Assignment 1: House Regression

Introduction:

The dataset that was leveraged for this analysis was the House Prices Advanced Regression obtained from Kaggle. This dataset contains, "79 explanatory variables describing every aspect of residential homes in Ames, Iowa with the dependent variable being Sales Price to help predict the final price of each home. The goal is to establish and research the variables of house square footage and lot size that will impact the final price of the home.

Descriptive Statistics:

The dependent variable was identified as the Sales Price. By using this variable it was determined the average sale price of a home was 180,921.20. The minimum price was observed as 34,900 and the maximum was observed as 755,000. The standard deviation of this variable was shown to be 79,442.50. A histogram was constructed to display the distribution of the dependent variable. This histogram showed to be skewed heavily towards the right. While observing the histogram it displays that the bulk of the distribution sits within the lower price range(100,000-200,000).

Missing Data and Outliers:

The dataset includes housing features with numerous missing values, particularly in 'Alley', 'PoolQC', 'MiscFeature', and 'Fence', likely because not all properties have these attributes. Whole 'LotFrontage' and 'FireplaceQu' also show missing data, this may stem from recording issues. Such gaps in data can impact model accuracy and necessitate strategies like imputation or record removal. Also, a box plot analysis revealed outliers, with some properties' selling prices significantly deviating from the average, notably two examples exceeding \$700,000.

Total Lot Size and Total Square Foot:

The following predictors that were chosen to investigate were TotalBsmtSF, '1stFlrSF', '2ndFlrSF', 'LotFrontage', 'LotArea', 'WoodDeckSF', 'OpenPorchSF', and 'SalePrice'. The correlation was

calculated between these predictors and the sales price. It was determined that all calculated values show a positive correlation with the sales price variable. For example, a scatter plot was created between the sales price and the first floor sq ft which displays a positive correlation.

Merging predictor:

Two new variables were created to include the total square footage and total lot size. To create the total square footage variables such as TotalBsmtSF, '1stFlrSF', and '2ndFlrSF' were added to create TotalSF. These variables, 'LotFrontage' and 'LotArea' were added up to make the total lot size variable. These combined variables potentially have an impact on the sales price. Multiple scatter plots were created to show the relationship between Sales Price, Total square footage, and Total Lot Size which displayed a largely positive correlation.

Min-max Scaling and Standard Scaling:

For our analysis, the 'SalePrice' variable underwent two normalization processes. The Min-Max scaling mapped the original prices into a new range where the smallest value corresponds to 0 and the largest to 1, transforming them into values like 0.2410. The standard scaling adjusted the prices so that their distribution has a mean of zero and a variance of one, resulting in normalized values such as -0.4885. These transformations are essential for models that are sensitive to the scale of data, ensuring that the variable's scale does not unduly influence the model's performance.

Conclusion:

Throughout this project, we gained valuable insights about the housing market, distribution of sales prices, missing data, outliers, and potential predictors. Additionally, using min-max scaling and standard scaling techniques can help identify if the variables can be used to create an advanced regression model. By using these findings it will provide a good source of knowledge to help predict the house prices as we seek to build a compelling model.

```
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns

In [2]:
house = pd.read_csv('train.csv')
house
```

Out[2]:		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour
_	0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI
	•••		•••		•••					•••
	1455	1456	60	RL	62.0	7917	Pave	NaN	Reg	LvI
	1456	1457	20	RL	85.0	13175	Pave	NaN	Reg	LvI
	1457	1458	70	RL	66.0	9042	Pave	NaN	Reg	LvI
	1458	1459	20	RL	68.0	9717	Pave	NaN	Reg	LvI
	1459	1460	20	RL	75.0	9937	Pave	NaN	Reg	LvI

1460 rows × 81 columns

Qestion 1

```
In [5]: house.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object

			House Regio
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25			
	MasVnrType		object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28			
	ExterCond		object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object
56	Fireplaces	1460 non-null	int64
57	FireplaceQu	770 non-null	object
58	GarageType	1379 non-null	object
59	GarageYrBlt	1379 non-null	float64
60	GarageFinish	1379 non-null	object
61	GarageCars	1460 non-null	int64
62	GarageArea	1460 non-null	int64
63	GarageQual	1379 non-null	object
64	GarageCond	1379 non-null	object
65	PavedDrive	1460 non-null	object
66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	EnclosedPorch	1460 non-null	int64
69	3SsnPorch	1460 non-null	int64
70	ScreenPorch	1460 non-null	int64
71	PoolArea	1460 non-null	int64
72	PoolQC	7 non-null	object
73	Fence	281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76			
	MoSold	1460 non-null	int64
77	YrSold	1460 non-null	int64
78	SaleType	1460 non-null	object
79	SaleCondition	1460 non-null	object
80	SalePrice	1460 non-null	int64

```
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
```

```
In [35]: descriptive_stats = house['SalePrice'].describe()

skewness = house['SalePrice'].skew()
kurtosis = house['SalePrice'].kurtosis()

print(descriptive_stats)
print("Skewness:\n", skewness)
print("Kurtosis:\n", kurtosis)

count    1460.000000
mean    180921.195890
std    79442.502883
min    34900.000000
```

std 79442.502883
min 34900.000000
25% 129975.000000
50% 163000.000000
75% 214000.000000
max 755000.000000
Name: SalePrice, dtype: float64
Skewness:
1.8828757597682129

Kurtosis:
 6.536281860064529

```
In [65]:
    plt.figure(figsize=(8,6))
    plt.hist(df['SalePrice'], edgecolor='black')
    plt.title('House Sales Price')
    plt.xlabel('SalePrice($)')
    plt.ylabel('count')
    plt.show()
```


Question 2

