torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP

Yoshitomo Matsubara*

(University of California, Irvine)

*This work was done prior to joining Amazon.

torchdistill v1.0.0 \$ pip3 install torchdistill

- Machine Learning Open Source Software (ML OSS) build on PyTorch
- Lower barriers to reproducible, coding-free deep learning/knowledge distillation studies
- Less dependent on torchvision and support more tasks
- PyYAML configuration-driven framework i.e., a config file defines an experiment

- Dependencies

- Datasets

PyYAML config file defines the following:

- Preprocessing
- Data loaders
- Models
- Model wrappers
- Forward hooks
- Forward interfaces
- Loss functions
- Optimizer
- LR scheduler
- Stage-wise configs
- and more!

A PyYAML config file of fine-tuning BERT-Base for CoLA

Evaluation result, training log, model weights

Google Colab Demos

(Compatible with Amazon SageMaker Studio Lab)

WRN-16-8

DenseNet-BC (k=12, depth=100)

Reproducing BERT GLUE Results + Knowledge Distillation

- Fine-tuned BERT-Large & Base, following (Devlin et al., 2019)
- Used the fine-tuned BERT-Large models as teachers for KD
- Achieved the reported test results and published models at Hugging Face
- Hinton et al. (2014)'s KD outperformed fine-tuned BERT-Base

Model (Method, Reference)	MNLI-(m/mm) Acc./Acc.	QQP F1	_			STS-B P-S Corr.	MRPC F1	RTE Acc.	WNLI Acc.
BERT-Large (FT, Devlin et al. (2019))		72.1	92.7	94.9	60.5	86.5	89.3	70.1	N/A
BERT-Large (FT, Ours)	86.4/85.7	72.2	92.4	94.6	61.5	85.0	89.2	68.9	65.1
BERT-Base (FT, Devlin et al. (2019))	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	N/A
BERT-Base (FT, Ours)	84.2/83.3	71.4	91.0	94.1	51.1	84.4	86.8	66.7	65.8
BERT-Base (KD, Ours)	85.9/84.7	72.8	90.7	93.7	57.0	85.6	87.5	66.7	65.1

Reproducing CIFAR-10/100 Results

- Reproduced the test results, following the original studies
- Pretrained models are available in torchdistill e.g.,

>>> from torchdistill.models.classification.resnet import resnet20
>>> cifar10_resnet20 = resnet20(num_classes=10, pretrained=True)

Test Accuracy requires grad: True CIFAR-10 Model Original torchdistill lr: 5.0e-5 ResNet-20 91.25 91.92 filters params: False max_grad_norm: 1.0 ResNet-32 92.49 93.03 grad_accum_step: : ResNet-44 92.83 93.20 num_warmup_steps: ResNet-56 93.03 93.57 num_training_steps: ResNet-110 93.57 93.50 func2extract_model_loss: WRN-40-4 95.47 model term: WRN-28-10 dataset_id: *glue_va WRN-16-8 95.73 94.76 DenseNet-BC (k=12, depth=100) 95.53 95.49 Test Accuracy CIFAR-100 Model Original torchdistill num_workers: WRN-40-4 79.82 79.44 drop_last: False WRN-28-10 80.75 81.27

79.57

77.73

79.26

77.14

More Experiments

- More experiments are available in this paper e.g., ILSVRC 2012, PASCAL VOC 2012, COCO 2017
- All the trained models and PyYAML configurations in this paper are publicly available