

1 GB, 240-Pin DDR2 FB-DIMM

Identification

DTM65538C 256Mx72 1GB 1Rx8 PC2-6400F-555-11-B0

Performance range

Clock / Module Speed / CL-t_{RCD} -t_{RP}

400MHz / DDR2-800 / 5-5-5 333MHz / DDR2-667 / 4-4-4 200MHz / DDR2-400 / 3-3-3

Features

240-pin JEDEC-compliant DIMM, 133.35 mm wide by 30.35 mm high

Data Transfer Rate: 6.4 Gigabytes/sec

Operating Voltage: VDD = 1.8 V ±0.1; VCC = 1.5V ±0.1 SMBus interface to AMB for configuration register

access

MBIST and IBIST test functions

Transparent mode for DDR2 SDRAM test support

Full DIMM Heat Spreader

High-speed differential point-to-point link

Fully RoHS Compliant

Description

The DTM65538C is a Single Rank PC2-6400 Fully Buffered 128MX72 ECC DIMM that conforms to the JEDEC FB-DIMM standard. The rank is comprised of nine Samsung 128Mx8 DDR2 DRAMs. One IDT (Rev C1) Advanced Memory Buffer (AMB) is used as the interface between the system memory bus and DIMM DRAMs. One 2K-bit EEPROM is used for Serial Presence Detect. For improved thermal performance, a Full DIMM Heat Spreader with thermal interface material (TIM) is attached to the front and back of the DIMM.

Pin Names

Pin Configurations

Pin Names Front side Back side Function VDD /PN9 /PS9 121 VDD 151 SN3 181 /SN9 211 /SS9 SCK, /SCK System Clock Input PN3 2 VDD 32 /PN3 62 VSS 92 VSS 122 VDD 152 /SN3 182 VSS 212 VSS PN. /PN[13:0] Primary Northbound Data 123 VDD 213 SS5 3 VDD 33 VSS 63 PN10 93 PS5 153 VSS 183 SN10 PS, /PS[9:0] Primary Southbound Data SN. /SN[13:0] PN4 /PN10 94 /PS5 154 SN4 184 /SN10 214 /SS5 4 VSS 34 64 124 VSS Secondary Northbound Data VDD 35 /PN4 65 VSS 95 VSS 125 VDD 155 /SN4 185 VSS 215 VSS SS. /SS[9:0] Secondary Southbound Data 6 VDD 36 VSS 66 PN11 96 PS6 126 VDD 156 VSS 186 /SN11 216 SS6 SCL Serial Clock, EEPROM VDD 37 PN5 67 /PN11 97 /PS6 127 VDD 157 SN5 187 /SN11 217 /SS6 SDA Serial Data, EEPROM 8 VSS 38 /PN5 68 VSS 98 VSS 128 VSS 158 /SN5 188 VSS 218 VSS /RESET AMB Reset Signal VCC 39 VSS 69 VSS 99 PS7 129 VCC 159 VSS 189 VSS 219 SS7 AMB Core Power and AMB Channel VCC 100 /PS7 220 /SS7 10 VCC 40 PN13 70 PS0 130 VCC 160 SN13 190 SS0 Interface Power (1.5 V) 221 VSS DRAM Power and AMB DRAM I/O 11 VSS 41 /PN13 71 /PS0 101 VSS 131 VSS 161 /SN13 191 /SS0 VDD 12 VCC 42 VSS 72 VSS 102 PS8 132 VCC 162 VSS 192 VSS 222 SS8 Power (1.8 V) 103 /PS8 223 /SS8 DRAM Address/Command/Clock VSS 73 PS1 133 VCC 163 VSS 193 SS1 13 VCC 43 VTT 14 VSS RFU 74 104 VSS 134 VSS 164 RFU1 194 /SS1 224 VSS Termination Power (VDD/2) 44 /PS1 15 VTT 45 RFU 75 VSS 105 RFU2 135 VTT 165 RFU1 195 VSS 225 RFU2 VDDSPD SPD Power 16 VID1 46 VSS 76 PS2 106 RFU2 136 VID0 166 VSS 196 SS2 226 RFU2 VSS Ground 47 VSS 77 107 VSS 167 VSS 197 /SS2 227 VSS RFU Reserved For Future Use 17 /RESET /PS2 137 M TEST 18 VSS 48 PN12 78 VSS 108 VDD 138 VSS 168 SN12 198 VSS 228 SCK DNU Do Not Use 19 RFU2 49 /PN12 79 PS3 109 VDD 139 RFU2 169 /SN12 199 SS3 229 /SCK M TEST Margin Test 110 VSS 140 RFU2 170 VSS 230 VSS SA[2:0] Serial Address, EEPROM 20 RFU2 50 VSS 80 /PS3 200 /SS3 81 171 SN6 231 VDD 21 VSS 51 PN6 VSS 111 VDD 141 VSS 201 VSS 52 /PN6 82 PS4 112 VDD 142 SN0 172 /SN6 202 SS4 232 VDD 22 PN0 23 /PN0 53 VSS 83 /PS4 113 VDD 143 /SN0 173 VSS 203 /SS4 233 VDD PN7 114 VSS 174 SN7 234 VSS 24 VSS 54 84 VSS 144 VSS 204 VSS 25 PN1 55 /PN7 85 VSS 115 VDD 145 SN1 175 /SN7 205 VSS 235 VDD 176 VSS 236 VDD 56 VSS 86 RFU1 116 VDD 146 /SN1 206 RFU1 26 /PN1 27 VSS 57 PN8 87 RFU1 117 VTT 147 VSS 177 SN8 207 RFU1 237 VTT 58 /PN8 88 118 SA2 148 SN2 178 /SN8 208 VSS 28 PN2 VSS 238 VDDSPD 119 SDA 179 VSS 29 /PN2 59 VSS 89 VSS 149 /SN2 209 VSS 239 SA0

60 NOTE: M TEST is not used

90 PS9

30 VSS

120 SCL

150 VSS

180 SN9

210 SS9

240 SA1

1 GB, 240-Pin DDR2 FB-DIMM

Front view

Notes

Tolerances on all dimensions except where otherwise indicated are $\pm .13$ [.005].

All dimensions are expressed: millimeters [inches]

1 GB, 240-Pin DDR2 FB-DIMM

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Temperature, DDR2 DRAM Case	T _{Case}	0 to +95	С	1, 2
Temperature, Storage	T _{STG}	-55 to +100	С	1
Voltage on any pin relative to V _{SS}	$V_{\text{IN}}, V_{\text{OUT}}$	-0.3 to 1.75	V	1
Voltage on V _{CC} relative to V _{SS}	V _{CC}	-0.3 to 1.75	V	1
Voltage on V _{DD} relative to V _{SS}	V_{DD}	-0.5 to 2.3	V	1
Voltage on V _™ relative to V _{SS}	V _{TT}	-0.5 to 2.3	V	1
Power Dissipation	P _D	21	W	1

NOTES:

- 1. Operation at or above absolute maximum rating can adversely affect device reliability.
- 2. For 85 C < $T_{Case} \le 95$ C, t_{REFI} = 3.9 μs max.

DC Operating Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{SS} = 0V$)

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Note
AMB Supply Voltage	V _{CC}	1.425	1.5	1.59	V	
DDR2 Supply Voltage	V_{DD}	1.7	1.8	1.9	V	
Termination Voltage	V _{TT}	0.48 x Vdd	0.50 x Vdd	0.52 x Vdd	V	
EEPROM Supply Voltage (SPD)	V_{DDSPD}	3.0	3.3	3.6	V	
Input High Voltage (SPD)	V _{IH(DC)}	2.1		V_{DDSPD}	V	1
Input Low Voltage (SPD)	$V_{IL(DC)}$	1.0			V	1
Input High Voltage (RESET/BFUNC)	V _{IH(DC)}	1.0			V	2
Input Low Voltage(RESET/BFUNC)	V _{IL(DC)}			0.5	V	1
Leakage Curent (RESET/BFUNC)	IL	-90		90	μA	2
Leakage Curent (Link)	IL	-5		5	μA	

Notes:

- Applies to SMB and SPD bus signals.
 Applies to AMB CMOS signal /RESET.

1 GB, 240-Pin DDR2 FB-DIMM

Differential Transmitter Output Specification

Parameter Symbol Symbo	Differential Transmitter Output Specification	Comple at	NAINI	MAN	1 1 10 1 4
Swing VTX-DiFFp-p = 2* VTX-D+ - VTX-D- Differential peak-to-peak output voltage for regular voltage swing VTX-DiFFp-p = (1) 800 mV Swing VTX-DiFFp-p = (1) 700	Parameter	Symbol V/TV DIEED D. I.(1)	MIN	MAX	Units
swing VTX-DIFFp-P=2* VTX-D+-VTX-D- OND MV Differential peak-to-peak output voltage for small voltage swing swing VTX-DIFFp-P=2* VTX-D+ VTX-D- VTX-DIFFp-P=S(1) 520			900	1300	mV
Swing \ \ TX-DIF-Pp-2=2* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		,	800		mV
Defined as: VTX-CM = DC(avg) of VTX-D+ VTX-D- /2 DC common mode output voltage for small voltage swing Defined as: VTX-CM = DC(avg) of VTX-D+ + VTX-D- /2 VTX-DE-3.5	swing VTX-DIFFp-p =2 * VTX-D+ - VTX-D-		520		mV
Defined as: VTX-CM = DC(avg) of VTX-D+ + VTX-D- /2 De-emphasized differential output voltage ratio for -3.5 dB VTX-DE-3.5- Ratio(1,2,3) -3 -4 dB de-emphasis - De-emphasized differential output voltage ratio for -6 dB de-emphasis VTX-DE-6-Ratio(1,2,3) -5 -7 dB dB-emphasis VTX-CM-AC = Max VTX-D+ + VTX-D- /2 Min VTX-D+ VTX-D- /2 Min Min	Defined as: VTX-CM = DC(avg) of VTX-D+ + VTX-D- /2	_ ` ,		375	mV
De-emphasis - Ratio(1,2,3) De-emphasis - Comphasis - Comphasis - Comphasis	Defined as: VTX-CM = DC(avg) of VTX-D+ + VTX-D- /2	= \ /	135	280	mV
AC peak-to-peak common mode output voltage for large swing VTX-CM-AC = Max VTX-D+ + VTX-D- /2 - Min VTX-D+ VTX-D+ /2 - Min VTX-D+ VTX-D+ VTX-D+ /2 - Min VTX-D+ VTX-D+ VTX-D+ /2 - Min VTX-D+ VTX-D+ VTX-D+ VTX-D+ /2 - Min VTX-D+ VTX-D+ VTX-D+ VTX-D+ /2 - Min VTX-D+ VTX	de-emphasis -	Ratio(1,2,3)	-3	-4	dB
Swing \ \text{TX-CM-AC} = \text{Max} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	emphasis		-5	-7	dB
Swing VTX-CM-AC = Max VTX-D+ + VTX-D- /2 - Min VTX-D+ + VTX-D- /2 - AC peak-to-peak common mode output voltage for small swing VTX-CM-AC = Max VTX-D+ + VTX-D- /2 - Min VTX-D+ D+ VTX-D+ /2 - Min VTX-D+ D+ VTX-D+ D+ VTX-D+ D+ D+ VTX-D+ D+ D	swing VTX-CM-AC = Max VTX-D+ + VTX-D- /2 - Min VTX-D+ + VTX-D- /2			90	mV
swing VTX-Ch-AC = Max VTX-D+ + VTX-D- /2 - Min VTX-D+ VTX-D- /2 Maximum single-ended voltage in El condition, DC + AC VTX-IDLE-SE(5,6) 50 mV Maximum single-ended voltage in El condition, DC only VTX-IDLE-SE-DC(5,6,7) 20 mV Maximum peak-to-peak differential voltage in El condition VTX-IDLE-DIFFp-p(6) 40 mV Single-ended voltage(w.r.t. VSS) on D+/D- VTX-SE(1,7) -75 750 mV Minimum TX eye width, 3.2 and 4 Gb/s TTX-Eye-MIN(1,9,10) 0.7 UI Maximum TX deterministic jitter, 3.2 and 4 Gb/s TTX-DJ-DD(1,9,10,11) 0.2 UI Instantaneous pulse width TTX-PULSE(12) 0.85 UI Differential TX output rise/fall time TTX-RISE, TTX-FALL(1) 30 90 ps Given by 20%-80% voltage levels TX-RISE, TTX-FALL(1) 30 90 ps Mismatch between rise and fall times TTX-RISE, TTX-GALL(1) 8 dB Measured over 0.1 GHz to 2.4GHz RLTX-OH 6 dB Transm	swing VTX-CM-AC = Max VTX-D+ + VTX-D- /2 - Min VTX-D+ + VTX-D- /2			80	mV
Maximum single-ended voltage in El condition, DC + ACVTX-IDLE-SE(5,6)50mVMaximum single-ended voltage in El condition, DC onlyVTX-IDLE-SE-DC(5,6,7)20mVMaximum peak-to-peak differential voltage in El conditionVTX-IDLE-DIFFp-p(6)40mVSingle-ended voltage(w.r.t. VSS) on D+/D-VTX-SE(1,7)40mVMinimum TX eye width, 3.2 and 4 Gb/sTTX-Ey-MIN(1,9,10)0.7UIMaximum TX deterministic jitter, 3.2 and 4 Gb/sTTX-DJ-DD(1,9,10,11)0.2UIInstantaneous pulse widthTTX-PULSE(12)0.85UIDifferential TX output rise/fall time Given by 20%-80% voltage levelsTTX-PULSE(12)0.85UIMismatch between rise and fall timesTTX-RF-MISMATCH20psDifferential return loss Measured over 0.1 GHz to 2.4GHzRLTX-DIFF8dBCommon mode return loss Measured over 0.1 GHz to 2.4GHzRLTX-CM6dBTransmitter termination resistanceRTX(13)4155ΩD4/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D+ /(RTX-D+ + RTX-D-)RTX-Match-DC4%Daunds are applied separately to high and low output voltage statesLTX-SKEW 1(14,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+2UIpsMaximum TX Drift (resync mode)TTX-DRIFT-RESAMPLE(17)240ps	swing VTX-CM-AC = Max VTX-D+ + VTX-D- /2 - Min VTX-D+ + VTX-D- /2	VTX-CM-ACp-p S(1,4)		70	mV
Maximum single-ended voltage in El condition, DC onlyVTX-IDLE-SE-DC(5,6,7)		VTX-IDLE-SE(5,6)		50	mV
Maximum peak-to-peak differential voltage in El condition VTX-IDLE-DIFFp-p(6) 40 mV Single-ended voltage(w.r.t. VSS) on D+/D- VTX-SE(1,7) 75 750 mV Minimum TX eye width, 3.2 and 4 Gb/s TTX-Eye-MIN(1,9,10) 0.7 UI Maximum TX deterministic jitter, 3.2 and 4 Gb/s TTX-DJ-DD(1,9,10,11) 0.2 UI Instantaneous pulse width TTX-PULSE(12) 0.85 UI Differential TX output rise/fall time TTX-RISE, TTX- 30 90 ps Given by 20%-80% voltage levels TTX-RF-MISMATCH 20 ps Mismatch between rise and fall times TTX-RF-MISMATCH 20 ps Differential return loss RLTX-DIFF 8 dB dB Measured over 0.1 GHz to 2.4GHz RLTX-CM 6 dB dB Measured over 0.1 GHz to 2.4GHz RTX-CM 6 dB dB Measured over 0.1 GHz to 2.4GHz RTX-CM 6 dB dB Measured over 0.1 GHz to 2.4GHz RTX-CM 6 dB Measured over 0.1 GHz to 2.4GHz RTX-D- Maximum TX Drift (resync mode) RTX-SKEW 1(14,16) 100+3UI ps Data of the ps TTX-DRIFT 240 ps Maximum TX Drift (resync mode) TTX-DRIFT 240 ps Maximum TX Drift (resample mode only) RESAMPLE(17) T20 ps Maximum TX Drift (resample mode only) RESAMPLE(17) T20 Ps Maximum TX Drift (resample mode only) TTX-DRIFT T20 ps Maximum TX Drift (resample mode only) TTX-DRIFT T20 ps Maximum TX Drift (resample mode only) TTX-DRIFT T20 ps TTX-DRIFT T20 ps TTX-DRIFT T20 ps TTX-DRIFT T20 ps TTX-DRIFT T20 TTX-DRIFT	Maximum single-ended voltage in El condition, DC only				
