What is Claimed is:

1. An apparatus measuring the parameters in a volume with V=V(t), where t is time; the apparatus comprising:

two signal sources A=A(t), B=B(t) with $A(t)=B(t)K_0$, where $K_0>1$, $V(t)=B(t)K_1$, where K_0 , K_1 are stationary in a time interval t_0 , where t_0 is any real value; and

detectors to measure the B'(t)=B(t)+N_B(t) and the one assigned as C'(t)=C(t)+N_A(t), where C'(t) can be either V'(t)=V(t)+N_V(t) or A'(t)=A(t)+N_A(t), N_B(t) is the noise of B(t), N_A(t) is the noise of A(t), and N_V(t) is the noise of V(t) during the measurement time interval t_0 ,

wherein the measured signals B'(t) and C'(t) are transferred into electro optical signals and sent into a data processor to analyze either K_0 or K_1 .

2. An apparatus as claimed in Claim 1 wherein V=V(t) comprises:

an additional property of V(t)=K2P(t), where P(t) is the pressure in V(t), K2 is stationary in the time interval t0, and t0 is any real number; and

detectors to measure $P'(t)=P(t)+N_P(t)$, wherein $N_P(t)$ is the noise of P(t) during the measurement time interval t_0 , to transfer the measured B'(t) and P'(t) into electro-optical signal and send the signal into a data processor to analyze K_2 .

- 3. An apparatus as claimed in Claim 2, wherein the concentration of B is calculated from K₂.
- 4. An apparatus as claimed in Claim 2, wherein the elasticity of V(t) is calculated from K_2 .

- 5. An apparatus as claimed in Claim 2, wherein the t_m is found at which $V(t_m)=V$ at maximum volume from A(t) or P(t).
- 6. An apparatus as claimed in Claim 5, wherein the V(t_m) is guiding the injection of an ingredient into V at t_m.
- 7. An apparatus as claimed in Claim 1, wherein K_0 or K_1 is used to analyze the concentration of B.
- 8. An apparatus as claimed in Claim 2, wherein K_2 is used to analyze the concentration of B.
- 9. An apparatus as claimed in Claim 1 or 2, wherein one of the P'(t) or C'(t) is assigned as E'(t), said data processor analyze the original data B'(t) and E'(t) by the following steps:
 - (a) performing a mathematical transformation T on both E'(t) and B'(t);
 - (b) estimating K_R from the following relation: $F_i[E'(t)]/F_i[B'(t)] \approx K_R$, R:0, or 1, or 2 accordingly where F_i is the i^{th} order component of the transformation T; and
 - (c) determining the ratio of two signals E(t) and B(t) from the estimated K_R.
- 10. An apparatus as claimed in Claim 9, wherein the mathematical transformation T is linear, said processor further performing the steps of:
 - (d) identifying and estimating $F_i[N_B(t)]$ by the noise around $F_i[E(t)]$; and
 - (e) determining the estimated K_R from the following relation:

$${F_i[E'(t)]-F_i[N_B(t)]}/{F_i[B'(t)]-F_i[N_B(t)]} \approx K_R.$$

- 11. An apparatus as claimed in Claim 9, the processor further performing the step of:
 - (f) approximation K_R from the largest value of Fi[E'(t)]-Fi[NB(t)] for all kinds of linear transformation T and all possible orders of the transformation T, based on the following relation:

$${F_i[E'(t)]-F_i[N_B(t)]}/{F_i[B'(t)]-F_i[N_B(t)]} \le K_R.$$

12. An apparatus as claimed in Claim 9, wherein

E'(t) is statistically confident to be not noisy such that $N_E(t) \approx 0$,

$$E'(t)=E(t)+N_E(t) \approx E(t)$$
,

$$B'(t)=B(t)+N_B(t)$$
, and

$$E(t)=K_R*B(t)$$
,

said method comprising the steps of:

- (a) performing a mathematical transformation T on both E'(t) and B'(t);
- (b) estimating K_R from the following relation:

$$F_i[E'(t)]/Fi[B'(t)] \approx K_R$$

where Fi is the ith order component of the transformation T and the position of Fi[B'(t)] is identified by the noise around $F_i[E'(t)]$; and

- (c) determining the ratio of two signals E(t) and B(t) from the estimated K_R .
- 13. An apparatus as claimed in Claim 12, wherein the mathematical transformation T is linear, further comprising the steps of:
 - (d) identifying and estimating $F_i[N_B(t)]$ by the noise around $F_i[E(t)]$, and denoting the estimating of $F_i[N_B(t)]$ to be $F_i[N_E(t)]$; and
 - (e) estimating K_R from the following relation:

$$F_i[E(t)]/\{F_i[B'(t)]-F_i[N(t)]\} \approx K_R$$
.

