Mantenimiento Preventivo de Máquinas

Machine Learning Predictivo

15/2/2022

- 1 ID Petición
- 2 Contexto
- 3 Requirimientos del proyecto
- 4 Detalle del proceso
 - 4.1 Preparación del entorno
 - o 4.2 Análisis exploratorio
 - 4.3 Trasformación de datos
 - o 4.4 Modelización
- 5 Conclusiones
- 6 Resultados

1 ID Petición

• Número 3: Predicción del fallo en una máquina para realización de Plan de Mantenimiento Preventivo.

2 Contexto

- El equipo de dirección quiere tener un Plan de Mantenimiento Preventivo de la máquinaria con la que cuenta la empresa.
- Realizar el mantenimiento preventivo de la maquinaria evita averías, sustitución de piezas no fungibles, además de cortes en la producción e incremento en el coste de mano de obra.
- El departamento de mantenimiento quiere un plan concreto de mantenimiento preventivo de la maquinaria de la empresa, para organización de las tareas del personal del departamento.

3 Requirimientos del proyecto

- Realización del estudio de probabilidad de fallo en la maquinaria.
- Optimizar las labores del personal de mantenimiento.

4 Detalle del proceso

4.1 - Preparación del entorno

• 4.1.1 - Cargamos las librerías que vamos a utilizar

```
## [[1]]
## [1] TRUE
##
## [[2]]
## [1] TRUE
##
## [[3]]
## [1] TRUE
##
## [[4]]
## [1] TRUE
##
## [[5]]
## [1] TRUE
##
## [[6]]
## [1] TRUE
```

Parámetros - Desactivamos la notación científica:

```
options(scipen=999)
```

• 4.1.2 - Cargamos los datos

Procedentes de la base de datos histórica de la compañía, archivo '.csv'.

```
df <- read.csv('MntoMaquina.csv')</pre>
```

4.2 - Análisis exploratorio

• 4.2.1 - Análisis exploratorio general y tipo de datos

Vemos las variables con las que trabajamos y el tipo de dato de cada una.

```
glimpse(df)
```

```
## Rows: 7,027
## Columns: 28
                                                                  <chr> "2016-01-01 01:00:00", "2016-01-01 02:00:~
## $ i..Date
                                                                  <int> 68, 64, 63, 65, 67, 65, 63, 61, 62, 62, 6~
## $ Temperature
## $ Humidity
                                                                  <int> 77, 76, 80, 81, 76, 80, 80, 83, 81, 76, 8~
                                                                  <chr> "Operator1", "Operator1", "Operator1", "O~
## $ Operator
                                                                  <int> 1180, 1406, 550, 1928, 1021, 1731, 415, 5~
## $ Measure1
## $ Measure2
                                                                  <int> 1, 1, 1, 1, 2, 2, 0, 2, 3, 0, 1, 3, 0, 3,~
## $ Measure3
                                                                  <int> 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 2, 2,~
                                                                  <int> 1915, 511, 1754, 1326, 185, 1424, 1008, 6~
## $ Measure4
## $ Measure5
                                                                  <int> 1194, 1577, 1834, 1082, 170, 1176, 1086, ~
## $ Measure6
                                                                  <int> 637, 1121, 1413, 233, 952, 1223, 1759, 17~
                                                                  <int> 1093, 1948, 1151, 1441, 1183, 621, 1946, ~
## $ Measure7
                                                                  <int> 524, 1882, 945, 1736, 1329, 647, 1814, 64~
## $ Measure8
## $ Measure9
                                                                  <int> 919, 1301, 1312, 1033, 427, 369, 1754, 31~
                                                                  <int> 245, 273, 1494, 1549, 1638, 239, 1442, 93~
## $ Measure10
## $ Measure11
                                                                  <int> 403, 1927, 1755, 802, 850, 1196, 341, 189~
                                                                  <int> 723, 1123, 1434, 1819, 379, 1944, 1097, 1~
## $ Measure12
                                                                  <int> 1446, 717, 502, 1616, 1529, 1583, 1819, 1~
## $ Measure13
                                                                  <int> 719, 1518, 1336, 1507, 755, 1630, 472, 15~
## $ Measure14
## $ Measure15
                                                                  <int> 748, 1689, 711, 507, 844, 237, 491, 1102,~
## $ Hours.Since.Previous.Failure <int> 91, 92, 93, 94, 97, 98, 99, 100, 101, 102~
## $ Failure
                                                                  <chr> "No", "
                                                                  <int> 2016, 2016, 2016, 2016, 2016, 2016, 2016, ~
## $ Date.year
                                                                  ## $ Date.month
                                                                  ## $ Date.day.of.month
## $ Date.day.of.week
                                                                  ## $ Date.hour
                                                                  <int> 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, ~
## $ Date.minute
                                                                  ## $ Date.second
```

Tenemos un conjunto de datos de 28 columnas y 7027 filas.

Esta función nos ofrece unos pequeños gráficos para ver el perfil de las variables, así como los datos faltantes, la media, los máximos y mínimos y los percentiles por cada variable.

```
Data summary

Name df

Number of rows 7027

Number of columns 28

Column type frequency:
character 3
numeric 25

Group variables None
```

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
ïDate	0	1	19	19	0	7027	0
Operator	0	1	9	9	0	8	0

Variable type: numeric										
skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
Temperature	0	1	64.03	2.70	28	62.0	64	66.0	78	
Humidity	0	1	83.33	4.85	65	80.0	83	87.0	122	_=
Measure1	0	1	1090.76	536.00	155	631.0	1090	1555.0	2011	
Measure2	0	1	1.50	1.12	0	0.0	2	2.0	3	
Measure3	0	1	1.01	0.82	0	0.0	1	2.0	2	
Measure4	0	1	1077.52	537.16	155	617.0	1069	1541.0	2011	
Measure5	0	1	1067.81	531.94	155	596.0	1070	1531.0	2011	
Measure6	0	1	1075.19	534.40	155	622.0	1072	1538.0	2011	
Measure7	0	1	1089.31	539.90	155	618.5	1091	1563.0	2011	
Measure8	0	1	1074.99	538.53	155	606.5	1075	1534.0	2011	
Measure9	0	1	1080.66	531.36	155	629.5	1078	1525.0	2011	
Measure10	0	1	1078.82	537.29	155	617.0	1073	1541.5	2011	
Measure11	0	1	1090.72	535.17	155	627.0	1097	1552.5	2011	
Measure12	0	1	1088.06	531.60	155	631.0	1083	1547.5	2011	
Measure13	0	1	1076.29	534.08	155	605.0	1071	1540.0	2011	
Measure14	0	1	1085.28	538.22	155	611.0	1087	1558.5	2011	
Measure15	0	1	1085.99	537.12	155	620.0	1079	1554.0	2011	
Hours.Since.Previous.Failure	0	1	216.08	152.39	1	88.0	192	323.0	666	
Date.year	0	1	2016.00	0.00	2016	2016.0	2016	2016.0	2016	
Date.month	0	1	6.51	3.46	1	3.0	7	10.0	12	
Date.day.of.month	0	1	15.75	8.81	1	8.0	16	23.0	31	
Date.day.of.week	0	1	4.01	2.00	1	2.0	4	6.0	7	
Date.hour	0	1	11.47	6.91	0	5.0	11	17.0	23	

De la observación de estos datos, podemos concluir: - No hay nulos - Measure2 y Measure3 parecen factores, en lugar de enteros. - Viendo el mínimo y el p25 de Temperature parece que tiene algunos datos atípicos.

1

1

0.00

0.00

0.00

0.00

0

0

0.0

0.0

0

0

0.0

0.0

Analizamos en mayor detalle la tempertura y los datos atípicos que hemos detectado.

0

0

skim_variable

Date.minute

Date.second

Failure

n_missing

0

complete_rate

min

1

2

max

3

empty

0

n_unique

2

whitespace

0

```
ggplot(df,x=1) + geom_boxplot(aes(y=Temperature), fill='lightblue')
```


Conclusión: efectivamente vemos que hay varios valores atípicos por debajo del cuartil 25.

• 4.2.2 - Calidad de datos:

Hacemos las siguientes acciones sobre el dataframe original:

Pasamos a factor las variables Measure 2 y 3, además de la variable del Operator y la de Failure, que solo tiene valores 'Yes' y 'No'.

También eliminamos los valores de temperatura que estén por debajo de 45 grados, los cuales hemos considerado valores atípicos.

Comprobamos la variable temperatura con un gráfico.

```
ggplot(df,x=1) + geom_boxplot(aes(y=Temperature), fill='lightblue')
```


Comprobamos también que Measure 2 y 3 han pasado a tipo de datos: factor.

alimpse(df)

\$ Date.second

```
## Rows: 7,026
## Columns: 28
## $ i..Date
                             <chr> "2016-01-01 01:00:00", "2016-01-01 02:00:~
## $ Temperature
                             <int> 68, 64, 63, 65, 67, 65, 63, 61, 62, 62, 6~
                             <int> 77, 76, 80, 81, 76, 80, 80, 83, 81, 76, 8~
## $ Humidity
## $ Operator
                             <fct> Operator1, Operator1, Operator-
## $ Measure1
                             <int> 1180, 1406, 550, 1928, 1021, 1731, 415, 5~
                             <fct> 1, 1, 1, 1, 2, 2, 0, 2, 3, 0, 1, 3, 0, 3,~
## $ Measure2
                             <fct> 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 2, 2,~
## $ Measure3
                             <int> 1915, 511, 1754, 1326, 185, 1424, 1008, 6~
  $ Measure4
 $ Measure5
                             <int> 1194, 1577, 1834, 1082, 170, 1176, 1086, ~
                             <int> 637, 1121, 1413, 233, 952, 1223, 1759, 17~
 $ Measure6
## $ Measure7
                             <int> 1093, 1948, 1151, 1441, 1183, 621, 1946, ~
                             <int> 524, 1882, 945, 1736, 1329, 647, 1814, 64~
## $ Measure8
## $ Measure9
                             <int> 919, 1301, 1312, 1033, 427, 369, 1754, 31~
                             <int> 245, 273, 1494, 1549, 1638, 239, 1442, 93~
## $ Measure10
                             <int> 403, 1927, 1755, 802, 850, 1196, 341, 189~
## $ Measure11
                             <int> 723, 1123, 1434, 1819, 379, 1944, 1097, 1~
  $ Measure12
## $ Measure13
                             <int> 1446, 717, 502, 1616, 1529, 1583, 1819, 1~
                             <int> 719, 1518, 1336, 1507, 755, 1630, 472, 15~
## $ Measure14
## $ Measure15
                             <int> 748, 1689, 711, 507, 844, 237, 491, 1102,~
## $ Hours.Since.Previous.Failure <int> 91, 92, 93, 94, 97, 98, 99, 100, 101, 102~
                             ## $ Failure
## $ Date.year
                             <int> 2016, 2016, 2016, 2016, 2016, 2016, 2016, ~
## $ Date.month
                             ## $ Date.day.of.month
                             ## $ Date.day.of.week
                             <int> 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, ~
## $ Date.hour
## $ Date.minute
```

El dataframe actualmente consta de 7026 filas, se ha eliminado la fila del valor atípico de la Temperatura.

• 4.2.3 - Calidad de datos: Análisis de atípicos

4.2.3.1 - Analizamos las que son de tipo factor

```
df %>%
  select_if(is.factor) %>%
  gather() %>%
  ggplot(aes(value)) + geom_bar() + facet_wrap(~key,scales='free') + theme(axis.text=element_text
(size=6))
```


Obtenemos cuatro gráficos ya que son las variables tipo factor que tiene el conjunto de datos. El gráfico Failure está muy desequilibrado ya que el número de fallos es muy bajo respecto al número de no fallos. Después realizaremos operaciones para compensar este desequilibrio.

En los gráficos de Measure 2 y 3 vemos un reparto uniforme de las categorías que nos han salido. En el gráfico de operador, vemos que el número dos tiene mas interacciones que el resto, que son bastante similares.

4.2.3.2 - Analizamos las que son de tipo entero

```
df %>%
  select_if(is.integer) %>%
  gather() %>%
  ggplot(aes(value)) + geom_density() + facet_wrap(~key,scales='free') +
  theme(axis.text=element_text(size=6))
```


El gráfico de Horas desde el último fallo nos indica que en las primeras 50 horas de trabajo, las máquinas no suelen fallar, pero cuando vamos aumentando las horas de trabajo, va disminuyendo el número de horas que pasa entre un fallo y el siguiente. El resto de variables presentan patrones coherentes con el sentido de negocio.

Vemos que las variables de fecha, día de la semana, año, mes, minuto y segundo, no nos ofrecen información relevante, así que las eliminamos de nuestro conjunto de datos.

```
df <- df %>%
    select(- c(ï..Date,Date.year,Date.month,Date.day.of.month,Date.day.of.week,Date.hour,Date.minut
e,Date.second))
glimpse(df)
```

```
Rows: 7,026
Columns: 20
                               <int> 68, 64, 63, 65, 67, 65, 63, 61, 62, 62, 6~
  Temperature
  Humidity
                               <int> 77, 76, 80, 81, 76, 80, 80, 83, 81, 76, 8~
Ś
  Operator
                               <fct> Operator1, Operator1, Operator2, Operator~
                               <int> 1180, 1406, 550, 1928, 1021, 1731, 415, 5~
Ś
  Measure1
$
  Measure2
                               <fct> 1, 1, 1, 1, 2, 2, 0, 2, 3, 0, 1, 3, 0, 3,~
                               <fct> 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 2, 2,~
  Measure3
$ Measure4
                               <int> 1915, 511, 1754, 1326, 185, 1424, 1008, 6~
                               <int> 1194, 1577, 1834, 1082, 170, 1176, 1086, ~
$ Measure5
                               <int> 637, 1121, 1413, 233, 952, 1223, 1759, 17~
  Measure6
                               <int> 1093, 1948, 1151, 1441, 1183, 621, 1946, ~
  Measure7
$
  Measure8
                               <int> 524, 1882, 945, 1736, 1329, 647, 1814, 64~
                               <int> 919, 1301, 1312, 1033, 427, 369, 1754, 31~
Ś
  Measure9
                               <int> 245, 273, 1494, 1549, 1638, 239, 1442, 93~
Ś
  Measure10
                               <int> 403, 1927, 1755, 802, 850, 1196, 341, 189~
  Measure11
Ś
                               <int> 723, 1123, 1434, 1819, 379, 1944, 1097, 1~
  Measure12
                               <int> 1446, 717, 502, 1616, 1529, 1583, 1819, 1~
Ś
  Measure13
                               <int> 719, 1518, 1336, 1507, 755, 1630, 472, 15~
$
  Measure14
                               <int> 748, 1689, 711, 507, 844, 237, 491, 1102,~
  Measure15
$ Hours.Since.Previous.Failure <int> 91, 92, 93, 94, 97, 98, 99, 100, 101, 102~
$ Failure
```

Ahora el data frame tiene 7023 filas de 20 variables.

• 4.2.4 - Calidad de datos: Análisis de correlación

Estudiamos la correlación, porque nos interesa que las variables no estén muy correlacionadas para que la modelización posterior sea mas efectiva.

```
df %>%
  select_if(is.integer) %>%
  cor() %>%
  round(digits = 2)
```

##	Temperature	Humidity	Measure1	Measure4	Measure5
## Temperature	1.00	-0.05	0.01	-0.02	0.01
## Humidity	-0.05	1.00	0.00	0.01	-0.03
## Measure1	0.01	0.00	1.00	0.01	0.03
## Measure4	-0.02	0.01	0.01	1.00	0.00
## Measure5	0.01			0.00	1.00
## Measure6	0.00			0.02	0.00
## Measure7	-0.01			0.00	-0.01
## Measure8	0.00			0.00	-0.01
## Measure9	-0.02			0.01	-0.01
## Measure10	-0.02		0.01	-0.02	-0.01
## Measure11	0.01			0.00	0.01
## Measure12 ## Measure13	0.00 -0.01			0.02 -0.01	0.01
## Measure14	0.00			-0.01	0.00
## Measure15	-0.01			0.00	0.01
## Hours.Since.Previous.Failure				-0.01	0.01
##	Measure6 Mea				
## Temperature	0.00	-0.01	0.00	-0.02	-0.02
## Humidity	-0.01	-0.02	0.02	0.00	0.00
## Measure1	0.01	0.00	0.00	-0.01	0.01
## Measure4	0.02	0.00	0.00	0.01	-0.02
## Measure5	0.00	-0.01	-0.01	-0.01	-0.01
## Measure6	1.00	0.01	0.00	0.00	0.01
## Measure7	0.01	1.00	0.01	0.00	-0.02
## Measure8	0.00	0.01	1.00	0.00	-0.01
## Measure9	0.00	0.00	0.00	1.00	-0.01
# Measure10	0.01	-0.02	-0.01	-0.01	1.00
# Measure11 # Measure12	-0.01 0.02	0.01	-0.01	0.00	0.01
# Measure12	-0.01	0.00	-0.01 0.00	-0.01	0.01
## Measure14	-0.01	0.00	-0.02	-0.01	0.00
# Measure15	0.00	-0.01	0.01	0.03	-0.02
## Hours.Since.Previous.Failure		0.00	0.00	-0.01	-0.01
# HOULS.SINCE.FIEVIOUS.FAIIUIE					
	Measure11 Me	easure12 1	Measure13	Measure14	Measure15
##		easure12 1 0.00	Measure13 -0.01	Measure14 0.00	Measure15 -0.01
## Temperature	Measurell Me				-0.01
# # Temperature # Humidity	Measure11 Me 0.01 0.03 0.00	0.00 -0.01 0.00	-0.01 -0.01 -0.02	0.00 0.00 0.01	-0.01 -0.01 0.00
## Temperature ## Humidity ## Measure1 ## Measure4	Measure11 Me 0.01 0.03 0.00 0.00	0.00 -0.01 0.00 0.02	-0.01 -0.01 -0.02 -0.01	0.00 0.00 0.01 -0.01	-0.01 -0.01 0.00 0.00
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5	Measure11 Me 0.01 0.03 0.00 0.00 0.00 0.01	0.00 -0.01 0.00 0.02 0.01	-0.01 -0.01 -0.02 -0.01 0.00	0.00 0.00 0.01 -0.01 0.01	-0.01 -0.01 0.00 0.00
# Temperature # Humidity # Measure1 # Measure4 # Measure5 # Measure6	Measure11 Me 0.01 0.03 0.00 0.00 0.01 -0.01	0.00 -0.01 0.00 0.02 0.01 0.02	-0.01 -0.01 -0.02 -0.01 0.00 -0.01	0.00 0.00 0.01 -0.01 0.01	-0.01 -0.01 0.00 0.00 0.01
# # Temperature # Humidity # Measure1 # Measure4 # Measure5 # Measure6 # Measure7	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01	-0.01 -0.01 -0.02 -0.01 0.00 -0.01	0.00 0.00 0.01 -0.01 0.01 -0.01	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01
# Temperature # Humidity # Measure1 # Measure4 # Measure5 # Measure6 # Measure7 # Measure8	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01	-0.01 -0.01 -0.02 -0.01 0.00 -0.01 0.00	0.00 0.00 0.01 -0.01 0.01 -0.01 -0.02	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 0.01 0.00	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01	-0.01 -0.01 -0.02 -0.01 0.00 -0.01 0.00 0.00	0.00 0.00 0.01 -0.01 0.01 -0.01 -0.02 -0.02	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.01
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure10	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 -0.01 0.00 0.00	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01	-0.01 -0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01	0.00 0.00 0.01 -0.01 0.01 -0.01 -0.02 -0.01	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure11	Measure11 Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 0.00 0.00 1.00	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 -0.01	-0.01 -0.02 -0.01 0.00 -0.01 0.00 0.00 -0.01 0.02 -0.01	0.00 0.01 -0.01 -0.01 -0.01 0.01 -0.02 -0.01 0.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure11 ## Measure12	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 -0.01 1.00 -0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 1.00	-0.01 -0.02 -0.01 0.00 -0.01 0.00 0.00 -0.01 0.02 -0.01 0.01	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.02 -0.01 0.00 0.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01
# Temperature # Humidity # Measure1 # Measure5 # Measure6 # Measure7 # Measure8 # Measure9 # Measure10 # Measure11 # Measure12 # Measure13	Measure11 Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 0.00 0.00 1.00	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 -0.01	-0.01 -0.02 -0.01 0.00 -0.01 0.00 0.00 -0.01 0.02 -0.01	0.00 0.01 -0.01 -0.01 -0.01 0.01 -0.02 -0.01 0.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01
## Temperature # Humidity # Measure1 # Measure4 # Measure5 # Measure7 # Measure7 # Measure8 # Measure9 # Measure10 # Measure11 # Measure12 # Measure13 # Measure14	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 0.00 0.01 1.00 -0.01 1.00 -0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 0.01 0.01	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.02 -0.01 1.00	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00	-0.01 -0.01 0.00 0.00 0.01 0.01 0.03 -0.02 0.01 0.01 0.01
## Temperature # Humidity # Measure1 # Measure5 # Measure5 # Measure7 # Measure7 # Measure8 # Measure9 # Measure10 # Measure11 # Measure11 # Measure12 # Measure13 # Measure14 # Measure15	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.02 -0.01 0.01 0.01	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## Temperature # Humidity # Measure1 # Measure5 # Measure6 # Measure7 # Measure8 # Measure9 # Measure10 # Measure11 # Measure12 # Measure13 # Measure14 # Measure15 # Hours.Since.Previous.Failure	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.01 0.00 0.01 1.00 -0.01 0.00 0.01 0.00	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.01	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## Temperature ## Humidity ## Measure1 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure11 ## Measure12 ## Measure13 ## Measure14 ## Measure15 ## Hours.Since.Previous.Failure	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure11 ## Measure12 ## Measure13 ## Measure14 ## Measure15 ## Hours.Since.Previous.Failure	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.00 Failure -0.01 0.00	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## Temperature # Humidity # Measure1 # Measure4 # Measure5 # Measure7 # Measure7 # Measure8 # Measure9 # Measure10 # Measure11 # Measure12 # Measure13 # Measure14 # Measure15 # Hours.Since.Previous.Failure ## Temperature # Humidity # Measure1	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.01 0.00 Failure -0.01 0.00	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure11 ## Measure12 ## Measure13 ## Measure14 ## Measure15 ## Hours.Since.Previous.Failure ## ## Temperature ## Temperature ## Humidity ## Measure1 ## Measure1 ## Measure1 ## Measure1 ## Temperature ### Temperature ### Temperature	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.00 0.01 0.01 0.00 .Failure -0.01 0.00 -0.01	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure11 ## Measure12 ## Measure13 ## Measure14 ## Measure15 ## Hours.Since.Previous.Failure ## ## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.00 .Failure -0.01 0.00 -0.01 0.00	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure9 ## Measure10 ## Measure11 ## Measure12 ## Measure13 ## Measure15 ## Hours.Since.Previous.Failure ## ## Temperature ## ## Temperature ## Humidity ## Measure1 ## Measure5 ## Measure6	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.01 0.00 Failure -0.01 0.00 -0.01 0.00 -0.01	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## ## Temperature ## Humidity ## Measure1 ## Measure5 ## Measure6 ## Measure7 ## Measure9 ## Measure10 ## Measure11 ## Measure12 ## Measure13 ## Measure14 ## Measure15 ## Temperature ## Temperature ## Humidity ## Measure1 ## Measure1 ## Measure1 ## Measure1 ## Measure1 ## Measure1 ## Temperature ## Humidity ## Measure1 ## Measure6 ## Measure6 ## Measure7	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.00 0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.00	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## ## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure11 ## Measure12 ## Measure13 ## Measure14 ## Measure15 ## Hours.Since.Previous.Failure ## ## Temperature ## ## Temperature ## ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure8	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## ## Temperature ## Humidity ## Measure1 ## Measure5 ## Measure6 ## Measure7 ## Measure8 ## Measure9 ## Measure11 ## Measure11 ## Measure13 ## Measure14 ## Measure15 ## Hours.Since.Previous.Failure ## ## Temperature ## ## Temperature ## ## Measure1 ## Temperature ## Humidity ## Measure6 ## Measure6 ## Measure7 ## Measure8 ## Measure9	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.00 0.01 0.00 -0.01 0.00 -0.01 0.00 0.00	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01
## ## Temperature ## Humidity ## Measure1 ## Measure4 ## Measure5 ## Measure6 ## Measure7 ## Measure9 ## Measure11 ## Measure12 ## Measure13 ## Measure15 ## Hours.Since.Previous.Failure ## ## Temperature ## ## Temperature ## ## Temperature ## ## Measure1 ## ## Measure1 ## ## Measure1 ## ## Temperature ## ## Measure1 ## ## Measure1 ## ## Measure1 ## ## Measure1 ## ## Measure2 ## ## Measure3 ## ## Measure4 ## ## Measure5 ## ## Measure5 ## ## Measure7 ## Measure8 ## Measure9 ## Measure10 ## Measure10 ## Measure11	Measurell Me 0.01 0.03 0.00 0.00 0.01 -0.01 0.00 0.01 1.00 -0.01 1.00 -0.01 0.00 0.01 1.00 0.01	0.00 -0.01 0.00 0.02 0.01 0.02 -0.01 -0.01 0.01 0.01 -0.01 1.00 0.01 0.00 0.01 -0.02	-0.01 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01	0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00 0.00 0.00 0.01 1.00	-0.01 -0.01 0.00 0.00 0.01 0.00 -0.01 0.03 -0.02 0.01 0.01 0.01 0.01

```
## Measure12 -0.02
## Measure13 0.00
## Measure14 0.00
## Measure15 -0.01
## Hours.Since.Previous.Failure 1.00
```

Vemos que los valores obtenidos son próximos a cero lo cual indica que las variables no están muy correlaccionadas entre si.

• 4.2.5 - Calidad de datos: Desbalanceo

Vamos a comprobar como está de desbalanceada la variable 'Failure'.

```
##
## No Yes
## 6961 65
```

Efectivamente vemos que la variable'Failure', que vamos a utilizar como target está muy desbalanceada y tenemos que corregirlo.

4.3 - Trasformación de datos

• 4.3.1 - Corrección del desbalanceo

Para corregir el desbalanceo vamos a utilizar la técnica del inframuestreo, con la que vamos a comprobar la penetración exacta de la target.

```
65/nrow(df) * 100
## [1] 0.9251352
```

Tenemos 65 'Yes' que sobre el total de los casos supone un 0.92%

Para obtener casi un 10% de 'Yes', necesitarímos incrementar la proporción aproximadamente unas 10 veces. Lo que vamos a hacer es reducir los 'No' para obtener esa proporción del 10 % de 'Yes'.

