Reconocimiento de patrones

Clase 6: funciones ortogonales

Para el día de hoy...

• Funciones ortogonales

Funciones ortogonales

¿PARA QUE LAS HAN UTILIZADO?

¿PARA QUE SIRVEN EN RECONOCIMIENTO DE PATRONES?

Funciones ortogonales

Los sistemas ortogonales son usados para

construir funciones de decisión

Aproximar funciones de decisión probabilística

En general, juegan un rol importante para diseñar sistemas de reconocimiento de patrones

Funciones univariadas

- Asumamos que u(x), v(x) son funciones reales integrables de una variable definidas en el intervalo $a \le x \le b$, denotado I = [a, b].
- La función w(x) denota una función no negativa integrable sobre I para la cual

$$\int_{a}^{b} w(x)dx > 0$$

Algunas definiciones

• El producto punto de u(x), v(x) sobre I se define como

$$(u,v) = \int_{a}^{b} u(x)v(x)dx$$

• La normal de u(x) sobre I se define como el número no negativo

$$(u,u)^{\frac{1}{2}} = \int_{a}^{b} u^{2}(x) dx$$

Función ortogonal

• Las funciones u(x), v(x) se dice son ortogonales sobre I con respecto a la función de peso w(x), si

$$\int_{a}^{b} w(x)u(x)v(x)dx = 0$$

Sistema ortogonal

• Un conjunto de funciones integrables $u_1(x), u_2(x), ..., u_m(x)$ definido sobre I se dice ser un sistema ortogonal sobre I con respecto a w(x), si

$$\int_{a}^{b} w(x)u_{i}(x)u_{j}(x)dx = A_{i}\delta_{ij}, \qquad 1 \le i, j \le m$$

• Donde $A_i \neq 0$ son constantes y δ_{ij} es la función delta de Kronecker definida como

$$\delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

• Si $A_i = 1$ para todo i, el conjunto es un sistema ortonormal

Independencia lineal

• Un conjunto de funciones integrables $u_1(x), u_2(x), \dots, u_m(x)$ sobre I, es linealmente independiente si la relación

$$c_1 u_1(x) + \dots + c_m u_m(x) = 0, a \le x \le b$$

- Se mantiene si y solo si $c_1=c_2=\cdots c_m=0$
- Un sistema ortogonal es linealmente independiente

Demostración

Sistemas ortonormales

 Un sistema ortogonal puede ser remplazado por uno ortonormal definiendo

$$\bullet \ u_i^*(x) = \frac{1}{\sqrt{A_i}} u_{i(x)}$$

• Las nuevas funciones son ortogonales entre ellas y también

$$\int_{a}^{b} w(x)u_{i}^{*}(x)u_{i}^{*}(x)dx = \frac{1}{\sqrt{A_{i}}} \frac{1}{\sqrt{A_{i}}} A_{i} = 1$$

Aproximaciones de una función

- Sea f(x) una función continua por trazos y $\{u_1(x), u_2(x), ...\}$ un sistema de funciones definidas sobre el mismo dominio. Si
 - $\lim_{i\to\infty} u_i(x) = f(x)$, f es continua en x
 - $\lim_{i\to\infty} u_i(x) = \frac{1}{2}[f(x_+) + f(x_-)], f$ tiene un salto en x
- La secuencia $\{u_i(x)\}$ se dice aproxima a f(x) arbitrariamente cerca en la media

Sistema completo

• Un sistema de funciones S definido sobre un dominio D se llama completo, si para cualquier función por trazos sobre el D, una secuencia $\{u_i(x)\}$ cuyos elementos son una combinación lineal de los elementos de S tal que $\{u_i(x)\}$ aproxima f(x) arbitrariamente cerca a la media

Funciones multivariadas

- El sistema de funciones $\{u_i(x_1)u_j(x_2)\}$, $1 \le i,j$ definida sobre el rectángulo $a \le x_1, x_2 \le b$ es un sistema ortogonal completo sobre ese rectángulo con respecto a la función de pesos $w^{(2)}(x) = w^{(2)}(x_1, x_2) = w(x_1)w(x_2)$
- A partir de está idea, se puede generalizar para n dimensiones

