HEADER

- BEHAVIOR -

Stress (σ): $\sigma = \frac{F}{A_{co}}$

Strain (ε): $\varepsilon = \frac{\Delta I}{I_0}$

Young's Modulus (*E***):** $E = \frac{\sigma}{c}$ (in elastic region)

Shear Modulus (G): $G = \frac{\tau}{\alpha}$

Poisson's Ratio (ν): $\nu = -\frac{\varepsilon_1}{c}$

True Stress (σ_{true}): $\sigma_{\text{true}} = \frac{r}{A_{\text{instantaneous}}}$

True Strain ($\varepsilon_{\text{true}}$): $\varepsilon_{\text{true}} = \ln \frac{L}{L_0}$

Stress Relaxation: $\sigma(t) = \sigma_0 e^{-\frac{t}{2}}$

RHEOLOGY -

Shear rate: $\dot{\gamma} = \frac{u_0}{L}$ Shear stress: $\tau = \eta \dot{\gamma}$

Viscosity (η): $\eta = \frac{\tau}{2}$

Deborah Number (De): $De = \frac{\lambda}{t_{-1}}$ where $\lambda = \text{relaxation time}$

Storage Modulus (G'): $G' = \frac{\sigma_0}{\gamma_0} \cos(\delta)$

Loss Modulus (G"): $G'' = \frac{\sigma_0}{2\sigma} \sin(\delta)$

Stress Relaxation: $\sigma(t) = \sigma_0 e^{-t/\tau}$

Time-Temperature Superposition: $\log(a_T) =$

Capillary Rheometer: $\dot{\gamma} = \frac{4Q}{\pi R^3}$, $\tau = \frac{(P_0 - P_L)R}{2L}$

 $\dot{\gamma}$ = shear rate, Q = volumetric flow rate, R = die radius, L = die length, and $(P_0 - P_L)$ = pressure drop.

Rotational Rheometer - Cone & Plate:

$$\dot{\gamma} = \frac{\Omega}{\theta_0}$$
, $\tau = \frac{3T}{2\pi R^3}$, $\eta = \frac{\tau}{\dot{\gamma}} = \frac{3T\theta_0}{2\pi R^3\Omega}$

 Ω = angular velocity, θ_0 = cone angle, T = torque, R = plate radius.

Rotational Rheometer - Parallel Plates:

$$\dot{\gamma} = \frac{r\Omega}{H}$$
, $\tau = \frac{3T}{2\pi R^3}$, $\eta = \frac{\tau}{\dot{\gamma}} = \frac{3TH}{2\pi R^3 r\Omega}$
 $r = \text{radial position}$, $H = \text{gap height}$.

Gibbs Free Energy for Blends:

$$\Delta G = \Delta H - T\Delta S$$
 $\Delta H = v(\delta_1 - \delta_2)^2 \phi_1 \phi_2$

 $\Delta G = \Delta H - T\Delta S$, $\Delta H = v(\delta_1 - \delta_2)^2 \phi_1 \phi_2$ v = molar volume, $\delta =$ solubility parameters, $\phi =$ volume fractions.

Melt Flow Index (MFI): Mass of polymer extruded under standard condi-

DIMENSIONAL ANALYSIS

Buckingham Pi Theorem: Every system with m physical quantities reduced to m-n dimensionless groups, n = number

Basic Dimensions [MLTO]:

Length (L): m Mass (M): kg Time (T): s Temp (Θ): K

Matrix Method: (1) Select n dimension core matrix (repeating

(2) Form [L,M,T] rows x vars cols matrix

(3) Solve for Pi groups: $\Pi_1 = f(\Pi_2, \Pi_3, ...)$

Key Dimensionless Numbers:

Deborah Number: De = Material relax time De \rightarrow 0: Viscous fluid, De \rightarrow ∞ : Elastic solid

Biot Number: Bi = $\frac{\text{Surface convection}}{\text{Internal conduction}} = \frac{hL}{k}$

Bi $\ll 1$: Tc \approx Ts (uniform temp)

