Entraînement pour le DS 4.

Exercice 1

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}^*, \quad u_n = \sqrt{n + u_{n-1}} \end{cases}$$

- 1°) Montrer que la suite est bien définie et que tous ses termes sont strictement positifs.
- **2°)** Montrer : $\forall n \in \mathbb{N}, \ u_n \geq \sqrt{n}$. En déduire la limite de (u_n) .
- **3°) a)** Montrer que pour tout réel x positif : $\sqrt{x} \le \frac{1}{2}(x+1)$.
 - **b)** Montrer: $\forall n \in \mathbb{N}, \ u_n \leq n + \frac{u_0}{2^n}$.
 - c) En déduire successivement l'existence et les valeurs des limites : $\lim_{n\to+\infty} \frac{u_n}{n^2}$, $\lim_{n\to+\infty} \frac{u_n}{n}$.
- **4°)** On pose, pour tout $n \in \mathbb{N} : w_n = u_n \sqrt{n}$.
 - a) Justifier que : $w_n = o(\sqrt{n})$. En est-il de même pour w_{n-1} ?
 - **b)** Pour tout $n \in \mathbb{N}^*$, montrer la relation :

(*)
$$w_n (w_n + 2\sqrt{n}) = w_{n-1} + \sqrt{n-1}$$
.

- c) En déduire que $(w_n)_{n\in\mathbb{N}}$ converge vers $\frac{1}{2}$.
- 5°) Calculer, pour tout $n \in \mathbb{N}^*$, $u_{n+1}^2 u_n^2$ en fonction de u_n et u_{n-1} , puis de w_n et de w_{n-1} . En déduire la limite de $(u_{n+1}^2 - u_n^2)$, puis que $(u_n)_{n \in \mathbb{N}}$ est croissante à partir d'un certain rang.

Exercice 2

Calculer
$$\lim_{x \to +\infty} \left(\operatorname{ch} \left(\frac{1}{x+1} \right) \right)^{x^2}$$
.

DL en 0 à l'ordre 2 de $\frac{\cos x - 1}{e^x - 1 - \sin x}$.