3.2 Polynomial functions of higher degree. f(x) = 0, x n + q, x n-1 + q, x + q. and, on, of coefficients $f(x) = 3x^{5} - 7x^{3} + 8x - 2$. Degree of f = 5. $g_{3} = 3$; $g_{4} = 0$, $g_{3} = -7$; $g_{5} = 0$; $g_{1} = 8$; $g_{5} = -2$. for any polynomial. Domain: (-00,00).

Range. : f(x) = X degreed.

D: (-00,00).

Pange [0,00).

Pange [0,00).

parent function of quadratic Shift Right huits. (x-h) f(x)=a(x-h) + K Stretching Variably. $a(x-h)^2$. lud behavior. $y=x^2$.

Shift up K units.

al x-h2+ K. as x-x00 y-x00

Pud behavior $y = a_n x^n + a_n x^{n-1} + a_n x^n + a_n$ $J = Q_{n} \times^{n} + Q_{n-1} \times^{n-1} + Q_{1} \times + Q_{0} \times$ $f(x) = 7x^{9} - 3x^{5} + 100x^{2} + 7000$ $0S \times -\infty \qquad f(x) - 7(\infty)^9 - \infty$ $g(x) = -5x^{6} + 1000x^{5} 3x^{4} 7$ $QS \times \to \infty \qquad g(x) \to -\infty$ $QS \times \to -\infty \qquad g(x) \to -\infty$

repeated Zews. (multiplicity) $f(x) = X^2 (X-1)^3 (X+5)^2$

Zeros of polynomial functions Given fox) is a polynomial function and is a real number. then all these Statements are 1. X= C is a Zew of +(x). 2. f(c) = 0 or x = c is a Solution to f(x) = 03. (c, 0) is an x = w to rept 4. X-C is a factor of fix) Example: -(x)= X3_X2_2X $f(x)=0 \qquad \qquad X^3 - X^2 - 2x = 0$ X(X-X-2)=0real 7ews X=0, X=2, X=-1