Part A: Finding Modular Inverses

1. x. 3 mod 10=1 ged (3,10) = 3' x3=1 mod 10 z'.s' -17,-7,[7],17,27
7. Modular inverses are not unique. Looking of the first problem, the 7 representative can be written so that x:3=11 mod 10 such that a progression of numbers would work by adding or subtracting 10' From 7. Since we are progressing by 10, they all x's end with 7.
3. x 5 mod 10=1 gcd (5,10) = 2151 = 5 => Since they are not relatively prime, a modular inverse does not exist
x'2 mod 10=1 gcd (2,10) = 2 S = Z => Again, not relatively prime gcd (2,10) = 2 S = Z => Go a modular invose does not exist.

Week 8 HW – Cryptography Theo Shin

Find the inverse if you can.

 $x * 7 \mod 10 = 1$

 $x * 26 \mod 13 = 1$

 $x * 7 \mod 5 = 1$

 $x * 5 \mod 21 = 1$

 $x * 6 \mod 35 = 1$

 $x * 7 \mod 13 = 1$

What is the rule for when Modular inverses exist?

A modular inverse exists only if the two integers are relatively prime (GCD is 1).

4. Do #1-4 page 284 SHOW YOUR WORK

p.284 1. \(\times .7 = 1 \) (mod 26) gcd (7, 26) = z' .13' = 1 \(\times -37, -11 \) [15] 41, 67 \(\times \)	2 mil 17 3).2 = 1 (mod 17) (-25, -8 [9], 26, 43?
2. x. 13 = 1/(mol 2436) gcd (13, 2436) = 1218.2 -604.2 ² -23.3.2 ² = 24.7.3.2 ² relatively prime	
$x = 937 \Rightarrow 937.13 = 12,181 = 1 \pmod{3}$ 3. $gcd(a,m)=1$ $fa + fm=1$ $fa + fm=1 \pmod{m}$ $fa = 1 \pmod{m}$	22

Week 8 HW – Cryptography Theo Shin

Part B:

If an inverse of a mod n exists, what is the gcd(a,n)? Why?

The inverse of a mod n exists only when gcd(a,n) is 1 by Bezout's theorem.

LEMMA 2

If a, b, and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

Proof: Because gcd(a, b) = 1, by Bézout's theorem there are integers s and t such that

$$sa + tb = 1$$
.

Multiplying both sides of this equation by c, we obtain

$$sac + tbc = c$$
.

We can now use Theorem 1 of Section 4.1 to show that $a \mid c$. By part (ii) of that theorem, $a \mid tbc$ Because $a \mid sac$ and $a \mid tbc$, by part (i) of that theorem, we conclude that a divides sac + tbc Because sac + tbc = c, we conclude that $a \mid c$, completing the proof.

This can also be expressed as $ax \equiv 1 \pmod{b}$ and if a and b have a common factor, then it can be proved by contradiction, the common factor would divide the 1.

1. Now do #5 and #6 page 284

#5

5. (a = 4, m=9) 9 (d (4, 9) 9 = 4 (2) + (1) 4 = 1 (4) + 0 9 (d (9, 4) = 1) (b) a=10, n=141	9 - 4(2) = (1)	9 s + 4 t = ged (9,4) 9 s + t = 1 9 - 4(2) - 1 5 = 1 1 - 2 1 over 52 Coefficient of a
g(d(141,19)) $141 = 19(7) + (8)$ $19 - 8(2) + (3)$ $8 = 3(2) + (2)$ $3 = 2(1) + (0)$ $2 = 1(2) + (0)$	$ \begin{array}{c cccc} $	$ 4 + 194 = 9(d(141,19))$ $ 4 + 194 = 1$ $ 3 - 2(1) = 1$ $ 3 - 3(2) + 1 = 52 \cdot 19 - 7 \cdot 141 + 19 \cdot 19$ $ 3 - 8 + (2) = 1 = 141 \cdot (7) + 19 \cdot (52)$ $ 3(3) - 8 = 1$ $ 3(19 - 8(2) = 8 = 1$ $ 3(19 - 7 \cdot 8 = 1)$ $ 3(19 - 8 = 1)$ $ 3($

