

Centro de Ciências Tecnológicas - CCT - Joinville Departamento de Matemática Lista 5 de Cálculo Diferencial e Integral II Sequências e Séries

1. Determine os quatro primeiros termos de cada uma das sequências dadas abaixo. Calcule também $\lim_{n\to\infty} u_n$, caso exista.

$$(a) u_n = \frac{n}{4n+2}$$

(b)
$$u_n = \frac{(-1)^n}{5-n}$$

(a)
$$u_n = \frac{n}{4n+2}$$
 (b) $u_n = \frac{(-1)^n}{5-n}$ (c) $u_n = \frac{(-1)^n \sqrt{n}}{n+1}$ (d) $u_n = \frac{100n}{n^{\frac{3}{2}}+4}$

(d)
$$u_n = \frac{100n}{n^{\frac{3}{2}} + 4}$$

$$(e) u_n = \frac{n+1}{\sqrt{n}}$$

$$(f) u_n = \frac{\ln n}{n}$$

$$(g) u_n = \ln\left(\frac{1}{n}\right)$$

(e)
$$u_n = \frac{n+1}{\sqrt{n}}$$
 (f) $u_n = \frac{\ln n}{n}$ (g) $u_n = \ln\left(\frac{1}{n}\right)$ (h) $u_n = \frac{n^2}{5n+3}$

$$(i) u_n = \cos \frac{n\pi}{2}$$

$$(j) u_n = \arctan n$$

(i)
$$u_n = \cos \frac{n\pi}{2}$$
 (j) $u_n = \arctan n$ (k) $u_n = (1 - \frac{2}{n})^n$ (l) $u_n = \frac{n^2}{2^n}$

$$(l) u_n = \frac{n^2}{2^n}$$

$$(m) u_n = \frac{3n}{e^{2n}}$$

$$(n) u_n = 1 + (-1)^n$$

$$(o) u_n = \sqrt[n]{n}$$

(m)
$$u_n = \frac{3n}{e^{2n}}$$
 (n) $u_n = 1 + (-1)^n$ (o) $u_n = \sqrt[n]{n}$ (p) $u_n = 7^{-n}3^{n-1}$

2. Dados os termos abaixo, determine uma expressão para as sequências.

(a)
$$\left\{\frac{1}{3}, \frac{2}{9}, \frac{4}{27}, \frac{8}{81}, \cdots\right\}$$

$$(a) \ \left\{ \frac{1}{3}, \frac{2}{9}, \frac{4}{81}, \cdots \right\} \qquad (b) \ \left\{ \frac{1}{3}, \frac{-2}{9}, \frac{4}{27}, \frac{-8}{81}, \cdots \right\} \qquad (c) \ \left\{ \frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \cdots \right\} \qquad (d) \ \left\{ 0, \frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \cdots \right\}$$

(c)
$$\left\{\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \cdots\right\}$$

(d)
$$\left\{0, \frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \cdots\right\}$$

3. Classifique, se possível, as sequências abaixo quanto à sua monotonicidade.

$$(a) u_n = \frac{n}{2n-1}$$

$$(b) u_n = n - 2$$

(a)
$$u_n = \frac{n}{2n-1}$$
 (b) $u_n = n-2^n$ (c) $u_n = ne^{-n}$ (d) $u_n = \frac{5^n}{2n^2}$

$$(d) u_n = \frac{5^n}{2^{n^2}}$$

(e)
$$u_n = \frac{10^n}{(2n)!}$$

$$(f) u_n = \frac{n^n}{n!}$$

(e)
$$u_n = \frac{10^n}{(2n)!}$$
 (f) $u_n = \frac{n^n}{n!}$ (g) $u_n = \frac{1}{n+\ln n}$ (h) $u_n = \frac{n!}{3^n}$

$$(h) u_n = \frac{n!}{3^n}$$

- 4. Suponha que u_n seja uma sequência monótona tal que $1 \le u_n \le 5$. Esta sequência deve convergir? O que mais pode ser dito sobre o seu limite?
- 5. Suponha que u_n seja uma sequência monótona tal que $u_n \leq 5$. Esta sequência deve convergir? O que mais pode ser dito sobre o seu limite?
- 6. Pode-se obter aproximações de \sqrt{k} utilizando a sequência recursiva $u_{n+1} = \frac{1}{2} \left(u_n + \frac{k}{u_n} \right)$, onde $u_1 = \frac{1}{2}$.
 - (a) Encontre as aproximações u_2, u_3, u_4, u_5, u_6 para $\sqrt{10}$
 - (b) Mostre que, se $L = \lim_{n \to \infty} u_n$, então $L = \sqrt{k}$.
- 7. Uma das mais famosas sequências é a sequência de Fibonacci (1710-1250), definida pela recorrência $u_{n+1} = u_n + u_{n-1}$, onde $u_1 = u_2 = 1$.
 - (a) Determine os dez primeiros termos desta sequência.
 - (b) Os termos da nova sequência $x_n = \frac{u_{n+1}}{u_n}$ dão uma aproximação para o igualmente famoso número de ouro (ou razão áurea), denotado por τ . Determine uma aproximação dos cinco primeiros termos dessa nova sequência.
 - (c) Supondo que $\tau = \lim_{n \to \infty} x_n$, mostre que $\tau = \frac{1}{2}(1 + \sqrt{5})$.

