Parte I: Testes (valor: 3,0)

1. d	9. e
2. a	10. b
3. e	11. a
4. d	12. e
5. d	13. c
6. d	14. c
7. b	15. b
8. c	

Parte II: Questões (valor: 5,5)

1.

a. Determinação da massa de ${\rm Nb_2O_5}$: $2\cdot 93+5\cdot 16=186+80=266$ g Determinação da massa de alumínio:

3Nb₂O₅ + 10 Al
$$\rightarrow$$
 6Nb + 5Al₂O₃
Dados: $3 \cdot 266 \text{ g} - 10 \cdot 27 \text{ g}$
Exercício: $27 \text{ g} - x$
 $x = 9,1 \text{ g} \cong 9 \text{ g de alumínio.}$

b. Determinação da massa do material:

$$m = 192,1 g - 131,3 g = 60,8 g$$

Determinação do volume do material:

V = 75 mL - 67 mL = 8 mL

Cálculo da densidade:

$$\text{d} = \frac{m}{V} = \frac{60,8 \text{ g}}{8 \text{ mL}} = 7,6 \text{ g/mL}$$

c. O valor encontrado no item (b) de 7,6 g/mL é menor do que a densidade do nióbio puro (de 8,6 g/mL). Essa diferença motra que o material obtido no experimento **não é nióbio puro**, mas sim uma mistura. Um possível contaminante seria o próprio Al₂O₃, que também é produto da reação entre o óxido de nióbio e o alumínio.

2.

- b. No sistema final, percebemos a sobra de gás oxigênio. Portanto,
 - o reagente em excesso é o gás oxigênio: O2
 - o reagente limitante é o metano: $\mathbf{CH}_{\underline{\mathsf{a}}}$.

c. No sistema final, tem-se a seguinte proporção: $2CO_2$: $4H_2O$: $4O_2$. Como a reação de combustão do metano segue a seguinte a proporção $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$, para obtenção de $2CO_2 + 4H_2O$ são necessários $2CH_4 + 4O_2$, que, somados aos $4O_2$ em excesso, correspondem a um sistema inicial que apresenta a proporção de $2CH_4$: $8O_2$.

3.

- a. $_{43}$ Tc: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d⁵
- b. Grupo: 7 (5 elétrons no subnível 4d⁵ + 2) Período: 5 (5 camadas eletrônicas)
- c. Como temos, nos 7 períodos completos, 118 elementos, o primeiro elemento do oitavo período terá 119 prótons e pertencerá ao grupo dos metais alcalinos, que possuem alta reatividade com água e oxigênio, são sólidos a temperatura ambiente e tendem a formar cátions monovalentes.

4.

- a. São elementos que pertencem à família dos gases nobres, portanto, apresentam as camadas de valência completas, o que faz com que a energia necessária para a retirada desses elétrons seja elevada.
- b. Nesse intervalo, todos os átomos possuem duas camadas eletrônicas (K e L). Com o aumento da carga nuclear, aumenta também a força de atração do elétron pelo núcleo, aumentando, consequentemente, a energia de ionização.

Os três elementos que apresentam os menores valores de energia de ionização são os de número atômico 3 (lítio), 11 (sódio) e 19 (potássio). Esses elementos estão localizados no **grupo 1**, que correspondem ao grupo dos **metais alcalinos**.

d. Dentre os elementos presentes no gráfico, o que apresenta menor valor para a 1.a energia de ionização é de número atômico 19, que corresponde ao potássio e possui distribuição eletrônica, em subníveis, 1s² 2s² 2p6 3s² 3p6 4s¹ ou, em camadas, K = 2; L = 8; M = 8; N = 1.

Sabe-se que a dificuldade para retirada dos elétrons (e, portanto, o valor da energia de ionização) aumenta conforme os elétrons são retirados e que, quando se muda de camada para uma mais interna, esse aumento é maior.

Assim, um esboço do gráfico do valor da energia de ionização em função do elétron retirado para os 10 primeiros elétrons retirados do potássio é:

