Classification in Machine Learning

Elements of AIML

Introduction

Definition: Classification is a supervised learning technique used to categorize data into predefined classes or labels.

Purpose: To build a model that can assign new, unseen data points to one of these classes based on the learned patterns.

Examples: Email spam detection, image recognition, medical diagnos

Key Points about Classification

Labeled Data: Classification requires labeled datasets for training.

Predictive Modeling: Helps in making predictions on categorical outcomes.

Evaluation Metrics: Commonly evaluated using accuracy, precision, recall, F1-score, and confusion matrix.

Binary vs. Multi-Class: Classification can be binary (two classes) or multi-class (more than two classes).

Types of Classification Algorithms

Overview: Classification algorithms can be grouped into various types based on their working principles.

Various types are following as:

- 1 Logistic Regression
- 2. Decision Tree
- 3. Naive Bayes Classifier
- 4. K-Nearest Neighbors (KNN) Classifier
- 5. SVM
- 6 Neural Network Classifier

Logistic Regression

- It is statistical method used in machine learning primarily for **binary classification** tasks, where the goal is to classify data points into one of two categories.
- such as "yes" or "no," "spam" or "not spam," etc.
- Logistic Regression predicts the probability that a given input belongs to a particular class.

Diagram

ANALYTI LABS

• .

CLASSIFICATION

REGRESSION

Key Points of Logistic Regression:

Classification, Not Regression: Despite its name, Logistic Regression is used for classification problems, not regression.

Probability-Based: It predicts the probability of a data point belonging to a particular class, usually in the range [0, 1].

Sigmoid Function: Logistic Regression uses a Sigmoid function to map predictions to probabilities.

Decision Boundary: The model decides the class based on a threshold (usually 0.5) applied to the probability.

Mathematical Foundation of Logistic Regression

Linear Component:

Similar to Linear Regression, Logistic Regression starts by calculating a linear combination of the input features.

This can be written as:

$$z = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

where:

z is the linear predictor.

 w_0, w_1, \ldots, w_n are the model weights.

 x_1, x_2, \dots, x_n are the feature values.

Sigmoid (Logistic) Function:

To map the linear predictor 1 to a probability, Logistic Regression uses the Sigmoid function, defined as:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

The Sigmoid function takes any real-valued number and maps it to a value between 0 and 1, making it suitable for probability predictions.

The final predicted probability P(y=1|x) for the positive class is:

$$P(y = 1 \mid x) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_n x_n)}}$$

Decision Rule:

- The output probability P(y=1|x) is compared with a threshold (usually 0.5).
 - If $P(y=1|x) \neq 0.5$, classify as the positive class (1).
 - If P(y=1|x) < 0.5, classify as the negative class (0).

Binary Cross-Entropy (Log Loss)

Log Loss =
$$-\frac{1}{N} \sum_{i=1}^{N} (y_i \cdot \log(p_i) + (1 - y_i) \cdot \log(1 - p_i))$$

N: Number of data points.

y_i: Actual label (0 or 1) of the i-th data point.

p_i : Predicted probability of the positive class for the i -th data point.

Advantages of Logistic Regression

interpretability: Coefficients w_i provide insights into the feature impact.

Probability Output: Provides a probability score, useful for more granular analysis.

Efficient: Computationally efficient for binary classification problems.

Drawback:

Limited to Linear Boundaries: Assumes a linear relationship between features and the log-odds of the outcome.

• Sensitive to Outliers: Logistic Regression can be affected by outliers in the data.

Confusion Matrix

A Confusion Matrix is a tool used to evaluate the performance of a classification model. It provides insights into the types of errors the model makes, beyond just accuracy

Actual Values

True Positive (TP): Correctly predicted positive cases.

False Positive (FP): Incorrectly predicted positive cases (Type I error).

True Negative (TN): Correctly predicted negative cases.

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

False Negative (FN): Incorrectly predicted negative cases (Type II error).

Key Metrics from Confusion Matrix

Accuracy:

• Formula:
$$\{Accuracy\} = \frac{TP + TN}{TP + TN + FP + FN}$$

Measures the proportion of correctly predicted cases.

Precision (Positive Predictive Value):

Formula: Precision =
$$\frac{TP}{TP + FP}$$

Measures the accuracy of positive predictions.

Key Metrics

Recall (Sensitivity or True Positive Rate):

Formula: Recall =
$$\frac{TP}{TP + FN}$$

Indicates how well the model identifies positive instances.

F1 Score:

Formula: F1 Score =
$$2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Precision + Recall Balances precision and recall, especially useful when classes are imbalanced.

Applications of Confusion Matrix

Performance Evaluation: Widely used in machine learning for evaluating model accuracy, especially in binary and multi-class classification.

Healthcare: Helps in evaluating models used for medical diagnosis to balance sensitivity (recall) and specificity.

Spam Detection: Analyzes model effectiveness in classifying emails as spam or not spam.

Fraud Detection: Useful in identifying correct and incorrect predictions in financial transaction monitoring.

Advantages of Confusion Matrix

Comprehensive Insight: Offers a complete view of how predictions are distributed across all classes.

Metric Calculation: Allows calculation of multiple evaluation metrics such as accuracy, precision, recall, and F1 score.

Error Identification: Helps identify specific types of errors (false positives and false negatives).

Drawbacks of Confusion Matrix

Not a Performance Score Alone: It's a diagnostic tool, not a direct measure of model quality.

Class Imbalance Issue: Accuracy can be misleading for imbalanced datasets, where one class dominates.

No Model Insights: Provides no information on why errors occur, only that they do.

Limited for Non-Binary Classification: More complex to interpret for multiclass problems.

Decision Tree

Introduction

Definition: It is a powerful machine learning model used for both classification and regression tasks. It operates by recursively splitting the dataset into subsets based on the value of the features

- Splits data based on the feature that offers the best division (e.g., Gini Impurity or Information Gain).
- Continues splitting until a stopping condition (e.g., max depth or minimum samples per leaf) is reached.

Diagram

Healthy or not? Age >40?

•

www.educba.com

Key Points of Decision Trees

- Interpretable Structure: Each decision path in the tree can be easily interpreted, making it useful for explainable AI.
- Non-linear Relationships: Captures complex, non-linear relationships between features and target outcomes.
- Feature Importance: Highlights which features are most important for predictions.
- No Assumptions on Data: Does not require assumptions about data distribution (unlike some algorithms like linear regression).
- Handles Both Numeric and Categorical Data: Flexible for a variety of data types.

How Decision Trees Work

- 1. Splitting Criteria: Decision trees split data at each node based on a metric like
 - Gini Impurity
 - Entropy
 - Information Gain
- 2. Recursive Splitting: Continues splitting nodes into branches until a stopping criterion is met (e.g., maximum depth, minimum number of samples).
- 3. Leaf Node Assignment: When a node reaches a stopping condition, it becomes a leaf node, assigned a class label or value.

Gini Impurity

 Gini Impurity: Measures how often a randomly chosen element would be misclassified.

Range is 0 to 0.5

Formula:
$$Gini = 1 - \sum_{i=1}^{C} p_i^2$$

The lower the Gini Impurity, the better the split.

It's generally faster to compute than entropy,

Entropy

• Entropy: It measures the level of impurity or randomness in a dataset.

$$Entropy = -\sum_{i=1}^{C} p_i \cdot \log_2(p_i)$$

where p_i is the probability of a particular class i, and C is the number of classes.

Range: Entropy values range from 0 (completely pure set with only one class) to 1 (maximum impurity in a binary classification).

Entropy vs Gini Impurity

•

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$\textit{Gini}(E) = 1 - \sum_{j=1}^{c} p_{j}^{2}$$

Information Gain

• Measures the purity of a split; higher information gain is preferred.

Information Gain = Entropy (Parent)
$$-\sum_{j=1}^k \frac{|D_j|}{|D|} \cdot \text{Entropy}(D_j)$$

Information Gain is maximized when a split creates subsets that are as pure as possible.

In decision trees, the attribute with the highest information gain is chosen as the splitting criterion at each node.

Example.

Consider a dataset of 10 instances, where each instance has two features, "Weather" and "Windy," and a target variable "Play" (whether to play outside or not).

Step 1: Calculate Initial Impurity of the Target Variable "Play"

Total instances: 10

- Yes (Play): 6 instances
- No (Play): 4 instances

Weather	Windy	Play
Sunny	No	No
Sunny	Yes	No
Overcast	No	Yes
Rainy	No	Yes
Rainy	Yes	No
Rainy	No	Yes
Overcast	Yes	Yes
Sunny	No	No
Sunny	No	Yes
Rainy	No	Yes

Example

Using Gini Impurity

Gini =
$$1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2$$

$$= 1 - 0.36 - 0.16 = 0.48$$

Using Entropy

Entropy =
$$-\left(\frac{6}{10}\right) \cdot \log_2\left(\frac{6}{10}\right) - \left(\frac{4}{10}\right) \cdot \log_2\left(\frac{4}{10}\right)$$

$$= -(0.6 \cdot -0.737) - (0.4 \cdot -1.321)$$

$$= 0.971$$

Step 2: Calculate Impurity for Splits on "Weather" Feature

Now we calculate the impurity for each possible split.

