Project Development Phase Model Performance Test

Date	27 June 2025	
Team ID	LTVIP2025TMID41438	
Project Name	GrainPalette - A Deep Learning Odyssey In Rice Type Classification Through Transfer Learning	
Maximum Marks		

Model Performance Testing:

Our project Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Trained a Deep Learning CNN model for Rice Type Classification	 Data Set: 5 rice types(Arborio, Bas mati, Ipsala, Jasmin e, Karacadag) Image Classification using CNN Train-Test Split: 80-20% Evaluation Metrics Used: Accuracy, Precision, Recall, F1-score, Confusion Matrix Final Test Accuracy:98.58% 	y_pred_probs = model.predict(x_test) y_pred = np.arguan(y_pred_probs, axisst) # Calculate and print the Confusion Matrix print('\text{\tex
2.	Accuracy	Training Accuracy – 99.33%(CNN)	historymodel.fri(s_trais_g_trais_quebet3_unliatin_data(s_unl_q_tal)
3.	Validation Accuracy	Validation Accuracy -98.40% (CNN)	histogrambd.filit, trias, trais, genissil, milistin, datel, val., val.) fgod. 178 17/1