Chapitre 17 - Espaces Vectoriels de Dimension Finie

On note \mathbb{K} pour \mathbb{R} ou \mathbb{C} .

1 Bases en dimension finie

1.1 Dimension finie

Définition 1.1. On dit qu'un \mathbb{K} -espace vectoriel E est de dimension finie si il admet une famille génératrice finie. Dans le cas contraire, on dit que E est de dimension infinie.

Dans le cas contraire, on dit que L est de dimension immie.
Exemples
R3 car ((1,0,0),(0,1,0), (0,0,1)) est une famille genératrice à 3 elements (c'est auni une lose)
genératice à 3 elements (c'est auni me lase)
* M2 (1R) est de dimersion finie car la famille ((12), 62), (10)
(222), (4242) , (00) , (01) , (01) , (01)
générative de le (le). (a5) epelle) est comminavantiriande cos matricos
Re IXI est de dimension finie can (1, X, X) est une lare dance est génératrice
* R [x] est de stimension injuire
Preuve: suposais que (g1, g2, -, gp) est un famille générative
motors que plus grand des degrés de la famille alas X9+1 n'est pas combinaisan lineaure de la famille car tie [1,p], deg (x9+1) > deg (gi) Cost une contactiotem. Donc il n'un las de languelle somentialisées
X9+1 n'est pas combinaison lineaire de la famille
car $\forall i \in [1,p]$, $deg(x^{q+1}) > deg(g_i)$
Cost une contradiction. Donc d'uja par de famille générative finie.
L'espace des fonctions de l'R dans l'Rest de dimension infinie
L'espace des fonctions de l'R dans l'Rest de dimension infinie Car il contient les fonctions jolynoméales (isomorphe à 12 Ex I)
* 18 n er des suites recles est de démeusion infinie (admis)

1.2 Existence de bases en dimension finie

Théorème 1.1 (Théorème de la base incomplète). Soit E un K-espace vectoriel de dimension finie.

Toute famille libre de E peut être complétée en une base de E.

Les vecteurs ajoutés peuvent être choisis parmi les vecteurs d'une famille génératrice donnée.

0

Corollaire 1.2. Tout \mathbb{K} -espace vectoriel E non nul de dimension finie admet une base.

Corollaire 1.3 (<u>Théorème de la base extraite</u>). De toute famille génératrice finie d'un espace vectoriel E, on peut extraire une base de E.

1) à l'orjace	mul [5]	qui a four	lare la famille vide
jar conven	tion (HP)		

Cardinal des familles libres

Lemme 1.4. Si $(x_1, x_2, ..., x_n)$ est une famille libre et la famille $(x_1, x_2, ..., x_n, x_{n+1})$ est liée, alors x_{n+1} est combinaison linéaire de $(x_1, x_2, ..., x_n)$ i.e. $x_{n+1} \in \text{Vect}(x_1, x_2, ..., x_n)$.

Démonstration.

Il existe des scalaires $(\alpha_i)_{i=1,...,n+1}$ non tous nuls tels que $\sum_{i=1}^{n+1} \alpha_i x_i = \overrightarrow{0}$ car la famille $(x_1, x_2, ..., x_n, x_{n+1})$ est liée.

Si $\alpha_{n+1}=0$, alors on a la relation $\sum_{i=0}^{\infty}\alpha_{i}x_{i}=\overrightarrow{0}$. Comme la famille $(x_{1},x_{2},...,x_{n})$ est libre, on obtient $\forall i\in [[1,n]]$, $\alpha_i = 0$. C'est une contradiction avec l'hypothèse que les scalaires $(\alpha_i)_{i=1,\dots,n+1}$ sont non tous nuls.

Donc, $\alpha_{n+1} \neq 0$, alors on peut écrire $x_{n+1} = \sum_{i=1}^{n} \frac{\alpha_i}{\alpha_{n+1}} x_i$.

Proposition 1.5. Si E est un espace vectoriel admettant une famille génératrice à n vecteurs avec n entier non nul, alors toute famille de n + 1 vecteurs est liée.

Corollaire 1.6. Dans un espace de dimension finie, toute famille libre a moins d'éléments qu'une famille génératrice.

