PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 00/14106		
C07K 1/00	A1	(43) International Publication Date: 16 March 2000 (16.03.00)		
(21) International Application Number: PCT/US9 (22) International Filing Date: 9 September 1999 (0		CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,		
 (30) Priority Data: 09/150,489 9 September 1998 (09.09.98) (71) Applicant: THE BURNHAM INSTITUTE [US/US], Torrey Pines Road, La Jolla, CA 92037 (US). (72) Inventors: REED, John, C.; 17044 El Camino Real, Santa Fe, CA 92067 (US). TAKAYAMA, Shini Stratford Court #3, Del Mar, CA 92014 (US). 	10901 i	Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.		
(74) Agents: WONG, James, J. et al.; Campbell & Flores L. 700, 4370 La Jolla Village Drive, San Diego, C (US).				
(54) Title: NOVEL BAG PROTEINS AND NUCLEIC A (57) Abstract The present invention provides a family of BAG-1 r BAG-5), the invertebrate <i>C. elegans</i> (BAG-1, BAG-2) and that encode them.	elated	OLECULES ENCODING THEM proteins from humans (BAG-1L, BAG-1, BAG-2, BAG-3, BAG-4 and sion yeast <i>S. pombe</i> (BAG-1A, BAG-1B) and the nucleic acid molecule.		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

\mathbf{AL}	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	\mathbf{SZ}	Swaziland
\mathbf{AZ}	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Iteland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
\mathbf{CF}	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NOVEL BAG PROTEINS AND NUCLEIC ACID MOLECULES ENCODING THEM

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY-SPONSORED RESEARCH AND DEVELOPMENT

This invention was made with government support under grant number CA-67329 awarded by the National Institutes of Health. The United States Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

10

This invention relates generally to the fields of molecular biology and molecular medicine and more specifically to a novel family of proteins that can regulate protein folding. The functions of these proteins are potentially diverse, including promoting tumor cell growth and metastasis.

BACKGROUND INFORMATION

The Hsc70/Hsp70-family of molecular chaperones participate in protein folding reactions, controlling 20 protein bioactivity, degradation, complex assembly/disassembly, and translocation across membranes. These proteins interact with hydrophobic regions within target proteins via a carboxyl (C)-terminal peptide binding domain, with substrate binding and release being controlled by the N-terminal ATP-binding domain of Hsc70/Hsp70. Hsc70/Hsp70-assisted folding reactions are accomplished by repeated cycles of peptide binding, refolding, and release,

PCT/US99/21053 WO 00/14106

which are coupled to ATP hydrolysis by the ATP-binding domain (ATPase) of Hsc70/Hsp70 and by subsequent nucleotide exchange. The chaperone activity of mammalian Hsc70/Hsp70 is regulated by partner proteins that either modulate the 5 peptide binding cycle or that target the actions of these chaperones to specific proteins and subcellular DnaJ-family proteins (Hdj-1/Hsp40; Hdj-2; compartments. Hdj-3) stimulate the ATPase activity of Hsc70/Hsp70, resulting in the ADP-bound state which binds tightly to 10 peptide substrates. The Hip protein collaborates with Hsc70/Hsp70 and DnaJ homologues in stimulating hydrolysis, and thus also stabilize Hsc70/Hsp70 complexes with substrate polypeptides, whereas the Hop protein may provide co-chaperone functions through interactions with 15 the C-terminal peptide binding domain.

2

The Bcl-2 associated athanogene-1 (bag-1) is named from the Greek word athanos, which refers to BAG-1 was previously referred to as anti-cell death. Bcl-2-associated protein-1 (BAP-1) in U.S. Patent No. 5,539,094 issued July 23, 1996, which is incorporated herein by reference. In this earlier patent, BAG-1 is described as a portion of the human BAG-1 protein, absent the N-terminal amino acids 1 to 85. In addition, a human protein essentially identical to human BAG-1 was described by Zeiner and Gehring, (Proc. Natl. Acad. Sci., USA 25 92:11465-11469 (1995)). Subsequent to the issuance of U.S. Patent 5,539,094 the N-terminal amino acid sequence from 1 to 85 of human BAG-1 was reported.

20

BAG-1 and its longer isoforms BAG-1M (Rap46) and 30 BAG-1L are recently described Hsc70/Hsp70-regulating proteins. BAG-1 competes with Hip for binding to the Hsc70/Hsp70 ATPase domain and promotes substrate release. BAG-1 also reportedly stimulates Hsc70-mediated

3

PCT/US99/21053

hydrolysis by accelerating ADP/ATP exchange, analogous to the prokaryotic GrpE nucleotide exchange protein of the bacterial Hsc70 homologue, DnaK. Gene transfection studies indicate that BAG-1 proteins can influence a wide variety of cellular phenotypes through their interactions with Hsc70/Hsp70, including increasing resistance to apoptosis, promoting cell proliferation, enhancing tumor cell migration and metastasis, and altering transcriptional activity of steroid hormone receptors.

Despite the notable progress in the art, there remains an unmet need for the further identification and isolation of additional homologous BAG protein species, and the nucleic acid molecules and/or nucleotide sequences that encode them. Such species would provide additional means by which the identity and composition of the BAG domain, that is, the portion of the protein that is influencing or modulating protein folding, could be identified. In addition, such species would be useful for identifying agents that modulate apoptosis as candidates for therapeutic agents, in particular, anticancer agents. The present invention satisfies these need, as well as providing substantial related advantages.

SUMMARY OF THE INVENTION

The present invention provides a family of BAG-1 related proteins from humans [BAG-1L (SEQ ID NO:2), BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO: 4), BAG-3 (SEQ ID NO:6) and (SEQ ID NO:20), BAG-4 (SEQ ID NO:8) and (SEQ ID NO:22) and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24)], the invertebrate C.elegans [BAG-1 (SEQ ID NO:12), BAG-2 (SEQ ID NO:14)] and the fission yeast S.pombe [BAG-1A (SEQ ID NO:16), BAG-1B (SEQ ID NO:18)] and the nucleic acid molecules that encode them.

4

Another aspect of the present invention provides an amino acid sequence present in the family of BAG-1 related proteins, that modulates Hsc70/Hsp70 chaperone activity, that is, the BAG domain.

Another aspect of the present invention provides novel polypeptide and nucleic acid compositions and methods useful in modulating Hsc70/Hsp70 chaperone activity.

Another aspect of the present invention is directed to methods for detecting agents that modulate the binding of the BAG family of proteins, such as BAG-1 (beginning at residue 116 of SEQ ID NO:2), and related proteins with the Hsc70/Hsp70 Family of proteins or with other proteins that may interact with the BAG-Family proteins.

Still another aspect of the present invention is directed to methods for detecting agents that induce the dissociation of a bound complex formed by the association of BAG-Family proteins with Hsc70/Hsp70 Family molecule chaperones or other proteins.

BRIEF DESCRIPTION OF THE DRAWINGS

20

25

Figure 1 shows the full length cDNA sequence for human BAG-1 (SEQ ID NO:1) protein with the corresponding amino acid sequence (SEQ ID NO:2). Within the full length sequence are included the overlapping sub-sequences of BAG-1 (beginning at nucleotide 391), BAG-1M [beginning at nucleotide 260 of (SEQ ID NO:2)], and BAG-1L [beginning at nucleotide 46 of (SEQ ID NO:2)].

Figures 2A and 2B combined shows the full length cDNA sequence (SEQ ID NO:3) aligned with the corresponding amino acid residues for human BAG-2 protein (SEQ ID NO:4).

5

Figure 3 shows a cDNA sequence (SEQ ID NO:5) saligned with the corresponding amino acid residues for human BAG-3 protein (SEQ ID NO:6).

Figure 4 shows the a cDNA sequence (SEQ ID NO:7) aligned with the corresponding amino acid residues for human BAG-4 protein (SEQ ID NO:8).

10 Figure 5 shows a cDNA sequence (SEQ ID NO:9) aligned with the corresponding amino acid residues for human BAG-5 protein (SEQ ID NO:10).

Figure 6A shows the full length cDNA sequence for C. elegans BAG-1 protein (SEQ ID NO:11).

Figure 6B shows the 210 amino acid sequence for C. elegans BAG-1 protein (SEQ ID NO:12).

Figure 7A shows the full length cDNA sequence for C. elegans BAG-2 protein (SEQ ID NO:13).

Figure 7B shows the 458 amino acid sequence for 20 C. elegans BAG-2 protein (SEQ ID NO:14).

Figure 8A shows the full length cDNA sequence for $S.\ pombe\ BAG-1A$ protein (SEQ ID NO:15).

Figure 8B shows the 195 amino acid sequence for $S.\ pombe\ BAG-1A$ protein (SEQ ID NO:16).

PCT/US99/21053 WO 00/14106

6

Figure 9A shows the full length cDNA sequence for S. pombe BAG-1B protein (SEQ ID NO:17).

Figure 9B shows the 206 amino acid sequence for S. pombe BAG-1B protein (SEQ ID NO:18).

Figure 10 shows the topologies of the BAG-family 5 proteins; human BAG proteins, BAG-1 (SEQ ID NO:2), BAG-2 (SEQ ID NO:4), BAG-3 (SEQ ID NO:6), BAG-4 (SEQ ID NO:8), BAG-5 (SEQ ID NO:10); S.pombe BAG-1A (SEQ ID NO:16) and BAG-1B (SEQ ID NO:18); and C. elegans BAG-1 (SEQ ID NO:12) and BAG-2 (SEQ ID NO:14). (A) The relative 10 positions of the BAG domains are shown in black, ubiquitinlike regions are represented in gray, WW domain are in strips. Nucleoplasmin-like represented localization sequence are also shown. (B) The amino acid sequences of the BAG domain for human BAG-1 (SEQ ID NO:2), 15 BAG-2 (SEQ ID NO:4), BAG-3 (SEQ ID NO:6), BAG-4 (SEQ ID NO:8), BAG-5 (SEQ ID NO:10), S.pombe BAG-1A (SEQ ID NO:16) and BAG-1B (SEQ ID NO:18), and C. elegans BAG-1 (SEQ ID NO:12) and BAG-2 (SEQ ID NO:14) are aligned demonstrating 20 their homology. Black and gray shading represent identical and similar amino acids, respectively.

11 shows assays demonstrating the interaction of BAG-family proteins with Hsc70/ATPase. Two-hybrid assays using yeast expressing the indicated Blue color indicates a positive fusion proteins. interaction, resulting in activation of the lacZ reporter (B) In vitro protein assays using GST-fusion proteins and 35S-labeled in vitro translated proteins. (C) Co-immunoprecipitation assays using anti-Flag or IgG1 30 control antibodies and lysates from 293T cells expressing Flag-tagged BAG-1 (beginning at residue 116 of SEQ ID

25

PCT/US99/21053 WO 00/14106

7

NO:2), BAG-2 (SEQ ID NO:4), BAG-3 (SEQ ID NO:6), Daxx, or Apaf-1.

Figure 12 shows surface plasmon resonance of BAG-family protein interactions with analysis 5 Hsc70/ATPase. (A) SDS-PAGE analysis of purified recombinant proteins. (B) Representative SPR results of biosensor chips containing immobilized BAG proteins with and without maximally bound Hsc70/ATPase.

Figure 13 shows representative SPR results for 10 biosensor chips containing immobilized BAG-1 (beginning at residue 116 at SEQ ID NO:2), BAG-1(\(\Delta C \)), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) proteins. Hsc70/ATPase was flowed over the chips (arrow/left) until maximal binding was reached (response units), then flow was continued without 15 Hsc70/ATPase (arrow/right). For BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6), Hsc70 was injected at 0.0175, 0.035, 0.07, 0.14, and $0.28 \mu M$.

Figure 14 shows BAG-family protein modulation of Hsc70 chaperone activity. (A) Protein refolding assay of 20 chemically-denatured luciferase by Hsc70 plus DnaJ in the absence or presence of BAG and BAG-mutant proteins. Concentration-dependent inhibition of Hsc70-mediated protein refolding by BAG-family proteins [BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), BAG-3 (SEO ID NO:6)] but not by BAG-mutant (BAG-1 (Δ C). Hsc70/Hsp40-mediated refolding of heat-denatured luciferase was assayed in the presence of (black bars) or absence of (striped bars) of 1.8 µM Hip, with (lanes 3-10) or without (lanes 1,2) various BAG-family proteins (1.8µM) indicated (mean ±SE; n=3). A control (CNTL) is shown (lane 1) in which Hsc70 was replaced with an equivalent amount of BSA.

25

30

8

Figure 15A shows an expanded cDNA sequence for human BAG-3 protein (SEQ ID NO:19).

Figure 15B shows the corresponding amino acid residues for the human BAG-3 protein (SEQ ID NO:20) of Figure 15A.

Figure 15C shows the expanded cDNA sequence (SEQ ID NO:19) aligned with the corresponding amino acid residues for human BAG-3 protein of Figure 15A (SEQ ID NO:20).

Figure 16A shows an expanded cDNA sequence for human BAG-4 protein (SEQ ID NO:21).

Figure 16B shows the corresponding amino acid residues for the human BAG-4 protein of Figure 16A (SEQ ID NO:22).

Figure 16C shows the expanded cDNA sequence (SEQ ID NO:21) aligned with the corresponding amino acid residues for human BAG-4 protein of Figure 16A (SEQ ID NO:22).

Figure 17A shows an expanded cDNA sequence for 20 human BAG-5 protein (SEQ ID NO:23).

Figure 17B shows the corresponding amino acid residues for the human BAG-5 protein of Figure 17A (SEQ ID NO:24).

Figure 17C shows the expanded cDNA sequence (SEQ 25 ID NO:23) aligned with the corresponding amino acid residues for human BAG-5 protein of Figure 17A (SEQ ID NO:24).

9

Figure 18 shows the topologies of the BAG-family proteins; human BAG proteins, BAG-1 (SEQ ID NO:2), BAG-2 (SEO ID NO:4), expanded BAG-3 (SEQ ID NO:20), expanded BAG-4 (SEQ ID NO:22), expanded BAG-5 (SEQ ID NO:24); S.pombe BAG-1A (SEQ ID NO:16) and BAG-1B (SEQ ID NO:18); and C. elegans BAG-1 (SEQ ID NO:12) and BAG-2 (SEQ ID NO:14). The relative positions of the BAG domains are shown in black, ubiquitin-like regions are represented in gray, WW domain are represented in strips. Nucleoplasmin-like nuclear localization sequence are also shown.

PCT/US99/21053

Definitions

10

WO 00/14106

The term "apoptosis", as used herein, refers to the process of programmed cell death, although not all programmed cell deaths occur through apoptosis, as used herein, "apoptosis" and "programmed cell death" are used 15 interchangeably.

The term "tumor cell proliferation", as used herein refers to the ability of tumor cells to grow and thus expand a tumor mass.

The term "cell migration", as used herein refers 20 to the role cell motility plays in the invasion and potentially metastasis by tumor cells.

The term "metastasis", as used herein refers to the spread of a disease process from one part of the body to another, as in the appearance of neoplasms in parts of the body remote from the site of the primary tumor; results in dissemination of tumor cells by the lymphatics or blood vessels or by direct extension through serious cavitites or subarachnoid or other spaces.

WO 00/14106

hormones.

The term "steroid hormone receptor function", as used herein refers to physiological, cellular and molecular functioning of receptors sites that bind with steroid

10

PCT/US99/21053

The term "substantially purified", as used herein, refers to nucleic acid or amino acid sequence that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated.

"Nucleic acid molecule" as used herein refers to an oligonucleotide, nucleotide, or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single or double stranded, and represent the sense or antisense strand.

"Hybridization", as used herein, refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The terms "complementary" or "complementarity",

20 as used herein, refer to the natural binding of
polynucleotides under permissive salt and temperature
conditions by base-pairing. For example, the sequence

"A-G-T binds to the complementary sequence "T-C-A".

The term "homology", as used herein, refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence is one that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid and is referred to using the functional term "substantially homologous." The inhibition of

WO 00/14106

11

PCT/US99/21053

hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence or probe to the target sequence under conditions of low stringency.

The term "antisense", as used herein, refers to nucleotide sequences which are commplementary to a specific 10 DNA or RNA sequence. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. Antisense molecules may be produced by any method, including synthesis by ligating the gene(s) of interest in a reverse orientation to a viral promoter which 15 permits the synthesis of a complementary strand. introduced into a cell, this transcribed strand combines with natural sequences produced by the cell to form duplexes. These duplexes then block either the further transcription or translation. In this manner, mutant 20 phenotypes may be generated. The designation "negative" is used in reference to the antisense, sometimes "positive" is sometimes used in reference to the sense strand.

"Amino acid sequence" as used herein refers to an oligopeptide, peptide, polypeptide, or protein sequence, and fragments or portions thereof, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited herein this term excludes an amino acid sequence of a naturally occurring protein. "Amino acid sequence", "polypeptide" or "protein" are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.

PCT/US99/21053 WO 00/14106 12

10

15

20

The term "functional fragments" or "fragments", as used herein, with regard to a protein refers to portions of that protein that are capable of exhibiting or carrying out the activity exhibited by the protein as a whole. 5 portions may range in size from three amino acid residues to the entire amino acid sequence minus one amino acid. For example, a protein "comprising at least a functional fragment of the amino acid sequence of SEQ ID NO:1", encompasses the full-length of the protein of SEQ ID NO:1 and portions thereof.

A "derivative" of a BAG protein, as used herein, refers to an amino acid sequence that is alterd by one or more amino acids. The derivative may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., substitution of an apolar amino acid with another apolar amino acid (such as replacement of leucine with isoleucine). The derivative also have "nonconservative" changes, wherein a substituted amino acid has different but sufficiently similar structural or chemical properties that permits such a substitution without adversely effecting the desired biological activity, e.g., replacement of an amino acid with an uncharged polar R group with an amino acid with an apolar R group (such as replacement of glycine with tryptophan), or alternatively replacement of an amino acid with a charged R group with an amino acid with an uncharged Polar R group (such as replacement of lysine with asparagine).

Amino Acids - Apolar R Groups

5

10

15

25

Amino Acid	Radical	Abbreviations	
		3-Letter	1-Letter
alanine	methyl	ala	А
valine	2-propyl	aal	V
leucine	2-methylpropyl	leu	L
isoleucine	2-butyl	ile	I
proline	propyl* - cyclized	pro	P
phenylalanine	benzyl	phe	F
trytophan	3-indolylmethl	tyr	W
methionine	methylthioethyl	met	М

Amino Acids - Uncharged Polar R Groups

Amino Acid	Radical	Abbrevia	
		3-Letter	1-Letter
glycine	Н	gly	G
serine	hydroxymethyl	ser	S
threonine	1-hydroxyethyl	thr	Т
cysteine	thiolmethyl	cys	С
tyrosine	4-hydroxyphenylmethyl	tyr	Y
asparagine	aminocarbonylmethyl	asn	N
glutamine	aminocarbonylethyl	gln	Q

20 Amino Acids - Charged R Groups

Amino Acid	Radical	Abbreviations		
		3-Letter	1-Letter	
aspartic acid	carboxymethyl	asp	D	
glutamic acid	carboxyethyl	glu	E	
lysine	4-aminobutyl	lys	K	
arginine	3-guanylpropyl	arg	R	
histidine	4-imidazoylmethyl	his	Н	

14

Similar minor modifications may also include amino acids deletions or insertions or both. Guidance in determining which amino acid residues may be modified as indicated without abolishing the desired biological 5 functionality may be determined using computer programs well known in the art, for example, DNASTAR software. addition, the derivative may also result from chemical modifications to the encoded polypeptide, including but not limited to the following, replacement of hydrogen by an alkyl, acyl, or amino group; esterification of a carboxyl group with a suitable alkyl or aryl moiety; alkylation of a hydroxyl group to form an ether derivative. Further a derivative may also result from the substitution of a Lconfiguration amino acid with its corresponding D-15 configuration counterpart.

The term "mimetic", as used herein, refers to a molecule, the structure of which is developed from knowledge of the structure of a protein/polypeptide or portions thereof (such as BAG-1) and, as such, is able to effect some or all of the actions of BAG-1 protein.

20

"Peptide nucleic acid", as used herein, refers to a molecule which comprises an oligomer to which an amino acid residue, such as lysine, and an amino group have been added. These small molecules, also designated anti-gene agents, stop transcript elongation by binding to their complementary strand of nucleic acid (Nielsen, P.E. et al., Anticancer Drug Des. 8:53-63 (1993)).

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a family of BAG-1 related proteins from humans [BAG-1L (SEQ ID NO:2), BAG-1S beginning at residue 116 of SEQ ID NO:2, BAG-2 (SEQ ID

15

NO:4), BAG-3 (SEQ ID NO:6) and (SEQ ID NO:20), BAG-4 (SEQ ID NO: 8) and (SEQ ID NO:22) and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24)], the invertebrate C.elegans [BAG-1 (SEO ID NO:12), BAG-2 (SEQ ID NO:14)] and the fission yeast S.pombe NO:16), BAG-1B 5 [BAG-1A (SEQ ΙD (SEQ ΙD NO:18)], specifically the full length amino acid sequences comprising human BAG-1L (SEQ ID NO:2), BAG-1 (beginning at residue 116 of SEQ ID NO:2), and BAG-2 (SEQ ID NO:4) C. elegans BAG-1 (SEQ ID NO:12), and BAG-2 (SEQ ID NO:14), and S.pombe BAG-1A (SEQ ID NO:16) and BAG-1B (SEO ID NO:18); 10 and partial sequences comprising human BAG-3 (SEQ ID NO: 6) and (SEQ ID NO:20), BAG-4 (SEQ ID NO:8) and (SEQ ID NO:22), and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24) and functional fragments thereof. In particular, the invention provides the amino acid sequences comprising human BAG-2 (SEQ ID 15 NO:4), BAG-3 (SEQ ID NO:6) and (SEQ ID NO:20), BAG-4 (SEO ID NO:8) and (SEQ ID NO:22), and BAG-5 (SEQ ID NO:10) and (SEQ ID NO:24) proteins.

Another aspect of the present invention provides
the nucleic molecule and nucleotide sequences that encode
the family of BAG-1 related proteins from humans [BAG-1
(SEQ ID NO:1), BAG-2 (SEQ ID NO:3), BAG-3 (SEQ ID NO:5) and
(SEQ ID NO:19), BAG-4 (SEQ ID NO:7) and (SEQ ID NO:21) and
BAG-5 (SEQ ID NO:9) and (SEQ ID NO:23)], the invertebrate

C.elegans [BAG-1 (SEQ ID NO:11), BAG-2 (SEQ ID NO:13)] and
the fission yeast S.pombe [BAG-1A (SEQ ID NO:15), BAG-1B
(SEQ ID NO:17)].

BAG-1L (SEQ ID NO:2) is a multifunctional protein that blocks apoptosis, promotes tumor cell metastasis, and contributes to factor-independent and p53-resistant cell growth. BAG-1L (SEQ ID NO:2) interacts with several types of proteins, including Bcl-2, some tyrosine kinase growth

16

factor receptors, steroid hormone receptors, and the p53-induced cell cycle regulator Siah-1A.

is a regulator of Hsc70/Hsp70 family molecular chaperones. A carboxyl-terminal domain in this 5 protein binds tightly to the ATPase domains of Hsc70 and Hsp70 ($K_n = 1$ nM) (Zeiner, M., Gebauer, M., and Gehring, U., EMBO J. **16**: 5483-5490, (1997)). BAG-1 modulates the activity of these molecular chaperones, acting as an functional antagonist of the Hsp70/Hsc70associated protein Hip (3-5) (Höhfeld, J. and Jentsch, S., EMBO J. 16: 6209-6216, (1997); Takayama, S., Bimston, D. N., Matsuzawa, S., Freeman, B. C., Aime-Sempe, C., Xie, Z., Morimoto, R. J., and Reed, J. C., EMBO J. 16: 4887-96, (1997); Zeiner, M., Gebauer, M., and Gehring, U., EMBO J. 15 16: 5483-5490, (1997)). In general, protein refolding is accomplished by Hsp70/Hsc70 through repeated cycles of target peptide binding and release, coupled to ATP hydrolysis (Ellis, R., Curr Biol. 7: R531-R533, (1997)). BAG-1 appears to promote substrate release, whereas Hip stabilizes Hsp70/Hsc70 complex formation with target 20 peptides (Höhfeld, J., Minami, Y., and Hartl, F.-U., Cell. **83:** 589-598, (1995)). Since each substrate interaction with Hsc70/Hsp70 is unique in terms of the optimal length of time the protein target should remain complexed with 25 Hsc70/Hsp70 for achieving new conformations, the net effect of BAG-1 can be either enhancement or inhibition of the refolding reaction.

The 70kd heat shock family proteins (Hsp70/Hsc70) are essential to a variety of cellular processes and have been implicated in cancer, yet it is unclear how these proteins are regulated in vivo. A variety of co-chaperones have been identified which may target Hsp70/Hsc70 to different subcellular compartments or promote their

WO 00/14106

10

interactions with specific protein or protein complexes. BAG-1 appears to represent a novel Hsp70/Hsc70 regulator which differs functionally from all other mammalian cochaperones identified to date, such as members of the DnaJ-, Hip-, Hop-, and cyclophilin-families of proteins.

PCT/US99/21053

Another aspect of the present invention provides the amino acid sequence of a binding domain of about 40 to 55 amino acids that bind the a Hsc70/Hsp70 ATPase domain. The BAG domain is situated near the C-terminus, and the ubiquitin-like domains are situated near the N-terminus.

The BAG family of proteins of the present invention contain a common conserved C-terminal domain (the "BAG" domain) that facilitates binding to the ATPase domain of Hsp70/Hsc70. The carboxyl-terminal domain of BAG-1 binds to the ATPase domain of Hsc70/Hsp70 and regulates its chaperone function by acting as a ADP-ATP exchange factor. Other domains of BAG-1 mediate interactions with proteins such as Bcl-2 and retinoic acid receptors (RARs), allowing BAG-1 to target Hsc70/Hsp70 to other proteins, presumably modulating their function by changing their conformations.

Human BAG-1 was previously shown to inhibit Hsc70/Hsp70 dependent refolding of denatured protein substrates in vitro (S. Takayama, et al., EMBO J 16, 4887-96 (1997); M. Zeiner, M. Gebauer, U. Gehring, EMBO J. 16, 5483-5490 (1997); and J. Höhfeld, S. Jentsch, EMBO J. 16, 6209-6216 (1997)). In Example III, Part A the effects of recombinant human BAG-1, BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) were compared using in vitro protein refolding assays similar to those employed previously for assessing BAG-1. The study showed that addition of equimolar amounts of each of the recombinant proteins to Hsc70 resulted in significant inhibition of luciferase refolding, with BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) showing somewhat

PCT/US99/21053 WO 00/14106

greater inhibitor activity than BAG-1 (Figure 4A). In a separate luciferase folding study BAG-1, BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) once again displayed inhibition of luciferase refolding, however in this study 5 varying amounts of BAG-1, BAG-2 (SEQ ID NO:4) and BAG-3 (SEO ID NO:6) were added relative to Hsc70 which resulting in concentration-dependent inhibition of Hsc70 chaperone activity, i.e., luciferase folding (Example III Part A). Additional follow on studies using the same experimental protocols as the previous studies, as taught in Example 10 IIA, have shown that BAG-4 (SEQ ID NO:22) also undergoes association with Hsc70/ATPase.

Yet another aspect of the present invention provides a nucleotide sequence having at least about 15 nucleotides generally, about 25 nucleotides, and, preferably about 35 nucleotides, more preferably about 45 nucleotides, and most preferably about 55 nucleotides that hybridize or is complementary under relatively stringent conditions to a portion of the nucleic acid sequences shown in Figures 1-9 and Figures 15-17, in 20 particular the BAG domain as shown in in Figure 1B, e.g., nucleotides 552-593 of human BAG-3, or nucleotides 167-221 of human BAG-4.

Yet another aspect of the present invention 25 provides a compound of the formula,

$$R^{N}-R^{1}X^{1}R^{2}X^{2}R^{3}X^{3}R^{4}X^{4}R^{5}X^{5}R^{6}X^{6}R^{7}X^{7}X^{8}R^{9}X^{9}R^{10}X^{10}R^{11}X^{11}-R^{C}$$

wherein,

15

 R^{N} is a group of 1 to 552 independently selected amino acids:

R¹ is a group of 3 independently selected amino 30 acids;

 ${\rm X}^1$ is an amino acid with a charged or uncharged R group, such as aspartic acid, glutamic acid, asparagine, or glutamine;

 R^2 is a group of 7 independently selected amino acids;

 ${\rm X}^2$ is an amino acid with a charged R group, such as glutamic acid;

R³ is a group of 5 independently selected amino acids;

10 X³ is an amino acid with an apolar R group, such as leucine, methionine, or isoleucine;

R⁴ is a group of 3 independently selected amino acids;

 ${ t X}^4$ is an amino acid with charged R group, such as 15 aspartic acid or glutamine acid;

 ${\tt R}^5$ is a single independently selected amino acid; ${\tt X}^5$ is an amino acid with apolar or uncharged R group, such as leucine, valine, methionine, alanine or threonine;

20 \mathbb{R}^6 is a group of 15 independently selected amino acids;

X⁶ is an amino acid with a charged or uncharged
R group, such as arginine, lysine, glutamine or aspartic
acid;

25 R⁷ is a group of 2 independently selected amino acids;

 ${\tt X}^{^{\prime}}$ is an amino acid with a charged R group, such as arginine;

X⁸ is an amino acid with a charged R group, such 30 as arginine or lysine;

R⁹ is a group of 2 independently selected amino acids;

 ${\tt X}^9$ is an amino acid with an apolar R group, such as valine;

 R^{10} is a group of 3 independently selected amino acids;

5

25

30

WO 00/14106

X¹⁰ is an amino acid with an uncharged R group, such as glutamine;

20

PCT/US99/21053

R¹¹ is a group of 2 independently selected amino acids;

X¹¹ is an amino acid with an apolar R group, such as leucine; and

R^C is a group of 1 to 100 independently selected amino acids.

A nucleotide sequence of at least about 15 10 nucleotides and, generally, about 25 nucleotides, preferably about 35 nucleotides, more preferably about 45 nucleotides, and most preferably about 55 nucleotides can be useful, for example, as a primer for the polymerase chain reaction (PCR) or other similar reaction mediated by a polymerase such as a DNA or RNA polymerase (see PCR Protocols: A guide to methods and applications, ed. Innis et al. (Academic Press, Inc., 1990), which is incorporated herein by reference; see, for example, pages 40-41). addition, such a nucleotide sequence of the invention can be useful as a probe in a hybridization reaction such as Southern or northern blot analysis or in a binding assay such as a gel shift assay.

A nucleotide sequence of the invention can be particularly useful as an antisense molecule, which can be DNA or RNA and can be targeted to all or a portion of the 5'-untranslated region or of the 5'-translated region of a bag-1 nucleic acid sequence in a cell. For example, an antisense molecule can be directed to at least a portion of the sequence shown as the BAG domain in Figure 1A, e.g., nucleotides 272-319 of human BAG-1L (SEQ ID NO:1), or nucleotides 79-147 of human BAG-5 (SEQ ID NO:9). Since the 5'-region of a nucleic acid contains elements involved in the control of expression of an encoded protein, an antisense molecule directed to the 5'-region of a nucleic

WO 00/14106

15

20

acid molecule can affect the levels of protein expressed in a cell.

PCT/US99/21053

A nucleotide sequence of the invention also can be useful as a probe to identify a genetic defect due a 5 mutation of a gene encoding a BAG protein in a cell. Such a genetic defect can lead to aberrant expression of a BAG protein in the cell or to expression of an aberrant BAG protein, which does not properly associate with a Bcl-2-related protein or Hsc70/Hsp70 protein in the cell. As a 10 result, a genetic defect in a gene encoding, for example, human BAG-1 can result in a pathology characterized by increased or decreased levels in protein folding.

Further a nucleotide compound or composition as taught in the present invention can be synthesized using routine methods or can be purchased from a commercial In addition, a population of such nucleotide sequences can be prepared by restriction endonuclease or mild DNAse digestion of a nucleic acid molecule that contains nucleotides as shown in the nucleotide sequences shown in Figures 1-9 and Figures 15-17 that encodes the amino acids sequences also shown in Figures 1-9 Figures 15-17. Methods for preparing and using such nucleotide sequences, for example, as hybridization probes to screen a library for homologous nucleic acid molecules are well known in the art (see, for example, Sambrook et al., Molecular Cloning: A laboratory manual (Cold Spring Harbor Laboratory Press 1989); Ausubel et al., Current Protocols in Molecular Biology (Green Publ., NY each of which is incorporated herein by reference).

A particular nucleotide sequence can be designed based, for example, on a comparison of the nucleic acid molecules encoding any one of the BAG family proteins, as shown in Figures 1-9 and Figures 15-17, with another in the family. Such a comparison allows, for example, the

22

preparation of a nucleotide sequence that will hybridize to a conserved region present in both nucleic acid molecules, thus providing a means to identify homologous nucleic acid molecules present in other cell types or other organisms. In addition, such a comparison allows the preparation of a nucleotide sequence that will hybridize to a unique region of any of the BAG family nucleotide sequences, such as those corresponding to the BAG domain, thus allowing identification of other proteins sharing this motif. this regard, it is recognized that, while the human BAG-3 10 proteins shown as Figures 3 and 20, and human BAG-5 proteins shown as Figures 5 and 24, are only partial sequences, a variant human BAG-3 or BAG-5 produced, for example, by alternative splicing can exist and can be identified using an appropriately designed nucleotide 15 sequence of the invention as a probe. Such useful probes readily can be identified by inspection of the sequences shown in the disclosed Figures by a comparison of the encoding nucleotide sequences.

If desired, a nucleotide sequence of the invention can incorporate a detectable moiety such as a radiolabel, a fluorochrome, a ferromagnetic substance, a luminescent tag or a detectable binding agent such as biotin. These and other detectable moieties and methods of incorporating such moieties into a nucleotide sequence are well known in the art and are commercially available. A population of labelled nucleotide sequences can be prepared, for example, by nick translation of a nucleic acid molecule of the invention (Sambrook et al., supra, 1989; Ausubel et al., supra, 1989).

One skilled in the art would know that a method involving hybridization of a nucleotide sequence of the invention can require that hybridization be performed under relatively stringent conditions such that nonspecific background hybridization is minimized. Such hybridization

35

WO 00/14106 23

conditions can be determined empirically or can estimated based, for example, on the relative GC content of a sequence and the number of mismatches, if known, between the probe and the target sequence (see, for example, Sambrook et al., supra, 1989).

PCT/US99/21053

invention further provides antibodies The specific for human BAG family protein. As used herein, the "antibody" includes polyclonal and antibodies, as well as polypeptide fragments of antibodies that retain a specific binding activity for human BAG-1 of 10 at least about 1 \times 10⁵ M^{-1} . One skilled in the art would know that anti-BAG-1 antibody fragments such as Fab, F(ab')2 and Fv fragments can retain specific binding activity for human BAG-1 (beginning at residue 116 of SEQ ID NO:2) and, thus, are included within the definition of an antibody. 15 In addition, the term "antibody" as used herein includes naturally occurring antibodies as well as non-naturally occurring antibodies and fragments that retain binding as chimeric antibodies or activity such antibodies. Such non-naturally occurring antibodies can be constructed using solid phase peptide synthesis, can be produced recombinantly or can be obtained, for example, by screening combinatorial libraries consisting of variable heavy chains and variable light chains as described by Huse et al., Science 246:1275-1281 (1989), which is incorporated herein by reference.

20

25

30

35

One skilled in the art would know that purified BAG family protein, which can be prepared from natural synthesized chemically or or produced recombinantly, or portions of a BAG family protein, including a portion of human BAG family protein such as a synthetic peptide as described above, can be used as an immunogen. Such peptides useful for raising an antibody include, for example, peptide portions of the N-terminal 85 amino acids or the BAG domain of any of the human BAG

10

15

20

24

PCT/US99/21053

proteins (see Figure 1B). A particularly advantageous use of such a protein is for the immunostaining, wherein the methods provides a process to contrast the immunostaining of BAG-family proteins in carcinoma cells with adjacent non-neoplastic prostatic epithelial and basal cells which are generally present in the same tissue sections. These results would be correlated with a Gleason grade to determine whether any of the BAG-family proteins tend to be expressed at higher or lower levels in histologically advanced tumors. From this process a determination can be made as to degree at which the disease is progressing in a given patient, i.e., a prognosis can be made.

Non-immunogenic fragments or synthetic peptides of BAG proteins can be made immunogenic by coupling the hapten to a carrier molecule such bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH), as described in Example IV, below. In addition, various other carrier molecules and methods for coupling a hapten to a carrier molecule are well known in the art and described, for example, by Harlow and Lane, Antibodies: A laboratory manual (Cold Spring Harbor Laboratory Press, 1988), which is incorporated herein by reference.

EXAMPLES

The following examples are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

25

EXAMPLE I

Isolation and Characterization of BAG-family cDNA Sequences

This example describes methods for isolating and 5 characterizing of BAG-family cDNA sequences from human, nematode and yeast.

A. Cloning of human BAG cDNA sequences

Yeast two-hybrid library screening of a human Jurkat cell cDNA library was performed as described by Takayama et al., EMBO J., 16:4887-96 (1997); Matsuzawa et 10 al., EMBO J., 17:2736-2747 (1998), which are incorporated herein by reference) using EGY48 strain yeast transformed with pGilda-Hsc70/ATPase (67-377 amino acids) and the lacZ reporter plasmid pSH18-34. Of the resulting ~5 x 106 transformants, 112 Leu colonies were obtained after 15 1 week incubation at 30°C. Assay of β -galactosidase (β -gal) activity of these colonies resulted in 96 clones. tests were then performed using RFY206 yeast strain transformed with pGilda, pGilda mBAG-1 (1-219), or pGilda Hsc70/ATPase. Of these, 66 displayed specific interactions 20 with Hsc70/ATPase. The pJG4-5 cDNAs were recovered using KC8 E. coli strain which is auxotrophic for tryptophan DNA sequencing revealed 3 partially overlapping human BAG-1, 4 identical and one overlapping cDNAs encoding BAG-2, and 2 partially overlapping BAG-3 clones. 25

Using the above described yeast two-hybrid screen with the ATPase domain of Hsc70 as "bait", several human cDNAs were cloned which encode portions of BAG-1 or of two other BAG-1-like proteins which are termed BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6). The longest of the cDNAs for BAG-2 (SEQ ID NO:3) and BAG-3 (SEQ ID NO:5) contained open reading frames (ORFs) of 207 and 162 amino acids, respectively, followed by stop codons. All BAG-1 (SEQ ID

30

26

NO:1), BAG-2 (SEQ ID NO:3) and BAG-3 (SEQ ID NO:5) cDNAs obtained by two-hybrid library screening with Hsc70/ATPase contained a conserved domain of about 40-50 amino acids which are termed the "BAG" domain and are shown in Figure 10. These results demonstrate that a family of BAG-1-related proteins all contain a conserved ~45 amino acid region near their C-terminus that binds Hsc70/Hsp70.

B. Identification of additional BAG-family proteins

the bBLAST and FASTA search programs also identified human ESTs that provided sequences for further investigation of BAG-family proteins. The putative BAG-4 (SEQ ID NO:8) and BAG-5 (SEQ ID NO:10) proteins contain BAG-domains that share the greatest sequence similarity with the BAG-domain of BAG-3 (SEQ ID NO:6). These were designated BAG-4 (Accession number AA693697, N74588) and BAG-5 (Accession number AA456862, N34101). BAG-4 has 62% identity and ~81% similarity to BAG-3, and BAG-5 has 51% identity and ~75% similarity to BAG-3.

Additional BAG-family orthologues or homologues 20 were also identified using computer-based searches and resulted in BAG-family homologue in the nematode C. elegans and the fission yeast S. pombe. The C. elegans genome encodes two apparent BAG-family proteins, which are most similar in their overall sequences to the human BAG-1 25 (Afo39713, gi:2773211) (SEQ ID NO:12) and BAG-2 (SEQ ID NO:14) (Afo68719, gi:3168927). The S. pombe contains two BAG-family proteins that share the greatest overall sequence similarity with human BAG-1 (Alo23S54,gi/3133105 and Alo23634, qi/3150250). The human and C. elegans BAG-1 30 proteins as well as S. pombe BAG-1A all have ubiquitin-like domains near their N-termini (see Figure 10A) of unknown function.

27

The overall predicted amino acid sequences of the C. elegans BAG-1 (SEQ ID NO:12) and S. pombe BAG-1A (SEQ ID NO:16) proteins are ~18% identical (~61% similar) and ~17% identical (~64% similar), respectively, to human BAG-1, implying origin from a common ancestral gene. The C. elegans BAG-1 protein (SEQ ID NO:12), however, contains a 5 to 7 amino acid insert in its BAG-domain as compared to the human, murine, and yeast BAG-1 homologues (see Figure 10B), and is more similar to BAG-2 (SEQ ID NO:4) in regard to its BAG-domain. C. elegans and human BAG-2 also may be 10 derived from a common ancestor as the C-terminal 225 amino acid region which encompasses both the BAG domain and upstream region of both C. elegans and human BAG-2 share ~34% amino acid sequence identity and ~70% similarity. The human BAG-2 protein (SEQ ID NO:4), however, contains a 9 1.5 amino acid insert in its BAG-domain compared to it C.elegans counterpart (see Figure 10B). Evolutionary-tree prediction algorithms suggest that human and C. elegans BAG-2 represent a distinct branch of the BAG-family that is more evolutionarily distant from the other BAG-family 20 None of the predicted BAG-family proteins proteins. contain recognizable regions analogous to those found in other Hsc70 regulatory proteins, such as the J-domains and family proteins G/F-domains of DnaJ the Tetratricopeptide Repeat (TR) domains of Hip/Hop family 25 proteins.

C. Yeast two-hybrid assay of BAG binding to Hsc70/ATPase

The longest of the cDNAs obtained for the BAG-2 and BAG-3 proteins were expressed with N-terminal transactivation (TA) domains in yeast and tested by yeast two-hybrid assay for interactions with fusion proteins consisting of Hsp70/ATPase or a variety of unrelated proteins (Fas, Siah, Fadd) containing N-terminal LexA DNA-binding domains. TA-BAG-2 and TA-BAG-3 demonstrated

10

positive interactions with LexA-Hsc70/ATPase, resulting in transactivation of a lacZ reporter gene that was under the control of LexA operators (Figure 11A). No interactions with LexA-Fas (cytosolic domain), LexA-Siah, LexA-Fadd, or 5 LexA were detected (see Figure 11A) demonstrating that the BAG-2 and BAG-3 proteins interact specifically with Hsc70/ATPase. Specific two-hybrid interactions between Hsc70/ATPase and either BAG-2 or BAG-3 were also observed when BAG-2 and BAG-3 were expressed as LexA DNA-binding domain fusion proteins and Hsc70/ATPase was fused with a TA domain (see Figure 11A; right panel). These results demonstrate that similarly to BAG-1, BAG-2 and BAG-3 specifically interact with Hsc70/ATPase.

In order to determine whether the BAG proteins 15 are capable of forming heterodimers, coexpression of BAG-2 and BAG-3 in the yeast two-hybrid assay was also performed. Coexpression of BAG-2 and BAG-3 failed to show interaction with BAG-1 or a deletion mutant of BAG-1 (Δ C) which is missing part of its C-terminal domain required for 20 Hsp70/Hsc70 binding suggest that these proteins do not form heterdimers.

D. Isolation and characterization of the complete open reading frame sequences of BAG-2 and BAG-3

In order to deduce the complete ORFs of BAG-2 and BAG-3, a λ -phage cDNA library was screened as follows, 25 using hybridization probes derived from the two-hybrid A human jurkat T-cell λ-ZapII library cDNA screening. library (Stratagene) was screened by hybridization using $^{
m 32}$ P-labeled purified insert DNA from the longest of the human BAG-2 (clone #11) and human BAG-3 (clone #28) cDNA 30 clones. From about one million clones screened, 38 BAG-2 and 23 BAG-3 clones were identified, cloned, and their cDNA inserts recovered as pSKII plasmids using a helper phage method (Stratagene). DNA sequencing of λ -phage derived

WO 00/14106 29

10

15

human BAG-2 cDNA clones revealed an ORF encoding a predicted 211 amino acid protein, preceded by an in-frame stop codon. The longest human BAG-3 λ -phage cDNA clone contains a continuous ORF of 682 amino acids followed by a stop codon, but without an identifiable start codon (see Figure 10A).

PCT/US99/21053

Although BAG-1L (SEQ ID NO:2), BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEQ ID NO:6) all contain a homologous BAG domain near their C-terminus, the N-terminal regions of these proteins are dissimilar. Using a combination of search tools (Prosite Search: PP search, using the Prosite pattern database, BCM Search Launcher, Baylor College of Medicine, and Blocks Search), it was determined that the BAG-2 N-terminal region contains potential kinase phosphorylation sites but otherwise shares no apparent similarity with other proteins or known functional domains.

In contrast, the predicted N-terminal region BAG-3 contains a WW domain as shown in Figure 10A. WW domains have been identified in a wide variety of signaling proteins, including a Yes kinase adaptor protein (YAP), the Na-channel regulator Nedd4, formin-binding proteins, dystrophin, and the peptidyl prolyl cis-trans-isomerase Pin-1. These roughly 40 amino acid domains mediate protein interactions and bind the preferred peptide ligand sequence xPPxY (Sudol., TIBS, 21: 161-163, 1996, which is incorporated herein by reference).

EXAMPLE II

In vitro Association of BAG proteins and Hsc70/ATPase

This example demonstrates that BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) bind Hsc70/ATPase in various in vitro assays.

A. Solution binding assay of BAG-2 and BAG-3 to Hsc70/ATPase

Association of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) with Hsc70/ATPase was determine by an in vitro 10 protein binding assay where Hsc70/ATPase or BAG-family proteins were expressed in bacteria as Glutathione S-Transferase (GST) fusion proteins. Purified cDNA sequences encoding residues 5 to 211 of human BAG-2 (clone #11) and the C-terminal 135 amino acids of human BAG-3 (clone #28) 15 (see Figure 10A) were subcloned into the EcoRI/Xho I sites of pGEX4T-1 prokaryotic expression plasmid (Pharmacia; Piscataway, NJ). These plasmids as well as pGEX4T-1-BAG-1, pGEX-4T-1-BAG-1 (AC), and pGEX-4T-1-XL which have been described previously (Takayama et al., supra (1997); Xie et 20 Biochemistry, 37:6410-6418, (1998), which al., incorporated herein by reference), were expressed in XL-1 blue strain E. Coli (Stratagene, Inc., La Jolla, CA). Briefly, a single colony was inoculated into 1L of LB media containing 50 μ g/ml ampicillin and grown at 37°C overnight. 25 culture was then diluted by half with fresh LB/ampicillin and cooled to room temperature for 1 hr, before inducing with 0.4mM IPTG for 6 h at 25°C.

Cells were recovered and incubated with 0.5 mg/ml lysozyme in 50 mM Tris (pH 8.0), 150 mM NaCl, 1% Tween-20, 0.1% 2-mercaptoethanol, 5 mM EDTA, 1 mM PMSF and a mixture

of other protease inhibitors obtained from Boehringer Mannheim (1697498) at room temperature for 0.5 h, followed Cellular debris were pelleted sonication. centrifugation at 27,500g for 10 min and the resulting supernatants were incubated with 30 ml of glutathionine-Sepharose (Pharmacia) at 4°C overnight. The resin was then washed with 20 mM Tris (pH 8.0), 150 mM NaCl, 0.1% Tween-20, and 0.1% 2-mercaptoethanol until the OD 280nm reached <0.01. For removal of GST, the resin with immobilized GSTincubated with 10U of thrombin fusion protein was 1.0 (Boehringer, Inc.) at 4°C in 20 mM Tris (pH 8.0), 150 mM NaCl, 0.1% Tween-20, 0.1% 2-Mercaptoethanol, and 2.5 mM CaCl2 overnight. Released proteins were then purified on Mono Q (HR10/10, Pharmacia) by FPLC using a linear gradient of 0.5M NaCl at pH 8.0 and dialyzed into chaperone assay buffer.

The ability of BAG-2 (SEQ ID NO:4) or BAG-3 (SEQ ID NO:6) to bind Hsc70/ATPase in solution was then examined. GST control or GST-BAG proteins were immobilized on glutathione-Sepharose and tested for binding to 35S-20 vitro translated (IVT) labeled inproteins. Immunoprecipitation and in vitro GST-protein binding assays were performed as described by Takayama et al., supra (1997), using pCI-Neo flag or pcDNA3-HA into which human Bag-2 (clone #11) or human BAG-3 (clone #28) had been subcloned for in vitro translation of 35S-L-methionine labeled proteins or expression in 293T cells. As shown in Figure 11B, 35S-Hsc70/ATPase bound in vitro to GST-BAG-1, GST-BAG-2, and GST-BAG-3 but not to GST-BAG-1 (ΔC) 30 several other control proteins. BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEO ID NO:6) also exhibited little or no binding to themselves or to each other, demonstrating that these proteins do not strongly homo- or hetero-dimerize or oligomerize. It should be noted, however, that BAG-2 (SEQ 35

10

15

20

30

WO 00/14106 PCT/US99/21053

ID NO:4) displayed weak interactions with itself in binding assays and produced a positive result in yeast two-hybrid experiments, demonstrating that it can have the ability to self-associate.

5 B. Binding of BAG proteins to Hsc70 in vivo

The ability of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) proteins to interact in cells with Hsc70 was tested by expressing these proteins with N-terminal Flag epitope tags in 293T human epithelial cells using coimmunoprecipitation assays as described (Takayama et al., *supra* (1997)). cDNAs encoding the λ phage cloned regions of BAG-2 and BAG-3 were subcloned in-Anti-Flag into pcDNA3-Flag. immune complexes prepared from 293T cells after transfection with plasmids encoding Flag-BAG-1, Flag-BAG-2, or Flag-BAG-3 analyzed by SDS-PAGE/immunoblot assay. As shown in Figure 10C, antiserum specific to Hsc70 detected the presence of BAG proteins associated with Hsc70, whereas control immunecomplexes prepared with IgG1 as well as anti-Flag immune complexes prepared from cells transfected with Flag-tagged control proteins, Daxx and Apaf-1, did not contain Hsc70 associated protein. These results further demonstrate that BAG-family proteins specifically bind to Hsc70.

C. BIAcore assay of BAG protein binding to the ATPase domain of Hsc70

BAG-1 (beginning at residue 116 of SEQ ID NO:2) is known to bind tightly to the ATPase domain of Hsc70 (Stuart et al., <u>J. Biol. Chem.</u>, In Press (1998)). BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) proteins were therefore, examined for their ability to bind to Hsc70/ATPase. The affinity and binding kinetics of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) to Hsc70/ATPase was also compared to that of BAG-1 (beginning at residue 116 of

SEQ ID NO:2) for Hsc70/ATPase, using a surface plasmon resonance technique (BIAcore) which has been described previously (Stuart et al., supra, (1998) which incorporated herein by reference).

33

5 BAG-family proteins were produced in bacteria and purified to near homogeneity as shown in Figure 12A and described above in Example I. The purified BAG-1 (beginning at residue 116 of SEQ ID NO:2), -2 (SEQ ID NO:4), and -3 (SEQ ID NO:6) proteins were then immobilized on biosensor chips and tested for their interactions with 10 Hsc70 in the soluble phase. Kinetic measurements were performed using a BIAcore-II instrument with CM5 sensor chip and Amine Coupling Kit (Pharmacia Biosensor AB, Briefly, for immobilization of proteins, the sensor chip was equilibrated with HK buffer (10 mM Hepes 15 (pH 7.4), 150 mM KCL) at 5μ l/min, then activated by injecting 17 μ l of 0.2M N-ethyl-N'-(3-diethylaminopropyl)carbodiimide and 0.05M N-hydroxysuccinimide (NHS/EDC) followed by 35 μ l of the protein of interest, in 10 mM acetate, pH 3.5-4.5. Excess NHS-ester on the surface was 20 deactivated with 17 μ l 1M ethanolamine-HCL (pH8.5). After immobilization, 5μ l of regeneration buffer (50 mM phosphate (pH 6.8) and 4M GuHCl) was injected. For binding assays, Hsp70 (Sigma, H8778) was dissolved in HK buffer, and 25 injected at 10 μ l/min across the prepared surface at various concentrations. The surface was regenerated after each injection with 5 μ l of regeneration buffer. The rate constants κ_{ass} and κ_{diss} were generated with BIAevaluation softward 3.01 (Pharmacia Biosensor AB). Addition of Hsc70 to chips containing BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4) or BAG-3 (SEQ ID NO:6) resulted in concentration-dependent binding, as reflected by an increase in the Response Units (RU) measured at the chip surface (shown in Figure 3B). In contrast, Hsc70 35 failed to display interactions in BIAcore assays with a variety of control proteins as well as a mutant of BAG-1

30

34

lacking a C-terminal portion of the BAG domain which is required for Hsc70-binding (Figure 3B). Furthermore, flowing of various control proteins such as GST, BSA and Bcl-XL over the BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) chips resulted in negligible interaction. These results further demonstrate the specificity with which BAG-family proteins interact with and bind to Hsc70.

The rates of Hsc70 binding to BAG-1 (beginning at 10 residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEO ID NO:6) proteins were similar, following pseudo first-order kinetics with estimated association rate 2.1 and 2.4 x 10^5 M⁻¹ sec⁻¹, constants (Ka) of 2.1, respectively. After allowing binding of Hsc70 15 immobilized BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) to reach plateau levels, the chaperone was removed from the flow solution and the dissociation rate was monitored. (beginning at residue 116 at SEQ ID NO:2) and BAG-2 (SEQ ID NO:4) exhibited similar dissociation rates, with relatively 20 slow loss of Hsc70 from the chip surface, resulting in estimated dissociation rate constants (κ_d) of 3.0 and 5.0 x 10⁻⁴ sec⁻¹, respectively (see Figure 3B). In contrast, Hsc70 dissociated more rapidly from biosensor chips containing BAG-3 (see Figure 3B), yielding an estimated κ_d of 1.7 x 10⁻³ 25 sec^{-1} . From the kinetic data, the apparent affinities (κ_D $= \kappa_d/\kappa_a$) were calculated for binding of Hsc70 to BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), and BAG-3 (SEQ ID NO:6) and were estimated to equal about $K_D=1.4nM$, $K_D=2.4nM$, and $K_D=7.4nM$, respectively. These 30 results demonstrate that the interactions of BAG-family proteins with Hsc70 occur with apparent affinities sufficient for physiological relevance.

WO 00/14106 PCT/US99/21053

35

EXAMPLE III

BAG-family proteins inhibit Hsp70/Hsc70-dependent protein folding

This example demonstrates that BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) proteins inhibit Hsp70/Hsc70-dependent refolding of denatured proteins similarly to a BAG-1 (beginning at residue 116 of SEQ ID NO:2) protein.

The effects of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) protein on Hsp70/Hsc70-dependent protein refolding 10 was determined using in vitro protein refolding assays similar to those described previously by Takayama et al., supra, 1998; Terada et al., <u>J Cell Biol.</u>, 139:1089-1095, 1997, which are incorporated herein by reference. Briefly, luciferase (20 μ M) was denatured in 25 mM Hepes-KOH, pH 7.2, mM potassium acetate, 5 mM DTT, 6M guanidine 15 hydrochloride at ~25°C for 1 h. Denatured luciferase was diluted 1:40 into 25 mM Hepes-KOH, pH 7.2, 50 mM potassium acetate, 5 mM DTT. Hsc70 (1.8 μ M), DnaJ (StressGen, Inc.) $(0.9\mu\mathrm{M})$, and various purified recombinant proteins as indicated were added to refolding buffer (30 mM Hepes-KOH, 20 pH 7.6, 120 mM potassium acetate, 3mM magnesium acetate, 2 mM DTT, 2.5 mM ATP) with 0.2 volume of diluted denatured luciferase to a final concentration of 0.1 μ M. Luciferase activity was measured after 1.5 hr incubation at 35°C.

