

문화콘텐츠와 자연어처리

구영은

성균관대학교 문과대학 독어독문학과 성균관대학교 소프트웨어융합대학 컬처앤테크놀로지융합전공 (sarah8835@skku.edu)

자연어처리란?

※ 자연어처리 Natural Language Processing(NLP)

기계가 인간의 언어를 잘 분석할 수 있도록 하는 기술

- 자연어 텍스트에 대한 언어적 분석 (ex. 어휘적, 구문적, 의미적, 화용적 분석)
- 언어적 분석을 통한 서비스 개발

- 인공지능 Artificial Intelligence(AI)
- 기계학습 Machine learning(ML)
- U러닝 Deep learning(DL)

■ 언어가 인간에게 갖는 의미는?

- 의사소통의 도구
- 문화/문명을 이룩하게 하는 수단
- 인간은 '나'와 '세상'을 연결하는 매개체

Steven Pinker (1954.09.18~)

"Language is a window into human nature, but it is also a fistula, an open wound through which we're exposed to an infectious world."

" Language is the mirror of the mind; and a detailed study of language might reveal to us just how the mind works."

Noam Chomsky (1928.12.07~)

NLP 기술을 활용한 서비스

Evolution of NLP

Rule-based NLP

- 1954: Georgetown Experiment (최초의 기계번역 실험)
- 조지타운 대학과 IBM 이 공동으로 기계번역 시스템을 개발
- 60개가 넘는 러시아어 문장을 영어로 자동 번역을 시연함

- ☐ ALPAC's (Automatic Language Processing Advisory Committee) report
- ALPAC은 1966년 기계 번역에 대하여 매우 부정적인 보고를 발표
- 이후 기계 번역 연구에 대한 정부 지원금이 많이 삭감됨

Rule-based NLP

■ 1960's: ELIZA (대화를 하는 최초의 AI 프로그램)

- 1966년 MIT 인공지능 연구소의 조세프 바이젠바움이 개발
- 패턴 매칭(pattern matching)과 대체 방법(substitution)을 이용하여 대화를 적절히 흉내냄
 - → 마치 프로그램이 상대방의 발화를 이해를 하는 것처럼 착각하게 함
 - → 개발자가 일일이 사람들의 예상 질문과 답변을 프로그래밍 해야 함
 - → 예상치 못한 질문이나 말을 건넨다면 답변할 수 없음

Joseph Weizenbaum (1923.01.08-2008.03.05)

Statistics-based NLP

■ Late 1980's

- 기계 학습과 통계적인 모델들이 등장함에 따라 통계 기반 자연어처리가 시작됨
- 통계 기반 자연어처리의 수학적 배경에는 확률 이론과 정보 이론 등이 있음
 - Naïve Bayes
 - Decision Tree
 - Hidden Markov Model (HMM)
 - Maximum Entropy Model
 - Support Vector Machine(SVM)
 - Conditional Random Fields (CRF)

Deep Learning-based NLP

■ 딥러닝(Deep Learning)

- 인간의 뇌와 유사한 방식으로 기능하도록 구축된 알고리즘을 사용하는 기계학습의 한 유형

- 임베딩 (Embedding)
 - Word2Vec, GloVe, FastText
 - ELMo, BERT
- 언어 모델 (Language Model)
 - CNN, RNN, LSTM
 - Seq-2-seq
 - Transformer (BERT, GPT)

▶ 인간 언어를 무엇으로 학습?

▶ 인간 언어를 <mark>어떻게</mark> 학습?

Deep Learning-based NLP

■ 어텐션(Attention)

- 디코더에서 출력 단어를 예측하는 시점(time step)마다, 인코더에서의 전체 입력 문장을 다시 한 번 참고
- 해당 시점에서 예측해야 할 단어와 연관이 있는 입력 단어에 더 집중

Deep Learning-based NLP

■ 트랜스포머(Transformer)

- 2017 구글이 발표한 논문 'Attention is all you need' 에 나온 모델

- 어텐션 기법을 기반으로 함

- BERT, GPT 등의 기본 모델로 활용됨

Output Probabilities

Softmax

Figure 1: The Transformer - model architecture.

