Implicit Regularization in Matrix Factorization

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, Nathan Srebro

Matrix Estimation from Linear Measurementnts

$$\min_{X \in \mathbb{R}^{n \times n}} F(X) = \|\mathcal{A}(X) - b\|_{2}^{2} = \sum_{i=1}^{m} (\langle A_{i}, X \rangle - b_{i})^{2}$$

e.g matrix completion (), linear neural networks,...

 $\mathbf{m} \ll \mathbf{n^2}$ underdetermined \Rightarrow many global minima

Gradient descent on X converges to the global optimum with minimum Frobenius norm $X_F^* = \underset{A(X) = b}{\operatorname{argmin}} \|X\|_F^2$

For matrix completion, X_F^* is a trivial imputation with zeros

$$\min_{U,V \in \mathbb{R}^{n \times n}} f(U,V) = F(UV^{\top}) = \|\mathcal{A}(UV^{\top}) - b\|_{2}^{2}$$

No explicit regularization, equivalent problem with many global minima

 \longrightarrow Gradient descent on f(U, V)

$$U_{k+1} = U_k - \eta \nabla_U f(U_k, V_k)$$
$$V_{k+1} = V_k - \eta \nabla_V f(U_k, V_k)$$

Empirically, does not reach trivial global minima and generalizes (see Example —>)

Question: Which global minimum does gradient descent on f(U, V) get to?

$n = 50, m = 300, \ A_i \ \text{random Gaussian} \\ y = \mathcal{A}(X^*) \ \text{generated from ground truth} \ X^* \in \mathbb{R}^{n \times n} \ \text{of rank-2}$ $Train \ \text{error} \approx 0 \ \text{for all estimates,} \\ \text{i.e. global optima reached by all algorithms}$ $X^* \ \text{is low-rank and} \ A_i \text{'s are random}$ $\Rightarrow \min_{A(X)=0} \|X\|_* \ \text{recovers} \ X^*$ Under some conditions on initialization and step size, solution from gradient descent on <math>f(U,V) generalizes without any explicit regularization 1.5 generalizes without any explicit regularizationSome other global optima do not generalize

Our Conjecture

Gradient descent on f(U, V) converges to the minimum nuclear norm solution when:

- \bullet The initialization is very close to 0
- The step size is very small

Symmetric psd factorization

$$\min_{\mathbf{X} \succeq \mathbf{0}} F(X) = \|\mathcal{A}(X) - b\|_2^2$$

$$\min_{U \in \mathbb{R}^{n \times n}} f(U) = F(UU^{\top}) = \|\mathcal{A}(UU^{\top}) - b\|_{2}^{2}$$

An asymmetric factorization $\|\tilde{\mathcal{A}}(\tilde{U}\tilde{V}^{\top}) - b\|_2^2$ is a special case of symmetric factorization $\|\mathcal{A}(UU^{\top}) - b\|_2^2$ with $A_i = \begin{bmatrix} 0 & \tilde{A}_i \\ \tilde{A}_i^{\top} & 0 \end{bmatrix}$

▶ Henceforth, we only consider the symmetric psd factorization which is more general and subsumes the asymmetric factorization

Gradient flow

Gradient flow is the continuous-time limit of gradient descent as step size goes to zero, dynamics given by:

Conjecture: As $\|U_0\| \to 0$ if gradient flow converges to a global minimum $U_\infty = \lim_{t \to \infty} U_t$, i.e. $f(U_\infty) = 0$, then $X_\infty = U_\infty U_\infty^\top = X_{\mathrm{NN}}^* = \mathrm{argmin} \|X\|_*$

Motivation

Choice of optimization algorithm

Implicit bias towards certain global optima

"implicit bias" plays a crucial role in neural network learning

- neural networks are highly overparametrized most global minima are bad for generalization
- local search methods (like SGD) find non trivial solutions
 that generalize well (even without explicit regularization)
 implicit regularization key in explaining generalization
- matrix factorization is a simple 2 layer linear network segue for understanding the impact bias rigorously

What We Can Prove: Commutative Measurements

Theorem: Let $U_{\infty}(\alpha)$ be the solution of gradient flow initialized at $U_0 = \alpha I$. If measurements A_i commute, i.e. $A_i A_j = A_j A_i$, and if $\bar{X}_{\infty} = \lim_{\alpha \to 0} U_{\infty}(\alpha) U_{\infty}(\alpha)^{\top}$ exists and satisfies $\mathcal{A}(\bar{X}_{\infty}) = b$, then $\bar{\mathbf{X}}_{\infty} = \mathbf{X}_{\mathrm{NN}}^*$

Corollary: Consider a non-negative *vector* least squares problem $\min_{x \in \mathbb{R}^n_+} \bar{F}(x) = \|Ax - b\|_2^2$.

Let $x=u^2$ (element wise square) for $u\in\mathbb{R}^n$, then gradient flow for $\min_{u\in\mathbb{R}^n} \bar{f}(u)=\|Au^2-b\|_2^2$ initialized at $u_0=\alpha\vec{1}$, as $\alpha\to 0$ will converge to a global optimum u_∞ such that $\mathbf{u}_\infty^2=\underset{\Delta\mathbf{x}=\mathbf{b}}{\operatorname{argmin}}\|\mathbf{x}\|_1$

Proof strategy

1. Characterize the gradient flow path

$$\dot{U}_t = -\mathcal{A}^*(r_t)U_t \implies \dot{X}_t = -\mathcal{A}^*(r_t)X_t - X_t\mathcal{A}^*(r_t)$$

$$X_t = \exp\left(-\mathcal{A}^*(s_t)\right) U_0 U_0^{\top} \exp\left(-\mathcal{A}^*(s_t)\right)$$

$$U_0 = \alpha I$$

$$= \exp\left(-2\mathcal{A}^*(s_t) + 2\log(\alpha)I\right) \quad s_t = \int_0^t r_s ds$$

2. KKT conditions of $\min_{X \succeq 0} ||X||_*$ s.t. $\mathcal{A}(X) = y$

$$\mathcal{A}(X) = b$$
 \longrightarrow (satisfied by global optimality)
$$X \succeq 0 \longrightarrow$$
 (guaranteed by psd factorization)

 $\mathcal{A}^*(\nu) \preceq I$ $\mathcal{A}^*(\nu)X = X$ Construct dual certificate $\bar{\nu}$ for \bar{X}_{∞}

- $\nu_{\alpha} \stackrel{\text{def}}{=} \lim_{t \to \infty} \frac{s_t}{\log(\alpha)}, \text{ and } \bar{\nu} = \lim_{\alpha \to 0} \nu_{\alpha}$ $\lim_{\alpha \to 0} \lambda_{\max} \left(\mathcal{A}^*(\nu_{\alpha}) \right) = 1 \Rightarrow \mathcal{A}^*(\bar{\nu}) \preceq I$
- as $\|ar{X}_\infty\|=0$ (if $\lambda_{\sf max}(\mathcal{A}^*(ar{
 u}))<1)$ or $\|ar{X}_\infty\|=\infty$ (if $\lambda_{\sf max}(\mathcal{A}^*(ar{
 u})>1)$
- $\bar{X}_{\infty} = \lim_{\alpha \to 0} e^{-2(\mathcal{A}^*(\nu_{\alpha}) I) \log \alpha}$ spanned by top eigenvectors of $\mathcal{A}^*(\bar{\nu})$

Proof **does not** depend on r_t being residuals in the gradient flow path, but just on the form of X_t (the m-dimensional manifold parametrized by $s_t \in \mathbb{R}^m$)

 $ightharpoonup \eta
ightharpoonup 0$ necessary to remain in the (non-linear) manifold

General Case

If measurements do not commute:

- no simple expression for gradient flow path
- path described a "time ordered exponential"

$$X_{t} = \lim_{\epsilon \to 0} \left(\prod_{\tau=t/\epsilon}^{1} \exp\left(-\epsilon \mathcal{A}^{*}(r_{\tau\epsilon})\right) \right) X_{0} \lim_{\epsilon \to 0} \left(\prod_{\tau=1}^{t/\epsilon} \exp\left(-\epsilon \mathcal{A}^{*}(r_{\tau\epsilon})\right) \right)$$

- ▶ unlike commutative case, using arbitrary steering r_t not generated from residuals along the gradient flow path can lead to **any** p.s.d matrix
- need to exploit the specific structure of residuals $r_t = \mathcal{A}(U_tU_t^\top) b$ from gradient flow to construct dual certificate