GENEL MATEMATİK II FİNAL ÇALIŞMA SORULARI

- 1. $f(x,y) = \arccos(y-1) + \ln(4-x^2-y^2)$ fonksiyonunun tanım kümesini bulup düzlemde gösteriniz.
- 2. $z = f(x, y) = \sqrt{\frac{1 x^2 y^2}{xy}}$ ile verilen fonksiyonun tanım kümesini bulup, kartezyen düzlemde gösteriniz.
- 3. $\lim_{(x,y)\to(0,0)} \frac{3y^2}{x-\sqrt{3}y} = ?$
- 4. $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{2x^2+3y^2}} = ?$
- 5. $f(x,y) = \cos\left(\frac{x^3 y^3}{x^2 + y^2}\right)$ fonksiyonunun sürekli olması için f nasıl tanımlanmalıdır?
- **6.** $f(x,y) = \frac{x^3 xy^2}{x^2 + y^2}$ fonksiyonunun sürekli olması için f nasıl tanımlanmalıdır?
- 7. $f(x,y) = \tan\left(\frac{y^3 x^3}{x^2 + y^2}\right)$ fonksiyonunun sürekli olması için f nasıl tanımlanmalıdır?

Sürekli olacak şekilde tanımlı f fonksiyonu için $f_x(0,0)$ ve $f_y(0,0)$ türevlerini bulunuz

- 8. $f(x,y) = \begin{cases} \frac{xy}{\sqrt[3]{x^2 + y^2}} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$ fonksiyonu
 - a) (0,0) noktasında sürekli midir? Gösteriniz.
 - **b)** $f_x(0,0)$ ve $f_y(0,0)$ türevlerini bulunuz.
- **9.** $f(x, y, z) = x \ln(y^2 + z^2)$ fonksiyonu için f_{xyz} kısmi türevini bulunuz.
- 10. $u = x^2 + y^2 + z^2$, $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta \sin \phi$, u_r , u_θ , u_ϕ türevlerini hesaplayınız.
- **11.** $u = x^2 + \sin^2 y$; $x = r^2 \sin \theta$, $y = r^2 \cos \theta$ ise $(r, \theta) = \left(1, \frac{\pi}{2}\right)$ için $\frac{\partial u}{\partial r}$ ve $\frac{\partial u}{\partial \theta}$ kısmi türevlerini bulunuz.
- 12. $z^3 + xyz + xy^2 1 = 0$ ile verilen z = f(x, y) fonksiyonunun $z_x(1,1)$ ve $z_y(1,1)$ türevlerini bulunuz.

