IPv6 Configuration

Carlo Vallati
Assistant Professor@ University of Pisa
c.vallati@iet.unipi.it

IPv6 address configuration

Configuration:

- interface Ethernet0/0
- ipv6 enable
 - (Automatically configure an IPv6 link-local address on the interface, and enable the interface for IPv6 processing)
- ipv6 address 2001:aaaa:bbbb:cccc::/64 eui-64
- ipv6 unicast-routing
 - Enable forwarding of IPv6 unicast data packets

Check configuration status:

- show ipv6 interface Ethernet0/0

IPv6 host configuration

Go to Linux Console 1:

- ifconfig
 - Address already obtained! When a Router Advertisement is received by a client, and IPv6 autoconfiguration is enabled (default on non-router), the client configures itself an IPv6 address according to the prefix contained in the advertisement.

Ping:

- ping6 [IPv6 address]
 - From Host, try both link-local and global
- Use wireshark to see what's going on the net!

RIPv6 Configuration

Configuration:

- ipv6 unicast-routing
 - Enable forwarding of IPv6 unicast data packets
- interface fastEthernet0/0
 - From Host, try both link-local and global
- ipv6 rip process1 enable

Check IPv6 Routing Table

- show ipv6 route

Do IT!

Configure the interfaces on R1, R2 and R3 connected to an IPv6 network and check connectivity using ping and wireshark

IPv6 Interoperability with IPv4

Interoperability with IPv4

- IPv6/IPv4 coexistence is unavoidable
- Techniques to ease the transition
 - Dual-stack
 - Allows IPv4 and IPv6 to coexist in the same devices and networks
 - Tunneling
 - Allows the transport of IPv6 traffic over the existing IPv4 infrastructure
 - Translation
 - Allows IPv6-only devices to communicate with IPv4-only nodes

Dual-stack techniques

- A dual-stack node has full support for both protocol versions
 - At least one address per protocol version
 - The protocol used depends
 - On the address type returned by DNS resolver

Dual-stack techniques

- A dual-stack network is an infrastructure in which both IPv4 and IPv6 forwarding is enabled on routers
 - Tables kept simultaneously with both routing protocols configured

Tunneling techniques

- IPv6 forwarding using an overall IPv4 infrastructure as a basis
 - IPv6 packets (header plus payload) are encapsulated into IPv4 packets

Tunneling techniques

- Different tunnel setups are possible
- Depending on the scenario, the tunnel entry and exit point can be either a host or a router

Tunnel entry point

- Router1 is the entry point of the tunnel
 - encapsulates the IPv6 packet as payload in an IPv4 packet
 - transmits the IPv4 packet to Router2 (if necessary, the IPv4 packet is fragmented)

Encapsulation

- Before encapsulation, the Hop Limit field in the IPv6 header is decremented by one
 - The IPv6-over-IPv4 tunnel is hidden, and appears as a single hop

Original IPv6 packet sent from source host to tunnel entry point.

Encapsulated packet sent to tunnel exit point.

Fields in IPv4 Header:

Header Length: Length of IPv4 header plus IPv6 header plus any

extension headers and IPv6 payload.

Time to Live (TTL): Implementation-specific.

Protocol: Value 41 (assigned for IPv6).

Source Address: IPv4 address of outgoing interface of tunnel entry point.

Destination Address: IPv4 address of tunnel exit point.

Tunnel exit point

- Router2 is the exit point of the tunnel
 - Protocol value = 41 → tunnel
 - Verify that the tunnel Source Address is acceptable
 - Verify that the IPv6 Source Address is valid
 - Decapsulates and forwards the IPv6 packet

Types of tunnels

- Configured tunneling (static)
 - Point-to-point bi-directional tunnels that need to be configured manually
- Automatic tunneling (dynamic)
 - Allows IPv6 nodes to communicate over an IPv4 infrastructure without the need for tunnel destination preconfiguration
 - IPv6 nodes use special addresses (e.g., 6to4 or ISATAP addresses), which carry an IPv4 address in some parts of the IPv6 address fields

Configured tunneling

- Administrative work overhead
 - Could be desirable for security reasons
 - IPsec, Generic Routing Encapsulation (GRE)
- Configuration
 - ingress filtering, deal with ICMPv4 or ICMPv6
 messages, tunnel MTU sizes, fragmentation, the header fields, Neighbor Discovery (ND) over tunnels

Automatic tunneling

- 6to4 (RFC 3056: Connection of IPv6 Domains via IPv4 Clouds)
 - IPv4 Internet treated as a unicast p2p link layer

6to4 addressing

- Special global prefix (2002::/16) for the 6to4 scheme
 - 32 bits: IPv4 address of the 6to4 gateway exit point of the tunnel
 - 16 bits: local network addressing
 - 64 bits: interface ID

3 bits	13 bits	32 bits	16 bits	64 bits
FP 001	TLA 0x0002	IPv4 Addr.	SLA ID	Interface ID
Prefix le		18 bits 2002:V4ADDR::/48		

6to4 addressing

- Router GW1 advertises the 6to4 prefix in RA messages
 - 2002:IPv4-address-GW1:subnet::/64

- HostA to HostB communication example
 - Destination address
 2002:IPv4-addr-GW2:subnet-HostB:Int-ID-HostB

