Дифференциальные уравнения второго порядка

§1. Основные понятия. Уравнения с разделяющимися переменными F(x,y,y')=0 (1.1) связывает независимую переменную x, искомую функцию y(x) и её производную y'(x) — ДУ 1-го порядка.

Если (1.1) можно записать в виде y' = f(x, y), то оно разрешимо относительно производной, dy = f(x, y)dx. Общая форма: P(x, y)dx + Q(x, y)dy = 0.

Решение (интеграл) ДУ 1-го порядка — любая $y = \phi(x)$, которая при подстановке не обращает его в тождество. Процесс нахождения решений — интегрирование уравнения.

Задача Коши — отыскание решения ДУ 1-го порядка, удовлетворяющее н. у. $y(x_0) = y_0$.

Геом. смысл: поиск интегральной кривой уравнения 1.1, проходящей через точку $M_0(x_0,y_0)$.

Общее решение уравнения 1.1: $y = \phi(x, C)$ (1.2.), где C — произвольная постоянная, что 1) при любом C она является решением, 2) для допустимого н. у. найдётся такое $C = C_0$, что $\phi(x_0, C_0) = y_0$.

В некоторых случаях общее решение ДУ приходится записывать в неявном виде $\phi(x,y,\mathcal{C})=0$ — это общий интеграл уравнения.

Геом. смысл: общее решение — семейство интегральных кривых на плоскости Оху.

Частное решение ДУ 1-го порядка: $y = \varphi(x, C_0)$, получаемое из (1.2) при $C = C_0$.

Частный интеграл уравнения 1.1 $\phi(x, y, C_0) = 0$.

Теорема 2.1.] в y'=f(x,y) функция f(x,y) и её частная производная $f_y{}'(x,y)$ непрерывны в области D плоскости Oxy. Тогда для любой т. $M(x_0,y_0)\in D$ \exists и притом единственное решение y=y(x) этого уравнения, удовлетворяющего н. у. $y(x_0)=y_0$.

$$P_1(x) = Q_1(y)dx + P_2(x) * Q_2(y)dy = 0 \ (1.3)$$
 — ДУ с разделяющимися переменными $\Rightarrow \frac{P_1(x)}{P_2(x)}dx + \frac{Q_2(y)}{Q_1(y)}dy = 0 \ (1.4)$ — с разделёнными примерами \Rightarrow общим интегрированием $\int \frac{P_1(x)}{P_2(x)}dx + \int \frac{Q_2(y)}{Q_1(y)}dy = C$.

2.1.1. a)
$$y = (x + C)e^x$$
, $y' - y = e^x$; $y' = ((x + C)e^x)' = e^x + (x + C)e^x$, подставляем $e^x + (x + C)e^x - (x + C)e^x = e^x$; $e^x = e^e \rightarrow y = (x + C)e^x -$ решение ДУ.

6)
$$y = -\frac{2}{x^2}$$
, $xy^2 dx - dy = 0$; $dy = \left(-\frac{2}{x^2}\right)_x' dx = \frac{4}{x^3} dx = 0$; $dy = \left(-\frac{2}{x^2}\right)_x' dx = 0$

$$\frac{4}{x^3}dx$$
, подставляем $x = \left(-\frac{2}{x^2}\right)^2 dx - \frac{4}{x^3}dx = 0$; $0 = 0$, ч. т. д.

в)
$$x^2 - xy + y^2 = C$$
, $(x - 2y)y' - 2x + y = 0$; $(x^2 - xy + y^2)' = (C)'_x \leftrightarrow 2x - y - xy' + 2yy' = 0 \rightarrow y' = \frac{y - 2x}{2y - x}$, $x \neq 2y$, подставляем $(x - 2y)\frac{y - 2x}{2y - x} - 2x + y = 0$; $0 = 0$, ч. т. д.

