

Def:

- ▶ A graph with no cycle is *acyclic*.
- ► A *forest* is an acyclic graph.
- ▶ A *tree* is a connected acyclic graph.
- ▶ A *leaf* (or *pendant vertex*) is a vertex of degree 1.
- A spanning subgraph of G is a subgraph with vertex set V(G).
- ▶ A *spanning tree* is a spanning subgarph that is a tree.

Lemma. Every tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree with n-1 vertices.

Proof:

- A connected graph with at least two vertices has an edge. In an acyclic graph, the endpoints of a maximal nontrivial path are leaves.
- Every u, w-path in G is also in $G' \Rightarrow G'$ is connected. Since deleting a vertex cannot create a cycle $\Rightarrow G'$ is acyclic.

Theorem. For an n-vertex graph G (with $n \ge 1$), the following are equivalent.

- A) G is connected and no cycles.
- B) G is connected and has n-1 edges.
- C) *G* has *n*-1 edges and no cycles.
- D) *G* has no loops and has, for exactly one *u*, *v*-path *Proof*:

 $A \Rightarrow \{B,C\}$. By induction,

n=1. (trivial)

n>1. Given an acyclic connected graph G, ∃ a leaf v s.t. G'=G-v also is acyclic and connected.

By I.H.,
$$e(G') = n - 2 \Rightarrow e(G) = n - 1$$
.

- A) G is connected and no cycles.
- B) *G* is connected and has *n*-1 edges.
- C) *G* has *n*-1 edges and no cycles.

Proof: $B \Rightarrow \{A,C\}$.

Delete edges from cycles (no cut edges) of G one by one until the resulting graph G' is acyclic $\Rightarrow G$ ' is connected $\Rightarrow e(G')=n-1=e(G)\Rightarrow G$ is acyclic.

- A) G is connected and has no cycles.
- B) G is connected and has n-1 edges.
- C) G has n-1 edges and no cycles.

Proof. $C \Rightarrow \{A,B\}$

Let $G_1, G_2, ..., G_k$ be the components of G.

$$e(G_i) = n(G_i) - 1 \Longrightarrow e(G) = \sum_i [n(G_i) - 1] = n - k.$$

Since e(G) = n-1, k=1 and G is connected.

 $A \Rightarrow D$.

Since *G* is connected, each pair of vertices is connected by a path.

 $D \Rightarrow A$.

Clearly, *G* is connected.

If G has a cycle C,

then G has two u,v-paths for $u,v \in V(G) \Rightarrow G$ is acyclic.

Corollary.

- A) Every edge of a tree is a cut-edge.
- B) Adding one edge to a tree forms exactly one cycle.
- C) Every connected graph contains a spanning tree.

Proof.

- A) By the fact that a tree has no cycles.
- B) By the fact that a tree has a unique path linking each pair of vertices.
- C) Iteratively deleting edges from cycles in a connected graph yields a connected acyclic subgraph.

Proposition.

If T and T' are spanning trees of a connected graph G and $e \in E(T) - E(T')$, then there is an edge $e' \in E(T') - E(T)$ such that T - e + e' is a spanning tree of G. *Proof.*

Let U and U' be the two components of T-e.

Since T' is connected, T' has an edge e' with endpoints in U and U'. T-e+e' is connected, has n(G)-1 edges, and is a spanning tree of G.

Proposition.

If T and T' are spanning trees of a connected graph G and $e \in E(T) - E(T')$, then there is an edge $e' \in E(T') - E(T)$ such that T' + e - e' is a spanning tree of G. *Proof.*

- 1. T'+e contains a unique cycle C.
- 2. T is acyclic,
 Deleting e' breaks the only cycle in T'+e. Then,
 T'+e-e' is connected and acyclic and is a spanning tree of G.

Def:

- distance from u to $v, d_G(u, v)$, is the least length of a u, v-path.
- diameter (diam G) is $\max_{u,v \in V(G)} d(u,v)$.
- eccentricity of a vertex u, $\varepsilon(u)$, is $\max_{v \in V(G)} d(u, v)$.
- radius of a graph G, rad G, is $\min_{u \in V(G)} \varepsilon(u)$.
- In the graph below, each vertex is labeled with its eccentricity. The radius is 2, the diameter is 4, and the length of the longest path is 7.

Theorem. If G is a simple graph, then $diamG \ge 3 \Rightarrow diam\overline{G} \le 3$. Proof:

When diamG > 2, there exist nonadjacent vertices $u, v \in V(G)$ with no common neighbor.

