第二章 非线性方程的数值解法

计算机科学系

本章内容

- § 2.1 引言
- § 2.2 二分法
- § 2.3 迭代法
- ■§2.4迭代法收敛速度及加速收敛方法
- § 2.5牛顿迭代法
- § 2.6割线法
- § 2.7实用工具
- ■小结
- ■作业与实验

本章要求

- ■1. 理解方程有根的判别定理;
- ■2. 掌握二分法(Bisection Method)基本原理,掌握二分法(Bisection Method)的算法流程;
- ■3. 掌握理解单点迭代的基本思想, 掌握迭代的收敛条件;
- ■4. 掌握Newton迭代的建立及几何意义,了解Newton迭代的收敛性;
- ■2. 掌握Newton下上法, 掌握割线法, 了解抛物线法。

■在科学研究中,常常会遇到非线性方程或非线性方程组的问题。例如解方程

$$x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$$

或

$$e^{-x} - \sin\left(\frac{\pi x}{2}\right) = 0$$

一般的, 记非线性方程为

$$f(x)=0$$

- ■一. 非线性方程相关定义
 - □方程f(x)=0,

当f(x)是一次多项式时,称f(x) = 0为线性方程,

否则称之为非线性方程。

- ■若f(x)是n次多项式,则称之为n次多项式方程或者代数方程
- ■若f(x)是超越函数,则称之为超越方程

战战。正常经

■例

■代数方程

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 = 0$$

n > 1

■超越方程

$$f(x) = e^x + \sin x = 0$$

- ■(1)求解f(x) = 0,就是找使得左右两侧相等的x,即方程的x0,也称为方程的根,也是x1,的零点。
- ■(2)若 $f(x) = (x x^*)^m g(x)$, $g(x) \neq 0$, m为正整数,则称 x^* 为 f(x) = 0的<u>m</u>重根,或为f(x)的m重零点。
 - $\square m = 1$ 时,称 $x^* \to f(x) = 0$ 的单根。
- ■(3)理论上已经证明
 - □次数 $n \le 4$ 的多项式方程,有根解析表达式;
 - \square 次数 $n \geq 5$ 的多项式方程,根一般不能用解析表达式表示。

■有根区间

口若f(x)在[a,b]上连续,且f(a)f(b) < 0,则 f(x) = 0在 [a,b]上一定有根,区间 [a,b]称为有根区间。

■隔根区间

口若再有f(x)在[a,b]上严格单调,则f(x)=0在[a,b]仅有一个实根,区间[a,b]称为隔根区间

- ■二分法, 又叫对分法
- ■一. 前提条件

设 f(x) = 0 满足

- (1) f(x)在[a,b]上连续
- $(2) \ f(a) \times f(b) < 0$
- (3) f(x)在[a,b]上严格单调,即f'(x) > 0 或 f'(x) < 0

■二. 基本思想

 \square 通过计算隔根区间的中点,逐步将隔根区间缩小,从而得到方程的近似根数列 $\{x_n\}$ 。

■三.方法

- ■(1)取[a,b]中点记为 $x_1 = (a+b)/2$, 计算函数值 $f(x_1)$
- 若 $f(x_1) = 0$, 则 $x^* = x_1$, 计算结束;
- $if f(x_1) \neq 0$,
 - 口 若 $f(a) f(x_1) < 0$, 则 $x^* \in (a, x_1)$, 此时令 $a_1 = a, b_1 = x_1$;
 - 口否则, $f(a) f(x_1) > 0$, $x^* \in (x_1, b)$, 此时令 $a_1 = x_1, b_1 = b$ 。
- ■得到 x^* 所在的新区间[a_1,b_1], 其长度为[a,b]的一半, (b-a)/2。
- ■(2)取[a_1, b_1]中点记为 $x_2 = (a_1 + b_1)/2$, 计算函数值 $f(x_2)$
- 若 $f(x_2) = 0$, 则 $x^* = x_2$, 计算结束;
- 若 $f(x_2) \neq 0$,
 - 口 若 $f(a_1) f(x_2) < 0$, 则 $x^* \in (a_1, x_2)$, 此时令 $a_2 = a_1$, $b_2 = x_2$;
 - 口否则, $f(a_1) f(x_2) > 0$, $x^* \in (x_2, b_1)$, 此时令 $a_2 = x_2$, $b_2 = b_1$ 。
- ■得到 x^* 所在的新区间[a_2, b_2], 其长度为[a_1, b_1]的一半, $(b-a)/2^2$ 。

