

Universidad Tecnológica Nacional Facultad Regional Resistencia

Guía de Ejercicios Nº 2

Guía de trabajos prácticos confeccionado por el J.T.P. Jorge Ariel Vera. Los ejercicios fueron extraídos de diversos libros y trabajos por lo cual están alcanzados por los derechos de autor copyright "©".

PROBLEMA DUAL

- 1. Planteo del dual de un problema.
- 2. Significado de todas las variables del problema dual.
- 3. Resolución del problema dual.
- 4. Correspondencia entre la tabla óptima del directo y la tabla óptima del dual.
- 5. Construcción de la tabla óptima del dual, a partir de la tabla óptima del directo.

Ejercicio N°1:

Plantear el problema dual correspondiente

1.1.) $z = 5 x_1 + 12 x_2 + 4 x_3 --- > MAX$ 1.4.) $z = 6 x_1 + 3 x_2 + x_3 --- > MAX$ $x_1 + 2 x_2 + x_3 \le 10$ $2x_1 - x_2 + 3x_3 = 8$ $6x_1 - 3x_2 + x_3 \ge$ 2 $3x_1 + 4x_2 + x_3 \ge$ $x_1, x_2, x_3 \ge 0$ 5 $X_1, X_2, X_3 \geq$ 0 1.2.) $z = 15 x_1 + 12 x_2 --- > MIN$ 1.5.) $z = 15 x_1 + 12 x_2 --- > MAX$ $x_1 + 2 x_2 \ge 3$ $2x_1 - 4x_2 \leq 5$ $x_1 + 2 x_2 \ge 3$ $2x_1 - 4x_2 \leq 5$ 0 X_{1}, X_{2} $3x_1 + x_2 = 4$ $x_{1,} x_2 \ge$ 0 1.3.) $z = 5 x_1 + 6 x_2 --- > MAX$ 1.6.) $x_1 + 2 x_2 = 5$ $z = 6 x_1 + 3 x_2 + x_3 --- > MIN$ $-x_1 + 5x_2 \geq 3$ $6x_1 - 3x_2 + x_3 \ge 2$ $3x_1 + 4x_2 + x_3 \ge 5$ $4x_1 + 7x_2 \leq 8$ $X_1, X_2 \geq 0$ 0 X_{1}, X_{2}, X_{3}

Ejercicio N°2:

Plantear el Dual y determinar la solución dual óptimo por los dos métodos:

Método 1:

(Valores óptimos = (vector renglón coeficientes obj. Original x (Inversa primal óptima) vbles. duales) de las vbles básicas óptimas primales)

Método 2:

(Coef. Z-primal óptimo "Costo = (Lado izquierdo de la r - (Lado derecho de la reducido" de cualquier vble xj) j-esima restricc. Dual) j-esima restricc. Dual)

2.1) el ejercicio 1.1

2.2.)

$$-2 \times 1 + \times 2 \le 2$$

 $\times 1 - \times 2 \le 3$
 $\times 1 + \times 2 \le 5$

$$z = 5 x1 + 4 x2 --- > MAX$$

2.3.)

$$x1 + x2 \le 4$$

 $2 \times 1 + x2 \le 4$
 $x2 \ge 2$
 $z = 2 \times 1 + 2 \times 2 --- > MAX$

2.4.) $x2 \ge 2$ $4 \times 1 + 2 \times 2 \ge 24$ $10 \times 1 - 30 \times 2 \ge 50$ $z = x1 + 8 \times 2 --- > MAX$

2.5) Se tiene el siguiente modelo de programación lineal:

$$z = 5 x_1 + 2 x_2 + 3x_3 --- > MAX$$

 $x_1 + 5x_2 + 2x_3 = 30$
 $x_1 - 5x_2 - 6x_3 \le 40$
 $x_1, x_2, x_3 \ge 0$

La solución óptima produce la siguiente ecuación objetivo

$$Z + 0 x_1 + 23 x_2 + 7x_3 + (5+M) x_4 + 0x_5 = 150$$

Donde las variables básicas de inicio son x_4 artificial y x_5 de holgura. Escriba el problema dual asociado y determine su solución óptima a partir de la ecuación de z óptima (Método 2).

Ejercicio N°3:

Obtener directamente la tabla óptima del dual de:

3.1.)
$$x2 \le 3$$

 $4 \times 1 + 6 \times 2 \le 24$
 $4 \times 1 - 6 \times 2 \le 12$
 $z = 5 \times 1 + 5 \times 2 --- > MAX$

			5	5	0	0	0
С	Х	В	A1	A2	A3	A4	A5
0	Х3	2	0	0	1	-0,08	0,08
5	X ₂	1	0	1	0	0,08	-0,08
5	x ₁	4,5	1	0	0	0,125	0,125
	C(i)-Z(i)	27,5	0	0	0	1.041	0.208

GUÍA DE EJERCICOS PARA ANALISIS DE DUALIDAD Y SENSIBILIDAD

3.2.)

 $4 x1 + 2 x2 \le 8$

x2 ≤ 1

 $-2 x1 + 2 x2 \le 4$

z = 3 x1 + 4 x2 --- > MAX

			3	4	0	0	0
С	Х	В	A1	A2	A3	A4	A5
3	Х1	1,5	1	0	0,25	-0,5	0
4	X ₂	1	0	1	0	1	0
0	X ₅	5	0	0	0,50	-3	1
	C(i)-Z(i)	8,5	0	0	0,75	2,5	0

3.3.)

 $4 \times 1 + 3 \times 2 \leq 12$

 $2 \times 1 - 5 \times 2 \ge 3$

 $-2 x1 + x2 \le 0$

z = 4 x1 + 5 x2 --- > Min

			4	5	0	0	0
С	Х	В	A1	A2	А3	A4	A5
0	Х3	6	0	13	1	2	0
4	x ₁	1,5	1	-2,5	0	-0,5	0
0	X ₅	3	0	-4	0	-1	1
	C(i)-Z(i)	6	0	-15	0	-2	0

3.4) Generar la tabla optima del simplex de los ejercicios anteriores a través de los cálculos de columnas de restricción y cálculo de renglón objetivo z.

Cálculo columna restricción (en cualquier iteración simplex):

(columna de restricc. = (inversa en la iteración i) x (Columna original de restricción) En iteración i)

Cálculo del renglón objetivo z (en cualquier iteración simplex):

Ejercicio N°4:

Las siguientes son tablas: Primera y Óptima, de un problema de P.L., resuelto por el

Método Simplex.

Se pide:

- 4.1.) Plantear el problema directo y el dual en forma completa.
- 4.2.) Hallar la matriz inversa óptima del directo.
- 4.3.) Escribir en forma completa la tabla óptima del dual.
- 4.4.) Hallar la matriz inversa óptima del dual.

	1	1	0	0	0
В	A1	A2	A3	A4	A5
9	3	1	-1	0	0
24	4	3	0	1	0
18	2	3	0	0	1

3 4	1 0	0 0	0 1	1/2 7/6 -1/3	-1/2 -5/6 2/3
4	Ü	1	Ü	-1/3	2/3
	0	0	0	1/6	1/6

Ejercicio N°5:

Dado el siguiente problema de P.L., se pide:

- 5.1.) Plantear el dual y representarlo gráficamente.
- 5.2.) Obtener la tabla óptima del problema dual.
- 5.3.) Señalar la Matriz Inversa Optima del dual.

Ejercicio N°6:

La siguiente, es la tabla óptima de un problema de P.L., resuelto por el Método

Simplex

$$z = 5 x_1 + 12 x_2 + 4 x_3 --- > MAX$$

$$x_1 + 2 x_2 + x_3 \le 10$$

 $2x_1 - x_2 + 3x_3 = 8$
 $x_1, x_2, x_3 \ge 0$

,				5	12	4	0	0
	С	Х	В	A1	A2	A3	A4	A5
	12 5	X ₂ X ₁	b1 b2	0 1	1 0	a b	2/5 1/5	-1/5 2/5
		Z	274/5	0	0	С	29/5	-2/5+M

Se pide:

- 6.1.) Obtener los valores b1 y b2 del lado derecho.
- 6.2.) Obtener los valores a, b, c
- 6.3.) Obtener la solución dual óptima.

