LANGUAGE BASED SECURITY (LBT)

SECURE COMPILATION

Chiara Bodei, Gian-Luigi Ferrari

Lecture May, 10 2024

Outline

Live Variables Analysis
Difficulties for security validation
Syntax and Semantics
Post-domination
Information leakage
Axiomatic semantics
A Taint Proof System
Secure dead store elimination
algorithm
Conclusions and what next

Preliminaries: Axiomatic semantics

- Based on formal logic, AS was introduced for formal program verification
- It defines axioms and inference rules for each language statement
- Inference rules allows one to transform expressions to other expressions
- Expressions are called assertions and state the relationships and constraints among variables that are true at a specific point in the execution

Axiomatic semantics

Before a statement we have pre-conditions and after post-conditions

- Hoare triple: S started in any state satisfying P will satisfy Q on termination
- Example:

$$\{b>0\}$$
 a = b+1 $\{a>1\}$

Hoare triples

Partial correctness specification

if S is executed in a state where P is true, and the execution terminates with success, then Q is guaranteed to be true afterwards:

Hoare triples (cont.)

A triple $\{P\}$ S $\{Q\}$ can be seen in different ways

- Semantics: Given P and S, determine Q such that {P} S {Q} is a way to describe the behaviour of S
- Specification: Given P and Q, determine S, such that $\{P\}$ S $\{Q\}$, means to write the program that realizes what specified by the pre and postcondition given
- Correctness: Given P, S and Q, prove that {P} S {Q} is correct
 corresponds to a verification of correctness of S w.r.t the specification
 determined by P and Q

$$\{x=1\}\ x := x+1\ \{x=2\}$$

Weaken the preconditions

Example:

```
\{ \} a = b+1 \{a>1\}
```

- One essential precondition needed to ensure that a>1 is b>0
- Note that b > 10 will also guarantee that a>1, but this is a stronger condition
- The weaker precondition is better because it is less restrictive of the possible starting values of b that ensure correctness.
- Typically, given a postcondition, we would like to know the weakest precondition that guarantees that the program satisfies that postcondition

Weakest precondition

Weakest precondition (from given postcondition)

"P is stronger than or equal to Q" means "P implies Q", e.g.,

- "x is a cat" is stronger* than "x is an animal"
- "x > 0" is stronger than " $x \ge 0$ "

$$P \Rightarrow Q \equiv P \subseteq Q$$

This is an interesting property

There exists also the dual property

Strongest postcondition (from given precondition)

QUIZ:

What is the strongest possible assertion?

And the weakest?

QUIZ:

What is the strongest possible assertion? False

And the weakest? True

Suppose to have the incomplete triple

$$\{P?\}$$
 a = b+1 $\{a>1\}$

After the assignment we want "a>1"

Intuitively, which is the condition on b that makes the post-condition verified?

Suppose to have the incomplete triple

$$\{P?\}$$
 a = b+1 $\{a>1\}$

After the assignment we want "a>1"

Intuitively, which is the condition on b that makes the post-condition verified?

• {b>10} can make the job, and also {b>5} can do it

Suppose to have the incomplete triple

$$\{P?\}$$
 a = b+1 $\{a>1\}$

After the assignment we want "a>1"

Intuitively, which is the condition on b that makes the post-condition verified?

- {b>10} can make the job, and also {b>5} can do it
- But {b>0} is the weakest one:

$$\{b>10\} => \{b>5\} => \{b>0\}$$

Requiring {b>0} is enough to guarantee that "a>1" is true after the assignment: it is the least restrictive requirement

Axiomatic program proofs

- Start from the last post-condition
- work back to the first statement:
- if the first pre-condition coincide with the program specification, the program is correct

Axiomatic program proofs

Example

$$\{P?\}$$
 a = b+1 $\{a>1\}$

- Which is the procedure to find P??
- It is not just guessing as before
- Start from the last post-condition: {a>1} and work back:
- Since a>1 must hold after the assignment, this means that b+1>1 and this
 can be true only if b>0
- Technically this amounts to substituting b+1 to a in a>1

$$\{b>0\}$$
 a = b+1 $\{a>1\}$

Skip rule

An axiom for Skip

$$\{x > 0\}$$
 skip $\{x > 0\}$

Assignment rule

An axiom for assignment _

```
{Q[E/x]} x := E {Q}
Syntax replacement
```

Example, formally:

$$\{P?\}$$
 a = b+1 $\{a>1\}$

- Start from the last post-condition: {a>1} and work back:
 - Substitute E (b+1) for every x (a) in Q (a>1)
 - P? = Q[E/x] = (a>1)[b+1/a] = b+1 > 1
 - Then P? = b>0
- Undo the assignment and solve:

$$\{b>0\}$$
 a = b+1 $\{a>1\}$

Assignment rule

Another example

$$\{P?\}$$
 y = 3*x + 1; x = y + 3 {x<10}

- Start from the last post-condition: {x<10} and work back:
 - Since x<10 must hold after the assignment, this means that y + 3 <10 and this can be true only if y<7
 - And then? We need an intermediate condition between the two assignments: y<7
 - We further work back:

$$\{P?\}$$
 y = 3*x + 1 {y<7}

 Since y<7 must hold after the assignment, this means that 3*x + 1 <10 and this can be true only if x<2

$$\{x<2\}$$
 y = 3*x + 1; x = y + 3 $\{x<10\}$

Sequential rule

A rule for sequential composition Second example, formally:

$$\{P\}\ c_1\ \{R\}\ \{R\}\ c_2\ \{Q\}$$
 $\{P\}\ c_1; c_2\ \{Q\}$

$$\{P_1?\}$$
 y = 3*x + 1; x = y + 3 {x<10}

- $\{P_2?\} x = y + 3 \{x < 10\}$ $\{x < 10[y+3/x]\} x = y + 3 \{x < 10\} \longrightarrow \{y < 7\} x = y + 3 \{x < 10\}$
- $\{P_1?\}\ y = 3^*x + 1 \{y < 7\}$ $\{y < 7[3^*x + 1/y]\}\ y = 3^*x + 1 \{y < 7\} \square \{x < 2\} \implies y = 3^*x + 1 \{y < 7\}$

$$\{x<2\}$$
 y = 3*x + 1; x = y + 3 $\{x<10\}$

Inlining

Proofs of program correctness:

- can be broken down into a few main steps, guided by the structure of the program, and
- can then be presented through a program annotated with inlined assertions

```
\{x = r + qy\}

r: = r - y;

\{x = r + (q + 1)y\}

q: = q + 1;

\{x = r + qy\}
```

At each point before/after/in between statements, what do we know about the state of the program?

IF rule

A rule for conditional statement $\{P \land b\} c_1 \{Q\} \quad \{P \land \neg b\} c_2 \{Q\}$ $\{P\} \text{ if b then } c_1 \text{ else } c_2 \{Q\}$

```
{true} \equiv

if x \ge 0 do

\{x \ge 0\} \equiv \{x - 1 \ge 0\}

skip;

else

\{\neg(x \ge 0)\} \equiv \{(-x < 0)\}

x := -x;

\{x > 0\} \Rightarrow \{x \ge 0\}

\{x \ge 0\}
```

WHILE rule

There is a rule for the loop statement, but it is quite involving, because the number of iterations cannot always be predetermined

Induction is needed in order to find an invariant

$$\frac{\{P \land b\} c \{P\}}{\{P\} \text{ while b do } c \{P \land \neg b\}}$$

Loop invariant: it should be true before and after each iteration of the loop body

```
\{x \ge 0\}
while x > 0 do
\{x \ge 0 \land x > 0\} \equiv \{x - 1 \ge 0\}
x: = x - 1;
\{x \ge 0\}
\{x \ge 0 \land x \le 0\} \equiv \{x = 0\}
```

Consequence rule

- Weaken the pre-cond
- Strenghten the post

$$P \Rightarrow P' \quad \{P'\} \ c \ \{Q'\} \quad Q' \Rightarrow Q$$

$$\{P\} \ c \ \{Q\}$$

 $P \Rightarrow Q \equiv P \subseteq Q$

$$\{x \ge 0 \land y > 0\} \Rightarrow$$

$$\{-y < 0 \land x \ge 0 \land y \ge 0\} \Rightarrow$$

$$\{x - y < x \land x + y \ge 0\}$$

$$n: = x - y;$$

$$\{n < x \land x + y \ge 0\}$$

Weakest precondition

$$\{ \} x \coloneqq 3 \{ x + y > 0 \}$$

What is the most general value of y such that (x + y > 0)?

