Deep Learning

Exercise 8: Open-Set Learning

Room: **BIN-1-B.01**

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, April 29, 2022

Outline

- PyTorch
- Open-Set Training

Outline

- PyTorch
 - Network Implementation
 - Gradient Definition

Network Implementation

Modules in PyTorch

- A module can be
 - → A separate layer(e.g. Linear, ReLU, ...)
 - \rightarrow A block of layers (e.g. ResNet Block)
 - → A complete network (e.g. LeNet, ResNet)
- ⇒ A network is a module
 - Implemented as torch.nn.Module

Defining a Module

- Implemented as class (e.g. Network)
- Derive from torch.nn.Module:

 class Network(torch.nn.Module):
- Two functions to implement
 - → Constructor: def __init__(self, ...)
 - → Forward function: def forward(self, x)

Network Implementation

The Constructor set init (eets, ...)

Call base class constructor:

```
\rightarrow super(Network, self). init (...)
```

• Instantiate all submodules:

```
→ self.conv1 = torch.nn.Conv2d(...)
→ self.pooling = torch.nn.MaxPool2d(...)
→ self.activation = torch.nn.ReLU(...)
→ self.fc1 = torch.nn.Linear(...)
```

• If needed: define variables as Parameter, similar to torch. Tensor

```
→ self.my param = torch.nn.Parameter(...)
```

• All these are automatically extracted by self.parameters()

Network Implementation

The Forward Function der reconstruction will be a second to the second t

Implement all processing steps of your network

```
→ x = self.conv1(x)
→ x = self.pooling(x)
```

```
\rightarrow x = self.activation(x)
```

Can be grouped into (logical) blocks

```
→ layer1 = self.activation(self.pooling(self.conv1(x)))
```

• Can also use other non-parametric functions

```
→ flattened = torch.flatten(layer1)
```

• Can have multiple outputs (be aware of inplace functions)

```
→ logits = self.fc1(flattened)
```

 \rightarrow return logits, flattened

Gradient Definition

Processing of Derivatives in PyTorch

- Usually handled by automatic differentiation
- Defined for each operation in PyTorch
 - ightarrow Enabled when using PyTorch functionality throughout
- Might not be optimal
 - ightarrow For example $\mathcal{J}^{\mathrm{CCE}}$ on SoftMax has simple gradient

Implement your own Derivatives (Jacobian)

- Implement a torch.autograd.Function
 - → https://pytorch.org/docs/master/notes/extending.html#extending-torch-autograd
- Define forward function with several inputs
- Provide a Jacobian for each of the inputs in backward

Gradient Definition

The Function

- Is defined as static method via @staticmethod decorator
 - → Belongs to the class, not to the object
- Takes all parameters that your operation requires
 @staticmethod
 def forward(ctx, param1, param2, ...):
- Provides context information via ctx
 - → Can store required variables to the backward function ctx.save for backward(param1, param2)
- Returns the result of your operation result = operation(param1, param2) return result

Gradient Definition

The backward Function

- Also defined as static method via @staticmethod decorator
- Has two parameters: context ctx, result of forward @staticmethod def backward(ctx, result):
- Extract stored information from context param1, param2 = ctx.saved tensors
- Return Jacobian for each input of forward
 - → Need to be of same shape as input parameters; not exactly the Jacobian
 - → Can be None if derivative for one parameter makes no sense derivative_for_param1 = ... return derivative for param1, None

Outline

- Open-Set Training
 - Dataset
 - Loss Function and Confidence
 - Network and Training
 - Evaluation

MNIST Dataset

- MNIST total 10 classes
 - → 10 different digits
- Split into 3 categories:
 - \rightarrow 4 known classes, e.g.: 4, 5, 8, 9
 - \rightarrow 4 known unknown classes, e.g.: 0, 2, 3, 7
 - → 2 unknown unknown classes, e.g.: 1, 6
- Split into three subsets
 - → Training partition: training sets of known classes and known unknown
 - → Validation partition: test sets of known classes and known unknown
 - → Test partition: test sets of known classes and unknown unknown

