Chapter 8

Designing Signals for Multiple-Access Systems

8.1 Problems

Problem 8.1 (Orthogonal signals) If $sA1_i$ and $sB1_i$ are orthogonal, show that their complementary signals $sA0_i$ and $sB0_i$ are also orthogonal.

(ans: If $sA1_i$ and $sB1_i$ are orthogonal, then

$$\sum_{i=0}^{n_x - 1} sA1_i \, sB1_i = 0$$

If $sA1_i = sA_i$ and $sA0_i = -sA_i$, then $sA0_i = -sA1_i$ for $0 \le i \le n_x - 1$. Similarly, $sB0_i = -sB1_i$ for $0 \le i \le n_x - 1$.

Inserting these equalities into the summation above gives

$$\sum_{i=0}^{n_x-1} sA1_i \, sB1_i = \sum_{i=0}^{n_x-1} \left(-sA0_i \right) \left(-sB0_i \right) = \sum_{i=0}^{n_x-1} sA0_i \, sB0_i = 0$$

The last equality demonstrates that $sA0_i$ and $sB0_i$ are orthogonal.

Problem 8.2 (Orthogonal signal design in TDMA) Specify signals sA_i and sB_i for $0 \le i \le 7$ that are orthogonal over time. Design matched processors tuned to your signals and demonstrate that they process these signals correctly.

(ans: TDMA signals occupy separate time sub-intervals. For user A define

$$sA_i = 1$$
 for $0 \le i \le 3$
= 0 for $4 \le i \le 7$

with $\mathcal{E}_{sA} = 4$. The complementary signals are $sA1_i = sA_i$ and $sA0_i = -sA_i$.

The matched processor tuned to user A signals has coefficients $c_i = sA_i$ for $0 \le i \le 7$. Note that $c_i = 0$ for $4 \le i \le 7$.

For user B define

$$sB_i = 0$$
 for $0 \le i \le 3$
= $2sin(2\pi(i-4)/4)$ for $4 \le i \le 7$

The amplitude 2 gives the same signal energy $\mathcal{E}_{sB} = 4$. The complementary signals are $sB1_i = sB_i$ and $sB0_i = -sB_i$.

The matched processor tuned to user B signals has coefficients $c_i = sB_i$ for $0 \le i \le 7$. Note that $c_i = 0$ for $0 \le i \le 3$.

The processor outputs are given by

$$VA_{|X=sA1} = \sum_{i=0}^{7} sA_i \, sA1_i = \sum_{i=0}^{7} sA_i \, sA_i = \sum_{i=0}^{3} 1 = 4$$

$$VA_{|X=sA0} = \sum_{i=0}^{7} sA_i \, sA0_i = \sum_{i=0}^{7} sA_i \, (-sA_i) = -\sum_{i=0}^{3} 1 = -4$$

$$VA_{|X=sB1} = \sum_{i=0}^{7} sA_i \, sB1_i = \sum_{i=0}^{3} sA_i \, (0) + \sum_{i=4}^{7} (0) \, sB1_i = 0$$

$$VA_{|X=sB0} = \sum_{i=0}^{7} sA_i \, sB0_i = \sum_{i=0}^{3} sA_i \, (0) + \sum_{i=4}^{7} (0) \, sB0_i = 0$$

$$VB_{|X=sA1} = \sum_{i=0}^{7} sB_i \, sA1_i = \sum_{i=0}^{3} (0) \, 1 + \sum_{i=4}^{7} sB_i \, (0) = 0$$

$$VB_{|X=sA0} = \sum_{i=0}^{7} sB_i \, sA0_i = \sum_{i=0}^{3} (0) \, (-1) + \sum_{i=4}^{7} sB_i \, (0) = 0$$

$$VB_{|X=sB1} = \sum_{i=0}^{7} sB_i \, sB1_i = \sum_{i=4}^{7} sB_i^2 = 4$$

$$VB_{|X=sB0} = \sum_{i=0}^{7} sB_i \, sB0_i = \sum_{i=4}^{7} sB_i \, (-sB_i) = -4$$

The matched processors work as intended.

Problem 8.3 (Number of orthogonal FDMA signals) With $n_x = 8$, compute n_{max} , which is the maximum number of unique orthogonal sinusoidal sequences. Show the $n_{max} + 2$ harmonic has values that are identical to one of the complementary signals in the orthogonal set.

(ans: With
$$n_x=8$$
, $f_1=1/8$
$$n_{max}=\frac{n_x}{2}-1=3$$

The $n_{max} + 1$ harmonic $f_5 = 5/8$. Computing its eight values gives

Computing the values for f_1 , f_2 , and f_3 gives

Comparing the sets of values shows $\sin(2\pi i(5/8)) = -\sin(2\pi i(3/8))$.

Problem 8.4 (Orthogonal signal design in FDMA) Specify signals sA_i and sB_i for $0 \le i \le 6$, that are orthogonal in frequency. Let $T_s = 10^{-4}$ s and specify their frequency values in the range $0 \le f \le 5,000$ Hz. Design matched processors tuned to your signals and demonstrate that they process these signals correctly.

(ans: Results are given for $n_x = 7$ and for $n_x = 8$.

For
$$n_x = 7$$
, $f_1 = 1/7$
$$n_{max} = \frac{n_x}{2} - 1 = 2.5$$

Hence, only $f_1 = 1/7$ and $f_2 = 2/7$ are the only valid harmonic frequencies. With $T_s = 10^{-4}$ s. the duration of each signal is $7T_s = 7 \times 10^{-4}$ s. The fundamental analog frequency equals

$$\frac{1}{7T_s} = \frac{1}{7 \times 10^{-4} \, s} = 1.429 \, \text{ kHz}$$

and its second harmonic equals

$$\frac{2}{7T_s} = \frac{2}{7 \times 10^{-4} \, s} = 2.857 \, \text{ kHz}$$

User A's signals:

$$sA_i = \sin(2\pi f_1 i) = \sin(2\pi i/7) \quad \text{for } 0 \le i \le 6$$
$$sA1_i = sA_i$$
$$sA0_i = -sA_i$$

User B's signals:

$$sB_i = \sin(2\pi f_2 i) = \sin(4\pi i/7)$$
 for $0 \le i \le 6$
 $sB1_i = sB_i$
 $sB0_i = -sB_i$

Processor outputs: Use the basic signals sA_i and sB_i to demonstrate operation

$$VA_{|X=sA} = \sum_{i=0}^{6} sA_i^2$$

$$= 0 + 0.782^2 + 0.975^2 + 0.434^2 + (-0.434)^2 + (-0.975)^2 + (-0.782)^2$$

$$= 3.5 \quad (= \mathcal{E}_{sA} = n_x/2)$$

$$VB_{|X=sB} = \sum_{i=0}^{6} sB_i^2$$

$$= 0 + 0.975^2 + (-0.434)^2 + (-0.782)^2 + 0.782^2 + 0.434^2 + (-0.975)^2$$

$$= 3.5 \quad (= \mathcal{E}_{sB} = n_x/2)$$

$$VA_{|X=sB} = \sum_{i=0}^{6} sA_i sB_i$$

= 0 + 0.762 - 0.423 - 0.339 - 0.339 - 0.423 + 0.762 = 0

For $n_x = 8$, $f_1 = 1/8$

$$n_{max} = \frac{n_x}{2} - 1 = 3$$

Hence, $f_1=1/8$, $f_2=1/4$ and $f_3=3/8$ are the only valid harmonic frequencies. With $T_s=10^{-4}$ s. the duration of each signal is $8T_s=8\times 10^{-4}$ s. Hence, the fundamental analog frequency equals

$$\frac{1}{8T_s} = \frac{1}{8 \times 10^{-4} \, s} = 1.25 \, \text{kHz}$$

The second harmonic equals

$$\frac{2}{8T_s} = \frac{2}{8 \times 10^{-4} \, s} = 2.5 \, \text{kHz}$$

The third harmonic equals

$$\frac{3}{8T_s} = \frac{3}{8 \times 10^{-4} \, s} = 3.75 \, \text{kHz}$$

In this case we can have three users (A, B, and C):

User A's signals:

$$sA_i = \sin(2\pi f_1 i) = \sin(2\pi i/8) = \sin(\pi i/4) \quad \text{for } 0 \le i \le 7$$
$$sA1_i = sA_i$$
$$sA0_i = -sA_i$$

User B's signals:

$$sB_i = \sin(2\pi f_2 i) = \sin(4\pi i/8) = \sin(\pi i/2)$$
 for $0 \le i \le 7$
 $sB1_i = sB_i$
 $sB0_i = -sB_i$

User C's signals:

$$sC_i = \sin(2\pi f_3 i) = \sin(6\pi i/8) = \sin(3\pi i/4) \quad \text{for } 0 \le i \le 7$$
$$sC1_i = sC_i$$
$$sC0_i = -sC_i$$

Processor outputs: Use the basic signals sA_i , sB_i , and sC_i to demonstrate operation

$$VA_{|X=sA} = \sum_{i=0}^{l} sA_i^2$$

$$= 0 + 0.707^2 + 1 + 0.707^2 + 0 + (-0.707)^2 + (-1)^2 + (-0.707)^2$$

$$= 4 \quad (= \mathcal{E}_{sA} = n_x/2)$$

$$VB_{|X=sB} = \sum_{i=0}^{7} sB_i^2$$

$$= 0 + 1 + 0 + (-1)^2 + 0 + 1 + 0 + (-1)^2$$

$$= 4 (= \mathcal{E}_{sB} = n_x/2)$$

$$VC_{|X=sC} = \sum_{i=0}^{7} sC_i^2$$

$$= 0 + 0.707^2 + (-1)^2 + 0.707^2 + 0 + (-0.707)^2 + 1 + (-0.707)^2$$

$$= 4 \quad (= \mathcal{E}_{sC} = n_x/2)$$

$$VA_{|X=sB} = \sum_{i=1}^{7} sA_i sB_i$$

= 0 + 0.7070 - 0.707 + 0 - 0.707 + 0 + 0.707 = 0

$$VA_{|X=sC} = \sum_{i=0}^{7} sA_i sC_i$$

= 0+0.5-1+0.5+0+0.5-1+0.5=0

$$VB_{|X=sC} = \sum_{i=0}^{7} sB_i sC_i$$

= 0 + 0.707 + 0 - 0.707 + 0 - 0.707 + 0 + 0.707 = 0

Problem 8.5 (Orthogonal signal design in CDMA) Specify signals sA_i and sB_i for $0 \le i \le 4$ having values equal to either ± 1 that are approximately orthogonal in code. First, flip a coin (tail $\to -1$, and head $\to +1$) to specify the values for sA_i . Then do the same repeatedly to generate sB_i until

)

$$\epsilon = \left| \sum_{i=0}^{4} sA_i \, sB_i \right| \le 1$$

Design matched processors tuned to your signals and demonstrate that they process these signals correctly.

(ans: Initial set of flips:

$$T, H, H, T, T \rightarrow sA_i = -1, +1, +1, -1, -1$$

First flips for sB_i :

$$T, H, H, H, H \rightarrow sB_i = -1, +1, +1, +1, +1$$

 $\epsilon = |(-1)(-1) + (+1)(+1) + (+1)(+1) + (-1)(+1) + (-1)(+1)| = 1$

Hence, sA_i and sB_i are approximately orthogonal.

User A's signals:

$$sA1_i = sA_i$$
$$sA0_i = -sA_i$$

User B's signals:

$$sB1_i = sB_i$$
$$sB0_i = -sB_i$$

Processor outputs:

$$VA_{|X=sA1} = \sum_{i=0}^{4} sA_i^2 = 1 + 1 + 1 + 1 + 1 = 5 \quad (= \mathcal{E}_{sA} = n_x)$$

$$VA_{|X=sA0} = -\sum_{i=0}^{4} sA_i^2 = -1 - 1 - 1 - 1 - 1 = -5 \quad (= -\mathcal{E}_{sA} = -n_x)$$

$$VB_{|X=sB1} = \sum_{i=0}^{4} sB_i^2 = 1 + 1 + 1 + 1 + 1 + 1 \quad (= \mathcal{E}_{sB} = n_x)$$

$$VA_{|X=sB1} = \sum_{i=0}^{4} sA_i sB_i = 1 + 1 + 1 - 1 - 1 = -1$$

)

Problem 8.6 (Processing superimposed CDMA signals from users A and B) Using the codes determined in the previous problem, let X_i equal the sum of the codes that would occur for the four possibilities of transmitted data (00, 01, 10, 11). Design matched processors tuned to your signals and demonstrate that they process these signals correctly.

(ans: Using

$$sA_i = -1, +1, +1, -1, -1$$

 $sB_i = -1, +1, +1, +1, +1$

For
$$D_{AB} = 00$$

$$X_i = sA0_i + sB0_i = -sA_i - sB_i = +2, -2, -2, 0, 0$$

8.1. PROBLEMS 91

$$VA_X = \sum_{i=0}^4 sA_i \, X_i = -1(2) + 1(-2) + 1(-2) - 1(0) - 1(0) = -6 \quad \rightarrow D_A = 0$$

$$VB_X = \sum_{i=0}^4 sB_i \, X_i = -1(2) + 1(-2) + 1(-2) + 1(0) + 1(0) = -6 \quad \rightarrow D_B = 0$$

$$For \, D_{AB} = 01$$

$$X_i = sA0_i + sB1_i = -sA_i + sB_i = 0, 0, 0, +2, +2$$

$$VA_X = \sum_{i=0}^4 sA_i \, X_i = -1(0) + 1(0) + 1(0) - 1(2) - 1(2) = -4 \quad \rightarrow D_A = 0$$

$$VB_X = \sum_{i=0}^4 sB_i \, X_i = -1(0) + 1(0) + 1(0) + 1(2) + 1(2) = 4 \quad \rightarrow D_B = 1$$

$$For \, D_{AB} = 10$$

$$X_i = sA1_i + sB0_i = sA_i - sB_i = 0, 0, 0, -2, -2$$

$$VA_X = \sum_{i=0}^4 sA_i \, X_i = -1(0) + 1(0) + 1(0) - 1(-2) - 1(-2) = +4 \quad \rightarrow D_A = 1$$

$$VB_X = \sum_{i=0}^4 sB_i \, X_i = -1(0) + 1(0) + 1(0) + 1(-2) + 1(-2) = -4 \quad \rightarrow D_B = 1$$

$$For \, D_{AB} = 11$$

$$X_i = sA0_i + sB0_i = sA_i + sB_i = -2, +2, +2, 0, 0$$

$$VA_X = \sum_{i=0}^4 sA_i \, X_i = -1(-2) + 1(2) + 1(2) - 1(0) - 1(0) = 6 \quad \rightarrow D_A = 1$$

$$VB_X = \sum_{i=0}^4 sB_i \, X_i = -1(-2) + 1(2) + 1(2) + 1(0) + 1(0) = 6 \quad \rightarrow D_B = 1$$

8.2 Excel Projects

The projects set all signals to have a maximum amplitude $A_{max}=10$. The performance as a function of σ_N for signal types starts at the value $\sigma_N=5$ for easy comparison of signal types.

Project 8.1 (Extending TDMA to 3 simultaneous users) Extend Example 13.44 to generate TDMA signals with $n_X = 30$ to serve three users simultaneously.

(ans: The VBA offers an alternative to stopping automatic recalculations by storing the binary values to check for errors. Reading a cell value does not cause recalculation. The "Value" attribute appears to be the default value, so it was omitted in some commands.

	Α	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	0	P	Q	R
1	DA_t	DA_r	DB_t	DB _r	DC _t	DC_r				$\sigma_N =$		# xmits=	#errors=	P[error]=				
2	1	0	0	0	1	1				640		1002	494	0.4930				START
3																		
4	i	sA_i	sB_{i}	sC_i	N _i	sAT_i	sBT_i	sCTi		X _i	sA _i X _i	sB _i X _i	sC _i X _i		σ_{N}	P[error]		
5	0	10	0	0	48.03	10	0	0		58.03	580.30	0.00	0.00		5	0.000		XMIT
6	1	10	0	0	520.56	10	0	0		530.56	5305.57	0.00	0.00		7	0.000		
7	2	10	0	0		10	0	0		-348.71	-3487.14	0.00	0.00		10	0.002		
8	3	10	0	0	-46.94	10	0	0		-36.94	-369.43	0.00	0.00		14	0.011		AUTO
9	4 5	10	0	0		10	0	0		-420.20	-4201.97	0.00	0.00		20	0.059		
11	6	10	0	0		10 10	0	0		1093.20 -1080.23	10931.96 -10802.31	0.00	0.00		28 40	0.160		
12	7	10	0	0		10	0	0		-1080.23	-10802.31	0.00	0.00		57	0.200		
13	8	10	0	0		10	0	0		-241.83	-2418.32	0.00	0.00		80	0.283		
14	9	10	0	0	167.05	10	0	0		177.05	1770.53	0.00	0.00		113	0.383		
15	10	0	-10	0	-294.22	0	10	0		-284.22	0.00	2842.25	0.00		160	0.411		
16	11	0	-10	0	941.70	0	10	0		951.70	0.00	-9517.04	0.00		226	0.465		
17	12	0	-10	0	559.73	0	10	0		569.73	0.00	-5697.26	0.00		320	0.437		
18	13	0	-10	0	1113.03	0	10	0		1123.03	0.00	-11230.28	0.00		453	0.493		
19	14	0	-10	0	-52.07	0	10	0		-42.07	0.00	420.75	0.00					
20	15	0		0	302.40	0	10	0		312.40	0.00	-3123.99	0.00					
21	16	0	-10	0	-442.11	0	10	0		-432.11	0.00	4321.07	0.00					
22	17	0	-10	0	176.32	0	10	0		186.32	0.00	-1863.24	0.00		$E_s = 1000$, wh			
23	18	0	-10	0	-228.50	0	10	0		-218.50	0.00	2184.97	0.00		sqrt(1000)=			
24 25	19 20	0	-10 0	0 10	-311.59 -97.20	0	10	10		-301.59 -87.20	0.00	3015.92 0.00	0.00 -871.96		P[error]=0.1			
26	21	0	0	10	-97.20	0	0	10		-87.20	0.00	0.00	-871.96		expected).		-	
27	22	0	0	10	930.07	0	0	10		940.07	0.00	0.00			>>E _s P[error	→ 0.5	-	
28	23	0	0	10	-910.16	0	0	10		-900.16	0.00	0.00						
29	24	0	0	10		0	0	10		-1308.62	0.00	0.00					-	
30	25	0	0	10	491.24	0	0	10		501.24	0.00	0.00	5012.43					
31	26	0	0	10	930.81	0	0	10		940.81	0.00	0.00	9408.10					
32	27	0	0	10	1934.50	0	0	10		1944.50	0.00	0.00	19444.99					
33	28	0	0	10	1162.68	0	0	10		1172.68	0.00	0.00	11726.80					
34	29	0	0	10	705.24	0	0	10		715.24	0.00	0.00	7152.42					
35																		
36										V=	-18501.26	-18646.86	38666.92					
	-			В	С		0		E		F	G	Н	11	J K	L	М	N
	(RAND()	<0.5,0,1)	=IF(K	36<0,0,1) =IF	(RAND()<0.5,0,1)	=IF(L36-	<0,0,1)	IF(RAND()	<0.5,0,	1) =IF(I	M36<0,0,1)			σ _N = 640		# xmits= 1002	#errors= 494	P[error]= =IF(L2>0,M2/L2,0)
4				sA,	sB _i	s	ς		N,		sAT _i	sBT _i	sCTi		X _i sA _i X	sB _i X _i	sC _i X _i	
5 0 6 =1	+AS		10	0		0		\$J\$2*NOR \$J\$2*NOR	M.S.IN	V(RAND()) =IF(#F(\$C\$2=1,C5,-C5) #F(\$C\$2=1,C6,-C6)	=IF(\$E\$2=1,D5,-D5) =IF(\$E\$2=1,D6,-D6)	=E5+F5+G =E6+F6+G		=C5*J5 =C6*J6	=J5*D5 =J6*D6	
	+A6		10	0		0		\$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B7,-B7)	IF(\$C\$2=1,C7,-C7)	=IF(\$E\$2=1,D7,-D7) =IF(\$E\$2=1,D8,-D8)	=E7+F7+G =E8+F8+G	57+H7 =B7*J7	=C7*J7 =C8*J8	=J7*D7 =J8*D8	
9 =1	+A8		10	0		0		SJ\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B9,-B9)	IF(\$C\$2=1,C9,-C9)	=IF(\$E\$2=1,D9,-D9) =IF(\$E\$2=1,D10,-D10	=E9+F9+G		=C9*J9 =C10*J10	=J9*D9 =J10*D10	
11 =1	+A10		10	0		0		\$J\$2*NOR \$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B11,-B11)	#F(\$C\$2=1,C10,-C10) #F(\$C\$2=1,C11,-C11) #F(\$C\$2=1,C12,-C12)	=IF(\$E\$2=1,D11,-D1	1) =E11+F11	+G11+H11 =B11*J11 +G12+H12 =B12*J12	=C11*J11 =C12*J12	-J11*D11 -J12*D12	
13 =1	+A12		10	0		0	-	\$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B13,-B13)	@F(\$C\$2=1,C13,-C13)	=IF(\$E\$2=1,D13,-D1	3) =E13+F13	+G13+H13 =B13*J13	=C13*J13 =C14*114	=J13*D13	
14 =1 15 =1	+A14		0	-10		0	-	\$J\$2*NOR \$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B15,-B15)	#F(\$C\$2=1,C14,-C14) #F(\$C\$2=1,C15,-C15)	=IF(\$E\$2=1,D15,-D1	E15+F15	+G14+H14 =B14*J14 +G15+H15 =B15*J15	=C15*J15	=J14*D14 =J15*D15	
16 =1 17 =1	+A16		0	-10 -10)	0	-	\$J\$2*NOR \$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B17,-B17)	#F(\$C\$2=1,C16,-C16) #F(\$C\$2=1,C17,-C17)	=IF(\$E\$2=1,D17,-D1	7) =E17+F17	+G16+H16 =B16*J16 +G17+H17 =B17*J17	=C16*J16 =C17*J17	=J16*D16 =J17*D17	
18 =1 19 =1	+A18		0	-10 -10		0		\$J\$2*NOR \$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B19,-B19)		=IF(\$E\$2=1,D18,-D19 =IF(\$E\$2=1,D19,-D19		HG18+H18 =B18*J18 HG19+H19 =B19*J19	=C18*J18 =C19*J19	=J18*D18 =J19*D19	
20 =1	+A19 +A20		0	-10 -10		0	-	\$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B20,-B20)	IF(\$C\$2=1,C20,-C20)	=IF(\$E\$2=1,D20,-D21 =IF(\$E\$2=1,D21,-D2) =E20+F20	+G20+H20 =B20*J20 +G21+H21 =B21*J21	=C20*J20 =C21*J21	=J20*D20 =J21*D21	
22 =1	+A21		0	-10)	0		\$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B22,-B22)	#F(\$C\$2=1,C22,-C22)	=IF(\$E\$2=1,D22,-D2; =IF(\$E\$2=1,D23,-D2;	2) =E22+F22	+G22+H22 =B22*J22 +G23+H23 =B23*J23	=C22*J22 =C23*J23	=J22*D22 =J23*D23	
24 =1	+A23 +A24		0	-10		0		\$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B24,-B24)	IF(\$C\$2=1,C24,-C24)	=IF(\$E\$2=1,D24,-D24 =IF(\$E\$2=1,D25,-D25	#) =E24+F24	HG24+H24 =B24*J24 HG25+H25 =B25*J25	=C24*J24 =C25*J25	=J24*D24 =J25*D25	
	+A25		0	0		10		\$J\$2*NOR \$J\$2*NOR	M.S.IN	V(RAND()) =IF(=IF(\$E\$2=1,D26,-D2i	5) =E26+F26	+G25+H25 =B25*J25 +G26+H26 =B26*J26 +G27+H27 =B27*J27	=C26*J26 =C27*J27	=J26*D26 =J27*D27	
28 =1	+A27		0	0		10		\$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B28,-B28)	IF(\$C\$2=1,C28,-C28)	=IF(\$E\$2=1,D28,-D28	E28+F28	+G28+H28 =B28*J28	=C28*J28	=J28*D28	
30 =1	+A28 +A29		0	0		10 10		\$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B30,-B30)	IF(\$C\$2=1,C30,-C30)	=IF(\$E\$2=1,D29,-D29 =IF(\$E\$2=1,D30,-D30	=E30+F30	HG29+H29 =B29*J29 HG30+H30 =B30*J30	=C29*J29 =C30*J30	=J29*D29 =J30*D30	
32 =1	+A30 +A31		0	0		10 10		\$J\$2*NOR \$J\$2*NOR	M.S.IN	V(RAND()) =IF(:	A\$2=1,B32,-B32)	#F(\$C\$2=1,C31,-C31) #F(\$C\$2=1,C32,-C32)	=IF(\$E\$2=1,D32,-D32	2) =E32+F32	+G31+H31 =B31*J31 +G32+H32 =B32*J32	=C31*J31 =C32*J32	=J31*D31 =J32*D32	
33 =1 34 =1			0	0		10 10		\$J\$2*NOR \$J\$2*NOR				0F(\$C\$2=1,C33,-C33) 0F(\$C\$2=1,C34,-C34)			HG33+H33 =B33*J33 HG34+H34 =B34*J34	=C33*J33 =C34*J34	=J33*D33 =J34*D34	
35 36						1	\exists								V= =SUM(KS:	(34) =SUM(L5:L34)	=SUM(M5:M3	4)
						•												

