

SÃO PAULO TECH SCHOOL TECNOLOGIA DA INFORMAÇÃO

PROJETO STUD - DataTech

Sensores de Temperatura e Umidade para Datacenters

Cynthia Fernandes Ferro Angi RA: 01242099

Gabriel Cose Araujo RA: 01242019

Guilherme Ferreira Santos RA: 01242134

Guilherme Rebouças Ferreira RA: 01242053

Larissa Alves Silvério RA: 01242073

Vitor Kaynan Araújo RA: 01242098

Contexto

Os datacenters são fundamentais para o avanço tecnológico e sustentam a economia digital em expansão. À medida que cresce a dependência de serviços em nuvem, inteligência artificial e grandes volumes de dados, a demanda por datacenters aumenta, exigindo infraestruturas maiores e mais sofisticadas. São constituídos de mainframes, diversos servidores (web, aplicativos, arquivos e mensagens), infraestrutura de rede e outros. Os datacenters trabalham de forma ininterrupta, possibilitando que as empresas possam operar 24h por dia ou de acordo com suas necessidades. Além disso, também apresenta outros benefícios para as empresas, como redução do custo total da operação e ambiente necessário para o armazenamento (alocado de forma virtual). Esses centros armazenam dados essenciais e possuem equipamentos sensíveis que necessitam de controle rigoroso de temperatura e umidade, idealmente entre 18°C e 22°C e 40% a 55%, respectivamente.

Com uma umidade diferente do valor ideal abre-se portas para possíveis danos nos componentes dos servidores, como a corrosão e oxidação, que podem culminar em perdas de dados importantes ou sensíveis das empresas e, curtos-circuitos que podem levar a incêndios. Outro ponto a se observar, quando a umidade do ambiente está alta, aumenta-se a quantidade de poeira, fungos e outros microrganismos que podem diminuir o desempenho dos equipamentos.

Nesse mesmo contexto, altas temperaturas podem provocar fundição das ligas de estanho, que são utilizadas em placas eletrônicas, levando a curtos-circuitos nos equipamentos.

A junção de temperatura e umidade altas, podem ocasionar o que é chamado de ponto de orvalho. Como os servidores trabalham de forma ininterrupta, os equipamentos podem chegar a temperaturas de 60°C, tendo uma variação de temperatura relativamente rápida. A utilização de equipamentos de resfriamento pode diminuir a temperatura, porém, se não houver o controle da umidade também, há chance de vermos a condensação dessa umidade elevada nas paredes e teto dos datacenters.

A perda de um datacenter pode ter impactos graves, como a perda de dados corporativos e pessoais, altos custos financeiros e interrupções significativas em serviços críticos (bancos, hospitais, órgãos governamentais). Em 2022, o custo médio de inatividade de um datacenter foi de \$9.000 por minuto, com incidentes graves podendo custar milhões de dólares. Além disso, o controle inadequado de temperatura e umidade pode aumentar o consumo de energia, acelerar o desgaste dos equipamentos e causar danos à sustentabilidade, levando a maiores emissões de gases de efeito estufa e custos operacionais.

Recentemente, o Facebook enfrentou um prejuízo significativo devido a uma inatividade de 6 horas, resultando em uma preda de aproximadamente US\$100 milhões, ou cerca de US\$3000,00 por minuto, com perdas globais que chegaram a US\$1 bilhão. A empresa já havia tido um problema com seu datacenter, em 2011, quando houve registro de 95% de

umidade dentro dele, fazendo com que diversos hardwares estourassem e servidores fossem perdidos.

Outro exemplo foi na Delta Airlines em 2016, por conta do mal monitoramento e falhas nos sistemas de resfriamento, se houve uma falta de energia no datacenter da Delta Airlines em Atlanta, nos EUA e por causa disso aconteceu um desligamento nos sistemas da companhia aérea que resultou em diversos cancelamentos de voos tendo um prejuízo de US\$150 milhões.

Para mitigar esses problemas, é crucial investir em sistemas de resfriamento e gestão térmica adequados. Iniciativas como as promovidas pela TICAMP e PST (empresas que já atuam dentro do mercado de monitoramento de temperatura e umidade em datacenters) estão em andamento para melhorar o controle de temperatura em datacenters, visando garantir a operação eficiente e sustentável desses centros vitais.

Na imagem pode ser observado a quantidade de datacenters espalhados pelo mundo. Com a quantidade crescente desses datacenters, a necessidade de um monitoramento da temperatura e umidade, tanto para as empresas que fornecem o serviço de nuvem, quanto para os datacenters locais que algumas empresas ainda mantêm, é muito importante, de forma que possam fazer seus equipamentos trabalharem de forma mais eficiente, com maior vida útil e otimizando os gastos com resfriamento e desumidificadores.

