

ChIPSeqSpike: ChIP-Seq data scaling according to spike-in control

04/19/2018
Nicolas Descostes, Ph.D
Danny Reinberg laboratory

ChIP-Seq protocol

Why using spike-in controls?

ChIP-Seq data processing: From Fastq to BigWig files

The spike-in control scaling procedure

New York City - R/Bioconductor for Genomics: Simplified General Principles of the ChIP-Seq Protocol

ChIP-Seq protocol

Why using spike-in controls?

ChIP-Seq data processing: From Fastq to BigWig files

The spike-in control scaling procedure

New York City - R/Bioconductor for Genomics: Why using spike-in controls?

Traditional data scaling methods do not catch global histone modification alterations

EPZ5676, DOT1L inhibitor

Orlando et al., Cell Reports, 2014

H3K27me3, EZH2 inhibitors

Egan et al., Plos One, 2016

New York City - R/Bioconductor for Genomics: Why using spike-in controls?

Traditional data scaling methods do not catch global histone modification alterations

Reference normalization (RRPM) reveals epigenomic differences

ChIP-Seq protocol

Why using spike-in controls?

ChIP-Seq data processing: From Fastq to BigWig files

The spike-in control scaling procedure

ChIP-Seq protocol

Why using spike-in controls?

ChIP-Seq data processing: From Fastq to BigWig files

Tutorial overview:

The spike-in control scaling procedure &

