МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Семинары по общей физике для школьников

Журавлев Владимир

Задачи ВОШ прошлых лет с решениями

Сборник задач Савченко

Теорию можно взять в:

- Мякишев пятитомник
- Сивухин пятитомник (институтский курс)
- Кириченко четырехтомник (институтский курс) (это Сивухин, из которого убрали все лишнее)

Мои контакты: vk.com/zuvla

Содержание

T	Производная и её приложения. Дифференциальные операторы.	2
1	Математическое введение	2
2	Производная сложной и обратной функции.	4
3	Физика 3.1 Энергетический и динамический подходы	4
Π	Ряд Тейлора и Интегралы	6
4	Ряд Тейлора	6
II	I Домашнее задание	8
5	День первый(120+70 баллов)	8
	5.1 Упражнение (10 баллов)	8
	5.4 Легкая задачка (25 баллов)	8
6	День второй	ę
-	6.1 Маятник (10 баллов)	_
	0.2 xopmyna omnopa (10 dannob)	

Часть І

Производная и её приложения. Дифференциальные операторы.

1 Математическое введение

Как ни странно, курс по физике стоит зачастую начинать с подкурса по математике. Я сделаю это по возможности строго, так как я не люблю рассуждения общего вида, которые ни к чему не приводят. Но от вас потребуется при этом достаточная усидчивость и гибкость ума.

Если вы считаете, что все знаете о производной, то вы глубоко заблуждаетесь.

В принципе понятие производной появляется в математическом анализе, где формализуется понятие функции, ряда, интеграла и т.п.

Мы будем пытаться ввести подобие теоретико-множественного подхода, поэтому вы увидите несколько непривычный вам стиль письма, к которому, так или иначе, придется привыкнуть.

Definition: Φ ункцией называют правило, по которому элементам одного множества F сопоставляются элементы другого множества G. Пишут:

$$f: F \to G$$

Этими множествами могут быть, например, две вещественные оси. Функцией можно назвать отображение из одного алфавита в другой (из греческого в русский, например) или из интервала в полуось

$$f(x) = \frac{1}{x} - 1: (0,1) \to (0,+\infty)$$

Функцией так же можно назвать много что, например правило, которое каждому предмету ставит в соответствие его цвет. Чтобы избежать вот таких неплодотворных примеров, мы станем рассматривать числовые функции (из одного множества чисел в другое)

Так что же с производной? Рассмотрим функцию

$$f: F \subseteq \mathbb{R} \to G \subseteq \mathbb{R}$$

Производной функции f(x) в точке x_0 называют предел

$$f'(x_0) = \lim_{x \to x_0} \frac{\Delta f(x)}{\Delta x} \equiv \frac{df}{dx}$$

В этом определении написано больше, чем кажется на первый взгляд. Во-первых, существование предела подразумевает равенство левого и правого пределов, что уже довольно серьезное требование к функции, например функция f:=|x| в точке 0 имеет пределы $f'_L=-1\neq f'_R=+1$ и поэтому её производная в этой точке не определена.

Производная, конечно, допускает наглядную геометрическую интерпретацию: производная в точке - тангенс угла наклона графика в этой точке.

Кроме того, производная это важный инструмент для изучения экстремумов: равенство нулю производной необходимое условие экстремума.

Exercise: A какое достаточное? Приведите пример.

Производной функции f(x) так же называют функцию, которая в каждой точке совпадает с производной f в этой точке

$$f'(x)|_{x=x_0} \equiv f'(x_0)$$

В таких терминах, у производной можно заметить интересное свойство: производная ставит в соответствие каждой функции другую функцию. Сейчас мы это немного формализуем.

Definition: Оператором называется правило, по которому каждому элементу одного множества функций ставится в соответствие элемент другого множества функций.

Exercise: Приведите пример какого-нибудь множества функций и назовите несколько его элементов.

