FATEC – Faculdade de Tecnologia de São Paulo Departamento de Tecnologia da Informação

Disciplina: AOC Professores:

Documento: Questionário Capítulo 6

NOME: DATA:

- 1. Descreva as funções básicas de uma UCP, indicando os seus componentes principais.
- 2. Quais são as funções da unidade aritmética e lógica UAL?
- 3. O que é e para que serve o ACC?
- 4. Qual é o componente de um processador que determina o período de duração de cada uma de suas atividades e controla o sincronismo entre elas?
- 5. Quais são as funções da unidade de controle de um processador?
- 6. Seria possível realizar o projeto de um processador em que o tamanho em bits do CI fosse diferente do tamanho do REM? Nesse caso, qual dos dois registradores deveria ter maior tamanho? Por quê?
- 7. Considere um computador cuja MP é organizada com N células de 1 byte cada uma. As instruções interpretadas pela UCP possuem três tamanhos diferentes: as do tipo A possuem 16 bits; as do tipo B têm 32 bits e as do tipo C possuem 48 bits. Considerando que o código de operação de cada uma tem um tamanho fixo e igual a 8 bits e que os programas executados nesse processador são constituídos de uma mistura dos três tipos de instruções, imagine um processo prático para incremento automático do CI após a execução de cada instrução de um programa.
- 8. Considere um processador cujo ciclo de instrução não possua a etapa de incremento automático do valor do CI. Imagine um método alternativo que permita a execução do programa.
- 9. Qual é e onde se localiza o registrador cujo conteúdo controla a seqüência de processamento das instruções de um programa?
- 10. Considerando as instruções a seguir, indique a quantidade de ciclos de memória despendidos para realizar seu ciclo de instrução completo (explicite a quantidade de ciclos de leitura e de escrita, quando for o caso):

ADD Op	Ro ← Ro + (Op.)
SUB Op	(Op.) ← Ro - (Op.)
ADD Op.1, Op.2	$(Op.I) \leftarrow (Op.1) + (Op.2)$
INCR	Ro ← Ro + 1
LDA Op.	Ro ← (Op.)

- 11. Qual é o registrador cujo conteúdo determina a capacidade de memória de um computador? Justifique.
- 12. Considere um computador com 64K células de memória, instruções de um operando, tendo possibilidade de ter um conjunto de 256 instruções de máquina. Considerando que cada instrução tem o tamanho de uma célula, que é o mesmo tamanho da palavra do sistema, qual o tamanho, em bits, do Reg, CI e RDM? Qual é o total de bits dessa memória?
- 13. Um computador tem um REM de 16 bits e um barramento de dados de 20 bits. Possui instruções de um operando, todas do tamanho de uma célula de memória e do mesmo tamanho da palavra. Ele foi adquirido com apenas uma placa de 4K de memória.

Pergunta-se:

- a) Qual o tamanho, em bits, do RDM e CI?
- b) Seria possível aumentar-se a capacidade de armazenamento dessa memória? Até quanto? Por quê?
- c) Qual a quantidade máxima de instruções de máquina que poderia existir nesse computador?
- 14. Um computador possui um conjunto de 128 instruções de um operando; supondo que sua memória tenha capacidade de armazenar 512 palavras e que cada instrução tenha o tamanho de uma palavra e da célula de memória.

Pergunta-se:

- a) Qual o tamanho em bits do REM, RDM, RI e CI?
- b) Qual a capacidade da memória, em bytes?
- c) Se se quisesse alterar o tamanho das instruções para 17 bits, mantendo inalterado o tamanho do REM, quantas novas instruções poderiam ser criadas?
- 15. Quando se fala que um determinado microcomputador A é um micro de 8 bits e que um outro micro B é de 16 bits, a que estamos nos referindo? Ao tamanho da célula de MP ou ao tamanho da palavra? Qual a base desses dois conceitos (palavra e célula)?
- 16. Considere um computador que possua uma UCP com CI de 16 bits e RI de 38 bits. Suas instruções têm dois operandos do mesmo tamanho (16 bits), além, é claro, de um código de operação.

Pergunta-se:

- a) Qual o tamanho da instrução?
- b) Qual o tamanho do campo do código de operação?
- c) Considerando que a configuração básica dessa máquina é de 16 Kbytes de memória, até que tamanho pode a memória ser expandida?
- 17. A figura a seguir ilustra uma memória de 256 células em que cada célula (ou palavra) contém 16 bits.

End	MP Conteúdo
00	0010
01	A0FD
02	0000
A4	1123
A5	C1305
A6	B200
FD	4040
FE	21F8
FF	09A5

Nessa figura, cada retângulo simboliza uma célula de memória; o número hexadecimal que está dentro do retângulo representa o seu conteúdo, e o número colocado ao lado de cada um indica o endereço da célula (retângulo).

Pergunta-se:

a) Qual a capacidade total da memória, em bits?

- b) Supondo que, no início de um ciclo de instrução, o conteúdo do CI (contador de instrução) seja o hexadecimal A5 e que cada instrução ocupe uma única célula (palavra), qual será a instrução que será executada?
- c) Supondo que o conteúdo do REM (registrador de endereços de memória) tenha o valor hexadecimal FD e que um sinal de leitura seja enviado da UCP para a memória, qual deverá ser o conteúdo do RDM (registrador de dados de memória) ao final do ciclo de leitura?
- 18. Explique a diferença entre um processamento seqüencial e um outro pipeline.
- 19. Considere um processador que possua um CI com largura de 32 bits e tenha um conjunto de 61 instruções todas de tamanho fixo igual a 32 bits; o processador é, ainda, constituído de 60 registradores de dados para armazenamento de valores inteiros, todos com 32 bits de largura e 20 registradores de 64 bits de largura para armazenamento de valores em ponto flutuante.

Considere que todas as instruções que manipulam operações matemáticas têm um formato de 2 operandos.

Pergunta-se:

- a) Qual é o total de bits da largura de cada campo operando das instruções matemáticas?
- b) Qual é o valor do espaço de endereçamento da memória desse sistema?
- c) Considerando as instruções que manipulam com dados armazenados em registradores, indique qual deverá ser a largura mínima do endereçamento dos registradores de inteiros.
- 20. Considere um processador que possua um conjunto de 197 instruções, algumas das quais têm formato de 2 operandos, com 32 bits de largura e outras possuem formato de 1 operando, com 24 bits de largura.

Explique como deve ser a organização de entrada e saída do decodificador de instruções desse processador.

- 21. Um determinado processador possui uma velocidade de processamento expressa como 800 MHz. Calcule qual deverá ser o intervalo do ciclo de relógio dessa máquina.
- 22. Considere um processador que possua um conjunto de instruções sobre o qual foi feito um extrato das mais importantes na tabela a seguir. Neste processador todos os endereços possuem 16 bits e as instruções possuem um formato único, mostrado a seguir, e ele possui um conjunto de 16 registradores de dados.

Suponha que em um determinado instante, correspondente ao término da execução de uma instrução qualquer, o CI tenha armazenado o seguinte valor, representado em hexadecimal: CI = 2B78, e que o registrador RI tenha armazenado o seguinte valor em hexadecimal: RI = 2C4F08D9.

C.OP.	Reg.	Op2

Pergunta-se:

C.Op. (base 16)	Sigla Assembly	Descrição
00	HLT	Parar
01	MOV R, Op.	R ← (Op.)
02	MOVM Op., R	$(Op.) \leftarrow (R)$
10	JMP R, Op.	CI ← Op.
11	JP R, Op.	Se R > 0, então: CI ← Op.
12	JP R, Op.	Se R < 0, então: CI ← Op.
13	JP R, Op.	Se R = 0, então: CI ← Op.
20	ADD R, Op.	$(R) \leftarrow (R) + Op.$
21	SUB R, Op.	$(R) \leftarrow (R) - Op.$

- a) Qual deverá ser a largura, em bits, do campo C.Op. das instruções?
 b) Qual deverá ser a largura do campo Reg das instruções?
 c) Quantos acessos à memória devem ser realizados para executar o ciclo completo da instrução de C.Op. igual a 11? E para a instrução de C.Op. igual a 21?