

The model-based approach to ISO 26262 compliant development in PREEvision 7.0

Dr. Eduard Metzker May 2014

> Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

Introduction to PREEvision

Model-Based E/E-System Engineering (1/2)

Introduction to PREEvision

Model-Based E/E-System Engineering (2/2)

- Domain specific language and data model.
- Single source model across all development levels and disciplines.
- Support for reuse and product line engineering.
- Automated report generation and consistency checks.
- Scripts for Benchmarking
- Automated algorithms for scheduling, signal routing, etc.
- ▶ Import and export of industry exchange formats (e.g. AUTOSAR, LDF, DBC, FIBEX, RIF/ReqIF...)

Introduction to PRFFvision

> Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

Achieving functional safety effectively means applying best practice to systems engineering, project management and quality assurance

- ...plus additional safety specific analyses (HARA, FMEA, FTA, FMEDA)
- ...and being able to demonstrate that you have done exactly this! (safety case)

The development tool chain should actively support this by:

- ...managing the complexity in the E/E system concept design
- ...supporting bidirectional traceability between each step of development
- ...ensuring safety analysis and development activities are performed on a single source model of the system
- ...ensuring consistency between all work products referenced by the safety case (configuration management)

Definition of features and their interactions, operating modes, vehicle states, etc.

Identification and classification of hazardous scenarios and derivation of appropriate system safety goals.

Design of a system concept for implementing the safety goals, for example on the basis of diagnostic or redundancy measures.

Design of technical system and component concepts including the derivation and implementation of technical safety requirements accordingly.

Application of deductive and inductive safety analysis techniques (e.g. FTA, FMEA) to validate the ability of the design to meet the system safety goals.

Calculation of the probability of the system failing to meet the safety goals and confirmation that the failure rate and diagnostic coverage targets are met.

Confirmation through review, analysis and test that all safety requirements are correctly implemented in the delivered system and that all assumptions made in the safety concept are valid.

Construction of a structured, coherent, complete and convincing argument that the system meets all its safety goals and appropriate regulations.

- **PREEvision Modeling** Capabilities
- **System Diagrams**

- **Hazard and Risk Analysis Editor**
- Hazard and Risk Analysis Report

- **Logical Architecture**
- **Activity Chains**
- Safety Goal, FSR
- **FSC Report**

- Hardware Architecture
- Software Architecture
- **TSR**
- **Safety Mechanisms**
- **HSI Specification Report**
- **TSC Report**

- **FMEA**
- **FTA**
- **Automatic FT Synthesis**
- **HW/SW Fault Propagation Analysis**

- **Quantitative FTA**
- **HW Architectural Metrics**

Integration with vTestCenter

Comprehensive Safety Case Report Generator

New or improved Features in PREEvision 7.0

- ▶ **Item Definition** defining the scope of the item under consideration
- Hazard and Risk Assessment performed according to method outlined in ISO 26262 – 3
- System Safety Goals incl. definition of ASIL and safe state
- ► Functional Safety Concept including allocation of safety goals and functional safety requirements to the system architecture
- ▶ **Technical Safety Concept** including refinement of the functional safety concept and allocation of technical safety requirements to hardware and software components
- ► Analysis (e.g. FMEA) to identify failures that can contribute to a violation of the safety goals

These work products must be internally consistent, traceable to one another, well documented and placed under rigorous quality and configuration management control

Introduction to PREEvision

Introduction to ISO 26262

> ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

ISO 26262 Compliant Development in PREEvision

- ▶ The lane keeping assistant (LKA) system serves as an example for the reader to better follow and comprehend the presented concepts.
- ► The basic goal of the LKA system is to serve "as a mechanism designed to warn a driver when the vehicle begins to move out of its lane (unless a turn signal is on in that direction) and to perform correcting measures if necessary. These systems are designed to minimize accidents by addressing the main causes of collisions: driver error, distractions and drowsiness"
- ▶ The LKA example does not claim to be complete in any sense.
- ▶ Its main purpose is to illustrate the model based system engineering approach for functional safety which is provided in PREEvision

1. Item Definition

Artefacts modeled in PREEvision:

- Feature specifications
- Product-line variant model
- Functional and non-functional requirements
- Operating scenarios and operating modes
- Logical and topological system architecture including allocation of functions
- Dependencies with other systems

Typical migration scenario:

Model those aspects relevant to safety by using imported requirements, SW-Architectures, communication schedules, etc.

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

1. Item Definition

> 2. Hazard and Risk Analysis

- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

2. Hazard and Risk Analysis

- Drag and drop allocation of item definition artifacts
- Version control and reuse at hazard description level

2. Hazard and Risk Analysis

Efficiency & Usability Improvements

- Assign functions / features and malfunctions to hazardous events
- Drag & Drop operations for all columns
- Pick operating scenarios and operating modes from catalogues
- Automatic calculation of ASIL
- Auto create hazardous events by D&D of features with malfunctions (library product line / reuse approach)
- Create and link safety goals directly in table

2. Hazard and Risk Analysis

Report generation:

- Export direct to MS Excel
- Configurable report generator (Open Office, Word, PDF)

Example consistency checks to ensure quality of the assessment:

- At least one safety goal per hazard
- Compatibility of safety goal ASILs to hazards
- Compatibility of exposure values to operating scenarios

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis

> 3. Functional Safety Concept

- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

3. Functional Safety Concept

3. Functional Safety Concept

- Support detailing safety goals via
 - Refinement
 - Decomposition
- Prevent errors and inconsistencies
 - Trace tables with automatic validation of ASIL decomposition
- Increase efficiency and reduce manual efforts
 - Automatically create valid decompositions of Safety Goals, Functional Safety Requirements and Technical Safety Requirements via metrics
 - Propagate ASILs down along trace links

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept

> 4. Technical Safety Concept

- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

4. Technical Safety Concept

- ► HW elements can be modeled and associated with technical safety requirements, faults and safety mechanisms
- Powerful library concept for faults and safety mechanisms

1) Example Based on ISO 26262 - 5, Annex D.1

4. Technical Safety Concept

Detailed HW Safety Concept

- ► HW safety design can be detailed down to the device level
- HW elements can be modeled and associated with technical safety requirements, faults and safety mechanisms
- Powerful library concept for faults and safety mechanisms

1) Example Based on ISO 26262 - 5, Annex E.1

4. Technical Safety Concept

Detailed SW Safety Concept

► SW safety design, technical safety requirements (TSR) and safety mechanisms (SM) can be detailed down to ports, interfaces and data elements

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept

> 5. HW / SW Interface (HSI)

- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

5. HW / SW Interface (HSI)

- Efficiently specify HSI via HSI Editor
 - Create HSI-Requirements directly in Editor
 - ▶ Pick HW/SW Elements in Editor from existing Architecture

HSI	SW Element	HW Element	HSI Requirement
◆ ESP-HSI1	➤ MoveCmd:ServoMotorCmd (SW Port)	■ CC1 / -;- (Conventional Connector)	The servo motor command
ECD LICES	Docition/PotationPocition /CI// Doct)	CC2 / - /Conventional Connector)	Mounting of the retation co

► Efficiently generate HSI Specification (Work Product required by ISO 26262-4/5/6)

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)

> 6. Safety Analysis: FMEA

- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

► FMEA refers directly to requirements, architecture and test artifacts enabling a round-trip approach to architecture design and safety analysis.

Folie 27 Anpassen auf LKA Metzker, Eduard; 30.04.2014

- FMEA actions are directly modeled as change tickets and can be allocated to human resources, work packages etc.
- Different tables can be configured to provide use case specific views on the data (e.g. FMEA entries sorted according to RPN).

- Consistency checks validate the traceability of prevention and detection measures.
- ► FMEAs can be exported according to user configurable document templates or as an excel file.

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA

> 7. Safety Analysis: FTA

- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

- Calculation of minimal cut sets (Qualitative Analysis)
- Calculation of quantitative importance of minimal cut sets (Quantitative Analysis)

Local Fault Trees

Synthesized Fault Tree

 Local fault trees of HW/SW components can be automatically synthesized to fault trees of the overall system

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- > 8. Safety Analysis: HW Architectural Metrics
 - 9. Safety Case Report

8. Safety Analysis: HW Architectural Metrics

- Build failure mode library by convenient annotation of all HW library elements (e.g. Devices Types, Module Types, CPU types etc.)
- ▶ Dedicated Failure Mode Library Editor for high usability and efficiency

Library Element	FIT	Failure Mode	% Di
□ ⊣⊢ C-EU	2.0	open circuit	20.0
		short circuit	80.0
↓ GND			
□ ⊗ LED	10.0	open circuit	90.0
		short circuit	10.0
□ R-EU	2.0	open circuit	90.0
		short circuit	10.0
□ ≒ SENSOR-TEMPERATURE	3.0	open circuit	30.0
		short circuit	10.0
		drift 0.5	30.0
		drift 2	30.0
□ ┺ SENSOR-WHEELSPEED	4.0	open circuit	70.0

