

Acidentes de Trânsito e IA

Será que existe uma forma de podermos mitigar problemas dos acidentes de trânsito, baseado em dados?

Segundo o Ministério da Saúde, a cada **15 MINUTOS** uma **MORTE** é registrada por **ACIDENTE** no Brasil, são **34 mil** pessoas **MORTAS** por ano.

Dados do Ministério da Saúde

Esse problema CUSTA para a SOCIEDADE BRASILEIRA cerca de 50 BILHÕES de reais por ano. São cerca de 40 BILHÕES com acidentes em RODOVIAS e 10 BILHÕES em ÁREAS URBANAS.

IPEA Junho/2020

Uma possível solução poderia interessar a diversos grupos, como por exemplo: motoristas, órgãos públicos, concessionárias de rodovias e empresas do segmento logístico. A partir disso, algumas perguntas aparecem dentro deste contexto:

- Onde podemos alocar investimentos e recursos de forma a aumentar a segurança nas estradas?
- Neste momento, quais os pontos mais prováveis de ocorrer um acidente?
- Dado um acidente qualquer, podemos prever a gravidade do acidente ?

RANSFORMAÇÕES AS VARIÁVEIS

Escolhendo o Modelo

Observando os valores de F1, o RandomForestClassifier apresentou o melhor resultado.

Modelo a ser utilizado

	Acurácia %	Classificação	Precision	Recall	f1	AUC
XGBClassifier	71.26	Sem vítimas	0.40	0.08	0.14	0.58
		Com vítimas	0.73	0.96	0.83	0.55
		Fatais	0.32	0.04	0.07	0.63
	52.14	Sem vítimas	0.21	0.26	0.23	0.51
DecisionTreeClassifier		Com vítimas	0.72	0.63	0.67	0.50
		Fatais	0.27	0.19	0.15	0.53
RandomForestClassifier	72.06	Sem vítimas	0.43	0.02	0.03	0.58
RandomForestClassifier	72.06	Com vítimas	0.72	1.00	0.84	0.55
RandomForestClassifier	72.06	Com vítimas Fatais	0.72 0.27	1.00 0.00	0.84 0.00	0.55 0.66
RandomForestClassifier	72.06					1 1 1
RandomForestClassifier GaussianNB	72.06 68.07	Fatais	0.27	0.00	0.00	0.66
		Fatais Sem vítimas	0.27	0.00	0.00	0.66 0.54
		Fatais Sem vítimas Com vítimas	0.27 0.23 0.72	0.00 0.01 0.93	0.00 0.03 0.81	0.66 0.54 0.49
		Fatais Sem vítimas Com vítimas Fatais	0.27 0.23 0.72 0.13	0.00 0.01 0.93 0.09	0.00 0.03 0.81 0.11	0.66 0.54 0.49 0.51

RFECV

Aplicação do RFECV, analisando a performance do F1 ponderado através de diferentes números de features utilizadas, a fim de definir o número ótimo de features para o RandomForestClassifier.

Número ótimo de features

RFECV resultou em 27 features:

Escolhendo o Modelo

Realizado o balanceamento e utilizando o Random Forest, escolhemos o modelo utilizando o mesmo critério anterior, ou seja, o F1.

Modelo a ser utilizado

	Acurácia %	Classificação	Precision	Recall	F1	AUC
Normal	72.06	Sem vítimas	0.43	0.02	0.03	0.58
		Com vítimas	0.72	1.00	0.84	0.55
		Fatais	0.27	0.00	0.00	0.66
	46.02	Sem vítimas	0.25	0.45	0.32	0.60
Undersampling		Com vítimas	0.76	0.47	0.58	0.57
		Fatais	0.17	0.43	0.24	0.66
	70.96	Sem vítimas	0.39	0.09	0.15	0.65
Oversampling		Com vítimas	0.73	0.95	0.83	0.57
		Fatais	0.27	0.04	0.07	0.61
	60.30	Sem vítimas	0.22	0.16	0.19	0.55
SMOT		Com vítimas	0.72	0.78	0.75	0.52
		Fatais	0.09	0.08	0.09	0.50
ADASYN	60.60	Sem vítimas	0.23	0.17	0.19	0.55
		Com vítimas	0.72	0.79	0.75	0.51
		Fatais	0.12	0.08	0.09	0.50
Undersampling + Class Weights	53.49	Sem vítimas	0.26	0.42	0.32	0.59
		Com vítimas	0.75	0.60	0.67	0.56
		Fatais	0.20	0.24	0.22	0.65
Undersampling +	45.35	Sem vítimas	0.25	0.49	0.33	0.60
Class Weights +		Com vítimas	0.77	0.45	0.57	0.58
Grid Search		Fatais	0.18	0.43	0.25	0.67

Performance

Modelo performou de forma mais balanceada, porém os acertos para cada, permanecem baixos, com uma tendência de "chutar" com vítimas feridas

Métricas

Recall balanceado e Precision baixo e desbalanceado consequentemente F1 apresentou valores baixos e desequilibrados.

