1 Центральная предельная теорема

Теорема 1.1 (Линдеберга). Пусть $\{\xi_k\}_{k\geq 1}$ — независивые случайные величины, $\mathsf{E}\xi_k^2<+\infty\ \forall k$, обозначим $m_k=\mathsf{E}\xi_k$, $\delta_k^2=\mathsf{D}\xi_k>0: S_n=\sum\limits_{i=0}^n\xi_i$; $\mathsf{D}_n^2=\sum\limits_{k=1}^n\delta_k^2\ u\ F_k(x)$ — ф.р. ξ_k . Пусть выполнено условие Линдеберга, то есть

$$\forall \mathcal{E} > 0 \frac{1}{\mathsf{D}_n^2} \sum_{k=1}^n \int_{\{x:|x-m_k| > \mathcal{E}\mathsf{D}_n\}} (x-m_k)^2 dx \xrightarrow[n \to \infty]{} 0.$$

Torda $\frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} \mathcal{N}(0,1), n \to \infty.$

2 Гауссовские случайные векторы

Определение 1. Случайный вектор $\vec{\xi}$ — гауссовский, если его характеристическая функция $\varphi_{\vec{\xi}}(\vec{t}) = \exp(i(\vec{m}, \vec{t}) - \frac{1}{2}(\Sigma \vec{t}, \vec{t})), \vec{m} \in \mathbb{R}^n, \Sigma$ — симметрическая неотрицательно определенная матрица.

Определение 2. Случайный вектор $\vec{\xi}$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{b}$, где $\vec{b} \in \mathbb{R}^n$, $A \in Mat(n \times m)$ и $\vec{\eta} = (\eta_1, \dots, \eta_m)$ — независимые и $\mathcal{N}(0, 1)$.

Определение 3. Случайный вектор $\vec{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайная величина $(\vec{\lambda}, \vec{\xi})$ имеют нормальное распределение.

Теорема 2.1 (об эквивалентности определений гауссовских векторов). *Предыдущие три определения эквивалентны.*

3 Задачи по астрономии