NFA with ϵ -transitions (ϵ -NFA)

We shall now introduce another extension to NFA, called ϵ -NFA, which is a NFA whose labels can be the empty string, noted ϵ .

The interpretation of this new kind of transition, called ϵ -transition, is that the current state changes by following this transition *without* reading any input. This is sometimes referred as a **spontaneous** transition.

The rationale, i.e., the intuition behind that, is that $\epsilon a=a\epsilon=a$, so recognising ϵa or $a\epsilon$ is the same as recognising a. In other words, we do not need to read something more than a as input.

ϵ -NFA/Example

For example, we can specify signed natural and decimal numbers by means of the $\epsilon\text{-NFA}$

This is not the simplest ϵ -NFA we can imagine for these numbers, but note the utility of the ϵ -transition between q_0 and q_1 .

ϵ -NFA (cont)

In case of lexical analysers, ϵ -NFA allow to design separately a NFA for each token, then create an initial (respectively, final) state connected to all their initial (respectively, final) states with an ϵ -transition. For instance, for keywords **fun** and **function** and identifiers:

ϵ -NFA (cont)

In lexical analysis, once we have a single ϵ -NFA, we can

- 1. either remove all the ϵ -transitions and
 - 1.1 either create a NFA and then maybe a DFA;
 - 1.2 or create directly a DFA,
- 2. or use a formal definition of ϵ -NFA that directly leads to a recognition algorithm, just as we did for DFA and NFA.

Both methods assume that it is always possible to create an equivalent NFA, hence a DFA, from a given ϵ -NFA.

In other words, DFA, NFA and ϵ -NFA have the same expressive power.

ϵ -NFA (cont)

The first method constructs explicitly the NFA and maybe the DFA, while the second does not, at the possible cost of more computations at run-time.

Before entering into the details, we need to define formally an ϵ -NFA, as suggested by the second method.

The only difference between an NFA and an ϵ -NFA is that the transition function δ_E takes as second argument an element in $\Sigma \cup \{\epsilon\}$, with $\epsilon \not\in \Sigma$, instead of Σ — but the alphabet still remains Σ .

ϵ -NFA/ ϵ -closure

We need now a function called ϵ -close, which takes an ϵ -NFA \mathcal{E} , a state q of \mathcal{E} and returns all the states which are accessible in \mathcal{E} from q with label ϵ . The idea is to achieve a **depth-first traversal** of \mathcal{E} , starting from q and following only ϵ -transitions.

Let us call ϵ -DFS (" ϵ -Depth-First-Search") the function such as ϵ -DFS(q,Q) is the set of states reachable from q following ϵ -transitions and which is not included in Q,Q being interpreted as the set of states already visited in the traversal. The set Q ensures the termination of the algorithm even in presence of cycles in the automaton. Therefore, let

$$\epsilon$$
-close $(q) = \epsilon$ -DFS (q, \emptyset) if $q \in Q_E$

where the ϵ -NFA is $\mathcal{E} = (Q_E, \Sigma, \delta_E, q_0, F_E)$.

Now we define ϵ -DFS as follows:

$$\epsilon ext{-DFS}(q,Q)=\varnothing$$
 if $q\in Q$ (3) $\epsilon ext{-DFS}(q,Q)=\{q\}$ \cup \bigcup $\epsilon ext{-DFS}(p,Q\cup\{q\})$ if $q\not\in Q$ (4)

The ϵ -NFA page 175 leads to the following ϵ -closures:

 $p \in \delta_F(q,\epsilon)$

$$\begin{array}{ll} \epsilon\text{-close}(q_1) = \{q_1\} & \epsilon\text{-close}(q_2) = \{q_2\} \\ \epsilon\text{-close}(q_0) = \{q_0, q_1\} & \epsilon\text{-close}(q_3) = \{q_3, q_5\} \\ \epsilon\text{-close}(q_5) = \{q_5\} & \epsilon\text{-close}(q_4) = \{q_4, q_3, q_5\} \end{array}$$

Consider, as a more difficult example, the following ϵ -NFA \mathcal{E} :

$$\epsilon$$
-close(q_0)

$$= \epsilon - \mathsf{DFS}(q_0, \varnothing) \qquad \text{since } q_0 \in Q_E$$

$$= \{q_0\} \cup \epsilon - \mathsf{DFS}(q_1, \{q_0\}) \cup \epsilon - \mathsf{DFS}(q_4, \{q_0\}) \qquad \text{by eq. 4}$$

$$= \{q_0\} \cup \left(\{q_1\} \cup \bigcup_{p \in \delta_E(q_1, \epsilon)} \epsilon - \mathsf{DFS}(p, \{q_0, q_1\})\right) \qquad \text{by eq. 4}$$

$$\cup \left(\{q_4\} \cup \bigcup_{p \in \delta_E(q_4, \epsilon)} \epsilon - \mathsf{DFS}(p, \{q_0, q_4\})\right) \qquad \text{by eq. 4}$$

$$\begin{split} \epsilon\text{-close}(q_0) &= \{q_0\} \cup \left(\{q_1\} \cup \bigcup_{p \in \{q_2\}} \epsilon\text{-DFS}(p, \{q_0, q_1\}) \right) \\ & \cup \left(\{q_4\} \cup \bigcup_{p \in \varnothing} \epsilon\text{-DFS}(p, \{q_0, q_4\}) \right) \\ &= \{q_0\} \cup \left(\{q_1\} \cup \epsilon\text{-DFS}(q_2, \{q_0, q_1\}) \right) \cup \left(\{q_4\} \cup \varnothing \right) \\ &= \{q_0, q_1, q_4\} \cup \epsilon\text{-DFS}(q_2, \{q_0, q_1\}) \\ &= \{q_0, q_1, q_4\} \cup \left(\{q_2\} \cup \bigcup_{p \in \delta_E(q_2, \epsilon)} \epsilon\text{-DFS}(p, \{q_0, q_1, q_2\}) \right) \end{split}$$

$$\begin{split} \epsilon\text{-close}(q_0) &= \{q_0, q_1, q_4\} \cup \left(\{q_2\} \cup \bigcup_{p \in \{q_1, q_3\}} \epsilon\text{-DFS}(p, \{q_0, q_1, q_2\})\right) \\ &= \{q_0, q_1, q_2, q_4\} \cup \epsilon\text{-DFS}(q_1, \{q_0, q_1, q_2\}) \\ &\quad \cup \epsilon\text{-DFS}(q_3, \{q_0, q_1, q_2\}) \\ &= \{q_0, q_1, q_2, q_4\} \cup \varnothing \qquad \text{by eq. 3, since } q_1 \in \{q_0, q_1, q_2\} \\ &\quad \cup \left(\{q_3\} \cup \bigcup_{p \in \delta_E(q_3, \epsilon)} \epsilon\text{-DFS}(p, \{q_0, q_1, q_2, q_3\})\right) \quad \text{by eq. 4} \\ &= \{q_0, q_1, q_2, q_3, q_4\} \cup \bigcup_{p \in \varnothing} \epsilon\text{-DFS}(p, \{q_0, q_1, q_2, q_3\}) \\ &= \{q_0, q_1, q_2, q_3, q_4\} \end{split}$$

It is useful to extend $\epsilon\text{-close}$ to sets of states, not just states.

Let us note ϵ -close this extension, which we can easily define as

$$\overline{\epsilon\text{-close}}(Q) = \bigcup_{q \in Q} \epsilon\text{-close}(q)$$

for any subset $Q \subseteq Q_E$ where the ϵ -NFA is $\mathcal{E} = (Q_E, \Sigma, \delta_E, q_E, F_E)$.

Compute the ϵ -closure of q_0 in the following ϵ -NFA \mathcal{E} :

where the sub- ϵ -NFA \mathcal{E}' contains only ϵ -transitions and all its Q' states are accessible from q_3 .