8. Encontre o termo geral da sequência de somas parciais de cada uma das séries abaixo. A seguir, determine se a série converge ou diverge, obtendo o valor de sua soma, se possível.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

(b)
$$\sum_{n=1}^{\infty} \frac{8}{(4n-3)(4n+1)}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$

$$(d) \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

(e)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{5^n}$$

$$(f) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}\left(\sqrt{n+1} + \sqrt{n}\right)}$$

(g)
$$\sum_{n=1}^{\infty} \frac{1}{1.2.3.4.5.\cdots.n.(n+2)}$$
 (h) $\sum_{n=1}^{\infty} \frac{3n+4}{n^3+3n^2+2n}$

(h)
$$\sum_{n=1}^{\infty} \frac{3n+4}{n^3+3n^2+2n}$$

- 9. Analise se as afirmações abaixo são verdadeiras ou falsas. Justifique seus argumentos, exibindo contra-exemplos para as afirmações falsas ou provando as afirmações verdadeiras.
 - (a) Toda sequência limitada é convergente.
 - (b) Toda sequência limitada é monótona.
 - (c) Toda sequência convergente é necessariamente monótona.
 - (d) Toda sequência monótona decrescente converge para zero.
 - (e) Se u_n for decrescente e $u_n > 0$ para todo $n \in \mathbb{N}$, então u_n é convergente.
 - (f) Se -1 < q < 1, então $\lim_{n \to +\infty} q^n = 0$.
 - (g) Se a sequência u_n converge, então a série $\sum_{n=1}^{\infty} u_n$ também converge.
 - (h) Se $\sum_{n=1}^{\infty} u_n$ converge, então $\sum_{n=1}^{\infty} \sqrt{u_n}$ também converge.
 - (i) Toda série alternada convergente é condicionalmente convergente.
 - (j) A série $\sum_{n=1}^{\infty} \frac{(n^3+1)^2}{(n^4+5)(n^2+1)}$ é uma série numérica convergente.
 - (k) Desenvolvendo a função $g(x) = \int_0^x t^2 e^{-t^2} dt$ em série de potências obtém-se $g(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+3}}{n!(2n+3)}$.
 - (l) A série de potências $\sum_{n=1}^{\infty} (-1)3^n x^n$ é convergente no intervalo $(-\frac{1}{3},\frac{1}{3})$ e sua soma é igual a $S = \frac{-3x}{1+3x}.$
 - (m) Se a sequência u_n converge então a série $\sum_{n=1}^{\infty} (u_{n+1} u_n)$ também converge.
 - (n) O raio de convergência da série da série $\sum_{n=0}^{\infty} \frac{(-1)^n (3x-5)^{2n}}{2^{2n} (n!)^2}$ é infinito.
 - (o) A série $\sum_{n=1}^{\infty} 2^{2n} 9^{1-n}$ é convergente e sua soma é igual a $\frac{36}{5}$.

- (p) O critério da integral garante que $\sum_{n=3}^{\infty} \frac{1}{n \ln n \ln(\ln n)}$ converge.
- 10. Encontre o termo geral da soma da série $\sum_{n=1}^{\infty} \frac{4}{4n^2-1}$ e verifique se ela é convergente.

11. Encontre a soma das séries abaixo, se possível.
$$(a) \sum_{n=1}^{\infty} \left(\frac{1}{5}\right)^n \quad (b) \sum_{n=1}^{\infty} \frac{5}{(5n+2)(5n+7)} \quad (c) \sum_{n=1}^{\infty} \frac{1}{n^2+6n+8} \quad (d) \sum_{n=1}^{\infty} \frac{-1}{\sqrt{n+1}+\sqrt{n}}$$

12. Usando o teste de comparação verifique se as séries abaixo são convergentes ou divergentes.

$$(a) \sum_{n=1}^{\infty} \frac{1}{n3^n}$$

$$(b) \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

$$(c)\sum_{n=1}^{\infty}\frac{1}{n^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$
 (c) $\sum_{n=1}^{\infty} \frac{1}{n^n}$ (d) $\sum_{n=1}^{\infty} \frac{n^2}{4n^3 + 1}$

$$(e) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 4n}} \qquad (f) \sum_{n=1}^{\infty} \frac{|sen(n)|}{2^n} \qquad (g) \sum_{n=1}^{\infty} \frac{n!}{(2+n)!} \qquad (h) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 5}}$$

$$(f)\sum_{n=1}^{\infty}\frac{|sen(n)|}{2^n}$$

$$(g) \sum_{n=1}^{\infty} \frac{n!}{(2+n)!}$$

$$(h)\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3+5}}$$

$$(i) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2 + 5}}$$

$$(j) \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n+5}}$$

$$(i) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2 + 5}} \qquad \qquad (j) \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n + 5}} \qquad (k) \sum_{n=1}^{\infty} \frac{n}{4n^3 + n + 1} \quad (l) \sum_{n=1}^{\infty} \frac{2^n}{(2n)!}$$

$$(m) \sum_{n=1}^{\infty} \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt[3]{n}} \qquad (n) \sum_{n=1}^{\infty} \frac{1 + n4^{2n}}{n5^n} \qquad (o) \sum_{n=1}^{\infty} \frac{2 + \cos n}{n^2} \qquad (p) \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+4}$$

$$(n)\sum_{n=1}^{\infty} \frac{1+n4^{2n}}{n5^n}$$

$$(o) \sum_{n=1}^{\infty} \frac{2 + \cos n}{n^2}$$

$$(p)\sum_{n=1}^{\infty}\frac{\sqrt{n}}{n+4}$$

$$(q) \sum_{n=1}^{\infty} \frac{1+2^n}{1+3^n}$$

$$(q) \sum_{n=1}^{\infty} \frac{1+2^n}{1+3^n} \qquad (r) \sum_{n=1}^{\infty} \frac{n+\ln n}{n^3+1}$$

