The Design Invariant If .; H f: {E} } = {E} Hen f is a monotone function Hence: ·; · + fix x. f(x) : {E} is a well-defined fixed point

Datafun: A Language for Fixed-Point Computations

Neel Krishnaswami University of Cambridge FLOLAC 2024 Taipei, Taiwan Syntax Types A,B := 1 | A x B | A + B | E E } | DA Egtypes E,F := 1 | E+F | ExF | {E} $\Gamma := \cdot \mid \Gamma, \pi : A \quad \Delta := \cdot \mid \Delta, \pi : A$ 1 cove (e, in, z; →e;) | Ø | e U e' | for z ∈ e e' | {e} | box (e) | ht box (x) = e in e' | | fix x:1.e | | x | x | le1=e2 | empty?(e) D; F + e: A

Typing

x: A ε Γ Δ; Γ + x: A

D; r + 0:1

 Δ ; Γ + e_1 : A_1 Δ ; Γ + e_2 : A_2 Δ ; Γ + (e_1, e_2) : $A_1 \times A_2$

 Δ ; Γ + e: $A_1 \times A_2$ Δ ; Γ + π ; (e): A_1 Δ ; Γ , α : $A \vdash e: B$ Δ ; $\Gamma \vdash \lambda \alpha \cdot e: A \rightarrow B$ Δ ; Γ + e,: $A \rightarrow B$ Δ ; Γ + e₂: A Δ ; Γ + e, e₂: B

Δ; Γ + e : A; Δ; Γ + in; (e) : A, +A2 Δ ; Γ + e: A_1+A_2 Δ ; $\Gamma_{3}z_1:A_1+e_1:B$ Δ ; $\Gamma_{3}z_2:A_2+e_2:B$ Δ ; Γ + C as e (e, in, $z_1 \rightarrow e_1$, in_2 $z_2 \rightarrow e_2$): B

Modal Typing $x:A\in\Delta$ 4; [+ 2 : A 13 x: A + x: A $\Delta j \cdot \vdash Ax.x : A \rightarrow A$ Δ : \vdash e: AD; F + box (7x.2): 135 F box (e): 11A DA-A) Δ; Γ + e,: D A Δ, x: A; Γ + e₁: B As T t let box(2) = e, in e2: B

Data Structures

```
E,F ::= 1 | E+F | ExF | {E}
∆; · + e : E
13 T + {e} : {E}
\Delta; \Gamma \vdash \phi : \{E\}
                                          Δ; x:{E} + e:{E}
Δ; Γ + e1: {E} Δ; L + e2: {E}
                                          D; T + fiz z. e : {E}
   1; THe, Ue2: {E}
Δ; Γ + e1: {E} Δ, x: E; Γ + e2: 3F}
    Δ; Γ + for x ∈ e, . e2 : { F }
\Delta; +e_1:E \Delta; +e_2:E
                                        Δ; · ⊢e: {1}
                                        1; . + empty? (e): bool
     1; [ + e1 = e2 : bool
```


The Design Invariant 1f · 5 · H f : {E3 -> {E} Hen f is a monotone function

The Design Invariant If · 5 + f: {E} 3 - > {E} Hen f'is a monotone function Hence: ·; · + fix x. f(x) : {E} is a well-defined fixed point Typechecking ensures monotonicity

What's In the D? · Intuitively, DA represents values which don't change. · Hence, they cannot vary over during a fixed-point computation · Details in the next session!

Programming in Datafun $\mathsf{map}: \square(\mathsf{E} \to \mathsf{F}) \to \mathsf{EE} \to \mathsf{FF}$ map box (f) es = for xees. If z?

map:
$$\Box(E \rightarrow F) \rightarrow \Xi E \rightarrow \Xi F \rightarrow$$

bad map:
$$(E \rightarrow F) \rightarrow \{E\} \rightarrow \{F\}$$
bad map: $f \in S = \{f\} \neq \{f\}$ here!

Programming in Datatun $filter: (E \rightarrow 1+1) \rightarrow \{E\} \rightarrow \{E\}$ filter f es =

for
$$x \in es$$
. $case(f(x), in, c) \rightarrow \{x\}, in, co \rightarrow \phi)$

Programming in Datafun $filter: (E \rightarrow 1+1) \rightarrow \{E\} \rightarrow \{E\}$ filter f es = for x e es. if f(x) then

Programming in Datafun prod: {E} > {F} -> {E*F} prod xs ys = for x e zs. for y e y s. \[\left(\times, \frac{\gamma}{\gamma}\right)\right\right\right\right\right\right.

Programming in Vatatun member: DE -> EEZ -> bool member boz(z) ys = Let $b: \{1\} = \begin{bmatrix} for & g \in ys \\ & \vdots \\ & \vdots$ in empty?(b)

Programming in Vatatun intersect: SEB -> SEB -> SEB intersect xs ys = for x e xs. if member box(z) ys then

Compose:
$$\{E \times F\} \rightarrow \{F \times G\} \rightarrow \{E \times G\}$$

Compose $R S = \{for(e,f) \in R.\}$
for $(f',g) \in S.$
if $f = f'$ then This is impossible in Datalo

This is in possible in Datalog!

Compose:
$$\{E \times F\} \rightarrow \{F \times G\} \rightarrow \{E \times G\}$$

Compose R S =
for $(e,f) \in R$.
for $(f',g) \in S$.
 $case(f = f',g)$
 $in_2 \rightarrow f(e,g)$?

Compose:
$$\{E \times F\} \rightarrow \{F \times G\} \rightarrow \{E \times G\}$$

Compose R S =
for ef $\in R$.
for f $\in S$.
 $case(\pi_2(ef) = \pi_1(f_3)$
 $in_1 - \rightarrow \{\pi_1(ef), \pi_2(f_3)\}$
 $in_2 - \rightarrow \phi$)

Compose:
$$\{E \times F\} \rightarrow \{F \times G\} \rightarrow \{E \times G\}$$

Compose R S =
for ef $\in R$.
for f $\in S$.
 $case(\pi_2(ef) = \pi_1(f_3)$
 $in_1 - \rightarrow \{\pi_1(ef), \pi_2(f_3)\}$
 $in_2 - \rightarrow \phi$)

Programming in Datafun trans: DEEXEZ -> EEXEZ trans box(E) = fix R. E. U compose ER

Regular Expressions

Assume we have len: Dstring -> M len box(s) = "the length of s" chars: [] Str -> {char x IN}

chars box(s) = {cc, i) | i-th char of s is c?"

Regular Expressions type regex = Dstring -> {N×N3 Char: IJchar -> regex char box(c) s =for (i,c') e chars(s). if c = c' then $\{(i,i+1)\}$ else

Regular Expressions type regex = Dstring -> {N×N3 Char: IJchar -> regex char box(c) s =for (i,c') e chars(s). if c=c' then $\{(i,i+1)\}$ else

Regular Expressions type regex = Dstring -> {N×N3 seg: regez -> regez -> regez seg R_1 R_2 s = compose $(R_1 s)$ $(R_2 s)$ (7,13)(13,20)(7,20)

Regular Expressions type regex = Dstring -> {N×N3 nil: regez nil box(s) = for (c, i) e chars (box(s)). $\{(\underline{i},\underline{i})\}$ }(len(box(s)), len(box(s)))}

Regular Expressions

alt: regex
$$\rightarrow$$
 regex \rightarrow regex alt $R_1 R_2 S = (R_1 S) \cup (R_2 S)$

Regular Expressions

type regex = Dstring -> {N×N}

star: [regex -> regex star box(r) box(s) = nil(box(s)) U trans box(r box(s))