Review in project development #4

26th November 2022

Soham Kulkarni

- Observations for our agent: [cmdFullState(pos, vel, acc, yaw, omega]
- pos (array-like of float[3]) Position. Meters.
- **vel** (array-like of float[3]) Velocity. Meters / second.
- acc (array-like of float[3]) Acceleration. Meters / second^2.
- yaw (float) Yaw angle. Radians.
- omega (array-like of float[3]) Angular velocity in body frame. Radians / sec.

In use: cmdPosition(pos, yaw=0) (high level planner + onboard controller), cmdStop()

Full state vector not in usage.

Action Space:

As discussed last time:-

Let f_i , $i \in [1,4]$ be the thrust of each motor.

- $f_i = 1$ (full power)
- $f_i = 0$ (motor off)

Action space is [0, 0.2, 0.4, 0,6, 0.8, 1]^4: Discretised

As of now, there are no added inertial disturbances.

Reward function:

$$R_t = \max \left(0, 1 - \|\boldsymbol{x} - \boldsymbol{x}_{\text{goal}}\|\right) - C_{\theta} \|\boldsymbol{\theta}\| - C_{\omega} \|\boldsymbol{\omega}\|$$

- The first term rewards the agent when the drone is close to the target.
- Other terms are penalizing for spinning at turns, etc.
- The constants are kept very small.
- This reward function needs a gate-pass term because it has learned to dodge the gates in the environment.
- We might need velocity control and other angular control terms if gates are introduced.

Training:

- Will plot the reward function for comparison.
- 10⁶ trainings steps set: around 700k steps to dodge the lower gate railing (only thrusts controlled)
- Remaining hyperparameters are kept same: batch size, gamma, buffer size, epsilon (clipping),...

- The algorithm is trained on level 0 and works on seeding randomly.
- Yet to train with randomized inertial properties and gates.

Evaluation Scenario	Constraints	Rand. Inertial Properties	Randomized Obstacles, Gates	Rand. Between Episodes	Notes
level0.yaml	Yes	No	No	No	Perfect knowledge
level1.yaml	Yes	Yes	No	No	Adaptive
level2.yaml	Yes	Yes	Yes	No	Learning, re- planning
level3.yaml	Yes	Yes	Yes	Yes	Robustness
sim2real	Yes	Real-life hardware	Yes , injected	No	Sim2real transfer