1 Overview and Review, 8/23/16

1.1 Overview

Class field theory provides a dictionary between abelian extensions of a given number field F (i.e. Galois extensions of F with abelian Galois group) and intrinsic data about the number field, e.g. the class group of the ring of integers, $Cl(\mathcal{O}_F)$. For instance, if we let H be the union of all abelian extensions of F that are everywhere unramified, we have $Gal(H/F) \cong Cl(\mathcal{O}_F)$.

However, class field theory does not construct these abelian extensions, except for two classical constructions which were already known:

- 1. $F = \mathbb{Q}$, which has $H = \mathbb{Q}(\mu_{\infty})$, where we have adjoined all the roots of unity. This is Kronecker-Weber theorem.
- 2. F a quadratic imaginary extension of \mathbb{Q} .

This is not so bad, however, since it turns out that class field theory can actually yield information about non-abelian extensions!

1.2 Topics

- Review local and global fields.
- Group and Galois cohomology.
- Local class field theory and local duality (important!).
- Global class field theory and global duality.
- Applications (Iwasawa theory).

1.3 Review

1.3.1 First Example

Let L/K be a finite Galois extension. Let \mathfrak{P} be an unramified prime of L lying over \mathfrak{p} , so that $\mathfrak{p}\mathcal{O}_L = \prod \mathfrak{P}_i^{e_i}$ with all $e_i = 1$.

Lemma 1.3.1. There is an element $\operatorname{Fr}_{\mathfrak{P}}$ of $\operatorname{Gal}(L/K)$ such that

1) $\operatorname{Fr}_{\mathfrak{P}}(\mathfrak{P}) = \mathfrak{P}$, i.e. $\operatorname{Fr}_{\mathfrak{P}}$ is in the decomposition group of \mathfrak{P} .

2) Fr_{\mathfrak{P}} acts on $\mathcal{O}_L/\mathfrak{P}$ as $x \to x^{N(\mathfrak{p})}$.

Remark 1. Note that $\mathcal{O}_K/\mathfrak{p}$ is a finite field of order $N(\mathfrak{p})$, which has the Frobenius automorphism that does precisely what 2 does. We should think of $\operatorname{Fr}_{\mathfrak{P}}$ as a lift of that map to $\mathcal{O}_L/\mathfrak{P}$.

Proof. We will construct $\operatorname{Fr}_{\mathfrak{P}}$ explicitly. Let $\alpha \in \mathcal{O}_L$ satisfying

- 1. α generates $(\mathcal{O}_L/\mathfrak{P})^{\times}$, and
- 2. for all $\mathfrak{P}^o \neq \mathfrak{P}$ above \mathfrak{p} , $\alpha \in \mathfrak{P}^o$.

Set
$$F(X) = \prod_{\sigma \in Gal(L/K)} (X - \sigma \alpha) \in \mathcal{O}_K[X]$$
. Then $F(\alpha) = 0$, so $F(\alpha^{N(\mathfrak{p})}) = F(\alpha)^{N(\mathfrak{p})} = 0$.

Then for some σ , $\alpha^{N(\mathfrak{p})} \equiv \sigma \alpha \pmod{\mathfrak{P}}$. Then we claim that $\sigma \mathfrak{P} = \mathfrak{P}$. Otherwise, $\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$, so $\alpha \in \sigma^{-1} \mathfrak{P}$, so $\sigma \alpha \in \mathfrak{P}$. So $\alpha^{N(\mathfrak{p})} \equiv 0 \pmod{\mathfrak{P}}$, a contradiction.

Then for all $x \in \mathcal{O}_L/\mathfrak{P}$, we can write $x = \alpha^i + b$, for some i and $b \in \mathfrak{P}$. Then

$$\sigma(x) = \sigma(\alpha^i) + \sigma(b) = \alpha^{iN(\mathfrak{p})} + \sigma(b) \equiv x^{N(\mathfrak{p})} \pmod{\mathfrak{P}}.$$

Now define $Fr_{\mathfrak{P}} := \sigma$. Uniqueness is left to the reader.

Remark 2. If $\mathfrak{P}^o = \tau(\mathfrak{P})$ for some $\tau \in \operatorname{Gal}(L/K)$, $\operatorname{Fr}_{\mathfrak{P}^o} = \tau \operatorname{Fr}_{\mathfrak{P}} \tau^{-1}$.

Recall that L/K being Galois means Gal(L/K) acts transitively on the primes \mathfrak{P} lying over \mathfrak{p} . So $Fr_{\mathfrak{P}}$ is well-defined up to conjugation. If L/K is abelian, it is well-defined.

