Algoritmer og Datastrukturer (NDAA04010U) Ugeopgave 1 med svar og forklaringer

Københavns Universitet

2024

1 MergeSort

Antag at MERGESORT(A, p, r), implementeret som i CLRS sektion 2.3, bliver kaldt på 21 elementer (dvs. r-p+1=21). Hvor mange kald bliver der totalt lavet til MERGE-SORT? Hvad er antallet af kald generelt, når input har n elementer? Argumentér for dine svar. **Svar:** Antal elementer i hvert kald af mergesort, opdelt efter rekursionsniveau, er: 21; 10, 11;5, 5, 5, 6; 2, 3, 2, 3, 2, 3, 3, 3; 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Antal kald er altså 1+2+4+8+16+10=41. Generelt kan man se at antal indre knuder i et binært træ med n blade altid er 2n-1 (det kan fx ses ved induktion i n), hvilket er en alternativ måde at komme frem til svaret 41. \triangle

2 Rekursionsligninger

Hvilke af disse rekursionsligninger har løsningen $T(n) = \Theta(n^2)$? Antag at T(n) = 1 for $n \leq 1$. Vælg ét eller flere korrekte svar og beskriv hvordan du kom frem til dem (både positive og negative svar).

1.
$$T(n) = 4T(\lfloor n/2 \rfloor) + n \lg n$$
. \checkmark

2.
$$T(n) = 4T(\lfloor n/2 \rfloor) + n^2$$
.

3.
$$T(n) = 2T(\lfloor n/4 \rfloor) + n^2$$
. \checkmark

4.
$$T(n) = 9T(\lfloor n/3 \rfloor) + n^3$$
.

5.
$$T(n) = T(n-1) + n^2$$
.

6.
$$T(n) = T(n-1) + n$$
.

Svar: De fire første rekursionsligninger kan løses ved hjælp af master theorem, hvor nummer 1 og 3 falder i henholdsvis tilfælde 1 og 3 som giver $T(n) = \Theta(n^2)$. De sidste

ligninger kan løses med substitutionsmetoden. I ligning 5 er der n led hvor halvdelen har størrelse mindst $(n/2)^2 = n^2/4$, så $T(n) = \Omega(n^3)$. I ligning 5 er der n led af størrelse højst n, hvor halvdelen har størrelse mindst n/2, så $T(n) = \Theta(n^2)$. \triangle

3 Del og hersk

Antag at du har en rekursiv algoritme A, og lad n betegne størrelsen på algoritmens input X. Hvis n=1 beregnes resultatet A(X) i konstant tid. For n>1 bruger algoritmen først $O(n \lg n)$ tid på at beregne fire inputs X_1, X_2, X_3, X_4 , hver af størrelse $\lfloor n/2 \rfloor$, og $A(X_1), A(X_2), A(X_3), A(X_4)$ beregnes rekursivt. Endelig kombineres de rekursive svar til et output A(X) i tid $O(n^2)$. Skriv en rekursionsligning der beskriver en øvre grænse på køretiden T(n) af A på input X og find en løsning ved hjælp af master theorem. Argumentér for dit svar.

Svar: De fire rekursive delproblemer af størrelse højst $\lfloor n/2 \rfloor$ tager total tid $4T(\lfloor n/2 \rfloor)$. Derudover bruges der totalt tid $O(n^2)$ på at beregne A(X). Fordi vi blot er ude efter en øvre grænse kan vi antage at den ekstra tid er $\Theta(n^2)$, det kan kun gøre tidsforbruge større. Så svaret er $T(n) = 4T(\lfloor n/2 \rfloor) + \Theta(n^2)$. Master theorem (tilfælde 2) giver løsningen $O(n^2 \log n)$. \triangle

4 Køretid

Betragt følgende kode i pseudo-kode notationen fra CLRS:

```
LOOPS(n)

1  r = 0

2  for i = 1 to n/2

3  for j = n/2 - i to n

4  r = r + j

5  return r
```

Vi antager at n/2 er et heltal således at den yderste **for**-løkke har n/2 iterationer. Hvilke af følgende er gyldige udsagn om køretiden T(n) af LOOPS(n)? (Læg mærke til at udsagnene ikke er uafhængige — hvis der gælder f(n) = O(n) så gælder også $f(n) = O(n \lg n)$, osv.) Vælg ét eller flere korrekte svar og beskriv hvordan du kom frem til dem (både positive og negative svar).

- 1. T(n) = O(n).
- $2. T(n) = O(n \lg n).$
- 3. $T(n) = O(n^2)$. \checkmark
- 4. $T(n) = \Omega(n)$. \checkmark

```
5. T(n) = \Omega(n \lg n). \checkmark
6. T(n) = \Omega(n^2). \checkmark
```

Svar: Der er n/2 iterationer af den ydre løkke, der hver tager O(n) tid fordi den indre løkke laver mellem n/2 og n iterationer. Dvs. køretiden er $\Theta(n^2)$. Derfor er de to første store-O grænser for lave, mens de øvrige grænser gælder. \triangle

5 Invarianter

Betragt følgende funktion, i pseudo-kode notationen fra CLRS, hvor input A er en tabel af heltal og n er længden af A.

```
SECOND-SMALLEST(A, n)
   m = A[1]
   r = \infty
3
   for i = 2 to n
        if A[i] < m
4
5
             r = m
6
             m = A[i]
7
        elseif A[i] < r
8
             r = A[i]
   return r
9
```

