CSE 230: Data Structures

Lecture 2: Complexity Analysis Dr. Vidhya Balasubramanian

CSE 201: Data Structures and Algorithms

Analysis of Data Structures

- Data structures have many functions
 - Each function is a set of simple instructions
- Analysis
 - Determine resources, time and space the algorithms requires
- Goal
 - Estimate time required to execute the functionalities
 - Reduce the running time of the program
 - Understand the space occupied by the data structure

Issues in Analysis

- Running time grows with input size
 - Varies with different inputs
 - Actual running time can be calculated in seconds or milliseconds
- Issues
 - The system setup must be same for all inputs
 - Same hardware and software must be used
 - Actual time maybe affected by other programs running on the same machine
- A theoretical analysis is sometimes preferable

Average Case and Worst Case

- The running time and memory usage of a program is not constant
 - Depends on input
 - Can run fast for certain inputs and slow for others
 - e.g linear search
- Average Case Cost
 - Cost of the algorithm (time and space) on average
 - Difficult to calculate
- Worst Case
 - Gives an upper limit for the running time and memory usage
 - Easier to analyse the worst case

Method for analyzing complexity

- Model of Computation
 - Mathematical Framework
- Asymptotic Notation
 - What to Analyze
- Running Time Calculations
- Checking the analysis

Counting Primitives to analyze time complexity

- Primitive operations are identified and counted to analyze cost
- Primitive Operations
 - Assigning a value to a variable
 - Performing an arithmetic operation
 - Calling a method
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a method

Example

Algorithm FindMax(S, n)

Input: An array S storing n numbers, n>=1

Output: Max Element in S

curMax <-- S[0] (2 operations)

 $i \leftarrow 0$ (1 operations)

while i < n-1 do (2n comparison operations)

if $curMax \le A[i]$ then (2(n-1)) operations)

curMax <-- A[i] (2(n-1) operations)

 $i \leftarrow i+1$; (2(n-1) operations)

return curmax (1 operations)

Complexity between 6n and 8n-2 Amrita School of Engineering

CSE 201: Data Structures and Algorithms

Amrita Vishwa Vidyapeetham

Some Points

- Loops
 - cost is linear in terms of number of iterations
 - Nested loops product of iteration of the loops
 - If outer loop has n iterations, and inner m, cost is mn
 - Multiple loops not nested
 - Complexity proportional to the longest running loop
- If Else
 - Cost of if part of else part whichever is higher

Try these

```
current ← 0
1) sum = 0;
                                         for i \leftarrow 0 to n - 1 do
  for( i=0; i<n; i++ )
                                            current ← current+A[i]
     sum++;
                                         return current/n
2) prod ← 0
                                      sum = 0;
  for i \leftarrow 0 to n-1 do
                                         for( i=0; i<n; i+=2 )
     prod ← prod + A[i]*B[i]
                                            sum++;
   return prod
```

Try These

```
    for (i = 0; i < n; i++) do
        if (A[i] == x) then
        return true
        return false</li>
```

```
for (i = 20; i <= 30; i++) {
    for (j=1; j<=n; j++){
        x = x + 1;
    }
}
```

```
    sum = 0;
    for( i=0; i<n; i++ )</li>
    for( j=0; j<n; j++ )</li>
    sum++;
```

Growth Rates and Complexity

- Important factor to be considered when estimating complexity
- When experimental setup (hardware/software) changes
 - Running time/memory is affected by a constant factor
 - 2n or 3n or 100n is still linear
 - Growth rate of the running time/memory is not affected
- Growth rates of functions
 - Linear
 - Quadratic
 - Exponential

Sample Growth Functions

Asymptotic Analysis

- Can be defined as a method of describing limiting behavior
- Used for determining the computational complexity of algorithms
 - A way of expressing the main component of the cost of an algorithm using the most determining factor
 - e.g if the running time is $5n^2+5n+3$, the most dominating factor is $5n^2$
- Capturing this dominating factor is the purpose of asymptotic notations

Big-Oh Notation

• Given a function f(n) we say, f(n) = O(g(n)) if there are positive constants c and n_0 such that f(n) <= cg(n) when n >= 0

 n_0

$$f(n) = I(g(n))$$

Amrita School of Engineering Amrita Vishwa Vidyapeetham

CSE 201: Data Structures and Algorithms

Big-Oh Example

- Show 7n-2 is O(n)
 - need c > 0 and n_0 >= 1 such that 7n-2 <= cn for n >= n_0
 - this is true for c = 7 and $n_0 = 1$
- Show $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - need c > 0 and n_0 >= 1 such that $3n^3 + 20n^2 + 5 \le cn^3$ for $n >= n_0$
 - this is true for c = 4 and $n_0 = 21$
- n² is not O(n)
 - Must prove n² <= cn
 - n <= c
 - The above inequality cannot be satisfied since c must be a constant
 - Hence proof by contradiction

CSE 201: Data Structures and Algorithms

Exercises

- Show that 8n+5 is O(n)
- Show that 20n³ +10nlogn+5 is O(n³)
- Show that 3logn+2 is O(logn).

Big-Oh Significance

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
 - We are guaranteeing that f(n) grows at a rate no faster than g(n)
 - Both can grow at the same rate
 - Though 1000n is larger than n², n² grows at a faster rate
 - n² will be larger function after n = 1000
 - Hence $1000n = O(n^2)$
- The big-Oh notation can be used to rank functions according to their growth rate CSE 201: Data Structures and

Algorithms

Big-Oh Significance

Growth rate for different functions [Goodrich]

n	logn	n	nlogn	n^2	n^3	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4,294,967,296
64	6	64	384	4,096	262, 144	1.84×10^{19}
128	7	128	896	16,384	2,097,152	3.40×10^{38}
256	8	256	2,048	65,536	16,777,216	1.15×10^{77}
512	9	512	4,608	262,144	134,217,728	1.34×10^{154}

CSE 201: Data Structures and Algorithms

Common Rules for Big-Oh

- If is f(n) a polynomial of degree d, then f(n) is O(n^d), i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions to represent in big Oh
 - "2n is O(n)" instead of "2n is O(n²)"
- Use the simplest expression of the class
 - "3n+ 5 is O(n)" instead of "3n + 5 is O(3n)"

Exercises

• A sequence S contains n-1 unique integers in the range [0,n-1], that is, there is one number from this range that is not in S. Design an O(n)-time algorithm for finding that number. You are only allowed to use O(1) additional space besides the sequence S itself.