Generamos un nuevo dataframe con los 'No' y otro con los 'Yes'. El de los 'No' lo reducimos en tamaño a un 8%.

```
df_nos <- df %>%
  filter(Failure == 'No') %>%
  sample_frac(size = 0.08)
dim(df_nos)
```

```
## [1] 557 20
```

```
df_sis <- df %>% filter(Failure == 'Yes')
dim(df_sis)
```

```
## [1] 65 20
```

Generamos de nuevo un df reducido con los dos nuevos creados. Y comprobamos:

```
df_red <- rbind(df_nos,df_sis)
count(df_red,Failure)</pre>
```

```
## Failure n
## 1 No 557
## 2 Yes 65
```

```
65/nrow(df_red) * 100
```

```
## [1] 10.45016
```

De esta manera, hemos obtenido un nuevo dataframe, en el que el 10 % de los datos son 'Yes', eso supone que la variable target tiene un 10% de penetración.

Visualizamos de nuevo los gráficos de las variables tipo factor, para comprobar como hemos aumentado la proporción de 'Yes', respecto al número de 'No'.

```
df_red %>%
  select_if(is.factor) %>%
  gather() %>%
  ggplot(aes(value)) + geom_bar() + facet_wrap(~key,scales='free') + theme(axis.text=element_text
(size=6))
```


4.4 - Modelización

• 4.4.1 - Preparacion de las funciones que vamos a necesitar

Función para crear una matriz de confusión.

```
confusion<-function(real, scoring, umbral) {
  conf<-table(real, scoring>=umbral)
  if(ncol(conf)==2) return(conf) else return(NULL)
}
```

Funcion para calcular las métricas de los modelos: acierto, precisión, cobertura y F1.

```
metricas<-function(matriz_conf) {
   acierto <- (matriz_conf[1,1] + matriz_conf[2,2]) / sum(matriz_conf) *100
   precision <- matriz_conf[2,2] / (matriz_conf[2,2] + matriz_conf[1,2]) *100
   cobertura <- matriz_conf[2,2] / (matriz_conf[2,2] + matriz_conf[2,1]) *100
   F1 <- 2*precision*cobertura/(precision+cobertura)
   salida<-c(acierto,precision,cobertura,F1)
   return(salida)
}</pre>
```

Función para probar distintos umbrales y ver el efecto sobre precisión y cobertura.

```
umbrales<-function(real, scoring) {
  umbrales<-data.frame(umbral=rep(0, times=19), acierto=rep(0, times=19), precision=rep(0, times=19), c
  obertura=rep(0, times=19), F1=rep(0, times=19))
  cont <- 1
  for (cada in seq(0.05, 0.95, by = 0.05)) {
    datos<-metricas(confusion(real, scoring, cada))
    registro<-c(cada, datos)
    umbrales[cont,]<-registro
    cont <- cont + 1
  }
  return(umbrales)
}</pre>
```

Funciones que calculan la curva ROC y el AUC.

```
roc<-function(prediction) {
   r<-performance(prediction, 'tpr', 'fpr')
   plot(r, col='darkgreen')
}
auc<-function(prediction) {
   a<-performance(prediction, 'auc')
   return(a@y.values[[1]])
}</pre>
```

• 4.4.2 - Creamos las particiones de training (70%) y test (30%)

Generamos una variable aleatoria con una distribución 70-30

```
df_red$random<-sample(0:1,size = nrow(df_red),replace = T,prob = c(0.3,0.7))</pre>
```

Creamos los dos dataframes. Y eliminamos la random generada.

```
train<-filter(df_red,random==1)
test<-filter(df_red,random==0)

df_red$random <- NULL</pre>
```

• 4.4.3 - Elección del modelo

Vamos a realizar la modelización con Regresión Logística y posteriormente evaluar el modelo.

4.4.3.1 - Identificación de las variables

Concretamos que la variable Target va a ser la variable 'Failure'.

```
Target <- 'Failure'
```

Eliminamos la variable Target original. Ya que las variables predictoras para el modelo son todas las demas excepto 'Failure'. Creamos la formula que vamos a pasar al modelo.

```
indep <- names(df_red)[-20]
formula <- reformulate(indep, Target)</pre>
```

Vamos a modelizar con una regresión logística.

```
formula_rl <- formula
rl <- glm(formula_rl,train,family=binomial(link='logit'))
summary(rl)</pre>
```

```
##
## Call:
## glm(formula = formula_rl, family = binomial(link = "logit"),
     data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q
## -1.6550 -0.2162 -0.1016 -0.0356 3.8763
##
## Coefficients:
                              Estimate Std. Error z value
##
                                                        Pr(>|z|)
## (Intercept)
                           -20.49896304 10.51049358 -1.950 0.05114.
## Temperature
                           ## Humidity
                           ## OperatorOperator2
                           -1.39100901 0.91974990 -1.512 0.13044
## OperatorOperator3
                          -0.99775506 1.16687674 -0.855 0.39252
                           -1.52834195 1.07862074 -1.417
                                                         0.15650
## OperatorOperator4
                           -1.36317511 1.10131273 -1.238
                                                         0.21580
## OperatorOperator5
                           -1.19273446 1.23251853 -0.968
## OperatorOperator6
                                                         0.33318
## OperatorOperator7
                           -0.42138952 0.92687873 -0.455
                                                          0.64937
## OperatorOperator8
                           0.37671257 1.07030425 0.352 0.72486
## Measure1
                           0.00067856 0.00055140 1.231 0.21847
                           -0.39854697 0.90579237 -0.440 0.65994
## Measure21
## Measure22
                           -0.04662488 0.75155147 -0.062 0.95053
                           -0.56192845 0.80879446 -0.695 0.48720
## Measure23
                            0.16195286 0.66581997 0.243
                                                         0.80782
## Measure31
                            -0.15233549 0.73261912 -0.208
## Measure32
                                                          0.83528
                            0.00033710 0.00054980 0.613
                                                          0.53979
## Measure4
## Measure5
                            0.00006522 0.00050273 0.130 0.89678
## Measure6
                            0.00044518 0.00053721 0.829 0.40728
## Measure7
                            0.00019586 0.00056964 0.344 0.73098
                            0.00062315 0.00058068 1.073
## Measure8
                                                         0.28321
                           -0.00056341 0.00053740 -1.048
                                                         0.29445
## Measure9
                            0.00090225 0.00054686
                                                  1.650
                                                         0.09897
## Measure10
## Measure11
                           -0.00117944
                                       0.00059055 -1.997
                                                          0.04580 *
## Measure12
                            0.00033941 0.00054088 0.628
                                                         0.53031
                           ## Measure13
## Measure14
                            0.00031525 0.00055006 0.573 0.56656
## Measure15
                            0.00005054 0.00050998 0.099 0.92106
## Hours.Since.Previous.Failure -0.00467654 0.00177036 -2.642 0.00825 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\# (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 295.20 on 441 degrees of freedom
## Residual deviance: 114.96 on 413 degrees of freedom
## AIC: 172.96
##
## Number of Fisher Scoring iterations: 8
```

