Universidad Autónoma del Estado de México

Facultad de Ciencias

Licenciatura en Matemáticas

Álgebra Lineal

Profesora:

Socorro López Olvera

Tarea 2

Alumnos:

Gallegos Torres Gonzalo Peña Mateos Jesús Jacob Santana Reyes Osmar Dominique

Semestre: 2022B

- 1. Diga si las siguientes proposiciones son falsas o verdaderas y justifique su respuesta.
 - i. La matriz identidad es una matriz triangular superior.

Af: La matriz identidad es una matriz triangular superior.

Dem.

Sea $I_n = [a_{ij}]$ la matriz identidad. Por definición,

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Ya que $a_{ij} = 0 \ \forall i > j$, entonces I_n es una matriz triangular superior, por definición.

ii. Si V es un K - espacio vectorial, $W \leq V$ y $U \leq W$ entonces $U \leq V$.

Af: $U \leq V$.

Dem.

Como $W \leq V$ y $U \leq W$ entonces $W \subseteq V$ y $U \subseteq W$. De esta menera, como $U \subseteq W$ y $W \subseteq V$, entonces $U \subseteq V$.

Luego, sea $\overline{0} \in V$ el neutro aditivo. Como $W \leq V$ entonces $\overline{0} \in W$, por el inciso i de la proposición 5. Y ya que $U \leq W$ entonces $\overline{0} \in U$, por el inciso i de la proposición 5.

Después, como $W \leq V$ entonces la adición es cerrada en W, por el inciso ii de la proposición 5. Y ya que $U \leq W$ entonces la adición es cerrada en U, por el inciso ii de la proposición 5.

Y finalmente, como $W \leq V$ entonces el producto por escalar es cerrado en W, por el inciso iii de la proposición 5. Y ya que $U \leq W$ entonces el producto por escalar es cerrado en U, por el inciso iii de la proposición 5.

En conclusión, como $\overline{0} \in U$, la adición es cerrada en U y el producto por escalar es cerrado en U, entonces $U \leq V$, por la proposición 5.

iii. Si A es una matriz con tr(A) = 0, entonces A es matriz antisimétrica.

Af: A no es matriz antisimétrica.

Dem.

Considerando la matriz

$$A = \begin{pmatrix} 1 & 5 & 7 \\ -5 & -1 & 9 \\ -7 & -9 & 0 \end{pmatrix}$$

Por definición, la traza de A es tr(A) = 1 + (-1) + 0 = 0. Así, tr(A) = 0.

Luego,

$$A^{t} = \begin{pmatrix} 1 & -5 & -7 \\ 5 & -1 & -9 \\ 7 & 9 & 0 \end{pmatrix} \quad \mathbf{y} \quad -A = \begin{pmatrix} -1 & -5 & -7 \\ 5 & 1 & -9 \\ 7 & 9 & -0 \end{pmatrix} = \begin{pmatrix} -1 & -5 & -7 \\ 5 & 1 & -9 \\ 7 & 9 & 0 \end{pmatrix}$$

Como $A^t \neq -A$ entonces la matriz A no es transpuesta. Por lo tanto, no es cierto que si A es una matriz con tr(A) = 0, entonces A es matriz antisimétrica.

- 2. Sean $n \in \mathbb{N}$, K un campo, $A \in M_n[K]$ y A^t su transpuesta.
 - i. Demuestra que $A+A^t$ es una matriz simétrica.

Dem.

P.d.
$$(A + A^t)^t = A + A^t$$
.
 $(A + A^t)^t = A^t + (A^t)^t$ (Proposición 7)
 $= A^t + A$ (por una observación)
 $= A + A^t$ (conmutatividad en $M_n[k]$)

 $\therefore A + A^t$ es simétrica.

ii. Sea $U = \{A \in M_n[K] \mid A \text{ es antisimétrica}\} \subseteq M_n[K]$. Demuestre que $U \leq M_n[K]$.

