Příklad (1.1)

Dokažte, že v libovolném komplexním vektorovém prostoru \mathbf{V} se skalárním součinem $\langle\cdot,\cdot\rangle$ platí (pro libovolné $\mathbf{u},\mathbf{v}\in\mathbf{V}$)

$$\Re(\langle \mathbf{u}, \mathbf{v} \rangle) = \frac{1}{4} \left(||\mathbf{u} + \mathbf{v}||^2 - ||\mathbf{u} - \mathbf{v}||^2 \right),$$

$$\Im(\langle \mathbf{u}, \mathbf{v} \rangle) = \frac{1}{4} \left(||\mathbf{u} - i\mathbf{v}||^2 - ||\mathbf{u} + i\mathbf{v}||^2 \right).$$

Důkaz

Jednoduše upravujeme podle definice skalárního součinu 8.15 (body SSS, SL1, SL2), pozorování 8.16 (body 2, 3) a definicí normy 8.27 (N)^a:

$$\frac{1}{4} \left(||\mathbf{u} + \mathbf{v}||^2 - ||\mathbf{u} - \mathbf{v}||^2 \right) \stackrel{\text{N}}{=} \frac{1}{4} \left(\langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle - \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle \right) \stackrel{\text{SL2, 3}}{=} 3$$

$$= \frac{1}{4} (\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle - \langle \mathbf{u}, \mathbf{u} \rangle - \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle) \stackrel{\text{SSS}}{=}$$

$$= \frac{1}{2} (\langle \mathbf{u}, \mathbf{v} \rangle + \overline{\langle \mathbf{u}, \mathbf{v} \rangle}) = \Re(\langle \mathbf{u}, \mathbf{v} \rangle),$$

$$\begin{split} \frac{1}{4} \left(||\mathbf{u} - i\mathbf{v}||^2 - ||\mathbf{u} + i\mathbf{v}||^2 \right) &\stackrel{\text{N}}{=} \frac{1}{4} \left(\langle \mathbf{u} - i\mathbf{v}, \mathbf{u} - i\mathbf{v} \rangle - \langle \mathbf{u} + i\mathbf{v}, \mathbf{u} + i\mathbf{v} \rangle \right) \stackrel{\text{SL2, 3, SL1, 2}}{=} \\ &= \frac{1}{4} (\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle - i \, \langle \mathbf{u}, \mathbf{v} \rangle + i \, \langle \mathbf{v}, \mathbf{u} \rangle - \langle \mathbf{u}, \mathbf{u} \rangle - \langle \mathbf{v}, \mathbf{v} \rangle - i \, \langle \mathbf{u}, \mathbf{v} \rangle + i \, \langle \mathbf{v}, \mathbf{u} \rangle \right) \stackrel{\text{SSS}}{=} \\ &= \frac{i}{2} (\overline{\langle \mathbf{u}, \mathbf{v} \rangle} - \langle \mathbf{u}, \mathbf{v} \rangle) = \Im(\langle \mathbf{u}, \mathbf{v} \rangle). \end{split}$$

 $^a\mathrm{Je\check{s}t\check{e}}$ potřebujeme

$$\Re(a+bi) = \frac{1}{2}(a+bi+a-bi) = \frac{1}{2}(a+bi+\overline{a+bi}),$$

$$\Im(a+bi) = \frac{i}{2}(a-bi-(a+bi)) = \frac{i}{2}(\overline{a+bi}-(a+bi)).$$

Příklad (1.2)

Zobrazení $\langle \cdot, \cdot \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ je dáno vzorcem $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T A \mathbf{v}$, kde A je reálná symetrická čtvercová matice $A = (a_{ij})$ řádu 2. Dokažte, že $\langle \cdot, \cdot \rangle$ je skalární součin na \mathbb{R}^2 právě tehdy, když platí $a_{11} > 0$ a det(A) > 0.

 $D\mathring{u}kaz$

Vizte následující příklad $(a_{11} = \det A_1, \det A = \det A_2)$.

Příklad (1.*)

Buď $A=(a_{ij})$ reálná symetrická matice řádu n. Pro $1 \leq k \leq n$ označme $A_k=(a_{ij})_{i,j\leq k}$ matici řádu k, která vznikne z matice A vynecháním posledních n-k řádků a posledních n-k sloupců. Ukažte, že matice A určuje skalární součin na \mathbb{R}^n právě když $\det(A_k)>0$ pro všechna $k\in\{1,2,\ldots,n\}$.

 $D\mathring{u}kaz$

Taktéž použijeme definici 8.15. Z toho, že je matice reálná a symetrická (tedy hermitovská) a $\mathbf{u}^T A \mathbf{v}$ číslo, dostáváme SSS ($\forall \mathbf{v}, \mathbf{u} \in \mathbb{R}^n$):

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T A \mathbf{v} = (\mathbf{u}^T A \mathbf{v})^T = \mathbf{v}^T A^T \mathbf{u} = \mathbf{v}^T A \mathbf{u} = \langle \mathbf{v}, \mathbf{u} \rangle.$$

Z vlastností násobení matic skalárem a násobení a sčítání matic mezi sebou dostáváme SL1 a SL2 $(\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n, t \in \mathbb{R})$:

$$\langle \mathbf{u}, t\mathbf{v} + \mathbf{w} \rangle = \mathbf{u}^T A(t\mathbf{v} + \mathbf{w}) = t\mathbf{u}^T A\mathbf{v} + \mathbf{u}^T A\mathbf{w} = t \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle.$$

Tedy to, co rozhoduje, jestli daná reálná symetrická matice bude skalární součin, je podmínka SP. Nejprve vyřešme situaci a $\exists k_0 \in [n]$: det $A_{k_0} = 0$. To, že je determinant nulový, znamená, že A_{k_0} není regulární, tedy existuje nenulový vektor $(x_1,\ldots,x_{k_0})^T$ v jejím jádru. Pokud tento vektor doplníme nulami na vektor $\mathbf{x} = (x_1,\ldots,x_{k_0},0,0,\ldots)^T \in \mathbb{R}^n$, vektor $A\mathbf{x}$ má prvních k_0 -členů nulových (z definice jádra a z toho, že díky 0 se sloupce $k_0 + 1$ a dále neprojeví do součinu). Tím pádem ale

$$\mathbf{x}^T \cdot (A\mathbf{x}) = x_1 \cdot 0 + x_2 \cdot 0 + \ldots + x_{k_0} \cdot 0 + 0 \cdot (A\mathbf{x})_{k_0+1} + \ldots + 0 \cdot (A\mathbf{x})_n = 0.$$

Tudíž jsme našli vektor $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{o}\}$, pro který je $\mathbf{x}^T A \mathbf{x} = 0$. To však nesplňuje druhou část podmínky SP, tedy matice A neurčuje skalární součin.

Nyní tedy předpokládejme, že $\forall k \in [n]$: det $A_k \neq 0$. Můžeme si všimnout, že členy matice

$$A = I \cdot A \cdot I = I^T \cdot A \cdot I = (e_1 | \dots | e_n)^T \cdot A \cdot (e_1 | \dots | e_n) = (e_1^T | \dots | e_n^T) \cdot A \cdot (e_1 | \dots | e_n),$$

$$kde \ e_i = (0, \dots, 0, 1_i, 0, \dots, 0)^T,$$

určují $\mathbf{u}^T A \mathbf{v}$, kde \mathbf{u} , \mathbf{v} jsou příslušné bázové vektory. Nejprve necht $\exists k_- \in [n]: \det A_k < 0$. Zvolme nejmenší takové k_- . Potom $\forall k \in [k_- - 1]: \det A_k > 0$, tedy můžeme použít záporné lemmátko níže, takže existuje posloupnost symetrických úprav tak, že $a'_{k_-,k_-} < 0$. Podle sčítacího lemmátka (jelikož už víme, že $\mathbf{u}^T A \mathbf{v}$ splňuje SSS, SL1, SL2) má ale existovat $\mathbf{x} \in \mathbb{R}^n$ tak, že $a'_{k_-,k_-} = \mathbf{x}^T A \mathbf{x} < 0$. Tedy takové A také nesplňuje podmínku SP, tentokrát první část.