13. Usando o teste de D'Alambert verifique se as séries abaixo são convergentes ou divergentes. (a) $\sum_{n=1}^{\infty} \frac{n+1}{n^2 2^n}$ (b) $\sum_{n=1}^{\infty} \frac{n!}{e^n}$ (c) $\sum_{n=1}^{\infty} \frac{1}{(n+1)2^{n+1}}$

$$(a) \sum_{n=1}^{\infty} \frac{n+1}{n^2 2^n}$$

$$(b) \sum_{n=1}^{\infty} \frac{n!}{e^n}$$

$$(c) \sum_{n=1}^{\infty} \frac{1}{(n+1)2^{n+1}}$$

$$(d)\sum_{n=1}^{\infty} \frac{3n}{\sqrt{n^3+1}}$$

$$(e) \sum_{n=1}^{\infty} \frac{3^n}{2^n (n^2 + 2)}$$

$$(d) \sum_{n=1}^{\infty} \frac{3n}{\sqrt{n^3 + 1}} \qquad (e) \sum_{n=1}^{\infty} \frac{3^n}{2^n (n^2 + 2)} \qquad (f) \sum_{n=1}^{\infty} \frac{n!}{2^n (2 + n)!}$$

$$(g)\sum_{n=1}^{\infty}\frac{1}{n+5}$$

$$(h)\sum_{n=1}^{\infty}\frac{n+1}{n4^n}$$

$$(i) \sum_{n=1}^{\infty} \frac{n}{4n^2 + n + 1}$$

$$(j)\sum_{n=1}^{\infty} \frac{3n+1}{2^n}$$

$$(k) \sum_{n=1}^{\infty} \frac{3^n}{n^2 + 2}$$

$$(l)\sum_{n=1}^{\infty} \frac{n!}{(n+2)^3}$$

$$(g) \sum_{n=1}^{\infty} \frac{1}{n+5} \qquad (h) \sum_{n=1}^{\infty} \frac{n+1}{n4^n} \qquad (i) \sum_{n=1}^{\infty} \frac{n}{4n^2+n+1}$$

$$(j) \sum_{n=1}^{\infty} \frac{3n+1}{2^n} \qquad (k) \sum_{n=1}^{\infty} \frac{3^n}{n^2+2} \qquad (l) \sum_{n=1}^{\infty} \frac{n!}{(n+2)^3} \qquad (m) \sum_{n=1}^{\infty} \frac{2^{n-1}}{5^n(n+1)}$$

14. Usando o teste de Cauchy, verifique se as séries abaixo são convergentes ou divergentes. $(a) \sum_{n=1}^{\infty} \frac{(\ln n)}{n^{\frac{n}{2}}} \qquad (b) \sum_{n=1}^{\infty} 2^n \left(\frac{n+1}{n^2}\right)^n \qquad (c) \sum_{n=1}^{\infty} \left(\frac{n+1}{n^2 2^n}\right)^n \qquad (d) \sum_{n=1}^{\infty} \frac{n^{4n}-n}{\sqrt{n^{10n}+1}}$

$$(a) \sum_{n=1}^{\infty} \frac{(\ln n)}{n^{\frac{n}{2}}}$$

$$(b) \sum_{n=1}^{\infty} 2^n \left(\frac{n+1}{n^2} \right)$$

$$(c)\sum_{n=1}^{\infty} \left(\frac{n+1}{n^2 2^n}\right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^{4n} - n}{\sqrt{n^{10n} + 1}}$$

15. Usando o teste da integral verifique se as séries abaixo são convergentes ou divergentes.

$$(a) \sum_{n=1}^{\infty} ne^{-n}$$

$$(b) \sum_{n=1}^{\infty} \frac{\ln n}{n}$$

$$(c) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

(a)
$$\sum_{n=1}^{\infty} ne^{-n}$$
 (b) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ (d) $\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{\ln(n+1)}}$

$$(e) \sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$$

$$(f)\sum_{n=1}^{\infty}ne^{-n^2}$$

$$(g)\sum_{n=1}^{\infty}n^2e^{-n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$$
 (f) $\sum_{n=1}^{\infty} ne^{-n^2}$ (g) $\sum_{n=1}^{\infty} n^2 e^{-n}$ (h) $\sum_{n=1}^{\infty} \frac{e^{\arctan n}}{n^2 + 1}$

$$(i) \sum_{n=1}^{\infty} \frac{1}{4n+7}$$

$$(j)\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$$

(i)
$$\sum_{n=1}^{\infty} \frac{1}{4n+7}$$
 (j) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$ (k) $\sum_{n=1}^{\infty} \frac{1}{n(1+\ln^2 n)}$

- 16. Use o teste da integral, se possível, para determinar para quais valores de p > 0 a série $\sum_{n=0}^{\infty} \frac{1}{n(\ln n)^p}$ converge.
- 17. Verifique se as séries abaixo são absolutamente convergente, condicionalmente convergente ou

$$(a) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n!}$$

$$(a) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n!} \qquad (b) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)!} \qquad (c) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n!}$$

$$(c)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n!}$$

$$(d) \sum_{n=1}^{\infty} (-1)^{n-1} n \left(\frac{2}{3}\right)^n$$

$$(e)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n!}{2^{n+1}}$$

$$(d) \sum_{n=1}^{\infty} (-1)^{n-1} n \left(\frac{2}{3}\right)^n \qquad (e) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n!}{2^{n+1}} \qquad (f) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2 + 2n}$$

$$(g)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n!}$$

$$(g) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n!} \qquad (h) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2 + 1}{n^3} \qquad (i) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^n}{n!}$$

$$(i)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^n}{n!}$$

$$(j)\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n^{\frac{2}{3}}+n}$$

$$(j) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{\frac{2}{3}} + n}$$
 $(k) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^n 2^n}{(2n-5)^n}$ $(l) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^4}{e^n}$

$$(l) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^4}{e^n}$$

$$(m)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 1} \qquad (n)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^3 + 3} \qquad (o)\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n^2 - n}}$$

$$(n)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^3 + 3}$$

$$(o) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n^2 - r}}$$

18. Classifique as séries numéricas abaixo como absolutamente convergente, condicionalmente convergente ou divergente, justificando sua resposta.

$$(a) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2^{3n+4} - n)}{e^n n^{3n}} \qquad (b) \sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{n^2 + n + 1} \qquad (c) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n + \sqrt{n}}}$$

$$(b) \sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{n^2 + n + 1}$$

$$(c) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+\sqrt{n}}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)!}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)}$$

$$(e)\sum_{n=1}^{\infty} \frac{(-1)^n \ 5^{4n+1}}{n^{3n}}$$

$$(d) \sum_{n=1}^{\infty} \frac{(-1)^n (n+1)!}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \qquad (e) \sum_{n=1}^{\infty} \frac{(-1)^n 5^{4n+1}}{n^{3n}} \qquad (f) \sum_{n=1}^{\infty} \frac{(-1)^n 7^{3n+1}}{(\ln n)^n}$$

$$(g)\sum_{n=1}^{\infty}\frac{n\sin(n\pi)+r}{n^2+5}$$

$$(g) \sum_{n=1}^{\infty} \frac{n \sin(n\pi) + n}{n^2 + 5} \qquad (h) \sum_{n=1}^{\infty} \frac{\cos(n) + \sin(n)}{n^3 + \sqrt{n}} \qquad (i) \sum_{n=1}^{\infty} \frac{n e^{2n}}{n^2 e^n - 1}$$

$$(i) \sum_{n=1}^{\infty} \frac{ne^{2n}}{n^2e^n - 1}$$

19. Determine o raio e o intervalo de convergência das séries de potências abaixo.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n^3}$ (c) $\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n!}$

(c)
$$\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n!}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n n 4^n x^n$$
 (e) $\sum_{n=1}^{\infty} \frac{(-2)^n x^n}{\sqrt[4]{n}}$ (f) $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{4^n \ln n}$

$$(e) \sum_{n=1}^{\infty} \frac{(-2)^n x^n}{\sqrt[4]{n}}$$

$$(f) \sum_{n=2}^{\infty} \frac{(-1)^n x^n}{4^n \ln n}$$

(g)
$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$$

$$(h) \sum_{n=0}^{\infty} \sqrt{n}(x-4)^n$$

(g)
$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$$
 (h) $\sum_{n=0}^{\infty} \sqrt{n}(x-4)^n$ (i) $\sum_{n=1}^{\infty} \frac{(-1)^n (x+2)^n}{n2^n}$

$$(j) \sum_{n=1}^{\infty} n! (2x-1)^n$$

$$(k) \sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n}3^n}$$

(j)
$$\sum_{n=1}^{\infty} n! (2x-1)^n$$
 (k) $\sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n}3^n}$ (l) $\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{\frac{3}{2}}}$

$$(m) \sum_{n=0}^{\infty} \frac{n(x-5)^n}{n^2+1}$$

$$(n) \sum_{n=0}^{\infty} \frac{n^n (x+2)^n}{(2n-5)^n}$$

$$(m) \sum_{n=0}^{\infty} \frac{n(x-5)^n}{n^2+1} \qquad (n) \sum_{n=0}^{\infty} \frac{n^n (x+2)^n}{(2n-5)^n} \qquad (o) \sum_{n=0}^{\infty} \frac{n^4 (x-1)^n}{e^n}$$

$$(p) \sum_{n=0}^{\infty} \frac{2^n (x+1)^n}{n^2 + 1}$$

$$(q) \sum_{n=0}^{\infty} \frac{n(x-1)^{2n}}{n^3+3}$$

$$(p) \sum_{n=0}^{\infty} \frac{2^n (x+1)^n}{n^2 + 1} \qquad (q) \sum_{n=0}^{\infty} \frac{n(x-1)^{2n}}{n^3 + 3} \qquad (r) \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1) x^n}{3 \cdot 6 \cdot 9 \cdot \dots \cdot 3n}$$

- 20. Seja $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$. Determine os intervalos de convergência para f, f' e f".
- 21. A partir da soma da série geométrica $\sum_{n=1}^{\infty} x^n$, para |x| < 1, encontre as somas das séries abaixo.

$$(a) \sum_{n=1}^{\infty} nx^{n-1}$$

$$(b) \sum_{n=1}^{\infty} nx^n$$

$$(c) \sum_{n=1}^{\infty} \frac{n}{2^n}$$

(a)
$$\sum_{n=1}^{\infty} nx^{n-1}$$
 (b) $\sum_{n=1}^{\infty} nx^n$ (c) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ (d) $\sum_{n=2}^{\infty} n(n-1)x^n$

$$(e) \sum_{n=2}^{\infty} \frac{n^2 - r}{2^n}$$

$$(f) \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

$$(g) \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

(e)
$$\sum_{n=2}^{\infty} \frac{n^2 - n}{2^n}$$
 (f) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (g) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$ (h) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n (n+1)}$

22. Encontre uma representação em série de potências, centradas em zero, para as funções abaixo.

(a)
$$f(x) = \frac{1}{1+x^3}$$
 (b) $f(x) = \frac{1}{4+x^3}$ (c) $f(x) = \frac{x}{9+4x^2}$

(b)
$$f(x) = \frac{1}{4+x^3}$$

$$(c) f(x) = \frac{x}{9+4x^2}$$

(d)
$$f(x) = \frac{x^2}{(1-2x)^2}$$
 (e) $f(x) = \frac{x^3}{(x-2)^2}$

(d)
$$f(x) = \frac{x^2}{(1-2x)^2}$$
 (e) $f(x) = \frac{x^3}{(x-2)^2}$ (f) $f(x) = \ln(5-x)$ (g) $f(x) = x \ln(x^2+1)$

23. Expresse as integrais indefinidas abaixo como uma série de potências, centradas em zero.

(a)
$$\int \frac{x}{1-x^8} dx$$

$$(b) \int \frac{\ln(1-x^2)}{x^2} dx$$

(a)
$$\int \frac{x}{1-x^8} dx$$
 (b) $\int \frac{\ln(1-x^2)}{x^2} dx$ (c) $\int \frac{x-\arctan x}{x^3} dx$ (d) $\int \arctan x^2 dx$

(d)
$$\int \arctan x^2 dx$$

- 24. Utilize a representação em série de potências, centrada em zero, de $f(x) = \arctan x$ para provar a seguinte expressão para π como soma de uma série numérica: $\pi = 2\sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n(2n+1)}$.
- 25. Mostre que a função $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ é solução da equação diferencial f'(x) = f(x).

- 26. Mostre que as funções $f_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$ e $f_2(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ são soluções da equação diferencial f''(x) + f(x) = 0.

27. Encontre a soma das seguintes séries
$$(a) \sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{4^{2n+1} (2n+1)!} \qquad (b) \sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!} \qquad (c) \sum_{n=1}^{\infty} \frac{3^n}{n!} \qquad (d) \sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

$$(d) \sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$

- 28. Encontre o raio e o domínio de convergência da série $\sum_{n=0}^{\infty} \frac{2^n (x-2)^n}{5^n (1+n^2)}$.
- 29. Determine o intervalo de convergência da série $\sum_{n=1}^{\infty} \frac{(3x-5)^n}{7^n n}$.
- 30. Mostre que a série de potências $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{3^{2n}}$ é convergente no intervalo (-3,3) e que sua soma é igual a $S = \frac{9}{9 + r^2}$.
- 31. Determine o intervalo de convergência da série de potências que representa a função $f(x) = \frac{4}{x^2}$ expandida em torno de a=1.
- 32. Desenvolva a função $f(x) = \cosh(x^3)$ em série de MacLaurin, determinando o termo geral de sua expansão e o seu intervalo de convergência.
- 33. Determine o intervalo e o raio de convergência da série de funções, centrada em zero, que representa a função $f(x) = \frac{e^{x^2} - 1}{x}$.
- 34. Usando séries de Maclaurin, mostre que $\int \cos x dx = \sin x + k$.
- 35. Desenvolva a função $f(x) = \int_0^x t^2 \ln(1+4t^2) dt$ em séries de MacLaurin e determine o seu intervalo de convergência.
- 36. Desenvolver em série de Taylor e Maclaurin as funções:

$$(a) \ f(x) = \sin^2 x$$

(b)
$$f(x) = x^2 \sin 2x$$

$$(c) f(x) = e^{3x}$$

(d)
$$f(x) = e^{-x^2}$$

$$(e) \ f(x) = \cos 2x$$

$$(f) \ f(x) = \frac{\sin(x^3)}{x^3}$$

(a)
$$f(x) = \sin^2 x$$
 (b) $f(x) = x^2 \sin 2x$ (c) $f(x) = e^{3x}$ (d) $f(x) = e^{-x^2}$ (e) $f(x) = \cos 2x$ (f) $f(x) = \frac{\sin(x^5)}{x^3}$ (g) $f(x) = \frac{\cos x - 1}{x^2}$ (h) $f(x) = x^3 e^{x^2}$

$$(h) \ f(x) = x^3 e^{x^2}$$

37. Utilize desenvolvimento em séries de MacLaurin para calcular os seguintes limites.

(a)
$$\lim_{x\to 0} \frac{\cos 2x + 2x^2 - 1}{x^4}$$

(a)
$$\lim_{x \to 0} \frac{\cos 2x + 2x^2 - 1}{x^4}$$
 (b) $\lim_{x \to 0} \frac{\sin(x^2) + \cos(x^3) - x^2 - 1}{x^6}$

(c)
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{1-\cos x}$$

(c)
$$\lim_{x \to 0} \frac{\ln(1+x^2)}{1-\cos x}$$
 (d) $\lim_{x \to 0} \frac{\ln(1+x^2)-3\sin(2x^2)}{x^2}$

(e)
$$\lim_{x\to 0} \frac{\ln(1+x^3) - e^{x^3} + 1}{x^6}$$

(e)
$$\lim_{x\to 0} \frac{\ln(1+x^3) - e^{x^3} + 1}{x^6}$$
 (f) $\lim_{x\to 0} \frac{x^2 \sin(x^2) + e^{x^4} - 1}{\ln(1+x^4)}$

(g)
$$\lim_{x \to 0} \frac{\cos(2x^2) - e^{x^4}}{x\sin(x^3)}$$

(g)
$$\lim_{x \to 0} \frac{\cos(2x^2) - e^{x^4}}{x \sin(x^3)}$$
 (h) $\lim_{x \to 0} \frac{\sin(x^8) + \cos(3x^4) - 1}{e^{x^8} - 1}$

38. Utilize séries numéricas e/ou séries de potências para encontrar os valores reais de k que tornam válidas cada uma das igualdades abaixo.

$$(a) \sum_{n=0}^{\infty} e^{nk} = 9$$

(b)
$$\lim_{x \to 0} \frac{e^{-x^4} - \cos(x^2)}{x^4} = k$$

39. Desenvolver em série de Maclaurin as seguintes funções:

$$(a) f(x) = \frac{1}{1-x}$$

(b)
$$f(x) = \frac{1}{\sqrt{1+x}}$$

(c)
$$f(x) = \frac{1}{1+x^2}$$

(d)
$$f(x) = \frac{1}{\sqrt{1-x^2}}$$

$$(e) \ f(x) = \int_{-\infty}^{\infty} \frac{\sin x}{x} dx$$

$$(f) f(x) = \int_{-\infty}^{\infty} e^{-x^2} dx$$

Deservoiver ein serie de Maciaulin as seguintes funções.

(a)
$$f(x) = \frac{1}{1-x}$$
 (b) $f(x) = \frac{1}{\sqrt{1+x}}$ (c) $f(x) = \frac{1}{1+x^2}$ (d) $f(x) = \frac{1}{\sqrt{1-x^2}}$ (e) $f(x) = \int \frac{\sin x}{x} dx$ (f) $f(x) = \int e^{-x^2} dx$ (g) $f(x) = \int \frac{\ln(1+x)}{x} dx$ (h) $f(x) = \ln\left(\frac{1+x}{1-x}\right)$ (i) $f(x) = \arcsin x$ (j) $f(x) = \arccos x$ (k) $f(x) = \arctan x$ (l) $f(x) = \sqrt[3]{1+x}$

$$(h) \ f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

$$(i) \ f(x) = \arcsin x$$

$$(j) f(x) = \arccos x$$

$$(k) f(x) = \arctan x$$

$$(l) \ f(x) = \sqrt[3]{1+x}$$

40. Calcule a integral $\int_0^t \frac{1}{\sqrt[3]{1+x^4}} dx$ utilizando expansão em série de potências, centrada em zero. Determine o termo geral desta expansão ou faça o seu desenvolvimento com pelo menos 5 termos não nulos.

Respostas

- 1. . $(a) \frac{1}{4}$ (b) 0 (c) 0 (d) 0 $(e) \nexists$ (f) 0 $(g) \nexists$ $(h) \nexists$

- $(i) \not\equiv (j) \frac{\pi}{2}$ $(k) e^{-2}$ (l) 0 (m) 0 $(n) \not\equiv (o) 1$ (p) 0

- 2. (a) $u_n = \frac{2^{n-1}}{3^n}$ (b) $u_n = \frac{(-1)^{n-1}2^{n-1}}{3^n}$ (c) $u_n = \frac{2n-1}{2n}$ (d) $u_n = \frac{n-1}{n^2}$

- 3. .

 (a) decrescente
 (b) decrescente
 (c) decrescente
 (d) decrescente
 (e) decrescente
 (f) crescente
 (g) decrescente
 (h) não-decrescente

4. A sequência converge, pois é uma sequência monótona limitada. Seu limite L é tal que $1 \le L \le 5$.

5. Se a sequência for monótona crescente, será convergente, com limite $L \leq 5$. Porém, se a sequência for monótona decrescente nada podemos afirmar.

