Topological Data Analysis

2022-2023

Lecture 9

Stability Theorem

1 December 2022

Sublevel sets

For a continuous function $f: [a,b] \to \mathbb{R}$ denote, for each $t \in \mathbb{R}$, $L_t(f) = \{x \in [a,b] \mid f(x) \le t \}$, called a sublevel set.

Note that if $S \le t$ then $L_S(f) \subseteq L_t(f)$.

$$L_t(f) = \phi$$
 if $t < \inf(f)$
 $L_t(f) = [a,b]$ if $t \ge \sup(f)$

We call $x_0 \in [a,b]a$ <u>critical</u> <u>point</u> if it is a local maximum or a local minimum, including $x_0 = a$ and $x_0 = b$.

If xo is a critical point, then f(xo) is a critical value.

If f is differentiable and $x_0 \in (a,b)$ is a critical point, then $f'(x_0) = 0$.

From now on we assume that I has finitely many critical points (hence each critical point is isolated).

Under this assumption, we associate to fa persistence module:

 $V_{t}(f) = Ho(L_{t}(f))$, where H_{0} denotes zero-homology, and we let $\pi_{s,t}: V_s(f) \rightarrow V_t(f)$ be induced by the inclusion $V_s(f) \longrightarrow V_t(f) \text{ if } s \leq t.$

The spectrum of (V, π) is contained in the set of critical points of f.

Here b is a critical point of f but the spectrum of V(f) is $\{a,c,d\}.$

Stability Theorem:

$$d_{int}\left(V(f),V(g)\right) \leq \|f-g\|_{\infty}$$

Here $||f-g||_{\infty} = \sup \{|f(x)-g(x)|: a \leq x \leq b \}$.

