VISVESVARAYA TECHNOLOGICAL UNIVERSITY

JNANA SANGAMA, BELAGAVI - 590 018

A Mini Project Report on

Musical Recording System using Inverted Lists

Indexing Technique

Submitted in partial fulfillment of the requirements as a part of the File Structure Lab for the award of degree of

Bachelor of Engineering in Information Science and Engineering

Submitted by

PRAGATI SRIVASTAVA 1RN15IS059

PRAGYA PRIYA 1RN15IS060

Faculty Incharge

Mrs. Vinutha G K

Assistant Professor

Dept. of ISE, RNSIT

Department of Information Science and Engineering RNS Institute of Technology

Channasandra, Dr. Vishnuvardhan Road, RR Nagar Post, Bengaluru – 560 098 2017 – 2018

RNS Institute of Technology

Channasandra, Dr. Vishnuvardhan Road, RR Nagar Post,

Bengaluru – 560 098

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

This is to certify that the mini project report entitled MUSICAL RECORDING USING INVERTED LISTS INDEXING TECHNIQUE has been successfully completed by PRAGATI SRIVASTAVA bearing USN 1RN15IS059 and PRAGYA PRIYA bearing USN 1RN15IS060 presently VI semester students of RNS Institute of Technology in partial fulfillment of the requirements as a part of the *FILE STRUCTURE* Laboratory for the award of the degree of *Bachelor of Engineering in Information Science and Engineering* under Visvesvaraya Technological University, Belagavi during academic year 2017 – 2018. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the report deposited in the departmental library. The mini project report has been approved as it satisfies the academic requirements as a part of File structure Laboratory for the said degree.

Mrs Vinutha G K	Mrs Vinutha G K	Dr M V Sudhamani
Faculty Incharge	Coordinator	Professor and HoD
Assistant Professor	Assistant Professor	
Name of the Examiners	External Viva	Signature with date
1	_	
2		

ABSTRACT

Music is something for which everyone has passion these days. But the major problem is that it becomes very tough to maintain such old music records and retrieve such records, so to overcome this problem we introduce Musical Recording System. The project deals with the organization of musical recording details. It takes in the song detail. This helps the organization to easily maintain the musical records and to display it whenever needed. We can add a new song to the list, one can easily update the records as per the requirements. We can also alter the serial number of the student in case of a wrong entry. In case of an incorrect data entry the record can easily be deleted using the primary key which is serial number of the music.

It includes inverted list and using it we can list the songs under particular composer. We can display the song details by just typing the serial number and composer name. The Musical Recording system is a stand-alone application. It provides a user-friendly, interactive Menu Driven Interface (MDI). All data is stored in files for persistence. The application uses two files: a secondary index file, to store the primary index and a Data file, to store records pertaining to the Music details, its complete information regarding composer's name and other details. It will be very convenient to retrieve records with help of any particular specification of a song. We are using composer's name to retrieve the records in our project which will ultimately give details of songs composed by that composer which will be very helpful for retrieving from years long songs and also for fast processing.

ACKNOWLEDGMENT

The fulfillment and rapture that go with the fruitful finishing of any assignment would be inadequate without the specifying the people who made it conceivable, whose steady direction and support delegated the endeavors with success.

We would like to profoundly thank **Management** of **RNS** Institute of **Technology** for providing such a healthy environment to carry out this Project work.

We would like to thank our beloved Director **Dr. H N Shivashankar** for his confidence feeling words and support for providing facilities throughout the course.

We would like to express my thanks to our Principal **Dr. M K Venkatesha** for his support and inspired me towards the attainment of knowledge.

We wish to place on record our words of gratitude to **Dr. M V Sudhamani,** Professor and Head of the Department, Information Science and Engineering, for being the enzyme and master mind behind my Project work.

We would like to express our profound and cordial gratitude to our coordinator Mrs. Vinutha GK, Assistant Professor, Department of Information Science and Engineering for her valuable guidance, constructive comments and continuous encouragement throughout the Project work.

We would like to thank all other teaching and non-teaching staff of Information Science & Engineering who have directly or indirectly helped me to carry out the project work.

And lastly, We would hereby acknowledge and thank our parents who have been a source of inspiration and also instrumental in carrying out this Project work.