Single-ended voltage(w.r.t. VSS) on D+/D-	Maximum peak-to-peak differential voltage in El condition			40	mV
Minimum TX eye width, 3.2 and 4 Gb/sTTX-Eye-MIN(1,9,10)0.7UIMaximum TX deterministic jitter, 3.2 and 4 Gb/sTTX-DJ-DD(1,9,10,11)0.2UIInstantaneous pulse widthTTX-PULSE(12)0.85UIDifferential TX output rise/fall time Given by 20%-80% voltage levelsTTX-RISE, TTX-FALL(1)3090psMismatch between rise and fall timesTTX-RF-MISMATCH20psDifferential return loss Measured over 0.1 GHz to 2.4GHzRLTX-DIFF8dBCommon mode return loss Measured over 0.1 GHz to 2.4GHzRLTX-CM6dBTransmitter termination resistanceRTX(13)4155ΩD+/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-)RTX-Match-DC4%Bounds are applied separately to high and low output voltage statesLTX-SKEW 1(14,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+2UIpsMaximum TX Drift (resync mode)TTX-DRIFT- RESYNC(17)240psMaximum TX Drift (resample mode only)TTX-DRIFT- RESAMPLE(17)120ps	Single-ended voltage(w.r.t. VSS) on D+/D-	VTX-SE(1,7)	-75	750	
Maximum TX deterministic jitter, 3.2 and 4 Gb/sTTX-DJ-DD(1,9,10,11)0.2UIInstantaneous pulse widthTTX-PULSE(12)0.85UIDifferential TX output rise/fall time Given by 20%-80% voltage levelsTTX-RISE, TTX-FALL(1)3090psMismatch between rise and fall timesTTX-RF-MISMATCH20psDifferential return loss Measured over 0.1 GHz to 2.4GHzRLTX-DIFF8dBCommon mode return loss Measured over 0.1 GHz to 2.4GHzRLTX-CM6dBTransmitter termination resistanceRTX(13)4155ΩD+/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-)RTX-Match-DC4%Bounds are applied separately to high and low output voltage statesLTX-SKEW 1(14,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+2UIpsMaximum TX Drift (resync mode)TTX-DRIFT- RESYNC(17)240psMaximum TX Drift (resample mode only)TTX-DRIFT- RESAMPLE(17)120ps	Minimum TX eye width, 3.2 and 4 Gb/s	TTX-Eye-MIN(1,9,10)			
Instantaneous pulse width	Maximum TX deterministic jitter, 3.2 and 4 Gb/s	TTX-DJ-DD(1,9,10,11)			
Differential TX output rise/fall time Given by 20%-80% voltage levelsTTX-RISE, TTX-FALL(1)3090psMismatch between rise and fall timesTTX-RF-MISMATCH20psDifferential return loss Measured over 0.1 GHz to 2.4GHzRLTX-DIFF8dBCommon mode return loss Measured over 0.1 GHz to 2.4GHzRLTX-CM6dBTransmitter termination resistanceRTX(13)4155ΩD+/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-)RTX-Match-DC4%Bounds are applied separately to high and low output voltage statesLTX-SKEW 1(14,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+2UIpsMaximum TX Drift (resync mode)TTX-DRIFT- RESYNC(17)120psMaximum TX Drift (resample mode only)TTX-DRIFT- RESAMPLE(17)120ps	Instantaneous pulse width	TTX-PULSE(12)	1		
Mismatch between rise and fall timesTTX-RF-MISMATCH20psDifferential return loss Measured over 0.1 GHz to 2.4GHzRLTX-DIFF8dBCommon mode return loss Measured over 0.1 GHz to 2.4GHzRLTX-CM6dBTransmitter termination resistanceRTX(13)4155ΩD+/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-)RTX-Match-DC4%Bounds are applied separately to high and low output voltage statesLTX-SKEW 1(14,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+2UIpsMaximum TX Drift (resync mode)TTX-DRIFT- RESYNC(17)240psMaximum TX Drift (resample mode only)TTX-DRIFT- RESAMPLE(17)120ps	Given by 20%-80% voltage levels	FALL(1)			
Measured over 0.1 GHz to 2.4GHzGrammon mode return loss Measured over 0.1 GHz to 2.4GHzRLTX-CM6dBTransmitter termination resistanceRTX(13)4155ΩD+/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-)RTX-Match-DC4%Bounds are applied separately to high and low output voltage statesLane-to-lane skew at TXLTX-SKEW 1(14,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+2UIpsMaximum TX Drift (resync mode)TTX-DRIFT- RESYNC(17)240psMaximum TX Drift (resample mode only)TTX-DRIFT- RESAMPLE(17)120ps				20	ps
Measured over 0.1 GHz to 2.4GHzControlTransmitter termination resistanceRTX(13)4155ΩD+/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-)RTX-Match-DC4%Bounds are applied separately to high and low output voltage statesLTX-SKEW 1(14,16)100+3UIpsLane-to-lane skew at TXLTX-SKEW 2(15,16)100+2UIpsMaximum TX Drift (resync mode)TTX-DRIFT- RESYNC(17)240psMaximum TX Drift (resample mode only)TTX-DRIFT- RESAMPLE(17)120ps	Measured over 0.1 GHz to 2.4GHz		8		dB
D+/D- TX resistance difference RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-) Bounds are applied separately to high and low output voltage states Lane-to-lane skew at TX LTX-SKEW 1(14,16) 100+3UI ps LTX-SKEW 2(15,16) 100+2UI ps Maximum TX Drift (resync mode) Maximum TX Drift (resample mode only) TTX-DRIFT- RESYNC(17) TTX-DRIFT- RESAMPLE(17) T120 ps			6		dB
RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-) Bounds are applied separately to high and low output voltage states Lane-to-lane skew at TX LTX-SKEW 1(14,16) 100+3UI ps LTX-SKEW 2(15,16) 100+2UI ps Maximum TX Drift (resync mode) TTX-DRIFT 240 ps RESYNC(17) TTX-DRIFT 120 ps		, ,	41	55	Ω
Lane-to-lane skew at TX LTX-SKEW 1(14,16) 100+3UI ps Lane-to-lane skew at TX LTX-SKEW 2(15,16) 100+2UI ps Maximum TX Drift (resync mode) TTX-DRIFT-RESYNC(17) 240 ps Maximum TX Drift (resample mode only) TTX-DRIFT-RESAMPLE(17) 120 ps	RTX-Match-DC = 2* RTX-D+ - RTX-D- /(RTX-D+ + RTX-D-) Bounds are applied separately to high and low output	RTX-Match-DC		4	%
Lane-to-lane skew at TX LTX-SKEW 2(15,16) 100+2UI ps Maximum TX Drift (resync mode) TTX-DRIFT- RESYNC(17) 240 ps Maximum TX Drift (resample mode only) TTX-DRIFT- RESAMPLE(17) 120 ps		LTX-SKEW 1(14,16)		100+3111	ns
Maximum TX Drift (resync mode)TTX-DRIFT-RESYNC(17)240psMaximum TX Drift (resample mode only)TTX-DRIFT-RESAMPLE(17)120ps	Lane-to-lane skew at TX	, , ,			· ·
Maximum TX Drift (resample mode only) TTX-DRIFT- RESAMPLE(17) 120 ps	Maximum TX Drift (resync mode)	TTX-DRIFT-			
Bit Error Ratio BER(18) 10 ⁻¹²	Maximum TX Drift (resample mode only)	TTX-DRIFT-		120	ps
	Bit Error Ratio	BER(18)		10 ⁻¹²	

