Experimento 02 - Pêndulo de Torção

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

September 22, 2014

1 Resumo

2 Objetivos

3 Procedimento Experimental e Coleta de Dados

3.1 Materiais utilizados

- Pêndulo de torção com fio metálico
- Trena
- Paquímetro
- Micrômetro
- Photo-gate
- Cronômetro inteligente

3.2 Procedimento

O pêndulo foi montado usando-se um fio metálico tendo um cilindro de latão acoplado em sua ponta. Foram medidos o diâmetro do fio (com o micrômetro) e contabilizada a massa do cilindro (já previamente neles explicitada). Ao lado do da base do pêndulo, foi montado o photo-gate conectado a um cronômetro inteligente configurado no modo *Pendulum*, para ser realizada a medição dos perídos de rotação. Para cada comprimento L do fio foram feitas 7 medições de período para fazer-se assim uma média aritmética. Todas as medições mencionadas foram registradas no relatório.

Figure 1: Medição dos períodos

Figure 2: Montagem do experimento

3.3 Dados Obtidos

O valor do diâmetro do fio é:

$$d = (0.56 \pm 0.01)mm$$
,

sendo 0.01mm o erro intrumental do micrômetro.

A massa do conjunto de cilindros, previamente medida, é:

$$M = (1198.2 \pm 0.1)q$$

sendo 0.1g o erro intrumental da balança usada.

Os valores dos períodos medidos (T) para cada comprimento da linha (L) podem ser encontrados na tabela 1.

3.3.1 Dimensões do cilindro

Para fazer o cálculo do momento de inércia do cilindro utilizado no pêndulo ele foi subdividido em três cilindros (Figure 1), e foram medidos os diâmetros e alturas de cada um, para assim calcular seus volumes e determinar a massa de cada um separadamente.

Diâmetros:

$$D_1 = (20.05 \pm 0.05)mm$$
,

$$D_2 = (80.15 \pm 0.05)mm,$$

$$D_3 = (99.35 \pm 0.05)mm,$$

e Alturas:

$$h_1 = (10.05 \pm 0.05)mm,$$

Table 1: Peridos medidos (T), relacionados ao comprimento do fio (L)

L (m)	Medidas de Periodo (s)							Periodo Médio (s)
0.540	5.7902	5.7958	5.7987	5.8002	5.7968	5.8066	5.7940	5.797 ± 0.002
0.503	5.5987	5.6002	5.5993	5.5996	5.5959	5.5928	5.5928	5.597 ± 0.001
0.415	5.1084	5.1099	5.1076	5.1058	5.1000	5.1072	5.1072	5.107 ± 0.001
0.360	4.7782	4.7815	4.7706	4.7755	4.7722	4.7716	4.7689	4.774 ± 0.002
0.298	4.3553	4.3612	4.3617	4.3604	4.3591	4.3578	4.3570	4.359 ± 0.001
0.234	3.8980	3.8927	3.8898	3.8860	3.8833	3.8801	3.8766	3.887 ± 0.003
0.155	3.2135	3.2136	3.2124	3.2184	3.2141	3.2164	3.2151	3.215 ± 0.001
0.142	3.0867	3.0862	3.0898	3.0955	3.0933	3.0945	3.0242	3.081 ± 0.009
0.088	2.5071	2.5077	2.5407	2.5142	2.5117	2.5040	2.4983	2.512 ± 0.005
0.056	2.0772	2.0758	2.0705	2.0706	2.0874	2.0646	2.0736	2.074 ± 0.002

Nota: Erro em no comprimento do fio (L) = 0.001 devido a dificuldade da medição (figura 2) instrumental do cronômetro = 0.0001s.

erro total calculado com base nos erros estatísticos e instrumentais.

$$h_2 = (8.05 \pm 0.05)mm,$$

 $h_3 = (12.40 \pm 0.05)mm,$

sendo 0.05mm o erro instrumental do paquímetro.

4 Análise dos Resultados e Discussões

4.1 Momento de inércia

A partir de suas dimensões, o volume (V_n) e seu erro (ΔV_n) de cada cilindro foi calculado a partir da fórmula

$$V_n = \frac{\pi D_n^2 h_n}{4}, \quad \Delta V_n = \frac{\pi D_n^2}{4} \sqrt{h_n^2 \Delta r_n^2 + r^2 \Delta h_n^2},$$

resultando em:

$$V_2 =$$
, $\Delta V_1 =$,
 $V_2 =$, $\Delta V_2 =$,
 $V_3 =$, $\Delta V_3 =$.

