

(19)日本国特許庁 (JP)

(12) 特許公報 (B2)

(11)特許番号

第2687832号

4/6

(45)発行日 平成9年(1997)12月8日

(24)登録日 平成9年(1997)8月22日

(51)Int.Cl.*	識別記号	庁内整理番号	F I	技術表示箇所
B 32 B 25/20			B 32 B 25/20	
B 29 C 45/14			B 29 C 45/14	
B 32 B 27/36	102		B 32 B 27/36	102
C 08 J 5/12	CEZ		C 08 J 5/12	CEZ
	CFH			CFH

請求項の数7(全14頁) 最終頁に続く

(21)出願番号	特願平4-352676	(73)特許権者	000002060 信越化学工業株式会社 東京都千代田区大手町二丁目6番1号
(22)出願日	平成4年(1992)12月10日	(73)特許権者	000004466 三菱瓦斯化学株式会社 東京都千代田区丸の内2丁目5番2号
(65)公開番号	特開平6-171021	(72)発明者	藤木 弘直 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社 シリコーン電子材料技術研究所内
(43)公開日	平成6年(1994)6月21日	(72)発明者	首藤 重揮 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社 シリコーン電子材料技術研究所内
		(74)代理人	弁理士 小島 隆司
		審査官	増田 亮子

最終頁に続く

(54)【発明の名称】ポリカーボネート樹脂とシリコーンゴムとの一体成型体及びその製造方法

(57)【特許請求の範囲】

【請求項1】 脂肪族不飽和基含有ポリカーボネート樹脂又は該樹脂を含む組成物に、接着性付与成分を含有する付加型シリコーンゴムが一体化されてなることを特徴とするポリカーボネート樹脂とシリコーンゴムとの一体成型体。

【請求項2】 接着性付与成分が、アルコキシシリル基、グリシジル基及び酸無水物基から選ばれる基が含まれる化合物である請求項1記載の一体成型体。

【請求項3】 接着性付与成分が、少なくとも一個の珪素原子に直結した水素原子とフェニル骨格とを有する化合物である請求項1記載の一体成型体。

【請求項4】 脂肪族不飽和基含有ポリカーボネート樹脂又は該樹脂を含む組成物の成形物表面に、(a)アルケニル基含有オルガノポリシロキサン、(b)珪素原子

に直結した水素原子を一分子中に少なくとも2個以上有するオルガノハイドロジエンポリシロキサン、(c)付加反応用触媒、(d)接着性付与成分を含有する接着性シリコーンゴム組成物を接触させ、次いで上記ポリカーボネート樹脂又は該樹脂を含む組成物の軟化温度より低い温度で上記シリコーンゴム組成物を硬化することを特徴とするポリカーボネート樹脂とシリコーンゴムとの一体成型体の製造方法。

【請求項5】 ポリカーボネート樹脂又は該樹脂を含む組成物の成形物及びこの成形物に対する接着性シリコーンゴム組成物の接触を射出成形により行うようにした請求項4記載の製造方法。

【請求項6】 接着性付与成分が、アルコキシシリル基、グリシジル基及び酸無水物基から選ばれる基を含む化合物である請求項4又は5記載の製造方法。

【請求項7】 接着性付与成分が、少なくとも一個の珪素原子に直結した水素原子と少なくとも一個のフェニル骨格を有する化合物である請求項4又は5記載の製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、電気、電子、自動車、精密機器等の分野で有用なポリカーボネート樹脂とシリコーンゴムとの一体成型体及びその製造方法に関する。

【0002】

【従来の技術及び発明が解決しようとする課題】 従来、付加硬化型シリコーンゴムと有機樹脂を接着させる方法は数多く提案されている。例えば、成形樹脂表面にプライマーを塗布し、その上から未硬化シリコーンゴム材料を塗布し、これを硬化させて接着する方法や自己接着性シリコーンゴム材料を成形樹脂の上から硬化させる方法が知られている。この自己接着性シリコーンゴム材料については特にその接着成分についての提案が数多くなされている。

【0003】 また、有機樹脂に珪素原子に直結した水素原子を30モル%以上含有するオルガノハイドロジエンポリシロキサンを添加し、付加硬化型シリコーンゴム組成物と接着させる方法（特公平2-34311）、有機樹脂へのシリコーンゴムの物理的な嵌合方法による一体化（特公昭63-45292）、脂肪族不飽和基と珪素原子結合加水分解性基を有する化合物をグラフトしたオレフィン樹脂にシリコーンゴム組成物を接着一体化させる方法（特開昭63-183843）、更に本発明者らが先に提案したように不飽和基及び珪素原子に直結した水素原子を含有する化合物を添加した熱可塑樹脂とシリコーンゴム組成物とを接着一体化する方法等も提案されている。

【0004】 しかしながら、プライマーを用いて接着させる方法は、いったん成形した樹脂成形物を金型等より取り出しプライマーを塗布するという手間がかかる。また、自己接着剤性シリコーンゴム材料を成形樹脂に塗布して硬化させる方法は、金型などを用いて樹脂及びシリコーンゴムとの一体化物を形成する場合には、シリコーンゴム自身が金型に接着するという大きい難点がある。

【0005】 一方、樹脂成形物に対して塗布硬化させる場合、自己接着性の付加硬化型シリコーンゴム材料の多くは、ポリカーボネート樹脂には一体成形物として使用する条件下では十分な接着力を有するものとはなっていない。

【0006】 更に、上記提案のうち、オルガノハイドロジエンポリシロキサンをオレフィン樹脂に添加する方法は、シロキサンの添加により樹脂自体の特性に変化を生じ、樹脂本来の特性を得ることが困難となる場合がある。また、物理的な嵌合により一体化させる方法は、物理的な力により嵌合がはずれるというおそれがあり、脂

肪族不飽和基と珪素原子結合加水分解性基を有する化合物をグラフトしたオレフィン樹脂を用いる方法は、付加硬化型シリコーンゴムの一体化にはプライマーが必要であるという難点を有している。

【0007】 一方で近年、シリコーンゴムの持つ耐熱性、耐候性、電気特性等においての高い信頼性が認識され、電気・電子分野、自動車分野などでその用途が広がりつつあり、熱可塑性樹脂、特にポリカーボネート樹脂とシリコーンゴムとの強固に接着した一体成型体の供給が望まれている。

【0008】 本発明は、上記要望に応えるためになされたもので、ポリカーボネート樹脂又は該樹脂を含む組成物とシリコーンゴムとが互に十分実用に耐える接着力を持って接着したポリカーボネート樹脂とシリコーンゴムとの一体成型体及びかかる成型体を簡単かつ確実に、しかも短時間に製造し得、また射出成形可能なポリカーボネート樹脂とシリコーンゴムとの一体成型体の製造方法を提供することを目的とする。

【0009】

【課題を解決するための手段及び作用】 本発明者は、上記目的を達成するため鋭意検討を行った結果、ポリカーボネート樹脂として脂肪族不飽和基を有する変性ポリカーボネート樹脂を使用すること、かつ、このポリカーボネート樹脂に接着、一体化するシリコーンゴムとして、SiH基を有すると共に、アルコキシリル基、グリシル基、酸無水物基或いはフェニル骨格を有する基等の接着性付与成分を含有する付加硬化型シリコーンゴムを使用することにより、従来は付加硬化型シリコーンゴム接着剤の接着力が低く、或いは短時間に接着できなかつたポリカーボネート樹脂に対して十分実用に耐える接着力を有するシリコーンゴムとの一体成型物が得られ、特に接着性付与成分としてSiH基とフェニル骨格を有する基を含む化合物を使用することにより、射出成形方法を用いて上記ポリカーボネート樹脂に対し短時間の硬化条件で十分良く接着し、しかもシリコーンゴム自身は成形金型等から十分な実用性を持って剥離するといまいだかってないポリカーボネート／シリコーンゴムの一体成型体が得られるこことを知見したものである。

【0010】 従って、本発明は、

A. 脂肪族不飽和基含有ポリカーボネート樹脂又は該樹脂を含む組成物に、接着性付与成分を含有する付加型シリコーンゴムが一体化されてなることを特徴とするポリカーボネート樹脂とシリコーンゴムとの一体成型体、及び、

B. 脂肪族不飽和基含有ポリカーボネート樹脂又は該樹脂を含む組成物の成形物表面に、(a) アルケニル基含有オルガノポリシロキサン、(b) 硅素原子に直結した水素原子を一分子中に少なくとも2個以上有するオルガノハイドロジエンポリシロキサン、(c) 付加反応用触媒、(d) 接着性付与成分を含有する接着性シリコーン

ゴム組成物を接觸させ、次いで上記ポリカーボネート樹脂又は該樹脂を含む組成物の軟化温度より低い温度で上記シリコーンゴム組成物を硬化することを特徴とするポリカーボネート樹脂とシリコーンゴムとの一体成型体の製造方法を提供する。

【0011】以下、本発明につき更に詳述する。本発明に用いられる脂肪族不飽和基含有ポリカーボネート樹脂は、主鎖及び末端基を含め、脂肪族不飽和二重結合或いは三重結合が平均一分子当たり少なくとも1つ以上含むものとされるが、三重結合は樹脂の耐候性、耐熱性に劣る場合が多く、二重結合の方が好適である。樹脂中に含まれる不飽和二重結合は、オレフィンであればいずれも使用可能であるが、好ましくはビニル基、アリル基又はイソプロペニル基等であり、また内部オレフィンでない方が好ましい。

【0012】このような分子内が脂肪族不飽和基で変性

(式中、R¹～R⁸は、それぞれ水素原子、ハロゲン原子又は置換もしくは非置換のアルキル基、アルコキシ基、アリール基、アルケニル基を示し、

などであり、R⁹、R¹⁰はそれぞれ、水素原子、ハロゲン原子又は置換もしくは非置換のアルキル基、アリール基、アルケニル基、アルキン基、或いはR⁹及びR¹⁰が一緒に結合して炭素環又は複素環を形成する基を表わし、aは1以上の整数を表わす。)

【0015】具体的には、2, 2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン、2, 4-ビス(4-ヒドロキシフェニル)-4-メチル-1-ペンテン、2, 4-ビス(4-ヒドロキシフェニル)-4-メチル-2-ペンテン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニ

されたポリカーボネート樹脂としては、脂肪族不飽和結合を有する二価フェノール類を原料とするか、分子量調節剤もしくは末端停止剤として脂肪族不飽和結合を有する一官能化合物を用いるか、又はその両方を併用して用いるほかは、従来の芳香族ポリカーボネート樹脂と同様の製法、界面重合法、ピリジン法、クロロホーメート法等の溶液法で製造されるものが好ましく使用され、この場合粘度平均分子量は2, 000～100, 000、好ましくは5, 000～30, 000のものが好適である。

【0013】ここで、本発明に用いられる不飽和基含有ポリカーボネート樹脂において、使用する二価フェノール系化合物として好ましいものは、下記一般式(A)で表わされるものである。

【0014】

【化1】

… (A)

ル) ケトン、1, 1-ビス(4-ヒドロキシフェニル)エタン、2, 2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA: BPA)、2, 2-ビス(4-ヒドロキシフェニル)ブタン、1, 1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2, 2-ビス(4-ヒドロキシ-3, 5-ジプロモフェニル)プロパン、2, 2-ビス(4-ヒドロキシ-3, 5-ジクロロフェニル)プロパン、2, 2-ビス(4-ヒドロキシ-3-プロモフェニル)プロパン、2, 2-ビス(4-ヒドロ

キシ-3-クロロフェニル)プロパン、2, 2-ビス(4-ヒドロキシ-3, 5-ジメチルフェニル)プロパン、1, 1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2, 2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1, 7-ビス(4-ヒドロキシ-3-メトキシフェニル)-1, 6-ヘプタジエン-3, 5-ジオン(クルクミン)などが例示される。なお、これらの二価フェノール系化合物は、その1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。

【0016】一方、不飽和末端基を導入するために使用される不飽和二重結合を有する一官能性化合物としては、アクリル酸、メタクリル酸、ビニル酢酸、2-ペント酸、3-ペント酸、5-ヘキセン酸、9-デセン酸、9-ウンデセン酸などの不飽和カルボン酸；アクリル酸クロライド、メタクリル酸クロライド、ソルビン酸クロライド、アリルクロロホーメート、イソプロペニルフェニルクロロホーメートなどの酸クロライド又はクロロホーメート；イソプロペニルフェノール、ヒドロキシスチレン、O-アリルフェノール、オイゲノール、ヒドロキシフェニルマレイミド、ヒドロキシ安息香酸アリルエステルなどの不飽和基を有するフェノール類；クロロギ酸ジメトキシビニルシラン、3-カルボキシルプロピルジエトキシビニルシランなどのビニルシラン類が挙げられる。これらの化合物は2種類以上の併用が可能である。なお、不飽和二重結合がポリカーボネート樹脂平均一分子当り少なくとも1つ以上含む条件を満たしていれば、フェノールやバラターシャルブチルフェノールなどの従来の末端停止剤に変更可能であり、また不飽和二重結合を有する一官能化合物と併用してもよい。なお、これらの末端停止剤は、上記二価フェノール系化合物1モルに対して、通常1～25モル%、好ましくは1.5～10モル%の範囲で使用される。

【0017】更に、分岐化剤を上記の二価フェノール系化合物に対して、0.01～3モル%、特に0.1～1モル%の範囲で併用して分岐化ポリカーボネートとすることができます。分岐化剤としては、フロログルシン、2, 6-ジメチル-2, 4, 6-トリ(4-ヒドロキシフェニル)ヘプテン-3, 4, 6-ジメチル-2, 4, 6-トリ(4-ヒドロキシフェニル)ヘプテン-2、1, 3, 5-トリ(2-ヒドロキシフェニル)ベンゾール、1, 1, 1-トリ(4-ヒドロキシフェニル)エタン、2, 6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、 α , α' , α'' -トリ(4-ヒドロキシフェニル)-1, 3, 5-トリイソプロピルベンゼンなどで例示されるポリヒドロキシ化合物及び3, 3-ビス(4-ヒドロキシフェニル)オキシンドール(=イサチンビスフェノール)などが例示される。

