Zadania z fizyki – podział na grupy

Zadania z rysunkiem lub wymagające wykonania rysunku (13)

Narysuj siły działające na ładunek próbny q₀, położony w środku trójkąta równobocznego, w którego wierzchołkach znajdują się 3 ładunki punktowe o wartości +Q. Jaką ma wartość i jak jest skierowany wektor całkowitej siły działającej na q₀?

Siły składowe

Każdy ładunek +Q w wierzchołku działa na ładunek próbny q_0 siłą odpychającą skierowaną wzdłuż prostej łączącej q_0 z danym wierzchołkiem, ale **od** wierzchołka (bo oba ładunki są dodatnie):

- F₁, F₂, F₃ mają jednakowe wartości $F=krac{Q\,q_0}{r^2}$,
 - gdzie r to odległość środka od wierzchołka.
- Kierunki tych sił są oddalone o 120° (symetria trójkąta równobocznego).

Wektor całkowitej siły

Suma trzech identycznych wektorów odchylonych o 120° wynosi zero:

$$\mathbf{F}_{\text{wypadk}} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = 0.$$

Odpowiedź

Wartość całkowitej siły działającej na ładunek próbny w środku trójkąta:

$$F_{
m wypadk}=0$$

• Kierunek: brak - wektor wypadkowy znika.

Przez pierścień metalowy o promieniu r przechodzi prostopadle do jego płaszczyzny pole magnetyczne o indukcji B. Wartość tego pola zmienia się w funkcji czasu zgodnie z relacją: B = at + b (gdzie t jest czasem, zaś a i b są stałymi). Całkowity opór elektryczny pierścienia wynosi R. Wylicz wartość prądu (i), który popłynie w pierścieniu i zaznacz jego kierunek.

Indukowane napięcie (prawo Faradaya)

Magnetyczny strumień przez pierścień

$$\Phi_B(t) = B(t)\,S = (at+b)\,\pi r^2.$$

Pole jest jednorodne i prostopadłe do powierzchni $S=\pi r^2$.

$${\cal E}=-rac{d\Phi_B}{dt}=-\pi r^2rac{d}{dt}(at+b)=-a\,\pi r^2.$$

Indukowana SEM jest więc stała (nie zależy od t), bo B zmienia się liniowo.

Natężenie prądu

$$I=rac{\mathcal{E}}{R}=-rac{a\pi r^2}{R}, \hspace{1cm} |I|=rac{a\pi r^2}{R}.$$

Kierunek (reguła Lenza)

- Jeżeli a > 0 pole B rośnie w zadanym kierunku.
 Prąd popłynie tak, aby wytworzyć pole przeciwnie skierowane ⇒
 - gdy pole rośnie w głąb kartki (⊗) → prąd zgodnie z ruchem wskazówek (CW),
 - gdy pole rośnie z kartki (⊙) → prąd przeciwnie do ruchu wskazówek (CCW).
- Jeżeli a < 0 (pole maleje) kierunek się odwraca.

Podsumowanie:

$$I=-rac{a\pi r^2}{R}$$
, znak "–" wyznacza kierunek prądu zgodny z zasadą Lenza.

Podaj prawo Coulomba i zdefiniuj natężenie pola elektrycznego. Skonstruować wektor natężenia pola elektrycznego we wskazanym punkcie, wytworzony przez dwa ładunki punktowe +Q i -Q.

Prawo Coulomba

$$|{f F}| = k \, rac{|q_1 \, q_2|}{r^2}, \qquad {f F} = k \, rac{q_1 \, q_2}{r^2} \, {f \hat r}$$

- $ullet k = rac{1}{4\piarepsilon_0} pprox 8,\!99 imes 10^9 \, \mathrm{N}\,\mathrm{m}^2/\mathrm{C}^2$ stała Coulomba
- q_1, q_2 ładunki punktowe
- r odległość między ładunkami
- $\hat{\mathbf{r}}$ jednostkowy wektor od ładunku źródłowego do drugiego ładunku; znak iloczynu q_1q_2 decyduje, czy siła jest odpychająca (+) czy przyciągająca (–).

Natężenie pola elektrycznego

Natężenie (wektor **E**) to siła działająca na dodatni ładunek próbny q_0 podzielona przez jego wartość:

$$\mathbf{E}(\mathbf{r}) = rac{\mathbf{F}(\mathbf{r})}{q_0} \hspace{1cm} \Longrightarrow \hspace{1cm} \mathbf{E} = k \, rac{q}{r^2} \hat{\mathbf{r}}.$$

Jednostka: N/C = V/m.

Konstrukcja ${f E}$ w zaznaczonym punkcie P od układu +Q i -Q

less Copy Edit

P (punkt pomiaru)

• | ↓ (wypadkowe E) ----- oś ładunków +Q | –Q

1. Wektory składowe

- Od +Q
 - skierowany **od** +Q **do** punktu P (ładunek dodatni "odpycha"): \mathbf{E}_+ .
- Od –Q
 - skierowany **do** –Q (linie pola wpadają w ładunek ujemny): \mathbf{E}_{-} .

2. Równe długości

Punkt jest w jednakowej odległości $m{r}$ od obu źródeł, więc

$$|\mathbf{E}_+| = |\mathbf{E}_-| = k\,rac{|Q|}{r^2}.$$

3. Dodawanie wektorowe

- Składowe **pionowe \mathbf{E}_{+y}** i \mathbf{E}_{-y} mają przeciwne zwroty i znoszą się.
- Składowe poziome sumują się: obie są skierowane od +Q w stronę –Q.

4. Wypadkowe pole

$$\mathbf{E}_{\mathrm{wyp}} = \mathbf{E}_{+} + \mathbf{E}_{-} \ = \ k \, rac{Q \, d}{r^3} \; \hat{\mathbf{x}}$$

gdzie d to odległość między ładunkami, $\hat{\mathbf{x}}$ – jednostkowy wektor poziomy od +Q do -Q

Kierunek: poziomo w prawo – od ładunku dodatniego ku ujemnemu.

Długość (bez znaku): $E=\overline{k\,rac{|Q|\,d}{r^3}}$.

12. Napisz drugie prawo Kirchhoffa dla obwodu z rysunku, oblicz prąd płynący i napisz wyrażenie na napięcie na oporniku R.

4.

Drugie prawo Kirchhoffa (prawo oczkowe)

W każdym zamkniętym obwodzie suma przyrostów potencjału (SEM) równa się sumie spadków napięć:

$$\sum \varepsilon = \sum IR.$$

Zastosowanie do przedstawionego obwodu

Widzimy źródło SEM E z opornością wewnętrzną R_w połączone szeregowo z zewnętrznym opornikiem R. Przyjmując obieg prądu **zgodny** z kierunkiem SEM (od bieguna "+" przez obwód do bieguna "–") mamy jedną pętlę:

$$\boxed{E-IR_w-IR=0}$$
.

Natężenie prądu

$$I = \frac{E}{R + R_w}$$
.

Napięcie na oporniku ${\cal R}$

$$U_R = IR = rac{E\,R}{R + R_w}.$$

Kierunek prądu: od zacisku "+" źródła, przez opornik R, dalej przez oporność wewnętrzną R_w i z powrotem do zacisku "–".

6. Oblicz pojemność zastępczą układu kondensatorów, jeśli C1 = 5 μ F, C2 = 8 μ F, C3 = 4 μ F, C4 = 2 μ F.

 C₃ i C₄ wiszą między tym samym parą węzłów (górną szyną dochodzącą od C₂ i dolną szyną wychodzącą z C₁), więc są równolegle.

$$C_{34} = C_3 + C_4 = 4 \,\mu\text{F} + 2 \,\mu\text{F} = 6 \,\mu\text{F}.$$

· Następnie mamy trzy elementy połączone szeregowo:

$$C_2~(8\,\mu{
m F})~\longrightarrow~C_{34}~(6\,\mu{
m F})~\longrightarrow~C_1~(5\,\mu{
m F}).$$

Dla połączenia szeregowego obowiązuje

$$rac{1}{C_{
m eq}} = rac{1}{C_1} + rac{1}{C_{34}} + rac{1}{C_2}.$$

Podstawiając wartości:

$$rac{1}{C_{
m eq}} = rac{1}{5} + rac{1}{6} + rac{1}{8} = 0,\!200 + 0,\!1667 + 0,\!125 = 0,\!4917~\mu{
m F}^{-1},$$
 $C_{
m eq} = rac{1}{0,\!4917}~\mu{
m F}~pprox~2,\!03~\mu{
m F}.$

Pojemność zastępcza całego układu wynosi więc ~2,0 μF.

