Modelos de clasificación

Diplomado de Minería de Datos para soporte a la toma de decisiones

Contenido

- Regresión logística
 - Ejercicio práctico 1
- Análisis discriminante
 - Ejercicio práctico 2

- Regresión lineal: estimamos la esperanza condicional de una variable continua Y
- Las variables de soporte podían ser categóricas o discretas
- ¿Qué pasa si Y no es continua?
- Caso más común es Y es binaria:
 - ¿El paciente tendrá diabetes?: Y=1 sí, Y=0 no
 - ¿Este cliente pagará el crédito o no?
 - ¿Este producto tendrá éxito en el mercado o no?
- La variable Y puede tener muchas categorías

- Al problema de modelar una variable categórica Y en términos de otras variables X₁, X₂, ...X_k se le llama problema de clasificación
- Otra manera de verlo es preguntarnos cómo le hacemos para, dadas las variables de soporte X₁, X₂, ...X_k, asignarle una etiqueta a una variable objetivo Y
- Las clases pueden verse como etiquetas
- Los modelos de clasificación pertenecen la subárea de machine learning conocida como aprendizaje supervisado (supervisado significa que tengo un conjunto de datos etiquetados)

- ¿Cómo generar un modelo que prediga esas etiquetas/clases?
- Primer approach: hacer un modelo basado en reglas
 - Si estudio 5 días a la semana, y
 - Si hago más de la mitad de las tareas, y
 - Si apruebo los exámenes parciales, y
 - Entonces aprobaré la materia
- ¿Cómo generar esas reglas?
- iCrudo, difícil y no escalable! ¿Qué pasa si agrego una nueva variable? ¿Si los datos cambian?

- Mejor approach: modelo que arroje una probabilidad/score:
 - La probabilidad de aprobar es de 60% si estudias 5 días a la semana, si haces más de la mitad de las tarea, si apruebas los exámenes parciales.
- Mejor aún: modelo que arroje Prob(Y | X₁,...,X_k)
 - Aprobar (sí/no) dado cierto nivel de estudio, número de tareas y número de exámenes aprobados.
- Nos permitirá estimar con cierto grado de confianza
 - \circ Prob(Y | X₁,...,X_k)=0.55 vs Prob(Y | X₁,...,X_k)=0.98

Ejemplo

Estudiantes: Aprobado/no aprobado vs Horas de estudio

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

Hours of study	Probability of passing exam
1)	0.07
2	0.26
3	0.61
4	0.87
5	0.97

- Dos clases: 0 y 1 (ausencia o presencia de atributo)
- La variable objetivo Y se vuelve una variable indicadora: Y=1 ó
 Y=0
- La variable objetivo Y se puede modelar como una variable aleatoria Bernoulli(p) y entonces Pr(Y=1) = E(Y)
- Pero queremos que Y dependa de X₁,...X_k
- Si condicionamos al valor de las variables soporte X₁,...X_k, entonces Pr(Y=1 | X=x) = E(Y | X=x)
- ¿Para qué nos sirve esto?

- Queremos modelar Pr(Y=1 | X=x) = E(Y | X=x) = p(x)
- 3 propuestas:

1. Usar una aproximación lineal a p(x) -> Problema: queremos que p(x) esté entre 0 y 1 y la regresión lineal no nos garantiza eso. Además queremos que p(x) crezca a tasas decrecientes

- Queremos modelar Pr(Y=1 | X=x) = E(Y | X=x) = p(x)
- 3 propuestas:
 - 2. Usar log(p(x)) y modelarlo como una función lineal. Problema: el soporte (la probabilidad) no está entre [0,1]

- Queremos modelar Pr(Y=1 | X=x) = E(Y | X=x) = p(x)
- 3 propuestas:
 - 3. Usar log(p/(1-p)). Ventajas: se puede modelar como una función lineal (isabemos usar regresión!)

El dominio está entre [0,1] -> podemos modelar probabilidad/score

El rango está entre [-infinito, +infinito] -> podemos usar regresión lineal

- El modelo de regresión logística es:
 - $\circ \log(p(x)/(1-p(x)) = \beta_0 + x\beta$
 - Entonces despejando p(x):

$$p(x) = rac{1}{1 + e^{-(B_0 + B_1 x)}} = rac{e^{B_0 + B_1 x}}{1 + e^{B_0 + B_1 x}}.$$

- Probabilidad puede verse como un Score
- Recordar esta función, la veremos después para redes neurales y se llamará perceptrón de una capa

 $1/(1+e^{x-x})$

- Para minimizar la tasa de error de clasificación, podríamos predecir
 - \circ Y=1 si p>=0.5 y Y=0 si p<0.5
 - \circ O sea Y=1 si β_0 + x β >0 y Y=0 si β_0 + x β <=0
 - $β_0 + xβ = 0$ define el límite de decisión

¿Por qué este enfoque es mejor que el enfoque tradicional?

- El enfoque tradicional sólo toma dos posibles valores: 0 ó 1. Es más crudo
- Este enfoque puede tomar valor entre 0 y 1.
 Es más flexible y hace predicciones más detalladas

- Límite de decisión $\beta_0 + x\beta = 0$:
 - Recta en dos dimensiones
 - Plano en tres dimensiones
 - Hiperplano en más dimensiones

• La probabilidad/score dependerá de la distancia al límite de decisión β_0 + $x\beta$ = 0

- La regresión logística es uno de los modelos de clasificación más usados por:
 - Muchas veces funciona sorprendentemente bien como clasificador, pero no siempre
 - Es parte de modelos más generales (modelos lineales generalizados)
 - Se ha usado mucho en la práctica: tradición
- Pero así como existen muchos modelos para el problema de regresión (i.e. explicar una variable cuantitativa en términos de otras) y sólo vimos el lineal, en el problema de clasificación existen muchos otros modelos (veremos otros)

Nuevamente queremos estimar los parámetros

$$p(x;b,w) = \frac{e^{\beta_0 + x \cdot \beta}}{1 + e^{\beta_0 + x \cdot \beta}} = \frac{1}{1 + e^{-(\beta_0 + x \cdot \beta)}}$$
 ¿Cuánto valen las betas?

- No es trivial hacerlo
- Se construye una función de log-verosimilitud y se aproxima numéricamente a la solución que la minimiza
- Se generaliza al caso en múltiples dimensiones (i.e. k variables de soporte): regresión logística multinomial

Interpretación:

$$rac{p(x)}{1-p(x)} = e^{B_0 + B_1 x}$$

- $\frac{p(x)}{1-p(x)} = e^{B_0+B_1x}$ También se llaman momios

 Los **momios** se usan para expresar los riesgos relativos (por eso se expresan como un cociente)
- Supongamos que $p(50) = \frac{2}{3}$, entonces

$$rac{p(50)}{1-p(50)} = rac{rac{2}{3}}{1-rac{2}{3}} = 2.$$

- $\frac{p(50)}{1-p(50)} = \frac{\frac{2}{3}}{1-\frac{2}{3}} = 2.$ Un éxito es dos veces más probable que una falla cuando x=2
- Si $\frac{p(x)}{1-p(x)}$ < 1, el fracaso (denominador) tiene menor probabilidad que el éxito (numerador)
- Si $\frac{p(x)}{1-p(x)}$ > 1 el éxito tiene mayor probabilidad que el fracaso

- También podemos comparar odds entre individuos:
 - Se compara la situación de la observación i con la de la observación j (que suele ser la de referencia)
 - El cociente entre odds mide cuanto es más probable que se dé el éxito en el individuo i que en el individuo j

Cociente entre odds =
$$\frac{\frac{M_i}{(1 - M_i)}}{\frac{M_j}{(1 - M_j)}} = \frac{e^{\alpha + \beta_k X_{kj}}}{e^{\alpha + \beta_k X_{kj}}} = e^{\beta_k (X_{ij} - X_{jj})}$$

- Lo anterior nos sirve para interpretar los coeficientes beta:
 - Factor de cambio en el cociente entre odds cuando el valor de la variable X_k aumenta en una unidad y el resto de variables explicativas se mantienen constantes.

Cociente entre Odds =
$$\frac{\frac{M_{i+1}}{(1-M_{i+1})}}{\frac{M_{i}}{(1-M_{i})}} = \frac{e^{\alpha+\beta_{k}(X_{ki}+1)}}{e^{\alpha+\beta_{k}X_{ki}}} = e^{\beta_{k}(X_{ki}+1-X_{kj})} = e^{\beta_{k}}$$

- \circ β_k se interpreta como el número de veces que incrementa el logaritmo del éxito frente al fracaso cuando la variable X_k incrementa en una unidad
- Qué tanto impacto tiene en Y, un cambio en X_k

Recordemos α y β de regresión lineal, definían tipos de error:

	Null hypothesis (H_0) is valid: Innocent	Null hypothesis (H_0) is invalid: Guilty		
Reject H ₀ I think he is guilty!	Type I error False positive Inocente en la cárcel	Correct outcome True positive Convicted!		
Don't reject H ₀ I think he is innocent!	Correct outcome True negative Freed!	Type II error False negative Freed! Delincuente en las calles		

Predicción

- Tenemos una tabla muy parecida para problemas de clasificación
- ¿Qué pasa si mi modelo dice que es de tipo 1 pero realmente no lo era?

