CSE 575 Statistical Machine Learning

Lecture 16 YooJung Choi Fall 2022

Revisiting Gaussians

- Consider the following 1D continuous data
- Suppose we model it using a Gaussian distribution
- Limitation: a Gaussian is *unimodal* (single "peak")

Revisiting Gaussians

- Consider the following 1D continuous data
- Suppose we model it using a Gaussian distribution
- Limitation: a Gaussian is *unimodal* (single "peak")
- Instead, let's model each "group" using a Gaussian

Gaussian mixture models (GMMs)

Mixture of Gaussians: weighted sum of K Gaussian distributions

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 convex combination

• Mixing coefficients π_k : $\pi_k \ge 0$ and

 π_k can be probabilities!

$$\int p(\mathbf{x}) d\mathbf{x} = \int \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) d\mathbf{x} = \sum_{k=1}^{K} \pi_k \int \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) d\mathbf{x} = \sum_{k=1}^{K} \pi_k = 1$$

GMM: Latent variable interpretation

Introduce a K-valued discrete random variable z such that:

$$p(z = k) = \pi_k$$

- Now the model represents the joint distribution $p(\mathbf{x}, z)$
- We can interpret the probability of x given by a GMM as

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_{k=1}^{K} p(z = k) \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Using sum rule and product rule: $p(\mathbf{x}) = \sum_{k=1}^{K} p(z=k) p(\mathbf{x} | z=k)$
- Each Gaussian component is a conditional distribution: $p(\mathbf{x} | z = k) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

Maximum likelihood estimation

- Gaussian mixture model: K mixture components, each associated with
 - A mixture coefficient π_k (representing p(z=k))
 - A Gaussian distribution $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ (representing $p(\mathbf{x} \mid z = k)$)
- How to learn the maximum-likelihood estimates for π_k , μ_k , Σ_k ?
- Recall: Gaussian discriminant analysis (general case, no shared covariance)

Maximum likelihood estimation

- Gaussian mixture model: K mixture components, each associated with
 - A mixture coefficient π_k (representing p(z=k))
 - A Gaussian distribution $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ (representing $p(\mathbf{x} \mid z = k)$)
- How to learn the maximum-likelihood estimates for π_k , μ_k , Σ_k ?
- For a GMM, z is a latent (hidden) variable!

x_1	x_2	•••	x_D	Z
1.5	3	•••	-4	?
0	4	•••	3.5	?
-1	1	•••	-6.3	?
0.7	1	•••	1.4	?
-0.2	2.5	•••	1.0	?
:	:		:	?

Maximum likelihood estimation

- Gaussian mixture model: K mixture components, each associated with
 - A mixture coefficient π_k (representing p(z=k))
 - A Gaussian distribution $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ (representing $p(\mathbf{x} \mid z = k)$)
- How to learn the maximum-likelihood estimates for π_k , μ_k , Σ_k ?
- Log-likelihood of a GMM given N data examples $x_1, ..., x_N$:

$$ll(\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_{n=1}^{N} \log p(\mathbf{x}_n) = \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} p(z=k) p(\mathbf{x}_n | z=k) \right\}$$
Note: marginal log-likelihood

$$= \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Log cannot "reach" exp due to the summation

$$= \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \frac{1}{(2\pi)^{\frac{D}{2}} |\mathbf{\Sigma}_k|^{\frac{1}{2}}} \exp \left\{ -\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right\} \right\}$$

Expectation maximization

- Iterative approach
- Algorithm (informally):
 - Starting with some initial parameters π_k , μ_k , Σ_k , repeat until convergence:
 - E step: "guess" the values of z_n for n = 1, ..., N, informed by the current parameters
 - M step: update the parameters based on the guess

x_1	x_2	•••	x_D	Z		x_1	x_2	•••	x_D	Z		
1.5	3	•••	-4	?		1.5	3	•••	-4	z_1	M step →	Maximum likelihood estimates for π_k , μ_k , Σ_k a la GDA
0	4	•••	3.5	?	C stop	0	4	•••	3.5	z_2		
-1	1	•••	-6.3	?	E step →	-1	1	•••	-6.3	z_3		
0.7	1	•••	1.4	?		0.7	1	•••	1.4	Z_4		
-0.2	2.5	•••	1.0	?		-0.2	2.5	•••	1.0	Z_5		
:	÷		:	?		÷	÷		:	:		

E step

- How to "guess" the values of z_n ?
- Use the GMM to compute $p(z_n = k | \mathbf{x}_n)$

$$p(z_n = k \mid \mathbf{x}_n) = \frac{p(\mathbf{x}_n \mid z_n = k)p(z_n = k)}{\sum_{k=1}^K p(\mathbf{x}_n \mid z_n = k)p(z_n = k)} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

Called the responsibility of component k on \mathbf{x}_n . Denoted as $\gamma(z_n = k)$

weighted dataset

M step

- How to update the parameters given a weighted dataset?
- In the case of complete dataset (i.e. all weights are 1):

$$\pi_k = \frac{\#\{z=k\}}{N}$$

$$\boldsymbol{\mu}_k = \frac{\sum_{n:z_n=k} \mathbf{x}_n}{\#\{z=k\}}$$

$$\pi_k = \frac{\#\{z = k\}}{N} \qquad \qquad \mu_k = \frac{\sum_{n:z_n = k} \mathbf{x}_n}{\#\{z = k\}} \qquad \qquad \Sigma_k = \frac{\sum_{n:z_n = k} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\#\{z = k\}}$$

