(10.1) Siobepzicomu & Rn

Заметим, что интервох I'=(-1,1) может бого гомеоморомо преобразовам в \mathbb{R}^1 с помощью друшими $\alpha=tg \frac{\pi}{4}t$. Миалогично откратомі k-мермий муб $I^k:=\{t^1,...,t^n\}\in\mathbb{R}^k: |t^i|<1, i=1,...,k\}$

romonoppen R.

On pege sexue 10.1: Fioguno me curbo $S \subset \mathbb{R}^n$ may basemed k - ne province of the contract of the province of the contract of the contra

Отобратение 4 натвается (лональной) кертой повержности 5 очрест. ность И натвается областью действия карта на повержности 5.

локамная карта φ в водит в $\mathcal U$ криваличейние координати: тогие $z=\varphi(t)\in \mathcal U$ со поетавляется zисловой набор $t=(t^1,...,t^K)\in I^K$

Евин повержность метно зазат томмо одной локомной картой, то она называется элементарной. Гриморам элементарной повержности авлеется градочи непреровной друмении $f: I^k \supset R$

Onpegenerus 10.2: Hasap $A(S) = \{ \varphi_i \colon I_i^k \to \mathcal{U}_i, i \in \mathbb{N} \}$ revenue S, m.z. $S = \mathcal{V}\mathcal{U}_i$, naznéaemas american holopotocome S.

Пример 10.1 всих $F^i \in C^{(m)}(\mathbb{R}^n, \mathbb{R})$, i=1,...,n-k — такие, гто система $\begin{cases} F^1(x^i,...,x^k,x^{k+1},...,x^k)=0,\\ ... & ... \end{cases}$

b wodoù motre nuo meciba S beex eboux peweruni uneem pant n-k, mo nuso $S=\emptyset$, nuso S-k neprase $C^{(m)}$ -ragkas noben enocib b \mathbb{R}^n .

Ilyemb $S\neq\emptyset$ is $x_0\in S$. To meopane o realnoni pryntagus (c motrocaso go reprosogratereni) cum en a sububo serimpia $\{x^{k+1}=f^{k+1}(x^1,...,x^k)$

 $\int_{3C^{n}} = f^{n}(x_{1}^{1},...,x_{n}^{k}) \qquad \text{2ge } f^{k+1}, f^{n} \in C^{(m)}$

Le" nomno repenucati l'ouge omospamenus $x^1 = t^1, \dots, x^k = t^k, x^{k+1} = f^{k+1}(t^1, \dots, t^k), \dots, x^n = f^{k}(t^1, \dots, t^k)$ romononi rocce konnozumu c $t^1 = t g \stackrel{g}{=} t^1, j = 1, \dots k$ gain nokausuyo

komoporu nocie komnozugus c $T^{i}=tg^{\frac{\pi}{L}t^{i}},\ j=1,...k$, gaem lokalshylo kapmy $Y_{\infty}\colon I_{\infty}^{k}\to U(x_{0}),\ rge\ U(x_{0})$ — nekomopes okpacituocis m. x_{0} tia S^{i}_{∞}

Пример 10.2: Рассиотрим уравновию сферт $S \in \mathbb{R}^n$: $(x^1)^2 + ... + (x^n)^2 = r^2$. Осевидно, что в тогиах S' ранг система равен 1, m.н. градиент

 $(2x_0^1,...,2x_0^n) \neq 0$ gue more $x_0 \in S$. Cregolamerono, apepa seresea (n-1)-reproxi zraguon when $x_0 \in \mathbb{R}^n$

(102) Opuermayus noteparoame

Ориентированное пространство \mathbb{R}^n — это пространство \mathbb{R}^n с дринцированили в нем реперои или с дринсированиой CK. Наполнии, гто для дифореолорогума $\varphi: \mathbb{D} \to G$ областей \mathbb{D} » G, межащих в энземплярах \mathbb{R}^n с координатами $t=(t^1,...,t^n)$ и $z=(x^1,...,x^n)$,

возии кает отобратение касательна и пространств $\varphi'(t): T_t \mathcal{D} \to T_z \mathcal{G}$

 $\varphi'(t): \quad t \mapsto \varphi'(t)e$

Perep $e_1, ..., e_n$ b T_bD nepebogumea этим отобратениям b penep u_3 T_zG : $\dot{\xi}_1 := \psi'(\dot{t})e_1, ..., \dot{\xi}_n := \psi'(\dot{t})e_n$. Henpepnbuse beumopuse roce $e(\dot{t})$ rog ero genembusu nepezogum b kenpepnbuse

beamoprine mare $\hat{f}(x) = \hat{f}(\varphi(t)) = \varphi(t)e(t)$ nockousky $\varphi \in C^{(s)}(D; G)$.

Therein object, respective existing $e_s(t)$, ..., $e_n(t)$ is TD be kenpeper-base ceresismbo $e_s(t)$, ..., $e_n(t)$ is TD be kenpeper-base ceresismbo $f_s(t)$, ..., $f_n(t)$ heregod $f_s(t)$.

Paccuompun menens napy gupgeoruppysub 4: Di 76, i=1,2.

Drebuguo, mo $\left(\det\left(Y_{1}^{-1}\circ Y_{1}\right)'(t_{1})\right)\left(\det\left(Y_{1}^{-1}\circ Y_{2}\right)'(t_{2})\right)>0$ (m.e. suosuaua unecom ogux a mon me grau). B eny chognocom znava cobagazon bo beex moruax D_{1} a D_{2} .

Водинканот класся ориентации СКК в области G: в один класс понадают те СКК, взаничие преобразования история осуществляющая с положительний ямобианом. Задание ориентации в области G- это финсация в G класса ориентации систем её приволичейных координат. Рабионильно можно задай ориентацию в G, финсировав непрерывное сений евьо речеров G. Ориентация G впоме опредемята, осли хотя ой в одной G. Ориентация G впоме опредемята, осли хотя ой в одной G. Ориентация G впоме опредемята, осли хотя об одной G. Издай речер, ориентарующий G. Надо фавша это речер G речером G об G, индустранным G