Оглавление

1 Теоретическая часть	3
1.1 ρ -метод Полларда	3
1.1.1 Алгоритм $ ho$ -метода Полларда	3
1.1.2 Псевдокод ρ -метода Полларда	4
$1.2(\pmb{p-1})$ -метод Полларда	4
1.2.1 Алгоритм ($\pmb{p}-\pmb{1}$)-метода Полларда	5
1.2.2 Псевдокод ($m{p}-m{1}$)-метода Полларда	5
1.3 Метод цепных дробей	6
1.3.1 Алгоритм метода цепных дробей	7
1.3.2 Псевдокод алгоритма Бриллхарта-Моррисона	10
Приложение А	12

Цель работы – изучить основные методы факторизации целых чисел и их программную реализацию.

Задачи работы:

- Изучить ρ-метод Полларда разложения целых чисел на множители и привести его программную реализацию;
- Изучить (p-1)-метод Полларда разложения целых чисел на множители и привести его программную реализацию;
- Изучить метод цепных дробей разложения целых чисел на множители и привести его программную реализацию.

1 Теоретическая часть

1.1 ρ -метод Полларда

Это вероятностный алгоритм факторизации целых чисел, с помощью которого разложено число F_8 . Используя случайное сжимающее отображение $f\colon Z_n\to Z_n$, строится рекуррентная последовательность $x_{i+1}=f(x_i)\ mod\ n$ со случайным начальным условием $x_0\in Z_n$ и проверяется 1< НОД $(x_i-x_k,n)< n$, где n – составное число, имеющее простой делитель $p<\sqrt{n}$. Тогда последовательность $\{x_i\}$ имеет период $\leq n$ и последовательность $\{x_i\ mod\ p\}$ имеет период $\leq p$. Значит, найдутся такие значения последовательности: $x_i,\ x_k,\ для$ которых $x_i\equiv x_k\ (mod\ p),\ x_i\equiv x_k\ (mod\ n),$ и, значит, НОД $(x_i,x_k)< n$.

Графически члены последовательности $\{x_i\}$ изображаются так, что сначала образуется конечный «хвост», а затем — цикл конечной длины $\leq p$.

1.1.1 Алгоритм ρ -метода Полларда

Вход: составное число n и значение $0 < \varepsilon < 1$.

Выход: нетривиальный делитель p числа n, вероятность не менее $1-\varepsilon$.

Шаг 1. Вычислить $T=\left[\sqrt{2\sqrt{n}\ln\frac{1}{\varepsilon}}\right]+1$ и выбрать случайный многочлен $f\in Z_n$.

Шаг 2. Случайно выбрать $x_0 \in Z_n$ и, последовательно вычисляя значения $x_{i+1} = f(x_i) \ mod \ n, 0 \le i \le T$, проверять тест на шаге 3.

Шаг 3. Для каждого $0 \le k \le i$ вычислить $d_k = \text{HOД}(x-x_k,n)$ и проверить условие $1 < d_k < n$. Если это выполняется, то найден нетривиальный делитель d_k числа n. Если же $d_k = 1$ для всех $0 \le k \le i$, то перейти к выбору следующего значения последовательности на шаге 2. Если найдется $d_k = n$ для некоторого $0 \le k \le i$, то перейти к выбору нового значения $x_0 \in Z_n$ на шаге 2.

Шаг 4. Если вычислено T членов последовательности $\{x_i\}$, а делитель числа не найден, то остановить алгоритм.

Для ускорения алгоритма можно модифицировать шаг 3. Для $2^h \le i < 2^{h+1}$ вычислять $d_k = \text{HOД}(x_{i+1} - x_k, n)$ для $k = 2^{h-1}$.

