

AD-A045 248

NAVAL AIR DEVELOPMENT CENTER WARMINSTER PA AERO-ELECT--ETC F/G 17/5
ANNUAL ABSOLUTE HUMIDITY PROBABILITIES FOR SELECTED MARINE LOCA--ETC(U)
FEB 73 P M MOSER
NADC-20203B-PMM

UNCLASSIFIED

NL

| DF |
AD
A045 248
REF ID:
2012

END
DATE
FILED
11-77
DDC

20203-B
TECH MEMO NADC-20203:PMM

(1)

AD A045248

ANNUAL ABSOLUTE HUMIDITY PROBABILITIES
FOR SELECTED MARINE LOCATIONS

Paul M. Moser
Aero Electronic Technology Department
NAVAL AIR DEVELOPMENT CENTER
Warminster, Pennsylvania 18974

24 February 1973

TECHNICAL MEMORANDUM
AIRTASK NO. A3605333/202B/2F00343604

Approved for public release; distribution unlimited

AD NO. _____
DDC FILE COPY

Prepared for
NAVAL AIR SYSTEMS COMMAND
Department of the Navy
Washington, D. C. 20360

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) ANNUAL ABSOLUTE HUMIDITY PROBABILITIES FOR SELECTED MARINE LOCATIONS		5. TYPE OF REPORT & PERIOD COVERED Phase R-
6. AUTHOR(s) Paul M. Moser	14	7. PERFORMING ORGANIZATION NUMBER NADC-20203 PMM
8. PERFORMING ORGANIZATION NAME AND ADDRESS Aero Electronic Technology Department (Code 20) Naval Air Development Center Warminster, PA 18974		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS P.E. 62753N Proj. No. F32-343 Task Area No. WF32-343-604
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Department of the Navy Washington, DC 20360		12. REPORT DATE 24 Feb 1973
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Technical memo.		13. NUMBER OF PAGES 33
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		15. SECURITY CLASS. (of this report) Unclassified
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE SEP 20 1977
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Humidity; water vapor; absolute humidity; atmospheric water vapor concentrations; atmospheric transmission; infrared transmission; FLIR performance modeling; infrared imaging		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) In a previous technical memorandum "Mathematical Model of FLIR Performance" of 19 Oct 1972, a set of equations was developed which permits one to calculate acquisition, classification and identification ranges for ship targets when viewed by an airborne forward looking infrared (FLIR) imaging device. In performing such calculations, one of the crucial factors is the attenuation by the intervening atmosphere of the infrared radiation emitted by the target and received by the sensor. Atmospheric water vapor, whose concentration is quite variable over time and place, is a principal absorber of infrared		

Count A R 1473A)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

The present report provides, in the forms of histograms and graphs, percent frequencies of occurrence and cumulative percent frequencies of occurrence, respectively, of the various concentrations of atmospheric water vapor for each of twenty-one maritime sites throughout the northern hemisphere over the entire year. Similar data representing a composite over all twenty-one sites are also given. These data serve as inputs to the mathematical model.

21

A

S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

NAVAL AIR DEVELOPMENT CENTER
AERO ELECTRONIC TECHNOLOGY DEPARTMENT
WARMINSTER, PENNSYLVANIA 18974

24 Feb 1973

TECHNICAL MEMORANDUM NADC-20203:PMM

Subject: Annual Absolute Humidity Probabilities for Selected Marine Locations

- References:
- (a) AIRTASK A360360C/001B/3F32343604
 - (b) NAVAIRDEVCEN Tech Memo NADC-20203:GBL/PMM,
"Monthly Absolute Humidity Probabilities for Selected Marine Locations" of 28 Dec 1972
 - (c) NAVAIRDEVCEN Tech Memo NADC-20203:PMM,
"Mathematical Model of FLIR Performance" of 19 Oct 1972 -- 1045 247
 - (d) Naval Weather Service Command Summary of Synoptic Meteorological Observations
 - (e) Handbook of Chemistry and Physics, 37th Edition, Chemical Rubber Publishing Company (1955)
 - (f) NAVAIRDEVCEN Tech Memo NADC-20203:PMM,
"Predictions of FLIR Performance Against Ships"
of 12 Dec 1972

I. BACKGROUND

Reference (a) assigned NAVAIRDEVCEN the task of performing operational and system analyses and state-of-the-art technology surveys and projections as a first effort in the development of FLIR (forward looking infrared) equipments which would be affordable in large quantities and optimized for the missions of single-place attack aircraft.