1.3.2 Fr $_{\mathfrak{P}}$ of Cyclotomic Field

Let $L = \mathbb{Q}(\zeta_n)$ be the *n*-th cyclotomic field, $K = \mathbb{Q}$. Then $\operatorname{Gal}(L/K) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. Take p unramified in L/K, i.e. p not dividing n. Then Fr_p (we are in an abelian extension, so all $\operatorname{Fr}_{\mathfrak{P}}$ are the same). By definition, Fr_p is the σ such that $\sigma(\alpha) = \alpha^p \pmod{\mathfrak{P}}$, for all \mathfrak{P} over p.

Also characterized by $\tau(\zeta_n) = \zeta_n^p$ since

$$\tau \sum a_i \zeta_n^i = (\sum a_i \zeta_n^i)^p.$$

1.3.3 $\operatorname{Fr}_{\mathfrak{P}}$ of Quadratic Field

Here, we let $L = \mathbb{Q}(\sqrt{d})$ and K as before. Then $Gal(L/K) \cong \mathbb{Z}/2\mathbb{Z}$, and for p unramified in L, Fr_p corresponds to 1 if p splits in L, or -1 if p is inert in L. This means that

$$\operatorname{Fr}_p = \left(\frac{d}{p}\right).$$

This connection leads us to an extremely nice proof of the quadratic reciprocity for odd primes.

Theorem 1.3.2. Let
$$p \neq q$$
 be odd primes. Then $\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Proof. Let $L = \mathbb{Q}(\zeta_p)$, $K = \mathbb{Q}$. Then Gal(L/K) is cyclic of order p-1, and so has a unique order two quotient which corresponds to a quadratic field F, where $F = \mathbb{Q}\left(\sqrt{(-1)^{\frac{p-1}{2}}p}\right)$.

Since q is unramified, we can consider Fr_q which corresponds to $q \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Now we simply compute this quantity in two ways.

(i)
$$\operatorname{Fr}_q|_F = 1 \Leftrightarrow q^{\frac{p-1}{2}} \equiv 1 \pmod{p} \Leftrightarrow \left(\frac{q}{p}\right) = 1.$$

(ii) $\operatorname{Fr}_q|_F$ is also simply Fr_q for the quadratic extension F, hence equal to $\left(\frac{(-1)^{\frac{p-1}{2}}p}{q}\right)$ by the previous example.

1.4 First Case of Fermat's Last Theorem

Theorem 1.4.1. If p does not divide $|Cl(\mathbb{Q}(\zeta_p))|$, then $x^p + y^p = z^p$ has no integer solutions with p not dividing xyz.

The idea is that we can factor $\prod_i (x + \zeta_p^i y) = z^p$ in $\mathbb{Z}[\zeta_p]$. It turns out that regularity gives us that the LHS factors are p-th powers, the divisibility condition giving us that the factors are coprime.

Proof. We take p > 5, since we can easily prove the cases p = 3, 5 by looking at the equation modulo 9, 25 respectively. Without loss of generality, assume x, y, z are coprime and p does not divide x - y. If $x \equiv y \pmod{p}$ and $x \equiv -z \pmod{p}$, then $-2z^p \equiv z^p \pmod{p}$, a contradiction. So we must have one or the other.

First, prove the coprimeness of the factors. If a prime q of $\mathbb{Z}[\zeta_p]$ divides two factors $x + \zeta_p^k y$ for $k = i, j, i \neq j$. Then $q|(\zeta_p^i - \zeta_p^j)y$. Since p does not divide y, and $q|(\zeta_p^j - \zeta_p^i)x$, so $q|(\zeta_p^i - \zeta_p^j)$, the unique prime ideal over p. (Recall that $p\mathbb{Z}[\zeta_p] = (1 - \zeta_p)^{p-1}$). So $q = (1 - \zeta_p) = p$, so p|x + y, i.e. $x + y \in \mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$, so $x^p + y^p \equiv x + y \equiv 0 \pmod{p}$.

Hence, $(x + \zeta_p^i y) = J_i^p$ for some ideal J_i . But since p does not divide the class group, no element can have order p, hence J_i is principal. Then $x + \zeta_p^i y = u\alpha_i^p$ for some unit u. Dirichlet's unit theorem doesn't give us precise control over what the units look like, so we need to muck around with the following lemma.

Lemma 1.4.2. Let u be a unit. Then $u = \zeta_p^r \epsilon$ for a unit ϵ of the maximal real subfield of the p-th cyclotomic field.

Proof. Consider u/\bar{u} , an algebraic integer with norm 1 in all complex embeddings. This means u/\bar{u} is a root of unity, so

$$u/\bar{u} = \pm \zeta_p^s$$

for some s. If the sign is plus, let r be such that $2r \equiv s \pmod{p}$. It turns out that a minus sign gives us a contradiction.

So $x + \zeta_p^i y = \zeta_p^r \epsilon \alpha^p$. Conjugation gives us

$$x + \zeta_p^i y \equiv \zeta^r \epsilon \alpha$$

and

$$x + \zeta_p^{-i} y \equiv \zeta^{-r} \epsilon \alpha$$

modulo $p\mathbb{Z}[\zeta_p]$. Hence

$$\zeta_p^{-r}(x+\zeta_p^i y) \equiv \zeta^r(x+\zeta_p^{-i} y) \pmod{p\mathbb{Z}[\zeta_p]}.$$

We can conclude the proof from the following lemma.

Lemma 1.4.3. If $\alpha = a_0 + \cdots + a_{p-1}\zeta_p^{p-1}$, $a_i \in \mathbb{Z}$ not all zero, and if $\alpha \in m\mathbb{Z}[\zeta_p]$, $m \in \mathbb{Z}$, then $m|a_i$ for all i.

2 Review of Local Fields, 8/25/16

2.1 Locla Fields Facts

Let K be a field, then absolute value on K is a map to $\mathbb{R}^{\geq 0}$ that is multiplicative, satisfies the triangle inequality and is positive semi-definite. Includes for instance the p-adic norm, archimedean absolute values.

Definition 2.1.1. Absolute value is <u>non-archimedean</u> if $|x + y| \le \max(|x|, |y|)$.

In non-archimedean fields, we talk about valuations, i.e. maps $v: K \to \mathbb{R} \cup \{\infty\}$ which is additive, i.e. $v(x+y) \ge \min(v(x),v(y))$ and $v(0) = \infty$. For instance, $v(p^n \frac{a}{b}) = n$.

Definition 2.1.2. Given a non-archimedean valuation, let

$$\mathcal{O}_v = \{x \in k | |x| \le 1\}$$
$$\mathfrak{m}_v = \{x \in k | |x| < 1\}$$
$$\mathcal{O}_v^{\times} = \{x \in k | |x| = 1\}$$

Lemma 2.1.3. $|\cdot|_v$ is discrete if and only if \mathfrak{m}_v is principal.

For example, \mathbb{Q}_p , $|\cdot|_p$ is discrete, and $|\mathbb{Q}_p \setminus 0| = p^{\mathbb{Z}}$. However, $\overline{\mathbb{Q}_p}$ with $|\cdot|_p$ is non-discrete, since $|p^{1/n}| = p^{-1/n} \to 1$.

Remark 3. Any $|\cdot|$ on k topologizes k.

Lemma 2.1.4. If $|\cdot|$, $|\cdot|^{\mathfrak{p}}$ are absolute values on k, then TFAE:

- (1) they define the same topology
- (2) $\mathcal{O}_{|.|} = \mathcal{O}_{|.|\mathfrak{p}}$
- (3) $|x| = (|x|^{\mathfrak{p}})^r$, some $r \in R$.

Theorem 2.1.5 (Ostrowski). The only absolute values on \mathbb{Q} are the usual one and the p-adic ones.

Theorem 2.1.6 (Weak Approximation). Let $|\cdot|_1, ..., |\cdot|_n$ be pairwise inequivalent absolute values on k. Then

$$k \hookrightarrow \prod_{i=1}^{n} k_{|\cdot|_i}$$

is dense, where the subscripts indicate completions with respect to those absolute values.

Proof. First, we claim that there exists $a \in k$ with $|a|_1 > 1$ and $|a|_i < 1$ for the other i. Work by induction. This is clearly true for n = 1. For n = 2, if $|\cdot|_1 \not\cong |\cdot|_2$ then there are b, c such that $|b|_1 < 1$, $|b|_2 \ge 1$, $|c|_1 \ge 1$, $|c|_2 < 1$. Then let a = b/c. By induction, there's $b \in k$ such that $|b|_1 > 1$, $|b|_i < 1$ and (by n = 2 case), |c| > 1, $|c|_n < 1$. If $|b|_n < 1$, we're done. If $|b|_n = 1$, set $a = cb^m$ for m large enough. Otherwise, set $a = cb^m/(1 + b^m)$. Done.

Next, we show that for any $\epsilon > 0$, there is an $\alpha \in k$ such that $|a - 1|_1 < \epsilon$ and $|a|_i < \epsilon$. Take a as above, i.e. $\alpha^m/(1+\alpha^m)$ for m >> 0.

Let $x_1, ..., x_n \in k$. For each i, choose $|\alpha_i - 1|_i$ very small, $|\alpha_i|_{j \neq i}$ very small, and set $x = \sum x_i \alpha_i$.

2.2 Hensel's Lemma

Let \mathcal{O} be a complete discrete valuation ring (e.g. any local ring). We want to discuss Hensel's lemma.

