JEE Mains 2019 Chapter wise Question Bank

p-Block Elements - Questions

Q1

The one that is extensively used as a piezoelectric material is:

- (1) tridymite
- (2) amorphous silica
- (3) quartz
- (4) mica

9 Jan Morning

Q2

Correct statements among a to d regarding silicones are:

- (a) They are polymers with hydrophobic character.
- (b) They are biocompatible.
- (c) In general, they have high thermal stability and low dielectric strength.
- (d) Usually, they are resistant to oxidation and used as greases.
- (1) (a), (b), (c) and (d)
- (2) (a), (b) and (c) only
- (3) (a) and (b) only
- (4) (a), (b) and (d) only

9 Jan Morning

Q3

Good reducing nature of H₃PO₂ is attributed to the presence of:

- (1) Two P OH bonds
- (2) One P H bond
- (3) Two P H bonds
- (4) One P OH bond

9 Jan Evening

Q4

Wilkinson catalyst is:

- (1) $[(Ph_3P)_3 IrCl]$
- (2) $[(Et_3P)_3 RhCl]$
- (3) $[(Ph_3P)_3 RhCl]$
- (4) $[(Et_3P)_3 IrCl]$

10 Jan Morning

Q5

The type of hybridisation and number of lone pair(s) of electrons of Xe in XeOF₄, respectively, are:

- (1) sp^3d^2 and 1 (2) sp^3d and 2
- (3) sp^3d^2 and 2
- (4) $sp^{3}d$ and 1

10 Jan Morning

Q6

Among the following reactions of hydrogen with halogens, the one that requires a catalyst is:

- (1) $H_2 + I_2 \rightarrow 2 \text{ HI}$ (2) $H_2 + CI_2 \rightarrow 2 \text{ HCI}$
- (3) $H_2 + Br_2 \rightarrow 2 HBr$ (4) $H_2 + F_2 \rightarrow 2 HF$

10 Jan Evening

Q7

The pair that contains two P-H bonds in each of the oxoacids is:

- (1) $H_4P_2O_5$ and $H_4P_2O_6$
- (2) H_3PO_2 and $H_4P_2O_5$
- (3) H_3PO_3 and H_3PO_3
- (4) $H_4P_2O_5$ and H_3PO_3

10 Jan Evening

Q8

The number of 2-centre-2-electron and 3-centre-2-electron bonds in B_2H_6 , respectively, are:

- (1) 2 and 1
- (2) 4 and 2
- (3) 2 and 2
- (4) 2 and 4

10 Jan Evening

Q9

The chloride that CANNOT get hydrolysed is:

- (1) $PbCl_4$
- (2) CC1₄
- (3) $SnCl_4$
- (4) SiCl₄

11 Jan Morning

Q10

The hydride that is **NOT** electron deficient is:

- (1) SiH_4
- (2) B_2H_6
- (3) GaH₃
- (4) AlH₃

11 Jan Evening

Q11

Iodine reacts with concentrated HNO₃ to yield Y along with other products. The oxidation state of iodine in Y, is:

(1) 5

(2) 7

(3) 3

(4) 1

12 Jan Morning

Q11

The element that does NOT show catenation is:

(1) Ge

Si (2)

(3) Sn (4) Pb

12 Jan Evening

Q12

Chlorine on reaction with hot and concentrated sodium hydroxide gives:

- (1) Cl^- and ClO_3^-
- (2) Cl⁻and ClO⁻
- (3) ClO_3^- and ClO_2^- (4) Cl^- and ClO_2^-

12 Jan Evening

Q13

The element that shows greater ability to form $p\pi - p\pi$ multiple bonds, is:

(1) Sn

(2) C

(3) Ge

(4) Si

12 Jan Evening

Q14

JEE Mains 2019 Chapter wise Question Bank

Diborane (B₂H₆) reacts independently with O₂ and H₂O to produce, respectively;

- (1) B_2O_3 and H_3BO_3
- (2) B_2O_3 and $[BH_4]^-$
- (3) H_3BO_3 and B_2O_3
 - (4) HBO₂ and H₃BO₃

8 April Morning

Q14

The correct statement about ICl₅ and ICl₄ is:

- (1) both are is isostructural.
- (2) ICl₅ is trigonal bipyramidal and ICl₄ is tetrahedral.
- (3) ICl₅ is square pyramidal and ICl₄ is tetrahedral.
- (4) ICl₅ is square pyramidal and ICl₄ is square planar.

8 April Evening

Q15

The ion that has sp^3d^2 hydridization for the central atom, is:

- (1) $[ICl_4]^-$ (2) $[ICl_2]^-$ (3) $[IF_6]^-$ (4) $[BrF_2]^-$

8 April Evening

Q16

The correct order of the oxidation states of nitrogen in NO, N_2O , NO_2 and N_2O_3 is:

- (1) $NO_2 < NO < N_2O_3 < N_2O$
- (2) $NO_2 < N_2O_3 < NO < N_2O$
- (3) $N_2O < N_2O_3 < NO < NO_2$
- (4) $N_2O < NO < N_2O_3 < NO_2$

9 April Morning

Q17

 C_{60} , an allotrope of carbon cantains:

- (1) 12 hexagons and 20 pentagons.
- (2) 18 hexagons and 14 pentagons.
- (3) 16 hexagons and 16 pentagons.
- (4) 20 hexagons and 12 pentagons.

9 April Morning

Q18

HF has highest boiling point among hydrogen halides, because it has:

- (1) strongest van der Waals' interactions
- (2) lowest ionic character
- (3) strongest hydrogen bonding
- (4) lowest dissociation enthalpy

To download more free study materials, visit www.mathongo.com

JEE Mains 2019 Chapter wise Question Bank

Q19

The amorphous form of silica is:

- (1) Tridymite
- (2) Kieselguhr
- (3) Cristobalite
- (4) Quartz

9 April Evening

9 April Evening

Q20

The oxoacid of Sulphur that does not contain bond between Sulphur atoms is:

- (1) $H_2S_4O_6$ (2) $H_2S_2O_3$ (3) $H_2S_2O_7$ (4) $H_2S_2O_4$

10 April Morning

Q21

The correct order of catenation is:

- (1) $C > Sn > Si \approx Ge$ (2) $C > Si > Ge \approx Sn$
- (3) Si > Sn > C > Ge (4) Ge > Sn > Si > C

10 April Morning

Q22

The number of pentagons in C₆₀ and trigons (triangles) in white phosphorous, respectively, are:

- (1) 20 and 3
- (2) 12 and 4
- (3) 12 and 3
- (4) 20 and 4

10 April Evening

Q23

The noble gas that does NOT occur in the atmosphere is:

- (1) He
- (2) Kr
- (3) Ne
- (4) Ra

10 April Evening

Q24

The basic structural unit of feldspar, zeolites, mica, and asbestos is:

- $(1) (SiO_3)^{2-}$
- (2) SiO₂
- (3) $(SiO_4)^{4-}$
- (4) $\begin{array}{c} R \\ | \\ -(Si O)_n (R = Me) \end{array}$

12 April Morning

Q25

The C - C bond length is maximum in :

- (1) graphite
- (2) C₇₀

(3) C_{60}

(4) diamond

12 April Evening

JEE Mains 2019 Chapter wise Question Bank

p-Block Elements - Answers

Q1

(3) Quartz exhibits piezoelectricity and thus can be used as a piezoelectric material.

9 Jan Morning

Q2

(4) Silicones are polymers containing Si—O—Si linkages with strong hydrophobic character. Generally, they exhibit high thermal stability with high dielectric strength. Silicon greases are resistant to oxidation which are commonly used for greasing purposes.

9 Jan Morning

Q3

(3) Structure of H₃PO₂:

Greater the number of P—H bonds present in the acid, greater will be its reducing property.

9 Jan Evening

Q4

(3) Wilkinson's catalyst is [Rh(PPh₃)₃Cl]

10 Jan Morning

Q5

(1)
$$F \xrightarrow{Xe} F$$
 $F = Sp^3d^2$, no. of lone pair = 1

10 Jan Morning

Q6

(1) The reaction between I₂ and H₂ requires catalyst, whereas all other halogens react with H₂ without the requirement of a catalyst.

10 Jan Evening

Q7

10 Jan Evening

Q8

(2) Structure of B₂H₆:

 \therefore No. of 2-centre-2 electron bonds = 4, No. of 3-centre-2 electron bonds = 2.

10 Jan Evening

Q9

(2) CCl_4 cannot be hydrolysed due to absence of d orbitals at carbon atom.

11 Jan Morning

Q10

(1) SiH₄: Electron precise hydride B₂H₆, GaH₃ and Al H₃ are electron deficient

To download more free study materials, visit www.mathongo.com

11 Jan Evening

Q11

(1) Conc. HNO₃ oxidises I₂ to iodic acid (HIO₃). I₂ + 10HNO₃ \rightarrow 2HIO₃ + 10NO₂ + 4H₂O

In HIO_3 oxidation state of iodine is +5.

12 Jan Morning

Q11

(4) Catenation power of the elements decreases as we move down in the group. Therefore, Pb does not show catenation property.

12 Jan Evening

Q12

(1) $3Cl_2 + 6NaOH \longrightarrow 5NaCl + NaClO_3 + 3H_2O$

12 Jan Evening

Q13

(2) Due to the small size of carbon atom, effective lateral overlapping between 2p and 2p occurs.

12 Jan Evening

Q14

(1) $B_2H_6 + 3O_2 \longrightarrow B_2O_3 + 3H_2O$ $B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2$

8 April Morning

Q14

JEE Mains 2019 Chapter wise Question Bank

(4) ICl₅ is sp^3d^2 hybridised (5 bp, 1 lp)

 ICl_4^- is sp^3d^2 hybridised (4 bp, 2 lp)

Square planar

8 April Evening

Q15

(1) Species Hybridisation

 ICl_{2}^{-} $sp^{3}d$ ICl_{4}^{-} $sp^{3}d^{2}$ BrF_{2}^{-} $sp^{3}d$

 sp^3d^3

8 April Evening

Q16

 IF_6

(4) (Oxide) (Oxidation state) $N_{2}O +1$ NO +2 $N_{2}O_{3} +3$ $NO_{2} +4$ $So, N_{2}O < NO < N_{2}O_{3} < NO_{2}$

9 April Morning

Q17

(4) Fullerene (C_{60}) contains 20 hexagons (six membered) rings and 12 pentagons (five membered rings):

9 April Morning

Q18

(3) Due to strong H-bonding between HF molecules. HF has highest boiling point among the hydrogen halides.

9 April Evening

To download more free study materials, visit www.mathongo.com

Q19

(2) Quartz, tridymite and cristobalite are crystalline forms of silica, while kieselguhr is an amorphous form of silica.

9 April Evening

Q20

H₂S₂O₇ does not show bonding between sulphur atoms.

10 April Morning

Q21

(2) The catenation property among 14th group elements is based on bond enthalpy value of bond between the same element. The decreasing order of bond enthalpy values is

Bond enthalpy $C-C > Si-Si > Ge-Ge \approx Sn-Sn$ in kJ/mol 297 260 240

 \therefore Decreasing order of catenation is $C > Si > Ge \approx Sn$

10 April Morning

Q22

(2) Number of pentagons in C_{60} (Buckminsterfullerene) = 12

Number of triangles in P_4 (White phosphorous) = 4

10 April Evening

Q23

(4) Radon is radioactive element and not present in atmosphere.

10 April Evening

To download more free study materials, visit www.mathongo.com

Q24

JEE Mains 2019 Chapter wise Question Bank

(3) These are examples of silicates, the basic unit of each of them is SiO .

12 April Morning

Q25

(4) Carbon-carbon bond length is maximum in diamond because diamond has all single bonds while graphite, C_{70} and C_{60} have single and double bonds.

Carbon allotropeC-C bond lengthDiamond154 pmGraphite141.5 pm C_{60} 138.3 pm and 143.5 pm C_{70} eight type of bond lengths

12 April Evening

from 0.137 pm to 0.146 pm.