Merge-Sort

- Merge-sort is a sorting algorithm based on the divide-andconquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has $O(n \log n)$ running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm mergeSort(S, C)

Input sequence *S* with *n* elements, comparator *C*

Output sequence S sorted according to C

if
$$S.size() > 1$$

 $(S_1, S_2) \leftarrow partition(S, n/2)$
 $mergeSort(S_1, C)$
 $mergeSort(S_2, C)$
 $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes
 O(n) time

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() < B.first().element()
           S.insertLast(A.remove(A.first()))
       else
           S.insertLast(B.remove(B.first()))
    while \neg A.isEmpty()
       S.insertLast(A.remove(A.first()))
    while \neg B.isEmpty()
       S.insertLast(B.remove(B.first()))
   return S
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

7 2 9 4 | 3 8 6 1

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Recursive call, ..., base case, merge

Recursive call, ..., merge, merge

Analysis of Merge-Sort

- \bullet The height h of the merge-sort tree is $O(\log n)$
 - Why?
 - At each recursive call we divide in half the sequence,
- lacktriangle The overall amount of work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	♦ slow♦ in-place♦ for small data sets (< 1K)
insertion-sort	$O(n^2)$	 ♦ slow, O(n) for almost sorted ♦ in-place ♦ for small data sets (< 1K)
heap-sort	$O(n \log n)$	 ♦ fast, O(n) to get first results ♦ in-place ♦ for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)