2.1.4. Решить задачу Коши: a)
$$y' = \sin 5x$$
, $y\left(\frac{\pi}{2}\right) = 1$; $y = \int \sin 5x \, dx = -\frac{1}{5}\cos 5x + C$, подставляем н.у. $1 = -\frac{1}{5}\cos \frac{5\pi}{2} + C \rightarrow C = 1$ \rightarrow решение н $= -\frac{1}{5}\cos 5x + 1$.

6)
$$\frac{dx}{dt} = 3$$
, $x = 1$ при $t = -1$; $\int 3dt = 3t + C$, подставляем $1 = 3*(-1) + C \rightarrow C = 4 \rightarrow x = 3t + 4$.

2.1.6. а)
$$y = Cx^3$$
; $y'(Cx^3)' = 3Cx^2$, $C = \frac{y}{x^3}$, подставляем $y' = \frac{3y}{x^3} * x^2 \to xy' = 3y$.

6) семейство парабол определяется $y^2=\mathcal{C}x \to (\)_x'; 2yy'=\mathcal{C}.$ Исключив \mathcal{C} , получим 2xy'-y=0

2.1.15. $(x - xy^2)dx + y(1 - x^2)dy = 0$; $[(1.3)]x(1 - y^2)dx + y(1 - x^2)dy = 0$; $(1 - y^2)(1 - x^2)$; $[(1.4)]\frac{x}{1 - x^2}dx + \frac{y}{1 - y^2}dy = 0$; $[\int_{-1}^{1} |1 - x^2| - \frac{1}{2} \ln|1 - y^2| = -\frac{1}{2} \ln|C|$, $C \neq 0$.

2.1.22. $ydx + \operatorname{ctg} x \, dy = 0$, $y|_{x=\frac{\pi}{3}} = -1$; $\frac{y}{y \operatorname{ctg} x} \, dx + \frac{\operatorname{ctg} x}{y \operatorname{ctg} x} \, dy = 0$; $\operatorname{tg} x \, dx + \frac{1}{y} \, dy = 0$; $\int \operatorname{tg} x \, dx + \int \frac{dy}{y} = \ln |\mathcal{C}_1| \, , \mathcal{C}_1 \neq 0$; $\ln |y| - \ln |\cos x| = \ln |\mathcal{C}_1| \, , |y| = |\mathcal{C}_1 \cos x|, y = \frac{1}{2} \cos x$, подставляем н. у. $y = C \cos x \, (C = \pm C_1)$; $-1 = C \cos \frac{\pi}{3}$; $-1 = C * \frac{1}{2}$; $C = -2 \to 4$. р. $y = -2 \cos x$.

§2. Однородные дифференциальные уравнения

 $f(\alpha x, \alpha y) = \alpha^n f(x, y)$ — однородная функция степени n, где n — целое, α — любое.

В частности, f(x,y) — однородная нулевой степени, если $f(\alpha x, \alpha y) = f(x,y)$.

ДУ P(x,y)dx + Q(x,y)dy = 0 (2.1) однородное, если P(x,y), Q(x,y) — однородные функции одинаковой степени.

2.1 может быть приведено к виду $y'=f\left(\frac{y}{x}\right)$ (2.2), которое преобразуется при помощи замены переменной $\frac{y}{x}=u, y=ux$, где u=u(x) — новая неизвестная функция (можно $\frac{x}{y}=u$).

2.2.1. а) $(y^2 + xy)dx - x^2dy = 0$ имеет вид 2.1; $P(x,y) = y^2 + xy$, $Q(x,y) = -x^2$ — однородные функции одной степени; $P(\alpha x, \alpha y) = (\alpha y)^2 + \alpha x \alpha y = \alpha^2(y^2 + xy) = \alpha^2 P(x,y)$, $Q(\alpha x, \alpha y) = -(\alpha x^2) = \alpha^2(-x^2) = \alpha^2 Q(x,y)$, $n = 2 \to \text{ однородное}$; y = ux, тогда $dy = xdu + udx \to (u^2x^2 + x^2u)dx - x^2(xdu + udx) = 0$; $u^2dx - xdu = 0$, $\frac{dx}{x} - \frac{du}{u^2} = 0$; $[\int]\ln|x| + \frac{1}{u} = C \to \ln|x| + \frac{x}{y} = C$ — общий интеграл; y = ux; y' = u'x + u (см. 6)).

