Real Analysis (2-27 notes, overview)

- (Last semester: "calculus on 1 real variable": continuity, limit, differentiation...
- Riemann integrals... (Fundamental theorem of calculus...)
- what about $f: \mathbb{R}^n \to \mathbb{R}$?
- Sequences of real numbers: convergence; bounded; limit; Cauchy sequence...
- Topics according to historic development and depth:

 Calculus (differential integral) Mathematical analysis— Real analysis > mea

Calculus (differential, integral) –> Mathematical analysis–> Real analysis-> measure theory, functional analysis, ...

Example: limit of a sequence (of real numbers)

- Sequence: "function whose domain is the set of natural numbers \mathbb{N} ": $\{a_n\}$
- Example: $a_n = \frac{\cos^2 n}{\ln n + 2}$ is a sequence of real numbers.
 - *Question*: show that a_n converges to 0 (as $n \to \infty$): $\lim_{n \to \infty} a_n = 0$
- Show this using $\varepsilon \delta$ definition:

- Definition: $a_n \to a$ ($\lim_{n\to\infty} a_n = a$) if: for all $\varepsilon > 0$, there exists natural number N such that whenever $n \geqslant N$, $|a_n a| < \varepsilon$.
- Proof:

$$\left| \frac{\cos^2 n}{\ln n + 2} - 0 \right| \leqslant \frac{1}{\ln n} < \varepsilon$$

happens whenever: $\ln n > 1/\varepsilon$; $n > e^{1/\varepsilon}$.

Therefore, for any $\varepsilon > 0$, we choose $N > e^{1/\varepsilon}$, then whenever $n \geqslant N, |a_n - 0| < \varepsilon$ as required. (Therefore we have shown that $\lim_{n \to \infty} a_n = 0$.)

- Logical quantifiers, ∀ means "for all/every/ for arbitrary...",
 "∃" means "exist/ for some/...". The order of them is very important!
- Convergent sequence with limit a, i.e. $a_n \to a$ ($\lim_{n \to \infty} a_n = a$): $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, |a_n a| < \varepsilon$.
- In case the limit a is not clear, there is a related definition:

- Cauchy sequence: $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geqslant N, |a_n a_m| < \varepsilon$.
- Example: Show that $s_n = \sum_{k=1}^n \left(\frac{1}{\sqrt{k}} \frac{1}{\sqrt{k+1}} \right)$ is a Cauchy sequence.
- Proof: Fix an arbitrary $\varepsilon > 0$. Let $N = \cdots =$ Whenever $n > m \geqslant N$,

$$|s_n - s_m| \le \left| \sum_{k=m+1}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) \right| = \frac{1}{\sqrt{m+1}} - \frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{m+1}} < \frac{1}{\sqrt{m+1}}$$

holds of we choose $N > \frac{1}{c^2}$ (no need to write "-1")

- (Of course, the series converges to $1/\sqrt{1} 1/\sqrt{2} + (1/\sqrt{2} 1/\sqrt{3}) + (1/\sqrt{3} 1/\sqrt{4}) + \dots = 1$)
- Example Question about continuous function, and differentiable function: let $f: (-\pi, \pi) \to \mathbb{R}$ be a "continuously differentiable function", i.e. f' exists and is continuous (denoted $f \in C^1((-\pi, \pi))$) with the property that f'(3) = 0.001. Show that f is increasing on some open interval containing 3.

• Proof: Since f'(x) is "continuous" at the point x=3, there exists $\delta>0$ such that whenever $x\in (3-\delta, 3+\delta)$, $f'(x)\geqslant 0.0005$. (Next, use Mean Value Theorem): By mean value theorem, whenever x< y (in that open set),

$$\frac{f(x) - f(y)}{x - y} = f'(c) > 0$$

for some c between x,y; therefore f(y)>f(x); i.e. function is increasing there.

(Last period we mentioned: converging sequence; Cauchy sequence; continuous function...)

Review of Key properties/theorems about real numbers

 \mathbb{R} is "ordered field": $+, -, \times, \div$; a < b, a = b, a > b. ($\leqslant \ldots$)

- "Completeness property":
 - 1. A sequence of real number is convergent if and only if it is Cauchy. (as we will see again, convergent sequences must be Cauchy; but the converse statement is not automatic; it is true for \mathbb{R} , but false for \mathbb{Q})
 - 2. Monotone convergent theorem: if $\{a_n\}$ is "bounded above" and increasing, then a_n converges (to some real number).

(Bounded above: $\exists M > 0, \forall n, a_n \leq M$; bounded below is similar; bounded: $|a_n| \leq M$)

3. Least Upper Bound Property: Any subset $A \subset \mathbb{R}$ that is bounded above, has a LEAST upper bound (supremum), denoted $\sup{(A)}$

(unlike maximum of a set, which might not exist.)

(of course, any $A \subset \mathbb{R}$ that has a lower bound (bounded below) has a greatest lower bound (infimum)... $\inf(A)$

Example: $B = \{1/n : n \in \mathbb{N}\}, \sup(B) = 1 = \max(B) \in B; \inf(B) = 0.$ $\min(B)$ does not exist (you can always find a smaller number.)

 $A = (2, 3), \sup(A) = 3, \inf(A) = 2. \max(A), \min(A)$ does not exist.

- 4. Bolzano-Weierstrass theorem: any bounded sequence $(a_n)_{n=1}^{\infty}$ has some convergent "subsequence". $(a_{n_k})_{k=1}^{\infty}$
 - Example: $a_n = (-1)^n = (-1, 1, -1, 1...)$ is bounded but diverges. However, $a_{2n} = (1, 1, 1, 1, 1, 1, ...)$ converges to 1.
- 5. Nested interval property (NIP): if $I_1 = [a, b] \supset I_2 \supset I_3 \supset I_4 \ldots$ is a nested sequence of closed and bounded intervals, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$

Overview for this semester's Real Analysis.

- 1. Metric spaces (with a focus on \mathbb{R}^n)
 - Distance function d(x, y); convergence; Cauchy sequence; (completeness)
 - Open set, closed set, limit point, interior, exterior, boundary... closure... (topology); compact sets; connected sets...
 - Limit of functions; continuous functions... (Uniformly continuous functions); interactions between continuous functions and compact/connected sets (generalizing Extreme Value Theorem; Intermediate Value Theorem...)

- (Maybe not talk about differentiation; or sequence of functions)
- 2. Riemann-(Stieljes) integration (focus on \mathbb{R}), $\int f dg$
 - Riemann integrable functions
 - Continuous functions on [a, b] are Riemann integrable...
 - (fundamental theorem of calculus)
 - Theorem by Lebesgue about Riemann integrable functions are "continuous almost everywhere", i.e. except for a "set of measure 0".
- 3. Lebesgue integration (on \mathbb{R}^n) (maybe not focus too much on measure theory detail)

Example of distances of $x \in \mathbb{R}^2$:

• Euclidean distance: $\sqrt{x^2 + y^2}$