1.4 Dimension

Théorème 1.7. Si E est un espace vectoriel de dimension finie, alors toutes les bases de E ont le même nombre d'éléments $n \in \mathbb{N}^*$.

Définition 1.2. Ce nombre n s'appelle la dimension de E sur \mathbb{K} noté $n = \dim_{\mathbb{K}} E = \dim E$. Par convention, $\dim\{\vec{0}\} = 0$.

Exemple 1.1. On a $\dim_{\mathbb{K}} \mathbb{K}^n = n$, $\dim_{\mathbb{K}} \mathbb{K}_n[X] = n + 1$ et $\dim_{\mathbb{K}} \mathcal{M}_{n,p}(\mathbb{K}) = n \times p$.

Exemple. Détermine la dimension de
F= { (n,y,3,t) < 1124 / { 2+2y-3 = 0 } }
6m charche une base de F. Pour cela un résout le nystime
(nigizit) EF = 2 1 n + 2y - 3 = 5 on a deux incomus securéaires
=> 3 (Δ1β) CIR2: (x = -2x+β => 3 (Δ1β) CIR2 /2 = 2/-2+β/1
$(2) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \\ y = \alpha_1 + \beta_2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 + \beta_2 \iff 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 \end{cases}$ $(3) = 3 (\alpha_1 \beta_1) \in \mathbb{R}^2 : \begin{cases} x = -2\alpha_1 + \beta_2 + \beta_2$
Onapour [- Veck (-2,4,2))
(en jarticuliu Fest un ser de UL4)
La famille (-2,1,0,1), (1,0,1,1) est échelonicolar elle est libre
La famille (-2,1,0,1), (1,0,1,1) est échelonicélar elle est lime et cost une base de F Alors dinn F = L
Exemple Danex la dimensian de l'espace des solutions
de 4y"_5y'+2y=0 i vielles
Exemple Danier la dimension de l'espace des rolutions de 4y" 5y'+2y=0 rielles Les volutions sont
Les volutions sont
Les volutions sont $SO = \{ t \mapsto Ae^{\frac{3}{5}t} \cos(\frac{\pi}{5}t) + Be^{\frac{3}{5}\sin(\frac{\pi}{5}t)} \text{ anse } (A_{1}B) \in \mathbb{R}^{2} \}$ $Con \ 4 \times 2 - 5 \times + 2 \text{ a jour rawnes } \frac{5 + i\sqrt{7}}{8}$
Les volutions sont $SO = \begin{cases} t \mapsto Ae^{\frac{5}{5}t} \cos(\frac{15}{5}t) + Be^{\frac{5}{5}\sin(\frac{15}{5}t)} \text{ ance } (A_{1}B) \subset \mathbb{R}^{2} \end{cases}$ $Con \ 4 \times 2 - 5 \times + 2 \text{ a jour rawnes } \frac{5 + i \sqrt{7}}{8}$ $donc \ So = \sqrt{edr} \left(t \mapsto e^{\frac{5}{8}t} \cos(\frac{15}{9}t), t \mapsto e^{\frac{5}{8}sin}(\frac{15}{8}t)\right)$
Les volutions sont $SO = \begin{cases} t \mapsto Ae^{\frac{5}{5}t} \cos(\frac{15}{5}t) + Be^{\frac{5}{5}\sin(\frac{15}{5}t)} \text{ ance } (A_{1}B) \subset \mathbb{R}^{2} \end{cases}$ $Con \ 4 \times 2 - 5 \times + 2 \text{ a jour rawnes } \frac{5 + i \sqrt{7}}{8}$ $donc \ So = \sqrt{edr} \left(t \mapsto e^{\frac{5}{8}t} \cos(\frac{15}{9}t), t \mapsto e^{\frac{5}{8}sin}(\frac{15}{8}t)\right)$
Les volutions sont $SO = \{ t \mapsto Ae^{\frac{3}{5}t} \cos(\frac{\pi}{5}t) + Be^{\frac{3}{5}\sin(\frac{\pi}{5}t)} \text{ anse } (A_{1}B) \in \mathbb{R}^{2} \}$ $Con \ 4 \times 2 - 5 \times + 2 \text{ a jour rawnes } \frac{5 + i\sqrt{7}}{8}$
Les volutions sont $SO = \begin{cases} t \mapsto Ae^{\frac{5}{5}t} \cos(\frac{15}{5}t) + Be^{\frac{5}{5}\sin(\frac{15}{5}t)} \text{ ance } (A_{1}B) \subset \mathbb{R}^{2} \end{cases}$ $Con \ 4 \times 2 - 5 \times + 2 \text{ a jour rawnes } \frac{5 + i \sqrt{7}}{8}$ $donc \ So = \sqrt{edr} \left(t \mapsto e^{\frac{5}{8}t} \cos(\frac{15}{9}t), t \mapsto e^{\frac{5}{8}sin}(\frac{15}{8}t)\right)$
Les volutions sont $SO = \begin{cases} t \mapsto Ae^{\frac{5}{5}t} \cos(\frac{15}{5}t) + Be^{\frac{5}{5}\sin(\frac{15}{5}t)} \text{ ance } (A_{1}B) \subset \mathbb{R}^{2} \end{cases}$ $Con \ 4 \times 2 - 5 \times + 2 \text{ a jour rawnes } \frac{5 + i \sqrt{7}}{8}$ $donc \ So = \sqrt{edr} \left(t \mapsto e^{\frac{5}{8}t} \cos(\frac{15}{9}t), t \mapsto e^{\frac{5}{8}sin}(\frac{15}{8}t)\right)$
Les volutions sont $SO = \begin{cases} t \mapsto Ae^{\frac{5}{5}t} \cos(\frac{15}{5}t) + Be^{\frac{5}{5}\sin(\frac{15}{5}t)} \text{ ance } (A_{1}B) \subset \mathbb{R}^{2} \end{cases}$ $Con \ 4 \times 2 - 5 \times + 2 \text{ a jour rawnes } \frac{5 + i \sqrt{7}}{8}$ $donc \ So = \sqrt{edr} \left(t \mapsto e^{\frac{5}{8}t} \cos(\frac{15}{9}t), t \mapsto e^{\frac{5}{8}sin}(\frac{15}{8}t)\right)$

