IN THE CLAIMS

(I)

1. (Original) A pharmaceutical composition comprising a compound of the structure

(I)

wherein Y, at each occurrence, is independently selected from the group consisting of C(O), N, CR¹, C(R²)(R³), NR⁵, CH, O and S; q is an integer of from 3 to 10;

A is selected from the group consisting of O, S, $C(R^{16})(R^{17})$ and NR^{6} ;

E is selected from the group consisting of CH₂, O, S, and NR⁷;

J is selected from the group consisting of O, S and NR⁸;

T is selected from the group consisting of C(O) and (CH₂)_b wherein b is an integer of from 0 to 3;

M is selected from the group consisting of $C(R^9)(R^{10})$ and $(CH_2)_{11}$, wherein u is an integer of from 0 to 3;

L is selected from the group consisting of O, NR^{11} , S, and $(CH_2)_n$ wherein n is an integer of 0 or 1;

X is selected from the group consisting of CO₂B, PO₃H₂, SO₃H, SO₂NH₂, SO₂NHCOR¹², OPO₃H₂, C(O)NHC(O)R¹³, C(O)NHSO₂R¹⁴, hydroxyl, tetrazolyl and hydrogen;

W is selected from the group consisting of C, CR¹⁵ and N;

B is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, haloalkyl, -CF₃, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl and aryloxyalkyl; and

```
R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}, R^{8}, R^{9}, R^{10}, R^{11}, R^{12}, R^{13}, R^{14}, R^{15}, R^{16} and R^{17} at each
          occurrence are independently selected from the group consisting of
          hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy,
          thioalkoxy, hydroxyalkyl, aliphatic acyl, -CF<sub>3</sub>, -CO<sub>2</sub>H, -SH,
          -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -OH, alkynylamino, alkoxycarbonyl, heterocycloyl,
          carboxy, -N(C_1-C_3 \text{ alkyl})-C(O)(C_1-C_3 \text{ alkyl}), -NHC(O)N(C_1-C_3 \text{ alkyl})
          alkyl)C(O)NH(C<sub>1</sub>-C<sub>3</sub>alkyl), -NHC(O)NH(C<sub>1</sub>-C<sub>6</sub> alkyl), -NHSO<sub>2</sub>(C<sub>1</sub>-C<sub>3</sub>
          alkyl), -NHSO<sub>2</sub>(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C<sub>1</sub>-
          C_3)amino, -C(O)O-(C_1-C_3)alkyl, -C(O)NH-(C_1-C_3)alkyl, -C(O)N(C_1-C_3)
          alkyl)2, -CH=NOH, -PO3H2, -OPO3H2, haloalkyl, alkoxyalkoxy,
          carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl,
          cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl,
          diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl,
          heterocyclylalkyl, sulfonyl, -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>3</sub> alkyl), -SO<sub>3</sub>-(C<sub>1</sub>-C<sub>3</sub> alkyl),
          sulfonamido, carbamate, aryloxyalkyl and -C(O)NH(benzyl) groups;
                    wherein B, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup>, R<sup>13</sup>, R<sup>14</sup>,
```

wherein B, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ are unsubstituted or substituted with at least one electron donating or electron withdrawing group; wherein when L is NR¹¹, R⁴ and R¹¹ taken together may form a ring; and wherein when M is C(R⁹)(R¹⁰), R⁹ and R¹⁰ taken together may form a ring;

and wherein when A is NR⁶ and at least one Y is CR¹, R¹ and R⁶ taken together may form a ring;

or a pharmaceutically acceptable salt thereof; one or more other therapeutically active compounds and a pharmacologically acceptable diluent.

(Original) A composition of claim 1 wherein A is NR⁶;
 E is NR⁷;
 J is O;
 M is C(R⁹)(R¹⁰);

q is 4 or 5;

T is (CH₂)_b wherein b is 0;

L is $(CH_2)_n$ wherein n is 0;

X is CO₂B;

W is C or CR^{15} ;

R⁴ is selected from the group consisting of aryl, alkylaryl, aralkyl, heterocyclyl, alkylheterocyclyl and heterocyclylalkyl; and R⁶, R⁷, R⁹, R¹⁰ and R¹⁵ are independently selected from the

group consisting of hydrogen and lower alkyl.

3. (Original) A pharmaceutical composition comprising a compound of the structure

$$q$$
 Y
 N
 R^9
 OB
 R^{10}
 R^4

wherein Y, at each occurrence, is independently selected from the group consisting of C(O), N, CR¹, C(R²)(R³), NR⁵, CH, O and S;

q is an integer of from 3 to 7;

T is selected from the group consisting of C(O) and (CH₂)_b wherein b is an integer of 0 to 3;

L is selected from the group consisting of O, NR^{11} , S, and $(CH_2)_n$ wherein n is an integer of 0 or 1;

W is selected from the group consisting of C, CR¹⁵ and N;

B is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, haloalkyl, -CF₃, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl and aryloxyalkyl; and

```
R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup> and R<sup>15</sup> are independently selected from
          the group consisting of hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy,
          alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl, -CF<sub>3</sub>,
          -CO<sub>2</sub>H, -SH, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -OH, alkynylamino, alkoxycarbonyl,
          heterocycloyl, carboxy, -N(C_1-C_3 \text{ alkyl})-C(O)(C_1-C_3 \text{ alkyl}),
           -NHC(O)N(C_1-C_3 \text{ alkyl})C(O)NH(C_1-C_3 \text{ alkyl}), -NHC(O)NH(C_1-C_6 \text{ alkyl}),
          -NHSO<sub>2</sub>(C<sub>1</sub>-C<sub>3</sub> alkyl), -NHSO<sub>2</sub>(aryl), alkoxyalkyl, alkylamino,
          alkenylamino, di(C<sub>1</sub>-C<sub>3</sub>)amino, -C(O)O-(C<sub>1</sub>-C<sub>3</sub>)alkyl,
           -C(O)NH-(C_1-C_3)alkyl, -C(O)N(C_1-C_3)alkyl, -CH=NOH, -PO_3H_2,
           -OPO<sub>3</sub>H<sub>2</sub>, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide,
          cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl,
           aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl,
          aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO<sub>2</sub>-
          (C<sub>1</sub>-C<sub>3</sub> alkyl), -SO<sub>3</sub>-(C<sub>1</sub>-C<sub>3</sub> alkyl), sulfonamido, carbamate, aryloxyalkyl
          and
          -C(O)NH(benzyl) groups;
           wherein B, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup> and R<sup>15</sup> are
                     unsubstituted or substituted with at least one electron donating or
                     electron withdrawing group;
          wherein when L is NR<sup>11</sup>, R<sup>4</sup> and R<sup>11</sup> taken together may form a ring;
```

may form a ring;
or a pharmaceutically acceptable salt thereof;
one or more other therapeutically active compounds and a pharmacologically

and wherein R⁹ and R¹⁰ taken together may form a ring;

and wherein when at least one Y is CR¹, R¹ and R⁶ taken together

4. (Original) A composition of claim 3 wherein q is 4 or 5;
 W is C or CR¹⁵;
 T is (CH₂)_b wherein b is 0;
 L is (CH₂)_n wherein n is 0;

acceptable diluent.

R⁴ is selected from the group consisting of aryl, alkylaryl, aralkyl, heterocyclyl, alkylheterocyclyl and heterocyclylalkyl; and R⁶, R⁷, R⁹, R¹⁰ and R¹⁵ are independently selected from the group consisting of hydrogen and lower alkyl.

5. (Original) A pharmaceutical composition comprising a compound of the structure

$$R^{18}$$
 R^{9}
 R^{9}
 R^{9}
 R^{10}
 R^{10}
 R^{4}

wherein Y, at each occurrence, is independently selected from the group consisting of C(O), N, CR¹, C(R²)(R³), NR⁵, CH, O and S;

q is an integer of from 2 to 5;

T is selected from the group consisting of C(O) and $(CH_2)_b$ wherein b is an integer of 0 to 3;

L is selected from the group consisting of O, NR¹¹, S, and

(CH₂)_n wherein n is an integer of 0 or 1;

- R⁵, R⁶, R⁷, R¹¹ and R¹⁸ are each independently selected from the group consisting of alkyl, alkenyl, alkynyl, hydroxyalkyl, aliphatic acyl, alkynylamino, alkoxycarbonyl, heterocycloyl, -CH=NOH, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, carbamate, aryloxyalkyl, hydrogen and -C(O)NH(benzyl) groups;
- B is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, haloalkyl, -CF₃, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl and aryloxyalkyl; and
- R¹, R², R³, R⁴, R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, halogen, halkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl, -CF₃, -CO₂H, -SH, -CN, -NO₂, -NH₂, -OH, alkynylamino, alkoxycarbonyl, heterocycloyl, carboxy, -N(C₁-C₃ alkyl)-C(O)(C₁-C₃ alkyl), -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃alkyl), -NHC(O)NH(C₁-C₆ alkyl), -NHSO₂(C₁-C₃ alkyl), -NHSO₂(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C₁-C₃)amino, -C(O)O-(C₁-C₃)alkyl, -C(O)NH-(C₁-C₃)alkyl, -C(O)N(C₁-C₃ alkyl)₂, -CH=NOH, -PO₃H₂, -OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂-(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl and

-C(O)NH(benzyl) groups;

wherein B, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁹, R¹⁰, R¹¹ and R¹⁸ are unsubstituted or substituted with at least one electron donating or electron withdrawing group;

wherein when L is NR¹¹, R⁴ and R¹¹ taken together may form a ring; and wherein R⁹ and R¹⁰ taken together may form a ring; and wherein when at least one Y is CR^1 , R^1 and R^6 taken together may form a ring;

or a pharmaceutically acceptable salt thereof, one or more other therapeutically active compounds and a pharmacalogically acceptable diluent.

6. (Original) A composition of claim 5 wherein R^{18} is selected from the group consisting of

hydrogen, alkyl, aryl, aralkyl, cycloalkyl, alkylheterocyclyl, heterocyclylalkyl and heterocyclyl;

T is $(CH_2)_b$ wherein b is 0;

L is (CH₂)_n wherein n is 0;

Y is selected from the group consisting of CR^1 and $C(R^2)(R^3)$ and q is 2 or 3.

7. (Original) A composition of claim 5 wherein

is selected from the group consisting of

$$\mathbb{R}^{18} \xrightarrow{\mathbb{N}} \mathbb{R}^{18} \xrightarrow{\mathbb{N}} \mathbb{N}^{18} \xrightarrow{\mathbb{N}} \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{18} \xrightarrow{\mathbb{N}} \mathbb{N}^{18} \xrightarrow{\mathbb{$$

- wherein R¹⁹, R²⁰, R²¹ and R²⁸ at each occurrence are independently selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl, -CF₃, -OH, -CO₂H, -SH, -CN, -NO₂, -NH₂, alkynylamino, alkoxycarbonyl, heterocycloyl, carboxy, -N(C₁-C₃ alkyl)-C(O)(C₁-C₃ alkyl), -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃ alkyl), -NHC(O)NH(C₁-C₆ alkyl), -NHSO₂(C₁-C₃ alkyl), -NHSO₂(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C₁-C₃)amino, -C(O)O-(C₁-C₃)alkyl, -C(O)NH-(C₁-C₃)alkyl, -C(O)N(C₁-C₃ alkyl)₂, -CH=NOH, -PO₃H₂, -OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂-(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl and -C(O)NH(benzyl) groups;
- R¹⁸ is selected from the group consisting of alkyl, alkenyl, alkynyl, hydroxyalkyl, aliphatic acyl, alkynylamino, alkoxycarbonyl, heterocycloyl, -CH=NOH, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, carbamate, aryloxyalkyl, hydrogen and -C(O)NH(benzyl) groups;
- R²² is selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl, -CF₃, -CO₂H, -SH, -CN, -NO₂, -NH₂, -OH, alkynylamino, alkoxycarbonyl, heterocycloyl, carboxy, -N(C₁-C₃ alkyl)-C(O)(C₁-C₃ alkyl), -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃alkyl), -NHC(O)NH(C₁-C₆ alkyl), -NHSO₂(C₁-C₃ alkyl), -NHSO₂(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C₁-C₃)amino, -C(O)O-(C₁-C₃)alkyl, -C(O)NH-(C₁-C₃)alkyl, -C(O)N(C₁-C₃ alkyl)₂, -CH=NOH, -PO₃H₂,

-OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂-(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl and -C(O)NH(benzyl) groups;

c is an integer of zero to two;

d is an integer of zero to three;

e is an integer of zero to four; and

i is an integer of zero to two.

8. (Original) The composition of claim 5 wherein R¹⁸ is aralkyl;

R⁴ is aryl;

T is (CH₂)_b where b is zero;

L is (CH₂)_n where n is zero; and,

B, R⁶, R⁷, R⁹ and R¹⁰ are each independently hydrogen.

9. (Original) A pharmaceutical composition comprising a compound of the structure

wherein T is selected from the group consisting of C(O) and $(CH_2)_b$ wherein b is an integer of from 0 to 3;

L is selected from the group consisting of O, NR¹¹, S, and

(CH₂)_n wherein n is an integer of 0 or 1;

g is an integer of from 0 to 7;

B is selected from the group consisting of hydrogen, alkyl, alkenyl,

- alkynyl, hydroxyalkyl, haloalkyl, -CF₃, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl and aryloxyalkyl;
- R⁴, R⁹, R¹⁰ and R²³ at each occurrence are independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl,

 -CF₃, -CO₂H, -SH, -CN, -NO₂, -NH₂, -OH, alkynylamino,
 alkoxycarbonyl, heterocycloyl, carboxy, -N(C₁-C₃ alkyl)-C(O)(C₁-C₃
 alkyl), -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃alkyl), -NHC(O)NH(C₁-C₆
 alkyl), -NHSO₂(C₁-C₃ alkyl), -NHSO₂(aryl), alkoxyalkyl,alkylamino,
 alkenylamino, di(C₁-C₃)amino, -C(O)O-(C₁-C₃)alkyl,

 -C(O)NH-(C₁-C₃)alkyl, -C(O)N(C₁-C₃ alkyl)₂, -CH=NOH, -PO₃H₂,
 -OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide,
 cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl,
 aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl,
 aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl
 and
 - -C(O)NH(benzyl) groups;
- R⁶, R⁷, R¹¹ and R¹⁸ are each independently selected from the group consisting of alkyl, alkenyl, alkynyl, hydroxyalkyl, aliphatic acyl, alkynylamino, alkoxycarbonyl, heterocycloyl, -CH=NOH, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, carbamate, aryloxyalkyl, hydrogen and -C(O)NH(benzyl) groups;

wherein B, R⁴, R⁶, R⁷, R⁹, R¹⁰, R¹¹, R¹⁸ and R²³ are unsubstituted or substituted with at least one electron donating or electron withdrawing group;

wherein when L is NR¹¹, R⁴ and R¹¹ taken together may form a ring; and wherein R⁹ and R¹⁰ taken together may form a ring; or a pharmaceutically acceptable salt thereof; one or more other therapeutically active compounds and a pharmacologically acceptable diluent.

10. (Original) A pharmaceutical composition comprising a compound of the structure

wherein h is an integer of zero to five;

B is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, haloalkyl, -CF₃, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl and aryloxyalkyl;

R⁹, R¹⁰, R²⁴ and R²⁵ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl,

-CF₃, -CO₂H, -SH, -CN, -NO₂, -NH₂, -OH, alkynylamino, alkoxycarbonyl, heterocycloyl, carboxy, -N(C_1 - C_3 alkyl)-C(O)(C_1 - C_3 alkyl),

 $-NHC(O)N(C_1-C_3\ alkyl)C(O)NH(C_1-C_3alkyl),\ -NHC(O)NH(C_1-C_6\ alkyl),$

-NHSO₂(C_1 - C_3 alkyl), -NHSO₂(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C_1 - C_3)amino, -C(O)O-(C_1 - C_3)alkyl, -C(O)NH-(C_1 - C_3)alkyl, -C(O)N(C_1 - C_3 alkyl)₂, -CH=NOH,

-PO₃H₂, -OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂-(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl and

-C(O)NH(benzyl) groups;

- R²⁷, at each occurrence, is independently selected from the group consisting of halogen, hydroxyl, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl,
 - -CF₃, -CO₂H, -SH, -CN, -NO₂, -NH₂, alkynylamino, alkoxycarbonyl, heterocycloyl, carboxy, -N(C_1 - C_3 alkyl)-C(O)(C_1 - C_3 alkyl),
 - $-NHC(O)N(C_1-C_3 \ alkyl)C(O)NH(C_1-C_3 alkyl), \ -NHC(O)NH(C_1-C_6 \ alkyl), \ -NHC(O)NH(C_1-$
 - $-NHSO_2(C_1-C_3\ alkyl),\ -NHSO_2(aryl),\ -N(C_1-C_3alkyl)SO_2(C_1-C_3alkyl),$
 - -N(C_1 - C_3 alkyl)SO₂(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C_1 - C_3)amino, -C(O)O-(C_1 - C_3)alkyl,
 - -C(O)NH-(C_1 - C_3)alkyl, -C(O)N(C_1 - C_3 alkyl)₂, -CH=NOH, -PO₃H₂,
 - -OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl,
 - -SO₂-(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl and -C(O)NH(benzyl) groups;
- R⁶, R⁷ and R¹⁸ are each independently selected from the group consisting of alkyl, alkenyl, alkynyl, hydroxyalkyl, aliphatic acyl, alkynylamino, alkoxycarbonyl, heterocycloyl, -CH=NOH, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, carbamate, aryloxyalkyl, hydrogen and -C(O)NH(benzyl) groups; and,
- R²⁶ is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, aliphatic acyl, -CF₃, alkoxycarbonyl, heterocycloyl, carboxy, -C(O)O-(C₁-C₃)alkyl, -C(O)NH-(C₁-C₃)alkyl, -C(O)N(C₁-C₃ alkyl)₂, -PO₃H₂, haloalkyl, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, biaryl, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂-(C₁-C₃ alkyl), sulfonamido, aryloxyalkyl and -C(O)NH(benzyl) groups;

wherein B, R⁶, R⁷, R⁹, R¹⁰, R¹⁸, R²⁴, R²⁵, R²⁶ and R²⁷ are unsubstituted or substituted with at least one electron donating or electron withdrawing group; wherein R¹⁸ and R²⁴ taken together may form a ring;

R²⁴ and R²⁵ taken together may form a ring;
R²⁵ and R²⁶ taken together may form a ring;
and wherein R⁹ and R¹⁰ taken together may form a ring;
or a pharmaceutically acceptable salt thereof;

one or more other therapeutically active compounds and a pharmacologically acceptable diluent.

- 11. (Original) The composition of claim 10 wherein B, R^6 , R^7 , R^9 , R^{10} , R^{24} , R^{25} and R^{26} are each independently hydrogen and R^{18} is substituted or unsubstituted aralkyl.
- 12. (Original) A pharmaceutical composition comprising a compound of the structure

wherein Z, at each occurrence, is independently selected from the group consisting of C(O), N, CR³⁰, C(R³¹)(R³²), NR³³, CH, O and S;

z is an integer of from 3 to 6;

k is an integer of from 0 to 5;

T is selected from the group consisting of C(O) and (CH₂)_b wherein b is an integer of from 0 to 3;

L is selected from the group consisting of O, NR^{11} , S, and $(CH_2)_n$ wherein n is an integer of 0 or 1;

R⁶, R⁷, R¹¹, R¹⁸ and R³³ are each independently selected from the group consisting of alkyl, alkenyl, alkynyl, hydroxyalkyl, aliphatic acyl, alkynylamino, alkoxycarbonyl, heterocycloyl, -CH=NOH, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, carbamate, aryloxyalkyl, hydrogen and -C(O)NH(benzyl) groups;

- B is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, hydroxyalkyl, haloalkyl, -CF₃, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl and aryloxyalkyl;
- R⁴, R⁹, R¹⁰, R³⁰, R³¹ and R³² at each occurrence are independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl, -CF₃, -CO₂H, -SH, -OH, -CN, -NO₂, -NH₂, alkynylamino, alkoxycarbonyl, heterocycloyl, carboxy, -N(C₁-C₃ alkyl)-C(O)(C₁-C₃ alkyl), -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃alkyl), -NHC(O)NH(C₁-C₆ alkyl), -NHSO₂(C₁-C₃ alkyl), -NHSO₂(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C₁-C₃)amino, -C(O)O-(C₁-C₃)alkyl, -C(O)NH-(C₁-C₃)alkyl, -C(O)N(C₁-C₃ alkyl)₂, -CH=NOH, -PO₃H₂, -OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂-(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl and -C(O)NH(benzyl) groups; and
- R²⁹, at each occurrence, is independently selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenoxy, alkynoxy, thioalkoxy, hydroxyalkyl, aliphatic acyl, -CF₃, -CO₂H, -SH, -CN, -NO₂, -NH₂, -OH, alkynylamino, alkoxycarbonyl, heterocycloyl, carboxy, -N(C₁-C₃ alkyl)-C(O)(C₁-C₃ alkyl), -NHC(O)N(C₁-C₃ alkyl)C(O)NH(C₁-C₃ alkyl), -NHC(O)NH(C₁-C₆ alkyl), -NHSO₂(C₁-C₃ alkyl), -NHSO₂(aryl), alkoxyalkyl, alkylamino, alkenylamino, di(C₁-C₃)amino, -C(O)O-(C₁-C₃)alkyl, -C(O)NH-(C₁-C₃)alkyl, -C(O)N(C₁-C₃ alkyl)₂, -CH=NOH, -PO₃H₂, -OPO₃H₂, haloalkyl, alkoxyalkoxy, carboxaldehyde, carboxamide, cycloalkyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aroyl, aryloxy, arylamino, biaryl, thioaryl, diarylamino, heterocyclyl, alkylaryl, aralkenyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, sulfonyl, -SO₂-(C₁-C₃ alkyl), -SO₃-(C₁-C₃ alkyl), sulfonamido, carbamate, aryloxyalkyl and -C(O)NH(benzyl) groups;