3. Rysunki przedstawiają przekroje przez powierzchnie zamknięte zawierające ładunki. Ile wynosi strumień pola elektrycznego przechodzący przez pokazane powierzchnie zamknięte (czarna kropka oznacza ładunek o wartości Q, zaś białe kółko ładunek -Q). Wpisz wynik dla każdego z przypadków odpowiednio do poniższej tabelki.

Strumień Φ_E przez zamkniętą powierzchnię – prawo Gaussa

$$oxed{\Phi_E = \oint \mathbf{E} \cdot d\mathbf{S} = rac{Q_{ ext{wew}}}{arepsilon_0}}$$

decyduje wyłącznie suma ładunków zamkniętych przez powierzchnię, a nie jej kształt, rozmiar ani położenie ładunków w środku.

rozmiar ani położenie ładunkow w środku.						
Nr rysunku	Zamknięta powierzchnia	Ładunki wewnątrz	$Q_{ m wew}$	Strumień $\Phi_E = rac{Q_{ m wew}}{arepsilon_0}$		
1	kula o promieniu $2R$	+Q	+Q	$rac{+Q}{arepsilon_0}$		
2	kula o promieniu $oldsymbol{R}$	+Q	+Q	$rac{+Q}{arepsilon_0}$		
3	kula o promieniu ${\it R}$	+Q oraz $-Q$	0	0		
4	walec o promieniu $oldsymbol{R}$ i długości $oldsymbol{L}$	+Q	+Q	$rac{+Q}{arepsilon_0}$		

11. Zależność strumienia pola B przechodzącego przez pewien obwód ma postać jak na wykresie obok. Narysuj schematycznie wykres wyindukowanej siły elektromotorycznej od czasu.

Poniżej masz szkicowy przebieg ε(t) uzyskany z prawa Faradaya

$${\cal E}(t) = -rac{d\Phi_B}{dt}$$

- od 0 s do 1 s: strumień stały $\Rightarrow d\Phi_B/dt = 0 \Rightarrow$ brak SEM,
- od 1 s do 2 s: strumień maleje liniowo $\Rightarrow d\Phi_B/dt = {
 m const} < 0 \Rightarrow {
 m SEM}$ stała, znak dodatni / ujemny zależy od przyjętej orientacji pętli (na wykresie przyjęto dodatnią),
- od 2 s dalej: strumień znowu stały ⇒ SEM = 0.

W rezultacie otrzymujemy prostokątny impuls $\epsilon(t)$ trwający od 1 s do 2 s – widoczny na wykresie. [>-]

Oznaczenia z rysunku

- i_1 prąd główny płynący przez rezystor R_1 (w lewo).
- i_2 prąd gałęzi z rezystorem R_2 (w dół).
- i_3 prąd gałęzi z rezystorem R_3 (w dół).

Dane:

$$R_1=1~\Omega, \qquad R_2=2~\Omega, \qquad R_3=4~\Omega, \qquad \mathcal{E}=2~ ext{V}.$$

1. Rezystancja zastępcza gałęzi równoległej

$$rac{1}{R_{23}} = rac{1}{R_2} + rac{1}{R_3} = rac{1}{2} + rac{1}{4} = rac{3}{4} \implies R_{23} = rac{4}{3} \; \Omega.$$

2. Całkowita rezystancja obwodu

$$R_{
m eq} = R_1 + R_{23} = 1 + rac{4}{3} = rac{7}{3} \ \Omega.$$

3. Prąd główny i_1 (prawo Ohma dla całego obwodu)

$$i_1 = rac{\mathcal{E}}{R_{
m eq}} = rac{2}{rac{7}{2}} = rac{6}{7} \; {
m A} \; \; (pprox 0.857 \; {
m A}).$$

