

Building a Simple

LoRaWAN Network

Network Encryption

Application Encryption

Data

ABP (Activation-By-Personalization)

Examples of LoRaWAN Node

LoRa Shield + Arduino

LMIC: https://github.com/matthijskooijman/arduino-lmic-v1.5

Examples of LoRaWAN Gateway

Gateway with Packet forwarder module

https://github.com/ttn-zh/ic880a-gateway/wiki

Examples of LoRaWAN Server

Private:

ChirpStack

Example of Dashboards

Our LoRaWAN Server

Website:

https://www.thethingsnetwork.org/

Username: LoRaWAN-workshop

Password: 654321

Connect Gateway with

Website:

https://www.thethingsnetwork.org/

Username: LoRaWAN-workshop

Password: 654321

Gateway EUI (MAC Address): 7276FF004501022D

Develop Node

- Hardware
 - Arduino Uno with RFM95
- Software
 - LMIC Library
- Complier
 - Arduino IDE

Develop Node

- Hardware
 - Arduino Uno with RFM95
- Software
 - LMIC Library

https://github.com/LoRaWAN-workshop/tutorial

- Complier
 - Arduino IDE

Register Node with

Website:

https://www.thethingsnetwork.org/

Username: LoRaWAN-workshop

Password: 654321

Register Node with

Create Application

Add Node to Application

Let's Change some Parameters

▶ SF

```
LMIC_setDrTxpow(DR_SFx,14);
```

- ❖ DR_SF7 DR_SF12
- Unconfirmed/Confirmed

```
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, x);
```

Unconfirmed = 0, Confirmed = 1

AS923

Data Rate	Settings	Bit Rate (bit/s)	Max MAC Payload Length (byte)
0	SF12/BW125kHz	250	59
1	SF11/BW125 kHz	440	59
2	SF10/BW125 kHz	980	59
3	SF9/BW125 kHz	1760	123
4	SF8/BW125 kHz	3125	230
5	SF7/BW125 kHz	5470	250
6	SF7/BW250 kHz	11000	250

Duration

Maximum period = Airtime/dutycycle

Integration with Dashboard

Cayenne is a solution for building IoT applications based on known platforms

- Arduino
- Raspberry pi
- ESP8266
- Serial devices
- Wifi
- Lora devices
- Mqtt client API

CayenneLPP

http://mydevices.com/cayenne/docs/lora/#lora-cayenne-low-power-payload

Requirement:

- 1. Node with CaynenneLPP Class https://www.thethingsnetwork.org/docs/devices/arduino/api/cayennelpp.html
- 2. Integrate Application on TTN with Cayenne (Integration Page)
- 3. Sign up and Create Dashboard at Cayenne LoRa -> The Things Network -> Cayenne LPP

Cayenne my Devices

```
uint8_t addDigitalInput(uint8_t channel, uint8_t value);
uint8_t addDigitalOutput(uint8_t channel, uint8_t value);
uint8_t addAnalogInput(uint8_t channel, float value);
uint8_t addAnalogOutput(uint8_t channel, float value);
uint8_t addLuminosity(uint8_t channel, uint16_t lux);
uint8_t addPresence(uint8_t channel, uint8_t value);
uint8_t addTemperature(uint8_t channel, float celsius);
uint8_t addRelativeHumidity(uint8_t channel, float rh);
uint8_t addAccelerometer(uint8_t channel, float x, float y, float z);
uint8_t addBarometricPressure(uint8_t channel, float hpa);
uint8_t addGyrometer(uint8_t channel, float x, float y, float z);
uint8_t addGPS(uint8_t channel, float latitude, float longitude, float meters);
```


Device with 2 temperature sensors

Payload (Hex)	03 67 01 10 05 67 00 FF			
Data Channel	Туре	Value		
03 ⇒ 3	67 ⇒ Temperature	0110 = 272 ⇒ 27.2°C		
05 ⇒ 5	67 ⇒ Temperature	00FF = 255 ⇒ 25.5°C		

Туре	IPSO	LPP	Hex	Data Size	Data Resolution per bit
Digital Input	3200	0	0	1	1
Digital Output	3201	1	1	1	1
Analog Input	3202	2	2	2	0.01 Signed
Analog Output	3203	3	3	2	0.01 Signed
Illuminance Sensor	3301	101	65	2	1 Lux Unsigned MSB
Presence Sensor	3302	102	66	1	1
Temperature Sensor	3303	103	67	2	0.1 °C Signed MSB
Humidity Sensor	3304	104	68	1	0.5 % Unsigned
Accelerometer	3313	113	71	6	0.001 G Signed MSB per axis
Barometer	3315	115	73	2	0.1 hPa Unsigned MSB
Gyrometer	3334	134	86	6	0.01 °/s Signed MSB per axis
GPS Location	3336	136	88	9	Latitude : 0.0001 ° Signed MSB
					Longitude : 0.0001 ° Signed MSB
					Altitude : 0.01 meter Signed MSB

Q&A

