### 심리 성향과 성격 유형에 따른 투표 참여 예측



#### **Contents**

- 01 개요
- 02 데이터 변수 설명
- O3 데이터 전처리
- **04** 데이터 분석 (PoC)
- 05 머신러닝 모델링
- 06 평가 및 개선사항

# 01 개요

#### 심리학 테스트 분석 알고리즘 개발

심리학 테스트의 범주가 넓어집에 따라 심리학을 통한 다른 분야의 데이터를 해석하려는 연구가 활발히 집행



마케아벨리즘 심리테스트를 활용하여

참가자의 국가 선거 투표 여부 예측



#### Data Shape

train.shape

(45532, 78)

test.shape

(11383, 77)

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 56915 entries, 0 to 56914
Data columns (total 77 columns):

Train set : 78개 속성의 45532 행

Test set : 타겟 데이터 제외 77개 속성의 11383 행

#### **Data Summary**

마케아벨리즘 설문 답변 내용 (20개): QaA ~ QtA

마케아벨리즘 설문 답변 시간 (20개): QaE ~ QtE

실문자 개인정보 (10개): Age\_group , gender , education, …, etc

TIPI 성격 유형 실문 답변 내용 (107H): tp01 ~ tp10

설문자 어휘능력 (16개): wr\_01~13, wf\_01~03

투표 여부 [타겟] (1개): voted

마케아벨리즘 설문 답변 내용: QaA ~ QtA

#### 마케아벨리즘이란 ? (Machiavellism)

개인적인 욕구의 충족을 위해 남을 속이거나 조종하려는 욕구를 가리키는

단어로 성격심리학과 사회심리학에서 사용하는 용어이다.

계산적 60절 ( 이기적

마케아벨리즘 설문 답변 내용: QaA ~ QtA

총 20개의 문항으로 이루어짐

예시: 사람을 다루는 가장 좋은 방법은 듣기 원하는 말을 해주는 것이다.



실문자는 1 (강한 부정) ~ 5 (강한 긍정) 으로 평가

특징: 8개의 문항 (A번, D번, N번, ···) 은 비식별을 위해 문항정보가 가려져 있다.

마케아벨리즘 설문 답변 시간: QaE ~ QtE

20개의 문항에 대한 답변 시간 데이터

연속형 데이터로 상대적인 시간을 나타낸다

특징 : 이상치와 정상데이터의 구분이 어려울 만큼 넓은 범위의 데이터  $10^{0} \sim 10^{7}$ 

#### 설문자 개인정보 (10개)

```
age_group (열령대): '10s', '20s', '30s', '40s', '50s', '60s', '+70s'
```

education (교육수준): 1=Less than high school

2=High school

3=University degree

4=Graduate degree

#### 설문자 개인정보 (10개)

Engnat (모국어 영어 여부): 1=Yes 2=No

Urban (유년기 거주 지역): 1=Rural (시골), 2=Suburban (도심 주변), 3=Urban (도심)

Familysize (형제자매 수) : 연속형 데이터

Gender (성별): 'Female', 'Male'

#### 설문자 개인정보 (10개)

Race (인종): 6개의 인종 + 기타

Asian, Arab, Black, Indigenous Australian,

Native American, White, Other

Religion (종교) : 11개의 종교 + 기타

Agnostic, Atheist, Buddhist, Christian\_Catholic,

Christian\_Mormon, Christian\_Protestant,

Christian\_Other, Hindu, Jewish, Muslim, Sikh, Other

#### 설문자 개인정보 (10개)

Hand (손잡이): 1=모른손, 2=왼손, 3=양손

Married (결혼 여부): 1=미혼, 2=기혼, 3=이혼 혹은 사별

TIPI 성격 유형 설문 답변 내용 (107H)

#### TIPI란 ? (Ten Item Personality Inventory)

인간의 성격을 5가지의 상호 독립적인 요인들로 검사하는 Big 5 검사의 약식 버전 설문



TIPI 성격 유형 설문 답변 LH용 (107H)

총 10개의 문항으로 이루어집

예시: 나는 다음 단어와 관련이 깊다 { 내성적이다, 조용하다 }

1 2 3 4 5 6 7

실문자는 1 (강한 긍정) ~ 7 (강한 부정) 으로 평가

특징 : 2 개 문항 씩 짝지어 하나의 성격 유형에 대한 접수로 계산

#### 설문자의 어휘 능력 (167#)

- 명목형 이진 데이터로 1 = (<u>안</u>다)/ 0 = (모른다) 2가지 대답으로 나뉜다.



투표 여부 : 타겟 데이터

#### voted

지난 해 국가 선거 투표 여부: 1 = Yes, 2 = No



각 feature 결측값 비율

#### 4가지 처리 방식

1. 상관계수 기반 그룹화 후 속한 그룹의 최빈값으로 대체



- 3. 1% 미만의 이상치는 처리하지 않고 버림
- 4. KNN 기반의 라벨링을 통해 해당 레이블의 과반수 데이터를 활용



#### Familysize

41326

48605 34749

data.familysize.sort\_values(ascending=False)[:10]

| 24598 | 2147483647 |      |
|-------|------------|------|
|       |            | drop |
| 379   | 999        | drop |
| 25661 | 100        |      |
| 21567 | 44         |      |
| 34847 | 44         |      |
| 12056 | 44         |      |
| 28111 | 34         | Λ    |

30

Name: familysize, dtype: int64

```
outlier_idx = data.familysize[data.familysize>99].index

for idx in outlier_idx:
    if idx < split_point:
        data = data.drop(idx,axis=0)
        split_point-=1
data.shape # 3개 행모두 제거

(56912, 76)
```

상식적으로 납득하기 어려운 형제자매 수

2147483647, 999, 100

#### Education

1. 상관계수 기준 선형관계가 있는 연령대, 결혼 여부 정보로 그룹화

2. 그룹화한 테이블을 기준으로 난수의 비율을 결정하여 결측값 대체

|           | education | 1        | 2        | 3        | 4        |
|-----------|-----------|----------|----------|----------|----------|
| age_group | married   |          |          |          |          |
|           | 1         | 0.111111 | 0.333333 | 0.222222 | 0.333333 |
| +70s      | 2         | 0.028249 | 0.214689 | 0.322034 | 0.435028 |
|           | 3         | 0.038835 | 0.407767 | 0.271845 | 0.281553 |



#### Urban

1. 상관계수 기준 모국어 영어 여부와 인종 데이터와 선형 관계

- 2. 두 컬럼을 기준으로 그룹화
- 3. 각 그룹의 최빈값을 활용



#### **Engnat**

1. KNN 적용을 위해 결측 위험이 없는 컬럼들만 활용

2. 결측을 포함한 행의 데이터를 기준으로 KNN

3. 추출된 그룹의 과반수 데이터 활용





#### Hand

1. 결측치를 제외한 hand 데이터의 전체 비율을 계산

2. 비율 기반 난수를 생성하여 활용



#### 특성 추가 (Feature Engineering)

1. 20개의 마케아벨리즘 테스트 문항을 통해 성향 접수를 계산하고 MACH\_score 칼럼 추가

2. 불균형이 심한 답변 시간 데이터로부터 이분화를 통해 총 답변시간 컬럼 추가

3. TIPI 계산방법에 따라 5 유형의 성격에 대한 점수 칼럼 추가



#### 마케아벨리즘 답변내용: MACH\_score

마케아 스코어 : 20개의 답변 수치의 평균

문항별로 부정, 긍정의 성격이 달라 스코어 계산 시 점수를 뒤집어야 하는 문항 존재



8개의 비공개 문항의 경우 부호를 알아내 적용 해야함

#### 마케아벨리즘 답변내용: MACH\_score



#### 공개된 질문들 부호 적용 후 상관계수 확인



#### 마케아벨리즘 답변내용: MACH\_score

#### 5 항목의 점수를 뒤집은 후



#### 추가한 MACH\_score 데이터의 분포



#### 마케아벨리즘 답변시간

특징: 극단값이 매우 많고 큰 데이터

기존 데이터 boxplot



#### 로그 스케일 후 boxplot



#### 마케아벨리즘 답변시간

1. 각 컬럼을 중위값 기준으로 답변이 빠름(0)과 느림(1)으로 변환



2. 변환된 데이터를 바탕으로 총 답변 시간 접수 컬럼을 추가 (0~20 사이 값)

| A번 | B번 | C번 | S법    | T법 | - 12 |
|----|----|----|-------|----|------|
| 1  | 0  | 0  | <br>0 | 1  | - 12 |

