Philips Semiconductors Product specification

Internally-compensated dual low noise operational amplifier

NE/SE5532/5532A

DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high-quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the 5532A version be used because it has guaranteed noise voltage specifications.

FEATURES

• Small-signal bandwidth: 10MHz

Output drive capability: 600Ω, 10V_{RMS}

Input noise voltage: 5nV / √Hz (typical)

• DC voltage gain: 50000

• AC voltage gain: 2200 at 10kHz

• Power bandwidth: 140kHz

Slew rate: 9V/μs

Large supply voltage range: ±3 to ±20V

Compensated for unity gain

PIN CONFIGURATIONS

Figure 1. Pin Configurations

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Plastic Dual In-Line Package (DIP)	0 to 70°C	NE5532N	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to 70°C	NE5532FE	0580A
8-Pin Plastic Dual In-Line Package (DIP)	0 to 70°C	NE5532AN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to 70°C	NE5532AF	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	SE5532FE	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	SE5532AF	0580A
8-Pin Small Outline Package (SO)	0 to 70°C	NE5532AD8	SOT96-1
8-Pin Small Outline Package (SO)	-55°C to +125°C	SE5532AD8	SOT96-1
8-Pin Small Outline Package (SO)	0 to 70°C	NE5532D8	SOT96-1
8-Pin Small Outline Package (SO)	-55°C to +125°C	SE5532D8	SOT96-1
16-Pin Plastic Small Outline Large (SOL) Package	0 to 70°C	NE5532D	SOT162-1
16-Pin Plastic Dual In-Line Package (DIP)	-55°C to +125°C	SE5532N	SOT38-4

1996 Apr 4 1 853-0949 16639

Philips Semiconductors Product specification

Internally-compensated dual low noise operational amplifier

NE/SE5532/5532A

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)

Figure 2. Equivalent Schematic (Each Amplifier)

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage	±22	V
V _{IN}	Input voltage	±V _{SUPPLY}	V
V _{DIFF}	Differential input voltage ¹	±0.5	V
T _A	Operating temperature range		
	NE5532/A	0 to 70	°C
	SE5532/A	-55 to +125	°C
T _{STG}	Storage temperature	-65 to +150	°C
TJ	Junction temperature	150	°C
P_{D}	Maximum power dissipation,		
	T _A =25°C (still-air) ²		
	8 N package	1200	mW
	8 FE package	1000	mW
	16 D package	1200	mW
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

- 1. Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10mA.
- 2. Thermal resistances of the above packages are as follows:
 - N package at 100°C/W F package at 135°C/W

 - D package at 105°C/W

1996 Apr 4

Internally-compensated dual low noise operational amplifier

NE/SE5532/5532A

DC ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C $V_S=\pm15$ V, unless otherwise specified. ^{1, 2, 3}

SYMBOL	PARAMETER	TEST CONDITIONS	SE	SE5532/5532A			NE5532/5532A		
		TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage			0.5	2		0.5	4	mV
		Over temperature			3			5	mV
$\Delta V_{OS}/\Delta T$				5			5		μV/°C
I _{OS}	Offset current				100		10	150	nA
		Over temperature			200	1		200	nA
ΔI _{OS} /ΔT				200			200		pA/°C
I _B	Input current			200	400		200	800	nA
		Over temperature			700			1000	nA
$\Delta I_B/\Delta T$				5			5		nA/°C
				8	10.5		8	16	mA
I _{CC}	Supply current								
		Over temperature			13				mA
V_{CM}	Common-mode input range		±12	±13		±12	±13		V
CMRR	Common-mode rejection ratio		80	100		70	100		dB
PSRR	Power supply rejection ratio			10	50		10	100	μV/V
	Large-signal voltage gain	R _L ≥2kΩ, V _O =±10V	50	100		25	100		V/mV
A_{VOL}		Over temperature	25 40	50		15 15	F0		V/mV V/mV
.02		R _L ≥600Ω, V _O =±10V Over temperature	20	50		10	50		V/mV V/mV
		R _I ≥600Ω	±12	±13		±12	±13		7,111
		Over temperature	±10	±12		±10	±12		
		$R_1 \ge 600\Omega$, $V_S = \pm 18V$	±15	±16		±15	±16		
V_{OUT}	Output swing	Over temperature	±12	±14		±12	±14		V
		R _L ≥2kΩ	±13	±13.5		±13	±13.5		
		Over temperature	±12	±12.5		±10	±12.5		
R _{IN}	Input resistance	Over temperature	30	300		30	300		kΩ
I _{SC}	Output short circuit current		10	38	60	10	38	60	mA
IOTES:	Catpat short offcalt carrent		10	50	00	10	50	00	111/-1

NOTES:

2. For operation at elevated temperature, derate packages based on the package thermal resistance.

AC ELECTRICAL CHARACTERISTICS

 T_A =25°C V_S =±15V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SE5532/5532A				
STWBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT	
R _{OUT}	Output resistance	$A_V=30$ dB Closed-loop f=10kHz, $R_L=600\Omega$	0.3		Ω		
		Voltage-follower					
	Overshoot	$V_{IN}=100mV_{P-P}$		10		%	
		C_L =100pF, R_L =600 Ω					
A _V	Gain	f=10kHz	2.2		V/mV		
GBW	Gain bandwidth product	C_L =100pF, R_L =600 Ω		10		MHz	
SR	Slew rate			9		V/μs	
		V _{OUT} =±10V		140		kHz	
	Power bandwidth	V_{OUT} =±14V, R_L =600 Ω ,		100		kHz	
		V _{CC} =±18V					

1996 Apr 4

^{1.} Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10mA.

Output may be shorted to ground at V_S=±15V, T_A=25°C Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

Internally-compensated dual low noise operational amplifier

NE/SE5532/5532A

ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C $V_S=\pm15$ V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SE5532			NE/SE5532A			UNIT
			Min	Тур	Max	Min	Тур	Max	UNIT
V _{NOISE}	Input noise voltage	f _O =30Hz		8			8	12	nV/√ Hz
		f _O =1kHz		5			5	6	nV/√ Hz
I _{NOISE}	Input noise current	f _O =30Hz		2.7			2.7		pA/√Hz
		f _O =1kHz		0.7			0.7		pA/√ Hz
	Channel separation	f=1kHz, R _S =5kΩ		110			110		dB

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Performance Characteristics

1996 Apr 4 4

Philips Semiconductors Product specification

Internally-compensated dual low noise operational amplifier

NE/SE5532/5532A

TEST CIRCUITS

Figure 4. Test Circuits

1996 Apr 4 5