Теория игр в топологии

Содержание

🚺 Пространство Бэра

Последовательные игры

Пространство Бэра

Пусть X множество.

Метрическое пространство $B(X)=(X^\omega,d)$ называеться пространством Бэра, где

$$d(x,y) = \begin{cases} 0 & x = y, \\ \frac{1}{n+1} & n = \min\{m : x_m \neq y_m\} \end{cases}$$

где $x=(x_n)_n, y=(y_n)_n\in X^\omega.$

Положим

$$X^{<\omega} = \bigcup_{n=0}^{\infty} X^n,$$

где $X^0=\{\varnothing\}.$

Пусть $x = (x_k)_k \in X^m$, $y = (y_k)_k \in X^l$, $n \le m < \omega$, $l < \omega$. Положим

$$x|_n = (x_0, x_1, ... x_{n-1}),$$

 $x \cap y = (x_0, x_1, ... x_m, y_0, y_1, ... y_l)$

Введем порядок на $X^{<\omega}$,

$$x \prec y$$

если и только если $1 \le m$ и $y = x|_{I}$.

Положим $U(X,x)=\{z\in B(X):x\succ z\}=\{z\in X^\omega:x=z|_m\}$ для $x\in X^{<\omega}$.

Предложение 1.

Множества вида U(X,x), $x\in X^{<\omega}$ образуют базу в B(X).

Предложение 2.

(B(X),d) является полным метрическим пространством.

Положим I(x) = m+1 — длина x, для $x = (x_0, x_1, ... x_m) \in X^{<\omega}$.

Предложение 3.

Отображение

$$f: B(\{0,1\}) \to \mathbb{C} \subset [0,1]: (x_0,x_1,...) \mapsto 2 \cdot (x_0x_1...)_3$$

гомеоморфно отображает $B(\{0,1\})$ на канторово множество \mathbb{C} .

Предложение 4.

Пусть $\mathbb{P}_+ = \mathbb{P} \cap (0, +\infty)$. Отображение

$$f: B(\mathbb{N}) \to \mathbb{P}_+: (x_0, x_1, ...) \mapsto [x_0; x_1, x_2, x_3, \cdots] =$$

$$= x_0 + \frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{x_2 + \cdots}}}$$

гомеоморфно отображает $B(\mathbb{N})$ на положительные иррациональные числа \mathbb{P}_+ .

Ориентированный граф

Пусть X множество. Любое *отношение* $R \subset X \times X$ можно трактовать как *ориентированный граф*. Пара $(x,y) \in R$ можно воспринимать как *дугу* от *вершины* x к вершине y. Множество всех подмножеств множества X обозначим через 2^X . Отношению R соответствует отображение $X \to 2^X$: $R(x) = \{y \in X : (x,y) \in R\}$. Вершина x называется *терминальной* (концевой узел, лист) если $R(x) = \varnothing$. Если в графе R есть терминальная вершина, то можно построить граф R^+ на множестве $X^+ = X \cup \{t\}$,

$$R^{+}(x) = \begin{cases} R(x), & x \in X \land R(x) \neq \emptyset, \\ \{t\}, & x \in X \land R(x) = \emptyset, \\ \{t\}, & x = t \end{cases}$$

Граф R вкладывется в граф R^+ и граф R^+ не имеет терминальных вершин. Далее мы будем рассматривать графы без терминальных вершин.

Экстенсивная форма последовательной бесконечной игры

Пусть X множество, $R \subset X \times X$ есть граф без терминальных вершин, $x_0 \in X$, $V \subset B(X)$. Определим булеву игру с нулевой суммой $G(X, x_0, R, V)$ с двумя игроками α и β . **0-ой ход.** Игрок α выбирает $x_1 \in R(x_0)$. Игрок β выбирает $x_2 \in R(x_1)$.

n-ый ход. Игрок α выбирает $x_{2n+1} \in R(x_{2n})$. Игрок β выбирает $x_{2n+2} \in R(x_{2n+1})$.

После счетного числа ходов игрок α выиграл если $(x_n)_{n\in\omega}\in V$.

Игра $G(X, x_0, R, V)$ это экстенсивная форма последовательной игры.

Пусть Y множество и для каждого $x \in X$ определено сюрьективное отображение $f_x: Y \to R(x)$. Определим отображение $f: Y^{<\omega} \to X$ индукцией по длине $y \in Y^{<\omega}$. $I(y) = 0, \ y = () = \varnothing$. Положим $f(y) = f(\varnothing) = x_0$. $I(y) = n+1, \ y = (y_0, y_1, ..., y_n)$. Положим $x_{n-1} = f(y_0, y_1, ..., y_{n-1})$ и $f(y) = f_{x_{n-1}}(y_n)$. Отображение f построено. Определим отображение $f : Y^\omega \to X^\omega$. положим

$$\bar{f}(y_0, y_1, ...) = (x_0, x_1, ...),$$

где $x_{n+1} = f(y_0, y_1, ..., y_n).$

Положим $N(y)=\{y^\frown z:z\in Y\}\subset Y^{<\omega}$ для $y\in Y^{<\omega}$. Тогда $N(y)=f^{-1}(R(f(y)))$. Положим $U=\overline{f}^{-1}(V)$. Игра $G(X,x_0,R,V)$ эквивалентна игре $G(Y^{<\omega},\varnothing,N,U)$. Опишем последнию игру непосредственно.

Игра G(Y,U) на бэровском пространстве

Пусть Y множество и $U\subset Y^\omega$. Определим булеву игру с нулевой суммой G(Y,U) с двумя игроками α и β . **0-ой ход.** Игрок α выбирает $y_0\in Y$. Игрок β выбирает $y_1\in Y$. **n-ый ход.** Игрок α выбирает $y_{2n}\in Y$. Игрок β выбирает $y_{2n+1}\in Y$.

После счетного числа ходов игрок α выиграл если $(y_n)_{n\in\omega}\in U$.

Игра G(Y, U) со счетным U

Theorem 2.1.

Пусть U не более чем счетно. Тогда G(Y,U) β -благоприятна.

Пусть $U=\{u_n:n\in\omega\}$, $u_n=(u_{n,0},u_{n,1},...)$. Выигрышня стратегия для игрока заключается в следующем: на n-ом ходу игрок β выбирает y_{2n+1} таким образом, что $y_{2n+1}\neq u_{n,2n+1}$.

Theorem 2.2.

Пусть $|U| < 2^{\omega}$. Тогда G(Y, U) α -неблагопричтна.

Пусть s есть некоторая стратегия игрока α . Пусть $Q\subset Y^\omega$, которые смогут сыграть игроки когда α придерживается стратигии α . Тогда $|Q|=2^\omega$. Пусть $y\in Q\setminus U$ и q есть такая стратегия β , что результат игры равен y. В этакой партии игрок β стратегией q оправерг стратегию s игрока α .