Kapitel 1

Kolimes

1.1 Einführung in den Kolimes

Definition des Kolimes

Definition 1. [vgl. Anhang A6 David Eisenbud 1994] Sei A eine Kategorie.

- Ein <u>Diagramm</u> über A ist eine Kategorie B zusammen mit einem Funktor $\mathcal{F}: \mathcal{B} \longrightarrow A$.
- Sei $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ein Diagramm und $A \in \mathcal{A}$ ein Objekt. Dann definieren wir einen Morphismus $\psi: \mathcal{F} \longrightarrow A$ als eine Menge von Funktionen $\{\psi_B \in Hom(F(B), A) | B \in \mathcal{B}\}$, wobei für alle $B_1, B_2 \in \mathcal{B}$ und $\varphi \in Hom(B_1, B_2)$ folgendes Diagramm kommutiert:

• Der <u>Kolimes</u> $\varinjlim \mathcal{F}$ eines Diagramms $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ist ein Paar aus einem Objekt $A \in \mathcal{A}$ zusammen mit einem Morphismus $\psi: \mathcal{F} \longrightarrow A$, welche folgende universelle Eingenschaft erfüllen:

Für Objekte $A' \in \mathcal{A}$ und alle Morphismen $\psi' : \mathcal{F} \longrightarrow A'$ existiert genau eine Funktion $\varphi \in Hom(A, A')$, sodass folgendes Diagramm kommutiert:

Eindeutigkeit des Kolimes [vgl. A6 David Eisenbud 1994]

Lemma 2. Seien \mathcal{B} , \mathcal{A} zwei Kategorien und $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ein Funktor. Dann ist im Falle der Existenz $\lim \mathcal{F}$ eindeutig bestimmt.

Beweis. Seien $A_1 \in \mathcal{A}, (\psi_1 : \mathcal{F} \longrightarrow A_1)$ und $A_2 \in \mathcal{A}, (\psi_2 : \mathcal{F} \longrightarrow A_2)$ beide gleich $\lim \mathcal{F}$.

Erhalte durch die universelle Eigenschaft des Kolimes die eindeutig bestimmten Funktionen $\varphi_1 \in Hom_{\mathcal{A}}(A_1, A_2)$ und $\varphi_2 \in Hom_{\mathcal{A}}(A_2, A_1)$, für welche die folgende Diagramme kommutieren:

Wende nun die Universelle Eigenschaft von ψ_1 auf ψ_1 selbst an und erhalte $id_{A_1} = \varphi_2 \circ \varphi_1$. Analog erhalte auch $id_{A_2} = \varphi_1 \circ \varphi_2$.

Somit existiert genau eine Isomorphie $\varphi_1: A_1 \longrightarrow A_2$

Vereinfachung des Kolimes

Korrolar 3. [Eigene Überlegung]

Sei \mathcal{A} eine Kategorie und $(\mathcal{B}, \mathcal{F} : \mathcal{B} \longrightarrow \mathcal{A})$ ein Diagramm. Betrachte die Unterkategorie $\mathcal{F}(B) \subseteq \mathcal{A}$ zusammen mit dem Inklusionsfunktor $\mathcal{F}(B) \hookrightarrow \mathcal{A}$ ebenfalls als Diagramm. Dann gilt:

$$\varinjlim \mathcal{F} \ existiert \ genau \ dann, \ wenn \ \varinjlim (\mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A}) \ existiert.$$
$$Mit \ \varinjlim \mathcal{F} = \varinjlim (\mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A}).$$

Beweis. Dies folgt direkt aus unserer Definition von Morphismen:

In definition 1 haben wir einen Morphismus $\psi: \mathcal{F} \longrightarrow A$ als eine Menge von Funktionen $\psi_{\mathcal{B}} \in Hom_{\mathcal{A}}(\mathcal{F}(B), A)$ definiert. Dies zeigt, dass es keinen Unterschied macht, ob wir von Morphismen $\psi: \mathcal{F} \longrightarrow A$ oder von Morphismen $\psi: (\mathcal{F}(B) \hookrightarrow \mathcal{A}) \longrightarrow A$ reden.

Wenn wir nun die universelle Eigenschaft des Kolimes genauer betrachten, sehen wir, dass diese sich nur auf Morphismen $\mathcal{F} \longrightarrow A$ bzw. $(\mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A}) \longrightarrow A$ und auf die Kategorie \mathcal{A} bezieht. Es macht also keinen Unterschied, ob wir vom Kolimes des Diagramms $(\mathcal{B}, \mathcal{F} : \mathcal{B} \longrightarrow \mathcal{A})$ oder vom Kolimes des Diagramms $(\mathcal{F}(\mathcal{B}), \mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A})$ sprechen.

Es genügt also im Fall von Kolimtenn Diagramme $(\mathcal{B}, \mathcal{B} \hookrightarrow \mathcal{A})$ mit $\mathcal{B} \subseteq \mathcal{A}$ zu betrachten. Zur Vereinfachung schreibe für $\mathcal{B} \subseteq \mathcal{A}$ in Zukunft $\varinjlim \mathcal{B}$ anstatt von $\varinjlim (\mathcal{B} \hookrightarrow \mathcal{A})$.

DifferenzkokernUndKoproduktDef

Definition 4. [vlg. A6 David Eisenbud 1994] Sei A eine Kategorie.

- Das Koprodukt von $\{B_i\}_{i\in\Lambda}\subseteq\mathcal{A}$ wird durch $\coprod_{i\in\Lambda}\{B_i\}:=\varinjlim_{\longrightarrow}\mathcal{B}$ definiert, wobei $\{B_i\}_{i\in\Lambda}$ die Objekte und die Identitätsabbildungen $\{id_{B_i}:B_i\longrightarrow B_i\}_{i\in\Lambda}$ die einzigen Morphismen von \mathcal{B} sind.
- Der Differenzkokern von $f, g \in Hom_{\mathcal{A}}(C_1, C_2)$ wird durch $\varinjlim \mathcal{C}$ definiert, wobei $\{C_1, C_2\}$ die Objekte und $\{f, g\}$ zusammen mit den Identitätsabbildungen die Morphismen von \mathcal{C} sind.

