KING SAUD UNIVERSITY DEANSHIP OF COMMON FIRST YEAR BASIC SCIENCES DEPARTMENT

MATH 101

HW # 1 / FIRST SEMESTER 1442

Date: 24/09/2020

شرح منهج ريض 101اون لاين للتواصل :0551807200

KING SAUD UNIVERSITY DEANSHIP OF COMMON FIRST YEAR BASIC SCIENCES DEPARTMENT

MATH 101

HW # 1 / FIRST SEMESTER 1442

Date: 24/09/2020

Question 1

A. Classify the following numbers into rational and irrationals.

(2 Marks)

$$\left\{ (1.\overline{5})^2, \frac{3.14}{6}, \sin \pi, \sqrt[7]{2^7}, \sqrt{\sqrt{9}+6}, \frac{2}{3\pi}, \frac{22}{7}, \sqrt{\frac{16}{64}} \right\}$$

Solution:

$$(1.\overline{5})^{2} = \left(\frac{14}{9}\right)^{2} = \frac{196}{81} \in Q$$

$$\frac{3.14}{6} = 0.52\overline{3} \in Q$$

$$\sin \pi = 0 \in Q$$

$$\sqrt[7]{2^{7}} = 2 \in Q$$

$$\sqrt{\sqrt{9} + 6} = 3 \in Q$$

$$\frac{196}{81} \in Q$$

$$\frac{2}{3\pi} \in I$$

$$\frac{22}{7} \in Q$$

$$\sqrt{\frac{16}{64}} = \frac{1}{2} \in Q$$

$$(6x2 + 3=15)$$
 Marl

1.
$$3x + 5 \ge x + 1$$

2.
$$x^2 + x - 6 \le 0$$

3.
$$\frac{2|x+1|-3}{-3} < 1$$

4.
$$5|3x+1|-8>2+3|3x+1|$$

$$5. \quad \frac{3x-6}{x^2-3x-18} < 0$$

6.
$$|2x-5|-|3x-2|<0$$

7. If
$$f(x) = 1 - x - x^2$$
 and $g(x) = 3 - x$, then Solve

$$(f \circ g)(x) + x < 1$$

Solution

1)
$$3x + 5 \ge x + 1$$

$$-x - x$$

$$2x + 5 \ge +1$$

$$-5 - 5$$

$$2x \ge -4$$

$$\frac{2x}{2} \ge \frac{-4}{2}$$

$$x \ge -2$$

$$-2$$

2)
$$x^{2} + x - 6 \le 0$$

 $x^{2} + x - 6 = 0$
 $(x - 2)(x + 3) = 0$
 $x - 2 = 0 \rightarrow x = 2$
 $x + 3 = 0 \rightarrow x = -3$
 $+ + -3 - - - 2 + + + +$

S.S: [-3,2]

$$\mathsf{S.S}: [-2, \infty)$$

3)
$$\frac{2|x+1|-3}{-3} < 1$$

$$-3 \times \frac{2|x+1|-3}{-3} < -3 \times 1$$

$$2|x+1|-3 > -3$$

$$+3 + 3$$

$$2|x+1| > 0$$

$$\frac{2|x+1|}{2} > \frac{0}{2}$$

$$|x+1| > 0$$

$$|x+1| = 0 \to x+1 = 0 \to x = -1$$

$$SS; R - \{-1\}$$

4)
$$5|3x+1|-8>2+3|3x+1|$$

Solution

$$5 |3x + 1| - 8 > 2 + 3 |3x + 1|$$

$$-3 |3x + 1| - 3 |3x + 1|$$

$$2 |3x + 1| - 8 > 2$$

$$+8 + 8$$

$$2 |3x + 1| > 10$$

$$2 |3x + 1| > \frac{10}{2}$$

$$|3x + 1| > 5$$

$$3x + 1 > 5$$

$$-1 - 1$$

$$\frac{3x}{3} > \frac{4}{3}$$

$$x > \frac{4}{3}$$

$$x > \frac{4}{2}$$

$$3x + 1 < -5$$

$$-1 - 1$$

$$3x < -6$$

$$\frac{3x}{3} < \frac{-6}{3}$$

$$\frac{3}{2} < \frac{3}{2}$$

$$x < -2$$

S.S: $\left(-\infty, -2\right) \cup \left(\frac{4}{3}, \infty\right)$

الأستاذ: ياسر العطرات مدرس رياضيات وإحصاء جامعي جوال: 0551807200

-2

5)
$$\frac{3x-6}{x^2-3x-18} < 0$$

$$\frac{3x-6}{(x+3)(x-6)} < 0$$

$$3x - 6 = 0 \to 3x = 6 \to x = 2$$
$$(x+3)(x-6) = 0 \to \begin{cases} x+3 = 0 \to x = -3\\ x-6 = 0 \to x = 6 \end{cases}$$

X	-3	2	6	
3x - 6	 		++++	++++
x + 3		+++++	+++++	+++++
x-6				+++++
$\frac{3x-6}{(x+3)(x-6)}$		+++++		+++++

$$--- \frac{-3}{3}$$
 $+++++$ $\frac{2}{3}$ $--- \frac{6}{3}$ $+++++$

S.S:
$$(-\infty, -3) \cup (2, 6)$$

6)
$$|2x-5|-|3x-2|<0$$

$$|2x - 5| < |3x - 2|$$

$$(|2x - 5|)^{2} < (|3x - 2|)^{2}$$

$$(2x - 5)^{2} < (3x - 2)^{2}$$

$$(2x - 5)^{2} - (3x - 2)^{2} < 0$$

$$[(2x - 5) + (3x - 2)][(2x - 5) - (3x - 2)] < 0$$

$$((5x - 7)(-x - 3)) < 0$$

$$5x - 7 = 0 \rightarrow 5x = 7 \rightarrow x = \frac{7}{5}$$

 $-x - 3 = 0 \rightarrow x = -3$

S.S:
$$\left(-\infty, -3\right) \cup \left(\frac{7}{5}, \infty\right)$$

7)
$$(f \circ g)(x) + x < 1$$

 $f(g(x)) + x < 1$
 $f(3-x) + x < 1$
 $1 - (3-x) - (3-x)^2 + x < 1$
 $1 - 3 + x - (9 - 6x + x^2) + x < 1$
 $1 - 3 + x - 9 + 6x - x^2 + x - 1 < 0$
 $-x^2 + 8x - 12 < 0$
 $x^2 - 8x + 12 > 0$
 $(x - 6)(x - 2) > 0$
 $x - 6 = 0 \rightarrow x = 6$
 $x - 2 = 0 \rightarrow x = 2$
 $+ + + + + 2 - - - - 6 + + + + +$

S.S: $(-\infty, 2) \cup (6, \infty)$

Question 2

Find the domain of the following functions

1. $f(x) = 2x^3 + 5x - 3$

2. $f(x) = \sqrt{\frac{x}{x+5}}$

(6x3=18 Marks)

3. $f(x) = \frac{|2-x|+1}{x^2-3x-18}$

4. $f(x) = \sqrt[3]{\frac{2x+2}{x+4}}$

 $f(x) = \frac{5}{\sec(3x)}$

6. $f(x) = \sqrt{|x+2|}$

1) $f(x) = 2x^3 + 5x - 3$

f(x) is poly $\rightarrow D_f = R$

2)
$$f(x) = \sqrt{\frac{x}{x+5}}$$

Solution

$$\frac{x}{x+5} \ge 0$$

x = 0

$$x + 5 = 0 \rightarrow x = -5$$

X	-5	0	
X			+++++
x + 5		+++++	+++++
<u> </u>	+++++		+++++
x + 5		.	

 $D_f = (-\infty, -5) \cup [0, \infty)$

3)
$$f(x) = \frac{|2-x|+1}{x^2-3x-18}$$

 $x^2 - 3x - 18 = 0$
 $(x+3)(x-6) = 0$
 $x+3=0 \to x=-3$
 $x-6=0 \to x=6$
 $D_f = R - \{-3,6\}$

4)
$$f(x) = \sqrt[3]{\frac{2x+2}{x+4}}$$

$$x + 4 = 0 \rightarrow x = -4$$

 $D_f = R - \{-4\}$

$$5) f(x) = \frac{5}{\sec(3x)}$$

Domain $\sec(x)$ is $R - \left\{\frac{\pi}{2} + \pi k\right\}$

Domain
$$\sec(3x)$$
 is $R - \left\{\frac{\frac{\pi}{2}}{3} + \frac{\pi k}{3}\right\}$

$$D_f = R - \left\{ \frac{\pi}{6} + \frac{\pi k}{3} \right\}$$

6)
$$f(x) = \sqrt{|x+2|}$$

$$|x+2| \ge 0$$
$$D_f = R$$

 $|a| \geq 0$

Question 3

Determine whether the functions

(3 Marks)

$$f(x) = 1 - \cos^2 x$$
 , and $g(x) = \frac{\sin x}{\csc x}$

are the same or not.

