内田碧 12-1

1. 関数 y=|x+1|+|x-3| のグラフをかけ。

$$x < -1$$
 のとき $y = -(x+1) - (x-3)$ ゆえに $y = -2x + 2$ $-1 \le x < 3$ のとき $y = (x+1) - (x-3)$ ゆえに $y = 4$ $3 \le x$ のとき $y = (x+1) + (x-3)$ ゆえに $y = 2x - 2$ よって、グラフは右の図の実線部分。

2. 2 次関数のグラフ が 3 点 (-1, 16), (4, -14), (5, -8) を通るとき、その 2 次関数を求

求める 2 次関数を $y = ax^2 + bx + c$ とする。

このグラフが 3 点 (-1, 16), (4, -14), (5, -8) を通るから

$$\begin{cases} a-b+c=16 & \cdots & \text{ } \\ 16a+4b+c=-14 & \cdots & \text{ } \\ 25a+5b+c=-8 & \cdots & \text{ } \end{cases}$$

② -① b5 15a+5b=-30 +b5 3a+b=-6 \cdots ④

③ -② から 9a+b=6 …… ⑤

④, ⑤ を解いて a=2, b=-12

よって、①から c=2

したがって、求める 2 次関数は $y=2x^2-12x+2$

3. 2 次関数 $y = ax^2 + bx + c$ のグラフが右の図のように なるとき, 次の値の符号を調べよ。

- (1) a (2) b (3) c (4) $b^2 4ac$
- (5) a + b + c

- (1) グラフは上に凸であるから a < 0
- (2) $y=ax^2+bx+c$ の頂点の座標は

 $-\frac{b}{2a} > 0$ よって 頂点の x 座標が正であるから

- (1) より, a < 0 であるから b > 0
- (3) グラフは y軸と y<0 の部分で交わるから
- $-\frac{b^2-4ac}{}>0$ (4) 頂点の y座標が正であるから
- (1) より, a < 0 であるから
- $b^2 4ac > 0$
- (5) x = 1 $\emptyset \ge 3$ $y = a \cdot 1^2 + b \cdot 1 + c = a + b + c$

グラフより、x=1 のとき y>0 であるから a+b+c>0

4. 放物線 $y=x^2+ax+b$ を原点に関して対称移動し、更に x 軸方向に -1、y 軸方向に 8だけ平行移動すると、放物線 $y=-x^2+5x+11$ が得られるという。このとき、定数 a、 hの値を求めよ。

放物線 $y=x^2+ax+b$ を原点に関して対称移動した放物線の方程式は

$$-y=(-x)^2+a(-x)+b$$
 すなわち $y=-x^2+ax-b$

また、この放物線を更にx軸方向に-1、y軸方向に8だけ平行移動した放物線の方程式

 $y-8=-(x+1)^2+a(x+1)-b$ すなわち $y=-x^2+(a-2)x+a-b+7$ これが $y=-x^2+5x+11$ と一致するから a-2=5, a-b+7=11

これを解いて a=7, b=3

別解 放物線 $y=-x^2+5x+11$ を x 軸方向に 1, y 軸方向に -8 だけ平行移動した放物 線の方程式は

 $y+8=-(x-1)^2+5(x-1)+11$ † $x = -x^2+7x-3$ この放物線を, 更に原点に関して対称移動した放物線の方程式は

 $-y = -(-x)^2 + 7(-x) - 3$ $\Rightarrow x \Rightarrow 5$ $y = x^2 + 7x + 3$

これが $y=x^2+ax+b$ と一致するから a=7, b=3

5. 定義域を $0 \le x \le 3$ とする関数 $f(x) = ax^2 - 2ax + b$ の最大値が9, 最小値が1のとき, 定数 a, b の値を求めよ。