	Realmente es 0 (inocente)	Realmente es 1 (culpable)			
Predigo 1 (es culpable)	Queremos tener pocas observaciones aquí Type I error False positive Convicted!	Inocente en la cárcel		Correct outcome True positive Convicted!	Delincuente en la cárcel
Predigo 0 (es inocente)	Correct outcome True negative Freed!	las calles	Queremos tener pocas observaciones aquí	Type II error False negative Freed!	Delincuente en las calles

		The second secon	dition y "Gold standard")	
		Condition Positive	Condition Negative	
Test	Test Outcome Positive	True Positive	False Positive (Type I error)	Positive predictive value = Σ True Positive Σ Test Outcome Positive
Outcome	Test Outcome Negative	False Negative (Type II error)	True Negative	$\frac{\text{Negative predictive value} = }{\Sigma \text{ True Negative}}$ $\Sigma \text{ Test Outcome Negative}$
		Sensitivity = Σ True Positive Σ Condition Positive	$\frac{\text{Specificity} =}{\Sigma \text{ True Negative}}$ $\Sigma \text{ Condition Negative}$	

Ejercicio práctico 1

Motivación

- Vimos cómo clasificar una variable discreta Y usando un conjunto de variables X_1 , ..., X_k
- Es decir, vimos un modelo para predecir clases/categorías a partir de variables de soporte, i.e. un modelo de clasificación
- Asumimos que X₁, ..., X_k nos ayudan a explicar Y
- Demos un paso atrás: ¿realmente X₁, ...,X_k nos ayudan a explicar Y?
- Es decir, ¿realmente el nivel educativo, el ingreso, el sexo, la edad, el estado civil me ayudan a predecir si un acreditado pagará?

Motivación

- ¿Qué tan diferentes son estas variables dentro de los grupos: sí pagará y no pagará?
- iEsperamos que sean diferentes!
- Ejemplo:
 - No pagará: ingreso bajo, joven, sin educación, casado
 - Sí pagará: ingreso alto, adulto maduro, profesionista, soltero
- ¿Será así? ¿qué tan diferentes?
- ¿Cómo saber?

- Si son muy diferentes entre los grupos definidos por Y decimos que discriminan
- Análisis discriminante: describir (si existen) diferencias significativas entre g grupos de individuos sobre los que se observan p variables
- Una vez encontradas (si las hay), explicarlas
- Construir un modelo que me permita clasificar nuevos individuos
- iAnálisis discriminante -igual que regresión logística- también es un modelo de clasificación!

- Si son muy diferentes entre los grupos definidos por Y decimos que discriminan
- Análisis discriminante: describir (si existen) diferencias significativas entre g grupos de individuos sobre los que se observan p variables
- Una vez encontradas (si las hay), explicarlas
- Construir un modelo que me permita clasificar nuevos individuos
- iAnálisis discriminante -igual que regresión logística- también es un modelo de clasificación!

- Modelo debido al estadístico y biólogo Fisher (1890 1962)
- AD: Identificar las características que diferencian a dos o más grupos y a crear una función capaz de distinguir con la mayor precisión posible a los miembros de uno u otro grupo
- Análisis discriminante supone que las variables de soporte X_1 , ..., X_k son normales, cuantitativas y continuas
 - Si no son normales a veces es posible transformar las variables para que lo sean
 - Si nos es posible hacerlas normales mejor usar regresión logística
- Sin embargo, cuando se cuenta con pocos individuos regresión logística predice pobremente

- El objetivo es llegar a una función discriminante
- Hay varios tipos de análisis de discriminante que dependen de la función discriminante
- ¿Uso regresión logística o análisis discriminante?
 - Si tengo pocos datos, estoy en problemas. Intentar análisis discriminante (regresión logística es inestable)
 - Si las variables de soporte son cuantitativas y normales y usar análisis discriminante
 - Si las variables de soporte no son normales ó no son todas cuantitativas entonces usar regresión logística

- Busco encontrar una combinación lineal de las variables de soporte que me ayude a separar las clases
- ilgual que regresión logística será un clasificador lineal!
 - En regresión logística teníamos: Y=1 si $β_0$ + xβ >0 y Y=0 si $β_0$ + xβ <=0
- ¿Cómo separo en análisis discriminante?

- Buscaremos un nuevo eje de coordenadas tal que al recolocar los puntos:
 - Haya una máxima separación entre las medias de los grupos
 - o La varianza sea mínima en cada grupo

• ¿Por qué queremos un nuevo eje de coordenadas?

A projection with nonideal separation

A projection with ideal separation

Ejercicio práctico 2

Gracias