

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Cómputo reconfigurable

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto	025044	85

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proporcionar las bases teóricas, metodológicas y técnicas del diseño basado en arreglos de compuertas programables en el campo (FPGAs).

TEMAS Y SUBTEMAS

- 1. Introducción a la lógica programable
 - 1.1. Definición y ventajas de la lógica programable: lógica programable vs lógica cableada vs microprocesadores/microcontroladores.
 - 1.2. Clasificación de los dispositivos lógicos programables (PLDs).
 - 1.3.Aplicaciones de los PLDs.
 - 1.4.Lenguajes de descripción de hardware y descripción de alto nivel.
 - 1.5. Fabricantes y entornos de desarrollo.
- 2. Arreglos de compuertas programables en el campo.
 - 2.1. Definición, tipos y aplicaciones de los FPGAs.
 - 2.2. Arquitectura de un FPGA.
 - 2.3.Componentes auxiliares en el FPGA.
 - 2.4. Flujo de diseño FPGA.
 - 2.5. Tecnologías avanzadas y tendencias futuras.
- 3.Introducción al diseño con HDLs
 - 3.1. Niveles de abstracción del lenguaje.
 - 3.2. Estructura general de una descripción.
 - 3.3.Constantes numéricas.
 - 3.4. Tipos de datos.
 - 3.5.Operadores.
 - 3.6.Procesos concurrentes.
 - 3.7. Módulos y jerarquías.
 - 3.8. Estructuras de control.
 - 3.9. Generación de estímulos de prueba.
- 4.Descripción de hardware para síntesis
 - 4.1. Circuitos combinacionales con salidas múltiples.
 - 4.2. Circuitos aritméticos.
 - 4.3.Biestables: Latches y Flip-Flops.
 - 4.4.Registros y contadores.
 - 4.5. Temporizadores y manejo del reloj.
 - 4.6.Memorias.
 - 4.7. Máquinas de estado finito.
 - 4.8. Diseño de módulos secuenciales utilizando grafos ASM.
- 5.Introducción al diseño a nivel de sistema

- 5.1. Flujo de diseño basado en esquemático.
- 5.2. Flujo de diseño basado en HDL.
- 5.3. Flujo de diseño utilizando diagramas a bloques SIMULINK/MATLAB. 5.4. Flujo de diseño utilizando lenguajes de alto nivel.
- 6.Casos de estudio
 - 6.1.Diseño e implementación de una ALU.
 - 6.2. Aplicaciones de procesamiento de Audio. 6.3. Aplicaciones de procesamiento de imágenes. 6.4. Aplicaciones de procesamiento de video.

ACTIVIDADES DE APRENDIZAJE

Exposición del profesor utilizando medios de apoyo didáctico, como computadora y proyector. • Sesiones prácticas que fomenten el aprendizaje de un lenguaje de descripción de hardware, tal como VHDL o Verilog, así como de uno o varios entornos de desarrollo.

- Sesiones prácticas que muestren el uso de programas basados en sistemas a bloques y lenguajes de alto nivel en el diseño de sistemas reconfigurables.
- Desarrollo de un proyecto de fin de curso, guiado por el profesor, en el cual se muestre las diferentes metodologías de planeación y realización de sistemas basados en FPGAs.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%). Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Reconfigurable computing. The theory and practice of FPGA-based computing, (1st edition). Huck, S., Dehon, 1. A. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2008.
- Fundamentos de Lógica Digital con diseño VHDL, (2a edición), Brown, S., Vranesic, Z. Editorial McGraw-Hill. 2.
- 3. Digital Systems Design with FPGA and CPLDs, (1st edition). Grout, I. Elsevier Editorial. 2008.

Consulta:

- FPGA-based system design. Wolf, W. Englewood Cliffs, NJ, USA:Prentice Hall. 2004. 1.
 - VHDL lenguaje para síntesis y modelado de circuitos. Pardo, F. Boluda, C. Editorial Alfaomega, 2004. 2.
 - Diseño de Sistemas Digitales con VHDL. Pérez, S., Soto, E. Editorial Thomson. 2002. 3.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica, Maestría o Doctorado en Electrónica, especialidad en Sistemas Digitales.

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

VICE-RECTORI **ACADÉMICA**

JEFATURA DE CARRERA INGENIERIA EN COMPUTACION