wherein B, R⁴, R⁵, R⁶, R⁷, R⁹, R¹⁰, R¹¹, R¹⁸, R²⁹, R³⁰, R³¹, R³² and R³³ are unsubstituted or substituted with at least one electron donating or electron withdrawing group; wherein when L is NR¹¹, R⁴ and R¹¹ taken together may form a ring; and wherein R⁹ and R¹⁰ taken together may form a ring; or a pharmaceutically acceptable salt thereof;

one or more other therapeutically active compounds and a pharmacologically acceptable diluent.

- 13. (Original) The composition of claim 12 wherein z is three or four.
- 14. (Original) The composition of claim 1 where the compound of structure (I) is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-5-methyl-2-oxo-1,2-dihydropyridin-3-yl]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid and pharmaceutically acceptable salts thereof.
- 15. (Original) The composition of claim 1 where the compound of structure (I) is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-1H-cyclopenta[b]pyridin-3-l]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid and pharmaceutically acceptable salts thereof.
- 16. (Original) The composition of claim 1 where the compound of structure (I) is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-5-methyl-2-oxo-1,2-dihydropyridin-3-yl]amino}carbonyl)amino]-3-[3-(diethylamino)phenyl]propanoic acid and pharmaceutically acceptable salts thereof.
- 17. (Original) The composition of claim 1 where the compound of structure (I) is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-1H-cyclopenta[b]pyridin-3-yl] amino}carbonyl)amino]-3-(3-isopropylphenyl)propanoic acid and pharmaceutically acceptable salts thereof.
- 18. (Original) The composition of claim 1 where the compound of structure (I) is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-1,2-dihydro-1,8-napthyridin-3-yl]amino}

carbonyl)amino-3-(4-methylphenyl)propanoic acid and pharmaceutically acceptable salts thereof.

- 19. (Original) The composition of claim 1 where the other therapeutically active compounds are selected from the group consisting of IL-5 antagonists, CCR-3 antagonists, corticosteroids, antihistamines, Leukotrine antagonists, COX-I and COX-II inhibitors, mast cell stabilizers, anti IL-5 and anti IgE antibodies, IL-5 synthesis and release inhibitors, TNF-α inhibitors, p38 MAP kinase inhibitors, tryptase inhibitors, anticytokine/antichemokine agents, vaccines, cromolyn, selectin antagonists, PDE 4 inhibitors, β-agonists, muscarininc antagonists and immunosuppressives, CD20 antagonists and syk tyrosine kinase inhibitors.
- 20. (Original) A method for treating an inflammatory disease in a mammal comprising administering to said mammal a therapeutically effective amount of a composition of claim 1.
- 21. (Original) The method of claim 20 wherein the inflammatory disease is selected from psoriasis, asthma, atherosclerosis, multiple sclerosis, Guillan-Barr Syndrome, rheumatoid arthritis, inflammatory bowel disease and reperfusion injury.
- 22. (Original) A method for treating an inflammatory disease in a mammal comprising administering to said mammal a therapeutically effective amount of a combination of a compound of structure (I) in claim 1 and an effective amount of one or more other therapeutic compounds.
- 23. (Original) The method of claim 22 wherein the inflammatory disease is selected from psoriasis, asthma, atherosclerosis, multiple sclerosis, Guillan-Barr Syndrome, rheumatoid arthritis, inflammatory bowel disease and reperfusion injury.
- 24. (Original) The composition of claim 19 wherein the compound of structure (I) is selected from the group consisting of (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-5-methyl-2-oxo-1,2-dihydropyridin-3-yl]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid; (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-1H-cyclopenta [b]pyridin-3-l]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid; (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-5-methyl-2-oxo-1,2-dihydropyridin-3-yl]amino}carbonyl)amino]-

