Cuarta Parte: Clase 1 – Introducción a Approximate Dynamic Programming

Optimización Dinámica - ICS

Mathias Klapp

¿Qué hemos visto?

- DP determinístico como alternativa en la resolución de problemas combinatoriales.
- MDPs para resolver problemas dinámicos-estocásticos con horizontes finito e infinito.
- Métodos de solución exactos:
 - 1. Backward Dynamic Programming (Horizonte finito)
 - 2. Iteración de Valor (Horizonte infinito)
 - 3. Iteración de Política (Ambos)
 - 4. Métodos basados en LP (Ambos)
- ¿Y si el problema posee la ``maldición de la dimensionalidad''?

"unfortunately, in the vast majority of real applications we cannot solve Bellman's equations exactly"

Warren Powell.

- La maldición de la dimensionalidad
- Approximate Dynamic Programming (ADP)
- El estado de post decisión y función Q
- Resumen de técnicas de ADP
- Evaluación de una política
- Comparación de políticas
- Garantías de optimalidad

MDP

Bucamos política $\pi=(d_1,d_2,\dots d_T)$ que resuelve las ecuaciones de Bellman para cada $t\leq T$ y estado $s\in \mathbb{S}_t$ dado el estado inicial s_1 .

Ecuación de Bellman:

$$V_t(s) = \max_{x \in X_t(s)} \left\{ r_t(s, x) + \sum_{s' \in S_{t+1}} p_t(s'|s, x) V_{t+1}(s') \right\}$$

Una política óptima cumple:

$$d_t^*(s) \leftarrow \underset{x \in \mathbb{X}_t(s)}{\operatorname{argmax}} \left\{ r_t(s, x) + \sum_{j \in \mathbb{S}_{t+1}} p_t(j|s, x) V_{t+1}(j) \right\}$$

La triple maldición de la dimensionalidad

$$\forall t \leq T, \forall s \in \mathbb{S}_t:$$

$$V_t(s) = \max_{x \in \mathbb{X}_t(s)} \left\{ r_t(s, x) + \sum_{j \in \mathbb{S}_{t+1}} p_t(j|s, x) V_{t+1}(j) \right\}$$

- 1. El tamaño de S es grande.
 - Ejemplo: Problema de ruteo dinámico
- Optimizar el problema sobre $X_t(s)$ es difícil.
 - Ejemplo: Un problema NP-completo.
- Gran cantidad de transiciones futuras impide evaluar la esperanza del value-to-go.
 - Ejemplo: Potenciales realizaciones de un subset $S \subset \{1, ..., n\}$

Dificultad adicional:

Disponibilidad de información probabilística

 En problemas reales de decisión secuencial, es complejo calibrar el modelo de probabilidad:

$$p_t(s_{t+1}|s_t,x_t)$$

- Típicamente se cuenta con un ``simulador'' del proceso representativo de la distribución de probabilidades.
 - Historia como simulador
 - Simulador computacional (Arena, Simio).
 - Corridas de entrenamiento.

- La maldición de la dimensionalidad
- Approximate Dynamic Programming (ADP)
- El estado de post decisión y función Q
- Resumen de técnicas de ADP
- Evaluación de una política
- Comparación de políticas
- Garantías de optimalidad

Approximate Dynamic Programming

- Conjunto de estrategias heurísticas para resolver DP's y MDP's ``malditos''.
- Se busca una política heurística π^H Buena.
 - No necesariamente óptima, ojalá con garantía de calidad.
- No hay **una** forma y selección de la estrategia depende de la <u>``maldición'' específica</u> del problema, de la <u>disponibilidad de datos</u> y de <u>requerimientos</u> de cómputo <u>online</u>.
- Ejemplos:

Espacio de estados de gran tamaño: aproximación de función de valor

Espacio de decisiones complejo: heurísticas de decisión

Transición explosiva a futuro : simulación de Monte Carlo

Requerimientos de cómputo: max. tiempo disponible por decisión.

- La maldición de la dimensionalidad
- Approximate Dynamic Programming (ADP)
- lacktriangle El estado de post-decisión y función Q
- Resumen de técnicas de ADP
- Evaluación de una política
- Comparación de políticas
- Garantías de optimalidad

Estado de post-decisión

La dinámica del proceso estocástico de un MDP en la etapa t:

- 1. Sistema se encuentra en estado s_t (de **pre-decisión**)
- 2. Se toma una decisión x_t .
- 3. Proceso estocástico $s_{t+1} = f_t(s_t, x_t, \omega_t)$ genera transición al estado s_{t+1} con probabilidad $p_t(s_{t+1}|s_t, x_t)$.

