

Nanosatellite clusters for multi-spectral, bi-directional reflectance distribution function estimations

Sreeja Nag^{1,2,*}, Charles K. Gatebe², Olivier de Weck¹ ¹Massachusetts Institute of Technology, ²GESTAR/NASA Goddard Space Flight Center

*Email: sreeja n@mit.edu

MOTIVATION

Bus-like satellites => Small satellites => Constellations => Clusters

TERRA: 4,864 kg **EOS Flagship**

MicroMAS:4 kg NanoSat

DOME: 4 kg ++ Constellation

MotherCube: 4 kg ++ Fractionated S/C

Bi-Directional Reflective Distribution Function (BRDF)

Spaceborne gaps

- 1. Insufficient angles (ATSR, ASTER)
- 2. Low ground resolution (POLDER, CERES)
- 3. Low number of spectral bands (MISR, CERES)
- 4. Insufficient repeat (ASTER, SPECTRA)
- 5. No solar principal plane samples (MODIS)
- 6. ~All nearing end of life

Airborne gaps

- Spatially local
- Discontinuous data
- High cost per unit area and per unit time

IMPLEMENTATION

Proposed Cluster Geometries (LVLH Frame)