5. @ a= 55, m= 8°	
gcd (89,55)	995+55t=gcd (89,55)
89 = 55(1) + (34) $89 = 55(1) = (34)$ $55 = 34(0) - (21)$ $34 = 21(1) + (13)$ $21 = 13(1) + (8)$ $13 = 8(1) = (8)$ $21 = 3(1) + (8)$ $13 = 8(1) = (8)$ $13 = 8(1) = (8)$ $13 = 8(1) = (8)$ $13 = 8(1) = (8)$ $13 = 8(1) = (13)$ $13 = 8(1) = ($	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
8 = 5(1) + (3) $5 = 3(1) + (2)$ $3 = 26$ $4(1)$	2:8-3:5=1 2:8-3:(13-8)=1 2:8-3:13+3:8=1 5:4-3:13=1 5:4-3:13=1 5:21-5:13-3:13=1
	5.21 -8.13 = 1 5.21 -8.34 -21) = 1 5.21 - 8.34 + 8.21 = 1 13.21 - 8.34 = 1 13.655 - 34) - 8.34 = 1 13.55 - 13.54 - 8.34 = 1 13.55 - 21.34 = 1
(a) a=89, m=232	13:55 - 21:89 - 55)=1 13:55 - 21:89 + 21:55 = 1 34:55 - 21:89 = 1
g(1) (232,89) $232 = 89(2) + (54)$ $89 = 54(1) + (35)$ $54 = 35(1) + (19)$ $35 = 19(1) + (16)$ $19 = 16(1) + (3)$ $16 = 3(5) + (1)$ $16 = 3(5) + (1)$ $16 = 3(5) + (1)$ $16 = 3(5) + (1)$	$2325+89t=1$ $16-3(5)=1$ $16-5(19-16)=1$ $16-5(19+5\cdot 16=1)$ $6\cdot 16-5\cdot 19=1$ $6\cdot (35-19)-5\cdot 19=1$
	6:35 - 6:19 - 5:19 = 1 6:35 - 11:19 = 1 6:35 - 11:54 - 35) = 1 6:35 - 11:54 = 1 17:35 - 11:54 = 1
	17.(89 - 54) - 11.54 = 1 $17.89 - 17.54 - 11.54 = 1$ $17.89 - 28.54 = 1$ $17.89 - 28.(232 - 84.2) = 1$ $17.89 - 28.232 + 56.89 = 1$
	73.89 - 28.232 = 1

#6

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 - 2(8) = 1 $17 - 2(8) = 1$ $17 + 2(8) =$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

W 227237		
Q 4=144, n=233 gcd (233, 144)		12335+144+=1
223 = 144 (1) + 81	733 -144 (1) = 89	3-2=1
144 = 89 (1) +55 89 = 55(1) + 34	1944 - 81 (1) - 55 189 - 55 = 34	3-65-3)=1
55 = 34(1) + 21	155 - 34 = 2)	2.6-3.5=
34 = 2(1) + 13 21 = 13(1) + 13	134 - 21 = 13 121 - 13 = 8 13 - 8 = 5	2.8-3.[3-8)=1
13 = 8(1) +5	13-5-3	5.8-3.13=1 5.(2)-15)-3.13=1
8 = 5(1)+3	1 - 5 = 3	5121-8:13=1
5=3(1)+2 13-2(1)+1	13-2-1	5.2] - 8. (34-21)=1
		13.21-8.34 =
		13.(SS - 34) - 8.34 = 1 13.55 - 21.34 = 1
		13.55 - 21. (89 - 55)=1
		34.55 - 21.89 = 1 34.(144 - 89) - 21.89 = 1
		34, 1144 - 55.89 -1
		34.144-55(233-144)=1 89.144-55233=1
		233(-5)+144(89)=
		5=-5
		(+=89)

(d) 0:200, m=100)	100/5+200te)
gcd (1201, 200)	1001 - 200 (5) = (1) 0015 + 200(-5) = 1
1001 = 200 (5) +	3-5
200 - 1 (200)+0	

2. Do #33 and #34 page 285

3. Using the book's solution for extended Euclidean algorithm, I understood the pseudocode as initializing values and dividing 2 numbers together to compute the quotient and remainder through a loop sequence. By continuing this sequence, the remainders should successfully decrease until the lowest nonzero remainder will result, which is the gross common denominator. The pseudocode incorporates Bezout's theorem (r = ax + by) so that at every iteration not only is the remainder returned, but the coefficients for x and y (the pseudocode example uses varying variables). Essentially the pseudocode will compute the GCD and Bezout coefficients done by hand in our homework.

Part C

1. Choose 2 very	large primes Epxq=n] ent p (Enkr fortient function] => x mod n=1 so=(p-1)(q-1)
	ts e and al with e with e small number, greater than 2
Except we mad n = Decrypt red mad n =	C 3 (ne mod 2) mod n=m
Example 8: STOP	=> hey (2\$37,13) 2537 = 43.59
	2537 = 43.59 0= 43, q= 59, e= 13 n=2537, d= 0= (42)(58)= 2,436 e-d mod p=1
4. Using Exten	13 · d mod 2436 = 1 ded Endidean algorithm
	(13.937) rod 2436=1
	\$ 9 P d n 2 43 59 2436 937 2531 13
Devyption .	m = cd mod n 0= 0 937 mod 2537 0= 0 937 mod 2537