4. Napięcie na gałęzi równoległej $R_2 \, \| \, R_3$

$$U_{23} = \mathcal{E} - i_1 R_1 = 2 - rac{6}{7} \cdot 1 = rac{8}{7} \, \mathrm{V} \ \ (pprox 1,143 \, \mathrm{V}).$$

5. Prądy w gałęziach równoległych

$$i_2 = rac{U_{23}}{R_2} = rac{rac{8}{7}}{2} = rac{4}{7} \; ext{A} \; \; (pprox 0,571 \; ext{A}), \ i_3 = rac{U_{23}}{R_3} = rac{rac{8}{7}}{4} = rac{2}{7} \; ext{A} \; \; (pprox 0,286 \; ext{A}).$$

6. Sprawdzenie zgodności z I prawem Kirchhoffa

$$i_1 = i_2 + i_3 = \frac{4}{7} + \frac{2}{7} = \frac{6}{7} \text{ A} \quad \checkmark$$

- 5. a) Napisz prawo Gaussa dla pola elektrycznego.
- b) Szklaną kulę o promieniu R naładowano jednorodnie ładunkiem Q (ładunek jest rozłożony równomiernie w całej objętości kuli). Wylicz i narysuj jak się zmienia natężenie pola elektrycznego E w funkcji odległości r od środka kuli. Wskazówka: rozważ oddzielnie przypadki: $r \ge R$ oraz r < R.

a) Prawo Gaussa dla pola elektrycznego

$$\oint_{\partial V} \mathbf{E} \cdot d\mathbf{S} \ = \ rac{Q_{
m wew}}{arepsilon_0}$$

Całkowity strumień Φ_E pola przez dowolną zamkniętą powierzchnię jest równy ładunkowi zamkniętemu $Q_{
m wew}$ podzielonemu przez $arepsilon_0$.

b) Pole jednorodnie naładowanej kuli szklanej (promień R, ładunek całk. Q) Gęstość objętościowa ładunku

$$ho = rac{Q}{rac{4}{5}\pi R^3}.$$

ullet Wnętrze kuli (r < R)

Ładunek uwięziony wewnątrz sfery Gaussa promienia r:

$$Q_{
m wew}(r)=
ho~rac{4}{3}\pi r^3=Q~rac{r^3}{R^3}.$$

Prawo Gaussa z kulistą symetrią (E radialne, stałe na powierzchni $4\pi r^2$):

$$E(r) = rac{1}{4\piarepsilon_0}\,rac{Q_{
m wew}(r)}{r^2} = rac{Q}{4\piarepsilon_0}\,rac{r}{R^3} \quad (0 \le r < R).$$

Pole rośnie **liniowo** od zera w środku do maksymalnej wartości przy r=R.

ullet Na powierzchni i na zewnątrz ($r\geq R$)

Cały ładunek $oldsymbol{Q}$ jest wewnątrz sfery Gaussa, więc zachowuje się jak punktowy:

$$E(r) = rac{1}{4\piarepsilon_0}rac{Q}{r^2} \quad (r\geq R).$$

Na samej powierzchni (r=R) obie formuły dają tę samą wartość

$$E(R)=rac{Q}{4\piarepsilon_0R^2}$$
; przebieg jest ciągły.

Wykres E(r)

- Odcinek 0 ightarrow R linia prosta $E \propto r$.
- ullet Odcinek R $ightarrow \infty$ krzywa $E \propto 1/r^2$ opadająca jak dla punktowego ładunku.

Maksimum pola występuje na powierzchni: $E_{
m max}=E(R)=Q/(4\piarepsilon_0R^2)$. [--]

7. Narysuj schematycznie rozkład prawdopodobieństwa P(x) znalezienia cząstki w studni potencjału dla stanów: n = 1 oraz n = 2.