- ■·····如此,直到第n-1步
- ■(3)取[a_{n-1}, b_{n-1}]中点记为 $x_n = (a_{n-1} + b_{n-1})/2$,计算函数值 $f(x_n)$
- ■若 $f(x_n) = 0$, 则 $x^* = x_n$, 计算结束;
- ■若 $f(x_n) \neq 0$,
 - 口若 $f(a_{n-1})$ $f(x_n) < 0$, 则 $x^* \in (a_{n-1}, x_n)$, 此时令 $a_n = a_{n-1}$, $b_n = x_n$;
 - 口否则, $f(a_{n-1}) f(x_n) > 0$, $x^* \in (x_n, b_{n-1})$, 此时令 $a_n = x_n$, $b_n = b_{n-1}$.
- ■得到 x^* 所在的新区间 $[a_n, b_n]$,其长度为 $[a_{n-1}, b_{n-1}]$ 的一半, $(b-a)/2^n$ 。
- ■则得一系列有根区间:
- lacksquare [a , b] , $[a_1$, b_1] , $[a_2$, $b_2]$, ... , $[a_k,b_k]$, ... , $[a_n,b_n]$

- ■把每次二分后的有根区间 $[a_k,b_k]$ 的中点 $x_{k+1} = (a_k + b_k)/2$ 作为根 x^* 的近似值,则可得一个根的近似值序列
- x_0 , x_1 , x_2 , \cdots , x_k , x_{k+1} , \cdots
- ■该序列的极限即为方程的根 x^* , $\lim_{k\to\infty} x_k = x^*$.

- $\blacksquare |f(x)| < \varepsilon_2$
- ■不能保证x的精度

- ■四. 二分法(Bisection Method)收敛性
- ■设 x^* 是 f(x) = 0在 [a,b]上的唯一根,且 f(a)f(b) < 0,则二分法计算过程中,各隔根区间的中点数列: $x_{n+1} = \frac{1}{2}(a_n + b_n)$ $(n = 1, 2, \cdots)$
- ■満足: $|x_{n+1}-x*| \le (b_n-a_n)/2 = (b-a)/2^{n+1}$
- ■设 ε > 0为给定精度要求,试确定二分次数k使得 $|x^* x_k| < \varepsilon$

$$\blacksquare \mathbb{P}|x^* - x_k| \leq \frac{b-a}{2^k} < \varepsilon$$

■得:
$$k > \frac{ln(b-a)-ln(\epsilon)}{ln(2)}$$

<= N+

- ■五. 二分法(Bisection Method)计算过程
- ■用二分法求根, 先给出f(x)草图以确定根的初始位置;
- ■或用搜索程序,将[a,b]分为若干小区间,找出隔根区间;
 - 口满足 $f(a^k)*f(b^k)<0$ 的区间
- ■对每一个隔根区间调用二分法, 可找出区间内的根。

■例2.1: 用二分法求 $x^3 + 4x^2 - 10 = 0$ 在[1,2]上的根,要求绝对误差不超过 $\frac{1}{2} \times 10^{-2}$ 。

■解: f(1) = -5, f(2) = 14, : [1,2] 为有根区间

■ $f'(x) = 3x^2 + 8x$,根据导函数特点,知[1,2]为隔根区间

1 000 10 10 10 10 10 10 10 10 10 10 10 1			
k	有根区间	中点	f(x)
1	[1,2]	1.5	f(1.5) = 2.375 > 0
2	[1,1.5]	1.25	f(1.25) = -1.796875 < 0
3	[1.25,1.5]	1.375	f(1.375) = 0.162109 > 0
4	[1.25,1.375]	1.313	f(1.313) = -0.840553 < 0
5	[1.313,1.375]	1.344	f(1.344) = -0.346940 < 0
6	[1.344,1.375]	1.360	f(1.360) = -0.086144 < 0
7	[1.360,1.375]	1.368	f(1.368) = 0.045804 > 0
8	[1.360,1.368]	1.364	f(1.364) = -0.020299 < 0

- ■事后估计:
- ■若取近似根 $x^* = x_8 = 1.364$,则
- $|x x^*| \le \frac{1}{2}(1.368 1.360) = 0.004 < \frac{1}{2} \times 10^{-2} = \varepsilon$
- ■可取: k ≥ 8
- ■事先估计:
- $\blacksquare k > \left[\ln(b-a) \ln\varepsilon\right]/\ln 2 = \left[\ln(2-1) \ln\left(\frac{1}{2} \times 10^{-2}\right)\right]/\ln 2$
- 解得: k ≥ 8

6x2-1

例2.3: 用二分法求 $f(x) = x^6 - x - 1 = 0$ 于[1,2]上的一个实根,且要求精确到小数后第3位(即要求 $|x^* - x_k| < 1/2 \times 10^{-3}$)。

解:由 $\epsilon = 0.5 \times 10^{-3}$,由 $k > [ln(b-a) - ln\epsilon]/ln2$ 可确定所需分半次数k = 11。

即结果是 $x_{11} = 1.134277$

■六. 二分法的N-S图

算法2.1: 二分法

输入: a, b, 函数f(x);输出: x.

