Prob [Felix was in Box 1 at time 0 AND he didn't move; OR Felix was in Box 2 at time 0 AND he moved]

- = Prob[Felix was in Box 1 at time 0 AND he
 didn't move] +
 Prob[Felix was in Box 2 at time 0 AND he
 moved]
- = Prob[he didn't move | Felix was in Box 1 at
 time 0] Prob[Felix was in Box 1 at time 0] +
 Prob[he moved | Felix was in Box 2 at time 0
] Prob[Felix was in Box 2 at time 0]

$$= (1-0.4) * 0.3 + 0.2 * (1-0.3)$$

Prob[A or B] = Prob[A] + Prob[B] – Prob[A and B]

 $Prob[A \text{ and } B] = Prob[A] Prob[B \mid A]$

```
Probability [0 arrivals in \delta]

= (\lambda \delta)^0 \exp(-\lambda \delta) / 0!

= \exp(-\lambda \delta)

= 1 - \lambda \delta + (\lambda \delta)^2 / 2 + ...

\approx 1 - \lambda \delta
```

```
Probability [1 arrival in \delta]
= (\lambda \delta)^1 \exp(-\lambda \delta) / 1!
= \lambda \delta (1 - \lambda \delta + (\lambda \delta)^2 / 2 + ....)
\cong \lambda \delta
```

Probability [2 arrivals in
$$\delta$$
]
= $(\lambda \delta)^2 \exp(-\lambda \delta) / 2!$
= $(\lambda \delta)^2 (1 - \lambda \delta + (\lambda \delta)^2 / 2 +) / 2!$
 $\cong 0$

$$\exp(-\lambda \delta)$$
= 1 - $\lambda \delta$ + $(\lambda \delta)^2$ / 2 +

Probability [0 arrivals in δ] = $1 - \lambda \delta$ Probability [1 arrival in δ] = $\lambda \delta$ Probability [2 or more arrivals in δ] = 0

Probability [a job will finish its service in next δ seconds] = μ δ Probability [a job will NOT finish its service in next δ seconds] = 1- μ δ

	Meaning
λ	Arrival rate (= 1/mean inter-arrival time)
μ	service rate (= 1 / mean service time)