ÉCONOMÉTRIE (UGA S2)

CHAPITRE 6:
MOMENTS CONDITIONNELS, CHOIX DES MOMENTS, INSTRUMENTS
EFFICACES

Michal W. Urdanivia*

*Université de Grenoble Alpes, Faculté d'Économie, GAEL, e-mail: michal.wong-urdanivia@univ-grenoble-alpes.fr

5 février 2024

Contenu

2. La propriété des instruments estimés

3. Instruments efficaces, cas scalaire

4. Instruments efficaces, cas multivarié

5. Instruments efficaces et MMG

1. Motivation

 La Méthode des Moments Généralisée (MMG) a été conçue par Hansen (1982) pour exploiter toute condition de moment identifiant un vecteur de paramètres a₀, e.g.:

$$E[\mathbf{g}(\mathbf{w}_i;\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

pour construire un estimateur de a₀,

- à partir échantillon de variables aléatoires iid $\{\mathbf{w}_i; i=1,2,...,N\}$,
- \blacksquare que cette condition de moment *juste- ou sur-identifie* \mathbf{a}_0 .
- Problème : beaucoup de modèles économétriques donnent des conditions de moments conditionnels de la forme :

$$E[\mathbf{u}(\mathbf{y}_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0} \text{ avec } \mathbf{w}_i \equiv (\mathbf{y}_i, \mathbf{x}_i, \mathbf{z}_i).$$

Dans la suite on notera :

$$u_i(\mathbf{a}) \equiv u(y_i, \mathbf{x}_i; \mathbf{a})$$
 et $\mathbf{u}_i(\mathbf{a}) \equiv \mathbf{u}(\mathbf{y}_i, \mathbf{x}_i; \mathbf{a})$ (cas scalaire) (cas multivarié)

pour alléger les notations, comme on utilisait $\mathbf{g}_i(\mathbf{a}) \equiv \mathbf{g}(\mathbf{w}_i; \mathbf{a})$.

• On prend ici les notations $u_i(\mathbf{a})$ et $\mathbf{u}_i(\mathbf{a}) \equiv \mathbf{u}(\mathbf{y}_i, \mathbf{x}_i; \mathbf{a})$ car, dans la plupart des cas rencontrés en pratique, ces fonctions définissent des résidus :

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i \implies u_i(\mathbf{a}) \equiv y_i - f(\mathbf{x}_i; \mathbf{a}) \text{ et } u_i(\mathbf{a}_0) = u_i$$
(Cas d'une équation)

$$\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i; \mathbf{a}_0) + \mathbf{u}_i \implies \mathbf{u}_i(\mathbf{a}) \equiv \mathbf{y}_i - \mathbf{f}(\mathbf{x}_i; \mathbf{a}) \text{ et } \mathbf{u}_i(\mathbf{a}_0) = \mathbf{u}_i$$

(Cas d'un système d'équations)

Rappels. Résidus et termes d'erreur

 Si on considère un modèle dont la forme fonctionnelle est définie par l'équation :

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i$$

alors:

 $u_i(\mathbf{a}) \equiv y_i - f(\mathbf{x}_i; \mathbf{a})$ est le *résidu* de l'équation donnant y_i *calculé en* \mathbf{a} , *i.e.* une construction mathématique dérivée du modèle de y_i .

 $u_i = u_i(\mathbf{a}_0)$ est le *terme d'erreur* du modèle, *i.e.* une variable aléatoire qui fait partie du modèle.

On a l'égalité :

$$u_i = u_i(\mathbf{a}_0)$$

par le modèle de y_i qui donne $u_i = y_i - f(\mathbf{x}_i; \mathbf{a}_0)$ et par la définition de la fonction $u_i(.)$ qui donne $u_i(.) \equiv y_i - f(\mathbf{x}_i; .)$.

Problème: Passer de moments conditionnels à des moments « standards »

Construire une condition de moment de la forme :

$$E[\mathbf{g}(\mathbf{w}_i; \mathbf{a})] = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{a} = \mathbf{a}_0$$

à partir d'un condition de moment de la forme :

$$E[u(y_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0},$$

puis utiliser la MMG pour construire un estimateur de \mathbf{a}_0 .

Problème: Comment choisir $g(w_i;a)$?

- On analysera d'abord en détail le cas scalaire, i.e. le cas correspondant à une équation
 - Puis on donnera les résultats correspondant au cas multivarié, i.e. pour des systèmes d'équations, et ses spécificités

• On part de la caractérisation de $E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0}$:

Propriété. Caractérisation de
$$E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0}$$

$$E\left[u_{i}(\mathbf{a}_{0})/\mathbf{z}_{i}\right] = 0$$

$$\updownarrow$$

$$E\left[\rho(\mathbf{z}_{i})u_{i}(\mathbf{a}_{0})\right] = 0$$
pour toute fonction $\rho(.)$ telle que $E\left[\rho(\mathbf{z}_{i})u_{i}(\mathbf{a}_{0})\right] = 0$ existe (conditions de régularité).

- Le terme $E[\rho(\mathbf{z}_i)u_i(\mathbf{a}_0)]$ est un moment non conditionnel.
- L'équation $E[\rho(\mathbf{z}_i)u_i(\mathbf{a}_0)] = 0$ est une condition de moment, une *condition* d'orthogonalité, potentiellement identifiante pour \mathbf{a}_0 .

- Dans l'équation $E[\rho(\mathbf{z}_i)u_i(\mathbf{a}_0)] = 0$ le terme $\rho(\mathbf{z}_i)$ peut jouer le rôle d'*instrument*, *i.e.* une variable aléatoire utilisée pour construire une condition d'orthogonalité potentiellement identifiante pour \mathbf{a}_0 .
- La condition d'ordre du problème d'identification de a₀ implique qu'il faut au moins autant d'instruments que de paramètres à estimer.

Problème: Choisir un vecteur d'instruments (cas scalaire)

Choisir un vecteur d'instruments $\mathbf{r}(\mathbf{z}_i)$ tel que :

$$E[\mathbf{r}(\mathbf{z}_{i})u_{i}(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_{0}$$
ou
$$E[\mathbf{g}_{i}(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_{0}$$
avec $\mathbf{g}_{i}(\mathbf{a}) \equiv \mathbf{r}(\mathbf{z}_{i})u_{i}(\mathbf{a}) = \mathbf{g}(\mathbf{w}_{i}; \mathbf{a}) = \mathbf{r}(\mathbf{z}_{i})u(\mathbf{y}_{i}, \mathbf{x}_{i}; \mathbf{a})$

à partir d'une condition de moment de la forme $E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = 0$

■ Définir un *instrument* (ou un *vecteur d'instruments*) $\mathbf{r}(\mathbf{z}_i)$ tel que :

$$E[\mathbf{r}(\mathbf{z}_i)u_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

suppose que plusieurs conditions soient réunies. Ces conditions concernent plusieurs éléments du modèle résumé par :

$$E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = 0,$$

e.g. le modèle défini par :

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i \text{ avec } E[u_i/\mathbf{z}_i] = 0.$$

- 1. La forme de $f(.;\mathbf{a})$
- 2. Les variations et les relations entre les éléments de \mathbf{x}_i
- 3. Le contenu informatif des VI \mathbf{z}_i par rapport aux explicatives \mathbf{x}_i .
- 4. ... et la forme de la fonction $\mathbf{r}(.)$
- Il n'existe pas de fonction r(.) pour identifier a₀ si les conditions 1-3 ne sont pas réunies.

 De fait, on a déjà choisi des instruments pour construire des modèles de la forme :

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i \text{ avec } E[u_i/\mathbf{z}_i] = E[u_i] \equiv 0.$$

Exemple. Modèle linéaire à VI

Un modèle linéaire à VI est de la forme :

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i$$
 avec $E[u_i/\mathbf{z}_i] = E[u_i] \equiv 0$.

On a alors:

$$u_i(\mathbf{a}) \equiv y_i - \mathbf{a}' \mathbf{x}_i \text{ et } u_i = u_i(\mathbf{a}_0)$$

avec:

$$E[u_i/\mathbf{z}_i] = E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = 0 = E[u_i] \text{ avec } u_i(\mathbf{a}) \equiv y_i - \mathbf{a}'\mathbf{x}_i.$$

■ Dans le cadre de la MMG on a utilisé :

$$\mathbf{r}(\mathbf{z}_i) = \mathbf{z}_i$$
 et donc $\mathbf{g}_i(\mathbf{a}) = \mathbf{z}_i(y_i - \mathbf{a}'\mathbf{x}_i)$

■ Dans le cadre de la MM on a utilisé :

$$\mathbf{r}(\mathbf{z}_i) = EL[\mathbf{x}_i/\mathbf{z}_i]$$
 et donc $\mathbf{g}_i(\mathbf{a}) = EL[\mathbf{x}_i/\mathbf{z}_i](y_i - \mathbf{a}'\mathbf{x}_i)$

■ Dans les deux cas, il est nécessaire et suffisant que $rangE[\mathbf{x}_i\mathbf{z}_i'] = K$ pour avoir :

$$E[\mathbf{g}_i(\mathbf{a})] = E[\mathbf{r}(\mathbf{z}_i)u_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0,$$

ce qui suppose que $rangE[\mathbf{x}_i\mathbf{x}_i'] = K$.

Terminologie non établie

Ici on distingue les *variables instrumentales*, \mathbf{z}_i , des *instruments*, $\mathbf{r}(\mathbf{z}_i)$. Wooldridge (2010) désigne $\mathbf{r}(\mathbf{z}_i)$ sous le terme de VI généralisée.

- Les résultats qui suivent vont montrer qu'il existe un meilleur instrument que $\mathbf{r}(\mathbf{z}_i) = EL[\mathbf{x}_i/\mathbf{z}_i]$ à exploiter dans le cadre de la MM ou que $\mathbf{r}(\mathbf{z}_i) = \mathbf{z}_i$ dans le cadre de la MMG
- On pourrait choisir un instrument, $\rho(\mathbf{z}_i)$, de très grande dimension et fonder un estimateur MMG de \mathbf{a}_0 sur la condition :

$$E[\rho(\mathbf{z}_i)u_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0.$$

- Il suffit de choisir, de manière plus ou moins *ad hoc*, des fonctions de \mathbf{z}_i pour définir $\mathbf{\rho}(\mathbf{z}_i)$ mais ... on ne fait pas ça car :
 - Si la dimension de ρ(z_i) accroit l'efficacité de l'estimateur
 MMG de a₀ ... ce n'est que d'un *point de vue asymptotique*.
 - Tout estimateur MMG de \mathbf{a}_0 est *biaisé à distance finie* ... et ce biais croit avec la dimension de $\rho(\mathbf{z}_i)$.

Question: quel est le meilleur choix pour $\mathbf{r}(.)$? Il doit permettre de construire les estimateurs de \mathbf{a}_0 les plus précis.

Chamberlain (1987) a apporté une réponse définitive à cette question en définissant la notion d'

« Instruments optimaux » ou « Instruments efficaces »

- On donne ici un rôle pivotal aux « Instruments efficaces » ou « Instruments optimaux » de Chamberlain (1987), plus que dans les manuels habituels :
 - (i) Très utilisé en recherche appliquée, pour guider les choix d'instruments dans les modèles à variables explicatives endogènes.
 - (ii) Introduction directe du gain d'efficacité lié à la prise en compte de l'hétéroscédasticité et des corrélations des termes d'erreur dans les systèmes d'équations, dans un cadre général.
 - Limite : mêmes VI pour toutes les équations du système

2. La propriété des instruments estimés

• L'estimation des paramètres \mathbf{a}_0 d'un modèle de la forme :

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i \text{ avec } E[u_i/\mathbf{z}_i] = 0.$$

par la MMG passe par le choix d'instruments $\mathbf{r}(\mathbf{z}_i)$, *i.e.* un vecteur de fonctions des VI \mathbf{z}_i qui permettent de construire des conditions d'orthogonalité qu'on espère être estimantes :

$$E[\mathbf{r}(\mathbf{z}_i)u_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

avec:

$$u_i(\mathbf{a}) \equiv y_i - f(\mathbf{x}_i; \mathbf{a}) \text{ et } u_i = u_i(\mathbf{a}_0).$$

■ Problème pratique. Les instruments les plus efficaces pour l'estimation de an sont souvent des fonctions de paramètres inconnues, i.e. de la forme :

$$\mathbf{r}_0(\mathbf{z}_i) \equiv \mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)$$
 avec \mathbf{b}_0 inconnu.

- En particulier, l'instrument optimal au sens de Chamberlain pour le modèle précédent est souvent une fonction non triviale de a₀.
- Mais une propriété sur les estimateurs utilisant des instruments estimés s'avère très utile.
- On part ici du problème d'estimation de **a**₀ à partir de :

$$E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0}$$

On sait qu'il existe un vecteur de paramètres (dits auxiliaires) \mathbf{b}_0 et une fonction $\mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)$ telle que :

$$E[\mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)u_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0,$$

i.e. $\mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)$ est un instrument permettant d'identifier \mathbf{a}_0 (\mathbf{b}_0 peut contenir tout ou partie de \mathbf{a}_0 .

• On ne connaît pas \mathbf{b}_0 mais on dispose d'un estimateur asymptotiquement normal (donc convergent) de \mathbf{b}_0 , $\tilde{\mathbf{b}}_N$.

Propriété. Instruments estimés

Soit $\{\mathbf{w}_i; i=1,2,...,N\}$ un échantillon de variables aléatoires iid telles que :

$$E[\mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)u(y_i, \mathbf{x}_i; \mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0,$$

On suppose en outre que $\tilde{\mathbf{b}}_N$ est un estimateur as. normal de \mathbf{b}_0 et on note $\mathbf{g}(\mathbf{w}_i; \mathbf{a}; \mathbf{b}) \equiv \mathbf{r}(\mathbf{z}_i; \mathbf{b}) u(y_i, \mathbf{x}_i; \mathbf{a})$ et :

$$\hat{\mathbf{a}}_{\scriptscriptstyle N}^{\scriptscriptstyle MMG}(\tilde{\mathbf{M}}_{\scriptscriptstyle N};\mathbf{b}) \equiv \arg\min_{\mathbf{a}} \overline{\mathbf{g}}_{\scriptscriptstyle N}(\mathbf{a};\mathbf{b})' \tilde{\mathbf{M}}_{\scriptscriptstyle N}^{\scriptscriptstyle -1} \overline{\mathbf{g}}_{\scriptscriptstyle N}(\mathbf{a};\mathbf{b}) \text{ où } p \lim_{\scriptscriptstyle N \to +\infty} \tilde{\mathbf{M}}_{\scriptscriptstyle N} = \mathbf{M}_{\scriptscriptstyle 0}$$

avec \mathbf{M}_0 définie positive. Les conditions de régularité usuelles sont supposées satisfaites.

Les estimateurs $\hat{\mathbf{a}}_{N}^{MMG}(\tilde{\mathbf{M}}_{N};\mathbf{b}_{0})$ et $\hat{\mathbf{a}}_{N}^{MMG}(\tilde{\mathbf{M}}_{N};\tilde{\mathbf{b}}_{N})$ ont des propriétés asymptotiques identiques.

Dit autrement, on peut « remplacer » \mathbf{b}_0 par $\tilde{\mathbf{b}}_N$ dans l'instrument $\mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)$ sans que cela n'affecte les propriétés *asymptotiques* de l'estimateur utilisé.

Interprétation

Qu'on utilise directement l'instrument $\mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)$ ou son estimateur $\mathbf{r}(\mathbf{z}_i; \tilde{\mathbf{b}}_N)$, on obtient des estimateurs de la MM(G) de \mathbf{a}_0 qui ont les mêmes propriétés asymptotiques.

En particulier, ces estimateurs ont la même distribution asymptotique, *i.e.* ils sont as. équivalents.

Concrètement, on peut négliger le fait que \mathbf{b}_0 soit remplacé par un estimateur, pourvu que cet estimateur soit as. normal.

 Cette propriété sera démontrée plus tard, lors de la présentation de l'estimation par étapes.

- La propriété des instruments estimés est une des exceptions à une règle qui veut que la distribution as. d'un estimateur (dit de second étape) construit à partir d'un autre estimateur (dit de première étape) dépend :
 - De la distribution as. de l'estimateur de première étape
 - De la manière dont le paramètre estimé en première affecte le problème définissant le calcul de l'estimateur de seconde étape
- De manière générale, si un estimateur de seconde étape est construit à partir d'un estimateur convergent et as. normal de première étape alors :
 - L'estimateur de seconde étape est toujours convergent.
 - La distribution asymptotique de l'estimateur de seconde étape est affectée par le processus d'estimation par étapes ...
 - ... sauf dans des cas particuliers, dont celui des instruments estimés.