関数の式を変形して $f(x) = a(x-1)^2 - a + b$

[1] a=0 のとき、f(x)=b (一定) となり、条件を満たさない。

[2] a>0 のとき、f(x) のグラフは下に凸の放物線となり、

 $0 \le x \le 3$ の範囲で f(x) は

x=3 で最大値 f(3)=3a+b,

x=1 で最小値 f(1)=-a+b

をとる。

したがって 3a+b=9, -a+b=1

これを解いて a = 2, b = 3

これはa>0を満たす。

[3] a < 0 のとき、f(x) のグラフは上に凸の放物線となり、

 $0 \le x \le 3$ の範囲で f(x) は

x=1 で最大値 f(1)=-a+b,

x=3 で最小値 f(3)=3a+b

をとる。

したがって -a+b=9, 3a+b=1

これを解いて a=-2, b=7

これはa < 0を満たす。

以上から

a=2. b=3 $\pm t$ t a=-2. b=7

最小

a > 0

6. $x \ge 0$, $y \ge 0$, 2x + y = 8 のとき, xy の最大値と最小値を求めよ。また, そのときの x, y の値を求めよ。

2x+y=8 degree y=-2x+8

 $y \ge 0$ であるから $-2x + 8 \ge 0$ ゆえに $x \le 4$

 $x \ge 0$ との共通範囲は $0 \le x \le 4$ ……②

また
$$xy = x(-2x+8) = -2x^2 + 8x$$

= $-2(x^2 - 4x + 2^2) + 2 \cdot 2^2$

 $=-2(x-2)^2+8$

- ② の範囲において、xyは、x=2で最大値8をとり、x=0、4で最小値0をとる。
- ① から、xの値に対応したyの値を求めて

(x, y)=(2, 4) のとき最大値8

(x, y) = (0, 8), (4, 0) のとき最小値 0

以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。

7. $-1 \le x \le 1$ のとき、関数 $y = (x^2 - 2x - 1)^2 - 6(x^2 - 2x - 1) + 5$ の最大値、最小値を求めよ。 $x^2 - 2x - 1 = t > \pm i < >$

 $t = (x-1)^2 - 2$

 $-1 \le x \le 1 \text{ is } -2 \le t \le 2 \text{ } \cdots \text{ } \bigcirc$

yをtの式で表すと

 $y=t^2-6t+5=(t-3)^2-4$

① の範囲において、yは

t = -2 で最大値 21,

t=2 で最小値 -3 をとる。

t = -2 のとき $(x-1)^2 - 2 = -2$ $(x-1)^2 = 0$

ゆえに

よって x=1

t=2 のとき

 $(x-1)^2-2=2$

ゆえに

 $(x-1)^2 = 4$ よって x = -1, 3

 $-1 \le x \le 1$ を満たす解は x = -1

以上から x=1 のとき最大値 21, x = -1 のとき最小値 -3

- 8. a を定数とする。 $a \le x \le a+2$ における関数 $f(x) = x^2-2x+2$ について、次のものを求 めよ。
 - (1) 最大値
 - (2) 最大値を M(a) とする。 M(a) を求めよ。

$$f(x) = x^2 - 2x + 2 = (x - 1)^2 + 1$$

y = f(x) のグラフは下に凸の放物線で、軸は直線 x = 1

- (1) 区間 $a \le x \le a + 2$ の中央の値は a+1
- [1] a+1<1 すなわち a<0のとき 右のグラフから、x=a で最大となる。 最大値は $f(a) = a^2 - 2a + 2$

[2] a+1=1 すなわち a=0 のとき 右のグラフから,x=0,2で最大となる。 最大値は f(0) = f(2) = 2

[3] a+1>1 すなわち a>0 のとき 右のグラフから、x=a+2 で最大となる。 最大値は $f(a+2) = (a+2)^2 - 2(a+2) + 2$ $=a^2+2a+2$

a < 0 のとき x = a で最大値 $a^2 - 2a + 2$ a=0 のとき x=0, 2 で最大値 2 以上から a>0 のとき x=a+2 で最大値 a^2+2a+2

(2) (1)より

9. 関数 $y=x^2-2lx+l^2-2l$ $(0\leq x\leq 2)$ の最小値が 11 になるような正の定数 l の値を 求めよ。

$$y=x^2-2lx+l^2-2l$$
 を変形して
 $y=(x-l)^2-2l$

[1] $0 < l \le 2$ のとき、x = l で最小値 -2l をとる。

$$-2l = 11$$
 とすると $l = -\frac{11}{2}$

これは $0 < l \le 2$ を満たさない。

[2] 2 < l のとき、x = 2 で最小値 $2^2 - 2l \cdot 2 + l^2 - 2l$ つまり $l^2 - 6l + 4$ をとる。 $l^2-6l+4=11$ とすると $l^2-6l-7=0$ これを解くと l=-1, 7

