CLASS QUIZ: OCTOBER 5: LIMITS AT AND TO INFINITY

MATH 153, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):
(1) The graph $y = f(x)$ of a function f defined on all reals has a horizontal asymptote $y = c$ as x approaches $+\infty$. Which of the following is the correct definition of this?
(A) For every $a \in \mathbb{R}$, there exists $\delta > 0$ such that for all x satisfying $0 < x - c < \delta$, we have $f(x) > a$.
(B) For every $a \in \mathbb{R}$, there exists $\varepsilon > 0$ such that for all x satisfying $x > a$, we have $ f(x) - c < \varepsilon$. (C) For every $\varepsilon > 0$, there exists $a \in \mathbb{R}$ such that for all x satisfying $x > a$, we have $ f(x) - c < \varepsilon$.
(D) For every $\delta > 0$, there exists $a \in \mathbb{R}$ such that for all x satisfying $0 < x - c < \delta$, we have $f(x) > a$.
(E) For every $\varepsilon > 0$, there exists $\delta > 0$ such that for all x satisfying $0 < x - c < \delta$, we have $ f(x) - c < \varepsilon$.
Your answer:
(2) Which of the following is the correct definition of $\lim_{x\to c^-} f(x) = -\infty$ (in words: the left hand limit of f at c is $-\infty$)?
(A) For every $a \in \mathbb{R}$, there exists $\delta > 0$ such that for all x satisfying $0 < x - c < \delta$, we have $f(x) > a$.
(B) For every $a \in \mathbb{R}$, there exists $\delta > 0$ such that for all x satisfying $0 < x - c < \delta$, we have $f(x) > a$. (C) For every $a \in \mathbb{R}$, there exists $\delta > 0$ such that for all x satisfying $0 < x - c < \delta$, we have $f(x) < a$.
(D) For every $a \in \mathbb{R}$, there exists $\delta > 0$ such that for all x satisfying $0 < c - x < \delta$, we have $f(x) > a$. (E) For every $a \in \mathbb{R}$, there exists $\delta > 0$ such that for all x satisfying $0 < c - x < \delta$, we have $f(x) < a$.
Vous anguare