W3 6-2 Generic birthday attack

1. Generic attack on Collision resistance functions

记H: $M \rightarrow \{0,1\}^n$ 为一Hash函数,且 $|M| >> 2^n$

常规算法可以在O(2^{n/2})内找到一个hash碰撞,算法如下

- 1. 在消息空间M内选择2^n/2条随机消息m₁, ..., m₂^{n/2}
- 2. 对于i = 1, ..., 2^{n/2},计算t_i= H(m_i) ∈{0,1}^n ^
- 3. 找到一个碰撞t_i=t_i,若未找到,返回1

2. The birthday paradox

记r₁, ..., rn ∈ {1,...,B}为n个独立同分布整数 (independent identically distributed, iid)

定理: 若n=1.2×B^{1/2}则Pr[∃i≠j:ri=rj]≥½,证明如下

Proof: (for uniform indep.
$$r_1, ..., r_n$$
)
$$\{r \left[\frac{1}{3} (\frac{1}{2} + j + r_1 = r_2) \right] = 1 - R_1 \left[\frac{1}{3} + j + r_2 + r_3 \right] = 1 - \left(\frac{B-1}{B} \right) \left(\frac{B-2}{B} \right) ... \left(\frac{B-N+1}{B} \right) = 1 - \frac{N-1}{A} \left(1 - \frac{1}{A} \right) = 1 - \frac{N-1}{A} \left($$

3、Sample C.R. hash functions:

使用Crypto++5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

NIST standards	<u>function</u>	digest size (bits)	Speed (MB/sec)	generic attack time
	SHA-1	160	153	2 ⁸⁰
	SHA-256	256	111	2 ¹²⁸
	SHA-512	512	99	2 ²⁵⁶
	Whirlpool	512	57	2 ²⁵⁶

目前已知最好的找到SHA-1的碰撞的算法需要2⁵¹