

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 10. November 2016

Gliederung

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Organisatiorisches

2 Signale und Nachrichten

Signale und Nachrichten

Mengen

Menge

4 Alphabete

Alphabete

5 Relationen und Abbildungen

Relationen und Abbildungen Wiederholung

Wörter

Wiederholung

Formale Sprachen

Wörter

Vollständige Induktion

Termine

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menge

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter

Formale Sprachen

- Vorlesung und Übung
 - Mittwoch 9:45 11:15 Vorlesung
 - Freitag 9:45 11:15 abwechselnd Vorlesung und Übung
- Tutorium
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107
- Übungsblätter
 - Alle zwei Wochen
 - Ausgabe Mittwochs, Abgabe Donnerstags bis 16:00 zwei Wochen drauf

Übungsschein

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist *keine* Voraussetzung für die Klausur, *aber* fürs Modul!
- Gemeinsames Abgeben, Abschreiben verboten
- Übungsblätter und später auch Musterlösungen im ILIAS

Tutorium

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Alle Tutorienfolien auf:

http://gbi.lukasbach.com

Menge

Alphabete

Relationen und Abbildungen Bei Fragen: lukas.bach@student.kit.edu

Keine Anwesenheitspflicht

Möglichkeit andere Tutorien zu besuchen

Wiederholung

Wörte

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen Objekt: 101

- Eins null eins oder 101 als Zahl oder 5 in binär oder zwei merkwürdige Striche mit einem Kreis dazwischen?
- Vom Kontext abhängig.
- Zunächst einfach ein konkretes Objekt.

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Signal

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht: Objekt wie oben, das von Signal unabhängig ist
 - Roter Notfallalarm ist ein anderes Signal als ein blauer Notfallalarm, aber vielleicht dieselbe Nachricht.

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht
 - Information: Security soll herkommen, Techniker sollen das Werkzeug bereit halten, Besucher sollten Platz machen.

Grundbegriffe Mengen der Informatik

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Mengen

Erster wirklich wichtiger Teil.

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Sprachen

Grundbegriffe Mengen der Informatik

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Mengen

Zeichnung

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen un Abbildungen

Wiederholung

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

■ Beispiel: $\{a, b, c, d\}$ =: $A\{a, c, 4\}$ =: $B, \{10, 11\}$ =: C

■ Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$

• Reihenfolge gleich: $\{a, b\} = \{b, a\}$

■ Elemente doppelt? $\{a, a, b, a\} = \{a, b\}$

vvorter

Formale Sprachen

Mehr über Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorische

Signale und

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

•
$$A := \{a, b, c\}. |A| = 3$$

$$B := \{c, d\}. |B| = 2$$

■ Was ist |{1,2,3,2}|? 3!

Was ist |{}|? 0

Mengen

Alphabete Leere Menge

Relationen ur Abbildungen Die Menge, die nichts enthält, nennen wir die leere Menge, und schreiben sie als $\{\}$ oder \emptyset .

Wiederholun

Was ist $|\{\{\}\}|$? 1! $\{\emptyset\}$ enthält eine leere Menge, die selbst ein Element ist.

Wörter

Grundbegriffe der Informatik Mehr über Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Mengen

Zeichnung

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Sprachen

Mehr über Mengen

Lukas Bach, lukas.bach@student.kit.edu Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

Organisatiorisches

■ Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle

Signale und Nachrichten

Elemente aus A auch in B sind.

Mengen

■ Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.

Alphabete

■ Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.

Relationen und Abbildungen

Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in A *und* in B sind.

Wiederholung

• Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.

Wörter

• Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.

• Komplementärmenge: \bar{A} enthält alle Elemente des *Universums*, die nicht in A sind. Angenommen, Universum = Lateinisches Alphabet: $\bar{A} = \{d, e, f, g, \dots, y, z\}$

Formale

Sprachen

Potenzmenge

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorische

Signale und Nachrichten

Potenzmenge

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Was bedeutet das allgemein?