1.5 Familles en dimension finie

Théorème 1.8. Si E est un espace vectoriel de dimension FINIE n of F une famille denvecteurs de E, alors F est une base de E si et seulement si F est libre si et seulement si F est génératrice de E.

Démantation: Doct E de dimenson nel Funjanille de noctous. si 5 est libre, an jeut la conflèterence lare de E (Hode la lare incompléte), Pars une base de E a n vedeus et Fadéja n vedeur donc I est une base > 5 est génératice avec n'ecteur, on put estaire de 5 une base de E. La base a n'esteur et Fairsi danc Festive base Utolisalion: Exemple: Monther que (X2-2x+4, X-7, X2-x-2) ed me base de 1R2 FX3 -1R2 EX 3 en de dimension 3 et la Camille a 3 vecteurs On montre que la famille est libre: d(x2-2x+1)+B(x-7)+8(x2-x-2)=0 et c'est une base de le Ex 7.

2 Relations entre les dimensions

2.1 Rappel: Image d'une base par une application linéaire

Théorème 2.1. Soit $u: E \longrightarrow F$ une application linéaire et $(e_i)_{i=1,\dots,n}$ une base de E.

- • La famille $(u(e_i))_{i=1,\dots,n}$ est une famille génératrice de $\operatorname{Im} u$.
- u est surjective $\iff (u(e_i))_{i=1,\dots,n}$ est génératrice de F.
- u est injective $\iff (u(e_i))_{i=1,...,n}$ est libre dans F.
- u est bijective $\iff (u(e_i))_{i=1,\dots,n}$ est une base de F.

Corollaire 2.2. *Soit* $u : E \longrightarrow F$ *une application linéaire.*

u est un isomorphisme de E dans F si et seulement si l'image d'une base de E par u est une base de F.

2.2 Dimension et isomorphisme

Proposition 2.3. Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Un espace vectoriel F est isomorphe à E si et seulement si F est de dimension finie et $\dim F = \dim E$.