```
In [64]:
          house.isnull().sum()
          missing_data = house.isnull().sum()
          print("\nMissing data:")
          print (missing_data[missing_data>0])
         Missing data:
         LotFrontage
                           259
                          1369
         Alley
         MasVnrType
                             8
         MasVnrArea
                             8
                            37
         BsmtQual
         BsmtCond
                            37
         BsmtExposure
                            38
                            37
         BsmtFinType1
                            38
         BsmtFinType2
         Electrical
                             1
         FireplaceQu
                           690
         GarageType
                            81
         GarageYrBlt
                            81
         GarageFinish
                            81
         GarageQual
                            81
                            81
         GarageCond
         PoolQC
                          1453
         Fence
                          1179
         MiscFeature
                          1406
                           259
         TotalLotSize
         dtype: int64
In [24]:
          import matplotlib.pyplot as plt
          import statsmodels.api as sm
          from statsmodels.graphics.gofplots import qqplot
          # Create the QQ plot for 'SalePrice'
          plt.figure(figsize=(8, 6))
          qqplot(house['SalePrice'], line='s') # 's' parameter adds a standardized line to
          plt.title('QQ Plot for SalePrice')
          plt.xlabel('Theoretical Quantiles')
          plt.ylabel('Sample Quantiles')
          plt.show()
```

<Figure size 576x432 with 0 Axes>


```
plt.figure(figsize=(10 , 6))
sns.boxplot(x='SalePrice', data=df,
color='skyblue')
plt.show()
```


Question 3

```
In [85]:
          predict = house[['TotalBsmtSF','1stFlrSF','2ndFlrSF','LotFrontage', 'LotArea','S
          print(predict.corr())
                       TotalBsmtSF
                                     1stFlrSF
                                               2ndFlrSF
                                                         LotFrontage
                                                                        LotArea
                                                                                 SalePrice
         TotalBsmtSF
                                                             0.392075
                                                                                  0.613581
                          1.000000
                                    0.819530 -0.174512
                                                                       0.260833
         1stFlrSF
                                                                       0.299475
                                                                                  0.605852
                          0.819530
                                    1.000000 -0.202646
                                                             0.457181
         2ndFlrSF
                                                             0.080177
                                                                       0.050986
                                                                                  0.319334
                         -0.174512 -0.202646
                                               1.000000
         LotFrontage
                          0.392075
                                    0.457181
                                              0.080177
                                                             1.000000
                                                                       0.426095
                                                                                  0.351799
```

LotArea 0.260833 0.299475 0.050986 0.426095 1.000000 0.263843 SalePrice 0.613581 0.605852 0.319334 0.351799 0.263843 1.000000

```
In [87]: predict.plot(x='SalePrice', y='1stFlrSF', style='o')
```

Out[87]: <AxesSubplot:xlabel='SalePrice'>

Question 4

```
In [77]: house['TotalSF'] = house['TotalBsmtSF'] + house['1stFlrSF'] + house['2ndFlrSF']
    house.head()
```

Out[77]:		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilit
	0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllF
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllF
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllF
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllF
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllF

5 rows × 83 columns

```
In [78]: house['TotalLotSize'] = house['LotFrontage'] + house['LotArea']
    house.head()
```

Out[78]:		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilit
	0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllF
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllF
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllF
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllF

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilit
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllF

5 rows × 83 columns

```
In [79]: df = house[['SalePrice','TotalSF','TotalLotSize']]
df
```

Out[79]:		SalePrice	TotalSF	TotalLotSize
	0	208500	2566	8515.0
	1	181500	2524	9680.0
	2	223500	2706	11318.0
	3	140000	2473	9610.0
	4	250000	3343	14344.0
	•••			
	1455	175000	2600	7979.0
	1456	210000	3615	13260.0
	1457	266500	3492	9108.0
	1458	142125	2156	9785.0
	1459	147500	2512	10012.0

1460 rows × 3 columns

```
In [81]: df.plot(x='SalePrice', y='TotalSF', style='o')
```

Out[81]: <AxesSubplot:xlabel='SalePrice'>


```
In [84]: df.plot(x='SalePrice', y='TotalLotSize', style='o')
```

```
Out[84]: <AxesSubplot:xlabel='SalePrice'>
```



```
In [52]: print(df.corr())
```

 SalePrice
 TotalSF
 TotalLotSize

 SalePrice
 1.000000
 0.782260
 0.319049

 TotalSF
 0.782260
 1.000000
 0.370958

 TotalLotSize
 0.319049
 0.370958
 1.000000

Question 5

```
In [62]:
          from sklearn.preprocessing import MinMaxScaler, StandardScaler
          sale_price = df['SalePrice'].values.reshape(-1, 1)
          min_max_scaler = MinMaxScaler()
          sale_price_minmax = min_max_scaler.fit_transform(sale_price)
          standard_scaler = StandardScaler()
          sale_price_standard = standard_scaler.fit_transform(sale_price)
          print("Min-Max scaled SalePrice:\n", sale_price_minmax)
          print("Standard scaled SalePrice:\n", sale price standard)
         Min-Max scaled SalePrice:
           [[0.24107763]
           [0.20358284]
           [0.26190807]
           [0.321622 ]
           [0.14890293]
           [0.15636717]]
         Standard scaled SalePrice:
           [[ 0.34727322]
           [ 0.00728832]
          [ 0.53615372]
           [ 1.07761115]
```

[-0.48852299] [-0.42084081]]