



**(19) BUNDESREPUBLIK  
DEUTSCHLAND**



**DEUTSCHES  
PATENT- UND  
MARKENAMT**

⑫ Patentschrift  
⑬ DE 197 51 651 C 1

⑤ Int. Cl.<sup>6</sup>:  
**H 03 K 17/082**  
H 03 K 17/695

DE 19751651 C1

**Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden**

⑦3 Patentinhaber:

⑦2 Erfinder:  
Rosahl, Thoralf, 72760 Reutlingen, DE

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:  
US 5420532 A

#### 54 Schaltungsanordnung zum Schalten einer induktiven Last

57 Die Erfindung betrifft eine Schaltungsanordnung zum Schalten einer induktiven Last, beispielsweise bei getakteten Spannungsreglern, mit einem in High-Side-Schaltung betriebenen Schalttransistor, der in Halbbrückenanordnung mit einem Freilauftransistor geschaltet ist, wobei an einem zwischen dem Schalttransistor und dem Freilauftransistor liegenden Knotenpunkt die zu schaltende induktive Last liegt, sowie einer Ansteuerschaltung für den Schalttransistor.

Es ist vorgesehen, daß der Schalttransistor ( $T_1$ ) in Stromspiegelschaltung mit einem Hilfstransistor ( $T_3$ ) geschaltet ist, und der Spiegelbetrieb der Transistoren ( $T_1, T_3$ ) in Abhangigkeit eines am Knotenpunkt ( $K_1$ ) anliegenden Potentials steuerbar ist.



DE 19751651 C1

## Beschreibung

Die Erfindung betrifft eine Schaltungsanordnung zum Schalten einer induktiven Last mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.

## Stand der Technik

Es ist bekannt, induktive Lasten mittels eines in High-Side-Schaltung betriebenen Schalttransistors zu schalten. Beim Abschalten muß dem in der induktiven Last fließenden Strom ein Freilaufpfad angeboten werden. Beispielsweise ist hierzu vorgesehen, den Schalttransistor in einer Halbbrückenschaltung mit einem alternierend zum Schalttransistor durchsteuerbaren Freilauftransistor zu verschalten, wobei die zu schaltende induktive Last an einem zwischen den Transistoren liegenden Knotenpunkt liegt. Hierbei ist nachteilig, daß entsprechend der Umschaltung auf den Schalttransistor ein Querstrom über den Freilauftransistor fließen kann.

Die Druckschrift US 5 420 532 offenbart eine Schaltungsanordnung zum Schalten einer induktiven Last, bei der ein in High-Side-Schaltung betriebener Schalttransistor, der in Halbbrückenanordnung mit einem Freilauftransistor geschaltet ist, vorgesehen ist. Die induktive Last liegt hierbei an einem zwischen dem Schalttransistor und dem Freilauftransistor liegenden Knotenpunkt an. Es ist eine Stromspiegelschaltung vorgesehen, die zum Ein- und Ausschalten des Freilauftransistors in Abhängigkeit eines am Knotenpunkt anliegenden Potentiales dient.

## Vorteile der Erfindung

Die erfindungsgemäße Schaltungsanordnung mit den im Anspruch 1 genannten Merkmalen bietet den Vorteil, daß durch eine gezielte Ansteuerung des Schalttransistors das Auftreten von Querströmen minimiert werden kann. Dadurch, daß der Schalttransistor in Stromspiegelschaltung mit einem Hilfstransistor geschaltet ist, wobei der Spiegelbetrieb dieser Transistoren in Abhängigkeit eines am Knotenpunkt, an dem die induktive Last liegt, anliegenden Potentials steuerbar ist, ist vorteilhaft möglich, den Querstrom in der Halbbrückenanordnung während des Einschaltvorganges des Schalttransistors zu begrenzen. Durch die relativ einfach zu realisierende Stromspiegelschaltung läßt sich dies mit einer einfachen Schaltungsstruktur erreichen, die sich in einem, den Schalttransistor und den Freilauftransistor aufweisenden, Bauelement monolithisch integrieren läßt. Dieses kann somit ohne zusätzliche, der Freilaufschaltung dienenden Bauelemente realisiert werden. Durch den einfachen Schaltungsaufbau lassen sich auch bei hohen Schaltfrequenzen, mit denen die induktive Last ein- bzw. ausgeschaltet wird, Querströme begrenzen.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.

## Zeichnung

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnung, die eine Schaltungsanordnung zum Schalten einer induktiven Last zeigt, näher erläutert.

## Beschreibung des Ausführungsbeispiels

Die Figur zeigt eine Schaltungsanordnung 10, mittels der eine an einem Anschluß 12 anschließbare induktive Last mit

einer an einem Anschluß 14 angeschlossenen Versorgungsspannung, im Kraftfahrzeug in der Regel der Kraftfahrzeubatterie  $U_{Batt}$ , verbindbar ist. Hierzu ist ein Schalttransistor  $T_1$  vorgesehen, dessen Drain mit dem Anschluß 14 und dessen Source mit dem Anschluß 12 verbunden ist. Der Schalttransistor  $T_1$  ist hierdurch in High-Side-Schaltung betrieben. An einem Knotenpunkt  $K_1$  ist der Drain eines Freilauftransistors  $T_2$  geschaltet, dessen Source mit Masse verbunden ist.

Die in Halbbrückenschaltung geschalteten Transistoren  $T_1$  und  $T_2$  sind über eine Ansteuerschaltung 16 ansteuerbar. An einem Eingangsanschluß 18 liegt ein angedeutetes Ausgangssignal, beispielsweise einer Regelung eines Schaltreglers, an. Der Ausgangsanschluß 18 ist einerseits mit einer Treiberschaltung 20 und andererseits mit dem Gate eines Transistors  $T_3$  verbunden. Die Source des Transistors  $T_3$  ist über eine Stromsenke  $I_1$  mit Masse verbunden. Der Drain des Transistors  $T_3$  ist mit den Gateanschlüssen von Transistoren  $T_4$  beziehungsweise  $T_5$  verbunden. Die Sourceanschlüsse der Transistoren  $T_4$  und  $T_5$  sind jeweils mit einem Spannungspotential  $U_1$  verbunden. Ferner sind die Sourceanschlüsse der Transistoren  $T_4$  und  $T_5$  mit dem Kollektor eines Transistors  $T_6$  verbunden, dessen Basis mit der Basis eines Transistors  $T_7$  verbunden ist. Die Emitter der Transistoren  $T_6$  und  $T_7$  sind kurzgeschlossen und mit dem Gateanschluß des Schalttransistors  $T_1$  sowie einem Drainanschluß eines Transistors  $T_8$  verbunden. Der Sourceanschluß des Transistors  $T_8$  ist über eine Stromsenke  $I_2$  mit Masse verbunden. Ferner sind die Basisanschlüsse der Transistoren  $T_6$  und  $T_7$  mit dem Drain eines Transistors  $T_9$  verbunden, dessen Sourceanschluß mit dem Drain eines Transistors  $T_{10}$  verbunden ist. Der Gateanschluß des Transistors  $T_{10}$  liegt an einem Spannungspotential  $U_2$ , während dessen Sourceanschluß über einen Knotenpunkt  $K_2$  einerseits über eine Zenerdiode  $D_1$  mit Masse und andererseits über eine Diode  $D_2$  mit dem Knotenpunkt  $K_1$  verbunden ist.

Ein Ausgang der Treiberschaltung 20 ist einerseits mit dem Gate des Transistors  $T_8$  und andererseits über eine weitere Treiberschaltung 22 mit dem Gate des Freilauftransistors  $T_2$  verbunden.

Durch die gezeigte Schaltungsanordnung ist der Schalttransistor  $T_1$  mit dem Transistor  $T_9$  in einer Stromspiegelschaltung verschaltet. Ferner sind die Transistoren  $T_4$  und  $T_5$  sowie  $T_6$  und  $T_7$  ebenfalls in Stromspiegelanordnung verschaltet. Die Stromspiegelschaltung der Transistoren  $T_6$  und  $T_7$  bildet hierbei die Verbindung der Gateanschlüsse der Transistoren  $T_1$  und  $T_9$ .

Die Schaltungsanordnung 10 zeigt folgende Funktion: Beim Schaltzustand Low des am Eingangsanschluß 18 anliegenden Signales werden die Gateanschlüsse der Transistoren  $T_8$  und  $T_2$  über die Treiberschaltung 20 angesteuert, so daß diese aufsteuern. Hierdurch ist einerseits der Freilauftransistor  $T_2$  leitend, so daß ein am Anschluß 12 fließender Laststrom  $I_L$  über den Freilauftransistor  $T_2$  fließen kann. Ferner wird über den aufgesteuerten Transistor  $T_8$  und die Stromsenke  $I_2$  der Gateanschluß des Transistors  $T_1$  auf Masse gezogen, so daß der Schalttransistor  $T_1$  ausgeschaltet ist.

Geht das am Eingangsanschluß 18 anliegende Signal in den Signalzustand High über, wird einerseits über die Treiberschaltungen 20 und 22 begonnen, den Freilauftransistor  $T_2$  zu sperren. Gleichzeitig wird der Drainanschluß des Transistors  $T_3$  angesteuert, so daß der Transistor  $T_3$  aufsteuert. Über die Stromquelle  $I_1$  wird die Stromspiegelschaltung der Transistoren  $T_4$  und  $T_5$  angesteuert, die wiederum die Stromspiegelschaltung der Transistoren  $T_6$  und  $T_7$  ansteuert. Hierdurch wird ein Ladestrom für den Gate des Schalttransistors  $T_1$  generiert, so daß dieser aufsteuert. Die Aufladung des Gates des Schalttransistors  $T_1$  wird hierbei zunächst

durch die Stromspiegelschaltung der Transistoren  $T_1$  und  $T_9$  begrenzt. Die zwischen den Knotenpunkten  $K_1$  und  $K_2$  geschaltete Diode  $D_2$  dient hierbei zunächst einer Kompensation einer Flußspannung der Stromspiegelanordnung der Transistoren  $T_6$  und  $T_7$ . Hierdurch wird sichergestellt, daß während des Ausschaltvorganges des Freilauftransistors  $T_2$  der vom Schalttransistor  $T_1$  gelieferte Strom nicht größer werden kann als ein sich durch das Verhältnis der Stromspiegeltransistoren  $T_1$  und  $T_9$  einstellender Strom.

