9강 질문 정답

1. mAP는 어떻게 계산될 수 있는지 설명

mAP (mean Average Precision)는 객체 검출 모델의 성능을 평가하는 주요 지표 중 하나입니다. mAP는 여러 클래스에 대한 Average Precision(AP)를 평균하여 계산됩니다.

Average Precision (AP):

- 1. 정확도(Precision)와 재현율(Recall) 계산: 모델이 예측한 바운딩 박스들을 신뢰도(score) 순으로 정렬합니다. 각 박스에 대해 True Positive(TP)와 False Positive(FP)를 결정하여 Precision과 Recall 값을 계산합니다.
- 2. **Precision-Recall 곡선 작성**: 다양한 임계값에서 Precision과 Recall 값을 플롯하여 곡선을 그립니다.
- 3. AP 계산: Precision-Recall 곡선 아래의 면적을 계산하여 AP를 도출합니다.
- mAP 계산: 여러 클래스에 대해 AP를 계산한 후, 이를 평균하여 mAP를 구합니다. 이는 모델의 전반적인 성능을 종합적으로 평가하는 데 사용됩니다.

2. SPP(Rol Pooling)에 대해 설명

SPP (Spatial Pyramid Pooling)는 Rol Pooling의 개선된 버전으로, 다양한 크기의 입력 이미지를 고정된 크기의 특징 맵으로 변환하는 기술입니다.

Rol Pooling:

서로 다른 크기의 Rol(Region of Interest)를 고정된 크기의 그리드로 분할하고, 각 그리드
에서 최대값을 추출하여 고정된 크기의 출력 벡터를 생성합니다.

• SPP의 장점:

- **다중 스케일 처리**: 여러 크기의 풀링 창을 사용하여 다양한 스케일의 특징을 동시에 추출합 니다.
- 유연성 향상: 입력 이미지의 크기에 관계없이 고정된 크기의 출력 벡터를 생성할 수 있어, 네트워크의 후속 레이어에 효율적으로 전달됩니다.

SPP는 특히 다양한 크기의 객체를 효과적으로 검출하는 데 유리합니다.

3. Rol Projection에 대해 설명

Rol Projection은 Region of Interest(Rol)를 네트워크의 다른 단계나 다른 공간으로 변환하는 과정을 의미합니다.

• 주요 기능:

- **다중 스케일 매핑**: 예를 들어, Feature Pyramid Network(FPN)에서는 여러 스케일의 특징 맵이 존재합니다. Rol Projection을 통해 특정 Rol를 가장 적합한 스케일의 특징 맵에 매핑합니다.
- 정확도 향상: 적절한 스케일의 특징 맵에 Rol를 투영함으로써, 객체의 위치와 크기에 대한 더 정확한 예측이 가능합니다.

적용 예시:

• FPN 구조에서의 활용: 각 Rol가 어떤 스케일의 특징 맵에 속하는지 결정하여, 해당 스케일의 특징을 활용해 더 정밀한 검출을 수행합니다.

Rol Projection은 다양한 스케일의 정보를 효과적으로 활용하여 객체 검출의 정확도를 높이는 데 중요한 역할을 합니다.

4. Faster RCNN 중 RPN에 대해 설명

RPN (Region Proposal Network)는 Faster R-CNN의 핵심 구성 요소로, 이미지 내에서 객체가 존재할 가능성이 높은 영역을 제안하는 역할을 합니다.

• 작동 방식:

- 1. **슬라이딩 윈도우**: 전체 이미지의 특징 맵에서 슬라이딩 윈도우 방식으로 이동하면서 각 위치에서 여러 앵커 박스를 평가합니다.
- 2. <mark>앵커 박스 평가</mark>: 각 앵커 박스에 대해 객체 존재 확률과 바운딩 박스 조정을 예측합니다.
- 3. <mark>지역 제안</mark>: 높은 확률을 가진 앵커 박스들을 선택하여 Rol(Region of Interest)로 제안합 니다.

• 장점:

- 속도 향상: 별도의 지역 제안 알고리즘 없이도 빠르게 지역을 제안할 수 있습니다.
- 통합 학습: RPN과 객체 검출 네트워크가 동시에 학습되어 전체적인 성능이 향상됩니다.

RPN은 Faster R-CNN의 전체적인 객체 검출 성능과 속도를 크게 개선하는 중요한 역할을 합니다.