2 < l を満たすものは l=7以上から、求めるlの値は l=7

内田碧 12-2

1

次の2次不等式を解け。

- (1) $2x^2 x 4 \ge 0$
- (2) $4x \ge 4x^2 + 1$
- (3) $\begin{cases} 2x^2 5x 3 < 0 \\ 3x^2 4x 4 \le 0 \end{cases}$
- (4) $|x^2-2x-3| \ge 3-x$

解説

(1) $2x^2 - x - 4 = 0$ を解くと $x = \frac{1 \pm \sqrt{33}}{4}$ よって、 $2x^2 - x - 4 \ge 0$ の解は $x \le \frac{1 - \sqrt{33}}{4}$ 、 $\frac{1 + \sqrt{33}}{4} \le x$

(2) 不等式から $4x^2-4x+1 \le 0$ $4x^2-4x+1 = (2x-1)^2$ であるから、不等式は $(2x-1)^2 \le 0$ よって、解は $x=\frac{1}{2}$

- (3) $2x^2 5x 3 < 0$ π b (2x+1)(x-3) < 0 π c $-\frac{1}{2} < x < 3$ ① $3x^2 4x 4 \le 0$ π b $(3x+2)(x-2) \le 0$ π c $-\frac{2}{3} \le x \le 2$ ②
- $-\frac{1}{3}$ $-\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{3}$
- ①,② の共通範囲を求めて $-\frac{1}{2} < x \le 2$
- (4) $x^2-2x-3=(x+1)(x-3)$ であるから $x^2-2x-3\ge 0 \ \mathcal{O}$ 解は $x\le -1,\ 3\le x$ $x^2-2x-3<0 \ \mathcal{O}$ 解は -1< x<3

[2] -1 < x < 3 のとき,不等式は

ゆえに $x^2-3x \le 0$

よって $x(x-3) \le 0$ したがって $0 \le x \le 3$ -1 < x < 3 との共通範囲は $0 \le x < 3$ ……② 求める解は、① と② を合わせた範囲で $x \le -2$ 、 $0 \le x$

 $-(x^2-2x-3) \ge 3-x$

2

2次不等式 $ax^2+bx-24\geq 0$ の解が $x\leq -2$, $4\leq x$ であるように, 定数 a, b の値を定めよ。

解説

条件から、2 次関数 $y=ax^2+bx-24$ のグラフは、x<-2、4< x のときだけ x 軸より上側にある。すなわち、グラフは下に凸の放物線で2 点 $(-2,\ 0)$ 、 $(4,\ 0)$ を通るから

4a-2b-24=0 ①, 16a+4b-24=0 ②

a > 0,

①、②を解いて a=3、b=-6

これはa>0を満たす。

別解 $x \le -2$, $4 \le x \iff (x+2)(x-4) \ge 0 \iff x^2 - 2x - 8 \ge 0$ $\iff 3x^2 - 6x - 24 \ge 0$

 $ax^2+bx-24 \ge 0$ と係数を比較して a=3, b=-6

3

2 次関数 $y=-x^2$ のグラフと直線 y=-2x+k の共有点の個数を調べよ。 ただし,k は定数とする。

解説

 $y=-x^2$ と y=-2x+k から y を消去して $-x^2=-2x+k$ 整理すると $x^2-2x+k=0$

判別式をDとすると $\frac{D}{4} = (-1)^2 - 1 \cdot k = 1 - k$

k < 1

D=0 すなわち 1-k=0 となるのは k=1

D < 0 t > 0 t > 0 t > 0 t > 0

よって、求める共有点の個数は k < 1 のとき 2 個、k = 1 のとき 1 個, k > 1 のとき 0 個

4

x についての不等式 $x^2 - (a+1)x + a < 0$, $3x^2 + 2x - 1 > 0$ を同時に満たす整数 x がちょうど 3 つ存在するような定数 a の値の範囲を求めよ。

