第五章 可数性公理

本章主要介绍 4 种与可数性相关的拓扑性质,它们与度量空间性质、下章要讨论的分离性公理都是密切相关的. 本章的要点是给出它们之间的基本关系.

教学重点:

第一与第二可数性公理; 教学难点: 分离性公理.

5.1 第一与第二可数性定理

第二章介绍的空间的基,在生成拓扑空间,描述局部连通性,刻画连续性等方面都发挥了积极的作用.较少的基元对于进一步讨论空间的属性是重要的.

定义 5.1.1 若X有可数基,称X满足第二可数(性)公理,或是第二可数空间,简称A,空间.

定理 **5.1.1** . $R \Rightarrow A$,

证 令 $\mathbf{B} = \{(a,b) \mid a,b \in Q\}$, 定理 2.6.2, \mathbf{B} 是 \mathbf{R} 的可数基. 离散空间 X 具有可数基 X 是可数集.

下面讨论"局部基"性质. (定义 2.6.3)对 $x \in X$, 设 \mathbf{U}_x 是 x 的邻域系, 若 $\mathbf{V}_x \subset \mathbf{U}_x$ 满足: $\forall U \in \mathbf{U}_x$, $\exists V \in \mathbf{V}_x$ 使 $V \subset U$, 则称 \mathbf{V}_x 是 x 的邻域基, 若更设 \mathbf{V}_x 中每一元都是开的,则称 \mathbf{V}_x 是 x 的开邻域基或 局部基. 易验证, (1) 若 \mathbf{V}_x 是 x 在 X 的局部基; (2)(定理 2.6.7) 若 \mathbf{B} 是空间 X 的基, $x \in X$, 则 $\mathbf{B}_x = \{B \in \mathbf{B} | x \in B\}$ 是 x 的局部基.

定义 5.1.2 若X的每一点有可数邻域基,称X满足第一可数(性)公理,或是第一可数空间,简称A,空间。

定理 5.1.2 度量空间 $\Rightarrow A_1$.

证 $B_x = \{B(x,1/n) \mid n \in Z_{\perp}\}$ 是 x 的可数邻域基.

例 5.1.1 不可数多个点的可数补空间X, 非A

证 $x \in X$ 有可数局部基 \mathbf{V} , $\forall y \in X - \{x\}, \exists V_y \in \mathbf{V} \notin V_y \subset \{y\}^I, \{y\} \subset V_y^I$ 从而不可数集 $\{x\}^I \subset \cup \{V_y^I\}$ 可数集,矛盾.

定理 **5.1.3** A, $\Rightarrow A$.

证 若 B 是 X 的可数基, 则 $B_x = \{B \in B \mid x \in B\}$ 是 $x \in X$ 的可数邻域基.

逆命题不成立, 不可数的离散空间是反例.

定理 **5.1.4** 设 $f: X \to Y$ 连续、满、开映射,则 $X \not\in A_{\gamma}(A_{\gamma}) \Rightarrow Y \not\in A_{\gamma}(A_{\gamma})$.

证 设 **B** 是 *X* 的可数基,则 **B***={ $f(B)|B \in B$ }是 Y 的可数基. 事实上,设*U* 是 *y* 在 *Y* 中的邻 域,収 $x \in f^{-1}(y)$,则 $f^{-1}(U)$ 是 *x* 的邻域, $\exists B \in B$ 使 $x \in B \subset f^{-1}(U)$, $y \in f(B) \subset U$. 证明也适用于: 设 **V** 是 *x* 在 *X* 的局部基,则 **V***={ $f(V)|V \in V$ }是 f(x) 在 *Y* 的局部基.

可遗传性质(如, 离散性, 平庸性), 开遗传性质(如, 局部连通性), 闭遗传性质.

定理 **5.1.5** A_1, A_2 , 都是可遗传性质.

证 设 $Y\subset X$. 若 \mathbf{B} 是X的可数基,则 $\mathbf{B}_{|Y}$ 是Y的可数基. 若 $y\in Y$ 且 \mathbf{V} 是y在X中的邻域基,则 $\mathbf{V}_{|Y}$ 是y在Y中的可数邻域基 .

定理 **5.1.6** A_1, A_2 , 都是有限可积性.

