Name.	Name:	scln	
-------	-------	------	--

As always you need to show your work. Fill in the appropriate blanks

1. A pair
$$(\lambda, v)$$
 is an eigen pair if

2. For
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
.

1. A pair
$$(\lambda, \nu)$$
 is an eigen pair if $A\nu = \lambda \nu$ and $\nu \neq 0$
2. For $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$. $(1-\lambda)^2 A1 + 4 = 0$ $(\lambda - 1)^2 = -4$ $\lambda - 1 = \pm 2T$

2.2. compute the eigenvectors of A
$$\begin{pmatrix} 1 \\ -i \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ i \end{pmatrix}$

$$\lambda_{1} = 1 + 2i$$

$$A - \lambda_{1} I = \begin{pmatrix} -2i & 2 \\ -2 & -2i \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 \\ -2i \end{pmatrix}$$

$$A = \begin{pmatrix} 1 \\ -2i$$

$$x_2 = 0$$
 $V_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$

3. The matrix
$$A = \begin{pmatrix} a - b \\ b & a \end{pmatrix}$$
 is a scaling by $r = \sqrt{a^2 + b^2}$ and a rotation by $crtm(\mathcal{H}_c)$

$$r = \sqrt{a^2 + b^2}$$
 and a rotation by

4. A scaling by r and a rotation by angle
$$\phi$$
 has matrix $A = \begin{pmatrix} V & O \\ C & V \end{pmatrix} \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$ i

5. The matrix
$$A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$$
 is a scaling by $\sqrt{1+4}$ and a rotation by $at (2)$