Como variables predictivas, con al menos el 90%, sólo resultan 'Temperature', 'Humidity', 'Hours.Since.Previous.Failure', así que las seleccionamos como finales.

```
indep_fin <- c('Temperature','Humidity','Hours.Since.Previous.Failure')
formula_rl <- reformulate(indep_fin,Target)</pre>
```

Y volvemos a modelizar

```
rl <- glm(formula_rl,train,family=binomial(link='logit'))
summary(rl)</pre>
```

```
## Call:
## glm(formula = formula_rl, family = binomial(link = "logit"),
     data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q
                                      Max
## -1.4363 -0.2566 -0.1423 -0.0675 3.2250
## Coefficients:
                              Estimate Std. Error z value Pr(>|z|)
##
                             -12.931454 8.314596 -1.555 0.1199
## (Intercept)
                              0.458075 0.094406 4.852 0.00000122 ***
## Temperature
                              -0.239031 0.051025 -4.685 0.00000281 ***
## Humidity
## Hours.Since.Previous.Failure -0.003380 0.001536 -2.200 0.0278 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
     Null deviance: 295.20 on 441 degrees of freedom
## Residual deviance: 132.67 on 438 degrees of freedom
## AIC: 140.67
## Number of Fisher Scoring iterations: 7
```

Y calculamos el pseudo R cuadrado:

```
pr2_rl <- 1 -(rl$deviance / rl$null.deviance)
pr2_rl</pre>
```

```
## [1] 0.5505969
```

Aplicamos el modelo al conjunto de test, generando un vector con las probabilidades

```
rl_predict<-predict(rl,test,type = 'response')
head(rl_predict)</pre>
```

```
## 1 2 3 4 5 6
## 0.005324697 0.013965411 0.003684693 0.045821919 0.016260136 0.001299126
```

Comprobamos en el gráfico:

```
plot(rl_predict~test$Failure, col='lightblue')
```


El modelo está funcionando bien, ya que la probabilidad de que falle la máquina cuando el modelo nos indica que no falla es muy bajo, casi 0, en cambio la probabilidad de que la maqúina falle cuando el modelo indica que falla es muy alto, cerca del 85 %.

Ahora tenemos que transformar la probabilidad en una decisión de si la máquina va a fallar o no.

Con la función umbrales probamos diferentes cortes:

```
umb_rl<-umbrales(test$Failure,rl_predict)
umb_rl</pre>
```

```
umbral acierto precision cobertura
                                               F1
       0.05 78.88889 32.07547 89.47368 47.22222
       0.10 90.55556 53.12500 89.47368 66.66667
## 2
## 3
       0.15 93.88889 65.38462
                                89.47368 75.55556
##
       0.20 95.55556 73.91304
                                89.47368 80.95238
       0.25 96.66667 80.95238
                                89.47368 85.00000
  6
       0.30 96.66667 80.95238
                                89.47368 85.00000
       0.35 97.22222 85.00000 89.47368 87.17949
       0.40 97.22222 88.88889 84.21053 86.48649
       0.45 97.77778 94.11765 84.21053 88.88889
## 10
       0.50 98.33333 100.00000 84.21053 91.42857
## 11
       0.55 98.33333 100.00000
                                84.21053 91.42857
  12
       0.60 98.33333 100.00000
                                84.21053 91.42857
  13
       0.65 98.33333 100.00000
                                84.21053 91.42857
       0.70 97.77778 100.00000
                                78.94737 88.23529
  14
  15
       0.75 96.66667 100.00000 68.42105 81.25000
       0.80 96.66667 100.00000
                                68.42105 81.25000
       0.85 96.66667 100.00000
                                68.42105 81.25000
  17
       0.90 94.44444 100.00000
                                47.36842 64.28571
## 18
       0.95 93.33333 100.00000 36.84211 53.84615
## 19
```

Seleccionamos el umbral que maximiza la F1

```
umbral_final_rl<-umb_rl[which.max(umb_rl$F1),1]
umbral_final_rl</pre>
```

```
## [1] O.5
```

Evaluamos la matriz de confusión y las métricas con el umbral optimizado

```
confusion(test$Failure,rl_predict,umbral_final_rl)
```

```
##
## real FALSE TRUE
## No 161 0
## Yes 3 16
```

```
rl_metricas<-filter(umb_rl,umbral==umbral_final_rl)
rl_metricas</pre>
```

```
## umbral acierto precision cobertura F1
## 1 0.5 98.33333 100 84.21053 91.42857
```

Evaluamos la ROC

```
rl_prediction<-prediction(rl_predict, test$Failure)
roc(rl_prediction)</pre>
```


Sacamos las métricas definitivas incluyendo el AUC

```
rl_metricas<-cbind(rl_metricas,AUC=round(auc(rl_prediction),2)*100)
print(t(rl_metricas))</pre>
```

```
## [,1]
## umbral 0.50000
## acierto 98.33333
## precision 100.00000
## cobertura 84.21053
## F1 91.42857
## AUC 94.00000
```

Vemos que nos da un valor de AUC por encima del 90 %, lo que nos dice que es un modelo funciona bien.

Aplicamos el modelo al conjutno de datos completo.

```
df$scoring <- predict(rl,df,type='response')</pre>
```

Vamos tomar una decisión de si hay que establecer un mantenimiento preventivo por parte de un operario, y elegimos que nos indique cuando va a ocurrir fallo para un scoring superior al 80 %.

Si el scoring es superior al 80 %, pensamos que la máquina va a fallar.

```
df$prediccion <- ifelse(df$scoring > 0.8,1,0)
table(df$prediccion)
```

```
##
## 0 1
## 6988 38
```

Vamos a contrastar la predicción contra la realidad

```
table(df$prediccion,df$Failure)
```

```
##
## No Yes
## 0 6961 27
## 1 0 38
```

Vemos que el número de casos en los que el modelo dice que falla pero no se produce este fallo es cero, por lo tanto podemos bajar el umbral y permitir que el modelo aumente sus fallos sin suponer esto un coste elevado para la empresa.

```
df$prediccion <- ifelse(df$scoring > 0.6,1,0)
```

Vamos a contrastar la predicción contra la realidad

```
table(df$prediccion,df$Failure)
```

```
##
## No Yes
## 0 6958 16
## 1 3 49
```

Vemos que el número de veces que el modelo dice que falla pero realmente no lo hace se ha incrementado levemente, siendo aún sostenible, e incluso al número de veces que el modelo dice que no falla y finalmente si falla también disminuye, lo que produce una disminución de casos en los que se envíe una persona de mantenimiento y no falle finalmente la máquina.

En esta tabla vemos los casos en los que modelo nos predice que la máquina va a fallar y las condicones del resto de las variables para el momento de ese fallo.

```
df[grep('1',df$prediccion),]
```

##		Temperature	Humidity	Operator	Measure1	Measure2	Measure3	Measure4	
##	415	72	67	Operator3	935	3	0	1228	
##	416	70	68	Operator3	1479	0	1	738	
##	438	71		Operator6	1559	2	1	1990	
	1296	71		Operator4	1025	1	1		
	1298	69		Operator6	437	3	0		
	1470	68		Operator2	655	2			
	1471	69		Operator2	1550	1			
	1472	69		Operator2	199	1			
	1473	68		Operator2	837	0			
	1474	67		Operator2	993	3			
	1475	67		Operator2	1008	2			
	1476	67		Operator4	455	3		244	
	1961	71		Operator7	1323	2			
	1962	72		Operator7	742				
	1963	72		Operator7	550	2			
	2430	68		Operator8	792	1			
	2544	72		Operator1	831	2		920	
	2545	68		Operator1	706	1			
	2546	68		_	441				
	2547			Operator1	1975				
	2547	69 73		Operator1	999	1 0			
				Operator1					
	2549 3017	71 72		Operator3	595 1370	2			
				Operator2		0			
	3018	71		Operator2	970		0	219	
	3671	72		Operator7	1789	1			
	3672	69		Operator2	920	2			
	3673	74		Operator2	876	0	0	273	
	3674	71		Operator2	1268	2		466	
	3675	73		Operator2	1865	0			
	4096	77		Operator1	1558	0	0	1586	
	4739	73		Operator2	725	3			
	4740	75		Operator4	1222				
	5140	72		Operator4	1289				
	5141	76		Operator4	1687				
	5142	72		Operator4	588	1			
	5143	68		Operator4	1421	3		393	
	5144	68		Operator6		3			
	5145	68		Operator6					
	5146	69		Operator6		1			
	5384	72		Operator7					
	5385	73		Operator7					
	5386	71		Operator7					
	5387	70		Operator7					
	5388	69		Operator7					
	6009	78		Operator5					
	6010	75		Operator5					
	6011	77		Operator5					
	6012	72		Operator2					
	6013	69		Operator2					
	6014	71		Operator2					
	6541	76		Operator6					
	7016	77		Operator2		0			
##	4.5. =	Measure5 Me							
	415	1226	1883	831	853	417	1189	497	697
	416	1686	447	1446	1053	1977	1985	1571	2005
	438	570	1475	999	1871	968	1740	531	1667
	1296	1154	912	1400	1814	525	194	493	247
	1298	1926	970	1533	512	551	1412	595	882
	1470	1869	826	566	1413	1057	1598	1100	1318
	1471	167	1432	606	1531	1177	1782	386	815
	1472	1651	1935	1475	970	1051	1706	1604	968
##	1473	1788	1432	1542	1128	779	1476	554	509

##	1474	994	1873	772	818	1877	1850	744	1839
	1475	1617	969	827	419	335	1616	852	1960
	1476	565	1819	1263	1414	1429	271	1445	912
	1961	971	507	1098	1117	1224	170	1033	1107
	1962	766	1226	1177	1473	785	1798	1232	561
	1963	269	724	1873	511	915	1097	796	1692
	2430	1838	2000	1007	1370	1664	329	651	952
	2544	1956	1993	1999	220	1926	246	293	602
	2545	676	1304	723	705	457	742	1060	1233
	2546	1805	1688	742	871	1650	1640	295	1767
	2547	365	260	1265	254	824	581	432	1546
	2548	608	829	695	398	1019	1090	1487	411
	2549	837	1910	1085	172	1190	1742	1110	1684
	3017	1943	1094	579	291	2001	1982	904	1723
	3018	1214	1002	1891	1524	1141	770	1655	972
	3671	1834	565	1794	1055	1475	921	1505	578
	3672	1546	215	1096	322	160	1598	1633	1100
	3673	1471	1990	334	1971	682	1507	646	950
	3674	1291	841	1154	295	1277	377	464	1360
	3675	695	1943	1821	1324	1716	1528	454	1613
	4096	251	1869	1987	452	1401	1040	1216	1392
	4739	220	403	913	686	1882	1015	885	1188
	4740	246	184	1988	1508	1712	241	1453	1222
	5140	1343	822	173	1146	992	1243	465	1376
	5141	1398	1697	1338	1187	1275	549	1106	894
	5142	617	1190	1605	602	1815	661	1774	1383
	5143	1876	435	2007	382	1011	698	577	1045
	5144	799	1656	1397	1174	194	1532	1732	1465
	5145	711	1461	486	1619	1510	1969	733	911
	5146	773	360	375	844	924	1709	469	642
	5384	1272	405	1346	1100	220	817	1722	174
	5385	568	1492	691	191	587	1115	642	926
	5386	1311	1730	1819	443	370	1625	1151	1634
	5387	1984	1950	498	166	514	1441	1756	1677
	5388	1349	1077	1597	1197	535	1323	1599	241
	6009	1024	1317	1887	752	1185	1985	1562	1842
	6010	656	716	904	1157	1100	309	637	537
	6011	1072	1021	378	493	301	380	1193	1269
	6012	1470	586	633	1442	1273	1774	236	614
	6013	309	1267	891	1257	498	1540	769	424
	6014	1613	1365	813	1341	949	1947	1284	1881
	6541	1198	1033	915	938	387	1255	1151	611
	7016	1779	410	1447	535	1774	564	1799	1766
##					Hours.	Since.Previ			
	415	576	1082	452				1 Yes	
	416	1305	457	1566				1 Yes	
	438	1605	1260	1558				8 No	
	1296	1595	1906	1510			51		
	1298	1348	1103	283				2 Yes	
	1470	993	1984	529			19		
	1471	1873	666	1693			19		
	1472	1312	1307	795				1 Yes	
	1473	1382	1311	1169				1 Yes	
	1474	929	1109	1652				1 Yes	
	1475	1540	534	1066				1 Yes	
	1476	594	1093	1054				1 Yes	
	1961	719	715	1617			59		
	1962	914	1911	1279				1 Yes	
	1963	1117	1906	1159				2 Yes	
	2430	1324	1139	829			20		
	2544	1645	971	785			35		
	2545	995	1459	1402				2 Yes	
	2546	1710	157	396				1 Yes	
##	2547	608	1867	303				1 Yes	