25 The combination of Hsc70 and DnaJ resulted in ATP-dependent refolding of chemically denatured firefly luciferase, with function of over half the denatured enzyme restored in a 90 minute reaction, as monitored by a chemiluminescence assay. In contrast, neither Hsc70 nor 30 DnaJ alone were able to induce substantial refolding of denatured luciferase. Furthermore, little spontaneous

WO 00/14106 PCT/US99/21053

restoration of luciferase activity was observed with control proteins, BSA, GST or Bcl-XL (see Figure 4A).

36

Addition of recombinant purified BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) to the above assays in amounts equimolar to Hsc70 (1.8 μ M) resulted in striking inhibition of luciferase refolding. BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) displayed somewhat greater inhibitory activity than BAG-1 (beginning at residue 116 of SEQ ID NO:2) as shown in Figure 4A. In contrast, the BAG-1 (Δ C) protein, which fails to bind Hsc70 as well as several other control proteins, had no effect on luciferase refolding.

In an additional refolding assay, described 15 previously by Minami et al., <u>J Biol. Chem.</u> 271:19617-24, 1996), purified Hsc70 and human DnaJ homolog Hdj-1 (Hsp 40) additional cofactors with provided reticulocyte lysates (5% v:v) to produce a system capable of refolding denatured luciferase. Briefly, additional cofactors included, recombinant Luciferase (Promega: 20 QuantiLum TM), that had been heat denatured at 42°C for 10 min, 1.8 μ M Hsc70 (Sigma; purified from bovine brain), 0.9 μM Hsp40, and various recombinant purified proteins. Luciferase activity was measured (Promega luciferase assay kit) using a luminometer (EG&G Berthold, MicroLumat 25 luminometer, Model #LB96P). All results were normalized relative to non-denatured luciferase that had been subjected to the same conditions. Control reactions lacking ATP, Hsc70, or Hsp40 resulted in negligible luciferase refolding. 30

Various amounts of purified BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6), relative to amounts of Hsc70 were used in the above-described protein refolding assay. Addition of BAG-family proteins resulted in a concentration-dependent

WO 00/14106 PCT/US99/21053

inhibition of Hsc70 chaperone activity. Furthermore, the BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) inhibition of Hsc70 chaperone activity was demonstrated to be as potent as that observed for BAG-1 (beginning at residue 116 of SEQ 5 ID NO:2). In contrast, the BAG-1 (Δ C) mutant as well as other control proteins did not suppress Hsc70-mediated refolding of denatured luciferase. These results indicate that BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) can inhibit Hsc70/Hsp70 dependent protein refolding activity to the same extent as BAG-1 (beginning at residue 116 of SEQ ID NO:2).

37

B. BAG competes with Hip for binding to Hsc70.

10

20

30

It is known that BAG-1 competes with Hip for binding to Hsc70, with these proteins exerting opposite effects on Hsc70-mediated protein refolding (Hohfeld, J., and Jentsch, S., $Embo\ J.$, 16:6209-6216, 1997, which is incorporated herein by reference). In order to determine whether BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6) also compete with Hip for binding to Hsc70, refolding assays were performed as described above in the presence of Hip protein.

Hip was purified as His,-protein. protein was induced from pET28-Hip (V. Prapapanich et al., Mol Cell Biol., 18:944-952, 1998, which is incorporated 25 herein by reference) with 0.1 mM IPTG at 25°C for 6h in BL21 cells. Cells from 1L of culture were resuspended into 50 ml of 50 mM Phosphate buffer (pH 6.8), 150 mM NaCl, and 1% (v/v) Tween-20 and then incubated with 0.5 mg/ml lysozyme 25°C for 0.5h, followed by sonication. centrifugation at 27,500g for 10 min, the resulting supernatant was mixed with 15 ml nickel resin (Qiagen, Inc.) at 4°C for 3 h with 25 mM imidazol. The resin was then washed with 50 mM phosphate buffer (pH 6.8), 25 mM imidazol, 150 mM NaCl and 0.1% Tween-20 until the OD280nm

WO 00/14106

25

38

PCT/US99/21053

reached a value of <0.01. ${\rm His_6}{\rm -Hip}$ protein was eluted with 250 mM imidazol in washing buffer (Qiagene, Inc.) and purified on Mono Q (HR10/10 Pharmacia) by FPLC using a linear gradient of 0.5M NaCl at pH 8.0, followed by dialysis in chaperone assay buffer.

In the refolding assay reactions, addition of purified Hip at equimolar concentrations relative to BAG-1 (beginning at residue 116 of SEQ ID NO:2), BAG-2 (SEQ ID NO:4), or BAG-3 (SEQ ID NO:6) (1.8 µM) completely negated the inhibitory effects of the BAG-family proteins on refolding of denatured luciferase (see Figure 4C). These results demonstrate that the suppression of Hsc70 chaperone activity by BAG-family proteins is reversible, and that Hip antagonizes the effects of not only BAG-1 (beginning at residue 116 of SEQ ID NO:2), but also of BAG-2 (SEQ ID NO:4) and BAG-3 (SEQ ID NO:6).

In summary, these results demonstrate that BAG-family proteins all contain a conserved BAG domain near their C-terminus that binds Hsc70/Hsp70, and that human BAG-family proteins can bind with high affinity to the ATPase domain of Hsc70 and inhibit its chaperone activity through a Hip-repressable mechanism.

EXAMPLE IV

EXPANDED NUCLEIC ACID AND AMINO ACID SEQUENCES FOR HUMAN BAG-3, BAG-4 AND BAG-5

Following the procedures disclosed herein, the nucleic acid and amino acids sequences to human BAG-3, BAG-4 and BAG-5 were further expanded. The expanded sequences for BAG-3, BAG-4 and BAG-5 are shown in Figures 15, 16 and 17, respectively, with their respective sequence identification numbers, "SEQ ID NO"s.

WO 00/14106 PCT/US99/21053

39

We claim:

1. A compound of the formula,

$R^{N}-R^{1}X^{1}R^{2}X^{2}R^{3}X^{3}R^{4}X^{4}R^{5}X^{5}R^{6}X^{6}R^{7}X^{7}X^{8}R^{9}X^{9}R^{10}X^{10}R^{11}X^{11}-R^{C}$

wherein, R^{N} is a group of about 1 to 552 independently 5 selected amino acids; R¹ is a group of 3 independently selected amino acids; X¹ is an amino acid with a charged or uncharged R group; 10 R² is a group of 7 independently selected amino X^2 is an amino acid with a charged R group; R³ is a group of 5 independently selected amino acids; 15 X^3 is an amino acid with an apolar R group; R4 is a group of 3 independently selected amino acids: X^4 is an amino acid with charged R group; R⁵ is a single independently selected amino acid; 20 ${\tt X}^{\tt 5}$ is an amino acid with apolar or uncharged R group; R⁶ is a group of 15 independently selected amino X⁶ is an amino acid with a charged or uncharged 25 R group; R⁷ is a group of 2 independently selected amino acids: X⁷ is an amino acid with a charged R group; X^8 is an amino acid with a charged R group; 30 R⁹ is a group of 2 independently selected amino acids;

 X^9 is an amino acid with an apolar R group;

WO 00/14106 PCT/US99/21053

R¹⁰ is a group of 3 independently selected amino acids;

X¹⁰ is an amino acid with an uncharged R group;

R¹¹ is a group of 2 independently selected amino acids;

 X^{11} is an amino acid with an apolar R group; and R^{C} is a group of about 1 to 100 independently selected amino acids.

2. A substantially purified nucleic acid molecule having a nucleotide sequence corresponding to or complementary to at least 20 nucleotides from a nucleotide sequence selected from the group consisting of (SEQ ID NO:1), (SEQ ID NO:3), (SEQ ID NO:5), (SEQ ID NO:7), (SEQ ID NO:9), (SEQ ID NO:21) and (SEQ ID NO:23).

5

25

30

- 3. The nucleic acid of claim 2 having a nucleotide sequence corresponding to or complementary to a nucleotide sequence that encodes a functionally active BAG family protein selected from the group consisting of (SEQ ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), (SEQ ID NO:10), (SEQ ID NO:22) and (SEQ ID NO:24).
 - 4. The nucleic acid of claim 3 selected from the group consisting of (SEQ ID NO:1), (SEQ ID NO:3), (SEQ ID NO:5), (SEQ ID NO:7), (SEQ ID NO:9), (SEQ ID NO:19), (SEQ ID NO:21) and (SEQ ID NO:23).
 - 5. The nucleic acid of claim 3 complementary to a nucleotide sequence that encodes a functionally active BAG protein selected from the group consisting of (SEQ ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), (SEQ ID NO:10), (SEQ ID NO:22) and (SEQ ID NO:24).
 - 6. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:3).

41

7. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:5).

PCT/US99/21053

8. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:7).

5

WO 00/14106

- 9. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:9).
- 10. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:19).
- 10 11. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:21).
 - 12. A substantially purified nucleic acid molecule having the nucleotide sequence of (SEQ ID NO:23).
- 13. A substantially purified BAG family protein encoded by the nucleic acid molecule of claim 1.
- 14. A substantially purified BAG family protein comprising of the amino acid sequence selected from the group consisting of (SEQ ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), (SEQ ID NO:10), (SEQ ID NO:20), (SEQ ID NO:22) and (SEQ ID NO:24) or a fragment, a derivative or a mimetic thereof.
 - 15. A substantially purified protein corresponding to the amino acid sequence of 157 to 204 of (SEQ ID NO:2).
- 25 16. A substantially purified protein corresponding to the amino acid sequence of 272 to 319 of (SEQ ID NO:2).

42

WO 00/14106 PCT/US99/21053

- 17. A substantially purified protein corresponding to the amino acid sequence of 164 to 211 of (SEQ ID NO:4).
- 18. A substantially purified protein 5 corresponding to the amino acid sequence of 418 to 510 of (SEQ ID NO:20).
 - 19. A substantially purified protein corresponding to the amino acid sequence of 378 to 457 of (SEQ ID NO:22).
- 20. A substantially purified protein corresponding to the amino acid sequence of 6 to 97 of (SEQ ID NO:24).
- 21. A substantially purified protein corresponding to the amino acid sequence of 180 to 257 of (SEQ ID NO:24).
 - 22. A substantially purified protein corresponding to the amino acid sequence of 272 to 349 of (SEQ ID NO:24).
- 23. A substantially purified protein 20 corresponding to the amino acid sequence of 362 to 444 of (SEQ ID NO:24).
- 24. A pharmaceutical composition comprising a nucleic acid molecule of claim 1 useful for modulating tumor cell proliferation, cell migration and metastasis, and steroid hormone receptor function.
 - 25. A method of modulating tumor cell proliferation, cell migration and metastasis, and steroid hormone receptor function by administering a nucleic acid molecule of claim 1.

WO 00/14106

43

26. A pharmaceutical composition comprising a substantially purified BAG family protein comprising of the amino acid sequence selected from the group consisting of (SEO ID NO:2), (SEQ ID NO:4), (SEQ ID NO:6), (SEQ ID NO:8), 5 (SEQ ID NO:10), (SEQ ID NO:20), (SEQ ID NO:22) and (SEQ ID NO:24), or a fragment, a derivative or a mimetic thereof, useful for modulating tumor cell proliferation, cell migration and metastasis, and steroid hormone receptor function.

PCT/US99/21053

- of modulating method tumor 10 proliferation by administering a pharmaceutical composition of claim 26.
- 28. A method of modulating cell migration and metastasis by administering a pharmaceutical composition of 15 claim 26.
 - 29. A method of modulating steroid hormone receptor function by administering a pharmaceutical composition of claim 26.
- 30. A substantially purified antibody that 20 specifically binds to a BAG family protein of claim 14.
 - The antibody of claim 30, wherein said antibody is a monoclonal antibody.

44

WO 00/14106 PCT/US99/21053

32. A method for detecting the presence of a BAG family protein in a sample, comprising the steps of:

a. obtaining the sample;

5

15

20

- b. adding to said an antibody of claim 11 under suitable conditions for the binding of said antibody with the BAG family protein; and
- c. detecting said bound BAG family protein.
- 33. A method for detecting the presence of a first nucleic acid molecule that encodes a BAG family protein in a sample, comprising the steps of:
 - a. obtaining the sample;
 - b. adding to said sample a second nucleic acid molecule capable of hybridizing with said first nucleic acid molecule under suitable conditions for the binding of said second nucleic acid molecule with said first nucleic acid molecule; and
 - c. detecting said hybridized first and second nucleic acid molecules.
- 34. A method of determining the risk of metastatic spread of cancer or prognosis of cancer patients by determining the level of expression of a BAG-family protein.

FIGURE 1	Ĺ
----------	---

06	180	270	360	450	540	930	720	810	86	066	1080	1170	1260	1291
CCACCTICCAG D R E	recretess P s R	GAAGAAGAAA K K K BAG-1M	ACHOCOCHOC E A T	CONCENSION E V T	S 0 0	TRACOCARAR K G K	පැහැපාපාය S P Q	ACACCTURCT E L T	ACACCACITIT E Q F	AAAANAGGIT K K V	CONCOURAGE IN A E	ATTICITIONS	TGAGTBAAGC	
	G P P	COCCOCCANT P R M	CCTCCAGTCA W S E	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TIMOCTOCCA T S Q	AACTCAIRATT L I F	GCRARARA K K N	ACTICAADAA L N K	AACCCACAAT A T I	AAGCTTGGE K G L V	TA CAAACTITIGC T N F A	AATTTPCCTG	CITIGICATI	
CONTROCTA CACCOCCACO	CCCCCCACC P A Q R	COCCTCCCA C A R R	CACCAACCCA E E A T	CACCAGTCCA E E S T	CACCTICATO D L H V	TCTTTTCACA S F Q K	AIGITAATIG M L I G	CACCTCCAAG Q L E E	ACCACACTAA AACCCACAAT R R V K A T I	TTGAAAAGA L K R K	CTCCAGTCTA L Q S T	TCTCCATCCC	TICICAAIGA AAAAIAGIGI	
TCACCOCCC O R G	S E P	COCCOCCOCC A A A	CACCCTCAGT T L S	CACCCCCCAC T R D	TEACAAGCAC E K H	OSTICCACAGO V P Q	Treccessic C R V	CATACCTCAC I A D	CAAACTIGAT K L D	AGACAGTAGA D S R	CACTCACCCC TER	creroceare	TICTCAATGA	
CCCCCCCCC TOWN	Accessora P R Q	CCACCACACC TRG	CCCACCACTT E E L	occhochost Q E V	CCCACAGCAA H S N	ACCITATACC V I G	TRCAACATOG Q D G	CTGTGGAGAA V E K	AACTCTCTG A L C	AAAATTICAA N F K	TCTGCCAGGA C Q E	GOSCOACCAG	CTCACACTOS	
TCACCAGTG	CCACACCACC P G R E	CATTERCOORC H D R P	TITACOCCA L T R S	ATCHATCCCA M N R S BAG-1	a H	official and a second of the s	OCACTICCAA A L G I	TTCCACAAGT L E K S	TICCAACCIC L Q A E	ATTCTCCCAG I L P E	COCCOMPCA E Q N I	CTCAACAATG	TITICCIACT	æ
cacracacas	COCCUICOS A L R	Tacceacaca A S G	CHOCCHOCHG S E E	CCCCCAACAC	Tassacrator 1 1 9	CCTGGCCCAG L A Q	ACCETICICA P L S	GTICAAACAT L K H	OCCCAACCAT	TOPCACACTE D T L	TEACACAGTO D T V	crerecrece	CATTTGCCAA	AAAAAAAAA
CASCIICCAI	consolate R L R	CCCCCACING R S T	COTOCACCOC S T R	ACCORPORCE A T Q		TIGICCAACA V Q D		AACTBAAGAA L K K	ACCOUNTINGS G F L	TOCHOCHAMI E E I	TROCCOROTO A E C	CHCHARARGE	COCHACTEC	recrarrere rivincacaa
Accessor cacerrocar	COCTOCOTIVE COCCOCTOCO	COTCOACCTG CCCCCAGTAC	Accessance conceauces TRRRSTR	CACAGICAGO ACCICACOA Q S E E A T Q	ACCENCIAAA TOCCOCCACC R E E M A A A A	ASTERNAÇÃO TIGICCAACA S E P V V Q D	TCTCTCAAGG AAATGGAAAC S L K E M E T	CAACHCOTTC AACTBAACAA E E V E L K K	GARICCASC ASSETTITICT G I Q Q G F L	ATCHACATOR TOCHOCHCAT M K I L E E I	CACCOMITIC TRACCOMOTIC Q A F L A E C	TENCETETE CHCANANAGO	COCTICCIECCE COCAACTECC	recrament

FIGURE	2 A

					r TGO	KC ZA		
8	180	270	360	450	540	630	720	810
	ссст ос носс бяноятсянс К 1 N	OCTOOROCTC L E L	RGGGTTGRAG CTTTGRGRGR RGCRGCRRCT GCTGTTGRGC ВЯСВВСТСТТСТСТСТСТСТС СПИТСЯ СТТССЯ ВИТВОССЯС ВС R	тсяяото тся Е U S	тствовтвят L D D	TTGGGRAFIC CCARGAGICA ITTARTGICG CTCTACAGIG CATGITCATC TGAGGIGCCA CATGGGCCAG TTGATCAGAR GITTCARTCC L ${\sf G}$ N R K S H L M S L Y S R C S S E V P H G P V D Q K F Q S	RTRGTRATTG GCTGTGCTCT TGARGATCAG AAGAAAATTA AGAGAAGTT AGAGACTCTG CTTAGAAATA TTGAAAACTC TGACAAGGCC I	RICARGCIAI TAGAGCATIC TARAGGAGCT GOTICCARAA CICIGCARCA AAAIGCIGAA AGCAGATICA ATTAGICTIC AAACCIAAGA 1 K L L E H S K G A G S K I L Q Q N A E S R F N
	отонсовсон товстсновс A Q A	OCCTGGACCA L D Q	ACAGTATCCA S I Q	CTCTCACCGT L T U	TCARTARGTT N K F	TTGATCAGAR D Q K	TTGARARCTC E N S	яттявтсттс
	CGCCGCGTTG GRGGCTTRGR	ст остоо ноя L L E S	GARATGATCC E M I H	АТСССАНСАН И О R T	GATGAGGTGG D E U U	сятовосс яв Н в Р U	CTTAGARATA L R N 1	AGCAGATTCA S R F N
	6646666666 CCCC6C6TC6	CTCCAGCCGC S S R	AATCCTTCTG	AAACCGTTTG N R L	AAGGATTATT R I I	TGAGGTGCCA E U P	AGAGACTCTG E T L	AAATGCTGAA N A E
	осстсявно стсттовстя	TGGCTGACCG A D R	янсясянная Е К Е	RTCTGRCTGC L T A	RGCATGCCAC H A T	CATGTTCATC C S S	AGAGAAGATT R R L	стст6сяяся L 0 0
	GCAGCCGCG TGTCGCGARG TCCTCCCGGG TTGCCCCCGC GGCGTCRGRG GGRGGGCGGG CGCCGCGTTG GTGRCGGCGA CCCTGCRGCC CARGGRGCGC TCCRCTCGCT GCCGCCGGRG GGCCGGTGRC CTCTTGGCTR CCCCGCGTCG GRGGCTTRGR TGGCTCRGGC GRRGRTCRRC . M R Q R K I N	TCCTCCTCCA S S S M	6СТВТТО ЯВС В U E Q	GARGARTTAR E E L N	ОТВОВНЯССВ ТТВОВНЯССС ССВОСЯВСЕЛЯ ВОСЯТВСССИТИ В В В В В В В В В В В В В В В В В В	CTCTACAGTG L Y S A	ВВСВВВЕТТВ Х К I Х	GOTTCCARA OSKT
	TCCTCCCGGG	CTTCTGCCGC F C R	AGCAGCAACT A A T	CGGRGRAGA G E R	CCAGCAGCAA Q Q Q	TTTARTGTCO L M S	теявеятсяе Е D Q	TAAAGGAGCT K G A
	TGTCGCGAAG TCCACTCGCT	ясоновов со Е 0 R	CTTTGAGAGA L A E	AGATCAGTGA 1 S D	TTAGAAACCC R N P	ссянвнатся КSH	GCTGTGCTCT C A L	TRORGCATTC E H S
	6000000000 CARBBRBBCGC	GCTARABECCA ACBAGGGGG CTTCTGCCGC TCCTCCTCCA TGGCTGACCG CTCCAGCCGC CTGCTGGAGA GCCTGGACCA GCTGGAGCTC A κ A κ A κ A κ A κ B κ A	RGGGTTGAAG R V E A	GACATGROGC RGATCROTGA CGGRGARAGA GARGARTTAR ATCTGACTGC AARCCGTTTG ATGGGARGAR CTCTCACCGT TGARGTGTCA D st R st R st R st E st L st R st R st M st R st M st R st L st O st C st S st C st C st S st C st C st S st C	GTRORRACAR U E T I	TTGGGAAATG	ATRGTARTTG	ATCARGCTAT

FIGURE 2B

900 990 1080 0711 6711 TCTTTGTTAG GTATAACCAC TTAGTTGACA тятстятстя овятенять втнетттете севяняеся <u> Аввовосяяяя восятоясто сттттсст</u>е тствосятве яятсясвсяе теясеттвве сятттяеттт ястявяятт ATATTTABT **АВВИСТАВСЯ** BATABABTAC TATTTTABTT GATABCTAGT тетенятняс **АСТЯТТСТВТ АВСЯТЯТТТС** TCTTCAGTTT ссятсянстя **ACTAGGATCT** CTTGTCTTGT янтясясяно отстинянит GGRARATATT TTTCAGATGA **ACATTCARTT GCATTTACAC** стеятяетте GRIGHTTTTT **ACGTTCAGCT**

FIGURE 3

GOSGAGCTCC GCRTCCAAC	C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	T CTOGACTOGA CCAGAAGTTT 8 G L D Q K F	CTAGCCGGCC AGTTGCTACC TCCCTTTATC	90
			ACCITCACCCC COCCITTANT TCATANAGGT T S P P P L I H K G	180
			CCAGAGACTC GGCGCCCGGA GCCAGCGCCCCP ETR RPEPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	270
			ATORTOCAGG TOCCOTCCCC CAACCGTGAC H H Q V A S G H G D	3 60
			TTCGTGGACC ACAACAGCCG CACCACTACG	45 0
			CCTTCCCGGG AGGGCTCTAG GCTGCCGCCT P S R E G S R L P P	54 0
			CTCCRTGAGG GCGCTGAGGA CCGGCGGGTG L H E G R E N R Q V	63 0
			GCGGCTCCTC AGAGGTCCCA GTCACCTCTG A A P Q A S Q S P L	720
			GCAGCCCAGC CCCCAGCCTC CCACGGACCT	810
			CCTTCCTCCG GCAGGAGCAG CCTGGGCAGT P S S G R S S L G S	900
			CCAGCAGCCC AGCCCTCCTT CCACAAAGCC P A A Q P S F H K A	9 90
			AAGATCCAGG GGGATGACTG GGAGCCCCGG K I Q G D D H E P R	10 80
			TCACCAGCCA GGAGCAGCAC GCCACTCCAC S P R R S S T P L H	1170
		C CTCAGCAGCC CATGACCCAT	CGAGAAACTG CACCTGTTTC CCAGCCTGAA R E T A P V S Q P E	126 0
			ATTCAAGTGA TCCGCAAAGA GGTGGATTCT	13 50
AAACCTGTTT CCCAGAAGC	COCACCTOCC TOTGAGAAG PPPPSEK	G TAGAGGTGAA AGTTCCCCCT U E U K U P P	GCTCCAGTTC CTTGTCCTCC TCCCAGCCCT A P U P C P P P S P	1440

G P S R U P S	TTCCCCCANG AGTGTGGCTA CAGAAG S P K S V A T E E		
AAACCAGGAGGAGGGAAACCGAGGGGAGGGGAGGGGAAACCGAGGGAGGGAGGGAGGGAGGGAGGGGAGGGGAGGGGAAACCGAGGGAGGGGAAACCGAGGGAGGGAGGGGAAACCGAGGGAGGGAGGGAGGGAGGGGAGGGGAGGGGAAACCCGAGGGGAGGGGAGGGGAGGGGAGGGGAGGGGAGGGAGGGG	TCCCCCAAAA CATCCAGGAG TGCTGA		-
GTAGACAACT TTGAAGGCAA	GAAGACTGAC AAAAAGTACC TGATGA K T D K K Y L H I	CCA AGAGTATTTG ACCAAAGAGG	
CACCCCCAGG GACGAGCCGA	TOTOCOTCAG OCCAGGAGAG ACGGTG V R Q R R R D G V	CAG GAAGGTTCAG ACCATCTTGG R K V Q T I L E	
ATTGATGTCC CAGGTCAAGT	CORGGTCTAT GAACTCCAGC COAGCA		
CCCCTCCCAG CAGACAACCG	CANGAAAAAT GCTGGAAATG CAGAAG K K H A G H A E D		
ACTTCAAACC CCAGCAGCAT T S H P S S H	GACAGACACC CCTGGTAACC CAGCAGG		GTCAGACTCG GAACCGATGT 2070
	GCRTGCRTTT CAGAGACTTT AGGTCAG		
	CTGCRGCCCT GTCHRCTTGG GCRCCC		GCACTGTCTT TTGTAGCTCT 2340
OGACTOGAGG GGTAGATGGG	CACTOARTTA COCATOACAT MARTATO	AAA CATTTATCAG AAATGTTGCC	
TTORTCTORT ARTTAGARTA	CCTGACTTTA DAGAGAGTAA AATGTG	CAG GAGCCATAGG AATATCTGTA	
ACRITITH			•2528

