Neural Networks Speed-up and Compression

Lecture 5: Knowledge Distillation

Outline

- Motivation
- Knowledge Distillation concept
- Knowledge Distillation examples
 - Using Soft targets
 - Using features (FitNets)
 - Using attention
- Other details of KD

Motivation

- Resource-restricted
 systems such as mobile devices.
- They may be inapplicable in realtime systems either, because of low inference-time efficiency.

Deeper models that greatly improve state of the art on more tasks PHILIPPIN THE PROPERTY OF THE

Knowledge Distillation

Knowledge distillation is a process of distilling or transferring the knowledge from a (set of) large, cumbersome model(s) to a lighter, easier-to-deploy single model

What is knowledge?

What is knowledge?

A more abstract view of the **knowledge**, that frees it from any particular instantiation, is that it is a **learned mapping from input vectors to output vectors**.

Why Knowledge in bigger models is better?

Higher number of parameters -> better performance

We can train smaller (student) model to mimic a behaviour of bigger model (teacher)

Knowledge Distillation via Soft Targets

Basic concept

Idea: Train less redundant model by using outputs from big models

Softmax with Temperature

Full Method

FitNets: Hits for Thin Deep Nets

FitNets: Concept

Idea: Use intermediate representations to guide training of student:

$$\mathcal{L}_{HT}(\mathbf{W_{Guided}}, \mathbf{W_r}) = rac{1}{2} \|u_h(\mathbf{x}; \mathbf{W_{Hint}}) - r(v_g(\mathbf{x}; \mathbf{W_{Guided}}); \mathbf{W_r})\|^2$$

Teacher CNN (Pre-Trained)

Student CNN (Pruned From Teacher CNN)

FitNets: Results

Algorithm	# params	Accuracy			
Compression					
FitNet	~2.5M	$\boxed{ 91.61\%}$			
Teacher	~9M	90.18%			
Mimic single	∼54M	84.6%			
Mimic single	~70M	84.9%			
Mimic ensemble	~70M	85.8%			
State-of-the-art methods					
Maxout	90.65%				
Network in Network		91.2%			
Deeply-Supervised Networks		91.78 %			
Deeply-Supervise	88.2%				

Table 1: Accuracy on CIFAR-10

Algorithm	# params	Accuracy		
Compression				
FitNet	~2.5M	64.96 %		
Teacher	~9M	63.54%		
State-of-the-art methods				
Maxout		61.43%		
Network in Network		64.32%		
Deeply-Supe	65.43 %			

Table 2: Accuracy on CIFAR-100

Attention-based Knowledge Distillation

Attention transfer

- Attention plays a critical role in human visual experience
- It also has demonstrated important role in NNs
- We can use it to improve teacher-student training

Figure: Sum of absolute values attention maps over different levels of a network trained for face recognition. Mid-level attention maps have higher activation level around eyes, nose and lips, high-level activations correspond to the whole

Attention transfer

Attention loss:
$$\mathcal{L}_{AT} = \mathcal{L}(\mathbf{W}_S, x) + \frac{\beta}{2} \sum_{j \in \mathcal{I}} \| \frac{Q_S^j}{\|Q_S^j\|_2} - \frac{Q_T^j}{\|Q_T^j\|_2} \|_p$$

where $Q_S^j=vec(F(A_S^j))$ and $Q_T^j=vec(F(A_T^j))$ are vectorized j-th pair of teacher - student attention maps

The work considers several types of attention:

- sum of absolute values: $F_{\text{sum}}(A) = \sum_{i=1}^{C} |A_i|$
- sum of absolute values raised to the power of p (where p > 1): $F_{\text{sum}}^p(A) = \sum_{i=1}^C |A_i|^p$
- max of absolute values raised to the power of p (where p > 1): $F_{\max}^p(A) = \max_{i=1,C} |A_i|^p$

Methods comparison

KD between similar architectures (CIFAR100):

Teacher Student				$\begin{array}{c} \text{resnet} 32 \times 4 \\ \text{resnet} 8 \times 4 \end{array}$	vgg13 vgg8
Teacher Student	76.46 73.64	76.46 72.24	73.44 69.63	$79.63 \\ 72.51$	75.38 70.68
KD [16] FitNet [37] AT [46]	74.92 75.75 75.28	73.54 74.12 74.45	70.66 71.60 71.78	73.33 74.31 74.26	72.98 73.54 73.62

KD between different architectures:

Teacher Student	$\begin{array}{c} \rm vgg13 \\ MobileNetV2 \end{array}$	$\begin{array}{c} {\rm ResNet50} \\ {\rm MobileNetV2} \end{array}$		$\begin{array}{c} \mathrm{resnet} 32{\times}4 \\ \mathrm{ShuffleV1} \end{array}$	$\begin{array}{c} \mathrm{resnet} 32 \! \times \! 4 \\ \mathrm{Shuffle} \mathrm{V2} \end{array}$	
Teacher Student	75.38 65.79	79.10 65.79	79.10 70.68	79.63 70.77	79.63 73.12	76.46 70.77
KD [16]	67.37	67.35	73.81	74.07	74.45	74.83
FitNet [37]	68.58	68.54	73.84	74.82	75.11	75.55
AT [46]	69.34	69.28	73.45	74.76	75.30	75.61

Knowledge Distillation Types

Response-Based Knowledge

$$L_{ResD}(p(z_t,T),p(z_s,T)) = \mathcal{L}_R(p(z_t,T),p(z_s,T))$$
 $p(z_i,T) = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$

Feature-Based Knowledge

$$L_{FeaD}(f_t(x), f_s(x)) = \mathcal{L}_F(\Phi_t(f_t(x)), \Phi_s(f_s(x)))$$

Relation-Based Knowledge $L_{RelD}(f_t,f_s)=\mathcal{L}_{R^1}ig(\Psi_t(\hat{f}_t,\check{f}_t),\Psi_s(\hat{f}_s,\check{f}_s)ig) \ L_{RelD}(F_t,F_s)=\mathcal{L}_{R^2}ig(\psi_t(t_i,t_j),\psi_s(s_i,s_j)ig)$

Student Setup

Summary

Knowledge Distillation is a powerful technique to train small neural network using information from big pretrained network

Pros:

Improves model performance

Cons:

- Capacity gap
- Controversy of the method

Sources

- 1. Hinton et al. Distilling the Knowledge in a Neural Network, NIPS 2014
- 2. Romero et al. FitNets: Hints for Thin Deep Nets, ICLR 2015
- Zagoruyko et al. Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer, ICLR 2017
- 4. https://devopedia.org/knowledge-distillation
- 5. https://medium.com/analytics-vidhya/knowledge-distillation-in-a-deep-neural-network-c9dd59aff89b
- 6. https://neptune.ai/blog/knowledge-distillation