

Distributional Semantics

Machine Learning: Jordan Boyd-Graber

University of Maryland

What's wrong with PMI?

- PMI-based methods prefer rare words
- E.g., closest to "king"

- Jeongjo (Koryo), Adulyadej (Chakri), Coretta (MLK)
- Hard to scale
- Doesn't work as well?

Hyperparameters Matter

- Preprocessing (word2vec)
 - Dynamic Context Windows
 - Subsampling
 - **Deleting Rare Words**
- Postprocessing (GloVe)
 - Adding Context Vectors
- Association Metric (SGNS)
 - Shifted PMI
 - Context Distribution Smoothing

Hyperparameters Matter

- Preprocessing (word2vec)
 - Dynamic Context Windows
 - Subsampling
 - **Deleting Rare Words**
- Postprocessing (GloVe)
 - Adding Context Vectors
- Association Metric (SGNS)
 - Shifted PMI
 - Context Distribution Smoothing

Dynamic Context Windows

saw a furry little wampimuk hiding in the tree

word2vec:	1/4	2/4	3/4	4/4	4/4	3/4	2/4
GloVe:	1/4	1/3	1/2	1/1	1/1	1/2	1/3
Aggressive:	1/8	1/4	1/2	1/1	1/1	1/2	1/4

The Word-Space Model (Sahlgren, 2006)

Adding Context Vectors

- Skip-Gram Negative Sampling creates word vectors w
- ... and context vectors c
- Pennington et al. (2014) use w + c to represent word
- Levy et al. (2015) find that data size and preprocessing account for most (if not all) of difference

Smoothing

• Introduced in word2vec for negative sampling ($\alpha = 0.75$)

$$\hat{P}_{\alpha}(c) = \frac{\#(c)^{\alpha}}{\sum_{c'} \#(c)^{\alpha}}$$
 (1)

• For PMI, helps remove bias toward rare words

Smoothing

• Introduced in word2vec for negative sampling ($\alpha = 0.75$)

$$\hat{P}_{\alpha}(c) = \frac{\#(c)^{\alpha}}{\sum_{c'} \#(c)^{\alpha}}$$
 (1)

- For PMI, helps remove bias toward rare words
- And makes it about as good as word2vec

Rant on Evaluation

- Analogy and Similarity aren't that useful
- Find a real-world task and optimize for that
- Innovation is still possible
- Just getting better word vectors is a fruitless cottage industry
- Always tune baseline hyperparameters (and recognize what the hyperparameters are)

Other Languages are Harder

[fem] [masc] she saw a brown fox חום שועל **ראתה** היא **חומה** גדר **ראה** הוא he saw a brown fence [fem] [masc]

Other Languages are Harder

וכשמהבית and when from the house

בצל in shadow

> בצל onion

Other Languages are Harder

ספר

book(N). barber(N). counted(V). tell!(V). told(V).

חומה

brown (feminine, singular) wall (noun) her fever (possessed noun)

Takeaway

- Word representations very important
- Future: continuous representations in more complicated models
- Future: document representations