 $6) \ y' = \frac{xy^2 - yx^2}{x^3}, \ y(-1) = 1; \ y' = \left(\frac{y}{x}\right)^2 - \frac{y}{x}; \ \text{положим} \ y = ux, \ y' = u'x + u, \ \text{подставим} \ u'x + u = u^2 - u; \ \frac{du}{dx} * x = u^2 - 2u \leftrightarrow \frac{du}{u^2 - 2u} * \frac{x}{dx} = 1 \leftrightarrow \frac{du}{u^2 - 2u} = \frac{dx}{x}; \ \int \frac{du}{u^2 - 2u} = \int \frac{dx}{x}; \ \frac{1}{2} \ln \left| \frac{u - 2}{u} \right| = \ln |x| + \frac{1}{2} \ln |\mathcal{C}| \rightarrow \left| \frac{u - 2}{u} \right| = \left| u = \frac{y}{x} \right| = \left| \frac{y - 2x}{y} \right| = |\mathcal{C}_1| x^2; \ \frac{y - 2x}{y} = \pm \mathcal{C}_1 x^2, \ \frac{y - 2x}{y} = \mathcal{C} x^2, \ \text{где} \ \mathcal{C} = \pm \mathcal{C}_1; \ \frac{1 + 2}{1} = \mathcal{C} * 1 \rightarrow \mathcal{C} = 3 \rightarrow \frac{y - 2x}{y} = 3x^2 \rightarrow (3x^2 - 1) = -2x; \ y = \frac{2x}{1 - 3x^2} - \text{частное решение}.$

в) $xy' - y + xe^{\frac{y}{x}} = 0$; преобразуем к $2.2 \ xy' + y + xe^{\frac{y}{x}} = 0$; $x; y' + \frac{y}{x} + e^{\frac{y}{x}} = 0$; $\left[\frac{y}{x} = u\right]$; $u'x + u - u + e^{u} = 0 \leftrightarrow u'x + e^{u} = 0 \leftrightarrow \frac{du}{e^{u}} + \frac{dx}{x} = 0$; $\int e^{-u} du = -\int \frac{dx}{x} \leftrightarrow -e^{u} = -\ln|x| - \ln|C|$, $C \neq 0 \to \ln|C_x| = e^{-u}$, $-u = \ln\ln|C_x|$, $C \neq 0$, $y = -x \ln\ln|C_x|$, $C \neq 0$

2.2.5. (y+2)dx-(2x+y+6)dy=0; $[x=u+\alpha,y=v+\beta]$; $(v+\beta+2)du-(2u+2\alpha+v+\beta+6)dv=0$; $\{\beta+2=0; 2\alpha+\beta+6=0\}$; $\{\alpha=-2; \beta=-2\}$; vdv-(2u+v)dv=0-0 однородное

§3. Линейные уравнения. Уравнения Бернулли

ДУ вида y' + p(x)y = g(x) (3.1), где p(x) и g(x) — непрерывные функции (в частности — постоянные), называются линейным уравнением 1-го порядка. x' + p(y)x = g(y) — уравнение, линейное относительно x и x'.

Если g(x) = 0, то 3.1 — линейное однородное уравнение.

Решение 3.1 ищется в виде y=uv, где u=u(x) и v=v(x) — неизвестные функции от x. Одну из этих функций можно выбрать произвольно, тогда 2-ая определится из уравнения 3.1.

Также 3.1 можно решить методом Лагранжа.

 $y'+p(x)y=g(x)y^n$, где $n\in R, n\neq 0, n\neq 1$, где p(x) и g(x) — непрерывные функции, называется уравнением Бернулли.

Оно приводится к однородному с помощью подстановки $z = y^{-n+1}$.

2.3.1. а) $y' + \lg x * y = \frac{1}{\cos x}$ имеет вид 3.1 \Rightarrow линейное.

Метод Бернулли.

$$y = uv o y' = u'v + uv'; u'v + uv' + \operatorname{tg} x \, uv = \frac{1}{\cos x}$$
 (3.3), подберём $u = v(x): v' + v \operatorname{tg} x = 0 o \frac{dv}{dx} + v \operatorname{tg} x = 0 o \frac{dv}{v} + \operatorname{tg} x \, dx = 0, \ln |v| - \ln |\cos x| = \ln |\mathcal{C}|, \mathcal{C} \neq 0; v = \mathcal{C} \cos x, \mathcal{C} \neq 0;$ при $\mathcal{C} = 1, v = \cos x$, подставим в 3.3, $u' \cos x = \frac{1}{\cos x}$, т. е. $du = \frac{dx}{\cos^2 x} \to u = \operatorname{tg} x + \mathcal{C}; y = uv = (\operatorname{tg} x + \mathcal{C}) \cos x, y = \mathcal{C} \cos x + \sin x - \text{общее решение}.$

§4. Уравнения в полных дифференциалах

ДУ P(x,y)dx + Q(x,y)dy = 0 (4.1) называется уравнением в полных дифференциалах, если его левая часть есть полный дифференциал некоторой функции U(x,y), т. е. $dU(x,y) = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = P(x,y)dx + Q(x,y)dy$ (4.2).

4.1 с учётом 4.2 можно записать в виде dU(x,y)=0, поэтому его общий интеграл имеет вид $U(x,y)=\mathcal{C}$.

Чтобы 4.1 было УПД, необходимо и достаточно, чтобы выполнялись условия $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ (4.3).

U(x,y) может быть найдена из системы уравнений $\frac{\partial U}{\partial x} = P(x,y), \frac{\partial U}{\partial y} = Q(x,y)$, либо по формуле $U(x,y) = \int_{x_0}^x P(x,y) dx + \int_{y_0}^y Q(x_0,y) dy$ (4.4), где (x_0,y_0) — некоторая фиксированная точка из области непрерывности P(x,y), Q(x,y) из частных производных.

2.4.1.
$$e^x + y + \sin y + y'(e^y + x + x\cos y) = 0$$
, $y(\ln 2) = 0$; $(e^x + y + \sin y)dx + (e^y + x + x\cos y)dy = 0$; $P(x,y) = e^x + y + \sin y$, $Q(x,y) = e^y + x + x\cos y$; $\frac{\partial P}{\partial y} = 1 + \cos y$, $\frac{\partial Q}{\partial x} = 1 + \cos y$, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \to y$ сл. выполн. ; $\frac{\partial U}{\partial x} = e^x + y + \sin y$, $\frac{\partial U}{\partial y} = e^y + x + x\cos y$; $U(x,y) = e^x + xy + x\sin y + e^y + C_1$, $e^x + xy + x\sin y + e^y + C_1 = C_2$ — общее решение; $e^x + \sin y + \cos y +$

2.4.5.
$$(e^y + \sin x) dx + \cos x dy = 0$$
; $\frac{\partial P}{\partial y} = e^y$, $\frac{\partial Q}{\partial x} = -\sin x$, $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$; $t(y) = e^{\int \frac{Q_X' - P_Y'}{P} dy}$; $t^y = e^{\int (-1) dy} = e^{-y}$; $(1 + e^{-y} \sin x) dx + e^{-y} \cos x dy = 0$; $P'y = -e^{-y}$; $\ln x = e^{-y} (-\sin x) = Q'x$; $\frac{\partial U}{\partial x} = 1 + e^{-y} \sin x$, $\frac{\partial U}{\partial y} = e^{-y} \cos x$; $U(x,y) = \int (1 + e^{-y} \sin x) dx = x + e^{-y} \cos x + \phi(y)$; $\frac{\partial U}{\partial y} = e^{-y} \cos x + \phi'(y) = e^{-y} \cos x + \phi'(y) = 0 \rightarrow \phi(y) = C_1$; $U(x,y) = x - e^{-y} \cos x + C_1$; $x - e^{-y} \cos x = C - \text{общее решение}$.