UNIVERSITY OF BRISTOL

January 2019 Examination Period

FACULTY OF ENGINEERING

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

COMS30009J Types and Lambda Calculus

TIME ALLOWED: 2 Hours

Answers to COMS30009J: Types and Lambda Calculus

Intended Learning Outcomes:

- Q1. (a) For each of the following reduction steps, give the redex that is contracted:
 - i. \underline{id} (pred $\underline{2}$) \triangleright \underline{id} $\underline{1}$
 - ii. \underline{id} (pred $\underline{2}$) \triangleright (pred $\underline{2}$)
 - iii. $\lambda f x$. (S S ($\underline{id} x$)) $\triangleright \lambda f x$. (S S x)

Solution:

- i. pred2
- ii. id (pred 2)
- iii. <u>id</u> x

[3 marks]

- (b) For each of the following state whether it is true or false (no justification is necessary).
 - i. M = N implies $M >^* N$
 - ii. $M \triangleright N$ implies $M \triangleright^* N$
 - iii. $M \approx N$ implies $M \triangleright^* N$
 - iv. $M >^* N$ implies $M \approx N$

[4 marks]

Solution:

- i. true
- ii. true
- iii. false
- iv. true
- (c) For each of the following, give an example of a closed term M with that property.
 - i. *M* is in normal form.
 - ii. *M* is normalising but *not* strongly normalising.
 - iii. M > M
 - iv. $M >^* MM$

[4 marks]

Solution:

- i. <u>id</u>
- ii. const id div
- iii. $(\lambda x. xx)(\lambda x. xx)$
- iv. $fix(\lambda x. xx)$

(d) Prove $N >^* N'$ implies $M[N/x] >^* M[N'/x]$ by induction on M.

[6 marks]

Solution: The proof is by induction on M.

- When M is a variable y, assume $N \triangleright^* N'$. Then we distinguish two possible cases:
 - If x = y, then, by definition of substitution, M[N/x] = N and M[N'/x] = N' and the goal is therefore $N \triangleright^* N'$ which is just one of our assumptions.
 - If $x \neq y$, then, by definition of substitution, M[N/x] = y = M[N'/y] and the goal follows by reflexivity of \triangleright^* .
- When M is a constant c, assume $N \rhd^* N'$. By the definition of substitution, M[N/x] = c = M[N'/x], and so the goal follows by reflexivity of \rhd^* .
- \bullet When M is an application PQ, we assume the induction hypotheses:

(IH1) $N \rhd^* N'$ implies $P[N/x] \rhd^* P[N'/x]$

(IH2) $N \triangleright^* N'$ implies $Q[N/x] \triangleright^* Q[N'/x]$

Assume $N
ightharpoonup^* N'$ (hence, we already are able to use the two IH). By definition of substitution, (PQ)[N/x] = (P[N/x])(Q[N/x]) and (PQ)[N'/x] = (P[N'/x])(Q[N'/x]). Hence, the goal can be written:

$$(P[N/x])(Q[N/x]) \rhd^* (P[N'/x])(Q[N'/x])$$

By (IH1) and the compatibility of reduction, $(P[N/x])(Q[N/x]) \rhd^* (P[N'/x])(Q[N/x])$ and by (IH2), $(P[N'/x])(Q[N/x]) \rhd^* (P[N'/x])(Q[N'/x])$, as required.

• When M is an abstraction λy . P, we may assume, by the variable convention, that y does not occur outside of P. We assume the induction hypothesis:

(IH)
$$N \rhd^* N'$$
 implies $P[N/x] \rhd^* P[N'/x]$

Suppose $N
ightharpoonup^* N'$. Our goal is to show that $(\lambda y. P)[N/x]
ightharpoonup^* (\lambda y. P)[N'/x]$. By the definition of substitution (taking into account our assumption about the bound variable name y), $(\lambda y. P)[N/x] = \lambda y. P[N/x]$ and $(\lambda y. P)[N'/x] = \lambda y. P[N'/x]$. By the compatibility of reduction and the induction hypothesis $\lambda y. P[N/x]
ightharpoonup^* \lambda y. P[N'/x]$. Hence, we have proven the goal.

(e) Prove that there cannot be a term M with the property that:

 $M(\lambda z. z (\underline{\mathsf{const}} \, \underline{\mathsf{id}} \, \underline{\mathsf{div}}) \, \underline{\mathsf{div}}) \, pprox \, \underline{\mathsf{0}} \qquad \mathsf{and} \qquad M(\lambda z. z \, \underline{\mathsf{id}} \, (\underline{\mathsf{const}} \, \underline{\mathsf{div}} \, \underline{\mathsf{id}})) \, pprox \, \underline{\mathsf{1}}$ $[3 \, \mathit{marks}]$

(cont.)

