

2. Klausur Analysis I für Ing/Inf

7.10.2014

- 1. Es sei $n \in \mathbb{N}$. Zeigen Sie die Ungleichung $\prod_{k=1}^{n} \frac{2k-1}{2k} < \frac{1}{\sqrt{2n+1}}$. [6]
- 2. Untersuchen Sie mit Hilfe der Definition die Folge $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz, wobei [5]

$$a_n = \frac{-\pi n^5 + \sqrt{2}n^4 - 2n}{-n^5 - \sqrt{3}n^4 + 26}$$
 für alle $n \in \mathbb{N}$.

- 3. Zeigen Sie, dass der folgende Schluss im Allgemeinen falsch ist: Seien $a, b \in \mathbb{R}, \ a < b, \ [3]$ $f:[a,b] \to \mathbb{R}$ eine Funktion und $(x_n)_{n \in \mathbb{N}} \subset [a,b]$ eine Folge mit $x_n \to x_0 \in [a,b]$ für $n \to \infty$, dann existiert auch $\lim_{n \to \infty} f(x_n)$ und es gilt $\lim_{n \to \infty} f(x_n) = f(x_0)$.
- 4. Gegeben sei die Potenzreihe $\sum_{n=0}^{\infty} \frac{n^n}{e^n n!} (x-2)^n$. Bestimmen Sie den Konvergenzradius R und das resultierende Konvergenzintervall. [4]
- 5. Es seien I = [1, 2] und $f: I \to \mathbb{R}, f(x) = \frac{x^2 + x 4}{x + 1}$.
 - (a) Zeigen Sie: f besitzt in I eine Nullstelle. [3]
 - (b) Bestimmen Sie eine Zahl C so, dass die Funktion $g:I\to\mathbb{R},\ g(x)=f(x)+C$ auf I [4] nicht negativ ist.
- 6. (a) Zeigen Sie $\lim_{x \to \infty} \frac{e^{\sin x}}{\ln(\ln(x))} = 0.$ [4]
 - (b) Die Funktion $f(x) = \ln(\cosh x)$ soll um 0 durch ein Polynom dritten Grades angenähert werden. Bestimmen Sie ein geeignetes Polynom mit dem Satz von Taylor. [6] Hinweis: $\cosh x = \frac{1}{2} (e^x + e^{-x})$.
- 7. Zeigen Sie: $F(x) = \frac{1}{2}\sin(2x) \frac{1}{6}\sin^3(2x)$ ist Stammfunktion von $f(x) = \cos^3(2x)$ auf \mathbb{R} . [4]
- 8. Seien $a, b \in \mathbb{R}$, a < b, und $f : [a, b] \to \mathbb{R}$, $f(x) = \frac{1}{x}$.
 - (a) Zeigen Sie, dass durch $x_j = a\left(\frac{b}{a}\right)^{\frac{j}{n}}$, $j = 0, \dots, n$, eine ausgezeichnete Partitionenfolge [3] $(\pi_n)_{n \in \mathbb{N}}$ von [a, b] gegeben ist.
 - (b) Durch $\xi_j = x_j$ für j = 1, ..., n sind Zwischenstellen dieser Partition gegeben. Bestimmen Sie die zugehörige Riemannsche Zwischensumme. [2]
 - (c) Bestimmen Sie über die Zwischensumme aus 8b das Integral $\int_a^b \frac{dx}{x}$. [5]
- 9. Berechnen Sie, falls existent, folgendes Integral. Leiten Sie dabei ggf. verwendete Stamm- [16] funktionen her.

 $\int_0^\infty \frac{dx}{1+x^3}.$