1. Preface

- (a) Quantum materials are really cool
- (b) Correlated systems are really cool
- (c) Probably the most exciting systems right now
- (d) What are the major questions?
- (e) Description of the book dissemination of results, and instruction $\,$ manual
- 2. Introduction to ultrafast optics in correlated electron systems
 - (a) Correlated systems an overview
 - (b) Important aspects of correlated systems for this thesis
 - i. Charge density wave (example: 1T-TaS₂)
 - ii. Kondo effect and Magnetic order (example: CaMn₂Bi₂)
 - iii. Multiferroics (example: CuBr₂)
 - (c) Spectroscopy versus control
 - i. Ultrafast spectroscopy
 - A. Comparison of nonequil. vs equil. spectroscopy
 - B. Excitation of coherent collective modes
 - C. In multiferroics
 - ii. Ultrafast control
 - A. Incoherent versus incoherent control
 - B. In magnets

3. SHG theory

- (a) Space groups and point groups
- (b) Response tensors
 - i. Multiple contributions to SHG
- (c) Symmetry of tensors the free energy
 - i. SHG does not mean inversion broken
 - ii. Presence of absorption
- (d) Bond model
- (e) Phenomenological GL model of SHG
 - i. Free energy is p dot e
 - ii. Free energy for SHG can be written like ...
 - iii. $\chi_{ijk}=\chi_{ijkl}O_l$ (but fully general) is a valid expression for the free energy
 - iv. Free energy needs to be a real and totally symmetric scalar
 - v. This gives us constraints on χ_{ijk} .

- vi. Time reversal affects SHG
- vii. SHG also measures domains
- (f) Quantum model
 - i. Wavelength dependence of SHG

4. SHG practical

- (a) Basic idea
 - i. Connection to last chapter want to probe as many elements as possible
 - ii. We have control over the fields and the outgoing polarization
 - iii. Our choices: oblique incidence, large spot size, single color, PMT detector
 - iv. Schematic description of the setup
- (b) Before you build the setup
 - i. Choice of oblique vs. normal incidence which tensor elements do you want to probe?
 - ii. Scaling of SHG signal with volume, pulse width microscopy or not? Domain size?
- (c) Construction of the setup
 - i. Description of the setup that we built
 - ii. Automated polarization rotators
 - iii. Better to use hollow bore stepper motors
 - iv. Choice of detector
 - v. Alignment
 - A. Aligning the circles
 - B. Checking that the symmetry looks good
 - C. Waveplates
- (d) Considerations for time-resolved
 - i. Location of pump mirror
 - ii. Alignment of normal incidence
 - iii. Choice of pump wavelength (OPA)
 - iv. Polarization rotation (why do it?)
 - v. Pump scatter
- (e) Data analysis (static)
- (f) Data analysis (time-resolved)
- 5. Appendix A: Failed experiments