WINTER-2011

UNIT 1

Q.1 a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2).

b) If $\overline{F} = (y - 2x)\hat{i} + (3x + 2y)\hat{j}$; Computer the circulation of \overline{F} about a circle C, in the xy-plane with centre at origin and radius 2; circle C is transversed in the positive direction. (7)

Q.2 a) i. $\overline{F_1}$ and $\overline{F_2}$ are irrotational; show that $\overline{F_1} \times \overline{F_2}$ is solenoidal.

ii. Prove that
$$\nabla . (r^3 r) = 6r^3$$
 (4)

b) Find the directional derivative of $\phi = 4 \cdot e^{2x-y+z}$ at a point (1, 1, -1) in the direction towards the points (-3, 5, 6). (7)

UNIT 2

Q.3 a) Solve
$$(D^2 - 2D + 1)$$
 $y = x.e^x.\sin x$. (6)

b) Solve
$$(3x+2)^2 \frac{d^2y}{dx^2} + (3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$$
 (7)

Q.4 a) Solve:
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 4\cos^2 x$$
 (6)

b) Solve by method of variation of parameter

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = \mathrm{e}^x \cdot \log x. \tag{7}$$

UNIT 3

Q.5 a) Find the Laplace transform of
$$\frac{1-\cos t}{t^2}$$
 (4)

b) Evaluate
$$\int_{0}^{\infty} \frac{e^{-t} \cdot \sin^{2} t}{t} dt$$
 (4)

c) Solve by Laplace transform

$$(D^2 - 1) x = a.\cos ht$$

 $x(0) = 0, x^1(0) = 0.$ (6)

Q.6 a) Find inverse Laplace transform of
$$\frac{2s-3}{s^2+4s+13}$$
 (4)

b) Find the Laplace transform of the square wave function of period 'a' defined as

$$f(t) = 1$$
, when $0 < t < a/2$
= -1, when $a/2 < t < a$. (4)

c) Use convolution theorem to evaluate

$$L^{-1}\left\{\frac{1}{(s+1)(s+9)^2}\right\}$$
 (6)

UNIT 4

Q.7 a) Solve the following difference equations:

i.
$$u_{n+1} - 2u_{n+2} - 5u_{n+1} + 6u_n = 0$$

ii.
$$y_{n+2} - 2 \cos \alpha . y_{n+1} + y_n = \cos \alpha n$$
 (5)

b) Solve by Z-transform method

$$y_{k+2} - 2y_{k+1} + y_k = 2^k$$
 with $y_n = 2$, $y_1 = 1$ (5)

Q.8 a) Solve the different equation

$$u_{n+2} + 9u_n = n \cdot 2^n + 3^n + 7$$
 (4)

b) Find Z-transform of
$$\frac{1}{n(n+1)}$$
 (4)

c) Find the inverse Z-transform of
$$\frac{3z^2+2}{(5z-1)(5z+2)}$$
 (5)

UNIT 5

Q.9 a) Express
$$f(x) = 1$$
, $|x| < 1$
= 0, $|x| > 1$

as a Fourier-integral and hence evaluate $\int\limits_0^\infty \frac{\sin - \cos \lambda x}{\lambda} d\lambda$ (6)

b) Solve:

i.
$$pq + p + q = 0$$
, **ii.** $z^2(p^2x^2 + q^2) = 1$ (7)

Q.10 a) Using the Fourier sine transform of e^{-ax} (a > 0),

show that
$$\int_{0}^{\infty} \frac{x.\sin kx}{a^{2} + x^{2}} dx = \frac{\pi}{2}.e^{-ak}(k > 0)$$
 (7)

b) Solve:
$$x^2(y - z) p + y^2 (z - x) q = z^2(x - y)$$
 (6)

UNIT 6

Q.11 a) Show that the polar from of Cauchy-Riemann equations are $\frac{\delta u}{\delta r} = \frac{1}{r} \cdot \frac{\delta v}{\delta \theta}$; $\frac{\delta v}{\delta r} = -\frac{1}{r} \frac{\delta v}{\delta \theta}$

Deduce that
$$\frac{\delta^2 u}{\delta r^2} + \frac{1}{r} \cdot \frac{\delta u}{\delta r} + \frac{1}{r^2} \cdot \frac{\delta^2 u}{\delta \theta^2} = 0$$
 (7)

b) Find the Laurent's series of $\frac{e^{2z}}{(z-1)^3}$ about the singularity

$$z=1. (6)$$

Q.12 a) If f(z) is an analytic function of z, prove that

MANN SI

$$\left(\frac{\delta^2}{x^2} + \frac{\delta^2}{\delta y^2}\right) \cdot \log|f(z)| = 0$$
 (6)

b) Find the bilinear transformation which maps 1, i, -1 to the points 2, i, -2 respectively. (7)