과제 2 답안

1-1)

	A_1	A_2	A_3	A_4	A_5	합	평균
B_1	79	72	51	58	68	328	65.6
B_2	75	66	48	56	65	310	62
B_3	69	64	44	51	61	289	57.8
B_4	65	62	41	45	58	271	54.2
합	288	264	184	210	252	1198	
평균	72	66	46	52.5	63		59.9

 H_0 : $\alpha_1 = \cdots = \alpha_5 = 0$, H_1 : 적어도 한 α_i 는 0이 아니다.

 H_0 : $\beta_1 = \cdots = \beta_4 = 0$, H_1 : 적어도 한 β_i 는 0이 아니다.

 α_i : 역청탄 i의 처리효과

 eta_j : 타르피치 첨가량 j의 처리효과

$$TSS = (79^2 + \dots + 271^2) - \frac{1198^2}{20} = 2153.8$$

$$SSA = (288^2 + 264^2 + 184^2 + 210^2 + 252^2) \times \frac{1}{4} - \frac{1198^2}{20} = 1764.8$$

$$SSB = \frac{(328^2 + 310^2 + 289^2 + 271^2)}{5} - \frac{1198^2}{20} = 369$$

$$SSE = SST - SSA - SSB = 2153.8 - 1764.8 - 369 = 20$$

변인	자유도	제곱합	평균제곱	F
처리A	4	1764.8	441.2	264.19
처리B	3	369	123	73.65
오차	12	20	1.67	
전체	19	2153.8		•

 $264.19 > F_{0.05,4,12} = 3.26$

유의수준 5%에서 역청탄의 종류에 따라서 코크스의 인장 강도에 유의한 차이가 있다.

 $73.65 > F_{0.05,3,12} = 3.49$

유의수준 5%에서 타르피치의 첨가량에 따라 코크스의 인장 강도에 유의한 차이가 있다.

1-2)

$$t_{0.025,12} \sqrt{\frac{1.67}{4}} = 2.179 \times \sqrt{\frac{1.67}{4}} = 1.40$$

 $\mu(A_1)$: 72 ± 1.40 = [70.6, 73.4]

 $\mu(A_2)$: 66 ± 1.40 = [64.6, 67.4]

 $\mu(A_3)$: 46 ± 1.40 = [44.6, 47.4]

 $\mu(A_4)$: 52.5 ± 1.40 = [51.1, 53.9]

 $\mu(A_5)$: 63 ± 1.40 = [61.6, 64.4]

1-3)

$$t_{0.025,12} \sqrt{\frac{1.67}{5}} = 2.179 \times \sqrt{\frac{1.67}{5}} = 1.26$$

 $\mu(B_1){:}\,65.6\pm1.26=[64.34,66.86]$

 $\mu(B_2){:}\,62\pm1.26=[60.74,63.26]$

 $\mu(B_3){:}\,57.8\pm1.26=[56.54,59.06]$

 $\mu(B_4)$: 54.2 ± 1.26 = [52.94, 55.46]

2 - 1)

각 지역 안에서 옥수수 품종의 배열을 확률적으로 결정하였기 때문에 확률화 블

록 설계법 하의 모형으로 분석해야 한다.

2 - 2)

 H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = 0$

 $\mathrm{H_{1}}$: 최소한 하나 이상의 α_{i} 는 0이 아님

 $(\alpha_i$: 옥수수 i의 처리 효과)

	1	2	3	합	평균
1	13.1	12.4	12.3	37.8	12.60
2	12.9	12.7	12.0	37.6	12.53
3	13.4	12.5	12.2	38.1	12.7
합	39.4	37.6	36.5	113.5	
평균	13.13	12.53	12.17		12.61

$$CT = \frac{(113.5)^2}{3\times3} = 1431.36$$

$$TSS = (13.1)^2 + (12.9)^2 + \dots + (12.2)^2 - 1431.36 = 1.65$$

$$SSA = \frac{1}{3}[(39.4)^2 + (37.6)^2 + (36.5)^2] - 1431.36 = 1.43$$

$$SSBL = \frac{1}{3}[(37.8)^2 + (37.6)^2 + (38.1)^2] - 1431.36 = 0.04$$

$$SSE = TSS-SSA-SSBL = 1.65-1.43-0.04 = 0.18$$

변인	자유도	제곱합	평균제곱	F
모형	2	1.43	0.715	15.9
블록	2	0.04	0.02	0.4
오차	4	0.18	0.045	
전체	8	1.65		•

 $15.9 > F_{0.05,2,4} = 6.94$ 이므로 유의수준 5%에서 H_0 를 기각하므로 옥수수 품종에 따라 수확량에 유의한 차가 있다.