One phase of this task is the calculation of the FLIR performance characteristics (resolution, sensitivity, field of view and frame rate) necessary to meet operational range requirements as a function of atmospheric conditions, aircraft altitude and target size, orientation, and effective thermal contrast. In these calculations, one of the crucial factors is the attenuation by the intervening atmosphere of the infrared radiation emitted by the target and received by the sensor.

Although the composition of the atmosphere is quite constant with regard to most of its constituents, it is quite variable over time and place with respect to water vapor, which is a principal absorber of

infrared radiation over the spectral range of interest (3 to 14 micrometers). Numerous studies of the transmission of infrared radiation as a function of the quantity of water vapor in the path have been reported in the literature and several methods of computation have been published which enable one to calculate atmospheric spectral transmission as a function of absolute humidity and path length. Unfortunately, there is a dearth of statistical data providing probabilities of occurrence of values of absolute humidity within given increments, and probabilities that given values of absolute humidity will not be exceeded in given times and places. Reference (b) provides a collection of 228 graphs representing the cumulative frequencies of occurrence of given concentrations of atmospheric water vapor for 19 marine locations for each of the 12 months of the year. These northern hemisphere sites were selected as being representative of the types of climate in which future naval operations might be expected to take place. This technical memorandum extends the earlier treatment by providing absolute humidity statistics on an annual basis in the form of absolute humidity histograms and cumulative frequency of occurrence curves for all of the sites both individually and collectively. The latter composite data will be taken as being representative of the marine absolute humidity environment of the world and will be used as an input to the FLIR mathematical model of reference (c). In the present study two additional sites, Atlantic City, New Jersey, and Key West, Florida, have been included to permit interpolating/extrapolating the results of NAVAIRDEVCEN FLIR evaluations in these areas to the other sites. The principal purpose of generating these statistics is to enable one to determine the absolute humidity for which a FLIR must be designed if it is not to be prevented, to any preselected degree of probability, from achieving its operational range requirements because of atmospheric water vapor.

II. METHOD OF CALCULATION

Reference (d) provides monthly and annual statistical weather data for a large number of maritime areas throughout the northern hemisphere based largely on reports from ships. Typical reporting areas are rectangular in shape and cover latitude and longitude intervals of the order of two to four degrees. Each area is given a descriptive name which is usually that of an adjacent city or island. The 21 sites covered in this study are described in table I.

A representative page from Volume 2 of reference (d), which gives annual data for Atlantic City, is reproduced here as table II. Of particular interest on that page is "table 13" which gives the percent frequency that the relative humidity fell within each of eight

intervals of relative humidity while simultaneously the air temperature fell within each of 18 intervals of temperature over the recording period. If one takes the values of relative humidity and temperature at the center of each respective interval as being representative of the whole interval, one can then compute an "average" value of absolute humidity for each of the 144 two-dimensional relative humidity - temperature intervals. Reference (c) provides the basis for the formula

$$\text{Absolute Humidity} = 288.9 \frac{P}{T_A} H_r \text{ gm/m}^3$$

in which P is the vapor pressure of water in mm of Hg, T_A is the absolute temperature of the air in °K, and H_r is the dimensionless relative humidity expressed in decimal form. Values of the vapor pressure of water over liquid water from reference (e) corresponding to values of T_A at the center of each temperature interval and values of H_r corresponding to the center of each relative humidity interval were used to compute the matrix of "average" values of absolute humidity given in table III. These values of absolute humidity, in conjunction with the percent frequencies of occurrence given in reference (d) for each site, were used to determine the values of frequency density for each 1.0-gm/m³ absolute humidity interval and values of the cumulative frequency of occurrence given in tables IV and V for each of the 21 sites. In addition, these frequency data were summed and normalized to provide the composite distributions over the 21 sites also given in tables IV and V. A Hewlett-Packard HP-35 Pocket Calculator was used in performing the computations. The data of tables IV and V were subsequently hand plotted in figures 1 through 22, which are arranged in order of decreasing site latitude. Because reference (d) gives percent frequencies rounded off to the nearest 0.1%, the maximum values of the cumulative frequencies usually do not equal 100%. There may be some bias in the original data because of a preference of the reporting ships to avoid extremes of bad weather and because of a preference to work during the day rather than at night.

