

第三部分 代数结构

- □主要内容
- 代数系统----二元运算及其性质、代数系统和子代数数
- 半群与群----半群、独异点、群
- 格与布尔代数----格、布尔代数

第九章 代数系统

- □主要内容
- □二元运算及其性质
- 一元和二元运算定义及其实例
- 二元运算的性质
- □代数系统
- 代数系统定义及其实例
- 子代数
- 积代数
- □代数系统的同态与同构

第九章: 代数系统

第一节:二元运算及其性质

本部分用代数方法来研究数学结构,故又叫代数结构,它将用抽象的方法来研究集合上的关系和运算。代数的概念和方法已经渗透到计算机科学的许多分支中,它对程序理论、数据结构、编码理论的研究和逻辑电路的设计已具有理论和实践的指导意义。

代数,也称代数结构或代数系统,是指定义 有若干运算的集合

代数常由3部分组成:

- 1.一个集合,叫做代数的*载体*。
- 2. 定义在载体上的运算。
- 3.载体的特异元素,叫做代数*常数*。

因此,代数通常用载体,运算和常数组成的n 重组表示

- □二元运算:设S是个集合,S×S到S的一个函数 (映射)f: S×S→S称为S上的一个二元代数 运算
- 注:映射有存在性和唯一性的要求,运算当然要 此要求。
- ①<mark>存在性</mark>: ∀x,y∈S, f(<x,y>)要有结果, 并且此结果∈S
- ②<mark>唯一性</mark>: ∀x,y∈S, f(<x,y>)只能有一个 结果∈S

□例

- **❖自然数集合上的加法和乘法**
- ❖整数集合?
- ❖任意集合S的幂集上的并、交运算
- ❖命题集合上的合取、析取运算
- □通常用*,·, +, ×来表示二元运算,称为<mark>算符</mark>

例: f是A上的二元运算,即f是A×A→A的映射。

∀x,y∈A, f(<x,y>)=z∈A,用算符*表示, 即x*y=z

□例: f是R上的二元运算:

∀x,y∈R, f(<x,y>)=x,用算符*表示,即 x*y=x

计算: 3*4, (-5)*0.2

- □一元运算:设A是个集合,函数f:A→A称为A 上的一个一元代数运算
- □例:
 - ❖整数集合、有理数集合上的相反数
 - ❖非零有理数x的倒数1/x
 - **❖**集合的补运算
 - ❖逻辑公式的补运算

例:在I₊上定义运算:*, +。∀x,y∈I₊ x*y=x,y的最大公约数, x+y=x,y的最小公倍数

求: 6*8, 6+8, 12*15, 12+15

例: 在R上求平方根运算 (一元运算)

不是一个代数运算

-9不存在平方根,存在性不满足 9有两个平方根,3,-3,唯一性不满足

□例: 设 $S = \{1, 2\},$ 给出P(S)上的运算 $^{\sim}$ 和 ⊕运算

表,S为全集合

$\mathbf{a_i}$	$\overset{\sim}{}$ $\mathbf{a_i}$	
Ф	{1,2}	
{1}	{2 }	
{2 }	{1}	
{1,2}	Ф	

⊕	Ф	{1}	{2}	{1,2}
Ф	Ф	{1}	{2}	{1,2}
{1}	{1}	Ф	{1,2}	{2 }
{2}	{2 }	{1,2}	Ф	{1}
{1,2}	{1,2}	{2}	{1}	Ф

- □可交换的运算:*为S上的二元运算,对于任意的x,y∈S都有x*y=y*x
 - ❖*满足交换律
 - ❖实数集合的加法、逻辑公式集合的合取
 - ***函数的复合运算**
- □可结合的运算: *为S上的二元运算, 对于任意的x, y,z∈S都有(x*y)*z=x*(y*z)
 - ❖*满足结合律
 - ❖实数集合的加法、逻辑公式集合的合取
 - **❖函数的复合运算**

- □*适合幂等律:*为S上的二元运算,对于任意的x∈S都有x*x=x
 - ❖满足x*x=x的x称为运算*的幂等元

□例

- ***集合的并和交适合幂等律**
- **❖集合的⊕和-一般不适合幂等律**
- ※0是加法的幂等元
- ❖0和1是乘法的幂等元

- □运算*对⊙是可分配的: ⊙和*为S上的二元运算,对于任意的x,y,z∈S都有x*(y⊙z)=(x*y)⊙(x*z) (左分配律)
 (y⊙z)*x=(y*x)⊙(z*x) (右分配律)
 - ❖*对⊙是满足分配律

□例

- **❖实数上的乘法对加法是可分配的**
- ***集合上的交对并是可分配的**
- ***逻辑公式上的合取对析取是可分配的**

□运算*和⊙满足吸收律: ⊙和*为S上的二元运

算,对于任意的x,y∈S都有

$$x*(x \odot y)=x$$

$$x \odot (x*y)=x$$

- □例
 - **❖集合上的交和并满足吸收律**
 - ***逻辑公式上的合取和析取满足吸收律**

□左幺元(右幺元):设*是A上的二元运算,如果存在元素 e_L (或 e_r) \in A,使得对一切 $x\in$ A,均有

$$e_L * x = x (\overrightarrow{x} * e_r = x)$$

则称e_L(e_r)是A中关于运算*的一个左幺元(右幺元)

◇若元素e既是左幺元,又是右幺元,则称e是A中 关于*的一个幺元(e也可记为1,称单位元)

□例:

- *实数集上加法运算,0是幺元;
 乘法运算,1是幺元
- □例:实数集R上定义运算∀a,b∈R, a*b=a,则不存在左幺元,使得∀b∈R, e_L*b=b,而对一切a∈R,∀b∈R,有b*a=b,
- ∴该代数系统不存在左幺元。 但是R中的每一个元素a都是右幺元

□定理:若e_i和e_r分别是S上对于*的左幺元和右幺元,那么e_i=e_r,且这个元素就是幺元

证明: $e_l = e_l * e_r = e_r$

□推论:一个二元运算的幺元是唯一的

证明:设e=e_l=e_r.假设e'是S中的单位元,则

e'=e *e'=e

□左零元(右零元):*是A上的二元运算,如果存在元素 O_L (或 O_r) \in A,使得对一切 $X\in$ A,

均有 $0_L * x = 0_L (或x * 0_r = 0_r)$

- 则称O_L(O_r)是A中关于运算*的一个左零元 (右零元)
 - ❖若元素0既是左零元,又是右零元,则称0是A 中关于运算*的一个零元
 - ❖注:零元不一定是0!

□例:

- ❖实数集合R上,对×运算而言,0是零元
- **❖P(A)上,对∪运算A是零元**;对∩运算∅是零元
- ❖命题上,对∨运算T是零元;对∧运算F是零元

- □定理: 若0₁和0_r分别是S上对于*的左零元和 右零元,那么0₁=0_r,且这个元素就是零元。而 且零元是唯一的
- □定理:设*为S上的二元运算,1和0分别为*运算的幺元和零元,如果S至少有两个元素,则1≠0

证明:反证法。假设1=0,任意x∈S有 x=x*1=x*0=0

与S至少有两个元素矛盾!

□设*是集合A上的二元运算, 1∈A是运算*的 幺元, 对于∀x∈A, 如果存在一个元素y_i(或 y_r)∈A, 使得

$$y_1 * x = 1 (\vec{x} x * y_r = 1)$$

则称y_l (或y_r) 是x的*左逆元* (或*右逆元*)

- □如果x的逆元存在,则称x是可逆的
- □例:Z上的加法运算,则任一元素的逆元就是它的相反数;而对N上的加法运算,只有0存在逆元是0
- □例:n阶矩阵加法和乘法

□代数A = <{a, b, c}, *>由下表定义

*	a	b	c
a	a	a	b
b	a	b	c
c	b	c	b

可以看出,b是幺元。a的逆元是c,b的逆元是自身,c的逆元是a和c

定理:设Z是集合,*是Z上的二元运算,并且是可结合的,运算*的幺元是1。若x∈Z有左逆元和右逆元,则它的左逆元等于右逆元,且逆元是唯一的。

证明:

(1) 先证左逆元=右逆元:

设yı和yı分别是x的左逆元和右逆元,

- ∵x是可逆的和可结合的(条件给出)
- $\therefore y_1 * x = x * y_r = 1$
- $y_1 * x * y_r = (y_1 * x) * y_r = 1 * y_r = y_r;$ $y_1 * x * y_r = y_1 * (x * y_r) = y_1 * 1 = y_1;$
- $\therefore y_1 = y_r$

(2) 证明逆元是唯一的:

假设y和z是x的二个不同的逆元, 则y=y*1=y* (x*z) = (y*x) *z=1*z=z, 这和假设相矛盾。

::x若存在逆元的话一定是唯一的(前提*是可结合的)

□*满足消去律:*是S上的二元运算,对于每一x,y,z∈S有

若x*y=x*z,且x≠0,则y=z; (左消去律)

若y*x=z*x,且x≠0,则y=z; (右消去律)

- □例:
 - ❖整数集合上加法,乘法运算都满足消去律
 - ❖幂集合上交和并运算*不满足*消去律

- □例:对于下面给定的集合和该集合上的二元运算 ,指出该运算的性质,并求出它的单位元、零元 和所有可逆元素的逆元
 - (1) Z+, x*y = lcm(x, y) (求最小公倍数)
 - (2) $Q_{x} = x + y xy$

回顾

代数常由3部分组成:

- 1.一个集合,叫做代数的*载体*。
- 2. 定义在载体上的运算。
- 3.载体的特异元素,叫做代数*常数*。 因此,代数通常用载体,运算和常数组成的n重 组表示
- □二元运算:设S是个集合,S×S到S的一个函数(映射)f: S×S→S称为S上的一个二元代数运算
- □一元运算:设A是个集合,函数f: A→A称为A上的一个一元代数运算

回顾

□运算的性质:

❖交换律: x*y=y*x

❖结合律: (x*y)*z=x*(y*z)

❖幂等律: x*x=x

❖分配律: x*(y⊙z)=(x*y)⊙(x*z) (左分配律)

(y⊙z)*x=(y*x)⊙(z*x) (右分配律)

◇吸收律: x*(x⊙y)=x

 $x \odot (x*y)=x$

※消去律: 若x*y=x*z,且x≠0,则y=z (左消去律)

若y*x=z*x,且x≠0,则y=z (右消去律)

回顾

□代数常数

❖左幺元(右幺元):

$$e_L * x = x (x * e_r = x)$$

❖左零元(右零元):

$$0_{L} \times x = 0_{L} (\vec{x} \times 0_{r} = 0_{r})$$

❖左逆元 (右逆元):

$$y_1 * x = 1 (x * y_r = 1)$$

第九章: 代数系统

第二节:代数系统

- 口代数系统: 非空集合S和集合上k个一元或二元运算 $f_1,...,f_k$ 所组成的系统
 - **❖**符号V=<S,f₁, f₂,... f_k>
- □构成一个代数系统必须具备的条件:
 - ❖一个非空集合S,称为*载体*
 - **❖在S**上的*运算*

□常见代数系统:

- ***<N, +>**
- ***<Z**, +, ⋅>
- $*<M_n(R), +, \cdot>$
- ***<P(S)**, ∪, ∩, ~>

□特异元素(代数常元):

- ❖二元运算中的单位元与零元
- ❖<Z,+>中的+运算的单位元0
- **❖<P(S)**, ∪, ∩, ~>中∪和∩运算的单位元Ø和**S**

- □ 通常也可把特异元素(常数)放在代数系统之中,形成<**S**, f_1 , f_2 ,... f_k ,x>:
 - <<N, +, 0>
 - $*<P(S), \cup, \cap, \sim, \emptyset, S>$
- □代数系统的基数 | V | = | S |,

就是非空集合的基数

□同类型的代数系统:

❖两个代数系统中有相同个数的运算和常数,且对应运算的元数相同

□例:

$$V_1 = \langle R, +, \cdot, -, 0, 1 \rangle$$

 $V_2 = \langle P(S), \cup, \cap, \sim, \emptyset, S \rangle$

- □同类型的代数系统不一定具有相同的运算性质
- □代数结构的主要内容:

从代数系统的构成成分和遵从的算律出发, 将代数系统分类,然后研究其共同性质,再将 研究结果运用到具体的代数系统中

- □运算封闭:设*和Δ是集合S上的二元和一元运算,S'是S的子集
 - ❖如果a,b∈S'蕴涵着a*b∈S',那么S'对*是封闭的
 - ❖如果a∈S'蕴涵着 Δ a∈S',那么S'对 Δ 是封闭的
- □例:减法是Z上的运算,Z的子集自然数N
 - **❖可能x,y∈N**,但x-y∉N
 - ❖减法在N上不是封闭的,即N对减法不封闭
- □例:N对Z的加法运算+是封闭的

- \Box 子代数系统: $\langle S, f_1, ..., f_k \rangle$ 是一个代数系统
 - **⋄**B⊆A,B≠Φ
 - B对运算 $f_1,f_2,...,f_k$ 是封闭的
 - ❖B和S有相同的代数常元
 - \diamond <B,f₁,...,f_k>是<S,f₁,...,f_k>的代数子系统
- □例:整数集合Z在加法下构成一个代数系统 < Z, +, 0 >
 - Z_1 是奇数集合, Z_1 ,+>是否其子代数系统?
 - $*Z_2$ 是偶数集合, $<Z_2$,+,0>是否其子代数系统?

- □例: <**Z,->** 是代数系统
 - ❖ <N,->不是子代数系统
 - N对减法不封闭的
- □注:
 - 任何 $V=<S,f_1,...,f_k>$ 的子代数一定存在
 - ❖最大的子代数是它自己
 - ❖最小子代数: 所有常元构成的子代数
 - 可能不存在!

- □积代数: 设 V_1 =< A_0 >和 V_2 =< B_0 +>是同类型的代数系统, V_0 0和+为二元代数系统
 - **❖V=<A×B, ◆>为V₁, V₂的积代数, ●定义为**
 - $<a_1,b_1> <a_2,b_2> = <a_10a_2,b_1*b_2>$
 - ❖Ⅴ₁和Ⅴ₂为Ⅴ的因子代数

- □定理: 设 V_1 =< A_1 o>和 V_2 =< B_1 *>是同类型的代数系统,V=<A× B_1 *>为 V_1 和 V_2 的积代数
 - ❖如果o和*运算是可交换(可结合、幂等)的,那么运算●也是可交换(可结合、幂等)的
 - **◇**如果 e_1 和 e_2 (0_1 , 0_2)分别为o和 * 运算的单位元(零元),那么 $<e_1$, $e_2>$ ($<0_1$, $0_2>$)也是运算•的单位元(零元)
 - ❖如果x和y分别为o和x运算的可逆元素,那么x,y>也是运算x0的可逆元素,逆元为x1,y1>

- □积代数也保留因子代数中的分配律和吸收律
- □消去律是一个例外

例: $Z_n = \{0,1,...,n-1\}$,其中n是正整数, $V_1 = \langle Z_4, \otimes_4 \rangle$, $V_2 = \langle Z_3, \otimes_3 \rangle$ 分别表示模4和模3乘法的代数系统

第九章: 代数系统

第三节:代数系统的同态与同构

□动机:

- ❖不同代数系统可能类型相同
- ❖更进一步,可能有共同的运算性质
- ❖有些系统在结构上相似或相同

□同态和同构

❖讨论代数系统的相似或相同的关系

- □例: 给定 V₁=<Z₃,⊕₃>, V₂=<A, ⊕₆>, Z₃={0,1,2}, A={0,2,4}, ⊕₃和⊕₆分别是表示模3和模6加
 - **❖定义函数f**: Z₃→A
 - f={<0,0>, <1,2>, <2,4>}
 - ❖f是双射函数
 - ❖在f的映射下,Z₃和A有相同结构

- □ 同态映射(同态)f: A→B
- V_1 =<A, o>, V_2 =<B, *>是同类型代数系统 *f(xoy)=f(x)*f(y)
- □同态映射分类
 - ❖单同态: f为单射
 - ❖满同态: f为满射V₁~V₂
 - ❖同构: f为双射V₁≅ V₂
- □自同态f: A→A


```
□例:设代数系统G_1 = \langle N_1 \rangle + \rangle和G_2 = \langle N_n \rangle
  \oplus_{n} >, N_{n} = \{0,1,2,...n-1\}
   f: N \rightarrow N_n, f(x) = (x) \mod n
   ❖f是G₁到G₂的同态
   ∀x,y∈ N有
   f(x+y)=(x+y) \mod n
            =(x) \mod n \oplus_n (y) \mod n
            =f(x) \oplus_n f(y)
   由于f为满射,f为满同态
```


第九章 习题课

- □主要内容
- 代数系统的构成:非空集合、封闭的二元和一元运算、代数常数
- 二元运算性质和特异元素:交换律、结合律、幂等律、分配律、吸收律、单位元、零元、可逆元和逆元
- 同类型的与同种的代数系统
- 子代数的定义与实例
- 积代数的定义与性质
- 代数系统的同态与同构

