Hubbard Model Exact Diagonalization

Generated by Doxygen 1.8.11

Contents

1	Hubbard model exact diagonalization															
2	Clas	Class Index														
	2.1	Class List	3													
3 Class Documentation																
	3.1	basis Class Reference	5													
	3.2	hamil Class Reference	6													
	3.3	Ihamil Class Reference	7													
	3.4	Mat Class Reference	8													
	3.5	Timer Class Reference	9													
	3.6	Vec Class Reference	9													
Inc	dex		11													

Chapter 1

Hubbard model exact diagonalization

References:

- 1. H. Q. Lin, J. E. Gubernatis, Harvey Gould, and Tobochnik, computers in physics, 7,400(1993)
- 2. S. A. Jafari, IJPR, 8,113,(2008)

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

basis																										!	۰
hamil														 												(
Ihamil														 												7	,
Mat .														 												8	
Timer														 												Ç	
Vec .																										ç	

4 Class Index

Chapter 3

Class Documentation

3.1 basis Class Reference

Public Member Functions

- basis (long, long, long)
- const basis & operator= (const basis &)
- long hopping_up (long, long, long)
- long hopping_down (long, long, long)
- long **potential** (long, long, long)
- long onsite_up (long, long)
- long onsite_down (long, long)
- long factorial (long, long)
- void init ()
- void **generate_up** (long)
- · void generate down (long)
- long creation (long, long)
- long annihilation (long, long)
- void prlong ()

Public Attributes

- · long nsite
- long nel_up
- · long nel down
- map< long, long > basis_up
- map< long, long > basis_down
- long nbasis_up
- long nbasis_down
- vector< long > id_up
- vector< long > id_down

Friends

ostream & operator<< (ostream &os, const basis &)

- basis.h
- basis.cpp

6 Class Documentation

3.2 hamil Class Reference

Collaboration diagram for hamil:

Public Member Functions

- hamil (basis &, double, double)
- double ground_state_energy ()
- void diag ()
- $\bullet \ \ \mathsf{complex} < \mathsf{double} > \mathbf{Greens_function} \ (\mathsf{double}, \ \mathsf{double})$
- void print_hamil ()
- void print_eigen ()

Public Attributes

- long nHilbert
- unsigned **seed**
- Mat H
- std::vector< double > eigenvalues
- $std::vector < double > psi_0$
- std::vector< double > psi_n0

- · hamiltonian.h
- · hamiltonian.cpp

3.3 Ihamil Class Reference 7

3.3 Ihamil Class Reference

Collaboration diagram for Ihamil:

Public Member Functions

- Ihamil (const Mat &, long, long, unsigned)
- Ihamil (basis &, double, double, long, unsigned)
- void set_hamil (basis &, double, double)
- void psir0_creation_el_up (basis &, basis &, vector< double > &, long)
- void **psir0_creation_el_down** (basis &, basis &, vector< double > &, long)
- void psir0_annihilation_el_up (basis &, basis &, vector< double > &, long)
- void psir0 annihilation el down (basis &, basis &, vector< double > &, long)
- void **set_onsite_optc** (int r, int alpha, int annil)
- void coeff_update ()
- void coeff_explicit_update ()
- void coeff_update_wopt (vector< double >)
- void diag ()
- void diag (int)
- void eigenstates_reconstruction ()
- double ground state energy ()
- double spectral_function (double omega, double eta)
- double spectral_function (double omega, double eta, int annil)
- complex< double > Greens_function (double omega, double eta, int annil)
- complex< double > Greens_function_ij_ab (int i, int j, int alpha, int beta, double E, double eta)
- complex< double > Greens_function_k (int k, int alpha, int beta, double E, double eta)
- void print hamil ()
- · void print Ihamil (int)
- void print_eigen (int)
- void save_to_file (const char *)
- void read_from_file (const char *)

8 Class Documentation

Public Attributes

- · unsigned seed
- · long nHilbert
- long lambda
- double E0
- std::vector< double > norm
- std::vector< double > overlap
- std::vector< double $> psir_0$
- std::vector< double > psi_0
- std::vector< double > psi_n0
- std::vector< double > eigenvalues
- · basis sector
- Mat H
- Mat 0

The documentation for this class was generated from the following files:

- · lanczos_hamiltonian.h
- lanczos_hamiltonian.cpp

3.4 Mat Class Reference

Public Member Functions

- Mat (const Mat &rhs)
- Mat & operator= (const Mat &rhs)
- Vec operator* (const Vec &) const
- vector< double > operator* (const vector< double > &) const
- void init (const vector< long > &, const vector< long > &, const vector< double > &)
- void clear ()
- · void print ()

Public Attributes

- $std::vector < long > outer_starts$
- std::vector< long > inner indices
- std::vector< double > value

- · matrix.h
- matrix.cpp

3.5 Timer Class Reference 9

3.5 Timer Class Reference

Public Member Functions

- double elapsed ()
- unsigned long nanoseconds ()
- void reset ()

The documentation for this class was generated from the following file:

· init.h

3.6 Vec Class Reference

Public Member Functions

- Vec (long _size)
- Vec (long _size, const double _init)
- Vec (const Vec &rhs)
- void assign (long _size, const double _init)
- void init_random (unsigned)
- void init_random (long, unsigned)
- void clear ()
- double normalize ()
- Vec & operator= (const Vec &rhs)
- Vec & operator-= (const Vec &rhs)
- Vec & operator+= (const Vec &rhs)
- Vec & operator*= (const double &rhs)
- Vec & operator/= (const double &rhs)
- Vec operator+ (const Vec &)
- Vec operator- (const Vec &)
- Vec operator* (const double &)
- Vec operator/ (const double &)
- double operator* (const Vec &)

Public Attributes

- std::vector< double > value
- long size

Friends

ostream & operator<< (ostream &os, const Vec &)

- · matrix.h
- · matrix.cpp

10 Class Documentation

Index

- basis, 5
- hamil, 6
- Ihamil, 7
- Mat, 8
- Timer, 9
- Vec, 9