Figure 23 is a graph that enables one conveniently to convert the values of absolute humidity (gm/m³) used in this technical memorandum to those (cm of precipitable water/nmi) used in reference (c). The composite data for the 21 selected sites in figure 22 were replotted in figure 24 with the absolute humidity expressed in centimeters of precipitable water vapor per nautical mile. This graph enables one to interpret the FLIR range predictions of reference (f) in probabilistic terms with respect to atmospheric water vapor concentration.

In reference (f), "high," "medium" and "low" values of absolute humidity of 5.5, 2.6 and 1.0 cm of precipitable water per nmi, respectively, were assumed in performing the calculations. Figure 24 shows that, averaged over the 21 selected sites, these values are not exceeded 99.5%, 44% and 10% of the time, respectively.

III. ACKNOWLEDGEMENT

Sincere appreciation is extended to personnel of the Naval Weather Service Command, and in particular to LCDR D. D. Frame, for their assistance in selecting and providing the required relative humidity - temperature data.

PAUL M. MOSER

TABLE I
SITE LOCATIONS AND DESCRIPTIONS

SITE NO.	LATITUDE	LONGITUDE	SITE DESCRIPTION
1	56 N-Coast	151-157 W	Kodiak, Alaska (NE Pacific Ocean)
2	45-47 N	53-56 W	Argentia, Newfoundland (Atlantic Ocean SE of Newfoundland)
3	42 N-Coast	66 W-Coast	Boston, Mass. (Atlantic Ocean E of central Mass.)
4	39.7 N	129.4 E	Wonsan, North Korea (Sea of Japan)
5	38-40 N	72 W-Coast	Atlantic City, N.J. (Atlantic Ocean E of S N.J., Del. and N Md.)
6	36-38 N	Coast-126 W	San Francisco, Calif. (Pacific Ocean S and W of central Calif.)
7	37.9 N	25.1 E	South Aegean Sea (E of Athens, Greece)
8	36.0 N	3.4 W	Malaga, Spain (W end of Mediterranean)
9	36.0 N	133.2 E	Matsue, Japan (S end of Sea of Japan)
10	32.2 N	33.3 E	Port Said, Egypt (SE Mediterranean)
11	27.2 N	50.2 E	NW Persian Gulf (between Saudi Arabia and Iran)
12	25.0 N	57.8 E	N Gulf of Oman (between Iran and Oman)
13	23-25 N	79-83 W	Key West, Fla. (Gulf of Mexico & Atlantic Ocean between Florida & Cuba)
14	29.9 N	67.8 E	Karachi, Pakistan (N Arabian Sea)
15	20.4 N	158.3 W	Hawaiian Leeward (Pacific Ocean S of Oahu)
16	18-20 N	74-76 W	Guantanamo, Cuba (Caribbean S of E Cuba)
17	17-22 N	110 E-Coast	S China Sea Area VII (E of North Vietnam)
18	17.9 N	85.2 E	Vishakhapatnam, India (Bay of Bengal E of S India)
19	14.2 N	73.0 E	Panjim, Goa (Arabian Sea W of S India)
20	11-14 N	111 E-Coast	S China Sea Area I (E of South Vietnam)
21	7-11 N	102 & 103 E-Coast	S. China Sea Area VI (Gulf of Siam adjoining Malaysia)

PERIOD: (PRIMARY) 1949-1968
 (OVER-ALL) 1855-1968

ANNUAL

TABLE 13

TEMP F	PERCENT FREQUENCY OF RELATIVE HUMIDITY BY TEMP					TOTAL OBS	PCT FREQ
	0-29	30-39	40-49	50-59	60-69		
95/99	0	*	0	0	0	0	1
90/94	0	*	0	0	0	0	21
85/89	0	*	0	0	0	0	146
80/84	0	*	0	0	0	0	877
75/79	0	*	0	0	0	0	3197
70/74	0	*	0	0	0	0	4725
65/59	0	*	0	0	0	0	3575
60/54	0	*	0	0	0	0	1029
55/59	0	*	0	0	0	0	3817
50/54	0	*	0	0	0	0	109
45/49	0	*	0	0	0	0	205
40/44	0	*	0	0	0	0	117
35/39	0	*	0	0	0	0	200
30/34	0	*	0	0	0	0	112
25/29	0	*	0	0	0	0	104
20/24	0	*	0	0	0	0	96
15/19	0	*	0	0	0	0	88
10/14	0	*	0	0	0	0	82
TOTAL	149	670	2166	5030	7281	9750	34891
PCT	.2	1.9	6.2	14.4	20.9	27.9	28.0

