Natural Language and Speech Processing

Lecture 11: Speech Features and End-to-End Speech Recognition

Tanel Alumäe

Contents

- What is speech recognition (and what it isn't)
- Feature extraction
 - Useful for other speech processing tasks,
 e.g. speaker recognition, language recognition
- Two end-to-end speech recognition architectures

Speech recognition

- Speech recognition is a technology that converts speech to text
 - It doesn't handle anything else, like speech (text) understanding
 - Common misconception is that speech recognition = speech understanding
- Applications:
 - Dictation
 - Transcribing meetings, lectures, videos, telephone calls
 - A component in human-computer interaction systems
 - Google Assistant, Siri, etc
 - Amazon Echo, Google Home, etc
 - A component in speech-to-speech translation systems

Why is speech recognition difficult?

- There are many different words (many are very similar), especially in morphologically complex languages (like Estonian)
 - kast, kass, kasti, kas, kastid
- The vocabulary is higly dependent on the domain
 - E.g., Estonian radiology domain:

 Nimmelordoos on säilinud; täheldatav on vähene sinistroskolioos; spondülolisteesi ei ilmne.
- Most importantly, there is a lot of variery in speech

Sources of variability

Kõneleja

- Häälekvaliteet
- Põhitoon
- SuguKeel/dialekt

Kõnestiil

- Emotsioonid
- KõnetempoLombard'i efekt

Ülesanne

- Inimene-masin dialoog
 • Dikteerimine
- Suhtlus
- Intervjuu

Foneetiline/ prosoodiline kontekst

Mikrofon

- Moonutused
- Elektriline müra
- Suunaomadused

Speech signal

- Sound is a waveform of changing air pressure
- Speech is a sound produced by speech organs
- Microphone converts air pressure modulation to voltage modulation
- Analog-to-digital converter converts the continuous signal to digital signal, by **sampling** the value of the signal after perioding intervals
- Sampling frequency (samples per second):
 - Telephone: 8000 Hz
 - CD: 44100 Hz
 - For speech, 16000 Hz is usually sufficient

Feature extraction

- Raw audio signal contains a lot of information (typically 16000 values every second)
- The goal of feature extraction:
 - Reduce the amount of information
 - Extract information that is important for distinguishing between speech sounds
 - Be robust agains noise, channel distortions, speaker variation

Splitting the signal into frames

Windowing

- After slicing the signal into frames, we apply a window function such as the **Hamming window** to each frame
- Why?
 - To counteract the assumption made by the FFT that the data is infinite and to reduce spectral leakage

Effect of windowing

Better

Discrete Fourier Transform

- Purpose: extracts spectral information from a windowed signal (i.e. how much energy at each frequency band)
- This is motivated by the human cochlea (an organ in the ear) which vibrates at different spots depending on the frequency of the incoming sounds.
- Input: windowed signal $x[0], \ldots, x[L-1]$ (time domain)
- Output: a complex number X[k] for each of N
 frequency bands representing magnitude and phase
 for the kth frequency component (frequency domain)

DFT Spectrum

 25ms Hamming window of vowel /iy/ and its spectrum computed by DFT

Short-time spectral analysis

Spectrogram

- If we turn the spectrogram 90 degrees up,
- represent the values using grayscale,
- and concatenate the spectrums of all frames
- Then we will get a spectrogram
- There are people (phoneticians) who can "read" the spectrogram, i.e., roughly understand what was said

Filterbanks

- Human hearing is less sensitive to higher frequencies thus human perception of frequency is nonlinear
- Also, spectrogram contains still too much information
- That's why, mel-scale filterbanks are used to discretize the spectorgram
- Mel-scale: use narrower bands in lower frequencies and wider bands in upper frequencies
- Each filter collects energy from a number of frequency bands in the DFT

Log Mel Power Spectrum

- Compute the log magnitude squared of each mel-filter bank output: log |Y [m]|²
 - Taking the log compresses the dynamic range
 - Human sensitivity to signal energy is logarithmic i.e. humans are less sensitive to small changes in energy at high energy than small changes at low energy
 - Log makes features less variable to acoustic coupling variations

Feature normalization

- Basic idea: transform the features to reduce mismatch between training and test
- Cepstral Mean Normalisation (CMN): subtract the average feature value from each feature, so each feature has a mean value of 0. Makes features robust to some linear filtering of the signal (channel variation)

Resulting features

- Filterbank features
 - Short-time DFT analysis
 - Mel-filter bank
 - Log magnitude squared
 - Widely used for all kind of speech processing tasks
- Result: a speech signal (e.g., for an utterance) is transformed into a sequence of fixed dimensional feature vectors
 - The length of the sequence varies (based on the length of the input utterance)
- This representation is similar to document representation using word embeddings!
- Many familiar models (convolutional neural nets, LSTMs) can be also applied for speech!
- For old-school systems, the filterbank features are further processed using inverse discrete cosine transform that decorrelates the filterbank features
 - This results in Mel-frequency cepstral Coefficients (MFCCs)
 - Its not necessary for neural networks

