

RECALL (LAST SESSION)

Smartcard introduction

- **Applications**
- Design
 - Electronic: What's inside?
 - Architecture scheme (Mux / Demux / registers ...)
 - Embedded software
 - Development phases

Smartcard Business

- Founderies
- IC Developers
- **Embedded Software Developers**

Communication

- 7816 standard
- 14443 standard

TODAY

- Physical implementation / Physical Attacks
 - A famous example
- Banking protocols
 - B0'
 - EMV intro
- fault attacks
 - intro
 - RSA case

WHAT IS A SMART CARD? MICRO-MODULE

WHAT IS A SMART CARD...

WHAT IS A SMART CARD...

WHAT IS A SMART CARD...

WHAT IS A SMART CARD... ANTI-PROBING LAYER

WHAT IS A SMART CARD?

WHAT IS A SMART CARD... MICRO-PROBING

WHAT IS A SMART CARD?

WHAT IS A SMART CARD... SIDE VIEW

Antiprobing layer M₄

 M_3

 M_2

 M_1

poly

Smart Card Security Charles Guillemet 2015-2016 | 45

REVERSE ENGINEERING

Example with a 3 metal layer techno, M3 used for anti-probing layer

1: removing of the anti-probing layer (M3), view of M2

2: removing of M2, view of M1

3: removing of M1, view of active area and poly

4: schematic reconstruction

WHAT IS A SMART CARD? REVERSE ENGINEERING

MIFARE BREAK (CASE STUDY)

CONTACT MODE: START-UP AND COMMANDS

supplies power and reset signal

sends ATR

and wait for a command

sends a command

deals with the command...

... sends the response

fully described in norm ISO 7816

COMMAND FORMAT: APDU

Application Protocol Data Unit:

CLA INS P1 P2 Lx + DATA

5 bytes + data displayed with hexadecimal notation example : SELECT command

00 A4 04 00 xx + AID

AID = A0 00 00 00 42 10 10

APDU: 00 A4 04 00 07 A0 00 00 00 42 10 10

A BRIEF HISTORY...

1968 - 1972: several patents (Japan, Germany, GB, USA) on plastic cards with electronic circuits and memories

1974: Roland Moreno's patent (memory cards)

1977 - 1978: Michel Ugon's patents (microcontroller cards)

1979: manufacturing of the first smart card (two components)

1981: first microcontroller card with one component

1983: launch of the first french « Télécarte » (phone card)

1989: BO' banking application

1992: all french banking cards have a chip

1996: EMV application but not use...

1999: Humpich case

2007: EMV in all french banking cards

2010: "Chip and PIN is Broken" (Murdoch, Drimer, Anderson, Bond)

B0' DATA

- internal data of the card
 - readable data:

name

date of issue

account details

maximum amont for debit

log of previous transactions

VA = selected readable data

VS = RSA signature of **VA** compute at personalisation time

N (RSA modulus) 320 bits (GIE CB – same key for all

cards)

public key (3)

unreadable data:

DES keys

B0' AUTHENTICATION

 $Vs = E_{kpriv}(H(data))$

-- Specifications were not public

Offline Authentication

- Alice (A) inserts the card (C) in the Terminal (T)
- C sends (data, Vs) to T
- T compares H(data) with D_{KPub}(Vs)
- Tasks for the code
- A gives her code
- T sends the code in clear to C
- C answers to the reader if the code is OK

Online Authentication: T initiate with the Bank (B) a session

- B sends a random x
- C computes $y = E_{KDES}(x)$ and sends to B
- B answers if the transaction is authenticated or not

HUMPICH CASE - 1997

- French engineer
- Discovered the 2 weaknesses
 - Yes cards
 - Crypto: Modulus of 320 bits. It's been factored
 - ~2hours with factorint (pari/gp) on my old laptop
- Goes to GIE-CB to sell its know-how
 - GIE CB refuses to believe him
- He proved the attack buying underground tickets
 - Police search
 - Jail for few days
 - Judicial process -> 10 months of jail (suspended sentence)

HUMPICH CASE

- The private exponent magically appeared on internet
- The modulus has been raised to 768 bits
- Until May 2007 Yes cards attack still worked
 - Last fraud: feb 2007 ~600 000 euros

EMV

The purpose and goal of the EMV standard is to specify interoperability between EMV compliant IC cards and EMV compliant credit card payment terminals throughout the world.

Source: wikipedia

- Public specification, see www.emvco.com
 - **EMV Integrated Circuit Card Specifications for Payment Systems**
 - **Book 1: Application Independent ICC to Terminal Interface**
 - **Book 2: Security and Key Management**
 - **Book 3: Application Specification**
 - Book 4: Cardholder, Attendant, and Acquirer Interface Requirements
- **EMV** specifications are public. VISA, MASTERCARD, JCB, AMEX use EMV and customized it...

EMV

- Book 1: Application Independent ICC to Terminal Interface
 - signals
 - reset and ATR
 - **APDU**
 - command READ RECORD and SELECT
- Book 2: Security and Key Management
 - authentification: SDA, DDA and CDA
 - PIN management
 - Application cryptogram
 - secure messaging
 - session key and ATC
- **Book 3: Application Specification**
 - **GET PROCESSING OPTIONS**
 - **VERIFY**
 - INTERNAL AUTHENTICATE, EXTERNAL AUTHENTICATE
 - **GENERATE AC**
- Book 4: Cardholder, Attendant, and Acquirer Interface Requirements

EMV: DYNAMIC DATA AUTHENTICATION

- The card has
 - Public data
 - Data cardholder: data
 - \blacksquare S_{EMV}(data)
 - $\blacksquare S_{FMV}(kpub_{card})$
 - Private data
 - Card private key kpriv (card specific, unreadable)
- 1. Card (C) sends
 - data, $S_{FMV}(data)$, $S_{FMV}(kpub_{card})$
- 2. T computes
 - \blacksquare 2a. $V_{EMV}(S_{EMV}(data)) != data$
 - \blacksquare 2b. $V_{EMV}(S_{EMV}(kpub_{card}) = kpub_{card} => It gets kpub_{card}$
- 3. T generates a random challenge R and sends it to C
- 4. C sends $R2=S_{card}(R)$
- 5. T computes and checks Pcard(R2)