Data Mining 資料探勘 Project3 書面報告

Implementation detail

本次 code 使用 python 函式庫 networkx 做 input graph,自行寫 hits, pagerank 及 simrank 的運算,此程式需要裝 networkx(pip3 install networkx)

```
# First step, create graph in order to perform hits and pagerank
def build_graph(path):
    graph_data = pd.read_csv(path,header=None)
    graph_data = graph_data.values.tolist()
    G = nx.DiGraph()
    G.add_edges_from(graph_data)
    return G
```

此部分利用 pandas 讀入 csv,務必記得將 header 設置為 None,讀出的格式為 dataframe,故使用 values.tolist()轉為 list,才可放入 nx 建成 graph,這裡使用 DiGraph()建置出來的是 Directed Graph,如果要建置 undirected Graph 要使用 Graph(),利用 add_edges_from 可以將 list 內的關係加到圖內。

```
# Used to plot graph
|def graph_plot(G):
    plt.figure(figsize =(10, 10))
    nx.draw_networkx(G, with_labels = True)
    plt.show()
```

此部分用在繪製出 graph object 的樣子,可以搭配 matplotlib 直接繪製出 directed graph,因 graph_5 及 graph_6 和 transection_data 的 node 數量太多,所以畫出來會整個雜亂無法辨識,所以這邊指呈現出 graph1~4 的樣子。

Graph 1

Graph 2

Graph 3

Graph 4

```
def hitsandpr(G, damping_factors=0.15):
    startTime = time()
   hubs, authorities = hits(G)
   print("HITS computation time ::", time() - startTime)
   #print("Hub Scores: ", hubs)
   #print("Authority Scores: ", authorities)
   startTime = time()
    pr = pagerank(G, damping_factors, max_iter=500)
    print("PageRank computation time ::", time() - startTime)
    #print("PageRank Values : ", pr)
    return hubs, authorities, pr
def hits(graph, iter_count=500):
    nodes = graph.nodes()
    nodes_count = len(nodes)
    matrix = nx.to numpy matrix(graph, nodelist=nodes)
   hubs score = np.ones(nodes count)
    auth score = np.ones(nodes count)
   H = matrix * matrix.T
    A = matrix.T * matrix
    for i in range(iter count):
        hubs score = hubs score * H
        auth_score = auth_score * A
        hubs_score = hubs_score / LA.norm(hubs_score)
        auth_score = auth_score / LA.norm(auth_score)
    hubs_score = np.array(hubs_score).reshape(-1,)
    auth_score = np.array(auth_score).reshape(-1,)
    hubs = dict(zip(nodes, hubs_score/2))
    authorities = dict(zip(nodes, auth score/2))
    return hubs, authorities
def pagerank(graph, d, max_iter=500):
   W = nx.stochastic_graph(graph, weight='weight')
   N = W.number of nodes()
   x = dict.fromkeys(W, 1.0 / N)
   p = dict.fromkeys(W, 1.0 / N)
    for _ in range(max_iter):
       xlast = x
       # {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0}
       x = dict.fromkeys(xlast.keys(), 0)
        for n in x:
           for nbr in W[n]:
               x[nbr] += (1-d) * xlast[n] * W[n][nbr]['weight']
           x[n] += d * p[n]
    pr_sorted = sorted(
       x.items(), key=lambda v: (v[1], v[0]), reverse=True)
    print("\n\nThe order generated by d library is")
    for i in pr_sorted:
       print(i[0], end=" ")
    print()
```

此部分的 code 用於實現 hits 和 pagerank 演算法,用 hitsandpr 去呼叫 hits 可算出 hubs 和 authorities,這個部分順便使用 time 來記錄運算過程所花的

時間,pagerank 可以設定 damping_factors,結果分析部分會針對這塊多做實驗。

```
def simrank(G, r=0.8, max_iter=100, eps=le-4):
    nodes = G.nodes()
   nodes\_i = \{k: \ v \ for(k, \ v) \ in \ [(nodes[i], \ i) \ for \ i \ in \ range(0, \ len(nodes))]\}
    sim_prev = np.zeros(len(nodes))
    sim = np.identity(len(nodes))
    for i in range(max_iter):
        if np.allclose(sim, sim_prev, atol=eps):
            break
        sim prev = np.copy(sim)
        for u, v in itertools.product(nodes, nodes):
           if u is v:
               continue
           u_ns, v_ns = G.predecessors(u), G.predecessors(v)
            # evaluating the similarity of current iteration nodes pair
            sim[nodes_i[u]][nodes_i[v]] = 0
                s_uv = sum([sim_prev[nodes_i[u_n]][nodes_i[v_n]] for u_n, v_n in itertools.product(u_ns, v_ns)])
sim[nodes_i[u]][nodes_i[v]] = (r * s_uv) / (len(u_ns) * len(v_ns))
```

return sim

上圖的r即為 Decay Factor C

這一個 part 實現了 simrank,最後會產出一個節點間相關的 value 的矩陣,如下圖:

	Α	В	С	D	E	F
1	1	0	0	0	0	0
2	0	1	0	0	0	0
3	0	0	1	0	0	0
4	0	0	0	1	0	0
5	0	0	0	0	1	0
6	0	0	0	0	0	1

目前分成三個主程式,實作 HITS.py 和 Pagerank.py 和 simrank 資料夾中的 simrank.py,另外 increase.py 用於實驗 pagerank 中不同 damping_factor 的 狀況。hits_and_pagerank_graph1to6.py 則是對六張圖做增加 hub, authority, and PageRank 的分析用。

Result analysis and discussion

老師上課提到以下:

- A site is very authoritative if it receives many citations. Citation from important sites weight more than citations from less-important sites.
- Hubness shows the importance of a site. A good hub is a site that links to many authoritative sites.

將會根據上述兩點做分析。

第一部分,Hub & Authority:

Graph1:

•	зіарііт.						
	Hub	Authority					
	0.2	0					
	0.2	0.2					
	0.2	0.2					
	0.2	0.2					
	0.2	0.2					
	0	0.2					

由此圖與表格可以歸納出:

- ◆ 有指向其他點的節點,有 Hub 值。
- ◆ 沒有被指向的節點,沒有 Authority 值。

Graph2:

Hub	Authority
0.2	0.2
0.2	0.2
0.2	0.2
0.2	0.2
0.2	0.2

此圖重點為,每個節點都有指向且也有被指向,貢獻相同,Hub 與 Authority 相同。

Graph3:

Hub	Authority			
0.190983	0.190983			
0.309017	0.309017			
0.309017	0.309017			
0.190983	0.190983			

2,3 節點同樣為被兩個節點指向(authority 高),且指向兩節點(其中節點 3 的 authority 較節點 1 高)的節點(hub 高因為連到較 authorative 的節點)。

Graph4:

•	Jiapii+.							
	Hub	Authority						
	0.275453	0.139484						
	0.047762	0.177912						
	0.108683	0.200823						
	0.19866	0.140178						
	0.183735	0.201425						
	0.068972	0.084088						
	0.116735	0.056089						

從 hub 值最高的節點 1 開始分析,其分別指向節點 2,3,5 Authority 較高的節點,因此 hub 值較高,節點 5 有著相對重要的節點 1 指向,以節點 4,6,7 指向,authority 相對較高。

Graph5,Graph6,Transection dataset 因資料較多皆不再此贅述,但確實照著老師上課所說,從 hub 值與 authority 值的高低可以看出節點的重要性,若要參考詳細結果,有附上 csv 檔。

第二部分,Pagerank

◆ Pagerank 相較 HITS,其較重視網站被什麼樣的網站給指向,如果是較重要的網站「單獨」指向,pr值會較高。

這個部分我將 damping factor 設置為 0.15 做為初始值,產生以下的值。

節點	Graph_1	Graph_2	Graph_3	Graph_4
1	0.14596	0.2	0.232558	0.169027
2	0.167853	0.2	0.267442	0.143567
3	0.171138	0.2	0.267442	0.13919
4	0.17163	0.2	0.232558	0.132562
5	0.171704	0.2		0.161664
6	0.171715			0.126499
7				0.127491

- ◆ Graph1 可看出 pagerank 較重視被網站指向,沒有被任何節點指向的節點 1 相對 pr 值較低。
- ◆ 可以看出 Graph2 較特別,因每一個節點都有同樣的 inlink 和 outlink, parent 與 parent 間的相連關係更是相同,故皆有一樣的值。
- ◆ Graph3的狀況與 HITS 較相同,節點 2 與 3 有相同重要節點的 inlink。
- ◆ Graph4 中節點 1 的 pr 值較高的關鍵,應該是節點 2 的影響,其有兩個 inlink 卻,但其 pr 值全部貢獻給 1,第二高的節點 5 也有同樣的情況,較低的原因應該是節點 7 相對節點 2 的 inlink 較少,其他節點幾乎都有兩個以上的 outlink。

Graph5,Graph6,Transection dataset 因資料較多皆不再此贅述,若要參考詳 細結果,有附上 csv 檔。

第三部分,SimRank

◆ 在此部分, C由於是自訂, 在此先將 C 設為 0.8。

	1	2	3	4	5	6
1	1	0	0	0	0	0
2	0	1	0	0	0	0
3	0	0	1	0	0	0
4	0	0	0	1	0	0
5	0	0	0	0	1	0
6	0	0	0	0	0	1

