telefication bv The Netherlands Chamber of Commerce 51565536 www.telefication.com

FCC Test Report for Part 15.247

Product name : Trinity Wireless Probe

Applicant : IBS Precision Engineering

FCC ID : 2ADZW-TRINITY

Test report No.: 20153829300 Ver 1.00

laboratory

__ certification

approvals

Laboratory information

Accreditation

Telefication complies with the accreditation criteria for test laboratories as laid down in ISO/IEC 17025:2005. The accreditation covers the quality system of the laboratory as well as the specific activities as described in the authorized annex bearing the accreditation number L021 and is granted on 30 November 1990 by the Dutch Council For Accreditation (RvA: Raad voor Accreditatie).

Telefication is designated by the FCC as an Accredited Test Firm for compliance testing of equipment subject to Certification under Parts 15 & 18. The Designation number is: NL0001

The Industry Canada registration number for the 3 meter test chamber of Telefication is: 4173A-1.

Documentation

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at Telefication Netherlands

Testing Location

Test Site	Telefication BV
Test Site location	Edisonstraat 12a
	6902 PK Zevenaar
	The Netherlands
	T.
	Tel. +31316583180
	Fax. +31316583189
Test Site FCC	NL0001

Revision History

Version	Date	Remarks	Ву
v0.50	19-05-2016	First draft	RvB
v1.00	09-06-2016	Release version	RvB

Table of Contents

R	evision H	listory	. 2
Sı	ummary	of Test results	. 5
1	Gene	ral Description	. 6
	1.1	Applicant	6
	1.2	Manufacturer	6
	1.3	Tested Equipment Under Test (EUT)	.6
	1.4	Product specifications of Equipment under test	7
	1.5	Environmental conditions	7
	1.6	Measurement Standards	7
	1.7	Applicable Standards	7
	1.8	Conclusions	8
2	Test	configuration of the Equipment Under Test	9
	2.1	Test mode	9
	2.2	Tested channels and Data rates	9
	2.3	Radiated Test setup1	0
	2.4	Equipment used in the test configuration1	1
	2.5	Sample calculations	1
3	Test r	results	12
	3.1	6dB bandwidth Measurement1	2
	3.1.1	Limit1	2
	3.1.2	Measurement instruments1	2
	3.1.3	Test setup1	2
	3.1.4	Test procedure1	2
	3.1.5	Test Results of the 6 dB bandwidth Measurement1	2
	3.1.6	Plots of the 6 dB bandwidth Measurement1	3
	3.2	Output Power Measurement1	5
	3.2.1	Limit1	5
	3.2.2	Measurement instruments1	5
	3.2.3	Test setup1	5
	3.2.4	Test procedure1	5
	3.2.5	Test results of Output Power Measurement1	5
	3.2.6	Plots of Peak Output Power Measurement1	6
	3.3	Power Spectral Density1	7
	3.3.1	Limit1	7
	3.3.2	Measurement instruments1	7
	3.3.3	Test setup1	7
	3.3.4	Test procedure1	7

3.3.5	Test results of Power Spectral Density Measurement	17
3.3.6	Plots of the Power Spectral Density Measurements	18
3.4	Band edge Measurement	20
3.4.1	Limit	20
3.4.2	Measurement instruments	20
3.4.3	Test setup	20
3.4.4	Test procedure	20
3.4.5	Test results of Band Edges Measurements	20
3.4.6	Notes	20
3.4.7	Plots of the Band edge Measurements	20
3.5	Radiated Spurious Emissions Measurement	21
3.5.1	Limit	21
3.5.2	Measurement instruments	21
3.5.3	Test setup	21
3.5.4	Test procedure	21
3.5.5	Plots of the Radiated Spurious Emissions Measurement	22
3.5.6	Measurement Uncertainty	29

Summary of Test results

FCC	Description	Section in report	Verdict
15.247(a)	6dB Bandwidth	3.1	Pass
15.247(b)	RF output power	3.2	Pass
15.247(e)	Power spectral density	3.3	Pass
15.247(d)	Radiated Band edge	3.4	Pass
15.247(d)	Radiated Spurious emissions	3.5	Pass