Propriété. Estimation par étapes, introduction

Soit $\{\mathbf{w}_i; i=1,2,...,N\}$ un échantillon de variables aléatoires iid telles que :

$$E[\mathbf{g}(\mathbf{w}_i; \mathbf{b}_0; \mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0,$$

On suppose en outre que $\tilde{\mathbf{b}}_N$ est un estimateur as. normal de \mathbf{b}_0 et on note :

$$\hat{\mathbf{a}}_{\scriptscriptstyle N}^{MMG}(\tilde{\mathbf{M}}_{\scriptscriptstyle N};\mathbf{b}) \equiv \arg\min_{\mathbf{a}} \overline{\mathbf{g}}_{\scriptscriptstyle N}(\mathbf{a};\mathbf{b})' \tilde{\mathbf{M}}_{\scriptscriptstyle N}^{-1} \overline{\mathbf{g}}_{\scriptscriptstyle N}(\mathbf{a};\mathbf{b}) \text{ où } p \lim_{\scriptscriptstyle N \to +\infty} \tilde{\mathbf{M}}_{\scriptscriptstyle N} = \mathbf{M}_{\scriptscriptstyle 0}$$

avec \mathbf{M}_0 définie positive. Les conditions de régularité usuelles sont supposées satisfaites. Bien entendu, $\hat{\mathbf{a}}_N^{MMG}(\tilde{\mathbf{M}}_N;\mathbf{b}_0)$ a les propriétés habituelles d'un estimateur de la MMG de \mathbf{a}_0 .

(i) Convergence et normalité as. $\hat{\mathbf{a}}_{N}^{MMG}(\tilde{\mathbf{M}}_{N}; \tilde{\mathbf{b}}_{N})$ est un estimateur asymptotiquement normal, et donc convergent, de \mathbf{a}_{0} .

- (ii) **Distributions as. différentes.** $\hat{\mathbf{a}}_{N}^{MMG}(\tilde{\mathbf{M}}_{N}; \tilde{\mathbf{b}}_{N})$ n'a, en général, pas la même distribution asymptotique que $\hat{\mathbf{a}}_{N}^{MMG}(\tilde{\mathbf{M}}_{N}; \mathbf{b}_{0})$.
- (iii) Distributions as. identiques. Les estimateurs $\hat{\mathbf{a}}_{N}^{MMG}(\tilde{\mathbf{M}}_{N}, \tilde{\mathbf{b}}_{N})$ et $\hat{\mathbf{a}}_{N}^{MMG}(\tilde{\mathbf{M}}_{N}, \mathbf{b}_{0})$ ont la même distribution asymptotique si et seulement si :

$$E\left[\frac{\partial \mathbf{g}(\mathbf{w}_i; \mathbf{b}_0; \mathbf{a}_0)}{\partial \mathbf{b'}}\right] = \mathbf{0}.$$

(iv) Instruments estimés. Dans le cas où $E[\mathbf{g}(\mathbf{w}_i; \mathbf{b}_0; \mathbf{a}_0)] = \mathbf{0}$ décrit une condition d'orthogonalité où :

$$\mathbf{g}(\mathbf{w}_i; \mathbf{a}; \mathbf{b}) \equiv \mathbf{r}(\mathbf{z}_i; \mathbf{b}) u(y_i, \mathbf{x}_i; \mathbf{a}) \text{ et } E[u(y_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = 0$$

on a alors:

$$E\left[\frac{\partial \mathbf{g}(\mathbf{w}_i; \mathbf{b}_0; \mathbf{a}_0)}{\partial \mathbf{b'}}\right] = \mathbf{0}.$$

- Pour le point (iv):
 - On sait que $E[\mathbf{g}(\mathbf{w}_i; \mathbf{b}_0; \mathbf{a}_0)] = \mathbf{0}$ décrit une condition d'orthogonalité où :

$$\mathbf{g}(\mathbf{w}_i;\mathbf{a};\mathbf{b}) \equiv \mathbf{r}(\mathbf{z}_i;\mathbf{b})u(y_i,\mathbf{x}_i;\mathbf{a})$$

avec:

$$E[u(y_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = 0$$

On a alors:

$$E[\mathbf{r}(\mathbf{z}_i;\mathbf{b})u(y_i,\mathbf{x}_i;\mathbf{a}_0)] = \mathbf{0}$$

et finalement:

$$E\left[\frac{\partial \mathbf{g}(\mathbf{w}_i; \mathbf{b}_0; \mathbf{a}_0)}{\partial \mathbf{b}'}\right] = E\left[\frac{\partial \mathbf{r}(\mathbf{z}_i; \mathbf{b}_0)}{\partial \mathbf{b}'} u(y_i, \mathbf{x}_i; \mathbf{a}_0)\right] = \mathbf{0}$$

par l'exogénéité des \mathbf{z}_i par rapport à $u(y_i, \mathbf{x}_i; \mathbf{a}_0)$.

3. Instruments efficaces, cas scalaire

3.1. Motivations : rappels

Problème général

Comment exploiter une condition de moment conditionnel :

$$E[u(y_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0},$$

pour construire un estimateur de \mathbf{a}_0 ?

Cadre d'analyse

On utilise le cadre de la MMG et on utilise des instruments $\mathbf{r}(\mathbf{z}_i)$ tels que:

$$E[\mathbf{g}_i(\mathbf{a})] = E[\mathbf{r}(\mathbf{z}_i)u_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

Recherche de l'efficacité d'estimation

On cherche à déterminer l'instrument $\mathbf{r}^+(\mathbf{z}_i)$ tel que l'estimateur MMG de \mathbf{a}_0 fondé sur la condition de moment :

$$E[\mathbf{g}_{i}^{+}(\mathbf{a})] = E[\mathbf{r}^{+}(\mathbf{z}_{i})u_{i}(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_{0}$$

est efficace dans la classe des estimateurs MMG fondés sur une condition d'orthogonalité construite avec u_i(a).

- Estimateurs MMG optimaux, en principe ...
 - ... on ne se servira que d'estimateurs **MM** car juste-identification.
- L'efficacité est définie par rapport une classe d'estimateurs MM(G) ...
 - ... mais le résultat de Chamberlain est bien plus général.
- L'« instrument efficace » ... n'est pas unique.
- L'efficacité sera toujours relative aux VI, z_i, utilisées comme ensemble d'information du modèle considéré.

3.2. Les instruments efficaces pour $E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0}$

Propriété. Instruments efficaces, cas scalaire

Soit $\{\mathbf{w}_i; i=1,2,...,N\}$ un échantillon de variables aléatoires iid telles que :

(i)
$$E[u(y_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = 0$$
 et $E[u_i(\mathbf{a}_0)^2/\mathbf{z}_i] > 0$,

(ii)
$$E\left[\frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}} \frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}'} / \mathbf{z}_i\right]$$
 est de rang $K \equiv \dim \mathbf{a}$,

alors l'estimateur de la MM de \mathbf{a}_0 fondé sur la condition de moment :

$$E\left[E\left[\frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}}/\mathbf{z}_i\right]E\left[u_i(\mathbf{a}_0)^2/\mathbf{z}_i\right]^{-1}u_i(\mathbf{a}_0)\right] = \mathbf{0}_{K \times 1}$$

est as. efficace dans la classe des estimateurs as. normaux de \mathbf{a}_0 sous les conditions de régularité usuelles.

Remarques générales

• Le terme :

$$\mathbf{r}^{+}(\mathbf{z}_{i}) \equiv E \left[\frac{\partial u_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}} / \mathbf{z}_{i} \right] E \left[u_{i}(\mathbf{a}_{0})^{2} / \mathbf{z}_{i} \right]^{-1}$$

est désigné sous le terme d'instrument efficace (ou optimal).

- $\mathbf{r}^+(\mathbf{z}_i)$ est exogène car c'est une fonction des variables exogènes \mathbf{z}_i
- La condition $E[\mathbf{r}^+(\mathbf{z}_i)u_i(\mathbf{a}_0)] = \mathbf{0}$ juste-identifie \mathbf{a}_0 , pas besoin de la MMG.
- \blacksquare Cette propriété est très « puissante » car l'estimateur MM de \mathbf{a}_0 défini par :

$$\hat{\mathbf{a}}_{N}^{MM}$$
 solution en \mathbf{a} de $N^{-1} \sum_{i=1}^{N} \mathbf{r}^{+}(\mathbf{z}_{i}) u_{i}(\mathbf{a}) = \mathbf{0}_{K \times 1}$

est l'estimateur as. normal le plus efficace de \mathbf{a}_0 .

Définition. Borne d'efficacité semi-paramétrique

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MM} - \mathbf{a}_{0}) \xrightarrow[N \to +\infty]{L} \mathcal{N}\left(\mathbf{0}; \boldsymbol{\Sigma}_{0}^{*}\right)$$

où:

$$\boldsymbol{\Sigma}_{0}^{*} \equiv E \left[\frac{\partial u_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}} E \left[u_{i}(\mathbf{a}_{0})^{2} / \mathbf{z}_{i} \right]^{-1} \frac{\partial u_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}'} \right]^{-1}.$$

 Σ_0^* est la *borne minimax* ou *borne d'efficacité semi-paramétrique* (des estimateurs as. normaux de \mathbf{a}_0).

Propriété. Transformation affine non singulière des instruments efficaces

Si **B** est une matrice carrée de dimension K et de rang K, alors $\mathbf{Br}^+(\mathbf{z}_i)$ est également un instrument efficace.

- La démonstration de ces propriétés est ardue et peu instructive. Ceci dit, la forme de r⁺(z_i) est relativement intuitive.
- Dans la suite on notera :

$$\gamma_i(\mathbf{a}) \equiv \frac{\partial u_i(\mathbf{a})}{\partial \mathbf{a}},$$

$$\gamma_0(\mathbf{z}_i) \equiv E \left[\frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}} / \mathbf{z}_i \right] = E[\gamma_i(\mathbf{a}_0) / \mathbf{z}_i]$$

et:

$$\omega_0(\mathbf{z}_i) \equiv E \left[u_i(\mathbf{a}_0)^2 / \mathbf{z}_i \right]$$

et finalement:

$$\mathbf{r}^{+}(\mathbf{z}_{i}) = \boldsymbol{\gamma}_{0}(\mathbf{z}_{i})\boldsymbol{\omega}_{0}(\mathbf{z}_{i})^{-1}.$$

Interprétation, $\omega_0(\mathbf{z}_i) \equiv E \left[u_i(\mathbf{a}_0)^2 / \mathbf{z}_i \right]$

$$\mathbf{g}_{i}^{+}(\mathbf{a}) = \underbrace{\boldsymbol{\gamma}_{0}(\mathbf{z}_{i})\boldsymbol{\omega}_{0}(\mathbf{z}_{i})^{-1}}_{\mathbf{r}^{+}(\mathbf{z}_{i})} \boldsymbol{u}_{i}(\mathbf{a})$$

- $\omega_0(\mathbf{z}_i)$ est la variance conditionnelle en \mathbf{z}_i de $u_i = u_i(\mathbf{a}_0)$
 - Si $y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i$ avec $E[u_i/\mathbf{z}_i] = E[u_i] \equiv 0$ alors $u_i(\mathbf{a}_0) = u_i$.
 - $\omega_0(\mathbf{z}_i)$ tient compte de l'éventuelle *hétéroscédasticité conditionnelle* de $u_i(\mathbf{a}_0) = u_i$.
 - Correction pour l'hétéroscédasticité des *MCG* ou des *MCQG*.

Intuition. Multiplier $u_i(\mathbf{a})$ par $\omega_0(\mathbf{z}_i)^{-1}$ revient à « sur-pondérer » les observations les moins bruitées, *i.e.* les plus « fiables ».

Rmq. Dans le critère de la MMG, *la matrice* $\tilde{\mathbf{W}}_N^{-1}$ *pondère des conditions de moment*, les $\overline{\mathbf{g}}_N(\mathbf{a}) \equiv N^{-1} \sum_{i=1}^N \mathbf{g}_i(\mathbf{a})$

Ici on pondère des observations : les $\omega_0(\mathbf{z}_i)^{-1}$ pondèrent les $u_i(\mathbf{a})$ dans :

$$\overline{\mathbf{g}}_{N}(\mathbf{a}) \equiv N^{-1} \sum_{i=1}^{N} \gamma_{0}(\mathbf{z}_{i}) \omega_{0}(\mathbf{z}_{i})^{-1} u_{i}(\mathbf{a}).$$

Les $\omega_0(\mathbf{z}_i)^{-1}$ pondèrent les $\gamma_0(\mathbf{z}_i)u_i(\mathbf{a})$ dans :

$$\overline{\mathbf{g}}_{N}(\mathbf{a}) \equiv N^{-1} \sum_{i=1}^{N} \gamma_{0}(\mathbf{z}_{i}) \omega_{0}(\mathbf{z}_{i})^{-1} h_{i}(\mathbf{a}).$$

Interprétation de
$$\gamma_0(\mathbf{z}_i) \equiv E \left[\frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}} / \mathbf{z}_i \right]$$

$$\mathbf{g}_{i}^{+}(\mathbf{a}) = \underbrace{\gamma_{0}(\mathbf{z}_{i})\omega_{0}(\mathbf{z}_{i})^{-1}}_{\mathbf{r}^{+}(\mathbf{z}_{i})} u_{i}(\mathbf{a})$$

■ Le terme $\omega_0(\mathbf{z}_i)^{-1}$ joue essentiellement un rôle de *pondération*, *i.e.* de prise en compte de l'*hétéroscédasticité de* $u_i(\mathbf{a}_0)$.

Le terme $\gamma_0(\mathbf{z}_i)$ porte la « structure » de $\mathbf{r}^+(\mathbf{z}_i) = \gamma_0(\mathbf{z}_i)\omega_0(\mathbf{z}_i)^{-1}$, il est essentiel pour l'identification de \mathbf{a}_0 .

- $\gamma_0(\mathbf{z}_i)$ est un bon instrument car c'est la *fonction de* \mathbf{z}_i *qui a la plus* « *forte* » *corrélation avec* $u_i(\mathbf{a})$ pour \mathbf{a} autour de \mathbf{a}_0
- On peut donner l'intuition de l'« optimalité » de $\gamma_0(\mathbf{z}_i)$ en tant qu'instrument en linéarisant le problème d'estimation.

• On doit choisir un instrument $\mathbf{r}(\mathbf{z}_i)$ pour $u_i(\mathbf{a}_0)$ de telle sorte à ce que l'estimateur de la MM de \mathbf{a}_0 fondé sur :

$$E[\mathbf{r}(\mathbf{z}_i)u_i(\mathbf{a}_0)] = \mathbf{0} = Cov[\mathbf{r}(\mathbf{z}_i);u_i(\mathbf{a}_0)]$$

- (i) identifie \mathbf{a}_0
- et:
- (ii) soit le plus efficace possible.
- Pour l'identification il faut que $Cov[\mathbf{r}(\mathbf{z}_i);u_i(\mathbf{a})] \neq \mathbf{0}$ si $\mathbf{a} \neq \mathbf{a}_0$, donc il faut que $\mathbf{r}(\mathbf{z}_i)$ soit *corrélé au mieux* à $u_i(\mathbf{a})$ lorsque $\mathbf{a} \neq \mathbf{a}_0$, et ce même lorsque \mathbf{a} est très proche de \mathbf{a}_0 .
 - *Intuition*: $\mathbf{r}(\mathbf{z}_i)$ doit permettre de « bien » détecter si $\mathbf{a} \neq \mathbf{a}_0$.
 - Intuition: plus r(z_i) est corrélé à u_i(a) pour a ≠ a₀, plus r(z_i) est efficace en tant qu'instrument d'identification.

• On veut $\mathbf{r}(\mathbf{z}_i)$ tel que :

$$Cov[\mathbf{r}(\mathbf{z}_i); u_i(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

lorsque \mathbf{a} est au voisinage de \mathbf{a}_0 .

■ Développement limité au premier ordre en \mathbf{a} de $u_i(\mathbf{a})$ autour de \mathbf{a}_0 :

$$u_i(\mathbf{a}) \simeq u_i(\mathbf{a}_0) + \frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}'}(\mathbf{a} - \mathbf{a}_0)$$

or $E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = 0$ implique que $Cov[\mathbf{r}(\mathbf{z}_i); u_i(\mathbf{a}_0)] = \mathbf{0}$ et donc que :

$$Cov[\mathbf{r}(\mathbf{z}_i); u_i(\mathbf{a})] \simeq Cov[\mathbf{r}(\mathbf{z}_i); \frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}}](\mathbf{a} - \mathbf{a}_0)$$

• On a:

$$\gamma_0(\mathbf{z}_i) = E \left[\frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}} / \mathbf{z}_i \right] \Rightarrow Cov \left[\mathbf{r}(\mathbf{z}_i); \frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}} \right] = Cov \left[\mathbf{r}(\mathbf{z}_i); \gamma_0(\mathbf{z}_i) \right].$$

Avec :

$$Cov[\mathbf{r}(\mathbf{z}_i); u_i(\mathbf{a})] \simeq Cov[\mathbf{r}(\mathbf{z}_i); \gamma_0(\mathbf{z}_i)](\mathbf{a} - \mathbf{a}_0)$$

on voit que:

un des « meilleurs » candidats pour
$$\mathbf{r}^+(\mathbf{z}_i)$$
 est $\gamma_0(\mathbf{z}_i) = E \left[\frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}} / \mathbf{z}_i \right]$.

• On veut $Cov[\mathbf{r}^+(\mathbf{z}_i); \gamma_0(\mathbf{z}_i)](\mathbf{a} - \mathbf{a}_0) \neq \mathbf{0}$ lorsque $\mathbf{a} \neq \mathbf{a}_0$. Or on a:

$$Cov[\mathbf{r}^+(\mathbf{z}_i); \mathbf{\gamma}_0(\mathbf{z}_i)] = V[\mathbf{\gamma}_0(\mathbf{z}_i)] \text{ avec } \mathbf{r}^+(\mathbf{z}_i) = \mathbf{\gamma}_0(\mathbf{z}_i)$$

et si $V[\gamma_0(\mathbf{z}_i)]$ est inversible alors :

$$Cov[\mathbf{r}^+(\mathbf{z}_i); \boldsymbol{\gamma}_0(\mathbf{z}_i)](\mathbf{a} - \mathbf{a}_0) = V[\boldsymbol{\gamma}_0(\mathbf{z}_i)](\mathbf{a} - \mathbf{a}_0) = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0.$$

$$\gamma_0(\mathbf{z}_i) = E\left[\frac{\partial u_i(\mathbf{a}_0)}{\partial \mathbf{a}} / \mathbf{z}_i\right]$$
 est un bon instrument car c'est la fonction de \mathbf{z}_i qui a la plus « forte » corrélation avec $u_i(\mathbf{a})$ pour \mathbf{a} autour de \mathbf{a}_0 .

- La condition d'inversibilité de $E[\gamma_0(\mathbf{z}_i)\gamma_0(\mathbf{z}_i)']$ (condition (ii) de la propriété) est équivalente à celle de $V[\gamma_0(\mathbf{z}_i)]$. C'est une condition de rang locale, i.e. une condition locale d'identification.
 - C'est la condition locale de rang, condition locale d'identification, sur le terme G₀ dans la MM(G).
 - Elle est analogue à la condition de rang, $rangE[\mathbf{z}_i\mathbf{x}_i'] = K$, nécessaire à l'identification de \mathbf{a}_0 par l'estimateur des 2MC dans le modèle linéaire à VI.
 - Pour un modèle linéaire à VI cette condition est équivalente à $rangE[E[\mathbf{x}_i/\mathbf{z}_i]E[\mathbf{x}_i'/\mathbf{z}_i]] = K$.

3.3. Quelques exemples

- Objectifs : Montrer comment utiliser le résultat de Chamberlain, en particulier :
 - Illustrer le rôle simplificateur des hypothèses
 - d'exogénéité
 - d'homoscédasticité (cas une seule équation)
 - de linéarité
 - Comment gérer les termes d'erreur héteroscédastiques lorsque l'hétéroscédasticité est de forme inconnue
 - Montrer que l'instrument optimal dépend en général de paramètres inconnus, ce qui montre l'utilité de la propriété des instruments estimés

Remarques générales

- La MMG a permis de « systématiser » la construction d'estimateurs robustes à l'hétéroscédasticité.
 - Elle a donné un cadre général à des résultats déjà établis, notamment par White.
- Sinon, le résultat de Chamberlain permet de ré-interpréter beaucoup de résultats concernant les estimateurs des MC, les MCG, les MCQG et des 2MC.

Exemple 1. Modèle de régression linéaire

• Un modèle de régression linéaire est de la forme :

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i$$
 avec $E[u_i/\mathbf{x}_i] = E[u_i] \equiv 0$.

On a alors:

$$E[y_i - \mathbf{a}_0' \mathbf{x}_i / \mathbf{x}_i] = 0$$

avec:

$$u_i(\mathbf{a}) \equiv y_i - \mathbf{a}' \mathbf{x}_i, \ \mathbf{z}_i = \mathbf{x}_i \text{ et } u_i = y_i - \mathbf{a}'_0 \mathbf{x}_i = u_i(\mathbf{a}_0).$$

• On a:

$$E[u_i(\mathbf{a}_0)/\mathbf{x}_i] = E[u_i/\mathbf{x}_i] = 0$$

La forme de l'instrument optimal est donnée par :

$$\mathbf{r}_{i}^{+} \equiv E \left[\frac{\partial u_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}} / \mathbf{x}_{i} \right] E \left[u_{i}(\mathbf{a}_{0})^{2} / \mathbf{x}_{i} \right]^{-1} = -\mathbf{x}_{i} E \left[u_{i}^{2} / \mathbf{x}_{i} \right]^{-1}$$

- Il y a plusieurs cas à considérer selon que :
 - $E[u_i^2/\mathbf{x}_i] = \omega_0$: homoscédasticité des $u_i = y_i \mathbf{a}_0'\mathbf{x}_i = u_i(\mathbf{a}_0)$
 - $E\left[u_i^2/\mathbf{x}_i\right] = \omega(\mathbf{x}_i; \mathbf{b}_0)$ avec $\omega(.)$ et \mathbf{b}_0 connus : hétéroscédasticité conditionnelle de forme connue (éventuellement à un terme positif multiplicatif près)
 - $E\left[u_i^2/\mathbf{x}_i\right] = \omega(\mathbf{x}_i)$ et $\omega(.)$ inconnue : hétéroscédasticité conditionnelle de forme inconnue
- Le dernier cas utilise la propriété des instruments estimés :
 - $E\left[u_i^2/\mathbf{x}_i\right] = \omega(\mathbf{x}_i; \mathbf{b}_0)$, $\omega(.)$ connue, \mathbf{b}_0 inconnu mais $\tilde{\mathbf{b}}_N$ est un estimateur as. normal de \mathbf{b}_0 : hétéroscédasticité conditionnelle de forme connue estimée.

1a. MRL et homoscédasticité

■ On a:

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i/\mathbf{x}_i] = E[u_i] \equiv 0 \text{ et } E[u_i^2/\mathbf{x}_i] = \omega_0$$
 et:
$$\mathbf{r}_i^+ = -\mathbf{x}_i \omega_0^{-1}$$

L'estimateur de la MM de **a**₀ fondé sur :

$$E[\mathbf{r}_i^+ u_i(\mathbf{a}_0)] = \mathbf{0} \iff E[\mathbf{x}_i(y_i - \mathbf{x}_i'\mathbf{a}_0)] = \mathbf{0} \iff E[\mathbf{g}_i^+(\mathbf{a}_0)] = \mathbf{0}$$

est l'estimateur des MCO de \mathbf{a}_0 , $\hat{\mathbf{a}}_N^{MCO}$.

■ *Chamberlain*. Dans le modèle précédent, $\hat{\mathbf{a}}_{N}^{MCO}$ est as. efficace dans la classe des estimateurs as. normaux de \mathbf{a}_{0} .

■ *MMG*. On a :

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MCO} - \mathbf{a}_{0}) \xrightarrow[N \to +\infty]{L} \mathcal{N}\left(\mathbf{0}; \boldsymbol{\Sigma}_{0}\right) \text{ avec } \boldsymbol{\Sigma}_{0} \equiv \left(\mathbf{G}_{0}^{\prime} \mathbf{W}_{0}^{-1} \mathbf{G}_{0}\right)^{-1}$$

avec:

$$\mathbf{W}_{0} \equiv E\left[\mathbf{g}_{i}(\mathbf{a}_{0})\mathbf{g}_{i}(\mathbf{a}_{0})'\right] = E\left[\mathbf{x}_{i}u_{i}^{2}\mathbf{x}_{i}'\right] = \omega_{0}E\left[\mathbf{x}_{i}\mathbf{x}_{i}'\right] (homoscédasticité)$$

$$\mathbf{G}_0 \equiv E \left[\frac{\partial \mathbf{g}_i(\mathbf{a}_0)'}{\partial \mathbf{a}} \right] = -E[\mathbf{x}_i \mathbf{x}_i']$$

et donc:

$$\Sigma_0 = \left(\mathbf{G}_0' \mathbf{W}_0^{-1} \mathbf{G}_0\right)^{-1} = \omega_0 E \left[\mathbf{x}_i \mathbf{x}_i'\right]^{-1} \text{ avec } \omega_0 = E \left[\left(y_i - \mathbf{x}_i' \mathbf{a}_0\right)^2\right].$$

■ MM. (Juste-identification). On a :

$$\sqrt{N} (\hat{\mathbf{a}}_{N}^{MCO} - \mathbf{a}_{0}) \xrightarrow{L} \mathcal{N} (\mathbf{0}; \boldsymbol{\Sigma}_{0}) \text{ avec } \boldsymbol{\Sigma}_{0} \equiv (\mathbf{G}_{0})^{-1} \mathbf{W}_{0} (\mathbf{G}_{0}')^{-1}$$

avec:

$$\Sigma_0 \equiv \left(\mathbf{G}_0' \mathbf{W}_0^{-1} \mathbf{G}_0\right)^{-1} = \omega_0 E \left[\mathbf{x}_i \mathbf{x}_i'\right]^{-1}.$$

1b. MRL et hétéroscédasticité de forme connue

■ On a:

et:

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i/\mathbf{x}_i] = E[u_i] \equiv 0 \text{ et } E[u_i^2/\mathbf{x}_i] = \omega(\mathbf{x}_i; \mathbf{b}_0)$$

$$\mathbf{r}_i^+ = -\mathbf{x}_i \omega(\mathbf{x}_i; \mathbf{b}_0)^{-1}$$

L'estimateur de la MM de **a**₀ fondé sur :

$$E\Big[\mathbf{r}_i^+u_i(\mathbf{a}_0)\Big] = \mathbf{0} \quad \Longleftrightarrow \quad E\Big[\mathbf{x}_i\omega(\mathbf{x}_i;\mathbf{b}_0)^{-1}(y_i - \mathbf{x}_i'\mathbf{a}_0)\Big] = \mathbf{0} \quad \Longleftrightarrow \quad E\Big[\mathbf{g}_i^+(\mathbf{a}_0)\Big] = \mathbf{0}$$

est l'estimateur des MCG de \mathbf{a}_0 :

$$\hat{\mathbf{a}}_{N}^{MCG} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \omega(\mathbf{x}_{i}; \mathbf{b}_{0})^{-1} \mathbf{x}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \omega(\mathbf{x}_{i}; \mathbf{b}_{0})^{-1} y_{i}.$$

■ *Chamberlain*. Dans le modèle précédent, $\hat{\mathbf{a}}_{N}^{MCG}$ est as. efficace dans la classe des estimateurs as. normaux de \mathbf{a}_{0} .

■ *MMG*. On a :

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MCG} - \mathbf{a}_{0}) \xrightarrow[N \to +\infty]{L} \mathcal{N}(\mathbf{0}; \boldsymbol{\Sigma}_{0}) \text{ avec } \boldsymbol{\Sigma}_{0} \equiv \left(\mathbf{G}_{0}' \mathbf{W}_{0}^{-1} \mathbf{G}_{0}\right)^{-1}$$

avec:

$$\mathbf{W}_0 = E[\mathbf{g}_i(\mathbf{a}_0)\mathbf{g}_i(\mathbf{a}_0)'] = E[\mathbf{x}_i\omega(\mathbf{x}_i;\mathbf{b}_0)^{-1}u_i^2\omega(\mathbf{x}_i;\mathbf{b}_0)^{-1}\mathbf{x}_i'] = E[\mathbf{x}_i\omega(\mathbf{x}_i;\mathbf{b}_0)^{-1}\mathbf{x}_i']$$

$$\mathbf{G}_{0} = E \left[\frac{\partial \mathbf{g}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}} \right] = -E \left[\mathbf{x}_{i} \omega(\mathbf{x}_{i}; \mathbf{b}_{0})^{-1} \mathbf{x}_{i}' \right]$$

et donc:

$$\Sigma_0 = E \left[\mathbf{x}_i \boldsymbol{\omega}(\mathbf{x}_i; \mathbf{b}_0)^{-1} \mathbf{x}_i' \right]^{-1}.$$

■ MM (Juste-identification). On a :

$$\sqrt{N} (\hat{\mathbf{a}}_{N}^{MCG} - \mathbf{a}_{0}) \xrightarrow{L} \mathcal{N} (\mathbf{0}; \boldsymbol{\Sigma}_{0}) \text{ avec } \boldsymbol{\Sigma}_{0} \equiv (\mathbf{G}_{0})^{-1} \mathbf{W}_{0} (\mathbf{G}_{0}')^{-1}$$

avec:

$$\boldsymbol{\Sigma}_0 \equiv \left(\mathbf{G}_0' \mathbf{W}_0^{-1} \mathbf{G}_0 \right)^{-1} = E \left[\mathbf{x}_i \boldsymbol{\omega} (\mathbf{x}_i; \mathbf{b}_0)^{-1} \mathbf{x}_i' \right]^{-1}.$$

1c. MRL et hétéroscédasticité de forme inconnue

• On a:

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i/\mathbf{x}_i] = E[u_i] \equiv 0 \text{ et } E[u_i^2/\mathbf{x}_i] = \omega(\mathbf{x}_i) \neq \omega_0$$

- *Problème*: On ne connaît pas la forme de $\omega(.)$, on ne peut donc utiliser \mathbf{r}_i^+ , ou un estimateur de \mathbf{r}_i^+
- *Solution*: On choisit l'instrument \mathbf{r}_i le plus proche de \mathbf{r}_i^+ qu'on puisse utiliser, $\mathbf{r}_i = \mathbf{x}_i$ ici. On utilise alors l'estimateur de la MM de \mathbf{a}_0 fondé sur :

$$E[-\mathbf{x}_i u_i(\mathbf{a}_0)] = \mathbf{0} \quad \Leftrightarrow \quad E[\mathbf{x}_i(y_i - \mathbf{x}_i' \mathbf{a}_0)] = \mathbf{0} \quad \Leftrightarrow \quad E[\mathbf{g}_i(\mathbf{a}_0)] = \mathbf{0},$$

i.e. l'estimateur $\hat{\mathbf{a}}_{N}^{MCO}$.

Mais on garde à l'esprit que :
$$E[u_i^2/\mathbf{x}_i] = \omega(\mathbf{x}_i) \neq \omega_0$$

- *Chamberlain*. Dans le modèle précédent, $\hat{\mathbf{a}}_N^{MCO}$ n'est pas as. efficace dans la classe des estimateurs as. normaux de \mathbf{a}_0 .
- Il est cependant robuste à l'hétéroscédasticité (conditionnelle) des u_i
- *MMG* et **MM**. On a :

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MCO}-\mathbf{a}_{0}) \xrightarrow{L} \mathcal{N}(\mathbf{0}; \boldsymbol{\Sigma}_{0})$$

avec:

$$\boldsymbol{\Sigma}_0 \equiv \left(\mathbf{G}_0' \mathbf{W}_0^{-1} \mathbf{G}_0 \right)^{-1} = \left(\mathbf{G}_0 \right)^{-1} \mathbf{W}_0 \left(\mathbf{G}_0' \right)$$

avec:

$$\mathbf{W}_0 = E[\mathbf{g}_i(\mathbf{a}_0)\mathbf{g}_i(\mathbf{a}_0)'] = E[\mathbf{x}_i(y_i - \mathbf{a}_0'\mathbf{x}_i)^2\mathbf{x}_i']$$

$$\mathbf{G}_0 \equiv E \left[\frac{\partial \mathbf{g}_i(\mathbf{a}_0)'}{\partial \mathbf{a}} \right] = -E[\mathbf{x}_i \mathbf{x}_i']$$

On a donc:

$$\boldsymbol{\Sigma}_{0} = E\left[\mathbf{x}_{i}\mathbf{x}_{i}'\right]^{-1}E\left[\mathbf{x}_{i}(y_{i} - \mathbf{a}_{0}'\mathbf{x}_{i})^{2}\mathbf{x}_{i}'\right]E\left[\mathbf{x}_{i}\mathbf{x}_{i}'\right]^{-1},$$

i.e. on retrouve donc la matrice de variance covariance as. de $\hat{\mathbf{a}}_N^{MCO}$ dite de White ou robuste à l'hétéroscédasticité.

• On parle alors d'inférence robuste par rapport à l'hétéroscédasticité.