Estado de post-decisión

- Separa la decisión determinística y la transición estocástica mediante estado intermedio $y_t = y_t(s_t, x_t)$.
- El estado de post-decisión y_t es determinístico dado s_t, x_t .

Reformulación de un MDP desde el estado de post-decisión

Tomemos la ecuación de Bellman:

$$V_t(s_t) = \max_{x_t \in \mathbb{X}_t(s_t)} \left\{ r_t(s_t, x_t) + \sum_{s_{t+1} \in \mathbb{S}_{t+1}} p_t(s_{t+1} | y_t(s_t, x_t)) V_{t+1}(s_{t+1}) \right\}$$

y definimos $Q_t(y_t)$: value to-go en estado de post-decisión $y_t(s_t, x_t)$:

$$Q_t(y_t) = \mathbb{E}_{s_{t+1}}(V_{t+1}(s_{t+1})|y_t)$$

Implica que el MDP se puede reformular como:

$$V_{t}(s_{t}) = \max_{x \in \mathbb{X}_{t}(s_{t})} \{r_{t}(s_{t}, x) + Q_{t}(y_{t}(s_{t}, x))\}$$

MDP desde el estado de post-decisión

$$V_t(s_t) = \max_{x_t \in \mathbb{X}_t(s_t)} \{r_t(s_t, x_t) + Q_t(y_t(s_t, x_t))\}$$

Aplicando esperanza $\mathbb{E}_{s_t}(\cdot | y_{t-1})$ a ambos lados:

$$\mathbb{E}_{s_t}(V_t(s_t)|y_{t-1}) = \mathbb{E}_{s_t}\left(\max_{x_t \in \mathbb{X}_t(s_t)} \{r_t(s_t, x_t) + Q_t(y_t(s_t, x_t))\} \middle| y_{t-1}\right)$$

Ecuación de Belmann de post-decisión:

$$Q_{t-1}(y_{t-1}) = \sum_{s_t \in S_t} p_t(s_t|y_{t-1}) \cdot \max_{x_t \in X_t(s_t)} \{r_t(s_t, x_t) + Q(y_t(s_t, x_t))\}$$

• Modelo equivalente al MDP planteado en función de $V_t(s)$

MDP desde el estado de post-decisión

Buscamos decisión en etapa t y estado s_t :

$$d_t^*(s_t) \in \underset{x \in \mathbb{X}_t(s_t)}{\operatorname{argmax}} \{r_t(s_t, x) + Q_t(y_t(s_t, x))\}$$

- Es un problema determinístico si conocemos $Q_t(y)$.
- ¿Cómo aprendemos Q?

Paradigmas para aprender *Q*:

- Online: Aproximar $Q_t(y)$ en línea después de observar estado s_t y conocer potenciales estados de post-decisión y_t factible:
 - Solo requiere aproximar Q en estados que el sistema visita.
 - Cómputo de Q online puede ser incompatible con necesidad de decisión online.
- Offline: Antes de ejecutar operación, pre-computar, a.k.a. 'entrenar' o `aprender', una aproximación de $Q_t(y)$ para todo t y todo $y \in \mathbb{Y}_t$. Luego, usarla online.
 - Exije aproximar Q para todo t y para todo estado y de post-decisión.
 - ullet Cómputo de Q offline permite decisiones pseudo-inmediatas *online*.

- La maldición de la dimensionalidad
- Approximate Dynamic Programming (ADP)
- lacktriangle El estado de post-decisión y función Q
- Resumen de técnicas de ADP
- Evaluación de una política
- Comparación de políticas
- Garantías de optimalidad

Resumen de técnicas ADP

- 1. Decisiones Miopes.
- 2. Lookaheads, roll-outs y horizontes rodantes (simple/estocástico).
- 3. Aproximación de función de valor.
- 4. Aproximación de política de decisión.
- 5. ALP (Approximate Linear Programming)

- La maldición de la dimensionalidad
- Approximate Dynamic Programming (ADP)
- lacktriangle El estado de post-decisión y función Q
- Resumen de técnicas de ADP
- Evaluación de una política
- Comparación de políticas
- Garantías de optimalidad

Evaluación exacta de una política dada

Evaluar el objetivo $V_1^{\pi}(s_1)$ de una política π dada exige calcular recursivamente el value-to-go $V_t^{\pi}(s_t)$ para todo t y s_t .

• Es decir,
$$\forall s_t \in \mathbb{S}_t \ \forall \ t \in \{1, \dots, T\}$$
:
$$V_t^{\pi}(s_t) = r_t \left(s_t, d_t^{\pi}(s_t) \right) + \sum_{j \in \mathbb{S}_{t+1}} p(j|s_t, d_t^{\pi}(s_t)) \cdot V_{t+1}^{\pi}(j)$$

• Si el procedimiento sufre de una de las dos maldiciones (estados y transiciones):

¿Cómo evaluar una política en ese caso?