Algunos sistemas ortogonales de funciones polinomiales

Legendre

- Los polinomios de Legendre $p_n(x), n \ge 0$ definidos como $p_0(x) = 1, p_1(x) = x$
- Y la función recursiva $np_n(x) (2n-1)xp_{n-1}(x) + (n-1)p_{n-2}(x) = 0, \qquad n \ge 2$
- Son ortogonales en el intervalo [-1,1] con la función de pesos w(x) = 1.

Laguerre

- Los polinomios $L_n(x)$, $n \ge 0$ definidos por $L_0(x) = 1$, $L_1(x) = -x + 1$
- Y la función recursiva $L_n(x) (2n-1-x)L_{n-1}(x) + (n-1)^2L_{(n-2)}(x) = 0, n \ge 2$
- Son ortogonales sobre el intervalo semi infinito $[0, \infty)$ con respecto a la función de peso e^{-x} , $\int_0^\infty e^{-x} L_i(x) L_j(x) \, dx = \delta_{ij}$

Ejemplo

$$L_0(x) = 1, L_1(x) = -x + 1$$

$$L_n(x) - (2n - 1 - x)L_{n-1}(x) + (n - 1)^2 L_{(n-2)}(x) = 0, n \ge 2$$

• Laguerre para n = 2

Ejemplo
$$L_0(x) = 1, L_1(x) = -x + 1$$

 $L_n(x) - (2n - 1 - x)L_{n-1}(x) + (n - 1)^2L_{(n-2)}(x) = 0, n \ge 2$

• Sustituyendo n=2 en la ecuación recursiva de Laguerre

$$L_2(x) - (3 - x)L_1(x) + L_0(x) = 0$$

Es decir,

$$L_2(x) = (3-x)(1-x) - 1 = x^2 - 4x + 2$$

• Los polinomios de Laguerre 2D con orden ≤ 2 son $1, -x_2 + 1, x_2^2 - 4x_2 + 2, -x_1 + 1, (-x_1 + 1)(-x_2 + 1), x_1^2 - 4x_1 + 2$

• Y son ortogonales sobre el rectángulo semi infinito $0 \le x_1 \le \infty$, $0 \le x_2 < \infty$ con respecto a la función de peso

$$w^{(2)}(x_1, x_2) = e^{-x_1}e^{-x_2} = e^{-x_1+x_2}$$

Hermite

• El sistema definido por

$$H_0(x) = 1, H_1(x) = 2x$$

• Y la función recursiva

$$H_n(x) - 2xH_{n-1}(x) + 2(n-1)H_{n-2}(x) = 0, n \ge 2$$

• Forman un sistema ortogonal completo sobre el intervalo infinito $(-\infty, \infty)$ con respecto a la función de peso e^{-x^2} .

Notas

- Los sistemas ortogonales suelen ser utilizados para representar o aproximar funciones de decisión generalizadas
- La habilidad de aproximar una función por una combinación lineal de funciones ortogonales sigue de la completitud del sistema ortogonal
- Unas cuantas suelen necesitarse para aproximar la función con una tolerancia dada

Tarea 2

- Encuentre todas las funciones ortogonales 2D de Legendre de orden ≤ 3
- Encuentre todas las funciones ortogonales 4D de Hermite de orden ≤ 3
- Dado un sistema ortogonal 1D, escriba un algoritmo para obtener un sistema ortonormal 1D con respecto a w(x) = 1

Hasta ahora...

2. Funciones de decisión	
2.1	Funciones de decisión lineales
2.2	Funciones de decisión generalizada
2.3	Espacio generado por los patrones y las constantes de peso
2.4	Propiedades geométricas
2.5	Instrumentación de las funciones de decisión
2.6	Funciones de varias variables
2.7	Sistemas de funciones ortogonales y ortogonales

Para la otra vez...

• Clasificación de patrones por medio de funciones de distancia