- Use library elements during HW design as usual
- Increased efficiency by reusing failure mode definitions for design from library

- Allocate **target values** via D&D
- Assign **safety mechanisms** and detection mechanisms via D&D
- Convenient HW architectural metrics calculator
- **Instant highlighting** of fullfillments and violations
- Covers all metrics defined ISO 26262 5

Requirement	Safety Related?	Component Name	Failure Rate [FIT]	Failure Mode	Failure Rate	Safety Mechanism RF	Diagnostic Coverage RF [%]	SF
□ 🛗 SafetyGoal1 (✓	- -R3	3.0	open circuit_R3	30.0			0.
				short circuit_R3	10.0			
				drift 0.5_R3	30.0			
				drift 2_R3	30.0			0.
	>	- □-R1 3	2.0	open circuit_R13	90.0			1.
				short circuit_R13	10.0			0.
	✓	R23	2.0	open circuit_R23	90.0			

Integrated iterative Design and Analysis / Optimization RAM (RAM) Build / Edit Failure Mode Library CPU (Microprocessor) **Design Hardware** Architecture • Gateway / -; - (Gate. FM/AM Tun output stage (Hardware Mo...⊡ **Perform Analysis** -----TMC Tuner with HW . **Architectural** Metrics Telephone Interface (.... Failure Rate... | Safety Mechanism RF | Diagnostic Coverage RF [%] Safety Related? Component Name Failure Rate [FIT] Failure Mode ☐ 🔚 SafetyGoal1 (... short circuit_R3 drift 0.5_R3 drift 2_R3 open circuit_R13 open circuit_R23 2.0 open circuit_C23 20.0

Conveniently create HW Architetural Metrics Report

Component Name	Failure Rate / FIT	Safety- Related HW component ?	Failure Mode	Failure Rate Distributi on	Failure Mode has potential to directly violate the safety goal?	Safety Mechanism for direct violation	Diagnostic Coverage with respect to residual faults	Residual or Single- Point Fault failure rate / FIT	Failure Mode has potential to violate the safety goal in combinatio n with another fault?	Safety Mechanism for violation in combinatio n with another fault	Diagnostic Coverage with respect to latent faults	Latent Multiple- Point Fault failure rate FIT
R71	2.00	YES	ShortCircuit	10.0 %					х	none	0.0 %	0.20
C71	2.00	YES	OpenCircuit	20.0 %					х	none	0.0 %	0.40
C71	2.00	YES	ShortCircuit	80.0%								
WD	20.00	YES	StuckAtOne	50.0 %					х	none	0.0 %	10.00
WD	20.00	YES	StuckAtZero	50.0 %								
T71	5.00	YES	OpenCircuit	50.0 %	x	SM1	90.0 %	0.25	X	SM1	80.0 %	0.45
T71	5.00	YES	ShortCircuit	50.0 %								
												