- 6. Dica para o item (b): Note que se $L = \lim_{n \to +\infty} u_n$ então $\lim_{n \to +\infty} u_{n+1} = L$. Com isso, aplica-se limites em ambos lados da relação de recorrência dada e obtém-se que $L = \frac{1}{2} \left(L + \frac{k}{L} \right)$. Agora basta isolar L.
- 7. Dica para o item (c): Note que se $\tau = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$ então $\lim_{n \to +\infty} \frac{u_{n-1}}{u_n} = \frac{1}{\tau}$. Com isso, aplica-se limites em ambos lados da relação de recorrência dada e obtém-se que $\tau = 1 + \frac{1}{\tau}$. Agora basta isolar τ .
- 8. . $(a) S_k = \frac{k}{2k+1}. \text{ Converge para } \frac{1}{2} \qquad (b) S_k = \frac{8k}{4k+1}. \text{ Converge para } 2$
 - (c) $S_k = \frac{k(k+2)}{(k+1)^2}$. Converge para 1 (d) $S_k = -\ln(k+1)$. Diverge
 - (e) $S_k = \frac{1}{3} \frac{2^k}{3.5^k}$. Converge para $\frac{1}{3}$ (f) $S_k = 1 \frac{1}{\sqrt{k+1}}$. Converge para 1
 - $(g) \ S_k = \frac{1}{2} \frac{1}{(k+2)!}$. Converge para $\frac{1}{2}$ $(h) \ S_k = \frac{5}{2} \frac{2}{k+1} \frac{1}{k+2}$. Converge para $\frac{5}{2}$
- 9. . (a) F (b) F (c) F (d) F (e) V (f) V (g) F (h) F (i) F (j) F (k) V (l) V (m) V (n) V (o) V (p) F
- 10. $S_k = 2 \frac{2}{2k+1}$. A série converge para 2.
- 11. (a) $S = \frac{1}{4}$ (b) $S = \frac{1}{7}$ (c) $S = \frac{7}{24}$ (d) A série diverge
- 12. Legenda: C (convergente), D (divergente), I (inconclusivo):

 (a) C (b) C (c) C (d) D (e) D (f) C (g) C (h) C (i) C

 (j) D (k) C (l) C (m) D (n) D (o) C (p) D (q) C (r) C
- 13. Legenda: C (convergente), D (divergente), I (inconclusivo):
 (a) C (b) D (c) C (d) I (e) D (f) C (g) I (h) C (i) I (j) C (k) D (l) D (m) C
- 14. Legenda: C (convergente), D (divergente), I (inconclusivo): (a) C (b) C (c) C (d) C
- 15. Legenda: C (convergente), D (divergente), I (inconclusivo): (a) C (b) D (c) D (d) D (e) C (f) C (g) C (h) C (i) D (j) C (k) C
- 16. Converge para p > 1 e diverge para 0 .

17. .

(a) absolutamente

(b) absolutamente

(c) absolutamente

(d) absolutamente

(e) divergente

(f) absolutamente

(q) absolutamente

(h) condicionalmente

(i) divergente

(j) condicionalmente

(k) divergente

(l) absolutamente

(m) condicionalmente

(n) absolutamente

(o) condicionalmente

18. .

(a) absolutamente

(b) condicionalmente

(c) condicionalmente

(d) absolutamente

(e) absolutamente

(f) absolutamente

(q) divergente

(h) absolutamente

(i) divergente

19. I é o intervalo de convergência e R é o raio de convergência

(a)
$$R = 1, I = [-1, 1)$$

(b)
$$R = 1, I = [-1, 1]$$

(c)
$$R = \infty$$
, $I = (-\infty, \infty)$

(d)
$$R = \frac{1}{4}$$
, $I = (-\frac{1}{4}, \frac{1}{4})$

(e)
$$R = \frac{1}{2}, I = (-\frac{1}{2}, \frac{1}{2}]$$

$$(f) R = 4, I = (-4, 4)$$

(i)
$$R = 0$$
. $I = \{\frac{1}{2}\}$

$$(k) R = 3 I = \begin{bmatrix} -3 & 3 \end{bmatrix}$$

(l)
$$R = \frac{1}{4}$$
, $I = \begin{bmatrix} 1 & \frac{3}{2} \end{bmatrix}$

$$(\kappa) \ \ \kappa = 3, \ I = [-3, 3]$$

$$(t) R = \frac{1}{4}, I = \begin{bmatrix} 1, \frac{1}{2} \end{bmatrix}$$

(p)
$$I = \begin{bmatrix} -\frac{3}{2}, -\frac{1}{2} \end{bmatrix}, R = \frac{1}{2}$$

$$(n) I = (1,0), R = 1$$

20. [-1,1], [-1,1] e (-1,1), respectivamente.

21. .

(a)
$$\frac{1}{(1-x)^2}$$
 (b) $\frac{x}{(1-x)^2}$ (c) 2 (d) $\frac{2x^2}{(1-x)^3}$ (e) 4 (f) 6 (g) $-\ln(1+x)$ (h) $2\ln\frac{3}{2}$

$$(b) \frac{x}{(1-x)^2}$$

$$(c) \ 2$$

$$(d) \ \frac{2x^2}{(1-x)^3}$$

$$(f)$$
 6

$$(g) - \ln(1+x)$$

$$(h) \ 2 \ln \frac{3}{2}$$

22.