FIGURE 4

10 10								GATTCRGGCC ATATTGGRAA 1 Q A 1 L E	GATTCAGGCC
066	CTGTTTGTAR U C K	ACGGCAGGCC AGAAAAGAGG CTGTTTGTAA R Q A R K E A V C K	ACGGCAGGCC R Q A	AGGACTCTGT D S U	ACTGGGGGCC T G G Q	TTCAOTTGAA S V E	ARTGCTARCC ARGGRACTTT TGGRACTGGA TTCR0TTGRA RCTGGGGGCC RGGACTCTGT M L T K E L L E L D S U E T G G Q D S U	AAGGAACTTT K E L L	AATGCTAACC M L T
006	TTCT06ARGA L E E	ACATOTOCTG GAGARGOTCC AGTATCTTGA ACARGARGTA GARGARTTTG TAGGARARA GACAGACARA GCATACTGGC TTCTGGARGA ${\sf H}$ U ${\sf L}$ ${\sf E}$	онсяонсян Т D К	TAGGAAAAAA G K K	GARGARTTTG E E F U	ACAAGAAGTA Q E U	AGTATCTTGA Y L E	GAGAAGGTCC E K U Q	ACATGTGCTG H V L
810	AAAAAATCAT K I I	TCTTCCTGAR GARTGTGTRC CTTCAGATGA ARGTRCTCCT CCGRGTATTR ARARARATCAT	ARGTACTCCT S T P	CTTCAGATGA S D E	GARTGTGTAC E C U P	TCTTCCTGAA L P E	CCATCCCAAC AATCAABATC AAAGTAGCAG H P N N Q D Q S S S	ARTCARORTC N Q D Q	CCATCCCAAC H P N
720	CCACCAGTGA T S D	TITOORITCC CARGICCROT AIROTOCICA CCTCROCTG TAIGOTARIG CCRCCROTOR ${\sf L}$ ${\sf D}$ ${\sf S}$ ${\sf Q}$ ${\sf L}$ ${\sf Y}$ ${\sf G}$ ${\sf N}$ ${\sf A}$ ${\sf I}$ ${\sf S}$ ${\sf D}$	GCCTCAGCTG P Q L	ATAGTGCTGA S A E	САН СТСС НСТ А1 Q V Q Y		GGGGRCRGTG ARCARTGATCT G T U N N D D S D L	AACAATGATG N N D D	6666ACAGT6 6 T U
029	ACGARTCCTC E S S	GCCCARGGAT TCTTCATACC CCTATAGCCA ATCAGATCAA AGCATGAACC GGCACAACTT TCCTTGCAGT GTCCATCAGT ACGAATCCTC $_{ m P}$ $_{ m K}$ $_{ m D}$ $_{ m S}$ $_{ m S}$ $_{ m M}$ $_{ m $	TCCTTGCAGT P C S	GGCACAACTT H N F	AGCATGAACC S M N B	АТСА ВАТСАЯ S D Q	CCTATAGCCA Y S Q	TCTTCATACC S S Y P	GCCCARGGAT P K D
240	ся отсс явся U Q Q	TACTICACCA TGGCCTAGCA GTGGCTCTCCC CCTTCACCCC CAGTCCAGCA	CCAGTCACCC Q S P	GTGGCTCTCC G S P	TGGCCTAGCA W P S S	TACTTCACCA T S P	ACCACCGGC AATCTCTACA TGACTGAAAG	ARTCTCTACA	RCCRCCGGC P P G
450	CGCCCTCRGC P S A	ACTOTACGAC CACAAGAAAG ATGCGTGGCG TTCTCCTGGT GCTTATGGAA TGGGTGGCCG TTATCCCTGG CCTTCATCAG CGCCCTCAGC ${\tt L}$ ${\tt V}$ D H K K D A M A S P G A Y G M G G R Y P M P S S A P S A	TTATCCCTGG Y P W	TGGGTGGCCG G G R	GCTTATGGAA A Y G M	TTCTCCTGGT S P G	ATGCGTGGGC A M A	CACAAGAAAG H K K D	ACTGTACGAC L Y D
360	ATCACGGCCG H G R	ссявовятяте свесттенен вняеесетвен втомесетве ессяттятес ттятвенент вотнятсетн втотеснен насяваесе M в M	GGTARTCGTA U U U	TTATGGAGAT M E M	сссяттятсс	АТОЯСССТ ОС	вносствв	свссттсяся	ссяввятятс
270	бевесяветт	сятстввсяя сявсссяяст ссявтстсте вттавятетя тесесявсяв вяствтсяяв яствявсяе есестеттяя введенватт	АСТ 6АВСАС	в ествтсяяв	тссссявсяв	бттвеятстя	ссявтстете	сявсссяяст	сятстеесяя
180	нсттяссетт	<u>ввесявнтяс тесстсятяс тсяввеестт яттятесясс тевттятаст сявяссяетт ястссясявя явттссяяет ясттяссетт</u>	нстссясявя	сявяссявтт	тееттятяст	яттятосясс	тсявееестт	тесстсятяс	GGGCRAHTAC
8	ссновесетв	нсянятвана сотятаютсе янсятнеесе сенавесета	сотятватсс	АСВАНТВВАВ	оняттсттят	осснонотт	АСОЯТЯТССТ СТРЯСЯССЯЯ СВЯТТОСЯЯВ ОССЯОНОТТ	стняснссня	ACCRIATCCT

FIGURE	S

GROPRATARA E I K	ARATGARCTT N E L	CTCCARGCAC L Q A Q	AAAACCCTTC N P S	TGARTTGTAC E L Y	ОАВОВРЕТИ В В СТИ В В В В В В В В В В В В В В В В В В В	АВАСАОВАТТ Т Е L	GCAGGGTTTA Q G L	АТТООЯСНОТ 1 0 0 L	80
TGGRTGRGGT D E U	SGRTGAGGT AAGTNTTGAA AAAAA 0 E 0 S $ imes$ E K N	ARARACCCCT K N P C	GCATCCGGGA	AGCCAGGAGA A R R	TOGRTGAGGT ARGINITIGAR ARARACCCCT GCATCCGGGA AGCCAGGAGA AGAGCAGTGA TCGAGGTGCA AACTCTGATC ACATATATTG $f D$ $f E$ $f V$	тс <u>оно</u> втесн Е V Q	AACTCTGATC T L I	ACATATATTG T Y I D	180
ACTTGAAGGA L K E	ACTTGRAGGA GGCCCTTGAG ARAAGA L K E A L E K R	AAAAGAAAGC K R K L	TGTTTGCTTG F A C	тонооноснс Е Е Н	АСТТОЯВОВ СОСССТТОЯВ АНАНОВНЯСС ТОТТТОСТТО ТОЯВОВЯВСТВО ССЯТСССЯТЯ АНОССОТСТО СЯЯСОТСТТ СОЯВИСТТОТ ${\sf L}$ ${\sf L}$ ${\sf R}$ ${\sf L}$ ${\sf R}$ ${\sf R}$ ${\sf L}$ ${\sf R}$ ${\sf R}$ ${\sf L}$ ${\sf R}$ ${\sf R}$ ${\sf R}$ ${\sf L}$ ${\sf R}$ ${\sf R}$ ${\sf R}$ ${\sf L}$ ${\sf G}$ ${\sf R}$ ${\sf L}$ ${\sf S}$ ${\sf H}$ ${\sf K}$ ${\sf R}$ ${\sf U}$ ${\sf R}$ ${\sf U}$ ${\sf L}$ ${\sf G}$ ${\sf M}$ ${\sf L}$ ${\sf S}$	янвссотсто в о и	GARCGTCCTT N U L	GORRACTTGT S	270
CTGAGATCCA E 1 Q	GAGATCCA GGGAGAGGTT CTTTCA E 1 Q G E V L S	CTTTCATTTG L S F D	ATGGAAATCG G N B	ААСССАТАНС Т D К	CTGAGATCCA GGGAGARGTT CTITCATITG ATGGARATCG AACCGATAAG ARCTACATCC GGCTGGAAGA GCTGCTCACC AAGCAGCTGC ${\sf E}$ of	GGCTGGAAGA L E E	GCTGCTCACC L L T	ААССАВСТВС К Q L L	360
TRGCCCTGGR R L D	TGCTGTTGRT A U D	CCGCAGGGAG P Q G E	АНОЯВОЯВОТО ЕКС	тановствсс К А А	ТАGCCCTGGA ТССТСТТСАТ ССССАВССВОСАВСТВСС АВСАВАССАВС СТСТСАВССТ ТВССССАВАТ ATTCTCABCCT A R A \mathsf	CTGTGAGGCT U R L	TGCGCAGAAT A Q N	ATTCTCAGCT	450
ATCTCGACCT	GARATCTGAT	GRATGGGAGT	астоннятыс	сявяватстс	ATCTCGACCT GARATCTGAT GARTGGGAGT ACTGARATAC CAGAGATCTC ACTITIGATA CIGITITGCA CTICATATGT GCTTCTATGT 1	ствтттвся	сттсятвтет	есттстятет	240
RTRGRGRGCT	TTCRGTTCRT	RTRORGEGET TICROTICAT TOATTTATAC GTGCATATTT	бтесятятт	сявтстсявт	ATTTATGATT	оявосяятт стяттсявтя тстостостт	стяттсявтя	тствствстт	630
TTGATGTTGC	АВСВСЕВЕТВ	ттеятеттес внеясявитя теяттясяес ясеттяяетт ттесяттее втеяняня	ACGITARCTT	TTCCATTC66	ятсяяняня				689

7 / 35 FIGURE 6A

 $\textbf{ATGTCTTCCGCCTCTTGAAATATTTCACTTTCTTTTCCAGCTTTTTCCCCATCTCGACCTGCTTTGGTTTTT$

 ${\tt CGAGAAAACCACGTTCCAAATCAGCGACATCTCTCAAATTGAGATCATAGGCTTTTTGAAGATTGCTCAAATTATG}$

 $\label{lem:condition} \textbf{CTTCTCATGTGCATGAGCATTTTTGAAGCCCGCGTCATCAACCAAAGCATTTTTTCCACCCATCACCATGATTTTAT CATTTTCTTTAAAATT$

WO 00/14106 PCT/US99/21053

8 / 35 FIGURE 6B

MKVNVSCSSV	QTTIDILEEN	QGEDESILTL	GQLRDRIATD	NDVDVETMKL	50
LHRGKFLQGA	DDVSLSTLNF	KENDKIIVMG	GKNALVDDAG	FKMLMQYEKH	100
NLSNLQKAYD	LNLRDVADLE	RGFLEKPKQV	EMGKKLEKKV	KYFNEEAERH	150
LETLDGMNI I	TETTPENQAK	RNREKRKTLV	NGIQTLLNQN	DALLRRLQEY	200
QSVLNGDIPE					210

FIGURE 7A

ATGCCAGTCG	TGAACATACC	AATCAAAATA	CTTGGTCAGA	ATCAATCACA	50
TAGTCGAAGT	AACTCCTCGT	CTTCTGTTGA	CAACGATCGA	AATCAACCAC	100
CACAGCAGCC	ACCTCAACCG	CAACCACAAC	AGCAATCTCA	GCAACAATAC	150
CAGCAGGCTC	CAAACGTGAA	TACCAATATG	CATCATTCCA	ACGGATTCTC	200
ACCTAACTTC	CCATCTCGTA	GTCCTATTCC	GGACTTTCCC	AGTTTTTCAT	250
CTGGGTTCCC	AAACGATTCT	GAATGGTCTT	CGAATTTCCC	GTCGTTTCCA	300
AATTTCCCAA	GTGGATTCTC	AAATGGAAGT	TCTAATTTCC	CTGATTTTCC	350
AAGATTCGGA	AGAGATGGAG	GACTATCGCC	AAACCCACCG	ATGCAAGGAT	400
ACAGGAGAAG	TCCAACACCA	ACATCAACTC	AATCTCCAAC	TTCTACATTA	450
AGACGCAACT	CTCAGCAGAA	TCAAGCTCCT	CCACAATATT	CTCAGCAACA	50 0
ACCACAACAA	GCTCAACAAC	GTCAGACAAC	TCCTCCGTCA	ACAAAAGCTT	550
CATCTCGACC	ACCATCTCGT	ACTCGTGAAC	CAAAGGAACC	TGAGGTACCC	600
GAGAGACCAG	CAGTTATTCC	ATTGCCATAT	GAGAAGAAGG	AGAAACCACT	650
GGAGAAGAAA	GGTAGTCGTG	ATTCTGGAAA	GGGTGATGAG	AACCTTGAAG	70 0
AGAACATTGC	CAAGATCACG	ATCGGAAAGA	ATAATTGCGA	GTTATGTCCG	75 0
GAACAAGAAA	CGGACGGCGA	CCCATCTCCA	CTAACCTCCC	CAATCACCGA	800
AGGAAAGCCA	AAGAGAGGAA	AGAAACTTCA	ACGTAATCAA	AGTGTTGTTG	850
ATTTCAATGC	CAAGACAATT	GTTACTTTGG	ATAAAATTGA	ATTACAAGTT	900
GAGCAGTTGA	GAAAAAAGC	TGCTGAACTC	GAAATGGAAA	AAGAGCAAAT	950
TCTTCGTTCT	CTAGGAGAAA	TCAGTGTTCA	TAACTGCATG	TTCAAACTGG	1000
AAGAATGTGA	TCGTGAAGAG	ATTGAAGCAA	TCACTGACCG	ATTGACAAAA	105 0
AGAACAAAGA	CAGTTCAAGT	TGTTGTCGAA	ACTCCACGAA	ATGAAGAACA	1100
GAAAAAAGCA	CTGGAAGATG	CAACTTTGAT	GATCGATGAA	GTCGGAGAAA	1150
TGATGCATTC	GAATATTGAA	AAGGCTAAGC	TGTGCCTACA	AACCTACATG	1200
AACGCCTGTT	CGTACGAAGA	AACTGCTGGA	GCCACCTGCC	AAAACTTCTT	1250
GAAGATCATA	ATTCAGTGCG	CTGCTGATGA	TCAGAAACGC	ATCAAGCGTC	1300
GTCTGGAAAA	TCTGATGTCT	CAAATTGAGA	ATGCTGAGAG	AACGAAAGCA	1350
GATTTGATGG	ATGATCAAAG	CGAATAG			1377

FIGURE 7B

MPVVNIPIKI LGQNQSHSRS	NSSSSVDNDR	NQPPQQPPQP	QPQQQSQQQY	50
QQAPNVNTNM HHSNGFSPNF	PSRSPIPDFP	SFSSGFPNDS	EWSSNFPSFP	100
NFPSGFSNGS SNFPDFPRFG	RDGGLSPNPP	MQGYRRSPTP	TSTQSPTSTL	150
RRNSQQNQAP PQYSQQQPQQ	AQQRQTTPPS	TKASSRPPSR	TREPKEPEVP	200
ERPAVIPLPY EKKEKPLEKK	GSRDSGKGDE	NLEENIAKIT	IGKNNCELCP	250
EQETDGDPSP LTSPITEGKP	KRGKKLQRNQ	SVVDFNAKTI	VTLDKIELQV	300
EQLRKKAAEL EMEKEQILRS	LGEISVHNCM	FKLEECDREE	. IEAITDRLTK	350
RTKTVQVVVE TPRNEEQKKA	LEDATIMIDE	VGEMMHSNIE	KAKLCLQTYM	400
NACSYEETAG ATCQNFLKII	IQCAADDQKR	IKRRLENLMS	QIENAERTKA	450
DLMDDOSE				458

FIGURE 8A

ATGTCAGAAA	AGACTAGCAC	AGTTACAATA	CACTATGGAA	ATCAGCGATT	50
TCCGGTAGCA	GTCAATCTAA	ATGAGACGTT	AAGTGAACTG	ATTGATGATT	100
TACTTGAAAC	GACTGAGATT	TCTGAGAAGA	AAGTCAAGCT	TTTTTACGCT	150
GGCAAGCGTT	TAAAAGACAA	AAAAGCCTCG	TTATCAAAAT	TGGGTTTAAA	200
AAATCATAGT	AAAATTCTAT	GTATAAGACC	ACATAAGCAA	CAACGAGGTT	250
CCAAGGAAAA	AGACACGGTT	GAGCCCGCTC	CGAAAGCGGA	AGCGGAGAAT	300
CCTGTATTTT	CGCGTATTTC	TGGAGAAATA	AAAGCCATCG	ATCAGTATGT	350
TGACAAAGAA	CTTTCCCCCA	TGTACGACAA	TTACGTAAAT	AAACCGTCGA	400
ACGATCCAAA	GCAGAAAAAC	AAACAGAAAC	TAATGATAAG	TGAACTACTT	450
TTACAACAGC	TTTAAAATT	GGATGGAGTT	GACGTACTGG	GCAGCGAGAA	500
ATTGCGTTTT	GAACGGAAGC	AACTTGTTTC	TAAGATCCAA	AAAATGTTGG	550
ATCACGTTGA	CCAAACAAGC	CAAGAAGTGG	CCGCATAG		588

FIGURE 8B

MSEKTSTVTI	HYGNQRFPVA	VNLNETLSEL	IDDLLETTEI	SEKKVKLFYA	50
GKRLKDKKAS	LSKLGLKNHS	KILCIRPHKQ	QRGSKEKDTV	EPAPKAEAEN	100
PVFSRISGEI	KAIDQYVDKE	LSPMYDNYVN	KPSNDPKQKN	KQKLMISELL	150
LQQLLKLDGV	DVLGSEKLRF	ERKQLVSKIQ	KMLDHVDQTS	QEVAA	195

FIGURE 9A

ATGTCTTTTT	TTACCCAGTT	GTGTTCTATG	GATAAAAAAT	ATTGGATCTC	50
TCTAGCTGTA	TTGTCAGTTA	CTGTTTTGAT	TAGCGCATTA	TTGAAAAAGA	100
GAGCTACTGA	AACCGAAGAT	ATTGTCGTTG	TTCATTACGA	TGGCGAAAAG	150
TTGAATTTTG	TGTTGCGACA	ACCAAGGCTG	AATATGGTTT	CTTACACTAG	200
TTTTCTTCGT	CGCGTGTGCA	ACGCATTTTC	AGTAATGCCC	GACAAAGCGT	250
CTCTCAAGTT	AAACGGGGTG	ACCCTCAAGG	ATGGTTCACT	TTCCGACCAA	300
AATGTGCAAA	ATGGAAGTGA	ATTAGAGCTC	GAATTACCCA	AACTGAGCCC	350
GGCAATGCAÁ	CAAATTGAAG	CATATATAGA	TGAGCTTCAA	CAGGATCTCG	400
TCCCTAAAAT	TGAAGCCTTC	TGCCAATCGT	CTCCCGCTTC	GGCACAAGAT	450
GTTCAAGATT	TGCATACACG	CCTTAGTGAA	ACATTGTTGG	CTAGGATGAT	50 0
AAAATTAGAT	GCTGTTAATG	TTGAAGACGA	CCCAGAAGCT	CGTCTTAAAA	550
GAAAAGAAGC	TATTCGTTTA	TCTCAACAAT	ATTTGAGTAA	ACTAGATTCC	600
ACCAAGAATC	AAAACAAATG	A			621

FIGURE 9B

MSFFTQLCSM	DKKYWISLAV	LSVTVLISAL	LKKRATETED	IVVVHYDGEK	50
LNFVLRQPRL	NMVSYTSFLR	RVCNAFSVMP	DKASLKLNGV	TLKDGSLSDQ	100
NVONGSELEL	ELPKLSPAMQ	QIEAYIDELQ	QDLVPKIEAF	CQSSPASAQD	150
VODLHTRLSE	TLLARMIKLD	AVNVEDDPEA	RLKRKEAIRL	SQQYLSKLDS	200
TKNONK					206

FIGURE 10A

DERG-1
DERG-3
DERG-4
DERG-5
DERG-1
C.e FRG-1
S.p FRG-1A
S.p FRG-1A
C.e FRG-1A
C.e FRG-1A
C.e FRG-1A

FIGURE 11

PCT/US99/21053 WO 00/14106

18 / 35 FIGURE 12

20 / 35 FIGURE 14

FIGURE 15A

FIGURE 15A

GTGAA 1400	TCTG 1450	CCCC 1500					1		AACCT 1850	GGCAG 1900						AGTA 2150	TGATG 2200	TGTT 2250	3CAC 2300					
AAACCTGTTT CCCAGAAGCC CCCACCTCCC TCTGAGAAGG TAGAGGTGAA 1400	AGTTCCCCCT GCTCCAGTTC CTTGTCCTCC TCCCAGCCCT GGCCCTTCTG	CTGTCCCCTC TTCCCCCAAG AGTGTGGCTA CAGAAGAGAG GGCAGCCCC	AGCACTGOCC CTGCAGAAGC TACACCTCCA AAACCAGGAG AAGCCGAGGC	TCCCCCAAAA CATCCAGGAG TGCTGAAAGT GGAAGCCATC CTGGAGAGAGG	TGCAGGGGCT GGAGCAGGCT GTAGACAACT TTGAAGGCAA GAAGACTGAC	AAAAAGTACC TGATGATCGA AGAGTATTTG ACCAAAGAGC TGCTGGCCCT	GGATTCAGTG GACCCGAGG GACGAGCCGA TGTGCGTCAG GCCAGGAGAG	ACGGTGTCAG GAAGGTTCAG ACCATCTTGG AAAAACTTGA ACAGAAAGCC	ATTGATGC CAGGTCAAGT CCAGGTCTAT GAACTCCAGC CCAGCAACCT	IGAAGCAGAT CAGCCACTGC AGGCAATCAT GGAGATGGGT GCCGTGGCAG	CAGACAAGGG CAAGAAAAT GCTGGAAATG CAGAAGATCC CCACACAGAA	ACCCAGCAGC CAGAAGCCAC AGCAGCAGCG ACTTCAAACC CCAGCAGCAT	GACAGACACC CCTGGTAACC CAGCAGCACC GTAGCCTCTG CCCTGTAAAA	ATCAGACTCG GAACCGATGT GTGCTTTAGG GAATTTTAAG TTGCATGCAT		CONCLOS STATES OF THE STATE OF	ACI IGGG IGG AGGCAAAACA CTAATAAAAG GGCTAAAAAG GAAAATGATG	CITITICT ATAITCITAC TCTGTACAAA TAAAGAAGTT GCTTGTTGTT	IGAGAAGTTT AACCCCGTTG CTTGTTCTGC AGCCCTGTCT ACTTGGGCAC	SCCCACCACC TGTTAGCTGT GGTTGTGCAC TGTCTTTTGT AGCTCTGGAC	TGGAGGGGTA GATGGGGAGT CAATTACCCA TCACATAAAT ATGAAACATT	TATCAGAAAT GTTGCCATTT TAATGAGATG ATTTTCTTCA TCTCATAATT	AAAATACCTG ACTTTAGAGA GAGTAAAATG TGCCAGGAGC CATAGGAATA	.C 52
CCACCTCCC TCI	тетостос тосо	STGTGGCTA CAG	ACACCTCCA AAA	SCTGAAAGT GGA	STAGACAACT TT	SAGTATTTG ACC	ACGAGCCGA TGT(ACCATCTTGG AA	AGGTCTAT GAAC	SGCAATCAT GGA	CTGGAAATG CAC	GCAGCAGCG AC	GCAGCACC GTA(TGCTTTAGG GAA		ISTITIAL IAGO	TAATAAAAG GGO	TGTACAAA TAAA	TGTTCTGC AGCC	STTGTGCAC TGT	CAATTACCCA TC	AATGAGATG ATT	GTAAAATG TGC	ATGCTACAT TTI
CCCAGAAGCC C	GCTCCAGTTC CT	TTCCCCCAAG AC	CTGCAGAAGC TA	CATCCAGGAG TO	T GGAGCAGGCT (TGATGATCGA A	GACCCCGAGG GA	GAAGGTTCAG /	CAGGTCAAGT CC	CAGCCACTGC AC	CAAGAAAAT G	CAGAAGCCACA	CCTGGTAACC CA	GAACCGATGT G	TTA ACTO A TT		AGGCAAAACA C	ATATTCTTAC TC	AACCCCGTTG CT	: TGTTAGCTGT G(A GATGGGGAGT	GTTGCCATIT TA	ACTITAGAGA GA	TCTGTATGTT GGATGACTTT AATGCTACAT TTTC
AAACCTGTTT	AGTTCCCCCT	CTGTCCCCTC	AGCACTGCC	TCCCCCAAAA	TGCAGGGGCT	AAAAAGTACC	GGATTCAGTG	ACGGTGTCAC	ATTGATGTCC	IGAAGCAGAT	CAGACAAGGG	ACCCAGCAGC	GACAGACACC	ATCAGACTCG	TTCAGAGACT		ACHGGGTGG	CHICHCL	IGAGAAGTTT,	CCCCACCACC	TGGAGGGGT	TATCAGAAAT	AAAATACCTG	TCTGTATGTT

FIGURE 15B

550 20 450 ලි VPGQVQVYEL QPSNLEADQP LQAIMEMGAV AADKGKKNAG NAEDPHTETQ EGAENRQVHP FHVYPQPGMQ RFRTEAAAAA PQRSQSPLRG MPETTQPDKQ MSAATHSPMM QVASGNGDRD PLPPGWEIKI DPQTGWPFFV DHNSRTTTWN CGQVAAAAAA QPPASHGPER SQSPAASDCS SSSSSASLPS SGRSSLGSHQ APAEATPPKP GEAEAPPKHP GVLKVEAILE KVQGLEQAVD NFEGKKTDKK QGDDWEPRPL RAASPFRSSV QGASSREGSP ARSSTPLHSP SPIRVHTVVD VSQKPPPPSE KVEVKVPPAP VPCPPPSPGP SAVPSSPKSV ATEERAAPST YLMIEEYLTK ELLALDSVDP EGRADVRQAR RDGVRKVQTI LEKLEQKAID DPRVPSEGPK ETPSSANGPS REGSRLPPAR EGHPVYPQLR PGYIPIPVLH RPQQPMTHRE TAPVSQPENK PESKPGPVGP ELPPGHIPIQ VIRKEVDSKP PRGYISIPV IHEQNVTRPA AQPSFHKAQK THYPAQRGEY QTHQPVYHKI **2PEATAAATS NPSSMTDTPG NPAAP**

FIGURE 15C

ECCEMENTOS ECATOCAMOS COSECOSCO ECCAMOTTOS CIVEACTOCA COMEMACITY CTRECOSCOS MOTTOCTRIC TOCCTTRI	rc 10
TOCTOCTICO COTOTOGORO CORGORGOCI ATTICORGAC ACTICORCOC CICTOTOGOC ACGICACOCO COCCITIRAT TORTHARGO	T 100
CONCERCEC CONTINUES WONDELLOSSE CONCERCION CONCENTRATE CONCENTRATE CONCENTRATE CONCENTRATE CONCENTRATE CONTINUES CON	
COCACCOCC COCCACCOCC CACACOCCAA COCACCATCA COCCCCCCCC COCCTCCCC ATCATCACC TOCCCTCCC CAACCCTCA	C 340
COCCRCCCTT TOCCCCCCC ATGGGRGGT ANGATGGACC COCRGGGGG CTGGCCCTTC TTGGTGGACC AGGAGGGGC CACCACTAC R B 2 L 2 2 G W I I K I B 2 G T G W 2 I I V B K K 3 R T T T	c ⊲ 50
TOGRACORCO ESCECCIOCO CICTORGOGO ECCAMOGRAS CICCATOCIC TOCCARIGGO COTTOCOGO ROGGOTICHIO ECTOCOCCO W H B P R V P S I G P K I T P S S A H G P S R I G P R I P P	T 540
ECTHORGOUGH COCCCCCATA CHACCOCCCC CACCCCCCC CALICALIAC CALLCALAC CACCCACCCCCCCCCC	G 430
CACCCITTCC ATTICTRTCC COACCCTGGG ATGCAGCGGT TOCGAACTG GGGGCGCAGCG GCGGCTCCTC AGAGCTCCCA GTGACCTCT K I K V Y I Q I G H Q I I I I I A A A A I Q I J Q I I L	G 720
COCCCCATC CACABACCAC TOROCORCAT BARACACTUT EACACCTCC ACCCCCCCC CORCCCACC COCCACCT CORCCACC COCCACCT CORCCACCT CORCCACCACCACCACCACCACCACCACCACCACCACACCAC	T \$10
EASCECTOCC ACTUTOCACC TOCCUTOCAC TOCTUCTUCT CATOCTCCTC COCCACCCTC CCTTOCTCCC CCACCACCACC CCTCCCCACCACCACCACCACCACCACCACCACCACCACC	r +00
CACCACCTCC COCCCCCTR CATUTOCATT COCCTOATHC ACCACCACAA CCTTHCCCCC COACCACCCC ACCCCTCCTT CCACAAACCC K Q L 2 R G Y I S I 2 V I K I Q K V T R P A Q P S I K K A	990
CHCHARACTC ACTRCCCACC CACACCCCCC CACTRCCACA CCCACCACCC TOTOTRCCAC ACATCCACC CCCACCACCC TOTOTRCCAC ACATCCACCACCACCACCACCACCACCACCACCACCACCA	1060
COCCTRCCCC COCCATOCCC CITCACCTCA TOTOTOCACC COCCACCCC TOACCACCAC CCACCACCAC CCACTCCAC L L R A S 1 I R S 5 V Q G A S 5 R I G S 1 A R S 5 T 1 L R	1170
TOCCCCTCCC CCATCCCTCT CCACACCCC CTCAACACCC CATCACCCAT CCACAAACTC CACCTCTTTC CCACCTCTACCCCC CATCACCCCAT CCACAAACTC CACCTCTTTC CCACCTCTACCCCAC CATCACCCCAT CCACAAACTC CACCACTCTACCCCAC CATCACCCAT CCACAAACTC CACCACTCTACCCCACCTCACCCCAT CCACCAAACTC CACCACACTCACCCCAT CCACCAAACTC CACCACTCTACCCCAC CATCACCCCAT CCACCAAACTC CACCACTCTACCCCAT CCACCAAACTC CACCACTCTACCCCACCCCAT CCACCAAACTC CACCACTCTACCCCAT CCACCAAACTC CACCACTCTACCCCAC CACCACTCTACCCCAT CCACCAAACTC CACCACTCTACCCCACACTCTACCCCAT CCACCAAACTC CACCACTCTACACCCCAT CCACCAAACTC CACCACACTCTACACCACCC CATCACCCAT CCACCAAAACTC CACCACACTCTACACCCCACACACTCACACACA	1240
MACANACCAG MANGTRACCO MOCCOCAGTT SCACAGAGA TOCCTOCTOG MCACATOCA MITUANGTON TOCCCANAGA GETGENTOT N K P I 3 K P 6 P V 6 P I L P P 6 E I P I Q V I R K I V D 3	1350
ARRECTIOTITY COCACARACCO COCACCTOCA TOTACARACCA TACACCATARA ACTICOCCCT COTOCACTTC CTTUTOCTCC TOCCACCCCC K 2 V 5 Q K 2 P 2 2 5 X K V I V K V 2 P A 2 V 2 C 2 P 2 3 2	1440
COCCUTICU CIUTOCCCU TUCCCCAR ACTUTUCCTA CACAACACAC COCACCCCC ACCACTUCCC CTUCAGAACC TACACCTUCC C 2 5 A V 2 5 5 2 K 5 V 8 T I I 2 A A 2 5 T A 2 A I A T 2 2	1530
WHOCHCORE WISCOCKECK ACCOUNTS CALCUSCUS DESCRIPTION OF THE STATE OF TH	1620
STREAGACT TIGARCOCAR SARACTCAC SARACTROT TOATCATOLA SCACTATITIC SCCARGACC TOCTOCOCCT SCATTCACTC V) N I I S K K Y J K K Y L N I I I Y L Y K I L L A J. 3 S V	1710
ENCOCCACC CACCACCCCA TOTOCTONC COCACCACAC ACCCTTON CAACACTTCA ACCACACCCC B I I C I A B V I Q A I I B C V I K V Q I I L I K L I Q K A	1600
ATTENTISTIC CONCENTRACT CONCENTRAL SANCTOCHEC CONCORNACT TRANSCENERT CONCORNACT CANCELLARY CANCELLA	
COCCTOCOR CACACARCO CHACAAAAT COTOCAATO CHCAACTO DOLOCORA ACCACCAC CHCAACCOR ACCACCACACACACACACACACACACACACACACACAC	1944
ACTICARNOC COROCACAT EACAGACACC COTOCINACE CACACOCACC EDISCOCICTE COCTUBARA ATORCACTOS GARCOCATUL T S H 2 S S H T 3 T 2 G H 2 A A 2 .	
CTCCTTTLCC CANTITUDES TICCATCORT TICACACACT TIMACTCACT TCCTTTTTTT THECTOCITE CTHTCCACTH ACTTCCTCTC	
ACCOMMANCA CHARIMANA COCHMANAC CAMANICATE CITITICITET ADRITCTING TOTORICANA THANCANCIT COTTOTICIT THANCANCITY ACCOUNTY CITITICITIC MODOLICULT ACTUROUM COCOMORMO TETRACCIOT COTTOTICIA	
ACCITOTAC TOCACCOCAT CATCACCACT CANTINGOOM TOACHDAMT ATCAMACATT TATCACAATT TATCACCATT TATCACCATT	
ATTITUTES ECTORBAIT AMATROCTE ACTIBICACA CACENAMATE TOCOACCACE CAERICAMER ECTORATOR CARROCATE	
ACCOUNCE STIC	2534