- 13. z, sürekli kısmi türevlere sahip bir fonksiyon olmak üzere, $\frac{\partial^2 z}{\partial x^2} 4 \frac{\partial^2 z}{\partial y^2} 16 = 0$ denklemini u = 2x y, v = 2x + y eşitlikleri ile verilen yeni u, v değişkenlerine göre yazınız.
- 14. $z_{xx} 9z_{yy} = 0$ denklemini u = 3x + y ve v = -3x + y eşitlikleriyle verilen yeni u ve v değişkenlerine göre yazınız.
- **15.** z = f(x, y) fonksiyonu, $x = u \cos v$, $y = u \sin v$ için $(f_u)^2 + \frac{1}{u^2} (f_v)^2$ ifadesini zincir kuralından yararlanarak f_x ve f_y türevlerine bağlı olarak yazınız.
- **16.** $F(t) = \int_{0}^{t^2} \arctan\left(\frac{x}{t^2}\right) dx$ ise F'(t) = ?
- 17. $f(x) = \int_{0}^{x} \ln(\arcsin y) \cos(x y) dy$ ise, f''(x) + f(x) = ?
- **18.** $(3.02)^{2.01}$ in yaklaşık değerini bulunuz.
- 19. $f(x,y) = 2x^2 3y^2 + 2x + 3$ fonksiyonunun $y^2 = 2x + 3$ parabolü ve y = x 1 doğrusu arasında kalan kapalı B bölgesi üzerindeki mutlak ekstremumlarını bulunuz.
- **20.** $f(x,y) = 2x^2 3y^2 + 2x + 3$ fonksiyonunun $B = \{(x,y) | (x,y) \in R, x^2 + y^2 \le 4\}$ bölgesi üzerindeki maksimum ve minimum değerlerini araştırınız.
- **21.** $z^2 = xy 3x + 9$ yüzeyi üzerinde orijine en yakın olan noktayı bulunuz.
- **22.** $f(x,y)=11-x^2-(y+3)^2$ fonksiyonunun $x^2+y^2=16$ çemberi üzerindeki mutlak maksimum ve mutlak minimumunu bulunuz.
- **23.** f(x,y) = 3x + 4y fonksiyonunun $x^2 + y^2 = 1$ çemberi üzerindeki maksimum ve minimum değerlerini bulunuz.
- **24.** Eğer $x + y + z^2 = 40$ ise pozitif x, y, z sayılarının çarpımının en büyük değerini bulunuz.
- **25.** $x^2 2x + y^2 4y = 0$ olacak şekilde $x^2 + y^2$ fonksiyonunun maksimum ve minimum değerlerini bulunuz.
- **26.** $x^2 + y^2 + z^2 = 1$ küresindeki (x, y, z) noktasının santigrat cinsinden sıcaklığı T(x, y, z) = 2x 4y + 4z ise, küredeki en yüksek ve en düşük sıcaklıkların yerini bulunuz.
- **27.** D köşeleri (1,0), (2,0), (0,-2) ve (0,-1) olan yamuk olduğuna göre $\iint_D e^{\frac{x+y}{x-y}} dx dy$ integralini hesaplayınız.

- **28.** *B* bölgesi $x^2 + y^2 = 1$ ile $x^2 + y^2 = 16$ çemberleri arasında kalan bölge olduğuna göre $\iint_{R} (x^2 + y^2)^{1/4} dxdy$ integralini hesaplayınız.
- **29.** $\int_{0}^{1} \left(\int_{2x}^{2} e^{y^{2}} dy \right) dx = ?$
- **30.** $\int_{0}^{1} \left(\int_{\sqrt{y}}^{1} e^{-x^{3}} dx \right) dy = ?$
- **31.** $I = \int_{0}^{1} \int_{-1}^{-\sqrt[3]{y}} \frac{2\pi \sin(\pi x^2)}{x^2} dxdy = ?$
- **32.** $I = \int_{0}^{8} \int_{\sqrt{x}}^{2} \frac{dydx}{y^4 + 1} = ?$
- 33. y = 0, x = 0, z = 0, $y = \sqrt{4 x}$ ve x + y + z = 8 yüzeyleri ile verilen cismi çizerek hacmini veren iki katlı integrali **sadece yazınız**.
- **34.** $z = \sqrt{x^2 + y^2}$ konisi ile $z = x^2 + y^2$ paraboloidi tarafından sınırlanan cismin hacmini bulunuz.
- 35. $3z = 9 x^2 y^2$ paraboloidi ile z = 0 düzlemi arasında kalan bölgenin hacmini bulunuz.
- **36.** $x^2 + y^2 = 2y$ silindiri ile z = 0 düzlemi ve $z = 9 x^2 y^2$ paraboloidi arasında kalan **bölgeyi çizip** hacmini bulunuz.
- 37. $z = 5 x^2 y^2$ ve $z = 4x^2 + 4y^2$ paraboloidleri arasında kalan bölgenin hacmini bulunuz.
- **38.** *G* bölgesi $z = (y-2)^2$ silindiri, x = 3 düzlemi ve koordinat düzlemleri tarafından sınırlanan bölge ise, bu bölgenin hacmini bulunuz.
- **39.** $x^2 + y^2 = 4$, $x^2 + y^2 = 1$ silindirleri ile $z^2 = x^2 + y^2$ konisi arasında kalan bölgenin hacmini bulunuz.
- **40.** Yanlardan $x^2 + y^2 = 4$ silindiriyle, alttan z = 0 düzlemiyle ve üstten $z = 9 x^2 y^2$ paraboloidiyle sınırlanan bölgenin hacmini bulunuz.