	-26	6. 4	4. 5
$Nd_2Ni_{0.9}Fe_{0.1}O_4$	-23	7. 1	4. 3
Nd ₂ Ni _{0.9} Co _{0.1} O ₄	-22	7. 0	4. 1
Nd ₂ Ni _{0.9} Cu _{0.1} O ₄	-19	6. 8	3. 9
Nd ₂ Ni _{0.9} Mo _{0.1} O ₄	-17	7. 1	4.0
Nd ₂ Ni _{0.9} W _{0.1} O ₄	-20	6. 8	3. 8
Nd ₂ Ni _{0.9} Nb _{0.1} O ₄	-22	5. 9	3. 7
Nd ₂ Ni _{0.9} Ta _{0.1} O ₄	-20	6. 5	4. 0
Sm ₂ Ni _{0.9} Ti _{0.1} O ₄	-23	6. 8	3.6
Sm ₂ Ni _{0.9} V _{0.1} O ₄	-18	5. 0	4. 1
Sm ₂ Ni _{0.9} Cr _{0.1} O ₄	-28	7. 0	3. 9
Sm ₂ Ni _{0.9} Mn _{0.1} O ₄	-19	4. 9	4. 6
Sm ₂ Ni _{0.9} Fe _{0.1} O ₄	-24	5. 0	4. 3
Sm ₂ Ni _{0.9} Co _{0.1} O ₄	-25	6. 0	4. 0
Sm ₂ Ni _{0.9} Cu _{0.1} O ₄	-16	5. 2	4. 7
Sm ₂ Ni _{0.9} Mo _{0.1} O ₄	-20	7. 0	4. 2
Sm ₂ Ni _{0.9} W _{0.1} O ₄	-22	8. 1	4.3
Sm ₂ Ni _{0.9} Nb _{0.1} O ₄	-24	6. 9	4. 9
Sm ₂ Ni _{0.9} Ta _{0.1} O ₄	-23	6. 7	3. 9
Eu ₂ Ni _{0.9} Ti _{0.1} O ₄	-26	7. 2	4. 2
Eu ₂ Ni _{0.9} V _{0.1} O ₄	-28	6. 9	4.0
Eu ₂ Ni _{0.9} Cr _{0.1} O ₄	-19	5. 9	4. 7
$Eu_2Ni_{0.9}Mn_{0.1}O_4$	-21	6. 3	4. 6
Eu ₂ Ni _{0.9} Fe _{0.1} O ₄	-22	7. 0	4. 5
Eu ₂ Ni _{0.9} Co _{0.1} O ₄	-24	7. 1	4. 2
Eu ₂ Ni _{0.9} Cu _{0.1} O ₄	-21	7. 3	4. 7
Eu ₂ Ni _{0.9} Mo _{0.1} O ₄	-29	7. 0	4.8
Eu ₂ Ni _{0.9} W _{0.1} O ₄	-17	6.8	4. 1
Eu ₂ Ni _{0.9} Nb _{0.1} O ₄	-18	6. 9	3. 8

[0264] [表102]

Eu ₂ Ni _{0.9} Ta _{0.1} O ₄	-24	6. 7	4. 0
Gd ₂ Ni _{0.9} Ti _{0.1} O ₄	-21	F 0	1.0
Gd ₂ Ni _{0.9} V _{0.1} O ₄		5.8	4. 2
· ·	-27	6. 3	4. 3
Gd ₂ Ni _{0.9} Cr _{0.1} O ₄	-21	7. 1	4. 5
Gd ₂ Ni _{0.9} Mn _{0.1} O ₄	-23	6. 4	4. 6
Gd ₂ Ni _{0.9} Fe _{0.1} O ₄	-19	5. 9	4. 7
Gd ₂ Ni _{0.9} Co _{0.1} O ₄	-23	6. 4	4. 4
Gd ₂ Ni _{0,9} Cu _{0,1} O ₄	-24	7. 1	4. 9
Gd ₂ Ni _{0.9} Mo _{0.1} O ₄	-25	7.0	4. 7
Gd ₂ Ni _{0.9} W _{0.1} O ₄	-16	6.8	4.6
Gd ₂ Ni _{0.9} Nb _{0.1} O ₄	-20	7. 1	4. 6
Gd ₂ Ni _{0.9} Ta _{0.1} O ₄	-22	6.8	4. 5
Dy ₂ Ni _{0.9} Ti _{0.1} O ₄	-10	6. 5	4. 7
Dy ₂ Ni _{0.9} V _{0.1} O ₄	-26	7.0	4.8
Dy ₂ Ni _{0.9} Cr _{0.1} O ₄	-20	6.8	4. 1
Dy ₂ Ni _{0.9} Mn _{0.1} O ₄	-19	5. 8	3. 8
Dy ₂ Ni _{0.9} Fe _{0.1} O ₄	-17	6. 3	4.0
Dy ₂ Ni _{0.9} Co _{0.1} O ₄	-23	7. 1	4.6
Dy ₂ Ni _{0.9} Cu _{0.1} O ₄	-22	6. 4	4. 2
Dy ₂ Ni _{0.9} Mo _{0.1} O ₄	-18	5. 9	4. 5
$Dy_2Ni_{0.9}W_{0.1}O_4$	-20	6. 4	4. 3
Dy ₂ Ni _{0,9} Nb _{0,1} O ₄	-21	7. 1	4. 1
Dy ₂ Ni _{0.9} Ta _{0.1} O ₄	-21	7. 0	3. 9
Ho ₂ Ni _{0.9} Ti _{0.1} O ₄	-18	7. 1	3.8
Ho ₂ Ni _{0.9} V _{0.1} O ₄	-25	6. 8	3. 7
$\text{Ho}_{2}\text{Ni}_{0.9}\text{Cr}_{0.1}\text{O}_{4}$	-24	5. 9	4. 0
Ho ₂ Ni _{0.9} Mn _{0.1} O ₄	-28	5. 0	3. 9
Ho ₂ Ni _{0.9} Fe _{0.1} O ₄	-19	7. 0	3. 6
Ho ₂ Ni _{0.9} Co _{0.1} O ₄	-20	4. 9	4. 1
Ho ₂ Ni _{0,9} Cu _{0,1} O ₄	-26	5. 0	3. 9
$Ho_2Ni_{0.9}Mo_{0.1}O_4$	-23	6. 0	4.6
Ho ₂ Ni _{0.9} W _{0.1} O ₄	-22	5. 2	4. 3
Ho ₂ Ni _{0.9} Nb _{0.1} O ₄	-19	7. 0	4. 0
Ho ₂ Ni _{0.9} Ta _{0.1} O ₄	-17	8. 1	4. 7
_ 0.0 0.1 1			** (

[0265] [表103]

		T	
Er ₂ Ni _{0.9} Ti _{0.1} O ₄	-22	6. 7	4. 3
Er ₂ Ni _{0.9} V _{0.1} O ₄	-20	7. 2	
Er ₂ Ni _{0.9} Cr _{0.1} O ₄	-21	6. 9	4.9
$Er_2Ni_{0.9}Mn_{0.1}O_4$	-23	5. 9	3. 9
Er ₂ Ni _{0.9} Fe _{0.1} O ₄	-18	6.3	4. 2
Er ₂ Ni _{0.9} Co _{0.1} O ₄	-28	7.0	4. 0
$Er_2Ni_{0.9}Cu_{0.1}O_4$	-19	7. 0	4. 7
Er ₂ Ni _{0.9} Mo _{0.1} O ₄	-24	7.3	4. 6
Er ₂ Ni _{0.9} W _{0.1} O ₄	-25		4. 5
Er ₂ Ni _{0.9} Nb _{0.1} O ₄	-25 -16	7. 0	4. 2
$Er_{2}Ni_{0.9}Ta_{0.1}O_{4}$		6. 8	4. 7
D121110,9140,104	-20	6. 9	4. 8
Yb ₂ Ni _{0.9} Ti _{0.1} O ₄	-24	7. 1	3.8
Yb ₂ Ni _{0.9} V _{0.1} O ₄	-23	5. 8	4. 0
Yb ₂ Ni _{0.9} Cr _{0.1} O ₄	-26	6.3	4. 6
Yb ₂ Ni _{0.9} Mn _{0.1} O ₄	-28	7. 1	4. 2
Yb ₂ Ni _{0.9} Fe _{0.1} O ₄	-19	6. 4	4. 5
Yb ₂ Ni _{0.9} Co _{0.1} O ₄	-21	5. 9	4.3
Yb ₂ Ni _{0.9} Cu _{0.1} O ₄	-22	6. 4	4. 2
Yb ₂ Ni _{0,9} Mo _{0,1} O ₄	-24	7. 1	4. 1
$Yb_2Ni_{0.9}W_{0.1}O_4$	-21	7. 0	3. 9
Yb ₂ Ni _{0.9} Nb _{0.1} O ₄	-29	6.8	4.0
$Yb_2Ni_{0.9}Ta_{0.1}O_4$	-17	7. 1	3.8
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{Ti}_{0.1}\text{O}_{4}$	-24	5. 9	4. 0
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{V}_{0.1}\text{O}_{4}$	-22	6. 5	3.9
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{Cr}_{0.1}\text{O}_4$	-21	7. 0	3.6
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{Mn}_{0.1}\text{O}_4$	-30	6.8	4. 1
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{Fe}_{0.1}\text{O}_4$	-29	5. 0	3. 9
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{Co}_{0.1}\text{O}_{4}$	-30	7. 0	4. 6
$La_{1.8}Na_{0.2}Ni_{0.9}Cu_{0.1}O_4$	-28	4. 9	4. 3
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_{4}$	-27	5. 0	4.0
$\text{La}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{W}_{0.1}\text{O}_4$	-25	6. 0	4. 7
$La_{1.8}Na_{0.2}Ni_{0.9}Nb_{0.1}O_4$	-18	5. 2	4. 4
$La_{1,8}Na_{0,2}Ni_{0,9}Ta_{0,1}O_{4}$	-22	7. 0	4. 9

[0266] [表104]

La _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-26	6. 9	4.6
La _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-20	6. 7	4. 6
$La_{1.8}K_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-19	7. 2	4. 5
$La_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-17	6. 9	4. 2
La _{1.8} K _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-23	5. 9	4. 7
La _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	6.3	4. 8
La _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-18	7. 0	4. 1
La _{1.8} K _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-20	7. 1	3.8
La _{1.8} K _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	7. 3	4. 0
La _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-21	7. 0	4. 6
La _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	6. 8	4. 2
La _{1.8} Sr _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-25	6. 7	4. 3
La _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-24	7. 1	4. 1
La _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-28	5. 8	3.9
La _{1.8} Sr _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-19	6. 3	4. 0
La _{1.8} Sr _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-20	7. 1	3.8
La _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	-26	6. 4	3.7
La _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-23	5. 9	4.0
La _{1.8} Sr _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-22	6. 4	3. 9
La _{1.8} Sr _{0.2} Ni _{0.9} W _{0.1} O ₄	-19	7. 1	3. 6
La _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-17	7. 0	4. 1
La _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-20	6. 8	3. 9
La _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-20 .	6. 8	4. 3
La _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	5. 9	4. 0
La _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-23	6. 5	4. 7
La _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-18	7. 0	4. 2
La _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-28	6.8	4. 3
La _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-19	5.8	4. 9
$\text{La}_{1.8}\text{Ca}_{0.2}\text{Ni}_{0.9}\text{Cu}_{0.1}\text{O}_4$	-24	6. 3	3. 9
$\text{La}_{1.8}\text{Ca}_{0.2}\text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_4$	-25	7. 1	4. 2
$\text{La}_{1.8}\text{Ca}_{0.2}\text{Ni}_{0.9}\text{W}_{0.1}\text{O}_{4}$	-16	6. 4	4. 0
La _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-20	5. 9	4. 7
La _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	6. 4	4. 6
La _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-23	7. 0	4. 2

[0267] [表105]

La _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-26	6.8	4. 7
La _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-28	7. 1	4.8
La _{1.8} Bi _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-19	6. 8	4. 1
La _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-21	5. 9	3.8
La _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	6. 5	4. 0
La _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	7. 0	4. 6
La _{1.8} Bi _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-21	5. 0	4. 2
La _{1.8} Bi _{0.2} Ni _{0.9} W _{0.1} O ₄	-29	7. 0	4. 5
La _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-17	4. 9	4. 3
La _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-18	5. 0	4. 2
Ce _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	5. 2	3. 9
Ce _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	7. 0	4. 0
Ce _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-27	8. 1	3. 8
Ce _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-25	6. 9	3. 7
Ce _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-30	6. 7	4. 0
Ce _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-28	7. 2	3. 9
Ce _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	6. 9	3. 6
Ce _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-25	5. 9	4. 1
Ce _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-16	6. 3	3. 9
Ce _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-20	7. 0	4. 6
Ce _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	7. 1	4.3
Ce _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-23	7. 0	4. 0
Ce _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-26	6.8	4. 7
Ce _{1.8} K _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-28	5. 2	4. 2
$Ce_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-19	7. 0	4.3
$Ce_{1.8}K_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-21	8. 1	4.9
Ce _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	6. 9	3. 9
Ce _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	6. 7	4. 2
$Ce_{1.8}K_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-21	7. 2	4.0
Ce _{1.8} K _{0.2} Ni _{0.9} W _{0.1} O ₄	-29	6. 9	4. 7
Ce _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-17	5. 9	4.6
Ce _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-18	6. 3	4. 5
Ce _{1.8} Sr _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	7. 1	4. 7
Ce _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	7. 3	4. 8

[0268] [表106]

Ce _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-27	7. 0	4. 1
Ce _{1.8} Sr _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-25	6. 8	3. 8
Ce _{1.8} Sr _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-30	6. 9	4.0
Ce _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	-28	6. 7	4. 6
Ce _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-27	7. 1	4. 2
Ce _{1.8} Sr _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-25	5. 8	4.5
Ce _{1.8} Sr _{0.2} Ni _{0.9} W _{0.1} O ₄	-18	6. 3	4.3
Ce _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-22	7. 1	4. 2
Ce _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-10	6. 4	4. 1
Ce _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-23	6. 4	4.0
Ce _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-22	7. 1	3.8
Ce _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-19	7. 0	3. 7
Ce _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-17	6.8	4. 0
Ce _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-20	7. 1	3. 9
Ce _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	6.8	3. 6
Ce _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-20	5, 9	4. 1
Ce _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-21	6. 5	3. 9
Ce _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-23	7. 0	4. 6
Ce _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-18	6.8	4. 3
Ce _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-28	5. 0	4. 0
Ce _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-24	4. 9	4. 2
Ce _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-25	5. 0	4. 3
Ce _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-16	6.0	4. 9
Ce _{1.8} Bi _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-20	5. 2	3. 9
Ce _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-22	7. 0	4. 2
Ce _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	8. 1	4. 0
Ce _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-23	6. 9	4. 7
Ce _{1.8} Bi _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-26	6. 7	4. 6
Ce _{1.8} Bi _{0.2} Ni _{0.9} W _{0.1} O ₄	-28	7. 2	4. 5
Ce _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-19	6. 9	4. 2
Ce _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-21	5. 9	4. 7
Pr _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-24	7. 0	4. 1
Pr _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	7. 1	3. 8
Pr _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-29	7. 3	4. 0

[0269] [表107]

Pr _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-17	7. 0	4. 7
Pr _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-18	6. 8	4. 6
Pr _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	6. 9	4. 5
Pr _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	6. 7	4. 2
Pr _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-21	7. 1	4. 7
Pr _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-27	5. 8	4. 8
Pr _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-25	6. 3	4. 1
Pr _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-30	7. 1	3. 8
Pr _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-24	5. 9	3. 9
Pr _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-25	6. 4	4.6
Pr _{1.8} K _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-16	7. 1	4. 3
Pr _{1.8} K _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-20	7. 0	4. 0
Pr _{1.8} K _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-22	6. 8	4. 7
Pr _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	7. 1	4. 2
Pr _{1:8} K _{0:2} Ni _{0:9} Cu _{0:1} O ₄	-23	6.8	4. 3
Pr _{1.8} K _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-26	5. 9	4. 9
Pr _{1.8} K _{0.2} Ni _{0.9} W _{0.1} O ₄	-28	6. 5	3. 9
Pr _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-19	7. 0	4. 2
Pr _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-21	6. 8	4. 0
Pr _{1.8} Sr _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-24	6. 3	4. 6
Pr _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	7. 1	4. 5
Pr _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-29	6. 4	4. 2
Pr _{1.8} Sr _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-17	5. 9	4. 7
Pr _{1.8} Sr _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-18	6. 4	4.8
Pr _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	7. 1	4. 1
Pr _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	7. 0	3.8
Pr _{1.8} Sr _{0.2} Ni _{0.9} Mo _{0.1} O ₄	∹21	6. 8	4. 0
$Pr_{1.8}Sr_{0.2}Ni_{0.9}W_{0.1}O_4$	-27	7. 1	4. 6
Pr _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-25	6. 8	4. 2
Pr _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-30	5. 9	4. 5
Pr _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-27	7. 0	4. 1
Pr _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-25	4. 9	3. 9
Pr _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-18	5. 0	4.0
Pr _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-22	6. 0	3. 8

[0270] [表108]

Pr _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-10	5. 2	3. 7
Pr _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-26	7. 0	4. 0
Pr _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-20	8. 1	3. 9
Pr _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-19	6. 9	3. 6
Pr _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-17	6. 7	4. 1
Pr _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-23	7. 2	3. 9
Pr _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	6. 9	4. 6
Pr _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-20	6, 3	4. 0
Pr _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	7. 0	4. 7
Pr _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-21	7. 1	4. 2
$Pr_{1.8}Bi_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-22	7. 3	4. 3
Pr _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-18	7. 0	4. 9
Pr _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-25	6.8	3. 9
Pr _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	6. 9	4. 2
$Pr_{1.8}Bi_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-28	6. 7	4. 0
$Pr_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$	-19	7. 1	4. 7
Pr _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-20	5. 8	4. 6
$Pr_{1.8}Bi_{0.2}Ni_{0.9}Ta_{0.1}O_4$	-26	6. 3	4. 5
Nd _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	6. 4	4. 7
Nd _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-19	5. 9	4.8
Nd _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-17	6. 4	4. 1
Nd _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-20	7. 1	3.8
Nd _{1,8} Na _{0,2} Ni _{0,9} Fe _{0,1} O ₄	-22	7. 0	4. 0
Nd _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-20	6. 8	4. 3
Nd _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-21	7. 1	4. 2
Nd _{1,8} Na _{0,2} Ni _{0,9} Mo _{0,1} O ₄	-23	6. 8	4. 3
Nd _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-18	5. 9	4. 5
Nd _{1,8} Na _{0,2} Ni _{0,9} Nb _{0,1} O ₄	-28	6. 5	4. 6
Nd _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-19	7. 0	4. 7
			,
Nd _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-25	5. 0	4. 9
Nd _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-16	7. 0	4. 7
Nd _{1.8} K _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-20	4. 9	4. 6
$Nd_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-22	5. 0	4. 6
Nd _{1.8} K _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-24	6. 0	4. 5

[0271] [表109]

Nd _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-23	5. 2	4. 2
Nd _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-26	7. 0	4. 7
$Nd_{1.8}K_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-28	8. 1	4.8
Nd _{1.8} K _{0.2} Ni _{0.9} W _{0.1} O ₄	-19	6. 9	4. 1
Nd _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-21	6. 7	3. 8
Nd _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	7. 2	4. 0
$Nd_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-21	5. 9	4. 2
Nd _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-29	6. 3	4. 5
$Nd_{1.8}Sr_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-17	7. 0	4. 3
$Nd_{1.8}Sr_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-18	7. 1	4. 1
$Nd_{1.8}Sr_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-24	7. 3	3. 9
Nd _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	7. 0	4. 0
Nd _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-21	6.8	3.8
$Nd_{1.8}Sr_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-27	6. 9	3. 7
Nd _{1.8} Sr _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	6. 7	4.0
Nd _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-23	7. 1	3. 9
$Nd_{1.8}Sr_{0.2}Ni_{0.9}Ta_{0.1}O_4$	-19	5. 8	3. 6
Nd _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-24	7. 1	3. 9
Nd _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-25	6. 4	4.6
Nd _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-16	5. 9	4.3
Nd _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-20	6. 4	4. 0
Nd _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-22	7. 1	4. 7
Nd _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	7. 0	4. 2
Nd _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-10	6.8	4. 3
Nd _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-26	7. 1	4. 9
Nd _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-20	6. 8	3. 9
Nd _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-19	5. 9	4. 2
Nd _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-17	6. 5	4. 0
Nd _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	6. 8	4. 6
Nd _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-18	5. 8	4. 5
Nd _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-20	6. 3	4. 2
Nd _{1.8} Bi _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-21	7. 1	4. 7
Nd _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-21	6. 4	4.8
Nd _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	5. 9	4. 1

[0272] [表110]

Nd ₁ , Bl ₂ , Nd ₁ , gCu ₀ , 10 ₄ -18 6.4 3.8 Nd ₁ , Bl ₂ , Nd ₂ , dQu ₀ , 10 ₄ -25 7.1 4.0 Nd ₁ , Bl ₂ , Nl ₂ , dQu ₀ , 10 ₄ -24 7.0 4.6 Nd ₁ , Bl ₂ , Nl ₂ , dQu ₀ , 10 ₄ -28 6.8 4.2 Nd ₁ , Bl ₂ , Nl ₂ , dQu ₀ , 10 ₄ -19 7.1 4.5 Nd ₁ , Bl ₂ , Nl ₂ , dQu ₀ , dQu ₀ -26 5.9 4.2 Sm ₁ , sNa ₀ , Nl ₂ , gTi ₀ , 10 ₄ -22 7.0 3.9 Sm ₁ , sNa ₀ , Nl ₂ , gTi ₀ , 10 ₄ -19 5.0 4.0 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -17 7.0 3.8 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -17 7.0 3.8 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -22 5.0 4.0 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -22 5.0 4.0 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -22 5.0 4.0 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -20 6.0 3.9 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -21 5.2 3.6 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ , 10 ₄ -21 5.2 3.6 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -21 5.2 3.6 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , QGu ₀ -21 5.2 3.6 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 5.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 7.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , sNa ₀ , Nl ₂ , dGu ₀ -22 7.0 4.1 Sm ₁ , sNa ₀ , Nl ₂ , dGu ₀ -22 7.0 4.7 4.6 Sm ₁ , sNa ₀ , sNa ₀ , nO ₀ -22 7.0 4.7 4.6 Sm ₁ , sNa ₀ , sNa ₀ , nO ₀ -22 7.0 4.7 4.6 Sm ₁ , sNa ₀ , sNa ₀ , nO ₀ -22 7.0 4.7 4.6 Sm ₁ , sNa ₀ , sNa ₀ , nO ₀ -22 7.0 4.7 4.6 Sm ₁ , sNa ₀ , sNa ₀ , nO ₀ -22 -				
Nd _{1,8} Bi _{0,2} Ni _{0,6} Pi _{0,1} O ₄	Nd _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-18	6. 4	3.8
Nd _{1,8} Bi _{0,2} Ni _{0,9} Ni _{0,9} Ca _{0,1} O ₄	Nd _{1.8} Bi _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-25	7. 1	4.0
Nd _{1,8} Bi _{0,2} Ni _{0,9} Ta _{0,1} O ₄	$Nd_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$	-24	7.0	4. 6
Sm., sNa _{0.2} Ni _{0.9} Cr _{0.1} O ₄	Nd _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-28	6.8	4. 2
Sm1, sNao, 2Nio, 9Vo, 1O4	Nd _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-19	7. 1	4. 5
Sm1, sNao, 2Nio, 9Vo, 1O4				
Sm1, sNao, 2Nio, sCro, 104 -22 7. 0 3. 9 Sm1, sNao, 2Nio, sMno, 104 -19 5. 0 4. 0 Sm1, sNao, 2Nio, sFeo, 104 -17 7. 0 3. 8 Sm1, sNao, 2Nio, sCoo, 104 -20 4. 9 3. 7 Sm1, sNao, 2Nio, sCoo, 104 -22 5. 0 4. 0 Sm1, sNao, 2Nio, sMoo, 104 -20 6. 0 3. 9 Sm1, sNao, 2Nio, sWo, 104 -21 5. 2 3. 6 Sm1, sNao, 2Nio, sNo, 104 -21 5. 2 3. 6 Sm1, sNao, 2Nio, sNao, 104 -18 8. 1 3. 9 Sm1, sNao, 2Nio, sTao, 104 -18 8. 1 3. 9 Sm1, sNao, 2Nio, sTao, 104 -19 6. 7 4. 3 Sm1, sNao, 2Nio, sOr, 104 -24 7. 2 4. 0 Sm1, sNao, 2Nio, sOr, 104 -25 6. 9 4. 7 Sm1, sNao, 2Nio, sMao, 104 -16 5. 9 4. 4 Sm1, sNao, 2Nio, sOr, 104 -22 7. 0 4. 7 Sm1, sNao, 2Nio, sOr, 104 -22 7. 0 4. 7 Sm1, sNao, 2Nio, sOr, 104 -22 7. 0 4. 7 Sm1, sNao, 2Nio, sOr, 104 -22 7. 0 4. 7 Sm1, sNao, 2Nio, sOr, 104 -22 7. 0 4. 7 Sm1, sNao, 2Nio, sOr, 104 -22 7. 0 4. 7 Sm1, sNao, 2Nio, sOr, 104 -22 7. 0 4. 5 Sm1, sNao, 2Nio, sNao, 104 -22 7. 1 4. 6 Sm1, sNao, 2Nio, sNao, 104 -22 7. 1 4. 2 Sm1, sNao, 2Nio, sNao, 104 -22 6. 4 4. 7 Sm1, sNao, 2Nio, sNao, 104 -22 6. 4 4. 7 Sm1, sNao, 2Nio, sNao, 104 -22 6. 4 4. 7 Sm1, sNao, 2Nio, sNao, 104 -22 6. 4 4. 7 Sm1, sNao, 2Nio, sNao, 104 -22 6. 4 4. 7 Sm1, sNao, 2Nio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, 2Nio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, 2Nio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, 2Nio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, 2Nio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, 2Nio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, 2Nio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, SNio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, SNio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, SNio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, SNio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, SNio, sNao, 104 -22 6. 8 4. 6 Sm1, sNao, SNio	$Sm_{1.8}Na_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-26	5. 9	4. 2
Sm _{1,8} Na _{0,2} Ni _{0,6} Mn _{0,1} O ₄	Sm _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-23	6. 5	4. 1
Sm _{1,8} Na _{0,2} Ni _{0,9} Fe _{0,1} O ₄	Sm _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-22	7. 0	3. 9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-19	5. 0	4. 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-17	7. 0	3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-20	4. 9	3. 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	5. 0	4. 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-20	6.0	3. 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	5. 2	3. 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-23	7.0	4.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-18	8. 1	3. 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		÷		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-19	6. 7	4. 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}V_{0.1}O_4$	-24	7. 2	4. 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-25	6. 9	4. 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-16	5. 9	4. 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-20	6. 3	4.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	7. 0	4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	7. 1	4.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm _{1.8} K _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-23	7. 3	4.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}W_{0.1}O_4$	-26	7. 0	4. 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}Nb_{0.1}O_4$	-28	7. 1	4. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}K_{0.2}Ni_{0.9}Ta_{0.1}O_4$	-19	6. 4	4. 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-22	6. 4	4. 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-24	7. 1	3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sm_{1.8}Sr_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-21	7.0	4.0
Sm _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄ -18 6.8 4.5		-29	6.8	4. 6
		-17	7. 1	4. 2
$Sm_{1.8}Sr_{0.2}Ni_{0.9}Cu_{0.1}O_4$ -24 5.9 4.3	1	-18	6.8	4. 5
	Sm _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	5. 9	4. 3

[0273] [表111]

Sm _{1.8} Sr _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-22	5. 0	4. 1
Sm _{1.8} Sr _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	7. 0	3. 9
Sm _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-30	4. 9	4. 0
Sm _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-20	5.0	3. 8
Sm _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-20	5. 2	4. 0
Sm _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	7. 0	3. 9
$Sm_{1.8}Ca_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-23	8. 1	3. 6
Sm _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-18	6. 9	3.8
Sm _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-28	6. 7	3. 7
Sm _{1,8} Ca _{0,2} Ni _{0,9} Co _{0,1} O ₄	-19	7. 2	4. 0
Sm _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	6. 9	3. 9
Sm _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-25	5. 9	3. 6
Sm _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-16	6. 3	4. 1
Sm _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-20	7. 0	3. 9
Sm _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	7. 1	4. 6
Sm _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-23	7. 0	4. 0
Sm _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-26	6. 8	4. 7
Sm _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-28	6. 9	4. 2
$Sm_{1.8}Bi_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-19	6. 7	4.3
$Sm_{1.8}Bi_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-21	7. 1	4. 9
Sm _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	5. 8	3. 9
$Sm_{1.8}Bi_{0.2}Ni_{0.9}Cu_{0.1}O_4$	-24	6. 3	4. 2
$Sm_{1.8}Bi_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-21	7. 1	4. 0
$Sm_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$	-29	6. 4	4. 7
Sm _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-17	5. 9	4. 6
$Sm_{1.8}Bi_{0.2}Ni_{0.9}Ta_{0.1}O_4$	-18	6. 4	4. 5
Eu _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	7. 0	4. 7
Eu _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	6. 8	4.8
Eu _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-30	7. 1	4. 1
Eu _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-29	6. 8	3.8
Eu _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-30	5. 9	4. 0
Eu _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-28	6. 5	4. 3
Eu _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-27	7. 0	4. 2
Eu _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-25	6. 8	4. 3

[0274] [表112]

Eu _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-18	5. 0	4. 5
Eu _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-22	7. 0	4. 6
Eu _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-10	4. 9	4. 7
Eu _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-20	6. 0	4.9
Eu _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-19	5. 2	4. 7
Eu _{1.8} K _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-17	7. 0	4. 6
$Eu_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-23	8. 1	4. 6
$Eu_{1.8}K_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-22	6. 9	4.5
Eu _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-18	6. 7	4. 2
Eu _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-20	7. 2	4. 7
Eu _{1.8} K _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-21	6. 9	4.8
Eu _{1.8} K _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	5. 9	4. 1
Eu _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-22	6. 3	3.8
Eu _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-18	7. 0	4. 0
$Eu_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-24	7. 3	4. 2
Eu _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-28	7. 0	4. 5
Eu _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-19	6.8	4. 3
Eu _{1.8} Sr _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-20	6. 9	4. 1
Eu _{1,8} Sr _{0,2} Ni _{0,9} Fe _{0,1} O ₄	-26	6. 7	3. 9
Eu _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	-23	7. 1	4. 0
Eu _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	5. 8	3.8
Eu _{1.8} Sr _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-19	6. 3	3. 7
$Eu_{1.8}Sr_{0.2}Ni_{0.9}W_{0.1}O_4$	-17	7. 1	4. 0
Eu _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-20	6. 4	3. 9
Eu _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	5. 9	3. 6
Eu _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-21	7. 1	3. 9
$Eu_{1.8}Ca_{0.2}Ni_{0.9}V_{0.1}O_4$	-23	7. 0	4.6
$Eu_{1.8}Ca_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-18	6. 8	4. 3
$Eu_{1.8}Ca_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-28	7. 1	4. 0
$Eu_{1.8}Ca_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-19	6. 8	4. 7
$Eu_{1.8}Ca_{0.2}Ni_{0.9}Co_{0.1}O_4$	-24	5. 9	4. 2
$Eu_{1.8}Ca_{0.2}Ni_{0.9}Cu_{0.1}O_4$	-25	6. 5	4. 3
$Eu_{1.8}Ca_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-16	7. 0	4. 9
Eu _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-20	6. 8	3. 9

[0275] [表113]

