Análise de agrupamento CLUSTER

Marília M. Favalesso Thaís Maylin Sobjak

Mestranda do Programa de Conservação e Manejo de Recursos Naturais
Universidade Estadual do Oeste do Paraná

Análise de agrupamento

- Envolve categorização dividir um grande número de observações em grupos menores
- As categorias são criadas tendo como base medidas de similaridades/dissimilaridade
- Resultado variáveis em escala nominal pertence/não pertence
- Var-quanti e var-quali
- Abordagem: Métodos hierarquicos

Exemplos de aplicações potênciais

Taxonomia numérica

- Evolução
- Ecologia

Medidas de distância

↑ Similaridade ↑ igualdade entre os grupos

↑ Dissimilaridade ↓ igualdade entre os grupos

Quais são as medidas?

Métodos hierárquicos

Partitivos

Quando parar?

Os algoritmos de agrupamento não apresentam solução para determinação do número ideal de grupos

Avaliar o número de grupos (mais grupos, maior homogeneidade)

Coeficiente cofenétic (depois)

Método hierárquico aglomerativo

Método de ligação simples ou do vizinho mais próximo (Single linkage)

Método da ligação completa ou do vizinho mais distante (Complete linkage)

Método da ligação média (Average linkage)

Espécies	Α	В	С	D	E
Local 1	0	0	10	8	0
Local 2	0	0	12	9	0
Local 3	0	0	13	5	10
Local 4	2	3	0	4	12
Local 5	5	10	0	0	16
Local 6	15	20	0	0	0

Abundância de cinco espécies amostradas em seis diferentes localidades

Espécies	A	В	С	D	E
Local 1	0	0	10	8	0
Local 2	0	0	12	9	0
Local 3	0	0	13	5	10
Local 4	2	3	0	4	12
Local 5	5	10	0	0	16
Local 6	15	20	0	0	0

Abundância de seis espécies amostradas em cinco diferentes localidades

Espécies	А	В	С	D	E
Local 1	0	0	10	8	0
Local 2	0	0	12	9	0
Local 3	0	0	13	5	10

Distância euclidiana

$$di, j = \sqrt{(yi,1-yj,1)^2 + (yi,2-yj,2)^2}$$

$$d1,2 = \sqrt{(0-0)^2 + (0-0)^2} + (10-12)^2 + (8-9)^2 + (0-0)^2$$

$$d1,2 = 2,24$$

$$d1,3 = \sqrt{(0-0)^2 + (0-0)^2} + (10-13)^2 + (8-5)^2 + (0-10)^2$$
$$d1,3 = 10,86$$

Espécies	Α	В	С	D	E
Local 1	0	0	10	8	0
Local 2	0	0	12	9	0
Local 3	0	0	13	5	10

Distância euclidiana

$$di, j = \sqrt{(yi,1-yj,1)^2 + (yi,2-yj,2)^2}$$

$$d2,3 = \sqrt{(0-0)^2 + (0-0)^2} + (12-13)^2 + (9-5)^2 + (0-10)^2$$

$$d1,2 = 10,82$$

	Local 2	Local 3
Local 1	2,24	10,86
Local 2		10,82

Resultado do exemplo de distância euclidiana

As vezes é melhor padronizar!

$$Z = \frac{(Yi - \overline{Y})}{S}$$

Transformação Z

	Local 1	Local 2	Local 3	Local 4	Local 5	Local 6
Local 1	0,00	2,24	10,86	16,52	23,35	28,09
Local 2	2,24	0,00	10,82	18,06	24,62	29,15
Local 3	10,86	10,82	0,00	13,67	18,84	30,32
Local 4	16,52	18,06	13,67	0,00	9,49	24,86
Local 5	23,35	24,62	18,84	9,49	0,00	21,35
Local 6	28,09	29,15	30,32	24,86	21,35	0,00

Matriz de distância euclidiana (com variáveis padronizadas)

	Local 2	Local 3	Local 4	Local 5	Local 6
Local 1	2,24	10,86	16,52	23,35	28,09
Local 2		10,82	18,06	24,62	29,15
Local 3			13,67	18,84	30,32
Local 4				9,49	24,86
Local 5					21,35

+ Método do vizinho mais próximo ("single linkage")

Cluster - Ligação simples

E os outros métodos de ligação?

Cluster - Ligação simples

Cluster - Ligação Completa

Cluster - Ligação média

Locais

Locais

Locais

Validação do agrupamento

Coeficiente de correlação cofenética (ccc)

Avaliar o grau de similaridade da matriz de distâncias dos dados originais preservados

 \downarrow

Correlação linear

Validação do agrupamento

Interpretação do resultado final

Método da ligação média

Figura 1 - Agrupamento cluster dos locais amostrados tendo como base as espécies A, B, C, D, E. Coef. Cofenético = 0,92 (P<0,02)