NeuDifferenzenkokerndef

Bemerkung 5. | Wikipedia |

Sei A eine Kategorie. Sei weiter $C_1, C_2 \in Obj_A$ und $f, g \in Hom_A(C_1, C_2)$. Im Falle der Existenz ist der Differnenzenkokern von f, g nach definition 4 durch ein Objekt $C \in Obj_A$ und einen Morphismus $\psi = \{\psi_{C_1}, \psi_{C_2}\}$ gegeben, wobei gilt:

$$\psi_{C_2} = f \circ \psi_1 = g \circ \psi_2$$

Wir sehen, dass ψ eindeutig durch $q := \psi_2 \in Hom_{\mathcal{A}}(C_1, C_2)$ gegeben ist. Der Differnzenkokern ist also eindeutig durch $(C \in obj_{\mathcal{A}}, q \in Hom_{\mathcal{A}}(C_1, C_2))$ gegeben, wobei q folgenden Eigenschaften besitzt:

Es gilt $f \circ q = g \circ g$ und für alle $C \in Obj_A$ und $q' \in Hom_A$ mit $f \circ q' = g \circ q'$ existiert genau ein $\varphi \in Hom_A$, mit $q \circ \varphi = q'$:

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} C$$

$$\downarrow^{q'} \qquad \downarrow^{\exists ! \varphi}$$

$$C'$$

Wenn wir fortan vom Differenzkokern sprechen meinen wir damit das Paar (C,q).

Kolimes durch Koprodukt und Differenzkokern

Theorem 6. [Proposition A6.1 David Eisenbud 1994]

Sei \mathcal{A} eine Kategorie, in der Koprodukte beliebiger Mengen von Objekten und Differenzkokerne von je zwei Morphismen existieren. Dann existiert für jedes Diagramm $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ dessen Kolimes $\lim \mathcal{F}$.

Beweis. In korrolar 3 haben wir gesehen, dass es genügt den Fall $\mathcal{B} \subseteq \mathcal{A}$ zu betrachten. Konstruiere also für eine beliebige Unterkategorie $\mathcal{B} \subseteq \mathcal{A}$ deren Kolimes $\lim \mathcal{B}$:

Bezeichne für jeden Morphismus $\gamma \in Morph_{\mathcal{C}}$ dessen Definitionsbreich mit $B_{\gamma} \in$

 \mathcal{B} . Weiter, wenn wir einen Morphismus ψ gegeben haben und $\psi_{\gamma(B_{\gamma})}$ betrachten, ist damit ψ_B gemeint, wobei B die Zielmenge von γ ist. Definiere nun:

- $C_1 := \coprod_{\gamma \in Morph_{\mathcal{B}}} B_{\gamma}$ ist das Koprodukt aller Objekte von \mathcal{B} , in dem jedes Objekt so oft vorkommt, wie es Definitionsbereich eines $\gamma \in Morph_{\mathcal{B}}$ ist. Sei $\psi^1 : \{B_{\gamma} | \gamma \in Morph_{\mathcal{B}}\} \longrightarrow C_1$ der dazugehörige Morphismus.
- $C_2 := \coprod_{B \in Obj_{\mathcal{B}}}$ ist das Koprodukt aller Objekte von \mathcal{B} . Sei $\psi^2 : \{B|B \in Obj_{\mathcal{B}}\} \longrightarrow C_2$ der dazugehörige Morphismus.

Konstruiere nun $f, g \in Hom_{\mathcal{A}}(C_1, C_2)$ so, dass der Differenzkokern von f und g dem Kolimes von \mathcal{B} entspricht. Nutze dazu die universelle Eigenschaft von $(C_1, \psi^1) = \lim \{B_{\gamma} | \gamma \in Morph_{\mathcal{B}}\}:$

Für f betrachte den Morphismus $\zeta: \{B_{\gamma}|\gamma \in Morph_{\mathcal{B}}\} \longrightarrow C_2$, mit $\zeta_{B_{\gamma}} := \psi_{\gamma(B_{\gamma})}^2$ für $B_{\gamma} \in \{B_{\gamma}|\gamma \in Morph_{\mathcal{B}}\}$. Wähle $f \in Hom_{\mathcal{B}}(C_1, C_2)$ als die eindeutige Funktion, mit $\zeta = f \circ \psi^1$.

Für g betrachte den Morphismus $\zeta':\{B_{\gamma}|\gamma\in Morph_{\mathcal{B}}\}\longrightarrow C_2,$ mit $\zeta'_{B_{\gamma}}:=\psi^2_{\gamma(B_{\gamma})}\circ\gamma$ für $B_{\gamma}\in\{B_{\gamma}|\gamma\in Morph_{\mathcal{B}}\}.$ Wähle $g\in Hom_{\mathcal{B}}(C_1,C_2)$ als die eindeutige Funktion, mit $\zeta'=g\circ\psi^1.$

Sei $C \in Obj_{\mathcal{B}}$ zusammen mit $q \in Hom_{\mathcal{A}}(C_2, C)$ der Differenzkokern von f, g. Betrachte abschließend $\psi : \mathcal{B} \longrightarrow C$, mit $\psi_B = q \circ \psi_B^2$ für $B \in Obj_{\mathcal{B}}$. Um zu sehen, dass ψ ein Morphismus ist, wähle $B_1, B_2 \in Obj_{\mathcal{B}}$ beliebig und betrachte folgendes kommutatives Diagramm:

Zeige nun, dass (C, ψ) die Universelle Eigenschaft des Kolimes besitzt. Nutze dazu nacheinander die universellen Eigenschaften von (C_2, ψ^2) und (q, C):

Da ψ' ein Morphismus von \mathcal{B} nach C' ist, ist ψ' insbesondere auch ein Morphismus von $\{B|B\in Obj_{\mathcal{B}}\}$ nach C. Somit existiert genau ein $q'\in Hom_{\mathcal{B}}(C_2,C')$ mit $\psi^2\circ q'=\psi'$.

Zeige nun $q' \circ f \stackrel{!}{=} q' \circ g$. Sei dazu $c \in C_1$ beliebig und $\gamma \in Morph_{\mathcal{B}}, b \in B_{\gamma}$ mit $\psi_{B_{\alpha}}^{1}(b) = c$, dann gilt:

$$(q' \circ f)(c) = (q' \circ f \circ \psi_{B_{\gamma}}^{1})(b) = (q' \circ \zeta_{B_{\gamma}})(b) = (q' \circ \psi_{B_{\gamma}}^{2})(b) = \psi'_{B_{\gamma}}(b)$$

$$(q' \circ g)(c) = (q' \circ g \circ \psi_{B_{\gamma}}^{1})(b) = (q' \circ \zeta'_{B_{\gamma}})(b)$$

$$= (q' \circ \psi_{\gamma(B_{\gamma})}^{2} \circ \gamma)(b) = (\psi'_{\gamma(B_{\gamma})} \circ \gamma)(b) = \psi'_{B_{\gamma}}(b)$$

Somit können wir die universelle Eigenschaft von q auf q' anwenden und erhalten ein eindeutiges $\varphi \in Hom(C, C')$ mit $q' = q \circ \varphi$.

