FINAL DE LENGUAJES 2013

- 1. Construya un autómata a pila M tal que L(M) sea el siguiente lenguaje $\{w \in \{a,b\}^* : \text{hay } w_1, w_2, w_3 \text{ tales que } w = w_1 abb w_2 a w_3, \text{ y } |w_1| = |w_3|\}.$
- 2. V o F. Justifique.
 - (a) Si f es una función Σ -computable entonces dom f es Σ -r.
 - (b) Si \mathcal{P} es un programa tal que $Dom(\Psi_{\mathcal{P}}^{0,1,\Sigma^*}) = \Sigma^*$ y $Dom(\Psi_{\mathcal{P}}^{1,0,\Sigma^*}) = \omega$ entonces $Dom(\Psi_{\mathcal{P}}^{1,1,\Sigma^*}) = \omega \times \Sigma^*$.
 - (c) Sea M una máquina de turing que computa la función $p_1^{2,0}$. Entonces M computa la función $p_1^{1,0}$.
 - (d) Sean $f, g : \omega \to \omega$ tales que g es Σ -PR y $f \in PR_3^{\Sigma} PR_2^{\Sigma}$. Entonces $f \circ g \in PR_4^{\Sigma} - PR_3^{\Sigma}$.
- 3. Supongamos $\Sigma_p \subseteq \Sigma$. Pruebe que para cada $\mathcal{P} \in Pro^{\Sigma}$ hay $Q \in Pro^{\Sigma}$ tal que $\Psi_{\mathcal{P}}^{1,0,\omega} \circ \Psi_{\mathcal{Q}}^{1,0,\omega} = id|_{Im(\Psi_{\mathcal{P}}^{1,0,\omega})}.$

Para cada macro usado dar el predicado o la función asociada dependiendo si es un macro de tipo IF o de asignación.

4. Sea $\Sigma=\{a,b\},$ y sea $f:\omega\times\Sigma^*\to\omega$ Σ -PR Pruebe que el conjunto

$$\left\{(x,y,\alpha): \text{hay } z \in \omega - \{1\} \text{ que divide a } \sum_{k=y}^{x+y} f(k^y,\alpha)^x \right\}$$

es Σ -PR. Enuncie los resultados del teórico que utilice.