第2章 电路分析的基本 方法和定理

电路等效

电阻电路的一般分析方法

电容和电感的串联和并联

电路定理

2.1 电路等效

定义: 任何复杂网络引出的两个端钮称为二端网络。

内部没有独立源的二端网络,称为二端无源网络。

两个二端电路,端口具有相同的电压、电流关系,则称它们是等效的电路。

对A电路中的电流、电压和功率而言,满足:

① 电路等效变换的条件:

一 两电路具有相同的VCR;

②电路等效变换的对象:

一 未变化外电路A中的电压、电流和功率; (即对外等效, 对内不等效)

③电路等效变换的目的:

── 化简电路,方便计算。

- ①等效对外部(端钮以外)有效,对内不成立。
- ②等效电路与外部电路无关。

2.2 电阻电路的一般分析方法

2.2.1 电阻的串联和并联

一、电阻的串联 (Series Connection of Resistors)

1. 电路特点:

- (a) 各电阻顺序连接,流过同一电流(KCL);
- (b) 总电压等于各串联电阻的电压之和 (KVL)。

 $R_{eq} = \frac{v}{i} = \frac{\sum v_k}{i} = \sum R_k$

串联电路的总电阻 等于各分电阻之和。

2. 电压的分配公式

例 两个电阻分压

3. 功率分配

功率

$$p_1 = R_1 i^2$$
, $p_2 = R_2 i^2$, ..., $p_n = R_n i^2$

$$p_1: p_2: \ldots : p_n = R_1: R_2: \ldots : R_n$$

总功率

$$p = R_{eq}i^{2} = (R_{1} + R_{2} + \dots + R_{n}) i^{2}$$
$$= R_{1}i^{2} + R_{2}i^{2} + \dots + R_{n}i^{2}$$

 $= p_1 + p_2 + ... + p_n$

The equivalent power of any number of resistors connected in series is the sum of the individual powers.

- ① 电阻串联时,各电阻消耗的功率与电阻大小成正比;
- ②等效电阻消耗的功率等于各串联电阻消耗功率的总和。

二、电阻并联 (Parallel Connection of Resistors)

1. 电路特点:

- (a) 各电阻两端分别接在一起,两端为同一电压 (KVL);
- (b) 总电流等于流过各并联电阻的电流之和 (KCL)。

HKCL:
$$i = \sum i_k = v / R_{eq}$$

 $v/R_{eq} = i = \sum v/R_k = v \sum 1/R_k$

$$1/R_{eq} = \sum 1/R_k$$

$$G_{eq} = \sum G_k = \sum 1/R_k$$

等效电导等于并联的各电导之和

2. 并联电阻的分流公式

$$\frac{i_k}{i} = \frac{v / R_k}{v / R_{eq}} = \frac{G_k}{G_{eq}} \qquad i_k = \frac{G_k}{\sum G_k} i \qquad 电流分配与电导成正比$$

对于两电阻并联

$$i_1 = \frac{1/R_1}{1/R_1 + 1/R_2}i = \frac{R_2}{R_1 + R_2}i$$

$$i_2$$
 $i_2 = -\frac{1/R_2}{1/R_1 + 1/R_2}i = -\frac{R_1}{R_1 + R_2}i$

3. 功率分配

功率

$$p_1 = G_1 v^2, \quad p_2 = G_2 v^2, \quad \dots, \quad p_n = G_n v^2$$

 $p_1 : p_2 : \dots : p_n = G_1 : G_2 : \dots : G_n$

总功率

$$p = G_{eq}v^{2} = (G_{1} + G_{2} + ... + G_{n}) v^{2}$$

$$= G_{1}v^{2} + G_{2}v^{2} + ... + G_{n}v^{2}$$

$$= p_{1} + p_{2} + ... + p_{n}$$

The equivalent power of any number of resistors connected in parallel is the sum of the individual powers.

- ① 电阻并联时,各电阻消耗的功率与电阻大小成反比;
- ② 等效电阻消耗的功率等于各并联电阻消耗功率的总和

2.2.2 电阻的混联和Y-Δ等效变换

一、较复杂的电阻串并联

$$R = (40 // 40) + (30 // 30 // 30) = 30\Omega$$

例3

求: I_1, I_4, V_4

解:

① 用分流方法做

$$I_{1} = \frac{12}{R}$$

$$I_{4} = -\frac{1}{2}I_{3} = -\frac{1}{4}I_{2} = -\frac{1}{8}I_{1} = -\frac{1}{8}\frac{12}{R} = -\frac{3}{2R}$$

$$V_{4} = -I_{4} \times 2R = 3 \text{ V}$$

② 用分压方法做

$$V_4 = \frac{V_2}{2} = \frac{1}{4}V_1 = 3$$
 V
 $I_4 = -\frac{3}{2R}$ $I_1 = \frac{12}{R}$

二、星形联接与三角形联接的电阻的等效变换 (Y-Δ变换) (Wye-Delta Transformations)

三端无源网络

向外引出三个端钮的网络,并且内部没有独立源。

Y-∆变换的等效条件

$$i_{1\Delta} = i_{1Y}$$
 $v_{12\Delta} = v_{12Y}$
 $i_{2\Delta} = i_{2Y}$ $v_{23\Delta} = v_{23Y}$
 $i_{3\Delta} = i_{3Y}$ $v_{31\Delta} = v_{31Y}$

Δ接: 用电压表示电流

$$i_{1\Delta} = v_{12\Delta}/R_{12} - v_{31\Delta}/R_{31}$$

$$i_{2\Delta} = v_{23\Delta}/R_{23} - v_{12\Delta}/R_{12}$$

$$i_{3\Delta} = v_{31\Delta}/R_{31} - v_{23\Delta}/R_{23}$$

$$i_{1\Delta} + i_{2\Delta} + i_{3\Delta} = 0$$
(1)

