This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG. 1 - AOPRT-L CDNA sequence

10 20 30 40 50 60 70	80 90 100 110 120 130 140 150 150 SO SO SO SO SO SO SO S	160 170 180 190 200 210 220 230	240 250 260 370 280 290 300 310 310 310 310 310 310 310 310 31
70 000000	gcctgo GACCC	TTCGA(300 TCCCGA
CCTCC	140 	220 - GCTCC S	3
30 40 50 60 70 1 CACCTCCTCCTCCTGTCCTCCTCCTCGCCGCCAC	TCGCC R R	180 190 200 210 220 23 	290
CCTGCC	130 - - 	210 	CGCCTA
50 CTCCTC	00000000000000000000000000000000000000	O M G	280 TGCAC C T
40 CCTGTC P V	120 	200 CGCATCT	CTTGCC L A
TCCTCC	gcg CCGCTC	190 - - 	270 GTCTC
30 - CCTCC	110 	1 	000000
CTCCCT S L	100 110 cctacaccgaattccgcg cctacaccGTCTGGGCCG	180 CGGTAC	260 rgAcr
20 TTCAC	100 	> P2 3GCCCC) SACCGG T G
AAAGCT < A) aaatgo AAATGO K C	170 accg ACCGTC I V	250
10 	0 90 	cocte	O GCCAT
10 ATGCTCTATCCAAAGCTT M A L S K A F	80 	160 170 tcctggaccctcaccg TCCTGGACCCTCACCGTC	240 - G
AT	# P P	N H C	გ ი

320 330 340 350 360 370 380 390 390 GCAGAATICGCCCTGAACCAGTACGCCGGCCAGGACTTCTACGACATCTCCCTCGTCGACGGCTTCAACATCCCCATGA EFALNQYAGGOTTCTACGACATCTCCCTCGTCGACGCTTCAACATCCCCATGA EFALNQYAG GODFYDIS	400 410 420 430 440 450 460 	470 480 490 500 510 520 530 540	570 580 600 610 620 AGTTTTTCAAGCAGGTGCCCTGATGCGTACCCTACCAGCACT FFKQRCPDAYSYPKDDATS	40 650 660 670 680 690 700	720 730 740 750 760 770 170 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
320 330 340 	400 410 420 GACTTCTCCCGACGTCCGGAAATTGCCACGAC D F S P T S G N C H D	470 480 490 50 	ش		710 720 730 CAAACTATGGTTAATTTGTACGTAGCTCATTA

3 / 18

Similarity of AoPRT-L to other PR-5 Group Proteins

Protein	Cellular Location	Id	Percentage Similarity or Identity to AoPRT-L	Percentage ity or <u>Identity</u> to AoPRT-L
AoPRT-L Osmotin Fobacco Osmotin-like Fobacco Thaumatin-like Fomato NP24	Extracellular Vacuolar Vacuolar Extracellular Vacuolar Cytoplasmic	4.9 7.5 7.5 7.8 12.0	100 89 89 80 78 76	100 77 77 80 65
Potato Osmotin-like Rice Thaumatin-like Wheat Thaumatin-like Barley Thaumatin-like	? ? Extracellular Extracellular	6.1 5.0 4.5 4.2	76 70 68 67	62 53 49 49

FIG.3a

Induction of AoPRT-L following cell isolation

Time after isolation (days)

FIG.3b

Induction in etiolated seedlings by wounding

Time after wounding (davs)
Explant length 5mm

FIG.3c

Induction of AoPRT-L in whole plants by SA

Time course of induction following foliar application of 1mM SA to whole plants

1; Water treated

2; 3 days after foliar spraying with 1mM SA

3; 3 days after continuous root feeding with 1mM SA

4; 3 days after initial root feeding with 1mM SA

Time after application (days)

FIG.4

AoPRT-L Expression in Asparagus seedlings infected with *Stemphyllium versicarium*

Figures (3, 7 & 14) indicate days after symptom development

- C uninfected Asparagus
- M Infected region (day 14)
- P Pigmented region (day 14)
- A Asymptomatic region (day 14)

6 / 18

FIG. 5 IPCR Strategy

Southern Analysis

Asp DNA x EcoR1

Very approximately approxim

Primer Design

7 / 18

တ TGACAGTTCC ACAAAGGCTT CCCATTCCCC TCCTCCAGAC TCATCTAACT GTGCTGCCGA GGTGCTGTCG GTAATTAGCT CAGAAAAAT CTACATTAAT CACCATCCAA GAAGACTAGT F.G. AoPRT-L Promoter sequence: Similarities with other Defence Genes GACTGATGGA ACCTTATTCC TTGCTTGATT GACACATCCA AACTGAATAC repeat CATGACTAAA GTTCTAACAT Box ďq TATA 18 GAGAGAAGCA TTATCCCATG ATACTGGTCC CAAACGAGAT AGAAATTGGA TGCGACCTGA CTCTCTTGTT ACGAACTCGT TATAAAGAAA TCATG PR-4 Potato Wound-Induced TGCGCACAAC TCCATGTCAT CAAATCGAGA TAAATACCTG GCAAATAAAA AGACTAGTCC ACACAACCAA TAATCCCCTA AAACTCAATA CTTTGCGTGT and PR-2 PR-3 Tobacco CAAAAACAAC AGACTTTCCA AAATTTCTGT GAATTCTTAT AATAATTATT Carrot TCTAATTAGT ATTATCCCTA TCTAACATGA -422 -122 -272 -372 -322 -222 -172 -72 -22

pIPCR-TA

PCR using 5' and 3' primers Clone into pJIT60 using KpnI and PstI

p22-JIT60
Clone in GUS(INT) using BamHI and EcoRI

p22-GUS(INT) JIT60

Cut with KpnI and XhoI and clone into KpnI and SalI cut pBin19

p22-GUS(INT) Bin19

FIG. 7

FIG.8

Histochemical localistion of GUS activity in untreated stems from transgenic tobacco harbouring AoPRT-L-GUS or PR-1a-GUS

FIG. 9

AoPRT-L-GUS Expression in TMV-infected Tobacco

AoPRT-L-GUS Expression in Tobacco infected with *Pseudomonas* syringae pathovar phaseolicola

Effects of wounding and JA on GUS expression in FIG. 11 transgenic plants

AoPRT-L-GUS Expression Following Water Stress

SUBSTITUTE SHEET (RULE 26)

Discs

FIG. 14

AoPRT-L-GUS and Pr1a-Gus expression after SA or BTH induction in Brassica napus leaves

PCT/GB99/01949

FIG. 15a AoPRT-L promoter deletions

FIG. 15b SA-responsiveness of AoPRT-L promoter deletion-GUS constructs in T0 transgenic tobacco plants

n - number of individual transformants

p - probability that activity with SA is not different to activity with control-treatment (Wilcoxon signed rank test)

SUBSTITUTE SHEET (RULE 26)

ATG Multimerised AoPRT-Lx3 SA-responsive promoter AoPRT-L-min TATA Box (-132 to -1) The -247 to -133 putative SA-reponsive region cloned into pJIT-60 GUS (INT) containing the AoPRT-L minimal promoter (-132 to -1) FIG. 15c 18bp Repeat AoPRT-L-SA (-247 to -133) Carrot PR-3 & PR-4

WO 99/66057

FIG. 16 schematic diagram of plasmid pGB24