1 GB, 240-Pin DDR2 FB-DIMM

NOTES FOR TRANSMITTER OUTPUT SPECIFICATIONS:

- 1. Specified at the package pins into a timing and voltage compliance test load. Common-mode measurements to be performed using a 101010 pattern.
- 2. This is the ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition.
- 3. De-emphasis is disabled in the calibration state.
- 4. Includes all sources of AC common mode noise
- 5. Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as the Electrical Idle condition.
- 6. Specified at the package pins into a voltage compliance test load. Transmitters must meet both single-ended and differential output E1 specifications.
- 7. This specification, considered with VRX-IDLE-SE-DC, implies a maximum 15mV single-ended DC offset between Tx and Rx pins during the electrical idle condition. This in turn allows a ground offset between adjacent FB-DIMM agents of 26mV when worst-case termination resistance matching is considered.
- 8. The maximum value is specified to be at least (VTX-DIFFp-p L / 4) + VTX-CM L + (VTX-CM-ACp-p / 2)
- 9. This number does not include the effects of SSC or reference clock jitter.
- 10. These timing specifications apply to resync mode only.
- 11. Defined as the dual-dirac deterministic jitter as described in Section 4 of the JEDEC FB-DIMM High Speed Differential PTP Link Draft Spec rev 0.8.
- 12. Pulse width measured at 0V differential.
- 13. The termination small signal resistance; tolerance across voltages from 100mV to 400mV shall not exceed ±5: with regard to the average of the values measured at 100mV and at 400mV for that pin.
- 14. Lane to Lane skew at the Transmitter pins for an end component.
- 15. Lane to Lane skew at the Transmitter pins for an intermediate component (assuming zero Lane to Lane skew at the Receiver pins of the incoming PORT).
- 16. This is a static skew. A FB-DIMM component is not allowed to change its lane to lane phase relationship after initialization.
- 17. Measured from the reference clock edge to the center of the output eye. This specification is met across specified voltage and temperature ranges for a single component. Drift
- rate of change is significantly below the tracking capability of the receiver.
- 18. BER per differential lane. For a complete definition of Bit Error Ratio, refer to JEDEC's Compliance Methodology section.

