СТО АСЧМ 7-93

СТАНДАРТ АССОЦИАЦИИ ПРЕДПРИЯТИЙ И ОРГАНИЗАЦИЙ ПО СТАНДАРТИЗАЦИИ ПРОДУКЦИИ ЧЕРНОЙ МЕТАЛЛУРГИИ

ПРОКАТ ПЕРИОДИЧЕСКОГО ПРОФИЛЯ ИЗ АРМАТУРНОЙ СТАЛИ

Технические условия.

АССОЦИАЦИЯ ЧЕРМЕТСТАНДАРТ

Предисловие

1 РАЗРАБОТАН Ассоциацией "Черметстандарт"

ВНЕСЕН Исполнительной дирекцией Ассоциации "Черметстандарт".

- 2 УТВЕРЖДЕН И ВВЕДЕНВ ДЕЙСТВИЕ Председателем Совета Ассоциации" Черметстандарт". Приказ N 3 от 4.10.1993 г.
 - 3 Стандарт соответствует международному стандарту ИСО 6935-2.
 - 4 Введен впервые.

Содержание

- 1 ОБЛАСТЬ ПРИМЕНЕНИЯ
- 2 НОРМАТИВНЫЕ ССЫЛКИ
- 3 ОПРЕДЕЛЕНИЯ
- 4 ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
- 5 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
- 6 ПРАВИЛА ПРИЕМКИ
- 7 МЕТОДЫ КОНТРОЛЯ
- 8 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Приложение А Обязательное РАСЧЕТ ОТНОСИТЕЛЬНОЙ ПЛОЩАДИ СМЯТИЯ ПОПЕРЕЧНЫХ РЕБЕР

Приложение В Обязательное ТРЕБОВАНИЯ К СТАТИСТИЧЕСКИМ ПОКАЗАТЕЛЯМ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК

Приложение С Обязательное ПРАВИЛА ПРИЕМКИ ПРОКАТА ПО ХАРАКТЕРИСТИЧЕСКИМ ВЕЛИЧИНАМ

Приложение Д Обязательное ИСПЫТАНИЕ НА УСТАЛОСТЬ

СТАНДАРТ АССОЦИАЦИИ ПРЕДПРИЯТИЙ И ОРГАНИЗАЦИЙ ПО СТАНДАРТИЗАЦИИ ПРОДУКЦИИ ЧЁРНОЙ МЕТАЛЛУРГИИ

ПРОКАТ ПЕРИОДИЧЕСКОГО ПРОФИЛЯ ИЗ АРМАТУРНОЙ СТАЛИ.

Технические условия.

Rolled deformed reinforcing steel bars. Specifications.

Дата введения: 1994-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт определяет технические требования к стержням периодического профиля для армирования обычных железобетонных инструкций и ненапрягаемой арматуры предварительно напряженных железобетонных конструкций.

В настоящем стандарте устанавливаются требования к стержням из свариваемой стали классом прочности A400C, A500C и A600C.

Настоящий стандарт распространяется на стержни:

- горячекатаные без последующей обработки,
- термомеханически упрочненные в потоке прокатки,
- механически упрочненные в холодном состоянии.

Технология производства определяется изготовителем.

Требования настоящего стандарта распространяются на стержни в прямолинейном или выпрямленном из бунтов состоянии.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ИСО 377-89 Стали деформированные. Отбор и подготовка проб и образцов. Часть 1. Пробы и образны для механических испытаний. Часть 2. Отбор и подготовка проб для испытаний по химическому составу.

ИСО 404-92 Сталь и изделия из стали. Общие технические условия поставки.

ИСО 6892-84 Металлические материалы. Испытание на растяжение.

ИСО 6935-90 Сталь для армирования железобетона. Часть 2. Стержни периодического профиля.

ИСО 10065-91 Стержни стальные для армирования железобетона. Испытания на изгиб и последующий разгиб.

ГОСТ 7564-73 (ИСО 377.1) Сталь. Общие правила отбора проб, заготовок и образцов для механических и технологических испытаний

ГОСТ 7565-81 (ИСО 377.2) Чугун, сталь и сплавы. Методы отбора проб для определения химического состава

ГОСТ 7566-81 Прокат и изделия для дальнейшего передела. Правили приемки, маркировки, транспортирование и хранение.

ГОСТ 21014-88 Прокат черных металлов. Термины и определения дефектов поверхности.

СТО АСЧМ 2-93 Прокат из арматурной стали. Метод испытания на растяжение.

СТО АСЧМ 3-93 Прокат из арматурной стали. Метод испытания на изгиб и изгиб с разгибом.

СТО АСЧМ 5-93 Металлопродукция. Общие технические условия на поставку.

3 ОПРЕДЕЛЕНИЯ

В настоящем стандарте применяют следующие термины:

- 3.1 Сертификационная схема система сертификации, связанная с процессами изготовления или эксплуатации стержней, к которым применены одни и те же особые правила, стандарты и методы.
- 3.2 Характеристическая величина нормируемая величина характеристики стержней, гарантируемая с определенной обеспеченностью, определяемой технологией производства и другими условиями.
- 3.3 Контроль действия по измерению, исследованию, испытанию одной или нескольких характеристик изделия или условий поставки и сравнение их с требованиями, установленными стандартом для определения их соответствия.
- 3.4 Номинальный диаметр, $d_{\rm H}$ диаметр равновеликого по площади круглого гладкого стержня длиной 1 п. м. с той же массой, что и стержень периодического профиля, определяется по формуле:

$$d_a = 12.74 \cdot \sqrt{\frac{m}{l}}$$

где $d_{\rm H}$ - номинальный диаметр, мм;

m - масса стержня периодического профиля в Γ ;

l - длина стержня периодического профиля в мм.

3.5 Номинальная площадь поперечного сечения - площадь поперечного сечения стержня, эквивалентная площади поперечного сечения круглого гладкого стержня того же номинального диаметра.

3.6 Сердечник - часть поперечного сечения без поперечных и продольных ребер. Диаметр сердечника - см. рис. 1.

а) с продольным ребром

б) без продольного ребра

Рисунок 1 - Периодический профиль

- 3.7 Продольное ребро непрерывное продольное ребро, расположенное вдоль оси стержня при его прокатке (см. рис. 1).
- 3.8 Поперечное ребро ребро, расположенное под углом к продольной оси стержня (см. рис. 1).
- 3.9 Высота ребра, h расстояние от верхней точки на ребре (продольном и поперечном) до поверхности тела стержня, измеренное перпендикулярно к продольной оси стержня (см. рис. 2).

Рисунок 2 - Поперечное сечение ребра (сечение А-А из рис. 1)

- $3.10 \ \text{Шаг}$ поперечных ребер, t расстояние между центрами двух соседних поперечных ребер, измеренное вдоль оси стержня.
- 3.11 Расстояние между концами поперечных ребер, Σe_i суммарное расстояние между концами поперечных ребер в плоскости, перпендикулярной оси стержня.

- 3.12 Угол наклона поперечного ребра, β угол между поперечным ребром и продольной осью стержня.
- 3.13 Относительная площадь смятия поперечных ребер, f_r проекция площади боковых поперечных ребер на плоскость, перпендикулярную оси стержня, отнесенная к периметру стержня номинального диаметра и среднему шагу этих ребер.
- 3.14 Класс прочности установленное стандартом нормируемое значение предела текучести, H/мм².
- 3.15 Плавочный химический анализ химический анализ стали во время разливки.
- 3.16 Химический анализ готовой продукции химический анализ образца, отобранного от стержня.

4 ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

4.1 Номинальный диаметр, площадь поперечного сечения, масса стержня длиной 1 п. м (линейная плотность), допускаемые отклонения по массе должны соответствовать указанным в таблице 1.

Таблица 1

Номинальной диаметр	Номинальная площадь	Масса стержня длиной 1 п. м (линейная плотность)					
проката, $d_{\scriptscriptstyle m H}$, мм	поперечного сечения, мм ²	Номинальная, кг/м	Допускаемые отклонения, %				
6	28.3	0.222	0				
8	50.3	0.395	± 8				
10	78.3	0.617					
12	113	0.888	± 5				
14	154	1.21					
16	201	1.58					
18	254	2.00					
20	314	2.47					
22	380	2.98					
25	491	3.85	± 4				
28	616	4.83					
32	804	6.31					
36	1018	7.99					
40	1256	9.86					

Примечания

¹ По требованию потребителя прокат изготавливают с номинальным диаметром более 40 мм, кратным 5. Допускаемые отклонения по массе ± 4 %.

