

अध्याय 8

आनुवंशिकता

मने देखा कि जनन प्रक्रमों द्वारा नए जीव (व्यष्टि) उत्पन्न होते हैं, जो जनक के समान होते हुए भी कुछ भिन्न होते हैं। हमने यह चर्चा की है कि अलैंगिक जनन में भी कुछ विभिन्नताएँ कैसे उत्पन्न होती हैं। अधिकतम संख्या में सफल विभिन्नताएँ लैंगिक प्रजनन द्वारा ही प्राप्त होती हैं। यदि हम गन्ने के खेत का अवलोकन करें तो हमें व्यष्टिगत पौधों में बहुत कम विभिन्नताएँ दिखाई पड़ती हैं। मानव एवं अधिकतर जंतु जो लैंगिक जनन द्वारा उत्पन्न होते हैं, इनमें व्यष्टिगत स्तर पर अनेक भिन्नताएँ परिलक्षित होती हैं। इस अध्याय में हम उन क्रियाविधियों का अध्ययन करेंगे, जिनके कारण विभिन्नताएँ उत्पन्न एवं वंशागत होती हैं।

8.1 जनन के दौरान विभिन्नताओं का संचयन

पूर्ववर्ती पीढ़ी से वंशागित संतित को एक आधारिक शारीरिक अभिकल्प (डिज़ाइन) एवं कुछ विभिन्नताएँ प्राप्त होती हैं। अब ज़रा सोचिए, कि इस नई पीढ़ी के जनन का क्या परिणाम होगा? दूसरी पीढ़ी में पहली पीढ़ी से आहरित विभिन्नताएँ एवं कुछ नई विभिन्नताएँ उत्पन्न होंगी।

चित्र 8.1 में उस स्थिति को दर्शाया गया है जबिक केवल एकल जीव जनन करता है, जैसा कि अलैंगिक जनन में होता है। यदि एक जीवाणु विभाजित होता है, तो परिणामतः दो जीवाणु उत्पन्न होते हैं जो पुनः विभाजित होकर चार (व्यष्टि) जीवाणु उत्पन्न करेंगे, जिनमें आपस में बहुत अधिक समानताएँ होंगी। उनमें आपस में बहुत कम अंतर होगा, जो डी. एन. ए. प्रतिकृति के समय न्यून त्रुटियों के कारण उत्पन्न हुई होंगी। परंतु यदि लैंगिक जनन होता तो विविधता अपेक्षाकृत और अधिक होती। इसके विषय में हम आनुवंशिकता के नियमों की चर्चा के समय देखेंगे।

क्या किसी प्रजातियों में इन सभी विभिन्नताओं के साथ अपने अस्तित्व में रहने की संभावना एकसमान है? निश्चित रूप से नहीं। प्रकृति की विविधता के आधार पर विभिन्न जीवों को विभिन्न प्रकार के लाभ हो सकते हैं। ऊष्णता को सहन करने की क्षमता वाले जीवाणुओं को अधिक गर्मी से बचने की संभावना

चित्र 8.1 उत्तरोत्तर पीढ़ियों में विविधता की
उत्पत्ति। शीर्ष पर दर्शाए गए पहली पीढ़ी के जीव,
मान लीजिए कि दो संतित को जन्म देंगे, जिनकी
आधारभूत शारीरिक संरचना तो एकसमान होगी,
परंतु विभिन्नताएँ भी होंगी। इनमें से प्रत्येक अगली
पीढ़ी में दो जीवों को उत्पन्न करेगा। चित्र में सबसे
नीचे दिखाए गए चारों जीव व्यष्टि स्तर पर एक
दूसरे से भिन्न होंगे। कुछ विभिन्नताएँ विशिष्ट होंगी,
जबिक कुछ उन्हें अपने जनक से प्राप्त हुई हैं जो
स्वयं आपस में एक-दूसरे से भिन्न थे।

अधिक होती है। उसकी चर्चा हम पहले कर चुके हैं। पर्यावरण कारकों द्वारा उत्तम परिवर्त का चयन जैव विकास प्रक्रम का आधार बनाता है, जिसकी चर्चा हम आगे करेंगे।

प्रश्न

- यदि एक 'लक्षण A' अलैंगिक प्रजनन वाली समष्टि के 10 प्रतिशत सदस्यों में पाया जाता है तथा 'लक्षण - B' उसी समष्टि में 60 प्रतिशत जीवों में पाया जाता है, तो कौन-सा लक्षण पहले उत्पन्न हआ होगा?
- विभिन्नताओं के उत्पन्न होने से किसी स्पीशीज का अस्तित्व किस प्रकार बढ़ जाता है? 2.