【0018】本発明のポリカーボネート樹脂とシリコーンゴムとの一体成型体には、上記のような不飽和基含有ポリカーボネート樹脂が用いられるが、この場合、通常のポリカーボネート樹脂にこのような不飽和基含有ポリカーボネート樹脂(オリゴマーを含む)をブレンドした組成物を使用することもできる。

【0019】一方、上記ポリカーボネート樹脂又は該樹脂を含む組成物と一体化されるシリコーンゴムは、接着性付与成分を含有する付加硬化型シリコーンゴムであるが、このシリコーンゴムは、(a) アルケニル基含有オルガノポリシロキサン、(b) 珪素原子に直結した水素原子を一分子中に少なくとも2個以上有するオルガノハイドロジェンポリシロキサン、(c) 付加反応用触媒、(d) 接着性付与成分、特に珪素原子に直結した水素原子を一分子中に少なくとも1個有し、かつトリアルコキシシリル基、グリシジリル、酸無水物基、フェニル骨格を有する基から選択された基を含む化合物を含有する接着性シリコーンゴム組成物を硬化させるものが好ましい。

【0020】ここで、(a) 成分のアルケニル基含有オルガノポリシロキサンは、通常、付加硬化型シリコーンゴム組成物の主原料として使用されている公知のオルガノポリシロキサンを使用でき、該オルガノポリシロキサンとしては、常温で100cpから100, 000cpの粘度を有するものが好ましい。

【0021】特に、このオルガノポリシロキサンとしては、一般式R_aS_bO_{(4-a)/2}で示されるものが好適に用いられる。この式中、Rは置換又は非置換の一価炭化水素基であり、好ましくは炭素数1～8の一価炭化水素基である。具体的には、メチル、エチル、プロピル等のアルキル基、ビニル、プロペニル、ブテニル等のアルケニル基、フェニル、キシリル等のアリール基、3, 3, 3-トリフルオロプロピル等のハロゲン置換、シアノ基置換炭化水素基などが挙げられる。上記一価炭化水素基は互に異なっていても同一であってもよいが、分子中にアルケニル基を含んでいることが必要である。この場合、アルケニル基の量はR中0.01～10モル%、特に0.1～1モル%であることが好ましい。なお、aは1.9～2.4の範囲であり、このオルガノポリシロキサンは直鎖状であっても、更にRSiO_{3/2}単位或いはSiO_{4/2}単位を含んだ分岐状であってもよい。珪素原子の置換基は、基本的には上記のいずれであってもよいが、アルケニル基としては好ましくはビニル基、他の置換基としてはメチル基、フェニル基の導入が望ましい。

【0022】このようなオルガノポリシロキサンとしては、下記のものを例示することができる。

【0023】

【化2】

(Rは上記と同様の意味を示し(但し、脂肪族不飽和基は除く)、m、nは、m+n=100~5000、n=100~5000、m/(m+n)=0.001~0.1である。)

【0024】なお、このオルガノポリシロキサンは、当業者にとって公知の方法によって製造することができる。例えば、オルガノシクロポリシロキサンとヘキサオルガノジシロキサンとをアルカリ又は酸触媒の存在下に平衡化反応を行うことによって得ることができる。

【0025】また、(b)成分のオルガノハイドロジエンポリシロキサンは、(a)成分と反応し、架橋剤として作用するものであり、その分子構造に特に制限はなく、従来使用されている例えば線状、環状、分岐状構造等の各種のものが使用可能であるが、一分子中に少なくとも2個の珪素原子に直接結合した水素原子を含むものとする必要がある。この化合物の水素以外の珪素原子に結合する置換基は、(a)成分のオルガノポリシロキサンにおける置換基と同様である。

【0026】この(b)成分の添加量は、(a)成分に含まれるアルケニル基1個に対して0.4~5当量となる量であり、好ましくは0.8~2当量の範囲である。0.4当量より少い場合は、架橋密度が低くなりすぎ、硬化したシリコーンゴムの耐熱性に悪影響を与える。また、5当量より多い場合には、脱水素反応による発泡の問題が生じたり、やはり耐熱性に悪影響を与えるおそれがある。

【0027】なお、このものは当業者にとって公知の製造方法によって得ることが可能である。例えば、ごく一般的な製造方法を挙げると、オクタメチルシクロテトラシロンキサン及び/又はテトラメチルシクロテトラシロキサンと末端基となりうるヘキサメチルジシロキサン或いは1,1-ジハイドロ-2,2,3,3-テトラメチルジシロキサン単位を含む化合物とを硫酸、トリフルオロメタンスルホン酸、メタンスルホン酸等の触媒の存在下に-10~+40°C程度の温度で平衡化させることによって容易に得ることができる。

【0028】更に、(c)成分の付加反応用触媒は、白金や白金化合物などを挙げることができ、これらは前記した(a)成分と(b)成分との硬化付加反応(ハイド

ロサイレーション)を促進させるための触媒として使用されるものであるが、これは当業者において公知とされるものでよい。従って、これには白金ブラック、塩化白金酸、塩化白金酸のアルコール変性物、塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類等との錯体などが例示される。また、ロジウム錯体などを使用することもできる。なお、この添加量は希望する硬化速度に応じて適宜増減すればよいが、通常は全成分の合計に対して白金量又はロジウム量で0.1~1000ppm、好ましくは1~200ppmの範囲とすればよい。

【0029】次に、本発明に使用される(d)成分は、一分子中に珪素原子に直結した水素原子を少なくとも1個有し、かつシロキサン結合に加え更に他の結合を有する化合物で、この(d)成分は本発明の本質をなす成分である。この化合物の最低必要な特性は、分子中に珪素原子に直結した水素原子を少なくとも1個含有し、しかも接着対象となる有機樹脂(ポリカーボネート樹脂)への親和性を向上させることである。

【0030】このような目的のためには通常従来より提案されている接着性付与成分の多くはこれに該当する。しかしながら、従来のポリカーボネートを用いた場合は、これらの接着付与成分を用いた場合にも十分な接着性は得られなかった。これに反し、本発明の接着対象とするポリカーボネート樹脂はハイドロシリレーション可能な不飽和基を含有しており、従来の方法では実用上の接着性に乏しかったポリカーボネート樹脂に対しても十分実用に耐える接着性を付与できるものとなったものである。

【0031】このような接着性付与成分[(d)成分]としては、特に一分子中に少なくとも1個の珪素原子に直結した水素原子と、アルコキシシリル基、グリシジル基、酸無水物基から選ばれる1種又はそれ以上の基とを含有する化合物が好ましく、かかる化合物としては下記のものが挙げられる。

【0032】

【化3】

【0033】
【化4】

【0034】本発明において、(d)成分としては上記化合物が有効に使用されるが、このような化合物を(d)成分として用いた場合には十分な接着力が得られるものの、シリコーンゴムを有する形状に成形加工したい場合に金型等の金属成形治具を用いた場合にはこの成形治具に接着してしまうという難点を有している。最も成形治具にテフロン樹脂コート等を施すなど、接着性に乏しい素材を表面に使用するという方法も問題解決の一つの手段ではあるが、使用寿命等の点から信頼性に欠ける場合があり、また成形物表面の精度が重要である場合には使用できない。

【0035】このような場合には上記例示のような接着性官能基、例えばトリアルコキシリル基やグリシジル

基、酸無水物基等の基を有さない化合物が有用である。但し、上記のような基を有していても置換基や周りの基の立体的な拘束や電子的な作用により十分その反応性が抑えられている場合にはその限りではない。

【0036】具体的には、ポリカーボネート樹脂又は該樹脂を含む組成物と良好に密着しながら、金属に対しては接着し難い化合物としては、一分子中にSiH基を1個以上、より好ましくは2個以上有し、かつ、少なくとも1個のフェニル骨格を有する基、特に下記(1)～(6)から選ばれる基を有している化合物が好ましい。

【0037】

【化5】

… (1)

… (2)

… (3)

… (4)

… (5)

… (6)

【0038】

【化6】

[但し、式中R¹～R⁹は互に同一又は異種の水素原子、ハロゲン原子、置換又は非置換の一価炭化水素基、アルコキシ基から選ばれる一価の基である。]

Xは、

$$\begin{array}{c} \text{R}^{10} \\ | \\ -\text{C}- \\ | \\ \text{R}^{11} \end{array}$$
、

$$\begin{array}{c} \text{O} \\ || \\ -\text{S}- \end{array}$$
、

$$\begin{array}{c} \text{O} \\ || \\ -\text{S}- \end{array}$$
、

$$\begin{array}{c} \text{O} \\ || \\ -\text{C}- \end{array}$$
、

$$\begin{array}{c} \text{O} \\ || \\ -\text{O}- \end{array}$$
、

$$-\text{(CH}_2\text{)}_n-$$
及び
$$\begin{array}{c} \text{O} \\ || \\ -\text{C}-\text{O}- \end{array}$$
から選ばれる二価の基

の基（R¹⁰及びR¹¹は互に同一又は異種の水素原子、ハロゲン原子、置換又は非置換の一価炭化水素基から選ばれる一価の基又はR¹⁰とR¹¹とが結合して炭素環又は複素環を形成する基、aは2以上の整数を示す）である。]

【0039】なお、R¹～R¹¹の一価炭化水素基として
は、Rと同様のものが挙げられ、R¹⁰とR¹¹とが結合し
た炭素環、複素環としては、下記のものが挙げられ

る。

【0040】

【化7】

このような(d)成分としては、下記のものが例示される。

【0041】

【化8】

(但し、式中、R¹～R⁸及びXは前記と同様の基を表わす。)

【0042】

【化9】

【0043】上記(d)成分の配合量は適宜選定されるが、(a)成分100重量部に対し0.01~50重量部、特に0.1~5重量部とすることが好ましい。配合量が0.1重量部より少ないと、変性ポリカーボネートの接着性が十分でなく、50重量部より多いとシリコーンゴムの物理特性の劣化を生じる場合がある。

【0044】また、シリコーンゴム組成物には、更に
 (e) 成分として比表面積が $50\text{ m}^2/\text{g}$ 以上の微粉状
 シリカを配合することが好ましく、この微粉状シリカは、本組成物が硬化してエラストマー状になった際の強度を付与する材料であって、シリコーンゴムに対し補強性を有することが必要であり、このため比表面積が $50\text{ m}^2/\text{g}$ 以上である必要がある。このような材料の例示としては、親水性のシリカとして、Aerosil 130, 200, 300 (日本アエロジル社、Degussa社製)、Cabosil MS-5, MS-7 (Cabot社製)、Rheorosil QS-102, 103 (徳山曹達社製)、Nipsil LP (日本シリカ社製) 等が挙げられる。また、疎水性シリカとしては、Aerosil R-812, R-812S, R-972, R-974 (Degussa社製)、Rheorosil MT-10 (徳山曹達社製)、Nipsil SSシリーズ (日本シリカ社製) 等が挙げられる。

【0045】上記の材料を実用に供するため、硬化時間の調整を行う必要がある場合には、制御剤としてビニルシクロテトラシロキサンのようなビニル基含有オルガノポリシロキサン、トリアリルイソシアヌレート、アルキルマレート、アセチレンアルコール類及びそのシラン、シロキサン変性物、ハイドロパーAOキサイド、テトラメチルエチレンジアミン、ベンゾトリアゾール及びそれらの混合物からなる群から選んだ化合物など、或いは上記白金族化合物を有機樹脂、シリコーン樹脂等に包含させたものを使用しても差し支えない。

【0046】更に、石英粉末、珪藻土、炭酸カルシウム等の非補強性の充填剤、コバルトブルー等の無機顔料、有機染料などの着色剤、酸化セリウム、炭酸亜鉛、炭酸マンガン、ベンガラ、酸化チタン、カーボンブラック等の耐熱性、難燃性向上剤等の添加も可能である。

【0047】このような組成からなる未硬化の付加型シリコーンゴム組成物を熱可塑性樹脂の上に一体化成形する方法としては、予め成形されたポリカーボネート樹脂の上に未硬化の付加型シリコーンゴム組成物を所望の形状にして乗せ、ポリカーボネート樹脂の軟化する温度以下の温度で加熱する方法（金型、コーティング、ディッピング等）、予め成形されたポリカーボネート樹脂の上に未硬化の付加型シリコーンゴム組成物を乗せ、ポリカーボネート樹脂の軟化する温度以下の温度で加熱、圧縮する方法、射出成形機によりポリカーボネート樹脂を金型に先に射出成形し、次いで該金型内に付加型シリコーンゴム組成物を加熱射出する方法等が挙げられる。

【0048】この場合、不飽和基含有ポリカーボネート樹脂の成形体を製造する方法としては、通常の熱可塑性樹脂の成形加工法が適用される。このような方法の一例として、例えば上記ポリカーボネート樹脂をペレット化し、ポリカーボネート樹脂の軟化点以上に加熱された成形金型へ注入し、次いで金型をポリカーボネート樹脂の軟化点以下に冷却する公知の方法が便利である。この場合、一般に射出成形機、トランスファー成形機と呼ばれている機器の使用が可能である。次に、ポリカーボネート樹脂成形体上に成形されるシリコーンゴム組成物は、未硬化の状態で液状、パテ状、ペースト状などのいずれでもよいが、成形の容易さから当業者によって液状シリコーンゴム組成物と呼ばれている液状もしくはペースト状のものが望ましい。

[0049]

【発明の効果】本発明のポリカーボネート樹脂とシリコ

ーンゴムとの一体成型体は、脂肪族不飽和基を含有するポリカーボネート樹脂又は該樹脂を含有する組成物を使用すると共に、上記(d)成分を含有する付加型シリコーンゴムを積層、接着、一体化するようにしたので、ポリカーボネート樹脂とシリコーンゴムとが強固に接着した成型体を得ることができる。このため、この成型体は、電気、電子、自動車、精密機器等の部品に有效地に使用され、ポリカーボネート樹脂とシリコーンゴムとの特性をそれぞれ有効に発揮させることができる。

【0050】また、本発明の製造方法によれば、かかるポリカーボネート樹脂とシリコーンゴムとの一体成型体を簡単かつ確実に製造でき、特にポリカーボネート樹脂又は該樹脂を含む組成物の成形物の成形及びこの成形物に対する接着性シリコーンゴム組成物の接触を射出成形により行うことを可能にすると共に、(d)成分としてフェニル骨格を有し、アルコキシシリル基、グリシジル基、酸無水物基を含まないものを使用すれば、脱型に際し、シリコーンゴムがスムーズに金型から剥離するもので、金型に付着し難いものである。

【0051】

【実施例】以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるも

この組成物(I)を120°C/10分の硬化条件でプレスにてシートを作成した際の機械特性は以下の通りであった。硬さ(JIS A) 40; 伸び500%; 引張り強さ100kgf/cm²; 引裂き強さ35kgf/cm

【0054】次に、組成物(I)100重量部に下記式

【0056】一方、熱可塑性樹脂用射出成形機に末端がイソプロペニル基で変性されたポリカーボネート樹脂を投入し、290°Cで可塑化した後、多數個取りシート型金型キャビティに射出し、厚み2mm、幅25mm、長

のではない。

【0052】【実施例1】両末端がジメチルビニルシリル基で封鎖された25°Cでの粘度が10,000センチポイズであるジメチルシロキサンポリマー100重量部、比表面積が300cm²/gである煙霧質シリカ40重量部、ヘキサメチルジシラザン8重量部、水1重量部をニーダーに仕込み、常温で1時間攪拌混合を行った後、150°Cに昇温し、2時間保溫混合を行った。その後、混合物を常温迄冷却し、これに両末端がジメチルビニルシリル基で封鎖された25°Cでの粘度が10,000センチポイズであるジメチルシロキサンポリマーを更に20重量部及び式(A)で表わされる常温での粘度が約10センチポイズであるメチルハイドロジェンポリシリコサンを3重量部、硅素原子に直結したビニル基を5モル%含有する常温での粘度が1,000センチポイズであるビニルメチルポリシリコサンを4重量部、常温における硬化までの時間を延長させるためアセチレンアルコールを0.1重量部、白金ビニルシリコサン錯体を白金原子として50ppm添加し、均一になるまでよく混合し、液状付加型シリコーンゴム組成物(I)を得た。

【0053】

【化10】

… (A)

(B) 又は (C) で表わされる化合物(本発明(d)成分、接着性付与成分)をそれぞれ2重量部添加し、本発明に係るシリコーン組成物を調製した。

【0055】

【化11】

… (B)

… (C)

さ100mmのシートを数枚得た。射出条件は、射出時間6秒、冷却時間30秒、射出圧力1000kg/cm²、型締圧力35ton、キャビティ温度100°Cであった。次に、作成したシート、同寸のクロムメッキ金

属、ニッケルメッキ金属及びアルミ合金を引っ張り剪断接着試験片作成治具に固定し、上記シリコーン組成物を同治具に適量流し込み、120℃恒温槽にて8分間加熱して硬化し、図1に示す試験片を得、これを用いて接着性を調べた。その結果を表1に示す。なお、図1において、aはポリカーボネート樹脂又は金属試片、bはシリコーン組成物の硬化物(2×25×100mm)、cは

接着部分、d、eはそれぞれ支持体である。

【0057】〔比較例1〕実施例1の変性ポリカーボネート樹脂を未変性ポリカーボネート樹脂に変更した以外は同様の成形方法及び条件で図1の接着試験片を作成し、接着性を調べた。その結果を表1に示す。

【0058】

【表1】

	実施例1	比較例1
変性PC*	接着	—
(クロムメッキ金属)	接着)	—
(ニッケルメッキ金)	接着)	—
(アルミ合金)	接着)	—
未変性PC*	—	剥離

* PC : ポリカーボネート樹脂

【0059】〔実施例2〕実施例1と同一樹脂、同一射出成形方法及び条件にて、厚み2mm×幅25mm×長さ100mmのシートを数枚得た。

【0060】次に、作成したシート、同寸のクロムメッキ金属、ニッケルメッキ金属及びアルミ合金を引っ張り剪断接着試験片作成治具に固定し、前記液状付加型シリコーンゴム組成物(I)100重量部に下記式(D)又

は(E)で示される化合物をそれぞれ0.5重量部、1重量部添加した組成物を同治具に適量流し込み、120℃恒温槽にて8分加熱して硬化させた。このようにして得られた図1の試験片を用いて、接着性を調べた。その結果を表2に示した。

【0061】

【化12】

… (D)

… (E)

【0062】

【表2】

成 分 (D)	0.5重量部	1重量部		
成 分 (C)			0.5重量部	1重量部
クロムメッキ金属	剥離	剥離	剥離	剥離
ニッケルメッキ金属	剥離	剥離	剥離	剥離
アルミ合金	剥離	剥離	剥離	剥離
変性P C	接着	接着	接着	接着

【0063】〔実施例3〕この実施例において使用した成形機は2基の射出装置を備えた2色射出成形装置であり、図2に示すように、射出装置のノズル部(1)及び(2)が金型(3)、(4)のキャビティ(5)、(6)に連結する。ノズル部(1)は金型バーティングラインから、ノズル部(2)は金型右側面中央部から射出する。また、使用した金型は、左側金型片(3)と右側金型片(4)とからなり、それぞれの相対向する面の2箇所には成形凹部が形成されており、該各成形凹部により図2に示したようにキャビティ部(5)及び(6)が形成されている。

【0064】まず、末端がイソプロペニル基で変性されたポリカーボネート樹脂を該射出成形装置に投入し、290°Cにて溶融し、ノズル部(1)からキャビティ部(5)に射出し、ポリカーボネート樹脂シート成形物(7)を形成させた。その条件は、射出時間6秒、冷却時間35秒、キャビティ部(5)及び左側金型片(3)の温度は100°Cであった(図3参照)。

【0065】次に、右側の金型片(4)を外し、型開きを行うと共に、左側の金型片(3)の凹部に樹脂シート成形物(7)を保持したまま金型片(3)を180°回転させ、右側の金型片(4)を合わせて再び型締めし、シリコーンゴムシート成形物形成用のキャビティ部を樹脂シート成形物(7)に形成された面と金型片(4)の成形凹部面とで形成せしめた(図4参照)。

【0066】この状態で射出装置のノズル部(2)から樹脂シート成形物(7)に形成された面に前記液状付加型シリコーンゴム組成物(1)100重量部に実施例2で用いた(D)及び(E)の化合物を0.5及び1重量部添加した組成物を射出し、ゴムシート成形物(8)を形成させた。その条件は射出時間6秒、硬化時間90秒、左側金型片(3)の温度は100°C、右側金型片(4)の温度は120°Cであった(図5参照)。

【0067】以上の製造工程によって図6に示すような

樹脂シートとゴムシートからなる複合成型体(幅が2.5mm、長さが15cm、厚みが2mmで、樹脂とシリコーンゴムは同寸)を得た。実施例2で用いた(D)及び(E)の化合物0.5及び1重量部添加した組成物の複合成型体は、いずれも強固に接着したものであり、寸法精度、生産性が良好であった。また、クロムメッキされた炭素鋼製金型とゴムシートは全て容易に剥離した。

【0068】〔比較例3〕実施例3の変性ポリカーボネート樹脂を未変性ポリカーボネート樹脂に変更した以外は同様の射出方法及び条件で図6の複合体を作成し、接着性を調べたが、樹脂とシリコーンゴムは容易に剥離した。

【図面の簡単な説明】

【図1】接着試験片を示し、(A)は正面図、(B)は平面図である。

【図2】本発明の成型体の成形に使用した射出成形機の概略断面図である。

【図3】同成形機にポリカーボネート樹脂を射出成形した状態の概略断面図である。

【図4】同成形機において、金型部分を反転した状態の概略断面図である。

【図5】同状態においてシリコーンゴム組成物を射出成形した状態の概略断面図である。

【図6】図5の操作後に得られた成型体の斜視図である。

【符号の説明】

- 1 ノズル部
- 2 ノズル部
- 3 金型片
- 4 金型片
- 5 キャビティ部
- 6 キャビティ部
- 7 ポリカーボネート樹脂シート成形物
- 8 シリコーンゴムシート成形物

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

フロントページの続き

(51) Int. Cl. 6
C 09 J 183/07
// B 29 K 83:00

識別記号 庁内整理番号
C 09 J 183/07

F I
C 09 J 183/07

技術表示箇所

(72) 発明者 松田 晃
群馬県碓氷郡松井田町大字人見1番地10
信越化学工業株式会社 シリコーン電
子材料技術研究所内

(72) 発明者 小川 典慶
大阪府豊中市神州町二丁目12番地 三菱
瓦斯化学株式会社 大阪工場内
(72) 発明者 高田 聰明
大阪府豊中市神州町二丁目12番地 三菱
瓦斯化学株式会社 大阪工場内

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.