Graph 1

	1	2	3	4	5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	1	0	0
4	0	0	0	1	0
5	0	0	0	0	1

Graph 2

	1	2	3	4
1	1	0	0.666597	0
2	0	1	0	0.666597
3	0.666597	0	1	0
4	0	0.666597	0	1

Graph 3

	1	2	3	4	5	6	7
1	1	0.360139	0.348831	0.353604	0.337524	0.292245	0.414963
2	0.360139	1	0.406676	0.36962	0.412072	0.45395	0.28529
3	0.348831	0.406676	1	0.449462	0.389935	0.450935	0.447988
4	0.353604	0.36962	0.449462	1	0.342558	0.534985	0.534985
5	0.337524	0.412072	0.389935	0.342558	1	0.412126	0.272989
6	0.292245	0.45395	0.450935	0.534985	0.412126	1	0.269969
7	0.414963	0.28529	0.447988	0.534985	0.272989	0.269969	1

Graph 4

Graph 5 的部分則不在此呈現,有附上 csv 檔。

- ◇ Simrank 用於比較兩節點的相似性,核心思想為如果指向結點 a 和指向結點 b 的結點相似,那麼 a 和 b 也認為是相似的。
- ◆ Graph1 及 2 可以看出上述的概念,Graph1 而言,節點 1 指向節點 2, 沒有節點指向節點 1,互相為空集合,故 simrank 得出的值為 0, Graph2 則是節點 1 指向節點 2,節點 5 指向節點 1,互相沒有交集, 為空集合,故 simrank 得出的值為 0。
- ◆ Graph3 中可以稍微整理出一個例子,指向節點 1 的只有節點 2,指向 節點 3 有節點 2 及節點 4,因此導致 0.666 這種值出現, Graph4 是類 似的概念。

第四部份,增加 hub 值和 authority 和 pagerank 值

這一部分只有嘗試增加與節點 1 的關係,故有以下結果與結論:

```
hub:: [1: 0.2, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.2, 6: 0.0] authorities:: [1: 0.0, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.2, 6: 0.2] magerank values:: [1: 0.1459597532600261, 2: 0.167853496866862, 3: 0.17113757255045572, 4: 0.17163017313639323, 5: 0.17170405399576824, 6: 0.1717151 2821451823] [1], 2], 12, 3], [3, 4], [4, 5], [5, 6], [1, 3]] HTS computation time:: 0.0 PageRank computation time:: 0.0 hub:: [1: 0.6180339871161855, 2: 0.3819660024041726, 3: 8.811324382472235e-10, 4: 8.811324382472235e-10, 5: 8.811324382472235e-10, 6: 0.0] authorities:: [1: 0.0, 2: 0.3819660096163957, 3: 0.6180339861064974, 4: 1.4257022313448918e-09, 5: 1.4257022313448918e-09, 6: 1.4257022313448918e-09] pagerank values:: [1: 0.1459603662516276, 2: 0.15690740616861978, 3: 0.18044352384440102, 4: 0.17302685990397135, 5: 0.17191436307779945, 6: 0.171747 4807535807] [1], 2], [2, 3], [3, 4], [4, 5], [5, 6], [1, 3], [1, 4]] HTS computation time:: 0.0 PageRank computation time:: 0.0 PageRank computation time:: 0.0 PageRank computation time:: 0.0 pagerank values:: [1: 0.0, 2: 0.2679491921541335, 3: 0.3660254034060643, 4: 0.3660254034060643, 5: 5.168689733436289e-10, 6: 0.0] authorities:: [1: 0.0, 2: 0.2679491921541335, 3: 0.3660254034606043, 4: 0.3660254034060643, 5: 5.168689733436289e-10, 6: 5.168689733436289e-10] pagerank values:: [1: 0.1459642246500651, 2: 0.1532624446207682, 3: 0.17625183158365884, 4: 0.17970021293131508, 5: 0.17291922049967445, 6: 0.1719020 6571451822] [1], 2], [2, 3], [3, 4], [4, 5], [5, 6], [1, 3], [1, 4], [1, 5]] HTS computation time:: 0.0 PageRank computation
```

