Problem Set 1

D. Zack Garza

Tuesday 1st September, 2020

Contents

Source: Section 1 of Gathmann

Exercise 0.1 (1.19).

Prove that every affine variety $X \subset \mathbb{A}^n/k$ consisting of only finitely many points can be written as the zero locus of n polynomials.

Hint: Use interpolation. It is useful to assume at first that all points in X have different x_1 -coordinates.

Exercise 0.2 (1.21).

Determine \sqrt{I} for

$$I := \langle x_1^3 - x_2^6, x_1 x_2 - x_2^3 \rangle \le \mathbb{C}[x_1, x_2].$$

Solution:

For notational purposes, let \mathcal{I}, \mathcal{V} denote the maps in Hilbert's Nullstellensatz, we then have

$$(\mathcal{I} \circ \mathcal{V})(I) = \sqrt{I}.$$

So we consider $\mathcal{V}(I)$, the vanishing locus of these two polynomials, which yields the system

$$\begin{cases} x^3 - y^6 = 0\\ xy - y^3 = 0. \end{cases}$$

In the second equation, we have $(x-y^2)y=0$, and since $\mathbb{C}[x,y]$ is an integral domain, one term must be zero.

1. If y = 0, then $x^3 = 0 \implies x = 0$, and thus the

$$(0,0) \in \mathcal{V}(I),$$

i.e. the origin of \mathbb{A}^2/\mathbb{C} is contained in this vanishing locus. 2. Otherwise, if $x - y^2 = 0$, then $x = y^2$, with no further conditions coming from the first equation. So

$$\{(t^2,t) \mid t \in \mathbb{C}\} \subset \mathcal{V}(I).$$

1

Exercise 0.3 (1.22).

Let $X \subset \mathbb{A}^3/k$ be the union of the three coordinate axes. Compute generators for the ideal I(X) and show that it can not be generated by fewer than 3 elements.

Exercise 0.4 (1.23: Relative Nullstellensatz).

Let $Y \subset \mathbb{A}^n/k$ be an affine variety and define A(Y) by the quotient

$$\pi: k[x_1, \cdots, x_n] \longrightarrow A(Y) := k[x_1, \cdots, x_n]/I(Y).$$

- a. Show that $V_Y(J) = V(\pi^{-1}(J) \text{ for every } J \leq A(Y).$
- b. Show that $\pi^{-1}(I_Y(X)) = I(X)$ for every affine subvariety $X \subseteq Y$.
- c. Using the fact that $I(V(J)) \subset \sqrt{J}$ for every $J \leq k[x_1, \dots, x_n]$, deduce that $I_Y(V_Y(J)) \subset \sqrt{J}$ for every $J \leq A(Y)$.

Conclude that there is an inclusion-reversing bijection

Exercise 0.5 (Extra).

Let $J \leq k[x_1, \cdots, x_n]$ be an ideal, and find a counterexample to $I(V(J)) = \sqrt{J}$ when k is not algebraically closed.

Contents 2