Aufgabenblatt 7

Grundlagen

i) Geben Sie die folgende Zahl in ihrer Standardform a + ib an.

$$\frac{1+3\,\mathrm{i}}{2+\frac{5-3\,\mathrm{i}}{3+4\,\mathrm{i}}}\cdot (146-73\,\mathrm{i})\,.$$

 $\textbf{ii)} \ \ \text{Berechnen Sie für alle } n \in \mathbb{N} \ \text{die Summe} \ \ \sum_{k=0}^n \binom{n}{k} \frac{(4+3\,i)^{n-k}}{(3+4\,i)^k} \, .$

Berechnen Sie \mathfrak{u}_0^3 , \mathfrak{u}_1^3 und \mathfrak{u}_2^3 . Was fällt Ihnen dabei auf? Berechnen Sie auch z_1^6 , z_2^8 und z_3^{12} .

J. Hellmich 26. 1. 2023

Quadratische Gleichung

Lösen Sie die quadratischen Gleichungen

$$x^2 - (7+i)x + 24 + 7i = 0, (1)$$

$$10x^{2} + (1 - 20i)x + 28 - 19i = 0.$$
 (2)

Verwenden Sie dabei ruhig die *Mitternachtsformel* (am besten in der p-q-*Form*) und nutzen Sie für die dabei auftretende Wurzel (wohlgemerkt: aus einer komplexen Zahl) folgendes Ergebnis:

Durch

$$\sqrt{z} \coloneqq \sqrt{\frac{1}{2}\big(|z|+\alpha\big)} + \mathrm{i} \nu(b) \sqrt{\frac{1}{2}\big(|z|-\alpha\big)}\,, \qquad \nu(b) \coloneqq \begin{cases} 1, & b \geqslant 0 \\ -1, & b < 0 \end{cases}$$

ist eine Quadratwurzel einer Zahl z := a+ib gegeben (also eine komplexe Zahl w mit der Eigenschaft $w^2 = z$). Eine weitere ist offensichtlich $-\sqrt{z}$.

Überprüfen Sie Ihre Lösungen durch Einsetzen in die zugehörige quadratische Gleichung.

Die Additionssätze der Trigonometrie

- i) Ergänzen Sie Skizze I, um die Koordinaten von \mathbf{b}_1 und \mathbf{b}_2 zu bestimmen.
- ii) Ergänzen Sie Skizze II, um c_1 und c_2 zu bestimmen. Natürlich verwenden Sie dabei die Ergebnisse aus i.
- iii) Ergänzen Sie Skizze III, um c_1 und c_2 direkt zu erhalten (ohne die Ergebnisse aus ii).
- iv) Vergleichen Sie die Darstellung von c_1 aus ii und iii. Zeigen Sie damit die *Additionssätze* der Trigonometrie (erinnern Sie sich dabei an $\sin^2(\alpha) + \cos^2(\alpha) = 1$):

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta), \tag{3}$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta),\tag{4}$$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha), \quad \cos(2\alpha) = 2\cos^2(\alpha) - 1,$$
 (5)

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)},\tag{6}$$

$$\cos(3\alpha) = 4\cos^3(\alpha) - 3\cos(\alpha). \tag{7}$$

J. Hellmich 26. 1. 2023

Die Multiplikation in €

Eine komplexe Zahl z auf dem Einheitskreis

$$\mathbb{C}_1 \coloneqq \{ z \in \mathbb{C} \mid |z| = 1 \}$$

läßt sich in der Form $z=\cos(\alpha)+\mathrm{i}\sin(\alpha)$ mit einem geeigneten Winkel α schreiben. Ein beliebige komplexe Zahl läßt sich daher durch

$$z = |z|(\cos(\alpha) + i\sin(\alpha))$$

wiedergeben. Das ist die sogenannte Polardarstellung von z.

- i) Bestimmen Sie die Polardarstellung von z = 3+4 i und von u_1, z_1, z_2, z_3 aus der zweiten Aufgabe.
- ii) Berechnen Sie für $z = |z| (\cos(\alpha) + i \sin(\alpha))$ und $w = |w| (\cos(\beta) + i \sin(\beta))$ das Produkt $z \cdot w$. Vergleichen Sie Ihr Ergebnis mit der vorigen Aufgabe. Geben Sie damit eine geometrische Deutung der Multiplikation in \mathbb{C} . (Dieser Aufgabenteil ist als Wiederholung der Vorlesung gedacht.)

J. Hellmich 26. 1. 2023