The VBA code is the following. The same VBA code is used in Projects 8.2 and 8.3.

```
Sub start()
Range("L2").Value = 0
Range("M2").Value = 0
End Sub
Sub xmit()
Dim DA_t As Integer
Dim DA_r As Integer
Dim DB t As Integer
Dim DB_r As Integer
Dim DC_t As Integer
Dim DC_r As Integer
' Store values so that they are not recomputed
' Recall any change produces recalculation
DA_t = Range("A2").Value
DA_r = Range("B2").Value
DB_t = Range("C2").Value
DB_r = Range("D2").Value
DC_t = Range("E2").Value
DC_r = Range("F2").Value
                       ' error in DA
If DA_t <> DA_r Then
  Range("M2") = Range("M2") + 1
End If
If DB_t <> DB_r Then
                           ' error in DB
   Range("M2") = Range("M2") + 1
Range("M2") = Range("M2") + 1
End Sub
/ ____
Sub auto()
   Dim RowNum As Integer
      RowNum = 5 ' starting row of data compi
Range("J2") = 5 ' initial noise SD value
Do While Range("J2") <= 1000 ' end noise SD value
                            ' starting row of data compilation
          Do While Range("L2") < 1000 ' 1000 transmissions
             xmit
          RowNum = RowNum + 1 ' increment row
          Range("J2") = Sqr(2) * Range("J2")
                                                 ' increase noise SD
       Loop
End Sub
```

Project 8.2 (Extending FDMA to 3 simultaneous users) Extend Example 13.44 to generate FDMA signals with $n_X = 32$ to serve three users simultaneously. How many unique FDMA are possible with with $n_X = 32$?

(ans: The frequency values were assigned to users as $f_a = 1/32$, $f_B = 2/32$, $f_C = 3/32$. With $n_x = 32$, there are $(n_x/2) - 2$ frequencies are available. (f = 0 and f = 1/2 will not work because they produce all-zero values, which violates the constant \mathcal{E}_s rule.

The VBA Macro is the same as in Project 8.1.

	Α	В	С	D	E	F	G	Н	Τ	J	K	L	M	N	0	Р	Q	R
1	DA_t	DA_r	DB _t	DB _r	DC _t	DC_r	f _B =1	/16,		σ _N =		# xmits=	#errors=	P[error]=				
2	0	1	1	1	0	0	f _c =3	/32,		1280		1002	475	0.4741				START
3																		317
4	i	sA _i	sB _i	sC _i	N _i	sAT_i	sBT_i	sCTi		X _i	sA _i X _i	sB _i X _i	sC _i X _i		σ_{N}	P[error]		
5	0	0.00	0.00	0.00	125.01	0	0	0		125.01	0.00	0.00	0.00		5.0	0.000		XMIT
6	1	1.95	3.83	5.56	1950.10	-2	4	-6		1946.42	3797.27	7448.62	10813.72		7.1	0.000		A
7	2	3.83	7.07	9.24	737.29	-4	7	-9		731.29	2798.53	5171.02	6756.26		10.0	0.000		
8	3	5.56	9.24	9.81	292.59	-6	9	-10		286.46	1591.51	2646.59	2809.61		14.1	0.001		AUTO
9	4	7.07	10.00	7.07	-78.95	-7	10	-7		-83.10	-587.58	-830.97	-587.58		20.0	0.024		
10	5	8.31	9.24	1.95	88.93	-8	9	-2		87.90	730.86	812.09	171.48		28.3	0.089		
11	6	9.24	7.07	-3.83	-820.90	-9	7	4		-819.25	-7568.84	-5792.94	3135.12		40.0	0.149		
12	7	9.81	3.83	-8.31	3586.27	-10	4	8		3588.61	35196.51	13733.00	-29838.16		56.6	0.239		
13	8	10.00	0.00	-10.00	546.95	-10	0	10		546.95	5469.48	0.00	-5469.48		80.0	0.314		
14	9	9.81	-3.83	-8.31	438.01	-10	-4	8		432.69	4243.80	-1655.85	-3597.72		113.1	0.356		
15	10	9.24	-7.07	-3.83	1685.16	-9	-7	4		1672.68	15453.52	-11827.61	-6401.06		160.0	0.416		
16	11	8.31	-9.24	1.95	728.86	-8	-9	-2		709.35	5898.04	-6553.55	1383.88		226.3	0.429		
17	12	7.07	-10.00	7.07	-816.42	-7	-10	-7		-840.57	-5943.70	8405.66	-5943.70		320.0	0.445		
18	13	5.56	-9.24	9.81	-1060.22	-6	-9	-10		-1084.82	-6026.94	10022.43	-10639.76		452.5	0.463		
19	14	3.83	-7.07	9.24	-611.28	-4	-7	-9		-631.42	-2416.34	4464.81	-5833.55		640.000	0.460		
20	15	1.95	-3.83	5.56	-3013.88	-2	-4	-6		-3025.22	-5901.90	11577.00	-16807.20		905.097	0.474		
21	16	0.00	0.00	0.00	-3208.24	0	0	0		-3208.24	0.00	0.00	0.00					
22	17	-1.95	3.83	-5.56	-469.47	2	4	6		-458.14	893.78	-1753.22	2545.28		$E_s = A^2$	n _x /2 = 160	00. Wh	ien σ _N =40,
23	18	-3.83	7.07	-9.24	113.81	4	7	9		133.95	-512.60	947.17	-1237.53					ted). When
24	19	-5.56	9.24	-9.81	1591.11	6		10		1615.71	-8976.40	14927.21	-15846.64					Vhen n _v =32,
25	20	-7.07	10.00	-7.07	1703.15	7	10	7		1727.30	-12213.82	17272.95	-12213.82					requencies
26	21	-8.31	9.24	-1.95	-166.94	8	9	2		-147.43	1225.86	-1362.10	287.63			and f=1/2		- 1
27	22	-9.24	7.07	3.83	742.15	9	7	-4		754.63	-6971.91	5336.07	2887.86		(1-0,	unu 1-1/2	*******	ot workj.
28	23	-9.81	3.83	8.31	639.16	10	4	-8		644.48	-6320.94	2466.31	5358.64					
29	24	-10.00	0.00	10.00	-981.36	10	0	-10		-981.36	9813.65	0.00	-9813.65					
30	25	-9.81	-3.83	8.31	2094.71	10	-4	-8		2092.38	-20521.71	-8007.18	17397.47					
31	26	-9.24	-7.07	3.83	-638.98	9	-7	-4		-640.64	5918.75	4530.02	-2451.63					
32	27	-8.31	-9.24	-1.95	-257.85	8		2		-256.82	2135.39	2372.71	501.03					
33	28	-7.07	-10.00	-7.07	-174.38	7	-10	7		-170.24	1203.78	1702.40	1203.78					
34	29	-5.56	-9.24	-9.81	-1221.02	6	-9	10		-1214.90	6749.60	11224.18	11915.52					
35	30	-3.83	-7.07	-9.24	-1474.56	4	-7	9		-1468.56	5619.95	10384.32	13567.76					
36	31	-1.95	-3.83	-5.56	158.62	2	-4	6		162.30	-316.62	-621.08	-901.66					
37																		
38										V=	24460.98	97040.05	-46848.11					

© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Project 8.3 (Extending CDMA to 3 simultaneous users) Extend Example 13.44 to generate CDMA signals with $n_X = 32$ to serve three users simultaneously. (Hint: you need to compute 3 cross-product sums (1-2, 1-3, 2-3).

(ans: First, we search for the CDMA codes for three users using the following Excel worksheet. While the codes can be found manually by repeatedly pressing F9, because the number of guesses can vary between 10 and 800, the VBA code makes the search painless. The search stops when all three orthogonality measures equal zero. The three codes in E6:G37 are then copied with one selection and paste/special/values into J6:L37. This past will cause new (possibly non-orthogonal) codes to appear in E6:G37, but the paste command has inserted the correct codes.