Bi $\gg 1$: Ts $\approx T_{\infty}$ (surface controlled)

Scaling Laws:

Similarity Types: Length: L ∝ size Geometric: shape ratios same Kinematic: velocity ratios Area: $A \propto L^2$ Volume/Weight: V.W ∝ L³ same

Dynamic: force ratios same Stress: $\sigma = W/A \propto L$

- MATRIX TRANSFORMATION METHOD EXAMPLE -

Consider pipe flow with pressure drop (Δp) , diameter (D), length (L), viscosity (η), density (ρ), velocity (u)

Step 1: List Variables with Dimensions

Variable	Dimension	Variable	Dir
D	L	Δp	Mi
ρ	ML^{-3}	Ĺ	
	LT^{-1}	η	Mi

Step 2: Select Core Matrix (n=3 basic dimensions) Choose D, ρ , u as repeating variables

Step 3: Form Dimensional Matrix

	D		и			η	
L	1	-3	1	-1	1	-1	
M	0		1 0 -1				
T	n	Ο	_1	_2	Ο	-1	

Step 4: Solve for ∏ Groups

For Π_1 using Δp : $[D^a \rho^b u^c \Delta p] = [M^0 L^0 T^0]$ Similarly for remaining

nension

$$L: \quad a-3b+c$$

$$M: b+1=0$$

Final Result:

Solving gives: $\Pi_1 = \frac{\Delta p}{2}$

 $f(\Delta p L \eta)$

DESIGN OF EXPERIMENTS

Seven-Step Process: 1. Identify Factors/Metrics 2. Formulate Objective

3. Design Experiment

4. Run Trials

5. Analyze Results 6. Select Setpoints

Control Factors:

Temperature, Pressure, Time Material Properties, Geometry

Process Parameters

Manufacturing Variance Environmental Conditions

7. Iterate/Validate User/Operation Variations

Signal-to-Noise Ratio Analysis Signal-to-Noise Ratio (SNR) measures the relationship between response values and their variation across sample size.

 $\eta_{I} = -10 \log_{10} \left(\frac{1}{n} \sum_{i=1}^{n} \right)$ $\eta_S = -10 \log_{10} \left(\frac{1}{n} \sum_{i=1}^{n} y_i^2 \right)$

L9 Orthogonal Array Experimental design matrix enabling efficient study of multiple factor effects with minimal trials.

Response Surface Analysis Maps relationship between input factors and system response for optimization.

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i< i}^k \beta_{ij} x_i x_j + \varepsilon$$

CONTINUITY

MASS CONSERVATION

$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial u} + \frac{\partial u_z}{\partial x} = 0$ $(u_x + \Delta u_x) \Delta y \Delta z$

Cylindrical:

Continuity (Incompressible): $\nabla \cdot \mathbf{u} = 0$

Continuity (Compressible): $\frac{\partial}{\partial x}(\rho u_x) + \frac{\partial}{\partial u}(\rho u_y) + \frac{\partial}{\partial z}(\rho u_z) = 0$

— MOMENTUM CONSERVATION —

$$\rho \left(\frac{\partial u_X}{\partial t} + u_X \frac{\partial u_X}{\partial x} + u_Y \frac{\partial u_X}{\partial y} + u_Z \frac{\partial u_X}{\partial z} \right)$$

$$= -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u_X}{\partial x^2} + \frac{\partial^2 u_X}{\partial y^2} + \frac{\partial^2 u_X}{\partial z^2} \right) + \rho g_X$$

$$\rho \frac{Du}{\partial x} = -\nabla p + \eta \nabla^2 \mathbf{u} + \rho \mathbf{g}$$

Non-Newtonian Viscosity:

$$\eta = \eta(\dot{\gamma}) = \eta \left(\sqrt{\frac{1}{2} \sum_{i,j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)^2} \right)$$

$$\begin{split} &\rho c_{v}\left(\frac{\partial T}{\partial t} + u_{x}\frac{\partial T}{\partial x} + u_{y}\frac{\partial T}{\partial y} + u_{z}\frac{\partial T}{\partial z}\right) \\ &= k\left(\frac{\partial 2T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial y^{2}} + \frac{\partial^{2}T}{\partial z^{2}}\right) + 2\mu\left(\left(\frac{\partial v_{x}}{\partial x}\right)^{2} + \left(\frac{\partial v_{y}}{\partial y}\right)^{2} + \left(\frac{\partial v_{z}}{\partial z}\right)^{2}\right) \\ &+ \mu\left(\left(\frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\partial x}\right)^{2} + \left(\frac{\partial v_{x}}{\partial z} + \frac{\partial v_{z}}{\partial x}\right)^{2}\right) + \left(\frac{\partial v_{y}}{\partial z} + \frac{\partial v_{z}}{\partial y}\right)^{2}\right) + Q \\ &\rho C_{p}\frac{DT}{Dt} = -\nabla \cdot \mathbf{q} + Q + Q_{viscous heating} \end{split}$$

Material Derivative: $\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T$

Fourier's Law: $\mathbf{q} = -k\nabla T$

Heat Conduction:

$$-\nabla \cdot \mathbf{q} = k\nabla^2 T = k \left(\frac{\partial^2 T}{\partial v^2} + \frac{\partial^2 T}{\partial v^2} + \frac{\partial^2 T}{\partial v^2} \right)$$

Simple Shear Heating: $\dot{Q}_{\text{viscous heating}} = \eta \left(\frac{\partial u}{\partial v} \right)$

- ORDER OF MAGNITUDE -

From continuity: $(U/L_x) \sim (V/L_y)$. If $L_x \gg L_y$, then $U \gg V$. Momentum in x-dir: $\rho U^2/L_x \sim \Delta p/L_x \sim \mu U/L_x^2 \sim \mu U/L_y^2$.

Dominance depends on $\frac{L_x}{L_y}$ and $Re = \frac{\rho U L_x}{\eta}$. For small Re and large L_x/L_y , viscous terms $(\mu U/L_y^2)$ dominate over inertial $(\rho U^2/L_r)$.

Second derivative: $\partial^2 u/\partial x^2 \sim U/L_x^2$ vs. squared gradient: $(\partial u/\partial x)^2 \sim (U/L_x)^2$. Scaling guides term retention.

Geometric Parameters:

Width Ratio: Channel Aspect:

 $\frac{h}{W} \ll 1$ Flow Analysis: **Continuity Scaling:**

Momentum Scaling:

 $\rho \frac{U^2}{L_x} \sim \frac{\Delta P}{L_x} \sim \mu \frac{U}{I^2}$

 $\operatorname{Re}\left(\frac{Ly}{lx}\right)$ $\operatorname{Re}\left(\frac{L_y}{L_x}\right)$ **Process-Specific Scaling:** Injection Molding: $Re \ll 1$, $\epsilon \ll 1$ Film Casting:

Critical Numbers:

$We = \frac{\rho v^2 h}{\sigma} \gg 1$

SOLVING THE GOVERNING EQUATIONS

— FUNDAMENTAL ASSUMPTIONS AND REDUCTIONS -

Assumption / Approach	Resulting Simplification
Steady State: $\frac{\partial}{\partial t} = 0$	$\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot (ho \mathbf{u}) = 0$
	$\rho \frac{\partial \mathbf{y}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \mu \nabla^2 \mathbf{u}$
Constant Material Properties: $\rho = \text{const}$, $\mu = \text{const}$	$\frac{\partial \rho}{\partial t} = 0, \ \frac{\partial \rho}{\partial x_i} = 0$
	$\implies \nabla \cdot \mathbf{u} = 0$
Fully Developed Flow: $\frac{\partial u_X}{\partial x} = 0$	$\frac{\partial u}{\partial x} + \frac{\partial uy}{\partial y} + \frac{\partial uz}{\partial z} = 0$
Dimensions of Geometry: $\frac{\partial}{\partial z} = 0$, $u_z = 0$	$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \text{ with } u_z = 0$
Symmetry (Independent of Width): $\frac{\partial}{\partial z} = 0$	$\frac{\partial u_X}{\partial x} + \frac{\partial u_Y}{\partial y} + \frac{\partial u_Z}{\partial z} = 0$
Dimensional Analysis (Low Re)	$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = 0 \implies 0 = -\nabla p + \mu \nabla^2 \mathbf{u}$
Constant Material Proper- ties (Reiterated)	$\nabla \cdot \mathbf{u} = 0, 0 = -\nabla p + \mu \nabla^2 \mathbf{u}$
Lubrication Approximation: $\frac{\partial p}{\partial x} \gg \frac{\partial p}{\partial y}$	$-\nabla p = -\frac{\partial p}{\partial x}\hat{i} - \frac{\partial y}{\partial y}\hat{j}$

