§10. Деревья. Основные свойства деревьев

Теорема (из §7)

Пусть G-(n,m)-гра ϕ , k(G)=k. Тогда:

$$n-k \leqslant m \leqslant \frac{(n-k)\cdot(n-k+1)}{2}.$$

Из доказательства первого неравенства по индукции:

- $n-k(G')=n-k\leqslant m-1$ (если удаляемое ребро лежит на цикле)
- или $n-k(G')=n-k-1\leqslant m-1$ (если не лежит).
- Из $n-k\leqslant m-1$ следует $n-k\leqslant m$.
- ullet Из $n-k-1\leqslant m-1$ также следует, что $n-k\leqslant m$.

Наблюдение:

- Из доказательства можно заметить, что равенство n-k=m может быть достигнуто только на графах, в которых ни одно ребро не лежит на цикле.
- Для связных графов без циклов действительно выполнено m=n-1, и это число рёбер является наименьшим возможным для связных графов.

Граф, в котором нет циклов, называется ациклическим.

Определение

Связный ациклический граф называется деревом.

Пример:

В качестве примера приведём все непомеченные деревья порядка 6.

 Для удобства их перечисления (и построения) стоит отсортировать их по диаметру.

$$d = 5$$
:
$$d = 4$$
:
$$d = 3$$
:

$$d=2$$
:

Теорема 1 (об эквивалентных определениях дерева)

Для любого (n, m)-графа G эквиваленты следующие утверждения:

- G дерево;
- 1) G связный ациклический граф;
- 2) G cвязный граф c m = n 1;
- 3) G aциклический граф c m = n 1;
- 4) для любой пары несовпадающих вершин $u, v \in V(G)$ в G имеется единственная простая (u, v)-цепь;
- 5) G ациклический граф, но для любой пары различных не смежных вершин $u, v \in V(G)$ граф G + uv содержит единственный цикл.

- 1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4) \Rightarrow 5) \Rightarrow 1)
 - 1) \Rightarrow 2) индукцией по числу вершин, остальное от противного(?)

- $1) \Rightarrow 2$).
 - 1) G связный ациклический граф;
 - 2) G связный граф с m = n 1.

Если G — связный ациклический граф, то G — связный граф. Покажем индукцией по числу вершин графа n, что если G — связный ациклический граф, то m=n-1.

База: n = 1

• K_1 — связный ациклический граф, m=0=n-1. Пусть импликация верна для любого связного ациклического графа G порядка k, $1\leqslant k\leqslant n-1$. Рассмотрим произвольный связный ациклический граф G порядка n.

Рассмотрим произвольный связный ациклический (n, m)-граф G.

- Поскольку G связен, $m \geqslant n-1$.
- Поскольку n > 1, то m > 0, т. е. $m \geqslant 1$.
- Выберем произвольное ребро e графа G и рассмотрим граф G-e.
- Поскольку G связный ациклический, т. е. ребро e не лежало на цикле, граф G-e имеет ровно две компоненты связности. Обозначим их G_1 и G_2 .
- Кроме того, поскольку сам граф G ацикличен, каждая из этих компонент тоже не содержит циклов.
- ullet Таким образом, G_1 и G_2 связные ациклические графы.

- Обозначим $n_1 = |G_1|$, $m_1 = |E(G_1)|$, $n_2 = |G_2|$, $m_2 = |E(G_2)|$.
- Поскольку $n_1+n_2=n$ и $n_1>0$ и $n_2>0$, выполнено $n_1\leqslant n-1$ и $n_2\leqslant n-1$.
- Поскольку G_1 и G_2 связные ациклические графы, и $n_1\leqslant n-1$ и $n_2\leqslant n-2$, к ним применимо предположение индукции, по которому $m_1=n_1-1$ и $m_2=n_2-1$.
- Тогда для графа G выполнено: $n=n_1+n_2$, $m=m_1+m_2+1=n_1-1+n_2-1+1=n-1$.
- Что и требовалось доказать.

- $2) \Rightarrow 3$).
 - 2) G связный граф с m = n 1;
 - 3) G ациклический граф с m = n 1.

От противного.

Рассмотрим произвольный связный (n, m)-граф G, где m = n - 1.

