COMP3557 Design of Algorithms and Data Structures Part 1: Cuckoo Hashing

Tom Friedetzky
MCS 2004
tom.friedetzky@durham.ac.uk

2022/23

Introduction

About **dictionary data structures**, used for storing a set of items Support three basic operations:

- Lookup(x): returns true if x is in current set
- Insert(x): adds item x to current set if not already present
- Delete(x): removes x from current set if present

Trivial solution: **linked list**; drawback: worst-case (and even average) linear time for every operation (assuming insertions first check whether element is already in list)

A bit better: balanced search trees (red/black, AVL, splay, ...)

Here: hashing-based

First simple chaining, then Cuckoo hashing

Hashing (here!)

Probabilistic data structures

Performance bounds will often not hold in worst case but in **expected case** – average over all random choices (algorithms will make random choices) – worst case can be properly bad

Often can show that true "with high probability", that is, extremely unlikely to deviate much from expected values

Behaviour determined by one or two **hash functions**: take items as input, return "random" values in some set $\{1, \ldots, r\}$.

Space usage will be bounded in terms of n (will in fact be O(n), modest constant-factor overhead)

Balanced search trees usually logarithmic time bounds on operations, we will achieve **constant expected** per operation

Assumptions

- All items to be stored have same size, and we can compare any two items in constant time
- Have access to hash functions h₁ and h₂ such that any function value h_i(x) is equal to a particular value in {1,...,r} with probability 1/r (Only possible if hash functions chosen in random fashion will discuss this later)
 - Function values are probabilistically independent of each other (one function value says nothing about other ones)
 - Hash functions values can be computed in constant time
- **1** There is fixed upper bound *n* on number of items in the set

Main idea of hashing-based dictionaries is to let hash function(s) decide where to store items

Item x will be stored at "position $h_1(x)$ " in an array of size $r \ge n$ For this, h_1 must really be a **function**, that is, $h_1(x)$ must be fixed value

Collisions

Likely to get **collisions**: items $x \neq y$ with $h_1(x) = h_1(y)$

For each value $a \in \{1, \dots, r\}$ there is some **set** S_a of items having this particular hash value of h_1

Obvious idea: make **pointer** from position a to some **data structure** holding set S_a ; often called a **bucket**

Perhaps surprisingly, very simple **linked list** sufficient (say, doubly-linked for convenience)

Example

Items J, B and M have same value of h_1 and have been placed in the same "bucket", a linked list of length 3, starting at position $h_1(J)$ in the array

Analysing hashing with chaining

Starting with two observations:

Observations

- For any two distinct items x and y, the probability that x hashes to the bucket of y is O(1/r) (from assumptions on h_1)
 - ... why?
- ② The time for an operation on an item x is bounded by some constant times the number of items in the bucket of x

Let's analyse an operation on item x

By second observation, can bound time by bounding expected size of x's bucket

For any operation might be case that x is stored in data structure when operation begins, but this can cost only constant-factor time extra, compared to case where x is not in list

May therefore assume that bucket of \boldsymbol{x} contains only items different from \boldsymbol{x}

11/29

Claim

The expected time for any operation is constant.

Proof

- Let S be set of items that were present at beginning of operation (all of them, not just in x's bucket)
- For any $y \in S$, first observation says that prob that operation spends time on y is O(1/r)
- Therefore, expected ("average") time consumption charged to y is O(1/r)
- To get total expected time, must sum up expected time for all elements in S
- By linearity of expectation, this is $|S| \cdot O(1/r)$, which is O(1) as r was chosen such that $r \ge n \ge |S|$

Well, that was not too bad.

What however if we absolutely **must** guarantee **worst-case constant lookups**, rather than only expected?

One approach is to make the table huge.

Another is to use hash functions with no collisions

- called **perfect hash functions**; would allow us to insert items directly into array, rather than having to use lists
- can be made to work, but is rather complicated, especially for insertions

Will consider simpler way, first described in

R. Pagh and F. Rodler *Cuckoo Hashing*

Proceedings of European Symposium on Algorithms, 2001

and subsequently refined many times, by many people

Idea

Instead of requiring x be stored at position $h_1(x)$, we give **two alternatives**: $h_1(x)$ and $h_2(x)$

We allow at most one element to be stored at any position: no need for a data structure holding colliding items

Allows us to look up an item by inspecting just two positions in the array!

When **inserting** a new element x may of course still happen that there is no space since both positions $h_1(x)$ and $h_2(x)$ are occupied

Pull a cuckoo: throw out current occupant y of position $a = h_1(x)$ to make room, and place x there instead

This in turn leaves y homeless:

- if alternative position for y (that is, if $h_1(y) = a$ then $h_2(y)$, and vice versa) is vacant, move it **there**
- otherwise, y repeats x's trick and displaces that positions current inhabitant

Continue until the procedure finds a vacant position, or has taken too long

In latter case, choose two new hash functions, throw everything in the air, and start from scratch (mustn't happen too often!)