BERT

■ BERT (<u>Bidirectional Encoder Representations from Transformers</u>)

- 2018년 10월 구글에서 발표한 모델 (Devlin et al. 2018)
- 트랜스포머 Transformer의 <u>인코더</u>를 활용한 사전훈련 기반의 딥러닝 언어 모델(PLM)
 - → 위키피디아와 같은 대용량의 unlabeled data로 모델을 사전훈련 pre-training한 이후,

- 주요 특징

- 1) 방대한 텍스트 코퍼스(Wikipedia 등)를 이용하여 범용 목적의 언어 이해 모델을 사전 훈련
- 2) 하나의 양방향 모델이 문장의 앞뒤 문맥을 동시에 활용해서 의미를 해석할 수 있어 언어처리에서 높은 정확도를 달성

SQuAD1.1 Leaderboard

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Oct 05, 2018	BERT (ensemble) Google Al Language https://arxiv.org/abs/1810.04805	87.433	93.160
2 Sep 09, 2018	nlnet (ensemble) Microsoft Research Asia	85.356	91.202
3 Jul 11, 2018	QANet (ensemble) Google Brain & CMU	84.454	90.490

GPT

■ GPT (Generative Pre-trained Transformer)

- 2018년을 시작으로 OpenAl에서 발표한 모델 (Radford et al. 2018)

Steps for NLP

■ 언어학(Linguistics)

언어체계 또는 언어구조에 대한 과학적 연구 (scientific study of language system / structure)

- 음성학(Phonetics), 음운론(Phonology) 소리와 관련된 학문
- 형태론(Morphology) 언어 표현의 생성(결합) 원리를 연구하는 학문
- 통사론(Syntax) 문장 내 구성 요소의 결합 원리를 연구하는 학문
- 의미론(Semantics) 언어 표현의 의미를 연구하는 학문
- 화용론(Pragmatics) 맥락 내에서 언어 구조의 사용 양상을 연구하는 학문

NLP Techniques

Data Preprocessing

Lexical/ Morphological analysis

Syntactic analysis

Semantic analysis

Discourse/ Pragmatic analysis

NLP Services

Tokenization

POS tagging

Predicate Argument Structure

Topic Modeling Intent Detection

Summarization

Sentiment

Analysis

Stopword Removal

Bag-of-Words

N-grams

TF-IDF

Keword Extraction

Named Entity Recognition

Word Sense Disambiguation

Anaphora Resolution

> Question Answering

Machine Translation

Information Retrieval

컬텍 자연어처리 교과목

1학기 <언어공학과 문화콘텐츠>

- 인간과 언어
- 문화콘텐츠 개발과 언어데이터 분석의 필요성
- 언어학 이론 기초
 - 형태론, 통사론, 의미론, 화용론
- 언어데이터 전처리 및 분석 기초
- 언어데이터 분석 기반의 콘텐츠 기획

2학기 <문화콘텐츠와 자연어처리>

- 문화/예술/콘텐츠 산업의 언어데이터 분석
- 문화/예술/콘텐츠 산업의 데이터 크롤링
- 자연어처리 방법론
 - 어휘/형태, 통사, 의미분석
 - POS tagging, Dependency parsing,
 SRL, WSD, Keyword extraction
- 기계번역, 감성분석, 개체명인식
- 기계 학습, 딥러닝

수업 사례 1

- 유아 교육용 텍스트 분석 서비스

유아 교육용 텍스트 분석 서비스

1. 주제 선정

유아 교육용 텍스트 분석 서비스

2. 선행 연구 검토

형태론·음운론적 특성을 고려한 분석

친숙성

친숙한 주변 사물의 이름으로부터 학습함

복잡성

음운론적 관점에서 볼 때 발음이 명료한 모음이나 자음이 첨가되는 글자가 먼저 습득됨

습득성

'단어 → 음절 → 음소' 순으로 유아의 인식 능력이 발달해 나감

단계	조합 방식	예
1	단모음 / 기본자음 + 단모음	우, 가
2	경음 또는 격음 + 단모음	뽀, 코
3	받침이 있는 단모음	악, 강
4	경음 또는 격음 + 단모음 + 받침	꼭, 땅
5	이중모음 / 기본자음 + 이중모음	와, 의, 과
6	받침이 있는 이중모음	광, 곽
7	경음 또는 격음 + 이중모음	꽈, 똬, 뛰
8	경음 또는 격음 +이중모음 +받침	튕

유아 교육용 텍스트 분석 서비스

수업 사례 2

수업 사례 3

- 언어습관 개선 프로그램

서비스소개

언어습관 개선 프로그램

- ✓ 카카오톡에서 사용자의 언어 데이터를 분석
- ✓ 언어 데이터의 감성 분석을 통해 긍정, 부정 언어 표현의 비율을 계산
- ✓ 사용자가 그동안 무의식적으로 사용했던 언어가 긍정적인 언어인지, 부정적인 언어인지 스스로 모니터링 할 수 있도록 도움 제공

※ 기계학습(Machine Learning)

주어진 데이터를 통해 기계가 데이터의 유형(class)간 관계를 파악하고, 새롭게 관측된 데이터의 유형을 스스로 판별할 수 있도록 학습시키는 방법

채팅 데이터 불러오기

```
raw1 = pd.read_osv("/gdrive/My Drive/GCO/wonder.osv")
```

```
데이터 전처리
pattern1 = '[-=+.#/\formall':3.A^*\"-\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\formall'\
raw1['maintext'] = raw1['maintext'].progress_map(lambda x:re.sub(pattern1, '', x).strip())
                                                  7912/7912 [00:00<00:00, 262827.06it/s]
dio_url = 'https://raw.githubuseroontent.com/park1200858/KnuSentiLex/master/KnuSentiLex/data/SentiW
dio_df = pd.read_json(dio_url)
dio_new = pd.DataFrame(dio_df['word'])
dio_new['tags'] = 'NNP'
 dio new
dio_new.to_osv("oustom_diot.txt", index=False, header=False, sep="\t") #사용자지정 사전을 만든다
komoran.set_user_dio("oustom_diot.txt")
raw1['tokens'] = raw1['maintext'].progress_map(lambda x:komoran.get_nouns(x))
```

감성분석 실시

```
word_list = dio_df['word'].unique()
raw1['sent_soore'] = raw1['tokens2'].progress_map(lambda x:sum([dio_df[dio_df['word']==word]['polar
                                                              if word in word_list else 0 for wor
            7912/7912 [00:03<00:00, 2490.78it/s]
raw1['word_oount'] = raw1['tokens2'].progress_map(lambda x:len(x))
             7912/7912 [00:00<00:00, 477383.78it/s]
raw1['sent_index'] = raw1['sent_soore']/raw1['word_sount']
raw1['sent_index'].desoribe()x
              3848.000000
                 0.093934
                 0.582843
      ətd
                -2.000000
     min
                 0.000000
                 0.000000
                 0.000000
                 2.000000
     Name: sent_index. dtype: float64
```


실시한 감성 분석에 대한 결과를 출력하여 보여주기 (긍/부정 CLASS 제시)

```
score = raw1['sent_index'].mean()
print('긍부정 점수: {}'.format(score))
if -2 < score < -1:
 print('당신은 부정적인 언어습관을 가지고 있습니다')
elif -1 \le core \le 0:
 print('당신은 비교적 부정적인 언어습관을 가지고 있습니다')
elif 0<=score<1:
 print('당신은 비교적 긍정적인 언어습관을 가지고 있습니다')
elif 1<=score<2:
 print('당신은 긍정적인 언어습관을 가지고 있습니다')
```

긍부정 점수: 0.09393422144382098 당신은 비교적 긍정적인 언어습관을 가지고 있습니다

긍정적 언어사용 추천 서비스

```
pos = pd.read_csv("/gdrive/My Drive/GCO/pos_sentiment.csv")
today_word = pos.sample(n=3)
print('오늘은 이런 말을 써보세요: {}'.format(today_word['text'].unique()))
```

오늘은 이런 말을 써보세요: ['수고많았어' '즐거워' '할 수 있어']

감사합니다

구영은

성균관대학교 문과대학 독어독문학과 성균관대학교 소프트웨어융합대학 컬처앤테크놀로지융합전공 (sarah8835@skku.edu)