

Circuitos de Alta Frecuencia - Examen Parcial 2

Octubre 14, 2021

Nombre: _______Exp.:_____

1. La siguiente red de dos puertos utiliza $R_S = 8.56 \Omega$ y $R_P = 141.8 \Omega$. Suponiendo una impedancia de referencia de 50 Ω , calcula sus parámetros $|S_{11}|$ y $|S_{21}|$ en escala decimal y en dB.

$$R_S$$
 R_S R_S R_P

2. La siguiente matriz de parámetros S fue medida a 1 GHz para una red de dos puertos. a) ¿La red es recíproca?; b) ¿La red tiene pérdidas?; c) ¿Cuánto vale el coeficiente de reflexión en el puerto 1 si el puerto 2 se termina con un circuito abierto?

$$S = \begin{bmatrix} 0.05^{2180^{\circ}} & 0.9^{245^{\circ}} \\ 0.9^{245^{\circ}} & 0.1^{290^{\circ}} \end{bmatrix}$$

www.iteso.mx

3. El generador de energía eléctrica mostrado abajo se modela con una fuente de voltaje $V_S = 110$ V rms a 60 Hz en serie con una resistencia interna $R_S = 1.25 \Omega$. El generador se conecta a una línea de transmisión mediante un transformador ideal con relación de transformación de 1:20. La línea de transmisión está conectada a una carga inductiva con $R_L = 82 \Omega$, y $L_L = 65$ mH, como se muestra abajo. La línea usa $Z_0 = 75 \Omega$, l = 380 km, y $v_p = c$ (velocidad de la luz). Usando parámetros ABCD, calcular el voltaje en la carga V_L (magnitud y ángulo) y la corriente en el generador I_S (magnitud y ángulo).

4. Las siguientes matrices son de parámetros S balanceados o diferenciales. Ambas matrices fueron medidas a la misma frecuencia y con la misma impedancia de referencia.

Circuito A						Circuito B				
S =	$0.15^{280^{\circ}}$	$0.9^{\angle 190^{\circ}}$	$0.2^{\angle -45^{\circ}}$	0	S –	$0.1^{27^{\circ}}$	$0.8^{\angle 45^{\circ}}$	$0.2^{\angle -45^{\circ}}$	$0.12^{\angle -85^{\circ}}$	
	0.9 ^{∠185°}	$0.12^{\angle 18^o}$	0	$0.35^{\angle 60^{\circ}}$		0.7 ^{∠45°}	0	$0.3^{\angle -95^{\circ}}$	$0.35^{\angle 60^{\rm o}}$	
	0.2 ^{∠-45°}	$0.15^{\angle 10^{\rm o}}$	0	$0.75^{\angle -35^{\circ}}$		0.2 ^{∠-45°}	0	0	$0.45^{\angle -35^{\circ}}$	
	$0.15^{\angle 10^{\circ}}$	$0.35^{\angle 60^{\circ}}$	$0.75^{\angle -35^{\circ}}$	0		0	$0.35^{\angle 60^{\circ}}$	$0.45^{\angle -35^{\circ}}$	0	

- a) ¿Cuál de los dos circuitos tiene mejor transmisión de información? ¿Por qué?
- b) ¿Cuál de los dos circuitos está mejor acoplado para la señal de información? ¿Por qué?
- c) ¿Cuál de los circuitos es más inmune al ruido? ¿Por qué?
- d) ¿Cuál de los dos circuitos genera más ruido? ¿Por qué?

EVALUACION: 1: 25%; 2: 25%; 3: 30%; 4: 20%