Aplicaciones de análisis

Práctica 1 - Genómica

José Manuel Bustos Muñoz

Lo primero sería realizar la carga de los datos para la práctica en la herramienta online de Galaxy.

Una vez están cargados los datos nos aparece que archivo en el panel de History. Habría 3 ficheros fasta para cada una de las dos condiciones, un fichero fasta y un fichero gtf. Pueden visualizarse los datos de cada fichero o por ejemplo modificar el nombre o algunas propiedades similares.

Visualización de datos de uno de los ficheros:

Ahora se alinean las lecturas de los ficheros "fastq" con el genoma de referencia que sería el fichero "fasta". Para ello se ejecuta desde las tools la alineación seleccionando el tipo "NGS:Mapping —> Bowtie2".

Se generan dos ficheros por cada uno de los 6 ficheros fastq que teníamos cargados. Por un lado se genera un fichero "aligned reads" que ve las alineaciones entre datos fastq y el genoma fasta:

Y luego los ficheros "mapping stats" que contienen información estadística sobre el resultado de la alineación anterior.

Borramos los ficheros de estadísticas, y nos centramos en los de alineación que renombramos para mayor comodidad.

Ahora se van a contar cuántas lecturas de los ficheros fastq encajan con cada gen. Para ello se usa el fichero GFF que contiene la información sobre la posición. Se hace el conteo desde la opción de Tools: "NGS:RNA Analysis - featureCounts".

Nos quedamos con los 6 ficheros generados que contienen el conteo del número de veces que un gen se ha expresado. Renombramos los ficheros:

Con los ficheros que ya tenemos, se va a realizar el cálculo de la expresión diferencial: "NGS:RNA Analysis - DESeq2", con el que se podrá determinar qué genes se encuentran diferencialmente expresados entre las condiciones del experimento. Se generan dos ficheros, uno que contiene diferentes gráficas que representan estadísticas, y otro fichero que contiene una fila para cada gen identificado en el fichero "gtf" y las métricas usadas para el cálculo de la expresión diferencial.

Damos un vistazo al fichero de gráficas:

Vemos el fichero generado para cada gen, con las métricas obtenidas:

GeneID	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj	History	20
ptsG	287.104041489715	3.70386159302384	0.22148949706929	16.7225157040523	8.9845203743366e-63	2.02511089237547e-59	search datasets	
setA	119.192022574126	-3.77876481042538	0.284314606117701	-13.2907867872994	2.6181068458796e-40	2.95060641530631e-37	Search Catasets	
deoC	118.764760969725	-2.26082669697138	0.256851547594629	-8.80207543284686	1.34308854311574e-18	1.00910719206096e-15	Práctica Genómica	
sucB	97.7830118745143	-2.04568679574465	0.244509440461329	-8.36649411934748	5.93578816712734e-17	3.34481663217626e-14	22 shown , 102 deleted , 1 hid	iden
sucD	78.7277170967774	-2.18476604460764	0.265910784143029	-8.21616186665259	2.10119802553539e-16	9.47220069911353e-14	2.84 GB	80
sodA	641.110578417242	-1.53279491780711	0.196485128179998	-7.80107345530464	6.13827679195282e-15	2.30594598151028e-12	2.64 08	
decA	74.6739675455924	-2.23164899075234	0.288814158356041	-7.72693763856697	1.10164579309581e-14	3.5472994537685e-12	124: DESeg2 plots on da	@ # X
ackA	492.668877883933	1.34270180231898	0.179911167478185	7.46313762030245	8.44860215855345e-14	2.38039365817244e-11	ta 115, data 113, and oth	
sucC	55.7557118136257	-2.19273413482056	0.304469130697969	-7.20182742268125	5.94108596092494e-13	1.48791197288054e-10	ers	
ibpA	33.1767454212724	2.34243447457831	0.339927483556994	6.89098289454892	5.54082018474337e-12	1.24890086964116e-09	I was a second of the second	G-10 (0.4 (0.4)
sucA	81.1336674851828	-1.8763483981581	0.276691859978205	-6.78136464985238	1.19045976556573e-11	2.43936028325922e-09	123: DESeq2 result file on data 115, data 113, a	● # X
ydbK	174.490668050152	-1.73304373871055	0.265244787546982	-6.53375229250672	6.41419995866732e-11	1.20480055890301e-08	nd others	
ompF	202.90284595257	1.36902711797722	0.210078135412546	6.5167520422283	7.18460426435596e-11	1.24569984706603e-08		
yldA	54.5206411219009	-1.81678123811936	0.289059853928816	-6.28513857398806	3.27561377191371e-10	5.27373817278108e-08	121: conteo_Lb3	● / ×
nupG	88.034910150372	-1.68385950643439	0.275692357483031	-6.10774822271973	1.01046587133545e-09	1.51839338266006e-07	440	
cydA	217.064331559983	1.21898657234768	0.204507133901558	5.96060660130543	2.51303300409762e-09	3.54023524452252e-07	119: conteo_Lb2	● # ×
ydjN	21.6418555368854	2.28898171915388	0.387857431070873	5.90160594018789	3.59980151795229e-09	4.7729133067438e-07	117: conteo_Lb1	@ # X
gatZ	100.0378332595	-1.6631435918259	0.284637810078987	-5.84301710080041	5.12637527530714e-09	6.41936103919016e-07		
osmY	21.5449203180075	-2.19790739239054	0.384828700439431	-5.71139156170208	1.12056088913258e-08	1.32933907584465e-06	115: conteo_amg3	● / ×
gatC	46.8783496675536	-1.8055075323	0.319213792966511	-5.65610751190008	1.54844493356791e-08	1.74509744013103e-06		Design to the latest
icd	345.977927680529	-1.03786035495016	0.183887440333525	-5.64399805156756	1.66145954287113e-08	1.78329990934835e-06	113: conteo_amg2	● # ×
leuD	10.540684820243	-2.47238776541326	0.441851173212041	-5.59552155862848	2.19959511905781e-08	2.25358518107105e-06	111: conteo_amg1	● # ×
ahpC	418.033938553654	-0.970478463015697	0.177675922742626	-5.46207076364249	4.70612400679999e-08	4.61200152666399e-06		0 0 4
aceE	1494.83214001797	0.862041733327824	0.161594197682971	5.33460820801901	9.57510744239835e-08	8.99262173965245e-06	33: alineacion_Lb3	@ # X
deoB	314.648375015497	-1.11975017428218	0.210326648487294	-5.32386258391705	1.01586660427472e-07	9.15905330414087e-06		
plaP	242.916594747527	1.05638020467497	0.205582468654296	5.13847416849228	2.76978259090496e-07	2.31225554070362e-05	31: alineacion_Lb2	● # X
fadL	153.648740339467	1.0922137909467	0.212479086953045	5.14033548717229	2.74248353337286e-07	2.31225554070362e-05	29: alineacion_Lb1	. / x
doob	740 777440004404	0.075000000007047	0.4700000000440000	E 00444344604000	2.75220000000000000000000000000000000000	2.02000070204000 05	20. dillicacion_LDI	X

Preguntas:

1. ¿Qué genes han resultado diferencialmente expresados?

Nos quedamos con los genes con menor valor p-ajustado (tercera columna de la tabla):

	0.70000150000004	0.00544000007547 . 50
ptsG	3.70386159302384	2.02511089237547e-59
setA	-3.77876481042538	2.95060641530631e-37
deoC	-2.26082669697138	1.00910719206096e-15
sucB	-2.04568679574465	3.34481663217626e-14
sucD	-2.18476604460764	9.47220069911353e-14
sodA	-1.53279491780711	2.30594598151028e-12
deoA	-2.23164899075234	3.5472994537685e-12
ackA	1.34270180231898	2.38039365817244e-11
sucC	-2.19273413482056	1.48791197288054e-10
ibpA	2.34243447457831	1.24890086964116e-09
sucA	-1.8763483981581	2.43936028325922e-09
ydbK	-1.73304373871055	1.20480055890301e-08
ompF	1.36902711797722	1.24569984706603e-08
yidA	-1.81678123811936	5.27373817278108e-08
nupG	-1.68385950643439	1.51839338266006e-07
cydA	1.21898657234768	3.54023524452252e-07
ydjN	2.28898171915388	4.7729133067438e-07
gatZ	-1.6631435918259	6.41936103919016e-07
osmY	-2.19790739239054	1.32933907584465e-06
gatC	-1.8055075323	1.74509744013103e-06
icd	-1.03786035495016	1.78329990934835e-06
leuD	-2.47238776541326	2.25358518107105e-06
ahpC	-0.970478463015697	4.61200152666399e-06
aceE	0.862041733327824	8.99262173965245e-06
deoB	-1.11975017428218	9.15905330414087e-06
plaP	1.05638020467497	2.31225554070362e-05
fadL	1.0922137909467	2.31225554070362e-05
dnaK	0.875639928897247	3.02060879384669e-05
cspA	1.27673155628296	3.78956179238374e-05
ahpF	-0.964153733394864	9.901627510662e-05
gtrS	-1.1182075729314	0.000100105754464533
sdhA	-1.45595619343951	0.000105145798497739

gatA	-1.63891081142238	0.000106379913266369
acnB	-1.10470988654074	0.000123715275029271
ppsA	-1.74552496392493	0.000148624395383318
deaD	0.953538014485646	0.000226496881197669
pdhR	0.937777419625075	0.000296239671667935
sthA	-1.39506646196629	0.000406746473123539
aceF	0.764708695974235	0.000568385340805608
tsgA	1.14163901498538	0.000683668918995821
cydB	1.05613642749064	0.000811970359951299
nuoG	-1.09242101606278	0.0010126543333041
gpmA	-0.78533796955656	0.0023287411010205
poxB	-1.807134937772	0.00267030878297739
gatD	-1.48711732003352	0.00324866069920715
ndh	1.22193368114597	0.00327082256477578
fumA	-1.11641730135098	9.8339498118368e-05

2. ¿Qué genes se sobreexpresan para la solución de azúcar frente al E. Coli salvaje? Se sobreexpresan los genes con valor positivo para la columna de log2(FC):

ptsG	3.70386159302384
ackA	1.34270180231898
ibpA	2.34243447457831
ompF	1.36902711797722
cydA	1.21898657234768
ydjN	2.28898171915388
aceE	0.862041733327824
plaP	1.05638020467497
fadL	1.0922137909467
dnaK	0.875639928897247
cspA	1.27673155628296
deaD	0.953538014485646
pdhR	0.937777419625075
aceF	0.764708695974235
tsgA	1.14163901498538
cydB	1.05613642749064
ndh	1.22193368114597

3. ¿Qué genes se infraexpresan para la solución de azúcar frente al E. Coli salvaje? Se infraexpresan los genes con valor negativo para log2(FC):

setA	-3.77876481042538
deoC	-2.26082669697138
sucB	-2.04568679574465
sucD	-2.18476604460764
sodA	-1.53279491780711
deoA	-2.23164899075234
sucC	-2.19273413482056
sucA	-1.8763483981581
ydbK	-1.73304373871055
yidA	-1.81678123811936
nupG	-1.68385950643439
gatZ	-1.6631435918259
osmY	-2.19790739239054
gatC	-1.8055075323
icd	-1.03786035495016
leuD	-2.47238776541326
ahpC	-0.970478463015697
deoB	-1.11975017428218
ahpF	-0.964153733394864
gtrS	-1.1182075729314
sdhA	-1.45595619343951
gatA	-1.63891081142238
acnB	-1.10470988654074
ppsA	-1.74552496392493
sthA	-1.39506646196629
nuoG	-1.09242101606278
gpmA	-0.78533796955656
рохВ	-1.807134937772
gatD	-1.48711732003352
fumA	-1.11641730135098