

Outline and Reading

- Quick-sort
 - Algorithm
 - Partition step
 - Quick-sort tree
 - Execution example
- Analysis of quick-sort
- In-place quick-sort
- Summary of sorting algorithms

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join *L*, *E* and *G*

Isn't that Merge-Sort?

 Quick-Sort is similar to Merge-Sort but with several key differences – details later

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-sort takes O(n) time

```
Algorithm partition(S, p)
```

Input sequence S, position p of pivot
Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

```
L, E, G \leftarrow empty sequences

x \leftarrow S.remove(p)

while \neg S.isEmpty()

y \leftarrow S.remove(S.first())

if y < x

L.insertLast(y)

else if y = x

E.insertLast(y)

else { y > x }
```

G.insertLast(y)

return L, E, G

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

Execution Example

◆Pivot selection, e.g. "6"

7 2 9 4 3 7 <u>6</u> 1

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

◆Join, join

Worst-case Running Time

- When does the worst-case running time occur?
 - When the pivot is the unique minimum or maximum element
- \bullet In such cases, one of L and G has size n-1 and the other size 0
- The running time is proportional to the sum

$$n + (n-1) + ... + 2 + 1$$

- Thus, the worst-case running time of quick-sort is
 - $O(n^2)$

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 - **Good call:** the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4

Good call

Bad call

- A call is good with what probability?
 - 1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- lacklosim (Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k)
- \bullet For a node of depth i, we expect
 - How many of the ancestor calls to be good?
 - i/2 ancestors
 - The size of the input sequence for the current call is at most
 - $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one
 - Thus, the expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- lacktriangle Hence, the expected running time of quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and rOutput sequence S with the elements of rank between l and r rearranged in increasing order

if $l \ge r$

return

 $i \leftarrow$ a random integer between l and r $x \leftarrow S.elemAtRank(i)$ $(h, k) \leftarrow inPlacePartition(x)$ inPlaceQuickSort(S, l, h - 1) inPlaceQuickSort(S, k + 1, r)

Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9 ("Y" pivot = 6)

- Repeat
 - Scan j to the right until finding an element ≥ x
 - Scan k to the left until finding an element < x
 - Swap elements at indices j and k

Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9 ("Y" pivot = 6)

- Repeat
 - Scan j to the right until finding an element $\geq x$
 - Scan k to the left until finding an element < x</p>
 - Swap elements at indices j and k
- Until j and k meet

Perform the partition with pivot Y using two indices to split S into L and EYG (a similar method can split EYG into E and G)

J

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9

("Y" pivot = 6)

- Repeat
 - Scan j to the right until finding an element ≥ x
 - Scan k to the left until finding an element < x
 - Swap elements at indices j and k
- ◆ Until j and k meet
 jk ←

(done with all partitioning operations and eventually sorting the array)

Isn't all this Merge-Sort?

- Quick-Sort is similar to Merge-Sort but with the following key differences
 - (In-place) Quick-Sort uses at most O(log n) space vs. Merge-Sort uses O(n) space
 - Quick-Sort is $O(n^2)$ vs. Merge-Sort which is $O(n \log n)$
 - But a "good" Quick-Sort is O(n log n) or better
 - Quick-Sort implementation details are more friendly towards current computer architecture and thus in practice the "constant" is very small

3-Way Quicksort

- Instead of partitioning into 2 sets each time, partition into 3 sets:
 - Less than set
 - Equal than set
 - Greater than set

Helps slightly with many repeated keys

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-place, O(n) for almost sortedslow (good for small inputs)
quick-sort	O(n log n) expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-place, O(n) first resultsfast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)

Demo

https://www.youtube.com/watch?v=kP RA0W1kECg

https://www.cs.usfca.edu/~galles/visua lization/ComparisonSort.html

https://www.toptal.com/developers/sort ing-algorithms