TTK4135 Optimization and control

To learn:

- Optimization important concepts and theory
- Formulating an engineering problem into a mathematical optimization problem (modeling for optimization)
- Solving an optimization problem choosing the right algorithm, using algorithms, some implementation of algorithms
- Applications in control engineering model predictive control

Instructors:

- Lecturer: Lars Imsland
- Teaching Assistant: Joakim R. Andersen
- 6 Student Assistants (assignments and labs)

Course information

- All course information is provided through Blackboard
- Course description: http://www.itk.ntnu.no/emner/ttk4135

- Assignment and lab report deadlines are absolute, no extensions except for very special cases
- Helicopter lab must be approved
- At least 7 of 10 assignments must be approved (no extra assignment will be given)
- Pay attention and make sure your assignments get approved
- Please do not copy ("koke") assignments it will be reported if noticed
- Video lectures from 2014:
 - http://video.adm.ntnu.no/openVideo/serier/52b1a0ef0c035

Course information, cont'd

I will not cover the complete curriculum in my lectures;
I will focus on the most important and difficult parts,
as well as trying to build your understanding and intuition

- You will need to read the book:
 - Numerical Optimization, J. Nocedal and S. J Wright, 2nd ed., Springer (ISBN-10: 0-387-30303-0 or ISBN-13: 987-0387-30303-1). Download at https://link.springer.com/book/10.1007%2F978-0-387-40065-5 from campus or through VPN.
 - Errata at Blackboard.
 - I encourage you to buy the book!
- In addition the note Merging Optimization and Control, B. Foss and T. A. Heirung, will be used. Will be provided electronically.
- Note on matrix calculus

Course information, cont'd

- Grading
 - Final exam: 80%
 - Lab report (helicopter): 20% (group work).
- Timetable

Tuesday lecture: 10:15 – 12:00 in S3
Thursday lecture: 12:15 – 14:00 in S6

Assignment help sessions: Tuesdays
18:15 – 19:00 in EL6

TA office hours: TBA

Exam: June 3, 09:00 – 13:00

Reference group!

Tentative lecture schedule

				1	1	
	TTK4135 Plan for Spring 2019					
	TTR4133 Flair for Spring 2013					
Week no.	Lectures Tuesday 10:15-12:00 S3	Lectures Thursday 12:15-14:00 S6	Helicopter project	Exercise out (Mon 15:00)	Help session Tuesday 18:15-19:00 EL6	Exercise in (Wed 23:59)
2	Lecture 1 Introduction on optimization - N&W Ch.1	Lecture 2 Optimality conditions - N&W Ch. 12.1-12.2		0: Matrix Calculus, 1: KKT		
	Lecture 3 Optimality conditons and linear algebra - N&W Ch.12.3, 12.5 (12.8, 12.9)	Lecture 4 Linear Programming - N&W Ch.13.1-13.5		2: LP	0, 1, 2	
4	Lecture 5 Linear Programming - N&W Ch.13.1-13.5	Lecture 6 Quadratic programming - N&W Ch.15.3- 15.5, 16.1-2,4-5		3: LPQP	2, 3	0, 1
		Lecture 8 Open loop dynamic optimization - MPC note Ch.3-3.2	Helicopter Lab week	4: QP	3, 4	2
		Lecture 10 Model predictive control - MPC note Ch.4.2.2-4.3.1	Helicopter Lab week	5: OLMPC	4, 5	3
		Lecture 12 Linear quadratic control - MPC note repetition and 4.6	Helicopter Lab week	6: MPCLQR	5	4
8	No lecture	No lecture	Helicopter Lab week		5, 6	
		Lecture 14 Line search methods - N&W Ch.3-3.1, 3.4, 3.5	Helicopter Lab week	7: RICATTI	6, 7	5
10	Lecture 15 Quasi Newton methods - N&W Ch.6-6.1, 8-8.1	Lecture 16 Derivative free optimization - Ch.9, 9.5	Helicopter Lab week	8: UNCON	7, 8	6
11		Lecture 18 Sequential quadratic programming (SQP) - Ch.18.3, 15.4	Helicopter Lab week	9: OPTALG	8, 9	7
12	Lecture 19 Sequential quadratic programming (SQP) - Ch.18.4, 18.8, 15.5	Lecture 20 TBD		10: SQP	9, 10	8
13					10	9
14	No lecture	No lecture				10
15	Excursion week					
16	Easter vacation					
17	Easter vacation					

Expected background

- Linear algebra and real analysis
 - quick recap next Tuesday
- Some numerical analysis (Newton's method)
- Basic control theory:
 - TTK4105 Control engineering
 - Advantage: TTK4115 Linear system theory

Lecture 1:

- About optimization, what is it and why do we need it?
- Formulating an optimization problem: From an "engineering problem" to a mathematical description
- Definition of important terms
 - Convexity and non-convexity
 - Global vs. local solution
 - Constrained vs. unconstrained problems
 - Feasible set
- Reference: Chapter 1 in Nocedal and Wright (N&W)

About optimization

You have met optimization in earlier courses

- Finding max and min of a function (Calc 1)
- The Lagrange Method (Calc 2)
- Algorithms course (shortest path, dynamic programming, max flow, traveling salesman etc.)
- Least squares (data fitting)

Minimization or maximization?

Convention this course: minimization!

Electric power production

Planning and production of electric power

Process control

Optimizing operations of chemical processes

Production optimization in oil and gas systems

Motion control

Collision avoidance

Tracking ice-field movements

Scheduling and operations research

Train scheduling

(and scheduling of lecture halls)

Stock exchange

Example: Optimization in control

- Model of inverted pendulum: $\ddot{\theta} \frac{g}{l}\sin\theta = \tau$
- Control problem: Find gains in "PD"-controller $au = -k_{p} heta k_{d} \dot{ heta}$
- that gives best "control performance:

$$f(k_p, k_d) = \int_0^\infty \theta^2 + \dot{\theta}^2 + \alpha \tau^2 dt$$

More on these types of optimization problems ("optimal control") later in the course.

Example: Machine Learning

- Learn, and make predictions, from data
- Linear regression is the most basic ML algorithm, solved using optimization
 - "least squares", Ch. 10, N&W

- In a similar fashion: ML, neural networks, deep learning etc. are "trained" (in general) using "gradient descent" algorithms
 - topic of Ch. 2-10, N&W

General optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

• Example: $\min (x_1 - 2)^2 + (x_2 - 1)^2$ subject to $\begin{cases} x_1^2 - x_2 \le 0, \\ x_1 + x_2 \le 2. \end{cases}$

• What if we add equality-constraint $x_1 = 0$?

Linear programming

Quadratic programming

LP example: Farming

- A farmer wants to grow apples (A) and bananas (B)
- He has a field of size 100 000 m²
- Growing 1 tonne of A requires an area of 4 000 m², growing 1 tonne of B requires an area of 3 000 m²

- A requires 60 kg fertilizer per tonne grown, B requires 80 kg fertilizer per tonne grown
- The profit for A is 7000 per tonne (including fertilizer cost), the profit for B is 6000 per tonne (including fertilizer cost)
- The farmer can legally use up to 2000 kg of fertilizer
- He wants to maximize his profits

Farming example: Geometric interpretation and solution

subject to: $4000x_1 + 3000x_2 \le 100000$

$$60x_1 + 80x_2 \le 2000$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Constrained optimization

(Mathematical programming)

