NOIP 2018 练习赛

第一试

时间: 2018 年 8 月 3 日 08:30 ~ 12:00

题目名称	蚊帐	景致	朝暮
题目类型	传统型	传统型	传统型
目录	kaya	nagame	akekure
可执行文件名	kaya	nagame	akekure
输入文件名	kaya.in	nagame.in	akekure.in
输出文件名	kaya.out	nagame.out	akekure.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒
内存限制	256 MB	256 MB	256 MB
测试点数目	20	20	25
每个测试点分值	5	5	4

提交源程序文件名

对于 C++ 语言	kaya.cpp	nagame.cpp	akekure.cpp
对于 C 语言	kaya.c	nagame.c	akekure.c
对于 Pascal 语言	kaya.pas	nagame.pas	akekure.pas

编译选项

对于 C++ 语言	-02	-02	-02
	-std=c++11	-std=c++11	-std=c++11
对于 C 语言	-02 -std=c11	-02 -std=c11	-02 -std=c11
对于 Pascal 语言	-02	-02	-02

NOIP 2018 练习赛 第一试 蚊帐 (kaya)

蚊帐 (kaya)

【题目背景】

Inaka 和 Miyako 是好朋友,它们的愿望是游历世界的每一个角落。

【题目描述】

Miyako 在直角坐标平面上标记了 n 个点,其中任意三点均不共线。Miyako 希望从中选取 6 个点 A,B,C,D,E,F,满足 $\triangle ABC$ 和 $\triangle DEF$ 的内部没有其他标记过的点,且 $\triangle ABC$ 与 $\triangle DEF$ 没有公共顶点。

Miyako 希望找到任意一组满足条件的方案。

【输入格式】

从文件 kaya.in 中读入数据。

输入的第一行包含一个正整数 n — 标记点的个数。

接下来 n 行中的第 i 行包含两个空格分隔的整数 x_i, y_i — 第 i 个点的坐标。

输入保证任意三个给出的点均不共线。

【输出格式】

输出到文件 kaya.out 中。

输出一行,包含 6 个空格分隔的整数 *A*, *B*, *C*, *D*, *E*, *F* — 两个三角形的顶点编号。如果有多组解,以任意顶点顺序输出任意一组均可。

可以证明, 在给定的限制下, 存在至少一组解。

【样例1输入】

7

-21

1 1

3 2

 $-3 \ 3$

-1 3

2 4

-1 5

【样例1输出】

1 4 7 2 5 6

NOIP 2018 练习赛 第一试 蚊帐 (kaya)

【样例1解释】

可接受的输出不止一个,例如 1 5 6 2 3 7 也是一个满足条件的答案。

【样例 2】

见选手目录下的 kaya/kaya2.in 与 kaya/kaya2.ans。

【子任务】

对于 30% 的数据, n = 6;

对于 45% 的数据, $n \le 10$;

对于 60% 的数据, $n \le 30$;

对于 70% 的数据, $n \le 75$;

对于 80% 的数据, $n \le 400$;

对于 90% 的数据, $n \le 2000$;

对于 100% 的数据, $6 \le n \le 100000$, $|x_i|, |y_i| \le 10^9$ 。

【提示】

本题中,需要判断给定点 P 是否在 $\triangle ABC$ 内时,可以通过 $S_{\triangle PAB}+S_{\triangle PBC}+S_{\triangle PCA}$ 是否与 $S_{\triangle ABC}$ 相等来作出判断。

若三角形的三个顶点坐标分别为 $(x_1,y_1),(x_2,y_2),(x_3,y_3)$,那么三角形的面积为

$$S_{\triangle} = \frac{1}{2} \cdot |(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|$$

景致 (nagame)

【题目描述】

Inaka 来到了一个 n 行 m 列共 $n \times m$ 个格子组成的网格中。

第i行第j列的格子有垂直于网格平面的高度 $h_{i,j}$ 。

Inaka 可以从某一个格子开始,不断走向上下左右相邻的格子中,高度**不小于**当前格子的任意一个。

Inaka 有 q 组询问,其中第 i 组询问形如三个正整数 r_i, c_i, l_i ,表示 Inaka 希望知道 从第 r_i 行第 c_i 列的格子出发,是否存在一条恰好走 l_i 步的路径。

【输入格式】

从文件 nagame.in 中读入数据。

输入的第一行包含两个正整数 n,m —— 网格的行数和列数。

接下来 n 行中的第 i 行包含 m 个空格分隔的正整数 $h_{i,1},h_{i,2},\ldots,h_{i,m}$ —— 网格第 i 行所有格子的垂直高度。

