Variational Autoencoder

Do you recognize these people?

Image editing

From "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks," https://arxiv.org/abs/1703.10593

Style transfer

From "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks," https://arxiv.org/abs/1703.10593

Pose interpolation

From "Representation Learning by Rotating Your Faces," https://arxiv.org/abs/1705.11136

Pose interpolation

From "Representation Learning by Rotating Your Faces," https://arxiv.org/abs/1705.11136

Image synthesis

From "High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs," https://arxiv.org/abs/1711.11585

Generative Adversarial Network (GAN)

The autoencoder (AE)

- Learn a low-dimensional representation of high-dimensional data.
- Macro-architecture comprises an encoder followed by a decoder.

high-dimensional vector space

low-dimensional "latent" space

original high-dimensional vector space

AE microarchitecture

- The encoder and decoder are usually neural networks:
- Layers are often fully connected or convolutional (for image data):

AE limitations

- Encoded representations optimize for data reconstruction, not generation.
- Encoding clusters have irregular shape, which make them hard to sample.
- As a result, random generation of good imitation data is hard to do.

The encodings we got.

The encodings we want.

Variational autoencoders (VAE)

A variational autoencoder (VAE) is an AE with two adaptations.

Encoder maps datapoints to probability distributions.

Add a new "KL-divergence" term to the loss function during training.

Variational Auto-Encoder

Neural network prespective

The approximated function starts to shape up as a neural encoder, going from training datapoints ${\bf x}$ to the likely ${\bf z}$ points following Q(z|X), which in turn is similar to the real P(z|X).

Credit: Altosaar

Variational Auto-Encoder

Neural network prespective

The (latent→ data) mapping starts to shape up as a neural decoder, where we go from our sampled **z** to the reconstruction, which can have a very complex distribution.

Credit: Altosaar

VAE learning objective

KL-divergence measures "distance" between two probability distributions.

$$L = \frac{1}{|T|} \sum_{x \in T} d(x, D(E(x)) + \mathsf{KL}(\mathcal{N}(\mu(x), \sigma(x)^2) \mid \mid \mathcal{N}(0, 1))$$

The KL term in L encourages datapoints to map near to unit-Gaussians.

ullet Update weights in the encoder E and decoder D via gradient descent.