Dem.

Considerando el teorema 6. P.d. a) $V \neq \emptyset$ b) $\forall A, B \in U, A+B \in U$ c) $\forall A \in U$ y $\forall \lambda \in K, \lambda A \in U$

a) Sea $\overline{0} \in M_n[K]$ con $\overline{0} = [a_{ij}]_n$ donde $a_{ij} = 0$, $\forall i, j \in \{1, ..., n\}$. Notemos que $a_{ji} = 0$, $\forall j, i \in \{1, ..., n\}$. Así, $a_{ij} = 0 = -0 = -a_{ji}$.

Así, $\overline{0}$ es una matriz simétrica, es decir, $\overline{0} \in U$.

$$U \neq \emptyset$$

b) Sean $A, B \in U$ entonces $A^t = -A$ y $B^t = -B$. Luego,

$$(A+B)^t = A^t + B^t$$
 (Proposición 7)
= $-A + (-B)$ (por hipótesis)
= $-(A+B)$ (Proposición 4)

 $\therefore A+B$ es antisimétrica y así $A+B\in U$

c) Sea $A \in U$ entonces $A^t = -A$. Así, sea $\lambda \in K$, entonces

$$(\lambda A)^t = \lambda A^t \qquad \qquad \text{(Proposición 7)}$$

$$= \lambda (-A) \qquad \qquad \text{(pues } A^t = -A)$$

$$= \lambda ((-1)A)$$

$$= (\lambda (-1))A$$

$$= ((-1)\lambda)A$$

$$= (-1)(\lambda A)$$

$$= -(\lambda A)$$

 $\therefore \lambda A$ es antisimétrica y así $\lambda A \in U$.

$$U \leq M_n[K]$$
.

iii. ¿Cuántas entradas diferentes puede tener una matriz simétrica de orden n? Argumente su respuesta. Sol.

Sea $A \in M_n[K]$ simétrica, por definición $A = A^t$, es decir, $a_{ij} = a_{ji}$, $\forall i, j \in \{1, ..., n\}$. Notemos que $a_{ii} = a_{ii}$, así que, al transponer la raíz, la diagonal principal permanece sin cambios. Las entradas

 a_{ij} pueden ser todas distintas $\forall i > j$ siempre y cuando $a_{ij} = a_{ji}$, es decir, $n^2 - \sum_{i=1}^n \left(\sum_{j=1}^i a_{ij}\right)$ entradas pueden ser distintas.

3. Sea V un K-espacio vectorial y $W_1, W_2, \ldots, W_n \leq V$ entonces:

$$i. W_1 + W_2 + \dots + W_n \le V.$$

Dem.

Pd.
$$\overline{0} \in W_1 + W_2 + \cdots + W_n$$
.

Como $W_1, W_2, \ldots, W_n \leq V$, entonces $\overline{0} \in W_1, W_2, \ldots, W_n$ para cada $i = 1, \ldots, n$. Así,

$$\overline{0} + \overline{0} + \dots + \overline{0} \in W_1 + W_2 + \dots + W_n$$

Es decir,

$$\overline{0} \in W_1 + W_2 + \cdots + W_n$$

Pd. Cerradura de la suma.

Sean $v, w \in W_1 + W_2 + \cdots + W_n$, entonces existen $v_1, w_1 \in W_1, v_2, w_2 \in W_2, \ldots, v_n, w_n \in W_n$ tales que

$$v = v_1 + v_2 + \dots + v_n$$
 y $w = w_1 + w_2 + \dots + w_n$

Entonces

$$v + w = (v_1 + v_2 + \dots + v_n) + (w_1 + w_2 + \dots + w_n)$$

Y conmutando y asociando se tiene que

$$v + w = (v_1 + w_1) + (v_2 + w_2) + \dots + (v_n + w_n)$$

De donde $(v_1 + w_1) \in W_1$, $(v_2 + w_2) \in W_2$, ..., $(v_n + w_n) \in W_n$ pues $W_1, W_2, \ldots, W_n \leq V$. Así pues

$$v+w \in W_1 + W_2 + \cdots + W_n$$

Pd. Cerradura del producto por escalar.