- HostA to HostC communication example
 - Destination address, e.g., 2000:b00:c18:1::10
- Router GW1 will forward the packet to a 6to4 relay

6to4 relay


```
C:\Windows\system32\cmd.exe
C:\Users\mingozzi>tracert 192.88.99.1
Tracing route to 192.88.99.1 over a maximum of 30 hops
                                            131.114.58.1
         <1 ms
                      <1 ms
                                   <1 ms
 123456789011234
1113415
         <1 ms
                      <1 ms
                                   <1 ms
                                           131.114.186.33
         (1 ms
3 ms
7 ms
                                           131.114.192.205
                      <1 ms
                                   <1 ms
                                   <1 ms ru-unipi-rx1-pi1.pi1.garr.net [193.206.136
    7 ms rx1-pi1-rx2-mi2.mi2.garr.net [90.147.80.216
    7 ms rx2-mi2-r-mi2.mi2.garr.net [90.147.80.77]
    7 ms garr.mx1.mi12.it.geant.net [62.40.125.180]</pre>
                                            ru-unipi-rx1-pi1.pi1.garr.net [193.206.136.13]
                      <1 ms
                       7 ms
                                            rx1-pi1-rx2-mi2.mi2.garr.net [90.147.80.210]
                       7 ms
             ms
                       7 ms
             ms
                                           ae2.mx1.gen.ch.geant.net [62.40.98.112]
         16 ms
                      16 ms
                                   16 ms
         24 ms
29 ms
37 ms
37 ms
37 ms
                      24 ms
29 ms
37 ms
                                   24 ms
                                            ae4.mx1.par.fr.geant.net [62.40.98.152]
                                            ae1.mx1.lon.uk.geant.net [62.40.98.76]
ae0.mx1.ams.nl.geant.net [62.40.98.81]
                                   29 ms
37 ms
                      37 ms
37 ms
                                   37 ms
37 ms
                                            ae2.rt1.ams.nl.geant.net [62.40.98.114]
                                            surfnet-gw.rt1.ams.nl.geant.net [62.40.124.158]
         37 ms
                                   37 ms
                      37 ms
                                            V1131.sw4.amsterdam1.surf.net [145.145.19.170]
                      37 ms
                                            192.88.99.1
Trace complete.
C:\Users\mingozzi}_
```


- HostC to HostA communication example
 - route its packets to the nearest 6to4 relay router advertising the prefix 2002::/16

IPv6 Rapid Deployment – 6rd

- Developed for ISPs networks
 - 6rd prefix is assigned by the ISP (one per 6rd domain)
 - BR's anycast address shared within the 6rd domain

References

- RFC 2473 "Generic Packet Tunneling in IPv6 Specification"
- RFC 4213, "Basic Transition Mechanisms for IPv6 Hosts and Routers"
- RFC 3056, "Connection of IPv6 Domains via IPv4 Clouds (6to4)"
- RFC 5969, "IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) -- Protocol Specification"

Carlo Vallati
Assistant Professor@ University of Pisa
c.vallati@iet.unipi.it

6rd scenario

Operator IPv6 prefix 2001:DEAD::/32

6rd Tunneling Configuration

On R1 and R2 create a new tunnel interface :

- interface Tunnel0
- no ip address
- no ip redirects
- ipv6 enable
- tunnel source Ethernet0/0
- tunnel mode ipv6ip 6rd
- tunnel 6rd ipv4 prefix-len 16 suffix-len 8
- tunnel 6rd prefix 2001:DEAD::/32
- tunnel 6rd br 10.1.4.1

6rd Border Router Configuration

- On R3, the router connected to the IPv6
 internet configure the other end of the tunnel:
 - interface Tunnel0
 - no ip address
 - no ip redirects
 - ipv6 address 6RD-PREFIX ::/128 anycast
 - ipv6 enable
 - tunnel source Ethernet0/0
 - tunnel mode ipv6ip 6rd
 - tunnel 6rd ipv4 prefix-len 16 suffix-len 8
 - tunnel 6rd prefix 2001:DEAD::/32

6rd Border Router Configuration

- On R3, configure the interface towards the IPv6
 Internet with another address:
 - interface Ethernet0/1
 - no ip address
 - ipv6 address AAAA::1/64
 - ipv6 enable
- On all the routers configure the IPv4 interfaces accordingly

6rd Configuration

Add static routing information :

- On R1 and R2:
- ipv6 route ::/0 Tunnel0 2001:DEAD:400::1
- On R3:
- ipv6 route 2001:DEAD::/32 Tunnel0

Configure the local interface (R1 and R2):

- interface Ethernet0/1
- no ip address
- ipv6 address 2001:DEAD:100::1/64
- ipv6 enable

Finalize 6rd configuration:

- ipv6 general-prefix 6RD-PREFIX 6rd Tunnel0
- ipv6 unicast-routing

References

- IPv6 configuration:
 - http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/12-4t/ipv6-12-4t-book/ip6-addrg-bsc-con.html
- Tunnel 6rd:
- https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/configuration/xe-3s/ir-xe-3s-book/ip6-6rd-tunls-xe.pdf
- Tunnel 6to4:
 - http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/12-4t/ipv6-12-4t-book/ip6-tunnel.html#GUID-26B4E1CE-B36F-4C82-8A38-78199FBCA0DF