

Contents

Introduction

Stereo Vision

Robot navigation, 3D reconstruction...

Introduction

Stereo Vision

Human's eye

Stereo Camera

$$\Delta PMC_l \xrightarrow{similar} \Delta P_l LC_l$$

$$\frac{x}{z} = \frac{x_l}{f} \qquad ----- a$$

$$\Delta PNC_r \xrightarrow{similar} \Delta P_r RC_r$$

$$\frac{x-b}{z} = \frac{x_r}{f} \qquad ----- b$$
from a $x = \frac{x_l}{f}z$ from b $x = \frac{x_r}{f}z + b$

$$\frac{x_l}{f}z = \frac{x_r}{f}z + b, \quad \frac{x_l - x_r}{f}z = b$$

$$\therefore z = \frac{bf}{x_l - x_r}$$

Correspondence problem

- Noise
- Low-texture region
- Depth-discontinuity
- Occlusion

Stereo matching method – Local method

SSD (Sum of Squared Difference)

$$SSD_{MN}(x, y, d) = \sum_{y=1}^{M} \sum_{x=1}^{N} [I_{l}(x, y, t) - I_{r}(x - d, y)]^{2}$$

SAD (Sum of Absolute Difference)

$$SAD_{MN}(x, y, d) = \sum_{y=1}^{M} \sum_{x=1}^{N} |I_{l}(x, y, t) - I_{r}(x - d, y)|$$

MAE(Mean Absolute Error)

$$MAE_{MN}(x, y, d) = \frac{1}{M \times N} \sum_{y=1}^{M} \sum_{x=1}^{N} |I_{l}(x, y, t) - I_{r}(x - d, y)|$$

Stereo matching method – Global method

Use the energy function

$$E(d) = E_{data}(d) + \lambda E_{smoothness}(d)$$

Implementation:

Belief Propagation(BP), Graph Cut(GC), Dynamic Programing(DP)...

Bayesian network

: Directed and acyclic

HMM (Hidden Markov Model)

Observable node(Y): Image

Hidden node(X): Disparity

MRF (Markov Random Field)

: Undirected and cyclic

1) Positivity

$$P(f) > 0, \forall f$$

2) Markovianity

$$P(f_p \mid f_{P-\{p\}}) = P(f_p \mid f_{N_p})$$

❖ Goal

: Computes **marginal probability** of hidden nodes

Attributes

- : **Iterative** algorithm
- : **Message passing** between neighboring hidden nodes

Procedure

- 1) Select random neighboring hidden nodes x_i , x_j
- 2) Send message m_{ij} from x_i to x_j
- 3) Update belief about marginal probability at node x_i

Probabilistic Stereo Model

Likelihood

$$P(D \mid I) = \frac{P(I \mid D)P(D)}{P(I)}$$
 Matching cost function
$$P(I \mid D) \propto \prod_{i} \exp(-F(i, d_i))$$
 d_i : disparity candidate at pixel i

Prior

$$P(D \mid I) = \frac{P(I \mid D)P(D)}{P(I)}$$
Constraint function
$$P(D) \propto \prod_{i} \prod_{j \in N(i)} \exp(-V(d_i, d_j))$$

$$V(d_i, d_j) = |d_i - d_j|$$

Probabilistic Stereo Model

$$\begin{split} P(D \mid I) &= \frac{P(I \mid D)P(D)}{P(I)} \\ &\propto P(I \mid D)P(D) \\ &\propto \prod_{i} \exp(-F(i, d_i, I)) \prod_{i} \prod_{j \in N(i)} \exp(-V(d_i, d_j)) \\ &= \prod_{i} \psi_i(x_i, y_i) \prod_{i} \prod_{j \in N(i)} \psi_{ij}(x_i, x_j) \qquad \qquad \psi_i : \text{local evidence for node } x_i \\ &\qquad \psi_{ij} : \text{compatibility matrix between nodes } x_i \text{ and } y_i \end{split}$$

MAP maximize marginal probability (maximize belief)

$$P(x_i) = \sum_{x_1, x_2, \dots, x_{i-1}} \sum_{x_{i+1}, \dots, x_N} P(x_1, x_2, \dots, x_N)$$

Message Passing

: Message m_{ii} from x_i to x_i

$$m_{ij}(x_j) = \kappa \max_{(x_i)} \left[\psi_i(x_i, y_i) \psi_{ij}(x_i, x_j) \prod_{x_k \in N(i) \setminus j} m_{ki}(x_i) \right]$$

 $m_i(x_i) = \psi_i(x_i, y_i)$: local evidence

Belief Update

: Belief $b(x_i)$

$$b_j(x_j) = \kappa \psi_j(x_j, y_j) \prod_{x k \in N(j)} m_{ij}(x_j)$$

Implementation of message, belief and disparity

$$m_{ij}^{t+1}(x_j) = \kappa \max_{x_i} \left[\psi_i(x_i, y_i) \psi_{ij}(x_i, x_j) \prod_{x_k \in N(x_i) \setminus x_j} m_{ki}^t(x_i) \right]$$

$$b_i(x_i) = \kappa \psi_i(x_i, y_i) \prod_{x_i \in N(x_i) \setminus x_j} m_{ki}^t(x_i)$$

$$b_i(x_i) = \kappa \psi_i(x_i, y_i) \prod_{x_k \in N(x_i) \setminus x_j} m_{ki}(x_i)$$

$$d_i^{MAP} = \arg\max_{x_k} b_i(x_k)$$

take the negative logarithm of each equation

$$M_{ij}^{t+1}(x_j) = c \min_{x_i} \left[M_i(x_i) + \phi_c(x_i, x_j) + \sum_{x_k \in N(x_i) \setminus x_j} M_{ki}^t(x_i) \right]$$

$$B_i(x_i) = c \left[M_i(x_i) + \sum_{x_k \in N(x_i) \setminus x_j} M_{ki}(x_i) \right]$$

$$D_i^{MAP} = \arg\min_{\mathbf{x}} b_i(\mathbf{x}_k)$$

32

80

 $M_{k_2}(x_{k_2})$

Belief Propagation

 $M_i(x_i)$

$$M_{ij}^{0}(x_{j}) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$$

$$M_{k_{1}i}^{0}(x_{i}) = M_{k_{2}i}^{0}(x_{i}) = M_{k_{3}i}^{0}(x_{i}) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$$

2) Update

$$M_{ij}^{1}(x_{j}=1)$$

$$= \min \left\{ \begin{pmatrix} 0 + 2 + M_{k_1 i}^{0}(x_i = 1) + M_{k_2 i}^{0}(x_i = 1) + M_{k_3 i}^{0}(x_i = 1) \end{pmatrix}, \\ \left(1 + 30 + M_{k_1 i}^{0}(x_i = 2) + M_{k_2 i}^{0}(x_i = 2) + M_{k_3 i}^{0}(x_i = 2) \right), \\ \left(2 + 72 + M_{k_1 i}^{0}(x_i = 3) + M_{k_2 i}^{0}(x_i = 3) + M_{k_3 i}^{0}(x_i = 3) \right) \right\} = 2$$

$$M_{ii}^{1}(x_i = 2)$$

 $\left| M_{ij}^{t+1}(x_j) = c \min_{x_i} \left| M_i(x_i) + \phi_c(x_i, x_j) + \sum_{x_k \in N(x_i) \setminus x_j} M_{ki}^{t}(x_i) \right| \right|$

$$= \min \left(\frac{\left(1 + 2 + M_{k_1 i}^{0}(x_i = 1) + M_{k_2 i}^{0}(x_i = 1) + M_{k_3 i}^{0}(x_i = 1)\right)}{\left(0 + 30 + M_{k_1 i}^{0}(x_i = 2) + M_{k_2 i}^{0}(x_i = 2) + M_{k_3 i}^{0}(x_i = 2)\right)} \right) = 3$$

$$\left(1 + 72 + M_{k_1 i}^{0}(x_i = 3) + M_{k_2 i}^{0}(x_i = 3) + M_{k_3 i}^{0}(x_i = 3)\right)$$

Example

$$M_{ij}^{t+1}(x_j) = c \min_{x_i} \left[M_i(x_i) + \phi_c(x_i, x_j) + \sum_{x_k \in N(x_i) \setminus x_j} M_{ki}^t(x_i) \right]$$

$$= \min \left(\frac{\left(2 + 2 + M_{k_1 i}^0(x_i = 1) + M_{k_2 i}^0(x_i = 1) + M_{k_3 i}^0(x_i = 1)\right)}{\left(1 + 30 + M_{k_1 i}^0(x_i = 2) + M_{k_2 i}^0(x_i = 2) + M_{k_3 i}^0(x_i = 2)\right)} \right) = 4$$

$$\left(0 + 72 + M_{k_1 i}^0(x_i = 3) + M_{k_2 i}^0(x_i = 3) + M_{k_3 i}^0(x_i = 3)\right)$$

 $M_{k,i}^1(x_i) = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}^T$

 $M_{ii}^{1}(x_{i}=3)$

Example

3) Calculate Belief
$$B_{j}(x_{j} = 1) = 2 + 11 = 13$$

$$B_{j}(x_{j} = 2) = 2 + 12 = 14$$

$$B_{j}(x_{j} = 3) = 1 + 13 = 14$$

$$B_{j}(x_{j} = 3) = 1 + 13 = 14$$

$$B_{i}(x_{i}) = c \left[M_{i}(x_{i}) + \sum_{x_{k} \in N(x_{i}) \setminus x_{j}} M_{ki}(x_{i}) \right]$$

$$D_{i}^{MAP} = \underset{x_{k}}{\operatorname{arg \, min}} b_{i}(x_{k})$$

$$B_{j}(x_{j}) = \begin{bmatrix} 13 & 14 & 14 \end{bmatrix}^{T}, \qquad x_{j}^{MAP} = \arg\min_{x_{k}} B_{j}(x_{k}) = 1$$

❖ Example

Results

* middlebury 2006 stereo dataset

Results

* middlebury 2006 stereo dataset

Results

* middlebury 2006 stereo dataset

Thank foulli

Bayesian Probability (Bayesian Inference)

$$P(H \mid D) = \frac{P(H \cap D)}{P(D)} \qquad P(D \mid H) = \frac{P(D \cap H)}{P(H)}$$

$$P(H \cap D) = P(D \cap H) = P(D \mid H)P(H)$$

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

Example

$$P(H_c \mid D_r) = \frac{P(D_r \mid H_c)P(H_c)}{H(D_r)} \qquad P(D_r) : \frac{81}{1000} = 0.081$$
$$P(H_c) : \frac{1}{10} = 0.1$$

$$P(H_c \mid D_r) = \frac{0.8 \times 0.1}{0.081} = 0.988$$
 $P(H_s) : \frac{1}{1000} = 0.001$

$$P(H_s \mid D_r) = \frac{0.9 \times 0.001}{0.081} = 0.011$$