ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

30 мая 2019 года

ФИО	№ группы

вариант **А**

1	2	3	4	5	6	Σ

зада	Итог	
I	II	

Смотрите условия на обороте!

Максимальное количество баллов, которые можно получить за контрольную — 12. Количество баллов за задачу указано в скобках за ее номером. В таблице приведено соответствие между баллами и оценкой за контрольную (Σ)

Баллы	Оценка
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10-12	10

К баллам за письменную работу добавляются баллы за сданные задания:

 $om \pi$: + 2 б./задание; xop: + 1 б./задание; $ydoe \pi$: 0 б./задание; he cdaho: - 3 б./задание.

Итоговая сумма округляется до целых. Результат определяет максимальную оценку на устном экзамене

1A (1,5) Смесь линейно поляризованного и естественного света рассматривается через николь. При повороте николя на 30° от положения, соответствующего максимальной яркости, яркость пучка уменьшается в 1,25 раза. Найти исходное отношение интенсивностей линейно поляризованного и естественного света, а также степень поляризации $\Delta = (I_{\text{max}} - I_{\text{min}})/(I_{\text{max}} + I_{\text{min}})$, где I_{max} и I_{min} — максимальная и минимальная интенсивности света, прошедшего через николь.

2A (1,5) Падающая на бипризму Френеля $\mathcal{E}\Phi$ плоская монохроматическая линейно поляризованная волна создает на плоском экране Э интерференционную картину с шириной полосы Λ . Плоскость падения перпендикулярна плоскости экрана. Поле E волны колеблется параллельно плоскости падения. Длина волны λ . Определите видность V интерференционной картины.

3A (1,5) На фазовую дифракционную решетку с периодом d, представляющую собой стеклянную пластинку с нарезанными штрихами треугольного профиля и показателем преломления n, нормально к поверхности падает плоская волна с длиной волны $\lambda \ll d$ (см. рис.). При каких значениях высоты зубцов h возможно получить нулевую интенсивность дифрагированной волны нулевого порядка?

4A (2,5) На экран по нормали падает параллельный пучок монохроматического света с длиной волны λ и интенсивностью I_0 (см. рис.). Экран представляет собой непрозрачную пластину с круглым отверстием, радиус которого совпадает с радиусом третей зоны Френеля для точки наблюдения P, лежащей на оси системы на расстоянии L от экрана. Отверстие перекрывают тонкой собирающей линзой с фокусным расстоянием f=2L, в центре которой проделано отверстие, совпадающее с первой зоной Френеля. Определить интенсивность света в точке P. Толщина линзы вблизи экрана равна нулю.

5A (2,5) В интерференционном опыте Юнга расстояние d между щелями в непрозрачном экране постепенно увеличивают, при этом видность интерференционной картины на экране уменьшается, и, наконец, при расстоянии d_0 интерференционная картина пропадает. В опыте используется протяженный однородный квазимонохроматический источник со средней длиной волны λ и спектральной плотностью интенсивности $J_{\lambda}(\lambda)$ прямоугольной формы (см. рис.). При $d=d_0/3$ видность полосы порядка m=5 равна $V=\frac{27}{4\pi^2}$. Найти угловой размер источника ψ и степень его немонохроматичности $\Delta \lambda/\lambda$.

6A (2,5) Параллельный пучок излучения длительностью 100 фс и средней длиной волны $\lambda=500$ нм фокусируется положительной линзой толщиной L=6 мм в центре и близкой к нулю на краях. Пучок заполняет всю линзу. Показатель преломления материала линзы n=1,7, групповая скорость в стекле $v_{\rm rp}=0,55$ с. Оценить длительность импульса в фокусе линзы.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

30 мая 2019 года

ФИО	№ группы

вариант **Б**

1	2	3	4	5	6	Σ

зада	Итог	
I	II	

Смотрите условия на обороте!

Максимальное количество баллов, которые можно получить за контрольную — 12. Количество баллов за задачу указано в скобках за ее номером. В таблице приведено соответствие между баллами и оценкой за контрольную (Σ)

Баллы	Оценка
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10-12	10

К баллам за письменную работу добавляются баллы за сданные задания:

 $om \pi$: + 2 б./задание; xop: + 1 б./задание; $ydoe \pi$: 0 б./задание; he cdaho: - 3 б./задание.

Итоговая сумма округляется до целых. Результат определяет максимальную оценку на устном экзамене

1Б (1,5) На систему из двух скрещенных поляроидов падает по нормали параллельный пучок неполяризованного зеленого света ($\lambda_1 = 500$ нм) интенсивностью I_0 . Между поляроидами помещают кристаллическую пластинку, являющуюся пластинкой $\lambda/2$ для красного света ($\lambda_2 = 750$ нм) так, что ее оптическая ось составляет угол 45° с разрешенными направлениями поляроидов. Найти интенсивность света после прохождения второго поляроида.

2Б (1,5) Две плоские монохроматические линейно поляризованные волны одинаковой амплитуды симметрично падают на плоский экран и создают на нем интерференционную картину с шириной полосы Λ . Плоскость падения перпендикулярна плоскости экрана. Поле E волны колеблется параллельно плоскости падения. Длина волны λ . Определите видность V интерференционной картины.

3Б (1,5) На тонкую плёнку толщиной d и показателем преломления n=1,33 под углом $\varphi=30^\circ$ падает световой пучок, содержащий две спектральные компоненты $\lambda_1=0,84$ мкм и $\lambda_2=0,49$ мкм. При какой минимальной толщине плёнки d свет на длине волны λ_1 испытает максимальное отражение, а свет на длине волны λ_2 не отразится совсем? Зависимостью показателя преломления от длины волны пренебречь.

4Б (2) На экран по нормали падает параллельный пучок монохроматического света с длиной волны λ и интенсивностью I_0 . Экран представляет собой непрозрачную пластину с круглым отверстием, радиус которого совпадает с радиусом третей зоны Френеля для точки наблюдения P, лежащей на оси системы на расстоянии L от экрана. Отверстие перекрывают тонкой рассеивающей линзой (фокусное расстояние f=2L, толщина в центре равна нулю), в середине которой проделано отверстие, совпадающее с первой зоной Френеля. Определить интенсивность света в точке P.

5Б (2,5) В интерференционном опыте Юнга используется протяженный однородный квазимонохроматический источник со средней длиной волны λ и спектральной плотностью интенсивности $J_{\lambda}(\lambda)$ прямоугольной формы (см. рис.), который изначально перекрыт щелевой диафрагмой. Щель диафрагмы начинают постепенно открывать, при этом видность интерференционной картины на экране уменьшается, и, наконец, при ширине щели b_0 интерференционная картина пропадает. При $b=b_0/6$ видность полосы порядка m=10 оказывается равной $V=9/\pi^2$. Найти апертуру интерференции и степень монохроматичности источника $\lambda/\Delta\lambda$. Расстояние между щелями в непрозрачном экране — d.

6Б (3) Для удлинения во времени ультракоротких импульсов в лазерной технике используется устройство на основе двух отражательных дифракционных решеток и возвратного зеркала (см. рис.). На вход такого устройства подается импульс длительностью $\tau=40$ фс. Оценить его длительность на выходе из устройства. Используется второй порядок дифракции, расстояние между штрихами решетки d=3,2 мкм, средняя длина волны ультракороткого импульса $\lambda=0,8$ мкм, расстояние между плоскостями дифракционных решеток L=30 см.

<u>Указание</u>: Для оценки можно полагать, что первоначальный импульс состоит из двух синхронных импульсов (групп волн) вблизи частот ω_1 и ω_2 ($\omega_1 < \omega_2$, ($\omega_2 - \omega_1$) $\tau \simeq 2\pi$), а его удлинение определяется различным временем прохождения через устройство этих групп волн.