Powyższy wykres pokazuje schematyczny rozkład prawdopodobieństwa P(x) dla cząstki w nieskończonej studni potencjału szerokości L:

• Stan podstawowy n=1 – pojedynczy grzbiet; cząstka najczęściej przebywa w środku studni, a węzły (zerowe prawdopodobieństwo) wypadają w ścianach x=0 i x=L.

$$P_{n=1}(x)=rac{2}{L}\sin^2\!\!\left(rac{\pi x}{L}
ight)$$

• Pierwszy stan wzbudzony n=2 – dwa symetryczne piki rozdzielone węzłem w środku; pięćdziesiąt procent czasu cząstka znajduje się w lewej połowie, pięćdziesiąt w prawej, ale nigdy dokładnie w środku.

$$P_{n=2}(x)=rac{2}{L}\sin^2\!\!\left(rac{2\pi x}{L}
ight)$$

W obu przypadkach rozkład zanika w nieskończenie wysokich ścianach studni, a całka $\int_0^L P(x)\,dx=1$. [-]

9. Narysuj obwód RLC, napisz jego równanie różniczkowe i podaj ogólna postać rozwiązania. Jaki jest warunek uzyskania maksymalnego prądu? Wyjaśnij znaczenie zmiennych.

9 = 9 m sim (ω't - φ)

i = tom cos (ω't - φ)

ρο ροδοταιτοπία στοροπαίοση : Mh $Z = (AM)(\omega') - \frac{1}{\omega'}(z)^2 + R^2$ 09tatecznie: 050= [R2+(WL-1/WC) lub: cos \$ = \frac{x}{2} jeśli częstość wiesma jest wówna częstośi symusocorio, czyli w" = w to impendancja Z jest vouna wartości minimalonej 2 = R Jest to varuoek resomansu, pred plynacy 4 obunder osioga utedy wartose maksymaling.

10. Podaj wzór opisujący warunek polaryzacji światła przy odbiciu. Zrób schematyczny rysunek.

Warunek polaryzacji przy odbiciu (kąt Brewstera)

Kiedy światło padnie z ośrodka n_1 na granicę z ośrodkiem n_2 pod **kątem Brewstera** $heta_B$, promień odbity staje się całkowicie spolaryzowany liniowo (składowa E_\parallel zanika).

$$an heta_B=rac{n_2}{n_1}$$

- ullet n_1 współczynnik załamania ośrodka, z którego światło nadchodzi
- ullet n_2 współczynnik załamania ośrodka, do którego wnika promień załamany
- $heta_B$ kąt między promieniem padającym a normalną do powierzchni

Dla powietrze o szkło ($n_1pprox 1,\; n_2pprox 1,5$) otrzymujemy $heta_Bpprox 56^\circ.$

Na rysunku:

- Promień załamany i odbity są prostopadłe ($heta_B + heta_t = 90^\circ$).
- Strzałki E pokazują kierunki wektora pola elektrycznego: odbity promień ma tylko składową
 prostopadłą do płaszczyzny padania (polaryzacja 1).

Zadania tekstowe / rachunkowe (10)

- 4. Podaj wyrażenia na położenie maksimów i minimów przy dyfrakcji światła na jednej i dwóch szczelinach. Opisz znaczenie zmiennych.
- a) na dwóch szczelinach
- b) na jednej szczelinie

Zadanie 4 — dyfrakcja na dwóch i jednej szczelinie						
Konfiguracja	Ekstrema	Warunek	Znaczenie zmiennych			
Dwie szczeliny o odstępie d	maksima interferencyjne	$d\sin heta=m\lambda$	$m=0,\pm 1,\pm 2,\ldots$ – rząd maksimum, $ heta$ — kąt od osi do danego prążka, λ — długość fali			
	minima interferencyjne	$d\sin heta=\left(m+rac{1}{2} ight)\lambda$				
Jedna szczelina o szerokości <i>a</i>	minima dyfrakcyjne	$a\sin heta=m\lambda$	$m=\pm 1, \pm 2, \ldots$ (dla $m=0$ brak minimum)			
	maksima poboczne (przybliżenie)	$a\sin hetapprox \left(m+rac{1}{2} ight)\lambda$	natężenie szybko maleje z rozwinięcia funkcji sinc			

1. Napisz równania Maxwella elektromagnetyzmu. Skomentuj występujące w nich wielkości.

Zadanie 1 — równania Maxwella (postać różniczkowa)
$$\nabla \cdot \mathbf{D} = \rho \qquad \text{(Prawo Gaussa dla E)}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \text{(brak biegunów magnetycznych)}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \text{(Prawo Faradaya)}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \qquad \text{(Prawo Ampère'a-Maxwella)}$$
• \mathbf{E}, \mathbf{B} — pola elektryczne i magnetyczne
• $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}, \mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$
• ρ, \mathbf{J} — gęstość ładunku i prądu, ε_0, μ_0 — przenikalności próżni.

