Eliciting Mental Models for a Mobile Diabetes Living Assistant

André Calero Valdez

Firat Alagöz Martina Ziefle Andreas Holzinger

Agenda

Diabetes Mellitus

Disease, Treatment, Social Impact

Usability of Diabetes Assistants

- Mental Models
- Design of an Empirical Experiment
- Relation of Age and Expertise
- Measuring Performance and Eliciting Mental Models

Results

- Hypotheses and Effects of Aging on Performance
- Age, Mobile Phones and Mental Model Construction
- Effects of Mental Models on Performance

Diabetes Mellitus

Diabetes is a glucose metabolism dysfunction

- Main symptom: Insulin deficiency
 - Insulin: Glucose from blood -> cells
- High glucose levels cause vascular and neural damage
 - Secondary disorders: Blindness, Renal failure, Amputations, etc.

Type 1 Diabetes

Autoimmune mediated disease => absolute insulin deficiency

Type 2 Diabetes

 Obesity & Lack of physical exercise => continuous increasing cell insulin resistance => Collapse of insulin metabolism

Diabetes Treatment

Main Task - Controlling:

stable low blood glucose level

Means:

 low caloric diet, physical exercise, anti-diabetic drugs, subcutaneous insulin injections

Requirements:

Accurate measurement and tracking of patients health parameters

Highly individual disease patterns require customized therapy

Mobile Diabetes Living Assistants

Diabetes is Expensive

Forecast for 2010 in Germany (German Diabetes Union 2007)

- 10 Million people affected
 - (1/8th of population)
- 20% of Germanys total health care expenditure
- 40 Billion Euros for secondary disorder treatment

Demographic changes will increase Diabetes incidence

- sedentary lifestyle and high caloric diet increases likelihood
- Diabetes prevalence increases with age

Technical solutions become inevitable + Usability

Diabetes patients rarely use digital diary functions (<10%)

Diabetes Conclusion

Demographic changes concur with higher Diabetes incidence

Secondary disorders

- caused by unsuccessful treatment
- cause the major amount of costs

Highly individual disease patterns require individual therapy

Patients keep track of their health status -> paperbased

Bad usability of digital diaries

Better technical solutions are required

Focus on usability!

Agenda

Diabetes Mellitus

Disease, Treatment, Social Impact

Usability of Diabetes Assistants

- Mental Models
- Design of an Empirical Experiment
- Relation of Age and Expertise
- Measuring Performance and Eliciting Mental Models

Results

- Hypotheses and Effects of Aging on Performance
- Age, Mobile Phones and Mental Model Construction
- Effects of Mental Models on Performance

Mental Models

A mental model is an explanation for someone's thought process

- Cognitive representation of how the world works
- Contains:
 - Information about relationships of parts of the world
 - Intuitive perception of effects of personal interaction

Mental models of menu structures:

- How is a menu put together?
- How are parts interrelated?
- How do I reach the function I need for my task?

What we have

Diabetes Living Assistant Prototype

- Developed by and with Diabetes patients
- Testbed for performance measuring during user tests

Important factors:

- learnability of the device
- one device for all diabetes types
- unbiased participants for user tests (no branded device)

Design of the experiment

Target of the experiment

- Elicit structure of mental models for our diabetes living assistant
- Find determining factors for mental model construction
 - Age, technical expertise, domain knowledge, health status
- Measure impact of correctness of model on user performance

Experimental Study (Overview)

Independent Variables

- 1) Participants were surveyed about (paper-based)
 - demographic facts
 - expertise with technology
 - domain knowledge of diabetes

Dependent Variables

- 2) Participants took part in a user test of a simulated device
 - five tasks
 - Performance was measured along the way

Experimental Study (Overview)

Dependent Variables:

- ▶ 3) Mental Model Elicitation:
 - Participants were asked to perform a Card-Sorting-Task
- 4) Qualitative Analysis:
 - Experimenter asks questions about the mental model layout

User Diversity and Participants

Participants for user study selected prototypically

Best case patients - "healthy diabetics"

Group of 23 participants (16 female, 7 male)

- ▶ 10x Non-Diabetics, 13x Diabetics
- Ages 25-87

Independent Variables

Assessment of Domain Knowledge

- survey knowledge of four key health factors
 - blood sugar
 - HbA1c
 - blood pressure
 - body fat percentage

Assessment of Technical Experience

- Survey of Perceived Ease of Use (PEU) and Usage Frequency (UF)
 - for everyday technology, mobile phone, medical technology

Ranking on a Six-Point-Likert-Scale

Relationship of Expertise and Age

Highly significant correlation between...

- age and expertise in everyday technology and mobile phones
 - Younger users are more experienced

No significant correlation between...

- age and domain knowledge
- age and expertise in medical technology

Diabetes Living Assistant

Self-developed Prototype

- JavaME based
 - PC/MAC/Mobile Phones, PDAs
 - logging function via Jacareto/CleverPHL
- Screen design similar to paper based solutions
- five core functions
 - Diabetes diary, BE-Calculator, Health-Pass, Medicine, Value-Plotter
- Visual ordering of Interaction Items suggests a spatial model of menu hierarchy

Simulation on a touch-enabled 15" TFT-Screen

Rating User Performance

Five performance criteria were measured

- total success rate (in percent)
- total amount of time
- total steps
- detour steps (navigational mistakes)
- time per step (navigational pace)

Mental Model Elicitation

Method: Card-Sorting-Task with screenshots

- Users lay out screenshots on a table
- Spatial ordering from memory

Evaluation

- Categorization by model complexity:
 - No model, linear, hierarchical, spatial map
- Quality assessment according to three navigational concepts
 - Overview, Route, Landmark

Mental Model Evaluation

Model quality assessed by scoring in each knowledge domain

Example: Spatial-Map Model

- Overview Knowledge
 - Correct spatial ordering
- Route Knowledge
 - Correct navigational distances
- Landmark Knowledge
 - Correct spatial neighborhood

Agenda

Diabetes Mellitus

Disease, Treatment, Social Impact

Usability of Diabetes Assistants

- Mental Models
- Design of an Empirical Experiment
- Relation of Age and Expertise
- Measuring Performance and Eliciting Mental Models

Results

- Hypotheses and Effects of Aging on Performance
- Age, Mobile Phones and Mental Model Construction
- Effects of Mental Models on Performance

Hypotheses

Older users are outperformed by younger users

- higher technical expertise
- effects of aging on performance
 - (mental processing speed, psychomotor-skills)

Diabetes patients outperform non-diabetics

Domain Knowledge could help in construction of mental models

Users with higher quality mental models perform better

Less navigational mistakes

Hypotheses

Older users are outperformed by younger users

- higher technical expertise
- effects of aging on performance
 - (mental processing speed, psychomotor-skills)

Diabetes patients outperform non-diabetics

Domain Knowledge could help in construction of mental models

Users with higher quality mental models perform better

Less navigational mistakes

Mental Models, Age and Mobile Phones

Age correlates significantly with

- Model complexity (p<0.05)</p>
- Model quality (p<0.01)</p>

Model quality correlates with

Expertise in Mobile Phones (p<0.05)

No Correlation between health and model

Mental Models and Performance

Model quality correlates with success rate Model complexity correlates with

- Success rate and navigational pace
- But linear model perform as effective as more complex models
 - Similar amount of route knowledge

Linear Regression

- Route knowledge has biggest impact on performance
 - (2nd Overview, 3rd Landmark)

Discussion

Linear Models as a transformation?

- "Missing Multiple Instances " => temporal Model? No!
- Traversing of menu tree? Possible!
 - When does it occur? During construction? During layout?

A high quality mental model supports the user in his navigation

Not complexity but possibly route knowledge is important

Linear menu structures could aid usability of devices for the elderly

• Questions remains: How to cope with complexity in a linear menu model?

Thank you for your attention!

Performance Results

Bivariate Correlations

		Success Rate	Total steps	Detour Steps	Total Time	Time per step
Age		-0.664**	0.616**	0.472*	0.231	0.693**
Expertise technology	with	-0.449*	0.330	0.244	0.476*	0,320
Expertise medical technol	with logy	0.251	-0.266	-0.146	0.101	-0.342
Mobile Expertise	Phone	-0.339	0.295	-0.006	0.393	0.301
Health Status		-0.179	0.342	0.181	-0.102	0.421
Domain knowledge		-0.53	-0.167	0.097	0.314	-0.244

Device Acceptance

Correlations between Acceptance, Expertise, Age and Success

	Age	DK	HS	TE	MTE	MBE	Success
Acceptance	-0.460*	0.200	0.027	0.276	0.409	0.287	-0.507*
*p < 0.05							

- Low Value for Acceptance = Good acceptance rating
 - DK = Domain Knowledge, HS = Health Status, TE = Technical Expertise, MTE = Medical Technical Expertise, MBE = Mobile Phone Expertise

Linear Regression

- ► 65% of variance are explained by age and success rate
 - success rate stronger predictor than age (2x)

Example Tasks

Digital-Diary Task:

 After finishing configuration of your device, daily blood glucose measurements can be stored in the devices digital diary. Please enter the following measurement into the digital diary: This morning 9:20 am: Blood Glucose level 123, consumed 3 bread units, no correction of insulin dosage, no basal-insulin dosage, no hypo- or

ketoacidosis measured

BE-Calculator Task:

 You are hungry and want to eat some fish sticks (200grams) and have a glass of apple juice (200ml). Please calculate the bread units for this meal using the BE-Calculator of the device

Example Screens

Example Screen: Learnability