• Using $\gamma(z_n=k)$:

$$\pi_k = \frac{\sum_{n=1}^N \gamma(z_n = k)}{N}$$

$$\boldsymbol{\mu}_k = \frac{\sum_{n=1}^N \gamma(z_n = k) \mathbf{x}_n}{\sum_{n=1}^N \gamma(z_n = k)}$$

$$\pi_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n} = k)}{N} \qquad \mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n} = k) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{n} = k)} \qquad \Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n} = k) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T}}{\sum_{n=1}^{N} \gamma(z_{n} = k)}$$

In practice, updates would be made without explicitly constructing the weighted dataset

EM for GMMs

Putting everything together:

- 1. Initialize π_k , μ_k , Σ_k
- 2. Until convergence, repeat:
 - 1. E-step: for all n and k, compute $\gamma(z_n = k) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$
 - 2. M-step: for all k, let $N_k = \sum_{n=1}^N \gamma(z_n = k)$ and compute

$$\pi_k^{(new)} = \frac{N_k}{N}$$
, $\mu_k^{(new)} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_n = k) \mathbf{x}_n$,

$$\mathbf{\Sigma}_{k}^{(new)} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_n = k) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T$$

EM for GMMs

EM for BNs

- Expectation maximization is a general algorithm for learning with latent variables or incomplete data
- E.g. Bayesian network parameter learning from incomplete data

EM for BNs

- Expectation maximization is a general algorithm for learning with latent variables or incomplete data
- E.g. Bayesian network parameter learning from incomplete data

B	E	Α	J	M		
1	0	0	1	0	0.2	0010010111
1	1	0	1	0	8.0	$\theta_E^{(new)} = \frac{0.8 + 0.9 + 0.1 + 1}{4}$
0	1	0	1	1	0.9	4
0	1	1	1	1	0.1	
1	1	1	0	0	1	$\theta_{A 1,0}^{(new)} = \frac{0.1}{0.00000000000000000000000000000000$
0	0	0	1	0	0.15	$\theta_{A 1,0} - \frac{0.2 + 0.25 + 0.1}{0.2 + 0.25 + 0.1}$
0	0	1	1	0	0.50	
1	0	0	1	0	0.25] :
1	0	1	1	0	0.1	

N = 4

...and repeat until convergence

EM for BNs

- Expectation incomplet
- E.g. Bayes
 - 1 0
 1 1
 0 1
 0 1
 1 1

0

0

- Note: Bayesian networks can also have continuous variables
- Instead of conditional probability tables (CPTs), conditional probability densities (CPDs)
- Gaussian mixture model as a Bayesian network:

atil convergence

variables or

0.1

EM in general

- Want to maximize the likelihood: $p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$
- Assume $p(\mathbf{X}|\boldsymbol{\theta})$ is difficult to optimize, while $p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$ is significantly easier to optimize
- Introduce a distribution $q(\mathbf{Z})$ and write

$$\begin{split} \log p(\mathbf{X}|\boldsymbol{\theta}) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}|\boldsymbol{\theta}) \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}|\boldsymbol{\theta}) + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}|\boldsymbol{\theta}) p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}{q(\mathbf{Z})} & \text{KL-divergence between } p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}) \text{ and } q(\mathbf{Z}) \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}{q(\mathbf{Z})} & \text{KL}(p \parallel q) \geq 0 \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}{q(\mathbf{Z})} & \text{KL}(p \parallel q) \geq 0 \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} & \text{KL}(p \parallel q) \geq 0 \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} & \text{KL}(p \parallel q) \geq 0 \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} & \text{KL}(p \parallel q) \geq 0 \end{split}$$

EM in general

Want to maximize:

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \frac{\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})}}{\mathcal{L}(q, \boldsymbol{\theta})}$$

$$\text{KL}(p \parallel q)$$

- Expectation step: maximize $\mathcal{L}(q, \boldsymbol{\theta}^{(\text{old})})$ w.r.t. q Equivalently, maximize $\log p(\mathbf{X}|\boldsymbol{\theta}^{(\text{old})})$ $\text{KL}(p \parallel q)$ w.r.t. q Equivalently, minimize $\text{KL}(p \parallel q)$ l.e., set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(\text{old})})$
- Maximization step: maximize $\mathcal{L}(q, \boldsymbol{\theta})$ w.r.t. $\boldsymbol{\theta}$ l.e., set $\boldsymbol{\theta}^{(\text{new})} = \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$

EM in general

Probabilistic models: big picture

- Exploit constraints or structures (e.g. conditional independence for BNs) to more concisely represent distributions
- Use latent variables to learn expressive models composed of simple ones (e.g. GMMs)
- What can we do other than compute probability mass/density?
 - Generating new samples

BN: sample parents first then children

- Many more models with variety of expressiveness, inference efficiency, learnability
 - E.g. tractable probabilistic models, probabilistic programming, ... (CSE 598 Spring 2023)