SAÜ BİLGİSAYAR VE BİLİŞİM FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ YILSONU SINAVI

- 1. $y'' y' = e^{2x} \sqrt{1 e^{2x}}$ denkleminin genel çözümünü bulunuz.
- 2. (2x+1)y''-(4x+4)y'+4y=0 denklemi için önce $y=e^{ax}$ şeklinde bir özel çözüm araştırınız. Daha sonra ise bu özel çözüm yardımıyla genel çözümünü bulunuz.
- 3. $y'' + x^2y' 4xy = 0$ denkleminin x = 0 noktası komşuluğundaki çözümünü kuvvet serileri yardımıyla bulunuz.
- 4. $f(x) = \begin{cases} 0, & x < 3 \\ 2, & x \ge 3 \end{cases}$ olmak üzere y'' + y = f(x) probleminin çözümünü Laplace dönüşümü yardımıyla bulunuz.

SÜRE: 80 DAKİKADIR

BAŞARILAR DİLERİZ

$$L\{f(x)\} = F(s) \text{ olmak "czere } g(x) = \begin{cases} 0, & x < c \\ f(x-c), & x \ge c \end{cases} \text{ için } L\{g(x)\} = e^{-cs}F(s)$$

$$L\{y^{(n)}\} = s^{n}Y(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0)$$

1)
$$y'' - y' = e^{2x} \sqrt{1 - e^{2x}}$$
 $C'' - C' = 0 \Rightarrow C_{1} = 0 \quad C_{1} = 1$
 $y_{p} = C_{1}(x) \cdot 1 + C_{1}(x) e^{x}$
 $C_{1} \cdot 1 + C_{1} \cdot e^{x} = 0$
 $C_{1} \cdot 1 + C_{1} \cdot e^{x} = 0$
 $C_{1} \cdot 0 + C_{1} \cdot e^{x} = e^{2x} \sqrt{1 - e^{2x}} \cdot C_{2} \cdot e^{2x}$
 $C_{1} \cdot 0 + C_{1} \cdot e^{x} = e^{2x} \sqrt{1 - e^{2x}} \cdot C_{2} \cdot e^{2x} \cdot C_{2} \cdot e^{2x}$
 $C_{1} \cdot 0 + C_{1} \cdot e^{2x} \cdot e^{2x} \cdot C_{2} \cdot e^{2x} \cdot C_{2} \cdot e^{2x} \cdot e^{2x}$
 $C_{1} \cdot 0 + C_{1} \cdot e^{2x} \cdot e^{2x} \cdot C_{2} \cdot e^{2x} \cdot C_{2} \cdot e^{2x} \cdot e^{2x}$
 $C_{1} \cdot 0 + C_{1} \cdot e^{2x} \cdot e^{2x} \cdot C_{2} \cdot e^{2x} \cdot C_{2} \cdot e^{2x} \cdot e^{2x} \cdot C_{2} \cdot e^{2x} \cdot e^$

3)
$$y'' + x^{3}y' - 4xy = 0$$
 $x = 0$ a de solds

 $y = \alpha_{0} + \alpha_{1}x + \alpha_{1}x^{2}$

$$y = \sum_{n=0}^{\infty} a_{n} x^{n} \qquad y' = \sum_{n=1}^{\infty} n_{n} x^{n-1} \qquad y'' = \sum_{n=2}^{\infty} n_{(n-1)} a_{n} x^{n-1}$$

$$\sum_{n=1}^{\infty} n_{(n-1)} a_{n} x^{n+1} + \sum_{n=1}^{\infty} n_{n} x^{n+1} - \sum_{n=2}^{\infty} q_{n} x^{n+1} = 0$$

$$\sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n-1) a_{n-1} x^{n} - \sum_{n=1}^{\infty} q_{n} x^{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n+1} x^{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n+1} x^{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} x^{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n+1} + (n-1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n+1} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n} x^{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n} = 0$$

