Tutorial 5 – Amplitude Modulation

- 1. For the AM signal, $v_{AM}(t)$, shown in Figure T5.1
 - (a) Determine V_S, V_C, f_S, f_C.
 - (b) Calculate the modulation index, m
 - (c) Write the equation for the modulating signal, v_S(t)
 - (d) Write the equation for the AM signal, $v_{AM}(t)$
 - (e) Sketch the double-sided amplitude spectrum of $v_{AM}(t)$
 - (f) Calculate the bandwidth of $v_{AM}(t)$

Figure T5.1 An AM signal

- 2. The AM signal spectrum is shown in Figure T 5.2.
 - (a) Determine the frequency values of A and B.
 - (b) Sketch the spectrum of the modulating signal and state its bandwidth.
 - (c) Write the equation for the modulating signal.

Figure T5.2

- 3. When a carrier, $8\cos 1200 \times 10^3 \pi t$ is amplitude modulated by a modulating signal, $v_s(t)$. The spectrum of $v_s(t)$ is given in Figure T5.3.
 - (a) Sketch the block diagram to produce the AM signal.
 - (b) Sketch the double-sided amplitude spectrum of the AM signal.

Figure T5.3

- 4. For the amplitude spectrum shown in Figure T5.4, what is the modulation index of the AM signal?
 - (a) 0.20

(b) 0.33

(c) 0.40

(d) 0.67

Figure T5.4

5. Sketch the double-sided spectrum of an AM signal, $v_{AM}(t)$ whose carrier $v_C(t) = V_C \cos \omega_C t$ is modulated by the modulating signal, $v_S(t)$.

$$v_S(t) = V_1 cos\omega_1 t + V_2 cos\omega_2 t + V_3 cos\omega_3 t$$
 where $V_1 > V_2 > V_3$ and $f_3 > f_2 > f_1$

- 6. A 4 V_{peak} carrier with frequency 100 kHz is modulated in a <u>balanced modulator</u> by the signal $v_s(t) = 6\cos(4\pi \ x \ 10^3)t + 4\cos(10\pi \ x \ 10^3)t$. Draw the double-sided spectrum appearing at the output of the balanced modulator.
- 7. If the modulated signal in Q6 is fed to the circuit in Figure T5.7,
 - (a) Sketch the spectrum at V_X and V_o . Given that frequency of $v_C(t)$ in Figure T5.7 is 100 kHz and the cut-off frequency of the LPF is 5 kHz.
 - (b) If the frequency of the carrier at the demodulator in Figure T5.7 is offset by 1kHz, what is the effect on the output?

Figure T5.7