제주 고립 확률 예측 서비스

① 프로젝트명 / 슬로건

프로젝트명: 제주 고립 확률 예측 서비스 (Jeju Island Safe)

슬로건: "안전한 제주 여행, 미리 준비하세요"

서비스 컨셉: 제주도는 섬이라는 지리적 특성상 기상 악화 시 항공편과 여객선이 운항 중단되어 관광객들이 고립될 수 있습니다. 본 서비스는 실시간 기상 데이터와 교통 운항 정보를 분석하여 제주도 고립 위험도를 0-100% 범위로 예측하고, 여행자들이 안전한 일정을 수립할 수 있도록 돕는 스마트 여행 플래너입니다.

핵심 가치:

- 예방적 여행 계획: 사후 대응이 아닌 사전 예측으로 불편 최소화
- 데이터 기반 의사결정: 실시간 기상 및 교통 데이터를 통합 분석
- 직관적 시각화: 복잡한 데이터를 누구나 이해할 수 있는 형태로 제공

② 문제 정의 & 사용자 대상

문제 정의

핵심 문제:

- 1. **예측 불가능한 기상 변화**: 제주도는 해양성 기후로 급격한 기상 변화가 빈번하며, 특히 태풍 시즌(7-9월)과 겨울철 강풍 시기에 고립 사례 발생
- 2. 분산된 정보: 기상청, 공항, 항만청 등 여러 기관의 정보를 개별적으로 확인해야 하는 불편함
- 3. **사후 대응의 한계**: 이미 제주도에 도착한 후 기상 악화로 인한 고립 시 숙박비, 일정 차질 등 경제적·시간적 손실 발생
- 4. 정보 해석의 어려움: 풍속, 파고 등 전문 기상 용어를 일반인이 이해하고 여행 결정에 반영하기 어려움

실제 사례:

- 2023년 겨울, 강풍으로 제주공항 항공편 200여 편 결항, 수천 명 고립
- 태풍 시즌마다 반복되는 여객선 운항 중단으로 인한 관광객 불편
- 갑작스러운 결항으로 인한 비즈니스 일정 차질 및 추가 비용 발생

사용자 대상

주요 타겟:

- 1. 관광객 **(**개인**/**가족 여행자**)**
 - ㅇ 연령: 20-50대
 - ㅇ 특징: 휴가 일정이 정해져 있어 고립 시 업무/학업 복귀 불가
 - ㅇ 니즈: 안전한 여행 날짜 선택, 대체 일정 수립

2. 비즈니스 출장자

ㅇ 특징: 중요 회의, 프레젠테이션 등 일정 준수 필수

ㅇ 니즈: 높은 확실성, 리스크 최소화

3. 여행사 및 관광 사업자

- ㅇ 특징: 단체 관광 일정 기획, 다수 고객 책임
- ㅇ 니즈: 대규모 일정 변경 리스크 관리, 고객 만족도 유지

4. 제주 거주민 (출도 예정자)

- 특징: 육지 방문 시 항공편/여객선 이용
- ㅇ 니즈: 출도 및 귀도 일정의 안정성 확보

사용자 페인 포인트:

- "주말에 제주도 가려는데 태풍이 올지 모르겠어요"
- "항공편이 결항되면 월요일 출근을 못 해요"
- "여러 사이트를 돌아다니며 날씨와 운항 정보를 확인하는 게 번거로워요"
- "기상 정보를 봐도 실제로 비행기가 뜰지 안 뜰지 판단이 안 돼요"

③ 해결 아이디어 / 핵심 기능

해결 아이디어

통합 예측 시스템: 여러 출처의 데이터를 하나의 플랫폼에서 통합하고, 복잡한 기상 데이터를 "고립 확률"이라는 단일 지표로 단순화하여 제공합니다. 사용자는 한눈에 위험도를 파악하고. 7일 예보를 통해 최적의 여행 날짜를 선택할 수 있습니다.

차별화 포인트:

- 단순 날씨 정보 제공이 아닌, **실제 교통 운항 가능성**에 초점
- 기상청, 공항, 항만청 데이터를 **실시간 통합 분석**
- 0-100% 정량적 위험도 제시로 직관적 의사결정 지원
- **7일 예보**를 통한 사전 계획 가능

핵심 기능

1. 실시간 고립 위험도 측정

- 고립 확률 계산 알고리즘:
 - o 풍속 14m/s 이상 → 항공 운항 제한 가능성 ↑
 - o 강수량 30mm 이상 → 시정 악화로 운항 차질
 - o 파고 2m 이상 → 여객선 운항 중단
 - ㅇ 각 지표에 가중치를 적용하여 0-100% 확률로 환산

• 4단계 위험도 분류:

- ㅇ 🔵 안전 (0-25%): 정상 운항 예상, 여행 추천
- ㅇ 🥚 주의 (26-50%): 경미한 지연 가능성, 예의주시
- ● 경고 (51-75%): 일부 결항 가능성, 대체 일정 검토
- o 🔴 고립 가능 (76-100%): 운항 중단 가능성 높음, 여행 연기 권장

• 데이터 소스:

- 기상청 단기예보 API: 풍속, 강수량, 기온
- 항공기 운항정보 API: 실시간 결항/지연 데이터
- o 선박 운항일정 API: 제주항/성산포항 운항 현황
- 2시간마다 자동 수집 및 DB 저장

2. 날씨 정보 대시보드

• 그리드 카드 레이아웃:

- 풍속 (Wind): m/s 단위, 14m/s 이상 시 빨간색 경고
- 강수량 (Rain): mm 단위, 30mm 이상 시 경고
- 파고 (Wave): m 단위, 2m 이상 시 경고
- 기온 (Temp): 현재 온도 정보

• 시각적 피드백:

- ㅇ 위험 수준별 배경색 자동 변경
- o Lucide 아이콘으로 직관적 표현
- ㅇ 반응형 디자인으로 모바일 최적화

3. 교통 운항 현황

• 항공 섹션:

- o 실시간 운항률 (%)
- ㅇ 금일 결항편 수
- ㅇ 금일 지연편 수
- ㅇ 제주국제공항 기준

• 해운 섹션:

- o 제주항 운항 상태 (정상/지연/중단)
- ㅇ 성산포항 운항 상태
- o 여객선사별 운항 현황

4. 7일 예보 차트

인터랙티브 차트 (Recharts):

- o Area 차트로 위험도 추세 시각화
- ㅇ 날씨 이모지 (🌞 巻 👛 🧼 🥋) 표시
- ㅇ 호버 시 상세 정보 툴팁
- ㅇ 안전 기준선 (25%) 표시

• 예측 알고리즘:

- o 기상청 중기예보 활용
- ㅇ 과거 데이터 기반 정확도 개선
- ㅇ 신뢰도 수준 함께 표시

5. 여행 계획 도구 (Trip Planner)

- 날짜 범위 선택:
 - ㅇ 시작일/종료일 캘린더 선택
 - o 최대 14일 범위 설정 가능
- 위험도 분석:
 - ㅇ 여행 기간 평균 위험도
 - ㅇ 최대 위험도 및 발생 날짜
 - ㅇ 일별 위험도 상세 보기
- 맞춤형 권장사항:
 - ㅇ 평균 위험도 25% 미만: "안전한 여행 예상됩니다"
 - ㅇ 평균 위험도 25-50%: "일정 변경 가능성에 유의하세요"
 - ㅇ 평균 위험도 50% 이상: "여행 일정 재검토를 권장합니다"
 - ㅇ 최고 위험일 하이라이트

④ 서비스 흐름 / 플로우

사용자 여정 (User Journey)

1단계: 접속 및 현황 파악

```
사용자 접속

↓
메인 대시보드 로딩

↓
[실시간 고립 확률] 큰 게이지로 즉시 확인

↓
현재 위험도 파악 (안전/주의/경고/위험)
```

화면 구성:

- 상단: 큰 원형 게이지 (고립 확률 %)
- 위험도 레벨 텍스트 및 색상
- 동적 안전 팁 표시

2단계: 상세 정보 확인

```
스크롤 다운

↓
[날씨 정보] 섹션

↓
풍속/강수량/파고/기온 확인

↓
```

```
[교통 운항 현황] 섹션

↓
항공/해운 운항률 및 결항 정보 확인
```

데이터 흐름:

```
기상청 API → Supabase (2시간마다 저장)

↓
React Query (캐싱)

↓
UI 컴포넌트 렌더링
```

3단계: 예보 확인 및 여행 계획

```
[7일 예보 차트] 섹션

↓
주간 위험도 추세 확인

↓
위험도 낮은 날짜 식별

↓
[여행 계획 도구] 섹션

↓
출발일/귀가일 선택

↓
선택 기간 위험도 분석 결과 확인

↓
권장사항 확인

↓
여행 결정 (진행/연기/날짜 변경)
```

4단계: 지속적 모니터링

시스템 아키텍처 플로우

데이터 업데이트 주기

- 실시간 데이터: 2시간마다 외부 API 호출 및 DB 저장
- **프론트엔드 캐싱**: React Query로 5분간 캐싱
- 사용자 화면: 페이지 방문 시 최신 데이터 자동 로드
- 백그라운드 업데이트: Supabase Realtime으로 자동 동기화 (선택적)

⑤ AI 활용 포인트

현재 적용된 AI/ML 요소

- 1. 위험도 예측 알고리즘
 - 기법: 가중치 기반 스코어링 모델

• 입력 변수:

- 풍속 (m/s)
- o 강수량 (mm)
- ㅇ 파고 (m)
- o 기온 (°C)
- o 기압 (hPa)
- 가중치 설정 (도메인 전문가 기반):

```
위험도 = (풍속_점수 × 0.4) +
(강수량_점수 × 0.3) +
(파고_점수 × 0.3)
```

• 임계값:

- ㅇ 풍속 14m/s → 항공 운항 제한 시작점
- o 강수량 30mm → 시정 악화 기준
- o 파고 2m → 여객선 운항 중단 기준

2. 자연어 권장사항 생성

• 규칙 기반 시스템:

```
if (riskLevel < 25) {
  return "안전한 여행이 예상됩니다. 즐거운 제주 여행 되세요!";
} else if (riskLevel < 50) {
  return "경미한 지연 가능성이 있습니다. 여유있는 일정을 권장합니다.";
} else if (riskLevel < 75) {
  return "운항 차질이 예상됩니다. 대체 일정을 준비하세요.";
} else {
  return "고립 위험이 높습니다. 여행 연기를 권장합니다.";
}
```

향후 AI 고도화 계획

1. 머신러닝 기반 예측 모델

- 목표: 과거 데이터 학습을 통한 정확도 향상
- 데이터셋:
 - ㅇ 과거 3년간 기상 데이터
 - o 실제 결항/지연 기록
 - ㅇ 고립 발생 사례
- 모델 후보:

- o Random Forest: 다양한 기상 변수 간 비선형 관계 학습
- o LSTM: 시계열 패턴 학습 (계절성, 주기성)
- o XGBoost: 높은 정확도와 해석 가능성

• 예상 개선:

- 현재: 규칙 기반 (정확도 ~70%)
- 목표: ML 기반 (정확도 ~85-90%)

2. 개인화 추천 시스템

- 사용자 프로필 학습:
 - 위험 감수 성향 (보수적 ↔ 공격적)
 - ㅇ 과거 여행 이력
 - ㅇ 선호 교통수단 (항공/해운)
- 맞춤형 알림:
 - ㅇ "귀하의 성향상 이 날짜는 권장하지 않습니다"
 - ㅇ "비슷한 여행객들은 이 날짜를 선택했습니다"

3. 챗봇 / 대화형 AI

- LLM 통합 (GPT-4, Claude API):
 - ㅇ 자연어 질의응답: "다음 주말에 제주 가기 안전할까요?"
 - ㅇ 맞춤형 설명: "왜 이 날은 위험한가요?"
 - ㅇ 대체 일정 제안: "그럼 언제가 좋을까요?"
- 구현 방식:

사용자 질문 → LLM → DB에서 관련 데이터 조회 → 컨텍스트와 함께 LLM에 재전달 → 자연스러운 답변 생성

4. 컴퓨터 비전 (선택적)

- 위성 이미지 분석:
 - ㅇ 구름 패턴 분석으로 기상 변화 조기 감지
 - ㅇ 태풍 경로 예측 보조
- 공항 CCTV 분석:
 - ㅇ 실시간 혼잡도 파악
 - ㅇ 대기 시간 예측

5. 앙상블 예측

• 다중 모델 통합:

- ㅇ 기상청 공식 예보
- o 자체 ML 모델 예측
- ㅇ 과거 유사 패턴 기반 예측
- ㅇ 가중 평균으로 최종 확률 산출

• 신뢰도 구간 제공:

- "70% 확률로 안전 (신뢰도: 85%)"
- ㅇ 불확실성까지 투명하게 전달

⑥ 기술 스택

Frontend Stack

Core Framework

- React 18.3.1
 - ㅇ 선택 이유: 컴포넌트 재사용성, 풍부한 생태계
 - o Virtual DOM으로 효율적 렌더링
 - o Hooks 기반 상태 관리

• TypeScript 5.8.3

- ㅇ 선택 이유: 타입 안정성, 개발 생산성 향상
- ㅇ 컴파일 타임 에러 방지
- o IDE 자동완성 지원

• Vite 5.4.19

- 선택 이유: 빠른 HMR, 경량 번들링
- o esbuild 기반 빠른 빌드
- ㅇ 개발 서버: 포트 8080

UI & Styling

• Tailwind CSS 3.4.17

- ㅇ 선택 이유: 유틸리티 우선, 빠른 프로토타이핑
- ㅇ 커스텀 테마: safe/caution/warning/danger 색상
- JIT 모드로 최적화된 CSS

• shadcn/ui (Radix UI)

- ㅇ 선택 이유: 접근성 우수, 커스터마이징 용이
- o 사용 컴포넌트: Card, Button, Calendar, Dialog
- Headless UI로 디자인 자유도 높음

• Lucide React 0.462.0

- ㅇ 선택 이유: 가볍고 일관된 아이콘 세트
- o Tree-shaking 지원으로 번들 크기 최소화

• next-themes

- ㅇ 다크모드 지원 (사용자 설정 저장)
- ㅇ 시스템 설정 자동 감지

Data & State Management

- TanStack React Query 5.83.0
 - ㅇ 선택 이유: 서버 상태 관리 특화, 자동 캐싱
 - ㅇ 기능:
 - 5분 캐싱으로 API 호출 최소화
 - 백그라운드 리페칭
 - 낙관적 업데이트
 - ㅇ 쿼리 키 전략:

```
['weather', 'current']
['forecast', '7days']
['transport', 'status']
```

• React Hook Form 7.61.1

- o 선택 이유: 성능 최적화, Zod 통합
- o TripPlanner 날짜 입력 폼 관리

• Zod 3.25.76

- ㅇ 스키마 기반 유효성 검증
- o TypeScript 타입 자동 추론

Visualization

• Recharts 2.15.4

- o 선택 이유: React 네이티브, 선언적 API
- o ForecastChart에서 Area Chart 렌더링
- ㅇ 반응형 컨테이너 지원

