DIFFERENTIAL EQUATIONS AND TRANSFORMS (BMAT102L) (WINTER SEMESTER 2021-2022)

Module – 6 - Fourier transform

TUTORIAL SHEET - 2

- 1. Find the Fourier cosine transform of $2e^{-5x} + 5e^{-2x}$.
- 2. Obtain Fourier Sine transform of $e^{-2x} + 4e^{-3x}$.
- 3. Find f(x), if its Fourier Sine transform is $\frac{s}{s^2+1}$.
- 4. If $\int_0^\infty f(x) cossx dx = \frac{sins}{s}$, find f(x).
- 5. Using Parseval's identity for Fourier Cosine and Sine Transforms, evaluate $\int_0^\infty \frac{x^2 dx}{(x^2+4)^2}.$
- 6. Given $f(x) = e^{-ax}$, $x \ge 0$, verify Parseval's identity for Fourier transforms.
- 7. Use appropriate transform to evaluate

$$(i)\frac{dx}{(x^2+2^2)(x^2+3^2)}$$
$$(ii)\frac{x^2dx}{(x^2+64)(x^2+49)}.$$

- 8. Find the Fourier Cosine transform of e^{-ax} and use it to find the Fourier transform of $e^{-a|x|}cosbx$.
- 9. Find Fourier Sine transform of e^{-3x} and hence find $F_c(xe^{-3x})$.
- 10. By finding the Fourier cosine transform of $F_C(e^{-a^2x^2})$, compute $F_S(xe^{-a^2x^2})$.
- 11. Solve the heat conduction problem described by

PDE:
$$k \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
, $0 < x < \infty$, $t > 0$
BC: $u(0,t) = u_0$, $t \ge 0$
IC: $u(x,0) = 0$, $0 < x < \infty$
 u and $\frac{\partial u}{\partial x}$, both tend to zero as $x \to \infty$.