Y接: 用电流表示电压

$$v_{12Y} = R_1 i_{1Y} - R_2 i_{2Y}$$
 $v_{23Y} = R_2 i_{2Y} - R_3 i_{3Y}$
 $v_{31Y} = R_3 i_{3Y} - R_1 i_{1Y}$
 $i_{1Y} + i_{2Y} + i_{3Y} = 0$
(2)

由式(2)解得

$$i_{1Y} = \frac{v_{12Y}R_3 - v_{31Y}R_2}{R_1R_2 + R_2R_3 + R_3R_1}$$

$$i_{2Y} = \frac{v_{23Y}R_1 - v_{12Y}R_3}{R_1R_2 + R_2R_3 + R_3R_1}$$

$$i_{2Y} = \frac{v_{23Y}R_1 - v_{12Y}R_3}{R_1R_2 + R_2R_3 + R_3R_1}$$

$$i_{2\Delta} = v_{23\Delta} / R_{23} - v_{12\Delta} / R_{12}$$

$$i_{3\Delta} = v_{31\Delta} / R_{31} - v_{23\Delta} / R_{23}$$

$$i_{3\Delta} = v_{31\Delta} / R_{31} - v_{23\Delta} / R_{23}$$
(1)

根据等效条件,比较式(3)与式(1)中对应项的系数

得Y→Δ电阻关系
$$R_{12} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_3}$$

$$R_{23} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_1}$$

$$R_{31} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_2}$$

$$R_{12} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

$$R_{23} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_{31} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

用电导表示

$$G_{1} = \frac{G_{12}G_{31}}{G_{12} + G_{23} + G_{31}}$$

$$G_{2} = \frac{G_{23}G_{12}}{G_{12} + G_{23} + G_{31}}$$

$$G_{3} = \frac{G_{31}G_{23}}{G_{12} + G_{23} + G_{31}}$$

$$G_{\Delta} = rac{\mathrm{Y}$$
相邻电导乘积 $\sum G_{\mathrm{Y}}$

同理可得由 $\Delta \rightarrow Y$ 电阻关系:

$$R_{1} = \frac{R_{12}R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$R_{2} = \frac{R_{23}R_{12}}{R_{12} + R_{23} + R_{31}}$$

$$R_{3} = \frac{R_{31}R_{23}}{R_{12} + R_{23} + R_{31}}$$

$$R_{Y} = \frac{\Delta H \% \in \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E}}{\sum R_{\Delta}}$$

特例:

若三个电阻相等(对称),则有 $R_{\Lambda} = 3R_{V}$

例桥T电路

2.3 电容和电感的串联和并联

一、电容的串联和并联

(Series and Parallel Capacitors)

1、电容的串联

$$v_k = \frac{1}{C_k} \int_{-\infty}^t i(\xi) d\xi$$

$$v = \sum_{k} v_{k} = \sum_{k} \frac{1}{C_{k}} \int_{-\infty}^{t} i(\xi) d\xi$$
$$= \frac{1}{C} \int_{-\infty}^{t} i(\xi) d\xi$$

$$\frac{1}{C} = \sum \frac{1}{C_k}$$

● 串联电容的分压

$$v_k = \frac{1}{C_k} \int_{-\infty}^t i(\xi) d\xi$$

$$v = \frac{1}{C} \int_{-\infty}^{t} i(\xi) d\xi$$

$$v_{k}C_{k} = vC$$

$$v_k = \frac{C}{C_k} v$$

$$n = 2$$

$$\begin{cases}
v_1 = \frac{C}{C_1}v = \frac{C_2}{C_1 + C_2}v \\
v_2 = \frac{C}{C_2}v = \frac{C_1}{C_1 + C_2}v
\end{cases}$$

2、电容的并联

$$i_k = C_k \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$i = \sum i_k = \sum C_k \frac{\mathrm{d}v}{\mathrm{d}t} = C \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$C = \sum C_k$$

● 并联电容的分流

$$i_k = C_k \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$i = C \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$i_k = \frac{C_k}{C}i$$

二、电感的串联和并联(Series and Parallel Inductors)

1、电感的串联

$$v_k = L_k \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$v = \sum v_k = \sum L_k \frac{\mathrm{d}i}{\mathrm{d}t} = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$L = \sum L_k$$

● 串联电感的分压

$$v_{k} = \frac{L_{k}}{L}v$$

$$n = 2$$

$$\begin{cases}
v_{1} = L_{1} \frac{di}{dt} = \frac{L_{1}}{L}v = \frac{L_{1}}{L_{1} + L_{2}}v \\
v_{2} = L_{2} \frac{di}{dt} = \frac{L_{2}}{L}v = \frac{L_{2}}{L_{1} + L_{2}}v
\end{cases}$$

2、电感的并联

$$i_k = \frac{1}{L_k} \int_{-\infty}^t v(\xi) d\xi$$

$$i = \sum_{k} i_{k} = \sum_{k} \frac{1}{L_{k}} \int_{-\infty}^{t} v(\xi) d\xi = \frac{1}{L} \int_{-\infty}^{t} v(\xi) d\xi$$

$$\frac{1}{L} = \sum \frac{1}{L_k}$$

• 并联电感的分流

$$i_k L_k = \int_{-\infty}^t v(\xi) d\xi$$
 $Li = \int_{-\infty}^t v(\xi) d\xi$

$$i_k = \frac{L}{L_k}i$$

2.4 电路定理

2.4.1 支路、节点、回路和网孔

- 支路(Branch)----- 为电路中能通过同一电流的每个分支。(b)
- 节点(Node)------ 两条或两条以上支路的连接点,一般指三条或三条以上支路的连接点。(n)