1 GB, 240-Pin DDR2 FB-DIMM

Differential Receiver Input Specification

Parameter	Symbol	MIN	MAX	Units
Differential peak-to-peak input voltage	VRX-DIFFp-p_L(1)	170	1300	mV
VRX-DIFFp-p =2 * VRX-D+ - VRX-D-				ļ
Maximum single-ended voltage for El condition, DC + AC	VRX-IDLE-SE(2,3,4)		65	mV
Maximum single-ended voltage for El condition, DC only	VRX-IDLE-SE- DC(2,3,4,5)		35	mV
Single-ended voltage (w.r.t. VSS) on D+/D-	VRX-SE(4)	-300	900	mV
Single-pulse peak differential input voltage	VRX-DIFF-PULSE(4,6)	85		mV
Amplitude ratio between adjacent symbols 1100mV < VRX-DIFFp-p ≤1300mV	VRX-DIFF-ADJ- RATIO-HI(4,7)		3	
Amplitude ratio between adjacent symbols VRX-DIFFp-p ≤1100mV	VRX-DIFF-ADJ- RATIO(4,7)		4	
Maximum RX inherent timing error, 3.2 and 4 Gb/s	TRX-TJ-MAX(4,8,9)		0.4	UI
Maximum RX inherent deterministic timing error, 3.2 and 4 Gb/s	TRX-DJ-DD(4,8,9,10)		0.3	UI
Single-pulse width at zero-voltage crossing	TRX-PW-ZC(4,6)	0.55		UI
Single-pulse width at minimum-level crossing	TRX-PW-ML(4,6)	0.2		UI
Differential RX input rise/fall time, given by 20%-80% voltage levels	TRX-RISE,TRX-FALL	50		ps
Common mode of the input voltage Defined as: VRX-CM = DC(avg) of VRX-D+ + VRX-D- /2	VRX-CM(1,11)	120	400	mV
AC peak-to-peak common mode of input voltage VRX-CM-AC = Max VRX-D+ + VRX-D- /2 - Min VRX-D+ + VRX-D- /2	VRX-CM-ACp-p(1)		270	mV
Ratio of VRX-CM-ACp-p to minimum VRX-DIFFp-p	VRX-CM-EH-Ratio(12)		45	%
Differential return loss Measured over 0.1 GHz to 2.4GHz	RLRX-DIFF	9		dB
Common mode return loss Measured over 0.1 GHz to 2.4GHz	RLRX-CM	6		dB
RX termination resistance	RRX(13)	41	55	Ω
D+/D- RX resistance difference RRX-Match-DC = 2* RRX-D+ - RRX-D- /(RRX-D+ + RRX-D-)	RRX-Match-DC		4	%
Lane-to-lane PCB skew at RX Lane to Lane PCB skew at the Receiver that must be tolerated.	LRX-PCB-SKEW(14)		6	UI
Minimum RX Drift Tolerance	TRX-DRIFT(15)	400		ps
Minimum data tracking 3dB bandwidth	FTRK(16)	0.2		MHz
Electrical idle entry detect time	TEI-ENTRY - DETECT(17)		60	ns
Electrical idle exit detect time	TEI-EXIT-DÈTÉCT		30	ns
Bit Error Ratio	BER(18)		10 ⁻¹²	
	•	•		•

1 GB, 240-Pin DDR2 FB-DIMM

NOTES FOR RECEIVER INPUT SPECIFICATIONS:

- 1. Specified at the package pins into a timing and voltage compliant test setup. Note that signal levels at the pad are lower than at the pin.
- 2. Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as the Electrical Idle condition. Worst-case margins are determined by comparing El levels with common mode levels during normal operation for the case with transmitter using small voltage swing (see RX Single-ended Electrical Idle Levels and RX Common Mode Levels).
- 3. Multiple lanes need to detect the EI condition before the device can act upon the EI detection.
- 4. Specified at the package pins into a timing and voltage compliance test setup.
- 5. This specification, considered with VTX-IDLE-SE-DC, implies a maximum 15mV single-ended DC offset between TX and RX pins during the electrical idle condition. This in turn allows a ground offset between adjacent FB-DIMM of 26mV when worstcase termination resistance matching is considered.
- 6. The single-pulse mask provides sufficient symbol energy for reliable RX reception. Each symbol complies with both the single-pulse mask and the cumulative eye mask (see RX Single-Pulse Min Width and Amplitude Mask, Pulse Shifted Early, and RX Single-Pulse Min Width and Amplitude Mask, Pulse Shifted Late).
- 7. The relative amplitude ratio limit between adjacent symbols prevents excessive inter-symbol interference in the Rx. Each symbol must comply with the peak amplitude ratio with regard to both the preceding and subsequent symbols (see RX Maximum Adjacent Symbol Amplitude).
- 8. This number does not include the effects of SSC or reference clock jitter.
- 9. This number includes setup and hold of the RX sampling flop.
- 10. Defined as the dual-dirac deterministic timing error as described in Section 4.2.2 of the JEDEC FB-DIMM High-Speed Differential PTP Link Draft Spec, rev 0.8.
- 11. Allows for 15mV DC offset between transmit and receive devices. 12. The received differential signal satisfies both this ratio as well as the absolute maximum AC peak-to-peak common mode specification. For example, if VRX-DIFFp-p is 200mV, the maximum AC peak-to-peak common mode is the lesser of (200 mV * 0.45 = 90mV) and VRX-CM-ACp-p.
- 13. The termination small signal resistance; tolerance across voltages from 100mV to 400mV shall not exceed ± 5 \land with regard to the average of the values measured at 100mV and at 400mV for that pin.
- 14. This number represents the lane-to-lane skew between TX and RX pins and does not include the transmitter output skew from the component driving the signal to the receiver. This is one component of the end-to-end channel skew in the AMB specification.
- 15. Measured from the reference clock edge to the center of the input eye. This specification is met across specified voltage and temperature ranges. Drift rate of change is significantly below the tracking capability of the receiver.
- 16. This bandwidth number assumes the specified minimum data transition density. Maximum jitter at 0.2MHz is 0.05UI.
- 17. The specified time includes the time required to forward the EI entry condition.
- 18. BER per differential lane.

1 GB, 240-Pin DDR2 FB-DIMM

Advanced Memory Buffer FBD Timing/Electrical

Parameter	Symbol	MIN	MAX	Units
El Assertion Pass-Through Timing	tEI PROPAGATE		4	CLKs
El Deassertion Pass-Through Timing	tEID		tBitlock	CLKs
El Assertion Duration	tEI	100		CLKs
Bit Lock Interval	tBITLOCK		119	Frames
Frame Lock Interval	tFRAMELOCK		154	Frames

Advanced Memory Buffer Latency Parameters

Parameter	Symbol	MIN	MAX	Units	Notes
CMD2DATA = 0x40 (Data Rate = 667)	tC2D_AMB	16.2	19	ns	
CMD2DATA = 0x46 (Data Rate = 667)	tC2D_AMB	17.7	20.5	ns	
Resample Delay (6)	tRESAMPLE	0.9	1.4	ns	1
Resync Delay (7,8,9)	tRESYNC	2	3.2	ns	2

NOTES:

^{1.} tRESAMPLE is the delay from the southbound input to the southbound output, or the northbound input to the northbound output when in resample mode, measured from the center of the data eye.

