ЗАДАЧИ ПО ТЕОРИИ РИСКА

1. Что такое случайная величина, её функция распределения, математическое ожидание, дисперсия, характеристическая функция, производящая функция и производящая функция моментов?

Случайная величина (СВ) — это измеримая функция $X: \Omega \to \mathbb{R}$, заданная на вероятностном пространстве $(\Omega, \mathscr{F}, \mathbb{P})$, где:

- \bullet Ω пространство элементарных исходов
- $\mathscr{F}-\sigma$ -алгебра событий
- \mathbb{P} вероятностная мера

Функция распределения

Функция распределения $F_X(x) \subset X$ определяется как:

$$F_X(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R}$$

Свойства:

- 1. Монотонно неубывающая: $x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$
- 2. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$
- 3. Правосторонне непрерывна: $\lim_{x \to x_0^+} F(x) = F(x_0)$

Математическое ожидание

Для дискретной СВ:

$$\mathbb{E}X = \sum_{i} x_i p_i$$

Для абсолютно непрерывной СВ с плотностью $f_X(x)$:

$$\mathbb{E}X = \int_{-\infty}^{+\infty} x f_X(x) dx$$

Дисперсия

Мера разброса значений вокруг среднего:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}X)^2] = \mathbb{E}[X^2] - (\mathbb{E}X)^2$$

Характеристическая функция

Комплекснозначная функция:

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = \int_{-\infty}^{+\infty} e^{itx} dF_X(x)$$

2. Сформулировать закон больших чисел, центральную предельную теорему и усиленный закон больших чисел.

Закон больших чисел (ЗБЧ)

Пусть $\{X_n\}$ — последовательность независимых одинаково распределённых случайных величин с $\mathbb{E}|X_1|<\infty$. Тогда:

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{P} \mathbb{E} X_1$$

где \xrightarrow{P} означает сходимость по вероятности.

Усиленный закон больших чисел (УЗБЧ)

При тех же условиях, если $\mathbb{E}|X_1|<\infty$, то:

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{\text{\tiny II.H.}} \mathbb{E} X_1$$

где $\xrightarrow{\text{п.н.}}$ означает сходимость почти наверное.

Центральная предельная теорема (ЦПТ)

Если $\{X_n\}$ — последовательность независимых одинаково распределённых случайных величин с $0 < \sigma^2 = \mathrm{Var}(X_1) < \infty$, то:

$$\frac{\sum_{k=1}^{n} X_k - n\mathbb{E}X_1}{\sigma\sqrt{n}} \xrightarrow{d} N(0,1)$$

где $\stackrel{d}{\to}$ означает сходимость по распределению к стандартному нормальному закону.

3. Как выбрать премию, чтобы вероятность разорения была не больше заданного $\varepsilon > 0$?

Пусть:

- ullet u начальный капитал страховой компании
- c страховая премия (доход на единицу времени)
- \bullet $\{X_i\}$ независимые одинаково распределённые убытки
- \bullet N(t) процесс страховых случаев

Процесс капитала:

$$R(t) = u + ct - \sum_{i=1}^{N(t)} X_i$$

Для экспоненциальных убытков $X_i \sim Exp(\lambda)$ и пуассоновского процесса $N(t) \sim Pois(\lambda t)$, вероятность разорения:

$$\psi(u) \approx e^{-Ru}$$

где R — коэффициент Лундберга, решение:

$$\mathbb{E}[e^{-RX}] = \frac{\lambda}{\lambda + Rc}$$

Чтобы $\psi(u) \leq \varepsilon$, необходимо:

$$c \ge \frac{\lambda}{R} \ln \left(\frac{1}{\varepsilon} \right) - \frac{u}{t}$$

4. Доказать, что единственное непрерывное распределение, обладающее отсутствием памяти, это показательное распределение.

Свойство отсутствия памяти:

$$P(X > x + t | X > x) = P(X > t), \quad \forall x, t > 0$$

Доказательство: Обозначим $\overline{F}(x) = P(X > x)$. Условие эквивалентно:

$$\overline{F}(x+t) = \overline{F}(x)\overline{F}(t)$$

Единственное непрерывное решение этого функционального уравнения:

$$\overline{F}(x) = e^{-\lambda x}, \quad \lambda > 0$$

Таким образом:

$$F(x) = 1 - e^{-\lambda x}, \quad x \ge 0$$

что соответствует показательному распределению.

5. Преобразование случайной величины $Y = X^{1/ au}$

Пусть $X \sim \text{Exp}(1)$ с плотностью $f_X(x) = e^{-x}, x \ge 0$. Рассмотрим преобразование:

$$Y = X^{1/\tau}, \quad \tau \neq 0$$

Случаи преобразования:

• При $\tau > 0$: Распределение Вейбулла Плотность Y:

$$f_Y(y) = \tau y^{\tau - 1} e^{-y^{\tau}}, \quad y > 0$$

• При $\tau = -1$: Обратное экспоненциальное Плотность Y:

$$f_Y(y) = \frac{1}{y^2}e^{-1/y}, \quad y > 0$$

• При $\tau < 0 \ (\tau \neq -1)$: Обратно-преобразованное Плотность Y:

$$f_Y(y) = |\tau| y^{\tau - 1} e^{-y^{\tau}}, \quad y > 0$$

6. Максимизация суммы функций на симплексе

Дана задача:

$$\max_{\substack{x_i \ge 0 \\ \sum x_i = c}} \sum_{i=1}^n g_i(x_i)$$

Рекуррентное решение:

Введём функции:

$$f_n(c) = \max \sum_{i=1}^n g_i(x_i), \quad f_1(c) = g_1(c)$$

Для $n \geq 2$:

$$f_n(c) = \max_{0 \le x \le c} \left[g_n(x) + f_{n-1}(c-x) \right]$$

Алгоритм: Последовательно вычисляем $f_k(c)$ для $k=1,\ldots,n$ методом динамического программирования.

7. Сумма экспоненциальных величин и гамма-распределение

Если $X_i \sim \text{Exp}(1)$ независимы, то их сумма:

$$S_n = \sum_{i=1}^n X_i \sim \Gamma(n, 1)$$

Функция распределения:

$$G(n,x) = \frac{1}{(n-1)!} \int_0^x t^{n-1} e^{-t} dt$$

Для произвольного $\alpha > 0$:

$$G(\alpha, x) = \frac{1}{\Gamma(\alpha)} \int_0^x t^{\alpha - 1} e^{-t} dt$$

Аналогично для бета-распределения:

$$\beta(a,b,x) = \frac{1}{B(a,b)} \int_0^x t^{a-1} (1-t)^{b-1} dt$$

8. Оптимизация суммы одинаковых функций

Дана задача:

$$\max_{\substack{x_i \ge 0 \\ \sum x_i = c}} \sum_{i=1}^n g(x_i)$$

Решение:

- ullet Если g(x) вогнута: максимум при $x_i=c/n$ для всех i
- Если g(x) выпукла: максимум в вершине симплекса (например, $x_1 = c$, остальные $x_i = 0$)

9. Максимум произведения и неравенство средних Задача:

Доказать, что:

$$\max_{\substack{x_i \ge 0 \\ \sum x_i = a}} \prod_{i=1}^n x_i = \left(\frac{a}{n}\right)^n$$

Доказательство:

Введём $f_n(a) = \max \prod_{i=1}^n x_i$. Рекуррентное соотношение:

$$f_n(a) = \max_{0 \le x \le a} x \cdot f_{n-1}(a - x)$$

База: $f_1(a) = a$. По индукции:

$$f_n(a) = \left(\frac{a}{n}\right)^n$$
 (достигается при $x_i = a/n$)

Следствие (неравенство Коши):

$$\frac{x_1 + \dots + x_n}{n} \ge \sqrt[n]{x_1 \cdots x_n}$$

Равенство $\Leftrightarrow x_1 = \cdots = x_n$.