Vecteurs et équations de droites.

1 Vecteurs du plan.

1.1 Colinéarité.

Définition 1

Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** si et seulement si il existe un réel k tel que $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$.

Exemple 2

1.2 Décompositions de vecteur.

Théorème 3

Tout vecteur du plan peut s'exprimer en fonction de deux vecteurs non colinéaires.

Autrement dit, si \vec{v} et \vec{w} sont deux vecteurs non colinéaires alors pour tout vecteur \vec{u} , il existe un unique couple de réels (a,b) tel que $\vec{u}=a\vec{v}+b\vec{w}$.

Exemple 4

Repères du plan.

Définition 5

Un repère du plan est la donnée d'un point O, appelé origine du repère, et de deux vecteurs \vec{i} et \vec{j} non colinéaires. Il se note (O, \vec{i}, \vec{j}) .

Exemple 6

 (O, \vec{i}, \vec{j}) est un repère orthonormé.

 $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un repère quelconque.

1.4 Systèmes de coordonnées.

Proposition 7

Équivalence fondamentale :

Un point M du plan a pour coordonnées (x; y) dans le repère $(O; \vec{i}, \vec{j})$

si et seulement si \overrightarrow{OM} a pour coordonnées (x;y)si et seulement si $\overrightarrow{OM} = \overrightarrow{xi} + y\overrightarrow{j}$.

Exemple 8

 $(0; \vec{i}, \vec{j}).$

I est le milieu de [*BC*].

M a pour coordonnées $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ et $I(\frac{1}{2}; \frac{1}{2})$ dans le repère $A\overrightarrow{AB}$ dans le repère $A\overrightarrow{AB}$ dans le repère $A\overrightarrow{AB}$ et $A\overrightarrow{C}$.

1.5 Critère de colinéarité.

Proposition 9

Soient \vec{u} et $\vec{u'}$ deux vecteurs de coordonnées $\vec{u}(x;y)$ et $\vec{u'} = (x';y')$ dans un repère.

 \vec{u} et $\vec{u'}$ sont colinéaires si et seulement si xy' - x'y = 0.

Exemple 10

Soit $(O; \vec{i}, \vec{j})$ un repère. Les vecteurs suivants sont-ils colinéaires?

$$\vec{u}(1;2)$$
 et $\vec{v}(2;4)$
 $1 \times 4 - 2 \times 2 = 0$
 \vec{u} et \vec{v} sont colinéaires.

 \vec{u} et \vec{v} sont colinéaires.

$$\vec{w}(2;3)$$
 et $\vec{z}(5;7)$
 $2 \times 7 - 3 \times 5 = 14 - 15 = -1$
 \vec{w} et \vec{z} ne sont pas colinéaires.

Droites et vecteurs directeurs.

Vecteurs directeurs d'une droite.

Définition 11

On dit qu'un vecteur \vec{v} est un **vecteur directeur** d'une droite \mathcal{D} si il existe deux points A et B de \mathcal{D} tels que $\vec{v} = \vec{AB}$.

Exemple 12

Le vecteur \overrightarrow{AB} droite (AB).

est un \mathcal{D} est la droite passant par vecteur directeur de la le point C et dirigée par le vecteur \vec{u} .

Proposition 13

Soit \mathcal{D} une droite de vecteur directeur \vec{u} . Les vecteurs directeurs de \mathcal{D} sont tous les vecteurs non nuls colinéaires à \vec{u} .

Exemple 14

2.2 Parallélisme et vecteurs directeurs.

Théorème 15

Deux droites sont parallèles si et seulement si elles ont des vecteurs directeurs colinéaires.

Aurement dit, \mathcal{D} et \mathcal{D}' de vecteurs directeurs respectifs \vec{u} et \vec{u}' sont parallèles si et seulement si \vec{u} et \vec{u}' sont colinéaires.

Exemple 16

à la droite (CD) si et seulement si (\iff) le vecteur \overrightarrow{AB} est colinéaire colinéaires. au vecteur \vec{CD} .

La droite (AB) est parallèle Les droites \mathcal{D} et \mathcal{D}' sont parallèles si et seulement si les vecteur \vec{u} et \vec{u} sont

Appartenance d'un point à une droite.

Proposition 17

Un point M appartient à la droite passant par A et de vecteur directeur \vec{u} si et seulement si le vecteur \vec{AM} est colinéaire au vecteur \vec{u} .

Exemple 18

Les points A, B et M Le point M appartient à la sont alignés si et seulement si \overrightarrow{AM} est colinéaire au vecteur \overrightarrow{AB} .

droite passant par le point C et dirigée par \vec{u} si et seulement si le vecteur \vec{CM} est colinéaire au vecteur \vec{u} .

Équations de droites. 3

Équations cartésiennes.

Jusqu'à la fin de ce cours, le plan est rapporté à un repère $(O; \vec{i}, \vec{j})$.

Théorème 19

Soient *a, b, c* trois réels tels que l'un au moins des nombres *a* et *b* est non nul. L'ensemble des points M(x; y) dont les coordonnées vérifient l'équations

$$ax + by + c = 0$$

est une droite \mathcal{D} de vecteur directeur $\vec{u}(-b;a)$.

L'équation ax + by + c = 0 est appelée une **équation cartésienne** de la droite \mathcal{D} .

Théorème 20

Soient *a, b* deux réels tels que l'un au moins des nombres *a* et *b* est non nul.

Toute droite du plan de vecteur directeur $\vec{u}(-b;a)$ admet une équation de la forme

$$ax + by + c = 0$$
, avec $c \in \mathbb{R}$

Démonstration 21

Soit \mathcal{D} une droite de vecteur directeur $\vec{u}(-b;a)$ et $A(x_A;y_A)$ un point de \mathcal{D} . Soit M(x;y) un point du plan.

 $M \in \mathcal{D}$

 $\iff A\vec{M}(x-x_A;y-y_A)$ est colinéaire à $\vec{u}(-b;a)$

 $\iff (x - x_A) \times a - (y - y_A) \times (-b) = 0$

 $\iff ax + by + c = 0 \text{ en posant } c = -ax_A - by_A.$

La droite \mathcal{D} admet donc bien une équation de la forme ax + by + c = 0.

Exemple 22

Soit $\mathcal{D}: 2x + 3y - 4 = 0$

6x + 9y - 12 = 0 est aussi une équation pour \mathcal{D} .

 $A(-4;4) \in \mathcal{D} \iff 2(-4) + 3(4) - 4 = 0 \iff 0 = 0$

 $B(-1;2) \in \mathcal{D} \iff 2(-1) + 3(2) - 4 = 0 \iff 0 = 0$

 $\vec{BA}(-4-(-1),4-2)=(-3;2)$ est un vecteur directeur de \mathcal{D} .

3.2 Équation réduite de droite

Théorème 23

- \mathcal{D} est une droite du plan non parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une unique équation réduite de la forme y = mx + p, où m et p sont des réels.
 - Un vecteur directeur de \mathcal{D} est $\vec{u}(1;m)$, où m est le coefficient directeur de la droite.
- \mathcal{D} est une droite du plan parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une unique équation réduite de la forme x = k, où k est un réel.
 - Un vecteur directeur de \mathcal{D} est $\vec{j}(0;1)$.
- Deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont même coefficient directeur.