Resilient Baseband Processing in vRAN with Slingshot

by

Nikita Lazarev*, Tao Ji*, Anuj Kalia, Daehyeok Kim, Ilias Marinos, Francis Yan, Christina Delimitrou, Zhiru Zhang, and Aditya Akella

^{*} Equal contribution

Context: Softwarization ("Virtualization") of the RAN

Context: Softwarization ("Virtualization") of the RAN

vRAN offers:

- reduced vendor lock-in
- rapid feature development & upgrades
- easier maintenance

30 000 units to be deployed by Rakuten

Today's vRANs Lack Resilience

Edge datacenter

Today's vRANs Lack Resilience

Edge datacenter

Video conferencing, average bitrate (kbps)

Today's vRANs Lack Resilience

Edge datacenter

Video conferencing, average bitrate (kbps)

Resilience with Slingshot: the Logical View

Video conferencing, average bitrate (kbps) 600 -400 300 downtime 7 sec. 200 100 10 12 Time (seconds) Failover without Slingshot Failover with Slingshot

Focus of This Work

Edge datacenter

Focus of This Work

Existing Resilience Techniques Don't Work

#1 Real-time requirements

Hard sub-millisecond deadlines for signal processing tasks

X VM live migration:

takes at least 100 ms

#2 Transparency and Interoperability

Co-existence with standard vRAN infrastructure and protocols

X Reliable state store:

too much state + transparency

Challenge 1: Migration under Real Time Requirements

Insights:

(1) view baseband processing unit as a stateless functional executor

(2) treat little state inconsistency as regular wireless impairment

Performance impact of discarding PHY state ~ impact of normal wireless impairments

Challenge 2: Transparency with New Middleboxes

Issues:

- fixed mapping of cell sites
- 1-on-1 mapping of layers

Challenge 2: Transparency with New Middleboxes

Layer 1/Layer 2 middlebox:

- disaggregate MAC and PHY
- reroute MAC-to-PHY messages

Fronthaul middlebox:

- reroute connections with cell sites
- runs PHY failure detection in dataplane

Edge datacenter

Putting All Together

Layer 1/Layer 2 middlebox:

- disaggregate MAC and PHY
- reroute MAC-to-PHY messages

Fronthaul middlebox:

- reroute connections with cell sites
- runs PHY failure detection in dataplane

Edge datacenter

System Deployment: Production-Grade 5G vRAN Testbed

Hardware:

- x86 servers
- 100G NICs
- Tofino-based Arista P4 switch
- Foxconn 4x4; 100 MHz (3.3 3.4 GHz)

Software:

- Intel FlexRAN
- Capgemini Altran
- Metaswitch's Fusion Core

User devices:

- Samsung A52
- OnePlus 10
- Rasberry Pi

Evaluation: PHY Failure Recovery in < 100 ms

Evaluation: PHY Live Migration with Zero Downtime

Conclusion

- vRAN is missing resilience a must have feature of cloud applications.
- Slingshot is the first attempt to enable resilience in vRAN's baseband processing.

Observation: PHY's state inconsistency ~ wireless impairment.

• Slingshot implements stateless failover to satisfy PHY's realtime requirements.

Slingshot works transparently through the two new vRAN middleboxes.