Solutions to Artin's Algebra Second Ed

Yue Yu

Contents

2	Groups						
	2.1	Laws of Composition					
		Exercise 1.1					
		Exercise 1.2					
		Exercise 1.3					
	2.2	Groups and Subgroups					
		Exercise 2.1					
		Exercise 2.2					
		Exercise 2.3					
		Exercise 2.4					
		Exercise 2.5					
		Exercise 2.6					

Chapter 2

Groups

2.1 Laws of Composition

Exercise 1.1

Proof. For any $a, b, c \in S$, we have

$$(ab)c = ac = a = ab = a(bc),$$

which implies that the law of composition is associative.

Let a be an arbitrary element in the set for which the law has an identity. Then, we have

$$a = a1 = 1a = 1,$$

which implies that the set must be $\{1\}$.

Exercise 1.2

- (1) Proof. la = 1 and ar = 1 imply $l = r = a^{-1}$.
- (2) *Proof.* Suppose that both a' and a'' are the inverses of a. Then a' = a'' by part (1) and so the inverse is unique.
- (3) Proof. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$ implies that $(ab)^{-1} = b^{-1}a^{-1}$.
- (4) See Exercise 1.3.

Exercise 1.3

Proof. s has no right inverse because there is no inverse when n=1. However, s has infinitely many left inverses because there are infinitely many mappings sending n+1 to n for $n \in \mathbb{N}$.

2.2 Groups and Subgroups

Exercise 2.1

Let x be the three-cycle (1,2,3) and y be the transposition (1,2). Then we obtain the following table:

	1	x	x^2	y	xy	x^2y
1	1	x	x^2	y	xy	x^2y
x	x	x^2	1	xy	x^2y	y
x^2	x^2	1	x	x^2y	y	xy
y	y	x^2y	xy	1	x^2	x
xy	xy	y	x^2y	x	1	x^2
x^2y	x^2y	xy	y	x^2	x	1

Exercise 2.2

Proof. Denote the subset by T. By definition, every element in T has an inverse. Also, noticing that associativity and the identity follow from those of S, it suffices to prove the closure under composition. Indeed, for any $a,b \in T$, we have $(ab)^{-1} = b^{-1}a^{-1}$, which implies that $ab \in T$. Therefore, T is a group.

Exercise 2.3

- (a) $y = x^{-1}w^{-1}z$.
- (b) xyz = 1 implies $yz = x^{-1}$ and so yzx = 1. However, yxz does not necessarily equal to 1 unless x and z commute.

Exercise 2.4

- (a) $H \leq G$.
- (b) H < G.
- (c) $H \nleq G$ because there is no inverse for every element in H.
- (d) $H \leq G$.
- (e) $H \not\leq G$ because $H \not\subseteq G$.

Exercise 2.5

Proof. In G, we have $1_H 1_G = 1_H \in H$. Cancelling 1_H on both sides in H, we obtain $1_G = 1_H$. Thus, for any $a \in H$, we have $aa_G^{-1} = 1_G = 1_H = aa_H^{-1}$, which implies that $a_G^{-1} = a_H^{-1}$.

Exercise 2.6

Proof. We check the four properties in turn.

- Closure. For any $a, b \in G^{\circ}$, we have $a * b = ba \in G$ and so $a * b \in G^{\circ}$ since $G = G^{\circ}$.
- Associativity. For any $a, b, c \in G^{\circ}$, we have (a * b) * c = (ba) * c = cba = (b * c)a = a * (b * c).

- Existence of identity. The identity is the same as that in G.
- Existence of inverse. For any element in G° , the inverse is the same as that in G.

Therefore, $(G^{\circ}, *)$ is a group.