

Angular triangle distance for ordinal metric learning

Imam Mustafa Kamal & Hyerim Bae*

Available at https://arxiv.org/abs/2211.15200

Outline

- Introduction
- Related works
- Problem
- Proposed method
- Experimental results
- Conclusion

Motivation

How similar?

– Vector:

Metric

$$\sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}$$

Inner

Product

Cosine Distance

Mahalanobis

Distance

$$\sum_{i=1}^{p} \left(x_i - y_i \right)^p$$

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$

$$1 - \frac{x \cdot y}{\|x\| \|y\|}$$

$$\sqrt{(x-y)^T \Sigma^{-1} (x-y)}$$

Properties of distance measure

Nonnegative $d_{ij} \ge 0$

Self-Proximity $d_{ii} = 0$

3. Symmetry $d_{ij} = d_{ji}$

Triangular Inequality $d_{ij} \le d_{ik} + d_{kj}$

• Metric used in Supervised learning and Unsupervised Learning

 $L(\theta, x, y)$

Same or Not?

Motivation

Classification problem using softmax

- Only separable features are used
- Poor at Openset data

Inter class variation ↑
Intra class variation ↓

Introduction

How to define a similarity on complex data?

- Metric learning aims to automatically **construct** task-specific **distance** or **similarity** of data yielding low-dimensional representation.
- $Z = f(X), X \in \mathbb{R}^p, Z \in \mathbb{R}^q, p \gg q$

Why metric learning (ML)?

- By using metric learning (ML)
 - ML as a dimensionality reduction
 - ML as a feature extraction
 - ML for fine-tuning model
 - ML for transfer learning

ML can help traditional M/L methods for dealing with complex data

- Information retrieval
- k-NN classification
- Clustering
- Classification

$$X \in \mathbb{R}^{p}, Z \in \mathbb{R}^{q}, p \gg q,$$

E. g. $p = 12,288, q = 50$

Related works(1)

- Metric learning emerged in 2002 with the pioneering work of Xing et al. (2002)
- $d_M(x, x') = \sqrt{(x x')^T M(x x')}$
- Must-link / cannot-link constraints (sometimes called positive / negative pairs):

$$S = \{(x_i, x_j) : x_i \text{ and } x_j \text{ should be similar}\},\$$

 $D = \{(x_i, x_j) : x_i \text{ and } x_j \text{ should be dissimilar}\}.$

• Relative constraints (sometimes called training triplets):

$$\mathcal{R} = \{(x_i, x_j, x_k) : x_i \text{ should be more similar to } x_j \text{ than to } x_k\}.$$

Disadvantages?

Requires Expensive computation!

- 1. An image = 64x64x3 = 12,288
- 2. Large number of constraints!

Paper: Bellet, Aurélien, Amaury Habrard and Marc Sebban. "A Survey on Metric Learning for Feature Vectors and Structured Data." ArXiv abs/1306.6709 (2013).

Related works(2)

- Metric learning with (deep) neural network
- Contrastive loss

$$l_{cont.} = y(d(f_{\theta}(x), f_{\theta}(x'))^{2}) + (1 - y)(max\{0, m - d(f_{\theta}(x), f_{\theta}(x'))^{2}\})$$

If the two are similar (y=1), minimize the distance If the two are different (y=0), if the distance exceeds m (already large), do nothing if the distance is smaller than m, enlarge the distance

Disadvantages?

• It cannot provide relative constraints

Paper: S. Chopra, R. Hadsell and Y. LeCun, "Learning a similarity metric discriminatively, with application to face verification," *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (2005).

Related works(3)

Triplet loss

$$l_{triplet} = \max(\left| |A - P| \right|^2 - \left| |A - N| \right|^2 + m, 0)$$

$$\left(d \left(f_{\theta}(x_a), f_{\theta}(x_p) \right) \right)^2 \qquad \left(d \left(f_{\theta}(x_a), f_{\theta}(x_n) \right) \right)^2$$

Disadvantages?

- Hard to converge
- High computation

Paper: Florian Schroff, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." *IEEE Conference on Computer Vision and Pattern Recognition* (2015).

Related works(4)

Quadruplet loss

positive

negative 1

negative 2

$$l_{quad.} = \{ ||A - P||^2 - ||A - N1||^2 + m1\} + \{ ||A - P||^2 - ||A - N2||^2 + m2\}$$

Disadvantages?

High computation

Paper: Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang."Beyond triplet loss: A deep quadruplet network for person re-identification." *IEEE Conference on Computer Vision and Pattern Recognition* (2017).

