第 5 次作业题

1. 判断下列函数是否一致连续:

(1)
$$f(x) = x \sin x$$
 $(0 \le x < +\infty)$, (2) $f(x) = \frac{x^2 + 1}{4 - x^2}$ $(-1 < x < 1)$.

解: (1) $\forall n \geq 1$, 令 $x_n = 2n\pi$, $y_n = 2n\pi + \frac{1}{n}$, 则 $\lim_{n \to \infty} |x_n - y_n| = 0$, 且

$$\lim_{n \to \infty} |f(x_n) - f(y_n)| = \lim_{n \to \infty} \left(2n\pi + \frac{1}{n}\right) \sin \frac{1}{n} = 2\pi,$$

于是 $\exists N > 0$ 使得 $\forall n > N$ 时,均有 $|f(x_n) - f(y_n)| \ge \pi$,故 f 在 $[0, +\infty)$ 上不为一致连续.

(2) 由于 f 可延拓为 [-1,1] 上为初等函数,因此连续. 又 [-1,1] 为有界闭集,故 f 在 [-1,1] 上一致连续,因此也在 (-1,1) 上一致连续.

2.
$$\forall x \in \mathbb{R}, \ \not \in \mathcal{X} \ F(x) = \int_{x}^{x^2} e^{-xy^2} \, \mathrm{d}y, \ \not \in F'.$$

解: 由含参积分的求导与积分次序可交换性可知, $\forall x \in \mathbb{R}$, 均有

$$F'(x) = -\int_{x}^{x^{2}} y^{2} e^{-xy^{2}} dy + 2xe^{-x^{5}} - e^{-x^{3}}.$$

3. 设 $f: \mathbb{R} \to \mathbb{R}$ 可微. $\forall x \in \mathbb{R},$ 定义 $F(x) = \int_0^x (x+y)f(y) \, \mathrm{d}y,$ 求 F''.

解: 由含参积分的求导与积分次序可交换性可知, $\forall x \in \mathbb{R}$, 均有

$$F'(x) = \int_0^x f(y) \, dy + 2x f(x),$$

$$F''(x) = f(x) + 2f(x) + 2x f'(x) = 3f(x) + 2x f'(x).$$

4. $\ \psi \in \mathcal{C}^{(2)}(\mathbb{R}), \ \psi \in \mathcal{C}^{(1)}(\mathbb{R}), \ a \in \mathbb{R} \setminus \{0\}. \ \forall x, t \in \mathbb{R}, \ \not\in \mathcal{X}$

$$u(x,t) = \frac{1}{2} \left(\varphi(x+at) + \varphi(x-at) \right) + \frac{1}{2a} \int_{x-at}^{x+at} \psi(s) \, \mathrm{d}s.$$

求证: $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$.

证明: 由含参积分的求导与积分次序可交换性可知, $\forall x, t \in \mathbb{R}$, 均有

$$\frac{\partial u}{\partial t}(x,t) = \frac{a}{2} \left(\varphi'(x+at) - \varphi'(x-at) \right) + \frac{1}{2} \left(\psi(x+at) + \psi(x-at) \right),$$

$$\frac{\partial^2 u}{\partial t^2}(x,t) = \frac{a^2}{2} \left(\varphi''(x+at) + \varphi''(x-at) \right) + \frac{a}{2} \left(\psi'(x+at) - \psi'(x-at) \right),$$

$$\frac{\partial u}{\partial x}(x,t) = \frac{1}{2} \left(\varphi'(x+at) + \varphi'(x-at) \right) + \frac{1}{2a} \left(\psi(x+at) - \psi(x-at) \right),$$

$$\frac{\partial^2 u}{\partial x^2}(x,t) = \frac{1}{2} \left(\varphi''(x+at) + \varphi''(x-at) \right) + \frac{1}{2a} \left(\psi'(x+at) - \psi'(x-at) \right),$$

由此立刻可得 $\frac{\partial^2 u}{\partial t^2}(x,t) = a^2 \frac{\partial^2 u}{\partial x^2}(x,t)$.

5. 证明: 广义含参积分
$$\int_0^{+\infty} \frac{\sin(tx)}{x} dx$$
 在含 $t=0$ 的区间上不为一致收敛.