1d. MRL et hétéroscédasticité de forme connue estimée

• On a: $y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i/\mathbf{x}_i] = E[u_i] \equiv 0 \text{ et } E[u_i^2/\mathbf{x}_i] = \omega(\mathbf{x}_i; \mathbf{b}_0)$

 $\mathbf{r}_{i}^{+} = -\mathbf{x}_{i}\omega(\mathbf{x}_{i};\mathbf{b}_{0})^{-1}$ et $\tilde{\mathbf{b}}_{N}$ est un estimateur as. normal de \mathbf{b}_{0}

L'estimateur de la MM de **a**₀ fondé sur :

et:

$$\begin{split} E\Big[\mathbf{r}_i^+u_i(\mathbf{a}_0)\Big] &= \mathbf{0} \quad \Leftrightarrow \quad E\Big[\mathbf{x}_i\omega(\mathbf{x}_i;\mathbf{b}_0)^{-1}(y_i - \mathbf{x}_i'\mathbf{a}_0)\Big] &= \mathbf{0} \quad \Leftrightarrow \quad E\Big[\mathbf{g}_i^+(\mathbf{a}_0)\Big] &= \mathbf{0} \end{split}$$
 utilisant $\tilde{\mathbf{b}}_N$ en lieu et place de \mathbf{b}_0 est l'estimateur des MCQG de \mathbf{a}_0 :

$$\hat{\mathbf{a}}_{N}^{MCQG} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \omega(\mathbf{x}_{i}; \tilde{\mathbf{b}}_{N})^{-1} \mathbf{x}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \omega(\mathbf{x}_{i}; \tilde{\mathbf{b}}_{N})^{-1} \mathbf{y}_{i}.$$

• Instruments estimés. $\tilde{\mathbf{b}}_N$ étant un estimateur as. normal de \mathbf{b}_0 on sait que :

$$\hat{\mathbf{a}}_{N}^{MCQG} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \boldsymbol{\omega}(\mathbf{x}_{i}; \tilde{\mathbf{b}}_{N})^{-1} \mathbf{x}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \boldsymbol{\omega}(\mathbf{x}_{i}; \tilde{\mathbf{b}}_{N})^{-1} y_{i}$$

a les mêmes propriétés as. que :

$$\hat{\mathbf{a}}_{N}^{MCG} = \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \omega(\mathbf{x}_{i}; \mathbf{b}_{0})^{-1} \mathbf{x}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \omega(\mathbf{x}_{i}; \mathbf{b}_{0})^{-1} y_{i}.$$

- Cette propriété des estimateurs MCG et MCQG est en fait une application de la propriété des instruments estimés.
- **Propriétés as. de** $\hat{\mathbf{a}}_{N}^{MCG}$. Les propiétés de $\hat{\mathbf{a}}_{N}^{MCQG}$ sont celles de $\hat{\mathbf{a}}_{N}^{MCG}$:

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MCQG}-\mathbf{a}_{0}) \xrightarrow[N \to +\infty]{L} \mathcal{N}\left(\mathbf{0}; E \Big[\mathbf{x}_{i} \omega(\mathbf{x}_{i}; \mathbf{b}_{0})^{-1} \mathbf{x}_{i}'\Big]^{-1}\right)$$

et:

$$N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{x}_{i} \boldsymbol{\omega}(\mathbf{x}_{i}; \tilde{\mathbf{b}}_{N})^{-1} \mathbf{x}_{i}' \xrightarrow{p} E \left[\mathbf{x}_{i} \boldsymbol{\omega}(\mathbf{x}_{i}; \mathbf{b}_{0})^{-1} \mathbf{x}_{i}' \right].$$

Exemple 2. Modèle de régression non linéaire

• Un modèle de régression non linéaire est de la forme :

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i \text{ avec } E[u_i/\mathbf{x}_i] = E[u_i] \equiv 0.$$

On a alors:

$$E[y_i - f(\mathbf{x}_i; \mathbf{a}_0)/\mathbf{x}_i] = 0$$

avec:

$$u_i(\mathbf{a}) \equiv y_i - f(\mathbf{x}_i; \mathbf{a}), \ \mathbf{z}_i = \mathbf{x}_i \text{ et } u_i = y_i - f(\mathbf{x}_i; \mathbf{a}_0) = u_i(\mathbf{a}_0)$$

• On a:

$$E[u_i(\mathbf{a}_0)/\mathbf{x}_i] = E[u_i/\mathbf{x}_i] = 0$$

La forme de l'instrument optimal est donnée par :

$$\mathbf{r}_{i}^{+} \equiv E \left[\frac{\partial u_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}} / \mathbf{x}_{i} \right] E \left[u_{i}(\mathbf{a}_{0})^{2} / \mathbf{x}_{i} \right]^{-1} = -\frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}} E \left[u_{i}^{2} / \mathbf{x}_{i} \right]^{-1}$$

- Il y a plusieurs cas selon que :
 - $E\left[u_i^2/\mathbf{x}_i\right] = \omega_0$: homoscédasticité des $u_i = y_i \mathbf{a}_0'\mathbf{x}_i = h_i(\mathbf{a}_0)$
 - $E\left[u_i^2/\mathbf{x}_i\right] = \omega(\mathbf{x}_i; \mathbf{b}_0)$ avec $\omega(.)$ et \mathbf{b}_0 connus : hétéroscédasticité conditionnelle de forme connue (éventuellement à un terme positif multiplicatif près)
 - $E\left[u_i^2/\mathbf{x}_i\right] = \omega(\mathbf{x}_i; \mathbf{b}_0)$, $\omega(.)$ connue, \mathbf{b}_0 inconnu mais $\tilde{\mathbf{b}}_N$ est un estimateur as. normal de \mathbf{b}_0 : hétéroscédasticité conditionnelle de forme connue estimée
 - $E\left[u_i^2/\mathbf{x}_i\right] = \omega(\mathbf{x}_i)$ et $\omega(.)$ inconnue : hétéroscédasticité conditionnelle de forme connue
- On ne s'intéresse ici qu'au « cas homoscédastique »

Modèle de régression non linéaire avec homoscédasticité

• On a:

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i \text{ avec } E[u_i/\mathbf{x}_i] = E[u_i] \equiv 0 \text{ et } E[u_i^2/\mathbf{x}_i] = \omega_0$$

et:

$$\mathbf{r}_{i}^{+} = -\frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}} \,\omega_{0}^{-1}$$

■ L'estimateur de la MM de **a**₀ fondé sur :

$$E\left[\mathbf{r}_{i}^{+}u_{i}(\mathbf{a}_{0})\right] = \mathbf{0} \quad \Leftrightarrow \quad E\left[\frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}} \left(y_{i} - f(\mathbf{x}_{i}; \mathbf{a}_{0})\right)\right] = \mathbf{0}$$
$$\Leftrightarrow \quad E\left[\mathbf{g}_{i}(\mathbf{a}_{0})\right] = \mathbf{0}$$

est l'estimateur des MCO non linéaire de \mathbf{a}_0 , $\hat{\mathbf{a}}_N^{MCO}$.

■ Dans le cadre de la MM(G), l'estimateur de **a**₀ fondé sur :

$$E[\mathbf{g}_{i}(\mathbf{a}_{0})] = E\left[\frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}} (y_{i} - f(\mathbf{x}_{i}; \mathbf{a}_{0}))\right] = \mathbf{0}_{K \times 1}$$

est caractérisé par :

$$\hat{\mathbf{a}}_{N}^{MM}$$
 solution en \mathbf{a} de : $N^{-1}\sum_{i=1}^{N} \frac{\partial f(\mathbf{x}_{i}; \mathbf{a})}{\partial \mathbf{a}} (y_{i} - f(\mathbf{x}_{i}; \mathbf{a})) = \mathbf{0}_{K \times 1}$

• C'est bien l'estimateur des MCO non linéaires :

$$\hat{\mathbf{a}}_{N}^{MCO} \equiv \arg\min_{\mathbf{a}} \sum_{i=1}^{N} (y_{i} - f(\mathbf{x}_{i}; \mathbf{a}))^{2}$$

car les CO1 de ce programme de minimisation sont données par :

$$-2 \times \sum_{i=1}^{N} \frac{\partial f(\mathbf{x}_{i}; \hat{\mathbf{a}}_{N}^{MCO})}{\partial \mathbf{a}} \left(y_{i} - f(\mathbf{x}_{i}; \hat{\mathbf{a}}_{N}^{MCO}) \right) = \mathbf{0}_{K \times 1}.$$

• *Chamberlain*. Dans le modèle précédent, $\hat{\mathbf{a}}_N^{MCO}$ est as. efficace dans la classe des estimateurs as. normaux de \mathbf{a}_0 .

■ MM. On a:

avec:

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MCO} - \mathbf{a}_{0}) \xrightarrow{L} \mathcal{N}(\mathbf{0}; \boldsymbol{\Sigma}_{0}) \text{ avec } \boldsymbol{\Sigma}_{0} \equiv (\mathbf{G}_{0})^{-1} \mathbf{W}_{0}(\mathbf{G}_{0}')^{-1}$$

$$\mathbf{W}_0 = E\left[\mathbf{g}_i(\mathbf{a}_0)\mathbf{g}_i(\mathbf{a}_0)'\right] = \omega_0 E\left[\frac{\partial f(\mathbf{x}_i; \mathbf{a}_0)}{\partial \mathbf{a}} \frac{\partial f(\mathbf{x}_i; \mathbf{a}_0)}{\partial \mathbf{a}'}\right]$$

$$\mathbf{G}_{0} = E \left[\frac{\partial \mathbf{g}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}} \right] = -E \left[\frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}} \frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}'} \right]$$

et donc:

$$\Sigma_0 = \omega_0 E \left[\frac{\partial f(\mathbf{x}_i; \mathbf{a}_0)}{\partial \mathbf{a}} \frac{\partial f(\mathbf{x}_i; \mathbf{a}_0)}{\partial \mathbf{a}'} \right]^{-1} \text{ avec } \omega_0 = E \left[\left(y_i - f(\mathbf{x}_i; \mathbf{a}_0) \right)^2 \right].$$

- On peut décliner tous les cas d'hétéroscédasticité de la même manière que dans le cas linéaire.
 - Estimateur des MC non-linéaires Généralisé
 - Estimateur des MC non-linéaires Quasi-Généralisé
 - Estimateur des MCO non-linéaires avec matrice de variancecovariance as, robuste à l'hétéroscédasticité

$$\sqrt{N}(\hat{\mathbf{a}}_{N}^{MCO} - \mathbf{a}_{0}) \xrightarrow[N \to +\infty]{L} \mathcal{N}(\mathbf{0}; \boldsymbol{\Sigma}_{0}) \text{ avec } \boldsymbol{\Sigma}_{0} \equiv (\mathbf{G}_{0})^{-1} \mathbf{W}_{0} (\mathbf{G}_{0}')^{-1}$$

avec:

$$\mathbf{W}_{0} = E\left[\mathbf{g}_{i}(\mathbf{a}_{0})\mathbf{g}_{i}(\mathbf{a}_{0})'\right] = E\left[\left(y_{i} - f(\mathbf{x}_{i}; \mathbf{a}_{0})\right)^{2} \frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}} \frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}'}\right]$$

et:

$$\mathbf{G}_{0} \equiv E \left[\frac{\partial \mathbf{g}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}} \right] = -E \left[\frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}} \frac{\partial f(\mathbf{x}_{i}; \mathbf{a}_{0})}{\partial \mathbf{a}'} \right].$$

Exemple 3. Modèle linéaire à VI

• Un modèle linéaire à VI est de la forme :

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i$$
 avec $E[u_i/\mathbf{z}_i] = E[u_i] \equiv 0$.

On a alors:

$$E[y_i - \mathbf{a}_0' \mathbf{x}_i / \mathbf{z}_i] = 0$$

avec:

$$u_i(\mathbf{a}) \equiv y_i - \mathbf{a}' \mathbf{x}_i$$
 et $u_i = y_i - \mathbf{a}'_0 \mathbf{x}_i = u_i(\mathbf{a}_0)$

• On a:

$$E[u_i(\mathbf{a}_0)/\mathbf{z}_i] = E[u_i/\mathbf{z}_i] = 0$$

La forme de l'instrument optimal est donnée par :

$$\mathbf{r}_{i}^{+} \equiv E \left[\frac{\partial u_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}} / \mathbf{z}_{i} \right] E \left[u_{i}(\mathbf{a}_{0})^{2} / \mathbf{z}_{i} \right]^{-1} = -E \left[\mathbf{x}_{i} / \mathbf{z}_{i} \right] E \left[u_{i}^{2} / \mathbf{z}_{i} \right]^{-1}$$

Avec :

$$\mathbf{r}_{i}^{+} = -E[\mathbf{x}_{i}/\mathbf{z}_{i}] E[u_{i}^{2}/\mathbf{z}_{i}]^{-1}$$

on a deux problèmes pratiques :

- l'hétéroscédasticité potentielle des u_i, ce qui ce traite comme cidessus selon les cas rencontrés
- la forme de $E[\mathbf{x}_i/\mathbf{z}_i]$ qui est inconnue
- Ici, présentation en deux étapes :
 - *D'abord* le problème de $E[\mathbf{x}_i/\mathbf{z}_i]$, en prenant le cas $E[u_i^2/\mathbf{z}_i] = \omega_0$
 - *Ensuite* le problème de $E[u_i^2/\mathbf{z}_i] \neq \omega_0$
- Assez grand décalage entre la « pratique » et la « théorie », en tous cas pour ce qui concerne la recherche de l'efficacité d'estimation.

3a. Modèle linéaire à VI avec homoscédasticité

■ Les *instruments optimaux* d'un modèle linéaire à VI de la forme :

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i$$
 avec $E[u_i/\mathbf{z}_i] = E[u_i] \equiv 0$ et $E[u_i^2/\mathbf{z}_i] = \omega_0$

sont définis par :

$$\mathbf{r}_{i}^{+} = -E[\mathbf{x}_{i}/\mathbf{z}_{i}] \omega_{0}^{-1}.$$

■ Ils donnent des *conditions de moment* (juste-)*identifiantes* de la forme :

$$E \left[E \left[\mathbf{x}_i / \mathbf{z}_i \right] (y_i - \mathbf{x}_i' \mathbf{a}_0) \right] = \mathbf{0}_{K \times 1} \quad \Leftrightarrow \quad E \left[\mathbf{g}_i^+ (\mathbf{a}_0) \right] = \mathbf{0}_{K \times 1}.$$

- **Problème** : l'espérance conditionnelle $E[\mathbf{x}_i/\mathbf{z}_i]$ est inconnue a priori.
- Deux approches potentielles : l'une très utilisée, l'autre quasiment pas

$$E\left[E\left[\mathbf{x}_{i}/\mathbf{z}_{i}\right](y_{i}-\mathbf{x}_{i}'\mathbf{a}_{0})\right]=\mathbf{0}_{K\times 1}$$

- Première approche :
 - On calcule des estimateurs non paramétriques des $E[\mathbf{x}_i/\mathbf{z}_i]$, les $\tilde{\mathbf{x}}_N(\mathbf{z}_i)$, et on résout :

$$N^{-1} \sum_{i=1}^{N} \tilde{\mathbf{x}}_{N}(\mathbf{z}_{i}) \left(y_{i} - \mathbf{x}_{i}' \hat{\mathbf{a}}_{N}^{MM} \right) = \mathbf{0}_{K \times 1},$$

ce qui donne :

$$\hat{\mathbf{a}}_{N}^{MM} = \left(N^{-1} \sum_{i=1}^{N} \tilde{\mathbf{x}}_{N}(\mathbf{z}_{i}) \, \tilde{\mathbf{x}}_{N}(\mathbf{z}_{i})'\right)^{-1} N^{-1} \sum_{i=1}^{N} \tilde{\mathbf{x}}_{N}(\mathbf{z}_{i}) \, y_{i}$$

- Chamberlain + instruments estimés : l'estimateur obtenu est as. efficace
- Estimation non-paramétrique : difficile à mettre en œuvre

$$E[E[\mathbf{x}_i/\mathbf{z}_i](y_i - \mathbf{x}_i'\mathbf{a}_0)] = \mathbf{0}_{K\times 1}$$

- Seconde approche :
 - On n'utilise pas $E[\mathbf{x}_i/\mathbf{z}_i]$, mais :

$$EL[\mathbf{x}_{i}/\mathbf{z}_{i}] = E[\mathbf{x}_{i}\mathbf{z}_{i}']E[\mathbf{z}_{i}\mathbf{z}_{i}']^{-1}\mathbf{z}_{i},$$

i.e. pas l'espérance conditionnelle de \mathbf{x}_i en \mathbf{z}_i mais la *projection linéaire* de \mathbf{x}_i sur \mathbf{z}_i .

- Idées sous-jacentes
 - $E[\mathbf{x}_i/\mathbf{z}_i]$ est le meilleur prédicteur (EQM) de \mathbf{x}_i par \mathbf{z}_i , $EL[\mathbf{x}_i/\mathbf{z}_i]$ est le meilleur prédicteur (EQM) linéaire de \mathbf{x}_i par \mathbf{z}_i et c'est pas mal quand-même.
 - Utiliser $EL[\mathbf{x}_i/\mathbf{z}_i]$ nous ramène sur des « terrains connus ».

Deux interprétations « techniques » l'estimateur MM de a₀ exploitant la condition de moment :

$$E\left[EL\left[\mathbf{x}_{i}/\mathbf{z}_{i}\right](y_{i}-\mathbf{x}_{i}'\mathbf{a}_{0})\right]=\mathbf{0}_{K\times 1}$$

• Estimateur de la MM avec instrument estimé :

$$N^{-1} \sum_{i=1}^{N} \left[N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{z}_{i}' \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{z}_{i}' \right)^{-1} \mathbf{z}_{i} \right] (y_{i} - \mathbf{x}_{i}' \hat{\mathbf{a}}_{N}^{MM}) = \mathbf{0}_{K \times 1}$$
Estimateur convergent de $EL[\mathbf{x}_{i}/\mathbf{z}_{i}]$

■ Estimateur de la MMG :

$$\hat{\mathbf{a}}_{N}^{MMG} \equiv \left(N^{-1} \sum_{i=1}^{N} (y_{i} - \mathbf{x}_{i}' \mathbf{a}) \mathbf{z}_{i}'\right) \left(N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} \mathbf{z}_{i}'\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \mathbf{z}_{i} (y_{i} - \mathbf{x}_{i}' \mathbf{a})\right)$$

On obtient:

$$\hat{\mathbf{a}}_{N}^{MM} = \hat{\mathbf{a}}_{N}^{MMG} = \hat{\mathbf{a}}_{N}^{2MC}$$

- Conclusions : estimateur $\hat{\mathbf{a}}_N^{2MC}$ dans un modèle linéaire à VI
 - *Chamberlain*: L'estimateur $\hat{\mathbf{a}}_N^{2MC}$ est as. efficace \mathbf{si} les termes d'erreur du modèle sont homoscédastiques et \mathbf{si} on a :

$$EL[\mathbf{x}_i/\mathbf{z}_i] = E[\mathbf{x}_i/\mathbf{z}_i]$$

L'estimateur de la MMG fondé sur la condition d'orthogonalité :

$$E[\mathbf{z}_{i}(y_{i}-\mathbf{x}_{i}'\mathbf{a}_{0})]=\mathbf{0}_{L\times 1}$$

calcule « automatiquement » un estimateur de $EL[\mathbf{x}_i/\mathbf{z}_i]$ et fournit le même estimateur que celui de la MM fondé sur :

$$E\left[EL\left[\mathbf{x}_{i}/\mathbf{z}_{i}\right](y_{i}-\mathbf{x}_{i}'\mathbf{a}_{0})\right]=\mathbf{0}_{K\times 1}.$$

■ Il se peut que $EL[\mathbf{x}_i/\mathbf{t}(\mathbf{z}_i)] \simeq E[\mathbf{x}_i/\mathbf{z}_i]$ pour un *choix judicieux* de la fonction $\mathbf{t}(.)$, *e.g.* termes carrés, croisés, ... des VI. On a ici un gain d'efficacité « pas cher ».

3b. Modèle linéaire à VI avec hétérocédasticité de forme inconnue

• Les *instruments optimaux* d'un modèle linéaire à VI de la forme :

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i/\mathbf{z}_i] = E[u_i] \equiv 0 \text{ et } E[u_i^2/\mathbf{z}_i] = \omega(\mathbf{z}_i)$$

sont définis par :

$$\mathbf{r}_{i}^{*} = -E[\mathbf{x}_{i}/\mathbf{z}_{i}] \omega(\mathbf{z}_{i})^{-1}.$$

- **Problème** lorsque $\omega(.)$ est de forme inconnue
- *En pratique*: on remplace l'espérance conditionnelle par $E[\mathbf{x}_i/\mathbf{z}_i]$ par des projections linéaires :

$$EL[\mathbf{x}_i/\mathbf{z}_i]$$
 ou $EL[\mathbf{x}_i/\mathbf{t}(\mathbf{z}_i)]$,

ce qui permet d'utiliser les 2MC (voir ci-avant).

$$\mathbf{r}_{i}^{*} = -E[\mathbf{x}_{i}/\mathbf{z}_{i}]\omega(\mathbf{z}_{i})^{-1}$$
 avec $\omega(.)$ de forme inconnue

 Solution: On se place dans le cadre de la MMG et on travaille directement avec la condition de moment (généralement sur-identifiante):

$$E[\mathbf{z}_{i}(y_{i} - \mathbf{x}_{i}'\mathbf{a}_{0})] = \mathbf{0}_{L \times 1} \quad \Leftrightarrow \quad E[\mathbf{g}_{i}(\mathbf{a}_{0})] = \mathbf{0}_{L \times 1}$$

en tenant compte de ce que :

$$\mathbf{W}_0 = E[\mathbf{g}_i(\mathbf{a}_0)\mathbf{g}_i(\mathbf{a}_0)'] = E[(y_i - \mathbf{x}_i'\mathbf{a}_0)^2 \mathbf{z}_i \mathbf{z}_i'] = E[u_i^2 \mathbf{z}_i \mathbf{z}_i']$$

avec:

$$\mathbf{W}_0 \neq \omega_0 E[\mathbf{z}_i \mathbf{z}_i'] \text{ où } \omega_0 \equiv E[u_i^2] = E[(y_i - \mathbf{x}_i' \mathbf{a}_0)^2].$$

Deux options: $\hat{\mathbf{a}}_{N}^{2MCH}$ ou $\hat{\mathbf{a}}_{N}^{2MC}$

- $\hat{\mathbf{a}}_{N}^{2MCH}$, estimateur des 2MC robuste à l'hétéroscédasticité, si beaucoup de données et de bons instruments.
 - $\hat{\mathbf{a}}_{N}^{2MCH}$ est l'estimateur MMG optimal fondé sur la condition de moment $E[\mathbf{z}_{i}(y_{i} \mathbf{x}_{i}'\mathbf{a}_{0})] = \mathbf{0}_{L \times 1}$ sachant que $\mathbf{W}_{0} = E[(y_{i} \mathbf{x}_{i}'\mathbf{a}_{0})^{2}\mathbf{z}_{i}\mathbf{z}_{i}']$.
 - Il se calcul en trois étapes et sa matrice de variance covariance as. est de la forme :

$$\boldsymbol{\Sigma}_{0} = \left(E \left[\mathbf{x}_{i} \mathbf{z}_{i}' \right] E \left[(y_{i} - \mathbf{x}_{i}' \mathbf{a}_{0})^{2} \mathbf{z}_{i} \mathbf{z}_{i}' \right]^{-1} E \left[\mathbf{z}_{i} \mathbf{x}_{i}' \right] \right)^{-1}.$$

- $\hat{\mathbf{a}}_{N}^{2MC}$, estimateur des 2MC « usuel » avec calcul de sa variance as. en tenant compte de l'hétéroscédasticité des u_{i} .
 - $\hat{\mathbf{a}}_N^{2MC}$ se calcule directement en une étape.
 - $\hat{\mathbf{a}}_{N}^{2MC}$ n'est pas un estimateur MMG optimal. Il utilise $\mathbf{M}_{0} = E[\mathbf{z}_{i}\mathbf{z}_{i}']^{-1}$ pour matrice de pondération limite alors que $\mathbf{W}_{0} = E[(y_{i} \mathbf{x}_{i}'\mathbf{a}_{0})^{2}\mathbf{z}_{i}\mathbf{z}_{i}']$.
 - Sa matrice de variance as. est de forme « compliquée » :

$$\boldsymbol{\Sigma}(\mathbf{M}_{0}) = \begin{bmatrix} \left(E\left[\mathbf{x}_{i}\mathbf{z}_{i}'\right]E\left[\mathbf{z}_{i}\mathbf{z}_{i}'\right]^{-1}E\left[\mathbf{z}_{i}\mathbf{x}_{i}'\right]\right)^{-1} \\ \times E\left[\mathbf{x}_{i}\mathbf{z}_{i}'\right]E\left[\mathbf{z}_{i}\mathbf{z}_{i}'\right]^{-1}E\left[\left(y_{i}-\mathbf{x}_{i}'\mathbf{a}_{0}\right)^{2}\mathbf{z}_{i}\mathbf{z}_{i}'\right]E\left[\mathbf{z}_{i}\mathbf{z}_{i}'\right]^{-1}E\left[\mathbf{z}_{i}\mathbf{x}_{i}'\right] \times \\ \left(E\left[\mathbf{x}_{i}\mathbf{z}_{i}'\right]E\left[\mathbf{z}_{i}\mathbf{z}_{i}'\right]^{-1}E\left[\mathbf{z}_{i}\mathbf{x}_{i}'\right]\right)^{-1} \end{bmatrix}.$$

Rappels sur les estimateurs des 2MC

- Les estimateurs des 2MC sont convergents ... mais biaisés à distance finie
 ⇒ Utiliser avec de grands échantillons ... et veiller aux points aberrants
- Le biais de $\hat{\mathbf{a}}_N^{2MC}$ croît avec le *degré de sur-identification* du modèle par les instruments utilisés
 - \Rightarrow Se concentrer sur des VI informatives, y.c. les transformations $\mathbf{t}(\mathbf{z}_i)$.
- Le *biais de* $\hat{\mathbf{a}}_N^{2MCH}$ est très important à distance finie, créant de l'instabilité dans les estimations obtenues
 - ⇒ Utiliser avec de très grands échantillons ... et veiller aux points aberrants
- Une VI peu informative et « un peu endogène » peut créer une divergence des estimateurs 2MC (problème dit « des instruments faibles »)
 - \Rightarrow Se concentrer sur des VI informatives, y.c. les transformations $\mathbf{t}(\mathbf{z}_i)$.

4. Instruments efficaces, cas multivarié

4.1. Motivations: rappels

Problème général

Comment exploiter une condition de moment conditionnel :

$$E[\mathbf{u}(\mathbf{y}_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0},$$

pour construire un estimateur de \mathbf{a}_0 ?

• Cas classique, un système d'équations à termes d'erreur additifs :

$$\mathbf{y}_{i} = \mathbf{f}(\mathbf{x}_{i}; \mathbf{a}_{0}) + \mathbf{u}_{i} \implies \mathbf{u}_{i}(\mathbf{a}) \equiv \mathbf{u}_{i}(\mathbf{y}_{i}, \mathbf{x}_{i}; \mathbf{a}) \equiv \mathbf{y}_{i} - \mathbf{f}(\mathbf{x}_{i}; \mathbf{a}) \text{ et } \mathbf{u}_{i}(\mathbf{a}_{0}) = \mathbf{u}_{i}$$

$$\text{avec}$$

$$E[\mathbf{u}_{i}/\mathbf{z}_{i}] \implies E[\mathbf{u}_{i}(\mathbf{a}_{0})/\mathbf{z}_{i}] = \mathbf{0}.$$

Cadre d'analyse

On utilise le cadre de la MMG et on utilise des instruments $\mathbf{R}(\mathbf{z}_i)$ tels que:

$$E[\mathbf{g}_{i}(\mathbf{a})] = E[\mathbf{R}(\mathbf{z}_{i})\mathbf{u}_{i}(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_{0}$$

- On utilise ici une matrice d'instruments. Si $\mathbf{u}_i(\mathbf{a})$ est de dimension $M \times 1$ alors $\mathbf{R}(\mathbf{z}_i)$ est de dimension $G \times M$, $\mathbf{g}_i(\mathbf{a})$ étant de dimension $G \times 1$.
 - Bien entendu, la condition d'ordre d'indentification de \mathbf{a}_0 implique qu'on doit avoir $G \ge K \equiv \dim \mathbf{a}_0$.
- On utilisera ici les notations :

$$\mathbf{g}_{i}(\mathbf{a}) \equiv \begin{bmatrix} g_{1,i}(\mathbf{a}) \\ \vdots \\ g_{G,i}(\mathbf{a}) \end{bmatrix}, \mathbf{u}_{i}(\mathbf{a}) \equiv \begin{bmatrix} u_{1,i}(\mathbf{a}) \\ \vdots \\ u_{M,i}(\mathbf{a}) \end{bmatrix} \text{ et } \mathbf{R}(\mathbf{z}_{i}) \equiv \begin{bmatrix} r_{11}(\mathbf{z}_{i}) & \cdots & r_{1M}(\mathbf{z}_{i}) \\ \vdots & \ddots & \vdots \\ r_{G1}(\mathbf{z}_{i}) & \cdots & r_{GM}(\mathbf{z}_{i}) \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{1}(\mathbf{z}_{i})' \\ \vdots \\ \mathbf{r}_{G}(\mathbf{z}_{i})' \end{bmatrix}$$

• L'hypothèse $E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0}$ implique que :

$$E\left[r_{gm}(\mathbf{z}_i)\times u_{m,i}(\mathbf{a}_0)\right] = 0$$
 pour tout $m = 1,...,M$ et tout $g = 1,...,G$.

 La condition de moment utilisant la matrice d'instruments R(z_i) combine linéairement les conditions d'orthogonalité précédentes :

$$E[\mathbf{g}_{i}(\mathbf{a})] = E[\mathbf{R}(\mathbf{z}_{i})\mathbf{u}_{i}(\mathbf{a})] = \begin{bmatrix} \sum_{m=1}^{M} E[r_{1m,i}(\mathbf{a}) \times u_{m,i}(\mathbf{a})] \\ \vdots \\ \sum_{m=1}^{M} E[r_{Gm,i}(\mathbf{a}) \times u_{m,i}(\mathbf{a})] \end{bmatrix} = \begin{bmatrix} E[\mathbf{r}_{i}(\mathbf{z}_{i})'\mathbf{u}_{i}(\mathbf{a})] \\ \vdots \\ E[\mathbf{r}_{G}(\mathbf{z}_{i})'\mathbf{u}_{i}(\mathbf{a})] \end{bmatrix}$$

avec:

$$E\left[g_{\ell,i}(\mathbf{a})\right] = E\left[\mathbf{r}_{\ell}(\mathbf{z}_{i})'\mathbf{u}_{i}(\mathbf{a})\right] = \sum_{m=1}^{M} E\left[r_{\ell m,i}(\mathbf{a}) \times u_{m,i}(\mathbf{a})\right] \text{ pour } g = 1,...,G.$$

• Cas particulier fréquent. Si $\mathbf{R}(\mathbf{z}_i)$ est bloc-diagonale, i.e. de la forme :

$$\mathbf{R}(\mathbf{z}_i) \equiv \begin{bmatrix} \mathbf{r}_1(\mathbf{z}_i) & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{r}_2(\mathbf{z}_i) & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{r}_M(\mathbf{z}_i) \end{bmatrix}$$

alors on a:

$$E[\mathbf{g}_{i}(\mathbf{a})] = E[\mathbf{R}(\mathbf{z}_{i})\mathbf{u}_{i}(\mathbf{a})] = \begin{bmatrix} E[\mathbf{r}_{1}(\mathbf{z}_{i})u_{1,i}(\mathbf{a})] \\ \vdots \\ E[\mathbf{r}_{M}(\mathbf{z}_{i})u_{M,i}(\mathbf{a})] \end{bmatrix},$$

i.e. chaque terme résiduel $u_{m,i}(\mathbf{a})$ a « son » vecteur d'instruments $\mathbf{r}_m(\mathbf{z}_i)$.

L'instrument optimal n'a en général pas cette forme.

Recherche de l'efficacité d'estimation

On cherche à déterminer l'instrument $\mathbf{R}^+(\mathbf{z}_i)$ tel que l'estimateur MMG de \mathbf{a}_0 fondé sur la condition de moment :

$$E[\mathbf{g}_{i}^{+}(\mathbf{a})] = E[\mathbf{R}^{+}(\mathbf{z}_{i})\mathbf{u}_{i}(\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_{0}$$

est efficace dans la classe des estimateurs MMG fondés sur une condition d'orthogonalité construite avec u,(a).

- Estimateurs MMG optimaux, en principe ...
 - ... on ne se servira que d'estimateurs **MM** car juste-identification.
- L'efficacité est définie par rapport une classe d'estimateurs MM(G) ...
 - ... mais le résultat de Chamberlain est bien plus général.
- L'« instrument efficace » ... n'est pas unique.

L'efficacité sera toujours relative aux VI, z_i, utilisées comme ensemble d'information du modèle considéré.

