	Classification (Decision Tree) This code imports the necessary libraries for data manipulation, model training, evaluation, and visualization in a decision tree classification task. It includes pandas for data handling, scikit-learn for
In [1]:	<pre>import pandas as pd from sklearn.model_selection import LabelEncoder from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report</pre>
	import matplotlib.pyplot as plt from sklearn import tree Data Preparation
	<pre># Load the dataset df = pd.read_csv('Starbucks satisfactory survey_modified.csv') df = df.drop(columns=['Timestamp', 'Gender', 'Age']) # Separate the dataset into features and target variable</pre>
In [4]:	<pre>x = df.drop(columns=['Continue to buy?']) y = df['Continue to buy?'] # Encode the categorical variables le_x = LabelEncoder() x = x.apply(le_x.fit_transform)</pre>
In [5]:	This code initializes a LabelEncoder and applies it to the target variable y to convert its categorical labels into numerical values for model training. le_y = LabelEncoder() y = le_y.fit_transform(y)
In [6]:	<pre># Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)</pre>
In [7]:	# Define the classifiers clf_gini = DecisionTreeClassifier(max_depth=3, random_state=0) clf_entropy = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)
In [8]: Out[8]:	<pre># Fit the models clf_gini.fit(X_train, y_train) clf_entropy.fit(X_train, y_train) DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)</pre>
In [9]:	<pre># Predict using the models y_pred_gini = clf_gini.predict(X_test)</pre>
In [13]:	<pre># Evaluate the models print('Accuracy score for Gini criterion:', accuracy_score(y_test, y_pred_gini)) print('Accuracy score for Entropy criterion:', accuracy_score(y_test, y_pred_entropy))</pre>
	<pre>print('\nGini criterion') print('Training set score: {:.4f}'.format(clf_gini.score(X_train, y_train))) print('Test set score: {:.4f}'.format(clf_gini.score(X_test, y_test))) print('\nEntropy criterion') print('Training set score: {:.4f}'.format(clf_entropy.score(X_train, y_train))) print('Test set score: {:.4f}'.format(clf_entropy.score(X_test, y_test)))</pre>
	Accuracy score for Gini criterion: 0.84 Accuracy score for Entropy criterion: 0.84 Gini criterion Training set score: 0.8557
	Test set score: 0.8400 Entropy criterion Training set score: 0.8557 Test set score: 0.8400
In [14]:	<pre># Confusion matrix and classification report cm_gini = confusion_matrix(y_test, y_pred_gini) cm_entropy = confusion_matrix(y_test, y_pred_entropy) print('Confusion matrix with criterion gini index: \n', cm_gini) print('Confusion matrix with criterion entropy: \n', cm_entropy)</pre>
	<pre>print('Classification report with criterion gini index: \n', classification_report(y_test, y_pred_gini, zero_division=1)) print('Classification report with criterion entropy: \n', classification_report(y_test, y_pred_entropy, zero_division=1)) Confusion matrix with criterion gini index: [[2 2] [2 19]]</pre>
	Confusion matrix with criterion entropy: [[2 2] [2 19]] Classification report with criterion gini index: precision recall f1-score support
	0 0.50 0.50 0.50 4 1 0.90 0.90 0.90 21 accuracy 0.84 25 macro avg 0.70 0.70 0.70 25 weighted avg 0.84 0.84 0.84 25
	Classification report with criterion entropy: precision recall f1-score support 0 0.50 0.50 0.50 4 1 0.90 0.90 0.90 21
In [17]:	accuracy 0.84 25 macro avg 0.70 0.70 0.70 25 weighted avg 0.84 0.84 0.84 25 # Visualize the decision trees plt.figure(figsize=(50,10))
	<pre>plt.figure(figsize=(50,10)) tree.plot_tree(clf_gini, feature_names=x.columns, filled=True) plt.show()</pre> Rate the price range <= 1.5
	Rate the product quality $<=1.5$ $gini = 0.498$ $samples = 34$ $value = [18, 16]$ Rate the ambiance $<=0.5$ $gini = 0.18$ $gini = 0.18$ $gini = 0.18$ $gini = 0.18$ $samples = 10$ Rate the ambiance $<=0.5$ $gini = 0.123$ $samples = 24$ Rate the ambiance $<=0.5$ $gini = 0.123$ $samples = 61$
	Samples = 10 Value = [9, 15] Value = [2, 0] Value
In [18]:	<pre>plt.figure(figsize=(50,10)) tree.plot_tree(clf_entropy, feature_names=x.columns, filled=True) plt.show()</pre> Rate the price range <= 1.5 entropy = 0.807 samples = 97
	Rate the product quality <= 1.5 entropy = 0.998 samples = 34 value = [18, 16] Rate the ambiance <= 1.5 entropy = 0.454 samples = 63 value = [6, 57] Rate the ambiance <= 0.5 entropy = 0.469 Rate the service of staff <= 2.5 entropy = 0.954 Rate the ambiance <= 0.5 entropy = 0.459 Rate the ambiance <= 0.5 entropy = 0.459 Rate the ambiance <= 0.5 entropy = 0.459
	$\begin{array}{c} \text{entropy} = 0.499\\ \text{samples} = 10\\ \text{value} = [9, 1] \end{array}$ $\begin{array}{c} \text{entropy} = 0.499\\ \text{samples} = 24\\ \text{value} = [9, 15] \end{array}$ $\begin{array}{c} \text{entropy} = 0.344\\ \text{samples} = 24\\ \text{value} = [9, 15] \end{array}$ $\begin{array}{c} \text{entropy} = 0.605\\ \text{samples} = 27\\ \text{value} = [1, 1] \end{array}$ $\begin{array}{c} \text{entropy} = 0.605\\ \text{samples} = 8\\ \text{value} = [1, 7] \end{array}$ $\begin{array}{c} \text{entropy} = 0.605\\ \text{samples} = 16\\ \text{value} = [8, 8] \end{array}$ $\begin{array}{c} \text{entropy} = 0.605\\ \text{samples} = 27\\ \text{value} = [4, 23] \end{array}$ $\begin{array}{c} \text{entropy} = 0.605\\ \text{samples} = 34\\ \text{value} = [4, 23] \end{array}$ $\begin{array}{c} \text{value} = [1, 7]\\ \text{value} = [1, 7] \end{array}$
In [19]:	Data Preparation # Load the dataset again for balancing df = pd.read_csv('Starbucks satisfactory survey_modified.csv')
In [20]:	<pre>df = df.drop(columns=['Timestamp', 'Gender', 'Age']) #Separate the dataset into two DataFrames based on the class label df_majority = df[df['Continue to buy?'] == "No"] df_minority = df[df['Continue to buy?'] == "Yes"]</pre>
In [21]: In [22]:	<pre>df_minority_oversampled = df_minority.sample(n=len(df_majority), replace=True)</pre>
	<pre># Shuffle the DataFrame df_balanced = df_balanced.sample(frac=1).reset_index(drop=True) # Separate the balanced dataset into features and target variable x_balanced = df_balanced.drop(columns=['Continue to buy?']) y_balanced = df_balanced['Continue to buy?']</pre>
In [25]:	<pre># Encode the categorical variables in balanced data x_balanced = x_balanced.apply(le_x.fit_transform) y_balanced = le_y.fit_transform(y_balanced)</pre>
	<pre>Modeling # Split the balanced dataset into training and testing sets X_train_balanced, X_test_balanced, y_train_balanced, y_test_balanced = train_test_split(x_balanced, y_balanced, test_size=0.2, random_state=42) # Train the models with the balanced dataset</pre>
Out[27]:	clf_gini.fit(X_train_balanced, y_train_balanced) clf_entropy.fit(X_train_balanced, y_train_balanced) DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)
In [28]:	<pre># Make predictions y_pred_gini_balanced = clf_gini.predict(X_test_balanced) y_pred_entropy_balanced = clf_entropy.predict(X_test_balanced)</pre>
In [29]:	<pre>print('Training set score: {:.4f}'.format(clf_gini.score(X_train_balanced, y_train_balanced))) print('Test set score: {:.4f}'.format(clf_gini.score(X_test_balanced, y_test_balanced))) print('\nEntropy criterion with balanced data')</pre>
	<pre>print('Training set score: {:.4f}'.format(clf_entropy.score(X_train_balanced, y_train_balanced))) print('Test set score: {:.4f}'.format(clf_entropy.score(X_test_balanced, y_test_balanced))) Gini criterion with balanced data Training set score: 0.8409 Test set score: 0.8333</pre>
In [32]:	Entropy criterion with balanced data Training set score: 0.8409 Test set score: 0.8333 # Confusion matrix and classification report for balanced data cm_gini_balanced = confusion_matrix(y_test_balanced, y_pred_gini_balanced) cm_entropy_balanced = confusion_matrix(y_test_balanced, y_pred_entropy_balanced)
	<pre>print('Confusion matrix with criterion gini index on balanced data: \n', cm_gini_balanced) print('Confusion matrix with criterion entropy on balanced data: \n', cm_entropy_balanced) Confusion matrix with criterion gini index on balanced data: [[5 1] [1 5]]</pre>
In [33]:	Confusion matrix with criterion entropy on balanced data: [[5 1] [1 5]] print('\nClassification report with criterion gini index on balanced data: \n', classification_report(y_test_balanced, y_pred_gini_balanced, zero_division=1)) print('Classification report with criterion entropy on balanced data: \n', classification_report(y_test_balanced, y_pred_entropy_balanced, zero_division=1))
	Classification report with criterion gini index on balanced data: precision recall f1-score support 0 0.83 0.83 0.83 6 1 0.83 0.83 0.83 6
	accuracy macro avg 0.83 0.83 0.83 12 weighted avg 0.83 0.83 0.83 12 Classification report with criterion entropy on balanced data: precision recall f1-score support
	0 0.83 0.83 0.83 6 1 0.83 0.83 0.83 6 accuracy 0.83 12 macro avg 0.83 0.83 0.83 12 weighted avg 0.83 0.83 0.83 12
