	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma^{\#2}_{1^+lphaeta}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_1^{\#1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_1^{\#2}{}_{lpha}$
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
$\sigma_1^{\sharp 1}$ † lpha	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\sigma_{1}^{\#2}\dagger^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2+2 k^4) (2 r_3+r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k+2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_1^{\#1} + \alpha$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$-\frac{i\left(6k^{2}(2r_{3}\!+\!r_{5})\!+\!t_{1}\right)}{\sqrt{2}k\left(1\!+\!2k^{2}\right)^{2}\left(2r_{3}\!+\!r_{5}\right)t_{1}}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\#1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{\#2}\alpha$
$\omega_{1}^{\#1}\dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp_1} \dagger^{\alpha}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i kt</u> 3
$\omega_{1}^{#1} +^{\alpha}$ $\omega_{1}^{#2} +^{\alpha}$	0	0	0	$\frac{k^2 (2 r_3 + r_5) + \frac{t_1}{6}}{\frac{t_1}{3 \sqrt{2}}}$	$ \frac{t_1}{3\sqrt{2}} $ $ \frac{t_1}{3} $	0	$\frac{\frac{ikt_1}{3}}{\frac{1}{3}}i\sqrt{2}kt_1$
		-					3

Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 \bar{\imath} k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total #:	16			

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	

	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $\omega_{0^{+}}^{\#1} \ f_{0^{+}}^{\#1} \ f_{0^{+}}^{\#2}$

0

0

0

0

0

0

0

<u>t</u>1 2

0

0

 $k^2 r_2 - t_1$

 $f_{2+}^{#1} \dagger^{\alpha\beta}$

 $\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$

·?	Massive particle					
	Pole residue:	$-\frac{1}{r_2} > 0$				
	Polarisations:	1				
	Square mass:	$\frac{t_1}{r_2} > 0$				
	Spin:	0				
	Parity:	Odd				

Unitarity conditions $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$