Speech recognition: metrics

- The most common quality metrics for speech recognition is word error rate (WER)
- Distinguishes between 3 types of errors:
 - Insertion (I)
 - Deletion (D)
 - Substitution (S)

To find the errors, reference and hypthesis texts are aligned, using a technique called dymanic programming

WER=(S+D+I)/N, where N is the number of words in the reference

Word error rate, example

Example (** is just a placeholder):

```
Scores: (#C #S #D #I) 11 1 1 0

REF: aga ma olen aru saanud ET sel nädalal lugedes siin SISEMINISTRI intervjuusid ja

HYP: aga ma olen aru saanud ** sel nädalal lugedes siin SISEMIST intervjuusid ja
```

- S=1, D=1, I=0, N=13
- WER=(1+1+0)/13=15.3%

End-to-end speech recognition

- There are two dominant models for endto-end speech recognition
 - Listen-attend-and-spell (LAS) very similar to neural speech synthesis, just opposite
 - Connectionist temporal classification (CTC)

Listen, Attend and Spell (LAS)

- LAS transcribes speech utterances directly into characters
- Consists of two submodules: the listener and the speller
 - The listener is an acoustic model encoder
 - The speller is an attention-based character decoder

LAS: Listener

 Input to the Listener is a sequence of filterbank features

- The Listen model uses many layers of bidirectional LSTMs with a pyramidial structure
 - So that the model converges faster
- In each layer, two consecutive outputs of the lower layer are concatenated and processed by the biBLSTM
- The pyramidial structure also reduces computational cost

LAS: Attend and Spell

- The distribution over output characters y_i is a function of the decoder state s_i and context c_i
- The decoder state s_i is a function of the previous state s_{i-1} , the previously emitted character y_{i-1} , an the previous context c_{i-1}
- The context vector c_i is produced by and attention mechanism from listener's states $h_{1...v}$

Attention visualization

- On the right: Alignments between character outputs and audio signal produced by the LAS model for the utterance "how much would a woodchuck chuck".
- The content based attention mechanism was able to identify the start position in the audio sequence for the first character correctly
- The alignment produced is generally monotonic

Sampling outputs during training

- Using ground truth y_{i-1} as the previous output (i.e., method called "teacher forcing") during training creates a mismatch between training and testing (i.e., applying the model for recognition)
 - During training the model is conditioned on the correct previous characters but during testing mistakes made by the model corrupt future predictions
- Improvment: train a first model using teacher forcing, then train a second model, where
 - Usually (90% of the time), ground truth y_{i-1} is used
 - But sometimes, use y_{i-1} generated by the first model

LAS: language model rescoring

- LAS model is trained using a limited amount of transcribed speech data
- But in addition, we have vast amounts of text-only data (newspapers, books, websites, Wikipedia)
- Language model rescoring: during decoding (i.e., generation from the Speller), prefer character sequences that have a high language model probability:

$$s(y|x) = \log P_{LAS}(y|x) + \lambda \log P_{LM}(y)$$

LAS: results

- LAS performs worse than a conventional system (using HMMs and DNNs)
- Sampling and LM rescoring improve results a lot

Model	Clean WER	Noisy WER
CLDNN-HMM [20]	8.0	8.9
LAS	16.2	19.0
LAS + LM Rescoring	12.6	14.7
LAS + Sampling	14.1	16.5
LAS + Sampling + LM Rescoring	10.3	12.0

Connectionist Temporal Classification

 CTC allows to use a monolithic recurrent model, it doesn't require seperate encoder and decoder

CTC: the model

- CTC is a recurrent model that for each input (filterbank) feature, outputs a character
- One extra character (blank, or ε (epsilon) is used
- The model itself typically combines several layers of convolutions and LSTMs

From CTC outputs to words

- CTC model outputs one character for each frame
- During post-processing, repeated characters are merged and epsilons are deleted

Postprocessing CTC outputs, again

- 1)Merge repeating characters
- 2)Remove epsilon tokens
- 3)Output the result

CTC loss function

- But how to train a CTC model?
 - The exact ground-truth label for each frame in the training data is not known
 - We only know the ground truth character sequence for the utterances
- Solution: CTC loss function
 - Marginalizes (sums) over all set of alignments that produce the same character sequence

$$p(Y\mid X) = \sum_{A\in\mathcal{A}_{X,Y}}\prod_{t=1}^T p_t(a_t\mid X)$$
 The CTC conditional marginalizes over the probability set of valid alignments single alignment step-by-step.

CTC loss, summarized

CTC performance

- CTC has similar performance as LAS: not quite good as traditional HMM-DNN based models
- Both LAS and CTC require a lot of training data
 - The more data, the closer the performance to DNN-HMM
 - Thousands of hours is good
 - Estonian has only about 250h