While $(b-a) > \varepsilon do$

$$x := a + (b - a)/2$$
;

If sign(f(x)) = sign(f(a)) then

$$a := x$$
;

Else

$$b := x$$
;

End

End

$$x := a + (b - a)/2$$
.

■算法稳定性:运算简单,误差逐渐缩小,因此稳定

sign()表示取符号的 函数。这里忽略操作 数为0的情况,否则 可能直接退出

■七. 二分法(Bisection Method)优缺点

- □优点: 计算简单, 方法可靠, 只要求f(x)连续, 在两个点上异号。
- □缺点 心不能求偶数重根, 也不能求复根;
- □ 2收敛速度较慢;
- □ ②初始有根区间的位置 (两端点) 通常难以合适地确定;
- □ 4可能从多个根中随机得一个
- □因此, 一般在求方程近似根时, 不单独使用, 常用来为其它方法提供好

的初值。

□对于方程求根, 最常用方法是迭代法。

- ■迭代法是一种逐次逼近的方法
 - □首先给定一个粗糙的初始值,
 - □然后使用一个固定的选代公式反复校正这个值,
 - □直到满足预先给定的精度为止 按知

- ■不动点迭代法(Fixed-Point Iteration)
 - 口若函数h(x)的定义域包含值域,则存在一个x使得h(x) = x,称之为不动点
 - 口使用h(x)的不动点思想构建的迭代法,称不动点迭代法,也称简单 迭代法

■不动点迭代法(Fixed-Point Iteration)

■一. 迭代格式的构造

- 口改写方程f(x) = 0为 $x = \varphi(x)$,要求 $\varphi(x)$ 连续;
- \square 建立迭代公式: $x_{n+1} = \varphi(x_n)$;
- \square 利用迭代公式计算得到序列 $\{x_n\}$;
- 口若 $\{x_n\}$ 收敛,必然收敛到f(x)=0的根:

$$\blacksquare \lim_{n \to \infty} x_n = x^*$$

 \square 即 $x^* = \varphi(x^*)$,得到 $f(x^*) = 0$,则方程得解

■二. 迭代过程的几何表示

$$\blacksquare x = \varphi(x) \quad \text{等价于} \begin{cases} y = \varphi(x) \\ y = x \end{cases}$$

■交点即为所求的根

■例3.1: 用迭代法求方程 $f(x)=x^2-2x-3=0$ 的根($x_1=3$, $x_2=-1$) 解: (1)方程改写成 $x=(2x+3)^{1/2}$ 建立迭代公式 $x_{k+1}=(2x_k+3)^{1/2}$ (k=0,1,2...), $x_0=4$, $x_1=3.316$, $x_2=3.104$, $x_3=3.034$, $x_4=3.011$, $x_5=3.004$ (2)方程改写成 $x=1/2*(x^2-3)$ 建立迭代公式 $x_{k+1} = 1/2 *(x_k^2 - 3) (k = 0, 1, 2...)$, 取 x_0 =4, x_1 =6.5, x_2 =19.625, x_3 =191.0

■例3.2: 对 $f(x) = x^3 + 4x^2 - 10 = 0$ (此方程在[1,2]中有唯一根)用不同方法化成等价方程。

解:可化成很多不同等价方程,例如

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
, (b) $x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$

(c)
$$x = g_3(x) = \frac{1}{2} (10 - x^3)^{1/2}$$
, (d) $x = g_4(x) = (\frac{10}{x+4})^{1/2}$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 - 8x}$$

- 口取初始近似值 $x_0=1.5$;
- 口迭代过程(a)、(b)不收敛,(c)、(d)、(e)都收敛,但收敛速度相差很大。

■三. 迭代法的基本问题

- $\Box \varphi(x)$ 如何构造?
- $\square\{x_k\}$ 的收敛性
 - ■初值如何选择?
 - ■收敛否?
 - ■如何加速?
- □误差估计

§

- ■从几
- ■何上
- ■考察
- ■迭代
- ■法的
- ■收
- ■敛
- ■性

 $x_0 \overline{x^*}$

 x_1

 x_0

$$f(x) = 0 \longrightarrow x_{k+1} = \varphi(x_k)$$

■四.全局收敛性

在在性

- ■定理 $2.1\varphi(x) \in C[a,b]$, 若
 - (1) 对 $\forall x \in [a,b]$,有 $a \le \varphi(x) \le b$ 则 $\varphi(x)$ 在[a,b]上存在不动点 x^* ,满足 $x^* = \varphi(x^*)$
 - (2)若 $\exists L \in (0, 1)$, $\forall x_1, x_2 \in [a, b]$ 再有 $|\varphi(x_1) \varphi(x_2)| \leq L|x_1 x_2|$ 则 $\varphi(x)$ 在[a, b]上存在不动点 x^* ,且唯一,其中 L称为Lipschitz条件。

吸道-1%

- ■证明:
- ■ $(1)\varphi(x)$ 在[a,b]上存在不动点。
- $\blacksquare : f(a) = \varphi(a) a \ge 0, \quad f(b) = \varphi(b) b \le 0$
- ■: $\varphi(x)$ 连续, : f(x)连续: f(x)在[a,b]上有零点
- ■:. 必有 $x^* \in [a,b]$,使得 $f(x^*) = \varphi(x^*) x^* = 0$ 成立
- $\blacksquare \mathfrak{P} \boldsymbol{\varphi}(\boldsymbol{x}^*) = \boldsymbol{x}^*$
- ■ x^* 就是 $\varphi(x)$ 在[a,b]上的不动点。

- ■证明:
- ■(2) 不动点唯一吗?
- ■反证:设不动点不唯一,则还有 $\overline{x} \in [a,b]$,使得 $\varphi(\overline{x}) = \overline{x}$,
- $\blacksquare 则 \overline{x} x^* = \boldsymbol{\varphi}(\overline{x}) \boldsymbol{\varphi}(x^*)$
- ■由已知 $|\varphi(x_1)-\varphi(x_2)|\leq L|x_1-x_2|$
- ■得出 $|\overline{x} x^*| = |\varphi(\overline{x}) \varphi(x^*)| \le L|\overline{x} x^*| < |\overline{x} x^*|$
- ■产生矛盾 $|\overline{x} x^*| < |\overline{x} x^*|$
- ■所以,不动点唯一

 $L \in (0,1)$

- ■定理2.2 (充分条件) 若 $\varphi(x)$ 满足定理2.1中的两个条件
 - (1) 对 $\forall x \in [a,b]$, 有 $a \leq \varphi(x) \leq b$
 - (2) ∃常数 $L \in (0, 1)$,使得对 $\forall x \in [a, b]$ 有 $|\varphi'(x)| \leq L$ 则对 $\forall x_0 \in [a, b]$
- ① 不动点迭代法 $x_{k+1} = \varphi(x_k)$ 产生序列 $\{x_n\}$ 都收敛到不动点 x^* ;
- $|x^* x_k| \le \frac{L}{1-L}|x_k x_{k-1}|;$
 - $|x^* x_k| \le \frac{L^k}{1-L} |x_1 x_0|, \quad k = 1, 2, \cdots$

- ■证明
- ■(1)当 $k \to \infty$ 时, x_k 收敛到 x^* ?

$$|x^* - x_k| = |\varphi(x^*) - \varphi(x_{k-1})| = |\varphi'(\xi_{k-1})| \cdot |x^* - x_{k-1}|$$

$$\blacksquare \leq L \cdot |x^* - x_{k-1}| \leq L^2 \cdot |x^* - x_{k-2}| \leq \dots \leq L^k |x^* - x_0|$$

- \blacksquare : $L \in (0, 1)$
- ■:: 当 $k \to \infty$ 时, $L^k \to 0$
- $\blacksquare : \lim_{k \to \infty} x_k = x^*$

在(a,b)生为有一点 $(a < \varepsilon < b)$ 使 f(b)一f(c) $= f'(\varepsilon)$ $(b \circ)$ 成是

■证明

$$||x^* - x_k|| = |\varphi(x^*) - \varphi(x_{k-1})||$$

$$= |\varphi(x^*) - \varphi(x_k) + \varphi(x_k) - \varphi(x_{k-1})|$$

$$\leq L \cdot |x_k - x_{k-1}| + L \cdot |x^* - x_k|$$

$$\|x^* - x_k\| \le \frac{L}{1-L} |x_k - x_{k-1}|$$

■证明

$$\begin{array}{l} (3) \ |x^*-x_k| \leq \frac{L^k}{1-L} |x_1-x_0|, \quad k=1,2,\cdots \text{ for the problem} \\ \because \ |x_k-x_{k-1}| = |\varphi(x_{k-1})-\varphi(x_{k-2})| \leq L|x_{k-1}-x_{k-2}| \\ \therefore \ |x^*-x_k| \leq \frac{L}{1-L} |x_k-x_{k-1}| \leq \frac{L^2}{1-L} |x_{k-1}-x_{k-2}| \\ \leq \cdots \leq \frac{L^k}{1-L} |x_1-x_0| \end{array}$$

- ■由上面的定理知
- ■(1)L越小,收敛越快
- ■(2)迭代过程是一个求极限的过程,实际计算不能无限次计算,可按事先给定的精度求出迭代次数,根据

$$|x^* - x_k| \le \frac{L^k}{1-L}|x_1 - x_0|, \quad k = 1, 2, \dots$$

$$|x^* - x_k| \leq \varepsilon \qquad \therefore \frac{L^k}{1-L}|x_1 - x_0| \leq \varepsilon$$

得之
$$\ln \left(\frac{\varepsilon(1-L)}{|x_1-x_0|} \right) / \ln(L)$$

- ■例3.3 用简单迭代法求方程 $f(x) = x^2 2x 3 = 0$ 在 [2,4] 的一个实根,保留4位有效数字
- ■解: 因为f(2) = -3 < 0, f(4) = 5 > 0 得出[2,4]为有根区间
- $\blacksquare (1)x = \sqrt{2x+3} = \varphi_1(x) : 2 < \sqrt{2*2+3} \le \varphi_1(x) \le \sqrt{2*4+3} < 4$
- **国**且 $|\varphi_1'(x)| = \frac{1}{\sqrt{2x+3}} \le \frac{1}{\sqrt{2*2+3}} = \frac{1}{\sqrt{7}} \approx \frac{1}{2.64} < 1$
- ■根据定理,任取 $x_0 \in [2,4]$,由等价方程所构造的简单迭代方法收敛。
- ■迭代公式为: $x_{k+1} = \varphi_1(x_k) = \sqrt{2x_k + 3}$
- ■取初始值 $x_0 = 4$

i	1	2	3	4	5
x_i	3.316	3.014	3.034	3.011	3.004
•	1			7	

1x10 = 0.5 x10 = 5x105

1.0

- ■例3.3 用简单迭代法求方程 $f(x) = x^2 2x 3 = 0$ 在[2,4]的一个实根
- ■解: 因为f(2) = -3 < 0, f(4) = 5 > 0 得出[2,4]为有根区间
- $\blacksquare (2)x = \frac{x^2 3}{2} = \varphi_2(x) : 2 < 0.5 \le \varphi_2(x) \le 7.5 < 4$
- ■且 $|\varphi_2'(x)| = x$, 在[2,4], $2 \le |\varphi_2'(x)| \le 4$
- ■根据定理,由 $\varphi_2(x)$ 所构造的简单迭代方法不收敛,发散。

■五. 计算步骤

- ■(1)确定方程f(x) = 0的等价形式 $x = \varphi(x)$,为确保迭代过程的收敛,要求 $\varphi(x)$ 在给定区间,满足值域条件和李普希茨条件(或 $|\varphi'(x)| \le L < 1$);
- ■(2)选取初始值 x_0 , 按公式
- $x_{k+1} = \varphi(x_k), k = 0, 1, 2, ...$
- ■进行迭代;
- \blacksquare (3)若 $|x_{k+1}-x_k| \le \varepsilon$,则停止计算, $x^* = x_{k+1}$ 。

■六. 迭代法N-S图

- ■一. 迭代法的局部收敛性
- ■定义: 若 $\varphi(x)$ 有不动点 x^* , ∃ x^* 的邻域D: [$x^* \delta, x^* + \delta$]($\delta > 0$),使 $\forall x_0 \in D$, 迭代法 $x_{k+1} = \varphi(x_k)$ 产生的序列 $\{x_k\}$ 都收敛到 x^* ,则称该方法局部收敛。
- ■定理2.3: 设 x^* 为 $\varphi(x)$ 的不动点,在 x^* 的某个邻域内 $\varphi'(x)$ 连续,且满足 $|\varphi'(x^*)| \leq L < 1$,则迭代法 $x_{k+1} = \varphi(x_k)$ 局部收敛。

$$f(x) = 0 \longrightarrow x_{k+1} = \varphi(x_k)$$

- ■二. 迭代法的收敛速度
- ■定义2.3: 设迭代解序列 $\{x_0, x_1, \cdots, x_k, \cdots\}$ 收敛。若各步误差 $e(x_k) =$

$$x_k - x^*$$
满足 $\lim_{k \to \infty} \frac{|e(x_{k+1})|}{|e(x_k)|^p} = c$, $(c \neq 0)$, 则称p阶收敛(收敛所为p)。

■注意: 对一个收敛的迭代法(过程), 上述数值p是唯一的

- ■定理2.4 $x_{k+1} = \varphi(x_k)$,若 $\varphi^{(p)}(x)$ 在 x^* 邻近连续, $p \geq 2$,则该迭代法在邻域上p阶收敛,等价于
- $\blacksquare \varphi'(x^*) = \varphi''(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0, \quad \exists \varphi^{(p)}(x^*) \neq 0.$
- ■特别地:
- ■(1)当 $\varphi'(x^*) \neq 0$,则称为线性收敛
- ■(2)当 $\varphi'(x^*)=0$, $\varphi''(x^*)\neq 0$,则称为平方收敛

- ■四.加速收敛法
- ■设 x_{k+1}^* 为近似值 x_k 迭代后的结果, x^* 为 $x = \varphi(x)$ 的根
- ■则 $x^* x_{k+1}^* = \varphi(x^*) \varphi(x_k) = \varphi'(\xi)(x^* x_k)$ 上之初
- ■设 $\varphi'(x)$ 在求根范围变化不大, $\mathbb{P}\varphi'(x) \approx L$,且|L| < 1
- ■所以, $x^* x_{k+1}^* \approx L(x^* x_k)$
- $\blacksquare x^* Lx^* x_{k+1}^* \approx -Lx_k$
- $\blacksquare x^* Lx^* x_{k+1}^* + Lx_{k+1}^* \approx -Lx_k + Lx_{k+1}^*$
- $\blacksquare (1-L)x^* (1-L)x_{k+1}^* \approx L(x_{k+1}^* x_k)$
- $\blacksquare x^* x_{k+1}^* \approx \frac{L}{(1-L)} (x_{k+1}^* x_k)$

■取第k+1次近似值为:
$$x_{k+1} \approx x_{k+1}^* + \frac{L}{(1-L)}(x_{k+1}^* - x_k)$$

- ■得迭代加速公式:
- ■(1)迭代 $x_{k+1}^* = \varphi(x_k)$
- ■(2)改进迭代 $x_{k+1} = x_{k+1}^* + \frac{L}{(1-L)}(x_{k+1}^* x_k)$

- ■例4.1: 用加速收敛算法求方程 $x = e^{-x}$ 在 $x_0 = 0.5$ 附近的根。取4位有 效数字。
- **■解:** 取 $\varphi(x) = e^{-x}$, $\varphi'(x) = -e^{-x}$

- ■在 $x_0 = 0.5$ 附近, $\varphi'(x) = -e^{-x} \approx -0.6$,所以, $|\varphi'(x)| = 0.6 < 1$ ■取L = -0.6■则加速公式为: $\begin{cases} \overline{x}_{k+1} = e^{-x_k} \\ x_{k+1} = \overline{x}_{k+1} \frac{0.6}{1.6} (\overline{x}_{k+1} x_k) \end{cases}$
- ■取初值 $x_0 = 0.5$

■结果如下

\boldsymbol{k}	x_k
0	0.50000
1	0.56658
2	0.56712
3	0.56714
4	0.56714

■方程解为: $x \approx 0.5671$

- ■不动点迭代法特点:
- ■优点:
 - □算法的逻辑结构简单;
 - □在计算时中间结果若有扰动, 也不会影响计算结果。
 - ■舍入误差不会放大
- ■缺点:
 - □对迭代公式有收敛性要求

§ 2.5 牛顿迭代法(Newton-Raphson Method)

- ■牛顿迭代法
 - □是一种迭代法, 且迭代函数有固定的形式。
- ■优点
 - ■1.减少不动点迭代法构造的盲目性, 固定公式
 - ■2.较好的收敛性(收敛阶)
 - ■在单根附近具有较高的收敛速度

- ■一. Newton选代格式的构造
- ■1. 原理
 - \square 构造迭代函数 $\varphi(x)$ 的重要思路:
 - ■用近似方程代替原方程求根;
 - ■Newton法是将非线形方程线性化;
 - Newton用切线近似曲线f(x);

■二. 方法

口设 x_k 是f(x) = 0的一个近似根

- 口将f(x)在 x_k 处做一阶Taylor展开: $f(x) = f(x_k) + f'(x_k)(x x_k) + \frac{f''(x_k)}{2!}(x x_k)^2 + \cdots$
- □取其线性部分近似f(x): $f(x) \approx f(x_k) + f'(x_k)(x x_k)$
- 口设 $f'(x) \neq 0$,解出x记为 x_{k+1} ,则牛顿迭代公式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0, 1, 2, \dots)$

$$\Box$$
牛顿迭代函数为 $\varphi(x) = x - \frac{f(x)}{f'(x)}$

■二. Newton迭代法的几何意义

口求过 $(x_k, f(x_k))$ 的切线: $y = f(x_k) + f'(x_k)(x - x_k)$ 与y = 0求交点

口交点为: $x = x_{k+1}$

$$\square x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \quad (k = 0, 1, 2, \dots)$$

- 实际上牛顿迭代公式 是曲线在XL点上的切 线与x轴交点的横坐标
- 坐标近似代替曲线与X 轴的交点坐标
- 故也称切线法。

■三. Newton迭代法收敛定理

- ■1. 大范围收敛定理
- ■设 $f \in C^2[a,b]$, 若
 - $\square(1)f(a)f(b)<0;$

 - \square (3) 在整个[a,b]上f''(x) 不变号;

■则牛顿迭代法产生的序列 $\{x_k\}$ 收敛到f(x)在[a,b]的唯一根。

- ■三. Newton迭代法收敛定理
- ■2. 局部收敛定理
- ■设f'(x)存在,且f'(x)在方程f(x) = 0的根 x^* 附近不为零,若有

$$\frac{|f(x)f''(x)|}{[f'(x)]^2} \le L < 1$$
,则牛顿迭代格式收敛,且 $\lim_{n\to\infty} x_n = x^*$

- ■三. Newton迭代法收敛定理
- ■说明:
- ■牛顿迭代法中,牛顿迭代函数为 $\varphi(x) = x \frac{f'(x)}{f'(x)}$
- $\blacksquare \mathbb{N} \boldsymbol{\varphi}'(x) = \frac{|f(x)f''(x)|}{[f'(x)]^2}$
- ■设f'(x)存在,且f'(x)在方程f(x) = 0的根 x^* 附近不为零, $\frac{|f(x)f''(x)|}{|f(x)|^2} \le L < 1$
- ■则 $|\varphi'(x)| \le L < 1$,根据迭代法收敛定理知: ■牛顿迭代格式 $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$ 收敛,且 $\lim_{n \to \infty} x_n = x^*$

- ■三. Newton迭代法收敛定理
- ■3. x_0 的对收敛性的影响:
- ■牛顿迭代法的收敛性依赖于xo的选取
 - 口取 x_0 使 $f(x_0)f''(x_0) > 0$,
 - □并且离解较近,
 - □则有较好收敛速度。
 - □常用二分法获取初值水, 再进行迭代求解。

- ■四. Newton选代法不足
- ■当f(x) 不具有连续的二阶导数
- ■或,初始值不足够靠近准确解
- ■则Newton迭代法收敛得很慢,甚至不收敛

- ■例5.1: 用牛顿迭代法求 $f(x) = e^{-\frac{x}{4}}(2-x) 1 = 0$ 的根,准确到6位有效数字。
- ■解: 显然, $f(0) \cdot f(2) < 0$, 方程在[0,2]上有一根。
- **■**求导, $f'(x) = e^{-\frac{x}{4}} \frac{(x-6)}{4} \neq 0$, 在[0,2]
- ■牛顿迭代法计算公式是:

$$\blacksquare x_{k+1} = x_k - \frac{e^{-\frac{x_k}{4}}(2-x_k)-1}{e^{-\frac{x_k}{4}}(\frac{x_k-6}{4})}$$

- ■取 $x_0 = 0.5$, 计算结果见下页左表;
- ■取 $x_0 = 8.0$,计算结果见下页右表

k	$\boldsymbol{x_k}$
0	0.5
1	0.76680112
2	0.78353388
3	0.78359596
4	0.78359596
5	

		Xa I	V
k	\boldsymbol{x}_k		
0	8.0		
1	34.77811219		
2 =	869.152842		
3			
4			
5	发散		

- ■求得近似根 $x^* \approx 0.783596$
- ■说明当初值 x_0 选取靠近根 x^* 时,牛顿迭代法收敛且收敛较快,当初值 x_0 不是靠近方程根 x^* 时,牛顿迭代法可能会给出发散的结果。

- ■例5.2: 用牛顿迭代法求 $x = \sqrt{c} (c > 0)$,写出迭代格式。
- ■解: 设 $x = \sqrt{c}$, 则 $x^2 c = 0$,
- $\mathfrak{P}f(x) = x^2 c$
- 则牛顿迭代公式得

- ■例5.3: 用牛顿迭代法 $x \sin x = 0.5$ 的根,精确到0.0001。
- **■解:** $f(x) = x \sin x 0.5$
- ■: f(1) = -0.34 < 0 f(2) = 0.591 > 0: 方程在[1,2]内有一根。
- ■求导, $f'(x) = 1 \cos x \stackrel{!}{\underset{!}{\underset{!}{\underset{!}{\underset!}}{\underset!}}} f''(x) = \sin x$
- ■:.牛顿迭代法计算公式是:
- $\blacksquare x_{k+1} = x_k \frac{f(x)}{f'(x)} = x_k \frac{x_k \sin x_k 0.5}{(1 \cos x_k)}$
- ■ $f(2) = 2 \sin 2 0.5 > 0$ $f''(2) = \sin 2 > 0$: f(2)f''(2) > 0, 选择 $x_0 \neq 2$
- ■ $|x_4 x_3| = 0 < 0.0001$, 故取 $x = x_4 = 1.4973$ 为方程近似解

■四.牛顿迭代法N-S图

定义函数 f(x)=				
定	定义导数函数 f1(x)=			
读入数据 x0,eps				
X=	x = x0-f(x0)/f1(x0), k=1			
	x-x0 >=eps			
	输出 k, x			
	k=k+1			
	x0=x			
	x = x0-f(x0)/f1(x0)			
结束				

- ■五. 简化牛顿迭代法
- ■牛顿迭代法需计算 $f'(x_k)$, 若用一个给定常数值C代f'(x),
- **■**则 $x_{k+1} = x_k f(x_k)/C$
- ■要使该式收敛,则
- $|\varphi'(x)| = |1 f'(x)/C| < 1$
- $\mathbb{P}_0 < f'(x)/C < 2$
- ■取C与f'(x)同号,且f'(x)/C < 2即可
- ■这个切线可以看成是固定斜率的切线方程。

§ 2.6 割线法(弦截法)

■一. 引入意义

- \Box 牛顿迭代法虽然具有收敛速度快的优点,但每迭代一次都要计算导数 $f'(x_k)$;
 - ■当f(x)比较复杂时,每次计算f'(x)计算量较大;
 - ■通常,用不计算导数的迭代方法,只能达到线性收敛的速度。
- □割线法使用差商来代替导数运算的求根方法。
 - \square 割线法在迭代过程中使用前一步 x_{k-1} 处和当前步 x_k 处函数值,构造迭代函数
 - ■提高迭代的收敛速度
 - ■只算函数值不算导数值,简化计算

- ■二.割线法基本思想
- ■为了避免计算函数的导数 $f'(x_k)$,使用差商

- ■称为割线法迭代公式
- ■相应的迭代法称为割线法

- ■三. 割线法几何意义
- ■用割线斜率代替切线斜率,即 $f'(x_k) = \frac{f(x_k) f(x_{k-1})}{x_k x_{k-1}}$
- ■需要两个初值 x_0 , x_1
 - 口用过曲线上两点 $P_0(x_0, f(x_0))$, $P_1(x_1, f(x_1))$ 的割线来代替曲线,用割线与x轴

交点的横坐标作为方程的近似根 x_2 ;

- □再过点 $P_1(x_1, f(x_1)), P_2(x_2, f(x_2))$ 做割线求出 x_3 ;
- □再过点 $P_2(x_2, f(x_2))$, $P_3(x_3, f(x_3))$ 做割线求出 x_4 ;
- \square 以此类推,当收敛时可求出满足精度要求的 x_k

- ■例6.1: 用割线法解方程的根
- $x^3 3x + 1 = 0$
- **■解**: 设 $f(x) = x^3 3x + 1$
- ■由割线法

$$\blacksquare x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

■取初值 $x_0 = 0.5$, 得

$$x_0=0.5;$$
 $x_1=0.4;$
 $x_2=0.3430962343$
 $x_3=0.3473897274$

$$x_4 = 0.3472965093$$

 $x_5 = 0.3472963553$
 $x_6 = 0.3472963553$

割线法迭代5次

达到精度10-10

- ■例6.2: 用割线法求方程 $x = e^{-x}$ 在 $x_0 = 0.5$ 初始值邻近的一个根。
- ■要求 $|x_{k+1} x_k| < 0.0001$
- ■解: $\Re x_0 = 0.5, x_1 = 0.6, \Leftrightarrow f(x) = x e^{-x}$
- 迭代公式:

$$\blacksquare x_{k+1} = x_k - \frac{(x_k - e^{-x_k})}{(x_k - x_{k-1}) - (e^{-x_k} - e^{-x_{k-1}})} (x_k - x_{k-1})$$

- 计算过程略,取近似根 $x_4 \approx 0.56714$
- ■则可满足精度要求。

■四.割线法算法实现

- ■五.割线法改进
- ■割线法使用根的前两个近似解构造一条直线,求直线与x轴交点得到下 一个解
- ■扩展思路:
- ■利用根的前三个近似解,构造二次曲线,求与x轴交点得到下一个解
 - □抛物线法
 - □逆抛物线法

- ■fzero:单变量非线性方程求根
- ■roots: 求多项式方程的所有根

- ■定义函数f(x),并作为输入参数的方法:
- ■匿名函数"@"
- ■复杂的函数需要用.m文件定义

- $\blacksquare x = fzero(fun, x0)$
- $\blacksquare x = fzero(fun, x0, options)$

■例7.1

- \blacksquare fun = @sin;
- $\blacksquare x0 = 3;$
- $\mathbf{x} = \text{fzero}(\mathbf{fun}, \mathbf{x0})$
- ■结果: x = 3.1416

■例7.2

- fun = @cos; $x0 = [1 \ 2];$
- $\blacksquare x = fzero(fun, x0)$
- ■结果: x = 1.5708

- ■例7.3
- ■定义函数 $f(x) = x^3 2x 5$
- $y = x.^3 2*x 5;$
- ■保存成f.m
- $\blacksquare fun = @f;$
- $\blacksquare x0 = 2;$
- $\blacksquare z = fzero(fun, x0)$
- ■结果: x = 2.0946

- ■例7.4
- ■设置option选项
- $\blacksquare fun = @(x)sin(cos(x));$
- $\blacksquare x0 = 1;$
- options = optimset('PlotFcns', { @optimplotx, @optimplotfval });
- \blacksquare x = fzero(fun,x0,options)
- ■结果:
- $\blacksquare x = 1.5708$

作业与实验

- ■书面作业:
- **■**P26:1,4,
- 5,6,8,10
- ■上机:
- ■牛顿迭代法及推广算法

小结

- ■方程
- ■二分法
- ■不动点迭代法
- ■牛顿迭代法
- ■割线法
- ■Matlab解方程工具

END

