Rubik's cubes and permutation group theory

Lawrence Chen

October 6, 2022

Honours presentation

Contents

Some basic group theory

What is a group?

Order and generators

Permutations

Group actions

The Rubik's group

Representing the cube

Moves vs states for Rubik's cube

The Rubik's group of permutations

Orders of moves

Jake's theorems

Analysing the Rubik's group

Bases and stabiliser chains

How many valid states are there?

Can this restickering be solved?

Generating random Rubik's cube states

Solving a Rubik's cube...

Concluding remarks

References

Some basic group theory

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

(i) (**identity**) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Example (Cyclic group)

The set $C_n = \{a^0, a^1, a^2, \dots, a^{n-1}\}$ with rules $a^k a^\ell = a^{k+\ell}$, $a^n = a^0$ forms group: identity

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Example (Cyclic group)

The set $C_n = \{a^0, a^1, a^2, \dots, a^{n-1}\}$ with rules $a^k a^\ell = a^{k+\ell}$, $a^n = a^0$ forms group: identity $1 = a^0$, inverses

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Example (Cyclic group)

The set $C_n = \{a^0, a^1, a^2, \dots, a^{n-1}\}$ with rules $a^k a^\ell = a^{k+\ell}$, $a^n = a^0$ forms group: identity $1 = a^0$, inverses a^{-k} for $a^k \in C_n$, associative.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set X generates G if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, G is cyclic.)

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$:

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$: $C_6 = \langle a \rangle$.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$: $C_6 = \langle a \rangle$. If $b = a^2$, $c = a^3$ then $C_6 = \langle b, c \rangle$ since

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$: $C_6 = \langle a \rangle$. If $b = a^2, c = a^3$ then $C_6 = \langle b, c \rangle$ since $a = cb^{-1}$ so $a^k = cb^{-1} \cdots cb^{-1} = c^k b^{-k}$.

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \to [n]$.

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

1 2 3 4 5 6

 σ

1 2 3 4 5 6

It means

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
,

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4, \ 4^{\sigma} = 5,$$

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
, $4^{\sigma} = 5$, $5^{\sigma} = 1$,

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$,

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4, \ 4^{\sigma} = 5, \ 5^{\sigma} = 1, \ 2^{\sigma} = 6, \ 6^{\sigma} = 2,$$

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$, $6^{\sigma} = 2$, $3^{\sigma} = 3$.

Inverses: For $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$:

Inverses: For $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$:

Inverse is $\sigma^{-1} = (1, 5, 4)(2, 6) \in \text{Sym}(6)$.

Product/composition: for $\sigma, \tau \in \text{Sym}(n)$, $\sigma \tau$ means "first σ , then τ ", so $i^{\sigma \tau} = (i^{\sigma})^{\tau}$.

Product/composition: for $\sigma, \tau \in \text{Sym}(n)$, $\sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3)$,

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

$$\sigma \tau = (1, 2, 3)(1, 3)(2, 4) = (1, 3)(1,$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

 $\sigma\tau$

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4,$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

 $\sigma\tau$

$$\sigma \tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2)$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

$$\sigma \tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2)$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

$$\sigma \tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) \in \text{Sym}(4).$$

$$\sigma^{-1} = (1, 3, 2),$$

$$\sigma^{-1}=(1,3,2),\,\tau^{-1}=(1,3)(2,4),$$

$$\sigma^{-1} = (1,3,2), \, \tau^{-1} = (1,3)(2,4), \, (\sigma\tau)^{-1} = (1,2,4).$$

$$\sigma^{-1} = (1,3,2), \, \tau^{-1} = (1,3)(2,4), \, (\sigma\tau)^{-1} = (1,2,4).$$

$$\sigma^{-1}\tau^{-1}=(1,3,2)(1,3)(2,4)=(2,3,4)\neq(\sigma\tau)^{-1},$$

$$\sigma^{-1} = (1,3,2), \, \tau^{-1} = (1,3)(2,4), \, (\sigma\tau)^{-1} = (1,2,4).$$

$$\sigma^{-1}\tau^{-1} = (1,3,2)(1,3)(2,4) = (2,3,4) \neq (\sigma\tau)^{-1},$$

$$\tau^{-1}\sigma^{-1} = (1,3)(2,4)(1,3,2) = (1,2,4) = (\sigma\tau)^{-1}.$$

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)?

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? Answer: n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$,

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? Answer: n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? Answer: n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? Answer: n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Fact: order of $\sigma \in \text{Sym}(n)$ is lcm of cycle lengths.

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? Answer: n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Fact: order of $\sigma \in \text{Sym}(n)$ is lcm of cycle lengths.

Definition (subgroup)

Subset H of group G is **subgroup** if it is group under same operation; write $H \leq G$. (Need to check: nonempty, closure, inverses.)

7

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? Answer: n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Fact: order of $\sigma \in \text{Sym}(n)$ is lcm of cycle lengths.

Definition (subgroup)

Subset H of group G is **subgroup** if it is group under same operation; write $H \leq G$. (Need to check: nonempty, closure, inverses.)

Definition (permutation group)

A **permutation group** of *degree* n is a subgroup of Sym(n).

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

8

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, ..., 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, ..., 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

E.g. 5:00 plus 9 hrs is $(5:00)^9 = [5+9]_{12}:00 = 2:00$.

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, \dots, 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

E.g. 5:00 plus 9 hrs is $(5:00)^9 = [5+9]_{12}:00 = 2:00$.

Example (natural action)

 $G \leq \operatorname{Sym}(n)$ acts on $\Omega = [n]$ by $\alpha^g = \alpha^g$ (image) for $\alpha \in [n], g \in G$.

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, \dots, 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

E.g. 5:00 plus 9 hrs is $(5:00)^9 = [5+9]_{12}:00 = 2:00$.

Example (natural action)

 $G \leq \operatorname{Sym}(n)$ acts on $\Omega = [n]$ by $\alpha^g = \alpha^g$ (image) for $\alpha \in [n], g \in G$.

Example (right regular action)

Group G acts on $\Omega = G$ (itself) via $\alpha^g = \alpha g$ for $\alpha, g \in G$.

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

9

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

 \mathbb{Z} -orbit of 11:00 is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Example (right regular action)

G acts on $\Omega = G$ via $\alpha^g = \alpha g$ for $\alpha, g \in G$. Orbit of $\alpha \in G$ is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Example (right regular action)

G acts on $\Omega = G$ via $\alpha^g = \alpha g$ for $\alpha, g \in G$. Orbit of $\alpha \in G$ is $\Omega = G$ ($\alpha^{\alpha^{-1}\beta} = \beta \in G$); stabiliser of α is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Example (right regular action)

G acts on $\Omega = G$ via $\alpha^g = \alpha g$ for $\alpha, g \in G$. Orbit of $\alpha \in G$ is $\Omega = G$ $(\alpha^{\alpha^{-1}\beta} = \beta \in G)$; stabiliser of α is $\{1\} = 1$ $(\alpha g = \alpha \implies g = 1)$.

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

$$G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4)$$
 acts on $\Omega = [4]$ naturally. Orbit of 1 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

$$G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$$

Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \operatorname{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \operatorname{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note: $|1^G||G_1| = 3 \cdot 1 = 3$

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \operatorname{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note:
$$|1^G||G_1| = 3 \cdot 1 = 3 = |G|$$
,

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note: $|1^G||G_1| = 3 \cdot 1 = 3 = |G|$, $|3^G||G_3| = 1 \cdot 3 = 3 = |G|$.

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note:
$$|1^G||G_1| = 3 \cdot 1 = 3 = |G|$$
, $|3^G||G_3| = 1 \cdot 3 = 3 = |G|$.

Theorem (orbit-stabiliser)

If G acts on Ω , then for $\alpha \in G$, $|\alpha^G||G_\alpha| = |G|$.

The Rubik's group

Representing the cube i

A Rubik's cube has 6 large faces (each with 3×3 smaller faces).

Label all smaller faces except centre on each side, using [48]:

6 elementary moves (generators): U, L, F, R, B, D (rotate clockwise).

Representing the cube ii

Consider move F which rotates front face clockwise:

Representing the cube ii

Consider move F which rotates front face clockwise:

Moves vs states for Rubik's cube i

6 special *elementary moves* called **generators**: U, L, F, R, B, D. As permutations of labels [48]:

- U =
- L =
- F =
- R =
- B =
- D =

Empty move is 1 = (). In cubing community, inverse elementary moves usually denoted U', L', F', R', B', D' (instead of U^{-1} , etc.); powers usually denoted U2, R2 etc. (instead of U^2, R^2).

Valid move is sequence of elementary moves (product of generators). E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$.

Moves vs states for Rubik's cube ii

Moves don't generally commute:

- RU = (look at image of 1 point that doesn't match)
- UR =

Let S be valid **states**; can represent state $x \in S$ as element of Sym(48) giving permutation of labels from solved state 1 = ().

Let \mathcal{G} be valid **moves**; can represent move $\sigma \in \mathcal{G}$ as element of Sym(48) giving corresponding permutation of labels.

- State x ∈ S corresponds to move x ∈ G required to get solved state 1 = () into state x.
- Move $\sigma \in \mathcal{G}$ corresponds to state $\sigma \in \mathcal{S}$ reached by applying move σ to solved state 1 = ().

So moves \leftrightarrow states for Rubik's cube; as sets, S = G.

The Rubik's group of permutations i

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move $1 = () \in \mathcal{G}$, inverse moves exist; associative.

Definition (Rubik's group)

 $G \leq \operatorname{Sym}(48)$ is permutation group of degree 48, called the **Rubik's** group; it acts naturally on [48]. Note: $G = \langle U, L, F, R, B, D \rangle$.

For move $\sigma \in \mathcal{G}$ and state $x \in \mathcal{S}$, applying σ to x gives state $x^{\sigma} = x\sigma \in \mathcal{S}$. This is regular action of \mathcal{G} . (Consider states $x \in \mathcal{G}$.)

Clearly \mathcal{G} finite (states \leftrightarrow moves; also $|\mathcal{G}| \le 48!$). But what is $|\mathcal{G}|$?

TODO: orbits, stabilisers (corner pieces/edge pieces), GAP code?

Orders of moves i

TODO

Order of generators: all 4

Order of commutator $RUR^{-1}U^{-1}$ is 6 (write out, get Wes video)

Order of $URU^{-1}L^{-1}UR^{-1}U^{-1}L$ is 3 (write out, get Wes video) – last layer corner permutation (3 states)

Order of $RUR^{-1}URU^2R^{-1}U^2$ is 3 (write out, get Wes video) – last layer edge permutation (3 states)

Order of RU is 105, order of Clayton's move UL' is 63

What is element of order 5? $(RU)^{21}$ since $((RU)^{21})^5 = (RU)^{105} = 1$.

Jake's theorems i

Theorem (Jake Vandenberg's conjecture)

There is no Rubik's cube move that cycles through all states.

Recall: states \leftrightarrow moves. Rubik's group \mathcal{G} acts on states by applying move $\sigma \in \mathcal{G}$ to state $x \in \mathcal{G}$ to get state $x^{\sigma} = x \sigma \in \mathcal{G}$.

Equivalent question: for starting state, WLOG 1 = (), is there $\sigma \in \mathcal{G}$ with $\{1^{\sigma^k} : k \in \mathbb{Z}\} = \{1\sigma^k : k \in \mathbb{Z}\} = \{\sigma^k : k \in \mathbb{Z}\} = \mathcal{G}$? In group theory language:

Theorem (Jake Vandenberg's conjecture)

The Rubik's group \mathcal{G} is not cyclic. (I.e. no $\sigma \in \mathcal{G}$ with $\mathcal{G} = \langle \sigma \rangle$.)

Proof.

If \mathcal{G} is cyclic, then \mathcal{G} is abelian. But \mathcal{G} is not abelian: $RU \neq UR$. \square

Jake's theorems ii

Theorem (Jake Vandenberg's theorem)

There is no Rubik's cube move that when repeated, if starting from the solved state, never returns to the solved state.

A k-fold repetition of move $\sigma \in G$, applied to solved state 1 = (), gives $1^{\sigma^k} = 1\sigma^k = \sigma^k$. Returning to solved state: $\sigma^k = 1$ (for k > 0).

Equivalent question: does any $\sigma \in G$ have infinite order?

Proposition

If G is finite group and $g \in G$, then $g^{|G|} = 1$.

Corollary (Jake Vandenberg's theorem)

There is no $\sigma \in \mathcal{G}$ with infinite order (since \mathcal{G} is finite).

Analysing the Rubik's group

Bases and stabiliser chains i

How many valid states are there? i

Can this restickering be solved? i

Generating random Rubik's cube states i

Solving a Rubik's cube... i

Concluding remarks

References i

• TODO