

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Fine-tuning code LLMs to generate mojo (h) code

Trabalho de Graduação

Aluno(a): Anna Luiza Caraciolo Albuquerque Ferreira

(alcaf@cin.ufpe.br)

Orientador(a): Luciano Barbosa (luciano@cin.ufpe.br)

Área: <Nome da Área>

Resumo

Mojo é uma linguagem de programação baseada em Python desenvolvida pela Modular. Python é a linguagem mais difundida atualmente para o desenvolvimento na área de aprendizagem de máquina. Entretanto, Python é considerada uma linguagem lenta quando comparada com outras linguagens de programação populares. Assim, a proposta da linguagem Mojo é ter a usabilidade de Python e a performance de C, permitindo paralelismo, uso de tipos, controle o armazenamento, alocando valores diretamente em estruturas e meta-programação em tempo de compilação para escrever algoritmos independentes de hardware e reduzir a redundância.

Palavras-chave: aprendizagem de máquina, LLM, code generation, mojo (Até 10 linhas)

Introdução

Objetivos

Esta pesquisa tem como objetivo utilizar modelos de aprendizagem de máquina (LLMs) para a geração de código na linguagem Mojo a partir de linguagem natural. O escopo da pesquisa é subdividido em dois: avaliação de resultados obtidos através de *prompt engineering* a partir de *inputs* em Mojo e *fine-tuning* e avaliação de LLMs para geração de código.

Metodologia

Coleta do conjunto de dados

Fine-tuning de LLMs

Avaliação

Cronograma

	Abril		Maio		Junho		Julho		Agosto	
Coletar dados	X	Х								
Processar dados e criar conjuntos de treino e teste		Х	X	Х						
<atividade 3=""></atividade>				X	X	X	X			
<atividade 4=""></atividade>				X	X	X	X	Х	X	
<atividade 5=""></atividade>					X	X	X	Х		
<atividade 6=""></atividade>						X	X	Х	X	Х
<atividade 7=""></atividade>				X	X	X	X	X	Х	X

Referências

[1] CANNY, J. F. "A computational approach to edge detection." IEEE Transactions on Pattern Analysis and Machine Intelligence vol 8, pp.769–798, 1986.

Possíveis Avaliadores(as)

Prof. Um

Prof. Dois