LUBRICATION -

Key Parameters: $\epsilon = \frac{h}{L} \ll 1$ (thin film)

Velocity Profile: $u(y) = \frac{1}{2u} \left(\frac{dp}{dx} \right) (y^2 - hy)$

Simplified Momentum:

$\frac{\partial^2 u}{\partial v^2} = \frac{1}{\mu} \frac{\partial p}{\partial x}$ - SCALE ANALYSIS AND TERM REDUCTION -

Inertial terms: $\rho U \frac{U}{L_x} \approx \rho V \frac{U}{L_y}$

Viscous terms: $u \stackrel{U}{\rightarrow}$

Here, U and V are the velocities in the x and ν directions. respectively. L_x and L_y are the lengths in the x and y directions. ρ is the fluid density, and μ is the dynamic viscosity.

To see which terms are more important, we use the Reynolds number (\hat{Re})

If $Re^{\frac{L_y}{L_x}} \ll 1$, viscous forces are more significant than inertial forces.

TEXTBOOK

- EXAMPLE 9.1: FLOW IN A TUBE

Consider the classical problem of pressure drop during flow in a smooth straight pipe, ignoring the inlet effects. The first step is to list all possible variables or quantities that are related to the problem under consideration. In this case, we have:

Target quantity: Pressure drop Δp Geometric variables: Pipe diameter D, and pipe length L Physical or material properties: viscosity η , density ρ Process variable: average fluid velocity u

If we choose D, u, and ρ as the repeating variables, the dimensional matrix

After reducing the core matrix to an identity matrix, the dimensional matrix

which results in the 3 dimensionless groups,

$$\Pi_1 = \frac{\Delta p}{v^2 c} = Eu$$
 (Euler number) (9.9)

$$\Pi_2 = \frac{L}{D}$$
(2)

$$\Pi_3 = \frac{\eta}{Duo} = Re^{-1} \text{ (Reynolds number)} \tag{3}$$

The following relationship can be written:

$$f\left(Eu, Re, \frac{L}{D}\right) = 0$$
 (9.10)

which, of course, by itself cannot produce the nature of the relation; however, the form of the function f can be generated experimentally.

——— DIMENSIONLESS VARIABLES ————				
Name	Symbol	Definition	Meaning	
Biot	Bi	$\frac{hL}{k}$	Convection Conduction	
Brinkman	Br	$\frac{\eta u^2}{k\Delta T}$	Viscous Conduction	
Capillary	Ca	$\frac{\tau R}{\sigma_S}$	Deviatoric Surface	
Damköhler	Da	$\frac{c\Delta H_r}{\rho C_p T_0}$	Reaction Internal	
Deborah	De	$\frac{\lambda}{t}$	Relaxation Process	
Fourier	Fo	$\frac{\alpha t}{12}$	Process Thermal	
Graetz	Gz	$\frac{uL}{\alpha}\left(\frac{d}{L}\right)$	Convection Conduction	
Nusselt	Nu	hL kfluid	Convective Conductive	
Péclet	Pe	$\frac{UL}{\alpha}$	Advection Diffusion	
Prandtl	Pr	$\frac{\nu}{\alpha}$	Momentum Thermal	
Reynolds	Re	$\frac{\rho uL}{\eta}$	Inertia Viscous	
Schmidt	Sc	$\frac{\nu}{D}$	Mechanical Diffusion	
Weissenberg	We	$\lambda \dot{\gamma}$ or $\frac{N_1}{\tau}$	Elastic Viscous	

EXAMPLES

- PRESSURE-DRIVEN FLOW THROUGH SLIT -

Assumptions
The following assumptions are made:

- 1. The flow is steady, fully developed, and entrance effects are ignored.
- 2. The fluid is Newtonian and incompressible.
- 3. The flow is unidirectional, with only one non-zero velocity component u_z .

Governing Equations

The continuity equation for an incompressible flow reduces to

$$\frac{\partial u_z}{\partial z} = 0$$

The z-momentum equation for a Newtonian, incompressible flow (Navier-

$$-\frac{\partial p}{\partial z} + \mu \frac{\partial^2 uz}{\partial v^2} = 0.$$

$$-\frac{\partial p}{\partial x} = -\frac{\partial p}{\partial y} = 0$$

This indicates that the pressure depends only on z. Since u_z does not vary with z, the pressure gradient $\frac{\partial p}{\partial z}$ is constant:

$$\frac{\partial p}{\partial x} = \frac{\Delta p}{2}$$

Simplified Momentum Equation

Substituting the constant pressure gradient into the z-momentum equation:

Boundary Conditions No-slip boundary conditions are applied:

$$u_z\left(\pm\frac{h}{2}\right)=0.$$

Solution for Velocity Profile

Integrating the simplified momentum equation twice and applying the boundary conditions, the velocity profile is obtained as

$$u_Z(y) = \frac{h^2}{8\mu} \frac{\Delta p}{L} \left[1 - \left(\frac{2y}{h} \right)^2 \right].$$

Mean Velocity

The mean velocity in the channel is calculated as

$$\bar{u}_z = \frac{2}{h} \int_0^{h/2} u_z(y) dy = \frac{h^2}{12u} \frac{\Delta p}{I}$$
.

Volumetric Flow Rate

The volumetric flow rate is then given by

$$Q = hW\bar{u}_z = \frac{Wh^3}{12\mu} \frac{\Delta p}{L}$$

where W is the width of the channel.

- SHEAR FLOW AND VISCOUS HEATING -

The following assumptions are made:

1. The material is at 210° C.

- 2. The plate has a surface area of 100 cm² and is moving at a constant speed
- 3. The gap between the plates is $h=0.1\,\mathrm{cm}$.
- 4. The fluid follows the apparent shear viscosity ($\eta_a = \mu$) vs. shear rate ($\dot{\gamma}$) relationship provided.

Governing Equations

The viscous heating per unit volume is governed by the equation:

$$\Phi_v = \mu \left(\frac{\partial u}{\partial v} \right)^2$$

 Φ_{v} is the viscous heating per unit volume,

u is the shear viscosity

 $\frac{\partial u}{\partial x}$ is the velocity gradient.

Shear Rate Calculation

$$\dot{\gamma} = \frac{\partial u}{\partial y} = \frac{u_w}{h}$$
.

Substituting the given values:

$$\dot{\gamma} = \frac{1.0 \text{ cm/s}}{0.1 \text{ cm}} = 10 \text{ s}^{-1}.$$

Viscosity from Graph

From the given graph, the viscosity μ corresponding to $\dot{\gamma} = 10 \, \text{s}^{-1}$ is approximately:

$$\mu = 0.2 \,\mathrm{Pa} \cdot \mathrm{s}$$
.

Viscous Heating Calculation

Substituting μ and $\dot{\gamma}$ into the viscous heating formula:

$$\Phi_v = \mu \dot{\gamma}^2 = (0.2)(10)^2 = 20 \text{ W/m}^3$$

Adiabatic Boundary Condition

With adiabatic boundaries, the heat generated internally is retained, leading to a uniform temperature rise throughout the fluid domain due to symmetry and constant thermal properties.