接下来一行包含一个正整数 q —— 询问的数量。

接下来 q 行中的第 i 行包含三个空格分隔的正整数 r_i, c_i, l_i — 第 i 组询问的起始点坐标和路径长度。

【输出格式】

输出到文件 nagame.out 中。

输出 q 行, 依次回答 q 个询问。

对于每个询问,若存在满足条件的路径,输出"=_="; 否则输出">_<"。

【样例1输入】

- 3 4
- 4 9 2 2
- 3 5 7 7
- 8 1 6 6
- 3
- 1 1 1
- 1 1 2
- 3 2 10

【样例1输出】

= =

> <

= =

【样例1解释】

对于第 1 组询问, $(1,1) \rightarrow (1,2)$ 是惟一一条满足条件的路径。

对于第2组询问,到达(1,2)后不能向任何方向行走,故不存在移动2步的路径。

对于第 3 组询问, $(3,2) \rightarrow (3,3) \rightarrow (3,4) \rightarrow (3,3) \rightarrow ...$ 是一条满足条件的路径。

【样例 2】

见选手目录下的 *nagame/nagame2.in* 与 *nagame/nagame2.ans*。 这组样例满足测试点 12 的限制。

【样例 3】

见选手目录下的 *nagame/nagame3.in* 与 *nagame/nagame3.ans*。 这组样例满足测试点 18 的限制。

【子任务】

对于所有数据, $1 \le n, m \le 1000$, $1 \le h_{i,j} \le 10^9$, $1 \le r_i \le n$, $1 \le c_i \le m$, $1 \le l_i \le nm$ 。

测试点	n, m	q	附加限制
1		≤ 10	
2	2		
3	≤ 3		
4			
5		. 200	
6	200		1 < 100
7	≤ 200	≤ 200	$l_i \le 100$
8			
9			
10			n = 1
11			
12			
13			$h_{i,j}$ 各不相同
14	< 1.000	$\leq 10^{5}$	
15	≤ 1 000	≤ 10°	
16			$h_{i,j} \leq 2$
17			
18			
19			-
20			

朝暮 (akekure)

【题目描述】

走过城市的每一条街道,欣赏着这里的每一次日出日落。

城市的地图上标出了n个点,这些点由m条双向道路联结,任意两点之间均可达。每一个标注的点都在白天或夜晚工作,而道路的建设保证了任意两个夜晚工作的点不直接被一条道路相连。

可是地图只标明了所有的道路,并没有标示每一个点的工作时间。

Inaka 和 Miyako 希望知道,有多少种不同的工作时间安排方案满足这个条件。两个方案被视为不同,当且仅当存在至少一个地点,它在一个方案中在白天工作,在另一个中在夜晚工作。

由于答案可能很大,请求出这个数目除以109+7所得的余数。

【输入格式】

从文件 akekure.in 中读入数据。

输入的第一行包含两个正整数 n.m —— 分别表示地点数量和道路数量。

接下来 m 行,每行包含两个空格分隔的正整数 u_i, v_i —— 描述一条联结地点 u_i 和 v_i 的边。

输入保证没有重边和自环 (联结一个点与其自身的边),且任意两点之间均可达。

【输出格式】

输出到文件 akekure.out 中。

输出一行,包含一个整数,表示工作时间的安排方案数目除以109+7所得的余数。

【样例1输入】

- 6 7
- 1 2
- 2 3
- 3 4
- 4 2
- 2 5
- 5 4
- 5 6

【样例1输出】

18

【样例1解释】

联结6个点的道路如上所示。

上图展示了一个合法的方案。

【样例 2】

见选手目录下的 *akekure/akekure2.in* 与 *akekure/akekure2.ans*。 这组样例满足测试点 7 的限制。

【样例 3】

见选手目录下的 akekure/akekure3.in 与 akekure/akekure3.ans。 这组样例满足测试点 22 的限制。

【子任务】

对于所有数据, $1 \le n \le 10^5$, $n-1 \le m \le n+5$, $1 \le u_i, v_i \le n$ 。

测试点	n	m	附加限制
1	≤ 3	~ ?	
2		≤ 3	
3			
4	< 20	T	
5	≤ 20	$\leq n+5$	
6			
7			$u_i = i, v_i = i + 1 \forall i < n$
8			$u_i = \iota, v_i = \iota + 1 \ \forall \iota < n$
9		= n - 1	
10	$\leq 10^5$	-n-1	
11			
12			
13			
14		$\leq n$	
15			_
16			
17	≤ 500		
18			
19			
20	$\leq 5,000$	$\leq n+5$	
21		$\leq n + \delta$	
22			$u_i = i, v_i = i + 1 \forall i < n$
23	$\leq 10^5$		
24	≥ 10		_
25			