はじめての MySQL ver1.1

Seiichi Nukayama

2022年10月2日

目次

1	MySQL にログインする	1
1.1	root(管理者) でログインする	1
2	データベースを設計する	1
2.1	扱うデータ	1
2.2	どのような表をつくるか?	2
2.3	primary key	2
3	データベースを作成する	3
3.1	データベースの作成	3
3.2	データベースの確認	3
3.3	データベースの使用宣言	4
4	テーブルを定義する	4
4.1	テーブルの定義	4
4.2	テーブルの確認	5
5	データの挿入	5
6	データの表示	6
6.1	一覧表示	6
6.2	抽出して表示	6
7	データの修正	7
8	データの削除	8
9	CRUD	8
10	编型問題	۵

1 MySQL にログインする

1.1 root(管理者) でログインする

データベースを利用するためには、まず、そのデータベースを管理している人 (管理者) から、アカウント (ユーザー名とパスワード) を発行してもらわなくてはならない。

そして、通常は 1 つのデータベースが与えられ、そのデータベースの中に複数のテーブル (表) を作成していくことになる。

しかし、ここでは管理者のままで MySQL データベースを操作していくことにする。そして、操作に慣れたら、一般ユーザーを作成し、一般ユーザーとしてデータベースを操作していくことにする。

管理者 (root) でのログイン

mysql> mysql -u root -p
Enter password: ****

あるいは、一行で書ける。この場合、パスワードが表示される。パスワードは -p のあと、空白をはさまずに続けて書く。

mysql> mysql -u root -proot |*1

2 データベースを設計する

2.1 扱うデータ

以下のようなデータを扱うこととする。

菅原文太	千葉真一	北大路欣也	梶芽衣子
40 歳	34 歳	30 歳	26 歳
1933 年生まれ	1939 年生まれ	1943 年生まれ	1947 年生まれ
総務部	営業部	経理部	営業部

あなたがプログラマで、上のような社員名簿アプリを作成することになったとする。PHP か Java でアプリを作成することになる。クライアントの会社の総務部がこのアプリを使うことになる。そのアプリには社員の登録画面、一覧画面、編集画面、削除画面などがあるだろう。そういった画面と処理をあなたは作らなければならない。

そのときに、データを保存するしくみとして、データベースを使うことになる。かりに PHP でプログラミングするならば、PHP という言語を使ってデータベースを操作することになる。

^{*1} mysql コマンドは、"C:¥MAMP¥bin¥mysql¥bin" の中の "mysql.exe" のことである。このフォルダには、他にも "mysql-dump.exe" などいろいろなコマンドが置かれている。

2.2 どのような表をつくるか?

データベースは表の形でイメージすることができる。しかし、上記のデータを見て、それをそのまま表にしてはいけない。

- 4	Α	В	С	D	
1	菅原文太	千葉真一	北大路欣也	梶芽衣子	
2	40	34	30	26	
3	1933	1939	1943	1947	
4	総務部	営業部	経理部	営業部	
5					

この表は、1 件のデータが縦に配置されて、それが人数分横に続いている。これは良くない。次の表のように、1 件のデータを横に配置する。

4	Α	В	С	D	Е
1	名前	年齢	誕生年	部署	
2	菅原文太	40	1933	総務部	
3	千葉真一	34	1939	営業部	
4	北大路欣也	30	1943	経理部	
5	梶芽衣子	26	1947	営業部	
6					
7					

そして、縦には同じ種類のデータが並ぶ。だから、それぞれの列には、その列の内容を表す項目名をつける ことができる。

この列のことを カラム (項目) という。(フィールドともいう)

そして、1 件のデータを表す横 1 行を レコード という。この表には 4 件のデータがあり、カラムは 4 である。

しかし、これだけではデータベースにはならない。各レコードには、そのレコードの独自性を保証するデータが必要なのである。それを プライマリー・キー という。

2.3 primary key

データベースにデータを格納する際には、そのデータに primary key (独自キー) が必要となる。primary key とは、そのデータを他と区別するためのデータである。菅原文太というデータは、この 4 つの中では独自であるが、他のデータを追加する際に、同じデータに出会う可能性 (同姓同名) を排除できない。さらに日本語である以上、文字コードの問題を避けることもできない。つまり、同じ菅原文太という文字でも UTF-8 と Shift_JIS では別物と判定されるのである。

となると、この4つのデータには primary key となるものがないということになる。

このような場合、データベースの設計者が primary key を追加することになる。ここでは 数字を primary key として追加する。つまり、菅原文太は 1、千葉真一は 2 というふうにする。

そして、その項目名をここではid とした。

	Α	В	С	D	Е	F
1	id	名前	年齢	誕生年	部署	
2	1	菅原文太	40	1933	総務部	
3	2	千葉真一	34	1939	営業部	
4	3	北大路欣也	30	1943	経理部	
5	4	梶芽衣子	26	1947	営業部	
6						
7						

primary key には、数字やコードが使われる。*2

3 データベースを作成する

3.1 データベースの作成

"rensyu"というデータベースを作成する。

mysql> create database rensyu <Enter $\pm - >$

このように入力すると、以下のようになる。

mysql> create database rensyu
->

これは、入力の終わりがまだないので、次の入力を受け付けているのである。 入力の終わりは ";"(セミコロン) あるいは "\g" である。

mysql> create database rensyu ->; <Enter +->

";"(セミコロン) あるいは "\g" を入力して <Enter キー> を押す。

3.2 データベースの確認

データベースがちゃんと作成できたか、確認する。

mysql> show databases; (複数形)