TABLE 14

TEMP F	PERCENT FREQUENCY OF WIND DIRECTION BY TEMP					TOTAL OBS	PCT FREQ
	N	NE	E	SE	S		
95/99	0	0	0	0	0	0	0
90/94	0	0	0	0	0	0	0
85/89	0	0	0	0	0	0	0
80/84	0	0	0	0	0	0	0
75/79	0	0	0	0	0	0	0
70/74	0	0	0	0	0	0	0
65/59	0	0	0	0	0	0	0
60/54	0	0	0	0	0	0	0
55/59	0	0	0	0	0	0	0
50/54	0	0	0	0	0	0	0
45/49	0	0	0	0	0	0	0
40/44	0	0	0	0	0	0	0
35/39	0	0	0	0	0	0	0
30/34	0	0	0	0	0	0	0
25/29	0	0	0	0	0	0	0
20/24	0	0	0	0	0	0	0
15/19	0	0	0	0	0	0	0
10/14	0	0	0	0	0	0	0
TOTAL	149	670	2166	5030	7281	9750	34891
PCT	.2	1.9	6.2	14.4	20.9	27.9	28.0

TABLE 15

HOUR (G.M.T.)	MAX	MEANS, EXTREMES AND PERCENTILES OF TEMP (DEG F) BY HOUR					TOTAL OBS	MEAN TEMP (GMT)
		99%	95%	50%	1%	MIN		
0000	93	63	79	59	36	28	14	58.0
0009	82	60	77	57	34	25	12	56.1
0209	92	81	77	57	35	26	12	56.9
0215	92	81	77	57	35	26	12	56.9
1622	93	83	82	60	35	26	14	57.0
TOT	93	82	77	57	34	25	12	57.4

TABLE 16

HOUR	0-29	30-59	60-69	70-79	80-89	90-100	MEAN TEMP	TOTAL OBS	MEAN TEMP (GMT)
N	0	0	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0	0	0
VAR	0	0	0	0	0	0	0	0	0
CALM	0	0	0	0	0	0	0	0	0

TABLE II

REPRESENTATIVE PAGE OF ANNUAL DATA FOR ATLANTIC CITY, NEW JERSEY, REPRODUCED FROM NAVAL WEATHER SERVICE COMMAND SUMMARY OF SYNOPTIC METEOROLOGICAL OBSERVATIONS

TABLE III
"AVERAGE" VALUES OF ABSOLUTE HUMIDITY (gm/m^3) CORRESPONDING
TO VARIOUS RELATIVE HUMIDITY - TEMPERATURE INTERVALS

Temperature Interval (°F)	Average Temperature of Interval (°F)	Average Temperature of Interval (°C)	Relative Humidity Interval (%)								
			0-29			30-39			40-49		
			14.5	34.5	44.5	Average	54.5	64.5	60-69	70-79	80-89
100/104	102	38.9	7.00+	16.66	21.49	26.31	31.14	35.97	40.80	45.87	
95/99	97	36.1	6.07	14.44	18.62	22.81	26.99	31.18	35.36	39.76	
90/94	92	33.3	5.25	12.48	16.10	19.71	23.33	26.95	30.56	34.36	
85/89	87	30.6	4.54	10.80	13.93	17.36	20.20	23.33	26.46	29.75	
80/84	82	27.8	3.90	9.28	11.97	14.66	17.34	20.03	22.72	25.55	
75/79	77	25.0	3.34	7.94	10.24	12.55	14.85	17.15	19.45	21.87	
70/74	72	22.2	2.85	6.77	8.74	10.70	12.66	14.62	16.59	18.65	
65/69	67	19.4	2.42	5.76	7.42	9.09	10.76	12.43	14.10	15.85	
60/64	62	16.7	2.06	4.90	6.32	7.74	9.17	10.59	12.01	13.50	
55/59	57	13.9	1.74	4.13	5.33	6.53	7.73	8.93	10.12	11.38	
50/54	52	11.1	1.46	3.47	4.48	5.49	6.50	7.50	8.51	9.57	
45/49	47	8.3	1.22	2.91	3.75	4.59	5.44	6.28	7.12	8.01	
40/44	42	5.6	1.03	2.44	3.15	3.85	4.56	5.27	5.97	6.72	
35/39	37	2.8	0.85	2.03	2.61	3.20	3.79	4.37	4.96	5.58	
30/34	32	0	0.75	1.67	2.15	2.64	3.12	3.61	4.09	4.60	
25/29	27	-2.8	0.58	1.38	1.78	2.18	2.57	2.97	3.37	3.79	
20/24	22	-5.6	0.47	1.13	1.45	1.78	2.10	2.43	2.76	3.10	
15/19	17	-8.3	0.39	0.93	1.19	1.46	1.73	2.00-	2.27	2.55	
10/14	12	-11.1	0.32	0.75	0.97	1.18	1.40	1.62	1.83	2.06	
5/9	7	-13.9	0.25	0.60	0.78	0.95	1.13	1.30	1.48	1.66	
0/4	2	-16.7	0.20	0.49	0.63	0.77	0.91	1.05	1.19	1.34	

TABLE IV
ANNUAL FREQUENCY DENSITIES OF OCCURRENCE WITHIN GIVEN ABSOLUTE HUMIDITY INTERVALS FOR SELECTED MARINE SITES (PERCENT)

TABLE V
ANNUAL CUMULATIVE FREQUENCIES OF OCCURRENCE OF GIVEN VALUES
OF ABSOLUTE HUMIDITY FOR SELECTED MARINE SITES (PERCENT)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Avg.
	Site Number																					
0.5	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	
1.0	0.2	0.9	1.5	2.0	2.5	3.0	3.5	4.0	4.3	4.6	4.9	5.2	5.5	5.8	6.0	6.2	6.4	6.6	6.8	7.0	7.2	
1.5	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.3	4.6	4.9	5.2	5.5	5.8	6.0	6.2	6.4	6.6	6.8	7.0	7.2	
2.0	0.8	1.5	2.2	2.8	3.3	3.8	4.3	4.8	5.2	5.6	6.0	6.3	6.6	6.9	7.2	7.5	7.8	8.0	8.3	8.5	8.7	
2.5	1.2	1.8	2.4	2.9	3.4	3.9	4.4	4.9	5.3	5.7	6.1	6.5	6.9	7.3	7.7	8.0	8.3	8.6	8.9	9.2	9.5	
3.0	1.6	2.2	2.8	3.3	3.8	4.3	4.8	5.3	5.7	6.1	6.5	6.9	7.3	7.7	8.1	8.5	8.9	9.3	9.6	9.9	10.2	
3.5	2.0	2.6	3.1	3.6	4.1	4.6	5.1	5.6	6.0	6.4	6.8	7.2	7.6	8.0	8.4	8.8	9.2	9.6	10.0	10.4	10.8	
4.0	2.4	2.9	3.4	3.9	4.4	4.9	5.4	5.9	6.3	6.7	7.1	7.5	7.9	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	
4.5	2.8	3.3	3.8	4.3	4.8	5.3	5.8	6.3	6.7	7.1	7.5	7.9	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5	
5.0	3.2	3.7	4.2	4.7	5.2	5.7	6.2	6.7	7.1	7.5	7.9	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5	11.9	
5.5	3.6	4.1	4.6	5.1	5.6	6.1	6.6	7.1	7.5	7.9	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5	11.9	12.3	
6.0	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	7.9	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5	11.9	12.3	12.7	
6.5	4.4	4.9	5.4	5.9	6.4	6.9	7.4	7.9	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5	11.9	12.3	12.7	13.1	
7.0	4.8	5.3	5.8	6.3	6.8	7.3	7.8	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5	11.9	12.3	12.7	13.1	13.5	
7.5	5.2	5.7	6.2	6.7	7.2	7.7	8.2	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5	11.9	12.3	12.7	13.1	13.5	13.9	
8.0	5.6	6.1	6.6	7.1	7.6	8.1	8.6	9.1	9.5	9.9	10.3	10.7	11.1	11.5	11.9	12.3	12.7	13.1	13.5	13.9	14.3	
8.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	
9.0	6.4	6.9	7.4	7.9	8.4	8.9	9.4	9.9	10.4	10.9	11.4	11.9	12.4	12.9	13.4	13.9	14.4	14.9	15.4	15.9	16.4	
9.5	6.8	7.3	7.8	8.3	8.8	9.3	9.8	10.3	10.8	11.3	11.8	12.3	12.8	13.3	13.8	14.3	14.8	15.3	15.8	16.3	16.8	
10.0	7.2	7.7	8.2	8.7	9.2	9.7	10.2	10.7	11.2	11.7	12.2	12.7	13.2	13.7	14.2	14.7	15.2	15.7	16.2	16.7	17.2	
10.5	7.6	8.1	8.6	9.1	9.6	10.1	10.6	11.1	11.6	12.1	12.6	13.1	13.6	14.1	14.6	15.1	15.6	16.1	16.6	17.1	17.6	
11.0	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	
11.5	8.4	8.9	9.4	9.9	10.4	10.9	11.4	11.9	12.4	12.9	13.4	13.9	14.4	14.9	15.4	15.9	16.4	16.9	17.4	17.9	18.4	
12.0	8.8	9.3	9.8	10.3	10.8	11.3	11.8	12.3	12.8	13.3	13.8	14.3	14.8	15.3	15.8	16.3	16.8	17.3	17.8	18.3	18.8	
12.5	9.2	9.7	10.2	10.7	11.2	11.7	12.2	12.7	13.2	13.7	14.2	14.7	15.2	15.7	16.2	16.7	17.2	17.7	18.2	18.7	19.2	
13.0	9.6	10.1	10.6	11.1	11.6	12.1	12.6	13.1	13.6	14.1	14.6	15.1	15.6	16.1	16.6	17.1	17.6	18.1	18.6	19.1	19.6	