解説

 $x^2-(a+1)x+a<0$ を解くと (x-a)(x-1)<0から

a < 1 のとき a < x < 1a = 1 のとき 解なし a > 1 のとき 1 < x < a

 $3x^2 + 2x - 1 > 0$ を解くと (x+1)(3x-1) > 0 から $x < -1, \frac{1}{3} < x$ ……②

- ①、② を同時に満たす整数 x がちょうど 3 つ存在するのは、a < 1 または a > 1 の場合である。
- [1] *a*<1のとき 3つの整数*x*は

$$x=-4$$
, -3 , -2
よって $-5 \le a < -4$

- [2] a>1 のとき 3 つの整数 x は x=2, 3, 4 よって $4 < a \le 5$
- [1], [2] から、求める a の値の範囲は $-5 \le a < -4$, $4 < a \le 5$

a は定数とする。次の方程式を解け。

$$2ax^2 - (6a^2 - 1)x - 3a = 0$$

(2) 任意の実数 x に対して、不等式 $ax^2-2\sqrt{3}x+a+2\leq 0$ が成り立つ ような定数 a の値の範囲を求めよ。

(解説)

(1) [1] 2a=0 すなわち a=0 のとき, 方程式は x=0すなわち、解は x=0

[2] $a \Rightarrow 0$ のとき、方程式から (x-3a)(2ax+1)=0

$$z = 3a, \quad -\frac{1}{2a}$$

したがって
$$\begin{cases} a=0 \text{ のとき} & x=0 \\ a \neq 0 \text{ のとき} & x=3a, \ -\frac{1}{2a} \end{cases}$$

(2) a=0 のとき、不等式は $-2\sqrt{3}x+2\leq 0$ となり、例えば x=0 のとき成り立たな

 $a \Rightarrow 0$ のとき、 $ax^2 - 2\sqrt{3}x + a + 2 = 0$ の判別式を D とすると、常に不等式が成り立つ ための必要十分条件は

$$a < 0$$
 $\hbar > 0$ $\frac{D}{4} = (-\sqrt{3})^2 - a(a+2) \le 0$

a < 0 $\Rightarrow a^2 + 2a - 3 \ge 0$

よって $a \le -3$, $1 \le a$ $a^2 + 2a - 3 \ge 0$ から $(a+3)(a-1) \ge 0$

a < 0 との共通範囲を求めて $a \le -3$

6

 $0 \le x \le 8$ のすべての x の値に対して、不等式 $x^2 - 2mx + m + 6 > 0$ が成り 立つような定数 mの値の範囲を求めよ。

解説

求める条件は、 $0 \le x \le 8$ における $f(x) = x^2 - 2mx + m + 6$ の最小値が正となることであ る。 $f(x) = (x-m)^2 - m^2 + m + 6$ であるから、軸は 直線 x = m

- [1] m < 0 のとき、f(x) は $0 \le x \le 8$ で増加するから、最小値は f(0) = m + 6ゆえに m+6>0よって m>-6*m* < 0 であるから $-6 < m < 0 \quad \cdots \quad \bigcirc$
- [2] $0 \le m \le 8$ のとき、最小値は $f(m) = -m^2 + m + 6$ ゆえに $-m^2+m+6>0$ すなわち $m^2-m-6<0$ これを解くと、(m+2)(m-3) < 0 から -2 < m < 3 $0 \le m \le 8$ であるから $0 \le m < 3$ ……②
- [3] 8 < m のとき、f(x) は $0 \le x \le 8$ で減少するから、最小値は f(8) = -15m + 70

ゆえに, -15m + 70 > 0 から $m < \frac{14}{3}$ これは8 < m を満たさない。

求める *m* の値の範囲は、①、② を合わせて -6 < m < 3

7

k は定数とする。方程式 $|x^2-x-2|=2x+k$ の異なる実数解の個数を 調べよ。

 $|x^2-x-2|=2x+k$ $\text{ in } |x^2-x-2|-2x=k$ $y = |x^2 - x - 2| - 2x \cdots 1$ とする。 $x^2-x-2=(x+1)(x-2)$ であるから $x^2-x-2 \ge 0$ の解は $x \le -1$, $2 \le x$ $x^2 - x - 2 < 0$ の解は -1 < x < 2よって、①は $x \le -1$ 、 $2 \le x$ のとき

$$y = (x^2 - x - 2) - 2x = x^2 - 3x - 2 = \left(x - \frac{3}{2}\right)^2 - \frac{17}{4}$$

-1<x<2のとき

$$y = -(x^2 - x - 2) - 2x = -x^2 - x + 2 = -\left(x + \frac{1}{2}\right)^2 + \frac{9}{4}$$

ゆえに、① のグラフは右上の図の実線部分のようになる。

与えられた方程式の実数解の個数は、①のグラフと直線 y=kの共有点の個数に等し い。これを調べて

$$k<-4$$
 のとき 0 個 ; $k=-4$ のとき 1 個 ; $-4< k<2$, $\frac{9}{4}< k$ のとき 2 個 ; $k=2$, $\frac{9}{4}$ のとき 3 個 ; $2< k<\frac{9}{4}$ のとき 4 個

8

方程式 $x^2+(2-a)x+4-2a=0$ が -1 < x < 1 の範囲に少なくとも 1 つ の実数解をもつような定数 a の値の範囲を求めよ。

判別式を D とし、 $f(x) = x^2 + (2-a)x + 4 - 2a$ とする。

$$f(-1) = -a + 3$$
, $f(1) = -3a + 7$

[1] 2つの解がともに -1 < x < 1 の範囲にあるための条件は

$$\left\{ \begin{array}{l} D = (2-a)^2 - 4 \cdot 1 \cdot (4-2a) \geqq 0 \quad \cdots \cdots \text{ } \\ \\ \Leftrightarrow x = -\frac{2-a}{2} \text{ is finite } -1 < -\frac{2-a}{2} < 1 \quad \cdots \cdots \text{ } \\ \\ f(-1) = -a + 3 > 0 \quad \cdots \cdots \text{ } \text{ } \text{ } \text{ } \text{ } f(1) = -3a + 7 > 0 \quad \cdots \cdots \text{ } \text{ } \end{array} \right.$$

- ① から $a^2+4a-12 \ge 0$ よって $(a-2)(a+6) \ge 0$
- ゆえに $a \le -6$, $2 \le a$ …… ⑤
- ②~④ を解くと、解は順に

$$0 < a < 4 \cdots 6$$
, $a < 3 \cdots 7$, $a < \frac{7}{3} \cdots 8$

⑤ \sim ⑧ の共通範囲は $2 \le a < \frac{7}{2}$

[2] 解の1つが-1 < x < 1, 他の解がx < -1または1 < xにあるための条件は f(-1)f(1) < 0 ゆえに (-a+3)(-3a+7) < 0

よって (a-3)(3a-7)<0 ゆえに $\frac{7}{3} < a < 3$

- [3] 解の1つがx=-1のときは f(-1)=0よって -a+3=0 ゆえに a=3このとき、方程式は $x^2-x-2=0$ よって (x+1)(x-2)=0ゆえに、他の解はx=2となり、条件を満たさない。
- [4] 解の1つがx=1のときは f(1)=0

よって
$$-3a+7=0$$
 ゆえに $a=\frac{7}{3}$

このとき、方程式は $3x^2-x-2=0$

よって (x-1)(3x+2)=0

ゆえに、他の解は $x=-\frac{2}{3}$ となり、条件を満たす。

[1] \sim [4] から $2 \le a < 3$

- 1. 次のデータは、ある都市のある年の月ごとの最高気温を並べたものである。 5, 4, 8, 12, 17, 24, 27, 28, 22, 30, 9, 6 (単位は℃)
 - (1) このデータの平均値を求めよ。
 - (2) このデータの中で入力ミスが見つかった。30℃となっている月の最高気温は正しく は18℃であった。この入力ミスを修正すると、このデータの平均値は修正前より何℃
 - (3) このデータの中で入力ミスが見つかった。正しくは 6 $\mathbb C$ が 10 $\mathbb C$, 30 $\mathbb C$ が 26 $\mathbb C$ で あった。この入力ミスを修正すると、このデータの平均値は

する。

に当てはまるものを次の①,②,③から選べ。

- ① 修正前より増加 ② 修正前より減少 ③ 修正前と一致

- 解答 (1) 16 $^{\circ}$ (2) 1 $^{\circ}$ (3) (7) $^{\circ}$ (4) $^{\circ}$
- (1) $\frac{1}{12}(5+4+8+12+17+24+27+28+22+30+9+6)=16$ (°C)
- (2) データの総和は 12° 減少するから、データの平均値は修正前より $\frac{12}{12} = 1$ ($^{\circ}$ C) 減
- (3) (P) 6+30=10+26 であるから、データの総和は変化せず、平均値は修正前と一致 する。

