Pattern Recognition: 监督学习一分类问题

Artificial Intelligence

Xiaoqing Zheng zhengxq@fudan.edu.cn

Artificial Intelligence

教师:郑骁庆

邮箱: zhengxq@fudan.edu.cn

Books

- George F. Luger. Artificial intelligence: structures and strategies for complex problem solving (5th edition), Addison Wesley, 2004.
- Pattern Recognition and Machine Learning. Christopher M. Bishop. *Springer*.
- Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning (2nd edition), Springer.
- Joseph C. Giarratano, Gray D. Riley. Expert Systems Principles and Programming (3rd Edition), China Machine Press, 2002.
- George F. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (3rd Edition). Prentice Hall, 2009.

Dartmouth Workshop

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

Oliver Selfridge

Nathaniel Rochester

Trenchard More

Greek mythology

Prometheus speaks of the fruits of his transgression against the gods of Olympus:

his purpose was not merely to steal

fire for the human race but also to enlighten humanity through the gift

of intelligence.

Historical foundations

Aristotle

- The master of those who know (Dante).
- The Study of thought itself is at the basis of all knowledge

All men are mortal Socrates is man

Socrates is mortal

Syllogism or modus ponens

Two thousand years later

Gottlob Frege, Bertrand Russell, Kurt Gödel, Alan Turing, Alfred Tarski, ...

Historical foundations

Copernicus

- Copernican revolution
- Our ideas about the world were seen as fundamentally distinct from its appearance.

Galileo

- Scientific observations
- Development of mathematics as a tool for describing the world.

Descartes

- Meditations: attempt to find a basis for reality purely through cognitive introspection.
- Cogito ergo sum (I think, therefore I am).

Discussion

- The *structure of ideas* about the world was not necessarily the same as the *structure of their subject matter*.
- It is necessary to find a way to *reconnect* the mind and the body, because *interaction* between the mental and the physical is essential for human existence.
- Mental processes are indeed achieved by *physical systems* such as brains. Mental processes, like physical processes, can ultimately be characterized through *formal mathematics*.

Reasoning is but reckoning.

by 17th century philosopher Hobbes

The development of logic

Leibnitz

- Calculus Philosophy
- Introduce the first system of formal logic and construct a machine for automating its calculation.

Boole

- Boolean algebra
- Mathematical formalization of the laws of logic that forms very heart of modern computer science.

Frege

- Foundations of arithmetic
- mathematical specification language for describing the basis of arithmetic in a clear and precise fashion.

String manipulation

person has fever \land fever is less than 39 \longrightarrow take aspirin

$$\alpha \wedge \beta \longrightarrow \gamma$$

$$\alpha \text{ AND } \beta \Longrightarrow \gamma$$

Any mathematic or logic system is simply a set of rules specifying how to change one string of symbols into another set of symbols.

Syllogism

All men are mortal

he is a man \longrightarrow he will die

Socrates is man

Socrates is a man

Will Socrates die?

First order predicate calculus

Syllogism

All men are mortal

he is a man \longrightarrow he will die

Socrates is man

Socrates is a man

Will Socrates die?

First order predicate calculus

The development of logic

Russell

Whitehead

- Foundations of artificial intelligence
- Their goal was to derive the whole of mathematics through formal operations on a collection of axioms.

Tarski

- Semantic theory of truth
- Well-formed formulae can be said to refer to the physical world in a precise fashion.

Tarski's semantic

```
We know (A \lor C) \land (B \lor \neg C) is true.
Question is: (A \lor B)?
```

Tarski's semantic

We know $(A \lor C) \land (B \lor \neg C)$ is *true*.

Question is: $(A \lor B)$?

A	В	C	$(A \lor C)$	$(B \vee \neg C)$	Premise	Consequence
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Tarski's semantic

We know $(A \lor C) \land (B \lor \neg C)$ is *true*.

Question is: $(A \lor B)$?

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$(A \lor C)$	$(B \vee \neg C)$	Premise	Consequence
	0	0	0	0	1	0	0
	0	0	1	1	0	$\frac{del}{0}$	0
	0	1	0	0	1	0	1
	0	1	1	1	1	1	1
	1	0	0	1	1	1	1
	1	0	1	1	0	0	1
	1	1	0	1	1	1	1
_	1	1	1	1	1	1	1

Cognitive science

Newell

- Much of human problem solving or *cognition* can be expressed by IF-THEN type *production rules*.
- Long-term memory or *rules*, short-term memory or *working memory*, and a cognitive processor or *inference engine*.
- General problem solver

Simon

Newell Simon Hall Carnegie Mellon University

Production rule

Production rule

Rule-based expert system structure

Expert systems applications

- MYCIN uses *expert medical knowledge* to diagnose and prescribe treatment for spinal meningitis and bacterial infections of the blood (mid-1970s, Stanford).
- **PROSPECTOR** analyze geologic data for minerals and had discovered a mineral deposit *worth* \$100m (1979, Duda).
- **XCON** can configure a computer system and saves DEC *millions of dollars* a year (1981, Carnegie-Mellon University and Digital equipment Corp).

Artificial neural systems

Structure of a Typical Neuron

Evolution

"... no limit to this power of slowly and beautifully adapting each form to the most complex relations of life ... "

———— Charles Darwin

Example

Maximum $f(x) = x^2, x \in [1, 31]$

Representation

$$x \in \{0,1\}^5$$

Initialization

```
1st generation 01101, 11000, 01000, 10011
Interpretation 13, 24, 8, 19
Fitness 169, 576, 64, 361
```

Example

Maximum $f(x) = x^2, x \in [1, 31]$

Selection

```
Individual 01101, 11000, 01000, 10011

Fitness 169, 576, 64, 361 = 1170

Probability 0.14, 0.49, 0.06, 0.31 = 1.0

Result 01101, 11000, 11000, 10011
```


Example

Maximum $f(x) = x^2, x \in [1, 31]$

Selection

Individual 01101, 11000, 01000, 10011

Fitness 169, 576, 64, 361 = 1170

Probability 0.14, 0.49, 0.06, 0.31 = 1.0

Result 01101, 11000, 11000, 10011

Crossover

$$0110 \ 1 \longrightarrow 01100 \qquad 11 \ 000 \longrightarrow 11011 \\ 1100 \ 0 \longrightarrow 11001 \qquad 10 \ 011 \longrightarrow 10000$$

Mutation

 $\underline{0}1100 \Longrightarrow \underline{1}1100$

Genetic algorithm

```
begin
 set time t = 0
 initialize the population P(t)
 while the termination condition is not met do
  begin
   evaluate fitness of each member of the population P(t);
   select members from population P(t) based on fitness;
   produce the offspring of these pairs using genetic operators;
   replace candidates of P(t), with these offspring;
   set time t = t + 1
  end
end
```

Multi-agent systems

• Agents are autonomous or semi-autonomous.

• Agents are *situated*.

• Agents are *interactional*.

• The society of agents is *structured*.

• The phenomenon of intelligence in this environment is

The development of logic

Turing

- Computing machinery and intelligence
- The theory of computability: the question of whether or not a machine could actually be made to think.

What is thinking?

What is machine?

What is intelligence?

Post-modern thought

What is **chair**?

by philosopher Wittgenstein 1953

Overview of AI application areas

Game playing

• Machine learning

Automated reasoning

AI

• Natural language understanding

• Planning and robotics

Any questions?

Xiaoqing Zheng Fudan University