Task 1: Target Vectors

- Provide target vectors \vec{t} for target class t
- One-hot targets for knowns:

$$\rightarrow$$
 4 \Rightarrow (1,0,0,0)

$$\rightarrow$$
 5 \Rightarrow (0,1,0,0)

$$\rightarrow$$
 8 \Rightarrow (0,0,1,0)

$$\rightarrow$$
 9 \Rightarrow (0,0,0,1)

• Equal targets for unknowns:

```
\rightarrow 0, 2, 3, 7, 1, 6 \Rightarrow (.25, .25, .25, .25)
```

Test 1: Check Target Vectors

• Implement test case to check that the target vectors are correct

Task 2: Dataset Construction

- Extend torchvision.datasets.MNIST dataset class
- Implement constructor for our class __init__(self, purpose)
- Call base class constructor with parameters based on purpose
 - → This populates self.data and self.targets for all 10 classes
- Select samples of the desired classes only (for our purpose)

Task 3: Dataset Item Selection

- Implement the __getitem__(self, index) function
- Return image at index in desired format
- Return target vector at index as required (Task 1)

Test 2: Data Sets

- Instantiate data loader for training split with B=64
- Assert that inputs and targets are in the desired format

Task 4: Utility Function

- Write a function that takes a batch and the targets
- Split the batch into known and unknown
- Return batch[known], targets[known], batch[unknown]
 - → This function will be used several times later

Loss Function and Confidence

Task 5: Loss Function

- Implement forward pass
 - → Choose one of the two methods
- Store required variables
- Implement Jacobian in backward pass

Task 5a: Alternative Loss

- Implement as loss function
 - → Choose one of the two methods
 - → Use torch.log_softmax or torch.logsumexp

Possible Implementation

$$\mathcal{J}^{ ext{CCE}} = -\sum_{o=1}^{O} t_o \ln y_o$$

Other Implementation

$$\mathcal{J}^{\text{CCE}} = -\sum_{o=1}^{O} t_o z_o + \frac{1}{O} \ln \sum_{o=1}^{O} e^{z_o}$$

Derivative (Jacobian)

$$\frac{\partial \mathcal{J}}{\partial z_o} = y_o - t_o$$

Loss Function and Confidence

Task 6: Confidence Evaluation

- Implement confidence(logits, targets) function
- Compute the SoftMax confidence scores \vec{y} based on the logits
- Split data into known and unknown
- For known, take confidence of correct class: conf = y_t
- ullet For unknown, use maximum over all classes: conf $=1-\max_o y_o+rac{1}{O}$

Test 3: Check Confidence Implementation

- Generate optimal logit values for known and unknown classes
- Get appropriate target vectors (see Task 1)
- Check that the computed confidence is close to 1

Network and Training

Task 7: Network Definition

- Implement small convolutional network
 - → Two convolutional layers with max pooling and ReLU
 - → Two fully-connected layers
- Return output of both FC layers: deep features and logits

Task 8: Training and Valiation Loop

- Use SGD optimizer with reasonable learning rate
- Use self-defined loss function
- Compute confidence values for training and validation set
- Train for 10 (or 100) epochs

Evaluation

Task 9: Featue Magnitude Histograms

- Extract deep features for validation and test set
- Compute deep feature magnitude for all features
 - → Split into known, known unknown and unknown unknown samples
- Plot histograms for all three types of samples

Evaluation

Task 10: Classification

- Extract softmax confidence score for test set samples
 - → Split into known and unknown
- Select confidence threshold τ
- Compute CCR for known
- Compute FPR for unknown
- \Rightarrow Good values are CCR > 90% for FPR < 10%
 - ightarrow Maybe change threshold au

False Positive Rate (FPR)

$$\frac{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} = 0 \land \max_{1 \le o \le O} y^{^{[n]}_o} \ge \tau\right\}\right|}{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} = 0\right\}\right|}$$

Correct Classification Rate (CCR)

$$\frac{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} > 0 \land \mathop{\arg\max}_{1 \leq o \leq O} y^{^{[n]}}_o = t^{^{[n]}} \land y^{^{[n]}}_{t^{^{[n]}}} \geq \tau\right\}\right|}{\left|\left\{x^{^{[n]}} \mid t^{^{[n]}} > 0\right\}\right|}$$