The group G is isomorphic to the alternating group A7.

Ordinary character table of $G \cong A7$:

	1a	2a	3a	3b	4a	5a	6a	7a	7b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	6	2	3	0	0	1	-1	-1	-1
χ_3	10	-2	1	1	0	0	1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$
χ_4	10	-2	1	1	0	0	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$
χ_5	14	2	2	-1	0	-1	2	0	0
χ_6	14	2	-1	2	0	-1	-1	0	0
χ_7	15	-1	3	0	-1	0	-1	1	1
χ_8	21	1	-3	0	-1	1	1	0	0
χ_9	35	-1	-1	-1	1	0	-1	0	0

Trivial source character table of $G \cong A7$ at p = 3:

In the bounce character table of $a = 11$ at $p = 0$.																	
Normalisers N_i	N_1							N_2				N_4					
p-subgroups of G up to conjugacy in G				P_1						P_2				P_4			
Representatives $n_j \in N_i$	1a	2a	4a	5a	7a	7b	1 <i>a</i>	2a	2b	4a	1a	2a	1a	4a	2a	4b	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	63	3	1	-2	0	0	0	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	36	0	-2	1	1	1	0	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	45	-3	1	0	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	45	-3	1	0	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	27	3	-1	2	-1	-1	0	0	0	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 2 \cdot \chi_9$	99	3	3	-1	1	1	0	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	2	0	1	-1	-1	3	1	-1	-1	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	15	-1	-1	0	1	1	3	-1	-1	1	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	69	-3	1	-1	-1	-1	3	-1	3	-1	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	15	3	1	0	1	1	3	1	3	1	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	69	-3	1	-1	-1	-1	0	0	0	0	3	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	15	3	1	0	1	1	0	0	0	0	3	1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	28	4	0	-2	0	0	1	1	1	1	1	1	1	-1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	10	-2	0	0		$E(7)^3 + E(7)^5 + E(7)^6$	1	-1	1	-1	1	-1	1	-E(4)	-1	E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		-2	0	0	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	1	-1	1	-1	1	-1	1	E(4)	-1	-E(4)	

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(3, 4, 5)]) \cong C3$

 $P_3 = Group([(1, 6, 7)(3, 4, 5)]) \cong C3$

 $P_4 = Group([(3,4,5),(1,6,7)]) \cong C3 \times C3$

 $N_1 = AlternatingGroup([1..7]) \cong A7$

 $N_2 = Group([(1,6)(2,7),(2,6,7),(3,4,5),(1,2,6,7)(4,5)]) \cong (C3 \times A4) : C2$

 $N_3 = Group([(1,6,7)(3,4,5),(3,4,5),(3,5)(6,7)]) \cong (C3 \times C3) : C2$

 $N_4 = Group([(1,6,7),(3,4,5),(3,5)(6,7),(1,3,6,5)(4,7)]) \cong (C3 \times C3) : C4$