Solution: Suppose for the purposes of obtaining a contradiction that such a term *M* exists. We have:

$$\lambda z. z$$
 (const id div) div $\approx \lambda z. z$ id (const div id)

since both reduce to a common term $\lambda z. z \underline{\mathsf{id}} \underline{\mathsf{div}}$. Call the first of these P and the second Q for short. Then it follows that $\underline{0} \approx MP \approx MQ \approx \underline{1}$. However, it follows from the Church-Rosser theorem that $\underline{0} \not\approx \underline{1}$.

(f) Let M be a *pure* term. Suppose that the equation $MN \approx NMN$ is true for all terms N. Prove that M cannot have a normal form, i.e. if $M \rhd^* P$ then P is not in normal form.

[5 marks]

Solution: Suppose for contradiction that M satisfies this equation and yet has a normal form P. Then, one instance of the equation is $Mx \approx xMx$. Since $M \rhd^* P$, also $Px \approx xPx$. The term xPx is a β -normal form so, by confluence, it must be that $Px \rhd^* xPx$ (*). We distinguish two cases for P, either P is an abstraction $\lambda y. Q$ or it is not. In the first case, $Px \rhd Q[x/y]$ and the latter term must be a normal form. However, $Q[x/y] \neq x(\lambda y. Q)x$ because Q[x/y] and Q are strings of the same length. In the second case, Px is already a normal form and, again $Px \neq xPx$. Therefore, it cannot be that $Px \rhd^* xPx$, contradicting (*).

Q2. (a) State the rules of the type system (the rule names are not important).

[3 marks]

Solution:

$$x: \forall \overline{a}. \ A \in \Gamma \frac{}{\Gamma \vdash x: A[\overline{B}/\overline{a}]}$$
(TVar)

$$\frac{\Gamma \vdash M : B \to A \quad \Gamma \vdash N : B}{\Gamma \vdash MN : A}$$
(TApp)

$$x \notin \text{dom } \Gamma \frac{\Gamma \cup \{x : B\} \vdash M : A}{\Gamma \vdash \lambda x. M : B \rightarrow A} \text{ (TAbs)}$$

(b) Give an example of a *closed* term *in normal form* that is not typable.

[1 mark]

Solution: $\lambda x. xx$

- (c) For each of the following terms M, give a type environment Γ and a type A such that $\Gamma \vdash M : A$ (you need not prove it).
 - i. $(\lambda x. yxz)(\lambda z. z)$
 - ii. $(\lambda xy. yx) x z$

[3 marks]

Solution:

i.
$$y:(a \rightarrow a) \rightarrow b \rightarrow c$$
, $z:b \vdash (\lambda x.yxz)(\lambda z.z):c$

ii.
$$x:a,z:a\rightarrow b\vdash (\lambda xy.yx)xz:b$$

(d) Prove the following by induction on M.

For all Γ , B and C: if Γ , $x : B \vdash M : C$ and $\Gamma \vdash N : B$ then $\Gamma \vdash M[N/x] : C$

[7 marks]

Solution: The proof is by induction on M.

- In case (Var), M is a variable y. Let Γ be an environment, BA and C be types. Assume Γ , $x : B \vdash y : C$ and $\Gamma \vdash N : B$. There are two subcases:
 - If x = y then, by Inversion, B = C. By definition, y[N/x] = N and it follows from the second assumption that $\Gamma \vdash N : B$.
 - If $x \neq y$ then, y[N/x] = y. It follows from the first assumption, by inversion, that $y : C \in \Gamma$. Therefore, by (Var), $\Gamma \vdash y : C$.
- In case (App), M is an application PQ. Let Γ , B and C be arbitrary and assume Γ , $x: B \vdash PQ: C$ and $\Gamma \vdash N: B$. Assume the induction hypotheses:

- (IH1) forall Γ' , B', C': if Γ' , $x: B' \vdash P: C'$ and $\Gamma' \vdash N: B'$ then $\Gamma' \vdash P[N/x]:$ C'
- (IH2) forall Γ' , B', C': if Γ' , $x: B' \vdash Q: C'$ and $\Gamma' \vdash N: B'$ then $\Gamma' \vdash Q[N/x]:$ C'

By definition (PQ)[N/x] = P[N/x][Q/x]. By inversion on the first assumption, there is a type D such that Γ , $x:B \vdash P:D \to C$ and Γ , $x:B \vdash Q:D$. Therefore, by (IH1) and the second assumption, $\Gamma \vdash P[N/x]:D \to C$. By (IH2) and the second assumption, $\Gamma \vdash Q[N/x]:D$. Therefore, by (App), $\Gamma \vdash P[N/x]Q[N/x]:C$, and P[N/x]Q[N/x]=(PQ)[N/x] by definition.

