PREDETERMINED PROXIMAL SPACES ARE METRIZABLE

STEVEN CLONTZ

Abstract. TODO

We take the following from Willard's text.

Definition 0.1. A normal covering sequence for a space X is a sequence $\{U_n : n < \omega\}$ of open covers such that U_{n+1} star-refines U_n . Such a sequence is compatible with X if $\{St(x, U_n) : n < \omega\}$ is a local base at each $x \in X$.

Theorem 0.2. A space X is psuedometrizable if and only if it has a compatible normal covering sequence.

For convenience, we will recast these results in terms of entourages. TODO: "normal" can be dropped

Definition 0.3. A normal entourage sequence for a space X is a sequence $\{D_n : n < \omega\}$ of entourages such that $2D_{n+1} \subseteq D_n$. Such a sequence is compatible with X if $\{D_n[x] : n < \omega\}$ is a local base at each $x \in X$.

Theorem 0.4. A space X is psuedometrizable if and only if it has a compatible normal entourage sequence.

Proof. Let d be a psuedometric generating X; then $\{D_n : n < \omega\}$ given by $D_n = \{\langle x, y \rangle : d(x, y) < 2^{-n}\}$ is a normal entourage sequence, and is compatible since $D_n[x] = B_{2^{-n}}(x)$.

On the other hand, given a normal entourage sequence $\{D_n: n < \omega\}$, let $\mathcal{U}_n = \{\frac{1}{2}D_{n+1}[x]: x \in X\}$. It follows that $St(x,\mathcal{U}_n) = \bigcup \{\frac{1}{2}D_{n+1}[y]: x \in \frac{1}{2}D_{n+1}[y]\}$. Furthermore $z \in St(x,\mathcal{U}_n) \Rightarrow z \in \frac{1}{2}D_{n+1}[y]$ for some y; therefore $\langle x,y \rangle, \langle y,z \rangle \in \frac{1}{2}D_{n+1}$ shows that $\langle x,z \rangle \in D_{n+1}$ and $z \in D_{n+1}[x]$. Thus $St(x,\mathcal{U}_n) \subseteq D_{n+1}[x]$.

We now may observe that \mathcal{U}_{n+1} star-refines \mathcal{U}_n , since $St(x,\mathcal{U}_{n+1}) \subseteq D_{n+1}[x] \subseteq D_n[x] \in \mathcal{U}_n$ witnesses that $\{St(x,\mathcal{U}_n) : n < \omega\}$ is compatible with X, guaranteeing pseudometrizability.

Theorem 0.5. A space X is psuedometrizable if and only if $I \uparrow_{pre} Bell_{D,P}^{\to,\emptyset}(X)$.

Proof. Suppose X is psuedometrizable by d; then let σ be the predetermined strategy for $Bell_{D,P}^{-,\emptyset}(X)$ defined by $\sigma(n)=\{\langle x,y\rangle:d(x,y)<2^{-n}\}$. For any legal attack α against σ , $\alpha(n+1)\in\sigma(n)[\alpha(n)]$. It follows that if $x\in\bigcap_{n<\omega}\sigma(n)[\alpha(n)]$ and $\epsilon>0$,

 $^{2010\} Mathematics\ Subject\ Classification.\ 54E15,\ 54D30,\ 54A20.$

Key words and phrases. Proximal; predetermined proximal; topological game; limited information strategies.

we may choose $N < \omega$ such that $2^{-N} < \epsilon$. Therefore $d(x, \alpha(n)) < 2^{-n} \le 2^{-N} < \epsilon$ for all $n \ge N$, showing α converges to x. Thus σ is a winning strategy.

Now let σ be any predetermined winning strategy satisfying $\sigma(n) \subseteq \sigma(m)$ for all $n \geq m$, and suppose $\left\{\frac{1}{2^{n+1}}\sigma(n)[x]: n < \omega\right\}$ is not a local base at some $x \in X$. Then we may pick an entourage D such that $\frac{1}{2^{n+1}}\sigma(n)[x] \not\subseteq D[x]$ for all $n < \omega$. So choose $\alpha(n) \in \frac{1}{2^{n+1}}\sigma(n)[x] \setminus D[x]$.

Observe that $\langle \alpha(n), x \rangle \in \frac{1}{2^{n+1}}\sigma(n)$ and $\langle \alpha(n+1), x \rangle \in \frac{1}{2^{n+2}}\sigma(n+1) \subseteq \frac{1}{2^{n+1}}\sigma(n)$. It follows that $\langle \alpha(n), \alpha(n+1) \rangle \in \frac{1}{2^n}\sigma(n) \subseteq \sigma(n)$, witnessing that $\alpha(n+1) \in \sigma(n)[\alpha(n)]$, that is, α is a legal counterattack to σ . Since $x \in \frac{1}{2^{n+1}}\sigma(n)[\alpha(n)] \subseteq \sigma(n)[\alpha(n)]$ for all $n < \omega$, σ can only win for I if α converges. But $\alpha(n) \notin D[x]$ for all $n < \omega$, so α fails to converge as well. Thus σ is not a winning strategy.

As a result, if σ is a winning predetermined strategy, we have that $\left\{\frac{1}{2^{n+1}}\sigma(n)[x]:n<\omega\right\}$ is a local base at each $x\in X$. Therefore by the previous lemma, X is psuedometrizable.

Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688

 $E ext{-}mail\ address: sclontz@southalabama.edu}$

URL: clontz.org