- Предположим, что G содержит цикл.
 Пусть е ребро этого цикла.
- Рассмотрим граф G-e. Обозначим $m'=|E(G-e)|,\; n'=|G-e|.$

$$[G-$$
 связный граф с $m=n-1]$

- Поскольку G связен, а e ребро цикла, то граф G e тоже связен, т. е. имеет одну компоненту связности,
- ullet откуда $m' \geqslant n' 1 = n 1$.
- ullet С другой стороны, m'=m-1=n-1-1=n-2.
- Таким образом, $n-2 \geqslant n-1$.
- Противоречие.
- Следовательно, исходное предположение неверно, а значит G ациклический граф с m=n-1.
- Что и требовалось доказать.

- $3) \Rightarrow 4).$
 - 3) G ациклический граф с m = n 1;
 - 4) для любой пары несовпадающих вершин $u, v \in V(G)$ в G имеется единственная простая (u, v)-цепь.

Сперва покажем, что для любой пары несовпадающих вершин $u,v\in V(G)$ в G имеется простая (u,v)-цепь,

- т. е. *G* связен.
 - Пусть G имеет k компонент связности, $k \geqslant 1$.
 - Поскольку G ациклический граф, каждая его компонента связности — связный ациклический граф.
 - Пусть i-я компонента связности это (n_i, m_i) -граф, $i = 1, 2, \ldots, k$.

[Каждая компонента связности графа G является связным ациклическим графом.]

- По уже доказанному $(1) \Rightarrow 2)$), для каждой компоненты связности выполнено $m_i = n_i 1$.
- Тогда, поскольку $m = \sum_{i=1}^K m_i$ и $n = \sum_{i=1}^K n_i$, выполнено m = n k.
- ullet Но по условию m=n-1, откуда получаем k=1.
- Следовательно, G связен, т. е. для любой пары несовпадающих вершин $u,v\in V(G)$ в G имеется простая (u,v)-цепь.

[Для любой пары несовпадающих вершин $u, v \in V(G)$ в G имеется простая (u, v)-цепь.]

- Пусть для некоторой пары вершин u, v такая цепь не единственная.
- Тогда из объединения этих двух цепей можно выделить цикл.
- Противоречие с тем, что G ациклический граф.
- Следовательно, для любой пары несовпадающих вершин $u, v \in V(G)$ в G имеется единственная простая (u, v)-цепь.
- Что и требовалось доказать.

- $4) \Rightarrow 5$).
 - 4) для любой пары несовпадающих вершин $u, v \in V(G)$ в G имеется единственная простая (u, v)-цепь;
 - 5) G ациклический граф, но для любой пары различных не смежных вершин $u, v \in V(G)$ граф G + uv содержит единственный цикл.
 - Очевидно, G связен.
 - Несложно заметить, что G ациклический (иначе была бы пара вершин, между которыми две различные простые цепи).

- [G- связный ациклический, единственная (u,v)-цепь.]
- Кроме того, несложно убедиться, что G + uv содержит цикл.
- Отметим, что любой цикл в G + uv обязательно содержит ребро uv (иначе он был и в G).
- Если два различных цикла содержат одно ребро, то есть и третий, который не содержит этого ребра.
- Противоречие.

- $5) \Rightarrow 1).$
 - 5) G ациклический граф, но для любой пары различных не смежных вершин $u,v\in V(G)$ граф G+uv содержит единственный цикл;
 - 1) G связный ациклический граф.
 - Очевидно, G ациклический.
 - Если он не связен, возьмём вершины u и v из разных компонент.
 - Получим цикл в G + uv.
 - Он проходит через ребро *uv*.
 - Удалим это ребро. Поскольку оно лежит на цикле,
 и и v в одной компоненте связности графа G.
 - Противоречие.

Теорема (об эквивалентных определениях дерева)

Для любого (n, m)-графа G эквиваленты следующие утверждения:

- G дерево;
- 1) G связный ациклический граф;
- 2) G cвязный граф c m = n 1;
- 3) G aциклический граф c m = n 1;
- 4) для любой пары несовпадающих вершин $u, v \in V(G)$ в G имеется единственная простая (u, v)-цепь;
- 5) G ациклический граф, но для любой пары различных не смежных вершин $u, v \in V(G)$ граф G + uv содержит единственный цикл.

• Висячие вершины в дереве T часто называют листьями, а их количество обозначают $\ell(T)$.

Следствие (из теоремы 1)

В каждом дереве порядка $n\geqslant 2$ есть хотя бы два листа.

- Рассмотрим произвольное дерево T порядка n с числом рёбер m. По теореме 1 m=n-1, откуда 2m=2n-2.
- С другой стороны, 2m по лемме о рукопожатиях равно $\sum_{v \in V(T)} \deg v$.
- Ho

 $\deg v \ge 2$

$$2m = \sum_{v \in V(T)} \deg v = \sum_{\substack{v \in V(T) \\ \deg v > 1}} \deg v + \sum_{\substack{v \in V(T) \\ \deg v = 1}} \deg v =$$

$$= \sum_{v \in V(T)} \deg v + \ell(T) \geqslant 2 \cdot (n - \ell(T)) + \ell(T) = 2 \cdot n - \ell(T),$$

- ullet т. е. $2m \geqslant 2n \ell(T)$, откуда $2n 2 \geqslant 2n \ell(T)$.
- Из последнего и получаем требуемое $\ell(T) \geqslant 2$.

§11. Остовы. Цикломатическое число графа

Определение

Остовом связного графа называется любой его остовный подграф, являющийся деревом.

Пример:

Граф G Остов графа G Остов графа G Не остов графа G

Определение

Остовом несвязного графа называется любой его остовный подграф, у которого каждая компонента связности является деревом.

 Таким образом, на каждой компоненте связности исходного графа его остов образует дерево.

- Граф, каждая компонента связности которого является деревом, называют лесом.
- Нетрудно заметить, что леса это все ациклические графы и только они.

• Пусть G - (n, m)-граф с k компонентами связности.

Вопрос:

Какое наименьшее число рёбер надо удалить из G, чтобы получить его остов?

• Это число называется цикломатическим числом графа G и обозначается $\nu(G)$.

Решение:

- Пусть i-я компонента связности графа G является (n_i, m_i) -графом, $i = 1, 2, \ldots$
- Тогда в остове этой компоненты, с одной стороны, n_i-1 рёбер,
- а с другой $m_i x_i$ рёбер, где x_i число удалённых из компоненты рёбер.
- Таким образом, $n_i 1 = m_i x_i$, откуда
- $\bullet \ x_i = m_i n_i + 1.$
- Просуммировав по всем компонентам, получим $u(G) = \sum\limits_{i=0}^{k} (m_i n_i + 1) = m n + k.$

Утверждение 1

- 1) $\nu(G) = 0$ тогда и только тогда, когда $G \pi ec.$
- 2) $\nu(G) = 1$ тогда и только тогда, когда G содержит только один цикл.

• А с $\nu(G) = 2$ число циклов уже больше:

Предпараграфные примеры

Для помеченного графа порядка n множество вершин считается равным $\{1,2,\ldots,n\}.$

Вопрос

Какое наименьшее количество чисел достаточно знать, чтобы однозначно опознать помеченное дерево порядка 3?

Для помеченного графа порядка n множество вершин считается равным $\{1,2,\ldots,n\}.$

Вопрос

Какое наименьшее количество чисел достаточно знать, чтобы однозначно опознать помеченное дерево порядка 4?

§12. Код Прюфера. Теорема Кэли

Версия Юрия Леонидовича

Пусть T — помеченное дерево порядка $n \geqslant 3$. ($V(T) = \{1, 2, ..., n\}$.)

Кодом Прюфера дерева T называется упорядоченная последовательность $P(T)=(b_1,b_2,\ldots,b_{n-2})$, где $b_i\in\{1,2,\ldots,n\}$, которая строится по следующему алгоритму:

Алгоритм построения (версия Юрия Леонидовича)

- 1) $P(T) := \emptyset$
- 2) $T_1 := T$
 - for i = 1, n 2 do
- 3a) найти в T_i лист a_i с наименьшей меткой
- 3b) и смежную с ним вершину b_i
- 3c) $P(T) \leftarrow b_i$
- 3d) $T_{i+1} = T_i a_i$
 - end for
 - 4) return P(T).

Код Прюфера
$$-P(T)=(b_1,b_2,\ldots,b_{n-2}).$$

Алгоритм построения (альтернативное нехорошее описание)

- 1) если |T|=3, то $P(T)=(b_1)$, где b_1 метка вершины степени 2;
- 2) иначе $P(T) = (b_1, P(T'))$, где b_1 сосед листа a_1 с наименьшей меткой, $T' = T a_1$.

P(T) = (9,...)

$$P(T) = (9, 3, ...)$$

$$P(T) = (9, 3, ...)$$

$$P(T) = (9,3,9,...)$$

$$P(T) = (9, 3, 9, \dots)$$

$$P(T) = (9, 3, 9, 4, \dots)$$

P(T) = (9, 3, 9, 4, ...)

$$P(T) = (9,3,9,4,4,...)$$

$$P(T) = (9,3,9,4,4,...)$$

$$P(T) = (9,3,9,4,4,3,...)$$

$$P(T) = (9,3,9,4,4,3,...)$$
 $P(T) = (9,3,9,4,4,3,9)$

Алгоритм восстановления

```
Вход: число n\geqslant 3, множество S=\{1,2,\ldots,n\}, последовательность \pi=(b_1,b_2,\ldots,b_{n-2}), где b_i\in S для каждого i=1,2,\ldots,n-2.
```

Выход: множество E(G) рёбер графа G.

Алгоритм восстановления: (инициализация)

- 1) $E(G) := \emptyset$
- 2) $S_1 := S$
- 3) $\pi_1 := \pi = (b_1, b_2, \dots, b_{n-2})$

Алгоритм восстановления

Алгоритм восстановления: (продолжение)

- for i = 1, n 2 do
- 4а) найти в S_i наименьший элемент k_i , который отсутствует в π_i ,
- 4b) и положить $e_i = k_i b_i$
- 4c) $E(G) := E(G) \cup \{e_i\}$
- 4d) $S_{i+1} = S_i \setminus \{k_i\}$
- 4e) if $i \leq n-3$ then $\pi_{i+1} = (b_{i+1}, b_{i+2}, \dots, b_{n-2})$
 - end for
 - 5) $e_{n-1} = xy$, где $x \neq y$, $x, y \in S_{n-1}$
 - 6) $E(G) := E(G) \cup \{e_{n-1}\}$
 - 7) return E(G).

Попытка описать по-другому:

```
Вход: число n\geqslant 3, множество S=\{1,2,\ldots,n\}, последовательность \pi=(b_1,b_2,\ldots,b_{n-2}), где b_i\in S для каждого i=1,2,\ldots,n-2.
```

Альтернативное нехорошее описание:

- Если длина последовательности π равна 1,
- ullet то восстановить дерево на трёх вершинах с множеством меток S,

Альтернативное нехорошее описание (продолжение):

Иначе (длина последовательности π больше 1):

- найти в S наименьший элемент k, которого нет в π ,
- вычеркнуть из последовательности π первый элемент b_1 получается последовательность π'
- ullet выкинуть из множества меток S число k
 - получается множество меток S^\prime
- ullet восстановить граф по последовательности π' с метками S'
- ullet добавить вершину b_1 и ребро kb_1 .

•
$$P(T) = (9,3,9,4,4,3,9)$$

$$\frac{1}{2}$$
 $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{5}$ $\frac{5}{6}$ $\frac{7}{7}$ $\frac{8}{9}$

•
$$P(T) = (9,3,9,4,4,3,9)$$

•
$$E(T) =$$

= $\{\{1,9\}, \{2,3\}, \{5,9\}, \{6,4\}, \{7,4\}, \{4,3\}, \{3,9\}, \{8,9\}\}$

Теорема Кэли (*)

Для любого $n \ge 1$ существует ровно n^{n-2} различных помеченных деревьев (с множеством вершин $\{1, 2, \ldots, n\}$).

- * Дж. Дж. Сильвестр, 1857;
- * К. Борхард, 1860;
- * А. Кэли, 1889.

Схема доказательства

При $n \leqslant 2$ проверяется вручную.

Для $n \geqslant 3$ устанавливается биекция:

- доказывается однозначность кодирования;
- доказывается однозначность декодирования
 и тот факт, что восстанавливается именно дерево;
- получается две инъекции;
- лемма.

Лемма

Пусть X и Y — непустые конечные множества,

 $f_1:X o Y$ и $f_2:Y o X$ — инъективные отображения.

Tогда f_1, f_2 — δ иекции.