Exercise: Приведите пример какого-нибудь оператора

Exercise: Приведите пример оператора из множества четных функций во множество нечетных функций. Обратите внимание, что сложнее придумать оператор из множества нечетных во множество четных

Еще бывают вот такие операторы:

$$\hat{I} : \hat{I}f(x) = f(-x)$$

$$\hat{T}_a : \hat{T}_a f(x) = f(x - a)$$

Например:3

$$\hat{I}x^2 = x^2$$

$$\hat{I}x = -x$$

$$\hat{T}_1 \sin(x) = \sin(x - 1)$$

$$\hat{T}_{\frac{\pi}{2}}\cos(x) = -\sin(x)$$

Перерыв

Математическая часть часть скоро закончится.

Давайте рассмотрим какой-нибудь простой оператор. Например оператор

$$\hat{3}: \hat{3}f(x) \to 3f(x), \ \hat{3}x^2 = 3x^2$$

Что будет, если дважды применить 3̂ к какой-нибудь функции?

$$\hat{3}(\hat{3}f(x)) = 9f(x) = \hat{9}f(x)$$

Поэтому вводят обозначение:

$$\hat{X}^2 = \hat{X}\hat{X}$$

Ну теперь-то пора рассказать вам страшную тайну, которую от вас скрывали учителя по физике: вводят оператор производной (помните мы говорили, что производная подозрительно похожа на оператор?)

$$\frac{d}{dx} : \frac{d}{dx}f(x) = f'(x)$$

И теперь вы знаете, как красиво записать второй закон Ньютона:

$$mx''(t) = F(t) \Leftrightarrow m\left(\frac{d}{dt}\right)^2 x(t) = F(t) \Leftrightarrow m\frac{d^2}{dt^2} x(t) = F(t)$$

Я сделаю последнюю на сегодня нудную ремарку: строго говоря, оператором производной можно действовать только на дифференцируемые функции, но в физике обычно предполагают, что система описывается «достаточно хорошими» функциями и все наши действия обосновывать не нужно.

¹Меня всегда очень забавляло то, что мой семинарист по квантовой криптографии называет операторы операториками, полагая, что так становится понятнее

 $^{^2}$ Лучше никогда не обозначайте оператор \hat{G}

³Чрезмерное употребление тригонометрии вредит вашему здоровью

2 Производная сложной и обратной функции.

С помощью этого пункта решается задачка на 70 баллов.

Как вы уже наверняка знаете, производную можно и нужно уметь брать не только от самых простых функций. Например, при взятии производной от т.н. композиции функций, следует пользоваться правилом:

$$f(g(x))' = f'_g g'_x$$

$$\sqrt{\sin(x)} = \frac{1}{2\sqrt{\sin(x)}} \cos(x)$$

Я хочу обратить в этом случае внимание на запись производной с помощью дифференциалов:

$$f(g(x))' = \frac{df}{dx} = \frac{df}{dg}\frac{dg}{dx} = f'_g g'_x$$

Умение находить производную очень важно в физике, смысл этого мы обсудим чуть дальше. Примерно на третьем занятии. Поэтому знать простейшие правила дифференцирования необходимо каждому.

Последнее, что мы сегодня обсудим из математики - обратная функция. Рассмотрим какуюнибудь дифференцируемую функцию f(x) и нарисуем её график:

Давайте обратим наше внимание на поведение функции в этой красной окрестности. Мы можем рассматривать на этом участке функцию как зависимость y = y(x), а можем рассмотреть обратную задачу: x = x(y)

Из геометрических соображений⁴ следует

$$\frac{dy}{dx}|_{x=x_0}\frac{dx}{dy}|_{y=y_0=y(x_0)}=1$$

Эту формулу проще всего понимать так:

⁴Можете попробовать это доказать

3 Физика

3.1 Энергетический и динамический подходы

Рассмотрим движение грузика на пружинке. Выпишите закон сохранения энергии и продифференцируйте его по времени.

$$\frac{dE}{dt} = 0 = mva + kxv \rightarrow v(ma + kx) = 0 \rightarrow ma = -kx, \ \forall x$$

Этот же прием можно использовать, чтобы получать уравнения движения для систем, где их написать не так уж и просто.