1 General Description

1.1 Applicant

Client name: IBS Precision Engineering Address Esp 201, Eindhoven

Zip code: 5633 AD

Country The Netherlands
Telephone: +31 40 290 1270
E-mail: houben@ibspe.com

Contact name: B. Houben

1.2 Manufacturer

Manufacturer name: IBS Precision Engineering Address: Esp 201, Eindhoven

Zip code: 5633 AD

Country The Netherlands
Telephone: +31 40 290 1270
E-mail: houben@ibspe.com

Contact name: B. Houben

1.3 Tested Equipment Under Test (EUT)

Product name: Trinity Wireless Probe

Brand name: Trinity

Product type: Wireless measurement probe

FCC ID: 2ADZW-TRINITY Model(s): TP-001-0044

Software version: --

Hardware version: 001

Tests started: 17-06-2015 Testing ended: 24-04-2016

1.4 Product specifications of Equipment under test

Tx Frequencies:	2412 – 2462 MHz
Rx frequencies:	2412 – 2462 MHz
Maximum output power to antenna:	16 dBm
Antenna type and Gain	PCB antenna, 3dBi
Type of modulation:	DSSS
Emission designator:	17M5GXW

1.5 Environmental conditions

Test date	17-06-2015	24-04-2016
Ambient temperature	24°C	20.7°C
Humidity	42.1%	38.1%

1.6 Measurement Standards

• FCC KDB Publication No. 558074 D01DTS Meas. Guidance V03r05

ANSI C63.10:2013

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• FCC Part 15 Subpart C §15.247.

1.8 Conclusions

The sample of the product showed NO NON-COMPLIANCES to the specifications stated in paragraph 1.7 of this report.

The results of the test as stated in this report, are exclusively applicable to the product items as identified in this report. Telefication accepts no responsibility for any properties of product items in this test report, which are not supported by the tests as specified in paragraph 1.7 "Applicable standards".

All tests are performed by:

Name

: ing. P.A. Suringa and ing R. van Barneveld

Review of test methods and report by:

Name

: ing. P.A. Suringa

The above conclusions have been verified by the following signatory:

Date

: 09-06-2016

Name

: ing M.T.P.M Wouters v/d Oudenweijer

Function

: Director Certification

Signature

2 Test configuration of the Equipment Under Test

2.1 Test mode

The applicant provided test mode firmware for the EUT, in which it was possible to configure the EUT into different test channels. (the applicant was present during the testing)

2.2 Tested channels and Data rates

Technology	Channels	Data rate	Frequency (MHz)
1 (Low)	1 (Low)	54 Mbps	2412
IEEE 802.11g	4 (Mid	54 Mbps	2427
	10(High)	54 Mbps	2457

2.3 Radiated Test setup

Radiated emissions test setup 30 MHz - 1 GHz

Radiated emissions test setup above 1 GHz

2.4 Equipment used in the test configuration

Description	Manufacturer	Model	ID	Used at Par.
Spectrum Analyzer	Rohde & Schwarz	FSP40	TE11125	3.1 to 3.5
Spectrum Analyzer	Rohde & Schwarz	ESR7	TE01220	3.1 to 3.5
Biconilog Antenna	Chase	CBL6112A	TE00967	3.1 to 3.5
Horn Antenna	EMCO The Electro – Mechanics Co	3115	TE00531	3.1 to 3.5
Pre-amplifier	Miteq	AFS42-041001800- 29-OP-42	TE11132	3.1 to 3.5
SAC Chamber	Comtest Engineering BV	-	TE00861	3.1 to 3.5

2.5 Sample calculations

1)

See chapters 3.1 to 3.4

dBμV/m to dBm.(EIRP)	dBμV/m to dBm(ERP).	μV/m to dBμV/m
$E(dB\mu V/m) = EIRP(dBm) + 95.2$	$E(dB\mu V/m) = ERP(dBm) + 97.4$	E(dBμV/m) = 20 log (μV/m)