Weakest precondition

$${y > -3} x := 3 {x + y > 0}$$

What is the most general value of y such that (x + y > 0)?

$$(y > -3)$$

Partial Correctness

Theorem Any derivable HL triple is sound

Proof: By induction on the derivation tree

Outline

Live Variables Analysis
Difficulties for security validation
Syntax and Semantics
Post-domination
Information leakage
Axiomatic semantics
A Taint Proof System
Secure dead store elimination
algorithm
Conclusions and what next

A Taint Proof System

Taint = {tainted [true], untainted [false]}

Tainted environment

- &: Variables -> Taint, s.t. &(x) = true if x is tainted A pair of states (s,t), satisfies a tainted environment &, $(s,t) \models \& [\text{with } s = (m,p), t=(n,q)]$ if
- m=n (same location) and
- s and t have identical values for every variable x that is untainted in &

A Taint Proof System (Hoare-style)

- \forall s,t: (s,t) |= & \land (s -> s') \land (t -> t'): (s',t') |= &
- For any pair of states sat. &, their successors after executing S satisfy &

Properties

- $\mathcal{E} \sqsubseteq \mathcal{F}$ iff $\forall x$. $\mathcal{E}(x)$ implies $\mathcal{F}(x)$ [monotonicity]
- $\mathcal{E}' \sqsubseteq \mathcal{E}$, $\{\mathcal{E}\}$ S $\{\mathcal{F}\}$, $\mathcal{F} \sqsubseteq \mathcal{F}'$ implies $\{\mathcal{E}'\}$ S $\{\mathcal{F}'\}$ [widening]

A Taint Proof System (Hoare-style)

$$\mathcal{E}(c) = \text{false}$$
, if c is a constant $\mathcal{E}(x) = \mathcal{E}(x)$, if x is a variable $\mathcal{E}(f(t_1, \dots, t_N)) = \bigvee_{i=1}^N \mathcal{E}(t_i)$

S is skip:
$$\{\mathcal{E}\}$$
 skip $\{\mathcal{E}\}$

S is
$$out(e)$$
: $\{\mathcal{E}\}$ $out(e)$ $\{\mathcal{E}\}$

S is
$$x := e$$
:
$$\frac{\mathcal{F}(x) = \mathcal{E}(e) \quad \forall y \neq x : \mathcal{F}(y) = \mathcal{E}(y)}{\{\mathcal{E}\}x := e \,\{\mathcal{F}\}}$$

Sequence:
$$\frac{\{\mathcal{E}\} S_1 \{\mathcal{G}\} \quad \{\mathcal{G}\} S_2 \{\mathcal{F}\}}{\{\mathcal{E}\} S_1; S_2 \{\mathcal{F}\}}$$

Taint Proof System: assignment rule

$$S \text{ is } x := e: \qquad \frac{\mathcal{F}(x) = \mathcal{E}(e) \quad \forall y \neq x : \mathcal{F}(y) = \mathcal{E}(y)}{\{\mathcal{E}\} \, x := e \, \{\mathcal{F}\}}$$

x inherits the taint label of e

$$\mathcal{E} = \mathcal{F}[e/x]$$

$${Q[E/x]} x := E {Q}$$

$${\mathcal{F}}[e/x]$$
 $x := e {\mathcal{F}}$

Assignment rule: examples

```
{\mathcal{F}}[e/x] x := e {\mathcal{F}}
```

Examples

- {x:U, y:U} x = 0 {x:U, y:U}
 the tag of x directly depends on the tag of 0, while the tag of y does not change
- {x:U, y:U} x = read_password(); {x:T, y:U}
 the tag of x directly depends on the tag of read_password();

A Taint Proof System: conditional and loop

Conditional: For a statement S, we use Assign(S) to represent a set of variables which over-approximates those variables assigned to in S. The following two cases are used to infer $\{\mathcal{E}\} S \{\mathcal{F}\}$ for a conditional:

Conditional rule: case B

```
c tainted \mathcal{E}(c) = \text{true } \{\mathcal{E}\} \ S_1 \ \{\mathcal{F}\} \ \{\mathcal{E}\} \ S_2 \ \{\mathcal{F}\}  \forall \ x \ \text{in Assign}(S_1) \ U \ Assign(S_2): \ \mathcal{F}(x) \{\mathcal{E}\} \ \text{if c then } S_1 \ \text{else } S_2 \ \{\mathcal{F}\}
```

Example

{c:T, x:U, y:U} if c then x = y else x = z {c:T, x:T, y:U}
 the tag of x indirectly depends on the tag of c

A Taint Proof System: soundness

Theorem 3 (Soundness) Consider a structured program P with a proof of $\{\mathcal{E}\}\ P\ \{\mathcal{F}\}$. For all initial states (s,t) such that $(s,t) \models \mathcal{E}$: if $s \stackrel{P}{\to} s'$ and $t \stackrel{P}{\to} t'$, then $(s',t') \models \mathcal{F}$.

Proof:

- 0) S is skip or out(e): $\{\mathcal{E}\}\$ skip $\{\mathcal{E}\}\$ and $\{\mathcal{E}\}\$ out(e) $\{\mathcal{E}\}\$
- Consider states s = (m, p), t = (n, q), s' = (m', p') and t' = (n', q') such that $s \xrightarrow{S} s'$ and $t \xrightarrow{S} t'$ hold. By the semantics of skip and out(e), s' = s and t' = t. Thus, if $(s, t) \models \mathcal{E}$, then $(s', t') \models \mathcal{E}$.
- 1) S is an assignment x := e:

$$\frac{\mathcal{F}(x) = \mathcal{E}(e) \quad \forall y \neq x : \mathcal{F}(y) = \mathcal{E}(y)}{\{\mathcal{E}\} x := e \{\mathcal{F}\}}$$

A Taint Proof System: soundness

Consider states s = (m, p), t = (n, q), s' = (m', p') and t' = (n', q') such that $s \xrightarrow{S} s'$ and $t \xrightarrow{S} t'$ hold. By the semantics of assignment, it is clear that $p' = p[x \leftarrow p(e)]$, $q' = q[x \leftarrow q(e)]$, and m' = n' denotes the program location immediately after the assignment. Assume $(s,t) \models \mathcal{E}$, we want to prove $(s',t') \models \mathcal{F}$, or more precisely, $\forall v : \neg \mathcal{F}(v) \Rightarrow p'(v) = q'(v)$. Consider variable y different from x. If $\mathcal{F}(y)$ is false, so is $\mathcal{E}(y)$, hence p(y) = q(y) since $(s,t) \models \mathcal{E}$. As p'(y) = p(y) and q'(y) = q(y), we get p'(y) = q'(y) as desired. Consider variable x. If $\mathcal{F}(x)$ is false, so is $\mathcal{E}(e)$, hence only untainted variables in \mathcal{E} appear in e. As $(s,t) \models \mathcal{E}$, those variables must have equal values in s and t, thus p(e) = q(e). Since $p' = p[x \leftarrow p(e)]$, $q' = q[x \leftarrow q(e)]$, we know p'(x) = q'(x).

