Course 02402 Introduction to Statistics Lecture 8:

Simple linear regression

Per Bruun Brockhoff

DTU Compute Danish Technical University 2800 Lyngby – Denmark e-mail: perbb@dtu.dk

Agenda

- Example: Height-Weight
- Linear regression model
- Least Squares Method
- Statistics and linear regression??
- $footnote{\circ}$ Hypothesis tests and confidence intervals for $m{eta}_0$ and $m{eta}_1$
- Confidence and prediction interval for the line
- Summary of summary $(Im(y \sim x))$
- Correlation
- Residual Analysis: Model control

Oversigt

- Example: Height-Weight
- Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- 6 Confidence and prediction interval for the line
- Summary of summary($Im(y \sim x)$)
- Correlation
- Residual Analysis: Model control

Example: Height-Weight

Heights (x_i) 168 161 167 179 184 166 198 187 191 179 Weights (y_i) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9

Example: Height-Weight

Heights (x_i) 168 161 167 179 184 166 198 187 191 179 Weights (y_i) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9


```
Heights (x_i) 168
                   161
                       167
                           179
                                184
                                    166
                                         198
                                             187
                                                 191
                                                      179
      Weights (y_i) 65.5
                   58.3
                       68.1
                           85.7
                                80.5
                                    63.4
                                        102.6
                                             91.4
                                                 86.7
                                                     78.9
summary(lm(v ~ x))
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
    Min 10 Median 30 Max
##
## -5.876 -1.451 -0.608 2.234 6.477
##
## Coefficients:
##
            Estimate Std. Error t value Pr(>|t|)
## x
              ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.88 on 8 degrees of freedom
## Multiple R-squared: 0.932, Adjusted R-squared: 0.924
```

F-statistic: 110 on 1 and 8 DF, p-value: 5.87e-06

Heights (x_i)	168	161	167	179	184	166	198	187	191	179
Weights (y_i)	65.5	58.3	68.1	85.7	80.5	63.4	102.6	91.4	86.7	78.9

Oversigt

- Example: Height-Weight
- 2 Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- © Confidence and prediction interval for the line
- Summary of summary($Im(y \sim x)$)
- Correlation
- Residual Analysis: Model control

A scatter plot of some data

• We have n pairs of data points (x_i, y_i)

Express a linear model

• Express a linear model

$$y_i = \beta_0 + \beta_1 x_i$$

Express a linear model

• Express a linear model

$$y_i = \beta_0 + \beta_1 x_i$$

but something is missing in the desrcription of the random variation!

Express a linear regression model

• Express the linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Y_i is the dependent variable. A random variable.
- x_i er en explanatory variable. Given numbers.
- ε_i is the deviation (error). A random variable.

Express a linear regression model

• Express the linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Y_i is the dependent variable. A random variable.
- x_i er en explanatory variable. Given numbers.
- ε_i is the deviation (error). A random variable.

and we assume

 $arepsilon_i$ is independent and identically distributed (i.i.d.) and $N(0,\sigma^2)$

Model illustration

Oversigt

- Example: Height-Weight
- Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- 6 Confidence and prediction interval for the line
- Summary of summary($Im(y \sim x)$)
- Correlation
- Residual Analysis: Model control

• How can we estimate the parameters β_0 and β_1 ?

- How can we estimate the parameters β_0 and β_1 ?
- Good idea: Minimize the variance σ^2 of the residuals. It is in almost any way the best choice in this setup.

- How can we estimate the parameters β_0 and β_1 ?
- Good idea: Minimize the variance σ^2 of the residuals. It is in almost any way the best choice in this setup.
- But how!?

- How can we estimate the parameters β_0 and β_1 ?
- Good idea: Minimize the variance σ^2 of the residuals. It is in almost any way the best choice in this setup.
- But how!?
- Minimize the sum of the Residual Sum of Squares (RSS))

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2$$

 $\hat{eta_0}$ and $\hat{eta_1}$ minimizes RSS

Illustration of model, data and fit

Least squares estimator

Theorem 5.4 (here as estimators as in the book)

The least squares estimators of β_0 and β_1 are given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(x_i - \bar{x})}{S_{xx}}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

where
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
.

Least squares estimates

Theorem 5.4 (here as estimates)

The least squares estimatates of β_0 and β_1 are given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{S_{xx}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

where
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
.

Don't think too much about this for now!

R example

```
## Simulate a linear model with normally distrubuted
 ## errors and estimate the parameters
## FiRST MAKE DATA .
## Generates x
x \leftarrow runif(n=20, min=-2, max=4)
## Simulate y
beta0=50; beta1=200; sigma=90
y <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)
## FROM HERE: as real data analysis, we have th data in x and y:
## A scatter plot of x and y
plot(x, y)
## Find the least squares estimates, use Theorem 5.4
(betainst \leftarrow sum( (y-mean(y))*(x-mean(x)) ) / sum( (x-mean(x))^2 ))
(beta0hat <- mean(v) - beta1hat*mean(x))
## Use lm() to find the estimates
lm(v ~ x)
## Plot the fitted line
abline(lm(y ~ x), col="red")
```

Oversigt

- Example: Height-Weight
- 2 Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ${ top}$ Hypothesis tests and confidence intervals for eta_0 and eta_1
- Onfidence and prediction interval for the line
- Summary of summary($Im(y \sim x)$)
- Correlation
- Residual Analysis: Model control

What if we took a new sample?

