MATH 245 Homework 4

Ruby Krasnow and Tommy Thach

2024-03-18

Question 1: Find eigenvalues and eigenfunctions

(a)

 $-\frac{d^2}{dx^2}X(x) = \lambda X(x) \text{ in } 0 < x < l \text{ with boundary conditions } X'(0) = 0 = X(l).$

(b)

 $x^2 X''(x) + x X'(x) + \lambda X(x) = 0$ in 1 < x < e with boundary conditions X(1) = 0 = X(e).

(c)

On the interval $0 \le x \le 1$ of length one, consider the eigenvalue problem

$$-X'' = \lambda X$$
, $X'(0) + X(0) = 0$, $X(1) = 0$

- (i) Find an eigenfunction with eigenvalue zero. Call it $X_0(x)$.
- (ii) Find an equation for the positive eigenvalues $\lambda = \beta^2$.
- (iii) Show graphically from part (b) that there are an infinite number of positive eigenvalues.
- (iv) Is there a negative eigenvalue?

Question 2

Find the Fourier-series of f(x). Does the Fourier-series converge (i) pointwise, or (ii) uniformly?

(a)

$$f(x) = \begin{cases} 1 - |x| & |x| \le 1\\ 1 & 1 < |x| \le \pi \end{cases}$$

(b)

$$f(x) = |x| = \begin{cases} -x & -\pi \le x \le 0\\ x & 0 < x \le \pi \end{cases}$$

(c)
$$f(x) = x + x^2, \quad -\pi \le x \le \pi$$

Question 3

(a) Find the Fourier-sine-series of

$$f(x) = \begin{cases} 1 & 0 < x < \pi/2 \\ 2 & \pi/2 < x < \pi \end{cases}$$

(b) Find the Fourier-cosine-series of $f(x) = |\sin x|$. Then find

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1}$$

(c) The Riemann Zeta function is defined for s > 1 by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

By computing the Fourier series of x^2 over $-\pi < x < \pi$ and using Parseval's identity, compute $\zeta(4)$.

(d) Use the Fourier series in 2c and the pointwise convergence theorem to find $\zeta(2)$. Then find

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

Question 4

Compute the complex Fourier series of the following functions:

(a) Compute the complex Fourier series of $f(x) = e^x$ and show that

$$coth \pi = \frac{1}{\pi} + \frac{2}{\pi} \left(\frac{1}{1+1^2} + \frac{1}{1+2^2} + \frac{1}{1+3^2} + \dots \right)$$

(b) Find the complex Fourier series of xe^{ix} . Then use your result to find the Fourier series of $x\cos x$ and $x\sin x$.

Question 5.

Find the function represented by the new series which is obtained by termwise integration of the following series from 0 to x.

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{\cos kx}{k} = \log\left(2\cos\left(\frac{x}{2}\right)\right), \quad -\pi < x < \pi$$