

Chapter 11

Exercise 11A

1 a
$$\frac{x^7}{7} + c$$

b
$$\frac{x^2}{2} + a$$

$$c - \frac{1}{2r^2} + c$$

d
$$5x + c$$

e
$$x^4 + c$$

$$f = \frac{1}{2x^6} + c$$

$$g = \frac{x^6}{8} + a$$

h
$$\frac{32x^{\frac{3}{4}}}{3} + c$$

$$\frac{2x^{\frac{5}{2}}}{5} + c$$

$$\mathbf{j} = \frac{3x^{\frac{7}{3}}}{7} + c$$

$$\mathbf{k} \quad 2\sqrt{x} + c$$

$$-\frac{5x^{\frac{3}{5}}}{3}+c$$

$$\mathbf{m} = 4x^{\frac{3}{2}} + a$$

$$n \frac{1}{24x^4} + c$$

2 **a**
$$x^3 + \frac{x^2}{2} - x + c$$

b
$$\frac{x^5}{5} - \frac{5}{2}x^2 + 7x + c$$

$$c \frac{x^6}{4} - \frac{x^2}{8} - 4x + c$$

d
$$\frac{4x^3}{9} - \frac{x^2}{10} - \frac{1}{x^5} + c$$

3 **a**
$$\frac{2}{3}\sqrt{x}(x-3)+c$$

b
$$2x^{\frac{5}{2}}(2-3x)+c$$

$$\mathbf{c} -4x^2 + \frac{2x^{\frac{5}{3}}}{5} - 5x^{\frac{4}{5}} + c$$

d
$$3x^{\frac{5}{4}} - \frac{x^{\frac{4}{5}}}{10} + c$$

4 a
$$\frac{k^5}{5} - \frac{3k^2}{2} - 5k + c$$

b
$$\frac{2p^9}{3} + \frac{1}{3p^3} + c$$

c
$$2\sqrt{t}(3t+4)+c$$

5 a
$$\frac{2}{3}x^3 - 5x + c$$

b
$$\frac{-5x^{-3}}{3} + \frac{4}{3}x^{\frac{3}{2}} + c$$

c
$$2x^{\frac{1}{5}} + c$$

$$\mathbf{d} \quad -\frac{3x}{4x^4} + 4x - \frac{x^3}{3} + c$$

$$e^{-\frac{3}{4}x^{-4}+4x-\frac{x^3}{3}+c}$$

$$\mathbf{f} \quad \frac{1}{6} \left(-\frac{1}{x^2} - \frac{3}{x} - \frac{96x^{\frac{5}{4}}}{5} \right) + c$$

g
$$x - \frac{24}{5}x^{\frac{5}{6}} + c$$

h
$$-\frac{1}{2}x - \frac{1}{6}x^{-2} - \frac{16}{5}x^{\frac{5}{4}} + c$$

Exercise 11B

1 a
$$2x^2 - 7x + 3$$

$$\frac{2x^3}{3} - \frac{7x^2}{2} + 3x + c$$

b
$$x^3 - 3x^2 - 4x$$

$$\frac{x^4}{4} - x^3 - 2x^2 + c$$

$$\mathbf{c}$$
 $x^3 + 5x^2 + 2x - 8$

$$\frac{x^4}{4} + \frac{5x^3}{3}x^3 + x^2 - 8x + c$$

d
$$5x^4 - 30x^3 + 45x^2$$

$$x^5 - \frac{15x^4}{2} + 15x^3 + c$$

e $x^3 + 4x^2 - 3x - 18$

$$e x^3 + 4x^2 - 3x - 18$$

$$\frac{x^4}{4} + \frac{4x^3}{3} - \frac{3x^2}{2} - 18x + c$$

2 **a**
$$\frac{1}{5}x^{-3}$$

b
$$\frac{3}{5}x^{\frac{-4}{3}}$$

$$\mathbf{c}$$
 $x^3 - 5x^2 + 2x - 8$

d
$$\frac{2}{3}x^2 - \frac{1}{3}^{x-2}$$

e
$$\frac{3}{5}x^{\frac{-4}{3}}$$

f
$$1 - 3x^{\frac{1}{2}}$$

$$\mathbf{g} \quad \frac{1}{6}x^{-2} - \frac{5}{3}x^2$$

$$\mathbf{3} \quad \mathbf{a} \quad 6x^{-3}$$

$$3 \quad a \quad 6r^{-1}$$

$$-\frac{3}{x^2} + c$$

b
$$\frac{1}{5}x^{-4}$$

$$-\frac{1}{15}x^{-3} + c$$

c
$$\frac{7}{3}x^{-8}$$

$$-\frac{1}{3x^7} + c$$

d
$$4x^{-2} - x^2 + 5$$

$$-4x^{-1} - \frac{x^3}{3} + 5x + c$$

4 a
$$3x^{\frac{1}{2}}$$

$$2x^{\frac{3}{2}}+c$$

$$\mathbf{b}$$
 $x^{\frac{1}{2}}$

$$\frac{3x^{\frac{7}{3}}}{7} + c$$

c $6x^{\frac{1}{5}}$

$$5x^{\frac{6}{5}} + c$$

d
$$4x^{\frac{-1}{2}}$$

$$8\sqrt{x} + c$$

e
$$x^{\frac{-3}{2}}$$

$$-\frac{2}{\sqrt{x}}+c$$

f $3x^{\frac{-1}{4}}$

$$4x^{\frac{3}{4}}+c$$

g
$$10x^{\frac{-5}{2}}$$

$$-\frac{20}{3x^{\frac{3}{2}}}+c$$

h
$$\frac{1}{2}x^{\frac{-3}{4}}$$

$$2x^{\frac{1}{4}} + c$$

5 a
$$x^4 - 4x^{-2}$$

$$\frac{4}{x} + \frac{x^5}{5} + c$$

b
$$9x^{-3} - x$$

$$-\frac{9}{2x^2} - \frac{x^2}{2} + c$$

c
$$1 - x^{-3} - 3x^{-4}$$

$$x + \frac{1}{2x^2} + \frac{1}{x^3} + c$$

d
$$\frac{5}{3}x^{-2} - \frac{2}{3}x^2$$

193215 Higher Maths Student Book_Answer_CH11.indd 3

$$\frac{1}{3}\left(-\frac{5}{x}-\frac{2x^3}{3}\right)+c$$

$$e x^{-2} + x^{-3} - 6x^{-4}$$

$$\frac{2}{x^3} - \frac{1}{2x^2} - \frac{1}{x} + c$$

$$\mathbf{f} \quad 3x^{-2} + x^{-3} - \frac{8}{3} x^{-4} - \frac{4}{3} x^{-5}$$

$$\frac{1}{3x^4} + \frac{8}{9x^3} - \frac{1}{2x^2} - \frac{3}{x} + c$$

6 a
$$-2x^2 + \frac{2x^{\frac{5}{2}}}{5} + c$$

b
$$x^2 + \frac{2}{x} + c$$

$$\mathbf{c}$$
 $2\sqrt{x} + 2x - \frac{2}{3}x^3 - \frac{2}{5}x^{\frac{5}{2}} + c$

d
$$-\frac{25}{x} - 2x + \frac{x^3}{75} + c$$

e
$$2\sqrt{x} - \frac{2x^{\frac{7}{2}}}{7} + c$$

$$f - \frac{4}{\sqrt{x}} + 2\sqrt{x} - \frac{2x^{\frac{3}{2}}}{3} + c$$

7 **a**
$$-\frac{2}{7x^7} + c$$

b
$$-\frac{1}{5t} + c$$

c
$$\frac{p^4}{4} - p^3 - 3p^2 + 8p + c$$

d
$$\frac{18x^{\frac{5}{3}}}{5} + c$$

e
$$\frac{4\sqrt{w}}{3} + c$$

e
$$\frac{4\sqrt{w}}{3} + c$$

f $-\frac{3}{2x^2} - \frac{x^2}{2} + c$

$$\mathbf{g} \quad -2\left(\frac{t^5}{5}-t^4\right)+c$$

h
$$-2u^{\frac{3}{2}} + 2u - \frac{1}{u} + c$$

$$\frac{15x^{\frac{4}{5}}}{16} + c$$

8,9 EfgVWfViVVdU[eW

Exercise 11C

1 a
$$\frac{1}{6}(x+1)^6 + c$$

b
$$\frac{1}{9}(x-3)^9 + c$$

c
$$2(x-2)^5+c$$

d
$$4\left(\frac{x^2}{2} + 6x\right) + c$$

$$e \frac{1}{10}(2x+3)^5+c$$

$$\mathbf{f} = \frac{1}{40}(5x-2)^8 + c$$

$$\mathbf{g} = \frac{3}{28}(4x+1)^7 + c$$

$$-\frac{2}{9}(3x-4)^9+c$$

ANSWERS

2 a
$$-\frac{1}{2(x+2)^2} + c$$

b $\frac{1}{7-x} + c$

b
$$\frac{1}{7-x} + c$$

$$\mathbf{c} -2(x-5)^{-4}$$

d
$$-\frac{3}{5(x+8)^5} + c$$

$$e \frac{1}{9(1-3x)^3} + c$$

$$f - \frac{1}{2(2x+1)} + c$$

$$\mathbf{g} = -\frac{1}{8(4x-3)^4} + c$$

h
$$\frac{1}{6(5-6x)^7} + c$$

3 a
$$\frac{2}{3}(x+1)^{\frac{3}{2}}+c$$

b
$$\frac{3}{4}(x-4)^{\frac{4}{3}}+c$$

c
$$10(x+6)^{\frac{6}{5}}+c$$

d
$$4(x+4)^{\frac{5}{2}}+c$$

e
$$2\sqrt{x-2} + c$$

$$\mathbf{f} = \frac{3}{2}(x+1)^{\frac{2}{3}} + c$$

$$\mathbf{g} \quad -\frac{8}{\sqrt{x-6}} + c$$

h
$$3(x+4)^{\frac{1}{4}}+c$$

$$\frac{2}{9}(3x+2)^{\frac{3}{2}}+c$$

$$\mathbf{j} = \frac{2}{5}(5x-3)^{\frac{1}{2}} + c$$

$$\mathbf{k} = \frac{1}{12}(6x+1)^{\frac{5}{4}} + c$$

$$1 \quad -\frac{1}{14(7x-4)^{\frac{3}{2}}} + c$$

$$\mathbf{m} = \frac{3}{2}(2x-5)^{\frac{1}{3}} + c$$

$$\mathbf{n} = \frac{1}{2}(4x-1)^{\frac{1}{4}} + c$$

$$\mathbf{0} \quad -\frac{1}{3(8x+3)^{\frac{1}{4}}} + c$$

$$\mathbf{p} \quad \frac{3}{56} (7x - 1)^{\frac{8}{3}} + c$$

4 a
$$\frac{1}{3-x} + c$$

b
$$-\frac{3}{2(x+1)^2} + c$$

$$\mathbf{c} = -\frac{1}{15(x-2)^3} + c$$

d
$$-\frac{1}{3(x+8)^4} + c$$

$$e^{-\frac{1}{9(1-3x)^3}+c}$$

$$f = \frac{9}{15.25x} + c$$

$$\mathbf{f} \quad \frac{9}{15 - 25x} + c \\
\mathbf{g} \quad -\frac{1}{24(2x - 7)^4} + c$$

$$h - \frac{3}{10(x+4)^5} + c$$

5 **a**
$$\frac{2}{3}(x+4)^{\frac{3}{2}}+c$$

b
$$\frac{16}{3}(x-1)^{\frac{3}{2}}+c$$

c
$$2\sqrt{x-1} + c$$

d
$$12\sqrt{x+3} + c$$

$$e^{-\frac{3}{4}(x+4)^{\frac{4}{3}}+c}$$

$$f = \frac{4}{7}(x-1)^{\frac{7}{4}} + c$$

$$\mathbf{g} = \frac{2}{5}(x+5)^{\frac{5}{2}} + c$$

h
$$-\frac{2}{\sqrt{x-2}} + c$$

i
$$\frac{32}{5}(x-6)^{\frac{5}{4}}+c$$

$$\mathbf{j} = \frac{5}{9}(x+1)^{\frac{6}{5}} + c$$

$$k \frac{15}{2}(x-6)^{\frac{2}{3}} + c$$

$$1 \frac{24}{5}(x-1)^{\frac{1}{6}} + c$$

6 a
$$\frac{2}{9}(3x+2)^{\frac{3}{2}}+c$$

b
$$\frac{1}{10}(4x-1)^{\frac{5}{2}}+c$$

$$\mathbf{c} = \frac{15}{14}(2x-3)^{\frac{7}{5}} + c$$

d
$$\frac{8}{7}(7x-1)^{\frac{1}{6}}+c$$

$$e \frac{2}{9}(3x+2)^{\frac{3}{2}}+c$$

7 **a**
$$\frac{1}{18}(3x-1)^6+c$$

b
$$-\frac{1}{2(x-2)^2} + c$$

$$\mathbf{c} = \frac{1}{5}(3-x)^5 + c$$

d
$$-\frac{2}{3}(2-x)^{\frac{3}{2}}+c$$

$$e - \frac{1}{45}(1-5x)^9 + c$$

$$\mathbf{f} = \frac{2}{9}(3x-2)^6 + c$$

$$\mathbf{g} \quad \frac{1}{18(5-6x)^3} + c$$

h
$$-\frac{2}{\sqrt{x-2}} + c$$

$$-\frac{3}{9}(x-4)^4+c$$

$$\mathbf{j} - \frac{4}{7}(5-x)^{\frac{7}{4}} + c$$

$$\mathbf{k} \quad \frac{1}{8(1-3x)^4} + c$$

$$1 \frac{3}{140}(4x-5)^5 + c$$

Exercise 11D

1

 $3\cos 3x$ $2\cos 2x$

 $6\cos(6x+5)$ $q\cos(qx+r)$

 $-4\cos 4x$

$2 \quad \cos\left(x - \frac{\pi}{6}\right)$

$3\cos 3x$	$\sin 3x$	$\cos 3x$	$\frac{1}{3}\sin 3x$
$2\cos 2x$	$\sin 2x$	$\cos 2x$	$\frac{1}{2}\sin 2x$
$\cos\left(x-\frac{\pi}{6}\right)$	$\sin\left(x-\frac{\pi}{6}\right)$	$3\cos\left(x-\frac{\pi}{6}\right)$	$3\sin\left(x-\frac{\pi}{6}\right)$
$4\cos(4x-\pi)$	-sin4x	$\cos(4x-\pi)$	$-\frac{1}{4}\sin 4x$
$6\cos(6x+5)$	$\sin(6x+5)$	$\cos(6x+5)$	$\frac{1}{6}\sin(6x+5)$
$q\cos(qx+r)$	$\sin(qx+r)$	$\cos(qx+r)$	$\frac{\sin(qx+r)}{q}$

3

6sin3 <i>x</i>	$-2\cos 3x$
$5\sin 2x$	$-\frac{5}{2}\cos 2x$
$3\sin\left(x-\frac{\pi}{6}\right)$	$-3\cos\left(x-\frac{\pi}{6}\right)$
$\frac{1}{2}\sin(4x-\pi)$	$\frac{1}{8}\cos 4x$
$-3\sin(6x+5)$	$\frac{1}{2}\cos(6x+5)$
$p\sin(qx+r)$	$-\frac{p\cos(qx+r)}{q}$

$\cos 2x$	$\frac{1}{2}\sin 2x$
$5\cos 2x$	$\frac{5}{2}\sin 2x$
$2\cos\left(x+\frac{\pi}{2}\right)$	$2\cos(x)$
$\frac{3}{4}\cos\left(\frac{1}{2}x-2\pi\right)$	$\frac{3}{2}\sin\frac{x}{2}$
$-2\sin(4x-1)$	$\frac{1}{2}\cos(4x-1)$
$p\cos(qx+r)$	$\frac{p\sin(qx+r)}{q}$

ANSWERS

Exercise 11E

1 **a**
$$8\sin x + c$$

b
$$-3\cos x + c$$

c
$$4\cos x + c$$

d
$$2\sin x + c$$

e
$$\frac{3}{2}\sin x + c$$

$$\int \frac{5}{4}\cos x + c$$

g
$$4\sin\left(x-\frac{\pi}{3}\right)$$

h
$$-5\cos(x-2)+c$$

$$\frac{1}{5}\sin 5x + c$$

j
$$-\frac{1}{4}\cos 4x + c$$

$$\mathbf{k}$$
 $4\sin 2x + c$

$$I - \frac{1}{6}\sin 3x + c$$

m
$$-2\cos\frac{1}{2}x + c$$

n
$$4\sin\left(\frac{3x}{2}\right) + c$$

$$\mathbf{o} - \frac{9}{5}\cos 5x + c$$

$$\mathbf{p} - \frac{1}{2}\sin 4x + c$$

2 **a**
$$\frac{5x^3}{3} - 3\cos x + c$$

b
$$-\frac{3}{x} + 2\sin x + c$$

$$\mathbf{c} \quad \frac{8x^{\frac{3}{2}}}{3} + \frac{1}{2}\cos 2x + c$$

d
$$\frac{(x-3)^6}{6} - \cos(x - \frac{\pi}{6}) + c$$

$$e^{-\frac{1}{24}(4x+1)^6-\frac{1}{3}\sin 3x+c}$$

$$\mathbf{f} \quad \frac{1-2x}{2x^2} - 4\cos(x-1) + c$$

g
$$4\sqrt{x} - \frac{5}{3}\sin 3x + c$$

$$h - \frac{5}{8x^2} + 8\cos{\frac{1}{2}x} + \frac{1}{8}$$

$$\mathbf{h} \quad -\frac{5}{8x^2} + 8\cos\frac{1}{2}x + c$$

$$\mathbf{i} \quad -\frac{1}{3(x-5)^3} - \frac{1}{8}\sin8x + c$$

$$\mathbf{j} \quad -\frac{1}{6}(1-4x)^{\frac{3}{2}} - \frac{2}{3}\cos(3x + \frac{\pi}{4}) + c$$

3 a
$$1 + \cos 2x = 2(\cos x)^2$$

$$(\cos x)^2 = \frac{1}{2}(1 + \cos 2x)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2x$$

$$\mathbf{b} \quad \int \left(\frac{1}{2} + \frac{1}{2}\cos 2x\right) dx$$

$$= \frac{1}{2}x + \frac{1}{2}\int\cos 2x \, dx$$

$$= \frac{1}{2}x + \frac{1}{4}\sin 2x + c$$

4 a
$$1 - 2(\sin x)^2 = \cos 2x$$

$$-2(\sin x)^2 = (\cos 2x - 1)$$

$$\left(\sin x\right)^2 = \frac{1}{2} - \frac{1}{2}\cos 2x$$

b
$$\int (\frac{1}{2} - \frac{1}{2}\cos 2x) dx$$

$$= \frac{1}{2}x - \frac{1}{2}\int \cos 2x \, dx$$

$$= \frac{1}{2}x - \frac{1}{4}\sin 2x + cc$$

5 a
$$2x - \sin 2x + c$$

b
$$\frac{1}{4}(x + \sin x \cos x) + c$$

$$\mathbf{c} = \frac{1}{4}(2x - 2\cos 2x - \sin 2x) + c$$

d
$$\frac{x}{2} + \frac{1}{4}\sin 2x - \frac{2x^3}{9} + c$$

e
$$-\frac{1}{2}\sin 2x + c$$

$$f = \frac{2}{5}x + \frac{1}{10}\sin 2x + c$$

$$\mathbf{6} \quad \int \frac{1}{2} - \frac{1}{2} \cos 2x + \frac{1}{2} + \frac{1}{2} \cos 2x \, dx$$

$$= x + a$$

$$\int \left((\sin x)^2 + (\cos x)^2 \right) dx = \int 1 dx = x + c$$

Challenge

a
$$(x + y)(x^2 - xy + y^2) = x^3 + y^3$$
 and $(x - y)(x^2 + xy + y^2) = x^3 - y^3$

$$(\sin x)^3 + (\cos x)^3 = (\sin x + \cos x)$$

$$\left(\left(\sin x\right)^2 + \left(\cos x\right)^2 - \sin x \cos x\right)$$

$$= (\sin x + \cos x)(1 - \sin x \cos x)$$

$$= (\sin x + \cos x) \left(1 - \frac{1}{2}\sin 2x\right)$$

ii

$$(\sin x)^3 - (\cos x)^3 = (\sin x - \cos x)$$

$$\left((\sin x)^2 + (\cos x)^2 + \sin x \cos x \right)$$

$$= (\sin x - \cos x)(1 + \sin x \cos x)$$

$$= (\sin x - \cos x) \left(1 + \frac{1}{2}\sin 2x\right)$$

C

$$(\sin x)^{6} - (\cos x)^{6} = ((\sin x)^{3} + (\cos x)^{3})$$
$$((\sin x)^{3} - (\cos x)^{3})$$
$$(\sin x + \cos x)(1 - \frac{1}{2}\sin 2x)(\sin x - \cos x)$$

$$(\sin x + \cos x)\left(1 - \frac{1}{2}\sin 2x\right)(\sin x - \cos x)$$
$$\left(1 + \frac{1}{2}\sin 2x\right)$$

$$((\sin x)^{2} - (\cos x)^{2})(1 - \frac{1}{4}(\sin 2x)^{2})$$

$$= -\cos 2x \left(1 - \frac{1}{4}(\sin 2x)^{2}\right)$$

$$= -\cos 2x \left(\frac{3}{4} + \frac{1}{4}(\cos 2x)^{2}\right)$$

now

$$\frac{3}{4} + \frac{1}{4}(\cos 2x)^2 =$$

$$\frac{7}{8} + \frac{1}{8}(2(\cos 2x)^2 - 1) =$$

$$\frac{7}{8} + \frac{1}{8}((\cos 2x)^2 - (\sin 2x)^2) =$$

$$\frac{7}{8} + \frac{1}{8}\cos 4x$$

SO,

from above,

$$-\cos 2x \left(\frac{3}{4} + \frac{1}{4}(\cos 2x)^2\right) =$$

$$-\cos 2x \left(\frac{7}{8} + \frac{1}{8}\cos 4x\right)$$

i

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$
$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$
$$\Rightarrow \cos(A + B) + \cos(A - B) =$$
$$2\cos A \cos B$$