Zbývá dokázat, že pokud reálná symetrická matice splňuje $\det(A_k)>0, \ \forall k\in[n]$, pak už splňuje SP. To uděláme jednoduše tak, že libovolný nenulový vektor $\mathbf{x}\in\mathbb{R}^n$ zapíšeme ve tvaru $\mathbf{x}=x_1\cdot e_1+\ldots x_k\cdot e_k+0\cdot e_{k+1}+\ldots+0\cdot e_n$, kde $x_k\neq 0$. Následně sloupec a řádek k matice A přenásobíme x_k a přičteme k nim x_1 krát první řádek a sloupec, x_2 krát druhý, ..., x_{k-1} krát k-1-tý. Tím podle sčítacího lemmátka dostaneme v $a'_{k,k}$ výsledek

$$(x_1 \cdot e_1 + \dots x_k \cdot e_k)^T A (x_1 \cdot e_1 + \dots x_k \cdot e_k) = \mathbf{x}^T A \mathbf{x}.$$

Přenásobením a přičtením jsme rozhodně nezměnili A_{k-1} a přenásobením jsme sice vynásobili det A_k číslem $(x_k)^2$, ale to je kladné číslo, tedy znamínko det A_k se nezměnilo a přičítáním řádků a sloupců k jiným se determinant nemění. Tedy můžeme použít kladné lemmátko na A'_k a dostaneme, že $0 < a'_{k,k} = \mathbf{x}^T A \mathbf{x}$. Tím jsme dokázali SP.

 $^{^{}a}[n] = \{1, \dots, n\}.$

 $^{{}^}b \mathrm{Pro}$ nulový vektor je SP splněna triviálně pro každou matici, jelikož $\mathbf{o}^T A \mathbf{o} = 0.$

Lemma 0.1 (Sčítací lemmátko)

Mějme bilineární symetrickou (tj. splňující SSS, SL1 a SL2) formu $\langle \cdot, \cdot \rangle$ na \mathbb{R}^n , vektory $\mathbf{v}_1, \dots, \mathbf{v}_n$ a reálnou matici $B = (b_{i,j})$ řádu n, kde $b_{i,j} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. Potom přičtením x násobku řádku α k řádku β a x násobku sloupce α k sloupci β dostaneme matici $B' = (b'_{i,j})$, kde $b'_{i,j} = \langle \mathbf{v}'_i, \mathbf{v}'_j \rangle$, kde $\mathbf{v}'_l = \mathbf{v}_l + x \cdot \mathbf{v}_\alpha$, pokud $l = \beta$, a $\mathbf{v}'_l = \mathbf{v}_l$ jinak.

Speciálně pro volbu $\alpha = \beta$ a x = y - 1 dostáváme matici $B' = (b'_{i,j})$, $kde\ b'_{i,j} = \langle \mathbf{v}'_i, \mathbf{v}'_j \rangle$, $kde\ \mathbf{v}'_l = y \cdot \mathbf{v}_l$, pokud $l = \beta$, a $\mathbf{v}'_l = \mathbf{v}_l$ jinak.

 $D\mathring{u}kaz$

L

Přičtením x násobku řádku α k řádku β se změní pouze řádek β , a to $(i \in [n])$

$$b_{\beta,i}^* = b_{\beta,i} + x \cdot b_{\alpha,i} = \langle \mathbf{v}_{\beta}, \mathbf{v}_i \rangle + x \cdot \langle \mathbf{v}_{\alpha}, \mathbf{v}_i \rangle = \langle \mathbf{v}_{\beta} + x \cdot \mathbf{v}_{\alpha}, \mathbf{v}_i \rangle = \langle \mathbf{v}_{\beta}', \mathbf{v}_i \rangle.$$

(Pro $i \neq \beta$ již $b_{\beta,i}^* = b_{\beta,i}'$, jelikož $\mathbf{v}_i = \mathbf{v}_i'$.) Obdobně následně přičteme sloupec. Jediný problém je prvek $b_{\beta,\beta}'$, ale ten je zřejmě

$$b'_{\beta,\beta} = b^*_{\beta,\beta} + x \cdot b^*_{\beta,\alpha} = \left\langle \mathbf{v}'_{\beta}, \mathbf{v}_{\beta} \right\rangle + x \cdot \left\langle \mathbf{v}'_{\beta}, \mathbf{v}_{\alpha} \right\rangle = \left\langle \mathbf{v}'_{\beta}, \mathbf{v}_{\beta} + x \mathbf{v}_{\alpha} \right\rangle = \left\langle \mathbf{v}'_{\beta}, \mathbf{v}'_{\beta} \right\rangle.$$

Lemma 0.2 (Kladné lemmátko)

Nechť $A = (a_{i,j})$ je reálná symetrická matice řádu n, pro kterou platí^a $\forall k \in [n]$: det $A_k > 0$, potom A má na diagonále kladné členy.

