Recall that a number is *perfect* if the sum of its proper divisors is equal to the number itself. Prove the following: if n is a positive integer such that $2^n - 1$ is prime, then $2^{n-1}(2^n - 1)$ is perfect.

Proof: Suppose 2^n-1 is prime. We must show that $2^{n-1}(2^n-1)$ is perfect. Let $l=2^{n-1}(2^n-1)$. By definition of perfect we must show $\sum_{\substack{d|l\\d\neq l}}d=l$. Since 2^n-1 is prime, then for all $d\in Div(l)$, either $2^n-1\mid d$ or $2^n-1\nmid d$. Let the set of all $d\in Div(l)$, $2^n-1\nmid d$ be denoted A, and the set of all $d\in Div(l)$, $2^n-1\mid d$ be denoted B. Note by the definition of set union $A\cup B=Div(l)$. Since for all $a\in A, 2^n-1\nmid a, a\mid n$, then $a\mid 2^{n-1}$. Since 2 is prime, then the only possible divisors of 2^{n-1} are $\{2^0,2^1,\ldots,2^{n-1}\}$. Therefore $A=\{2^0,2^1,\ldots,2^{n-1}\}$. Since the set B is the set of divisors of l who are divisable by 2^n-1 , then aside from $1,b\in B$ should have the property $(b/(2^n-1))\mid 2^{n-1}$. Since $(b/(2^n-1))\mid 2^{n-1}$, and the only divisors of 2^{n-1} are $\{2^0,\ldots,2^{n-1}\}$, then all $b\in B\setminus\{1\}$ should have the form $b=2^k(2^n-1)$, where $k\in\mathbb{Z}, n-1\geq k\geq 0$. Therefore $B=\{1,2^n-1,2(2^n-1),\ldots,2^{n-1}(2^n-1)\}$. Also note that for any $r\in\mathbb{Z}_{\geq 0}, \sum_{i=0}^r 2^i=2^{r+1}-1$, since $\sum_{i=0}^r 2^i$ is geometric series which when evaluated yields $\sum_{i=0}^r 2^i=\frac{1-2^{r+1}}{1-2}=\frac{1-2^{r+1}}{1-2}=2^{r+1}-1$. Therefore by algebraic manipulation

$$\sum_{\substack{d|l\\d\neq l}} d = \sum_{a \in A} a + \sum_{b \in B \setminus \{1,l\}} b$$

$$= \sum_{i=0}^{n-1} 2^i + (2^n - 1) \sum_{i=0}^{n-2} 2^i$$

$$= 2^n - 1 + (2^n - 1)(2^{n-1} - 1)$$

$$= (2^n - 1)(1 + 2^{n-1} - 1)$$

$$= 2^{n-1}(2^n - 1)$$

$$= l.$$