#### 마케아벨리즘 답변시간

#### 전처리 이전 이상치 데이터 분포



#### 전처리 후 추가된 칼럼 데이터 분포



#### TIPI 5 유형 성격 점수 계산





#### TIPI 5 유형 성격 점수 계산

5개의 성격 칼럼 추가

$$\frac{tp01+tp06}{2}$$



Extraversion (외향성)

$$\frac{tp02+tp07}{2}$$



Agreeableness (친화성)

 $\frac{tp03+tp08}{2}$ 



Conscientiousness (성실성)

 $\frac{tp04+tp09}{2}$ 



Emotional Stability (실리적 안정성)

 $\frac{tp05+tp10}{2}$ 



Openness to Experiences (개발성)

#### 데이터들 사이의 관계를 추측하고 검증

- 1. 교육 수준이 설문자의 투표 참여에 영향을 미칠까?
- 2. 나이와 마케아벨리즘 성향은 얼마나 관련이 있을까?
- 3. 손잡이와 성별의 차이가 흔히 예상하는 특징들과 맞게 나올까?
- 4. 군집화를 통한 유권자 분리



1. 교육 수준이 설문자의 투표 참여에 영향을 미칠까?



#### 1. 교육 수준이 설문자의 투표 참여에 영향을 미칠까?



#### 1. 마케아벨리즘이 설문자의 투표 참여에 영향을 미칠까?



1. 설문자의 나이가 투표 참여에 영향을 미칠까?

그 밖 : age , race





#### 2. 나이와 마케아벨리즘 성향은 얼마나 관련이 있을까?



연령대가 높은 그룹일수록

마케아벨리즘 성향이 낮아집

#### 2. TIPI 성향은 마케아벨리즘 성향은 얼마나 관련이 있을까?





3. 손잡이와 성별의 차이가 흔히 예상하는 특징들과 맞게 나올까?

예상1. 왼손잡이 == 똑똑 == 교육수준?

예상2. 남녀의 성격 유형 차이는 결혼 여부에 나타날까?

#### 3. 손잡이와 성별의 차이가 흔히 예상하는 특징들과 맞게 나올까?



#### 3. 남녀의 성격 유형 차이는 결혼 여부에 나타날까?



미혼과 이혼 그룹에서 남녀의 분포 비율이 상이함

multicampus

#### 3. 남녀의 성격 유형 차이는 결혼 여부에 나타날까?



multicampus

#### 4. 군집화를 통한 유권자 분리



#### 4. 군집화를 통한 유권자 분리

Elbow graph of K-means



#### 4. 군집화를 통한 유권자 분리

#### MachScore Agreeableness voted 6.494805e-15 5.089110 4.099582 1.193490e-14 2.576245 2.209265 2 1.000000e+00 2.698080 2.116366 7.438494e-15 3.055440 3.695750 1.000000e+00 4.061313 3.863547 4

#### 마케아벨리즘 성향



multicampus





기초적인 데이터 전처리부터 베이스 모델 구축까지 가능한

파이썬의 Auto ML 패키지

|    | Description               | Value                                         |  |  |  |
|----|---------------------------|-----------------------------------------------|--|--|--|
| 0  | session_id                | 7258                                          |  |  |  |
| 1  | Target Type               | Binary                                        |  |  |  |
| 2  | Label Encoded             | 1: 0, 2: 1                                    |  |  |  |
| 3  | Original Data             | (45529, 102)                                  |  |  |  |
| 4  | Missing Values            | False                                         |  |  |  |
| 5  | Numeric Features          | 60                                            |  |  |  |
| 6  | Categorical Features      | 41                                            |  |  |  |
| 7  | Ordinal Features          | False                                         |  |  |  |
| 8  | High Cardinality Features | False                                         |  |  |  |
| 9  | High Cardinality Method   | None                                          |  |  |  |
| 10 | Sampled Data              | (31870, 102)                                  |  |  |  |
| 11 | Transformed Train Set     | (22308, 142)                                  |  |  |  |
| 12 | Transformed Test Set      | (9562, 142)                                   |  |  |  |
| 13 | Numeric Imputer           | mean                                          |  |  |  |
| 14 | Categorical Imputer       | Categorical Imputer constant  Normalize False |  |  |  |
| 15 | Normalize                 |                                               |  |  |  |

### (Columns)

76 : original

102: preprocessed

**142** : Auto ML



from PyCaret,

**Gradient Boosting Classifier** 

**CatBoost Classifier** 

**Light Gradient Boosting Machine** 

best\_3 = compare\_models(sort = 'AUC', n\_select = 3)

|    | Model                           | Accuracy | AUC    | Recall | Prec.  | F1     |
|----|---------------------------------|----------|--------|--------|--------|--------|
| 0  | Gradient Boosting Classifier    | 0.6932   | 0.7650 | 0.6406 | 0.7608 | 0.6955 |
| 1  | CatBoost Classifier             | 0.6927   | 0.7640 | 0.6533 | 0.7523 | 0.6992 |
| 2  | Light Gradient Boosting Machine | 0.6931   | 0.7630 | 0.6440 | 0.7586 | 0.6965 |
| 3  | Ada Boost Classifier            | 0.6890   | 0.7572 | 0.6529 | 0.7467 | 0.6966 |
| 4  | Linear Discriminant Analysis    | 0.6786   | 0.7555 | 0.7281 | 0.6975 | 0.7124 |
| 5  | Logistic Regression             | 0.6787   | 0.7550 | 0.7292 | 0.6973 | 0.7128 |
| 6  | Extra Trees Classifier          | 0.6816   | 0.7518 | 0.6854 | 0.7193 | 0.7019 |
| 7  | Extreme Gradient Boosting       | 0.6741   | 0.7418 | 0.6646 | 0.7184 | 0.6904 |
| 8  | Random Forest Classifier        | 0.6585   | 0.7136 | 0.6127 | 0.7209 | 0.6623 |
| 9  | Naive Bayes                     | 0.6212   | 0.6768 | 0.5275 | 0.7054 | 0.6035 |
| 10 | K Neighbors Classifier          | 0.6129   | 0.6420 | 0.6628 | 0.6414 | 0.6518 |
| 11 | Decision Tree Classifier        | 0.6141   | 0.6109 | 0.6445 | 0.6480 | 0.6462 |
| 12 | Quadratic Discriminant Analysis | 0.5217   | 0.5391 | 0.4499 | 0.5840 | 0.4939 |
| 13 | SVM - Linear Kernel             | 0.6779   | 0.0000 | 0.6884 | 0.7200 | 0.6991 |
| 14 | Ridge Classifier                | 0.6789   | 0.0000 | 0.7285 | 0.6977 | 0.7127 |





blended = blend\_models(estimator\_list = best\_3, fold = 5, method = 'soft')



|    | Model             | Accuracy | AUC    | Recall       | Prec.  | F1     | Kappa | MCC     |    |      |
|----|-------------------|----------|--------|--------------|--------|--------|-------|---------|----|------|
| 0  | Voting Classifier | 0.6898   | 0.7638 | 0.6393       | 0.7558 | 0.6927 | 0.384 | 0.3894  |    |      |
|    |                   |          |        |              |        |        |       |         |    |      |
| 64 | 씨롯메               |          | 4      | ٤            |        |        |       | 0.77674 | 1  | 2분 전 |
| 1  | 문성민               |          | ÷      | <del>ў</del> |        |        |       | 0.7829  | 40 | 2일 전 |

### 06 평가 및 개선사항

- 1. 사용하지 못한 데이터(Word) 로 모델의 성능을 더 발전시킬 수 있지 않았을까
- 2. 설문조사를 영어권 국가 대신 국내로 한정하여 진행했다면 결과가 바뀌었을까
- 3. 생각보다 새로운 인사이트를 도출해내는 PoC를 해내지는 못했음
- 4. AutoML 패키지를 이용하지 않고, 직접 파라미터 조정을 통해 모델링를 했으면 하는 아쉬움
- 5. 난수 생성의 결측 처리 방식 대신 조금 더 통계학으로 접근하면 더 좋은 성능을 보일지



## Q&A

# THANKS