(12)特許協力条約に基づいて公開された国際出願

13 SEP 2004

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年9 月25 日 (25.09.2003)

(10) 国際公開番号 WO 03/078440 A1

(51) 国際特許分類7:

C07D 501/50, 277/40, 277/46, 277/56, 519/06, A61K 31/546, A61P 31/04

(21) 国際出願番号:

PCT/JP03/03249

(22) 国際出願日:

2003年3月18日(18.03.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2002年3月18日(18.03.2002) 特願2002-073526

- (71) 出願人 (米国を除く全ての指定国について): 塩野 義製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 西谷 康宏 (NISHI-TANI, Yasuhiro) [JP/JP]; 〒553-0002 大阪府 大阪市福 島区 鷺洲 5 丁目 1 2 番 4 号 塩野義製薬株式会社内 Osaka (JP). 山野 佳則 (YAMANO, Yoshinori) [JP/JP]; 〒 561-0825 大阪府 豊中市 二葉町 3 丁目 1 番 1 号 塩野 義製薬株式会社内 Osaka (JP).

- 代理人: 山内 秀晃 , 外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 1 2 番 4号 塩野義製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID. IL. IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: BROAD-SPECTRUM CEPHEM COMPOUNDS
- (54) 発明の名称: 広域セフェム化合物

(57) Abstract: Compounds represented by the general formula (I), esters of the compounds, derivatives thereof obtained through protection of amino on the 7-position thiazole ring, or pharmaceutically acceptable salts or solvates of them: (I) wherein T is S, SO, or O; X is halogeno, CN, carbamoyl which may be substituted with lower alkyl, lower alkyl, lower alkoxy, or lower alkylthio; A is substituted lower alkylene (wherein the substituent is optionally substituted mono-lower alkyl, optionally substituted lower alkylidene, or optionally substituted lower alkylene); and Z+ is an optionally substituted nitrogenous heterocyclic group having a cationic group.

(57) 要約:

(式中、

Tは、S、SOまたはO;

Xは、ハロゲン、C N、低級アルキルにより置換されていてもよいカルバモイル、低級アルキル、低級アルコキシ、または低級アルキルチオ;

Aは、置換低級アルキレン(置換基:置換されていてもよいモノ低級アルキル、置換されていてもよい低級アルキリデン、または置換されていてもよい低級アルキレン); Z^①は、置換されていてもよい、カチオン基を有するN原子含有ヘテロ環式基)で示される化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

明細書

広域セフェム化合物

5 技術分野

本発明は、種々の病原性細菌に対して幅広い抗菌スペクトルを示す広域セフェム化合物およびそれを含有する医薬組成物、ならびにその製造方法や製造中間体に関する。本発明化合物は、特に β -ラクタマーゼに安定であり、緑膿菌を含む β -ラクタマーゼ産生のセフェム耐性菌に対しても有効である。

10

15

20

背景技術

グラム陽性菌および緑膿菌を含むグラム陰性菌に対して強い抗菌力を有するいわゆる広域セフェム化合物としては、近年、セフェム骨格の7位がアミノチアゾールまたはアミノチアジアゾールでかつ3位が環状タイプの4級アンモニウムメチル基である化合物が注目されている。例えば7位がアミノチアゾールのものとしては、塩酸セフェピム(cefepime, USP 4,406,899)、硫酸セフピロム(USP 4,609,653,特開昭57-192394)、硫酸セフォセリス(cefoselis,特開平7-196665,W097/41128)等が、また同位がアミノチアジアゾールのものとしてはセフクリジン(cefclidin,USP 4,748,171)、塩酸セフォゾプラン(cefozopran,USP 4,864,022,特開平62-149682,特開平3-47189)等が知られている。さらに同タイプのセフェム化合物を開示した文献として、特開昭58-4789には3位に「置換されていてもよい窒素原子2個以上含有複素環力チオン基」を有するセフェム化合物が、また特開昭60-155183には同位に「窒素原子2個以上を含有する不飽和縮合複素環式カチオン基」を有するセフェム化合物が、また特別田60-155183には同位に「窒素原子2個以上を含有する不飽和縮合複素環式カチオン基」を有するセフェム化合物がそれぞれ関示されている。

25 また、特開昭60-97982、特開昭59-130294、特開昭60-349 73、特開昭62-114990、特開昭64-42491、およびWO87/0 6232号等には、7位のアミノチアゾール環上にハロゲンを有するか、または7位

オキシム部分の末端がCOOHで置換されたセフェム化合物が開示されている。しかし、これらの文献には、両方の構造的特徴を兼ね備えたセフェム化合物は何ら具体的には記載されていない。

7位のアミノチアゾール環上にハロゲンを有し、かつ7位オキシム部分の末端がCOOHで置換されたセフェム化合物としては、特開昭60-231684が知られているが、具体的に開示されている化合物は7位オキシム上のメチレン部分が無置換メチレンまたはジメチル置換メチレンである。また特開昭57-131794、特開平1-308286には、7位オキシム上のメチレン部分がモノメチルで置換された化合物が記載されているが、該メチルの立体配置は特定されておらず、また3位メチレン上の置換基として4級アンモニウム基は記載されていない。さらにこれらの文献では、セフェム耐性緑膿菌への効力はなんら記載されていない。

5

10

15

20

さらに、3位に4級アンモニウム基を有しかつ7位にアミノチアゾールーオキシイミノ型の側鎖を有するセフェム化合物は、広域セフェム薬と呼ばれ、特に緑膿菌を含むグラム陰性菌に対しても有効であることが知られている。例えば、セフタジダイム (ceftazidine) は β -ラクタマーゼに安定であり、 β -ラクタマーゼ産生の緑膿菌に対しても比較的強い活性を有することが報告されている (Acta Microbiologica Hungarica 35 (4), pp. 327-359 (1988)等)。

このような状況下、最近ではグラム陰性菌の中にも広域セフェム薬に耐性を示す菌が増加してきており、 β -ラクタマーゼ、特にクラス C型 β -ラクタマーゼ高産生によるセフェム耐性緑膿菌の臨床分離頻度が高くなっており、世界的な社会問題となっている(「最近の β -ラクタマーゼの分類と疫学」, 臨床と微生物 Vol.26 No.2 1999.3 P103-109)。 しかし、該セフェム耐性緑膿菌に対して十分な抗菌活性を示すセフェム剤はこれまで報告されていない。

よって、新規な広域セフェム化合物、好ましくはβーラクタマーゼ産生のセフェ 25 ム耐性緑膿菌に対しても十分な抗菌活性を示すセフェム化合物、より好ましくは注射 用セフェム化合物の開発が要望されていた。

発明の開示

本発明者らは鋭意検討した結果、セフェム化合物の7位側鎖のアミノチアゾール環にハロゲン原子等を導入し、α位炭素に結合しているオキシム基の末端にカルボキシル基を導入し、かつ3位にN原子含有ヘテロ環式基、より好ましくは4級アンモニウム基を導入すれば、セフェム耐性緑膿菌が産出するβーラクタマーゼ等に対する安定性が向上して、該緑膿菌に対する抗菌活性が特に増強されることを見出した。さらに好ましい態様の一つとして、オキシム基に結合する低級アルキレン、好ましくはメチレン上に置換基としてモノ低級アルキル、好ましくはメチルをα配位に導入すれば、抗菌活性が更に増強されることも見出し、以下に示す本発明を完成した。

10 1.式:

5

(式中、

20

Tは、S、SOまたはO:

Xは、ハロゲン、CN、低級アルキルにより置換されていてもよいカルバモイル、低 15 級アルキル、低級アルコキシ、または低級アルキルチオ;

Aは、置換低級アルキレン(置換基:置換されていてもよいモノ低級アルキル、置換されていてもよい低級アルキリデン、または置換されていてもよい低級アルキレン); Z[⊕]は、置換されていてもよい、カチオン基を有するN原子含有ヘテロ環式基)で示される化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

2. TがSである、上記1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

3. TがOである、上記1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

- 4. Xがハロゲンまたは低級アルキルである、上記1記載の化合物、エステル体、も しくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許 容される塩もしくは溶媒和物。
 - 5. Aが式:

(式中、R¹およびR¹は互いに異なり、それぞれ独立して水素もしくは置換されてい 10 てもよい低級アルキルであるか、または一緒になって置換されていてもよい低級アル キリデンもしくは置換されていてもよい低級アルキレンを形成する) で示される2価の基である、上記1記載の化合物、エステル体、もしくはその7位の チアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしく は溶媒和物。

15 6. Aが以下のいずれかの式で示される2価の基である、上記5記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

(式中、Meは、メチル; Btは、エチル; i-Prは、イソプロピルを表わす。)

- 7. R¹およびR¹が互いに異なりそれぞれ独立して水素もしくは低級アルキルである、 上記5記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにお ける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。
- 8. R¹およびR¹が互いに異なりそれぞれ独立して水素もしくはメチルである、上記 5記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける 保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。
- 9. "-A-COOH"が以下の式で示される基である、上記5記載の化合物、エステル 10 体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製 薬上許容される塩もしくは溶媒和物。

10. Z[⊕]が式:

5

15 で示され、少なくともN原子を1個以上含有し、1~4個の置換基を有していてもよい、飽和または不飽和の単環式または縮合環式の4級アンモニウム基である、上記1

記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保 護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

11. Z^①が以下に示すいずれかのヘテロ環式基である、上記1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

5

(式中、R'およびR'は、それぞれ独立して水素、置換されていてもよい低級アルキル、置換されていてもよいシクロアルキル、置換されていてもよい低級アルケニル、置換されていてもよいアミノ、ハイドロキシ、ハロゲン、置換されていてもよいカルバモイル、置換されていてもよいアルキルオキシ、または置換されていてもよいヘテロ環式基)

12. Z[⊕]が以下に示すいずれかのヘテロ環式基である、上記1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

5

10

15

(式中、各RおよびR'は、それぞれ独立して、水素、低級アルキル、アミノ、モノまたはジ低級アルキルアミノ、低級アルケニル、アミノ低級アルキル、低級アルキルアミノ、低級アルキルアミノ、四級アルキルオンアミノ、置換されていてもよいへテロ環式基により置換されたアミノ、ヒドロキシ低級アルキル、ヒドロキシ低級アルキルアミノ低級アルキル、低級アルコキシ低級アルキル、カルバモイル低級アルキル、カルボキシ低級アルキル、低級アルキルカル

ボニルアミノ低級アルキル、低級アルコキシカルボニルアミノ低級アルキル、低級アルキルオキシ、その他の種々の置換されていてもよい低級アルキル、2種の置換基を有する低級アルキル、または置換されていてもよいヘテロ環式基)

13. Z[⊕]が以下に示すいずれかのヘテロ環式基である、上記1記載の化合物、エス テル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれら の製薬上許容される塩もしくは溶媒和物。

(式中、各Rは、それぞれ独立して、水素、低級アルキル、アミノ低級アルキル、低 級アルキルアミノ低級アルキル、置換されていてもよいヘテロ環式基により置換され たアミノ、または置換されていてもよいヘテロ環式基; R, はアミノ)

14. Z[⊕]が以下に示すいずれかのヘテロ環式基である、上記1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

(式中、Meはメチルを表わす。)

15

 $15. TがS; Xがハロゲン; Aが上記 <math>5 \sim 9$ のいずれかに示される 2 価の基; Z^{\oplus} が

上記10~14のいずれかに示されるヘテロ環式基である、上記1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

16. TがS; Xがハロゲン; Aが上記8に示される2価の基; Z[⊕]が上記12に示されるヘテロ環式基である、上記1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

17. TがS; Xがハロゲン; Aが上記9に示される2価の基; Z⁺が上記13または 14に示されるヘテロ環式基である、上記1記載の化合物、エステル体、もしくはそ の7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される 塩もしくは溶媒和物。

18.以下の式で示される、上記1記載の化合物、またはそれらの製薬上許容される 塩もしくは溶媒和物。

5

10

15 (式中、Xはハロゲン; Z^{\oplus} は以下のいずれかのヘテロ環式基である。)

(式中、Meはメチルを表わす。)

19.式:

5 (式中、

15

Tは、S、SOまたはO;

Xは、ハロゲン、CN、低級アルキルにより置換されていてもよいカルバモイル、低級アルキル、低級アルコキシ、または低級アルキルチオ;

Aは、置換されていてもよい低級アルキレン(但し、置換基が置換されていてもよい 10 モノ低級アルキル、置換されていてもよい低級アルキリデン、または置換されていて もよい低級アルキレンである場合を除く);

 Z^{\oplus} は、置換されていてもよい、カチオン基を有するN原子含有ヘテロ環式基)で示される化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物(但し、TがS; Xがハロゲンでかつ、1) Aがメチレン; Z^{\oplus} がピリジニウムであるか、または2) Aがジメチルメチレン; Z^{\oplus} がイミダゾ[1,2-a]ピリジニウムである、場合を除く)。

20. TがS、Xがハロゲンまたは低級アルキル; Aがジ低級アルキルによって置換されていてもよいメチレンである、上記19記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

5 21.以下に示される上記20記載の化合物、エステル体、もしくはその7位のチア ゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶 媒和物。

22.上記1~21のいずれかに記載の化合物、エステル体、もしくはその7位のチ 10 アゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは 溶媒和物を含有する医薬組成物。

23.上記1~21のいずれかに記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはその製薬上許容される塩もしくは溶媒和物を含有する抗菌薬。

15 24.式:

$$R^6HN \longrightarrow N \longrightarrow OR^5$$
 $N \longrightarrow OR^5$
 $N \longrightarrow OR^7$
(IV)

(式中、Xは、ハロゲン、CN、低級アルキルにより置換されていてもよいカルバモイル、低級アルキル、低級アルコキシ、または低級アルキルチオ; Aは、以下の式で示される基:

5

15

; R^{1} は水素またはカルボキシ保護基; R^{1} は水素またはアミノ保護基; R^{1} は水素またはカルボキシ保護基)で示される化合物またはその製薬上許容される塩。

25. Xがハロゲンまたは低級アルキルである、上記24記載の化合物またはその製 10 薬上許容される塩。

26. Xがハロゲンである、上記24記載の化合物またはその製薬上許容される塩。

さらに本発明は、本発明化合物の製造方法およびその中間体、本発明化合物を投与する細菌感染症の予防または治療方法、ならびに抗菌剤を製造するための本発明化合物の使用を提供する。

発明を実施するための最良の形態

本明細書中で用いる用語を以下に説明する。各用語は特に断りのない限り、単独または他の用語と併用のいずれの場合も、以下の意味を有するものとする。

20 (Tの定義)

Tは、S、SOまたはOであり、好ましくはSまたはOであり、特に好ましくはSである。

(Xの定義)

Xは、ハロゲン、CN、低級アルキルにより置換されていてもよいカルバモイル、 低級アルキル、低級アルコキシ、または低級アルキルチオである。

Nロゲンとしては、F、C1、Br等が例示される。好ましくはC1またはBrで 5 bb、特に好ましくはC1である。

低級アルキルチオは、上記低級アルキルが結合したチオを包含し、例えばメチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、t-プチルチオ、n-ペンチルチオ、n-ペキシルチオ等が例示される。好ましくは $C1\sim C3$ アルキルチオ、特に好ましくはメチルチオである。

Xとして好ましくは、ハロゲン (例:C1、Br) または低級アルキル (例:メチル) であり、特に好ましくはハロゲンである。

(Aの定義)

15

20 Aは、化合物(I)または化合物(I - A)の抗菌活性等に悪影響を及ぼさない 2 価の基であれば必ずしも限定されないが、好ましくは、 R^1 および R^1 等で置換されていてもよい低級アルキレンである。化合物(I)においては、Aは置換低級アルキレンである。

Aはさらに好ましくは、下記のR¹およびR¹で置換されたメチレンであり、好ましくは以下の立体配置をとる。

(R¹、R¹の定義)

5

 R^1 および R^1 はそれぞれ独立して水素、置換されていてもよい低級アルキル、または一緒になって置換されていてもよい低級アルキリデンもしくは置換されていてもよい低級アルキレンを形成する。但し、化合物(I)において R^1 および R^1 は互いに異なる。

該低級アルキルとしては、前記低級アルキルが例示されるが、好ましくは $C1 \sim C4$ アルキル、より好ましくはメチル、エチル、またはプロピル(例:n-プロピル、i-プロピル)、特に好ましくはメチルである。

io 該低級アルキリデンは、上記低級アルキルの同一炭素原子から水素原子 2 個が失われて生ずる 2 価の基を包含し、例えば、= C +

該低級アルキレンは、 $-(CH_1)$ n-(nは $2\sim4$ の整数、好ましくは 2) で示される基を包含する。 R^1 および R^1 が一緒になって低級アルキレンを形成する場合、それらは隣接する炭素原子と一緒になって以下に例示されるシクロアルキルを形成し、好ましくはシクロプロピルまたはシクロブチル、特に好ましくはシクロプロピルを形成する。

上記の低級アルキル、低級アルキリデン、または低級アルキレンが置換されている場合の置換基としては、ハロゲン(例:F、C1)、ヒドロキシ、低級アルコキシ(例:メトキシ、エトキシ)等が例示されるが、好ましくはヒドロキシである。

 (R^1, R^1) の組み合せとして特に好ましくは、(メチル,水素)、(水素,メチル)、(メチル,メチル)または一緒になって $=CH_1$, $-(CH_1)$ 1-等の場合である。特に化合物(I)において好ましくは、水素と低級アルキルであり、より好ましくは(R^1 , R^1)=(メチル,水素)、(水素,メチル)、特に好ましくは(水素,メチル)である。

10 化合物 (I) においてAは、好ましくは、以下に示されるいずれかの2価の基を包含する。

(式中、Meは、メチル; Etは、エチル; i-Prは、イソプロピルを表わす。)

15 (Z⁺の定義)

Z[†]は、置換されていてもよい、カチオン基を有するN原子含有ヘテロ環式基である。 薬理活性に悪影響を及ぼさない限り、該置換基の数や位置、カチオンの位置、および

ヘテロ環の種類は特に限定されない。すなわち Z t としては、セフェム化合物の 3 位の ヘテロ環式基として当業者に周知または容易に認識できるものであれば、種々のもの が包含される。カチオンは好ましくは、化合物 (I) の 3 位のメチレン基に隣接する N原子上に存在する。

5 Z[†]は、好ましくは式:

10

で示され、少なくともN原子を1個以上、好ましくは $1\sim4$ 個、さらに好ましくは $1\sim3$ 個または $1\sim2$ 個含有し、 $1\sim4$ 個、好ましくは $1\sim2$ 個の置換基を有していてもよい、飽和または不飽和の、単環式または縮合環式の4級アンモニウム基である。

該ヘテロ環はさらに1または2以上の0および/またはSを含有していてもよい。該 ヘテロ環は、好ましくは $5\sim10$ 、より好ましくは $5\sim6$ 員環である。

飽和のN原子含有ヘテロ環としては、ピロリジン、ピラゾリジン、チアゾリジン、オキサゾリジン、イミダゾリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、およびそれらを含む縮合環が例示される。

不飽和のN原子含有ヘテロ環としては、単環(例:ピロール、ピラゾール、イミダゾール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、トリアジン、トリアゾール)、およびそれらの単環を環内に含む縮合2環(例:インドール、インドリジン、ベンズイミダゾール、ベンズピラゾール、インドリジン、キノリン、イソキノリン、シノリン、ナフチリジン、フタラジン、キナゾリン、キヌクリジン、ベンゾイソキサゾール、ベンズピラゾール、ベンズオキサゾール、ベンゾキサジアゾール、ベンズイソチアゾール、ベンズチアゾール、ベンズチアゾール、ベンズオキサゾール、ベンブキサジアゾール、ベンズイソチアゾール、ベンズチアゾール、ベンズ

リダジノイミダゾール、チアゾロイミダゾール、テトラハイドロピラノピリジン、オキサゾロ[4,5-c]ピリジン、オキサゾロ[5,4-c]ピリジン、1H-ピロロ[3,2-b]ピリジン、1H-ピロロ[2,3-b]ピリジン、1H-ピロロ[2,3-c]ピリジン、1H-ピロロ[2,3-c]ピリジン、1H-ピラゾロ[4,3-b]ピリジン、1H-ピラゾロ[4,5-c]ピリジン、1H-イミダゾ[4,5-c]ピリジン、1H-イミダゾ[4,5-c]ピリジン、1H-イミダゾ[4,5-c]ピリジン、1H-イミダゾ[4,5-c]ピリジン、1H-イミダゾ[4,5-c]ピリジン、1H-イミダゾ[4,5-c]ピリジン、1H-イミダゾ[4,5-c]ピリジン、1H-ジヒドローピリド[3,4-b]ピラジン、1H-ジヒドローイミダゾ[4,5-c]ピリジン、1H-ジン、1H-ジロピリジン等)を包含する。

5

具体的には Z^{\dagger} は、例えば、置換されていてもよい以下に示すヘテロ環式基を包含する。

上記へテロ環式基が置換基を有する場合、置換基としては、低級アルキル(例:メチ ル、エチル、n-ブチル)、置換されていてもよい低級アルキル(置換基:アミノ、低 級アルキルアミノ(例:-NHCH3)、置換されていてもよい低級アルキルアミノ (例:-NHCH₂CH₂OH)、置換されていてもよいヘテロ環式基(例:2-ピロ5 リジニル、3-ピロリジニル、5-(3-ハイドロキシピロリジニル))、ヒドロキ シ、シクロアルキル、カルボキシ、低級アルコキシ(例:メトキシ)、-OCOCH 3, -OCONH₂, -OCONHOCH₃, -OCONHOH, -OCONHCH₃, $-OCON(CH_3)_2$, $-OCONHN(CH_3)_2$, $-ONHCOOCH_3$, -CO10 NH_{1} 、 $-CONHOCH_{3}$ 、-CONHOH、低級アルコキシカルボニルアミノ (例: $-NHCOOCH_1$)、低級アルキルカルボニルアミノ (例: $-NHCOCH_1$)、- $NHCONH_2$, $-NHSO_2NH_2$, -NHCHO, $-N(CH_1)C=NH(NH_2)$, ハロゲン、オキソ等); 置換されていてもよいアミノ(置換基:低級アルキル(例: メチル、エチル、プロピル、)、アミノ低級アルキル (例:-CH,CH,NH,、-C H₁CH(NH₁)CH₁、-CH₁CH₁CH₁NH₁)、低級アルキルアミノ低級アルキル 15 (例: $-CH_1CH_1NHCH_3$ 、 $-CH_1CH_1CH_1NHCH_3$)、置換されていてもよい ヘテロ環式基(例:3-ピロリジニル、4-ピペリジニル、2-チアゾリル、5-(1 -(2-ハイドロキシエチル) ピラゾール)、<math>5-(1-(2-アミノエチル) ピラゾール))、置換されていてもよいヘテロ環式基により置換された低級アルキル(例:

(2-ピロリジニル) メチル、2-(5-アミノ-1-(ピラゾリル) エチル))、 グアニジノ低級アルキル (例: $-CH_1CH_1NHC=NH(NH_1)$)、ハイドロキシ 低級アルキル(例: $-CH_1CH_1OH_2CH_1CH_1OH$)、ハイドロキシ低級 アルキルアミノ低級アルキル(例:-CH,CH,NHCH,CH,OH、アミノ低級アル キルオキシ(例:-OCH, CH, NH,)、低級アルキルアミノ低級アルキルオキシ(例: 5 $-OCH_1CH_1NHCH_3$, $-OCH_1CH_1CH_1NHCH_3$), -CHO, =CHN (C H_3) 2、-NHCHO、置換されていてもよいカルバモイル(例: $-CONH_2$ 、- $CONHCH_1CH_1NHCH_3$, $-CONHCH_1CH_1NHC=NH(NH_2)), -$ COOCH₂CH₃、-CH₂COOH、アシル(例:アセチル)、アミノアシル(例: - COCH₂CH (CH₃) NH₂)等); 置換されていてもよいカルバモイル(置 10 換基:メチル、エチル、-NHCHO等);低級アルキレン(例: $-CH_1CH_1-$ 、 -CH,CH,CH,-); 置換されていてもよい低級アルケニル (例:-CH,CH= CH,); 置換されていてもよいシクロアルキル(例:シクロプロピル); ヒドロ キシ: ニトロ; シアノ; アルデヒド; 置換されていてもよいアルキルオキシ $(例: -OCH_3, -OCH_1CH_3, -OCH_1CH_1NHCH_3, -OCH_1CH_1CH_1)$ 15 NHCHョ); 低級アルキルチオ(例:-SCH」); 低級アルコキシカルボニル (例:-COOCH,CH,); ハロゲン(例:F、Cl、Br等)、および置換さ れていてもよいヘテロ環式基等から選択される同一または異なる1以上、好ましくは $1 \sim 4$ 個、より好ましくは $1 \sim 3$ 個、特に好ましくは $1 \sim 2$ 個の置換基が例示される。 該「置換されていてもよいヘテロ環式基」とは、前記2で例示されるヘテロ環式基が 20 . 例示され、その結合位置は特に限定されない。特に好ましくはN原子含有飽和の4~ 6 員環であり、例えば、アゼチジニル(例:3-アゼチジニル)、ピロリジニル(例: 3-ピロリジニル)、ピペリジニル(例:4-ピペリジニル、1-(4-アミノピペ リジニル)、ピペラジニル(例:1-ピペラジニル、1-(3-メチルピペラジニル)、 ピロリル(例:3-ピロリル、4-(2-カルバモイルピロリル))、ピラゾリル(例: 25 1-ピラゾリル、4-ピラゾリル)、オキサジアゾリル(例:2─オキサジアゾリル)、 トリアゾリル (例:1ートリアゾリル) である。上記" 低級"とは、好ましくはС1

~C6、より好ましくはC1~C3を意味する。該へテロ環式基上の置換基として好ましくは、置換されていてもよい低級アルキル、置換されていてもよい低級アルケニル、置換されていてもよいアミノや置換されていてもよいヘテロ環式基であり、また以下に示す R^3 や R^4 、また" -R" や、" -NHR" 等を包含する。

5 Z⁺は好ましくは以下に示すヘテロ環式基である。

Z¹はさらに好ましくは以下に示すヘテロ環式基であり、より好ましくはb、d、e

またはnで示される基等である。

5

10

 R^3 および R^4 は、前記ヘテロ環上の置換基から任意に選択されるが、好ましくはそれぞれ独立して水素、前記の置換されていてもよい低級アルキル、置換されていてもよい低級アルケニル、置換されていてもよいアミノまたは置換されていてもよいヘテロ環式基等であり、以下の"-R"、"-R"、"-NHR"、"-NHR" も包含する。 R^3 および R^4 は置換可能な任意の位置に置換し得る。

 Z^+ はより好ましくは以下に示すヘテロ環式基であり、より好ましくはb-1、b-2、d-1、d-3、またはe-1の基等である。

5

10

15

20

25

各RおよびR'は、前記ヘテロ環上の置換基から任意に選択されるが、好ましくはそれ ぞれ独立して、水素、置換されていてもよい低級アルキル、置換されていてもよいア ミノ、または置換されていてもよいヘテロ環式基等である。より好ましくは、水素、 低級アルキル、低級アルケニル、アミノ低級アルキル、アミノヒドロキシ低級アルキ ル、低級アルキルアミノ低級アルキル、ヒドロキシ低級アルキル、アシロキシ(アミ ノ) 低級アルキル、アシルアミノ低級アルキル、スルホニルアミノ低級アルキル、カ ルバモイロキシ低級アルキル、低級アルキルヒドラゾノキシ低級アルキル、カルバモ イルアミノ低級アルキル、アルコキシカルボニルアミノキシ低級アルキル、低級アル コキシ低級アルキル、カルバモイル低級アルキル、置換されていてもよいシクロアル キル、置換されていてもよいヘテロ環式基により置換された低級アルキル、カルボキ シ低級アルキル、低級アルコキシカルボニルアミノ低級アルキル、ハロゲノ低級アル キル、低級アルキルアミノ、アミノ低級アルキルアミノ、低級アルキルアミノ低級ア ルキルアミノ、ハイドロキシ低級アルキルアミノ低級アルキルアミノ、、カルバモイ ルオキシ低級アルキルアミノ、グアニジノ低級アルキルアミノ、置換されていてもよ いカルバモイル、置換されていてもよいアルキルオキシ、置換されていてもよいカル ボニルアミノ、置換されていてもよいヘテロ環式基により置換されたアミノ、アミノ 低級アルキルオキシ、または置換されていてもよいヘテロ環式基である。Rはより好 ましくは、水素、メチル、エチル、シクロプロピル、-CH,CH,NH,、-CH,CH ,NHCH₃, -CH₁CH₁CH₂NHCH₃, -CH₁CH₁NHCH₁CH₁OH₁ -CH₁ CH, CH, NHCH, CH, OH, -CH, CH, CH, NH, -CH, CH (NH,) CH, $-CH_1CH_1CH_2CH_3$ $-CH_1CH_3CH_3$ $-CH_3CH_4$ $-CH_3CH_4$ CH (NH₁) CH₁OCOCH₁, -CH₁CH (NHCH₁) CH₁, -CH₁CH₁OH₂ -CH, CH, OCONH, -CH, CH, OCONHOCH, -CH, CH, OCONH CH_{15} - $CH_{1}CH_{1}OCON$ (CH_{3}) $_{15}$ - $CH_{1}CH_{2}OCONHN$ (CH_{3}) $_{15}$ - CH, CH, OCONHOH, -CH, CH, CH, OCONH, -CH, CH, ONHCOO CH₁, -CH₁CH₁NHCOOH, -CH₁CONH₁, -CH₁CONHOCH₁, -C H, CONHOH, -CH, COOH, -CH, CH, NHCOCH, -CH, CH, NHC

ONH, -CH, CH, NHSO, NH, -CH, CH, NHCOOCH, -CH, CH, NHC $(NH_1) = NH_1 - CH_1CH_2CH_2N$ (CH_1) C $(NH_1) = NH_1 + NH_2$ NHCH, CH, NH, -NHCH, CH, NHCH, -N (CH,) CH, CH, NHCH, \ -N (CHO) CH, CH, NHCH, -NHCOCH, CH (NH,) CH, -CON $HCH_1CH_1NHCH_2$ - $CONHCH_1CH_2NHC(NH_2) = NH_1 - OCH_1CH_2$ 5 NHCH₃、3-アゼチジニル、3-ピロリジニルアミノ、3-ピロリジニル、1--アミノエチル) ピラゾリル)、2-(1-(5-アミノピラゾリル)) エチル、4- ピラゾリル、3 - ピロリル、4 - (2 - カルバモイルピロリル)、2 - ピロリジニ ルメチル、3-ピロリジニルメチル、5-(3-ハイドロキシピロリジニル)メチル、 10 2-チアゾリル、2-オキサジアゾリル、1-トリアゾリル、1-(3-メチルピペ ラジニル)、1-(4-アミノピペリジニル)、または4-ピペリジニル等である。 R'はより好ましくは、水素または置換されていてもよいアミノ基である。R'はより 好ましくは、水素、-NH,、-NHCH₃、-N(CH₃),、-N=CHN(CH₃),、 -N (CH₃) CH₁CH₁NH₁, -NHCH₁CH₁NHCH₃, -NHCOOCH₁CH 15 」、-NHOCH」、または-NHCH,COOHである。

Z[†]はさらに好ましくは以下の基である。

(式中、各Rは、それぞれ独立して、水素、低級アルキル、アミノ低級アルキル、低 20 級アルキルアミノ低級アルキル、置換されていてもよいヘテロ環式基により置換され たアミノ、または置換されていてもよいヘテロ環式基; R'はアミノ)

Z[⊕]は特に好ましくは以下に示すいずれかのヘテロ環式基である。

化合物 (I) は好ましくは以下の化合物を包含する。

5

15

(a) TがS; XがN口ゲンまたは低級Pルキル; Aが上記(5) \sim (9) のいずれかに示される 2 価の基; Z[†]が前記(10) \sim (14) のいずれかに示されるヘテロ環式基である化合物。

(b) TがS; Xがハロゲンまたは低級アルキル; Aが上記(8) に示される 2 価の基; Z^{\dagger} が前記(12) に示されるヘテロ環式基である化合物。より好ましくはXはハロゲンであり、かつ Z^{\dagger} は前記(b-1)、(b-2)、(d-1)、(d-3)、(e-1)、または(e-2)の基である。

10 (c) TがS; Xが Λ ロゲン; Aが上記(9) に示される 2 価の基; Z が前記(13) または(14) のいずれかに示されるヘテロ環式基である化合物。

より好ましくは、実施例1、3、4、5、8、9、18、19、20、79、98、111、112、124、128、132、161、164、185等の化合物が例示され、さらに好ましくは実施例8、9、18、20、79、98、124、128、132、161、164等の化合物が例示される。

次に化合物(I)の代表的な製法を以下に説明する。

(式中、Tは前記と同意義; R'は水素またはカルボキシ保護基; R'は水素またはアミノ保護基; R'は水素またはカルボキシ保護基; R B は水素またはアミノ保護基; R B は水素またはアミノ保護基; R B は水素またはカルボキシ保護基; Y は脱離基(例:ヒドロキシ、ハロゲン(C1、Br、I等)、カルバモイルオキシ、置換カルバモイルオキシ、アシルオキシ、メタンスルホニルオキシ、トルエンスルホニルオキシ等); Q はハロゲン等の対イオン)(1)7位側鎖原料; 化合物(IV)の製法

(A法)

5

化合物 (II) と化合物 (III) を反応させることにより化合物 (IV) が得られる。
 この場合、好ましくはR⁵は水素; R¹はアミノ保護基; R⁷はカルボキシ保護基である。
 化合物 (III) の使用量は、化合物 (II) 1モルに対して通常、約1~10モル、
 好ましくは約1~2モルである。

反応溶媒としては、例えばエーテル類(例:ジオキサン、テトラヒドロフラン、ジ エチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル)、エステ

ル類 (例:ギ酸エチル、酢酸エチル、酢酸nーブチル)、ハロゲン化炭化水素類 (例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類 (例:nーヘキサン、ベンゼン、トルエン)、アルコール類 (例:メタノール、エタノール、イソプロパノール)、アミド類 (例:ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン)、ケトン類 (例:アセトン、メチルエチルケトン)、ニトリル類 (例:MeCN、プロピオニトリル)、ジメチルスルホキシド、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。

反応温度は、通常、約-20~100℃、好ましくは約0~50℃である。

10 (B法)

5

25

化合物 (V) をハロゲン化した後、所望により脱保護することにより化合物 (IV) が得られる。この場合、好ましくは、R は化合物 (V) ではカルボキシ保護基、化合物 (IV) では水素; R はアミノ保護基; R はカルボキシ保護基である。

ハロゲン化剤としては、N-クロロスクシンイミド、<math>N-クロロフタルイミド、塩 素、N-プロモスクシンイミド、<math>N-プロモフタルイミド、臭素、フッ素等が例示される。

ハロゲン化剤の使用量は、化合物 (V) 1 モルに対して通常、約 $1\sim2$ 0 モル、好ましくは約 $1\sim2$ モルである。

反応溶媒としては、前記と同様のものが例示される。

20 反応温度は、通常、約-10~100℃、好ましくは約0~50℃である。

- (2) 7位アシル化および3位側鎖形成;化合物(VII) および(VIII)の製法
- 1) 7位アシル化; 化合物 (VI) と化合物 (IV) を反応させることにより化合物 (VII) が得られる。この場合、好ましくは、 R^* はカルボキシ保護基; R^* は水素; R^* はアミノ保護基; R^* はカルボキシ保護基; R^* は水素である。

化合物 (IV) の使用量は、化合物 (VI) 1 モルに対して通常、約 $1\sim5$ モル、好ましくは約 $1\sim2$ モルである。

反応溶媒としては、例えばエーテル類(例:ジオキサン、テトラヒドロフラン、ジェチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸nープチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:nーヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:MeCN、プロピオニトリル)、ジメチルスルホキシド、水などが例示される。

5

反応温度は、通常、約-40~100℃、好ましくは約0~30℃である。

また化合物 (VI, VII, VIII, T=SO) は、化合物 (VI, VII, VIII, T=S) を
 酸化することにより得ることもできる。好ましくは、化合物 (VII, T=SO) は、
 化合物 (VII, T=S) を酸化することにより得ることができる。

酸化剤としては、m-Cl過安息香酸 (m-CPBA)、過酸化水素、過酢酸等が例示される。

15 化合物 (VI) は文献 (例:特開昭60-231684、特開昭62-149682 等)記載の方法に準じて合成できる。

上記アミド化反応は、カルボキシル部分を反応性誘導体 (例:無機塩基塩、有機塩基塩、酸ハライド、酸アジド、酸無水物、混合酸無水物、活性アミド、活性エステル、活性チオエステル) に変換して行ってもよい。該無機塩基としてはアルカリ金属(例: Na、K等)、アルカリ土類金属(例: Ca, Mg)などが、有機塩基としてはトリメチルアミン、トリエチルアミン、tertーブチルジメチルアミン、ジベンジルメチルアミン、ペンジルジメチルアミン、Nーメチルモルホリン、ジイソプロピルエチルアミンなどが、酸ハライドとしては酸クロライド、酸プロマイドなどが、混合酸無水物としてはモノアルキル炭酸混合酸無水物、脂肪族カルボン酸混合酸無水物、芳香族カルボン酸混合酸無水物、有機スルホン酸混合酸無水物などが、活性アミドとしては含窒素複素環化合物とのアミドなどが例示される。活性エステルとしては有機リン酸エステル(例: ジエトキシリン酸エステル、ジフェノキシリン酸エステルなど)、pーニト

ロフェニルエステル、2,4-ジニトロフェニルエステル、シアノメチルエステルなどが例示される。活性チオエステルとしては、芳香族複素環チオール化合物とのエステル(例:2-ピリジルチオールエステル)などが例示される。また上記反応においては所望により適当な縮合剤を用いてもよい。縮合剤としては例えば、1-ジメチルアミノプロピル-3-エチルカルボジイミド・塩酸塩(WSCD・HCl)、N,N'・ジシクロヘキシルカルボジイミド、N,N'・カルボニルジイミダゾール、N,N'・チオカルボニルジイミダゾール、N-エトキシカルボニルー2-エトキシー1,2-ジヒドロキノリン、オキシ塩化リン、アルコキシアセチレン、2-クロロピリジニウムメチルアイオダイド、2-フルオロピリジニウムメチルアイオダイド、無水トリフルオロ 酢酸などが用いられる。

5

10

15

2) 3位側鎖形成;化合物 (VII) とZ (: 置換されていてもよいN原子含有ヘテロ環)を反応させることにより化合物 (VIII) が得られる。この場合、好ましくは、R はアミノ保護基; R はカルボキシ保護基; R はカルボキシ保護基である。なお、化合物 (VIII) のZ上に置換基としてアミノ等の官能基が存在する場合には、保護基で保護されていてもよい。

Zの使用量は、化合物 (VII) 1モルに対して通常、約 $1\sim1$ 0モル、好ましくは約 $1\sim2$ モルである。

反応溶媒としては、例えばエーテル類(例:ジオキサン、テトラヒドロフラン、ジェチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル)、エステル類 (例:ギ酸エチル、酢酸エチル、酢酸nーブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:nーヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:MeCN、プロピオニトリル)、ジメチルスルホキシド、水などが例示される。

反応温度は通常、約0~100℃、好ましくは約0~50℃、より好ましくは約10~30℃である。

反応促進剤として、NaI等を使用してもよい。

また化合物(VIII,T=S)は、化合物(VIII,T=SO)を還元することにより得ることもできる。還元剤としては、金属(例:亜鉛、錫等)、ヨウソ化物(例:KI等)が例示される。

- 5 (3) 3位側鎖形成および7位アシル化;化合物(IX)および(VIII)の製法

 1) 3位側鎖形成;化合物(VI)と Z(:置換されていてもよいN原子含有ヘテロ環)
 を反応させることにより化合物(IX)が得られる。この場合、好ましくは、R・は水素;
 R・はカルボキシ保護基である。なお、化合物(IX)の Z 上に置換基としてアミノ等の
 官能基が存在する場合には、保護基で保護されていてもよい。
- 10 Zの使用量は、化合物 (VI) 1モルに対して通常、約 $1\sim1$ 0モル、好ましくは約 $1\sim2$ モルである。

反応溶媒としては、例えばエーテル類(例:ジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸nーブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:nーへキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:MeCN、プロピオニトリル)、ジメチルスルホキシド、水などが例示される。

20 反応温度は通常、約0~100℃、好ましくは約0~50℃、より好ましくは約10~30℃である。

反応促進剤として、NaI等を使用してもよい。

また化合物 (IX, T=SO) は、化合物 (IX, T=S) を酸化することにより得ることもできる。

- 25 酸化剤としては、m-Cl過安息香酸 (m-CPBA) 、過酸化水素、過酢酸等が例示される。
 - 7位アシル化;化合物(IX)と化合物(IV)を反応させることにより化合物(VIII)

が得られる。この場合、好ましくは、 R^i はカルボキシ保護基; R^i は水素; R^i はアミノ保護基; R^i はカルボキシ保護基; R^i は水素である。

化合物 (IV) の使用量は、化合物 (IX) 1 モルに対して通常、約 $1\sim5$ モル、好ましくは約 $1\sim2$ モルである。

反応溶媒としては、例えばエーテル類 (例:ジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル)、エステル類 (例:ギ酸エチル、酢酸エチル、酢酸nーブチル)、ハロゲン化炭化水素類 (例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類 (例:nーヘキサン、ベンゼン、トルエン)、アミド類 (例:ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン)、ケトン類 (例:アセトン、メチルエチルケトン)、ニトリル類 (例:MeCN、プロピオニトリル)、ジメチルスルホキシド、水などが例示される。

反応温度は、通常、約-40~100℃、好ましくは約0~30℃である。

アミド化反応は、上記と同様にカルボキシル部分を反応性誘導体(例:無機塩基塩、 15 有機塩基塩、酸ハライド、酸アジド、酸無水物、混合酸無水物、活性アミド、活性エステル、活性チオエステル)に変換してもよいし、所望により適当な縮合剤を用いてもよい。

(4) 脱保護

25

化合物 (VIII) を当業者周知の方法により脱保護反応に付すことにより化合物 (I) 20 が得られる。

反応溶媒としては、例えばエーテル類(例:アニソール、ジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル)、エステル類(例:ギ酸エチル、酢酸エチル、酢酸nーブチル)、ハロゲン化炭化水素類(例:ジクロロメタン、クロロホルム、四塩化炭素)、炭化水素類(例:nーヘキサン、ベンゼン、トルエン)、アミド類(例:ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン)、ケトン類(例:アセトン、メチルエチルケトン)、ニトリル類(例:Me CN、プロピオニ

トリル)、ニトロ類(例:ニトロメタン、ニトロエタン、ニトロベンゼン)、ジメチルスルホキシド、水などが例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。

反応温度は通常、約-30~100℃、好ましくは約0~50℃、より好ましくは 5 約0~10℃である。

触媒としては、ルイス酸(例: $AlCl_3$, $SnCl_4$, $TiCl_4$)、プロトン酸(例: HCl_3 , HCl_4 , H

なお得られた化合物 (I) を更に化学修飾して別の化合物 (I) や、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物を合成することもできる。

化合物 (I) のエステルとは、好ましくは7位側鎖上のまたは4位のカルボキシルにおけるエステル体を包含する。7位側鎖上のカルボキシルにおけるエステル体は、式:

10

15 (R'は、カルボキシ保護基等のエステル残基)

で示されるようにエステル構造になっている化合物を意味する。該エステルは、体内 で容易に代謝されてカルボキシの状態になるエステルも包含する。

化合物 (I) の4位のカルボキシルにおけるエステル体とは、4位部分が式:

$$\left\{\begin{array}{c} 1 \\ T \\ 2 \\ 4 \\ CO_2 R^a \end{array}\right. Q^{-}$$

(R⁴は、カルボキシ保護基等のエステル残基; Q⁻はハロゲンなどの対イオン)で示されるようにエステル構造になっている化合物を意味する。該エステルは、体内で容易に代謝されてカルボキシの状態になるエステルも包含する。

上記のカルボキシ保護基としては、低級アルキル(例:メチル、エチル、セーブチル)、(置換)アラルキル(例:ベンジル、ベンズヒドリル、pーメトキシベンジル、pーニトロベンジル)、シリル基(セーブチルジメチルシリル、ジフェニルセーブチルシリル)等が例示される。

化合物 (I) の7位のチアゾール環上のアミノにおける保護体とは、該チアゾール
10 環が式:

15

(R'は、アミノ保護基)で示される環になっている化合物を意味する。該アミノ保護基は、体内で容易に代謝されてアミノになる基も包含する。上記のアミノ保護基としては、低級アルコキシカルボニル (例: t ープトキシカルボニル、ベンジルオキシカルボニル、p ーニトロベンジルオキシカルボニル)、(置換)アラルカノイル(例: p ーニトロベンゾイル)、アシル(例:ホルミル、クロロアセチル)等が例示される。化合物(I)の製薬上許容される塩としては、無機塩基、アンモニア、有機塩基、無

機酸、有機酸、塩基性アミノ酸、ハロゲンイオン等により形成される塩又は分子内塩が例示される。該無機塩基としては、アルカリ金属(Na, K等)、アルカリ土類金属(Mg等)、有機塩基としては、プロカイン、2-フェニルエチルベンジルアミン、ジベンジルエチレンジアミン、エタノールアミン、ジエタノールアミン、トリスヒドロキシメチルアミノメタン、ポリヒドロキシアルキルアミン、N-メチルグルコサミン等が例示される。無機酸としては、塩酸、臭化水素酸、硫酸、硝酸、リン酸等が例示される。有機酸としては、p-トルエンスルホン酸、メタンスルホン酸、ギ酸、トリフルオロ酢酸、マレイン酸等が例示される。塩基性アミノ酸としては、リジン、アルギン、オルニチン、ヒスチジン等が例示される。

10 化合物(I)の溶媒和物の溶媒としては水やアルコールが例示される。

5

さらに本発明は、前記化合物 (I-A) も提供する。化合物 (I-A) 中の各基の定義や製法は前記化合物 (I) の場合に準じる。

15 さらに本発明は、前記化合物 (IV)、 (VII) および (IX) をも提供する。これらの化合物は、化合物 (I) の製造中間体として有用である。特に化合物 (IV) は、化合物 (I) の抗菌活性を発揮する上で重要な中間体である。化合物 (IV) において好ましぐは、Xがハロゲンまたは低級アルキルであり、より好ましくはハロゲン (例: C1、Br) である。

20 本発明化合物はスペクトルの広い抗菌活性を有し、人を含む各種哺乳動物における 病原性細菌により生ずる種々の疾病、例えば気道感染症、尿路感染症、呼吸器感染症、 敗血症、腎炎、胆嚢炎、口腔内感染症、心内膜炎、肺炎、骨髄膜炎、中耳炎、腸炎、 蓄膿、創傷感染、日和見感染等の予防又は治療のために使用され得る。

本発明化合物は、特に緑膿菌、大腸菌、インフルエンザ菌等を含むグラム陰性菌に 25 対して高い抗菌活性を示す。とりわけセフェム耐性の緑膿菌が産出する β ーラクタマーゼ (特に C型 β -ラクタマーゼ) に対して極めて安定であるので、該耐性緑膿菌に 対しても有効である。よって、 β -ラクタマーゼ阻害剤を併用しなくても単独で優れ

た治療効果を発揮する。また本発明化合物はメチシリン耐性黄色ブドウ球菌(MRSA)、ペニシリン耐性肺炎ブドウ球菌(PRSP)等を含むグラム陽性菌に対しても抗菌活性を有している。さらに体内動態として、血中濃度が高い、効果の持続時間が長い、組織移行性が顕著である等の特徴も有している。また本発明化合物は、水溶性が高く、特に注射薬として好適である。

化合物(I)および(I - A)は、注射剤、カプセル剤、錠剤、顆粒剤として非経口または経口的に投与できるが、好ましくは注射剤として投与される。投与量は、通常、患者または動物の体重 1 kg当たり、約 0 . $1\sim100$ mg/日、好ましくは約 0 . $5\sim50$ mg/日を、所望により 1 日 $2\sim4$ 回に分割して投与すればよい。注射剤として用いられる場合の担体は、たとえば蒸留水、生理食塩水などであり、また p H 調節のための塩基等を使用してもよい。カプセル剤、顆粒剤、錠剤として用いられる場合の担体は、公知の賦形剤(例:デンプン、乳糖、白糖、炭酸カルシウム、リン酸カルシウムなど)、結合剤(例:デンプン、アラビアゴム、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、結晶セルロースなど)、滑沢剤(例:ステアリン酸マグネシウム、タルクなど)等である。

以下の参考例、実施例を示す。

(略号)

5

10

15

Me:メチル; Bt:エチル; iPr:イソプロピル; Bu:ブチル; Ac:アセチル; DMF: ジメチルホルムアミド; THF:テトラヒドロフラン; DMA:ジメチルアセトアミド: 20 WSCD:1ージメチルアミノプロピルー3ーエチルカルボジイミド; m-CPBA:mークロロ過安息香酸; Boc:tーブトキシカルボニル; PMB:p-メトキシベンジル; BH:ベンズヒドリル; TBS:tーブチルジメチルシリル; Ph:フェニル参考例1 (7位側鎖の合成)

$$H_2N$$
 N
 CO_2Et
 Boc_2O , $Cat.DMAP$
 CO_2^tBu
 CO_2^tBu

化合物 1 (71.4g, 200 mmol)の乾燥CH₁Cl₁ 714ml溶液に室温下、4ージメチルアミノピリジン(DMAP)2.44g(0.1eq)を加え,続いてBoc₁O 95.2ml(2.1eq)を滴下。この反応溶液を室温下 2 1 時間攪拌した後、1N-HCl 19mlを加えた飽和NH₄Cl水溶液に注加し、有機層を分取。分取した有機層をbrine洗浄後、無水Na₄SO₄にて乾燥し、減圧濃縮して化合物 2 (112g)を得た。

¹H-NMR (CDCl₃) δ : 1.35(3H, t, J = 6.9 Hz), 1.43(9H, s), 1.51(6H, s), 1.53(18H, s), 4.36(2H, q, J = 6.9 Hz), 7.38(1H, s).

