CHAPTER 2

PROB#2-1

1. $w_{u} = 1.4D = (1.4)(80) = 112 \text{ psf}$ 2. $w_{u} = 1.2D + 1.6L + 0.5 (L_{x} \text{ or Sor R})$ = (1.2)(80) + (1.6)(6) + (0.5)(20) = 202 psf < - (1.2)(80) + (1.6)(20) + (0.5)(60) = 158 psf3. $w_{u} = 1.2D + 1.6 (L_{x} \text{ or Sor R}) + (0.5)(60) = 158 \text{ psf}$ 4. $w_{u} = 1.2D + 1.6 w + 0.5L + 0.5 (L_{x} \text{ or Sor R})$ = (1.2)(80) + (0.5)(60) + (0.5)(20) = 136 psf5. $w_{u} = 1.2D + 1.0E + 0.5L + 0.2S$ = (1.2)(80) + (0.5)(60) + (0.2)(20) = 130 psf6. $w_{u} = 0.9D + (1.6w \text{ or } 1.0E)$ = (0.9)(80) = 72 psf

Ans. Win= 202 psf

vg cmc

1.
$$w_{L} = 1.4D = (1.4)(50) = 70 \text{ psf}$$

2. $w_{LL} = 1.2D + 1.6L + 0.5 (L_{L} \text{ or } 5 \text{ or } R)$

$$= (1.2)(50) + (1.6)(70) = 172 \text{ psf}$$

3. $w_{LL} = 1.2D + 1.6 (L_{L} \text{ or } 5 \text{ or } R) + (0.5L \text{ or } 0.8 \text{ w})$

$$= (1.2)(50) + (0.5)(70) = 95 \text{ psf}$$

4. $w_{LL} = 1.2D + 1.6 \text{ w} + 0.5L + 0.5 (L_{L} \text{ or } 5 \text{ or } R)$

$$= (1.2)(50) + (0.5)(70) = 95 \text{ psf}$$

5. $w_{LL} = 1.2D \pm 1.0E + 0.5L + 0.25$

$$= (1.2)(50) + (0.5)(70) = 95 \text{ psf}$$

6. $w_{LL} = 0.9D \pm (1.6W \text{ or } 1.0E)$

$$= (0.9)(50) = 45 \text{ psf}$$

Ans. Win= 172 psf

NACME

PROB#2-3

2.
$$P_{u} = 1.2D + 1.6L + 0.5$$
 (Ly. or S or R)
= $(1.2)(8000) + (1.6)(4000) + (0.5)(2000) = 17,000 \text{ lbs} \leftarrow$

1 gcmc

PROB# 2-4

1.
$$w_{ik} = 1.4D = (1.4)(70) = 98 \text{ psf}$$

2. $w_{ik} = 1.2D + 1.6L + 0.5 \text{ (Lx or S or R)}$
 $= (1.2)(70) + (1.6)(40) + (0.5)(41) = 155 \text{ psf}$

3. $w_{ik} = 1.2D + 1.6 \text{ (Lx or S or R)} + (0.5L \text{ or 0.8W})$
 $= (1.2)(70) + (1.6)(41) + (0.5)(40) = 126.4 \text{ psf}$

4. $w_{ik} = 1.2D + 1.6w + 0.5L + 0.5(Lx \text{ or S or R)}$
 $= (1.2)(70) + (0.5)(40) + (0.5)(40) = 111 \text{ psf}$

5. $w_{ik} = 1.2D \pm 1.0E + 0.5L + 0.2S$
 $= (1.2)(70) + (1.0)(80) + (0.5)(40) = 184 \text{ psf}$
 $= (1.2)(70) + (1.0)(80) + (0.5)(40) = 24 \text{ psf}$

6. $w_{ik} = 0.9D \pm \text{ (1.6w or 1.0E)}$
 $= (0.9)(70) + (1.0)(80) = -17 \text{ psf}$

Ans. $w_{ik} = +184 \text{ psf} \text{ and } -17 \text{ psf}$

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

4.
$$wa = 0 + 0.75L + 0.75 (Ln. or S or R)$$

= 80 + (0.75)(0) + (0.75)(20) = 140 psf <

$$= (0.6)(80) = 48 bst$$

rgcm=

D

PRO8# 2-6

7
$$w_0 = 0.6D \pm (w \text{ or } 0.7E)$$

= $(0.6)(50) = 30 \text{ psf}$

Vacme

PROB # 2-7

1, Pa = D = 8000 lbs

2. Pa= D+L = 8000 + 4000 = 12,000 lbs

3. Pa = D + (Lz or S or R) = 8000 + 2000 = 10,000 lbs

4. Pa = D+0.75L+0.75 (Lz or S or R) = 8000 + (0.75)(4000) + (0.75)(2000) = 12,500 lbs

5. Pa = D ± (W or 0.7E) = 8000 1bs

6. Po= D+ 0.75 (W or 0.7E)+0.75L+0.75 (Lz or S or R) = 8000 +(0.75)(4000) +(0.75)(2000) = 12,500 lbs

7. Pa = 0.6 D ± (Wor 0.7 E)=(0.6)(8000) = 4800 lbs

Ans. Pa= 12,500 165

rgcme

1.
$$w_{0} = D = 70 \text{ psf}$$

2. $w_{0} = D + L = 70 + 40 = 110 \text{ psf}$

3. $w_{0} = D + (L_{2} \text{ or } S \text{ or } R) = 70 + 14 = 84 \text{ psf}$

4. $w_{0} = D + 0.75 L + 0.75 (L_{2} \text{ or } S \text{ or } R)$

$$= 70 + (0.75)(40) + (0.75)(4) = 10.5 \text{ psf}$$

5. $w_{0} = D + (w_{0} + w_{0}) = 126 \text{ psf}$

$$= 70 + (0.7)(80) = 14 \text{ psf}$$

6. $w_{0} = D + 0.75 (w_{0} + w_{0}) + 0.75 L + 0.75 (L_{2} \text{ or } S \text{ or } R)$

$$= 70 + 0.75 (0.7)(80) + (0.75)(40) + (0.75)(4)$$

$$= 152.5 \text{ psf}$$

7. $w_{0} = 0.60 + (w_{0} + w_{0}) = 98 \text{ psf}$

$$= (0.6)(70) + (0.7)(80) = -14 \text{ psf}$$

$$= (0.6)(70) - (0.7)(80) = -14 \text{ psf}$$

Ans. Wa= 98psf or -14psf

8

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PRO8 #3-4

WT 10.5 x 61

CA = 17.9 in.
$$^{2}_{1}$$
th = 0.600 in,

t = 0.960 in.)

Net A = 17.9 - (2)($^{2}_{8}$ + $^{1}_{9}$)(0.960) - (1)($^{2}_{8}$ + $^{1}_{9}$)(0.600)

= 15.30 in. $^{2}_{1}$

PRO8 # 3-5

U.sing 1 L8x4x $^{2}_{9}$ (A= 8.44 in. 2)

Net A = 8.44 - (2)($^{2}_{9}$ + $^{1}_{9}$)($^{2}_{9}$)

PRO8 # 3-6

PRO8 # 3-6

Using 2L57x4x $^{2}_{9}$ (A= 13.0 in. 2)

Net A = 13.0-(2)($^{2}_{8}$ + $^{1}_{9}$)($^{2}_{8}$) -(2)($^{2}_{8}$ + $^{1}_{9}$)($^{2}_{8}$)

= 9.25 in. $^{2}_{1}$

Note Areas for single angles times two vary a liftle from the double angle areas given in Steel Manaa (

Net widths

ABC =
$$9 - (1)(\frac{2}{6} + \frac{1}{6}) = 8.00 \text{ in}$$
.

ABDE = $9 - (2)(\frac{2}{6} + \frac{1}{6}) + \frac{(2)^{2}}{(4)(2)} = 7.33 \text{ in}$.

Net Area = $(7.33)(\frac{2}{6}) = 6.41 \text{ in}$.

PROB#3-10

Net widths

ABCD =
$$12 - (2)(\frac{3}{4} + \frac{1}{9}) = 10.25 \text{ in.}$$

ABECD = $12 - (3)(\frac{3}{4} + \frac{1}{9}) + (2)(\frac{1.5^2}{4 \times 3}) = 9.75 \text{ in.}$

Net Area = $(9.75)(0.875) = 8.53 \text{ in.}^2$

PRO8 # 3-15

Flattening the angle

A L8x8x
$$\frac{7}{3}$$

A L8x8x $\frac{7}{3}$

A L8x8x $\frac{7}{3}$

A L8x8x $\frac{7}{3}$

A L8x8x $\frac{7}{3}$

B $\frac{1}{3}$ in. bolts

B $\frac{1}{3}$

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PROB # 3-16

Elattening the angle

A

L.7x4x
$$\frac{1}{8}$$

CO

D

Net width ABCDE

= 10,375 - $(\frac{3}{2}\frac{2}{4} + \frac{1}{8}) + \frac{4^{2}}{(4)(4,375)} + \frac{4^{2}}{(4)(3)}$

= 7.75 + 0.1405 $\frac{2^{2}}{2}$

Net width with 2 holes out

= 10.375 - $(\frac{2}{2}\frac{3}{4} + \frac{1}{8}) = 8.625$ in.

Equating

7.75 + 0.1405 $\frac{2^{2}}{2} = 8.625$
 $\frac{1}{2} = \frac{2.50}{10}$

In the side of the solution of the

PROB#3.17

Flattening the angle

A

PL8XGXI

BO

Tim. 13 in.

Net width with 1 hole out

$$= 13 - (15)(\frac{7}{8} + \frac{1}{8}) = 11.50 \text{ in.}$$

Net width ABCD

$$= 13.00 - (2\sqrt{\frac{2}{8}} + \frac{1}{9}) + \frac{2^{2}}{(4\sqrt{27})}$$

$$= 11.00 + \frac{2}{28}$$

Equating

11.50 = 11.00 + $\frac{2}{28}$
 $4 = 3.74 \text{ in.}$

PROB#3-18

Using a C15x33,9 (A=10,0 in.2, tw=0,400 in., tx=0,650 in.)

Net areas

ABCD = $10.00 - (2)(\frac{3}{4} + \frac{1}{8})(0.40) = 9.30 \text{ in.}^2$ EFBCGH = $10.00 - (2)(\frac{3}{4} + \frac{1}{8})(0.65) - (2)(\frac{3}{4} + \frac{1}{8})(0.40)$ + $(2)(\frac{(2.5)^2}{(4)(6.35)}(0.65 + 0.40) = 8.42 \text{ in.}^2$

Noting that U= 1.0 since all parts are connected

$$A_e = UA_{net} = (1.0)(8.42) = 8.42 \text{ in.}^2$$

Using 2 mCs 18x 42.7 (For each A = 12.60 in),
$$t_{c} = 0.625 in$$
.)

Plus $2 - \frac{3}{4} \times 16$ PLs

Anet = $(2 \times 12.60) + (2 \times \frac{3}{4} \times 16) - (4 \times \frac{7}{4} + \frac{1}{8} \times 0.625 + \frac{3}{4})$

= 43.7 in^2

L given = 0.85

Ae = $1.4 + (0.85) \times (43.7) = 37.14 \text{ in}^2$

PROB * 3-20

Using 1 L 8x4x $\frac{3}{4} \times (4 = 8.44 \text{ in}^2)$

Avet = $8.44 + (1) \times (1 + \frac{1}{8} \times \frac{3}{4}) = 7.60 \text{ in}$.

L = 0.60 as given in Alsc Table D3-1 (case 8)

 $1.1 = 1 - \frac{1}{2} = 1 - \frac{0.949}{2x4} = 0.88 + \frac{1}{2}$

Ae = $1.4 \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2}$

Ae = $1.4 \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2}$

PROB# 3-21

using an MC12x40 (Ag=11.8in?, Ew=0.590 in., x=1.04 in.)

Net areas

ABCD = 11.8 - (2)(
$$\frac{7}{8}$$
+ $\frac{1}{8}$)(0.590) = 10.62 in.²

ABECD = 11.8 - (3)($\frac{7}{8}$ + $\frac{1}{8}$)(0.590) + (2) $\frac{(2)^2}{(4)(3.8)}$ (0.590)

PROB# 3-22

Using a C15x40 (A=11.8 in.2, tw= 0.520 in.) x=0.778 in.)

Net areas

A8CD = 11.8 - (2)
$$(\frac{3}{4} + \frac{1}{8})$$
 (0.520) = 10.89 in.²

A8ECD = 11.8 - (3) $(\frac{3}{4} + \frac{1}{8})$ (0.520) + (2) $(\frac{1.5}{4})$ (0.520)

= 10.63 in.²

Effective area

$$= 9.72 \text{ in.}^2$$

~ JCME

21

PROB# 3-23

Using a w21x57 (Ag=16.7in.2, g=2.85in.)

Anet = $16.7 - (4)(\frac{7}{9} + \frac{1}{8})(0.650) = 14.1 \text{ in.}^2$ $\vec{y} = \vec{x}$ for wt 10.5 x 28.5 = 2.85 in. $\vec{u} = 1 - \frac{2.85}{3x} = 0.762$

u = 0.85 since by = 6.56 < = X21.1 = 14.07 in. <--

 $Ae = UA_N = (0.85)(14.1) = [11.98 \text{ in.}^2]$

Vycm?

PROB#3-24

Using 117x4x3 (A=3,98in, = 0,861in.