Objetivo

O projeto STUD - Sensores de Temperatura e Umidade para Datacenters, tem como objetivo principal auxiliar as empresas com intenção de implementar um sistema de monitoramento de temperatura e umidade usando sensores DHT11 e placas Arduino Uno R3. Em conformidade com as diretrizes ASHRAE (Sociedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar-Condicionado), o projeto deve atender a umidade entre 40% e 55% e a temperatura entre 18°C e 22°C.

Os sensores DHT11 são acessíveis e fornecem leituras precisas, enquanto as placas Arduino são versáteis e fáceis de programar, permitindo uma integração eficiente e uma configuração rápida do sistema de monitoramento, facilitando a implementação sem a necessidade de investimentos elevados, tornando a solução viável e eficaz para o projeto, oferecendo controle climático em datacenters, reduzindo problemas como o desgaste precoce dos equipamentos, perda de dados e custos associados a falhas e interrupções.

Justificativa

Esse projeto visa minimizar os riscos causados por temperatura e umidade de forma significativa, tendo o monitoramento ideal e prático, não apenas evitando problemas críticos, como também prolongando a vida útil dos equipamentos e assegurando a conformidade, conforme prevista nas diretrizes da ASHRAE (Sociedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar-Condicionado). Isso contribui para uma operação mais eficiente e reduz os custos operacionais gerais em cerca de 25%. Além do implemento do monitoramento que otimiza os recursos de controle de umidade e temperatura, reduzindo a utilização excessiva de resfriamento e desumidificadores do ambiente.

Comparado com outras soluções do mercado, a nossa abordagem oferece um custo-benefício acessível e eficaz para garantir a integridade e a continuidade dos serviços de datacenters.

Escopo

A proposta é garantir um sistema de alerta e notificações, quando os dados previstos de temperatura e o percentual de umidade, apresentarem valores diferentes do esperado (mínimo e máximo) para que os responsáveis possam tomar medidas que garantam a saúde dos equipamentos, seja com atuação simples, como regular a temperatura do arcondicionado, ou até mesmo, adquirir novos sistemas de resfriamento, minimizando os gastos

com novos componentes, manutenções dos produtos e risco com perda de dados armazenados.

O projeto irá implantar um sensor DHT11 e monitorar a temperatura e a umidade do ambiente de datacenter, onde será mantida a temperatura entre 18°C e 22°C e a umidade entre 40% e 55%, com ganho de monitoramento para tomada de decisão.

O cliente poderá acessar os dados capturados pelo sensor, através da conta criada e logada no nosso site. Os registros serão disponibilizados em banco de dados, para subsidiar a análise de modo a identificar padrões críticos ou possíveis problemas futuros.

Em caso de desvio da temperatura ou umidade além dos limites estabelecidos pela ASHRAE (Sociedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar-Condicionado), será disponibilizado monitoramento através de alertas para o responsável do datacenter para garantir a integridade dos equipamentos e a conformidade com as melhores práticas do setor.

Para que o cliente tenha visibilidade sobre os ganhos que o projeto tende a contribuir, foi desenvolvido o simulador financeiro, que será disponibilizado no site de acesso.

Como ferramenta, para implemento do site e da calculadora, será utilizado o Visual Studio Code como ambiente de desenvolvimento integrado (IDE), proporcionando uma experiência de codificação eficiente e personalizada.

A escolha do MySQL como sistema gerenciador de banco de dados (SGBD) é justificada pela sua robustez, escalabilidade e ampla compatibilidade com diversas linguagens de programação.

O GitHub será fundamental para o controle de versão do projeto, facilitando a colaboração entre os desenvolvedores, o acompanhamento das alterações e a criação de backups.

Para organização, utilizaremos a ferramenta de Gestão de Projetos Trello, que otimizará o gerenciamento do projeto e visualização de forma efetiva sobre o andamento e evolução das tarefas planejadas.

O projeto será concluído até o dia 12-12-2024, com todos os entregáveis validados pelos respectivos critérios de aceite. Os entregáveis foram divididos em 3 sprints, sendo uma entregue no dia 11-09-2024, a segunda no dia 23-10-2024 e a última no dia 12-12-2024.

