JSPEC

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

HYDERABAD

Reproduced by

Priyanka Reballi Arun Kumar Subramanian K L Bhanu Moorthy

> IIIT-Hyderabad Apr 7th, 2019

Introduction

- Problem:
 - To match images with disparate appearances
 - Neither intensity nor gradient distributions are locally comparable
 - SIFT is infeasible
- Solution:
 - Detecting and matching persistent features
 - Using eigen-spectrum of the joint image graph of two images.

Disparate Images

Disparate Images

Disparate Images

Introduction

- Spectral methods on Image graph Laplacians have been used earlier, in another form.
- Two significant contributions:
 - Joint image graph without considering proximity
 - New definition of persistent regions.

Methodology

- Image Graph
- Image Features and the Joint Spectrum
- Characterization of persistent regions
- Eigen-function feature matching
- JSPEC Algorithm

Theory

Theory

Image Graph Definition of Image Graph Function p

Laplacian

Incident Matrix Laplacian Matrix

Obtaining optimum p

Laplacian's relation to function p eigenvectors of L as p

Image Graph

- ▶ Image Graph is represented as G(V, E, W)
- ▶ V contains all image pixels as vertices. If there are total n pixels in the image then |V| = n
- ▶ E contains all pairwise relationship between every pair of vertices(pixels) thus making G a complete graph. $|E| = \binom{n}{2}$ for undirected graph
- The weight $w_{ij} \geq 0$ associated with an edge $(v_i, v_j) \in E$ encodes the affinity between the pixels represented by vertices v_i and v_j . We can collect these weights into an $n \times n$ affinity matrix $W = (w_{ij})_{i,j=1,...,n}$

Function p

- ▶ We want to define a function $p: V \to \mathbb{R}$ such that it is a continuous function i.e. difference between $p(v_i)$ and $p(v_j)$ inversely follows w_{ij}
- ▶ It is equivalent to say that we want to minimize

$$\lambda = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (p(v_i) - p(v_j))^2$$

Let Matrix P be defined as $\begin{vmatrix} p(v_1) \\ p(v_2) \\ \vdots \\ p(v_{|V|}) \end{vmatrix}$

Incident Matrix

▶ For any directed graph G(V, E), consider

$$V = \{v_1, v_2, \dots v_{|V|}\}$$

 $E = \{e_1, e_2, \dots, e_{|E|}\}$

- ▶ Incident Matrix ∇ is $|E| \times |V|$ matrix such that if k^{th} edge is from v_i to v_j with weight w_{ij} then
 - $\nabla_{ki} = +w_{ij}$
 - $\nabla_{kj} = -w_{ij}$
 - $\nabla_{km} = 0, \forall m \neq i, j$

Laplacian Matrix

- $L = \nabla^T \nabla$ is called laplacian of graph
- ▶ L is $|V| \times |V|$ matrix where

$$L_{ii} = \sum_{j=1}^{|V|} w_{ij}$$

$$L_{ij} = -w_{ij}$$

$$i \neq j$$

ightharpoonup L = D - W where D is degree matrix and W is adjacency matrix

Conclusion

- For any image, a weighted graph is constructed considering each pixel a vertex.
- ▶ Edge weights are assigned according to affinity of vertices.
- Laplacian is obtained from adjacency matrix using formula L = D W
- Normalized laplacian can be obtained by formula $L = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- ▶ Eigen Decomposition of L gives v_1 as a trivial solution and v_2, v_3, \cdots as desired solutions

Implementation Details

Outline

- Detect and compute SIFT features
- Affinity Matrix Construction
- Eigen functions
- MSER Detector and matching

Detect and compute SIFT features

- Purpose:
 - To extract sift feature for each key point at two scales with bin sizes 10 and 6 pixels to get 256D vector after concatenating
- Application:
 - Key points: cv2.KeyPoint
 - Description: cv2.xfeatures2d.SIFT_create();.compute()

Detect and compute SIFT features

Affinity Matrix Construction

$$W = \begin{pmatrix} W_1 & C \\ C^t & W_2 \end{pmatrix}_{(n_1 + n_2) \times (n_1 + n_2)}$$
(1)

$$(W_i)_{x,y} = \exp\left(-\frac{\|f_i(x) - f_i(y)\|^2}{\sigma_f^2}\right)$$
(2)

$$(C)_{x,y} = \exp\left(-\frac{\|f_i(x) - f_j(y)\|^2}{\sigma_f^2}\right)$$
(3)

Affinity Matrix Visualization

- Eigen Functions
 - Laplacian and its eigen decomposition
 - Image representation using eigenvectors
- Our Application:
 - Normalized Laplacian: csgraph.laplacian() from scipy.sparse
 - Eigenvectors and eigenvalues: linalg.eig()

MSER Detector

- Purpose:
 - To detect affine-covariant regions in an image
- Application:
 - Detection: cv2.MSER_create(); mser.detect()
 - Description: SIFT match

MSER Detector

- Purpose:
 - To get good matches from eigen functions
- Our Application:
 - Matcher: cv2.BFMatcher()
 - Good matches: .knnMatch()

Challenges faced

- Faced issues with NaNs. Resolved by debugging and noticing 0 valued SIFT.
- Faced issues with complex Eigenvalues. Resolved by debugging Ensuring width vs height of image graph, is used when reordering Eigen map.

Challenges faced

- Reduced the code execution time by using more matrix operations than iterative operations.
- MSER ellipse creation and match;

Code Walkthrough

https://github.com/priya55612/-Joint-Spectral-Correspondence-for-Disparate-Image-Matching/blob/master/eigenMapMatcher.

рy

Github link

https://github.com/priya55612/-Joint-Spectral-Correspondence-for-Disparate-Image-Matching

Thank you