Nintendo sales analysis

Valerio Ferdinando Calà

25/03/2021

Analisi esplorativa dei dati

Figure 1: X = serie storica annuale delle unità (in milioni) di console domestiche Nintendo vendute

Dall'analisi grafica dei dati grezzi, possiamo vedere come le unità vendute hanno seguito un andamento altalenante negli anni: nel 1998 c'erano più di 10 milioni di unità vendute, ma questo numero è diminuito per tutto il periodo 1998-2006. È solo a partire dal 2007 che inizia una nuova tendenza positiva ed il numero di unità vendute ogni anno è costantemente superiore ai 10 milioni di unità fino al 2011, con un picco di oltre 25 milioni di unità vendute nel 2009.

Dopo il picco del 2009, a livello grafico vediamo che la serie ha seguito una tendenza negativa fino a toccare un plateau di meno di 4 milioni di unità vendute per 4 anni consecutivi (2014-2017) e 'schizzare' oltre le 15 milioni di unità vendute negli ultimi tre anni osservati (2018-2020).

È dunque ragionevole chiedersi se è successo qualcosa prima dell'inizio delle due tendenze positive, cioè prima del 2007 e prima del 2018, che giustifica un aumento così eccessivo del numero di consoles domestiche vendute.

Figure 2: Tabella dei principali indici di posizione, dispersione, asimmetria e curtosi. Test di normalità.

Data la tabella di cui sopra, non possiamo rifiutare l'ipotesi nulla: x ha distribuzione Normale.

Infatti, il test di Jarque-Bera confronta gli indici di asimmetria e di curtosi con quelli che si otterrebbero nel caso di dati normalmente distribuiti. In caso di normalità, abbiamo un'asimmetria nulla ed un indice di curtosi vicino a 3. In questo caso i dati esibiscono una leggera asimmetria positiva, cosa che si può evincere anche dall'istogramma e dal confronto dei valori di media (9.74 milioni) e mediana (6.8 milioni). Sebbene i dati non siano distribuiti in modo simmetrico, non c'è abbastanza evidenza empirica per rifiutare l'ipotesi nulla di normalità.

Dalle altre statistiche descrittive possiamo fare le seguenti considerazioni:

- Su un totale di 23 anni osservati, nella metà degli anni abbiamo visto un numero di consoles domestiche vendute pari o inferiore a 6.82 milioni di unità.
- Su un totale di 23 anni osservati, la media delle unità di consoles domestiche vendute è di 9.74 milioni con una deviazione standard pari a 6.98 milioni. Il coefficiente di variazione è quindi pari a circa 0.72 (valore utile se si vuole confrontare la variabilità del fenomeno, con quella di fenomeni espressi in unità di misura diverse).
- I dati variano in un range di valori molto ampio: il massimo è pari a 25.95 milioni, il minimo è pari a 2.35 milioni e quindi il range è pari a 23.60 milioni.

Il box-plot è un grafico particolarmente utile per analizzare la dispersione dei dati e le principali misure di posizione (quantili e media), nonché per cercare di individuare ad occhio valori anomali (troppo estremi, cioè troppo elevati o troppo bassi). Le conclusioni di questo grafico sono identiche a quelle fatte sulla base della tabella delle statistiche descrittive, ma in questo caso sono desumibili a colpo d'occhio e la proporzione tra la scatola ed i baffi suggerisce subito un'alta dispersione (che prima abbiamo quantificato con il range e

Figure 3: Box-plot

con il coefficiente di variazione).

Analisi dell'autocorrelazione

Sample: 1998 2020 Included observation Autocorrelation	ns: 23 Partial Correlation		AC	PAC	Q-Stat	Prob
		4 5 6 7	-0.188 -0.371 -0.437 -0.449 -0.372 -0.199 0.110 0.341 0.359	0.105 -0.300 -0.298 0.039	12.840 14.489 15.507 19.683 25.787 32.604 37.584 39.104 39.599 44.733 50.909 52.590	0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 4: Correlogramma

Dall'analisi grafica dell'ACF e della PACF possiamo vedere come, oltre al primo ritardo, l'effetto di autocorrelazione nel tempo svanisce rapidamente. Questo ci farebbe pensare ad un modello AR(1) per la serie storica $\{X_t\}$ $t \in 1998, ..., 2020$.

Purtroppo, però, l'analisi non è così semplice perché bisogna prima accertarsi che la serie storica non presenti radici unitarie. Questo viene svolto in letteratura con il test di Dickey-Fueller aumentato (test ADF), il cui output è riportato nella tabella seguente:

Non possiamo rifiutare con una confidenza del 95% l'ipotesi nulla di radici unitarie: in altre parole, l'effetto marginale del lag di primo ordine di X è esattamente pari a 1 e per questo dobbiamo modellare la serie in differenze prime, $DX_t = X_t - X_{t-1}$.

A questo punto, bisogna fare un nuovo test di radice unitaria; se non si può rifiutare l'ipotesi nulla, bisogna

Null Hypothesis: X has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on AIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.695375 -3.788030 -3.012363 -2.646119	0.0914

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(X) Method: Least Squares Date: 03/25/21 Time: 15:01 Sample (adjusted): 2000 2020 Included observations: 21 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X(-1) D(X(-1)) C	-0.386961 0.651345 3.916214	0.143565 0.197610 1.558130	-2.695375 3.296108 2.513406	0.0148 0.0040 0.0217
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.420759 0.356399 4.009561 289.3784 -57.34144 6.537579 0.007341	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.556667 4.997911 5.746804 5.896022 5.779188 2.112383

Figure 5: Test ADF

 $\mbox{Figure 6: DX = differenza annuale delle unità (in milioni) di console domestiche Nintendo vendute } \\$

prendere la differenza di secondo ordine $DX_t^2 = X_t - X_t - 2$. Fortunatamente, dall'output del test possiamo vedere che l'ipotesi nulla di radice unitaria è rifiutata con una probabilità di errore di primo tipo inferiore all'1%.

