Theorema 2.0: A First Tour

Null

We consider "proving", "computing", and "solving" as the three basic mathematical activities.

1 Proving

We want to prove

$$(\mathop{\forall}_x (P[x] \vee Q[x])) \wedge (\mathop{\forall}_y (P[y] \Rightarrow Q[y])) \Leftrightarrow (\mathop{\forall}_x Q[x]).$$

To prove a formula like the above, we need to enter it in the context of a Theorema environment.

Proposition : FIRST TEST, 2014 $((\forall x \ (P[x] \lor Q[x]) \land \forall y \ (P[y] \to Q[y])) \iff \forall x \ Q[x])$

2 Computing

Definition: Lexical Ordering

$$\forall ab \; (LessTM_{lex} \left(a \right) b : \iff \exists \; (a_i < b_i \land \forall \, a_j = b_j))$$
 Definition : MONOMIALS

$$\forall Km2 \; \left(Mon[K]_{TimesTM} \left(m1, m2 \right) := \left(K_{TimesTM} \left(m1_1, m2_1 \right),_{[,PlusTM] \left(m1_{2i}, m2_{2i} \right)} \right) \right)$$

3 Set Theory

Definition: SUBSET

 $\forall xy \ (x \subseteq y := \forall z \ (zx \to zy))$ **Proposition :** TRANSITIVITY OF $\forall ac \ ((a \subseteq b \land b \subseteq c) \to a \subseteq c)$