

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Machine Problem No. 5					
Topic:	Module 2.0: Feature Extraction and Object	Week No.	8-9		
	Detection				
Course Code:	CSST106	Term:	1st		
			Semester		
Course Title:	Perception and Computer Vision	Academic Year:	2024-2025		
Student Name		Section			
Due date		Points			

Machine Problem: Object Detection and Recognition using YOLO.

Objective:

To implement real-time object detection using the YOLO (You Only Look Once) model and gain hands-on experience in loading pre-trained models, processing images, and visualizing results.

Task:

- 1. **Model Loading:** Use TensorFlow to load a pre-trained YOLO model.
- 2. **Image Input:** Select an image that contains multiple objects.
- 3. **Object Detection:** Feed the selected image to the YOLO model to detect various objects within it.
- 4. Visualization: Display the detected objects using bounding boxes and class labels.
- 5. **Testing:** Test the model on at least three different images to compare its performance and observe its accuracy.
- 6. **Performance Analysis:** Document your observations on the model's speed and accuracy, and discuss how YOLO's single-pass detection impacts its real-time capabilities.

Key Points:

- YOLO performs detection in a single pass, making it highly efficient.
- Suitable for applications requiring real-time object detection.

Submission Instructions:

- 1. **Code:** Write your implementation in a Python script or Jupyter Notebook.
- 2. **Processed Images:** Save the images with bounding boxes and labels in a folder named output images.
- 3. **Documentation:** Create a brief document (README.md or PDF) explaining your approach, code, and observations.
- 4. **Folder Organization:** Create a folder named YOLO_Object_Detection and include the following:
 - o code/: Your Python script or Jupyter Notebook.
 - output images/: Processed images.
 - o documentation/: A README file explaining the process.

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Frovince or Laguna

5. **Filename Format:** Use [SECTION-YOURNAME-MP] for all files (e.g., SECTION-YOURNAME-MP.py).

Penalties:

• Incorrect Filename: 5-point deduction.

• Late Submission: 5-point deduction per day.

• Cheating/Plagiarism: Strict penalties as per academic integrity policies.

Rubric for Machine Problem: Object Detection using YOLO

Criteria	Excellent (90-100%)	Good (75-89%)	Satisfactory (60-74%)	Needs Improvement (0-59%)
Correct	Successfully implements	Minor issues in	Basic implementation	Incorrect
Implementation	YOLO for object detection	implementation but	with noticeable errors;	implementation: code
(30%)	with no errors; code is	· ·	the code runs but may	does not run or
	efficient and runs smoothly.	is mostly efficient.	have inefficiencies.	produces incorrect
				results.
Visualization and	Bounding boxes and labels	Bounding boxes and	Basic visualization: some	Poor or missing
Accuracy (25%)	are clear, well-placed, and	labels are mostly correct	bounding boxes are	visualization; bounding
	accurate across all test	with minor inaccuracies.	misplaced or missing.	boxes are largely
	images.			incorrect or absent.
Code Quality and	Code is well-structured,	Code is mostly	Code runs but is	Code is poorly
Comments (15%)	follows best practices, and is	organized; comments	disorganized; lacks	structured, lacks
	thoroughly commented for	are present but minimal.	detailed comments.	comments, or is hard to
	clarity.			follow.
Documentation	Comprehensive	Documentation is clear	Basic documentation	Missing or inadequate
(20%)	documentation explaining the	but lacks some details or	present; lacks clarity and	documentation that fails
	approach, code, and	observations.	depth.	to explain the process.
	observations in detail.			
Folder	All files are correctly named	Mostly follows the	Basic organization	Poor or missing
Organization	and organized according to	naming and organization	present but does not fully	organization; incorrect
(10%)	submission instructions, with	requirements with	adhere to the specified	file names and folder
	proper use of folders.	minor errors.	format.	structure.
Testing and	Tests the model on multiple	Tests the model on	Limited testing; minimal	Fails to test the model or
Analysis (10%)	images and provides a	multiple images but	analysis of model	provide any analysis.
	thorough analysis of its	provides a limited	performance.	
	performance, discussing	analysis.		
	accuracy and speed.			