"ON THE LIFTABILITY OF THE AUTOMORPHISM GROUP OF SMOOTH HYPERSURFACES OF THE PROJECTIVE SPACE" [joint work with Victor GOYZALEZ-AGUILERA and Alvors LIENDO] 91. Notation, History and Motivotion Let us consider $F \in \mathbb{C}[x_0,...,x_{n+1}]$ homogeneous $\neq 0$ of degree d and let $X := \left\{ x \in \mathbb{R}^{m+1} \right\} + \left\{ x \right\} = 0$ be a SMOOTH hypersurgace of $\int dim(x) = m \ge 1$ deg (x) = d >3 Examples (that will appear later): a) Elliptic Curves: Let a, b & C $C := \{ [x,y,z] \in \mathbb{R}^2 \text{ st } y^2 z = x^3 + \alpha x z^2 + b z^3 \} \subseteq \mathbb{R}^2$ is smooth $\iff \Delta = 4a^3 + 27b^2 \neq 0 \implies C$ is an elliptic curve. b) QUARTIC K3 SURFACES: $S \subseteq \mathbb{R}^3$ smooth suggest of degree $4 \ (\Rightarrow \pi_1(s) \cong \{1\} \ \text{and} \ \omega_S \cong \mathcal{G}$, \tilde{u} , \tilde{S} is K3). (Construction) Consider 4 bilinear equations of the form $H_{K} = \left\{ \sum_{i,j=0}^{3} \alpha_{ij}^{K} \times_{i} y_{j} = 0 \right\} \subseteq \mathbb{P}_{\mathbf{x}}^{3} \times \mathbb{P}_{\mathbf{y}}^{3} \quad (K = 1, ..., 4)$ and let S:= H, NH2 NH3 NH4 = P3xP3. What is $pr_1(s) \subseteq \mathbb{R}^3$?

Note that $p \in \mathbb{R}_{x}$ belongs to $pr_{s}(S)$ if and only if B(p)y = 0 has a solution $y_0 \neq 0 \iff det B(p) = 0$ $\mathcal{B} = (b_{i})$ with $b_{kj} = \sum_{i} a_{ij} x_{j}$ linear form we pr₁(S) = $\frac{1}{2} \times \mathbb{R}^3$ st det B(x) = 0 =: S_1 degree 4 surjace Similarly: $pr_2(s) = \{y \in \mathbb{R}^3 \text{ st det } C(y) = 0\} = S_2$ $C = (c_{ki}) = (\sum_{j=1}^{k} a_{ij} y_{ij})$ FACT: If the wegicients and are GENERAL then: i) $S \subseteq \mathbb{R}^3 \times \mathbb{R}^3$ is smooth / ii) $S \cong S_1 \subseteq \mathbb{R}^3$ and $S \cong S_2 \subseteq \mathbb{R}^3$ via the prizedizons / c) FERMAT HYPERSURFACE: $X_{\overline{+}} = \{x \in \mathbb{R}^{n+1} \text{ st } x_0^d + x_1^d + \dots + x_{m+1}^d = 0\}$ Normsofth \(\sigma_{m+1}^d = 0 \} d) KLEIN HYPERSURFACE: $X_{K} = \left\{ x \in \mathbb{R}_{M+1} \right\} + x_{q-1}^{q-1} x^{1} + x_{q-1}^{1} x^{2} + \dots + x_{q-1}^{q-1} x^{m+1} + x_{q-1}^{q-1} x^{2} = 0 \right\}$ smooth (since d>,3) Question: Given two smooth hypersuryaces $X_1, X_2 \subseteq \mathbb{P}^{n+1}$, when $X_1 \cong X_2$ as abstract/embedded vorieties?

If $x_1 = x_2 = x$ one should book at

Aut $(x) := \{ \varphi : x \xrightarrow{\sim} x \text{ isomorphism} \}$ (as abstract voiety)

GROUP OF (REGULAR) AUTOMORPHISMS.

Even better: By means of "classical" rusults (Noether, Lyschetz, Matsusaka, Mumjord, ...) together with recent ones (Oguiso 2016, Shimada - Shioda 2017) we have:

Thm: Let $X_1, X_2 \subseteq \mathbb{R}^{m+1}$ be smooth hypersurjaces of degrees $d_1, d_2 > 3$ respectively. Suppose that $\varphi: X_1 \xrightarrow{\sim} X_2$ is an isomorphism, then $\exists \Phi \in \operatorname{PGL}_{m+2}(\mathbb{C}) \text{ st } \varphi = \overline{\Phi}|_{X_1}$ except (maybe) in the following cases:

(1) m=1 and $d_1=d_2=3$ (elliptic curves)

(2) m=2 and $d_1=d_2=4$ (quartic K3 surjaces).

§ 2. Recent works: Let $m, d \in \mathbb{N}^{>1}$ be gived. N+1 = (m+d+1)Recall that $H_m(d) := \mathbb{P}H^0(\mathbb{P}^{n+1}, \mathbb{O}_{\mathbb{P}^{n+1}}(d)) \cong \mathbb{P}^N$

parametrizes hypersurfaces $X \subseteq \mathbb{R}^{n+1}$ of degree d, and that $U_n(d) := \{ \underline{\text{smooth hypersurfaces}} \times \subseteq \mathbb{R}^{n+1} \text{ of deg } d \} \subseteq \mathcal{H}_n(d)$

is a Zariski open subset st $\mathcal{H}_m(d) \setminus \mathcal{U}_m(d) = \mathfrak{D} = \{ \Delta = 0 \}$ is a diviser. "discriminant"

Assumption: n > 1, d > 3 and $(n,d) \notin \{(1,3),(2,4)\}$

In particular, for every $X \in \mathcal{U}_m(d)$ we have that $Aut(X) \subseteq PGL_{m+2}(\mathbb{C})$ is finite.

Ehrusmann (1951): All the $X \in U_n(d)$ are digresmorphic.

In part, $H^n(X, Z) \cong Z^{\oplus b_n}$ are constant $b_n = (d-1)^{m+2} + (-1)^n (d-1)$

Moreover, $Aut(x) \sim H^n(x, \mathbb{Z})$ jathjully $(dy. theory)^d$ $\sim \sim \sim = \exists C(m,d) \text{ st } |Aut(x)| \leq C(m,d)$ jor all $x \in \mathcal{V}_m(d)$ Minkowski (1887)

Main Guestion: Which junite groups Grave ADMISSIBLE in $U_n(d)$ (ie, ${}^{\sharp}X_{\lambda}^{*}\subseteq \mathbb{R}^{n+1}$ smooth of $G\subseteq Aut(X)$)?

Hierarchy of Finite Groups:

some results:

✓ Dolgacher & Iskovskikh (2009): S ⊆ P³ smooth whic surjace no Det all admissible Gr (11 non-isomorphic of max order).

V González-Aguilera & Liendes (2011, 2013):

Let q = por you are Mil and p prime. Assume that q is relatively prime to d and d-1. Then:

 $G_1 \simeq \frac{1}{4} \frac{1}{4} \mathbb{Z}$ admissible $\Longrightarrow \exists l \in \{1, ..., m+2\} \text{ st.}$ in $U_m(d)$ $\Longrightarrow (1-d)^l \equiv 1 \pmod{q}$.

Pambianas (2014) and Harwi (2019): $C \subseteq \mathbb{R}^2$ smooth were of degree $d \gg 4$. Then, $|Aut(C)| \leq 6d^2$ with "=" if and only if $C \simeq 2x^d + x^d + x^d = 0$] FERMAT. Unless:

(1) d=4 ~> Cmex ~ {x3x, +x3x2+x3x0 = 0} KLEIN ~ PSL2 (#4)

(2) d = 6 ~ $C_{mox} \simeq 10x_3^2x_1^2 + 9x_5^3x_2 + 9x_5^5x_2 - 45x_5^2x_1^2x_2^2 - 135x_5^2x_1^2x_2^4 + 27x_2^5 = 0$ 6 "WIMAN sextic" ~> A6

/ Ogius & Yu (2019): X = Pt quintre thrujold ~> Det. all admissible Gr (22 non-isomorphic of max. order)

/ Adler (1978) + Wei & Yu (2020): X = Pt abic threefold \rightarrow Det. all admissible Gr (6 non-vormorphic of max order) $\sqrt{2}$ Ehrong (arXiv 2020): Det. ALL Gr = $\frac{7}{4}$ $\frac{7}{4}$ admissible in $\frac{1}{4}$ $\frac{1}{4}$

