Neural Networks

Artificial Neural Networks (ANN) Big Picture

What are ANNs

- "...a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs.

 M. Caudill 1989
- Computational model based on the structure and functions of biological Neural Networks
- They are considered nonlinear statistical data modeling tools where the complexrelationships between inputs and outputs are modeled or patterns are found

Biological Inspiration

Biological neural networks

- About 10¹¹ neurons in human brain
- About 10^{14~15} interconnections
- Pulse-transmission frequency million times slower than electronic circuits
- Face recognition
 - hundred million second by human
 Network of artificial neuron operation
 speed only a few million second

Biological Neuron

cell body: computes a nonlinear function of its inputs

• dendrites:
nerve fibres
carrying
electrical
signals to the

axon: single long fibre that carries the electrical signal from the cell body to other neurons

synapse: the point of contact between the axon of one cell and the dendrite of another, regulating a chemical connection whosestrength affects the input to the cell.

Biological Neuron

 A variety of different neurons exist (motor neuron, on-center off-surround visual cells...), with different branching structures

 The connections of the network and the strengths of the individual synapses establish the function of the network.

Brief History of ANN

Brief History of ANN

- McCulloch and Pitts (1943) designed the first neural network
- Hebb (1949) who developed the first learning rule. If two neurons were active at the same time then the strength between them should be increased.
- Rosenblatt (1958) introduced the concept of a perceptron which performed pattern recognition.
- Widrow and Hoff (1960) introduced the concept of the ADALINE (ADAptive Linear Element). The training rule was based on the idea of Least-Mean-Squares learning rule which minimizing the error between the computed output and the desired output.
- Minsky and Papert (1969) stated that the perceptron was limited in its ability to recognize features that were separated by linear boundaries. "Neural Net Winter"
- Kohonen and Anderson independently developed neural networks that acted like memories.
- Webros(1974) developed the concept of back propagation of an error to train the weights of the neural network.
- McCelland and Rumelhart (1986) published the paper on back propagation algorithm. "Rebirth of neural networks".
- Today they are everywhere a decision can be made.

Source: G5AIAI - Introduction to Artificial Intelligence Graham Kendall:

Applications of ANN

Applications of Artificial Neural Networks

Applications of Artificial Neural Networks

- Aerospace: aircraft autopilots, flight path simulations, aircraft control systems, autopilot enhancements, aircraft component simulations
- Banking: credit application evaluators
- Defense: guidance and control, target detection and tracking, object discrimination, sonar, radar and image signal processing including data compression, feature extraction and noise suppression, signal/image identification
- Financial: real estate appraisal, loan advisor, mortgage screening, stock market analysis, stock trading advisory systems
- Manufacturing: process control, process and machine diagnosis, visual quality inspection systems, computer chip quality analysis

Applications of Artificial Neural Networks

- Medical: cancer cell detection and analysis, EEG and ECG analysis, disease pathway analysis
- Communications: adaptive echo cancellation, image and data compression, speech synthesis, signal filtering
- Robotics: Trajectory control, manipulator controllers, vision systems
- Pattern Recognition: character recognition, speech recognition, voice recognition, facial recognition

Challenging Problems

- (1) Pattern classification
- (2) Clustering/categorization
- (3) Function approximation
- (4) Prediction/forecasting
- (5) Optimization (TSP problem)
- (6) Retrieval by content
- (7) Control

Neural Net vs. Von Neumann Computer

Neural Net	Von Neumann
Non-algorithmic	<u>Algorithmic</u>
<u>Trained</u>	Programmed with instructions
Memory and processing elements the same	Memory and processing separate
Pursue multiple hypotheses	Pursue one hypothesis at a time
Fault tolerant	Non fault tolerant
Non-logical operation	Highly logical operation
Adaptation or <u>learning</u>	Algorithmic parameterization modification only
Seeks answer by finding minima in solution space	Seeks answer by following logical tree structure

NUCES

Artificial Neuron

Artificial Neuron Model

Artificial Neuron

 Artificial Neuron is the χ₁ basic information processing unit of the Neural Networks (NN). It is a non linear, parameterized function with restricted output range.

$$y = \sum_{i} x_{i} w_{i}$$

Adding bias

•Bias is like another weight. Its included by adding a component x_0 =1 to the input vector X.

- Bias is of two types
 - Positive bias: increase the net input
 - Negative bias: decrease the net input

Adding an "activation" function

- •Used to calculate the output response of a neuron.
- •Sum of the weighted input signal is applied with an activation to obtain the response.
- Activation functions can be linear or non linear

Common activation functions

Many types of activations functions are used:

linear:
$$a = f(n) = n$$

Threshold: $a = \{1 \text{ if } n \ge 0 \text{ (hardlimiting)} \}$ 0 if n < 0

sigmoid: $a = 1/(1+e^{-n})$

Threshold activation

$$\phi(z) = \operatorname{sign}(z) = {\color{red} \bullet 1, \quad if \quad z \ge 0,} \\ {\color{red} \bullet -1, \quad if \quad z < 0.}$$

Hyperbolic tangent activation

$$\varphi(u) = tanh(\gamma u) = \frac{1 - e^{-2\gamma u}}{1 + e^{-2\gamma u}}$$

Artificial Neural Networks

Artificial Neural Networks

- Artificial Neural Network (ANN): is a machine learning approach that models human brain and consists of a number of artificial neurons that are linked together according to a specific networkarchitecture.
- Neuron in ANNs tend to have fewer connections than biological neurons. each neuron in ANN receives a number of inputs.
- An activation function is applied to these inputs which results in activation level of neuron (output value of the neuron).
- Knowledge about the learning task is given in the form of examples called training examples.

Computing with Neural Units

- Incoming signals to a unit are presented as inputs.
- How do we generateoutputs?
- One idea: <u>Summed</u> WeightedInputs.
- **Input:** (3, 1, 0, -2)
- Processing

$$3(0.3) + 1(-0.1) + 0(2.1) + -2(-1.1)$$

= 0.9 + (-0.1) + 0 + 2.2

• Output: 3

Activation Functions

- Usually, do not just use weighted sum directly.
- <u>Apply some function</u> to theweighted sum before it is used (e.g., as output).
- © Call this the activation function.

$$f(x) = \begin{cases} 1 & \text{if } x \ge \theta \\ 0 & \text{if } x < \theta \end{cases} \quad \theta \text{ Is called the threshold}$$

Step function

Activation Functions

The choice of activation function determines the Neuron Model.

Example (1): Step Function

Example (2): Another Step Function

Example (3): Sigmoid Function

- The math of some neural nets requires that the activation function be continuously differentiable.
 - •A sigmoidal function often used to approximate the step function.

$$f(x) = \frac{1}{1 + e^{-\sigma x}} \qquad \sigma^{\text{Is the steepness parameter}}$$

Example (3): Sigmoid Function

$$f(3) = \frac{1}{1 + e^{-2x}} = .998$$

Input: (0, 10, 0, 0)

network output?

Example

• Calculate the output from the neuron below assuming a threshold of 0.5:

Sum =
$$(0.1 \times 0.5) + (0.5 \times 0.2) + (0.3 \times 0.1) = 0.05 + 0.1 + 0.03 = 0.18$$

Since 0.18 is less than the threshold, the Output = 0

Repeat the above calculation assuming that the neuron has a sigmoid output function: Sum is still 0.18, but now Output = $\frac{1}{1+e^{-0.18}} = 0.545$

Network Architectures

Network architectures

A taxonomy of feed-forward and recurrent/feedback network architectures.

Network Architecture

- The Architecture of a neural network is linked with the learning algorithm used to train.
- There are different classes of network architecture:
- Single-Layer Neural Networks.
- Multi-Layer Neural Networks.
 - The number of layers and neurons depend on the specific task.

Single Layer Neural Network

- Single-laver feedforward network is the simplest form of a layered network.
- There are two layers:
 - Input Layer
 - Output Layer (Computation Nodes)
- It is *feedforward*, means the information flow from input to output and not *viceversa*.
- Input layer of source nodes are not counted because no computation is performed.

Figure 2.1 Feedforwad network with a single layer of neurons.

Multilayer Neural Network

- Multilayer feedforward networks has one or more hidden layers.
- Multilayer NN overcome the limitation of Single-Layer NN, they can handle non-linearly separable learning tasks.
- By adding hidden layers, the network is enabled to **extract higher-order statistics** from its input.
- In this structure, the computation nodes are called hidden neurons or hidden units.
- The example architecture in **Figure 2.2** is referred to as a 10-4-2 network:
 - 10 source nodes
 - 4 hidden neurons
 - 2 output neurons
- Fully Connected VS Partially Connected

Information Flow

Figure 2.2 Fully connected feedforward network with one hidden layer and one output layer.

Recurrent Network

- Recurrent neural network is different from feedforward neural network because it has at least one feedback loop.
- The presence of feedback loop has a profound impact on the learning capability of the network and its performance.
- The feedback loops involve the use of particular branches composed of unittime delay elements (denoted by z⁻¹)
- Structure at Figure 2.3:
 - No self-feedback loops in the network
 - No hidden neurons

Figure 2.3 Recurrent network with no selffeedback loops and no hidden neurons.

Recurrent Network

- Structure at Figure 2.4:
 - Contains self-feedback loops in the network
 - Contains hidden neurons
- The feedback connections originate from the hidden neurons as well as from the

Figure 2.4 Recurrent network with hidden neurons.