IR (KBr) cm⁻¹: 2979, 2938, 1781, 1743, 1722, 1494, 1457, 1369, 1346, 1328,1284, 1135.

 $MS(ESI):558^{\dagger}(M+H^{\dagger}).$

5

10

元素分析 C, H, N, O, S.

計算值: C,53.84; H,7.05; N,7.54; S,5.75(%).

実験値: C,53.70; H,6.91; N,7.49; S,5.81(%).

(2)化合物2 101g(181mmol)をDMF 400 mlに溶解後、室温下においてNークロロスクシンイミド(NCS) 9.65g(0.4eq)を加え室温下3時間攪拌する。これにNCS 9.65g(0.4eq)を追加し室温下2時間攪拌した後、NCS 9.65g(0.4eq)を更に追加し室温下4時間攪拌した。その後4℃にて終夜静置した反応溶液をNa,SO,30gを溶かした1000ml 水溶液に注加し、AcOBt抽出(500ml,2回)した。得られた有機層をbrine洗浄、20 無水Na,SO,にて乾燥後、減圧下濃縮した。これをシリカゲルカラムクロマトグラフィ

ーにて分離精製、減圧下濃縮後、化合物3 (104g)を得た。

 $^{1}H-NMR$ (CDCl₃) δ : 1.34(3H, t, J = 6.9 Hz), 1.44(9H, s), 1.52(6H, s), 1.53(18H, s), 4.33(2H, q, J = 6.9 Hz).

IR (KBr) cm⁻¹: 2979, 2938, 1781, 1743, 1722, 1494, 1457, 1369, 1346, 1328, 1284,

5 1135.

 $MS(ESI):614^{\dagger}(M+Na^{\dagger}).$

元素分析 C,,H,,ClN,O,S.

計算值: C,50.71; H,6.47; N,7.10; S,5.42; Cl,5.99(%).

実験値: C,50.57; H,6.40; N,7.01; S,5.13; Cl,5.93(%).

10 (3) 化合物 3 83.2g(140mmol)をMeOH 1600 mlに溶解後、氷冷下において8N-NaOH 175ml を滴下した。氷冷下0.5時間攪拌後、温度を上げて室温下5.5時間攪拌した。この反応溶液に5N-HCl 210ml を滴下し(滴下後、反応溶液のpH 5.3)、終夜室温下で静置した。減圧下濃縮しMeOHを留去すると白色沈殿物が析出してきたので、水1000mlを加え、ろ取した。得られた白色固体を氷水にて洗浄した後、減圧下乾燥させ化合物

¹H-NMR (CDCl₃) δ: 1.46(9H, s), 1.52(9H, s), 1.58(6H, s), 5.20-6.20(2H, brs).

IR (KBr) cm⁻¹: 3426, 3220, 3081, 2981, 2937, 1720, 1556, 1455, 1394, 1369, 1249, 1155.

 $MS(ESI):464^{+}(M+H^{+}).$

4-1 60.9gを得た。

15

20 元素分析 C₁₈H₁₄ClN₃O₇S·0.6 H₂O.

計算值: C,45.54; H,5.77; N,8.85; S,6.75; C1,7.47(%).

実験値: C,45.38; H,5.59; N,8.82; S,6.67; Cl,7.75(%).

参考例2 (7位側鎖の合成)

Br
$$CO_2^tBu$$
 + CO_2^tBu + CO_2^tBu CO_2^tBu

(1)化合物5 (8.8ml, 60 mmol)と化合物 6 (6.52g 40mmol)の乾燥CHCl, 180ml溶液に 氷冷下、トリエチルアミン 6.12mlを滴下し、室温下 3 日間攪拌した。これにトリエ チルアミンを 3.0ml 追加後、更に 1 日間室温下で攪拌し、飽和NaHCO₃水溶液に注加後、 CHCl₃抽出した。得られた有機層を飽和NH₄Cl水溶液で洗浄後、無水MgSO₄にて乾燥、減 圧下濃縮し、化合物 7 10.5g を得た。

 $^{1}H-NMR$ (CDCl₃) $\delta: 1.49(9H, s), 4.71(2H, s), 7.70-7.90(4H, m).$

IR (KBr) cm⁻¹: 2980, 2939, 1788, 1745, 1730, 1465, 1441, 1374, 1247, 1186, 1160,

10 1137, 1043.

5

 $MS(ESI):300^{\dagger}(M+Na^{\dagger}).$

元素分析 C14H15NO5 · 0.2 H20.

計算值: C,59.87; H,5.53; N,4.99(%).

実験値: C,60.04; H,5.55; N,5.13(%).

15 (2)化合物7 (1.67g 6nmol)の乾燥CH,Cl, 16ml溶液に氷冷下、メチルヒドラジン

0.32mlを加え氷冷下にて15分攪拌した。析出してきた白色沈殿をろ過によって除去し、ろ液中に化合物8を得た。このろ液にMeOH 6mlを加えて氷冷下、化合物9

(1.53g 5mmol)を加えた。氷冷下10分攪拌後、室温にあげて2.5時間攪拌し、更に温度を上げて加熱還流下1時間攪拌し、室温下3日間静置した。3日間静置後、析出して

20 きた沈殿物をろ取した後、エーテル洗浄して化合物4-2 1.36g を得た。

 $^{1}H-NMR$ (d₁-DMSO) $\delta: 1.42(9H, s), 1.46(9H, s), 4.36(2H, s), 6.0-9.0(1H, brs),$

11.9(1H, brs).

IR (KBr) cm⁻¹: 3429, 3136, 2982, 2936, 1739, 1715, 1626, 1557, 1458, 1392, 1381, 1370, 1249, 1157.

 $MS(FAB):434^{-}(M-H^{-}).$

5 HR-MS(FAB): calcd for $C_{16}H_{11}Cl_1N_3O_7S$ 434.0789 found 434.0782.

以下に実施例化合物の置換基の種類、および化合物Noと構造との関係を例示する。

化合物Noの例示

7位側鎖

3位側鎖

X	R ¹	\mathbb{R}^2		Z		
1: H	a: H	Н	1:		R =	
2: Me	b : =CH ₂	!		NHR	a: H b: Me c: (CH ₂) ₂ NHMe	
3: C1	c: -(CH	2) 2-	2:		d: (CH ₂) ₃ NHMe	
4: Br	d: Me	Me	3:	NHR		
	e: Me	Н		NHR NHR		
	f: H	Me	4:	NHR		
	g: Et	Н		N R		
	h: H	Et	5:			
	i: iPr	Н		JN		
	j: H	iPr	6:			
	k: CH ₂ OH	Н	7.	N,R		
	7: H	CH ₂ OH	7:	N N		

以下に、実施例1~21の化合物 (I) の構造を示す。

H_2N N N N N N N N N N									
実施例	化合物 No	X	R 1	R 2	Z				
1	I-2d-5d	Ме	Me	Me	5d				
2	I-3a-5d	Cl	H	Н	5d				
3	I-3d-1	Cl	Me	Ме	1				
4	I-3d-2a	Cl	Me	Ме	2a				
5	I-3d-5d	C1	Me	Me	5d				
6	I-3d-6d	Cl	Me	Ме	6d				
7	I-3d-5c	Cl	Me	Ме	5c				
8	I-3e-5d	Cl	Me	Н	5d				
9	I-3f-5d	C1	Н	Ме	5d				
10	I-3g-5d	Cl	Rt	Н	5d				
11	I-3h-5d	C1	Н	Rt	5d				
12	I-3i-5d	Cl	iPr	Н	5d				
13	I-3j-5d	C1	Н	iPr	5d				
14	I-3k-5d	C1	CH ₂ OH	Н	5d				
15	I-31-5d	Cl	Н	CH ₂ OH	5d				
16	I-3f-2a	C1	Н	Ме	2a				
17	I-3c-2a	C1	- (CH ₂) ₃	2a					
18	I-3c-5d	Cl	- (CH ₂) ₃	5d					
19	I-3b-5d	C1	$= CH_2$	5d					
20	I-4d-5d	Br	Me	Ме	5d				
21	I-4f-5d	Br	Н	Me	5d				

以下に合成法や物性を示す。化合物の合成は、実施例2や5に記載の方法に準じて 行った。

5 実施例 1

I-2d-5d:

"H-NMR (D,0) δ: 1.46(6H, s), 2.27(3H, s), 2.31(2H, m), 2.69(3H, s), 3.06(2H, m), 3.18 and 3.39(2H, ABq, J = 17.7 Hz), 4.52(2H, t, J = 7.2 Hz), 5.18(1H, d, J = 4.8 Hz), 5.55 and 5.69(2H, ABq, J = 15.0 Hz), 5.82(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.6 Hz), 7.69(1H, dd, J = 6.0 and 8.4 Hz), 8.12(1H, d, J = 3.6 Hz), 8.59(1H, d, J = 8.4 Hz), 8.65(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹: 3413, 2983, 2458, 1774, 1610, 1498, 1467, 1392, 1359, 1288, 1195, 1162, 1122.

10 $MS(ESI):671^{+}(M+H^{+}).$

元素分析 C₁,H₃,N₈O₇S₁·5.6 H₂O.

計算值: C,45.14; H,5.90; N,14.52; S,8.31(%).

実験値: C,45.15; H,5.32; N,14.36; S,8.49(%).

四級塩エステル:

¹H-NMR (d_i -DMSO) δ : 1.37(9H, s), 1.38(6H, s), 1.42(9H, s), 2.03(2H, m), 2.41(3H, s), 2.78(3H, brs), 3.18(2H, m), 3.36 and 3.56(2H, m), 3.75(3H,

5 s), 4.43(2H, m), 5.17(1H, d, J = 5.1 Hz), 5.21(2H, s), 5.22 and 5.29(2H, ABq, J = 11.4 Hz), 5.67 and 5.72(2H, ABq, J = 16.2 Hz), 5.96(1H, dd, J = 5.1 and 8.7 Hz), 6.90(2H, d, J = 8.7 Hz), 6.96(1H, d, J = 3.6 Hz), 7.33(2H, d, J = 8.7 Hz), 7.34-7.45(5H, 7.78(5H, m), 7.78(1H, m), 8.43(1H, d, J = 3.3 Hz), 8.62(1H, d, J = 6.0 Hz), 8.88(1H, d, J = 8.4 Hz), 9.49(1H, d, J = 8.7 Hz), 12.1(1H,

10 brs).

IR (KBr) cm⁻¹:3423, 3089, 2973, 2933, 1791, 1724, 1685, 1556, 1515, 1496, 1454, 1390, 1365, 1299, 1247, 1222, 1174, 1145, 1062, 1027.

MS(ESI): $1081^{+}(C_{54}H_{65}N_{8}O_{12}S_{2}^{+})$.

3-Clメチル体:

15 1 H-NMR (CDCl₃) δ : 1.42(9H, s), 1.57(3H, s), 1.58(3H, s), 2.48(3H, s), 3.47 and 3.64(2H, ABq, J = 18.3 Hz), 3.81(3H, s), 4.44 and 4.55(2H, ABq, J = 11.7 Hz), 5.04(1H, d, J = 5.1 Hz), 5.20 and 5.26(2H, ABq, J = 12.0 Hz), 5.25(2H, s), 6.04(1H, dd, J = 5.1 and 9.3 Hz), 6.90(2H, d, J = 9.0 Hz), 7.35(2H, d, J = 9.0 Hz), 7.30-7.40(5H, m), 7.90(1H, d, J = 9.3 Hz), 8.38(1H, brs).

20 IR (KBr) cm⁻¹: 3386, 3283, 2979, 2937, 1789, 1726, 1692, 1613, 1557, 1515, 1455, 1383, 1367, 1300, 1247, 1224, 1142, 1094, 1061.

 $MS(ESI): 828^{\dagger}(M+H^{\dagger}).$

元素分析 C₃₈H₄,C1N₅O₁₀S₂·0.05 CHCl₃·0.7 H₂O.

計算值: C,53.96; H,5.17; N,8.27; S,7.57; Cl,4.81(%).

25 実験値: C,54.03; H,5.14; N,8.16; S,7.29; Cl,4.81(%).

7位側鎖:

 $^{1}H-NMR$ (d_i-DMSO) δ : 1.39(9H, s), 1.41(6H, s), 2.43(3H, s), 5.22(2H, s),

7.30-7.40(5H, m), 12.0(1H, brs).

IR (KBr) cm⁻¹: 3430, 3193, 2981, 2937, 1731, 1614, 1596, 1562, 1455, 1392, 1369, 1299, 1228, 1187, 1141, 1062.

MS(ESI): 478[†](M+H[†]).

5 実施例2

10

(1) 窒素雰囲気下、化合物11-2 (1.20g 1.53mmol)のCH₂Cl₃12ml溶液を-50℃に冷却後、65% m-CPBA (366mg 0.9eq)の2ml溶液を加え、-50℃~-40℃において15分間攪拌した。反応溶液を飽和Na₂S₂O₃溶液に注ぎ込み、CHCl₃抽出した。得られた有機層を飽和NaHCO₃水溶液、及びbrineにて洗浄後、無水MgSO₄で乾燥した。減圧下濃縮後、化合物15 (1.18g)が得られた。この化合物15 (1.18g 1.47mmol)を窒素雰囲気下、DMF 2mlに溶解後にNaBr (303mg 2eq)、化合物13 (627mg 1.55eq)のDMF2ml溶液を加えて室温下5時間攪拌し、終夜4℃にて静置した。これに窒素雰囲気下DMF20ml、KI 1.7g を加えて-50℃に冷却後、AcCl 0.523mlを滴下し-50℃にて1時間、更に-50℃~-10℃にて

1.5時間攪拌した。この反応液を $Na_1S_1O_1$ 1gを加えた氷冷下の5%NaC1溶液に滴下すると沈殿物が生成する。この析出した沈殿を濾取し、減圧下 P_1O_4 を用いて乾燥して、粉末状化合物14-2 1.59g を得た。

化合物14-2

- ¹H-NMR (d_i-DMSO) δ : 1.40(9H, s), 1.46(18H, s), 2.03(2H, m), 2.78(3H, brs), 3.18(2H, t, J = 7.2 Hz), 3.27 and 3.43(2H, ABq, J = 18.3 Hz), 3.75(3H, s), 4.43(2H, t, J = 6.6 Hz), 4.55(2H, s), 5.18(1H, d, J = 4.8 Hz), 5.21 and 5.28(2H, ABq, J = 12.0 Hz), 5.65 and 5.73(2H, ABq, J = 15.3 Hz), 5.95(1H, dd, J = 4.8 and 8.7 Hz), 6.89(2H, d, J = 8.7 Hz), 7.00(1H, d, J = 3.3 Hz), 7.35(2H, d, J = 8.7 Hz),
- 7.78(1H, dd, J = 6.3 and 8.1 Hz), 8.43(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 6.3 Hz), 8.88(1H, d, J = 8.1 Hz), 9.65(1H, d, J = 8.7 Hz), 12.1(1H, brs). IR (KBr) cm⁻¹: 3427, 3058, 2976, 2933, 1791, 1718, 1686, 1630, 1613, 1584, 1550, 1515, 1496, 1455, 1393, 1368, 1300, 1247, 1156, 1080, 1063, 1022. MS(ESI): $1039^{4}(C_{48}H_{40}C1N_{8}O_{12}S_{2}^{+})$.

15 化合物11-2

20

¹H-NMR (CDCl₃) δ : 1.44(9H, s), 1.53(9H, s), 3.47 and 3.63(2H, ABq, J = 18.0 Hz), 3.82(3H, s), 4.45(2H, s), 4.68 and 4.75(2H, ABq, J = 16.8Hz), 5.05(1H, d, J = 4.8 Hz), 5.20 and 5.27(2H, ABq, J = 12.0 Hz), 5.98(1H, dd, J = 4.8 and 9.3 Hz), 6.91(2H, d, J = 8.7 Hz), 7.35(2H, d, J = 8.7 Hz), 8.11(1H, brs), 8.49(1H, d,

IR (KBr) cm⁻¹: 3382, 3277, 2979, 2935, 2837, 1791, 1722, 1613, 1551, 1515, 1455, 1369, 1302, 1246, 1157, 1085, 1062, 1036, 1021.

 $MS(FAB): 786^{+}(M+H^{+}).$

J = 9.3 Hz).

HR-MS(FAB): calcd for $C_{32}H_{33}Cl_{1}N_{5}O_{10}S_{2}$ 786.1437 found 786.1434.

25 (2) 化合物14-2 1.59g (約1.47mmol) を実施例5 (3) と同様にして脱保護することにより化合物16-2 (I-3a-5d, 270mg) を得た。

 $^{1}\text{H-NMR}$ (d₆-DMSO) δ : 1.40(9H, s), 1.46(18H, s), 2.03(2H, m), 2.78(3H, brs),

3.18(2H, t, J = 7.2 Hz), 3.27 and 3.43(2H, ABq, J = 18.3 Hz), 3.75(3H, s), 4.43(2H, t, J = 6.6 Hz), 4.55(2H, s), 5.18(1H, d, J = 4.8 Hz), 5.21 and 5.28(2H, ABq, J = 12.0 Hz), 5.65 and 5.73(2H, ABq, J = 15.3 Hz), 5.95(1H, dd, J = 4.8 and 8.7 Hz), 6.89(2H, d, J = 8.7 Hz), 7.00(1H, d, J = 3.3 Hz), 7.35(2H, d, J = 8.7 Hz), 7.78(1H, dd, J = 6.3 and 8.1 Hz), 8.43(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 6.3 Hz), 8.88(1H, d, J = 8.1 Hz), 9.65(1H, d, J = 8.7 Hz), 12.1(1H, brs).

IR (KBr) cm⁻¹: 3427, 3058, 2976, 2933, 1791, 1718, 1686, 1630, 1613, 1584, 1550, 1515, 1496, 1455, 1393, 1368, 1300, 1247, 1156, 1080, 1063, 1022.

MS(ESI): 1039⁺(C₄₈H₆₀ClN₆O₁S₂⁺).

10 実施例3

I-3d-1:

¹H-NMR (D₂0) δ : 1.54(6H, s), 3.22 and 3.64(2H, ABq, J = 17.7 Hz), 5.28(1H, d, J = 4.8 Hz), 5.34 and 5.58(2H, ABq, J = 14.4 Hz), 5.88(1H, d, J =

15 4.8 Hz), 8.09(2H, t like), 8.58(1H, t like), 8.96(2H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹: 3417, 3058, 2989, 2938, 2524, 1778, 1673, 1625, 1536, 1486, 1386, 1340, 1157.

 $MS(ESI):581^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,・2.9 H,O.

20 計算値: C,41.73; H,4.27; N,13.27; Cl,5.60; S,10.13(%).

実験値: C,41.74; H,3.99; N,13.716; Cl,5.53; S,10.20(%).

四級塩エステル:

¹H-NMR (d,-DMSO) δ : 1.37(9H, s), 1.42(3H, s), 1.44(3H, s), 1.46(9H, s),

J = 5.1 Hz), 5.58(2H, brs), 5.98(1H, dd, J = 5.1 and 9.0 Hz), 6.93(2H, d, J = 5.1 Hz)

8.4 Hz), 7.35(2H, d, J = 8.4 Hz), 8.20(2H, t like), 8.66(1H, t like), 8.99(2H, t like)

d, J = 5.7 Hz), 9.57(1H, d, J = 9.0 Hz), 12.1(1H, brs).

IR (KBr) cm⁻¹: 3428, 3054, 2979, 2935, 1791, 1718, 1629, 1614, 1548, 1515, 1481,

1455, 1392, 1369, 1299, 1247, 1153, 1064, 1029.

10 MS(ESI): $857^{+}(C_{3}H_{4}C1N_{5}O_{10}S_{2}^{+})$.

実施例4

I-3d-2a:

¹H-NMR (D20) δ : 1.40(6H, s), 3.18 and 3.55(2H, ABq, J = 17.7 Hz), 4.88 and 5.02(2H,

15 ABq, J = 14.7 Hz), 5.23(1H, d, J = 4.8 Hz), 5.84(1H, d, J = 4.8 Hz), 6.83 and 8.05(4H, A2B2q, J = 7.5).

IR (KBr) cm⁻¹: 3400, 3189, 2993, 1770, 1654, 1604, 1537, 1398, 1361, 1165.

元素分析 C₁₇H_{21.1}N₇O₇S₇C1Na_{0.1}・5H₂0として.

計算值: C,37.55; H,4.47; N,13.93; S,9.11; Cl,5.04; Na,2.61 (%).

20 実験値: C,37.34; H,4.28; N,13.73; S,9.07; Cl,4.97; Na,2.70 (%).

四級塩エステル:

¹H-NMR (CDC13) δ : 1.43(9H, s), 1.51(9H, s), 1.55(9H, s), 1.58(3H, s), 1.59(3H, s), 3.35 and 3.92(2H, ABq, J = 19.2 Hz), 3.82(3H, s), 5.24 $\bar{}$ 5.30(3H, m), 5.31 and 5.57(2H, Abq, J = 14.4 Hz), 6.01(1H, dd, J = 4.8, 8.7 Hz), 6.90 and 7.36(4H, A2B2q, J = 9 Hz), 8.04 $\bar{}$ 8.12(3H, m), 8.35(1H, br s), 8.63(2H, J = 7.5 Hz), 8.98(1H,

5 s).

10

IR (KBr) cm⁻¹: 3422, 3274, 2979, 2934, 1794, 1719, 1641, 1530, 1457, 1369, 1299, 1246, 1146, 842.

実施例5

16-1(I-3d-5d)

(1)参考例1で得られた化合物4-1 (10.3, 22.2mmol)と化合物10 (9.90g 24.4mmol)の乾燥DMA 100ml溶液に氷冷下においてWSCD・HCl (5.11g 1.2eq),ピリジン

(1.80ml, 1.0eq)を加えた後、室温に上げて1時間攪拌した。この反応溶液を氷水300mlに注加し、AcOEt抽出した(200ml、2回)。得られた有機層をbrineにて洗浄後、無水MgSO。で乾燥した。減圧下濃縮した後、シリカゲルカラムクロマトグラフィーにて分離精製、減圧下濃縮して、泡状化合物11-1 13.7gを得た。

- 5 'H-NMR (CDCl₃) δ: 1.42(9H, s), 1.52(9H, s), 1.60(6H, s), 3.48 and 3.65(2H, ABq, J = 18.0 Hz), 3.82(3H, s), 4.45 and 4.55(2H, ABq, J = 11.7 Hz), 5.04(1H, d, J = 5.1 Hz), 5.20 and 5.27(2H, ABq, J = 12.0 Hz), 6.03(1H, dd, J = 5.1 and 9.3 Hz), 6.91(2H, d, J = 8.7 Hz), 7.35(2H, d, J = 8.7 Hz), 8.03(1H, d, J = 9.3 Hz), 8.13(1H, brs).
- 10 IR (KBr) cm⁻¹: 3396, 3284, 2979, 2937, 2836, 1791, 1722, 1614, 1550, 1515, 1455, 1384, 1369, 1301, 1247, 1155, 1035.

 $MS(ESI): 814^{+}(M+H^{+}).$

20

元素分析 C31H41Cl3N6O10S2・0.2 CHCl3・0.4 H40.

計算值: C,48.56; H,5.00; N,8.28; S,7.58; Cl,10.90(%).

15 実験値: C,48.51; H,4.85; N,8.11; S,7.56; Cl,11.00(%).

(2) 窒素雰囲気下、化合物11-1 (5.0g 6.14mnol)のTHF 50ml溶液を15℃に冷却し、NaI 2.76g(3eq)を加えて15℃下で30分間攪拌した。この反応液を氷水150mlに注ぎ込み、AcOEt抽出した。得られた有機層を飽和Na₁S₁O₃水溶液、及びbrineにて洗浄後、無水MgSO₄で乾燥した。減圧下濃縮後、泡状化合物12 (5.51g)が得られた。続いて窒素雰囲気下、化合物12(2.72g 3.0mnmol)のDMF 12ml溶液に、化合物13 (868mg 1eq)のDMF 3ml溶液を加える。室温下1時間攪拌後、反応溶液を氷冷下の5%NaCl溶液に滴下すると淡黄色の沈殿物が生成する。この析出した沈殿を濾取し、減圧下P₁O₅を用いて乾燥して、粉末状化合物14-1 3.26g を得た。

¹H-NMR (d₆-DMSO) δ: 1.37(9H, s), 1.43(6H, s), 1.46(18H, s), 2.03(2H, m), 2,78(3H, brs), 3.17(2H, m), 3.28 and 3.39(2H, ABq, J = 16.2 Hz), 3.76(3H, s), 4.43(2H, m), 5.18(1H, d, J = 5.1 Hz), 5.22 and 5.30(2H, ABq, J = 11.7 Hz), 5.70(2H, brs), 5.95(1H, dd, J = 5.1 and 8.7 Hz), 6.90(2H, d, J = 8.7 Hz), 6.95(1H, d, J = 3.3)

Hz), 7.33(2H, d, J = 8.7 Hz), 7.78(1H, dd, J = 5.7 and 8.4 Hz), 8.43(1H, d, J = 3.3 Hz), 8.63(1H, d, J = 5.7 Hz), 8.88(1H, d, J = 8.4 Hz), 9.58(1H, d, J = 8.7 Hz), 12.1(1H, brs).

IR (KBr) cm⁻¹: 3423, 2977, 2935, 1789, 1718, 1685, 1629, 1612, 1550, 1515, 1496, 1455, 1392, 1367, 1299, 1249, 1153.

MS(ESI): $1067^{+}(C_{50}H_{64}C1N_{8}O_{12}S_{2}^{+})$.

5

10

15

(3) 化合物14-1 (3.20g)をMeNO, 30 ml, アニソール 30 mlの混液に溶解し、これに 窒素気流、氷冷下に AlCl₃-MeNO,溶液 (1.5M, 21 ml) を加えて1時間攪拌した。次い で、氷と1N HCl、CH₃CNおよびEt₃Oを加えて水層を分取し、これを減圧濃縮後HP-20クロマトに付して集めた分画を凍結乾燥し、化合物16-1 (I-3d-5d,無色粉末,900 mg) を得た。

¹H-NMR (D₁0) δ : 2.30(2H, m), 2.68(3H, s), 3.05(2H, m), 3.15 and 3.38 (2H, ABq, J = 17.7 Hz), 4.52(2H, t, J = 6.9 Hz), 4.54(2H, s), 5.16(1H, d, J = 4.8 Hz), 5.56 and 5.67(2H, ABq, J = 15.0 Hz), 5.83(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.6 Hz), 7.68(1H, dd, J = 6.0 and 8.1 Hz), 8.12(1H, d, J = 3.6 Hz), 8.59(1H, d, J = 8.1 Hz), 8.65(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹: 3394, 2817, 1773, 1604, 1539, 1498, 1466, 1391, 1361, 1317, 1163, 1121., 1055, 1033.

 $MS(ESI):663^{\dagger}(M+H^{\dagger}).$

20 元素分析 C₁₆H₁₇ClN₈O₇S₁·3.7 H₂O.

計算值: C,42.79; H,4.75; N,15.35; Cl,4.86; S,8.79(%).

実験値: C,42.78; H,4.66; N,15.42; Cl,4.81; S,9.02(%).

実施例 6

I-3d-6d:

5

¹H-NMR(D_i -DMS0- D_i 0) δ :1.38(6H, brs), 2.23(2H, brs), 2.48(3H, s), 2.92(2H, brs), 3.13 and 3.52 (2H, ABq, J = 17.4 Hz), 4.55(2H, brs), 5.06(1H, d, J = 4.8 Hz), 5.59 and 5.70(2H, ABq, J = 12.9 Hz), 5.79(1H, d, J = 4.8 Hz), 7.71(1H, t like), 8.82(1H, d, J = 7.8), 9.04(1H, s), 9.19(1H, d, J = 5.1 Hz).

IR(KBr) cm⁻¹:3421, 2460, 1772, 1610, 1538, 1488, 1465, 1394, 1359, 1315, 1234, 1159.

 $MS(ESI):692^{+}(M+H^{+}).$

10 元素分析 C,,H₃₀ClN,O,S,·5.3(H,O).

計算值:C,40.98; H,5.18; N,15.93; C1,4.93; S,8.10(%).

実験値:C,40.70; H,4.88; N,15.74; C1,4.94; S,7.97(%).

実施例7

15 I-3d-5c:

¹H-NMR (D₂0) δ : 1.48(6H, s), 2.73(3H, s), 3.17 and 3.40(2H, ABq, J = 17.7 Hz),

3.61(2H, t, J = 6.0 Hz), 4.79(2H, $\bar{\tau}$, J = 6.0 Hz), 5.17(1H, d, J = 5.1 Hz), 5.57 and 5.69(2H, ABq, J = 15.0 Hz), 5.81(1H, d, J = 5.1 Hz), 7.10(1H, d, J = 3.3 Hz), 7.70(1H, dd, J = 6.3 and 8.1 Hz), 8.14(1H, d, J = 3.3 Hz), 8.61(1H, d, J = 8.1 Hz), 8.69(1H, d, J = 6.3 Hz).

5 IR (KBr) cm⁻¹: 3401, 2987, 2451, 1772, 1606, 1538, 1500, 1467, 1396, 1361, 1288, 1159, 1120.

 $MS(ESI):677^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,・6.5 H,O.

計算值: C,40.83; H,5.33; N,14.11; Cl,4.46; S,8.07(%).

10 実験値: C,40.82; H,5.14; N,14.12; Cl,4.57; S,8.03(%).

四級塩エステル:

'H-NMR (d_i-DMSO) δ: 1.37(9H, s), 1.39(3H, s), 1.43(3H, s), 1.46(18H, s), 2.80(3H, brs), 3.27 and 3.39(2H, m), 3.59(2H, m), 3.76(3H, s), 4.60(2H, brs), 5.17(1H, d, J = 5.1 Hz), 5.23 and 5.31(2H, ABq, J = 12.0 Hz), 5.72(2H, brs), 5.96(1H, dd, J = 5.1 and 8.7 Hz), 6.92(2H, d, J = 8.4 Hz), 7.02(1H, d, J = 3.6 Hz), 7.36(2H, d, J = 8.4 Hz), 7.82(1H, m), 8.31(1H, d, J = 3.6 Hz), 8.67(1H, m), 8.85(1H, m), 9.58(1H, d, J = 8.7 Hz), 12.1(1H, brs).

実施例8

I-3e-5d:

¹H-NMR (D20) δ : 1.40(3H, d, J = 6.9 Hz), 2.31(2H, q like), 2.68(3H, s), 3.05(2H, t like), 3.14 and 3.39(2H, ABq, J = 17.7 Hz), 4.52(2H, t like), 4.61(1H, q, J = 6.9 Hz), 5.19(1H, d, J = 4.8 Hz), 5.57 and 5.67(2H, ABq, J = 15 Hz), 5.80(1H, d, J = 4.5 Hz), 7.06(1H, d, J = 3.6), 7.69(1H, dd, J = 6.0, 8.1 Hz), 8.12(1H, d, J = 3.6 Hz), 8.59(1H, d, J = 8.1 Hz), 8.64(1H, d, J = 6.0Hz).

IR (KBr) cm^{-1} : 3411, 1774, 1606, 1539, 1498, 1392, 1363, 1034, 759.

Positive ESIMS: m/z 677 [M+H]+ . Negative ESIMS: m/z 675 [M-H]- .

10 元素分析 C,,H,,N,O,S,Cl・6.2H,Oとして.

計算值: C,41.11; H,5.29; N,14.20; S,8.13; Cl,4.49 (%).

実験値: C,40.99; H,5.07; N,14.15; S,8.21; Cl,4.76 (%).

四級塩エステル:

 $^{1}\text{H-NMR}$ (CDC13) δ : 1.48(9H, s), 1.51(9H, s), 1.60(3H, d, J =7.2 Hz), 2.22(2H,

t like), 2.91(3H, s), 3.17 and 3.73(2H, ABq, J = 18.6 Hz), 3.37(2H, t like), 3.81(3H, s), 4.44(2H, t like), 5.03(1H, q, J = 7.2 Hz), 5.17(1H, d, J = 5.1 Hz), 5.24 and 5.30(2H, ABq, J = 11.7 Hz), 5.63 and 5.75(2H, ABq, J = 15 Hz), 6.01(1H, dd, J = 5.1, 9 Hz), 6.87 (2H, d, J = 8.7 Hz), 6.88(1H, s), 7.24 $^{-}$ 7.35 (12H, m), 7.59(1H, dd, J = 6,8.1 Hz), 7.78(1H, d, J = 9 HZ), 8.24(1H, m), 8.34(1H, br s), 8.48(1H, d, J = 8.1 Hz), 8.53(1H, d, J = 6.0 Hz). IR (KBr) cm $^{-1}$: 3430, 3091, 3060, 1793, 1718, 1684, 1630, 1549, 1516, 1367, 1247, 1153, 1034, 754, 702.

- ¹H-NMR (CDC13) δ: 1.53(9H, s), 1.65(3H, d, J=7.2 Hz), 3.23 and 3.47(2H, ABq, J=18.3 Hz), 3.82(3H, s), 4.39 and 4.55(2H, ABq, J=12 Hz), 4.99(1H, d, J=5.1 Hz), 5.10(1H, q, J=7.2 Hz), 5.21 and 5.27(2H, ABq, J=12 Hz), 5.99(1H, dd, J=5.1, 9.9 Hz), 6.91(3H, m), 7.16^- 7.37 (12H, m), 7.76 (1H, d, J=9.9 Hz), 8.20(1H, br s).
- 15 IR (KBr) cm⁻¹: 3373, 3286, 2979, 2937, 1791, 1720, 1612, 1550, 1515, 1248, 1155, 1035, 700.

7位側鎖(NEt3塩):

¹H-NMR (CDCl3) δ : 1.50(9H, s), 1.51(3H, d, J = 7.2 Hz), 4.94(1H, q, J = 7.2), 6.89(1H, s), 7.23 - 7.35(10H, m).

20 IR (KBr) cm⁻¹: 3429, 2981, 2937, 1739, 1714, 1612, 1556, 1250, 1157, 1036, 964, 700,

Positive ESIMS: m/z 560[M+H]+, m/z 582[M+Na]+ .

Negative ESIMS: m/z 558[M-H]-, m/z 580[M+Na-2H]- .

実施例9

I-3f-5d:

5

¹H-NMR (D20) δ : 1.43 (3H, d, J = 7.2 Hz), 2.31(2H, q like), 2.68(3H, s), 3.05(2H, t, J = 8 Hz), 3.18 and 3.37(2H, ABq, J = 18 Hz), 4.53(2H, t like), 4.65 (1H, q, J = 7.2 Hz), 5.17(1H, d, J = 4.8 Hz), 5.54 and 5.70(2H, ABq, J = 15 Hz), 5.86(1H, d, J = 4.5 Hz), 7.03(1H, d, J = 3.6 Hz), 7.69(1H, dd, J = 6, 8.4 Hz), 8.13(1H, d, J = 3.6 Hz), 8.60(1H, d, J = 8.4 Hz), 8.64(1H, d, J = 6 Hz).

IR (KBr) cm⁻¹: 3398, 1775, 1603, 1541, 1392, 1363, 1320, 1286, 1033, 762.

Positive ESIMS: m/z 677 [M+H]+ . Negative ESIMS: m/z 675 [M-H]- .

10 元素分析 C,,H,,N,O,S,Cl・6.2H,0として.

計算值: C,41.11; H,5.29; N,14.20; S,8.13; Cl,4.49 (%).

実験値: C,40.88; H,4.88; N,14.23; S,8.05; Cl,4.57 (%).

四級塩エステル:

 $^{1}\text{H-NMR}$ (CDC13) δ : 1.48(9H, s), 1.51(9H, s), 1.62(3H, d, J = 7.2 Hz), 2.21(2H,

15 m), 2.91(3H, s), 3.24 and 3.82(2H, ABq, J = 18.9 Hz), 3.36(2H, m), 3.81(3H, s),

4.43(2H, t like), 5.09(1H, q, J = 7.2 Hz), 5.16(1H, d, J = 5.1 Hz), 5.24 and 5.31(2H, ABq, J = 11.7 Hz), 5.58 and 5.75(2H, ABq, J = 14.7 Hz), 5.99(1H, dd, J = 5.1, 8.7 Hz), 6.86(1H, s), 6.87(2H, d, J = 8.7 Hz), 7.00(1H, br s), 7.24 -7.38(12H, m), 7.55(1H, t like), 7.78(H, d, J = 8.7 Hz), 8.25(1H, br s), 8.47(1H, d, J = 10.2 Hz), 8.50(1H, d, J = 6 Hz).

3-Clメチル体:

5

10

¹H-NMR (CDC13) δ : 1.53(9H, s), 1.64(6H, d, J = 7.2 Hz), 3.39 and 3.58(2H, ABq, J = 18.3 Hz), 3.81(3H, s), 4.42 and 4.59(2H, ABq, J = 12 Hz), 4.97(1H, d, J = 5.1 Hz), 5.08(1H, q, J = 7.2 Hz), 5.20 and 5.27(2H, ABq, J = 11.7 Hz), 6.01(1H, dd, J = 5.1, 9.3 Hz), 6.88 - 6.91(3H, m), 7.06 - 7.35(12H, m), 7.85(1H, d, J = 9.3 Hz), 8.15(1H, br s).

IR (KBr) cm⁻¹: 3281, 2980, 2935, 2836, 1790, 1719, 1612, 1552, 1515, 1454, 1369, 1247, 1155,1035, 700.

7位側鎖:

15 H-NMR (CDCl3) δ: 1.47(9H, s), 1.49(3H, J = 7.2 Hz), 4.99(1H, q, J = 7.2 Hz). 実施例 1 0

I-3g-5d:

5

H-NMR (D₁0) δ : 0.90(3H, t, J = 7.5 Hz), 1.79(2H, quintet-like), 2.31(2H, quintet-like), 2.69(3H, s), 3.05(2H, t, J = 8.1 Hz), 3.12 and 3.39 (2H, ABq, J = 18.0 Hz), 4.45(1H, t, J = 6.6 Hz), 4.52(2H, t, J = 7.2 Hz), 5.19(1H, d, J = 4.8 Hz), 5.58 and 5.66(2H, ABq, J = 14.7 Hz), 5.78(1H, d, J = 4.8 Hz), 7.06(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.0 and 8.1 Hz), 8.12(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.1 Hz), 8.65(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3397, 2967, 1774, 1604, 1537, 1497, 1459, 1390, 1361, 1315, 1159,

10 1120, 1051, 1031.

 $MS(ESI):691^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·4.9 H,O.

計算值: C,43.15; H,5.28; N,14.38; Cl,4.55; S,8.23(%).

実験値: C,43.02 ; H,5.01 ; N,14.51 ; Cl,4.54 ; S,8.27 (%).

四級塩エステル:

'H-NMR (d₄-DMSO) δ: 0.90(3H, t, J = 7.2 Hz), 1.36(9H, brs), 1.45(9H, s), 1.85(2H, quintet-like), 2.03(2H, quintet-like), 2.78(3H, brs), 3.18(2H, t, J = 6.9 Hz), 3.28 and 3.34(2H, ABq, J = 15.9 Hz), 3.75(3H, s), 4.43(2H, t, J = 6.9 Hz), 4.71(1H, t, J = 6.6 Hz), 5.18(1H, d, J = 4.8 Hz), 5.21 and 5.30(2H, ABq, J = 11.7 Hz), 5.66 and 5.72(2H, ABq, J = 15.6 Hz), 5.99(1H, dd, J = 4.8 and 9.0 Hz), 6.84(1H, s), 6.88(2H, d, J = 8.7 Hz), 6.97(1H, d, J = 3.6 Hz), 7.20-7.44(12H, m), 7.76(1H, dd, J = 6.3 and 8.1 Hz), 8.42(1H, d, J = 3.6 Hz), 8.60(1H, d, J = 6.3 Hz), 8.88(1H, d, J = 8.1 Hz), 9.69(1H, d, J = 9.0 Hz), 12.1(1H, brs).

IR (KBr) cm⁻¹:3414, 3062, 3032, 2975, 2935, 1791, 1717, 1686, 1630, 1613, 1585, 1550, 1515, 1495, 1455, 1393, 1367, 1248, 1154, 1018.

 $MS(ESI): 924^{+}(M+H^{+}).$

3-C1メチル体:

15 'H-NMR (CDC1₃) δ : 1.08(3H, t, J = 7.2Hz), 1.53(9H, s), 1.90-2.10(2H, m), 3.26 and 3.50(2H, ABq, J = 18.3 Hz), 3.82(3H, s), 4.40 and 4.56(2H, ABq, J = 11.7 Hz), 4.91(1H, dd, J = 5.1 and 9.0 Hz), 4.99(1H, d, J = 5.1 Hz), 5.21 and 5.28(2H, ABq, J = 11.7 Hz), 5.98(1H, dd, J = 5.1 and 9.6 Hz), 6.91(2H, d, J = 8.7 Hz), 6.93(1H, s), 7.25-7.32(10H, m), 7.36(2H, d, J = 8.7Hz), 7.72(1H, d, J = 9.6Hz),

20 8.01(1H, brs).

IR (KBr) cm⁻¹: 3378, 3291, 3063, 3032, 2975, 2935, 1791, 1721, 1613, 1550, 1515, 1455, 1384, 1368, 1301, 1246, 1155, 1109, 1058, 1032, 1003.

7位側鎖:

'H-NMR (d_i-DMS0) δ: 0.89(3H, t, J = 7.5 Hz), 1.46(9H, s), 1.78(2H, quintet like),

4.52(1H, t, J = 6.9 Hz), 6.84(1H, s), 7.23-7.46(10H, m), 12.0(1H, brs).

IR (KBr) cm⁻¹: 3428, 3164, 3063, 3032, 2978, 2936, 1717, 1623, 1557, 1496, 1455, 1392, 1370, 1292, 1251, 1210, 1157, 1105, 1056, 1036.

 $MS(ESI): 574^{+}(M+H^{+}).$

実施例11

I-3h-5d:

5

10

¹H-NMR (D₁0) δ : 0.93(3H, t, J = 7.5 Hz), 1.83(2H, quintet-like), 2.30(2H, quintet-like), 2.69(3H, s), 3.05(2H, t, J = 8.1 Hz), 3.16 and 3.37 (2H, ABq, J = 17.7 Hz), 4.52(1H, t, J = 6.0 Hz), 4.52(2H, t, J = 6.3 Hz), 5.17(1H, d, J = 4.8 Hz), 5.55 and 5.68(2H, ABq, J = 15.0 Hz), 5.85(1H, d, J = 4.8 Hz), 7.03(1H, d, J = 3.6 Hz), 7.69(1H, dd, J = 6.0 and 8.4 Hz), 8.12(1H, d, J = 3.6 Hz), 8.58(1H, d, J = 8.4 Hz), 8.64(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3388, 2970, 1775, 1602, 1539, 1498, 1463, 1392, 1362, 1316, 1160,

1121, 1061, 1032.

 $MS(ESI):691^{+}(M+H^{+}).$

元素分析 C,1H,1ClN,0,S,·5.6 H,0.

計算值: C,42.46; H,5.37; N,14.15; Cl,4.48; S,8.10(%).

5 実験値: C,42.38; H,5.02; N,14.25; Cl,4.41; S,8.02(%).

四級塩エステル:

¹H-NMR (d_6 -DMSO) δ : 0.86(3H, t, J = 7.2 Hz), 1.36(9H, brs), 1.46(9H, s), 1.83(2H, quintet-like), 2.03(2H, quintet-like), 2.77(3H, brs), 3.18(2H, t, J = 6.9 Hz), 3.29 and 3.39(2H, ABq, J = 18.9 Hz), 3.76(3H, s), 4.43(2H, t, J = 6.6 Hz), 4.73(1H, t, J = 6.6 Hz), 5.19(1H, d, J = 4.8 Hz), 5.21 and 5.30(2H, ABq, J = 11.7 Hz), 5.70(2H, brs), 5.98(1H, dd, J = 4.8 and 8.7 Hz), 6.84(1H, s), 6.89(2H, d, J = 9.0 Hz), 6.96(1H, d, J = 3.0 Hz), 7.20-7.44(12H, m), 7.78(1H, dd, J = 6.3 and 8.4 Hz), 8.42(1H, d, J = 3.0 Hz), 8.60(1H, d, J = 6.3 Hz), 8.88(1H, d, J = 8.4 Hz), 9.74(1H, d, J = 8.7 Hz), 12.1(1H, brs).

15 IR (KBr) cm⁻¹:3423, 3061, 3032, 2974, 2934, 1791, 1718, 1686, 1630, 1613, 1585, 1549, 1515, 1495, 1455, 1392, 1367, 1247, 1154, 1123, 1060, 1029.

MS(ESI): $1177^{+}(C_{5}H_{5}C1N_{5}O_{1}S_{2}^{+}).$

3-C1メチル体:

1H-NMR (CDCl₃) δ: 1.02(3H, t, J = 7.2Hz), 1.53(9H, s), 1.96-2.08(2H, m), 3.40 20 and 3.59(2H, ABq, J = 18.0 Hz), 3.81(3H, s), 4.43 and 4.58(2H, ABq, J = 11.7 Hz), 4.93(1H, t, J = 6.3 Hz), 4.99(1H, d, J = 5.1 Hz), 5.20 and 5.28(2H, ABq, J = 11.7 Hz), 6.01(1H, dd, J = 5.1 and 9.0 Hz), 6.90(2H, d, J = 9.0 Hz), 6.95(1H, s), 7.25-7.31(10H, m), 7.35(2H, d, J = 9.0 Hz), 7.91(1H, d, J = 9.0Hz), 7.93(1H, brs).

25 IR (KBr) cm⁻¹: 3283, 3063, 3031, 2976, 2936, 2836, 1791, 1721, 1613, 1550, 1515, 1455, 1384, 1369, 1301, 1246, 1155, 1058, 1033, 1004.

MS(ESI): 924⁺(M+H⁺).

元素分析 C43H43Cl2N5O10S2・0.3 CHCF3・0.8 H1O.

計算值: C,53.33 ; H,4.64 ; N,7.18 ; S,6.58 ; Cl,10.54 (%).

7位側鎖:

'H-NMR (d₄-DMSO) δ: 0.89(3H, t, J=7.5 Hz), 1.46(9H, s), 1.78(2H, quintet like),

4.52(1H, t, J = 6.9 Hz), 6.84(1H, s), 7.23-7.46(10H, m), 12.0(1H, brs).

IR (KBr) cm⁻¹: 3431, 3180, 3064, 3033, 2978, 2934, 1736, 1715, 1621, 1557, 1496, 1455, 1391, 1370, 1295, 1250, 1211, 1158, 1118, 1064, 1034.

MS(ESI): 574⁺(M+H⁺).

実施例12

I-3i-5d:

10

15

¹H-NMR (D₁0) δ : 0.93(6H, d, J = 6.9 Hz), 2.09(1H, sextet-like), 2.31(2H, quintet-like), 2.68(3H, s), 3.04(2H, t, J = 8.1 Hz), 3.13 and 3.39 (2H, ABq, J = 17.7 Hz), 4.27(1H, d, J = 6.0 Hz), 4.53(2H, t, J = 6.9 Hz), 5.19(1H, d, J = 4.8 Hz), 5.58 and 5.66(2H, ABq, J = 15.0 Hz), 5.80(1H, d, J = 4.8 Hz), 7.07(1H,

d, J = 3.3 Hz), 7.69(1H, dd, J = 6.3 and 8.7 Hz), 8.12(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 8.7 Hz), 8.65(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3396, 2965, 1775, 1604, 1538, 1498, 1466, 1391, 1364, 1223, 1121, 1062, 1027.

5 $MS(ESI):705^{+}(M+H^{+}).$

元素分析 C₁₁H₃₁ClN₈O₇S₁·4.28 H₂O.

計算値: C,44.52; H,5.35; N,14.32; Cl,4.53; S,8.20(%).

実験値: C,44.14; H,4.96; N,14.38; Cl,4.53; S,8.14(%).

4級塩エステル:

10 ¹H-NMR (d_i-DMSO) δ: 0.88(3H, d, J = 6.9 Hz), 0.90(3H, d, J = 6.6 Hz), 1.36(9H, brs), 1.45(9H, s), 2.02(2H, quintet-like), 2.15(1H, sextet-like), 2.77(3H, brs), 3.17(2H, t, J = 6.9 Hz), 3.26 and 3.40(2H, ABq, J = 18.3 Hz), 3.75(3H, s), 4.42(2H, t-like), 4.50(1H, t, J = 6.3 Hz), 5.18(1H, d, J = 5.1 Hz), 5.20 and 5.30(2H, ABq, J = 11.7 Hz), 5.65 and 5.71(2H, ABq, J = 15.6 Hz), 6.00(1H, dd, J = 5.1 and 8.4 Hz), 6.86(1H, s), 6.87(2H, d, J = 8.4 Hz), 6.97(1H, d, J = 3.3 Hz), 7.20-7.45(12H, m), 7.75(1H, dd, J = 6.0 and 7.8 Hz), 8.41(1H, d, J = 3.3 Hz), 8.58(1H, d, J = 6.0 Hz), 8.87(1H, d, J = 7.8 Hz), 9.72(1H, d, J = 8.4 Hz), 12.1(1H, brs).

IR (KBr) cm⁻¹:3393, 3061, 3031, 2972, 2933, 1791, 1719, 1686, 1630, 1613, 1550, 1515, 1495, 1455, 1392, 1367, 1248, 1175, 1155, 1125, 1029.

3-Clメチル体:

20

25

¹H-NMR (CDCl₃) δ : 0.99(3H, d, J = 7.2 Hz), 1.02(3H, d, J = 7.2 Hz), 1.53(9H, s), 2.37(1H, sextet-like), 3.35 and 3.55(2H, ABq, J = 18.3 Hz), 3.82(3H, s), 4.42 and 4.54(2H, ABq, J = 12.0 Hz), 4.76(1H, d, J = 6.0 Hz), 4.99(1H, d, J = 5.1 Hz), 5.21 and 5.28(2H, ABq, J = 11.7 Hz), 5.95(1H, dd, J = 5.1 and 9.3 Hz), 6.91(2H, d, J = 8.7 Hz), 6.94(1H, s), 7.25-7.32(10H, m), 7.36(2H, d, J = 8.7 Hz), 7.51(1H, d, J = 9.3 Hz), 8.03(1H, brs).

IR (KBr) cm⁻¹: 3292, 3063, 3031, 2970, 2935, 2876, 2836, 1792, 1722, 1613, 1550, 1515, 1454, 1387, 1369, 1333, 1302, 1247, 1155, 1096, 1031.

7位側鎖:

 $MS(ESI): 938^{+}(M+H^{+}).$

5 'H-NMR(D₁-DMSO) δ:0.83(3H, d, J = 6.9 Hz), 0.93(3H, d, J = 6.6 Hz), 1.46(9H, s), 2.05(1H, sex., J = ca 6.9 Hz), 4.28(1H, d, J = 7.2 Hz), 6.86(1H, s), 7.24-7.31(6H, m), 7..43-7.45(4H, m).

IR(KBr) cm⁻¹:3431, 2971, 2934, 1740, 1715, 1619, 1555, 1371, 1251, 1157, 1034, 699.

10 実施例13

I-3j-5d:

 $^{1}\text{H-NMR}$ (D₁0) δ : 0.94(3H, d, J = 7.2 Hz), 0.98(3H, d, J = 6.9 Hz), 2.13(1H,

sextet-like), 2.31(2H, quintet-like), 2.68(3H, s), 2.91(2H, t, J = 7.8 Hz), 3.15 and 3.37 (2H, ABq, J = 17.7 Hz), 4.35(1H, d, J = 5.4 Hz), 4.52(2H, t, J = 6.9 Hz), 5.17(1H, d, J = 4.8 Hz), 5.55 and 5.67(2H, ABq, J = 15.3 Hz), 5.87(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.0 and 8.1 Hz), 8.12(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.1 Hz), 8.64(1H, d, J = 6.0 Hz). IR (KBr) cm⁻¹:3389, 2965, 1777, 1601, 1539, 1498, 1466, 1391, 1364, 1223, 1120,

 $MS(ESI):705^{+}(M+H^{+}).$

1062, 1019.

元素分析 C,,H₃₃ClN₈O,S,·6.5 H₂O.

10 計算值: C,42.36; H,5.64; N,13.63; Cl,4.31; S,7.80(%).

実験値: C,42.01; H,4.82; N,13.51; Cl,4.26; S,7.89(%).

7位側鎖:

5

¹H-NMR (d₁-DMS0) δ : 0.85(3H, d, J = 6.6 Hz), 0.93(3H, d, J = 6.6 Hz), 1.46(9H, s), 2.07(1H, sextet-like), 4.35(1H, d, J = 7.2 Hz), 6.87(1H, s), 7.1-7.5(11H,

15 m), 12.0(1H, brs).

IR (KBr) cm⁻¹: 3422, 3207, 3064, 3032, 2976, 2933, 2876, 1717, 1629, 1555, 1495, 1455, 1393, 1370, 1295, 1248, 1156, 1055, 1032.

 $MS(ESI):588^{\dagger}(M+H^{\dagger}).$

元素分析 C18H30C1N8O7S1・1.04 H2O・0.12 AcOEt.

20 計算值: C,55.41; H,5.39; N,6.81; C1,5.74; S,5.19(%).

実験値: C,55.44; H,5.11; N,7.20; C1,5.67; S,4.80(%).

3-Clメチル体:

25

¹H-NMR (CDCl₃) δ : 0.95(3H, d, J = 7.2 Hz), 1.04(3H, d, J = 6.9 Hz), 1.53(9H, s), 2.35(1H, m), 3.43 and 3.59(2H, ABq, J = 18.3 Hz), 3.81(3H, s), 4.45 and 4.57(2H, ABq, J = 11.7 Hz), 4.84(1H, d, J = 4.5 Hz), 4.99(1H, d, J = 4.8 Hz), 5.21 and 5.28(2H, ABq, J = 12.0 Hz), 5.99(1H, dd, J = 4.8 and 9.0 Hz), 6.91(2H, d, J = 8.7 Hz), 6.98(1H, s), 7.25-7.32(10H, m), 7.35(2H, d, J = 8.7Hz), 7.92(1H, d, J = 8.7 Hz), 7.92(1

s), 7.99(1H, d, J = 9.0 Hz).

IR (KBr) cm⁻¹: 3392, 3283, 3062, 3032, 2969, 2934, 2835, 1791, 1721, 1613, 1585, 1551, 1514, 1455, 1387, 1368, 1302, 1246, 1155, 1096, 1061, 1030.

 $MS(ESI): 938^{+}(M+H^{+}).$

5 元素分析 C₄₄H₄₅Cl₂N₅O₁₀S₂・0.1 CHCl₃・0.4 H₂O・0.4 AcOBt.

計算值: C,55.26; H,4.98; N,7.05; S,6.46; C1,8.21(%).

実験値: C,55.22; H,4.64; N,6.90; S,6.20; C1,8.37(%).

4級塩エステル:

¹H-NMR (d_i-DMSO) δ: 0.87(3H, d, J = 6.9 Hz), 0.89(3H, d, J = 7.2 Hz), 1.36(9H, brs), 1.46(9H, s), 2.03(2H, quintet-like), 2.15(1H, sextet-like), 2.78(3H, brs), 3.18(2H, t-like), 3.27 and 3.43(2H, ABq, J = 13.2 Hz), 3.76(3H, s), 4.43(2H, t-like), 4.56(1H, d, J = 6.0 Hz), 5.20(1H, d, J = 5.4 Hz), 5.21 and 5.30(2H, ABq, J = 11.7 Hz), 5.70(2H, brs), 6.00(1H, dd, J = 5.4 and 8.4 Hz), 6.86(1H, s), 6.89(2H, d, J = 8.7 Hz), 6.95(1H, d, J = 3.3 Hz), 7.21-7.44(12H, m), 7.78(1H, d, J = 6.3 and 8.4 Hz), 8.41(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 6.3 Hz), 8.87(1H, d, J = 8.4 Hz), 9.74(1H, d, J = 8.4 Hz), 12.1(1H, brs).

IR (KBr) cm⁻¹:3423, 3061, 3032, 2972, 2933, 1792, 1718, 1685, 1630, 1613, 1584,

1550, 1515, 1495, 1455, 1392, 1367, 1247, 1154, 1061, 1028.

MS(ESI): 1191+(M-I+).

20 実施例14

I-3k-5d:

¹H-NMR (D₁0) δ: 2.31(2H, quintet-like), 2.68(3H, s), 3.05(2H, t, J = 8.1 Hz), 3.14 and 3.40 (2H, ABq, J = 18.0 Hz), 3.91(2H, m), 4.53(2H, t, J = 6.9 Hz), 4.69(1H, m), 5.20(1H, d, J = 4.8 Hz), 5.58 and 5.67(2H, ABq, J = 14.7 Hz), 5.84(1H, d, J = 4.8 Hz), 7.06(1H, d, J = 3.6 Hz), 7.69(1H, dd, J = 6.3 and 8.4 Hz), 8.12(1H, d, J = 3.6 Hz), 8.60(1H, d, J = 8.4 Hz), 8.65(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3388, 1772, 1605, 1539, 1498, 1466, 1391, 1362, 1321, 1223, 1152, 1120, 1064, 1034.

10 $MS(ESI):693^{+}(M+H^{+}).$

元素分析 C₁₁H₂₁C1N₈O₈S₂·5.62 H₂O.

計算值: C,40.82; H,5.11; N,14.11; Cl,4.46; S,8.07(%).

実験値: C,40.41; H,4.70; N,14.705; Cl,4.27; S,8.03(%).

7位側鎖:

brs).

5

¹H-NMR (d_i -DMSO) δ : -0.03(3H, s), -0.01(3H, s), 0.77(9H, s), 1.46(9H, s), 3.86-3.99(2H, m), 4.62(1H, t-like), 6.83(1H, s), 7.20-7.50(11H, m), 11.1(1H,

IR (KBr) cm⁻¹:3450, 3159, 3078, 2956, 2795, 1772, 1698, 1428, 1418, 1373, 1294, 1240, 1190, 1002.

 $MS(ESI):690^{+}(M+H^{+}).$

3-C1メチル体:

10 1 H-NMR (CDCl₃) δ : 0.00(6H, s), 0.82(9H, s), 1.49(9H, s), 3.21 and 3.46(2H, ABq, J = 18.0 Hz), 3.77(3H, s), 4.12(2H, t-like), 4.36 and 4.52(2H, ABq, J = 12.0 Hz), 4.93(1H, d, J = 4.8 Hz), 5.04(1H, m), 5.16 and 5.24(2H, ABq, J = 11.7 Hz), 5.93(1H, dd, J = 4.8 and 9.3 Hz), 6.85(2H, d, J = 8.7 Hz), 6.89(1H, s), 7.22-7.29(10H, m), 7.32(2H, d, J = 8.7Hz), 7.61(1H, d, J = 9.3 Hz), 8.22(1H,

15 s).

20

IR (KBr) cm⁻¹:3470, 3283, 2954, 2932, 1788, 1720, 1612, 1585, 1556, 1514, 1455, 1388, 1368, 1301, 1248, 1173, 1157, 1102, 1064, 1034.

4級塩エステル:

IR (KBr) cm⁻¹:3421, 3062, 3032, 2930, 2855, 1791, 1718, 1686, 1630, 1612, 1585, 1550, 1515, 1495, 1455, 1392, 1367, 1248, 1175, 1154, 1102, 1064, 1029.

MS(ESI):1293⁺(M-I⁺).

実施例15

I-31-5d:

¹H-NMR (D₂0) δ : 2.31(2H, quintet-like), 2.68(3H, s), 3.05(2H, t, J = 8.1 Hz), 3.17 and 3.38 (2H, ABq, J = 17.7 Hz), 3.94(2H, m), 4.53(2H, t, J = 7.2 Hz), 4.70(1H, m), 5.18(1H, d, J = 4.8 Hz), 5.55 and 5.68(2H, ABq, J = 15.0 Hz), 5.88(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.3 and 8.4 Hz), 8.12(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 8.4 Hz), 8.64(1H, d, J = 6.3 Hz). IR (KBr) cm⁻¹:3398, 1774, 1603, 1538, 1498, 1466, 1392, 1362, 1320, 1064. MS(ESI):693[†](M+H[†]).

10 元素分析 C₁₇H₁₁ClN₈O₈S₁·9.0 H₁O.

計算值: C,37.92; H,5.54; N,13.10; Cl,4.15; S,7.50(%).

実験値: C,37.77; H,4.42; N,13.09; C1,4.24; S,7.49(%).

7位側鎖:

 $^{1}\text{H-NMR}$ (d_i-DMSO) δ : -0.03(3H, s), -0.01(3H, s), 0.77(9H, s), 1.46(9H, s),

3.87-3.99(2H, m), 4.63(1H, t-like), 6.83(1H, s), 7.22-7.48(11H, m), 11.1(1H, brs).

IR (KBr) cm⁻¹:3450, 3159, 3078, 2955, 2794, 1772, 1697, 1428, 1417, 1373, 1294, 1240, 1191, 1002.

5 $MS(ESI):690^{\dagger}(M+H^{\dagger})$.

4級塩エステル:

IR (KBr) cm⁻¹:3423, 3062, 3032, 2930, 2855, 1792, 1718, 1687, 1630, 1613, 1585, 1550, 1515, 1495, 1455, 1392, 1367, 1248, 1174, 1154, 1102, 1064, 1030.

MS(ESI):1293⁺(M-I⁺).

10

実施例16

I-3f-2a:

¹H-NMR (D6-dmso) δ : 1.39(3H, J = 7.2 Hz), 2.99 and 3.44(2H, ABq, J = 17.4 Hz), 4.56(1H, q, J = 7.2 Hz), 4.68 and 5.16(2H, ABq, J = 13.2 Hz), 5.05(1H, d, J = 4.8 Hz), 5.71(1H, dd, J = 4.8, 8.4 Hz), 6.83 and 8.46(4H, A2B2q, J = 6.6 Hz), 7.42(2H, s), 8.19(2H, s), 9.71(1H, d, J = 8.4 Hz).

IR (KBr) cm⁻¹: 3409, 3205, 1776, 1656, 1539, 1375, 1168, 1035, 842.

Positive ESIMS: m/z 582 [M+H]+ . Negative ESIMS: m/z 580 [M-H]- .

20 四級塩エステル:

 $^{1}\text{H-NMR}$ (CDC13-CD30D) δ : 1.53(9H, s), 1.56(9H, s), 1.61(3H, d, J = 7.2 Hz), 3.18

and 3.75(2H, ABq, J = 18.6 Hz), 3.83(3H, s), 4.99(1H, q, J = 7.2 Hz), 5.09(1H, d, J = 5.1 Hz), 5.21 and 5.31(2H, ABq, J = 11.7 Hz), 5.27 and 5.47(2H, ABq, J = 13.8 Hz), 5.94(1H, d, J = 5.1 Hz), 6.90(2H, J = 9 Hz), 6.91 (1H, s), 7.3 1 -7.36(12H, m), 7.96(2H, m), 8.73(1H, d, J = 6.6 Hz).

5 IR (KBr) cm⁻¹: 3401, 2978, 2935, 1793, 1741, 1719, 1642, 1587, 1532, 1247, 1148, 1063, 701.

実施例17

I-3c-2a:

10 H-NMR (D6-dmso) δ : 1.28 -1.36 (4H, m), 3.03 and 3.44(2H, ABq, J = 17.7 Hz), 4.72 and 5.12(2H, ABq, J = 13.8 Hz), 5.05(1H, d, J = 4.8 Hz), 5.71(1H, dd, J = 4.8, 8.7 Hz), 6.85 and 8.40(4H, A2B2q, J = 6.6 Hz), 7.45(2H, s), 8.27(2H, s), 9.71(1H, m).

IR (KBr) cm⁻¹: 3349, 3199, 1776, 1656, 1538, 1376, 1170, 1035, 972.

Positive ESIMS: m/z 594 [M+H]+ . Negative ESIMS: m/z 592 [M-H]- .

四級塩エステル:

20

¹H-NMR (CDC13) δ :. 1.35(9H, s), 1.41 - 1.54(22H, m), 3.22 and 3.89(2H, ABq, J = 18.3 Hz), 3.83(3H, s), 5.12(1H, d, J = 5.1 Hz), 5.22 and 5.30(2H, ABq, J = 11.7 Hz), 5.48 and 5.64(2H, ABq, J = 8.4 Hz), 6.02(1H, dd, J = 5.1, 9 Hz), 6.91 and 7.34(4H, A2B2q, J = 8.4 Hz), 8.17(1H, br s), 8.38 and 8.93(4H, A2B2q, J = 7.5 Hz), 8.61(1H, d, J = 9 Hz), 10.2(1H, s).

IR (KBr) cm⁻¹: 3425, 3249, 2979, 2935, 1794, 1718, 1642, 1586, 1532, 1458, 1370, 1247, 1149, 1031, 838.

実施例18

5 I-3c-5d:

10

"H-NMR (D20) δ : 1.26-1.32 (4H, m), 2.31(2H, q like), 2.68(3H, s), 3.06(2H, t, J = 8.1 Hz), 3.15 and 3.39(2H, ABq, J = 17.7 Hz), 4.54(2H, t like), 5.17(1H, d, J = 4.5 Hz), 5.57 and 5.68(2H, ABq, J = 15 Hz), 5.80(1H, d, J = 4.5 Hz), 7.05(1H, d, J = 3.3 Hz), 7.70(1H, t, J = ca7 Hz), 8.13(1H, d, J = 2.4 Hz), 8.60(1H, d, J = 8.4 Hz), 8.65(1H, d, J = 6 Hz).

IR (KBr) cm⁻¹: 3398, 2820, 1773, 1608, 1540, 1395, 1225, 1033, 968, 761.

Positive ESIMS: m/z 689 [M+H]+ . Negative ESIMS: m/z 687 [M-H]- .

四級塩エステル:

 1 H-NMR (CDCl3) δ : 1.41(9H, s), 1.46-1.52(22H, m), 2.23(2H, m), 2.92(3H, s), 3.35 and 3.78(2H, ABq, J = 18 Hz), 3.38(2H, m), 3.81(3H, s), 4.45(2H, t like),

5.20(1H, d, J = 5.1 Hz), 5.24 and 5.30(2H, ABq, J = 11.4 Hz), 5.76 and 5.90(2H, ABq, J = 14.1 Hz), 6.02(1H, dd, J = 5.1, 8.7 Hz), 6.87 and 7.33(4H, A2B2q, J = 8.4 Hz), 7.01(1H, br s), 7.64(1H, t like), 8.02(1H, br s), 8.30(2H, m), 8.51(2H, d like), 8.61(1H, d, J = 9 Hz).

5 IR (KBr) cm⁻¹: 3424, 3253, 2976, 2932, 1793, 1716, 1685, 1632, 1613, 1549, 1516, 1455, 1392, 1367, 1248, 1152, 1031, 754 . 3 -Cl メチル体:

¹H-NMR (CDC13) δ: 1.41(9H, s), 1.47-1.53(13H, m), 3.48 and 3.63(2H, ABq, J = 18.3 Hz), 3.82(3H, s), 4.49(2H, s), 5.06(1H, d, J = 5.1 Hz), 5.08(1H, q, J = 7.2 Hz), 5.21 and 5.28(2H, ABq, J = 11.7 Hz), 5.99(1H, dd, J = 5.1, 9.3 Hz), 6.91 and 7.36(4H, A2B2q, J = 8.7 Hz), 8.13(1H, br s), 8.59(1H, d, J = 9.3 Hz).

IR (KBr) cm⁻¹: 3378, 3268, 2979, 2935, 2838, 1793, 1719, 1613, 1550, 1517, 1457, 1369, 1248, 1154, 1032.

7位側鎖:

15 ¹H-NMR (CDC13) δ: 1.40(9H, s), 1.43-1.55(13H, m) .

IR (CHC13) cm⁻¹:3405, 2983, 2935, 1719, 1626, 1550, 1153 .

実施例19

I-3b-5d:

¹H-NMR (D20) δ : 2.31(2H, q like, J = 7.5 Hz), 2.68(3H, s), 3.04(2H, t like), 3.17 and 3.31(2H, ABq, J = 17.7 Hz), 4.53(2H, t like), 5.10(1H, d,

J = 2.1 Hz, 5.12(1H, d, J = 4.5 Hz), 5.27(1H, d, J = 2.1 Hz), 5.51 and 5.76(2H, ABq, J = 15 Hz), 5.88(1H, d, J = 4.5 Hz), 6.99(1H, d, J = 3.6), 7.67(1H, dd, J = 6.4, 8.1 Hz), 8.12(1H, d, J = 3.6 Hz), 8.59(1H, d, J = 8.1 Hz), 8.63(1H, d, J = 6.4Hz). IR (KBr) cm⁻¹: 3398, 1774, 1606, 1539, 1498, 1468, 1392, 1203, 759.

10 Positive ESIMS: m/z 675 [M+H]+ .

元素分析 C,,H,,N,O,S,Cl・5.5H,Oとして.

計算值: C,41.89; H,4.95; N,14.47; S,8.28; Cl,4.58 (%).

実験値: C,41.92; H,4.72; N,14.49; S,8.38; Cl,4.66 (%).

四級塩エステル:

15 H-NMR (CDC13) δ: 1.48(9H, s),1.53(9H, s), 2.20(2H, m),2.90(3H, s) 3.19

and 3.64(2H, ABq, J = 18 Hz), 3.36(2H, t like), 3.78(3H, s), 4.42(2H, t like), 4.95(1H, d, J = 4.8 Hz), 5.20 and 5.28(2H, ABq, J = 11.7 Hz), 5.59(1H, d, J = 1.5 Hz), 5.75(1H, d, J = 1.5 Hz), 5.84(1H, dd, J = 4.8, 8.6 Hz), 6.83(2H, d, J = 8.7 HZ), 6.89(1H, s), 7.04(1H, br s), 7.23 - 7.36(12H, m), 7.62(1H, m), 8.20(1H, m), 8.46(1H, d, J = 9.3 Hz), 8.56(1H, d, J = 6.0 Hz), 8.65(1H, m). IR (CHCl3) cm⁻¹: 3403, 1793, 1720, 1685, 1632, 1613, 1551, 1517, 1154.

5

15

 $^{1}\text{H-NMR}$ (CDC13) δ : 1.53(9H, s), 3.23 and 3.43(2H, ABq, J = 18 Hz), 3.80(3H, s), 4.36 and 4.55(2H, ABq, J = 12 Hz), 4.75(1H, d, J = 5.1 Hz), 5.16

and 5.25(2H, ABq, J=11.4 Hz), 5.61(1H, d, J=1.8), 5.81(1H, d, J=1.8), 5.88(1H, dd, J=5.1, 9.0 Hz), 6.87— 6.92 (3H, m), 7.16—7.39 (12H, m), 8.56(1H, br s). IR (CHCl3) cm⁻¹: 3403, 1793, 1725, 1613, 1550, 1517, 1248, 1215, 1155. 7位側鎖:

¹H-NMR (CDCl3) δ : 1.48(9H, s), 5.65(1H, d, J=2.4), 5.75(1H, d, J=2.4), 6.93(1H, s), 7.27 -7.34(10H, m).

Positive FABMS(Matrix:m-NBA): m/z 558[M+H]+, 580[M+Na]+, 1115[2M+ H]+.

Negative FABMS(Matrix:m-NBA): m/z 556[M-H]-, 1113[2M H]-.

IR (CHCl3) cm⁻¹: 3602, 3404, 1723, 1603, 1550, 1285, 1253, 1227, 1155.

実施例 2 0

I-4d-5d:

5

15

¹H-NMR (D20) δ : 1.47 (6H, s), 2.30(2H, q like), 2.68(3H, s), 3.06(2H, t, J = 8 Hz), 3.18 and 3.39(2H, ABq, J = 17.7 Hz), 4.52(2H, t like), 5.18(1H, d, J = 4.8 Hz), 5.56 and 5.68(2H, ABq, J = 15 Hz), 5.82(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.3 Hz), 7.68(1H, t like), 8.12(1H, d, J = 3.6 Hz), 8.58(1H, d, J = 8.1 Hz), 8.64(1H, d, J = 6 Hz).

IR (KBr) cm^{-1} : 3405, 1772, 1608, 1535, 1394, 1362, 1160, 790, 760.

Positive ESIMS: m/z 735 [M+H]+ . Negative ESIMS: m/z 733 [M-H]- .

10 元素分析 C, aH, 1N, O, S, Br・5H, 0として.

計算值: C,40.73; H,5.00; N,13.57; S,7.77; Br,9.68 (%).

実験値: C,40.67; H,4.91; N,13.39; S,7.50; Br,9.64 (%).

四級塩エステル:

¹H-NMR (CDCl3) δ : 1.43(9H, s), 1.48(9H, s), 1.51(3H, s), 1.59(3H, s), 2.22(2H, m), 2.91(3H, s), 3.37(2H, t like), 3.31 and 3.80(2H, ABq, J = 18.6 Hz), 3.82(3H,

s), 4.45(2H, t like), 5.19(1H, d, J = 5.4 Hz), 5.23 and 5.30(2H, ABq, J = 11.4 Hz), 5.64 and 5.79(2H, ABq, J = 15 Hz), 6.07(1H, dd, J = 5.4, 9 Hz), 6.87 and 7.33(4H, A2B2q, J = 8.7 Hz), 7.04 (1H, br s), 7.67(1H, t like), 8.06 (1H, d, J = 9 Hz), 8.26(1H, br s), 8.39(1H, br s), 8.52(1H, d, J = 9 Hz), 8.58(1H, d, J = 6 Hz).

3-Clメチル体:

5

10

15

¹H-NMR (CDC13) δ : 1.43(9H, s), 1.52(9H, s), 1.62(6H, s), 3.48 and 3.65(2H, ABq, J = 18.3 Hz), 3.82(3H, s), 4.44 and 4.55(2H, ABq, J = 12 Hz), 5.04(1H, d, J = 4.8 Hz), 5.19 and 5.27(2H, ABq, J = 12 Hz), 6.03(1H, dd, J = 5.1, 9 Hz), 6.91 and 7.35(4H, A2B2q, J = 8.7 Hz), 8.02(1H, d, J = 9 Hz), 8.17(1H, br s). IR (KBr) cm⁻¹: 3280, 2980, 2935, 2837, 1789, 1720, 1614, 1549, 1516, 1369, 1248, 1155.

7位側鎖:

 $^{1}\text{H-NMR}$ (CDC13) δ : 1.48(9H, s), 1.49(9H, s), 1.53(3H, s), 1.56(3H, s).

IR (CHC13) cm⁻¹: 3406, 3019, 2983, 2937, 1724, 1544, 1369, 1226, 1151.

Positive ESIMS: m/z 508[M+H]+, m/z 530[M+Na]+ .

Negative ESIMS: m/z 506[M-H]-, m/z 528[M+Na-2H]-

さらにその他の実施例化合物を以下に示す。

¹H-NMR (D₁0) δ : 2.31(2H, m), 2.59(2H, t, J = 6.9 Hz), 2.69(3H, s), 3.06(2H, m), 3.21 and 3.35 (2H, ABq, J = 17.7 Hz), 4.39(2H, m), 4.53(2H, t, J = 6.9 Hz), 5.14(1H, d, J = 5.1 Hz), 5.54 and 5.71(2H, ABq, J = 15.0 Hz), 5.76(1H, d, J = 5.1 Hz), 7.03(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.3 and 8.4 Hz), 8.13(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 8.4 Hz), 8.66(1H, d, J = 6.3 Hz). IR (KBr) cm⁻¹: 3397, 3132, 2458, 1775, 1615, 1540, 1499, 1466, 1389, 1223, 1164, 1122, 1063, 1027.

 $MS(ESI):677^{+}(M+H^{+}).$

10 元素分析 C,,H,,ClN,O,S,·2.8 H,O.

計算值: C,44.57; H,4.79; N,15.40; Cl,4.87; S,8.81(%).

実験値: C,44.51; H,4.57; N,15.37; Cl,4.81; S,8.66(%).

3-Clメチル体:

¹H-NMR (CDCl₃) δ : 1.52(9H, s), 2.89(2H, m), 3.28 and 3.53(2H, ABq, J = 18.3 Hz), 3.81(3H, s), 4.22 and 4.54(2H, ABq, J = 12.0 Hz), 4.59(3H, t, J = 6.6 Hz), 4.95(1H, d, J = 4.8 Hz), 5.17 and 5.26(2H, ABq, J = 11.7 Hz), 5.90(1H, dd, J = 4.8 and

8.7 Hz), 6.84(1H, s), 6.90(2H, d, J = 9.0 Hz), 7.24-7.38(12H, m), 7.48(1H, d, J = 8.7 Hz), 8.50(1H, brs).

IR (KBr) cm⁻¹: 3283, 3062, 3031, 2978, 2836, 1789, 1721, 1613, 1549, 1515, 1454, 1386, 1369, 1302, 1246, 1158, 1096, 1063, 1031.

5 MS(ESI): $910^{+}(M+H^{+})$.

元素分析 C42H41Cl3N5O10S2・0.3 CHCl3・0.7 H40.

計算值: C,52.96; H,4.49; N,7.30; S,6.69; Cl,10.72(%).

実験値: C,52.91 ; H,4.34 ; N,7.33 ; S,6.64 ; Cl,10.74 (%).

四級塩エステル:

- 7.20-7.40(12H, m), 7.78(1H, dd, J = 6.0 and 8.1 Hz), 8.43(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 6.0 Hz), 8.88(1H, d, J = 8.1 Hz), 9.72(1H, d, J = 9.0 Hz), 12.1(1H, brs).

IR (KBr) cm⁻¹: 3424, 3061, 3031, 2975, 2934, 1791, 1719, 1685, 1630, 1613, 1548, 1515, 1495, 1455, 1392, 1367, 1247, 1156, 1029.

20 MS(ESI): $1163^{+}(C_{58}H_{64}C1N_{8}O_{12}S_{3}^{+})$.

実施例 2 3

¹H-NMR (D₁0) δ : 1.90(2H, m), 2.31(4H, m), 2.44(2H, m), 2.68(3H, s), 3.05(2H, t, J = 8.1 Hz), 3.17 and 3.39 (2H, ABq, J = 18.0 Hz), 4.54(2H, t, J = 6.9 Hz), 5.20(1H, d, J = 4.8 Hz), 5.56 and 5.69(2H, ABq, J = 15.0 Hz), 5.83(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.3 and 8.4 Hz), 8.12(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 8.4 Hz), 8.64(1H, d, J = 6.3 Hz). IR (KBr) cm⁻¹:3398, 2948, 1774, 1610, 1538, 1498, 1458, 1392, 1287, 1236, 1158, 1120, 1064, 1032.

 $MS(ESI):703^{+}(M+H^{+}).$

10 元素分析 C,,H₃₁ClN₈O₇S₁·6.5 H,O.

計算值: C,42.46; H,5.41; N,13.66; Cl,4.32; S,7.82(%).

実験値: C,42.34 ; H,4.87 ; N,13.71 ; Cl,4.39 ; S,7.79 (%).

7位側鎖:

5

¹H-NMR (d_i -DMSO) δ : 1.47(9H, s), 1.75-2.00(2H, m), 2.20-2.38(2H, m), 2.44-

15 2.54(2H, m), 6.82(1H, s), 7.1-7.5(10H, m), 12.0(1H, brs).

IR (KBr) cm⁻¹: 3209, 3064, 3031, 2980, 2955, 1719, 1619, 1554, 1495, 1454, 1394,

1370, 1295, 1249, 1204, 1155, 1067, 1037.

 $MS(ESI):586^{+}(M+H^{+}).$

元素分析 C11H10ClN8O7S1·1.3 H2O.

計算值: C,55.18; H,5.06; N,6.89; Cl,5.82; S,5.26(%).

5 実験値: C,55.17; H,4.92; N,7.28; Cl,5.65; S,5.24(%).

3-Clメチル体:

¹H-NMR (CDCl₃) δ : 1.53(9H, s), 2.05-2.18(2H, m), 2.47-2.78(4H, m), 3.26 and 3.51(2H, ABq, J = 18.3 Hz), 3.82(3H, s), 4.40 and 4.56(2H, ABq, J = 12.0 Hz), 4.96(1H, d, J = 4.8 Hz), 5.24(1H, d, J = 5.1 Hz), 5.21 and 5.27(2H, ABq, J = 12.0 Hz), 5.97(1H, dd, J = 5.1 and 9.6 Hz), 6.90(2H, d, J = 8.7 Hz), 6.92(1H, s), 7.25-7.31(10H, m), 7.35(2H, d, J = 8.7Hz), 7.44(1H, d, J = 9.6 Hz), 8.00(1H, s).

IR (KBr) cm⁻¹: 3378, 3285, 3063, 3031, 2978, 2836, 1790, 1722, 1613, 1585, 1549, 1515, 1454, 1385, 1368, 1300, 1247, 1203, 1156, 1112, 1098, 1063, 1034.

15 $MS(ESI):936^{\dagger}(M+H^{\dagger})$.

10

4級塩エステル:

¹H-NMR (d₄-DMSO) δ: 1.36(9H, brs), 1.46(9H, s), 1.79-2.09(2H, m), 2.03(2H, quintet-like), 2.30-2.61(4H, m), 2.77(3H, brs), 3.17(2H, t-like), 3.30 and 3.42(2H, ABq, J = 13.2 Hz), 3.76(3H, s), 4.43(2H, t-like), 5.21(1H, d, J = 4.8 Hz), 5.22 and 5.31(2H, ABq, J = 11.7 Hz), 5.71(2H, brs), 6.01(1H, dd, J = 4.8 and 8.7 Hz), 6.82(1H, s), 6.90(2H, d, J = 8.4 Hz), 6.96(1H, d, J = 3.3 Hz), 7.21-7.44(12H, m), 7.78(1H, dd, J = 6.3 and 8.1 Hz), 8.42(1H, d, J = 3.3 Hz), 8.63(1H, d, J = 6.3 Hz), 8.88(1H, d, J = 8.1 Hz), 9.77(1H, d, J = 8.7 Hz), 12.1(1H, brs).

25 IR (KBr) cm⁻¹:3424, 3061, 2975, 1791, 1718, 1685, 1630, 1613, 1584, 1550, 1515, 1495, 1455, 1392, 1367, 1298, 1248, 1155, 1123, 1065, 1030, 1018.

"H-NMR (D20) δ : 1.50 (6H, br s), 2.30(2H, q like), 2.69(3H, s), 3.06(2H, t, J = 7.8 Hz), 3.38 and 3.63(2H, ABq, J = 18.3 Hz), 4.52(2H, m), 4.98(1H, d, J = 4.8 Hz), 5.63 and 5.75(2H, ABq, J = 15.3 Hz), 6.05(1H, d, J = 4.8 Hz), 7.06(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.0 ,8.1 Hz), 8.13(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.1 Hz), 8.67(1H, d, J = 6.0 Hz).

IR (KBr) cm^{-1} :3412, 1784, 1618, 1535, 1396, 1361, 1159, 858, 760.

元素分析 $C_{18}H_{31}N_{4}O_{8}S_{1}Br \cdot 6.4H_{1}O$ として.

計算值: C,38.79; H,5.09; N,12.93; S,7.40; Br,9.22 (%).

10 実験値: C,38.82; H,4.85; N,12.90; S,7.43; Br,9.02 (%).

4級塩エステル(S-Oxide):

5

IR (KBr) cm⁻¹: 3427, 2978, 2935, 1802, 1722, 1687, 1549, 1516, 1458, 1390, 1367, 1250, 1153, 1030, 766.

3-Clメチル体(S-Oxide):

15 $^{1}\text{H-NMR}$ (CDCl3) δ : 1.42(9H, s), 1.52(9H, s), 1.61(6H, br s), 3.43 and 3.82(2H,

ABq, J = 18.6 Hz), 3.82(3H, s), 4.24 and 5.03(2H, ABq, J = 12.6 Hz), 4.59(1H, dd, J = 1.2, 5.1 Hz), 5.24 and 5.30(2H, ABq, J = 12 Hz), 6.19(1H, dd, J = 5.1, 9.6 Hz), 6.92 and 7.37(4H, A2B2q, J = 6.6 Hz), 7.94(1H, d, J = 10.2 Hz), 8.37(1H, br s).

5 実施例25

10

20

(1) 化合物 17 (4.85g)の乾燥 THF 38ml 溶液にトリフェニルフォスフィン(5.71g) およびヒドロキシフタルイミド 6(3.55g)を加えて氷冷下攪拌し、これにアゾジカルボン酸ジイソプロピル (4.3 ml)を滴下して加え、4 \mathbb{C} 庫で一晩放置した。次いで、

減圧濃縮後シリカゲルクロマトにかけて分離精製し、これをエーテル/ヘキサンから結晶化して化合物 18 を 7.6g 得た。

¹H-NMR (CDCl₃) δ : 1.67(3H, d, J = 7.2 Hz), 5.05(1H, q, J = 7.2 Hz), 6.93 (1H, s), 7.22-7.32(10H, m), 7.70-7.79(4H, m).

IR (KBr) cm⁻¹: 1791, 1736, 1284, 700.

15 FABMS: m/z 402 [M+H]+, 803 [2M+H]+.

(2) 先の化合物 18 (4.82g)の CH,Cl, 12 ml 溶液に - 25 ℃冷却下メチルヒドラジン 0.63ml を加えて 1.5 時間攪拌した。次いで、析出晶をろ別し、このろ液を MeOH 25ml でうすめた後氷冷下にカルボン酸 9 (3.7g) を加えて 2 時間攪拌し、さらに 4 ℃庫で一晩放置した。この反応液を減圧濃縮後 AcOEt に溶かし、NaHCO₃水、塩酸水次いで食塩水で順次洗浄後 MgSO₄で乾燥後減圧留去して化合物 4-3 を 4.74g 得た。

¹H-NMR (d_i-DMS0) δ : 1.46(3H, d, J = 6.9 H), 1.47(9H, s), 5.00(1H, q, J = 6.9

Hz), 6.85(1H, s), 7.26-7.42(10H, m), 12.06(1H, s).

IR (KBr) cm⁻¹: 3422, 3193, 3062, 3032, 2983, 1740, 1719, 1602, 1554, 1453, 1370, 1250, 1155, 1096, 1038, 967, 744, 699.

FABMS: m/z 560 [M+H]+, 1119 [2M+H]+.

5

(3)カルボン酸 4-3 (3.50g, 6.25nmol) と ACLE・HCl 塩 10 (2.53g 6.25nmol)の CH₁Cl₁ 21ml 溶液に氷冷下 WSCD・HCl (1.20g leq)次いで Pyridine (0.51ml, 1.0eq)を加え、同温度で 1 時間攪拌した。この反応液を brine で洗浄、無水 MgSO₁ で乾燥、次いで減圧濃縮後、シリカゲルクロマトにて精製して泡状残渣の 11-3 を 4.60g 得た。

10 H-NMR (CDC13) δ : 1.53(9H, s), 1.64(3H, d, J = 7.2 Hz), 3.39 and 3.58(2H, ABq, J = 18.3 Hz), 3.81(3H, s), 4.42 and 4.59(2H, ABq, J = 12 Hz), 4.97(1H, d, J = 5.1 Hz), 5.08(1H, q, J = 7.2 Hz), 5.20 and 5.27(2H, ABq, J = 11.7 Hz), 6.01(1H, dd, J = 5.1, 9.3 Hz), 6.88-6.91(3H, m), 7.06-7.35(12H, m), 7.85(1H, d, J = 9.3 Hz), 8.15(1H, br s).

15 IR (KBr) cm⁻¹: 3281, 2980, 2935, 2836, 1790, 1719, 1612, 1552, 1515, 1454, 1369, 1247, 1155,1035, 700.

FABMS: m/z 910 [M+H]+.

(4)13℃に冷却したクロル体 11-3(4.60g,5.05mmol)の THF46ml 溶液に NaI (2.65g 3.5eq)を加えて30分間懸濁攪拌した。この反応液を Na,S,O, 水-BtOAc 中に注ぎ有機 層を分取し、これを brine で洗浄、無水 MgSO, で乾燥後減圧濃縮して泡状残渣の 20 を 5.07g 得た。

- 5 H-NMR (CDC13) δ : 1.53(9H, s), 1.65(3H, d, J = 7.2 Hz), 3.39 and 3.67(2H, ABq, J = 17.7 Hz), 3.81(3H, s), 4.33 and 4.45(2H, ABq, J = 9.3Hz), 4.96(1H, d, J = 5.1 Hz), 5.08(1H, q, J = 7.2 Hz), 5.20 and 5.28(2H, ABq, J = 11.7 Hz), 5.95(1H, dd, J = 5.1, 9.0 Hz), 6.88~ 6.92(3H, m), 7.23~7.39(12H, m), 7.78(1H, d, J = 9.0 Hz), 8.01(1H, br s).
- 10 IR (KBr) cm⁻¹: 3383, 3284, 2980, 2836, 1790, 1719, 1613, 1551, 1516,1369, 1246, 1153, 1037, 700.

ABMS: m/z 1002 [M+H]+.

15

20

(5) 3位側鎖 13 (174mg, 0.60mmol) の MeCN 1ml 溶液に氷冷下ヨード体 20

(570mg 純度換算して 0.60mmol)を加え、同温度で 3 時間次いで室温で 2 時間攪拌した。これに Toluene/Et,0/nHexane(1:30:30)の混合液を滴下して加え、析出した粉末を濾取して四級塩 14-3a を 675mg 得た。

¹H-NMR (CDCl₃) δ : 1.46(9H, s), 1.51(9H, s), 1.61(3H, d, J = 7.2 Hz), 2.21(2H, m), 2.88(3H, s), 3.19 and 3.89(2H, ABq, J = 18.9 Hz), 3.33(2H, m), 3.80(3H, s), 4.42(2H, t like), 5.04-5.15(4H, m), 5.22 and 5.30(2H, ABq, J = 12 Hz), 5.84 and 5.75(2H, ABq, J = 14.7 Hz), 5.98(1H, dd, J = 5.1, 8.7 Hz), 6.89(3H,m), 7.25-7.36(12H, m), 7.54(1H, t like), 7.75(H, d, J = 7.8 Hz), 8.25(1H, m), 8.56(1H, d, J = 8.7 Hz), 8.95(1H, d, J = 5.7 Hz).

IR (KBr) cm⁻¹: 3423, 2976, 2932, 1792, 1718, 1687, 1613, 1550, 1515, 1496, 1454, 1367, 1248 1154, 759, 701.

(6) クロル体 11-3 (2.13g, 2.33mmol) の CH₂Cl₂ 10ml 溶液に − 5 0 ℃冷却下で m-CPBA (純度: >65%, 495mg 0.81eq) の CH₂Cl₃ 8m 溶液を滴下して加えて同温度で 3 0 分攪拌した。続いて 5 %Na₃S₄O₃ 水を加えた後、この有機層を NaHCO₃ 水、brine で順次 洗浄し、無水 MgSO₄ で乾燥後減圧濃縮して泡状残渣を得た。これを Bt₂O/nHexane から 粉末化し、オキサイド 15 を約 2g 得た。

5

10

15

H-NMR (CDC13) δ : 1.53(9H, s), 1.64(3H, d, J = 7.2 Hz), 3.29 and 3.70(2H, ABq, J = 18.6 Hz), 3.81(3H, s), 4.23 and 4.99(2H, ABq, J = 12.6 Hz), 4.44(1H, d, J = 5.1 Hz), 5.10(1H, q, J = 7.2 Hz), 5.26 (2H, m), 6.16(1H, dd, J = 5.1, 9.6 Hz), 6.88-6.94(3H, m), 7.25-7.375(12H, m), 7.90(1H, d, J = 9.6 Hz), 8.32(1H, br s). IR (KBr) cm⁻¹: 3425, 2979, 2937, 1804, 1720, 1613, 1553, 1516, 1454, 1369, 1249 1155, 1037, 701.

