数字逻辑

第一章 数字系统

北京理工大学 计算机学院 黄永刚

一. 数字系统

- □ 1. 定义
- □ 2. 分类
- □ 3. 典型系统

1. 定义

- □ 什么是数字系统?
- □是一种离散信息处理系统
 - 一组离散形式的信息作为输入
 - > 离散的内部信息作为系统状态
 - > 产生离散形式的系统输出

2. 分类

- □ 根据是否有系统状态
- □ 组合逻辑系统
 - > 无状态记忆功能
 - \rightarrow 输出值只与当时系统输入有关 output = f (input)
- □时序逻辑系统
 - > 具备状态记忆功能
 - \rightarrow 输出值与当时系统输入和状态都有关 output = f (state, input)
 - ➤ 在离散时间点更新状态 > > 同步时序系统
 - ➤ 在任何时间点更新状态 > > 异步时序系统

3 典型系统

□ 数字计数器

□ 输入: Count Up、Reset

□ 输出:显示

□ 状态: 存储数字值

□数字计算机

□ 输入: 键盘、鼠标、麦克风

□ 输出: 屏幕、扬声器

- □ 嵌入式系统: 计算机作为其他系统的内部部件
 - > 微型计算机
 - > 微型控制器
 - ▶ 数字信号处理器

□ 嵌入式系统例子: 测温

Output

□其他例子

- > 手机
- > 相机
- > 汽车
- > 复印机
- > 洗碗机
- > GPS

二. 信息表示

- □ 1. 定义
- □ 2. 二进制表示

1. 定义

□信息

- > 对物质世界与人类社会中存在现象的表示
- > 可以消除不确定性
- > 信息熵
- > 熵增定律

□信号

- > 信息表示的物理载体
- > 模拟信号: 连续的物理量
- > 数字信号: 离散的物理量

2. 二进制表示

- □ 数字系统广泛采用两个离散值,称二进制
 - > 数字0和1
 - ➤ 符号真(T)和假(F)
 - ➤ 符号高(H)和低(L)
 - ➤ 符号开(On)和关(Off)

2. 二进制表示

- □可以用不同物理量来实现二进制
 - > 电压、磁场方向、电荷量

三. 数制

- □ 1. 定义
- □ 2. 运算
- □ 3. 转换

1. 定义

- □数的表示规则称为数制
- □ 基底(r): 一个数制所包含的数字符号的个数

二进制	0, 1
八进制	0, 1, 2, 3, 4, 5, 6, 7
十进制	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
十六进制	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- □ 权(ri): 数字符号的位置决定的值
- □ 值是各位数字值与其权之积的总和

$$(101.01)_{2}=1\times2^{2}+0\times2^{1}+1\times2^{0}+0\times2^{-1}+1\times2^{-2}$$

1. 定义

- □ 二进制数: 1001B (1001)₂
- □ 八进制数: 1001O(Q) (1001)₈
- □ 十进制数: 1001D (1001)₁₀
- □ 十六进制数: 1001H (1001)₁₆
- □二进制单位
 - \geq 2¹⁰ = 1024 = Kilo = K
 - \geq 2²⁰ = 1048576 = Mega = M
 - \geq 2³⁰ = Giga = G
 - $ightharpoonup 2^{40} = Tera = T$

2. 运算

□二进制	加减乘:	同十进制	Multiplicand:	1011
			Multiplier:	× 101
Carries:	00000	101100		1011
Augend:	01100	10110		1011
Addend:	+10001	+10111		0000
Sum:	11101	101101		1011
			Product:	110111

Borrows:	00000	00110	00110
Minuend:	10110	10110	10011 11110
Subtrahend:	-10010	-10011	-11110 -10011
Difference:	00100	00011	-01011

2. 运算

□八十六进制加减乘

- > 将同一列对应位转换为十进制
- > 计算完后再转换为原进制

Hexadecimal

59F E46 13E5

Equivalent Decimal Calculation

2. 运算

□八十六进制加减乘

- > 将同一列对应位转换为十进制
- > 计算完后再转换为原进制

Octal	Octal	Decimal	Octal
762	5×2	= 10 = 8 + 2	= 12
4 5	$5 \times 6 + 1$	= 31 = 24 + 7	= 37
4672	$5 \times 7 + 3$	= 38 = 32 + 6	= 46
3 7 1 0	4×2	= 8 = 8 + 0	= 10
43772	$4 \times 6 + 1$	= 25 = 24 + 1	= 31
	$4 \times 7 + 3$	= 31 = 24 + 7	= 37

3. 转换

□非十进制→十进制

 \blacktriangleright 按权展开 (110101.11)₂ = 32 + 16 + 4 + 1 + 0.5 + 0.25 = (53.75)₁₀

□非十进制相互转化

- ▶ 1个八进制位=3个二进制位
- ▶ 1个十六进制位=4个二进制位
- > 以小数点为界

```
(010\ 110\ 001\ 101\ 011.\ 111\ 100\ 000\ 110)_2 = (26153.7406)_8

(3A6.C)_{16} = 0011\ 1010\ 0110.\ 1100 = (1110100110.11)_2
```

