Problema: 1 (5 points)

Suponga que una persona invierte 3000 al 12% de interés compuesto cada trimestre. Sea A_n la cantidad al final de n años. Conteste los siguientes ejercicios:

- (a) Encuentre una relación de recurrencia para la sucesión A₀, A₁, . . .
- (b) Encuentre una condición inicial para la sucesión A₀, A₁, A.
- (c) Encuentre A₁, A₂ y A₃.
- (d) Encuentre una fórmula explícita para A_n.
- (e) ¿Cuánto tiempo tomará que una persona duplique la inversión inicial?

Datos generales:

Cada trimestre se aplica el 12%

Entonces, como en un año hay 4 trimestres \rightarrow 4*0.12 = 0.48

a)

Relación de recurrencia homogénea

$$An = An-1 + 0.48*An-1$$

$$An = 1.48*An-1, n >= 1, A0 = 3000$$

b)

$$A0 = 3000$$

c)

Reemplazando en la fórmula explícita del ítem d)

A1 = 4440

A2 = 6571,2

$$A3 = 9725,38$$

d)

Aplicando la fórmula:

e)

 $2*A0 = A0*1.48^n$

 $2 = 1.48^n$

n = 1,77 años

```
Problema: 2 (6 points)
```

Resolver las siguientes relaciones de recurrencias:

- (a) $a_{n+1} a_n = 3n^2 n$, $n \ge 0, a_0 = 3$.
- (b) Use el método de funciones generatrices para resolver: $a_{n+2} 2a_{n+1} + a_n = 2^n, n \ge 0, a_0 = 1, a_1 = 2.$

a)

Primero, se iguala a 0 como una homogénea

$$an+1 - an = 0$$

$$anh = A*1^n = A$$

Luego, para anp es un polinomio de grado 2 que al reemplazarlo en an da como resultado anp = $n*(n-1)^2$

Finalmente, an = anh + anp

$$an = A + n*(n-1)^2$$

A = 3

RPTA: $an = 3 + n*(n-1)^2$

Comprobación:

a1 = 3

a2 = 5

a3 = 15

b)

Relación de recurrencia no homogénea de segundo orden:

$$an+2 - 2an+1 + an = 2^n, n >= 0, a0 = 1, a1 = 2$$

Multiplicamos todo por $x^{(n+2)}$ y simplificamos la expresión para que el subíndice de a sea igual al exponente de x:

sumatoria(i = 0, hasta infinito) de an+ $2*x^n(n+2) - 2*x*sumatoria(i = 0, hasta infinito) de an+<math>1*x^n(n+1) + 1*x^2*sumatoria(i = 0, hasta infinito) de an*x^n = x^2*sumatoria(i = 0, hasta infinito) de <math>(2*x)^n$

 $f(x) = sumatoria(i = 0, hasta infinito) an*x^n, entonces:$

$$(f(x) - a0 - a1*x) - 2*x*(f(x) - a0) + x^2*f(x) = x^2*(1/(1-2*x))$$

Reemplazar valores iniciales y despejar f(x):

$$(f(x) - 1 - 2^*x) - 2^*x^*(f(x) - 1) + x^2*f(x) = x^2*(1/(1-2^*x))$$

$$f(x) - 1 - 2x - 2x^*f(x) + 2x + x^2^*f(x) = x^2^*(1/(1-2x))$$

$$f(x)^*(1-2^*x+x^2) - 1 = x^2*(1/(1-2^*x))$$

$$f(x)^*(1-2^*x+x^2) = x^2/(1-2^*x) + (1-2^*x)/(1-2^*x)$$

$$f(x) = (x^2 + 1 - 2x)/[(1-2x)(1-2x+x^2)]$$

$$f(x) = 1/(1-2*x)$$

No se necesita hacer fracciones parciales, porque ya está simplificado.

$$1/(1-2*x) = 2^n$$

Problema: 3 (5 points)

Use las funciones generatrices para encontrar la cantidad de formas de hacer cambios por \$ 100 usando

- (a) Billetes de \$ 10, \$ 20 y \$ 50.
- (b) Billetes de \$ 5, \$ 10, \$ 20 y \$ 50 si se utiliza al menos un billete de cada denominación.

a)

 $f(x) = 1 + x^{10} + x^{20} + x^{30} + x^{40} + x^{50} + x^{60} + x^{70} + x^{80} + x^{90} + x^{100}$

 $g(x) = 1+x^20+x^40+x^60+x^80+x^100$

 $h(x) = 1+x^50+x^100$

Tenemos que buscar el coeficiente que acompaña a x^100

Regla del producto:

f(x)*g(x)*h(x)

x^300+x^290+2*x^280+2*x^270+3*x^260+4*x^250+5*x^240+6*x^230+7*x^220+8*x^210+10 *x^200+10*x^190+11*x^180+11*x^170+12*x^160+12*x^150+12*x^140+11*x^130+11*x^120 +10*x^110+10*

x^100+8*x^90+7*x^80+6*x^70+5*x^60+4*x^50+3*x^40+2*x^30+2*x^20+x^10+1

RPTA: hay 10 formas

b)

Como se utiliza al menos un billete de cada denominación, entonces se elimina el x^0 para todas las funciones generatrices, ya que eso significaría que estaría utilizando 0 billetes.

e(x) =

x^5+x^10+x^15+x^20+x^25+x^30+x^35+x^40+x^45+x^50+x^55+x^60+x^65+x^70+x^75+x^8 0+x^85+x^90+x^95+x^100

 $f(x) = x^10+x^20+x^30+x^40+x^50+x^60+x^70+x^80+x^90+x^100$

 $g(x) = x^20+x^40+x^60+x^80+x^100$

 $h(x) = x^50+x^100$

Caso 1: x^20*x^10*x^20*x^50 Caso 2: x^10*x^20*x^50

RPTA: Entonces, estos son los únicos 2 casos para que salga el x^100 . Por lo tanto, solamente hay 2 formas.

Problema: 4 (4 points)

Una empresa contrata a 25 nuevos empleados, cada uno de los cuales es asignado a una de cuatro divisiones. Cada subdivisión recibe al menos tres pero no más de 10 empleados ¿De cuántas formas se pueden hacer las asignaciones?

Datos:

25 empleados

4 divisiones

Cada subdivisión tiene al menos tres, pero no más de 10 empleados

Procedimiento:

Definimos la función generatriz: $f(x) = (x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)^4$ $x^12*(1+x+x^2+x^3+x^4+x^5+x^6+x^7)^4$

De la derecha debe salir x^13 y buscamos el coeficiente que lo acompaña: x^28+4*x^27+10*x^26+20*x^25+35*x^24+56*x^23+84*x^22+120*x^21+161*x^20+204*x^19 +246*x^18+284*x^17+315*x^16+336*x^15+344*x^14+336*x^13+315*x^12+284*x^11+246*x^10+204*

x^9+161*x^8+120*x^7+84*x^6+56*x^5+35*x^4+20*x^3+10*x^2+4*x+1

RPTA: al multiplicar el polinomio nos da que el coeficiente que acompaña a x^25 es 336 y ese número representa la cantidad de formas en las que se pueden hacer las asignaciones de los 25 empleados cumpliendo las normas establecidas.