5. Anchor box에 대해 설명

Anchor box는 객체 검출에서 다양한 크기와 비율의 사전 정의된 바운딩 박스입니다. 이는 네트워크가 다양한 형태와 크기의 객체를 효과적으로 검출할 수 있도록 돕습니다.

• 특징:

- **다양한 크기와 비율**: 다양한 크기와 비율을 가진 여러 앵커 박스를 사용하여, 다양한 형태의 객체에 대응합니다.
- **격자 기반 배치**: 이미지의 각 위치에 여러 앵커 박스를 배치하여, 모든 가능한 객체 위치를 커 버합니다.

• 활용:

- 위치 및 크기 조정: 네트워크는 각 앵커 박스에 대해 객체의 존재 여부를 예측하고, 위치와 크기를 조정하여 최종 바운딩 박스를 생성합니다.
- **학습의 안정성**: 다양한 앵커 박스를 사용함으로써, 다양한 객체의 위치와 크기에 대한 정보 를 네트워크가 학습할 수 있습니다.

Anchor box는 특히 다중 객체 검출에서 중요한 역할을 하며, 객체의 다양성을 효과적으로 처리할 수 있게 합니다.

6. RPN의 역할에 대해 설명

RPN (Region Proposal Network)의 주요 역할은 이미지 내에서 객체가 존재할 가능성이 높은 지역을 빠르고 효율적으로 제안하는 것입니다.

세부 역할:

- 1. **지역 제안**: 슬라이딩 윈도우 방식으로 전체 이미지의 특징 맵을 탐색하면서, 각 위치에서 여러 생기 박스를 평가하여 객체 존재 확률과 바운딩 박스 조정을 예측합니다.
- 2. 고품질 후보 생성: 높은 확률을 가진 앵커 박스들을 선택하여 Rol(Region of Interest)로 제안함으로써, 후속 단계에서 처리할 후보 지역을 제한합니다.
- 3. **통합 학습**: RPN은 객체 검출 네트워크와 동시에 학습되어, 전체적인 모델의 성능을 향상시 킵니다.

• 장점:

- 속도 향상: 별도의 지역 제안 알고리즘 없이도 빠르게 후보 지역을 생성할 수 있습니다.
- **효율성**: 제한된 수의 후보 지역만을 후속 단계에서 처리함으로써, 전체 연산량을 줄이고 효율성을 높입니다.

RPN은 Faster R-CNN과 같은 2-stage 객체 검출 모델에서 핵심적인 역할을 하며, 전체 검출 성능과속도에 큰 영향을 미칩니다.

7. Neck의 역할에 대해 설명

Neck은 객체 검출 네트워크에서 백본(backbone)과 헤드(head) 사이에 위치한 구성 요소로, 다중 스케일의 특징을 효과적으로 결합하고 전달하는 역할을 합니다.

주요 기능:

- 특징 통합: 백본에서 추출한 다양한 스케일의 특징 맵을 결합하여 풍부한 정보를 생성합니다.
- **다중 스케일 처리**: 작은 객체부터 큰 객체까지 다양한 크기의 객체를 효과적으로 검출할 수 있도록 다중 스케일의 특징을 활용합니다.
- 정보 전달: 통합된 특징을 헤드 단계로 전달하여, 최종적으로 객체의 위치와 클래스를 예측하는 데 사용됩니다.

• 대표적인 구조:

- FPN (Feature Pyramid Network): 여러 스케일의 특징 맵을 피라미드 형태로 결합하여 다중 스케일 정보를 제공합니다.
- PANet (Path Aggregation Network): FPN을 개선하여 정보 흐름을 강화하고, 상향 경로를 추가하여 더 풍부한 특징을 생성합니다.

Neck은 전체 네트워크의 성능을 향상시키는 데 중요한 역할을 하며, 특히 다양한 크기의 객체를 효과적으로 검출하는 데 기여합니다.

8. FPN, PANet 에 대해 설명

FPN (Feature Pyramid Network)와 PANet (Path Aggregation Network)은 객체 검출에서 다중 스케일의 특징을 효과적으로 활용하기 위해 설계된 네트워크 구조입니다.