3.2 Обрыв

Тело бросают с края обрыва высотою H. На какое максимальное расстояние можно забросить камень при одной и той же начальной скорости v?

$$L = v\cos(\alpha)\tau$$

$$H + v\sin(\alpha)\tau - \frac{g\tau^2}{2} = 0$$

$$\tau^2 - \frac{2v\sin(\alpha)}{g}\tau - \frac{2H}{g} = 0$$

$$\tau = \frac{1}{2}\left(\frac{2v\sin(\alpha)}{g} + \sqrt{\frac{4v^2\sin^2(\alpha)}{g^2} + \frac{8H}{g}}\right)$$

$$L = v\cos(\alpha)\frac{1}{2}\left(\frac{2v\sin(\alpha)}{g} + \sqrt{\frac{4v^2\sin^2(\alpha)}{g^2} + \frac{8H}{g}}\right)$$

$$L_{max} \leftrightarrow \frac{d}{d\alpha}L = 0$$

Характерный график:

В домашней работе вам предстоит проанализировать поведение этого горба.

Часть II

Ряд Тейлора и Интегралы

Этот семинар выйдет больше, чем обычно, т.к. ряд Тейлора мы будем рассматривать в очень узком понимании, и поэтому непосредственно по нему разговор выйдет коротким, а об интегралах можно говорить очень много и очень долго.

4 Ряд Тейлора

Ряд Тейлора будет преследовать вас всю вашу осмысленную жизнь, если вы займетесь чем-нибудь более-менее разумным. Мы рассмотрим его с очень узкого направления, которое можно использовать в школьной физике.

Рассмотрим какую-нибудь «хорошую» функцию, например синус. В курсе математического анализа доказывается, что любая бесконечно дифференцируемая функция представима своим рядом Тейлора:

$$f(x) = \sum_{k=0}^{\infty} \frac{(x - x_0)^k}{k!} (\frac{d}{dx})^k f(x)|_{x = x_0}$$

С первого раза с этим утверждением непросто бывает справиться, обдумайте его хорошенько на досуге. Тут на самом деле написан очень нетривиальный факт: поведение функции в **любой** точке оси, восстанавливается по значению функции в небольшой окрестности какой-нибудь определенной точки! Конечно, это верно только для бесконечно дифференцируемых функций, но если вы поступите в нормальный ВУЗ, то там вам на курсе Теории Функции Комплексного Переменного расскажут много подобных нетривиальных вещей.

Сразу обратим внимание на то, что многочлены имеют конечный ряд Тейлора.

Нам не так уж и важно рассматривать свойства этого ряда, нам важно посмотреть на первые его элементы. Если мы рассматриваем поведение функции где-то вблизи точки x_0 , то можно заметить, что члены высоких порядков оказываются очень малы. Давайте рассмотрим многочлен P(x) около точки $x_0 = 1$.

$$P(x) = x^2 + 3x + 2$$

Искать производные у него одно удовольствие:

$$P'(x_0) = 2 + 3 = 5$$

 $P''(x_0) = 2$
 $P'''(x_0) = 0$

Если написать ряд Тейлора:

$$P(x) = (1+3+2) + 5(x-1) + \frac{2}{2}(x-1)^2 = (6) + 5x - 5 + x^2 - 2x + 1 = x^2 + 3x + 2$$

В этом, конечно, нет ничего удивительного, как я уже сказал, у многочленов ряд Тейлора всегда конечный, а значит они точно представляются своими первыми элементами.

