

Trogramming Workshop Quitinze			
QWorld Global QBronze Workshop Homework Day 2			
إجمالي النقاط 20/20 ﴿ 20/20			
عنوان الدريد الإلكتروني * m.saber87@hotmail.com			
* Name, surname Mohamed Saber Ahmad			
Questions			
Code q2 = QuantumRegister(1, 'qreg') c2 = ClassicalRegister(1, 'creg') qc2 = QuantumCircuit(q2,c2) Your code here1# Your code here1# your code here2# qc2.measure(q2,c2) job = execute(qc2,Aer.get_backend('qasm_simulator'),shots=100) counts = job.result().get_counts(qc2) print(counts) # counts is a dictionary			
1/1 Suppose that the code above creates the following quantum state. What \checkmark should replace #Your code here1? (Hint: Think about the vector representation of this state to start with if you are stuck) $\frac{1}{\sqrt{2}}\left(\left 0\right\rangle-\left 1\right\rangle\right)$			
✓ qc2.x(q2[0])			
1/1 Suppose that the code above creates the following quantum state. What should replace #Your code here2? (Hint: Think about the vector representation of this state to start with if you are stuck) 1 (10) 11)			
$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$			
✓ qc2.h(q2[0])			
2/2 Mark the ones which are valid quantum vectors. (Think about their \checkmark transpose)			
(1/4 0 1/4 0)			
✓ (-1/2 1/2 1/2 1/2) ✓ (0 -1 0 0) ✓			
✓ (1/√2 0 0 -1/√2) ✓			
(1/√2 1/√2 1/√2 1/√2)			
✓ (2/3 -1/3 2/3 0) ✓			

2/2	We have a circuit containing a single qubit which we have simulated for 1024 times. The outcome is {'1': 502, '0': 522}. What can be the angle of	~
	the qubit? (select more than one)	
~	45	✓
~	135	\checkmark
	30	
	90	
	60	
	180	
1/1	?(What is the result of Z 0 $$	~
~	(0)	•
	- 1}	0
	- 0}	0
	11)	0
1/1	?(What is the result of Z 1	~
	- 0)	0
~	- 1)	•
	[1)	0
	10)	0
2/2	What is the result of HZH 0)? (First apply H and then Z and then H again)	_
	- 1>	0
~	(11)	
	10)	
	-10)	0
2/2	.Mark the true ones	✓
~	Square of a reflection matrix is the identity matrix.	✓
	Square of a rotation matrix is identity matrix.	
~	In the real plane, the angle between the state 0) and 1) is 90 degrees.	✓
	All entries of a reflection matrix should be positive	
	Hadamard is a rotation matrix.	
	C from math imp	ort pi
	q = QuantumRegister(1) # quantum register with a single c = ClassicalRegister(1) # classical register with a sing qc = QuantumCircuit(q,c) # quantum circuit with quantum and classical reg	gle bit
	Your code l	
	measure the qu qc.measur	
2/2	We have a circuit with a single qubit created with the code given above.	~

the angle 60 degrees? (When you are writing a fraction, write it in reduced form e.g. instead of 10*pi/4, write 5*pi/2, do not leave any space

next to commas)			
✓ qc.ry(2*pi/3,q[0])			
2/2 If the angle of a real valued qubit is x, what is the probability of observing ?(state 1			
cos(x)+sin(x)			
cos^2(x) (
cos(x)			
sin(x)			
✓ sin^2(x) (
Q2 = QuantumRegister(2,"qreg") c2 = ClassicalRegister(2,"creg") qc2 = QuantumCircuit(q2,c2)			
qc2.z(q2[1]) qc2.measure(q2,c2) job = execute(qc2,Aer.get_backend('qasm_simulator'),shots=100) counts = job.resuit().get_counts(qc2) print(counts) # counts is a dictionary			
2/2 ?What will be the output of the above code 🗸			
{-10':100}			
{'-11': 100}			
✓ (10′: 100) (
{'1': 100, '1': 100}			
Code			
q = QuantumRegister(2,"q") c = ClassicalRegister(2,"c") qc = QuantumCircuit(q,c)			
qc.x(q[0])			
qc.measure(q[0],c[0])			
qc.h(q[1]).c_if(c,0) qc.measure(q,c)			
qc.measure(q,c)			
2/2 ?What will the output of the above code 🗸			
✓ {'01': 1024} (
{'00': 1024}			
{'10': 502, '11': 522}			
{11': 1024}			

لم يتم إنشاء هذا المحتوى ولا اعتماده من قِبل Google . - شروط الخدمة - سياسة الخصوصية