- ◆ 單純增加節點 1 的指出,不一定會增加其 hub 值。
- ◆ 單純增加節點 1 地指出,小小的增加了 pagerank 值。
- ◆ 如果要增加節點的 authority,可以嘗試多設下指向該節點的關係。
- ◆ 增加 pagerank 可以嘗試增加一個單獨指向該節點但有許多其他節點只

```
[[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [1, 2]]
HITS computation time :: 0.0009286403656005859
PageRank computation time :: 0.0
hub :: {1: 0.2, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.2, 6: 0.0}
authorities :: {1: 0.0, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.2, 6: 0.2}
pagerank values :: {1: 0.14595957523600261, 2: 0.167853496866862,
823}
```

想的節點關係。

- ◆ 嘗試增加了多重單向關係,也就是多條同樣的路,對於三種值並沒有 影響。
- ◆ 嘗試增加了反向關係,也就是[1,2]相對於[2,1],此舉突然讓節點1的

```
[[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [2, 1]]
HITS computation time :: 0.0019936561584472656

PageRank computation time :: 0.0
hub :: {1: 1.8626451353531692e-09, 2: 0.9999999925494194, 3: 1.862641353531692e-09, 2: 0.49999999962747097, 2: 1.8626451353531692e-09, 3531692e-09}
pagerank values :: {1: 0.15869062931315103, 2: 0.1697620454508463683073}
```

hub 值大幅降低, 節點 2 的 authority 大幅降低, 如下圖:

PageRank 值得增加:

For graph_1.txt,增加 3 指向 1 跟 6 指向 1 後, PageRank 值增加約 0.034

```
graph_data = pd.read_csv('hw3dataset\graph_1.txt|', header=None)
graph_data = graph_data.values.tolist()
graph_data.append([3, 1])
graph_data.append([6, 1])
PageRank:
[0.14595957523600261
PageRank:
[0.17914557291666666
```

For graph_2.txt,增加 3 指向 1 跟 6 指向 1 後, PageRank 值增加約 0.06

```
graph_data = pd.read_csv('hw3dataset\graph_1.txt', header=None)
graph_data = graph_data.values.tolist()
graph_data.append([3, 1])
graph_data.append([6, 1])
PageRank:
[0.14595957523600261
PageRank:
[0.20019331901041665]
```

For graph 3.txt,增加 3 指向 1 跟 6 指向 1 後, PageRank 值增加約 0.08

```
graph_data = pd.read_csv('hw3dataset\graph_1.txt', header=None)
graph_data = graph_data.values.tolist()
graph_data.append([3, 1])
graph_data.append([6, 1])
PageRank:
[0.14595957523600261
PageRank:
[0.22220651484374998]
```

Computation performance analysis

這部分做的著墨較小,只有在運算過程中稍微使用 time 函式記錄下運算時間,上面的圖也有留下紀錄,但大部分時候都因 graph 資料較小,所以被記錄下來的運算時間變成 0 了,graph5 及 6 相對較大,記錄下來的資料如下圖:

```
graph 1.txt
Graph building time :: 0.014962434768676758
HITS computation time :: 0.0
PageRank computation time :: 0.0
graph 2.txt
Graph building time :: 0.003989219665527344
HITS computation time :: 0.0
PageRank computation time :: 0.000997304916381836
graph_3.txt
Graph building time :: 0.0029914379119873047
HITS computation time :: 0.0
PageRank computation time :: 0.0
graph_4.txt
Graph building time :: 0.002992391586303711
HITS computation time :: 0.0009987354278564453
PageRank computation time :: 0.0009965896606445312
graph_5.txt
Graph building time :: 0.004984617233276367
HITS computation time :: 0.04088878631591797
PageRank computation time :: 0.016956806182861328
```

HITS computation time :: 0.9993298053741455 PageRank computation time :: 0.0309145450592041

可以看到通常 PageRank 所花的時間稍微少一點。

Discussion

◆ 程式運算過程中發現一個小問題,就是每個 graph 所需 max_iteration 數量不同,其中 graph_6 需要最多 iteration 才可以收斂,pagerank 預 設的 max_iteration 為 100,並不足以收斂,我調整至 120 才有辦法收 斂

```
Graph building time :: 0.0109710693359375
HITS computation time :: 0.000995635986328125
Traceback (most recent call last):
File "hits.py", line 83, in <module>
    main()
File "hits.py", line 55, in main
    results = hitsandpr(graph,i)
File "hits.py", line 24, in hitsandpr
    pr=nx.pagerank(G.damping_factors)
File "<decorator-gen-104>", line 2, in pagerank
File "C:\Users\Joey\Anaconda3\lib\site-packages\networkx\utils\decorators.py", line 68, in _not_implemented_for
    return f(*args.**kwargs)
File "C:\Users\Joey\Anaconda3\lib\site-packages\networkx\algorithms\link_analysis\pagerank_alg.py", line 158, in pagerank
    in %d iterations.' % max_iter)
networkx.exception.NetworkXError: pagerank: power iteration failed to converge in 100 iterations.
```

