

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2 . Continue division until problem is 'tractable'.
 - Compute: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- Mergesort and Quicksort are two examples.

CSCU9A3 2017

Divide and Conquer Sorting

2

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each, until only 1 element remains in each S_1 and S_2
 - Compute: sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

CSCU9A3 2017

Divide and Conquer Sorting

-

Merging Two Sorted Sequences

- ◆ The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing all of the elements of A and B
- Merging two sorted sequences, each with n/2 elements takes O(n) time. Why?
 - Each element must be 'scanned' before being merged!

CSCU9A3 2017

Divide and Conquer Sorting

4

Introducing Quicksort

- Mergesort
 - Sorts "at the end"
 - Partition is left/right
 - i.e. merge is sorting step
- Quicksort
 - Sorts "at beginning"
 - Partition is < or >
 - i.e. partition is sorting step!

CSCU9A3 2017

Divide and Conquer Sorting

- 13