よって

(1) (1), (P) より、修正後のデータの平均値は 16 $^{\circ}$ であるから、修正した 2 つの データの平均値からの偏差の2乗の和は

修正前: $(6-16)^2+(30-16)^2=296$

修正後: $(10-16)^2+(26-16)^2=136$

ゆえに、偏差の2乗の和は減少するから、分散は修正前より減少する。

2. 変量 x のデータの平均値 \overline{x} が $\overline{x} = 21$, 分散 s_x^2 が $s_x^2 = 12$ であるとする。このとき、次 の式によって得られる新しい変量 y のデータについて、平均値 v、分散 s_v^2 、標準偏差 s_v

ただし、 $\sqrt{3}=1.73$ とし、標準偏差は小数第 2 位を四捨五入して、小数第 1 位まで求めよ。

(1) y = 3x (2) y = -2x + 3

解答 (1) $\overline{y} = 63$, $s_y^2 = 108$, $s_y = 10.4$ (2) $\overline{y} = -39$, $s_y^2 = 48$, $s_y = 6.9$

- (1) $\overline{y} = 3\overline{x} = 3 \times 21 = 63$

 $s_v^2 = 3^2 \times s_x^2 = 9 \times 12 = 108$

 $s_v = 3s_x = 3 \times 2\sqrt{3} = 6\sqrt{3} \rightleftharpoons 10.4$

(2) $\overline{y} = -2\overline{x} + 3 = -2 \times 21 + 3 = -39$

 $s_{v}^{2} = (-2)^{2} s_{x}^{2} = 4 \times 12 = 48$

 $s_v = |-2|s_r = 2 \times 2\sqrt{3} = 4\sqrt{3} = 6.9$

- 3. 次の方程式・不等式を解け。
 - (1) $\sin \theta \tan \theta = -\frac{3}{2} (90^{\circ} < \theta \le 180^{\circ})$ (2) $2\cos^{2}\theta + 3\sin \theta < 3(0^{\circ} \le \theta \le 180^{\circ})$

解答 (1) $\theta = 120^{\circ}$ (2) $0^{\circ} \le \theta < 30^{\circ}$, $150^{\circ} < \theta \le 180^{\circ}$

(1) $\tan \theta = \frac{\sin \theta}{\cos \theta}$ であるから $\frac{\sin^2\theta}{\cos\theta} = -\frac{3}{2}$ ゆえに $2\sin^2\theta = -3\cos\theta$

 $\sin^2\theta = 1 - \cos^2\theta$ であるから $2(1 - \cos^2\theta) = -3\cos\theta$

整理して $2\cos^2\theta - 3\cos\theta - 2 = 0$

 $\cos\theta = t$ とおくと、 $90^{\circ} < \theta \le 180^{\circ}$ のとき $-1 \le t < 0 \quad \cdots$ (1)

方程式は $2t^2-3t-2=0$

ゆえに (t-2)(2t+1)=0

よって t=2, $-\frac{1}{2}$

① を満たすものは $t=-\frac{1}{2}$

求める解は、 $t=-\frac{1}{2}$ すなわち $\cos\theta=-\frac{1}{2}$ を解いて

(2) $\cos^2\theta = 1 - \sin^2\theta$ であるから $2(1 - \sin^2\theta) + 3\sin\theta < 3$ 整理すると $2\sin^2\theta - 3\sin\theta + 1 > 0$

 $\sin \theta = t$ とおくと、 $0^{\circ} \le \theta \le 180^{\circ}$ のとき $0 \le t \le 1$ ……①

不等式は $2t^2-3t+1>0$

 $t < \frac{1}{2}, 1 < t$ よって

① との共通範囲を求めて $0 \le t < \frac{1}{2}$

求める解は、 $0 \le t < \frac{1}{2}$ すなわち $0 \le \sin \theta < \frac{1}{2}$ を解いて $0^{\circ} \le \theta < 30^{\circ}$, $150^{\circ} < \theta \le 180^{\circ}$

- 4. $\sin\theta + \cos\theta = \frac{\sqrt{2}}{2}~(0^{\circ} < \theta < 180^{\circ})$ のとき,次の式の値を求めよ。
 - (1) $\sin \theta \cos \theta$ (2) $\sin^3 \theta + \cos^3 \theta$ (3) $\sin \theta \cos \theta$

