

Formation

Machine Learning avec Python

08/11/2023

VOTRE Cédric DANGEARD FORMATEUR Consultant Data

cedric.dangeard@businessdecision.com

SOMMAIRE

- 8 novembre 2023
 - Introduction
 - Le ML en entreprise
 - Projet Data Science
 - Etapes d'un projet de Machine Learning
 - TD : Préparation des données
- 22 novembre 2023
 - Bagging & Boosting
 - TD : Mise en place d'un modèle
- 29 novembre 2023
 - Optimisation
 - TD : Optimisation
 - Projet final

#DataStrategy #DataThinking #DataTraining #ChangeManagement #SelfServiceData #BigData #DataArchitecture #Cloud #DataIntegration #ETL #BI #DataEngineering #ArtificialIntelligence #AdvancedAnalytics #DataScience #MachineLearning #FraudAnalytics #DataIntelligence #ReportingDashboarding #DataGovernance #DQM #MDM #DataCatalog #EPM #Digital #CRM #IoT #Chatbot #Website #MarketingAutomation #eCommerce #MobileApps #DataSecurity #IAM

#Data #DataDriven

INTRODUCTION

Science des données (Wikipédia) : Étude de l'extraction automatisée de connaissance à partir de grands ensembles de données.

Leur apparition repose sur plusieurs faits :

- L'explosion du volume de données et de la puissance machine
- La diversification des types de données (image, textes...)
- Le développement de l'Open source

- Aujourd'hui encore la plupart des données interprétées par une entreprise reste de la donnée structurée ...
- ... Alors que plus de **80**% des données générées sont non structurées, ce qui représente une perte d'informations précieuses.

ML EN ENTREPRISE MACHINE LEARNING

DOMAINES DE L'IA QUE L'ON COUVRE

CATALOGUE DE SERVICES DATA SCIENCE & IA

QUELLES DIFFÉRENCES ENTRE LES PROFILS?

Technique

Métier

Statistique

Optimisation

Analytique

Technique

Métier

Statistique

Optimisation

Analytique

Data Scient

Technique

Métier

Statistique

Optimisation

Analytique

Technique

Métier

Statistique

Optimisation

Analytique

QUELLES DIFFÉRENCES ENTRE LES PROFILS?

Data Analyst

Technique **

Métier ***

Statistique **

Optimisation *

Analytique ***

Data Engineer

Technique ***

Métier ★

Statistique **

Optimisation ***

Analytique **

Data Scientist

Technique ★

Métier ***

Statistique ***

Optimisation **

Analytique **

ML Engineer

Technique ***

Métier ★

Statistique ***

Optimisation **

Analytique ★

ML OPS

Un Cycle de Vie

- Développement
- Déploiement
- Monitoring
- Retraining

Nouveaux Outils

PROJET DE DATA SCIENCE LES DIFFÉRENTES ÉTAPES

LES DIFFÉRENTES ÉTAPES D'UN PROJET DE DATA SCIENCE

COLLECTE – LES DIFFÉRENTS TYPES DE DONNÉES

Il existe de différents types de données :

Structurées

- ...

- Semi-structurées
 - ..
- Non Structurées
 - ...

COLLECTE – LES DIFFÉRENTS TYPES DE DONNÉES

Il existe de différents types de données :

- Structurées
 - Base de données
 - Tableurs
 - Json
 - Xml
- Semi-structurées
 - Pages web
 - Documents
- Non Structurées
 - Texte
 - Images
 - Audio
 - Vidéo

COLLECTE

Formats de données

- Fichiers
 - CSV
 - JSON
 - XML
 - Parquet vs Avro
- Base de données
 - SQL
 - NO-SQL
- API
- Web Scrapping
- Data WareHouse / Data Mart / DataLake / Data virtualisation
- Cloud

Properties	CSV	JSON	Parquet	ZAVROS
Columnar	*	×	~	×
Compressable	V	V	V	V
Splittable	*	\ *	V	V
Readable	V	/	×	*
Complex data structure	X	V	V	V
Schema evolution	X	×	✓	V
		1	1	I:

Google BigQuery

COLLECTE

Étapes préliminaires à un projet :

- S'assurer que le projet est réalisable
 - Données disponibles
 - Données suffisantes
 - Données de qualité

Je donne les moyens aux personnes d'exercer leurs droits sur leurs données

Source : la lettre culturelle

- S'assurer que le projet est conforme au RGPD (voir avec le DPO)
- S'assurer d'avoir les ressources à disposition
 - Ressources
 - Délais
- (S'assurer que le projet est étique)
 - RSE
 - Biais
 - Utilité

PROTÉGER les données personnelles **ACCOMPAGNER** l'innovation PRÉSERVER les libertés individuelles

PROJET DE DATA SCIENCE PRÉPARATION DES DONNÉES

EXPLORATION

Objectifs:

- 1. Comprendre les données
- 2. Vérifier la pertinence et la cohérence des données
- 3. Anticiper les problèmes
 - Valeurs manquantes
 - Doublons
 - Valeurs aberrantes
 - Biais
- 4. Création d'indicateurs
- 5. Visualiser

NETTOYAGE DES DONNÉES

OBJECTIF: AVOIR DES DONNÉES PROPRES, COHÉRENTES ET COMPLÈTES (LE PLUS POSSIBLE).

	Nom	Sexe	Ville	Code Postal	latitude	longitude	Age	Taille	Salaire	Client	Num fidélité	Code Concurent
0	Paul	М	Paris	75000	48.856614	2.352222	18	1.80	1500.0	True	1235	None
1	Pierre	М	Nante	44000	47.218371	-1.553621	25	1.75	20000.0	False	None	А
2	Jacques	М	Lyon	69000	45.764043	4.835659	32	170.00	2500.0	True	1237	None
3	Julie	F	Paris	75000	48.856614	2.352222	45	1.65	NaN	False	None	None
4	Anne	F	Nantes	44000	47.218371	-1.553621	18	1.80	1500.0	True	1238	В
5	Marie	F	Lyon	69000	45.764043	4.835659	25	1.75	2000.0	False	None	None
6	Andrée	F	Paris	75000	48.856614	2.352222	322	1.70	2500.0	True	None	None
7	Fassou	М	Nantes	44000	47.218371	-1.553621	45	1.65	3000.0	False	None	None
8	James	М	Lyon	69000	45.764043	4.835659	18	1.80	1500.0	True	1240	None
9	Bob	М	Paris	75000	48.856614	2.352222	25	1.75	2000.0	False	None	None

NETTOYAGE DES DONNÉES

- Suppression d'individus
 - Outliers
 - Valeurs Manquantes
 - Doublons
 - •
- Suppression de variables
 - Variables redondantes (ex : ville et code postal)
 - Variables non-pertinentes (ex : id, date de création, ...)
- Imputation / Modification de données
 - Imputation par une moyenne
 - Imputaiton mutlivarié (ex : KNN, MissForest ,)
 - Création d'une modalité valeur manquante
- Transformation de variables
 - Regroupement de modalités, ou de variables.
 - Standardisation ou Normalisation

	Nom	Sexe	Ville	Code Postal	latitude	longitude	Age	Taille	Salaire	Client	Num fidélité	Code Concurent
0	Paul	М	Paris	75000	48.856614	2.352222	18	1.80	1500.0	True	1235	None
1	Pierre	М	Nante	44000	47.218371	-1.553621	25	1.75	20000.0	False	None	А
2	Jacques	М	Lyon	69000	45.764043	4.835659	32	170.00	2500.0	True	1237	None
3	Julie	F	Paris	75000	48.856614	2.352222	45	1.65	NaN	False	None	None
4	Anne	F	Nantes	44000	47.218371	-1.553621	18	1.80	1500.0	True	1238	В
5	Marie	F	Lyon	69000	45.764043	4.835659	25	1.75	2000.0	False	None	None
6	Andrée	F	Paris	75000	48.856614	2.352222	322	1.70	2500.0	True	None	None
7	Fassou	М	Nantes	44000	47.218371	-1.553621	45	1.65	3000.0	False	None	None
8	James	М	Lyon	69000	45.764043	4.835659	18	1.80	1500.0	True	1240	None
9	Bob	М	Paris	75000	48.856614	2.352222	25	1.75	2000.0	False	None	None

PROJET DE DATA SCIENCE MODELISATION

MODÉLISATION: 2 TYPES

- Apprentissage supervisé
 - Classification

Prédire une variable qualitative

Ex : arbre de décision, forêts aléatoires

Régression

Prédire une variable qualitative

Ex: régression linéaire, ...

Apprentissage non-supervisé (clustering)

Regrouper des individus de façon cohérente

Ex: KNN, DBSCAN, ...

MODÉLISATION: 2+TYPES

- Apprentissage supervisé
 - Classification

Prédire une variable qualitative

Ex : arbre de décision, forêts aléatoires

Régression

Prédire une variable qualitative

Ex: régression linéaire, ...

Apprentissage non-supervisé (clustering)

Regrouper des individus de façon cohérente

Ex: KNN, DBSCAN, ...

Apprentissage par renforcement

Apprendre à un agent à prendre des décisions

Ex: Q-Learning, ...

Applications: robotique, jeux, ...

MODÉLISATION: SUR-APPRENTISSAGE

Le modèle apprend par cœur les données d'entrainement et n'est pas capable de généraliser sur de nouvelles données

Causes possibles:

- Complexité du modèle
- Données d'entrainement trop peu représentatives
- Données d'entrainement trop peu nombreuses

• ..

MODÉLISATION: SUR-APPRENTISSAGE

Pour éviter de sélectionner un modèle qui souffre de sur-apprentissage, il faut évaluer les performances du modèle sur des données qu'il n'a jamais vu.

Validation Hold-Out:

On découpe les données en 2 (ou 3) parties : train, (validation) et test. On entraine le modèle sur les données d'entrainement et on évalue les performances sur les données de test.

- train : données d'entrainement
- validation : données de validation, pour le réglage des hyperparamètres
- test : données de test, pour l'évaluation des performances

All Data

Validation Croisée

Validation K-fold

On découpe les données en k parties égales.

On entraine le modèle sur k-1 parties et on évalue les performances sur la partie restante.

On répète l'opération k fois en changeant à chaque fois la partie de test.

Le score de notre modèle sera la moyenne des k scores obtenus

Training data

Test data

Finding Parameters

Test data

scikit-learn.org

Validation Croisée

Validation Leave one out

On entraine le modèle sur n-1 données et on évalue les performances sur la donnée restante. On répète l'opération n fois en changeant à chaque fois la donnée de test.

Validation Leave p out

On entraine le modèle sur n-p données et on évalue les performances sur les p données restantes. On répète l'opération n fois en changeant à chaque fois les données de test.

La validation hold-out :

- Fonctionnement : séparation en deux blocs de la base de données (une partie d'apprentissage, une de test).
- Utilité : en présence de gros jeux de données, avec peu de temps disponible.
- Quelle proportion choisir ? 70% d'apprentissage, 30% de validation en général.

Y_1	X_1^1	 X_1^p					
Y_2	X_2^1	 X_2^p		$f_{D_{\mathcal{A}}}$			
Y_3	X_3^1	 X_3^p					
Y_4	X_4^1	 X_4^p	•••	\leftrightarrow	$l(f_{D_{\mathcal{A}}}(X_4), Y_4)$		Moyenne des erreurs de prédiction :
Y_5	X_5^1	 X_5^p		\leftrightarrow	$l(f_{D_{\mathcal{A}}}(X_5), Y_5)$	\Rightarrow	$\frac{1}{3}\sum_{i\in\mathcal{V}}l(Y_i,f_{D_{\mathcal{A}}}(X_i))$
Y_6	X_{6}^{1}	 X_6^p		\leftrightarrow	$l(f_{D_{\mathcal{A}}}(X_6), Y_6)$		$\overline{3} \angle i \in \mathcal{V}^{t(1i, JD_{\mathcal{A}}(Ai))}$

La validation K-fold:

- Fonctionnement : séparation de la base en K échantillons. Apprentissage sur K-1 échantillons, test sur le dernier bloc.
- Utilité: en présence de gros jeux de données (meilleure approximation que la validation holdout, mais plus longue).
- Quel K choisir ? K = 10 est recommandé.

Y_1	X_1^1	 X_1^p	
Y_2	X_2^1	 X_2^p	
Y_3	X_3^1	 X_3^p	
Y_4	X_4^1	 X_4^p	l
Y_5	X_5^1	 X_5^p	
Y_6	X_6^1	 X_6^p	

 $f_{D_{\mathcal{A}_1}}$

1

Y_1	X_1^1	 X_1^p
Y_2	X_2^1	 X_2^p
Y_3	X_3^1	 X_3^p
Y_4	X_4^1	 X_4^p
Y_5	X_5^1	 X_5^p
Y_6	X_{6}^{1}	 X_6^p

$$f_{D_{\mathcal{A}_3}}$$

$$\leftrightarrow l(f_{D_{\mathcal{A}_3}}(X_5), Y_5) \\ \leftrightarrow l(f_{D_{\mathcal{A}_3}}(X_6), Y_6) \Rightarrow \text{Moyenne } R_3$$

 \Downarrow

Moyenne des 3 moyennes :

$$\frac{1}{3} \sum_{i=1}^{3} R_i$$

La validation leave-one-out :

- Fonctionnement : cas spécifique de la méthode K-fold avec p = n.
- Utilité : en présence de petits jeux de données.

Y_1 Y_2 Y_3 Y_4 Y_5 Y_6	X_{1}^{1} X_{2}^{1} X_{3}^{1} X_{4}^{1} X_{5}^{1} X_{6}^{1}	 X_1^p X_2^p X_3^p X_4^p X_5^p X_6^p	 \leftrightarrow f_{D_1}	$l(f_{D_1}(X_1), Y_1)$	→ →	Y_1 Y_2 Y_3 Y_4 Y_5	X_{1}^{1} X_{2}^{1} X_{3}^{1} X_{4}^{1} X_{5}^{1} X_{6}^{1}	 X_{1}^{p} X_{2}^{p} X_{3}^{p} X_{4}^{p} X_{5}^{p} X_{6}^{p}	 f_{D_6} \leftrightarrow	$l(f_{D_6}(X_6), Y_6)$
					#					

Moyenne des 6 erreurs de prédiction :

$$\frac{1}{6} \sum_{i=1}^{6} l(Y_i, f_{D_A}(X_i))$$

VALIDATION — ECHANTILLONNAGE RÉSUMÉ

Echantillonnage (Data sampling) | package utile : https://imbalanced-learn.org/

Objectif : Avoir des données plus équilibrées

Sur-échantillonnage (augmenter le nombre d'individu d'une classe minoritaire)

- Sur-échantillonnage aléatoire pour la classe minoritaire
 - Reproduction des données minoritaire aléatoirement
- Synthetic Minority Oversampling Technique (SMOTE)
 - Generation de donnés synthétiques
- ADASYN: Adaptive Synthetic Sampling
 - Génération de données synthétique selon en fonction de la densité des données

Sous-échantillonnage (Diminuer le nombre d'individus de la classe majoritaire)

- Sous-échantillonnage aléatoire pour la classe majoritaire
- ClusterCentroids
 - Regroupement d'individus avec des algorithmes de clustering et récupération des centroïdes
- NearMiss
 - Consiste à supprimer des données de la classe majoritaire en fonction de la distance avec les données de la classe minoritaire

VALIDATION – INDICATEUR DE PERFORMANCE

PROBLÈME DE RÉGRESSION

R^2

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

```
from sklearn.metrics import r2_score
y_pred = [3, -0.5, 2, 7]
y_true = [2.5, 0.0, 2, 8]
r2_score(y_true, y_pred)
```

<u>Avantage</u>: Permet de comparer plusieurs modèles entre eux même s'ils n'ont pas le même nombre de variables

Inconvénient : Sensible aux valeurs aberrantes

Mean Square Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

```
from sklearn.metrics import mean_squared_error
y_pred = [3, -0.5, 2, 7]
y_true = [2.5, 0.0, 2, 8]
Mean_squared_error(y_true, y_pred)
```

<u>Avantage</u>: Facile à interpréter

<u>Inconvénient</u>: Attention à l'échelle de la variable à prédire

VALIDATION – INDICATEURS DE PERFORMANCE

PROBLÈME DE CLASSIFICATION

Accuracy

$$Accuracy = \frac{nb \ individus \ correctement \ pr\'{e}dit}{nb \ individus}$$

Avantages:

Facilement interprétable.

Inconvénients:

 A traiter avec précaution lors d'un déséquilibre de proportion de la variable à prédire.

```
from sklearn.metrics import accuracy_score
  print('Accuracy : ', accuracy score(Yvrai, Ypred))
✓ 0.0s
```

0.666666666666666

Predicted Values

Actual Values

VALIDATION – INDICATEURS DE PERFORMANCE

PROBLÈME DE CLASSIFICATION

Précision

$$precision = \frac{VP}{VP + FP}$$

Recall / Rappel

$$Recall = \frac{VP}{VP + FN}$$

Rappel: 0.4 pour la classe red Rappel: 0.8571428571428571 pour la classe blue

Permet d'identifier la proportion d'identifications positives correctement prédites.

Permet d'identifier la proportion de résultats positifs réellement identifiés.

VALIDATION – INDICATEURS DE PERFORMANCE

PROBLÈME DE CLASSIFICATION

 F_{β} score

$$F_{\beta}$$
 score = $(1 + \beta^2) * \frac{precision \times recall}{(\beta^2 \times precision) + recall}$

Où beta représente combien on accorde d'importance au recall par rapport à la précision

(1 par défaut = on accorde autant d'importance aux deux indicateurs)

```
Yvrai : The state of the state
```

```
F1 : 0.5 pour la classe red
F1 : 0.75 pour la classe blue
```

VALIDATION – INDICATEUR DE PERFORMANCE

RÉSUMÉ

$$Recall = \frac{VP}{VP + FN}$$
 On s'intéresse aux prédictions positives.

Recall de 1 : on ne prédit aucun faux positif

Ex : sur 100 prédictions positives, combien sont réellement positives ?

$$Precision = \frac{VP}{VP+FP}$$
 On s'intéresse aux observations positives.

Précision de 1 : on ne prédit correctement tous les vrais positifs

Ex : sur 100 individus positifs, combien sont détectés ?

Accuracy =
$$\frac{VP+VN}{VP+FP+FN+VN}$$
 On s'intéresse ici à la globalité des prédictions.

Accuracy de 1 : Le modèle prédit parfaitement les données.

Ex : sur 100 prédictions, combien sont correctes ?

RÉSUMÉ

TP1 – EXPLORATION ET NETTOYAGE DES DONNÉES