(7-1) 3 位側鎖 13 (324mg 1.1eq)の DMF1.8ml 溶液にオキサイド 15 (1.22g 1.31mmol)および NaBr (271mg 2eq)を加えて窒素気流中室温で 1.5 時間攪拌した。続いて、DMF2ml と KI 1.28g を加え、これを-40℃に冷却後 AcCl 0.40ml を滴下して加え、-10℃で 3 時間懸濁攪拌した。この反応液を NaClと Na₁S₁O₃を含む PH 6 の燐酸緩衝液に注ぎ、析出物を濾取後 Acetone に溶解して減圧濃縮した。これを Bt₁O/nHexaneから粉末化して四級塩 14-3 を 1.77g 得た。

¹H-NMR (CDCl3) δ : 1.48(9H, s), 1.51(9H, s), 1.62(3H, d, J = 7.2 Hz), 2.21(2H,

m), 2.91(3H, s), 3.24 and 3.82(2H, $^{-}$ ABq, J = 18.9 Hz), 3.36(2H, m), 3.81(3H, s), 4.43(2H, t like), 5.09(1H, q, J = 7.2 Hz), 5.16(1H, d, J = 5.1 Hz), 5.24 and 5.31(2H, ABq, J = 11.7 Hz), 5.58 and 5.75(2H, ABq, J = 14.7 Hz), 5.99(1H, dd, J = 5.1, 8.7 Hz), 6.86(1H, s), 6.87(2H, d, J = 8.7 Hz), 7.00(1H, br s), .7.24 - 7.38(12H, m), 7.55(1H, t like), 7.78(H, d, J = 8.7 Hz), 8.25(1H, br s), 8.47(1H, d, J = 10.2 Hz), 8.50(1H, d, J = 6 Hz).

5

10

15

20

IR (KBr) cm⁻¹: 3423, 2976, 2932, 1792, 1718, 1687, 1613, 1248 1154, 759, 701 . (7-2) 3 位側鎖 13 (174mg, 0.60mmol) の MeCN 1ml 溶液に氷冷下ヨード体 20 (570mg 純度換算して 0.60mmol)を加え、同温度で 3 時間次いで室温で 2 時間攪拌した。これに Toluene/Et,0/nHexane(1:30:30)の混合液を滴下して加え、析出した粉末を濾取して四級塩 14-3a を 675mg 得た。

(8) 四級塩 14-3 (約 1.3 mmol)の CH₂Cl₃ - MeNO₄ 3 0 ml および anisole (1.7 ml) 溶液に窒素気流中氷冷下 AlCl₃-MeNO₄溶液 (1.5 M, 7 ml) を加えて 1 時間懸濁攪拌した。これに氷、次いで 1N HCl-CH₃CN および Bt₄O を加えて水層を分取し、これを減圧濃縮後 HP-20 クロマトに付して集めた分画を凍結乾燥し、粉末状の化合物 16-3 (450 mg)を得た。

H-NMR (D20) δ : 1.43 (3H, d, J = 7.2 Hz), 2.31(2H, q like), 2.68(3H, s), 3.05(2H, t, J = 8 Hz), 3.18 and 3.37(2H, ABq, J = 18 Hz), 4.53(2H, t like), 4.65 (1H, q, J = 7.2 Hz), 5.17(1H, d, J = 4.8 Hz), 5.54 and 5.70(2H, ABq, J = 15 Hz), 5.86(1H, d, J = 4.5 Hz), 7.03(1H, d, J = 3.6 Hz), 7.69(1H, dd, J = 6, 8.4 Hz), 8.13(1H,

d, J = 3.6 Hz), 8.60(1H, d, J = 8.4 Hz), 8.64(1H, d, J = 6 Hz).

IR (KBr) cm^{-1} : 3398, 1775,1603,1541,1392,1363,1320, 1286,1033,762.

Positive ESIMS: m/z 677 [M+H]+ . Negative ESIMS: m/z 675 [M-H]- .

元素分析 C₂₇H₂₉N₈O₇S₂C1・6.2H₂O として.

5 計算值: C,41.11; H,5.29; N,14.20; S,8.13; Cl,4.49 (%).

実験値: C,40.88; H,4.88; N,14.23; S,8.05; Cl,4.57 (%).

実施例 2 6

¹H-NMR (D₂O) δ : 1.51 (3H, d, J = 7.25 Hz), 3.22 and 3.64 (Abq, J = 17.9 Hz), 4.83 (1H, q,

10 J = 7.2Hz), 5.28 (1H, d, J = 4.8 Hz), 5.35 and 5.58 (2H, ABq, J = 14.6 Hz), 5.90 (1H, d, J = 4.8Hz), 8.09 (2H, t-like), 8.57 (2H, t, J = 7.8 Hz), 8.95 (2H, d, J = 5.7 Hz).

IR (KBr) cm⁻¹:3410, 3060, 1780, 1674, 1627, 1538, 1481, 1445, 1389, 1341, 1219, 1186, 1153, 1100, 1035.

 $MS(ESI): 567^{+}(M+H)^{+}$.

15 元素分析 C₂₁H₁₉ClN₆O₇S₂·2.9 H₂O.

計算值: C,40.73; H,4.04; N,13.57; Cl,5.73; S,10.36(%).

実験値: C,40.67; H,3.87; N,13.45; Cl,5.50; S,10.36(%).

実施例27

20 1 H-NMR (d₆-DMSO) δ: 1.36 (3H, d, J = 7.1 Hz), 2.97 and 3.25 (2H, Abq, J = 17.3 Hz), 4.03 (3H, s), 4.55 (1H, q, J = 7.1 Hz), 4.97 (1H, d, J = 5.1 Hz), 5.61-5.72 (3H, m), 5.60 and

5.73 (2H, ABq, J = 15.2 Hz), 7.37 (1H, d, J = 3.3 Hz), 7.41 (1H, s), 7.78 (1H, dd, J = 6.3, 8.2 Hz), 8.28 (1H, d, J = 3.3 Hz), 8.74 (1H, d, J = 8.2), 9.16 (1H, d, J = 6.3 Hz), 9.61 (1H, brs).

IR (KBr) cm⁻¹:3423, 2986, 1778, 1674, 1618, 1538, 1500, 1469, 1416, 1368, 1324, 1281,

5 1222, 1187, 1154, 1094, 1062, 1032. ..

 $MS(ESI): 620^{+}(M+H)^{+}$.

元素分析 C₂₄H₂₂ClN₇O₇S₂·2.6 H₂O.

計算值: C,43.22; H,4.11; N,14.70; Cl,5.32; S,9.62(%).

実験値: C,43.16; H,3.99; N,14.88; Cl,5.12; S,9.61(%).

10 実施例28

15

 1 H-NMR (D₂O) δ : 1.50 (3H, d, J = 6.9 Hz), 3.20 and 3.58 (2H, ABq, J = 17.7 Hz), 4.80 and 4.84 (2H, ABq, J = 6.9 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.37 and 5.42 (2H, ABq, J = 16.2 Hz), 5.87 (1H, d, J = 4.8 Hz), 7.90 (1H, dd, J = 4.5, 9.4 Hz), 8.25 (1H, d, J = 2.3 Hz), 8.66 (1H, d, J = 9.4 Hz), 8.94 (1H, dd, J = 1.5, 4.5 Hz).

IR (KBr) cm⁻¹: 3416, 3136, 2939, 1776, 1674, 1625, 1535, 1447, 1383, 1346, 1317, 1232, 1185, 1155, 1100, 1066, 1035.

 $MS(FAB): 607^{+}(M+H)^{+}$.

元素分析 C₂₂H₁₉ClN₈O₇S₂·2.8 H₂O.

20 計算值: C,40.19; H,3.77; N,17.04; Cl,5.39; S,9.75(%).

実験値: C,40.10; H,3.56; N,17.01; Cl,5.20; S,9.73(%).

 1 H-NMR (D₂O) δ : 1.55 (3H, d, J = 7.2 Hz), 2.22 (4H, brs), 2.99 (3H, s), 3.46 and 3.92 (2H, ABq, J = 17.0Hz), 3.53 (4H, m), 3.99 and 4.74 (2H, ABq, J = 13.79 Hz), 4.85 (1H, q, J = 7.2 Hz), 5.36 (1H, d, J = 5.1 Hz), 5.90 (1H, d, J = 5.1 Hz).

5 IR (KBr) cm⁻¹: 3416, 1780, 1676, 1616, 1538, 1459, 1345, 1285, 1236, 1180, 1097, 1068, 1036.

 $MS(FAB): 573^{+}(M+H)^{+}$.

元素分析 C₂₁H₂₅ClN₆O₇S₂·4.0 H₂O.

計算值: C,39.10; H,5.16; N,13.03; Cl,5.50; S,9.94(%).

10 実験値: C,38.86; H,4.64; N,13.00; Cl,5.30; S,9.90(%).

実施例30

15

$$\begin{array}{c|c} H_2N & S & Clo & H \\ N & N & N & N \\ N & O & N \\ Me^{W} & CO_2H & CO_2 \end{array}$$

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 7.1 Hz), 3.15 and 3.50 (ABq, J = 17.6 Hz), 4.54 (1H, q, J = 7.1 Hz), 4.96 and 5.58 (2H, ABq, J = 13.4 Hz), 5.11 (1H, d, J = 4.9 Hz), 5.73 (1H, dd, J = 4.9, 8.9 Hz), 7.41 (2H,s), 7.52 (1H, d, J = 6.6 Hz), 8.70 (2H, d, J = 6.6 Hz), 9.14 (1H, s), 9.75 (1H, brs).

IR (KBr) cm⁻¹: 3414, 3086, 1738, 1661, 1620, 1527, 1446, 1390, 1351, 1307, 1210, 1118, 1066, 1036.

 $MS(ESI): 623^{+}(M+H)^{+}$.

20 元素分析 C₂₂H₁₉ClN₈O₈S₂·3.7 H₂O.

計算值: C,38.31; H,3.86; N,16.25; Cl,5.14; S,9.30(%).

実験値: C,38.18; H,3.51; N,16.22; Cl,4.85; S,9.24(%).

実施例31

5

15

¹H-NMR (d₆-DMSO) δ : 1.36 (3H, d, J = 7.1 Hz), 3.03 and 3.32 (ABq, J = 17.6 Hz), 4.29 (3H, s), 4.55 (1H, q, J = 7.1 Hz), 5.00 (1H, d, J = 5.0 Hz), 5.69 (1H, dd, J = 5.0, 8.6 Hz), 5.75 and 5.818 (2H, ABq, J = 14.1 Hz), 7.42 (2H,s), 8.12 (1H, dd, J = 5.6, 8.8 Hz), 9.08 (1H, d, J = 8.8 Hz), 9.15 (1H, s), 9.46 (1H, d, J = 5.6 Hz), 9.56 (1H, d, J = 8.6 Hz).

IR (KBr) cm⁻¹: 3415, 1779, 1675, 1617, 1538, 1483, 1442, 1392, 1372, 1348, 1291, 1236, 1188, 1155, 1100, 1063, 1034.

10 $MS(ESI): 621^+(M+H)^+$.

元素分析 C₂₃H₂₁CIN₈O₇S₂·3.1 H₂O.

計算值: C,40.81; H,4.05; N,16.55; Cl,5.24; S,9.47 (%).

実験値: C,40.85; H,3.85; N,16.73; Cl,5.01; S,9.46 (%).

実施例32

$$\begin{array}{c|c} H_2N & \begin{array}{c} S & CI_{O} & H \\ N & N & N \\ N & O & N \\ \end{array}$$

$$\begin{array}{c} N & S & N \\ N & O & N \\ \end{array}$$

$$\begin{array}{c} N & S & N \\ N & O & N \\ \end{array}$$

$$\begin{array}{c} N & N & N \\ N & O & N \\ \end{array}$$

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 7.1 Hz), 3.01 and 3.46 (2H, ABq, J = 17.6 Hz), 4.56 (1H, q, J = 7.1 Hz), 5.00 and 5.55 (2H, ABq, J = 13.4 Hz), 5.06 (1H, d, J = 5.1 Hz), 5.70 (1H, dd, J = 5.1 Hz), 6.74 (2H, brs), 7.42 (2H,brs), 7.55 (1H, d, J = 8.5 Hz), 7.68 (1H, dd, J = 6.5 Hz),

8.5, 5.7 Hz), 8.38 (1H, d, J = 5.7 Hz), 8.51 (1H, brs), 9.67 (1H, brs).

20 IR (KBr) cm⁻¹: 3351, 3208, 1777, 1629, 1538, 1512, 1445, 1391, 1346, 1232, 1190, 1155, 1098, 1065, 1034.

 $MS(ESI): 582^{+}(M+H)^{+}$.

元素分析 C₂₁H₂₀CIN₇O₇S₂·3.6 H₂O.

計算值: C,38.99; H,4.24; N,15.16; Cl,5.48; S,9.91 (%).

実験値: C,38.84; H,3.84; N,15.23; Cl,5.34; S,9.67 (%).

5 実施例33

10

 1 H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 6.9 Hz), 3.10 and 3.34 (2H, ABq, J = 17.3 Hz), 4.39 (3H, s), 4.55 (1H, q, J = 6.9 Hz), 5.01 (1H, d, J = 4.9 Hz), 5.60 and 5.73 (2H, ABq, J = 14.3 Hz), 5.68 (1H, dd, J = 4.9, 9.0 Hz), 7.42 (2H, s), 7.97 (1H,dd, J = 5.5, 8.6 Hz), 9.04 (1H, d, J = 8.6 Hz), 9.42 (1H, d, J = 5.5 Hz), 9.59 (2H, brs).

IR (KBr) cm⁻¹: 3419, 1778, 1634, 1615, 1538, 1454, 1408, 1356, 1329, 1295, 1235, 1176, 1156, 1100, 1073, 1035, 1011.

 $MS(ESI): 621^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₁ClN₈O₇S₂·3.2 H₂O.

15 計算值: C,40.70; H,4.07; N,16.51; Cl,5.22; S,9.45 (%).

実験値: C,40.48; H,3.61; N,16.42; Cl,5.16; S,9.46 (%).

実施例34

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 7.1 Hz), 2.95 and 3.41 (2H, ABq, J = 17.7 Hz), 4.57 (1H, q, J = 7.1 Hz), 4.70 and 5.22 (2H, ABq, J = 13.8 Hz), 5.05 (1H, d, J = 4.89 Hz), 5.66 (2H, brs), 5.71 (1H, dd, J = 4.8, 8.7 Hz), 6.73 (1H, d, J = 6.9 Hz), 7.42 (4H, brs), 7.98 (2H, m).

IR (KBr) cm⁻¹: 3379, 3213, 1775, 1645, 1577, 1542, 1446, 1360, 1308, 1235, 1184, 1156, 1065, 1035.

 $MS(ESI): 597^{+}(M+H)^{+}$.

. 元素分析 C₂₁H₂₁ClN₈O₇S₂·3.1 H₂O.

5 計算值: C,38.63; H,4.20; N,17.16; Cl,5.43; S,9.82 (%).

実験値: C,38.51; H,3.83; N,17.22; Cl,5.41; S,9.75 (%).

実施例35

10

20

¹H-NMR (d₆-DMSO) δ : 1.40 (3H, d, J = 7.1 Hz), 3.09 and 3.48 (2H, ABq, J = 17.7 Hz), 4.57 (1H, q, J = 7.1 Hz), 4.85 and 5.22 (2H, ABq, J = 13.8 Hz), 5.09 (1H, d, J = 4.9 Hz), 5.76 (1H, dd, J = 4.9 Hz), 6.58 (2H, brs), 6.95 (1H, d, J = 6.5 Hz), 7.40 (2H, s), 7.96 (2H,brs), 8.28 (1H, d, J = 6.5 Hz), 8.82 (1H, brs), 9.25 (1H, brs), 9.77 (1H, brs).

IR (KBr) cm⁻¹: 3364, 3205, 1775, 1657, 1540, 1493, 1447, 1355, 1270, 1182, 1146, 1109, 1066, 1034.

15 MS(ESI): $640^+(M+H)^+$.

元素分析 $C_{22}H_{22}CIN_9O_8S_2 \cdot 3.0 H_2O$.

計算值: C,38.07; H,4.07; N,18.16; Cl,5.11; S,9.24 (%).

実験値: C,37.72; H,3.67; N,17.97; Cl,5.03; S,9.02 (%).

実施例36

¹H-NMR (d_{6} -DMSO) δ : 1.36 (3H, d, J = 7.0 Hz), 3.10 and 3.54 (2H, ABq, J = 17.6 Hz), 4.55 (1H, q, J = 7.0 Hz), 5.14 (1H, d, J = 5.0 Hz), 5.20 and 5.68 (2H, ABq, J = 13.8 Hz), 5.77 (1H, dd, J = 5.0, 9.1 Hz), 7.40 (2H, brs), 8.18 (1H, d, J = 6.6 Hz), 8.83 (1H, brs), 8.87 (1H, d,

J = 6.6 Hz), 9.68 (1H, d, J = 9.1 Hz), 9.80 (1H, brs).

IR (KBr) cm⁻¹: 3412, 1777, 1614, 1539, 1444, 1377, 1305, 1187, 1108, 1066, 1036.

 $MS(ESI): 607^{+}(M+H)^{+}$.

元素分析 C₂₂H₁₉ClN₈O₇S₂·2.7H₂O.

5 計算値: C,40.30; H,3.75; N,17.09; Cl,5.41; S,9.78 (%).

実験値: C,40.22; H,3.55; N,17.05; Cl,5.35; S,9.57 (%).

実施例37

10

20

¹H-NMR (d₆-DMSO) δ : 1.38 (3H, d, J = 7.1 Hz), 3.07 and 3.49 (2H, ABq, J = 17.4 Hz), 4.57 (1H, q, J = 7.1 Hz), 5.09 (1H, d, J = 4.8 Hz), 5.12 and 5.55 (2H, ABq, J = 13.5 Hz), 5.75 (1H, dd, J = 4.8, 8.2 Hz), 7.41 (2H, s), 7.48 (1H, d, J = 6.2 Hz), 8.70 (1H, d, J = 6.2 Hz), 8.90 (1H, brs), 9.62 (1H, d, J = 8.2 Hz).

IR (KBr) cm⁻¹: 3421, 3195, 3088, 2988, 1776, 1720, 1639, 1532, 1375, 1237, 1175, 1137, 1066, 1035...

15 MS(ESI): $651^+(M+H)^+$.

元素分析 $C_{23}H_{19}CIN_8O_9S_2 \cdot 3.1H_2O$.

計算值: C,39.08; H,3.59; N,15.85; Cl,5.02; S,9.07 (%).

実験値: C,39.05; H,3.44; N,15.81; Cl,4.84; S,8.83 (%).

実施例38

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 6.9 Hz), 3.06 and 3.49 (2H, ABq, J = 17.6 Hz), 4.51 (1H, q, J = 6.9 Hz), 5.06 (1H, d, J = 4.7 Hz), 5.04 and 5.61 (2H, ABq, J = 12.9 Hz), 5.71 (1H, dd, J = 4.7, 8.9 Hz), 7.42 (2H, s), 8.40 (1H, d, J = 6.2 Hz), 8.64 (2H, s), 8.91 (1H, d, J = 6.2 Hz), 8.64 (2H, s), 8.91 (1H, d, J = 6.2 Hz), 8.64 (2H, s), 8.91 (1H, d, J = 6.2 Hz), 8.64 (2H, s), 8.91 (1H, d, J = 6.2 Hz), 8.64 (2H, s), 8.91 (1H, d, J = 6.2 Hz), 8.64 (2H, s), 8.91 (1H, d, J = 6.2 Hz), 8.91 (1H, d, J = 6.

6.2 Hz), 9.39 (1H, s), 9.60 (1H, brs).

IR (KBr) cm⁻¹: 3399, 3191, 1775, 1638, 1537, 1478, 1391, 1317, 1273, 1236, 1187, 1089, ...

 $MS(ESI): 639^{+}(M+H)^{+}$.

5 元素分析 C₂₂H₁₉ClN₈O₇S₃·3.4H₂O

計算值: C,37.73; H,3.71; N,16.00; Cl,5.06; S,13.74 (%).

実験値: C,37.61; H,3.35; N,16.12; Cl,4.92; S,13.56 (%).

実施例39.

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 6.9 Hz), 3.06 and 3.50 (2H, ABq, J = 17.7 Hz), 4.53 (1H, q, J = 6.9 Hz), 5.06 (1H, d, J = 4.7 Hz), 4.91 and 5.45 (2H, ABq, J = 12.5 Hz), 5.70 (1H, dd, J = 4.7, 8.79 Hz), 6.85 (1H,s), 7.01 (1H, s), 7.41 (2H, s), 7.96 (1H, s), 8.15 (2H, d, J = 5.7 Hz), 9.08 (2H, d, J = 5.7 Hz), 9.73 (1H, brs), 11.85 (1H, brs).

IR (KBr) cm⁻¹: 3410, 1774, 1636, 1560, 1474, 1354, 1218, 1152, 1107, 1037.

15 $MS(ESI): 632^+(M+H)^+$.

元素分析 $C_{25}H_{22}CIN_7O_7S_2 \cdot 8.4H_2O$.

計算值: C,38.33; H,3.99; N,12.52; Cl,4.53; S,8.19 (%).

実験値: C,37.89; H,3.62; N,12.41; Cl,4.41; S,7.93 (%).

実施例40

20

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 7.1 Hz), 2.96 and 3.26 (2H, ABq, J = 17.6 Hz), 4.02 (3H, s), 4.50 (2H, brs), 4.98 (1H, d, J = 4.8 Hz), 5.67 (1H, brs), 7.34 (1H,d, J = 3.0 Hz), 7.41 (2H, brs), 7.78 (1H d, J = 6.0 Hz), 8.29 (1H, d, J = 3.0 Hz), 8.75 (1H, d, J = 7.9 Hz),

9.13 (1H, d, J = 6.0, 7.9 Hz), 9.75 (1H, δ rs).

IR (KBr) cm⁻¹: 3412, 1775, 1673, 1613, 1538, 1501, 1470, 1392, 1368, 1324, 1281, 1221, ...
1152, 1063, 1035...

 $MS(ESI): 620^{+}(M+H)^{+}$.

5 元素分析 C₂₃H₂₀ClN₇O₇S₂·2.1H₂O.

計算值: C,42.90; H,3.79; N,15.23; Cl,5.51; S,9.96 (%).

実験値: C,42.91; H,3.76; N,15.34; Cl,5.47; S,9.90 (%).

実施例41

¹H-NMR (d_6 -DMSO) δ : 1.37 (3H, d, J = 7.1 Hz), 3.03 and 3.28 (2H, ABq, J = 17.4 Hz), 4.56 (1H, q, J = 7.1 Hz), 5.01 (1H, d, J = 4.8 Hz), 5.69 (3H, m), 7.32 (1H,d, J = 2.9 Hz), 7.41 (2H, s), 7.67 (1H t-like), 8.27 (1H, d, J = 2.9 Hz), 8.60 (1H, d, J = 8.4 Hz), 9.06 (1H, d, J = 5.7 Hz), 9.68 (1H, brs), 13.45 (1H, brs).

IR (KBr) cm⁻¹: 3410, 2938, 1777, 1673, 1613, 1537, 1457, 1385, 1361, 1225, 1185, 1156,

15 1114, 1033.

 $MS(ESI): 606^{+}(M+H)^{+}$.

元素分析 $C_{23}H_{20}ClN_7O_7S_2 \cdot 2.5H_2O$.

計算值: C,42.43; H,3.87; N,15.06; Cl,5.45; S,9.85 (%).

実験値: C,42.44; H,3.69; N,14.90; Cl,5.24; S,9.94 (%).

20 実施例42

¹H-NMR (_{D20}) δ : 1.55 (3H, d, J = 7.1 Hz), 2.19 (6H, t-like), 3.39-3.56 (7H, m), 3.89 (1H, d, J = 16.8 Hz), 3.93 (1H, d, J = 13.9 Hz), 4.62 (1H, d, J = 13.9 Hz), 4.86 (1H, m), 5.36 (1H, d, J = 13.9 Hz)

= 5.0 Hz), 5.90 (1H, d, J = 5.6 Hz).

IR (KBr) cm⁻¹: 3371, 1779, 1671, 1614, 1538, 1466, 1389, 1343, 1236, 1183, 1099, 1070, 1035.

 $MS(ESI): 642^{+}(M+H)^{+}$.

5 元素分析 C₂₄H₂₈ClN₇O₈S₂·5.6H₂O.

計算值: C,38.80; H,5.32; N,13.20; Cl,4.77; S,8.63 (%).

実験値: C,38.57; H,4.76; N,13.24; Cl,4.56; S,8.32 (%).

実施例43

¹H-NMR (d₆-DMSO) δ : 1.31 (3H, d, J = 7.1 Hz), 1.44 (3H, t, J = 7.2 Hz), 2.96 and 3.25 (2H, ABq, J = 17.1 Hz), 4.32 (1H, q, J = 7.1 Hz), 4.45 (2H, q, J = 7.2 Hz), 4.93 (1H, d, J = 5.1 Hz), 5.68 (2H, t-like), 5.75 (1H, dd, J = 5.1, 9.0 Hz), 7.31 (2H,s), 7.39 (1H, d, J = 3.5 Hz), 7.78 (1H, dd, J = 6.1, 8.1 Hz), 8.37 (1H, d, J = 3.5 Hz), 8.81 (1H, d, J = 8.1 Hz), 9.21 (1H, d, J = 6.1 Hz), 12.10 (1H, d, J = 9.0 Hz).

15 IR (KBr) cm⁻¹: 3409, 2982, 1772, 1604, 1539, 1496, 1460, 1394, 1362, 1317, 1289, 1230, 1185, 1153, 1106, 1033.

 $MS(ESI): 634^{+}(M+H)^{+}$.

元素分析 C₂₅H₂₃ClN₇N_aO₇S₂·3.7H₂O.

計算值: C,41.55; H,4.24; N,13.57; Cl,4.91; S,8.87; Na,3.18 (%).

20 実験値: C,41.48; H,3.96; N,13.60; Cl,4.84; S,8.87; Na, 3.26 (%).

実施例44

 $^{1}\text{H-NMR}$ (d₆-DMSO) δ : 1.35 (3H, d, J = 6.9 Hz), 3.12 and 3.49 (2H, ABq, J = 17.9 Hz),

4.54 (1H, q, J = 6.9 Hz), 5.12 (1H, d, J = 4.8 Hz), 5.57 and 5.68 (2H, ABq, J = 14.1 Hz), 5.81 (1H, dd, J = 4.8, 8.9 Hz), 7.42 (2H,s), 7.52 (1H, t-like), 8.55 (2H, brs), 8.71 (1H, d, J = 6.6 Hz), 9.54 (1H, d, J = 8.9 Hz).

IR (KBr) cm⁻¹: 3416, 1777, 1674, 1608, 1538, 1449, 1387, 1311, 1230, 1187, 1158, 1102,

5 1072, 1032.

 $MS(ESI): 607^{+}(M+H)^{+}$.

元素分析 C₂₂H₁₉CIN₈O₇S₂·2.3H₂O.

計算值: C,40.75; H,3.67; N,17.28; Cl,5.47; S,9.89 (%).

実験値: C,40.72; H,3.55; N,17.35; Cl,5.51; S,9.90 (%).

10 実施例 4 5

¹H-NMR (d₆-DMSO) δ : 1.34 (3H, d, J = 6.9 Hz), 3.00 and 3.51 (2H, ABq, J = 17.6 Hz), 4.07 (3H, s), 4.53 (1H, q, J = 6.9 Hz), 5.02 (1H, d, J = 5.4 Hz), 5.68-5.74 (3H, m), 7.41 (2H,s), 7.97 (1H, t-like), 8.89 (1H, d, J = 7.8 Hz), 9.04 (1H, s), 9.66 (2H, m).

15 IR (KBr) cm⁻¹: 3416, 1778, 1674, 1615, 1538, 1497, 1464, 1362, 1316, 1266, 1235, 1188, 1155, 1100, 1063, 1033.

 $MS(ESI): 621^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₁ClN₈O₇S₂·2.3H₂O.

計算值: C,41.70; H,3.89; N,16.91; Cl,5.35; S,9.68 (%).

20 実験値: C,41.67; H,3.85; N,16.90; Cl,5.27; S,9.60 (%).

実施例46

$$\begin{array}{c|c} H_2N & & & \\ & & & \\ N & & & \\ & & & \\ Me^{m} & & & \\ & & & \\ CO_2H & & & \\ \end{array}$$

¹H-NMR (D₂O) δ : 1.43 (3H, d, J = 7.2 Hz), 2.35 (2H, m), 3.12 (2H, t-like), 3.19 and 3.68

(2H, ABq, J = 17.7 Hz), 4.61 (3H, q-like), 5.28 (1H, d, J = 5.1 Hz), 5.33 and 5.67 (2H, ABq, J = 14.7 Hz), 5.86 (1H, d, J = 5.1 Hz), 8.21 (1H, d, J = 6.3 Hz), 8.70 (1H, d, J = 6.3 Hz), 8.90 (1H, brs), 9.71 (1H, s).

IR (KBr) cm⁻¹: 3410, 1773, 1606, 1538, 1478, 1450, 1384, 1315, 1284, 1214, 1170, 1117,

5 1083, 1033...

 $MS(ESI): 664^{+}(M+H)^{+}$.

元素分析 C₂₅H₂₆ClN₉O₇S₂·3.6H₂O.

計算值: C,41.19; H,4.59; N,17.29; Cl,4.86; S,8.80(%).

実験値: C,41.25; H,4.49; N,17.07; Cl,4.87; S,8.50 (%).

10 実施例 4 7

15

s).

 1 H-NMR (D₂O) δ : 1.42 (3H, d, J = 6.9 Hz), 2.34 (2H, m), 3.10 (2H, t-like), 3.18 and 3.63 (2H, ABq, J = 17.9 Hz), 4.55-4.67 (3H, m), 5.27(1H, d, J = 5.0 Hz), 5.35 and 5.66 (2H, ABq, J = 14.3 Hz), 5.87 (1H, d, J = 5.0 Hz), 8.22 (1H, d, J = 6.9 Hz), 8.79 (2H, d,-like), 9.49 (1H,

IR (KBr) cm⁻¹: 3410, 1773, 1606, 1539, 1515, 1458, 1395, 1363, 1310, 1216, 1185, 1137, 1107, 1066, 1033.

 $MS(ESI): 664^{+}(M+H)^{+}$.

元素分析 $C_{25}H_{26}CIN_9O_7S_2 \cdot 3.2H_2O$.

20 . 計算值: C,41.60; H,4.52; N,17.47; Cl,4.91; S,8.89 (%).

実験値: C,41.63; H,4.48; N,17.40; Cl,4.82; S,8.73 (%).

$$\begin{array}{c} H_2N - \begin{array}{c} S & CI_0 \\ N & N \\ \end{array} \\ Me^{III} \\ CO_2H \\ \end{array} \\ \begin{array}{c} CO_2 \\ \end{array} \\ HN-N \\ \end{array} \\ NH_2$$

¹H-NMR (d₆-DMSO) δ : 1.34 (3H, d, \Im = 6.9 Hz), 2.84 and 3.51 (2H, ABq, J = 17.4 Hz), 4.51 (1H, q, J = 6.9 Hz), 5.11 (1H, d, J = 4.6 Hz), 5.14 and 5.54 (2H, ABq, J = 14.4 Hz), 5.72 (1H, dd, J = 4.6, 9.0 Hz), 6.59 (1H, brs), 7.34-7.40 (3H, m), 8.77 (2H, d,-like), 9.58 (1H, brs). IR (KBr) cm⁻¹: 3414, 1774, 1638, 1574, 1538, 1446, 1391, 1367, 1334, 1227, 1182, 1078,

5 1036.

 $MS(ESI): 662^{+}(M+H)^{+}$.

元素分析 C₂₂H₂₀ClN₉O₇S₂·2.4H₂O.

計算值: C,39.72; H,3.76; N,18.95; Cl,5.33; S,9.649 (%).

実験値: C,39.77; H,3.69; N,19.04; Cl,5.27; S,9.49 (%).

10 実施例 4 9

15

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 7.0 Hz), 3.09 and 3.51 (2H, ABq, J = 17.6 Hz), 4.54 (1H, q, J = 7.0 Hz), 4.99 and 5.51 (2H, ABq, J = 12.8 Hz), 5.70 (1H, dd, J = 4.7, 8.7 Hz), 7.42 (2H, s), 8.30 (2H, d, J = 6.5 Hz), 8.59 (2H, brs), 9.58 (1H, d, J = 8.7 Hz), 13.7 (1H, brs). IR (KBr) cm⁻¹: 3314, 3194, 1777, 1671, 1637, 1570, 1538, 1470, 1391, 1344, 1285, 1221, 1156, 1100, 1065, 1034.

 $MS(ESI): 633^{+}(M+H)^{+}.$

元素分析 $C_{24}H_{21}ClN_8O_7S_2 \cdot 2.5H_2O$.

計算值: C,42.51; H,3.86; N,16.52; Cl,5.23; S,9.46 (%).

20 実験値: C,42.44; H,3.67; N,16.68; Cl,5.36; S,9.36 (%).

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, \mathfrak{F} = 7.1 Hz), 3.09 and 3.51 (2H, ABq, J = 17.4 Hz), 4.76 (1H, q, J = 7.1 Hz), 4.94 and 5.49 (2H, ABq, J = 12.5 Hz), 5.07 (1H, d, J = 4.7 Hz), 5.72 (1H, dd, J = 4.7, 8.6 Hz), 7.27 (1H, brs), 7.41 (2H, s), 7.62 (1H, brs), 7.94 (1H, brs), 8.06 (1H, brs), 8.18 (2H, d, J = 5.9 Hz), 9.16 (2H, d, J = 5.9 Hz), 9.81 (1H, brs), 12.5 (1H, brs).

5 IR (KBr) cm⁻¹: 3402, 1775, 1718, 1636, 1608, 1570, 1550, 1441, 1393, 1343, 1288, 1220, 1150, 1035.

 $MS(ESI): 675^{+}(M+H)^{+}.$

元素分析 C₂₆H₂₃ClN₈O₈S₂·5.1H₂O.

計算值: C,40.72; H,4.36; N,14.61; Cl,4.62; S,8.36 (%).

10 実験値: C40 56; H,3.97; N,14.44; Cl,5.09; S,8.05(%).

実施例51

15

$$\begin{array}{c|c} H_2N & S & CIO \\ N & N & N \\ N & N & N \\ N & O & N \\ Me^{11} & CO_2H & CO_2^{-1} \end{array}$$

¹H-NMR (d₆-DMSO) δ : 1.34 (3H, d, J = 7.0 Hz), 3.05 and 3.61 (2H, ABq, J = 17.9 Hz), 4.52 (1H, q, J = 7.0 Hz), 4.82 and 5.37 (2H, ABq, J = 14.4 Hz), 5.14 (1H, d, J = 5.0 Hz), 5.76 (1H, dd, J = 5.0, 8.9 Hz), 7.37 (2H, brs), 7.43 (1H, d, J = 6.9 Hz), 8.40 (2H, brs), 8.42 (1H, d, J = 6.9 Hz), 9.63 (2H, brs).

IR (KBr) cm⁻¹: 3336, 3192, 1774, 1662, 1617, 1573, 1539, 1489, 1393, 1332, 1246, 1188, 1153, 1119, 1066, 1034.

 $MS(ESI): 622^{+}(M+H)^{+}$.

20 元素分析 C₂₂H₂₀CIN₉O₇S₂·1.9H₂O.

計算值: C,40.26; H,3.66; N,19.21; Cl,5.40; S,9.77 (%).

実験値: C,40.48; H,3.69; N,19.26; Cl,5.10; S,9.48 (%).

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 7.0 Hz), 3.18 and 3.52 (2H, ABq, J = 18.0 Hz), 4.56 (1H, q, J = 7.0 Hz), 5.11 (2H. m), 5.48 (1H, q, J = 13.8 Hz), 5.81 (1H, q, J = 4.7, 8.8 Hz), 7.12 (1H, rs), 7.41 (2H, s), 7.53 (1H, s), 7.83 (1H, d, J = 6.0 Hz), 8.38 (1H, d, J = 6.0 Hz), 9.24 (1H, brs), 9.63 (1H, d, J = 8.8 Hz).

IR (KBr) cm⁻¹: 3420, 1778, 1672, 1623, 1535, 1480, 1445, 1395, 1308, 1184, 1154, 1131, 1065, 1035.

 $MS(ESI): 649^{+}(M+H)^{+}$.

元素分析 $C_{25}H_{21}CIN_6O_9S_2 \cdot 2.1H_2O$.

10 計算值: C,43.71; H,3.70; N,12.23; Cl,5.16; S,9.34 (%).

実験値: C,44.06; H,3.69; N,12.31; Cl,5.00; S,9.94 (%).

実施例53

5

 1 H-NMR (d₆-DMSO) δ : 1.35 (3H, d, J = 7.0 Hz), 3.04 and 3.50 (2H, ABq, J = 17.7 Hz), 4.54 (1H, q, J = 7.0 Hz), 5.08 (1H, d, J = 5.1 Hz), 5.15 and 5.65 (2H, ABq, J = 13.7 Hz), 5.73 (1H, dd, J = 5.1, 8.6 Hz), 7.01 (1H, d, J = 3.3 Hz), 7.42 (2H, s), 7.94 (1H, d, J = 3.3 Hz), 8.03 (1H, d, J = 6.6 Hz), 8.88 (1H, d, J = 6.6 Hz), 9.71 (1H, brs), 13.4 (1H, brs).

IR (KBr) cm⁻¹: 3395, 3009, 2937, 1777, 1673, 1632, 1537, 1484, 1445, 1378, 1359, 1227, 1187, 1153, 1117, 1065, 1034.

20 MS(ESI): $606^+(M+H)^+$.

元素分析 C₂₃H₂₀ClN₇O₇S₂·2.2H₂O.

計算值: C,42.78; H,3.81; N,15.19; Cl,5.49; S,9.93 (%).

実験値: C,42.87; H,3.81; N,15.20; Cl,5.30; S,9.86 (%).

実施例54

5

¹H-NMR (d₆-DMSO) δ : 1.41 (3H, d, J = 7.0 Hz), 2.97 and 3.21 (2H, ABq, J = 17.6 Hz), 3.58 (2H, brs), 4.58 (1H, q, J = 7.0 Hz), 5.06 (1H, d, J = 4.9 Hz), 5.10 and 5.23 (2H, ABq, J = 15.9 Hz), 5.70 (1H, dd, J = 4.9, 8.6 Hz), 5.83 (1H, d, J = 3.0 Hz), 7.26 (2H, s), 7.43 (2H, s), 8.08 (1H, d, J = 3.0Hz), 9.75 (1H, brs).

IR (KBr) cm⁻¹: 3411, 2939, 1775, 1635, 1537, 1456, 1325, 1221, 1151, 1097, 1036.

 $MS(ESI): 615^{+}(M+H)^{+}$.

元素分析 C₂₁H₂₃ClN₈O₈S₂·2.6H₂O.

10 計算值: C,38.11; H,4.29; N,16.93; Cl,5.36; S,9.69 (%).

実験値: C,38.04; H,3.93; N,16.67; Cl,5.49; S,9.68 (%).

実施例55

¹H-NMR (d₆-DMSO) δ : 1.30 (3H, d, J = 7.0 Hz), 2.76 and 3.57 (2H, ABq, J = 18.0 Hz), 4.48 (1H, q, J = 7.0 Hz), 5.13 (1H, d, J = 4.9 Hz), 5.24 and 5.90 (2H, ABq, J = 14.3 Hz), 5.72 (1H, dd, J = 4.9, 8.4 Hz), 6.89 (1H, d, J = 3.3 Hz), 7.40 (2H, s), 7.58 (1H, dd, J = 6.0, 7.8 Hz), 7.92 (1H, d, J = 3.3 Hz), 8.71 (2H, m), 9.54 (1H, d, J = 8.4 Hz).

IR (KBr) cm⁻¹: 3413, 2934, 2718, 1777, 1675, 1616, 1537, 1480, 1461, 1362, 1230, 1189, 1112, 1034.

20 MS(ESI): 606⁺ (M+H)⁺.

元素分析 C₂₃H₂₀ClN₇O₇S₂·2.3H₂O.

計算值: C,42.67; H,3.83; N,15.14; Cl,5.48; S,9.90 (%).

実験値: C,42.65; H,3.82; N,15.18; Cl,5.40; S,9.74 (%).

実施例 5 6

5

15

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 7.1 Hz), 3.15 and 3.52 (2H, ABq, J = 17.7 Hz), 4.56 (1H, q, J = 7.1 Hz), 5.10 (1H, d, J = 4.9 Hz), 5.36 (2H, brs), 5.80 (1H, dd, J = 4.9, 8.6 Hz), 7.11 (1H, t, J = 7.2 Hz), 7.69 (1H, d, J = 7.2 Hz), 8.42 (3H, m), 9.84 (1H, brs).

IR (KBr) cm⁻¹: 3352, 3151, 2712, 1772, 1665, 1607, 1583, 1543, 1490, 1443, 1408, 1390, 1368, 1341, 1300, 1211, 1160, 1106, 1083, 1060, 1031.

 $MS(ESI): 622^{+}(M+H)^{+}.$

元素分析 C₂₂H₂₀ClN₉O₇S₂·3.0H₂O.

10 計算值: C,39.08; H,3.88; N,18.65; Cl,5.24; S,9.49 (%).

実験値: C,39.26; H,3.83; N,18.75; Cl,5.33; S,9.19 (%).

実施例 5 7

¹H-NMR (d₆-DMSO) δ : 1.34 (3H, d, J = 6.9 Hz), 2.97 and 3.48 (2H, ABq, J = 17.6 Hz), 3.98 (3H,s), 4.52 (1H, q, J = 6.9 Hz), 5.05-5.12 (2H, m), 5.63-5.72 (2H, m), 7.09 (1H, d, J = 3.1 Hz), 7.42 (2H, s), 7.94 (1H, d, J = 3.1 Hz), 8.17 (1H, d, J = 7.1 Hz), 9.49 (1H, d, J = 7.1 Hz), 9.64 (1H, brs), 9.7 (1H, brs).

IR (KBr) cm⁻¹: 3406, 3073, 2945, 1778, 1675, 1631, 1538, 1447, 1361, 1324, 1254, 1227, 1184, 1132, 1106, 1065, 1033.

20 MS(FAB): $620 (M+H)^+$.

元素分析 C₂₄H₂₂ClN₇O₇S₂·2.4H₂O.

計算值: C,43.46; H,4.07; N,14.78; Cl,5.34; S,9.67 (%).

実験値: C,43.45; H,4.03; N,14.88; Cl,5.25; S,9.55 (%).

実施例 5 8

¹H-NMR (d₆-DMSO) δ : 1.35 (3H, d, J = 6.9 Hz), 3.04 and 3.56 (2H, ABq, J = 17.6 Hz), 4.53 (1H, q, J = 7.0 Hz), 5.09-5.15 (2H, m), 5.68-5.76 (2H, m), 6.92 (1H, d, J = 2.7 Hz), 7.40 (2H, s), 8.11 (1H, d, J = 6.9 Hz), 8.30 (1H, d, J = 2.7 Hz), 8.55 (1H, d, J = 6.9 Hz), 9.84 (2H, brs), 14.7 (1H, brs).

IR (KBr) cm⁻¹: 3326, 3195, 2938, 1777, 1674, 1612, 1537, 1461, 1375, 1312, 1234, 1187, 1145, 1065, 1034.

10 MS(ESI): $606 (M+H)^+$.

元素分析 C₂₃H₂₀ClN₇O₇S₂·2.5H₂O.

計算值: C,42.43; H,3.87; N,15.06 Cl,5.45; S,9.85 (%).

実験値: C,42.46; H,3.74; N,15.01; Cl,5.33; S,9.93 (%).

実施例 5 9

15

¹H-NMR (d₆-DMSO) δ : 1.34 (3H, d, J = 7.0 Hz), 3.08 and 3.49 (2H, ABq, J = 17.6 Hz), 4.04 (3H, s), 4.52 (1H, q, J = 7.0 Hz), 5.05-5.12 (2H, m), 5.66-5.72 (2H, m), 6.92 (1H, d, J = 2.9 Hz), 7.42 (2H, brs), 8.14 (1H, d, J = 6.8 Hz), 8.28 (1H, d, J = 2.9 Hz), 8.97 (1H, d, J = 6.8 Hz), 9.64 (1H, brs), 9,80 (1H, brs).

20 IR (KBr) cm⁻¹: 3410, 1777, 1676, 1614, 1537, 1486, 1447, 1423, 1378, 1326, 1260, 1230, 1161, 1096, 1065, 1033.

 $MS(ESI): 620 (M+H)^{+}$.

元素分析 C₂₄H₂₂ClN₇O₇S₂·2.4H₂O.

計算值: C,43.46; H,4.07; N,14.78; Cl,5.34; S,9.67 (%).

実験値: C,43.47; H,3.97; N,14.79; Cl,5.21; S,9.59 (%).

実施例60

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 7.1 Hz), 3.15 and 3.34 (2H, ABq, J = 17.6 Hz), 4.56 (1H, q, J = 7.1 Hz), 5.05 (1H, d, J = 4.8 Hz), 5.47 (1H, d, J = 14.1 Hz), 5.72-5.78 (2H, m), 7.41 (2H, brs), 7.84 (1H, dd, J = 5.9, 8.1 Hz), 8.21 (1H, d, J = 8.1 Hz), 8.83 (1H, d, J = 5.9 Hz), 8.89 (2H, brs), 9.87 (1H, brs).

IR (KBr) cm⁻¹: 3312, 3189, 1778, 1630, 1537, 1426, 1386, 1341, 1308, 1214, 1186, 1129,

10 1064, 1034.

 $MS(FAB): 639^{+}(M+H)^{+}$.

元素分析 C₂₂H₁₉ClN₈O₇S₃·3.2H₂O.

計算值: C,37.92; H,3.67; N,16.08; Cl,5.09; S,13.81(%).

実験値: C,37.95; H,3.60; N,16.04; Cl,5.07; S,13.60 (%).

15 実施例 6 1

1271, 1179, 1100, 1065, 1034.

¹H-NMR (d₆-DMSO) δ: 1.35 (3H, d, J = 7.0 Hz), 2.90 and 3.46 (2H, ABq, J = 17.6 Hz), 3.66 (3H, s), 4.53 (1H, q, J = 7.0 Hz), 4.96 and 5.56 (2H, ABq, J = 13.7 Hz), 5.06 (1H, d, J = 4.9 Hz), 5.69 (1H, dd, J = 4.9, 8.9 Hz), 7.42 (2H, brs), 7.73 (2H, brs), 7.81 (1H, d, J = 6.6 Hz), 8.81 (1H, d, J = 6.6 Hz), 9.63 (1H, brs).

IR (KBr) cm⁻¹: 3346, 3180, 1775, 1664, 1613, 1567, 1538, 1508, 1448, 1389, 1352, 1311,

 $MS(FAB): 636^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₂ClN₉O₇S₂·2.7H₂O.

計算值: C,40.35; H,4.03; N,18.41; Cl,5.18; S,9.37 (%).

実験値: C,40.32; H,3.90; N,18.39; Cl,5.14; S,9.35 (%).

5 実施例62

10

¹H-NMR (d₆-DMSO) δ : 1.35 (3H, d, J = 7.0 Hz), 3.03-3.09 (4H, m), 3.61 (1H, d, J = 18.0 Hz), 4.52 (1H, q, J = 7.0 Hz), 4.83 and 5.40 (2H, ABq, J = 14.0 Hz), 5.14 (1H, d, J = 5.0 Hz), 5.77 (1H, dd, J = 5.0, 8.7 Hz), 7.36 (2H, brs), 7.48 (1H, d, J = 6.8 Hz), 8.43 (1H, d, J = 6.8 Hz), 9.33 (1H, brs), 9.59 (1H, brs), 9.70 (1H, brs).

IR (KBr) cm⁻¹: 3370, 1775, 1644, 1579, 1538, 1479, 1394, 1329, 1239, 1188, 1121, 1066, 1034.

 $MS(FAB): 636^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₂ClN₉O₇S₂·2.2H₂O.