^{2.} tRESYNC is the delay from the southbound input to the southbound output, or the northbound input to the northbound output when in resync mode, measured from the center of the data eye.

1 GB, 240-Pin DDR2 FB-DIMM

AMB Power Specification (T_A = 0 to 70 C, Voltage referenced to V_{SS} = 0V)

Parameter	Symbol	Test Condition	Power Supply	Value	Unit
Idle	IDD IDLE 0	Single or last FBDIMM: L0 state, idle (0 BW); primary channel enabled, secondary channel disabled, CKE high; command and	1.5 V	2600	mA
Current	IDD_IDLE_0	address lines stable, DDR2 SDRAM clock active.	1.8 V	700	IIIA
Idle		First FBDIMM: L0 state, idle (0 BW); primary and secondary	1.5 V	3400	
Current	IDD_IDLE_1	channels enabled, CKE high; command and address lines stable, DDR2 SDRAM clock active.	1.8 V	700	mA
Active	IDD_TDP_0	TDP BW, Single or Last DIMM; L0 State; TDP Channel BW=2.4GB/s@667, 67% READ, 33% WRITE; primary channel	1.5 V	3000	
Power		enabled; secondary channel disabled, CKE high; command and address lines stable, DDR2 SDRAM clock active.	1.8 V	1300	mA
Active	IDD TDP 1	TDP BW, First DIMM; L0 State; TDP Channel BW=2.4GB/s@667, DIMM BW=1.6GB/s@667; 67% READ, 33%	1.5 V	3900	
Power	100_101_1	WRITE; primary channel enabled; secondary channel enabled, CKE high; command and address lines stable, DDR2 SDRAM clock active.	1.8 V	1000	mA
Training	IDD_TRAINING	Primary and secondary channels enabled; 100% toggle on all channel lanes; DDR2 SDRAM devices idle (0 BW); CKE HIGH,	1.5 V	4000	mA
		command and address lines stable; DDR2 SDRAM clock active.	1.8 V	0.7	

1 GB, 240-Pin DDR2 FB-DIMM

DRAM AC Characteristics (AC operating conditions unless otherwise noted)

Parameter	Symbol	Min Value	Max Value	Unit	Note
Row Cycle Time	t _{RC}	57.5	-	ns	
Auto Refresh Row Cycle Time	t _{RFC}	105	-	ns	
Row Active Time	t _{RAS}	45	70K	ns	
Row Address to Column Address Delay	t _{RCD}	12.5	-	ns	
Row Active to row Active Delay	t _{RRD}	7.5	-	ns	
Column Address to Column Address Delay	Address to Column Address Delay t _{RCD} 12.5 Active to row Active Delay t _{RRD} 7.5 An Address to Column Address Delay t _{CCD} 2 Precharge time t _{RP} 12.5		-	CLK	
Row Precharge time	t _{RP}	12.5	-	ns	
Write Recovery Time	t _{WR}	15	-	ns	
Auto Precharge Write Recovery + Precharge Time	t _{DAL}	$(t_{WR}/t_{CK}) + (t_{RP}/t_{CK})$	-	ns	
System Clock Cycle Time	t _{CK}	2500	8000	ps	
Clock High Level Width	tсн	0.48	0.52	CLK	
Clock Low Level Width	t _{CL}	0.48	0.52	CLK	
DQ output access time from CK & /CK	t _{AC}	-0.400	0.52 CLK +0.400 ns		
DQS-Out edge to Clock Edge skew	t _{DQSCK}	-0.350	+0.350	ns	
DQS-Out edge to Data-out edge skew	t _{DQSQ}	-	0.200	ns	
Data-Out hold time from DQS	t _{QH}	t _{HP} - t _{QHS}	-	ns	1
Data hold skew factor	t _{QHS}	-	0.300	ns	1
Clock Half Period	t _{HP}	min (t _{CL} , t _{CH})	-	ns	1
Input Setup Time (fast slew rate)	t _{IS}	0.175	-	ns	2,3,5,6
Input Hold Time (fast slew rate)	t _{IH}	0.250	-	ns	2,3,5,6
Input Pulse Width	t _{IPW}	0.6	-	CLK	6
Write DQS High Level Width	t _{DQSH}	0.35	-	CLK	
Write DQS Low Level Width	t _{DQSL}	0.35	-	CLK	
CLK to First Rising edge to DQS-In	t _{DQSS}	-0.25	+0.25	CLK	
Data-In Setup Time to DQS-In (DQ & DM)	t _{DS}	0.050	-	ns	7
Data-In Hold Time to DQS-In (DQ & DM)	t _{DH}	0.125	-	ns	7

NOTES:

- 1.
- This calculation accounts for $t_{DOSQ}(max)$, the pulse width distortion of on-chip and jitter. Data sampled at the rising edges of the clock: A0~A13, BA0~BA2, CKE, /S[1:0], /RAS, /CAS, /WE
- For command/address input slew rate > = 1.0V/ns
- For command/address input slew rate > = 0.5V/ns and <1.0V/ns
- CK,/CK slew rates are > = 1.0V/ns
- These Parameters guarantee device timing, but they are not necessarily tested on each device, and they may be guaranteed by design or tester correlation.
- Data latched at both rising and falling edges of Data Strobes (DQS)

1 GB, 240-Pin DDR2 FB-DIMM

AC Operating Conditions (AC operating conditions unless otherwise noted)

Parameter	Symbol	Min Value	Max Value	Unit	Note
DQ Input Pulse Width	t _{DIPW}	0.35	-	CLK	
Read DQS Preamble Time	t _{RPRE}	0.9	1.1	CLK	
Read DQS Postamble Time	t _{RPST}	0.4	0.6	CLK	
Write DQS Preamble Hold Time	t _{WPRE}	0.35	-	CLK	
Write DQS Postamble Time	t _{WPST}	0.4	0.6	CLK	
Mode Register Set Delay	t _{MRD}	2	-	CLK	
Exit Self Refresh to Non-Read Command	t _{XSNR}	tRFC + 10	-	ns	
Exit Self Refresh to Read Command	t _{XSRD}	200	-	CLK	
Average Periodic Refresh Interval	t	-	7.8	μs	1
Average renoute itemestriliterval	t _{REFI}	-	3.9	μs	2

NOTES:

- For 0 C < T_{Case} ≤ 85 C
 For 85 C < T_{Case} ≤ 95 C

1 GB, 240-Pin DDR2 FB-DIMM

SERIAL PRESENCE DETECT MATRIX

Byte#	Function.	Value	Hex
0	Number of Serial PD Bytes Written / SPD Device Size / CRC Cove	rage	0x92
	Bit 3 ~ Bit 0. SPD Bytes Used -	176	1
	Bit 6 ~ Bit 4. SPD Bytes Total -	256	
	Bit 7. CRC Coverage -	Bytes 0-116	
1	SPD Revision	Rev. 1.1	0x11
2	Key Byte / DRAM Device Type	DDR2 FBDIMM	0x09
3	Voltage Levels of this Assembly		0x12
	Bit 3 ~ Bit 0. Power Supply 1 -	1.5V]
	Bit 7 ~ Bit 4. Power Supply 2 -	1.8V	
4	SDRAM Addressing		0x45
	Bit 1, 0. Number of Banks -	8	
	Bit 5 ~ Bit 3.Column Address Bits -	10	-
5	Bit 7 ~ Bit 5. Row Address Bits -	14	0x23
3	Module Physical Attributes	700	0,23
	Bit 3 ~ Bit 0. Module Thickness (mm) -	7 <x<=8.0< td=""><td>-</td></x<=8.0<>	-
	Bit 4 ~ Bit 2. Module Height (mm) - Bit 7, 6. Reserved	30 <x<=35 0</x<=35 	+
6	Module Type	<u> </u>	0x07
O	Bit 3 ~ Bit 0. Module Type -	FB-DIMM	0,07
	Bit 7 ~ Bit 4. Reserved	 О	+
7	Module Organization	<u> </u>	0x09
-	Bit 3 ~ Bit 0. SDRAM Device Width -	8-Bits	+
	Bit 5 ~ Bit 3. Number of Ranks -	1-Rank	+
	Bit 7, 6. Reserved	0	7
8	Fine Timebase Dividend / Divisor		0x00
	Bit 3 ~ Bit 0. Fine Timebase (FTB) Dividend -	0	
	Bit 7 ~ Bit 4. Fine Timebase (FTB) Divisor -	0	
9	Medium Timebase Dividend.	1 (MTB = 0.25ns)	0x01
10	Medium Timebase Divisor.	4 (MTB = 0.25ns)	0x04
11	SDRAM Minimum Cycle Time (tCKmin).	2.5ns	0x0A
12	SDRAM Maximum Cycle Time (tCKmax).	8.0ns	0x20
13	SDRAM CAS Latencies Supported.		0x24
	Bit 3 ~ Bit 0. Minimum CL (clocks) -	4	
	Bit 7 ~ Bit 4. CL Range (clocks) -	2	
14	SDRAM Minimum CAS Latency Time (tAAmin).	12.5ns	0x32
15	SDRAM Write Recovery Times Supported		0x32
	Bit 3 ~ Bit 0. Minimum WR (clocks) -	2	
	Bit 7 ~ Bit 4. WR Range (clocks) -	3	
16	SDRAM Write Recovery Time (tWR).	15.0ns	0x3C
17	SDRAM Write Latencies Supported		0x42
	Bit 3 ~ Bit 0. Minimum WL (clocks) -	2]
	Bit 7 ~ Bit 4. WL Range (clocks) -	4	

18	SDRAM Additive Latencies Supported.		0x50
	Bit 3 ~ Bit 0. Minimum AL (clocks)-	0	7
	Bit 7 ~ Bit 4. AL Range (clocks) -	5	
19	SDRAM Minimum RAS to CAS Delay (tRCD).	12.5ns	0x32
20	SDRAM Minimum Row Active to Row Active Delay (tRRD).	7.5ns	0x1E
21	SDRAM Minimum Row Precharge Time (tRP).	12.5ns	0x32
22	SDRAM Upper Nibbles for tRAS and tRC.		0x00
	Bit 3 ~ Bit 0. tRAS Most Significant Nibble - Bit 7 ~ Bit 4. tRC Most Significant Nibble -		
23	SDRAM Minimum Active to Precharge Time (tRAS).	45.0ns	0xB4
24	SDRAM Minimum Active to Active/Refresh Time (tRC).	57.5ns	0xE6
25	SDRAM Minimum Refresh Recovery Time Delay (tRFC), (LSB).	127.5ns	0xFE
26	SDRAM Minimum Refresh Recovery Time Delay (tRFC), 127.5ns (MSB).		0x01
27	SDRAM Minimum Internal Write to Read Command Delay (tWTR).	7.5ns	0x1E
28	SDRAM Minimum Internal Read to Precharge Command Delay (tRTP).	7.5ns	0x1E
29	SDRAM Burst Lengths Supported		0x03
	Bit 0. BL = 4 -	Χ	
	Bit 1. BL = 8 -	X	
	Bit 6 ~ Bit 2.TBD		
	Bit 7. Burst Chop -		0.07
30	SDRAM Terminations Supported.		0x07
	Bit 0. 150 ohms ODT -	X	
	Bit 1. 75 ohms ODT -	X	_
	Bit 2. 50 ohms ODT - Bit 6 ~ Bit 3.TBD	X	
31	SDRAM Drivers Supported.		0x00
01	Bit 0. Weak Driver -		
	Bit 7 ~ Bit 1. TBD		
32	SDRAM Average Refresh Interval (tREFI) / Double Refresh mode self-refresh rate support indication.	bit / High Temperature	0xC2
	Bit 0 ~ Bit 3. Average Refresh Interval (tREFI) uS -	7.8	
	Bit 5, Bit 4. TBD	0	
	Bit 6. High Temperature Self-Refresh -	1-Required	
00	Bit 7. Double Refresh Requirement -	1-Supported	050
33	Tcasemax Delta.		0x50
	Bit 3 ~ Bit 0. DT4R4W Delta, Subfield B: 0.4 °C -	0	
24	Bit 7 ~ Bit 4. Tcasemax, Subfield A: 2 °C -	10	074
34	Thermal Resistance of SDRAM Package. °C/W	58	0x74
35	SDRAM Case Temperature Rise from Ambient due to Activate-Prooffset temperature (DT0). °C		0x48
	Bit 1, Bit 0. Reserved	0	4
20	Bit 7 ~ Bit 2. DT0 -	5.4	0::00
36	SDRAM Case Temperature Rise from Ambient due to Precharge/Quiet Standby (DT2N/DT2Q). °C	5	0x32

37	SDRAM Case Temperature Rise from Ambient due to Precharge Power-Down (DT2P). °C	1.095	0x49
38	SDRAM Case Temperature Rise from Ambient due to Active Standby (DT3N). °C	6	0x28
39	SDRAM Case Temperature Rise from Ambient due to Page Open Burst Read/DT4R4W Mode Bit (DT4R/DT4R4W Mode Bit).		
	Bit 0. DT4R4W Mode Bit, Subfield B: 0.4 °C	0	
	Bit 7 ~ Bit 1. DT4R, Subfield A: 0.4 °C -	18.8	
40	SDRAM Case Temperature Rise from Ambient due to Burst Refresh (DT5B). °C	19.5	0x27
41	SDRAM Case Temperature Rise from Ambient due to Bank Interleave Reads with Auto-Precharge (DT7). °C	20.5	0x29
42-74	Reserved	UNUSED	0x00
75	QR Control.		0x00
76	QR ODT control for Rank 0 and rank 1 Reads and writes.		0x00
77	QR ODT1 and ODT2 control for reads.		0x00
78	FBD ODT Definition for Rank 2 and 3		0x00
	Bit 1, Bit 0. Rank 2 Data DRAM ODT -	Disabled	-
	Bit 3, Bit 2. Rank 2 Ecc DRAM ODT -	Disabled	\dashv
	Bit 5, Bit 4. Rank 3 Data DRAM ODT -	Disabled	-
	Bit 7, Bit 6. Rank 3 Ecc DRAM ODT -	Disabled	-
79	FBD ODT Definition for Rank 0 and 1	Biodolod	0x02
	Bit 1, Bit 0. Rank 0 Data DRAM ODT -	150 Ohms	+
	Bit 3, Bit 2. Rank 0 Ecc DRAM ODT -	Disabled	
	Bit 5, Bit 4. Rank 1 Data DRAM ODT -	Disabled	
	Bit 7, Bit 6. Rank 1 Ecc DRAM ODT -	Disabled	
80	Reserved	UNUSED	0x00
81	Channel Protocols Supported, Least Significant Byte		0x02
	Bit 0, DDR2 Base Non-ECC Protocol -	0-Not Supported	-
	Bit 1. DDR2 Base ECC Protocol -	1-Supported	-
	Bit 7 ~ Bit 2. TBD	0	
82	Channel Protocols Supported, Most Significant Byte	UNUSED	0x00
83	Back-to-back Turnaround Cycles		0x10
	Bit 1, Bit 0. Rank Read-to-Read -	0 add-l clock	-
	Bit 3, Bit 2. Write-to-Read -	0 add-l clock	=
	Bit 5, Bit 4. Read-to-Write -	1 add-l clock	7
	Bit 7, Bit 6. TBD	0	
84	AMB Read Access Time for DDR2-800 (AMB.LINKPARNXT[1:0]	= 11)	0x36
	Bit 3 ~ Bit 0. Read Access Fine Granularity (UI)	6	
	Bit 7 ~ Bit 4. Read Access Coarse Granularity (tCK)	3	
85	AMB Read Access Time for DDR2-667 (AMB.LINKPARNXT[1:0]	= 10)	0x34
	Bit 3 ~ Bit 0. Read Access Fine Granularity (UI)	4	7
	Bit 7 ~ Bit 4. Read Access Coarse Granularity (tCK)	3	
86	AMB Read Access Time for DDR2-533 (AMB.LINKPARNXT[1:0]	= 01)	0x32
	Bit 3 ~ Bit 0. Read Access Fine Granularity (UI)	2	
	Bit 7 ~ Bit 4. Read Access Coarse Granularity (tCK)	3	
87	Thermal Resistance of AMB Package from Top (Case) to Ambient	21	0x2A
	(Psi T-A AMB). °C/W		1

88	AMB Case Temperature Rise from Ambient due to AMB in Idle_0 State (DT AMB Idle_0). °C	93	0x5D
89	AMB Case Temperature Rise from Ambient due to AMB in Idle_1 State (DT AMB Idle_1). °C	113	0x71
90	AMB Case Temperature Rise from Ambient due to AMB in Idle_2 State (DT AMB Idle_2). °C	101	0x65
91	AMB Case Temperature Rise from Ambient due to AMB in Active_1 State (DT AMB Active_1). °C	155	0x9B
92	AMB Case Temperature Rise from Ambient due to AMB in Active_2 State (DT AMB Active_2). °C	127	0x7F
93	AMB Case Temperature Rise from Ambient due to AMB in L0s State (DT AMB L0s). °C	UNUSED	0x00
94-97	Reserved	UNUSED	0x00
98	AMB Junction Temperature Maximum (Tjmax). °C	125	0x1F
99	Reserved		0x0A
100	Reserved	UNUSED	0x00
101	AMB Personality Bytes: Pre-initialization.		0x00
102	AMB Personality Bytes: Pre-initialization.		0xC2
103	AMB Personality Bytes: Pre-initialization.		0x62
104	AMB Personality Bytes: Pre-initialization.		0x20
105	AMB Personality Bytes: Pre-initialization.		0x80
106	AMB Personality Bytes: Pre-initialization.		0x9C
107	AMB Personality Bytes: Post-initialization.		0x00
108	AMB Personality Bytes: Post-initialization.		0x80
109	AMB Personality Bytes: Post-initialization.		0xFC
110	AMB Personality Bytes: Post-initialization.		0x70
111-114	AMB Personality Bytes: Post-initialization.		0x60
115	AMB Manufacturer's JEDEC ID Code.		0x7F
116	AMB Manufacturer's JEDEC ID Code.		0xB3
117	Module ID: Module Manufacturer's JEDEC ID Code.		0x01
118	Module ID: Module Manufacturer's JEDEC ID Code.		0x91
119	Module ID: Module Manufacturing Location.		0x01
120,121	Module ID: Module Manufacturing Location.		0x00
122-125	Module ID: Module Serial Number.		0x00
126	Cyclical Redundancy Code (CRC).		0xC1
127	Cyclical Redundancy Code (CRC).		0xB6
128-131	Module Part Number		0x20
132	Module Part Number	D	0x44
133	Module Part Number	A	0x41
134	Module Part Number	Т	0x54
135	Module Part Number	A	0x41
136	Module Part Number	R	0x52

137	Module Part Number	А	0x41
138	Module Part Number	M	0x4D
139	Module Part Number		0x20
140	Module Part Number	6	0x36
141	Module Part Number	5	0x35
142	Module Part Number	5	0x35
143	Module Part Number	3	0x33
144	Module Part Number	8	0x38
145	Module Part Number		0x20
146,147	Module Revision Code	UNUSED	0x00
148,149	SDRAM Manufacturer's JEDEC ID Code	UNUSED	0x00
150-175	Manufacturer's Specific Data	UNUSED	0x00
176-255	Open for customer use	UNUSED	0x00

1 GB, 240-Pin DDR2 FB-DIMM

DATARAM CORPORATION, USA Corporate Headquarters, P.O. Box 7528, Princeton, NJ 08543-7528; Voice: 609-799-0071, Fax: 609-799-6734; www.dataram.com

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.