Utilities

• date-fns 3.6.0

- 선택 이유: 경량 날짜 라이브러리 (vs Moment.js)
- ㅇ 한국어 로케일 지원
- o 트리 쉐이킹 가능

• Sonner 1.7.4

o 토스트 알림 (성공/에러 메시지)

• Embla Carousel 8.6.0

ㅇ 터치 친화적 캐러셀 (모바일 최적화)

Backend & Infrastructure

BaaS (Backend as a Service)

- Supabase 2.75.0
 - o 선택 이유: 빠른 개발, PostgreSQL 기반, 실시간 기능
 - ㅇ 구성 요소:
 - PostgreSQL: 관계형 데이터베이스
 - Row Level Security: 보안 정책
 - **Realtime**: WebSocket 기반 실시간 동기화
 - Storage: 정적 파일 저장 (미래 확장용)

Database Schema

```
-- air info 테이블 (기상 정보)
CREATE TABLE air_info (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 icao_code TEXT NOT NULL, -- 공항 코드 (RKPC: 제주)
                                  -- 공항명
  airport_name TEXT,
 forecast_time TIMESTAMP NOT NULL, -- 예보 시간
 wind direction TEXT,
                                   -- 풍향
                                  -- 풍속 (m/s)
 wind_speed NUMERIC,
 temperature NUMERIC,
                                  -- 기온 (°C)
                                   -- 기압 (hPa)
  pressure NUMERIC,
 created_at TIMESTAMP DEFAULT now(),
 updated_at TIMESTAMP DEFAULT now()
);
-- 인덱스
CREATE INDEX idx_forecast_time ON air_info(forecast_time);
CREATE INDEX idx_airport ON air_info(icao_code);
-- RLS 정책
ALTER TABLE air_info ENABLE ROW LEVEL SECURITY;
CREATE POLICY "Anyone can read" ON air_info FOR SELECT USING (true);
CREATE POLICY "Service role can insert" ON air_info FOR INSERT
 WITH CHECK (auth.role() = 'service role');
```

External APIs

1. 기상청 단기예보 API

URL: https://apihub.kma.go.kr/api/typ01/url/fct_shrt_reg.php

- o 인증: API Key 방식
- ㅇ 호출 주기: 2시간마다
- 이 데이터: 기온, 풍속, 강수량, 습도 등

2. 항공기 운항정보 API

- URL: https://www.airport.co.kr/www/cms/frCon/index.do?MENU_ID=1270
- ㅇ 현황: 공공데이터포털 장애 중
- o 대체: 한국공항공사 Open API 검토 중

3. 선박 운항일정 API

- URL: https://mtisopenapi.komsa.or.kr/eopt/api/oprt-schd-info
- ㅇ 제공: 한국해운조합
- ㅇ 데이터: 제주항/성산포항 운항 일정

Data Pipeline

```
Cron Job (Supabase Edge Functions)

↓ (2시간마다)
외부 API 호출

↓
데이터 파싱 및 검증

↓
Supabase DB 저장

↓
React Query 캐시 무효화

↓
UI 자동 업데이트
```

DevOps & Tooling

Version Control

- Git / GitHub
 - o 브랜치 전략: main (production), develop (staging)
 - o PR 기반 코드 리뷰

Package Manager

- npm (기본)
- bun (선택적, 빠른 설치)

Code Quality

- ESLint
 - o TypeScript 규칙
 - o React Hooks 규칙

- ㅇ 사용되지 않는 import 자동 제거
- Prettier (선택적)
 - ㅇ 코드 포맷팅 일관성

Build & Deployment

• Vite Build

```
npm run build # 프로덕션 빌드
npm run build:dev # 개발 모드 빌드
npm run preview # 로컬 프리뷰
```

• Hosting 옵션:

o Vercel (추천): 자동 배포, Edge Network

o Netlify: 무료 티어

o Supabase Hosting: 통합 솔루션

Monitoring (향후 계획)