15 計算值: C,40.88; H,3.94; N,18.66; Cl,5.25; S,9.49 (%).

実験値: C,41.07; H,4.21; N,18.30; Cl,4.86; S,8.86 (%).

実施例63

¹H-NMR (d₆-DMSO) δ : 1.41 (3H, d, J = 7.0 Hz), 2.16 (3H, s), 3.10 (1H, d, J = 17.1 Hz), 4.59 (1H, q, J = 7.0 Hz), 5.08 (1H, d, J = 5.1 Hz), 5.51 (2H, brs), 5.76 (1H,dd, J = 5.1, 8.4 Hz), 6,87 (1H,s), 7.33 (1H, t-like), 7.39 (2H, brs), 8.01 (1H, brs), 8.59 (1H, d, J = 6.0 Hz), 9.70 (1H, brs), 12.7 (1H, brs).

IR (KBr) cm⁻¹: 3325, 1776, 1653, 1609, 1561, 1470, 1416, 1369, 1352, 1236, 1183, 1158, 1100, 1065, 1032.

 $MS(FAB): 663^{+}(M+H)^{+}$.

元素分析 C₂₅H₂₂ClN₈O₈S₂·3.2H₂O.

5 計算值: C,41.66; H,4.11; N,15.55; Cl,4.92; S,8.90 (%).

実験値: C,41.79; H,4.14; N,15.37; Cl,4.82; S,8.75 (%).

実施例 6 4

¹H-NMR (d₆-DMSO) δ : 1.36 (3H, d, J = 7.1 Hz), 2.98 and 3.50 (2H, ABq, J = 17.3 Hz), 3.21 (6H,s), 4.54 (1H, q, J = 7.1 Hz), 5.00 and 5.48 (2H, ABq, J = 13.5 Hz), 5.16 (1H, d, J = 4.8 Hz), 5.72 (1H, dd, J = 4.8, 9.0 Hz), 7.39 (2H, brs), 7.49 (1H, d, J = 6.9 Hz), 8.44 (1H, d, J = 6.9 Hz), 9.09 (1H, brs), 9.85 (1H, brs).

IR (KBr) cm⁻¹: 3413, 2938, 1777, 1639, 1557, 1538, 1440, 1391, 1335, 1247, 1190, 1150, 1121, 1065, 1034.

15 MS(FAB): $650^+(M+H)^+$.

元素分析 $C_{24}H_{24}CIN_9O_7S_2 \cdot 3.2H_2O$.

計算值: C,40.73; H,4.33; N,17.81; Cl,5.01; S,9.06 (%).

実験値: C,40.73; H,4.24; N,17.75; Cl,5.08; S,9.10 (%).

実施例 6 5

20

$$\begin{array}{c|c} H_2N & & & N \\ \hline & N & N \\ \hline & N & & N \\ \hline &$$

 1 H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.1 Hz), 2.82 (3H, s), 3.36 and 3.75 (2H, ABq, J = 18.5 Hz), 4.72 (2H, t, J = 6.5 Hz), 4.99 (1H, q, J = 7.1 Hz), 5.36 (1H, d, J = 4.8 Hz), 5.40 and 5.86 (2H, ABq, J = 14.9 Hz), 5.94 (1H, d, J = 4.8 Hz), 8.09 (1H, d, J = 6.8 Hz), 8.83 (1H, d, J

= 6.8 Hz), 9.06 (1H, s).

IR (KBr) cm⁻¹: 3370, 3174, 1771, 1667, 1606, 1541, 1504, 1449, 1399, 1360, 1312, 1281, 1184, 1113, 1067, 1035.

 $MS(FAB): 679^+(M+H)^+$.

5 元素分析 C₂₅H₂₇ClN₁₀O₇S₂·4.0H₂O.

計算值: C,39.97; H,4.70; N,18.65; Cl,4.72; S,8.54 (%).

実験値: C,40.02; H,4.64; N,18.79; Cl,4.60; S,8.31 (%).

実施例66

¹H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.1 Hz), 3.29- 3.45 (6H, m), 3.69 (1H, d, J = 18.3 Hz), 4.04 (2H, t, J = 6.2 Hz), 4.98 (1H, q, J = 7.1 Hz), 5.28-5.35 (2H, m), 5.70 (1H, s), 5.93 (1H, d, J = 4.8 Hz), 7.68 (1H, d, J = 4.6 Hz), 8.45 (1H, dd, J = 1.2, 4.6 Hz), 8.73 (1H, d, J = 1.2 Hz).

IR (KBr) cm⁻¹: 3397, 1772, 1623, 1578, 1540, 1508, 1446, 1397, 1330, 1247, 1190, 1151,

15 1121, 1066, 1034.

 $MS(FAB): 679^{+}(M+H)^{+}$.

元素分析 C₂₅H₂₇ClN₁₀O₇S₂·4.3H₂O.

計算值: C,39.69; H,4.74; N,18.51; Cl,4.69; S,8.48 (%).

実験値: C,39.77; H,4.70; N,18.43; Cl,4.59; S,8.48 (%).

20 実施例 6 7

$$\begin{array}{c|c} H_2N & & & \\ & N & & \\ & N & & \\ & N & & \\ & & N & \\ & & & \\$$

¹H-NMR ($D_2O + DCl$) δ : 1.54 (3H, d, J = 7.1 Hz), 2.80 (3H, s), 3.29 and 3.66 (2H, ABq, J = 18.3 Hz), 3.41 (2H, t, J = 5.8 Hz), 3.89 (2H, t, J = 5.8 Hz), 4.96 (1H, q, J = 7.1 Hz), 5.27-5.33

(2H, m), 5.61 (1H, d, J = 14.8 Hz), 5.93 (1H, d, J = 4.8 Hz), 7.67 (1H, d, J = 6.8 Hz), 8.43 (1H, d, J = 6.8 Hz), 8.71 (1H,s).

IR (KBr) cm⁻¹: 3388, 1773, 1626, 1540, 1477, 1395, 1361, 1238, 1186, 1152, 1120, 1065, 1035.

5 MS(FAB): 679* (M+H)*.

元素分析 $C_{25}H_{27}CIN_{10}O_7S_2 \cdot 3.7H_2O$.

計算值: C,40.26; H,4.65; N,18.78; Cl,4.75; S,8.60 (%).

実験値: C,40.23; H,4.60; N,18.76; Cl,4.79; S,8.51 (%).

実施例68

10

H₂N S NHMe

¹H-NMR (D₂O) δ : 1.42 (3H, d, J = 6.9 Hz), 2.74 (3H, s), 3.17 (1H, d, J = 18.0 Hz), 3.56-3.61 (3H, m), 4.61-4.76 (3H, m), 5.23-5.31 (2H, m), 5.54 (1H, d, J = 14.7 Hz), 5.56 (1H, d, J = 4.5 Hz), 7.12 (1H, d, J = 3.4 Hz), 7.80 (1H, d, J = 3.4 Hz), 7.99 (1H, d, J = 7.0 Hz), 8.52 (1H, d, J = 7.0 Hz), 9.086 (1H, s).

15 IR (KBr) cm⁻¹: 3398, 2452, 1773, 1604, 1540, 1514, 1494, 1448, 1395, 1363, 1286, 1223, 1187, 1119, 1065, 1034.

 $MS(FAB): 663^{+}(M+H)^{+}$.

元素分析 C₂₆H₂₇ClN₈O₇S₂·4.0H₂O.

計算值: C,42.48; H,4.80; N,15.24; Cl,4.82; S,8.72 (%).

20 実験値: C,42.45; H,4.57; N,15.20; Cl,4.86; S,8.70 (%).

実施例69

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 7.0 Hz), 3.02 and 3.31 (2H ABq, J = 17.7 Hz), 4.57

PCT/JP03/03249 WO 03/078440

dd, J = 4.9, 9.0 Hz), 5.87 (1H, s), 6,84 (1H, t-like), 7.39 (2H, brs), 7.49 (1H, d, J = 7.5 Hz), 7.82 (1H, brs), 8.09 (1H, d, J = 6.6 Hz), 9.86 (1H, brs), 12.9 (1H, brs).

IR (KBr) cm⁻¹: 3338, 3198, 1773, 1640, 1581, 1540, 1497, 1427, 1364, 1329, 1285, 1239,

1192, 1159, 1099, 1034.

 $MS(FAB): 621^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₁ClN₈O₇S₂·2.9H₂O.

計算值: C,41.03; H,4.01; N,16.64; Cl,5.27; S,9.52 (%).

実験値: C,41.01; H,3.90; N,16.64; Cl,5.37; S,9.49 (%).

実施例70 10

15

$$\begin{array}{c|c} H_2N & & & \\ & & & \\ N & & & \\ & & & \\ Me^{III} & & \\ & & & \\ CO_2H & & \\ \end{array}$$

 $^{1}\text{H-NMR}$ (d₆-DMSO) δ : 1.36 (3H, d, J = 7.1 Hz), 3.01 and 3.47 (2H, ABq, J = 17.7 Hz), 3.60 (3H, s), 4.53 (1H, q, J = 7.1 Hz), 4.90 and 5.50 (2H, ABq, J = 13.7 Hz), 5.04 (1H, d, J = 10.0 Hz) 4.9 Hz), 5.69 (1H, dd, J = 4.9, 9.0 Hz), 7.40 (2H, brs), 7.51 (1H, d, J = 6.8 Hz), 8.14 (2H, brs),

8.82 (1H, d, J = 6.8 Hz), 9.13 (1H, brs), 9.68 (1H, brs). IR (KBr) cm⁻¹: 3354, 3190, 1774, 1658, 1557, 1485, 1467, 1389, 1347, 1231, 1162, 1094,

 $MS(FAB): 636^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₂ClN₉O₇S₂·3.2H₂O.

計算值: C,39.82; H,4.13; N,18.17; Cl,5.11; S,9.24 (%). 20

実験値: C,39.85; H,4.07; N,18.08; Cl,5.02; S,9.12 (%).

実施例71

1066, 1035.

$$\begin{array}{c|c} H_2N & & & \\ & N & & \\ & N & & \\ & N & & \\ & Me & & \\ & & CO_2H & & \\ & & & \\ & & NH_2 & \\ \end{array}$$

¹H-NMR (D₂O + DCl) δ : 1.54 (3H, d, J = 7.2 Hz), 3.33 and 3.59 (2H ABq, J = 18.5 Hz), 3.67 (3H, s), 4.99 (1H, q, J = 7.2 Hz), 5.29 (1H, d, J = 4.8 Hz), 5.22 and 5.65 (2H, ABq, J = 15.2 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.33 (1H, dd, J = 6.5, 7.8 Hz), 7.91 (1H, d, J = 7.8 Hz), 8.10 (1H, d, J = 6.5 Hz).

5 IR (KBr) cm⁻¹: 3455, 3351, 3288, 3041, 2949, 2899, 1746, 1699, 1671, 1651, 1625, 1606, 1579, 1533, 1494, 1462, 1447, 1422, 1404, 1364, 1354, 1303, 1275, 1254, 1227, 1209, 1189, 1173, 1155, 1140, 1091, 1076, 1064, 1026.

 $MS(FAB): 636^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₂ClN₉O₇S₂·2.5H₂O.

10 計算值: C,42.82; H,3.59; N,19.54; Cl,5.50; S,9.94 (%).

実験値: C,42.84; H,3.55; N,19.51; Cl,5.43; S,10.00 (%).

実施例72

$$\begin{array}{c|c} H_2N & & Clo \\ N & N & N \\ N & N & N \\ Me^{ii} & CO_2H & CO_2 \end{array}$$

¹H-NMR (d₆-DMSO) δ : 1.37 (3H, d, J = 7.1 Hz), 3.00 and 3.49 (2H, ABq, J = 17.7 Hz), 4.54 (1H, q, J = 7.1 Hz), 5.02 and 5.63 (2H, ABq, J = 13.7 Hz), 5.07 (1H, d, J = 5.0 Hz), 5.72 (1H, dd, J = 5.0, 8.7 Hz), 7.41 (2H, brs), 8.12 (1H, d, J = 7.1 Hz), 8.72 (2H, brs), 9.10 (1H, d, J = 7.1 Hz), 9.45 (1H, brs), 9.55 (1H, d, J = 8.7 Hz).

IR (KBr) cm⁻¹: 3385, 1776, 1692, 1617, 1538, 1492, 1363, 1287, 1223, 1188, 1150, 1103, 1066, 1036.

20 MS(FAB): $623^{+}(M+H)^{+}$.

元素分析 $C_{22}H_{19}CIN_8O_8S_2 \cdot 2.9H_2O$.

計算值: C,39.13; H,3.70; N,16.59; Cl,5.25; S,9.50 (%).

実験値: C,39.04; H,3.55; N,16.69; Cl,5.12; S,9.52 (%).

実施例73

¹H-NMR (d₆-DMSO) δ : 1.38 (3H, d, J = 7.0 Hz), 3.15 and 3.50 (2H, ABq, J = 17.6 Hz), 4.55 (1H, q, J = 7.0 Hz), 5.07 (1H, d, J = 5.1 Hz), 5.11 (1H, d, J = 13.2 Hz), 5.65-5.74 (2H, m), 7.41 (2H, brs), 8.24-8.31 (1H, m), 8.62-8.68 (1H, m), 9.46 (1H, d, J = 6.0 Hz), 9.52 (1H, d, J = 8.7 Hz), 9.89 (1H, brs).

IR (KBr) cm⁻¹: 3411, 3068, 2943, 1778, 1673, 1616, 1538, 1503, 1446, 1390, 1345, 1275, 1189, 1137, 1097, 1065, 1035.

 $MS(FAB): 585^{+}(M+H)^{+}$.

元素分析 C₂₁H₁₈ClFN₆O₇S₂·2.9H₂O.

10 計算值: C,39.58; H,3.76; N,13.19; Cl,5.56; S,10.06 (%).

実験値: C,39.52; H,3.59; N,13.24; Cl,5.65; S,10.25 (%).

実施例74

5

¹H-NMR ($D_2O + DCl$) δ : 1.54 (3H, d, J = 7.1 Hz), 2.78 (3H, s), 3.37 (1H, d, J = 18.3 Hz), 3.54-3.62 (3H, m), 4.57 (2H, t, J = 6.5 Hz), 4.98 (1H, q, J = 7.1 Hz), 5.27 (1H, d, J = 4.8 Hz), 5.49 and 5.71 (2H, ABq, J = 15.2 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.34 (1H,t-like), 8.00 (1H, d, J = 7.8 Hz), 8.17 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3398, 2451, 1771, 1666, 1603, 1562, 1493, 1396, 1362, 1315, 1387, 1224, 1165, 1090, 1034.

20 MS(FAB): $679^+(M+H)^+$.

元素分析 $C_{25}H_{27}CIN_{10}O_7S_2 \cdot 3.6H_2O$.

計算值: C,40.36; H,4.63; N,18.83; Cl,4.77; S,8.62 (%).

実験値: C,40.32; H,4.68; N,18.84; Cl,4.87; S,8.77 (%).

実施例75

5

 1 H-NMR (D₂O + DCl) δ : 1.54 (3H, d, J = 7.1 Hz), 2.64 (3H, s), 3.25 and 3.45 (2H ABq, J = 18.3 Hz), 3.38 (2H, t, J = 5.9 Hz), 3.76 (2H, t, J = 5.9 Hz), 4.98 (1H, q, J = 7.1 Hz), 5.26 (1H, d, J = 4.8 Hz), 5.39 and 5.48 (2H, ABq, J = 15.5 Hz), 5.89 (1H, d, J = 4.8 Hz), 7.10 (1H, t-

like), 7.73 (1H, d, J = 7.8 Hz), 7.94 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3389, 1771, 1590, 1540, 1428, 1395, 1360, 1317, 1284, 1192, 1158, 1113, 1058, 1033.

 $MS(FAB): 678^{+}(M+H)^{+}$.

10 元素分析 C₂₆H₂₈ClN₉O₇S₂·3.3H₂O.

計算值: C,42.34; H,4.73; N,17.09; Cl,4.81; S,8.69 (%).

実験値: C,42.11; H,4.67; N,17.00; Cl,4.94; S,9.09 (%).

実施例76

$$\begin{array}{c|c} H_2N & \stackrel{S}{\longrightarrow} & \stackrel{Cl}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{Me}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{Me}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{Me}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{Me}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{Me}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{H}$$

¹H-NMR (d₆-DMSO) δ : 1.40 (3H, d, J = 7.1 Hz), 2.26 (3H,s), 3.12 and 3.45 (2H, ABq, J = 17.7 Hz), 4.59 (1H, q, J = 7.1 Hz), 5.20 (1H, d, J = 4.9 Hz), 5.78 (1H, dd, J = 4.9, 9.2 Hz), 7.41 (2H, brs), 8.12 (1H, d, J = 6.3 Hz), 8.39 (1H, brs), 8.47 (1H, d, J = 6.3 Hz), 9.60 (1H, d, J = 9.2 Hz), 10.05 (1H, brs).

IR (KBr) cm⁻¹: 3330, 1777, 1674, 1623, 1529, 1475, 1379, 1314, 1230, 1141, 1102, 1066,

20 1036.

 $MS(ESI): 640^{+}(M+H)^{+}$.

元素分析 C₂₃H₂₂ClN₇O₉S₂·2.8H₂O.

計算值: C,40.01; H,4.03; N,14.20; Cl,5.13; S,9.29 (%).

実験值: C,39.92; H,3.90; N,14.32; Cl,5.27; S,9:31 (%).

実施例77

5

15

¹H-NMR (d₆-DMSO) δ : 1.35 (3H, d, J = 6.9 Hz), 3.05 and 3.48 (2H, ABq, J = 17.6 Hz), 4.53 (1H, q, J = 6.9 Hz), 5.06 (1H, d, J = 4.8 Hz), 5.13 (1H, d, J = 13.8 Hz), 5.64-5.73 (2H, m), 7.40 (2H, brs), 7.66 (1H, s), 7.87 (1H, brs), 7.94 (1H, d, J = 6.9 Hz), 8.51 (1H, brs), 8.97 (1H, d, J = 6.9 Hz), 9.62 (1H, brs), 9.81 (1H, brs).

IR (KBr) cm⁻¹: 3327, 3195, 1775, 1677, 1613, 1540, 1375, 1335, 1240, 1182, 1152, 1116, 1066, 1036.

10 MS(ESI): 649+ (M+H)+.

元素分析 C₂₄H₂₁ClN₈O₈S₂·2.4H₂O.

計算值: C,41.64; H,3.76; N,16.19; Cl,5.12; S,9.26 (%).

実験値: C,41.70; H,3.71; N,16.24; Cl,5.00; S,9.063 (%).

実施例78

¹H-NMR (D₂O) δ : 1.43 (3H, d, J = 7.1 Hz), 2.39 (2H, quint. J = 7.8 Hz), 2.72 (3H, s), 3.15 (2H, t, J = 7.8 Hz), 3.26 and 3.62 (2H, ABq, J = 18.0 Hz), 4.59-4.69 (3H, m), 5.23 (1H, d, J = 4.8 Hz), 5.62 (1H, d, J = 14.7 Hz), 5.70-5.75 (2H, m), 7.89 (1H,dd, J = 6.3, 8.3 Hz), 8.78 (1H, d, J = 8.3 Hz), 8.86 (1H, brs), 8.88 (1H, d, J = 6.3 Hz).

20 IR (KBr) cm⁻¹: 3397, 2464, 1773, 1602, 1541, 1490, 1463, 1389, 1313, 1287, 1237, 1187, 1159, 1115, 1064, 1034.

 $MS(ESI): 678^{+}(M+H)^{+}$.

元素分析 C₂₆H₂₈ClN₉O₇S₂·3.7H₂O.

計算值: C,41.93; H,4.79; N,16.93; Cl,4.76; S,8.61 (%).

実験値: C,41.93; H,4.74; N,16.89; Cl,4.53; S,8.58 (%).

実施例79

5 1 H-NMR (D₂O) δ : 1.44 (3H, d, J = 7.0 Hz), 2.20 (2H, m), 2.70 (3H, s), 3.12 (2H, m), 3.24 and 3.50 (2H, ABq, J = 17.9 Hz), 4.22 (2H, t, J = 7.1 Hz), 4.55 (1H, q, J = 7.0 Hz), 5.18 (1H, d, J = 4.8 Hz), 5.25 and 5.56 (2H, ABq, J = 14.7 Hz), 5.84 (1H, d, J = 4.8 Hz), 7.30 (1H, t-like), 7.89 (1H, d, J = 7.8Hz), 8.12 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3363, 3181, 1772, 1651, 1600, 1565, 1494, 1394, 1364, 1315, 1288, 1223,

10 1163, 1091, 1034.

 $MS(ESI): 693^{+}(M+H)^{+}$.

元素分析 C₂₆H₂₉ClN₁₀O₇S₂·2.9H₂O.

計算值: C,41.89; H,4.71; N,18.79; Cl,4.76; S,8.60 (%).

実験值: C,41.93; H,4.73; N,18.81; Cl,4.51; S,8.51 (%).

15 実施例80

 1 H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.1 Hz), 3.35 and 3.63 (2H ABq, J = 18.9 Hz), 5.39 (1H, d, J = 5.1 Hz), 5.98 (1H, d, J = 5.1 Hz), 6.03 and 6.24 (2H, ABq, J = 15.6 Hz), 8.40 (1H, dd, J = 5.7, 8.7 Hz), 9.04 (1H, d, J = 9.3 Hz), 9.29 (1H, d, J = 8.7 Hz), 9.17-9.20 (2H, m).

20 IR (KBr) cm⁻¹: 3411, 3197, 1778, 1675, 1617, 1538, 1521, 1456, 1376, 1339, 1285, 1230, 1189, 1152, 1098, 1066, 1035.

 $MS(ESI): 618^{+}(M+H)^{+}.$

元素分析 C₂₄H₂₀ClN₇O₇S₂·3.0H₂O.

計算值: C,42.89; H,3.90; N,14.59; Cl,5.28; S,9.54 (%).

実験値: C,42.91; H,3.97; N,12.66; Cl,5.18; S,9.51 (%).

実施例81

$$\begin{array}{c|c} H_2N & & & \\ & & & \\ N & & & \\ N & & & \\ N & & & \\ Me^{iii} & & \\ CO_2H & & & \\ \end{array} \begin{array}{c} N & & \\ N & &$$

 1 H-NMR (D₂O + DCl) δ: 1.55 (3H, d, J = 7.2 Hz), 2.80 (3H, s), 3.38 and 3.77.(2H, ABq, J = 18.9 Hz), 3.38 (3H, s), 3.45 (3H, s), 3.64 (2H, t, J = 5.7 Hz), 4.76 (2H, t, J = 5.7 Hz), 4.99 (1H, q, J = 7.2 Hz), 5.37 (1H, d, J = 4.8 Hz), 5.42 and 5.88 (2H, ABq, J = 14.6 Hz), 5.95 (1H, d, J = 4.8 Hz), 8.13 (1H, d, J = 7.0 Hz), 8.68 (1H, brs), 8.84 (1H, dd, J = 1.2, 7.0 Hz), 9.14 (1H, d, J = 1.2 Hz).

10 IR (KBr) cm⁻¹: 3406, 1773, 1632, 1535, 1497, 1421, 1389, 1352, 1308, 1237, 1183, 1114, 1065, 1034.

 $MS(FAB): 734^{+}(M+H)^{+}$.

元素分析 $C_{28}H_{32}CIN_{11}O_7S_2 \cdot 5.5H_2O$.

計算值: C,40.36; H,5.20; N,18.49; Cl,4.25; S,7.70 (%).

15 実験値: C,40.38; H,5.03; N,18.36; Cl,4.52; S,7.89 (%).

実施例82

20

¹H-NMR (D₂O + DCl) δ : 1.44 (3H, d, J = 6.9 Hz), 2.39 (2H, m), 2.73 (3H, s), 3.23 (2H, m), 3.30 and 3.68 (2H, ABq, J = 18.0 Hz), 4.59-4.69 (3H, m), 5.24 (1H, d, J = 5.0 Hz), 5.67 and 5.93 (2H, ABq, J = 14.7 Hz), 5.88 (1H, d, J = 5.0 Hz), 8.09 (1H,dd, J = 8.2, 6.1 Hz), 8.99 (1H, d, J = 8.2 Hz), 9.12 (1H, d, J = 6.1 Hz).

IR (KBr) cm⁻¹: 3403, 2467, 1776, 1604, 1540, 1482, 1458, 1437, 1394, 1352, 1317, 1269, 1195, 1155, 1121, 1096, 1065, 1034.

 $MS(FAB): 7462^{+}(M+H)^{+}.$

元素分析 $C_{27}H_{27}C1F_3N_9O_7S_2\cdot 3.7H_2O$.

計算值: C,39.90; H,4.27; N,15.51; Cl,4.36; S,7.89 (%).

実験値: C,39.98; H,4.33; N,15.51; Cl,4.12; S,7.73 (%).

5 実施例83

10

$$\begin{array}{c|c} H_2N & & & \\ & N & & \\ & N$$

¹H-NMR (D₂O + DCl) δ : 1.56 (3H, d, J = 6.9 Hz), 2.50 (2H, m), 2.77 (3H, s), 3.33 (2H, m), 3.59 and 3.72 (2H, ABq, J = 18.3 Hz), 4.93-5.04 (3H, m), 5.27 (1H, d, J = 5.1 Hz), 5.77 and 6.28 (2H, ABq, J = 14.9 Hz), 5.92 (1H, d, J = 5.1 Hz), 8.05 (1H,dd, J = 8.4, 6.3 Hz), 8.99 (1H, d, J = 8.4 Hz), 9.03(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹: 3400, 1776, 1604, 1539, 1450, 1392, 1350, 1321, 1287, 1224, 1159, 1063, 1033.

 $MS(FAB): 794^{+}(M+H)^{+}$.

元素分析 C₂₇H₂₇Cl₄N₉O₇S₂·3.3H₂O.

15 計算值: C,37.93; H,3.96; N,14.74; Cl,16.59; S,7.50 (%).

実験値: C,38.26; H,4.00; N,14.96; Cl,15.25; S,7.46 (%).

実施例84

$$\begin{array}{c|c} H_2N & & & & \\ & N & & & \\ & N & & & \\ & N & & & \\ & Me^{11} & CO_2H & CO_2^{-1} \end{array}$$

¹H-NMR (d₆-DMSO) δ: 1.37 (3H, d, J = 7.1 Hz), 3.02 and 3.48 (2H, ABq, J = 17.9 Hz), 20 4.54 (1H, q, J = 7.1 Hz), 4.90 and 5.50 (2H, ABq, J = 13.5 Hz), 5.05 (1H, d, J = 4.8 Hz), 5.70 (1H, dd, J = 4.8, 8.7 Hz), 7.41 (2H, brs), 7.69 (1H, d, J = 6.8 Hz), 9.01 (1H, d, J = 6.8 Hz), 9.33 (2H, brs), 9.58 (2H, brs).

IR (KBr) cm⁻¹: 3393, 1776, 1687, 1615, 1559, 1513, 1484, 1377, 1326, 1284, 1213, 1188,

1154, 1106, 1066, 1034.

 $MS(FAB): 623^{+}(M+H)^{+}$.

元素分析 C₂₂H₁₉ClN₈O₈S₂·2.7H₂O.

計算值: C,39.34; H,3.66; N,16.68; Cl,5.28; S,9.55 (%).

5 実験値: C,39.35; H,3.67; N,16.61; Cl,5.26; S,9.48 (%).

実施例85

10

20

$$\begin{array}{c|c} H_2N & S & Clo \\ N & N & N \\ N & O & N \\ Me & CO_2H & CO_2 \end{array}$$

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 6.9 Hz), 2.95 and 3.42 (2H ABq, J = 17.4 Hz), 4.55 (1H, q, J = 6.9 Hz), 4.73 and 5.21 (2H, ABq, J = 13.8 Hz), 5.13 (1H, d, J = 4.8 Hz), 5.71 (1H, dd, J = 4.8, 8.7 Hz), 6.73 (1H, d, J = 6.9 Hz), 7.40 (2H, brs), 7.99 (1H, d, J = 6.9 Hz), 8.27 (1H, brs), 9.79 (1H, brs).

IR (KBr) cm⁻¹: 3343, 3202, 1776, 1644, 1546, 1446, 1370, 1309, 1258, 1179, 1147, 1065, 1036.

 $MS(FAB): 598^{+}(M+H)^{+}$.

15 元素分析 C₂₁H₂₀CIN₇O₇S₂·2.6H₂O.

計算值: C,39.11; H,3.949; N,15.20; Cl,5.50; S,9.94 (%).

実験値: C,39.18; H,3.74; N,15.14; Cl,5.38; S,9.82 (%).

実施例86

¹H-NMR (D₂O + DCl) δ : 1.44 (3H, d, J = 7.1 Hz), 2.80 (3H, s), 3.20 and 3.53 (2H, ABq, J = 17.9 Hz), 3.75 (2H, t, J = 5.5 Hz), 4.66 (1H, q, J = 7.1 Hz), 5.03 (2H, t, J = 5.5 Hz), 5.23 (1H, d, J = 5.0 Hz), 5.79 (2H, s), 5.88 (1H, d, J = 5.0 Hz), 8.07 (1H, dd, J = 8.7, 5.8 Hz), 8.82 (1H, s), 8.96 (1H, d, J = 8.7 Hz), 9.05 (1H, d, J = 5.8 Hz).

IR (KBr) cm⁻¹: 3408, 1773, 1604, 1540, 1476, 1447, 1394, 1352, 1316, 1289, 1222, 1187, 1159, 1080, 1034.

 $MS(FAB): 664^{+}(M+H)^{+}$.

元素分析 C₂₅26₉ClN₉O₇S₂·3.0H₂O.

5 計算值: C,41.81; H,4.49; N,17.55; Cl,4.94; S,8.93 (%).

実験値: C,41.86; H,4.45; N,17.66; Cl,4.81; S,8.71 (%).

実施例87

¹H-NMR (D₂O + DCl) δ: 1.44 (3H, d, J = 7.1 Hz), 2.78 (3H, s), 3.11 and 3.52 (2H, ABq, J = 17.9 Hz), 3.78 (2H, t, J = 5.6 Hz), 4.66 (1H, q, J = 7.1 Hz), 5.09 (2H, t, J = 5.6 Hz), 5.23 (1H, d, J = 4.8 Hz), 5.63 and 5.81 (2H, ABq, J = 15.2 Hz), 5.85 (1H, d, J = 4.8 Hz), 7.95 (1H, dd, J = 9.0, 5.4 Hz), 8.97 (1H, d, J = 9.0 Hz), 9.07 (1H, d, J = 5.4 Hz), 9.21 (1H, brs).

IR (KBr) cm⁻¹: 3408, 1773, 1603, 1540, 1476, 1447, 1394, 1352, 1316, 1289, 1223, 1187,

15 MS(FAB): $664^+(M+H)^+$.

1159, 1080, 1034.

元素分析 $C_{25}H_{26}ClN_9O_7S_2 \cdot 3.1H_2O$.

計算值: C,41.71; H,4.51; N,17.51; Cl,4.92; S,8.91 (%).

実験値: C,41.75; H,4.39; N,17.57; Cl,4.64; S,8.71 (%).

実施例88

20

¹H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.2 Hz), 2.85 (3H, s), 3.53 and 3.80 (2H, ABq, J = 18.0 Hz), 3.91 (2H, t, J = 6.0 Hz), 5.34 (1H, d, J = 4.8 Hz), 5.40 (2H, t, J = 6.0 Hz), 5.96 (1H, d, J = 4.8 Hz), 6.07 and 6.29 (2H, ABq, J = 15.0 Hz), 8.28 (1H,dd, J = 5.4, 8.4 Hz), 9.25 (1H,

d, J = 8.4 Hz), 9.34(1H, d, J = 5.4 Hz).

 $MS(ESI): 655(M+H)^{+}$.

5 元素分析 C₂₄H₂₅ClN₁₀O₇S₂·3.6H₂O.

計算值: C,39.49; H,4.45; N,19.19; Cl,4.86; S,8.79 (%).

実験値: C,39.50; H,4.42; N,19.21; Cl,4.80; S,8.67 (%).

実施例89

¹H-NMR (D₂O) δ : 1.44 (3H, d, J = 7.0 Hz), 2.22 (2H, m), 2.70 (3H, s), 3.08 (2H, m), 3.27 and 3.51 (2H, ABq, J = 18.0 Hz), 3.36 (6H, s), 4.36 (2H, t,-like), 5.16 (1H, d, J = 4.5 Hz), 5.22 and 5.67 (2H, ABq, J = 14.7 Hz), 5.83 (1H, d, J = 4.5 Hz), 7.26 (1H, t-like), 7.85 (1H, d, J = 7.8 Hz), 8.08 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3399, 1773, 1629, 1584, 1541, 1501, 1419, 1350, 1320, 1226, 1167, 1137,

15 1064, 1033.

 $MS(FAB): 721^{+}(M+H)^{+}$.

元素分析 C₂₈H₃₃ClN₁₀O₇S₂·3.0H₂O.

計算值: C,43.38; H,5.07; N,18.07; Cl,4.57; S,8.27 (%).

実験値: C,43.43; H,5.05; N,18.07; Cl,4.36; S,8.10 (%).

20 実施例90

 1 H-NMR (D₂O+DCl) δ : 1.56 (3H, d, J = 7.5 Hz), 2.22 (2H, m), 2.72 (3H, s), 3.12-3.18 (5H, m), 3.46 and 3.60 (2H, ABq, J = 18.5 Hz), 4.22 (2H, t, J = 7.5 Hz), 5.01 (1H, q, J = 7.5 Hz),

5.27 (1H, d, J = 4.8 Hz), 5.27 (1H, d, J = 4.8 Hz), 5.43 (1H, d, J = 15.0 Hz), 5.85-5.91 (2H, m), 7.32 (1H, dd, J = 6.7, 7.6 Hz), 7.92 (1H, d, J = 7.6 Hz), 8.10 (1H, d, J = 6.7 Hz).

IR (KBr) cm⁻¹: 3398, 1773, 1642, 1596, 1541, 1496, 1412, 1392, 1366, 1316, 1222, 1165, 1139, 1099, 1064, 1034.

5 MS(ESI): $707^+(M+H)^+$.

元素分析 C₂₇H₃₁ClN₁₀O₇S₂·3.5H₂O.

計算值: C,42.10; H,4.97; N,18.18; Cl,4.60; S,8.33 (%).

実験值: C,42.09; H,4.97; N,18.19; Cl,4.44; S,8.18 (%).

実施例 9 1

10

 $\begin{array}{c|c} H_2N & & & \\ & & & \\ N & & & \\ Me & & & \\ CO_2H & & \\ \end{array}$

¹H-NMR (D₂O+DCl) δ : 1.55 (3H, d, J = 7.2 Hz), 2.33 (2H, d-like), 2.61 (2H, q-like), 3.25-3.39 (3H, m), 3.60 (1H, d, J = 18.3 Hz), 3.72 (2H, d-like), 4.99 (1H, q, J = 7.2 Hz), 5.29 (1H, d, J = 4.9 Hz), 5.50 and 5.69 (2H, ABq, J = 15.0 Hz), 5.92 (1H, d, J = 4.9 Hz), 7.33 (1H, t-

like), 8.14 (2H, m).

15 IR (KBr) cm⁻¹: 3380, 3182, 1772, 1601, 1555, 1491, 1440, 1395, 1362, 1317, 1287, 1225, 1169, 1092, 1033.

 $MS(ESI): 705^{+}(M+H)^{+}$.

元素分析 C₂₇H₂₉ClN₁₀O₇S₂·4.5H₂O.

計算值: C,41.25; H,4.87; N,17.81; Cl,4.51; S,8.16 (%).

20 実験値: C,41.38; H,4.79; N,17.71; Cl,4.19; S,7.50 (%).

実施例92

¹H-NMR (D₂O + DCl) δ : 1.36 (3H, d, J = 7.1 Hz), 1.55 (3H, t, J = 7.3 Hz), 2.38 (2H, d-like), 2.62-2.72 (2H,m), 3.27-3.35 (2H m), 3.44 (1H, d., J = 18.6 Hz), 3.68-3.74 (3H, m), 4.37 (2H, q, J = 7.3 Hz), 4.99 (1H, q, J = 7.1 Hz), 5.31 (1H, d, J = 5.1 Hz), 5.73 (1H, d, J = 15.1 Hz), 5.90-5.95 (2H, m), 7.74 (1H, dd, J = 6.6, 7.9 Hz), 8.63 (1H, d, J = 6.6 Hz), 8.69 (1H, d, J = 7.9 Hz).

IR (KBr) cm⁻¹: 3409, 2982, 2527, 1775, 1607, 1538, 1468, 1385, 1283, 1223, 1174, 1094, 1033.

 $MS(ESI): 777^{+}(M+H)^{+}$.

元素分析 C₃₀H₃₃ClN₁₀O₉S₂·4.8H₂O.

10 計算值: C,41.72; H,4.97; N,16.22; Cl,4.10; S,7.43 (%).

実験値: C,41.68; H,4.86; N,16.33; Cl,4.08; S,7.46 (%).

実施例93

5

¹H-NMR (D₂O+DCl) δ : 1.56 (3H, d, J = 5.4 Hz), 2.38 (2H, m), 2.74 (3H, s), 3.19 (2H, m), 3.54 (2H, m), 4.9 6(3H, m), 5.19 (1H, brs), 5.62-6.32 (2H, m), 5.87 (1H, brs), 7.99 (1H, m), 8.93 (1H, d, J = 7.5 Hz), 9.01(1H, d, J = 5.7 Hz).

IR (KBr) cm⁻¹: 3399, 1771, 1698, 1667, 1602, 1540, 1460, 1394, 1358, 1327, 1287, 1221, 1187, 1152, 1082, 1061, 1034.

 $MS(ESI): 721^{+}(M+H^{+})$.

20 元素分析 C,,H,,ClN,O,S,·5.0 H,O.

計算值: C,39.97; H,4.85; N,17.27; C1,4.37; S,7.91(%).

実験値: C,39.88; H,4.45; N,17.07; Cl,4.40; S,7.99(%).

実施例94

¹H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.1 Hz), 2.79 (3H, s), 3.35 and 3.54 (2H, ABq, J = 18.5 Hz), 3.54 (2H, t, J = 5.6 Hz), 4.44 (2H, t, J = 5.6 Hz), 4.99 (1H, q, J = 7.1 Hz), 5.36 (1H, d, J = 5.0 Hz), 5.31 and 5.79 (2H, ABq, J = 14.7 Hz), 5.94 (1H, d, J = 5.0 Hz), 7.79 (1H, d, J = 6.7 Hz), 8.65 (1H, dd, J = 1.2, 6.7 Hz), 8.72 (1H, brs).

IR (KBr) cm⁻¹: 3395, 3086, 1748, 1660, 1611, 1528, 1448, 1396, 1353, 1313, 1288, 1212, 1188, 1156, 1136, 1111, 1106, 1035.

 $MS(ESI): 680^{+}(M+H)^{+}$.

元素分析 C₂₅H₂₆ClN₉O₈S₂·3.4H₂O.

10 計算值: C,40.50; H,4.46; N,17.00; Cl,4.78; S,8.56 (%).

実験値: C,40.73; H,4.45; N,17.10; Cl,4.65; S,8.35 (%).

実施例 9 5

¹H-NMR (D₂O + DCl) δ : 1.56 (3H, d, J = 7.1 Hz), 2.79 (3H, s), 3.31 and 3.66 (2H, ABq, J = 18.3 Hz), 3.40 (2H, t, J = 5.9 Hz), 3.85 (2H, t, J = 5.9 Hz), 4.96-5.03 (2H, m), 5.33 (1H, d, J = 5.1 Hz), 5.41 (1H, d, J = 14.7 Hz), 5.93 (1H, d, J = 5.1 Hz), 6.95 (1H, d, J = 7.2 Hz), 7.71 (1H, d, J = 1.8 Hz), 8.05 (1H, dd, J = 1.8, 7.2 Hz).

IR (KBr) cm⁻¹: 3368, 1773, 1627, 1556, 1455, 1395, 1349, 1321, 1287, 1190, 1158, 1093, 1065, 1034.

20 MS(ESI): $654^{+}(M+H)^{+}$.

元素分析 $C_{24}H_{28}CIN_9O_7S_2 \cdot 3.1H_2O_9$

計算值: C,40.60; H,4.86; N,17.76; Cl,4.993; S,9.03 (%).

実験値: C,40.63; H,4.81; N,17.74; Cl,4.891; S,8.88 (%).

実施例96

5

¹H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.0 Hz), 2.21-2.32 (2H, m), 3.20-3.25 (4H, m), 3.37 and 3.61 (2H, ABq, J = 18.5 Hz), 3.83 (2H, t, J = 5.0 Hz), 4.29 (2H, t, J = 7.1 Hz), 4.99 (1H, q, J = 7.0 Hz), 5.29 (1H, d, J = 4.5 Hz), 5.50 and 5.68 (2H, ABq, J = 15.2 Hz), 5.92 (1H, d, J = 4.5 Hz), 7.34 (2H, t-like), 7.66 (1H, d, J = 7.8 Hz), 8.13 (1H, d, J = 6.6 Hz). IR (KBr) cm⁻¹: 3368, 1773, 1627, 1556, 1455, 1395, 1349, 1321, 1287, 1090, 1158, 1093, 1065, 1034.

 $MS(ESI): 723^{+}(M+H)^{+}$.

10 元素分析 C₂₇H₃₁ClN₁₀O₈S₂·2.8H₂O.

計算值: C,41.92; H,4.77; N,18.11; Cl,4.58; S,8.29 (%).

実験値: C,41.93; H,4.73; N,18.06; Cl,4.46; S,8.17 (%).

実施例 9 7

$$\begin{array}{c|c} H_2N & \stackrel{S}{\longrightarrow} & \stackrel{Cl}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{N}{\longrightarrow} &$$

¹H-NMR (D₂O + DCl) δ: 1.43 (3H, d, J = 6.9 Hz), 1.55 (3H, d, J = 7.2 Hz), 2.78 (3H, s), 3.40 and 3.61 (2H, ABq, J = 18.6 Hz), 3.83-3.95 (1H, m), 4.39-4.60 (2H, m), 5.00 (1H, q, J = 6.9 Hz), 5.29 (1H, d, J = 4.8Hz), 5.51 and 5.72 (2H, ABq, J = 15.2 Hz), 5.92 (1H, d, J = 4.8 Hz), 7.34 (1H, dd, J = 6.9, 8.1 Hz), 8.02 (1H, d, J = 8.1 Hz), 8.18 (1H, d, J = 6.9 Hz).

IR (KBr) cm⁻¹: 3372, 3185, 1772, 1667, 1600, 1563, 1493, 1394, 1353, 1317, 1287, 1225,

20 1166, 1090, 1033.

 $MS(ESI): 693(M+H)^{+}$.

元素分析 C₂₆H₂₉ClN₁₀O₇S₂·2.7H₂O.

計算值: C,42.10; H,4.67; N,18.88; Cl,4.78; S,8.65 (%).

実験値: C,42.15; H,4.72; N,18.88; Cl,4.61; S,8.40 (%).

実施例98

5

15

20

¹H-NMR (D₂O+DCl) δ : 1.44 (3H, d, J = 6.3 Hz), 1.55 (3H, d, J = 7.2 Hz), 3.38 and 3.59 (2H, ABq, J = 18.6 Hz), 3.96 (1H, m), 4.41 (2H, d, J = 5.7 Hz), 4.98 (1H, q, J = 7.2), 5.27 (1H, d, J = 4.7 Hz), 5.47 and 5.71 (2H, ABq, J = 14.6 Hz), 5.91 (1H, d, J = 4.7 Hz), 7.35 (1H, m), 8.00 (1H, d, J = 8.1 Hz), 8.17 (1H, d, J = 6.9 Hz).

IR (KBr) cm⁻¹: 3358, 3184, 1771, 1651, 1563, 1494, 1396, 1365, 1317, 1288, 1225, 1166, 1090, 1034.

10 MS(ESI): $679^{+}(M+H^{+})$.

元素分析 C,,H,,ClN100,S,·2.9 H,O.

計算值: C,41.06; H,4.52; N,19.15; Cl,4.85; S,8.77(%).

実験値: C,41.06; H,4.46; N,19.14; Cl,4.75; S,8.62(%).

実施例99

¹H-NMR (d₆-DMSO) δ : 1.36 (3H, d, J = 7.0 Hz), 2.96 and 3.47 (2H, ABq, J = 17.7 Hz), 3.26 (2H, brs), 4.21 (2H, brs), 4.53 (1H, q, J = 7.0 Hz), 5.03 (1H, q, J = 5.1 Hz), 5.26 and 5.38 (2H, ABq, J = 13.5 Hz), 5.72 (1H, dd, J = 5.1, 9.0 Hz), 6.67 (2H, brs), 6.83 (1H, brs), 7.30 (1H, t-like), 7.41 (2H, brs), 7.93 (1H d, J = 7.5 Hz), 8.51 (1H, brs), 8.81 (1H, d, J = 6.6 Hz), 9.80 (1H, brs).

IR (KBr) cm⁻¹: 3382, 3194, 1766, 1667, 1651, 1609, 1568, 1496, 1444, 1389, 1345, 1304, 1214, 1156, 1076, 1036.

 $MS(ESI): 744^{+}(M+H)^{+}$.

元素分析 C₂₄H₂₆ClN₁₁O₉S₃·3.0H₂O.

計算值: C,36.11; H,4.04; N,19.30; Cl,4.44; S,12.05 (%).

実験値: C,35.88; H,3.93; N,19.18; Cl,4.54; S,12.17 (%).

実施例100

5

20

¹H-NMR (D₂O + DCl) δ : 1.54 (3H, d, J = 6.9 Hz), 3.36 and 3.61 (2H, ABq, J = 18.6 Hz), 3.97 (2H, t, J = 4.8 Hz), 4.30 (2H, t, J = 4.8 Hz), 5.29 (1H, d, J = 4.8 Hz), 5.54 and 5.68 (2H, ABq, J = 15.3 Hz), 5.92 (1H, d, J = 4.8 Hz), 7.34 (1H, t-like), 7.97 (1H d, J = 7.8 Hz), 8.14 (1H, d, J = 6.9 Hz).

10 IR (KBr) cm⁻¹: 3357, 3190, 1758, 1669, 1648, 1618, 1574, 1540, 1492, 1460, 1443, 1412, 1395, 1362, 1342, 1297, 1265, 1236, 1210, 1168, 1074, 1028.

 $MS(ESI): 666^{+}(M+H)^{+}$.

元素分析 C₂₄H₂₄ClN₉O₈S₂·1.7H₂O.

計算值: C,41.37; H,3.96; N,18.09; Cl,5.09; S,9.20 (%).

15 実験値: C,41.53; H,3.80; N,18.19; Cl,4.64; S,8.79 (%).

実施例101

$$\begin{array}{c|c} H_2N & \begin{array}{c} S & Cl & H \\ N & N & N \\ N & O & N \\ \end{array} \\ Me^{in} & \begin{array}{c} CO_2H & CO_2 \end{array} \\ \end{array} \\ NH_2 \\ \end{array}$$

¹H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.1Hz), 2.20 (2H, m), 3.37 (1H, d, J = 18.3 Hz), 3.50- 3.64 (2H, m), 3.77 (1H, dd, J = 6.0, 12.3 Hz), 3.94 (1H, dd, J = 4.2, 12.3 Hz), 4.30 (2H, t, J = 7.8 Hz), 5.30 (1H, d, J = 4.8 Hz), 5.51 and 5.68 (2H, ABq, J = 15.2 Hz), 5.92 (1H, d, J = 4.8 Hz), 7.35 (1H, t-like), 8.00 (1H d, J = 7.8 Hz), 8.14 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3613, 3415, 3339, 3191, 1763, 1703, 1670, 1620, 1570, 1532, 1497, 1443, 1392, 1357, 1345, 1309, 1289, 1265, 1214, 1168, 1154, 1084, 1061, 1029.