Theorem 2.2.1 (Version 1). Let $f(x) \in \mathcal{O}[X]$. Let $a_0 \in \mathcal{O}$ be such that $|f(a_0)| < |f^{\mathfrak{p}}(a_0)|^2$. Then there is a root $a \in \mathcal{O}$ of f such that $|a - a_0| < |f(a_0)/f^{\mathfrak{p}}(a_0)^2|$.

Proof. Literally Newton's method.

For example, if $\mathcal{O} = \mathbb{Z}_5$ and $f(X) = X^3 + X + 3$, then $f(1) \equiv 0 \pmod{5}$, $f^{\mathfrak{p}}(1) \equiv 4 \pmod{5}$. Then we can let $a_1 = a_0 - f(a_0)/f^{\mathfrak{p}}(a_0) \equiv 6 \pmod{2}5$.

Important Example. If $\mathcal{O} = \mathbb{Z}/p\mathbb{Z}$, and $f(X) = X^p - X$, then for any $a \in \mathbb{F}_p$, $f(a) \equiv 0 \pmod{p}$, and $f^{\mathfrak{p}}(a) \equiv -1 \pmod{p}$. Then there exists an $a* \in \mathbb{Z}/p\mathbb{Z}$ such that $a* \equiv a \pmod{p}$, f(a) = 0. Hence we can conclude that the p-th roots of unity are contained in \mathbb{Q}_p and reduction mod p is a group isomorphism from $\mu_{p-1}(\mathbb{Z}/p\mathbb{Z}) \cong \mathbb{F}_p^{\times}$. The inverse of this map is called the Teichmuller lift.

In general, if \mathcal{O} is a discrete valuation ring, with finite residue field k, then $\mu_{|k|-1}(\mathcal{O}) \cong k^{\times}$.

Theorem 2.2.2 (Version 2). Let \mathcal{O} be a DVR with residue field $k = \mathcal{O}/\mathfrak{m}$. Let $f(X) \in \mathcal{O}[X]$. If $\bar{f}(X) \in k[X]$ factors as $g_0(X)h_0(X)$ with g_0, h_0 monic and coprime, then f(X) = g(X)h(X) for unique monic $g, h \in \mathcal{O}[X]$ such that $g \equiv g_0, h \equiv h_0 \pmod{\mathfrak{m}}$.

2.3 Extension of Valuations

Proposition 2.3.1. Let k be complete with respect to a discrete $|\cdot|_v$. Let L/K be a finite separable extension. Then $|\cdot|_v$ extends uniquely to L, L is complete with respect to this extension, and for every $\alpha \in L$, $|\alpha|_v := |N_{L/K}(\alpha)|^{1/[L:K]}$.

Proof. If both were an extension, then since all norms on a finite dimensional vector space over a complete field are equivalent, they define the same topology and so the exponent must be equal.

To prove existence, note that there is a unique maximal ideal \mathfrak{m}_L of \mathcal{O}_L above that of \mathcal{O}_k . You can define a valuation upstairs by defining one on the maximal ideal, then normalize. \square

Remark 4. The formula is forced by existence of uniqueness. If L/K is a Galois extension, $|\sigma(\cdot)|$ is another absolute value, so $|\sigma(\cdot)| = |\cdot|$ by uniqueness, and take the product over all elements of the Galois group.

Suppose k is complete with respect to the discrete, non-archimedean valuation. Let L/K be a finite separable extension. Let v_k be the normalized valuation on k, i.e. $v:k \to \mathbb{Z}$. Let π_k be the generator of the maximal ideal of \mathcal{O}_k (a uniformizing element). Let $w:L\to\mathbb{R}$ be the unique extension of v_k to L.

Definition 2.3.2. Let $e_{L/K} = [w(L^{\times}) : v_k(k^{\times})]$, i.e. $\pi_k \mathcal{O}_L = \pi_L^{e_{L/K}}$, be the <u>ramification</u> degree. Let $f_{L/K} = [k_L : k_k]$ be the degree of the residue field extension be called the <u>inertial</u> degree.

Example. If $L = \mathbb{Q}_p(\sqrt{p})$, $e_{L/K} = 2$, $f_{L/K} = 1$.

Example. Let $L = \mathbb{Q}_p(\zeta)$ where $\zeta^{p^2-1} = 1$, and $\zeta^{p-1} \neq 1$. Then $e_{L/K} = 1, f_{L/K} = 2$. Minimal polynomial is $(X - \zeta)(X - \zeta^p)$.

Definition 2.3.3 (Purist's). A local field is a field with nontrivial absolute value inducing a locally compact topology on k.

Definition 2.3.4. Namely, it is either \mathbb{R} , \mathbb{C} in the archimedean case, or in the non-archimedean case, a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((T))$.

Note that k is complete with respect to non-archimedean absolute value if and only if the residue field is finite and \mathcal{O}_K is compact.