◆ 在這裡先提出一個程式上可能遇到的小 bug,在做 damping_factor 的 多重測試時,發現如果 damping_factor 的 datatype 是 float64,會發生以下錯誤:

```
Traceback (most recent call last):
File "hits.py", line 59, in <module>
main()
File "hits.py", line 54, in main
hubs, authorities = nx.hits(graph, max_iter=100, normalized=True)
File "C:\Users\Joey\Anaconda3\lib\site-packages\networkx\algorithms\link_analysis\hits_alg.py", line 111, in hits
"HITS: power iteration failed to converge in %d iterations. "%(i+1))
networkx.exception.NetworkXError: HITS: power iteration failed to converge in 102 iterations.

(base) C:\Users\Joey\Desktop\\\@aph_2\txt', 'graph_3\txt', 'graph_4\txt', 'graph_5\txt', 'graph_6\txt']
Traceback (most recent call last):
File "hits.py", line 59, in <module>
main()
File "hits.py", line 54, in main
hubs, authorities = nx.hits(graph, max_iter=110, normalized=True)
File "C:\Users\Joey\Anaconda3\lib\site-packages\networkx\algorithms\link_analysis\hits_alg.py", line 111, in hits
"HITS: power iteration failed to converge in %d iterations."%(i+1))
networkx.exception.NetworkXError: HITS: power iteration failed to converge in 112 iterations.
```

後將 damping factor 調整成 np.float32 才可以正常運行。

- ◆ 網路上有查到一個 SimRank 的小限制,就是 SimRank 似乎無法針對無 向圖運算,但無向圖可以當作 bi-directed 圖做運算,便可以突破限 制。
- ◆ Pagerank 的 damping factor 我的測試範圍從 0.15~0.85, 結果全部都記錄成 csv 檔附上,

■ Graph 1

0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85
0.14596	0.132351	0.118992	0.106001	0.093524	0.08172	0.070743	0.060716
0.167853	0.165439	0.16064	0.153702	0.144962	0.134838	0.123799	0.112324
0.171138	0.173711	0.175216	0.175167	0.173253	0.169364	0.163592	0.156192
0.17163	0.175779	0.180319	0.184826	0.188813	0.191806	0.193437	0.19348
0.171704	0.176296	0.182104	0.189173	0.197371	0.206394	0.215821	0.225174
0.171715	0.176425	0.182729	0.19113	0.202077	0.215877	0.232608	0.252114

可以看出當 damping_factor 值調整到越高,pr 值高者會越高,低者會越低。

■ Graph 2, 結果都是 0.2。

■ Graph 3

	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85
1	0.232558	0.222222	0.212766	0.204082	0.196079	0.188679	0.181818	0.175438
2	0.267442	0.277778	0.287234	0.295918	0.303921	0.311321	0.318182	0.324562
3	0.267442	0.277778	0.287234	0.295918	0.303921	0.311321	0.318182	0.324562
4	0.232558	0.222222	0.212766	0.204082	0.196079	0.188679	0.181818	0.175438

趨勢跟 Graph 1 相同,damping_factor 值調整到越高,pr 值高者會越高,低者會越低。

■ Graph 4

_	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85
1	0.169027	0.185823	0.202171	0.218158	0.233876	0.249416	0.264863	0.280288
2	0.143567	0.14424	0.145258	0.14674	0.148774	0.151427	0.154747	0.158765
3	0.13919	0.137706	0.136859	0.136548	0.136678	0.137161	0.137919	0.138882
4	0.132562	0.127113	0.122561	0.118738	0.115502	0.112735	0.110335	0.108219
5	0.161664	0.170863	0.177733	0.182507	0.185383	0.186527	0.186087	0.184199
6	0.126499	0.116434	0.107009	0.098206	0.090012	0.082424	0.075443	0.069077
7	0.127491	0.117822	0.108409	0.099104	0.089776	0.08031	0.070606	0.060571

趨勢類似於 Graph1 及 4。

- ◆ SimRank 的 C 測試範圍從 0.1~0.8, 結果記錄成 csv 檔附上
 - Graph1 及 2 都只有 1,調整 C 不影響值。
 - Graph3 非 1 或 0 的值產生了變化,整理成如下的表格:

0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
0.052631	0.1111	0.176457	0.249984	0.333313	0.428543	0.538419	0.666597

C 值越大, 有差異的相似節點中的相同部分影響較大。

■ 上述的趨勢同樣出現在 graph_4 及 graph_5 中。