Administrivia

Homework 8 has been updated. It is due on 4/6 *Saturday* by 11:59PM

An early reminder that the final exam for this course is Wednesday 5/8, 3-5PM in STO B50

Project 1 will be assigned this week

No discussion sections this week, but we will have office hours during the discussion sections in the same locations (except for Section A6)

Formal Semantics II: Applying Rules

Principles of Programming Languages Lecture 18

Objectives

Recap operational semantics.

Practice building reduction *derivations* for a collection of small examples.

See how this translates to OCaml code.

Keywords

```
operational semantics
configuration
abstract machine
reduction rule
derivation
single-step reduction
multi-step reduction
stack-oriented language
```

Recap: Operational Semantics

```
x=3
function f () {
    x=2
}
fecho $x
```

```
x = 3
def f():
    x = 2
f()
print(x)
```

```
let x = 3
let f () =
   let x = 2 in
   ()
let _ = f ()
let _ = print_int x
```

Bash Python OCaml

```
x=3
function f () {
    x=2
}
function f () {
    x=2
}
Bash
x = 3
def f():
    x = 2
f()
print(x)
let x = 3
let f () =
    let x = 2 in
    ()
let _ = f ()
let _ = print_int x
OCaml
```

Question. How do we know what will happen when a program executes?

```
x=3
function f () {
    x=2
}
function f () {
    x=2
}
Bash

    x = 3
    def f():
    x = 2
    f()
    print(x)
    let x = 3
    let f () =
    let x = 2 in
    ()
    let _ = f ()
    let _ = print_int x

OCaml
```

Question. How do we know what will happen when a program executes?

Usually we build intuitions by writing programs and reading manuals

```
x=3
function f () {
    x=2
}
function f () {
    x=2
}
Bash
x = 3
def f():
    x = 2
f()
print(x)
let x = 3
let f () =
    let x = 2 in
    ()
let _ = f ()
let _ = print_int x
```

Question. How do we know what will happen when a program executes?

Usually we build intuitions by writing programs and reading manuals

But many decisions about what it means to execute a program are arbitrary (or based on concerns like efficiency)

demo

(Python vs. Bash vs. OCaml)

$$(S,p) \longrightarrow (S',p')$$

Definition (Informal): A **program** is a thing which is transformed (reduced) by *evaluation* and may update some kind of state

$$(S,p) \longrightarrow (S',p')$$

Definition (Informal): A **program** is a thing which is transformed (reduced) by *evaluation* and may update some kind of state

Definition (Informal): A **program** is a thing which is transformed (reduced) by *evaluation* and may update some kind of state

Definition (Informal): A **program** is a thing which is transformed (reduced) by *evaluation* and may update some kind of state

Definition (Informal): A **program** is a thing which is transformed (reduced) by *evaluation* and may update some kind of state

Example: Arithmetic Expressions

$$(\varnothing, 10 \times (2+3)) \longrightarrow (\varnothing, 10 \times 5) \longrightarrow (\varnothing, 50)$$

State: none

Program: arithmetic expression

Example: (Fragment of) OCaml

```
let x = 3 in if x > 10 then 4 else 5) \longrightarrow (\emptyset, if <math>3 > 10 then 4 else 5) \longrightarrow (\emptyset, if false then <math>4 else 5) \longrightarrow (\emptyset, 5)
```

State: none

Program: OCaml expression

For purely functional languages there is no state

Example: Unlimited Register Machines

<u>Program:</u> sequence of commands for updating registers values and current instruction

Example: Stack-Oriented Language

```
state program push 2; push 3; add)

(2 :: \emptyset, push 3; add)

(3 :: 2 :: \emptyset, add)

(5 :: \emptyset, \epsilon)
```

State: stack (i.e., list) of values

Program: sequence of commands for manipulating the stack

Example: Stack-Oriented Language with Trace

```
((\varnothing, \varnothing), \operatorname{push} 2; \operatorname{trace}; \operatorname{push} 3; \operatorname{add}; \operatorname{trace}) \longrightarrow ((2 :: \varnothing, \varnothing), \operatorname{trace}; \operatorname{push} 3; \operatorname{add}; \operatorname{trace}) \longrightarrow ((2 :: \varnothing, "2" :: \varnothing), \operatorname{push} 3; \operatorname{add}; \operatorname{trace}) \longrightarrow ((3 :: 2 :: \varnothing, "2" :: \varnothing), \operatorname{add}; \operatorname{trace}) \longrightarrow ((5 :: \varnothing, "2" :: \varnothing), \operatorname{trace}) \longrightarrow ((5 :: \varnothing, "5" :: "2" :: \varnothing), \epsilon)
```

State: stack of values + trace of strings to print

Program: sequence of commands for manipulating the stack

When we define the operational semantics of a programming language, we need to define two things:

When we define the operational semantics of a programming language, we need to define two things:

» What kind of state are we manipulating?

When we define the operational semantics of a programming language, we need to define two things:

- » What kind of state are we manipulating?
- » What rules describe how to transform configurations?

When we define the operational semantics of a programming language, we need to define two things:

- » What kind of state are we manipulating?
- » What rules describe how to transform configurations?

Expressing Possible Reductions

$$(\emptyset, 1+2) \to (\emptyset, 3)$$
 $(\emptyset, 1+(1+2)) \to (\emptyset, 1+3)$ $(\emptyset, 1+3) \to (\emptyset, 1+3) \to (\emptyset, 1+3) \to (\emptyset, 1+4) \to (\emptyset, 1+5)$ \vdots \vdots \vdots \vdots \vdots

One Approach: list them all.

This is fine for small programming languages, but doesn't scale well.

We'd rather be able to give a concise description of the shapes of possible reductions.

Then general form of a reduction rule has a collection of **premises** and a **conclusion**, which is a **shape** of a reduction

Then general form of a reduction rule has a collection of **premises** and a **conclusion**, which is a **shape** of a reduction

Think of a "shape" like an OCaml "pattern"

Then general form of a reduction rule has a collection of **premises** and a **conclusion**, which is a **shape** of a reduction

Think of a "shape" like an OCaml "pattern"

A premise may be another reduction "shape" or a **trivial condition** (we will see examples in the next slide)

Example

```
\begin{array}{c} e_1 \stackrel{\text{premise}}{\longrightarrow} e_1' \\ \text{add} \ e_1 \ e_2 \longrightarrow \text{add} \ e_1' \ e_2 \\ \text{conclusion} \end{array}
```

```
Example Programs:
(add 2 3)
(add (add 2 3) 5)
(eq (add 2 3) (sub 7 2))
(add true 2)
```

Example

```
\begin{array}{c} e_1 \overset{\text{premise}}{\longrightarrow} e_1' \\ \text{add } e_1 \ e_2 \overset{\text{add-left}}{\longrightarrow} \text{add } e_1' \ e_2 \\ & \text{conclusion} \end{array}
```

```
Example Programs:
(add 2 3)
(add (add 2 3) 5)
(eq (add 2 3) (sub 7 2))
(add true 2)
```

If e_1 reduces to e_1' in one step, then $\operatorname{add} e_1 e_2$ reduces to $\operatorname{add} e_1' e_2$ in one step

Example

```
\begin{array}{c} & \underset{e_1}{\overset{\text{premise}}{\longrightarrow}} e_1' \\ \text{add } e_1 \ e_2 \longrightarrow \text{add } e_1' \ e_2 \\ & \text{conclusion} \end{array}
```

```
Example Programs:
(add 2 3)
(add (add 2 3) 5)
(eq (add 2 3) (sub 7 2))
(add true 2)
```

If e_1 reduces to e_1' in one step, then $\operatorname{add} e_1 e_2$ reduces to $\operatorname{add} e_1' e_2$ in one step

In this case, the premise is another reduction

Another Example

$$n_1$$
 is a number n_2 is a number add-ok add n_1 n_2 \longrightarrow n_1+n_2

If n_1 and n_2 are numbers then $\operatorname{add} n_1 n_2$ reduces in one step to **the number** $n_1 + n_2$

In this case, the premises are trivial conditions (it should be easy to determine if something is a number)

Rules for Addition

$$\frac{e_1 \longrightarrow e_1'}{\mathsf{add}\ e_1\ e_2 \longrightarrow \mathsf{add}\ e_1'\ e_2} \ \mathsf{add-left}$$

$$\frac{e_2 \longrightarrow e_2'}{\mathsf{add}\ e_1\ e_2 \longrightarrow \mathsf{add}\ e_1\ e_2'} \ \mathsf{add-right}$$

$$\frac{v}{\text{add}} = \frac{\text{Bool or Error}}{\text{add-left-error}}$$

$$\frac{v}{add} = \frac{add-right-error}{add} = \frac{add-right-error}{add}$$

error handling

$$\frac{n_1 \text{ is a number}}{\operatorname{add} n_1 \ n_2 \longrightarrow n_1 + n_2} \text{ and } \frac{n_2 \text{ is a number}}{\operatorname{add-ok}}$$

Reduction is a Relation

It's important to recognize that **reduction is a** *relation*. This means there may be multiple choices of reductions.

When possible, we try do design our rules to avoid this.

Reduction is a Relation

Reduction is a Relation

$$\frac{\mathsf{add}\ 1\ 2 \longrightarrow 3}{(\mathsf{add}\ (\mathsf{add}\ 1\ 2)\ (\mathsf{add}\ 2\ 3)) \longrightarrow (\mathsf{add}\ 3\ (\mathsf{add}\ 2\ 3))} \ \ ^{\mathsf{add-left}}$$

$$\frac{\text{add 2 3} \longrightarrow 5}{(\text{add (add 1 2) (add 2 3)}) \longrightarrow (\text{add (add 1 2) 5})} \text{ add-right}$$

There are two reductions from (add (add 1 2) (add 2 3)) in our current rule set.

Reduction is a Relation

$$\frac{\mathsf{add}\ 1\ 2 \longrightarrow 3}{(\mathsf{add}\ (\mathsf{add}\ 1\ 2)\ (\mathsf{add}\ 2\ 3)) \longrightarrow (\mathsf{add}\ 3\ (\mathsf{add}\ 2\ 3))} \ \ ^{\mathsf{add-left}}$$

$$\frac{\mathsf{add}\ 2\ 3\longrightarrow 5}{(\mathsf{add}\ (\mathsf{add}\ 1\ 2)\ (\mathsf{add}\ 2\ 3))\longrightarrow (\mathsf{add}\ (\mathsf{add}\ 1\ 2)\ 5)}\ ^{\mathsf{add-right}}$$

There are two reductions from (add (add 1 2) (add 2 3)) in our current rule set.

We can avoid this by breaking symmetry. We will enforce that the right argument can reduced only when the left argument is completely reduced.

Rules for Addition

```
\frac{e_1 \longrightarrow e_1'}{\mathsf{add}\ e_1\ e_2 \longrightarrow \mathsf{add}\ e_1'\ e_2} \ \mathsf{add-left}
```

```
\frac{v \text{ is a number}}{\operatorname{add} v \ e_2 \longrightarrow \operatorname{add} v \ e_2'} \text{ }_{\operatorname{add-right}}
```

$$\frac{v \text{ is a Bool or Error}}{\operatorname{add} v \ e \longrightarrow \operatorname{Error}} = \frac{v \operatorname{add-left-error}}{\operatorname{add-left-error}}$$

$$\frac{v \text{ is a Bool or Error}}{\operatorname{add} e \ v \longrightarrow \operatorname{Error}}$$
 $\frac{v \text{ add-right-error}}{\operatorname{add} e \ v \longrightarrow \operatorname{Error}}$

$$\frac{n_1 \text{ is a number}}{\operatorname{add} n_1 \ n_2 \longrightarrow n_1 + n_2} \text{ and } \frac{n_2 \text{ is a number}}{\operatorname{add-ok}}$$

Enforcing an Evaluation Order

The new rule enforces that arguments of **add** are evaluated from left to right.

Understanding Check

To the best of your ability, write down the reduction rules for **eq**

When should there be an error?

What order should the arguments be evaluated?

Answer

$$\begin{array}{c}
e_1 \longrightarrow e_1' \\
\hline
(eq e_1 e_2) \longrightarrow (eq e_1' e_2)
\end{array}$$

$$v$$
 is a num or bool $e_2 \longrightarrow e_2'$
$$(eq \ v \ e_2) \longrightarrow (eq \ v \ e_2')$$

$$b_1$$
 is a bool b_2 is a bool $(eq b_1 b_2) \longrightarrow b_1 = b_2$

$$n_1$$
 is a num n_2 is a num n_2 is a num $n_1 = n_2$

$$b$$
 is a bool n is a num $(eq b n) \longrightarrow ERROR$

$$n$$
 is a num b is a bool $(eq n b) \longrightarrow ERROR$

Answer

$$\begin{array}{c}
e_1 \longrightarrow e_1' \\
\hline
(eq e_1 e_2) \longrightarrow (eq e_1' e_2)
\end{array}$$

$$v$$
 is a num or bool $e_2 \longrightarrow e_2'$
$$(eq \ v \ e_2) \longrightarrow (eq \ v \ e_2')$$

$$b_1$$
 is a bool b_2 is a bool
$$(\operatorname{eq} b_1 \ b_2) \longrightarrow b_1 = b_2$$

$$n_1$$
 is a num n_2 is a num n_2 is a num $n_1 = n_2$

b is a bool
$$n$$
 is a num $(eq b n) \longrightarrow ERROR$

$$n$$
 is a num b is a bool $(eq n b) \longrightarrow ERROR$

Looks a lot like pattern matching.

Evaluation

Specifying the operational semantics of a programming language means:

Specifying the operational semantics of a programming language means:

» Deciding on what a configuration is (i.e., what state there is, if any)

Specifying the operational semantics of a programming language means:

- » Deciding on what a configuration is (i.e., what state there is, if any)
- » Providing all the reduction rules for configurations

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

 \gg Show that $C \longrightarrow C'$.

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow C'$.
- » Given C, determine a configuration C' such that $C \longrightarrow C'$ (and show that it holds).

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow C'$.
- » Given C, determine a configuration C' such that $C \longrightarrow C'$ (and show that it holds).

Derivations

Derivations

Definition (Informal): A **derivation** is a tree of reductions, gotten by applying reduction rules. The leaves are trivial premises.

Derivations

```
\frac{1 \text{ is a number}}{\text{add } 1 \text{ } 2 \text{ } \text{ is a number}} \xrightarrow[\text{add-ok}]{\text{add } 1 \text{ } 2 \text{ } \text{ } 3} \xrightarrow[\text{add-left}]{\text{add } (\text{add } (\text{add } 1 \text{ } 2) \text{ } (\text{add } 2 \text{ } 3))} \xrightarrow[\text{sub-right}]{\text{add-left}}} \frac{10 \text{ is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 1 \text{ } 2) \text{ } (\text{add } 2 \text{ } 3))} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 1 \text{ } 2) \text{ } (\text{add } 2 \text{ } 3))}} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 1 \text{ } 2) \text{ } (\text{add } 2 \text{ } 3))}} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 2 \text{ } 3))}} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 2 \text{ } 3))}} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 2 \text{ } 3))}} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 2 \text{ } 3))}} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub } 10 \text{ } (\text{add } (\text{add } 2 \text{ } 3))}} \xrightarrow[\text{sub-right}]{\text{sub-right}}} \frac{10 \text{ } \text{is a number}}{\text{sub-right}}
```

Definition (Informal): A **derivation** is a tree of reductions, gotten by applying reduction rules. The leaves are trivial premises.

A derivation is a proof that the reduction step is valid in the operational semantics.

sub 10 (add (add 1 2) (add 2 3)) — sub 10 (add 3 (add 2 3))

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))

We can build derivations from the ground up, applying rules in reverse.

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))

sub 10 (add (add 1 2) (add 2 3)) — sub 10 (add 3 (add 2 3))

```
10 is a number (add (add 1 2) (add 2 3)) \longrightarrow (add 3 (add 2 3)) sub-right sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))
```

```
10 is a number  (add (add 1 2) (add 2 3)) \longrightarrow (add 3 (add 2 3))  sub-right sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))
```

```
10 is a number  (add (add 1 2) (add 2 3)) \longrightarrow (add 3 (add 2 3))  sub-right sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))
```

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow C'$.
- » Given C, determine a configuration C' such that $C \longrightarrow C'$ (and show that it holds).

Single-Step Evaluation

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow ???

Single-Step Evaluation

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow ???

The more "realistic" situation is to be given a program and then try to figure out what it evaluates to in a single step.

Single-Step Evaluation

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow ???

The more "realistic" situation is to be given a program and then try to figure out what it evaluates to in a single step.

This is why we want to be careful about how we design our rules: we don't want to get too caught up on which rule to apply.

How To: Performing Single-Step Evaluation

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow ??

We can perform a single evaluation step by again, build derivations from the ground up.

If we've designed our rules well (e.g., by enforcing evaluation order) there should always be a rule to use.

 $\begin{array}{c} \text{sub } \textit{n e} \\ \text{sub } 10 \text{ (add (add 1 2) (add 2 3))} \longrightarrow ?? \end{array}$

We can perform a single evaluation step by again, build derivations from the ground up.

We can perform a single evaluation step by again, build derivations from the ground up.

We can perform a single evaluation step by again, build derivations from the ground up.

We can perform a single evaluation step by again, build derivations from the ground up.

$$\begin{array}{c} \operatorname{\mathsf{add}} n_1 \, n_2 \\ \operatorname{\mathsf{add}} 1 \, 2 & \longrightarrow ?? \end{array} \\ \hline 10 \text{ is a number} \qquad (\operatorname{\mathsf{add}} (\operatorname{\mathsf{add}} 1 \, 2) \, (\operatorname{\mathsf{add}} 2 \, 3)) & \longrightarrow (\operatorname{\mathsf{add}} ?? \, (\operatorname{\mathsf{add}} 2 \, 3)) \\ \operatorname{\mathsf{sub}} 10 \, (\operatorname{\mathsf{add}} (\operatorname{\mathsf{add}} 1 \, 2) \, (\operatorname{\mathsf{add}} 2 \, 3)) & \longrightarrow \operatorname{\mathsf{sub}} 10 \, (\operatorname{\mathsf{add}} 2 \, 3)) \end{array} \\ \end{array}$$

We can perform a single evaluation step by again, build derivations from the ground up.

We can perform a single evaluation step by again, build derivations from the ground up.

Understanding Check

sub 10 (add 3 (add 2 3)) — sub 10 (add 3 5)

Give a derivation of the above reduction.

Answer

demo

```
(single-step evaluator in OCaml)
  (interlude: recursive parsers)
```

Multi-Step Reduction Relation

$$\frac{C \longrightarrow^{\star} C}{C \longrightarrow^{\star} C} \text{ refl} \qquad \frac{C \longrightarrow^{\star} C' \longrightarrow^{\star} D}{C \longrightarrow^{\star} D} \text{ trans}$$

Given any single-step (a.k.a. small-step) reduction relation, we can derive the multi-step reduction relation:

- » Every \longrightarrow^* reduction can be extended by a single step (transitivity)

Two Questions (Again)

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow^{\star} C'$.
- » Given C, determine a configuration C' such that $C \longrightarrow^* C'$ and C' cannot be reduced.

Two Questions (Again)

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow^{\star} C'$.
- » Given C, determine a configuration C' such that $C \longrightarrow^* C'$ and C' cannot be reduced.

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) (we did this)

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

```
sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) (we did this) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) (you did this)
```

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

```
sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) (we did this) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) (you did this) sub 10 (add 3 5) \longrightarrow sub 10 8 (exercise)
```

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

```
sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) (we did this) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) (you did this) sub 10 (add 3 5) \longrightarrow sub 10 8 (exercise) sub 10 8 \longrightarrow 2
```

sub 10 (add (add 1 2) (add 2 3))
$$\longrightarrow^* 2$$

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule.

```
(we did this)
\vdots
s 10 (a (a 1 2) (a 2 3)) \longrightarrow s 10 (a 3 (a 2 3)) s 10 (a 3 (a 2 3)) \longrightarrow trans
sub 10 (add (add 1 2) (add 2 3)) \longrightarrow 2
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule.