- In case (Abs), M is an abstraction $\lambda y. P$ and C is an arrow $D \to E$. We can assume by the variable convention that $x \neq y$ and $y \notin FV(Q)$ and $y \notin dom(\Gamma)$. Assume the induction hypothesis:
 - forall Γ' , B', C': if Γ , $x : B' \vdash P : C'$ and $\Gamma \vdash N : C'$ then $\Gamma \vdash P[N/x] : C'$.

Let Γ , B and C be arbitrary. Assume Γ , $x:B \vdash \lambda y.P:D \rightarrow E$ and $\Gamma \vdash N:B$. It follows by inversion from the first assumption that Γ , x:B, $y:D \vdash P:E$. Therefore, it follows from the induction hypothesis, with $\Gamma':=\Gamma \cup \{y:D\}$ and B'=B and C'=E, that Γ , $y:D \vdash P[N/x]:E$. Therefore, it follows from (Abs) that $\Gamma \vdash \lambda y.P[N/x]:D \rightarrow E$. By the assumptions on y and definition, $\lambda y.P[N/x]=(\lambda y.P)[N/x]$.

- (e) Prove that $a \to (a \to b) \to b$ is the principal type of $\lambda xy. yx$, i.e. that:
 - $\vdash \lambda xy. yx : a \rightarrow (a \rightarrow b) \rightarrow b$
 - and, every type C such that $\vdash \lambda xy. yx : C$ has shape $A \to (A \to B) \to B$ for some types A and B.

[5 marks]

Solution: First, observe that $a \to (a \to b) \to b$ is a type of λxy . yx because:

$$\begin{array}{c}
x: a, y: a \to b \vdash y: a \to b \\
\hline
x: a, y: a \to b \vdash x: a \\
\hline
x: a, y: a \to b \vdash yx: b \\
\hline
x: a \vdash \lambda y. yx: (a \to b) \to b \\
\hline
\vdash \lambda xy. yx: a \to (a \to b) \to b
\end{array}$$

Next, suppose that A is another type of $\lambda xy. yx$. By Inversion, A must have shape $B \to C$ with $x: B \vdash \lambda y. yx: C$. By inversion on this judgement, C must have shape $D \to E$ with x: B, $y: D \vdash yx: E$. By inversion on this judgment, there is a type F such that x: B, $y: D \vdash y: F \to E$ and x: B, $y: D \vdash x: F$. By inversion on these final two judgements, we have $D = F \to E$ and B = F. Therefore,

$$\vdash \lambda xy. yx : F \rightarrow (F \rightarrow E) \rightarrow E$$
. We have $(a \rightarrow (a \rightarrow b) \rightarrow b)[F/a, E/b] = F \rightarrow (F \rightarrow E) \rightarrow E$, as required.

(f) Suppose $M \approx \lambda x. xx$. Prove that M is *not* typable.

[3 marks]

Solution: Suppose for the purpose of obtaining a contradiction that M is typable, i.e. there is a type A such that $\vdash M$: A. Observe that, since $\lambda x. xx$ is a normal form, it follows from the definition of \approx that $M \rhd^* \lambda x. xx$. By Subject-Reduction, it follows that $\vdash \lambda x. xx$: A. However, we know that $\lambda x. xx$ is not typable.

- (g) Give two terms M and N and a type A such that $M \triangleright N$ and, additionally, both of the following are true:
 - There are no proof trees for $\vdash M : A$
 - There are infinitely many proof trees for $\vdash N : A$

[3 marks]

Solution: Take $N = \underline{\text{const } \underline{\text{id } \text{id}}}$ and $M = \underline{\text{const } N \underline{\text{div}}}$ and $A = a \to a$. Then, clearly $M \rhd N$. M is untypable because it contains $\underline{\text{div}}$ as a subterm. On the other hand, there are infinitely many proof trees for $\vdash \underline{\text{const } \underline{\text{id } \text{id}}}$: $a \to a$ because the following is a proof tree for all types B:

$$\begin{array}{c}
\vdots \\
\vdash \underline{\mathsf{const}} : (a \to a) \to (B \to B) \to a \to a \quad \vdash \underline{\mathsf{id}} : a \to a \\
\vdash \underline{\mathsf{const}} \, \underline{\mathsf{id}} : (B \to B) \to a \to a \quad \vdash \underline{\mathsf{id}} : B \to B \\
\vdash \underline{\mathsf{const}} \, \underline{\mathsf{id}} \, \underline{\mathsf{id}} : a \to a
\end{array}$$