西さす / 2018-07-15 11:15:17 / 浏览数 5777 技术文章 技术文章 顶(1) 踩(0)

LM-Hash与NTLM-Hash

在windows下通过SAMInside提取到的密码Hash时,可以看到有两条,分别是LM-Hash和NTLM-HASH这是对同一个密码的两种不同的加密方式,下面对其生成原理做个实验。

Windows下LM-Hash生成原理(IBM设计的LM Hash算法)

实验环境:windows server 2003 使用工具:SAMinside

LM HASH生成规则如下:

- 用户的密码被限制为最多14个字符。
- 用户的密码转换为大写。
- 密码转换为16进制字符串,不足14字节将会用0来再后面补全。
- · 密码的16进制字符串被分成两个7byte部分。每部分转换成比特流,并且长度位56bit,长度不足使用0在左边补齐长度,再分7bit为一组末尾加0,组成新的编码(str_tc
- 上步骤得到的8byte二组,分别作为DES key为"KGS!@#\$%"进行加密。
- 将二组DES加密后的编码拼接,得到最终LM HASH值。

测试服务器密码为123456

- 用户的密码被限制为最多14个字符
- 用户的密码转换为大写,大写转换后仍为它本身

将两组DES加密后的编码拼接得到LM-HASH,计算结果与SAMinside提取结果相同44EFCE164AB921CAAAD3B435B51404EE

python实现LM-HASH脚本

```
# coding=utf-8
import base64
import binascii
from pyDes import *
def DesEncrypt(str, Des_Key):
  k = des(Des_Key, ECB, pad=None)
  EncryptStr = k.encrypt(str)
  return binascii.b2a_hex(EncryptStr)
def Zero_padding(str):
  b = []
  l = len(str)
  num = 0
  for n in range(1):
      if (num < 8) and n % 7 == 0:
          b.append(str[n:n + 7] + '0')
         num = num + 1
  return ''.join(b)
if __name__ == "__main__":
  test_str = "123456"
  test_str = test_str.upper().encode('hex')
  str_len = len(test_str)
  if str_len < 28:
      test_str = test_str.ljust(28, '0')
  # BESSELLE7byte
  t_1 = test_str[0:len(test_str) / 2]
  t_2 = test_str[len(test_str) / 2:]
  # ____56bit___0__0
  t_1 = bin(int(t_1, 16)).lstrip('0b').rjust(56, '0')
  t_2 = bin(int(t_2, 16)).lstrip('0b').rjust(56, '0')
  # ■■7bit■■■■■0■■■■■■
  t_1 = Zero_padding(t_1)
  t_2 = Zero_padding(t_2)
  print t_1
  t_1 = hex(int(t_1, 2))
  t_2 = hex(int(t_2, 2))
  t_1 = t_1[2:].rstrip('L')
  t_2 = t_2[2:].rstrip('L')
  if '0' == t_2:
      t_2 = "00000000000000000"
  t_1 = binascii.a2b_hex(t_1)
  t_2 = binascii.a2b_hex(t_2)
  # BEENE8byteBEENEDES keyE"KGS!@#$%"BEENE
  LM_1 = DesEncrypt("KGS!@#$%", t_1)
  LM_2 = DesEncrypt("KGS!@#$%", t_2)
  # DESERBED BELLM HASHED
  LM = LM_1 + LM_2
  print LM
```

鉴权协议如下的鉴权协议又被称作挑战--认证模式,使用明文口令模式时,网络上传输的就是明文口令本身,这很容易被Sniffer捕获。 挑战/响应模式在传输信道是可被侦听Sniffer,但不可被篡改的情况下,这是一种简单而安全的方法。

LAN Manager Challenge/Response

LAN Manager Challenge/Response 验证机制,简称LM。该方案比NTLM响应时间更早,安全性更低。

SMB通信, Client A访问Server B通过LM身份验证的过程

首先我们假设Server B的密码为 "WELCOME", Server B已经缓存了密码的LM-HASH (原始密码在任何情况下都不能被缓存) 我们通过上面的脚本计算"WELCOME"的LM-HASH为 "c23413a8a1e7665faad3b435b51404ee"

Server B -- 8bytes Challenge --> Client A Server B向Client A发送了一个8字节挑战"0001020304050607"