FIGURE 16A

50 100 150 200 250 300 350 400 400 400 550 600 650 650 700 700 700 900 900 950 1100 1150 1200 VAAGACAGAC AAAGCATACT GGCTTCTGGA AGAAATGCTA ACCAAGGAAC STGGAGAAGG TCCAGTATCT TGAACAAGAA GTAGAAGAAT TTGTAGGAAA GACCATCCC AACAATCAAG ATCAAAGTAG CAGTCTTCCT GAAGAATGTG ACCTTCAGA TGAAAGTACT CCTCCGAGTA TTAAAAAAAT CATACATGTG SCAATCAGAT CAAAGCATGA ACCGGCACAA CTTTCCTTGC AGTGTCCATC ATCTATCCCC AGCAGGACTG TCAGACTGAA GCACCCCCTC TTAGGGGGCA **3GAAGCCACC AGGAGCAGCC ACCATATCCT AGCTACAATT CTAACTATTG** ATCCTTATGG AGATGGTAAT CGTAGTGTTC CACAATCAGG ACCGACTGTA SGACCACAAG AAGATGCGTG GGCTTCTCCT GGTGCTTATG GAATGGGTGG ACATGACTGA AAGTACTTCA CCATGGCCTA GCAGTGGCTC TCCCCAGTCA GGTCCAACAT ACCCCCAGG CCCTGGGGCA AATACTGCCT CATACTCAGG SCCCCTTCAC CCCCAGTCCA GCAGCCCAAG GATTCTTCAT ACCCCTATAG AGTACGAATC CTCGGGGACA GTGATCAATG AAGATTCAGA TCTTTTGGAT ATGECTACTA TCCCTCGGGA GGCGCCTGGC CAGAGCCTGG TCGAGCCGGA SACCAGAATT GCAAGGCCAG AGTTTGAATT CTTATACAAA TGGAGCGTAT **CCAAGTCC AGTATAGTGC TGAGCCTCAG CTGTATGGTA ATGCCACCAG XGGGGGGGCCCCGGCGGAGA OCAOCTGGCT GGGAGAAGGC GGAGGAGGCG GGCTTATTAT GCACCTGGTT ATACTCAGAC CAGTTACTCC ACAGAAGTTC CAAGTACTTA CCGTTCATCT GGCAACAGCC CAACTCCAGT CTCTCGTTGG BGTTCCAGGA TATCCGCCTT CACAGAACCC TGGAATGACC CTGCCCCATT SCGTTATOCC TGGCCTTCAT CAGCGCCCTC AGCACCACCC GGCAATCTCT SAATTCTACT GCGAGATCTA GGGCTCCTTA CCCAAGTACA TATCCTGTAA ACTACGGGCC TGGGGGTGGA GATGTGCCGG TACACCCACC TCCACCCTTA ATCCTCTTC GCCCTGAACC TCCCCAGCCT CCCATTTCCT GGCGGGTGCG

FIGURE 16A

006 850 1800 1450 1756 1600 16 50 1400 1500 1550 AAAAAAGGA TTATGAAAGG ATTTAGAACA AAGTGGAAGC CTGTTACTAA CAGTTTTCAGA CGAATGAATG TAATAGGAAA CTATGGAGTT ACCAATATTG TTTGGAACT GGATTCAGTT GAAACTGGGG GCCAGGACTC TGTACGGCAG GCCAGAAAAG AGGCTGTTTG TAAGATTCAG GCCATACTGG AAAAATTAGA CTTGACCAAA GAACACTTGA TTAGGTTAAT TACCCTCTTT TTGAAATGCC ACCAGATGAA ACTGGATATA ATTTGAGACA AACAGGATGT GTTTTTTAA TGTTGATGAC AAGAAGCAAT ACATTCCAGC TITTCCTITG ATITTATACT TGAAAAACTG GCAAAGGAAT GGAAGAATAT TTTAGTCATG AAGTTGTTT **CCAAGTAGAC TCACTCCTTA AAAAATTTAT GGATATCTAC AAGCTGCTTA** TTACCAGCAG GAGGGAAACA CACTTCACAC AACAGGCTTA TCAGAAACCT ACATCTGGAT ATCTTGTCAC ATTTTTGTAC ATTGTGACTG CTTTCAACAT ATACTTCATG TGTAATTATA GCTTAGACTT TAGCCTTCTT GGACTTCTGT TTGTTTTGT TATTTGCAGT TTACAAATAT AGTATTATTC TCTAAAAAA AAAAAAAA AAAAAA

FIGURE 16B

DAWASPGAYGMGGRYPWPSSAPSAPPGNLYMTESTSPWPSSGSPQSPPSPPVQQPKDSSYPYSQSDQSMNRHNFPCSVHQ EPGRAGGSHQEQPPYPSYNSNYWNSTARSRAPYPSTYPVRPELQGQSLNSYTNGAYGPTYPPGPGANTASYSGAYYAPGY TQTSYSTEVPSTYRSSGNSPTPVSRWIYPQQDCQTEAPPLRGQVPGYPPSQNPGMTLPHYPYGDGNRSVPQSGPTVRPQE MSALRRSGYGPSDGPSYGRYYGPGGGDVPVHPPPPLYPLRPEPPQPPISWRVRGGGPAETTWLGEGGGGDGYYPSGGAWP YESSGTVINEDSDLLDSQVQYSAEPQLYGNATSDHPNNQDQSSSLPEECVPSDESTPPSIKKIIHVLEKVQYLEQEVEEF VGKKTDKAYWLLEEMLTKELLELDSVETGGQDSVRQARKEAVCKIQAILEKLEKKGL

FIGURE 16C

H S A L R R S Q Y G P S D G P S	
TACOCCCGCTACTACGGCCCTGGGCCTGGAGATGTGCCGGTACACCCTCCACCCTTATATCCCCCTGAACCTCCCCCCCC	150
Y G R Y Y G P G G G D V P V H P P P P L Y 2 L R P E P P Q P	
CCCATTTCCTOCCCOGTGGG CGCGGGGGCCCCCCCCCACACCTGGCT GGGAGAAGAGGGCAAAGAGGCCAATGGCTACTA TCCCTCGGG	₽A 270
PISK RVR GGG PAET TWL GEG GGGD GYY PSG	
COCCCCTGCC CHGAGCCTGC TCCACCCGCAGGAAGCCACCAGGAGCACCACCATATCCTAGCTACAATTCTAACTATTTGGAATTCTA	T \$60
GANTERGRAG G S H Q P Q P P Y P S Y H B H Y H H S T	
$\tt CCCLOATCTLOGGCTCCTTLCCCLAGIACTATCCTOTLAGACCLGAATTGCLLOCCLGAGTTTGLATTCTLATACALATGCAGCCTAGAGTTTGCLAGAGTTTGLATTCTLATACALATGCAGCCTAGAGTTTGCLAGAGTTTGLATTCTLATACALATAGGAGCCTAGAGTTTGCAGAGTTTGLAGAGTTTGLAGAGTTTGLAGAGTTTGCAGAGTTGCAGAGTTGCAGAGTTTGCAGAGTTTGCAGAGTTTGCAGAGTTTGCAGAGTTTGCAGAGTTGCAGAGTTTGCAGAGTTTGCAGAGTTTGCAGAGTTGCAGAGTTTGCAGAGTTGCAGAGTTTGCAGAGTTGAGAGTTGAGAGTGAGAGTTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGTGAGAGAGTGAGAGAGAGTGAGAGAGTGAGAGTGAGAGAGAGAGTGAGAGAGAGAGAGAGAGAGAGAGAGAGTAG$	T 450
ARSK A FY PST Y P V R F E L Q G Q S L N S Y T N G A Y	
GGTCCAACATACCCCCCACOCCCGGGGCAAATACTGCCTCATACTCACCGCCTTATTATGCACCTCGTTATACTCAGACCAGTTACTC	C 540
GPTY PPC PGA NTAS YSG AYY APGY TQT SYE	
ACMGANGTTCCANCTACTTA COTTTCATCTGGCANCTGGCANCTGCAGT CTCTGTTTGGATCTATCCCCAGCAGGACTGTCAGACTG	630
TEVP STY RSS G M S P T P V S R W I Y P Q Q D C Q T E	
GCACCCCCTCTTAGGGGGA GGTTCCAGGA TATCCGCCTTCACAGAACCCTGCAATGACCCTGCCCCATTATCCTTATGGAGATGGTA	T 720
V b b r c d a b d a b b a d a b a d a b a d a d a	
CGTAGTGTTC CACAATCACG ACCGACTGTA CGACCACAAGAAGATGCGTG COCTTCTCCTGGTGCTTATGGAATGGGTGGCCGTTATC	C 8210
RSVP Q S G P T V R P Q E D A W A S P G A Y C K G G R Y P	
TGGCCTTCAT CNGCCCCCTC AGCACCACCGGCAATCTCTACATGACTACAACTACTTCACCATGGCCTAGCAGTGGCTCTCCCCAGT	00e A
WPSSAPS APP ONLY MTESTS PWFS SGS PQS	
COCCUTTERS CONTRACTOR GERRACORRESTATOTATACOCRATATACOCRATARRACORRES	c 99 0
PPSPPVQ Q P R D S S Y P Y S Q S D Q S K N R K N F P C	
AGTITECATEAGTACCAATC CTCOCCGACACTGAACAATGAAGATTCAGA TCTTTTOGATTCCCAAQTGCAGTATAGTGCTGAGCCTC	G 1080
SPRQYES SGT VNN E DSD LLD SQVQ Y S A E P Q	
CTGTXTGGTXXTGCCACCAG TGACCATCOCAACAATCAAGATCAAAGTAGCAGTCTTCCTGAAGAATGTGTACCTTCAGA TGAAAGTM	T 1170
LYGNATS DHE NNQD QSS SLP EECV PSD EST	
CCTCCGAGTA TTAAAAAAA TCATACATGTGCTGGAGAAGGTCCAGTATCTTGAACAAGAAGTAGAAGAATTTGTAGAAAAAAAA	C 1260
PPSIKKI I HV LEKV QYL EQE VEEF VGK KTD	
ANACATACTOCCTTCTOCAAGAAATOCTAACCAAGGAACTTTTGGAACTGGATTCAGTTGAAACTGGOOCCCAGGACTCTGTACGGC	G 1350
KAYW LLE EHL TKEL LEL DSV ETGG QDS VRQ	
GCCMGAAAAG AGCCTGTTTG TAAGATTCAGGCCATACTGGAAAAAATTAGAAAAAAAAGGATTATGAAAAGGATTTAGAAAGTAAAAAA	C 1410
ARKE AVC KIQ AILE KLE KKG L.	
CTGTTACTACCTCACCAACGACCACTCATTAGTTAATTACCTCTTTTTGAATGCCTGTTGATGACAACAACCAATACATTCACCA	1530
TITTOTTIGATTITATACTTGAAAAACTOOCAAAGAATGGAAGAATATTITAGTCATGAAGTTGTTTTCAGTTTTCAGAOGAATGAA	1620
GTIATAGGALACTATGGAGTTACCALTATTGCCALCTACACTCCTTTALAAAATTTATGGATATCTACAACTGCTTATTACCACC	
GENGGENNELENTTONECH CHOCCTTRICKONNECTNOCHGETGENETGENETGENETATENTITTGEGENENACHGEGTGTTTTTTTT	
AACAGGGGTASCTTGTCACAGTTTTTGTCACTTGTCACTCTTTCACAGTATATACTTCAGTGTAAAGTTAGACTTTAGCCTTCC	1946

1300	AGTGATCGAG GTGCAAACTC TGATCACATA TATTGACTTG AAGGAGGCCC
1250	GAGGTAAGTC TTGAAAAAA CCCCTGCATC CGGGAAGCCA GGAGAAGAGC
1200	TGTACCTGAG CTCCAAAACA GAATTGCAGG GTTTAATTGG ACAGTTGGAT
1150	AATGAGAGAA ATAAAAAATG AACTTCTCCA AGCACAAAAC CCTTCTGAAT
1100	GACCTGAGAC AGAATCATTC CATTTTAAAA ATAGAAAAGG TCCTCAAGAG
1050	TATTGAAATA TCTGGATTTG GAAGAGGAAG CAGACACAAC TAAAGCATTT
1000	GACAGAAATC AGAAATTATC GGAGGGAGGT AGTAGAAGAT ATCAACAAAT
950	GTGCTCTCGG GGCTGATCGC TGACCTGGAT GCTCTAGATG TGTGCGGCCG
006	CACTTCTGAT GGGTGTGAAC AACAATGAGA CCTGCAGGCA CTTATCCTGT
850	AATCAACTTC GTGATGTGTG AGGTGAACAA GGCCCGAGGG GTCCTGATTG
800	AAGCAGCCTT CCCTGCCGCT TTCCGAGGAT GCACATCCTT CCGTTGCCAA
750	CTTTAACCAA AATCTGTGCG GTGCAAGAGA TAATCGAAGA CTGCATGAAA
200	ACATGTTAAA ACTGGAGGAA AAATCTCCTT GCGGAAAGCA AGGTATCACA
650	GTAACTGATG AGTTTGAAGA AGGCATCCAA GATATCATTC TGAGGCTGAC
009	AGTCCCTCGT GAGAGAGAA ATTGTGCCAT TTTATAATGG AGGCAACTGC
550	TGCAAACCAC CCACACCGGA TTGAAATACA GAACATTTTT GAGGAAGCCC
200	AAGCGGGCAG CACAGGAGAC AGAACGTCTT CTCAAAGAGT TGGAGCAGAA
450	AAATAGACTC TGTAGATACT GAAGGAAAAG GAGATATTCA GCAAGCTAGG
400	TGACAAGAAT TACAAGAAAC TGGAGAGGAT TCTAACAAAA CAGCTTTTTG
350	GAAGTAAAAA GTGTAGAACA GCAAGTTATC GGCTTCAGTG GTCTGTCAGA
300	ATATGGGAAA CCAACATCCT TCTATTAGTA GGCTTCAGGA AATCCAAAAG
250	AATTCAGACT TOTTTTGGTG CTTGTGAAAC TGAACACAAC AAAAGTATGG
200	GCTGATCTTC CACCTCGCCA CCTCAGCCAC GGGACGCCAA GACCGCATCC
150	TGCGAGGCAT GCAGCTGGGG GCCCAGCTCC GGTGCCGCAC CCCGTAAAGG
8	CAGTAGCGGC COCTTCACCG GCTGCCCCGC TCAGACCTAG TCGGGAGGGG
ය	OCOCCOCCO OCOCCOCO CONGAAGACA COCGGAGCGG CTGCTGCAGC

FAAAGCC 1350 TCTTTC 1400 3AGCTGC 1450 AGAAGAG 1500	ည် (၁)	TATTTA 1700 CAAGAC 1750	STGTATG 1800 FCAGA 1850		GTAAGGT 2000		AGITG 2150			TAGTGA 2350			CIGAAIG 2500	
TTGAGAAAAG AAAGCTGTTT GCTTGTGAGG AGCACCCATC CCATAAAGCC GTCTGGAACG TCCTTGGAAA CTTGTCTGAG ATCCAGGGAG AAGTTCTTTC ATTTGATGGA AATCGAACCG ATAAGAACTA CATCCGGCTG GAAGAGCTGC TCACCAAGCA GCTGCTAGCC CTGGATGCTG TTGATCCGCA GGGAGAAGAG	AAGTGTAAGG CTGCCAGGAA ACAAGCTGTG AGGCTTGCGC AGAATATTCT CAGCTATCTC GACCTGAAAT CTGATGAATG GGAGTACTGA AATACCAGAG ATCTCACTTT TGATACTGTT TTGCACTTCA TATGTGCTTC TATGTATACA	GAGCTTTCAG TTCATTGATT TATACGTGCA TATTTCAGTC TCAGTATTTA TGATTGAAGC AAATTCTATT CAGTATCTGC TGCTTTTGAT GTTGCAAGAC	AAATATGATTI ACAGCACGIT AACTITITCCA TICGGATCAT TATCTGTATG ATGTGGTGTG GTTTGTTTGG TITGTCCTTT TTTTGCGTT TTTAATCAGA	AAACAAAATA GAGGCAGCTT TTGTAGATTT TAAATGGGTT GTGCAAGCAT TAAAATGCAG GTCTTTCAGA ATCTAGAACT AGGCATAACC TTACAAAAAA	CTAGGAAAAT TATGAGAAAG GGGAAATTTT TGGTTAAATA AGAGTAAGGT	I CAAACACAA GCAGI ACA I GI TI CI GITITCA TI ATGCI CGA TAGAAGGCTI IITITI CACT TATAAGGCCT GATTGGTCCT ACCCAGCITA ACGAGAGAAG	GTTTTTTGT TTGTTCAGAC AGTCTGTTCT TTTGTAAACA TTTTTAGTTG	GAAAAACAGC ATCTGCATTT TCCCCATCCT CTACGTTTTA GAGAGGAATC	IIGIIIIIGI GIGCAACAIA AGAAAATTAT GAAAACTAAT AGCCAAAAAA SCTTTGAGAT TGCATTAAAG AGAAGGAATA AACCACAACAAAAA	TGTAAGTIGO TTTTGTTTGT AAAATCTGAG CTTATAGTTT TCCTTAGTGA	GTAAATTCAT AAGGATGGGA ACATTTAAAT TAAGTTAATG GGCCTTTAAA	AAAAAAAAA GAAACACICA IACCIGIAGI IGGAGGATGA ATACTGGAGA GGGGTTACCA ATGTCAGGTT ATACTAAAAA TAAAAAAAAAA	TAGCACATAA TAGTTCTCTT CTGTTGTCCA AGGCTGTAAA ATGGACACA	TTGTCACACC TCCCCGGTGC TGTTTTACAA CGTGAGGGTA GACGCTGTCA
TTGAGAAAAG AAAGCTGTTT GCTTGTGAGG AGCACCCATC CCATAAAGCC GTCTGGAACG TCCTTGGAAA CTTGTCTGAG ATCCAGGGAG AAGTTCTTTC ATTTGATGGA AATCGAACCG ATAAGAACTA CATCCGGCTG GAAGAGCTGC TCACCAAGCA GCTGCTAGCC CTGGATGCTG TTGATCCGCA GGGAGAAGAG	TGCCAGGAA ACAAGC ACCTGAAAT CTGATGA BATACTGTT TTGCACTT	TCATTGATT TATACGTC	THETHER THETCH	AGGCAGCTT TTGTAG/ TCTTTCAGA ATCTAGA/	ATGAGAAAG GGGAAA	CAGLACALG LICTGTT TAAGGCCT GATTGGTC	GTTCAGAC AGTCTGT	TCTGCATTT TCCCCAT	IGCAACATA AGAAAAT 3CATTAAAG AGAAGAG	TTGTTTGT AAAATCTC	AGGATGGGA ACATITA	TGTCAGGTT ATACTAA	SETTOTOTI CTETTETO	осоватас татттас.
TTGAGAAAAG A GTCTGGAACG T ATTTGATGGA A TCACCAAGCA G	AAGTGTAAGG C CAGCTATCTC G ATCTCACTTT TG	GAGCTTTCAG T TGATTGAAGC A	AAATATCATT ACATTE G	AAACAAAATA G TAAAATGCAG G	CTAGGAAAAT T	TITITIOACT TA	GTTTTTTGTTT	GAAAAACAGC A	CCTTTGAGATTC	TGTAAGTTGC T	GTAAATTCAT AA	CGGGTTACCA	TAGCACATAA TG	TTGTCACACC TC

2700 2750 2800 2850 2900 3050 3050 3150 3250 3300 3350 3450 350 3650 3700 3700 3850 ATAGTCACTT TAAACAGCTC AAAGTAGCTA GCTAAAGGAG TAGCCTTAAA SGAAGAGITT TTAAATTAGA GCTCTGTTTA ATTATACCAC TGGGAAATCA SCATAAATGC TTTCTGAGGA TCCGGTACAA AATGATTTCC CAAAGTTCTG TACCTAAAAG ATGACAGAAG CATAGCCCTT AACAAATCTT CAGCTTGTCT GCCGTGAGCT TCCCATACTA CTGCAGGTCC AACTCCTGGC AACCGCGGGC **3CGATTCTCC TGCCTCAGCC ACCTGAGTAG CTGGGAGTAC AGGCATGTGG** AACCACTCAC TTAGTAAATG TCATAACTAC ACCTGCTCCA GGACCAATCA GTGAAACCTG CTCGGAATTA AAGGCTTCCT CTGGGTGCCT GCTGAACAAC AAGTGCCTTG AGAACATGTG GGTCCGAGTG TTATAACAGA CTCCTCCCCC SEGTAATATT CTCTTTCAGA GATGCTCATT GTGTAACTCT GTGTAGGGAG AATGTTCTAG AATCGCTGGA CGGTGGGGTC AGAGGGCAGT CGGTATTTAG STGCAGTGGT GCCATCTCAG CTCACTGCAA CCTCCACCTC CCAGGTTCAA IGAGCTCATG TCATGGGCAT GTGGTGGTTT CTCTGTTGCC TGAAAGAGCC SEGTCACCTT TTGCCTGGTC ATCCTGTTAG AGTACATCTT TGGAAATCCA STCAGTATTT CCCAATCATG AAAATCCCTT GCTATGTCTT TCCTACTAGA SCTTTTCTGT ATCATAATTT TAGAATGCTC TTAAAATCTT GAGGAAGAGT GATGGTCAG GCTGGTCTCG AACTCCTGAC CTCGTGATCC GCCCGCCTCG TTCATTITG TAAAGTTAAA TGTCAGCATT CCCTTTAAAA GTGTCCATTG TCAAGGCAGG TCATTGGAAT CCACGTTTTG GCCACAGTAG TTGTAGGATT TITATITIT TATITATITI TGAGATGGAG TCTCTGTTGC CCAGGCTGCA CACCATGCCT GGCTAATTIT TGTATTITTA ATAGAGTTGA GATTTCACCA 3TAACCCAGA GGGACCAGGC OTTCCTAGGT TITCTAGGCA GTCAGCTGT GGTTACGCT TCAGGCATAT TCTTCCCCAG AGTACTACTT ACATTTTAAA TCTTTGAAA GTAGACGTTT CAGTCATTCT TTTCAAACAA GTGTTTGTGT ATTAAAGTOA GTOGTGCGTG AAGCATCTCT CTTCTAAAGG ATGTGTATTI

4000 4050 4100 4150 4250 4300 GTATTITIGT GATCTGTAAT GAAAAGAATC TGTACTGCAA GTAAAACCTA CTCCCCAAAA ATGTGGCT TTGGGTCTGC ATTAAACGCT GTAGTCCATG TCAGATTGAC CTTGATTGAC TGTCAGGCAT GGCTTTGTTT CTAGTTTCAA AATATGAGCT ACTGCATGTA ATTCTTAAAC TGGGCTTGTC ACATTGTATT ACCTTTTGCC AAGCTGTGGG CATCGTGTGT GAGTACAGGG TGCTCAGCTC TTCCACCGTC ATTITIGAATT GTTCACATGG GTAATTGGTC ATGGAAATGA TCTGTTCTCG TTCCTTGTAC CGGATTATTC TACTCCTGCA ATGAACCCTG TTGACACCGG ATTTAGCTCT TGTCGGCCTT CGTGGGGAGC TGTTTGTGTT

FIGURE 17B

447 50 100 150 200 250 300 ALEKRKLFAC EEHPSHKAVW NVLGNLSEIQ GEVLSFDGNR TDKNYIRLEE IALLMGVNNN ETCRHLSCVL SGLIADLDAL DVCGRTEIRN YRREVVEDIN HTLTKICAVQ EIIEDCMKKQ PSLPLSEDAH PSVAKINFVM CEVNKARGVL KLLKYLDLEE EADTTKAFDL RONHSILKIE KVLKRMREIK NELLOAQNPS MDMGNQHPSI SRLQEIQKEV KSVEQQVIGF SGLSDDKNYK KLERILTKQL LTKQLLALD AVDPQGEEKC KAARKQAVRL AQNILSYLDL KSDEWEY AQSLVREKIV PFYNGGNCVT DEFEEGIQDI ILRLTHVKTG GKISLRKARY FEIDSVDTEG KGDIQQARKR AAQETERLLK ELEQNANHPH RIEIQNIFEE ELYLSSKTEL QGLIGQLDEV SLEKNPCIRE ARRRAVIEVQ TLITYIDLKE

FIGURE 17C

							CHCCTCCCCC		#0 180
GGGACGCCAA	CACCGCATCC	ARTICAGACT	*CTTTTGGTG	CTTCTGAAAC	TGRACACAAC	DOTRTORARA		CCAACATCCT	270
TCTRTTRCTR		I Q K	E V K S		d A 1	e I s e	ETCTCTCACA L 3 3	TCACAAGAAT 3 K H	340
* * * L	IXI	LTK	drii	1 3 5	* > *	I C K C	SACATRITICA B I Q	4 4 2	450
	Q I T	ERL	LKEL	E Q H		3 K Y I		KIT	\$40
IIAQ	S L V	RIK	1 4 5 1	X H C	енс	V T D I		e 1 6	430
) I I L	RLT	KAK	TGGK	ISL	3. K. R.	RYET	L T K	ICR	720
AdII	I I 3	снк	K Q 2 3	LIL	3 I 3		V A K	IKT	€10
AHCI	A H K	ARG	Y L I A	LLH	C A H	K K I T		LJC	900
A F 2 C	LIA	3 L 3	R L D V	CGR	TII	X	X I V	A E D	990
IHKL	I K Y	LIL	IIIA	> T T	KAI) L R Q	H E J	ILK	1060
1 1 6 4	LKX	HRI	I K K I	LLQ	4 4 K	7 S E L	TCTROCTGAC Y L S	SKT	1170
LFGC	t I c	Q L >	IVSL	E K K	3 C I	REAR	B R R	AII	1260
V Q T L	r T	I D L	KIAL	E K k	K L I	A C I I	AGCACCCATC EX 1 5	K K A	1350
V W K V	I C H	LSI	Idei	V L 3	1 > c	K R T >	ATRAGAACTA K H I	IRL	1440
IILL	T K Q	LLA	L » R V) ; q	CII	KCKA	A R K	Q A V	1530
RLAQ	HIL	2 Y L) L K S	3 E W	r Y .		ATCTCACTTT		1620
							TCACTRITIA		1710
							TICGGRICAT TICTHCRITI		1890
							TRICAGAAAG		1960
							TITTICACT		2070
							TITINGTIG		2160
							CHARACTRAT		2250
CCTTTCACAT	TUCHTTHAK	ACAACCORTS	AAGGACCAGC	AADMINCE	TOTALCTTOC	monte	MANATOTOMO	CTENTACTIT	2340
TOCTTRCTOR	STRANSFORT	MACORTOCCA	RORTTERART	SHACTIPATC	OCCUTTOWA		CAMACACTOR	PROCESSION	2430
TOORCCATCA	RENCECCACA	COCCTINCON	WICIONCOIL	RENCEMANC	BRARTORGAR	ACTOTOAATG	TROCKCATRA	TOCTICICITY	2520
							CHOCCICION		2610
							ACCTCCTCCA		2700
							elocicciti		2790
							SOCIOACCII STICICACCA		2970
							CTCTMCCCAG		3060
							MOMMICIT		3150
_								RCACCCCACT	3240
								CONCETTIC	3330
COCACACTRO	TICINCENTI	cctiticict	RICHIMITT	TAGAATGCTC	TIRARATCTT	CACCAACACT	TITERTITE	BRITIRITI	3420
TCACATCCAC	*CTCTCTTCC	CONCECTOON	CTCCACTCCT	OCCRTCTORS	CTCACTOCAA	OCTOCACCTC	CONCETTONA	CONTICTO	3510
		_						SRITICACCA	3400
								CACCOCACCCC	3490
								TOTTOCCOCAG	3760
								ethcacetit	3670
								TTOCACCETC CTRCTTTCAA	3940 4050
								OCTOCOCACC	4140
								EARANCARTC	4230
						CTACTCCATC			4306

FIGURE 18

Ublquitin-Like BAG Domain ZZZ Nuclear Localization Signal WW

SEQUENCE LISTING

<110>	Reed, Takaya The Bu	ama,	Shir												
<120>	Novel Them	BAG	Prot	eins	anc	l Nuc	cleic	: Aci	.d Mc	olecu	ıles	Enco	oding	J	
<130>	FP-LJ	3646	5												
<140> <141>															
	09/150 1998-0														
<160>	24														
<170>	Patent	In V	/er.	2.0											
<220> <221> <222> <400>	1291 DNA Homo s CDS (46)	. (108	30)	at co	gctgo	ggcgq	g tca	aacaa	igtg	cggg				ag c gc In Arg	57
	gg gcg														105
5				10					15					20	150
	gc gcc rg Ala														153
_	ag cgt In Arg		_												201
gcc a	igc ggg	cat	gac	cga	ccc	acc	agg	ggc	gcc	gcc	gcc	ggc	gct	cgc	249

Ala	Ser	Gly 55	His	Asp	Arg	Pro	Thr 60	Arg	Gly	Ala	Ala	Ala 65	Gly	Ala	Arg	
	_			aag Lys												297
	_			agc Ser			_		_	-		-				345
_	_			acc Thr 105	_	_					_		_		=	393
		_		gag Glu												441
				gag Glu												489
		-		gag Glu												537
				gtt Val												585
		_		cag Gln 185			_					_				633
_	-		-	gaa Glu												681
_		-	-	tta Leu				-		_		_	_		-	729
-				ttg Leu												777
gac	caq	ctq	gaa	gag	ttg	aat	aaa	gag	ctt	act	gga	atc	cag	cag	ggt	825

	Asp 245	Gln	Leu	Glu	Glu	Leu 250	Asn	Lys	Glu	Leu	Thr 255	Gly	Ile	Gln	Gln	Gly 260	
		-		_	_	_			gaa Glu								873
	~	_		_			5 =	_	ttt Phe 285	_	_		_				921
	_		_		_		-		ttc Phe		-	-	-	_			969
			_	~		_	-	_	gca Ala			-		-	-		1017
,			_			-	-		act Thr								1065
		gcc Ala				tgaç	ggtgt	cag (cagaa	aaaa	gg ct	igtgo	ctgc	c cto	gaaga	aatg	1120
	gcg	ccac	cag (ctct	geegt	c to	ctgga	atcg	g aat	ttad	cctg	attt	ctto	cag (ggct	gctggg	1180
	ggca	aact	ggc (catt	tgcca	aa ti	tttc	ctact	t cto	caca	ctgg	ttct	caat	tga a	aaaat	agtgt	1240
	ctti	tgtga	att 1	tgag [,]	taaa	gc to	cctat	tctç	g ttt	ttca	acaa	aaaa	aaaa	aaa a	a		1291
	<21:	0> 2 1> 3 2> PI 3> H	RT	sapi	ens												
		0> 2 Ala	Gln	Arg	Gly 5	Gly	Ala	Arg	Arg	Pro 10	Arg	Gly	Asp	Arg	Glu 15	Arg	
	Leu	Gly	Ser	Arg 20	Leu	Arg	Ala	Leu	Arg 25	Pro	Gly	Arg	Glu	Pro 30	Arg	Gln	
	Ser	Glu	Pro	Pro	Ala	Gln	Arg	Gly	Pro	Pro	Pro	Ser	Arg	Arg	Pro	Pro	

Ala	Arg 50	Ser	Thr	Ala	Ser	55	HIS	Asp	Arg	Pro	60	Arg	GIY	Ala	А1а
Ala 65	Gly	Ala	Arg	Arg	Pro 70	Arg	Met	Lys	Lys	Lys 75	Thr	Arg	Arg	Arg	Ser 80
Thr	Arg	Ser	Glu	Glu 85	Leu	Thr	Arg	Ser	Glu 90	Glu	Leu	Thr	Leu	Ser 95	Glu
Glu	Ala	Thr	Trp 100	Ser	Glu	Glu	Ala	Thr 105	Gln	Ser	Glu	Glu	Ala 110	Thr	Gln
Gly	Glu	Glu 115	Met	Asn	Arg	Ser	Gln 120	Glu	Val	Thr	Arg	Asp 125	Glu	Glu	Ser
Thr	Arg 130	Ser	Glu	Glu	Val	Thr 135	Arg	Glu	Glu	Met	Ala 140	Ala	Ala	Gly	Leu
Thr 145	Val	Thr	Val	Thr	His 150	Ser	Asn	Glu	Lys	His 155	Asp	Leu	His	Val	Thr 160
Ser	Gln	Gln	Gly	Ser 165	Ser	Glu	Pro	Val	Val 170	Gln	Asp	Leu	Ala	Gln 175	Val
Val	Glu	Glu	Val 180	Ile	Gly	Val	Pro	Gln 185	Ser	Phe	Gln	Lys	Leu 190	Ile	Phe
Lys	Gly	Lys 195	Ser	Leu	Lys	Glu	Met 200	Glu	Thr	Pro	Leu	Ser 205	Ala	Leu	Gly
Ile	Gln 210	Asp	Gly	Cys	Arg	Val 215	Met	Leu	Ile	Gly	Lys 220	Lys	Asn	Ser	Pro
Gln 225	Glu	Glu	Val	Glu	Leu 230	Lys	Lys	Leu	Lys	His 235	Leu	Glu	Lys	Ser	Val 240
Glu	Lys	Ile	Ala	Asp 245	Gln	Leu	Glu	Glu	Leu 250	Asn	Lys	Glu	Leu	Thr 255	Gly
Ile	Gln	Gln	Gly 260	Phe	Leu	Pro	Lys	Asp 265	Leu	Gln	Ala	Glu	Ala 270	Leu	Суѕ
Lys	Leu	Asp 275	Arg	Arg	Val	Lys	Ala 280	Thr	Ile	Glu	Gln	Phe 285	Met	Lys	Ile
Leu	Glu 290	Glu	Ile	Asp	Thr	Leu 295	Ile	Leu	Pro	Glu	Asn 300	Phe	Lys	Asp	Ser

Arg Leu Lys Arg Lys Gly Leu Val Lys Lys Val Gln Ala Phe Leu Ala 310 315 320 305 Glu Cys Asp Thr Val Glu Gln Asn Ile Cys Gln Glu Thr Glu Arg Leu 325 330 335 Gln Ser Thr Asn Phe Ala Leu Ala Glu 345 340 <210> 3 <211> 1179 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (160)..(792) <400> 3 qcaqccqcqq tqtcqcqaag tcctcccggg ttgcccccgc ggcgtcagag ggagggcggg 60 cgccgcgttg gtgacggcga ccctgcagcc caaggagcgc tccactcgct gccgccggag 120 ggccggtgac ctcttggcta ccccgcgtcg gaggcttag atg gct cag gcg aag 174 Met Ala Gln Ala Lys 1 atc aac gct aaa gcc aac gag ggg cgc ttc tgc cgc tcc tcc tcc atg 222 Ile Asn Ala Lys Ala Asn Glu Gly Arg Phe Cys Arg Ser Ser Met 20 10 15 get gac ege tee age ege etg gag age etg gac eag etg gag ete 270 Ala Asp Arg Ser Ser Arg Leu Leu Glu Ser Leu Asp Gln Leu Glu Leu 30 25 agg gtt gaa gct ttg aga gaa gca gca act gct gtt gag caa gag aaa 318 Arg Val Glu Ala Leu Arg Glu Ala Ala Thr Ala Val Glu Gln Glu Lys 45 50 40 qaa atc ctt ctq qaa atq atc cac aqt atc caa aat agc cag gac atq Glu Ile Leu Leu Glu Met Ile His Ser Ile Gln Asn Ser Gln Asp Met 55 60 65 agg cag atc agt gac gga gaa aga gaa tta aat ctg act gca aac Arg Gln Ile Ser Asp Gly Glu Arg Glu Glu Leu Asn Leu Thr Ala Asn 70 75 80

_	_	_		_										aca		402
Arg	Leu	Met	Gly	Arg	Thr	Leu	Thr	Val	Glu	Val	Ser	Val	Glu	Thr	Ile	
				90					95					100		
aga	aac	ccc	cag	cag	caa	gaa	tcc	cta	aag	cat	gcc	aca	agg	ätt	att	510
Arg	Asn	Pro	Gln	Gln	Gln	Glu	Ser	Leu	Lys	His	Ala	Thr	Arg	Ile	Ile	
			105					110					115			
gat	gag	gtg	gtc	aat	aag	ttt	ctg	gat	gat	ttg	gga	aat	gcc	aag	agt	5 58
Asp	Glu	Val	Val	Asn	Lys	Phe	Leu	Asp	Asp	Leu	Gly	Asn	Ala	Lys	Ser	
•		120			-		125	-			-	130				
cat	tta	atα	t.ca	ctc	tac	aσt	σca	tat	tca	tct	gag	ata	cca	cat	aaa	606
		_	_											His		
	135		001		- 1 -	140		-] -			145				3	
	133					110										
663	at t	a a t	cad	nee	+++	caa	tcc	ata	at a	att	aac	tat	act	ctt	gaa	654
	-	-	_	-							-			Leu		034
	vaı	ASP	Gili	пуэ	155	GIII	Ser	110	Val	160	СТУ	Cys	niu	Бец	165	
150					100					100					105	
				~++	~	~~~	2~2	++-	~~~	5.0±	a+ ~	at t	200	22+	2++	702
-	-	-												aat		102
Asp	Gin	Lys	rys		ьуs	Arg	Arg	Leu		Thr	Leu	Leu	Arg	Asn	ile	
				170					175					180		
																750
-			_	_										gga		750
Glu	Asn	Ser	_	Lys	Ala	Ile	Lys		Leu	GLu	Hıs	Ser		Gly	Ala	
			185					190					195			
										agc						792
Gly	Ser	Lys	Thr	Leu	Gln	Gln		Ala	Glu	Ser	Arg	Phe	Asn			
		200					205					210				
tag	tctt	caa .	acct.	aaga	gc a	ttta	cacaa	a ta	caca	aggt	gta	aaaa	tga	taaaa	atacta	852
ttt	taat	tga '	taac	tagt	tc t	ttgt	tagg	t at	aacc	actt	agt:	tgac	act	gata	gttgtt	912
tca	gatg	agg .	aaaa	tatt	cc a	tcaa	gtat	c tt	cagt	tttg	tga	ataa	caa	aact	agcaat	972
att	ttaa	tta	tcta	tcta	ga g	attt	ttta	g at	tgaa	ttct	tgt	cttg	tac	tagg	atctag	1032
cat	attt	cac	tatt	ctat	gg a	tgaa	taca	t aq	tttq	taga	gaa	aaca	aac	gttc	agctag	1092
				- 5 -	,, ~	,		5	- 3	وور	J				J = 9	
aaa	caaa	aan	cato	acto	ct t	tttc	ctat	c ta	gcat:	aass	tica	caca	atic	accti	tgggca	1152
999	Juua	uug	July	accy	J		2090		₃ 0 4 0	3 3 4 4	cou	-9 -u	500			
+++	antt	tac	taga	aatt	ct t	tact	aa									1179

<210> 4

<211> 211

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Gln Ala Lys Ile Asn Ala Lys Ala Asn Glu Gly Arg Phe Cys
1 5 10 15

Arg Ser Ser Ser Met Ala Asp Arg Ser Ser Arg Leu Leu Glu Ser Leu 20 25 30

Asp Gln Leu Glu Leu Arg Val Glu Ala Leu Arg Glu Ala Ala Thr Ala 35 40 45

Val Glu Gln Glu Lys Glu Ile Leu Leu Glu Met Ile His Ser Ile Gln 50 55 60

Asn Ser Gln Asp Met Arg Gln Ile Ser Asp Gly Glu Arg Glu Glu Leu 65 70 75 80

Asn Leu Thr Ala Asn Arg Leu Met Gly Arg Thr Leu Thr Val Glu Val
85 90 95

Ser Val Glu Thr Ile Arg Asn Pro Gln Gln Gln Glu Ser Leu Lys His 100 105 110

Ala Thr Arg Ile Ile Asp Glu Val Val Asn Lys Phe Leu Asp Asp Leu 115 120 125

Gly Asn Ala Lys Ser His Leu Met Ser Leu Tyr Ser Ala Cys Ser Ser 130 135 140

Glu Val Pro His Gly Pro Val Asp Gln Lys Phe Gln Ser Ile Val Ile 145 150 155 160

Gly Cys Ala Leu Glu Asp Gln Lys Lys Ile Lys Arg Arg Leu Glu Thr 165 170 175

Leu Leu Arg Asn Ile Glu Asn Ser Asp Lys Ala Ile Lys Leu Glu 180 185 190

His Ser Lys Gly Ala Gly Ser Lys Thr Leu Gln Gln Asn Ala Glu Ser 195 200 205

Arg Phe Asn 210

<210> 5 <211> 2528 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(2031) <400> 5 geg gag etc ege atc caa eec egg gee geg gee aac tte tet gga etg Ala Glu Leu Arg Ile Gln Pro Arg Ala Ala Ala Asn Phe Ser Gly Leu 1 5 10 gac cag aag ttt cta gcc ggc cag ttg cta cct ccc ttt atc tcc tcc 96 Asp Gln Lys Phe Leu Ala Gly Gln Leu Leu Pro Pro Phe Ile Ser Ser 20 25 tte eee tet gge age gag get att tee aga cae tte eae eee tet Phe Pro Ser Gly Ser Glu Glu Ala Ile Ser Arg His Phe His Pro Ser 35 40 45 ctg gcc acg tca ccc ccg cct tta att cat aaa ggt gcc cqq cqc cqq 192 Leu Ala Thr Ser Pro Pro Pro Leu Ile His Lys Gly Ala Arg Arg Arg 50 55 ctt ccc gga cac gtc ggc gga gag ggg ccc acg gcg gcc cgg Leu Pro Gly His Val Gly Gly Glu Gly Pro Thr Ala Ala Arq 65 70 75 cca gag act egg ege eeg gag eea geg eee ege ace ege gee eea geg 288 Pro Glu Thr Arg Arg Pro Glu Pro Ala Pro Arg Thr Arg Ala Pro Ala 85 90 ggc aga ccc caa ccc agc atg agc gcc gcc acc cac tcg ccc atg atg Gly Arg Pro Gln Pro Ser Met Ser Ala Ala Thr His Ser Pro Met Met 100 105 110 cag gtg gcg tcc ggc aac ggt gac cgc gac cct ttg ccc ccc gga tgg Gln Val Ala Ser Gly Asn Gly Asp Arg Asp Pro Leu Pro Pro Gly Trp 115 120 125 gag atc aag atc gac ccg cag acc ggc tgg ccc ttc ttc gtg gac cac 432 Glu Ile Lys Ile Asp Pro Gln Thr Gly Trp Pro Phe Phe Val Asp His 130 135 140 aac age ege ace act acg tgg aac qac eeg ege gtg eee tet gag qge 480

Asn 145	Ser	Arg	Thr	Thr	Thr 150	Trp	Asn	Asp	Pro	Arg 155	Val	Pro	Ser	Glu	Gly 160	
	_				tcc Ser		_									528
	_	_			agg Arg								_		-	576
					att Ile					_		_				624
_					cat His								_	_		672
_		-	-		gca Ala 230										_	720
					acc Thr										-	768
-				_	gcc Ala	_			_							816
	-			-	gcc Ala		_	_							_	864
_	_				ggc Gly		_	_	-		_		_		-	912
					att Ile 310											960
	_	_	_		tcc Ser							_				1008
gcg	cag	agg	ggt	gag	tac	cag	acc	cac	cag	cct	gtg	tac	cac	aag	atc	1056

Ala	Gln	Arg	Gly 340	Glu	Tyr	Gln	Thr	His 345	Gln	Pro	Val	Tyr	His 350	Lys	Ile	
_		-	_		gag Glu											1104
2,2			_	_	ggt Gly	_	_	_			2 2			-	J J	1152
_	-	_			cac His 390										_	1200
_					cag Gln											1248
	,				aaa Lys		-	-	_		J .		_			1296
-					cac His							-				1344
_					tcc Ser											1392
			_		cct Pro 470	_		-		_						1440
					ccc Pro											1488
	-	_		_	act Thr											1536
	-	-		_	ccc Pro											1584
gcc	atc	ctg	gag	aag	gtg	cag	ggg	ctg	gag	cag	gct	gta	gac	aac	ttt	1632

i	Ala	Ile 530	Leu	Glu	Lys	Val	Gln 535	Gly	Leu	Glu	Gln	Ala 540	Val	Asp	Asn	Phe	
1	_		_	_											tat Tyr		1680
															cga Arg 575		1728
	-		-												acc Thr		1776
	, ,				_			-		_					gtc Val	_	1824
	_		_		_		_			_	_	_	-		ctg Leu	-	1872
	-														aaa Lys		1920
	-	-													gaa Glu 655		1968
		-	-						-	-	-		-		cct Pro		2016
		cca Pro	_			tag	cctc1	tge (cctg	taaaa	ag to	cagad	ctcg	g aa	ccgat	t gt g	2071
	tgci	ttta	ggg (attt	tagt [.]	tg c	atgca	attt	c aga	agact	ttta	ggto	cagti	tgg	tttt	gattag	2131
	ctg	cttg	gta	tgca	gtac	tt g	ggtga	aggca	a aa	cacta	ataa	agg	gctaa	aaa	gggaa	aaatga	2191
	tgc	tttt	ctt	caat	attc	tt a	ctct	tgta	c aa	ttaaı	ngaa	gtt	gctto	gtt	gttt	gagaag	2251
	ttta	aacc	ccg	ttgc	ttgt	tc t	gcag	ccct	g tc	nacti	tggg	cac	ccca	acc .	acct	gttagc	2311
	tgt	ggtt	gtg	cact	gtct	tt t	gtag	ctct	g ga	ctgg	aggg	gta	gatgo	ggg	agtca	aattac	2371

ccatcacata aatatgaaac atttatcaga aatgttgcca ttttaatgag atgatttct 2431
tcatctcata attaaaatac ctgactttag agagagtaaa atgtgccagg agccatagga 2491
atatctgtat gttggatgac tttaatgcta catttth 2528

<210> 6

<211> 677

<212> PRT

<213> Homo sapiens

<400> 6

Ala Glu Leu Arg Ile Gln Pro Arg Ala Ala Ala Asn Phe Ser Gly Leu
1 5 10 15

Asp Gln Lys Phe Leu Ala Gly Gln Leu Leu Pro Pro Phe Ile Ser Ser 20 25 30

Phe Pro Ser Gly Ser Glu Glu Ala Ile Ser Arg His Phe His Pro Ser 35 40 45

Leu Ala Thr Ser Pro Pro Pro Leu Ile His Lys Gly Ala Arg Arg Arg 50 55 60

Leu Pro Gly His Val Gly Gly Gly Glu Gly Pro Thr Ala Ala Arg
65 70 75 80

Pro Glu Thr Arg Arg Pro Glu Pro Ala Pro Arg Thr Arg Ala Pro Ala 85 90 95

Gly Arg Pro Gln Pro Ser Met Ser Ala Ala Thr His Ser Pro Met Met
100 105 110

Gln Val Ala Ser Gly Asn Gly Asp Arg Asp Pro Leu Pro Pro Gly Trp
115 120 125

Glu Ile Lys Ile Asp Pro Gln Thr Gly Trp Pro Phe Phe Val Asp His 130 135 140

Asn Ser Arg Thr Thr Trp Asn Asp Pro Arg Val Pro Ser Glu Gly
145 150 155 160

Pro Lys Glu Thr Pro Ser Ser Ala Asn Gly Pro Ser Arg Glu Gly Ser 165 170 175

Arg Leu Pro Pro Ala Arg Glu Gly His Pro Val Tyr Pro Gln Leu Arg

WO 00/14106 Po

PCT/US99/21053

			180					185					190		
Pro	Gly	Tyr 195	Ile	Pro	Ile	Pro	Val 200	Leu	His	Glu	Gly	Ala 205	Glu	Asn	Arg
Gln	Val 210	His	Pro	Phe	His	Val 215	Tyr	Pro	Gln	Pro	Gly 220	Met	Gln	Arg	Phe
Arg 225	Thr	Glu	Ala	Ala	Ala 230	Ala	Ala	Pro	Gln	Arg 235	Ser	Gln	Ser	Pro	Leu 240
Arg	Gly	Met	Pro	Glu 245	Thr	Thr	Gln	Pro	Asp 250	Lys	Gln	Cys	Gly	Gln 255	Val
Ala	Ala	Ala	Ala 260	Ala	Ala	Gln	Pro	Pro 265	Ala	Ser	His	Gly	Pro 270	Glu	Arg
Ser	Gln	Ser 275	Pro	Ala	Ala	Ser	Asp 280	Cys	Ser	Ser	Ser	Ser 285	Ser	Ser	Ala
Ser	Leu 290	Pro	Ser	Ser	Gly	Arg 295	Ser	Ser	Leu	Gly	Ser 300	His	Gln	Leu	Pro
Arg 305	Gly	Tyr	Ile	Ser	Ile 310	Pro	Val	Ile	His	Glu 315	Gln	Asn	Val	Thr	Arg 320
Pro	Ala	Ala	Gln	Pro 325	Ser	Phe	His	Lys	Ala 330	Gln	Lys	Thr	His	Tyr 335	Pro
Ala	Gln	Arg	Gly 340	Glu	Tyr	Gln	Thr	His 345	Gln	Pro	Val	Tyr	His 350	Lys	Ile
Gln	Gly	Asp 355	Asp	Trp	Glu	Pro	Arg 360	Pro	Leu	Arg	Ala	Ala 365	Ser	Pro	Phe
Arg	Ser 370	Ser	Val	Gln	Gly	Ala 375	Ser	Ser	Arg	Glu	Gly 380	Ser	Pro	Ala	Arg
Ser 385	Ser	Thr	Pro	Leu	His 390	Ser	Pro	Ser	Pro	Ile 395	Arg	Val	His	Thr	Val 400
Val	Asp	Arg	Pro	Gln 405	Gln	Pro	Met	Thr	His 410	Arg	Glu	Thr	Ala	Pro 415	Val
Ser	Gln	Pro	Glu 420	Asn	Lys	Pro	Glu	Ser 425	Lys	Pro	Gly	Pro	Val 430	Gly	Pro
Glu	Leu	Pro	Pro	Gly	His	Ile	Pro	Ile	Gln	Val	Ile	Arg	Lys	Glu	Val

Asp Ser Lys Pro Val Ser Gln Lys Pro Pro Pro Pro Ser Glu Lys Val Glu Val Lys Val Pro Pro Ala Pro Val Pro Cys Pro Pro Pro Ser Pro Gly Pro Ser Ala Val Pro Ser Ser Pro Lys Ser Val Ala Thr Glu Glu Arq Ala Ala Pro Ser Thr Ala Pro Ala Glu Ala Thr Pro Pro Lys Pro Gly Glu Ala Glu Ala Pro Pro Lys His Pro Gly Val Leu Lys Val Glu Ala Ile Leu Glu Lys Val Gln Gly Leu Glu Gln Ala Val Asp Asn Phe Glu Gly Lys Lys Thr Asp Lys Lys Tyr Leu Met Ile Glu Glu Tyr Leu Thr Lys Glu Leu Leu Ala Leu Asp Ser Val Asp Pro Glu Gly Arg Ala Asp Val Arg Gln Ala Arg Arg Asp Gly Val Arg Lys Val Gln Thr Ile Leu Glu Lys Leu Glu Gln Lys Ala Ile Asp Val Pro Gly Gln Val Gln Val Tyr Glu Leu Gln Pro Ser Asn Leu Glu Ala Asp Gln Pro Leu Gln Ala Ile Met Glu Met Gly Ala Val Ala Ala Asp Lys Gly Lys Lys Asn Ala Gly Asn Ala Glu Asp Pro His Thr Glu Thr Gln Gln Pro Glu Ala Thr Ala Ala Ala Thr Ser Asn Pro Ser Ser Met Thr Asp Thr Pro Gly Asn Pro Ala Ala Pro

<210> 7 <211> 1010 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (323)..(1009) <400> 7 acqatatect gtaagaccaa gaattgcaag gecagagttt gaattettat acaaatggag 60 eqtatqqtec aacatacccc ccaggecetg gggcaaatac tgcctcatac tcaggggctt 120 attatgcacc tggttatact cagaccagtt actccacaga agttccaagt acttaccgtt 180 catctggcaa cagcccaact ccagtctctc gttggatcta tccccagcag gactgtcaag 240 actgaagcac cccctcttaa ggggcaggtt ccaggatatc cgccttcaca gaaccctgga 300 atgaccetge eccattatee tt atg gag atg gta ate gta gtg tte eac aat Met Glu Met Val Ile Val Val Phe His Asn cac ggc cga ctg tac gac cac aag aaa gat gcg tgg gct tct cct ggt 400 His Gly Arg Leu Tyr Asp His Lys Lys Asp Ala Trp Ala Ser Pro Gly 15 20 25 gct tat gga atg ggt ggc cgt tat ccc tgg cct tca tca gcg ccc tca 448 Ala Tyr Gly Met Gly Gly Arg Tyr Pro Trp Pro Ser Ser Ala Pro Ser 30 35 gca cca ccc ggc aat ctc tac atg act gaa agt act tca cca tgg cct 496 Ala Pro Pro Gly Asn Leu Tyr Met Thr Glu Ser Thr Ser Pro Trp Pro 45 50 55 age agt age tet eee cag tea eee eet tea eee eea gte cag eag eee 544 Ser Ser Gly Ser Pro Gln Ser Pro Pro Ser Pro Pro Val Gln Gln Pro 65 70 60 aag gat tot toa tac ooc tat ago caa toa gat caa ago atg aac ogg 592 Lys Asp Ser Ser Tyr Pro Tyr Ser Gln Ser Asp Gln Ser Met Asn Arg 75 80 85 cac aac ttt cct tgc agt gtc cat cag tac gaa tcc tcg ggg aca gtg His Asn Phe Pro Cys Ser Val His Gln Tyr Glu Ser Ser Gly Thr Val

