Estrategias para la exploración coordinada multi-VANT

Luis Alberto Ballado Aradias

CINVESTAV UNIDAD TAMAULIPAS

Cd. Victoria, Tamaulipas - 4 de octubre de 2023

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Resumen

† Inspecciones con VANT basadas en los mejores casos de uso https://enterprise-insights.dji.com/blog/complete-guide-to-drone-inspections

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

 Coordinación para la exploración multi-VANT

†Ilustración Multi-VAN https://dronevideos.com/

- Coordinación para la exploración multi-VANT
- Optimización de rutas multi-VANT

†Exploración VANT en entorno 3D. https://www.theengineer.co.uk/content/news/ prometheus-drones-to-explore-subterranean-environ

- Coordinación para la exploración multi-VANT
- Optimización de rutas multi-VANT
- Toma de decisiones colaborativa

†Exploración VANT en entorno 3D. https://www.theengineer.co.uk/content/news/ prometheus-drones-to-explore-subterranean-environ

- Coordinación para la exploración multi-VANT
- Optimización de rutas multi-VANT
- Toma de decisiones colaborativa
- Evasión de obstáculos y coordinación en tiempo real

†https://acl.mit.edu/projects/ real-time-planning-obstacle-avoidance-uavs

- Coordinación para la exploración multi-VANT
- Optimización de rutas multi-VANT
- Toma de decisiones colaborativa
- Evasión de obstáculos y coordinación en tiempo real
- Fusión de información (sensores y navegación)

†Crazyflie drone https://www.bitcraze.io/

- 1 Resumen
- Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Arquitectura híbrida

TParadigmas de arquitectura
https://cs.brown.edu/people/tdean/courses/
cs148/02/architectures.html

[‡]Propuesta de una arquitectura de automóvil autónoma Curiel-Ramirez et al. (2019)

Multi-robots

Conjunto de robots que pueden cooperar y comunicarse entre sí para realizar ciertas tareas.

Ventajas

- Redundancia y tolerancia a fallos
- Distribución de carga de trabajo
- Esfuerzo colaborativo

Desventajas

- Complejidad computacional
- Comunicación
- Mantenimiento

[†]Enjambre de drones

https://www.navalnews.com/naval-news/2022/03/naval-group-teaming-with-french-startup-to-dev

Panorama Planificación de trayectorias

Figura: Clasificación del enfoque de planificación de rutas¹

¹Different Cell Decomposition Path Planning Methods for Unmanned Air Vehicles - A Review Debnath et al. (2020)

Representación del ambiente 3D

[†]Mapa probabilistico 3D (Octomap)

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Dada una región tridimensional desconocida y n VANTS, el propósito es encontrar puntos de interés que implique una asignación de trayectoria para cada VANT. En el camino se descubrirán nuevos puntos de interés, haciendo de esta una lista de tareas dinámicas.

El problema consiste en la asignación de tareas de exploración (puntos de visión) para conocer la región de interés, garantizando que toda la región sea explorada, así como la evasión de obstáculos a su paso.

Dada una región tridimensional desconocida y n VANTS, el propósito es encontrar puntos de interés que implique una asignación de trayectoria para cada VANT. En el camino se descubrirán nuevos puntos de interés, haciendo de esta una lista de tareas dinámicas.

El problema consiste en la asignación de tareas de exploración (puntos de visión) para conocer la región de interés, garantizando que toda la región sea explorada, así como la evasión de obstáculos a su paso.

Con base en lo anterior, surgen las siguientes preguntas de investigación:

Dada una región tridimensional desconocida y n VANTS, el propósito es encontrar puntos de interés que implique una asignación de trayectoria para cada VANT. En el camino se descubrirán nuevos puntos de interés, haciendo de esta una lista de tareas dinámicas.

El problema consiste en la asignación de tareas de exploración (puntos de visión) para conocer la región de interés, garantizando que toda la región sea explorada, así como la evasión de obstáculos a su paso.

Con base en lo anterior, surgen las siguientes preguntas de investigación:

• ¿Cómo se podrá crear una estrategia para optimizar la asignación de tareas y coordinación entre los múltiples VANTS para el problema de exploración de un ambiente desconocido sin señal GPS?

Dada una región tridimensional desconocida y n VANTS, el propósito es encontrar puntos de interés que implique una asignación de trayectoria para cada VANT. En el camino se descubrirán nuevos puntos de interés, haciendo de esta una lista de tareas dinámicas.

El problema consiste en la asignación de tareas de exploración (puntos de visión) para conocer la región de interés, garantizando que toda la región sea explorada, así como la evasión de obstáculos a su paso.

Con base en lo anterior, surgen las siguientes preguntas de investigación:

- ¿Cómo se podrá crear una estrategia para optimizar la asignación de tareas y coordinación entre los múltiples VANTS para el problema de exploración de un ambiente desconocido sin señal GPS?
- ¿Cuál es la representación del medio ambiente de menor complejidad computacional? (para realizar la planificación de trayectorias para los múltiples VANTS)

Dada una región tridimensional desconocida y n VANTS, el propósito es encontrar puntos de interés que implique una asignación de trayectoria para cada VANT. En el camino se descubrirán nuevos puntos de interés, haciendo de esta una lista de tareas dinámicas.

El problema consiste en la asignación de tareas de exploración (puntos de visión) para conocer la región de interés, garantizando que toda la región sea explorada, así como la evasión de obstáculos a su paso.

Con base en lo anterior, surgen las siguientes preguntas de investigación:

- ¿Cómo se podrá crear una estrategia para optimizar la asignación de tareas y coordinación entre los múltiples VANTS para el problema de exploración de un ambiente desconocido sin señal GPS?
- ¿Cuál es la representación del medio ambiente de menor complejidad computacional? (para realizar la planificación de trayectorias para los múltiples VANTS)
- ¿Qué mecanismos de coordinación y comunicación pueden facilitar la colaboración y el intercambio rápido de información entre múltiples VANTS durante las misiones de exploración?

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Hipótesis

La implementación de una estrategia de exploración coordinada utilizando múltiples vehículos aéreos no tripulados (multi-VANT) en entornos complejos, permitirá obtener mejores resultados en comparación con la exploración individual (mono-VANT). Esta coordinación eficiente se traducirá en una reducción del tiempo y los recursos necesarios para completar la exploración, así como en una mayor cobertura del área de interés. Además, se espera que la exploración coordinada multi-VANT mejore la calidad de los datos recopilados, lo que permitirá tomar decisiones más informadas y eficaces en diversos campos, como la cartografía, la vigilancia, el monitoreo y la respuesta a desastres naturales.

Objetivos generales y específicos del proyecto

General

Desarrollar una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

Objetivos generales y específicos del proyecto

General

Desarrollar una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- 2 Particulares
 - Evaluar y comparar diferentes algoritmos de coordinación y planificación de vuelo para la exploración coordinada multi-VANT.

Objetivos generales y específicos del proyecto

General

Desarrollar una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- 2 Particulares
 - Evaluar y comparar diferentes algoritmos de coordinación y planificación de vuelo para la exploración coordinada multi-VANT.
 - Realizar pruebas y simulaciones de la solución propuesta en entornos complejos, analizando métricas como tiempo de exploración, cobertura del área de interés y calidad de los datos recopilados.

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Metodología/Cronograma

	Cuatrimestre 1 ^a		Cuatrimestre 2 ^b			Cuatrimestre 3 ^c						
	1	2	3	4	1	2	3	4	1	2	3	4
Etapa 1												
E1.A1. Revisión literatura relevante ^d												
E1.A2. Selección de algoritmos												
E1.A3. Diseño de la arquitectura de software												
E1.A4. Documentación Etapa 1												
E1.A5. Revisión de tesis Etapa 1												
Etapa 2												
E2.A1. Selección Simulador												
E2.A2. Visualización de datos ^e												
E2.A3. Control de desplazamientos												
E2.A4. Desarrollo de algoritmo de exploración												
E2.A5. Implementación y simulación ^g												
E2.A6. Desarrollo de coordinación												
E2.A7. Implementación y sumulación ^h												
E2.A8. Documentación Etapa 2												
E2.A9. Revisión de tesis Etapa 2												
Etapa 3												
E3.A1. Experimentación de solución												
E3.A2. Recopilación resultados												
E3.A3. Documentación Etapa 3												
E3.A4. Revisión de tesis												
E3.A5. Divulgación ⁱ												
E3.A6. Proceso de titulación												

^aCorrespondiente a los meses de Septiembre, Octubre, Noviembre, Diciembre del 2023

^bCorrespondiente a los meses de Enero, Febrero, Marzo, Abril del 2024

Correspondiente a los meses de Mayo, Junio, Julio, Agosto del 2024

^dRevisión de alertas de trabajos relacionados sobre la exploración y colaboración multi-VANT, evaluación de aptitudes en trabajos recientes Visualización Octomas en Simulador

fUn VANT

[§]Se considera un solo agente que resuelva la tarea de exploración autónoma con evación de obstáculos

hSe considerán los múltiples-VANT que resuelva la tarea de exploración autónoma con evación de obstáculos Abjerto a espacios de divulgación de acuerdo con las actividades de retribución social

- 1 Resumen
- Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Estado del Arte

REFERENCIA	REPRESENTACION	BUSQUEDA	TRAYECTORIA	
Cieslewski et al. (2017)[3]	Octomap	Basado en fronte- ras	Control directo de veloci- dad	
Usenko et al. (2017)[15]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier	
Mohta et al. (2017)[11]	mapa 3D-Local y 2D- Global	A*	Progración cuadrática	
Lin et al. (2017)[9]	3D voxel array TSDF	A*	Optimización cuadrática	
Papachristos et al. (2017)[13]	Octomap	NBVP	Control directo de veloci- dad	
Oleynikova et al. (2018)[12]	Voxel Hashing TSDF	NBVP	Optimización cuadrática	
Gao et al. (2018)[8]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática	

REFERENCIA	REPRESENTACION	BUSQUEDA	TRAYECTORIA
Florence et al. (2018)[7]	Busqueda basada en visibilidad	2D A*	Control predictivo por mo- delo (MPC)
Selin et al. (2019)[14]	Octomap	Next Best View Planner (NBVP)	Control directo de velocidad
McGuire et al. (2019)[10]	NA	Swarm Gradient Bug Algorithm (SGBA)	Control directo de veloci- dad
Collins and Michael (2020)[4]	KD Tree + Mapa en Vo- xel	Búsqueda en Grafo	Movimientos suaves
Campos-Macías et al. (2020)[2]	Octree	Rapidly Exploring Random Trees (RRT)	Basado en contornos
Zhou et al. (2023)[17]	Octomap HGrid	NBVP	Control directo de veloci- dad
Westheider et al. (2023)[16]	Mapa de cuadrícula	Deep Reinforce- ment Learning	Control directo de veloci- dad
Bartolomei et al. (2023)[1]	Mapa de cuadrícula	NBVP	Control directo de velocidad

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador
- 3 Tesis impresa

Bibliografía I

- L. Bartolomei, L. Teixeira, and M. Chli. Fast multi-uav decentralized exploration of forests. *IEEE Robotics and Automation Letters*, 8(9):5576–5583, 2023. doi: 10.1109/LRA.2023.3296037.
- L. Campos-Macías, R. Aldana-López, R. Guardia, J. I. Parra-Vilchis, and D. Gómez-Gutiérrez. Autonomous navigation of MAVs in unknown cluttered environments. *Journal of Field Robotics*, 38(2):307–326, may 2020. doi: 10.1002/rob.21959. URL https://doi.org/10.1002/rob.21959.
- T. Cieslewski, E. Kaufmann, and D. Scaramuzza. Rapid exploration with multi-rotors: A frontier selection method for high speed flight. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2135–2142, 2017. doi: 10.1109/IROS.2017.8206030.
- M. Collins and N. Michael. Efficient planning for high-speed mav flight in unknown environments using online sparse topological graphs. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 11450–11456, 2020. doi: 10.1109/ICRA40945.2020.9197167.
- L. A. Curiel-Ramirez, R. A. Ramirez-Mendoza, J. Izquierdo-Reyes, M. R. Bustamante-Bello, and S. A. Navarro-Tuch. Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment. *International Journal on Interactive Design and Manufacturing (IJIDEM)*, 13(4): 1647–1658, Oct. 2019. doi: 10.1007/s12008-019-00619-x. URL https://doi.org/10.1007/s12008-019-00619-x.
- S. K. Debnath, R. Omar, S. Bagchi, E. N. Sabudin, M. H. A. S. Kandar, K. Foysol, and T. K. Chakraborty. Different cell decomposition path planning methods for unmanned air vehicles-a review. In *Lecture Notes in Electrical Engineering*, pages 99–111. Springer Nature Singapore, July 2020. doi: 10.1007/978-981-15-5281-6.8. URL https://doi.org/10.1007/978-981-15-5281-6_8.
- P. R. Florence, J. Carter, J. Ware, and R. Tedrake. Nanomap: Fast, uncertainty-aware proximity queries with lazy search over local 3d data, 2018.
- F. Gao, W. Wu, Y. Lin, and S. Shen. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis polynomial. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 344–351, 2018. doi: 10.1109/ICRA.2018.8462878.
- Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen. Autonomous aerial navigation using monocular visual-inertial fusion. *Journal of Field Robotics*, 35(1):23–51, July 2017. doi: 10.1002/rob.21732. URL https://doi.org/10.1002/rob.21732.
- K. N. McGuire, C. D. Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon. Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Science Robotics, 4(35):eaaw9710, 2019. doi: 10.1126/scirobotics.aaw9710. URL https://www.science.org/doi/abs/10.1126/scirobotics.aaw9710.
- K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar. Fast, autonomous flight in GPS-denied and cluttered environments. *Journal of Field Robotics*, 35 (1):101–120, Dec. 2017. doi: 10.1002/rob.21774. URL https://doi.org/10.1002/rob.21774.

Bibliografía II

- H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto. Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles. *IEEE Robotics and Automation Letters*, 3(3):1474–1481, jul 2018. doi: 10.1109/lra.2018.2800109. URL https://doi.org/10.1109/lra.2018.2800109.
- C. Papachristos, S. Khattak, and K. Alexis. Uncertainty-aware receding horizon exploration and mapping using aerial robots. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 4568–4575, 2017. doi: 10.1109/ICRA.2017.7989531.
- M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt. Efficient autonomous exploration planning of large-scale 3-d environments. *IEEE Robotics and Automation Letters*. 4(2):1699–1706. 2019. doi: 10.1109/LRA.2019.2897343.
- V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers. Real-time trajectory replanning for MAVs using uniform b-splines and a 3d circular buffer. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2017. doi: 10.1109/iros.2017.8202160. URL https://doi.org/10.1109/iros.2017.8202160.
- J. Westheider, J. Rückin, and M. Popović. Multi-uav adaptive path planning using deep reinforcement learning, 2023.
- B. Zhou, H. Xu, and S. Shen. Racer: Rapid collaborative exploration with a decentralized multi-uav system. *IEEE Transactions on Robotics*, 39(3):1816–1835, 2023. doi: 10.1109/TRO.2023.3236945.