$$\begin{split} \epsilon\text{-close}(q_0) &= \epsilon\text{-DFS}(q_0, \varnothing) \\ &= \{q_0\} \cup \epsilon\text{-DFS}(q_1, \{q_0\}) \cup \epsilon\text{-DFS}(q_2, \{q_0\}) \\ &= \{q_0\} \cup (\{q_1\} \cup \epsilon\text{-DFS}(q_3, \{q_0, q_1\})) \\ &\quad \cup (\{q_2\} \cup \epsilon\text{-DFS}(q_3, \{q_0, q_2\})) \\ &= \{q_0, q_1, q_2\} \cup \epsilon\text{-DFS}(q_3, \{q_0, q_1\}) \cup \epsilon\text{-DFS}(q_3, \{q_0, q_2\}) \\ &= \{q_0, q_1, q_2, q_3, \} \cup (\{q_3\} \cup Q') \cup (\{q_3\} \cup Q') \\ &= \{q_0, q_1, q_2, q_3, \} \cup Q' \end{split}$$

We compute $\{q_3\} \cup Q'$ two times, that is, we traverse two times q_3 and all the states of \mathcal{E}' , which can be inefficient if Q' is big.

The way to avoid duplicating traversals is to change the definitions of ϵ -close and $\overline{\epsilon}$ -close.

Dually, we need a new definition of ϵ -DFS and create function $\overline{\epsilon}$ -DFS which is similar to ϵ -DFS except that it applies to set of states instead of one state:

$$\epsilon ext{-close}(q) = \epsilon ext{-DFS}(q, \varnothing) \qquad \qquad \text{if } q \in Q_E$$

$$\overline{\epsilon ext{-close}}(Q) = \overline{\epsilon ext{-DFS}}(Q, \varnothing) \qquad \qquad \text{if } Q \subseteq Q_E$$

We interpret Q' in ϵ -DFS(q,Q') and $\overline{\epsilon$ -DFS}(Q,Q') as the set of states that have already been visited in the depth-first search.

Variables q and Q denote, respectively, a state and a set of states that have to be explored.

In the first definition we computed the *new reachable states*, but in the new one we compute the *currently reached states*. Then let us redefine ϵ -DFS this way:

$$\epsilon ext{-DFS}(q,Q')=Q'$$
 if $q\in Q'$ (1')

$$\epsilon\text{-DFS}(q, Q') = \overline{\epsilon\text{-DFS}}(\delta_E(q, \epsilon), Q' \cup \{q\}) \quad \text{if } q \notin Q' \quad (2')$$

Contrast with the first definition

$$\epsilon ext{-DFS}(q,Q')=arnothing$$
 if $q\in Q'$ (1)

$$\epsilon ext{-DFS}(q,Q') = \{q\} \quad \cup \bigcup_{p \in \delta_E(q,\epsilon)} \epsilon ext{-DFS}(p,Q' \cup \{q\}) \quad \text{if } q
ot\in Q' \quad (2)$$

Hence, in (1) we return \varnothing because there is no new state, i.e., none not already in Q', whereas in (1') we return Q' itself.

The new definition of $\overline{\epsilon}$ -DFS is not more difficult than the first one:

$$\overline{\epsilon\text{-DFS}}(\varnothing, Q') = Q' \tag{5}$$

$$\overline{\epsilon\text{-DFS}}(\{q\} \cup Q, Q') = \overline{\epsilon\text{-DFS}}(Q, \epsilon\text{-DFS}(q, Q')) \quad \text{if } q \notin Q \quad (6)$$

Notice that the definitions of ϵ -DFS and $\overline{\epsilon}$ -DFS are **mutually recursive**, i.e., they depend on each other.

In (2) we traverse states in *parallel* (consider the union operator), starting from each element in $\delta_E(q,\epsilon)$, whereas in (2') and (6), we traverse them *sequentially* so we can use the information collected (currently reached states) in the previous searches.

Coming back to our example page 185, we find

$$\begin{array}{ll} \epsilon\text{-close}(q_0) = \epsilon\text{-DFS}(q_0,\varnothing) & q_0 \in Q_E \\ = \overline{\epsilon\text{-DFS}}(\{q_1,q_2\},\{q_0\}) & \text{by eq. (2')} \\ = \overline{\epsilon\text{-DFS}}(\{q_2\},\epsilon\text{-DFS}(q_1,\{q_0\})) & \text{by eq. (4)} \\ = \overline{\epsilon\text{-DFS}}(\{q_2\},\overline{\epsilon\text{-DFS}}(\{q_3\},\{q_0,q_1\})) & \text{by eq. (2')} \\ = \overline{\epsilon\text{-DFS}}(\{q_2\},\overline{\epsilon\text{-DFS}}(\varnothing,\epsilon\text{-DFS}(q_3,\{q_0,q_1\}))) & \text{by eq. (4)} \\ = \overline{\epsilon\text{-DFS}}(\{q_2\},\epsilon\text{-DFS}(q_3,\{q_0,q_1\})) & \text{by eq. (3)} \\ = \overline{\epsilon\text{-DFS}}(\{q_2\},\{q_0,q_1,q_3\}\cup Q') & \\ = \overline{\epsilon\text{-DFS}}(\varnothing,\epsilon\text{-DFS}(q_2,\{q_0,q_1,q_3\}\cup Q')) & \text{by eq. (4)} \end{array}$$

$$\epsilon\text{-close}(q_0) = \epsilon\text{-DFS}(q_2, \{q_0, q_1, q_3\} \cup Q')$$
 by eq. (3)
$$= \overline{\epsilon\text{-DFS}}(\{q_3\}, \{q_0, q_1, q_2, q_3\} \cup Q')$$
 by eq. (2')
$$= \overline{\epsilon\text{-DFS}}(\varnothing, \epsilon\text{-DFS}(q_3, \{q_0, q_1, q_2, q_3\} \cup Q'))$$
 by eq. (4)
$$= \epsilon\text{-DFS}(q_3, \{q_0, q_1, q_2, q_3\} \cup Q')$$
 by eq. (3)
$$= \{q_0, q_1, q_2, q_3\} \cup Q'$$
 by eq. (1')

The important thing here is that we did not compute (traverse) several times Q'. Note that some equations can be used in a different order and q can be chosen arbitrarily in equation (4), but the result is always the same.

Extended transition functions for ϵ -NFAs

The ϵ -closure allows to explain how a ϵ -NFA recognises or rejects a given input. Let $\mathcal{E} = (Q_E, \Sigma, \delta_E, q_0, F_E)$.

We want $\hat{\delta}_E(q,w)$ be the set of states reachable from q along a path whose labels, when concatenated, for the string w. The difference here with NFA's is that several ϵ can be present along this path, despite not contributing to w. For all state $q \in Q_E$, let

$$\hat{\delta}_E(q, \epsilon) = \epsilon\text{-close}(q)$$

$$\hat{\delta}_E(q, wa) = \overline{\epsilon\text{-close}}\left(\bigcup_{p \in \hat{\delta}_E(q, w)} \delta_N(p, a)\right) \quad \text{ for all } a \in \Sigma, w \in \Sigma^*$$

This definition is based on the regular identity $wa = ((w\epsilon^*)a)\epsilon^*$.

Extended transition functions for ϵ -NFAs/Example

Let us consider again the ϵ -NFA recognising natural and decimal numbers, at page 175, and compute the states reached on the input 5.6:

$$\begin{split} \hat{\delta}_{E}(q_{0},\epsilon) &= \epsilon\text{-close}(q_{0}) = \{q_{0},q_{1}\} \\ \hat{\delta}_{E}(q_{0},5) &= \overline{\epsilon\text{-close}}\Bigg(\bigcup_{p \in \hat{\delta}_{E}(q_{0},\epsilon)} \delta_{N}(p,5)\Bigg) \\ &= \overline{\epsilon\text{-close}}(\delta_{N}(q_{0},5) \cup \delta_{N}(q_{1},5)) = \overline{\epsilon\text{-close}}(\varnothing \cup \{q_{1},q_{4}\}) \\ &= \{q_{1},q_{3},q_{4},q_{5}\} \\ \hat{\delta}_{E}(q_{0},5.) &= \overline{\epsilon\text{-close}}\Bigg(\bigcup_{p \in \hat{\delta}_{N}(q_{0},5)} \delta_{N}(p,.)\Bigg) \\ &= \overline{\epsilon\text{-close}}(\delta_{N}(q_{1},.) \cup \delta_{N}(q_{3},.) \cup \delta_{N}(q_{4},.) \cup \delta_{N}(q_{5},.)) \end{split}$$

