Nachame:	
Vorname:	
Legi-Nr.:	
Studiengang:	Biol Pharm HST

Basisprüfung Sommer 2013 Organische Chemie I & II

für die Studiengänge

Biologie (Biologische Richtung)

Pharmazeutische Wissenschaften

Gesundheitswissenschaften und -technologie

Prüfungsdauer: 2 Stunden

Alle Aufgaben sind zu lösen!

Unleserliche oder mehrdeutige Texte und Zeichnungen werden nicht bewertet! Bitte allfällige Zusatzblätter mit Namen anschreiben und an diesen Bogen anheften!

Bitte frei lassen:

Teil OC I	Pkte (max 35)		Teil OC II	Pkte (max 35)
Aufgabe 1			Aufgabe 6	
Aufgabe 2			Aufgabe 7	
Aufgabe 3			Aufgabe 8	
Aufgabe 4			Aufgabe 9	
Aufgabe 5				
Punkte OC I			Punkte OC II	
Punkte OC = P	kte OC I + Pkte (OC II		
Note OC				

Aufgabe 1 (7 Punkte)

a)	Benennen	Sie folgende	Verbindung nach	· IUPAC (ggf.	inklusive	stereochemischer	Deskriptoren):

b) Benennen Sie folgende Verbindung nach IUPAC (ggf. inklusive stereochemischer Deskriptoren):

c) Zeichnen Sie die Strukturformel folgender Verbindung (wählen sie ggf. eine adäquate sterische Darstellung): (2R)-2-(Furan-2-yl)-2-hydroxy-1-(3-methyl-4-nitrophenyl)ethanon

d) Zeichnen Sie die Strukturformel folgender Verbindung (wählen sie ggf. eine adäquate sterische Darstellung): (3*E*)-3-*tert*-Butyl-4-phenylhex-3-endisäurediethylester

e) Zu welchen Substanzklassen gehören folgende Verbindungen?

Aufgabe 2 (4.5 Punkte)

- \	T		en Formalladung		C - 1	
21	i radan Sia	מחמוחמז מוח ב	an ⊨∩rmaliadiind	an in aia '	TAIRANRAN	Formain ain:
α	Trauen oid	s ale lelliella	il i Ullialiauuliu	en in die	IUIUEIIUEII	ı omlucın cın.

b) Zeichnen Sie je eine weitere, möglichst gute (aber strukturell nicht gleichartige) Grenzstruktur untenstehender Moleküle in die vorgegebenen Rahmen ein:

1
=

c) Geben Sie Hybridisierung und Bindungsgeometrie an den nummerierten Atomen an.
 (Es reicht 1 Ausdruck, der die Hybridisierung insgesamt beschreibt – die Anzahl der einzelnen Orbitale müssen Sie nicht angeben.)

$\sqrt{-}$	
≶ 3∆	0—
$\bigcup_{i} \mathcal{L}_{i}$	
	747

Hybridisierung

1		

2			

3		
J		

г	o: ۱	ىرى لە	. ~ ~	~~~	. m a	+-:-
E	3III	aur	เนร	gec	me	urie

Aufgabe 3 (12 Punkte)

a) Liegt bei den folgenden Struktur-Paaren Isomerie vor? In welcher Beziehung stehen die beiden Strukturen jeweils zueinander (bitte ankreuzen)?				
α) OH OH HO OH				
β) H H CI H H CI H CI H				
γ) HOHO OHO OEt OEt OEt Oidentisch konstitutionsisomer enantiomer diastereoisomer weder isomer noch identisch				
δ) identisch konstitutionsisomer enantiomer diastereoisomer weder isomer noch identisch				
b) Welche Topizitätsbeziehung besteht jeweils zwischen den eingekreisten Atomen folgender Moleküle? Hinweis: beachten Sie, dass das Grundgerüst manchmal Heteroatome enthält. H H H H H H H H H H H H H H H H H H				
Übertrag Aufgabe 3				

Aufgabe 3 (Fortse	tzung)					
c) • Welche der fol	genden Moleküle a-d sind chira	I (bitte ankreuzen)?				
H ₃ C HN CH H H H	H ₃ C NH CH ₃	H ₃ C HN H CH ₃ C	HN—OCH ₃ H ₃ C NH H			
Welche Beziehung	g besteht jeweils zwischen den N	Molekülen folgender Paare (bi	tte ankreuzen)?			
	Moleküle a und b sind	Moleküle c und d sind				
	☐ Enantiomere	☐ Enantiomere				
	☐ Diastereoisomere	☐ Diastereoisomere				
	□ identisch	□ identisch				
d) Die Fischer-Projek	tion eines Arabitols ist unten an	gegeben.				
1 CH ₂ OH HO 2 H H 3 OH H 4 OH 5 CH ₂ OH	= HOH ₂ C 2 3 4 C	آ ا ا	2OH 			
Arabitol	Keilstrich-Formel	Enantion	ner			
α) Handelt es sich da	abei um D- oder L-Arabitol (bitte	e ankreuzen)? DD L				
β) Zeichnen Sie das in der Fischer-Projektion vorgegebene Molekül als Keilstrichformel (Substituenten in Kästchen ergänzen; bitte beachten Sie dabei die Nummerierung des C-Gerüsts).						
γ) Zeichnen Sie das Enantiomer des links abgebildeten Arabitols, indem Sie die Fischer-Projektion rechts ergänzen.						
 δ) Bezeichnen Sie die absolute Konfiguration der stereogenen Zentren C(2) und C(4) des oben links abgebildeten Arabitols mit CIP-Deskriptoren (bitte ankreuzen). C(2):						
	omere mit der Konstitution des And Mesoformen? St	_	Stück			
			Punkte Aufgabe 3			