83. A Listability result Dolgacher & Iskovskikh ~> Study Aut (S) ~> H2(S, Z) = Z Gre Aut(X) = PGL₅(C) admits a LiFTING Gre GL₅(C) our storting point? Representation theory Let $X = \{x \in \mathbb{R}^{m+1} \text{ st } \mp(x) = 0\}$ as begore, and let $G_1 \subseteq Aut(X) \subseteq PGL_{m+2}(C)$ be a subgroup. We say that a subgroup $G_1 \subseteq G_1 L_{m+2}(\mathbb{C})$ is a Lifting of G_2 if: $G_1 \subseteq G_1 L_{m+2}(\mathbb{C}) \xrightarrow{\sim} G_1 \subseteq \mathcal{P}_{G_1} L_{m+2}(\mathbb{C})$ is insamplying. 2 For every $g \in Gr$ we have $g \cdot F = F$ $x_i \mapsto fx_i$, $x_j^d = 1$ Examples: $\alpha) \times_{\mp} = \{x_0^{d} + \ldots + x_{m+1}^{d} = 0\} \subseteq \widehat{\mathbb{P}}^{n+1} \Rightarrow Aut(x_{\mp}) \cong S_{m+2} \times (2/42)^{m+1} \text{ Ligitable} /$ b) $X_{K} = \left\{ x_{0}^{d-1} x_{1} + x_{1}^{d-1} x_{2} + \dots + x_{m+1}^{d-1} x_{n} = 0 \right\} \subseteq \mathbb{R}^{m+1}, \text{ and assume}$ that gcd(d, n+2)> 1. Given p prime st pld & pl(n+2),
we consider

(n+2)/p-times g:= diag (1,3,52,...,5°-1,...,1,3,52,...,5°-1) {4=e} => g induces g \in Aut(XK). However, g.K = 3K is mot lightable of Thm A (GA. L. M. 2020): $X \subseteq \mathbb{R}^{n+1}$ smooth hypersurjace of degree $d \geqslant 3$ st $(n,d) \notin \{(1,3),(2,4)\}$. Then:

Aut(x) lightable \iff gcd(d, n+2) = 1.

Thom B (GA.L.M. 2020): Let m>1 and d>3 st (n,d) \$\frac{1}{2}(1,3),(2+1)\$}

and let q = p' with re N\rightarrow and p prime. Then, q is the order of some lightable automorphism of some $\times \in \mathcal{U}_n(d)$ iff a) \$\frac{1}{2}(d-1)\$ and $r \leq K(n+1)$, where $d-1 = p^K e$ & pre; or b) \$p| d and \$\frac{1}{2}(e^2)_1,...,n+1\$ st $(1-d)^2 = 1$ (mod q) $\in GA.L.$ c) \$pt \$d(d-1)\$ and \$\frac{1}{2}(e^2)_1,...,n+2\$ st $(1-d)^2 = 1$ (mod q) $\in GA.L.$

& An independent work of Z. Theng (2020) generalizes this?

Cubic examples: Let $X \subseteq \mathbb{R}^{n+1}$ smooth cubic. Then, all the possible $74/p^2 72$ which are admissible and liptable are:

• Surjects: 2^{r_2} ($r_2 \in 3$), 3^{r_3} ($r_3 \in 2$) or 5.

• Three plds: 2^{r_2} ($r_2 \in 4$), 3^{r_3} ($r_3 \in 2$), 5 or 11.

• Four plds: 2^{r_2} ($r_2 \in 5$), 3^{r_3} ($r_3 \in 2$), 5, 7 or 11.

• Fireplds: 2^{r_2} ($r_2 \in 6$), 3^{r_3} ($r_3 \in 2$), 5, 7, 11 or 43.

As an application, we can get insumation about certain Sylves p- subgroups of Aut(X) (u, of order p^r with r maximal)

(Notation): Let p be a prime number of $p \nmid d(d-1)$ and let $r \in \mathbb{N}^{\geq 1}$. We define

Prop C (GA.L.M. 2020): Let X = Pn+1 smooth hypersurjace of

degree d>3 st gcd(d, m+2)=1, and let p be a prime st

IJ l(p2)>m+2 & 2l(p)>m+2 => p2 / lAut(x).

Cubic examples: Let $X \subseteq \mathbb{P}^{n+1}$ smooth cubic. Then:

m = 31: $|Aut(x)| = 2^{r_2}3^{r_3}5^{r_5}11^{r_1}$ with $r_5, r_1 \le 1$.

 $\frac{m=41}{4}$: $|Aut(x)| = 2^{\frac{5}{2}} 3^{\frac{5}{3}} 5^{\frac{5}{5}} 7^{\frac{5}{4}} 11^{\frac{5}{11}}$ with $r_5, r_7, r_{11} \le 1$

m = 5]: $|Aut(x)| = 2^2 3^3 5^5 7^7 11'' 43^{43}$ with $r_5, r_+, r_1, r_{43} \le 1$

Idea: Emough to analyze the cases $G_1 \simeq 74/p^2 72 \times \text{most enough}$ or $G_2 \simeq (74p^2)^2 \leftarrow \text{most enough}$ space by assumption

m=2: $|Aut(x)| = 2^{2}3^{3}5^{5}$ with $r_{5} \leq 1$.

In part, y Ge Aut(x) p-Sylver then Ge ~ ? 12 or 7/47/.

→ x q(q-1):

 $\mathcal{L}(p^r) := \min_{k \in \mathbb{N}^2} \left\{ k \in \mathbb{N}^2 \right\} + \left(1 - d \right)^k \equiv 1 \pmod{p^r}$

34. Sketch of Proof: Let X = {F = 0} = PM+1 = PP(V) smooth hyperruyace, $F \in S^d(v^*)$ with $(n,d) \notin \{(1,3),(2,4)\}$. Step 1 Consider $\varphi \in Aut(x) \subseteq PGL(v)$ and assume ord(φ) = φ . Let $\widetilde{\varphi} \in GL(V)$ st $\pi(\widetilde{\varphi}) = \varphi$ and $\widetilde{\varphi}^q = Id_V$ Key Romk: Let 7 prime st pld and suppose ord(4)=p. If y is mot lytable >> P (m+2). Jalea: $\tilde{\varphi}$, $\tilde{\tau} = 3\tilde{\tau}$, $\tilde{\zeta} = 1$ and $\tilde{\zeta} \neq 1$. (*) Let V(i) = V be the eigenspace assect 5 3 (*) + \times smooth \Rightarrow dim $V(0) = \dim V(\bar{i})$ $\forall i \Rightarrow m+2 = p \dim V(0)$ Lemma: ord (4) = q and $\tilde{\varphi} \cdot \overline{T} = g^c \overline{T}$ with $g^{q} = 1$ primitive [and $c \in \mathbb{Z}$. Then, y lightle \iff gcd(d,q) | c. In part, $y \neq v$ mot lightable: $\exists p$ prime factor $g \gcd(d,q)$ st $p \nmid c$. Write q = pr and $\gamma := q^r$ of order p. ~ y mot ligtable => y not ligtable => gcd(d, n+2)>1. Step 2 Corridor & st ord (4) = pr and & ligitable ~> We prove ThomB by analyzing the eigenspaces of $\tilde{\varphi} = \text{diag}(\tilde{\beta}^{\circ}, -\tilde{\beta}^{n+1})$ + Providing explicit examples for the "y" part. Step 3 * Consider q st ord $(q) = p^r$ and sup. $p \nmid d(d-1)$ or $p \nmid (m+2)$. Then, $\exists !$ lighting \tilde{q} to SL(V). → Application: X whic 4-yold ~> F (x) ~ K3 [2] $\varphi \in Aut(X)$ induces $\widehat{\varphi} \in Aut(\mp(X))$. Then, yor $ord(\varphi) = \widehat{\varphi}$ st p \neq 2,3 we have that \(\hat \) \(\frac{\text{rympletic}}{\text{q}} \rightarrow \text{rd(q)} = 5,7,11 (4. Fu 16) Step 4 disting of Sylver p-subgroups Gy \subseteq Aut (x) (to SL(v) in many cases \longrightarrow Here: We use gcd(d, n+2)=1 to simplify and extend some arguments from group whomstogy used by Oguiss-Yu (eg. Horsdild-Serve exact req.) mos get a lijting of Aut (x) to GL(V)

- § 5. Dome open questions:
- ?) Some multiplier: Let Gr be a (junite) group.

 why $M(G) := H^2(G, \mathbb{C}^*)$ Sohner multiplier, allows to study projective representations g: Gr oup TGL(V)
- $\underline{G}: \text{ Given } X = \{x \in \mathbb{P}^{n+1} \text{ st } \mp(x) = 0\} \subseteq \mathbb{P}^{n+1} \text{ smooth hyperver,}$ can we digne a Schur mult relative to X with "nice" properties?
- ? Abelian subgroups of maximal order: In a work in progress with Victor Gonzalez & Alvors Liendo, we are boking at abelian p-groups admirsible in Un(d)

 [D] Complementary to the work of EHENG (2020).
 - Lo(P) Complementary to the work of ZHENG (2020).
 Lo(2) MUCH earier than general p-groups (eg. 99,2% of jinite groups of order \(\perp \)?
- ? Algebraic aures: As joir as I know, the possible automorphism groups of maximal order that arise as Aut(C) for $C \subseteq \mathbb{R}^2$ plane curve of degree $d \gg 4$ are classified up to $d \leq 5$.
- ? Singular care: How singular $X \subseteq \mathbb{P}^{m+1}$ can be in order that Aut(X) is lightable? (cf. Hilbert-Mumpord criterion in GiT).

Thank you pr your attention o