Sean $v \in W_1 + W_2 + \cdots + W_n$ y $\delta \in K$, entonces existen $v_1 \in W_1, v_2 \in W_2, \ldots, v_n \in W_n$ tales que $v = v_1 + v_2 + \cdots + v_n$

Entonces

$$\delta v = \delta (v_1 + v_2 + \dots + v_n)$$
$$= \delta v_1 + \delta v_2 + \dots + \delta v_n$$

De donde $\delta v_1 \in W_1, \, \delta v_2 \in W_2, \, \ldots, \, \delta v_n \in W_n$ pues $W_1, W_2, \ldots, W_n \leq V$. Así,

$$\delta v_1 + \delta v_2 + \dots + \delta v_n \in W_1 + W_2 + \dots + W_n$$

Es decir,

$$\delta v \in W_1 + W_2 + \dots + W_n$$

$$\therefore W_1 + W_2 + \dots + W_n \le V. \blacksquare$$

$$ii. W_i \subseteq W_1 + W_2 + \cdots + W_n; \forall i = 1, \ldots, n.$$

Dem.

Sea $u_i \in W_i$. Como $\overline{0} \in W_1, W_2, \dots, W_n$, pues $W_1, W_2, \dots, W_n \leq V$, entonces

$$\overline{0} + \overline{0} + \ldots + u_i + \ldots + \overline{0} \in W_1 + W_2 + \cdots + W_i + \cdots + W_n$$

Es decir,

$$u_i \in W_1 + W_2 + \dots + W_i + \dots + W_n$$

$$W_i \subseteq W_1 + W_2 + \cdots + W_n$$
.

- 4. Se
aV un K espacio vectorial y
 $W\subseteq V$ no vacío. Demuestre que $W\leq V,$ si
 y solo si se cumple:
 - i. $u-z \in W$ para cualesquiera $u, z \in W$.
 - $ii. \ \lambda u \in W, \ \forall \ \lambda \in K \ y \ \forall \ u \in W.$

Dem.

- \implies] Como $W \le V$ entonces W es cerrado bajo el producto por escalar. Así, si $z \in W$ entonces $(-1)z = -z \in W$. Luego, W es cerrado bajo la suma. De esta forma, sea $u \in W$ entonces $u + (-z) = u z \in W$.
- ← | Por el teorema 6, es suficiente demostrar
 - a) $W \neq \emptyset$

Esto se da por hipótesis.

b) W es cerrado bajo la suma.

Como pasa ii y sean $z \in W$, $-1 \in K$ entonces $(-1)z = -z \in W$. Así, $u - (-z) = u + z \in W$.

c) W es cerrado bajo el producto por escalar.

Se da por hipótesis.

5. Sean $V=\mathbb{R}^3$, un \mathbb{R} - espacio vectorial, con las operaciones usuales de suma y producto por escalar, W_1 y W_2 subconjuntos de V, definidos como, $W_1=\left\{(a,b,c)\in\mathbb{R}^3\,\big|\,3a-b+4c=0\right\}$ y $W_2=\left\{(a,b,c)\in\mathbb{R}^3\,\big|\,b=-a,2c=a\right\}$ ¿Es $V=W_1\oplus W_2$? Demuéstrelo o dé un contraejemplo de la propiedad que no se cumpla.

Af:
$$V = W_1 \oplus W_2$$
.

Dem.

- P.d. a) W_1 y W_2 son subespacios vectoriales de V.
 - b) $V = W_1 + W_2$
 - $c) W_1 \cap W_2 = \{\overline{0}\}$
 - a) W_1 y W_2 son subespacios vectoriales de V.

