Adatbányászat prezentáció

Forman Balázs Attila és Michaletzky Tamás Vilmos

2021

Adatbányászat

- Bevezetés
 - Adathalmaz jellemzése
 - A probléma megfogalmazása, hipotézisek
 - Előfeldolgozás
- 2 Algoritmusok
 - TF-IDF
 - Word2Vec és Doc2Vec
 - GloVe
 - Bert
- Összegzés
 - Összehasonlítás
 - Végszó

Adathalmaz jellemzése

- Kaggle-ről
- 37249 darab **Reddit** bejegyzés: HATE SPEECH
- \bullet -1, 0, és 1 számmal
 - negatív
 - semleges
 - pozitív

Hipotézisek

Feladat

Hate speech detection különböző NLP-módszerekkel

Különböző hatékonyság

TfIdf < word2vec < doc2vec < GloVe < Bert.

- binary > multiclass
- Pozitív eltolódás
- Dimenzió
 - TF-IDF nagy dimenzió
 - Többinek közepes
- Túltanulás félelme

Előfeldolgozás

- Bejegyzések szavakra bontása
- Kisbetű
- Kötőszavak, nem latin betűk
- Szótövek: lemmatizálás, stemmelés

Példa

- Original tweet: family mormon have never tried explain them
 they still stare puzzled from time time like some kind strange
 creature nonetheless they have come admire for the patience
 calmness equanimity acceptance and compassion have
 developed all the things buddhism teaches
- Processed tweet: ['famili', 'mormon', 'never', 'tri', 'explain', 'still', 'stare', 'puzzl', 'time', 'time', 'like', 'kind', 'strang', 'creatur', 'nonetheless', 'come', 'admir', 'patienc', 'calm', 'equanim', 'accept', 'compass', 'develop', 'thing', 'buddhism', 'teach']

TF-IDF

Hagyományos, szógyakoriság alapú módszer, a *term frequency, inverse document frequency* szavakból.

Word2Vec és Doc2Vec

Neurális háló alapú beágyazások.

- word2vec: szavakat ágyaz be, hasonló szavak hasonlóan
- doc2vec: a dokumentumokat felelteti meg egy-egy vektornak, több epochon át javítva a beágyazáson

GloVe és LSTM

- A GloVe a Stanford egyetem 2014-es fejlesztése, a Global Vectors for Word Representation kifejezésből jön a neve.
- Felügyelet nélküli szóbeágyazó algoritmus
- Együttes előfordulási gyakoriságokra alapszik

GloVe és K-neighbours

- 100 dimenzióba ágyaztunk be
- a több szomszéd nem vezetett lényegesen pontosabb jósláshoz
- nagyobb valószínűséggel mond 0-t

GloVe, Bernoulli és Logisztikus regresszió

- Ritkán jósolnak negatív szentimentet
- Hasonlóan pontosak, mint a kNN
- Itt is 100 dimenzióba ágyaztunk be

Bert

A Bert a Google 2018-as fejlesztése: Bidirectional Encoder Representations from Transformers

 sok NLP-feladat up-to-date legjobb megoldása: pl. szöveggenerálás

HuggingFace könyvtárból PyTorch alapon Bert-Medium: 8 réteg, 512 dimenzió

De a klasszifikálás is jól megy neki!

Osszehasonlítás

Legjobb mérések és beállítások:

MULTICLASS	Dimenzió (epoch)	Accuracy	F1
Tfldf	2000	0.87	0.83
word2vec	50	0.58	0.50
doc2vec	50 (5)	0.48	0.40
GloVe + 5NN	100	0.48	0.47
GloVe + LSTM	100 (5)	0.67	0.65
Bert	512 (2)	0.92	0.92

Végszó

Hipotézisek

különböző hatékonyság: MÁSKÉNT

```
word2vec = doc2vec < GloVe < TfIdf < Bert.
```

- binary > multiclass: IGEN
- pozitív eltolódás: egyes módszerek IGEN, máshol NEM volt tapasztalható
- dimenzió
 - TF-IDF nagy dimenzió: 5000: IGEN
 - többinek közepes: 50: IGEN, sőt kicsi
- túltanulás félelme: NEM volt tapasztalható

Köszünjük a figyelmet!

https://github.com/tmichaletzky/datamining2021