Dieses $\varphi \in Hom(C,C')$ erfüllt auch $\psi \circ \varphi = \psi^2 \circ q \circ \varphi = \psi^2 \circ q' = \psi'$ und ist nach Konstruktion eindeutig. Damit gilt $\lim \mathcal{B} = (C,\psi)$.

Bemerkung 7. (Unendliche Indexmengen)

Wir wollen uns hier nochmal kurz in Erinnerung rufen, was es bedeutet, wenn wir eine unendlich große Indexmenge Λ vor uns haben:

1. Sei A eine Kategorie und $\{B_i\}_{i\in\Lambda}\subseteq Obj_A$, dann gilt:

$$\bigoplus_{i \in \Lambda} B_i = \bigcup_{\{i_1, \dots, i_n\} \subseteq \Lambda} \bigoplus_{k=1}^n B_{i_k} = \{(b_{i_1}, \dots, b_{i_n}) | n \in \mathbb{N} \land \{i_1, \dots, i_n\} \subseteq \Lambda\}$$

2. Sei $\{M_i\}_{i\in\Lambda}$ eine Menge von R-Moduln (oder R-Algebren), dann gilt:

$$\bigotimes_{i \in \Lambda} M_i = \bigcup_{\{i_1, \dots, i_n\} \subseteq \Lambda} \bigotimes_{k=1}^n M_{i_k} = \{ (m_{i_1} \otimes \dots \otimes m_{i_n}) | n \in \mathbb{N} \land \{i_1, \dots, i_n\} \subseteq \Lambda \}$$

3. Für den Polynomring über R in unendlich vielen Variablen $\{x_i\}_{i\in\Lambda}$ gilt:

$$P[\{x_i\}_{i \in \Lambda}] = \bigcup_{\{i_1, \dots, i_n\} \subseteq \Lambda} P[x_{i_1}, \dots, x_{i_n}] = \{P(x_{i_1}, \dots, x_{i_n}) | n \in \mathbb{N} \land \{i_1, \dots, i_n\} \subseteq \Lambda\}$$

Dies zeigt, dass sich diesen drei Fällen eine unendliche Indexmenge Λ immer auf endliche Indexmengen $\{1,\ldots,n\}$ zurückführen lässt.

Darstellung der Polynomalgebra als Tensorprodukt

Bemerkung 8. [Eigene Überlegung]

Die Polynomalgebra $R[\{x_i\}_{i\in\Lambda}]$ über R lässt sich wie folgt als Tensorprodukt darstellen:

$$R[\{x_i\}_{i\in\Lambda}] = \bigotimes_{i\in\Lambda} R[x_i]$$

Beweis. Im Falle einer endlichen Indexmenge Λ wollen wir induktiv vorgehen. Seien für den Induktionsschritt $S_x := R[x_1, \dots x_n]$ und $S_y := R[y_1, \dots, y_m]$ zwei Polynomalgebren über R, zeige:

$$S_{xy} := R[x_1, \dots, x_n, y_1, \dots, y_m] \simeq S_x \otimes_R S_y$$

Dazu betrachten wir folgende bilineare Funktion:

$$q': S_x \oplus S_y \longrightarrow S, (P,Q) \longmapsto P \cdot Q$$

Erhalte nun eine Funktion $\varphi: S_x \otimes_R S_y \longrightarrow S_{xy}$ aus der universellen Eigenschaft des Tensorproduktes:

$$S_x \oplus S_y \xrightarrow{g} S_x \otimes_R S_y$$

$$\downarrow^{\exists ! \varphi}$$

$$S_{xy}$$

$$\varphi : S_x \otimes_R S_y \longrightarrow S_{xy}, \ P \otimes Q \longmapsto P \cdot Q$$

Der Homomorphismus φ ist surjektiv und bildet die Erzeuger $\{x_i \otimes 1\} \cup \{1 \otimes y_j\}$ von $S_x \otimes_R S_y$ eindeutig auf die Erzeuger $\{x_i\} \cup \{y_j\}$ von S_{xy} ab. Folglich ist φ ein Isomorphismus.

Indunktiv erhalten wir daraus für den Fall $|\Lambda| < \infty$ folgenden Isomorphismus:

$$\Phi: \bigotimes_{i \in \Lambda} R[x_i] \longrightarrow R[\{x_i\}_{i \in \Lambda}], (P_1(x_1), \dots P_n(x_n)) \longmapsto \prod_{i=1}^n P_i(x_i)$$

Dies ist auch im Fall $\Lambda = \infty$ ein Isomorphismus, da wir auch in diesem Fall nur Tensorprodukte endlich vieler Polynome bzw. Polynome in endlich vielen Variablen betrachten (siehe bemerkung 7).

Da das Tensorprodukt $\bigotimes_{i \in \Lambda} R[x_i]$ bis auf eine Eindeutige Isomorphie eindeutig bestimmt ist, definiere dies ab jetzt als $R[\{x_i\}_{i \in \Lambda}]$.

R-Algebra-Kolimiten

Proposition 9. [vlg. Proposition A6.7 David Eisenbud 1994] In der Kategorie der R-Algebren existieren Kolimiten beliebiger Diagramme, wobei gilt:

1. Das Koprodukt einer Familie von $R-Algebren\ \{S_i\}_{i\in\Lambda}$ entspricht deren Tesorprodukt $\bigotimes_{i\in\Lambda} S_i$.

2. Der Differenzkokern zweier R-Algebrenhomomorphismen $f, g: S_1 \longrightarrow S_2$ einspricht dem Homomorphismus $q: S_2 \longrightarrow S_2/Q$, $y \longmapsto [y]$, wobei $Q := \{f(x) - g(x) \mid x \in S_1\}$ das Bild der Differenz von f und g ist.

Beweis.

<u>Zu 1.</u>: Sei $\mathcal{B} = \{S_i\}_{i \in \Lambda}$ die Unterkategorie der R-Algebren, welche $\{S_i\}_{i \in \Lambda}$ zusammen mit den Identitätsabbildungen enthält. Somit gilt nach definition 4 $\coprod_{i \in \Lambda} S_i = \lim_{\longrightarrow} \mathcal{B}$. Seien weiter:

 $\psi: \mathcal{B} \longrightarrow \coprod_{i \in \Lambda} S_i$ der Morphismus des Koprodukts und

$$g:\bigoplus_{i\in\Lambda}S_i\longrightarrow \bigotimes_{i\in\Lambda}S_i$$
 die multilineare Abbildung des Tensorprodukts.