Como nossa solução funciona

Premissas

- É de extrema importância que os responsáveis tenham uma equipe dedicada para tratar da análise de dados referente a temperatura e umidade do datacenter.
- A empresa necessariamente deverá ter acesso a internet e a desktop, para acessar os dados gráficos, disponibilizados em nosso sistema web.
- Tomada de 127w para ligar o sensor.
- Conexão estável para realizar o acesso a aplicação web, onde receberá os dados coletados através do sensor. (Especificar os dados da internet)
- Os sensores são conectados fisicamente ao terminal que receberá os dados, logo a empresa deverá ter infraestrutura para a conexão de cabos.

Restrições

- Nossa prestação de serviços é restrita a implantação e manutenção dos sensores e monitoramentos.
- Não disponibilizamos equipamentos físicos e não-físicos para funcionamento do sistema (cabeamento, notebook, internet, equipe dedicada para monitoramento, entre outros da mesma natureza).
- A responsabilidade pela manutenção de equipamentos ou dispositivos dos datacenters é estritamente direcionada a empresa cliente, não recaindo qualquer ônus eventual a empresa fornecedora.
- Todos os dados capturados serão disponibilizados em escala Celsius, considerando a temperatura e a porcentagem de umidade, com restrição de implemento para empresa cliente que esteja em continente onde a leitura é feita por outras escalas.

Backlog

Requisitos

		Circulador financias aus corio
		Simulador financeiro, que seria
	a . .	colocado no site. Calculará o prejuizo
Algoritmo	Simulador Financeiro	financeiro do problema
		Criação de tabelas em SQL, para
		armazenar os dados necessários ao
Banco de Dados	Tabelas Banco de Dados	projeto
		Preencher as tabelas com as
Banco de Dados	Script - Inserção de Registros	informações pertinentes
Banco de Dados	Script - Consulta de dados	Realizar consulta de dados no SQL
		Primeira tabela contendo os dados
Banco de Dados	Primeira Tabela	dos clientes - usuário e senha
		Segunda tabela contendo os dados
Banco de Dados	Segunda Tabela	coletados pelos sensores
		Terceira tabela contendo os silos com
Banco de Dados	Terceira Tabela	sensores de cada usuário
Introd. Sistemas	Setup de Cliente de	
Operacionais	Virtualização	Instalação de máquina virtual
Introd. Sistemas		Instalação do Linux na máquina
Operacionais	Linux VM Local	virtual
-		Viituat
Introd. Sistemas		
Operacionais	Disco Lubuntu	Baixar disco do Lubuntu na máquina
<u> </u>	Instalação e Configuração IDE	
Computadores	Arduino	Montagem do sensor arduino
Arquitetura de	Ligar e Executar código com 1	
Computadores	sensor	Código do sensor arduino e execução
	Projeto criado e configurado	Upload do código do projeto no
Pesquisa & Inovação	no GitHub	Github
	Documento de contexto de	Documento contendo: contexto,
	negócio e justificativa do	objetivo, justificativa, escopo e
Pesquisa & Inovação	projeto	premissas/restrições
		Diagrama de negócio, esquemática da
Pesquisa & Inovação	Visão de negócio (diagrama)	explicação da solução do problema
<u> </u>		

Pesquisa & Inovação		Protótipo do site instituicional	Protótipo do site instituicional
Pesquisa & Inovação		Tela de Home	Protótipo da tela inicial do Site
Pesquisa & Inovação		Tela de Login	Protótipo de tela de Login
Pesquisa & Inovação		Tela de Sobre Nós	Protótipo de tela Sobre Nós
Pesquisa & Inovação		Tela de História	Protótipo de tela História
Pesquisa & Inovação		Tela de Endereço	Protótipo de tela Endereço
Pesquisa & Inovação		Tela de Contato	Protótipo de tela Contato
Pesquisa & Inovação		Protótipo dos botões	Protótipo dos botões conectando as diferentes páginas
Pesquisa & Inovação		Representação gráfica do simulador financeiro	Inserir a representação financeira de forma personalizada no site institucional
Tecnologia Informação	da	Ferramenta de Gestão configurada	Trello configurado, com todos os membros presentes na ferramenta, destacando prioridade e os responsáveis
Tecnologia Informação	da	Inserção dos colaboradores	Entrada de todos os colabodores na plataforma de gestão
Tecnologia Informação	da	Requisitos Populados na Ferramenta	Preenchimento dos requisitos na ferramenta de gestão do projeto (Trello)
Tecnologia Informação	da	Documentação do Projeto	Documentação do projeto (contexto, objetivo, justificativa e detalhes) como fonte segura de informações do projeto
Tecnologia Informação	da	Contexto	Explanação do problema, quanto custa o problema e se já existem soluções para o problema
Tecnologia Informação	da	Objetivo	Descrição do objetivo
Tecnologia Informação	da	Justificativa	Explicação da necessidade de realizar o projeto: Riscos do problema e benefícios da solução

Tecnologia da		
Informação	Premissas	Detalhamento das premissas
Tecnologia da		·
Informação	Restrições	Detalhamento das restrições
Tecnologia da		Descricação e explanação detalhada
Informação	Escopo	do escopo do projeto
Tecnologia da		Inserção das fontes utilizadas para o
Informação	Bibliografia	projeto
Tecnologia da		Backlog como documentação dos
Informação	Backlog	requisitos dos projetos
Tecnologia da		
Informação	Requisitos	Preencher requisitos do projeto
Tecnologia da		Decidir e preencher prioridade dos
Informação	Prioridade	projetos
	Site Estático Institucional –	
	Local em	3
Algoritmo	HTML/CSS/JavaScript	institucional
	Site Estático Dashboard	
l	(Gráfico com ChartJS) - Local	· ·
Algoritmo		dashboard
		Criação de um site estático com
Algoritmo	Site Estático Cadastro e Login	cadastro e login
	Modelagem Lógica do Projeto	Realização da modelagem lógica das
Banco de Dados	v1	tabelas
Banco de Dados	Script de criação do Banco	Script de criação das tabelas
		Tabelas criadas e em funcionamento
Banco de Dados	Tabelas criadas em BD local	em banco de dados local
Introd. Sistemas		Instalação do MySQL na máquina
Operacionais	Instalar MYSQL na VMLinux	virtual Linux
Introd. Sistemas	inserção de dados do Arduíno	Captação de dados do arduíno pelo
Operacionais	no MySQL	MySQL
Introd. Sistemas		
Operacionais	Validar a solução técnica	Validação do diagrama de solução
Pesquisa & Inovação	Projetos atualizado no GitHub	Atualização do projeto no GitHub

	Documentação do Projeto	Atualização da documentação do
Pesquisa & Inovação	Atualizada	projeto com as novas solicitações
Pesquisa & Inovação	Planilha de Riscos do Projeto	Planilha com os riscos do projeto
r esquisa a movação	r turitina de riiscos do i rojeto	r tamana com os riscos do projeto
Pesquisa & Inovação	Especificação da Dashboard	Especificações da dashboard via CSS
Arquitetura	Simular a integração do	
Computacional	Sistema	Banco de Dados
Arquitetura		
Computacional	Usar API Local / Sensor	Montagem e utilização do sensor
Tecnologia da		Produção e validação do diagrama de
Informação	Diagrama de Solução	solução
Tecnologia da	Atividades organizadas na	Trello e backlog configurados e
Informação	ferramenta de Gestão	periodicamente atualizados
		Modelagem das tabelas de banco de
Banco de Dados	Modelagem	dados
Banco de Dados	Tabelas	Criação das tabelas
		Cinação das tabeias
Arquitetura de		And the deduction of the
Computadores	Analytics	Analytics e dados reproduzidos
Arquitetura de		Representação em internet das
Computadores	IoT	coisas
Arquitetura de		Fazer a ligação do arduíno com o
Computadores	Arduino + BD	banco de dados
Arquitetura de		
Computadores	Aquisição de dados	Aquisição de dados via arduíno
	, ,	
	Infraestrutura simulada de cliente	
Operacionais	Cuente	Simulação da infraestrutura do cliente
Algoritmo	Site Institucional	Site institucional funcional
	Cadastro e Login acessando o	Cadastro e login relacionado ao
Algoritmo	Banco	banco
	Individualmente – Indicadores	
Algoritmo	acessando o Banco	Indicadores do banco de dados

Tecnologia	da	
Informação	Fluxograma de suporte	Fluxograma de suporte do projeto
Tecnologia	da	
Informação	Ferramenta de Help Desk	Ferramenta de suporte HelpDesk
Tecnologia	da	Documentação da mudança do
Informação	Documento de mudança	projeto
	Tabelas criadas no Banco de	Tabelas finais e funcionais para o
Pesquisa e inovação	Dados (Final)	login, cadastro e dados de sensores
Dooguios o inovoção	Documentação do Projeto	,
Pesquisa e inovação	Atualizada	projeto com as novas solicitações
Decaying a incyce a	Manual de Instaleção	Criação de um manual de instalação
Pesquisa e inovação	Manual de Instalação	do sensor
Pesquisa e inovação	PPT da Apresentação do Projeto	Power point para apresentação do projeto
	Dashboard (ChartJS)	Dashboard ChartJS usando dados do
Pesquisa e inovação	acessando o Banco	banco de dados