Entropie statistique : système à 2 états de niveaux d'énergie différents

F. Kany. ISEN-Brest & La Croix-Rouge

Présentation

On considère un système Σ , isolé, constitué de n_{tot} particules pouvant se répartir entre deux états 1 et 2 de d'énergies respectives $-\varepsilon$ et $+\varepsilon$.

Exemple : n_{tot} spins sur un réseau (i.e. ayant une position fixe) pouvant avoir deux états (état 1 noté \uparrow et état 2 noté \downarrow), sans interaction entre eux 1 , avec champ magnétique extérieur (dans le sens \uparrow). On appelle n_1 le nombre de spins dans l'état \uparrow et n_2 le nombre de particules dans l'état \downarrow . On a : $n_1 + n_2 = n_{tot}$.

L'énergie e_{tot} d'une distribution (n_1, n_2) est : $e_{tot} = n_1 \times (-\varepsilon) + n_2 \times (+\varepsilon) = (n_2 - n_1).\varepsilon$.

On suppose que les particules sont discernables (c'est le cas dans l'exemple du réseau de spins car les positions des spins sont fixes).

Questions

- 1. Combien y a-t'il de micro-états particuliers Ω_{n_1} avec n_1 particules dans l'état 1 (et n_2 particules dans l'état 2)?
- 2. Avec Python, tracer $\ln(\Omega_{n_1})/n_{tot}$ en fonction de e_{tot}/n_{tot} pour $n_{tot} \in [10, 200]$. (Pour chaque n_{tot} : on fait varier n_1 de 0 à n_{tot} ; on calcule e_{tot} et Ω_{n_1}).

Ce tracé correspond à l'entropie du système (voir Annexe).

Expliquer pourquoi la fonction s'annule en $e_{tot}/n_{tot} = \pm \varepsilon$.

3. On définit la dérivée numérique d'une liste de points par :

Pour $n_{tot}=1000$, calculer $\frac{\mathrm{d}\ln(\Omega_{n_1})}{\mathrm{d}e_{tot}}$ et tracer cette quantité en fonction de e_{tot}/n_{tot} .

4. La quantité précédente représente l'inverse de la température du système (voir Annexe). Tracer $T=f(e_{tot}/n_{tot})$. Commenter.

Annexe

Ensemble micro-canonique

En physique statistique, on définit l'ensemble micro-canonique comme l'ensemble des répliques fictives d'un système réel dont l'énergie (e_{tot}) , le volume (V) et le nombre de particules (n_{tot}) sont fixés.

L'hypothèse micro-canonique consiste à supposer que, quand un système est isolé et en équilibre, celui-ci se trouve avec probabilités égales dans chacun de ses micro-états accessibles.

^{1.} Si le système est isolé, les spins peuvent avoir une interaction entre eux; si un spin se retourne sous l'action d'une telle interaction, un autre spin doit se retourner en sens inverse pour assurer la conservation de l'énergie.

Lien avec l'entropie

On appelle entropie statistique, dans un état macroscopique donné, la quantité :

$$S = -k_B \cdot \sum_{\ell} P_{\ell} \cdot \ln(P_{\ell})$$

D'après l'hypothèse micro-canonique $P_\ell = \frac{1}{\Omega}$ où Ω est la nombre de micro-états accessibles. Donc : $S = -k_B$. $\sum_\ell P_\ell . \ln(P_\ell) = -k_B$. $\sum_{\ell=1}^\Omega \frac{1}{\Omega} . \ln\left(\frac{1}{\Omega}\right) = k_B . \Omega . \frac{1}{\Omega} . \ln(\Omega) = k_B . \ln(\Omega)$

Définition de la température

La température est définie comme $\frac{1}{T} = \frac{\partial \, S}{\partial \, e_{tot}}.$