Analyse Fonctionnelle – Projet de Refonte du Réseau pour le Campus iPear

Résumé Exécutif

Ce projet a pour objectif de concevoir un réseau performant, sécurisé et évolutif pour le campus iPear à Poireland. La solution proposée est capable de prendre en charge 50 000 employés dès son ouverture, avec une possibilité d'extension à 75 000 utilisateurs. Les points clés incluent la segmentation des services via VLANs, une connectivité filaire et Wi-Fi performante, une gestion efficace des flux inter-VLAN, et une intégration optimisée du Data Center. Ce réseau vise à garantir une haute disponibilité et une évolutivité maximale.

1. Introduction et Contexte de l'entreprise

Nom de l'entreprise : iPear

Secteur d'activité : Vente de matériel informatique

Contexte du projet :

L'entreprise iPear inaugure un nouveau campus à **Poireland**, composé de **4 bâtiments**, et souhaite un réseau performant et évolutif pour accueillir **50 000 employés dès l'ouverture**, avec une possibilité de croissance des effectifs de **50%**.

L'objectif est de concevoir un réseau robuste, sécurisé et adapté aux services de l'entreprise.

2. Objectifs du projet

- 1. **Conception d'un réseau campus** prenant en charge les connexions filaires et Wi-Fi.
- 2. Segmentation des services via VLANs :
 - o Chaque service sera isolé dans un VLAN distinct (RH, Comptabilité, Design, Logistique, etc.).
- 3. Wi-Fi invité:
 - Fournir un Wi-Fi pour les visiteurs via un portail captif, sans accès aux ressources internes.
- 4. Evolutivité:
 - Le réseau doit pouvoir évoluer pour supporter jusqu'à 75 000 employés.
- 5. Intégration du Data Center :
 - o Prévoir une connectivité adaptée pour le Data Center situé sur le campus.
- 6. Matrice des flux:
 - o Gérer les échanges autorisés entre les services selon la matrice fournie.
- 7. Estimation du débit :
 - o Calculer les besoins pour éviter les goulots d'étranglement.

3. Description des besoins techniques

Sites concernés :

• Le campus de Poireland, composé de **4 bâtiments** de taille équivalente, chacun accueillant **12 500 employés**.

Connexions:

- Filaire: Infrastructure de connexion pour les postes fixes.
- Wi-Fi: Réseau performant pour une forte densité de connexions, incluant les imprimantes.
- **Wi-Fi invité**: Portail captif pour visiteurs, sans accès aux ressources internes.

Besoins en VLANs:

- Chaque service (RH, Comptabilité, Design, etc.) doit être isolé dans son propre VLAN.
- Segmentation stricte pour garantir la sécurité et une gestion efficace du trafic.

Sécurité :

- Matrice des flux : Contrôle des flux inter-VLAN selon la matrice fournie.
- Gestion des pare-feu et accès filtré par le service sécurité.

Data Center:

• Connectivité optimisée pour le Data Center situé sur le campus.

Imprimantes:

• Connexion au réseau Wi-Fi, réparties dans chaque bâtiment.

4. Calculs et hypothèses

Calcul du débit :

- Hypothèse : Chaque utilisateur consomme en moyenne 5 Mbps.
- Nombre d'utilisateurs simultanés (10%) : 7 500.
- Débit total estimé pour chaque bâtiment :
 - o (7 500 \times 5, Mbps = 37,5, Gbps).
- Chaque bâtiment doit être équipé d'une liaison capable de supporter ce débit.

Hypothèses de croissance :

• Le réseau doit évoluer pour atteindre **75 000 utilisateurs**, soit un débit total de **56,25 Gbps**.

5. Choix des équipements

Équipement	Modèle	Rôle	Capacité	Coût
Routeur	Meraki MX450	Routage et Pare-feu	Jusqu'à 10 Gbps	5 000 €
Switch	Meraki MS250	Connexions filaires	48 ports Gigabit	3 000 €
Point d'accès	Meraki MR56	Connexion Wi-Fi	Wi-Fi 6, jusqu'à 1 500 connexions	1 200 €

Note : Les équipements choisis respectent la capacité et l'évolutivité du réseau.

6. Proposition d'architecture réseau

Schéma logique:

- Ajoute ici un diagramme avec les éléments suivants :
 - VLANs
 - Switches (niveau 2 et 3)
 - o Connexions filaires et sans fil
 - Data Center

Plan d'adressage IP:

VLAN	Plage d'adresses	Masque	Description
RH	192.168.10.0/24	255.255.255.0	Ressources Humaines
Comptabilité	192.168.20.0/24	255.255.255.0	Service Comptabilité
Wi-Fi invité	192.168.100.0/24	255.255.255.0	Réseau Invité

7. Gestion des risques

Principaux risques:

Risque	Impact	Solution proposée	
Surcharge réseau	Performance dégradée	Surdimensionner les équipements.	
Erreur dans la matrice des flux	Sécurité compromise	Revue et tests approfondis.	

8. Critères de succès

- Performance : Connectivité fluide pour 50 000 utilisateurs, évolutivité jusqu'à 75 000.
- Sécurité : VLANs correctement configurés et gestion stricte des flux.
- Disponibilité: Services réseau toujours accessibles.

Annexes

- Documentation Meraki: https://www.merakisizing.com/#/.
- Schémas complets (à intégrer).
- Références des équipements.