目录

1	n 阶	行列式	3
2	行列式的性质		
	2.1	性质 1: 行列互换, 其值不变. 即 $ A =\left A^T\right $	3
	2.2	性质 2: 某行(列)元素全为零,则行列式为零	3
	2.3	性质 3: 两行(列)元素相等,或对应成比例,则行列式为零	3
	2.4	性质 4: 某行(列)元素均是两个元素之和,则可拆成两个行列式之和	3
	2.5	性质 5: 两行(列)互换,行列式的值反号	3
	2.6	性质 6: 某行 (列)元素有公因子 $k(k \neq 0)$,则 k 可提到行列式外面去	3
	2.7	性质 7: 某行(列)的 b, 倍加到另一行(列)上去, 行列式的值不变	3
3	行列式的展开定理		
	3.1	余子式 M_{ij}	3
	3.2	代数余子式 $A_{ij} = (-1)^{i+j} M_{ij} \dots \dots \dots \dots \dots \dots \dots$	3
	3.3	按某一行(列)展开的展开公式:	
		$ A = \sum_{i=1}^{n} a_{ij} A_{ij} \ (j = 1, 2,, n) = \sum_{j=1}^{n} a_{ij} A_{ij} \ (i = 1, 2,, n)$	3
4	具体	型行列式的计算: a_{ij} 已给出	3
	4.1	化为 "12+1" 型行列式	3
		4.1.1 主对角线行列式	3
		4.1.2 副对角线行列式	3
		4.1.3 拉普拉斯展开式	3
		4.1.4 范德蒙德行列式	3
	4.2	加边法	3
	4.3	递推法 (高阶 → 低阶)	3
		$4.3.1$ 建立递推公式, 即建立 D_n 与 D_{n-1} 的关系 \dots	3
		4.3.2 D_n 与 D_{n-1} 要有完全相同的元素分布规律, 只是 D_{n-1} 比 D_n 低了一阶	3
	4.4	数学归纳 (低阶 → 高阶)	3
		4.4.1 第一数学归纳法	3
		4.4.2 第二数学归纳法	3
5	抽象	型行列式的计算: a_{ij} 未给出	3
	5.1	用行列式性质	3
	5.2	用矩阵知识	3
		5.2.1 设 C=AB, A,B 为同阶方阵, 则 $ C = AB = A B $	3
		5.2.2 设 $C=A+B$, A,B 为同阶方阵, 则 $ C = A+B $, 作恒等变形, 转化为矩	
		阵乘积的行列式	3
		5.2.3 设A为n阶方阵,则 $ A^* = A ^{n-1}$, $ (A^*)^* = A ^{n-2}A = A ^{(n-1)^2}$	3
	5.3	用相似理论	3
		5.3.1 $ A = \prod_{i=1}^{n} \lambda_i$	3
		5.3.2 若 A 相似于 B, 则 A = B	3

文件名

1 N 阶行列式 3

1 n 阶行列式

2 行列式的性质

- **2.1** 性质 **1**: 行列互换, 其值不变. 即 $|A| = |A^T|$
- 2.2 性质 2: 某行(列)元素全为零,则行列式为零
- 2.3 性质 3: 两行(列)元素相等,或对应成比例,则行列式为零
- 2.4 性质 4: 某行(列)元素均是两个元素之和,则可拆成两个行列式之和
- 2.5 性质 5: 两行(列)互换, 行列式的值反号
- 2.6 性质 6: 某行(列)元素有公因子 $k(k \neq 0)$,则 k 可提到行列式外面去
- 2.7 性质 7: 某行(列)的 b, 倍加到另一行(列)上去, 行列式的值不变

3 行列式的展开定理

- 3.1 余子式 M_{ii}
- **3.2** 代数余子式 $A_{ij} = (-1)^{i+j} M_{ij}$
- 3.3 按某一行(列)展开的展开公式: $|A| = \sum_{i=1}^n a_{ij} A_{ij} \ (j=1,2,...,n) = \sum_{j=1}^n a_{ij} A_{ij} \ (i=1,2,...,n)$

4 具体型行列式的计算: a_{ij} 已给出

- 4.1 化为"12+1"型行列式
- 4.1.1 主对角线行列式
- 4.1.2 副对角线行列式
- 4.1.3 拉普拉斯展开式
- 4.1.4 范德蒙德行列式
- 4.2 加边法
- 4.3 递推法 (高阶 → 低阶)
- **4.3.1** 建立递推公式, 即建立 D_n 与 D_{n-1} 的关系
- **4.3.2** D_n 与 D_{n-1} 要有完全相同的元素分布规律, 只是 D_{n-1} 比 D_n 低了一阶
- 4.4 数学归纳 (低阶 → 高阶)
- 4.4.1 第一数学归纳法
- 4.4.2 第二数学归纳法

5 抽象型行列式的计算: a_{ij} 未给出

- 5.1 用行列式性质
- 5.2 用矩阵知识
- **5.2.1** 设 C=AB, A,B 为同阶方阵,则 |C| = |AB| = |A||B|
- **5.2.2** 设 C=A+B, A,B 为同阶方阵, 则 |C|=|A+B|, 作恒等变形, 转化为矩阵乘积的行列式
- **5.2.3** 设 A 为 n 阶方阵,则 $|A^*| = |A|^{n-1}$, $|(A^*)^*| = |A|^{n-2} A = |A|^{(n-1)^2}$