Null Hypothesis: DX has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on AIC, maxlag=4)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.746561 -2.679735 -1.958088 -1.607830	0.0085

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(DX) Method: Least Squares Date: 03/25/21 Time: 15:17 Sample (adjusted): 2000 2020

Included observations: 21 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DX(-1)	-0.559666	0.203770	-2.746561	0.0124
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.271495 0.271495 4.529312 410.2934 -61.00738 1.791487	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	lent var riterion terion	0.296667 5.306597 5.905465 5.955204 5.916260

Figure 7: Test ADF

Identificazione e stima del modello: metodo di Box-Jenkins

Definiamo due variabili **dummy ausiliarie** D_1 e D_2 , che rispettivamente si accendono durante gli anni in cui vengono vendute le due consoles più recenti di successo (Wii e Nintendo Switch).

Viene stimato il Modello ARIMAX(k, 1, 0) per diverse scelte di k:

$$DX_t = X_t - X_{t-1} = \beta_0 + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \dots + \beta_k X_{t-k} + \gamma_1 D_{1t} + \gamma_2 D_{2t} + \epsilon$$

In tutti i casi, l'intercetta β_0 , il coefficiente β_1 e tutti i ritardi di ordine pari o superiore a 3 non sono statisticamente significativi. Il miglior modello in termini di significatività statistica e bontà di adattamento $(R^2$ aggiustato e AIC) si ha per $k^* = 2$.

Si riporta a titolo esemplificativo l'output del modello stimato per k = 3, seguito dall'output del modello stimato per k^* .

Dependent Variable: DX Method: Least Squares Date: 03/25/21 Time: 16:02 Sample: 1998 2020 IF 2008 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@LAG(X,1) @LAG(X,2) @LAG(X,3) DUMMY1 DUMMY2	0.051839 -0.535700 0.082803 5.427906 8.848484	0.232084 0.322745 0.205429 2.178370 2.688751	0.223361 -1.659824 0.403075 2.491729 3.290927	0.8263 0.1177 0.6926 0.0249 0.0050
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.573493 0.459758 3.731274 208.8361 -51.83695 1.961052	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	lent var riterion terion	0.710500 5.076484 5.683695 5.932628 5.732289

Figure 8: Modello per k=3

Dependent Variable: DX Method: Least Squares Date: 03/25/21 Time: 15:57 Sample: 1998 2020 IF 2008 Included observations: 21

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@LAG(X,1) @LAG(X,2) DUMMY1 DUMMY2	0.014558 -0.411273 5.301216 8.676100	0.194080 0.174224 1.965830 2.540937	0.075008 -2.360599 2.696681 3.414528	0.9411 0.0305 0.0153 0.0033
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.567736 0.491454 3.564132 215.9517 -54.26830 1.821830	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.556667 4.997911 5.549362 5.748318 5.592540

Figure 9: Modello per k=2

Dall'output del modello di regressione temporale, possiamo vedere che non c'è un grosso problema di autocorrelazione degli errori (statistica Durbin Watson vicina a 2), che la bontà di adattamento per la differenza di primo ordine DX è di circa il 50% (dato non allarmante: interessa valutare la bontà di adattamento della serie X).

Interessante vedere come entrambe le ultime due consoles abbiano avuto un effetto medio positivo rispetto ai livelli medi di vendita pre-uscita della Wii.

La regressione stimata è quindi:

$$\widehat{X_t - X_{t-1}} = \widehat{DX} = -0.41X_{t-2} + 5.30D_{1t} + 8.67D_{2t}$$

Visualizziamo nel grafico seguente il confronto tra: serie **actual** della differenza $DX = X_t - X_{t-1}$, serie dei valori **fitted** e serie dei **residui**.

Figure 10: Confronto tra DX actual, DX fitted e residui

Per generare infine la serie dei valori previsti dal modello, sarà sufficiente sommare ai valori previsti per la differenza prima \widehat{DX} il livello della serie al passo precedente X_{t-1} , come nell'equazione seguente:

$$\widehat{X}_t = X_{t-1} - 0.41X_{t-2} + 5.30D_{1t} + 8.67D_{2t}$$

Misure di performance:

$$R^{2} = 1 - \frac{\sum_{t=2000}^{2020} (x_{t} - \hat{x}_{t})^{2}}{\sum_{t=1998}^{2020} x_{t}^{2}} = 1 - \frac{\sum_{t=2000}^{2020} e_{t}^{2}}{\sum_{t=2000}^{2020} x_{t}^{2}} = 0.9335$$

$$MAE = T^{-1} \sum_{t=1}^{T} |e_t| = 2.5425$$

$$RMSE = \sqrt{T^{-1} \sum_{t=1}^{T} e_t^2} = 3.2104$$

Modello finale scelto con approccio Box-Jenkins: $\operatorname{ARIMAX}(2,1,0)$

Figure 11: Confronto tra X actual e X fitted