

Figure 2 | Cyclin D-CDK4 negatively regulates PD-L1 protein stability. a-d, IB analysis of WCL derived from wild type versus combinational (cyclin  $D1^{-/-}D2^{-/-}D3^{-/-}$ ) (a) or single isoform cyclin D knockout MEFs (b), MDA-MB-231 cells depleted cyclin D1 or cyclin D3 using shRNAs (c), or MMTV-Wnt1 induced mouse mammary tumors with/without genetic depletion of cyclin D1 (d). e-h, IB analysis of WCL derived from wild type versus  $cdk4^{-/-}$  MEFs (e), MDA-MB-231 cells depleted CDK4 using shRNAs (f), or multiple breast cancer cell lines treated with palbociclib

 $(0.5, 1\,\mu\mathrm{M})$  for 48 hours  $(\mathbf{g}, \mathbf{h})$ .  $\mathbf{i}$ ,  $\mathbf{j}$ , Immunofluorescence staining of PD-L1 and CD3 in mouse mammary tumors induced by MMTV-*ErbB2* treated with vehicle or palbociclib as described in Method  $(\mathbf{i})$  and the quantification of CD3<sup>+</sup> T cell population  $(\mathbf{j})$ . The scale bar: 50  $\mu\mathrm{m}$ .  $\mathbf{k}$ , FACS analysis for PD-L1 or CD3<sup>+</sup> T-cell populations from MC38 implanted tumors treated with vehicle or palbociclib for 7 days. Vehicle,  $\mathbf{n}=4$  for  $(\mathbf{i},\mathbf{j})$  or 7 mice for  $(\mathbf{k})$ ; palbociclib,  $\mathbf{n}=4$  for  $(\mathbf{i},\mathbf{j})$  or 7 mice for  $(\mathbf{k})$ . Error bars,  $\pm$  s.d., two-tailed t-test, \*\*P<0.01, \*\*\*P<0.001 (two-tailed t-test).