(a)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n x^{3n}$$

(b)
$$f(x) = \sum_{\substack{n=0 \\ \infty}} \frac{(-1)^n x}{4^{n+1}}$$

$$(a) f(x) = \sum_{n=0}^{\infty} (-1)^n x^{3n}$$

$$(b) f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n}}{4^{n+1}}$$

$$(c) f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^{2n+1}}{9^{n+1}}$$

$$(d) f(x) = \sum_{n=1}^{\infty} 2^{n-1} n x^{n+1}$$

$$(e) f(x) = \sum_{n=1}^{\infty} \frac{n x^{n+2}}{2^{n+1}}$$

$$(f) f(x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)^{5^{n+1}}}$$

(d)
$$f(x) = \sum_{n=1}^{\infty} 2^{n-1} n x^{n+1}$$

(e)
$$f(x) = \sum_{n=1}^{\infty} \frac{nx^{n+2}}{2^{n+1}}$$

(g) $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n+1}$

(f)
$$f(x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)5^{n+1}}$$

23. .

(a)
$$\sum_{n=0}^{\infty} \frac{x^{8n+2}}{8n+2} + K$$

(b)
$$-\sum_{n=1}^{\infty} \frac{x^{2n-1}}{n(2n-1)} + K$$

(a)
$$\sum_{n=0}^{\infty} \frac{x^{8n+2}}{8n+2} + K$$
 (b) $-\sum_{n=1}^{\infty} \frac{x^{2n-1}}{n(2n-1)} + K$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^{2n-1}}{4n^2 - 1} + K$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)} + K$$

24. Dica: Mostre que arctan $x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ e depois faça $x = \frac{\sqrt{3}}{3}$.

25. Dica: derive termo a termo, desloque o índice do somatório e substitua na equação dada.

26. Dica: derive termo a termo, desloque o índice do somatório e substitua na equação dada.

27. (a)
$$\frac{\sqrt{2}}{2}$$
 (b) $\frac{\sqrt{3}}{2}$ (c) $e^3 - 1$ (d) $e^{\frac{3}{5}}$

- 28. Intervalo de convergência: $\frac{-1}{2} \le x \le \frac{9}{2}$ e raio de convergência $R = \frac{5}{2}$.
- 29. Intervalo de convergência: $\frac{-2}{3} \le x < 4$.
- 30. Dica: Note que a série dada é geométrica!
- 31. $\sum_{n=0}^{\infty} (-1)^n (4n+4)(x-1)^n$, intervalo de convergência: 0 < x < 2.
- 32. $\cosh(x^3) = \sum_{n=0}^{\infty} \frac{x^{6n}}{(2n)!}$, que converge para todo $x \in \mathbb{R}$
- 33. Desenvolvimento em séries de MacLaurin : $f(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{n!}$ que converge para todo $x \in \mathbb{R}$, ou seja, o raio de convergência é infinito.
- 34. Basta integrar termo a termo.

35.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 4^{n+1} x^{2n+5}}{(n+1)(2n+5)}$$
 converge para $\frac{-1}{2} \le x \le \frac{1}{2}$.

36. Desenvolvimento em séries de Maclaurin

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+2}}{(2n+2)!}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+3}}{(2n+1)!}$ (c) $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$
 (e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} x^{2n}}{(2n)!}$$
 (f)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{10n+2}}{(2n+1)!}$$

(g)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-2}}{(2n)!}$$
 (h) $\sum_{n=0}^{\infty} \frac{x^{2n+3}}{n!}$

37.
$$(a)$$
 $\frac{2}{3}$ (b) $-\frac{2}{3}$ (c) 2 (d) -5 (e) -1 (f) 2 (g) -3 (h) $-\frac{7}{2}$

38. (a)
$$k = \ln \frac{8}{9}$$
 (b) $k = -\frac{1}{2}$

39. Desenvolvimento em Séries de MacLaurin

(a)
$$\sum_{n=0}^{\infty} x^n$$

(b)
$$1 + \sum_{n=1}^{\infty} \frac{(-1)^n 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1) x^n}{2^n n!}$$

$$(c) \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

(d)
$$1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)x^{2n}}{2^n n!}$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!(2n+1)} + C$$

$$(f) \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} + C$$

(g)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{(n+1)^2} + C$$

(h)
$$\sum_{n=0}^{\infty} \frac{2x^{2n+1}}{2n+1}$$

(i)
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n+1}}{(2n+1)2^n n!}$$

(i)
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n+1}}{(2n+1)2^n n!}$$
 (j) $-x - \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n+1}}{(2n+1)2^n n!}$

$$(k) \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$

(l)
$$1 + \frac{1}{3}x + \sum_{n=2}^{\infty} \frac{(-1)^n 2 \cdot 5 \cdot 8 \cdot \cdots \cdot (3n-4)x^n}{3^n n!}$$

40.
$$\int_0^t \frac{1}{\sqrt[3]{1+x^4}} dx = t + \sum_{n=1}^\infty \frac{(-1)^n 1.4.7.10. \cdots .(3n-2)t^{4n+1}}{(4n+1).3^n n!}$$