13.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0	
14.0	10.4	10.9	11.4	11.9	12.4	12.9	13.4	13.9	14.4	14.9	15.4	15.9	16.4	16.9	17.4	17.9	18.4	18.9	19.4	19.9	20.4	
14.5	10.8	11.3	11.8	12.3	12.8	13.3	13.8	14.3	14.8	15.3	15.8	16.3	16.8	17.3	17.8	18.3	18.8	19.3	19.8	20.3	20.8	
15.0	11.2	11.7	12.2	12.7	13.2	13.7	14.2	14.7	15.2	15.7	16.2	16.7	17.2	17.7	18.2	18.7	19.2	19.7	20.2	20.7	21.2	
15.5	11.6	12.1	12.6	13.1	13.6	14.1	14.6	15.1	15.6	16.1	16.6	17.1	17.6	18.1	18.6	19.1	19.6	20.1	20.6	21.1	21.6	
16.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0	20.5	21.0	21.5	22.0	
16.5	12.4	12.9	13.4	13.9	14.4	14.9	15.4	15.9	16.4	16.9	17.4	17.9	18.4	18.9	19.4	19.9	20.4	20.9	21.4	21.9	22.4	
17.0	12.8	13.3	13.8	14.3	14.8	15.3	15.8	16.3	16.8	17.3	17.8	18.3	18.8	19.3	19.8	20.3	20.8	21.3	21.8	22.3	22.8	
17.5	13.2	13.7	14.2	14.7	15.2	15.7	16.2	16.7	17.2	17.7	18.2	18.7	19.2	19.7	20.2	20.7	21.2	21.7	22.2	22.7	23.2	
18.0	13.6	14.1	14.6	15.1	15.6	16.1	16.6	17.1	17.6	18.1	18.6	19.1	19.6	20.1	20.6	21.1	21.6	22.1	22.6	23.1	23.6	
18.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	
19.0	14.4	14.9	15.4	15.9	16.4	16.9	17.4	17.9	18.4	18.9	19.4	19.9	20.4	20.9	21.4	21.9	22.4	22.9	23.4	23.9	24.4	
19.5	14.8	15.3	15.8	16.3	16.8	17.3	17.8	18.3	18.8	19.3	19.8	20.3	20.8	21.3	21.8	22.3	22.8	23.3	23.8	24.3	24.8	
20.0	15.2	15.7	16.2	16.7	17.2	17.7	18.2	18.7	19.2	19.7	20.2	20.7	21.2	21.7	22.2	22.7	23.2	23.7	24.2	24.7	25.2	
20.5	15.6	16.1	16.6	17.1	17.6	18.1	18.6	19.1	19.6	20.1	20.6	21.1	21.6	22.1	22.6	23.1	23.6	24.1	24.6	25.1	25.6	
21.0	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	24.5	25.0	25.5	26.0	
21.5	16.4	16.9	17.4	17.9	18.4	18.9	19.4	19.9	20.4	20.9	21.4	21.9	22.4	22.9	23.4	23.9	24.4	24.9	25.4	25.9	26.4	
22.0	16.8	17.3	17.8	18.3	18.8	19.3	19.8	20.3	20.8	21.3	21.8	22.3	22.8	23.3	23.8	24.3	24.8	25.3	25.8	26.3	26.8	
22.5	17.2	17.7	18.2	18.7	19.2	19.7	20.2	20.7	21.2	21.7	22.2	22.7	23.2	23.7	24.2	24.7	25.2	25.7	26.2	26.7	27.2	
23.0	17.6	18.1	18.6	19.1	19.6	20.1	20.6	21.1	21.6	22.1	22.6	23.1	23.6	24.1	24.6	25.1	25.6	26.1	26.6	27.1	27.6	
23.5	18.0	18.5	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	24.5	25.0	25.5	26.0	26.5	27.0	27.5	28.0	
24.0	18.4	18.9	19.4	19.9	20.4	20.9	21.4	21.9	22.4	22.9	23.4	23.9	24.4	24.9	25.4	25.9	26.4	26.9	27.4	27.9	28.4	
24.5	18.8	19.3	19.8	20.3	20.8	21.3	21.8	22.3	22.8	23.3	23.8	24.3	24.8	25.3	25.8	26.3	26.8	27.3	27.8	28.3	28.8	
25.0	19.2	19.7	20.2	20.7	21.2	21.7	22.2	22.7	23.2	23.7	24.2	24.7	25.2	25.7	26.2	26.7	27.2	27.7	28.2	28.7	29.2	
25.5	19.6	20.1	20.6	21.1	21.6	22.1	22.6	23.1	23.6	24.1	24.6	25.1	25.6	26.1	26.6	27.1	27.6	28.1	28.6	29.1	29.6	
26.0	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	24.5	25.0	25.5	26.0	26.5	27.0	27.5	28.0	28.5	29.0	29.5	30.0	
26.5	20.4	20.9	21.4	21.9	22.4	22.9	23.4	23.9	24.4	24.9	25.4	25.9	26.4	26.9	27.4	27.9	28.4	28.9	29.4	29.9	30.4	
27.0	20.8	21.3	21.8	22.3	22.8	23.3	23.8	24.3	24.8	25.3	25.8	26.3	26.8	27.3	27.8	28.3	28.8	29.3	29.8	30.3	30.8	
2																						