##	2548	1562	759	602	1	Yes
	2549	416	1750	1902	1	Yes
	3017	1226		666	1	
			1888			Yes
	3018	505	1103	244	1	Yes
##	3671	953	1080	266	1	Yes
##	3672	607	523	1779	1	Yes
##	3673	855	517	326	1	Yes
	3674	1856	1138	1491	1	Yes
	3675	1863	871	1178	1	Yes
##	4096	258	740	542	522	Yes
##	4739	1331	462	1741	1	Yes
##	4740	1738	688	1884	2	Yes
##	5140	1303	1362	1346	1	Yes
	5141	601	1850	1247	1	Yes
	5142	1644	1681	508	1	Yes
	5143	1789	1845	1762	1	Yes
##	5144	1815	1630	1383	1	Yes
##	5145	1618	1364	1545	1	Yes
##	5146	1678	300	1870	1	Yes
	5384	744	1276	573	296	Yes
	5385	560	1101	965	1	Yes
	5386	483	305	1031	1	Yes
##	5387	414	658	362	1	Yes
##	5388	1556	1809	439	1	Yes
##	6009	1447	1153	449	1	Yes
	6010	717	445	1054	1	Yes
	6011	795	1153	706	1	Yes
	6012	1884	432	1147	1	Yes
##	6013	1674	1942	528	1	Yes
##	6014	1154	1066	1231	1	Yes
##	6541	1893	582	360	666	Yes
	7016	986	1627	1885	178	Yes
	7010			1005	1/0	100
##		scoring	prediccion	1003	170	100
##	415	scoring 0.9825622	prediccion 1	1005	170	100
##		scoring	prediccion	1003	170	100
##	415	scoring 0.9825622	prediccion 1	1005	170	100
## ## ##	415 416 438	scoring 0.9825622 0.9466645	prediccion 1 1	1000	170	100
## ## ## ##	415 416 438 1296	scoring 0.9825622 0.9466645 0.7487351 0.9114171	prediccion 1 1 1	1000	170	100
## ## ## ## ##	415 416 438 1296 1298	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029	prediccion 1 1 1 1 1 1	1000	170	200
## ## ## ## ##	415 416 438 1296 1298 1470	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367	prediccion 1 1 1 1 1 1 1	1000	170	100
## ## ## ## ##	415 416 438 1296 1298 1470 1471	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444	prediccion	1000	170	100
## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694	prediccion	1000	170	100
## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444	prediccion	1000	170	100
## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694	prediccion	1000	170	100
## ## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783	prediccion		170	100
## ## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473 1474	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617	prediccion		170	100
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616	prediccion		170	100
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081	prediccion		170	
## ## ## ## ## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081	prediccion		170	
## ## ## ## ## ## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422	prediccion		1/0	
## ## ## ## ## ## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081	prediccion		170	
## ## ## ## ## ## ## ## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422	prediccion		1/0	
## # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1/0	
## ## ## ## ## ## ## ## ## ## ## ## ##	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
######################################	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		170	
######################################	415 416 438 1296 1298 1470 1471 1472 1473 1476 1962 1963 2430 2544 2545 2546 2547	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1/0	
######################################	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		170	
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.8946612	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		170	
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.8946612	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.99558666	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018 3671	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.9642378 0.8946612 0.9558666 0.8946612 0.8927627	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1476 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018 3671 3672	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.8946612 0.9558666 0.8946612 0.8927627 0.8456880	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1/0	
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018 3671 3672 3673	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.8946612 0.9558666 0.8946612 0.8927627 0.8456880 0.9886779	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018 3671 3672 3673 3674	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.9642378 0.9558666 0.8946612 0.9558666 0.8946612 0.9558666 0.8927627 0.8456880 0.9886779 0.9151571	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018 3671 3672 3673 3674 3675	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.97558666 0.8946612 0.9558666 0.8946612 0.9558666 0.8946612 0.99886779 0.9151571 0.9435547	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1298 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018 3671 3672 3673 3674 3675	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.9642378 0.9642378 0.9558666 0.8946612 0.9558666 0.8946612 0.9558666 0.8927627 0.8456880 0.9886779 0.9151571	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
# # # # # # # # # # # # # # # # # # #	415 416 438 1296 1470 1471 1472 1473 1474 1475 1476 1961 1962 1963 2430 2544 2545 2546 2547 2548 2549 3017 3018 3671 3672 3673 4096	scoring 0.9825622 0.9466645 0.7487351 0.9114171 0.8740029 0.6435367 0.6913444 0.8983694 0.8482783 0.6867617 0.6332053 0.7357616 0.7492081 0.9446098 0.8943422 0.6365283 0.8384296 0.7755151 0.9001797 0.8983694 0.97558666 0.8946612 0.9558666 0.8946612 0.9558666 0.8946612 0.99886779 0.9151571 0.9435547	prediccion 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

```
## 4740 0.9943100
                          1
## 5140 0.9446098
## 5141 0.9699248
                          1
## 5142 0.9721713
                          1
## 5143 0.6285510
                          1
## 5144 0.7318576
                          1
## 5145 0.6824463
                          1
## 5146 0.6780992
                          1
## 5384 0.8628603
## 5385 0.8908342
                          1
## 5386 0.8699178
                          1
## 5387 0.9332246
                          1
## 5388 0.6780992
                          1
## 6009 0.9877471
## 6010 0.9815046
                          1
## 6011 0.9963334
                          1
## 6012 0.9649206
## 6013 0.9182097
                          1
## 6014 0.8403992
                          1
## 6541 0.8460357
                          1
## 7016 0.9947568
```

5 Conclusiones

Se ha trabajado sobre un histórico de mediciones de sensores y se ha obtenido un modelo predictivo de alta calidad.

El modelo es estable y consigue plasmar las características de los momentos en los que se producen los fallos de la máquina.

Con los datos objenidos, sabiendo que las variables de Temperatura, Humedad y Horas desde el úlitmo fallo, sabemos que con ciertas condiciones de estos indicadores la máquina fallará.

6 Resultados

Nuestra previsión es que usando este modelo se puede construir un plan de mantenimiento preventivo sobre la maquinaria y predecir cada cuantas horas hay que revisarla o cambiar piezas susceptibles de avería.

En conjunto con el departamento de Mantenimiento se realiza el Plan de Mantenimiento Preventivo en el que se incluirán un conjunto de intervenciones u operaciones preventivas de debemos realizar en los equipos, para lograr unos objetivos de disponibilidad, fiabilidad y coste y por lo tanto ampliar la vida útil de los equipos.

Con este plan vamos a lograr:

- Reducir las intervenciones correctivas, ya que con una buena planificación y previsión se evitarán averías.
- Reducir los gastos de reparaciones, tanto materiales como humanos.
- Aumentar la disponibilidad de los activos, por lo que conseguiremos una mayor rentabilidad en la producción.
- Reducción de costes por reemplazo de equipos, puesto que la vida útil de la maquinaria se verá ampliada.
- Aumentar la productividad y reducir costes derivados de la parada de producción.
- Reducir riesgos de accidentes laborales relacionados con fallos en equipos.
- Evitar sanciones por incumplimiento de la normativa de reglamentación de instalaciones.