13. Podaj i objaśnij prawo Ampera.

Zadanie 13 — prawo Ampère'a
$$\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{przew}} + \frac{d\Phi_E}{\mu_0 c_0}, \qquad \text{czyli} \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}.$$
 Drugi człon to prąd przesunięcia $\varepsilon_0 \frac{d\Phi_E}{dt}$ konieczny do zachowania ciagłości prądu m in w kondensatorze.

Prawo Ampère'a (w wersji czysto magnetostatycznej)

$$\oint_C {f B} \cdot d{f l} \ = \ \mu_0 \, I_{
m przew}$$

- lewa strona **cyrkulacja** wektora indukcji magnetycznej ${f B}$ wokół dowolnej zamkniętej pętli C;
- prawa strona przenikalność magnetyczna próżni μ_0 pomnożona przez całkowity **prąd przewodzenia** $I_{
 m przew}$ przecinający dowolną powierzchnię rozpiętą na tej pętli.

Prawo to obowiązuje dla ustalonych (niezmiennych w czasie) prądów i opisuje, że linie pola ${f B}$ "okrążają" przewodniki z prądem: im większy prąd, tym silniejsza cyrkulacja pola magnetycznego wokół niego.

4. Polaryzacja fal świetlnych przy odbiciu oraz zjawisko dwójłomności – podaj podstawowe zależności i ilustrujące je rysunki.

Zadanie 4 (drugie) — polaryzacja przy odbiciu i dwójłomność

Polaryzacja na granicy ośrodków (Brewstera)

- Dla kąta θ_B spełnione jest $an \theta_B = rac{n_2}{n_1}$; wtedy promień odbity jest całkowicie spolaryzowany liniowo (wektor E prostopadły do płaszczyzny padania).
- Współczynniki Fresnela (r_⊥, r_||) opisują natężenie odbicia dla polaryzacji ⊥ oraz || względem płaszczyzny padania.

Dwójłomność (birefringencja)

- W krysztale jednoosiowym: dwa współczynniki załamania n_o (promień zwyczajny) i n_e (promień nadzwyczajny).
- Różnica faz po przejściu grubości L:

$$\Delta\phi=rac{2\pi}{\lambda}(n_e-n_o)L.$$

- Kierunek optyczny (optic axis) ightarrow dla promienia równoległego $n_e=n_o$: brak rozszczepienia.
- 5. Podaj liczby kwantowe atomu wodoru oraz równania na wielkości fizyczne, które one definiują.

Zadanie 5 — liczby kwantowe atomu wodoru							
Liczba	Zakres	Określa	Pochodne wielkości				
główna $n=1,2,\dots$	energię	$E_n = -rac{13,6 ext{ eV}}{n^2}$					
poboczna $l=0,1,\dots,n-1$	moment pędu orbitalnego	$L=\hbar\sqrt{l(l+1)}$					
magnetyczna $m_l = -l, \dots, l$	rzut $L_z=m_l\hbar$						
spinowa $m_s=\pmrac{1}{2}$	spin elektronu	$S_z=m_s\hbar$					
Promień orbitalu Bohra: $r_n=a_0n^2$, gdzie $a_0=0{,}529 m Å$.							

6. Światło o długości fali $\lambda = 450$ nm pada na dwie bardzo wąskie szczeliny wytwarzając obraz interferencyjny na ekranie odległym od szczelin o 9.5 m. Pierwsze maksimum odległe jest od maksimum głównego o 1.5 cm. Ile wynosi odległość między szczelinami?

Zadanie 6 — odległość między szczelinami

$$\delta = d\sin heta = \lambda, \qquad \sin heta pprox an heta = rac{y}{L}.$$
 $d = rac{\lambda L}{y} = rac{450 ext{ nm} imes 9.5 ext{ m}}{0.015 ext{ m}} pprox 2.9 imes 10^{-4} ext{ m} = 0.285 ext{ mm}.$

Odstęp szczelin $d pprox 2,\!85 imes 10^{-4} \ \mathrm{m} = 285 \ \mu\mathrm{m}.$

7. Podaj najważniejsze równania opisujące własności soczewek optycznych.

Zadanie 7 — soczewki

• Równanie soczewki cienkiej:

$$rac{1}{f}=rac{1}{p}+rac{1}{q}, \qquad M=-rac{q}{p}.$$

p — odległość przedmiotu, q — obrazu, f — ogniskowa, M — powiększenie.