FIGURE 1. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - KODIAK, ALASKA

FIGURE 2. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - ARGENTIA, NEWFOUNDLAND

FIGURE 3. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - BOSTON, MASSACHUSETTS

FIGURE 4. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - WONSAN, NORTH KOREA

FIGURE 5. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - ATLANTIC CITY, NEW JERSEY

FIGURE 6. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - SAN FRANCISCO, CALIFORNIA

FIGURE 7. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - SOUTH AEGEAN SEA

FIGURE 8. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - MALLAGA, SPAIN

FIGURE 9. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - MATSUE, JAPAN

FIGURE 10. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - PORT SAID, EGYPT

FIGURE 11. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - N. W. PERSIAN GULF

FIGURE 12. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - N. GULF OF OMAN

FIGURE 13. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - KEY WEST, FLORIDA

FIGURE 14. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - KARACHI, PAKISTAN

FIGURE 15. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - HAWAIIAN LEEWARD

FIGURE 16. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - GUANTANAMO, CUBA

FIGURE 17. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - S. CHINA SEA AREA VII

FIGURE 18. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - VISHAKHAPATNAM, INDIA

FIGURE 19. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - PANJIM, GOA

FIGURE 20. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - S. CHINA SEA AREA I

FIGURE 21. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - S. CHINA SEA AREA VI

FIGURE 22. ANNUAL ABSOLUTE HUMIDITY DISTRIBUTION - COMPOSITE OF 21 SITES

