Problem Set #2 Collaborated nith Haichuan Wana

Regularization

We will consider general L_p norm regularization for a convex loss function L

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} L(\mathbf{w}, \mathbf{x}_i, y_i) + \lambda \sum_{i=1}^{d} |w_j|^p \right\}$$
(1)

where \mathbf{w} is a d+1-dimensional parameter vector, including the bias term (constant feature coefficient) w_0 which we do not regularize, and N is the size of the training set. $L(\mathbf{w}, \mathbf{x}_i, y_i)$ denotes the loss of the predictor parameterized by \mathbf{w} on the training example (\mathbf{x}_i, y_i) . This is a general formulation, that covers, among others, least squares regression or log-loss classification

Problem 1 [15 points]

Show that the objective in (1) is equivalent to

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} L(\mathbf{w}, \mathbf{x}_i, y_i)$$

subject to $\sum_{j=1}^{d} |w_j|^p \le \tau$ (2)

for an appropriate τ , which may depend in some way on the data and on λ . In other words if you find \mathbf{w}^* according to (1), then find \mathbf{w}_1^* according to (2) with the appropriate τ , the two values of \mathbf{w}_2^* will be the same.

· Let li be 11)'s solution set

As Lis convex and I will is convex (P311, U) has single solution

· Choose & = & lwill | P, pick a W.

then
$$\{W_{i}^{*}: and my \{\sum_{i=1}^{n} |M_{i}|_{b}^{*}\}$$

$$\Rightarrow \begin{cases} \sum_{i=1}^{N} \lfloor (W_{s}^{A}, \chi_{i}, y_{i}) \leq \sum_{i=1}^{N} \lfloor (W_{s}^{A}, \chi_{i}, y_{i}) \rfloor \\ \sum_{i=1}^{N} \lfloor (W_{s}^{A}, \chi_{i}, y_{i}) \leq \sum_{i=1}^{N} \lfloor (W_{s}^{A}, \chi_{i}, y_{i}) \rfloor \end{cases}$$

we would have

the two " ب ج

tells us that Wz , when physel into (1), minimizes u) . So, woth & [. 4s has only only element; with;

Loss and Noise

Now we are going to look at a noise model which is a bit different from the i.i.d. Gaussian noise model described in class. Suppose that for every \mathbf{x} , the noise that affects y is still an additive zero-mean Gaussian, but the variance of this noise depends on \mathbf{x} :

$$y = \mathbf{w} \cdot \mathbf{x} + \nu$$
, $\nu \sim \mathcal{N}(0, \sigma_{\mathbf{x}}^2)$ (3)

Problem 2 [10 points]

* No. "

Without knowing anything else besides the assumptions in (3), can we compute the maximum likelihood estimate for the linear regression parameters w' from a given data set under this noise model? If yes, describe the procedure as precisely as you can; if not, explain why not.

$$P(y|X; W, \sigma)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{x_i z_i}} \exp\left(-\frac{(y_i - w_i x_i)^2}{2\sigma_x^2}\right)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{x_i z_i}} \exp\left(-\frac{(y_i - w_i x_i)^2}{2\sigma_x^2}\right)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{x_i z_i}} \exp\left(-\frac{(y_i - w_i x_i)^2}{2\sigma_x^2}\right)$$

'As the Tx; are

We cannot solve to get
$$W^* = \arg\max_{x \in \mathbb{R}} \left\{ \frac{1}{h} \sum_{i \in \mathbb{R}}^{\infty} - \log(\Gamma_{Ki} f_{\infty}) - \frac{(y_1 - w_{Ki})^2}{2 G_{Ki}^2} \right\}$$

Problem 3 [10 points]

Now suppose we know the value of the noise variance $\sigma_{a_i}^2$ at every training input \mathbf{x}_i for $i=1,\cdots,N$ (perhaps because each was obtained with a different sensor with known accuracy). With this additional assumption, can we compute the maximum likelihood estimate for linear regression parameters \mathbf{w}^* from a given data set? If yes, describe the procedure as precisely as you can; if not, explain why not.

· Yes.

· We want to find we to maximize the luglikelihuod. Take derivative:

$$\left[\begin{array}{ccc} \sum_{i}^{L=1} & \frac{d_{i,j}}{\lambda! \, X!_{i,j}} \right] M & = \left[\begin{array}{ccc} \sum_{i=1}^{L=1} & \frac{d_{i,j}}{\lambda! \, X!_{i,j}} \end{array}\right]$$

We can salve for w.

Softmax

In this section we will consider a discriminative model for a multi-class setup, in which the class labels take values in $\{1, \cdots, C\}$. A principled generalization of the logistic regression model to this setup is the softmax model. It requires that we maintain a separate parameter vector \mathbf{w}_e for each class c. Under this model, the estimate for the posterior for class c, $c = 1, \cdots, C$ is

$$\hat{p}(y = c|\mathbf{x}; \mathbf{W}) = \operatorname{softmax}(\mathbf{w}_{e} \cdot \mathbf{x}) \triangleq \frac{\exp(\mathbf{w}_{e} \cdot \mathbf{x})}{\sum_{y=1}^{C} \exp(\mathbf{w}_{y} \cdot \mathbf{x})}$$
(4)

where **W** is a $C \times d$ matrix, the c^{th} row of which is a vector \mathbf{w}_c associated with class c. We will assume throughout the problem set that \mathbf{x} is the feature vector associated with an input example, including the constant feature $c_0 = 1$.

Problem 4 [15 points]

Show that the softmax model as stated in (4) is over-parameterized, that is, show that for

any value \mathbf{w}_c for $c=1,\cdots,C$ there is a different value that yields exactly the same $p(y|\mathbf{x})$ for every \mathbf{x} . Then explain how this implies that we only need C-1 trainable parameter vectors for softmax, and not C. Explain how this understanding also shows that for C=2 softmax is equivalent to the logistic regression derived in class for binary classification.

· If wi, wi, ..., we maximize the likelihoud

then WI-MI, WI-MI, ..., MC-MI also Muximize

Then, we can define a new set of weights

which uses only C-1 vartable.

· When C=2, let the New set of weights be (Mi-Mi, Ma-Wi) = (0, Mai). Then,

which is the logitus regression for binary classification.

Problem 5 [10 points]

Write down (precisely and as simplified as you can) the expression for (a) the log-loss of the linear \mathbb{C} -way softmax classification model using feature mapping $\phi(\mathbf{x})$, and (b) its gradient with respect to \mathbf{W} . You can work in the stochastic gradient descent setting, i.e., compute the loss and the gradient for a single training example \mathbf{x} with label $y \in [\mathbb{C}]$.

· Assume X is a single point:

$$= - \phi(x) + \frac{\frac{1}{\sum_{i=1}^{N} e^{w_i} \cdot \phi(x)}}{\frac{\sum_{i=1}^{N} e^{w_i} \cdot \phi(x)}{\sum_{i=1}^{N} e^{w_i} \cdot \phi(x)}}$$