	Α	В	С	D	E	F	G	Н	Т	J	K	L
1	A _{max} =	n_x=			Guess#							
2	10	32			59	Find (DMA					
3												
4	(CDMA								Final	l Cod	es
5	sA _i	sB _i	sC _i		sA _i sB _i	sA_isC_i	sB _i sC _i		i	sA _i	sB _i	sC _i
6	-10	10	-10		-100	100	-100		0	-10	-10	-10
7	10	-10	-10		-100	-100	100		1	10	-10	-10
8	-10	-10	10		100	-100	-100		2	-10	10	-10
9	-10	10	10		-100	-100	100		3	10	-10	10
10	10	10	10		100	100	100		4	10	-10	10
11	-10	10	10		-100	-100	100		5	-10	10	10
12	10	-10	-10		-100	-100	100		6	10	10	10
13	-10	10	10		-100	-100	100		7	-10	-10	10
14	-10	-10	-10		100	100	100		8	10	-10	-10
15	10	10	10		100	100	100		9	-10	-10	-10
16	-10	-10	-10		100	100	100		10	-10	-10	-10
17	10	10	-10		100	-100	-100		11	10	10	10
18	-10	-10	10		100	-100	-100		12	10	10	-10
19	-10	-10	-10		100	100	100		13	-10	10	10
20	-10	-10	10		100	-100	-100		14	-10	-10	10
21	10	10	10		100	100	100		15	-10	-10	10
22	10	-10	10		-100	100	-100		16	10	-10	-10
23	-10	-10	-10		100	100	100		17	10	-10	10
24	-10	-10	10		100	-100	-100		18	10	-10	10
25	10	10	-10		100	-100	-100		19	10	-10	-10
26	-10	10	-10		-100	100	-100		20	10	10	10
27	10	-10	10		-100	100	-100		21	-10	10	10
28	-10	10	10		-100	-100	100		22	10	10	-10
29	-10	10	10		-100	-100	100		23	10	-10	10
30	10	10	10		100	100	100		24	10	10	-10
31	10	-10	10		-100	100	-100		25	-10	-10	-10
32	-10	10	-10		-100	100	-100		26	-10	10	-10
33	10	10	-10		100	-100	-100		27	10	-10	10
34	-10	10	-10		-100	100	-100		28	-10	-10	10
35	10	-10	-10		-100	-100	100		29	10	-10	-10
36	10	-10	10		-100	100	-100		30	10	10	10
37	-10	-10	10		100	-100	-100		31	-10	-10	10
38												
39				Sum=	0	0	0					

The three CDMA codes are copied from E6:G37 into the CDMA worksheet (a copy of the same one

that was used for TDMA and FDMA - along with the VBA Macros). The VBA code is given in Project 8.1.

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R
1	DA_t	DA _r	DB _t	DB _r	DC _t	DC _r				$\sigma_N =$		# xmits=	#errors=	P[error]=				
2	0	0	0	1	1	1				1280		1002	481	0.4800				START
3																		
4		sA _i	sB _i	sC _i	N _i	sAT _i	sBT_i	sCTi		X _i	sA _i X _i	sB _i X _i	sC _i X _i		σ_N	P[error]		
5	0	-10.00	-10.00	-10.00	-237.69	10	10	-10		-227.69	2276.92	2276.92	2276.92		5.0	0.000		XMIT
6	1	10.00	-10.00	-10.00	-609.77	-10	10	-10		-619.77	-6197.75	6197.75	6197.75		7.1	0.000		
7	2	-10.00	10.00	-10.00	2017.78	10	-10	-10		2007.78	-20077.82	20077.82	-20077.82		10.0	0.000		
8	3	10.00	-10.00	10.00	1378.23	-10	10	10		1388.23	13882.28	-13882.28	13882.28		14.1	0.000		AUTO
9	4	10.00	-10.00	10.00	-2026.24	-10	10	10		-2016.24	-20162.39	20162.39	-20162.39		20.0	0.003		
10	5	-10.00	10.00	10.00	1823.00	10	-10	10		1833.00	-18330.01	18330.01	18330.01		28.3	0.026		
11	6	10.00	10.00	10.00	-359.85	-10	-10	10		-369.85	-3698.48	-3698.48	-3698.48		40.0	0.088		
12	7	-10.00	-10.00	10.00	527.20	10	10	10		557.20	-5572.03	-5572.03	5572.03		56.6	0.166		
13	8	10.00	-10.00	-10.00	71.07	-10	10	-10		61.07	610.68	-610.68	-610.68		80.0	0.266		
14	9	-10.00	-10.00	-10.00	317.50	10	10	-10		327.50	-3275.02	-3275.02	-3275.02		113.1	0.318		
15	10		-10.00	-10.00	-797.73	10	10	-10		-787.73	7877.34	7877.34	7877.34		160.0	0.373		
16	11	10.00	10.00	10.00		-10	-10	10		-1850.63	-18506.27	-18506.27	-18506.27		226.3	0.380		
17	12	10.00	10.00	-10.00	-2598.65	-10	-10	-10		-2628.65	-26286.47	-26286.47	26286.47		320.0	0.434		
18	13		10.00	10.00	648.37	10	-10	10		658.37	-6583.68	6583.68	6583.68		452.5	0.456		
19	14	-10.00		10.00	-494.69	10	10	10		-464.69	4646.94	4646.94	-4646.94		640.000	0.478		
20		-10.00		10.00		10	10	10		-2474.22	24742.18				905.097	0.480		
21	16	10.00	-10.00	-10.00	-565.64	-10	10	-10		-575.64	-5756.43	5756.43	5756.43					
22	17	10.00		10.00	69.52	-10	10	10		79.52	795.16	-795.16	795.16		$E_s = A^2 n_x = 32$	00. When		
23	18	10.00		10.00	-288.16	-10	10	10		-278.16	-2781.60	2781.60	-2781.60		σ _N =57, P[erro	r] = 0.16 (as		
24	19		-10.00		2901.87	-10	10	-10		2891.87	28918.68		-28918.68		expected). As	s σ _N >> E _e .		
25	20	10.00	10.00	10.00	1614.45	-10	-10	10		1604.45	16044.55	16044.55	16044.55		$P[Error] \rightarrow 0.5$			
26	21	-10.00	10.00	10.00	1718.14	10	-10	10		1728.14	-17281.39	17281.39	17281.39		1 [2.1101] 7 0			
27	22		10.00	-10.00	1081.32	-10	-10	-10		1051.32	10513.24	10513.24	-10513.24					
28	23	10.00	-10.00	10.00	1096.26	-10	10	10		1106.26	11062.55	-11062.55	11062.55					
29	24		10.00		763.47	-10	-10	-10		733.47	7334.65	7334.65	-7334.65					
30	25				-320.13	10	10	-10		-310.13	3101.27	3101.27	3101.27					
31	26		10.00	-10.00		10	-10	-10		-1086.32	10863.19							
32	27	10.00	-10.00	10.00	1108.79	-10	10	10		1118.79	11187.89		11187.89					
33	28			10.00	-186.05	10	10	10		-156.05	1560.53	1560.53	-1560.53					
34	29	10.00		-10.00	208.81	-10	10	-10		198.81	1988.14	-1988.14	-1988.14					
35	30	10.00	10.00	10.00		-10	-10	10		-1712.73	-17127.29							
36	31	-10.00	-10.00	10.00	981.12	10	10	10		1011.12	-10111.19	-10111.19	10111.19					
37																		
38										V=	-24341.61	11383.37	7266.20					

© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Project 8.4 (Histogram of orthogonal signals in noise) Using Example 13.32 as a guide, generate a histogram of one thousand matched processor output values V when processing signals in the presence of noise. Choose your favorite orthogonal complementary signal pair with $n_x = 16$ and a signal-tonoise ratio $\mathcal{E}_s/\sigma_N^2 = 4$. Repeat for $\mathcal{E}_s/\sigma_N^2 = 16$.

(ans: TDMA, FDMA, and CDMA two-user signals are considered, each with maximum allowed amplitude = 10. The histograms should look similar for all signal types because the overlap in the PDFs is determined solely by the SNR. Recall the signal energy is the same for TDMA and FDMA signals and is equal to half that provided by CDMA. Hence, for the same SNR, the σ_N^2 specified for CDMA systems will be twice the value specified for TDMA and FDMA systems.

The following worksheets show results for SNR=4 (in E5) and SNR=16 for TDMA signals, although they are typical for FDMA and CDMA signals. The SNR=4 histograms show significant overlap, while those for SNR=16 show clear separation because bins contain zero counts.