Every $x \in V(G) - \{u, v\}$ has at least one of $\{u, v\}$ as a nonneighbor \Rightarrow

x adjacent in \overline{G} to at least one of $\{u, v\}$ in \overline{G}

- ► The *center* of a graph *G* is the subgraph induced by the vertices of minimum eccentricity.
- ▶ Wiener index of G is $D(G) = \sum_{u,v \in V(G)} d_G(u,v)$.

Theorem. The center of a tree is a vertex or an edge.

Proof: By induction on the number of vertices in a tree *T*.

- ▶ Basis: $n(T) \le 2$. The center is the entire tree.
- ▶ Induction step: n(T)>2.

Form a tree T' by deleting every leaf of T.

The internal vertices on paths between leaves of T remain $\Rightarrow n(T') \ge 1$

$$\varepsilon_{T'}(u) = \varepsilon_T(u) - 1, \forall u \in V(T')$$

Also, the eccentricity of a leaf in T > the eccentricity of its neighbor in T.

 \therefore T and T' have the same center. By I.H., the result holds.

Theorem. Among trees with n vertices, the Wiener index $D(T) = \sum_{u,v} d(u,v)$ is minimized by stars and maximized by paths, both uniquely.

Proof:

- A tree has n-1 edges, it has n-1 pairs of vertices at distance 1, and all other pairs have distance at least $2 \Rightarrow$ star minimizes D(T).
- ▶ Uniqueness: Consider a leaf x in T with its neighbor v. If all other vertices have distance 2 from x, $x \in N(v) \Rightarrow T$ is a star.

$$D(K_{1,n-1}) = (n-1) + 2\binom{n-1}{2} = (n-1)^2$$

u: an endpoint of P_n

$$\sum_{v \in V(P_n)} d(u, v) = \sum_{i=0}^{n-1} i = C(n, 2)$$

$$D(P_n) = D(P_{n-1}) + C(n, 2) \Rightarrow D(P_n) = C(n+1, 3) \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$
Uniqueness: By induction on n

- ▶ Basis: n=1. The only tree with one vertex is P_1
- ▶ Induction step: n>1. Let u be a leaf.

$$D(T) = D(T - u) + \sum_{v \in V(T)} d(u, v).$$

By I.H., $D(T-u) \le D(P_{n-1})$, with equality iff T-u is a path

Consider the list of distance from u in P_n : 1,2,...,n-1

Any repetition makes $\sum_{v \in V(T)} d(u, v)$ smaller than when u is a leaf of a path.

T is a path and u is an endpoint of T.

Lemma. If *H* is a subgraph of *G*, then $d_G(u, v) \le d_H(u, v)$

Corollary. If G is a connected n-vertex graph, then

$$D(G) \le D(P_n)$$

Proof:

Let T be a spanning tree of G. Then,

$$D(G) \le D(T) \le D(P_n)$$

2.2.1. Algorithms

(Prüfer code) Production of $f(T)=(a_1,...,a_{n-2})$

Input: A tree T with vertex set $S \subseteq N$

Iteration: At the ith step, delete the least remaining leaf,

and let a_i be the neighbor of this leaf

Full code (744171)

$$a = (744)$$

$$a = (7441)$$

$$a = (74417)$$

$$a = (744171)$$

Theorem. (Cayley's Formula [1889]). For a set $S \subseteq N$ of size n, there are n^{n-2} trees with vertex set S. *Proof*: Assume

- ▶ Algorithm 2.2.1 d efines a bijection f from the set of trees with vertex set S to the set S^{n-2} of lists of length n-2 from $S \Rightarrow$ Show for each $a=(a_1,a_2,...,a_{n-2}) \in S^{n-2}$ that exactly one tree with vertex set S with f(T)=a.
- ▶ Basis: n=2. The 2-vertex tree corresponding to a length-0 list. I. S.: For $a \in S^{n-2}$, find all solutions to f(T)=a. Every such a tree has x as its least leaf and has edge xa_1 By I.H., there is exactly one tree T' having vertex set $S'=S-\{x\}$, and prufer code $a'=(a_2, a_3, ..., a_{n-2})$.
- ▶ Therefore, there is exactly one tree T with f(T)=a.

Corollary.

Given positive integers $d_1, ..., d_n$ summing to

2n-2,there are exactly $\frac{(n-2)!}{\Pi(d_i-1)!}$ trees with vertex set [n] such that vertex i has degree d_i , for each i.

Proof:

IDEA: each vertex x appears $d_T(x) - 1$ times in the Prufer code.

- ▶ Eg. Consider trees with vertices {1, 2, 3, 4, 5, 6, 7} that have degrees (3, 1, 2, 1, 3, 1, 1), respectively.
- Totally $\frac{(n-2)!}{\prod (d_i-1)!} = 30$ trees.