Deep Learning

More layers = deep learning

Example of multilayer ANN

Calculate the output from this network assuming a Sigmoid Squashing

Function.

Input to neuron
$$1 = (0.2 \times 0.5) + (0.4 \times 0.8) = 0.42$$
. Output $= \frac{1}{1 + e^{-0.42}} = 0.603$

Input to neuron 2 =
$$(0.2 \times 0.1) + (0.4 \times 0.9) = 0.38$$
. Output = $\frac{1}{1 + e^{-0.38}} = 0.594$

Input to final neuron =
$$(0.594 \times 0.7) + (0.603 \times 0.5) = 0.717$$
.

Final Output =
$$\frac{1}{1 + e^{-0.717}} = 0.672$$

Exercise of multilayer ANN

Try calculating the output of this networkyourself.

Backpropagation

An efficient method of implementing gradient descent for neural networks

$$w_{i \to j} = w_{i \to j} - r \delta_{j} y_{i} \qquad \text{Descent}$$

$$rule \qquad \qquad (i) \qquad w_{i \to j} \qquad (k)$$

$$\delta_{j} = \frac{ds(z_{j})}{dz_{j}} \sum_{k} \delta_{k} w_{j \to k} \qquad \text{Backprop}$$

$$rule \qquad \qquad j \qquad j \qquad k$$

v_i is x_i for input layer

- Initialize weights to small random values
- 2. Choose a random sample input feature vector
- Compute total input (z_j) and output (y_j) for each unit (forward prop)

 Compute δ_n for output layer $\delta_n = \frac{ds(z_n)}{dz}(y_n y_n^*) = y_n(1 y_n)(y_n y_n^*)$
- **5.** Compute δ_i for preceding layer by bac kprop rule (repeat for all layers)
- Compute weight change by descent rule (repeat for all weights)

Backpropagation

First do forward propagation: Compute z_i and y_i given x_k, w_{ii}

$$\delta_3 = y(1-y)(y-y^m)$$

$$\delta_2 = y_2(1 - y_2)\delta_3 w_{23}$$

$$\delta_1 = y_1(1 - y_1)\delta_3 W_{13}$$

$$W_{03} = W_{03} - r\delta_3(-1)$$
 $\longrightarrow W_{13} = W_{13} - \eta\delta_3Y_1$

$$\mathbf{w}_{02} = \mathbf{w}_{02} - r\delta_2(-1)$$

$$\mathbf{W}_{01} = \mathbf{W}_{01} - r\delta_1(-1)$$

$$+W_{13} = W_{13} - \eta \delta_3 Y_1$$

$$\mathbf{W}_{12} = \mathbf{W}_{12} - \eta \delta_2 \mathbf{X}_1$$

$$W_{23} = W_{23} - \eta \delta_3 Y_2$$

$$\mathbf{W}_{22} = \mathbf{W}_{22} - \eta \delta_2 \mathbf{X}_2$$

$$W_{21} = W_{21} - \eta \delta_1 X_2$$

Compare to the direct derivation earlier

Note that all computations are local

6.034 - Spring 03 • 39

Back Propagation Formula Example

g(x)=
$$1/(1+e^{-x})$$

g'(x)= $(1-x)*x$
 γ is the learning rate

$$a4=g(z4)=g(x1*w14+x2*w24)$$

 $a3=g(z3)=g(x1*w13+x2*w23)$
 $a5=g(z5)=g(a3*w35+a4*w45)$
 $\otimes 5=error^*g'(z5)=error^*a5^*(1-a5)$
 $)$
 $\otimes 4=\otimes 5*w45*g'(z4)=\otimes 5*w45*a4*(1-a4)$
 $\otimes 3=\otimes 5*w35*a3*(1-a3)$

w45= w45 +
$$\gamma$$
a4 \otimes 5
w13= w13 + γ * x \uparrow * \otimes 3
w23= w23 + γ *x2* \otimes 3
w14= w14 + γ *x1* \otimes 4
w24= w24 + γ *x2* \otimes 4

 $w^{2}5 = w^{2}5 + v^{*}a^{2} \times 5$

Example: all weights are 0.1 except w45=1; γ =0.2 Training Example: (x1=1,x2=1;a5=1) g is the sigmoid function

a5 is 0.6483 with the adjusted weights!

a5

w35= w35 +
$$\gamma$$
a3 \otimes 5
=0.1+0.2*0.55*0.08=0.109
w45= w45 + γ *a4* \otimes 5=1.009

$$a3=g(z3)=g(x1*w13+x2*w23)=g(0.2)=0.550$$

 $a4=g(z4)=g(x1*w14+x2*w24)=g(0.2)=0.550$
 $a5=g(z5)=g(a3*w35+a4*w45)=g(0.605)=0.647$
 $\otimes 5=error^*g'(z5)$
 $=error^*a5^*(1-a5)$
 $=0.353*0.647*0.353=0.08$

 $\otimes 3 = \otimes 5*w35*a3*(1-a3)=0.00$

224=⊗5*w45*a4*(1-a4)=0.0

w13= w13 +
$$\gamma$$
x1 \otimes 3=0.1004
w23= w23 + γ *x2* \otimes 3=0.1004
w14= w14 + γ *x1* \otimes 4=0.104
w24= w24 + γ *x2* \otimes 4=0.104

ANN Capabilities & Limitations

Main capabilities of ANN includes:

- Learning.
- Generalization capability.
- Noise filtering.
- Parallel processing.
- Distributed knowledge base.
- Fault tolerance.

