1 Bisection algorithm for simplical meshes

- Serial algorithm
- Longest edge splitting with propagation front
- For 2D meshes with triangles isosceles the number of congruence classes is 1.
- The algorithm works directly for 3D and 4D.

Figure 1: Steps of the bisection algorithm.

Figure 2: Result for sphere refinement pattern. Left: 2D. Right: 3D.

2 Quality for recursive longest-edge

Figure 3: Quality of the elements for several iterations of the adaptive refinement shown in Figure 2. The x axis represent the total number of elements in the mesh. The y axis the quality criterion (lower is better). Left: 3D. Right: 4D.

Aspect ratio measure	Value for a equilateral tetrahedron	Used in
$\beta = \frac{CR}{IR}$	$\beta * = 3.0$	[1]
$r = \frac{S_{\text{max}}}{IR}$	$\sigma^* = 4.898979$	[2]
$\omega = \frac{CR}{S_{\text{max}}}$	$\omega^* = 0.612507$	[2]
$\tau = \frac{S_{\text{max}}}{S_{\text{min}}}$	$\tau^* = 1.0$	[2]
$x = \frac{V^4}{\left[\sum_{i=1}^{i=4} SA^2\right]^3}$	$\kappa^* = 4.58457e - 04$	[3]
$x = \frac{S_{\text{avg}}^3}{V}$ $x = \frac{S_{\text{rms}}^3}{V}$	$\alpha^* = 8.479670$	[4]
$v = \frac{S_{\text{rms}}^3}{V}$	$\gamma^* = 8.479670$	[5]
$(i = 16), S_{min} = min(S_i) (i = 16)$	bed sphere, IR = radius of the inscribed sphere, S_i = le = 16), SA = surface area of a triangular facet, S_{av_i} 6), V = volume of the tetrahedron, and	ength of any edge i , $S_{\text{max}} = \text{max}(S_{\text{max}})$ energy $S_{\text{max}} =$
	$IR = \frac{4V}{\left[\sum_{i=1}^{i=4} SA\right]}, S_{rms} = \sqrt{\frac{1}{6}\sum_{i=1}^{i=6} S_i^2}.$	

Figure 4: Quality metics. We used "Alpha" and "Tau".

3 Newest-vertex with longest edge for D > 2

Without a recurisve closure of the refined edge the overall element quality degrades very fast.

Figure 5: Non-recursive vs. recursive (3D).

4 Quality of newest vertex with longest edge.

While the longest-edge criterion is superior the hybrid approach (newest vertex + longest edge) stays in the same order of magnitude for the degrading element quality.

Figure 6: Quality of the elements for several iterations of the adaptive refinement shown in Figure 2. The x axis represent the total number of elements in the 4D mesh. The y axis the quality criterion (lower is better). The influence of longest edge shows on both the better quality and the larger number of elements generated.

5 Parallelization

Figure 7: Partitioning with one part without refinement.