Corollaire 2.4. Tout \mathbb{K} -espace vectoriel de dimension n est isomorphe à \mathbb{K}^n .

2.3 Dimension des sous-espaces vectoriels

Théorème 2.5. Si E est un espace vectoriel de dimension finie n, alors tout sous-espace vectoriel F de E est de dimension finie et $\dim F \leq \dim E$.

De plus, F est égal à E si et seulement si $\dim F = \dim E$.

2.4 Dimension de sous-espaces vectoriels supplémentaires

Théorème 2.6. Soit E un \mathbb{K} -espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E.

$$F \ et \ G \ sont \ supplémentaires \ dans \ E \Longleftrightarrow \left\{ \begin{array}{l} \dim F + \dim G = \dim E \\ F \cap G = \{\vec{0}\} \end{array} \right. \\ \Longleftrightarrow \left\{ \begin{array}{l} \dim F + \dim G = \dim E \\ E = F + G \end{array} \right.$$

Théorème 2.7. Soit E un \mathbb{K} -espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E. Si (f_1, f_2, \ldots, f_p) est une base de F et (g_{p+1}, \ldots, g_n) est une base de G, alors

 $E = F \oplus G \Longleftrightarrow (f_1, f_2, \dots, f_p, g_{p+1}, g_{p+2}, \dots, g_n) \ \text{est une base de E}.$

On dit que cette base est adaptée à la décomposition en sous-espaces supplémentaires.

Théorème 2.8 (Existence d'un supplémentaire en dimension finie).

Tout sous-espace vectoriel d'un espace vectoriel de dimension finie admet au moins un supplémentaire.

2.5 Dimension d'une somme

Proposition 2.9 (Formule de Grassmann).

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie.

Alors $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$

3 Rang

3.1 Rang d'une famille de vecteurs

Définition 3.1. On appelle rang d'une famille finie de vecteurs (x_1, x_2, \dots, x_p) d'un espace vectoriel E, la dimension du sous espace vectoriel engendré par ces vecteurs et on le note $rg(x_1, x_2, \dots, x_p)$:

$$rg(x_1, x_2, \dots, x_p) = \dim(\operatorname{Vect}(x_1, x_2, \dots, x_p)) .$$

Lemme 3.1. Pour une famille finie de vecteurs (x_1, x_2, \dots, x_p) d'un espace vectoriel E de dimension finie $n = \dim E$, on a

$$\operatorname{rg}(x_1, x_2, \dots, x_p) \leqslant p$$
 et $\operatorname{rg}(x_1, x_2, \dots, x_p) \leqslant n$

Théorème 3.2. Une famille est libre si et seulement si elle de rang maximal, c'est à dire si son rang est égal à son nombre de vecteurs.

Lemme 3.3. Soit $(x_1, x_2, ..., x_p)$ une famille finie de vecteurs d'un espace vectoriel E et $\lambda \in \mathbb{K}$, on a pour tous indices i, j:

$$rg(x_1, x_2, \dots, x_i, \dots, x_j, \dots, x_p) = rg(x_1, x_2, \dots, x_i + \lambda x_j, \dots, x_j, \dots, x_p)$$

3.2 Rang d'une application linéaire

Définition 3.2. Soient E et F deux espaces vectoriels et $u: E \longrightarrow F$ une application linéaire. On appelle rang de l'application linéaire u, la dimension de l'image de u dans F.

On note rg(u) = dim(Im u) lorsque cette dimension est finie et on dit que u est de rang fini.

Remarque 3.1. Si $(e_i)_{i=1,...,n}$ est une base d'un espace vectoriel E de dimension finie, alors Im $u = \text{Vect}(u(e_1), u(e_2), \ldots, u(e_n))$. Il s'ensuit que $\text{rg}(u) = \text{rg}(u(e_1), u(e_2), \ldots, u(e_n))$.

Lemme 3.4. Soient E et F deux espaces vectoriels de dimension finie $n = \dim E$ et $p = \dim F$, et $u : E \longrightarrow F$ une application linéaire. Alors $\operatorname{rg}(u) \leq n$ et $\operatorname{rg}(u) \leq p$.

Théorème 3.5. Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ sont deux applications linéaires de rang fini, alors $v \circ u$ est de rang fini et $\operatorname{rg}(v \circ u) \leq \min(\operatorname{rg}(u), \operatorname{rg}(v))$.

 $D\'{e}monstration$. On a toujours $\underline{\operatorname{Im}(v\circ u)\subset\operatorname{Im}v}$: pour toute image $y\in\operatorname{Im}(v\circ u)$, il existe $x\in E$ tel que y=v(u(x)) donc $y\in\operatorname{Im}v$ ce qui prouve l'inclusion.

On en déduit $\dim(\operatorname{Im}(v\circ u))\leqslant\dim(\operatorname{Im} v)$ soit $\operatorname{rg}(v\circ u)\leqslant\operatorname{rg}(v).$

Par ailleurs, soit $(f_1, f_2, ..., f_p)$ une base de $\operatorname{Im} u$ avec $p = \operatorname{rg}(u)$. Soit $z \in \operatorname{Im}(v \circ u)$ alors il existe $x \in E$ tel que z = v(u(x)). On a $u(x) \in \operatorname{Im} u$ donc u(x) s'écrit $u(x) = \sum_{k=1}^p \lambda_k f_k$ avec $(\lambda_k)_{k \in [[1,p]]}$ des scalaires. On peut donc écrire

$$z = \sum_{k=1}^p \lambda_k v(f_k).$$

On en déduit que $(v(f_k))_{k \in [[1,p]]}$ est une famille génératrice de $\operatorname{Im}(v \circ u)$. Il s'ensuit que $\operatorname{dim}(\operatorname{Im}(v \circ u)) \leq p$ ce qui donne $\operatorname{rg}(v \circ u) \leq \operatorname{rg}(u)$.

3.3 Théorème du rang

Proposition 3.6. Soit E et F deux espaces vectoriels et $u: E \longrightarrow F$ une application linéaire de E dans F. Si E_0 est un supplémentaire de E dans E, alors l'application E in E limit.

$$v: \begin{array}{ccc} E_0 & \longrightarrow & \operatorname{Im} u \\ x & \longmapsto & u(x) \end{array} \text{ est un isomorphisme}.$$

Théorème 3.7 (Théorème du rang). Si E est un espace vectoriel de dimension finie et u une application linéaire de E dans un espace vectoriel F, alors u est de rang fini et

$$\dim E = \operatorname{rg} u + \dim(\operatorname{Ker} u) = \dim(\operatorname{Im} u) + \dim(\operatorname{Ker} u)$$

3.4 Caractérisation des isomorphismes

Théorème 3.8. Si E et F deux \mathbb{K} -espaces vectoriels de <u>même dimension finie</u> $n = \dim E = \dim F$ et $u \in \mathcal{L}(E, F)$, alors

u est injective \iff Ker $u = \{\overrightarrow{0}\}$ \iff u est surjective \iff dim Ker u = 0 \iff u est bijective \iff rg(u) = n.

Corollaire 3.9. Si $u \in \mathcal{L}(E)$ avec E de dimension finie, alors

u est injective $\iff u$ est surjective $\iff u$ est bijective.

Lemme 3.10. Soit f une application d'un ensemble E dans un ensemble F. Si il existe $g: F \to E$ telle que $g \circ f = id_E$, alors f est injective.

Démonstration. Soit g telle que $g \circ f = id_E$. Soit $a, b \in E$. Si f(a) = f(b) alors g(f(a)) = g(f(b)) donc id(a) = id(b) soit a = b. Deux éléments de l'ensemble de départ ne peuvent avoir la même image donc f est injective. \Box

Lemme 3.11. Soit f une application d'un ensemble E dans un ensemble F. Si il existe $h: F \to E$ telle que $f \circ h = id_F$, alors f est surjective.

Démonstration. Soit h telle que $f \circ h = id_F$. Soit $a \in F$. On a f(h(a)) = a donc a a un antécédent. Tout élément de F a un antécédent donc f est surjective.

Théorème 3.12. Soit E et F deux \mathbb{K} -espaces vectoriels de même dimension finie et $f \in \mathcal{L}(E, F)$.

Si il existe $g: F \longrightarrow E$ telle que $g \circ f = id_E$ alors f est bijective et $f \circ g = id_F$.

Si il existe $h: F \longrightarrow E$ telle que $f \circ h = id_F$ alors f est bijective et $h \circ f = id_E$.

Théorème 3.13. Si u est une application linéaire de rang fini et si φ est un isomorphisme d'espaces vectoriels, alors, dans les cas où cela a un sens,

$$rg(u \circ \varphi) = rg u ou rg(\varphi \circ u) = rg(u).$$

On ne change pas le rang d'une application linéaire en la composant par un isomorphisme.

Démonstration. Soit E, F, G trois espaces vectoriels sur le corps \mathbb{K} .

- Soit φ un isomorphisme de F dans G et $u \in \mathcal{L}(E,F)$ de rang fini. Soit B une base de $\operatorname{Im} u$ (qui est de dimension finie). Alors $\varphi(B)$ est une base de $\varphi(\operatorname{Im} u)$ car φ induit un isomorphisme de $\operatorname{Im} u$ dans $\varphi(\operatorname{Im}(u))$. De plus, on a l'égalité triviale : $\varphi(\operatorname{Im} u) = \operatorname{Im}(\varphi \circ u)$. Alors, $\dim(\operatorname{Im}(\varphi \circ u)) = \dim(\operatorname{Im} u)$ soit $\gcd(\varphi \circ u) = \gcd(u)$.
- $u)) = \dim(\operatorname{Im} u) \text{ soit } \operatorname{rg}(\varphi \circ u) = \operatorname{rg}(u).$ $\operatorname{Soit} \varphi \text{ un isomorphisme de } E \text{ dans } F \text{ et } u \in \mathcal{L}(F,G) \text{ de rang fini.}$ $\operatorname{On a toujours } \operatorname{Im}(u \circ \varphi) \subset \operatorname{Im} u \text{ car toute image par } u \circ \varphi \text{ est une image par } u.$

Réciproquement, soit $z \in \overline{\text{Im } u}$, alors il existe $y \in F$ tel que z = u(y). Comme φ est une bijection de E dans F, il existe un unique $x \in E$ tel que $y = \varphi(x)$. Alors, $z = u \circ \varphi(x)$ et $z \in \text{Im}(u \circ \varphi)$ ce qui prouve $\text{Im } u \subset \text{Im}(u \circ \varphi)$.

On a montré $\operatorname{Im}(u \circ \varphi) = \operatorname{Im}(u)$ donc $\operatorname{dim}(\operatorname{Im}(u \circ \varphi)) = \operatorname{dim}(\operatorname{Im} u)$ soit $\operatorname{rg}(u \circ \varphi) = \operatorname{rg}(u)$.

3.5 Équations linéaires

Définition 3.3. Une équation linéaire est une équation du type u(x) = b où

- u est une application linéaire d'un espace vectoriel E dans un espace vectoriel F,
- x est un vecteur inconnu dans E,
- *b* est un vecteur de *F* appelé second membre de l'équation.

Théorème 3.14 (Structure de l'ensemble des solutions).

Soit $u: E \mapsto F$ une application linéaire d'un espace vectoriel E dans un espace vectoriel F, soit $b \in F$.

On note S_0 l'ensemble des solutions de l'équation linéaire $u(x) = \overrightarrow{0_F}$ et S l'ensemble des solutions de l'équation u(x) = b.

- ullet S_0 est un sous-espace vectoriel de E. En particulier, il est donc non vide : il contient $\overrightarrow{0_E}.$
- Soit S est vide, soit $S = x_0 + S_0 = \{x_0 + h | h \in S_0\}$ où x_0 est une solution de l'équation avec second membre.

Remarque 3.2. Si E est de dimension finie n (n inconnues) et si u est de rang fini r (r pivots), alors l'ensemble des solutions S_0 est de dimension n-r= nombre d'inconnues - nombre de pivots.