• Sentry: 에러 트래킹

Google Analytics: 사용자 행동 분석
 Supabase Analytics: DB 쿼리 성능

Architecture Diagram

⑦ 기대효과 / 향후 계획

기대효과

1. 사용자 측면

경제적 효과:

- 고립 방지로 인한 비용 절감:
 - ㅇ 예상 절감액: 1인당 평균 20-50만원
 - 추가 숙박비: 10-15만원
 - 긴급 항공권/배편: 20-30만원
 - 식비 및 기타: 5-10만원
 - ㅇ 연간 제주 관광객 1,500만명 중 0.1%만 혜택받아도 30억원 절감

시간적 효과:

- 평균 1-3일 일정 차질 방지
- 업무 복귀 지연으로 인한 손실 최소화
- 가족 여행 시 자녀 학업 차질 방지

심리적 효과:

- 여행 전 불안감 해소
- 데이터 기반 안심 여행
- 긴급 상황 대응 준비 시간 확보

2. 산업 측면

관광 산업:

- 비수기 수요 예측 가능성 향상
- 여행사 리스크 관리 개선
- 취소율 감소로 운영 효율성 증대

항공/해운 산업:

- 승객 문의 감소
- 예약 변경 업무 부담 경감
- 고객 만족도 향상

지역 경제:

- 제주도 관광 이미지 개선 ("안전한 여행지")
- 4계절 관광 활성화 (비수기 신뢰도 향상)
- 장기 체류 관광객 증가

3. 사회적 효과

공공 안전:

- 기상 재난 대비 문화 확산
- 데이터 기반 의사결정 장려
- 정보 격차 해소 (고령층도 쉽게 이해)

환경적 효과:

- 불필요한 항공편 예약 취소 감소
- 교통수단 효율적 운영
- 탄소 배출 최소화

정량적 목표 (1년 후)

지표	목표	측정 방법
월간 활성 사용자(MAU)	10만명	Google Analytics

지표	목표	측정 방법
예측 정확도	85% 이상	실제 고립 발생 vs 예측 비교
사용자 만족도	4.5/5.0	앱 리뷰, 설문조사
평균 체류 시간	5분 이상	분석 도구
재방문율	60% 이상	쿠키/세션 분석

향후 계획

Phase 1: MVP 완성 및 베타 런칭 (현재 ~ 3개월)

- **☑** 기본 UI/UX 구현
- 🗸 실시간 고립 확률 계산
- □ 공항/항만 API 연동 완료
- □ 7일 예보 정확도 검증
- □ 베타 테스터 모집 (100명)
- □ 피드백 기반 UX 개선

목표: 기본 기능 안정화, 초기 사용자 확보

Phase 2: 기능 고도화 (3-6개월)

- 🗌 머신러닝 모델 도입:
 - ㅇ 과거 3년 데이터 수집 및 전처리
 - o Random Forest 모델 학습
 - o A/B 테스트 (규칙 기반 vs ML 기반)
 - ㅇ 정확도 85% 이상 달성

● □ 개인화 기능:

- ㅇ 사용자 계정 시스템 (소셜 로그인)
- ㅇ 여행 이력 저장
- ㅇ 맞춤형 알림 설정
- ㅇ 즐겨찾기 날짜

● □ 모바일 앱 출시:

- o React Native 기반 iOS/Android 앱
- ㅇ 푸시 알림 (위험도 급상승 시)
- ㅇ 오프라인 모드 (최근 데이터 캐싱)

• □ 다국어 지원:

- ㅇ 영어, 중국어, 일본어
- ㅇ 외국인 관광객 타겟팅

목표: MAU 5만명 달성, 정확도 개선

Phase 3: 플랫폼 확장 (6-12개월)