8.2 आनुवंशिकता

जनन प्रक्रम का सबसे महत्वपूर्ण परिणाम संतति के जीवों के समान डिज़ाइन (अभिकल्पना) का होना है। आनुवंशिकता नियम इस बात का निर्धारण करते हैं, जिनके द्वारा विभिन्न लक्षण पूर्ण विश्वसनीयता के साथ वंशागत होते हैं। आइए, इन नियमों का ध्यानपूर्वक अध्ययन करें।

8.2.1 वंशागत लक्षण

वास्तव में समानता एवं विभिन्नताओं से हमारा क्या अभिप्राय है? हम जानते हैं कि शिश् में मानव के सभी आधारभृत लक्षण होते हैं। फिर भी यह पूर्णरूप से अपने जनकों जैसा दिखाई नहीं पड़ता तथा मानव समष्टि में यह विभिन्नता स्पष्ट दिखाई देती है।

(a)

चित्र 8.2

(a) स्वतंत्र तथा (b) जुड़े कर्ण पालि। कान के निचले भाग को कर्णपालि कहते हैं। यह कुछ लोगों में सिर के पार्श्व में पूर्ण रूप से जुड़ा होता है परंतु कुछ में नहीं। स्वतंत्र एवं जुड़े कर्णपालि मानव समष्टि में पाए जाने वाले दो परिवर्त हैं।

क्रियाकलाप 8.1

अपनी कक्षा के सभी छात्रों के कान का अवलोकन कीजिए। ऐसे छात्रों की सूची बनाइए जिनकी कर्णपालि (ear lobe) स्वतंत्र हो तथा जुड़ी हो (चित्र 8.2)। जुड़े कर्णपालि वाले छात्रों एवं स्वतंत्र कर्णपालि वाले छात्रों के प्रतिशत की गणना कीजिए। प्रत्येक छात्र के कर्णपालि के प्रकार को उनके जनक से मिलाकर देखिए। इस प्रेक्षण के आधार पर कर्णपालि के वंशागति के संभावित नियम का सुझाव दीजिए।

8.2.2 लक्षणों की वंशागित के नियम— मेंडल का योगदान

मानव में लक्षणों की वंशागति के नियम इस बात पर आधारित हैं कि माता एवं पिता दोनों ही समान मात्रा में आनुवंशिक पदार्थ को संतति (शिशु) में स्थानांतरित करते हैं। इसका अर्थ यह है कि प्रत्येक लक्षण पिता और माता के डी.एन.ए. से प्रभावित हो सकते हैं। अतः प्रत्येक लक्षण के लिए प्रत्येक संतित में दो विकल्प होंगे। फिर संतान में कौन-सा लक्षण परिलक्षित होगा? मेंडल (बॉक्स में देखिए) ने इस प्रकार की वंशागति के कुछ मुख्य नियम प्रस्तुत किए। उन प्रयोगों के बारे में जानना अत्यंत रोचक होगा, जो उसने लगभग एक शताब्दी से भी पहले किए थे।

142

ग्रेगर जॉन मेंडल (1822-1884)

मेंडल की प्रारंभिक शिक्षा एक गिरजाघर में हुई थी तथा वह विज्ञान एवं गणित के अध्ययन के लिए वियना विश्वविद्यालय गए। अध्यापन हेतु सर्टिफिकेट की परीक्षा में असफल होना उनकी वैज्ञानिक खोज की प्रवृत्ति को दबा नहीं सका। वह अपनी मोनेस्ट्री में वापस गए तथा मटर पर प्रयोग करना प्रारंभ किया। उनसे पहले भी बहुत से वैज्ञानिकों ने मटर एवं अन्य जीवों के वंशागत गुणों का अध्ययन किया था, परंतु मेंडल ने अपने विज्ञान एवं गणितीय ज्ञान को समिश्रित किया। वह पहले वैज्ञानिक थे, जिन्होंने प्रत्येक पीढ़ी के एक-एक पौधे द्वारा प्रदर्शित लक्षणों का रिकॉर्ड रखा तथा गणना की। इससे उन्हें वंशागत नियमों के प्रतिपादन में सहायता मिली।

मेंडल ने मटर के पौधे के अनेक विपर्यासी (विकल्पी) लक्षणों का अध्ययन किया, जो स्थूल रूप से दिखाई देते हैं, उदाहरणतः गोल/झुर्रीदार बीज, लंबे/बौने पौधे, सफेद/बैंगनी फूल इत्यादि। उसने विभिन्न लक्षणों वाले मटर के पौधों को लिया जैसे कि लंबे पौधे तथा बौने पौधे। इससे प्राप्त संतित पीढ़ी में लंबे एवं बौने पौधों के प्रतिशत की गणना की।

प्रथम संतित पीढ़ी अथवा $F_{_1}$ में कोई पौधा बीच की ऊँचाई का नहीं था। सभी पौधे लंबे थे। इसका अर्थ था कि दो लक्षणों में से केवल एक पैतुक जनकीय लक्षण ही दिखाई देता है, उन दोनों का मिश्रित प्रभाव दृष्टिगोचर नहीं होता। तो अगला प्रश्न था कि क्या F, पीढ़ी के पौधे अपने पैतृक लंबे पौधों से पूर्ण रूप से समान थे? मेंडल ने अपने प्रयोगों में दोनों प्रकार के पैतृक पौधों एवं F_, पीढ़ी के पौधों को स्वपरागण द्वारा उगाया। पैतृक पीढ़ी के पौधों से प्राप्त सभी संतति भी लंबे पौधों की थी। परंतु F, पीढ़ी के लंबे पौधों की दूसरी पीढ़ी अर्थात F, पीढ़ी के सभी पौधे लंबे नहीं थे वरन् उनमें से एक चौथाई संतति बौने पौधे थे। यह इंगित करता है कि $\mathbf{F}_{_{1}}$ पौधों द्वारा लंबाई एवं बौनेपन दोनों विशेषकों (लक्षणों) की वंशानुगति हुई। परंतु केवल लंबाई वाला लक्षण ही व्यक्त हो पाया। अतः लैंगिक जनन द्वारा उत्पन्न होने वाले जीवों में किसी भी लक्षण की दो प्रतिकृतियों की (स्वरूप) वंशानुगति होती है। ये दोनों एकसमान हो सकते हैं अथवा भिन्न हो सकते हैं. जो उनके जनक पर निर्भर करता है। इस परिकल्पना के आधार पर वंशानुगति का तैयार किया गया एक पैटर्न चित्र 8.3 में दर्शाया गया है।

चित्र 8.3 दो पीढ़ियों तक लक्षणों की वंशानुगति

क्रियाकलाप 8.2

 चित्र 8.3 में हम कौन सा प्रयोग करते हैं जिससे यह सुनिश्चित होता है कि F₂ पीढ़ी में वास्तव में TT, Tt तथा tt का संयोजन 1:2:1 अनुपात में प्राप्त होता है?

आनुवंशिकता 143

चित्र 8.5 दो अलग-अलग लक्षणों (बीजों की आकृति एवं रंग) की स्वतंत्र वंशानुगति

इस व्याख्या में 'TT' एवं 'Tt' दोनों ही लंबे पौधे हैं, जबिक केवल 'tt' बौने पौधे हैं। दूसरे शब्दों में, 'T' की एक प्रति ही पौधे को लंबा बनाने के लिए पर्याप्त है, जबिक बौनेपन के लिए 't' की दोनों प्रतियाँ 't' ही होनी चाहिए। 'T' जैसे लक्षण 'प्रभावी' लक्षण कहलाते हैं, जबिक जो लक्षण 't' की तरह व्यवहार करते हैं 'अप्रभावी' कहलाते हैं। चित्र 8.4 में कौन-सा लक्षण प्रभावी है तथा कौन-सा अप्रभावी है।

क्या होता है जब मटर के पौधों में एक विकल्पी जोड़े के स्थान पर दो विकल्पी जोड़ों का अध्ययन करने के लिए संकरण कराया जाए? गोल बीज वाले लंबे पौधों का यदि झुर्रीदार बीजों वाले बौने पौधों से संकरण कराया जाए तो प्राप्त संतित कैसी होगी? F_1 पीढ़ी के सभी पौधे लंबे एवं गोल बीज वाले होंगे। अतः लंबाई तथा गोल बीज 'प्रभावी' लक्षण हैं। परंतु क्या होता है जब F_1 संतित के स्विनषेचन से F_2 पीढ़ी की संतित प्राप्त होती है? मेंडल द्वारा किए गए पहले प्रयोग के आधार पर हम कह सकते हैं कि F_2 संतित के कुछ पौधे गोल बीज वाले लंबे पौधे होंगे तथा कुछ झुर्रीदार बीज वाले बौने पौधे। परंतु F_2 की संतित के कुछ पौधे नए संयोजन प्रदर्शित करेंगे। उनमें से कुछ पौधे लंबे परंतु झुर्रीदार बीज तथा कुछ पौधे बौने परंतु गोल बीज वाले होंगे। यहाँ आप देख सकते हैं कि किस तरह F_2 पीढ़ी में नए लक्षणों का संयोजन देखने को मिला जब बीज के आकार व रंग को नियंत्रित करने वाले कारकों के पुनर्संयोजन से युग्मनज बना जो F_2 पीढ़ी में अग्रणी रहा। अतः लंबे/बौने लक्षण तथा गोल/ झुर्रीदार लक्षण स्वतंत्र रूप से वंशानुगत होते हैं। एक और उदाहरण चित्र 8.5 में दर्शीया गया है।

8.2.3 यह लक्षण अपने आपको किस प्रकार व्यक्त करते हैं?

आनुवंशिकता कार्य विधि किस प्रकार होती है? कोशिका के डी.एन.ए. में प्रोटीन संश्लेषण के लिए एक सूचना स्रोत होता है। डी.एन.ए. का वह भाग जिसमें किसी प्रोटीन संश्लेषण के लिए सूचना होती है, उस प्रोटीन का जीन कहलाता है। प्रोटीन विभिन्न लक्षणों की अभिव्यक्ति को किस प्रकार नियंत्रित करती है, इसकी हम यहाँ चर्चा करते हैं? आइए, पौधों की लंबाई के एक लक्षण को उदाहरण के रूप में लेते हैं। हम जानते हैं कि पौधों में कुछ हार्मोन होते हैं, जो लंबाई का नियंत्रण करते हैं। अतः किसी पौधे की लंबाई पौधे में उपस्थित उस हार्मोन की मात्रा पर निर्भर करती है। पौधे के हार्मोन की मात्रा उस प्रक्रम की दक्षता पर निर्भर करेगी, जिसके द्वारा यह उत्पादित होता है। एंजाइम इस प्रक्रम के लिए महत्वपूर्ण है। यदि यह एंजाइम (प्रकिण्व) दक्षता से कार्य करेगा तो हार्मोन पर्याप्त मात्रा में बनेगा तथा पौधा लंबा होगा। यदि इस प्रोटीन के जीन में कुछ परिवर्तन आते हैं तो बनने वाली प्रोटीन की दक्षता पर प्रभाव पड़ेगा वह

कम दक्ष होगी। अतः बनने वाले हार्मोन की मात्रा भी कम होगी तथा पौधा बौना होगा। अतः जीन लक्षणों (traits) को नियंत्रित करते हैं।

यदि मेंडल के प्रयोगों की व्याख्या जिसकी हम चर्चा कर रहे थे, ठीक है तो इसकी चर्चा हम पिछले अध्याय में कर चुके हैं। लैंगिक प्रजनन के दौरान संतित के डी.एन.ए. में दोनों जनक का समान रूप से योगदान होगा। यदि दोनों जनक संतित के लक्षण के निर्धारण में सहायता करते हैं तो दोनों जनक एक ही जीन की एक प्रतिकृति संतित को प्रदान करेंगे। इसका अर्थ है कि मटर के प्रत्येक पौधे में सभी जीन के दो-सेट होंगे, प्रत्येक जनक से एक सेट की वंशानुगित होती है। इस तरीके को सफल करने के लिए प्रत्येक जनन कोशिका में जीन का केवल एक ही सेट होगा।

जबिक सामान्य कायिक कोशिका में जीन के सेट की दो प्रतियाँ (copies) होती हैं, फिर इनसे जनन कोशिका में इसका एक सेट किस प्रकार बनता है? यदि संतित पौधे को जनक पौधे से संपूर्ण जीनों का एक पूर्ण सेट प्राप्त होता है तो चित्र 8.5 में दर्शाया प्रयोग सफल नहीं हो सकता। इसका मुख्य कारण यह है कि दो लक्षण 'R' तथा 'y' सेट में एक-दूसरे से संलग्न रहेंगे तथा स्वतंत्र रूप में आहरित नहीं हो सकते। इसे इस तथ्य के आधार पर समझा जा सकता है कि वास्तव में एक जीन सेट केवल एक डी.एन.ए. शृंखला के रूप में न होकर डी.एन.ए. के अलग-अलग स्वतंत्र रूप में होते हैं, प्रत्येक एक गुण सूत्र कहलाता है। अतः प्रत्येक कोशिका में प्रत्येक गुणसूत्र की दो प्रतिकृतियाँ होती हैं, जिनमें से एक नर तथा दूसरी मादा जनक से प्राप्त होती हैं। प्रत्येक जनक कोशिका (पैतृक अथवा मातृक) से गुणसूत्र के प्रत्येक जोड़े का केवल एक गुणसूत्र ही एक जनन कोशिका (युग्मक) में

जाता है। जब दो युग्मकों का संलयन होता है तो बने हुए युग्मनज में गुणसूत्रों की संख्या पुनः सामान्य हो जाती है तथा संतित में गुणसूत्रों की संख्या निश्चित बनी रहती है, जो स्पीशीज के डी.एन.ए. के स्थायित्व को सुनिश्चित करता है। वंशागित की इस क्रियाविधि से मेंडल के प्रयोगों के पिरणाम की व्याख्या हो जाती है। इसका उपयोग लैंगिक जनन वाले सभी जीव करते हैं, परंतु अलैंगिक जनन करने वाले जीव भी वंशागित के इन्हीं नियमों का पालन करते हैं। क्या हम पता लगा सकते हैं कि उनमें वंशानुगित किस प्रकार होती है?

8.2.4 लिंग निर्धारण

इस बात की चर्चा हम कर चुके हैं कि लैंगिक जनन में भाग लेने वाले दो एकल जीव किसी न किसी रूप में एक-दूसरे से भिन्न होते हैं, जिसके कई कारण हैं। नवजात का लिंग निर्धारण कैसे होता है? अलग-अलग स्पीशीज इसके लिए अलग-अलग युक्ति अपनाते हैं। कुछ पूर्ण रूप से पर्यावरण पर निर्भर करते हैं। इसलिए कुछ प्राणियों में (जैसे कुछ सरीमृप) लिंग निर्धारण निषेचित अंडे (युग्मक) के ऊष्मायन ताप पर निर्भर करता है कि संतित नर होगी या मादा। घोंघे जैसे कुछ प्राणी अपना लिंग बदल सकते हैं, जो इस बात का संकेत है कि इनमें लिंग निर्धारण आनुवंशिक नहीं है, लेकिन, मानव में लिंग निर्धारण आनुवंशिक आधार पर होता है। दूसरे शब्दों में, जनक जीवों से वंशानुगत जीन ही इस बात का निर्णय करते हैं कि संतित लड़का होगा अथवा

चित्र 8.6 मानव में लिंग निर्धारण

आनुवंशिकता

लड़की, परंतु अभी तक हम मानते रहे हैं कि दोनों जनकों से एक जैसे जीन सेट संतित में जाते हैं। यदि यह शाश्वत नियम है तो फिर लिंग निर्धारण वंशानुगत कैसे हो सकता है?

इसकी व्याख्या इस तथ्य में निहित है कि मानव के सभी गुणसूत्र पूर्णरूपेण युग्म नहीं होते। मानव में अधिकतर गुणसूत्र माता और पिता के गुणसूत्रों के प्रतिरूप होते हैं। इनकी संख्या 22 जोड़े हैं। परंतु एक युग्म जिसे लिंग सूत्र कहते हैं, जो सदा पूर्णजोड़े में नहीं होते। स्त्री में गुणसूत्र का पूर्ण युग्म होता है तथा दोनों 'X' कहलाते हैं। लेकिन पुरुष (नर) में यह जोड़ा परिपूर्ण जोड़ा नहीं होता, जिसमें एक गुण सूत्र सामान्य आकार का 'X' होता है तथा दूसरा गुणसूत्र छोटा होता है, जिसे 'Y' गुणसूत्र कहते हैं। अतः स्त्रियों में 'XX' तथा पुरुष में 'XY' गुणसूत्र होते हैं। क्या अब हम X और Y का वंशानुगत पैटर्न पता कर सकते हैं?

जैसा कि चित्र 8.6 में दर्शाया गया है, सामान्यतः आधे बच्चे लड़के एवं आधे लड़की हो सकते हैं। सभी बच्चे चाहे वह लड़का हो अथवा लड़की, अपनी माता से 'X' गुणसूत्र प्राप्त करते हैं। अतः बच्चों का लिंग निर्धारण इस बात पर निर्भर करता है कि उन्हें अपने पिता से किस प्रकार का गुणसूत्र प्राप्त हुआ है। जिस बच्चे को अपने पिता से 'X' गुणसूत्र वंशानुगत हुआ है वह लड़की एवं जिसे पिता से 'Y' गुणसूत्र वंशानुगत होता है, वह लड़का।

प्रश्न

- मेंडल के प्रयोगों द्वारा कैसे पता चला कि लक्षण प्रभावी अथवा अप्रभावी होते हैं?
- 2. मेंडल के प्रयोगों से कैसे पता चला कि विभिन्न लक्षण स्वतंत्र रूप से वंशानुगत होते हैं?
- 3. एक 'A-रुधिर वर्ग' वाला पुरुष एक स्त्री जिसका रुधिर वर्ग 'O' है, से विवाह करता है। उनकी पुत्री का रुधिर वर्ग 'O' है। क्या यह सूचना पर्याप्त है यदि आपसे कहा जाए कि कौन सा विकल्प लक्षण-रुधिर वर्ग- 'A' अथवा 'O' प्रभावी लक्षण हैं? अपने उत्तर का स्पष्टीकरण दीजिए।
- 4. मानव में बच्चे का लिंग निर्धारण कैसे होता है?

आपने क्या सीखा

- जनन के समय उत्पन्न विभिन्नताएँ वंशानुगत हो सकती हैं।
- इन विभिन्नताओं के कारण जीव की उत्तरजीविता में वृद्धि हो सकती है।
- लैंगिक जनन वाले जीवों में एक अभिलक्षण (Trait) के जीन के दो प्रतिरूप (Copies) होते हैं। इन प्रतिरूपों के एकसमान न होने की स्थिति में जो अभिलक्षण व्यक्त होता है उसे प्रभावी लक्षण तथा अन्य को अप्रभावी लक्षण कहते हैं।
- विभिन्न लक्षण किसी जीव में स्वतंत्र रूप से वंशानुगत होते हैं। संतित में नए संयोग उत्पन्न होते हैं।
- विभिन्न स्पीशीज़ में लिंग निर्धारण के कारक भिन्न होते हैं। मानव में संतान का लिंग इस बात पर निर्भर करता है कि
 पिता से मिलने वाले गुणसूत्र 'X' (लड़िकयों के लिए) अथवा 'Y' (लड़कों के लिए) किस प्रकार के हैं।

विज्ञान

अभ्यास

- 1. मेंडल के एक प्रयोग में लंबे मटर के पौधे जिनके बैंगनी पुष्प थे, का संकरण बौने पौधों जिनके सफेद पुष्प थे, से कराया गया। इनकी संतित के सभी पौधों में पुष्प बैंगनी रंग के थे। परंतु उनमें से लगभग आधे बौने थे। इससे कहा जा सकता है कि लंबे जनक पौधों की आनुवंशिक रचना निम्नलिखित थी—
 - (a) TTWW
 - (b) TTww
 - (c) TtWW
 - (d) TtWw
- 2. एक अध्ययन से पता चला कि हल्के रंग की आँखों वाले बच्चों के जनक (माता-पिता) की आँखें भी हल्के रंग की होती हैं। इसके आधार पर क्या हम कह सकते हैं कि आँखों के हल्के रंग का लक्षण प्रभावी है अथवा अप्रभावी? अपने उत्तर की व्याख्या कीजिए।
- 3. कुत्ते की खाल का प्रभावी रंग ज्ञात करने के उद्देश्य से एक प्रोजेक्ट बनाइए।
- 4. संतित में नर एवं मादा जनकों द्वारा आनुवंशिक योगदान में बराबर की भागीदारी किस प्रकार सुनिश्चित की जाती है।