Gross section yielding

Pm=(36)(3,98)= 143,28 R

LRFD \$=0,90	ASD 1.67
de Pm=(0,90)(143,28)= 129 f	-1.67 = 85,8k

Tensile rupture strength

 $A_{m} = 3.98 - (1)(\frac{3}{4} + \frac{1}{8}) = 3.6510^{-2}$

 $u = 1 - \frac{x}{2} = 1 - \frac{0.861}{8} = 0.892 < -$

or 0.6 Case 8 AISC Table Dall

A= (0,892)=3,26 in,2

Pm= (58)(3,26)=189,1 A

LRFD \$1=0,75	ASD _0_ = 2,00	
\$141.88 (0.75) (189.1)=141.88	Pm = 189.1 = 94.5.A	_

ANSWRS

APSI DARY

ASD 85,8 A

V CME

~ L6×3½×3 (Ag=3.42in.2, x=0.781in.) Net areas ABC = $3.42. -(1)(\frac{3}{4} + \frac{1}{8})(\frac{3}{8}) = 3.09 \text{ m.}^2$ ABOF = 3.42 -(2)($\frac{3}{4} + \frac{1}{8}\chi \frac{3}{8}$) + $\frac{(2)^2}{(4)(2.5)}(\frac{3}{8}) = 2.914 in.² <$ Effective area u=1- ₹ = 1- 0.781 = 0.90 ← or U=0.60 (Case 8 AISC Table D3.1) $A_e = UA_m = (0.90)(2.914) = 2.62 \text{ in.}^2$ Gross section yielding Pm = Fy Ag = (36)(3.42) = 123.1 A LRFD \$1.67 ASD with - - - 1.67 \$1.67 = 73.74 Tensile rupture strength Pm = Fu Ae = (58)(2.62) = 15.2,0 A LRFD \$= 0.75 ASD - D= 2.00 \$= 0.75)(262)= 1146 Pm/c= 152.00 = 76 A ASD = 73.78 VgcMC

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

ANS LRFD= 110,88

PROB# 3-26 Using 2 Ls 6x6x # (Ag = 8.46 in. 2 each) Gross section yielding Pm = Fy Ag = (36)(8,46)(2) = 609.1 LRFD \$=0.90 ASD-Q== 1.67

\$\frac{4+P_m}{67} = \frac{6.90\(\)(609.\)\= 548.24 \frac{P_m}{22.} = \frac{609!}{67} = 364.74 Net widths ABCD = 11.25 - (2/(2+ =) = 4.25 in. ABECO = 11.25 - (3)($\frac{7}{8} + \frac{1}{6}$) + $\frac{(2)^2}{(4)(2.5)} + \frac{2^2}{(4)(5)} = 8.85 \text{ m}$. Anet = (8,85)(3)=6.64 m.2 Effective area u=1.0 since both angle legs connected Ac = UAm = (1.0) (6.64)(2) = 13,28 cm,2 Tensile rupture strength Pm= Fu he = (58)(19,28)= 770,2-A LRFD 4=0.75 42D -U-4= 5'00 4-Pm = (0.75) (770,2)=5776 Pm = 7702 = 385,7. 6 ASD = 364.74 Ans -> | LRFD= 548.2 A

PROB# 3-27

Using a W12×53 (Ag=15.6in?, d=12.1in., bg=10.00 in., tg=0.575 in.)

Nominal or available tensile strength of member $P_m = FyAg = fo)(15.6) = 780R$ (a) Gross section yielding

LAFD $\phi_f = 0.90$ AsD $\Omega_f = 1.67$ $\phi_f P_m = (0.90)(780) = 702R$ $\frac{P_m}{\Omega_f} = \frac{780}{1.67} = 467.1R$

(b) Tensile rupture strength

 $A_{m}=15.6-(4)(3+8)(0.575)=13.3 \text{ in.}^{2}$ X=1.02 for one half of a. w. (20.5) X=1.02=0.93 $X=1-\frac{1.02}{6}=0.93$ X=10.00 in (3)(12.1)=8.07 in. X=10.00 in (3)(12.1)=8.07 in. X=10.00 in (3)(12.1)=8.07 in. X=10.00 in (3)(12.1)=8.07 in. X=10.00 in. (3)(12.1)=8.07 in.

LRFD \$2=0.75 ASD-12= 2.00

\$\frac{42}{42} = \frac{10.75}{178} = 583.56 \frac{10.2}{10.2} = \frac{778}{2.00} = 389 fc

Ans. LRFD = 583.5R ASD = 389R

V g c m =

PRO8#3-28 using a W18x119 (Ag=35.1 in.?, 6=11.3 in., t=1.06 in., d= 19.00 in.)

Nominal or available tensile strength of member Pm = FyAg = (50X35.1) = 1765-A

(a) Gross section yielding

LRFD \$=0.90	ASD -1-67
LRFD Φ= 20.40 Φ= Pm = (0.90×1756)= 1579.5-A	Pm = 1755 = 1050,9 k

(b) Tensile rupture strength

Am=35.1-4×1+=×1.06)=30.33 in.2 y = 2.03 for one half of a wisxil9 (wt 9x59.5)= X

 $U = 1 - \frac{X}{L} = 1 - \frac{2.03}{9.00} = 0.774$

bc=11.3<(3)(19.00)=12.67 in.

.. U= 0.85 Case 7 AISC Table D3.1

Ae= UAm= (0,85)(30,33)= 25.78 in.2

Pm = FuAe = (65)(25.78) = 1675.7 R

LRFD \$=0.75	ASD _ 2 = 2,00
φ_Pm=6.75×1675.7)= 1257.6	Pm = 1675.7 = 837.8 A

Ans. LRFD= 1257A ASD = 837.8A

PROB #3-29

using a W18×119 (Ag = 35.1 in.2, be = 11.3 in.)

Nominal available tensile strength of member

Pm = Fy Ag = (50) (35.1) = 1755.6

(a) Gross section yielding

LRFD 4=0,90	ASD-126=1.67
de Pm = (0,90×1755)= 1579,5A	Pm = 1755 = 1050,9 A

(b) Tensile rupture strength

Am=35.1-(4×1.06×4+8)=31.39 in.2

y = x = 2.03 in. for one half of a wisxiiq (wt 9x 59.5)

 $N = 1 - \frac{2.03}{L} = 1 - \frac{2.03}{9} = 0.774$

be=11.3< (3/19.00)=12.67in.

: L= 0.85 Case 7 Alsc Table D3.1

Ae = UAm = (0.85(31.39) = 26.68 in.

Pm = Fulle = (70)(26.68) = 1867.6 R

LRFD
$$\phi_{\pm} = 0.75$$
 ASD $\Omega_{\pm} = 2.00$ $\phi_{\pm} P_{m} = (0.75)(18676) = 1400.74 $\Omega_{\pm} = \frac{1867.6}{2.00} = 933.84$$

Ans. LRFD = 1400.74 ASD = 933.82

Vy cm =

PROB # 3-30 Using a WI4x61 (Ag = 17.9 in. ?, d = 13.9 in.) Nominal or available tensile strength of member Pm = FyAq = (50)(17.9) = 895A la)Gross section yielding ASD -12-6=1.67 LAFD 4=0.90 Ph=(0.90)(895) = 805.5h Pm = 895 = 535.9 A (6) Tensile rupture strength Am=17.9-4/3+8/(0.645)= 15.64in.2 X= 9 = 1,25 in. for half of a w14x61 (wT 7x =0,5) L= 1- 1.25 = 0.843 bc=10.00 >(=)(13,9) =9.27 in. :. U=0,90 Case 7 AISC Table D3.1 Ac = WAm = (0,90)(5.64) = 14.08 in.2 $P_{m} = F_{u}A_{e} = (65)(14.08) = 915.2 \text{ }$ LRFD $\phi_{t} = 0.75$ ASD- $\Omega_{t} = 2.00$ LRFD \$=0.75 ф. Рм=(0.75)(915,0)=6864 - Pm = 915,2 = 457661 R Ans. LRFD = 686.48 ASD = 457.6k

PROB# 3-31

using a C.12x30 (Ag= 8.81in2 d=12.0 in., tw=0.510 in., x=0.674 in.)

Nominal or available tensile strength of member (a) Gross section yielding

 $P_{m} = F_{y}A_{q} = (50)(8.81) = 440.52$

1RFD 4=0,90	ASD - 1.67
ф. Pm = (0.90)(440.5) = 396.4.A	Pm = 440.5 = 263.82

(b) Tensile rupture strength

Am = 8.81-3(3+\$/(0.510) = 7.28 in.

x = 9 = 0.674 in.

L= (3×3)=9 in.

U= 1- = 1- 9674 = 0.925

Ae = UAm = (0.925)(7.28) = 6.734 in.3

Pm= Fu Ae = (65)(6.734) = 437.7 R

LRFD 4=0.75	ASD -C-4 = 2,00
\$ Pm = (0.75) (437.7)= 328.3 R	Pn = 437.7 = 218.8 A

Ans. LRFD

328,3A ASD = 218,8A V GCMC=

PROB#3-32

Using a wrisx74 with transverse welds to its

flange only (Ag= 21.7 in. , t= 1.18 in., y= 3.84 in.)

Nominal or available tensile strength of member

(a) Gross section yielding

Pm = Fy Ag = (50)(21.71) = 1895A

LRFD 4=0.90	ASD_D_= 1.67
\$ Pm = (0.90)(1085) = 976.5h	Pm = 1085 = 649.74

(b) Tensile rupture strength

 $A_m = area of flange = b_p t_p = (10.5)(1.18) = 12.39 in.^2$ U = 1.0

 $A_e = UA_m = (1.0)(12.39) = 12.39 \text{ in.}^2$ $P_m = F_L A_e = (65)(12.39) = 805.3 \text{ A}$

LRFD \$ = 0.75	A50_0.4 = 2,00
9= Pm = (0.75)(805.3)= 604A	Pm = 805,3 = 402,6R

Ans. [LRFD = 604 &

ASD = 402.6 R

r gcms

PROB# 3-33 Using two MCs 18x42.7 (Ag = 12.6 in.2 each,

d = 18.0 in., tw = 0.450 in.

(a) Grass section yielding

Pm = Fy Aq = (36)(12.6(2) = 907.2 A

LRFD \$=0.90	ASD -06 = 1.67
Φ= Pm = (0.90)(907.2) = 816.5 A	Pm = 907.2 = 543.2 A

(b) Tensile rupture strength

Am = web area=(2)(8,0)(0.450) = 16,2 in.2

L= 1.0

Ae = UAm =(1.0)(162) = 16,2 in.2

Pm = Fu Ae = (58)(16,2) = 939,60 h

LRFD \$ =0.75	ASD	1
42 m= (0.75) (9396)=704,76	2.00 = 469/81 A	2

Answrs

LRFD 704,84

rgcme

PROB # 3-34 using one L7x4x3 (Ag = 7.69 in.2) (a) Gross section yielding Pm = Fy Ag =(36)(7.69) = 276.8 A LRFD \$=0.90 ASD -01=1.67 Φ₆ P_m = (0.90)(276.8)= 249.1 A P_m = 276.8 = 165.7 A (b) Tensile rupture strength Net widths ABCD = $10.25 - (2)(\frac{7}{5} + \frac{1}{8}) = 9.25 \text{ in.}^2$ ABECD = $10.25 - (3)(\frac{7}{5} + \frac{1}{8}) + \frac{(2)^2}{4 \times 4} + \frac{(2)^2}{4 \times 4 \times 2} = 7.818 \text{ in.}^2$ Am = $(7.818)(\frac{3}{4}) = 5.86 \text{ in.}^2$ W= 1.0 Ac= UAm= (1.0×5.86)=5.86 in.2 Pm = (58)(5.86) = 339.9A LRFD \$ = 0.75 \$m=(0.75)(339.9)=254.9 k 1 9 CM = LRFD= 249.14 Answrs

34

Using one $L G \times G \times \frac{1}{2}$ Agy = $(\frac{1}{2})(9+3) = 6.0 \text{ in.}^2$ Amy = $(\frac{1}{2})(9+3) = 6.0 \text{ in.}^2$ Amt = $(\frac{1}{2})(6) = 3.0 \text{ in.}^2$

Ubs = 1.0

 $R_m = 0.6 F_u A_{mv} + U_{bs} F_u A_{mt} \leq 0.6 F_y A_{gv} + U_{bs} F_u A_{mt}$ =(0.6)(65)(6.0) +(1.0)(65)(3.0) = 429 & >(0.6)(50)(60) +(1.0)(65)(3.0) = 375 &

: Rm = 375A

LRFD \$ = 0.75	ASD = 2,00
\$ Rm = (0.75) = 281.2 f	Rm = 375 = 187.5 A

AUSWRS.

LRFD = 281.2 A

ASD = 187.5 &

JCM=

PRO8#3-37

Using a w16x31 (Ag= 9.13in.2, d=15.9in., bf=5.53in.,

tf=0.440in., tw=0.275 in., x=y For w78x15,5=2.02in.)

(a) Gross section yielding

 $P_m = F_y A_g = (50)(9.13) = 456.5 A$

LRFD \$= 0.90	ASD -0-4=1.67
\$ 8.00 (4565) = 410.8 &	Pm = 456.5 = 273.4 A

(b) Tensile rupture strength

 $A_{m} = 9.13 - (4) \frac{7}{8} + \frac{1}{8} (0.440) = 7.37 \text{ in.}^{2}$ X = y = 2.02 in. from table for WT 8X15.5 $U = 1 - \frac{X}{L} = 1 - \frac{2.02}{6} = 0.663$ But $b_{q} = 5.53 \text{ in.} < (\frac{2}{3})(15.9) = 10.6 \text{ in.}$ U = 0.85 U = 0.85

 $A_e = UA_m = (0.85)(7.37) = 6.26 \text{ in.}^2$ $P_m = F_a A_e = (65)(6.26) = 406.9 \text{ A}$

LRFD \$ = 0.75	480-Uf = 5.00	
12 Pm = (9.75×406.9)= 305.2 R	Pm = 406.9 = 203.4 ft	<

vgcM=

PROB#3-37 CONTD.

Agv = (4×8)(0,440)=1408 in.2

Amt = (4) [1.015-(
$$\frac{1}{2}$$
)($\frac{7}{8}+\frac{1}{8}$)](0.440) = 0.91 in.

 $R_{m} = 0.6 F_{u}A_{mv} + U_{bs} F_{u}A_{mt} \leq 0.6 F_{y}A_{gpt} U_{bs}F_{u}A_{mt}$ = (0.6)(65)(9.69) + (1.0)(65)(0.91) = 436.7 R< (0.6)(50)(1408) + (1.0)(65)(0.91) = 481.5 R

LRFD \$ = 0.75	ASD_D_= 2.00
PRm = (0.75)(436.7)= 327.5/2	$\frac{R_m}{2.00} = \frac{436.7}{2.00} = 218.3.6$

ANSWRS.

LRFD= 305,2B

ASD = 203,4 A

V GCME

CHAPTER 4

PROB #4-1

LRFD	ASD
Pu= (1.2)(200) + (1.6)(300) = 720 A	Pa = 200 + 300 = 500 A

(b) Assume U=0.90 from AISC Table D3.1 Case 8 and assume $E_f=about$ 0.720 in. after studying AISC Table 1-1 min Ag = $\frac{Pu}{4 \pm F_u U}$ + estimated area of holes = $\frac{720}{(0.75 \times 65)(0.90)}$ + $(4 \times 1 + \frac{1}{8})(0.720) = 19.65$ in.²

(c) Are ferable min
$$z = \frac{L}{300} = \frac{12x30}{300} = 1.20 \text{ m}$$
.

Try W14x68 (A = 20,0 in, d= 14.0 in, b= 10,0 in., t= 20,720 in., ty = 2.46 in.)

LRFD \$6 = 0.90	ASD -PZ= 1.67
42 m= 6,900000) = 9001 >7201 0k	Pm/1.67 = 1000 = 598.88 > 500 6 01

VOCME

PROB # 4-1 COUTD.

(b)
$$y = x$$
 for wt7x34 = 1.29 in.

L = (2)(4) = 8 in.

$$L = 1 - \frac{x}{x} = 1 - \frac{1.29}{8} = 0.84$$

From AISC Table 3-2 L=0,90 <- since b==10.0>=0 == 3x 14.0= 9,33 in.

$$A_n = 20.0 - (4)(1+\frac{1}{8})(0.720) = 16.76 \text{ in.}^2$$

 $A_0 = UA_m = (0.90)(16.76) = 15.08 \text{ in.}^2$

LRFD	ASD - 12- 27:00
\$ Pm=(0.75)(980,0)= 735,14 > 720f	Pm/ne = 980,2 = 490.4 < 500A

· Vgcme

PROB#4-2

LRFD	ASD
P = (1.2)(200) + (1.6)(300) = 720 A	Pa = 200 + 300 = 500 A

(a) Min Ag =
$$\frac{P_u}{\phi_e F_y} = \frac{720}{(0.9 \times 50)} = 16 \text{ in.}^2$$

(b) Assume L=0.90 from AISC Table D31 Case 7 and assume $t_{\tau}=about$ 0.605 in. after studying AISC Table 1-1 Min. Ag = $\frac{P_{u}}{d_{t}F_{u}U}$ testimated area of holes = $\frac{720}{(0.75)(65)(0.90)}$ + (4)(1+3)(0.605) = 19.13 in.2

(c) Preferable min $k = \frac{L}{300} = \frac{(12\times30)}{300} = 1.20 \text{ in.}$ Try W12x65 (A= 19.1 in.2, d= 12.1 in., be=12.0 in. tr = 0.605 in., 2y = 3.02 in.)

LRFD 4=	0,90	ASD - 1:67
φ _ε P _m = (Θ, 9 ο) (9 σ σ):	859.5h >720.A	750 = 255 1.67 = 571.94 > 500k ok

PROB#4-2 CONTD.

(b) y = x for a WTIGX 32.5 = 0.985 in. L = 2x + y = 8 in. $L = 1 - \frac{x}{L} = 1 - \frac{0.985}{8} = 0.88$ From AISC Table 3-2. L = 0.9 since = 12.0 in $> \frac{2}{3}xd = \frac{2}{3}x12.1 = 8.07$ in. $A_{m} = 19.1 - (4x) + \frac{1}{8}(0.605) = 16.38$ in. = 14.742 in.

LRFD 4= 0.75	42D - 7-4 = 5'00
PtPm = (175)(958,23)=718.78 < 720R Almost of	Pm = 958,23 = 479,16 < 5006 N.G.

$$(c) \frac{L}{r} = \frac{(12)(20)}{3.02} = 79.5 < 300 \text{ ok}$$

USE W12X7Z for both LRFD and ASD

v gcms

1

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PROB # 4-3

LRFD	ASD
Pr = 400 A	Pa = 280 f

(a) Min Ag =
$$\frac{P_{LL}}{\Phi_{E} F y} = \frac{400}{(0.9)(50)} = 8.89 \text{ in.}^2$$

(b) Assume U=0.90 from AISC Table D3.1 and assume flange E= about 0.515 in after studying AISC Table 1-1

(c) Preferable min
$$z = \frac{12x28}{300} = 1.12 in$$
.

LRFD 4= 0.90	ASD-De = 1.67
\$ Pm=6,90/(585)= 526,5 A > 400 A	Pm = 585 -1.67 = 350,3 R > 280 A OK

PROB#4-3 CONTO,

(b)
$$y = x$$
 for $w = 6x20 = 1.09$ in.
 $L = (2)(4) = 8$ in.
 $u = 1 - \frac{x}{2} = 1 - \frac{1.09}{8} = 0.86$
From AISC Table 3-2 $u = 0.90$
since $b_{f} = 8.01 > \frac{2}{3}d = \frac{2}{3} \times 11.9 = 7.93$ in.
 $A_{m} = 11.7 - (4)(\frac{2}{5} + \frac{1}{8})(0.515) = 9.64$ in.
 $A_{e} = UA_{m} = (0.90)(9.64) = 8.68$ in.²
 $P_{m} = FuA_{e} = (65)(8.68) = 564.24$

LRFD 46=0.75	42D - D-F = 5.00
φ. M = (0.75)(564.2)= 423.1A 7 400A OK	Pm = 564,2 = 282,1 R >280-R
7 400A OK	<u>or</u>

(c)
$$\frac{L}{\lambda} = \frac{12\times28}{1.94} = 173.2 < 300 \text{ gK}$$

USE WIZX40 for both LRFD and ASD

vgcm=

PROB# 4-4

LRFD	ASD
Pu=(1.2×60)+(1.6×20)=104.k	Pa = 60+20 = 80 fc

(a) Min
$$Ag = \frac{P_{LL}}{4EFy} = \frac{104}{(0.90)(36)} = 3.21 \text{ in.}^2$$

(b) Assume 12-0.90 from AISC Table D3.1 Case 7 and assume flange to about 0.359 in after studying AISC Table 1-3

Min Ag =
$$\frac{P_{LL}}{4E}$$
 + estimated area of holes
= $\frac{104}{6.75\times58\times0.90}$ + $(2\times\frac{3}{4}+\frac{1}{8})(0.359)$ = 3.29 in.2

(c) Preferable minimum $R = \frac{12\times20}{300} = 0.80 \text{ in}$. Try S6 x12.5 (A= 3.66 in, d= 6.00 in., be = 3.33 in., te = 0.359 in., by = 0.702 in.)

(a) Pm = Fy Ag = Fy Ag = (36)(3.66) = 131.8.A

1	LRFD 4= 0.90	ASD _ 1.67	
-	φε Pm=(0.90)(131.8)=118.6 A > 104 A	Pm = 131.8 = 78.9 & < 80 & N.G.	

PROB #4-4 CONTO.

(b)
$$y = x$$
 for $57.3 \times 6.25 = 0.692$ in.
 $L = 2 \times 4 = 8$ in.
 $U = 1 - \frac{x}{2} = 1 - \frac{0.692}{8} = 0.91$ \leftarrow
or
From AISC Table D3.1 $U = 0.85$ since
 $b_{c} = 3.33$ in. $< \frac{2}{3}d = \frac{2}{3} \times 6.00 = 4.00$ in.
 $A_{m} = 3.66 - (2)(\frac{3}{4} + \frac{1}{8})(0.359) = 3.03$ in.²
 $A_{e} = A_{m}U = (3.03)(0.91) = 2.76$ in.²
 $P_{m} = F_{u}A_{e} = (58)(2.76) = 160.1$ A

LRED 4=0.75	ASD_0. = 2.00
APm = (0.75)(160.1)=1201 > 104 A	Pm = 160.1 = 80.k = 80.k

(c)
$$\frac{L}{2} = \frac{(12)(20)}{0.702} = 341.9 > 300$$
 Somewhat high

Nevertheless USE S6x12.5 For ASD & LRFD

An alternative is to use S8x18.4 (12 = 0.827 in.)

1 f the designer feels = 341.9 is too high

JCME

45

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PROB # 4-5

(a) Min Ag =
$$\frac{P_{LL}}{\phi_c F_y} = \frac{104}{(0.9\sqrt{36})} = 3.21 \text{ in.}^2$$

(b) Assume
$$L = about 0.91$$

Min $A_9 = \frac{P_u}{\Phi_c F_u L}$ testimated hole areas
$$= \frac{104}{(0.75)(58)(0.91)} + (2)(\frac{3}{4} + \frac{1}{8})(0.375) = 3.28 \text{ in.}^2$$

(c) Preferable min
$$z = \frac{L}{300} = \frac{12x^20}{300} = 0.80 \text{ in.}$$

Try MC 6x15.1 (A= 4.44 in. 2, d= 6.00 in, t==0.475 in, 2y=0.883 in)

184D &= 0.90	ASD 167
Pz. Pm = (0.90)(159,8)=143,86>104 A	Pn = 159.8 = 95.74 > 806 ak

PROB#4-5 CONTO.

(b) \bar{x} for MCGX15.1 = 0.940 L = (2)(4) = 8 in. $L = 1 - \frac{\bar{x}}{L} = 1 - \frac{0.940}{8} = 0.88$ $A_m = 4.44 - (2)(\frac{3}{4} + \frac{1}{8})(0.475) = 3.61 \text{ in.}^2$ $A_e = LA_m = (0.88)(3.61) = 3.18 \text{ in.}^2$ $P_m = F_LA_e = (58)(3.18) = 184.4 \text{ f.}$

LRFD 4 = 0.75	ASD_0 = 2,00
ф. Р. = (0.75)(1844)=1383A> 104A	Pm = 184.4 = 92.2 ft 780 ft

A subsequent check for an Mc6x12 shows its ok for LRFD but not for ASD.

USE MC 6X12 LRFD and MC6X15.1 for ASD

rgcm€

PROB # 4-6

•	
LRFD	A5D
Pu=(1.2×100)+(1.6×120)=3126	Pa= 100 +120 = 220 R

(a) Min Ag =
$$\frac{P_L}{\phi_t F_y} = \frac{312}{(0.90(50))} = 6.93 \text{ in.}^2$$

(b) Assume U=0.90 from AISC Table D3.1 Case 7 and assume to = 0.491 in after studying

min Ag = Pa + estimated area of holes = 312 + (4) (1+ 14) (0,491) = 9,32 in2.

(c) Preferable min 12 = 300 = 300 = 0,80 in.

Try S10 x 35 (A = 10.3 in., d= 10.00 in., b= 4.94 in., f=0.491 in.)

LRFD \$=0.90	ASD_Dit = 1.67
\$ 12 A 0K	Pm = 515 = 30848>208

(b)
$$y = x$$
 for ST 5x17,5 = 1.56 in.
L= $3 \times 3 = 9$ in.
L= $1 - \frac{x}{L} = 1 - \frac{1.56}{9} = 0.83$
From AISC Table D3.1 L= 0.85 since be = 4.94 in. $< \frac{3}{3}d = \frac{2}{3} \times 10 = 6.67$ in.
 $A_n = 10.3 - (4)(1\frac{1}{8})(0.491) = 8.09$ in. An = $10.3 - (4)(1\frac{1}{8})(0.491) = 8.09$ in.

LRFD \$= 0.75	ASD_n_ = 2.00
\$\frac{\phi_{\text{Pm}} = (0.78\forall 447.2)}{= 335.4 > 312. k \ok_{\text{ok}}	Pm = 447.2 = 223.6 k > 220 A OK

(c)
$$\frac{KL}{R} = \frac{(12)(20)}{0.899} = 267 < 300 \text{ ok}$$

49

PROB # 4-7

LRFD	ASD
Pu=(1,2/100) +(1.6/120) = 3126	Pa = 100+120 = 220A

@Min. Ag = Pu = 312 = 9.63 in.

b) Assume U = 0.85 after studying AISC Table 1-3 and Table 1-10 Min. Ag = $\frac{P_W}{\Phi_E F_U L}$ testimated area of holes = $\frac{312}{0.75 \times 59 \times 0.85} + (4)(1+\frac{1}{8})(0.491) = 10.65$ in. Ze

(c) Min. preferable $x = \frac{L}{300} = \frac{(12) \times 20}{300} = 0.80 \text{ in.}$ Try \$12,x40.8 (A=11.9 in.2, be = 5.25 in, te = 0.659 in.

Checking

(a) Pm = Fy Ag = (36)(11.9) = 428.4 R

LRFD \$ = 0,90	ASD -0-6= 1.67
\$ Pm = 6.90/428.4/=385.68>312h	Pm = 428.4 = 25656 > 220 f

(b) $\vec{x} = \vec{y} = 1.58i$, for STGX20.4 (Also Table 1-10) $u = 1 - \frac{\vec{X}}{L} = 1 - \frac{1.58}{3X3} = 0.824$

However AISC Table D3.1 Case 7 says U=0.85 since be= 5.25< =d= 5.25<8

PROB#4-7 Contd

.. Use
$$U = 0.85$$

 $A_m = 11.9 - (4)(1 + \frac{1}{8})(0.659) = 8.93 \text{ in.}^2$
 $A_e = (0.85)(8.93) = 7.59 \text{ in.}^2$
 $P_m = F_u Ae = (58)(7.59) = 440\text{ k}$

LRFD \$ = 0,75	ASD 12= 2,00
\$Pm= (0.75)(410)=330A> 312A	Pm = 440 = 220b = 220b

(C)
$$\frac{L}{2} = \frac{12\times20}{1.06} = 226 \text{ k} < \text{preferable max} = 300$$

LRFD	ASD
Pu= (1.2/150)+(1.6/300)= 660 la	Pa=150+300 = 450-k

(a) min.
$$Ag = \frac{P_{LL}}{\phi_{L}F_{Y}} = \frac{660}{(0.9 \times 36)} = 20.37 \text{ in.}^{2}$$

(b) min. $Ag = \frac{P_{LL}}{\phi_{L}F_{LL}} = \frac{660}{(0.75 \times 58 \times 0.87)} = 17.44 \text{ in.}^{2}$

(c) Preferable min
$$z = \frac{L}{300} = \frac{(12)(30)}{300} = 1.20 \text{ in}.$$

Try $2C13 \times 35 \text{ s}$ (For each $A = 10.3 \text{ in}.^2$, $d = 13.0 \text{ in}.$)

 $I_X = 252 \text{ in}.^4$, $I_Y = 12.3 \text{ in}.^4$, $I_X = 0.980 \text{ in}.$)

 $I_X = \frac{(2)(252)}{(2\times 2)} = 504 \text{ in}.^4$
 $I_X = \frac{504}{(2\times 10.3)} = 4.95 \text{ in}.$
 $I_Y = 2\left[12.3 + (10.3)(5.02)^2\right] = 568.3 \text{ in}.^4$

12y= - 568.3 = 5.25 in.