- $M \in 2^M$
- ∅ ∈ 2^M
- Konkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?
 - Natürlich $\emptyset \in 2^M$ und $\{0,1\} \in 2^M$.
 - $\{0\} \in 2^M \text{ und } \{1\} \in 2^M$.
 - Weitere? Nein, diese vier Mengen sind alle möglichen Teilmengen.

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Potenzmenge

Lukas Bach Jukas.bach@student.kit.edu

$$M = \{0, 1\}, 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$$
 Organisatiorisches Was ist 2^{2^M} ?

Nachrichten

```
■ Also 2<sup>{{},{0},{1},{0,1}}</sup>
```

■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

{{}, {0}}, {{}}, {1}}, {{}}, {{0,1}}}, {{{0}}, {1}}},

```
Mengen
```

```
Alphabete
```

Abbildungen

{{}, {0}, {1}}, {{}}, {0}, {0, 1}}, {{}}, {1}, {0, 1}}, {{}, {0}, {1}, {0, 1}}

 $2^{2^M} = \{$

{},

{{}}, {{0}}, {{1}}, {{0,1}},

{{0}, {0, 1}}, {{1}, {0, 1}},

Alphabete

Lukas Bach. lukas.bach@student.kit.edu

Alphabet

Nachrichten

Alphabete

Abbildungen

Ein Alphabet ist eine *endliche*, *nichtleere* Menge von Zeichen.

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset, \mathbb{N}$.

- $\{d, 34, \pi, \%\}$ und $\{a, b, c, \ldots, y, z\}$ sind Alphabete.
- Ø ist leer und damit kein Alphabet.
- $\mathbb{N} = \{1, 2, 3, \dots\}$ enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.
- {0,1} ist das Alphabet, das alle Binärzahlen enthält.
- $\{\cdot, +, -, /\} =: R$ ist ein Alphabet von Rechenzeichen. $R \cup \{0, 1, \dots, 9\}$ ist ein Alphabet, das ein Taschenrechner als Eingabealphabet benutzen könnte.

Paare und Tupel

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

Paar

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Schreibweise mit runden Klammern ().

Alphabete

Beispiel: $(a, 4) \neq (4, a)$

Relationen und Abbildungen

Beispiel für eine Menge aus Tupeln: {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "'Shooter")}

Tupel

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorische

Nachrichten

Menger

Alphabete

Relationen und Abbildungen Tupel

Ein Tupel ist eine geordnete Menge. Konkret ist ein *n*-Tupel ein Tupel der Kardinalität *n*.

Also wie ein Paar, nur mit beliebiger Kardinalität. Ein Paar ist spezifisch ein 2-Tupel.

Beispiel: $(4tb, 512gb, 128gb, 4mb) \neq (512gb, 4mb, 4tb, 128gb)$.

Wiederholun

Wörte

Kartesisches Produkt

Lukas Bach Jukas.bach@student.kit.edu

Signale und Nachrichten

Alphabete

Relationen und Abbildungen

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$. Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B.

 $= A \times B$

 $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)\}$

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Kreuzprodukt

Lukas Bach, lukas.bach@student.kit.edu

Kreuzprodukt von zwei Mengen

Organisatiorisches

Signale und Nachrichten Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Kreuzprodukt von n Mengen

Alphabete

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

Relationen und Abbildungen

Mengenpotenz

Wiederholung

$$\underbrace{A\times A\times \cdots \times A}=A^{n}.$$

Wörte

 $n \times mal$

Formale Spracher

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Kreuzprodukt von zwei Mengen

Menger

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Alphabete

$$A := \{a, b\}, B := \{1, 2\}. \ A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$$

Relationen und Abbildungen

Wiederholung

Wörte

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Kreuzprodukt von n Mengen

Zu *n* Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller *n*-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

 $A := \{a, b\}, B := \{1, 2\}, C := \{\omega\}. \ A \times B \times C \\ = \{(a, 1, \omega), (a, 2, \omega), (b, 1, \omega), (b, 2, \omega)\}.$

Wiederholung

Wörte

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Mengenpotenz

$$\underbrace{A \times A \times \cdots \times A}_{nmal} = A^{n}.$$

- $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}.$
- A beliebige Menge. A^0 ? = \emptyset
- Achtung! $2^M \neq M^2$. Potenzmengen nicht mit Mengenpotenz verwechseln!

Relation

Lukas Bach, lukas.bach@student.kit.edu

Binäre Relation

Organisationisches

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Für die Mengen

 $M_{Spiele} = \{$ "Battlefield", "AgeOfEmpires", "SeriousSam" $\}$, $M_{Genre} = \{$ "Shooter", "Strategie" $\}$ sind folgendes mögliche Relationen:

```
{("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"),
("SeriousSam", "Shooter")}
```

• {("AgeOfEmpires", "Strategie"), ("AgeOfEmpires", "Shooter")

Ø

*Kleinergleichrelation" auf $M = \{1, 2, 3\}$: $R_{<} = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\} \in M \times M$

Relation

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Binäre Relation

Signale und Nachrichten

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Ternäre Relation

Menge

Eine ternäre Relation auf drei Mengen A, B und C ist eine Menge

Alphabete

 $R \subseteq A \times B \times C$.

Relationen und Abbildungen n-äre Relation

Eine n-äre Relation auf n Mengen M_1 , M_2 ... M_n ist eine Menge

Wiederholun

 $R \subseteq M_1 \times M_2 \times \cdots \times M_n$.

Wörter

Linkstotalität

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und

Nachrichten

Alphabete

Relationen und Abbildungen

Wiederholung

Linkstotale Relation

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn für jedes $a \in A$ ein $b \in B$ existiert mit $(a, b) \in R$.

Die linke Seite der Relation ist also "total" aufgefüllt.

Rechtstotalität

Lukas Bach, lukas.bach@student.kit.edu Rechtstotale Relation

Organisatiorisches

Eine Relation $R \subseteq A \times B$ heißt rechtstotal, wenn für jedes $b \in B$ ein $a \in A$ existiert mit $(a, b) \in R$.

Signale und Nachrichten

Die rechte Seite der Relation ist also "total" aufgefüllt. Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann surjektiv.

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörte

Linkseindeutigkeit

Lukas Bach, lukas.bach@student.kit.edu Linkseindeutige Relation

Organisatiorisches

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R, (b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann gilt auch $\alpha \neq \beta$.

Signale und Nachrichten

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Menge

Angenommen, $a \neq b$ und $\alpha = \beta$. \Rightarrow offenbar nicht linkseindeutig.

Alphabete

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann injektiv.

Relationen und Abbildungen

Wiederholung

Wörter

Rechtseindeutig

Lukas Bach, lukas.bach@student.kit.edu Rechtseindeutige Relation

Organisatiorisches

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $\alpha \neq \beta$, dann gilt auch $a \neq b$.

Signale und Nachrichten

Also: Keine zwei Elemente der rechten Seite der Relation haben dasselbe linke Element.

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörte

Eigenschaften von Relationen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Spracher

Abbildung

Lukas Bach Jukas.bach@student.kit.edu

Abbildung

Organisatiorisches

Nachrichten

Alphabete

Relationen und Abbildungen

Eine Relation R heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

- Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig
- Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Bijektivität

Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Damit ist sie linkstotal und rechtseindeutig (weil es eine Abbildung ist) und linkseindeutig (injektiv) und rechtstotal (surjektiv).

Tolle Eigenschaft: Für jedes Element $(a, b) \in R$ der bijektiven Relation R ist jedem a genau ein b zugeordnet.

Abbildungen Schreibweise

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Seien $A = B = \mathbb{R}$, $f \subseteq A \times B$. Wir suchen Relation, die für jedes $a \in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

Nachrichten

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

Menge

(Mathematischere) Schreibweise für Abbildungen: $f: A \rightarrow B, a \mapsto a^2$, also Quadratfunktion.

f: A
Alphabete let di

Ist diese Funktion injektiv oder surjektiv?

