

IGBT with Reverse Blocking capability

 $V_{CES} = \pm 1200 \text{ V}$ $I_{C25} = 55 \text{ A}$ $V_{CE(sat)} = 2.3 \text{ V typ.}$

G = Gate, C = Collector, E = Emitter, TAB = Collector

IGBT					
Symbol	Conditions	Maximum Ratings			
V _{CES}	$T_{VJ} = 25$ °C to 150°C	±1200	V		
V _{GES}		± 20	V		
I _{C25}	$T_C = 25^{\circ}C$ $T_C = 90^{\circ}C$	55 35	A A		
I _{CM}	V_{GE} = 0/15 V; R_{G} = 22 Ω ; T_{VJ} = 125°C RBSOA, Clamped inductive load; L = 100 μ H	80 600	A V		
P _{tot}	T _C = 25°C	300	W		

Symbol	$(T_{VJ} = 25^{\circ}C, \text{ unless})$				
V _{CE(sat)}	$I_{c} = 30 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.3 2.8	2.7	V
V _{GE(th)}	$I_{\rm C} = 2$ mA; $V_{\rm GE} = V_{\rm CE}$	4		8	V
I _{CES}	$V_{CE} = V_{CES}; V_{GE} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		3.0	50	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			500	nA
Q _{Gon}	$V_{CE} = 120V; V_{GE} = 15 V; I_{C} = 35 A$		90		nC

Features

- IGBT with NPT (non punch through) structure
- reverse blocking capability
 - function of series diode monolithically integrated, no external series diode required
 - soft reverse recovery
- positive temperature coefficient of saturation voltage
- Epoxy of TO-247 package meets UL 94V-0

Applications

converters requiring reverse blocking capability:

- current source inverters
- matrix converters
- bi-directional switches
- resonant converters
- induction heating
- auxiliary switches for soft switching in the main current path

IGBT				
Symbol	Conditions	Characteristic Values (T _{VJ} = 25°C, unless otherwise specified)		
		typ.		
	External diode DSEP30-12	- diagram see Fig. 17		
$\mathbf{t}_{d(on)}$)	31	ns	
t _r	Inductive load, T _{VJ} = 125°C	54	ns	
t _{d(off)}	V _{CF} = 600 V; I _C = 35 A	184	ns	
t,	$V_{GE} = \pm 15 \text{ V}; R_{G} = 15 \Omega$	24	ns	
t, É _{on}	GE - , G -	3.0	mJ	
Eoff)	0.7	mJ	
	Internal diode - diagram se	e Fig. 18		
t _{d(on)})	29.5	ns	
t, i		47	ns	
t _{d(off)}	Inductive load, T _{VJ} = 125°C	183	ns	
t, É	$V_{CE} = 600 \text{ V}; I_{C} = 35 \text{ A}$	46	ns	
E _{on}	$V_{GE} = \pm 15 \text{ V}; R_{G} = 15 \Omega$	19.2	mJ	
∟ off		1.0	mJ	
E _{rec int})	7	mJ	
I _{RM}	$I_F = 35 \text{ A}; \text{ di}_C/\text{dt} = -50 \text{ A/}\mu\text{s}; \text{ T}$	$t_{VJ} = 125^{\circ}C$ 28.5	Α	
t _{rr}	$V_{CE} = -600 \text{ V}; V_{GE} = 15 \text{ V}$	2.1	μs	
R _{thJC}		0.42	K/W	

Component						
Symbol	Conditions	Maximum R	atings			
T _{vJ}		-55+150 -55+125	°C			
M _d F _c	mounting torque mounting force with clip	0.8 - 1.2 20120	Nm N			

Symbol	Conditions	Ch	Characteristic Values		
		min.	typ.	max.	
R _{thCH}	with heatsink compound		0.25	K/W	
Weight			6	g	

Min.	Max.		Inches		
	ivian.	Min.	Max.		
4.7	5.3	.185	.209		
2.2	2.54	.087	.102		
2.2	2.6	.059	.098		
1.0	1.4	.040	.055		
1.65	2.13	.065	.084		
2.87	3.12	.113	.123		
.4	.8	.016	.031		
20.80	21.46	.819	.845		
15.75	16.26	.610	.640		
5.20	5.72	0.205	0.225		
19.81	20.32	.780	.800		
	4.50		.177		
3.55	3.65	.140	.144		
5.89	6.40	0.232	0.252		
4.32	5.49	.170	.216		
6.15	BSC	242	BSC		
	2.2 2.2 1.0 1.65 2.87 .4 20.80 15.75 5.20 19.81 3.55 5.89 4.32	2.2 2.54 2.2 2.6 1.0 1.4 1.65 2.13 2.87 3.12 .4 .8 20.80 21.46 15.75 16.26 5.20 5.72 19.81 20.32 4.50 3.55 3.65 5.89 6.40 4.32 5.49	2.2 2.54 .087 2.2 2.6 .059 1.0 1.4 .040 1.65 2.13 .065 2.87 3.12 .113 .4 .8 .016 20.80 21.46 .819 15.75 16.26 .610 5.20 5.72 0.205 19.81 20.32 .780 4.50 3.55 3.65 .140 5.89 6.40 0.232 4.32 5.49 .170		

Fig. 1 Typical output characteristics

Fig. 3 Typical transfer characteristics

Fig. 5 Typ. turn on energy and switching times vs. collector current, inductive switching with ext. free wheeling diode (Fig. 17)

Fig. 2 Typical output characteristics

Fig. 4 Typ. collector emitter saturation as a function of case temperature

Fig. 6 Typ. turn off energy and switching times vs. collector current, inductive switching with ext. free wheeling diode (Fig. 17)

Fig. 7 Typ. turn on energy and switching times vs. gate resistor, inductive switching with ext. free wheeling diode (Fig. 17)

Fig. 9 Typ. turn on energy and switching times vs. collector current, inductive switching with internal diode (Fig. 18)

Fig. 11 Typ. turn on energy and switching times vs. gate resistor, inductive switching with internal diode (Fig. 18)

Fig. 8 Typ. turn off energy and switching times vs. gate resistor, inductive switching with ext. free wheeling diode (Fig. 17)

Fig. 10 Typ. turn off energy and switching times vs. collector current, inductive switching with internal diode (Fig. 18)

Fig. 12 Typ. turn off energy and switching times vs. gate resistor, inductive switching with internal diode (Fig. 18)

Fig. 13 Typ. turn off characteristics of the internal diode

Fig. 15 Typical gate charge

Fig. 14 Typ. turn off characteristics of the internal diode

Fig. 16 Typ. transient thermal impedance

		0.048			
τ	0.0001	0.0035	0.02	0.142	0.18

Fig. 17 turn-on/turn-off with external diode (DSEP 30-12)

Fig. 18 turn-on/turn-off with internal diode