- 回路 (Loop) ----- 一个电路中任意闭合的路径。(*l*)
- 网孔 (Mesh) ----- 内部不包含任何其它回路的回路。

举例说明:

$$b = 6$$

$$n = 4$$

独立方程数应为b=6。

根据KCL列方程

节点 1:
$$i_1 + i_2 - i_6 = 0$$

节点 2: $-i_2 + i_3 + i_4 = 0$
节点 3: $-i_4 - i_5 + i_6 = 0$
节点 4: $-i_1 - i_3 + i_5 = 0$

这4个方程是不独立的

一般情况:

对有n个节点的电路,只有(n-1)个独立的KCL方程。 任意划去其中一个方程,剩余的就是独立方程。

独立节点:与独立KCL方程对应的节点。

被划去的节点通常被设为电路的参考节点。

由KVL所能列写的独立方程数为:

$$l = b - (n-1)$$

上例 l = b - (n-1) = 3

独立回路:独立KVL方程所对应的回路。

问题: 如何保证所选回路是独立的?

平面电路:可以画在平面上,不出现支路交叉的电路。

- (1) 对平面电路,b-(n-1)个网孔即是一组独立回路。
- (2) 增选的回路至少包含一条新支路。

非平面电路: 在平面上无论将电路怎样画,总有支路相互交叉。

不考虑非平面电路

选定图示的3个回路列写 KVL方程。

$$-R_1 i_1 + R_2 i_2 + R_3 i_3 = 0$$

$$-R_3 i_3 + R_4 i_4 - R_5 i_5 = 0$$

$$R_1 i_1 + R_5 i_5 + R_6 i_6 - v_S = 0$$

6个未知数,6个独立方程,可求出各支路电流。

支路电流法

2.4.2 网孔电流法和节点电压法

一、网孔电流法 (mesh current method)

1、网孔电流 <u>沿着网孔边界流动的假想电流,</u> 其方向可以任意假定。

$$n = 4$$
; $b = 6$
网孔电流有 $b - (n-1) = 3$

 $若i_1$ 、 i_2 、 i_3 已知,则

$$\begin{cases} i_4 = i_1 + i_3 \\ i_5 = i_1 + i_2 \\ i_6 = i_2 - i_3 \end{cases}$$

支路电流 i_4 、 i_5 、 i_6 可以用另外三个 i_1 、 i_2 、 i_3 的线性组合来表示。

- (1) 网孔电流是完备的 各支路电流均可用网孔电 流求出;
- (2) 网孔电流是独立的 不能用KCL来约束网孔电 流。
- (3) 网孔电流有 b (n-1)。

2、网孔电流方程的布列

问题:网孔电流是独立的电流变量,如何布列关于网孔电流的方程??

以右图为例,三个网孔的KVL方程为:

$$R_1 i_1 + R_5 i_5 + R_4 i_4 - v_{s1} = 0$$

$$R_2 i_2 + R_5 i_5 + R_6 i_6 - v_{s2} = 0$$

$$R_3 i_3 + R_4 i_4 - R_6 i_6 + v_{s3} = 0$$

把 i_4 , i_5 , i_6 用网孔电流表示:

$$i_5 = i_1 + i_2, \quad i_4 = i_1 + i_3,$$
 $i_6 = i_2 - i_3$

把 i_4 , i_5 , i_6 代入左边的KVL方程,并整理,可以得到关于 i_1 , i_2 , i_3 的方程,即网孔方程:

$$(R_1 + R_4 + R_5)i_1 + R_5i_2 + R_4i_3 = v_{S1}$$

$$R_5i_1 + (R_2 + R_5 + R_6)i_2 - R_6i_3 = v_{S2}$$

$$R_4i_1 - R_6i_2 + (R_3 + R_4 + R_6)i_3 = -v_{S3}$$

一般形式:

$$\begin{cases} R_{11}i_1 + R_{12}i_2 + R_{13}i_3 = v_{S1} \\ R_{21}i_1 + R_{22}i_2 + R_{23}i_3 = v_{S2} \\ R_{31}i_1 + R_{32}i_2 + R_{33}i_3 = -v_{S3} \end{cases}$$

 $R_{11}=R_1+R_4+R_5$, $R_{22}=R_2+R_5+R_6$, $R_{33}=R_3+R_4+R_6$ 称为自电阻:组成该网孔各支路上电阻之和。

 $R_{12}=R_{21}=R_{5}$, $R_{13}=R_{31}=R_{4}$, $R_{23}=R_{32}=-R_{6}$ 称为互电阻: 两网孔之间公共支路电阻之和。

注意: 互电阻有正负之分,两网孔电流的参考方向一致时取 "+",反之取 "-"。

 v_{s1} 、 v_{s2} 、 $-v_{s3}$:相应网孔电源电压升的代数和。

推广到 n 个网孔的网孔方程:

$$\begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ R_{21} & R_{22} & & R_{2n} \\ \vdots & & \vdots & \vdots \\ R_{n1} & R_{n2} & \cdots & R_{nn} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_n \end{bmatrix} = \begin{bmatrix} v_{s1} \\ v_{s2} \\ \vdots \\ v_{sn} \end{bmatrix}$$

网孔方程的特点:

左边: (未知网孔电流乘自电阻)加(相邻网孔电流乘互电阻)

右边: 回路电源电压升的代数和。

网孔分析法的计算步骤如下:

- 1. 在电路图上标明网孔电流及参考方向;
- 2. 根据"自电阻"、"互电阻"和"电源电压升"的概念布列网孔方程,并解之;
 - 3. 求得各支路电流或电压。

$$2\Omega \qquad \begin{array}{c|c} & & & \\ & I_1 & & \\ & V & \\ & 4\Omega & \\ & &$$

$$\begin{cases} (2+4)I_1 - 4I_2 = 20 \\ -4I_1 + (2+4)I_2 = -10 \end{cases}$$

$$I_{1} = \frac{\Delta_{1}}{\Delta} = \frac{\begin{vmatrix} 20 & -4 \\ -10 & 6 \end{vmatrix}}{\begin{vmatrix} 6 & -4 \\ -4 & 6 \end{vmatrix}} = \frac{120 - 40}{36 - 16} = 4A$$

$$I_2 = \frac{\Delta_2}{\Delta} = \frac{\begin{vmatrix} 6 & 20 \\ -4 & -10 \end{vmatrix}}{\begin{vmatrix} 6 & -4 \\ -4 & 6 \end{vmatrix}} = \frac{-60 + 80}{20} = 1A$$

解得:
$$I_3 = I_1 - I_2 = 3 \text{ A}$$
 $V = 4 I_3 = 12 \text{ V}$

3、网孔方程的特殊处理方法

- (a) 含理想电流源电路的网孔方程
 - 电流源在网孔边缘

例

$$(20+30)I_1 + 30I_2 = 40$$

$$I_2 = 2A$$

$$I_2 = 2A$$

$$I_1 = -0.4A$$

$$I = I_1 + I_2 = 1.6A$$

启发

电流源在网孔边缘时,用网孔电流法可简化计算。

● 电流源不在网孔边缘

例 列网孔方程

电流源两端 电压设为V

$$(1+2+5)I_1 - 2I_2 - 5I_3 = 0$$
$$-2I_1 + (2+4)I_2 = 26 - V$$
$$-5I_1 + (5+8)I_3 = V$$

4个未知数,少 一个方程?

$$I_3 - I_2 = 2$$

(b) 含受控源电路的网孔方程

例 用网孔分析法求 I_{in} 。

注意

- \triangleright 受控源也是电源,计入 v_{sii} 项;
- > 补充控制量方程,方程总数增加。

$$V_2 = 100(I_{in} - I_2)$$

- 1. 当电路中包含电流源支路时
 - (1) 设法把电流源支路搬到网孔边缘;
 - (2) 当不便于改画时,要给电流源支路设电压和参考方向,并补充电流源的电流值与网孔电流的关系式。
- 2. 当电路中包含受控源时
 - (1) 受控源的控制量是网孔电流,直接代入;
 - (2) 受控源的控制量不是网孔电流,必须补充受控源的控制量与网孔电流之间的关系式。

小结

- □ 网孔电流是一组独立的电流变量,具有完备性和独立性,其个数为 m = b (n-1) < b;
- □ 根据电路可以直接写出网孔电流方程;
- □ <u>含电流源支路多且网孔数少的电路宜用网孔电流</u> <u>分析法</u>。
- □ 网孔分析法只适合于平面电路。

二、节点电压法 (node voltage method)

1、思路

能否假定一组变量使之自动满足 KVL,从而减少联立方程的个数?

任意选择一个节点设为参考节点。

节点电压:独立节点到参考点的电压。

$$\sum v = v_{12} + v_{20} + v_{01} = v_1 - v_2 + v_2 - v_1 = 0$$

KVL自动满足

节点电压法: 以节点电压为未知量列写电路方程分析电路的方法。

2、节点电压法推导

(a) 列出节点电压和支路电流的关系

$$i_1 = G_1 v_1$$

$$i_2 = G_2(v_1 - v_2 - v_{S2})$$

$$i_3 = G_3(v_1 - v_2)$$

$$i_4 = G_4 v_2$$

$$i_5 = G_5(v_2 - v_{S1}) = G_5v_2 - G_5v_{S1}$$

(b) 列KCL方程

节点1: $i_S = i_1 + i_2 + i_3$

$$(G_1 + G_2 + G_3)v_1 - (G_2 + G_3)v_2 = i_S + G_2v_{S2}$$

节点2: *i*₂+*i*₃=*i*₄+*i*₅

$$-(G_2 + G_3)v_1 + (G_2 + G_3 + G_4 + G_5)v_2 = -G_2v_2 + G_5v_{S1}$$

整理得:

$$\begin{cases} G_{11} & G_{12} & \vdots \\ (G_1 + G_2 + G_3)v_1 - (G_2 + G_3)v_2 = i_S + G_2v_{S2} \\ -(G_2 + G_3)v_1 + (G_2 + G_3 + G_4 + G_5)v_2 = -G_2v_{S2} + G_5v_{S1} \\ G_{21} & G_{22} & i_{S2} \end{cases}$$

G₁₁、G₂₂ 自电导

 G_{12} 、 G_{21} 互电导 (恒为负)

$$\sum i_{R \! \perp \! \! \perp} = \sum i_{S \! \; \lambda}$$

$$\begin{cases} G_{11}v_1 + G_{12}v_2 = i_{S1} \\ G_{21}v_1 + G_{22}v_2 = i_{S2} \end{cases}$$

(c) 推广到 n 个独立节点的节点方程

$$\begin{bmatrix}G_{11} & G_{12} & \cdots & G_{1n} \\ G_{21} & G_{22} & & G_{2n} \\ \vdots & & & \vdots \\ G_{n1} & R_{n2} & \cdots & G_{nn}\end{bmatrix}\begin{bmatrix}v_1 \\ v_2 \\ \vdots \\ v_n\end{bmatrix} = \begin{bmatrix}i_{S1} \\ i_{S2} \\ \vdots \\ i_{Sn}\end{bmatrix}$$

$$G_{jj}$$
: 自电导
$$G_{ij}$$
: 互电导,恒为负

 i_{Si} ,流入第i个节点电流源(包括等效电流源)电流的代数和。

* 当电路中无受控源时,系数矩阵对称。

例1 用节点法列写以 V_A 、 V_B 为节点电压的方程。

解: 电路可改画为

列节点电压方程:

$$\begin{cases}
(G_1 + G_2 + G_4)V_A - G_2V_B = -I_S + G_1V_{S1} \\
-G_2V_A + (G_2 + G_3 + G_5)V_B = I_S + G_3V_{S2}
\end{cases}$$

例2 列写下图含VCCS电路的节点电压方程。

- 解: (1) 先把受控源 当作独立源看
 - (2) 用节点电压表示控制量。

$$\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) v_{n1} - \frac{1}{R_{2}} v_{n2} = i_{S1}$$

$$-\frac{1}{R_{2}} v_{n1} + \left(\frac{1}{R_{3}} + \frac{1}{R_{2}}\right) v_{n2} = g_{m} v_{R2}$$

$$G_{12} \neq G_{21}$$

$$v_{R2} = v_{n1} - v_{n2}$$

讨论:有限时方程如何列?

例3 试列写下图含理想电压源电路的节点电压方程。

方法1: 设电压源电流为 1,

增加一个节点电压 与电压源间的关系

$$\begin{pmatrix} (G_1+G_2) \ V_1 - G_1V_2 = -I \\ -G_1V_1 + (G_1+G_3+G_4) \ V_2 - G_4V_3 = 0 \\ -G_4V_2 + (G_4+G_5) \ V_3 = I \\ V_1 - V_3 = V_S$$

方法2: 选择合适的参考点

$$\begin{cases} V_1 = V_S \\ -G_1V_1 + (G_1 + G_3 + G_4) V_2 - G_3V_3 = 0 \\ -G_2V_1 - G_3V_2 + (G_2 + G_3 + G_5) V_3 = 0 \end{cases}$$

节点法解题步骤

- (1) 选定参考节点,标定独立节点;
- (2) 以独立节点电压为未知量,列写其KCL方程;
- (3) 求解上述方程,得到独立节点的电压;
- (4) 求各支路电流(用节点电压表示)。

节点法的特殊情况

- (1) 若电路中含有电压源支路,则设其支路电流*i* 为未知量,同时增列一个电压源支路电压与相 关节点电压的方程。
- (2) 若支路为电压源与电阻串联,则可转换为电流源与电阻并联。
- (3) 若电路中含有电流源与电阻串联的支路,则在列节点方程时不考虑此电阻。
- (4) 当电路中含有受控源时,把受控源当作独立源对待,并把控制量用节点电压表示。

网孔法和节点法的比较

(1) 方程数的比较

	KCL方程	KVL方程	方程总数
支路法	n-1	b - (n-1)	b
网孔法	0	b - (n - 1)	b - (n-1)
节点法	n-1	0	n-1

- (2) 对于非平面电路,选独立回路不容易,而独立节点较容易找。
- (3) 网孔法、节点法易于编程。

全球EDA (Electronics Design Automation)行业发展

(1) EDA工具的使用贯穿整个集成电路设计和制造流程

(2) EDA工具分类

EDA软件工具分类				
分类		特点		
电子电路设计与仿真		对设计好的电路图通过仿真软件进行实时模拟,模拟出实际 功能,然后通过其分析改进,从而实现电路的优化设计		
PCB设计软件		画板级电路图,以及布局布线和仿真的工具,就是用来摆放 元器件,然后再把元器件的线连接起来		
	设计输入工具	任何一种EDA软件必备的基本功能		
	设计仿真工具	验证设计是否正确		
	逻辑综合工具	把HDL变成门级网表		
	STA (静态时序分析)	在时序上对电路进行验证		
IC设计软 件	形式验证	从功能上对综合后的网表进行验证		
	DFT (可测性设计)	将一些特殊结构在设计阶段植入电路,以便设计完成后进行 测试,减少测试成本		
	布局和布线	用于标准单元、门阵列已可实现交互布线		
	寄生参数提取	分析信号完整性问题,防止因导线耦合导致的信号噪声		
	物理验证工具	版图设计工具、版图验证工具、版图提取工具		
	模拟电路仿真器	针对模拟电路的仿真工具		

(4) 全球及中国EDA市场

EDA行业全球三巨头

公司	介绍	
Cadence(铿腾电子)	由SDA Systems和ECAD两家公司于1988年 兼并而成,全球最大的电子设计技术、程序 方案服务和设计服务提供商。产品涵盖了电 子设计的整个流程,包括系统级设计,功能 验证,IC综合及布局布线,模拟、混合信号 及射频IC设计,全定制集成电路设计,IC物 理验证,PCB设计和硬件仿真建模等。	
Synopsys(新思科技)	成立于1986年,为用户提供技术先进的IC设计与验证平台,致力于复杂的片上系统的开发。全球排名第一的电子设计自动化(EDA)解决方案提供商,全球排名第一的芯片接口IP供应商,同时也是信息安全和软件质量的全球领导者。	
Mentor(明导)	成立于1981年,2016年被德国西门子收购, 为用户提供完整的电子设计软件和硬件设计 解决方案。	

2018年全球EDA行业竞争格局分析

其他, 36% Cadence, 32.1%

Synopsys, 22.0%

Mentor Graphics, 10.0%

2018年中国EDA市场集中度情况

(4) 中国EDA公司概览

中国EDA行业主要企业及其介绍				
公司名称	公司特点	布局領域		
华大九天	规模最大,世界唯一提供全流程FPD设计解决方案的 供应酶,具有较强市场竞争力	IC设计IP产品平板显示电路设计		
广立微电子	在良率分析和工艺检测的测试机方面产品具有明显优势	包含高效测试芯片自动设计、高 速电学测试和智能数据分析的全 流程平台		
概伦电子	在SPICE建模工具及噪声测试系统方面技术处于领先 地位,业内称"黄金标准"	高端集成电路设计先进半导体工 艺开发		
芯禾科技	专注仿真工具、集成无源器件IPD和系统级封装SiP像 系统的研发	设计仿真工具集成无源器件		
董海豫科技	在PcelfQA工具领域技术实力雄厚,具有自动化程度 高、检查项全面、准确性高和支持先进工艺特殊处理 等多项优势	集成电路工艺设计包		
博达豫科技	以SPICEModel参数提取誊称,现重点转向数据端, 从加速仿直转为加速测试,测试主要以学习算法来驱 动,竞争力在于测试速度比传统测试高一个数量级	半导体参数测试器件建模与验证		
奥卡思豫电	公司专精形式化功能验证,可编程逻辑验证,低能耗 设计优化及验证等技术	形式验证工具全流程设计工具		