Desse modo, e considerando as massas dos cilindros praticamente homogêneas, foi determinado a massa de cada um em relação ao total M a a partir da relação

$$M_n = \frac{V_n}{V}M, \quad \Delta M_n = \sqrt{\frac{M^2}{V^2}\Delta V_n^2 + \frac{V_n^2}{V^2}\Delta M^2 + \frac{V_n^2}{V^4}\Delta V^2},$$

sendo V o volume total dos cilindros e $\Delta V = \sqrt{3}\Delta V_{cilindro}$, levando em conta que os erros do volume dos cilindros é cte. Com isso, tem-se que:

$$M_1 =, \quad \Delta M_1 =,$$

$$M_2 =$$
, $\Delta M_2 =$, $M_3 =$, $\Delta M_3 =$.

Calcula-se, a partir daí, o Momento de inércia I_{0n} de cada cilindro com seu erro ΔI_{0n} . Sabendo que:

$$I_{0n} = \frac{M_n D_n^2}{8}, \quad \Delta I_{0n} = \frac{1}{2} \sqrt{M_n^2 D_n^2 \Delta D_n^2 + \frac{D_n^2}{4} \Delta M_n^2},$$

Então,

$$I_{01} = , \quad \Delta I_{01} = ,$$
 $I_{02} = , \quad \Delta I_{02} = ,$
 $I_{03} = , \quad \Delta I_{03} = ,$

e logo, como o momento de inércia total I_0 é a soma dos momentos de inércia dos cilindros,

$$I_0 = , \quad \Delta I_0 = .$$

.

4.2 Determinação do módulo de cisalhamento

4.2.1 Regressão linear

A equação

$$T = \sqrt{\frac{8\pi I_0 L}{Gr^2}}$$

Pode ser reescrita como

$$T^{2} = \frac{8\pi I_{0}L}{Gr^{2}}$$
$$T^{2} = \frac{8\pi I_{0}}{Gr^{2}} \cdot L$$

Vemos então que deve existir uma relação linear entre T^2 e L. A tabela 2 demonstra essa relação.

Table 2: Periodos (T) e T^2 , relacionados ao comprimento do fio (L)

L(m)	T(s)	T^2 (s^2)
0.540	5.797 ± 0.002	33.61 ± 0.02
0.503	5.597 ± 0.001	31.32 ± 0.01
0.415	5.107 ± 0.001	26.07 ± 0.01
0.360	4.774 ± 0.002	22.79 ± 0.02
0.298	4.359 ± 0.001	19.000 ± 0.008
0.234	3.887 ± 0.003	15.10 ± 0.02
0.155	3.215 ± 0.001	10.335 ± 0.005
0.142	3.081 ± 0.009	9.49 ± 0.05
0.088	2.512 ± 0.005	6.31 ± 0.02
0.056	2.074 ± 0.002	4.30 ± 0.01

Fazendo a regressão linear T^2 por L obtem-se os coeficientes

$$a = 60.54 \pm 0.02$$

$$b = 0.951 \pm 0.006$$

A sobreposição dessa reta aos pontos da tabela pode ser vista na Figura 3.

Figure 3: Gráfico da regressão linear de T^2 por L, sobreposta aos pontos obtidos experimentalmente.

4.2.2 Estudo do coeficiente linear

A interpretação física do coeficiente linear a é

$$a = \frac{8\pi I_0}{Gr^2}$$

então obtemos

$$G = \frac{8\pi I_0}{ar^2}$$

substituindo r = D/2, obtemos

$$G = \frac{32\pi I_0}{D^2 a} = 1685632.5261933\pi I$$

$$\begin{split} \Delta G &= \sqrt{\frac{1024\pi^2\Delta {I_0}^2}{D^4a^2} + \frac{1024\pi^2\Delta a^2{I_0}^2}{D^4a^4} + \frac{4096\pi^2\Delta D^2{I_0}^2}{D^6a^2}} \\ &= \sqrt{2841357013360.82\pi^2\Delta I^2 + 3624637429.80694\pi^2I^2} \end{split}$$

O módulo de cisalhamento G do material do fio e seu erro podem ser expressos, em função do coeficiente angular da reta, por meio da relação

$$G = 8\pi \frac{I_0}{ar^4}, \quad \Delta G = \frac{8\pi}{ar^4} \sqrt{\Delta I_0^2 + I_0^2 \Delta a^2 + 16 \frac{I_0^2}{r^{10}} \Delta r^2}.$$

5 Conclusões