Chapitre 1: Concepts fondamentaux

Série d'Exercices N° 1

Exercice 1

Donner la représentation matricielle (matrice d'adjacence) du graphe suivant :

Trouvez les demi-degrés extérieurs et intérieurs de chacun des sommets.

Exercice 2.

Un *n-cube* (hypercube de dimension n) est un graphe dont les sommets représentent les éléments de $\{0,1\}^n$ et deux sommets sont adjacents ssi les n-uples correspondants diffèrent d'exactement une composante. Donner le nombre de sommets.

Donner le nombre d'arêtes.

Exercice 3.

Soit G = (X,E) un graphe non-orienté tel que X/=n.

1. Montrez que le nombre de sommets de degré impair est toujours pair.

On suppose que G est simple. Sachant que $\forall x \in X, d_G(x) \le n-1$,

- 2. Montrer qu'il ne peut y avoir dans G à la fois un sommet de degré 0 et un sommet de degré n-1,
- 3. Montrer qu'il existe deux (2) sommets ayant le même degré dans G.

Exercice 4.

Soit G=(X, U) un graphe d'ordre n, le nombre d'arcs est désigné par m. Soient $\delta(G)$ et $\Delta(G)$ respectivement les degrés minimum et maximum du graphe G montrer que :

$$\delta(G) \leq \frac{2m}{n} \leq \Delta(G)$$

Exercice 5.

On s'intéresse aux graphes 3-réguliers. Construisez de tels graphes ayant 4 sommets, 5 sommets, 6 sommets, 7 sommets. Qu'en déduisez-vous? Prouvez-le.

Exercice 6.

Etant donné le graphe suivant :

- Donner l'ordre de G.
- Donner la matrice d'adjacence de G.
- Donner les degrés des sommets x1, x2 et x3.
 G est-il un graphe complet, régulier, simple ? Justifier.
- 5. Donner le sous graphe engendré par l'ensemble des sommets $A = \{x_i / i \text{ est premier.}\}$. Remarque : le 1 n'est pas un nombre premier.
- 6. Donner le graphe partiel engendré par l'ensemble des arêtes $V = \{e = \{i, j\} / i + j \text{ est premier.}\}.$
- 7. Peut-on trouver une clique d'ordre 3, une clique d'ordre 4 ? Donner l'ensemble des sommets qui engendrent ces cliques, si elles existent.

On construit un nouveau graphe G' = (X, U), en remplaçant dans G chaque arête e par un arc $u = (x_i, x_i)$ qui relie le sommet x_i vers le sommet x_j ssi $0 \le j-i \le 2$ ou i-j > 2.

- Dessiner le graphe G', et donner sa matrice d'adjacence.
- Donner la représentation basée sur les listes d'adjacence (successeurs : PS et LS)

Chapitre 1: Concepts fondamentaux

Exercice 7.

Soit le graphe simple G=(X,E) d'ordre |X|=n et de taille |E|=m. Soient x un sommet de X et e une arrête de E. Que représente chacun des graphes suivants et quel est l'ordre et quelle est la taille de chacun :

$$G - \{x\}$$

$$G - \{e\}$$

$$\overline{G}$$

Exercice 11.

Dans un groupe de personnes est tel que :

- Chaque personne est membre d'exactement deux (2) associations,
- Chaque association comprend exactement trois (3) membres
- Deux (2) associations quelconques ont toujours exactement un (1) membre en commun.

Combien y a-t-il de personnes? Combien y a-t-il d'associations?

Exercice 8.

Soit *G* un *graphe simple biparti* d'ordre *n*,

- 10. Montrer que le nombre d'arêtes $m \le n^2/4$.
- 11. En déduire qu'il existe un sommet x tel que $d_G(x) \le n/2$
- 12. Montrer qu'un graphe régulier d'ordre impair ne peut être biparti.

Exercice 9.

Une société doit transporter par camions les animaux : A_1 , ..., A_6 , depuis un entrepôt vers un zoo. Pour des raisons de sécurité, certains animaux ne peuvent pas être transportés ensemble : A_1 et A_2 , A_1 et A_4 , A_2 et A_3 , A_2 et A_5 , A_3 et A_4 , A_5 et A_6 .

Modéliser le problème, en définissant les sommets et les arêtes du graphe et déterminer le nombre minimum de camions nécessaires.

Exercice 10.

On veut organiser un examen comportant, outre les matières communes, 7 matières d'options : Langue (L), Electronique (E), Mécanique (M), Dessin industriel (D), Informatique (I), Génie Civil (G), Sport (S). Les profils des candidats à options multiples sont : L,E,M-M,D,S-L,S-I,L,E-D,G

- 1. Quel est le nombre maximum d'épreuves qu'on peut mettre en parallèle ?
- 2. Une épreuve occupe une demi-journée ; quel est le temps minimal nécessaire pour ces options ?

Exercice 12.

Montrez que dans un groupe de six (6) personnes, il y en a nécessairement trois (3) qui se connaissent mutuellement ou trois (3) qui ne se connaissent pas. On suppose que si A connaît B, B connaît également A. Cela est-il nécessairement vrai dans un groupe de cinq (5) personnes.

Exercice 13.

Soit G = (X, E) un graphe non orienté simple, d'ordre n, k-régulier. Dans quelles conditions G est isomorphe à son complémentaire \overline{G} .