

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA

ANÁLISE NUMÉRICA

2° SEMESTRE 2016/2017

24 de Junho de 2017 2º Teste Duração: **2h00m**

Instruções:

- É obrigatória a apresentação de um documento de identificação.
- Não se aceitam provas ou questões escritas a lápis.
- Não pode responder a diferentes grupos numa mesma folha de resposta.
- O abandono da sala só poderá efetuar-se decorrida uma hora a partir do início da prova e implica a entrega da mesma.
- É permitida a consulta de uma folha A4 manuscrita pelo aluno.
- É autorizado o uso de máquinas de calcular que respeitem as condições estabelecidas no Ofício-Circular nº 03/DSDC/DES/JNE/2008.
- Não é permitido o manuseamento ou exibição de equipamentos electrónicos durante a prova, excepto a máquina de calcular.

Justifique convenientemente todas as respostas.

Grupo I

- 1. Considere a equação $x = 1 + \sin x$.
- [1.5] (a) Mostre que a equação só tem uma raiz α no intervalo $\left[\frac{\pi}{2},2\right]$.
- [3.0] (b) Obtenha uma aproximação de α usando o método da falsa posição em $\left[\frac{\pi}{2},2\right]$ para 3 iterações.
- [4.0] (c) Verifique que o método de Newton converge para α em $\left[\frac{\pi}{2},2\right]$ e determine uma aproximação de α com erro absoluto inferior a 10^{-2} aplicando esse método.
- [2.0] 2. Considere a função $f(x) = x^2 2 \ln x$. Determine uma função g que torne o método do ponto fixo convergente para o único zero de f no intervalo [1, 2].

Grupo II

- [3.5] 1. Calcule o polinómio interpolador de Lagrange da função $f(x) = \sqrt{x+1}$ para os nós de interpolação $x_0 = 0, x_1 = 3$ e $x_2 = 8$ e utilize-o para obter um valor aproximado de $\sqrt{7}$.
- [3.0] 2. Considere o seguinte suporte de interpolação de uma certa função f:

x	-1	2	4	
f(x)	0.764	0.629	0.459	ŀ

Obtenha um valor aproximado de f(0) usando a fórmula de Newton com diferenças divididas.

Grupo III

[3.0] 1. Aplique a regra do ponto médio para calcular um valor aproximado de

$$I = \int_{1}^{2.5} \ln\left(x^2\right) dx,$$

utilizando 3 subintervalos de igual comprimento, e indique um majorante do erro cometido.

Fim do teste