Konstruiere daraus einen Morphismus ψ' und eine multilineare Abbildung g':

$$\psi': \mathcal{B} \longrightarrow \bigotimes_{i \in \Lambda} S_i, \text{ mit } \psi'_{S_i}: S_i \longrightarrow \bigotimes_{i \in \Lambda} S_i, s_i \longmapsto g(1,..,1,s_i,1,..,1) \text{ für } i \in \Lambda$$
$$g': \bigoplus_{i \in \Lambda} S_i \longrightarrow \coprod_{i \in \Lambda} S_1, s \longmapsto \prod_{i \in \{i \in \Lambda \mid s_i \neq 0\}} \psi_i(s_i)$$

Somit liefern uns die universellen Eigenschaften folgende zwei R-Algebra-Homomorphismen:

Wende nun die Universelle Eigenschaft von ψ auf ψ selbst an und erhalte $id_{\coprod_{i\in\Lambda}S_i}=\phi\circ\varphi$. Analog erhalte auch durch die universelle Eigenschschaft des Tensorpruduktes $id_{\bigotimes_i S_i}=\varphi\circ\phi$.

Damit haben wir Isomorphismen zwischen $\coprod_{i \in \Lambda} S_i$ und $\bigotimes_i S_i$ gefunden. Da das Koprodukt $\coprod_{i \in \Lambda} S_i = \varinjlim_{i \in \Lambda} \mathcal{B}$ bis auf eine eindeutige Isomorphie eindeutig bestimmt ist (lemma 2), definiere dies ab jetzt als $\bigotimes_{i \in \Lambda} S_i$.

<u>Zu 2.</u>: Zeige, dass $q: S_2 \longrightarrow S_2/Q$ die in bemerkung 5 eingeführten Eigenschaften des Differenzkokern's besitzt:

$$g \circ f = g \circ g$$
 gilt, da $kern(g) = Q = \{f(x) - g(x) \mid x \in C_2\}.$

Sei nun ein R-Algabrahomomorphismus $q': S_2 \longrightarrow T'$ mit $q' \circ f = q' \circ g$ gegeben. Somit gilt $q' \circ (f-g) = 0$, wodurch Q ein Untermodul von Q' := kern(q') ist. Mit dem Isomorphiesatz für R-Algebren erhalten wir:

$$S_2/Q' \simeq (S_2/Q)/(Q'/Q).$$

Somit ist $q': S_2 \longrightarrow (S_2/Q)/(Q'/Q)$, $y \longmapsto [y]'$ eine isomorphe Darstellung von $q': S_2 \longrightarrow T'$.

$$\Rightarrow \exists ! \varphi : S_2/Q \longrightarrow (S_2/Q)/(Q'/Q), [y] \longmapsto [y]' \ mit \ (\varphi \circ q) = q'.$$

Also ist S_2/Q zusammen mit $q: S_2 \longrightarrow S_2/Q$ der bis auf eine eindeutige Isomorphie eindeutig bestimmte Differenzkokern von f und g.

Damit haben wir gezeigt, dass Koprodukte beliebiger Mengen von R-Algebren und Differenzkokerne von je zwei R-Algebrenhomomorphismus existieren. Nach theorem 6 existieren somit in der Kategorie der R-Algebren Kolimiten beliebiger Diagramme.

R-Modul-Kolimiten

Proposition 10. [Proposition A6.2 David Eisenbud 1994] In der Kategorie der R-Moduln existieren Kolimiten beliebiger Diagramme, wo-

In der Kategorie der R-Moduln existieren Kolimiten beliebiger Diagramme, wobei gilt:

- 1. Das Koprodukt einer Familie von $R-Moduln\ \{M_i\}_{i\in\Lambda}$ entspricht deren direkter Summe $\bigoplus_{i\in\Lambda} M_i$.
- 2. Der Differenzenkokern zweier R-Modulhomomorphismen $f, g: M_1 \longrightarrow M_2$ entspricht dem Homomorphismus $q: M_2 \longrightarrow M_2/Q$, $y \longmapsto [y]$, wobei $Q := \{f(x) g(x) \mid x \in M_1\}$ das Bild der Differenz von f und g ist.

Beweis.

<u>Zu 1.</u>: Sei $\mathcal{B} = \{M_i\}_{i \in \Lambda}$ die Unterkategorie der R-Moduln, welche $\{M_i\}_{i \in \Lambda}$ zusammen mit den Identitätsabbildungen enthält. Betrachte als Morphismus ψ die jeweilige Einbettung von M_i in $\bigoplus_{i \in \Lambda} M_i$:

$$\psi: \mathcal{B} \longrightarrow \bigoplus_{i \in \Lambda} M_i \text{ mit } \psi_{M_i}: M_i \longrightarrow \bigoplus_{i \in \Lambda} M_i, m_i \longmapsto (0, \dots, 0, m_i, 0, \dots, 0) \text{ für } i \in \Lambda$$

Somit lässt sich jedes $(m_1, \dots m_n) \in \bigoplus_{i \in \Lambda} M_i$ (im Fall von $|\lambda| = \infty$ siehe bemerkung 7) eindeutig durch die Elemente $m_i \in M_i$ (für $i \in \{i, \dots, n\}$) darstellen:

$$(m_1, \cdots, m_n) = \sum_{i=1}^n \psi_{M_i}(m_i)$$

Damit erfüllt ψ die universelle Eigenschaft von $\varinjlim \mathcal{B}$, denn sei $\psi': \mathcal{B} \longrightarrow M'$ ein bieliebiger Morphismus, so existiert genau ein R-Modulhomomorphismus:

$$\varphi: \bigoplus_{i \in \Lambda} M_i \longrightarrow M', (m_1, \cdots, m_n) \longmapsto \sum_{i=1}^n \psi'_{M_i}(m_i)$$

$$\psi' \longleftarrow \psi$$

$$M' \longleftarrow \bigoplus_{i \in \Lambda} M_i$$

Also ist $\bigoplus_{i \in \Lambda} M_i$ zusammen mit den Einbettungen $\psi_{M_i} : M_i \hookrightarrow \bigoplus_{i \in \Lambda} M_i$ das bis auf eine eindeutige Isomorphie eindeutig bestimmte Koprodukt von $\{M_i\}_{i \in \Lambda}$. 2. Gehe hier vor wie bei proposition 9. Dort haben wir schon gezeigt, dass der Differenzkokern von zwei R-Algebra-Homomorphismen dem Kokern, von deren Differenz entspricht.