In [36]:	# Visualize the decision trees with balanced data plt.figure(figsize=(50,10)) tree.plot_tree(clf_gini, feature_names=x.columns, filled=True) plt.show()
	Rate the price range $<= 1.5$ $gini = 0.5$ $samples = 44$ $value = [22, 22]$ Rate the product quality $<= 1.5$ $gini = 0.308$ $samples = 21$ Rate the ambiance $<= 2.5$ $gini = 0.34$ $samples = 23$
	value = [17, 4] gini = 0.0 samples = 8 value = [8, 0] Rate the service of staff <= 2.5 gini = 0.426 samples = 13 value = [9, 4] Rate the product quality <= 2.5 gini = 0.494 samples = 9 value = [4, 5] Rate the product quality <= 2.5 gini = 0.494 samples = 14 value = [1, 13] gini = 0.48 gini = 0.219 gini = 0.49 gini = 0.245 gini = 0.245
In [35]:	samples = 5 value = [2, 3] samples = 8 value = [7, 1] samples = 7 value = [0, 2] samples = 7 value = [0, 2] samples = 7 value = [0, 7] value = [0, 7] value = [0, 7]
	Rate the price range <= 1.5 entropy = 1.0 samples = 44 value = [22, 22] Has membership card <= 0.5 entropy = 0.702
	samples = 21 value = [17, 4] entropy = 0.0 samples = 8 value = [8, 0] Rate the service of staff <= 2.5 entropy = 0.89 samples = 13 value = [9, 4] Rate the ambiance <= 2.5 entropy = 0.94 samples = 14 value = [5, 9] entropy = 0.94 entropy = 0.985 entropy = 0.985 entropy = 0.592
	entropy = 0.971 samples = 5 value = [2, 3] Learning Reflection
	Implementing Decision Trees I learned that implementing the decision tree algorithm provides valuable insights into the machine learning process. From data preparation to model evaluation, each step contributed to a deeper
	understanding of the algorithm's mechanics and its application in real-world scenarios. Data Preparation The journey began with loading and cleaning the dataset, ensuring that it was free from irrelevant information. This step emphasized the importance of data quality and its direct impact on model
	performance. Removing unnecessary columns and handling missing values laid a solid foundation for subsequent analysis. Feature Engineering
	While the code primarily focused on label encoding for categorical variables, it underscored the significance of transforming raw data into meaningful features. Feature engineering is a creative process that can enhance model performance by capturing relevant patterns and relationships within the data. Although basic in this implementation, it laid the groundwork for more advanced feature transformations in future projects.
	Modeling Creating decision tree classifiers using both Gini impurity and entropy criteria showcased the flexibility of the algorithm. Understanding the parameters and their effects on the model allowed for fine-tuning and optimization. Decision trees' interpretability made them an ideal choice for initial classification tasks, providing insights into the decision-making process behind the model's predictions.
	Model Evaluation Evaluating model performance involved metrics such as accuracy, confusion matrices, and classification reports. These metrics provided a comprehensive assessment of the model's strengths and weaknesses. Beyond accuracy, considering additional metrics like precision, recall, and F1-score offered a more nuanced understanding of the model's behavior, especially in handling imbalanced datasets.
	Handling Imbalanced Data The code addressed the challenge of imbalanced data by employing oversampling techniques to balance the dataset. This step ensured that the model remained unbiased and could generalize well
	to unseen data. Handling imbalanced data is crucial for building fair and accurate models, preventing biases that may skew predictions towards the majority class. Visualization
	Visualizing decision trees provided insights into the model's decision-making process. Interpreting the tree's structure and feature importance enhanced understanding and trust in the model's predictions. Visualization played a vital role in model interpretation, facilitating communication of results to stakeholders. Summary
	In conclusion, implementing the decision tree algorithm was a rewarding learning experience that highlighted the importance of data quality, feature engineering, model selection, evaluation metrics, handling imbalanced data, and visualization. Each step contributed to a deeper understanding of the machine learning workflow and its practical applications. Moving forward, these insights will

inform future projects, guiding the development of robust and reliable machine learning solutions.