Нас, тем не менее, куда больше интересует первое равенство. Давайте посмотрим на его слагаемые в точке $\mathbf{x}=1.1$

$$P(x) = 6 + 5(0.1) + (0.1)^2 = 6 + 0.5 + 0.01$$

Как видите, если выкинуть последнее слагаемое, мы получим погрешность в 0.0015. В физических расчетах такими величинами часто пренебрегают, потому что погрешности в реальном эксперименте обычно больше. Поэтому целесообразно говорить о **пренебрежении** малыми величинами.

Как это можно использовать? Непосредственно в расчетах обычно не составляет проблем подставить в калькулятор выражение

$$X = \sqrt{1.03124} = 1.01550...$$

Однако часто в ходе решения задач получаются неприятные аналитические выражения, от которых хочется избавиться. Например, в середине задачи может возникнуть выражение

$$\sqrt{1+x}, 0 \simeq x \ll 1$$

Тогда нужно взять производную корня в точке 0, и разложить функцию до необходимого порядка малости:

$$\frac{d}{dx}\sqrt{1+x} = \frac{1}{2\sqrt{1+x}} \Rightarrow \frac{d}{dx}\sqrt{1+x}|_{x=0} = \frac{1}{2}$$

$$\sqrt{1+x} \approx 1 + \frac{x}{2} \Rightarrow \sqrt{1.03124} \approx 1 + \frac{0.03124}{2} = 1.01562$$

Еще важными оказываются функции:

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

$$\sin(x) \approx x - \frac{x^3}{6}$$

$$\cos(x) \approx 1 - \frac{x^2}{2}$$

$$\exp x \approx 1 + x$$

Часть III

Домашнее задание

5 День первый(120+70 баллов)

5.1 Упражнение (10 баллов)

Докажите тождества:

$$\frac{d}{dx}(fg) = f\frac{d}{dx}g + g\frac{d}{dx}f$$
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

5.2 Упражнение посложнее (15 баллов)

Рассмотрите произвольную гладкую функцию f(x), определенную на отрезке [0,1]. Определим новую функцию F(x) = площадь под графиком f(x), от 0 до x. Найдите $\frac{d}{dx}F(x)$.

5.3 Две шайбы(25 баллов)

На гладкой горизонтальной поверхности находятся две одинаковые гладкие шайбы радиуса R. Одной из шайб сообщают скорость v_0 вдоль оси х. При каком значении прицельного параметра d проекция на ось у скорости второй шайбы после абсолютно упругого удара максимальна?

5.4 Легкая задачка(25 баллов)

Проанализируйте (качественно) поведение горба из задачи №2, при изменении модуля скорости при фиксированной высоте H, и наоборот. 5

5.5 Муха и Линза (30 баллов)

Из двойного фокуса собирающей линзы выползает муха и движется к линзе с постоянной скоростью v_0 . Найдите зависимость скорости изображения мухи от времени.

Указание: самым элегантным способом будет получить уравнение на $\Gamma(x)$

5.6 Маяк* (15 + 70 баллов)

Лазерная указка установлена в горизонтальной плоскости на расстоянии Н от бесконечно длинной стены. В начальный момент времени луч падает перпендикулярно стене. Указка начинает вращаться с угловой скоростью ω. Найдите скорость лазерного зайчика на стене в каждый момент времени. Сначала считайте, что свет двигается бесконечно быстро (15 баллов).

Теперь вспомните, что скорость света конечна и равна c, найдите скорость зайчика v(t) (70 баллов).

⁵Подобные задачи, вообще говоря, несут большой педагогический смысл — умение понимать физическую составляющую задачи это очень важный навык.

6 День второй

6.1 Маятник (10 баллов)

Решите задачу о математическом маятнике в пределе малых углов.

$$\varphi \ll 1$$

6.2 Формула Эйлера (15 баллов)

Найдите чему равно выражение

$$\exp(i\phi), \ \phi \in \mathbb{R}$$

 Γ де i - мнимая единица:

$$i^2 = -1$$