Заметим, что $w=e^z=e^x(\cos y+i\sin y)$ - многолистная функция, а $w=\operatorname{Ln} z=\ln \rho+i(\arg z+2\pi k)$ - многозначная

Ех. 6. Тригонометрические и гиперболические

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\cosh z = \frac{e^z - e^{-z}}{2}$$

$$\cosh z = \frac{e^z + e^{-z}}{2}$$

Nota. Рассмотрим уравнение $\sin z = A \in \mathbb{C}$ $\frac{e^{iz} - e^{-iz}}{2i} = A \Longrightarrow e^{2iz} - 2iAe^{iz} - 1 = 0$

При $t = e^{iz}$ получаем квадратное уравнение, у которого в \mathbb{C} всегда будет два корня. Это значит, что в \mathbb{C} sin и сов принимают любые значения (то есть $|\sin z| > 1$)

2.4. Дифференцирование ФКП

 $\mathbf{Def.}\ \ w = f(z), w : D \subset \mathbb{C} \longrightarrow \mathbb{C}, z_0 \in D.$ Производная функции $w(z_0)$ - это предел $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}$, если он существует и не зависит от пути $z \to z_0$

Mem. Дифференцирование y = f(x):

B
$$\Phi_1\Pi$$
: $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$

B
$$\Phi_2\Pi$$
: $\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + \alpha_1 + \alpha_2 = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + o(\Delta x) + o(\Delta y)$

Def. f(z) называется дифференцируемой в точке z_0 , если $\exists f'(z_0) \in \mathbb{C}$

Def. Дифференцируемая в точке z_0 функция w = f(z), производная $f'(z_0)$ которой непрерывна в z_0 , называется аналитической (или аналитичной) функцией в z_0

Th. Критерий аналитичности (или Условие Коши-Римана)

$$f(x) = u(x,y) + iv(x,y)$$
 аналитична в точке $z_0 = x + iy$

$$\exists \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$
 непрерывны в z и $\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$

Причем, $f'(z) = u_x + iv_x = v_y - iu_y = u_x - iu_y = v_y + iv_x$

Nota. Используя Условие Коши-Римана, получим равенство $u_x + iv_x = v_y - iu_y = u_x - iu_y = v_y + iv_x$ Nota. Коши-Риман в ПСК:

$$\begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{\partial u}{\partial \varphi} = -\frac{1}{\rho} \frac{\partial v}{\partial \rho} \end{cases}$$
 Тогда $f'(z) = \frac{1}{z} \left(\frac{\partial v}{\partial \varphi} - i \frac{\partial u}{\partial \varphi} \right) = \frac{\rho}{z} \left(\frac{\partial u}{\partial \rho} + i \frac{\partial v}{\partial \rho} \right)$

$$u_{\rho} = u_{x} \frac{\partial x}{\partial \rho} + u_{y} \frac{\partial y}{\partial \rho} = u_{x} \cos \varphi + u_{y} \sin \varphi$$

$$v_{\varphi} = v_{x} \frac{\partial x}{\partial \varphi} + v_{y} \frac{\partial y}{\partial \varphi} = -\rho v_{x} \sin \varphi + \rho v_{y} \cos \varphi = \rho u_{y} \sin \varphi + \rho u_{x} \cos \varphi = \rho u_{\rho}$$

$$\underline{\text{Lab.}} \; \frac{\partial u}{\partial \varphi} = -\frac{1}{\rho} \frac{\partial v}{\partial \rho}$$

Свойства аналитических функций

Пусть f, g - аналитические функции, тогда:

- 1° Линейность: af + bg аналитическая
- 2° Композиция: f(g(z)) аналитическая
- 3° Произведение: $f \cdot q$ аналитическая

Nota. Доказательства свойств элементарные, все сводится к сведению к u и v

$$Ex. \ w = \frac{1}{z} = \frac{1}{x + iy} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2} = u(x, y) + iv(x, y)$$

$$u_x = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$v_y = \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = u_x$$

$$u_y = \frac{-2xy}{(x^2 + y^2)^2}$$

$$v_x = \frac{2xy}{(x^2 + y^2)^2} = -u_y$$

Таким образом, $\frac{1}{z}$ - аналитическая функция

Ex.
$$w = \overline{z} = x - iy$$

 $u_x=1,\ v_y=-1 \neq u_x$ - не аналитическая функция