Statistical Learning Introduction to Machine Learning

Bin Liu 6/16/2022

A learning algorithm to predict certain desired outputs given the required inputs.

"Garbage in, garbage out"

Your analysis is as good as your data.

Learning

Function approximation

Machine Learning Categories

- Supervised Learning
 - Regression
 - Classification
- Unsupervised Learning
 - Clustering
 - Dimensionality Reduction
- Reinforcement Learning

Supervised Learning

Given X_{data} and Y_{data} , find f(x) so that $f(X) \sim Y_{data}$

Supervised Learning

If f(x) = WX, we can update this function

Same for both

- regression,
- classification

$$\eta = 0.1$$

How to generalize this?

Unsupervised Learning

Given X_data only, we don't know anything about Y...

Clustering

Clustering

Dimensionality Reduction

Dimensionality Reduction

Not every data point is useful and meaningful; Need to select data relevant to your outputs

Reinforcement Learning

Reinforcement Learning

Based on current state, choose certain action so that the agent can get maximum reward from the environment

machine learning

unsupervised learning

supervised learning

reinforcement

About DATA

NC STATE UNIVERSITY

Remember Underfitting/Overfitting?

Why do we keep a test set?

Congratulations! You've known everything about how ML works...

What about Deep Learning?

Deep Learning

It all starts with one neuron, but not the real one...

Perceptron Algorithm

Neural Network

Assemble lots of perceptrons all together....

Deep Neural Network

Universal Function Approximation

Neural Networks has a kind of universality i.e. no matter what f(x) is, there is a network that can approximately approach the result and do the job! This result holds for any number of inputs and outputs.

How to start?

Advanced calculus, probability theory, random processes, pattern recognition...

A strong background makes your optimization process easier.. Do not treat any of these algorithms as black box!

How to start?

Coding framework:

Best for ML only

From Google

From Meta

How to start?