	Α	В	С	D	E	F	G	Н	-	J	K	L	Μ	N	0	Р
1	n _x =	A _{max} =	Es=	$\sigma^2_{N}=$	σ _V =		bin	count		D _t =	1				$X_i = sT_i + N$	l _i
2	16	10	800	200	400		-2400	0		i	Si	sT _i =	П	Ci	Xi	c _i X _i
3							-2133	1		0	10.00	10.00		10.00	6.18	61.82
4	n _T =	i=	bin#=		SNR=		-1866	3		1	10.00	10.00	П	10.00	-11.21	-112.13
5	1000	1000	11		4		-1599	20		2	10.00	10.00		10.00	-15.60	-155.99
6							-1332	60		3	10.00	10.00		10.00	1.45	14.50
7	min bin =	# bins=	width=				-1065	112		4	10.00	10.00		10.00	16.77	167.69
8	-2400	19	267				-798	117		5	10.00	10.00	Ц	10.00	1.91	19.10
9							-531	108		6	10.00	10.00	Ц	10.00	-25.23	-252.32
10							-264	59		7	10.00	10.00	Ц	10.00	24.44	244.41
11							3	43		8	0.00	0.00	Ц	0.00	-4.99	0.00
12							270	50		9	0.00	0.00	Ц	0.00	8.90	0.00
13	Ц		J				537	117		10	0.00	0.00	Ц	0.00	3.98	0.00
14							804	126		11	0.00	0.00	Ц	0.00	5.35	0.00
15							1071	101		12	0.00	0.00	Ц	0.00	-15.39	0.00
16							1338	64		13	0.00	0.00	Ц	0.00	18.69	0.00
17							1605	16		14	0.00	0.00	Ц	0.00	-0.86	0.00
18							1872	2		15	0.00	0.00	Ц	0.00	9.17	0.00
19							2139	1					Н			
20							2406	0							$V _{X=sT+N} =$	-12.94
													ш			
	А	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р
1	A n _x =		C Es=	2	Ε σ _V =	F	G bin	H count	1	J D _t =	K 1	L	M			_
2			Es=		σ _V =	F		count 0	I	-	_	L sT _i =	M		0	_
-	n _x =	A _{max} =	Es=	$\sigma^2_N =$	σ _V =	F	bin	count	I	D _t =	1		M	N	$O X_i = sT_i + N$	l _i
2	n _x =	A _{max} =	Es=	$\sigma^2_N =$	σ _V =	F	bin -1600	count 0	ı	D _t =	S _i	sT _i =	M	N C _i	$O X_i = sT_i + N X_i$	l _i
2	n _x =	A _{max} = 10	Es= 800 bin#=	$\sigma^2_N =$	σ _V = 200	F	bin -1600 -1422	count 0 2	1	D _t =	s _i 10.00	sT _i =	M	N c _i 10.00	O $X_i = sT_i + N$ X_i 10.90	c _i X _i 108.99
2 3 4 5 6	n _x = 16 n _T = 1000	A _{max} = 10	Es= 800 bin#= 14	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888	0 2 21 74 159	ı	D _t = i 0 1	1 s _i 10.00 10.00 10.00 10.00	sT _i = 10.00 10.00 10.00 10.00	M	C _i 10.00 10.00	$ \begin{array}{c} O \\ X_i = sT_i + N \\ X_i \\ 10.90 \\ 4.98 \\ -1.71 \\ -1.17 \end{array} $	c _i X _i 108.99 49.75 -17.15 -11.69
2 3 4 5 6 7	n _x = 16 n _T = 1000	A _{max} = 10	Es= 800 bin#=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710	0 2 21 74 159 162	1	D _t = i 0 1 2 3 4	1 s _i 10.00 10.00	sT _i = 10.00 10.00 10.00	М	N c _i 10.00 10.00	O $X_i = sT_i + N$ X_i 10.90 4.98 -1.71	c _i X _i 108.99 49.75 -17.15 -11.69 137.28
2 3 4 5 6 7 8	n _x = 16 n _T = 1000	A _{max} = 10	Es= 800 bin#= 14	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532	0 2 21 74 159 162 79	1	D _t = i 0 1 2 3 4 5	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00	sT _i = 10.00 10.00 10.00 10.00 10.00	M	N c _i 10.00 10.00 10.00	$\begin{matrix} O \\ X_i = sT_i + N \\ X_i \\ 10.90 \\ 4.98 \\ -1.71 \\ -1.17 \\ 13.73 \\ 0.45 \end{matrix}$	c _i X _i 108.99 49.75 -17.15 -11.69 137.28 4.52
2 3 4 5 6 7 8	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins=	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354	0 2 21 74 159 162 79	1	D _t = i 0 1 2 3 4 5 6	1 s _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00	M	N 10.00 10.00 10.00 10.00 10.00 10.00	O X _i = sT _i + N X _i 10.90 4.98 -1.71 -1.17 13.73 0.45 7.70	C _i X _i 108.99 49.75 -17.15 -11.69 137.28 4.52 77.04
2 3 4 5 6 7 8 9	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins=	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176	count 0 2 21 74 159 162 79 21 0	1	D _t = i 0 1 2 3 4 5 6 7	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	M	N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	O X _i = sT _i + N X _i 10.90 4.98 -1.71 -1.17 13.73 0.45 7.70 16.63	c _i X _i 108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34
2 3 4 5 6 7 8 9 10	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins=	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176	count 0 2 21 74 159 162 79 21 0	1	D _t = i 0 1 2 3 4 5 6 7	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	M	N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	O X _i = sT _i + N X _i 10.90 4.98 -1.71 -1.17 13.73 0.45 7.70 16.63 -2.90	C _i X _i 108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00
2 3 4 5 6 7 8 9 10 11	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins=	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2	count 0 2 21 74 159 162 79 21 0 0 2		D _t = i 0 1 2 3 4 5 6 7 8 9	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	M	C _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	0 X _i = sT _i + N X _i 10.90 4.98 -1.71 -1.17 13.73 0.455 7.70 16.63 -2.90 1.21	108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00
2 3 4 5 6 7 8 9 10 11 12 13	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins= 19	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2 180 358	count 0 2 21 74 159 162 79 21 0 0 2 16		D _t = i 0 1 2 3 4 5 6 7 8 9 10	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00	M	C _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00	$\begin{matrix} 0 \\ X_i = sT_i + h \\ X_i \\ 10.90 \\ 4.98 \\ -1.71 \\ -1.17 \\ 13.73 \\ 0.45 \\ 7.70 \\ 16.63 \\ -2.900 \\ 1.21 \\ 6.18 \end{matrix}$	C ₁ X ₁ 108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00 0.00
2 3 4 5 6 7 8 9 10 11 12 13 14	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins= 19	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2 180 358 536	count 0 2 21 74 159 162 79 21 0 0 2 16 72		D _t = i 0 1 2 3 4 5 6 7 8 9 10 11	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00		N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00	0 X _i = sT _i + N X _i 10.90 4.98 -1.71 -1.17 13.73 0.45 7.70 16.63 -2.90 1.21 6.18 -3.53	C ₁ X ₁ 108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00 0.00 0.00
2 3 4 5 6 7 8 9 10 11 12 13 14 15	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins= 19	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2 180 358 536 714	count 0 2 21 74 159 162 79 21 0 0 2 16 72 166		D _t = i 0 1 2 3 4 5 6 7 8 9 10 11 12	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00	M	N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00	0 X _i = ST _i + N 10.90 4.98 -1.71 -1.17 13.73 0.45 7.70 16.63 -2.90 1.21 6.18 -3.53 0.02	108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00 0.00 0.00 0.00
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins= 19	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2 180 358 536 714	count 0 2 21 74 159 162 79 21 0 0 2 16 72 166 135		D _t = i 0 1 2 3 4 5 6 7 8 9 10 11 12 13	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00		N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c} O \\ X_i = sT_i + h \\ X_i \\ 10.90 \\ 4.98 \\ -1.71 \\ -1.17 \\ 13.73 \\ 0.45 \\ 7.70 \\ 16.63 \\ -2.90 \\ 1.21 \\ 6.18 \\ -3.53 \\ 0.02 \\ -11.63 \end{array}$	108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00 0.00 0.00 0.00 0.00
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins= 19	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2 180 358 536 714 892	count 0 2 21 74 159 162 79 21 0 21 66 135 71		D _t = i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00		N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{matrix} O \\ X_i = sT_i + h \\ X_i \\ 10.90 \\ 4.98 \\ -1.71 \\ -1.17 \\ 13.73 \\ 0.45 \\ 7.70 \\ 16.63 \\ -2.90 \\ 1.21 \\ 6.18 \\ -3.53 \\ 0.02 \\ -11.63 \\ -0.21 \\ \end{matrix}$	4, 108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins= 19	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2 180 358 536 714 892 1070 1248	count 0 2 21 74 159 162 79 21 0 2 166 72 166 135 71		D _t = i 0 1 2 3 4 5 6 7 8 9 10 11 12 13	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00		N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c} O \\ X_i = sT_i + h \\ X_i \\ 10.90 \\ 4.98 \\ -1.71 \\ -1.17 \\ 13.73 \\ 0.45 \\ 7.70 \\ 16.63 \\ -2.90 \\ 1.21 \\ 6.18 \\ -3.53 \\ 0.02 \\ -11.63 \end{array}$	108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00 0.00 0.00 0.00 0.00
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	n _x = 16 n _T = 1000 min bin =	A _{max} = 10 i= 1000 # bins= 19	Es= 800 bin#= 14 width=	$\sigma^2_N =$	σ _V = 200 SNR=	F	bin -1600 -1422 -1244 -1066 -888 -710 -532 -354 -176 2 180 358 536 714 892	count 0 2 21 74 159 162 79 21 0 21 66 135 71		D _t = i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 S _i 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	sT _i = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00		N 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{matrix} O \\ X_i = sT_i + h \\ X_i \\ 10.90 \\ 4.98 \\ -1.71 \\ -1.17 \\ 13.73 \\ 0.45 \\ 7.70 \\ 16.63 \\ -2.90 \\ 1.21 \\ 6.18 \\ -3.53 \\ 0.02 \\ -11.63 \\ -0.21 \\ \end{matrix}$	4, 108.99 49.75 -17.15 -11.69 137.28 4.52 77.04 166.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The signal parameters are specified in the worksheet in terms of the signal duration n_x , the maximum allowable amplitude A_{max} , and the noise variance σ_N^2 . The signal sequence is specified in K3:K18. For the signal sequence we compute the signal energy E_s , the matched processor coefficients

in C3:C18. The filter output variance

$$\sigma_V^2 = \sigma_N^2 \sum_{i=0}^{n_x - 1} c_i^2$$

is computed and its square root in computed in E2.

The histogram extends from hist min to hist max (= - hist min) and its parameters are computed in the worksheet. The hist min value in A8 is computed from \mathcal{E}_s and σ_V as hist min = $-(\mathcal{E}_s - 4\sigma_V)$) to effectively guarantee that it will be less than the minimum V value encountered. The number of bins is specified by the user in B8. The bin width is computed in C8 as -2(hist min)/(# bins-1). The bin number of an observed value is the row number is the histogram display and is computed as rounded((value minus hist min)/bin width) +2 in C5 as

$$= ROUND ((P20-A8)/C8, 0) + 2$$

This allows the verification of the bin number for each manual observation (produce by F9).

The VBA program is the same for each orthogonal signal type. The histogram parameters are computed in the worksheet in the same manner for each signal type.

```
Sub hist()
Dim Val As Integer
Range("B5").Value = 0
                              ' Reset counter i
For Val = 1 To Range("B8"). Value 'Set Hist Bin Vals
   Range("H" & 1 + Val).Value = 0 ' Initialize counts
Do While Range("B5").Value < Range("A5").Value ' loop for nT times
   Val = (Range("P20").Value - Range("A8").Value) / Range("C8").Value + 2 'bin value
                                           if valid bin value
   If Val > 1 Then
      Range("H" & Val).Value = Range("H" & Val).Value + 1
                                                    ' incr bin count
   Range("B5").Value = Range("B5").Value + 1 ' increment counter i
door
End Sub
```

1. TDMA signal with two users.

	А	В	С	D	Е	F	G	Н	-	J	K	L	Μ	N	0	Р
1	n _x =	A _{max} =	Es=	$\sigma^2_{N}=$	σ _V =		bin	count		D _t =	1				$X_i = sT_i +$	N _i
2	16	10	800	100	283		-1931	0		i	Si	sT _i =		Ci	Xi	c _i X _i
3							-1716	1		0	10.00	10.00		10.00	22.29	222.92
4	n _T =	i=	bin#=		SNR=		-1501	7		1	10.00	10.00		10.00	21.69	216.91
5	1000	1000	17		8		-1286	37		2	10.00	10.00		10.00	18.39	183.86
6							-1071	96		3	10.00	10.00		10.00	20.76	207.65
7	min bin =	# bins=	width=				-856	148		4	10.00	10.00		10.00	19.80	197.99
8	-1931	19	215				-641	113		5	10.00	10.00		10.00	13.81	138.08
9							-426	60		6	10.00	10.00		10.00	4.25	42.50
10							-211	20		7	10.00	10.00		10.00	0.87	8.67
11							4	8		8	0.00	0.00		0.00	18.92	0.00
12		Hist					219	20		9	0.00	0.00		0.00	14.90	0.00
13							434	68		10	0.00	0.00		0.00	11.44	0.00
14							649	154		11	0.00	0.00		0.00	3.65	0.00
15							864	145		12	0.00	0.00		0.00	17.12	0.00
16							1079	85		13	0.00	0.00		0.00	-4.35	0.00
17							1294	30		14	0.00	0.00		0.00	-5.01	0.00
18							1509	8		15	0.00	0.00		0.00	0.49	0.00
19							1724	0								
20							1939	0							V _{X=ST+N} =	1218.58