Damit haben wir gezeigt, dass Koprodukte beliebiger Mengen von R-Moduln und Differenzkokerne von je zwei R-Modulhomomorphismen existieren. Nach theorem 6 existieren somit in der Kategorie der R-Moduln Kolimiten beliebiger Diagramme.

1.2 Darstellung von Lokalisierung als Kolimes

Lokalisierung von Algebren als Kolimes

Proposition 11. [vlg. Aufgabe A6.7 David Eisenbud 1994] Sei S eine R – Algebra und $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$S[U^{-1}] = \lim_{\longrightarrow} \mathcal{B}$$

Wobei \mathcal{B} aus den Objekten $\{S[t^{-1}]|t\in U\}$ und den Morphismen $S[t^{-1}]\longrightarrow S[tt'^{-1}], (\frac{s}{t^n})_t\longmapsto (\frac{st'^n}{(tt')^n})_{(tt')}$ (für $t,t'\in U$) besteht.

Beweis. Sei $\psi: \mathcal{B} \longrightarrow T$ der Kolimes von \mathcal{B} . Zeige $S[U^{-1}] \simeq T$, definiere dazu:

$$\begin{split} \psi': \mathcal{B} &\longrightarrow S[U^{-1}] \\ \psi'_{S[t^{-1}]}: S[t^{-1}] &\longrightarrow S[U^{-1}] \,,\, (\frac{s}{t^n})_t \longmapsto (\frac{s}{t^n})_U \end{split}$$

 ψ' ist ein Morphismus, da für beliebige $t, t' \in U$ und $s \in S$ gilt:

$$\left(\frac{s}{t^n}\right)_{\scriptscriptstyle U} = \left(\frac{st'^n}{(tt')^n}\right)_{\scriptscriptstyle U}$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir einen eindeutigen Homomorphismus φ mit:

$$\varphi \circ \psi_{S[t^{-1}]} = \psi'_{S[t^{-1}]}$$
 für alle $S[t^{-1}] \in \mathcal{B}$.

Für die Umkehrabbildung $\phi: S[U^{-1}] \longrightarrow T$ benötigen wir kleinere Vorüberlegungen:

Zunächst stellen wir fest, dass ψ' ganz $S[U^{-1}]$ abdeckt, also:

Jedes
$$(\frac{s}{u})_{U} \in S[U^{-1}]$$
 lässt sich in der Form $(\frac{s}{u})_{U} = \psi_{S[t^{-1}]}((\frac{s}{t})_{t})$ schreiben (für $t = u$).

Allerdings ist diese Darstellung nicht eindeutig. Zeige also noch, dass ϕ unabhängig von der Wahl von eines Repräsentanten ist. Seien dazu $s_1, s_2 \in S$, $t_1, t_2 \in U$ beliebig, somit gilt:

$$Sei \ \psi'_{S[t^{-1}]}((\frac{s_1}{t_1})_t) = \psi'_{S[t^{-1}]}((\frac{s_2}{t_2})_t)$$

$$\Rightarrow \exists u \in U : (s_1t_1 - s_2t_2) \cdot u = 0$$

$$\Rightarrow (\frac{s_1u}{t_1u})_{t_u} = (\frac{s_2u}{t_2u})_{t_u}$$

$$\Rightarrow \psi_{S[t^{-1}]}((\frac{s_1}{t_1})_t) = \psi_{S[t^{-1}]}((\frac{s_2}{t_2})_t)$$

Mit diesem Wissen können wir den R-Algebra-Homomorphismus $\phi: S[U^{-1}] \longrightarrow T$ definieren:

$$\phi: S[U^{-1}] \longrightarrow T \,,\, \psi_{S[t^{-1}]}'((\frac{s}{t})_t) \longmapsto \psi_{S[t^{-1}]}((\frac{s}{t})_t)$$

 $\phi \circ \varphi = id_T$ ergibt sich direkt aus der universellen Eigenschaft des Kolimes:

$$\mathcal{B}$$

$$\psi$$

$$T \stackrel{\exists!id_T = \phi \circ \varphi}{\longleftarrow} T$$

Für $\varphi \circ \phi \stackrel{!}{=} id_{S[U^{-1}]}$ wähle $s \in S, t \in U$ beliebig. Für diese gilt:

$$(\varphi \circ \phi)(\psi'((\frac{s}{t})_t)) = \varphi(\psi((\frac{s}{t})_t) = \psi'((\frac{s}{t})_t)$$

Damit haben wir gezeigt, dass φ, ϕ Isomorphismen sind und somit $T \simeq S[U^{-1}]$ gilt. Da der Kolimes bis auf eine eindeutige Isomorphie eindeutig ist (siehe lemma 2), definiere ab sofort $\lim \mathcal{B}$ als $S[U^{-1}]$.

Lokalisierung von Moduln als Kolimes [Beweis von Proposition 16.9 David Eisenbud 1994]

Korrolar 12. Sei M ein S-Modul, wobei S eine R-Algebra ist. Sei weiter $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$M[U^{-1}] = \varinjlim \mathcal{C}$$

Wobei \mathcal{C} aus den Objekten $\{S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] | t \in U\}$ und folgenden Mor-

phismen besteht:

$$S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] \longrightarrow S[U^{-1}] \otimes_{S[(tt')^{-1}]} M[(tt')^{-1}],$$
$$(\frac{s}{u})_{U} \otimes (\frac{m}{t^{n}})_{t} \longmapsto (\frac{s}{u})_{U} \otimes (\frac{t'^{n}m}{(tt')^{n}})_{t}$$

Auch wenn sich proposition 11 hier nicht direkt anwenden lässt, so können wir doch im Beweis gleich vorgehen.