证 仅证若 X_1, X_2 是 A_1 空间,则 $X_1 \times X_2$ 是 A_1 空间。 $x = (x_1, x_2) \in X_1 \times X_2$,分别设 x_1, x_2 在 X_1, X_2 的可数局部基是 $\mathbf{V}_1, \mathbf{V}_2$,令 $\mathbf{V} = \{V_1 \times V_2 \mid V_1 \in \mathbf{V}_1, \ V_2 \in \mathbf{V}_2\}$,则 \mathbf{V} 是 x 在 $X_1 \times X_2$ 中的可数局部基。事实 上,设 U 是 x 在 $X_1 \times X_2$ 中的邻域,则分别 $\exists X_1, X_2$ 的开集 U_1, U_2 使 $x \in U_1 \times U_2 \subseteq U^n$, $\exists V_1 \in \mathbf{V}_1, \ V_1 \in \mathbf{V}_2$,使 $V_1 \subset U_1$ 且 $V_2 \subset U_2$,则 $V_1 \times V_2 \subseteq U_1 \times U_2 \subseteq U$.

推论 $5.1.7 \, \mathbb{R}^n$ 的每一子空间是 A_n .

作为**2.7** 的继续,下面讨论第一可数空间的序列性质. X 中的集列 $\{A_i\}_{i\in Z_*}$ 称为下降的,如果 $A_1\supset A_2\supset ...$

定理 5.1.8 X 在x 有可数邻域基 $\Leftrightarrow X$ 在x 有下降的可数邻域基 $\{U_i\}_{i\in Z}$.

证 "⇒"设 $\{V_i\}_{i\in\mathbb{Z}_+}$ 是x在X的可数邻域基,令 $U_i=V_1\cap V_2\cap V_i$.

定理 **5.1.9** 设X 是 A_1 空间, $A \subset X$, $A - \{x\}$ 中序列 $x_i \to x \Leftrightarrow x \in d(A)$..

证 定理 2.7.2 已证"⇒",

下证" \leftarrow ". 设 $\{U_i\}_{i\in\mathbb{Z}}$ 是x 在X中下降的可数邻域基. $\exists x_i \in U_i \cap (A-\{x\}) \, \text{则} \, x_i \to x$. 事

实上, $\forall x$ 的邻域 $U, \exists n \in Z_-$ 使 $U_n \subset U, \forall i > n, x_i \in U_i \subset U_n \subset U$.

定理 **5.1.10** 设X 是 A_i 空间. $f: X \to Y$ 连续 $\Leftrightarrow \forall x_i \to x \in X, f(x_i) \to f(x)$.

证 定理 2.7.3 已证"⇒",下证"⇐".若 f 在某点 $x \in X$ 不连续,存在f(x)的邻域 V 使 f¹(V) 不 是 x 的 邻域. 设 $\{U_i\}_{i \in \mathbb{Z}_+}$ 是 x 在 X 中 下 降 的 可 数 邻 域 基 , 那 么 每 $U_i \not\subset f^{-1}(V)$, $\exists x_i \in U_i - f^{-1}(V)$,,于是 $x_i \to x$.,从 而 $f(x_i) \to f(x) \in V$, $\exists n \in \mathbb{Z}_-$, $\forall i > n$ 有 $f(x_i) \in V_i$, $x_i \in f^{-1}(V)$,矛盾.

5.2 可分空间

定义 **5.2.1** $D \subset X$ 称为 X 的稠密子集,若 c(D) = X,即若 $U \in X$ 的非空开集,则 $U \cap D \neq \phi$.

定义 5.2.2 若 X 有可数的稠密子集,X 称为可分空间.

定理 5.2.2 $A_2 \Rightarrow 可分$.

证 设 \mathbf{B} 是 X 的可数基, $\forall B \in \mathbf{B}$, 取定 $x_B \in B$, 令 $D = \{x_B \mid B \in \mathbf{B}\}$, 则 D 可数.

 $\forall x \in X \$ 及x 的任 · 邻域 $U, \exists B \in \mathbf{B}$ 使 $x \in B \subset U$, 那么 $x_B \in U \cap D$,所以 $U \cap D \neq \phi$,即 $x \in c(D).c(D) = X$.

由此,A,的每一子空间是可分的; \mathbb{R}^n 的每一子空间是可分的.

例**5.2.1**设 (X, τ) 是拓扑空间, $\infty \notin X$ 定义 $X^* = X \cup \{\infty\}, \tau^* = \{A \cup \{\infty\} \mid A \in \tau\} \cup \{\phi\}$. 易验证, (X^*, τ^*) 是拓扑空间; $B \in B$ 是 (X, τ) 的基 $\Leftrightarrow B^* = \{B \cup \{\infty\} \mid B \in B$ 是 (X^*, τ^*) 的基.

- (1) (X^*, τ^*) 是可分空间,因为 $\{\infty\}$ 是 X^* 的稠密集;
- (2) $(X^*, \tau^*) \not\in A$, $\Leftrightarrow (X, \tau) \not\in A$,;
- (3) (X,τ) 是 (X^*,τ^*) 的(闭)子空间,因为 $\tau = \tau_*$.

