PATENT

Conto

Hong Koo Kim Application No.: 09/747,779

Page 2

Page 2

forming an oxide layer overlying the substrate;

forming a buffer layer overlying the oxide layer;

thermally annealing the buffer layer to enhance an alignment of crystallites of the buffer layer;

forming a ferroelectric material overlying the substrate;

forming a gate layer overlying the ferroelectric material, the gate layer overlying a channel region; and

forming a first source/drain region adjacent to a first side of the channel region and a second source/drain region adjacent to a second side of the channel region.

- 2. The method of claim 1 wherein the channel region is about 1 micron and less.
- 3. The method of claim 1 wherein the ferroelectric material is a PZT bearing compound.
- 4. The method of claim 1 wherein the buffer layer is a magnesium bearing compound.
- 5. The method of claim 1 wherein the buffer layer is a magnesium oxide layer, the magnesium oxide layer being a barrier layer.
- 6. The method of claim 1 wherein the ferroelectric material has a thickness of less than about 1,000 Angstroms.
- 7. The method of claim 1 wherein the buffer layer has a thickness ranging from about 7 to 100 nanometers.
- 8. The method of claim 1 wherein the ferroelectric material has a thickness of about 100 Angstroms and greater.
 - 9. The method of claim 1 wherein the ferroelectric material is PZT.
- 10. The method of claim 1 wherein the buffer layer is a barrier diffusion layer, the barrier diffusion layer substantially preventing diffusion between the ferroelectric material to the substrate.
- 11. The method of claim 1 wherein the buffer material is sputtered from a substantially pure magnesium target to form a magnesium oxide layer.

PATENT

Hong Koo Kim

Application No.: 09/747,779

Page 3

- 12. The method of claim 11 wherein the sputtering is maintained at a temperature greater than about 400 degrees Celsius or greater than about 500 degrees Celsius.
- 13. (Amended) The method of claim 11 wherein the buffer layer is thermally annealed at a temperature of 800-1000 degrees Celsius for about 30 minutes.
- 14. The method of claim 1 wherein the ferroelectric material is highly oriented.
- 15. The method of claim 14 wherein the highly oriented material is a polycrystalline film.
- 16. (Amended) The method of claim 1 wherein the ferroelectric material is substantially free from an amorphous structure.
- 17. The method of claim 15 wherein the polycrystalline film has a crystal structure of 100 angstroms and greater.
- 18. (Amended) The method of claim 1 wherein the buffer layer is a template to provide an oriented growth of the ferroelectric material.
- 19. (Amended) The method of claim 1 wherein the oxide layer is provided by a dry oxidation process comprising an oxygen bearing compound.
- 20. (Amended) The method of claim 1 wherein the oxide layer passivates the surface of the substrate to protect the channel region.
- 21. (Amended) A method for fabricating a non-volatile memory device, the method comprising:

providing a substrate;

forming a first buffer layer overlying the substrate;

forming a second buffer layer overlying the first buffer layer;

thermally annealing the second buffer layer to enhance an alignment of crystallites of the second buffer layer;

forming a ferroelectric material overlying the substrate;

forming a gate layer overlying the ferroelectric material, the gate layer overlying a channel region; and