 $MS(ESI): 709^{+}(M+H)^{+}$.

元素分析 C₂₆H₂₉ClN₁₀O8₇S₂·2.3H₂O.

計算值: C,41.60; H,4.51; N,18.66; Cl,4.72; S,8.54 (%).

実験値: C,41.66; H,4.19; N,18.68; Cl,4.65; S,7.87 (%).

5 実施例102

10

¹H-NMR (D₂O + DCl) δ : 1.55 (3H, d, J = 7.2 Hz), 2.13 (3H, s), 2.17-2.35 (2H, m), 3.38 and 3.61 (2H, ABq, J = 18.6 Hz), 3.74-3.81 (1H, m), 4.24-4.44 (4H, m), 4.99 (1H, q, J = 7.2 Hz), 5.29 (1H, d, J = 4.8 Hz), 5.51 and 5.69 (2H, ABq, J = 15.0 Hz), 5.92 (1H, d, J = 4.8 Hz), 7.36 (1H, dd, J = 6.6, 8.1 Hz), 8.00 (1H d, J = 8.1 Hz), 8.15 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3371, 3182, 1773, 1651, 1604, 1562, 1495, 1393, 1367, 1317, 1285, 1229, 1166, 1035.

 $MS(ESI): 751^{+}(M+H)^{+}$.

元素分析 C₂₈H₃₁CIN₁₀O₉S₂·3.4H₂O.

15 計算值: C,41.39; H,4.69; N,17.24; Cl,4.36; S,7.89 (%).

実験値: C,41.23; H,4.31; N,17.10; Cl,4.01; S,7.97 (%).

実施例103

¹H-NMR (D₂O+DCl) δ : 1.55 (3H, d, J = 7.5 Hz), 3.37-3.57 (4H, m), 3.67 (3H, s), 3.93-4.02 (2H, m), 5.00 (1H, sept, J = 7.5 Hz), 5.25 (1H, d, J = 5.1 Hz), 5.46 and 5.93 (2H, ABq, J = 15.0 Hz), 5.91 (1H, d, J = 5.1), 7.53 (1H, t, J = 6.6 Hz), 7.94 (1H, d, J = 6.6 Hz), 8.15 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹:3309, 1773, 1636, 1598, 1539, 1501, 1452, 1390, 1357, 1317, 1285, 1142,

1093, 1072, 1034, 988.

 $MS(ESI): 693^{+}(M+H)^{+}$.

元素分析 C₂₆H₂₉ClN₁₀O₇S₂·3.9 H₂O.

計算值: C,41.89; H,4.71; N,18.79; Cl,4.76; S,8.60(%).

5 実験値: C,42.03; H,4.98; N,18.70; Cl,4.60; S,8.57(%).

実施例104

¹H-NMR (D₂O+DCl) δ: 1.54 (3H, d, J = 7.2 Hz), 2.17-2.30 (2H, m), 2.72 (3H, s), 3.11-3.20 (2H, m), 3.36 and 3.66 (2H, ABq, J = 18.3 Hz), 3.94 (3H, s), 4.18-4.27 (2H, m), 4.97 (1H, sept, J = 7.2 Hz), 5.30 (1H, d, J = 5.1 Hz), 5.60 and 5.73 (2H, ABq, J = 15.2 Hz), 5.92 (1H, d, J = 5.1 Hz), 7.44-7.50 (1H, m), 8.14 (1H, d, J = 8.1 Hz), 8.28 (1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3398, 1775, 1599, 1490, 1393, 1315, 1223, 1162, 1095, 1063, 1035, 968.

MS(ESI): 723⁺ (M+H)⁺.

元素分析 C₂₇H₃₁ClN₁₀O₈S₂·3.7 H₂O.

15 計算値: C,41.06; H,4.90; N,17.73; Cl,4.49; S,8.12(%).

実験値: C,41.11; H,4.67; N,17.59; Cl,4.59; S,8.01(%).

実施例105

¹H-NMR (D₂O + DCl) δ: 1.45 (3H, d, J = 6.9 Hz), 2.18 (3H, s), 2.76 (3H, s), 3.15 and 3.55 20 (2H, ABq, J = 18.0 Hz), 3.34 (2H, t, J = 6.0 Hz), 3.80 (2H, t, J = 6.0 Hz), 4.68 (1H, q, J = 6.9 Hz), 4.89 and 5.09 (2H, ABq, J = 14.7 Hz), 5.23 (1H, d, J = 4.8 Hz), 5.85 (1H, d, J = 4.8 Hz), 6.93 (1H, d, J = 7.2 Hz), 8.08 (1H, brs), 8.22 (1H, d, J = 7.2 Hz).

IR (KBr) cm⁻¹: 3383, 1773, 1649, 1554, 1449, 1395, 1288, 1213, 1190, 1154, 1094, 1065, 1035.

 $MS(ESI): 653^{+}(M+H)^{+}$.

元素分析 C₂₅H₂₉ClN₈O₇S₂·3.0H₂O.

5 計算值: C,42.46; H,4.99; N,1585; Cl,5.01; S,9.07(%).

実験値: C,42.47; H,4.77; N,15.81; Cl,5.86; S,8.84 (%).

実施例106

10

¹H-NMR (D₂O + DCl) δ : 1.45 (3H, d, J = 7.2 Hz), 2.76 (3H, s), 3.16 and 3.58 (2H, ABq, J = 17.4 Hz), 3.36 (2H, t, J = 6.3 Hz), 3.82 (2H, t, J = 6.3 Hz), 4.64-4.72 (3H, m), 4.91 and 5.13 (2H, ABq, J = 14.7 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 7.02 (1H, d, J = 7.5 Hz), 8.24 (1H, brs), 8.29(1H, d, J = 7.5 Hz).

IR (KBr) cm⁻¹: 3366, 1772, 1651, 1588, 1551, 1457, 1395, 1288, 1205, 1150, 1094, 1035.
MS(ESI): 669⁺ (M+H)⁺.

15 元素分析 C₂₅H₂₉ClN₈O₈S₂·3.3H₂O.

計算值: C,41.21; H,4.93; N,15.38; Cl,4.87; S,8.80 (%).

実験値: C,41.38; H,4.73; N,15.53; Cl,4.77; S,8.51 (%).

実施例107

¹H-NMR (D₂O+DCl) δ : 1.56 (3H, d, J = 6.9 Hz), 2.18-2.31 (2H, m), 2.71 (3H, s), 3.11-3.19 (2H, m), 3.43 and 3.51 (2H, ABq, J = 17.9 Hz), 4.25-4.35 (2H, m), 4.43 (2H, s), 4.18 (1H, sept, J = 6.9 Hz), 5.20 (1H, d, J = 4.8 Hz), 5.35 and 5.91 (2H, ABq, J = 15.2 Hz), 5.90 (1H, d, J = 4.8 Hz), 7.34-7.40 (1H, m), 8.02 (1H, d, J = 7.5 Hz), 8.18 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹:3409, 1774, 1635, 1593, 1540, 1496, 1390, 1314, 1228, 1188, 1165, 1112, 1073, 1034, 984, 759.

 $MS(FAB): 751^{+}(M+H)^{+}$.

元素分析 C₂₈H₃₁ClN₁₀O₉S₂·2.3 H₂O.

5 計算值: C,42.43; H,4.53; N,17.67; Cl,4.47; S,8.09(%).

実験値: C,42.50; H,4.16; N,17.66; Cl,4.40; S,7.88(%).

実施例108

¹H-NMR (D₂O+DCl) δ : 1.43 (3H, d, J = 6.9 Hz), 1.55 (3H, d, J = 7.1 Hz), 2.17 (2H, m), 3.35 and 3.59 (2H, ABq, J = 18.6 Hz), 3.51 (1H, m), 4.28 (2H, t-ike), 4.97 (1H, q, J = 7.1), 5.27 (1H, d, J = 4.8 Hz), 5.45 and 5.67 (2H, ABq, J = 15.0 Hz), 5.9 1(1H, d, J = 4.8 Hz), 7.3 (1H, t-like), 7.97 (1H, d, J = 7.8 Hz), 8.13 (1H, d, J = 6.9 Hz).

IR (KBr) cm⁻¹: 3408, 1773, 1650, 1601, 1565, 1495, 1395, 1363, 1317, 1287, 1224, 1165, 1090, 1034.

15 MS(ESI): $693^{+}(M+H^{+})$.

元素分析 C1,H2,C1N1,0,S1·3.7 H,0.

計算值: C,41.10; H,4.83; N,18.43; Cl,4.67; S,8.44(%).

実験値: C,41.15; H,4.69; N,18.33; Cl,4.65; S,8.17(%).

実施例109

20

¹H-NMR (D₂O+DCl) δ : 0.97 (3H, t, J = 7.4 Hz), 1.48 (2H, m), 1.55 (3H, d, J = 7.2 Hz), 1.91 (2H, q, J = 7.5 Hz), 2.23 (2H, m), 3.15 (2H, t, J = 7.5 Hz), 3.42 and 3.64 (2H, ABq, J = 18.3 Hz), 3.61 (1H, m), 4.58 (2H, t like), 4.99 (1H, q, J = 7.2), 5.28 (1H, d, J = 4.8 Hz), 5.73

and 6.02 (2H, ABq, J = 15.0 Hz), 5.73 (1H, d, J = 4.8 Hz), 7.79 (1H, t like), 8.67 (1H, d, J = 8.1 Hz), 8.72 (1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹: 3399, 2959, 2872, 1776, 1601, 1540, 1465, 1396, 1349, 1318, 1224, 1161, 1093, 1064, 1033.

5 $MS(ESI): 734^{+}(M+H^{+}).$

元素分析 C₁₀H₃₁C1N₁O₇S₂·3.8 H₂O.

計算值: C,44.89; H,5.47; N,15.70; Cl,4.42; S,7.99(%).

実験値: C,44.79; H,5.22; N,15.82; C1,4.32; S,7.89(%).

実施例110

10

$$\begin{array}{c|c} H_2N & \stackrel{S}{\longrightarrow} & \stackrel{C}{\longrightarrow} & \stackrel{N}{\longrightarrow} &$$

¹H-NMR (D_2O+DCl) δ : 1.53 (3H, d, J = 7.2 Hz), 2.85 (3H, s), 3.39 and 3.80 (2H, ABq, J = 18.6 Hz), 3.88 (2H, t, J = 5.7 Hz), 4.97 (1H, q, J = 7.2 Hz), 5.31 (2H, t, J = 5.7 Hz), 5.37 (1H, d, J = 4.7 Hz), 5.54-6.00 (2H, m), 5.95 (1H, d, J = 4.7 Hz), 8.50 (1H, d, J = 7.2 Hz), 8.96 (1H, d, J = 7.2 Hz), 10.16(1H, s).

15 IR (KBr) cm⁻¹: 3407, 1774, 1609, 1539, 1483, 1447, 1394, 1359, 1287, 1190, 1155, 1104, 1066, 1034.

 $MS(ESI): 665^{\dagger}(M+H^{\dagger}).$

元素分析 C14H25ClN1007S, · 3.2 H20.

計算值: C,39.88; H,4.38; N,19.38; C1,4.91; S,8.87(%).

20 実験値: C,39.93; H,4.02; N,19.34; Cl,4.76; S,8.64(%).

実施例111

¹H-NMR (D₂O+DCl) δ : 1.55 (3H, d, J = 7.2 Hz), 2.68 (2H, m), 3.36 and 3.60 (2H, ABq, J =

18.6 Hz), 3.57 and 3.97 (4H, m), 4.99 (1H, m), 5.29 (1H, d, J = 5.0 Hz), 5.50 and 5.69 (2H, ABq, J = 15.2 Hz), 5.92 (1H, d, J = 5.0 Hz), 7.34 (1H, t like), 8.06 (1H, d, J = 7.5 Hz), 8.16 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3410, 1771, 1606, 1556, 1491, 1440, 1396, 1363, 1319, 1224, 1167, 1092, 1034.

 $MS(FAB): 691^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,,O,S,·4.6 H,O.

計算值: C,40.35; H,4.71; N,18.10; Cl,4.58; S,8.29(%).

実験値: C,40.39; H,4.17; N,17.79; Cl,4.49; S,8.47(%).

10 実施例112

5

15

¹H-NMR (D₂O+DCl) δ : 1.55 (3H, d, J = 7.5 Hz), 3.38 and 3.61 (2H, ABq, J = 18.6 Hz), 4.59-4.68 (2H, m), 4.92-5.03 (2H, m), 5.29 (1H, d, J = 4.8 Hz), 5.51 (1H, d, J = 15.0 Hz), 5.67-5.78 (2H, m), 5.92 (1H, d, J = 4.8 Hz), 7.40 (1H, dd, J = 6.6, 8.1 Hz), 8.21 (1H, d, J = 6.6 Hz), 8.29 (1H, d, J = 8.1 Hz).

IR (KBr) cm⁻¹: 3379, 1770, 1667, 1603, 1559, 1491, 1442, 1398, 1364, 1317, 1287, 1226, 1170, 1092, 1034.

 $MS(ESI): 677^{+}(M+H)^{+}.$

元素分析 C₂₅₂H₂₅ClN₁₀O₇S₂·3.9H₂O.

20 計算值: C,40.18; H,4.42; N,18.74; Cl,4.74; S,8.58 (%).

実験値: C,40.36; H,4.32; N,18.37; Cl,4.76; S,8.39 (%).

実施例113

¹H-NMR (D₂O+DCl) δ : 1.55 (3H, d, J = 7.2 Hz), 1.83-2.37 (4H, m), 3.29-3.62 (4H, m), 4.07 (1H, m), 4.58 (2H, d, J = 7.2 Hz), 4.97 (1H, q, J = 7.2 Hz), 5.27 (1H, d, J = 5.0 Hz), 5.46 and 5.71 (2H, ABq, J = 15.3 Hz), 5.91 (1H, d, J = 5.0 Hz), 7.35 (1H, t-like), 8.02 (1H, d, J = 7.8 Hz), 8.17 (1H, d, J = 6.6 Hz).

5 IR (KBr) cm⁻¹: 3417, 1772, 1650, 1605, 1563, 1494, 1394, 1362, 1317, 1222, 1167, 1093, 1033.

 $MS(ESI): 705^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,,O,S,·4.1 H,O.

計算值: C,41.63; H,4.81; N,17.98; Cl,4.55; S,8.23(%).

10 実験値: C,41.73; H,4.66; N,17.70; Cl,4.74; S,8.37(%).

実施例114

15

 1 H-NMR (D₂O) δ : 1.44 (3H, d, J = 6.9 Hz), 2.75 (3H, s), 3.11 and 3.57 (2H, ABq, J = 17.7 Hz), 3.32 (2H, t, J = 5.9 Hz), 3.51 (2H, t, J = 5.9 Hz), 4.66 (1H, q, J = 6.9 Hz), 4.77 and 5.12 (2H, ABq, J = 14.4 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.69 (1H, d, J = 4.8 Hz), 6.83 (1H, d, J = 6.3 Hz), 7.86-7.89 (2H, m).

IR (KBr) cm⁻¹: 3371, 1773, 1600, 1546, 1492, 1457, 1394, 1358, 1284, 1185, 1157, 1093, 1066, 1034.

 $MS(FAB): 654^{+}(M+H)^{+}$.

20 元素分析 $C_{24}H_{28}CIN_9O_7S_2 \cdot 2.7H_2O$.

計算值: C,41.02; H,4.73; N,17.94; Cl,5.04; S,9.13 (%).

実験値: C,41.14; H,4.53; N,17.91; Cl,4.73; S,8.55 (%).

実施例115

'H-NMR (d_i-DMSO) δ : 1.07-1.18 (2H, m), 1.38 (3H, d, J = 7.2 Hz), 1.38-1.47 (2H, m), 2.20-2.38 (1H, m), 3.02 (1H, d, J = 17.7 Hz), 3.48 (1H, d, J = 17.7 Hz), 4.55 (1H, q, J = 7.2 Hz), 4.99 (1H, d, J = 13.2 Hz), 5.05 (1H, d, J = 4.2 Hz), 5.52 (1H, d, J = 13.2 Hz), 5.70 (1H, dd, J = 4.2, 8.4 Hz), 7.37-7.57 (2H, m), 7.82 (2H, d, J = 6.0 Hz), 9.19 (2H, d, J = 6.0 Hz), 9.58-9.73 (1H, m). IR (KBr) cm⁻¹: 3409, 3053, 1778, 1674, 1637, 1538, 1518, 1475, 1453, 1389, 1353,1215, 1185, 1158, 1100, 1034.

 $MS(FAB): 607^{\dagger}(M+H^{\dagger}).$

10 元素分析 C,,H,,ClN,O,S,·1.9 H,O.

計算值: C,44.95; H,4.21; N,13.10; Cl,5.53; S,10.00(%).

実験値: C,44.93; H,4.35; N,13.09; Cl,5.44; S,10.08(%).

実施例116

5

15 1 H-NMR (1 d₄-DMSO) δ : 1.37 (3H, d, 1 J = 6.9 Hz), 3.11 (1H, d, 1 J = 17.7 Hz), 3.53 (1H, d, 1 J = 17.7 Hz), 4.54 (1H, q, 1 J = 6.9 Hz), 5.07 (1H, d, 1 J = 4.8 Hz), 5.21 (1H, d, 1 J = 13.8 Hz), 5.72 (1H, dd, 1 J = 4.8, 8.4 Hz), 5.77 (1H, d, 1 J = 13.8 Hz), 7.41 (2H, s), 8.73 (2H, d, 1 J = 6.9 Hz), 9.51-9.82 (3H, m).

IR (KBr) cm⁻¹: 3413, 1777, 1671, 1615, 1538, 1510, 1457, 1391, 1346, 1237,

20 1189, 1152, 1103, 1083, 1035.

 $MS(FAB): 635^{+}(M+H^{+}).$

元素分析 C,,H,,C1N,O,S,-3.1 H,O.

計算值: C,39.98; H,3.68; N,16.22; Cl,5.13; S,9.28(%).

実験値: C,39.83; H,3.62; N,16.25; Cl,5.25; S,9.78(%).

実施例117

'H-NMR (d_f-DMSO) δ : 1.37 (3H, d, J = 6.9 Hz), 3.12 (1H, d, J = 18.0 Hz), 3.50 (1H, d, J = 18.0 Hz), 4.55 (1H, q, J = 6.9 Hz), 5.06 (1H, d, J = 5.1 Hz), 5.19 (1H, d, J = 13.2 Hz), 5.68-5.79 (2H, m), 7.41 (2H, s), 8.16 (1H, s), 8.46 (2H, d, J = 6.6 Hz), 9.49-9.75 (3H, m).

IR (KBr) cm⁻¹: 3287, 3196, 3055, 2988, 1779, 1673, 1618, 1538, 1457, 1345, 1242, 1188, 1119, 1065, 1035.

10 MS(FAB): $653^{\dagger}(M+H^{\dagger})$.

元素分析 C,,H,,ClN,O,S,·2.1 H,O.

計算值: C,39.98; H,3.68; N,16.22; Cl,5.13; S,9.28(%).

実験値: C,39.97; H,3.75; N,16.57; C1,4.72; S,8.79(%).

実施例118

15

20

5

'H-NMR (d_i -DMSO) δ : 1.38 (3H, d, J = 6.9 Hz), 3.08 (1H, d, J = 17.7 Hz), 3.50 (1H, d, J = 17.7 Hz), 3.99 (3H, s), 4.55 (1H, q, J = 6.9 Hz), 5.06 (1H, d, J = 4.5 Hz), 5.08 (1H, d, J = 12.9 Hz), 5.62 (1H, d, J = 12.9 Hz), 5.71 (1H, dd, J = 4.5, 8.1 Hz), 7.41 (2H, s), 8.08 (1H, dd, J = 5.7, 8.7 Hz), 8.22 (1H, d, J = 8.7 Hz), 9.11 (1H, d, J = 5.7 Hz), 9.41 (1H, s), 9.54-9.66 (1H, m). IR (KBr) cm⁻¹: 3410, 2942, 1778, 1674, 1618, 1539, 1509, 1444, 1389, 1340, 1290, 1235, 1188, 1148, 1099, 1041, 1009.

 $MS(FAB): 597^{\dagger}(M+H^{\dagger}).$

元素分析 C,,H,,ClN,O,S,·2.7 H,O.

計算值: C,40.92; H,4.12; N,13.02; C1,5.49; S,9.93(%).

実験値: C,40.94; H,4.01; N,13.12; Cl,5.36; S,9.91(%).

実施例119

5

 $^{1}H-NMR$ (d₆-DMSO) δ : 1.39 (3H, d, J = 7.2 Hz), 1.59 (3H, d, J = 7.2 Hz), 3.09

(1H, d, J = 17.4 Hz), 4.54 (1H, q, J = 7.2 Hz), 5.00 (1H, d, J = 5.4 Hz), 5.30

(1H, d, J = 13.8 Hz), 5.42 (1H, d, J = 13.8 Hz), 5.55-5.67 (1H, m), 5.72 (1H,

dd, J = 5.4, 8.4 Hz), 7.41 (2H, s), 7.79 (1H, d, J = 4.2 Hz), 8.02-8.09 (2H,

10 m), 8.30-8.39 (1H, m), 9.75 (1H, s).

IR (KBr) cm⁻¹: 3410, 2353, 1775, 1669, 1612, 1537, 1447, 1382, 1319, 1289,

1237, 1185, 1152, 1098, 1068, 1034.

 $MS(FAB): 683^{\dagger}(M+H^{\dagger}).$

元素分析 C,,H,,ClN,O,S,·4.0 H,O.

15 計算値: C,38.17; H,4.14; N,14.84; Cl,4.69; S,12.74(%).

実験値: C,38.05; H,4.10; N,14.78; Cl,4.97; S,12.98(%).

実施例120

¹H-NMR (d_t -DMSO) δ : 1.38 (3H, d, J = 6.6 Hz), 1.96-2.10 (2H, m), 2.79-2.90 (2H, 20 m), 3.03 (1H, d, J = 17.7 Hz), 3.47 (1H, d, J = 17.7 Hz), 4.45-4.54 (2H, m), 4.54 (1H, q, J = 6.6 Hz), 4.86 (1H, d, J = 13.5 Hz), 5.04 (1H, d, J = 4.8 Hz), 5.43 (1H, d, J = 13.5 Hz), 5.70 (1H, dd, J = 4.8, 8.4 Hz), 7.38-7.48 (3H, m),

9.04 (1H, s), 9.08 (1H, d, J = 6.9 Hz), 9.64-9.82 (1H, m).

IR (KBr) cm⁻¹: 3412, 3057, 1779, 1674, 1641, 1538, 1516, 1489, 1468, 1444, 1351, 1287, 1220, 1168, 1135, 1034, 1008.

 $MS(FAB): 623^{+}(M+H^{+}).$

5 元素分析 C,,H,,ClN,O,S,·2.0 H,O.

計算值: C,43.74; H,4.13; N,12.75; Cl,5.38; S,9.73(%).

実験値: C,43.71; H,3.94; N,12.94; Cl,5.13; S,9.49(%).

実施例12.1

15 (1H, brs).

IR (KBr) cm⁻¹: 3398, 2822, 1776, 1674, 1605, 1539, 1507, 1469, 1393, 1351,

1286, 1238, 1191, 1149, 1094, 1066, 1033.

MS (ESI): 638 (M+H)+, 660 (M+Na)+.

元素分析 C,,H,,ClN,O,S,-4.0 H,O.

20 計算値: C, 42.28; H, 5.11; N, 13.81; Cl, 4.99; S, 9.03 (%).

実験値: C, 42.27; H, 5.09; N, 13.80; Cl, 5.00; S, 9.08 (%).

実施例122

¹H-NMR (D₂0) δ : 1.36 (3H, d, J = 6.9), 2.04 (2H, m), 2.64 (3H, s), 2.95 (2H, t, J = 7.8 Hz), 3.03 (2H, t, J = 7.8 Hz), 3.11 (1H, d, J = 17.7 Hz), 3.55 (1H, d, J = 17.7 Hz), 4.58 (1H, q, J = 6.9 Hz), 5. 17 (1H, d, J = 14.7 Hz), 5.19 (1H, d, J = 4.8 Hz), 5.45 (1H, d, J = 14.7 Hz), 5.81 (1H, d, J = 4.8 Hz), 7.86 (2H, d, J = 6.9 Hz), 8.76 (2H, d, J = 6.9 Hz).

IR (KBr) cm⁻¹: 3397, 2821, 1776, 1606, 1538, 1467, 1394, 1350, 1287, 1231, 1187, 1152, 1094, 1066, 1033.

MS (RSI): 638 (M+H)+, 660 (M+Na)+.

元素分析 C,,H,,ClN,O,S,·3.8 H,O.

10 計算值: C, 42.50; H, 5.08; N, 13.88; Cl, 5.02; S, 9.08 (%).

実験値: C, 42.34; H, 5.10; N, 13.97; Cl, 5.07; S, 9.29 (%).

実施例123

¹H-NMR (d_6 -DMS0) δ : 1.41 (3H, d, J = 6.9 Hz), 2.48 (3H, s), 2.81 (1H, d, J = 17.4 Hz), 2.94-3.06 (2H, m), 3.30-3.40 (2H, m), 3.50 (1H, d, J = 17.4 Hz), 4.47 (1H, q, J = 6.9 Hz), 4.87 (1H, d, J = 13.2 Hz), 5.12 (1H, d, J = 5.4 Hz), 5.41 (1H, d, J = 13.2 Hz), 5.82 (1H, dd, J = 5.4, 9.0 Hz), 7.35 (2H, s), 7.58-7.74 (3H, m), 8.23-8.32 (1H, m), 9.11 (1H, s), 11.10-11.23 (1H, m).

IR (KBr) cm^{-1} : 3362, 3086, 1774, 1593, 1539, 1511, 1458, 1394, 1353, 1288,

20 1184, 1154, 1095, 1065, 1033.

 $MS(ESI): 639^{\dagger}(M+H^{\dagger}).$

元素分析 C1,H2,C1N,O,S,·3.0 H,O.

計算值: C,41.59; H,4.80; N,16.17; Cl,5.11; S,9.25(%).

実験値: C,41.54; H,4.67; N,16.18; Cl,5.17; S,9.45(%).

25 実施例124

¹H-NMR (D₁0) δ : 1.45 (3H, d, J = 6.9 Hz), 2.76 (3H, s), 3.17 (1H, d, J = 18.0 Hz), 3.33 (2H, t, J = 6.0 Hz), 3.58 (1H, d, J = 18.0 Hz), 3.75 (2H, t, J = 6.0 Hz), 4.66 (1H, q, J = 6.9 Hz), 4.89 (1H, d, J = 14.7 Hz), 5.09 (1H, d, J = 14.7 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 6.94 (2H, d, J = 6.3 Hz), 8.04-8.35 (2H, m).

IR (KBr) cm⁻¹: 3398, 3066, 1773, 1650, 1601, 1556, 1450, 1394, 1357, 1288, 1218, 1168, 1094, 1065, 1035.

 $MS(FAB): 639^{\dagger}(M+H^{\dagger}).$

5

10 元素分析 C₁₄H₁₇ClN₈O₇S₁·3.4 H₂O.

計算值: C,41.16; H,4.86; N,16.00; Cl,5.06; S,9.16(%).

実験値: C,41.14; H,4.69; N,16.00; Cl,4.97; S,9.36(%).

四級塩エステル:

IR (KBr) cm⁻¹: 3425, 2978, 2934, 1793, 1724, 1693, 1638, 1613, 1551, 1516, 1479, 1455, 1393, 1369, 1249, 1223, 1153, 1065, 1036.

 $MS(FAB): 1225^{+}(M^{+}).$

実施例125

¹H-NMR (d_i-DMSO) δ : 1.39 (3H, d, J = 6.9 Hz), 1.47 (3H, d, J = 6.6 Hz), 3.15 (1H, d, J = 17.4 Hz), 3.40 (3H, d, J = 17.4 Hz), 4.55 (1H, q, J = 6.9 Hz), 4.99-50.6 (2H, m), 5.27 (1H, d, J = 13.8 Hz), 5.42 (1H, d, J = 13.8 Hz), 5.71 (1H, dd, J = 5.1, 9.0 Hz), 7.41 (2H, br s), 7.70 (1H, d, J = 4.2 Hz), 8.06 (1H, m), 8.45 (1H, d, J = 4.2 Hz), 9.78 (1H, br s).

IR (KBr) cm⁻¹: 3394, 1773, 1670, 1613, 1537, 1446, 1354, 1183, 1152, 1094,

10 1066, 1035.

5

MS (FAB): $655 (M+H)^{\dagger}$, $1309 (2M+H)^{\dagger}$.

元素分析 C,,H,,ClN,O,S,·3.6 H,O.

計算值: C, 38.37; H, 4.23; N, 15.56; Cl, 4.92; S, 13.36 (%).

実験値: C, 38.61; H, 4.01; N, 15.58; Cl, 4.92; S, 13.08 (%).

15 実施例126

20

$$\begin{array}{c|c} H_2N & \stackrel{S}{\longrightarrow} & \stackrel{Cl}{\longrightarrow} & H\\ N & \stackrel{N}{\longrightarrow} & N \\ N & \stackrel{N}{\longrightarrow} & N \\ Me^{***} & \stackrel{CO_2}{\longrightarrow} & HN \end{array}$$

¹H-NMR (D₂0) δ : 1.38 (3H, d, J = 7.2), 2.89 (1H, d, J = 18.0 Hz), 3.17 (2H, t, J = 7.2 Hz), 3.33 (2H, t, J = 7.2 Hz), 3.70 (1H, d, J = 18.0 Hz), 4.62 (1H, q, J = 7.2 Hz), 5. 20 (1H, d, J = 15.0 Hz), 5.29 (1H, d, J = 4.8 Hz), 5.83 (1H, d, J = 4.8 Hz), 6.00 (1H, d, J = 15.0 Hz), 7.58 (1H, br t, J = 7.5 Hz), 7.64 (1H, s), 8.50 (1H, d, J = 6.0 Hz), 8.65 (1H, d, J = 7.5 Hz).

IR (KBr) cm⁻¹: 3396, 3184, 2821, 1772, 1598, 1539, 1445, 1384, 1361, 1288,

1219, 1188, 1157, 1093, 1061, 1035.

MS (FAB): $649 (M+H)^{\dagger}$, $1297 (2M+H)^{\dagger}$.

元素分析 C,,H,,ClN,O,S,·3.8 H,O.

計算值: C, 41.85; H, 4.58; N, 15.62; Cl, 4.94; S, 8.94 (%).

5 実験値: C, 41.78; H, 4.34; N, 15.66; Cl, 4.98; S, 8.77 (%).

実施例127

¹H-NMR (D,0) δ: 1.46 (3H, d, J = 6.9), 2.76 (3H, s), 3.18 (1H, d, J = 18.0 Hz), 3.23 (3H, s), 3.36 (2H, t, J = 6.9 Hz), 3.58 (1H, d, J = 18.0 Hz), 3.95 (2H, t, J = 6.9 Hz), 4.68 (1H, q, J = 6.9 Hz), 4.91 (1H, d, J = 15.0 Hz), 5.10 (1H, d, J = 15.0 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 7.01 (2H, d, J = 7.5 Hz), 8.24 (2H, d, J = 7.5 Hz).

IR (KBr) cm⁻¹: 3408, 1775, 1650, 1606, 1556, 1450, 1404, 1359, 1286, 1235, 1164, 1106, 1064, 1034.

15 MS (FAB): 653 (M+H) $^{+}$, 1305 (2M+H) $^{+}$.

元素分析 C,5H,,ClN,O,S,·3.7 H,0.

計算值: C, 41.72; H, 5.10; N, 15.77; Cl, 4.93; S, 8.91 (%).

実験値: C, 41.79; H, 4.94; N, 15.48; Cl, 4.92; S, 8.78 (%).

実施例128

20

¹H-NMR (D₁0) δ : 1.45 (3H, d, J = 6.9), 3.17 (1H, d, J = 18.0 Hz), 3.45 (4H, m), 3.58 (1H, d, J = 18.0 Hz), 3.97 (4H, m), 4.66 (1H, q, J = 6.9 Hz), 4.92 (1H, d, J = 15.0 Hz), 5.13 (1H, d, J = 15.0 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.86 (1H,

d, J = 4.8 Hz), 7.15 (2H, d, J = 7.8 Hz), 8.27 (2H, d, J = 7.8 Hz). IR (KBr) cm⁻¹: 3398, 1771, 1649, 1603, 1544, 1450, 1385, 1362, 1283, 1239, 1175, 1151, 1093, 1065, 1035.

MS (ESI): $651 (M+H)^{+}$, $673 (M+Na)^{+}$.

5 元素分析 C,;H,,ClN,O,S,·3.7 H,O.

計算值: C, 41.83; H, 4.83; N, 15.61; Cl, 4.94; S, 8.93 (%).

実験値: C, 41.79; H, 4.72; N, 15.71; Cl, 4.97; S, 8.96 (%).

実施例129

10 $^{1}\text{H-NMR}$ (D,0) δ : 1.52 (3H, d, J = 7.2), 2.89 (3H/2, s), 3.04 (3H/2, s), 3.18 (1H, br d, J = 18.0 Hz), 3.52-3.62 (5H, m), 4.84 (1H, q, J = 7.2 Hz), 4.90 (1H, d, J = 15.0 Hz), 5.05 (1H, d, J = 15.0 Hz), 5.25 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 6.88 (2H, m), 7.88 (1H/2, s), 7.99 (1H/2, s), 8.02-8.19 (2H,m). IR (KBr) cm⁻¹: 3406, 1778, 1650, 1554, 1446, 1391, 1352, 1219, 1170, 1096,

15 1064, 1034.

MS (ESI): $667 (M+H)^{\dagger}$.

元素分析 C15H27C1N8O8S1·2.7 H10.

計算值: C, 41.95; H, 4.56; N, 15.66; Cl, 4.95; S, 8.96 (%).

実験値: C, 41.93; H, 4.40; N, 15.73; Cl, 5.12; S, 8.93 (%).

20 実施例130

 $^{1}H-NMR$ (D,0) δ : 1.44 (3H, d, J = 6.6 Hz), 1.69-1.90 (2H, m), 2.20-2.34 (2H, m), 3.09-3.25 (3H, m), 3.44-3.62 (3H, m), 3.84-4.00 (1H, m), 4.65 (1H, q, J = 6.6

Hz), 4.86 (1H, d, J = 14.7 Hz), 5.06 (1H, d, J = 14.7 Hz), 5.23 (1H, d, J = 5.1 Hz), 5.86 (1H, d, J = 5.1 Hz), 6.80-7.00 (2H, m), 7.96-8.28 (2H, m).

IR (KBr) cm⁻¹: 3395, 2527, 1773, 1650, 1594, 1553, 1453, 1387, 1287, 1217, 1166, 1097, 1066, 1034.

5 $MS(FAB): 665^{+}(M+H^{+}).$

元素分析 C,,H,,C1N,O,S,·6.2 H,O.

計算值: C,40.20; H,5.37; N,14.42; Cl,4.56; S,8.26(%).

実験値: C,40.13 ; H,5.07 ; N,14.45 ; Cl,4.81 ; S,8.37 (%).

実施例131

10

¹H-NMR (D,0) δ : 1.56 (3H, d, J = 7.2Hz), 2.13-2.25 (1H, m), 2.45-2.58 (1H, m), 3.28 and 3.64 (2H, ABq, J = 18.3 Hz), 3.36-3.77 (4H, m), 4.53-4.60 (1H, m,), 4.96 (1H, q, J = 6.9 Hz), 4.99 and 5.25 (2H, ABq, J = 14.7 Hz), 5.30 (1H, d, J = 4.8 Hz), 5.90 (1H, d, J = 4.8 Hz), 6.82 (2H, d, J = 7.2 Hz), 8.18 (1H, m).

15 IR (KBr) cm⁻¹: 1773, 1650, 1597, 1551, 1446, 1391, 1286, 1217, 1167.

MS (ESI): $651 (M+H)^{+}$, $673 (M+Na)^{+}$.

元素分析 C,,H,,ClN,O,S,·2.7 H,O.

計算值: C, 42.91; H, 4.67; N, 16.01; Cl, 5.07; S, 9.17 (%).

実験値: C, 42.98; H, 4.64; N, 15.99; Cl, 4.97; S, 9.29 (%).

20 実施例132

¹H-NMR (D_{1} 0) δ : 1.56 (3H, d, J = 7.2Hz), 2.16-2.24 (1H, m), 2.46-2.58 (1H, m), 3.29 and 3.64 (2H, ABq, J = 18.2 Hz), 3.37-3.78 (4H, m), 4.53-4.60 (1H, m,),

4.96 (1H, q, J = 7.2 Hz), 5.00 and 5.26 (2H, ABq, J = 14.7 Hz), 5.30 (1H, d, J = 4.8 Hz), 5.90 (1H, d, J = 4.8 Hz), 6.96 (2H, d, J = 7.5 Hz), 8.20 (1H, m). IR (KBr) cm⁻¹: 1774, 1650, 1595, 1551, 1446, 1391, 1286, 1218, 1167. MS (ESI): 651 (M+H)⁺, 673 (M+Na)⁺.

5 元素分析 C,,H,,ClN,O,S,·2.2 H,O.

計算值: C, 43.47; H, 4.58; N, 16.22; Cl, 5.13; S, 9.28 (%).

実験値: C, 43.40; H, 4.60; N, 16.25; Cl, 5.07; S, 9.28 (%).

四級塩エステル:

10 ¹H-NMR (DMSO) δ: 1.41 (9H, s), 1.46-1.48 (12H, m), 1.78-1.96 (1H, m), 2.10-2.30 (1H, m), 3.11-3.25 (1H, m), 3.37,3.49 (ABq, J=18.9Hz), 3.54-3.76 (2H, m), 3.76 (3H, s), 4.19-4.36 (1H, m), 4.90 (1H, q, J = 6.9 Hz), 5.04-5.15 (2H, m), 5.20(1H, d, J=5.1Hz), 5.21, 5.26(2H, Abq, J=11.7Hz), 5.96(1H, dd, J=4.8Hz, J=8.1Hz), 6.84(1H, s)6.866.97(4H, m), 7.07(1H, d, J=7.8Hz), 7.19, 7.48(10H, m), 8.07, 8.09(1H, m), 8.27(1H, d, J=7.5Hz), 8.92, 8.94(1H, m), 9.74(1H, J=8.4Hz), 12.11(1H, s).

実施例133

20

¹H-NMR (D₁0) δ : 1.45 (3H, d, J = 6.9), 2.04 (3H, m), 2.72 (3H, s), 3.12 (2H, t, J = 7.8 Hz), 3.16 (1H, d, J = 18.0 Hz), 3.44 (2H, t, J = 6.9 Hz), 3.56 (1H, d, J = 18.0 Hz), 4.66 (1H, q, J = 6.9 Hz), 4.86 (1H, d, J = 14.4 Hz), 5.05 (1H, d, J = 14.4 Hz), 5.23 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 6.85 (2H,

d, J = 7.5 Hz), 8.02-8.18 (2H, m).

IR (KBr) cm⁻¹: 3397, 1773, 1651, 1598, 1556, 1462, 1395, 1360, 1288, 1216, 1168, 1093, 1065, 1034.

MS (ESI): 653 (M+H), 675 (M+Na).

5 元素分析 C,,H,,ClN,O,S,·3.8 H,O.

計算值: C, 41.61; H, 5.11; N, 15.53; Cl, 4.91; S, 8.89 (%).

実験値: C, 41.47; H, 5.08; N, 15.63; Cl, 5.15; S, 8.98 (%).

実施例134

10 ¹H-NMR (d_i-DMSO) δ: 1.39 (3H, d, J = 6.9), 2.97 (1H, d, J = 18.0 Hz), 3.34 (2H, m), 3.46 (1H, d, J = 18.0 Hz), 3.59 (2H, t, J = 5.1 Hz), 4.56 (1H, q, J = 6.9 Hz), 4.65 (1H, d, J = 13.5 Hz), 5.05 (1H, d, J = 4.8 Hz), 5.16 (1H, d, J = 13.5 Hz), 5.70 (1H, dd, J = 4.8, 8.4 Hz), 6.94 (2H, m), 7.41 (2H, br s), 8.44 (1H, d, J = 6.9 Hz), 8.59 (1H, d, J = 7.5 Hz), 8.85 (1H, 5.4 Hz), 9.65 (1H, br).

15 IR (KBr) cm⁻¹: 3398, 1776, 1651, 1555, 1450, 1378, 1350, 1218, 1171, 1097,

15 IR (KBr) cm⁻¹: 3398, 1776, 1651, 1555, 1450, 1378, 1350, 1218, 1171, 1097, 1063, 1035.

MS (ESI): $626 (M+H)^{+}$, $1251 (2M+H)^{+}$.

元素分析 C,,H,,ClN,O,S,·2.3 H,O.

計算值: C, 41.39; H, 4.32; N, 14.69; Cl, 5.31; S, 9.61 (%).

20 実験値: C, 41.39; H, 4.34; N, 14.78; Cl, 5.11; S, 9.37 (%).

実施例135

$$\begin{array}{c|c} H_2N & \stackrel{\textstyle S}{\longrightarrow} & \stackrel{\textstyle Cl}{\longrightarrow} & \stackrel{\textstyle H}{\longrightarrow} & \stackrel{\textstyle N}{\longrightarrow} & \stackrel{\textstyle NH}{\longrightarrow} & \stackrel{\textstyle N$$

 $^{1}\text{H-NMR}$ (D₁0) δ : 1.40 (3H, d, J = 6.3), 1.45 (3H, d, J = 6.9 Hz), 3.17 (1H, d,

J = 18.0 Hz), 3.34 (1H, m), 3.55-3.61 (4H, m), 4.28-4.33 (2H, m), 4.66 (1H, q, J = 6.9 Hz), 4.91 (1H, d, J = 14.7 Hz), 5.12 (1H, d, J = 14.7 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 7.16 (2H, d, J = 7.2 Hz), 8.27 (2H, d, J = 7.2 Hz).

5 IR (KBr) cm⁻¹: 3408, 1773, 1649, 1605, 1546, 1449, 1386, 1360, 1284, 1239, 1158, 1107, 1065, 1036.

MS (ESI): $665 (M+H)^{+}$, $687 (M+Na)^{+}$.

元素分析 C,,H,,ClN,O,S,-4.5 H,O.

計算值: C, 41.85; H, 5.13; N, 15.02; Cl, 4.75; S, 8.59 (%).

10 実験値: C, 41.86; H, 4.84; N, 15.06; Cl, 4.74; S, 8.48 (%).

実施例136

15

¹H-NMR (D₁0) δ : 1.32 (3H, d, J = 6.9), 1.57 (2H, m), 2.08 (2H, m), 3.04 (1H, d, J = 17.4 Hz), 3.15 (2H, m), 3.48 (1H, m), 4.14 (2H, m), 4.53 (1H, q, J = 6.9 Hz), 4.74 (1H, d, J = 15.0 Hz), 4.94 (1H, d, J = 15.0 Hz), 5.12 (1H, d, J = 4.8 Hz), 5.73 (1H, d, J = 4.8 Hz), 6.96 (2H, d, J = 7.2 Hz), 8.02 (2H, d, J = 7.2 Hz).

IR (KBr) cm⁻¹: 3398, 1772, 1650, 1600, 1549, 1451, 1389, 1362, 1286, 1238, 1174, 1095, 1065, 1035.

20 MS (ESI): $665 (M+H)^{\dagger}$, $687 (M+Na)^{\dagger}$.

元素分析 C,,H,,ClN,O,S,·4.3 H,O.

計算值: C, 42.05; H, 5.10; N, 15.09; Cl, 4.77; S, 8.64 (%).

実験値: C, 42.12; H, 5.16; N, 14.95; Cl, 4.68; S, 8.50 (%).

"H-NMR (D,0) δ : 1.36 (3H, d, J = 6.3 Hz), 1.45 (3H, d, J = 6.6 Hz), 3.17 (1H, d, J = 18.0 Hz), 3.57 (1H, d, J = 18.0 Hz), 3.58-3.72 (3H, m), 4.65 (1H, q, J = 6.6 Hz), 4.87 (1H, d, J = 14.4 Hz), 5.09 (1H, d, J = 14.4 Hz), 5.23 (1H, d, J = 5.1 Hz), 5.86 (1H, d, J = 5.1 Hz), 6.93 (2H, d, J = 6.9 Hz), 8.05-8.38 (2H, m).

IR (KBr) cm⁻¹: 3294, 2983, 1774, 1650, 1592, 1555, 1456, 1395, 1360, 1287, 1218, 1167, 1092, 1065, 1034.

 $MS(ESI): 639^{\dagger}(M+H^{\dagger}).$

10 元素分析 C,,,H,,,ClN,O,S,·2.8 H,O.

計算值: C,41.80; H,4.77; N,16.25; Cl,5.14; S,9.30(%).

実験値: C,41.83; H,4.64; N,16.29; C1,4.96; S,9.22(%).

実施例138

5

- 15 1 H-NMR (D,0) δ : 1.35 (3H, d, J = 6.3 Hz), 1.45 (3H, d, J = 6.6 Hz), 1.82-2.13 (2H, m), 3.16 (1H, d, J = 17.7 Hz), 3.35-3.50 (3H, m), 3.55 (1H, d, J = 17.7 Hz), 4.65 (1H, q, J = 6.6 Hz), 4.83 (1H, d, J = 14.4 Hz), 5.05 (1H, d, J = 14.4 Hz), 5.22 (1H, d, J = 4.2 Hz), 5.85 (1H, d, J = 4.2 Hz), 6.83 (2H, d, J = 6.3 Hz), 7.95-8.25 (2H, m).
- 20 IR (KBr) cm⁻¹: 3415, 3067, 2982, 1772, 1650, 1597, 1557, 1447, 1395, 1360, 1288, 1216, 1169, 1094, 1065, 1034.

 MS(FAB): 653[†](M+H[†]).

元素分析 C1, H1, C1N, O, S1.3.6 H, O.

計算值: C,41.82; H,5.08; N,15.61; Cl,4.94; S,8.93(%).

実験値: C,41.89; H,4.95; N,15.54; Cl,4.57; S,8.60(%).

実施例139

5

$$\begin{array}{c|c} H_2N & \stackrel{\textstyle \bullet}{\longrightarrow} & \stackrel{$$

 $^{1}H-NMR$ (D₁0) δ : 1.40 (3H, d, J = 6.6 Hz), 1.44 (3H, d, J = 6.9 Hz), 2.88-3.02

(2H, m), 3.17 (1H, d, J = 17.7 Hz), 3.63 (1H, d, J = 17.7 Hz), 3.88 (1H, m),

4.66 (1H, q, J = 6.9 Hz), 5.13 (1H, d, J = 14.7 Hz), 5.26 (1H, d, J = 5.1 Hz),

5.40 (1H, d, J = 14.4 Hz), 5.87 (1H, d, J = 5.1 Hz), 8.07 (2H, d, J = 7.2 Hz),

10 8.71 (2H, d, J = 7.2 Hz).

IR (KBr) cm⁻¹: 3388, 1775, 1716, 1607, 1537, 1517, 1464, 1394, 1328, 1287, 1182, 1159, 1101, 1066, 1035.

 $MS(FAB): 667 (M+H)^{+}, 1333 (2M+H)^{+}.$

元素分析 C,,H,,ClN,O,S,·3.7 H,O.

15 計算值: C, 40.92; H, 4.73; N, 15.27; C1, 4.83; S, 8.74 (%).

実験値: C, 41.15; H, 4.46; N, 15.52; Cl, 4.57; S, 8.45 (%).

実施例140

¹H-NMR (D₁0) δ : 1.31 (3H, d, J = 7.2 Hz), 1.52 (3H, d, J = 6.9 Hz), 3.06 (1H, d, J = 18.1 Hz), 3.50 (1H, d, J = 18.1 Hz), 4.20 (1H, q, J = 6.9 Hz), 4.52 (1H, q, J = 7.2 Hz), 5.03 (1H, d, J = 14.4 Hz), 5.14 (1H, d, J = 5.1 Hz), 5.29 (1H, d, J = 14.4 Hz), 5.75 (1H, d, J = 5.1 Hz), 8.00 (2H, d, J = 7.2 Hz), 8.63 (2H, d, J = 7.2 Hz).

IR (KBr) cm⁻¹: 3398, 1775, 1730, 1612, 1538, 1516, 1466, 1397, 1356, 1327, 1288, 1197, 1158, 1110, 1066, 1035.

MS(ESI): 653 (M+H)+.

元素分析 C,,H,,C1N,O,S,-2.7 H,O.

5 計算值: C, 41.08; H, 4.37; N, 15.97; Cl, 5.05; S, 9.14 (%).

実験値: C, 41.13; H, 4.44; N, 15.94; Cl, 4.96; S, 8.94 (%).

実施例141

¹H-NMR (D₁0) δ : 1.44 (3H, d, J = 7.5 Hz), 1.70-1.88 (1H, m), 1.98-2.20 (2H, m), 2.22-2.38 (1H, m), 3.17 (1H, d, J = 17.7 Hz), 3.30-3.42 (2H, m), 3.57 (1H, d, J = 17.7 Hz), 3.70 (2H, d, J = 6.3 Hz), 3.82-3.94 (1H, m), 4.66 (1H, q, J = 7.5 Hz), 4.87 (1H, d, J = 14.4 Hz), 5.10 (1H, d, J = 14.4 Hz), 5.23 (1H, d, J = 4.5 Hz), 5.85 (1H, d, J = 4.5 Hz), 6.93 (2H, d, J = 6.9 Hz), 8.05-8.30 (2H, m). IR (KBr) cm⁻¹: 3398, 3065, 2983, 1774, 1650, 1602, 1556, 1447, 1394, 1360,

15 1287, 1218, 1168, 1096, 1064, 1034.

 $MS(FAB): 665^{\dagger}(M+H^{\dagger}).$

元素分析 C₁,H₁,ClN₁O₇S₁·4.1 H₁O.

計算值: C,42.26; H,5.07; N,15.16; Cl,4.80; S,8.68(%).

実験値: C,42.29; H,4.82; N,15.26; Cl,4.67; S,8.53(%).

20 実施例142

¹H-NMR (D,0) δ : 1.44(3H, d, J = 7.2 Hz), 2.73(3H, s), 3.17 and 3.38 (2H, ABq, J = 18.0 Hz), 3.63(2H, t, J = 6.0 Hz), 4.65(1H, q, J = 7.2 Hz), 4.80(2H, t, J

= 6.0 Hz), 5.17(1H, d, J = 4.8 Hz), 5.56 and 5.69(2H, ABq, J = 15.0 Hz), 5.85(1H, d, J = 4.8 Hz), 7.09(1H, d, J = 3.3 Hz), 7.73(1H, dd, J = 6.3 and 8.4 Hz), 8.15(1H, d, J = 3.3 Hz), 8.62(1H, d, J = 8.4 Hz), 8.68(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3407, 2452, 1773, 1603, 1539, 1500, 1467, 1392, 1364, 1287,

1184, 1120, 1089, 1063, 1032.

 $MS(FAB): 663^{\dagger}(M+H^{\dagger}).$

元素分析 C,,H,,ClN,O,S,·5.2 H,O.

計算值: C,41.26 ; H,4.98 ; N,14.81 ; Cl,4.68; S,8.47 (%).

実験値: C,41.41; H,4.90; N,14.55; Cl,4.54; S,8.46(%).

10 四級塩エステル:

5

15

¹H-NMR (d_6 -DMSO) δ : 1.04(9H, brs), 1.43(3H, d, = 7.2 Hz), 1.46(9H, s), 2.78(3H, brs), 3.21 and 3.40(2H, Abq, J = 18.6 Hz), 3.60(2H, m), 3.76(3H, s), 4.60(2H, t-like), 4.89(1H, q, J = 7.2 Hz), 5.20(1H, d, J = 5.1 Hz), 5.23 and 5.31(2H, Abq, J = 11.7 Hz), 5.71(2H, brs), 5.97(1H, dd, J = 5.1 and 8.7 Hz), 6.82(1H, s), 6.92(2H, d, J = 8.7 Hz), 7.01(1H, d, J = 3.3 Hz), 7.22-7.42(12H, m), 7.83(1H, brs), 8.30(1H, d, J = 3.3 Hz), 8.65(1H, brs), 8.84(1H, brs), 9.77(1H, d, J = 8.7 Hz), 12.1(brs).

IR (KBr) cm⁻¹:3422, 3061, 3032, 2977, 2935, 1791, 1717, 1690, 1631, 1613, 20 1584, 1550, 1515, 1495, 1455, 1392, 1367, 1248, 1155, 1118, 1100, 1065, 1032, 1018.

MS(FAB): $1149^{\dagger}(C_{57}H_{62}C1N_8O_{12}S_2^{\dagger})$.

 $^{1}\text{H-NMR}$ (D,0) δ : 1.43(3H, d, J = 7.2 Hz), 3.21 and 3.35 (2H, ABq, J = 18.0 Hz), 4.64(1H, q, J = 7.2 Hz), 5.01(2H, s), 5.17(1H, d, J = 4.8 Hz), 5.53 and 5.74(2H, ABq, J = 15.0 Hz), 5.89(1H, d, J = 4.8 Hz), 6.98(1H, d, J = 3.3 Hz), 7.67(1H, dd, J = 6.3 and 8.1 Hz), 8.04(1H, d, J = 3.3 Hz), 8.44(1H, d, J = 8.1 Hz), 8.62(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3415, 2989, 2527, 1778, 1725, 1672, 1630, 1537, 1500, 1467, 1373, 1328, 1229, 1162, 1129, 1063, 1035.

 $MS(ESI): 664^{+}(M+H^{+}).$

5

15

20

10 元素分析 C,,H,,ClN,O,S,·3.0 H,O.

計算值: C,41.81; H,3.93; N,13.65; Cl,4.94; S,8.93(%).

実験値: C,41.75; H,3.89; N,13.71; Cl,5.08; S,8.84(%).

四級塩エステル:

¹H-NMR (d₄-DMS0) δ : 1.42(3H, d, J = 7.2 Hz), 1.44(9H, s), 1.46(9H, s), 3.37(2H, brs), 3.75(3H, s), 4.89(1H, q, J = 7.2 Hz), 5.20(1H, d, J = 5.1 Hz), 5.21 and 5.29(2H, Abq, J = 12.0 Hz), 5.38(2H, brs), 5.72(2H, brs), 5.96(1H, dd, J = 5.1 and 8.7 Hz), 6.82(1H, s), 6.89(2H, d, J = 8.7 Hz), 7.00(1H, d, J = 3.3 Hz), 7.22-7.42(12H, m), 7.80(1H, dd, J = 6.3 and 8.4 Hz), 8.31(1H, d, J = 3.3 Hz), 8.62(1H, d, J = 6.3 Hz), 8.82(1H, d, J = 8.4 Hz), 9.76(1H, d, J = 8.7 Hz), 12.1(brs). IR (KBr) cm⁻¹:3422, 3061, 3031, 2979, 2935, 1790, 1738, 1631, 1613, 1585,

1550, 1515, 1498, 1466, 1455, 1392, 1369, 1329, 1247, 1155, 1128, 1100, 1064, 1032.

MS(FAB): $1106^{+}(C_{55}H_{57}C1N_{7}O_{12}S_{2}^{+})$.

実施例144

5

10

¹H-NMR (D,0) δ : 1.43(3H, d, J = 6.9 Hz), 3.20 and 3.37 (2H, ABq, J = 17.7 Hz), 4.64(1H, q, J = 6.9 Hz), 5.17(1H, d, J = 4.8 Hz), 5.27(2H, s), 5.56 and 5.73(2H, ABq, J = 15.0 Hz), 5.88(1H, d, J = 4.8 Hz), 7.06(1H, d, J = 3.3 Hz), 7.70(1H, dd, J = 6.3 and 8.1 Hz), 8.07(1H, d, J = 3.3 Hz), 8.51(1H, d, J = 8.1 Hz), 8.67(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3407, 3191, 2988, 1776, 1684, 1615, 1537, 1500, 1467, 1364, 1331, 1225, 1189, 1160, 1131, 1063, 1034.

 $MS(ESI): 663^{+}(M+H^{+}).$

元素分析 C,,H,,C1N,O,S,·3.9 H,O.

15 計算值: C,40.95; H,4.23; N,15.28; Cl,4.83; S,8.74(%).

実験値: C,40.93; H,4.06; N,15.26; Cl,4.82; S,8.64(%).

四級塩エステル:

¹H-NMR (d_i-DMSO) δ : 1.45(3H, d, J=6.9 Hz), 1.46(9H, s), 3.39(2H, brs), 3.75(3H, s), 4.89(1H, q, J=6.9 Hz), 5.17(2H, brs), 5.20(1H, d, J=4.8 Hz), 5.21 and 5.29(2H, Abq, J=11.7 Hz), 5.70(2H, brs), 5.96(1H, dd, J=4.8 and 8.7 Hz), 6.82(1H, s), 6.89(2H, d, J=8.7 Hz), 6.96(1H, d, J=3.3 Hz), 7.20-7.45(12H,

m), 7.76(1H, dd, J = 6.0 and 8.7 Hz), 7.79(2H, brs), 8.29(1H, d, J = 3.3 Hz), 8.58(1H, d, J = 6.0 Hz), 8.73(1H, d, J = 8.7 Hz), 9.76(1H, d, J = 8.7 Hz), 12.1(brs). IR (KBr) cm⁻¹:3422, 3063, 2980, 2936, 1789, 1716, 1690, 1631, 1613, 1585, 1551, 1515, 1497, 1467, 1455, 1393, 1369, 1248, 1175, 1154, 1128, 1100, 1065, 1030, 1018.

 $MS(FAB): 1049^{\dagger}(C_{51}H_{50}C1N_{8}O_{11}S_{2}^{\dagger}).$

実施例145

5

15

¹H-NMR (D₁0) δ : 1.44(3H, d, J = 7.2 Hz), 3.20 and 3.37 (2H, ABq, J = 17.7 Hz), 3.73(3H, s), 4.65(1H, q, J = 7.2 Hz), 5.17(2H, s), 5.18(1H, d, J = 4.8 Hz), 5.56 and 5.73(2H, ABq, J = 15.0 Hz), 5.88(1H, d, J = 4.8 Hz), 7.06(1H, d, J = 3.3 Hz), 7.71(1H, dd, J = 6.3 and 8.1 Hz), 8.08(1H, d, J = 3.3 Hz), 8.53(1H, d, J = 8.1 Hz), 8.68(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3422, 2985, 2938, 1778, 1678, 1615, 1537, 1501, 1466, 1442, 1365, 1330, 1225, 1188, 1159, 1129, 1065, 1034.

 $MS(FAB): 693^{\dagger}(M+H^{\dagger}).$

元素分析 C₁₄H₁₅ClN₄O₅S₅·3.9 H₂O₅

計算值: C,40.91; H,4.33; N,14.68; Cl,4.64; S,8.40(%).

実験値: C,40.78; H,4.14; N,14.77; Cl,4.67; S,8.54(%).

20 四級塩エステル:

¹H-NMR (d_i-DMSO) δ : 1.44(3H, d, J=7.2 Hz), 1.46(9H, s), 3.39(2H, brs), 3.68(3H, s), 3.76(3H, s), 4.89(1H, q, J=7.2 Hz), 5.14(2H, brs), 5.20(1H, d, J=4.8 Hz), 5.21 and 5.28(2H, Abq, J=11.4 Hz), 5.71(2H, brs), 5.96(1H, dd, J=4.8 and 8.7 Hz), 6.82(1H, s), 6.88(2H, d, J=8.7 Hz), 6.98(1H, d, J=3.0 Hz), 7.20-7.41(13H, m), 7.80(1H, dd, J=6.0 and 8.1 Hz), 8.30(1H, d, J=3.0 Hz), 8.59(1H, d, J=6.0 Hz), 8.76(1H, d, J=8.1 Hz), 9.76(1H, d, J=8.7 Hz), 12.1(brs). IR (KBr) cm⁻¹:3428, 3101, 3063, 3031, 2980, 2937, 1789, 1717, 1632, 1613, 1585, 1550, 1515, 1497, 1466, 1391, 1369, 1326, 1247, 1175, 1155, 1127, 1100, 1064, 1032, 1018.

10 MS(FAB): $1079^{+}(C_{52}H_{52}C1N_{8}O_{12}S_{2}^{+})$.

実施例146

5

15

¹H-NMR (D₂0) δ : 1.43(3H, d, J = 7.2 Hz), 3.19 and 3.37 (2H, ABq, J = 17.4 Hz), 4.65(1H, q, J = 7.2 Hz), 5.17(1H, d, J = 4.8 Hz), 5.19(2H, s), 5.56 and 5.72(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 4.8 Hz), 7.06(1H, d, J = 3.3 Hz), 7.71(1H, dd, J = 6.0 and 8.1 Hz), 8.08(1H, d, J = 3.3 Hz), 8.52(1H, d, J = 8.1 Hz), 8.68(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3415, 2988, 1777, 1675, 1615, 1537, 1500, 1466, 1365, 1330, 1225, 1188, 1161, 1129, 1064, 1036.

20 MS(FAB): $679^{\dagger}(M+H^{\dagger})$.

元素分析 C,,H,,C1N,O,S,·3.5 H,O.

計算值: C,40.46; H,4.07; N,15.10; Cl,4.78; S,8.64(%).

実験値: C,40.45; H,4.00; N,15.08; Cl,4.72; S,8.57(%).

四級塩エステル:

¹H-NMR (d_f-DMSO) δ : 1.45(3H, d, J = 7.2 Hz), 1.46(9H, s), 3.40(2H, brs), 3.75(6H, s), 4.74(2H, brs), 4.89(1H, q, J = 7.2 Hz), 5.13(2H, brs), 5.20(1H, d, J = 5.1 Hz), 5.21 and 5.28(2H, Abq, J = 12.0 Hz), 5.71(2H, brs), 5.96(1H, dd, J = 5.1 and 8.7 Hz), 6.82(1H, s), 6.89(2H, d, J = 8.7 Hz), 6.99(1H, d, J = 3.3 Hz), 7.19-7.49(13H, m), 7.79(1H, dd, J = 6.3 and 8.7 Hz), 8.29(1H, d, J = 3.3 Hz), 8.61(1H, d, J = 6.3 Hz), 8.71(1H, d, J = 8.7 Hz), 9.76(1H, d, J = 8.7 Hz), 12.1(brs). IR (KBr) cm⁻¹:3421, 3063, 2978, 2936, 2836, 1790, 1716, 1631, 1612, 1585, 1549, 1514, 1497, 1465, 1369, 1325, 1248, 1176, 1154, 1125, 1100, 1064,

MS(FAB): $1185^{+}(C_{5}H_{5}C1N_{6}O_{13}S_{2}^{+})$.

実施例147

1030.

10

¹H-NMR (D₁0) δ: 1.43(3H, d, J = 7.2 Hz), 3.18 and 3.34 (2H, ABq, J = 18.0 Hz), 3.97(2H, t, J = 4.8 Hz), 4.54(2H, t, J = 4.8 Hz), 4.64(1H, q, J = 7.2 Hz), 5.16(1H, d, J = 4.8 Hz), 5.53 and 5.71(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 4.8 Hz), 7.00(1H, d, J = 3.0 Hz), 7.67(1H, dd, J = 6.3 and 8.1 Hz), 8.12(1H, d, J = 3.0 Hz), 8.59(1H, d, J = 8.1 Hz), 8.62(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3408, 2938, 1776, 1670, 1615, 1539, 1496, 1466, 1447, 1362,

20 1322, 1240, 1187, 1159, 1130, 1072, 1034.

 $MS(FAB): 650^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·4.1 H,O.

計算值: C,41.48; H,4.48; N,13.54; Cl,4.90; S,8.86(%).

実験値: C,41.48; H,4.40; N,13.59; Cl,5.07; S,8.88(%).

実施例148

5

 $^{1}H-NMR$ (D₁0) δ : 1.44(3H, d, J = 6.9 Hz), 3.16 and 3.31 (2H, ABq, J = 18.0 Hz),

4.43(2H, t, J = 4.5 Hz), 4.65(1H, q, J = 6.9 Hz), 4.68(2H, t, J = 4.5 Hz), 5.17(1H, t)

d, J = 5.1 Hz), 5.54 and 5.71(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 5.1 Hz),

7.01(1H, d, J = 3.0 Hz), 7.69(1H, dd, J = 6.3 and 8.1 Hz), 8.12(1H, d, J = 3.0 Hz)

10 Hz), 8.61(1H, d, J = 8.1 Hz), 8.63(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3415, 3193, 2987, 1777, 1718, 1673, 1614, 1537, 1497, 1466,

1447, 1364, 1328, 1225, 1188, 1135, 1080, 1034.

 $MS(FAB): 693^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·3.0 H,O.

15 計算值: C,41.80; H,4.18; N,15.00; C1,4.75; S,8.58(%).

実験値: C,41.68; H,4.19; N,14.79; Cl,4.78; S,8.91(%).

実施例149

¹H-NMR (D₁0) δ : 1.43(3H, d, J = 7.2 Hz), 3.15 and 3.31(2H, ABq, J = 17.7 Hz), 20 3.47(3H, s), 4.54(2H, t, J = 4.8 Hz), 4.64(1H, q, J = 7.2 Hz), 4.72(2H, t, J = 4.8 Hz), 5.17(1H, d, J = 4.8 Hz), 5.54 and 5.71(2H, ABq, J = 15.0 Hz), 5.87(1H,

d, J = 4.8 Hz), 7.02(1H, d, J = 3.3 Hz), 7.71(1H, dd, J = 6.3 and 8.4 Hz), 8.13(1H, d, J = 3.3 Hz), 8.62(1H, d, J = 8.4 Hz), 8.64(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3416, 2984, 2939, 1778, 1731, 1674, 1615, 1538, 1498, 1466, 1445, 1364, 1326, 1286, 1264, 1189, 1123, 1035.

5 MS(FAB): $723^{+}(M+H^{+})$.

元素分析 C,7H,7ClN8O10S,·3.7 H,0.

計算值: C,41.06; H,4.39; N,14.19; Cl,4.49; S,8.12(%).

実験値: C,40.93; H,4.29; N,14.32; Cl,4.63; S,8.14(%).

実施例150

10

15

¹H-NMR (D₂0) δ : 1.43(3H, d, J = 7.2 Hz), 2.45(3H, s), 3.15 and 3.31(2H, ABq, J = 17.7 Hz), 4.44(2H, brs), 4.64(1H, q, J = 7.2 Hz), 4.69(2H, brs), 5.17(1H, d, J = 4.8 Hz), 5.54 and 5.71(2H, ABq, J = 15.3 Hz), 5.87(1H, d, J = 4.8 Hz), 7.01(1H, d, J = 3.0 Hz), 7.69(1H, dd, J = 6.0 and 8.4 Hz), 8.11(1H, d, J = 3.0 Hz), 8.60(1H, d, J = 8.4 Hz), 8.64(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3401, 2984, 1779, 1710, 1676, 1617, 1538, 1498, 1466, 1364, 1326, 1265, 1187, 1135, 1097, 1033.

 $MS(FAB): 707^{\dagger}(M+H^{\dagger}).$

元素分析 C,,H,,C1N,O,S,·3.5 H,O.

20 計算值: C,42.11; H,4.45; N,14.55; Cl,4.60; S,8.33(%).

実験値: C,42.18; H,4.37; N,14.52; Cl,4.63; S,8.12(%).

¹H-NMR (D₁0) δ : 1.43(3H, d, J=7.2 Hz), 2.66(3H, s), 2.70(3H, s), 3.14 and 3.30(2H, ABq, J = 17.7 Hz), 4.46(2H, t, J = 4.8 Hz), 4.64(1H, q, J = 7.2 Hz), 4.72(2H, t, J = 4.8 Hz), 5.17(1H, d, J = 5.1 Hz), 5.55 and 5.71(2H, ABq, J = 15.3 Hz), 5.87(1H, d, J = 5.1 Hz), 7.02(1H, d, J = 3.3 Hz), 7.70(1H, dd, J = 6.6 and 8.1 Hz), 8.15(1H, d, J = 3.3 Hz), 8.64(1H, d, J = 8.1 Hz), 8.65(1H, d, J = 6.6 Hz). IR (KBr) cm⁻¹:3422, 2938, 1779, 1690, 1617, 1538, 1497, 1466, 1363, 1325, 1287, 1190, 1135, 1098, 1066, 1034.

 $MS(FAB): 721^{+}(M+H^{+}).$

10 元素分析 C,,H,,ClN,O,S,·3.5 H,O.

計算值: C,42.88; H,4.63; N,14.29; Cl,4.52; S,8.18(%).

実験値: C,42.81; H,4.62; N,14.23; Cl,4.50; S,8.38(%).

実施例152

15 1 H-NMR (D,0) δ : 1.43(3H, d, J = 7.2 Hz), 3.17 and 3.32(2H, ABq, J = 17.7 Hz), 4.52(2H, t, J = 4.8 Hz), 4.65(1H, q, J = 7.2 Hz), 4.71(2H, t, J = 4.8 Hz), 5.17(1H, d, J = 4.8 Hz), 5.53 and 5.71(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 4.8 Hz), 7.00(1H, d, J = 3.3 Hz), 7.70(1H, dd, J = 6.0 and 8.4 Hz), 8.11(1H, d, J = 3.3 Hz), 8.61(1H, d, J = 8.4 Hz), 8.63(1H, d, J = 6.0 Hz).

20 IR (KBr) cm⁻¹:3307, 2938, 1777, 1728, 1673, 1613, 1537, 1498, 1466, 1364, 1326, 1285, 1188, 1122, 1034.

 $MS(FAB): 709^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,oS,·3.5 H,O.

計算值: C,40.44 ; H,4.18 ; N,14.51 ; Cl,4.59 ; S,8.31 (%).

実験値: C,40.45; H,4.15; N,14.48; Cl,4.70; S,8.41(%).

5 実施例153

10

¹H-NMR (D,0) δ : 1.44(3H, d, J = 7.2 Hz), 2.33(6H, s), 3.17 and 3.33(2H, ABq, J = 17.7 Hz), 4.48(2H, brs), 4.65(1H, q, J = 7.2 Hz), 4.69(2H, brs), 5.18(1H, d, J = 4.8 Hz), 5.54 and 5.71(2H, ABq, J = 14.7 Hz), 5.87(1H, d, J = 4.8 Hz), 7.03(1H, d, J = 3.3 Hz), 7.72(1H, dd, J = 6.0 and 8.7 Hz), 8.13(1H, d, J = 3.3 Hz), 8.60(1H, d, J = 8.7 Hz), 8.64(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3412, 2900, 2960, 1779, 1723, 1671, 1626, 1541, 1498, 1466, 1449, 1427, 1364, 1326, 1286, 1244, 1187, 1163, 1135, 1114, 1035.

 $MS(FAB): 636^{+}(M+H^{+}).$

15 元素分析 C,,H₃₀ClN,O,S,·4.2 H₂O.

計算值: C,41.42; H,4.77; N,15.53; Cl,4.37; S,7.90(%).

実験値: C,41.36; H,4.55; N,15.46; C1,4.36; S,8.17(%).

実施例154

20 $^{1}\text{H-NMR}$ (D,0) δ : 1.43(3H, d, J = 6.9 Hz), 3.17 and 3.33(2H, ABq, J = 17.7 Hz), 3.62(3H, s), 4.29(2H, t, J = 4.8 Hz), 4.64(1H, q, J = 6.9 Hz), 4.69(2H, t, J

= 4.8 Hz), 5.17(1H, d, J = 4.5 Hz), 5.54 and 5.72(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 4.5 Hz), 7.02(1H, d, J = 3.3 Hz), 7.68(1H, dd, J = 6.3 and 8.4 Hz), 8.18(1H, d, J = 3.3 Hz), 8.61(1H, d, J = 8.4 Hz), 8.63(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3415, 2988, 2953, 1778, 1674, 1616, 1538, 1498, 1466, 1363,

5 1321, 1285, 1190, 1132, 1062, 1035.

 $MS(FAB): 723^{\dagger}(M+H^{\dagger}).$

元素分析 C,,H,,ClN,O,oS,·4.1 H,O.

計算值: C,40.69; H,4.45; N,14.06; Cl,4.45; S,8.05(%).

実験値: C,40.47; H,4.28; N,14.18; Cl,4.88; S,8.56(%).

10 実施例155

15

¹H-NMR (D,0) δ : 1.43(3H, d, J = 6.9 Hz), 1.74(3H, s), 3.18 and 3.33(2H, ABq, J = 17.7 Hz), 3.62(2H, t, J = 5.4 Hz), 4.53(2H, t, J = 5.4 Hz), 4.65(1H, q, J = 6.9 Hz), 5.18(1H, d, J = 4.8 Hz), 5.53 and 5.71(2H, ABq, J = 14.7 Hz), 5.87(1H, d, J = 4.8 Hz), 6.99(1H, d, J = 3.0 Hz), 7.69(1H, dd, J = 6.3 and 8.4 Hz), 8.07(1H, d, J = 3.0 Hz), 8.57(1H, d, J = 8.4 Hz), 8.62(1H, d, J = 6.3 Hz). IR (KBr) cm⁻¹:3400, 2938, 1777, 1629, 1540, 1497, 1467, 1450, 1368, 1323, 1288, 1240, 1189, 1159, 1134, 1095, 1035.

 $MS(FAB): 691^{+}(M+H^{+}).$

20 元素分析 C₁₇H₁₇ClN₄O₄S₂·4.1 H₂O₄

計算值: C,41.51 ; H,4.77 ; N,14.34 ; Cl,4.54 ; S,8.21 (%).

実験値: C,41.33; H,4.56; N,14.36; Cl,4.88; S,8.39(%).

¹H-NMR (D₂0) δ : 1.43(3H, d, J = 7.5 Hz), 3.15 and 3.32(2H, ABq, J = 17.7 Hz), 3.91(3H, s), 3.57(2H, brs), 4.51(2H, m), 4.65(1H, q, J = 7.5 Hz), 5.17(1H, d, J = 4.8 Hz), 5.55 and 5.70(2H, ABq, J = 14.7 Hz), 5.87(1H, d, J = 4.8 Hz), 7.00(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.0 and 8.1 Hz), 8.09(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.1 Hz), 8.64(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3410, 2987, 2940, 1777, 1677, 1626, 1537, 1499, 1466, 1365,

1322, 1271, 1191, 1157, 1132, 1096, 1035.

 $MS(FAB): 07^{+}(M+H^{+}).$

10 HR-MS(FAB): calcd for C₂₇H₂₈ClN₈O₁S₂ 707.1109 found 707.1106.

実施例157

5

¹H-NMR (D₁0) δ : 1.44(3H, d, J = 6.9 Hz), 3.18 and 3.33(2H, ABq, J = 17.7 Hz), 3.54(2H, t, J = 4.5 Hz), 4.49(2H, t, J = 4.5 Hz), 4.65(1H, q, J = 6.9 Hz), 5.17(1H, d, J = 5.1 Hz), 5.52 and 5.70(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 5.1 Hz), 6.98(1H, d, J = 3.3 Hz), 7.67(1H, dd, J = 6.3 and 8.1 Hz), 8.07(1H, d, J = 3.3 Hz), 8.55(1H, d, J = 8.1 Hz), 8.60(1H, d, J = 6.3 Hz). IR (KBr) cm⁻¹:3375, 1773, 1660, 1609, 1543, 1497, 1466, 1451, 1362, 1288, 1240, 1188, 1159, 1133, 1098, 1035.

20 MS(FAB): $692^{+}(M+H^{+})$.

HR-MS(FAB): calcd for C₁₄H₁₇ClN₂O₄S₂ 692.1113 found 692.1100.

元素分析 C,,H,,ClN,O,S,·4.3 H,O.

計算值: C,40.58; H,4.53; N,16.38; Cl,4.61; S,8.33(%).

実験値: C,40.46; H,4.38; N,16.84; Cl,5.26; S,7.73(%).

実施例158

5

 $^{1}H-NMR$ (D₁0) δ : 1.43(3H, d, J = 7.2 Hz), 3.14 and 3.31(2H, ABq, J = 17.7 Hz),

3.53(2H, t-like), 4.57(2H, t-like), 4.64(1H, q, J = 7.2 Hz), 5.17(1H, d, J = 7.2 Hz)

4.8 Hz), 5.54 and 5.70(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 4.8 Hz), 7.00(1H,

d, J = 3.3 Hz), 7.68(1H, dd, J = 6.3 and 8.4 Hz), 8.13(1H, d, J = 3.3 Hz), 8.62(1H,

10 d, J = 8.4 Hz), 8.62(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3316, 1775, 1671, 1611, 1538, 1497, 1467, 1448, 1363, 1326,

1241, 1157, 1134, 1097, 1035.

 $MS(FAB): 728^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·3.6 H,O.

15 計算値: C,37.86; H,4.22; N,15.90; Cl,4.47; S,12.13(%).

実験値: C,37.88; H,4.10; N,15.92; Cl,4.37; S,12.00(%).

IR (KBr) cm⁻¹:3316, 1775, 1671, 1611, 1538, 1497, 1467, 1448, 1363, 1326,

1241, 1157, 1134, 1097, 1035.

 $MS(FAB): 728^{+}(M+H^{+}).$

20 元素分析 C,,H,,ClN,O,S,·3.6 H,O.

計算值: C,37.86; H,4.22; N,15.90; Cl,4.47; S,12.13(%).

実験値: C,37.88; H,4.10; N,15.92; Cl,4.37; S,12.00(%).

¹H-NMR (D₁0) δ : 1.44(3H, d, J = 6.9 Hz), 2.25(2H, m), 3.17 and 3.33(2H, ABq, J = 17.7 Hz), 3.95(2H, t, J = 5.7 Hz), 4.54(2H, t, J = 6.3 Hz), 4.65(1H, q, J = 6.9 Hz), 5.17(1H, d, J = 5.1 Hz), 5.53 and 5.70(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 5.1 Hz), 7.00(1H, d, J = 3.3 Hz), 7.67(1H, dd, J = 6.3 and 8.4 Hz), 8.12(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.4 Hz), 8.61(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3402, 3193, 2985, 1777, 1710, 1673, 1612, 1539, 1497, 1457, 1362, 1331, 1239, 1189, 1132, 1103, 1078, 1036.

 $MS(FAB): 707^{+}(M+H^{+}).$

10 元素分析 C,,H,,ClN,O,S,·3.4 H,O.

計算值: C,42.20; H,4.43; N,14.58; Cl,4.61; S,8.35(%).

実験値: C,42.19; H,4.34; N,14.60; Cl,4.54; S,8.23(%).

実施例160

5

15 1 H-NMR (D;0) δ : 1.43(3H, d, J = 7.2 Hz), 2.26-2.42(4H, m), 3.15 and 3.34(2H, ABq, J = 17.7 Hz), 3.28(2H, dt, J = 3.0 and 12.6 Hz), 3.64(2H, d, J = 12.6 Hz), 4.65(1H, q, J = 7.2 Hz), 4.91-5.00(1H, m), 5.16(1H, d, J = 4.8 Hz), 5.55 and 5.69(2H, ABq, J = 15.0 Hz), 5.85(1H, d, J = 4.8 Hz), 7.06(1H, d, J = 3.6 Hz), 7.69(1H, dd, J = 6.3 and 8.4 Hz), 8.23(1H, d, J = 3.6 Hz), 8.64(1H, d, J = 8.4 Hz), 8.65(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3397, 2528, 1773, 1599, 1539, 1494, 1461, 1396, 1360, 1315,

1285, 1185, 1128, 1068, 1032.

 $MS(FAB): 689^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·6.5 H,O.

計算值: C,41.71; H,5.25; N,13.90; Cl,4.40; S,7.95(%).

5 実験値: C,41.69; H,5.13; N,13.96; Cl,4.35; S,7.78(%).

実施例161

¹H-NMR (D₁0) δ: 1.36(3H, d, J = 6.9 Hz), 1.43(3H, d, J = 7.2 Hz), 2.10-2.37(2H, m), 3.16 and 3.36(2H, ABq, J = 17.7 Hz), 3.31-3.42(1H, m), 4.52(2H, t-like), 4.65(1H, q, J = 7.2 Hz), 5.17(1H, d, J = 4.8 Hz), 5.54 and 5.69(2H, ABq, J = 15.0 Hz), 5.85(1H, d, J = 4.8 Hz), 7.02(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.0 and 8.7 Hz), 8.14(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.7 Hz), 8.63(1H, d, J = 6.0 Hz).

IR (KBr) cm^{-1} :3388, 2981, 1775, 1591, 1539, 1499, 1458, 1393, 1363, 1286,

15 1221, 1186, 1160, 1114, 1062, 1033.

 $MS(FAB): 677^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·5.4 H,O.

計算值: C,41.87; H,5.18; N,14.47; Cl,4.58; S,8.28(%).

実験値: C,41.81; H,4.96; N,14.40; Cl,4.69; S,8.30(%).

¹H-NMR (D₁0) δ : 1.42(3H, d, J=6.9 Hz), 2.30(1H, m), 2.54(1H, m), 3.19 and 3.33(2H, ABq, J=18.0 Hz), 3.42-3.59(2H, m), 3.72-3.78(1H, m), 3.88-3.94(1H, m), 4.63(1H, q, J=6.9 Hz), 5.18(1H, d, J=4.8 Hz), 5.36(1H, m), 5.53 and 5.72(2H, ABq, J=15.3 Hz), 5.82(1H, d, J=4.8 Hz), 7.00(1H, d, J=3.6 Hz), 7.69(1H, dd, J=6.0 and 8.4 Hz), 8.08(1H, d, J=3.6 Hz), 8.62(1H, d, J=6.0 Hz), 8.63(1H, d, J=8.4 Hz).

IR (KBr) cm⁻¹:3387, 1770, 1667, 1605, 1543, 1495, 1461, 1399, 1359, 1321, 1285, 1202, 1149, 1131, 1081, 1058, 1029.

 $MS(ESI): 675^{+}(M+H^{+}).$

10 元素分析 C₁₇H₁₇ClN₈O₇S₂·6.0 H₁O·0.2(C₃H₇OH).

計算值: C,41.68; H,5.15; N,14.09; Cl,4.46; S,8.06(%).

実験値: C,41.53; H,5.05; N,14.16; Cl,4.35; S,7.82(%).

実施例163

5

15 1 H-NMR (D₂0) δ : 1.44(3H, d, J = 7.2 Hz), 2.30(1H, m), 2.53(1H, m), 3.19 and 3.33(2H, ABq, J = 17.7 Hz), 3.42-3.59(2H, m), 3.72-3.78(1H, m), 3.88-3.94 (1H, m), 4.66(1H, q, J = 7.2 Hz), 5.18(1H, d, J = 5.1 Hz), 5.38(1H, m), 5.52 and 5.71(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 5.1 Hz), 7.00(1H, d, J = 3.6 Hz), 7.69(1H, dd, J = 6.3 and 8.4 Hz), 8.08(1H, d, J = 3.6 Hz), 8.62

20 (1H, d, J = 6.3 Hz), 8.64(1H, d, J = 8.4 Hz).

IR (KBr) cm⁻¹:3406, 2978, 1772, 1601, 1541, 1497, 1461, 1395, 1364, 1313, 1287, 1222, 1186, 1161, 1132, 1094, 1065, 1034.

 $MS(ESI): 675^{\dagger}(M+H^{\dagger}).$

元素分析 C₁₇H₁₇ClN₈O₇S₂·3.2 H₁O·0.45(C₃H₇OH).

計算值: C,44.81; H,4.91; N,14.75; Cl,4.67; S,8.44(%).

実験値: C,44.79; H,4.97; N,14.64; Cl,4.61; S,8.28(%).

実施例164

5 1 H-NMR (D₂0) δ : 1.44(3H, d, J = 7.2 Hz), 2.30(1H, m), 2.54(1H, m), 3.19 and 3.33(2H, ABq, J = 18.0 Hz), 3.42-3.59(2H, m), 3.72-3.77(1H, m), 3.88-3.94 (1H, m), 4.65(1H, q, J = 7.2 Hz), 5.18(1H, d, J = 4.8 Hz), 5.38(1H, m), 5.52 and 5.72(2H, ABq, J = 14.7 Hz), 5.88(1H, d, J = 4.8 Hz), 7.00(1H, d, J = 3.3 Hz), 7.69(1H, dd, J = 6.0 and 8.4 Hz), 8.08(1H, d, J = 3.3

10 Hz), 8.62(1H, d, J = 6.0 Hz), 8.65(1H, d, J = 8.4 Hz).

IR (KBr) cm⁻¹:3397, 2982, 1773, 1602, 1540, 1497, 1462, 1395, 1364, 1316, 1287, 1186, 1132, 1092, 1064, 1034.

 $MS(ESI): 675^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·5.0 H,O·0.1(C,H,OH).

15 計算值: C,42.52; H,4.94; N,14.53; Cl,4.60; S,8.32(%).

実験値: C,42.54; H,4.95; N,14.29; Cl,5.01; S,8.09(%).

実施例165

 $^{1}\text{H-NMR}$ (D₂0) δ : 1.43(3H, d, J = 6.9 Hz), 1.76-1.89(1H, m), 2.08-2.18(1H, m), 2.08-3.52(5H, m), 3.18 and 3.37(2H, ABq, J = 18.3 Hz), 4.55(2H, d, J = 6.3Hz), 4.65(1H, q, J = 6.9 Hz), 5.18(1H, d, J = 4.8 Hz), 5.55 and 5.70(2H, ABq, J = 4.8 Hz), 5.70 and 5.70(2H, ABq, J = 4.8 Hz), 5.70 and 5.70(2H, ABq, J = 4.8 Hz), 5.70 and 5.70 and

15.0 Hz), 5.86(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.3 Hz), 7.70(1H, dd, J = 6.3 and 8.1 Hz), 8.15(1H, d, J = 3.3 Hz), 8.63(1H, d, J = 8.1 Hz), 8.65(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3397, 2982, 1774, 1602, 1539, 1499, 1454, 1391, 1363, 1319, 1286, 1185, 1158, 1129, 1092, 1064, 1033.

 $MS(FAB): 689^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·4.9 H,O.

計算值: C,43.26; H,5.03; N,14.41; Cl,4.56; S,8.25(%).

実験値: C,43.23 ; H,5.01 ; N,14.42 ; Cl,4.47 ; S,8.14 (%).

10 実施例 1 6 6

15

¹H-NMR (D₂0) δ : 1.43(3H, d, J = 6.9 Hz), 1.81-1.94(1H, m), 2.02-2.34(3H, m), 3.18 and 3.39(2H, ABq, J = 17.7 Hz), 3.26-3.49(2H, m), 4.09-4.19(1H, m), 4.65(1H, q, J = 6.9 Hz), 4.75(2H, brs), 5.18(1H, d, J = 4.8 Hz), 5.57 and 5.71(2H, ABq, J = 15.3 Hz), 5.86(1H, d, J = 4.8 Hz), 7.10(1H, d, J = 3.0 Hz), 7.74(1H, dd, J = 6.3 and 8.4 Hz), 8.17(1H, d, J = 3.0 Hz), 8.66(1H, d, J = 8.4 Hz), 8.69(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3396, 2982, 1775, 1602, 1540, 1501, 1465, 1391, 1364, 1287, 1186, 1158, 1131, 1092, 1064, 1033.

20 MS(FAB): $689^{\dagger}(M+H^{\dagger})$.

元素分析 C, H, ClN, O, S, · 4.9 H, O.

計算值: C,43.26; H,5.03; N,14.41; Cl,4.56; S,8.25(%).

実験値: C,43.54; H,5.01; N,14.32; C1,4.40; S,7.96(%).

¹H-NMR (D₂0) δ : 1.44(3H, d, J = 7.2 Hz), 2.02-2.31(2H, m), 3.18 and 3.40(2H, ABq, J = 17.7 Hz), 3.30(1H, d, J = 12.9 Hz), 3.65(1H, dd, J = 4.8 and 12.9 Hz), 4.37-4.50(1H, m), 4.66(1H, q, J = 7.2 Hz), 4.63-4.74(1H, m), 4.86(2H, m), 5.19(1H, d, J = 5.1 Hz), 5.58 and 5.71(2H, ABq, J = 15.0 Hz), 5.86(1H, d, J = 5.1 Hz), 7.12(1H, d, J = 3.3 Hz), 7.75(1H, dd, J = 6.0 and 8.4 Hz), 8.19(1H, d, J = 3.3 Hz), 8.67(1H, d, J = 8.4 Hz), 8.69(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3395, 2984, 1774, 1603, 1539, 1502, 1465, 1392, 1364, 1322, 1287, 1221, 1186, 1132, 1091, 1066, 1034.

10 MS(FAB): 705⁺(M+H⁺).

元素分析 C,,H,,ClN,O,S,·4.5 H,O.

計算值: C,42.77; H,4.87; N,14.25; Cl,4.51; S,8.16(%).

実験値: C,42.69; H,4.51; N,14.46; Cl,4.36; S,8.04(%).

実施例168

15

20

5

¹H-NMR (D₁0) δ : 1.39(3H, d, J = 6.6 Hz), 1.43(3H, d, J = 6.9 Hz), 3.18 and 3.38(2H, ABq, J = 17.7 Hz), 3.99(1H, q-like), 4.65(1H, q, J = 6.9 Hz), 4.66(2H, t-like), 5.18(1H, d, J = 4.8 Hz), 5.57 and 5.71(2H, ABq, J = 15.0 Hz), 5.86(1H, d, J = 4.8 Hz), 7.11(1H, d, J = 3.0 Hz), 7.74(1H, dd, J = 6.3 and 8.4 Hz), 8.14(1H, d, J = 3.0 Hz), 8.64(1H, d, J = 8.4 Hz), 8.69(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3397, 2983, 1773, 1597, 1539, 1502, 1466, 1395, 1364, 1325,

1289, 1181, 1112, 1063, 1033.

 $MS(FAB): 663^{+}(M+H^{+}).$

元素分析 C₁₁H₁₇C1N₁O₇S₁·4.7 H₁O.

計算值: C,41.76; H,4.91; N,14.98; Cl,4.74; S,8.58(%).

5 実験値: C,41.81; H,4.80; N,14.92; Cl,4.70; S,8.59(%).

実施例169

H-NMR (D₁0) δ : 1.43(3H, d, J = 7.2 Hz), 2.31(2H, quintet, J = 7.2 Hz), 2.91(3H, s), 3.17 and 3.37(2H, ABq, J = 17.7 Hz), 3.38(2H, t, J = 7.2 Hz), 4.48(2H, t, J = 7.2 Hz), 4.65(1H, q, J = 7.2 Hz), 5.18(1H, d, J = 4.8 Hz), 5.56 and 5.69(2H, ABq, J = 15.0 Hz), 5.85(1H, d, J = 4.8 Hz), 7.05(1H, d, J = 3.3 Hz), 7.69(1H, d, J = 6.0 and 8.7 Hz), 8.14(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.7 Hz), 8.64(1H, d, J = 6.0 Hz).

IR (KBr) cm⁻¹:3373, 1774, 1600, 1540, 1498, 1457, 1392, 1363, 1321, 1286,

15 1184, 1127, 1082, 1033.

 $MS(FAB): 719^{+}(M+H^{+}).$

元素分析 C, H, ClNioO, S, · 4.3 H, O.

計算值: C,42.21; H,5.01; N,17.58; Cl,4.45; S,8.05(%).

実験値: C,42.28; H,4.87; N,17.55; Cl,4.19; S,7.84(%).

¹H-NMR (D₁0) δ : 1. 43(3H, d, J = 7.2 Hz), 3.17 and 3.38(2H, ABq, J = 17.7 Hz), 3.22(2H, m), 3.69(2H, t, J = 6.3 Hz), 3.81(2H, m), 4.65(1H, q, J = 7.2 Hz), 4.83(2H, t, J = 6.3 Hz), 5.18(1H, d, J = 4.8 Hz), 5.57 and 5.71(2H, ABq, J = 15.0 Hz), 5.86(1H, d, J = 4.8 Hz), 7.10(1H, d, J = 3.3 Hz), 7.74(1H, dd, J = 6.0 and 8.4 Hz), 8.16(1H, d, J = 3.3 Hz), 8.64(1H, d, J = 8.4 Hz), 8.69(1H, d, J = 6.0 Hz). IR (KBr) cm⁻¹:3385, 1773, 1601, 1539, 1500, 1466, 1393, 1364, 1287, 1186, 1139, 1112, 1064, 1033.

 $MS(FAB): 693^{+}(M+H^{+}).$

元素分析 C₁₇H₁₁ClN₈O₈S₂·2.9 H₁O.

10 計算值: C,43.51; H,4.71; N,15.03; Cl,4.76; S,8.60(%).

実験値: C,43.61; H,4.80; N,15.12; Cl,4.48; S,8.21(%).

実施例171

5

'H-NMR (D₁0) δ : 1.43(3H, d, J = 7.2 Hz), 3.19 and 3.28 (2H, ABq, J = 18.0 Hz), 4.64(1H, q, J = 7.2 Hz), 5.15(1H, d, J = 4.8 Hz), 5.41 and 5.65(2H, ABq, J = 15.0 Hz), 5.87(1H, d, J = 4.8 Hz), 6.58(1H, d, J = 3.3 Hz), 7.43(1H, dd, J = 6.3 and 8.1 Hz), 7.90(1H, d, J = 3.3 Hz), 8.37(1H, d, J = 8.1 Hz), 8.40(1H, d, J = 6.3 Hz).

IR (KBr) cm^{-1} :3468, 3144, 3116, 3099, 3080, 2980, 2951, 2924, 2870, 2341,

20 2276, 2256, 1934, 1891, 1754, 1618, 1580, 1499, 1449, 1429, 1365, 1345, 1309, 1237, 1227, 1208, 1187, 1159, 1114, 1054.

1003, 1201, 1221, 1200, 1101, 1103, 1114, 1004.

 $MS(FAB): 622^{+}(M+H^{+}).$

元素分析 C,,H,,OClN,O,S,·3.5 H,O.

計算值: C,40.32; H,3.97; N,14.31; Cl,5.17; S,9.36(%).

実験値: C,40.38; H,3.90; N,14.23; Cl,5.36; S,9.25(%).

実施例172

5

20

¹H-NMR (D₁0) δ : 1.44(3H, d, J = 6.9 Hz), 3.18 and 3.37 (2H, ABq, J = 17.4 Hz), 4.26(s, 3H), 4.65(1H, q, J = 6.9 Hz), 5.18(1H, d, J = 4.8 Hz), 5.55 and 5.71(2H, ABq, J = 15.3 Hz), 5.88(1H, d, J = 4.8 Hz), 6.91(1H, d, J = 3.6 Hz), 7.74(1H, dd, J = 6.3 and 8.1 Hz), 8.31(1H, d, J = 3.6 Hz), 8.65(1H, d, J = 8.1 Hz), 8.68(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3410, 3134, 2941, 1778, 1674, 1614, 1537, 1457, 1364, 1234,

10 1211, 1188, 1155, 1120, 1058, 1034.

