Manuscript Title

This manuscript (permalink) was automatically generated from habi/InMiceMethodPaper@208b965 on October 30, 2025.

Authors

• David Haberthür

• Pui Ching Chu

Animal Welfare Division, Veterinary Public Health Institute, University of Bern, Länggassstrasse 120, CH-3012 Bern, Switzerland · Funded by Swiss National Science Foundation (SNSF) (Grant 310030_219196)

• Larisa Petra Kaija

D 0009-0001-1871-5915 · ☐ LarisaKaija

Animal Welfare Division, Veterinary Public Health Institute, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland

Abstract

Background & Summary

We scanned a *lot* of different mouse strains and so-called hybrids, both male and female. One scan for each strain, each hybrid and each sex gives already 90 samples.

Methods

Sample preparation

- Mice were anesthesized
- Mice were decapitated
- Mouse skulls were stored in EMA
- Separated into 4 batches of approximately 110 animals, labeled as B batch_number animal number A and B batch number animal number B.

Tomographic imaging

- SkyScan 1272 with sample changer
- All log files available here: https://github.unibe.ch/david-haberthuer/InMice/tree/main/logfiles
- Report scaning settings and reconstruction parameter data according to¹
- Use a notebook to pull *all* the relevant data to report directly into the text here, or into a file that is loaded by manubot.

QA

- Use a collection of logfile wrangling $code^2$ to go through *all* the log files of all the aquired scans
 - Use this to surface issues related to aquisition (wrong setting) and reconstruction
- Look at average and maximal brightness of (a subset of) all the projection images aquired
 - Use this to surface issues related to acquisiton, e.g. sometimes the x-ray source inadvertedly shut down, or the counts were too low on the camera, etc.

Image processing

- /upyter³ notebooks, available here: https://github.unibe.ch/david-haberthuer/InMice/, for reproducible research.
 - Ingest complete, uncropped reconstructions with dask ^{4/}
 - Crop, based on axial MIPs

 - Save cropped data out as .zarr -files, ready to be loaded with n5-ij ⁵ in Fiji⁶
 Save in other formats, to either use 3D Slicer⁷/, doidoi:10.1016/j.mri.2012.05.001? or Dragonfly⁸/

Data Records

Technical Validation

Usage Notes

Code Availability

<u>Jupyter notebooks</u>

References

- 1. Stock, S. R. & De Carlo, F. <u>Meta-data for absorption tomography measurements</u>. *Tomography of Materials and Structures* **3**, 100015 (2023).
- 2. David Haberthür. *Habi/BrukerSkyScanLogfileRuminator: First Release for Minting a Zenodo DOI.* (Zenodo, 2025). doi:10.5281/zenodo.15607944.
- 3. Kluyver, T. *et al.* Jupyter Notebooks a publishing format for reproducible computational workflows. in (eds. Loizides, F. & Scmidt, B.) 87–90 (IOS Press, 2016). doi:10.3233/978-1-61499-649-1-87.
- 4. Dask Dask documentation. https://docs.dask.org/en/stable/.
- 5. <u>saalfeldlab/n5-ij</u>. Saalfeld Lab (2025).
- 6. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**, 676–682 (2012).
- 7. 3D Slicer image computing platform. 3D Slicer https://slicer.org/.
- 8. Dragonfly Software for Image Processing and Data Analysis Dragonfly. https://dragonfly.comet.tech/.
- 9. ANSI/NISO Z39.104-2022, CRediT, Contributor Roles Taxonomy. doi: 10.3789/ansi.niso.z39.104-2022.
- 10. Himmelstein, D. S. *et al.* Open collaborative writing with Manubot. *PLoS Comput Biol* **15**, e1007128 (2019).

Author Contributions

Contributor Roles Taxonomy (CRediT), as defined in 9:

- <u>Data curation</u>: David Haberthür, Larisa Petra Kaija
- Formal analysis: David Haberthür
- Investigation: David Haberthür, Pui Ching Chu, Larisa Petra Kaija
- Methodology: David Haberthür, Pui Ching Chu, Larisa Petra Kaija
- Project administration: David Haberthür, Pui Ching Chu
- Resources: Pui Ching Chu
- Software: David Haberthür
- Validation: David Haberthür, Pui Ching Chu, Larisa Petra Kaija
- Visualization: David Haberthür
- Writing original draft: David Haberthür
- Writing review & editing: David Haberthür, Pui Ching Chu, Larisa Petra Kaija

Competing Interests

Author	Competing Interests	Last Reviewed
David Haberthür	None	2025-06-27
Pui Ching Chu	None	2025-06-27
Larisa Petra Kaija	None	

Acknowledgements

We are grateful to the <u>Microscopy Imaging Center</u> of the University of Bern for their infrastructural support. We also thank the manubot project 10 for facilitating collaborative writing of this manuscript.