PowerPulse: Household Energy Usage Forecast

Project Documentation

1. Project Overview

Title: PowerPulse: Household Energy Usage Forecast **Domain**: Energy / Data Analytics / Machine Learning

Goal: To analyze and predict household power consumption patterns using time-series data,

enhancing energy efficiency and enabling smart planning.

2. Data Description

• Source: Individual household electric power consumption dataset

• Columns:

- o Global_active_power
- Global_reactive_power
- Voltage
- Global_intensity
- Sub_metering_1, Sub_metering_2, Sub_metering_3
- Datetime (combined date & time column)

3. Tools & Technologies Used

• Python: Data handling, modeling

• Pandas / NumPy: Data manipulation

Matplotlib / Seaborn / Plotly: Visualization

• Scikit-learn: Machine learning

• Streamlit: Interactive dashboard

• VS Code / Jupyter Notebook

4. Methodology

🚺 Step 1: Data Understanding & Cleaning

- Handled missing values
- Converted and parsed datetime
- Resampled for granularity

Removed anomalies

Step 2: Feature Engineering

- Created lag features (lag_1, lag_24h)
- Calculated other consumption (non-metered)

Step 3: Exploratory Data Analysis

- Distribution plots of energy usage
- Boxplots for sub-metering devices
- Correlation heatmaps

Step 4: Modeling

- Model Used: RandomForestRegressor
- Train-test split (50%)
- Hyperparameter tuning for memory optimization
- Evaluation metrics (RMSE, MAE, R²)

5. Streamlit App Highlights

- Sidebar date filter
- EDA section with interactive plots
- Predictive modeling tab
- Performance metrics display
- Actual vs. Predicted visualization
- Optimized for low memory systems

6. Model Performance

Metric Value

RMSE ~0.042

MAE ~0.006

R² Score ~0.998

7. Conclusion

The forecasting model shows high accuracy and low error.

- Lag-based features significantly improve performance.
- Streamlit enhances interpretability for stakeholders.
- Potential to integrate real-time monitoring for smart homes.

8. Future Enhancements

- Integrate real-time energy pricing
- Build LSTM-based deep learning model
- Deploy full-scale dashboard with alerts and recommendations

Project Done By: Bhuvanesh Thangaraj