Solution

Domaine $f(x) = 1 - \cos^2 x$

$$D_f = R$$

$$g(x) = \frac{\sin x}{\csc x}$$

Domain $\sin x$ is R

Domain $\csc x$ is $R - \{\pi k\}$

$$D_g = R - \{\pi k\}$$
$$D_f \neq D_g$$

f and g are not the same

Question 4

Let $f(x) = \frac{x-1}{x+2}$.

(2x4=8 Marks)

- 1. Find $D_{\scriptscriptstyle f}$.
- 2. Show that f is one-to-one.
- 3. Find f^{-1} .
- 4. Find the range of f.

Solution

Domaine
$$f(x) = \frac{x-1}{x+2}$$
 $x + 2 = 0 \rightarrow x = -2$ $D_f = R - \{-2\}$

Let $x_1, x_2 \in D_f$ such that $f(x_1) = f(x_2)$ then

$$\frac{x_1 - 1}{x_1 + 2} = \frac{x_2 - 1}{x_2 + 2}$$

$$(x_1 - 1)(x_2 + 2) = (x_2 - 1)(x_1 + 2)$$

$$x_1x_2 + 2x_1 - x_2 - 2 = x_1x_2 + 2x_2 - x_1 - 2$$

$$2x_1 - x_2 = 2x_2 - x_1$$

$$2x_1 + x_1 = 2x_2 + x_2$$

$$3x_1 = 3x_2$$

$$\frac{3x_1}{3} = \frac{3x_2}{3}$$

$$x_1 = x_2$$

f(x) is a one -to – one

$$f(x) = \frac{x-1}{x+2}$$
$$y = \frac{x-1}{x+2}$$

$$y(x + 2) = x - 1$$

$$yx + 2y = x - 1$$

$$yx - x = -2y - 1$$

$$x(y - 1) = -2y - 1$$

$$\frac{x(y - 1)}{y - 1} = \frac{-2y - 1}{y - 1}$$

$$x = \frac{-2y - 1}{y - 1}$$

$$f^{-1}(y) = \frac{-2y - 1}{y - 1}$$

$$f^{-1}(x) = \frac{-2x - 1}{x - 1}$$

$$D_{f^{-1}} = R - \{1\}$$
range of $f(x)$: $R_f = D_{f^{-1}} = R - \{1\}$

Ouestion 5

Let $f(x) = \frac{2}{x-1}$, g(x) = x+1. (3x2=6 Marks)

- 1. Find $f \cdot q$ and its domain.
- 2. Find $\frac{f}{g}$ and its domain.
- 3. Find $(f \circ g)(3)$ and $(g \circ f)(5)$.

Solution

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

 $(f \cdot g)(x) = \left(\frac{2}{x-1}\right) \cdot (x+1)$
 $D_f = D_f = R - \{1\}$
 $D_g = R$
 $D_{f \cdot g} = D_f \cap D_g = R - \{1\}$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

$$\left(\frac{f}{g}\right)(x) = \frac{\frac{2}{x-1}}{x+1}$$

$$D_f = R - \{1\}$$

$$D_g = R$$

$$g(x) = 0 \to x + 1 = 0 \to x = -1$$

$$D_{\frac{f}{g}} = (D_f \cap D_g) - \{g(x) = 0\} = R - \{-1, 1\}$$

$$(f \circ g)(3) = f(g(3))$$

= $f(3+1)$
= $f(4) = \frac{2}{4-1} = \frac{2}{3}$

$$(gof)(5) = g(f(5))$$

= $g(\frac{2}{5-1}) = g(\frac{2}{4})$
= $g(\frac{1}{2}) = \frac{1}{2} + 1 = \frac{3}{2}$

Question 6

Find the exact value of the following:

(4x2=8) Marks

- 1. $\cos(330^{\circ})$
- 2. $\cos(15^{\circ})$
- 3. $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$.

4.
$$\sin\left(\tan^{-1}\left(-\sqrt{3}\right) + \cos^{-1}\left(\frac{5}{13}\right)\right)$$
.

