Inteligentne Systemy Obliczeniowe Wykład 4

Piotr Wąsiewicz Zakład Sztucznej Inteligencji - ISE FW

pwasiewi@elka.pw.edu.pl

Wprowadzenie do systemów ekspertowych

Systemy Ekspertowe

- Podstawowe wiadomości
- Podstawowe koncepcje
- Struktura

Zastosowania SI tzn. Systemów Ekspertowych

- Program szachowy z komputera Deep Blue pokonał mistrza świata Gary Kasparova. Inne programy mogą udowadniać matematyczne twierdzenia, tłumaczyć na języki obce np. Altavista, planować procesy produkcyjne, operacje w trudnych warunkach np. DART.
- Program PEGASUS rezerwuje miejsca w amerykańskich liniach lotniczych słuchając poleceń klientów. Program ALVINN może w każdych warunkach atmosferycznych kierować ciężarówką np. przejechał nią z Washingtonu do San Diego.
- Inteligentne programy rozpoznają twarze np. w bankach, odręczne pismo, sprawdzają lub projektują układy elektroniczne np. EURISKO, rekonstruują projekty architektów, szuka złóż geologicznych np. PROSPECTOR, interpretuje związki chemiczne np. SCANMAT, DENDRAL.
- Programy zwane systemami ekspertowymi pomagają lub są lepsze w diagnozach lekarskich np. MYCIN, CADUCEUS, CASNET, Intellipath, Pathfinder; konfigurują sprzęt komputerowy np. XCON; pomagają w podejmowaniu finansowych decyzji znajdując

- podejmujące decyzję bez kontroli człowieka (ang. dictatorial)
- krytykujące (ang. criticizing)

Inżynieria wiedzy tworzy metody programowania dla:

- akwizycji (pozyskiwania) i strukturalizacji wiedzy ekspertów
- dopasowania i wyboru odpowiednich metod wnioskowania i wyjaśniania dla rozwiązywanych problemów,
- projektowanie odpowiednich interfejsów (układów pośredniczących) między komputerem, a użytkownikiem.

Ogólna struktura systemu ekspertowego

Podstawowe bloki systemu ekspertowego

Elementy struktury systemu ekspertowego

- baza wiedzy (np. zbiór reguł),
- baza danych (np. dane o obiekcie, wyniki pomiarów, hipotezy),
- procedury wnioskowania maszyna wnioskująca,
- procedury objaśniania objaśniają strategię wnioskowania,
- procedury sterowania dialogiem procedury wejścia/wyjścia umożliwiają formułowanie zadań przez użytkownika i przekazywanie rozwiązania przez program,
- procedury umożliwiające rozszerzanie oraz modyfikację wiedzy - akwizycja wiedzy.

Główne elementy systemu ekspertowego

Typowy proces pozyskiwania wiedzy

Role twórców systemu ekspertowego

Podstawowe zagadnienia w systemach opartych a b

- reprezentacja wiedzy,
- akwizycja wiedzy,
- sposób użycia wiedzy,
- objaśnianie i uczenie się.

Porównanie konwencjonalnego przetwarzania z inżyni

Konwencjonalne przetwarzanie danych	Inżynieria wiedzy	
Programista analityk systemu	Inżynier wiedzy	
Program	System ekspertowy	
Baza danych	Baza wiedzy	
Reprezentacja i użycie danych	Reprezentacja i użycie wiedzy	
Algorytm	Heurystyki	
Efektywna manipulacja dużymi ba- zami danych	Efektywna manipulacja dużymi ba- zami wiedzy	

Ekspertyza sztuczna

Wady:

- trudna do przeniesienia
- trudna do dokumentacji
- nie dająca się przewidzieć
- kosztowna
- tracąca na wartości z upływem czasu

Zalety:

- łatwa do przeniesienia
- łatwa do dokumentacji
- zgodna z bazą wiedzy
- dostępna
- stała

Porównanie ekspertyzy naturalnej z ekspertyza sztuc

Ekspertyza naturalna wykonywana przez człowieka

Ekspertyza sztuczna

Zalety:

- twórcza
- adaptacyjna
- wykorzystywnie zmysłów
- szeroki zakres
- wiedza zdrowego rozsądku

Wady:

- nie inspirująca
- wymaga wprowadzenia wiedzy
- wejście symboliczne
- wąski zakres
- wiedza przetwarzana w sposób mechaniczny

- Diagnoza
- Prognoza
- Plan

Rodzaje systemów ekspertowych

Kategoria	Zadania realizowane przez systemy eksperto- we
Sterowania	Kierują zachowaniem systemu; obejmują interpretowanie, predykcję, naprawę i monitorowanie zachowania się obiektu
Poprawiania	Podają sposób postępowania w przypadku złego funkcjonowania obiektu, którego te systemy dotyczą
Naprawy	Harmonogramują czynności przy dokonywaniu na- praw uszkodzonych obiektów
Instruowania	Systemy doskonalenia zawodowego dla studen- tów

Podstawowe obszary zastosowań systemów ekspertow

	Sektor Za- stosowanie	Bankowość i ubezpie- czenia	Przemysł	Handel i usługi	Sektor publiczny i inne
	Monitorowanie	Obserwowanie	Nadzorowanie	Obserwowanie	Monitorowanie
	Sterowanie	trendów	procesów,	trendów	reaktorów
			sterowanie		jądrowych
			procesami,		oraz du-
			raportowa-		żych sieci
			nie spe-		(gazowe,
			cjalnych		wodne)
			sytuacji		
ALAKEMA MANAMAKA	Projektowanie		Projektowanie	Wybór asor-	Sieci (pocz-
			zakładów i	tymentów,	towe, ener-
			produktów,	doradztwo	getyczne)
			komputerów	dla rolnictwa	
	•	•		•	

Podstawowe obszary zastosowań systemów ekspertow

	Sektor Za- stosowanie	Bankowość i ubezpie- czenia	Przemysł	Handel i usługi	Sektor publiczny i inne
	Diagnostyka	Kredyty, pożyczki na nieruchomo- ści, analiza ryzyka, prze- twarzanie skarg	Wykrywanie uszkodzeń, utrzymy- wanie zdolności produkcyjnej	Kredyty, analiza ryzyka	Diagnoza medyczna, diagnoza techniczna
Opracował P. Wąs	Planowanie	Analiza ryzy- ka, planowa- nie inwesty- cji	Projektowanie funkcji logicznych, planowanie projektu	Analiza ryzyka, ana- liza rynku	Planowanie inwestycji, plany na wypadek klęski, pla- nowanie dystrybucji

Podział systemów ekspertowych

- dedykowane
- szkieletowe
- Ze względu na metodę prowadzenia procesu wnioskowania
 - z logiką dwuwartościową (Boole'a)
 - z logiką wielowartościową
 - z logiką rozmytą
- Ze względu na rodzaj przetwarzanej informacji
 - z wiedzą pewną, czyli zdeterminowaną
 - z wiedzą niepewną (aparat probabilistyczny)

Właściwości systemów ekspertowych

- Uniwersalność
- Złożoność
 - małe (100 300 reguł)
 - średnie (300 2000 reguł)
 - duże (ponad 2000 reguł)
- Autoanaliza
- Zdolność udoskonalania bazy wiedzy
 - kontrola niesprzeczności nowo wprowadzanych do bazy wiedzy reguł z regułami w niej zawartymi
 - kontrola zgodności reguł z nowo wprowadzanymi faktami
 - mechanizm oceny częstości stosowania poszczególnych reguł
 - mechanizm rozbudowy istniejącej bazy reguł poza zakres danej bazy wiedzy

- jakie obiekty należy zdefiniować?
- jakie relacje między obiektami?
- jak należy formułować i przetwarzać reguły?
- czy z punktu widzenia rozwiązywania specyficznego problemu, baza wiedzy jest kompletna?

Rodzaje baz wiedzy

- baza danych (ang. data base)
- baza reguł (ang. *rule base*)
- baza modeli (ang. *model base*)
- baza wiedzy zdroworozsądkowej (ang. common sense knowledge base)

wie

- wygodny dla użytkownika sposób komunikacji i zautomatyzowane operacje rejestracji przy rozmieszczaniu informacji;
- kontrolowanie ortograficznej i syntaktycznej poprawności wprowadzanej informacji tekstowej;
- sprawdzanie semantycznej niesprzeczności między dotychczasową zawartością bazy danych, a nowo wprowadzanymi faktami.

Narzędzia do tworzenia systemów ekspertowych

- systemy szkieletowe (ang. expert system shells)
- środowiskowe programy ułatwiające implementację systemu,
 np. programy ułatwiające zarządzanie bazą wiedzy, programy grafiki komputerowej, itd.
- języki systemów ekspertowych, jak CLIPS, FLOPS, OPS5 itd.
- języki programowania symbolicznego np. LISP, PROLOG,
- języki algorytmiczne np. C, C++, Python, Java itd.

Zalety systemów szkieletowych

- zapewniają one mechanizm dla formalnej reprezentacji wiedzy, np. reguły, ramy itp.
- zapewniają narzędzia do strukturalizacji bazy wiedzy,
- posiadają wbudowany mechanizm wnioskowania,
- dają interfejs odpowiedni do utworzenia systemu ekspertowego, umożliwiający konstruowanie i rozbudowę bazy wiedzy również dla końcowego użytkownika,
- zapewniają udogodnienia do tworzenia komponentów systemu objaśniającego,
- dają narzędzia do sprawdzenia poprawności bazy wiedzy,
- dają narzędzia do pozyskiwania wiedzy,
- przy tworzeniu systemu nie trzeba znać języka, w jakim system szkieletowy jest napisany.

Wady systemów szkieletowych

- twórca systemu ekspertowego jest ograniczony do możliwości danego narzędzia. Specyficzny system szkieletowy jest przeznaczony do odpowiednich zastosowań, nie do wszystkiego, np. diagnozowanie, planowanie,
- czasem trzeba poznać język danego systemu szkieletowego np. GURU, Knowledge Pro, itp.
- każdy system szkieletowy ma swoją specyficzną strukturę reguł,
- zmiana funkcji systemu jest możliwa, jeśli jest to przewidziane i jest do tego odpowiedni interfejs; na ogół nie można nic przerabiać, ponieważ brak jest kodu źródłowego,
- wysokie ceny; mogą one pracować na określonych typach komputerów, czasami o potężnej mocy obliczeniowej.

Szacowanie czasu tworzenia systemu

model nr 2 Boehma (1981):

$$MM = 2,4L^{1,05}$$

gdzie L - liczba tysięcy instrukcji kodu, a MM - osobo-miesiące (ang. $\mathit{man-month}$)

Porównanie czasów tworzenia systemów ekspertowyc

		Czas tworzenia (MM)		
Wielkość systemu	Liczba instrukcji Liczba reguł	Model 1	Model 2	Technika ES
Małe	$\frac{2000}{100-200}$	9,7	5,0	0,5
Średnie	$\frac{8000}{500-1000}$	34,5	21,0	6 - 8
Duże	$\frac{120000}{2000 - 10000}$	430,0	392,0	18 - 36

Korzyści z wykorzystania systemów ekspertowych

- zmniejszenie liczby operatorów
- zmniejszenie potrzeby ciągłej obecności operatorów o wysokich kwalifikacjach
- zmniejszenie kosztów trenowania operatorów
- zwiększenie jakości systemu
- zwiększenie przepustowości systemu
- zmniejszenie awaryjności
- bardziej spójne o wyższej jakości monitorowanie

- procesy maszyny wnioskującej
- procesy pozyskiwania wiedzy
- procesy komunikowania się z użytkownikiem

Podstawowe wymagania stawiane systemom czast rz

Przykład: REGUŁA: "Niewłaściwe napięcie baterii";

KONTEKST: {Manewr};

OKRES TESTU: 10 sekund;

PRIORYTET: 100;

IF bateria1.napiecie < 27,5

THEN bateria1.status := niewłaściwy;

Alarm("eps", "bateria1", "Napięcie baterii1 jest teraz

niewłaściwe, aby odbył się manewr");

Podstawowe wymagania stawiane systemom czast rz

Wnioskowanie czasowe Klasa

Bufor pierścieniowy

Wartość	34,4	34,7	36,5
Czas	7:12	7:43	8:21

Wartość	normalna	nienormalna
Czas	7:12	8:21

Podstawowe wymagania stawiane systemom czast rz

Wnioskowanie czasowe

Przykład: REGUŁA: "Niewłaściwe napięcie baterii";

KONTEKST: {Manewr};

OKRES TESTU: 10 sekundi;

PRIORYTET: 100;

IF Min(bateria1.napięcie, 30 sekund) > 35

THEN bateria1.status := niewłaściwy;

Alarm("eps", "bateria1", "Napięcie baterii1 przekroczyło górne

ograniczenie przez co najmniej 30 sekund");

- Koncentracja uwagi
- Działania ciągłe