基本要求

- 判断给定集合和运算能否构成代数系统
- 判断给定二元运算的性质
- 求二元运算的特异元素
- 了解同类型和同种代数系统的概念
- 了解子代数的基本概念
- 计算积代数
- 判断函数是否为同态映射和同构映射

练习1

1. 设。运算为Q上的二元运算,

$$\forall x, y \in Q, x \circ y = x + y + 2xy,$$

- (1) 判断。运算是否满足交换律和结合律,并说明理由.
- (2) 求出。运算的单位元、零元和所有可逆元素的逆元.
- (1)。运算可交换,可结合.

任取 $x, y \in Q$,

$$x \circ y = x + y + 2xy = y + x + 2yx = y \circ x,$$

任取 $x, y, z \in Q$,

$$(x \circ y) \circ z = (x+y+2xy)+z+2(x+y+2xy)z$$

= $x+y+z+2xy+2xz+2yz+4xyz$
 $x \circ (y \circ z) = x+(y+z+2yz)+2x(y+z+2yz)$

$$= x+y+z+2xy+2xz+2yz+4xyz$$

解答

(2) 设。运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 xoe = x 成立,即

$$x+e+2xe = x \Rightarrow e = 0$$

由于。运算可交换, 所以 0 是幺元.

对于任意 x 有xo θ = θ 成立,即

$$x+\theta+2x\theta=\theta \Rightarrow x+2x\theta=0 \Rightarrow \theta=-1/2$$

给定x,设x的逆元为y,则有 $x \circ y = 0$ 成立,即

$$x+y+2xy = 0 \Rightarrow y = -\frac{x}{1+2x} \quad (x \neq -1/2)$$

因此当 $x \neq -1/2$ 时, $-\frac{x}{1+2x}$ 是x的逆元.

练习2

- 2. 下面是三个运算表
- (1) 说明那些运算是可交换的、可结合的、幂等的.
- (2) 求出每个运算的单位元、零元、所有可逆元素的逆元

*	a	b	c
a	c	a	b
b	a	b	$\boldsymbol{\mathcal{C}}$
C	b	C	a

0	a	b	С
a b	a b	а b	a b
c	С	C	c

•	a	b	С
a	a	b	С
$\mid b \mid$	b	C	\mathcal{C}
$\mid c \mid$	C	C	C

解答

- (1)*满足交换律,满足结合律,不满足幂等律.
 - 。不满足交换律,满足结合律,满足幂等律.
 - •满足交换律,满足结合律,不满足幂等律.
- (2)*的单位元为b,没有零元, $a^{-1}=c, b^{-1}=b, c^{-1}=a$
 - 。的单位元和零元都不存在,没有可逆元素.
 - 的单位元为 a,零元为c, $a^{-1}=a$,b, c不是可逆元素.

说明:关于结合律的判断

需要针对运算元素的每种选择进行验证,若|A|=n,一般需要验证 n^3 个等式.

单位元和零元不必参与验证.

通过对具体运算性质的分析也可能简化验证的复杂性.

练习3

- 3. 设*G*为非0实数集*R**关于普通乘法构成的代数系统, 判断下述函数是否为*G*的自同态?如果不是,说明理由. 如果是,判别它们是否为单同态、满同态、同构.
- (1) f(x) = |x| + 1
- (2) f(x) = |x|
- (3) f(x) = 0
- (4) f(x) = 2

解答

- 解 (1) 不是同态, 因为 f(2×2)=f(4)=5, f(2)×f(2)=3×3=9
- (2) 是同态,不是单同态,也不是满同态,因为f(1)=f(-1),且 ran f 中没有负数.
- (3) 不是G 的自同态,因为f 不是G 到G 的函数
- (4) 不是G 的自同态,因为 $f(2\times2)=2$, $f(2)\times f(2)=2\times2=4$

说明: 判别或证明同态映射的方法

- (1) 先判断(或证明) $f \in G_1$ 到 G_2 的映射 $f: G_1 \rightarrow G_2$. 如果已知 $f: G_1 \rightarrow G_2$,则这步判断可以省去.
- (2) $\forall x, y \in G_1$, 验证 $f(x \times y) = f(x) \times f(y)$
- (3) 判断同态性质只需判断函数的单射、满射、双射性即可.

作业