For "Weather = Sunny"

Sunny subset: Yes = 1, No = 3

- Gini for Sunny: $1 (1/4)^2 (3/4)^2 = 1 0.0625 0.5625 = 0.375$
- Entropy for Sunny: (1/4 \cdot \log_2(1/4)) (3/4 \cdot \log_2(3/4)) = 0.811

For "Weather = Overcast"

Overcast subset:

- Yes = 2, No = 0
- Gini for Overcast: 1 (2/2)^2 = 0 (pure)
- Entropy for Overcast: 0 (pure

Random Forest Tree

Introduction

Definition: Random Forest is an ensemble learning technique that builds multiple decision trees and merges their results for a more accurate and stable prediction.

Relation to Decision Trees: A Random Forest consists of many Decision Trees, each trained on a random subset of the data and features.

Goal: Improve accuracy and reduce overfitting by combining predictions from multiple trees.

How Random Forest Works

- 1. **Bootstrapping**: Randomly sample the data with replacement to create multiple training datasets.
- 2. Random Feature Selection: For each tree, select a random subset of features.
- 3. **Build Decision Trees**: Train each tree independently on the bootstrapped data and subset of features.
- 4. **Aggregate Results**: For classification, each tree votes, and the majority class is selected. For regression, the average prediction across trees is used.

Similarities with Decision Trees

- 1. Base Learner: Each tree in the forest is a Decision Tree.
- 2. Interpretability: Like Decision Trees, each tree can be visualized for interpretation, although the entire forest may be complex.
- 3. **Feature Splitting**: Each Decision Tree within the Random Forest performs splits based on features, just as a single Decision Tree does.

Key Points about Random Forest

Robustness: Reduces overfitting compared to individual Decision Trees, especially with high-dimensional data.

Versatility: Suitable for both classification and regression tasks.

Scalability: Effective with large datasets and numerous features.

Accuracy: Often achieves high predictive accuracy by aggregating multiple Decision Trees.

Randomness: Random sampling (bootstrapping) and feature selection improve model generalization.

Example

Random Forest Algorithm in Machine Learning

Random Forest Algorithm Steps

Bootstrap Sampling: Draw multiple random samples from the dataset with replacement.

- 2. **Tree Construction**: For each bootstrap sample:
 - Select a random subset of features.
 - Build a Decision Tree without pruning.
- 3. Prediction Aggregation:
 - For Classification: Each tree "votes" on the most common class.
 - For Regression: Take the average prediction from all trees.
- 4. Final Prediction: Based on the majority vote or average across all trees.

Application

Healthcare: Diagnosis prediction and disease classification.

Finance: Fraud detection and credit scoring.

Marketing: Customer segmentation and churn prediction.

Environmental Science: Predicting air quality, forest cover type classification.

Ensemble Learning

Introduction

Definition: Ensemble Learning combines multiple models (learners) to improve overall performance compared to a single model.

Goal: Increase predictive accuracy, stability, and reduce errors by leveraging multiple models.

- Types of Ensemble Learning:
- Bagging (Bootstrap Aggregating)
- Boosting
- Stacking

Key concepts

Diversity: Ensemble models work best when individual learners are diverse, meaning they make different kinds of errors.

Aggregation: Combining predictions from multiple models, often by voting (for classification) or averaging (for regression).

Reduction of Overfitting: Ensembles help in reducing overfitting, especially when individual models are high variance models (e.g., Decision Trees).

Bootstrapping

Definition: Bootstrapping is a resampling technique where samples are drawn randomly with replacement from a dataset to create multiple training datasets.

Purpose in Ensembles: Each model in an ensemble trains on different bootstrapped datasets, which improves diversity among models.

Steps:

- 1. Randomly select data points with replacement to form a "bootstrapped" dataset.
- 2. Create multiple datasets (often the same size as the original dataset).
 - 3. Train models on these diverse bootstrapped datasets.a

Bagging (Bootstrap Aggregating)

Definition: Bagging (Bootstrap Aggregating) is an ensemble method that applies bootstrapping to create multiple models and then aggregates their predictions.

Mechanism:

- Each model is trained on a different bootstrapped dataset.
- The predictions from all models are averaged (regression) or a majority vote is taken (classification).
- **Popular Use**: Bagging is commonly used with high-variance models, like Decision Trees, to reduce overfitting.

Important Points about Bagging

Randomness: Using different data samples through bootstrapping introduces randomness and enhances model diversity.

Accuracy Boost: Combining predictions typically results in higher accuracy than a single model.

Overfitting Reduction: Bagging helps reduce overfitting in high-variance models.

Popular Algorithm: Random Forest is one of the most widely known bagging-based ensemble methods.

Diagram