Extended transition functions for ϵ -NFAs/Example (cont)

$$\begin{split} \hat{\delta}_{E}(q_{0}, 5.) &= \overline{\epsilon\text{-close}}(\{q_{2}\} \cup \varnothing \cup \varnothing \cup \varnothing) = \{q_{2}\} \\ \hat{\delta}_{N}(q_{0}, 5.6) &= \overline{\epsilon\text{-close}} \Biggl(\bigcup_{p \in \hat{\delta}_{E}(q_{0}, 5.)} \delta_{N}(p, 6) \Biggr) \\ &= \overline{\epsilon\text{-close}}(\delta_{N}(q_{2}, 6)) \\ &= \overline{\epsilon\text{-close}}(\{q_{3}\}) \\ &= \{q_{3}, q_{5}\} \ni q_{5} \end{split}$$

Since q_5 is a final state, the string 5.6 is recognised as a number.

Subset construction for ϵ -NFAs

Let us present now how to construct a DFA from a $\epsilon\text{-NFA}$ such as both recognise the same language.

The method is a variation of the subset construction we presented for NFA: we must take into account the states reachable through ϵ -transitions, with help of ϵ -closures.

Subset construction for ϵ -NFAs (cont)

Assume that $\mathcal{E}=(Q,\Sigma,\delta,q_0,F)$ is an ϵ -NFA. Let us define as follows the equivalent DFA $\mathcal{D}=(Q_D,\Sigma,\delta_D,q_D,F_D)$.

- 1. Q_D is the set of subsets of Q_E . More precisely, all accessible states of \mathcal{D} are ϵ -closed subsets of Q_E , i.e., sets $Q \subseteq Q_E$ such as $Q = \epsilon$ -close(Q).
- 2. $q_D = \epsilon$ -close (q_0) , i.e., we get the start state of \mathcal{D} by ϵ -closing the set made of only the start state of \mathcal{E} .
- 3. F_D is those sets of states that contain at least one final state of \mathcal{E} , that is to say $F_D = \{Q \mid Q \in Q_D \text{ and } Q \cap F_E \neq \emptyset\}$.
- 4. For all $a \in \Sigma$ and $Q \in Q_D$, let $\delta_D(Q, a) = \overline{\epsilon\text{-close}} \left(\bigcup_{q \in Q} \delta_E(q, a) \right)$

Subset construction for ϵ -NFAs/Example

Let us consider again the ϵ -NFA page 175. Its transition table is

${\cal E}$	+	_	$0,\ldots,9$		ϵ
$ ightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø	$\{q_1\}$
q_1	Ø	Ø	$\{q_1,q_4\}$	$\{q_2\}$	Ø
q_2	Ø	Ø	$\{q_{3}\}$	Ø	Ø
q_3	Ø	Ø	$\{q_{3}\}$	Ø	$\{q_{5}\}$
q_4	Ø	Ø	Ø	Ø	$\{q_3\}$
$\#q_5$	Ø	Ø	Ø	Ø	Ø

Subset construction for ϵ -NFAs/Example (cont)

By applying the subset construction to this ϵ -NFA, we get the table

$\mathcal D$	+	_	0, , 9	
$ ightarrow \{q_0,q_1\}$	$\{q_1\}$	$\{q_1\}$	$\{q_1, q_3, q_4, q_5\}$	{ <i>q</i> ₂ }
$\{q_1\}$	Ø	Ø	$\{q_1, q_3, q_4, q_5\}$	$\{q_2\}$
$\#\{q_1,q_3,q_4,q_5\}$	Ø	Ø	$\{q_1, q_3, q_4, q_5\}$	$\{q_2\}$
$\{q_2\}$	Ø	Ø	$\{q_3, q_5\}$	Ø
$\#\{q_3,q_5\}$	Ø	Ø	$\{q_3,q_5\}$	Ø

Subset construction for ϵ -NFAs/Example (cont)

Let us rename the states of $\mathcal D$ and get rid of the empty sets:

\mathcal{D}	+	_	$0,\ldots,9$	
$\rightarrow A$	В	В	С	D
В			С	D
# <i>C</i>			С	D
D			Ε	
# <i>E</i>			Ε	

Subset construction for ϵ -NFAs/Example (cont)

The transition diagram of ${\mathcal D}$ is therefore