• Wzór wytwórcy soczewek (lens-maker):

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

gdzie $R_{1,2}$ — krzywizny powierzchni, d — grubość soczewki (dla soczewki cienkiej d o 0).

9. Podaj równania wyrażające natężenie pola elektrycznego E przez potencjał V oraz relację odwrotną.

Zadanie 9 — związek pola z potencjałem

$$\mathbf{E} = -
abla V \ , \qquad V(\mathbf{r}) = -\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}$$

8. Napisz prawo Gaussa dla pola elektrycznego i oblicz E(r) dla kuli naładowanej jednorodnie (rozważ oba przypadki: r < R oraz $r \ge R$).

Zadanie 8 — prawo Gaussa i kula z ładunkiem jednorodnym

$$\oint \mathbf{E} \cdot d\mathbf{A} = rac{Q_{ ext{obejm}}}{arepsilon_0}.$$

Dla kuli promienia R, ładunek całkowity Q:

ullet Wnętrze (r < R) $Q_{
m obejm} = Q rac{r^3}{R^3}$

$$E(r) = rac{1}{4\piarepsilon_0}rac{Qr}{R^3}$$
 (\prosto $na~zewn$ a trz).

• Na powierzchni i poza ($r \geq R$)

$$E(r)=rac{1}{4\piarepsilon_0}rac{Q}{r^2}.$$

8. Napisz równanie wyrażające częstotliwości promieniowania emitowanego przez atom wodoru.

Zadanie 8 (drugie) — częstości linii wodoru

$$rac{1}{\lambda}=R_Higg(rac{1}{n_f^2}-rac{1}{n_i^2}igg), \qquad f=rac{c}{\lambda}=R_Hcigg(rac{1}{n_f^2}-rac{1}{n_i^2}igg),$$

gdzie $R_H = 1{,}097\,373 imes 10^7~{
m m}^{-1}$, $n_i > n_f$.

Energia fotonu:

$$hf=13,6~{
m eV}igg(rac{1}{n_f^2}-rac{1}{n_i^2}igg)\,.$$

Hydroliza

Na czym polega elektroliza - podaj podstawowe równania.

ELEKTROLIZA to zespół procesów elektrochemicznych zachodzących na elektrodach pod wpływem przyłożonego z zewnątrz napięcia elektrycznego. Jest to proces odwrotny do procesów zachodzących w ogniwach elektrochemicznych.

Elektroda ujemna w procesie elektrolizy nazywa się katodą i zachodzi na niej proces redukcji Elektroda dodatnia w procesie elektrolizy nazywa się anodą i zachodzi na niej proces utleniania.

1) Masa substancji, m, wydzielonej na katodzie:

$$m = kQ$$
 lub $m = kit$ (99)

gdzie: k jest równoważnikiem elektrochemicznym (jt. masa substancji wydzielonej na katodzie, gdy przez roztwór przepłynął całkowity ładunek Q=1C), i jest prądem, zaś i jest czasem.

$$k = \frac{1}{F} \frac{\mu}{w} \tag{100}$$

Zauważmy, że gdy, ładunek całkowity, który przepłynął przez elektrolit Q=F, to podczas elektrolizy wydziela się masa substancji równa równoważnikowi chemicznemu. Wyrażmy F przez stałe podstawowe:

$$m_i = \frac{1}{F_{iw}}Q \xrightarrow{A} F = \frac{\mu Q}{mw}, F = \frac{\mu(n'N_Awe)}{w(n'\mu)^2}$$