Related works(5)

N-pair loss

Given a (N+1)-tuplet of training samples, $\{\mathbf{x}, \mathbf{x}^+, \mathbf{x}_1^-, \dots, \mathbf{x}_{N-1}^-\}$, including one positive and N-1 negative ones, N-pair loss is defined as:

$$egin{aligned} \mathcal{L}_{ ext{N-pair}}(\mathbf{x},\mathbf{x}^+,\{\mathbf{x}_i^-\}_{i=1}^{N-1}) &= \logig(1+\sum_{i=1}^{N-1}\exp(f(\mathbf{x})^ op f(\mathbf{x}_i^-)-f(\mathbf{x})^ op f(\mathbf{x}^+))ig) \ &= -\lograc{\exp(f(\mathbf{x})^ op f(\mathbf{x}^+))}{\exp(f(\mathbf{x})^ op f(\mathbf{x}^+))+\sum_{i=1}^{N-1}\exp(f(\mathbf{x})^ op f(\mathbf{x}_i^-))} \end{aligned}$$

Disadvantages?

- High computation
 - Requires large N to obtain a proper results

Paper: Sohn Kihyuk. "Improved Deep Metric Learning with Multi-class N-pair Loss Objective." Neurips (2016).

Problem

- None deep metric learning methods guarantee to preserve the ordinal nature of original data in low-dimensional space.
- Data with ordinal nature is ubiquitous in real-world problems

Angular distance

• In order to learn the ordinal relations,

Learning every pair of combinations: 11,12,13,14,15,22,23,24,25,33,34,35,44,45,55

Learning every triple of combinations: 111,222,333,444,555,125,135,145,151

$$C + {C \choose 2}$$
 $C+(C-1)$

Proposed method

- Suppose there are five number of (ordinal) class: l_0 , l_1 , l_2 , l_3 , and l_4
- D_A = Angular distance

$$D_A(z_i^{l_{r_i}}, z_j^{l_{r_j}}) = \frac{\cos^{-1}(S_C(z_i^{l_{r_i}}, z_j^{l_{r_j}}))}{\pi} = \frac{\theta_{z_i^{l_{r_i}}, z_j^{l_{r_j}}}}{\pi}$$

• Sc = Cosine similarity

Proposed method

• Learn the distance between lower-bond to middle-bond and middle-bound to upper-bond

• Learn the inner-class distances

Proposed method

Ordinal triplet network

$$y_{i,j} = D_A(x_i, x_j), y_{j,k} = D_A(x_j, x_k)$$

 $\hat{y}_{i,j} = \hat{D}_A(x_i, x_j), \hat{y}_{j,k} = \hat{D}_A(x_j, x_k)$

Algorithm 1: training procedure of ordinal triplet network

```
Input: \mathcal{X} = \{x_i, x_j, x_k\}_0, ..., \{x_i, x_j, x_k\}_{T-1}, \mathcal{Y} = \{y_{ij}, y_{jk}\}_0, ..., \{y_{ij}, y_{jk}\}_{T-1}

Output: F_{\varphi}^*

1 for e \leftarrow 0 to Epoch - 1 do

2 \begin{vmatrix} z_i = F_{\varphi_e}(x_i), z_j = F_{\varphi_e}(x_j), z_k = F_{\varphi_e}(x_k) \\ \hat{y}_{ij} = D_A(z_i, z_j), \hat{y}_{jk} = D_A(z_j, z_k) \\ \mathcal{L}_{\varphi_e} = \text{MSE}(y_{i,j}, \hat{y}_{i,j}) + \text{MSE}(y_{j,k}, \hat{y}_{j,k}) \\ \varphi_e \leftarrow \varphi_e - \eta \nabla_{\varphi_e} \mathcal{L}_{\varphi_e} \end{vmatrix} // \text{ update model parameter}

6 end
```

How are intra- and inter-class learning possible?

Results(1)

Table 1: Evaluating the embedding space separability with an SVM classifier.

Model	Accuracy (mean \pm std.)					
	Busi	Finger	FG-Net	Adience		
O-Net	0.950 ± 0.026	1.000 ± 0.000	0.961 ± 0.010	0.578 ± 0.153		
S-Net	0.903 ± 0.040	$\textbf{1.000} \pm 0.000$	0.957 ± 0.015	0.547 ± 0.161		
T-Net	0.564 ± 0.023	1.000 ± 0.000	0.864 ± 0.029	$\textbf{0.578} \pm 0.178$		
Q-Net	0.879 ± 0.027	$\textbf{1.000} \pm 0.000$	0.905 ± 0.016	0.545 ± 0.051		
N -Net $_1$	0.558 ± 0.009	1.000 ± 0.000	0.961 ± 0.026	0.570 ± 0.159		
N -Net $_2$	0.923 ± 0.024	1.000 ± 0.000	0.919 ± 0.008	0.458 ± 0.157		

All methods performs perfectly in the Finger dataset

Results(2)

Test in ordinal data set

Table 4: K-NN classification error on the datasets with ordinal features. K=3

Model	Error rate (mean \pm std.)					
	Car	Nursery	Hayes-Roth	Balance		
Real-Eucl [8]	11.4 ± 0.7	8.6 ± 0.1	38.5 ± 3.1	15.2 ± 1.1		
Real-LMNN [8]	5.0 ± 0.3	2.4 ± 0.1	23.1 ± 1.6	17.6 ± 0.9		
Binary-Eucl [8]	24.0 ± 1.4	24.0 ± 0.2	50.0 ± 2.9	32.7 ± 1.9		
Binary-LMNN [8]	4.1 ± 0.3	2.3 ± 0.1	$\textbf{16.0} \pm 1.0$	17.8 ± 1.2		
Binary-Ord-Eucl [8]	12.3 ± 0.4	8.7 ± 0.1	45.5 ± 3.3	16.7 ± 0.8		
Binary-Ord-LMNN [8]	4.1 ± 0.2	1.9 ± 0.1	15.4 ± 1.2	13.4 ± 0.8		
Ex-Gower [8]	12.1 ± 0.7	8.8 ± 0.1	37.2 ± 1.9	32.8 ± 1.3		
Thresh-Eucl [8]	4.5 ± 0.4	2.3 ± 0.1	22.3 ± 1.9	14.5 ± 0.7		
Ord-LMNN-Uni [8]	3.8 ± 0.3	1.8 ± 0.1	20.5 ± 1.3	6.8 ± 0.5		
Ord-LMNN-Beta [8]	3.7 ± 0.3	1.6 ± 0.1	18.6 ± 1.0	$\textbf{6.1} \pm 0.5$		
Ord-LMNN-RecBeta [8]	3.4 ± 0.3	1.6 ± 0.1	18.6 ± 1.0	6.4 ± 0.5		
O-Net	3.1 ± 0.4	0.8 ± 0.1	$\textbf{16.0} \pm 1.5$	6.1 ± 0.6		

^[8] Yuan Shi, Wenzhe Li, and Fei Sha. Metric learning for ordinal data. *Proceedings of the AAAI Conference on Artificial Intelligence*, 30(1), Mar. 2016. doi: 10.1609/aaai.v30i1.10280.

Our method outperforms traditional ordinal metric learning method

Results(3)

 Only our method can preserve the ordinal nature of data in a low-dimensional space representation

Figure 6: Pairwise cosine distance matrix of latent representation in the Finger dataset.

Figure 7: Pairwise cosine distance matrix of latent representation in the FG-Net dataset.

Audience face dataset

metric1000

Conclusion

- Ordinal data are widespread in real-world problems, but they have been frequently considered standard nominal problems, which can lead to non-optimal solutions.
- This study introduces a new deep metric learning (DML) method for solving ordinal data
- Our method obtained more accurate and semantic embedding space representation compared with the existing Metric learning models.

- Limitation: as a triplet representation, it potentially requires a high computational cost in a largescale dataset.
- This issue leads to another research direction to be addressed in the future

References

- [1]. Bellet, Aurélien, Amaury Habrard and Marc Sebban. "A Survey on Metric Learning for Feature Vectors and Structured Da ta." ArXiv abs/1306.6709 (2013).
- [2]. Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. "Signature verification using a 'siamese' time delay neural network." Advances in Neural Information Processing Systems (1993).
- [3]. S. Chopra, R. Hadsell and Y. LeCun, "Learning a similarity metric discriminatively, with application to face verification," I EEE Computer Society Conference on Computer Vision and Pattern Recognition (2005).
- [4]. Florian Schroff, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and cluster ing." IEEE Conference on Computer Vision and Pattern Recognition (2015).
- [5]. Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang."Beyond triplet loss: A deep quadruplet network for person re-identification." IEEE Conference on Computer Vision and Pattern Recognition (2017).
- [6]. Sohn Kihyuk. "Improved Deep Metric Learning with Multi-class N-pair Loss Objective." Neurips (2016).
- [7]. IM Kamal, H. Bae, L. Liu. "Metric Learning as a Service with Covariance Embedding." IEEE Transactions on service computing (under review).
- [8]. IM Kamal, H. Bae. "Metric Learning as a Service with Covariance Embedding." IEEE Transactions on service computing (under review).