解答 (1) $\sin\theta\cos\theta = -\frac{1}{4}$ (2) $\sin^3\theta + \cos^3\theta = \frac{5\sqrt{2}}{8}$

$$(2) \quad \sin \theta - \cos \theta = \frac{\sqrt{6}}{2}$$

(1) $\sin \theta + \cos \theta = \frac{\sqrt{2}}{2}$ の両辺を 2 乗すると

ゆえに $\sin\theta\cos\theta = -\frac{1}{4}$ ……①

(2) $\sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)$

$$= \frac{\sqrt{2}}{2} \left\{ 1 - \left(-\frac{1}{4} \right) \right\} = \frac{5\sqrt{2}}{8}$$

(3) $0^{\circ} < \theta < 180^{\circ}$ rit $\sin \theta > 0$ robabbb, ① Lb $\cos \theta < 0$

ゆえに $\sin \theta - \cos \theta > 0$ ……②

(1) $\hbar \cdot \delta$ $(\sin \theta - \cos \theta)^2 = 1 - 2\sin \theta \cos \theta = \frac{3}{2}$

よって、②から $\sin\theta - \cos\theta = \sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2}$

5.1辺の長さが1の正八角形の面積を求めよ。

解答 $2(1+\sqrt{2})$

図のように、正八角形を8個の合同な三角形に分け、3点

O, A, Bをとると ∠AOB=360°÷8=45°

OA = OB = a とすると、余弦定理により

 $1^2 = a^2 + a^2 - 2a \cdot a \cos 45^\circ$

整理して $(2-\sqrt{2})a^2=1$

ゆえに $a^2 = \frac{1}{2 - \sqrt{2}} = \frac{2 + \sqrt{2}}{2}$

- 6.1辺の長さが6の正四面体 OABC がある。辺 OA, OB, OC上に, それぞれ点 L, M, N を OL=3, OM=4, ON=2 となるようにとる。このとき、 $\triangle LMN$ の面積を求め

解答 $\frac{5\sqrt{3}}{2}$

△OLM において、余弦定理により

 $LM^2 = OL^2 + OM^2 - 2 \cdot OL \cdot OM\cos 60^\circ$ $=3^2+4^2-2\cdot 3\cdot 4\cdot \frac{1}{2}=13$

△OMNにおいて、余弦定理により

 $MN^2 = OM^2 + ON^2 - 2 \cdot OM \cdot ON\cos 60^\circ$ $=4^2+2^2-2\cdot 4\cdot 2\cdot \frac{1}{2}=12$

△ONL において、余弦定理により

 $NL^2 = ON^2 + OL^2 - 2 \cdot ON \cdot OL\cos 60^\circ = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} = 7$

ゆえに $LM = \sqrt{13}$, $MN = 2\sqrt{3}$, $NL = \sqrt{7}$

したがって $\sin \angle MLN = \sqrt{1 - \left(\frac{4}{\sqrt{91}}\right)^2} = \sqrt{\frac{75}{91}} = \frac{5\sqrt{3}}{\sqrt{91}}$

 \triangle LMN = $\frac{1}{2} \cdot$ LM · NLsin \angle MLN = $\frac{1}{2} \cdot \sqrt{13} \cdot \sqrt{7} \cdot \frac{5\sqrt{3}}{\sqrt{91}} = \frac{5\sqrt{3}}{2}$

以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。

7. $30^{\circ} \le \theta \le 90^{\circ}$ のとき、関数 $y = \sin^2 \theta + \cos \theta + 1$ の最大値、最小値を求めよ。また、そ のときの θ の値も求めよ。

解答 $\theta = 60^{\circ}$ のとき最大値 $\frac{9}{4}$, $\theta = 90^{\circ}$ のとき最小値 2

 $\sin^2\theta = 1 - \cos^2\theta$ であるから

 $y = \sin^2 \theta + \cos \theta + 1 = (1 - \cos^2 \theta) + \cos \theta + 1 = -\cos^2 \theta + \cos \theta + 2$

 $\cos\theta = t$ とおくと、 $30^{\circ} \le \theta \le 90^{\circ}$ のとき

$$0 \le t \le \frac{\sqrt{3}}{2} \quad \dots \quad 1$$

y を t の式で表すと

$$y = -t^2 + t + 2 = -\left(t - \frac{1}{2}\right)^2 + \frac{9}{4}$$

① の範囲において、 y は

$$t=\frac{1}{2}$$
 で最大値 $\frac{9}{4}$,

をとる。

30°≦*θ*≦90° であるから

$$t=\frac{1}{2}$$
 となるのは、 $\cos\theta=\frac{1}{2}$ から $\theta=60^\circ$

t=0 となるのは、 $\cos\theta=0$ から

よって $\theta = 60^{\circ}$ のとき最大値 $\frac{9}{4}$,

 $\theta = 90^{\circ}$ のとき最小値 2

8. $0^{\circ} \le \theta \le 180^{\circ}$ とする。x の 2 次方程式 $x^2 - 2\sqrt{2}(\cos\theta)x + \cos\theta = 0$ が,異なる 2 つの実 数解をもち、それらがともに正となるような θ の値の範囲を求めよ。

解答 $0^{\circ} \le \theta < 60^{\circ}$

判別式を D とし、 $f(x) = x^2 - 2\sqrt{2}(\cos\theta)x + \cos\theta$ とする。

2 次方程式 f(x)=0 が異なる 2 つの正の実数解をもつための条件は、放物線 y=f(x) が x軸の正の部分と、異なる2点で交わることである。

したがって, 次の[1], [2], [3]が同時に成り立つ。

[1]
$$D > 0$$
 [2] $\neq 0$ [3] $f(0) > 0$

[3]
$$f(0) > 0$$

また、 $0^{\circ} \le \theta \le 180^{\circ}$ のとき $-1 \le \cos \theta \le 1$ ……①

$$-1 < \cos \theta < 1 \cdots$$

[1] $\frac{D}{A} = (-\sqrt{2}\cos\theta)^2 - \cos\theta = \cos\theta(2\cos\theta - 1)$

$$\frac{1}{4} = (-\sqrt{2}\cos\theta) = \cos\theta = \cos\theta(2\cos\theta) = \frac{1}{2\cos\theta}$$

$$D > 0 \text{ his}$$
 $\cos \theta < 0, \frac{1}{2} < \cos \theta \quad \dots \quad 2$

[2] 放物線の軸は直線 $x=\sqrt{2}\cos\theta$ であるから

$$\sqrt{2}\cos\theta > 0$$

よって
$$\cos\theta > 0$$
 ……③

- $[3] \quad f(0) > 0 \text{ is } \qquad \cos\theta > 0 \quad \cdots \cdots \text{ } \textcircled{4}$
- ① \sim ④ の共通範囲を求めて $\frac{1}{2} < \cos \theta \le 1$

 $0^{\circ} \le \theta \le 180^{\circ}$ であるから $0^{\circ} \le \theta < 60^{\circ}$

- 9. 円に内接する四角形 ABCD がある。AB=4, BC=5, CD=7, DA=10 のとき
 - cos A の値を求めよ。
- (2) 四角形 ABCD の面積を求めよ。

解答 (1) $\cos A = \frac{7}{25}$ (2) 36

$$\triangle ABD$$
 において、余弦定理により
$$BD^2 = 10^2 + 4^2 - 2 \cdot 10 \cdot 4\cos A$$

△BCD において、余弦定理により

(1) 四角形 ABCD は円に内接するから

 $=116-80\cos A$ ······ ①

$$BD^2 = 7^2 + 5^2 - 2 \cdot 7 \cdot 5\cos(180^\circ - A)$$

 $=74+70\cos A$ ······ ②

①, ② \hbar^2 5 $116 - 80\cos A = 74 + 70\cos A$

ゆえに
$$\cos A = \frac{42}{150} = \frac{7}{25}$$

(2)
$$\sin A > 0$$
 であるから $\sin A = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \frac{\sqrt{576}}{25} = \frac{24}{25}$

$$\sharp \% \sin C = \sin(180^{\circ} - A) = \sin A = \frac{24}{25}$$

よって, 求める面積は

$$\triangle ABD + \triangle BCD = \frac{1}{2}AB \cdot AD\sin A + \frac{1}{2}BC \cdot CD\sin C$$
$$= \frac{1}{2} \cdot 4 \cdot 10 \cdot \frac{24}{25} + \frac{1}{2} \cdot 5 \cdot 7 \cdot \frac{24}{25} = 36$$