Classifying Potential Pneumonia Cases using Convolutional Neural Network

Achyut Kafle

Thinkful Data Science
Final Capstone Presentation
December 21, 2018

Presentation outline

- Background
- Objective
- Summary of results
- Methodology
 - Data
 - Exploratory data analysis
 - CNN architecture
 - Classification and evaluation
- Conclusions and next steps

Background

Pneumonia

- 15% of all deaths of children under 5 internationally
- Over 500k visits to emergency departments and over 50k deaths in the US in 2015
- Review of chest radiographs to locate areas of lung opacities and confirm through clinical history, vital signs and lab exams

Deep learning CNN model

 Automate the initial detection (image screening) of potential pneumonia cases in order to prioritize and expedite the review

Objective

 To build and evaluate a CNN model to classify potential pneumonia cases using chest radiographs

Summary of results

- A relatively simple CNN achieved reasonable performance (accuracy: ~75%; recall-pneumonia class: 0.82).
- Evaluated optimizers (Adam, SGD and RMSprop) and batch sizes (100, 200 and 400) performed very consistently.
- Image pre-processing using feature-wise centering and normalization improved the accuracy a little bit (accuracy~76%).
- A pre-trained VGG16 model performed very poorly in this case.

Methodology: Data

- Kaggle's RSNA Pneumonia
 Detection Challenge
 - 26,684 unique chest radiographs
 - 22.5% pneumonia cases
 - DICOM images of the dimension: 1024x1024x3

- Random under sampling of majority class (i.e., normal case)
 - 12,024 images
- Final balanced samples
 - 5011 train images
 - 1004 validation images
 - 998 test images
 - Image resized to 150x150x3

Methodology: Data...

Potential Pneumonia

Normal

	patientId	0	index	x	у	width	height	Target
0	f93d9a23-cc0d-4eff-abf1-62139ebe80d9	28113	28113	NaN	NaN	NaN	NaN	0
1	3abb7176-035d-46cc-844e-820870e8154b	3803	3803	138.0	305.0	242.0	529.0	1
2	55d5fe58-1dd5-454e-8628-92ef7f2993dc	7297	7297	693.0	385.0	135.0	132.0	1
3	da358a05-8106-45af-9a65-a95e5296cc09	24288	24288	NaN	NaN	NaN	NaN	0
4	e46bf3ce-4426-4f41-bcf5-4afb112164b5	25497	25497	NaN	NaN	NaN	NaN	0

Data frame of image name, Pneumonia locations, target labels

Methodology: Exploratory data analysis

CNN

- An image matrix (volume) of dimension (h x w x d)
- A filter (f_h x f_w x d)
- Outputs a volume dimension (h f_h + 1) x (w f_w + 1) x 1

1	1	1	0	0	
0	1	1	1	0	
0	0	1	1	1	
0	0	1	1	0	
0	1	1	0	0	

5 x 5 - Image Matrix

3 x 3 - Filter Matrix

Fully connected layer and output layer

4						
Convolved						

Convolved Feature

Flatten matrix into vector

25

18

-10

23

15

18

20

101

max pool with 2x2 filters and stride 2

100

У

ReLU Layer

CNN architecture

Summarize the model
model.summary()

Layer (type)	Output Shape		Param #
conv2d_1 (Conv2D)	(None, 148, 1	48, 32)	896
max_pooling2d_1 (MaxPooling2	(None, 74, 74	, 32)	0
conv2d_2 (Conv2D)	(None, 72, 72	, 64)	18496
max_pooling2d_2 (MaxPooling2	(None, 36, 36	, 64)	0
flatten_1 (Flatten)	(None, 82944)		0
dense_1 (Dense)	(None, 1000)		82945000
dense_2 (Dense)	(None, 2)		2002

Total params: 82,966,394

Trainable params: 82,966,394

Non-trainable params: 0

- Learning rate = 1e-5
- Loss: Binary cross-entropy
- Evaluation metric:
 Accuracy
- Epochs = 50
- Number of parameters:
 ~83 million

Classification and evaluation

Accuracy on test images

Optimizers

Batch size	Adam	SGD	RMSprop
100	0.74	0.75	0.75
200	0.75	0.75	0.74
400	0.75	0.75	0.75

RMSprop; 100 batch size

Model performance on the test images

Loss: 0.5441450838574426

Accuracy: 0.7454909818444797

Clasificatio	n report precision	recall	f1-score	support
0	0.79 0.71	0.67 0.82	0.72 0.76	498 500
avg / total	0.75	0.75	0.74	998

Adam, batch size= 100

Adam, batch size= 200

Adam, batch size= 400

SGD, batch size= 100

SGD, batch size= 200

0.50

0

10

20

30

Epoch

40

50

SGD, batch size= 400

RMSprop, batch size= 100

RMSprop, batch size= 200

RMSprop, batch size= 400

Adam, batch size=200, feature-wise center and normalization

Pre-trained VGG16

Conclusions and next steps

Conclusions

- A simple CNN achieved ~75% accuracy, 0.82 positive recall.
- Optimizers and batch sizes evaluated performed very consistently.
- Feature-wise normalization improved accuracy a little bit (accuracy~76%)
- VGG16 pre-trained model performed very poorly.

Next steps

- Use more images and the original size
- Add few more convolutional and pooling layers with batch normalization and dropping input units
- Explore few other image preprocessing techniques such as flipping, rotation, transforming images, etc.
- Explore other pre-trained models

Thank you!

Questions, comments or suggestions are welcome!

References

- Rui P, Kang K. National Ambulatory Medical Care Survey: 2015 Emergency Department Summary Tables. Table 27. Available from: www.cdc.gov/nchs/data/nhamcs/web_tables/ 2015_ed_web_tables.pdf
- 2. Deaths: Final Data for 2015. Supplemental Tables. Tables I-21, I-22. Available from: www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06_tables.pdf
- 3. https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
- 4. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge