Uegentlige integraler i planet (6.1)

$$K_n = \{(x,y) \in \mathbb{R}^2 \mid |x|, |y| \leq n \}$$

Definision (6.8.1)

La $A \subseteq \mathbb{R}^2$ være slik at $A \cap K_n$ er Jordan-malbar for alle $n \in \mathbb{N}$, og la $f: A \to \mathbb{R}$ være en ikke-negativ, koninnerlig funksjon. Vi definerer

$$\iint_A f(x,y) dx dy = \lim_{n \to \infty} \iint_A f(x,y) dx dy$$

hvis gnenseverdien fins. Vi sier da at det negentlige integralet til venstre konvergever

Setning 6.8.3

Kan erstatte K_n med $B(\vec{0}, n)$ (sinkelskiver med radius n og sentrum i origo i definisjonen ovenfor)

Definisjon 6.8.5

Hvis f har negative verdier, definerer vi et nekte integral av f over A ved

$$\iint_A f(x,y) dx dy = \iint_A f_+(x,y) dx dy - \iint_A f_-(x,y) dx dy$$

gitt at de to integralene fil høyre konvengerer. Her er

$$f_{+}(x,y) = \begin{cases} f(x,y) & \text{hvis } f(x,y) > 0 \\ 0 & \text{ellers} \end{cases}$$

$$f_{-}(x,y) = \begin{cases} -f(x,y) & \text{his } f(x,y) < 0 \\ 0 & \text{ellers.} \end{cases}$$

05032018.notebook March 05, 2018

eks.
$$6.8.4$$

$$\int_{0}^{\infty} e^{-(x^{2}+y^{2})/2} dxdy = \lim_{n\to\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})/2} dxdy$$

Polarkoordinater:

$$r \in [0, n]$$

$$0 \in [0, 2\pi]$$
bestrivetie av $B(0, n)$

$$= 2\pi \cdot \lim_{n\to\infty} \left[-e^{-x^{2}/2} - e^{-x^{2}/2} \right]$$

$$= 2\pi \cdot \lim_{n\to\infty} \left[-e^{-x^{2}/2} - e^{-x^{2}/2} \right]$$

$$= 2\pi \cdot \lim_{n\to\infty} \left[-e^{-x^{2}/2} - e^{-x^{2}/2} \right]$$

$$= 2\pi \cdot \lim_{n\to\infty} \left[-e^{-x^{2}/2} - e^{-x^{2}/2} \right]$$

$$= 2\pi \cdot \lim_{n\to\infty} \left[-e^{-x^{2}/2} - e^{-x^{2}/2} \right]$$

$$= 2\pi \cdot \lim_{n\to\infty} \left[-e^{-x^{2}/2} - e^{-x^{2}/2} \right]$$

$$= 2\pi \cdot \left[-e^{-x^{2}/2} - e^{-x^{2}/2} \right]$$

Samfidig er

$$\int_{-\infty}^{\infty} e^{-(x^{2}+y^{2})/2} dx dy = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} - \frac{y^{2}}{2} dx \right] dy$$

$$= \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} \left[\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx \right] dy$$

$$= \left[\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx \right] \cdot \left[\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} dy \right]$$

$$= \left[\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} dx \right] \cdot \left[\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} dy \right]$$
[ike

Lar vi na
$$n \to \infty$$
 og sammenlikner med $(*)$, ser vi at
$$\int_{-\infty}^{\infty} e^{-x^{2}/2} dx = \sqrt{2\pi}, \text{ altsa} \int_{-\infty}^{\infty} e^{-x^{2}/2} dx = 1$$

Eksempel på et negentlig integral der integranden går mot ∞ : Eks. 6.8.6 i boken. Flateintegraler (6.4.3 og 6.4.4)

La $T \subseteq \mathbb{R}^3$ være en flate parametrisert ved $\vec{r}(u, n)$ for $(u, n) \in A$.

$$\iint_{T} f(x,y,z) dS = \iint_{A} f(\vec{r}(u,v)) \cdot \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| du dv$$

Med arealet av T menes 557 ds

• Hvis f(x,y,t) måler massetetthet langs T, kan SS f(x,y,t) JS tolkes som massen til T.

· Massemiddelpunklet : Se side 598.

$$\nabla S \approx \left| \frac{3u}{9u} \nabla u \times \frac{3u}{9u} \nabla u \right| = \left| \frac{9u}{9u} \times \frac{9u}{9u} \right| \nabla u \nabla u$$

05032018.notebook March 05, 2018

eks. La T være den delen av flaten $z = 16 - x^2 - y^2$ som oppfyller z > 0. Skal finne) xy ds Parametrisering av T: $\begin{cases}
x = r\cos\theta \\
y = r\sin\theta \\
z = 16 - (x^2 + y^2) = 16 - r^2
\end{cases}$ $\begin{cases}
x = r\cos\theta \\
y = r\sin\theta \\
z = 16 - (x^2 + y^2) = 16 - r^2
\end{cases}$ $\begin{cases}
\cos x = r\cos\theta \\
\theta = r\sin\theta \\
\theta = (x^2 + y^2) = 16 - r^2
\end{cases}$ $\left|\frac{\partial \vec{r}}{\partial r} \times \frac{\partial \vec{r}}{\partial \theta}\right| = \left|\begin{vmatrix} \vec{r} & \vec{r} & \vec{r} \\ \cos \theta & \sin \theta & -2r \end{vmatrix}\right|$ $\left|\begin{vmatrix} -r\sin \theta & r\cos \theta & 0 \end{vmatrix}\right|$ = $\left| \left(2r^2 \cos \theta_1 - 2r^2 \sin \theta_1, r \cos^2 \theta_1 + r \sin^2 \theta_1 \right) \right|$ = \ \ \(\langle \frac{4r^4 \sin^2 \theta}{4r^4} + \ r^2 \) $\int_{0}^{T} xy \, dS = \int_{0}^{T} \left[\int_{0}^{\infty} (r\cos\theta) \cdot (r\sin\theta) \cdot r \int_{0}^{\infty} \frac{3r}{2} \times \frac{3r}{2\theta} \right]$ $= \int \left[\int_{-2}^{2\pi} \frac{1}{2} \sin 2\theta \cdot r^3 \sqrt{4r^2+1} \right] d\theta dr$