Eu _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-22	5. 8	4. 2
Eu _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-24	6. 3	4. 0
Eu _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-26	6. 4	4. 6
Eu _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-28	5. 9	4. 5
Eu _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-19	6. 4	4. 2
Eu _{1.8} Bi _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-21	7. 1	4. 7
Eu _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-22	7. 0	4.8
Eu _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	6. 8	4. 1
Eu _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-21	7. 1	3. 8
Eu _{1.8} Bi _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-29	6. 8	4.0
Eu _{1.8} Bi _{0.2} Ni _{0.9} W _{0.1} O ₄	-17	5. 9	4.6
Eu _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-18	6. 5	4. 2
Eu _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-24	7. 0	4. 5
Gd _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-21	7. 0	4. 2
Gd _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-27	4. 9	4. 1
Gd _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-25	5. 0	3. 9
Gd _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-30	6. 0	4. 0
Gd _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-28	5. 2	3. 8
Gd _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	7. 0	3. 7
Gd _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-25	8. 1	4. 0
Gd _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-16	6. 9	3. 9
Gd _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-20	6. 7	3.6
Gd _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-22	7. 2	4. 1
Gd _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-24	6. 9	3. 9
	*		
$Gd_{1.8}K_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-26	6. 3	4. 3
$Gd_{1.8}K_{0.2}Ni_{0.9}V_{0.1}O_4$	-28	7. 0	4. 0
$Gd_{1.8}K_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-19	7. 1	4. 7
$Gd_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-21	7. 3	4. 4
$Gd_{1.8}K_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-22	7. 0	4.9
$Gd_{1.8}K_{0.2}Ni_{0.9}Co_{0.1}O_4$	-24	6. 8	4.7
$Gd_{1.8}K_{0.2}Ni_{0.9}Cu_{0.1}O_{4}$	-21	5. 2	4. 6
$Gd_{1.8}K_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-29	7. 0	4.6
$Gd_{1.8}K_{0.2}Ni_{0.9}W_{0.1}O_4$	-17	8. 1	4.5
Gd _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-18	6. 9	4. 2

[0276] [表114]

Gd _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-24	6. 7	4. 7
C1 C N: T' O			
Gd _{1.8} Sr _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-21	6. 9	4. 1
Gd _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-27	5. 9	3. 8
Gd _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-25	6. 3	4. 0
$Gd_{1.8}Sr_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-30	7. 0	4. 6
Gd _{1.8} Sr _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-28	7. 1	4. 2
Gd _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	-27	7.3	4. 5
Gd _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-25	7. 0	4. 3
$Gd_{1.8}Sr_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-18	6.8	4. 1
$Gd_{1.8}Sr_{0.2}Ni_{0.9}W_{0.1}O_4$	-22	6. 9	3. 9
Gd _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-10	6. 7	4.0
Gd _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-26	7. 1	3.8
Gd _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-24	7. 1	4. 0
Gd _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-22	6.8	3. 9
Gd _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-21	5. 9	4. 1
Gd _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-27	6.5	3.8
Gd _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-25	7.0	4. 0
Gd _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-30	6.8	4. 6
Gd _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-28	5. 0	4. 2
Gd _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-27	7. 0	4. 5
Gd _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-25	4. 9	4. 3
Gd _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-18	5. 0	4. 2
Gd _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	6. 0	4. 1
Gd _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-26	7. 0	4. 0
Gd _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-20	8. 1	3. 8
Gd _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-19	6. 9	3. 7
Gd _{1.8} Bi _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-17	6. 7	4. 0
Gd _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-23	7. 2	3. 9
Gd _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	6. 9	3.6
Gd _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-18	5. 9	4. 1
Gd _{1.8} Bi _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-20	6. 3	3. 9
Gd _{1.8} Bi _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	7. 0	4. 6
Gd _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-21	7. 1	4. 3
Gd _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	7. 3	4. 0

[0277] [表115]

Dy _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-25	6. 8	4. 4
Dy _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-24	6. 9	4. 9
Dy _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-28	6. 7	4. 7
Dy _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-19	7. 1	4. 6
Dy _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-20	5. 8	4. 6
Dy _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-26	6. 3	4. 5
Dy _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-23	7. 1	4. 2
Dy _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-22	6. 4	4. 7
Dy _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-19	5. 9	4.8
Dy _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-17	6. 4	4. 1
Dy _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} 0 ₄	-20	7. 1	3.8
Dy _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-20	6.8	4. 6
Dy _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	7. 1	4. 2
Dy _{1.8} K _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-23	6.8	4. 5
Dy _{1.8} K _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-18	5. 9	4. 3
Dy _{1.8} K _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-28	6. 5	4. 1
Dy _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-19	7. 0	3. 9
Dy _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	6.8	4. 0
Dy _{1.8} K _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-25	5. 8	3. 8
Dy _{1.8} K _{0.2} Ni _{0.9} W _{0.1} O ₄	-16	6. 3	3. 7
Dy _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-20	7. 1	4. 0
Dy _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-22	6. 4	3. 9
,			
Dy _{1.8} Sr _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-23	6. 4	3. 8
Dy _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-26	7. 1	3. 7
Dy _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-28 .	7. 0	4.0
Dy _{1.8} Sr _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-19	6.8	3. 9
Dy _{1.8} Sr _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-21	7. 1	3. 6
Dy _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	22	6.8	4. 1
Dy _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	5.9	3. 9
Dy _{1.8} Sr _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-21	6. 5	4. 6
Dy _{1.8} Sr _{0.2} Ni _{0.9} W _{0.1} O ₄	-29	7.0	4. 3
Dy _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-17	5. 0	4. 0
Dy _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-18	7. 0	4. 7

[0278] [表116]

Dy _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	5. 0	4. 3
Dy _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	6. 0	4. 9
Dy _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-27	5. 2	3. 9
Dy _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-21	7.0	4. 2
Dy _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-23	8. 1	4. 0
Dy _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-19	6. 9	4. 7
Dy _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-23	6. 7	4. 6
Dy _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-24	7. 2	4.5
Dy _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-25	6. 9	4. 2
Dy _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-16	5. 9	4. 7
$Dy_{1.8}Ca_{0.2}Ni_{0.9}Ta_{0.1}O_4$	-20	6. 3	4.8
$Dy_{1.8}Bi_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-22	7. 1	3.8
Dy _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-10	7. 3	4. 0
$Dy_{1.8}Bi_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-26	7. 0	4. 3
$Dy_{1.8}Bi_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-20	7. 1	4. 2
Dy _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-19	6. 4	4. 3
Dy _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-17	5. 9	4. 5
Dy _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-23	6. 4	4. 6
$Dy_{1.8}Bi_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-22	7. 1	4. 7
$Dy_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$	-18	7. 0	4. 4
Dy _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-20	6.8	4. 9
Dy _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-21	7. 1	4. 7
		:	
Ho _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	5. 9	4. 6
Ho _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-18	5. 0	4. 5
Ho _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-25	7. 0	4. 2
Ho _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-24	4. 9	4. 7
Ho _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-28	5. 0	4. 8
Ho _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-19	6. 0	4. 1
Ho _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-20	5. 2	3. 8
Ho _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-26	7. 0	4. 0
Ho _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-23	8. 1	4. 6
Ho _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-22	6. 9	4. 2
Ho _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-19	6. 7	4. 5
Ho _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-20	6. 9	4. 1

[0279] [表117]

Ho _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-22	5. 9	3. 9
Ho _{1.8} K _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-20	6. 3	4. 0
Ho _{1.8} K _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-21	7. 0	3.8
Ho _{1.8} K _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-23	7. 1	3. 7
Ho _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-18	7. 3	4. 0
$\text{Ho}_{1.8}\text{K}_{0.2}\text{Ni}_{0.9}\text{Cu}_{0.1}\text{O}_4$	-28	7.0	3. 9
$\text{Ho}_{1,8}\text{K}_{0,2}\text{Ni}_{0,9}\text{Mo}_{0,1}\text{O}_4$	-19	6.8	3. 6
Ho _{1.8} K _{0.2} Ni _{0.9} W _{0.1} O ₄	-24	6. 9	4. 1
$Ho_{1.8}K_{0.2}Ni_{0.9}Nb_{0.1}O_4$	-25	6. 7	3. 9
$\text{Ho}_{1.8}\text{K}_{0.2}\text{Ni}_{0.9}\text{Ta}_{0.1}\text{O}_4$	-16	7. 1	4. 6
$\text{Ho}_{1.8}\text{Sr}_{0.2}\text{Ni}_{0.9}\text{Ti}_{0.1}\text{O}_4$	-22	6. 3	4. 0
Ho _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-24	7. 1	4. 7
Ho _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-23	6. 4	4. 2
$\text{Ho}_{1.8}\text{Sr}_{0.2}\text{Ni}_{0.9}\text{Mn}_{0.1}\text{O}_4$	-26	5. 9	4. 3
$\text{Ho}_{1.8}\text{Sr}_{0.2}\text{Ni}_{0.9}\text{Fe}_{0.1}\text{O}_{4}$	-28	6. 4	4. 9
$Ho_{1.8}Sr_{0.2}Ni_{0.9}Co_{0.1}O_4$	-19	7. 1	4. 0
Ho _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-21	7. 0	3.8
$\text{Ho}_{1.8}\text{Sr}_{0.2}\text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_4$	-22	6.8	3. 7
$\text{Ho}_{1.8}\text{Sr}_{0.2}\text{Ni}_{0.9}\text{W}_{0.1}\text{O}_4$	-24	7. 1	4.0
$Ho_{1.8}Sr_{0.2}Ni_{0.9}Nb_{0.1}O_4$	-21	6. 8	3. 9
Ho _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-29	5. 9	4. 1
Ho _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-18	7. 0	4.0
Ho _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-24	6.8	4.6
Ho _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-22	5. 0	4. 2
Ho _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-21	7. 0	4. 5
Ho _{1,8} Ca _{0,2} Ni _{0,9} Fe _{0,1} O ₄	-30	4. 9	4.3
Ho _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-20	5. 0	4. 2
Ho _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	6. 0	4. 1
Ho _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-20	5. 2	3. 9
Ho _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	7. 0	4.0
Ho _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-23	8. 1	3.8
Ho _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-18	6. 9	3. 7
Ho _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-19	7. 2	3. 9
Ho _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-24	6. 9	3. 6

[0280] [表118]

$Ho_{1.8}Bi_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-25	5. 9	4. 1
$\text{Ho}_{1.8}\text{Bi}_{0.2}\text{Ni}_{0.9}\text{Mn}_{0.1}\text{O}_4$	-16	6. 3	3. 9
Ho _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-20	7. 0	4.6
Ho _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	7. 1	4. 3
Ho _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	7. 3	4.0
$\text{Ho}_{1.8}\text{Bi}_{0.2}\text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_4$	-23	7. 0	4. 7
Ho _{1.8} Bi _{0.2} Ni _{0.9} W _{0.1} O ₄	-26	6.8	4. 4
Ho _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-28	6. 9	4.9
Ho _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-19	6. 7	4. 7
Er _{1.8} Na _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-22	5. 8	4. 6
Er _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-24	6. 3	4. 5
Er _{1.8} Na _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-21	7. 1	4. 2
$\text{Er}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{Mn}_{0.1}\text{O}_4$	-29	6. 4	4. 7
Er _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-17	5. 9	4.8
Er _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-18	6. 4	4. 1
Er _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-24	7. 1	3.8
Er _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-22	7.0	4. 0
Er _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-21	6.8	4. 6
Er _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-30	7. 1	4. 2
Er _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-29	6.8	4. 5
Er _{1.8} K _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-28	6. 5	4. 1
$Er_{1.8}K_{0.2}Ni_{0.9}V_{0.1}O_4$	-27	7. 0	3. 9
$Er_{1.8}K_{0.2}Ni_{0.9}Cr_{0.1}O_4$	-25	6.8	4. 0
$\text{Er}_{1.8}\text{K}_{0.2}\text{Ni}_{0.9}\text{Mn}_{0.1}\text{O}_4$	-18	5. 8	3.8
$Er_{1.8}K_{0.2}Ni_{0.9}Fe_{0.1}O_4$	-22	6. 3	3. 7
$Er_{1.8}K_{0.2}Ni_{0.9}Co_{0.1}O_4$	-10	7. 1	4.0
Er _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-26	6. 4	3. 9
$\text{Er}_{1.8}\text{K}_{0.2}\text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_{4}$	-20	5. 9	3.6
$\text{Er}_{1.8}\text{K}_{0.2}\text{Ni}_{0.9}\text{W}_{0.1}\text{O}_4$	-19	6. 4	3.8
Er _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-17	7. 1	3. 7
Er _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-23	7. 0	4.0
Er _{1.8} Sr _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-18	7. 1	3. 6
Er _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-20	6.8	4. 1
Er _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-21	5. 9	3. 9

[0281] [表119]

$\mathrm{Er_{1.8}Sr_{0.2}Ni_{0.9}Mn_{0.1}O_4}$	-21	6. 5	4. 6
$\mathrm{Er_{1.8}Sr_{0.2}Ni_{0.9}Fe_{0.1}O_4}$	-22	7. 0	4. 3
$\mathrm{Er_{1.8}Sr_{0.2}Ni_{0.9}Co_{0.1}O_{4}}$	-18	5.0	4. 0
Er _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-25	7.0	4. 7
$Er_{1.8}Sr_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-24	4. 9	4. 2
Er _{1.8} Sr _{0.2} Ni _{0.9} W _{0.1} O ₄	-28	5. 0	4. 3
$Er_{1.8}Sr_{0.2}Ni_{0.9}Nb_{0.1}O_4$	-19	6. 0	4. 9
$\text{Er}_{1.8}\text{Sr}_{0.2}\text{Ni}_{0.9}\text{Ta}_{0.1}\text{O}_4$	-20	5. 2	3. 9
Er _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-23	8. 1	4. 0
Er _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-22	6. 9	4. 7
Er _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-19	6. 7	4. 6
Er _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-17	7. 2	4. 5
Er _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-20	6. 9	4. 2
Er _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-22	5. 9	4. 7
Er _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-20	6. 3	4. 8
Er _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-21	7. 0	4. 1
$\text{Er}_{1.8}\text{Ca}_{0.2}\text{Ni}_{0.9}\text{W}_{0.1}\text{O}_{4}$	-23	7. 1	3, 8
Er _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-18	7. 3	4. 0
Er _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-28	7. 0	4. 3
Er _{1.8} Bi _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-24	5. 2	4. 3
$\text{Er}_{1.8}\text{Bi}_{0.2}\text{Ni}_{0.9}\text{V}_{0.1}\text{O}_{4}$	-25	7. 0	4.5
Er _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-16	8. 1	4.6
Er _{1.8} Bi _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-20	6. 9	4. 7
Er _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-22	6. 7	4. 4
$\mathrm{Er_{1.8}Bi_{0.2}Ni_{0.9}Co_{0.1}O_{4}}$	-24	7. 2	4. 9
$\mathrm{Er_{1.8}Bi_{0.2}Ni_{0.9}Cu_{0.1}O_{4}}$	-23	6. 9	4. 7
$\mathrm{Er_{1.8}Bi_{0.2}Ni_{0.9}Mo_{0.1}O_4}$	-26	5. 9	4. 6
$\mathrm{Er_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4}$	-28	6. 3	4.6
$\mathrm{Er_{1.8}Bi_{0.2}Ni_{0.9}Nb_{0.1}O_4}$	-19	7. 0	4.5
$\mathrm{Er_{1.8}Bi_{0.2}Ni_{0.9}Ta_{0.1}O_4}$	-21	7. 1	4. 2
$Yb_{1.8}Na_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-24	7. 0	4.8
Yb _{1.8} Na _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	6.8	4. 1
$Yb_{1,8}Na_{0,2}Ni_{0,9}Cr_{0,1}O_{4}$	-29	6. 9	3. 8
Yb _{1.8} Na _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-17	6. 7	4.0

[0282] [表120]

Yb _{1.8} Na _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-18	7. 1	4. 6
Yb _{1.8} Na _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	5. 9	4. 2
Yb _{1.8} Na _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	6. 4	4. 5
Yb _{1.8} Na _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-21	7. 1	4. 3
Yb _{1.8} Na _{0.2} Ni _{0.9} W _{0.1} O ₄	-27	7. 0	4. 1
Yb _{1.8} Na _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-25	6.8	3. 9
Yb _{1.8} Na _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-30	7. 1	4. 0
$Yb_{1.8}K_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-24	5. 9	3. 7
Yb _{1.8} K _{0.2} Ni _{0.9} V _{0.1} O ₄	-25	6. 5	4. 0
Yb _{1.8} K _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-16	7. 0	3. 9
$Yb_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-20	6. 8	3. 6
Yb _{1.8} K _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-22	5. 0	4. 1
Yb _{1.8} K _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	7. 0	3. 9
Yb _{1.8} K _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-23	4. 9	4. 6
Yb _{1.8} K _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-26	5. 0	4. 3
$Yb_{1.8}K_{0.2}Ni_{0.9}W_{0.1}O_4$	-28	6. 0	4. 0
Yb _{1.8} K _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-19	5, 2	4. 7
Yb _{1.8} K _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-21	7.0	4. 2
$Yb_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$	-24	6.9	4. 6
Yb _{1.8} Sr _{0.2} Ni _{0.9} V _{0.1} O ₄	-21	6. 7	4. 5
Yb _{1.8} Sr _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-29	7. 2	4. 2
Yb _{1.8} Sr _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-17	6. 9	4. 7
Yb _{1.8} Sr _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-18	5. 9	4.8
Yb _{1.8} Sr _{0.2} Ni _{0.9} Co _{0.1} O ₄	-24	6. 3	4. 1
Yb _{1.8} Sr _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	7. 0	3. 8
$Yb_{1.8}Sr_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-21	7. 1	4. 0
Yb _{1.8} Sr _{0.2} Ni _{0.9} W _{0.1} O ₄	-27	7. 3	4. 6
Yb _{1.8} Sr _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-25	7. 0	4. 2
Yb _{1.8} Sr _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-30	6.8	4. 5
Yb _{1.8} Ca _{0.2} Ni _{0.9} Ti _{0.1} O ₄	-27	6. 7	4. 1
Yb _{1.8} Ca _{0.2} Ni _{0.9} V _{0.1} O ₄	-25	7. 1	3. 9
Yb _{1.8} Ca _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-18	5. 8	4. 0
Yb _{1.8} Ca _{0.2} Ni _{0.9} Mn _{0.1} O ₄	-22	6.3	3. 8
Yb _{1.8} Ca _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-10	7. 1	3. 7

[0283] [表121]

Yb _{1.8} Ca _{0.2} Ni _{0.9} Co _{0.1} O ₄	-26	6. 4	4.0
Yb _{1.8} Ca _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-22	5.9	3. 9
Yb _{1.8} Ca _{0.2} Ni _{0.9} Mo _{0.1} O ₄	-18	6. 4	3. 6
Yb _{1.8} Ca _{0.2} Ni _{0.9} W _{0.1} O ₄	-25	7. 1	3.8
Yb _{1.8} Ca _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-24	7. 0	3. 7
Yb _{1.8} Ca _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-28	6.8	4.0
$Yb_{1,8}Bi_{0,2}Ni_{0,9}Ti_{0,1}O_{4}$	-20	6.8	3. 6
Yb _{1.8} Bi _{0.2} Ni _{0.9} V _{0.1} O ₄	-26	5. 9	4. 1
Yb _{1.8} Bi _{0.2} Ni _{0.9} Cr _{0.1} O ₄	-23	6. 5	3. 9
$Yb_{1.8}Bi_{0.2}Ni_{0.9}Mn_{0.1}O_4$	-22	7. 0	4. 6
Yb _{1.8} Bi _{0.2} Ni _{0.9} Fe _{0.1} O ₄	-19	6.8	4. 3
Yb _{1.8} Bi _{0.2} Ni _{0.9} Co _{0.1} O ₄	-17	5.8	4.0
Yb _{1.8} Bi _{0.2} Ni _{0.9} Cu _{0.1} O ₄	-20	6. 3	4. 7
$Yb_{1.8}Bi_{0.2}Ni_{0.9}Mo_{0.1}O_4$	-22	7. 1	4. 2
Yb _{1.8} Bi _{0.2} Ni _{0.9} W _{0.1} O ₄	-20	6. 4	4. 3
Yb _{1.8} Bi _{0.2} Ni _{0.9} Nb _{0.1} O ₄	-21	5. 9	4. 9
Yb _{1.8} Bi _{0.2} Ni _{0.9} Ta _{0.1} O ₄	-23	6. 4	3. 9

[0284] 以上の結果から明らかなように、表75~表121に示された各酸化物は、n型熱電変換材料として優れた特性を有し、導電性も良好である。従って、上記各実施例におけるn型熱電変換材料に代えて、これらの酸化物を用いる場合にも、良好な熱電発電性能が発揮されるものと考えられる。

請求の範囲

- [1] 電気絶縁性基板上に形成されたp型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続してなる熱電変換素子であって、
 - (i)p型熱電変換材料が、
 - 一般式(1): $Ca_a A^1_b Co_c A^2_d O_e$ (式中、 A^1 は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、 $Yおよびランタノイドからなる群から選択される一種又は二種以上の元素であり、<math>A^2$ は、Ti、V、Cr、Mn、Fe、Ni、Cu、Ag、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素であり、 $2.2 \le a \le 3.6$; $0 \le b \le 0.8$; $2.0 \le c \le 4.5$; $0 \le d \le 2.0$; $8 \le e \le 10$ である。)で表される複合酸化物、及び
 - 一般式(2): Bi $_{f}^{Pb}$ $_{g}^{M^{1}}$ $_{h}^{Co}$ $_{i}^{M^{2}}$ $_{j}^{O}$ $_{k}$ (式中、 $_{i}^{M^{1}}$ $_{i}^{U}$ $_{k}^{O}$ $_{k}$
 - (ii)n型熱電変換材料が、
 - 一般式(3): $\operatorname{Ln}_{m} \operatorname{R}^{1} \operatorname{Ni}_{n} \operatorname{R}^{2}_{q} \operatorname{O}_{r}$ (式中、 Ln はランタノイドから選択される一種又は二種以上の元素であり、 R^{1} は、 Na_{n} 、 K_{n} 、 Sr_{n} 、 Ca 及びBiからなる群から選択される一種又は二種以上の元素であり、 R^{2} は、 Ti_{n} 、 V_{n} 、 Ca_{n} 、 Ca_{n}
 - 一般式(4): $(\operatorname{Ln}_{s} \operatorname{R}^{3})_{t} \operatorname{Ni}_{t} \operatorname{R}^{4} \operatorname{O}_{t}$ (式中、 Ln はランタノイドから選択される一種又は二種以上の元素であり、 R^{3} は、 Na_{t} 、 Na_{t}
 - 一般式(5): $A_{x} Zn_{y} O_{z}$ (式中、AはGa又はAlであり、 $0 \le x \le 0.1$; $0.9 \le y \le 1$; $0.9 \le z \le 1.1$ である。) で表される複合酸化物、及び

一般式(6): $Sn_{xx} In_{yy} O_{zz}$ (式中、 $0 \le xx \le 1$; $0 \le yy \le 2$; $1.9 \le zz \le 3$ である。) で表される複合酸化物

からなる群から選ばれた少なくとも一種の酸化物である、 ことを特徴とする熱電変換素子。

n型熱電変換材料が、一般式: $\operatorname{Ln}_{m} \operatorname{R}^{1}_{n} \operatorname{NiO}_{r}$ (式中、 $\operatorname{Ln} \operatorname{lt}$) $\operatorname{Ln} \operatorname{lt}$ 元素であり、 R^{1} は、 Na 、 K 、 Sr 、 Ca 及びBiからなる群から選択される一種又は二種以上の元素であり、 $\operatorname{0.5} \leq \operatorname{m} \leq 1.2$; $\operatorname{0} \leq \operatorname{n} \leq 0.5$; $\operatorname{2.7} \leq \operatorname{r} \leq 3.3$ である。)で表される複合酸化物、一般式: ($\operatorname{Ln}_{s} \operatorname{R}^{3}_{t}$) NiO_{w} (式中、 $\operatorname{Ln} \operatorname{lt}$) $\operatorname{Ln} \operatorname{lt}$ 元素であり、 R^{3} は、 Na 、 K 、 Sr 、 Ca 及びBi からなる群から選択される一種又は二種以上の元素であり、 $\operatorname{0.5} \leq \operatorname{s} \leq 1.2$; $\operatorname{0} \leq \operatorname{t} \leq 0.5$; $\operatorname{3.6} \leq \operatorname{w} \leq 4.4$ である。)で表される複合酸化物、及び一般式: $\operatorname{Ln}_{s} \operatorname{R}^{5}_{s} \operatorname{Ni}_{s} \operatorname{R}^{6}_{s} \operatorname{O}_{r}$ (式中、 Ln は、ランタノイド元素であり、 R^{5} は、 Na 、 K 、 Sr 、 Ca 、 Bi 及びNdからなる群から選択される少なくとも一種の元素であり、 R^{6} は、 Ti 、 V 、 Cr 、 Mn 、 Fe 、 Co 及びCuからなる群から選択される少なくとも一種の元素であり、 $\operatorname{0.5} \leq \operatorname{x} \leq 1.2$; $\operatorname{0.01} \leq \operatorname{q}' \leq 0.5$; $\operatorname{2.8} \leq \operatorname{r}' \leq 3.2$ である。)で表される複合酸化物からなる群から選ばれた少なくとも一種の酸化物である

請求項1に記載の熱電変換素子。

[3] p型熱電変換材料の薄膜とn型熱電変換材料の薄膜を電気的に接続する方法が、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させる方法、p型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を導電性材料を介して接触させる方法、又はp型熱電変換材料薄膜の一端とn型熱電変換材料薄膜の一端を直接接触させ、該接触部分を導電性材料で被覆する方法である

- 請求項1に記載の熱電変換素子。
- [4] p型熱電変換材料の薄膜とn型熱電変換材料の薄膜が、電気絶縁性基板の同一面 又は異なる面に形成されたものである請求項1に記載の熱電変換材料。
- [5] 電気絶縁性基板が、プラスチック材料からなる基板である請求項1に記載の熱電変換材料。
- [6] 293K〜1073Kの温度範囲において、熱起電力が60 μ V/K以上である請求項1 に記載の熱電変換素子。
- [7] 293K〜1073Kの温度範囲において、電気抵抗が1KΩ以下である請求項1に記載の熱電変換素子。
- [8] 請求項1に記載された熱電変換素子を複数個用い、一個の熱電変換素子のp型熱電変換材料の未接合の端部を、他の熱電変換素子のn型熱電変換材料の未接合の端部に接続する方法で複数の熱電変換素子を直列に接続してなる熱電変換モジュール。
- [9] 請求項8に記載の熱電発電モジュールの一端を高温部に配置し、他端を低温部に配置することを特徴とする熱電変換方法。

WO 2005/093864 PCT/JP2005/005133

[図3]

WO 2005/093864 PCT/JP2005/005133

[図7]

[図8]

[図9]

[図10]

[図11]

[図12]

5/5

[図13]

[図14]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/005133

			C1/0F2003/003133		
	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01L35/22, C04B35/495, 35/50, H01L35/32, 35/34, H02N11/00				
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SE	EARCHED				
Minimum docum Int.Cl	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H01L35/22, C04B35/495, 35/50, H01L35/32, 35/34, H02N11/00				
Jitsuyo		nt that such documents are inc tsuyo Shinan Toroku roku Jitsuyo Shinan	Koho 1996-2005		
Electronic data b	pase consulted during the international search (name of d	ata base and, where practicab	le, search terms used)		
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT		1		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passa	ages Relevant to claim No.		
Y	JP 2003-324220 A (Toyota Moto 14 November, 2003 (14.11.03), Full text (Family: none)	or Corp.),	1-9		
Y	JP 2003-133600 A (Kitakawa Ko Kaisha), 09 May, 2003 (09.05.03), Full text (Family: none)	ogyo Kabushiki	1-9		
Υ	JP 07-218348 A (Toppan Print: 18 August, 1995 (18.08.95), Full text (Family: none)	ing Co., Ltd.),	1-9		
× Further do	ocuments are listed in the continuation of Box C.	See patent family ann	ex.		
* Special cate "A" document d	egories of cited documents: lefining the general state of the art which is not considered	"T" later document published a	after the international filing date or priority the application but cited to understand		
"E" earlier appli filing date	ication or patent but published on or after the international	"X" document of particular rel	evance; the claimed invention cannot be not be considered to involve an inventive		
cited to esta special reas	cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is				
"O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
	Date of the actual completion of the international search 14 April, 2005 (14.04.05) Date of mailing of the international search report 10 May, 2005 (10.05.05)				
	ng address of the ISA/ se Patent Office	Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/005133

G (G): ::	DOCUMENTS CONSIDERED TO BE RELEVANT	·
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 03-295281 A (Matsushita Electric Industrial Co., Ltd.), 26 December, 1991 (26.12.91), Full text (Family: none)	1-9
Y	JP 2002-335021 A (Japan Aviation Electronics Industry Ltd.), 22 November, 2002 (22.11.02), Full text (Family: none)	1-9
У	JP 2002-076447 A (National Institute of Advanced Industrial Science and Technology), 15 March, 2002 (15.03.02), Par. No. [0021] (Family: none)	1-9
У	JP 2003-306380 A (National Institute of Advanced Industrial Science and Technology), 28 October, 2003 (28.10.03), Claims (Family: none)	1-9
Y	JP 2003-306381 A (National Institute of Advanced Industrial Science and Technology), 28 October, 2003 (28.10.03), Claims (Family: none)	1-9
У	JP 2003-282964 A (National Institute of Advanced Industrial Science and Technology), 03 October, 2003 (03.10.03), Claims & WO 2003/081686 A1	1-9
Y	JP 2003-008086 A (Idemitsu Kosan Co., Ltd.), 10 January, 2003 (10.01.03), Claims (Family: none)	1-9

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.⁷ H01L35/22, C04B35/495, 35/50, H01L35/32, 35/34, H02N11/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ H01L35/22, C04B35/495, 35/50, H01L35/32, 35/34, H02N11/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Y	JP 2003-324220 A (トヨタ自動車株式会社) 2003. 11.14,全文 (ファミリーなし)	1-9	
Y	JP 2003-133600 A (北川工業株式会社) 2003.05.09,全文 (ファミリーなし)	1 — 9	
Y	JP 07-218348 A(凸版印刷株式会社)1995.08.18, 全文 (ファミリーなし)	1 — 9 v	
		•	

▼ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献

東京都千代田区霞が関三丁目4番3号

「P」国際出願目前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

電話番号 03-3581-1101 内線 3462

「&」同一パテントファミリー文献

国際調査を完了した日 14.04.2005 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 国際調査報告の発送日 特許庁審査官(権限のある職員) 加藤 浩一

C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Y	JP 03-295281 A(松下電器産業株式会社)1991.12. 26,全文 (ファミリーなし)	1 - 9	
Y	JP 2002-335021 A (日本航空電子工業株式会社) 200 2.11.22,全文 (ファミリーなし)	1-9	
Y	JP 2002-076447 A (独立行政法人産業技術総合研究所) 2002.03.15, 【0021】 (ファミリーなし)	1-9	
Y	JP 2003-306380 A (独立行政法人産業技術総合研究所) 2003.10.28, 特許請求の範囲 (ファミリーなし)	1-9	
Y	JP 2003-306381 A (独立行政法人産業技術総合研究所) 2003.10.28, 特許請求の範囲 (ファミリーなし)	1-9	
Y	JP 2003-282964 A (独立行政法人産業技術総合研究所) 2003.10.03, 特許請求の範囲 & WO 2003/08 1686 A1	1 — 9	
Y	JP 2003-008086 A (出光興産株式会社) 2003.01. 10, 特許請求の範囲 (ファミリーなし)	1-9	
ý.			
- (
	·		