Méthodes Statistiques

Corrigé de l'exercice 54

On reprend les données de l'exercice 49.

On note X_1 la production en tonnes d'une parcelle traitée avec l'engrais et X_2 la production en tonnes d'une parcelle qui n'est pas traitée avec l'engrais. On suppose que les deux variables X_1 et X_2 sont distribuées selon une loi normale. Au risque 10%, peut-on conclure que les variances de X_1 et X_2 sont égales?

Il s'agit d'un test de comparaison de variances avec des échantillons indépendants. On fait l'hypothèse H_0 suivante :

$$H_0: \sigma_1 = \sigma_2$$

On fait un test bilatéral, autrement dit on pose l'hypothèse \mathcal{H}_1 suivante :

$$H_1:\sigma_1\neq\sigma_2$$

On a déjà calculé, dans l'exercice 49, les variances empiriques modifiées :

$$\begin{cases} s_1^2 = 2.825 \\ s_2^2 = 3.321 \end{cases}$$

La statistique du test est la variable $F = \frac{s_1^2}{s_2^2}$. On a vu en cours que, sous l'hypothèse H_0 , la variable F suit une loi de Fisher $F(n_1-1,n_2-1)$ à (n_1-1,n_2-1) degrés de liberté.

On calcule
$$f = \frac{s_1^2}{s_2^2} = \frac{2.825}{3.321} = 0.851.$$

On trouve, dans la table de la loi de Fisher $F(n_1-1,n_2-1)=F(9,9)$ à la fin du recueil d'exercices, les valeurs critiques pour un seuil $\alpha=10\%$:

$$\begin{cases} a = 0.3146 \\ b = 3.1789 \end{cases}$$

Remarque : on a a = 1/b. C'est une propriété vue en cours.

Puisque 0.3146 < 0.851 < 3.1789, on accepte l'hypothèse H_0 . C'est donc à juste titre qu'on avait considéré, dans l'exercice 49, que les variances sont égales, ce qui nous avait permis de faire le test de comparaison de movennes.