面向企业数据孤岛的联邦排序学习

史鼎元, 王晏晟, 郑鹏飞, 童咏昕

软件开发环境国家重点实验室 大数据科学与脑机智能高精尖创新中心 北京航空航天大学

• 研究背景

• 主要挑战

• 解决方案

• 研究背景

• 主要挑战

• 解决方案

人工智能与数据孤岛

直接合并数据

开展训练?

金融风控

数据分散于小型银行

用户行为

数据分散于用户设备

智慧交通

数据分散于出行平台

智能政务

数据分散于政府部门

激增的数据需求使数据孤岛问题凸显

隐私保护立法

隐私保护立法限制企业间共享用户数据,加剧数据孤岛问题

小规模数据拥有者的检索难题

如何获得 优质检索服务

隐私限制阻碍数据共享与模型训练,无法获得优质检索服务

联邦学习:数据孤岛破局方法

联邦学习让小规模数据拥有者能安全训练高效排序学习模型

面向企业数据孤岛的联邦排序学习

- 设计要求
 - 各方隐私能够保护
- 设计目标
 - 协作训练高效排序学习模型

通过两类数据生成模型增广训练数据

小规模数据拥有者 $P_i = \langle D_i, Q_i \rangle$

通过两类数据生成本地训练数据

• 研究背景

• 主要挑战

• 解决方案

挑战:数据增广难度大

隐私保护要求加大了特征和标签的生成难度

挑战:数据增广难度大

联邦排序学习引出了新的数据分割方式: 交叉分割

• 研究背景

• 主要挑战

• 解决方案

解决方案框架

● 数据增广难度大

核心难题

数据库领域技术解决联邦排序学习的核心难题

基于Sketch的扰动查询

半监督学习开展模型训练

• 例: 词频合作生成

• $TF_{i,j}(t_k,d) = \frac{TC_{i,j}(t_k,d)}{l_d}$

出现次数: 隐私信息

文档长度:公开信息

基于Sketch的扰动查询

半监督学习开展模型训练

• 研究背景

• 主要挑战

• 解决方案

数据集与数据规模

- 数据集
 - MS MARCO文本数据集

- 数据规模
 - 构造4个企业作为联邦参与方
 - 各企业数据规模:
 - 。200条查询语句
 - 。40000篇文档
 - 。 带标签特征数据2.4万条
 - 。 无标签特征数据5.97万条
 - 测试集规模: 2.8万条

考核指标与对比方法

指标名称	含义		
期望倒数排名(ERR)	相关度高的文档排序位置是否靠前		
平均准确率(MAP)	排序学习模型给出的顺序与按相关度降序排序的差别		
归一化折损累计增益(nDCG)	综合考虑相关性和排序位置的评估指标		
前十名归一化折损累计增益 (nDCG@10)	排在前十名文档的归一化折损累计增益		

方法名称	训练使用的数据		
Local	本地数据		
Local+	本地数据+基于自身查询语句的增广数据		
Global	所有本地数据		
CS-F-LTR	所有本地数据+所有增广数据		

有效性检验

		ERR	nDCG@10	nDCG	MAP
Local	企业A	0.5672	0.7274	0.8049	0.4809
	企业B	0.5357	0.6676	0.7779	0.4573
	企业C	0.5637	0.7094	0.7952	0.4788
	企业D	0.5887	0.7466	0.8173	0.5055
Local+	企业A	0.5628	0.7257	0.8026	0.4776
	企业B	0.5448	0.7064	0.7932	0.4779
	企业C	0.5766	0.7314	0.8091	0.4936
	企业D	0.5988	0.7475	0.8247	0.5039
GI	obal	0.5877	0.7577	0.8247	0.5040
CS-	F-LTR	0.6679	0.8358	0.8760	0.5525

所提联邦学习方法训练的模型性能优于其他方法

迭代过程检验

从收敛过验证所提方法的最优性

贡献总结

提出联邦场景下的排序学习问题,明确其不同 于常规横/纵向分割的交叉分割方式

提出基于Sketch的扰动查询方法和半监督学习 方法、增广样本数据训练排序学习模型

• 通过在真实文本数据的实验证明算法的有效性

Q & A

Thank You