100

105

	_	at gat sp Asp 110	Ser	_											688
, ,	Pro G	ag ctg ln Leu 25				-		-	-						736
Asp G		gt ago er Ser	_			-	-	-	-			_	-	-	784
		cg agt ro Ser													832
		aa caa lu Glr													880
-		gg ctt rp Leu 190	Leu	-	-	_			_	_		_	_		928
_	Ser V	tt gaa al Glu 05													976
Glu A		tt tgt	_							a					1010
<210> 8 <211> 229 <212> PRT <213> Homo sapiens															
<4000 Met 0		Met Val	. Ile 5	Val	Val	Phe	His	Asn	His	Gly	Arg	Leu	Tyr 15	Asp	
His I	Lys L	ys Asp 20		Trp	Ala	Ser	Pro 25	Gly	Ala	Tyr	Gly	Met 30	Gly	Gly	
Arg :	Tyr P	ro Trg 35	Pro	Ser	Ser	Ala 40	Pro	Ser	Ala	Pro	Pro 45	Gly	Asn	Leu	

Tyr Met Thr Glu Ser Thr Ser Pro Trp Pro Ser Ser Gly Ser Pro Gln 50 55 60

Ser Pro Pro Ser Pro Pro Val Gln Gln Pro Lys Asp Ser Ser Tyr Pro 65 70 75 80

Tyr Ser Gln Ser Asp Gln Ser Met Asn Arg His Asn Phe Pro Cys Ser 85 90 95

Val His Gln Tyr Glu Ser Ser Gly Thr Val Asn Asn Asp Asp Ser Asp 100 105 110

Leu Leu Asp Ser Gln Val Gln Tyr Ser Ala Glu Pro Gln Leu Tyr Gly 115 120 125

Asn Ala Thr Ser Asp His Pro Asn Asn Gln Asp Gln Ser Ser Leu 130 135 140

Pro Glu Glu Cys Val Pro Ser Asp Glu Ser Thr Pro Pro Ser Ile Lys 145 150 155 160

Lys Ile Ile His Val Leu Glu Lys Val Gln Tyr Leu Glu Gln Glu Val 165 170 175

Glu Glu Phe Val Gly Lys Lys Thr Asp Lys Ala Tyr Trp Leu Leu Glu 180 185 190

Glu Met Leu Thr Lys Glu Leu Leu Glu Leu Asp Ser Val Glu Thr Gly
195 200 205

Gly Gln Asp Ser Val Arg Gln Ala Arg Lys Glu Ala Val Cys Lys Ile 210 215 220

Gln Ala Ile Leu Glu 225

<210> 9

<211> 689

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (3)..(482)

<220>

<221> unsure

<222> (105)

<223> any amino acid

<400> 9

- ga gaa ata aaa aat gaa ctt ctc caa gca caa aac cct tct gaa ttg 47
 Glu Ile Lys Asn Glu Leu Leu Gln Ala Gln Asn Pro Ser Glu Leu
 1 5 10 15
- tac ctg agc tcc aaa aca gaa ttg cag ggt tta att gga cag ttg gat 95

 Tyr Leu Ser Ser Lys Thr Glu Leu Gln Gly Leu Ile Gly Gln Leu Asp

 20 25 30
- gag gta agt ntt gaa aaa aac ccc tgc atc cgg gaa gcc agg aga aga 143 Glu Val Ser Xaa Glu Lys Asn Pro Cys Ile Arg Glu Ala Arg Arg Arg 35 40 45
- gca gtg atc gag gtg caa act ctg atc aca tat att gac ttg aag gag 191
 Ala Val Ile Glu Val Gln Thr Leu Ile Thr Tyr Ile Asp Leu Lys Glu
 50 55 60
- gcc ctt gag aaa aga aag ctg ttt gct tgt gag gag cac cca tcc cat 239
 Ala Leu Glu Lys Arg Lys Leu Phe Ala Cys Glu Glu His Pro Ser His
 65 70 75
- aaa gcc gtc tgg aac gtc ctt gga aac ttg tct gag atc cag gga gaa 287 Lys Ala Val Trp Asn Val Leu Gly Asn Leu Ser Glu Ile Gln Gly Glu 80 85 90 95
- gtt ctt tca ttt gat gga aat cga acc gat aag aac tac atc cgg ctg 335 Val Leu Ser Phe Asp Gly Asn Arg Thr Asp Lys Asn Tyr Ile Arg Leu 100 105 110
- gaa gag ctg ctc acc aag cag ctg cta gcc ctg gat gct gtt gat ccg 383 Glu Glu Leu Leu Thr Lys Gln Leu Leu Ala Leu Asp Ala Val Asp Pro 115 120 125
- cag gga gaa gag aag tgt aag gct gcc agg aaa caa gct gtg agg ctt 431 Gln Gly Glu Glu Lys Cys Lys Ala Ala Arg Lys Gln Ala Val Arg Leu 130 135 140
- gcg cag aat att ctc agc tat ctc gac ctg aaa tct gat gaa tgg gag 479
 Ala Gln Asn Ile Leu Ser Tyr Leu Asp Leu Lys Ser Asp Glu Trp Glu
 145 150 155
- tac tgaaatacca gagatctcac ttttgatact gttttgcact tcatatgtgc 532

18

Tyr

ttctatgtat agagagettt cagttcattg atttatacgt gcatatttca gtctcagtat 592
ttatgattga agcaaattct attcagtatc tgctgctttt gatgttgcaa gacaaatatc 652
attacagcac gttaactttt ccattcggat caaaaaa 689

<210> 10

<211> 160

<212> PRT

<213> Homo sapiens

<400> 10

Glu Ile Lys Asn Glu Leu Leu Gln Ala Gln Asn Pro Ser Glu Leu Tyr 1 5 10 15

Leu Ser Ser Lys Thr Glu Leu Gln Gly Leu Ile Gly Gln Leu Asp Glu
20 25 30

Val Ser Xaa Glu Lys Asn Pro Cys Ile Arg Glu Ala Arg Arg Arg Ala 35 40 45

Val Ile Glu Val Gln Thr Leu Ile Thr Tyr Ile Asp Leu Lys Glu Ala 50 55 60

Leu Glu Lys Arg Lys Leu Phe Ala Cys Glu Glu His Pro Ser His Lys 65 70 75 80

Ala Val Trp Asn Val Leu Gly Asn Leu Ser Glu Ile Gln Gly Glu Val
85 90 95

Leu Ser Phe Asp Gly Asn Arg Thr Asp Lys Asn Tyr Ile Arg Leu Glu 100 105 110

Glu Leu Leu Thr Lys Gln Leu Leu Ala Leu Asp Ala Val Asp Pro Gln
115 120 125

Gly Glu Glu Lys Cys Lys Ala Ala Arg Lys Gln Ala Val Arg Leu Ala 130 135 140

Gln Asn Ile Leu Ser Tyr Leu Asp Leu Lys Ser Asp Glu Trp Glu Tyr 145 150 155 160

<210> 11

<211> 246

<212> DNA

<213> Caenorhabditis elegans

<400> 11
atgtctttcc gcctcttcgt tgaaatattt cactttcttt tccagctttt tccccatctc 60
gacctgcttt ggttttcga gaaaaccacg ttccaaatca gcgacatctc tcaaattgag 120
atcataggct ttttgaagat tgctcaaatt atgcttctca tattgcatga gcattttgaa 180
gcccgcgtca tcaaccaaag catttttcc acccatcaca atgattttat cattttcttt 240
aaaatt

<210> 12

<211> 210

<212> PRT

<213> Caenorhabditis elegans

<400> 12

Met Lys Val Asn Val Ser Cys Ser Ser Val Gln Thr Thr Ile Asp Ile
1 5 10 15

Leu Glu Glu Asn Gln Gly Glu Asp Glu Ser Ile Leu Thr Leu Gly Gln
20 25 30

Leu Arg Asp Arg Ile Ala Thr Asp Asn Asp Val Asp Val Glu Thr Met
35 40 45

Lys Leu Leu His Arg Gly Lys Phe Leu Gln Gly Ala Asp Asp Val Ser 50 55 60

Leu Ser Thr Leu Asn Phe Lys Glu Asn Asp Lys Ile Ile Val Met Gly 65 70 75 80

Gly Lys Asn Ala Leu Val Asp Asp Ala Gly Phe Lys Met Leu Met Gln 85 90 95

Tyr Glu Lys His Asn Leu Ser Asn Leu Gln Lys Ala Tyr Asp Leu Asn 100 105 110

Leu Arg Asp Val Ala Asp Leu Glu Arg Gly Phe Leu Glu Lys Pro Lys
115 120 125

Gln Val Glu Met Gly Lys Lys Leu Glu Lys Lys Val Lys Tyr Phe Asn 130 135 140

Glu Glu Ala Glu Arg His Leu Glu Thr Leu Asp Gly Met Asn Ile Ile 145 150 155 160

Thr Glu Thr Thr Pro Glu Asn Gln Ala Lys Arg Asn Arg Glu Lys Arg

170 175 165 Lys Thr Leu Val Asn Gly Ile Gln Thr Leu Leu Asn Gln Asn Asp Ala 180 185 Leu Leu Arg Arg Leu Gln Glu Tyr Gln Ser Val Leu Asn Gly Asp Ile 195 200 205 Pro Glu 210 <210> 13 <211> 1377 <212> DNA <213> Caenorhabditis elegans <220> <221> CDS <222> (1)..(1377) <400> 13 atq cca gtc gtg aac ata cca atc aaa ata ctt ggt cag aat caa tca 48 Met Pro Val Val Asn Ile Pro Ile Lys Ile Leu Gly Gln Asn Gln Ser 5 10 cat agt cga agt aac tcc tcg tct tct gtt gac aac gat cga aat caa 96 His Ser Arg Ser Asn Ser Ser Ser Val Asp Asn Asp Arg Asn Gln 20 25 cca cca cag cag cca cct caa ccg caa cca cag caa tct cag caa Pro Pro Gln Gln Pro Pro Gln Pro Gln Gln Gln Ser Gln Gln 35 40 45 caa tac cag cag gct cca aac gtg aat acc aat atg cat cat tcc aac 192 Gln Tyr Gln Gln Ala Pro Asn Val Asn Thr Asn Met His His Ser Asn gga tto toa cot aac tto coa tot ogt agt cot att cog gao ttt coc 240 Gly Phe Ser Pro Asn Phe Pro Ser Arg Ser Pro Ile Pro Asp Phe Pro 75 80 65 70 agt ttt tca tct ggg ttc cca aac gat tct gaa tgg tct tcg aat ttc 288 Ser Phe Ser Ser Gly Phe Pro Asn Asp Ser Glu Trp Ser Ser Asn Phe 85 90 95

	_					_				aat Asn	 _			336
	-	_		-			_	-		gga Gly	_			384
	_					_	-			cca Pro 140				432
					_	-			_	cag Gln		-		480
			_							caa Gln				528
		_			_			-		cca Pro	-		-	576
-										gca Ala				624
			 _				_		_	aaa Lys 220	 _	_	-	672
										att Ile				720
		_								caa Gln				768
-										gga Gly				816
	_			-						gat Asp				864

		_		_	_			_			gtt Val 300		_	_	-	912
		_	_	-		_	_	-			caa Gln			-		960
		_									aaa Lys					1008
-	-	_			-						ttg Leu					1056
_											aat Asn					1104
	-	-	-	-							gaa Glu 380					1152
_		_			-	_	_	_	_	-	cta Leu				_	1200
	_	_	_		_	_		-		_	acc Thr	_				1248
											cag Gln					1296
_	-	_	_		_	_					aat Asn					1344
	~	_	_	_	_	_		agc Ser	-	tag						1377

<210> 14

<211> 458

<212> PRT

<213> Caenorhabditis elegans

<400> 14

Met Pro Val Val Asn Ile Pro Ile Lys Ile Leu Gly Gln Asn Gln Ser 1 5 10 15

His Ser Arg Ser Asn Ser Ser Ser Ser Val Asp Asn Asp Arg Asn Gln
20 25 30

Pro Pro Gln Gln Pro Gln Pro Gln Pro Gln Gln Gln Ser Gln Gln 35 40 45

Gln Tyr Gln Gln Ala Pro Asn Val Asn Thr Asn Met His His Ser Asn 50 55 60

Gly Phe Ser Pro Asn Phe Pro Ser Arg Ser Pro Ile Pro Asp Phe Pro 65 70 75 80

Ser Phe Ser Ser Gly Phe Pro Asn Asp Ser Glu Trp Ser Ser Asn Phe 85 90 95

Pro Ser Phe Pro Asn Phe Pro Ser Gly Phe Ser Asn Gly Ser Ser Asn 100 105 110

Phe Pro Asp Phe Pro Arg Phe Gly Arg Asp Gly Gly Leu Ser Pro Asn 115 120 125

Pro Pro Met Gln Gly Tyr Arg Arg Ser Pro Thr Pro Thr Ser Thr Gln 130 135 140

Ser Pro Thr Ser Thr Leu Arg Arg Asn Ser Gln Gln Asn Gln Ala Pro 145 150 155 160

Pro Gln Tyr Ser Gln Gln Gln Pro Gln Gln Ala Gln Gln Arg Gln Thr
165 170 175

Thr Pro Pro Ser Thr Lys Ala Ser Ser Arg Pro Pro Ser Arg Thr Arg
180 185 190

Glu Pro Lys Glu Pro Glu Val Pro Glu Arg Pro Ala Val Ile Pro Leu 195 200 205

Pro Tyr Glu Lys Lys Glu Lys Pro Leu Glu Lys Lys Gly Ser Arg Asp 210 215 220

Ser Gly Lys Gly Asp Glu Asn Leu Glu Glu Asn Ile Ala Lys Ile Thr 225 230 235 240

Ile Gly Lys Asn Asn Cys Glu Leu Cys Pro Glu Gln Glu Thr Asp Gly 245 250 255

- Asp Pro Ser Pro Leu Thr Ser Pro Ile Thr Glu Gly Lys Pro Lys Arg
 260 265 270
- Gly Lys Lys Leu Gln Arg Asn Gln Ser Val Val Asp Phe Asn Ala Lys 275 280 285
- Thr Ile Val Thr Leu Asp Lys Ile Glu Leu Gln Val Glu Gln Leu Arg
 290 295 300
- Lys Lys Ala Ala Glu Leu Glu Met Glu Lys Glu Gln Ile Leu Arg Ser 305 310 315 320
- Leu Gly Glu Ile Ser Val His Asn Cys Met Phe Lys Leu Glu Glu Cys 325 330 335
- Asp Arg Glu Glu Ile Glu Ala Ile Thr Asp Arg Leu Thr Lys Arg Thr 340 345 350
- Lys Thr Val Gln Val Val Val Glu Thr Pro Arg Asn Glu Glu Gln Lys
 355 360 365
- Lys Ala Leu Glu Asp Ala Thr Leu Met Ile Asp Glu Val Gly Glu Met 370 380
- Met His Ser Asn Ile Glu Lys Ala Lys Leu Cys Leu Gln Thr Tyr Met 385 390 395 400
- Asn Ala Cys Ser Tyr Glu Glu Thr Ala Gly Ala Thr Cys Gln Asn Phe 405 410 415
- Leu Lys Ile Ile Gln Cys Ala Ala Asp Asp Gln Lys Arg Ile Lys
 420 425 430
- Arg Arg Leu Glu Asn Leu Met Ser Gln Ile Glu Asn Ala Glu Arg Thr
 435 440 445
- Lys Ala Asp Leu Met Asp Asp Gln Ser Glu 450 455

<210> 15

<211> 588

<212> DNA

<213> Schizosaccharomyces pombe

<220> <221> CDS <222> (1)..(588) <400> 15 atg tca gaa aag act agc aca gtt aca ata cac tat gga aat cag cga Met Ser Glu Lys Thr Ser Thr Val Thr Ile His Tyr Gly Asn Gln Arg 10 15 ttt ccg gta gca gtc aat cta aat gag acg tta agt gaa ctg att gat 96 Phe Pro Val Ala Val Asn Leu Asn Glu Thr Leu Ser Glu Leu Ile Asp 20 25 gat tta ctt gaa acg act gag att tct gag aag aaa gtc aag ctt ttt 144 Asp Leu Leu Glu Thr Thr Glu Ile Ser Glu Lys Lys Val Lys Leu Phe 35 tac gct ggc aag cgt tta aaa gac aaa aaa gcc tcg tta tca aaa ttg 192 Tyr Ala Gly Lys Arg Leu Lys Asp Lys Lys Ala Ser Leu Ser Lys Leu 50 55 ggt tta aaa aat cat agt aaa att cta tgt ata aga cca cat aag caa 240 Gly Leu Lys Asn His Ser Lys Ile Leu Cys Ile Arg Pro His Lys Gln 65 70 75 caa cga ggt tcc aag gaa aaa gac acg gtt gag ccc gct ccg aaa gcq 288 Gln Arg Gly Ser Lys Glu Lys Asp Thr Val Glu Pro Ala Pro Lys Ala 85 90 95 gaa gcg gag aat cct gta ttt tcg cgt att tct gga gaa ata aaa qcc 336 Glu Ala Glu Asn Pro Val Phe Ser Arg Ile Ser Gly Glu Ile Lys Ala 100 105 atc gat cag tat gtt gac aaa gaa ctt tcc ccc atg tac gac aat tac 384 Ile Asp Gln Tyr Val Asp Lys Glu Leu Ser Pro Met Tyr Asp Asn Tyr 115 120 125 gta aat aaa ccg tcg aac gat cca aag cag aaa aac aaa cag aaa cta 432 Val Asn Lys Pro Ser Asn Asp Pro Lys Gln Lys Asn Lys Gln Lys Leu 130 135 atg ata agt gaa cta ctt tta caa cag ctt tta aaa ttg gat gga gtt 480 Met Ile Ser Glu Leu Leu Gln Gln Leu Leu Lys Leu Asp Gly Val 145 150 155 gac gta ctg ggc agc gag aaa ttg cgt ttt gaa cgg aag caa ctt gtt 528 Asp Val Leu Gly Ser Glu Lys Leu Arg Phe Glu Arg Lys Gln Leu Val

170

26

175

tct aag atc caa aaa atg ttg gat cac gtt gac caa aca agc caa gaa Ser Lys Ile Gln Lys Met Leu Asp His Val Asp Gln Thr Ser Gln Glu gtg gcc gca tag Val Ala Ala <210> 16 <211> 195 <212> PRT <213> Schizosaccharomyces pombe <400> 16 Met Ser Glu Lys Thr Ser Thr Val Thr Ile His Tyr Gly Asn Gln Arg Phe Pro Val Ala Val Asn Leu Asn Glu Thr Leu Ser Glu Leu Ile Asp Asp Leu Leu Glu Thr Thr Glu Ile Ser Glu Lys Lys Val Lys Leu Phe Tyr Ala Gly Lys Arg Leu Lys Asp Lys Lys Ala Ser Leu Ser Lys Leu Gly Leu Lys Asn His Ser Lys Ile Leu Cys Ile Arg Pro His Lys Gln Gln Arq Gly Ser Lys Glu Lys Asp Thr Val Glu Pro Ala Pro Lys Ala Glu Ala Glu Asn Pro Val Phe Ser Arg Ile Ser Gly Glu Ile Lys Ala Ile Asp Gln Tyr Val Asp Lys Glu Leu Ser Pro Met Tyr Asp Asn Tyr Val Asn Lys Pro Ser Asn Asp Pro Lys Gln Lys Asn Lys Gln Lys Leu Met Ile Ser Glu Leu Leu Gln Gln Leu Leu Lys Leu Asp Gly Val Asp Val Leu Gly Ser Glu Lys Leu Arg Phe Glu Arg Lys Gln Leu Val

Ser Lys Ile Gln Lys Met Leu Asp His Val Asp Gln Thr Ser Gln Glu 180 185 190

Val Ala Ala 195

<210> 17

<211> 621

<212> DNA

<213> Schizosaccharomyces pombe

<220>

<221> CDS

<222> (1)..(621)

<400> 17

atg tct ttt ttt acc cag ttg tgt tct atg gat aaa aaa tat tgg atc 48
Met Ser Phe Phe Thr Gln Leu Cys Ser Met Asp Lys Lys Tyr Trp Ile

1 5 10 15

tct cta gct gta ttg tca gtt act gtt ttg att agc gca tta ttg aaa 96 Ser Leu Ala Val Leu Ser Val Thr Val Leu Ile Ser Ala Leu Leu Lys 20 25 30

aag aga get act gaa ace gaa gat att gte gtt gtt cat tae gat gge 144
Lys Arg Ala Thr Glu Thr Glu Asp Ile Val Val Wal His Tyr Asp Gly
35 40 45

gaa aag ttg aat ttt gtg ttg cga caa cca agg ctg aat atg gtt tct 192 Glu Lys Leu Asn Phe Val Leu Arg Gln Pro Arg Leu Asn Met Val Ser 50 55 60

tac act agt ttt ctt cgt cgc gtg tgc aac gca ttt tca gta atg ccc 240 Tyr Thr Ser Phe Leu Arg Arg Val Cys Asn Ala Phe Ser Val Met Pro 65 70 75 80

gac aaa gcg tct ctc aag tta aac ggg gtg acc ctc aag gat ggt tca 288
Asp Lys Ala Ser Leu Lys Leu Asn Gly Val Thr Leu Lys Asp Gly Ser
85 90 95

ctt tcc gac caa aat gtg caa aat gga agt gaa tta gag ctc gaa tta 336 Leu Ser Asp Gln Asn Val Gln Asn Gly Ser Glu Leu Glu Leu Glu Leu 100 105 110

ccc aaa ctg agc ccg gca atg caa caa att gaa gca tat ata gat gag 384 Pro Lys Leu Ser Pro Ala Met Gln Gln Ile Glu Ala Tyr Ile Asp Glu

ctt caa cag gat ctc gtc cct aaa att gaa gcc ttc tgc caa tcg tct Leu Gln Gln Asp Leu Val Pro Lys Ile Glu Ala Phe Cys Gln Ser Ser ccc gct tcg gca caa gat gtt caa gat ttg cat aca cgc ctt agt gaa Pro Ala Ser Ala Gln Asp Val Gln Asp Leu His Thr Arg Leu Ser Glu aca ttg ttg gct agg atg ata aaa tta gat gct gtt aat gtt gaa gac Thr Leu Leu Ala Arg Met Ile Lys Leu Asp Ala Val Asn Val Glu Asp gac cca gaa gct cgt ctt aaa aga aaa gaa gct att cgt tta tct caa Asp Pro Glu Ala Arg Leu Lys Arg Lys Glu Ala Ile Arg Leu Ser Gln caa tat ttg agt aaa cta gat tcc acc aag aat caa aac aaa tga Gln Tyr Leu Ser Lys Leu Asp Ser Thr Lys Asn Gln Asn Lys <210> 18 <211> 206 <212> PRT <213> Schizosaccharomyces pombe <400> 18 Met Ser Phe Phe Thr Gln Leu Cys Ser Met Asp Lys Lys Tyr Trp Ile Ser Leu Ala Val Leu Ser Val Thr Val Leu Ile Ser Ala Leu Leu Lys Lys Arg Ala Thr Glu Thr Glu Asp Ile Val Val His Tyr Asp Gly Glu Lys Leu Asn Phe Val Leu Arg Gln Pro Arg Leu Asn Met Val Ser Tyr Thr Ser Phe Leu Arg Arg Val Cys Asn Ala Phe Ser Val Met Pro

Leu Ser Asp Gln Asn Val Gln Asn Gly Ser Glu Leu Glu Leu Glu Leu

Asp Lys Ala Ser Leu Lys Leu Asn Gly Val Thr Leu Lys Asp Gly Ser

100 105 110

Pro Lys Leu Ser Pro Ala Met Gln Gln Ile Glu Ala Tyr Ile Asp Glu 115 120 125

Leu Gln Gln Asp Leu Val Pro Lys Ile Glu Ala Phe Cys Gln Ser Ser 130 135 140

Pro Ala Ser Ala Gln Asp Val Gln Asp Leu His Thr Arg Leu Ser Glu
145 150 155 160

Thr Leu Leu Ala Arg Met Ile Lys Leu Asp Ala Val Asn Val Glu Asp 165 170 175

Asp Pro Glu Ala Arg Leu Lys Arg Lys Glu Ala Ile Arg Leu Ser Gln 180 185 190

Gln Tyr Leu Ser Lys Leu Asp Ser Thr Lys Asn Gln Asn Lys 195 200 205

<210> 19

<211> 2534

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (307)..(2034)

<400> 19

geggagetee geatecaace eegggeegeg gecaacttet etggaetgga ceagaagttt 60 etageeggee agttgetace teeetttate teeteettee eetetggeag egaggagget 120 atttecagae acttecacee etetetggee aegteaceee egeetttaat teataaaggt 180 geeeggegee ggetteeegg acaegtegge ggeggagagg ggeeeaegge ggeggeeegg 240 eeagagaete ggegeeegga geeagegeee egeaceegeg eeceagegg eagaeeeeaa 300 eecage atg age gee gee ace eac teg eec atg atg eag gtg geg tee 348

Met Ser Ala Ala Thr His Ser Pro Met Met Gln Val Ala Ser

ggc aac ggt gac cgc gac cct ttg ccc ccc gga tgg gag atc aag atc 396
Gly Asn Gly Asp Arg Asp Pro Leu Pro Pro Gly Trp Glu Ile Lys Ile
15 20 25 30

										gac Asp				444
	_			_	-	_				gag Glu		-		492
			_						-	ggc Gly		_	-	540
_										ctc Leu				588
						-				aac Asn 105				636
										cga Arg				684
										cct Pro				732
_			_		-		_	-		cag Gln	 -			 780
										gag Glu				828
_	_		_	_						tcg Ser 185				876
			_	_	_		_			ctc Leu				924
		-					_		-	acc Thr				972

				-						cca Pro					1020
	_			_						atc Ile 250					1068
				-			-		_	ttc Phe				-	1116
_	 _									agg Arg					1164
			_			_				gtg Val	_	_	23		1212
		_			_	_		_		gtt Val		_		_	1260
		_	_	-						cca Pro 330					1308
										gtg Val					1356
_	_	-							-	gta Val				-	1404
	-		-		-				-	cct Pro				_	1452
-										gag Glu					1500
_	_									cca Pro 410					1548

_	ccc Pro						-									1596
-	gtg Val	_		_	-											1644
	gac Asp		_		_	_		-			_				•	1692
_	gcc Ala	-	-			-				_	_	_		_	_	1740
_	agg Arg 480	_	_				_	-	_			_	-			1788
_	cag Gln															1836
_	ccc Pro	-			_	-										1884
-	ggt Gly	-		-	-	-	_		-			_				1932
-	gat Asp				-		-	_		-	_		_	-		1980
	tca Ser 560			=	_	_		_			_				-	2028
ccg Pro 575	tag	cct	ctgc	cct (gtaaa	aaato	ca ga	actc	ggaa	c cga	atgto	gtgc	ttta	aggga	aat	2084
ttt	aagt	tgc a	atgc	attt	ca ga	agact	ttta	a gto	cagt	tggt	ttt	tatta	agc 1	tgcti	iggtat	2144
gca	gtaa	ctt (gggt	ggag	gc aa	aaaca	acta	a taa	aaag	ggct	aaaa	aagga	aaa a	atgat	tgcttt	2204

tettetatat tettaetetg tacaaataaa gaagttgett gttgtttgag aagtttaace 2264
cegttgettg ttetgeagee etgtetaett gggeaeeeee accaeetgtt agetgtggtt 2324
gtgeaetgte ttttgtaget etggaetgga ggggtagatg gggagteaat taceeateae 2384
ataaatatga aacatttate agaaatgttg eeattttaat gagatgattt tetteatete 2444
ataattaaaa tacetgaett tagagagagt aaaatgtgee aggageeata ggaatatetg 2504
tatgttggat gaetttaatg etaeatttte

