Newton-Rapson method:

We want to find the roots for f(x) = 0.

$$f(x_{n+1}) = f(x_n + h) = f(x_n) + hf'(x_n) + \frac{h^2}{2!}f''(x_n) + \dots$$

If x_{n+1} is a root, $f(x_{n+1}) = 0$. Then

$$f(x_n) + hf'(x_n) = 0 + O(h^2)$$

$$h = -\frac{f(x_n)}{f'(x_n)}$$

$$x_{n+1} = x_n + h = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Example 1: Find the root of the equation $x^3 - 3x - 5 = 0$

$$x_{n+1} = x_n - \frac{x_n^3 - 3x_n - 5}{3x_n^2 - 3}$$

Let $x_0 = 3$, then we get

$$x_1 = 2.46$$
; $x_2 = 2.295$; $x_3 = 2.279$; $x_4 = 2.279$

Example 2: Find the root of the equation $x^3 - x - 1 = 0$ which is close to 2.

Example 3: Find the root of the equation $x \sin x + \cos x = 0$

Solution:
$$x_{n+1} = x_n - \frac{x_n \sin x_n + \cos x_n}{x_n \cos x_n}$$
. Let $x_0 = \pi = 3.1416$.

X_n	$f(x_n)$	X_{n+1}
3.1416	-1.0	2.8233
2.8233	-0.0662	2.7986
2.7986	-0.0006	2.7984
2.7984	0.0	2.7984

Newton's method convergence condition: If the inequality $\left| \frac{f(x)f''(x)}{(f'(x))^2} \right| < 1$ holds for all

values of x in an interval around a root of f, then the method will converge to the root for any starting value x_0 in the interval.

Comment: Newton's method does not always converge.

Newton-Raphson method for multiple roots:

Let α be a multiple root of f(x)=0 with multiplicity m, then the iteration formula will be

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

Example 1: Find the multiple root of $x^4 - 6x^3 + 12x^2 - 10x + 3 = 0$ with the multiplicity 3, by the Newton-Raphson method with an initial guess $x_0 = 0$.

Solution: Here
$$f(x) = x^4 - 6x^3 + 12x^2 - 10x + 3$$
 and $f'(x) = 4x^3 - 18x^2 + 24x - 10$

The Newton-Raphson method for multiple roots is, $x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$

Iteration 1:
$$x_1 = x_0 - m \frac{f(x_0)}{f'(x_0)} = 3 - 3 \left(\frac{3}{-10}\right) = 0.9$$

Iteration 2:
$$x_2 = x_1 - m \frac{f(x_1)}{f'(x_1)} = 0.9 - 3 \frac{f(0.9)}{f'(0.9)}$$

$$x_2 = 0.9 - 3 \left(\frac{\left(0.9\right)^4 - 6\left(0.9\right)^3 + 12\left(0.9\right)^2 - 10\left(0.9\right) + 3}{4\left(0.9\right)^3 - 18\left(0.9\right)^2 + 24\left(0.9\right) - 10} \right) = 0.998$$

Iteration 3:
$$x_3 = x_2 - m \frac{f(x_2)}{f'(x_2)} = 0.998 - 3 \frac{f(0.998)}{f'(0.998)}$$

$$x_3 = 0.998 - 3 \left(\frac{(0.998)^4 - 6(0.998)^3 + 12(0.998)^2 - 10(0.998) + 3}{4(0.998)^3 - 18(0.998)^2 + 24(0.998) - 10} \right) = 1.096$$

Iteration 4:
$$x_4 = x_3 - m \frac{f(x_3)}{f'(x_3)} = 1.096 - 3 \frac{f(1.096)}{f'(1.096)}$$

$$x_4 = 1.096 - 3 \left(\frac{\left(1.096\right)^4 - 6\left(1.096\right)^3 + 12\left(1.096\right)^2 - 10\left(1.096\right) + 3}{4\left(1.096\right)^3 - 18\left(1.096\right)^2 + 24\left(1.096\right) - 10} \right) = 1.0965$$

The required root x = 1.096 (which is correct to 3 decimals).

Note that the exact roots are x = 1, 1, 1, 3

Newton – Rapson Method for system of equations (linear & nonlinear)

Consider the equations

$$f(x_1, x_2) = 0$$

$$g(x_1, x_2) = 0$$
(1)

Suppose we make a guess (x_1^k, x_2^k) which is close to a root (x_1^{k+1}, x_2^{k+1}) . Then, by Taylor expansion

$$f(x_1^{k+1}, x_2^{k+1}) = f(x_1^k + h_1, x_2^k + h_2)$$

$$= f(x_1^k, x_2^k) + h_1 \frac{\partial}{\partial x_1} f(x_1^k, x_2^k) + h_2 \frac{\partial}{\partial x_2} f(x_1^k, x_2^k) + \dots$$
(2)

Similarly,

$$g(x_{1}^{k+1}, x_{2}^{k+1}) = g(x_{1}^{k} + h_{1}, x_{2}^{k} + h_{2})$$

$$= g(x_{1}^{k}, x_{2}^{k}) + h_{1} \frac{\partial}{\partial x_{1}} g(x_{1}^{k}, x_{2}^{k}) + h_{2} \frac{\partial}{\partial x_{2}} g(x_{1}^{k}, x_{2}^{k}) + \dots$$
(3)

where $h_1 = x_1^{k+1} - x_1^k = \Delta x_1$ and $h_2 = x_2^{k+1} - x_2^k = \Delta x_2$.

Let us neglect higher derivatives than the first; we still get an improved estimate than the previous one. From Eqn. (2 - 3), we get

$$-f = \Delta x_1 \frac{\partial f}{\partial x_1} + \Delta x_2 \frac{\partial f}{\partial x_2}$$

$$-g = \Delta x_1 \frac{\partial g}{\partial x_1} + \Delta x_2 \frac{\partial g}{\partial x_2}$$

$$\begin{pmatrix}
\frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\
\frac{\partial g}{\partial x_1} & \frac{\partial g}{\partial x_2}
\end{pmatrix}
\begin{pmatrix}
\Delta x_1 \\
\Delta x_2
\end{pmatrix} = \begin{pmatrix}
-f \\
-g
\end{pmatrix}$$
(4)

Thus for a system of N simultaneous nonlinear equations, we must solve N simultaneous linear equations to find changes Δx_1 and Δx_2 in every iteration. The matrix on the left side of Eqn. (4) is called the Jacobin matrix J and its determinant simply "the Jacobian". Clearly, if |J| = 0 the method fails, and if it is close to zero slow convergence is anticipated. Note,

$$\begin{pmatrix} x_1^{k+1} \\ x_2^{k+1} \end{pmatrix} = \begin{pmatrix} x_1^k \\ x_2^k \end{pmatrix} + \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \end{pmatrix}$$

Problem 1: Use Newton-Rapson method to find a root of xy = 1, $x^2 + y^2 = 4$ which are close to x = 1.8, y = 0.5.

Here
$$f(x, y) = xy - 1 = 0$$
; $g(x, y) = x^2 + y^2 - 4 = 0$ and $J = \begin{pmatrix} y & x \\ 2x & 2y \end{pmatrix}$

$$J\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} -f \\ -g \end{pmatrix}$$

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = J^{-1} \begin{pmatrix} -f \\ -g \end{pmatrix}, \text{ where } J^{-1} = \frac{1}{2y^2 - 2x^2} \begin{pmatrix} 2y & -x \\ -2x & y \end{pmatrix}$$

1st iteration: Starting values are x = 1.8, y = 0.5

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} -0.1672 & 0.3010 \\ 0.6020 & -.0836 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.51 \end{pmatrix} = \begin{pmatrix} 0.1368 \\ 0.0176 \end{pmatrix}$$

 2^{nd} iteration: Starting values are x = 1.8 + 0.1368 = 1.9368, y = 0.5 + 0.0176 = 0.5176

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} -0.1486 & 0.2780 \\ 0.5560 & -0.0743 \end{pmatrix} \begin{pmatrix} -0.0025 \\ -0.0191 \end{pmatrix} = \begin{pmatrix} -0.0049 \\ 0.0000 \end{pmatrix}$$

Roots are: x = 1.9368 - 0.0049 = 1.9319 and y = 0.5176 - 0.0000 = 0.5176

Note: We may use a slightly different algorithm which looks like generalized Newton's method.