Eg.

Def:

In a graph G, contraction of edge e with endpoints u, v is the replacement of u and v with a single vertex whose incident edges are the edges other than e that were incident to u or v.

Proposition. Let $\tau(G)$ denote the number of spanning trees of a graph G. If $e \in E(G)$ is not a loop, then $\tau(G) = \tau(G - e) + \tau(G \cdot e)$.

► Eg.

- ▶ We cannot apply Proposition 2.2.8 when *e* is a loop!
- ▶ Eg. A graph consisting of one vertex and one loop.

2.2.12 Theorem. (Matrix Tree Theorem) Given a loopless graph G with vertex set v_1, \ldots, v_n , let $a_{i,j}$ be the number of edges with endpoints v_i and v_j . Let Q be the matrix in which entry (i, j) is $-a_{i,j}$ when $i \neq j$ and is $d(v_i)$ when i = j. If Q^* is a matrix obtained by deleting row s and column t of Q, then $\tau(G) = (-1)^{s+t} \det Q^*$.

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix} \rightarrow 8$$

Def:

- ▶ A **graceful labeling** of a graph G with m edges is a function f: $V(G) \rightarrow \{0,...,m\}$ such that distinct vertices receive distinct numbers and $\{|f(u)-f(v)|: uv \in E(G)\}=\{1,...,m\}$
- ▶ A graph is **graceful** if it has a graceful labeling.

Theorem. If a tree T with m edges has a graceful labeling, then K_{2m+1} has a decomposition into 2m+1 copies of T. Idea:

Def:

A *caterpillar* is a tree in which a simple path (the *spine*) is incident to (or contain) every edge.

Theorem. A tree is a caterpillar if and only if it does not contain the tree *Y* above.

Proof:

G': obtained from G by deleting the leaves of G G' has a vertex of degree at least 3 iff Y appears in G $\therefore \Delta(G') \leq 2 \Leftrightarrow G'$ is a path.

Branching and Eulerian Digraphs

- ▶ A **branching** or **out-tree** is an orientation of a tree having a root of indegree 0 and all other vertices of indegree 1.
- An in-tree is an out-tree with edges reversed.

成功大學

Lemma. In a strong digraph, every vertex is the root of an out-tree (and an in-tree).

Proof: Consider a vertex v.

- ▶ Iteratively add edges to grow a branching from *v*.
- Let S_i =set of vertices reached i edges have been added. Initially, S_0 ={v}.
- ▶ Since the digraph is strong $\Rightarrow \exists$ an edge leaving S_i add one such edge to the branching and add its head to S_i to obtain $S_{i+1} \Rightarrow$ until reaching all vertices
- ► Reverse all edges and apply the same procedure to obtain an in-tree

2.2.24 Algorithm (Eulerian circuit in directed graph)

- Input: An Eulerian digraph G without isolated vertices and a spanning in-tree T consisting of paths to v
 - ▶ **S1**: For each $u \in V(G)$, specify an ordering of the edges that leave u, s.t. for $u \neq v$ the edges leaving u in T comes last.
 - ▶ **S2**: Beginning at *v*, construct an Eulerian circuit by always exiting the current vertex *u* along the next unused edge in the ordering specified at *u*

Theorem. Algorithm 2.2.24 always produces an Eulerian circuit.

Proof:

- ▶ Show the trail can end only at *v* after traversing all edges
- ▶ When we enter $u\neq v$, the edge leaving u in T has not yet been used $(d^+(u)=d^-(u))\Rightarrow$ the trail can only end at v
- ▶ When we cannot continue \Rightarrow stop at v and have used all exiting edges \Rightarrow also used all edges entering v
- ► We cannot use an edge of T until it is only remaining edge leaving its tail ⇒ cannot use all edges entering v until we have finished all the other vertices

(T contains a path from each vertex to v)

- ▶ Definition: Two Eulerian circuits are the same if the successive pairs of edges are the same.
- ► Theorem (van Aardenne-Ehrenfest and de Bruijn [1951]). In an Eulerian digraph with $d_i=d^+(v_i)=d^-(v_i)$ the number of Eulerian circuits is $c\Pi$ (d_i –1)!, where c counts the intrees to or out-trees from any vertex.

2.3. Optimization and Trees

- 2.3.1.algorithm.(Kruskal's Algorithm for minimum spanning trees.) Input: A weighted connected graph.
- ▶ Idea: Maintain an acyclic spanning subgraph *H*, enlarging it by edges with low weight to form a spanning tree. Consider edges in nondecreasing order of weight, breaking ties arbitrarily.
- ▶ Initialization: Set $E(H) = \emptyset$.
- ▶ Iteration: If the next cheapest edge joins two components of *H*, then include it; otherwise, discard it. Terminate when *H* is connected.

Theorem. In a connected weighted graph *G*, Kruskal's Algorithm constructs a minimum-weight spanning tree. Pf:

- ▶ The algorithm produces a connected and acyclic graph.
- T: the resulting tree produced by the algorithm
- $ightharpoonup T^*$: a spanning tree of minimum weight
 - \triangleright If $T=T^*$, we are done.
 - \triangleright If $T \neq T^*$, let e be the first edge chosen for T that is not in T^*
 - T^* +e creates a cycle C and C has an edge $e' \notin E(T)$
 - $w(e) \le w(e')$
 - $T^* + e e'$ is a spanning tree with weight at most T^*
- \blacktriangleright Repeat the above yields a minimum-weight spanning tree that agrees completely with T.

Dijkstra's Algorithm-distances from one vertex

- ▶ Input: A graph (or digraph) with nonnegative edge weights and a starting vertex u. The weight of edge xy is w(xy); let $w(xy) = \infty$ if xy is not an edge.
- ▶ Initialization: Set $S = \{u\}$; t(u) = 0; t(z) = w(uz) for $z \neq u$.
- ▶ Iteration:
 - \triangleright Select a vertex v outside S such that $t(v) = \min_{z \notin S} t(z)$.
 - \triangleright Add v to S.
 - Explore edges from v to update tentative distance: for each edge vz with $z \notin S$, update t(z) to min $\{t(z), t(v) + w(vz)\}$.
- ► The iteration continues until S=V(G) or until $t(z)=\infty$ for every $z \notin S$. At the end, set d(u, v) = t(v) for all v.

 $ightharpoonup t(w_i)$ is the least length of a u, w_i -path reaching w_i from u

Theorem. Given a (di)graph G and a vertex Dijkstra's

Algorithm computes d(u,z) for every $z \in V(G)$

Pf:

By induction on k=|S| to show

- (1) For $z \in S$, t(z) = d(u, z),
- (2) For $z \notin S$, t(z) is the least length of a u,z-path reaching z from S
 - \triangleright Basis on k=1.
 - ▷ I.S.: Suppose that |S|=k, (1) and (2) are true. v: a vertex among $z \notin S$ such that t(z) is smallest.

Let
$$S' = S \cup \{v\}$$

- \triangleright A shortest *u*, *v*-path must exit *S* before reaching *v*.
- \triangleright By I.H., the length of the shortest path from S to v is t(v).
- ▷ By I.H. and the choice of v, a path visiting any vertex outside S and later to v has length at least $t(v) \Rightarrow d(u, v) = t(v)$

To show (2):

z: a vertex outside S other then v

- ▶ By I.H., the shortest u,z-path reaching z directly from S has length t(z);
- When v is added, the desired value for z is $\min\{t(z),t(v)+w(vz)\}$

2.3.8 Algorithm (Breadth-First Search—

- ► Input: An unweighted graph (or digraph) and a start vertex *u*.
- ▶ Idea: Maintain a set *R* of vertices that have been reached but not searched and a set *S* of vertices that have been searched. The set *R* is maintained as a First-In First-Out list (queue), so the first vertices found are the first vertices explored.
- ▶ Initialization: $R = \{u\}, S = \emptyset, d(u, u) = 0.$
- ▶ Iteration: As long as $R \neq \emptyset$, we search from the first vertex v of R. The neighbors of v not in $S \cup R$ are added to the back of R and assigned distance d(u, v)+1, and then v is removed from the front R and placed in S.

$$S = \{a, b, d, c, e\}$$

$$d(u, d) = \mathbf{0}$$
$$d(u, b) = \mathbf{1}$$

Chinese Postman Problem:

- ▶ A mail carrier must traverse all edges in a road network, starting and ending at the Post Office.
- ► The edges have nonnegative weights representing distance or time.
- ▶ We seek a closed walk of minimum total length that uses all the edges.
- ► Key:

成功大學

- ▶ If every vertex is even, then the graph is Eulerian and the answer is the sum of the edge weights.
- Deliver the Otherwise, we must repeat edges.

- If there are only two odd vertices, then use Dijkstra's algorithm to find the shortest path between them.
- \blacktriangleright If there are 2k odd vertices, then
 - Use Dijkstra's algorithm to find the shortest paths connecting each pair of odd vertices;
 - \triangleright Use these lengths as weights on the edges of K_{2k} ;
 - Solve the weighted version of the maximum matching problem on K_{2k} .