Beweis. Sei $\psi: \mathcal{C} \longrightarrow T$ der Colimes von \mathcal{C} . Zeige $M[U^{-1}] \simeq T$, definiere dazu folgenden Morphismus:

$$\psi': \mathcal{C} \longrightarrow M[U^{-1}]$$

$$\psi'_t: S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] \longrightarrow M[U^{-1}], \left(\frac{s}{u}\right)_U \otimes \left(\frac{m}{t^n}\right)_t \longmapsto \left(\frac{sm}{ut^n}\right)_U$$

Die Wohldefiniertheit von ψ_t' für ein beliebiges $t \in U$ folgt direkt aus der Universellen Eigenschaft des Tensorprodukt's. Denn für die bilineare Abbildung $f: S[U^{-1}] \oplus M[t^{-1}] \longrightarrow M[t^{-1}]$, $((\frac{s}{u})_{\scriptscriptstyle U}, (\frac{m}{t^n})_{\scriptscriptstyle t}) \longmapsto (\frac{sm}{ut^n})_{\scriptscriptstyle U}$ gilt:

$$S[U^{-1}] \oplus M[t^{-1}] \xrightarrow{g} S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}]$$

$$\downarrow \exists ! \psi_t'$$

$$M[U^{-1}]$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir nun einen eindeutigen Homomorphismus $\varphi: T \longrightarrow M[U^{-1}]$ mit:

$$\varphi \circ \psi_t = \psi_t'$$
 für alle $t \in U$.

Für die Umkehrabbildung $\phi: M[U^{-1}] \longrightarrow T$ benötigen wir kleinere Vorüberlegungen: Wir stellen fest, dass für jedes $t \in U$ gilt:

Jedes
$$(\frac{m}{u})_U \in M[U^{-1}]$$
 lässt sich in der Form $(\frac{m}{u})_U = \psi_t((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$ schreiben.

Diese Darstellung ist unabhängig von den Wahl von $t \in U$, denn für beliebige $t_1, t_2, u \in U$ und $m \in M$ gilt:

$$\psi'_{t_1}((\frac{1}{u})_U \otimes (\frac{m}{1})_{t_1}) = (\frac{m}{u})_U = \psi'_{t_2}((\frac{1}{u})_U \otimes (\frac{m}{1})_{t_2})$$

Für ψ gilt in diesem Fall:

$$\psi_{t_1}((\frac{1}{u})_{U}\otimes(\frac{m}{1})_{t_1})=\psi_{t_1t_2}((\frac{1}{u})_{U}\otimes(\frac{m}{1})_{t_1t_2})=\psi_{t_2}((\frac{1}{u})_{U}\otimes(\frac{m}{1})_{t_2})$$

Definiere nun mit diesem Wissen folgenden Homomorphismus:

$$\phi: M[U^{-1}] \longrightarrow T, \ \psi_t((\frac{1}{u})_U \otimes (\frac{m}{1})_t) \longmapsto \psi'_t((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$$

 $\phi \circ \varphi = id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes. Für $\varphi \circ \phi \stackrel{!}{=} id_{M[U^{-1}]}$ wähle $(\frac{m}{u})_U \in M[U^{-1}]$ beliebig, für dieses gilt:

$$(\varphi \circ \phi)(\psi_t'((\frac{1}{u})_U \otimes (\frac{m}{1})_t)) = \varphi(\psi_t((\frac{1}{u})_U \otimes (\frac{m}{1})_t)) = \psi_t'((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$$

Damit haben wir $T \simeq M[U^{-1}]$ gezeigt, definiere also ab sofort $M[U^{-1}]$ als den Kolimes von \mathcal{C} .

1.3 Kähler-Differenzial von Kolimiten

Differenzial des Kolimes von R-Algebren [vlg. Korolar 16.7 David Eisenbud 1994]

Proposition 13.

1. Sei $T = \bigotimes_{i \in \Lambda} S_i$ das Koprodukt der R-Algebren S_i . Dann gilt:

$$\Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$$

2. Seien S_1, S_2 R-Algebren und $\varphi, \varphi': S_1 \longrightarrow S_2$ R-Algebra-Homomorphismen. Sei weiter $q: S_2 \longrightarrow T$ der Differenzkokern von φ, φ' . Dann ist folgende Sequenz rechtsexakt:

$$T \otimes_{S_1} \Omega_{S_1/R} \xrightarrow{f} T \otimes_{S_2} \Omega_{S_2/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

$$mit: f: T \otimes \Omega_{S_1/R} \longrightarrow T \otimes_{S_2} \Omega_{S_2/R}, \ t \otimes d_{S_1}(x_1) \longmapsto t \otimes d_{S_2}(\varphi(x_1) - \varphi(x_2))$$

 $g: T \otimes_{S_2} \Omega_{S_2/R} \longrightarrow \Omega_{T/R}, t \otimes d_{S_2}(x_2) \longmapsto (d_T \circ q)(x_2)$

Beweis.

Für 1. finde durch die Universelle Eigenschaft des Kähler-Differenzials Isomorphismen $\Omega_{T/R} \longleftrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$.

Definiere das Differenzial $e: T \longrightarrow \bigoplus_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}, (s_i \otimes ...) \longmapsto (1 \otimes d_{S_1}, ...)$ und erhalte dadurch

$$T \xrightarrow{d_T} \Omega_{T/R}$$

$$\downarrow_{\exists ! \varphi} \qquad \varphi : \Omega_{T/R} \longrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}).$$

$$\bigoplus_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}$$

Definiere nun das Differenzial $k: S_i \hookrightarrow T \longrightarrow \Omega_{T/R}$ und erhalte dadurch:

$$S_i \xrightarrow{d_{S_i}} \Omega_{S_i/R} \xrightarrow{a} T \otimes_{S_i} \Omega_{S_i/R}$$

$$\downarrow_{\exists !k'} \qquad \qquad \phi_i : \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}) \longrightarrow \Omega_{T/R}$$

$$\Omega_{T/R}$$

$$\phi: \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}) \longrightarrow \Omega_{T/R}, (..., t_i \otimes d_{S_i}(s_i), ...) \longmapsto \prod_{i \in \Lambda} t_i \cdot \phi_i(d_{S_i}(s_i))$$

Damit haben wir zwei zueinander inverse Funktionen φ, ϕ gefunden.

$$\Rightarrow \Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$$

Für 2. Wende ?? auf den Differenzkokern $q: S_2 \longrightarrow S_2/Q$ (vlg. proposition 9) an und erhalte dadurch eine exakte Sequenz, welche ähnlich zu der gesuchten ist:

$$Q/Q^2 \xrightarrow{f'} T \otimes \Omega_{S_2/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

mit $f': Q/Q^2 \longrightarrow T \otimes_{S_2} \Omega_{S/R}$, $[s_2]_{Q^2} \longmapsto 1 \otimes d_{S_2}(s_2)$. Somit gilt $im(f) = T \otimes_{S_2} d_{S_2}(Q) = im(f')$. \Rightarrow die gesuchte Sequenz ist exakt.