1)
$$\cos(330^\circ) = \cos(360^\circ - 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

2)
$$\cos(15^\circ) = \cos(60^\circ - 45^\circ)$$

 $= \cos 60^{\circ} \cdot \cos 45^{\circ} + \sin 60^{\circ} \sin 45^{\circ}$

$$= \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

$$3)\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$$

Let:
$$y = \cos^{-1}\left(\frac{3}{5}\right) \rightarrow \cos y = \frac{3}{5}$$
 $0 \le y \le \pi$

$$opp = \sqrt{5^2 - 3^2} = 4$$

$$\sin y = \frac{4}{5}$$

$$\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right) = \sin 2y$$

$$\sin 2y = 2\sin y\cos y$$

$$\sin 2y = 2 \times \frac{4}{5} \times \frac{3}{5} = \frac{24}{25}$$

4)
$$\sin\left(\tan^{-1}\left(-\sqrt{3}\right) + \cos^{-1}\left(\frac{5}{13}\right)\right)$$

Let
$$y = \tan^{-1}(-\sqrt{3}) \rightarrow \tan y = \frac{-\sqrt{3}}{1} - \frac{\pi}{2} < y < \frac{\pi}{2}$$

$$hyb = \sqrt{(-\sqrt{3})^2 + (1)^2}$$

$$hyb = 2$$

$$\cos y = \frac{1}{2}$$

$$\sin y = \frac{-\sqrt{3}}{2}$$

Let:
$$\mathbf{z} = \cos^{-1}\left(\frac{5}{13}\right) \to \cos z = \frac{5}{13}$$
 $0 \le \mathbf{z} \le \pi$

$$opp = \sqrt{13^2 - 5^2} = 12$$

$$\sin z = \frac{12}{13}$$

$$\sin\left(\tan^{-1}(-\sqrt{3}) + \cos^{-1}\left(\frac{5}{13}\right)\right)$$

$$\sin(y+z) = \sin y \cos z + \cos y \sin z$$

$$\sin(y+z) = \frac{-\sqrt{3}}{2} \cdot \frac{5}{13} + \frac{1}{2} \cdot \frac{12}{13}$$

$$\sin(y+z) = \frac{-5\sqrt{3}}{26} + \frac{12}{26}$$

$$\sin(y+z) = \frac{-5\sqrt{3}}{26} + \frac{12}{26}$$

Question 7

Solve the equation

(4 Marks)

 $(\sin x + 2)^2 = 1$, $x \in [0, 2\pi]$

$$(\sin x + 2)^{2} = 1$$

$$\sin^{2} x + 4 \sin x + 4 = 1$$

$$\sin^{2} x + 4 \sin x + 4 - 1 = 0$$

$$\sin^{2} x + 4 \sin x + 3 = 0$$

$$(\sin x + 1)(\sin x + 3) = 0$$

$$\sin x + 1 = 0$$

$$\sin x = -1$$

$$\sin x = \sin\left(-\frac{\pi}{2}\right)$$

$$x=-rac{\pi}{2}
otin [0,2\pi]$$

$$x=\pi-\left(-rac{\pi}{2}
ight)=rac{3\pi}{2}\in\left[0\,$$
, $2\pi
ight]$

$$\sin x + 3 = 0$$

$$\sin x = -3$$

no sol

$$-1 \le \sin x \le 1$$

$$S.S = \left\{ \frac{3\pi}{2} \right\}$$

Question 8

Verify each of the following:

(3x2=6) Marks

- 1) $2\sin^2(2x) + \cos(4x) = 1$
- $2) \quad \frac{\cot^2 x}{\csc^2 x} + \sin^2 x = 1$
- 3) $\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = 2\sec^2 x$

1) $2\sin^2(2x) + \cos(4x) = 1$

L.H.S=
$$2\sin^2(2x) + \cos(4x) =$$

$$= 2\sin^2(2x) + \cos(2(2x))$$

$$= 2\sin^2(2x) + 1 - 2\sin^2(2x) = 1 = R.H.S$$

2)
$$\frac{\cot^2 x}{\csc^2 x} + \sin^2 x = 1$$

L.H.S=
$$\frac{\cot^2 x}{\csc^2 x} + \sin^2 x = \frac{\frac{\cos^2 x}{\sin^2 x}}{\frac{1}{\sin^2 x}} + \sin^2 x$$

$$= \frac{\cos^2 x}{\sin^2 x} * \frac{\sin^2 x}{1} + \sin^2 x = \cos^2 x + \sin^2 x = 1 = R.H.S$$

3)
$$\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = 2\sec^2 x$$

L.H.S=
$$\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = \frac{1+\sin x + 1-\sin x}{(1-\sin x)(1+\sin x)} + \frac{1}{1+\sin x}$$

$$= \frac{2}{1 - \sin^2 x} = \frac{2}{\cos^2 x} = 2\frac{1}{\cos^2 x} = 2\sec^2 x = R.H.S$$

شرح منهج ريض 101اون لاين للتواصل :0551807200

شرح واجب ريض 101اون لاين للتواصل :0551807200