Step mancanti

January 2020

Gibbs sampler of the model under the prior:

$$[B, \sigma_{\epsilon}^2] = \pi[B] \times \frac{1}{\sigma_{\epsilon}^2} \tag{1}$$

where $\pi[B]$ is such that all the coefficients are independent across species:

$$\forall j = 1, \dots, S \qquad \beta_j \stackrel{iid}{\sim} N(0, \sigma^2 I) \tag{2}$$

where β_j is the j-th row of B (if B is $S \times k$). σ is an hyperparameter that gives the degree of uninformativeness of the prior. You can take $\sigma = 10$.

• $[V_i^{\star}|B^{\star}, X, A, Y]$: for each site i = 1, ..., n and each species j = 1, ..., S we sample $V_{i,j}^{\star}$ from a univariate truncated normal:

$$V_{i,j}^{\star}|B^{\star}, X, A, y_{i,j} \sim trunc.N(B_j^{\star}x_i + Aw_i, \sigma_{\epsilon}^2)$$
 (3)

Where the normal is truncated to the positive axis if $y_{i,j} = 1$ and to the negative axis if $y_{i,j} = 0$.

• $[B^{\star}|V^{\star},X,A,...]$: for each species $j=1,\ldots,S$ we sample β_j^{\star} from a multivariate normal

$$\beta_j^{\star} \sim N((\frac{1}{\sigma^2}I + \frac{1}{\sigma_{\epsilon}^2}X'X)^{-1}\frac{1}{\sigma_{\epsilon}^2}X'(V_j^{\star} - WA_j), (\frac{1}{\sigma^2}I + \frac{1}{\sigma_{\epsilon}^2}X'X)^{-1})$$
 (4)

Where W is the nxr matrix whose lines are w_i .

Notice that this is a mix between equation (3.A.3) by Golding and step 3 in section 3.2 by Taylor-Rodriguez.

- $[\sigma_{\epsilon}^2|rest]$ as in Taylor and Rodriguez appendix
- Finally, obtain the variables on the correlation scale using the following transformations.

Let D be the diagonal matrix $D = diag(\Sigma^*)$, with $\Sigma^* = AA' + \sigma_\epsilon^2$. Then, $V = D^{-1/2}V*$, $B = D^{-1/2}B*$ and $R = D^{-1/2}(AA' + \sigma_\epsilon^2)D^{-1/2}$.

This step is needed to the identifiability issue of the probit link, where the variance covariance matrix has to be a correlation matrix. Leggete 3.2 di Taylor-Rodriguez per capirla meglio, opure, meglio, ci chiamiamo via skype e provo a spiegarvela.