Bag of Words for Natural Language Processing

Intro to NLP

- Natural Language Processing (NLP) helps us draw insight from text.
- Computers are not able to easily process and analyze text like humans do.
- Reading a paragraph can easily make a thesis or main idea clear to a human reader, but a computer can do no such thing

Types of NLP Problems

Can we predict ratings based on text?

Sentiment Analysis

 Identifying subjective information and affective states in a piece of text

Text Classification

Identifying with category or class a piece of text belongs
 to

Document Summarization

 Create a subset that represents the most important and relevant features of a document

Sentiment Analysis

- One of the goals of NLP is to draw meaning and sentimental analysis from text.
- Frequency of words can help a computer better understand sentiment of text
- Author's sentiment from a text can help a computer learn what texts correspond to what sentiments.

Sentiment Analysis Example

Train Set of Review Data:

- 1. "I love using the new Google Pixel!"
- 2. "The pixel battery life is awfully short"
- 3. "Out of all my phones, the Pixel is average"

First, train model on a variety of different reviews that have different sentiments.

Test Set of Review Data:

- 1. "The pixel is easy to use. I love this phone."
- 2. "I will never use this phone again!"
- 3. "The pixel is okay"

After training, the model should be able to accurately predict that 1 belongs to good sentiment, 2 belongs to bad sentiment, and 3 is neutral.

How to Create a Model for Sentiment Analysis?

Bag-of-Words Featurization

- The Bag of Words Model is commonly used in NLP to represent text in a document.
- The Bag of Words Model is a featurization that can be used with any learning model
- Map each unique word in the document with the number of times it occurs.
- Ordering or context of where words occur is ignored

Bag-of-Words Important Terms

• **Document**: one piece of data we are analyzing such as movie reviews, tweets etc. that will have associated labels

• **Corpus**: the collection of all available documents

Vocabulary: the collection of all distinct words in the corpus

Bag-of-Words Process

- We first look over the corpus to develop the vocabulary which will be used to produce the feature vector that will be used for learning
- We then iterate over the training documents and create feature vectors based off the frequency of words in the document
- Words that are not in the vocabulary are not included in these features
- We then train and test the model (ex. SVM)

Bag-of-Words Example

1. For example, given the following document:

Professor Sahai tweets: "one fish two fish red fish blue fish"

2. Given a vocabulary of:

[the, dog, fish, red, blue, one, two]

3. The bag-of-words featurization would be:

[0,0,4,1,1,1,1]

Optimizations

- There is room to optimize our featurization, especially given the situation
- Potential issues include:
 - We include too many words in our featurization, many of which do not add value
 - We are impacted by words that have various frequencies
 - We do not account for interactions between words that may change their meaning
- We now cover modifications and optimizations do deal with these

Binary Bag-of-Words

- There are many situations where we only want to know if a word was included in the document or not
- We do not care how many times it was stated, simply whether it was or not
- You will explore cases in which this may be optimal in the homework
- In order to do this instead of having a vector containing the count of each word, we only store a 1 if it is included and a 0 if it is not

Binary Bag-of-Words Example

1. For example, given the following document:

Professor Sahai tweets: "one fish two fish red fish blue fish"

2. Given a vocabulary of:

[the, dog, fish, red, blue, one, two]

3. The binary bag-of-words featurization would be:

[0,0,1,1,1,1,1]

Feature Negation

- Many times we have phrases that negate meaning
 - "Not happy", "Couldn't wait", "Wasn't pleased"
- The classic bag-of-words model treats such words as just two separate words (ex. "Not" and "Happy")
- To deal with this we treat such words as a feature of their own

Whenever a word follows a "not" or a word ending in "'nt" we negate the word

N-gram

- N-gram: sequence of n words
- Similar to bag-of-words, but use n-grams instead of single words
- "One fish Two fish Red fish Blue fish" 2-gram model:
 - o "One fish", "fish Two", "Two fish", "fish Red", "Red fish", "fish Blue", "Blue fish"
- N-grams provide insight to structure
 - o can be better model than standard bag-of-words

Reducing Size of Vocabulary

- Problem: bag-of-words vector can get very large, too large
- Ignore capitalization and discard punctuation

Help give a more accurate representation

Stemming and Stop Words

- Stemming is simply reducing all words to their stem
 - o "process", "processes", "processed", and "processing" all have the same stem "process"
 - reduces vocabulary size, make the model better reflect the meaning of a document
- Remove all stop words to help reduce vocab
 - o i.e. "a", "the"
 - they don't provide much meaning to the text, can be filtered out

Continuous Bag of Words

- A word embedding for a Word2Vec model
 - Continuous skip gram is another option
- Pick a window size to grab context words
- Adds more complexity to the model
 - relies more on contextual and semantic similarities
 and differences between words and texts
- Predict a target word based on the context words

CBOW Example

Sentence: "I will have green eggs and ham for breakfast, with orange juice on the side"

Window Size: 2

For each target word in the sentence, here are the corresponding context words:

Target: Context

I: [will, have] will: [I, have, green] eggs: [have, green, and, ham]

orange: [breakfast, with, juice, on]

Use these pairs to train a model to predict target words and use this to implement sentiment analysis

Other Use Cases

- Can use in image classification
- Bag-of-visual-words model
- Same concept as bag-of-words, different use case

Computer Vision

- Replace documents with images
- Replace words in documents with parts of an image
- We can then train on bag-of-visual-words features and classify images

Image Vocabulary

Parts of the image make up its vocabulary

- violin has very unique curvature
- o human face positioning of the nose, eyes and mouth, etc.

Piece of text is defined by all of its individual words

Image is defined by its defining structure and composition

Feature Extraction

Regular Grid

Interest Point Detection

Random Sampling

Regular Grid

- Image is converted into a structured grid
- Each feature of the image is one of these rectangular parts
- Vocabulary is the sum of all these parts of the grid

Interest Point Detection

- Splitting up an image in terms of its most stable and formed parts
 - different points of interest = different features
- Corners and textures can be used as points of interest
 - o likely to be used to categorize an image

Random Sampling

- Randomly sampling features from an image
 - Can achieve equal or greater image classification accuracy compared to deliberate models
- Often more discriminatory between features and images

tf-idf

- Problem: most frequently occurring words tend to dominate bag-of-words
- Term Frequency-Inverse Document Frequency (tf-idf)
 - tf-idf applies a weight to each word based on the term and document frequency
- **Term frequency**: frequency of a word within a document
- Document frequency: frequency that a word occurs at least among all the documents.

tf-idf Cont.

• If analyzing sports news articles, the word points likely occurs in most of the articles, so it's not very useful in distinguishing between two different articles

For word w in document d, one common weighting scheme is:

$$(1 + \log tf) \cdot \log(1 / (df / N))$$

Where:

Tf: # of words in d, **Df**: # of documents which w occurs in

N: # of documents we are analyzing