REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2011

SESSION PRINCIPALE

SECTION: SCIENCES DE L'INFORMATIQUE

EPREUVE: MATHEMATIQUES DUREE: 3h

COEFFICIENT: 3

Exercice 1 (6 points)

On considère dans l'ensemble \mathbb{C} des nombres complexes l'équation (E): $z^3 + iz^2 - 2z + 4i = 0$.

- 1) a) Vérifier que i est une solution de l'équation (E).
 - b) En déduire que z est solution de (E) si et seulement si z = i ou $z^2 + 2iz 4 = 0$.
- 2) a) Résoudre l'équation (E).
 - b) Écrire les solutions sous forme exponentielle.
- 3) Dans le plan complexe muni d'un repère orthonormé (O,\vec{u},\vec{v}) , on considère les points
 - A, B et C d'affixes respectives i, $\sqrt{3} i$ et $-\sqrt{3} i$.
 - a) Placer les points A, B et C dans le repère (O, \vec{u}, \vec{v}) .
 - b) Montrer que le triangle ABC est isocèle de sommet principal A.

Exercice 2 (4 points)

Trois lycées ont tous acheté des scanners, des ordinateurs et des imprimantes.

Le premier lycée a acheté un scanner, deux ordinateurs et trois imprimantes à 3200 dinars.

Le second lycée a acheté quatre scanners, deux ordinateurs et cinq imprimantes à 4600 dinars.

Le troisième lycée a acheté trois scanners, un ordinateur et trois imprimantes à 2700 dinars.

On désigne par x, y et z les prix d'achat respectifs d'un scanner, d'un ordinateur et d'une imprimante.

- 1) Montrer que (x, y, z) est solution dans IR3, d'un système linéaire (S) qu'on établira.
- 2) On considère les matrices A = $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 5 \\ 3 & 1 & 3 \end{pmatrix}$ et B = $\begin{pmatrix} 1 & -3 & 4 \\ 3 & -6 & 7 \\ -2 & 5 & -6 \end{pmatrix}$
 - a) Montrer que A est inversible et que sa matrice inverse est B.
 - b) En déduire le prix d'achat d'un scanner, d'un ordinateur et d'une imprimante.

Exercice 3 (4 points)

On considère l'équation (E): 8x + 5y = 100 où x et y sont deux inconnues entières.

- 1) a) Vérifier que si (x ,y) est solution de (E) alors x est un multiple de 5.
 - b) En déduire l'ensemble des solutions de (E) dans $\mathbb{Z} \times \mathbb{Z}$.
- 2) Une visite pour un musée a été organisée pour un groupe d'élèves. Les frais d'entrée pour ce groupe sont élevés à 100 dinars. Le prix d'un billet d'accès au musée est de 8 dinars pour un lycéen et de 5 dinars pour un collégien.

Quelles sont les compositions possibles de ce groupe en lycéens et collégiens?

Exercice 4 (6 points)

Le tableau ci-dessous représente les variations d'une fonction f définie sur [0,+∞[.

х	0		\sqrt{e}		+00
f'(x)		+	0	_	
f			$\frac{e}{2}$		
	0			-	-00

Le plan est rapporté à un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$. On suppose que la courbe représentative \mathscr{C} de f passe par le point A(1,1) et que la tangente T à cette courbe en ce point a pour équation y = x.

- 1) a) Donner $\lim_{x \to +\infty} f(x)$.
 - b) Déterminer f (1) et f '(1).
- 2) La fonction f est définie par : $\begin{cases} f(x) = x^2(1 \ln x) \text{ , pour tout } x \in]0, +\infty[\\ f(0) = 0 \end{cases}$
 - a) Etudier la dérivabilité de f à droite en 0 et interpréter graphiquement le résultat obtenu.
 - b) Montrer que la courbe $\mathscr C$ admet une branche parabolique au voisinage de $+\infty$ qu'on précisera.
 - c) Déterminer les coordonnées des points d'intersection de la courbe & et l'axe des abscisses.
 - d) Tracer la tangente T et la courbe C.
- 3) Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe \mathcal{C} , l'axe des abscisses et les droites d'équations x = 1 et x = e.

Calculer, à l'aide d'une intégration par parties, l'aire \mathcal{A} .