Exercises and solutions for MM101 Tutorial in Week 4

1. Find the inverse functions of the following one-to-one functions:

(a)
$$f(x) = 7x - 4$$
,

(a)
$$f(x) = 7x - 4$$
, (b) $f(x) = (1 - 2x)^3$,

(c)
$$f(x) = \frac{1-2x}{1+x}$$
, (d) $f(x) = \frac{x}{\sqrt{x^2+1}}$.

(d)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
.

(a)
$$y = 7x - 4 \Leftrightarrow 7x = y + 4 \Leftrightarrow x = \frac{1}{7}(y+4)$$
 so $f^{-1}(x) = \frac{1}{7}(x+4)$.

(b)
$$y = (1 - 2x)^3 \Leftrightarrow y^{\frac{1}{3}} = 1 - 2x \Leftrightarrow 2x = 1 - y^{\frac{1}{3}} \Leftrightarrow x = \frac{1}{2}(1 - y^{\frac{1}{3}})$$
 so $f^{-1}(x) = \frac{1}{2}(1 - x^{\frac{1}{3}}).$

(c)
$$y = \frac{1-2x}{1+x} \Leftrightarrow (1+x)y = 1-2x \Leftrightarrow xy+2x = 1-y \Leftrightarrow x = \frac{1-y}{2+y}$$
 so $f^{-1}(x) = \frac{1-x}{2+x}$.

(d)
$$y = \frac{x}{\sqrt{x^2 + 1}} \Leftrightarrow y\sqrt{x^2 + 1} = x \Rightarrow y^2(x^2 + 1) = x^2 \Leftrightarrow x^2(y^2 - 1) = 1 \Leftrightarrow x^2 = \frac{1}{y^2 - 1} \Leftrightarrow x = \frac{y}{\sqrt{1 - y^2}} \text{ so } f^{-1}(x) = \frac{x}{\sqrt{1 - x^2}}.$$

2. Simplify the following improper rational function and identify the quotient and the remainder:

$$\frac{-x^4 - 2x^3 + 2x^2 + 3x - 57}{x^2 + x - 6}.$$

The quotient is $-x^2 - x - 3$ and the remainder is -75.

3. In each case, factorise the given polynomial p(x) and find all real roots of the equation p(x) = 0.

(a)
$$p(x) = x^4 + 6x^3 + 9x^2$$
, (b) $p(x) = x^5 - x^4 - 16x + 16$.

- (a) $p(x) = x^4 + 6x^3 + 9x^2 = x^2(x^2 + 6x + 9) = x^2(x + 3)^2$. Real roots of p(x) = 0 are therefore x = 0 (twice) and x = -3 (twice).
- (b) Integer roots must be factors of 16 or -16.

Try x = 1: $p(1) = 0 \Leftrightarrow x - 1$ is a factor of p(x).

Divide by x - 1:

So $p(x) = (x-1)(x^4-16)$.

Try x = 2: $p(2) = 0 \Leftrightarrow x - 2$ is a factor of $x^4 - 16$. Divide by x - 2:

So $p(x) = (x-1)(x-2)(x^3+2x^2+4x+8)$.

Try x = -2: $p(-2) = 0 \Leftrightarrow x + 2$ is a factor of $x^3 + 2x^2 + 4x + 8$. Divide by x + 2:

So $p(x) = (x-1)(x-2)(x+2)(x^2+4)$. As x^2+4 is irreducible (i.e. can't be factorised), this is a full factorisation of p(x). Real roots of p(x) = 0 are therefore x = 1, x = 2

and x = -2.

Note: this could have been done more directly by noting that the factor $x^4 - 16$ is the difference of two squares, i.e.

$$p(x) = (x-1)(x^4 - 16) = (x-1)(x^2 - 4)(x^2 + 4) = (x-1)(x-2)(x+2)(x^2 + 4).$$

4. Show that x-1 is a factor of a polynomial P of positive degree if and only if the sum of the coefficients of P is zero.

Let P be the polynomial

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

of positive degree n. We know that x-1 is a factor of P if and only if 1 is a root, i.e. if and only if

$$P(1) = a_n + a_{n-1} + \ldots + a_1 + a_0 = 0.$$

That is, the sum of the coefficients of P is zero if and only if x-1 is a factor of P.

5. Solve the following inequalities for x:

(a)
$$|x-2| < 4$$
, (b) $\frac{2}{x-1} \ge 5$.

(a) x must satisfy two inequalities:

$$x - 2 < 4$$
 and $-(x - 2) < 4 \Leftrightarrow x - 2 > -4$.

This gives x < 6 and x > -2, that is, $x \in (-2, 6)$.

(b)
$$\frac{2}{x-1} \ge 5 \Leftrightarrow \frac{2}{x-1} - 5 \ge 0 \Leftrightarrow \frac{2-5(x-1)}{x-1} \ge 0 \Leftrightarrow \frac{7-5x}{x-1} \ge 0.$$

Factors change sign when x = 1, x = 7/5. Table of signs:

x values	x < 1	x = 1	1 < x < 7/5	x = 7/5	x > 7/5
7-5x	+	+	+	0	-
x-1	-	0	+	+	+
$\frac{7-5x}{x-1}$	-	nd	+	0	-

So the solution is $x \in (1, 7/5]$.

6. Solve the simultaneous equations $x^2 + y^2 = 1$, $x + y = \frac{1}{2}$.

Second equation gives $y = \frac{1}{2} - x$. Substitute this into first equation:

$$x^{2} + (\frac{1}{2} - x)^{2} - 1 = 0 \Leftrightarrow 2x^{2} - x - \frac{3}{4} = 0.$$

This is a quadratic equation in x: solutions are

$$x = \frac{1 \pm \sqrt{1+6}}{4} = \frac{1}{4} \pm \frac{\sqrt{7}}{4}.$$

If
$$x = \frac{1}{4} + \frac{\sqrt{7}}{4}$$
, $y = \frac{1}{2} - x = \frac{1}{4} - \frac{\sqrt{7}}{4}$. If $x = \frac{1}{4} - \frac{\sqrt{7}}{4}$, $y = \frac{1}{2} - x = \frac{1}{4} + \frac{\sqrt{7}}{4}$.