Ist der Freilauftransistor  $T_2$  entsprechend der Ansteuerung über die Treiberschaltungen 20 und 22 in den gesperrten Zustand übergegangen, beginnt das Potential am Knotenpunkt  $K_1$  zu steigen. Entsprechend einer gewählten Höhe der am Gateanschluß des Transistors  $T_{10}$  anliegenden Spannungspotentials  $U_2$  kann nunmehr eingestellt werden, wann die Transistoren  $T_1$  und  $T_9$  ihren Stromspiegelbetrieb verlassen. Dies geschieht dann, wenn der Transistor  $T_{10}$  aufgrund des ansteigenden Potentials an den Knotenpunkten  $K_1$  und  $K_2$  den Referenzstrom der Stromspiegelschaltung der Transistoren  $T_1$  und  $T_9$  nicht mehr durch den Transistor  $T_9$  führen kann. Mittels der Zenerdiode  $D_1$  wird die Spannung am dann hochohmigen Knotenpunkt  $K_2$  begrenzt, während die Diode  $D_2$  dann eine Sperrfunktion zwischen den Knotenpunkten  $K_1$  und  $K_2$  übernimmt. Die Gatespannung des Schalttransistors  $T_1$  kann nunmehr bis auf das Spannungspotential  $U_1$  ansteigen und der Transistor  $T_1$  entsprechend aufsteuern.

Durch die gefundene Schaltungsanordnung wird erreicht, daß ein während des Aufsteuerns des Schalttransistors  $T_1$  und Zusteuerns des Freilauftransistors  $T_2$  von der Anschlußklemme 14 nach Masse fließender Querstrom begrenzt werden kann. Aufgrund der gegebenen Abhängigkeiten der Stromspiegelschaltungen ist die Ansteuerschaltung 16 selbststeuernd, entsprechend des Pegels des am Eingangsanschluß 18 anliegenden Signales. Auch bei hohen Schaltfrequenzen, das heißt bei häufigem Wechsel zwischen dem Low- und dem Highzustand des am Eingangsanschluß 18 anliegenden Signals wird eine wirksame kontrollierte Begrenzung des Querstromes erreicht. Darüber hinaus können Störungen, die von auf einer Zuleitung zur Anschlußklemme 14 auftretenden Pulsströmen hergerufen werden, verringert werden.

## Patentansprüche

den Ansprüche, dadurch gekennzeichnet, daß der Hilfstransistor ( $T_9$ ) in Reihe mit einem Transistor ( $T_{10}$ ) geschaltet ist, dessen Gate mit einer Steuerspannung ( $U_2$ ) und dessen Source mit dem Knotenpunkt ( $K_1$ ) verbunden ist.

4. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß über die Höhe der Steuerspannung ( $U_2$ ) der Spiegelbetrieb der Stromspiegelschaltung der Transistoren ( $T_1$ ,  $T_9$ ) einstellbar ist.

5. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Sourceanschluß des Transistors ( $T_{10}$ ) und dem Knotenpunkt ( $K_1$ ) eine Diode ( $D_2$ ) geschaltet ist.

6. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Sourceanschluß des Transistors ( $T_{10}$ ) über eine Zenerdiode ( $D_1$ ) mit Masse verbunden ist.

---

Hierzu 1 Seite(n) Zeichnungen

---

1. Schaltungsanordnung zum Schalten einer induktiven Last, mit einem in High-Side-Schaltung betriebenen Schalttransistor, der in Halbbrückenanordnung mit einem Freilauftransistor geschaltet ist, wobei an einem zwischen dem Schalttransistor und dem Freilauftransistor liegenden Knotenpunkt die zu schaltende induktive Last liegt, sowie einer Ansteuerschaltung für den Schalttransistor, **dadurch gekennzeichnet**, daß der Schalttransistor ( $T_1$ ) in Stromspiegelschaltung mit einem Hilfstransistor ( $T_9$ ) geschaltet ist, und der Spiegelbetrieb der Transistoren ( $T_1$ ,  $T_9$ ) in Abhängigkeit eines am Knotenpunkt ( $K_1$ ) anliegenden Potentials steuerbar ist.

2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Gateanschlüsse der Transistoren ( $T_1$ ,  $T_9$ ) über eine Stromspiegelschaltung von Transistoren ( $T_6$ ,  $T_7$ ) miteinander verbunden sind, diese über eine weitere Stromspiegelschaltung von Transistoren ( $T_4$ ,  $T_5$ ) ansteuerbar ist, wobei eine Ansteuerung der Stromspiegelschaltung der Transistoren ( $T_4$ ,  $T_5$ ) in Abhängigkeit eines Ansteuersignales für den Schalttransistor ( $T_1$ ) erfolgt.

3. Schaltungsanordnung nach einem der vorhergehenden



Fig.