Analyzing Customer Churn in a Telecommunications Company

July 24, 2024

```
[3]: import pandas as pd
     import numpy as np
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler
     # 1. Import the dataset
     file_path = "C:\\Users\\MUBASHIR_
      → KHAN\\Desktop\\jupyter\\DMV\\WA_Fn-UseC_-Telco-Customer-Churn.csv"
     df = pd.read_csv(file_path)
     # 2. Explore the dataset
     print("Dataset Head:\n", df.head())
     print("\nDataset Info:\n", df.info())
     print("\nSummary Statistics:\n", df.describe())
     # 3. Handle missing values
     # Checking for missing values
     print("\nMissing Values:\n", df.isnull().sum())
     # Filling missing values or dropping
     # Example: If missing values are found in a column, fill with median or drop_{\sqcup}
      ⇔rows/columns
     numeric_columns = df.select_dtypes(include=[np.number]).columns
     df[numeric_columns] = df[numeric_columns].fillna(df[numeric_columns].median())
     # 4. Remove duplicate records
     df.drop_duplicates(inplace=True)
     # 5. Check for inconsistent data and standardize
     # Example: Standardizing 'TotalCharges' as it may contain spaces and need to be
      \rightarrownumeric
     df['TotalCharges'] = pd.to_numeric(df['TotalCharges'], errors='coerce')
     # Rechecking missing values after conversion
     print("\nMissing Values after conversion:\n", df.isnull().sum())
     df['TotalCharges'].fillna(df['TotalCharges'].median(), inplace=True)
```

```
# 6. Convert columns to the correct data types
# Example: Converting 'SeniorCitizen' from integer to boolean
df['SeniorCitizen'] = df['SeniorCitizen'].astype(bool)
# 7. Identify and handle outliers
# Example: Using IQR to handle outliers in 'tenure' column
Q1 = df['tenure'].quantile(0.25)
Q3 = df['tenure'].quantile(0.75)
IQR = Q3 - Q1
lower bound = Q1 - 1.5 * IQR
upper bound = Q3 + 1.5 * IQR
df = df[(df['tenure'] >= lower_bound) & (df['tenure'] <= upper_bound)]</pre>
# 8. Perform feature engineering
# Example: Creating 'TotalServices' as the count of all services used by a_{\sqcup}
 ⇔customer
services = ['PhoneService', 'MultipleLines', 'InternetService', |
 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies']
df['TotalServices'] = df[services].apply(lambda x: x.eq('Yes').sum(), axis=1)
# 9. Normalize or scale the data if necessary
# Example: Scaling numerical features
scaler = StandardScaler()
numerical features = ['tenure', 'MonthlyCharges', 'TotalCharges', '
 df[numerical_features] = scaler.fit_transform(df[numerical_features])
# 10. Split the dataset into training and testing sets
X = df.drop(columns=['Churn'])
y = df['Churn'].apply(lambda x: 1 if x == 'Yes' else 0) # Assuming 'Churn' is_
 ⇔the target column
→random_state=42)
# 11. Export the cleaned dataset for future analysis or modeling
cleaned_file_path = "C:\\Users\\MUBASHIR__
 →KHAN\\Desktop\\jupyter\\DMV\\Cleaned_Telco_Customer_Churn.csv"
df.to_csv(cleaned_file_path, index=False)
print(f"Cleaned dataset saved to {cleaned_file_path}")
Dataset Head:
   customerID gender SeniorCitizen Partner Dependents tenure PhoneService
0 7590-VHVEG Female
                                      Yes
                                                                     No
                                 0
                                                 No
                                                          1
```

No

No

No

No

34

Yes

Yes

0

0

1 5575-GNVDE

2 3668-QPYBK

Male

Male

3 4	7795-CFOCW Male 9237-HQITU Female		C	-	0	No No	45 2		N Ye	_
	MultipleLines In	ternetS	ervice	OnlineS	ecurity	Devi	iceProte	ction	\	
0	No phone service		DSL		No	•••		No		
1	No		DSL		Yes	•••		Yes		
2	No		DSL		Yes	•••		No		
3	No phone service		DSL		Yes	•••		Yes		
4	No	Fiber	optic		No			No		
0	TechSupport Streamin	No	eamingM	No	Month-to	-month	Paperle		Yes	\
1	No	No		No		e year			No	
2	No	No			Month-to				Yes	
3	Yes	No		No		e year			No	
4	No	No		No	Month-to	-montn			Yes	
	Payment	Method	Monthly	Charges	TotalC	Charges	Churn			
0	Electronic	check		29.85		29.85	No			
1	Mailed	check		56.95		1889.5	No			
2	Mailed	check		53.85		108.15	Yes			
3	Bank transfer (auto	matic)		42.30	1	.840.75	No			
4	Electronic	check		70.70		151.65	Yes			

[5 rows x 21 columns]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
Column Non-Null Count

#	Column	Non-Null Count	Dtype
		7040	
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	${\tt InternetService}$	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	${ t Streaming TV}$	7043 non-null	object
14	${ t Streaming Movies}$	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object

18MonthlyCharges7043 non-nullfloat6419TotalCharges7043 non-nullobject20Churn7043 non-nullobject

dtypes: float64(1), int64(2), object(18)

memory usage: 1.1+ MB

Dataset Info:

None

Summary Statistics:

	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

Missing Values:

customerID	0
gender	0
SeniorCitizen	0
Partner	0
Dependents	0
tenure	0
PhoneService	0
MultipleLines	0
InternetService	0
OnlineSecurity	0
OnlineBackup	0
DeviceProtection	0
TechSupport	0
${ t Streaming TV}$	0
${ t Streaming Movies}$	0
Contract	0
PaperlessBilling	0
${ t Payment Method}$	0
MonthlyCharges	0
TotalCharges	0
Churn	0

dtype: int64

Missing Values after conversion:

customerID 0
gender 0
SeniorCitizen 0

```
Partner
                      0
Dependents
                      0
tenure
                      0
PhoneService
                      0
                      0
MultipleLines
InternetService
                      0
OnlineSecurity
                      0
{\tt OnlineBackup}
                      0
                      0
DeviceProtection
TechSupport
                      0
StreamingTV
                      0
StreamingMovies
                      0
Contract
                      0
PaperlessBilling
                      0
                      0
PaymentMethod
MonthlyCharges
                      0
TotalCharges
                     11
Churn
                      0
```

dtype: int64

Cleaned dataset saved to C:\Users\MUBASHIR

 ${\tt KHAN \backslash Desktop \backslash jupyter \backslash DMV \backslash Cleaned_Telco_Customer_Churn.csv}$

[]: