Class12- RNAseq Analysis

Loretta Cheng

Here we will use the DESeq2 package for RNASeq analysis. The data for today's class came from a study where airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects (Himes et al. 2014).

Import their Data

We need two things for this analysis

- countData (counts for every transcript/gene in each experiment)
- colData (metadata that describes the experimental setup)

```
countData <- read.csv("airway_scaledcounts.csv", row.names=1)
head(countData)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG00000000003	723	486	904	445	1170
ENSG00000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG0000000003	1097	806	604		
ENSG0000000005	0	0	0		
ENSG00000000419	781	417	509		
ENSG00000000457	447	330	324		
ENSG00000000460	94	102	74		
ENSG00000000938	0	0	0		

```
metadata <- read.csv("airway_metadata.csv")</pre>
  head(metadata)
          id
                 dex celltype
                                   geo_id
1 SRR1039508 control
                       N61311 GSM1275862
2 SRR1039509 treated
                       N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control
                      N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
    Q1. How many genes are in this dataset?
  nrow(countData)
[1] 38694
    Q2. How many 'control' cell lines do we have?
  sum(metadata$dex == "control")
```

[1] 4

Step 1:

Calculate the mean of the control sample (i.e columns in countData) calculate the mean of the treated sample

- (a) We need to find which columns in countData are "control" samples.
 - look in the metadata (aka colData), \$\frac{1}{2}\text{dex column}

```
control.inds <- metadata$dex == "control"</pre>
```

(b) extract all the control columns from countData and call it control.counts

```
control.counts <- countData[ ,control.inds]</pre>
```

(c) calculate the mean value across the rows of control.counts i.e. calculate the mean count values for each gene in the control sample.

```
control.means <- rowMeans(control.counts)
head(control.means)</pre>
```

```
ENSG00000000003 ENSG0000000005 ENSG000000000419 ENSG000000000457 ENSG000000000460
900.75 0.00 520.50 339.75 97.25
ENSG00000000938
0.75
```

• Step 2. calculate the mean of the treated samples...

```
treated <- metadata[metadata[,"dex"]=="treated",]
treated.mean <- rowSums( countData[ ,treated$id] )/4
names(treated.mean) <- countData$ensgene</pre>
```

We now have control and treated mean count values. For ease of book-keeping I will combine these vectors into a new data.frame called meancounts

```
meancounts <- data.frame(control.means, treated.mean)
head(meancounts)</pre>
```

	control.means	treated.mean
ENSG0000000003	900.75	658.00
ENSG0000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG0000000938	0.75	0.00

```
library(ggplot2)

ggplot(meancounts)+
  aes(control.means, treated.mean)+
  geom_point()+
  scale_x_log10()+
  scale_y_log10()
```

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Transformation introduced infinite values in continuous y-axis

We will be using log10.

```
log2(20/20)
[1] 0
```

log2(20/10)

[1] 1

If I have half the amount I will have a $\log 2$ fold-change of -1.

```
log2(10/20)
```

[1] -1

log2(40/10)

[1] 2

meancounts\$log2fc <- log2(meancounts\$treated.mean / meancounts\$control.means) head(meancounts)</pre>

	control.means	treated.mean	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG0000000005	0.00	0.00	NaN
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000938	0.75	0.00	-Inf

Q. How many genes are up regulated at the common threshold of $+2 \log 2FC$ values?

```
sum(meancounts$log2fc >= 2, na.rm=TRUE)
```

[1] 1910

Hold on, what about stats! Yes these are big changes but are these changes significant! To do this properly we will turn to the DESeq2 package.

DESeq2 analysis

```
#i message: false
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,

colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

```
anyMissing, rowMedians
```

To use DESeq we need our input contData and colData in a specific format that DESeq wants:

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

To run analysis I can now use the main DESeq2 function called DESeq() with dds as input.

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

To get the results out of this dds ob</pre>
```

To get the results out of this dds object we use the results() function from package

```
res <- results(dds)
head(res)</pre>
```

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.194195	-0.3507030	0.168246	-2.084470	0.0371175
ENSG00000000005	0.000000	NA	NA	NA	NA
ENSG00000000419	520.134160	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.1471420	0.257007	-0.572521	0.5669691
ENSG00000000938	0.319167	-1.7322890	3.493601	-0.495846	0.6200029
	padj				
	<numeric></numeric>				
ENSG0000000003	0.163035				
ENSG0000000005	NA				
ENSG00000000419	0.176032				
ENSG00000000457	0.961694				
ENSG00000000460	0.815849				
ENSG00000000938	NA				

Volcano Plot

Let's make a final (for today) plot of the log2 fold-change vs the adjusted P-value.

```
plot(res$log2FoldChange, res$padj)
```


It is the low P-values that we care about and these are lost in the skewed plot above. Let's take the log of the \$padj values for our plot

```
plot(res$log2FoldChange, -log(res$padj))
abline(v=c(+2, -2), col="blue")
abline(h= -log(0.05),col="blue")
```


Finally we can make a color vector to use in the plot to better highlight the genes we are about.

```
mycols <- rep("gray", nrow(res))
mycols[abs(res$log2FoldChange) >= 2] <- "red"
mycols[res$padj > 0.05] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col=mycols)
abline(v=c(+2, -2), col="blue")
abline(h= -log(0.05),col="blue")</pre>
```

