Ch1-2 Dimensions and Viscosity

Ke Tang. All Rights Reserved.

Objectives:

Reading: 1.2 - 1.6

- Dimensions and Units (Apply and Analyze)
- Viscosity (Identify and Explain)
- Density, Specific Weight, Specific Gravity (Text 1.4, study by yourself).

 (Apply and Analyze)

Recall.

Fluid: a substance that deforms continuously when acted on by a shear stress of any magnitude.

Mechanics: force and motion.

Dimensions and Units.

Poll. A) Units

- B) Dimensions
- 1) Are meters, kilograms, and seconds units or dimensions? A
- (2) Are Jength, mass, and time units or dimensions? B

_	n dimensions I mechanics	Um ts (SI)
Mass	, M	kg
Length	, L	m
Time		S
Force	, F	N
FLT	System <	"Big Idea"
MLT	System 2	(m = F/a)
F≐	$M \frac{L}{T^2}$, M	= FT

■ <u>Table 1.1</u> Dimensions Associated with Common Physical Quantities

	FLT System	MLT System
Acceleration	LT^{-2}	LT^{-2}
Angle	$F^{0}L^{0}T^{0}$	$M^{0}L^{0}T^{0}$
Angular acceleration	T^{-2}	T^{-2}
Angular velocity	T^{-1}	T^{-1}
Area	L^2	L^2
Density	$FL^{-4}T^2$	ML^{-3}
Energy	FL	ML^2T^{-2}
Force	F	MLT^{-2}
Frequency	T^{-1}	T^{-1}
Heat	FL	$ML^{2}T^{-2}$
Length	L	L
Mass	$FL^{-1}T^{2}$	M
Modulus of elasticity	FL^{-2}	$ML^{-1}T^{-2}$
Moment of a force	FL	$ML^{2}T^{-2}$
Moment of inertia (area)	L^4	L^4
Moment of inertia (mass)	FLT^2	ML^2
Momentum	FT	MLT^{-1}
Power	FLT^{-1}	ML^2T^{-3}
Pressure	FL^{-2}	$ML^{-1}T^{-2}$
Specific heat	$L^2T^{-2}\Theta^{-1}$	$L^2T^{-2}\Theta^{-1}$
Specific weight	FL^{-3}	$ML^{-2}T^{-2}$
Strain	$F^{0}L^{0}T^{0}$	$M^{0}L^{0}T^{0}$
Stress	FL^{-2}	$ML^{-1}T^{-2}$
Surface tension	FL^{-1}	MT^{-2}
Temperature	Θ	Θ
Time	T	T
Torque	FL	ML^2T^{-2}
Velocity	LT^{-1}	LT^{-1}
Viscosity (dynamic)	$FL^{-2}T$	$ML^{-1}T^{-1}$
Viscosity (kinematic)	$L^{2}T^{-1}$	$L^{2}T^{-1}$
Volume	L^3	L^3
Work	FL	$ML^{2}T^{-2}$

Given Density
$$g = \frac{m}{\forall} \leftarrow mass$$

Solution

$$i > \beta \doteq \frac{M}{I^3}$$

ii>
$$\beta \doteq \frac{M}{L^3} \doteq ML^{-3}$$
 and $M \doteq F \frac{T^2}{L} \doteq FL^{-1}T^2$
Thus, $\beta \doteq (FL^{-1}T^2)(L^{-3}) \doteq FL^{-4}T^2$

General homogeneous equation and Restricted homogeneous equation

- . "Homogeneous" here means dimensionally homogeneous.
- . An equation is dimensionally homogeneous if the dimensions of its left side are the same as the dimensions of its right side.

* General homogeneous equation: valid for any unit systems

* Restricted homogeneous equation: restricted to particular unit system.

[SI: International System

BG: British Gravitational System (slug) 7 Mass: EE: English Engineering System (16m) 1 slug 1 slug = 32.174 lbm

* How to tell the general or restricted homogeneous equation?

Example:

Given Freely Falling Body

$$0 d = \frac{gt^2}{2}$$

(1) $d = \frac{gt}{2}$ (2) $d = 16.1 t^2$

d: distance, t: time, g: gravitational acceleration

Find i> The dimensions of the constant in the two equations.

ii> Is it a general or restricted homogeneous equation?

Solution

Q)
$$d = \frac{gt^2}{2}$$

 $2 = gt^2d^{-1} = \frac{L}{T^2}T^2L^{-1} = L^0T^0$ dimension less

Since the constant of 2 is dimensionless, the equation $d = \frac{gt}{2}$ is valid for any unit system. That is, the equation $d = \frac{gt^2}{2}$ is a general homogeneous equation.

$$2 d = 16.1 + 2$$

$$16.1 = d + 2 = L + 2$$
dimensional

Since the constant of 16.1 is dimensional, the equation $d = 16.1 t^2$ is restricted to particular unit system. That is, the equation $d = 16.1 t^2$ is a restricted homogeneous equation.

What unit system is the equation $d = 16 \cdot 1 + 2$ restricted to?

For BG or EE unit system, we have $g = 32.2 \text{ ft/s}^2$ $d = \frac{gt^2}{2} = \frac{32.2 \text{ ft/s}^2}{2} t^2 = (16.1 \text{ ft/s}^2) t^2$

The equation d=16.1t is restricted to d in ft and t in s.

Comments

Viscosity:

Key observations of fluid in motion:

- · Viscosity leads to an internal friction that resists relative sliding motion of fluid, e.g. -thumb-fore-finger test.
- 21 =0 No-slip condition Fluids stick to boundaries: Couette flow b/t flat plates: V= constant

Observations:

$$\frac{F}{A} \sim \frac{V-o}{L-o}$$

$$T_{yx} \sim \frac{du}{dy}$$
 -

This is used to define Newtonian fluids. 4

- * Fluids for which the shear stress Tyn is linearly related to (i.e. proportional to) the velocity gradient du are designated as Newtonian fluids after Isaac Newton (1642-1727).
- * All the other behaviors -> Non-Newtonian fluids.

For the abovementioned linear relationship, if we would like to get an equation, we need a proportional coefficient. M.

Tyx =
$$\mu \cdot \frac{du}{dy}$$
 Newton's viscosity law
shear stress Viscosity Velocity gradient
 $(\frac{\overline{Force}}{trea})$ (Proportionality (Local slope of velocity profile, Rate of shear strain, or shear rate)
(See supplements)

Poll: The policy of the policy

Which one is a Newtonian fluid?

- * The slope in the $C \frac{du}{dy}$ diagram is the viscosity.
- * For Newtonian fluids,
 the viscosity is independent to the velocity gradient du.

Typical Newtonian fluids: water, alcohol, gasoline, air, etc.

Typical Non-Newtonian fluids: paint, water-corn starch mixture, slime, etc.

- B. shear thickening fluid.
- D. shear thinning fluid.