## Technical Typesetting Assignment

## Atishay Jain

### September 4, 2022

## Contents

| 1        | Listings and Environments        | 2 |
|----------|----------------------------------|---|
| <b>2</b> | Formal Logic: Figures and Tables | 3 |
| 3        | Maths, Theorems and References   | 4 |

### 1 Listings and Environments

# Listing 1: [LaTeX]TeX An Example

```
begin{lstlisting}
%A regular \lstlisting environment won't work. You'll
have to use \lstnewenvironment to define a custom
environment.
} \end{lstlisting}
```

#### Listing 2: Python Regular Stuff

```
from scipy import *

#The custom environment you define should be numbered as
    well. We did this in our tutorial. Think about what
    arguments you can pass to it.

print("Hello!")
```

## Listing 3: C++ Generic Title

```
#include <iostream>
using namespace std;

//From the three examples, you must have observed what
you can hardcode.

int main(int argc, char* argv[])

{
    cout<<"Hello!"<<endl;
}</pre>
```

The 2em vertical space after the listing is part of the custom environment.

#### 2 Formal Logic: Figures and Tables



formal logician

Figure 1: Aristotle: The first Figure 2: Saul Kripke: we've come a long way since then.

Aristotle image source Saul Kripke image source

Make sure you follow these links, so you know where the hyperlinks lead to when you typeset it yourself.

| Assertion                | Negation                                                |  |
|--------------------------|---------------------------------------------------------|--|
| p(x)                     | $\neg p(x)$                                             |  |
| 1                        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |
| $p(x) \wedge q(x)$       |                                                         |  |
| $\exists x.p(x)$         | $\forall x. \neg p(x)$                                  |  |
| $p(x) \Rightarrow q(x)$  |                                                         |  |
| This statement is false. |                                                         |  |

Table 1: Some First Order Logic, and an absurdity.

This table uses multirow as well as multicolumn. Replicate it as well as you can.

### 3 Maths, Theorems and References

**Theorem 1** (Divergence Theorem).

$$\iiint_{V} (\mathbf{\nabla} \cdot \mathbf{F}) dV = \oiint_{S} (\mathbf{F} \cdot \hat{\mathbf{n}}) dS$$

*Remark.* You have definitely studied and applied the theorem extensively in MA 105. It also shows up as Gauss' Law in electrodynamics.

**Proposition 3.1** (Georg Cantor). Let  $\mathbb{N}$  be the set natural numbers. Denote its cardinality  $|\mathbb{N}|$  by  $\aleph_0$ . Let  $\mathbb{R}$  be the set of real numbers. Its cardinality  $\mathfrak{c}$  is sometimes called the cardinality of the continuum.  $\mathfrak{c}=2^{\aleph_0}$ 

Hint. You will find the \mathfrak command useful to typeset the above.

**Lemma 1** (Jordan Normal Form). For every matrix M in  $\mathbb{C}^{\kappa \times \kappa}$  having eigenvalues  $\gamma_1, ..., \gamma_k$ , with algebraic multiplicities  $m_1, ..., m_k$  respectively, there is an invertible matrix P and a matrix D of the form  $D = Diag(J_1, ..., J_k)$  with each block  $J_i$  being a  $m_i \times m_i$  matrix of the form

$$J_i = \begin{bmatrix} \gamma_i & 1 & 0 & \dots & 0 \\ 0 & \gamma_i & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \gamma_i \end{bmatrix}$$

and  $M = P^{-1}DP$ . Moreover, if M is an algebraic matrix, so are D and P, and their entries can be computed from the entries of M.

You have certainly studied that if M is defect free, that is, algebraic and multiplicities of its eigenvalues coincide, then it is similar to a diagonal matrix. If not, the Jordan Normal form is the next best thing. We cite [1] for this lemma.

*Hint.* Look at the bibliography entry for this citation. It is a book. Specify the author, publisher, title, year and edition. Our bibliography style is plainurl.

Consider the last statement of Lemma 1. (Yes, a cross reference.) Algebraic numbers are roots of polynomials with integer coefficients. They can be found efficiently. [2].

*Hint.* This citation is an article. Specify the author, year, title, journal, volume and number.

#### References

- [1] K. Hoffman and R. Kunze. *Linear Algebra*. Prentice-Hall, 2nd edition, 1971.
- [2] V. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. *Computers & Mathematics with Applications*, 31(12), 1996.