Relationen und Abbildungen

■ Nicht injektiv, da z.B. f(1) = f(-1), also $(1,1) \in f$ und $(-1,1) \in f$.

Wiederholun

Nicht surjektiv, da z.B. −1 nie als Funktionswert angenommen wird, daher (a, −1) ∉ f für beliebige a ∈ A.

Wörter

Wiederholung

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Menger

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter

Formale Sprachen $A:=\{a,b,c\}, B:=\{b,c,d\}, C:=\{a,d\}$

$$\bullet A \cap B = \{b, c\}$$

$$A \cup B = \{a, b, c, d\}$$

$$A \backslash B = \{a\}$$

•
$$C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$$

$$2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$$

- Unterschied zwischen {a, b} und (a, b)?
- Definition von...
 - Alphabet?
 - Abbildung?

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen un Abbildungen

Wiederholung

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.

Nicht kommutativ: $a \cdot b \neq b \cdot a$

• Aber assoziativ: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

• Kurzschreibweise: Ohne Punkte, also $a \cdot b = ab$

Wörter

Formale Spracher

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter: Intuitivere Definition

Ein Wort w entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

Sei $A := \{a, b, c\}$.

- Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$, $w_3 = a \cdot c \cdot c \cdot b \cdot a$.
- Keine möglichen Worte: d.
- Konkatenation nicht kommutativ: Wort abc ist ungleich dem Wort bca.

Wörter

Sprachen

Wörter

Lukas Bach Jukas.bach@student.kit.edu

Wörter: Abstraktere Definition

Nachrichten

Alphabete

Abbildungen

Wörter

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt *n* die Länge |w| des Wortes.

- $\mathbb{Z}_n = \{i \in \mathbb{N} : 0 \le i < n\}$ $\mathbb{Z}_3 = \{0, 1, 2\}, \mathbb{Z}_2 = \{0, 1\}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben: $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}.$ Also w(0) = a, w(1) = b, w(2) = d, ...Damit sieht man auch:

$$|w| = |\{(0, a), (1, b), (2, d), (3, e), (4, c)\}| = 5.$$

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Wort der Kardinalität 0?

Signale und Nachrichten

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0, also mit 0 Zeichen.

Menger

Alphabete

Relationen und Abbildungen

Wiederholun

■ Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.

- $|\{\varepsilon\}|$ = 1, die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)
- $|\varepsilon|=0.$

Wörter

Sprachen

Mehr über Wörter

Lukas Bach Jukas.bach@student.kit.edu

Organisatiorisches

 A^n

Zu einem Alphabet A ist Aⁿ definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Alphabete

Nachrichten

Abbildungen

Nicht mit Mengenpotenz verwechseln!

•
$$A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$$

 $A^1 = A, A^0 = \{\varepsilon\}.$

Die Menge aller Wörter beliebiger Länge:

- $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}. \ aa \in A^*, abcabcabc \in A^*, aaaa \in A^*, \varepsilon \in A^*.$

Wörter

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Konkatenation von Wörtern:

Organisatiorisches

■ lager · regal = lagerregal

Signale und Nachrichten

■ lag · erregal = lagerregal

Konkatenation von Wörtern.

Alphabete

 $w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$

Relationen und Abbildungen

 $i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$

Wiederholun

■ Warum \mathbb{Z}_{m+n} ? Wörter w_1 und w_2 mit $|w_1| = m$ und $|w_2| = n$ werden konkateniert, also neues Wort hat Länge m + n.

Formale

Wörter

Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Sprachen

Mehr über Wörter

Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Immernoch: Reihenfolge ist wichtig!
 OTT · O = OTTO ≠ OOTT = O · OTT
- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.
- Wortkonkatenation mit dem leeren Wort: $w \cdot \varepsilon = w = \varepsilon \cdot w$.

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Wort Potenzen

Signale und Nachrichten

Sich direkt wiederholende Teilworte kann man als Wortpotenz darstellen, daher $w_i^n = w_i \cdot w_i \cdot \cdots w_i$ (n × mal).

Menge

• $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$

Alphabete

 $a^3c^2b^6 = aaaccbbbbbbb.$

Relationen und Abbildungen $b \cdot a \cdot (n \cdot a)^2 = banana.$

Wiederholun

■ $(a^3b^2)^2c(a^2bcb^3)^3dd = (aaabb)^2c(aabcbbb)^3dd$ = $aaabb \cdot aaabb \cdot c \cdot aabcbbb \cdot aabcbbb \cdot aabcbbb \cdot$

= $aaabb \cdot aaabb \cdot c \cdot aabcbbb \cdot aabcbbb \cdot aabcbbb \cdot dd.$

Wörter

Formale

Übung zu Wörter

Lukas Bach, lukas.bach@student.kit.edu Sei A ein Alphabet.

Organisatiorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Übung zu Wörter

- 1. Finde Abbildung $f: A^* \to A^*$, sodass für alle $w \in A^*$ gilt:
- $2\cdot |w|=|f(w)|.$
- 2. Finde Abbildung $g: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: |w| + 1 = |g(w)|.
- 3. Finde Abbildung $h: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: $\lfloor \frac{|w|}{2} \rfloor = |h(w)|$. (Zusatz)
- 4. Sind *f*, *g*, *h* injektiv und/oder surjektiv?
- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.
- 3. $h: A^* \to A^*, w \mapsto \hat{w} \text{ mit } \hat{w}_i = \left\{ egin{array}{c} w_i & \text{wenn } i \leq \lfloor \frac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array} \right\} \text{ und } i \in \mathbb{Z}_{|w|}.$

Übung zu Wörter

Lukas Bach Jukas.bach@student.kit.edu

1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.

Wort abgebildet.

• f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem

Nachrichten

• f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).

2. $g: A^* \to A^*, w \mapsto w \cdot x, x \in A$.

Alphabete

g ist injektiv. **a** q ist nicht surjektiv, denn z.B. bildet nichts auf ε ab.

Abbildungen

3. $h: A^* \to A^*, w \mapsto \hat{w} \text{ mit } \hat{w}_i = \left\{ egin{array}{cc} w_i & \text{wenn } i \leq \lfloor rac{|w|}{2} \rfloor \\ arepsilon & \text{sonst} \end{array}
ight.
ight.$ and $i \in \mathbb{Z}_{|w|}$.

• h ist nicht injektiv, denn z.B. x = h(xy) = h(xz) mit $x, y, z \in A$.

Wörter

• h ist surjektiv, denn für jedes $w \in A^*$ existiert ein $\hat{w} \in A^*$ mit $\hat{w} = w \cdot w$ sodass $h(\hat{w}) = w$.

Lukas Bach, lukas.bach@student.kit.edu

Formale Sprache

Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Organisatiorisches

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Nachrichten

■ Zt

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: $A := \{w : w \text{ ist ein ASCII Symbol }\}.$
 - $L_4 := \{ \textit{class}, \textit{if}, \textit{else}, \textit{while}, \textit{for}, ... \}$ ist eine formale Sprache über A.
 - L₅ := {w : w = a ⋅ b mit a als Großbuchstabe und b als Groß- oder Kleinbuchstabe }\L₄ ist eine formale Sprache von korrekten Klassennamen in Java.

Übung zu formalen Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

Alphabete

Abbildungen

 $A := \{a, b\}$

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
 - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
 - $L = \{ w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^* \}$
 - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.
 - $L = \{a, b\}^* \setminus \{w_1 \cdot ab \cdot w_2 : w_1, w_2 \in \{a, b\}^*\}$

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen Sei $A := \{a, b\}, B := \{0, 1\}.$

Aufgabe zu formalen Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
 - 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
 - 1. $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
 - 2. $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$ (Ist da ε drin?)
 - 3. $L_3 = \{ w = w \cdot 0 : w \in B^* \}$

Was ist überhaupt vollständige Induktion?

