

Lecture 1.2 Pose in 2D and 3D

Thomas Opsahl

Motivation

- For the pinhole camera, the correspondence between observed 3D points in the world and 2D points in the captured image is given by straight lines through a common point (pinhole)
- This correspondence can be described by a mathematical model known as "the perspective camera model" or "the pinhole camera model"
- This model can be used to describe the imaging geometry of many modern cameras, hence it plays a central part in computer vision

Motivation

- Before we can study the perspective camera model in detail, we need to expand our mathematical toolbox
- We need to be able to mathematically describe the position and orientation of the camera relative to the world coordinate frame
- Also we need to get familiar with some basic elements of projective geometry, since this will
 make it MUCH easier to describe and work with the perspective camera model

Introduction

- In computer vision we are often interested in the geometrical aspects of imaging
 - Points in the world ↔ pixels in an image
 - Pixels in image 1 ↔ pixels in image 2
- In order to express and study geometrical problems related to imaging, we first need to know how to describe the position and orientation of objects
- Position and orientation is together known as pose

Introduction

 By representing all relevant objects by coordinate frames, it is possible to numerically represent the pose of one object relative to another

- In the following we will look at pose
 - General properties
 - Representation in 2D
 - Representation in 3D

- Let us denote by ${}^{A}\xi_{B}$ the pose of frame $\{B\}$ relative to frame $\{A\}$
- We can think of ${}^A\xi_B$ as the translation and rotation required in order to make $\{A\}$ coincide with $\{B\}$

- A point *P* can be described with respect to either frame
- These descriptions are related by the pose
- Formally we write this as ${}^{A}\boldsymbol{p} = {}^{A}\xi_{B} \cdot {}^{B}\boldsymbol{p}$

Note that ${}^{A}\mathbf{p}$ and ${}^{B}\mathbf{p}$ are different vectors!!!

- A point P can be described with respect to either frame
- These descriptions are related by the pose
- Formally we write this as ${}^{A}\boldsymbol{p} = {}^{A}\xi_{B} \cdot {}^{B}\boldsymbol{p}$

• Action on points ${}^{A}\boldsymbol{p} = {}^{A}\xi_{B} \cdot {}^{B}\boldsymbol{p}$

Action on points

$$^{A}\boldsymbol{p}=^{A}\xi_{B}\cdot^{B}\boldsymbol{p}$$

Composition

$$^{A}\xi_{C} = ^{A}\xi_{B} \oplus ^{B}\xi_{C}$$

Action on points

$$^{A}\boldsymbol{p}=^{A}\xi_{B}\cdot ^{B}\boldsymbol{p}$$

Composition

$${}^{A}\xi_{C} = {}^{A}\xi_{B} \oplus {}^{B}\xi_{C}$$

What about ${}^A\xi_B \oplus {}^B\xi_A$?

Action on points

$$^{A}\boldsymbol{p}=^{A}\xi_{B}\cdot ^{B}\boldsymbol{p}$$

Composition

$$^{A}\xi_{C} = ^{A}\xi_{B} \oplus ^{B}\xi_{C}$$

Inverse

Neutral element

$$0 = {}^{A}\xi_{A}$$

$$0 \oplus \xi = \xi$$

$$\xi \ominus 0 = \xi$$

$$\xi \ominus \xi = 0$$

$$\xi \oplus \xi = 0$$

Point observed by the camera

P

•

Point observed by the camera

$${}^{W}\xi_{C} = {}^{W}\xi_{V} \oplus {}^{V}\xi_{C}$$

$${}^{W}\xi_{C} = {}^{W}\xi_{V} \oplus {}^{V}\xi_{C}$$

$$V \boldsymbol{p} = V \xi_C \cdot {}^C \boldsymbol{p}$$

- Given two 2D frames, $\{A\}$ and $\{B\}$, how can we represent the pose ${}^A\xi_B$?
- We need a numerical representation in order to compute ${}^{A}\mathbf{p} = {}^{A}\xi_{B} \cdot {}^{B}\mathbf{p}$

• Recall that we can think of ${}^A\xi_B$ as the translation and rotation required in order to make $\{A\}$ coincide with $\{B\}$

- Recall that we can think of ${}^A\xi_B$ as the translation and rotation required in order to make $\{A\}$ coincide with $\{B\}$
- To coincide with $\{B\}$, $\{A\}$ must undergo a translation ${}^{A}t_{B}$ and a rotation by an angle θ

• Let ${}^A \boldsymbol{p} = [{}^A \boldsymbol{x}, {}^A \boldsymbol{y}]^T$, ${}^B \boldsymbol{p} = [{}^B \boldsymbol{x}, {}^B \boldsymbol{y}]^T$ and ${}^A \boldsymbol{t}_B = [{}^A \boldsymbol{t}_{Bx}, {}^A \boldsymbol{t}_{By}]^T$

- Let ${}^{A}\boldsymbol{p} = [{}^{A}\boldsymbol{x}, {}^{A}\boldsymbol{y}]^{T}, {}^{B}\boldsymbol{p} = [{}^{B}\boldsymbol{x}, {}^{B}\boldsymbol{y}]^{T}$ and ${}^{A}\boldsymbol{t}_{B} = [{}^{A}\boldsymbol{t}_{B\boldsymbol{x}}, {}^{A}\boldsymbol{t}_{B\boldsymbol{y}}]^{T}$
- From the figure we can see that

$$A_{x} = A_{t_{Bx}} + A_{x} \cos \theta - A_{y} \sin \theta$$
$$A_{y} = A_{t_{By}} + A_{x} \sin \theta + A_{y} \cos \theta$$

- Let ${}^A \boldsymbol{p} = [{}^A x, {}^A y]^{\boldsymbol{T}}, {}^B \boldsymbol{p} = [{}^B x, {}^B y]^{\boldsymbol{T}}$ and ${}^A \boldsymbol{t}_B = [{}^A t_{BX}, {}^A t_{BY}]^{\boldsymbol{T}}$
- From the figure we can see that

$$A_{x} = A_{t_{Bx}} + A_{x} \cos \theta - A_{y} \sin \theta$$
$$A_{y} = A_{t_{By}} + A_{x} \sin \theta + A_{y} \cos \theta$$

In matrix form

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = \begin{bmatrix} {}^{A}t_{Bx} \\ {}^{A}t_{By} \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix}$$
$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{t}_{B} + {}^{A}R_{B}{}^{B}\boldsymbol{p}$$

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = \begin{bmatrix} {}^{A}t_{Bx} \\ {}^{A}t_{By} \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix}$$

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{t}_{B} + {}^{A}R_{B}{}^{B}\boldsymbol{p}$$

• Can we represent the pose ${}^{A}\xi_{B}$ by the pair $({}^{A}R_{B}, {}^{A}\boldsymbol{t}_{B})$?

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = \begin{bmatrix} {}^{A}t_{Bx} \\ {}^{A}t_{By} \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix}$$
$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{t}_{B} + {}^{A}R_{B}{}^{B}\boldsymbol{p}$$

• Can we represent the pose ${}^{A}\xi_{B}$ by the pair $({}^{A}R_{B}, {}^{A}\boldsymbol{t}_{B})$?

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{\xi}_{B} \cdot {}^{B}\boldsymbol{p} \qquad \mapsto \qquad {}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{R}_{B} \, {}^{B}\boldsymbol{p} + {}^{A}\boldsymbol{t}_{B}$$

$${}^{A}\boldsymbol{\xi}_{C} = {}^{A}\boldsymbol{\xi}_{B} \oplus {}^{B}\boldsymbol{\xi}_{C} \qquad \mapsto \qquad \left({}^{A}\boldsymbol{R}_{C}, {}^{A}\boldsymbol{t}_{C}\right) = \left({}^{A}\boldsymbol{R}_{B} \, {}^{B}\boldsymbol{R}_{C}, {}^{A}\boldsymbol{R}_{B} \, {}^{B}\boldsymbol{t}_{C} + {}^{A}\boldsymbol{t}_{B}\right)$$

$$\ominus {}^{A}\boldsymbol{\xi}_{B} \qquad \mapsto \qquad \left({}^{A}\boldsymbol{R}_{C}, {}^{C}\boldsymbol{r}, -{}^{A}\boldsymbol{R}_{C}, {}^{C$$

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = \begin{bmatrix} {}^{A}t_{Bx} \\ {}^{A}t_{By} \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix}$$
$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{t}_{B} + {}^{A}R_{B}{}^{B}\boldsymbol{p}$$

• Can we represent the pose ${}^{A}\xi_{B}$ by the pair $({}^{A}R_{B}, {}^{A}\boldsymbol{t}_{B})$?

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{\xi}_{B} \cdot {}^{B}\boldsymbol{p} \qquad \mapsto \qquad {}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{R}_{B} \, {}^{B}\boldsymbol{p} + {}^{A}\boldsymbol{t}_{B}$$

$${}^{A}\boldsymbol{\xi}_{C} = {}^{A}\boldsymbol{\xi}_{B} \oplus {}^{B}\boldsymbol{\xi}_{C} \qquad \mapsto \qquad \left({}^{A}\boldsymbol{R}_{C}, {}^{A}\boldsymbol{t}_{C}\right) = \left({}^{A}\boldsymbol{R}_{B} \, {}^{B}\boldsymbol{R}_{C}, {}^{A}\boldsymbol{R}_{B} \, {}^{B}\boldsymbol{t}_{C} + {}^{A}\boldsymbol{t}_{B}\right)$$

$$\ominus {}^{A}\boldsymbol{\xi}_{B} \qquad \mapsto \qquad \left({}^{A}\boldsymbol{R}_{C}, {}^{C}\boldsymbol{r}, -{}^{A}\boldsymbol{R}_{C}, {}^{C}\boldsymbol{r}, -{}^{A}\boldsymbol{R}_{C}, {}^{C}\boldsymbol{r}, -{}^{A}\boldsymbol{r}_{C}\right)$$

Yes, but there is a better option!

Observe the following equivalence

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = {}^{A}R_{B} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix} + {}^{A}t_{B} \qquad \Leftrightarrow \qquad \begin{bmatrix} {}^{A}x \\ {}^{A}y \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ \boldsymbol{0}_{1\times 2} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ 1 \end{bmatrix}$$

$${}^{A}\boldsymbol{p} = {}^{A}R_{B} {}^{B}\boldsymbol{p} + {}^{A}t_{B} \qquad \Leftrightarrow \qquad {}^{A}\tilde{\boldsymbol{p}} = {}^{A}T_{B} {}^{B}\tilde{\boldsymbol{p}}$$

Observe the following equivalence

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = {}^{A}R_{B} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix} + {}^{A}t_{B} \qquad \Leftrightarrow \qquad \begin{bmatrix} {}^{A}x \\ {}^{A}y \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ \boldsymbol{0}_{1\times 2} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ 1 \end{bmatrix}$$

$${}^{A}\boldsymbol{p} = {}^{A}R_{B} {}^{B}\boldsymbol{p} + {}^{A}t_{B} \qquad \Leftrightarrow \qquad {}^{A}\boldsymbol{\tilde{p}} = {}^{A}T_{B} {}^{B}\boldsymbol{\tilde{p}}$$

• Can we represent the pose ${}^{A}\xi_{B}$ by the matrix ${}^{A}T_{B}$?

Observe the following equivalence

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = {}^{A}R_{B} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix} + {}^{A}t_{B} \qquad \Leftrightarrow \qquad \begin{bmatrix} {}^{A}x \\ {}^{A}y \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ \boldsymbol{\theta}_{1\times 2} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ 1 \end{bmatrix}$$

$${}^{A}\boldsymbol{p} = {}^{A}R_{B} {}^{B}\boldsymbol{p} + {}^{A}t_{B} \qquad \Leftrightarrow \qquad {}^{A}\boldsymbol{\tilde{p}} = {}^{A}T_{B} {}^{B}\boldsymbol{\tilde{p}}$$

• Can we represent the pose ${}^{A}\xi_{B}$ by the matrix ${}^{A}T_{B}$?

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{\xi}_{B} \cdot {}^{B}\boldsymbol{p} \qquad \mapsto \qquad {}^{A}\boldsymbol{\tilde{p}} = {}^{A}T_{B} \, {}^{B}\boldsymbol{\tilde{p}}$$

$${}^{A}\boldsymbol{\xi}_{C} = {}^{A}\boldsymbol{\xi}_{B} \oplus {}^{B}\boldsymbol{\xi}_{C} \quad \mapsto \qquad {}^{A}T_{C} = {}^{A}T_{B} \, {}^{B}T_{C}$$

$$\oplus {}^{A}\boldsymbol{\xi}_{B} \qquad \mapsto \qquad {}^{A}T_{B} = {}^{A}T_{B}$$

• Yes, and the algebraic properties are nice!

• But...

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = {}^{A}R_{B} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix} + {}^{A}t_{B} \Leftrightarrow \begin{bmatrix} {}^{A}x \\ {}^{A}y \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ \boldsymbol{0}_{1\times 2} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ 1 \end{bmatrix}$$

- We are describing points in the plane with 3 coordinates despite that they only have 2 degrees of freedom...
- The non linear transformation ${}^B \boldsymbol{p} \mapsto {}^A \boldsymbol{p}$ then becomes a linear transformation ${}^B \tilde{\boldsymbol{p}} \mapsto {}^A \tilde{\boldsymbol{p}}$
- What is going on?

We have "discovered" some basic constructions from projective geometry

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \end{bmatrix} = {}^{A}R_{B} \begin{bmatrix} {}^{B}x \\ {}^{B}y \end{bmatrix} + {}^{A}t_{B}$$

$$\updownarrow$$

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ {}^{O}_{1\times 2} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ 1 \end{bmatrix}$$

We have "discovered" some basic constructions from projective geometry

Non-linear transformation of the Euclidean plane \mathbb{R}^2

Points in the Euclidean plane are described by Cartesian coordinates

$$\begin{bmatrix} A & X \\ A & Y \end{bmatrix} = A R_B \begin{bmatrix} B & X \\ B & Y \end{bmatrix} + A t_B$$

$$\updownarrow$$

$$\downarrow$$

$$\begin{bmatrix} A & X \\ A & Y \\ 1 \end{bmatrix} = \begin{bmatrix} A & R_B & A t_B \\ \mathbf{0}_{1 \times 2} & 1 \end{bmatrix} \begin{bmatrix} B & X \\ B & Y \\ 1 \end{bmatrix}$$

We have "discovered" some basic constructions from projective geometry

Non-linear transformation of the Euclidean plane \mathbb{R}^2

Points in the Euclidean plane are described by Cartesian coordinates

Linear transformation of the projective plane \mathbb{P}^2

Points in the projective plane are described by homogeneous coordinates

This means that they are only unique up to scale, i.e. $(x, y, 1) = (\lambda x, \lambda y, \lambda) \ \forall \ \lambda \in \mathbb{R} \setminus \{0\}$

The matrix representing the projective transformation is also homogeneous, i.e.

$$^{A}T_{B} = \lambda^{A}T_{B} \forall \lambda \in \mathbb{R} \backslash \{0\}_{37}$$

- Euclidean geometry
 - ${}^{A}\xi_{R} \mapsto ({}^{A}R_{R}, {}^{A}t_{R})$
 - Complicated algebra
- Projective geometry

$$- {}^{A}\xi_{B} \longmapsto {}^{A}T_{B} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}\boldsymbol{t}_{B} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

- Simple algebra

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{\xi}_{B} \cdot {}^{B}\boldsymbol{p} \qquad \mapsto \qquad {}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{R}_{B} \cdot {}^{B}\boldsymbol{p} + {}^{A}\boldsymbol{t}_{B}$$

$${}^{A}\boldsymbol{\xi}_{C} = {}^{A}\boldsymbol{\xi}_{B} \oplus {}^{B}\boldsymbol{\xi}_{C} \qquad \mapsto \qquad \left({}^{A}\boldsymbol{R}_{C}, {}^{A}\boldsymbol{t}_{C}\right) = \left({}^{A}\boldsymbol{R}_{B} \cdot {}^{B}\boldsymbol{R}_{C}, {}^{A}\boldsymbol{R}_{B} \cdot {}^{B}\boldsymbol{t}_{C} + {}^{A}\boldsymbol{t}_{B}\right)$$

$$\ominus {}^{A}\boldsymbol{\xi}_{B} \qquad \mapsto \qquad \left({}^{A}\boldsymbol{R}_{C}, {}^{C}\boldsymbol{r}, -{}^{A}\boldsymbol{R}_{C}, {}^{C}\boldsymbol{r}, -{}^{A}\boldsymbol{r}_{C}\right)$$

$$- {}^{A}\xi_{B} \mapsto {}^{A}T_{B} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}\boldsymbol{t}_{B} \\ \boldsymbol{0} & 1 \end{bmatrix} \qquad \begin{array}{c} {}^{A}\boldsymbol{p} = {}^{A}\xi_{B} \cdot {}^{B}\boldsymbol{p} & \mapsto & {}^{A}\tilde{\boldsymbol{p}} = {}^{A}T_{B} \, {}^{B}\tilde{\boldsymbol{p}} \\ {}^{A}\xi_{C} = {}^{A}\xi_{B} \oplus {}^{B}\xi_{C} & \mapsto & {}^{A}T_{C} = {}^{A}T_{B} \, {}^{B}T_{C} \\ \oplus {}^{A}\xi_{B} & \mapsto & {}^{A}T_{B} \, {}^{-1} \end{array}$$

- Many problems in computer vision are easier to express and solve if we choose to think of points and transformations in terms of projective geometry
 - Algebra and computations become simpler

Representing pose in 2D

• The pose of $\{B\}$ relative to $\{A\}$ can be represented by a homogeneous transformation ${}^AT_B \in SE(2)$

$${}^{A}\xi_{B} \mapsto {}^{A}T_{B} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ \boldsymbol{0} & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & {}^{A}t_{Bx} \\ \sin\theta & \cos\theta & {}^{A}t_{By} \\ 0 & 0 & 1 \end{bmatrix}$$

Properties

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{\xi}_{B} \cdot {}^{B}\boldsymbol{p} \qquad \mapsto \qquad {}^{A}\boldsymbol{\tilde{p}} = {}^{A}T_{B} \, {}^{B}\boldsymbol{\tilde{p}}$$

$${}^{A}\boldsymbol{\xi}_{C} = {}^{A}\boldsymbol{\xi}_{B} \oplus {}^{B}\boldsymbol{\xi}_{C} \quad \mapsto \qquad {}^{A}T_{C} = {}^{A}T_{B} \, {}^{B}T_{C}$$

$$\oplus {}^{A}\boldsymbol{\xi}_{B} \qquad \mapsto \qquad {}^{A}T_{B} \, {}^{-1}$$

Points are represented in homogeneous coordinates

$${}^{A}\tilde{\boldsymbol{p}} = {}^{A}T_{B}{}^{B}\tilde{\boldsymbol{p}}$$

$$\begin{bmatrix} {}^{A}x \\ {}^{A}y \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}\boldsymbol{t}_{B} \\ \boldsymbol{\theta}_{1\times 2} & 1 \end{bmatrix} \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ 1 \end{bmatrix}$$

- Let ${}^{A}\boldsymbol{t}_{B} = [4,1]^{T}$, ${}^{B}\boldsymbol{p} = [2,3]^{T}$ and $\theta = 27^{\circ}$
- Determine the pose of of $\{B\}$ relative to $\{A\}$, i.e. ${}^{A}T_{B}$
- Determine the coordinates of P in $\{A\}$, i.e. ${}^{A}p$

From the previous slides we know that

$${}^{A}T_{B} = \begin{bmatrix} \cos \theta & -\sin \theta & {}^{A}t_{Bx} \\ \sin \theta & \cos \theta & {}^{A}t_{By} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos 27^{\circ} & -\sin 27^{\circ} & 4 \\ \sin 27^{\circ} & \cos 27^{\circ} & 1 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 0.8910 & -0.4540 & 4 \\ 0.4540 & 0.8910 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

• This allows us to compute ${}^{A}\widetilde{p}$

$$\begin{bmatrix}
{}^{A}\tilde{\boldsymbol{p}} = {}^{A}T_{B}{}^{B}\tilde{\boldsymbol{p}} \\
\begin{bmatrix}
{}^{A}x \\ {}^{A}y \\ 1
\end{bmatrix} = \begin{bmatrix}
0.8910 & -0.4540 & 4 \\
0.4540 & 0.8910 & 1 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
2 \\ 3 \\ 1
\end{bmatrix} = \begin{bmatrix}
4.4200 \\
4.5810 \\
1
\end{bmatrix} \implies {}^{A}\boldsymbol{p} = \begin{bmatrix}
4.4200 & 4.5810
\end{bmatrix}^{T}$$

This can also be verified by drawing


```
%% Example: Visualize {A}, {B} and P in coordinates of {A}
robotics path = 'G:\MATLAB\BIBLIOTEKER\PeterCork Robotics\robot-9.10\rvctools';
addpath (genpath (robotics path));
%Pose of {A} relative to {A}
t AA = [0;0];
theta AA = 0;
T AA = se2(t AA(1), t AA(2), theta AA*pi/180);
%Pose of {B} relative to {A}
t AB = [4;1];
theta AB = 27;
T AB = se2(t AB(1), t AB(2), theta AB*pi/180);
%Point P relative to {B}
PB = [2;3];
%Transform point P to {A} using homogeneous coordinates
hP B = e2h(P B);
                  % e2h: Changes representation Euclidean --> homogeneous
hP A = T AB*hP B; % Transformation by multiplication
PA = h2e(hPA);
                  % h2e: Changes representation homogeneous --> Euclidean
%Visualize {A}, {B} and P relative to {A}
figure(1);
clf
axis equal
grid on
grid minor
axis([-2, 6, -2, 6]);
hold on
trplot2(T AA, 'frame', 'A', 'color', 'r')
trplot2 (T AB, 'frame', 'B', 'color', 'g')
plot_point(P_A, '*b', 'printf', {' P', P_A}, 'textcolor', 'b')
```

You can visualize this example in matlab using the toolboxes created by Peter Cork

- Robotics Toolbox
- Machine Vision Toolboxwww.petercorke.com/Toolboxes.html

Representing pose in 3D

• The pose of $\{B\}$ relative to $\{A\}$ can be represented by a homogeneous transformation ${}^AT_B \in SE(3)$

$${}^{A}\xi_{B} \mapsto {}^{A}T_{B} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}t_{B} \\ \boldsymbol{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & {}^{A}t_{Bx} \\ r_{21} & r_{22} & r_{23} & {}^{A}t_{By} \\ r_{31} & r_{32} & r_{33} & {}^{A}t_{Bz} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Properties

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{\xi}_{B} \cdot {}^{B}\boldsymbol{p} \qquad \mapsto \qquad {}^{A}\boldsymbol{\tilde{p}} = {}^{A}T_{B} \, {}^{B}\boldsymbol{\tilde{p}}$$

$${}^{A}\boldsymbol{\xi}_{C} = {}^{A}\boldsymbol{\xi}_{B} \oplus {}^{B}\boldsymbol{\xi}_{C} \quad \mapsto \qquad {}^{A}T_{C} = {}^{A}T_{B} \, {}^{B}T_{C}$$

$$\oplus {}^{A}\boldsymbol{\xi}_{B} \qquad \mapsto \qquad {}^{A}T_{B} \, {}^{-1}$$

Points are represented in homogeneous coordinates

$$\begin{bmatrix}
{}^{A}\boldsymbol{x} \\
{}^{A}\boldsymbol{y} \\
{}^{A}\boldsymbol{z} \\
1
\end{bmatrix} = \begin{bmatrix}
{}^{A}\boldsymbol{R}_{B} & {}^{A}\boldsymbol{t}_{B} \\
\boldsymbol{\theta}_{1\times 2} & 1
\end{bmatrix} \begin{bmatrix}
{}^{B}\boldsymbol{x} \\
{}^{B}\boldsymbol{y} \\
{}^{B}\boldsymbol{z} \\
1
\end{bmatrix}$$

Representing pose in 3D

- The main difference between 3D and 2D is that rotation is far less intuitive in 3D
 Also there are several different representations of rotation in 3D
 - Orthonormal rotation matrix $R \in SO(3)$
 - Euler angles $(\theta_1, \theta_2, \theta_3)$
 - Angle-axis (θ, e) or just $\theta = \theta e$
 - Unit quaternions q = r + xi + yj + zk
- Hence there are several ways to represent pose
 - Rotation matrix and translation vector (${}^{A}R_{B}$, ${}^{A}\mathbf{t}_{B}$)
 - Homogeneous transformation ${}^{A}T_{B}$
 - Euler angles and translation vector $(\theta_1, \theta_2, \theta_3, {}^At_B)$
 - Angle-axis and translation vector $(\theta, e, {}^At_B)$
 - Unit quaternion and translation vector (${}^{A}q_{B}$, ${}^{A}\boldsymbol{t}_{B}$)

- Orientation of {*B*} relative to {*A*}
 - How {B} should rotate to coincide with {A}
- Orthonormal rotation matrix ${}^{A}R_{B} \in SO(3)$

$${}^{A}R_{B} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Properties

$$\det({}^{A}R_{B}) = 1$$

$${}^{A}R_{B}^{-1} = {}^{A}R_{B}^{T}$$

$${}^{A}R_{C} = {}^{A}R_{B}^{B}R_{C}$$

$${}^{A}v = {}^{A}R_{B}^{B}v$$

- Nice algebraic properties
- Computations are simple
- Provides little intuitive understanding

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Euler angles $(\theta_1, \theta_2, \theta_3)$ describes rotation in terms of basic rotations about 3 coordinate axis that must be specified
 - 12 compositions: xyx, xzx, yxy, yzy, zxz,
 zyz, xyz, xzy, yzx, yxz, zxy, zyx
 - E.g. $R_{\chi \gamma z} = R_{\chi}(\theta_1) R_{\gamma}(\theta_2) R_{z}(\theta_3)$

- Suffers from singularities
 - $-\theta_2 = \pm \frac{\pi}{2}$ for sequences without repetition
 - $-\theta_2 \in \{0, \pi\}$ for sequences with repetition
- It is possible to determine the Euler angles that corresponds to a given rotation matrix

$$\theta_{y} = \operatorname{atan2}\left(r_{13}, \sqrt{r_{11}^{2} + r_{12}^{2}}\right) - \frac{\pi}{2} < \theta_{y} < \frac{\pi}{2}$$

$$R_{xyz} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \implies \theta_x = \operatorname{atan2} \left(-\frac{r_{23}}{\cos \theta_y}, \frac{r_{33}}{\cos \theta_y} \right) - \pi < \theta_x < \pi$$

$$\theta_z = \operatorname{atan2}\left(-\frac{r_{12}}{\cos\theta_y}, \frac{r_{11}}{\cos\theta_y}\right) - \pi < \theta_z < \pi$$

- An angle-axis pair (θ, v) describes rotation in terms of an angle and an axis of revolution
- Euler's rotation theorem states that any sequence of rotations in 3 dimensions is equivalent to a single rotation θ about an axis v
- The rotation matrix R corresponding to an angle-axis pair (θ, v) can be found by Rodrigues' rotation formula

$$R = I_3 + \sin\theta [\mathbf{v}]_{\times} + (1 - \cos\theta) (\mathbf{v}\mathbf{v}^T - I_3)$$

Where $[v]_{\times}$ is the matrix representation of the cross product

$$\begin{bmatrix} \boldsymbol{v} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix}$$

• The angle-axis pair (θ, v) corresponding to a rotation matrix R can be found from the eigenvalues and eigenvectors of R

- Unit quaternions are commonly used to work with rotation/orientation in 3D
- A quaternion $q \in \mathbb{H}$ is a number, with 1 real term and 3 imaginary terms

$$q = q_0 + q_1 i + q_2 j + q_3 k = q_0 + v$$

$$i^2 = j^2 = k = ijk = -1$$

Conjugate quaternion

$$q^* = q_0 - q_1 i - q_2 j - q_3 k = q_0 - v$$

A unit quaternion satisfy

$$||q|| = \sqrt{q^*q} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2} = 1$$

Quaternion multiplication

$$qp = (q_0 + \mathbf{v})(p_0 + \mathbf{w})$$

$$= \underbrace{q_0 p_0 - \mathbf{v} \cdot \mathbf{w}}_{\in \mathbb{R}} + \underbrace{q_0 \mathbf{w} + p_0 \mathbf{v} + \mathbf{v} \times \mathbf{w}}_{\in \mathbb{R}^3}$$

 Composing two unit quaternions takes 16 multiplications and 12 additions, while composing two rotation matrixes takes 27 multiplications and 18 additions

 The unit quaternion corresponding to the rotation matrix R is given by

$$q_0 = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}}$$

$$q_1 = \frac{r_{32} - r_{23}}{4q_0}$$

$$q_2 = \frac{r_{13} - r_{31}}{4q_0}$$

$$q_3 = \frac{r_{21} - r_{12}}{4q_0}$$

• The rotation matrix corresponding to the unit quaternion $q=q_0+q_1i+q_2j+q_3k$ is given by

$$R = \begin{bmatrix} 1 - 2q_2^2 - 2q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & 1 - 2q_1^2 - 2q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & 1 - 2q_1^2 - 2q_2^2 \end{bmatrix}$$

SLERP – Spherical linear interpolation
 An algorithm for determining a rotation partway between two given rotations

Useful for visualizing rotations

Summary

- Pose
 - General properties
- Representing pose in 2D
 - Homogeneous transformations
- Representing pose in 3D
 - Homogeneous transformations
 - Other alternatives
- Representing rotation in 3D
 - Rotation matrix
 - Euler angles
 - Angle-axis
 - Unit quaternion

- Additional information
 - Szeliski 2.1.1, 2.1.2, 2.1.4

