Galaxies as a Population I

ASTR 503/703

Hierarchical Galaxy Formation

dark matter halos merge & grow

Credit: R. Jansen

galaxies form inside

high-resolution physics:

- galaxy-galaxy interactions
- gas inflow & star formation
- energy feedback (supernovae, AGN)

Alternating spheroid & disk growth

Lacey & Cole 1993

"merger tree"

Evolution in the Hubble Sequence

figure: Kormendy & Bender 1996

gas infall and disk growth
gas-depleting mergers & interactions

Properties in the Hubble Sequence

Sloan Digital Sky Survey (SDSS)

Original ("Legacy")
Survey Sky Footprint

Expanded Imaging Survey Sky Footprint

Sloan Digital Sky Survey (SDSS)

Original ("Legacy") Survey Sky Footprint

Survey science → discovery of "bimodality mass"

Rediscovery of dwarf and giant galaxies? Or something new?

- → bimodality, not smooth shift
- → reframed in terms of fundamental quantities mass not light connect with theory (M_h=10^{10.5}M_☉)
- mainstream use of advanced statistics, Bayesian modeling

The dependence of star formation history and internal structure on stellar mass for 10⁵ low-redshift galaxies

Guinevere Kauffmann,^{1*} Timothy M. Heckman,² Simon D. M. White,¹ Stéphane Charlot,^{1,3} Christy Tremonti,² Eric W. Peng,² Mark Seibert,² Jon Brinkmann,⁴ Robert C. Nichol,⁵ Mark SubbaRao⁶ and Don York⁶

Survey science → discovery of "bimodality mass"

Rediscovery of dwarf and giant galaxies? Or something new?

- → bimodality, not smooth shift
- → reframed in terms of fundamental quantities mass not light connect with theory (M_h=10^{10.5}M_☉)
- mainstream use of advanced statistics, Bayesian modeling

The dependence of star formation history and internal structure on stellar mass for 10^5 low-redshift galaxies

Guinevere Kauffmann,^{1*} Timothy M. Heckman,² Simon D. M. White,¹ Stéphane Charlot,^{1,3} Christy Tremonti,² Eric W. Peng,² Mark Seibert,² Jon Brinkmann,⁴ Robert C. Nichol,⁵ Mark SubbaRao⁶ and Don York⁶

 conditional probability distribution hides inverse square law bias (SDSS is flux-limited a.k.a. magnitude-limited)

- conditional probability distribution hides inverse square law bias (SDSS is flux-limited a.k.a. magnitude-limited)
- actual data points are "giant heavy" ->

- conditional probability distribution hides inverse square law bias (SDSS is flux-limited a.k.a. magnitude-limited)
- actual data points are "giant heavy" →

blue seq. = growing, disky red seq. = 'red & dead' spheroids

blue seq. = growing, disky red seq. = 'red & dead' spheroids

why u-r?

traces
stellar
population
age (and
secondarily
metallicity)

HR diagram of stellar population

Middle-aged galaxy with "4000 Angstrom break"

Wavelength (Angstroms)

How does gas fit into this picture?

Hindsight: the gas-richness threshold mass is not the bimodality mass

Lesson for posterity: Huge data sets do not mitigate systematic errors. They just multiply them - many, many times over.

Threshold mass = known interstellar medium (ISM) transition scale

dust lanes

Link to theory of "cold-mode" gas accretion

mass-metallicity relation

Mannucci et al. (2011)
update to
"fundamental
metallicity
relation"
including Star
Formation Rate
(SFR)

open box merger simulation

L. Mayer & the N-Body Shop

The hierarchical galaxy formation (non)paradox: why massive things are old

- 1) Peak initial overdensities in dark matter coalesce first
- 2) Even where largest halos are still coalescing today (galaxy clusters), the <u>stars</u> are already old → structure age ≠ stellar population age
- 3) Gas shock-heats in massive halos → slows accretion, plus hot halo gas strips galaxy gas

Motivation for RESOLVE & ECO

http://resolve.astro.unc.edu = your data sets for this class (real research in progress!)

In brief:

two volume-limited, unusually complete "census" surveys of stars, gas, and dark matter, plus star formation & merging, from dwarf galaxy to group & cluster scales

- Key advantages of both RESOLVE and ECO:
 baryonic mass limit ~10° M_⊙ well below threshold scale
 volume-limited for robust & diverse environment data
- more complete than parent SDSS
- superior photometry (color gradients, star formation histories)

Additional benefits of RESOLVE:

- fractional-mass limited gas masses (<10% stellar mass)
- 3D spectroscopy for internal dynamics & star formation
- superior depth and archival data in equatorial strips

Complementary benefit of ECO:

>10x larger volume with more extreme environments