 $^{^{*2}}$ '001' や'C001' など、固定長の文字列がよく使われる。また、整数もよく使われる。可変長の文字列は使われない。正確さに欠ける。

3.3 データベースの使用宣言

まず、使用宣言を行う。

mysql> use rensyu;

Database changed と表示される。

4 テーブルを定義する

4.1 テーブルの定義

以下のようなテーブルを作成することとする。

表1 emp

ID	名前	年齢	誕生年	部署
1	菅原文太	40	1933	総務部
2	千葉真一	34	1939	営業部
3	北大路欣也	30	1943	経理部
4	梶芽衣子	26	1947	営業部

それぞれの列のデータ型を決める。

列	データの種類	データ型
ID	整数	int 型
名前	文字列 (可変長)	varchar 型
年齢	整数	int 型
誕生年	年	year 型
部署	文字列 (可変長)	varchar 型

この表は以下のように定義できる。表の名前を "emp" とする。

リスト 1 emp テーブルの定義

```
mysql> create table emp (
   -> id int primary key,
   -> name varchar(20),
   -> age int,
   -> birthyear year,
   -> dept varchar(20)
   -> );
guery OK, O row affected (0.015sec)
```

4.2 テーブルの確認

テーブルができたかどうかは、以下のコマンドで確認できる。

mysql> show tables; (複数形)

また、そのテーブルの定義の確認は、以下のコマンドでできる。

mysql> desc emp;

```
+----+
| Field | Type | Null | Key | Default | Extra |
+-----+
| id | int(11) | NO | PRI | NULL |
| name | varchar(20) | YES | NULL |
| age | int(11) | YES | NULL |
| birthyear | year(4) | YES | NULL |
| dept | varchar(20) | YES | NULL |
+-----+
```

5 データの挿入

それでは、1件分のデータを入力する。

入力データ

id	name	age	birthyear	dept
1	菅原文太	40	1933	総務部

```
1 mysql> insert into emp

-> (id, name, age, birthyear, dept)

3 -> values

-> (1, '菅原文太', 40, 1933, '総務部');

5 Query OK, 1 row affected (0.001 sec)
```

続いて、2つめのデータを入力する。

入力データ

id	name	age	birthyear	dept
2	千葉真一	34	1939	営業部

全項目を入力する場合、項目指定を省略できる。

```
3 -> (2, '千葉真一', 34, 1939, '営業部');
4 Query OK, 1 row affected (0.001 sec)
```

残りの2件を一度に入力する。

入力データ

id	name	age	birthyear	dept
3	北大路欣也	30	1943	経理部
4	梶芽衣子	26	1947	営業部

```
mysql> insert into emp
-> values
-> (3, '北大路欣也', 30, 1943, '経理部'),
-> (4, '梶芽衣子', 26, 1947, '営業部');
Query OK, 2 rows affected (0.003 sec)
Records: 2 Duplicates: 0 Warnings: 0
```

6 データの表示

6.1 一覧表示

今までに入力したデータの一覧を表示する。

```
mysql> select * from emp;
```

あるいは、次のように出力する項目を指定できる。*3

```
mysql> select
    -> id,
    -> name,
    -> age,
    -> birdhyear,
    -> dept
    -> from emp;
```

6.2 抽出して表示

年齢が30才以上の人を抽出する。

^{*3} ここでは全項目を指定しているが、必要な項目だけに絞ることもできる。

```
mysql> select
    -> *
    -> from emp
    -> where
    -> age >= 30;
```

所属が"営業部"である人を抽出する。

```
1 mysql> select
2 -> *
3 -> from emp
4 -> where
5 -> dept like '営業%';
```

```
      +---+------+
      id | name | age | birthyear | dept |

      +---+-----+
      | 2 | 千葉真一 | 34 | 1939 | 営業部 |

      | 4 | 梶芽衣子 | 26 | 1947 | 営業部 |

      +---+------+
```

7 データの修正

データの修正(更新)をしてみる。ここでは、千葉真一の部署を"開発部"に変更してみる。

```
1 mysql> update emp
2 -> set
3 -> dept = '開発部'
4 -> where
5 -> id = 2;
```

8 データの削除

データを1件削除する。ここでは、北大路欣也を削除してみる。

```
mysql> delete from emp

-> where
    -> id = 3;
```

9 CRUD

データの挿入 (作成)(insert)、表示 (読込み)(select)、修正 (更新)(update)、削除 (delete) は基本処理である。 Create Read Update Delete という。

10 練習問題

- (1) "ronin" という名前のデータベースを作成してください。
- (2) そのデータベースに cast というテーブルを作成し、その内容として、以下のデータを格納できるように、テーブル定義をしてください。誕生日は DATE 型にしてください。プライマリキーも設定してください。
 - (3) 以下のデータを cast に登録してください。

リスト2 データ

- (4) 出身が"東京"である人を抽出して表示してください。
- (5) 田中邦衛さんの所属を俳優座から"なし"に変更してください。
- (6) 以下のデータを追加してください。

リスト3 追加データ

中尾彬, m, 1942-08-11, 千葉県, 古館プロジェクト

(7) 石橋蓮司さんのデータを削除してください。