ANALISIS POSOPTIMAL

Cambios que afectan la factibilidad

- 1. Cambia el lado derecho de las restricciones
- 2. Se agrega al modelo una nueva restricción

Nota: En ambos casos se tiene no factibilidad cuando al menos un elemento del lado derecho en la tabla óptima se hace negativo; esto es una o más variables básicas actuales se vuelven negativas

Condición resultante de los cambios	Acción acordada
La solución actual queda óptima y factible	No es necesario acción alguna
La solución actual se vuelve no factible	Usar simplex dual para recuperar la factibilidad
La solución actual se vuelve no óptima	Usar simplex primal para recuperar la optimalidad
La solución actual se vuelve no óptima y no factible al	Usar simples generalizado para obtener una
mismo tiempo	nueva solución

Ejercicio N°1:

En el problema planteado en el **ejercicio 5**.: se pide obtener las tablas óptimas para los siguientes casos:

- 1.1.) Agregado de una nueva variable: x_5 , cuyos insumos son: (1, 1) y su beneficio es: 5 \$/unidad.
- 1.2.) Ídem: 1.1.), pero con beneficio de 2 \$/unidad.
- 1.3.) Agregado de la restricción: $4X_1 + 3X_2 \ge 12$.
- 1.4.) Cambio de: términos independientes por: (4, 3).
- 1.5.) Cambio del funcional por: $z = X_1 + 5X_2$ (Max)

Ejercicio N°2:

Interpretar la solución óptima.

Fresh Dairy Farms tiene dos máquinas distintas para procesar leche pura y producir leche descremada, mantequilla o queso. La cantidad de tiempo requerido en cada máquina para producir cada unidad de producto resultante y las ganancias netas se proporcionan en la siguiente tabla:

	LECHE DESCREMADA	MANTEQUILLA	QUESO
Máquina 1	0.2 min/gal	0.5 min/lb	1.5 min/lb
Máquina 2	0.3 min/gal	0.7 min/lb	1.2 min/lb
Ganancia neta	\$0.22/gal	\$0.38/lb	\$0.72/lb

Suponiendo que se dispone de 8 horas en cada máquina diariamente, como gerente del departamento de producción, formule un modelo para determinar un plan de producción diaria que maximice las ganancias corporativas netas y produzca un mínimo de 300 galones de leche descremada, 200 libras de mantequilla y 100 libras de queso.

Planteo

X1= cantidad de leche descremada; X2= cantidad de mantequilla; X3= cantidad de queso

 $Z = 0.22 * X1 + 0.38 * X2 + 0.72 * X3 \rightarrow MAX$

Restricciones de producción:

X1>= 300 producción mínima de leche

X2>=200 producción mínima de mantequilla

X3>=100 producción mínima de queso

X1*0.2 + X2*0.5 + X3*1.5 <=480 producción diaria en máquina 1

X1*0.3 + X2*0.7 + X3*1.2 <=480 producción diaria en máquina 2 Tabla óptima del simplex:

Ck	Xk	В	X1	X2	Х3	X4	X5	Х6	X7	X8
0	X4	433,333	0	0	0	1	2,333	4	0	3,333
0,38	X2	200	0	1	0	0	-1	0	0	0
0,72	Х3	100	0	0	1	0	0	-1	0	0
0	X7	83,333	0	0	0	0	0,033	0,7	1	0,667
0,22	X1	733,333	1	0	0	0	2,333	4	0	3,333
		309,333	0	0	0	0	0,133	0,16	0	0,733

- a) Interprete el valor de cada una de las variables que aparece en la tabla óptima.
- b) En qué valores se podría modificar el coeficiente de X₂ tal que la solución no cambie y en cuánto podría variar el valor de la función objetivo?
- c) ¿Cuál es el valor marginal del tiempo de producción en la maquina 2?
- d) Intervalo de factibilidad de los elementos del lado derecho (D1)

Ejercicio N°3:

Dado el siguiente problema, con su planteo y su tabla del simplex, explicar e interpretar la misma en los términos correspondientes.

En una explotación agraria de 100 hectáreas se desean realizar diferentes labores como son: cultivar dos tipos de cereal (trigo y cebada), plantar dos tipos de frutales (perales y manzanos), y reforestar, para lo cual se plantarán pinos y eucaliptus. Los beneficios que se obtienen por cada hectárea cultivada de trigo y cebada son respectivamente 3 y 2.5 pesos; así mismo, por cada hectárea de perales se obtienen 3.5 pesos y por cada hectárea de manzanos, 4 pesos. Por otro lado, se obtiene una subvención por la reforestación y se otorgan 5 pesos por cada hectárea de pinos y 4.5 pesos por cada hectárea de eucaliptus. Las normas de la explotación obligan a utilizar al menos el 40% del total de la tierra en el cultivo de los cereales, y como máximo un 35% de la tierra en cualquiera de las otras dos labores, frutales o reforestación.

Calcular cómo ha de repartirse la tierra para obtener un máximo beneficio.

Planteo:

Definimos las variables originales como:

x1= hectáreas cultivadas de trigo.

x2= hectáreas cultivadas de cebada.

x3= hectáreas plantadas de perales.

x4= hectáreas plantadas de manzanos.

x5= hectáreas plantadas de pinos.

x6 = hectáreas plantadas de eucaliptus.

La función a maximizar, beneficio obtenido, será:

 $Z = 3 \times 1 + 2.5 \times 2 + 3.5 \times 3 + 4 \times 4 + 5 \times 5 + 4.5 \times 6 \rightarrow Maximizar$

Las restricciones del problema se formulan como:

x1 + x2 + x3 + x4 + x5 + x6 < 100 (máximo de hectáreas)

 $x1 + x2 \ge 0.40 (x1 + x2 + x3 + x4 + x5 + x6)$ (normas de la explotación)

 $x3 + x4 \le 0.35 (x1 + x2 + x3 + x4 + x5 + x6)$ (normas de la explotación)

 $x5 + x6 \le 0.35 (x1 + x2 + x3 + x4 + x5 + x6)$ (normas de la explotación)

 $x1, x2, x3, x4, x5, x6 \ge 0$

			3	2.5	3.5	4	5	4.5	0	0	0	0
Ck	Xk	В	X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10
4	X4	25	0	0	1	1	0	0	1/4	1/5	0	-1/20
5	X5	35	0	0	0	0	1	1	7/20	0	0	1/20
0	Х9	10	0	0	0	0	0	0	2	-4	1	1
3	X1	40	1	1	0	0	0	0	2/5	1/5	0	0
		395	0	0,5	0,5	0	0	0,5	3,95	0,2	0	0,5

- a) Interprete el valor de cada una de las variables que aparece en la tabla óptima.
- b) En qué valores se podría modificar el coeficiente de X₁ tal que la solución no cambie y en cuánto podría variar el valor de la función objetivo?
- c) Porque no se debe cultivar cebada, que se debería dar para que sea conveniente su cultivo?
- d) ¿Qué significa que X7 es igual a 3,95?
- e) Si las normas de explotación se pueden variar cual sería la que resultaría más benéfica?

Ejercicio N°4:

Dada la tabla óptima asociada al problema de programación lineal responda:

MAX Z=10X1 + 9X2 s.a. $(7/10)X1+2X2 \leq 630 \text{ (tiempo de corte)}$ $0.5X1+(5/6)X2 \leq 600 \text{ (tiempo de secado)}$ $X1+(2/3)X2 \leq 708 \text{ (tiempo remates)}$ $(1/10)X1+0.25X2 \leq 135 \text{ (tiempo inspección)}$ $XI \geq 0$

			10	9	0	0	0	0
Xk	Ck	В	X1	X2	Х3	X4	X5	Х6
X2	9	252	0	1	30/16	0	-21/16	0
Х4	0	120	0	0	-15/16	1	5/32	0
X1	10	540	1	0	-20/16	0	30/16	0
Х6	0	18	0	0	-11/32	0	9/64	1
Z	Zj 7668 1		10	9	35/8	0	111/16	0

- a) En qué valores se podría modificar el coeficiente de X2 tal que la solución no cambie y en cuánto podría variar el valor de la función objetivo?
- b) ¿Cuál es el valor marginal del tiempo destinado a secado?
- c) Si se estableció que a remates se van a agregar 7 horas adicionales, ¿cuál es el valor para la función objetivo?
- d) ¿Qué significa que X6=18?
- e) Si se dispone de dinero para aumentar 10 horas-hombre, ¿en cuál tipo de tiempo invertiría Ud. Y cuál sería el efecto en la función objetivo, considerando esta tabla óptima?

Ejercicio N°5:

Una fábrica de ropa produce tres líneas de trajes: jeans, franela y amasado. La ropa es vendida en lotes de 100 trajes. Cada lote pasa a través de tres procesos: corte, cosido y empaque. La planta dispone de 16 cortadores, 41 máquinas de coser y 20 empacadores. Los requerimientos para producir un lote de 100 trajes de cada línea y las utilidades asociadas se presenta a continuación:

<u> </u>			
Requerimientos de producción y utilidad	Jeans	Franelas	Amasados
Cortadores [personas/lote]	4	2	1
Máquinas de coser [máquinas/lote]	1	2	2
Empacadores [personas/lote]	1	1	1
Utilidad [US\$/lote]	400	200	300

Definiendo las variables de decisión X1, X2 y X3, que representan la cantidad de lotes de jeans, de franela y amasados a fabricar, respectivamente, se ha formulado el siguiente modelo de programación lineal:

$$\begin{aligned} \text{MAX Z=} & 400\text{X1} + 200\text{X2} + 300\text{X3} \\ \text{s.a.} & 4\text{X1+2X2} + \text{X3} \leq 16 \\ & \text{X1+2X2} + 2\text{X3} \leq 41 \\ & \text{X1+X2} + \text{X3} \leq 20 \\ & \text{X1, X2, X3} \geq 0 \end{aligned}$$

			10	9	0	0	0	0
Xk	Ck	В	X1	X2	Х3	S1	S2	S3
Х3	300	16	4	2	1	1	0	0
S2	0	9	-7	-2	0	-2	1	0
S3	0	4	-3	-1	0	-1	0	1
Zj		4800	800	400	0	300	0	0

- a) Interprete el valor de cada una de las variables que aparece en la tabla óptima.
- b) ¿Es posible despedir cortadores o empacadores manteniendo el nivel de producción? ¿Cuántos?
- c) La utilidad por lote de jeans puede ser aumentada a US\$500 o en US\$850, ¿cuál debe ser la actitud de la empresa? ¿Cómo cambia la solución óptima?
- d) La empresa puede contratar cortadores adicionales a un precio de US\$280 cada uno. ¿Cuánta mano de obra a este precio estaría dispuesto a contratar la empresa? ¿Cómo cambia la solución óptima?
- e) Suponga que un cambio en la tecnología de fabricación requiere agregar un proceso de lavado. Los requerimientos de lavado para producir lotes de 100 unidades de cada tipo de traje y la disponibilidad máxima de lavado se detallan a continuación.

Requerimientos de lavado	Jeans	Franelas	Amasados	Disp. máxima
Lavadores [personas/lote]	3	3	2	40 personas

A partir del programa óptimo obtenido, ¿cuál es la nueva solución óptima?

Observación: todas las preguntas deben ser respondidas con respecto al problema original. Justifique cada una de sus respuestas.