Remarque importante

La condition de moment conditionnel considérée ici est assez particulière. En effet :

$$E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0} \iff E[u_{m,i}(\mathbf{a}_0)/\mathbf{z}_i] = 0 \text{ pour } m = 1,...,M.$$

Ici \mathbf{z}_i sert de VI pour tout élément $u_{m,i}(\mathbf{a}_0)$ de $\mathbf{u}_i(\mathbf{a}_0)$. Ce cas est fréquent.

Mais on rencontre des conditions de moment conditionnel plus générales que celle considérée ici (e.g., cas des modèles avec données de panel), i.e.:

$$\begin{bmatrix} E\left[u_{1,i}(\mathbf{a}_0)/\mathbf{z}_{1,i}\right] \\ \vdots \\ E\left[u_{M,i}(\mathbf{a}_0)/\mathbf{z}_{M,i}\right] \end{bmatrix} = \mathbf{0} \iff \left(E\left[u_{m,i}(\mathbf{a}_0)/\mathbf{z}_{m,i}\right]; \ m = 1,...,M\right) = \mathbf{0}.$$

Chaque terme d'erreur $u_{m,i}(\mathbf{a}_0)$ a « son » vecteur de VI $\mathbf{z}_{m,i}$. La forme des instruments efficaces n'est pas connue pour ces modèles.

4.2. Les instruments efficaces pour $E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i] = \mathbf{0}$

Propriété. Instruments efficaces, cas multivarié

Soit $\{\mathbf{w}_i; i=1,2,...,N\}$ un échantillon de variables aléatoires iid telles que :

(i)
$$E[\mathbf{u}(y_i, \mathbf{x}_i; \mathbf{a}_0)/\mathbf{z}_i] = E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i] = 0_{M \times 1}$$

(iii) $E[\mathbf{u}_i(\mathbf{a}_0)\mathbf{u}_i(\mathbf{a}_0)'/\mathbf{z}_i]$ est inversible

(iii)
$$E\left[\frac{\partial \mathbf{u}_i(\mathbf{a}_0)'}{\partial \mathbf{a}}\frac{\partial \mathbf{u}_i(\mathbf{a}_0)}{\partial \mathbf{a}'}\right/\mathbf{z}_i\right]$$
 est de rang $K \equiv \dim \mathbf{a}$,

alors l'estimateur de la MM de \mathbf{a}_0 fondé sur la condition de moment :

$$E\left[E\left[\frac{\partial \mathbf{u}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}}/\mathbf{z}_{i}\right]E\left[\mathbf{u}_{i}(\mathbf{a}_{0})\mathbf{u}_{i}(\mathbf{a}_{0})'/\mathbf{z}_{i}\right]^{-1}\mathbf{u}_{i}(\mathbf{a}_{0})\right] = \mathbf{0}_{K \times 1}$$

existe avec une probabilité approchant 1 et est as. efficace dans la classe des estimateurs as. normaux de \mathbf{a}_0 sous les conditions de régularité usuelles.

Remarques générales

• Le terme :

$$\mathbf{R}^{+}(\mathbf{z}_{i}) \equiv E \left[\frac{\partial \mathbf{u}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}} / \mathbf{z}_{i} \right] E \left[\mathbf{u}_{i}(\mathbf{a}_{0}) \mathbf{u}_{i}(\mathbf{a}_{0})' / \mathbf{z}_{i} \right]^{-1}$$

$$= E \left[\frac{\partial \mathbf{u}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}} / \mathbf{z}_{i} \right] V \left[\mathbf{u}_{i}(\mathbf{a}_{0}) / \mathbf{z}_{i} \right]^{-1}$$

est désigné sous le terme d'instrument efficace (ou optimal).

- $\mathbf{R}^+(\mathbf{z}_i)$ est exogène car c'est une fonction des variables exogènes \mathbf{z}_i
- La condition $E[\mathbf{R}^+(\mathbf{z}_i)\mathbf{u}_i(\mathbf{a}_0)] = \mathbf{0}$ juste-identifie \mathbf{a}_0 , on utilise la MM.
- L'estimateur MM de \mathbf{a}_0 défini à avec la condition $E\left[\mathbf{R}^+(\mathbf{z}_i)\mathbf{u}_i(\mathbf{a}_0)\right] = \mathbf{0}$ est l'estimateur as. normal le plus efficace de \mathbf{a}_0 .

Définition. Borne d'efficacité semi-paramétrique

$$\sqrt{N}(\hat{\mathbf{a}}_{\scriptscriptstyle N}^{\scriptscriptstyle MM}-\mathbf{a}_{\scriptscriptstyle 0}) \xrightarrow[N \to +\infty]{L} \mathcal{N}\left(\mathbf{0}; \boldsymbol{\Sigma}_{\scriptscriptstyle 0}^*\right)$$

où:

$$\boldsymbol{\Sigma}_{0}^{*} \equiv E \left[\frac{\partial \mathbf{u}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}} E \left[\mathbf{u}_{i}(\mathbf{a}_{0}) \mathbf{u}_{i}(\mathbf{a}_{0})' / \mathbf{z}_{i} \right]^{-1} \frac{\partial \mathbf{u}_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}'} \right]^{-1}.$$

 Σ_0^* est la *borne minimax* ou *borne d'efficacité semi-paramétrique* (des estimateurs as. normaux de \mathbf{a}_0).

Propriété. Transformation affine non singulière des instruments efficaces

Si **B** est une matrice carrée de dimension K et de rang K, alors $\mathbf{BR}^+(\mathbf{z}_i)$ est également un instrument efficace.

- La démonstration de ces propriétés est ardue et peu instructive. Ceci dit, la forme de $\mathbf{R}^+(\mathbf{z}_i)$ est relativement intuitive.
- Dans la suite on notera :

$$\Gamma_0(\mathbf{z}_i) \equiv E \left[\frac{\partial \mathbf{u}_i(\mathbf{a}_0)'}{\partial \mathbf{a}} / \mathbf{z}_i \right]$$

et:

$$\mathbf{\Omega}_{0}(\mathbf{z}_{i}) \equiv E[\mathbf{u}_{i}(\mathbf{a}_{0})\mathbf{u}_{i}(\mathbf{a}_{0})'/\mathbf{z}_{i}] = V[\mathbf{u}_{i}(\mathbf{a}_{0})/\mathbf{z}_{i}]$$

et finalement:

$$\mathbf{R}^{+}(\mathbf{z}_{i}) = \mathbf{\Gamma}_{0}(\mathbf{z}_{i})\mathbf{\Omega}_{0}(\mathbf{z}_{i})^{-1}.$$

Interprétation, $\Omega_0(\mathbf{z}_i) \equiv E[\mathbf{u}_i(\mathbf{a}_0)\mathbf{u}_i(\mathbf{a}_0)'/\mathbf{z}_i] = V[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i]$

$$\mathbf{g}_{i}^{+}(\mathbf{a}) = \underbrace{\Gamma_{0}(\mathbf{z}_{i})\Omega_{0}(\mathbf{z}_{i})^{-1}}_{\mathbf{R}^{+}(\mathbf{z}_{i})}\mathbf{u}_{i}(\mathbf{a})$$

- $\Omega_0(\mathbf{z}_i)$ est la matrice de variance-covariance conditionnelle en \mathbf{z}_i de $\mathbf{u}_i = \mathbf{u}_i(\mathbf{a}_0)$
 - Si $\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i; \mathbf{a}_0) + \mathbf{u}_i$ avec $E[\mathbf{u}_i/\mathbf{z}_i] = E[\mathbf{u}_i] \equiv \mathbf{0}$ alors $\mathbf{u}_i(\mathbf{a}_0) = \mathbf{u}_i$.
 - $\Omega_0(\mathbf{z}_i)$ tient compte de l'éventuelle *hétéroscédasticité conditionnelle* et des *relations entre les éléments* de $\mathbf{u}_i = \mathbf{u}_i(\mathbf{a}_0)$.
 - Correction pour l'hétéroscédasticité, e.g. des MCG ou des MCQG.
 - Contrôle pour les relations entre les termes d'erreur, e.g. des MCG ou des MCQG.

Interprétation de
$$\Gamma_0(\mathbf{z}_i) \equiv E \left[\frac{\partial \mathbf{u}_i(\mathbf{a}_0)'}{\partial \mathbf{a}} / \mathbf{z}_i \right]$$

$$\mathbf{g}_{i}^{+}(\mathbf{a}) = \underbrace{\boldsymbol{\Gamma}_{0}(\mathbf{z}_{i})\boldsymbol{\Omega}_{0}(\mathbf{z}_{i})^{-1}}_{\mathbf{R}^{+}(\mathbf{z}_{i})}\mathbf{u}_{i}(\mathbf{a})$$

• Le terme $\Omega_0(\mathbf{z}_i)^{-1}$ joue essentiellement un rôle de *pondération*.

Le terme
$$\Gamma_0(\mathbf{z}_i)$$
 porte la « structure » de $\mathbf{R}^+(\mathbf{z}_i) = \Gamma_0(\mathbf{z}_i) \mathbf{\Omega}_0(\mathbf{z}_i)^{-1}$, il est essentiel pour l'identification de \mathbf{a}_0 .

- $\Gamma_0(\mathbf{z}_i)$ est un bon instrument car c'est la *fonction de* \mathbf{z}_i *qui a la plus* « *forte* » *corrélation avec* $\mathbf{u}_i(\mathbf{a})$ pour \mathbf{a} autour de \mathbf{a}_0
- On peut donner l'intuition de l'« optimalité » de $\Gamma_0(\mathbf{z}_i)$ en tant qu'instrument en linéarisant la condition d'identification de \mathbf{a}_0 .

• On doit choisir un instrument $\mathbf{R}(\mathbf{z}_i)$ pour $\mathbf{u}_i(\mathbf{a}_0)$ de telle sorte à ce que l'estimateur de la MM de \mathbf{a}_0 fondé sur :

$$E[\mathbf{R}(\mathbf{z}_i)\mathbf{u}_i(\mathbf{a}_0)] = \mathbf{0}$$

- (i) identifie \mathbf{a}_0
- et:
- (ii) soit le plus efficace possible.
- Pour l'identification il faut que E[R(z_i)u_i(a)] ≠ 0 si a ≠ a₀, donc il faut que R(z_i) soit corrélé au mieux à u_i(a) lorsque a ≠ a₀, et ce même lorsque a est très proche de a₀.
 - *Intuition* : $\mathbf{R}(\mathbf{z}_i)$ doit permettre de « bien » détecter si $\mathbf{a} \neq \mathbf{a}_0$.
 - *Intuition*: plus $\mathbf{R}(\mathbf{z}_i)$ est corrélé à $\mathbf{u}_i(\mathbf{a})$ pour $\mathbf{a} \neq \mathbf{a}_0$, plus $\mathbf{R}(\mathbf{z}_i)$ est efficace en tant qu'instrument d'identification.

■ Développement limité au premier ordre en \mathbf{a} de $\mathbf{u}_i(\mathbf{a})$ autour de \mathbf{a}_0 :

$$\mathbf{u}_{i}(\mathbf{a}) \simeq \mathbf{u}_{i}(\mathbf{a}_{0}) + \frac{\partial \mathbf{u}_{i}(\mathbf{a}_{0})}{\partial \mathbf{a}'}(\mathbf{a} - \mathbf{a}_{0})$$

or $E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i] = 0$ implique que $E[\mathbf{R}(\mathbf{z}_i)\mathbf{u}_i(\mathbf{a}_0)] = \mathbf{0}$ et donc que :

$$E[\mathbf{R}(\mathbf{z}_i)\mathbf{u}_i(\mathbf{a}_0)] \simeq E\left[\mathbf{R}(\mathbf{z}_i)\frac{\partial \mathbf{u}_i(\mathbf{a}_0)}{\partial \mathbf{a}'}\right](\mathbf{a}-\mathbf{a}_0)$$

• On a:

$$\Gamma_0(\mathbf{z}_i) \equiv E\left[\frac{\partial \mathbf{u}_i(\mathbf{a}_0)'}{\partial \mathbf{a}}/\mathbf{z}_i\right] \implies E\left[\mathbf{R}(\mathbf{z}_i)\frac{\partial \mathbf{u}_i(\mathbf{a}_0)}{\partial \mathbf{a}'}\right] = E\left[\mathbf{R}(\mathbf{z}_i)\Gamma_0(\mathbf{z}_i)'\right].$$

■ Avec:

$$E[\mathbf{R}(\mathbf{z}_i)\mathbf{u}_i(\mathbf{a}_0)] \simeq E[\mathbf{R}(\mathbf{z}_i)\Gamma_0(\mathbf{z}_i)'](\mathbf{a}-\mathbf{a}_0)$$

on voit que:

un des « meilleurs » candidats pour
$$\mathbf{R}^+(\mathbf{z}_i)$$
 est $\Gamma_0(\mathbf{z}_i) \equiv E \left[\frac{\partial \mathbf{u}_i(\mathbf{a}_0)'}{\partial \mathbf{a}} / \mathbf{z}_i \right]$.

■ En effet si $E[\Gamma_0(\mathbf{z}_i)\Gamma_0(\mathbf{z}_i)']$ est inversible alors :

$$E\Big[\mathbf{R}^+(\mathbf{z}_i)\boldsymbol{\Gamma}_0(\mathbf{z}_i)'\Big](\mathbf{a}-\mathbf{a}_0) = E\Big[\boldsymbol{\Gamma}_0(\mathbf{z}_i)\boldsymbol{\Gamma}_0(\mathbf{z}_i)'\Big](\mathbf{a}-\mathbf{a}_0) = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{a} = \mathbf{a}_0.$$

- La condition d'inversibilité de $E[\Gamma_0(\mathbf{z}_i)\Gamma_0(\mathbf{z}_i)']$ (condition (iii) de la propriété) est une condition de rang locale, i.e. une condition locale d'identification.
 - C'est la condition locale de rang, *condition locale d'identification*, sur le terme G_0 dans la MM(G).
 - Elle est garantie si la fonction critère de la MMG n'est pas plate en a autour de a₀.
- La condition d'inversibilité de $\Omega_0(\mathbf{z}_i) \equiv E[\mathbf{u}_i(\mathbf{a}_0)\mathbf{u}_i(\mathbf{a}_0)'/\mathbf{z}_i] = V[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{z}_i]$ (condition (*ii*) de la propriété) est une condition locale d'ordre.
 - Elle est garantie si les $\mathbf{u}_i(\mathbf{a})$ sont linéairement indépendant.
 - Il faut faire attention lorsqu'on travaille avec des systèmes de parts budgétaires qui somment à 1 par exemple.

Remarques générales

 Les estimateurs nouveaux introduits par la MMG sont pratiquement tous des estimateurs fondés sur des conditions d'orthogonalité :

$$E[\mathbf{R}(\mathbf{z}_i)\mathbf{u}(\mathbf{y}_i,\mathbf{x}_i;\mathbf{a})] = \mathbf{0} \iff \mathbf{a} = \mathbf{a}_0$$

surtout pour:

- les systèmes d'équations (implicites ou explicites)
- les modèles utilisés avec des données de panel en particulier
- Le résultat de Chamberlain permet une ré-interprétation des propriétés des estimateurs usuels tels que les estimateurs SUR, des 3MC, GIV, ...

4.3. Un exemple : Systèmes de régressions empilées (ou système SUR)

■ On considère des systèmes à *M* équations de la forme :

$$\begin{cases} y_{1,i} = \mathbf{a}'_{1,0} \mathbf{x}_{1,i} + u_{1,i} & \text{et } E \left[u_{1,i} / \mathbf{x}_i \right] = 0 \\ \vdots & \vdots \\ y_{M,i} = \mathbf{a}'_{M,0} \mathbf{x}_{M,i} + u_{M,i} & \text{et } E \left[u_{M,i} / \mathbf{x}_i \right] = 0 \end{cases}$$

• Ces systèmes peuvent être également notés :

$$\begin{cases} y_{m,i} = \mathbf{a}'_{m,0} \mathbf{x}_{m,i} + u_{m,i} & \text{et } E \left[u_{m,i} / \mathbf{x}_i \right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

- Le vecteur \mathbf{x}_i contient les éléments non redondants des $\mathbf{x}_{m,i}$
 - Chaque équation du système est une équation de régression
 - \mathbf{x}_i exogène par rapport à tout $u_{m,i}$, plus fort que $E\left[u_{m,i}/\mathbf{x}_{m,i}\right] = 0$

$$\begin{cases} y_{1,i} = \mathbf{a}'_{1,0}\mathbf{x}_{1,i} + u_{1,i} & \text{et } E\left[u_{1,i}/\mathbf{x}_{i}\right] = 0\\ \vdots & \vdots\\ y_{M,i} = \mathbf{a}'_{M,0}\mathbf{x}_{M,i} + u_{M,i} & \text{et } E\left[u_{M,i}/\mathbf{x}_{i}\right] = 0 \end{cases}$$

- On suppose ici que les vecteurs de paramètres des équations, les a_{m,0}, n'ont aucun lien entre eux:
 - Seemingly Unrelated Regression System (Système SUR), Zellner
 - \blacksquare Le vecteur des paramètres d'intérêt est l'empilement des $\mathbf{a}_{m,0}$:

$$\mathbf{a}_0 \equiv \begin{bmatrix} \mathbf{a}_{1,0} \\ \vdots \\ \mathbf{a}_{M,0} \end{bmatrix}.$$

- Exemples :
 - Systèmes de fonctions de demande de biens, consommation
 - Formes réduites de systèmes d'équations simultanées

Ecriture matricielle :

• Ce modèle se résume sous la forme :

$$E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{x}_i] = \mathbf{0}_{M \times 1} \text{ avec } \mathbf{u}_i(\mathbf{a}) \equiv \mathbf{y}_i - \mathbf{X}_i'\mathbf{a}$$

$$E[\mathbf{u}_i(\mathbf{a}_0)/\mathbf{x}_i] = \mathbf{0}_{M \times 1} \text{ avec } \mathbf{u}_i(\mathbf{a}) \equiv \mathbf{y}_i - \mathbf{X}_i'\mathbf{a}$$

■ *Instrument optimal* pour ces moments conditionnels :

$$\mathbf{R}_{i}^{+} \equiv E \left[\frac{\partial \mathbf{u}_{i}(\mathbf{a}_{0})'}{\partial \mathbf{a}} / \mathbf{x}_{i} \right] E \left[\mathbf{u}_{i}(\mathbf{a}_{0}) \mathbf{u}_{i}(\mathbf{a}_{0})' / \mathbf{x}_{i} \right]^{-1} = -\mathbf{X}_{i} E \left[\mathbf{u}_{i} \mathbf{u}_{i}' / \mathbf{x}_{i} \right]^{-1}$$

■ Problème (technique) si $E[\mathbf{u}_i\mathbf{u}_i'/\mathbf{x}_i]$ dépend de \mathbf{x}_i , *i.e.* si hétéroscédasticité. On suppose, pour simplifier, ici que :

$$E[\mathbf{u}_i\mathbf{u}_i'/\mathbf{x}_i] = \mathbf{\Omega}_0 \equiv E[\mathbf{u}_i\mathbf{u}_i']$$
, *i.e.* homoscédasticité des \mathbf{u}_i .

- Estimation efficace = estimation « en système »
 - Si $\Omega_0 \equiv E[\mathbf{u}_i \mathbf{u}_i']$ n'est pas diagonale, *i.e.* pas de relations entre termes d'erreur des équations du système (*truly unrelated*)

• Si $\Omega_0 \equiv E[\mathbf{u}_i \mathbf{u}_i']$ diagonale on a :

$$\mathbf{R}_{i}^{+} = -\mathbf{X}_{i} \; \mathbf{\Omega}_{0}^{-1} = \begin{bmatrix} \boldsymbol{\omega}_{11,0}^{-1} \mathbf{x}_{1,i} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\omega}_{22,0}^{-1} \mathbf{x}_{2,i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{\omega}_{MM,0}^{-1} \mathbf{x}_{M,i} \end{bmatrix}$$

et la condition de moment estimante optimale s'écrit sous la forme :

$$E\left[\mathbf{g}_{i}^{+}(\mathbf{a}_{0})\right] = E\left[\mathbf{R}_{i}^{+}\mathbf{u}_{i}(\mathbf{a}_{0})\right] = E\begin{bmatrix} \omega_{1,0}^{-1}\mathbf{x}_{1,i}(y_{1,i} - \mathbf{a}'_{1,0}\mathbf{x}_{1,i}) \\ \omega_{22,0}^{-1}\mathbf{x}_{2,i}(y_{2,i} - \mathbf{a}'_{2,0}\mathbf{x}_{2,i}) \\ \vdots \\ \omega_{MM,0}^{-1}\mathbf{x}_{M,i}(y_{M,i} - \mathbf{a}'_{M,0}\mathbf{x}_{M,i}) \end{bmatrix} = \mathbf{0},$$

ce qui est équivalent à :

$$E\left[\mathbf{x}_{m,i}(y_{m,i}-\mathbf{a}'_{m,0}\mathbf{x}_{m,i})\right]=\mathbf{0} \text{ pour } m=1,...,M.$$

■ Conclusion : Si $\Omega_0 \equiv E[\mathbf{u}_i \mathbf{u}_i']$ diagonale l'estimateur as. efficace de \mathbf{a}_0 dans le système :

$$\begin{cases} y_{m,i} = \mathbf{a}'_{m,0} \mathbf{x}_{m,i} + u_{m,i} & \text{et } E \left[u_{m,i} / \mathbf{x}_i \right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

est l'estimateur constitué par « l'empilement » des estimateurs MCO équation par équation.

En effet l'estimateur as. efficace de \mathbf{a}_0 est l'estimateur MM fondé sur :

$$E\left[\mathbf{x}_{m,i}(y_{m,i} - \mathbf{a}'_{m,0}\mathbf{x}_{m,i})\right] = \mathbf{0} \text{ pour } m = 1,...,M$$

est défini par l'empilement des :

$$\hat{\mathbf{a}}_{m,N} \equiv \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{m,i} \mathbf{x}'_{m,i}\right) N^{-1} \sum_{i=1}^{N} \mathbf{x}_{m,i} y_{m,i} \text{ pour } m = 1,...,M$$

- Cet estimateur est même sans biais ...
- ... mais on a rarement $\Omega_0 \equiv E[\mathbf{u}_i \mathbf{u}_i']$ diagonale.

■ Dans le cas général, $\Omega_0 \equiv E[\mathbf{u}_i \mathbf{u}_i']$ *n'est pas diagonale* et la condition d'orthogonalité estimante fondée sur l'instrument optimal est donnée par :

$$E\left[\mathbf{R}^{+}(\mathbf{z}_{i})\mathbf{u}_{i}(\mathbf{y}_{i},\mathbf{x}_{i};\mathbf{a}_{0})\right] = E\left[\mathbf{X}_{i}\mathbf{\Omega}_{0}^{-1}(\mathbf{y}_{i}-\mathbf{X}_{i}'\mathbf{a}_{0})\right] = \mathbf{0}$$

■ Avec :

$$\mathbf{\Omega}_0^{-1} = \begin{vmatrix} \mathbf{v}_{11,0} & \cdots & \mathbf{v}_{1M,0} \\ \vdots & \ddots & \vdots \\ \mathbf{v}_{M1,0} & \cdots & \mathbf{v}_{MM,0} \end{vmatrix} \quad \text{où} \quad \mathbf{v}_{m\ell,0} = \mathbf{v}_{\ell m,0}$$

on a:

$$\mathbf{X}_{i} \mathbf{\Omega}_{0}^{-1} (\mathbf{y}_{i} - \mathbf{X}_{i}' \mathbf{a}) = \begin{bmatrix} \sum_{m=1}^{M} \mathbf{x}_{1,i} \upsilon_{1m,0} (y_{m,i} - \mathbf{a}_{m}' \mathbf{x}_{m,i}) \\ \vdots \\ \sum_{m=1}^{M} \mathbf{x}_{M,i} \upsilon_{Mm,0} (y_{m,i} - \mathbf{a}_{m}' \mathbf{x}_{m,i}) \end{bmatrix} = \begin{bmatrix} \sum_{m=1}^{M} \mathbf{x}_{1,i} \upsilon_{1m,0} u_{m,i} (\mathbf{a}_{m}) \\ \vdots \\ \sum_{m=1}^{M} \mathbf{x}_{M,i} \upsilon_{Mm,0} u_{m,i} (\mathbf{a}_{m}) \end{bmatrix}$$

$$E\left[\mathbf{R}^{+}(\mathbf{z}_{i})\mathbf{u}_{i}(\mathbf{y}_{i},\mathbf{x}_{i};\mathbf{a}_{0})\right] = E\left[\mathbf{X}_{i}\mathbf{\Omega}_{0}^{-1}(\mathbf{y}_{i}-\mathbf{X}_{i}'\mathbf{a}_{0})\right] = \mathbf{0}$$

- Bien entendu, Ω_0 est inconnue *a priori*, mais on traitera ce problème dans un second temps.
- La condition $E\left[\mathbf{X}_{i}\mathbf{\Omega}_{0}^{-1}(\mathbf{y}_{i}-\mathbf{X}_{i}'\mathbf{a}_{0})\right]=\mathbf{0}$ est juste-identifiante. On peut donc utiliser la MM est définir un estimateur as. efficace de \mathbf{a}_{0} par :

$$\hat{\mathbf{a}}_{N}^{MM}(\mathbf{\Omega}_{0})$$
 solution en \mathbf{a} de $N^{-1}\sum_{i=1}^{N}\mathbf{X}_{i}\mathbf{\Omega}_{0}^{-1}(\mathbf{y}_{i}-\mathbf{X}_{i}'\mathbf{a})=\mathbf{0}$,

ce qui donne :

$$\hat{\mathbf{a}}_{N}^{MM}(\mathbf{\Omega}_{0}) = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{\Omega}_{0}^{-1} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{\Omega}_{0}^{-1} \mathbf{y}_{i},$$

i.e. un estimateur de type MCG.

- L'estimateur $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{\Omega}_{0})$ ne peut être utilisé en général car $\mathbf{\Omega}_{0}$ est généralement inconnue.
- Ceci dit, puisque :

$$\mathbf{\Omega}_0 \equiv E[\mathbf{u}_i \mathbf{u}_i'] = E[(\mathbf{y}_i - \mathbf{X}_i' \mathbf{a}_0)(\mathbf{y}_i - \mathbf{X}_i' \mathbf{a}_0)']$$

on peut en construire un estimateur convergent :

$$\tilde{\mathbf{\Omega}}_{N} \equiv N^{-1} \sum_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{X}_{i}' \tilde{\mathbf{a}}_{N}) (\mathbf{y}_{i} - \mathbf{X}_{i}' \tilde{\mathbf{a}}_{N})' \xrightarrow{p \atop N \to +\infty} \mathbf{\Omega}_{0}$$

si on dispose d'un estimateur as. normal (convergent suffit ici) de \mathbf{a}_0 , $\tilde{\mathbf{a}}_N$.

Par la propriété des instruments estimés (et des MCQG) on sait que :

$$\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N}) = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{y}_{i}$$

est as. équivalent à $\hat{\mathbf{a}}_N^{MM}(\Omega_0)$ qui est as. efficace. Aussi $\hat{\mathbf{a}}_N^{MM}(\tilde{\Omega}_N)$ est as. efficace pour l'estimation de \mathbf{a}_0 à partir de $E\big[\mathbf{y}_i - \mathbf{X}_i'\mathbf{a}_0/\mathbf{x}_i\big] = \mathbf{0}$.

- Ce résultat est une conséquence de ce que $\mathbf{X}_i \tilde{\mathbf{\Omega}}_N^{-1}$ est un estimateur convergent de l'instrument efficace $-\mathbf{R}_i^+ = -\mathbf{X}_i \, \mathbf{\Omega}_0^{-1}$.
- Il reste maintenant à construire un estimateur as. normal de \mathbf{a}_0 , $\tilde{\mathbf{a}}_N$, pour pouvoir construire $\tilde{\mathbf{\Omega}}_N$.
- Si $\mathbf{R}_{i}^{+} = -\mathbf{X}_{i} \Omega_{0}^{-1}$ est un instrument qui identifie \mathbf{a}_{0} alors l'instrument \mathbf{X}_{i} peut également identifier \mathbf{a}_{0} , *i.e.* :

$$E[\mathbf{X}_{i}\mathbf{u}_{i}] = E[\mathbf{X}_{i}(\mathbf{y}_{i} - \mathbf{X}_{i}'\mathbf{a}_{0})] = \mathbf{0}.$$

Noter que choisir l'instrument \mathbf{X}_i revient à « remplacer » $\mathbf{\Omega}_0$ par \mathbf{I}_M .

 L'estimateur de la MM fondé sur cette condition d'orthogonalité est l'estimateur :

$$\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M}) = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{y}_{i}$$

qui est a la structure d'estimateur des MCO.

• Un peu de calcul matriciel permet de montrer que :

$$\hat{\mathbf{a}}_{N}^{MM}\left(\mathbf{I}_{M}\right) = \left(N^{-1}\sum_{i=1}^{N}\mathbf{X}_{i}\mathbf{X}_{i}'\right)^{-1}N^{-1}\sum_{i=1}^{N}\mathbf{X}_{i}\mathbf{y}_{i}$$

s'écrit sous la forme :

$$\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M}) = \begin{bmatrix} \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{1,i} \mathbf{x}_{1,i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{x}_{1,i} y_{1,i} \\ \vdots \\ \left(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{M,i} \mathbf{x}_{M,i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{x}_{1,i} y_{1,i} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{a}}_{1,N}^{MCO} \\ \vdots \\ \hat{\mathbf{a}}_{M,N}^{MCO} \end{bmatrix},$$

i.e. que $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M})$ se définit comme l'empilement des estimateurs des MCO des $\mathbf{a}_{m,0}$, les $\hat{\mathbf{a}}_{m,N}^{MCO}$ pour m=1,...,M.

• On retrouve ici l'*estimateur des MCO* « équation par équation » de \mathbf{a}_0 . Cet estimateur est as. normal mais n'est pas as. efficace lorsque Ω_0 n'est pas diagonale.

Pour résumer

L'estimateur:

$$\hat{\mathbf{a}}_{N}^{MM}\left(\boldsymbol{\Omega}_{0}\right) = \left(N^{-1}\sum\nolimits_{i=1}^{N}\mathbf{X}_{i}\boldsymbol{\Omega}_{0}^{-1}\mathbf{X}_{i}^{\prime}\right)^{-1}N^{-1}\sum\nolimits_{i=1}^{N}\mathbf{X}_{i}\boldsymbol{\Omega}_{0}^{-1}\mathbf{y}_{i}$$

est un estimateur de as. de \mathbf{a}_0 dans un système de régressions empilées :

$$\begin{cases} y_{m,i} = \mathbf{a}'_{m,0} \mathbf{x}_{m,i} + u_{m,i} & \text{et } E \left[u_{m,i} / \mathbf{x}_i \right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

ou:

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{a}_0 + \mathbf{u}_i$$
 et $E[\mathbf{u}_i/\mathbf{x}_i] = \mathbf{0}$

avec:

$$E[\mathbf{u}_{i}\mathbf{u}_{i}'/\mathbf{z}_{i}] = \mathbf{\Omega}_{0} \equiv E[\mathbf{u}_{i}\mathbf{u}_{i}']$$

car il est construit à partir d'une condition d'orthogonalité optimale au sens de Chamberlain, *i.e.* utilisant l'instrument optimal $\mathbf{R}_i^+ = -\mathbf{X}_i \, \mathbf{\Omega}_0^{-1}$.

Cet estimateur ne peut être calculé si Ω_0 est inconnue (cas général).

L'estimateur:

$$\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N}) = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{y}_{i}$$

est as. équivalent à $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{\Omega}_{0})$ car $\mathbf{X}_{i}\tilde{\mathbf{\Omega}}_{N}^{-1}$ est un estimateur convergent de l'instrument efficace $-\mathbf{R}_{i}^{+} = -\mathbf{X}_{i} \mathbf{\Omega}_{0}^{-1}$.

L'estimateur $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N})$ peut être construit en trois étapes.

Construction de $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N})$

Etape 1. Calcul de $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M}) \equiv (\hat{\mathbf{a}}_{m,N}^{MCO}, m = 1,...,M)$:

$$\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M}) = \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{y}_{i} \equiv \tilde{\mathbf{a}}_{N}$$

l'estimateur des MCO « équation par équation » de \mathbf{a}_0 .

Etape 2. Calcul de :

$$\tilde{\boldsymbol{\Omega}}_{N} \equiv N^{-1} \sum\nolimits_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{X}_{i}' \tilde{\mathbf{a}}_{N}) (\mathbf{y}_{i} - \mathbf{X}_{i}' \tilde{\mathbf{a}}_{N})' \xrightarrow{p \atop N \rightarrow +\infty} \boldsymbol{\Omega}_{0}.$$

Etape 3. Calcul de:

$$\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N}) = \left(N^{-1}\sum\nolimits_{i=1}^{N}\mathbf{X}_{i}\tilde{\mathbf{\Omega}}_{N}^{-1}\mathbf{X}_{i}'\right)^{-1}N^{-1}\sum\nolimits_{i=1}^{N}\mathbf{X}_{i}\tilde{\mathbf{\Omega}}_{N}^{-1}\mathbf{y}_{i}.$$

Remarques

- L'estimateur $\hat{\mathbf{a}}_N^{MM}(\tilde{\mathbf{\Omega}}_N)$ est plus connu sous le nom d'Estimateur « SUR » (Seemingly Unrelated Regression Estimator) après le travail de Zellner.
- De manière générale :
 - Un estimateur des MCQG, tel que $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N}) = \hat{\mathbf{a}}_{N}^{MCQG}$, est désigné sous le terme de <u>Feasible</u> Generalized Least Square Estimator
 - Un estimateur des MCG, tel que $\hat{\mathbf{a}}_{N}^{MM}(\Omega_{0}) = \hat{\mathbf{a}}_{N}^{MCG}$ est désigné sous le terme de *Generalized Least Square Estimator* (il est *unfeasible* lorsque Ω_{0} est inconnue)

Propriété. Théorème de Zellner

Soit un système de régressions empilées :

$$\begin{cases} y_{m,i} = \mathbf{a}'_{m,0} \mathbf{x}_{m,i} + u_{m,i} & \text{et } E \left[u_{m,i} / \mathbf{x}_i \right] = 0 \\ \text{pour } m = 1, ..., M \end{cases}$$

ou:

$$\mathbf{y}_i = \mathbf{X}_i' \mathbf{a}_0 + \mathbf{u}_i$$
 et $E[\mathbf{u}_i / \mathbf{x}_i] = \mathbf{0}$

avec:

$$E[\mathbf{u}_i\mathbf{u}_i'/\mathbf{z}_i] = \mathbf{\Omega}_0 \equiv E[\mathbf{u}_i\mathbf{u}_i']$$

- (i) $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N})$ et $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M}) \equiv (\hat{\mathbf{a}}_{m,N}^{MCO}, m=1,...,M)$ sont as. équivalents si $\mathbf{\Omega}_{0}$ est diagonale
- (ii) $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\Omega}_{N})$ et $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M})$ sont égaux si $\mathbf{x}_{m,i} = \mathbf{x}_{i}$ pour m = 1,...,M.

Démonstration du Théorème de Zellner

Résultat (i)

On a vu précédemment que $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M}) \equiv \left(\hat{\mathbf{a}}_{m,N}^{MCO}, m=1,...,M\right)$ est as. efficace si Ω_{0} est diagonale, tout comme $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\Omega}_{N})$ l'est parce qu'il est construit avec un estimateur convergent d'instrument optimal.

Les estimateurs $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N})$ et $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M})$ étant as. efficaces, ils ont la même distribution as. et sont donc as. équivalents.

Les estimateurs $\hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N})$ et $\hat{\mathbf{a}}_{N}^{MM}(\mathbf{I}_{M})$ ne sont pas égaux numériquement pour $N < +\infty$, on a « seulement » :

$$\tilde{\mathbf{\Omega}}_N \xrightarrow{p \\ N \to +\infty} \mathbf{\Omega}_0$$
 diagonale.

Si $\mathbf{x}_{m,i} = \mathbf{x}_i$ pour m = 1,...,M alors:

$$\mathbf{X}_{i} \equiv \begin{bmatrix} \mathbf{x}_{i} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_{i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x}_{i} \end{bmatrix} = \mathbf{I}_{M} \otimes \mathbf{x}_{i}$$

On va utiliser les propriétés suivantes des produits de Kronecker (ou tenseurs) :

Coagulation:
$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$$
 (si matrices conformes)

Transposition:
$$(\mathbf{A} \otimes \mathbf{B})' = (\mathbf{A}') \otimes (\mathbf{B}')$$

Inversion:
$$(\mathbf{A} \otimes \mathbf{B})^{-1} = (\mathbf{A}^{-1}) \otimes (\mathbf{B}^{-1})$$
 (si matrices inversibles)

Somme:
$$(\mathbf{A} \otimes \mathbf{B}) + (\mathbf{A} \otimes \mathbf{C}) = \mathbf{A} \otimes (\mathbf{B} + \mathbf{C})$$
 et $(\mathbf{A} \otimes \mathbf{B}) + (\mathbf{C} \otimes \mathbf{B}) = (\mathbf{A} + \mathbf{C}) \otimes \mathbf{B}$

Avec $\mathbf{X}_i = \mathbf{I}_M \otimes \mathbf{x}_i$ on a ici:

$$\begin{split} \hat{\mathbf{a}}_{N}^{MM}\left(\tilde{\mathbf{\Omega}}_{N}\right) &= \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{X}_{i}^{\prime}\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{y}_{i} \\ &= \left(N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) \tilde{\mathbf{\Omega}}_{N}^{-1} (\mathbf{I}_{M} \otimes \mathbf{x}_{i})^{\prime}\right)^{-1} N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) \tilde{\mathbf{\Omega}}_{N}^{-1} \mathbf{y}_{i} \end{split}$$

Puisque $\tilde{\Omega}_N^{-1}$ est carrée de taille $M \times M$ on a, avec $\tilde{\Omega}_N^{-1} = \tilde{\Omega}_N^{-1} \otimes 1$:

$$\begin{split} \hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N}) &= \left(N^{-1} \sum_{i=1}^{N} (\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i}) (\mathbf{I}_{M} \otimes \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \\ &= \left(N^{-1} \sum_{i=1}^{N} \tilde{\mathbf{\Omega}}_{N}^{-1} \otimes (\mathbf{x}_{i} \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \\ &= \left(\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{i} \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \end{split}$$

$$\hat{\mathbf{a}}_{N}^{MM}(\tilde{\boldsymbol{\Omega}}_{N}) = \left(\tilde{\boldsymbol{\Omega}}_{N}^{-1} \otimes N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{i} \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\tilde{\boldsymbol{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i}) \mathbf{y}_{i}$$

$$\begin{split} \hat{\mathbf{a}}_{N}^{MM}(\tilde{\mathbf{\Omega}}_{N}) &= \tilde{\mathbf{\Omega}}_{N} \otimes \left(N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{i} \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \\ &= \tilde{\mathbf{\Omega}}_{N} \otimes \left(N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{i} \mathbf{x}_{i}')\right)^{-1} (\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{I}_{K}) (\tilde{\mathbf{\Omega}}_{N} \otimes \mathbf{I}_{K}) N^{-1} \sum_{i=1}^{N} (\tilde{\mathbf{\Omega}}_{N}^{-1} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \\ &= \mathbf{I}_{M} \otimes \left(N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{i} \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \\ &= \left(N^{-1} \sum_{i=1}^{N} \mathbf{I}_{M} \otimes (\mathbf{x}_{i} \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \\ &= \left(N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) (\mathbf{I}_{M} \otimes \mathbf{x}_{i}')\right)^{-1} N^{-1} \sum_{i=1}^{N} (\mathbf{I}_{M} \otimes \mathbf{x}_{i}) \mathbf{y}_{i} \\ &= \left(N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{X}_{i}'\right)^{-1} N^{-1} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{y}_{i} \\ &= \hat{\mathbf{a}}_{N}^{MM} (\mathbf{I}_{M}) \end{split}$$

5. Instruments efficaces et MMG

- Puisque l'instrument efficace juste-identifie les paramètres à estimer ...
 - ... pourquoi aurait-on encore besoin de la MMG?
- Plusieurs réponses ici :
 - On n'a pas défini la forme des instruments efficaces dans le cas de systèmes d'équations avec des VI qui diffèrent par équation (cas de l'estimation des modèles « de panel » en particulier).
 - Le résultat de Chamberlain s'applique si on a $E[\mathbf{u}_i/\mathbf{x}_i] = \mathbf{0}$, il ne s'applique pas si on a « seulement » $E[\mathbf{u}_i \mathbf{x}_i'] = \mathbf{0}$.
 - La MMG s'applique à des conditions de moment autres que des conditions d'orthogonalité

- Mais même dans les cas où le résultat de Chamberlain s'applique :
 - Le calcul ou l'estimation des instruments efficaces peut être délicate, voire quasiment impossible en pratique (cas de beaucoup de VI).
 - Ceci dit, il me semble qu'on ne se réfère pas assez au résultat de Chamberlain pour choisir les instruments pour l'estimation des modèles à variables explicatives endogènes.

MMG, MM et instruments : remarques finales

• On considère ici le modèle :

$$y_i = f(\mathbf{x}_i; \mathbf{a}_0) + u_i \text{ avec } E[u_i \mid \mathbf{z}_i] = 0$$

et on note:

$$u_i(\mathbf{a}) \equiv y_i - f(\mathbf{x}_i; \mathbf{a}) \text{ avec } u_i = u_i(\mathbf{a}_0).$$

• On considère la condition de moment estimante (supposée identifiante) :

$$E[\rho(\mathbf{z}_i)u_i(\mathbf{a}_0)] = \mathbf{0},$$

i.e. on utilise comme instrument une transformation des VI \mathbf{z}_i , $\rho(\mathbf{z}_i)$.

 \blacksquare L'estimateur $\tilde{\mathbf{a}}_N^{\textit{MMG}}$ de \mathbf{a}_0 fondé sur cette condition est défini par :

$$\tilde{\mathbf{a}}_{N}^{MMG} \equiv \arg\min_{\mathbf{a}} \left(N^{-1} \sum_{i=1}^{N} u_{i}(\mathbf{a}) \boldsymbol{\rho}(\mathbf{z}_{i})' \right) \tilde{\mathbf{M}}_{N} \left(N^{-1} \sum_{i=1}^{N} u_{i}(\mathbf{a}) \boldsymbol{\rho}(\mathbf{z}_{i}) \right).$$

• L'estimateur $\tilde{\mathbf{a}}_N^{MMG}$ est caractérisé par les CO1 du programme de minimisation qui le définit :

$$N^{-1} \sum\nolimits_{i=1}^{N} \left(N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{f}_{i}(\tilde{\mathbf{a}}_{N}^{MMG}) \boldsymbol{\rho}(\mathbf{z}_{i})' \right) \tilde{\mathbf{M}}_{N} \boldsymbol{\rho}(\mathbf{z}_{i}) u_{i}(\tilde{\mathbf{a}}_{N}^{MMG}) = \mathbf{0}_{K \times 1}$$

où:

$$\mathbf{f}_i(\mathbf{a}) \equiv \frac{\partial f(\mathbf{x}_i; \mathbf{a})}{\partial \mathbf{a}}.$$

■ En notant:

$$\tilde{\mathbf{r}}_{N}(\mathbf{z}_{i}) \equiv \left(N^{-1} \sum_{i=1}^{N} \mathbf{f}_{i}(\tilde{\mathbf{a}}_{N}^{MMG}) \boldsymbol{\rho}(\mathbf{z}_{i})'\right) \tilde{\mathbf{M}}_{N} \boldsymbol{\rho}(\mathbf{z}_{i})$$

on obtient que $\tilde{\mathbf{a}}_N^{MMG}$ est défini comme un estimateur de la MM avec l'instrument estimé $\hat{\mathbf{r}}_N(\mathbf{z}_i)$:

$$N^{-1} \sum_{i=1}^{N} \tilde{\mathbf{r}}_{N}(\mathbf{z}_{i}) u_{i}(\tilde{\mathbf{a}}_{N}^{MMG}) = \mathbf{0}_{K \times 1}.$$

■ Puisque:

$$\tilde{\mathbf{r}}_{N}(\mathbf{z}_{i}) \xrightarrow{\frac{p}{N \to +\infty}} E[\mathbf{f}_{i}(\mathbf{a}_{0})\boldsymbol{\rho}(\mathbf{z}_{i})'] \mathbf{M}_{0}\boldsymbol{\rho}(\mathbf{z}_{i}),$$

on obtient que $\tilde{\mathbf{a}}_N^{MMG}$ peut être interprété comme un estimateur de la MM défini par la condition de moment juste-identifiante :

$$E\left[E\left[\mathbf{f}_{i}(\mathbf{a}_{0})\boldsymbol{\rho}(\mathbf{z}_{i})'\right]\mathbf{M}_{0}\boldsymbol{\rho}(\mathbf{z}_{i})u_{i}(\mathbf{a}_{0})\right]=\mathbf{0}_{K\times 1},$$

cet estimateur utilisant un instrument estimé, i.e. un estimateur de :

$$\mathbf{r}(\mathbf{z}_i) \equiv E[\mathbf{f}_i(\mathbf{a}_0)\boldsymbol{\rho}(\mathbf{z}_i)']\mathbf{M}_0\boldsymbol{\rho}(\mathbf{z}_i).$$

Bien entendu, on suppose ici que:

$$\tilde{\mathbf{M}}_{N} \xrightarrow{p} \mathbf{M}_{0}$$
.

■ Dans le cas d'un modèle linéaire :

$$y_i = \mathbf{x}_i' \mathbf{a}_0 + u_i \text{ avec } E[u_i \mid \mathbf{z}_i] = 0$$

on a:

$$\mathbf{f}_i(\mathbf{a}) \equiv \mathbf{x}_i$$
.

 Ce qui précède nous dit que l'estimateur de la MMG de a₀ fondé sur la condition d'orthogonalité :

$$E[\rho(\mathbf{z}_i)(y_i - \mathbf{x}_i'\mathbf{a}_0)] = \mathbf{0}$$

et utilisant la matrice de pondération $\tilde{\mathbf{M}}_N \xrightarrow{p \\ N \to +\infty} \mathbf{M}_0$ est un *estimateur de la MM* fondé sur :

$$E \left[E \left[\mathbf{x}_i \mathbf{\rho} (\mathbf{z}_i)' \right] \mathbf{M}_0 \mathbf{\rho} (\mathbf{z}_i) (y_i - \mathbf{x}_i' \mathbf{a}_0) \right] = \mathbf{0}_{K \times 1}$$

i.e.:

$$E[\mathbf{r}(\mathbf{z}_i)u_i(\mathbf{a}_0)] = \mathbf{0}_{K\times 1} \text{ avec } \mathbf{r}(\mathbf{z}_i) \equiv E[\mathbf{x}_i \boldsymbol{\rho}(\mathbf{z}_i)'] \mathbf{M}_0 \boldsymbol{\rho}(\mathbf{z}_i).$$

$$E[\mathbf{r}(\mathbf{z}_i)u_i(\mathbf{a}_0)] = \mathbf{0}_{K\times 1} \text{ avec } \mathbf{r}(\mathbf{z}_i) \equiv E[\mathbf{x}_i \mathbf{\rho}(\mathbf{z}_i)'] \mathbf{M}_0 \mathbf{\rho}(\mathbf{z}_i).$$

• Si on choisit $\mathbf{M}_0 = E[\mathbf{\rho}(\mathbf{z}_i)\mathbf{\rho}(\mathbf{z}_i)']^{-1}$ on obtient $\hat{\mathbf{a}}_N^{2MC}$ avec $\mathbf{\rho}(\mathbf{z}_i)$ pour instruments et:

$$\mathbf{r}(\mathbf{z}_i) = E[\mathbf{x}_i \mathbf{\rho}(\mathbf{z}_i)'] E[\mathbf{\rho}(\mathbf{z}_i) \mathbf{\rho}(\mathbf{z}_i)']^{-1} \mathbf{\rho}(\mathbf{z}_i) = EL[\mathbf{x}_i | \mathbf{\rho}(\mathbf{z}_i)].$$

C'est bien si $EL[\mathbf{x}_i | \mathbf{\rho}(\mathbf{z}_i)] \simeq E[\mathbf{x}_i | \mathbf{z}_i]$ d'après le résultat de Chamberlain.

• Si on choisit $\mathbf{M}_0 = E[\rho(\mathbf{z}_i)u_i(\mathbf{a}_0)^2 \rho(\mathbf{z}_i)']^{-1}$ on obtient $\hat{\mathbf{a}}_N^{2MCH}$ avec $\rho(\mathbf{z}_i)$ pour instruments et:

$$\mathbf{r}(\mathbf{z}_i) = E[\mathbf{x}_i \mathbf{\rho}(\mathbf{z}_i)'] E[\mathbf{\rho}(\mathbf{z}_i) u_i(\mathbf{a}_0)^2 \mathbf{\rho}(\mathbf{z}_i)']^{-1} \mathbf{\rho}(\mathbf{z}_i).$$

On pondère bien les conditions de moment mais on s'éloigne de $E[\mathbf{x}_i \,|\, \mathbf{z}_i]$

• Si on choisit l'instrument optimal, i.e. :

$$\rho(\mathbf{z}_i) = E[\mathbf{x}_i | \mathbf{z}_i] V[u_i | \mathbf{z}_i]^{-1},$$

on n'a pas besoin de la MMG puisque $E[\mathbf{x}_i | \mathbf{z}_i]V[u_i | \mathbf{z}_i]^{-1}$ juste-identifie \mathbf{a}_0 dans :

$$E \left[E \left[\mathbf{x}_i \mid \mathbf{z}_i \right] V \left[u_i \mid \mathbf{z}_i \right]^{-1} \left(y_i - \mathbf{x}_i' \mathbf{a}_0 \right) \right] = \mathbf{0}_{K \times 1}.$$