现在,取 (X,τ) 是不可数的离散空间,则 (X,τ) 不是可分空间, (X^*,τ^*) 是可分 ,非 A_2 空间,所以 ,(1)可分的不一定是A, 的;(2)可分性不是(图)遗传性.

定理 5.2.4 可分度量. $\Rightarrow A$,

证 设D 是度量空间 (X, ρ) 的可数稠 密集 .令 $\mathbf{B} = \{B(x, 1/n) \mid x \in D, n \in Z_-\}$,则 \mathbf{B} 是X的可数基. 事实上, $\forall y \in X$ 及y在X中的邻域 $U, \exists k \in Z_-$ 使 $B(y, 1/k) \subset U$. 由于 $c(D) = X, \exists y^* \in B(y, 1/2k) \cap D \quad , \quad \text{那么} B(y^*, 1/2k) \in \mathbf{B} \text{ 且}$

 $y \in B(y^*, 1/2k) \subset B(y, 1/k) \subset U$.(设 $x \in B(y^*, 1/2k), \rho(x, y) \le \rho(x, y^*) + \rho(y^*, y) < 1/k$) 由此,可分度量空间的每一子空间是可分的.

5.3 Lindelof 空间

定义 **5.3.1** 设 **A** 是 X 的 \mathcal{L} 的 \mathcal{L} 的 \mathcal{L} 的 \mathcal{L} 是 \mathcal{L} 的 $\mathcal{$

数学分析中的 Heine-Borel 定理: R 的闭区间的每一开覆盖有有限了覆盖.

定义 $5.3.2 \, \mathrm{X}$ 称为Lindelof空间,若 X的每一开覆盖有可数子覆盖.

含有不可数多个点的离散空间不是 Lindelof 空间.

定理 **5.3.1**(Lindelof 定理) $A_2 \Rightarrow$ Lindelof.

证 设 X 有可数基 B. 让 A 是 X 的任 开覆盖,令 $B_1 = \{B \in B \mid \exists A \in A \notin B \subset A\} = \{B_n\}_{n \in \mathbb{Z}_+}, \exists A_n \in A$ 使 $B_n \subset A_n$. 则 $\{A_n\}_{n \in \mathbb{Z}_+}$ 是 A 的可数子覆盖 . 事实上 , $\forall x \in X, \exists A \in A$ 使 $x \in A, A \subset B \in B$ 使 $x \in B \subset A$,设 $B = B_n$,那么 $x \in A_n$.

由此, A_2 空间的每一子空间是 Lindelof 空间.(推论 5.3.2)

例 5.3.1 含有不可数个点的可数补空间 X: Lindelof 空间.

例 5.1.1 已证明X 不是 A_1 空间。设 A 是 X 的开覆盖.取定 $\phi \neq A \in A_1$, $\forall x \in A'$, $\exists A_x \in A'$ 使 $\forall x \in A_x$,则 $A \cup \{A_x \mid x \in A'\}$ 是 A 的可数子覆盖 . 故 X 是 Lindclof 空间。同理,X 的每一子空间也是Lindclof 空间。

定理 **5.3.3** Lindelof +度量 $\Rightarrow A_{2}$.

证 设 (X, ρ) 是 Lindelof 的度量空间. $\forall k \in Z_-, X$ 的开覆盖 $\mathbf{A}_k = \{B(x, 1/k) \mid x \in X\}$ 有可数子覆盖 $\mathbf{B}_k = \{B(x_{ki}, 1/k) \mid i \in Z_-\}$. 下证 $D = \{x_{ki} \mid k, i \in Z_-\}$ 是 X 的可数稠密集. 对 X 的任一非空开集 $U, \exists x \in U, \exists k \in Z_-$ 使 $B(x, 1/k) \subset U$. 由于 \mathbf{B}_k 是 X 的覆盖, $\exists i \in Z_-$ 使

 $x \in B(x_{ki},1/k)$,那么 $x_{ki} \in B(x,1/k) \subset U$, 于是 $D \cap U \neq \phi$. 故 X 是可分空间,再由定理 5.2.4, X 是 A_2 .

定理 5.3.4 Lindelof 是可闭遗传性质.

证 设 Y 是 Lindclof 空间 X 的闭子空间。 A 是 Y 的开覆盖。 $\forall A \in A$, $\exists X$ 的开集 U_A 使 $U_A \cap Y = A$. 那么 X 的开覆盖 $\{U_A \mid A \in A\} \cup \{Y'\}$ 有可数子覆盖 $\{U_{Ai} \mid i \in Z_-\} \cup \{Y'\}$ 于是 $\{A_i \mid i \in Z_-\}$ 是 A 关于 Y 的可数子覆盖。