De la don antion
· Terenos N activos con reternos (aleatios)
V1, VN
· Teremos un partafolio (XIII, XN)
$\alpha_{i \geq 0}$ $\sum_{i=1}^{N} \alpha_{i} = K$
con netomo X, V, + -+ X, N, N
Markov.Fr,
(1) Return medio del portegolio
$\mathbb{E}\left[\langle \vec{x}, \vec{r} \rangle\right] = \chi_1 \overline{V_1} + \dots + \chi_n \overline{V_n}$
(2) Riesgo
$\left[f(x_1, x_n) = \mathbb{E}\left[\left(x_1(y_1 - \overline{y_1}) + - + \chi_N(y_n - \overline{y_n})\right)\right]$
$= \overrightarrow{\chi}^{t} \overrightarrow{\chi} con \bigvee_{i,j} := \left[\left(\overrightarrow{V}_{i} - \overrightarrow{V}_{i} \right) \left(\overrightarrow{V}_{j} - \overrightarrow{V}_{j} \right) \right]$
Vij es suction
$V \geq 0$ $\overrightarrow{x}^t \overrightarrow{V} \overrightarrow{z} = \mathbb{E}\left[\left(x_t\right)^2\right] \geq 0$
Ljerciaro. Demueste que $f(\vec{x}) := \vec{x}^t \sqrt{\vec{x}}$ es
Convexa Ssi V70.
f (=1+ =1) < = f(L)+ = f(b)
Partafolio óptimo: "mínio nesgo, gutitos un retoro nedro > 4"
la tafolio ophino:
$\frac{1}{2} + \sqrt{2} : \frac{\sum_{x_i = 1}^{x_i} x_i = 1}{2}$
$\frac{\chi_{i} > 0}{\chi_{i} > 0}$
$\sum_{x: V_{i} \geq y}$
<u> </u>
es un SOCP.

