## SHAMOS ALGORITHM



# Member

1.นายชนสรณ์ ควรสุวรรณ 6710301004
2.ปกังกร ชูวงศ์ 6710301012
3.นชรพล เสรีกุล 6710301005
4.พงศภัค เทียบพิมพ์ 6710301006

# Convex Hull



## จุดเด่นของ SHAMOS ALGORITHM

Shamos Algorithm ใช้สำหรับการ แก้ปัญหาว่ามีเส้นสองเส้นในชุดข้อมูล ตัดกันหรือไม่ (Line Segment Intersection Detection)

# DATA STRUCTURE ในการเก็บข้อมูลเป็นแบบใด

- 1. Sweep Line Algorithm:
- -ใช้ Balanced Binary Search Tree (BST) เพื่อเก็บ สถานะของเส้นที่กำลังพิจารณาเมื่อ sweep line กวาดผ่าน plane
- -เส้นจะถูกจัดเรียงในลำดับจากบนลงล่างตามตำแหน่งที่ มันตัดกับเส้นแนวตั้ง (sweep line)

# DATA STRUCTURE ในการเก็บข้อมูลเป็นแบบใด

#### 2.Event Queue:

- ใช้ Priority Queue (เช่น Heap) ในการจัดการ event points:
- -จุดปลายเริ่มต้น (Start Point)
- -จุดปลายสิ้นสุด (End Point)
- -จุดตัด (Intersection Point)



1. กรณีที่ดีที่สุด (Best Case):
เปรียบเทียบกับถนนที่รถวิ่งเป็นระเบียบ
สมมติว่ามีถนนหลายเลน และรถทุกคันวิ่งไปใน
ทิศทางเดียวกัน โดยไม่มีการเปลี่ยนเลนหรือชน
กัน

ในกรณีนี้ เป็นการตรวจสอบว่ารถจะชนกัน เพราะ รถแต่ละคันอยู่ในเลนของตัวเอง ไม่มีการตัดกัน เราใช้เวลาน้อยในการตรวจสอบและจัดการ

(O(n log n))

ตัวอย่าง:

ถนนที่มีหลายเลน แต่รถแต่ละคันวิ่งตรงไปโดย ไม่เปลี่ยนเลน → ไม่มีการตัดกันของเส้นทาง



2. **กรณีที่แย่ที่สุด** (Worst Case): เปรียบเทียบกับสี่แยกไฟแดงที่รถวิ่งมาจาก ทุกทิศทางและเกิดการชนกัน สมมติว่าเรามีถนนที่ไม่มีไฟจราจร และรถ จากทุกทิศทางพยายามข้ามสี่แยกพร้อมกัน ในกรณีนี้ รถแต่ละคันสามารถตัดผ่านเส้น ทางของรถคันอื่นได้หลายครั้ง ทำให้ต้องใช้ เวลาตรวจสอบทุกคู่ของเส้นทาง การจัดการสถานการณ์นี้ต้องใช้เวลามาก (O(n²)) เพราะต้องเช็คทุกคันที่อาจเกิด อุบัติเหตุได้ ตัวอย่าง:

สี่แยกที่ไม่มีสัญญาณไฟ รถมาจากทุก ทิศทางและมีโอกาสเกิดการชนกันทุกจุด → ต้องใช้การตรวจสอบหลายคู่

# นำเสนอตัวอย่างการทำงาน ขั้นตอนของ Algorithm







### ALGORITHM มีเป้าหมายอะไร

-ตรวจสอบว่ามีเส้นใดในชุดข้อมูล ตัดกันหรือไม่
-อัลกอริทึมนี้สามารถใช้ค้นหา คู่ของเส้นที่ตัดกัน หรือระบุจุดตัดของเส้นเหล่านั้น

# ความแตกต่างระหว่าง SHAMOS ALGORITHM และ SWEEP LINE ALGORITHM

| คุณสมบัติ                | Sweep Line (ทั่วไป)             | Shamos Algorithm (เฉพาะเจาะจง)      |
|--------------------------|---------------------------------|-------------------------------------|
| แนวคิดหลัก               | กวาดเส้นผ่านข้อมูลเรขาคณิตต่างๆ | ตรวจสอบการตัดกันของเส้นตรง          |
| วิธีการทำงาน             | จัดเรียงจุดและตรวจสอบลำดับ      | ใช้ BST ในการค้นหาเส้นที่เกี่ยวข้อง |
| การใช้งาน                | โพลิกอน, ตรวจจุด, ระยะทาง       | ตรวจสอบจุดตัดของเส้น                |
| ความซับซ้อนกรณีดีที่สุด  | $O(n \log n)$                   | $O(n \log n)$                       |
| ความซับซ้อนกรณีแย่ที่สุด | $O(n^2)$                        | $O(n^2 \log n)$                     |





# THANK YOU!