Exemplo de cabeçalho

Esse teste

teste

Tipo desta prova: 5

PAGINA 1

Questão 1

- a) (1 ponto) Determine a base e a dimensão de $S_1 \cap S_2$.
- b) (0.5 ponto) Seja $p(t) = 3t^3 + 4t^2 + t 2$, verefique se $p(t) \in S_1 \cap S_2$.
- c) (1 ponto) Determine um subespaço W de $P_3(R)$ tal que $S_1 \oplus W = P_3(R)$.

Questão 2

1. (2.0 pontos)

Considere a matriz $A_t = 21$ $t^2 t 2$. Use o escalonamento para encontrar os valores de 2 t 1 2

 $t \in R$, se houver, para os quais A_t é inversível.

b) Para quais valores de t o sistema $A_t \ 2 \ y \ 2 = \ 2 \ 2 \ terá uma unica solução? Nenhuma <math>\ 2 \ 2 \ 2 \ 2 \ 3$ solução? Infinitas soluções?

Tipo desta prova: 5 PAGINA 2

Questão 3

- 3. Considere o espaço afim R⁵ associado ao espaço vetorial R⁵. Seja $\{e_1,e_2,e_3,e_4,e_5\}$ a base canônica em R⁵. Sejam $S_1 = [e_2 + e_4,e_1 + e_3]$ e $S_2 = [e_1 e_2,e_3 e_5]$ subespaços de R⁵ Sejam P₁ a variedade afim que passa por A = (1,2,0,1,1) e tem a direção de S_1 , e P₂ a variedade afim que passa por B = (-2,1,0,0,3) e tem a direção de S_2 .
 - a) (1 ponto) Dê equações paramétricas de P₁ e P₂.
 - b) (1 ponto) Qual é posição relativa de P₁,P₂?
 - c) (1 ponto) Dê equações de variedade afim $P_1 \vee P_2$, gerada por $P_1 \cup P_2$.