3. 转换

□十进制→非十进制

- ▶ 整数部分: 除r取余
- ▶ 小数部分: 乘r取余

$$41/2 = 20 + 1/2$$
 Remainder = 1 Least significant digit $20/2 = 10$ $= 0$ $10/2 = 5$ $= 0$ $5/2 = 2 + 1/2$ $= 1$ $2/2 = 1$ $= 0$ $1/2 = 0 + 1/2$ $= 1$ Most significant digit $(41)_{10} = (101001)_2$ $0.6875 \times 2 = 1.3750$ Integer = 1 $0.3750 \times 2 = 0.7500$ $= 0$ $0.7500 \times 2 = 1.5000$ $= 1$ $= 1$ Least significant digit $(0.6875)_{10} = (0.1011)_2$

四. 编码

- □ 1. 二进制编码
- □ 2. BCD码
- □ 3. 格雷码
- □ 4. 字符编码
- □ 5. 校验位

1. 二进制编码

- □ 通过0、1排列的组合方式表示数据
- □n位二进制编码可以表示2n个数据
- □数据类型
 - > 数值型: 能进行算术运算, 如整数、小数
 - ▶ 非数值型: 一般不需算术运算,如字符、控制符
- □表达M个数据需要二进制位数

 $\lceil log_2(M) \rceil$

1. 二进制编码

颜色	二进制
红	000
橙	001
黄	010
绿	011
蓝	101
靛	110
紫	111

2. BCD码

- □采用二进制编码十进制数
- □ 用4位二进制表示0~9,6个冗余

				_
Decimal	8,4,2,1	Excess3	8,4, -2, -1	Gray
0	0000	0011	0000	0000
1	0001	0100	0111	0100
2	0010	0101	0110	0101
3	0011	0110	0101	0111
4	0100	0111	0100	0110
. 5	0101	1000	1011	0010
6	0110	1001	1010	0011
7	0111	1010	1001	0001
8	1000	1011	1000	1001
9	1001	1100	1111	1000

2. BCD码

- □ BCD码
 - > 8421码
 - ▶ 最简单,最直觉
 - ▶ 加权码, 权值8,4,2,1
 - ▶ 1010到1111 无意义
- □ 进制转换 VS 编码
 - 进制转换: 13₁₀ = 1101₂
 - ▶ 编码: 13 ⇔ 0001|0011

- □ 计数过程中,相邻编码之间只有一位不同
- □ 格雷码不唯一

十进制	8,4,2,1	Gray
0	0000	0000
1	0001	0100
2	0010	0101
3	0011	0111
4	0100	0110
5	0101	0010
6	0110	0011
7	0111	0001
8	1000	1001
9	1001	1000

□特点

- > 计数电路中, 位翻转次数少, 功耗低
- > 光学轴角编码器转动中, 避免错误编码

- □ 编制n(偶数)位二进制计数序列
 - ▶ 前一半:左最高位为0,往右各位为原二进制编码的每一位与它左边相邻位的偶校验
 - ▶ 后一半: 前一半逆序排列, 左最高位为1

十进制数	自然二进制数	格雷码	十进制数	自然二进制数	格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

□自动编制算法

- ▶ 1位格雷码有两个码字
- ➤ (n+1)位格雷码= n位格雷码(顺序)加前缀0+n位格 雷码(逆序)加前缀1

□ ASCII码

- > 美国信息交换标准编码
- ▶ 7位二进制编码,低->高,B₁...B₇
- ▶ 128个字符: 94可打印+34个控制
- >特性
 - $0 \sim 9$: $30_{16} \sim 39_{16}$
 - $A \sim Z$: $41_{16} \sim 5A_{16}$
 - $a \sim z$: $61_{16} \sim 7A_{16}$
 - 大小写转换: 翻转 B₆

		$\mathbf{B}_{7}\mathbf{B}_{6}\mathbf{B}_{5}$						
$B_4B_3B_2B_1$	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P		р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	H	X	h	X
1001	HT	$\mathbf{E}\mathbf{M}$)	9	I	Y	i	y
1010	LF	SUB	*	:	J	\mathbf{Z}	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	ì
1101	CR	GS	_	=	M	1	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	O		O	DE

Unicode

- ▶ 万国码、统一码
- > 可表示几乎所有语言中的字符与文字
- ➤ 对字符规定了唯一代码点, U+0030表示0
- > 不同方案
 - UTF-8: 1~4字节, 与ASCII兼容
 - UTF-16: 2或4字节
 - UTF-32: 4字节

□ UTF-8编码

- ▶ 单字节,第1位为0,7位为代码点(ASCII)
- ▶n字节
 - 第1个字节n个1, 1个0, 后面字节前两位为10
 - 代码点位从后往前填入,剩下补0

UTF-8 编码 (二进制,其中 x 位为代码点位)
0xxxxxxx
110xxxxx 10xxxxxx
1110xxxx 10xxxxxx 10xxxxxx
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

5. 校验位

- □检测数据传输中可能存在的错误
- □ 增加1位:表示编码中1个数是奇数或偶数
- □ 偶校验: 偶数个1, 校验位0
- □ 奇校验: 奇数个1, 校验位0

偶校验	奇校验
01000001	1100001
11010100	01010100

5. 校验位

□不足

- > 无法确定错误位
- > 无法检测偶数个位出错

