General Purpose Input and Output (GPIO) Design

Santunu Sarangi

Objectives

• Understanding of critical voltages VOH, VOL, VIH, VIL and VTH.

- Overall IO structure
 - Input Mode
 - Output mode
- TX Driver design (Buffer chain design)
 - Understanding Load Capacitance
 - Number of stages
 - Stage Ratio

Basics of Critical Voltage for Noise Margin

Noise Margin

Basics of Critical Voltage and Noise Margin: Ideal Inverter

Basics of Critical Voltages: Practical Inverter

- VOH: Minimum output voltage considered as logic "HIGH"
- VOL: Maximum output voltage considered as logic "LOW"
- VIH: Minimum input voltage considered as logic "HIGH"
- VIL: Maximum input voltage considered as logic "LOW"

Calculation of Critical Voltages

•
$$V_{OH} \approx V_{DD}$$

•
$$V_{OL} \approx 0$$

•
$$V_{IL} = \frac{2V_{OUT} + V_{T0,p} - V_{DD} + k_r V_{T0,n}}{1 + k_r}$$

Where
$$k_r = \frac{k_n}{k_p}$$

•
$$V_{IH} = \frac{V_{DD} + V_{T0,p} + k_r(2V_{OUT} + V_{T0,n})}{1 + k_r}$$

Where
$$k_r = \frac{k_n}{k_p}$$

Resistive Load Inverter

Input and Output Logic Levels

Input Logic Levels: VIH and VIL

Input Logic Levels: VIH and VIL

GPIO

GPIO: General Purpose Input Output

- Reading digital signal
- Generating trigger
- Issuing interrupt
- GPIO is nothing but the collection of fixed number of I/O pins
- Default mode is input mode and input pin is floating
- Default output mode is push-pull

GPIO: Output Buffer

GPIO: Output Buffer

GPIO: Output Mode-Push-pull or Open Drain

GPIO: Output Mode-With Pull up Resistor

GPIO: input Buffer: Floating Pin

GPIO: input Buffer: Floating Pin

GPIO: input Buffer: Pin Connected to Vss or Vdd

Transmitter (TX) Driver

- A driver of buffer drives the output load and send signal to the output smoothly.
- As the I/O pin's physical dimension is huge compare to the core circuitry, the pin parasitic or pin capacitance is huge (10s of pF).
- To drive such a huge capacitive load a huge output current is required, which leads the output inverter size to be huge.
- The huge inverter size also creates the loading effect on the previous stage, which the degrades the signal or increases delay and not able to perform in high frequencies.
- Solution: Need Buffer chain

Buffer Chain Design

Sizing Inverters for Performance

- In this analysis, we assume a symmetrical inverter, where PMOS and NMOS are sized such a way that the rise and fall delay are identical.
- $C_L = C_{int} + C_{ext}$
- C_{int} represents the self-loading or intrinsic capacitance, where as C_{ext} represents the external load capacitance attributable to fanout and wiring capacitance.
- Assuming that the R_{eq} stands for equivalent on resistance of the gate, we can express the propagation delay as,
- $t_p = 0.69R_{eq}(C_{int} + C_{ext}) = 0.69R_{eq}C_{int}\left(1 + \frac{C_{ext}}{C_{int}}\right)$
- $t_p = t_{p0} \left(1 + \frac{c_{ext}}{c_{int}}\right)$, where t_{p0} is called intrinsic or unloaded delay

Transistor Sizes Impact The Performance

• To know how transistor sizes impact the gate performance, we must establishes the relation between the various parameters of the below equation and the sizing factor S.

•
$$t_p = 0.69R_{eq}(C_{int} + C_{ext}) = 0.69R_{eq}C_{int}\left(1 + \frac{C_{ext}}{C_{int}}\right)$$

- Sizing factor S relates the transistor sizes of our inverter to a reference gate- typically a minimum sized inverter.
- $C_{int} = SC_{iref}$, where S = sizing factor and $C_{iref} = C_{int}$ of the reference gate

•
$$R_{eq} = \frac{R_{eq}}{S}$$

•
$$t_p = 0.69 \frac{R_{eq}}{S} SC_{iref} \left(1 + \frac{C_{ext}}{SC_{iref}} \right) = 0.69 R_{eq} C_{iref} \left(1 + \frac{C_{ext}}{SC_{iref}} \right)$$

•
$$t_p = t_{p0} \left(1 + \frac{c_{ext}}{sc_{iref}} \right)$$

The above expression leads to two conclusion;

- 1. t_{p0} is independent of inverter sizing.
- 2. Performance continue to increase by increasing sizing factor S.

Sizing a Chain of Inverter

 $C_{int} = \gamma C_{in}$, Where γ is proportionality constant $t_p = t_{p0} \left(1 + \frac{C_{ext}}{\gamma C_{in}} \right) = t_{p0} \left(1 + \frac{f}{\gamma} \right)$, where f is effective fanout

The goal is the minimize the delay through the inverter chain.

• Delay expression for jth inverter stage,

$$t_{pj} = t_{p0} \left(1 + \frac{C_{in,j+1}}{\gamma C_{in,j}} \right) = t_{p0} \left(1 + \frac{f_j}{\gamma} \right)$$

• Total Delay of the chain;

$$t_{p} = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{j=1}^{N} \left\{ 1 + \frac{C_{in,j+1}}{\gamma C_{in,j}} \right\}$$

• The optimum size of each inverter is the geometric mean of its neighbors size;

$$C_{in,j} = \sqrt{C_{in,j-1} \cdot C_{in,j+1}}$$

• This means that each inverter is sized up by the same factor f with respect to the preceding gate, has the same effective fanout $(f_i = f)$, hence the same delay.

Sizing a Chain of Inverter

• With C_{in1} and C_L given we can derive the sizing factor;

$$f = \sqrt[N]{C_L/C_{in1}} = \sqrt[N]{F}$$

• And the minimum delay through the chain,

$$t_p = Nt_{p0} \left(1 + \frac{\sqrt[N]{F}}{\gamma}\right)$$
, where F is overall effective fanout

Choosing the Right Number of Stages

• The final t_p expression reveals the trade-offs in choosing the number of stages for a given $F(f^N)$

$$t_p = Nt_{p0} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right)$$

- If the number of stages are too high, the first component of the expression, representing the intrinsic delay, becomes dominant.
- If the number of stages is too small, the effective fanout of each stage becomes large and the second component is dominant.
- The optimum value of N can be found by differentiating the minimum delay expression by the number of stages and setting the result to 0.

$$\frac{\partial t_p}{\partial N} = \frac{\partial}{\partial N} \left[N t_{p0} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right) \right] = 0, \qquad \Rightarrow \gamma + \left(\sqrt[N]{F} \right) \left\{ 1 - \frac{lnF}{N} \right\} = 0$$

- The above equation only has a close form solution for $\gamma=0$, under these simplifies condition, it is found that the optimal number of stages $N=\ln(F)$, where F=e=2.71828.
- Fanout values higher than e does not impact much on the delay but reduces number of stages. So a common practice is to select the optimum fanout of 4.

Assignment

Design a TX Driver with the following specs

- Output Load Cap: 100pF
- Operating Frequency: 10 MHz

Design the driver, so that the delay will be minimum.

- Find the optimum number of stages,
- Fanout factor f
- Total propagation delay
- Power Consumption

Thank You