HW 3: Logic

1. (25 points) A truth table for $P \vee \neg P$ is of the form:

P	$\neg P$	$P \lor \neg P$
true	false	true
false	true	true
true	true	true
false	false	false

Consider three atomic sentences A,B and C. Construct a truth table for the following in propositional logic:

(i) (A
$$\wedge$$
 B \wedge C) (ii) (A \vee B \vee C)

A	В	С	A \land B	$A \wedge B \wedge C$	$A \lor B$	$A \vee B \vee C$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	T	F	Т	T
Т	F	Т	F	F	Т	T
Т	F	F	F	F	T	T
F	Т	Т	F	F	Т	T
F	Т	F	F	F	Т	Т
F	F	Т	F	F	F	T
F	F	F	F	F	F	F

(iii)
$$A \Rightarrow B$$

A	В	¬А	$A \Rightarrow B \equiv (\neg A \lor B)$
Т	T	F	T
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

A	В	С	(A \(\) B)	(A ∧ B) ∨ C	¬А	(B ∧ C)	(¬A) ∨ (B ∧ C)
Т	Т	Т	Т	T	F	Т	T
Т	Т	F	Т	T	F	F	F
Т	F	Т	F	T	F	F	F
Т	F	F	F	F	F	F	F
F	Т	Т	F	Т	Т	Т	Т
F	Т	F	F	F	Т	F	T
F	F	Т	F	Т	Т	F	T
F	F	F	F	F	Т	F	T

2. (14 points) Inference.

(i) [7 points] Does (A \wedge B) |= (A \Leftrightarrow B)? Prove using a truth table.

A	В	$A \wedge B$	$A \Leftrightarrow B$
Т	T	T	Т
Т	F	F	F
F	Т	F	F
F	F	F	Т

According to the table I created above where $A \wedge B$ is true and $A \Leftrightarrow B$ is also true, thus we know that $(A \wedge B) \models (A \Leftrightarrow B)$ is **true**

(ii) [7 points] Does A \Leftrightarrow B |= A \vee B? Prove using a truth table.

A	В	$A \Leftrightarrow B$	$A \lor B$
Т	F	F	Т
Т	Т	T	Т
F	F	T	F
F	Т	F	T

According to the table I created above, where $A \vee B$ is true, but $A \Leftrightarrow B$ is not all true, thus we know $A \Leftrightarrow B \models A \vee B$ is **not true**.

3. (10 points) For each of the following statements, prove if it is true or false using logical equivalence rules.

(iii) (C
$$\vee$$
 (\neg A \wedge \neg B)) \equiv ((A \Rightarrow C) \wedge (B \Rightarrow C))

We can simplify both sides of sentences, let's simplify the right side first:

$$((A \Rightarrow C) \land (B \Rightarrow C)) \equiv (\neg A \lor C) \land (\neg B \lor C)$$
 ———Implication elimination

Finally, we can rearrange and organize the both sides together:

$$(\neg A \lor C) \land (\neg B \lor C) \equiv (\neg A \lor C) \land (\neg B \lor C)$$

From the simplification above, we can see that the left-side sentence is similar to the right-side sentence; therefore, we proved that the **statement is true**.

(iv) (A
$$\vee$$
 B) $\wedge \neg$ (A \Rightarrow B) is satisfiable

We can simplify the right side of the sentence to see if the given sentence is satisfiable. Here is the process:

$$(A \lor B) \land \neg(A \Rightarrow B)$$

$$(A \lor B) \land \neg (\neg A \lor B)$$
 —----Implication elimination

$$(A \lor B) \land (A \land \neg B)$$
 ———————————————Double-negation elimination

From my analysis, we can see that when A is true and B is false, then $(A \lor B)$ is true, and $(A \land \neg B)$ is also true. Therefore, $(A \lor B) \land (A \land \neg B)$ is true in this case. Thus, when A is true and B is false, the sentence $(A \lor B) \land \neg (A \Rightarrow B)$ is satisfiable.

4. (5 points) Decide if the following sentences are valid, unsatisfiable, or neither. Verify your decisions using the truth

We can start by eliminating the implications on left and right side sentences:

$$((\neg Smoke \lor \neg Heat) \lor Fire) \Leftrightarrow ((\neg Smoke \lor Fire) \lor (\neg Heat \lor Fire))$$
 ————De Morgan (lef- side) $((\neg Smoke \lor \neg Heat) \lor Fire) \Leftrightarrow ((\neg Smoke \lor \neg Heat) \lor Fire)$ ———regroup and simplify the right side

From the above simplification, we can see both sides have the same expression. Since both sides are identical, the expression is a **valid statement**. It will be true regardless of the true values of Smoke, Heat, and Fire.

