Homework assignment

mail@kenjisato.jp

22 June 2016 Due on 29 June 2016

Collected in the classroom at the end of the class. For Problems 1 to 7, typing with a computer is desirable. If you handwrite, use pens. No pencils allowed. For problem (8), you can either email me or hand in a printed copy.

Solow model with a Cobb-Douglas production function

Let
$$F(K, AL) = K^{\alpha}(AL)^{1-\alpha}$$
.

- (1) Compute the intensive form f(k) = F(k, 1).
- **(2)** Prove that *f* has the following properties.
 - **a.** f(0) = 0,
 - **b.** f'(k) > 0,
 - c. f''(k) < 0,
 - **d.** $\lim_{k\to 0} f'(k) = +\infty$,
 - **e.** $\lim_{k\to+\infty} f'(k) = 0$.
- (3) Solve the steady state equation, $sf(k^*) (\delta + g + n)k^* = 0$, for $k^* > 0$.
- (4) Similarly, find expressions for y^* and c^* in terms of s, δ , g, n and α , where y^* and c^* are the steady state levels of output and consumption per unit of effective labor, respectively.
- (5) Compute the golden rule values of k^* , y^* and c^* . [Hint: find s that maximizes $c^* = c^*(s; \alpha, \delta, g, n)$ and plug that value into the solution of k^* , y^* and c^* obtained in (3) and (4).]
- (6) Let s_G be the golden-rule saving rate and $s_1 < s_G$ the economy's saving rate given α , δ , g and n. Suppose that the economy is on the balanced growth path $k^*(s_1)$ from t=0 to 1. At t=1, the economy experiences a permanent increase of the saving rate to $s_1' < s_G$. Draw rough sketches of the dynamics of K, C, Y and K/L, C/L, Y/L.
- (7) Do (6) again but, here, let the initial saving rate be $s_2 > s_G$ and suppose that there is a **decrease** $s_2 \rightarrow s_2' > s_G$ instead of an increase.
- (8) You'll get a bonus of several points for simulating the dynamics for (6) and (7) by computer programs. Attach your figures and codes (in any programing language).