AVALIAÇÃO DOS RESULTADOS

Consideramos satisfatórios os resultados até aqui alcançados?

DADOS

Retorno de todos os dados iniciais

No primeiro modelo havíamos retirado algumas colunas que não pareciam necessárias para o projeto

Correção dos dados de latitude e longitude Dados corrigidos através da biblioteca **geopy**

	Acurácia %	Classificação	Precision	Recall	F1	AUC
XGBClassifier	67.79	Sem vítimas	0.26	0.13	0.18	0.56
		Com vítimas	0.73	0.91	0.81	0.55
		Fatais	0.46	0.02	0.02 0.03 0.24 0.24	0.66
	56.59	Sem vítimas	0.23	0.24	0.24	0.52
DecisionTreeClassifier		Com vítimas	0.73	0.71	0.72	0.52
		Fatais	0.11	0.13	0.12	0.52
	70.39	Sem vítimas	0.25	0.04	0.07	0.54
RandomForestClassifier		Com vítimas	0.70	0.97	0.07	0.50
	70.57	Com vitimas	0.72	0.97	0.83	0.52
	70.37	Fatais	0.72	0.00	0.83	0.52
	70.37					
GaussianNB	62.93	Fatais	0.27	0.00	0.01	0.57
GaussianNB		Fatais Sem vítimas	0.27 0.14	0.00	0.01	0.57 0.55
GaussianNB		Fatais Sem vítimas Com vítimas	0.27 0.14 0.71	0.00 0.07 0.85	0.01 0.09 0.77	0.57 0.55 0.48
GaussianNB KNeighborsClassifier		Fatais Sem vítimas Com vítimas Fatais	0.27 0.14 0.71 0.10	0.00 0.07 0.85 0.05	0.01 0.09 0.77 0.06	0.57 0.55 0.48 0.49

RFECV

Aplicação do RFECV, analisando a performance do F1 ponderado através de diferentes números de features utilizadas, a fim de definir o número ótimo de features para o RandomForestClassifier.

Número ótimo de features

RFECV resultou em 3 features:

- horario_sin
- latitude
- longitude

3 principais features

Modelo baseado nas 3 features destacadas pelo RFECV

Prioridades

Acertos em mortos e feridos

Melhor modelo

RandomForestClassifier - Normal

	Acurácia %	Classificação	Precision	Recall	F1	AUC
Normal	89.56	Sem vítimas	0.86	0.66	0.74	0.92
		Com vítimas	0.90	0.97	0.93	0.93
		Fatais	0.91	0.86	0.88	0.96
	60.63	Sem vítimas	0.36	0.63	0.46	0.75
Undersampling		Com vítimas	0.88	0.57	0.69	0.78
		Fatais	0.39	0.90	0.54	0.94
Oversampling	88.87	Sem vítimas	0.79	0.70	0.74	0.92
		Com vítimas	0.91	0.94	0.93	0.94
		Fatais	0.88	0.86	0.87	0.96
SMOT	87.33	Sem vítimas	0.76	0.72	0.74	0.92
		Com vítimas	0.93	0.91	0.92	0.94
		Fatais	0.72	0.88	0.79	0.97
	87.23	Sem vítimas	0.76	0.72	0.74	0.92
ADASYN		Com vítimas	0.93	0.91	0.92	0.94
		Fatais	0.70	0.88	0.78	0.97

Performance

Modelo performou melhor com 3 variáveis do que com 27 da primeira versão

Métricas

Recall, Precision e consequentemente F1 apresentaram melhores valores para todos os labels, bem como AUC também foram mais relevantes.

- Modelo bem acima ao puro acaso que seria de 33% de acerto para cada uma das classes.
- Foco no f1-weighted, acurácia não se mostrou eficiente como métrica.
- Deixar com que os dados nos digam por si, evitando vieses de seleção.
- Sem uma variável determinante apesar dos esforços pode não ser possível chegar a um modelo satisfatório
- Modelo é feito para o domínio de acidentes rodoviários.

- Redução do tamanho do modelo;
- Testar o modelo em campo, de forma a testar sua real aplicabilidade e eficiência;
- Entender mais profundamente quais são os vieses de seleção dos acidentes que hoje são registrados

Obrigado!

Acesse:

