ENG1009 Electronics Formula sheet

Current

Current $I = \frac{Q}{t}$

Kirchhoff's First Law $\sum_{i=1}^{n} I_i = 0$

Electric Fields

Energy of a Charge in an Electric Field E = Vq

Electric Field Strength $E = \frac{V}{d}$

Force on a charge in a field F = qE

Resistance

Current and Voltage through a Resistor V = IR

Power dissipated through a Resistor P = IV, $P = I^2R$, $P = \frac{V^2}{R}$

Resistors in Series $R_T = R_1 + R_2 + \cdots + R_n$

Resistors in Parallel $R_T = (R_1^{-1} + R_2^{-1} + \dots + R_n^{-1})^{-1}$

Impedance

Complex Form Z = R + jX

Absolute Value $|Z| = \sqrt{R^2 + X^2}$

Net Reactance $X = X_L - X_C$

Current and Voltage given Impedance V = IZ

Admittance $Y = Z^{-1}$

Capacitance

Capacitor Defining Equation $I = C \times \frac{dV}{dt}$

Capacitance of a Parallel Plate Capacitor $C = \frac{\varepsilon_0 \varepsilon_r A}{d}$

Charge stored Q = CV

Energy Stored $E = \frac{1}{2}CV^2$

Capacitors in Series $C_T = (C_1^{-1} + C_2^{-1} + \cdots + C_n^{-1})^{-1}$

Capacitors in Parallel $C_T = C_1 + C_2 + \cdots + C_n$

RC cutoff frequency $f_c = \frac{1}{2\pi RC}$

RC filter quality $Q = \frac{1}{\omega RC}$

Capacitor Charging quantity X $X_t = X_0 \times \left(1 - e^{-\frac{t}{RC}}\right)$

Capacitor Discharging quantity X $X_t = X_0 \times e^{-\frac{t}{RC}}$

Capacitor Reactance

$$X = \frac{1}{2\pi fC}$$

RC phase difference $\Delta \theta = \tan^{-1} \left(\frac{1}{\omega RC} \right)$

Inductance

Inductor Defining Equation $V = L \frac{dI}{dt}$

Inductance of a coil $L = \frac{\mu N^2 A}{I}$

Inductor Reactance $X_L = 2\pi f L$

Inductors in Parallel $L_{total} = \left(L_1^{-1} + L_2^{-1} + \dots + L_n^{-1}\right)^{-1}$

Inductors in Series $L_{\text{total}} = L_1 + L_2 + \cdots + L_n$

RL cutoff frequency $f_c = \frac{R}{2\pi L}$

RL filter quality $Q = \frac{\omega L}{R}$

Induced E.M.F $V = -N \frac{\Delta \Phi}{\Delta t}$

Power and current $\frac{V_{\text{secondary}}}{V_{\text{primary}}} = \frac{I_{\text{primary}}}{I_{\text{secondary}}} = \text{Power}$

Turn Ratio $n = \frac{N_{\text{primary}}}{N_{\text{secondary}}} = \frac{V_{\text{primary}}}{V_{\text{secondary}}}$

Inductive Reactance $X_L = 2\pi f \frac{\mu N^2 A}{I}$

Mutual Inductance $L_M = k\sqrt{L_1L_2}$

Reflected Resistance $R_{pri} = \frac{R_L}{n^2}$

Efficiency $\eta = \left(\frac{P_{\text{out}}}{P_{\text{in}}}\right) 100\%$

RLC circuits

Impedance $|Z_T| = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$

Q-Factor $Q = \frac{E_{\text{Stored}}}{E_{\text{Lort are syste}}}$

Series Circuit Q-Factr $Q = \frac{R}{X_L}$

Resonant Frequency $f_r = \frac{1}{2\pi\sqrt{LC}}$

Q-Factor for a parallel circuit $Q = R \times \sqrt{\frac{C}{L}}$

Average DC Output Voltage of Full-Wave Rectifier:

$$V_{
m avg} = rac{2V_{
m peak}}{\pi} \Rightarrow V_{
m peak} = rac{\pi V_{
m avg}}{2}$$

Energy

The power dissipated by the Zener is the product of its voltage and current:

Power $P = \frac{E}{t}$

 $P_Z = V_Z \times I_Z$.

Typical Permeability values:

(In terms of μ_r)

Air: 1.0000004

Aluminium: 1.00004

Ferrite: 1,400-15,000

Vacuum: 1

Cobalt: 250 Nickel: 600

Iron: 5,000 Mumetal: 100,000

Work Done $W = F \times d$

Periodic Functions and Waves

Angular Frequency $\omega = 2\pi f$

RMS of a sinusoidal wave $RMS = \frac{\text{Peak Amplitude}}{\sqrt{2}}$

RMS of any wave $RMS = \sqrt{\frac{1}{T} \int_{T_1}^{T_2} [f(t)]^2 dt}$

General Wave-Function Equation $v(t) = A\cos(\omega t + \theta)$

Average Wave Power $P_{average} = \frac{\int_0^T p(t)dx}{T}$

BJT equations: the formula for a Zener's series resistor electrosch

Base Current (for saturation):

$$I_B = rac{I_C}{eta_{
m forced}}$$

 $R = \frac{V_{\text{supply}} - V_Z}{I_Z}$

Base Resisto Load Resistor $R_2=rac{V_{in}-V_{BE}}{I_B}$

Properties of an Ideal Op-Amp

An ideal operational amplifier is a theoretical device with extremely favorable characteristics for circuit analysis. Key properties include:

- Infinite Open-Loop Gain: The differential voltage amplification is unboundedly high (A $\rightarrow \infty$) people.engr.tamu.edu . Even a micro-volt difference between the inputs drives the output to saturation.
- Infinite Input Impedance: It draws no input current (i.e. input currents = 0) people.engr.tamu.edu . This means connecting a load to the op-amp's inputs does not alter the source signals.
- Zero Output Impedance: It can source or sink any amount of current without internal voltage drop people.engr.tamu.edu . The op-amp behaves like an ideal voltage source at its output.
- Infinite Bandwidth: All frequencies are amplified equally; there is no cutoff frequency (the gain-bandwidth product is infinite) people.engr.tamu.edu .
- Infinite Slew Rate: The output can change instantaneously with no delay (no slew-induced distortion) physics-ref.blogspot.com .

Zener diode — the quick but thorough overview Aspect Key points What it is A Zener diode is a highly-doped silicon PN-junction diode designed to operate in reverse breakdown at a precisely controlled voltage called the Zener (or breakdown) voltage $V_{Z}.$ - In forward bias it behaves like any diode (≈0.7 V drop for silicon). How it works - In reverse bias, once the applied voltage reaches V_Z (e.g., 3 V, 5.1 V, 12 V ...) the junction enters breakdown and conducts heavily, but the voltage across it remains almost - Two microscopic mechanisms create this breakdown: ullet Zener effect (quantum tunnelling) dominant for $V_Z \lesssim 5 { m V}.$ • Avalanche effect (carrier impact ionisation) dominant above ≈5 V. I-V characteristic Reverse region shows a sharp "knee" at V_Z , followed by an almost vertical, slightly sloping line (finite dynamic resistance). Why it matters Because V_Z is stable over a wide current range (typically 1 mA – 50 mA), a Zener diode is an inexpensive voltage reference / regulator. By feeding it through a resistor from a higher supply, it "clamps" the node to $V_{\!Z}.$ For a supply V_S , desired Zener current I_Z and load current I_L : $R=rac{V_S-V_Z}{I_Z+I_L}$. The resistor Basic design formula limits current to keep the Zener within its power rating $P_{ m max}=V_ZI_Z.$ Common uses • Reference for comparators, ADCs, op-amp circuits. · Simple shunt regulators for low-power rails. • Surge suppression / transient clamps (TVS diodes are rugged Zeners). Practical notes \bullet Zener voltage has a tolerance (e.g., ± 5 %). • Temperature coefficient: low-voltage Zeners have negative temp-co; high-voltage ones have positive; ≈5.6 V parts are near-zero. • Always use a series resistor or current-limited source; otherwise the diode will overheat. The <u>Bipolar Junction Transistor</u> is a three-<u>Terminal</u> <u>Component</u> that is either: They are both made with different arrangements of $\underline{p-type}$ and $\underline{n-type}$ Semiconductors, and their construction is detailed below: O Collector (C) Q Collector (C)

npu	ts	Output
	В	0
	0	0
1	1	0
	0	0
	1	1
	Truth	h table

AND Gate and its Truth Table

Inpu	ts	Output
A	В	0
0	0	0
0	1	1
1	0	1
1	1	1

OR Gate and its Truth Table

Inputs	Output
Α	0
0	1
1	0

NOT Gate and Its Truth Table

ut
)
)
0

Truth table

Inputs		Output
A	В	0
0	0	1
0	1	0
1	0	0
1	1	0

NOR Gate and Its Truth Table

Inpu	its	Output
Α	В	0
0	0	0
0	1	1
1	0	1
1	1	0

EX-OR gate and Its Truth Table

Inpu	its	Output	
Α	В	0	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

EX-NOR Gate and Its Truth Table

SR-LATCH

JK-FLIP FLOP

This graph shows how the <u>Current</u> and <u>Voltage</u> across the <u>Transistor</u> varies given the <u>Base-Current</u>. You can think of it like how increasing the <u>Base-Current</u> is like decreasing the " <u>Resistance</u>" of a component, decreasing the <u>Voltage</u> around it while increasing the Circuit's <u>Current</u>.

- or the regions:
- The Cut-off region is for switching OFF
- The Active region ifs for "Amplifying" the <u>Base-Current</u>, dependent on the equation:

The formula for Amplification is:

$$A_v = \frac{-R_c}{r}$$

Where:

 A_v is the Amplification gain R_v is the Resistance of the co

 R_c is the <u>Resistance</u> of the collecting <u>Resistor</u> r_d is the <u>Resistance</u> of the <u>Bipolar Junction Transistor</u>