CH3050: Process Dynamics and Control

Assignment 4 Solutions

Question 1

 $F_{\rm i0} = 500$ l/min, $F_{\rm i1} = 540$ l/min, $\Delta F_i = 40$ l/min

$$T_0 = 50 \text{ °C}, T_3 = 55.7 \text{ °C}, \Delta T = 5.7 \text{ °C}$$

$$t_1 = 0$$
 (9:05 am), $t_2 = 4$ (9:09 am), $t_3 = 29$ (9:34 am)

Flow rate changes from $F_{\rm i0}$ to $F_{\rm i1}$ at time $t_{\rm 1}$

No change in temperature (T) is observed till time t_2

Response in temperature is quite rapid, slowing down gradually until it appears to reach a steady-state value $(T_3 = 55.7)$. No change is observed after t_3 .

Based on these observations A FOPTD process would be a good choice to model the TF

$$\theta = t_2 - t_1 = 4$$

$$t_3 \approx 5\tau$$

$$\tau = \frac{29 - 4}{5} = 5$$

$$K_p = \frac{\Delta T}{\Delta F_i} = \frac{5.7}{40} = 0.1425$$

$$\widehat{G}(s) = \frac{K_p e^{-\theta s}}{\tau s + 1} = \frac{0.1425 e^{-4s}}{5s + 1}$$

To obtain a better estimate the operator can try the following:

- Record the temperature at more frequent intervals to get a better understaing of the step response.
- Obtain the impulse response and frequency response of the system. This will help in obtaining a
 qualitative guess of the process order

Question 2

The process is given by the transfer function:

$$G(s) = \frac{(2s+1)e^{-3s}}{(20s+1)(15s+1)(4s+1)(0.5s+1)}$$

$$s = tf('s');$$

```
Gs = (2*s+1)*exp(-3*s)/((20*s+1)*(15*s+1)*(4*s+1)*(0.5*s+1));
```

Part a

To get Krishnaswamy and Sundaresan's FOPTD approximation

```
gain = 1;
[ystep, ts] = step(Gs, 0:0.2:200);
[~, t1_ind] = min(abs(0.353*gain-ystep));
[~, t2_ind] = min(abs(0.853*gain-ystep));
t1 = ts(t1_ind);
t2 = ts(t2_ind);
D = 1.3*t1-0.29*t2;
tau = 0.67*(t2-t1);
K = gain;
G_1_ks = K*exp(-D*s)/(tau*s+1);
step(G_1_ks, Gs)
legend('Model', 'Process')
```


Thus the approximate model is:

$$G_1_ks$$

$$G_1_ks = \frac{1}{25.59 s + 1}$$

Part b

The time constants in descending order are: 20, 15, 4, 0.5.

For FOPTD, we retain only one time constant. Thus,

$$\tau = 20 + 0.5 * 15 = 27.5$$

$$D = 0.5 * 15 + 4 + 0.5 - 2 + 3 = 10$$

$$K = 1$$

Thus, the FOPTD approximation is

$$G_{\text{FOPTD}} = \frac{e^{-13s}}{27.5s + 1}$$

$$G_1_s = \exp(-13*s)/(27.5*s+1);$$

For SOPTD, we retain two time constants. Thus,

$$\tau_1 = 20$$

$$\tau_2 = 15 + 0.5 * 4 = 17$$

$$D = 0.5 * 4 + 0.5 - 2 + 3 = 3.5$$
 $K = 1$

$$G_{\text{SOPTD}}(s) = \frac{e^{-3.5s}}{(20s+1)(17s+1)} = \frac{e^{-3.5s}}{340s^2 + 37s + 1}$$

$$G_2_s = \exp(-3.5*s)/(340*s^2+37*s+1);$$

Part c

```
[Gmag,Gphase,wvec] = bode(Gs); % Simulate frequency response
mpar = lsqcurvefit(@(mpar, wdata) magpred(mpar, wdata), [1 15 15], wvec, squeeze(Gmag))
Local minimum found.

Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
```

<stopping criteria details>

```
% magpred is defined at the end of the assignment in the Function Section
G_2_freq = mpar(1)/((mpar(2)*s+1)*(mpar(3)*s+1));

Gph = squeeze(Gphase);
D0 = 4.8; % Obtain initial guess after looking at final function value for different guestions = optimoptions('lsqcurvefit', 'FunctionTolerance', 1e-10, 'MaxIterations', 1000)
```

options =
 lsqcurvefit options:

```
Options used by current Algorithm ('trust-region-reflective'): (Other available algorithms: 'levenberg-marquardt')

Set properties:
```

Display: 'iter'
FunctionTolerance: 1.0000e-10
MaxIterations: 1000
OptimalityTolerance: 1.0000e-10

Default properties:

Algorithm: 'trust-region-reflective'
CheckGradients: 0
FiniteDifferenceStepSize: 'sqrt(eps)'
FiniteDifferenceType: 'forward'
JacobianMultiplyFcn: []
MaxFunctionEvaluations: '100*numberOfVariables'
OutputFcn: []
PlotFcn: []
SpecifyObjectiveGradient: 0
StepTolerance: 1 0000e-06

StepTolerance: 1.0000e-06 SubproblemAlgorithm: 'factorization'

TypicalX: 'ones(numberOfVariables,1)'

UseParallel: 0

D = lsqcurvefit(@(d,wdata) phasepred(d,wdata,mpar(1),mpar(2),mpar(3)),D0,wvec,cos(Gph),

			Norm of	First-order
Iteration	Func-count	f(x)	step	optimality
0	2	38.4654		4.13e+04
1	4	37.7205	3.21454e-05	1.06e+04
2	6	37.6589	1.02309e-05	2.8e+03
3	8	37.6541	2.9888e-06	756
4	10	37.6537	8.34506e-07	206

Local minimum possible.

lsqcurvefit stopped because the size of the current step is less than the value of the step size tolerance.

<stopping criteria details>

```
G_2_freq.iodelay = D;

figure
step(Gs, G_2_freq)
legend('Model', 'Process')
```


The SOPTD approximation is

We observe that the answers from Skogestad's method and the frequency-domain least sqaures methods are close.

Part d

```
step(Gs, G_1_ks, G_1_s, G_2_s, G_2_freq)
legend('Process', 'KS FOPTD', 'Skogestad FOPTD', 'Skogestad SOPTD', 'Frequency-based SOPTD', 'Frequency-based SOPTD', 'Skogestad SOPTD', 'Frequency-based SOPTD', 'Skogestad SOPTD', 'Skogestad SOPTD', 'Frequency-based SOPTD', 'Skogestad SO
```


The SOPTD models are able to best capture the transient characteristics of the process. The frequency-based method approximates the delay closer than the Skogestad SOPTD. Both the FOPTD models have slower settling than the process. The Krishnaswamy and Sundaresan's method is unable to get a good approximation of the delay but captures the rest of the step response characteristics well when compared to the Skogestad FOPTD model.

Model	Delay	Gain	Settling Time
KS FOPTD	Highest	Matched	Longer
Skogestad FOPT	Higher	Matched	Longest
Skogestad SOPTD	Shorter	Matched	Longer
Frequency – domain SOPTD	Close Match	Matched	Close Macth \rfloor

Model	K	$ au_1$	$ au_2$	θ
KS FOPTD	1	25.59		16.4
Skogestad FOPT	1	27.5		13
Skogestad SOPTD	1	20	17	3.5
Frequency – domain SOPTD		17.9662	17.9662	4.8

Question 3

Part a

The SIMULINK setup is shown below:

Part b

The input is designed using the code below:

```
B_max = 1/5;
Ts= 0.8; % sampling time
usig = idinput(2555,'prbs',[0 B_max],[-2 2]);
uin = [(0:1:length(usig)-1)'*Ts (usig)];
```

The input and output has been plotted below:

```
data=iddata(out.yk(1:length(usig)),uin(:, 2),1);
plot(data)
```


We partition the data into train and test

```
data_train=data(1:1300);
data_test=data(1300:end);
```

Part c

We build impulse-response model for the process based on the training data.

```
[ztrain,Tr]=detrend(data_train,0);
ztest=detrend(data_test,Tr);
impulse_est= impulseest(ztrain);
```

Let us plot the impulse and step responses:

```
figure
impulse(impulse_est,'sd',3);
```



```
figure
step(impulse_est)
```


We observe from both the impulse and step response plots an I/O delay of 4. So, we set **d=4**. The step response indicates either a 1st order or an over-damped 2nd order system. The impulse response shows the characteristics of an overdamped 2nd order system. So, we set **n=2**. We also observe a small inverse response and predict a RHP zero. Hence, we set **m=2**.

```
% Estimates
m=2;
n=2;
d=4;
```

Part d

We estimate the oe model for the data

```
model_oe=oe(ztrain, [m, n, d]);
```

Part e

We perform residual analysis of the model

```
figure
resid(model_oe, ztrain);
```


We observe the residuals are uncorrelated with their past as well as with the input. Thus, the model does not have any **underfit**.

We now check the parameter estimates:

```
present(model oe);
```

```
model oe =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)
  B(z) = -0.0139 (+/- 0.007537) z^{-4} + 0.06244 (+/- 0.009032) z^{-5}
  F(z) = 1 - 1.775 (+/-0.009493) z^{-1} + 0.7871 (+/-0.009084) z^{-2}
Sample time: 1 seconds
Parameterization:
   Polynomial orders:
                        nb=2
                              nf=2
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
Status:
Termination condition: Near (local) minimum, (norm(g) < tol)..
Number of iterations: 4, Number of function evaluations: 9
Estimated using OE on time domain data "ztrain".
Fit to estimation data: 64.12%
FPE: 1.302, MSE: 1.294
More information in model's "Report" property.
```

We observe that the error in estimates is small. Also, the error bounds do not include 0. Thus our estimates are good and do not have any **overfit**.

We compare the model estimates on the test data:

```
figure
compare(model_oe, ztest);
```


We observe that the predictions are good. Thus, our model is satisfactory.

Part f

The final model obtained is:

$$y^*[k] - 1.775y^*[k-1] + 0.7871y^*[k-2] = -0.0139u[k-4] + 0.06244u[k-5]$$

FUNCTIONS

```
function Gwhat = magpred(mpar,wdata)
   Km = mpar(1); tau1 = mpar(2); tau2 = mpar(3);
   s = tf('s');
   Gm = Km/((tau1*s+1)*(tau2*s+1));
   [Gmag,~,~] = bode(Gm, wdata);
   Gwhat = squeeze(Gmag);
end

function Gwhat = phasepred(d,wdata,Km,tau1,tau2)
   s = tf('s');
```

```
Gm = Km/((tau1*s+1)*(tau2*s+1));
Gm.ioDelay = d;
[~,Gphase] = bode(Gm, wdata);
Gwhat = cos(squeeze(Gphase));
end
```