Tempo a disposizione: 1 h 30 min

1. (a) Convertire l'espressione regolare $(0^*1 + 01^*)^*$ in un ε -NFA usando le regole viste a lezione.

(b) Trasformare l' ε -NFA ottenuto al punto precedente in un DFA.

2. (a) Dimostrare che il linguaggio $L_1 = \{0^{2n}1^n : n \geq 0\}$ non è regolare.

Il linguaggio non è regolare. Supponiamo per assurdo che lo sia:

- \bullet sia h la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = 0^{2h}1^h$, che appartiene ad L_1 ed è di lunghezza maggiore di h;
- sia w=xyz una suddivisione di w tale che $y\neq \varepsilon$ e $|xy|\leq h;$
- poiché $|xy| \leq h$, allora xy è completamente contenuta nel prefisso 0^{2h} di w, e quindi sia x che y sono composte solo da 0. Inoltre, siccome $y \neq \varepsilon$, possiamo dire che $y = 0^p$ per qualche valore p > 0. Allora la parola xy^2z è nella forma $0^{2h+p}1^h$, e quindi non appartiene al linguaggio perché il numero di 0 non è uguale al doppio del numero di 1 (dovrebbero essere h + p/2 mentre sono solo h).

Abbiamo trovato un assurdo quindi L_1 non può essere regolare.

(b) Considerate il linguaggio $L_2 = \{0^m 1^n : m \neq 2n\}$. Questo linguaggio è regolare? Giustificare formalmente la risposta (la giustificazione non dovrebbe richiedere più di due righe di testo).

Si può osservare che L_2 è il complementare del linguaggio L_1 (contiene tutte e sole le parole che non appartengono a L_1). Al punto precedente abbiamo dimostrato che L_1 non è regolare, quindi nemmeno L_2 può essere regolare perché i linguaggi regolari sono chiusi per complementazione.

3. Sia L un linguaggio regolare su un alfabeto Σ . Supponete che il simbolo # appartenga all'alfabeto Σ e dimostrate che il seguente linguaggio è regolare:

$$dehash(L) = \{dehash(w) : w \in L\}$$

dove dehash(w) è la stringa che si ottiene eliminando tutti i simboli # da w.

Per dimostrare che dehash(L) è regolare vediamo come è possibile costruire un automa a stati finiti che riconosce dehash(L) a partire dall'automa a stati finiti che riconosce L.

Sia quindi $A = (Q, \Sigma, q_0, \delta, F)$ un automa a stati finiti che riconosce il linguaggio L. Costruiamo un ε -NFA $B = (Q, \Sigma, q_0, \delta_B, F)$ che ha lo stesso insieme di stati, lo stesso stato iniziale e gli stessi stati finali di A. La funzione di transizione del nuovo automa rimpiazza ogni transizione etichettata con # di A con una ε -transizione tra la stessa coppia di stati, lasciando inalterate le transizioni etichettate con gli altri simboli di Σ .

4. Si consideri la seguente grammatica libera da contesto *G*:

$$S \rightarrow iS \mid iSeS \mid \epsilon$$

(a) dare una descrizione del linguaggio generato da G nella forma $L = \{w \mid w \in \{i, e\}^* \text{ tali che } \ldots\}$ e dimostrare che vale $L \supseteq L(G)$; (opzionale: spiegare anche che vale $L \subseteq L(G)$)

 $L = \{w \in \{i, e\}^* \mid \text{per ogni prefisso di } w \text{ il numero di } i \text{ è maggiore o uguale al numero di } e\}$ Dimostriamo che $L \supseteq L(G)$ per induzione sulla lunghezza della derivazione.

Base: lunghezza 1. In questo caso l'unica produzione è $S \Rightarrow \epsilon$. Poiché $\epsilon \in L$ la tesi è dimostrata.

Passo induttivo: lunghezza n + 1. Assumiamo per ipotesi induttiva che la tesi sia vera per tutte le derivazioni di lunghezza minore o uguale a n.

La derivazione di lunghezza n+1 può essere fatta in due modi:

- $S \Rightarrow iS \Rightarrow^n iw' = w$. Per ipotesi induttiva $w' \in L$. Poiché aggiungo una i in più, la proprietà di bilanciamento del numero di i e di e rimane vera anche per iw' e quindi ho dimostrato che $w \in L$.
- $S \Rightarrow iSeS \Rightarrow^* iw'ew'' = w$. Per ipotesi induttiva w' e $w'' \in L$. Quindi la proprietà di bilanciamento del numero di i e di e rimane vera anche per iw' e per iw'e, e di conseguenza anche per iw'ew''. Quindi ho dimostrato che $w \in L$.
- (b) dimostrare che la grammatica è ambigua;

G è ambigua perché posso derivare la parola iie in due modi diversi:

- $S \Rightarrow iSeS \Rightarrow iiSeS \Rightarrow^* iie$
- $S \Rightarrow iS \Rightarrow iiSeS \Rightarrow^* iie$
- (c) osservando che questa grammatica modella l'annidamento di if then e if then else nei programmi, fornire una grammatica non ambigua che generi lo stesso linguaggio della grammatica di partenza. Spiegare l'idea alla base della nuova grammatica.

$$S \rightarrow iS \mid iS'eS \mid \epsilon$$
$$S' \rightarrow iS'eS' \mid \epsilon$$