(5) 中国EDA与世界先进水平的差距

> 技术差距

- 1、算法落后,EDA需要高深的数学理论作基础,并且算法要与工艺结合;
- 2、国产EDA没有国内先进制造工艺做基础很难提升技术水平。

> 流程差距

芯片制造全流程需要十多种EDA软件,有一半流程必须用国外 EDA。

> 人才差距

全中国EDA研发人员约600人,而新思科技一家就有7000人。

> 市场差距

中国EDA市场只占全球市场8%左右,没有市场就没有利润和资金投入。

(6) EDA行业壁垒

- > 人才储备壁垒
 - 1、人才培养需要10年左右时间;
 - 2、行业内先发企业人才优势明显。
- > 技术壁垒
 - 1、需要通过较长时间的技术研发和专利积累;
 - 2、设计工具和制造工艺紧密结合的重要性愈发突出。
- > 资金规模壁垒
- > 用户协同与客户渠道壁垒
 - 1、EDA领先企业与领先IC设计制造企业具备长期合作基础其 EDA工具工艺库信息完善,能够随先进工艺演进不断迭代。
 - 2、IC设计制造企业对EDA合作供应商粘性较强。

(7) 中国EDA的发展

- ➤ 后摩尔时代EDA工具行业迎来新的机遇和挑战
 - 1、摩尔定律放缓和系统应用需求分化使芯片更偏向于定制化;
 - 2、对EDA工具提出了新的需求也打开了更大的市场空间;
 - 3、EDA工具将更加开放化和标准化;
 - 4、开源EDA是支撑开放芯片生态的重要保障;
 - 5、AI推动EDA工具自动化和智能化。
- ▶ 国家从八大政策方面支持行业发展 2020年7月,国务院发布了《新时期促进集成电路产业和软件 产业高质量发展的若干政策》。

2.4.3 叠加定理和替代定理

一、叠加定理 (Superposition Theorem)

在线性电路中,任一支路电流(或电压)都是电路中各个独立电源单独作用时,在该支路产生的电流(或电压)的代数和。

The superposition principle states that voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

单独作用:一个电源作用,其余电源不作用

电压源 $(v_s=0)$ 短路不作用的 电流源 $(i_s=0)$ 开路

举例证明定理

由网孔法

$$R_{11}i_a + R_{12}i_b = v_{s11}$$
$$R_{21}i_a + R_{22}i_b = v_{s22}$$

$$i_{a} = \frac{\begin{vmatrix} v_{s1} - v_{s2} \\ v_{s22} & R_{22} \\ R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}} = \frac{R_{22}}{\Delta} v_{s11} + \frac{-R_{12}}{\Delta} v_{s22}$$

$$= \frac{R_{22}}{\Delta} v_{s1} - \frac{R_{12} + R_{22}}{\Delta} v_{s2} + \frac{R_{12}}{\Delta} v_{s3}$$

其中

$$R_{11} = R_1 + R_2$$
 $R_{12} = R_{21} = -R_2$
 $R_{22} = R_2 + R_3$
 $v_{s11} = v_{s1} - v_{s2}$
 $v_{s22} = v_{s2} - v_{s3}$

$$\Delta = \begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}$$
$$= R_{11}R_{22} - R_{12}R_{21}$$

$$R_{11}i_{a1}+R_{12}i_{b1}=v_{s1}$$

 $R_{21}i_{a1}+R_{22}i_{b1}=0$

$$i_{a1} = \frac{\begin{vmatrix} v_{s1} & R_{12} \\ 0 & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}}$$

$$=\frac{R_{22}}{\Delta}v_{s1}$$

$$R_{11}i_{a2}+R_{12}i_{b2}=-v_{s2}$$

 $R_{21}i_{a2}+R_{22}i_{b2}=v_{s2}$

$$i_{a2} = \frac{\begin{vmatrix} -v_{s2} & R_{12} \\ v_{s2} & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}}$$

$$= \frac{R_{22}}{\Delta} (-v_{s2}) + \frac{-R_{12}}{\Delta} v_{s2}$$

$$= -\frac{R_{12} + R_{22}}{\Delta} v_{s2}$$

$$R_{11}i_{a3} + R_{12}i_{b3} = 0$$

$$R_{21}i_{a3} + R_{22}i_{b3} = -v_{s3}$$

$$i_{a3} = \frac{\begin{vmatrix} 0 & R_{12} \\ -v_{s3} & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}}$$
$$= -\frac{R_{12}}{\Delta}(-v_{s3})$$
$$= \frac{R_{12}}{\Delta}v_{s3}$$

$$i_{a} = \frac{\begin{vmatrix} v_{s11} & R_{12} \\ v_{s22} & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}} = \frac{R_{22}}{\Delta} v_{s11} + \frac{-R_{12}}{\Delta} v_{s22} \qquad = \frac{R_{22}}{\Delta} v_{s1} - \frac{R_{12} + R_{22}}{\Delta} v_{s2} + \frac{R_{12}}{\Delta} v_{s3}$$

$$= \frac{R_{22}}{\Delta} v_{s1} - \frac{R_{12} + R_{22}}{\Delta} v_{s2} + \frac{R_{12}}{\Delta} v_{s3}$$

$$i_{a1} = \frac{\begin{vmatrix} v_{s1} & R_{12} \\ 0 & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}}$$

$$=\frac{R_{22}}{\Delta}v_{s1}$$

$$i_{a1} = \frac{\begin{vmatrix} v_{s1} & R_{12} \\ 0 & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}} \qquad i_{a2} = \frac{\begin{vmatrix} -v_{s2} & R_{12} \\ v_{s2} & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}} \qquad i_{a3} = \frac{\begin{vmatrix} 0 & R_{12} \\ -v_{s3} & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}}$$

$$= \frac{R_{22}}{\Delta}(-v_{s2}) + \frac{-R_{12}}{\Delta}v_{s2} = -\frac{R_{12}}{\Delta}(-v_{s3})$$

$$= -\frac{R_{12} + R_{22}}{\Delta}v_{s2}$$

$$= \frac{R_{12}}{\Delta}v_{s3}$$

$$i_{a3} = \frac{\begin{vmatrix} 0 & R_{12} \\ -v_{s3} & R_{22} \end{vmatrix}}{\begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix}}$$

$$= -\frac{R_{12}}{\Delta} (-v_{s3})$$

$$= \frac{R_{12}}{\Delta} v_{s3}$$

$$i_a = i_{a1} + i_{a2} + i_{a3}$$

支路电流是网孔电流的线性组合,支路电流也满足叠加定理。

同样<u>可以证明</u>:线性电阻电路中任意支路的电压等于各电源(电压源、电流源)在此支路产生的电压的代数和。

(1) 10V电压源单独作用,

4A电流源开路

(2) 4A电流源单独作用,

10V电压源短路

共同作用:
$$v = v' + v'' = 4 + (-9.6) = -5.6 \text{ V}$$

小结: 1. 叠加定理只适用于线性电路的电流、电压计算。

电压源为零—短路。 电流源为零—开路。

- v,i叠加时要注意各分量的方向。
- 2. 功率不能叠加(功率为电源的二次函数)。 $p = vi = (v' + v'')(i' + i'') \neq v'i' + v''i''$
- 3. 也可以把电源分组叠加(每个电源只能作用一次)

4. 含受控源电路亦可用叠加定理,但受控源应始终保留。

例2

求电压 V_S 。

解:

(1) 10V电压源单独作用:

$$V_S' = -10 I_1' + V_1'$$

(2) 4A电流源单独作用:

$$V_S'' = -10I_1'' + V_1''$$

$$I_1' = \frac{10}{6+4} = 1 \text{ A}$$

$$V_S' = -10 I_1' + V_1' = -10 I_1' + 4I_1'$$

= $-10 \times 1 + 4 \times 1 = -6 \text{ V}$

$$I_1'' = -\frac{4}{4+6} \times 4 = -1.6 \text{ A}$$

$$V_1'' = \frac{4 \times 6}{4 + 6} \times 4 = 9.6 \text{ V}$$

$$V_S$$
"= -10 I_1 "+ V_1 "
= -10 ×(-1.6) + 9.6 = 25.6 V

共同作用: $V_S = V_S' + V_S'' = -6 + 25.6 = 19.6 \text{ V}$

推广

• 线性电路齐次性 (homogeneity property)

当电路中只有一个激励(独立源)时,则响应(电压或电流)与激励成正比。

解

法一: 分压、分流。

法二: 电源变换。

法三: 用齐次性(单位电流法)

设
$$i_L = 1A$$
 v'

$$K = v_s / v'$$
 $v_L = K i_L R_L$

• 可加性 (additivity property)

线性电路中,所有激励都增大(或减小)同样的倍数,则电路中响应也增大(或减小)同样的倍数。

二、替代定理 (Substitution Theorem)

If the voltage across and current through any branch of a dc bilateral network are known, this branch can be replaced by any combination of elements that will maintain the same voltage across and current through the chosen branch.

电路中的任何一个二端元件或二端网络,

- 若已知其端电压 v_k ,则可用一个电压源 v_k 来代替。
- 若已知其端电流 i_k ,则可用一个电流源 i_k 来代替。
- 若已知其端电压 v_k 和端电流 i_k ,则可用一个阻值为 v_k / i_k 的电阻元件代替。

替代后不会影响电路中其它支路的电流和电压。

证明: i_k \mathbf{A} \mathbf{i}_k A B **B** – AC等电位 v_k v_k B

第k条支路也可用电流源 i_k 或电阻 v_k/i_k 替代??

注意

- 1. 替代定理适用于线性、非线性电路、定常和时变电路。
- 2. 替代定理的应用必须满足的条件:
 - a. 原电路和替代后的电路必须有唯一解。
 - b. 被替代的支路和电路其它部分应无耦合关系。
- 3. 被替代的支路或二端网络可以是有源的,也可以是无源的。
- 4. 受控源的控制支路和受控支路不能一个在被替换的局部二端网络中,而另一个在外电路中。换句话说,受控源的控制量不能因替代而从电路中消失。

用8V电压源替代8Ω所在支路

用1A电流源替代8Ω所在支路

$$i_2 = 1 \text{ A}$$

$$6i_1 + 4i_3 = 20 - 4$$

$$i_1 = i_2 + i_3$$

$$6i_2 + 10i_3 = 16 \implies i_3 = 1 \text{ A}$$

$$v = 8 \text{ V}$$

例2 如下图所示电路,现欲使负载电阻 R_L 的电流为电压源支路电流I的 1/6。 求此电阻值。

$$V_{R_L} = V'_{R_L} + V''_{R_L} = 4 \times \frac{I}{2} - \frac{I}{6} \times \frac{4 \times 12}{4 + 12} = 1.5I$$

$$R_L = \frac{V_{R_L}}{I/6} = \frac{1.5I}{I/6} = 9\Omega$$

也可先进行电阻Y-Δ变换

由分流关系得出 $R_L = 9\Omega$

2.4.4 戴维南定理和诺顿定理 (Thevenin-Norton Theorem)

一、戴维南定理

任何一个含有独立电源、线性电阻和线性受控源的二端口网络,对外电路来说,可以用一个独立电压源 ν_{Th} 和电阻 R_{Th} 的串联组合来等效替代;其中电压 ν_{Th} 等于端口开路电压,电阻 R_{Th} 等于端口中所有独立电源置零后端口的入端等效电阻。

A linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source v_{Th} in series with a resistor R_{Th} , where v_{Th} is the open-circuit voltage at the terminals and R_{Th} is the input or equivalent resistance at the terminals when the independent source are turned off.

证明?

证明:

$$\left\{egin{aligned} v'=v_{Th} & ($$
 外电路开路时 \mathbf{a} 、 \mathbf{b} 间开路电压 $) \\ v''=-R_{Th}\,i \end{aligned}
ight.$ 得 $v=v'+v''=v_{Th}-R_{Th}\,i$

例求ab两端的戴维南等效电路。

开路电压
$$v_{ab} = -2 + \frac{18 - 9}{9} \times 3 + 9 = 10 \text{ V}$$

$$R = 8 + (3//6) = 10 \Omega$$

 10Ω

二、诺顿定理

任何一个含独立电源、线性电阻和线性受控源的二端口,对外电路来说,可以用一个电流源和电阻的并联来等效替代;其中电流源的电流等于该一端口的短路电流 i_N ,而电阻等于把该一端口的全部独立电源置零后的输入电阻 R_N 。

A linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source i_N in parallel with a resistor R_N , where i_N is the short-circuit current through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

诺顿等效电路可由戴维南等效电路经电源等效变换得到。

例1 求图示电路的诺顿等效电路。

解: (1)求 I_N

(2) 求 R_N : 串并联

$$R_N = 2 + 2//2 = 3 \Omega$$

(3) 诺顿等效电路:

例2 求 I

 $I = 0.5 \times 5/25 = 0.1 \text{ A}$

例3 (含受控源电路)用戴维南定理求V。

解:

- (1) a、b开路,I=0, $V_{Th}=10$ V
 - (2) 求 R_{Th} : 加电压求电流法

(3) 等效电路:

eta: 用开路电压 V_{Th} 、短路电流 I_N 法求 R_{Th} : $R_{Th} = V_{Th} / I_N$ $V_{Th} = 10 \text{ V}$ (已求出)

求短路电流 I_N (将a、b短路):

2.4.5 最大功率传递定理

一、输入电阻

任何一个无源二端网络可以用一个电阻等效,称之为入端等效电阻,简写为 $R_{\text{等效}}$ 。

计算方法

- ① 如果一端口内部仅含电阻,则应用电阻的串、并联和Δ—Y变换等方法 求它的等效电阻;
- ② 对含有独立源的电路,首先将独立源置零,然后求其等效电阻;
- ③ 对含有受控源和电阻的两端电路,用电压、电流法求输入电阻,即在端口加电压源,求电流,或在端口加电流源,求电压,得 $R_o = V/I$ 。

二、最大功率传递定理

如何使负载从电源获得最大的功率?

$$I = \frac{V_S}{R_S + R_L}$$

$$R_S$$
 R_L
 V_S

$$P = I^2 R_L = \left(\frac{V_S}{R_L + R_S}\right)^2 R_L$$

$$\frac{dP}{dR_L} = 0 \qquad \Longrightarrow \qquad R_L = R_S \qquad \Longrightarrow \qquad P_{\text{max}} = \frac{V_S^2}{4R_S} = \frac{V_S^2}{4R_L}$$

最大功率匹配条件

- ①最大功率传输定理用于端口电路给定、负载电阻可调的情况;
- ②端口等效电阻消耗的功率一般并不等于端口内部消耗的功率,因此当负载获取最大功率时,电路的传输效率并不一定是50%;
- ③计算最大功率问题结合应用戴维宁定理或诺顿定理最方便.

例1 计算以下电路的输入电阻。

解 先把有源网络的独立源置零:电压源短路;电流源 开路,再求输入电阻。

$$R_{in} = (R_1 + R_2) // R_3$$

例2 计算以下电路的输入电阻。

$$i = i_1 + \frac{3i_1}{6} = 1.5i_1$$
$$v = 6i_1 + 3i_1 = 9i_1$$

$$R_{in} = \frac{v}{i} = \frac{9i_1}{1.5i_1} = 6\Omega$$

外加电压源

例3计算以下电路的输入电阻。

$$v_1 = 15i_1$$
 $i_2 = \frac{v_1}{10} = 1.5i_1$

$$i = i_1 + i_2 = 2.5i_1$$

$$v = 5i + v_1 = 5 \times 2.5i_1 + 15i_1$$
$$= 27.5i_1$$

$$R_{in} = \frac{v}{i} = \frac{27.5i_1}{2.5i_1} = 11 \ \Omega$$

$$R_{in} = 5 + \frac{10 \times 15}{10 + 15} = 11 \Omega$$

例4 R_L 为何值时能获得最大功率,并求最大功率

解 ①求开路电压V_{Th}

$$I_1 = I_2 = V_R/20$$

$$I_1 + I_2 = 2A$$

$$I_1 = I_2 = 1A$$

$$V_{Th} = 2 \times 10 + 20I_2 + 20 = 60V$$

②求等效电阻 R_{eq}

$$I_1 = I_2 = I/2$$
 $V = 10I + 20 \times I / 2 = 20I$
 $R_{eq} = \frac{V}{I} = 20 \Omega$

③由最大功率传输定理得:

$$R_L = R_{eq} = 20 \Omega$$
 此时可获得最大功率

$$P_{\text{max}} = \frac{V_{Th}^2}{4R_{eq}} = \frac{60^2}{4 \times 20} = 45 \text{ W}$$