PROB#4-8 CONTO

Reviewing design

(a)
$$P_{m} = F_{y}A_{g} = (36)(2\times10.3) = 741.6 - R$$

LRFD $\phi_{t} = 0.90$
 $\phi_{t}P_{m} = (0.90)(741.6) = 667.46 \times 1000 = 741.6$

(b) $A_0 = UA_m = UA_g$ for welded member = $(0.87)(2\times10.3) = 17.92 \text{ in.}^2$ $P_m = F_uA_0 = (58)(17.92) = 1039.4 \text{ k}$

LRFD 4=0,75	ASD _n. = 2,00
96Pm = 0.75×1039.4) = 779.56 > 660-6	Pm = 1039.4 = 519.76 > 450k

(c)
$$\frac{L}{12} = \frac{(12)(30)}{4.95} = 72.7 < \text{preferable value of 300}$$

Ans. 2MC 13x353 for LRFD, 2MC 13x405 for ASD

v Jcme

PROB #4-9

LRFD	ASD
Pu=(1,2)(100)+(1.6)(150)=360A	Pa = 100 + 150 = 250A

(b) Assume L=0.85 after studying AISC Tables 1-1 and 1-8 Min. Ag = $\frac{P_L}{\Phi_E F_L U}$ + Estimated area of holes = $\frac{360}{(0.75\%65\%0.85)}$ + (4) $\frac{3}{4}$ + $\frac{1}{8}$ (0.52) = 10.51 in.2

(c) Min. preferable $r = \frac{(12)(20)}{300} = 0.80 \text{ in}$.

Try W12x40 (A=11.7 in.2) d=11.9 in., b= 8.01 in., t=0.515in.,

zy= 1.94 in., x=y for w76x20 = 1.09 in.)

Checking

LRFD &= 0,90	ASD -12=1.67
\$PM=(0.90)(595)= 526,56 > 360.	Pm = 585 = 350,34 > 250 k

(b)
$$L = 1 - \frac{1}{2} = 1 - \frac{1.09}{(4X3)} = 0.818$$

But Alsc Table D3.1 Case 7 shows we may use 4=0.90 since by =8.01 in >3 d=(3)(11.9)=7.93 in.

54

LRFD \$ = 0.75	ASD - 2,00
Papa = (0.75)(579.2) = 434.6 R > 360 & 25	Pm = 579.2 = 289.6 R > 250 R

PROB #4-10

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PROB# 4-11

LRFD	ASD
Pu=(1.2×120) +(1.6×100) = 304A	Pa = 120 + 100 = 220A
a) min. Ag = $\frac{P_{a}}{\phi_{a}F_{y}}$ = 7	304 = 6.76 in.2
(b) Min. A of flanges = 7	Pu = 304
(c) Preferable min. z = .	$\frac{12\times16}{3.00} = 0.64 \text{ in.}$
my wlox33 (A= 9,71 in.2	, 6=7,96 in., t= 0.435in, 2y=
chacking	
(a) Pm = Fy Ag = (50)(9.71) =	. 485.5 A
16	ASD _0 = 1.67
\$\\\\ \P_m = (0.90)(485,5)=436.96>304	A Pm = 485,5 = 290,78 > 220.A
(h) A=(1.00)(2. flavge area	15)=(100)(2x7,96x0,435)=6.93i
Pm = Fu Ae = (45)(6,93))=450.4 A
LRFO \$= 0.75	ASD _0.4 = 2.00
de.Pm = (0.75)(450.4)= 337.84>34	14 Pm = 450.4 = 225,26 > 220.6
(c) = 1.94 = 99	< 300 ōk
EEXOIW	EEXOIM
	V SCME

57

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PROB#4-12

LRFD ASD Pa = 450+120 = 570 k Pu=(1.2×450)+(1.6×120)= 732 A Pu = 732 = 22,59 in,2 < W = 0,90 after study of AISC Table 1-1 & Table D3-1 Min Ag = Pu + Estimated A of holes = 732 +(4)(3+18)(0.735)= 21.27 in.2 (c) Min preferable 2= (12)(24) = 0.96 in.
Try W12x79 (A=23.2 in.2) d= 12.4 in., tr= 0.735 in., ry= 3.05 in., X= y=1,06 in. for a WT Gx39.5, be=12.1 in.) Checking (a) Pm = Fy Ag = (36) (23.2) = 835.2 k LRED 4=0.90 φ₄ P_m = (0.90)(835,2)=751.76 > 732.6 P_m = 835.2 = 500.1 < 570 A N.G. (b) 4=1-X=1-106 = 0.735 But AISC Table D3.1 Case 7 says U=0,90 if be> 3d 64= 12.1 > = X12.4 = 8,27 in. .. U= 0.90 Am = 23.2 (4)(3+1/8/0.735) = 20.63 in.2 Ae = UAm=(0,90)(20,63)= 18,57 in.2 Pm = FuAe = (58)(18.57) = 1877.1 A LRFD \$ = 0.75 ASD -12-6= 2.00 = 1077.1 = 538.56 45706 MG Φε.Pm =(0.75)(1077.1)= 807.8h > 732.h W12x79 Ans.

58

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PROB # 4-13

LRED	ASD	7
Pu=(1,2)(110)+(1.6)(130)=340 k	Pa=110+130 = 240k	t

(a) Min Ag = $\frac{V_{LL}}{q_{E}F_{Y}} = \frac{340}{(0.9 \text{ 16})} = 10.49 \text{ in.}^2$

(b) U=1.0 but only flange areas may be used (Also Table D3.1, Case 3)

Min. Ag of flanges = \frac{p_u}{4.F_u U} = \frac{340}{(0.75)(58\frac{1.0}{1.0})} = 7.82 \text{ in,}^2

(c) Preferable min. \(\text{Z} = \frac{12\text{X18}}{300} = 0.72 \text{ in.} \)

Try wiox39 (A=11.5 in.2, b= =7,99 in., t=0,530in., 12y=1,98in.)

CHECKING
(a) Pm = Fy Ag = (36)(11.5) = 414 A

LRFD \$4=0,90	ASD_0=1.67
96 Pm=(0.90)(44)=3726 f> 340 f	Pm = 44 = 247.96 > 240 b

(b) 11=1.0 with Am = total flange area he = Amu = (2)(7,99)(0,530)(1,0) = 8,47 in,2 Pm = Fulle = (58×8,47) = 491.3 R

LRFD \$= 0.75	ASD -0-6=2.00
4= Pm = 1275/491.3/= 368,51>340.6	Pm = 491,3 = 245.66 > 240.6

(c)
$$\frac{1.48}{1} = \frac{1.48}{(13\times18)} = 104.1 < 300$$

Ans.

59

PROB #4-14

LRFD	ASD
	Pa=80+120 = 200 &

(b) Assume U=0.85 from AISC Table D3,1 Case 7 and assume flange tf = about 0.491 in, after studying AISC Table 1-3

Min. Ag = $\frac{P_{LL}}{\Phi_{t}}$ + Estimated area of holes = $\frac{288}{(0.75)(59)(0.85)}$ + $(2)(1\frac{1}{8})(0.491)$ = 8.34 in²

(c) Min. $z_y = \frac{12x24}{300} = 0.96 \text{ in.}$ Try 512x31.8 (A= 9.31 in.², d=12.0 in., $b_p = 5.00 \text{ in.}$) $b_p = 5.00 \text{ in.}$

Checking

(a) Pm = FyAg = (36)(9.31) = 335.2.A

LRFD \$=0.90	ASD-0-6 = 1.67
\$ Pm=(0,90)(335.2)=301.76 >288&	P = 335,2 = 200,7A > 200 A

v gcmi

PRO8# 4-14 CONTD.

(b)
$$y = x = 1.51$$
 in. for ST 6x15.9
 $L = 2x4 = 8$ in.
 $U = 1 - \frac{x}{2} = 1.51 = 0.81$
From AISC Table D3.1 $U = 0.85 = 5$ ince
 $6c = 5.00$ in. $c = \frac{2}{3}d = \frac{2}{3}x12.0 = 8.00$ in.
 $c = 9.31 - (2x1 + \frac{1}{3})(0.544) = 8.09$ in.
 $c = 4 = 4$ $c = (8.09)(0.95) = 6.88$ in.
 $c = 4 = 4$ $c = (8.09)(0.95) = 3996$
 $c = 5.00$ in.

LRFD 4 = 0.75	420 -U-4-3 5'00
φ ₆ P _m = (0.75)(399) = 299.26 > 288 β	Pm = 399 = 199.54 = 200k

₹₩\$₽.

S 15X31'8

215X31.8

vgcm=

PROB#4-15

LRED	ASD
Pu=(1.2×70)+(1.6×10) = 260.6	Pa = 70+110 = 180k

(a) Min.
$$Ag = \frac{P_c}{\phi_c F_y} = \frac{260}{(0.9 \times 36)} = 8.02 \text{ in.}^2$$

(b) Assume U=0.78 after studying values in AISC Table 1-8 and assume $t_f=about 0.720$ in.

Min Ag = $\frac{P_U}{d_E F_U U}$ + estimated hole area $= \frac{260}{(0.75)(5)(0.720)} + (2)(1+\frac{1}{5})(0.720) = 9.28 \text{ in.}^2$

(c) Preferable min $z = \frac{L}{300} = \frac{(12)(18)}{300} = 0.72$ in.

Try wT7x34 (A= 9,99 in.2, d=7.02 in, ==0.720 in, 2x=1.81 in.)

Checking

(a) Pm = Fy kg = (36)(9.99) = 359.6 &

LRFD \$= 0.90	ASD -7-4=1.67
φ _c Pm = (0.90χ359.6)=328.66.6	En = 359.6 = 215.3A > 180B

(b)
$$y = x$$
 for $w = 7x34 = 1.29 \text{ m}$.
 $L = 2x4 = 8 \text{ in}$.
 $u = 1 - \frac{x}{L} = 1 - \frac{1.29}{8} = 0.84$
 $A_m = 9.99 - (2x1 + \frac{1}{8}x0.720) = 8.37 \text{ in}$.²
 $A_e = A_m u = (8.37x0.84) = 7.03 \text{ in}$.²
 $P_m = F_u A_e = (58x3) = 407.78$

PROB #4-15 CONTD.

LAFD \$6 = 0.75	ASD_0_2 = 2,00
\$ Pm = (0.75)(407.7) = 305.86	Pm = 407.7 = 203.847180A

(c)
$$\frac{1}{12} = \frac{1.81}{15 \times 18} = 113.3 < 300$$

A subsequent check shows a WT 7x30,5 will be satisfactory for LRFD 8ASD

v Some

PROB#4-16

LRFD	ASD
Pa=(1,2)(120)+(1.6)(160)= 400k	Pa = 120 +60 = 180 &

(a) Min.
$$kg = \frac{P_u}{q_t F y} = \frac{400}{(0.90)(50)} = 8.89 \text{ in.}^2$$

Try WT G X 32,5 (A= 9.54 in.
2
, \bar{y} = 0.985 in.)

 $z_{x} = 1.47$ in.)

Checking

LRFD \$= 0.90	ASD 1.67
Papm = 6.90)(477)=429,36>409k	Pm = 477 = 285.66 >180 k

(b)
$$y = x = 0.985 \text{ in.}$$
 $u = 1 - \frac{x}{L} = 1 - \frac{0.985}{10} = 0.90$
 $A_m = 9.54 \text{ in.}^2$
 $A_e = A_m U = (9.54)(0.90) = 8.59 \text{ in.}^2$
 $P_m = F_u A_e = (65)(8.59) = 558.34$

PROB#4-16 CONTD

LRF0 \$ = 0.75	ASD 12 = 2.00
Ac Pm=(0.75)(558,3)=418.78>400.R	Pn = 558.3 = 279.16 ≈ 280.2

PROB#4-17

LRFD	ASD
Pu=(1.2)(50) + (1.6)(100) = 220.	Pa = 50 + 100 = 150 k

(a) Min. Ag =
$$\frac{Pu}{\phi_{+}Fy} = \frac{220}{(0.90)(36)} = 6.79 \text{ in.}^{2}$$

(b) Assume L=0.80 after studying AIFC Table D3.1 Min. Ag = $\frac{P_{LL}}{\phi_b F_{LL}}$ + Estimated hole area

$$= \frac{220}{(0.75)(58)(0.80)} + (\frac{7}{8} + \frac{1}{8})(6) = 6.32 \text{ in.}^{2} + 1.06$$

(c) Preferable min. 1z = 12x20 = 0,80

Angle t	Area of one l-in bolt hole(in,2)	Gross are read = larger of Photos Photos Photos Petro Petro Action Action	
上	0,50	6.82	1.8x9x-1 (A= 7.75 in. 1.
9 16	0.562	6,882	L8x6x 9 (A= 7,56 m.2,
5/8	0,625	6945	1.8 x 4 x = 711, 3=0,82 m)
34	0,750	7.07	L7x4x=(A=7,69 in?, 2=0,855)
7/8	0,975	7,195	LLX4X (A=7.9810?, 23084)

PROB #4-17 CONTO.

Checking

Trying L8x4 x $\frac{5}{8}$ (A= in.2, 12y=1.06 in. (a) $P_m = F_y A_g = (36)$) = A

(b) = y = 0,902 in.

U= 0.80

U= 1- X = 1-0902 = 0,914 =

Am = 7.11 - (1) = + 8/5/=6.485 in.2

Pm= FuAe = FuUAm = (58)(0,914 ×6,485) = 343.86

LRFD $\phi_{L} = 0.75$ ASD $\Omega_{L} = 2.00$ $\phi_{L} P_{M} = 6.75 \times 343.8 = 25786 \times 220.6 \frac{P_{M}}{-2L} = \frac{343.8}{2.00} = 171.94 \times 1.506$

(c) 12 = 12x20 = 280,4 < 300 ok

USE 118×4×5 For both LRFD and ASD

1 James

680B#H-18 Pu=(1.2)(100)+(1.6)(150)=360k Pu=100+150=250k (a) Min Ag = Pu = 360 = 8.00 in.2 (b) u=1,0 but An = Ae = area of direct · connected elements per AISC Table D3.1 Case 3

Min. Ag of webs= $\frac{R_L}{d_{\nu}F_{\nu}U_{\nu}} = \frac{360}{(0.75)(65)(1.0)} = 7.38 \text{ in.}^2$ (c) Preferable min $z = \frac{360}{300} = \frac{(12)(20)}{300} = 0.80$ Try 2Cs 10x 20 (For each channel Ag = 5.87 in. 2 d = 10.00 in. 1 $t_{\nu} = 0.379 \text{ in.} T_{\nu} = 789 \text{ in.}^4$, $T_{\nu} = 2.80 \text{ in.}^4$) Check inq (a) $P_m = FyAg = (50)(2, x 5.87) = 587 \text{A}$ LRFD $\phi_e = 0.90$ ϕ_e Pm = FuAe = (65)(7.58) = 492.7A LRFD \$= 0.75 ASD D= 2.00

\$P_ = (0.75)(492.7)=369.56 > 3606 \frac{P_1}{200} = \frac{492.7}{2.00} = 246.36 < 250.6 N.G. (c) Ix= (2)(78.9) = 157.8 in.2 Iy=(2)[2.80+6.87\5.606)2] = 374.6 m.4 72x = 157.8 = 3.67 in. $\frac{1}{12} = \frac{(12)(5.87)}{3.67} = 65.4 < 300 \text{ ok}$ USE 2Colox20

USE 2Colox25

USE 7Colox25 68

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PRO8#4-19

LRFD	ASD
Pu=(1.2×100)+(1.6×150)=360&	Pa = 100 + 50 = 150 A

(a) Min Ag =
$$\frac{P_u}{\phi_b Fy} = \frac{360}{(0.9)(50)} = 8.00 \text{ in.}^2$$

(c) Preferable min
$$z = \frac{12\times20}{300} = 0.80 \text{ m}$$
.

Angle t	Area of two 1-in. holes (in.2)	Gross area read = larger of per or Pu or test area of hies (in?)	Lightest pair of angles available, their areas (in:3) and their least 12 (in.)
mido	0,75	9.44	
12.	1.00	9.69	2L97X4X-2 (4=10,5 in.)
55 O	1.25	9.94	2LS 6X4X \$ (A=11.7 in. 2,
<u>3</u> 4	1.50	10.19	2 Ls 5x3 2 x 4 (A = 11.6 in. 7, /2 x = (1.55 in.)

Try 2Ls 7x4x= (A=10.5 in.2, 2x=2,25 in.)

PROB# 4-19 CONTD.

Checking

LRFD \$ = 0.90	ASD 12 = 1.67
φ _c P _m = (0.90)(525)=472,5k > 360.k	Pm = 525 = 314.4 R> 150 R

LRFD \$6 = 0.75	420-U-6 = 5'00
\$ Pm=(0.75)(480.3)= 360.28 > 360.2	Pm = 480.3 = 240.1 2>150.4

Ansr. USE 2LS 7X4X1 FOR BOTH LRFD and ASD

13 CME

PROB #4-20

LRFD	ASD
Truss loads Pu=(1.2\chi_30)+(1.6\chi_24)= 74.4k By analysis of the truss force in member LzL3 is equal to 446.4k 74.44 74.44 74.44 74.44	Truss loads Pa = 30+24=54A By analysis of the truss the force in member L2 L3 = 324 R 54 54 54 54 54

(a) Min. Ag =
$$\frac{446.4}{(0.9(36))} = 13.79 \text{ in.}^2$$

Assume 12 about 0.8 after studying Alsc Table D3.1

Try ZLS 8x4 x \$ (A= 14.3 in.2, x = 0,902, 2y=1,52)

Checking

LRFD \$= 0.90	ASD_A= 1,67	alles.
\$=10.90\514.8=463.3A>446.4A	Pm = 514.8 = 308.3 & 3248 NG	i i

(b)
$$U = 1 - \frac{x}{L} = 1 - \frac{0.902}{2x4} = 0.89$$
 $A_m = 14.3 - (4)(\frac{3}{4} + \frac{1}{8})(\frac{5}{8}) = 12.11 \text{ in.}^2$
 $P_m = F_u U A_m = (58)(0.89)(12.11) = 625.1 \text{ for } 625.1 \text{ for }$

LRFD \$4=0.75	ASD -0-4 = 2.00
de Pn= (0.75/65.1) =468.89>4464	En = 625,1 312,5 A < 324 A
N.G.	
(c) $\frac{L}{2} = \frac{(12)(12)}{1.52} = 94.7 < 3$	oo ok

ANS.

JCME

PROB # 4-21

	LRFD	ASD
1	Pu=(1.2)(70) +(1.6)(90) = 228A	Pa = 70+90 = 160 A

(a) Min.
$$Ag = \frac{P_{LL}}{\phi_{c}F_{y}} = \frac{228}{(0.90)(42)} = 6.03 \text{ in.}^{2}$$

(b) Assume U= 0.80 (Case 8 AISC Table D3.1)

Min. Ag = $\frac{P_{LL}}{\phi_{L}F_{LL}L}$ + Estimated area of one bolt hole

= $\frac{228}{(0.75)(60/0.80)}$ + (1)($\frac{7}{5}$ + $\frac{1}{8}$)(angle t)

= 6.33 in.2 + 1.0 t

Angle to	Area of one 1-in. bolt hole (in.2)	Gross area read = larger of PLFy or PL plus est. hole area (in.2)	Lightest angle available, its area (m.2) and its least radius of gyration (in.)
호	0.500	6,83	118×8×支(1=775)/3=159)
9 16	0.56	6.89	14 8 x 6x 12 (A=7.56, 22, =1.30)
5.0	0.625	4.95	1 L 9x4x \$ (A= 7.11, 12, 2856)
<u> </u>	0.750	7.08	1 L. 74x 7 (A= 7.69, 23 = 869)
778	0.875	7,20	14 5x5x & (A=7.98 2z=0.971)

PROB#4-21 CONTD

Checking

(a) Pm = FyAg = (42)(7.11) = 298.6 &

LRFD \$= 0.90	ASD -12 = 1.67
9+Pm = (0,90)(298,6) = 268,7-6 > 228 &	Pm = 298.6 = 178.8 & 7 160 A

(b) U=0.80 or 1- \(\frac{\sqrt{2}}{L}=\) 1-\(\frac{0.902}{3x4}=\)0.925

Pm = FuAe = (6)[7.11-(=+=)(0.625)] (0.925) = 359.9 R

LRFD 4=0.75	ASD_0-4 = 2.00
pePm= 6.75×359.9)=2189\$ >28\$	Pm = 359.9 = 179.9 8 > 160 k

Ans. USE IL 8X4X & For Both LRFD and ASD

PROB#4-22

LRFD	ASD
Pu=(1.2×150)+(1.6)(300)=660A	Pa = 150 +300 = 450A
(a) Min. Ag = $\frac{P_{LL}}{\phi_{L}F_{Y}} = \frac{660}{(0.90)}$	$\frac{3}{(36)} = 20.37 \text{ in.}^2$
(b) Assume = about 0.79 Table 1-5	after examining AISC
Than 4=1-0.79 = 0	0,90
Min to = Pu	Estimated area at noies
= (0.75)(58)(0.90) +(4)(4)	1+8)(ESTIMAL)
(c) Min. 12 = 12×30 = 1.3	zom.
Try 200 15x40 (A=11.8 in.2, = 9	.17 in tall for one channel
Checking	
(a) Pm = Fy Ag = (36) (2×11,8)	
LRFD \$= 0.90	ASD _1 = 1.67
d.P. = 10.90(849.6) = 76466 > 6696	Pm = 849.6 = 5087A > 450A

PROB # 4-22 CONTD.

(b)
$$U = 1 - \frac{x}{L} = 1 - \frac{0.778}{2x4} = 0.90$$

 $A_m = (2)(11.8) - (4)(3/4 + \frac{1}{8})(0.520) = 21.78 \text{ in.}^2$
 $P_m = F_u A_e = F_u A_m U = (58)(21.78)(0.90) = 1136.9 \text{ ft}$

LRFD \$= 0.75	ASD-0-6 = 5.00
фь Рт =(0.75) 1136.9)=852.7Q> 660R	Pm = 1136,9 = 568,46 > 4506

(c)
$$I_{x}=(2\times348)=696 \text{ in.4}$$

 $I_{y}=2\left[9.17+(11.9)\times5.222\right]$
=.661.9 in.4
 $I_{zy}=\sqrt{\frac{661.9}{(2\times11.8)}}=5.30 \text{ in.4}$
 $I_{zy}=\frac{12\times30}{5.30}=67.9<300$

76

PROB #4-23

LRFD	ASD
Pu = (1.2)(180) + (1.6)(320) = 728 f	Pa=180+320=500 A

(a) Min. Ag =
$$\frac{P_{LL}}{\phi_{+}F_{y}} = \frac{728}{(0.9)(50)} = 16.18 \text{ in.}^{2}$$

min. As = Pu + estimated area of holes assuming angle $t = \frac{1}{2} \text{ in.}$ $= \frac{728}{(0.75\%5\%1.0)} + (8)(\frac{3}{4} + \frac{1}{5})(\frac{1}{2}) = 18.43 \text{ in.}^{2}$ (c) Preferable min. $z = \frac{(12)(24)}{300} = 0.96 \text{ in.}$

Angle t	Area of 8 %-in. holes Lin.2	Ag read	Angles	
716	3.06	17,99	4 Ls 6x6 x 16 (5.06 in. 2 each)	
立	3,50	18.43	4 Ls 5 x 5 x 5 (4.75 in 2 each)	
9	3.94	18.87	4Ls 6x6x 9 (6.45in. each)	
5	4,38	16.91	4LS 5x5 x & (5,86 in. 2 each)	

Try 4Ls 5x5x = (A= 4x4.75= 19.0 in.2)

LRED \$ = 0.90	ASD-0-6=1.67
ФеРm = (0.90)(950)=895Д > 728Д	Pm = 950 1,67 = 568,9 % > 500k

PROB#4-23 CONTD

Design of Tie Plates

Distance between bolt lines = 18-(2)(3) = 12 in.

Min. length of PLS = (3)(12) = 8 in.

Min. width of PLs=12 +(2)(12)=15 in.

Min. & of PLS = (1) (12) = 0.24 in. Say 4 in.

min. pref spacing of the plates

12L = 300

1.980 L= 24.5 ft

Ans.

rgcme

PROB # 4-24

LRFD	ASD	
Pu=(1.2×10)+(1.6×12)=31.26	Pa= 10+12=22A	

 $A_D \ge \frac{P_u}{\phi 0.75F_u} = \frac{31.2}{6.75(0.75(58))} = 0.956 \text{ in,}^2$

Try 18 in. diameter rod from AISC Table 7-18 using the gross area of the rod 0.994 in.2 $R_{m} = 0.75F_{u}A_{D} = (0.75)(58)(0.994) = 43.24R$

LRFD \$=0,75	ASD 12 = 2.00	
φRm=(0.75)(43,24)=32,43A > 31,2A <u>ok</u>	Rm = 43.24 = 21,62A = 22A	ok,

USE 15 in. diameter rad with

7 threads per inch for

LRFD and ASD

1 gcme

PROB#4-25

LRFD	ASD
Pu=(1,2×15)+(1,6×18)= 46.8A	Pa= 15+18=33 A

$$AD = \frac{P_{ii}}{\phi_{0.75}F_{ii}} = \frac{46.8}{(6.75)(6.75)(58)} = 1.434 \text{ in.}^{2}$$

$$Try |\frac{3}{8} \text{ in. diameter rod From Alsc Table 7-18}$$
using the gross area of the rod (1.49 in.2)
$$R_{m} = 0.75 F_{ii}AD = (0.75)(58)(1.49) = 64.8 \text{ fig.}$$

LRFD \$ = 0.75	ASD - 2 = 2,00
\$ Rm = (0.75)(64.8)=48.6A >46.8A ok	Rm = 64.8 = 32.4 £ 33.4
	<u>ok</u>

USE 1% in. diameter rod with 6 threads
per inch for both LRFD and ASD

rg cms

PROB #4-26

PROB#4-26 Contd.

Rm = 0.75 Fu AD = (0.75)(58)(3,14) = 136,6A

LRF0 \$= 0.75	V20 -U- 55'00
φPm = (0.75)(136,6)=102,4A > 101,3A <u>ok</u>	Rm = 136.6 = 68.3 & = 72.1 A NG

use 2 in. diameter rod with 4½ threads per in. for LRFD

USE 21 in. diameter rod with 42 threads per in. for LRFD

V J CME

$$\frac{L}{R} = \frac{(12)(3.5)}{0.289} = 145.33$$

$$F_{\theta} = \frac{\pi^{2}E}{\left(\frac{L}{R}\right)^{2}} = \frac{(\pi^{2})(29\times10^{3})}{(145.33)^{2}}$$

$$= 13.552 \text{ As } i < 36 \text{ As } i$$

$$P_{\text{CL}} = (13.552)(1.0) = 13.552 \text{ As } i$$

$$\frac{L}{R} = \frac{(12)(6.0)}{0.289} = 249.13 \times 200$$

$$\frac{L}{\pi} = \frac{(12)(6.0)}{0.289} = 249.13 \times 200$$

$$\therefore \text{ Euler equation is not}$$

$$\text{applicable as } \frac{L}{\pi} > 200$$

PROB # 5-2

A =
$$\frac{(T)(S)^{2}}{4} - \frac{(T)(T)^{2}}{4} = 11.781 \text{ in.}^{2}$$

T = $\frac{(T)(S)^{4}}{64} - \frac{(T)(T)^{4}}{64} = 83.20 \text{ in.}^{4}$
 $\lambda = -\frac{(T)(S)^{4}}{64} - \frac{(T)(T)^{4}}{64} = 83.20 \text{ in.}^{4}$
 $\lambda = -\frac{(T)(S)^{4}}{11.781} = 2.66 \text{ in.}$

$$\frac{L}{\lambda = \frac{(T)(S)}{2.66}} = \frac{(T)^{2}(29 \times 10^{3})}{(121.90)^{2}} = 19.293 \text{ ksi} = 36.85 \text{ is.}^{4}$$

For = $\frac{(T)(S)^{2}}{(T)^{2}} = \frac{(T)^{2}(29 \times 10^{3})}{(21.20)^{2}} = 35.16 \text{ ksi} < 36.85 \text{ is.}^{4}$

For = $\frac{(T)(S)^{2}}{(T)^{2}} = \frac{(T)^{2}(29 \times 10^{3})}{(21.20)^{2}} = 35.16 \text{ ksi} < 36.85 \text{ is.}^{4}$

For = $\frac{(T)(S)^{2}}{(T)^{2}} = \frac{(T)^{2}(29 \times 10^{3})}{(21.20)^{2}} = 97.65 \text{ ksi} > 26.16 \text{ is.}^{4}$

For = $\frac{(T)(S)^{2}}{(T)^{2}} = \frac{(T)^{2}(29 \times 10^{3})}{(54.14)^{2}} = 97.65 \text{ ksi} > 26.16 \text{ is.}^{4}$

For = $\frac{(T)(S)^{2}}{(T)^{2}} = \frac{(T)^{2}(29 \times 10^{3})}{(54.14)^{2}} = 97.65 \text{ ksi} > 26.16 \text{ is.}^{4}$

For the equation does not apply

For the equation does not apply

84

85

Using a with x120 (Ag = 353 in. 2),
$$z_y = 3.74$$
 in.)

$$\frac{KL}{L} = \frac{(0.65)(12 \times 18)}{3.74} = 37.54$$

$$\frac{E}{C} = 40.59 \text{ Rsi}$$
From AISC Table 4-22

$$\frac{E}{C} = 26.99 \text{ Rsi}$$
Checking with AISC Table 4-1

$$\frac{E}{C} = 40.59(53) = 1433 \text{ Rec}$$
Checking with AISC Table 4-1

$$\frac{E}{C} = 40.59(53) = 1433 \text{ Rec}$$

$$\frac{E}{C} = 40.59(53) = 1133 \text{ Rec}$$
Checking with AISC Table 4-1

$$\frac{E}{C} = 20.65(18) = 11.7 \text{ Ft}$$

$$\frac{E}{C} = 954 \text{ Rec}$$
Using HSS 12 × 10×3 (Ag = 14.6 in. 2, $z_y = 4.01$ in.)

$$\frac{E}{C} = 22.5 \text{ Rsi}$$
From AISC Table 4-22

$$\frac{E}{C} = 22.5 \text{ Rsi}$$
From AISC Table 4-22

$$\frac{E}{C} = 22.75(146) = 320.24 \text{ Production}$$
Checking with AISC Table 4-1

$$\frac{E}{C} = 321.5 \text{ Rec}$$

$$\frac{E}{C} = 221.4$$

$$\frac{E}{C} = 321.5 \text{ Rec}$$

PROB # 5-9

(a) Using a W14x145 with KL=14ft

LRFD	ASD		
Pc Pm = 1690 R	Pm = 1120 R		

Using Alsc Table 4-1

(b) Using a W12x87 with KL=18ft

LRFD	ASD
&Pm = 801 &	Pm = 533 fg

Using AISC Table 4-1

(c) Using \$15x429(A = 12.6 in,2, 2y = 1.06 in,)

KL = 16 ft $\frac{KL}{rxy} = \frac{12x16}{1,06} = 181.13$ $\Phi_{cr} = 6.89 \&si$

LRFD	ASD
12 Pm = (6,89×12,6)=86.8 R	$\frac{P_n}{\Omega_c} = (4.58)(12.6) = 57.78$

V g. CYTIC

LRFD	ASD		
Pe Pm = 899.2 A	= 598,2 A		

LRFD	ASD		
de Pm = 536 A	Pm/ac = 365.5 fc		

(c) Using a WIO x 68

-							- 1
E L	=	10.	SV/	<u>~\</u>	=	14,4	£+
		<u> </u>		_ ,			

LRFD	ASD
& Pm = 649.4 A	Pa = 432 R

(d) Using a W14 x132 (A=38.8 in. 2, 2y=3.76 in.)

$$\frac{\text{RL}}{2^{2}y} = \frac{(0.65)(12\times20)}{3.76} = 41.49 < 4.71 - \sqrt{\frac{29\times10^{3}}{65}} = 99.49$$

$$F_{e} = \frac{(17)^{2}(29\times10^{3})}{(41.49)^{2}} = 166.27 \text{ Asi}$$

$$F_{cr} = \left[0.658\frac{65}{166.27}\right]65 = 55.19 \text{ Asi}$$

$$F_e = \frac{(17)^2(29 \times 10^3)}{(41,49)^2} = 166.27 \text{ Asi}$$

1		
	LRFD	DZA
	9c For = (0,9)(55.19)=49.676	Fee = 55.19 = 33.05 Bai
	9cm = (4967(388)=1927&	PAC = (33.05)(38,8) = 1282 &

(e) Using a Pipe 12x strong $KL = (1.0 \times 22) = 22 ft$

$$KL = (1.0)(22) = 22 + 1$$

Δ	. / W	n C
v G	flll	=

ASD
Pm = 311 &

PROB# 5-11 Using a W12x106 (A = 31.2 in. , d=12.9 in., $I_x = 933 \text{ in.}^4$) $I_y = 301 \text{ in.}^4$) plus 1 PL $\frac{7}{4}$ x16 each Flange 12.9 in. X _____X 6.825 in. $Ag = 31.2 + (2)(\frac{3}{4}\times16) = 55.2 \text{ in.}^2$ $T_{x} = 933 + (2)(3/4)(6.925)^{2} = 2051 \text{ in.}^{2}$ Ty = 301 + (2) + (2) = 913 in.4 $z_y = \sqrt{\frac{813}{55.2}} = 3.84 \text{ in.}$ $\frac{\text{KL}}{\text{JL}} = \frac{(12)(18)}{3.84} = 56.25$ 4cFcz = 35.725 Rsi] From AISC Fcz = 23.75 Rsi] Table 4-22

(b) Using 2 C 12x302 (For each A=8,81 in Ix=162 in.4 Iy=5,12 in.4)

$$A = (2 \times 8.81) = 17.62 \text{ in.}^{2}$$

$$I_{X} = (2 \times 162) = 324 \text{ in.}^{4}$$

$$I_{Y} = (2) \left[5.12 + (8.82) (5.674)^{2} \right]$$

$$= 578 \text{ in.}^{4}$$

$$I_{X} = \sqrt{\frac{324}{17.62}} = 4.29 \text{ in.}$$

$$\frac{KL}{L} = \frac{(12 \times 22)}{4.29} = 61.54$$

$$\Phi_{L} = \frac{12 \times 22}{4.29} = 61.54$$

LRFD	ASD
& Pm = (34,14×1762) =601,5 &	Pm = (22,19)(17.62) = 399.8 B

91

96112

92

93

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

Referring to AISC Table 4-2>

LRFD	ASD
4cFcz = 40.10 Asi	For = 26.66 Asi
9EPm = (40.10×64.7) = 2594R	Pm = (26.66)(64.7)= 1725.R

Z594A LRFD

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

Referring to AISC Table 4-22

			1
T	LRFD	ASD	
	Pctor = 41.97 Asi Pctor = 41.97 (63.6) = 2669 A	For = 27.94 Asi Pm = (27.94)(63.6) = 1777R	

ANSWRS. Z669A LRFD 1777A ASD

96

Referring to AISC Table 4-22.

LRFD	ASD
& For = 5.94 Asi € Pm = (5.94) (37.44) = 222,4 Q	For = 3.95 bsi

ANSWRS. 222,42 LRFD 147.98 ASD

97

PROB# 5-16 (a)

A = 13.5 + 14.7 = 28.2 in.²

$$y = \frac{(13.5)(9.05) + (14.7)(18.1 + 0.799)}{29.2} = 14.18 in.$$

$$T_{X} = 712 + (13.5)(5.13)^{2} + 11.0 + (14.7)(4.719)^{2} = 14.06 in.^{4}$$

$$T_{Y} = 22.5 + 404 = 426.5 in.^{4}$$

$$T_{Y} = \sqrt{\frac{426.5}{28.2}} = 3.89 in.$$

$$\frac{(KL)}{2}y = \frac{(0.65)(12)(20)}{3.89} = 40.10$$

Referring to AISC Table 4-22

LRFD	yad
4 For = 39.98 Asi	Fer = 26.59 Asi
929n= (39.98)(28.2)= 1127fc	Pn = (26.59)(28.2)=750A

ANSWRS.

1127& LRFD

750.8 ASD

19cme

98

$$A = (4)(38.8) = 155.2 \text{ in.}^2$$

$$T_{x} = T_{y} = (2) \left[1530 + (38.8)(14.7)^{2} \right] + (2)(548) = 20,925 \text{ in.} 4$$

$$t_{x} = t_{y} = \sqrt{\frac{20,925}{155.2}} = 11.61 \text{ in.}$$

Referring to AISC Table 4-22

LRFD	ASD
4cFor = 39.70 Asi	For = 26.43.851
\$ Pm = (39.70)(155.2)= 6161A	Pm = (26.43)(155.2)= 4102 fc

ANSWRS.

6161A LRFD

4102 & ASD

NACME

99

Using a WIOXII2 (hg = 32.9 in.
2
, z_{x} = 4.66in., z_{y} = 2.68 in.)

(RL)

vgcm<u>e</u>

PROB#5-18

A =
$$(2)(1\times16) + \frac{3}{4}\times24 = 50 \text{ in.}^2$$

 $I_{\times} = (\frac{1}{12})(16\times26)^3 - (\frac{1}{12}\times15.25\times24)^3 = 5967 \text{ in.}^4$
 $I_{\times} = (\frac{1}{12})(16\times3) + (\frac{1}{12}\times24\times\frac{3}{4})^3 = 684 \text{ in.}^4$
 $I_{\times} = -\frac{5867}{50} = 10.83 \text{ in.}$
 $I_{\times} = -\frac{684}{50} = 3.70 \text{ in.}$
 $I_{\times} = -\frac{684}{50} = 3.70 \text{ in.}$
 $I_{\times} = -\frac{(12)(20)}{10.83} = 22.16$
 $I_{\times} = -\frac{(12)(20)}{3.70} = 45.41$

LRFD	Q2A
\$ Pm = (38.68) = 1934A	Pm = (25.78)(50) = 1286 fc
Let 5= service load 1934= 1.20 + 1.6L	Let $S = Service load$ $12.86 = D + L$
1934= (1.2) =5/+(1.6)(=5)	1286= 15+ 25
S= 1318.6 R	S= 1286A

PROB# 5-19

$$A = (1)(14) + (1)(12) = 26 \text{ in.}^{2}$$

$$y = \frac{(14)(0.6) + (12)(7)}{26} = 3.5 \text{ in.}$$

$$I_{X} = \left(\frac{1}{12}\right)(14)(1)^{3} + \left(\frac{1}{12}\right)(1)(12)^{3} + \left(\frac{1}{12}\right)(3.5)^{2} = 4/8.2 \text{ in.}^{4}$$

$$I_{Y} = \left(\frac{1}{12}\right)(1)(14)^{3} + \left(\frac{1}{12}\right)(12)(1)^{3} = 229.7 \text{ in.}^{4}$$

$$I_{X} = -\frac{4/8.2}{26} = 4.01 \text{ in.}$$

$$I_{X} = -\frac{4/8.2}{26} = 2.97 \text{ in.}$$

$$I_{X} = \frac{(12)(16)}{26} = 47.88$$

$$I_{X} = \frac{(12)(16)}{4.01} = 47.88$$

$$I_{X} = \frac{(12)(11)}{2.97} = 44.44$$

Referring to AISC Table 4-22

LRFD	ASD
PeFer = 38.04 bsi	For = 25.32 Asi
\$cPm = (38,04) (26)= 989,04 R	Pm =(25,32)(26)=658.3h
(1,2)(3L) +1.6L = 989.04	3-L+L= 658,9
L= 466.8 R	L= 460.8 R

ANSW RS

466,8 & LRFD

460.82 ASD 19CMC

102

CHAPTER 6

PROB#6-1

	0
LRFD	
LRFD PL=[.2\150]+(.6\200) = 500.A Assume KL = 50 \$\frac{\text{From AISC Table 4-22}}{\text{2.50}} = \frac{500}{37.5 \text{4si}} A reqd = \frac{\text{Ru}}{\text{2.50}} = \frac{500}{37.5} = 13.39 \text{in}^2 Try W14 \times 48 (A = 14.1 \text{in}.^2) \[\frac{\text{L}}{\text{2.1}} = \frac{(12\text{14})}{1.91} = 87.96 \[\frac{\text{L}}{\text{2.1}} = \frac{(12\text{14})}{1.91} = 87.96 \[\frac{\text{L}}{\text{2.1}} = \frac{(12\text{14})}{1.91} = 87.96 \[\frac{\text{L}}{\text{2.1}} = \frac{(12\text{14.1})}{1.91} = 359.8 \text{ A.c.} \[\frac{\text{L}}{\text{2.552}\text{14.1}} = 359.8 \text{ A.c.} \[\frac{\text{L}}{\text{2.2}} = \frac{(12\text{14.1})}{1.91} = 359.8 \text{ A.c.} \[\frac{\text{L}}{\text{2.145}} = \frac{17.9 \text{in}}{1.2} \] \[\frac{\text{L}}{\text{2.145}} = \frac{(12\text{14.1})}{1.92} = 68.57 \] \[\frac{\text{L}}{\text{2.145}} = \frac{(12\text{14.1})}{1.93} = 68.57 \] \[\frac{\text{L}}{\text{2.145}} = \frac{31.93}{1.93} \text{1.51} \] \[\frac{\text{L}}{\text{2.145}} = \frac{31.93}{1.93} \text{1.51} \] \[\frac{\text{500 A}}{\text{0.15}} \text{0.15} \] \[\text{Subsequent check of } \text{0.15} \] \[\text{1.45 Built xGI} \] \[\text{1.45 Built xGI} \]	Pa = 150 + 280 & = 350 & ASSUME KL = 50 Faz from A150 4-22 = 24.9 & L A raqd = Pa-Dc = 350 For From A150 in.2 Try W14x 48 (A = 14.1 in.2) Tx = 5.85 in., Ty = 1.91 in.) KL = (12)(14) = 87.96 For from A150 Table for = 17.01 & Si Pm = (1701×14.1) = 239.86 Try W14x61 (A=17.9 in.) Xy = 2.45 in.) Xy = 2.45 in.) KL = (12)(14) = 68.57 For = 21.23 & Si Pm = (1.23)(17.9) = 380 & Subsequent check of w14x53 Subsequent check of w14x53 Shows it will not do. USE W14x61
	440