Example

- arrows show alternative position of each element
- if want to insert new item in position of A, A would be moved to its alternative position, currently occupied by B, which would move B to its alternative position, which is currently vacant
- if want to insert new item in position of H, would be unsuccessful: H is part of cycle (together with W)

Discussion

- can notice similarities with chaining, only now chains are in the array itself!
- when inserting item in position A, procedure will traverse path (chain) involving positions of A and B
- indeed, can see that when inserting new element x, procedure will only visit positions to which there is a path in the "cuckoo graph" from either $h_1(x)$ or $h_2(x)$
- let's call this path the bucket of x
- may have more complicated structure than in chaining: cuckoo graph can be cyclic
- need to rehash only when graph cyclic

Summary operations

If everything works as advertised, then

• look-ups: *O*(1)

• deletions: O(1)

• insertions: we'll see

Analysis

Insertion procedure can loop n times **only** if there is cycle in graph

Every insertion will succeed so long as there is no cycle

Time spent will be bounded by a constant times size of "bucket", so Obs 2 from analysis of chaining still holds

Recall: Obs 2

The time for an operation on an item x is bounded by some constant times the number of items in the bucket of x

Will now show that **expected insertion time** (in absence of rehash) is **constant** (rehash probability separate)

For this, will show that Obs 1 holds as well

Recall: Obs 1

For any two distinct items x and y, the probability that x hashes to the bucket of y is O(1/r)

In proof, will consider undirected cuckoo graph (no orientation on edges)

Analysis

Note: y can be in x's bucket **only** if there is a path between one of x's possible positions and position of y

Lemma

For any positions i and j, and any c>1, if table size $r\geq 2cn$ then the probability that in the undirected cuckoo graph there exists a path from i to j of length $\ell\geq 1$, which is a shortest path from i to j, is at most $\mathbf{c}^{-\ell}/\mathbf{r}$.

- c can be any constant > 1, maybe think c = 2
- Lemma says that if number r of nodes (size of array) is large enough compared to number n of edges then we have low probability that any two nodes i and j are connected by a path
 - prob that they are connected by a path of constant length is O(1/r)
 - ▶ prob that a path of length ℓ exists (but no shorter path) is exponentially decreasing in ℓ

Proof of Lemma

Induction on ℓ

Base case $\ell = 1$ (just an edge):

- there is set *S* of at most *n* items that have *i* and *j* as possible positions
 - we're only interested in paths of length 1 here
 - ▶ those are edges, and an edge represents an item's the two hash values
- for each item, prob that this is true is at most $2/r^2$
 - first goes here and second there (each with prob 1/r), or other way around
- overall prob bounded by $\sum_{x \in S} 2/r^2 \le 2n/r^2 \le c^{-1}/r$ (as $r \ge 2cn \Rightarrow 2n/r \le c^{-1} \Rightarrow 2n/r^2 \le c^{-1}/r$)

Proof of Lemma

Inductive step

- \bullet need to bound prob that there **exists** a path of length $\ell>1,$ but \bf{no} shorter \bf{path}
- this is only if, for some position k,
 - ▶ there is a shortest **path** of length $\ell 1$ from i to k that does not go through j, and
 - ▶ there is an **edge** from *k* to *j*
- \bullet by induction hypothesis, prob for former is bounded by $c^{-(\ell-1)}/r=c^{-\ell+1}/r$
- argument for latter is exactly the same as in base case (one edge between k and j), so that's c^{-1}/r
- prob that **both** conditions hold for **particular** choice of k is no more than $\frac{c^{-\ell+1}}{r} \cdot \frac{c^{-1}}{r} = \frac{c^{-\ell}}{r^2}$
- prob that there **exists** a k with both conditions satisfied is $r \cdot \frac{c^{-\ell}}{r^2} = \frac{c^{-\ell}}{r}$

Claim

Observation 1:

For any two distinct items x and y, the probability that x hashes to the bucket of y is O(1/r).

still holds.

Proof

- if x and y are in same bucket, then there is path of some length ℓ between some $z_x \in \{h_1(x), h_2(x)\}$ and some $z_y \in \{h_1(y), h_2(y)\}$
- by Lemma, this happens with prob at most

$$4 \cdot \sum_{\ell=1}^{\infty} \frac{c^{-\ell}}{r} = \frac{4}{r(c-1)} = O(1/r)$$

Rehashing

Q: But isn't rehashing very expensive, and destroys everything? A: It's expensive alright, but it's not going to happen very often

Simple argument (can be made much more precise and tight):

- Can prove (using Lemma) that expected number of rehashes during insertion of $\Theta(n)$ elements is O(1) (\Leftarrow your homework)
- If time for one rehash is O(n), then expected time for all rehashes is O(n), which is O(1) per insertion
- ⇒ amortised cost of rehashing is constant

Problem

When doing analysis carefully, can show that with arbitrary constant $\epsilon > 0$ and $2(1 + \epsilon)n$ slots, for at most n keys, get

- look-ups O(1) worst-case
- deletions O(1) worst-case
- insertions O(1) expected, amortised

But: Insertion of a set of n keys fails and triggers rebuild of the whole data structure with probability O(1/n). Doesn't sound like much, but...

In some applications, e.g.,

- high-performance routing (packet statistics)
- database indexing

a failure probability of $O(1/n^3)$ could already lead to a failure rate that is too high.

 \Rightarrow Cuckoo hashing not applicable, although its performance is suitable for such applications.

Task: Preserve the performance and lower the failure probability.

Kirsch, Mitzenmacher and Wieder:

- add a small constant-sized piece of memory, the so-called stash
- move elements that cannot be inserted to this stash

They prove: Using a stash of size s lowers failure probability from O(1/n) to $O(1/n^{s+1})$.

Proof is technically involved ("Poissonization", "Markov Chain coupling"). Assumes fully random hash functions.

Idea: detect when looping, and break up cycles (remove one edge and stash).