Client A会根据自己的访问Server B的密码明文计算并缓存密码的LM-HASH (Client A缓存输入密码的哈希值,原始密码会被丢弃,"原始密码在任何情况下都不能被缓存",这是一条基本的安全准则) 然后在LM-HASH后5个0x00变成 "c23413a8a1e7665faad3b435b51404ee0000000000",变为21字节,然后划分成三组,每组7字节

| C23413A8A1E766 | 5FAAD3B435B514 | 04EE0000000000 |

· 每组7字节做为参数传递给str_to_key()函数,最终得到三组DESKEY,每组8字节

```
| C21A04748A0E9CCC | 5ED4B47642ACD428 | 0476800000000000 |
```

• 分别用三组DESKEY对8字节挑战 "0001020304050607" 进行标准DES加密后得到

Client A最终获得一个24字节响应应"CA1200723C41D577AB18C764C6DEF34FA61BFA0671EA5FC8"(这个结果被称为response)

 Client A 将"CA1200723C41D577AB18C764C6DEF34FA61BFA0671EA5FC8" 送往Server B, Server B会根据自己缓存的LM-HASH进行同样的计算,并将计算结果与来自A的响应进行比较,如果匹配则身份验证通过

NTLM-HASH

IBM设计的LM Hash算法存在几个弱点,微软在保持向后兼容性的同时提出了自己的挑战响应机制,NTLM Hash便应运而生。

NTLM-HASH计算如下

密码为123456,首先将密码字符串转化为ASCII字符串,ASCII字符串再转换为十六进制字符串,十六进制字符串再转化为Unicode字符串,然后对Unicode字符串使用MDANTLM-HASH

- 转化为ASCII字符串 123456 ----> 49 50 51 52 53 54
- 转换为十六进制字符串 49 50 51 52 53 54 ----> 31 32 33 34 35 36
- 转化为Unicode字符串 31 32 33 34 35 36 ----> 310032003300340035003600
- 使用MD4消息摘要算法 31 32 33 34 35 36 ----> 32ed87bdb5fdc5e9cba88547376818d4

计算结果与SAMinside提取结果相同

32ed87bdb5fdc5e9cba88547376818d4

各类HASH

	LM	NTLMv1	NTLMv2
Password case sensitive	No	Yes	Yes
Hash key length	56bit + 56bit	-	-
Password hash algorithm	DES (ECB mode)	MD4	MD4
Hash value length	e length 64bit + 64bit		128bit
C/R key length	56bit + 56bit + 16bit	56bit + 56bit + 16bit	128bit
C/R algorithm	R algorithm DES (ECB mode)		HMAC_MD5
C/R value length 64bit + 64bit + 64bit		64bit + 64bit + 64bit	128號知社区

NTLM消息介绍

NTLM验证是一种Challenge/Response 验证机制,由三种消息组成:通常称为类型1(协商),类型2(质询)和类型3(身份验证)。

它基本上是这样工作的:

- 客户端向服务器发送类型1消息。这主要包含客户端支持的功能和服务器请求的功能列表。
- 服务器用类型2消息进行响应。这包含服务器支持并同意的功能列表。然而,最重要的是,它包含了服务器产生的挑战。
- 客户用类型3消息回复质询。这包含有关客户端的几条信息,包括客户端用户的域和用户名。它还包含对类型2挑战的一个或多个响应。(类型3消息中的响应是最关键的

协商消息示例(此处为NTLMv2)

协商消息从客户端发送到服务器以启动NTLM身份验证。其主要目的是通过FLAG指明支持的选项来建立认证的"基本规则"。

十六进制协商消息:

将其分解如下:

0	0x4e544c4d53535000	NTLMSSP签名
8	为0x01000000	类型1指标
12	0x07320000	标志:
		协商Unicode (0x0000001)
		协商OEM (0x0000002)
		请求目标 (0x0000004)
		协商NTLM (0x00000200)
		协商域提供 (0x00001000)
		协商工作站提供 (0x00002000)
16	0x0600060033000000	提供的域安全缓冲区:
		长度: 6个字节 (0x0600)
		分配空间: 6个字节 (0x0600)
		偏移量: 51个字节 (0x33000000)
24	0x0b000b0028000000	提供的工作站安全缓冲区:
		长度: 11个字节 (0x0b00)
		分配空间: 11个字节 (0x0b00)
		偏移量: 40个字节 (0x28000000)
32	0x050093080000000f	OS版本结构:
		主要版本: 5 (0x05)
		次要版本: 0 (0x00)
		内部版本号: 2195 (0x9308)
		未知/保留 (0x000000f)
40	0x574f524b53544154494f4e	提供的工作站数据("WORKSTATION")
51	0x444f4d41494e	提供的域数据("DOMAIN")

wireshark 抓包分析协商消息数据包:

```
192.168.10.102 TCP
   1 0.000000 192.168.10.1
                                                         66 4155 → 445 [SYN] Seq=0 Win=64800 Len=0 MSS=1440 WS...
   2 0.001212 192.168.10.102 192.168.10.1
                                                TCP
                                                         66 445 → 4155 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 ...
   3 0.001306 192.168.10.1 192.168.10.102 TCP
                                                         54 4155 → 445 [ACK] Seq=1 Ack=1 Win=66048 Len=0
   4 0.001398 192.168.10.1
                               192.168.10.102
                                                SMB
                                                        213 Negotiate Protocol Request
   5 0.022350 192.168.10.102 192.168.10.1
                                                SMB2
                                                        506 Negotiate Protocol Response
   6 0.022507 192.168.10.1
                              192.168.10.102 SMB2
                                                        232 Negotiate Protocol Request
   7 0.023562 192.168.10.102 192.168.10.1
                                                SMB2
                                                        566 Negotiate Protocol Response
   8 0.024275 192.168.10.1 192.168.10.102 SMB2
                                                        220 Session Setup Request, NTLMSSP_NEGOTIATE
                                                SMB2
   9 0.024831 192.168.10.102 192.168.10.1
                                                        401 Session Setup Response, Error: STATUS_MORE_PROCESS...
                               192.168.10.102 SMB2
                                                        715 Session Setup Request, NTLMSSP_AUTH, User: DESKTOP...
  10 0.025226 192.168.10.1
  11 0.032024 192.168.10.102 192.168.10.1
                                                SMB2
                                                        159 Session Setup Response
  Frame 8: 220 bytes on wire (1760 bits), 220 bytes captured (1760 bits)
> Ethernet II, Src: Vmware_c0:00:08 (00:50:56:c0:00:08), Dst: Vmware_c2:ec:a7 (00:0c:29:c2:ec:a7)
> Internet Protocol Version 4, Src: 192.168.10.1, Dst: 192.168.10.102
> Transmission Control Protocol, Src Port: 4155, Dst Port: 445, Seq: 338, Ack: 965, Len: 166
> NetBIOS Session Service

✓ SMB2 (Server Message Block Protocol version 2)
  > SMB2 Header

✓ Session Setup Request (0x01)

    > StructureSize: 0x0019
    > Flags: 0
    > Security mode: 0x01, Signing enabled
     > Capabilities: 0x00000001, DFS
       Channel: None (0x00000000)
       Previous Session Id: 0x00000000000000000
    Security Blob: 604806062b0601050502a03e303ca00e300c060a2b060104...
         Offset: 0x00000058
         Length: 74

▼ GSS-API Generic Security Service Application Program Interface

           OID: 1.3.6.1.5.5.2 (SPNEGO - Simple Protected Negotiation)

▼ Simple Protected Negotiation

▼ negTokenInit

              > mechTypes: 1 item
                mechToken: 4e544c4d5353500001000000978208e200000000000000000...
              NTLM Secure Service Provider
                   NTLMSSP identifier: NTLMSSP
                   NTLM Message Type: NTLMSSP_NEGOTIATE (0x00000001)
                 > Negotiate Flags: 0xe2088297, Negotiate 56, Negotiate Key Exchange, Negotiate 128, Negotiate Version
                   Calling workstation domain: NULL
                   Calling workstation name: NULL
                 > Version 10.0 (Build 16299); NTLM Current Revision 15
```

质询消息示例(此处为NTLMv2)

质询消息由服务器发送到客户端以响应客户端的协商消息。它用于完成与客户的选择的谈判,并且向客户提供挑战。它可以选择包含有关认证目标的信息。

十六进制质询消息:

<

4e544c4d5353500002000000c0030000000001028100
0123456789abcdef000000000000000620062003c000000
44004f004d00410049004e0002000c0044004f004d004100
49004e0001000c0053004500520056004500520004001400
64006f006d00610069006e002e0063006f006d0003002200
7300650072007600650072002e0064006f006d0061006900
6e002e0063006f006d0000000000

将其分解为其组成字段给出:

0	04-544-4-55555000	NITI MCCDSS				
0	0x4e544c4d53535000	NTLMSSP签名				
8	0x02000000	类型2指标				
12	0x0c000c0030000000	目标名称安全缓冲区: 长度: 12字节 (0x0c00) 分配空间: 12字节 (0x0c00) 偏移量: 48字节 (0x30000000)				
20	0x01028100	标志: 协商Unicode (0x00000001) 协商NTLM (0x00000200) 目标类型域 (0x00010000) 协商目标信息 (0x00800000)				
24	0x0123456789abcdef	挑战				
32	0x0000000000000000	上下文				
40	0x620062003c000000	目标信息安全缓冲区: 长度: 98字节 (0x6200) 分配空间: 98字节 (0x6200) 偏移: 60字节 (0x3c000000)				
48	0x44004f004d004100 49004e00	目标名称数据(" DOMAIN ")				
60	0x02000c0044004f00 4d00410049004e00 01000c0053004500 5200560045005200 0400140064006f00	目标信息数据:				
		0x02000c0044004f00 4d00410049004e00	域名子块: 类型: 2 (域名, 0x0200) 长度: 12字节 (0x0c00) 数据: "DOMAIN"			
	6d00610069006e00 2e0063006f006d00 0300220073006500 7200760065007200 2e0064006f006d00	0x01000c0053004500 5200560045005200	服务器名称子块: 类型: 1 (服务器名称, 0x0100) 长度: 12字节 (0x0c00) 数据: "服务器"			
	610069006e002e00 63006f006d000000 0000	0x0400140064006f00 6d00610069006e00 2e0063006f006d00	DNS域名子块: 类型: 4 (DNS域名, 0x0400) 长度: 20字节 (0x1400) 数据: "domain.com"			
		0x0300220073006500 7200760065007200 2e0064006f006d00 610069006e002e00 63006f006d00	DNS服务器名称子块: 类型: 3 (DNS服务器名称, 0x0300) 长度: 34字节 (0x2200) 数据: " server.domain.com "			
		00000000	终结者子块: 类型: 0 (终止符, 0x0000) 长度: 0字节 (0x0000)			

o.	Time	Source	Destination	Protocol	Leng Info
	1 0.000000	192.168.10.1	192.168.10.102	TCP	66 4155 → 445 [SYN] Seq=0 Win=64800 Len=0 MSS=1440 WS
	2 0.001212	192.168.10.102	192.168.10.1	TCP	66 445 → 4155 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0
	3 0.001306	192.168.10.1	192.168.10.102	TCP	54 4155 → 445 [ACK] Seq=1 Ack=1 Win=66048 Len=0
	4 0.001398	192.168.10.1	192.168.10.102	SMB	213 Negotiate Protocol Request
	5 0.022350	192.168.10.102	192.168.10.1	SMB2	506 Negotiate Protocol Response
	6 0.022507	192.168.10.1	192.168.10.102	SMB2	232 Negotiate Protocol Request
	7 0.023562	192.168.10.102	192.168.10.1	SMB2	566 Negotiate Protocol Response
	8 0.024275	192.168.10.1	192.168.10.102	SMB2	220 Session Setup Request, NTLMSSP_NEGOTIATE
	9 0.024831	192.168.10.102	192.168.10.1	SMB2	401 Session Setup Response, Error: STATUS_MORE_PROCESS
1	0.025226	192.168.10.1	192.168.10.102	SMB2	715 Session Setup Request, NTLMSSP_AUTH, User: DESKTOP
1	1 0.032024	192.168.10.102	192.168.10.1	SMB2	159 Session Setup Response
 Internet Protocol Version 4, Src: 192.168.10.102, Dst: 192.168.10.1 Transmission Control Protocol, Src Port: 445, Dst Port: 4155, Seq: 965, Ack: 504, Len: 347 NetBIOS Session Service 					
✓ SMB2 (Server Message Block Protocol version 2) ———————————————————————————————————					
 SMB2 Header Session Setup Response (0x01) StructureSize: 0x0009 Session Flags: 0x0000 Security Blob: a182010b30820107a0030a0101a10c060a2b060104018237 					
Offset: 0x00000048 Length: 271					
✓ GSS-API Generic Security Service Application Program Interface ✓ Simple Protected Negotiation					

responseToken: 4e544c4d53535000020000001e001e0038000000015828ae2...

