카이제곱검정

- 분포의 유도
- 1. $X_1 \sim b(n, p_1)$ 일 때, 확률변수 $Y = \frac{x_1 np_1}{\sqrt{np_1(1-p_1)}} \rightarrow N(0,1)$ 이다.
- 1) 이제, 같이 X를 구성하면서 X_1 의 여집합인 X_2 를 생각하자. $X_2 = n X_1$ 이고 $p_2 = 1 p_1$ 이다.
- 2) 이제, $Y^2 = N(0,1)^2 \sim x^2(a)$ 이고, $Q_1 = Y^2$ 일때 Q_1 은

(1)
$$Q_1 = \frac{(x_1 - np_1)^2}{np_1(1 - p_1)} = \frac{(x_1 - np_1)^2}{np_1} + \frac{(x_1 - np_1)^2}{(1 - p_1)} = \frac{(x_1 - np_1)^2}{np_1} + \frac{(x_1 - np_1)^2}{np_2}$$

- (2) 이를 일반화하면
- $Q_{k-1} = \sum_{i=1}^{k} \frac{(x_i np_i)^2}{np_i}$ 이고, 이는 $x^2(1)$ 를 따른다.
- $0 \mid \mathbb{H}, x_i = n \sum_{i=1}^k X_i, p_k = 1 \sum_{i=1}^k p_i \mid \mathbb{H}.$

- 분포의 유도
- 2) 이제, $p_1 \cdots p_n$ 을 어떤 확률실험을 n회 반복했을 때 각 X_i 가 A_i 에 속할 확률이라 가정 (1) 이 때,
- $-A_{i}$ 는 이 확률실험에서 쓰이는 표본들의 부분 범위들을 뜻하고
- X_i 는 실험의 실험값들이 각 A_i 에 속하는 빈도수를 의미한다.
- (2) 이 때 p_{i0} 를 가설 확률이라 하고, $H_0: p_1 = p_{10}, \cdots p_n = p_{n0} \ VS \ H_1: p_i \neq p_{i0}$, 라고 한다면
- H_0 가 참일 때 확률변수 $Q_{k-1} = \sum_{i=1}^k \frac{(x_i np_{i0})^2}{np_{i0}} \sim \chi^2(k-1)$ 이다.
- H_0 가 참일 경우, $x_i = np_{i0}$ 이므로, 이 값은 작아야 하며, 이를 이용하여 검증을 할 수 있다.

	A_1		A_k
빈도	X_i	***	X_k

- 최소카이제곱추정량
- 1. H_0 하에서 p_i 를 <mark>완전히 알 수 없는 경우</mark>가 존재한다. 이 때, 해당 p_i 에 속하는 Y_i 를 모수를 알 수 없는 pdf를 따르는 분포의 확률변수라 가정한다.
- 2. 즉, Y가 μ 와 σ 를 알 수 없는 정규분포 $N(\mu, \sigma)$ 에서 추출되었다고 하자.
- 1) $0 \mid \mathbb{H}, p_i = \int_{A_i} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(y-\mu)^2}{\sigma^2}\right) dy \mid \mathbb{R}$
- 2) 마찬가지로 X_i 는 실험의 실험값들이 각 A_i 에 속하는 빈도수를 의미한다고 할 때 $Q_{k-1} = \sum_{i=1}^k \frac{(x_i np_{i0})^2}{np_{i0}}$
- (1) 이 경우, μ , σ 가 미지이므로 계산할 수 없다. 대신, 관찰된 $X_1 = x_1 \cdots X_k = x_k$ 를 중심으로 Q_{k-1} 을 최소화하는 μ , σ 를 선택한다.
- (2) 구체적으론 $E(Q_{k-1}) = 0$ 으로 만드는 최대우도추정값 을 사용한다.
- (3) 또한, 이 때 $Q_{k-1} \sim x^2(k-3)$ 을 따른다.

- 동질성에 대한 카이제곱 검정
- 1. 모수가 각각 n_i , p_{1i} , p_{2i} ··· p_{ki} (j=1,2) 인 2개의 다항분포가 있다면
- 1) $X_{1j}, X_{2j} \cdots X_{kj}$ 이 그 대응 빈도이다. 이 때, 다항분포의 가법분포는

$$(1)\sum_{j=1}^{2} \sum_{i=1}^{k} \frac{(x_{ij} - n_j p_{ij})^2}{n_i p_{ij}} \sim x^2 (2k - 2)$$

- 2) 이 때, p_{ij} 는 직접적으로 추정할 수 없으며, 최소카이제곱추정에 따라 MLE를 각 분포의 대리 모수로 활용하면, 그 때의 추정값은
- (1) $p_{i1} = p_{i2}$ 라는 가설에 대하여 $p_{ij} = \frac{(X_{i1} + X_{i2})}{n_1 + n_2}$ 이다.
- (2) 이를 반영하여 가법분포를 다시 쓰면

(3) $\sum_{j=1}^{2} \sum_{i=1}^{k}$	$\frac{(x_{ij}-n_j\frac{(X_{i1}+X_{i2})}{n_1+n_2})^2}{(x_{ij}-n_j\frac{(X_{i1}+X_{i2})}{n_1+n_2})^2}$	이다
$(J) \Delta j = 1 \Delta i = 1$	$\frac{n_j \frac{(X_{i1} + X_{i2})}{n_1 + n_2}}{n_2}$	□ - .

	A_1		A_k
B_1	<i>X</i> ₁₁	•••	X_{1k}
•••	•••	•••	•••
B_k	X_{k1}	•••	X_{kk}

- 분할표
- 1. 확률실험결과를 두 속성으로 분류한다고 하자(예를들면, 눈과 머리색)
- 1) $p_{ij} = p(A_j \cap B_j)$ 이고, 이 때 실험이 n회 반복된다고 쳤을 때 p_{ij} 에 해당하는 빈도를 X_{ij} 라고 하자.
- 2) $K=i\cdot j$ 개만큼 존재하므로, 이 때 확률변수 Q_{ab-1} 은

(1)
$$Q_{ab-1} = \sum_{j=1}^{a} \sum_{i=1}^{b} \frac{(x_{ij} - n_j p_{ij})^2}{n_j p_{ij}} \sim x^2 (ab - 1)$$

(2) 이 때, 속성 A와 B의 독립성을 검증할 때, $H_0: p(A_j \cap B_j) = p(A_j) \cdot p(B_j)$ 이므로

	밤 색		초 록색
눈	X_{11}	•••	X_{1k}
머리	X_{k1}	•••	X_{kk}

- 분할표
- 2) 이 때, 속성 A와 B의 독립성을 검증할 때, $H_0: p(A_i \cap B_i) = p(A_i) \cdot p(B_i)$ 이므로
- (1) $p(A_i) = \sum_{j=1}^b p_{ij}, \ p(B_i) = \sum_{i=1}^b p_{ij}$
- (2) 위 예시에서, i=머리색, j=눈색 이라면

- (3) 위를 일반화 하면

$$- Q_{ab-1} = \sum_{j=1}^{a} \sum_{i=1}^{b} \frac{(x_{ij} - n_j p(A_j) \cdot p(B_j)^2}{n_j p(A_j) \cdot p(B_j)} \ O| \Box|.$$