MOSFETs

1971: Intel 4004, ~2300 transistores MOSFETs

MOSFETs

Metal
Oxide
Semiconductor

- Estrutura
- Funcionamento
- Polarização (alimentação)
- Chave digital (porta lógica)

MOSFET x TBJ

- Menor tamanho
- Menor consumo de energia
- Não necessita de resistor de polarização em circuitos digitais (CMOS)

1 - MOSFET de Depleção

Relembrando o JFET

2 - MOSFET de Intensificação

Estrutura - MOSFET de Intensificação

Parâmetros construtivos

$$\beta = \mu C_{OX} \left(\frac{W}{L} \right)$$

 $V_T \rightarrow$ Tensão de limiar

Funcionamento nMOSFET de Intensificação

nMOSFET de Intensificação

$$V_{GS} > V_T$$

 V_T – Tensão de Limiar

$$V_{GS} > V_T$$

 V_T – Tensão de Limiar

$$V_{DS} > 0$$

Canal conduzindo.

$$V_{GS} > V_T$$

 V_T – Tensão de Limiar

$$V_{DS} > 0$$

Canal conduzindo.

LXT:

$$V_{DS} + V_{GD} - V_{GS} = 0$$

$$V_{GS} > V_T$$

 V_T – Tensão de Limiar

$$V_{DS} > 0$$

Canal conduzindo.

LXT:

$$V_{DS} + V_{GD} - V_{GS} = 0$$

$$\Rightarrow V_{GD} = V_{GS} - V_{DS}$$

$$V_{GS} > V_T$$

 V_T – Tensão de Limiar

$$V_{DS} > 0$$

Canal conduzindo.

LXT:

$$V_{DS} + V_{GD} - V_{GS} = 0$$

$$= > V_{GD} = V_{GS} - V_{DS}$$

$$V_{GS} > V_T$$

 V_T – Tensão de Limiar

$$V_{DS} > 0$$

Canal conduzindo.

LXT:

$$V_{DS} + V_{GD} - V_{GS} = 0$$

$$= > V_{GD} = V_{GS} - V_{DS}$$

=> Até que o canalé "estrangulado"

Função Transferência

Funcionamento Regiões de Operação

Função Transferência – região de corte

Função Transferência – região de triodo

Função Transferência – região de triodo

$$V_{\rm GS} \ge V_{\rm T}$$
 and $V_{\rm DS} < V_{\rm GS} - V_{\rm T} \rightarrow I_{\rm D} = \beta \ [(V_{\rm GS} - V_{\rm T})V_{\rm DS} - V_{\rm DS}^2/2]$

Função Transferência – região e triodo

$$I_{\rm D} = \beta \left[(V_{\rm GS} - V_{\rm T}) V_{\rm DS} - V_{\rm DS}^2 / 2 \right]$$

Parábola

$$\beta = \mu C_{\text{ox}}(W/L)$$
 [A/V²]

Função Transferência – região e triodo

$$I_{D} = \beta \left[(V_{GS} - V_{T}) V_{DS} - V_{DS}^{2} / 2 \right]$$
Parábola

$$\beta = \mu C_{\text{ox}}(W/L)$$
 [A/V²]

$$V_{\rm GS} \ge V_{\rm T}$$
 and $V_{\rm DS} \ge V_{\rm GS} - V_{\rm T}$

Função Transferência – região de saturação

Função Transferência – região de saturação

Função Transferência – região de saturação

Símbolo

n-channel

Símbolo

p-channel

$$V_{DD}=5V \qquad V_{DS}=V_{DD}-R_{D}I_{D}.$$

$$V_{T}=1V \qquad R_{D}=1k\Omega$$

$$V_{DS}=V_{DD}-R_{D}I_{D}.$$

$$V_{S}=V_{DD}-R_{D}I_{D}.$$

$$V_{S}=V_{DD}-R_{D}I_{D}.$$

$$V_{S}=V_{DD}-R_{D}I_{D}.$$

$$V_{S}=V_{DD}-R_{D}I_{D}.$$

$$V_{S}=V_{DD}-R_{D}I_{D}.$$

Análise
$$\Rightarrow$$
 $V_{DS} = f(V_{GS}) = ?$

nMOS – i) Região de Corte

$$V_{\rm DS} = V_{\rm DD} - R_{\rm D}I_{\rm DA}$$

nMOS – ii) Região de Saturação

$$V_{\rm DS} = V_{\rm DD} - R_{\rm D}I_{\rm DA}$$

nMOS - iii) Região de Triodo

$$V_{\rm DS} = V_{\rm DD} - R_{\rm D}I_{\rm DA}$$

$nMOS - V_{DS} \times V_{GS}$

$$V_{\rm DS} = V_{\rm DD} - R_{\rm D}I_{\rm DA}$$

Função de transferência

Função de transferência - PSPice

```
* source EXEMPLO N-MOS

R_RD 3 2 1k TC=0,0
V_VDD 3 0 DC 5V
V_VGS 1 0 DC 5V

M_M1 2 1 0 0 M1
.model M1 NMOS(Vto = 1V Kp = 2e-3)

.DC V_VGS 0 5 0.15
.PLOT DC V[2] I(R_RD)
```