ii

$$\cos 2x \cos 4x = \frac{1}{2} (\cos 6x + \cos 2x)$$

SO

$$-\frac{7}{8}\cos 2x - \frac{1}{8}\left(\frac{1}{2}(\cos 6x + \cos 2x)\right)$$
$$= -\frac{1}{16}\cos 6x - \frac{15}{16}\cos 2x$$

Exercise 11F

- 1 solution depends on integration constant c
- **2** a Raise the graph of $y = x^2$ up the y axis by the amount c.
 - **b** There is no reason for the gradients to be different, the change in divided by the change in x will be the same y'(P) = y'(Q) = 2a.
- 3 a A particular solution will be one among an infinite set of possible solutions depending on c.
 - **b** the x^1 term would give a different value for the gradient/derivative of y.

4
$$f(x) = x^2 + c$$

but

$$f(3) = 4$$

so

$$4 = 3^2 + c$$

$$c = -5$$

$$f(x) = x^2 - 5$$

5 A data point on the curve.

Exercise 11G

1
$$x^3 - x^2 + 4x + 25$$

2
$$4x^{\frac{3}{2}} - 24$$

$$3 - 2\cos 2x$$

4 a
$$x^3 + 5x^2 - 2x - 24$$

b i
$$(-3)^3 + 5(-3)^2 - 2(-3) - 24 = 0$$

ii $(x-2)(x+4)(x+3)$

$$(-4, 0)$$

$$(-3, 0)$$

ANSWERS

b By completing the suare you can see that the minimum value is 5 so no roots.

6 a
$$x^3 + x^2 - 5x + 3$$

b i
$$(-3)^3 + (-3)^2 - 5(-3) + 3 = 0$$

ii
$$x = 1$$

c i ii (1, 0) minimum (–1.667, 9.481) maximum

7 **a**
$$x^3 + 2x^2 - 4x - 8$$

b i
$$(2)^3 + 2(2)^2 - 4(2) - 8 = 0$$

ii
$$(x+2)(x+2)(x-2)$$

c t.p. are at x = -2 and $x = \frac{2}{3}$.

Since x = -2 is both a root (-2, 0) and a turning point the x-axis must be a tangent at x = -2.

8 a
$$\frac{2}{3}$$

b
$$y = mx + c$$

$$f'(x) = \frac{2}{3}x - 4$$

$$\mathbf{c} = \frac{1}{3}x^2 - 4x + 15$$

9 a
$$-2x + 6$$

b
$$-x^2 + 6x - 9$$

10 a
$$a = 3$$

(

$$b = 4$$

b
$$x^3 - 6x^2 + 16$$

c
$$(x-2)(x^2-4x-8)$$

or
$$(x-2)(x-2-2\sqrt{3})(x-2+2\sqrt{3})$$

or
$$(x - 2)(x - 5.464)(x + 1.464)$$

d

root is

$$(-1.464, 0), (2, 0), (5.464, 0)$$

y-intercept is (0, 16)

11 a
$$a = 4$$

$$b = 2$$

$$b = 2$$

b
$$2\sin 2x + 1$$

$$\mathbf{c} \quad \left(\frac{7\pi}{12}, 0\right)$$

$$\left(\frac{11\pi}{12},\,0\right)$$

12 a
$$3(2x-1)^5$$

b
$$\frac{1}{4}(2x-1)^6-36$$

c i
$$\frac{2}{3}x + 5$$

ii
$$\left(-\frac{15}{2}, 0\right)$$

- **13 a** 10
 - **b** At intersection between curve and its tangent;

$$px^2 + 12x + p - 5 = \frac{p^2 - 5p - 36}{p}$$

re-arranging:

$$px^2 + 12x + \frac{36 + 5p - p^2 + p^2 - 5p}{p} = 0$$

$$px^2 + 12x + \frac{36}{p} = 0$$

examine descriminant:

$$b^2 - 4ac = 0$$
 for tangent
144 - 4 × 36 = 0

so it is a tangent.

14 a
$$1.5x - 4$$

b
$$r > \frac{16}{3}$$

