Algoritmos em Grafos: Introdução

R. Rossetti, A.P. Rocha, A. Pereira, P.B. Silva, T. Fernandes
CAL, MIEIC, FEUP
Março de 2011

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

Índice

- ◆ Revisão de conceitos e definições
- Exemplificar aplicações
- ♦ Representação
- ◆ Pesquisa em profundidade e em largura
- ◆ Ordenação topológica

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

,

Grafos: Introdução (Março, 2011)

Revisão de conceitos e definições

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

Conceito de grafo

- **♦** Grafo G = (V, E)
 - ➤ V conjunto de vértices (ou nós)
 - > E conjunto de arestas (ou arcos)
 - \gt cada aresta é um par de vértices (v, w), em que v, w \in V
 - > se o par for ordenado, o grafo é dirigido, ou digrafo
 - > um vértice w é adjacente a um vértice v se e só se (v, w)∈E
 - num grafo não dirigido com aresta (v, w) e, logo, (w, v), w é adjacente a v e v adjacente a w
 - > as arestas têm por vezes associado um custo ou peso

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

_

Grafos dirigidos e não dirigidos

G1= (Cruzamentos, Ruas)

G2 = (Cidades, Estradas)

- Algumas aplicações
 - > Tráfego, transporte (controlo, gestão)
 - Navegação GPS
 - > Abastecimento de água e redes de saneamento (gestão de carga)
 - > Gestão de redes de energia
 - > Workflows e cadeias de decisão
 - > Planeamento e gestão de projectos
 - Compiladores, sistemas de ficheiros, jogos, criptografía, redes, Internet
 - > Redes Bayesianas e probabilísticas (Processo de Manchester)

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

Caminhos e ciclos

- ♦ Caminho sequência de vértices v_1 , ..., v_n tais que $(v_i, v_{i+1}) \in E$, $1 \le i < n$
 - comprimento do caminho é o número de arestas, n-1
 - > se n = 1, caminho reduz-se a um vértice e tem comprimento 0
 - \rightarrow anel caminho v, v \Rightarrow (v, v) \in E , comprimento 1; raro
 - caminho simples todos os vértices distintos excepto possivelmente o primeiro e o último
- ♦ Ciclo caminho de comprimento ≥ 1 com $v_1 = v_n$
 - num grafo não dirigido requer-se que as arestas sejam diferentes
 - DAG (Grafo Dirigido Acíclico) é um grafo dirigido sem ciclo. Para qualquer vértice v, não há nenhuma ligação dirigida começando e acabando em v.

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

6

Conectividade e densidade

Conectividade:

- > Grafo não dirigido é conexo sse houver um caminho a ligar qualquer par de vértices
- Digrafo com a mesma propriedade: fortemente conexo, se p/ todo v, w ∈ V existir em G um caminho de v para w e w para v.
- Digrafo fracamente conexo (ou não fortemente conexo): se, para toda bipartição (X, Y) de seu conjunto de vértices V, alguma aresta (x, y) tem uma ponta em X e outra em Y. Ou seja, não há bipartição vazia!

♦ Densidade:

- \rightarrow Grafo denso $|E| = \Theta(V^2)$
 - > Grafo completo existe uma aresta entre qualquer par de nós
- \rightarrow Grafo esparso $|E| = \Theta(V)$

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

8

Representação

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

Matriz de adjacências

	0 0 0 0 0 0	2	3	4	5	6	7
1	0	1	1	1	0	0	0
2	0	0	0	1	1	0	0
3	0	0	0	0	0	1	0
4	0	0	1	0	0	1	1
5	0	0	0	1	0	0	1
6	0	0	0	0	0	0	0
7	0	0	0	0	0	1	0

- \Rightarrow a[u][v] = 1 sse (u, v) \in E
- > elementos da matriz podem ser os pesos (0 não há aresta)
- > grafo não dirigido matriz simétrica
- > apropriada para grafos densos
 - 3000 cruzamentos x 12 000 troços de ruas (4 por cruzamento)
 9 000 000 de elementos na matriz!

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

Lista de adjacências

- ♦ Estrutura típica para grafos esparsos
 - > para cada vértice, mantém-se a lista dos vértices adjacentes
 - > vector de cabeças de lista, indexado pelos vértices
 - > espaço é O(|E| + |V|)
 - > pesquisa de adjacentes em tempo proporcional ao número destes
- ♦ Grafo não dirigido: lista com dobro do espaço

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 201

0

Representação

 Normalmente precisamos de guardar informação adicional em cada vértice e em cada aresta (nome, peso, etc.), pelo que se opta por uma representação mais complexa, como por exemplo:

```
class Graph {
    ArrayList<Vertex> vertexSet;
}

class Vertex {
    String name;
    LinkedList<Edge> adj; //arestas a sair deste
    vértice
}

class Edge {
    Vertex dest;
    double weight;
}
```

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011

Referências e mais informação

- "Data Structures and Algorithm Analysis in Java",
 Second Edition, Mark Allen Weiss, Addison Wesley, 2006
- "Introduction to Algorithms", Second Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, The MIT Press, 2001

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP, Março de 2011