

Lecture 4

- Operational Amplifiers

Outline

- Operational amplifier (op amp)
- Ideal op amp
 - Inverting op amp
 - Noninverting op amp
 - Voltage follower
 - Difference amplifier
- Application: DAC

The Op Amp

- When combined with resistors, capacitors, and inductors, can perform various functions:
 - amplification/scaling
 - sign changing
 - addition/subtraction/multiplication/division
 - integration
 - differentiation
 - analog filtering
 - nonlinear functions (exponential, log, sqrt)
- Isolate input from output.

Where do You Use Op AMP?

- Signal generators
- Audio amplifiers
- Hearing aids
- Medical sensor interface
- Baseband receivers
- A/D converters
- Oscillators
- Voltage regulators
- Active filters

IF Amp

IF Block

RF Low Mixer

Noise Amp

RF Front-End

and

Filters

Baseband

Demodulator

Back-End

Receive Path

Received Signal

Antenna and Propagation

Transmitted Signal Diplexer/Filter

Brief History

- The Operational Amplifier (op amp) was invented in the 40's.
 - Bell Labs filed a patent in 1941.
- Many consider the first practical op amp to be the vacuum tube K2-W invented in 1952 by George Philbrick.
- Bob Widlar at Fairchild invented the uA702 op amp in 1963.
- Until uA741, released in 1968, op amps became relatively inexpensive and started on the road to ubiquity.

https://en.wikipedia.org/wiki/Operational amplifier

What are Inside an Op Amp?

Origins at Fairchild Semiconductor in 1968.

Source: http://www.ibiblio.org/kuphaldt/electricCircuits/Semi/SEMI_8.html#xtocid109742.

Lecture 4

Op Amp Terminals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Inverting input 2 Offset Null (b)
- Five important terminals
 - The inverting input
 - The noninverting input
 - The output
 - The positive (+) power supply
 - The negative (-) power supply

- The rest three terminals
 - 2 Offset Null (Balance)
 - May used in auxiliary circuit to compensate for performance degradation due to aging etc.
 - 1 No Connection (NC)
 - Unused, not connected to the amplifier circuit.

Lecture 4

Powering an Op Amp

- As an active element, the op-amp requires a power source.
 - Often in circuit diagrams the power supply terminals are obscured (ignored).
 - The supply current <u>cannot</u> be overlooked.

$$i_0 = i_1 + i_2 + i_+ + i_-$$

- Most op-amps use <u>two</u> voltage sources, with a ground reference between them.
 - This gives a positive and negative supply voltage.

Output Voltage

 The voltage output of an op-amp is proportional to the difference between the <u>noninverting</u> and <u>inverting</u> inputs

$$v_o = Av_d = A(v_2 - v_1)$$

- Here, A is called the open loop gain.
- Ideally A is infinite. In real devices, it is still high: 10⁵ to 108.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 5.1

Typical ranges for op amp parameters.

Parameter	Typical range	Ideal values
Open-loop gain, A	10 ⁵ to 10 ⁸	∞
Input resistance, R_i	$10^{5} \text{ to } 10^{13} \Omega$	$\infty\Omega$
Output resistance, R_a	10 to 100Ω	$\Omega \Omega$
Supply voltage, V_{CC}	5 to 24 V	

Lecture 4

Example 1

For $V_{\rm cc} = 10$ V, $A = 10^6$, $R_{\rm i} = 10^7$ Ω , $R_{\rm o} = 10$ Ω , $R_{\rm 1} = 80 \text{ k}\Omega$, and $R_{\rm 2} = 20 \text{ k}\Omega$,

[Source: Berkeley] Lecture 4

Voltage Saturation

Is the output voltage unlimited?

$$v_0 = \begin{cases} -V_{cc} & Av_d < -V_{cc} \\ Av_d & -V_{cc} \le Av_d \le +V_{cc} \\ +V_{cc} & Av_d > +V_{cc} \end{cases}$$

How do we know the opamp is operating in linear region?

Lecture 4

Negative Feedback

 A self-stabilizing system (also true for any dynamic system in general), giving the op-amp the capacity to work in its linear (active) mode.

How Negative Feedback Works?


```
V_{in} \uparrow \Rightarrow \text{voltage differential} \uparrow \Rightarrow V_{out} \uparrow
\Rightarrow \text{voltage differential} \downarrow \Rightarrow V_{out} \downarrow
\Rightarrow \cdots
\Rightarrow V_{out} \rightarrow V_{in} \text{ but small difference exists}
```

Lecture 4

Example

For $V_{\rm cc} = 10$ V, $A = 10^6$, $R_{\rm i} = 10^7$ Ω , $R_{\rm o} = 10$ Ω , $R_{\rm 1} = 80 \text{ k}\Omega$, and $R_{\rm 2} = 20 \text{ k}\Omega$,

[Source: Berkeley] Lecture 4

Tradeoff

For
$$V_{\rm cc} = 10$$
 V, $A = 10^6$, $R_{\rm i} = 10^7$ Ω , $R_{\rm o} = 10$ Ω , $R_1 = 80 \text{ k}\Omega$, and $R_2 = 20 \text{ k}\Omega$,

Negative Feedback

No Feedback

- Circuit gain G
- Linear dynamic range of v_s

Input-Output Transfer Plot

[Source: Berkeley]

16

Practice

A 741 op amp has an open-loop voltage gain of 2×10^5 , input resistance of $2M\Omega$, and output resistance of 50Ω . Find the closed-loop gain v_o/v_s . Determine current i when $v_s=2V$.

Ideal Op Amp

- Attributes of ideal op-amp:
 - infinite open-loop gain, $A \simeq \infty$
 - Implies that $v_2 = v_1$.
 - infinite resistance of the two inputs, $R_i = \infty$
 - This means it will not affect any node it is attached to
 - Implies that $i_1 = i_2 = 0$.
 - zero output impedance, $R_o = 0$
 - From Thevenin's theorem one can see that this means it is load independent.

Ideal Op-Amp Analysis – Golden Rules

Assumption 1: The potential between the op-amp input terminals, $v_{(+)} - v_{(-)}$, equals zero.

Assumption 2: The currents flowing into the op-amp's two input terminals both equal zero.

Inverting Amplifier

Example

Practice

• Determine v_o in the circuit shown below

Non-Inverting Amplifier

Application: Voltage Follower

[Source: Berkeley] Lecture 4

Application of Voltage Follower

"Buffer" sections of Circuit

[Source: Berkeley] Lecture 4

Summing Amplifier

 Aside from <u>amplification</u>, the op-amp can be made to do <u>addition</u> very readily.

Example

Design a circuit that performs the operation

$$v_0 = 4v_1 + 7v_2$$
.

Practice

• Find v_o and i_o in the circuit shown below

Lecture 4

28

Difference Amplifier

Common Mode Rejection

$$v_o = \frac{R_2 (1 + R_1 / R_2)}{R_1 (1 + R_3 / R_4)} v_2 - \frac{R_2}{R_1} v_1$$

- It is important that a difference amplifier rejects any signal that is common to the two inputs.
 - Which implies that when $v_1 = v_2$, $v_0 = 0$.

Lecture 4

Example

• Design an op amp circuit with inputs v_1 and v_2 such that $v_0 = -5v_1 + 3v_2$.

Cascaded Op Amps

- This head to tail configuration is called "cascading".
 - Each amplifier is then called a "stage".

 The gain of a series of amplifiers is the product of the individual gains:

$$A = A_1 \cdot A_2 \cdot A_3$$

Op amp circuit

Name/output-input relationship

Summary

Inverting amplifier

$$v_o = -\frac{R_2}{R_1} v_i$$

Noninverting amplifier

$$v_o = \left(1 + \frac{R_2}{R_1}\right) v_i$$

Voltage follower

$$v_o = v_i$$

Summer

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

Difference amplifier

$$v_o = \frac{R_2}{R_1} (v_2 - v_1)$$

Application - DAC

A DAC can be used to convert the digital representation of an audio signal into an analog voltage that is then used to drive speakers -- so that you can hear it!

DAC

$$-V_o = \frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3 + \frac{R_f}{R_4}V_4$$

DAC

A DAC can be used to convert the digital representation of an audio signal into an analog voltage that is then used to drive speakers -- so that you can hear it!

"Weighted-adder D/A converter"

(Transistors are used as electronic switches)

S2 " if next bit = 1 S3 " if " " = 1 S4 " if MSB = 1

Binary number	Analog output $(-V_o)$		
0000	0		
0001	.5		
0010	1		
0011	1.5		
0100	2		
0101	2.5		
0110	3		
0111	3.5		
1000	4		
1001	4.5		
1010	5		
1011	5.5		
1100	6		
1101	6.5		
1110	7		
1111	7.5		
† †			
ISB LSB			

[Source: Berkeley]

What are Inside an Op Amp? Thevenin's Theorem applicable?

Origins at Fairchild Semiconductor in 1968.

