HOMEWORK 9

Problem 1.1

No.	Question	Blocking or Non- Blocking	Because/Reason
а	Duplicate elimination operator over unsorted relation R	Non-Blocking	Without consuming all input, this can produce tuples.
b	Grouping operator (group by column X) over a sorted relation R on column X	Non-Blocking	Without consuming all input, this can produce tuples.
С	Grouping operator (group by column X) over unsorted relation R	Blocking	Cannot produce any tuples to the output until it. processes all its inputs
d	Sorting operator (sort by column X) over unsorted relation R	Blocking	Cannot produce any tuples to the output until it. processes all its inputs
е	Sorting operator (sort by column X) and assume the operator can use a B-tree index that exists on R.X to read the tuples.	Non-Blocking	Without consuming all input, this can produce tuples with the use of an index.
f	Join of two relations R and S	Non-Blocking	Without consuming all input, this can produce tuples.
g	Bag Union of relations R and S	Non-Blocking	Without consuming all input, this can produce tuples.

Problem 1.2

A.

Can be done in One pass: YES.

Constraint: the tuples should fit in M -1 blocks (199)

I/O cost: B(R)- 1000

Can it be done in two passes: YES, if it satisfies the

constraint: B(R)<= M^2

B(R)- 1000, M^2 = 200*200 i.e., 1000< 40000

I/O cost: 3B(R)-> 3000

В.

Can be done in One pass: YES.

I/O cost: B(R)- 1000

There are no 2 passes required.

C.

Can be done in One pass: YES.

Constraint: The tuples should fit in M -1 blocks (199)

I/O cost: B(R)- 1000

Can it be done in two passes: YES, if it satisfies the

constraint: B(R)<= M^2

B(R)- 1000, M^2 = 200*200 i.e., 1000< 40000

I/O cost: 3B(R)-> 3000

D.

Can be done in One pass: No, because the size of R is too big.

Can it be done in two passes: **Yes**.

E.

Can be done in One pass: **Yes**.

Constraint: The group must fit in M-1 buffer

I/O cost: B (R.X) = 70

There are no 2 passes required.

F.

Can be done in One pass: Yes.

Size of S < Memory buffer i.e., 150<200

 $I/O \cos t = B(R) + B(S) = 1000 + 150 = 1150$

The size of S is small, and it easily fits into main memory, while R is much larger.

than the memory buffer, hence there is no need for two passes.

G.

Can be done in One pass: Yes.

I/O cost: B(R) + B(S) = 1000 + 150 = 1150

Can it be done in two passes: No

Problem 2

1.a opts for R2 as the outer relation.

1.b.

Total I/O cost =
$$B(R2) + (B(R2)/M-1) * B(R1)$$

= $200 + (200/(52-1)) * 1000$
= 4122

1.c.

If R1 is chosen as the outer relation, then

Total I/O cost =
$$B(R1) + (B(R1)/M-1) * B(R2)$$

= $1000 + (1000/51)*200$
= 4921

2.a

Total cost =
$$3(B(R1) + B(R2))$$

= $3(1000 + 200) = 3600$

2.b

$$B(R1) + B(R2) \le M^2$$

The min. no of buffers needed for the cost to remain unchanged i.e., 35.

3.a

Total cost =
$$3(B(R1) + B(R2))$$

= $3(1000 + 200) = 3600$

3.b

$$min(B(R1), B(R2)) \le M^2$$

The min. no of buffers needed for the cost to remain unchanged i.e., 14.

4.

#R2 is un- clustered

Cost = T(R2) + T(R2) * (2 + B(R1) / V(R2, Y))

= 2000 + 2000 * (2 + (1000/5))

= 2000 + 404000

= 406000

#R2 is clustered

Cost = B(R2) + T(R2) * (B(R1)/ V (R1, Y))

= 200 + 2000 * (1000/5)

= 200 + 400000

= 400200