$$\sum_{n=0}^{\infty} (n+1)(n+1) a_{n} + \sum_{n=1}^{\infty} (n+1)(n+1) a_{n$$

SAÜ BİLGİSAYAR VE BİLİŞİM BİLİMLERİ FAKÜLTESI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ YILSONU SINAVI

<u>İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR.</u>

HER GRUPTAN SADECE 1 (BİR) ADET SORUYU CEVAPLAYINIZ

- 1. $y = xp^2 + p^3$ denkleminin çözümlerini bulunuz. $\left(p = \frac{dy}{dx}\right)$
- 2 $xy' = 2(y \sqrt{xy})$ denkleminin genel çözümünü bulunuz.
- 3. $y'' + 4y = \cos ec 2x$ denkleminin genel çözümünü bulunuz.
- Karakteristik denkleminin kökleri $1,1,0,0,2\mp 3i$ olan homojen olmayan sabit katsayılı denkleme ilişkin f(x) fonksiyonu $f(x) = x^2 e^{2x} \cos 3x$ olarak veriliyor. y_p özel çözümünün nasıl seçilmesi gerektiğini belirtiniz. (<u>Katsayıları bulmaya çalışmayınız.</u>)
- 5. y''+y'+xy=0 denkleminin x=0 noktası komşuluğundaki çözümünü kuvvet serileri yardımıyla bulunuz.
- 6 $y''+2y'+y=3xe^{-x}$ probleminin çözümünü Laplace dönüşümü yardımıyla bulunuz. $y''+2y'+y=3xe^{-x}$
- 7. x' = x 4y sistemini yok etme yöntemi yardımıyla cözünüz.
 - $x'+y=e^{2t}$
- 8. y'+x=0 sisteminin cözümünü Laplace dönüşümü yardımıyla bulunuz. x(0) = 0 y(0) = 0

$$L\left\{e^{ax}f(x)\right\} = F\left(s-a\right)$$

SÜRE: 80 DAKİKADIR.

Başarılar Dileriz İyi Tatiller.

1)
$$y = xp^{2} + p^{3}$$
 (Lagrange)
 $x' = y = x^{2} + p^{3}$ (Lagrange)
 $p = p^{2} + 2px \frac{dp}{dx} + 3p^{2} \frac{dp}{dx}$ (S)
 $p - p^{2} = (2px + 3p^{2}) \frac{dp}{dx}$ $p - p^{2} \neq 0$ ol. or
 $\frac{dx}{dp} = \frac{2}{1-p} \times = \frac{3p}{1-p}$ (linear) (S)
 $x = \frac{3}{2}p^{2} - p^{3} + c$ parametrik (10)
 $y = xp^{2} + p^{3}$ parametrik (10)
 $y = xp^{2} + p^{3}$ parametrik (10)
 $y = xp^{2} + p^{3}$ $y = 0$ y

2)
$$xy' = 2(y-\sqrt{xy})$$

 $y' - \frac{2}{x}y = -\frac{2x}{x}y^{\frac{1}{2}}$ (Bernoulli) $y^{\frac{1}{2}} = u$ The $u' - \frac{1}{x}u = -\frac{x}{x}$ (Linear) $u' = \frac{1}{x}u$ $u' = \frac{1$

3)
$$y'' + 4y = Gsec2x$$

$$y_{h} = C_{1} G_{3} Ix + C_{1} G_{3} Ix x = 0$$

$$C_{1}' G_{3} Ix + C_{1}' G_{3} Ix = 0$$

$$C_{1}' = -\frac{1}{2}$$

$$-2C_{1}' G_{3} Ix + 2C_{1}' G_{3} Ix = Gsec1x$$

$$C_{1} = -\frac{1}{2} G_{3} Ix$$

$$C_{1} = -\frac{1}{2} G_{3} Ix$$

$$C_{1} = -\frac{1}{2} G_{3} Ix$$

$$C_{1} = -\frac{1}{2} G_{3} Ix$$

$$C_{1} = -\frac{1}{2} G_{3} Ix$$

$$G_{1} = \frac{1}{2} G_{3} Ix$$

$$G_{2} = -\frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{3} = -\frac{1}{2} G_{3} Ix + \frac{1}{2} G_{3} Ix$$

$$G_{4} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{5} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix + \frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G_{5} Ix$$

$$G_{7} = -\frac{1}{2} G$$

5)
$$y'' + y' + xy = 0$$
 $x = 0$ adi nolita.
 $y = \int_{\Lambda=0}^{\infty} a_1 x^{\Lambda} x^{\Lambda} + \int_{\Lambda=1}^{\infty} \int_{\Lambda=1}^{\infty} (\Lambda + 1) a_{\Lambda+1} + a_{\Lambda-1} + a_{\Lambda$

7)
$$(D-1) \times + 4y = 0$$

 $(D-1)/(D-1) y - x = 0$
 $4y + (D-1)^2y = 0 \Rightarrow y - 2y + 5y = 0$
 $y = e^{\frac{1}{2}}(c_1c_3)d + c_1sh(t)$
 $y = e^{\frac{1}{2}}(c_1c_3)d + c_1sh(t)$
 $y = e^{\frac{1}{2}}(c_1c_3)d + c_1sh(t)$
 $y = e^{\frac{1}{2}}(c_1c_3)d + c_1sh(t)$
 $y = e^{\frac{1}{2}}(c_1c_3)d + c_1sh(t)$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x = 0$
 $y + x =$

SAÜ BİLGİSAYAR VE BİLİŞİM BİLİMLERİ FAKÜLTESI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ YILSONU SINAVI

İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR.

J./

 $y'+2xy=2xe^{-x^2}$ denkleminin genel çözümünü bulunuz.

2.

 $y''-4y'+5y = \frac{e^{2x}}{\cos x}$ denkleminin genel çözümünü bulunuz.

3.

 $y'' + x^2y' - 4xy = 0$ denkleminin x = 0 noktası komşuluğundaki çözümünü kuvvet serileri yardımıyla bulunuz.

4.

 $y''-y'=e^x\cos x$ başlangıç değer probleminin çözümünü Laplace dönüşümü yardımıyla bulunuz.

dönüşümü yardımıyla bulunuz.

$$L\{e^{ax} f(x)\} = F(s-a)$$

$$L\{y^{(n)}\} = s^{n}Y(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0)$$

SÜRE: 80 DAKİKADIR.

Başarılar Dileriz İyi Tatiller.

1)
$$y' + 2xy = 2xe^{-x^2}$$
 lines
$$\lambda = e^{\int 2x \, dx} = e^{x^2} \int e^{x^2} y = \int e^{x^2} 2x e^{-x^2} \, dx + C$$

$$e^{x^2} y = \int e^{x^2} 2x e^{-x^2} \, dx + C$$

$$y = \int e^{x^2} y = \int e^{x^2} 2x e^{-x^2} \, dx + C$$

$$y = \int e^{x^2} y = \int e^{x^2} 2x e^{-x^2} \, dx + C$$

2)
$$y'' - 4y' + 5y = \frac{e^{2x}}{\cos x}$$

$$y'' = e^{2x} \left[c_1 \cos x + c_1 \sin x \right] \left[5 \right]$$

$$y'' = c_1(x) e^{2x} \cos x + c_1(x) e^{2x} \sin x \left[5 \right]$$

$$c_1' \left(e^{2x} \cos x \right) + c_1' \left(e^{2x} \sin x \right) = 0$$

$$c_1'' \left(e^{2x} \cos x \right) + c_1'' \left(e^{2x} \sin x \right) = 0$$

$$C_1'\left(\frac{e^{2x}G_{5x}}{e^{2x}G_{5x}}\right) + C_1'\left(\frac{e^{x}S_{5inx}}{e^{2x}S_{5inx}}\right) = \frac{e^{2x}}{G_{5x}}$$

$$C_1'\left(\frac{2e^{2x}G_{5x}}{e^{2x}G_{5x}}\right) + C_1'\left(\frac{2e^{2x}S_{5inx}}{e^{2x}G_{5x}}\right) = \frac{e^{2x}}{G_{5x}}$$

$$C_{1} = -\frac{\sin x}{6 ix} \Rightarrow C_{1} = h \cos x$$

$$C_{1} = 1 \Rightarrow C_{1} = x$$

3)
$$y'' + x^2 y' - 4xy = 0$$
 $x = 0$
 $y = \sum_{n=0}^{\infty} a_n x^n$ $y' = \sum_{n=0}^{\infty} n_n a_n x^{n-1}$ $y'' = \sum_{n=0}^{\infty} n_n a_n x^{n-1}$
 $y'' = \sum_{n=0}^{\infty} a_n x^n$ $y'' = \sum_{n=0}^{\infty} n_n a_n x^{n-1}$ $y'' = \sum_{n=0}^{\infty} n_n a_n x^{n-1}$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$

$$4) \quad y'' - y' = e^{x} \cos x \qquad y(0) = y'(0) = 0$$

$$L\left\{y'' - y'\right\} = L\left\{e^{x} \cos x\right\}$$

$$S^{2}y(0) - Sy(0) - y'(0) - S^{2}y(0) + y(0) = \frac{S-1}{(S-1)^{2}+1}$$

$$\frac{1}{S(S^{2}-2S+2)} = \frac{A}{S} + \frac{BS+C}{S^{2}-2S+2}$$

$$y(x) = L^{-1}\left\{\frac{1/2}{S} + \frac{-1/2S+1}{(S-1)^{2}+1}\right\}$$

$$= \frac{1}{2}L^{-1}\left\{\frac{A}{S}\right\} - \frac{1}{2}L^{-1}\left\{\frac{S-A}{(S-1)^{2}+1}\right\} + \frac{1}{2}L^{-1}\left\{\frac{1}{(S-1)^{2}+1}\right\}$$

$$y(x) = \frac{1}{2} - \frac{1}{2}e^{x}\cos x + \frac{1}{2}e^{x}\sin x$$

SAÜ BİLGİSAYAR VE BİLİŞİM BİLİMLERİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ YILSONU SINAVI

<u>İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR.</u>

AŞAĞIDAKİ SORULARDAN SADECE BİR (1) TANESİNİ CEVAPLAYINIZ.

 $y'+e^x-3y+e^{-x}y^2=0$ Riccati denkleminin bir özel çözümü $y_1=e^x$ olduğuna göre genel zözümünü bulunuz.

 $p^2x = 2yp - 3$ denkleminin genel çözümünü ve varsa aykırı çözümünü bulunuz.

ASAĞIDAKİ SORULARDAN SADECE BİR (1) TANESİNİ CEVAPLAYINIZ.

3. $y''-3y'+2y=\frac{e^{2x}}{e^x+1}$ denkleminin genel çözümünü bulunuz.

 $x^2y'' + xy' + 4y = 2x \ln x$ denkleminin genel çözümünü bulunuz.

y'' + 2xy' + xy = 0 denkleminin x = 0 noktası komşuluğundaki çözümünü kuvvet serileri yardımıyla bulunuz.

6.
$$f(x) = \begin{cases} 0, & x < 2 \\ 3, & x \ge 2 \end{cases}$$
 olmak üzere $y'' + 4y = f(x)$ probleminin çözümünü $y(0) = 0, y'(0) = 0$

Laplace dönüşümü yardımıyla bulunuz.

$$L\{f(x)\} = F(s) \text{ olmak "czere } g(x) = \begin{cases} 0, & x < c \\ f(x-c), & x \ge c \end{cases} \text{ icin } L\{g(x)\} = e^{-cs}F(s)$$

$$L\{y^{(n)}\} = s^n Y(s) - s^{n-1} y(0) - s^{n-2} y'(0) - \dots - y^{(n-1)}(0)$$

SÜRE: 80 DAKİKADIR.

Başarılar Dileriz İyi Tatiller.

1)
$$y' + e^{x} - 3y + e^{-x}y^{2} = 0$$
 $y_{1} = e^{x}$
 $y' = e^{x} + \frac{1}{u}$ $y' = e^{x} - \frac{u'}{u^{2}}$ The dealer of the de

2)
$$p^{2}x = 2yp - 3$$
 $y = x \frac{p}{2} + \frac{3}{2p}$ (Lagrange)
 $x'e$ gôre tûrev alalım.
 $p = \frac{dp}{dx} \left(x - \frac{3}{p^{2}} \right)^{\frac{1}{3}}$ $p = 0$ ich aykırı connyok
 $\frac{dx}{dp} - \frac{1}{p}x = -\frac{3}{p^{3}}$ (Lineer)

$$X = \frac{1}{p^2} + \frac{c}{p}$$
Cond Cotimus
$$y = \frac{x}{2}p + \frac{3}{2p}$$
Parametrik gösterimi

3)
$$y'' - 3y' + 2y = \frac{e^{2x}}{e^{x} + 1}$$
 $\int_{1}^{2} 3x + 2 = 0 \Rightarrow \int_{1}^{2} (1 = 1), \quad f_{1} = 25$
 $\int_{1}^{2} 4x + f_{2} =$

5)
$$y'' + 2xy' + xy = 0$$
 $x = 0$ adi nokto
 $y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \alpha_4 x^4 + \alpha_7 x^4 + \cdots$
 $y'' = \Omega_1 + 2\alpha_2 x + 3\alpha_3 x^2 + 4\alpha_4 x^3 + 5\alpha_7 x^3 + \cdots$
 $y''' = 2\alpha_2 + 6\alpha_3 x + 12\alpha_4 x^2 + 20\alpha_7 x^3 + \cdots$
 $y''' = 2\alpha_1 + 6\alpha_3 x + 12\alpha_4 x^2 + 20\alpha_7 x^3 + \cdots$
 $y''' = 2\alpha_1 + 6\alpha_3 x + 12\alpha_4 x^2 + 20\alpha_7 x^3 + \cdots$
 $+ (\alpha_0 x + \alpha_1 x^2 + \alpha_2 x^3 + \cdots) + (2\alpha_1 x + 4\alpha_2 x^2 + 6\alpha_3 x^3 + \cdots) + (2\alpha_1 + 6\alpha_3 x^2 + \alpha_2 x^3 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + 6\alpha_3 x^2 + \alpha_2 x^3 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + 4\alpha_2 x^2 + \alpha_3 x^3 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + 4\alpha_2 x^2 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + 4\alpha_2 x^2 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + 4\alpha_2 x^2 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + 4\alpha_2 x^3 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + \alpha_3 x^3 + \alpha_3 x^3 + \cdots) + (2\alpha_1 + \alpha_3 x^3 + \alpha_3 x^3 + \cdots) +$

6)
$$f(x) = \begin{cases} 0, & x < 2 \\ 3, & x > 2 \end{cases}$$
 $y = f(x)$ y

Tarih: 02/01/2020 **Süre:** 80 dakika.

ADI SOYADI:

ÖĞRENCİ NO:

SAÜ Mükendislik Fakültesi Metalurji ve Malzeme Mühendisliği Bölümü Diferensiyel Penklemler – Yıl Sonu Sınavı

İşlem yapılmadan verilen cevaplar dikkate alınmayacaktır. Başarılar Dileriz.

 $1/xy'+y=x^2y^2$ Bernoulli denkleminin genel çözümünü bulunuz.

2. $x^2y''-3xy'+4y=6x^2\ln x+\frac{6}{x}$ Cauchy-Euler denkleminin genel çözümünü bulunuz.

 $y'' - 2y' + y = \frac{e^x}{v^2}$ denkleminin genel çözümünü bulunuz.

2)
$$x=e^{+}$$
 $y'=\frac{1}{x}\frac{dy}{dx}$ $y''=\frac{1}{x^{2}}\left(\frac{d^{2}y}{dx}-\frac{dy}{dx}\right)$ [le

$$r^{2} + 4r + 4 = 0 \Rightarrow r_{1n} = 2$$

$$y_{h} = (c_{1} + c_{2} + c_{3}) = 2 + 2 + 3 = 2 +$$

$$y_p = {}^{2}(A+B)e^{2+}+ce^{-+}ik$$
 $y_p = {}^{3}e^{2+}+\frac{2}{3}e^{-+}$ 5

$$y_{g} = (c_{1} + c_{2}t)e^{2t} + t^{3}e^{2t} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)e^{2t} + t^{2}e^{-t} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_{g} = (c_{1} + c_{2}t)x^{2} + t^{2}e^{-t}$$

$$y_g = (c_1 + c_2 \ln x) x^2 + x^2 (\ln x)^3 + \frac{2}{3x}$$

3)
$$r^2 - 2r + 1 = 0$$
 $r_1 = r_2 = 1$ $y_h = c_1 e^x + c_1 \times e^x$

$$\frac{y_{p} = c_{1}(x) e^{x} + c_{1}(x) x e^{x}}{c_{1}! e^{x} + c_{1}! x e^{x} = 0}$$

$$c_{1}! e^{x} + c_{1}! x e^{x} = 0$$

$$c_{1}! e^{x} + c_{1}! (e^{x} + x e^{x}) = \frac{e^{x}}{x^{2}}$$

$$c_{1}! e^{x} + c_{1}! (e^{x} + x e^{x}) = \frac{e^{x}}{x^{2}}$$

$$c_{1}! e^{x} + c_{1}! (e^{x} + x e^{x}) = \frac{e^{x}}{x^{2}}$$

$$C_2 = -\frac{1}{x}$$

$$C_1 = -hx$$

 $y''+y=x^2+2$ y(0)=1, y'(0)=-1 probleminin genel çözümünü Laplace dönüşümü yardımıyla bulunuz.

$$(L\{y^{(n)}\} = s^{n}Y(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0))$$

$$L\{y^{(1)} + y\} = L\{\chi^{2} + 2\}$$

$$S^{2}Y(S) - Sy(S) - y^{1}(S) + Y(S) = \frac{2}{S^{3}} + \frac{2}{S}$$

$$Y(S) = \frac{S^{4} - S^{3} + 2S^{2} + 2}{S^{3}(S^{2} + 1)}$$

$$S^{4} - S^{3} + 2S^{2} + 2 = \frac{A}{S} + \frac{B}{S^{2}} + \frac{C}{S^{3}} + \frac{DS + E}{S^{2} + 1}$$

$$S^{3}(S^{2} + 1)$$

$$A = B = C \quad C = 2 \quad D = 1 \quad E = 1$$

$$Y(X) = L^{-1} \left\{ \frac{S}{S^{3}} \right\} + C^{-1} \left\{ \frac{S}{S^{3} + 1} \right\} - C^{-1} \left\{ \frac{1}{S^{3} + 1} \right\}$$

$$= L^{-1} \left\{ \frac{1}{S^{3}} \right\} + C^{-1} \left\{ \frac{S}{S^{3} + 1} \right\} - C^{-1} \left\{ \frac{1}{S^{3} + 1} \right\}$$

$$\Rightarrow \left\{ y(X) = X^{2} + GSX - S^{2}XX \right\}$$

5. y'' - xy' + 2y = 0 denkleminin x = 0 noktası civarında $\left(y = \sum_{n=0}^{\infty} c_n x^n \right)$ seri çözümünü X=0 adi noleta olep y = a o + a 1 x + a 2 x + a 3 x + a 4 x + a 7 x + --y'= a1+2a2x+3a3x2+4a6x3+5a5x4+-- $y'' = 2a_2 + 6a_3 \times + 12a_4 \times^2 + 20a_7 \times^3 + --$ derklende yerlende yazılırsa $(2a_2 + 6a_3 \times + 12a_4 \times^2 + 20a_7 \times^3 + \cdots) - (a_1 \times + 2a_2 \times^2 + 3a_3 \times^3 + \cdots) +$ $+(2a_0+2a_1X+2a_2X^2+2a_3X^3+\cdots)=0$ (5) $(292+290)+(693-91+291)X+(1294-292+292)X^2+$ $+(2007+303+203)X^3+--=0$ (5)

 $+(200) + 303 + 203) \wedge$ $Q_{1} = -Q_{0}$ $Q_{3} = -\frac{1}{6}Q_{1}$ $Q_{4} = Q_{1}$ $Q_{5} = -\frac{1}{120}Q_{1}$ $Q_{7} = -\frac{1}{120}Q_{1}$ $Q_{1} = -\frac{1}{120}Q_{1}$