Como $\overline{0} = (0,0,0)$ es el neutro aditivo en V, entonces $\overline{0} \in W_1$ pues 3(0) - 0 + 4(0) = 0 - 0 + 0 = 0.

Luego, sean $(a_1, b_1, c_1), (d_1, e_1, f_1) \in W_1$ entonces $3a_1 - b_1 + 4c_1 = 0$ y $3d_1 - e_1 + 4f_1 = 0$. Por definición de suma en \mathbb{R}^3 se tiene que

$$(a_1, b_1, c_1) + (d_1, e_1, f_1) = (a_1 + d_1, b_1 + e_1, c_1 + f_1)$$

V como

$$3(a_1 + d_1) - (b_1 + e_1) + 4(c_1 + f_1) = (3a_1 + 3d_1) + (-b_1 - e_1) + (4c_1 + 4f_1)$$

$$= (3a_1 - b_1 + 4c_1) + (3d_1 - e_1 + 4f_1)$$

$$= 0 + 0$$

$$(\text{pues } 3a_1 - b_1 + 4c_1 = 0 \text{ y } 3d_1 - e_1 + 4f_1 = 0)$$

$$= 0$$

entonces $(a_1, b_1, c_1) + (d_1, e_1, f_1) \in W_1$.

Después, sean $\lambda \in \mathbb{R}$ y $(a, b, c) \in W_1$ entonces 3a - b + 4c = 0. Luego, por definición de producto por escalar, se tiene que

$$\lambda(a, b, c) = (\lambda a, \lambda b, \lambda c)$$

Y como

$$3\lambda a - \lambda b + 4\lambda c = \lambda(3a - b + 4c)$$

$$= \lambda(0)$$

$$= 0$$
(pues $3a - b + 4c = 0$)

entonces $\lambda(a, b, c) \in W_1$

Como $\overline{0} \in W_1$, la suma y el producto por escalar son cerrados en W_1 , entonces $W_1 \leq V$, por la Proposición 5.

Ahora, se tiene que $\overline{0} \in W_2$ pues 0 = -0 y 2(0) = 0.

Luego, sea $(a_2, b_2, c_2) \in W_2$ entonces $b_2 = -a_2$ y $2c_2 = a_2$. Y sea $(d_2, e_2, f_2) \in W_2$ entonces $e_2 = -d_2$ y $2f_2 = d_2$. Por definición de suma en \mathbb{R}^3 se tiene que

$$(a_2, b_2, c_2) + (d_2, e_2, f_2) = (a_2 + d_2, b_2 + e_2, c_2 + f_2)$$

Y como

$$b_2 + e_2 = -a_2 + (-d_2)$$
 (pues $b_2 = -a_2$ y $e_2 = -d_2$)
= $-(a_2 + d_2)$

$$2(c_2 + f_2) = 2c_2 + 2f_2$$

= $a_2 + d_2$ (pues $2c_2 = a_2 y 2f_2 = d_2$)

entonces $(a_2, b_2, c_2) + (d_2, e_2, f_2) \in W_2$.

Después, sean $\lambda \in \mathbb{R}$ y $(d, e, f) \in W_2$ entonces e = -d y 2f = d. Luego, por definición de producto por escalar, se tiene que

$$\lambda(d, e, f) = (\lambda d, \lambda e, \lambda f)$$

Y como

$$\lambda e = \lambda(-d)$$
 (pues $e = -d$)
= $-(\lambda d)$ (inciso 3 de la proposición 3)

$$2(\lambda f) = \lambda(2f)$$

$$= \lambda d$$
 (pues $2f = d$)

entonces $\lambda(d, e, f) \in W_2$

Como $\overline{0} \in W_2$, la suma y el producto por escalar son cerrados en W_2 , entonces $W_2 \leq V$, por la Proposición 5.

b) $V = W_1 + W_2$

 \subseteq] Sea $(a, b, c) \in \mathbb{R}^3$. P.d. $(a, b, c) \in W_1 + W_2$.

Sean
$$u = \left(\frac{3a+b-4c}{6}, \frac{3a+5b+4c}{6}, \frac{-3a+b+8c}{12}\right)$$
 y $v = \left(\frac{3a-b+4c}{6}, \frac{-3a+b-4c}{6}, \frac{3a-b+4c}{12}\right)$.

$$3\left(\frac{3a+b-4c}{6}\right) - \frac{3a+5b+4c}{6} + 4\left(\frac{-3a+b+8c}{12}\right) = \frac{9a+3b-12c}{6} + \frac{-3a-5b-4c}{6} + \frac{-6a+2b+16c}{6}$$

entonces $u \in W_1$. Y también se tiene que

$$\frac{-3a+b-4c}{6} = -\frac{3a-b+4c}{6} \quad y$$
$$2\left(\frac{3a-b+4c}{12}\right) = \frac{3a-b+4c}{6}$$

De esta manera, $v \in W_2$. Luego, $u + v \in W_1 + W_2$, pero

$$\begin{split} u+v &= \left(\frac{3a+b-4c}{6}, \frac{3a+5b+4c}{6}, \frac{-3a+b+8c}{12}\right) + \\ &\left(\frac{3a-b+4c}{6}, \frac{-3a+b-4c}{6}, \frac{3a-b+4c}{12}\right) \\ &= \left(\frac{3a+b-4c}{6} + \frac{3a-b+4c}{6}, \frac{3a+5b+4c}{6} + \frac{-3a+b-4c}{6}, \frac{-3a+b+8c}{12} + \frac{3a-b+4c}{12}\right) \\ &= \left(\frac{6a}{6}, \frac{6b}{6}, \frac{12c}{12}\right) \\ &= (a,b,c) \end{split}$$

Así, $(a, b, c) \in W_1 + W_2$.

$$\therefore V \subseteq W_1 + W_2.$$

 \supseteq] Como $W_1, W_2 \le V$ entonces, por el Teorema 12, $W_1 + W_2 \le V$ y por definición de subespacio vectorial $W_1 + W_2 \subseteq V$.

$$\therefore V = W_1 + W_2$$

c)
$$W_1 \cap W_2 = \{\overline{0}\}$$

 \subseteq] Sea $(a,b,c) \in W_1 \cap W_2$. P.d. $(a,b,c) \in \{\overline{0}\}$.

Como $(a,b,c) \in W_1 \cap W_2$ entonces $(a,b,c) \in W_1$ y $(a,b,c) \in W_2$. Ya que $(a,b,c) \in W_1$ entonces

$$3a - b + 4c = 0 \tag{1}$$

Asimismo, como $(a, b, c) \in W_2$ entonces

$$b = -a (2)$$

у

$$2c = a$$

$$\implies c = \frac{a}{2}$$
(3)

Sustituyendo (2) y (3) en (1) se tiene que

$$3a - (-a) + 4\left(\frac{a}{2}\right) = 0$$

$$\implies 3a + a + 2a = 0$$

$$\implies 6a = 0$$

$$\implies a = 0$$

Así, por (2), se tiene que b=-a=-0=0. Y por (3) $c=\frac{a}{2}=\frac{0}{2}=0$. De esta manera, $(a,b,c)=(0,0,0)=\overline{0}$.

$$\therefore (a,b,c) \in \{\overline{0}\}.$$

 \supseteq] Como $W_1,W_2 \leq V$ entonces $\overline{0}$ pertenece a W_1 y a $W_2.$ Así, $\overline{0} \in W_1 \cap W_2.$

$$\therefore \{\overline{0}\} \subseteq W_1 \cap W_2$$

$$\therefore W_1 \cap W_2 = \{\overline{0}\}$$

$$\therefore V = W_1 \oplus W_2. \blacksquare$$