Evaluación aproximada de una política π

Alternativa: Simulación de Monte Carlo

- Simular la ejecución de la política π varias veces (réplicas) y estimar el costo esperado promedio.
- En cada réplica, ejecutar el proceso de decisión desde t=1 hasta t=T simulando una realización independiente de las variables aleatorias involucradas.

Ingrediente 1: Teorema Central del Límite (CLT)

- I. Sea V una variable aleatoria con media $\mu < \infty$ y varianza $\sigma^2 < \infty$.
- II. Sea una muestra aleatoria i.i.d. $\Omega = \{V_1, V_2, ..., V_m\}$ de V.
- III. Un estimador de μ es el **promedio muestral**:

$$\bar{V}_{\Omega} = \frac{1}{m} \sum_{\omega \in \Omega} V_{\omega}$$

Resultados básicos:

• Es insesgado:
$$\mathbb{E}(\overline{V}_{\Omega}) = \mu$$

• Varianza tiende a cero:
$$\mathrm{Var}(\overline{V}_\Omega) = \frac{\sigma^2}{m}$$

• CLT:
$$\lim_{|\Omega| \to \infty} \overline{V}_{\Omega} \sim \operatorname{Normal}\left(\mu, \frac{\sigma^2}{m}\right)$$

Ingrediente 2: Intervalo de Confianza (IdC)

Con probabilidad $1 - \alpha$ se cumple que:

$$\mu \in \left[\overline{V}_{\Omega} - S_{\Omega} \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{m}}; \overline{V}_{\Omega} + S_{\Omega} \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{m}} \right]$$

, con $S_{\Omega}^2 = \frac{1}{m-1} \sum_{\omega \in \Omega} (V_{\omega} - \bar{V}_{\Omega})^2$, estimador de varianza de V.

• Precisión de estimación = $\frac{S_{\Omega}}{\overline{V}_{\Omega}} \cdot \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{m}}$

$1-\alpha$	$\alpha/2$	$Z_{1-\alpha/2}$
70%	15%	1,04
80%	10%	1,28
90%	5%	1,64
95%	2.5%	1,96
97,5%	1,25%	2,24
99%	0,5%	2,58
99,9%	0,05%	3,29

Evaluación simulada de una política π

- Input: Política $\pi = (d_1, ..., d_T)$, estado inicial s_1
- Simular m ejecuciones de π en una muestra Ω :

Para cada corrida $\omega \in \Omega$:

- 1. Inicializar: $s \leftarrow s_1, V_{\omega}^{\pi} \leftarrow 0$
- 2. Para cada etapa t = 1, ..., T:
 - $x_t \leftarrow d_t^{\pi}(s)$ Decidir:
 - Actualizar valor: $V_{\omega}^{\pi} \leftarrow V_{\omega}^{\pi} + r_t(s, x_t)$
 - Actualizar estado: $s \leftarrow f_t(s, x_t, \omega_t)$
- 3. Guardar indicador: V_{ω}^{π}
- Estimar el valor de la política:
 - $\bar{V}_{\Omega}^{\pi} \coloneqq \frac{1}{m} \sum_{\omega \in \Omega} V_{\omega}^{\pi}$

 - $$\begin{split} \bullet \quad & S_\Omega^\pi = \sqrt{\frac{1}{|\Omega|-1}} \sum_{\omega \in \Omega} (V_\omega^\pi \bar{V}_\Omega^\pi)^2 \\ \bullet \quad & \text{IdC para } V^\pi(s_1) \colon \quad \left[\bar{V}_\Omega^\pi S_\Omega^\pi \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{m}} ; \bar{V}_\Omega^\pi + S_\Omega^\pi \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{m}} \right] \end{split}$$

- La maldición de la dimensionalidad
- Approximate Dynamic Programming (ADP)
- lacktriangle El estado de post-decisión y función Q
- Resumen de técnicas de ADP
- Evaluación de una política
- Comparación de políticas
- Garantías de optimalidad

Comparación entre de políticas

Poder comparar dos políticas permite construir heurísticas de búsqueda local.

Deseamos comparar como es una política π^1 contra otra política π^1 iniciadas desde un estado inicial s.

En teoría
$$\pi^1$$
 es mejor que π^2 si $\Delta(s) := V_1^{\pi^1}(s) - V_1^{\pi^2}(s) > 0$

¿Cómo aproximar comparación de forma eficiente cuando se sufre de la maldición de dimensionalidad?

Comparación entre dos políticas

- Verificar mediante simulación si IdeC de $\overline{\Delta}_{\Omega}(s) = \frac{1}{m} \sum_{\omega \in \Omega} (V_{\omega}^{\pi^1} V_{\omega}^{\pi^2})$ está por sobre el 0.
 - Sincronizar realización de números aleatorios (reducción de varianza mediante variables antitéticas).

- La maldición de la dimensionalidad
- Approximate Dynamic Programming (ADP)
- lacktriangle El estado de post-decisión y función Q
- Resumen de técnicas de ADP
- Evaluación de una política
- Comparación de políticas
- Garantías de optimalidad

Relajación de Información perfecta:

Perfect Information Relaxation (PIR)

- Sobreestima el valor óptimo <u>relajando totalmente</u> el acceso a información futura de variables aleatorias.
- Hace trampa y ejecuta acciones 100% adaptadas al valor de las variables aleatorias en las etapas futuras $\{1, ..., T\}$ antes de ejecutar el MDP.
- Una PIR es super-óptima, pero infactible, pues diseña decisión después de observas información.
- El valor de una PIR $V^{PIR}(s)$ dado un estado inicial s se define como el valor esperado del valor óptimo $V^{PIR}_{\omega}(s)$ sobre cada realización de la incertidumbre ω

$$V^{PIR} = \mathbb{E}_{\omega}(V_{\omega}^{PIR}) \geq V^*$$

En la práctica se estima mediante simulación computacional y se computa su IdC:

$$V^{PIR} \approx \frac{1}{m} \sum_{\omega \in \mathcal{Q}} V_{\omega}^{PIR}$$

¿Por qué es una cota superior?

- Es **post-optimizar**, es decir, optimizar después de observar la realización de ω .
- Relaja las leyes temporales de anticipación de las soluciones óptima a la filtración de información futura.

Intuición en una etapa:

- Supongamos objetivo $f(x, \omega)$ a maximizar dependiente de decisión $x \in \mathbb{X}$ e incertidumbre $\omega \in \Omega$.
- Sea $f_{\omega}^* = \max_{x \in \mathbb{X}} f(x, \omega)$

Se cumple para todo $\omega \in \Omega$ y todo $x \in X$ que:

$$f(x,\omega) \le f_{\omega}^*$$

Tomando esperanzas, se cumple para todo $x \in X$ que:

$$\mathbb{E}_{\omega}(f(x,\omega)) \leq \mathbb{E}_{\omega}(f_{\omega}^*) = f^{PIR}$$

Luego, el problema estocástico está acotado por la PIR:

$$\max_{x \in \mathbb{X}} \mathbb{E}_{\omega}(f(x, \omega)) \leq f^{\text{PIR}}$$

Garantía para una política π

- Buscamos estimar gap $V^* V^{\pi}$ de una política heurística π al valor óptimo.
- Sabemos que:

$$V^* - V^{\pi} \le V^{\text{PIR}} - V^{\pi}$$

- $V^{PI} V^{\pi}$: máxima distancia posible de política π al valor óptimo.
- $V^* V^{\pi}$: gap de optimalidad. Distancia recuperable de política π al valor óptimo del MDP.
- $V^{\text{PIR}} V^*$: gap de información incierta. Costo irrecuperable por tener que ejecutar decisiones dinámicas bajo incertidumbre.

Garantía para una política π

Para estimar $V^{\rm PIR} - V^{\pi}$, se debiese simular y estimar cantidad mediante promedio muestral:

$$\frac{1}{m} \sum_{\omega \in \Omega} (V_{\omega}^{\text{PIR}} - V_{\omega}^{\pi})$$

- Sincronizar números aleatorios.
- Notar que $V_{\omega}^{\rm PIR} \geq V_{\omega}^{\pi}$ para cada realización $\omega \in \Omega$ de la incertidumbre (¿Por qué?)

Relajación imperfecta de Información (IIR):

- Idea: Mejorar sobrestimación del valor óptimo <u>relajando</u> parcialmente el acceso a información futura.
- Filtración normal de información: en la etapa k se conoce la realización aleatoria hasta t=k.
- Ejemplos de relajación de información:
 - Relajación Perfecta: Conoce hasta T al comienzo del horizonte.
 - Relajación Imperfecta de dos etapas: Conoce información inicial en t=1, pero en t=2 observa todo hasta la etapa T.
 - Relajación Imperfecta de tres etapas: Respeta la filtración de información hasta t=2, luego se revela todo el futuro en t=3.
 - Relajación de a dos, tres, cuatro periodos, etc....
- Para toda relajación de información IIR se cumple que:

$$V^* < V^{IIR} < V^{PIR}$$

Cuarta Parte: Clase 1 – Introducción a Approximate Dynamic Programming

Optimización Dinámica - ICS

Mathias Klapp