```
 \begin{array}{c} \text{(you did this)} \\ \vdots \\ \underline{s\ 10\ (a\ 3\ (a\ 2\ 3)) \longrightarrow s\ 10\ (a\ 3\ 5)} \\ \underline{s\ 10\ (a\ 3\ (a\ 2\ 3)) \longrightarrow s\ 10\ (a\ 3\ 5) \longrightarrow^{\star} 2}_{\text{trans}} \\ \underline{s\ 10\ (a\ dd\ (add\ 1\ 2)\ (add\ 2\ 3)) \longrightarrow^{\star} 2}_{\text{trans}} \\ \end{array}
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule.

```
(\text{you did this}) = (\text{y
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule.

```
 (\text{you did this}) = (\text{
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule.

```
 (\text{you did this}) = (\text{
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule.

Two Questions (Again)

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow C'$.
- » Given C, determine a configuration C' such that $C \longrightarrow C'$ (and show that it holds).

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^* ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^* ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^* ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) sub 10 (add 3 5) \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^{\star} ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) sub 10 (add 3 5) \longrightarrow sub 10 8 sub 10 8 \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) sub 10 (add 3 5) \longrightarrow sub 10 8 \longrightarrow 2

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) sub 10 (add 3 5) \longrightarrow sub 10 8 \longrightarrow 2

If our rules are well defined, then should be easy:

demo

(multi-step evaluator in OCaml)

Stack-Oriented Language

```
<com> ::= Push <int> | Pop | Swap | Add
<int> ::= ...
```

```
<com> ::= Push <int> | Pop | Swap | Add
<int> ::= ...
```

What is our configuration?

```
<com> ::= Push <int> | Pop | Swap | Add
<int> ::= ...
```

What is our configuration?

State: A list of integers or ERROR.

```
<com> ::= Push <int> | Pop | Swap | Add
<int> ::= ...
```

What is our configuration?

State: A list of integers or ERROR.

Program: A sequence of <com> commands.

 $(S, \text{ Push n } P) \longrightarrow (n :: S, P)$ push

```
\overline{(S, \text{ Push n } P) \longrightarrow (n :: S, P)}^{\text{ push }}
\overline{(n :: S, \text{ Pop } P) \longrightarrow (S, P)}^{\text{ pop-ok}}
\overline{(\varnothing, \text{ Pop } P) \longrightarrow (\text{ERROR}, \varepsilon)}^{\text{ pop-error}}
```

```
(S, \text{ Push n } P) \longrightarrow (n :: S, P)
                                           pop-ok
(n::S, Pop P) \longrightarrow (S, P)
                                              pop-error
(\emptyset, Pop P) \longrightarrow (ERROR, \epsilon)
                                                             swap-ok
(m::n::S, Swap P) \longrightarrow (n::m::S, P)
                                              - swap-error-0
(\emptyset, Swap P) \longrightarrow (ERROR, \epsilon)
                                                     swap-error-1
(n::\emptyset, Swap P) \longrightarrow (ERROR, \epsilon)
```

 $(n::\emptyset, Swap P) \longrightarrow (ERROR, \epsilon)$

```
(m::n::S, Add P) \longrightarrow ((m+n)::S, P)
(S, \text{ Push n } P) \longrightarrow (n :: S, P)
                                                                                                       -add-error-0
                                                          (\emptyset, Add P) \longrightarrow (ERROR, \epsilon)
(n::S, Pop P) \longrightarrow (S, P)
                                                         (n :: \emptyset, Add P) \longrightarrow (ERROR, \epsilon)
(\emptyset, Pop P) \longrightarrow (ERROR, \epsilon)
(m::n::S, Swap P) \longrightarrow (n::m::S, P)
                                             - swap-error-0
(\emptyset, Swap P) \longrightarrow (ERROR, \epsilon)
```

swap-error-1

```
(m::n::S, Add P) \longrightarrow ((m+n)::S, P)
(S, \text{ Push n } P) \longrightarrow (n :: S, P)
                                                                                                           -add-error-0
                                                            (\emptyset, Add P) \longrightarrow (ERROR, \epsilon)
(n::S, Pop P) \longrightarrow (S, P)
                                                           (n::\emptyset, Add P) \longrightarrow (ERROR, \epsilon)
(\emptyset, Pop P) \longrightarrow (ERROR, \epsilon)
```

$(m::n::S, \text{Swap } P) \longrightarrow (n::m::S, P)$ $(\varnothing, \text{Swap } P) \longrightarrow (\text{ERROR}, \varepsilon)$ $(n::\varnothing, \text{Swap } P) \longrightarrow (\text{ERROR}, \varepsilon)$ swap-error-1 $(n::\varnothing, \text{Swap } P) \longrightarrow (\text{ERROR}, \varepsilon)$

Note.

- » Each rule has no premise
- » Each rule behaves like OCaml
 pattern-matching

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

(1) $\overline{(\varnothing, \text{ Push 1 Push 2 Swap Add})} \rightarrow (1::\varnothing, \text{ Push 2 Swap Add})$

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

```
(1) (\varnothing, \text{ Push 1 Push 2 Swap Add}) \longrightarrow (1::\varnothing, \text{ Push 2 Swap Add}) push (2::\varnothing, \text{ Push 2 Swap Add}) \xrightarrow{\text{push}} push (2::\varnothing, \text{ Push 2 Swap Add}) \longrightarrow (2::1::\varnothing, \text{ Swap Add})
```

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\varnothing , Push 1 Push 2 Swap Add) \longrightarrow C

```
(1) (\varnothing, \text{ Push 1 Push 2 Swap Add}) \longrightarrow (1::\varnothing, \text{ Push 2 Swap Add}) push (2) (1::\varnothing, \text{ Push 2 Swap Add}) \longrightarrow (2::1::\varnothing, \text{ Swap Add}) push (3) (2::1::\varnothing, \text{ Swap Add}) \longrightarrow (1::2::\varnothing, \text{ Add}) swap-ok
```

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\varnothing , Push 1 Push 2 Swap Add) \longrightarrow C

```
(1) \overline{(\varnothing, \text{ Push 1 Push 2 Swap Add})} \longrightarrow (1::\varnothing, \text{ Push 2 Swap Add}) push
(2) \overline{(1::\varnothing, \text{ Push 2 Swap Add})} \longrightarrow (2::1::\varnothing, \text{ Swap Add}) push
(3) \overline{(2::1::\varnothing, \text{ Swap Add})} \longrightarrow (1::2::\varnothing, \text{ Add})} swap-ok
(4) \overline{(1::2::\varnothing, \text{ Add})} \longrightarrow (3::\varnothing, \varepsilon) add-ok
```

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

```
(1) (\varnothing, \text{ Push 1 Push 2 Swap Add}) \longrightarrow (1::\varnothing, \text{ Push 2 Swap Add}) push
(2) (1::\varnothing, \text{ Push 2 Swap Add}) \longrightarrow (2::1::\varnothing, \text{ Swap Add}) push
(3) (2::1::\varnothing, \text{ Swap Add}) \longrightarrow (1::2::\varnothing, \text{ Add}) swap-ok
(4) (1::2::\varnothing, \text{ Add}) \longrightarrow (3::\varnothing, \varepsilon) add-ok
```

Again, choosing the right rule is like pattern matching.

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

(\varnothing , Push 1 Push 2 Swap Add) \longrightarrow^* (3:: \varnothing , ϵ)

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

(1)
$$(1::\varnothing, Push 2 Swap Add) \longrightarrow^* (3::\varnothing, \varepsilon)$$

($\varnothing, Push 1 Push 2 Swap Add) $\longrightarrow^* (3::\varnothing, \varepsilon)$$

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\emptyset , Push 1 Push 2 Swap Add) \longrightarrow C

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\varnothing , Push 1 Push 2 Swap Add) \longrightarrow C

Question. Evaluate Push 1 Push 2 Swap Add in an empty stack. In other words, find a configuration \mathcal{C} which cannot be reduced such that

(\varnothing , Push 1 Push 2 Swap Add) \longrightarrow C

Understanding Check

push 1 push 2 add push 2 add add

Evaluate the above program in the empty stack. Write down the necessary single-step reductions and which rules you used in each case.

A Note on the Project

```
(S, \text{ Push n } P) \longrightarrow (n :: S, P)
\vdots
(s, \text{ push n } :: \text{ rest\_prog}) \rightarrow \text{ eval (Int n } :: s) \text{ rest\_prog}
```

Much of what the projects will be is reading these rules and turning them into OCaml code. It's not always going to be a perfect translation.

Please take the time to learn how to read and apply these rules.