LABORATORIO DI FISICA 3

Commenti correzioni prima esercitazione

Oscilloscopio uso non ottimale

Mancanze di scale delle tensioni

Figura 2: (3.e) Relazione tra trigger e segnale

Utilizzo non ottimale delle scale sul canale ch2 Mancanza scale

Figura 1: (3.e) Relazione tra trigger e segnale. Sul canale 1 segnale ai capi del diodo e sul canale 2 segnale ai capi della resistenza

Oscilloscopio uso non ottimale

Figura 1: (3.e) Relazione tra trigger e segnale

Utilizzate il vostro oscilloscopio (strumenti) al meglio: le scale devono essere utilizzate al meglio per la misura che dovete fare

Incertezze con multimetro: tensioni

5

4.2.1 Tensione CC

4.2.1 Tensione	CC		
Range	di	risoluzione	Precisione
misurazione			
200mV		0,1mV	
2V		1mV	1/0 50/ -4- 1 0 4:-10
20V		$10 \mathrm{mV}$	$\pm (0.5\% \text{ rdg} + 2 \text{ digit})$
200V		100mV	
1000V		1V	$\pm (0.8\% \text{ rdg} + 2 \text{ digit})$

V+ [V]	σ V+ [V]	VD [V]	σ VD [V]	I(R) [A]	σ I(R) [A]
2.15	0.01	2.15	0.01	0.010	0.002
2.53	0.01	2.32	0.01	0.011	0.003
2.60	0.01	2.57	0.01	0.012	0.003
2.96	0.01	2.68	0.01	0.013	0.003
3.01	0.02	2.43	0.01	0.014	0.003
3.49	0.02	2.74	0.01	0.016	0.003

1. Incertezze per un valore misurato di 3.49 V sulla scala di 20V:

$$\Delta V \neq 3.49*0.005+0.02 V = 0.01745V + 0.02V = 0.04V$$

ATTENZIONE: In molti avete assunto 10mV utilizzando "Accuracy " sulle specifiche del Power Supply del manuale - attenzione perchè è solo un parte del contributo all'incertezza totale infatti c'è una parte dipendente dalla scala → la cosa migliore è misurare la tensione

- 2. Per calcolare l'incertezza sulla corrente $\Delta(V/R)$ devo avere l'incertezza su V e su R e sommare in quadratura perchè sono scorrelate: $\Delta I/I = \Delta V/V \oplus \Delta R/R$
- 3. Incertezza su l: 20%? Se abbiamo circa il 3% di incertezza su V ... Non possiamo avere il 20% di incertezza su l.

Incertezze con multimetro: resistenze

4.2.4 Resistenza

Range di misurazione	Risoluzione	Precisione	
200Ω	0,1Ω	±(0,8% rdg +3 digit)	
2kΩ	lΩ		
20kΩ	10Ω	160 896 -1- 1 2 #-60	
200kΩ	100Ω	$\pm (0.8\% \text{ rdg} + 2 \text{ digit})$	
2ΜΩ	1kΩ		
20ΜΩ	10kΩ	$\pm (1,0\% \text{ rdg} + 2 \text{ digit})$	
200ΜΩ	0,1ΜΩ	±(6,0% rdg +10 digit)	

Esempio: R=1kohm $\Delta R = 1000*0.008+2 = 100hm$ $\Delta R \sim 1\%$

Limiti su una misura

Esempio: limite su Rin

>1k	>250k
>100k >900k	0.4+-0.1 M
>10k	>496k
~985k	90+-180 k
>1kOhm	>1k
>25k	>1k
>140Kohm	>496k
>100k	>100k
>732k	>33k

Questi sono un po` dei limiti su Rin stimata con resistenze da 1kohm che avete ottenuto, molto variabili

Quasi nessuno ha spiegato come si ottiene questo limite ...

Metodo per stimare i limiti:

- misura compatibile con zero: $R/Rin = xx \pm \Delta x$ con $\Delta x > xx$ (ad es.: 0.01 \pm 0.1)
- si può dire R/Rin $< \Delta x$
- limite su Rin: Rin $> R/\Delta x$

In ogni caso dovete spiegare cosa fate

Dalla misura del periodo al calcolo della frequenza

	V				
Periodo T (us)	σT (us)	Frequenza f (kHz)	σf (kHz)	Misura oscilloscopio (kHz)	Differenza (Hz)
996.5	0.1	1.0	0.1	1.0	0
99.0	0.1	10.1	0.1	10.0	0.1
9.9	0.1	101.0	0.1	100.0	1
993.0(ns)	0.1 (ns)	1001.0	0.1	1000.0	1

Tanti problemi in questa tabella

- 1. Errori sul periodo sottostimati
- 2. Assumendo come buoni gli errori sul periodo, sono sbagliati gli errori sulla frequenza: $\Delta T/T = \Delta f/f$. Ad esempio
 - $T = 9.9 \pm 0.1$ us \square e` una misura al 1%3
 - Frequenza ottenuta come 1/T 101.0 ± 0.1 kHz \square misura al 0.1%
- 3. L'ultima colonna sono kHz, non Hz!
- 4. Le misure sono compatibili?
 - Se è vero $f=101.0\pm0.1$ kHz e la differenza è 1kHz, le due misure NON sono compatibili. Deve suonare un campanello di allarme !
- 5. Nell'ultima riga:
 - 0.1 ns di errore ???? Magari....
 - frequenza misura con errore 10⁻⁴ ????

Spiegate cosa fate: il calcolo delle incertezze non ha mai una singola ricetta