FPN (Feature Pyramid Network)

- 개요: FPN은 다양한 스케일의 특징 맵을 피라미드 형태로 결합하여, 각 스케일에서 풍부한 정보를 제공합니다.
- 구조:

- Bottom-Up Pathway: 전통적인 백본 네트워크(예: ResNet)의 여러 레이어에서 특징 맵을 추출합니다.
- Top-Down Pathway: 고해상도의 특징 맵을 생성하기 위해, 상위 레이어의 특징을 업샘플 링하여 하위 레이어의 특징과 결합합니다.
- **측면 연결(Side Connections)**: 서로 다른 스케일의 특징을 결합하여 다중 스케일의 정보를 통합합니다.

• 장점:

- **다중 스케일 처리**: 작은 객체부터 큰 객체까지 다양한 크기의 객체를 효과적으로 검출할 수 있습니다.
- 효율성: 추가적인 계산 비용 없이 다중 스케일의 정보를 활용할 수 있습니다.

PANet (Path Aggregation Network)

• 개요: PANet은 FPN을 개선한 구조로, feature map의 정보 흐름을 강화하기 위해 상향 경로를 추가한 네트워크입니다.

구조:

- Bottom-Up Path Enhancement: 상향 경로를 통해 하위 레이어의 정보를 상위 레이어로 전달하여, 특징 맵 간의 정보 교환을 강화합니다.
- 경로 연결: 여러 경로를 통해 특징 맵의 정보를 통합하여, 더 풍부한 표현력을 제공합니다.

• 장점:

- 정보 흐름 강화: FPN보다 더 많은 정보가 특징 맵 간에 전달되어, 검출 성능이 향상됩니다.
- 소형 객체 검출 개선: 상향 경로를 통해 소형 객체의 특징을 더욱 잘 포착할 수 있습니다.

FPN과 PANet은 모두 다중 스케일의 특징을 효과적으로 활용하여 객체 검출의 정확도와 효율성을 높이는 데 기여합니다.

9. 2 stage와는 다르게 RPN이 없는 1 stage에서 어떻게 박스를 예측하는 지 설명

1-stage 객체 검출기는 RPN과 같은 별도의 지역 제안 네트워크 없이, 직접적으로 바운딩 박스와 클래스확률을 예측합니다. 대표적인 1-stage 모델로는 YOLO, SSD 등이 있습니다.

작동 방식:

1. **격자 기반 예측**: 입력 이미지를 SxS 격자로 나누고, 각 격자 셀에서 객체의 존재 여부를 예측 합니다.

- 2. **앵커 박스 활용**: 각 격자 셀에서 여러 앵커 박스에 대해 객체의 클래스 확률과 바운딩 박스의 위치 및 크기를 예측합니다.
- 3. 동시 예측: 클래스 확률과 바운딩 박스를 동시에 예측하여, 객체를 검출합니다.

• 장점:

- 속도: 단일 네트워크 패스로 모든 예측을 수행하기 때문에, 2-stage 모델보다 훨씬 빠릅니다.
- 단순성: 구조가 단순하여 구현과 학습이 용이합니다.

• 단점:

- 정확도: RPN을 사용하는 2-stage 모델에 비해 정확도 면에서 다소 낮을 수 있습니다.
- 소형 객체 검출: 작은 객체 검출에 상대적으로 약할 수 있습니다.

1-stage 모델은 주로 실시간 객체 검출이 필요한 응용 분야에서 많이 사용되며, 속도와 효율성이 중요한 경우에 적합합니다.

10. Yolo v1에 대해 설명

YOLO v1 (You Only Look Once version 1)는 단일 신경망을 사용하여 이미지 내의 객체를 빠르게 검출하는 1-stage 객체 검출 모델입니다.

• 작동 방식:

- 1. 그리드 분할: 입력 이미지를 SxS 격자로 나눕니다.
- 2. **바운딩 박스 예측**: 각 격자 셀에서 B개의 바운딩 박스를 예측합니다. 각 박스는 위치 좌표, 너비, 높이, 신뢰도(confidence)로 구성됩니다.
- 3. 클래스 확률 예측: 각 격자 셀에서 C개의 클래스에 대한 확률을 예측합니다.
- 4. 최종 예측: 신뢰도와 클래스 확률을 결합하여 최종 객체를 검출합니다.

주요 특징:

- **단일 네트워크 패스**: 전체 이미지를 한 번에 처리하여 빠른 속도를 구현합니다.
- 전역 컨텍스트 활용: 이미지 전체의 컨텍스트를 고려하여 예측함으로써, 예측의 일관성과 정확성을 높입니다.
- End-to-End 학습: 전체 검출 과정을 통합적으로 학습하여, 최적화가 용이합니다.

• 장점:

- 속도: 매우 빠른 객체 검출이 가능하여 실시간 애플리케이션에 적합합니다.
- 단순성: 구조가 단순하여 구현이 용이합니다.

• 단점:

정확도 제한: 작은 객체나 밀집된 객체 검출에서 성능이 다소 낮을 수 있습니다.

• 고정된 앵커 박스: 다양한 비율의 객체를 잘 처리하지 못할 수 있습니다.

YOLO v1은 객체 검출의 속도와 효율성을 크게 향상시켰으나, 이후 버전에서 정확도와 다양한 기능이추가되었습니다.

11. EfficientDet의 등장 배경 및 Compound scaling에 대해 설명

EfficientDet은 객체 검출에서 높은 정확도와 효율성을 동시에 달성하기 위해 개발된 모델입니다. EfficientDet은 EfficientNet을 기반으로 하여, 백본(backbone), Neck, 헤드를 효율적으로 설계하였습니다.

등장 배경

- **효율성 필요성**: 기존의 객체 검출 모델은 정확도와 효율성 간의 trade-off가 존재하여, 둘 다 최적 화하는 것이 어려웠습니다.
- EfficientNet의 성공: EfficientNet은 이미지 분류에서 높은 효율성과 정확도를 달성하였으며, 이를 객체 검출에 적용하고자 했습니다.
- 모델 통합 최적화: 백본, Neck, 헤드 모두를 통합적으로 최적화하여, 전체 모델의 효율성을 극대화하고자 했습니다.

Compound Scaling

Compound Scaling은 네트워크의 깊이(depth), 너비(width), 해상도(resolution)를 균형 있게 확장하는 방법입니다.

방법:

- 균형적 확장: 깊이, 너비, 해상도를 단순히 개별적으로 확장하는 대신, 모든 차원을 동시에 고려하여 균형 있게 확장합니다.
- 비율 조정: 특정 비율로 각 차원을 확장하여, 전체 네트워크의 효율성과 성능을 최적화합니다.

• 장점:

- 효율성: 단순한 확장 방식보다 더 효율적으로 네트워크를 확장할 수 있습니다.
- 성능 향상: 균형 잡힌 확장을 통해, 다양한 크기의 모델에서도 높은 성능을 유지할 수 있습니다.

EfficientDet은 Compound Scaling을 통해 다양한 크기의 모델을 제공하여, 다양한 애플리케이션의 요구에 맞게 선택할 수 있으며, 높은 정확도와 효율성을 동시에 달성하였습니다.

12. Cascade, Deformable, Swin 에 대해 설명

Cascade

Cascade 객체 검출기는 여러 단계의 검출기를 순차적으로 적용하여, 점진적으로 검출 성능을 향상시키는 방식입니다.

• 작동 방식:

- 1. **단계적 처리**: 첫 번째 단계에서 기본적인 객체 검출을 수행하고, 이후 단계에서 더 높은 IoU(Intersection over Union) 임계값을 적용하여 검출 결과를 정교화합니다.
- 2. 점진적 개선: 각 단계에서 이전 단계의 결과를 기반으로, 검출의 정확도를 높여 나갑니다.

• 장점:

- 정확도 향상: 단계별로 정교한 검출을 수행하여, 최종 결과의 정확도를 높입니다.
- 고품질 검출: 높은 IoU 임계값을 통해, 더 정확한 바운딩 박스를 생성합니다.

• 단점:

• 연산 비용 증가: 여러 단계를 거치기 때문에, 계산 비용이 증가할 수 있습니다.

Cascade는 특히 높은 정확도가 요구되는 응용 분야에서 유용하게 사용됩니다.

Deformable

Deformable Convolutional Networks (DCN)은 표준 합성곱 연산을 변형하여, 입력 특징 맵의 적응적인 위치에 필터를 적용하는 방식입니다.

• 특징:

- 적용적 필터 위치: 각 합성곱 필터가 고정된 위치가 아닌, 입력 특징 맵의 데이터에 따라 변형된 위치에서 연산을 수행합니다.
- **유연성 향상**: 다양한 형태와 크기의 객체를 더 잘 처리할 수 있도록, 필터가 입력 데이터에 맞게 유연하게 조정됩니다.

• 장점:

- 비정형 객체 처리: 비정형적이거나 다양한 형태의 객체를 효과적으로 검출할 수 있습니다.
- 성능 향상: 표준 합성곱보다 더 높은 표현력을 가지며, 객체 검출 정확도를 향상시킵니다.

적용 예시:

Deformable Faster R-CNN: Deformable Convolution을 적용하여 Faster R-CNN의
성능을 개선한 모델입니다.

Deformable 연산은 특히 복잡한 형태의 객체를 검출하는 데 유용하게 사용됩니다.

Swin

Swin Transformer는 이미지 처리에 Transformer 구조를 적용한 모델로, Shifted Windowing을 통해 효율적인 연산과 높은 표현력을 동시에 달성합니다.

• 특징:

- Shifted Windowing: 이미지를 윈도우 단위로 분할하여 self-attention을 수행하고, 다음 계층에서는 윈도우를 이동시켜 교차 윈도우 간의 정보 교화을 촉진합니다.
- 계층적 구조: 여러 계층을 쌓아올리면서, 다양한 스케일의 특징을 추출합니다.
- 효율성: 전역 self-attention 대신 지역적 self-attention을 수행하여, 연산 비용을 줄이고 효율성을 높입니다.

• 장점:

- 높은 성능: 객체 검출을 포함한 다양한 비전 작업에서 높은 성능을 보입니다.
- 유연성: 다양한 크기의 모델로 확장 가능하며, 다양한 애플리케이션에 적용할 수 있습니다.

• 적용 예시:

• Swin Transformer 기반 객체 검출기: Swin을 백본으로 사용하는 객체 검출 모델들은 높은 정확도와 효율성을 동시에 달성합니다.

Swin Transformer는 Transformer의 강력한 표현력을 이미지 처리에 효과적으로 적용한 모델로, 최근 객체 검출 분야에서 많이 사용되고 있습니다.

13. M2Det에 대해 설명

M2Det (Multi-level Feature Pyramid Network for Object Detection)은 다중 스케일의 특징을 효과적으로 활용하여 객체 검출 성능을 향상시키는 1-stage 모델입니다.

• 주요 구성 요소:

- 1. Multi-level Feature Pyramid Network (M2FPN):
 - **다중 스케일 특징 통합**: 여러 레벨의 특징 맵을 결합하여 풍부한 다중 스케일 정보를 생성합니다.

• **다층 피라미드 구조**: 다양한 크기의 객체를 효과적으로 검출할 수 있도록, 여러 층의 특징 맵을 통합합니다.

2. Multi-level Prediction Module (MPM):

- **다중 스케일 예측**: 결합된 다중 스케일 특징을 활용하여, 각 레벨에서 바운딩 박스와 클래스 확률을 예측합니다.
- 효율적 예측: 단일 단계에서 다양한 스케일의 객체를 정확하게 검출할 수 있도록 설계되었습니다.

• 특징:

- **높은 정확도**: 다중 스케일의 특징을 효과적으로 활용하여, 다양한 크기의 객체를 정확하게 검출합니다.
- **효율성**: 1-stage 구조로 인해, 2-stage 모델에 비해 빠른 속도를 유지하면서도 높은 정확도 를 달성합니다.
- 유연성: 다양한 백본 네트워크와 쉽게 통합될 수 있어, 다양한 응용 분야에 적용할 수 있습니다.

• 장점:

- **다중 스케일 처리**: 다양한 크기의 객체를 효과적으로 검출할 수 있어, 실제 응용에서 유용합니다.
- **단순한 구조**: 1-stage 구조로 구현이 단순하며, 실시간 객체 검출에 적합합니다.
- **높은 성능**: 여러 벤치마크에서 높은 정확도를 기록하여, 경쟁력 있는 모델로 평가받고 있습니다.

M2Det은 다중 스케일의 특징을 효과적으로 활용하여, 높은 정확도와 효율성을 동시에 달성하는 1-stage 객체 검출 모델로, 다양한 실용적인 응용 분야에서 유용하게 사용됩니다.