 $MS(ESI): 636^{+}(M+H^{+}).$

元素分析 C,,H,,ClN,O,S,·3.2 H,O.

計算值: C,41.55; H,4.13; N,14.13; Cl,5.11; S,9.24(%).

実験値: C,41.62; H,4.21; N,14.26; Cl,4.90; S,9.08(%).

15 四級塩エステル:

¹H-NMR (d₆-DMSO) δ : 1.44(3H, d, J = 6.9 Hz), 1.46(9H, s), 3.34 and 3.42(2H, Abq, J'= 18.0 Hz), 3.76(3H, s), 4.26(3H, s), 4.89(1H, q, J = 6.9 Hz), 5.19(1H, d, J = 5.1 Hz), 5.22 and 5.29(2H, Abq, J = 11.7 Hz), 5.68 and 5.75(2H, Abq, J = 15.3 Hz), 5.97(1H, dd, J = 5.1 and 8.4 Hz), 6.82(1H, s), 6.89(2H, d, J = 9.0 Hz), 6.95(1H, d, J = 3.6 Hz), 7.20-7.42(12H, m), 7.84(1H, dd, J = 6.0 and 8.1

Hz), 8.67(1H, d, J = 6.0 Hz), 8.73(1H, d, J = 3.6 Hz), 8.86(1H, d, J = 8.1 Hz), 9.76(1H, d, J = 8.4 Hz), 12.1(brs).

IR (KBr) cm⁻¹:3394, 3131, 3091, 3061, 3031, 2978, 2937, 1789, 1719, 1632, 1613, 1549, 1515, 1495, 1455, 1391, 1368, 1247, 1176, 1154, 1119, 1063,

5 1032.

MS(FAB): $1222^{\dagger}(C_{50}H_{44}C1N_{7}O_{14}S_{2}^{\dagger})$.

実施例173

¹H-NMR (D₁0) δ : 1.47(3H, d, J = 6.9 Hz), 2.43(3H, s), 3.26 and 3.62 (2H, ABq, J = 17.7 Hz), 4.66(1H, q, J = 6.9 Hz), 4.79 and 4.95(2H, ABq, J = 14.7 Hz), 5.26(1H, d, J = 4.8 Hz), 5.88(1H, d, J = 4.8 Hz), 6.26(1H, s).

IR (KBr) cm⁻¹:3312, 3190, 1776, 1671, 1617, 1535, 1460, 1392, 1337, 1187, 1134, 1100, 1064, 1034.

 $MS(FAB): 602^{+}(M+H^{+}).$

15 元素分析 C₂₀H₂₀ClN₇O₇S₃·2.5 H₂O.

計算值: C,37.12; H,3.89; N,15.15; Cl,5.48; S,14.87(%).

実験値: C,36.94; H,3.98; N,14.93; Cl,5.42; S,15.09(%).

実施例174

20 $^{1}\text{H-NMR}$ (D,0) δ : 1.44(3H, d, J = 7.2 Hz), 3.26 and 3.66(2H, ABq, J = 18.0 Hz), 4.64(1H, q, J = 7.2 Hz), 5.25 and 5.50(2H, ABq, J = 14.4 Hz), 5.28(1H, d, J =

4.8 Hz), 5.89(1H, d, J = 4.8 Hz), 6.78(1H, dd, J = 1.8 and 3.0 Hz), 8.04(1H, d, J = 1.8 Hz), 8.27 and 8.94(2H, ABq, J = 7.2 Hz), 8.53(1H, d, J = 3.0 Hz). IR (KBr) cm^{-1} :3417, 3135, 1779, 1673, 1639, 1537, 1480, 1446, 1397, 1360, 1217, 1159, 1116, 1036.

5 MS(FAB): $633^{\dagger}(M+H^{\dagger})$.

元素分析 C,,H,,ClN,O,S,·2.7 H,O.

計算值: C,42.29; H,3.90; N,16.44; Cl,5.20; S,9.41(%).

実験値: C,42.41; H,3.97; N,16.42; Cl,4.93; S,9.24(%).

実施例175

10

¹H-NMR (D₂0) δ : 1.44(3H, d, J = 6.9 Hz), 3.28 and 3.70(2H, ABq, J = 18.0 Hz), 4.65(1H, q, J = 6.9 Hz), 5.30(1H, d, J = 5.1 Hz), 5.36 and 5.63(2H, ABq, J = 14.7 Hz), 5.92(1H, d, J = 5.1 Hz), 8.07(1H, d, J = 1.8 Hz), 8.59 and 9.18(2H, ABq, J = 7.5 Hz), 8.85(1H, d, J = 1.8 Hz).

15 IR (KBr) cm⁻¹:3415, 3132, 1778, 1673, 1638, 1530, 1475, 1341, 1247, 1186, 1159, 1125, 1095, 1064, 1032.

 $MS(FAB): 634^{+}(M+H^{+}).$

元素分析 Ci,H10ClN1O7S1・2.6 H10.

計算值: C,40.57; H,3.73; N,18.51; C1,5.21; S,9.42(%).

20 実験値: C,40.61; H,3.67; N,18.52; C1,4.96; S,9.20(%).

¹H-NMR (D,0) δ : 2.30(2H, m), 2.67(3H, s), 3.0542H, m), 3.15 and 3.38 (2H, ABq, J = 17.7 Hz), 4.52(2H, t, J = 6.6 Hz), 4.55(2H, s), 5.17(1H, d, J = 4.8 Hz), 5.56 and 5.67(2H, ABq, J = 15.0 Hz), 5.85(1H, d, J = 4.8 Hz), 7.04(1H, d, J = 3.3 Hz), 7.68(1H, dd, J = 6.3 and 8.1 Hz), 8.11(1H, d, J = 3.3 Hz), 8.59(1H, d, J = 8.1 Hz), 8.64(1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹:3418, 1771, 1607, 1534, 1497, 1466, 1391, 1360, 1317, 1152, 1119, 1052, 1020.

 $MS(ESI): 707^{\dagger}(M+H^{\dagger}).$

5

· 15

20

10 元素分析 C,,H,,BrN,O,S,·5.4 H,O.

計算值: C,38.80; H,4.73; N,13.92; Br,9.93; S,7.97(%).

実験値: C,38.80; H,4.46; N,14.04; Br,9.66; S,8.01(%).

四級塩エステル:

¹H-NMR (d₄-DMS0) δ : 1.40(9H, s), 1.46(18H, s), 2.03(2H, m), 2.78(3H, brs), 3.18(2H, t, J=6.6 Hz), 3.26 and 3.43(2H, Abq, J=18.3 Hz), 3.75(3H, s), 4.43(2H, t-like), 4.55(2H, s), 5.17(1H, d, J=4.8 Hz), 5.21 and 5.28(2H, Abq, J=11.7 Hz), 5.65 and 5.73(2H, ABq, J=15.0 Hz), 5.94(1H, dd, J=4.8 and 8.7 Hz), 6.88 and 7.32(4H, Abq, J=8.7 Hz), 7.00(1H, d, J=3.3 Hz), 7.79(1H, dd, J=6.0 and 8.1 Hz), 8.43(1H, d, J=3.3 Hz), 8.60(1H, d, J=6.0 Hz), 8.88(1H, d, J=8.1 Hz), 9.61(1H, d, J=8.7 Hz), 12.1(brs).

IR (KBr) cm⁻¹:3428, 3060, 2976, 2933, 1790, 1720, 1686, 1630, 1613, 1584, 1548, 1515, 1496, 1455, 1393, 1368, 1300, 1247, 1156, 1078, 1062, 1024.

MS(ESI): 1083[†](C₁,H₁,BrN₆O₁,S,[†]).

実施例177

5

10

 $^{1}\text{H-NMR}$ (D₂0) δ : 1.43(3H, d, J = 6.9 Hz), 3.17 and 3.38(2H, ABq, J = 17.7 Hz), 4.65(1H, q, J = 6.9 Hz), 4.70-4.75(4H, m), 5.18(1H, d, J = 4.8 Hz), 5.57 and 5.71(2H, ABq, J = 15.3 Hz), 5.86(1H, d, J = 4.8 Hz), 5.95(1H, quintet-like),

7.20(1H, d, J = 3.6 Hz), 7.73(1H, dd, J = 6.3 and 8.4 Hz), 8.53(1H, d, J = 3.6 Hz)

IR (KBr) cm⁻¹:3407, 2985, 2670, 1773, 1604, 1539, 1502, 1463, 1394, 1364, 1286,1185, 1136, 1090, 1064, 1032.

 $MS(FAB): 661^{+}(M+H^{+})$.

元素分析 C1,4H1,5ClN,0,S1·4.5 H20.

15 計算值: C,42.08; H,4.62; N,15.10; Cl,4.78; S,8.64(%).

Hz), 8.60(1H, d, J = 8.4 Hz), 8.70(1H, d, J = 6.3 Hz).

実験値: C,42.05; H,4.60; N,15.23; Cl,4.50; S,8.34(%).

実施例178

¹H-NMR (D₁0) δ : 1.37(3H, d, J = 6.9 Hz), 4.34 and 4.41(2H, ABq, J = 17.4 Hz), 4.61(1H, q, J = 6.9 Hz), 4.87 and 5.21(2H, ABq, J = 14.7 Hz), 5.31(1H, d, J = 3.9 Hz), 5.65(1H, d, J = 3.9 Hz), 6.83 and 8.08(2H, ABq, J = 7.2 Hz).

IR (KBr) cm⁻¹:3344, 3197, 1781, 1655, 1538, 1444, 1402, 1372, 1349, 1279, 1240, 1210, 1171, 1109, 1064, 1034.

 $MS(FAB): 566^{\dagger}(M+H^{\dagger})$

元素分析 C,1H,0ClN,O,S·3.0 H,O.

5 計算值: C,40.68 ; H,4.23 ; N,15.81 ; Cl,5.72 ; S,5.17 (%).

実験値: C,40.56; H,3.90; N,15.83; Cl,5.84; S,5.18(%).

実施例179

 $^{1}\text{H-NMR}$ (D₂0) δ : 1.38(3H, d, J = 7.2 Hz), 3.33(2H, t, J = 6.0 Hz), 3.73(2H, t, J = 6.0 Hz), 4.34 and 4.45(2H, ABq, J = 17.4 Hz), 4.63(1H, q, J = 7.2 Hz), 4.78 and 5.32(2H, ABq, J = 14.7 Hz), 5.33(1H, d, J = 3.9 Hz), 5.63(1H, d, J = 3.9 Hz), 6.83(2H, d-like), 8.08(2H, m).

IR (KBr) cm⁻¹:3396, 3067, 1779, 1649, 1601, 1556, 1448, 1403, 1371, 1350, 1279, 1217, 1171, 1107, 1063, 1033.

15 MS(FAB): 623+(M+H+).

元素分析 C,,H,,ClN,O,S·4.9 H,O.

計算值: C,40.52; H,5.21; N,15.75; Cl,4.98; S,4.51(%).

実験値: C,40.36; H,4.96; N,15.90; Cl,5.12; S,4.67(%).

実施例180

20

 $^{1}\text{H-NMR}$ (D,0) δ : 1.31 (3H, d, J = 7.2 Hz), 2.64 (3H, s), 3.03 (1H, d, J = 17.1

Hz), 3.21 (2H, t, J = 6.0 Hz), 3.45 (1H, d, J = 17.1 Hz), 3.61 (2H, t, J = 6.0 Hz), 4.51 (1H, q, J = 7.2 Hz), 4.76 (1H, d, J = 15.0 Hz), 4.97 (1H, d, J = 15.0 Hz), 5.10 (1H, d, J = 4.2 Hz), 5.70 (1H, d, J = 4.2 Hz), 6.81 (2H, d, J = 6.3 Hz), 8.01-8.13 (2H, m).

5 IR (KBr) cm⁻¹: 3388, 3066, 1773, 1650, 1590, 1557, 1533, 1450, 1394, 1355, 1320, 1289, 1217, 1169, 1094, 1064, 1036.

 $MS(FAB): 623^{+}(M+H^{+})$.

元素分析 C,,H,,FN,O,S,·3.8 H,O.

計算值: C, 41.71; H, 5.05; N, 16.21; F, 2.75; S, 9.28 (%).

10 実験値: C, 41.69; H, 4.92; N, 16.23; F, 2.51; S, 9.05 (%).

実施例181

'H-NMR (D₁0) δ: 1.52 (3H, d, J = 6.9 Hz), 3.25 (1H, d, J = 17.7 Hz), 3.63 (1H, d, J = 17.7 Hz), 4.84 (1H, q, J = 6.9 Hz), 4.88 (1H, d, J = 14.7 Hz), 5.06 (1H, d, J = 14.7 Hz), 5.26 (1H, d, J = 5.1 Hz), 5.87 (1H, d, J = 5.1 Hz), 6.85 (1H, d, J = 7.5 Hz), 8.21 (1H, dd, J = 1.5, 7.5 Hz), 8.68 (1H, d, J = 1.5 Hz).

IR (KBr) cm⁻¹: 3397, 3198, 1776, 1659, 1539, 1494, 1445, 1391, 1372, 1238, 1169, 1103, 1065, 1037.

MS (FAB): 583 $(M+H)^{+}$, 1165 $(2M+H)^{+}$.

20 元素分析 C,₀H₁,ClN₈O₇S₁·2.1 H₂O.

計算值: C, 38.69; H, 3.77; N, 18.05; Cl, 5.71; S, 10.33 (%).

実験値: C, 38.81; H, 3.70; N, 18.01; Cl, 5.54; S, 10.05 (%).

¹H-NMR (D₂0) δ : 1.44 (3H, d, J = 6.9 Hz), 3.16 (1H, d, J = 17.7 Hz), 3.57 (1H, d, J = 17.7 Hz), 4.21 (2H, m), 4.52 (2H, m), 5.11 (1H, d, J = 14.4 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 6.89 (2H, m), 8.23 (2H, m).

5 IR (KBr) cm⁻¹: 3399, 3059, 1772, 1649, 1601, 1551, 1445, 1361, 1288, 1217, 1167, 1095, 1065, 1035.

MS (FAB): $637 (M+H)^{+}$, $1273 (2M+H)^{+}$.

元素分析 C,,H,,ClN,O,S,·2.2 H,O.

計算值: C, 42.60; H, 4.38; N, 16.56; Cl, 5.24; S, 9.48 (%).

10 実験値: C, 42.67; H, 4.31; N, 16.71; Cl, 5.16; S, 9.08 (%).

実施例183

15

¹H-NMR (D₂0) δ : 1.33 (3H, d, J = 6.9 Hz), 2.62 (3H, s), 3.12 (1H, d, J = 18.0 Hz), 3.22 (2H, t, J = 5.7 Hz), 3.53 (1H, d, J = 18.0 Hz), 3.82 (2H, t, J = 5.7 Hz), 4.54 (1H, q, J = 6.9 Hz), 4.75 (1H, d, J = 14.7 Hz), 4.96 (1H, d, J = 14.7 Hz), 5.13 (1H, d, J = 5.1 Hz), 5.74 (1H, d, J = 5.1 Hz), 6.77 (1H, d, J = 7.5 Hz), 8.12 (1H, br d, J = 7.5 Hz), 8.70 (1H, br s).

IR (KBr) cm⁻¹: 3409, 1775, 1652, 1605, 1538, 1509, 1447, 1394, 1370, 1287, 1170, 1095, 1065, 1035.

20 MS (FAB): 640 (M+H)⁺, 1279 (2M+H)⁺.
元素分析 C₁₃H₁₄ClN₁O₇S₂·3.5 H₂O.

計算值: C, 39.29; H, 4.73; N, 17.93; Cl, 5.04; S, 9.12 (%).

実験値: C, 39.43; H, 4.68; N, 17.74; Cl, 5.00; S, 8.95 (%).

実施例184

5 1 H-NMR (D₁0) δ : 1.45 (3H, d, J = 6.9 Hz), 3.17 (1H, d, J = 18.0 Hz), 3.24 (2H, t, J = 5.1 Hz), 3.39 (2H, t, J = 6.3 Hz), 3.57 (1H, d, J = 18.0 Hz), 3.77 (2H, t, J = 6.3 Hz), 3.85 (2H, t, J = 5.1 Hz), 4.66 (1H, q, J = 6.9 Hz), 4.88 (1H, d, J = 15.0 Hz), 5.09 (1H, d, J = 15.0 Hz), 5.24 (1H, d, J = 4.8 Hz), 5.86 (1H, d, J = 4.8 Hz), 6.94 (2H, d, J = 6.9 Hz), 8.19 (2H, m).

10 IR (KBr) cm⁻¹: 3378, 1774, 1650, 1598, 1556, 1448, 1394, 1358, 1286, 1218, 1168, 1093, 1066, 1034.

MS (FAB): $669 (M+H)^{\dagger}$.

元素分析 C,,H,,ClN,O,S,·2.7 H,O.

計算值: C, 41.83; H, 4.83; N, 15.61; Cl, 4.94; S, 8.93 (%).

15 実験値: C, 41.76; H, 4.61; N, 15.80; Cl, 4.78; S, 8.65 (%).

実施例185

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 6.9 Hz), 2.21 (3H, brs), 2.97 and 3.48 (2H, ABqt, J = 17.7 Hz), 4.57 (1H, q, J = 6.9 Hz), 5.09 (1H, d, J = 4.8 Hz), 5.41 (2H, brs), 5.77 (1H, dd, J = 4.8, 8.4 Hz), 6.75 (1H, t-like), 7.37-7.39 (3H, m), 7.70 (2H, brs), 8.05 (1H, d, J = 5.4 Hz), 9.96 (1H, brs), 13.5 (1H, brs).

IR (KBr) cm⁻¹:3339, 3195, 1773, 1646, 1603, 1567, 1479, 1424, 1394, 1338, 1286, 1227, 1190, 1161, 1094, 1035.

 $MS(FAB): 635^{+}(M+H)^{+}$.

元素分析 C₂₄H₂₃ClN₈O₇S₂·2.3 H₂O.

5 計算值: C,42.61; H,4.11; N,16.56; Cl,5.24; S,9.48 (%).

実験値: C,42.72; H,4.27; N,16.53; Cl,5.02; S,9.13(%).

実施例186

 1 H-NMR (D₂O + DCl) δ : 1.54 (3H, d, J = 7.5 Hz), 2.76 (3H, s), 3.24 and 3.46 (2H, ABqt, J = 18.6 Hz), 3.51 (2H, t, J = 6.3 Hz), 4.56 (2H, t, J = 6.3 Hz), 4.98 (1H, q, J = 7.5 Hz), 5.27 (1H, d, J = 4.8 Hz), 5.36 and 5.49 (2H, ABq, J = 15.9 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.11 (1H, dd, J = 6.3, 7.8 Hz), 7.80 (1H, d, J = 7.8 Hz), 7.95 (1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹: 3369, 2457, 1761, 1646, 1564, 1475, 1435, 1398, 1360, 1317, 1284, 1191, 1164, 1092, 1036.

15 MS(FAB): 678* (M+H)*

元素分析 C₂₆H₂₈ClN₉O₇S₂·3.2 H₂O.

計算值: C,42.44; H,4.71; N,17.13; Cl,4.82; S,8.72(%).

実験値: C,42.15; H,4.41; N,17.15; Cl,4.86; S,8.68(%).

実施例187

20

 $^{1}\text{H-NMR}$ (D₂O + DCl) δ : 1.55 (3H, d, J = 6.9 Hz), 2.16-2.24 (3H, m), 3.37 (1H, d, J = 18.3)

Hz), 3.43 (3H, s), 3.57-3.76 (4H, m), 4.31 (2H, t, J = 8.1 Hz), 4.79 (1H, d, J = 5.1 Hz), 4.99 (1H, q, J = 6.9 Hz), 5.49 and 5.68 (2H, ABq, J = 15.0 Hz), 5.92 (1H, d, J = 5.1 Hz), 7.35 (1H, dd, J = 6.6, 7.8 Hz), 7.97 (1H, d, J = 7.8 Hz), 8.14 (1H, d, J = 6.6 Hz).

IR (KBr) cm⁻¹: 3378, 3183, 1773, 1650, 1565, 1495, 1441, 1395, 1352, 1316, 1287, 1223,

5 1165, 1095, 1034.

MS(FAB): 723+ (M+H)+

元素分析 C₂₇H₃₁ClN₁₀O₈S₂·2.6 H₂O.

計算值: C,42.11; H,4.74; N,18.19; Cl,4.60; S,8.33 (%).

実験値: C,42.14; H,4.54; N,18.19; Cl,4.50; S,8.16(%).

10 実施例188

15

$$\begin{array}{c|c} H_2N & S & Clo & H & S \\ \hline N_{\cdot,0} & N_{\cdot,0} & N_{\cdot,0} & N_{\cdot,0} \\ \hline Me^{inv} & CO_2H & CO_2^{-1} \end{array}$$

¹H-NMR (d₆-DMSO) δ : 1.39 (3H, d, J = 6.9 Hz), 3.07 and 3.49 (2H, d, J = 17.7 Hz), 4.56 (1H,q, J = 6.9 Hz), 4.92 and 5.38 (2H, ABq, J = 13.5 Hz), 5.07 (1H, d, J = 5.4 Hz), 5.73 (1H, dd, J = 5.4, 9.0 Hz), 7.35 (1H, d, J = 3.3 Hz), 7.40 (2H, brs), 7.54 (1H, d, J = 3.3 Hz), 8.05 (2H, brs), 8.90 (2H, brd, J = 7.2 Hz), 9.70 (1H, brs).

IR (KBr) cm⁻¹: 3416, 2984, 1777, 1643, 1547, 1515, 1476, 1461, 1348, 1204, 1161, 1102, 1063, 1036.

 $MS(FAB): 665^{+}(M+H)^{+}$.

元素分析 C₂₄H₂₁ClN₈O₇S₃·2.5H₂O.

20 計算值: C,40.59; H,3.69; N,15.78; Cl,4.99; S,13.55 (%).

実験値: C,40.41; H,3.62; N,16.01; Cl,5.03; S,13.25(%).

実施例189

¹H-NMR (D₂O + DCl) δ : 1.54 (3H, d, J = 6.9 Hz), 2.14-2.24 (2H, m), 2.71 (3H, s), 3.11 (2H, t, J = 8.4 Hz), 3.25 and 3.48 (2H, ABqt, J = 18.3 Hz), 4.28 (2H, t, J = 7.5 Hz), 4.99 (1H, q, J = 6.9 Hz), 5.29 (1H, d, J = 4.8 Hz), 5.34 and 5.51 (2H, ABq, J = 15.6 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.08 (1H, dd, J = 6.6, 7.5 Hz), 7.78 (1H, d, J = 7.5 Hz), 7.91 (1H, d, J = 6.6 Hz). IR (KBr) cm⁻¹: 3341, 3177, 1772, 1646, 1564, 1473, 1439, 1394, 1346, 1284, 1190, 1162, 1092, 1058, 1034.

 $MS(FAB): 692^{+}(M+H)^{+}$.

元素分析 C₂₇H₃₀ClN₉O₇S₂·3.8 H₂O.

10 計算值: C,42.63; H,4.98; N,16.57; Cl,4.66; S,8.43 (%).

実験値: C,42.69; H,4.81; N,16.49; Cl,4.67; S,8.51(%).

実施例190

5

¹H-NMR (D₂O+DCl) δ : 1.55 (3H, d, J = 6.9 Hz), 3.27 (2H, t, J = 8.3 Hz), 3.36 and 3.59 (2H, ABq, J = 18.3 Hz), 3.61 (2H, t, J = 6.8 Hz), 3.86 (2H, t, J = 8.3 Hz), 4.98 (1H, sept, J = 6.9 Hz), 5.27 (1H, d, J = 4.8 Hz), 5.47 and 5.70 (2H, ABq, J = 15.2 Hz), 7.32-7.38 (1H, m), 8.01 (1H, d, J = 7.5 Hz), 8.16 (1H, d, J = 6.9 Hz).

IR (KBr) cm⁻¹:3371, 3184, 1772, 1667, 1603, 1563, 1395, 1351, 1316, 1222, 1170, 1072, 1034, 984, 867, 758.

20 MS(FAB): 709^+ (M+H) $^+$.

元素分析 C₂₆H₂₉ClN₁₀O₈S₂·2.6 H₂O.

計算值: C,41.31; H,4.56; N,18.53; Cl,4.69; S,8.48(%).

実験値: C,41.22; H,4.37; N,18.51; Cl,5.27; S,8.25(%).

実施例191

 1 H-NMR (d₆-DMSO) δ: 1.39 (3H, d, J = 6.9 Hz), 3.04 and 3.486 (2H, ABqt, J = 17.4 Hz), 3.67 (2H, t, J = 5.4 Hz), 4.07 (2H, t, J = 5.4 Hz), 4.57 (1H, q, J = 6.9 Hz), 4.84 and 5.30 (2H, ABq, J = 13.8 Hz), 5.06 (1H, d, J = 4.8 Hz), 5.72 (1H, dd, J = 4.8, 8.7 Hz), 6.31 (1H, d, J = 1.8 Hz), 7.14 (2H, brs), 7.41 (2H, brs), 7.57 (1H, d, J = 1.8 Hz), 8.72 (1H, d, J = 7.2 Hz), 9.65 (1H, brs), 10.8 (1H, brs).

10 IR (KBr) cm⁻¹: 3308, 2948, 1777, 1648, 1608, 1541, 1456, 1357, 1212, 1165, 1109, 1065, 1036.

 $MS(FAB): 692^{+}(M+H)^{+}$.

元素分析 C₂₆H₂₆ClN₉O₈S₂·2.2 H₂O.

計算值: C,42.68; H,4.19; N,17.23; Cl,4.84; S,8.78(%).

15 実験値: C,42.79; H,4.10; N,17.32; Cl,4.47; S,8.45(%).

実施例192

¹H-NMR (d₆-DMSO) δ : 1.20 (3H, t, J = 6.9 Hz), 1.38 (3H, d, J = 7.2 Hz), 2.94 and 3.27 (2H, ABqt, J = 17.4 Hz), 4.16 (2H, q, J = 6.9 Hz), 4.55 (2H, q, J = 7.2 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.22 and 5.34 (2H, ABq, J = 14.4 Hz), 5.68 (1H, dd, J = 4.8, 9.0 Hz), 6.05 (1H, s), 6.99 (1H, dd, J = 6.6, 7.5 Hz), 7.40 (2H, brs), 7.79 (1H, d, J = 7.5 Hz), 7.88 (2H, brs), 8.27 (1H, d, J = 7.5 Hz), 9.28 (2H, brs), 8.27 (1H, d, J = 7.5 Hz), 9.28 (2H, brs), 9.28 (2H, brs),

6.6 Hz), 9.78 (1H, brs).

IR (KBr) cm⁻¹: 3346, 3189, 2985, 2936, 1777, 1646, 1594, 1563, 1474, 1441, 1386, 1342, 1285, 1191, 1162, 1098, 1036.

 $MS(FAB): 649^{+}(M+H)^{+}$.

5 元素分析 C₂₅H₂₅ClN₈O₇S₂·2.3 H₂O.

計算值: C,43.48; H,4.32; N,16.23; Cl,5.13; S,9.29(%).

実験値: C,43.48; H,4.21; N,16.28; Cl,4.80; S,8.98(%).

実施例193

10

¹H-NMR (d₆-DMSO) δ : 1.04 (3H, t, J = 7.2 Hz), 1.40 (3H, d, J = 6.9 Hz), 2:60-2.70 (2H, m), 2.97 and 3.49(2H, ABqt, J = 17.4 Hz), 4.57 (1H, q, J = 6.9 Hz), 5.10 (1H, d, J = 4.8 Hz), 5.24 and 5.46 (2H, ABq, J = 14.7 Hz), 5.78 (1H, dd, J = 4.8, 8.1 Hz), 6.75 (1H, t-like), 7.37-7.39 (3H, m), 7.72 (2H, brs), 8.00 (1H, brs), 9.92 (1H, brs), 13.1 (1H, brs).

15 IR (KBr) cm⁻¹: 3341, 3196, 2972, 2934, 1176, 1633, 1567, 1475, 1423, 1344, 1225, 1187, 1159, 1101, 1058, 1033.

 $MS(FAB): 649^{+}(M+H)^{+}$.

元素分析 C₂₅H₂₅ClN₈O₇S₂·2.6H₂O.

計算值: C,43.15; H,4.37; N,16.10; Cl,5.09; S,9.21 (%).

20 実験値: C,43.25; H,4.18; N,16.06; Cl,4.81; S,8.86(%).

実施例194

¹H-NMR (D₂O + DCl) δ : 1.41 (3H, d, J = 6.3 Hz), 1.54 (3H., d, J = 6.9 Hz), 3.26 and 3.49 (2H, ABqt, J = 18.3 Hz), 3.87-3.99 (1H, m), 4.35-4.49 (2H, m),5.29 (1H, d, J = 4.8 Hz), 5.36 and 5.53 (2H, ABq, J = 15.3 Hz), 5.91 (1H, d, J = 4.8 Hz), 7.11 (1H, dd, J = 6.3, 7.8 Hz), 7.83 (1H, d, J = 7.8 Hz), 7.95 (1H, d, J = 6.3 Hz).

IR (KBr) cm⁻¹: 3353, 3176, 1756, 1647, 1561, 1436, 1398, 1355, 1318, 1284, 1236, 1165, 1092, 1036.

 $MS(FAB): 678^{+}(M+H)^{+}$.

元素分析 C₂₆H₂₉CIN₉O₇S₂·3.2 H₂O.

10 計算值: C,42.38; H,4.84; N,17.11; Cl,4.81; S,8.70(%).

実験値: C,42.46; H,4.69; N,17.11; Cl,4.58; S,8.47(%).

実施例195

5

¹H-NMR (D₂O+DCl) δ : 1.54 (3H, d, J = 6.9 Hz), 2.24 (3H, s), 2.26 (2H, d-like), 2.62-2.74 (2H, m), 3.19-3.34 (3H, m), 3.46 (1H, d, J = 18.3 Hz), 3.72 (2H, d-like), 4.69-4.78 (1H, m), 4.99 (1H, q, J = 6.9 Hz), 5.29 (1H, d, J = 4.8 Hz), 5.35 and 5.53 (2H, ABq, J = 15.6 Hz), 5.91 (1H, t-like), 7.08 (1H, t-like), 7.94 (2H, t-like).

IR (KBr) cm⁻¹: 3355, 3184, 1771, 1594, 1559, 1476, 1434, 1395, 1349, 1317, 1283, 1188, 1166, 1066, 1033, 1001.

20 MS(FAB): $704^{+}(M+H)^{+}$.

元素分析 C₂₈H₃₀ClN₉O₇S₂·3.6 H₂O.

計算值: C,43.73; H,4.88; N,16.39; Cl,4.61; S,8.34(%).

実験値: C,43.74; H,4.65; N,16.50; Cl,4.40; S,8.13(%).

実施例A

5 前記実施例に準じて以下の化合物(I)を合成する。

Z =

PCT/JP03/03249 WO 03/078440

Z=

Z=

z =

試験例1

本発明化合物の各種細菌に対するMIC値(最小発育阻止濃度)を、常法に従い寒天 5 希釈法により求めた。結果を表1に示す。

PCT/JP03/03249 WO 03/078440

(表1)

(単位:μg/ ml)

実施例番号	S.aureus SR3637 (H-MRSA) *1	S.epidermidis SR 25009(MRSE) *2	E.doacae SR4321 (Bla++) *3	P.aeruginosa SR24-12 *3
比 1	>128	>128	64	64
実 1	64	32	16	8
実 3	32	32	16	8
実 4	16	. 8	4	8
実 5	16	8	8	-
実 8	32	32	4	4
実 9	16	8	2	4
実 18	8	4	2	4
実 19	16	8	1	8
実 20	16	16	8	4
実 79	8	8	2	4
実 98	8	8	2	2
実 124	16	8	4	4
実 132	16	8	4	4

- *1 メチシリン高度耐性黄色ブドウ球菌 *2 メチシリン高度耐性表皮ブドウ球菌 *3 AmpC高産生セフェム耐性株

比較例1

上記結果は、比較例1の化合物(セフタジダイム)に比べて、アミノチアゾール環部分にハロゲン等の置換基を有する本発明化合物が、高度耐性のMRSAやMRSE、あるいは緑膿菌を含むセフェム耐性株等の各種細菌に対して強い抗菌作用を有することを示す。

5

製剤例1

実施例1の本発明化合物およびpH調製剤を粉末充填することにより注射剤を調製する。

10 産業上の利用分野

本発明化合物は、グラム陽性菌およびグラム陰性菌を含む種々の細菌に対して強い抗菌作用を示す。特に、 β -ラクタマーゼに安定であり、C型 β -ラクタマーゼ産生の緑膿菌を含むセフェム耐性菌に対しても非常に有効である。また体内動態もよく、水溶性も高いので、特に注射薬として好適である。

15

請求の範囲

1. 式:

(式中、

5 Tは、S、SOまたはO;

Xは、ハロゲン、CN、低級アルキルにより置換されていてもよいカルバモイル、低級アルキル、低級アルコキシ、または低級アルキルチオ;

Aは、置換低級アルキレン (置換基:置換されていてもよいモノ低級アルキル、置換されていてもよい低級アルキリデン、または置換されていてもよい低級アルキレン);

- 10 Z[⊕]は、置換されていてもよい、カチオン基を有するN原子含有ヘテロ環式基)で示される化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。
- 2. TがSである、請求項1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒 15 和物。
 - 3. TがOである、請求項1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。
- 4. Xがハロゲンまたは低級アルキルである、請求項1記載の化合物、エステル体、 20 もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上 許容される塩もしくは溶媒和物。

5. Aが式:

10

15

(式中、R¹およびR¹は互いに異なり、それぞれ独立して水素もしくは置換されていてもよい低級アルキルであるか、または一緒になって置換されていてもよい低級アルキリデンもしくは置換されていてもよい低級アルキレンを形成する)

5 で示される2価の基である、請求項1記載の化合物、エステル体、もしくはその7位 のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もし くは溶媒和物。

6. Aが以下のいずれかの式で示される2価の基である、請求項5記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

(式中、Meは、メチル; Etは、エチル; i-Prは、イソプロピルを表わす。)

7. R¹およびR¹が互いに異なりそれぞれ独立して水素もしくは低級アルキルである、 請求項5記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノに おける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

8. R¹およびR¹が互いに異なりそれぞれ独立して水素もしくはメチルである、請求 項5記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおけ

る保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

9. "-A-COOH"が以下の式で示される基である、請求項5記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

10. Z[⊕]が式:

5

10

で示され、少なくともN原子を1個以上含有し、1~4個の置換基を有していてもよい、飽和または不飽和の単環式または縮合環式の4級アンモニウム基である、請求項1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

11. Z[⊕]が以下に示すいずれかのヘテロ環式基である、請求項1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

(式中、R³およびR¹は、それぞれ独立して水素、置換されていてもよい低級アルキル、置換されていてもよいシクロアルキル、置換されていてもよい低級アルケニル、置換されていてもよいアミノ、ハイドロキシ、ハロゲン、置換されていてもよいカルバモイル、置換されていてもよいアルキルオキシ、または置換されていてもよいヘテロ環式基)

5

12. Z[⊕]が以下に示すいずれかのヘテロ環式基である、請求項1記載の化合物、エステル体、もしくはその7位のチアソール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

(式中、各RおよびR'は、それぞれ独立して、水素、低級アルキル、アミノ、モノまたはジ低級アルキルアミノ、低級アルケニル、アミノ低級アルキル、低級アルキルアミノ、低級アルキルアミノ、四級アルキルスをリスをは一般アルキルスをは一般アルキルスをは一般アルキルスをは一般アルキルスをは一般アルキル、は一般アルキルスをは一般アルキル、は一般アルキル、は一般アルキル、は一般アルキル、は一般アルキル、は一般アルキル、は一般アルキル、は一般アルキル、は一般アルキル、低級アルコキシは一般アルキル、低級アルキル、低級アルキル、低級アルキル、低級アルコキシカルボニルアミノ低級アルキル、低級アルコキシカルボニルアミノ低級アルキル、低級アルコキシカルボニルアミノ低級アルキル、低級アルキル、または置換されていてもよい低級アルキル、2種の置換基を有する低級アルキル、または置換されていてもよいへテロ環式基)

5

10

13. Z[⊕]が以下に示すいずれかのヘテロ環式基である、請求項1記載の化合物、エ ステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれ

らの製薬上許容される塩もしくは溶媒和物。

(式中、各Rは、それぞれ独立して、水素、低級アルキル、アミノ低級アルキル、低 級アルキルアミノ低級アルキル、置換されていてもよいヘテロ環式基により置換され たアミノ、または置換されていてもよいヘテロ環式基; R, はアミノ)

14. Z[⊕]が以下に示すいずれかのヘテロ環式基である、請求項1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

(式中、Meはメチルを表わす。)

10

15

15. TがS; XがNロゲン; Aが請求項 $5\sim9$ のいずれかに示される2価の基; Z^{\oplus} が請求項 $10\sim14$ のいずれかに示されるヘテロ環式基である、請求項1記載の 化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

16. TがS; Xがハロゲン; Aが請求項8に示される2価の基; Z[⊕]が請求項12 に示されるヘテロ環式基である、請求項1記載の化合物、エステル体、もしくはその

7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

17. TがS; Xがハロゲン; Aが請求項9に示される2価の基; Z¹が請求項13または14に示されるヘテロ環式基である、請求項1記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

18.以下の式で示される、請求項1記載の化合物、またはそれらの製薬上許容される塩もしくは溶媒和物。

(式中、Meはメチルを表わす。)

19. 式:

5

(式中、

10

15

Tは、S、SOまたはO;

Xは、ハロゲン、CN、低級アルキルにより置換されていてもよいカルバモイル、低 5 級アルキル、低級アルコキシ、または低級アルキルチオ;

Aは、置換されていてもよい低級アルキレン(但し、置換基が置換されていてもよい モノ低級アルキル、置換されていてもよい低級アルキリデン、または置換されていて もよい低級アルキレンである場合を除く);

 Z^{\oplus} は、置換されていてもよい、カチオン基を有するN原子含有ヘテロ環式基)で示される化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物(但し、TがS; Xがハロゲンでかつ、1)Aがメチレン; Z^{\oplus} がピリジニウムであるか、または2)Aがジメチルメチレン; Z^{\oplus} がイミダゾ[1,2-a]ピリジニウムである、場合を除く)。20. TがS、Xがハロゲンまたは低級アルキル; Aがジ低級アルキルによって置換されていてもよいメチレンである、請求項19記載の化合物、エステル体、もしくはその7位のチアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは溶媒和物。

21.以下に示される請求項20記載の化合物、エステル体、もしくはその7位のチ アゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしくは 20 溶媒和物。

- 22. 請求項1~21のいずれかに記載の化合物、エステル体、もしくはその7位の チアゾール環上のアミノにおける保護体、またはそれらの製薬上許容される塩もしく は溶媒和物を含有する医薬組成物。
- 5 23. 請求項1~21のいずれかに記載の化合物、エステル体、もしくはその7位の チアゾール環上のアミノにおける保護体、またはその製薬上許容される塩もしくは溶 媒和物を含有する抗菌薬。

24. 式:

10 (式中、Xは、ハロゲン、CN、低級アルキルにより置換されていてもよいカルバモ イル、低級アルキル、低級アルコキシ、または低級アルキルチオ; Aは、以下の式で 示される基:

;R'は水素またはカルボキシ保護基;R'は水素またはアミノ保護基;R'は水素またはカルボキシ保護基)で示される化合物またはその製薬上許容される塩。

25. Xがハロゲンまたは低級アルキルである、請求項24記載の化合物またはその 製薬上許容される塩。

26. Xがハロゲンである、請求項24記載の化合物またはその製薬上許容される塩。

10

5

15

20

25

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/03249

			
A. CLASS Int.	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D501/20, 277/40, 277/46, 277/56, 519/06, A61K31/546, A61P31/04		
According to	International Patent Classification (IPC) or to both nati	ional classification and IPC	
B. FIELDS	SEARCHED		
Minimum de	ocumentation searched (classification system followed by	y classification symbols)	1/546
Int.	C1 ⁷ C07D501/20, 277/40, 277/46, A61P31/04	, 277/56, 519/06, A6IK3	
	ion searched other than minimum documentation to the		
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, sear	ch terms used)
REGI	STRY (STN), CAPLUS (STN)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app		Relevant to claim No.
Х	NISHIMURA, T., YOSHIMURA, Y., Studies on Condensed-Heterocy	MIYAKE, A.,	1-2,4-5,7-8, 10,15,22-23
Y	Cephalosporing, Journal of A	ntibitotics, 1992,	1-26
*	Vol.45, No.4, pages 485 to 499, all references; particularly, pages 489 to 492		
х	US 4788185 A (TAKEDA CHEMICA)	L INDUSTRIES LTD.),	1-2,4-5,7-8,
	29 November, 1988 (29.11.88),		10,15,22-23 1-26
Y	All references; particularly, 92; column 142, example 133		
	& JP 60-231684 A & EP	100232 AZ	
]			
X Furth	ler documents are listed in the continuation of Box C.	See patent family annex.	
Specia	 Special categories of cited documents: "A" later document published after the international filing date or priority date and not in conflict with the application but cited to 		emational filing date or he application but cited to
consid	'A" document defining the general state of the art which is not priority date and not in conflict with the application but cited to considered to be of particular relevance understand the principle or theory underlying the invention		
date	r document but published on or after the international filing	considered novel or cannot be considered	ered to involve an inventive
"L" docun	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" special reason (as specified) "Y" considered to involve an inventive step when the document is step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone.		claimed invention cannot be
specia			h documents, such
means	means 'P" document published prior to the international filing date but later "&" document member of the same patent family		n skilled in the art
Date of the	he priority date claimed actual completion of the international search	Date of mailing of the international sear	rch report
	June, 2003 (09.06.03)	01 July, 2003 (01.	07.03)
	mailing address of the ISA/	Authorized officer	
Japa	anese Patent Office		•
Facsimile No.		Telephone No.	

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.
PCT/JP03/03249

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	EP 0055465 A2 (FUJISAWA PHARMACEUTICAL CO.), 07 July, 1982 (07.07.82), All references; particularly, page 29, compound (2) & JP 2-000176 A & US 4438113 A	24-26 1-23
Y	US 5585485 A (BIOCHEMIE GESELLSCHAFT N.B.H.), 17 December, 1996 (17.12.96), All references; particularly, column 1, lines 50 to 65 & JP 61-501780 A & WO 85/4659 A1	1-23
Y	US 4692516 A (HOECHST AG.), 08 September, 1987 (08.09.87), All references & JP 60-34973 A & EP 125576 A2	1-26
Y	JP 59-130294 A (HOECHST AG.), 26 July, 1984 (26.07.84), All references & EP 0111935 A1	1-26
	US 4525473 A (BRISTOL-MYERS CO.), 25 June, 1985 (25.06.85), & JP 5-219292 A & EP 121244 A2	1-23

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/03249

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Cephem compounds and pharmaceutical compositions containing the same as the active ingredient as set forth in claims 1-13 and thiazole derivatives as set forth in claims 24-26 have in common only one feature of having an acetic acid derivative partial structure comprising a 2-amino-5-substituted-4- thiazolyl group and a substituted alkylene oxime group having a carboxyl group at the end. However, such partial structures are disclosed in Document 1 [Journal of Antibiotics, 1992, Vol.45, No.4, pp.485-499] and Document 2 [US 4788185 A] as substituents on the 7-position nitrogen of cephem compounds. Thus, the above feature is not a special technical feature, and a group of inventions (continued to extra sheet) 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/03249

Continuation of Box No.II of continuation of first sheet(1)		
of claims 1-13 and a group of inventions of claims 24-26 are not considered as being so linked as to form a single general inventive concept. This international application includes two inventions.		
	•	
• 1/2		
	•	
	•	

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ C07D501/50, 277/40, /546, A61P31/04	277/46, 277/56, 519/0	6, A61K31
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' C07D501/50, 277/40, /546, A61P31/04	277/46, 277/56, 519/0	6, A61K31
最小限資料以外の資料で調査を行った分野に含まれるもの		
国際調査で使用した電子データベース(データベースの名称 REGISTRY (STN), CAPLUS (STN)	弥、調査に使用した用語) 	
C. 関連すると認められる文献		関連する
引用文献の	るときは、その関連する箇所の表示	請求の範囲の番号
Studies on Condensed-Heterocycl Journal of Antibiotics, 1992, V (全文献、特に、p.489-492などを	NISHIMURA, T.; YOSHIMURA, Y.; MIYAKE, A Studies on Condensed-Heterocyclic Azolium Cephalosporins. Journal of Antibiotics, 1992, Vol. 45, No. 4, p. 485-499 (全文献、特に、p. 489-492などを参照。) 1-2, 4-5, 7-8, 10, 15, 22-3	
区 C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別	削紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願目前の出願または特許であるが、国際出願日以後に公表された文献である。 「E」国際出願目前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願目前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献		発明の原理又は理論 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに
国際調査を完了した日 09.06.03 国際調査報告の発送日 01.07.03		.07. 03
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 齋藤 恵 電話番号 03-3581-1101	内線 3490

国際調査報告

国際出願番号 PCT/JP03/03249

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	US 4788185 A (TAKEDA CHEMICAL INDUSTRIES LTD)1988.11.29 (全文献、特に、第115欄EXAMPLE 92、第142欄EXAMPLE 133などを 参照。) & JP 60-231684 A	1-2, 4-5, 7- 8, 10, 15, 22-2 3
Y	& EP 160252 A2	1-26
X Y	EP 0055465 A2 (FUJISAWA PHARMACEUTICAL CO)1982.07.07 (全文献、特に、第29頁(2)の化合物などを参照。) & JP 2-000176 A & US 4438113 A	24-26 1-23
Y	US 5585485 A(BIOCHEMIE GESELLSCHAFT N.B.H.)1996.12.17 (全文献、特に、第1欄第50-65行などを参照。) & JP 61-501780 A & WO 85/4659 A1	1-23
Y	US 4692516 A(HOECHST AKTIENGESELLSCHAFT)1987.09.08 (全文献を参照。) & JP 60-34973 A & EP 125576 A2	1–26
Y	JP 59-130294 A(HOECHST AG)1984.07.26 (全文献を参照。) & EP 0111935 A1	1-26
Y	US 4525473 A(BRISTOL-MYERS COMPANY)1985.06.25 (全文献を参照。) & JP 5-219292 A & EP 121244 A2	1-23

国際調査報告

国際出願番号 PCT/JP03/03249

第1欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成 しなかった。
1.
2. 計求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
(1)請求項1-13に記載されたセフェム系化合物およびこれを有効成分とする医薬組成物と、(2)請求の範囲24-26に記載されたチアゾール誘導体とは、2-アミノ-5-置換4-チアゾリル基と末端にカルボキシル基を有する置換アルキレンオキシム基を有する酢酸誘導体部分構造をもつという点でのみ共通している。しかし、このような部分構造は、セフェム系化合物の7-位窒素の置換基として、すでに、文献1/Journal of Antibiotics, 1992, Vol. 45, No. 4, p. 485-499や、文献2/US 4788185 Aに記載されている。したがって、上記特徴は、従来技術に対して、特別の技術的特徴とはなりえず、(1)と(2)は、単一の一般的発明概念を形成するように連関しているものとはいえないから、本国際出願には2の発明が含まれている。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. X 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. U 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意