Hydrogen Radial Wave-Function Calculator

Rainni Chen

July 31, 2017

From essentially any introductory Quantum Mechanics textbook, the radial wave-functions or hydrogen are one of the simplest wave-functions to visualize. The math involved is relatively "nice", meaning we can solve for the wave-functions analytically. However although the hydrogen atom yields analytic solutions, we require Bessel functions and Spherical Harmonics to depict the shape of the wave-functions. Furthermore, by introducing a numerical way to solve the Hydrogen wave-functions, we can generalize this technique to other atoms.

This program computes the radial component of the Hydrogen. To see what $radial_wavfn.m$ is precisely calculating, we start with the Atomic Hamiltonian, $H = -\Delta + V(r)$, and the Schrodinger equation. For Hydrogen in spherical coordinates, the Schrodinger Equation becomes

$$\left[-\left(\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right) - \frac{1}{r}\right]\Psi(r,\theta,\phi) = E\Psi(r,\theta,\phi) \quad (1)$$

Then using separation of variables, let $\Psi(r,\theta,\phi) = R(r)Y_{\ell,m}(\theta,\phi)$. Then the radial wave equation becomes

$$\left[-\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{\ell(\ell+1)}{r^2} - \frac{1}{r}\right]R(r) = ER(r)$$
 (2)

An analytic solution can be written down for $R_{n,\ell}$ where n is the principal quantum number and ℓ is the azimuthal quantum number. However, we will compute $R_{n,\ell}$ numerically using the Numerov Algorithm by following the approach found in [1].

The $plot_radwavfn(n,l,h)$ function takes 3 inputs: n - principal quantum number, ℓ - azimuthal quantum number, and h - step size of the integration. See figure 1 for the output of $plot_radwavfn(15,2,0.001)$. Note that this program computes the radial wave function in both atomic units and a logarithmic scaled space. More specifically, it is achieved by the following transformation:

$$\begin{cases} x = \ln(r) \\ X(x) = R\sqrt{r} \end{cases}$$

The logarithmic scaling allowed us to use the Numerov Algorithm, since under this transformation, the equation in (2) become the correct form of ODE.

References

 M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev. A 20, 2251 (1979).

Figure 1: Top plot is the radial wave-function of hydrogen for level $n=15, \ell=2$ in atomic units. The bottom plot is of the same wave-function using logarithmic scaling.