Prepared by Dr Satyanarayana Badeti In Eqn. (2), suppose $h_2 = 0$ and in Eqn. (3) $h_1 = 0$, we get

$$x_{1}^{k+1} = x_{1}^{k} - \frac{f\left(x_{1}^{k}, x_{2}^{k}\right)}{\frac{\partial}{\partial x_{1}} f\left(x_{1}^{k}, x_{2}^{k}\right)} \text{ and } x_{2}^{k+1} = x_{2}^{k} - \frac{g\left(x_{1}^{k}, x_{2}^{k}\right)}{\frac{\partial}{\partial x_{2}} g\left(x_{1}^{k}, x_{2}^{k}\right)}$$

If we put the convergence factor also, as in generalized Newton's method, the final algorithm will be

$$x_{1}^{k+1} = x_{1}^{k} - \frac{w f(x_{1}^{k}, x_{2}^{k})}{\frac{\partial}{\partial x_{1}} f(x_{1}^{k}, x_{2}^{k})} \text{ and } x_{2}^{k+1} = x_{2}^{k} - \frac{w g(x_{1}^{k}, x_{2}^{k})}{\frac{\partial}{\partial x_{2}} g(x_{1}^{k}, x_{2}^{k})}$$

The choice of w different from unity can increase the convergence rate appreciably. Normally 0 < w < 2. The algorithm is similar for any number of variables.

Problem 2: Consider the transcendental system

$$f_1(x_1, x_2) = -e^{x_1} - x_1 + 3x_2 + 3 = 0$$

$$f_2(x_1, x_2) = e^{x_2} + x_2 - 2x_1 + 1 = 0$$
.

Solution:

$$x_1^{k+1} = x_1^k - \frac{w(e^{x_1^k} + x_1^k - 3x_2^k - 3)}{(e^{x_1^k} + 1)}$$
(1)

$$x_2^{k+1} = x_2^k - \frac{w(e^{x_2^k} + x_2^k - 2x_1^k + 1)}{(e^{x_2^k} + 1)}$$
(2)

Let $x_1^0 = x_2^0 = 0$. Choose w = 1.5

$$x_1^1 = 0 - \frac{(1.5)(e^0 + 0 - 3(0) - 3)}{(e^0 + 1)} = 1.5$$

$$x_2^1 = 0 - \frac{(1.5)(e^0 + 0 - 2(1.5) + 1)}{(e^0 + 1)} = 0.75$$

These results would then be interested into Eqns. (1-2) to produce x_1^2 , x_2^2 and iteration would continue. The advantage with this algorithm is that it can be easily extended to n system of equations.

Comment: There are several other methods. It is rarely possible to determine, a priori. When an iteration will converge and yield a solution. It is better to verify the solution by direct substitution.

Problem 3: Find the solution of the system of nonlinear equations

$$2x_1^2 + x_2^2 = 4.32$$
 and $x_1^2 - x_2^2 = 0$

Newton-Rapson Method:

$$f(x_1, x_2) = 2x_1^2 + x_2^2 - 4.32 = 0$$
 and $g(x_1, x_2) = x_1^2 - x_2^2 = 0$

Starting values: $x_1 = 1$ and $x_2 = 1$

$$\frac{\partial f}{\partial x_1} = f_{x_1} = 4x_1; \ \frac{\partial f}{\partial x_2} = f_{x_2} = 2x_2; \ \frac{\partial g}{\partial x_1} = g_{x_1} = 2x_1 \text{ and } \frac{\partial g}{\partial x_2} = g_{x_2} = -2x_2$$

$$\begin{pmatrix} 4x_1 & 2x_2 \\ 2x_1 & -2x_2 \end{pmatrix}_{(x_{1i}, x_{2i})} \begin{pmatrix} \Delta x_{1i} \\ \Delta x_{2i} \end{pmatrix} = \begin{pmatrix} -f \\ -g \end{pmatrix}_{(x_{1i}, x_{2i})}$$

$$\begin{pmatrix} 4 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \end{pmatrix} = \begin{pmatrix} 1.32 \\ 0 \end{pmatrix}$$

On solving we get, $\Delta x_1 = \Delta x_2 = 0.22$

After first iteration the roots are: $x_1 = x_2 = 1.22$