Instituto de Computação – UNICAMP MC202 – Estruturas de Dados – 2º Semestre de 2020 https://www.ic.unicamp.br/~lehilton/mc202ab/

Exercícios de fixação - Escolhendo uma estrutura de dados

Questão 1. Você têm o seguinte problema: Em uma pesquisa, diversos dados são coletados. Cada dado é um número que corresponde a um vetor no espaço R^2 (isso é, é um par (x,y) de números). Uma vez coletados, é necessário realizar diversos experimentos. Escolha a estrutura de dados mais eficiente, justifique sua escolha (por que essa é adequada? e por que outras são menos apropriadas?) e escreva o algoritmo para as seguintes situações.

- (a) Se quisermos realizar repetidas buscas pelo par (x, y) com maior valor de x.
- (b) Se quisermos reiteradamente remover o par de pontos mais distantes.

Questão 2. Disserte:

- (a) Sobre árvores de busca, entre outros pontos, você deve abordar: a importância dessas árvores e qual o problema elas resolvem; o que é e porque queremos árvores balanceadas; defina árvores AVL, vermelho-preto e de afunilamento; compare a dificuldade de implementação de cada árvore.
- (b) Considere a seguinte afirmação: "Se, em um programa, a quantidade de vezes que realizamos operações sobre um conjunto (inserir, remover) for bastante reduzida, comparada com o número de acessos, então é vantajoso usar uma árvore-B na memória a usar uma árvore binária AVL, porque a altura da árvore binária é bem maior que a de uma árvore de ordem b=1000, isso é, $\log_2 n >> \log_b n$." Concorde ou discorde da afirmação. Escreva um pequeno parágrafo que justifique sua opinião.

Questão 3. Bia continua no seu projeto de listar todas as árvores da cidade. Infelizmente, as árvores mais velhas oferecem risco de tombamento e precisam ser cortadas. Para definir que árvores serão cortadas, Bia estipulou alguns critérios.

- Uma espécie é considerada *jovem* se pelo menos 60% de suas árvores tiverem idade no máximo 60% da maior idade entre todas as k espécies. Por exemplo, suponha que a maior idade é 100, então a espécie A com árvores de idades {10,20,30,40,50,60,70,80,90,100} é considerada jovem, enquanto a espécie B com árvores de idades {1,1,1,1,1,70,70,70,70,70,70} não é.
- Se uma espécie não é jovem, então a árvore mais velha dessa espécie deve ser cortada e removida.

Ajude Bia a listar que árvores precisam ser cortadas. Ela explicou porque não conseguiu fazer o algoritmo: "a minha dificuldade é que, quando eu marco a árvore mais velha de todas para ser cortada, outras espécies podem deixar de ser jovens". Escreva o algoritmo mais eficiente que conseguir para listar que árvores devem ser cortadas. Seu algoritmo recebe k listas com as árvores da cada espécie (em ordem decrescente de idade) e deve devolver a lista de todas as árvores a serem cortadas (em ordem decrescente de idade).

Encontrar um algoritmo eficiente para esse problema consiste principalmente em escolher as estruturas de dados mais adequadas. Depois de escrever seu algoritmo, circule a função que você *acha* que melhor estima o tempo de execução, onde m é o número de árvores: $\bullet O(m \log k) \quad \bullet O(m \log m) \quad \bullet O(mk) \quad \bullet O(m^2) \quad \bullet O(m^3) \quad \bullet$ mais lento que $O(m^3)$