Conclusion on Temperature Rise

The temperature rise is uniform throughout the fluid domain due to the adi-

abatic boundary conditions and uniform generation of viscous heating.

- VISCOUS HEATING -

First, let's find μ from the plot and known parameters.

What is \(\gamma\) (shear rate)?

$$\dot{\gamma} = \frac{u_0}{h} = \frac{1.0 \,(\text{cm/sec})}{0.1 \,(\text{cm})} = 10 \,\text{sec}^{-1}$$

Sav.

$$\eta = 1.2 \times 10^5$$
 g/cm.sec.

Now let's simplify Φ_v

$$\Phi_{v} = 2\left[\left(\frac{\partial u_{x}}{\partial x}\right)^{2} + \left(\frac{\partial u_{y}}{\partial y}\right)^{2} + \left(\frac{\partial u_{z}}{\partial z}\right)^{2}\right]$$

$$+\left[\left(\frac{\partial u_y}{\partial x}+\frac{\partial u_x}{\partial y}\right)^2+\left(\frac{\partial u_z}{\partial y}+\frac{\partial u_y}{\partial z}\right)^2+\left(\frac{\partial u_x}{\partial z}+\frac{\partial u_z}{\partial x}\right)^2\right]$$

Only u_x is not zero, and it is a function of y.

$$\Rightarrow \Phi_{\mathcal{U}} = 2 \left(\frac{\partial u_{\mathcal{X}}}{\partial y} \right)^{2} \quad \Rightarrow \quad \Phi_{\mathcal{U}} = 2 \left(\frac{u_{0}}{h} \right)^{2} = 2 \times 10^{2} \, \mathrm{sec}^{-2}.$$

$$\Rightarrow \mu \Phi_v = 1.2 \times 10^7 \left[1.2 \times 10^5 \times 2 \times 10^2 \right] \text{ g/cm.sec.}$$

Units:

Energy per unit time per unit volume: $\frac{\text{g.cm}}{\text{sec}^2} \cdot \frac{\text{cm}}{\text{sec}} \cdot \frac{1}{\text{cm}^3}$

- UNIFORM TEMPERATURE RISE -

Since $\frac{\partial u_{\chi}}{\partial u}$ (or $\dot{\gamma}$) is uniform throughout the flow domain, so is the viscosity (μ). Thus, $μΦ_v$ should be uniform ⇒ T is uniform.

FLOW THROUGH CYLINDRICAL PIPE

Tube flow is encountered in several polymer processes, such as in extrusion dies and sprue and runner systems inside injection molds. When deriving the equations for pressure-driven flow in tubes, also known as Hagen-Poiseuille flow, we assume that the flow is steady, fully developed, with no entrance effects, and axis-symmetric

Assuming $u_z=u_z(r), u_r=u_\theta=0$ and p=p(z), the only non-vanishing component of the rate-of-deformation tensor is the rz-component. For generalized Newtonian flow, τ_{rz} is the only non-zero component of the viscous stress. The z-momentum equation then reduces to:

$$\frac{1}{d} \frac{d}{dr} (r\tau_{rz}) = \frac{dp}{dr}$$

From the symmetry argument, $\tau_{rz}(r)$ satisfies:

$$\tau_{rz} = -m \left| \frac{du_z}{dr} \right|^{n-1} \frac{du_z}{dr}$$

where m and n are material-specific parameters for the power-law fluid. The velocity profile is derived as:

$$u_{\mathcal{Z}}(r) = \left(\frac{3n+1}{n+1}\right) \left[1 - \left(\frac{r}{R}\right)^{(n+1)/n}\right] \bar{u}_{\mathcal{Z}},$$

where \bar{u}_z is the mean velocity defined as:

$$\bar{u}_z = \frac{2}{R^2} \int_0^R u_z r dr.$$

Finally, the volumetric flow rate is expressed as:

$$Q = \pi R^2 \bar{u}_Z = \left(\frac{n\pi}{3n+1}\right) \left[\frac{R^{n+1}}{2m} \frac{dp}{dz}\right]^{1/n}$$

PRACTICE PROBLEMS