The algorithm for calculating taints

The proof system can be turned into an algorithm for calculating taints

- the proof rule for each statement other than the while can be read as a monotone forward environment transformer
- for while loops, the proof rule requires the construction of an inductive environment, \(\mathcal{I} \). This can be done through a least fixpoint calculation for \(\mathcal{I} \) based on the transformer for the body of the loop
- The entire process is thus in polynomial time

```
int foo()
  int x,y;
  x = 0;
  y = read_user_id();
  if (is_valid(y)) {
    x = read_password();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y;
  x = 0;
  y = read_user_id();
  if (is_valid(y)) {
    x = read_password();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0;
  y = read_user_id();
  if (is_valid(y)) {
    x = read_password ();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0;
  y = read_user_id();
  if (is_valid(y)) {
    x = read_password();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x depends on tag of 0
  {x:U,y:U}
  y = read_user_id();
  if (is valid(y)) {
    x = read_password();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x depends on tag of 0
  {x:U,y:U}
  y = read_user_id();
  if (is_valid(y)) {
    x = read_password();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x depends on tag of 0
  {x:U,y:U}
  y = U: read_user_id();
  if (is valid(y)) {
    x = read_password();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x depends on tag of 0
  {x:U,y:U}
  y = U: read_user_id();
  if (is_valid(y)) {
    x = read_password();
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x depends on tag of 0
  {x:U,y:U}
  y = U: read_user_id();
  if (is valid(y)) {
    x = T: read_password();//change
    {x:T,y:U}
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x depends on tag of 0
  {x:U,y:U}
  y = U: read_user_id();
  if (is valid(y)) {
    x = T: read_password();//change
    {x:T,y:U}
    login(y,x);
       x = 0;
  } else {
    printf ("Invalid ID");
  return;
```

```
int foo()
{
   int x,y; // everything is untainted
   {x:U,y:U}
   x = 0; // tag of x depends on tag of 0
   {x:U,y:U}
   y = U: read_user_id();
   if (is_valid(y)) {
        x = T: read_password();//change
        {x:T,y:U}
        login(y,x);
        x = 0; //tag of x is untainted again
        {x:U,y:U}
   }
} else {
   printf ("Invalid ID");
}
```

```
int foo ()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x depends on tag of 0
  \{x:U,y:U\}
  y = U: read_user_id();
  if (is valid(y)) {
    x = T: read_password();//change
    {x:T,y:U}
    login(y,x);
       x = 0; //tag of x is untainted again
       {x:T,y:U}
  } else {
    printf ("Invalid ID");
  \{x:U,y:U\}
  return;
```

```
int foo()
  int x,y; // everything is untainted
  {x:U,y:U}
  x = 0; // tag of x is untainted
                                                  Dead
 \{x:U,y:U\}
  y = U: read_user_id();
                                                 Store
  if (is valid(y)) {
    x = T: read_password();//change
    {x:T,y:U}
    login(y,x);
                                                    Dead
      x = 0; //tag of x is untainted again
      {x:T,y:U}
  } else {
                                                   Store
    printf ("Invalid ID");
  return;
```

Outline

Live Variables Analysis
Difficulties for security validation
Syntax and Semantics
Post-domination
Information leakage
Axiomatic semantics
A Taint Proof System
Secure dead store elimination
algorithm
Conclusions and what next

Secure DSE procedure

- The algorithm
 - takes a program P and a list of dead assignments, then
 - prunes that list to those assignments whose removal is guaranteed not to introduce a new information leak.
 - This is done by consulting the result of a control-flow sensitive taint analysis on the source program P and exploiting post-dominance relations
- As the algorithm removes a subset of the known dead stores, the transformation is correct
- It is possible to prove that it is also secure

Secure DSE procedure

- 1. Compute the control flow graph G for the source program S
- 2. Set each internal variable at the initial location as Untainted, each L-input as Untainted, and each H-input as Tainted
- 3. Do a taint analysis on G
- Do a liveness analysis on G and obtain the set of dead assignments, DEAD
- 5. while DFAD is not empty do

6. Output the result as program T

```
Remove an assignment, A, from DEAD, suppose it is "x := e"
   Let CURRENT be the set of all assignments to x in G except A
   if A is post-dominated by CURRENT then [Case 1]
                                                               Condition 1
       Replace A with skip
       Update the taint analysis for G
   else if x is Untainted at the location immediately before A
                                                               Condition 2
   and x is Untainted at the final location of G then [Case 2]
       Replace A with skip
   else if x is Untainted at the location immediately before A
   and there is no path from A to CURRENT
   and A post-dominates the entry node then [Case 3]
                                                               Condition 3
       Replace A with skip
   else
       (* Do nothing *)
   end
end
```

Secure DSE procedure

- Consider a candidate dead store to variable x. It may be removed if:
- 1. the store is post-dominated by other stores to
 - Justification: any leak through x must arise from the dominating stores
- 2. variable x is untainted before the store and untainted at the exit from the program
 - Justification: the taint proof is unchanged, so a leak cannot arise from x; other flows are preserved
- 3. variable x is untainted before the store, other stores to x are unreachable, and this store post-dominates the entry node
 - Justification: the taint proof is unchanged, so a leak cannot arise from x; other flows are preserved

