YTensorflow

■ Copyright © ~ Yunus Emre AK

Döküman Renklendirme Yapısı

PDF Başlığı

Ana Başlıklar

Alt Başlıklar

İç Başlıklar

En İç Başlıklar

Tablo Başlığı

Bağlantılar

Değişmez ifadeler

Formüller

Önemli notlar

Terimsel ifadeler

Yorum satırları

Website Github 1/31 LinkedIn İletişim

İçerikler

- Temel Bilgileri
 - Hangi İşletim Sistemi Daha iyi
- Tensorflow Kurulumu
 - Anaconda Kurulumu
 - Tensorflow CPU veya GPU Kurulumu
 - Sanal Ortam Oluşturma ve Üzerine Kurma
 - Kurulumu Test Etme
- Tensorflow Algılama Modellerinin Kurulumu
 - Gerekli Paketlerin Kurulumları
 - Linux için OpenCv Kurulumu
 - Script Dosyaları için Gerekli Modüller
 - Tensorflow Models İndirilmesi
 - Models Klasörü Yapısı
 - Protobuflarların İşlenmesi
 - Obje Algılama Kütüphanelerinin Derlenmesi ve Yüklenmesi
 - Gerekli Ortam Değişkenlerinin Tanımlanması
 - Anaconda Ortamı için Otomatik Tanımlama
 - Windows için Otomatik Tanımlama
 - Linux için Otomatik Tanımlama
 - Modellerin Kurulumunu Test Etme
- LabelImg Kurulumu
 - Labelimg Kaynak Kodlarını Derleme
 - LabelImg için Sanal Ortam Oluşturma
 - LabelImg Paketlerini Kurma ve Derleme
 - Labelimg Kurulumunu Test Etme
- Dizin Yapısını Oluşturma
 - Tensorflow Dizininizi Geçici Ortam Değişkenlerine Ekleme
 - Tensorflow Dizininizi Kalıcı Olarak Ortam Değişkenlerine Ekleme
 - Temel Klasörlerin Oluşturulması
 - Temel Dizin Yapısı
 - Çalışma Alanı Yapısı
 - Data Dizini Yapısı
 - Models Dizini Yapısı
- Özelleştirilmiş Tensorflow Obje Algılayıcısı Eğitme
 - Resim Etiketleme İşlemi
 - Derlenmiş LabelImg
 - Python ile LabelImg
 - Etiket Yollarını veya Adlarını Düzenleme
 - Etiket Haritası Oluşturma
 - Tensorflow Kayıtları Oluşturma
 - Resimlerdeki Hataları Bulma
 - Verileri Yeniden Adlandırma ve XML Hatalarını Düzeltme
 - Etiketlenmemiş Resimleri Bulma

Website Github 2/31 LinkedIn İletişim

- XML'i CSV'ye Çevirme
- CSV'lerden Resim Bilgilerini Analiz Etme
- CSV'yi Record'a Çevirme
- Bağlantıları (pipeline) Yapılandırma
 - Modellin İndirilmesi ve Gerekli Yere Taşınması
 - Modellin Yapılandırma Dosyaları
 - Modelin Yapılandırma Dosyasını Düzenleme
- Modeli Eğitme
 - Eğitim Scriptlerini Çalışma Alanına Kopyalama
 - Eğitimde Raporlanacak Seviyeyi Ayarlama (isteğe Bağlı)
 - Modeli train.py Dosyası ile Eğitime
 - Eğitime Başladığında Gelen Örnek Çıktı
 - Modeli model main.py Dosyası ile Eğitme
 - Eğitim için Gereksinimlerin Kurulması
 - Windows için PyCocoTools Kurulumu
 - Linux için Cocotools
 - Eğitimi Hazırlama ve Başlatma
 - Eğitimi Etkileyen Faktörler
 - Eğitim İşlemini TensorBoard Kullanarak Takip Etme
 - Sonuç Grafiğini Dışarı Aktarma
- Hata Notları ve Açıklamaları
 - 'conda' is not recognized as an internal or external command
 - '...' is not recognized as an internal or external command
 - 'ImportError: No module named' Hataları
 - 'dict keys' object does not support indexing
 - Object was never used (type <class 'tensorflow.python.framework.ops.Tensor'>)
 - 'unicodeescape' codec can't decode bytes in position
 - Allocation of X exceeds 10% of system memory
 - google.protobuf.text_format.ParseError, Expected string but found
 - Value Error: No Variable to Save
- Colab Üzerinden Tensorflow Modelini Eğitme
 - Colab Eğitimi için Gereken Dosyalar
 - Colab Üzeriinden Eğitim Kodları
- Web Kamerası Kullanarak Obje Tespit Etme
- Harici Bağlantılar
 - Başlangıç için İdeal Olanlar
- Önemli Notlar
- Yapılacaklar
 - Sonra Yapılacaklar
 - Sonradan Eklenecek Scriptleştirme
 - Sonradan Derlenecek Bilgiler
 - TF Verilerini Alma
 - Recover the images from the TFRecord file
- Lisans ve Teferruatlar

Website Github 3/31 LinkedIn İletişim

Temel Bilgileri

- Python dili üzerinde makine öğrenimi gibi işlemler için Google tarafından sunulan kütüphanedir.
- Yabancı Kaynaklar: 🛛 🖺

Hangi İşletim Sistemi Daha iyi

Linux daha iyidir []

Kaynak için buraya bakabilrisin.

Tensorflow Kurulumu

- Tensorflow anaconda üzerinden daha sağlıklı, taşınabilir ve verimli çalışabilmekte
- Anacondanın sanal ortamları, paketlerin çakışmasını engelleyecektir
- Anaconda'nın tensorflowdaki avantajı için buraya göz atabilirsin.

Anaconda Kurulumu

Anaconda kurulumu için buraya tıklayarak onun için hazırladığım dökümana erişebilirsin.

Tensorflow CPU veya GPU Kurulumu

- Bu kurulum CPU kurulumu olarak da geçmekte
- GPU kurulumu CPU'ya nazaran oldukça hızlı eğitim seçeneği sağlar
- GPU kurulumu için gereksinimleri sağlıyorsanız GPU kurulumu (tensorflow-gpu) yapmanız tavsiye edilir

Sanal Ortam Oluşturma ve Üzerine Kurma

```
conda create -n tensorflow tensorflow # CPU kurulumu
conda create -n tensorflow tensorflow-gpu # GPU kurulumu
```

Kurulumu Test Etme

Alttaki komnut ile 'Hello, TensorFlow!' çıktısın almanız gerekmektedir.

```
python -c
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
```

Website Github 4/31 LinkedIn İletişim

Tensorflow Algılama Modellerinin Kurulumu

- Algılama modelleri tabloma erişmek için buraya tıklayabilirsin
 - Resmi sitesi için buraya bakabilirsin
- Video üzerinden açıklama için buraya bakabilirsin

Resmi açıklamalar models/research/object_detection/g3doc dizinindedir.

Gerekli Paketlerin Kurulumları

Tensorflow modellerini kullanabilmek için alttaki kurulumlara da ihtiyaç olabilmekte:

```
conda install opencv pillow matplotlib pandas jupyter
```

Modül bulunamaması gibi durumlarda 1xm1, protobuf paketlerini yüklemeyi deneyebilirsin.

Linux için OpenCv Kurulumu

GTK ve FFMPEG hatasını engellemek için pip ile kurulum yapın

```
pip install opency-contrib-python
```

Script Dosyaları için Gerekli Modüller

```
pip install pynput # detect_from_desktop
```

Tensorflow Models İndirilmesi

Alttaki talimatler ve komutlar yardımıyla tensorflow modellerini kurun:

- Modelleri indirmek için buraya tıklayabilirsin
- İstersen buraya tıklayarak github linkine erişebilirsin
- İndirdiğiniz dosyanın içindekileri models dizinine koymanız gerekmektedir.

Bu adından sonrası models/research/ dizininde gerçekleştirilmelidir.

```
powershell.exe Expand-Archive models-master.zip .
ren models-master models
move models %TENSORFLOW%
cd %TENSORFLOW%\models\research\
```

Website Github 5/31 LinkedIn İletişim

Models Klasörü Yapısı

```
+ models
+ offical
+ research
+ sample
...
```

Protobuflarların İşlenmesi

Protobuf dosyaları (.proto uzantılı olan dosyalar) python kodlanı oluşturmak için kullanılan dosyalardır.

TensorFlow/models/research/dizininde

Windows:

```
for /f %i in ('dir /b object_detection\protos\*.proto') do protoc
object_detection\protos\%i --python_out=.
```

Linux:

```
protoc object_detection/protos/*.proto --python_out=.
```

Protobuflarların işlenmesiyle . py uzantılı dosyalar oluşacaktır

Obje Algılama Kütüphanelerinin Derlenmesi ve Yüklenmesi

```
# TensorFlow/models/research/ dizininde
python setup.py build
python setup.py install
```

Website Github 6/31 LinkedIn İletişim

Gerekli Ortam Değişkenlerinin Tanımlanması

Eğer daha önceden tanımlı PYTHONPATH ortam değişkeniniz yoksa ilk olan, varsa ikinci olan komutu kullanın.

Bu ortam değişkenlerinin terminalin her açılışında yazılması gerekmetedir.

set

PYTHONPATH=%TENSORFLOW%\models\research\slim;%TENSORFLOW%\models\research\slim;%TENSORFLOW%\models\research\object_detection

set

PYTHONPATH=%PYTHONPATH%;%TENSORFLOW%\models\research;%TENSORFLOW%\models\research\slim;%TENSORFLOW%\models\research\object_detection

Anaconda Ortamı için Otomatik Tanımlama

- Her conda activate <ortam_ismi> komutu yazıldığında ortamlar dahil edilir
- Her conda deactivate yazıldığında ortamlar kaldırılır

Windows için Otomatik Tanımlama

```
cd <conda_ortami_yolu>
mkdir .\etc\conda\activate.d
echo set
PYTHONPATH=%TENSORFLOW%\models\research;%TENSORFLOW%\models\research\slim;%TEN
SORFLOW%\models\research\object_detection >
.\etc\conda\activate.d\env_vars.bat
```

Linux için Otomatik Tanımlama

Resmi kaynak için buraya bakabilirsin.

```
cd <conda_ortami_yolu>
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
echo export
PYTHONPATH=${PYTHONPATH}:${TENSORFLOW}/models/research:${TENSORFLOW}/models/re
search/slim:${TENSORFLOW}/models/research/object_detection >
etc/conda/activate.d/env_vars.sh
echo unset PYTHONPATH > etc/conda/deactivate.d/env_vars.sh
```

- <conda_ortami_yolu> Conda ortamının kurulduğu yol
 - Örn: %USERPROFILE%\Anaconda3\envs\tensorflow-cpu

Website Github 7/31 LinkedIn İletişim

Modellerin Kurulumunu Test Etme

Jupyter notebook ile API'ları test etmemzi gerekmekte.

```
cd object_detection
jupyter notebook
```

Jupyter notebook hakkında bilgi sahibi değilsen buraya tıklayarak ne yapman gerektiğini öğrenebilirsin.

Labelimg Kurulumu

- Labelimg tensorflow modelleri için etiketleme amaçlı kullanılmaktadır
- Derlenmiş sürümünü indirmek için buraya tıklayabilirsin

İndirilen dosyayı %TENSORFLOW%\addons dizinine atmanız daha verimli bir çalışma sağlayacaktır.

Labelimg Kaynak Kodlarını Derleme

LabelImg için Sanal Ortam Oluşturma

Tensorflow ortamının alt paketlerini etkilememsi için ek bir sanal ortamda kurulum sağlamalıyız.

```
conda create -n labelImg pyqt # QT grafik kütüphanesi
conda activate labelImg
conda install -c anaconda lxml
```

Labelimg Paketlerini Kurma ve Derleme

Paketlerin kurulumu için alttaki talimatları sırayla uygulayın:

- Labelimg dosyalarını indirmek için buraya tıklayın
- Diğer işlemler için indirdiğiniz dosya dizininde cmd açıp alttaki komutları yazın

```
# labelImg-master.zip dizininde
powershell.exe Expand-Archive labelImg-master.zip .
ren labelImg-master labelImg
mkdir %TENSORFLOW%\addons
move labelImg %TENSORFLOW%\addons
cd %TENSORFLOW%\addons\labelImg
pyrcc5 -o resources.py resources.qrc # QT grafiklerinin oluşturulması
```

'pyrcc5' is not recognized as an internal or external command hatası gelirse, yüklediğiniz pyqt sürümüne göre komutu kullanın (pyrcc<pyqt_sürümü_ilk_basamağı>)

Website Github 8/31 LinkedIn İletişim

Labellmg Kurulumunu Test Etme

```
conda activate tensorflow-cpu
cd %TENSORFLOW%\addons\labelImg
python labelImg.py
# python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
```

Dizin Yapısını Oluşturma

Tensorflow Dizininizi Geçici Ortam Değişkenlerine Ekleme

Alttaki komut yardımıyla açık olan cmd ekranına ortam değişkeni tanımlayabilirsiniz.

```
set TENSORFLOW=<dizin_yolu>
```

- <dizin_yolu> Tensorflow'u kurmak istediğiniz dizin
 - Örn: "C:\Tensorflow"

Tensorflow Dizininizi Kalıcı Olarak Ortam Değişkenlerine Ekleme

- Bilgisayarıma sağ tıklayın Ayarlar kısmına girin
- Sol alanda Gelişmiş Sistem Ayarları'na tıklayın
- Açılan ekranda Ortam Değişkenleri butonuna tıklayın
- Üst kısımdaki kullanıcı değişkenleri alanında Yeni butonuna tıklayın
- Değişken ismine: Tensorflow Değerine: 'dizin yolunuzu' yazın

Temel Klasörlerin Oluşturulması

İlerideki yapı için bu dizinin yolu %TENSORFLOW% olarak ifade edilecektir.

Proje yapısı tavsiye edilen dizin yapısına örnek olacak şekilde oluşturulmuştur.

Düzgün ve verimli çalışmak için buradaki yapıyı kullanmanız önerilir.

```
mkdir %TENSORFLOW%\workspace\example_detection
mkdir %TENSORFLOW%\workspace\example_detection\data
mkdir %TENSORFLOW%\workspace\example_detection\images\train
mkdir %TENSORFLOW%\workspace\example_detection\images\test
mkdir %TENSORFLOW%\workspace\example_detection\models
```

Website Github 9/31 LinkedIn İletişim

Temel Dizin Yapısı

```
+ addons
+ docs
+ models
+ scripts
+ workspace
    + example_detection
        + data
        + models
            + <model_ismi>
                 + eval
                 + train
                 - *.config
             + <model_ismi>
                 + eval
                 + train
                 - *.config
                 . . .
             . . .
    + example2_detection
        + data
        + models
            + <model_ismi>
                 + eval
                 + train
                 - *.config
             + <model_ismi>
                 + eval
                 + train
                 - *.config
                 . . .
             . . .
        . . .
    . . .
```

Dizin	Açıklama
addons	Labellmg vs.
docs	Dökümanlar
models	Tensorflow Models dosyası
scripts	Kullanacağınız ortak kod parçaları
workspace	Çalışma Alanı

Website Github 10/31 LinkedIn İletişim

Çalışma Alanı Yapısı

Dizin Açıklama

data Eğitime katılacak verileri (test.record, train.record, label_map) içeririr.

model Eğitilecek modellerin dosyalarını içerir.

Data Dizini Yapısı

Dosya	Açıklama		
label_map.pbtxt	Etiket haritası dosyası		
test.record	Test için kullanılacak tensorflow kayıtları (TF record)		
train.record	Eğitim için kullanılacak tensorflow kayıtları (TF record)		

Website Github 11/31 LinkedIn İletişim

Models Dizini Yapısı

Her bir model için ayrı dizinler oluşturulur.

İsim	Tipi	Açıklama
eval	Dizin	Test sonuçları burada tutulur.
train	Dizin	Eğitim çıktıları burada tutulur
.config	Dosya	Yapılandırma dosyası

Website Github 12/31 LinkedIn İletişim

Özelleştirilmiş Tensorflow Obje Algılayıcısı Eğitme

Özelleştirilmiş model eğitmek için alttakilerin yapılmış olması gerekmektedir:

- Tensorflow CPU veya GPU kurulumu
- Tensorflow modellerinin kurulumu
- Labelimg kurulumu

Resim Etiketleme İşlemi

Etiketleme işlemini labelimg üzerinden yapmaktayız.

Derlenmiş LabelImg

İndirdiğiniz dizindeki labelimg. exe dosyasını çalıştırmanız yeterlidir.

Python ile LabelImg

İşlemleri Anconda Prompt ile işlemler yapmalıyız.

```
conda activate labelImg
cd %TENSORFLOW%\addons\labelImg
python labelImg.py ..\..\workspace\example_detection\images # çıktıları
hedefleme
```

Labellmg kullanımı için bu videoya bakabilirsin.

Etiket Yollarını veya Adlarını Düzenleme

XML ve resim dosyalarını başka bir yolda oluşturduyasan alttaki script yardımıyla düzeltebilirsin

- Script dosyasını buraya tıklayarak indirmeli ve gerekli dizine alttaki komutla koymalıyız
- Komutları Anaconda Prompt üzerinden tensorflow ortamını aktif ederek uygulamayı unutmayın.

```
# Train verilerini yeniden adlandırma ve düzeltme
python xml_path_regulator.py -i
%TENSORFLOW%\workspace\example_detection\images\train -p train

# Test verilerini yeniden adlandırma ve düzeltme
python xml_path_regulator.py -i
%TENSORFLOW%\workspace\example_detection\images\test -p test
```

Website Github 13/31 LinkedIn İletişim

Etiket Haritası Oluşturma

- Alttaki komutla açılan dizinde .pbtxt uzantılı etiket haritası dosyasısı oluşturun
- Örnek dosya yapısı komutların altındadır.

```
cd %TENSORFLOW%\workspace\example_detection\annotations
start .
```

```
item {
   id: 1
   name: 'cat'
}
item {
   id: 2
   name: 'dog'
}
```

cat ve dog etiket isimleridir

Tensorflow Kayıtları Oluşturma

- Resim verileri toplanır veya çekilir.
- Toplanan resimler labelimq yardımıyla etiketlenir ve .xml uzantılı dosyaları oluşturulur.
- images dizinine **resimler** ve onlara ait **xml** dosyaları %80'i test %20'i test olacak şekilde klasörlere ayrılarak yerleştirilir.
- scripts/preprocessing dizindeki xml_path_regulator.py scripti aracılığıyla xml ve resimlerde yol sorunları düzeltilir, veriler yeniden adlandırılır.
- scripts/preprocessing dizindeki xml_to_csv.py scripti aracılığıyla veriler .csv uzantılı tablosal bir dosyaya dönüştürülür.
- Oluşturulan csv dosyasında resimlerin etiketlerine göre sayıları tablo olarak gösterilir. (Excel yardımıyla)
- Verilerde denge durumunun (her veriden yaklaşık olarak aynı sayıda varsa) kontrolü yapılır.
- Her çeşit veri için bir id belirtilecek şekilde label_map.pbtxt adlı etiket haritası oluşturulur
- Oluşturulan csv, etiket haritası ve resim verileri scripts/preprocessing dizindeki generate_tfrecord.py scripti aracılığıyla veriler .record uzantılı kayıtlara dönüştürülür.
- Seçilen modele özgü yapılandırma dosyası indirilir.
- Yapılandırma dosyası olan *.config dosyasındaki PATH_TO_CONFIGURED olarak işaretlenen alanlar, num_classes, num_examples ve batch_size değerleri güncellenir.
 - num_examples test dizindeki resim sayısıdır (toplam class sayısı değil)

Website Github 14/31 LinkedIn İletişim

Resimlerdeki Hataları Bulma

Resimlerde hata olduğu zaman eğitim aşamasında tensorflow modeli çalışma hatası vermektedir. Resimleri kontrol etmek için buradaki scripti alttaki komutlarla kullanabilirsiniz.

```
python scripts\preprocessing\check_images.py -i
workspace\example_detection\images\train

python scripts\preprocessing\check_images.py -i
workspace\example_detection\images\test
```

Verileri Yeniden Adlandırma ve XML Hatalarını Düzeltme

LabelImg ile etiketlediğiniz resimleri farklı bir dizine taşımanız durumunda XML dosyalarındaki yollar uyuşmayacaktır. XML dosya yollarını düzeltmek, etiketsiz resimleri görüntülemek için buradaki script dosyamı alttaki komutlar ile kullanabilirsiniz.

```
python scripts\preprocessing\xml_path_regulator.py -i
%TENSORFLOW%\workspace\example_detection\images\train -p train

python scripts\preprocessing\xml_path_regulator.py -i
%TENSORFLOW%\workspace\example_detection\images\test -p test
```

Etiketlenmemiş Resimleri Bulma

Etiketlenmemiş resimleri buradaki script dosyası ile alttaki komutlar ile kullanabilirsiniz.

Eğer XML scriptini kullandıysanız bu kontrolü yapmanıza gerek yoktur, XML scripti bunu zaten yapmaktadır.

```
python scripts\preprocessing\find_unlabeled_imgs.py -i
%TENSORFLOW%\workspace\example_detection\images\train

python scripts\preprocessing\find_unlabeled_imgs.py -i
%TENSORFLOW%\workspace\example_detection\images\test
```

Website Github 15/31 LinkedIn İletişim

XML'i CSV'ye Çevirme

XML dosyalarını CSV dosyasında toparlamak için buradaki scripti alttaki komutlar ile kullanabilirsin.

Komutları **Anaconda Prompt** üzerinden **tensorflow** ortamını aktif ederek uygulamayı unutmayın.

```
# Create train data:
python scripts\preprocessing\xml_to_csv.py -i
%TENSORFLOW%\workspace\example_detection\images\train -o
%TENSORFLOW%\workspace\example_detection\images\train_labels.csv

# Create test data:
python scripts\preprocessing\xml_to_csv.py -i
%TENSORFLOW%\workspace\example_detection\images\test -o
%TENSORFLOW%\workspace\example_detection\images\test_labels.csv
```

CSV'lerden Resim Bilgilerini Analiz Etme

Her bir etiketten kaç tane olduğunu anlamak için csv dosyalarını açıp alltaki yöntemi uygulayın.

- class hücresiinin bir altındaki hücreyi seçin
- ctrl + shift + aşağı ok ile tüm sınıf verilerini seçin
- Sağ alttaki butona tıklayın
- Tables sekmesine gelin
- Açılan sekmede Pivot Table butonuna tıklayın
- Tablo'dan etiketlenen verileri kontrol edin
- Fazladan etiketlenmiş verilerin ismini bulup, filename, width vs. verilerin yazıldığı alanda CTRL + F komutu ile aratıp, uygun dosya ismini ve xml dosyasını silin

Website Github 16/31 LinkedIn İletişim

	А	R	C	D		F	G	Н	
	filename	width	height	class	xmin	ymin	xmax	ymax	
2	dur (1).jpg	1680	1050	hiz_yirmi	1419	139	1662	37	71
3	dur (1).jpg	1680	1050	dur	942	459	960	49	97
4	dur (1).jpg	1680	1050	trafige_ka	920	472	946	50	8
5	dur (10).jp	1680	1050	dur	944	453	974	48	39
6	dur (100).	1680	1050	dur	1116	339	1190	46	51
7	dur (100).	1680	1050	trafige_ka	972	431	1038	49	92
8	dur (101).		1050		1131	341	1185	45	51
9	dur (101).		1050	trafige_ka	973	432	1041	49	96
10	dur (102).		1050		1136	325		44	
1	dur (102).			trafige_ka	1	430		48	38
12	dur (103).		1050		1128	323		45	
13	dur (103).			trafige ka		434		48	
14	dur (104).		1050		1150	323		45	
15	dur (104).			trafige_ka		437		48	
16	dur (105).		1050		1155	316		44	
17	dur (105).			trafige_ka		433		48	
18	dur (105).		1050		1159	307		44	
19	dur (106).			trafige_ka		434		49	
20	dur (100).		1050		1171	312		43	
21						433		49	
	dur (107).		1050	trafige_ka					
22	dur (108).				1176	296		44	
23	dur (108).			trafige_ka		426		49	
10		IDXII	1050	aur	1126	748	1265	41-	29
24	dur (109).				1186	298	1265	43	39
.4	4 +	train_la	abels	+					39
	Α	train_la	abels C	(+)	E	F	G	н	1 I
yir	A mi_son	train_la	C 1050 yir	⊕ υ mi_son	E 937	F 402	G 1018	H 479	I .
yir yir	A mi_son mi_son	train_la B 1680 1680	C 1050 yir 1050 yir	⊕ D mi_son mi_son	937 942	H 402 396	G 1018 1022	H 479 478	1
yir yir yir	A mi_son mi_son mi_son	train_la B 1680 1680 1680	1050 yir 1050 yir 1050 yir	mi_son	937 942 948	+ 402 396 400	G 1018 1022 1031	H 479 478 483	I
yir yir yir	A mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680	1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son	937 942 948 950	H 402 396 400 392	G 1018 1022 1031 1043	H 479 478 483 484	I
yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953	H 402 396 400 392 399	G 1018 1022 1031 1043 1046	H 479 478 483 484 481	I
yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956	402 396 400 392 399 397	G 1018 1022 1031 1043 1046 1054	H 479 478 483 484 481 480	I
yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968	H 402 396 400 392 399 397 391	G 1018 1022 1031 1043 1046 1054 1052	H 479 478 483 484 481 480 475	I
yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 1680	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968 967	402 396 400 392 399 397 391 389	G 1018 1022 1031 1043 1046 1054 1052 1056	H 479 478 483 484 481 480 475 472	I
yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968	H 402 396 400 392 399 397 391	G 1018 1022 1031 1043 1046 1054 1052	H 479 478 483 484 481 480 475	1
yir yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968 967 972 962	402 396 400 392 399 397 391 389 388 443	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1026	H 479 478 483 484 481 480 475 472 482 497	I
yir yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968 967 972	+ 402 396 400 392 399 397 391 389 388	G 1018 1022 1031 1043 1046 1054 1052 1056 1062	H 479 478 483 484 481 480 475 472 482	I
yir yir yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968 967 972 962	402 396 400 392 399 397 391 389 388 443	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1026	H 479 478 483 484 481 480 475 472 482 497	I
yir yir yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979	H 402 396 400 392 399 397 391 389 388 443 393	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1026 1073	H 479 478 483 484 481 480 475 472 482 497 478	
yir yir yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979	402 396 400 392 399 397 391 389 388 443 393 383	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1026 1073 1078	H 479 478 483 484 481 480 475 472 482 497 478	I
yir yir yir yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979 974	402 396 400 392 399 397 391 389 388 443 393 383 396	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1073 1078 1081	H 479 478 483 484 481 480 475 472 482 497 478 487	
yir yir yir yir yir yir yir yir yir	A mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979 974 984	402 396 400 392 399 397 391 389 388 443 393 383 396 388	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1026 1073 1078 1081 1089	H 479 478 483 484 481 480 475 472 482 497 478 487 478	
yir yir yir yir yir yir yir yir yir yir	A mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979 974 984 982 991	H 402 396 400 392 399 397 391 389 388 443 393 383 396 388 374	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1073 1078 1081 1089 1081	H 479 478 483 484 481 480 475 472 482 497 478 487 478 478 488	
yir yir yir yir yir yir yir yir yir	A mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979 974 984 982 991	+ 402 396 400 392 399 397 391 389 388 443 393 383 396 388 374 389	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1073 1078 1081 1089 1081 1097	H 479 478 483 484 481 480 475 472 482 497 478 487 478 478 482 469	
yir yir yir yir yir yir yir yir yir yir	A mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979 974 984 982 991	H 402 396 400 392 399 397 391 389 388 443 393 383 396 388 374 389 381	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1073 1078 1081 1089 1081 1097 1108	H 479 478 483 484 481 480 475 472 482 497 478 487 478 478 478 478 469 479	
yir yir yir yir yir yir yir yir yir yir	A mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979 974 984 982 991 994 1009 1015	+ 402 396 400 392 399 397 391 389 388 443 393 383 396 388 374 389 381 375	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1073 1078 1081 1089 1081 1097 1108	H 479 478 483 484 481 480 475 472 482 497 478 487 478 478 469 479	
yir yir yir yir yir yir yir yir yir yir	A mi_son	train_la B 1680 1680 1680 1680 1680 1680 1680 168	1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir 1050 yir	mi_son mi_son	937 942 948 950 953 956 968 967 972 962 979 974 984 982 991 994 1009 1015 1022	402 396 400 392 399 397 391 389 388 443 393 383 396 388 374 389 381 375 379	G 1018 1022 1031 1043 1046 1054 1052 1056 1062 1073 1078 1081 1089 1081 1097 1108 1109 1117	H 479 478 483 484 481 480 475 472 482 497 478 487 478 478 478 479 472 468	

3	Row Labels V Cou	int of class
1	dur	1075
,	durak	1185
5 7 8	gec	1154
7	giris_yasak	938
3	hiz_otuz	1037
)	hiz_yirmi	1153
0	park	1949
1	park_yasak	2405
2	sag_ileriden	1003
3	sag_yasak	1747
4	sol_ileriden	954
5	sol_yasak	1787
6	trafige_kapali	1447
7	yirmi_son	999
8	Grand Total	18833
9		

CSV'yi Record'a Çevirme

CSV dosyalarını TF kayıtlarına çevirmek için buradaki scripti alttaki komutlar ile kullanabilirsin.

Komutları Anaconda Prompt üzerinden tensorflow ortamını aktif ederek uygulamayı unutmayın.

```
python generate_tfrecord.py --
label_map=%TENSORFLOW%\workspace\example_detection\data\label_map.pbtxt --
csv_input=%TENSORFLOW%\workspace\example_detection\images\train_labels.csv --
img_path=%TENSORFLOW%\workspace\example_detection\images\train.record

python generate_tfrecord.py --
label_map=%TENSORFLOW%\workspace\example_detection\data\label_map.pbtxt --
csv_input=%TENSORFLOW%\workspace\example_detection\images\test_labels.csv --
img_path=%TENSORFLOW%\workspace\example_detection\images\test_--
output_path=%TENSORFLOW%\workspace\example_detection\images\test --
output_path=%TENSORFLOW%\workspace\example_detection\images\test --
output_path=%TENSORFLOW%\workspace\example_detection\images\test.record
```

Bağlantıları (pipeline) Yapılandırma

Tensorflow'un resmi açıklaması için buraya tıklayabilirisin

Modellin İndirilmesi ve Gerekli Yere Taşınması

- Tensorflow önceden eğitilmiş modelleri indirmek için buraya tıklayabilrisin
- tar.gz uzantılı olacağı için winrar ya da 7zip gibi ek uygulamalarla buraya çıkart demen gerekmekte
 - Klasör'e çıkart değil buraya çıkart diyeceksiniz.

Klasör içinde aynı isimde başka klasör olmasın

```
# Modelin çıkartıldığı dizinde
cd <model_ismi>
move * %TENSORFLOW%\workspace\example_detection\pre_trained_model
move saved_model %TENSORFLOW%\workspace\example_detection\pre_trained_model
cd %TENSORFLOW%\workspace\example_detection\pre_trained_model
```

- <model_ismi> Seçip, indirdiğiniz .tar.gz uzantılı dosyanın adı
 - TAB tuşu ile dizindeki dosya adlarını tamamlayabilirsiniz
 - *.tar.gz uzantısı yazılmayacak
 - Örn: ssd_inception_v2_coco_2018_01_28
 - Örn: ssd_mobilenet_v1_ppn_shared_box_predictor_300x300_coco14_sync_2018_07_03

Website Github 19/31 LinkedIn İletişim

Modellin Yapılandırma Dosyaları

Seçtiğiniz modelin *.config dosyasını example_detection/training klasörü altına kopyalamanız gerekmekte.

mkdir %TENSORFLOW%\workspace\example_detection\training

copy %TENSORFLOW%\models\research\object_detection\samples\configs\
<model_ismi>.config %TENSORFLOW%\workspace\example_detection\training

- <model_ismi> Seçip, indirdiğiniz .tar.gz uzantılı dosyanın adı
 - TAB tuşu ile dizindeki dosya adlarını tamamlayabilirsiniz
 - *.tar.gz uzantısı yazılmayacak
 - Tarih son ekini içermemeli
 - *_2018_07_03.tar.gz ise *.tar.gz olarak yazılmalı
 - Örn: ssd_inception_v2
 - Örn: ssd_mobilenet_v1_ppn_shared_box_predictor_300x300_coco14_sync

Modelin Yapılandırma Dosyasını Düzenleme

Yapılandırma örnek dosyası için buraya bakabilirsin.

Düzenlenecek Satır	Açıklama	Örnek
num_classes	Etiket türü sayısı	2
batch_size	Toplu işleme boyutu	24
num_steps	Adım sayısı	2000
fine_tune_checkpoint	Eğitilmiş modelin yolu	"./pre_trained_model/model.ckpt"
label_map_path	Etiket haritası yolu	"./annotations/train.record"
input_path	Train dosyası yolu	"./annotations/train.record"
input_path	Test dosyası yolu	"./annotations/test.record"

Website Github 20/31 LinkedIn İletişim

Modeli Eğitme

Modeli eğitmek için train.py script dosyasını kullanacağız.

Modeli önerilen dosya olan model_main.py ile eğitmek için buraya bakmalısın.

Eğitim Scriptlerini Çalışma Alanına Kopyalama

Çalışma ortamının düzgün ilerlemesi adına alttaki komut ile gerekli yere scripti kopyalayalım

copy %TENSORFLOW%\models\research\object_detection\legacy\train.py
%TENSORFLOW%\workspace\example_detection
copy %TENSORFLOW%\models\research\object_detection\model_main.py

Eğitimde Raporlanacak Seviyeyi Ayarlama (isteğe Bağlı)

Eğitimde uyarı ve bilgileri gizlemek için TF_CPP_MIN_LOG_LEVEL adlı ortam değişkeni oluşturup seviyesini tanımlıyoruz

```
set TF_CPP_MIN_LOG_LEVEL=2
```

Modeli train.py Dosyası ile Eğitime

TODO Daha düzgün ve detaylı linkli bir yazı ekle

Eskimiş olan bir eğitim kodudur, model_main.py kod dosyası tensorflow tarafından önerilir.

```
python train.py --logtostderr --train_dir=training/ --
pipeline_config_path=training\<yapılandırma_dosyası>
```

- <yapılandırma_dosyası> Modelimizin yapılandırma dosyasının tam adı
 - training klasörüne attığımız yapılandırma dosyaları
 - Örn: ssd_inception_v2_coco.config

Website Github 21/31 LinkedIn İletişim

Eğitime Başladığında Gelen Örnek Çıktı

```
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO: tensorflow: Restoring parameters from
ssd_inception_v2_coco_2017_11_17/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO: tensorflow: Starting Session.
INFO:tensorflow:Saving checkpoint to path training\model.ckpt
INFO: tensorflow: Starting Queues.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:global step 1: loss = 13.8886 (12.339 sec/step)
INFO:tensorflow:global step 2: loss = 16.2202 (0.937 sec/step)
INFO:tensorflow:global step 3: loss = 13.7876 (0.904 sec/step)
INFO:tensorflow:global step 4: loss = 12.9230 (0.894 sec/step)
INFO:tensorflow:global step 5: loss = 12.7497 (0.922 sec/step)
INFO:tensorflow:global step 6: loss = 11.7563 (0.936 sec/step)
INFO:tensorflow:global step 7: loss = 11.7245 (0.910 sec/step)
INFO:tensorflow:global step 8: loss = 10.7993 (0.916 sec/step)
INFO:tensorflow:global step 9: loss = 9.1277 (0.890 sec/step)
INFO:tensorflow:global step 10: loss = 9.3972 (0.919 sec/step)
INFO:tensorflow:global step 11: loss = 9.9487 (0.897 sec/step)
INFO:tensorflow:global step 12: loss = 8.7954 (0.884 sec/step)
INFO:tensorflow:global step 13: loss = 7.4329 (0.906 sec/step)
INFO:tensorflow:global step 14: loss = 7.8270 (0.897 sec/step)
INFO:tensorflow:global step 15: loss = 6.4877 (0.894 sec/step)
```

Website Github 22/31 LinkedIn İletişim

Modeli model main.py Dosyası ile Eğitme

Bu dosya ile eğitim önerilen eğitim şeklidir.

- train.py ile eğitime nazaran, kaldığı yerden devam eder
 - 1000 adım yapıldıysa, ikinci eğitimi 1200 yaptığınızda 200 adım eğitir
 - train.py eğitiminde modelin sonucunun ayırılıp, sonuç üzerinden eğitim yapılması gerekir

Eğitim dosyaları arasında performans veya kalite farkı yoktur, kaynak için buraya bakabilirsin.

Eğitim için Gereksinimlerin Kurulması

Eğitim için pycocotools kurulumu gereklidir

Windows için PyCocoTools Kurulumu

Windows desteğiyle kurulum yapmak için alttaki komutu koşturun

```
pip install
git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
```

Açıklama için buraya bakabilirsin.

Linux icin Cocotools

```
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools /content/models/research/
cd ../..
rm -rf cocoapi
```

Website Github 23/31 LinkedIn İletişim

Eğitimi Hazırlama ve Başlatma

Resmi kaynağa ulaşmak için buraya bakabilirsin.

- model_main.py eğitim için önerilen dosyadır
- Varsayılan olarak ekrana raporlama yapmaz, yapmasını isterseniz buraya bakabilirsiniz

```
# From the tensorflow/models/research/ directory
PIPELINE_CONFIG_PATH={path to pipeline config file}
MODEL_DIR={path to model directory}
NUM_TRAIN_STEPS=50000
SAMPLE_1_OF_N_EVAL_EXAMPLES=1
python object_detection/model_main.py \
    --pipeline_config_path=${PIPELINE_CONFIG_PATH} \
    --model_dir=${MODEL_DIR} \
    --num_train_steps=${NUM_TRAIN_STEPS} \
    --sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \
    --alsologtostderr
```

Eğitimi Etkileyen Faktörler

Training times can be affected by a number of factors such as:

- The computational power of you hardware (either CPU or GPU): Obviously, the more powerful your PC is, the faster the training process.
- Whether you are using the TensorFlow CPU or GPU variant: In general, even when compared to the best CPUs, almost any GPU graphics card will yield much faster training and detection speeds. As a matter of fact, when I first started I was running TensorFlow on my Intel i7-5930k (6/12 cores @ 4GHz, 32GB RAM) and was getting step times of around 12 sec/step, after which I installed TensorFlow GPU and training the very same model using the same dataset and config files- on a EVGA GTX-770 (1536 CUDA-cores @ 1GHz, 2GB VRAM) I was down to 0.9 sec/step!!! A 12-fold increase in speed, using a "low/mid-end" graphics card, when compared to a "mid/high-end" CPU.
- How big the dataset is: The higher the number of images in your dataset, the longer it will take for the model to reach satisfactory levels of detection performance.
- The complexity of the objects you are trying to detect: Obviously, if your objective is to track a black ball over a white background, the model will converge to satisfactory levels of detection pretty quickly. If on the other hand, for example, you wish to detect ships in ports, using Pan-Tilt-Zoom cameras, then training will be a much more challenging and time-consuming process, due to the high variability of the shape and size of ships, combined with a highly dynamic background.
- And many, many, many, more. . . .

Website Github 24/31 LinkedIn İletişim

Eğitim İşlemini TensorBoard Kullanarak Takip Etme

Anaconda Prompt üzerinden alttaki komutlar uygulanır:

```
activate tensorflow_cpu # ya da gpu
tensorboard --logdir=training\
```

Alttaki gibi bir çıktı gelmesi gerekmekte:

```
TensorBoard 1.6.0 at http://YOUR-PC:6006 (Press CTRL+C to quit)
```

Çıktıyı görüntülemek için verilen url'i tarayıcına kopyalaman yeterlidir.

Sonuç Grafiğini Dışarı Aktarma

Anaconda Prompt üzerinden alttaki komutlar uygulanır:

```
activate tensorflow_cpu # ya da gpu

copy %TENSORFLOW%\models\research\object_detection/export_inference_graph.py
%TENSORFLOW%\workspace\example_detection

cd %TENSORFLOW%\workspace\example_detection

python export_inference_graph.py --input_type image_tensor --
pipeline_config_path training/<yapilandirma_dosyasi> --
trained_checkpoint_prefix training/model.ckpt-<checkpoint> --output_directory
trained-inference-graphs/output_inference_graph_v1.pb
```

- <yapılandırma_dosyası> Modelimizin yapılandırma dosyasının tam adı
 - training klasörüne attığımız yapılandırma dosyaları
 - Örn: ssd_inception_v2_coco.config
- <checkpoint> example_detection/training dizinindeki gösterilmek istenen adımın numarası
 - Örn: 13302

Website Github 25/31 LinkedIn İletişim

Hata Notları ve Açıklamaları

'conda' is not recognized as an internal or external command

Anaconda Prompt üzerinden terminal işlemlerinize devam etmeniz durumunda sorun gidecektir.

'...' is not recognized as an internal or external command

Gerekli Paketlerin Kurulumları tamamnlanmadığı için bu hata ile karşılaşıyor olabilirsiniz.

'ImportError: No module named' Hataları

PythonPath ayarlanmadığı için bu hata ile karşılaşmaktasınız.

set

PYTHONPATH=%TENSORFLOW%\models\research\slim;%TENSORFLOW%\models\research\

Dökümandaki ilgili alana yönelmek için buraya tıklayabilrisin.

'dict keys' object does not support indexing

Açıklama linki için buraya bakabilirsin.

start

%TENSORFLOW%\models\research\object_detection\models\feature_map_generators.py

Satır 518'deki yere alttaki kodu yapıştırın

```
image_features = image_features[list(image_features.keys())[0]]
```

Object was never used (type <class 'tensorflow.python.framework.ops.Tensor'>)

Yakında..

'unicodeescape' codec can't decode bytes in position

Modelinizin .config dosyanıza yazdığın tam yol verilerinde \ yerine / veya \\ kullanmalısınız.

Allocation of X exceeds 10% of system memory

- Rastgeldiğim bu kaynağa göre ssd_mobilenet_v2_coco modeline özgü bir hatadır.
- Hatanın çözüm kaynağı için buraya tıklayabilirsin

Website Github 26/31 LinkedIn İletişim

google.protobuf.text format.ParseError, Expected string but found

Config dosyalarının text editör üzerinden düzenlemesi durumunda, türkçe karakterler için text editörü yapıyı değiştirmekte ve tensorflow bunu algılayamamaktadır. Sorunu çözmek için alttakiler yardımıyla .config dosyasını düzenleyin:

- VsCode
- Notepad++
- Sublime
- Atom

Harici kaynak için buraya bakabilirsin.

Value Error: No Variable to Save

Model eğitimi yapıldığı sırada gelen bir hatadır, çözümü için .configdosyanızı bu şekilde düzenleyin:

```
train_config: {
    ...
    fine_tune_checkpoint: "./pre_trained_model/model.ckpt"
    fine_tune_checkpoint_type: "detection"
    ...
}
```

ssd_mobilenet_v1_quantized_300x300_coco14_sync modelinde test edilmiştir.

Colab Üzerinden Tensorflow Modelini Eğitme

Colab ücretsiz GPU sunduğu için çok hızlı bir eğitim imkanı sunar.

Colab Eğitimi için Gereken Dosyalar

- label_map.pbtxt
- test.record
- train.record
- *.config
- model_main.py (eskisi: train.py)
- export_inference_graph.py

Colab Üzeriinden Eğitim Kodları

Detayları öğrenmek için buraya tıklayarak colab notuma erişebilirsin.

Web Kamerası Kullanarak Obje Tespit Etme

Script dosyasına buraya tıklayarak erişebilirsin

Website Github 27/31 LinkedIn İletişim

Harici Bağlantılar

- Traffic Light Detection Using the TensorFlow* Object Detection API
- Tensorflow in Anaconda
- Tensorflow create a tfrecords file from csv
- Tensorflow Object Detection, error while generating tfrecord [TypeError: None has type NoneType, but expected one of: int, long]
- Tensorflow Github Preparing Inputs
- TensorFlow Object Detection API in 5 clicks from Colaboratory
 - 5steps_object_detection.ipynb
 - labels_analysis_object_detection.ipynb
- Custom training: walkthrough
- TensorBoard: Visualizing Learning
- TPU'yu Bu kadar Popüler Kılan Nedir?

Başlangıç için İdeal Olanlar

- Güncel Makaleler
- IBM Cloud üzerinden model
- Zero to Hero: Guide to Object Detection using Deep Learning: Faster R-CNN, YOLO, SSD

Önemli Notlar

train.py işlemi için images dizinindeki resimlere ihtiyaç yok, tf_records'lar yeterlidir.

Website Github 28/31 LinkedIn İletişim

Yapılacaklar

- Tensorflow notları buraya taşınacak!
- Her yeni eğitim için yapılacaklar için hızlı notlar oluştur
 - Num classses'lar değişecek (config ve detection_utils)
 - Yollar değişecek (config ve detection utils)
 - Label map.pbtxt değişecek
 - Test sayısı config'e girilecek
- Git sorununu düzelt, temiz çıktıya geç
 - Gitignore'a gereksiz herşeyi ekle (*, ** gibi karakterler ile)
 - Models klasörünü ele alma, dışarıdan indirme linkini ver
- UsCode için modül bulunamadı sorunu düzeltilecek
 - PythonPath ile ortam değişkeni ayarlamaya çalışılacak
 - VsCode, python proje çalıştırıcısı olarak ele alınacak

Sonra Yapılacaklar

- TF recordları oluşturma kısmı otomatikleştirelecek ve dizinler bağımlı yollar halinde belirtilecek
 - Csv deki class'lardan label_map oluşturulacak.
 - generate.tfrecord.py içerisinde tüm diğer scriptler eklenecek ve FROM: ? ile xml veya csv bilgisi alacak
 - Benim yapıma uygun yapıya sahip olanların CLI parametresi vermesine gerek olmayacak
- El ile yapılan tüm işlemler otomatize edilecek
 - images içindeki test, train adlı dizinlerin ismi otomatik alınacak
 - grap_images.py script'i olacak ve resimleri gerekli dizinlere yerleştirmek için yol alacak (yerleştirileceklerin yolu)
 - Etiketli veriler hazır olduğunda tek bir script generate_tf_data ile direk eğitime hazır hale getirilecek
 - label_map csv'den alınacak
 - config yolu otomatik tanımlanacak
 - recordlar xml'den oluşturulacak
- pre_trained_model klasörü yeniden adlandırılacak ve modeller için alt klasörler olacak
 - base_model ile modelin sıfır hali tutulacak
- inference_graph klasörü yeniden adlandırılacak ve modeller için alt klasörler olacak
- Tf recordları farklı yöntemlerle elde etmeyi araştır
- TF recoderlardan resimleri elde etmeyi araştır

Sonradan Eklenecek Scriptleştirme

- Linux için sh script
 - Protobuf, tensorflow vs. her biri için
- Windows icin bat executable

Sonradan Derlenecek Bilgiler

Website Github 29/31 LinkedIn İletişim

- Yaptığım tekninleri video'ya veya yazıya kayıt edeceğim
 - csv'lerden alanı seçip tablo formatına alarak class sayılarını görme vs.

Website Github 30/31 LinkedIn İletişim

TF Verilerini Alma

https://www.tensorflow.org/tutorials/load_data/tf_records

Recover the images from the TFRecord file

```
for image_features in parsed_image_dataset:
  image_raw = image_features['image_raw'].numpy()
  display.display(display.Image(data=image_raw))
```

Lisans ve Teferruatlar

Bu yazı MIT lisanslıdır. Lisanslar hakkında bilgi almak için buraya bakmanda fayda var.

- Github
- Website
- LinkedIn

Yardım veya destek için iletişime geçebilrsiniz []

~ Yunus Emre Ak

Website Github 31/31 LinkedIn İletişim