1. Efekt fotoelektryczny

a) Równanie opisujące zjawisko fotoelektryczne (równanie Einsteina)

$$E_k = hf - W \iff hf = E_k + W$$

- E_k maksymalna energia kinetyczna (w elektronowoltach eV lub dżulach J) wybitych elektronów
- h stała Plancka ($6.62 imes 10^{-34} \, ext{J} \setminus ext{cdotps}$)
- f częstość (Hz) padającego promieniowania
- W praca wyjścia metalu (energia potrzebna na wyrwanie elektronu z powierzchni)

b) Wyznaczenie pracy wyjścia z podanego wykresu $E_k(f)$

1. Odczyt punktu przecięcia z osią $E_k=0\,$

Z przedłużenia zaznaczonej prostej na wykresie widać, że energia elektronów staje się równa zeru przy

$$f_0 \approx 0.7 \times 10^{15} \, \text{Hz}.$$

(to jest częstotliwość graniczna – "próg fotoelektryczny").

2. Obliczenie pracy wyjścia

$$W = h f_0 = (6.62 \times 10^{-34} \, \mathrm{J} \setminus \mathrm{cdotps}) \, (0.7 \times 10^{15} \, \mathrm{Hz}) = 4.63 \times 10^{-19} \, \mathrm{J}.$$

Zamieniając dżule na elektronowolty (1 e $m V=1,602 imes10^{-19}\,
m J)$:

$$W = rac{4,63 imes 10^{-19} \, ext{J}}{1,602 imes 10^{-19} \, ext{J/eV}} \, pprox \, \, 2,9 \, ext{eV}.$$

$$W~\approx~2,9~\mathrm{eV}$$

Interpretacja:

- prosta na wykresie ma stałe nachylenie h/e (\approx 4,14 imes 10⁻¹⁵ eV·s) dlatego jej przecięcie z osią $E_k=0$ od razu daje f_0 .
- im wyższa praca wyjścia, tym dalej w prawo (większa $m{f}_0$) znajduje się punkt przecięcia.

W obwodzie znajdują się: źródło siły elektromotorycznej c. opornik R oraz kondensator C. Podaj wyrażenie i narysuj schematycznie jak będzie zmieniał się ładunek q na kondensatorze, gdy: przełącznik damy do pozycji a oraz b.

IV. Ładowanie i rozładowywanie kondensatora przez rezystor R

Schemat przełącznika

- pozycja a kondensator ładuje się z źródła ε przez rezystor R;
- pozycja b źródło jest odłączone, a kondensator rozładowuje się tylko przez R.

(a) Ładowanie $\;t=0$ – przełącznik na **a** (kondensator początkowo pusty)

$$q(t) = C arepsilon \Big(1 - e^{-t/RC} \Big) \,, \qquad i(t) = rac{dq}{dt} = rac{arepsilon}{R} \, e^{-t/RC}.$$

Ładunek rośnie asymptotycznie od 0 do $Q_{
m max}=Carepsilon.$

(b) Rozładowanie $\;t=0$ – przełącznik na ${f b}$ (kondensator naładowany do $q_0=Carepsilon$)

$$q(t) = q_0\,e^{-t/RC} = Carepsilon\,e^{-t/RC}, \qquad i(t) = -rac{arepsilon}{R}\,e^{-t/RC}.$$

Ładunek maleje wykładniczo do zera.

• $R\left[\Omega\right]$ – opór, $\left[C\left[\mathrm{F}\right]$ – pojemność, $\left[C\left[\mathrm{V}\right]\right]$ – SEM, au=RC – stała czasowa układu.

H

Na siatkę dyfrakcyjną o stałej d pada prostopadle wiązka światła o długości λ . Jaką liczbę maksimów zaobserwujemy na ekranie ?

II. Liczba maksimów z siatki dyfrakcyjnej

Warunek maksimum interferencyjnego:

$$d\sin\theta=m\lambda, \qquad m=0,\pm 1,\pm 2,\ldots$$

Ponieważ $|\sin \theta| \le 1$,

$$|m| \leq m_{\max} = \left\lfloor \frac{d}{\lambda} \right\rfloor$$
.

Całkowita liczba widocznych maksimów:

$$N=2\,m_{\rm max}+1.$$

- d stała siatki (odległość między szczelinami)
- λ długość fali światła
- [] część całkowita.

Przykład: jeśli $d/\lambda=3,4$, widać rzędy $m=0,\pm1,\pm2,\pm3$ ightarrow 7 maksimów.