```
mk 27-07-2023
```

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [41]: a=pd.read_csv(r"C:\Users\user\Downloads\13_placement.csv")
a

Out[41]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1
	1 2 3 4 995 996 997	 7.19 7.46 7.54 6.42 7.23 995 8.87 996 9.12 997 4.89 998 8.62 	1 7.46 38.0 2 7.54 40.0 3 6.42 8.0 4 7.23 17.0 995 8.87 44.0 996 9.12 65.0 997 4.89 34.0 998 8.62 46.0

1000 rows × 3 columns

```
In [42]: a.info()
```

In [43]: |a.columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 3 columns):
```

dtypes: float64(2), int64(1)
memory usage: 23.6 KB

```
Out[43]: Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')
```

In [44]: a.head()

Out[44]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0

In [45]: a.describe()

Out[45]:

placed	placement_exam_marks	cgpa	
1000.000000	1000.000000	1000.000000	count
0.489000	32.225000	6.961240	mean
0.500129	19.130822	0.615898	std
0.000000	0.000000	4.890000	min
0.000000	17.000000	6.550000	25%
0.000000	28.000000	6.960000	50%
1.000000	44.000000	7.370000	75%
1.000000	100.000000	9.120000	max

In [46]: sns.pairplot(a)

Out[46]: <seaborn.axisgrid.PairGrid at 0x25f067f7070>

In [48]: sns.distplot(a['placed'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[48]: <AxesSubplot:xlabel='placed', ylabel='Density'>

In [50]: x1=a[['cgpa', 'placement_exam_marks']]

In [29]: sns.heatmap(x1.corr())

Out[29]: <AxesSubplot:>


```
In [52]: | x=a[['cgpa', 'placement_exam_marks']]
         y=a[ 'placed']
In [53]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         from sklearn.linear_model import LinearRegression
In [54]:
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[54]: LinearRegression()
In [55]: print(lr.intercept_)
         0.32256820690507815
         coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [56]:
         coeff
Out[56]:
                               Co-efficient
                                 0.026793
                         cgpa
                                 -0.000516
          placement_exam_marks
In [57]:
         prediction=lr.predict(x_test)
         plt.scatter(y test,prediction)
Out[57]: <matplotlib.collections.PathCollection at 0x25f05ae76d0>
           0.54
           0.52
           0.50
           0.48
           0.46
           0.44
                        0.2
                                0.4
                                         0.6
                                                 0.8
In [58]: print(lr.score(x_test,y_test))
```

0.0003092921778353741