μC	100.00	YES	All	50.0 %	X	SM4	90.0 %	5.00	X	SM4	100.0 %	0.00
μC	100.00	YES	AI2 hitectur	50.0 %		SM4	90.0 %	5.00	X	SM4	100.0 %	0.00
5.3 H	lardwa	YES	AI2	50.0 %				5.00	X	SM4	100.0 %	0.00
5.3 H SafetyG Total Fail	lardwa	YES	AI2	50.0 %		163	.00 FIT	5.00	X	SM4	100.0 %	0.00
5.3 F SafetyG Total Fail	lardwa	YES Arc Arc	AI2	50.0 %		163 142	.00 FIT	5.00	x	5M4	100.0 %	0.00
5.3 F SafetyG Total Fail Total Saf	lardwa lardwa lure Rate: ety Relate SafetyRe	YES Arc Arc	AI2	50.0 %		163 142 21.0	.00 FIT .00 FIT	5.00	x	SM4	100.0 %	0.00
5.3 F SafetyG Total Fail Total Saf Total Not ASIL-Lev	lardwa oal1 lure Rate: ety Relate SafetyRe	YES Are Arc	AI2	50.0 %		163 142	.00 FIT .00 FIT	5.00	X	SM4	100.0 %	0.00
5.3 F SafetyG Total Fail Total Saf Total Not ASIL-Lev Single-P	lardwa oal1 lure Rate: ety Relate SafetyRe /el:	YES Are Arc ad: alated:	hitectur	al Me		163 142 21.0 ASII	.00 FIT .00 FIT 00 FIT L-B	5.00	X	SM4	100.0 %	0.00
5.3 F SafetyG Total Fail Total Saf Total Not ASIL-Lev Single-P Sum of S	lardwa lardwa oal1 ure Rate: iety Relate SafetyRe /el: oint Faul	YES Are Arc ed: elated: t Metric: nt and Res	AI2	al Me		163 142 21.0 ASII	.00 FIT .00 FIT DO FIT L-B	5.00	x	SM4	100.0 %	0.00
5.3 F SafetyGe Total Fail Total Saf Total Not ASIL-Lev Single-P Sum of S Single-P	lardwa oal1 lure Rate: ety Relate: SafetyRe vel: oint Fault	yes are Arc ad: alated: t Metric: nt and Res Metric:	hitectur	so.o%		163 142 21.0 ASII 9.66 93.2	.00 FIT .00 FIT 00 FIT L-B		X	SM4	100.0 %	0.00
5.3 F SafetyG Total Fail Total Saf Total Not ASIL-Lev Single-P Sum of S Single-P Single-P Single-P	lardwa oal1 lure Rate: ety Relate: SafetyRe vel: oint Fault	yes are Arc ad: elated: t Metric: nt and Res Metric: Metric Targ	hitectur	so.o%		163 142 21.0 ASII 9.66 93.2	.00 FIT .00 FIT 00 FIT L-B		X	SM4	100.0%	0.00
5.3 F SafetyGo Total Fail Total Saf Total Not ASIL-Lev Single-Po Sum of S Single-Po Latent-F	lardwa lardwa lure Rate: ety Relate: SafetyRe rel: loint Fault single-Point fault fault Metri	yes are Arc ad: elated: t Metric: nt and Res Metric: Metric Targ	hitectur hitectur	so.o%		163 142 21.0 ASII 9.65 93.2 Stat	.00 FIT .00 FIT 00 FIT L-B		X	SM4	100.0%	0.00
5.3 F SafetyG Total Fail Total Saf Total Not ASIL-Lev Single-P Sum of S Single-P Latent-F Sum of L	lardwa lardwa lure Rate: ety Relate: SafetyRe rel: loint Fault single-Point fault fault Metri	re Arc ed: elated: t Metric: nt and Res Metric Targ ic: tiple-Point	hitectur hitectur	so.o%		163 142 21.0 ASII 9.65 93.2 Stat	.00 FIT .00 FIT DO FIT L-B 5 FIT 20 %		x	SM4	100.0 %	0.00

Agenda

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics

> 9. Safety Case Report

Summary

9. Safety Case Report

9. Safety Case Report

Safety Case

Safety Case Report

- Safety Case artifact collects work products which are the input for the safety case report(e.g. Safety Hazard Analysis, Requirement Packages, FMEA, Safety Plan etc.)
- Report distills the content which is required for safety case report
- Always consistent report based on current status of work products
- Dramatic reduction of **costs** for consistent documentation

Agenda

Introduction to PREEvision

Introduction to ISO 26262

ISO 26262 Compliant Development in PREEvision

- 1. Item Definition
- 2. Hazard and Risk Analysis
- 3. Functional Safety Concept
- 4. Technical Safety Concept
- 5. HW / SW Interface (HSI)
- 6. Safety Analysis: FMEA
- 7. Safety Analysis: FTA
- 8. Safety Analysis: HW Architectural Metrics
- 9. Safety Case Report

> Summary

Summary

Summary

Advantages for Functional Safety

- Safety concepts can be systematically derived and evaluated according to a wide range of criteria:
 - Automated consistency checking of safety concepts
 - System level optimization, taking into account all architecture levels (Software, Network, Component, Wiring, Geometry).
- ► Safety analyses (e.g. FMEA) are based on a single source model ensuring consistency between the analyses and the development stream.
 - ▶ **Safety Round-Trip Engineering**: The results of safety analyses are directly visible in the model. The impact of changes in the architecture are directly visible in the relevant parts of the safety analysis.
- ▶ See Vector website for technical papers and trainings on functional safety
 - http://vector.com/portal/medien/cmc/factsheets/Safety_Solution_FactSheet_EN.pdf
 - http://vector.com/portal/medien/distributed_systems/preevision/ATZe_201305_EN.pdf
 - ▶ https://vector.com/vi_news_en.html#!vi_news_detail_iframe_en,,,1220395,detail.html

Thank you for your attention.

For detailed information about Vector and our products please have a look at:

www.vector.com

Author:

Dr. Eduard Metzker

Product Line Process Tools, Vector Informatik GmbH Stuttgart