1.1.2 Псевдокод *р*-метода Полларда

```
Процедура Метод Полларда 1(n,f,e):
       T = взять_целое (sqrt(2*sqrt(n)*\log_{10}\frac{1}{a})) + 1
      a = взять случайное число в интервале (1, n)
      Взять x как пустой массив
      Взять i = 0
      Пока i < T:
             temp = 0
             Для всех элементов f_i из f:
               temp += f_i[:c] * a ^f_i[:n]
             Конец Для
             a = temp \pmod{n}
             x \ll a
             Для всех k \in [0,i):
                    d = алгоритм_Евклида ((x_i - x_k) \ mod \ n, n)
                    Если d == 1:
                           Продолжить,
                    ИначеЕсли 1 < d < n:
                          Вернуть d
                    ИначеЕсли d == n:
                          Вернуть пустое_значение
                    Конец Если
             i += 1
       Конец Пока
Конец Процедуры
```

1.2~(p-1)-метод Полларда

Пусть n — нечетное составное число и p — его нетривиальный делитель, тогда n=pq и каноническое разложение числа p-1 имеет вид $p-1=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_s^{\alpha_s}$. Найдём максимальные показатели l_1,l_2,\dots,l_s , для которых $p_i^{l_i} \leq n$. Прологарифмируем обе части этого неравенства:

$$l_i \ln p_i \leq \ln n$$
, откуда $l_i \leq \left\lceil \frac{\ln n}{\ln p_i} \right\rceil$

Вычислим:

$$M = p_1 \left[\frac{\ln n}{\ln p_1} \right] p_2 \left[\frac{\ln n}{\ln p_2} \right] \dots p_s \left[\frac{\ln n}{\ln p_s} \right],$$

тогда $M = (p-1) \cdot z$ для некоторого целого числа z.

По малой теореме Ферма:

 $\alpha^{p-1} \equiv 1 \ (mod \ p)$ для любого целого α , взаимно простого с p.

Возведя обе части этого сравнения в степень z, получаем $\alpha^M \equiv 1 \pmod{p}$.

Обозначим $d=\text{HOД}(\alpha^M-1,n)$. Если $\alpha^M\equiv 1\ (mod\ n)$, то число d должно делиться на p, поскольку разность α^M-1 делится на p, а число n делится на p.

1.2.1 Алгоритм (p-1)-метода Полларда

Пусть n — составное число. Фиксируется параметр метода — положительное В. Рассматривается множество простых чисел $\{q_1, ..., q_{\pi(B)}\}$ — факторная база и значения $k_i = \left[\frac{\ln n}{\ln q_i}\right]$, $T = \prod_{i=1}^{\pi(B)} q_i^{k_i}$.

Вход: составное число n, число B > 0.

Выход: разложение числа п на нетривиальные делители.

Шаг 1. Случайно выбрать $a \in Z_n$ и вычислить d = HOД(a,n). Если 1 < d < n, то найден нетривиальный делитель d числа n. Если d = 1, то вычислить $b = a^T - 1 \pmod{n}$.

Шаг 2. Вычислить $b_1=\text{HOД}(b,n)$. Если $n_1=1$, то увеличить В. Если $n_1=n$, то перейти к шагу 1 и выбрать новое значение $a\in Z_n$. Если для нескольких значений $a\in Z_n$ выполняется $n_1=n$, то уменьшить В. Если $1< n_1< n$, то найден нетривиальный делитель n_1 числа n.

Сложность алгоритма: $O(\pi(B) \log^3 n)$.

1.2.2 Псевдокод (p-1)-метода Полларда

```
Процедура Метод_Полларда_2 (n): p = \text{пустой\_массив} x = 2 Пока длина(p) < 3 И x < n: Если x < 4 ИЛИ (x : 2 И алгоритм_Миллера_Рабина(x, 5)): p \ll x Конец Если x + 1 Конец Пока a = \text{взять\_случайноe\_целоe\_число\_в\_диапазонe}(2, n-2) d = \text{алгоритм\_Евклида}(a, n) Если d > 3:
```

Вернуть dКонец Если
Для всех i в диапазоне [0, длина(p)): $l = \text{взять_целое}(\frac{\log_2 n}{\log_2 p_i})$ $a = a^{p_i^l} \mod n$ Конец Для $d = \text{алгоритм_Евклида}(a-1,n)$ Если d == 1 ИЛИ d == n:
Вернуть пустое_значение
Конец Если
Вернуть dКонец Процедуры

1.3 Метод цепных дробей

В этом методе в качестве чисел s_i выбираются числители подходящих дробей к обыкновенной цепной дроби, выражающей число \sqrt{n} .

Следствие. Пусть положительное целое число n не является полным квадратом и $\frac{P_k}{Q_k}$, где $k=1,\ldots,n-$ подходящие дроби к числу \sqrt{n} . Тогда для абсолютно наименьшего вычета $P_k^2 (mod\ n)$ справедлива оценка $|P_k^2 (mod\ n)| < 2\sqrt{n}$, причем $P_k^2 (mod\ n) = P_k^2 - nQ_k^2$.

Обыкновенная цепная дробь имеет вид:

$$r = \frac{a_0}{a_1} = q_1 + \frac{a_2}{a_1} = q_1 + \frac{1}{\frac{a_1}{a_2}} = q_1 + \frac{1}{q_2 + \frac{a_3}{a_2}} = \cdots$$

$$= q_1 + \frac{1}{q_2 + \frac{1}{\dots + \frac{1}{q_{k-1} + \frac{1}{q_k}}}},$$

где q_1 — целое число и q_2, \dots, q_k — целые положительные числа (неполные частные). Цепная дробь обозначается: $(q_1; q_2, \dots, q_k)$.

Для цепной дроби
$$\frac{a_0}{a_1} = (q_1; q_2, ..., q_k)$$
 выражения

$$\delta_1 = q_1, \; \delta_2 = q_1 + \frac{1}{q_2}, \ldots, \; \delta_k = q_1 + \frac{1}{q_2 + \frac{1}{\ldots + \frac{1}{q_{k-1} + \frac{1}{q_k}}}}$$

называются подходящими дробями конечной цепной дроби.

Каждая подходящая дробь δ_i , $i=\overline{1,k}$ является несократимой рациональной дробью $\delta_i=\frac{P_i}{Q_i}$ с числителем P_i и знаменателем Q_i , которые вычисляются по следующим рекуррентным формулам:

$$P_i = q_i P_{i-1} + P_{i-2}, \ Q_i = q_i Q_{i-1} + Q_{i-2}$$

с начальными условиями:

$$P_{-1} = 0,$$

 $P_0 = 1,$
 $Q_{-1} = 1.$

 $Q_0=0.$

Теорема 2.

Пусть α — квадратичная иррациональность вида $\alpha = \frac{\sqrt{D-u}}{v}$, где $D \in N$, $\sqrt{D} \notin N$, $v \in N$, $u \in N$, $v|D^2$ — u. Тогда для любого $k \geq 0$ справедливо разложение в бесконечную цепную дробь $\alpha = [a_0, a_1, \dots, a_k, a_{k+1}, \dots]$, где $a_0 \in Z$, $a_1, \dots, a_k \in N$, a_{k+1} — (k+1)-й остаток. При этом справедливы соотношения $a_0 = [\alpha]$, $v_0 = v$, $u_0 = u + a_0 v$ и при $k \geq 0$ $a_{k+1} = [a_{k+1}]$, где $v_{k+1} = \frac{D-u_k^2}{v_k} \in Z$, $v_{k+1} \neq 0$, $\alpha_{k+1} = \frac{\sqrt{D}+u_k}{v_{k+1}} > 1$ и числа u_k получаются с помощью рекуррентной формулы $u_{k+1} = a_{k+1}v_{k+1} - u_k$.

1.3.1 Алгоритм метода цепных дробей

Обозначения:

$$L_n[\gamma,c]=\exp((c+o(1))\log^{\gamma}n\,(\log\log n)^{1-\gamma}),$$
 где $o(1)$ — бесконечно малая при $n\to\infty$ и $0<\gamma<1.$ Для фиксированного $\gamma=\frac{1}{2}$ положим

$$L_n[c] = L_n\left[\frac{1}{2},c\right] = \exp((c+o(1))(\log n \log \log n)^{\frac{1}{2}}) = L^{c+o(1)},$$
 где $L = \exp((\log n \log \log n)^{\frac{1}{2}}).$

Пусть n — составное число (что установлено с помощью вероятностных алгоритмов простоты), которое не имеет небольших простых делителей (что проверяется пробными делениями).

Общая идея Лагранжа: найти решения сравнения $x^2 \equiv y^2 \pmod{n}$, удовлетворяющие условию $x \not\equiv \pm y \pmod{n}$, и, значит,

$$(x - y)(x + y) \equiv 0 \pmod{n}$$

влечет, что один делитель p числа n делит x-y и другой делитель q числа n делит x+y. Для этого проверяются два условия $1<\mathrm{HOД}(x-y,n)< n,$ $1<\mathrm{HOД}(x+y,n)< n.$

Общая схема субэкспоненциальных алгоритмов факторизации:

- 1. Создаются наборы сравнений $u \equiv v \pmod{n}$ с небольшими u, v.
- 2. Факторизуются числа u, v.
- 3. Перемножаются сравнения из набора с целью получения сравнения $x^2 \equiv y^2 \pmod{n}$ с условием $x \not\equiv \pm y \pmod{n}$.
 - 4. Вычисляются HOД(x y, n), HOД(x + y, n).

Известно, что для случайной пары $x,y\in \mathbf{Z}_n^*$, удовлетворяющей условию $x^2\equiv y^2 (mod\ n)$, вероятность

$$P_0 = P[1 < HOД(x \pm y, n) < n] \ge \frac{1}{2}.$$

Алгоритм Диксона:

Пусть 0 < a < 1 – некоторый параметр и B – факторная база всех простых чисел, не превосходящих L^a , $k = \pi(L^a)$.

 $Q(m) \equiv m^2 (mod \ n)$ – наименьший неотрицательный вычет числа m^2 .

Шаг 1. Случайным выбором ищем k+1 чисел m_1,\ldots,m_{k+1} , для которых $Q(m_i)=p_1^{\alpha_{i1}}\ldots p_k^{\alpha_{ik}}$, обозначаем $\overline{v}_i=(\alpha_{i1},\ldots,\alpha_{ik})$.

Шаг 2. Найти ненулевое решение $(x_1, ..., x_{k+1}) \in \{0,1\}^{k+1}$ системы k линейных уравнений с k+1 неизвестными

$$x_1\overline{v_1} + \ldots + x_{k+1}\overline{v_{k+1}} = \overline{0} \ (mod \ 2).$$

Шаг 3. Положить

$$X \equiv m_1^{x_1} ... m_{k+1}^{x_{k+1}} \pmod{n}, Y \equiv \prod_{j=1}^k p_j^{\frac{\sum x_i \alpha_{ij}}{2}} \pmod{n},$$

для которых

$$X^2 \equiv p_1^{\sum_{i=1}^{k+1} x_i \alpha_{i1}}..p_k^{\sum_{i=1}^{k+1} x_i \alpha_{ik}} \equiv Y^2 \; (mod \; n).$$

Проверить условие $1 < \text{HOД}(X \pm Y, n) < n$. Если выполняется, то получаем собственный делитель числа n (с вероятностью успеха $P_0 \ge \frac{1}{2}$). В противном случае возвращаемся на шаг 1 и выбираем другие значения m_1, \ldots, m_{k+1} .

Сложность алгоритма минимальна при $a = \frac{1}{2}$ и равна

$$L_n\left[\frac{1}{2},2\right] = L^{2+o(1)}$$
 для $L = exp((lognloglogn)^{\frac{1}{2}}).$

Алгоритм Бриллхарта-Моррисона отличается от алгоритма Диксона только способом выбора значений m_1, \dots, m_{k+1} на шаге 1: случайный выбор заменяется детерминированным определением этих значений с помощью подходящих дробей для представления числа \sqrt{n} цепной дробью.