PRAGATI SRIVASTAVA 1RN15IS059 PRAGYA PRIYA 1RN15IS060

TABLE OF CONTENTS

CERTIFICATE	
ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	viii
ABBREVATIONS	Ix
INTRODUCTION	1
1.1 Introduction to File Structure	1
1.1.1 History	1
1.1.2 About the File	2
1.1.3 Various Kinds of storage of Fields and Recor	ds 3
1.1.4 Application of File Structure	5
SYSTEM ANALYSIS	6
2.1 Analysis of Application	6
2.2 Structure used to Store the Fields and Recor	rds 7
2.3 Operations Performed on a File	7
2.4 Indexing Used	9
SYSTEM DESIGN	11
3.1 Design of the Fields and Records	11
3.2 User Interface	12
3.2.1 Insertion of a Record	13

	3.2.2 Display of record	14
	3.2.3 Deletion for a record	14
	3.2.4 Search of a record	14
	3.2.5 Modifying a record	15
	3.2.6 Design of Index	15
4	IMPLEMENTATION	17
	4.1 About C++	17
	4.1.1 Classes and Objects	17
	4.1.2 File Handling	18
	4.1.3 Character Arrays and Character Functions	18
	4.2 Pseudocode	18
	4.2.1 Insertion Module Pseudocode	18
	4.2.2 Display Module Pseudocode	19
	4.2.3 Deletion Module Pseudocode	20
	4.2.4 Search Module Pseudocode	21
	4.2.5 Modify Module Pseudocode	21
	4.2.6 Indexing Pseudocode	23
	4.3 Testing	25
	4.3.1 Unit Testing	25
	4.3.2 Integration Testing	28
	4.3.3 System Testing	36
	4.4 Discussion of Results	38
	4.4.1 Menu Options	38
	4.4.2 Insertion	39

	REFERENCES	43
5	CONCLUSION AND FUTURE ENHANCEMENTS	42
	4.4.6 File Contents	42
	4.4.5 Before and After Modifying record	40
	4.4.4 Searching a record	40
	4.4.3 Before and After Deletion	39

LIST OF FIGURES

Fig. No.	Descriptions	Page No.
Fig. 2.1	Structure of Inverted Index	09
Fig. 3.1	Class Declaration	11
Fig. 3.2	User Interface Main Screen 1	12
Fig. 3.3	User Interface Main Screen 2	12
Fig. 3.4	User Interface Main Screen 3	12
Fig. 3.5	Pseudocode for Index	16
Fig. 4.1	Insertion Pseudocode	18
Fig. 4.2	Display Pseudocode	19
Fig 4.3	Deletion Pseudocode	20
Fig 4.4	Search Pseudocode	21
Fig 4.5	Modification Pseudocode	23
Fig 4.6	Indexing Pseudocode	24
Fig 4.7	Unit Test Case for SNO Input Check	25
Fig 4.8	Unit Test Case for Song Input Check	26
Fig 4.9	Unit Test Case for Composer Input Check	27
Fig 4.10	Unit Test Case for Type Input Check	27
Fig 4.11	Unit Test Case for Year Input Check	28
Fig 4.12	Integration Test Case for Insertion Module	29
Fig 4.13	Integration Test Case for Insertion Module	30
Fig 4.14	Integration Test Case for Deletion Module	30
Fig 4.15	Integration Test Case for Deletion Module	31
Fig 4.16	Integration Test Case for Search Module	31
Fig 4.17	Integration Test Case for Search Module	32
Fig 4.18	Integration Test Case for Search Module	33
Fig 4.19	Integration Test Case for Modify Module	35
Fig 4.20	Integration Test Case for Modify Module	35
Fig 4.21	System Test Case Musical Recording	38
Fig 4.22	Main Menu	38
Fig 4.23	Musical Record Main Menu	38
Fig 4.24	Indexing Menu	39

Fig 4.25	Insertion of Musical Record	39
Fig 4.26	Display of Record before Deletion	39
Fig 4.27	Deletion of Record	39
Fig 4.28	Entering the Secondary Key (Composer)	40
Fig 4.29	Searching using Inverted list	40
Fig 4.30	Enter the Primary key (SNO) to Search	40
Fig 4.31	Updating the Record	41
Fig 4.32	After Modifying the Record	41
Fig 4.33	Data File Contents	41
Fig 4.34	Index File Contents	41

LIST OF TABLES

Table No.	Table Description	
Table 4.1	Unit test case for SNO Input Check	25
Table 4.2	Unit test case for SONG Input Check	26
Table 4.3	Unit test case for COMPOSER Input Check	26
Table 4.4	Unit test case for TYPE Input Check	27
Table 4.5	Unit test case for YEAR Input Check	28
Table 4.6	Integration test case for Insertion module	28
Table 4.7	Integration test case for Insertion module	29
Table 4.8	Integration test case for Deletion module	30
Table 4.9	Integration test case for Deletion module	31
Table 4.10	Integration test case for Search module	31
Table 4.11	Integration test case for Search module	32
Table 4.12	Integration test case for Search module	33
Table 4.13	Integration test case for Modify module	33
Table 4.14	Integration test case for Modify module	35
Table 4.15	System test case for Musical Recording System	36

ABBREVIATIONS

AVL Adelson-Velskii and Landis

SNO Serial Number

MDI Menu Driven Interface

OS Operating System

RAM Random Access Memory