	A	В	С	D	E
1	n _x =	A _{max} =	Es=	$\sigma^2_{N}=$	σ_V =
2	16	10	=SUMSQ(K3:K18)	100	=SQRT(D2*SUMSQ(N3:N18))
3					
4	n _T =	i=	bin#=		SNR=
5	1000	1000	=ROUND((P20-A8)/C8,0)+2		=C2/D2
6					
7	min bin =	# bins=	width=		
8	= -ROUND(C2+4*E2,0)	19	=-ROUND(2*A8/(B8-1),0)		

	J	K	L	М	N	0	Р
1	D _t =	=ROUND(RAND(),0)				$X_i = sT_i + N_i$	
2	i	s _i	sT _i =		Ci	X _i	c _i X _i
3	0	=\$B\$2	=IF(\$K\$1=1,K3,-K3)		=K3	=L3+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N3*O3
4	=1+J3	=\$B\$2	=IF(\$K\$1=1,K4,-K4)		=K4	=L4+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N4*O4
5	=1+J4	=\$B\$2	=IF(\$K\$1=1,K5,-K5)		=K5	=L5+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N5*O5
6	=1+J5	=\$B\$2	=IF(\$K\$1=1,K6,-K6)		=K6	=L6+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N6*O6
7	=1+J6	=\$B\$2	=IF(\$K\$1=1,K7,-K7)		=K7	=L7+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N7*O7
8	=1+J7	=\$B\$2	=IF(\$K\$1=1,K8,-K8)		=K8	=L8+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N8*O8
9	=1+J8	=\$B\$2	=IF(\$K\$1=1,K9,-K9)		=K9	=L9+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N9*O9
10	=1+J9	=\$B\$2	=IF(\$K\$1=1,K10,-K10)		=K10	=L10+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N10*O10
11	=1+J10	0	=IF(\$K\$1=1,K11,-K11)		=K11	=L11+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N11*O11
12	=1+J11	0	=IF(\$K\$1=1,K12,-K12)		=K12	=L12+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N12*O12
13	=1+J12	0	=IF(\$K\$1=1,K13,-K13)		=K13	=L13+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N13*O13
14	=1+J13	0	=IF(\$K\$1=1,K14,-K14)		=K14	=L14+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N14*O14
15	=1+J14	0	=IF(\$K\$1=1,K15,-K15)		=K15	=L15+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N15*O15
16	=1+J15	0	=IF(\$K\$1=1,K16,-K16)		=K16	=L16+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N16*O16
17	=1+J16	0	=IF(\$K\$1=1,K17,-K17)		=K17	=L17+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N17*O17
18	=1+J17	0	=IF(\$K\$1=1,K18,-K18)		=K18	=L18+SQRT(\$D\$2)*NORM.S.INV(RAND())	=N18*O18
19							
20						V _{X=sT+N} =	=SUM(P3:P18)

2. FDMA signal with two users.

	Α	В	С	D	Ε	F	G	Н	1	J	K	L
1	$\sigma_N =$	116.5		D _t =	1		#Transmits=	1000		Cha		Mars 24
2	Es=	1500		~D=	1		#Errors=	390		Sta	irt	Xmit
3	SNR=	0.11					P[err]=	0.390		Rest	ore	Auto
4												
5	i	Si	sT_i	N _i		Ci	X _i	c _i X _i		σ_{N}	SNR	P[err]
6	0	0.00	0.00	52.03		0.00	52.03	0.00		12.2	10.0	0.002
7	1	2.08	2.08	18.39		2.08	20.47	42.55		14.6	7.1	0.000
8	2	4.07	4.07	-3.91		4.07	0.15	0.62		17.3	5.0	0.015
9	3	5.88	5.88	15.63		5.88	21.51	126.44		20.6	3.5	0.034
10	4	7.43	7.43	-223.63		7.43	-216.20	-1606.64		24.5	2.5	0.050
11	5	8.66	8.66	76.27		8.66	84.93	735.55		29.1	1.8	0.084
12	6	9.51	9.51	63.80		9.51	73.31	697.25		34.6	1.3	0.103
13	7	9.95	9.95	52.93		9.95	62.87	625.26		41.2	0.9	0.191
14	8	9.95	9.95	-149.64		9.95	-139.70	-1389.34		49.0	0.6	0.202
15	9	9.51	9.51	55.31		9.51	64.82	616.47		58.3	0.4	0.272
16	10	8.66	8.66	258.69		8.66	267.35	2315.33		69.3	0.3	0.288
17	11	7.43	7.43	14.70		7.43	22.13	164.43		82.4	0.2	0.332
18	12	5.88	5.88	-112.82		5.88	-106.94	-628.59		98.0	0.2	0.348
19	13	4.07	4.07	-24.03		4.07	-19.96	-81.18		116.5	0.1	0.390
20	14	2.08	2.08	165.37		2.08	167.45	348.15				
21	15	0.00	0.00	65.20		0.00	65.20	0.00				
22	16	-2.08	-2.08	36.17		-2.08	34.09	-70.88				
23	17	-4.07	-4.07	54.89		-4.07	50.82	-206.71				
24	18	-5.88	-5.88	53.22		-5.88	47.35	-278.30				
25	19	-7.43	-7.43	-74.09		-7.43	-81.52	605.82				
26	20	-8.66	-8.66	-7.40		-8.66	-16.06	139.07				
27	21	-9.51	-9.51	225.45		-9.51	215.94	-2053.68				
28	22	-9.95	-9.95	-128.91		-9.95	-138.85	1380.92				
29	23	-9.95	-9.95	-42.85		-9.95	-52.80	525.10				
30	24	-9.51	-9.51	48.53		-9.51	39.02	-371.13				
31	25	-8.66	-8.66	-24.74		-8.66	-33.40	289.28				
32	26	-7.43	-7.43	-237.09		-7.43	-244.52	1817.14				
33	27	-5.88	-5.88	17.18		-5.88	11.30	-66.44				
34	28	-4.07	-4.07	75.87		-4.07	71.80	-292.03				
35	29	-2.08	-2.08	-98.63		-2.08	-100.71	209.40				
36							V _{X=ST+N} =	3593.87				

	J	K	L
1	D _t =	=ROUND(RAND(),0)	
2	i	S _i	sT _i =
3	0	=\$B\$2*SIN(2*PI()*J3/16)	=IF(\$K\$1=1,K3,-K3)
4	=1+J3	=\$B\$2*SIN(2*PI()*J4/16)	=IF(\$K\$1=1,K4,-K4)
5	=1+J4	=\$B\$2*SIN(2*PI()*J5/16)	=IF(\$K\$1=1,K5,-K5)
6	=1+J5	=\$B\$2*SIN(2*PI()*J6/16)	=IF(\$K\$1=1,K6,-K6)
7	=1+J6	=\$B\$2*SIN(2*PI()*J7/16)	=IF(\$K\$1=1,K7,-K7)
8	=1+J7	=\$B\$2*SIN(2*PI()*J8/16)	=IF(\$K\$1=1,K8,-K8)
9	=1+J8	=\$B\$2*SIN(2*PI()*J9/16)	=IF(\$K\$1=1,K9,-K9)
10	=1+J9	=\$B\$2*SIN(2*PI()*J10/16)	=IF(\$K\$1=1,K10,-K10)
11	=1+J10	=\$B\$2*SIN(2*PI()*J11/16)	=IF(\$K\$1=1,K11,-K11)
12	=1+J11	=\$B\$2*SIN(2*PI()*J12/16)	=IF(\$K\$1=1,K12,-K12)
13	=1+J12	=\$B\$2*SIN(2*PI()*J13/16)	=IF(\$K\$1=1,K13,-K13)
14	=1+J13	=\$B\$2*SIN(2*PI()*J14/16)	=IF(\$K\$1=1,K14,-K14)
15	=1+J14	=\$B\$2*SIN(2*PI()*J15/16)	=IF(\$K\$1=1,K15,-K15)
16	=1+J15	=\$B\$2*SIN(2*PI()*J16/16)	=IF(\$K\$1=1,K16,-K16)
17	=1+J16	=\$B\$2*SIN(2*PI()*J17/16)	=IF(\$K\$1=1,K17,-K17)
18	=1+J17	=\$B\$2*SIN(2*PI()*J18/16)	=IF(\$K\$1=1,K18,-K18)

8.2. EXCEL PROJECTS 101

3. CDMA signal with two users. The CDMA signal in column K is copied from Project 8.3 or formed using

$$=B2*(2*ROUND(RAND(),0)-1)$$

in K3:K18 and then copied and paste/special/values into the same cells to prevent them from changing during the experiments.

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р
1	n _x =	A _{max} =	Es=	$\sigma^2_{N}=$	$\sigma_V =$		bin	count		D _t =	1				$X_i = sT_i + N$	l _i
2	16	10	1600	100	400		-3200	0			s _i	sT _i =		Ci	Xi	c _i X _i
3							-2844	1		0	10.00	10.00		10.00	-4.30	-42.98
4	n _T =	i=	bin#=		SNR=		-2488	12		1	-10.00	-10.00		-10.00	14.43	-144.30
5	1000	1000	14		16		-2132	73		2	10.00	10.00		10.00	10.26	102.59
6							-1776	156		3	-10.00	-10.00		-10.00	-24.65	246.51
7	min bin =	# bins=	width=				-1420	165		4	10.00	10.00		10.00	-11.43	-114.32
8	-3200	19	356				-1064	58		5	-10.00	-10.00		-10.00	-6.50	64.99
9							-708	20		6	10.00	10.00		10.00	6.60	66.01
10							-352	2		7	-10.00	-10.00		-10.00	-9.86	98.63
11							4	0		8	-10.00	-10.00		-10.00	-24.48	244.80
12		Hist					360	2		9	-10.00	-10.00		-10.00	-21.47	214.67
13							716	15		10	-10.00	-10.00		-10.00	-4.42	44.16
14							1072	81		11	-10.00	-10.00		-10.00	-19.96	199.64
15							1428	153		12	-10.00	-10.00		-10.00	3.38	-33.76
16							1784	174		13	-10.00	-10.00		-10.00	-10.43	104.28
17							2140	72		14	10.00	10.00		10.00	0.73	7.26
18							2496	16		15	10.00	10.00		10.00	11.68	116.76
19							2852	0								
20							3208	0							V _{X=ST+N} =	1174.96

)

Project 8.5 (Estimating probability of orthogonal signals) Modify Examples 13.45 to compute the probability of error as σ_N^2 increases between $0.1\mathcal{E}_s$ and $10\mathcal{E}_s$ by factor $\sqrt{2}$, using one of the orthogonal signal with $n_X = 30$ assigned to one of the two users for s_i in the worksheet.

(ans:TDMA, FDMA, and CDMA two-user signals are considered, each with maximum allowed amplitude = 10.

The example gives σ_N (rather than σ_N^2) as the parameter. The σ_N factor is then $(2^{1/4})$ to obtain the $\sqrt{2}$ factor in the σ_N^2 specified in the problem.

The orthogonal signals have maximum amplitude of 10.

One clue as to whether students are doing the project correctly is that when $SNR \approx 1$ the Prob[err] $\approx = 0.16$.