<u>Теорема</u>. Пусть $n \in N$, n > 16, $\sqrt{n} \notin N$ и $\frac{P_i}{Q_i}$ — подходящая дробь для представления числа \sqrt{n} цепной дробью. Тогда абсолютно наименьший вычет $P_i^2 \pmod{n}$ равен значению $P_i^2 - nQ_i^2$ и выполняется $\left|P_i^2 - nQ_i^2\right| < 2\sqrt{n}$.

Разложение числа \sqrt{n} в цепную дробь с помощью только операции с целыми числами и нахождения целой части чисел вида $\frac{\sqrt{D}-u}{v}$ может быть найдено по следующей теореме.

Теорема. Пусть α — квадратичная иррациональность вида $\alpha = \frac{\sqrt{D} - u}{v}$, где $D \in N$, $\sqrt{D} \notin N$, $v \in N$, $u \in N$, $v | D^2 - u$. Тогда для любого $k \ge 0$ справедливо разложение в бесконечную цепную дробь $\alpha = [a_0, a_1, ..., a_k, a_{k+1}, ...]$, где $a_0 \in Z$, $a_1, ..., a_k \in N$, a_{k+1} — (k+1)-й остаток.

При этом справедливы соотношения $a_0=[\alpha], v_0=v, u_0=u+a_0v$ и при $k\geq 0$ $a_{k+1}=[\alpha_{k+1}],$ где $v_{k+1}=\frac{D-u_k^2}{v_k}\in Z, v_{k+1}\neq 0, \alpha_{k+1}=\frac{\sqrt{D}+u_k}{v_{k+1}}>1$ и числа u_k получаются с помощью рекуррентной формулы $u_{k+1}=a_{k+1}v_{k+1}-u_k.$

Таким образом, в алгоритме Диксона возможен выбор $m_i = P_i$, $Q(m_i) \equiv m_i^2 = P_i^2 \equiv P_i^2 - nQ_i^2 \ (mod\ n)$, $Q(m_i) = P_i^2 - nQ_i^2$ и факторная база сужается $B = \{p_0 = -1\} \cup \{p - \text{простое число: } p \leq L^a \text{ и } n \in QR_p\}$.

Сложность алгоритма минимальна при $a=\frac{1}{\sqrt{2}}$ и равна $L_n[\frac{1}{2},\sqrt{2}].$

1.3.2 Псевдокод алгоритма Бриллхарта-Моррисона

```
Функция Бриллхар Моррисон (n, a)
              L=e^((logn*log(logn))^a)
              Сгенерировать факторную базу, первый элемент это -1, затем все
простые числа рі <= L такие, что Якоби(рі, n) !=-1;
              k = размер базы
              вычислить числители и знаменатели подходящих дробей корня из п
              Бесконечный цикл:
                  Qmi = Pi^2 - nQi^2
                  Вычислить k+1 массивов:
                      vi = (ai0, ..., aik)
                      ei = (ai0 % 2, ..., aik % 2)
                  x = решение СЛУ (k уравнений, k+1 неизвестных) x1v1 + ... +
xk+1*vk+1= 0 \pmod{2};
                  Если x пусто:
                        Увеличить базу;
                        Продолжить цикл;
                  X = 1;
                  Y = 1;
                  Для і от 0 до k
                     X = X*P[i]^x[i] \mod n;
                  Для j от 0 до k-1
                      step = 0;
                      Для і от 0 до размера решения х
                          step += x[i] * vStep[i][j];
                      step /= 2;
                      Y = Y*p[j]^step mod n;
                  Если X^2 mod n != Y^2 mod n
                      Продолжить цикл
                         gcd1 = HOД(X+Y, n);
                         gcd2 = HOД(X-Y, n)
                  Если gcd1 \in (0, n) ИЛИ gcd2 \in (0, n):
                      d[0] = gcd1 или gcd2;
                      d[1] = n / d[0]
                      Вернуть d[0], d[1]
                  Иначе:
                      Продолжить цикл
      Конец Функции
```

2 Тестирование программ

На рисунке 1 представлено тестирование работы программы реализации ρ -метода Полларда.

```
Факторизация р-методом Полларда
Введите n:
10213
Введите параметр eps (0 < eps < 1):
0.4
Результат:
10213 = 7 * 1459

Факторизация р-методом Полларда
Введите n:
143
Введите параметр eps (0 < eps < 1):
0.5
Результат:
143 = 11 * 13
```

Рисунок 1 — Тестирование ρ -метода Полларда

На рисунке 2 представлено тестирование работы программы реализации p-1-метода Полларда.

```
Факторизация (p-1)-методом Полларда
Введите n:
10213
Введите параметр B:
30
Результат: 10213 = 7 * 1459

Факторизация (p-1)-методом Полларда
Введите n:
143
Введите параметр B:
5
Результат: 143 = 11 * 13
```

Рисунок 2 - Тестирование р-1-метода Полларда

Приложение А

Код программы

```
require 'prime'
require 'matrix'
class PollardMethod
  def initialize(n, eps)
    raise ArgumentError, 'eps должен быть в пределах от 0 до 1' unless eps > 0 &&
eps < 1
   @eps = eps
  def factorize
    return "#{@n} = 1 * #{@n}" if @n == 1
    return "#{@n} = #{@n}" if Prime.prime?(@n)
    f = proc \{ |z| (z**2 + 1) \% @n \}
    while d == 1
     x = f.call(x)
     y = f.call(f.call(y))
     d = (x - y).gcd(@n)
      return "Не удалось разложить число \#\{@n\}."
    else
      return "#\{@n\} = #\{d\} * #\{q\}"
class PollardMethodPMinusOne
  def initialize(n, b)
   @t = 1
  def generate_base
    base = []
    Prime.each(@b) do |p|
      base << p
```

```
k = (Math.log(@n) / Math.log(p)).to_i
 base
def factorize_number(number)
 factors = []
 while d <= number
   if (number % d).zero?
     factors << d
     number /= d
   else
     d += 1
 factors
def factorize
 generate_base
  factors = []
  loop do
   a = rand(1..@n)
   d = a.gcd(@n)
     factors.concat(factorize number(d))
     factors.concat(factorize_number(@n / d))
      return factors.uniq.sort
    if d == 1
      b = a.pow(@t, @n) - 1
      n1 = b.gcd(@n)
      if n1 == 1
        generate_base
        generate_base
      else
        factors.concat(factorize_number(n1))
```

```
factors.concat(factorize_number(@n / n1))
          return factors.uniq.sort
    end
end
```

```
def get_pollard_p
 puts "\пФакторизация р-методом Полларда"
 puts "Введите n:"
  n = gets.strip.to_i
  puts "Введите параметр eps (0 < eps < 1):"
  eps = gets.strip.to_f
  pollard = PollardMethod.new(n, eps)
 puts "Результат:\n#{pollard.factorize}"
def get_pollard_p_2
 puts "\пФакторизация (p-1)-методом Полларда"
  puts "Введите n:"
 n = gets.strip.to_i
  puts "Введите параметр В:"
  b = gets.strip.to_i
  pollard = PollardMethodPMinusOne.new(n, b)
  result = pollard.factorize
  puts "Результат: #{n} = #{result.map(&:to_s).join(" * ")}"
end
def get brimor
```

```
puts "\пФакторизация методом цепных дробей"

puts "Введите n:"

n = gets.strip.to_i

puts "Введите параметр a:"

a = gets.strip.to_f

factorizer = BrillhartMorrisonFactorization.new(n, a)

factorizer.factorize

end

get_pollard_p

get_pollard_p

get_pollard_p_2

get_pollard_p_2

# get_brimor
```