Tabelle: Resonanzfrequenzen (in kHz) von Silizium-Biegebalken bei Fremdanregung im Vergleich mit FEM-Berechnungen

Mode	FEM-Berechnung		Me	Messung	
	l = 10 mm	l = 8 mm	l = 10 mm	l = 8 mm	
Z1	4,349	6,787	4,150	7,255	
Z2	12,010	18,760	11,390	19,445	
Z3	23,612	36,941	22,410	36,435	
T1	30,437	38,538			

Die Resonanzfrequenz der Grundbiegeschwingung eines doppelseitig eingespannten

1

Biegebalkens der Länge 1 und Dicke t läßt sich analytisch berechnen:

$$f = 1,028t \text{ over } 1 \sup 2 - \operatorname{sqrt} \{ E \text{ over } \{ (1 - ny^2) \rho \} \}$$

$$f = 1,028 \frac{t}{1^2} \sqrt{\frac{E}{(1-ny^2)\rho}}$$

Materialdaten von Silizium in <110>-Kristallrichtung:

 $\begin{array}{ll} \text{- Elastizit"atsmodul:} & E = 168,9 \text{ GPa} \\ \text{- Poissonzahl:} & \nu = 0,063 \\ \text{- Dichte:} & \rho = 2329 \text{ kg/m}^3 \end{array}$

·

Analytische Berechnung:

-1 = 10 mm f = 4,386 kHz-1 = 8 mm f = 6,853 kHz