Hvilke udsagn gyldige løkke-invarianter ved starten af hver iteration i **for**-løkken? Vælg ét eller flere korrekte svar og beskriv hvordan du kom frem til dem (både positive og negative svar).

```
1. m=\min(A[1],\ldots,A[i-1]). \checkmark
2. m=\min(A[1],\ldots,A[n]).
3. r\geq m. \checkmark
4. m\geq 0.
5. Mindst 1 element i A[1],\ldots,A[i-1] er mindre end eller lig med r. \checkmark
6. Højst 2 elementer i A[1],\ldots,A[i-1] er mindre end eller lig med r.
```

Svar: Udsagn 1, 3 og 5 gælder for i=2 pga. initialiseringen af m og r, og kan ses at gælde efter hver iteration ved induktion. Udsagn 2 gælder ikke hvis minimum i A ikke er lig med A[1]. Udsagn 4 gælder ikke hvis A[1] < 0. Udsagn 6 gælder ikke hvis der er 3 værdier i A, der har den samme, mindste værdi. \triangle

6 Induktionsbeviser

I denne opgave betragter vi regulære n-kanter som disse eksempler (n = 4 og n = 6):

Vi er interesserede i antal diagonaler, dvs. linjer der forbinder to hjørner i n-kanterne og er helt indeholdt i figuren. En 3-kant har ingen diagonaler da alle hjørner er naboer, mens vi for n=4 og n=6 har henholdsvis 2 og 9 diagonaler.

En diagonal deler en n-kant i en n_1 -kant og en n_2 kant med en fælles kant og hvor $n_1 + n_2 = n + 2$. For eksempel deler 4-kantens diagonal den i to 3-kanter.

a) Bevis ved induktion at antal diagonaler d_n i en n-kant er lig med n(n-3)/2 for $n \ge 3$. Der lægges vægt på, at argumentationen er klar og koncis.

Svar: For n=3 har vi $d_n=0=3(3-3)/2$, hvilket etablerer basistilfældet. Antag nu at n>3, at udsagnet er korrekt for n'-kanter med n'< n, og betragt en n-kant. Tag tre hjørner v_1, v_2, v_3 der ligger ved siden af hinanden, dvs. hvor v_1 og v_3 er forbundet til v_2 . Fra v_2 kan der laves diagonaler til hver af de andre n-3 hjørner og desuden kan der laves en diagonal mellem v_1 og v_3 . De resterende diagonaler ligger i den (n-1)-kant, der fås ved at udelade v_2 (og forbinde v_1 og v_3 direkte). Ifølge induktionshypotesen har vi $d_{n-1}=(n-1)(n-4)/2$ diagonaler i denne del, dvs.

$$d_n = n - 3 + 1 + d_{n-1} = n - 2 + (n-1)(n-4)/2 = n(n-3)/2$$
.

 \triangle

7 Korrekthed og køretid

I denne opgave bruger vi matrix og vektor-notation, se evt. CLRS appendix D.1. Fibonaccitallene F_0, F_1, F_2, \ldots er defineret ved $F_0 = 0$, $F_1 = 1$, og $F_n = F_{n-1} + F_{n-2}$ for n > 1. Betragt nu matricen A og søjlevektorer på formen $x = (x_1, x_2)^T$.

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \qquad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

a) Argumentér for at for $x = (F_{n-2}, F_{n-1})^T$ opfylder matrix-vektor produktet ligheden $Ax = (F_{n-1}, F_n)^T$ for n > 1.

Svar: Per definition af matrix-vektor produkter har vi:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_{n-2} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} F_{n-1} \\ F_{n-2} + F_{n-1} \end{pmatrix} = \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix},$$

hvor den sidste lighed bruger definitionen af F_n . \triangle

b) Bevis at for $x = (0,1)^T$ gælder ligheden $A^{n-1}x = (F_{n-1}, F_n)^T$ for $n \ge 1$.

Svar: Bevis ved induktion i n. Basistilfældet n=1 gælder da $A^{n-1}x=x=(F_0,F_1)^T$. Antag som induktionshypotese at $A^{i-1}x=(F_{i-1},F_i)^T$ for $1 \le i < n$. Da har vi

$$A^{n-1}x = A(A^{n-2}x) = A(F_{n-2}, F_{n-1})^T = (F_{n-1}, F_n)^T,$$

hvor lighed nummer 2 bruger induktionshypotesen og lighed nummer 3 bruger del a). \triangle

c) Argumentér for at A^{n-1} , og dermed også $A^{n-1}x$, kan udregnes i tid $O(\lg n)$, hvis vi antager at multiplikation, addition og subtraktion tager konstant tid. (Start evt. med at se på tilfældet hvor n-1 er en potens af 2.)

Svar: Vi har følgende rekursionsligning:

$$A^{i} = \begin{cases} I & \text{hvis } i = 0\\ (A^{i/2})^{2} & \text{hvis } i > 0 \text{ er lige}\\ A(A^{(i-1)/2})^{2} & \text{hvis } i \text{ er ulige} \end{cases}$$

Da A^{n-1} er af konstant størrelse betyder det at A^{n-1} kan udregnes i konstant tid ud fra enten $A^{(n-1)/2}$ eller $A^{(n-2)/2}$. Det giver rekursionsdybde højst $\lg(n)$, og dermed tid $O(\lg n)$. \wedge

d) Argumentér for at F_n kan udregnes i tid $O(\lg n)$ hvis vi antager at aritmetiske operationer tager konstant tid.

Svar: Følger af b) og c). \triangle