- 3-[3-(diethylamino)phenyl]propanoic acid; (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-1H-cyclopenta[b]pyridin-3-yl] amino}carbonyl)amino]-3-(3-isopropylphenyl)propanoic acid; and (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-1,2-dihydro-1,8-napthyridin-3-yl]amino} carbonyl) amino-3-(4-methylphenyl)propanoic acid and pharmaceutically acceptable salts thereof.
- 25. (Original) The method of claim 20 wherein the compound of structure (I) is selected from the group consisting of (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-5-methyl-2-oxo-1,2-dihydropyridin-3-yl]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid; (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-1H-cyclopenta [b]pyridin-3-l]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid; (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-5-methyl-2-oxo-1,2-dihydropyridin-3-yl]amino}carbonyl)amino]-3-[3-(diethylamino)phenyl]propanoic acid; (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-1H-cyclopenta[b]pyridin-3-yl] amino}carbonyl)amino]-3-(3-isopropylphenyl)propanoic acid; and (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-1,2-dihydro-1,8-napthyridin-3-yl]amino} carbonyl) amino-3-(4-methylphenyl)propanoic acid and pharmaceutically acceptable salts thereof.
- 26. (Original) A kit comprising in a single package, one container comprising a compound that inhibits binding of an $\alpha_4\beta_1$ integrin to its receptors as set forth in structure (I) in claim 1 in a pharmaceutically acceptable carrier and one or more separate containers comprising other therapeutic compounds in pharmaceutically acceptable carriers, with the compound that inhibits binding of $\alpha_4\beta_1$ integrin to its receptors and the other therapeutic compounds being present in amounts such that the combination is effective to treat disease states mediated by $\alpha_4\beta_1$ integrin binding.
- 27. (New) The method of claim 20 comprising administering a combination of a compound of claim 1 and beta interferon.
- 28. (New) The method of claim 27 wherein the compound of claim 1 is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-l H -cyclopenta[b]pyridine-3-yl] amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid or a pharmaceutically acceptable salt thereof.

- 29. (New) The method of claim 3 for treating multiple sclerosis comprising administering a combination of (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6, 7-tetrahydro-1H-cyclopenta[b]pyridine-3-yl] amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid or a pharmaceutically acceptable salt thereof and beta interferon.
- 30. (New) The method of claim 2 comprising administering a combination of a compound of claim 1 and a corticosteroid.
- 31. (New) The method of claim 30 wherein the compound of claim 1 is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-IH-cyclopenta[b]pyridine-3-yl]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid or a pharmaceutically acceptable salt thereof.
- 32. (New) The method of claim 30 wherein the compound of claim 1 is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-lH-cyclopenta[b]pyridine-3-yl]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid or a pharmaceutically acceptable salt thereof and the corticosteroid is selected from the group consisting of prednisolone, fluticasone, triamcinolone, beclomethasone, mometasone, budesonide, betamethasone, dexamethasone, prednisone, flunisolide and cortisone.
- 33. (New) The method of claim 22 comprising administering a combination of a compound of in claim 1 and an immunosuppressant.
- 34. (New) The method of claim 33 wherein the compound of claim 1 is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-lH-cyclopenta[b]pyridine-3-yl] amino} -carbonyl)amino]-3-(4-methyphenyl)propanoic acid or a pharmaceutically acceptable salt thereof.
- 35. (New) The method of claim 22 comprising administering a combination of a compound of claim 1 and a therapeutic compound selected from the group consisting of mycophenolate mofetil, methotrexate, azathioprine and cyclophosphamide.

36. (New) The method of claim 35 wherein the compound claim 1 is (3S)-3-[({[1-(2-chlorobenzyl)-4-hydroxy-2-oxo-2,5,6,7-tetrahydro-lH-cyclopenta[b]pyridine-3-yl]amino}carbonyl)amino]-3-(4-methylphenyl)propanoic acid or a pharmaceutically acceptable salt thereof.