2장. 지능형 에이전트

목차

- 지능형 에이전트
- 환경의 특성

지능형 에이전트란?

- 지각(Percept): 주어진 상황에서 입력을 받아들임
- 지각열(Percept Sequence): 에이전트가 받아들인 값들의 시퀀스
- 에이전트 함수 (행동)
- 액션 (액츄에이터)

추론 지각열 **→** 액션

에이전트 함수의 구현

테이블 형태로 구현?

- ▶ 너무 방대해 짐, 무한대인 경우도 많음
- 에이전트 프로그램 내부에 함수의 형태로 구현
- 프로그램이 에이전트 아키텍처 상에서 함수를 생성

에이전트 = 아키텍처 + 프로그램

● 추상적인 묘사 vs. 구체적인 구현

로봇 청소기의 세상

• *환경*: 사각형 방 *A*, *B*

• 액션: 왼쪽으로 이동, 오른쪽으로 이동, 청소하기, 가만히 있기

에이전트 함수

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

- 우측 열을 정의하는 수 많은 방식
- 어떤 방식이 옳은가?

좋은/나쁜, 지능적인/어리석은?

합리적 행동

if ψ 터 == 더러움 then return 청소 else if 위치 == A then return 우측으로 else if 위치 == B then return 착측으로

이런 에이전트는 합리적인가?

아니죠, 양쪽 방 모두 청소가 끝난 다음에는 쓸데없이 방을 왕복함

∬ 개선

방이 모두 깨끗해 지면 모든 액션을 멈추도록 조정

합리성

합리성을 정의하는 4 요소

- 1. 성공의 기준을 정의하는 **성과 측정 방법**
- 2. 환경에 대한 에이전트의 사전 지식
- 3. 에이전트가 수행할 수 있는 실행 가능한 작업
- 4. 에이전트가 현재까지 수집한 **지각 시퀀스**

합리적인 에이전트는 성과 측정의 결과값을 최대화하기를 <u>기대</u>하는 행동을 선택

성과 측정 방법

• 방 하나를 청소할 때 마다 1점 획득

사전 가정

- 지리적 환경, 즉 방 두개가 나란히 있다는 사실은 알려져 있음
- 먼지의 분포와 에이전트의 초기 위치는 알 수 없음
- 가능한 액션: 좌로, 우로, 청소
- 좌우로 이동하는 동작으로 방 밖으로 나가게 되는 경우 제자리
- 자신의 위치와 그 위치의 먼지 유무를 정확히 인식

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
<u>:</u>	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

이 에이전트는 합리적임

전지(Omniscience) vs 합리성

• 전지성: 액션의 결과를 사전에 모두 알고 있음

현실에서는 불가능

- 합리성: 기대 성과 최대화
 - ◆ 지각(perceive)한 내용으로 부터 최대한 학습
 - ◆ 전지성을 요구하지는 않음
- 완벽성: 실제 성과를 최대화

합리성 ≠ 전지(omniscience) ≠ 완벽성(perfection)

작업 환경

합리적인 에이전트를 설계하려면 그 작업 환경을 명확히 정의해야 함

- 성과 측정 기준 (performance measure)
- 에이전트의 환경 (environment of the agent)
- 에이전트의 실행기 (agent's actuators)
- 에이전트의 센서 (agent's sensors)

자율주행 택시

PEAS 형식으로 기술한 작업 환경

Agent Type	Performance Measure	Environment	Actuators	Sensors
Taxi driver	Safe, fast, legal, comfortable trip, maximize profits, minimize impact on other road users	Roads, other traffic, police, pedestrians, customers, weather	Steering, accelerator, brake, signal, horn, display, speech	Cameras, radar, speedometer, GPS, engine sensors, accelerometer, microphones, touchscreen

다른 에이전트에 대한 PEAS 명세

Agent Type	Performance	Environment	Actuators	Sensors
Medical diagnosis system	Measure Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, te diagnoses, treatments	
Satellite image analysis system	Correct categorization of objects, terrain	Orbiting satellite, downlink, weather	Display of s categorizatio	
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts; bins	Jointed arm and hand	Camera, tactile and joint angle sensors
Refinery controller 기름 정유기 저	Purity, yield, safety 어기	Refinery, raw materials, operators	Valves, pumps, heaters, stirrers, displays	Temperature, pressure, flow, chemical sensors
Interactive English tutor	Student's score on test	Set of students, testing agency	Display of exercises, feedback, speech	Keyboard entry, voice

Universal Robots ActiNav autonomous bin picking kit

• 속성에 따라 작업 환경 분류

대상 에이전트 구현에 적합한 **기술 집합** 정의

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock						
Poker Backgammon						
Taxi driving Medical diagnosis						
Image analysis Part-picking robot				-	-	
Refinery controller English tutor					-	1

● 완전 관찰 가능(Fully observable) vs. 부분 관찰 가능(partially observable) 센서가 행동 선택에 필요한 모든 상황을 감지할 수 있는 지 여부

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock	Fully Fully					
Poker Backgammon	Partially Fully					
Taxi driving Medical diagnosis	Partially Partially					
Image analysis Part-picking robot	Fully Partially					
Refinery controller English tutor	Partially Partially			-	-	

● 단일 에이전트 vs. 다중 에이전트

Task Environment	Observable	Agents Deterministic Episodic Static Discrete
Crossword puzzle Chess with a clock	Fully Fully	Single Multi ← competitive
Poker	Partially	Multi
Backgammon	Fully	Multi
Taxi driving	Partially	Multi ← cooperative
Medical diagnosis	Partially	Single
Image analysis	Fully	Single
Part-picking robot	Partially	Single
Refinery controller	Partially	Single
English tutor	Partially	Multi

• 결정론적(Deterministic) vs. 확률론적(Stochastic)

만약 환경의 다음 상태가 전적으로 현재 상태와 에이전트가 수행한 동작으로만 결정되는지 여부

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock	Fully Fully	Single Multi	Deterministic Deterministic			
Poker Backgammon	Partially Fully	Multi Multi	Stochastic Stochastic	cards in o	keep track of pponents' has nondeterm	ands; must be
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic			
Image analysis Part-picking robot	Fully Partially	Single Single	Deterministic Stochastic	-	-	
Refinery controller English tutor	Partially Partially	Single Multi	Stochastic Stochastic	-		

• 일화적(Episodic) vs. 순차적(sequential)

에이전트의 경험은 원자적 에피소드로 나누어짐. 이 때, 에피소드간 상호 의존성 여부

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock	Fully Fully	Single Multi	Deterministic Deterministic	Sequential Sequential		
Poker Backgammon	Partially Fully	Multi Multi	Stochastic Stochastic	Sequential Sequential		
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic	Sequential Sequential	can ha	taneous actions ave long-term quences.
Image analysis Part-picking robot	Fully Partially	Single Single	Deterministic Stochastic	Episodic Episodic		
Refinery controller English tutor	Partially Partially	Single Multi	Stochastic Stochastic	Sequential Sequential		

• 동적(Dynamic) vs. 준동적(semidynamic) vs. 정적(static)

에이전트가 다음 행동을 고려하는 동안 환경 변화 여부 (준동적: 환경은 불변하지만 성과 측정치가 변화하는 경우)

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	
Poker	Partially	Multi	Stochastic	Sequential	Static	
Backgammon	Fully	Multi	Stochastic	Sequential	Static	
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	
Image analysis	Fully	Single	Deterministic	Episodic	Semi	
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	
English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	

• 이산적(Discrete) vs. 연속적(continuous)

환경의 상태, 시간 처리 방식, 에이전트의 지각과 동작 방식

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	Discrete
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete