Measuring Predictive Performance of User Models: The Details Matter

Radek Pelánek

EvalUMAP 2017

Evaluation over Historical Data

common evaluation approach

- model building
- data collection
- cross-evaluation methodology (train/test division)
- model fitting
- quantifying model quality by measuring predictive accuracy
- comparison of models, interpretation of results

Measuring Predictive Accuracy

```
prediction 0.7 0.6 0.9 0.95 0.8 0.85 ... outcome 0 1 1 0 1 1 ...
```

quality of predictions (RMSE, AUC, ...)

this step:

- gets little attention
- can significantly influence results
- can be nontrivial to do properly

Motivation

- Deep knowledge tracing, Piech et al. NIPS 2015
 - claims of large improvement in model performance as measured by AUC
- How deep is knowledge tracing?, Khajan et al., EDM 2016
 - the "improvement" caused to large degree by methodological differences in computation of AUC

RMSE and AUC Metrics

- Root Mean Square Error (RMSE)
 - $\bullet \sqrt{\frac{1}{n}\sum_{i=1}^{n}(o_i-p_i)^2}$
 - closely related to "Brier score"
- Area Under the ROC Curve (AUC)
 - Receiver Operating Characteristics (ROC) curve
 - relative ranking of predictions
 - widely used in many domains, but also widely criticized

Averaging

	skill1	skill2	skill3	
student1	1	0	-	
student2	0	1	1	
student3	1	-	0	

metric computation:

- global
- averaging across skills
- averaging across students

Analysis of Student Modeling Literature

- little attention to the choice of metric
- details of computation typically not specified
- AUC often used as a single metric

Illustration of Metric Properties

- scenarios with simulated data
- simple "learning curve" model of student behaviour
- illustration of metric properties

Absolute Values of Metrics

Absolute values of metric do not express quality of models, but rather properties of data.

RMSE: baseline rate of events

• AUC: heterogeneity of data

Do not try to interpret the values. Do not compare values across data sets.

Relative Values of Metrics

relative values = differences in metric values

Very different models can have nearly the same metric value, particularly for AUC.

Do not rely on AUC as a single metric to measure model performance.

Averaging Across Students

model	RMSE global	RMSE per student
B	0.40	0.46
C	0.35	0.48

curve A 70% of students: 5 attempts 30% of students: 60 attempt

Averaging Across Skills

model	AUC global	AUC per skill
A1, B2 (correct)	0.73	0.63
A2, B1 (speed mismatch)	0.60	0.63
A1, C (negative learning)	0.68	0.45

Summary

- choice of metric matters
- details of metric computation matter
- should we adopt standards?
 - "universal metric" no
 - "good practice" yes