 \mathbf{S}

Differenzial von Polynomalgebren 1 [vlg. Proposition 16.1 David Eisenbud 1994]

Korrolar 14. Sei $S = R[x_1, ..., x_n]$ eine Polynomalgebra über R. Dann gilt:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} S\langle d_S(x_i) \rangle$$

Wobei $S\langle d_S(x_i)\rangle$ das von $d_S(x_i)$ erzeugt Modul über S ist.

Beweis. Wie in bemerkung 8 gezeigt, können wir S als $\bigotimes_{i \in \{1,...,n\}} R[x_i]$ schreiben. In proposition 13 haben wir gezeigt, wie das Differenzial eines solchen Tensorproduktes aussieht:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} \Omega_{R[x_i]/R})$$

Da $R[x_i]$ die aus dem Element x_i erzeugte Algebra über R ist, folgt [vlg. BE-MERKUNG ZU ENDLICH ERZEUGTEN ALGEBREN]:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} R[x_i] \langle d_{S[x_i]}(x_i) \rangle) \simeq \bigoplus_{i \in \{1, \dots, n\}} S \langle d_S(x_i) \rangle$$

Für die letzte Isomorphie nutze, dass wegen $R[x_i] \subseteq S$ zum Einen $d_{R[x_i]}$ als Einschränkung von d_S gesehen werden kann und zum Anderen $S \otimes_{R[x_i]} R[x_i] \simeq S$ gilt.

Differenzial von Polynomalgebren 2 [vgl. Korrolar 16.6 David Eisenbud 1994]

Korrolar 15. Sei S eine R-Algebra und $T := S[x_1, ..., x_n]$ eine Polynomalgebra über S. Dann gilt:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Beweis.Betrachte Tals Tensorprodukt über R-Algebren und wende anschließend proposition 13 an:

$$T \simeq S \otimes_R R[x_1, ..., x_n]$$

$$\Rightarrow \Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus (T \otimes_{R[x_1, ..., x_n]} \Omega_{R[x_1, ..., x_n]/R})$$

Zuletzt wende den soeben gezeigten korrolar 14 an und nutze schließlich $R[x_1, ..., x_n] \subseteq T$ um das Tensorprodukt zu vereinfachen:

$$T \otimes_{R[x_1,...,x_n]} \Omega_{R[x_1,...,x_n]/R}$$

$$\simeq T \otimes_{R[x_1,...,x_n]} \bigoplus_{i \in \{1,...,n\}} R[x_1,...,x_n] \langle d_{R[x_i]}(x_i) \rangle$$

$$\simeq \bigoplus_{i \in \{1,...,n\}} T \langle d_R(x_i) \rangle$$

Differenzial der Lokalisierung [vlg. Proposition 16.9 David Eisenbud 1994]

Theorem 16. Sei S eine R – Algebra und $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}, \text{ Wobei:}$$

$$d_{S[U^{-1}]}((\frac{1}{u})_U) \longmapsto -(\frac{1}{u^2})_U \otimes d_S(u)$$

Beweis. Wir wollen THEOREM16.8 auf $\mathcal{B} = \{S[t^{-1}]|t \in U\}$ aus proposition 11 anwenden.

Zeige also zunächsten den einfacheren Fall $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R}$ für ein beliebiges $t \in U$:

Nutze hierfür die Isomorphe Darstellung $S[t^{-1}] \simeq S[x]/(tx-1)$, sowie die Isomorphie $\Omega_{S[x]/R} \simeq S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$. aus korrolar 15

Daraus erhalten wir folgende Isomorphismen:

$$\alpha: S[t^{-1}] \longrightarrow S[x]/(tx-1)$$

$$\beta: S[x]/(tx-1) \longrightarrow S[t^{-1}]$$

$$\gamma: \Omega_{S[x]/R} \longrightarrow S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$$

Nutze diese nun, um $\Omega_{S[t^{-1}]/R}$ isomorph zu $S[t^{-1}] \otimes_S \Omega_{S/R}$ umzuformen:

$$\Omega_{S[t^{-1}]/R} \qquad \qquad d_{S[t^{-1}]}((\frac{s}{t})_t)$$

$$\downarrow^{D\alpha} \qquad \qquad \downarrow^{D\alpha}$$

$$\Omega_{S[x]/R}/d_{S[x]}(tx-1) \qquad \qquad [d_{S[x]}(sx)] = [xd_{S[x]}(s) + sd_{S[x]}(x)]$$

$$\downarrow^{\gamma} \qquad \qquad \downarrow^{\gamma}$$

$$(S[x] \otimes_S \Omega_{S/R} \oplus S[x]d_{S[x]}x)/((tx-1)d_{S[x]}(tx-1)) \qquad \qquad [x \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$(S[t^{-1}] \otimes_S \Omega_{S/R}) \oplus S[t^{-1}]d_{S[x]}(x)/d_{S[x]}(tx-1) =: M \qquad \qquad [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{f} \qquad \qquad \downarrow^{f}$$

$$S[t^{-1}] \otimes_S \Omega_{S/R} \qquad \qquad ((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Die ersten drei Schritte ergeben sich aus den oben angegeben Isomorphismen. Für den letzten Schritt definiere:

$$f: M \longrightarrow S[t^{-1}] \otimes_S \Omega_{S/R}, [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)] \longmapsto ((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Damit f ein Isomorphismus ist, genügt es zu zeigen, dass $S[t^{-1}] \otimes_S \Omega_{S/R}$ ein eindeutiges Repräsentantensystem von M ist.

Sei dazu $[m_1, (\frac{s}{t^n})_t d_{S[x]}(x)]$ ein beliebiger Erzeuger von M. Somit gilt:

$$\begin{split} d_{S[x]}(tx-1) &= td_{S[x]}(x) + \beta(x)d_{S[x]}(s) \\ \Rightarrow & [0,d_{S[x]}(x)] = [-(\frac{1}{t^2})_t d_S(t),0] \\ \Rightarrow & [m_1,(\frac{s}{t^n})_t d_{S[x]}(x)] = [m_1 - (\frac{s}{t^{n+2}})_t d_S(t),0] = [f([m_1,(\frac{s}{t^n})_t d_{S[x]}(x)]),0] \end{split}$$

f ist also wie vermutet ein Isomorphismus und aus obigen Umformungen folgt $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R} = \Omega_{S/R}[t^{-1}].$

Definiere für beliebige $t \in U$ folgenden Isomorphismus:

$$f\circ\beta\circ\gamma\circ D\alpha=:\delta_t:\Omega_{S[t^{-1}]/R}\longrightarrow\Omega_{S/R}[t^{-1}]\,,\,d_{S[t^{-1}]}((\frac{1}{t})_t)\longmapsto -(\frac{d_S(t)}{t^2})_t$$

Zeige nun den Allgemeinen Fall $\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}$: Wähle $\mathcal{B} = \{S[t^{-1}]|t \in U\}$ wie in proposition 11, sodass $\lim_{t \to \infty} \mathcal{B} = S[U^{-1}]$ gilt.

Mit THEOREM16.8 folgt somit:

$$\begin{split} \Omega_{S[U^{-1}]/R} &= \varinjlim \mathcal{F} \text{ mit:} \\ \mathcal{F} : \mathcal{B} &\longrightarrow \left(S[U^{-1}] - Module\right), \, S[t^{-1}] \longmapsto S[U^{-1}] \otimes \Omega_{S[t^{-1}]/R} \\ & (\varphi : S[t^{-1}] \longrightarrow S[tt'^{-1}]) \\ &\longmapsto \left(1 \otimes D\varphi : S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[t^{-1}]/R} \longrightarrow S[U^{-1}] \otimes_{S[t^{-1}]} \left(S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}\right)\right) \end{split}$$

Zur Vereinfachung der Morphismen in $\mathcal{F}(\mathcal{B})$ definiere folgenden Isomorphismus:

$$g: S[U^{-1}] \otimes_{S[t^{-1}]} (S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}) \longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S[tt'^{-1}]/R}$$

$$(\frac{s}{u})_{U} \otimes ((\frac{s'}{t})_{t} \otimes d_{S[tt'^{-1}]}(x)) \longmapsto (\frac{s}{u})_{U} \otimes \varphi((\frac{s'}{t})_{t}) d_{S[tt'^{-1}]}(x)$$

Als letzten Schritt wollen wir ?? anwenden. Nutze dazu $\delta_t : \Omega_{S[t^{-1}]/R} \longrightarrow \Omega_{S/R}[t^{-1}]$ um den zu \mathcal{F} isomorphen Funktor $\mathcal{F}' := \delta \circ \mathcal{F}$ zu erhalten. Um ein genaueres Bild von \mathcal{F}' zu erlangen, betrachte folgendes Kommutatives Diagramm:

$$(\frac{s}{t})_{t} \xrightarrow{\varphi} (\frac{st'}{tt'})_{tt'}$$

$$\downarrow d_{S[t^{-1}]} \qquad \downarrow d_{S[t^{-1}]}$$

$$1 \otimes ((\frac{1}{t})_{t}d_{S[t^{-1}]}((\frac{s}{t})_{t}) + (\frac{s}{1})_{t}d_{S[t^{-1}]}((\frac{1}{t})_{t})) \xrightarrow{g \circ (1 \otimes D\varphi)} 1 \otimes ((\frac{1}{tt'})_{tt'}d_{S[tt'^{-1}]}((\frac{st'}{1})_{tt'}) + (\frac{st'}{1})_{tt'}d_{S[tt'^{-1}]}((\frac{1}{tt'})_{tt'}))$$

$$\downarrow \delta_{t} \qquad \qquad \downarrow \delta_{tt'}$$

$$1 \otimes ((\frac{d_{S}(s)}{t})_{t} - (\frac{sd_{S}(t)}{t^{2}})_{t}) \xrightarrow{1 \otimes \varphi} 1 \otimes ((\frac{t'd_{S}(s)}{tt'})_{tt'} - (\frac{st'd_{S}(t)}{(tt')^{2}})_{tt'}) (*)$$

Dass das Diagramm in dieser Form kommutiert, ergibt sich in fast allen Fällen direkt aus dem Einsetzen in die entsprechenden Homomorphismen. Der einzige

Fall, welcher nicht direkt klar ist, ist (*). Rechne diesen also nochmal nach:

$$\begin{split} \delta_{tt'} \big(1 \otimes \big(\big(\frac{1}{tt'} \big)_{tt'} d_{S[tt'^{-1}]} \big(\big(\frac{st'}{1} \big)_{tt'} \big) + \big(\frac{st'}{1} \big)_{tt'} d_{S[tt'^{-1}]} \big(\big(\frac{1}{tt'} \big)_{tt'} \big) \big) \big) \\ &= 1 \otimes \big(\big(\frac{d_{S}(st')}{tt'} \big)_{tt'} - \big(\frac{t'sd_{S}(tt')}{(tt')^{2}} \big)_{tt'} \big) \\ &= 1 \otimes \big(\big(\frac{t'd_{S}(s')}{tt'} \big)_{tt'} + \big(\frac{sd_{S}(t')}{tt'} \big)_{tt'} - \big(\frac{tt'd_{S}(t')}{(tt')^{2}} \big)_{tt'} - \big(\frac{t'^{2}sd_{S}(t)}{(tt')^{2}} \big)_{tt'} \big) \\ &= 1 \otimes \big(\big(\frac{t'd_{S}(s)}{tt'} \big)_{tt'} - \big(\frac{t'^{2}sd_{S}(t)}{(tt')^{2}} \big)_{tt'} \big) \\ &= (1 \otimes \varphi) \big(1 \otimes \big(\big(\frac{d_{S}(s)}{t} \big)_{t} - \big(\frac{sd_{S}(t)}{t^{2}} \big)_{t} \big) \big) \end{split}$$

Damit ist \mathcal{F}' zu \mathcal{F} isomorph und für $\mathcal{C} := \mathcal{F}'(\mathcal{B})$ gilt $\Omega_{S[U^{-1}]/R} = \varinjlim \mathcal{F}' = \varinjlim \mathcal{C}$ [vlg. korrolar 3]. Wobei die Form von \mathcal{C} genau dem Fall aus ?? entspricht:

$$\mathcal{C} = \{S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] | t \in U\} \text{ mit den Morphismen}$$

$$1 \otimes \varphi : S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] \longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S/R}[tt'^{-1}]$$

$$\left(\frac{s}{u}\right)_{U} \otimes \left(\frac{d_{S}(x)}{t^{n}}\right)_{t} \longmapsto \left(\frac{s}{u}\right)_{U} \otimes \left(\frac{t'^{n}d_{S}(x)}{(tt')^{n}}\right)_{tt'}$$

Somit folgt $\lim_{\longrightarrow} \mathcal{C} = \Omega_{S/R}[U^{-1}]$ und wir haben $\Omega_{S[U^{-1}]/R} = \Omega_{S/R}[U^{-1}]$ gezeigt.