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt induktiv von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Struktur des Beweises

Lukas Bach Jukas.bach@student.kit.edu

Behauptung: (kurz Beh.:)

Organisatiorisches

Beweis: (kurz Bew.:)

Nachrichten

Induktionsanfang: (kurz IA:)

 \blacksquare Zeigen, dass Behauptung für Anfangswert gilt (oft n=1)

Auch mehrere (z.B. zwei) Anfangswerte möglich

Induktionsvoraussetzung: (kurz IV:)

Alphabete

• Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]

Relationen und Abbildungen

Induktionsschritt: (kurz IS:)

Behauptung für n+1 auf n zurückführen

Wenn induktive Definition gegeben: verwenden!

 Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Lukas Bach, lu-

kas.bach@student.kit.edu

Aufgabe

Organisatiorisches

Signale und Nachrichten $x_0 := 0$

Für alle $n \in \mathbb{N}_0$: $x_{n+1} := x_n + 2n + 1$

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

Alphabete

 $x_n = n^2$

Abbildungen

gilt.

Wiederholung

Wörter

Formale

Sprachen

Formale Sprache

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

Alphabete

Als Beispiel von vorigen Folien:

Abbildungen

 $A := \{b, n, a\}.$

• $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

• $L_2 := \{banana, bananana, banananana, ...\}$

 $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.

• $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{ w : w = ba^k n, k \in \mathbb{N} \}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholun

Wörter

Formale

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache L₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$
 - $L_4 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

(Exkurs zur Linearen Algebra)

Organisatiorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw.

Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

Die Verknüpfung · ist assoziativ.

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

 $x \cdot e = e \cdot x = x$.

■ Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.

Produkt von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Die Verknüpfung · ist assoziativ:

Nachrichten

 $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_2\}$ $L_1, W_2 \in L_2, W_3 \in L_3$ = $L_1 \cdot (\{W_2W_3 : W_2 \in L_2, W_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3)$.

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.

Alphabete

• $e := \{ \varepsilon \}.$

 $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

Abbildungen

■ Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt:

 $x \cdot v = v \cdot x = \hat{e} \in M$.

• $v := \emptyset =: \hat{e}$

 $L_1 \cdot \emptyset = \emptyset = \hat{\mathbf{e}} = \emptyset = \emptyset \cdot L_1$

Wörter

Ist damit (M, \cdot) eine Gruppe? Leider nicht. Mussten bei der letzten Aufgabe etwas tricksen, (M, \cdot) wäre eine Gruppe wenn $e = \hat{e}$, aber $e = \{\varepsilon\} \neq \hat{e} = \emptyset.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Potenz von Sprachen

Organisatiorische

Nachrichten

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

• $L_1 := \{a\}.$

•
$$L_1^0 = \{ \varepsilon \}$$
. $L_1^1 = \{ \varepsilon \} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$$

•
$$L_2^2 = (\{ab\}^3 \{c\}^4)^2 = (\{ab\}^3 \{cccc\})^2 = \{abababccccabababcccc\}.$$

•
$$L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatiorisches

Signale und

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Menge

ε -freie Konkatenationsabschluss

Alphabete

Relationen un Abbildungen Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

Wiederholung

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$

Formale

Sprachen

Informationen

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

Alphabete

Abbildungen

Wiederholung

Zum Tutorium

Lukas Bach

Tutorienfolien auf:

http:

//gbi.lukasbach.com

Tutorium findet statt:

Donnerstags, 14:00 - 15:30

50.34 Informatikbau, -107

Mehr Material

ILIAS der Vorlesung:

kommt noch.

Ehemalige GBI Webseite:

http://gbi.ira.uka.de

Altklausuren!

Zur Veranstaltung

Grundbegriffe der Informatik

Klausurtermin:

o 06.03.2017, 11:00

Zwei Stunden Bearbeitungszeit

 6 ECTS f
ür Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

Übungsblatt jede Woche

 Ab 50% insgesamt hat man den Übungsschein

 Keine Voraussetzung für die Klausur, aber für das Modul