- 14. An apparatus as claimed in Claim 13, further comprising the steps of:
 - (f) approximation K_R from the largest value of Fi[E'(t)]-Fi[NB(t)] for all kinds of linear transformation T and all possible orders i of the transformation T, based on the following relation:

$$F_i[E(t)]/\{F_i[B'(t)]-F_i[N(t)]\} \leq K_R$$
.

- 15. An apparatus as claimed in Claim 10 or 13, wherein the transformation T is Fourier transform.
- 16. An apparatus as claimed in Claim 15, wherein the F_i is F₁, the first harmonic of the Fourier transform.
- 17. An apparatus as claimed in Claim 9, wherein the step for determining a ratio of two signals E(t) and B(t) based on two real signals E'(t) and B"(t) including noise N_E(t) and N_B(t), respectively, wherein:

E'(t) is a least noisy signal;

$$E'(t)=E(t)+N_{E}(t),$$

$$B'(t)=B(t)+N_B(t)$$
, and

$$E(t)=K_R*B(t),$$

comprising the steps of:

- (a) identifying the minimum of B(t), $B'(t)_{min}$, by E'(t); and
- (b) removing the static noise by [B'(t)-B'(t)_{min}].
- 18. An apparatus as claimed in Claim 17, further comprising the steps of approximating K_R by using the following relation:

Maximum of
$$[E(t)-E(t)_{min}]/Maximum$$
 of $[B(t)-B(t)_{min}] \approx K_R$,

where $E(t)_{min}$ and $B(t)_{min}$ are the minimum of E(t) and B(t), respectively.

19. An apparatus as claimed in Claim 17, further comprising the steps of approximating K_R by using the following relation:

$$F_i[E(t)-E(t)_{min}]/F_i[B'(t)-B(t)_{min}]/ \approx K_R$$

where both E(t) and B(t) are periodic and $E(t)_{min}$ and $B(t)_{min}$ are the minimum of E(t) and B(t), and F_i is the i^{st} order of a transformation.

- 20. An apparatus as claimed in Claim 2, wherein the volume change in a periodic way.
- 21. An apparatus as claimed in Claim 1, wherein the signal comprises induced signal.
- 22. An apparatus as claimed in Claim 21, wherein the signal comprises and electromagnetic wave.
- 23. An apparatus as claimed in Claim 21, wherein the induced signal comprises mechanical wave.
- 24. An apparatus as claimed in Claim 1, wherein a signal source in the volume comprises a marker.
- 25. An apparatus as claimed in Claim 1, wherein the volume comprises blood.
- 26. An apparatus as claimed in Claim 1, wherein the volume comprises tissue.
- 27. An apparatus as claimed in Claim 1, wherein a signal source comprises hemoglobin.
- 28. An apparatus as claimed in Claim 1, wherein a signal source comprises uric acid.
- 29. An apparatus as claimed in Claim 2 further comprises a pressure source for generating the volume change.
- 30. An apparatus as claimed in Claim 1, wherein volume change in a periodic way.

- 31. An apparatus as claimed in Claim 9, wherein the volume comprises blood, the blood pressure is measured by signal E'(t).
- 32. An apparatus as claimed in Claim 31, further comprising a instrument for measuring the blood flow F'(t) in the volume, and means for determining K_p , which is an indicator of perfusion efficiency, based on the following relation: $F(t) = K_p E(t)$.
- 33. An apparatus as claimed in Claim 6, further comprising an ingredient detector for injecting another ingredient in accordance with the result of the detector.
- 34. An apparatus as claimed in Claim 33, wherein said ingredient comprises glucose and said another ingredient comprises insulin.
- 35. An apparatus as claimed in Claim 1, wherein signal is transmitted through communication.
- 36. An apparatus as claimed in Claim 1, wherein the volume is in a man-made system.
- 37. An apparatus as claimed in Claim 1, wherein the signal source comprises DNA.
- 38. An apparatus as claimed in Claim 1, wherein the signal source comprises RNA.
- 39. An apparatus as claimed in Claim 1, wherein the signal source comprises protein.

- 40. An apparatus as claimed in Claim 1, wherein the signal source comprises colored molecular.
- 41. An apparatus as claimed in Claim 4, wherein the V is a pixie of V(x,y,z), a much larger volume.
- 42. An apparatus as claimed in Claim 41, wherein the V(x,y,z) is compared with $V(x+\Delta x,y+\Delta y,z+\Delta z)$ in which Δx , Δy , Δz are the size of the pixie.
- 43. An apparatus as claimed in Claim 41, wherein the V(x,y,z) is compared with Vs(x,y,z) a stored value in the processor.
- 44. An apparatus as claimed in Claim 1, wherein the signal source comprises glucose.
- 45. An apparatus as claimed in Claim 1, wherein the signal source comprises cholesterol.
- 46. An apparatus as claimed in Claim 1, wherein the signal source comprises triglycerol.
- 47. An apparatus as claimed in Claim 1, wherein the signal source comprises enamation.