МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Автоматизированных Систем Управления

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

по основам теории управления

Математическое моделирование динамических систем

Выполнил: Студент гр. ABT-813, ABTФ

Чернаков Кирилл Олегович

Проверил: к.т.н., Доцент, заведующий каф. АСУ Достовалов Дмитрий Николаевич

Содержание

1.	Постановка задачи	2
2.	Аналитическое решение задачи	3
3.	Структурные схемы в Matlab	4
4.	Полученные графики	5
5.	Выводы по задаче	6
6.	Структурные схемы для примера 2	7
7.	Графики	8
8.	Заключение	ę
9	Начальные приближения	10

1. Постановка задачи

- 1) Локализовать корни с помощью построения графика (Desmos)
- 2) Разработать программную реализацию трех методов уточнения корней:
 - а) Ньютона,
 - б) простых итераций,
 - в) метода заданного в таблице вариантов.
- 3) Произвести вычисления с различной точностью и сравнить количество итераций для нахождения корней различными методами.

2. Аналитическое решение задачи

align*

$$x'' + x' = t, x(0) = x'(0) = 0$$

$$x \to X(p)$$

$$x' \to pX(p)$$

$$x'' \to p^2X(p)$$

$$t \to \frac{1}{p^2}$$

$$p^2X(p) + pX(p) = \frac{1}{p^2}$$

$$p^4X(p) + p^3X(p) = 1$$

$$X(p) = \frac{1}{p^4 + p^3} = \frac{1}{p^3(p+1)}$$

align*

3. Структурные схемы в Matlab

4. Полученные графики

Рис. 1. Контрольный пример

5. Выводы по задаче

6. Структурные схемы для примера 2

7. Графики

8. Заключение

Исходя из расчётов программы можно сделать вывод о том, что меньше всего итераций занял метод Ньютона за ним следует метод половинного деления и в конце метод простых итераций.

9. Начальные приближения

Исходя из построенного графика найдём необходимые отрезки для поиска корней уравнения. Всего в уравнении 3 корня это можно узнать по пересечению графика с осью абсцисс в точках:

- 1) x1 = 2.843
- 2) $x^2 = 0.693$
- 3) x3 = -2.537

Рассмотрим интервалы для каждого корня (брать интервалы будем, опираясь на изменение знака функции на концах отрезка и на наличие единственного корня в этом отрезке):

- 1) [2; 10000]
- 2) [0;1]
- 3) [-3; -2]