Optimization - B. Math, 3rd Semester Assignment 3 — Odd Semester 2021-2022

Due date: November 11, 2021 (by 11:59 pm)

Note: Each question is worth 10 points, and subparts are worth equal points. Plagiarism is prohibited. But after sustained effort, if you cannot find a solution, you may discuss with others and write the solution in your own words **only after** you have understood it.

1. Consider the following optimization problem:

minimize
$$x_1 + |2x_2 + 5|$$

subject to

$$|x_1 + 1| + |x_2 - 1| \le 2.$$

Reformulate this as a linear programming problem. Recast the LP in standard form and canonical form.

- 2. (a) Describe a process, with justification, to obtain an optimal solution of a linear programming problem given an optimal solution of its standard form (canonical form, respectively).
 - (b) Show that a linear programming problem is bounded if and only if the corresponding linear program in standard form is bounded.
- 3. (a) Consider a polyhedron $P := \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{b}, \vec{x} \geq \vec{0}\}$ in standard form. Show that when P is non-empty, we may assume A is of full rank, without loss of generality.
 - (b) Suppose that $\{\vec{x} \in \mathbb{R}^n : A_1\vec{x} \leq \vec{b}_1\}$ and $\{\vec{x} \in \mathbb{R}^n : A_2\vec{x} \leq \vec{b}_2\}$ are two representations of the same (non-empty) polyhedron in \mathbb{R}^n . Show that A_1 and A_2 must have the same rank.
- 4. Suppose $P = \{\vec{x} \in \mathbb{R}^n : A\vec{x} \leq \vec{b}\}$ is a polyhedron. Show that $\vec{v} \in \mathbb{R}^n$ belongs to a k-dimensional face of P if and only if there are n-k linearly independent constraints among the constraints $A\vec{x} \leq \vec{b}$ that are tight at \vec{v} . (A face of P is said to have dimension k if its affine hull has dimension k.)

Optimization - B. Math, 3rd Semester: Sheet 3—Odd Semester 2021-2022

- 5. Consider the standard-form polyhedron $\{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{b}, \vec{x} \geq \vec{0}\}$, where A is a $m \times n$ matrix of full rank and $\vec{b} \in \mathbb{R}^m$.
 - (a) Consider a degenerate basic solution (that is, it has more than n-m zeroes). Is it true that it corresponds to two or more distinct bases? Prove or give a counterexample.
 - (b) Suppose that a basic solution \vec{v} is degenerate. Is it true that there is an adjacent/neighbouring basic solution \vec{w} (that is, there are n-1 linearly independent constraints that are both tight at \vec{v} and \vec{w}) which is degenerate? Prove or give a counterexample.
- 6. Consider the standard-form polyhedron $P := \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{b}, \vec{x} \geq \vec{0}\}$, where A is a $m \times n$ matrix of full rank and $\vec{b} \in \mathbb{R}^m$. For each one of the following statements, state whether it is true (provide justification) or false (provide counterexample).
 - (a) If n = m + 1, then P has at most two basic feasible solutions.
 - (b) The set of all optimal solutions is bounded.
 - (c) At every optimal solution, no more than m variables can be positive.
 - (d) If there are several optimal solutions, then there exist at least two basic feasible solutions that are optimal.
 - (e) Consider the problem of minimizing $max\{\langle \vec{c}, \vec{x} \rangle, \langle \vec{d}, \vec{x} \rangle\}$ over the set P. If this problem has an optimal solution, it must have an optimal solution which is an extreme point of P.

Page 2 of 2