Punkte Aufgabe 4

Aufgabe 4 (6.5 Punkte)

Auigabe	4 (0	.5 Punkte)				
		en p <i>K</i> a-Wert folgender Säure ndung mehrere acide Protor		-	_	
Et ₃ l	÷ NH	⊕ PhNH ₃		PhSH	PhOH	
	ner E	r beiden unter α - δ angegeb ϵ ffekt ist dafür hauptsächlich				
Wichtigste	Effek	<u>tte</u> :				
 Atom Hybri σ-Akz π-Akz π-Dor Solva 	gröss disie zepto zepto nor E	r-Effekt.	kt an das acide Protor ung entstehenden eins	gebundenen Ator		
	· · · · · · · · · · · · · · · · · · ·	Säure 1	Säure 2	Wichtigst	er Effekt	
	α)	⊕ Et ₃ NH	⊕ NH₂ EtHN— NH₂			
	β)	F ₃ C — NH ₃	(3		
	γ)					
	δ)	CO ₂ H	HO ₂ C	CO₂H		

Aufgabe 5 (5 Punkte)

a) Berechnen Sie (näherungsweise) ΔG_3 für das Gleichgewicht (3). (Die Aufgabe wird nur unter Aufzeigen des Lösungswegs gewertet. Zusatzinformation, die aber zum Lösen der Aufgabe nicht unbedingt erforderlich ist: 1 cal = 4.18 J).

Antwort: $\Delta G_3 = \dots$

Lösungsweg:

b) Zeichnen Sie die Konformere von $\underline{(S)-2,2,3-Trimethylpentan}$ in der *Newman-*Projektion. Zeichnen Sie ein qualitatives Energieprofil $[E(\theta)]$ der Rotation um die C(3)–C(4)-Bindung (θ ist der Diederwinkel C(2)–C(3)–C(4)–C(5), d. h. θ = 0°, wenn die Bindungen C(2)–C(3) und C(4)–C(5) verdeckt stehen). Lokalisieren Sie die oben genannten Konformere im Energieprofil.

Aufgabe 6 (4 Punkte)

a) Welche Protonen der folgenden Verbindungen werden beim Behandeln mit D ₂ O/OD ⁻ schnell gegen Deuteronen ausgetauscht? Zeichnen Sie <u>alle eingeführten Deuteronen</u> in die vorgegebenen Formeln ein.
H O O
b) Welches der folgenden drei Nukleophile reagiert am schnellsten mit H ₃ CBr nach S _N 2 (bitte ankreuzen)? Begründen Sie Ihre Wahl <u>kurz und präzise</u> . Nur begründete Antworten werden gewertet!
☐ CH ₃ COO [⊙] oder ☐ NH ₃ oder ☐ HS [⊙]
Begründung:
c) Geben Sie für die folgende Gruppe von Carbonsäure(-derivate)n an, welche Verbindung am
schnellsten mit einem primären Amin ein Amid bildet (bitte ankreuzen). Begründen Sie Ihre Wahl <u>kurz</u> <u>und präzise</u> . Nur begründete Antworten werden gewertet!
O O O O O O O O O O O O O O O O O O O
Punkte Aufgabe 6

Aufgabe 7 (7.5 Punkte)

- Ergänzen Sie folgende Syntheseschemata mit den jeweils fehlenden Reaktanten, Hauptprodukten, Zwischenprodukten, eingesetzten Reagenzien und relevanten Reaktionsbedingungen. Es wird jeweils die übliche Aufarbeitung vorausgesetzt.
- Beachten Sie ggf. auch die <u>Stereochemie!</u> Zeichnen Sie bei stereoisomeren Produkten alle gebildeten Stereoisomere.

$$\begin{array}{c|c} & & & & \text{Br}_2 \\ \hline & & & & \\ \text{CO}_2\text{H} & & & \\ \text{Et}_2\text{O}, -10^\circ \\ \text{Lichtausschluss} \end{array} ?$$

EtO₂C
$$\longrightarrow$$
 O $\xrightarrow{\text{NaBH}_4}$?

Wie würden Sie das oben eingesetzte Benzylchlorid ausgehend von Toluol herstellen?

Aufgabe 8 (17 Punkte)

- Ergänzen Sie folgende Syntheseschemata mit den jeweils fehlenden Reaktanten, Hauptprodukten, Zwischenprodukten, eingesetzten Reagenzien und relevanten Reaktionsbedingungen. Es wird jeweils die übliche Aufarbeitung vorausgesetzt.
- Beachten Sie ggf. auch die <u>Stereochemie!</u> Zeichnen Sie bei stereoisomeren Produkten alle gebildeten Stereoisomere.

a)

Übertrag Aufgabe 8

Aufgabe 8 (Fortsetzung)

Aufgabe 9 (6.5 Punkte)

a١	Formulieren	Sie ein	en detaillier	ten Mecha	anismus für	folgende l	Imsetzunal

Mechanismus:

b) Ist der gebildete Heterocyclus aromatisch? \Box Ja \Box Nein

Kurze, präzise Begründung (keine Bewertung ohne befriedigende Begründung):