2)

Field Strength Measurement example (see chapter 3.5):

Frequency (MHz)	Polarization	Height(m)	Peak (dBµV/m)
565,2	Vertical	1	47,1

The following realtion applies:

 $E (dB\mu V/m) = U(dB\mu V) + AF (dB/m) + CL (dB)$

Where:

E = Electric field strength

U = Measuring reveiver voltage

AF = Antenna factor

CL = Cable loss

(47,1 = 24.77 + 19.2 + 3.01)

3 Test results

3.1 6dB bandwidth Measurement

3.1.1 Limit

The minimum 6 dB Bandwidth shall be at least 500 kHz.

3.1.2 Measurement instruments

The measurement instruments are listed in chapter 2.4 of this report.

3.1.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.1.4 Test procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.

3.1.5 Test Results of the 6 dB bandwidth Measurement

Technology Std.	Channel	Frequency (MHz)	Data rate	6dB bandwidth (MHz)
	1	2412	54 Mbps	17.52
IEEE 802.11g	4	2427	54 Mbps	17.28
	10	2457	54 Mbps	17.82
Uncertainty	±707 kHz			

3.1.6 Plots of the 6 dB bandwidth Measurement

802.11g 6 dB Bandwidth (Channel 1)

802.11g 6 dB Bandwidth (Channel 4)

802.11g 6 dB Bandwidth (Channel 10)

3.2 Output Power Measurement

3.2.1 Limit

For systems using digital modulation in the 2400-2483.5 MHz, the limit for the peak output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point to point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measurement instruments

The measurement instruments are listed in chapter 2.4 of this report.

3.2.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.2.4 Test procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.

3.2.5 Test results of Output Power Measurement

Technology Std.	Channels	Frequency (MHz)	Data rate	Output power (dBm)
	1	2412	54 Mbps	21.73
IEEE 802.11g	4	2427	54 Mbps	23.61
	10	2457	54 Mbps	23.24
Uncertainty	±1.78 dB			

20

Center 2.427 GHz

3.2.6 Plots of Peak Output Power Measurement

MHz/

3DB

Span 30 MHz

3.3 Power Spectral Density

3.3.1 Limit

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measurement instruments

The measurement instruments are listed in chapter 2.4 of this report.

3.3.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.3.4 Test procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.

3.3.5 Test results of Power Spectral Density Measurement

Technology Std.	Channels	Frequency	Data rate	PSD/3 kHz
		(MHz)		(dBm)
	1	2412	54 Mbps	-13.88
IEEE 802.11g	4	2427	54 Mbps	-12.5
	10	2457	54 Mbps	-9.68
Uncertainty	±1.78 dB			

3.3.6 Plots of the Power Spectral Density Measurements

Power Spectral Density 3 kHz (channel 1)

Power Spectral Density 3 kHz (channel 4)

telefication

Power Spectral Density 3 kHz (channel 10)

3.4 Band edge Measurement

3.4.1 Limit

At the edge of the authorized band the RF power shall be at least 20 dB down.

3.4.2 Measurement instruments

The measurement instruments are listed in chapter 2.4 of this report.

3.4.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.4.4 Test procedure

According to KDB Publication 558074 V02r05, sections 11.3 and 12.1

3.4.5 Test results of Band Edges Measurements

Band edge

		J				
Technology Std.	Channels	Frequency	Data rate	20 dB down	Limit	
		(MHz)		(dBm)	(dBm)	
IEEE 802.11g	1	1 2412 54 Mbps -14.11 1.73				
Uncertainty	±0.63 dB					

3.4.6 Notes

• The upper band edge was not measured as the highest channel is more than 20 MHz from the upper band edge.

3.4.7 Plots of the Band edge Measurements

BLE Conducted Lower band edge(Channel 1)

3.5 Radiated Spurious Emissions Measurement

3.5.1 Limit

In any 100 kHz bandwidth outside the operating frequency band, the RF power shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either a RF conducted or a radiated measurement.

3.5.2 Measurement instruments

The measurement instruments are listed in chapter 2.4 of this report.

3.5.3 Test setup

The test setup is as shown in chapter 2.4 of this report.

3.5.4 Test procedure

According to KDB Publication 558074 V02r05, sections 11.3 and 12.1

3.5.5 Plots of the Radiated Spurious Emissions Measurement

30 MHz to 1 GHz Low channel

Vertical polarization

Measured peaks Vertical 30 – 1000 MHz Low channel

Frequency (MHz)	Polarization	Height (m)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)
562,5	Vertical	1	47,	96.93	-49,93
515,628	Vertical	1	44,7	96.93	-52,23
609,378	Vertical	1	45,7	46	-0,3
703,122	Vertical	2	46,8	96.93	-50.13
796,872	Vertical	1,5	46,6	96.93	-50,33
890,622	Vertical	2,5	43,9	96.93	-53,03
749,994	Vertical	1	33	96.93	-63,93

Note:

- Only 609.378 MHz falls within a restricted band (608 -614 MHz)which has a limit of 46 dBµV/m, for the other frequency the limit is 20 dB down from the measured output power (96.93 dBµV/m)
- In the plot only the restricted band limit is shown (15.209)

30 MHz to 1 GHz Middle channel

Vertical polarization

Measured peaks Vertical 30 – 1000 MHz Middle channel

Frequency (MHz)	Polarization	Height (m)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)
562,500	Vertical	1	46,9	98.81	-51,91
515,628	Vertical	1	44,2	98.81	-54,61
609,378	Vertical	1	45,8	46	-0,2
703,128	Vertical	2	46,6	98.81	-52,21
796,872	Vertical	1,5	46,1	98.81	-52,71
750	Vertical	1	31,3	98.81	-67,51
890,622	Vertical	1,5	44,8	98.81	-54.01

Note:

- Only 609.378 MHz falls within a restricted band (608 -614 MHz)which has a limit of 46 dBµV/m, for the other frequency the limit is 20 dB down from the measured output power (98.81 dBµV/m)
- In the plot only the restricted band limit is shown (15.209)

30 MHz to 1 GHz High channel

Vertical polarization

Measured peaks Vertical 30 - 1000 MHz High channel

Frequency (MHz)	Polarization	Height (m)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)
562,5	Vertical	1	47,7	98.44	-50,74
703,122	Vertical	2	45,6	98.44	-52,84
609,372	Vertical	1	·		•
, -		1 1 -	43,9	46	-2,1
796,872	Vertical	1,5	44,8	98.44	-53,64
890,628	Vertical	1,5	45,4	98.44	-53,04

Note:

- Only 609.372 MHz falls within a restricted band (608 -614 MHz)which has a limit of 46 dBµV/m, for the other frequency the limit is 20 dB down from the measured output power (98.44 dBµV/m)
- In the plot only the restricted band limit is shown (15.209)

30 MHz to 1 GHz

1 GHz to 18 GHz

Vertical polarization

Middle channel

High channel

Note:

 the worst case emission is found with vertical polarization so no horizontal measurements were performed

18 GHz to 26 GHz

Vertical polarization

Low channel

Middle channel

High channel

Note:

 the worst case emission is found with vertical polarization so no horizontal measurements were performed

3.5.6 Measurement Uncertainty

Measurement uncertainty Radiated emissions below 1 GHz

Horizontal polarization			
30 – 200 MHz	4.5 dB		
200 – 1000 MHz	3.6 dB		
Vertical polarization			
30 – 200 MHz	5.4 dB		
200 – 1000 MHz	4.6 dB		

Measurement uncertainty Radiated emissions above 1 GHz

1 – 18 GHz	+ 5.7/- 5.7dB
18 – 26,5 GHz	+ 3 /- 3 dB