NTLM Secure Service Provider NTLMSSP identifier: NTLMSSP

negResult: accept-incomplete (1)

NTLM Message Type: NTLMSSP_CHALLENGE (0x00000002)

> Target Name: DESKTOP-MI7K39V

> Negotiate Flags: 0xe28a8215, Negotiate 56, Negotiate Key Exchange, Negotiate 128, Negotiate Version

supportedMech: 1.3.6.1.4.1.311.2.2.10 (NTLMSSP - Microsoft NTLM Security Support Provider)

NTLM Server Challenge: 4e783a49fe733dce

Reserved: 00000000000000000

> Target Info

✓ negTokenTarg

> Version 10.0 (Build 16299); NTLM Current Revision 15

身份验证消息示例(此处为NTLMv2)

身份验证消息

是身份验证的最后一步。该消息包含客户端对上一步挑战的响应,这表明客户知道账户密码而不直接发送密码。 身份验证消息

还指示身份验证目标(域或服务器名称)和身份验证帐户的用户名以及客户端工作站名称。

身份验证消息结构

描述	内容
NTLMSSP签名	空终止的ASCII "NTLMSSP" (0x4e544c4d53535000)
NTLM消息类型	★ (0x03000000)
LM / LMv2响应	安全缓冲区
NTLM / NTLMv2响 应	安全缓冲区
目标名称	安全缓冲区
用户名	安全缓冲区
工作站名称	安全缓冲区
会话密钥 (可选)	安全缓冲区

客户端创建一个或多个挑战的响应,有六种类型的回应:

- LM (LAN Manager)响应 由大多数较早的客户端发送,这是"原始"响应类型。
- NTLM响应 这是由基于NT的客户端发送的,包括Windows 2000和XP。
- NTLMv2响应 在Windows NT Service Pack 4中引入的一种较新的响应类型。它替换启用了NTLM版本2的系统上的NTLM响应。
- LMv2响应 替代NTLM版本2系统上的LM响应。
- NTLM2会话响应-用于在没有NTLMv2身份验证的情况下协商NTLM2会话安全性时,此方案会更改LM和NTLM响应的语义。
- 匿名响应 当匿名上下文正在建立时使用; 没有提供实际的证书, 也没有真正的身份验证。"存根"字段显示在类型3消息中。

wireshark 抓包分析身份验证消息数据包:

NTLM响应

NTLM响应由较新的客户端发送。该方案解决了LM响应中的一些缺陷;然而,它仍然被认为相当薄弱。 此外,NTLM响应几乎总是与LM响应一起发送。该算法的弱点可以用来获取不区分大小写的密码,以及用于查找NTLM响应使用的区分大小写密码的试错法。

NTLM响应计算如下:

客户端计算密码字符串的NTLM哈希。

将16字节的NTLM散列填充为21个字节,

该值分成三个7字节。

这些值用于创建三个DES密钥(每个7字节的作为一个密钥)。

这每一个密钥用于对来自质询消息的挑战进行DES加密(产生三个8字节密文值)。

这三个密文值被连接在一起形成一个24字节的值。这是NTLM的回应。

请注意:只有散列值的计算与LM方案不同;响应的计算方式是相同的。

例子(一个使用密码"SecREt01"的用户,质询消息的挑战为"0x0123456789abcdef")。

密码十六进制的Unicode字符串为" 0x53006500630052004500740030003100 "; 计算该值的MD4散列值," 0xcd06ca7c7e10c99b1d33b7485a2ed808 ",这是NTLM哈希。

将21字节分割成三部分" 0xcd06ca7c7e10c9 ", " 0x9b1d33b7485a2e "和" 0xd80800000000000 "。

三个密钥中的每一个用于对来质询消息的挑战(** 0x0123456789abcdef **) 进行DES加密。 这会产生结果** 0x25a98c1c31e81847 **(使用我们的第一个键), ** 0x466b29b2df4680f3 **(使用第二个键)和** 0x9958fb8c213a9cc6 **(使用第三个键)。

这三个密文值被连接在一起形成24字节的NTLM响应: 0x25a98c1c31e81847466b29b2df4680f39958fb8c213a9cc6

NTLMv2响应

NTLM版本2("NTLMv2")被用来解决NTLM中存在的安全问题。当启用NTLMv2时,NTLM响应被替换为NTLMv2响应,并且LM响应被替换为LMv2响应。

NTLMv2响应计算如下:

计算获得NTLM密码哈希,方法和上文一样。

计算获得 NTLMv2哈希值,先将用户名转换为大写,然后和目标拼接在一起(目标为 domain or server name

的值,且区分大小写)组成字符串,然后计算这个字符串的Unicode十六进制字符串,使用上文16字节NTLM散列作为密钥,将HMAC-MD5消息认证码算法应用于Unicod构建被称为"blob"的数据块。"blob"的数据块简述:

字节偏移	描述	内容
0	Blob签名	0x01010000
4	保留的	₭ (0x00000000)
8	时间戳	Little-endian,64位有符号值,表示自 1601年1月1日以来的十分之一微秒数。
16	客户端随机数	8个字节
24	未知	4字节
28	目标信息	目标信息块 (来自类型2消息)。

使用16字节NTLMv2散列(在上面步骤中计算)作为密钥,将HMAC-MD5消息认证码算法应用于质询消息的挑战与blob连接字符串。这会产生一个16字节的HASH输出值、使用上图NTLMv2数据包,计算NTLMv2响应示例:

domain	DESKTOP-DVIA6R3		
用户名	testapp		
密码	123456789		
Challenge	4e783a49fe733dce		
目标信息	0101000000000000891b7768f8b 6d301bd64ae0fc8b41228000000 0002001e004400450053004b005 4004f0050002d004d0049003700 4b0033003900560001001e00440 0450053004b0054004f0050002d 004d00490037004b0033003900 560004001e004400450053004b0 054004f0050002d004d00490037 004b0033003900560003001e004 400450053004b0054004f005000 2d004d00490037004b00330039 00560007000800891b7768f8b6d 301060004000200000008003000 3000000000000000001000000002 0000cde827d049d6339086424 b6e6880b54b98a279af64f927eb 1db25b319c7d211e0a001000000 0000000000000000000000000		

● 首先算出密码123456789的NTLM,得到C22B315C040AE6E0EFEE3518D830362B

SAMInside

LM/NT-Hash Generator
Password: 123456789

LM-Hash: 0182BD0BD4444BF867CD839BF040D93B

NT-Hash: C22B315C040AE6E0EFEE3518D830362B

PWDUMP-format: Test_123456789:1000:0182BD0BD4444BF8

计算获得 NTLMv2哈希值, 先将用户名转换为大写

testapp --> TESTAPP

然后和domain拼接在一起 (domain or server name 的值,且区分大小写)组成字符串

TESTAPPDESKTOP-DVIA6R3

然后计算这个字符串的Unicode十六进制字符串

54004500530054004100500050004400450053004B0054004F0050002D004400560049004100360052003300

使用上文16字节NTLM散列作为密钥,将HMAC-MD5消息认证码算法应用于Unicode十六进制字符串,得到16字节的NTLMv2

a92765662d236c31c620d365c89540d1

连接质询消息的挑战与blob得到字符串

使用NTLMv2散列(在上面步骤中计算)作为密钥,将HMAC-MD5消息认证码算法应用于此字符串,这会产生一个16字节的HASH输出值

03b4e9129fbe586e457d55412b39f324

该值与blob连接以形成NTLMv2响应

然后我们发现这个和我们抓包看到的NTLMv2响应是一样的:

NTLM Secure Service Provider

NTLMSSP identifier: NTLMSSP

NTLM Message Type: NTLMSSP_AUTH (0x00000003)

LMv2 Client Challenge: 00000000000000000

NTLM Response: 03b4e9129fbe586e457d55412b39f32401010000000000000...

Length: 326 Maxlen: 326 Offset: 186

NTLMv2 Response: 03b4e9129fbe586e457d55412b39f32401010000000000000...

NTProofStr: 03b4e9129fbe586e457d55412b39f324

Hashcat的NTLMv2密码字典暴力破解应该就是还原上述过程对比ntlmv2_response,命令如下:

hashcat64.exe -m 5600 testapp::DESKTOP-DVIA6R3:4e783a49fe733dce:03b4e9129fbe586e457d55412b39f324:010100000000000891b7768f8b6d

点击收藏 | 1 关注 | 1

上一篇:利用winrm.vbs绕过应用程序... 下一篇:CTF中常见的RSA相关问题总结

1. 1条回复

exhades 2018-07-15 11:49:36

感谢分享

0 回复Ta

登录 后跟帖

先知社区

现在登录

热门节点

技术文章

社区小黑板

目录

RSS 关于社区 友情链接 社区小黑板