Main problems includes:

- Learning sometimes difficult/slow.
- Limited storage capability.
- Do not do well at tasks that are not done well by people
- Lack explanation capabilities
- Limitations and expense of hardware technology restrict most applications to software simulations
- · Training time can be avagained and tadion
- Usually requires large amounts of training and test data

Example: all weights are 0.1 except w45=1; γ =1 Training Example: (x1=1,x2=1;a5=1) g is the sigmoid function

$$a3=g(z3)=g(x1*w13+x2*w23)=g(1*0.1+1*0.1)=g(0.2)=0.550$$

$$a4=g(z4)=g(x1*w14+x2*w24)=g(1*0.1+1*0.1)=g(0.2)=0.550$$

Example: all weights are 0.1 except w45=1; γ =1 Training Example: (x1=1,x2=1;a5=1) g is the sigmoid function

$$a3=g(z3)=0.550$$

$$a4=g(z4)=0.550$$

$$a5=g(z5)=0.647$$

$$\otimes 3 = \otimes 5*w35*a3*(1-a3)=0.00$$

Example: all weights are 0.1 except w45=1; γ =1 Training Example: (x1=1,x2=1;a5=1) g is the sigmoid function

$$a3=g(z3)=0.550$$

$$a4=g(z4)=0.550$$

$$a5=g(z5)=0.647$$

$$\otimes 3 = \otimes 5*w35*a3*(1-a3)=0.00$$

w35= w35 +
$$\gamma$$
a3 \otimes 5
=0.1+1*0.55*0.08=0.145

$$w45 = w45 + \gamma^*a4^* \otimes 5 = 1.045$$

$$w13 = w13 + \gamma *x1* \otimes 3 = 0.102$$

$$w23 = w23 + \gamma *x2* \otimes 3 = 0.102$$

$$w14 = w14 + \gamma * x1 * \otimes 4 = 0.12$$

$$w24 = w24 + \gamma x2 \otimes 4 = 0.12$$

Example: all weights are 0.1 except w45=1; γ =1 Training Example: (x1=1,x2=1;a5=1) g is the sigmoid function

a5

$$a3=g(z3)=g(x1*w13+x2*w23)=g(0.2)=0.555$$

$$a4=g(z4)=g(x1*w14+x2*w24)=g(0.2)=0.555$$

$$a5=g(z5)=g(a3*w35+a4*w45)=g(0.605)=0.6594$$

w35= w35 +
$$\gamma$$
a3 \otimes 5
=0.1+1*0.55*0.08=0.145
w45= w45 + γ *a4* \otimes 5=1.045

w13= w13 +
$$\gamma$$
x1 \otimes 3=0.102

$$w23 = w23 + \gamma *x2* \otimes 3 = 0.102$$

$$w14 = w14 + \gamma * x1 * \otimes 4 = 0.12$$

$$w24 = w24 + \gamma^*x2^* \otimes 4 = 0.12$$

Example: all weights are 0.1 except w45=1; γ =1 Training Example: (x1=1,x2=1;a5=1) g is the sigmoid function

a5

$$a3=g(z3)=g(x1*w13+x2*w23)\\ =g(1*0.102+1*0.12)=g(0.222)=0.555\\ a4=g(z4)=g(x1*w14+x2*w24)\\ =g(1*0.102+1*0.12)=g(0.222)=0.555\\ a5=g(z5)=g(a3*w35+a4*w45)\\ =g(0.555*0.145+0.555*1.045)$$

=g(0.66045)=0.6594

w35= w35 +
$$\gamma$$
a3 \otimes 5
=0.1+1*0.55*0.08=0.145
w45= w45 + γ *a4* \otimes 5=1.045

$$w13 = w13 + \gamma^*x1^* \otimes 3 = 0.102$$

 $w23 = w23 + \gamma^*x2^* \otimes 3 = 0.102$
 $w14 = w14 + \gamma^*x1^* \otimes 4 = 0.12$
 $w24 = w24 + \gamma^*x2^* \otimes 4 = 0.12$

Hence, current error =(1-0.6594)=0.3406 which less than 0.353