Part 1: Election Algorithms

- Many distributed algorithms need one process to act as coordinator
 - Doesn't matter which process does the job, just need to pick one
- Election algorithms: technique to pick a unique coordinator (aka *leader election*)
- Examples: take over the role of a failed process, pick a master in Berkeley clock synchronization algorithm
- Types of election algorithms: Bully and Ring algorithms

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Bully Algorithm

- Each process has a unique numerical ID
- Processes know the Ids and address of every other process
- Communication is assumed reliable
- Key Idea: select process with highest ID
- Process initiates election if it just recovered from failure or if coordinator failed
- 3 message types: election, OK, I won
- · Several processes can initiate an election simultaneously
 - Need consistent result
- $O(n^2)$ messages required with n processes

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Bully Algorithm Details

- Any process *P* can initiate an election
- P sends Election messages to all process with higher Ids and awaits OK messages
- If no *OK* messages, *P* becomes coordinator and sends *I* won messages to all process with lower Ids
- If it receives an OK, it drops out and waits for an I won
- If a process receives an *Election* msg, it returns an *OK* and starts an election
- If a process receives a *I won*, it treats sender an coordinator

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Bully Algorithm Example

- · The bully election algorithm
- Process 4 holds an election
- Process 5 and 6 respond, telling 4 to stop
- Now 5 and 6 each hold an election

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Bully Algorithm Example

- d) Process 6 tells 5 to stop
- e) Process 6 wins and tells everyone

nherst

Lecture 14, page 6

UMassAmherst

CS677: Distributed and Operating Systems

Ring-based Election

- Processes have unique Ids and arranged in a logical ring
- · Each process knows its neighbors
 - Select process with highest ID
- · Begin election if just recovered or coordinator has failed
- · Send Election to closest downstream node that is alive
 - Sequentially poll each successor until a live node is found
- · Each process tags its ID on the message
- · Initiator picks node with highest ID and sends a coordinator message
- Multiple elections can be in progress
 - Wastes network bandwidth but does no harm

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

A Ring Algorithm

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Comparison

- Assume n processes and one election in progress
- Bully algorithm
 - Worst case: initiator is node with lowest ID
 - Triggers n-2 elections at higher ranked nodes: $O(n^2)$ msgs
 - Best case: immediate election: n-2 messages
- Ring
 - 2 (n-1) messages always

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Part 2: Distributed Synchronizatio

- Distributed system with multiple processes may need to share data or access shared data structures
 - Use critical sections with mutual exclusion
- Single process with multiple threads
 - Semaphores, locks, monitors
- How do you do this for multiple processes in a distributed system?
 - Processes may be running on different machines
- · Solution: lock mechanism for a distributed environment
 - Can be centralized or distributed

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Lock Example

- Online store example:
 - 2 clients buy same item, need to decrement stock

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Centralized Mutual Exclusion

- Assume processes are numbered
- One process is elected coordinator (highest ID process)
- Every process needs to check with coordinator before entering the critical section
- · To obtain exclusive access: send request, await reply
- · To release: send release message
- Coordinator:
 - Receive *request*: if available and queue empty, send grant; if not, queue request
 - Receive *release*: remove next request from queue and send grant

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Mutual Exclusion: A Centralized Algorithm

- a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted
- Process 2 then asks permission to enter the same critical region. The coordinator does not reply.
- c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Properties

- · Simulates centralized lock using blocking calls
- · Fair: requests are granted the lock in the order they were received
- Simple: three messages per use of a critical section (request, grant, release)
- Shortcomings:
 - Single point of failure
 - How do you detect a dead coordinator?
 - · A process can not distinguish between "lock in use" from a dead coordinator
 - No response from coordinator in either case
 - Performance bottleneck in large distributed systems

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Decentralized Algorithm

- Use voting
- · Assume n replicas and a coordinator per replica
- To acquire lock, need majority vote m > n/2 coordinators
 - Non blocking: coordinators returns OK or "no"
- Coordinator crash => forgets previous votes
 - Probability that k coordinators crash $P(k) = {}^{m}C_{k} p^{k} (1-p)^{m-k}$
 - Atleast 2m-n need to reset to violate correctness
 - $\sum_{2m-n} {}^{n}P(k)$

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Distributed Algorithm

- [Ricart and Agrawala]: needs 2(n-1) messages
- Based on event ordering and time stamps
 - Assumes total ordering of events in the system (Lamport's clock)
- Process k enters critical section as follows
 - Generate new time stamp $TS_k = TS_k + I$
 - Send $request(k, TS_k)$ all other n-1 processes
 - Wait until reply(j) received from all other processes
 - Enter critical section
- Upon receiving a request message, process j
 - Sends reply if no contention
 - If already in critical section, does not reply, queue request
 - If wants to enter, compare TS_j with TS_k and send reply if $TS_k < TS_j$, else queue (recall: total ordering based on multicast)

herst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Properties

Prashant Shen...

- Fully decentralized
- N points of failure!
- · All processes are involved in all decisions
 - Any overloaded process can become a bottleneck

nherst

Rowered by Zoom

Lecture 14, page 17

UMassAmherst

CS677: Distributed and Operating Systems

A Token Ring Algorithm

- a) An unordered group of processes on a network.
- b) A logical ring constructed in software.
- Use a token to arbitrate access to critical section
- Must wait for token before entering CS
- Pass the token to neighbor once done or if not interested
- Detecting token loss in non-trivial

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Comparison

Algorithm	Messages per entry/exit	Delay before entry (in message times)	Problems
Centralized	3	2	Coordinator crash
Decentralized	3mk	2m	starvation
Distributed	2 (n-1)	2 (n-1)	Crash of any process
Token ring	1 to ∞	0 to n – 1	Lost token, process crash

• A comparison of four mutual exclusion algorithms.

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Chubby Lock Service

- · Chubby: distributed lock service developed by google
 - Design for coarse-grain locking
 - uses file system abstraction for locks
 - Each Chubby cell (~5 machines) supports 10,000 servers
 - One replica is outside the data center for high availability
 - distributed file system interface for locking and sharing state
- Use cases:
 - Leader election: use locks for leader election and advertise leader
 - · Grab lock, declare oneself leader
 - Coarse-grain synchronization hold lock for hours or days

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems

Chubby Lock Service

Prashant Shen...

- · Chubby cell: elect a primary
 - each replica maintains a DB
 - master initiates updates to DB
- · Use file abstraction
 - file is a "named" lock
 - reader-writer locks
- · Primary can fail
 - Triggers new election

nherst

Powered by Zoom

UMassAmherst

CS677: Distributed and Operating Systems