This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS /
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

N° 634.741

Classification therein, thate 1001 C Brevet mis en recture la :

18 -11- 1963

MINISTÈRE DES AFFAIRES ÉCONOMIQUES ET DE L'ÉNERGIE

BREVET D'INVENTION

Le Ministre des Affaires Economiques et de l'Energie,

Vu la loi du 24 mai 1854 sur les brevets d'invention;

Vu la Convention d'Union pour la Protection de la Propriété Industrielle:

Vu le procès-verbal dressé le 10 juillet 1963 14 A20 au greffe du Gouvernement provincial du Brabant;

ARRETE:

Article 1. - Il est delivré à la Sté dite: FARBENFABRIKEN BAYER AKTIENGESELLECHAFT.

à Leverkusen-Bayerwerk, (Allemagne), repr.par Mr J. Bede à Bruxelles,

un brevet d'invention pour : Procédé de préparation d'éthers, de polypropylène glycols contenant des groupes amino,

(Inv. MM.R.Schröter, O.Bayer et F.Möller),

qu'elle déclare avoir fait l'objet d'une demande de brevet déposée en Allemagne (République Fédérale) le 12 juillet 1962.

Article 2. — Ce brevet lui est délivré sans examen préalable, à ses risques et périls, sans garantie soit de la réalité, de la nouveauté ou du mérite de l'invention, soit de l'exactitude de la description, et sans préjudice du droit des tiers.

Au présent arrêté demeurera joint un des doubles de la spécification de l'invention (mémoire descriptif et éventuellement dessins) signés par l'intéressé et déposés à l'appul de sa demande de brevet.

Bruxellas, le 31 juillet 1963.

PAR DÉLÉGATION SPÉCIALE :

Le Directeur Général.

HAMELS

AD ORIGINAL

H 5253 CAS 2211 O 23295 VOS/JA/

634741

- BREVET D'INVENTION .

Procédé de préparation d'éthers de polypropylène glycols contenant des groupes amino .

INVENTION: Rudolf SCHROTER, Otto BAYER,
Friedrich MCLLER

Société dite : FARBENFABRIKEN BAYER AKTIENGESELLSCHAFT .

C.I. Demande de brevet de la République Pédérale allemande P 37 297 IVd/39 c déposée le 12 juillet 1962.

On sait que l'on peut transformer en amines les alcools contenant des groupes
hydroxyles primaires ou secondaires à l'aide d'ammoniaque ou d'amines en présence d'un catalyseur d'nydrogénation ("Methoden der organischen Chemie/Houben-Weyl, 1957, 4ème édition, vol. 11/1, p 126 à 134).
On a déjà traité de cette manière le triéthylène
glycol par l'ammoniaque et des amines. Mais on a

Le A 7495-B

)

egalement constaté que la réaction n'était pas complète et qu'une partie seulement des groupes hydroxy les était transformée en groupes amino. Lorsqu'on utilise un polyéthylène glycol, le remplacement des groupes OH par des groupes NH2 à l'aide d'ammoniaque, s'effectue avec une vitesse de réactiontrès insuffisante et avec des rendements peu satisfaisants.

La demanderesse a trouvé que l'on pouvait faire réagir des éthers de phypropylène glycols de structure et de poids moléculaire les plusvariés, avec de l'ammoniaque ou une amine primaire en présence d'un catalyseur capable de transférer l'hydrogène, à des températures élevées, et obtenir ainsi avec de bons rendements des éthers de polypropylène glycols portant des groupes amino primaires ou secondaires.

On me pouvait pas s'attendre à ce que ce procédé puisse être conduit de manière simple avec de bons rendements et des produits de réaction de bonne qualité, aussi bien à l'échelle du laboratoire qu'à l'échelle industrielle, car lorsqu'on fait réagir du triéthylène glycol avec de l'ammoniaque, 18% seulement du produit de départ ont réagi au bout de 31 heures. En outre, les éthers de polypropylène glycols contiennent essentiellement des groupes hydroxyles secondaires qui, comme on le sait, réagissent plus lentement que les groupes hydroxyles aliphatiques primaires, de sorte que la réaction des composés polyhydroxylés avec les amines n'est en réalité possible que par une réaction presque

30

25

5

15

20.

exclusive des groupes hydroxyles primaires. D'autre part, on pouvait s'attendre à ce que le grand nombre de groupes éthers très réactifs donne lieu à des réactions secondaires, comme des scissions et des aminolyses.

Comme produits de départ utilisables dans le procédé de l'invention, on citera tous les éthers de polypropylène glycols, linéaires ou ramifiés, dont les chaînes consistent en trois restes oxyde de propylène ou plus. On peut les préparer par les procédés les plus variés et ils peuvent contemir, en dehors des atomes d'oxygène, d'autres atomes ou groupes d'atomes reliés par des groupes alcoylènes, comme des atomos d'azote, des groupes siliciés, des groupes uréthanes, des groupes urées. Le procédé de l'invention convient spécialement pour les éthers de plypropylène glycols possédant un poids moléculaire d'environ 1000 à 400C. Ces produits peuvent aussi bien être des produits de polymérisation de l'oxyde de propylène lui-même que des produits d'addition de l'oxyde de propylène sur des composés contenant deux atomes d'hydrogène réactifs ou plus, comme l'eau, les glycols, les triols, les diamines aliphatiques et aromatiques, primaires ou secondaires, les bis-hydroxyalcoylamines aliphatiques et aromatiques tertiaires, les dihydroxyalcoylcarbonamides, les silicones contenant des groupes terminaux hydroxyles, la triéthanolamine l'nydrazine, l'ammoniaque, les triméthylolalcanes et les sucres comme la sorbite. Les éthers de polypropylène glycols peuvent également présenter une structure

15

asymétrique due au fait que, sur le composant de départ de l'addition, un seul reste hydroxyle ou un seul groupe amine est éthérifié par un reste polypropylène.

Appartiennent également aux éthers de polypropylène glycols, au sens de l'invention, les composés qui, en dehors des restes polypropylène glycol, contiennent également des fractions de restes éthylène glycol ou butylène glycol. Les éthers de polypropylène glycol ou butylène glycol. Les éthers de polypropylène glycols contiennent essentiellement des groupes hydroxyles secondaires mais ils peuvent également parfaitement contenir quelques groupes hydroxyles primaires.

Les autres composés utilisés dans la réaction sont l'ammoniaque et des amines , par exemple l'aniline, la cyclohexylamine, la propylamine, la butylamine et la toluidine .

Les directives générales pour la mise en pratique de la réaction se trouvent par exemple dans "Methoden der organischen Chemie/Houben-Weyl, 1957, 4ème édition, vol.11/1, p.126 à 134 ". Comme catalyseurs d'hydrogénation, on utilisera par exemple le nickel de Raney, le cobalt de Raney, éventuellement activés par des métaux nobles, le chromite de cuivre, le palladium, le platine. On utilise en général de 1 à 10% du catalyseum par rapport à l'éther de polypropylène gycol mis en oeuvre.

L'ammoniaque ou l'amine sont utilisées en excès, qui peut être parfois très grand et par exempla aller jusqu'à 30 moles. Les températures de réaction sont en général de 150 à 250°C, mais selon les réactifs mis en oeuvre, elles peuvent

1C

634741

être inférieures ou supérieures. Pour les composés très volatils, et en particulier avec l'ammoniaque, on opère sous pression, et celle-ci peut aller jusqu'à 300 atmosphères et plus.

En général il n'est pas nécessaire d'utiliser des solvants. Lorsqu'on en utilise, ils de ivent être inertes, on peut utiliser par exemple des hydrocarbures, du tétrahydrofurane ou du tert.-butanol.

Lorsqu'on laisse agir suffisamment l'ammoniaque ou l'amine, tous les groupes hydroxyles de l'éther polyhydroxylé sont transformés en groupes amino qui, dans le cas de l'ammoniaque, sont primaires. Suivant la durée de réaction, la température, la nature et les proportions des réactifs, on peut également obtenir des produits de réaction qui contiennent encore, à côté des groupes amino formés, des groupes hydroxyles dans la molécule.

Les éthers de polypropylène glycols obtenus qui, à la place des groupes OH, ne contiennent plus que des groupes amino ou contiennent des groupes amino et des groupes hydroxyles et qui, suivant la manière de conduire la réaction, sont des mélanges et peuvent être utilisés tels quels, possèdent des utilisations multiples. Ce sont des durcisseurs des résines époxydées; ils peuvent être transformés en polyurées qui conviennent à l'utilisation comme plætifiants, et ils servent également de masses de compression à réticuler par des résines contenant de la formaldéhyde ou des groupes méthylols, d'agents liants ou d'agents d'apprêt textile.

. 30

15

20 .

Les exemples suivants illustrent l'invention sans toutefois la limiter. Dans ces exemples, les indications de parties et de pourcents s'entendent en poids, sauf indication contraire.

EXEMPLE 1

5

10

15

25

30

On introduit dans un autoclave à agitation de 5 litres: 1000 g d'éther de polypropylème glycol (poids moléculaire 1870; indice d'OH 62,4), 220g d'ammonique liquide et 80g de nickel de Raney déshydraté; on porte la pression manométrique atmosphères par de l'hydrogène et on chauffe en 2 heures à 220°C. La pression manométrique monte à 127 atmosphères et tombe en environ 3 heures à 120 atmosphères. On poursuit la réaction pendant au total 8 heures. On laisse refroidir, on détend à environ 60°C et on refoule le contenu de l'autoclave au travers d'un filtre sous pression. On chasse l'eau de réaction du filtrat de couleur claire par chauffage à 100°C sous pression réduite jusqu'à poids constant. On obtient 922g d'une diamine, à la teneur de 95%. L'examen analytique montre que le reste du produit est une polyamine avec azote secondaire. Le produit ne contient pas d'azote d'amine tertiaire .

EXEMPLE 2

On chauffe sous agitation à 220°C, sous une pression manométrique initiale de 30 atmosphères, un mélange de 250 parties de polypropylène glycol (produit d'addition de l'oxyde de propylène sur le trimethylolpropane; P.M. 3000; indice d'OH: 59), 80 parties d'ammoriaque liquide et

16 parties de nickel de Raney. La pression tombe de 166 à 160 atmosphères (relatives) en 9 heures. On laisse refoidir , on filtre et on traite ensuite le produit brut comme décrit dans l'exemple 1. On obtient 242 parties d'une triamine faiblement colorée qui, à l'analyse, présente une pureté de 93%.

- RESUME -

Procédé de préparation d'éthers de polypropylène glycols contenant des groupes amino primaires ou secondaires, remarquable notamment par les points suivants, considerés isolément ou en combinaisons diverses;

1° - on fait réagir un éther de polypropylène glycol avec de l'ammoniaque ou une amine primaire en présence d'un catalyseur capable de transférer l'hydrogène, à température élevée.

2° - on effectue la réaction avoc l'ammoniaque sous pression .

8 PAGES Bruxelles, le 10 JUIL. 1963

PARBENFABRIKEN BAYER AKTIENGESELLSCHAFT.

P Pos J. Bods

5