YOUR NAME:	

Program Analysis Quiz 2 Friday February 19, 2021 20 points

Recall the points-to analysis we defined in class (Lecture 7, slides 6-16). We assume preprocessing that yields 4 kinds of statements, each with the transfer function we defined in class. The analysis is solved with the Worklist algorithm. (Note that since the target language is typically C and C is type-unsafe, points-to analysis ignores declared types.)

- (1) p = &a
- (2) p = q
- (3) p = *q
- (4) *p = q

Several questions below refer to the following code:

```
1. a = &x;
2. p = &a;
3. if (...) {
4.    q = &b;
5.    *p = q;
   }
   else {
6.    q = &c;
7.    *p = q;
   }
8. ...
```

Question 1. (2pts) At program point 8 the analysis reports that q points to

- (a) b only
- (b) c only
- (c) both b and c

Question 2. (2pts) At program point 8 the analysis reports that p points to

- (a) a only
- (b) b and c
- (c) all of a, b and c

Question 3. (2pts) At program point 8 the analysis reports that a points to

- (a) x only
- (b) b and c
- (c) all of x, b and c

Question 4. (2pts) Points-to analysis, as defined in class over the 4 kinds of statement is distributive.

- (a) true
- (b) false

Question 5. (2pts) Points-to analysis, as defined in class over the 4 kinds of statement is monotone.

- (a) true
- (b) false

1

Question 6. (2pts) Let $a = \langle \mathbf{x} \to \top, \mathbf{y} \to \bot, \mathbf{z} \to 5 \rangle$ and $b = \langle \mathbf{x} \to \top, \mathbf{y} \to \bot, \mathbf{z} \to 6 \rangle$ be elements of the product lattice we defined for Constant Propagation. Which of the following is true

- (a) $a \leq b$
- (b) $b \le a$
- (c) neither, a and b are not ordered

Question 7. (2pts) Let $a = \langle \mathbf{x} \to \top, \mathbf{y} \to \bot, \mathbf{z} \to 5 \rangle$ and $b = \langle \mathbf{x} \to \top, \mathbf{y} \to \bot, \mathbf{z} \to 6 \rangle$ be elements of the product lattice we defined for Constant Propagation. What is $a \vee b$?

Question 8. (2pts) Let $a = \langle \mathbf{x} \to \top, \mathbf{y} \to \bot, \mathbf{z} \to 5 \rangle$ and $b = \langle \mathbf{x} \to \top, \mathbf{y} \to \bot, \mathbf{z} \to 6 \rangle$ be elements of the product lattice we defined for Constant Propagation. What is $a \wedge b$?

Questions 9 and 10 refer to the code below and the Constant Propagation analysis we defined in class.

Question 9. (2pts) What is the MFP solution at program point 9? Write your answer as the product lattice element $\langle l_{\mathbf{x}}, l_{\mathbf{y}}, l_{\mathbf{z}} \rangle$.

Question 10. (2pts) What is the MOP solution at program point 9?