Задача:

- 1. Провести исследование данных.
- 2. Рассчитать регулярный прогноз (без промо) на 45, 46, 47, 48 календарные недели.
- 3. Оценка точности МАРЕ понедельно.

In [1]:

```
import pandas as pd
import numpy as np

import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
import os
```

In [2]:

```
# Загружаем файл

df_csv = pd.read_csv('005_example.csv', sep = ';')

print(len(df_csv))

df_csv.head()
```

529577

Out[2]:

	year	week	date_id	good_id	ship_store_id	price	promo	sale	promo_price	holiday	(
0	2018	38	16.09.2018	149045	40	699	0	1	699	0	-
1	2018	11	17.03.2018	149045	40	599	0	0	599	0	
2	2018	12	23.03.2018	149045	40	599	0	0	599	0	
3	2017	30	25.07.2017	149045	40	599	0	2	599	0	
4	2018	40	04.10.2018	173544	13	1399	0	0	1399	0	
4										>	

- 1. date_id дата
- 2. good id код товара
- 3. ship_store_id код магазина
- 4. price цена
- 5. promo флаг промо
- 6. sale продажи
- 7. promo price промо цена
- 8. holiday флаг праздничного дня
- 9. owner_id код региона

In [3]:

```
df = df_csv[['year', 'week', 'good_id', 'ship_store_id', 'owner_id', 'sale']]
print(len(df))
df.head()
```

529577

Out[3]:

		year	week	good_id	ship_store_id	owner_id	sale
•	0	2018	38	149045	40	2	1
	1	2018	11	149045	40	2	0
	2	2018	12	149045	40	2	0
	3	2017	30	149045	40	2	2
	4	2018	40	173544	13	2	0

In [4]:

```
# Создадим отдельный список для продаж без промо за 45-48 недели

df_no_promo = df_csv[(df_csv.promo == 0)&(df_csv.week.isin([45, 46, 47, 48]))][['year', 'ow 'good_id',

print(len(df_no_promo))

df_no_promo.head()
```

48398

Out[4]:

	year	owner_id	ship_store_id	good_id	price
16	2019	2	63	173541	1299
17	2019	2	63	173541	1299
18	2018	2	63	173541	1299
20	2018	2	63	173541	1299
23	2018	2	63	173541	1299

In [5]:

```
# Если за 45-48 недели у товара в одном магазине была разная цена - усредним ее df_no_promo = df_no_promo.groupby(['year', 'owner_id', 'ship_store_id', 'good_id'])['price' print(len(df_no_promo)) df_no_promo.head()
```

1824

Out[5]:

	year	owner_id	ship_store_id	good_id	price
0	2017	2	2	19594	4999.0
1	2017	2	2	29712	2999.0
2	2017	2	2	96473	1999.0
3	2017	2	2	96474	2599.0
4	2017	2	2	96475	2599.0

In [6]:

77850

Out[6]:

	year	owner_id	ship_store_id	good_id	week	sale
0	2017	2	2	19594	5	3
1	2017	2	2	19594	6	0
2	2017	2	2	19594	7	0
3	2017	2	2	19594	8	0
4	2017	2	2	19594	9	3

In [7]:

1879

Out[7]:

	year	owner_id	ship_store_id	good_id	sale
0	2017	2	2	19594	[3, 0, 0, 0, 3, 1, 1, 4, 1, 0, 3, 1, 1, 2, 0,
1	2017	2	2	29712	[2, 5, 7, 6, 2, 2, 9, 3, 5, 1, 2, 3, 6, 6, 1,
2	2017	2	2	96473	[0, 0, 0, 3, 0, 1, 0, 1, 4, 0, 1, 0, 2, 0, 0,
3	2017	2	2	96474	[0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
4	2017	2	2	96475	[1, 1, 1, 6, 1, 4, 7, 8, 4, 1, 2, 2, 4, 3, 4,

In [8]:

1879

Out[8]:

	year	owner_id	ship_store_id	good_id	week
0	2017	2	2	19594	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
1	2017	2	2	29712	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
2	2017	2	2	96473	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
3	2017	2	2	96474	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
4	2017	2	2	96475	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

In [9]:

```
df_group_s_w = df_group_sale[['year', 'owner_id', 'ship_store_id', 'good_id', 'sale']]
df_group_s_w['week'] = df_group_week['week']

df_group_s_w.head()
```

Out[9]:

	year	owner_id	ship_store_id	good_id	sale	week
0	2017	2	2	19594	[3, 0, 0, 0, 3, 1, 1, 4, 1, 0, 3, 1, 1, 2, 0,	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
1	2017	2	2	29712	[2, 5, 7, 6, 2, 2, 9, 3, 5, 1, 2, 3, 6, 6, 1,	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
2	2017	2	2	96473	[0, 0, 0, 3, 0, 1, 0, 1, 4, 0, 1, 0, 2, 0, 0,	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
3	2017	2	2	96474	[0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
4	2017	2	2	96475	[1, 1, 1, 6, 1, 4, 7, 8, 4, 1, 2, 2, 4, 3, 4,	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

In [10]:

```
# функция "weeks_of_sales" создает массив длиной 53, в котором индекс в массиве соответству # значение соотвтествует количеству проданного товара за эту неделю # 53 - количество недель в году def weeks_of_sales (sales, weeks): sales53 = [0] * 53

i = 0
while i < len(weeks): sales53[weeks[i]-1] = sales[i]
i += 1

return sales53
```

In [11]:

```
# Проверим функцию
print(weeks_of_sales(df_group_s_w.sale[1], df_group_s_w.week[1]))
```

```
[0, 0, 0, 0, 2, 5, 7, 6, 2, 2, 9, 3, 5, 1, 2, 3, 6, 6, 1, 1, 5, 2, 8, 8, 3, 5, 9, 15, 4, 3, 7, 2, 7, 8, 7, 6, 6, 9, 2, 2, 5, 3, 4, 2, 4, 5, 2, 1, 0, 3, 10, 6, 2]
```

In [12]:

```
# С помощью функции "weeks_of_sales" сделаем, заменим значения в столбце "sale"
i = 0
while i < len(df_group_s_w):
    df_group_s_w.sale[i] = weeks_of_sales (df_group_s_w.sale[i], df_group_s_w.week[i])
    i += 1
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

after removing the cwd from sys.path.

In [13]:

```
# Столбец "week" больше не нужен
del df_group_s_w['week']
df_group_s_w.head()
```

Out[13]:

	year	owner_id	ship_store_id	good_id	sale
0	2017	2	2	19594	[0, 0, 0, 0, 3, 0, 0, 0, 3, 1, 1, 4, 1, 0, 3,
1	2017	2	2	29712	[0, 0, 0, 0, 2, 5, 7, 6, 2, 2, 9, 3, 5, 1, 2,
2	2017	2	2	96473	[0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 1, 4, 0, 1,
3	2017	2	2	96474	[0, 0, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0,
4	2017	2	2	96475	[0, 0, 0, 0, 1, 1, 1, 6, 1, 4, 7, 8, 4, 1, 2,

In [14]:

```
# Оставим только товары, у которых на 45-48 неделях не было промо, и добавим цены товаров df_group_s_w = df_group_s_w.merge(df_no_promo, on = ['year', 'owner_id', 'ship_store_id',
```

Создание новых признаков

Прогноз будет осуществляться на 45-48 недели, следовательно, продажи за 49-53 тоже предполагаем неизвестными.

Будут созданы следующие фичи:

- 1. 'sale_44w' продажи товара за первые 44 недели года (по магазину)
- 2. 'mean 44w' среднее количество продаж в неделю за первые 44 недели года (по магазину)
- 3. 'w44' продажи товара за 44 неделю (по магазину)
- 4. 'sale 44w all' среднее количество продаж по всем магазинам за первые 44 недели в году
- 5. 'sale_44w_region' среднее количество продаж по магазинам внутри региона за первые 44 недели в
- 6. 'mean_w44_all' среднее количество продаж за 44 неделю по всем магазинам
- 7. 'mean w44 region' среднее количество продаж за 44 неделю по магазинам внутри региона

Значения 'sale_44w' и 'mean_44w' зависимы друг от друга, при обучении будет использоваться только 'mean_44w', 'sale_44w' пока нужен для простого вычисления других значений.

In [15]:

```
# Co3dadum nycmue cmoлбцы

df_group_s_w['sale_44w'] = np.nan

df_group_s_w['mean_44w'] = np.nan

df_group_s_w['w44'] = np.nan

df_group_s_w.head()
```

Out[15]:

	year	owner_id	ship_store_id	good_id	sale	price	sale_44w	mean_44w	w44
0	2017	2	2	19594	[0, 0, 0, 0, 3, 0, 0, 0, 3, 1, 1, 4, 1, 0, 3,	4999.0	NaN	NaN	NaN
1	2017	2	2	29712	[0, 0, 0, 0, 2, 5, 7, 6, 2, 2, 9, 3, 5, 1, 2,	2999.0	NaN	NaN	NaN
2	2017	2	2	96473	[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 1,	1999.0	NaN	NaN	NaN
3	2017	2	2	96474	[0, 0, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0,	2599.0	NaN	NaN	NaN
4	2017	2	2	96475	[0, 0, 0, 0, 1, 1, 1, 6, 1, 4, 7, 8, 4, 1, 2,	2599.0	NaN	NaN	NaN

In []:

```
# Заполним пустые столбцы

i = 0

while i < len(df_group_s_w):
    df_group_s_w.sale_44w[i] = np.sum(df_group_s_w.sale[i][0:44])
    df_group_s_w.mean_44w[i] = np.mean(df_group_s_w.sale[i][0:44])
    df_group_s_w.w44[i] = df_group_s_w.sale[i][43]
    i += 1
```

In [17]:

```
df_group_s_w.head()
```

Out[17]:

	year	owner_id	ship_store_id	good_id	sale	price	sale_44w	mean_44w	w44
0	2017	2	2	19594	[0, 0, 0, 0, 3, 0, 0, 0, 3, 1, 1, 4, 1, 0, 3,	4999.0	63.0	1.431818	3.0
1	2017	2	2	29712	[0, 0, 0, 0, 2, 5, 7, 6, 2, 2, 9, 3, 5, 1, 2,	2999.0	193.0	4.386364	2.0
2	2017	2	2	96473	[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 1, 4, 0, 1,	1999.0	70.0	1.590909	0.0
3	2017	2	2	96474	[0, 0, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0,	2599.0	37.0	0.840909	0.0
4	2017	2	2	96475	[0, 0, 0, 0, 1, 1, 1, 6, 1, 4, 7, 8, 4, 1, 2,	2599.0	150.0	3.409091	6.0

In [18]:

```
# средние продажи товара по всем магазинам за 44 недели

df_sale_44w_all = df_group_s_w.groupby(['year', 'good_id'])['sale_44w'].apply(np.mean).rese

df_sale_44w_all.rename(columns={'sale_44w': 'sale_44w_all'}, inplace=True)

df_sale_44w_all.head()
```

Out[18]:

	year	good_id	sale_44w_all
0	2017	19594	55.083333
1	2017	19595	8.000000
2	2017	29712	131.090909
3	2017	39176	111.000000
4	2017	85612	49.625000

In [19]:

```
# средние продажи товара по всем магазинам в регионе за 44 недели

df_sale_44w_region = df_group_s_w.groupby(['year', 'owner_id', 'good_id'])['sale_44w'].appl

df_sale_44w_region.rename(columns={'sale_44w': 'sale_44w_region'}, inplace=True)

df_sale_44w_region.head()
```

Out[19]:

	year	owner_id	good_id	sale_44w_region
0	2017	2	19594	59.090909
1	2017	2	19595	8.000000
2	2017	2	29712	158.461538
3	2017	2	39176	111.000000
4	2017	2	85612	78.500000

In [20]:

```
# средние продажи товара по всем магазинам за 44 неделю

df_mean_w44_all = df_group_s_w.groupby(['year', 'good_id'])['w44'].apply(np.mean).reset_ind

df_mean_w44_all.rename(columns={'w44': 'mean_w44_all'}, inplace=True)

df_mean_w44_all.head()
```

Out[20]:

	year	gooa_ıa	mean_w44_aii
0	2017	19594	1.916667
1	2017	19595	0.000000
2	2017	29712	2.954545
3	2017	39176	3.500000
4	2017	85612	2.000000

In [21]:

```
# средние продажи товара по всем магазинам в регионе за 44 неделю

df_mean_w44_region = df_group_s_w.groupby(['year', 'owner_id', 'good_id'])['w44'].apply(np.

df_mean_w44_region.rename(columns={'w44': 'mean_w44_region'}, inplace=True)

df_mean_w44_region.head()
```

Out[21]:

	year	owner_id	good_id	mean_w44_region
0	2017	2	19594	2.000000
1	2017	2	19595	0.000000
2	2017	2	29712	3.307692
3	2017	2	39176	3.500000
4	2017	2	85612	3.000000

In [22]:

```
# Добавим вычисленные фитич к исходной таблице

df_group_s_w = df_group_s_w.merge(df_sale_44w_all, on = ['year', 'good_id'], how = 'left')

df_group_s_w = df_group_s_w.merge(df_sale_44w_region, on = ['year', 'owner_id', 'good_id'],

df_group_s_w = df_group_s_w.merge(df_mean_w44_all, on = ['year', 'good_id'], how = 'left')

df_group_s_w = df_group_s_w.merge(df_mean_w44_region, on = ['year', 'owner_id', 'good_id'],
```

```
In [23]:
```

```
# Добавим столбцы со значениями продаж за 45-48 недели
df_group_s_w['w45'] = np.nan
df_group_s_w['w46'] = np.nan
df group s w['w47'] = np.nan
df_group_s_w['w48'] = np.nan
i = 0
while i < len(df_group_s_w):</pre>
   df_group_s_w.w45[i] = df_group_s_w.sale[i][44]
   df group s w.w46[i] = df group s w.sale[i][45]
   df_group_s_w.w47[i] = df_group_s_w.sale[i][46]
   df_group_s_w.w48[i] = df_group_s_w.sale[i][47]
    i += 1
del df_group_s_w['sale']
df_group_s_w.head()
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:9: SettingW
ithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/user_guide/indexing.html#returning-a-view-versus-a-copy (http://panda
s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ve
rsus-a-copy)
  if name == ' main ':
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:10: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/user_guide/indexing.html#returning-a-view-versus-a-copy (http://panda
s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve
rsus-a-copy)
  # Remove the CWD from sys.path while we load stuff.
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel launcher.py:11: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/user guide/indexing.html#returning-a-view-versus-a-copy (http://panda
s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ve
rsus-a-copy)
  # This is added back by InteractiveShellApp.init path()
C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:12: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/user_guide/indexing.html#returning-a-view-versus-a-copy (http://panda
s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve
rsus-a-copy)
  if sys.path[0] == '':
Out[23]:
```

price sale 44w mean 44w w44 sale 44w all

localhost:8888/notebooks/PROJECTS/Sales_forecasting/Sales_forecasting.ipynb

year owner_id ship_store_id good_id

	year	owner_id	ship_store_id	good_id	price	sale_44w	mean_44w	w44	sale_44w_all
0	2017	2	2	19594	4999.0	63.0	1.431818	3.0	55.083333
1	2017	2	2	29712	2999.0	193.0	4.386364	2.0	131.090909
2	2017	2	2	96473	1999.0	70.0	1.590909	0.0	78.958333
3	2017	2	2	96474	2599.0	37.0	0.840909	0.0	58.055556
4	2017	2	2	96475	2599.0	150.0	3.409091	6.0	128.666667
4									•

In [24]:

```
df_group_s_w.describe()
```

Out[24]:

	year	owner_id	ship_store_id	good_id	price	sale_44w	m
count	1824.000000	1824.000000	1824.000000	1824.000000	1824.000000	1824.000000	182
mean	2018.311404	5.084978	50.852522	134984.467654	1708.859765	183.188048	1
std	0.770807	4.942224	39.792242	40335.040712	1597.358739	278.755128	1
min	2017.000000	2.000000	2.000000	19594.000000	119.000000	0.000000	
25%	2018.000000	2.000000	13.000000	123647.000000	791.500000	46.750000	
50%	2019.000000	2.000000	45.000000	147603.000000	1199.000000	98.500000	1
75%	2019.000000	6.000000	69.000000	173540.000000	2199.000000	197.250000	
max	2019.000000	21.000000	150.000000	185371.000000	10999.000000	2685.000000	6
4							•

Создание обучающего и тестового набора

In [25]:

In [26]:

```
#train = df_group_s_w[df_group_s_w.year != 2019].iloc[:, 4:].sample(frac=1).reset_index(dro
#test = df_group_s_w[df_group_s_w.year == 2019].iloc[:, 4:].sample(frac=1).reset_index(drop
```

In [27]:

train.head()

Out[27]:

	mean_44w	w44	sale_44w_region	mean_w44_all	mean_w44_region	w45	w46	w47	w48
0	5.090909	16.0	95.857143	6.111111	5.142857	17.0	19.0	13.0	14.0
1	2.295455	0.0	101.000000	1.666667	0.000000	0.0	1.0	1.0	1.0
2	5.681818	5.0	199.937500	13.956522	12.875000	9.0	8.0	13.0	16.0
3	0.000000	0.0	0.266667	0.088235	0.200000	0.0	7.0	7.0	9.0
4	0.272727	7.0	12.000000	2.407407	7.000000	2.0	0.0	0.0	0.0

In [28]:

test.head()

Out[28]:

	mean_44w	w44	sale_44w_region	mean_w44_all	mean_w44_region	w45	w46	w47	w48
0	4.045455	10.0	84.800000	5.189189	4.4	13.0	12.0	8.0	8.0
1	2.613636	2.0	115.000000	2.266667	2.0	3.0	6.0	3.0	2.0
2	3.295455	2.0	89.166667	2.266667	2.5	3.0	2.0	4.0	1.0
3	4.295455	6.0	189.000000	17.948718	6.0	48.0	16.0	14.0	2.0
4	5.704545	13.0	251.000000	9.326087	13.0	0.0	3.0	2.0	4.0

In [29]:

```
x_train = train.iloc[:, :-4]
y_train = train.iloc[:, -4:]
```

In [30]:

```
x_test = test.iloc[:, :-4]
y_test = test.iloc[:, -4:]
```

Линейная регрессия

In [31]:

```
from sklearn.linear_model import LinearRegression
```

In [32]:

```
model_lr = LinearRegression()
```

```
In [33]:
```

```
model_lr.fit(x_train, y_train)
```

Out[33]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

In [34]:

```
predicted_lr = model_lr.predict(x_test)
print(predicted_lr)
```

```
[[7.12159802 5.64145398 6.83570703 7.68992217]
[2.43616078 3.30721891 5.04827476 5.7619938 ]
[2.39579776 3.77575849 5.7382371 6.4864276 ]
...
[2.90812892 3.28115153 4.98250858 5.5220058 ]
[3.89985472 4.6408563 6.32791849 7.35568876]
[1.63444855 3.19982778 5.11801442 5.76656545]]
```

In [35]:

```
# Функция "rounding" округляет значения в массиве до целого и заменяет отрицательные значен def rounding(m):
    # округлим значения до целого
    m = np.around(m, decimals=0)
    # заменим отрицательные значения на 0, если они есть
    m[m < 0] = 0
    return m
```

In [36]:

```
def mape(predict, fact):
    mae = 0
    n = 0
    eps = 0.000001

l = len(predict)
    i = 0
    while i < l:
        m = len(predict[i])
        j = 0
        while j < m:
              mae += abs(predict[i][j] - fact[i][j])/(max(predict[i][j], fact[i][j]) + eps)
              n += 1
              j += 1
              i += 1
              return mae/n</pre>
```

In [37]:

```
mape_lr = mape(rounding(predicted_lr), y_test.values)
print("Точность:", 1 - mape_lr)
```

Точность: 0.43640098962749796

XGBoost

```
In [38]:
```

```
import xgboost as xgb
from sklearn.model_selection import GridSearchCV
```

In [39]:

In []:

```
# выберем лучшие модели для каждой прогнозируемой недели
model_xgb45 = best_xgb(x_train, y_train.iloc[:, 0])
model_xgb46 = best_xgb(x_train, y_train.iloc[:, 1])
model_xgb47 = best_xgb(x_train, y_train.iloc[:, 2])
model_xgb48 = best_xgb(x_train, y_train.iloc[:, 3])
```

In [41]:

```
# cdenaem npozHo3

predicted_xgb45 = model_xgb45.predict(x_test)

predicted_xgb46 = model_xgb45.predict(x_test)

predicted_xgb47 = model_xgb45.predict(x_test)

predicted_xgb48 = model_xgb45.predict(x_test)
```

In [42]:

```
#объединим все спронозированные значения в один массив
predicted_xgb = np.column_stack((predicted_xgb45, predicted_xgb46, predicted_xgb47, predict
print(predicted_xgb[:10])
```

```
[[ 6.0300364  6.0300364  6.0300364  6.0300364]
[ 2.219733
            2.219733
                      2.219733
                                2.219733
 [ 2.9897344 2.9897344
                      2.9897344 2.9897344]
[11.480563 11.480563 11.480563 11.480563 ]
[ 7.0328746  7.0328746  7.0328746  7.0328746]
[ 8.504426
            8.504426
                      8.504426
                                8.504426 ]
9.642557
            9.642557
                      9.642557
                                9.642557 ]
                      9.852744
[ 9.852744
            9.852744
                                9.852744 ]
[ 3.7435224  3.7435224  3.7435224  3.7435224]]
```

In [43]:

```
mape_xgb = mape(rounding(predicted_xgb), y_test.values)
print("Точность:", 1 - mape_xgb)
```

Точность: 0.4407295487079046

LightGBM

```
In [44]:
```

```
import lightgbm as lgbm
```

In [45]:

```
# функция, возвращающая лучшую модель из GridSearchCV

def best_lgbm(x, y):
    params = {'n_estimators':range(50, 600, 50), 'num_leaves':range(8, 80, 8)}

model = lgbm.LGBMRegressor()
    grid = GridSearchCV(model, params)
    grid.fit(x, y)

return grid.best_estimator_
```

In []:

```
# выберем лучшие модели для каждой прогнозируемой недели model_lgbm45 = best_lgbm(x_train, y_train.iloc[:, 0]) model_lgbm46 = best_lgbm(x_train, y_train.iloc[:, 1]) model_lgbm47 = best_lgbm(x_train, y_train.iloc[:, 2]) model_lgbm48 = best_lgbm(x_train, y_train.iloc[:, 3])
```

In [47]:

```
# cdenaem npozHo3

predicted_lgbm45 = model_lgbm45.predict(x_test)

predicted_lgbm46 = model_lgbm45.predict(x_test)

predicted_lgbm47 = model_lgbm45.predict(x_test)

predicted_lgbm48 = model_lgbm45.predict(x_test)
```

In [48]:

```
#объединим все спронозированные значения в один массив predicted_lgbm = np.column_stack((predicted_lgbm45, predicted_lgbm46, predicted_lgbm[:10])
```

```
[[ 5.97989262 5.97989262
                         5.97989262 5.97989262]
2.86441205 2.86441205]
[ 3.34463651  3.34463651  3.34463651  3.34463651]
[13.14794339 13.14794339 13.14794339 13.14794339]
[ 9.9728818
              9.9728818
                         9.9728818
                                     9.9728818 ]
[ 5.77873795  5.77873795  5.77873795  5.77873795]
[ 1.2334733
              1.2334733
                         1.2334733
                                     1.2334733 ]
[ 8.71866948  8.71866948  8.71866948  8.71866948]
[ 9.31894317
             9.31894317
                         9.31894317
                                    9.31894317]
[ 3.46810568  3.46810568  3.46810568  3.46810568]]
```

In [49]:

```
mape_lgbm = mape(rounding(predicted_lgbm), y_test.values)
print("Точность:", 1 - mape_lgbm)
```

Точность: 0.43900713111428546

Ансамбль моделей

```
In [50]:
```

In [51]:

```
print("Коэффициенты:", k_lr, k_xgb, k_lgbm)
print("Точность:", 1 - mp)
```

Коэффициенты: 0.55 0.1 0.15 Точность: 0.45280465572171014

In []: