Computer Graphics (CS 543) Lecture 3c: Linear Algebra for Graphics (Points, Scalars, Vectors)

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Points, Scalars and Vectors

- Points, vectors defined relative to a coordinate system
- Point: Location in coordinate system
- Example: Point (5,4)
- Cannot add or scale points

Vectors

- Magnitude
- Direction
- NO position
- Can be added, scaled, rotated
- CG vectors: 2, 3 or 4 dimensions

Vector-Point Relationship

Subtract 2 points = vector

$$\mathbf{v} = Q - P$$

point + vector = point

$$P + \mathbf{v} = Q$$

Vector Operations

Define vectors

$$\mathbf{a} = (a_1, a_2, a_3)$$

$$\mathbf{b} = (b_1, b_2, b_3)$$

Then vector addition:

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

Vector Operations

• Define scalar, s

- **Note** vector subtraction:
- Scaling vector by a scalar

$$\mathbf{a}s = (a_1 s, a_2 s, a_3 s)$$

$$a-b$$

=
$$(a_1 + (-b_1), a_2 + (-b_2), a_3 + (-b_3))$$

Vector Operations: Examples

Scaling vector by a scalar
 Vector addition:

$$\mathbf{a}s = (a_1s, a_2s, a_3s)$$
 $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$

• For example, if a=(2,5,6) and b=(-2,7,1) and s=6, then

$$\mathbf{a} + \mathbf{b} = (a_1 + b_{1,} a_2 + b_2, a_3 + b_3) = (0,12,7)$$

$$\mathbf{a}s = (a_1s, a_2s, a_3s) = (12,30,36)$$

Affine Combination

Given a vector

$$\mathbf{a} = (a_{1,}a_{2}, a_{3}, ..., a_{n})$$

$$a_1 + a_2 + \dots a_n = 1$$

Affine combination: Sum of all components = 1

Convex affine = affine + no negative component
 i.e

$$a_1, a_2, \dots a_n = non - negative$$

Magnitude of a Vector

Magnitude of a

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 \dots + a_n^2}$$

Normalizing a vector (unit vector)

$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{vector}{magnitude}$$

Note magnitude of normalized vector = 1. i.e

$$\sqrt{a_1^2 + a_2^2 \dots + a_n^2} = 1$$

Magnitude of a Vector

• Example: if a = (2, 5, 6)

• Magnitude of **a**

$$|\mathbf{a}| = \sqrt{2^2 + 5^2 + 6^2} = \sqrt{65}$$

Normalizing a

$$\hat{\mathbf{a}} = \left(\frac{2}{\sqrt{65}}, \frac{5}{\sqrt{65}}, \frac{6}{\sqrt{65}}\right)$$

Convex Hull

- Smallest convex object containing P_1, P_2, \dots, P_n
- Formed by "shrink wrapping" points

Dot Product (Scalar product)

Dot product,

$$d = \mathbf{a} \cdot \mathbf{b} = a_1 \cdot b_1 + a_2 \cdot b_2 \cdot \dots + a_3 \cdot b_3$$

• For example, if a=(2,3,1) and b=(0,4,-1) then

$$a \cdot b = (2 \times 0) + (3 \times 4) + (1 \times -1)$$

= 0+12-1=11

Properties of Dot Products

Symmetry (or commutative):

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

Linearity:

$$(\mathbf{a}+\mathbf{c})\cdot\mathbf{b}=\mathbf{a}\cdot\mathbf{b}+\mathbf{c}\cdot\mathbf{b}$$

• Homogeneity:

$$(s\mathbf{a}) \cdot \mathbf{b} = s(\mathbf{a} \cdot \mathbf{b})$$

And

$$\left|\mathbf{b}^{2}\right| = \mathbf{b} \cdot \mathbf{b}$$

Angle Between Two Vectors

$$\mathbf{b} = (|\mathbf{b}| \cos \phi_b, |\mathbf{b}| \sin \phi_b)$$

$$\mathbf{c} = (|\mathbf{c}|\cos\phi_c, |\mathbf{c}|\sin\phi_c)$$

$$\mathbf{b} \cdot \mathbf{c} = |\mathbf{b}| |\mathbf{c}| \cos \theta$$

Sign of **b.c**:

Angle Between Two Vectors

- Problem: Find angle b/w vectors $\mathbf{b} = (3,4)$ and $\mathbf{c} = (5,2)$
- Step 1: Find magnitudes of vectors b and c

$$|\mathbf{b}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

$$|\mathbf{c}| = \sqrt{5^2 + 2^2} = \sqrt{29}$$

Step 2: Normalize vectors b and c

$$\hat{\mathbf{b}} = \left(\frac{3}{5}, \frac{4}{5}\right) \qquad \hat{\mathbf{c}} = \left(\frac{5}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right)$$

Angle Between Two Vectors

• Step 3: Find angle as dot product $\hat{\mathbf{b}} \bullet \hat{\mathbf{c}}$

$$\hat{\mathbf{b}} \bullet \hat{\mathbf{c}} = \left(\frac{3}{5}, \frac{4}{5}\right) \bullet \left(\frac{5}{\sqrt{29}}, \frac{2}{\sqrt{29}}\right)$$

$$\hat{\mathbf{b}} \bullet \hat{\mathbf{c}} = \frac{15}{5\sqrt{29}} + \frac{8}{5\sqrt{29}} = \frac{23}{5\sqrt{29}} = 0.85422$$

Step 4: Find angle as inverse cosine

$$\theta = \cos(0.85422) = 31.326^{\circ}$$

Standard Unit Vectors

Define

$$i = (1,0,0)$$

$$\mathbf{j} = (0,1,0)$$

$$\mathbf{k} = (0,0,1)$$

So that any vector,

$$\mathbf{v} = (a, b, c) = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

Cross Product (Vector product)

If

$$\mathbf{a} = (a_x, a_y, a_z) \qquad \mathbf{b} = (b_x, b_y, b_z)$$

Then

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y) \mathbf{i} - (a_x b_z - a_z b_x) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

Remember using determinant

$$egin{array}{cccc} i & j & k \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array}$$

Note: a x b is perpendicular to a and b

Cross Product

Note: a x **b** is perpendicular to both **a** and **b**

Cross Product (Vector product)

Calculate **a** \times **b** if a = (3,0,2) and **b** = (4,1,8)

$$\mathbf{a} = (3,0,2)$$
 $\mathbf{b} = (4,1,8)$

Using determinant

$$\begin{vmatrix} i & j & k \\ 3 & 0 & 2 \\ 4 & 1 & 8 \end{vmatrix}$$

Then

$$\mathbf{a} \times \mathbf{b} = (0-2)\mathbf{i} - (24-8)\mathbf{j} + (3-0)\mathbf{k}$$
$$= -2\mathbf{i} - 16\mathbf{j} + 3\mathbf{k}$$

Normal for Triangle using Cross Product Method

plane
$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$$

$$\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)$$

normalize $n \leftarrow n/|n|$

Note that right-hand rule determines outward face

- Problems with cross product method:
 - calculation difficult by hand, tedious
 - If 2 vectors almost parallel, cross product is small
 - Numerical inaccuracy may result

- Proposed by Martin Newell at Utah (teapot guy)
 - Uses formulae, suitable for computer
 - Compute during mesh generation
 - Robust!

Example: Find normal of polygon with vertices
 P0 = (6,1,4), P1=(7,0,9) and P2 = (1,1,2)

Using simple cross product:

$$((7,0,9)-(6,1,4)) \times ((1,1,2)-(6,1,4)) = (2,-23,-5)$$

P1 - P0

P1 (7,0,9)

Formulae: Normal N = (mx, my, mz)

$$m_x = \sum_{i=0}^{N-1} (y_i - y_{next(i)}) (z_i + z_{next(i)})$$

$$m_{y} = \sum_{i=0}^{N-1} (z_{i} - z_{next(i)}) (x_{i} + x_{next(i)})$$

$$m_z = \sum_{i=0}^{N-1} (x_i - x_{next(i)}) (y_i + y_{next(i)})$$

Calculate x component of normal

$$m_{x} = \sum_{i=0}^{N-1} (y_{i} - y_{next(i)})(z_{i} + z_{next(i)})$$

$$m_{x} = (1)(13) + (-1)(11) + (0)(6)$$

$$m_{x} = 13 - 11 + 0$$

$$m_{x} = 2$$

Calculate y component of normal

$$m_{y} = \sum_{i=0}^{N-1} (z_{i} - z_{next(i)}) (x_{i} + x_{next(i)})$$

$$m_{y} = (-5)(13) + (7)(8) + (-2)(7)$$

$$m_{y} = -65 + 56 - 14$$

$$m_{y} = -23$$

	x	y	z
P0	6	1	4
P1	7	0	9
P2	1	1	2
P0	6	1	4

Calculate z component of normal

$$m_{z} = \sum_{i=0}^{N-1} (x_{i} - x_{next(i)})(y_{i} + y_{next(i)})$$

$$m_{z} = (-1)(1) + (6)(1) + (-5)(2)$$

$$m_{z} = -1 + 6 - 10$$

$$m_{z} = -5$$
P0 $\begin{bmatrix} x & y & z \\ 6 & 1 & 4 \end{bmatrix}$
P1 $\begin{bmatrix} 7 & 0 & 9 \\ 1 & 1 & 2 \\ 6 & 1 & 4 \end{bmatrix}$
P0 $\begin{bmatrix} 6 & 1 & 4 \\ 6 & 1 & 4 \end{bmatrix}$

Note: Using Newell method yields same result as Cross product method (2,-23,-5)

- **a** = original vector
- n = normal vector
- **r** = reflected vector
- m = projection of a along n
- e = projection of a orthogonal to n

Note:
$$\Theta_1 = \Theta_2$$

$$e = a - m$$

$$r = e - m$$

$$=> r = a - 2m$$

Forms of Equation of a Line

- Two-dimensional forms of a line
 - Explicit: y = mx + h
 - Implicit: ax + by + c = 0
 - Parametric:

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$
$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

- More robust and general than other forms
- Extends to curves and surfaces

Convexity

 An object is convex iff for any two points in the object all points on the straight line between these points are also in the object

References

- Angel and Shreiner, Interactive Computer Graphics, 6th edition, Chapter 3
- Hill and Kelley, Computer Graphics using OpenGL, 3rd edition, Sections 4.2 - 4.4