## 2nd place solution for Actuarial Loss Prediction

A. Gulyás & N. Fornasin

Team Boosted Goose

#### Model overview

Our model can be divided into three mutually independent blocks:



# Preprocessing

The preprocessing consisted of the following major steps (purely technical steps are not listed):

- ► Adjusted unrealistic values of the predictors, e.g. 200 hours worked per week, reporting date before accident date, etc.
- ► Added features, such as: weekday of accident, core working hours, reporting delay, etc.
- **Excluded observations** with implausible set of predictors

## Text analysis

Our analysis of the claim description feature:

- ► Extraction and stemming of the most common words (in this step laceration and lacerated both become "lacer")
- ► Clustering and weighting of the words according to median ultimate claim cost
- One hot encoding for every single word identified

|  |      |     |       |      | EXION INJURY TO | NECK AND SHOUL | LDER     |        |
|--|------|-----|-------|------|-----------------|----------------|----------|--------|
|  |      |     | 18 13 | 20   |                 | 22 23          |          |        |
|  |      |     |       |      |                 |                |          |        |
|  | SLIP | HIT | LEG   | HEAD | NECK            | KNIFE          | SHOULDER | Weight |
|  |      |     |       |      |                 |                |          |        |
|  | 1    | 1   | 0     | 1    | 1               | 0              | 1        | 96     |

#### Model

The algorithm relied on the following ensemble techniques:

- ▶ **Boosting**: gradient boosting using xgboost
- Bagging: radom forest as base learner
- Voting: custom combination based on insight

#### Further details:

- Natural logarithm as link function
- Tweedie distribution of errors
- ▶ Monotonic constraints for selected features, e.g. WeeklyWages