Institut für Industrielle Informationstechnik

Mikrorechnertechnik SS 07

Übung 7, Lösungen

DSP

Prof. Dr.-Ing. K. Dostert Hertzstr. 16/Bau 35, Tel. 0721/608-4597

Seite: 1/2

Aufgabe 1:

a) Für jeden der in Tabelle 1 aufgeführten Befehle ist der Inhalt der angegebenen Register, sowie die Bezeichnung des Adressierungsmodus <u>nach</u> Ausführung des Befehles angegeben. (M0=\$FFFF)

	R0	N0	R0	A	Bezeichnung
MOVE X:(R0)+,A	\$150	\$2	\$151	\$444	indirect with postincrement
MOVE X:-(R0),A	\$150	\$2	\$14F	\$555	indirect with predecrement
MOVE X:(R0)+N0,A	\$150	\$2	\$152	\$444	indirect with postinc. by offset
MOVE X:(R0+N0),A	\$150	\$2	\$150	\$222	indirect by offset

Tabelle 1: Befehlsfolge für den DSP56001

b) Der Befehl ist <u>nicht</u> zulässig, da Adressregister und Offsetregister nicht in derselben AGU-Hälfte liegen!

c) Die drei verschiedenen Grundarten der Adressberechnung:

lineare Adressierung: Standard
Modulo-Adressierung: Ringpuffer

Reverse Carry: FFT

Aufgabe 2:

a) Der Registerinhalt \$020000 (Fraktaldarstellung) entspricht 2⁻⁶

MAC-Befehl: $2^{-6} \cdot 2^{-6} = 2^{-12}$

Akkuinhalt A1 nach 128 Schleifendurchläufen: $2^7 \cdot 2^{-12} = 2^{-5}$ entspricht \$040000

Überläufe treten keine auf, daher A2 = 0

A2	A1	A0	
\$00	\$040000	\$000000	

b)
$$M1 = 41 - 1 = 40$$

c)
$$OG = UG + M - 1 = 64 + M1 = 64 + 40 = 104$$

d)
$$R2 = 100 + 2 + 2 + 2 - 41 + 2 = 67$$

Institut für Industrielle Informationstechnik

Mikrorechnertechnik SS 07 **DSP**

Übung 7, Lösungen Seite: 2/2

Prof. Dr.-Ing. K. Dostert Hertzstr. 16/Bau 35, Tel. 0721/608-4597

Aufgabe 3:

a) Der Programmabschnitt führt folgende Berechnung durch (in Dezimaldarstellung):

$$\frac{1}{2} \cdot \frac{1}{32} + \frac{1}{4} \cdot \frac{1}{16} + \frac{1}{8} \cdot \frac{1}{8} + \frac{1}{16} \cdot \frac{1}{4} + \frac{1}{32} \cdot \frac{1}{2} = \frac{5}{64}$$

Umrechnung in Binärdarstellung: $\frac{5}{64} = \frac{1}{16} + \frac{1}{64} = 0,000101_2$

Darstellung als 24 bit-Zahl in Fraktaldarstellung: $A1 = 0000 \ 1010 \ 0000 \ \dots \ 0000_2 = 0A0000_{16}$ A2 = 0 (keine Überläufe), A0 ebenfalls

A2	A1	A0	
\$00	\$0A0000	\$00000	

b)
$$M5 = 4$$

c) Der Ausgabewert des A/D-Wandlers steht immer an Speicheradresse \$1000 im X-Speicher, deshalb darf der Zeiger R1 auf diese Adresse nicht verändert werden.

Aufgabe 4: