

ADVANCED SUBSIDIARY GCE PHYSICS A

Electrons, Waves and Photons

G482

Candidates answer on the Question Paper

OCR Supplied Materials:

Data, Formulae and Relationships Booklet

Other Materials Required:

Electronic calculator

Monday 17 January 2011 Afternoon

Duration: 1 hour 45 minutes

Candidate Forename			Candidate Surname			
Centre Number			Candidate N	umber		

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided. If additional space is required, you should use the lined pages at the end of this booklet. The question number(s) must be clearly shown.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **100**.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

Where you see this icon you will be awarded marks for the quality of written communication in your answer.

This means for example you should:

- ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear;
- organise information clearly and coherently, using specialist vocabulary when appropriate.
- This document consists of 20 pages. Any blank pages are indicated.

Answer all the questions.

A resistor **X** is constructed from a rod of cross-sectional area $9.0 \times 10^{-6} \, \text{m}^2$ and length $0.012 \, \text{m}$ as shown in Fig. 1.1. The resistivity of the material of the rod is $2.4 \, \Omega \, \text{m}$.

Fig. 1.1

(a) Show that the resistance of the resistor \mathbf{X} is $3.2\,\mathrm{k}\Omega$.

[2]

(b) The power rating of resistor **X** is 0.125W. Show that the maximum potential difference which should be applied safely across the resistor is 20V.

[2]

(c) A student needs a resistor of the same resistance as **X** but with a power rating of 0.50 W. The only resistors available are identical to **X**. It is suggested that four of these resistors could be connected as shown in Fig. 1.2 to solve the problem. The potential difference across the combination of resistors is 40 V.

Fig. 1.2

(I) Show th	iat the tota	i resistance	of the	combination	ın Fıç	1.1.2	IS 3.2 KL2
-------------	--------------	--------------	--------	-------------	--------	-------	------------

		[2]
(ii)	Show that the power dissipation in each resistor is 0.125W.	
		[2]

- (d) Another resistor Y is constructed from the same material but has twice the length and twice the diameter of resistor X.
 - (i) Show that the resistance $R_{\rm Y}$ of Y is half the resistance $R_{\rm X}$ of resistor X.

(ii) The two resistors **X** and **Y**, where $R_{\rm Y}=R_{\rm X}/2$, are connected in series to a d.c. power supply as shown in Fig. 1.3.

Fig. 1.3

State and explain which resistor dissipates greater power.
[3]

[Total: 13]

[2]

Turn over

2 (a) A 12V car battery contains an electrolyte. The battery is connected to an electric motor **M**. There is a current in the motor and the battery. See Fig. 2.1.

Fig. 2.1

State

	(i)	the charge carriers in the electrolyte	
		[1]
	(ii)	the charge carriers moving through the electrolyte to the positive terminal of the battery	,
		[1]
	(iii)	the charge carriers moving through the wires to the positive terminal of the battery.	
		[1]
(b)		en used to start the engine of the car, the electric motor draws 40 A from the battery of the first the potential difference across the motor at this time is only 8.0 V.	of
	(i)	Explain why the potential difference across the motor at this time is not the same as the e.m.f. of the car battery.	е
		[2	!]
	(ii)	Show that the internal resistance of the battery is 0.10Ω .	

passes through the electric motor in this time.

(iii) It takes 1.2s for the electric motor to start the engine. Calculate the charge Q which

		Q = C [2]
(c)		car has two 12V headlamps each rated at 54W, connected in parallel to the battery. In mal working conditions the current in each lamp is 4.5 A.
	(i)	Explain how and why the resistance of the headlamp filament varies with the current passing through it.
		[2]
	(ii)	Suggest a value for the current rating of a fuse for the headlamp circuit. Justify your choice.
		[2]
((iii)	A car contains a number of different fuses for its various electrical circuits. Suggest why this is necessary.
		[1] [Total: 15]

3 (a) The following electrical quantities are often used when analysing circuits. Draw a straight line from each quantity on the left-hand side to its correct units on the right-hand side.

potential difference	C s ⁻¹
resistance	J C ⁻¹
power	V A ⁻¹
current	Js ⁻¹ [3]

(b) Fig. 3.1 shows a battery of e.m.f. 6.0 V and negligible internal resistance connected in series with a thermistor and a 560Ω resistor.

Fig. 3.1

The voltmeter across the resistor has infinite resistance.

(i) The reading on the voltmeter is 2.4 V. Calculate the resistance $R_{\rm T}$ of the thermistor.

$$R_{\mathsf{T}}$$
 = Ω [3]

(ii) Calculate the current in the circuit.

(c) The variation of resistance with temperature for this thermistor is shown in the graph of Fig. 3.2.

Fig. 3.2

(i)	Use the graph t	to determine	the	temperature	of th	ne thermistor	when it	ts resis	tance	is
	800Ω .									

tamr	perature =	$^{\circ}$ C	[1]	1
remi	Jeralure –	 \circ	L'.	J

(ii)	State and explain, without calculation, how the reading of the voltmeter in Fig. 3.1 will
	change as the temperature of the thermistor increases to 80 °C.

101
 [3]
 [o]

The circuit of Fig. 3.1 can be used as a temperature sensor. Temperature sensors are used in the kitchen to control the internal temperatures of ovens (typically 200 °C) and refrigerators (typically 4 °C). Use the graph of Fig. 3.2 to suggest in which device this

	[Total: 14]
	[3]
	In your answer you should link the information from the graph to the working of the sensor.
^	
	sensor would be more suitable.

4 Fig. 4.1 shows the variation with time t of the displacements x_S and x_T at a point **P** of two sound waves **S** and **T**.

Fig. 4.1

(a)) By reference to Fig. 4.1, state one similarity and one difference between these two waves.			
	similarity			
	difference	[2]		
(b)	Explain whether or not the two waves are coherent.			
		[2]		

(c) The speed of the sound waves is $340\,\mathrm{m\,s^{-1}}$. Determine the frequency of wave **S** and hence its wavelength.

frequency = Hz

wavelength = m [4]

(d)	At point ${\bf P}$ the two sound waves superpose (combine). By reference to Fig. 4.1 determine the resultant displacement ${\bf x}$ of the two waves at time			
	(i)	$t_1 = 1.5 \mathrm{ms}$		
	(ii)	$t_2 = 2.25 \mathrm{ms}.$	x ₁ = μm [[1]
			x ₂ = μm	[1]
(e)	The	intensity of wave ${\bf S}$ alone at point ${\bf P}$ is I .		
	(i) Show that the intensity of wave T alone at point P is 2.25 <i>I</i> .			
	(ii)	Calculate the intensity of the resultant way		[2]

(f) The sound waves shown in Fig. 4.1 are emitted from the loudspeakers labelled **S** and **T** in Fig. 4.2 and detected by the microphone at point **P**.

Fig. 4.2

	1 lg. 4.2
(i)	Calculate the distance that loudspeaker S must be moved towards P to bring the two waves into phase at P . State your reasoning clearly.
	distance = m [2]
(ii)	Describe how the intensity of the sound wave detected at P varies as loudspeaker S is moved as in (i).

.....[2]

[Total: 18]

5 (a)	Kirchhoff's first and second laws can be used to analyse any electrical circuit. They are a consequence of the conservation of physical quantities in the circuit.				
		(i)	State Kirchhoff's first law and the physical quantity conserved.			
			[2]			
		(ii)	State Kirchhoff's second law and the physical quantity conserved.			
			[2]			
(b)		nysical quantity is also conserved in the photoelectric effect. Describe and explain the oelectric effect.			
	>	In yo	our answer you should link the description to the conservation of this quantity.			
			[6]			

6	(a)	In a	ıtomi	physics electron energies	s are often stated in <i>electronvolts</i> (eV).	
		Def	ine tl	e <i>electronvolt</i> . State its va	lue in joule.	
					[2	
	(b)	An	elect	on is accelerated from res	t through a potential difference of 300V.	
		(i)	Cal	ulate the final kinetic ener	gy of the electron	
			1	in eV		
					kinetic energy = eV [1]
			2	in J.		
			0.		kinetic energy =	1]
		(ii)	Sho	w that the final speed of th	the electron is about $1 \times 10^7 \mathrm{ms^{-1}}$.	
					r	2]
	(c)	(i)	Exp	ain what is meant by the $lpha$	ر de Broglie wavelength of an electron.	-1
					[2	2]
		(ii)	Cal	ulate the de Broglie wave	ength of the electron in (b) .	

7 The tungsten filament of a 12V 24W lamp glows white hot emitting photons across a continuous spectrum of energies. The intensity variation with wavelength of the electromagnetic radiation from the filament is shown in Fig. 7.1.

Fig. 7.1

(a)	Exp	olain v	what is meant by
	(i)	a pl	noton
			[1]
	(ii)	a <i>c</i> c	ontinuous spectrum.
			[1]
(b)	(i)	is e	7.1 shows that only a small percentage of the energy radiated from the filament lamp mitted in the visible region. The majority of the energy is emitted in other regions of electromagnetic spectrum.
		1	State the region of the spectrum in which most of the radiation from the lamp is emitted.
			[1]
		2	State a simple observation which is evidence for your answer to 1.
			[1]

(ii)	The 12V filament lamp emits 24W of power as electromagnetic waves. Only 5.0% of th	ıis
	power is converted into photons of visible light of average energy 4.0×10^{-19} J.	

Estimate the number of these visible photons emitted from the filament per second.

number =	s ⁻¹	[3]	ı
----------	-----------------	-----	---

(c) The light from the filament is viewed through a diffraction grating, having 300 lines per millimetre. The continuous first order spectrum appears between angles θ of 7° and 12° to the direction of the incident light. See Fig. 7.2.

Fig. 7.2

(i) State the colour of the light that is seen at the angle of

7°	
12°	[2]

(ii) Calculate the angle at which green light of wavelength $5.4 \times 10^{-7} \, \text{m}$ is observed in this first order spectrum.

angle = ° [3]

[Total: 12]

8 Fig. 8.1 shows some energy levels of the hydrogen atom. The diagram is not to scale.

Fig. 8.1

The energy level corresponding to the lowest energy (ground) state of the atom is n = 1.

The hydrogen atom is ionised when it absorbs sufficient energy for the electron to escape from the proton; that is, for the energy labelled on Fig. 8.1 to become zero or positive.

- (a) (i) Draw an arrowed line on Fig. 8.1 to indicate the process of ionisation of an atom initially in its ground state. [1]
 - (ii) Write down the value of the minimum energy required to ionise an atom in its ground state.

minimum energy = J [1]

(b) (i) Show that the energy change between levels required for the emission of a photon of wavelength 490 nm is about 4×10^{-19} J.

(ii) Draw an arrowed line on Fig. 8.1 to indicate the transition which results in the emission o a photon of wavelength 490 nm.
In space, a beam of photons of different energies passes through a cloud of atomic hydroger gas. Explain, with a reason, what is likely to happen to photons of energy 19.38×10^{-19} J and to some of the hydrogen atoms.
[3]
[Total: 8]

END OF QUESTION PAPER

ADDITIONAL PAGE

If additional space is required, you should use the lined pages below. The question number(s) must be clearly shown.					
	••				
	••				
	••				
	••				
	••				

ADDITIONAL PAGE

ADDITIONAL PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.