Důkaz (Indukcí)

Pro $\mu=1$ je triviálně $a_{1,1}=\det A_1>0$. Tedy $a_{1,1}$ je kladné a vynásobením prvního řádku a prvního sloupce $\frac{1}{\sqrt{a_{1,1}}}$ dostaneme jednotkovou matici bez toho, abychom změnili znaménka determinantů matic $A_k, k\in [n]$ (násobíme řádek / sloupec, tedy i determinant, kladným číslem), a aniž bychom změnili hodnoty $a_{k,k}, k\in [n]\setminus\{1\}$.

Nechť nyní $\mu \in [n] \setminus \{1\}$ a pro $\mu - 1$ lze matici $A_{\mu-1}$ symetrickými úpravami na A, které nezmění determinanty A_k a hodnoty $a_{k,k}, n \geq k \geq \mu$, převést do jednotkové matice. Proveďme tyto úpravy.

Označme novou matici $A'_{\mu} = (a'_{i,j})$. Víme tedy, že $A'_{\mu-1} = I$, det $A'_{\mu} > 1$, A'_{μ} je symetrická a $a'_{\mu,\mu} = a_{\mu,\mu}$. Zároveň na první pohled (jiné členy z definice determinantu vyjdou 0):

$$0 < \det A'_{\mu} = a'_{\mu,\mu} \cdot 1 \cdot \ldots \cdot 1 + \sum_{i=1}^{\mu-1} \operatorname{sgn}((i,\mu)) \cdot a'_{\mu,i} \cdot 1 \cdot \ldots \cdot 1 \cdot a'_{i,\mu} =$$

$$a_{\mu,\mu} - \sum_{i=1}^{\mu-1} (a'_{\mu,i})^2 \le a_{\mu,\mu}.$$

Tudíž opravdu $a_{\mu,\mu} > 0$.

Nyní už můžeme přičtením správných násobků řádků a sloupců (symetricky) $k < \mu$ k sloupci a řádku μ vynulovat všechny prvky $a'_{\mu,k}$ a $a'_{k,\mu}$, kde $k < \mu$. To je přičítání násobků řádků / sloupců k jinému řádku / sloupci, tedy to nemění determinant. Navíc to mění pouze prvky, které mají alespoň jeden index $< \mu$, takže i neměnnost $a_{k,k}, k > \mu$ zůstává zachována. Následně pak můžeme μ -tý sloupec a μ -tý řádek vynásobit $\frac{1}{\sqrt{a''_{\mu,\mu}}}$ (z předchozího přičítání / odčítání nám vyjde nový prvek na pozici μ,μ , my však už víme, že musí být kladný), tedy převést matici A_{μ} do jednotkové a nezměnit znaménko determinantů vyšsích matic, ani další prvky na diagonále.

 $^{{}^{}a}A_{k}$ značí podmatici A jako v příkladu výše.

Lemma 0.3 (Záporné lemmátko)

Nechť $A=(a_{i,j})$ je reálná symetrická matice řádu k_- , pro kterou platí $\forall k \in [k_--1]: \det A_k > 0$ a $\det A < 0$. Potom existuje posloupnost symetrických úprav (řádková + ta samá sloupcová úprava) tak, že $a_{k_-,k_-} < 0$.

$D\mathring{u}kaz$

Stejně jako v minulém lemma upravíme matici A_{k_--1} do jednotkové matice symetrickými úpravami na A. Následně odečteme $\forall i \in [k_--1]: a_{k_-,i}$ krát i-tý řádek od k_- -tého a i-tý sloupec od k_- -tého. Tím vynulujeme všechny prvky kromě těch na diagonále a nezměníme A_{k_--1} ani znaménko determinantu det A. Tedy:

$$0 > \det A = \prod_{i=1}^{k_{-}} a_{i,i} = 1 \cdot \ldots \cdot 1 \cdot a_{k_{-},k_{-}} = a_{k_{-},k_{-}}.$$

 $^{{}^}a{\cal A}_k$ značí podmatici ${\cal A}$ jako v příkladu výše.