The following VBA program is the same for each orthogonal signal type.

```
' resets counters to zero
Sub start()
Application.Calculation = xlCalculationManual
                                                   ' Stop Auto Calculations
Range("H1").Value = 0 ' Reset # transmits
Range("H2").Value = 0 ' Reset # errors
End Sub
Sub xmit()
               ' transmits another data signal
           ' Force one recalculation, New D
Calculate
Range("H1").Value = Range("H1").Value + 1
                                                    ' Increment # transmits
                                                 ' ~D not equal D -> error
' Increment # errors
If Range("E1").Value <> Range("E2").Value Then
   Range("H2") = Range("H2") + 1
End If
End Sub
, ___
Sub auto()
                                                    ' noise SD
Dim SigmaN As Double
                                                     ' row number in table
Dim RowNum As Integer
SigmaN = Sqr(Range("B2").Value / 10)
                                                    ^{\prime} initial value of noise SD
                                                     ' first row of table
RowNum = 6
Do While SigmaN * SigmaN <= 10 * Range("B2"). Value
   Range("B1").Value = SigmaN
                                                     ' set noise SD in worksheet
   Range("J" & RowNum).Value = SigmaN
    Do While Range("H1").Value < 1000
                                                    ' 1000 transmissions
       xmit
    Range("L" & RowNum).Value = Range("H3").Value ' P[err]
    Range("K" & RowNum).Value = Range("B3").Value ' SNR
                                                    ' increases var by Sqr(2)
    SigmaN = SigmaN * Sqr(Sqr(2))
   RowNum = RowNum + 1
                                                     ^{\prime} go to next row in table
Application.Calculation = xlCalculationAutomatic
                                                   ' restore Auto Calculations
End Sub
Sub restore()
Application.Calculation = xlCalculationAutomatic ' restore Auto Calculations
```

1. TDMA signal with two users.

	Α	В	С	D	Ε	F	G	Н	I	J	K	L
1	$\sigma_N =$	116.5		D _t =	1		#Transmits=	1000		Cha		Versit
2	Es=	1500		~D=	0		#Errors=	333		Sta	rt –	Xmit
3	SNR=	0.11					P[err]=	0.333		Rest	ore	Auto
4												
5	i	Si	sT_i	N _i		C _i	X _i	c _i X _i		σ_{N}	SNR	P[err]
6	0	10.00	10.00	-45.37		10.00	-35.37	-353.74		12.2	10.0	0.000
7	1	10.00	10.00	26.09		10.00	36.09	360.93		14.6	7.1	0.001
8	2	10.00	10.00	44.92		10.00	54.92	549.24		17.3	5.0	0.013
9	3	10.00	10.00	-41.61		10.00	-31.61	-316.07		20.6	3.5	0.026
10	4	10.00	10.00	-113.80		10.00	-103.80	-1038.01		24.5	2.5	0.057
11	5	10.00	10.00	8.54		10.00	18.54	185.45		29.1	1.8	0.089
12	6	10.00	10.00	212.77		10.00	222.77	2227.68		34.6	1.3	0.140
13	7	10.00	10.00	-156.75		10.00	-146.75	-1467.54		41.2	0.9	0.172
14	8	10.00	10.00	37.05		10.00	47.05	470.52		49.0	0.6	0.201
15	9	10.00	10.00	10.58		10.00	20.58	205.81		58.3	0.4	0.255
16	10	10.00	10.00	43.74		10.00	53.74	537.40		69.3	0.3	0.299
17	11	10.00	10.00	-102.66		10.00	-92.66	-926.64		82.4	0.2	0.334
18	12	10.00	10.00	-121.81		10.00	-111.81	-1118.09		98.0	0.2	0.323
19	13	10.00	10.00	-37.81		10.00	-27.81	-278.15		116.5	0.1	0.333
20	14	10.00	10.00	16.53		10.00	26.53	265.34				
21	15	0.00	0.00	-99.06		0.00	-99.06	0.00				
22	16	0.00	0.00	-65.36		0.00	-65.36	0.00				
23	17	0.00	0.00	-184.06		0.00	-184.06	0.00				
24	18	0.00	0.00	-26.01		0.00	-26.01	0.00				
25	19	0.00	0.00	-202.69		0.00	-202.69	0.00				
26	20	0.00	0.00	-62.14		0.00	-62.14	0.00				
27	21	0.00	0.00	-179.02		0.00	-179.02	0.00				
28	22	0.00	0.00	-36.68		0.00	-36.68	0.00				
29	23	0.00	0.00	-128.10		0.00	-128.10	0.00				
30	24	0.00	0.00	-97.64		0.00	-97.64	0.00				
31	25	0.00	0.00	153.31		0.00	153.31	0.00				
32	26	0.00	0.00	65.46		0.00	65.46	0.00				
33	27	0.00	0.00	0.29		0.00	0.29	0.00				
34	28	0.00	0.00	-10.98		0.00	-10.98	0.00				
35	29	0.00	0.00	153.92		0.00	153.92	0.00				
36							V _{X=sT+N} =	-695.85				

	Α	В	С	D	E
1	$\sigma_N =$	175.271218401653		D _t =	=IF(RAND()<0.5,0,1)
2	Es=	=SUMSQ(B6:B35)		~D=	=IF(H36<0,0,1)
3	SNR=	=B2/B1^2			
4					
5	i	s _i	sT _i	N _i	
6	0	10	=IF(\$E\$1=1,B6,-B6)	= \$B\$1*NORM.S.INV(RAND())	
7	=1+A6	10	=IF(\$E\$1=1,B7,-B7)	= \$B\$1*NORM.S.INV(RAND())	
8	=1+A7	10	=IF(\$E\$1=1,B8,-B8)	= \$B\$1*NORM.S.INV(RAND())	
9	=1+A8	10	=IF(\$E\$1=1,B9,-B9)	= \$B\$1*NORM.S.INV(RAND())	
10	=1+A9	10	=IF(\$E\$1=1,B10,-B10)	= \$B\$1*NORM.S.INV(RAND())	
11	=1+A10	10	=IF(\$E\$1=1,B11,-B11)	= \$B\$1*NORM.S.INV(RAND())	
12	=1+A11	10	=IF(\$E\$1=1,B12,-B12)	= \$B\$1*NORM.S.INV(RAND())	

F G H				I
2 #Errors= 439 3 P[err]= =IF(H1>0,H2/H1,0) 4 Terrors= =IF(H1>0,H2/H1,0) 5 C _i X _i C _i X _i 6 =B6 =C6+D6 =F6*G6 7 =B7 =C7+D7 =F7*G7 8 =B8 =C8+D8 =F8*G8 9 =B9 =C9+D9 =F9*G9 10 =B10 =C10+D10 =F10*G10 11 =B11 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20		F	G	Н
3 P[err]= =IF(H1>0,H2/H1,0) 4 5 C _i X _i C _i X _i 6 =B6 =C6+D6 =F6*G6 7 =B7 =C7+D7 =F7*G7 8 =B8 =C8+D8 =F8*G8 9 =B9 =C9+D9 =F9*G9 10 =B10 =C10+D10 =F10*G10 11 =B11 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21	1		#Transmits=	1000
4 5 C _i X _i C _i X _i 6 =B6 =C6+D6 =F6*G6 7 =B7 =C7+D7 =F7*G7 8 =B8 =C8+D8 =F8*G8 9 =B9 =C9+D9 =F9*G9 10 =B10 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 <t< td=""><td>2</td><td></td><td>#Errors=</td><td>439</td></t<>	2		#Errors=	439
5 C _i X _i C _i X _i 6 =B6 =C6+D6 =F6*G6 7 =B7 =C7+D7 =F7*G7 8 =B8 =C8+D8 =F8*G8 9 =B9 =C9+D9 =F9*G9 10 =B10 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 <	3		P[err]=	=IF(H1>0,H2/H1,0)
6 = B6 = C6+D6 = F6*G6 7 = B7 = C7+D7 = F7*G7 8 = B8 = C8+D8 = F8*G8 9 = B9 = C9+D9 = F9*G9 10 = B10 = C10+D10 = F10*G10 11 = B11 = C11+D11 = F11*G11 12 = B12 = C12+D12 = F12*G12 13 = B13 = C13+D13 = F13*G13 14 = B14 = C14+D14 = F14*G14 15 = B15 = C15+D15 = F15*G15 16 = B16 = C16+D16 = F16*G16 17 = B17 = C17+D17 = F17*G17 18 = B18 = C18+D18 = F18*G18 19 = B19 = C19+D19 = F19*G19 20 = B20 = C20+D20 = F20*G20 21 = B21 = C21+D21 = F21*G21 22 = B22 = C22+D22 = F22*G22 23 = B23 = C23+D23 = F23*G23 24 = B24 = C24+D24 = F24*G24 25 = B25 = C25+D25 = F25*G25 26 = B26 = C26+D26 = F26*G26 27 = B27 = C27+D27 = F27*G27 28 = B28 = C28+D28 = F28*G28 29 = B29 = C29+D29 = F29*G29 30 = B30 = C30+D30 = F30*G30 31 = B31 = C31+D31 = F31*G31 32 = B32 = C32+D32 = F32*G32 33 = B33 = C33+D33 = F33*G33 34 = B34 = C34+D34 = F34*G34 35 = B35 = C35+D35 = F35*G35	4			
7 =B7 =C7+D7 =F7*G7 8 =B8 =C8+D8 =F8*G8 9 =B9 =C9+D9 =F9*G9 10 =B10 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C13+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26	5	C _i	X_{i}	c _i X _i
8 =B8 =C8+D8 =F8*G8 9 =B9 =C9+D9 =F9*G9 10 =B10 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27	6	=B6	=C6+D6	=F6*G6
9 =B9 =C9+D9 =F9*G9 10 =B10 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	7	=B7	=C7+D7	=F7*G7
10 =B10 =C10+D10 =F10*G10 11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B	8	=B8	=C8+D8	=F8*G8
11 =B11 =C11+D11 =F11*G11 12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B	9	=B9	=C9+D9	=F9*G9
12 =B12 =C12+D12 =F12*G12 13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B	10	=B10	=C10+D10	=F10*G10
13 =B13 =C13+D13 =F13*G13 14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B	11	=B11	=C11+D11	=F11*G11
14 =B14 =C14+D14 =F14*G14 15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B	12	=B12	=C12+D12	=F12*G12
15 =B15 =C15+D15 =F15*G15 16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B	13	=B13	=C13+D13	=F13*G13
16 =B16 =C16+D16 =F16*G16 17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B	14	=B14	=C14+D14	=F14*G14
17 =B17 =C17+D17 =F17*G17 18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	15	=B15	=C15+D15	=F15*G15
18 =B18 =C18+D18 =F18*G18 19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	16	=B16	=C16+D16	=F16*G16
19 =B19 =C19+D19 =F19*G19 20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	17	=B17	=C17+D17	=F17*G17
20 =B20 =C20+D20 =F20*G20 21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	18	=B18	=C18+D18	=F18*G18
21 =B21 =C21+D21 =F21*G21 22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	19	=B19	=C19+D19	=F19*G19
22 =B22 =C22+D22 =F22*G22 23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	20	=B20	=C20+D20	=F20*G20
23 =B23 =C23+D23 =F23*G23 24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	21	=B21	=C21+D21	=F21*G21
24 =B24 =C24+D24 =F24*G24 25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	22	=B22	=C22+D22	=F22*G22
25 =B25 =C25+D25 =F25*G25 26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	23	=B23	=C23+D23	=F23*G23
26 =B26 =C26+D26 =F26*G26 27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	24	=B24	=C24+D24	=F24*G24
27 =B27 =C27+D27 =F27*G27 28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	25	=B25	=C25+D25	=F25*G25
28 =B28 =C28+D28 =F28*G28 29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	26	=B26	=C26+D26	=F26*G26
29 =B29 =C29+D29 =F29*G29 30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	27	=B27	=C27+D27	=F27*G27
30 =B30 =C30+D30 =F30*G30 31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	28	=B28	=C28+D28	=F28*G28
31 =B31 =C31+D31 =F31*G31 32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	29	=B29	=C29+D29	=F29*G29
32 =B32 =C32+D32 =F32*G32 33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	30	=B30	=C30+D30	=F30*G30
33 =B33 =C33+D33 =F33*G33 34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	31	=B31	=C31+D31	=F31*G31
34 =B34 =C34+D34 =F34*G34 35 =B35 =C35+D35 =F35*G35	32	=B32	=C32+D32	=F32*G32
35 =B35 =C35+D35 =F35*G35	33	=B33	=C33+D33	=F33*G33
	34	=B34	=C34+D34	=F34*G34
36 VI _{X=ST+N} = =SUM(H6:H35)	35	=B35	=C35+D35	=F35*G35
	36		V _{X=sT+N} =	=SUM(H6:H35)

This last code is the same for all signal types. The sum in H36 must be over the entire n_x values (This is a common mistake).

2. FDMA signal with two users.

	Α	В	С	D	Ε	F	G	Н	1	J	K	L
1	$\sigma_N =$	116.5		D _t =	0		#Transmits=	1000				
2	Es=	1500		~D=	1		#Errors=	390		Sta	irt	Xmit
3	SNR=	0.11					P[err]=	0.390		Rest	ore	Auto
4												
5	i	Si	sT_i	N _i		C _i	X _i	c _i X _i		σ_{N}	SNR	P[err]
6	0	0.00	0.00	88.16		0.00	88.16	0.00		12.2	10.0	0.002
7	1	2.08	-2.08	-6.41		2.08	-8.49	-17.65		14.6	7.1	0.000
8	2	4.07	-4.07	-122.18		4.07	-126.25	-513.51		17.3	5.0	0.015
9	3	5.88	-5.88	-19.60		5.88	-25.48	-149.74		20.6	3.5	0.034
10	4	7.43	-7.43	23.62		7.43	16.19	120.34		24.5	2.5	0.050
11	5	8.66	-8.66	4.57		8.66	-4.09	-35.39		29.1	1.8	0.084
12	6	9.51	-9.51	260.51		9.51	251.00	2387.19		34.6	1.3	0.103
13	7	9.95	-9.95	134.27		9.95	124.32	1236.43		41.2	0.9	0.191
14	8	9.95	-9.95	-341.65		9.95	-351.59	-3496.66		49.0	0.6	0.202
15	9	9.51	-9.51	25.56		9.51	16.05	152.67		58.3	0.4	0.272
16	10	8.66	-8.66	258.76		8.66	250.10	2165.93		69.3	0.3	0.288
17	11	7.43	-7.43	-85.68		7.43	-93.11	-691.92		82.4	0.2	0.332
18	12	5.88	-5.88	-65.37		5.88	-71.25	-418.77		98.0	0.2	0.348
19	13	4.07	-4.07	122.61		4.07	118.54	482.15		116.5	0.1	0.390
20	14	2.08	-2.08	-47.99		2.08	-50.07	-104.10				
21	15	0.00	0.00	-56.43		0.00	-56.43	0.00				
22	16	-2.08	2.08	37.30		-2.08	39.38	-81.87				
23	17	-4.07	4.07	130.03		-4.07	134.10	-545.43				
24	18	-5.88	5.88	-121.24		-5.88	-115.36	678.06				
25	19	-7.43	7.43	105.69		-7.43	113.12	-840.63				
26	20	-8.66	8.66	46.59		-8.66	55.25	-478.45				
27	21	-9.51	9.51	-24.70		-9.51	-15.19	144.47				
28	22	-9.95	9.95	-207.42		-9.95	-197.48	1963.97				
29	23	-9.95	9.95	-40.15		-9.95	-30.21	300.42				
30	24	-9.51	9.51	98.32		-9.51	107.83	-1025.55				
31	25	-8.66	8.66	-132.53		-8.66	-123.87	1072.77				
32	26	-7.43	7.43	80.17		-7.43	87.60	-651.01				
33	27	-5.88	5.88	-103.86		-5.88	-97.99	575.95				
34	28	-4.07	4.07	48.75		-4.07	52.82	-214.83				
35	29	-2.08	2.08	102.99		-2.08	105.07	-218.45				
36							V _{X=sT+N} =	1796.39				

	Α	В	С	D	E
1	σ _N =	175.271218401653		D _t =	=IF(RAND()<0.5,0,1)
2	Es=	=SUMSQ(B6:B35)		~D=	=IF(H36<0,0,1)
3	SNR=	=B2/B1^2			
4					
5	i	S _i	sT _i	N _i	
6	0	=10*SIN(2*PI()*A6/30)	=IF(\$E\$1=1,B6,-B6)	= \$B\$1*NORM.S.INV(RAND())	
7	=1+A6	=10*SIN(2*PI()*A7/30)	=IF(\$E\$1=1,B7,-B7)	= \$B\$1*NORM.S.INV(RAND())	
8	=1+A7	=10*SIN(2*PI()*A8/30)	=IF(\$E\$1=1,B8,-B8)	= \$B\$1*NORM.S.INV(RAND())	
9	=1+A8	=10*SIN(2*PI()*A9/30)	=IF(\$E\$1=1,B9,-B9)	= \$B\$1*NORM.S.INV(RAND())	
10	=1+A9	=10*SIN(2*PI()*A10/30)	=IF(\$E\$1=1,B10,-B10)	= \$B\$1*NORM.S.INV(RAND())	
11	=1+A10	=10*SIN(2*PI()*A11/30)	=IF(\$E\$1=1,B11,-B11)	= \$B\$1*NORM.S.INV(RAND())	
12	=1+A11	=10*SIN(2*PI()*A12/30)	=IF(\$E\$1=1,B12,-B12)	= \$B\$1*NORM.S.INV(RAND())	

3. CDMA signal with two users. The CDMA signal in B6:B35 is formed using

=10 * (2 * ROUND (RAND (), 0) -1)

in B6:B35. It is then copied and paste/special/values into the same cells to prevent them from changing during the experiments.

	А	В	С	D	Ε	F	G	Н	I	J	K	L
1	$\sigma_N =$	247.9		D _t =	0		#Transmits=	1000				
2	Es=	3000		~D=	0		#Errors=	426		Star	t	Xmit
3	SNR=	0.05					P[err]=	0.426		Resto	re	Auto
4										Neste		Nato
5	i	Si	sT_i	N _i		C _i	X _i	c _i X _i		σ_{N}	SNR	P[err]
6	0	-10.00	10.00	-232.65		-10.00	-222.65	2226.55		11.0	25.00	0.000
7	1	10.00	-10.00	315.35		10.00	305.35	3053.48		13.0	17.68	0.000
8	2	-10.00	10.00	-287.30		-10.00	-277.30	2773.02		15.5	12.50	0.000
9	3	10.00	-10.00	118.26		10.00	108.26	1082.64		18.4	8.84	0.001
10	4	-10.00	10.00	358.02		-10.00	368.02	-3680.23		21.9	6.25	0.003
11	5	10.00	-10.00	-382.42		10.00	-392.42	-3924.19		26.1	4.42	0.016
12	6	10.00	-10.00	-414.19		10.00	-424.19	-4241.88		31.0	3.13	0.037
13	7	-10.00	10.00	-130.41		-10.00	-120.41	1204.15		36.8	2.21	0.082
14	8	-10.00	10.00	20.81		-10.00	30.81	-308.13		43.8	1.56	0.099
15	9	10.00	-10.00	246.03		10.00	236.03	2360.33		52.1	1.10	0.147
16	10	10.00	-10.00	-27.09		10.00	-37.09	-370.89		62.0	0.78	0.174
17	11	10.00	-10.00	53.92		10.00	43.92	439.24		73.7	0.55	0.259
18	12	-10.00	10.00	165.49		-10.00	175.49	-1754.91		87.6	0.39	0.281
19	13	-10.00	10.00	71.57		-10.00	81.57	-815.69		104.2	0.28	0.300
20	14	10.00	-10.00	32.82		10.00	22.82	228.23		123.9	0.20	0.345
21	15	10.00	-10.00	-430.15		10.00	-440.15	-4401.52		147.4	0.14	0.334
22	16	-10.00	10.00	-117.61		-10.00	-107.61	1076.12		175.3	0.10	0.361
23	17	10.00	-10.00	270.91		10.00	260.91	2609.10		208.4	0.07	0.384
24	18	10.00	-10.00	9.56		10.00	-0.44	-4.39		247.9	0.05	0.426
25	19	10.00	-10.00	94.83		10.00	84.83	848.29				
26	20	-10.00	10.00	127.84		-10.00	137.84	-1378.36				
27	21	-10.00	10.00	164.78		-10.00	174.78	-1747.75				
28	22	-10.00	10.00	213.56		-10.00	223.56	-2235.55				
29	23	-10.00	10.00	-128.41		-10.00	-118.41	1184.06				
30	24	-10.00	10.00	-256.06		-10.00	-246.06	2460.59				
31	25	-10.00	10.00	-127.51		-10.00	-117.51	1175.15				
32	26	-10.00	10.00	-4.65		-10.00	5.35	-53.47				
33	27	10.00	-10.00	136.36		10.00	126.36	1263.63				
34	28	-10.00	10.00	-302.62		-10.00	-292.62	2926.22				
35	29	-10.00	10.00	706.16		-10.00	716.16	-7161.61				
36							$V _{X=sT+N}=$	-5167.78				

)

8.2. EXCEL PROJECTS 107

Project 8.6 (Comparing probability of orthogonal signals) Modify Examples 13.45 to compare the probability of error as σ_N increases between $0.1\mathcal{E}_s$ (using the TDMA signal energy) and $10\mathcal{E}_s$ by factor $\sqrt{2}$ for the TDMA, FDMA, and CDMA signals with maximum amplitude $|s_i| \leq 10$ with $n_X = 30$ assigned to one of the users for s_i in the worksheet. Which signal type performs best, and which is the worst? Explain why.

(ans: If this problem is done by applying Problem 8.5 to the three orthogonal signal types (it is simple matter to form the change the signal type in column B - the only change necessary), it is important to note that CDMA signals have twice the \mathcal{E}_s as TDMA and FDMA. Hence, their initial variance will be twice that of the TDMA nd FDMA signals. It is important that their Prob[err] must start at the correct σ_N value 9 (as done below). Then this project is accomplished by copying the P[err] values and paste/special/values into the worksheet and performing a scatter plot.

Otherwise, a constant value for \mathcal{E}_s (use either the TDMA or FDMA value) should be inserted in the VBA code for all signal types.

© 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

108	CHAPTER 8. DESIGNING SIGNALS FOR MULTIPLE-ACCESS SYSTEMS