证明: 设 I 为包含 t=0 的任意区间, 则 $\exists a>0$ 使得 $[0,a]\subseteq I$ 或 $[-a,0]\subseteq I$. 由于 $\int_0^{+\infty} \frac{\sin(tx)}{x} \,\mathrm{d}x$ 关于 t 为奇函数, 不失一般性, 可假设 $[0,a]\subseteq I$. 对任意整数 $n\geqslant 1$, 我们有

$$\left| \int_{\frac{n}{a}}^{\frac{2n}{a}} \frac{\sin \frac{\pi ax}{4n}}{x} \, \mathrm{d}x \right| \stackrel{x = \frac{nu}{a}}{=} \left| \int_{1}^{2} \frac{\sin \frac{\pi u}{4}}{u} \, \mathrm{d}u \right| \geqslant \frac{1}{2} \sin \frac{\pi}{4} = \frac{\sqrt{2}}{4} > 0.$$

又 $\lim_{n\to\infty}\frac{n}{a}=\lim_{n\to\infty}\frac{2n}{a}=+\infty$,因此广义含参积分 $\int_0^{+\infty}\frac{\sin(tx)}{x}\,\mathrm{d}x$ 在 [0,a] 上不为一致收敛,进而可知在 I 上也不为一致收敛.

6. 讨论下列积分在所给区间上的一致收敛性:

$$(1) \int_{-\infty}^{+\infty} \frac{\cos(yx)}{1+x^2} dx \left(-\infty < y < +\infty\right); \quad (2) \int_{1}^{+\infty} e^{-tx} \frac{\cos x}{\sqrt{x}} dx \left(0 \leqslant t < +\infty\right).$$

解: $(1) \forall x, y \in \mathbb{R}$, 我们有 $\frac{|\cos(yx)|}{1+x^2} \leqslant \frac{1}{1+x^2}$, 而 $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1+x^2} \, \mathrm{d}x$ 收敛,于是由 Weierstrass 判别法可知广义含参积分 $\int_{-\infty}^{+\infty} \frac{\cos(yx)}{1+x^2} \, \mathrm{d}x$ 关于 $y \in \mathbb{R}$ 一致收敛.

7. 计算下列积分:

(1)
$$\int_{0}^{1} \frac{\arctan x}{x} \frac{1}{\sqrt{1-x^{2}}} \, \mathrm{d}x;$$
(2)
$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} \sin(\ln \frac{1}{x}) \, \mathrm{d}x \ (a, b > 0);$$
(3)
$$\int_{0}^{+\infty} \frac{e^{-ax^{2}} - e^{-bx^{2}}}{x} \, \mathrm{d}x \ (a, b > 0);$$
(4)
$$\int_{0}^{+\infty} xe^{-ax^{2}} \sin(yx) \, \mathrm{d}x \ (a > 0);$$
(5)
$$\int_{0}^{+\infty} \frac{\mathrm{d}x}{(y+x^{2})^{n+1}}, \ \mbox{$\rlap/$,$} \ \mbo$$

解: (1) 由题设立刻可知

$$\int_0^1 \frac{\arctan x}{x} \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \int_0^1 \left(\int_0^1 \frac{\mathrm{d}y}{\sqrt{1-x^2}(1+x^2y^2)} \right) \, \mathrm{d}x.$$

 $\forall x \in [0,1)$ 以及 $\forall y \in [0,1]$,我们有 $\frac{1}{\sqrt{1-x^2}(1+x^2y^2)}) \leqslant \frac{1}{\sqrt{1-x^2}}$,而

$$\int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{1-x^{2}}} = \arcsin x \Big|_{0}^{1} = \frac{\pi}{2}$$

收敛, 由 Weierstrass 判别法可知广义含参积分 $\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2(1+x^2y^2)}}$ 关于 $y\in[0,1]$ 一致收敛, 从而由积分与积分次序可交换性可知

$$\int_{0}^{1} \frac{\arctan x}{x} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{1} \left(\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}(1+x^{2}y^{2})} \right) dy$$

$$\stackrel{x=\sin t}{=} \int_{0}^{1} \left(\int_{0}^{\frac{\pi}{2}} \frac{d(\sin t)}{\sqrt{1-\sin^{2}t}(1+y^{2}\sin^{2}t)} \right) dy = \int_{0}^{1} \left(\int_{0}^{\frac{\pi}{2}} \frac{dt}{1+y^{2}\sin^{2}t} \right) dy$$

$$= \int_{0}^{1} \left(\int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}t d(\tan t)}{1+y^{2}\sin^{2}t} \right) dy \stackrel{u=\tan t}{=} \int_{0}^{1} \left(\int_{0}^{+\infty} \frac{du}{1+(1+y^{2})u^{2}} \right) dy$$

$$= \int_{0}^{1} \left(\frac{\arctan \sqrt{1+y^{2}u}}{\sqrt{1+y^{2}}} \right) \Big|_{0}^{+\infty} dy = \frac{\pi}{2} \int_{0}^{1} \frac{dy}{\sqrt{1+y^{2}}}$$

$$= \frac{\pi}{2} \log(y + \sqrt{1+y^{2}}) \Big|_{0}^{1} = \frac{\pi}{2} \log(1 + \sqrt{2}).$$

(2) 由题设立刻可知

$$\int_0^1 \frac{x^b - x^a}{\ln x} \sin(\ln \frac{1}{x}) dx = \int_0^1 \left(\int_a^b x^y \sin(\ln \frac{1}{x}) dy \right) dx.$$

注意到被积函数 $x^y\sin(\ln\frac{1}{x})$ 可被延拓成 $[0,1]\times[a,b]$ 上的连续函数,于是由积分与积分次序可交换性可知

$$\int_0^1 \frac{x^b - x^a}{\ln x} \sin(\ln \frac{1}{x}) \, dx = \int_a^b \left(\int_0^1 x^y \sin(\ln \frac{1}{x}) \, dx \right) dy.$$

 $\forall y \in [a, b]$, 下面来计算 $\int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) dx$.

方法 1. $\forall y \in [a,b]$, 我们均有

$$\int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) dx = \int_0^1 \operatorname{Im}\left(x^y e^{i\ln\frac{1}{x}}\right) dx = \int_0^1 \operatorname{Im}\left(x^{y-i}\right) dx = \operatorname{Im}\left(\frac{x^{y-i+1}}{y-i+1}\Big|_0^1\right)$$
$$= \operatorname{Im}\left(\frac{1}{y-i+1}\right) = \operatorname{Im}\left(\frac{y+1+i}{(y+1)^2+1}\right) = \frac{1}{1+(y+1)^2}.$$

方法 2. $\forall y \in [a,b]$, 我们均有

$$\begin{split} \int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) \mathrm{d}x &=& \frac{x^{y+1}}{y+1} \sin\left(\ln\frac{1}{x}\right) \Big|_0^1 + \frac{1}{y+1} \int_0^1 x^y \cos\left(\ln\frac{1}{x}\right) \mathrm{d}x \\ &=& \frac{x^{y+1}}{(y+1)^2} \cos\left(\ln\frac{1}{x}\right) \Big|_0^1 - \frac{1}{(y+1)^2} \int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) \mathrm{d}x \\ &=& \frac{1}{(y+1)^2} - \frac{1}{(y+1)^2} \int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) \mathrm{d}x, \end{split}$$

于是我们有
$$\int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) dx = \frac{1}{1 + (y+1)^2}$$
.

方法 3. $\forall y \in [a,b]$, 我们均有

$$\int_{0}^{1} x^{y} \sin\left(\ln\frac{1}{x}\right) dx \stackrel{t=\ln\frac{1}{x}}{=} \int_{+\infty}^{0} e^{-yt} \sin t \, d(e^{-t}) = \int_{0}^{+\infty} e^{-(1+y)t} \sin t \, dt$$

$$= \int_{0}^{+\infty} \operatorname{Im}(e^{(-y-1+i)t}) \, dt$$

$$= \operatorname{Im}\left(\frac{e^{(-y-1+i)t}}{-y-1+i}\Big|_{0}^{+\infty}\right)$$

$$= \operatorname{Im}\left(\frac{1}{y+1-i}\right)$$

$$= \frac{1}{1+(y+1)^{2}}.$$

于是
$$\int_0^1 x^y \sin\left(\ln\frac{1}{x}\right) dx = \frac{1}{1 + (y+1)^2}.$$
 综上所述可得

$$\int_0^1 \frac{x^b - x^a}{\ln x} \sin(\ln \frac{1}{x}) \, \mathrm{d}x = \int_a^b \frac{\mathrm{d}y}{1 + (y+1)^2} = \arctan(b+1) - \arctan(a+1).$$

$$\int_{0}^{+\infty} \frac{e^{-ax^{2}} - e^{-bx^{2}}}{x} dx = \int_{0}^{+\infty} \left(\int_{a}^{b} x e^{-yx^{2}} dy \right) dx$$

$$= \int_{a}^{b} \left(\int_{0}^{+\infty} x e^{-yx^{2}} dx \right) dy = \int_{a}^{b} \left(\frac{-e^{-yx^{2}}}{2y} \Big|_{0}^{+\infty} \right) dy$$

$$= \int_{a}^{b} \frac{dy}{2y} = \frac{1}{2} \log y \Big|_{a}^{b} = \frac{1}{2} \log \frac{b}{a}.$$

(4) 方法 1. $\forall y \in \mathbb{R}$, 定义 $I(y) = \int_0^{+\infty} xe^{-ax^2} \sin(yx) \, \mathrm{d}x$. $\forall x \geqslant 0$ 以及 $\forall y \in \mathbb{R}$, 令 $f(x,y) = xe^{-ax^2} \sin(yx)$, 则 $\frac{\partial f}{\partial y}(x,y) = x^2e^{-ax^2} \cos(yx)$. 注意到

$$|f(x,y)| \leqslant xe^{-ax^2}, \ \left|\frac{\partial f}{\partial y}(x,y)\right| \leqslant x^2e^{-ax^2},$$

且广义积分 $\int_0^{+\infty} x e^{-ax^2} dx$, $\int_0^{+\infty} x^2 e^{-ax^2} dx$ 均收敛, 由 Weierstrass 判别法可知广义含参积分 $\int_0^{+\infty} f(x,y) dx$, $\int_0^{+\infty} \frac{\partial f}{\partial y}(x,y) dx$ 关于 $y \in \mathbb{R}$ 一致收敛,

从而由求导与积分次序可交换性知 I 连续可导, 并且 $\forall y \in \mathbb{R} \setminus \{0\}$, 均有

$$I'(y) = \int_0^{+\infty} x^2 e^{-ax^2} \cos(yx) \, \mathrm{d}x = -\int_0^{+\infty} \frac{x \cos(yx)}{2a} \, \mathrm{d}(e^{-ax^2})$$

$$= -\frac{xe^{-ax^2}}{2a} \cos(yx) \Big|_0^{+\infty} + \frac{1}{2a} \int_0^{+\infty} e^{-ax^2} \, \mathrm{d}(x \cos(yx))$$

$$= -\frac{y}{2a} \int_0^{+\infty} xe^{-ax^2} \sin(yx) \, \mathrm{d}x + \frac{1}{2a} \int_0^{+\infty} e^{-ax^2} \cos(yx) \, \mathrm{d}x$$

$$= -\frac{y}{2a} I(y) + \frac{1}{2ay} e^{-ax^2} \sin(yx) \Big|_0^{+\infty} + \frac{1}{2ay} \int_0^{+\infty} 2xae^{-ax^2} \sin(yx) \, \mathrm{d}x$$

$$= \left(\frac{1}{y} - \frac{y}{2a}\right) I(y),$$

由此立刻可得 $I(y) = Ce^{\int (\frac{1}{y} - \frac{y}{2a}) \, \mathrm{d}y} = Cye^{-\frac{y^2}{4a}}$, 其中 C 为常数. 又 I 为连续函数, 因此该表达式对任意 $y \in \mathbb{R}$ 均成立. 另外, 我们还有

$$C = I'(0) = \int_0^{+\infty} x^2 e^{-ax^2} dx \stackrel{u=ax^2}{=} \int_0^{+\infty} \frac{u}{a} e^{-u} d\sqrt{\frac{u}{a}}$$
$$= \frac{1}{2a\sqrt{a}} \int_0^{+\infty} u^{\frac{1}{2}} e^{-u} du = \frac{1}{2a\sqrt{a}} \Gamma(\frac{3}{2}) = \frac{1}{4a} \sqrt{\frac{\pi}{a}},$$

由此立刻可得 $I(y) = \frac{1}{4a} \sqrt{\frac{\pi}{a}} y e^{-\frac{y^2}{4a}}$.

方法 2. 固定 $y \in \mathbb{R}$. $\forall a > 0$, 定义 $I(a) = \int_0^{+\infty} xe^{-ax^2}\sin(yx)\,\mathrm{d}x$. $\forall x \geqslant 0$, 我们有 $|xe^{-ax^2}\sin(yx)| \leqslant xe^{-ax^2}$, 而广义积分 $\int_0^{+\infty} xe^{-ax^2}\,\mathrm{d}x$ 收敛, 因此广义积分 I(a) 收敛, 并且由分部积分可得

$$I(a) = \frac{1}{2a} \int_0^{+\infty} e^{-ax^2} \sin(yx) \, d(ax^2) = -\frac{1}{2a} \int_0^{+\infty} \sin(yx) \, d(e^{-ax^2})$$
$$= -\frac{1}{2a} e^{-ax^2} \sin(yx) \Big|_0^{+\infty} + \frac{y}{2a} \int_0^{+\infty} e^{-ax^2} \cos(yx) \, dx$$
$$= \frac{y}{2a} \int_0^{+\infty} e^{-ax^2} \cos(yx) \, dx.$$

固定 $a_0>0$. 则 $\forall a\geqslant a_0$ 以及 $\forall x\geqslant 0$, 我们有 $|-x^2e^{-ax^2}\cos(yx)|\leqslant x^2e^{-a_0x^2}$. 又 $\lim_{x\to +\infty}x^2(1+x^2)e^{-a_0x^2}=0$, 而 $\int_0^{+\infty}\frac{\mathrm{d}x}{1+x^2}$ 收敛,从而 $\int_0^{+\infty}x^2e^{-a_0x^2}\,\mathrm{d}x$ 收敛,进而由 Weierstrass 判别法知广义含参积分 $-\int_0^{+\infty}x^2e^{-ax^2}\cos(yx)\mathrm{d}x$ 关于 $a\in [a_0,+\infty)$ 一致收敛,于是由求导与积分次序可交换性可知

$$\frac{d(2aI(a))}{da} = -y \int_0^{+\infty} x^2 e^{-ax^2} \cos(yx) dx = \frac{y}{2a} \int_0^{+\infty} x \cos(yx) d(e^{-ax^2})$$

$$= \frac{y}{2a} e^{-ax^2} x \cos(yx) \Big|_0^{+\infty} - \frac{y}{2a} \int_0^{+\infty} e^{-ax^2} d(x \cos(yx))$$

$$= \frac{y^2}{2a} \int_0^{+\infty} x e^{-ax^2} \sin(yx) dx - \frac{y}{2a} \int_0^{+\infty} \cos(yx) e^{-ax^2} dx = \frac{y^2 - 2a}{2a} I(a).$$

也即 $I'(a) + \frac{6a-y^2}{4a^2}I(a) = 0$. 从而 $\forall a \geqslant a_0$, 我们有

$$I(a) = \frac{C}{a\sqrt{a}}e^{-\frac{y^2}{4a}},$$

其中 C 为常数. 再由 a_0 的任意性可知 $\forall a>0$,我们有 $I(a)=\frac{C}{a\sqrt{a}}e^{-\frac{y^2}{4a}}$. 则

$$C = a\sqrt{a}e^{\frac{y^2}{4a}}I(a) = \frac{y}{2}\sqrt{a}e^{\frac{y^2}{4a}}\int_0^{+\infty} e^{-ax^2}\cos(yx)\,dx$$

$$\stackrel{t=\sqrt{a}x}{=} \frac{y}{2}e^{\frac{y^2}{4a}}\int_0^{+\infty} e^{-t^2}\cos(\frac{y}{\sqrt{a}})\,dt$$

$$\stackrel{b=\frac{1}{a}}{=} \frac{y}{2}e^{\frac{y^2b}{4}}\int_0^{+\infty} e^{-t^2}\cos(y\sqrt{b})\,dt.$$

 $\forall t \geqslant 0$,我们有 $|e^{-t^2}\cos(y\sqrt{b})| \leqslant e^{-t^2}$,而广义积分 $\int_0^{+\infty} e^{-t^2} \, \mathrm{d}t \, \, \mathrm{k}$ 敛,于是由 Weierstrass 判别法可知广义含参积分 $\int_0^{+\infty} e^{-t^2} \cos(y\sqrt{b}) \, \mathrm{d}t \, \, \mathrm{关}$ 于 $b \in [0,+\infty)$ 一致收敛,从而由极限与积分次序可交换性得

$$C = \lim_{b \to 0^{-}} \frac{y}{2} e^{\frac{y^{2}b}{4}} \int_{0}^{+\infty} e^{-t^{2}} \cos(y\sqrt{b}) dt = \frac{y}{2} \int_{0}^{+\infty} e^{-t^{2}} dt$$
$$\stackrel{u=t^{2}}{=} \frac{y}{4} \int_{0}^{+\infty} u^{-\frac{1}{2}} e^{-u} du = \frac{y}{4} \Gamma(\frac{1}{2}) = \frac{y}{4} \sqrt{\pi}.$$

由此可知, $\forall a > 0$, 我们有 $I(a) = \frac{y}{4a} \sqrt{\frac{\pi}{a}} e^{-\frac{y^2}{4a}}$.

(5) 对任意整数 $n \ge 0$ 以及对任意 y > 0, 定义

$$I_n(y) = \int_0^{+\infty} \frac{\mathrm{d}x}{(y+x^2)^{n+1}}.$$

固定 a>0. $\forall y\geqslant a$ 及 $\forall x\geqslant 0$, 均有 $\frac{1}{(y+x^2)^{n+1}}\leqslant \frac{1}{a+x^2}$. 而 $\int_0^{+\infty}\frac{\mathrm{d}x}{a+x^2}$ 收敛,由 Weierstrass 判别法可知广义含参积分 $I_n(y)$ 关于 $y\in [a,+\infty)$ 一致收敛,从而由求导与积分次序可交换性知 I_n 在 $[a,+\infty)$ 上可导且 $\forall y\geqslant a$,

$$I'_n(y) = \int_0^{+\infty} \frac{\partial}{\partial y} \left(\frac{1}{(y+x^2)^{n+1}} \right) dx = \int_0^{+\infty} \frac{-(n+1) dx}{(y+x^2)^{n+2}} = -(n+1)I_{n+1}(y).$$

又 a > 0 为任意, 故上式对任意 y > 0 均成立, 从而对任意整数 $n \ge 0$, 均有

$$I_{n}(y) = \frac{(-1)^{n}}{n!} I_{0}^{(n)}(y) = \frac{(-1)^{n}}{n!} \frac{d^{n}}{dy^{n}} \left(\int_{0}^{+\infty} \frac{dx}{y + x^{2}} \right)$$

$$= \frac{(-1)^{n}}{n!} \frac{d^{n}}{dy^{n}} \left(\frac{1}{\sqrt{y}} \arctan \frac{x}{y} \Big|_{0}^{+\infty} \right) = \frac{(-1)^{n}}{n!} \cdot \frac{\pi}{2} \cdot (y^{-\frac{1}{2}})^{(n)}$$

$$= \frac{(-1)^{n}}{n!} \cdot \frac{\pi}{2} \cdot \left(-\frac{1}{2} \right) \cdot \left(-\frac{1}{2} - 1 \right) \cdots \left(-\frac{1}{2} - n + 1 \right) y^{-\frac{1}{2} - n}$$

$$= \frac{\pi}{2} \cdot \frac{(2n - 1)!!}{(2n)!!} y^{-(\frac{1}{2} + n)},$$

其中约定 (-1)!! = 1.