Third Assignment

Christopher Gandrud, Hertie School of Governance, Spring 2016

Emilia Sicari & Rafael Lopez V. March 25, 2016

Contents

1	Pro	cessing data	2
	1.1	Data sources and data gathering	2
	1.2	Cleaning, processing and merging of datasets	3
2	Des	scriptive and inferential statistics	3
	2.1	Creating a summary table	3
	2.2	Trends in gdp per capita, bottom 90% and top 10% average income $\dots \dots \dots \dots$	4
	2.3	Multiple regression analysis	7
3	Ref	erences	7

#Research question and project description In our collaborative research project, we seeks to provide an answer to the following question: How the rise in inequality and economic growth influences the purchase of cars as an example of luxury goods, compared to the usage of public transportation systems in Singapore, from 1995 to 2014.

Therefore, we collected data on economic growth, income inequality, usage of public transports and purchase of cars covering the time span of 19 years, from 1995 until 2014. As suggested by our research question, economic growth, income inequality are the explanatory variables, while purchase of cars and usage of public transports are the dependent variables. The reason why we chose cars as example of luxury goods showing social status, is that in Singapore purchasing of cars is particularly expensive, due to high taxation and a certificate of car entitlement, whose cost can be higher than 70.000 dollars. For more details about the research proposal and case justification see ResearchProposal.

1 Processing data

1.1 Data sources and data gathering

The data that we need for our empirical analysis were retrieved from:

- IMF Cross Country Macroeconomic Statistics open data available on Quandl From this source we downloaded data showing the trend in Singapore's GDP per capita measured in singaporean dollars from 1995 to 2014. The data was provided in csv format.
- Knoema. From The World Top Incomes Database providing access to data on the distribution of top incomes in more than twenty five countries across the globe we downloaded data on the top 10% average income and bottom 90% average income in Singapore, measured in singaporean dollars. The reason why we did not gather data from the database Clio Infra available on Quandl as we had defined in our ResearchProposal, is that it did not provide sufficient data for the time span we are considering. Since it was not possible to directly download the data base to R we requested the data, which have been sent via e-mail in csv format. This data is part of the repository.
- Singapore's open data portal. This portal offered two data bases:
 - Annual Motor Vehicle Population. The data provides the number of cars from 1995 to 2014, including: mortorbikes, rental cars, buses, taxis and other type of vehicles. The last two are considered public cars since in Singapore even the taxis are provided by the state.
 - Public transport utilization. This data is expressed as the daily average of thounsand commuters using public trasport by year. It covers the span from 1995 to 2014 and includes the following modes of transportation: MRT (underground), LRT (similar to the Berlin S-Bahn), Taxis (publicly run), Buses.

The following table summarizes the variables downloaded.

Variable	Description	Time.frame
gdp per capita	measured in singaporean dollars at current prices. From 1995 to 2014	1980-2014
		1947-2009
inequality	top 10% and bottom 90%	
	singaporean's average income measured in singaporean dollars	
	0	

Variable	Description	Time.frame
anual motor vehicle	number of: cars, rental cars, buses, taxis, buses, motorbikes	1960-2015
public transport utilization	average commuters using daily: MRT, LRT, Buses, Taxis	1995-2014

1.2 Cleaning, processing and merging of datasets

- After importing data we used the "date" variable (year) as a unique identifier for all four data sets, in order to merge them afterwards.
- Since time frames of the data were different, we selected a common span of time: 1995-2014. In one case we had to make a linear regression to forecast mising values to complete the time common frame, and in other we completed the data with we abstent for some years with "0", since we new that the problem was not lack of data but inexistence of that variable in those years.
- Cleaning the data was limited to changing column names, eliminating the unnecessarry ones, organizing the data in multile data frames so to merge them more easily afterwards. In one case we changed the format of the data from characters to integers, due to incorrect import.
- Data of inequality, namely bottom 90% and top 10% average income, were available only until 2009. Therefore, we forecasted the value of the average income of the two categories performing a linear regression. Results were available in a new dataframe, which was then bound with the original one, in order to have the entire time series.

*After that, we used the once complete data on inequality to create a simplified inequality indicator. This consist on divididing the top 10% average income of singaporeans by the bottom 90% average income, all for each year. Thus, the coefficient of the division shows how many times the top 10% average income of is higher than the bottom 90% throughout the considered period.

- POPULATION OF VEHICLES
- USAGE OF PT

After cleaning the datasets, we proceeded with merging them. However, the various datasets were merged one by one, since more cleaning was sometimes needed in order to avoid merging problems. The final dataframe has 19 observations and 14 variables, observed throughout the years 1995-2014.

2 Descriptive and inferential statistics

2.1 Creating a summary table

The table below shows the basic decriptive statistics for our variable included in the complete datasets.

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Fri, Apr 15, 2016 16:54:08
- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Fri, Apr 15, 2016 16:54:08

Table 2: General data summary

Statistic	N	Mean	St. Dev.	Min	Max
date	20	2,004.5	5.9	1,995	2,014
gdp.per.capita	20	50,294.8	12,748.0	$35,\!345.5$	71,317.9
inequality	20	6.1	1.3	3.9	7.8
cars	20	466,148.3	$97,\!290.5$	342,245	607,292
rentalcars	20	10,097.0	3,881.3	5,144	18,847
taxis	20	21,958.7	4,201.0	16,517	28,736
buses	20	13,993.9	2,302.3	10,723	17,554
motorbikes	20	138,985.9	$6,\!435.2$	129,587	148,160
other	20	146,548.7	10,180.8	134,756	161,698
bus.u	20	3,159.9	254.5	2,779	3,751
mrt.u	20	1,504.2	635.1	740	2,762
top	20	174,881.0	38,176.0	113,402.5	235,450.0
bottom	20	29,022.2	2,851.4	22,602.4	34,043.3
lrt.u	20	62.8	45.0	0	137

Table 3: General data summary

labels1

2.2 Trends in gdp per capita, bottom 90% and top 10% average income

The following graph shows the trend of the three explanatory variables, throughout the period of time taken into consideration in Singapore. As we can see,

Figure 1 – Gdp per capita, top 10% and bottom 90% average income in Singapore measured in national currency at current prices (1995–2014)

years

Figure 3 – Number of public and private vehicles in Singapore (1995–2014)

Figure 4 – Average daily passengers on public transports in Singapore in thousands (1995–2014)

2.3 Multiple regression analysis

```
## \begin{table}[!htbp] \centering
    \caption{Multiple regeression models}
    \label{}
## \begin{tabular}{@{\extracolsep{5pt}}lcccc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & \multicolumn{4}{c}{\textit{Dependent variable:}} \
## \cline{2-5}
## \\[-1.8ex] & cars & bus.u & mrt.u & buses \\
## \\[-1.8ex] & (1) & (2) & (3) & (4)\\
## \hline \\[-1.8ex]
## gdp.per.capita & 5.62$^{*}$ & 0.004 & 0.04$^{***}$ & 0.05 \\
##
    & (2.68) & (0.01) & (0.004) & (0.04) \\
##
    & & & & \\
## inequality & 16,917.56 & 82.29 & 82.35$^{*}$ & 436.15$^{**}$ \\
    & (12,232.97) & (62.70) & (40.97) & (171.16) \\
##
    & & & & \\
## bus.u & $-$39.70 & & & $-$0.72 \\
    & (49.70) & & & (0.70) \\
##
   & & & & \\
## mrt.u & 71.41 & & & 1.68 \\
##
   & (71.02) & & & (0.99) \\
    & & & & \\
## lrt.u & $-$745.93 & & & 5.87 \\
##
    & (869.85) & & & (12.17) \\
    & & & & \\
## Constant & 145,753.90 & 2,477.90$^{***}$ & $-$1,110.31$^{***}$ & 8,336.84$^{***}$ \\
    & (162,408.10) & (249.55) & (163.05) & (2,272.35) \\
##
    & & & & \\
## \hline \\[-1.8ex]
## Observations & 20 & 20 & 20 \\
## R$^{2}$ & 0.96 & 0.32 & 0.95 & 0.99 \\
## Adjusted R$^{2}$ & 0.95 & 0.24 & 0.95 & 0.98 \\
## Residual Std. Error & 22,249.39 (df = 14) & 222.36 (df = 17) & 145.28 (df = 17) & 311.31 (df = 14) \
## F Statistic & 69.86$^{***}$ (df = 5; 14) & 3.94$^{**}$ (df = 2; 17) & 173.04$^{***}$ (df = 2; 17) &
## \hline
## \hline \\[-1.8ex]
## \textit{Note:} & \multicolumn{4}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
## \end{tabular}
## \end{table}
```

3 References

 $\# Annex \ \# \#$ Annex 1: Final data set containing all the variables and observations

date	gdp.per.ca	ap itæ qual	itycars	rentalca	ırstaxis	buses	motorbi	kesther	bus.u	mrt.u	top	nlrt.u
1995	35345	3.889	34224	5 5 1 4 4	16517	10723	129587	13791	3 3009	740	11340229157	0
1996	00040	4.027	36214	2	16857	10998	132344	14051:	23118	850	12175230232	0
1000	37031	11021	30211	5451	1000.	10000	102011	11001	-0110		121,0200202	Ŭ
1997	00150	4.003	37334		16933	11240	132629	14290	5 3116	911	12646131592	0
1998	39179	4.362	27020	6152	17006	11.490	199975	1./105	1 91 91	046	13096430026	0
1990	36525	4.302	37000	6536	17000	11429	199979	14100.	13121	940	13090430020	U
1999		5.124	37802		18029	11827	134346	13947	33213	986	139278 27180	27
2000	36944		20670	7112	10907	19560	191097	19475	2 2051	1047	156170 90949	20
2000	41018	5.53	38078	8438	18327	12009	131937	134730	0 3231	1047	156178 28243	39
2001		7.035	39878		18798	12902	131869	13715′	73281	1071	159140 22623	41
0000	38660	c 020	20016	8857	10106	10000	190910	19505	1 21 07	1001	15000000000	20
2002	39423	6.939	39810	8423	19106	12992	132318	13595.	13197	1081	156838 22602	39
2003		6.348	39992		19384	12951	135649	13533	3 2992	1171	159243 25087	50
2004	41070		44.004	7803	20.40-	10150	105000	4.0=04.	2002	4050	10110000100	
2004	46320	5.735	41201	5 7455	20407	13173	137029	137310	5 2805	1270	161198 28106	55
2005		5.367	43282	7	22383	13494	139434	139098	8 2779	1321	17074431813	69
	49715			7756								

date	gdp.per.ca	ap itæ qua	litycars	rentale	arstaxis	buses	motorbi	kesther	bus.u	mrt.u	botton	nlrt.u
2006		5.938	46548	2	23334	14120	142736	14446	6 2833	1408	18529631204	74
	53355			9235								
2007	59114	6.123	50598	711054	24446	14530	144340	15097	9 2932	1527	20844434043	79
2008		6.975	54045	5 12391	24300	15327	146120	15608	93087	1698	202059 28970	88
	56201											
2009	FC111	6.377	56660	8 12763	24702	16023	147215	15820	73047	1782	19249130185	90
	56111											
2010	63498	7.091	58439	9 13347	26073	16309	148160	15754	13199	2069	21020229643	100
2011	66816	7.275	59236	1 13919	27051	17046	146559	15976	8 3385	2295	21651429760	111
2012		7.458	60514	914862	28210	17162	144110	16041	73481	2525	22282629876	124
	68205											
2013			60729	2 16396	27695	17509	144934	16034	43601	2623	229138 29993	132
	70047	7.64										
2014			60017	6 18847	28736	17554	145026	16169	8 3 7 5 1	2762	23545030110	137
	71318	7.82										