Projeto 02 Visão Computacional

Prof.: Dr Carlos Alexandre

Mestrando: Francisco de A. de S. Rodrigues

<<u>fasr@cin.ufpe.br</u>>

ARTIGO

Url: https://doi.org/10.1016/S0167-8655(00)00008-8

Título: A new face detection method based on shape information.

Autores: Jianguo Wang, Tieniu Tan.

Publicação: Pattern Recognition Letters.

Ano: 2000.

OBJETIVO

O objetivo do trabalho de JianguoWang e TieniuTan, é expandir o método de detecção de face por extração de características de forma, para detectar face em *backgroud* simples, com base em direção de bordas e padrão anel elíptico.

O meu trabalho tem a finalidade de verificar, implementar, testar e comparar os resultados do método proposto pelos autores.

MÉTODO

Figura 01: Método propostos pelos autores

Fonte: [1]

Melhoria da imagem

Equalização de Histograma [2]

Figura 02: Gráfico da imagem, antes da equalização do histograma. Fonte: Própria

Figura 03: Gráfico da imagem, após a equalização do histograma. Fonte: Própria

Median Filtering

Melhoria da imagem e remoção de ruídos [5][6].

Figura 04: Filtro median Fonte: Própria

Edge Detection

Canny [7]

Figura 05: Detecção de bordas Fonte: Própria

Edge Linking

Figura 06: Ligação de bordas Fonte: Própria

Template Matching

Figura 07: Template matching Fonte: Própria

Contour Output

Figura 08: Detecção de face Fonte: Própria

BASE DE DADOS DE IMAGEM

BDI Archive Computational Vision

Rosto frontal M e F, 432 imagens; resolução 896 x 592 pixels, formato .jpg, sendo, diferentes iluminação, expressões e background complexo "fundo de escritório" [5].

BDI Libor Spacek

Rosto frontal M e F, com e sem óculos, 100 Imagens, backgrounds complexo e simples, resolução 196 x 196 e 180 x 200 pixels, formato .jpg [6].

Teste 01

-	Correct	detection	False detection	No detection	
	Exact ¹	Inexact ¹			
Algoritmo de Wang J.;	84.96%	50/432	15/432	0/432	
Tieniu T.		11.57%	3.47%	0%	
Minha implementação	34/432	153/432	176/432	69/432	
	7,87%	35,41%	40,74%	15,97%	

Tabela 01: Comparação de resultados imagens *background* complexo Fonte: Própria

Teste 01 (result)

Figura 09: Resultados de detecção de imagens BDI *Archive Computational Vision* Fonte: Própria

Teste 02

	Subconjunto¹ (bg simples)			Subconjunto ² (bg complexo)		
	Exact	Inexact	False	Exact	Inexact	False
Algoritmo de Wang	42/50 84%	8/50	0/50	35/40	0/40	5/40
J.; Tieniu T.		16%	0%	87,5%	0%	12,5%
Minha	29/50	15/50	6/50	6/40	32/40	2/40
implementação	58%	30%	1,2%	15%	80%	5%

Tabela 02: Comparação de resultados imagens *background* simple e complexo Fonte: Própria

Teste 02 (result)

Figura 10: Resultados de detecção de imagens subconjunto¹ Fonte: Própria

Teste 02 (result)

Figura 11: Resultados de detecção de imagens subconjunto² Fonte: Própria

CONCLUSÃO

Neste relatório, tratamos o problema de detecção de face com base em extração de característica de formas do contorno da face humana, apresentando o método proposto pelos autores [1], Esse método foi testado em duas bases de dados de imagens, com um total de 532 imagens com background simple e complexo, onde apresentou problemas de variação na detecção em face predominância de barbas muito grande, inclinação do ângulo da cabeça e backgroud muito complexo. Em contrapartida o método mostra ser bastante eficiente em imagens com backgroud simples.

REFERÊNCIAS

- [1] Jianguo Wang, Tieniu Tan, A new face detection method based on shape information, In Pattern Recognition Letters, Volume 21, Issues 6–7, 2000, Pages 463-471, ISSN 0167-8655.
- [2] WIKIPEDIA. Histogram equalization. Disponível em: https://en.wikipedia.org/wiki/Histogram_equalization>. Acesso 21/10/2017.
- [3] WIKIPEDIA. Median filter. Disponível em: https://en.wikipedia.org/wiki/Median_filter>. Acesso 13/11/2017.
- [4] HIPR2. Median Filter. https://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm. 19/11/2017.

REFERÊNCIAS

- [7] DOC, OpenCV. Canny Edge Detector. Disponível em: https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector. html>. 19/11/2017.
- [8] ARCHIVE, Computational Vision. Faces 1999 (Front). Disponível em: http://www.vision.caltech.edu/html-files/archive.html. Acesso 15/11/2017.
- [9] SPACEK, Libor. Description of the Collection of Facial Images. Disponível em: http://cswww.essex.ac.uk/mv/allfaces/index.html. Acesso 13/11/2017.

Obrigado:)