<210> 20

<211> 575

<212> PRT

<213> Homo sapiens

<400> 20

Met Ser Ala Ala Thr His Ser Pro Met Met Gln Val Ala Ser Gly Asn
1 5 10 15

Gly Asp Arg Asp Pro Leu Pro Pro Gly Trp Glu Ile Lys Ile Asp Pro
20 25 30

Gln Thr Gly Trp Pro Phe Phe Val Asp His Asn Ser Arg Thr Thr Thr 35 40 45

Trp Asn Asp Pro Arg Val Pro Ser Glu Gly Pro Lys Glu Thr Pro Ser 50 55 60

Ser Ala Asn Gly Pro Ser Arg Glu Gly Ser Arg Leu Pro Pro Ala Arg 65 70 75 80

Glu Gly His Pro Val Tyr Pro Gln Leu Arg Pro Gly Tyr Ile Pro Ile 85 90 95

Pro Val Leu His Glu Gly Ala Glu Asn Arg Gln Val His Pro Phe His
100 105 110

Val Tyr Pro Gln Pro Gly Met Gln Arg Phe Arg Thr Glu Ala Ala 115 120 125

Ala Ala Pro Gln Arg Ser Gln Ser Pro Leu Arg Gly Met Pro Glu Thr 130 135 140

Thr Gln Pro Asp Lys Gln Cys Gly Gln Val Ala Ala Ala Ala Ala Ala

145					150					155					160
Gln	Pro	Pro	Ala	Ser 165	His	Gly	Pro	Glu	Arg 170	Ser	Gln	Ser	Pro	Ala 175	Ala
Ser	Asp	Cys	Ser 180	Ser	Ser	Ser	Ser	Ser 185	Ala	Ser	Leu	Pro	Ser 190	Ser	Gly
Arg	Ser	Ser 195	Leu	Gly	Ser	His	Gln 200	Leu	Pro	Arg	Gly	Tyr 205	Ile	Ser	Ile
Pro	Val 210	Ile	His	Glu	Gln	Asn 215	Val	Thr	Arg	Pro	Ala 220	Ala	Gln	Pro	Ser
Phe 225	His	Lys	Ala	Gln	Lys 230	Thr	His	Tyr	Pro	Ala 235	Gln	Arg	Gly	Glu	Tyr 240
Gln	Thr	His	Gln	Pro 245	Val	Tyr	His	Lys	Ile 250	Gln	Gly	Asp	Asp	Trp 255	Glu
Pro	Arg	Pro	Leu 260	Arg	Ala	Ala	Ser	Pro 265	Phe	Arg	Ser	Ser	Val 270	Gln	Gly
Ala	Ser	Ser 275	Arg	Glu	Gly	Ser	Pro 280	Ala	Arg	Ser	Ser	Thr 285	Pro	Leu	His
Ser	Pro 290	Ser	Pro	Ile	Arg	Val 295	His	Thr	Val	Val	Asp 300	Arg	Pro	Gln	Gln
Pro 305	Met	Thr	His	Arg	Glu 310	Thr	Ala	Pro	Val	Ser 315	Gln	Pro	Glu	Asn	Lys 320
Pro	Glu	Ser	Lys	Pro 325	Gly	Pro	Val	Gly	Pro 330	Glu	Leu	Pro	Pro	Gly 335	His
Ile	Pro	Ile	Gln 340	Val	Ile	Arg	Lys	Glu 345	Val	Asp	Ser	Lys	Pro 350	Val	Ser
Gln	Lys	Pro 355	Pro	Pro	Pro	Ser	Glu 360	Lys	Val	Glu	Val	Lys 365	Val	Pro	Pro
Ala	Pro 370	Val	Pro	Cys	Pro	Pro 375	Pro	Ser	Pro	Gly	Pro 380	Ser	Ala	Val	Pro
Ser 385	Ser	Pro	Lys	Ser	Val 390	Ala	Thr	Glu	Glu	Arg 395	Ala	Ala	Pro	Ser	Thr 400
Ala	Pro	Ala	Glu	Ala	Thr	Pro	Pro	Lys	Pro	Gly	Glu	Ala	Glu	Ala	Pro

410 405 415 Pro Lys His Pro Gly Val Leu Lys Val Glu Ala Ile Leu Glu Lys Val 420 425 Gln Gly Leu Glu Gln Ala Val Asp Asn Phe Glu Gly Lys Lys Thr Asp 440 445 435 Lys Lys Tyr Leu Met Ile Glu Glu Tyr Leu Thr Lys Glu Leu Leu Ala 455 460 450 Leu Asp Ser Val Asp Pro Glu Gly Arg Ala Asp Val Arg Gln Ala Arg 470 475 Arg Asp Gly Val Arg Lys Val Gln Thr Ile Leu Glu Lys Leu Glu Gln 485 490 Lys Ala Ile Asp Val Pro Gly Gln Val Gln Val Tyr Glu Leu Gln Pro 500 505 510 Ser Asn Leu Glu Ala Asp Gln Pro Leu Gln Ala Ile Met Glu Met Gly 520 515 Ala Val Ala Ala Asp Lys Gly Lys Lys Asn Ala Gly Asn Ala Glu Asp 535 540 Pro His Thr Glu Thr Gln Gln Pro Glu Ala Thr Ala Ala Ala Thr Ser 555 560 550 Asn Pro Ser Ser Met Thr Asp Thr Pro Gly Asn Pro Ala Ala Pro 570 575 565 <210> 21 <211> 1966 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (43)..(1416) <400> 21 cggtgggagc ggggcgggaa gcgcttcagg gcagcggatc cc atg tcg gcc ctg 54 Met Ser Ala Leu

agg ege teg gge tae gge eee agt gae ggt eeg tee tae gge ege tae 102

Arg 5	Arg	Ser	Gly	Tyr	Gly 10	Pro	Ser	Asp	Gly	Pro 15	Ser	Tyr	Gly	Arg	Tyr 20	
											cca Pro					150
			_		_			-			att Ile					198
-											gga Gly					246
	-										cca Pro 80					294
_			_								cct Pro					342
						-					cct Pro					390
		_	_		_	_			_	-	ttg Leu					438
											cct Pro					486
_					_			-			tat Tyr 160		_			534
			-	-		-			_		tct Ser					582
		-									gac Asp					630
gca	ccc	cct	ctt	agg	ggg	cag	gtt	сса	gga	tat	ccg	cct	tca	cag	aac	67 8

Ala	Pro	Pro	Leu 200	Arg	Gly	Gln	Val	Pro 205	Gly	Tyr	Pro	Pro	Ser 210	Gln	Asn	
		_									gat Asp					726
_							-				gaa Glu 240					774
			_								ccc Pro					822
											act Thr					870
											cct Pro					918
_	_		-	-						-	caa Gln		-		_	966
_											cag Gln 320					1014
					_	_		_		_	gat Asp			_	₹	1062
	_	-			_					_	acc Thr					1110
			-		_	-	-			-	gaa Glu		-			1158
_	~	_			_	_					ata Ile			-		1206
aag	gtc	cag	tat	ctt	gaa	caa	gaa	gta	gaa	gaa	ttt	gta	gga	aaa	aag	1254

Lys Val Gln Tyr Leu Glu Gln Glu Val Glu Glu Phe Val Gly Lys Lys 390 395 400	
aca gac aaa gca tac tgg ctt ctg gaa gaa atg cta acc aag gaa ctt Thr Asp Lys Ala Tyr Trp Leu Leu Glu Glu Met Leu Thr Lys Glu Leu 405 410 415 420	1302
ttg gaa ctg gat tca gtt gaa act ggg ggc cag gac tct gta cgg cag Leu Glu Leu Asp Ser Val Glu Thr Gly Gly Gln Asp Ser Val Arg Gln 425 430 435	1350
gcc aga aaa gag gct gtt tgt aag att cag gcc ata ctg gaa aaa tta Ala Arg Lys Glu Ala Val Cys Lys Ile Gln Ala Ile Leu Glu Lys Leu 440 445 450	1398
gaa aaa aaa gga tta tga aaggatttag aacaaagtgg aagcctgtta Glu Lys Lys Gly Leu 455	1446
ctaacttgac caaagaacac ttgattaggt taattaccct ctttttgaaa tgcctgttga	1506
tgacaagaag caatacatte cagettttee tttgatttta taettgaaaa aetggcaaag	1566
gaatggaaga atattttagt catgaagttg ttttcagttt tcagacgaat gaatgtaata	1626
ggaaactatg gagttaccaa tattgccaag tagactcact ccttaaaaaa tttatggata	1686
tctacaagct gcttattacc agcaggaggg aaacacactt cacacaacag gcttatcaga	1746
aacctaccag atgaaactgg atataatttg agacaaacag gatgtgtttt tttaaacatc	1806
tggatatett gteacatttt tgtacattgt gaetgettte aacatataet teatgtgtaa	1866
ttatagetta gaetttagee ttettggaet tetgttttgt tttgttattt geagtttaea	1926
aatatagtat tattototaa aaaaaaaaaa aaaaaaaaaa	1966

<210> 22

<211> 457

<212> PRT

<213> Homo sapiens

<400> 22

Met Ser Ala Leu Arg Arg Ser Gly Tyr Gly Pro Ser Asp Gly Pro Ser 1 5 10 15

Tyr Gly Arg Tyr Tyr Gly Pro Gly Gly Gly Asp Val Pro Val His Pro

20 25 30

Pro Pro Pro Leu Tyr Pro Leu Arg Pro Glu Pro Pro Gln Pro Pro Ile 35 40 45

- Ser Trp Arg Val Arg Gly Gly Gly Pro Ala Glu Thr Trp Leu Gly 50 55 60
- Glu Gly Gly Gly Asp Gly Tyr Tyr Pro Ser Gly Gly Ala Trp Pro 65 70 75 80
- Glu Pro Gly Arg Ala Gly Gly Ser His Gln Glu Gln Pro Pro Tyr Pro 85 90 95
- Ser Tyr Asn Ser Asn Tyr Trp Asn Ser Thr Ala Arg Ser Arg Ala Pro 100 105 110
- Tyr Pro Ser Thr Tyr Pro Val Arg Pro Glu Leu Gln Gly Gln Ser Leu 115 120 125
- Asn Ser Tyr Thr Asn Gly Ala Tyr Gly Pro Thr Tyr Pro Pro Gly Pro 130 135 140
- Gly Ala Asn Thr Ala Ser Tyr Ser Gly Ala Tyr Tyr Ala Pro Gly Tyr 145 150 155 160
- Thr Gln Thr Ser Tyr Ser Thr Glu Val Pro Ser Thr Tyr Arg Ser Ser 165 170 175
- Gly Asn Ser Pro Thr Pro Val Ser Arg Trp Ile Tyr Pro Gln Gln Asp 180 185 190
- Cys Gln Thr Glu Ala Pro Pro Leu Arg Gly Gln Val Pro Gly Tyr Pro 195 200 205
- Pro Ser Gln Asn Pro Gly Met Thr Leu Pro His Tyr Pro Tyr Gly Asp 210 215 220
- Gly Asn Arg Ser Val Pro Gln Ser Gly Pro Thr Val Arg Pro Gln Glu 225 230 235 240
- Asp Ala Trp Ala Ser Pro Gly Ala Tyr Gly Met Gly Gly Arg Tyr Pro 245 250 255
- Trp Pro Ser Ser Ala Pro Ser Ala Pro Pro Gly Asn Leu Tyr Met Thr
 260 265 270
- Glu Ser Thr Ser Pro Trp Pro Ser Ser Gly Ser Pro Gln Ser Pro Pro

275 280 285

Ser Pro Pro Val Gln Gln Pro Lys Asp Ser Ser Tyr Pro Tyr Ser Gln 290 295 300

Ser Asp Gln Ser Met Asn Arg His Asn Phe Pro Cys Ser Val His Gln 305 310 315 320

Tyr Glu Ser Ser Gly Thr Val Ile Asn Glu Asp Ser Asp Leu Leu Asp 325 330 335

Ser Gln Val Gln Tyr Ser Ala Glu Pro Gln Leu Tyr Gly Asn Ala Thr 340 345 350

Ser Asp His Pro Asn Asn Gln Asp Gln Ser Ser Ser Leu Pro Glu Glu 355 360 365

Cys Val Pro Ser Asp Glu Ser Thr Pro Pro Ser Ile Lys Lys Ile Ile 370 375 380

His Val Leu Glu Lys Val Gln Tyr Leu Glu Gln Glu Val Glu Glu Phe 385 390 395 400

Val Gly Lys Lys Thr Asp Lys Ala Tyr Trp Leu Leu Glu Glu Met Leu 405 410 415

Thr Lys Glu Leu Glu Leu Asp Ser Val Glu Thr Gly Gln Asp
420 425 430

Ser Val Arg Gln Ala Arg Lys Glu Ala Val Cys Lys Ile Gln Ala Ile 435 440 445

Leu Glu Lys Leu Glu Lys Lys Gly Leu
450 455

<210> 23

<211> 4308

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (247)..(1590)

<400> 23

cocccccc cocccccc congaagacg cocggagcgg etgetgeage cagtagcgge 60

ccct	tca	.ccg	gctg	cccc	egc t	caga	eccta	g to	ggga	agggg	tgo	cgago	gcat	gcag	ctgggg	120
gcc	cago	tcc	ggtg	ccgc	cac c	ccgt	aaag	ig go	tgat	cttc	cac	ctc	gcca	cctc	agccac	180
ggga	acgc	caa	gacc	gcat	cc a	atto	agac	t to	tttt	ggtg	ctt	gtga	aac	tgaa	cacaac	240
aaaa										tct Ser						288
_			_	-	-	Lys	_	_	_	a cag ı Gln 25	Glr	_				336
					Asp					g aaa s Lys						384
				Phe					Val	a gat Asp						432
								Ala		ı cag ı Gln			Glu			480
		Glu	-		_		Ala			c cca s Pro		Arg		_		528
						Ala				gtg Val 105						576
					Gly		_	_		gat Asp			_	-		624
				Ile					His	gtt Val						672
		_	Arg		-			His		tta Leu			Ile	_	J J	720
					-	_	_	_		aag Lvs	_			_	-	768

160 165 170

		, ,	_	_		cct Pro			-					-	816
-					_	cga Arg									864
						tgc Cys									912
_		_	_	_	-	gct Ala		-		-			-		960
_				2 2		gta Val 245	_	_	-				_		1008
	_	_	_			gaa Glu									1056
_	_					tta Leu			-	_	-	_	_	-	1104
-	_				-	ctt Leu			_				-	-	1152
	_	-				gaa Glu	_	_				 _	_	_	1200
		_		-		aac Asn 325									1248
						act Thr									1296
_				-	_	ctg Leu		_	_						1344

355 360 365 aaa gcc gtc tgg aac gtc ctt gga aac ttg tct gag atc cag gga gaa 1392 Lvs Ala Val Trp Asn Val Leu Gly Asn Leu Ser Glu Ile Gln Gly Glu 375 370 gtt ctt tca ttt gat gga aat cga acc gat aag aac tac atc cgg ctg 1440 Val Leu Ser Phe Asp Gly Asn Arg Thr Asp Lys Asn Tyr Ile Arg Leu 385 390 395 gaa gag ctg ctc acc aag cag ctg cta gcc ctg gat gct gtt gat ccg 1488 Glu Glu Leu Leu Thr Lys Gln Leu Leu Ala Leu Asp Ala Val Asp Pro 405 410 400 caq qqa qaa gag aag tgt aag gct gcc agg aaa caa gct gtg agg ctt 1536 Gln Glv Glu Lys Cys Lys Ala Ala Arg Lys Gln Ala Val Arg Leu 420 425 415 gcg cag aat att ctc agc tat ctc gac ctg aaa tct gat gaa tgg gag 1584 Ala Gln Asn Ile Leu Ser Tyr Leu Asp Leu Lys Ser Asp Glu Trp Glu 440 435 445 tac tga aataccagag atctcacttt tgatactgtt ttgcacttca tatgtgcttc 1640 Tyr tatgtataga gagctttcag ttcattgatt tatacgtgca tatttcagtc tcagtattta 1700 tqattqaaqc aaattctatt cagtatctgc tgcttttgat gttgcaagac aaatatcatt 1760 acagcacgtt aacttttcca ttcggatcat tatctgtatg atgtggtgtg gtttgtttgg 1820 tttgtccttt tttttgcgtt tttaatcaga aaacaaaata gaggcagctt ttgtagattt 1880 taaatqqqtt qtqcaaqcat taaaatqcaq qtctttcaqa atctaqaact aggcataacc 1940 ttacataata ctaggaaaat tatgagaaag gggaaatttt tggttaaata agagtaaggt 2000 tcaaacacaa gcagtacatg ttctgtttca ttatgctcga tagaaggctt ttttttcact 2060 tataaqqcct gattggtcct acccagctta acggggtggg gtttttttgt ttgttcagac 2120 agtetgttet tttgtaaaca tttttagttg gaaaaacage atetgcattt tececateet 2180 ctacgtttta gagaggaatc ttgtttttgt gtgcaacata agaaaattat gaaaactaat 2240 agccaaaaaa cctttgagat tgcattaaag agaagggata aaggaccagc aataatacct 2300

tgtaagttgc ttttgtttgt aaaatctgag cttatagttt tccttagtga gtaaattcat 2360

aaggatggga acatttaaat taagttaatg ggcctttaaa aaaaaaaaag gaaacactca 2420 tacctgtagt tggaggatga atactggaga cgggttacca atgtcaggtt atactaaaac 2480 taaatcagaa agtctgaatg tagcacataa tggttctctt ctgttgtcca aggctgtaaa 2540 atggacagee ttgteacace teeceggtge tgttttacaa egtgagggta gaegetgtea 2600 gtaacccaga gggaccaggc cttcctaggt tttctaggca gtcagctgtt aaccactcac 2660 ttaqtaaatg tcataactac acctgeteca ggaceaatea gtgaaacetg eteggaatta 2720 aaggetteet etgggtgeet getgaacaae tgageteatg teatgggeat gtggtggttt 2780 ctctgttgcc tgaaagagcc attaaagtca gtcgtgcgtg aagcatctct cttctaaagg 2840 atgtgtattt ccataaatgc tttctgagga tccggtacaa aatgatttcc caaagttctg 2900 aagtgeettg agaacatgtg ggteegagtg ttataacaga eteeteeee gggteacett 2960 ttgcctggtc atcctgttag agtacatctt tggaaatcca gggtaatatt ctctttcaga 3020 qatqctcatt gtgtaactct gtgtagggag atagtcactt taaacagctc aaagtagcta 3080 qctaaaqqaq taqccttaaa tacctaaaag atgacagaag catagccctt aacaaatctt 3140 cagettqtet eteagtattt eccaateatg aaaateeett getatgtett teetaetaga 3200 aatgttctag aatcgctgga cggtggggtc agagggcagt cggtatttag gccgtgagct 3260 teceatacta etgeaggtee aacteetgge aacegeggge teaaggeagg teattggaat 3320 ccacqttttg gccacagtag ttgtaggatt gcttttctgt atcataattt tagaatgctc 3380 ttaaaatctt gaggaagagt ttttattttt tatttatttt tgagatggag tctctgttgc 3440 ccaggetgca gtgcagtggt gccatetcag etcaetgcaa ectecaeete ecaggttcaa 3500 gcgattctcc tgcctcagcc acctgagtag ctgggagtac aggcatgtgg caccatgcct 3560 ggctaatttt tgtattttta atagagttga gatttcacca tgatggtcag gctggtctcg 3620 aactcctgac ctcgtgatcc gcccgcctcg gccccccaaa gtgctgggat taacgggtgt 3680 gagccacggc gcccagccca ggaagagttt ttaaattaga gctctgttta attataccac 3740 tgggaaatca tggttacgct tcaggcatat tcttccccag agtactactt acattttaaa 3800

tttcattttg taaagttaaa tgtcagcatt ccctttaaaa gtgtccattg ttctttgaaa 3860 gtagacgttt cagtcattct tttcaaacaa gtgtttgtg accttttgcc aagctgtggg 3920 catcgtgtgt gagtacaggg tgctcagctc ttccaccgtc attttgaatt gttcacatgg 3980 gtaattggtc atggaaatga tcagattgac cttgattgac tgtcaggcat ggctttgttt 4040 ctagtttcaa tctgttctcg ttccttgtac cggattattc tactcctgca atgaaccctg 4100 ttgacaccgg atttagctct tgtcggcctt cgtggggagc tgtttgttt aatatgagct 4160 actgcatgta attctaaac tgggcttgtc acattgtatt gtatttttgt gatctgtaat 4220 gaaaagaatc tgtactgcaa gtaaaaccta ctccccaaaa atgtgtggct ttgggtctgc 4280 attaaacgct gtagtccatg ttcatgcc 4308

<210> 24

<211> 447

<212> PRT

<213> Homo sapiens

<400> 24

Met Asp Met Gly Asn Gln His Pro Ser Ile Ser Arg Leu Gln Glu Ile 1 5 10 15

Gln Lys Glu Val Lys Ser Val Glu Gln Gln Val Ile Gly Phe Ser Gly
20 25 30

Leu Ser Asp Asp Lys Asn Tyr Lys Lys Leu Glu Arg Ile Leu Thr Lys
35 40 45

Gln Leu Phe Glu Ile Asp Ser Val Asp Thr Glu Gly Lys Gly Asp Ile
50 55 60

Gln Gln Ala Arg Lys Arg Ala Ala Gln Glu Thr Glu Arg Leu Leu Lys
65 70 75 80

Glu Leu Glu Gln Asn Ala Asn His Pro His Arg Ile Glu Ile Gln Asn 85 90 95

Ile Phe Glu Glu Ala Gln Ser Leu Val Arg Glu Lys Ile Val Pro Phe 100 105 110

Tyr Asn Gly Gly Asn Cys Val Thr Asp Glu Phe Glu Glu Gly Ile Gln

Asp Ile Ile Leu Arg Leu Thr His Val Lys Thr Gly Gly Lys Ile Ser Leu Arg Lys Ala Arg Tyr His Thr Leu Thr Lys Ile Cys Ala Val Gln Glu Ile Ile Glu Asp Cys Met Lys Lys Gln Pro Ser Leu Pro Leu Ser Glu Asp Ala His Pro Ser Val Ala Lys Ile Asn Phe Val Met Cys Glu Val Asn Lys Ala Arg Gly Val Leu Ile Ala Leu Leu Met Gly Val Asn Asn Asn Glu Thr Cys Arg His Leu Ser Cys Val Leu Ser Gly Leu Ile Ala Asp Leu Asp Ala Leu Asp Val Cys Gly Arg Thr Glu Ile Arg Asn Tyr Arg Arg Glu Val Val Glu Asp Ile Asn Lys Leu Leu Lys Tyr Leu Asp Leu Glu Glu Glu Ala Asp Thr Thr Lys Ala Phe Asp Leu Arg Gln Asn His Ser Ile Leu Lys Ile Glu Lys Val Leu Lys Arg Met Arg Glu Ile Lys Asn Glu Leu Leu Gln Ala Gln Asn Pro Ser Glu Leu Tyr Leu Ser Ser Lys Thr Glu Leu Gln Gly Leu Ile Gly Gln Leu Asp Glu Val Ser Leu Glu Lys Asn Pro Cys Ile Arg Glu Ala Arg Arg Arg Ala Val Ile Glu Val Gln Thr Leu Ile Thr Tyr Ile Asp Leu Lys Glu Ala Leu Glu Lys Arg Lys Leu Phe Ala Cys Glu Glu His Pro Ser His Lys Ala

Val Trp Asn Val Leu Gly Asn Leu Ser Glu Ile Gln Gly Glu Val Leu

370 375 380

Ser Phe Asp Gly Asn Arg Thr Asp Lys Asn Tyr Ile Arg Leu Glu Glu 385 390 395 400

Leu Leu Thr Lys Gln Leu Leu Ala Leu Asp Ala Val Asp Pro Gln Gly 405 410 415

Glu Glu Lys Cys Lys Ala Ala Arg Lys Gln Ala Val Arg Leu Ala Gln 420 425 430

Asn Ile Leu Ser Tyr Leu Asp Leu Lys Ser Asp Glu Trp Glu Tyr 435 440 445

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/21053

A. CLAS	SSIFICATION OF SUBJECT MATTER		
` '	07N 21/02; C07K 1/00		
	530/387.1, 350; 435/6, 7/1; 536/23.1 o International Patent Classification (IPC) or to both n	ational classification and IPC	
		ational Classification and IT C	
	DS SEARCHED	har alongification graphole)	
	ocumentation searched (classification system followed	by classification symbols)	
U.S. : :	530/387.1, 350; 435/6, 7/1; 536/23.1		
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched
Documenta	ton sourcined other main imministrating documentation to the		
Electronic d	ata base consulted during the international search (nar	me of data base and, where practicable.	search terms used)
	(
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
X	US 5,652,223 A (KOHN ET AL) 29 J	uly 1997(29/7/97) see entire	2-5, 14, 32-34
Λ.	document.	ary 1997 (2977797) see chare	20, 11, 520.
	document.		
X	Database Genbank-EST, National C	Center for Biotech. Info	2
	Accession No. AA693697, HILLIER		
	human EST Project,' 16 December 199		
		, •	
X	Database Genbank-EST, National C	Center for Biotech. Info	2,4
	Accession No. AA456862, NCI_CGAF		,
	Cancer Genome Anatomy Project (CGA		
	August 1997, see entire reference.	in), rumor como maon, ro	
	August 1997, see chine reference.	'	
1			
X Furth	ner documents are listed in the continuation of Box C.	See patent family annex.	
* Sp	pecial categories of cited documents:	"T" later document published after the int	
	comment defining the general state of the art which is not considered	date and not in conflict with the app the principle or theory underlying the	
Į.	be of particular relevance rlier document published on or after the international filing date	"X" document of particular relevance; th	e claimed invention cannot be
	ocument which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered novel or cannot be considered novel or cannot be considered.	ered to involve an inventive step
	ted to establish the publication date of another citation or other ecial reason (as specified)	"Y" document of particular relevance; th	
	ocument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other suc being obvious to a person skilled in	h documents, such combination
"P" do	ocument published prior to the international filing date but later than e priority date claimed	"&" document member of the same paten	
	actual completion of the international search	Date of mailing of the international se-	arch report
24 NOVI	EMBER 1999	19 JAN 2000	
Name and	mailing address of the ISA/US		·
Commission Box PCT	oner of Patents and Trademarks	The state of the s	(en for
	on, D.C. 20231	SHEEL J. HUFF	/)
Facsimile 1	No. (703) 305-3230	Telephone No. (703) 308-0196	1/

INTERNATIONAL SEARCH REPORT

International application No PCT/US99/21053

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 1, 13, 24, 25 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: No. meaningful search could be carried out because no limitations could be placed on the sequence
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest No protest accompanied the payment of additional search fees

INTERNATIONAL SEARCH REPORT

International application No PCT/US99/21053

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	Database Genbank, National Center for Biotech. Info., Accession No. G29287, MYERS, R.M., 04 October 1996, see entire reference.	2,4
X	Database Genbank, National Center for Biotech. Info., Accession No. G06974, HUDSON, T., "Whitehead Institute.MIT Center for Genome Research,'19 October 1995, see entire reference.	2,4
x	Database Genseq, Derwent, Alexandria, Virginia, Accession No. V81267, OTSUKA PHARM CO LTD, 'New Bcl-2 interaction prrtein gene (Bis)- useful for elucidation of the molecular mechanism of apoptosis, and in diagnosis, prevention and treatment of diseases,' 15 December 1998 see enire reference.	2-5
X	Database, Geneseq, Derwent, Alexandria, Virginia, Accession No. T19051, MATSUBARA ET AL., "Identifying gene signatures in 3'-directed human cDNA library,' 01 June 1995, see entire reference.	2,4
x	Database Geneseq, Derwent, Alexandria, Virginia, Accession No. Q90296, LA JOLLA CANCER RES FOUN. 'Human Bcl-2-associated protein BAG-1 cDNA,'18 May 1995 see entire reference.	2-5,14
	;	