Função de transferência - PSPice

V_VGS *)	V(2) - 0.0000E+00	2.0000E+00	4.0000E+00	6.0000E+00	8.0000E+00
-)	0.0000100	2.0000L+00	4.0000L100	0.0000100	0.0000L100
0.000E+00	5.000E+00 .			*	
1.500E-01	5.000E+00 .	•	•	*	
3.000E-01	5.000E+00 .	•	•	*	
4.500E-01	5.000E+00 .	•	•	*	•
6.000E-01	5.000E+00 .	•	•	*	
7.500E-01	5.000E+00 .	•	•	*	•
9.000E-01	5.000E+00 .	•	•	*	•
1.050E+00	4.998E+00 .	•	•	*	
1.200E+00	4.960E+00 .	•			
1.350E+00	4.878E+00 .	•	•		
1.500E+00	4.750E+00 .	•			
		•			
1.650E+00	4.578E+00 .	•	. *		
1.800E+00	4.360E+00	•	• *		
1.950E+00	4.098E+00 .	•	. *		
2.100E+00	3.790E+00 .	•	*.		
2.250E+00	3.438E+00 .	•	* .		
2.400E+00	3.040E+00 .	•	* .		
2.550E+00	2.598E+00 .	. *			
2.700E+00	2.110E+00 .	. *			
2.850E+00	1.627E+00 .	* .			
3.000E+00	1.382E+00 .	* .			
3.150E+00	1.228E+00 .	* .			
3.300E+00	1.115E+00 .	*			
3.450E+00	1.026E+00 .	*			
3.600E+00	9.529E-01 .	*			
3.750E+00	8.915E-01 .	*			
3.900E+00	8.388E-01 .	*			
4.050E+00	7.927E-01 .	*			
4.200E+00	7.521E-01 .	*			
4.350E+00	7.159E-01 .	*			
4.500E+00	6.834E-01 .				
4.650E+00	6.539E-01 . •				
4.800E+00	6.271E-01 . •				
4.950E+00	6.026E-01 . •				

Função de transferência - PSPice

Corrente I_D - PSPice

0.000E+00 5.010E-12 *	
3 000F-01 5 010F-12 *	
4.500E-01 5.010E-12 *	
6.000E-01 5.010E-12 *	
7.500E-01 5.010E-12 *	
9.000E-01 5.010E-12 *	
1.050E+00 2.500E-06 *	
1.200E+00 4.000E-05 *	
1.350E+00 1.225E-04 .*	
1.500E+00 2.500E-04 *	
1.650E+00 4.225E-04 . *	
1.800E+00 6.400E-04 . *	
1.950E+00 9.025E-04 . *	
2.100E+00 1.210E-03 . *	
2.250E+00 1.563E-03 . *	
2.400E+00 1.960E-03 . *	
2.550E+00 2.403E-03 . *	
2.700E+00 2.890E-03 . *	
2.850E+00 3.373E-03 . *	
3.000E+00 3.618E-03 . *	
3.150E+00 3.772E-03 . *	
3.300E+00 3.885E-03 . *.	
3.450E+00 3.974E-03 . *	
3.600E+00 4.047E-03 . *	
3.750E+00 4.109E-03	
3.900E+00 4.161E-03	
4.050E+00 4.207E-03 . *	
4.200E+00 4.248E-03 . *	
4.350E+00 4.284E-03 . *	
4.500E+00 4.317E-03	
4.650E+00 4.346E-03	
4.800E+00 4.373E-03 . *	
4.950E+00 4.397E-03 *	

Corrente I_D - PSPice

Resposta a Onda Quadrada (agora em **função do tempo**!)

Tempo de resposta devido à capacitância MOS

Resposta a Onda Quadrada (agora em função do tempo!)

Tempo de resposta devido à capacitância MOS

Resposta a Onda Quadrada (agora em função do tempo!)

Exercício: simular a resposta transiente do circuito com N-MOS

```
* source EXEMPLO N-MOS

R_RD 3 2 1k TC=0,0
V_VDD 3 0 DC 5V
V_VGS 1 0 DC 5V

M_M1 2 1 0 0 M1
.model M1 NMOS(Vto = 1V Kp = 2e-3)

.DC V_VGS 0 5 0.15
.PLOT DC V[2] I(R_RD)
```



```
* source EXEMPLO C-MOS
V VDD 2 0 DC 5V
M M1 3 1 0 0 M1
.model M1 NMOS (Vto = 1V \text{ Kp} = 2e-3)
M M2 3 1 2 2 M2
.model M2 PMOS (Vto = 1V \text{ Kp} = 2e-3)
V VGS 1 0 PULSE(0 5 0 1ns 1ns 10us 20us)
TRAN lus 80us
.PLOT TRAN V[3]
.PLOT TRAN V[1]
```


Novas Tecnologias de Transistores

 $http://spectrum.ieee.org/semiconductors/devices/introducing-the-vacuum-transistor-a-device-made-of-nothing/?utm_source=techalert\&utm_medium=email\&utm_campaign=062614$

Chipmakers Test Ferroelectrics as a Route to Ultralow-Power Chips

But doubts linger over ferroelectric transistors' ability to jump from lab to fab

Illustration: Emily Cooper

Power Down: Chipmakers are adding a thin layer of ferroelectric material to transistors, including fin-shaped field-effect transistors (FinFETs), to reduce the gate voltage required for switching.