● □ 다른 섬 지역 확대: ㅇ 울릉도, 백령도, 흑산도 등 ㅇ "한국 섬 여행 안전 플랫폼"으로 확장 ● □ B2B 서비스: ㅇ 여행사 API 제공 ㅇ 기업 출장 관리 시스템 연동 ㅇ 화이트라벨 솔루션 ● □ LLM 챗봇 통합: o Claude API 연동 ㅇ 자연어 질의응답 ㅇ 개인화 여행 컨설팅 • □ 커뮤니티 기능: ㅇ 사용자 리뷰 및 후기 ㅇ 실시간 제주 현장 상황 공유 ㅇ 여행 팁 게시판 목표: MAU 10만명, 수익 모델 확립 Phase 4: 수익화 및 확장 (12개월 이후) • 🗌 수익 모델: ㅇ 프리미엄 구독 (광고 제거, 30일 예보) ㅇ 여행사 제휴 수수료 o 기업용 API 판매 ㅇ 보험사 제휴 (여행자 보험 추천) ● □ 글로벌 확장: ㅇ 일본 오키나와, 훗카이도 ㅇ 태국 푸켓, 사무이 ㅇ 그리스 산토리니 등 섬 관광지 ● □ AI 고도화:

- ㅇ 위성 이미지 분석
- ㅇ 앙상블 예측 모델
- 설명 가능한 AI (XAI)

● □ 생태계 구축:

- ㅇ 제주 지역 관광 업체 통합 플랫폼
- ㅇ 숙박, 렌터카, 액티비티 예약 연동

ㅇ 원스톱 여행 플래너

목표: 자립 가능한 비즈니스 모델, 지역 사회 기여

성공 지표 (KPI)

단기 (3개월)

- DAU 1,000명
- 앱 평점 4.0 이상
- 버그 리포트 0건/주
- 예측 정확도 75%

중기 (6개월)

- MAU 50,000명
- 예측 정확도 85%
- 사용자 추천 의향 80%
- 언론 보도 5건 이상

장기 (12개월)

- MAU 100,000명
- 예측 정확도 90%
- B2B 고객 10곳 확보
- 자체 수익으로 운영비 충당

리스크 및 대응 방안

리스크	영향도	대응 방안
API 제공 중단	높음	다중 데이터 소스 확보, 웹 스크래핑 백업
예측 부정확	높음	신뢰도 구간 표시, 면책 문구 명시
경쟁 서비스 출현	중간	특화 기능 강화, 커뮤니티 구축
사용자 성장 정체	중간	마케팅 강화, 제휴 확대
서버 비용 증가	낮음	캐싱 최적화, CDN 활용

사회 공헌 계획

• 공공 데이터 기여:

- ㅇ 수집한 데이터 정부 제공 (재난 대응)
- ㅇ 오픈소스 프로젝트로 전환 (일부 컴포넌트)

• 지역 사회 협력:

- ㅇ 제주 관광공사 협업
- ㅇ 지역 소상공인 광고 지원 (무료/저가)

- 교육 및 연구:
 - ㅇ 대학 연구 프로젝트 협업
 - ㅇ 기상 데이터 분석 교육 자료 제공

결론

제주 고립 확률 예측 서비스는 단순한 날씨 앱을 넘어, 데이터 기반 의사결정을 통해 여행자의 안전과 편의를 보장하는 스마트 여행 플랫폼입니다.

핵심 차별점:

- 1. 복잡한 기상 데이터를 **단일 지표**로 단순화
- 2. 실시간 교통 운항 정보 통합 제공
- 3. 7일 예보로 최적의 여행 날짜 선택 지원
- 4. 향후 AI/ML 고도화를 통한 지속적 개선

초기 MVP를 시작으로, 머신러닝 기반 예측, 개인화 서비스, 다지역 확장을 거쳐 궁극적으로는 **"모든 섬 여행의 필수 동반자"**로 성장하는 것을 목표로 합니다.

기술적 완성도와 사회적 가치를 동시에 추구하며, 제주도를 넘어 전 세계 섬 관광지로 확장 가능한 확장성 있는 플랫폼을 구축 하겠습니다.