\vec{v}_r

Из рисунка видно: $v_{ au}=\sqrt{16.81v^2-v^2}=\sqrt{15.81}v$ (учитывая, что радиальная скорость равна v). Тогда получаем $r\frac{d\theta}{dt}=\sqrt{15.81}v$.

6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений \$\$\begin{cases} \frac{dr}{dt}=v\r\frac{d\theta} {dt}=\sqrt{15.81}v \end{cases}\$\$ с начальными условиями \$\$\begin{cases} \theta_0=0\r_0=x_1 \end{cases}\$\$ или \$\$\begin{cases} \theta_0=-\pi\r_0=x_2 \end{cases}\$\$ Исключая из полученной системы производную по t, можно перейти к следующему уравнению: \$\$\frac{dr}{d\theta} = \frac{r}{\sqrt{15.81}}.\$\$ Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

Выполнение лабораторной работы

По теоретическим выкладкам приведенным выше построили траекторию