5. (16 points) Convert the following to CNF.

(i) S1:
$$A \Leftrightarrow (B \lor E)$$

$$(A \Rightarrow (B \lor E)) \land ((B \lor E) \Rightarrow A) \longrightarrow Biconditional elimination$$

$$(\neg A \lor (B \lor E)) \land (\neg (B \lor E) \lor A) \longrightarrow Implication elimination$$

$$(\neg A \lor B \lor E) \land ((\neg B \land \neg E) \lor A) \longrightarrow De Morgan$$

$$(\neg A \lor B \lor E) \land (A \lor \neg B) \land (A \lor \neg E) \longrightarrow distributive of \lor over \land$$

$$(CNF) \longrightarrow (CNF) \longrightarrow (CNF)$$

$$(ii) S2: E \Rightarrow D \longrightarrow (CNF) \longrightarrow (CNF)$$

$$(iii) S3: (C \land F) \Rightarrow \neg B \longrightarrow (CNF) \longrightarrow (CNF)$$

$$(iv) S4: E \Rightarrow B \longrightarrow (CNF) \longrightarrow (CNF)$$

$$(v) S5: B \Rightarrow F \longrightarrow (CNF) \longrightarrow (CNF)$$

$$(v) S6: B \Rightarrow C \longrightarrow (CNF) \longrightarrow (CNF)$$

$$(vi) S6: B \Rightarrow C \longrightarrow (CNF) \longrightarrow (CNF)$$

$$(vii) S7: P \Rightarrow (Q \lor R) \longrightarrow (CNF)$$

$$(viii) S8: \neg (P \land Q) \Leftrightarrow S \longrightarrow (P \land Q) \longrightarrow Biconditional elimination$$

$$(\neg (\neg (P \land Q) \lor S) \land (\neg S \lor \neg (P \land Q)) \longrightarrow De Morgan on the right side$$

$$((P \land Q) \lor S) \land (\neg S \lor \neg P \lor \neg Q)$$
 ———————De Morgan on the left side $(P \lor S) \land (Q \lor S) \land (\neg S \lor \neg P \lor \neg Q)$ ———————Distributive law & CNF

6. (10 points) Using the sentences S1-S6 in Q5 in the CNF form as the knowledge base KB, prove $\neg A \land \neg B$ using resolution. Hint: To prove the conjunction, we can prove each literal separately.

Given sentences Normal Form (CNF) as the knowledge base KB:

S1:
$$(\neg A \lor B \lor E) \land (A \lor \neg B) \land (A \lor \neg E)$$

S2:
$$\neg E \lor D$$

S3:
$$\neg C \lor \neg F \lor \neg B$$

S4:
$$\neg E \lor B$$

S5:
$$\neg B \lor F$$

S6:
$$\neg B \lor C$$

We have to prove KB $\models \neg A \land \neg B$

We can prove KB $\mid = \neg A$ by contradiction first:

Negate the conclusion: $\neg \neg A = A$

S7: A

S8: B
$$\vee$$
 E (S1, S7)

S9:
$$\neg B$$
 (Resolving S7: A with S1(A $\vee \neg B$); A does not contribute here, the case simplifies directly here)

S10:
$$\neg E$$
 (Resolving S7: A with S1(A $\vee \neg E$); A does not contribute here, the case simplifies directly here)

According to derivation above we got S10 : \neg E and S11: E which is contradiction , hence we proved that KB $\mid = \neg$ A

Now we can prove $KB = \neg B$ by contradiction

Negate the conclusion: $\neg \neg B = B$

S7: B

According to the derivation above we got S10: \neg C and 9: C which is a contradiction, hence we proved that KB $\models \neg$ B

We prove that KB
$$\models \neg B$$
 and KB $\models \neg A$ are ture, thus we proved that KB $\models \neg A \land \neg B$

7. (20 points) Convert the following sentences to first-order logic sentences. We use the following predicates:

- E(x) means "x is an easy course"
- H(y) means "y is a happy student"
- T (y, x) means "student y takes the course x"
- F (x) means "x is a course with a final"
- (i) "If a course is easy, some students are happy"

$$\forall x(E(x) \rightarrow \exists y(T(y,x) \land H(y)))$$

(ii) "If a course has a final, no students are happy"

$$\forall x(F(x) \rightarrow \forall y(T(y,x) \land \neg H(y)))$$

(iii) "If a course has a final, the course is not easy"

$$\forall x(F(x) \rightarrow \neg E(x))$$

(iv) "If a student is happy, then they are taking an easy course with a final"

$$\forall y(H(y) \rightarrow \exists x(T(y,x) \land E(x) \land F(x)))$$