- 2 Допускаемые отклонения по массе приведены для отдельного стержня.
- 3 Номинальная масса 1 п. м стержня определяется, исходя из номинального диаметра при плотности стали, равной $7.85 \, \text{г/cm}^3$.
 - 4.2 Требования к геометрическим размерам профиля приведены в таблице 2.

Расчет относительной площади смятия поперечных ребер приведен в приложении А.

4.3 Овальность стержней (абсолютная величина разности диаметров d_1 и d_2 в одном сечении) не должна превышать суммы абсолютных значений плюсовых и минусовых предельных отклонений для диаметра d_1 , указанных в таблице 2.

(Поправка от 20.02.2003 г.)

Таблица 2

Наименование показателя геометрических размеров поперечных ребер	Номинальный диаметр проката, $d_{\rm H}$, мм	Геометрические размеры профиля и допускаемые отклонения, мм			
Высота, h, минимальная	от 6 до 8 включ.	0.065 d _н			
	от 10 до 18 включ.	$0.07~d_{\scriptscriptstyle m H}$			
	от 20 до 40 включ.	$0.065~d_{\scriptscriptstyle m H}$			
Шаг поперечных ребер, t ,	от 6 до 8 включ.	$1.0~d_{\scriptscriptstyle m H}$			
максимальный минимальный	от 10 до 40 включ. от 6 до 40 включ.	$0.8~d_{\scriptscriptstyle m H} \ 0.6~d_{\scriptscriptstyle m H}$			
Угол наклона, $oldsymbol{eta}$, минимальный максимальный	от 6 до 40 включ. от 6 до 40 включ.	35 град 60 град			
Угол наклона боковой поверхности ребра, α, минимальный	от 6 до 40 включ.	45 град			
Суммарное расстояние между концами поперечных ребер, Σe_i	от 6 до 40 включ.	Макс. $0.2~\pi~d_{\scriptscriptstyle m H}$			
Относительная площадь смятия	от 6 до 8 включ.	0.045			
поперечных ребер, f_r ,	от 10 до 40 включ.	0.056			
минимальная					
Допуск на внешний диаметр стержня, d_1 , максимальный	от 6 до 8 включ.	±0.6			
w ₁ , makenmandidin	от 16 до 25 включ.	±0.8			
	от 28 до 40 включ.	±1.2			

Примечание - Величина и допускаемые отклонения для диаметра d_2 соответствуют значениям для диаметра d_1 .

(Поправка от 27.04.1998 г.)

4.4 Стержни изготавливают в виде прутков или в бунтах.

Прутки изготавливают длиной не менее 6 м. По согласованию изготовителя с потребителем допускается изготавливать прутки длиной до 25 м.

Предпочтительной является длина прутков 12 м.

Длину прутков оговаривают в заказе или контракте.

Допускаемые отклонения по длине прутков мерной длины + 100 мм.

Стержни диаметром 6 и 8 мм изготавливают в бунтах. По согласованию изготовителя с потребителем стержни диаметром 10 мм всех классов прочности и диаметром 12 мм класса прочности A400C изготавливают в бунтах.

4.5 Стержни должны иметь поперечные ребра серповидной формы, которые не должны соединяться с продольными ребрами. Продольные ребра не обязательны. Периодический профиль и сечение поперечного ребра приведены на рис 1, 2 и 3.

Допускается по согласованию изготовителя с потребителем изготовление стержней периодического профиля другой конфигурации.

Рисунок 3 - Определение площади боковой поверхности одного поперечного ребра, F_r (сечение B-B из pac. 1)

- 4.6 Геометрические размеры поперечных ребер стержней должны обеспечивать сцепление стержней с бетоном и другие функции арматуры железобетонных конструкций.
- 4.7 Боковые стороны поперечных ребер должны иметь угол наклона к продольной оси α не менее 45 град, и закругления в месте перехода к сердечнику.

Примеры условных обозначений для заказа проката:

Стержни номинальным диаметром 22 мм, в прутках длиной 12000 мм, класса прочности А500С:

Пруток 22×12000-A500C СТО АСЧМ 7-93;

Стержни номинальным диаметром 12 мм, в бунтах, класса прочности А400С:

Бунт 12-А400С СТО АСЧМ 7-93.

5 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

5.1 Стержни в зависимости от механических свойств подразделяют на 3 класса прочности: A400C; A500C; A600C.

5.2 Химический состав стали должен соответствовать нормам, указанным в таблице 3.

Таблица 3

Класс		Массовая доля элементов, %, не более											
прочности	углерод	кремний	марганец	фосфор	cepa	азот	углеродный эквиваленг $C_{_{3KB.}}$						
A400C	0.22	0.90	1.60	0.050	0.050	0.012	0.50						
A500C	(0.24)	(0.95)	(1.70)	(0.055)	(0.055)	(0.013)	(0.52)						
A600C	0.28	1.0	1.60	0.045	0.045	0.010	0.65						
Aoooc	(0.30)	(1.?)	(1.70)	(0.050)	(0.050)	(0.012)	(0.67)						

Примечания

- 1 Для стержней диаметром более 32 мм классов прочности A400C и A500C допускается увеличение в стали массовой доли углерода до 0.26 % (0.27 %) и углеродного эквивалента C_{3KB} до 0.55 (0.57)
 - 2 В скобках приведена массовая доля элементов в готовом прокате.
- 5.2.1 Углеродный эквивалент $C_{_{9KB.}}$, приведенный в таблице 3, рассчитывается по формуле:

$$C_{max} \le C + \frac{MCa}{6} + \frac{(Cr + V + Mco)}{5} + \frac{(Cu + Mc)}{15}$$

- где C, Mn, Cr, V, Mo, Cu и Ni фактическая массовая доля углерода, марганца, хрома, ванадия, молибдена, меди и никеля в стали, %.
 - 5.3 Механические свойства стержней при растяжении
- 5.3.1 Механические свойства стержней должны соответствовать нормам, указанным в таблице 4.

Таблица 4

	Механические свойства, не менее										
Класс прочности	Предел текучести, $\sigma_{\text{тв}}$ $(\sigma_{0.2})$	Относительное удлинение, δ_5									
	H/	%									
A400C	400	500 (480)	16								
A500C	500	600 (550)	14								
A600C	600	740 (660)	12								

Примечание В скобках приведены нормы временного сопротивления для проката механически упрочненного в холодном состоянии

5.3.2 Для стержней из стали, не имеющей физического предела текучести - $\sigma_{\text{тв}}$, определяют условный предел текучести - $\sigma_{0.2}$.

- 5.3.3 Отношение временного сопротивления $\sigma_{\text{в}}$ к пределу текучести $\sigma_{\text{тв}}$ ($\sigma_{0.2}$) для каждого испытываемого образца должно быть не менее 1.05.
- 5.3.4 Полное относительное удлинение перед разрывом δ_n при максимальном усилии P_{max} должно быть не менее 2.5 %.

По согласованию изготовителя с потребителем допускается вместо полного относительного удлинения δ_n определять непропорциональное относительное удлинение - δ_p , при максимальном усилии - P_{max} , значение которого должно быть не менее 2 %. При этом модуль упругости - E принимается равным $2 \cdot 10^5$

- 5.3.5 Обеспеченность показателей механических свойств стержней в каждой партии плавке должна быть не менее 0.95.
- 5.3.6 Прочностные свойства стержней $\sigma_{\text{в}}$ и $\sigma_{\text{тв}}$ ($\sigma_{0.2}$), установленные в таблице 4, следует определять с учетом их изменчивости в генеральной совокупности и в каждой партии плавке в соответствии с приложением В. При этом значения относительного удлинения δ_5 , δ_n (δ_p) должны быть не менее указанных в таблице 4 и п. 5.3.4.

По требованию потребителя механические свойства - $\sigma_{\text{в}}$, $\sigma_{\text{тв}}$ ($\sigma_{0.2}$) и δ_{5} определяют как характеристические величины в соответствии с приложением С.

По согласованию изготовителя с потребителем механические свойства, приведенные в таблице 4, допускается принимать в качестве гарантированных минимальных значений и определять в соответствии с п. 6.4.

5.4 Стержни должны выдерживать испытание на изгиб на 160-180 град. для классов прочности А400С и А500С и 90 град. - для класса прочности А600С вокруг оправки диаметром, приведенным в таблице 5.

Таблина 5

Диаметр оправки дли испытания на изгиб

в миллиметрах

Класс прочности		Номинальный диаметр, $d_{\scriptscriptstyle ext{H}}$												
	6	8	10	12	14	16	18	20	22	25	28	32	36	40
A400C	12	16	20	40	51	63	72	80	90	100	120	140	160	200
A500C	18	24	30	50	65	80	90	100	120	150	170	200	220	240
A600C	24	32	40	60	75	100	130	160	180	200	250	300	360	400

Примечание - Для стержней с номинальным диаметром более 40 мм диаметр оправки устанавливается по согласованию изготовителя с потребителем.

5.5 Стержни должны выдерживать испытание на изгиб с разгибом вокруг оправки диаметром приведенным в таблице 6.

Угол изгиба перед нагревом должен быть не менее 90 град., угол разгиба - не менее 20 град.

В месте изгиба с разгибом не должно быть разрывов и трещин, видимых без применения увеличительных приборов.

Таблица 6

Диаметр оправки для испытания на изгиб с разгибом

в миллиметрах

Класс прочности		Номинальный диаметр, $d_{\scriptscriptstyle m H}$												
•	6	8	10	12	14	16	18	20	22	25	28	32	36	40
A400C														
A500C	30	40	50	60	84	96	130	160	176	200	224	320	360	400
A600C														

- 5.6 По требованию потребителя, оговоренному в заказе или контракте, стержни должны выдерживать без разрушения 2×10^5 циклов нагружения, составляющего 60 % номинального значения $\sigma_{\text{тв}}$ ($\sigma_{0.2}$), указанного в таблице 4. Интервал изменения напряжения (2 σ_{a}) 200 H/мм² для стержней диаметром 6-20 мм включ., 150 H/мм² для стержней диаметром более 20 мм (см. приложение Д).
- 5.7 На поверхности стержней не должно быть трещин, плен, закатов и раковин. Классификация дефектов поверхности - по ГОСТ 21014.
 - 5.8 Маркировка и упаковка
- 5.8.1 Стержни упаковывают в связки массой до 15 т. По требованию потребителя масса связки может быть менее 3 т.
- 5.8.2 При поставке стержней в бунтах, каждый бунт должен состоять из одного отрезка. Допускается поставка бунтов, состоящих из двух отрезков в количестве не более 10 % массы партии. Масса бунта должна быть не более 500 кг. По согласованию изготовителя с потребителем допускается масса бунта от 500 кг до 3 т.

Бунт должен быть плотно перевязан. Количество увязок оговаривают в заказе или контракте.

- 5.8.3 Стержни должны иметь прокатную маркировку с шагом не более 1.5 м в виде точек, выступов или других знаков или соответствующие изменения периодического профиля, обозначающие:
 - предприятие изготовитель;
 - класс прочности.

Допускаются другие виды прокатной маркировки стержней. Вид прокатной маркировки согласовывается изготовителем и потребителем при заказе или в контракте.

- 5.8.4 Каждая связка стержней или каждый бунт должны иметь ярлык, на котором указывают:
 - товарный знак или наименование и товарный знак предприятия-изготовителя;
 - номинальный диаметр стержней, мм;
 - обозначение класса прочности;
 - номер партии.

6 ПРАВИЛА ПРИЕМКИ

- 6.1 Сертификация стержней должна осуществляться в соответствии с установленной сертификационной схемой.
- 6.2 Приемку стержней по характеристическим величинам производят в соответствии с п. 6.3, по гарантированным минимальным значениям в соответствии с п. 6.4.
 - 6.3 Приемка по характеристическим величинам
- 6.3.1 Испытания должны быть организованы и проведены в соответствии с соглашением между изготовителем и потребителем
- 6.3.2 Для проведения испытания поставляемая партия стержней должна быть разделена на контрольные партии максимальной массой 70 т или части от нее.
- 6.3.3 Каждая контрольная партия должна состоять из стержней одной марки стали, одной плавки-ковша и одного номинального диаметра. Изготовитель должен подтвердить в акте об испытании, что все пробы в контрольной партии отобраны от одной плавки ковша. Химический состав по плавочному анализу должен быть указан в акте об испытании.
 - 6.3.4 От каждой контрольной партии отбирают:
- а) два образца от различных прутков или бунтов для определения химического состава готового проката;
- б) пятнадцать образцов (при необходимости 60 образцов) от различных прутков или бунтов для испытания всех свойств, установленных стандартом.
 - 6.3.5 Оценку результатов испытаний проводят в соответствии с приложением С.
 - 6.4 Приемка по гарантированным минимальным значениям
- 6.4.1 Для испытания поставляемая партия стержней должна бить разделена на контрольные партии максимальной массой 70 т или части от нее.
 - 6.4.2 Контрольная партия должна состоять из стержней одного диаметра.

- 6.4.3 От контрольной партии для испытания на растяжение, изгиб, изгиб с разгибом отбирают по одному образцу. Каждый отдельный результат испытания должен удовлетворять требованиям раздела 5.
- 6.4.4 Контроль химического состава по ковшевой пробе проводят на одной пробе от каждой плавки стали.
- 6.4.5 Если результаты испытаний не удовлетворяют требованиям стандарта повторные испытания проводят по ИСО 404 или СТО АСЧМ 5-93. Результаты повторных испытаний являются окончательными.
- 6.5 Партия стержней должна сопровождаться документом о качестве, содержащим следующие данные:
 - товарный знак или наименование и товарный знак предприятия-изготовителя;
 - обозначение класса прочности;
 - номинальный диаметр стержней, мм;
 - прокатную маркировку;
 - номер партии;
 - массу партии и число бунтов в ней (при поставке в бунтах);
 - дату отгрузки;
- результаты испытаний (при определении статистических показателей прочностных характеристик дополнительно указывают минимальное среднее значение $\mathbf{X}_{\mathbf{0}}$ и среднеквадратичное отклонение $S_{\mathbf{0}}$ для соответствующего параметра партии).

7 МЕТОДЫ КОНТРОЛЯ

7.1 Для проверки химического состава пробы отбирают по ГОСТ 7565 (ИСО 377.2).

Методы химического анализа выбирает изготовитель. В случае разногласий применяют соответствующий Европейский стандарт.

7.2 Диаметр и овальность стержня измеряют на расстоянии не менее 150 мм от конца стержня или на расстоянии не менее 3000 мм от конца бунта.

Размеры проверяют измерительным инструментом необходимой точности.

- 7.3 Качество поверхности проверяют без применения увеличительных приборов.
- 7.4 Отбор проб для испытания на растяжение, изгиб и изгиб с разгибом проводят по ГОСТ 7564 (ИСО 377.1).
- 7.5 Испытание на растяжение проводят в соответствии с требованиями стандартов СТО АСЧМ 2-93 или ИСО 6892.

7.6 Испытание на изгиб и изгиб с разгибом проводят в соответствии с требованиями стандартов СТО АСЧМ 3-93 или ИСО 10065 на натурных образцах сечением, равным сечению проверяемого стержня.

8 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Транспортирование и хранение - по ГОСТ 7566.

Приложение А Обязательное

РАСЧЕТ ОТНОСИТЕЛЬНОЙ ПЛОЩАДИ СМЯТИЯ ПОПЕРЕЧНЫХ РЕБЕР

Определение относительной площади смятия поперечных ребер f_r стержней периодического профиля производится по формуле:

$$f_r = \frac{K \cdot P_r \cdot \sin \beta}{K \cdot d_s \cdot t}$$

где: F_r - площадь боковой поверхности одного поперечного ребра (см. рис. 3);

р - угол наклона поперечного ребра;

 d_{H} - номинальный диаметр стержня, мм;

t - расстояние между поперечными ребрами;

K - число поперечных ребер по окружности для стержней с профилем по п. 4.5.

K = 2

Зная геометрические параметры профиля, значение относительной площади смятия поперечных ребер - f_r , можно определить по формуле

$$f_{\tau} = \frac{(d_{\pi} \cdot \pi - \sum_{i \in S} \epsilon_{i}) \cdot [h + 2(h_{i} / 4 + h_{i} / 4)]}{6 \cdot d_{\pi} \cdot \pi \cdot t}$$

где: **Σ**⁴ - суммарная величина безреберных участков по окружности стержня между окончаниями поперечных ребер (см. рис. 1);

h - высота поперечного ребра в его середине;

 $h_1/4$, $h_3/4$ - высота ребер в точках четверти длины поперечных ребер (см. рис. 3).

Значения h, $h_1/4$ и $h_3/4$ определяются как средние величины для всех рядов.

Приложение В Обязательное

ТРЕБОВАНИЯ К СТАТИСТИЧЕСКИМ ПОКАЗАТЕЛЯМ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК

1 Предприятие-изготовитель гарантирует потребителю средние значения прочностных характеристик (предела текучести σ_{TB} ($\sigma_{0.2}$) и временного сопротивления - σ_{B}) в генеральной совокупности \mathbf{X} и минимальные средние значения указанных характеристик в каждой партии-плавке - \mathbf{X} , значения которых устанавливаются из условий:

$$\overline{X}_1 \ge X_{20}$$
, $+1.64 \cdot S$

$$\widetilde{X}_1 \ge X_{20}$$
,
$$\widetilde{X}_1 \ge 0.9 X_{20}$$
, $+3 \cdot S_2$

где: - браковочные значения прочностных характеристик, установленные таблицей 4 настоящего стандарта;

- S среднеквадратическое отклонение параметра в генеральной совокупности испытаний;
 - S_0 среднеквадратическое отклонение параметра в партии.

Статистические показатели не должны превышать указанные в таблице В. 1.

Таблица В.1

Класс прочности	S 2	S_{0}	Si z, _j	Р	ві Х , _{для}		
	H/mm ²	H/mm ²	$\sigma_{\scriptscriptstyle{\mathrm{TB}}}\left(\sigma_{0.2} ight)$	$\sigma_{\scriptscriptstyle B}$	$\sigma_{\scriptscriptstyle TB}\left(\sigma_{0.2} ight)$	$\sigma_{\scriptscriptstyle B}$	
A400C	39	20	0.08	0 07	0.05	0.03	
A500C A600C	80	45	0.08	0.07	0.05	0.04	

Примечание - Для стержней диаметром 6 и 8 мм в бунтах допускается повышение норм по S и S_0 на 5 $H/\text{мм}^2$.

- 2 Контроль показателей механических свойств стержней на предприятии изготовителе
- 2.1 Требуемые показатели обеспечиваются соблюдением технологии производства и контролируются испытанием не менее двух произвольно выбранных образцов от каждой однородной партии стержней одного диаметра и массой не более 70 т.
- 2.2 Значения , *S* и *S*₀ следует устанавливать на основании данных непрерывного контроля за значительный период (от 3 до 6 месяцев) при числе однородных партий не менее 50 в соответствии с нормативно-технической документацией.

- 2.3 Показатели механических свойств в каждой партии стержней, отправляемой потребителю, должны быть проверены в соответствии с требованиями п. 1 настоящего приложения.
- 3. При необходимости проверки потребителем прочностных характеристик стержней, установленных в таблице 4 настоящего стандарта, а также в случае разногласий в оценке качества, от каждой партии проводят испытания шести образцов, взятых из разных связок (бунтов) стержней, и по результатам этих испытаний проверяют выполнение для соответствующих характеристик условий:

$$X_{\underline{x}_{1}} \geq \widetilde{X}_{1} - 1.64 \cdot S_{2}$$

$$\overline{X}_{2} \geq \widetilde{X}_{1} \geq X_{2}$$

где X_{\min} - минимальное значение проверяемого параметра из результатов испытания шести образцов;

- минимальное среднее значение проверяемого параметра для данной партии;

 S_0 - среднеквадратическое отклонение проверяемого параметра в партии;

26 - среднее значение проверяемого параметра по результатам испытаний шести образцов;

 $X_{\text{ібр}}$ - браковочное значение проверяемого параметра, установленное в таблице 4 настоящего стандарта.

Значения $""" и S_o$ - приводятся в документе о качестве.

Приложение С Обязательное

ПРАВИЛА ПРИЕМКИ ПРОКАТА ПО ХАРАКТЕРИСТИЧЕСКИМ ВЕЛИЧИНАМ

1 Контроль по переменным

1.1.1 Определяемые параметры

По каждому показателю определяют:

- значение X_i для каждого из 15 контрольных образцов (n = 15);
- среднее арифметическое значение **х** по результатам контроля 15 контрольных образцов;
- среднеквадратическое отклонение S_{15} по результатам контроля 15 контрольных образцов.
 - 1.1.2 Оценка результатов контроля

1.1.2.1 Контрольная партия удовлетворяет требованиям раздела 5 стандарта, если для всех контролируемых показателей выполняется условие:

$$X_{15} = 2.33 \cdot S_{15} \ge X_{1}$$

где: 2.33 - значение коэффициента приемлемости для n=15 (p=0.95) при вероятности 90 % (1 - d=0.90);

 $X_{\rm k}$ - требуемое значение контролируемого показателя.

1.1.2.2 Если указанное в п. 1.1.2.1 условие по какому-либо показателю не выполняется, то по имеющимся результатам контроля этого показателя определяют коэффициент K^1 по формуле:

$$K^{1} = \frac{X_{15} - X_{k}}{S_{15}}$$

При значении коэффициента 🖍 22 приемка может быть продолжена.

В этом случае должны быть отобраны дополнительно 45 образцов от стержней или бунтов, не проходивших испытания.

Контрольная партия считается отвечающей требованиям настоящего стандарта, если по 60 образцам (15 основным и 45 дополнительным) для всех контролируемых показателей выполняется условие:

$$X_{eq} = 1.93 \cdot S_{eq} > X_{er}$$

где: - среднее арифметическое значение по результатам контроля 60 образцов;

1.93 - значение коэффициента приемлемости для $n=60\ (p=0.95)$ при вероятности 90 %;

 S_{60} - среднеквадратическое отклонение по результатам контроля 60 образцов;

 X_k - требуемое значение контролируемого показателя.

1.1.2.3 Результаты контроля на 60 образцах (15 основных и 45 дополнительных) являются окончательными.

2 Контроль по качественным признакам

Когда определяемые характеристики задаются как максимальное или минимальное значение, то все результаты, полученные на 15 образцах, должны удовлетворять требованиям стандарта. В этом случае контрольная партия считается выдержавшей испытания.

Испытания можно продолжить, если получается не более 2-х результатов, не удовлетворяющих требованиям стандарта. В этом случае испытывают 45 дополнительных

образцов, отобранных от различных прутков, или бунтов контрольной партии, не проходивших испытания.

Контрольная партия соответствует требованиям стандарта, если не более 2-х результатов из 60 испытаний не удовлетворяют требованиям стандарта.

3 Анализ химического состава

Оба образца, отобранные от готового проката, должны соответствовать требованиям стандарта.

Приложение Д Обязательное

ИСПЫТАНИЕ НА УСТАЛОСТЬ

Настоящее приложение устанавливает некоторые принятые испытания на усталость стержней периодического профиля. Испытание проводится при нормальной температуре 20±5 град. С, как нормируемое осевое растяжение в пульсирующем диапазоне напряжений (см. рис. 4).

ОБРАЗЦЫ ДЛЯ ИСПЫТАНИЙ

Для испытания следует использовать прямолинейные образцы стержней от прутков или бунтов, механическая правка которых не должна приводить к уменьшению сечения или существенному изменению механических свойств.

МЕТОД ИСПЫТАНИЯ

Испытание должно проводиться в пульсаторе, регулирующем нагрузку.

Частота циклов должна быть от 1 до 200 Гц.

Испытание должно продолжаться до тех пор, пока не будет проведено 20×10^6 циклов напряжений или пока не разрушится образец.

Рисунок 4 - Цикл напряжений при испытании на усталость