Case 1: post-domination

Every path to the exit from the first assignment, x = 0, passes through the second assignment to x. It can be safely removed

```
void foo()
{
    int x;
    {x:U}
    x = T:read_password();
    {x:T}
    x = U:0;// Dead Store
    {x:U}
    x = U:5;// Dead Store
    {x:U}
    return;
}
The obtained program
has the same CFG
```

Case 2: stable untainted assignment

Variable x is untainted before the dead store and is untainted at the program

exit

```
x is untainted before
int foo()
                                 and after the
                                 assignment
    int x, y;
    {x:U,y:U}
    x = 0; // Dead Store
                                sat Case 2
    {x:U,y:U}
    y = U:read user id();
    if (is_valid(y)) {
         x = T:read password ();
        \{x:T,y:U\}
         login(y,x);
         x = 0; // Dead Store
         {x:U,y:U}
    } else {
         printf ("Invalid ID");
    {x:U,y:U}
    return;
```

Case 3: final assignment

The second assignment is always the final one and the variable x is untainted before and the store post-dominates the entry node

```
void foo()
    int x, y;
    {x:U,y:U}
    y = T:credit_card_no();
                               Post-dominated by
    x = T:y;
                               the next as signment
    {x:T,y:T}
    use(x);
    x = U:0; // Dead Store
                               sat Case
                                              1
    {x:U,y:T}
                                              sat Case 3
    x = T:last 4 digits(y); // Dead Store
    \{x:T,y:T\}
    v = U:0; // Dead Store
                                    By removing the 2° dead store,
    {x:T,y:U}
                                    we actually obtain a
    return;
                                    more secure program
```

Secure DSE algorithm: considerations

The algorithm is sub-optimal, given the hardness results, as it may retain more dead stores than necessary

```
void foo()
{
    int x;
    {x:U}
    x = T:read_password();
    {x:T}
    use(x);
    x = T:read_password(); // Dead Store
    {x:T}
    return;
}
```

Store to x is dead and could be securely removed, but it will not by the procedure

Secure DSE algorithm: considerations

- The algorithm only ensures that no new leaks are added during the transformation, i.e., the transformation is secure
- Correctness is assumed: focus is on information leakage

Outline

Live Variables Analysis
Difficulties for security validation
Syntax and Semantics
Post-domination
Information leakage
Axiomatic semantics
A Taint Proof System
Secure dead store elimination
algorithm
Conclusions and what next

Are other compiler transformations secure?

Theorem: for any transformation with a strict refinement proof, correctness implies security

Several optimizations have strict refinement (DSE does not): e.g., constant propagation, control-flow simplifications, loop unrolling

SSA leaks information

The important single static assignment (SSA) transform is insecure

SSA is a way of structuring the intermediate representation (IR) of programs so that every variable is assigned exactly once and and every variable is defined before it is used

This

- simplifies register allocation by splitting the live range of variables, but
- may expose all intermediate values of variables, which may lead to further leaks

SSA leaks information

```
High password
Low x initially 0

x = password;
<< use x >> 
x = 0;

High password
Low x1 initially 0
Low x2 initially 0

x1 = password;
<< use x1 >> 
x2 = 0;
```

The SSA transform introduces fresh names x1 and x2 for the assignments to x, with different registers. The secret password leaks out through x_1 Possible solutions:

- clear all potentially tainted variables before register allocation: inefficient?
- modify SSA to carry auxiliary information about leakage: how?

Sub-optimal grouping using Taint Analysis

Group variants of variables x in Q with mutually disjoint live ranges

Conclusion

- Compiler optimizations may be correct and yet be not secure
- Ensuring security of DSE through translation validation is difficult
- A provably secure DSE transform based on taint propagation + domination

Bibliography

- •Anders Møller & Michael I. Schwartzbach. Static Program Analysis https://cs.au.dk/~amoeller/spa/
- •Chaoqiang Deng, Kedar S. Namjoshi. Securing a compiler transformation. Formal Methods Syst. Des. 53(2), 2018. [Journal version]
- Chaoqiang Deng, Kedar S. Namjoshi. Securing a compiler transformation.
 SAS 2016, LNCS, 2016. [Conference version]

End