Nombre:

1. (17 puntos) Para el siguiente problema de optimización sin restricciones:

máx
$$x_1e^{-x_2}$$

sujeto a $x_1 - 2x_2 = 1$
 $0 \le x_1 \le 4$

- a) Grafique el conjunto factible y halle las direcciones factibles para un punto factible (x_1, x_2) con $0 < x_1 < 4$.
- b) Encuentre un punto factible (x_1, x_2) con $0 < x_1 < 4$ que cumpla la condición necesaria de primer orden para un máximo local.
- a) El conjunto factible es el segmento de recta mostrado en la figura. Una dirección

factible **d** en un punto no extremo del segmento de recta debe ser perpendicular al vector $\mathbf{n} = [1 - 2]$ que define la recta, es decir:

$$\langle \mathbf{d}, [1 - 2] \rangle = d_1 - 2d_2 = 0 \Rightarrow d_1 = 2d_2$$

Por ejemplo podemos escoger $\mathbf{d} = [2 \ 1]$.

b) Observe que si \mathbf{d} es dirección factible en un punto no extremo del segmento de recta, $-\mathbf{d}$ también lo es. Luego la condición de primer orden que debe cumplir un máximo local en este caso es $\nabla f^T \mathbf{d} = 0$.

Tenemos
$$\nabla f(x_1, x_2) = \begin{bmatrix} e^{-x_2} \\ -x_1 e^{-x_2} \end{bmatrix}$$
, entonces:

$$\nabla f(x_1, x_2)^T \mathbf{d} = 2d_2 e^{-x_2} - d_2 x_1 e^{-x_2} = (2 - x_1) d_2 e^{-x_2} = 0$$

donde he usado $d_1=2d_2$. Luego $x_1=2$ y reemplazando en la restricción se tiene $x_2=\frac{1}{2}.$

 $^{^1\}mathrm{Usted}$ debe justificar todas sus respuestas. Una respuesta que aparezca de la nada no tiene ningún valor.

Note que usando la restricción podemos despejar $x_1=1+2x_2$ y escribir la función objetivo en términos de una variable: $f(x_2)=(1+2x_2)e^{-x_2}$. Derivando e igualando a cero tenemos $x_2=\frac{1}{2}$ y reemplazando de nuevo $x_1=2$.

2. (17 puntos) Considere la minimización de la función cuadrática en \mathbb{R}^2 , $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} - \mathbf{b}^T\mathbf{x}$. Los valores propios de \mathbf{Q} son $\lambda_1 = 10, \lambda_2 = 1$ y los vectores propios correspondientes son $\mathbf{v}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ y $\mathbf{v}_2 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Suponga que se corre Steepest Descent dos veces desde los puntos iniciales $\mathbf{x}_1 = (\frac{9}{\sqrt{2}}, \frac{11}{\sqrt{2}})$ y $\mathbf{x}_2 = (-\frac{9}{\sqrt{2}}, \frac{11}{\sqrt{2}})$. Para cuál de estos puntos iniciales es la convergencia al mínimo de f más rápida?

Expresamos $\mathbf{x}_1, \mathbf{x}_2$ en términos de $\mathbf{v}_1, \mathbf{v}_2$:

$$\mathbf{x}_1 = \langle \mathbf{x}_1, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}_1, \mathbf{v}_2 \rangle \mathbf{v}_2 = 10\mathbf{v}_1 + \mathbf{v}_2$$
$$\mathbf{x}_2 = \langle \mathbf{x}_2, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}_2, \mathbf{v}_2 \rangle \mathbf{v}_2 = \mathbf{v}_1 + 10\mathbf{v}_2$$

Observamos que \mathbf{x}_2 está casi alineado con el vector propio correspondiente al valor propio más pequeño, mientras que \mathbf{x}_1 está casi alineado con el vector propio correspondiente al valor propio más grande, y $\lambda_1 \gg \lambda_2$, luego la convergencia es mucho más lenta comenzando en \mathbf{x}_2 que comenzando en \mathbf{x}_1 .

3. (16 puntos) Considere el problema de optimización máx $3x_1+x_2$ sujeto a $(x_1,x_2) \in C$ donde C es el conjunto mostrado en la figura:

- a) Escriba este problema como un programa lineal en forma estándar.
- b) Si la SBF inicial está dada por las variables de holgura (y_i) , liste la secuencia de SBFs visitadas por el método simplex (que escoje siempre la variable libre correspondiente al costo reducido más negativo) en este problema.
- a) (ver figura)

b) Geométricamente vemos que $\mathbf{x}^* = (5,1)$. Comenzando en $(x_1, x_2, y_1, \dots, y_6) = (0,0,1,\frac{3}{2},3,\frac{13}{2},11,5)$, tenemos los costos reducidos $r_1 = -3$ y $r_2 = -1$, luego la variable entrante es x_1 , y el simplex se desplaza al punto $x_1 = 5$, $x_2 = 0$, donde y_6 se vuelve libre. En el siguiente paso alcanza la SBF óptima en \mathbf{x}^* , donde x_2 ha entrado a la base y y_5 ha salido. Luego la secuencia de variables básicas en las SBFs es $(y_1, y_2, y_3, y_4, y_5, y_6) \longrightarrow (x_1, y_1, y_2, y_3, y_4, y_5) \longrightarrow (x_1, x_2, y_1, y_2, y_3, y_4)$

4. (Bono: 10 puntos) Considere el problema de maximización de entropía sujeto a restricciones lineales:

mín
$$f_0(\mathbf{x}) = \sum_{i=1}^n x_i \log x_i$$

sujeto a $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
 $\mathbf{1}^T \mathbf{x} = 1$

Muestre que la solución óptima tiene la forma:

$$x_i^* = \frac{\exp\left(-\mathbf{a}_i^T \boldsymbol{\lambda}^*\right)}{Z}$$

donde Z es un factor de normalización tal que $\sum_{i=1}^n x_i = 1$

(Ver apuntes de clase para la solución.)