19cmg

PROB #6-2

	AGD
LRFD	ASD
Pu=(1.2)(200)+(1.6)(300)=720&	Pa = 200 + 300 = 500 A
Assume KL = 60	Assume kL = 60
\$ For = 34.6 Asi	For = 23.0 Asi
A Read = $\frac{720}{500}$ = 20.81 in.2	A read = $\frac{500}{23.0}$ = 21.74 in.2 Try W12 x 79 (A=23.2 in.3, $2y=3.05$ in)
Try W12x72(A= 211 M.)-5-347	
$\frac{(KL)_y = (12)(16)}{3.04} = 63.16$	$\left(\frac{\text{KL}}{72}\right)_{y} = \frac{(12)(16)}{3.05} = 62.95$
\$ For = 33.65 ANA	For = 22.41 Asi
Φc Pm = (33.65(21.1)= 710 A	$\frac{P_{M}}{R_{C}} = (22.41)(23.2)$ = 519.9 k > 500 ok
2. 720. N.G. USE W12 X 79 by	USE W12×79
examination	

1 Schic

PROB#6-3

	•
LRFD	ASD
Pu= (1.2) (200) + (1.6)(300) = 720 R	Pa = 200 + 300 = 500 &
Assume KL =50	Assume = 50
& Fcr = 28.4 Rsi	For = 18.9 Asi
A Read = $\frac{720}{28.4}$ = 25.35 in.2	A Read = 500 = 26.46 m2
Try W12 x 87 (A= 256 in 2 /2 y= 3,07 in)	Try w12 x 96 (A=282 in 2 1/2)=3,89
$\left(\frac{KL}{r}\right)_y = \frac{12 \times 16}{3.07} = 62.54$	$\left(\frac{KL}{R}\right)_y = \frac{12\times16}{3.09} = 62.14$
&For = 26.39 Asi	For = 17.59 Rsi
Φc Pm = (26.39)(25.6)	Pm / ASI
= 675,6/ 720/ U.G.	$\frac{P_m}{R_c} = (17.59)(28.2)$
USE WIZX96	= 496 & < 500 & N.G.
	MSE MIZXIOG

1 Schic

PROB #6-4

LRFD	ASD
Pu=(1.2/150)+(1.6/200) = 500A	Pa = 150 + 200 = 350 R
From AISC Table 4-1	From AISC Table 4-1
USE W14xG1(6-Pa=572R)	USE W14×61 (21 = 380R)

rgcmc

PROB #6-5

LRFD	ASD
Pu = (1.2/200)+(1.6/200) = 720 A	Pa = 200 + 300 = 500 k
From AISC Table 4-1	From AISC Table 4-1
USE WI2x79(Pm=781A)	USE WI2X79 (Pm = 520 k)

PROB#6-6

y.cms

Pr=(1,2×250)+(1,60×400)=940 A Pr = 250+400 From AISC Table 4-1 From AISC	
From AISC Table 4-1 From AISC USE W12 x 96 (4 Pm = 9574) USE W12 x 100	= 650 k 6 (Pm = 706k)

~gcm€

PROB#6-7

1	LRFD	ASD
	Pu=(1,2×125)+(1,6×200)=470 k	Pa = 125 + 200 = 325 A
(a)	Kr = (1)(15) = 15 ft	Kr = (1)(12) = 12 tt
	W12×53	WIOX54
	<u>U.</u>	in Geme
1	LRFD	ASD
	Pu=(1.2)(100) +(1.6)(150) = 360 A	Pa = 100 + 150 = 250 R
(b)	KL = (0.65)(14) = 9.16+	KL = (0.65×14) = 9.1 ft
	W8X35	WIOX39
		vgcmc.
	1000	D & A
	LRFD 0 - 11 21/2001 + 1.643001 = 720R	ASD $P_0 = 200 + 300 = 500-k$
(c)	P. = (1.2)(200) + (1.6)(300) = 720 R	ASD $P_{a} = 200 + 300 = 500 - k$ $KL = (0.65)(16.5) = 13.2 + 4$
(c)	LRFD $P_{\mu}=(1.2)(200) + (1.6)(300) = 720$ $KL = (0.8)(6.5) = 13.2 + 6$ $W12.x72$	Pa = 200 +300 = 500-k
(c)	$P_{L}=(1.2)(200)+(1.6)(300)=720$ KL=(0.8)(6.5)=13.2 Ft	$P_a = 200 + 300 = 500 \text{ k}$ KL = (0.65)(16.5) = 13.2 + 4
(c)	$P_{L}=(1.2)(200)+(1.6)(300)=720$ KL=(0.8)(6.5)=13.2 Ft	$P_a = 200 + 300 = 500 \text{ A}$ $KL = (0.65)(16.5) = 13.2 \text{ F}$ $w_{12} \times 72$ $v_{3} = 0.00 \text{ AS D}$
رى : :	$P_{u}=(1.2)(200) + (1.6)(300) = 720 R$ $KL = (0.8)(6.5) = 13.2 Ft$ $w_{12} \times 72$	$P_a = 200 + 300 = 500 \text{ A}$ $KL = (0.65)(16.5) = 13.2 \text{ F}$ $w_{12} \times 72$ $v_{3} = 0.000$ ASD
رى : :	$P_{u}=(1.2)(200) + (1.6)(300) = 720 R$ $KL = (0.8)(6.5) = 13.2 Ft$ $w_{12} \times 72$	$P_a = 200 + 300 = 500 \text{ k}$ $KL = (0.65)(16.5) = 13.2 \text{ f}$ $W12 \times 72$ $V \neq CMC$ ASD $P_a = 300 + 600 = 900 \text{ k}$ $KL = (1)(18) = 18 \text{ f}$
رى : :	$P_{L}=(1.2)(200) + (1.6)(300) = 7200$ $KL = (0.8)(16.5) = 13.2 \text{ Ft}$ $W12.x72$	$P_a = 200 + 300 = 500 \text{ A}$ $KL = (0.65)(16.5) = 13.2 \text{ F}$ $w_{12} \times 72$ $v_{3} = 0.000$ ASD
رى : :	$P_{L} = (1.2)(200) + (1.6)(300) = 7200$ $KL = (0.8)(6.5) = 13.2 \text{ Ft}$ $W12.X72$ $LRFD$ $P_{L} = (1.2)(300) + (1.6)(600) = 13200$ $KL = (1)(18) = 18 \text{ Ft}$	$P_a = 200 + 300 = 500 \text{ k}$ $KL = (0.65)(16.5) = 13.2 \text{ f}$ $W12 \times 72$ $V \neq CMC$ ASD $P_a = 300 + 600 = 900 \text{ k}$ $KL = (1)(18) = 18 \text{ f}$

107

PROB#6-8

LRFD	ASD]
Pu= (1.2)(350)+(1.6)(400) = 1060A	Pa = 350 + 400 = 750k	
From AISC Table 4-1 WIOXIOO (A.P. = 10708)	From AISC Table 4-1 WIOXII2 (Pm = 7992)	
W12x96 (9ch= 1080R	W12x106 (Pm = 798A)	
→ W 14×90(\$ = 1070h)	W 14×99 (= 78/8)	<
[C 32 1017 X 70]		
	rgcm ^e	

PROB #6-9

LRFD	ASD
Pu=(1.2×900)+(1.6×1100)=2840&	Pa = 900 + 1100 = 2000 R
Enter Table 4-1 with Kyly=12ft and Fy = 50.Rsi	Enter Table 4-1 with Kyly=12f1 and Fy = 50Asi
-> W12 x 252 (2910A)	W12x279 (Z160A)
W 14 X 257 (3110R) Try w 12 X 252 (2x = 1.81)	W14x257 (2070B) -
Equivalent txLx = tyLy	Try w14x257 $(\frac{2x}{2y} = 1.62)$ Equivalent $k_x L_x = \frac{24}{162} = 14.8 + 1$
$= \frac{24}{1.81} = 13.26 + \frac{24}{11.81}$	Reenter tables with Kyly = 1484
Reenter tables with Kyy-13244 W 12x279 (3132A)	or Try $12x 279 \left(\frac{2x}{2y} = 1.82 \right)$
or Try W14x 257 (1/2 = 1:62)	Equivalent Kx Lx
Equivalent KxLx	$=\frac{24}{1.82}$ = 13.19 ft
= 24 = 14.81 ft	W12x279 (2090A)
W14×257 (2970A)	USE W12 x 279
USE WI4 X 257	

r Sime

PROB #6-10

LRFD	ASD
Pu=(1,2)(350)+(1.6)(400) = 1060)	Pa= 350+400 = 750 k
Enter AISC Table 4-1 with	Enter AISC Table 4-1 with
KLy = 12 ft	KyLy = 12 FT
W12x96 (1080A)	W12X106 (798A) W14X99 (751A)
W14 x 90 (1070R)	Try W12x106 (2x = 1.76)
Try W12 x 96 (1/2 = 1.76)	Equivalent Kilv= KxLx
Equivalent KxLx = KxLx	Equivalent KxLx= KxLx
= 24 = 13.64 Ft	= 24 = 13,64 ft
Reenter tables with Kyly=1364	Recoter tables with kyly 18648
W12×106 (1144A)	W12 × 106 (7624) Try lighter W/4×99 (2×=1.66)
Try lighter w14 x 90 (2x = 1.66)	Equivalent KxLx = 24
Equivalent Knlx = Kxlx	= 14.46 8+
= 24 = 14.46 67	Reenter tables with
Reenter tables with KyLy=14.46A	W14X109 (819.A)
w14x99 (1116A) <	USE W12×106
USE W14 X99	

r g c m c

PROB#6-11

 	
LRFD	ASD
Pu= (1.2)(900) +(1.6)(1100) = 2840 A	Pa= 900 + 1100 = 2000 ft
Enter tables with Kyly=9,33ft	Enter tables with kyly=9,3ft
W12XZ5Z (Ach = 3090 A)	W12x252 (Pm = 2040B)
W14X233 (Ac Pm = 2917R)	WI4 X 257 (Page = 2143A)
Try WIZXZ52 ("xx = 1,91) Equiv. Kyly = kxlx xx xx xx xx xx xx	Try W 12 x 252 (12x = 1.91)
	Equiv. Kyly = Kxlx
= 1181 = 12,47 ft	= 15.47 ++
Reenter table with Kyly= 15.47f	Reenter tables with kyly = 15,47ft
WIZX 279 (42 Pm= 29586)	W12X305 (Pa = 2162A)
Try W14x233 (1 = 1.62)	Try WIYX 257 (2x = 1.62)
Equiv Kyly = Kxlx	Equiv, Kyly = 28 = 17.28 ft
= 28 = 17.28 ft	Reenter Table with Kyly = 17.28 ft
Reenter table with kyly = 17.29	KyLy = 17.28 ft
M14 X283 (42 Pm = 31308)	W14 x 283 (Pa = 20790) =
NSWRS USE WIDYDOO	

Answrs.

USE WIZX279

USE WIXX283

V gcmc

111

PROB#6-12

LRED	ASD
Pu = (1.2)(280)+(1.6)(250) = 736.R	Pa= 280+ 250= 530-R
Enter ASC Table 4-1 with Kyly = 10 ft	Enter AISC Table 4-1
W10x68(2h=768 &, 2x=1.71)	with ky Ly = 10ft W10x77 (= 500) 2x = 1,73)
W12x65(8m=765A 12x = 1.75)	W 12 / 2 (- 25/56 - 21.75)
W14x68 (Ach=755k) 2x = 214	TX T(== 549 & 岩=Z14)
Try w 10x68 Equivalent KyLy = 20 = 11.70 ft	1ry 10/0x77 (Eq KxLx = 20 = 11.56)
WIOX77 (43 = 8236)	W10X77 (m = 550 f)
The harver Epulualent	Try w12x72 (80 kx/x = 20 = 11.43)
KyLy = 175	W12x72 (Pm = 545R)
1) 12×65(9cm= /384)	Try W14x74 (Eq kyly = 20 = 8,20)
Try WILLX68 (Equivalent	But real ky Ly=10ft) W14x74 (549k)
kyly= 20 = 8,20ft, but real tyly=10ft) W14×68(4cm=755A)	USE W12X72
USE W12: ×65	
ν	-geme

112

PROB # 6-13

LRFD Pu=(1.2)(150) + (1.6)(350) = 740Å ASSUME $(\frac{kL}{7Z}) \times = 40$ Po= = 150 + 350 = 500 Å ASSUME $(\frac{kL}{7Z}) \times = 40$ ASSUME		
Assume $(\frac{kL}{R})_{x} = 40$ Assume $(\frac{kL}{R})_{x} = 40$ PCFCZ = #0 Asi from AISC Table 4-22 A Reqd = $\frac{740}{40} = 18.5 \text{ in.}^{2}$ A Reqd = $\frac{500}{26.6} = 18.8 \text{ in.}^{2}$ Try w14x68 (A=20.0 in., 7x=6.0 in) Try w14x68 (A=20.0 in., 7x=6.0 in) $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.94$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.94$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.94$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = (\frac{1.0}{1.0} \times 12 \times 18) = 35.95$ $(\frac{kL}{x})_{x} = ($	LRFD	
	Pu=(1.2)(150) + (1.6)(350) = 740 & ASSUME (KL) x = 40 PcFcr = 40 Asi from AISC Table 4-22 A Reqd = 740 = 18.5 in.2 Try W14x68 (A=20.0 in.2,7x=6.0 in) (KL) = (1.0)(12)(18) = 35.94 PcFcr = 40.92 ksi PcFcr = 40.92 ksi PcFcr = 40.92 ksi PcFcr = 40.92 ksi Subsequent check of W14x61 Shows it will not do	Pa = 150 + 350 = 500 & Assume (KL) = 40 For = 26.6 Asi from AISC Table 4-22 A Reqd = 500 = 18.8 in. Try W14 × 68 (A=20,0 in.², =60 in) (KL) = (1.0×12×18) = 35.95 For = 27.21 Asi Pm = (27.21) (20) Subsequent check of w14 × 61 shows it will not do

v g cons

PROB #6-14

LRFD	ASD
Pu = (1.2\(225\)+(1.6\(450\)= 990 & Assume \(\frac{kL}{r}\)_x = 30 \[\frac{4}{2}\] \] \[\frac{4}{2}\] \[\frac{4}{2}\] \[\frac{4}{2}\] \[\frac{4}{2}\] \[\frac{4}{2}\] \[\frac{12}{2}\]	Assume $(72)_{x} = 30$ $F_{OL} = 28.0 \text{ Asi}$ $C_{OL} = 28.0 \text{ Asi}$ A Reqd = $\frac{675}{28.0} = 24.11 \text{ in.}^{2}$

~ JUMS

PROB#6-15

8 Ft

$$k_{y} = (0.8)(8) = 6.4 \text{ Ft}$$
 $(0.65)(24) = 15.6 \text{ Ft}$
 $k_{y} = (0.8)(8) = 6.4 \text{ Ft}$
 $k_{y} = (0.8)(8) = 6.4 \text{ Ft}$
 $k_{y} = (0.8)(8) = 6.4 \text{ Ft}$

\rightarrow \righ	ASD
	ASU
Pu=(1.2)(400)+(1.6)(275) = 920.A	Pa= 400+275=675R
Assume K = 40	Assume KL = 40
Per= 40Asi	For = 26.6 in.2
A Regd = $\frac{920}{40} = 23 \text{ in.}^2$	175
Try W14x82 (A= 240 in. 2,	A Read = 675 = 25,38in. Try WI4x 90 ()= 26,5in.
2x= 6.05 in, 2y= 2.48 in.	rx = 6.14 in., 2y=3,70m.
$(\frac{KL}{12})_{x} = \frac{(12)(15.6)}{6.05} = 30.94$	$\left(\frac{KL}{Z}\right)_{X} = \frac{(12)(15.6)}{6.14} = 30.494$
$(\frac{kH}{2})y = \frac{(12)(8)}{2.48} = 38.71 =$	$\frac{(5.14)}{(2)}y = \frac{(12)(8)}{3.70} = 25.95$
4c For = 40,36 Asi	21/0
φ ₀ P _m = (40,36) (24,0)	- 27.95 Asi
= 968.6k > 920k	=(279\$)(26,5)
USE W14X82	=740.76756 ot
subsequent check of	USE W14X90
WI4X74 shows it	Subsequent check of
will not do.	will not do.

V Scmc

PROB#6-16

(a)	LRFD	ASD
	Pu= (1.2×100) +(1.6)(150)=360.A	P= 100 +150 = 250A
	KT=(1.0)(18) = 18t+	Fr= (1.0/(18) = 18 ft
	W14X61	W14761 W12X53
	w12453	w10× 49
	mlox#d	W8x67
	w8x67	HP 12x59
	HP12x53	Rect HSS 12X10X (446)
	Bact Hes loxex & (45.7)	a Lectoriars (in a)
	Square HSS loxlox (40,3) <	
	Round HSS 16,000 X0,250 (42.1)	1
1	Pipe 12 Std (49.6)	Pipe 12 STD (49.6)
1		2400
(b)	Pr=(1,2)(150) +(1,6)(200) = 500 A	Pa= 150+ 200 = 350k
	KL= (0.65)(16) = 10.4 FT	KL = (0,65)(16) = 10,4 ft
	W14 X 53	W14 X61 W12 X49
	W/2×49	w 10x 49
	w\0x49	M 8X 28
	M 8 x 28	#P 10×57
	#P (0X 57	Ract #55 12X10X 3 (\$2,9#)
	Rect. HSS 12x10x & (52,9#)	Square HSS 9x 9x £ (55,5#)
	Square HSS lox lox 8(47.8#)	·
	Round HSS 16,000x0,312 (52,34)	Pipe 12 XS (65,5#)
	Pipe 12XS (65.5#)	
(0)	LRFD	CIZA
(c)	Pu=(1,2×100)+(1.6×600)=1080&	Pa= 100+600 = 700 A
	KL= (0.8) (20) = 16 ft	Kr= (0.8)(50) = 16 E+
	W14×99 =	W14×99 ←
	MIZXIZO	W12 X 10G
	HP14×102	HP14X102
4	Rect HSS ZOXIXX (127)	Rect HSS 20x12x & (127)
	Square HSS 16x16x= (103)	
	Round HSS vione	Round HSS none
	Pipe none	Pipe none

GCME

PRO B#6-17 ESTIMATION OF LOADS Roof Roof slab = (4)(150)(40)(36) = 72,000 165 Roofing = (6)(40)(36) = 8,640 Est. col. wt. + firepfing. = 500 Pr = 81,140 165 PD PL = (30)(40×36) = 43,200 165 Pu= (1.2)(81.14) + (1.6)(43.2) = 166.5 A KL= 12 ft W14 × 43 THIRD FLOOR Floor slab = (4)(150)(40)(36) = 108,000 165 Est col wt + firegfq. = = 108,500 lbs $b^{\mathcal{D}}$ Partitions (15)(40)(36) = 21,600 Live Load = (80)(40)(36) = 115,200 P. = 136,800 Total Load = (1.2)(108,5)+(1.6)(136.8) + 166.5 from about = 51558A KL= 12 ft ~ gime 117

PROB#6-17 CONTO.

SECOND FLOOR

Total Load = (1.2)(108.5)+(1.6)(136.8)+ 515.58 from about

= 864.66 A

KL= 12 Ft

WILL Y 90

FIRST FLOOR

Total Load = (1.2)(108.5)+(1.6)(136.8)+ 864.66 from about

= 1213.74 A

KL= 12 Ft

WILL 109

USE WILX 61 TOP TWO FLOORS
AND WILXION BOTTOM TWO FLOORS

V & CMS

PROB #6-18

LRFD	ASD
Pu=(1.2/800)+(1.6)(1200)= 2880A	Pa=800+1200 = 2000 A

Assume KL= 35

LRFD	ASD
ϕ_{c} For = 41.2 in. ² A Regd = $\frac{2890}{41.2}$ = 69.90 in. ²	For = 27.4 in.2 -Ac = 27.4 = 72.99 in.2

Try W14 x145 (A=42.7 in.2, d=14.8 in., bf=15.50 in.) $I_{x} = 1710 \text{ in.4}, I_{y} = 677 \text{ in.4})$

11 (

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PROB# 6-18 CONTD.

LRFD	A S D
From AISC Table 4-22	From AISC Table 4-22
10.963i	For = 27.56 Asi
4cPm=(40.9)(70.7) = 2891A>2880A	Pm = (2:1,56)(74.7) = 2059 h > 2000 h ok
LISE WILX LIS WITH	USE WIYXIYS WITH I PL IXIG EA FLANGE

vg cme

PRO B#6-19

Using 2Ls 9x6x1 (For each angle A = 13.0 in.2, Ix=38.8 in.4,

Iy = 80.9 in.4)

 $I_{x} = (2)(38.8) = 77.6 \text{ in.4}$

 $L_y = (2) \left[\frac{80.9 + (13.0)(2.65 + \frac{0.375}{2})^2}{77.6} \right] = 371.1 \text{ in.}^4$ $\lambda_{x} = \sqrt{\frac{77.6}{(2)(3.0)}} = 1.73 \text{ in.}$

2y= 2 37/.1 = 4.02 in.

(EL) x = (12/20) = 138.73 < Referring to AISC Section E6.1

a = distance between Connectors = (4)(12) = 48 in-

12 = 123 for 1 angle = 1.28 in.

Ke = (1.0)(48) = 37.5< = x 138.73 = 104 ok

Ac (知x controls the buckling mode does not involve relative deformations that produce shear forces in the connectors between the two angles.

· · · · · · · · · · · · · · · · · · ·	
LRFD	AsD
\$cFor = 11.75A51 \$cPm=(11.75\(\chi\z\)x13,0)= 305.5A	Bz = 7.67 Asi -ac = (7.67)(2x13.0)= 199.4.A
- Annes	V gcms

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

a = distance between welds = 6x12=72in.

Zi = 12g for | angle = 1.28 in.

As (EL) y controls, the buckling made does involve relative deformations that produce shear forces in the welds between the two angles.

19 CME

122

PROB#6-20 CONTD.

$$\frac{|KL|}{Z}_{m} = -\sqrt{\frac{|KL|^{2}}{Z}} + 0.82 \frac{R^{2}}{(1+R^{2})} \cdot \frac{2}{Z_{2} \cdot b} \cdot \frac{2}{E6-2}$$

$$\frac{|KL|}{Z}_{m} = -\sqrt{\frac{|KL|^{2}}{Z}} + 0.82 \frac{R^{2}}{(1+R^{2})} \cdot \frac{2}{Z_{2} \cdot b} \cdot \frac{2}{E6-2}$$

$$\frac{|KL|}{Z}_{m} = -\sqrt{\frac{|Z|}{(1+R^{2})}} \cdot \frac{2}{(2)(1.65)} = 0.959$$

$$\frac{|KL|}{Z}_{m} = -\sqrt{\frac{|Z|}{(2)(1.65)}} = 0.959$$

$$\frac{|KL|}{|Z|}_{m} = -\sqrt{\frac{|Z|}{(2)(1.65)}} = 0.959$$

$$\frac{|Z|}{|Z|}_{m} = -\sqrt{\frac{|Z|}{(2)(1.72)}} = 0.959$$

$$\frac{|Z|}{|Z|}_{m} = -\sqrt{\frac{|Z|}{(2$$

V gime

Pm = (12,22)(2x13.0)=317,70

PROB #6-21 Using 4 LS 4x4x = (A= 3.75 in 2. each, Ix= Iy= 5,52 in.4 each)

$$T_{x} = T_{y} = 4 \left[5.52 + (3.75) \left(7.82 \right)^{2} \right] = 939.4 \text{ in.4}$$

$$2x = 2y = \sqrt{\frac{939.4}{4}} = 7.91 \text{ in.}$$

$$\left(\frac{\text{KL}}{2} \right)_{x} = \left(\frac{12(30)}{2} \right) = 45.51$$

LRED	ASD
Фс Fcr = 29.049 Asi Фс Pm = (29.049)(4×3.75) = 435.7 A	For = 19.349 dsi -nc = (19.349)(4x3.75)= 290.2A

Design of End Tie PLs

Min. length = 13 in. Min. width = 13+(2)(1+)=15.5 in.

Min. $t = (\frac{1}{50})(13) = 0.26 \text{ in}.$

USE END TIE PLS & X 13X 1 ft-4111.

EXCLUSIVE: Just in Edutruth only http://edutruth.4shared.com

PRO8#6-21 CONTO.

Design of single lacing (LRFD)

Assume lacing inclined @ 60° with main members

Shear = (0.02)(435.7) = 8.71 & or 4.36 &/lacing bar

Member length = $\frac{13}{\cos 300}$ + (3)(14) = 172 in.

Resultant member force = $\left(\frac{15}{13}\right)(4.36) = 5.03 \text{ & compress.}$

Assume = 140

$$\frac{15}{0.2896} = 140$$

$$t = 0.370 \text{ in.} \quad 54y \frac{3}{8} \text{ in.}$$

$$\frac{15}{12} = \frac{15}{0.289}(\frac{3}{8}) = 138.4$$

$$4c. For = 11.82 \text{ Asi}$$

$$A \text{ Reqd} = \frac{5.03}{11.82} = 0.426 \text{ in.}^2$$

Width read = 0.426 = 1.14 in.
But min. width = (2(17) = 21/2 in.

USE LACING BARS = X2 = X 1 F+ 5 = in. (LRFD)

125 V 9- LMC

PROB#6-22

LRFD	ASD
Pu=(1.2)(200)+(1.6)(440)=944 B	Pa=200+440 = 640 A

Assume KL = 50

4cFcl = 37,50 Asi (AISC Table 4-22)

A Read = 944 = 25.17 in. or 12.59 in. per C

Try 2Cs 15x50 [For each channel A=14.7 in. = , x = 0.799 in.]

Ix= 404 in. 4, Iy= 11.0 in. 4, 2y= 0,865 in.)

Ix= (2)(404) = 808 in.4

 $Ty = (2)(11) + (2)(14.7)(4.799)^2 = 699.1 in. 4$ $xy = -\sqrt{\frac{699.1}{2}} = 4.88 in.$

 $\frac{\langle KL \rangle_y}{\sqrt{z}} = \frac{(1 \times 12 \times 24)}{4.88} = 59.62$

	_
LRFD	DZA
Фе. For = 34.89 &si Фе. Pm = (34.89)(2×4.7)= 1025.86 244.8	For = 23,20 &si -ac = (23,20) 2x14,7/= 6828 ×408

126

PROB#6-22 CONTD. Design of End Tie Plates Bolt line is located 24 in. From back of Cs Distance between bolt lines = 8+(2)(2+)=12.5 in. min. length of plates = 12.5 in. Min. width = 12.5 + (2)(14)= 15 in. Min. $t = (\frac{1}{50})(12.5) = 0.25 \text{ in}$ MSE END LIE bra +XIS=XIt+ 3IN. Design of Single Lacing 12,5 in. 14,43m. 元 of C between lacing = 14.43 = 16.68 < 59.02 0k Shear to be taken by lacing = (0.02)(944)=18.88 or 9.44 ea side Max compression force = 9144 = 10,90 h Length of lacing bars = 14.43 + (2)(14)= 16.93 Say 17 in. Assume == = 140 0.289 = 140 t = 0.357 in. Say & in. KL = (1×14.43) = 133.15 4c For = 12.77 Asi A Read = 12,77 0,854 = 2,2810, width read = 0,375 say (2)(14)=21in. to provide suff. edge dist. USE LACING \$X2 = XIFT 5 in.