Would the values of $\hat{\beta}_0$ and $\hat{\beta}_1$ be the same?

What if we took a new sample?

Would the values of $\hat{\beta}_0$ and $\hat{\beta}_1$ be the same?

No, they are random variables!

If we took a new sample we would get another realisation.

What if we took a new sample?

Would the values of $\hat{\beta}_0$ and $\hat{\beta}_1$ be the same?

No, they are random variables!

If we took a new sample we would get another realisation.

What is the (sampling) distribution of the parameter estimators?

in a linear regression model (given normal distributed errors)?

What if we took a new sample?

Would the values of $\hat{\beta}_0$ and $\hat{\beta}_1$ be the same?

No, they are random variables!

If we took a new sample we would get another realisation.

What is the (sampling) distribution of the parameter estimators?

in a linear regression model (given normal distributed errors)?

Try to simulate to have a look at this...

Let's go to R!!

- What is the (sampling) distribution of the parameter estimates in a linear regression model (given normal distributed errors)?
- Answer: They are normally distributed (for n < 30 use the *t*-distribution) and their variance can be estimated:

Theorem 5.7 (first part)

$$V[\hat{\beta}_0] = \frac{\sigma^2}{n} + \frac{\bar{x}^2 \sigma^2}{S_{xx}}$$

$$V[\hat{\beta}_1] = \frac{\sigma^2}{S_{xx}}$$

$$Cov[\hat{\beta}_0, \hat{\beta}_1] = -\frac{\bar{x}\sigma^2}{S_{xx}}$$

• The Covariance $Cov[\hat{\beta}_0, \hat{\beta}_1]$ we do not use for anything for now..

Estimates of standard deviations of $\hat{\beta}_0$ and $\hat{\beta}_1$

Theorem 5.7 (second part)

Where σ^2 is usually replaced by its estimate $(\hat{\sigma}^2)$. The central estimator for σ^2 is

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta}_0, \hat{\beta}_1)}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}.$$

When the estimate of σ^2 is used the variances also become estimates and we'll refer to them as $\hat{\sigma}_{\beta_0}^2$ and $\hat{\sigma}_{\beta_1}^2$.

Estimates of standard deviations of \hat{eta}_0 and \hat{eta}_1

Theorem 5.7 (second part)

Where σ^2 is usually replaced by its estimate $(\hat{\sigma}^2)$. The central estimator for σ^2 is

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta}_0, \hat{\beta}_1)}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}.$$

When the estimate of σ^2 is used the variances also become estimates and we'll refer to them as $\hat{\sigma}_{\beta_0}^2$ and $\hat{\sigma}_{\beta_1}^2$.

Estimates of standard deviations of $\hat{\beta}_0$ and $\hat{\beta}_1$ (equations 5-41 and 5-42)

$$\hat{\sigma}_{\beta_0} = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}; \quad \hat{\sigma}_{\beta_1} = \hat{\sigma} \sqrt{\frac{1}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Oversigt

- Example: Height-Weight
- 2 Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- Onfidence and prediction interval for the line
- Summary of summary($Im(y \sim x)$)
- Correlation
- Residual Analysis: Model control

Hypothesis tests for the parameters

 We can carry out hypothesis tests for the parameters in a linear regression model:

$$H_{0,i}: \quad \beta_i = \beta_{0,i}$$

$$H_{1,i}: \quad \beta_i \neq \beta_{1,i}$$

Hypothesis tests for the parameters

 We can carry out hypothesis tests for the parameters in a linear regression model:

$$H_{0,i}: \quad \beta_i = \beta_{0,i}$$

 $H_{1,i}: \quad \beta_i \neq \beta_{1,i}$

We use the t-distributed statistics:

Theorem 5.11

Under the null-hypothesis $(eta_0 = eta_{0,0} \ {\sf and} \ eta_1 = eta_{0,1})$ the statistics

$$T_{eta_0} = rac{\hat{eta}_0 - eta_{0,0}}{\hat{oldsymbol{\sigma}}_{eta_0}}; \quad T_{eta_1} = rac{\hat{eta}_1 - eta_{0,1}}{\hat{oldsymbol{\sigma}}_{eta_1}},$$

are t-distributed with n-2 degrees of freedom, and inference should be based on this distribution.

- See Example 5.12 for example of hypothesis test.
- ullet Test if the parameters are signifikantly different from 0

$$H_{0,i}: \quad \beta_i = 0$$

$$H_{1,i}: \quad \beta_i \neq 0$$

See the resultats in R

```
## Hypothesis tests om signifikante parametre

## Generate x
x <- runif(n=20, min=-2, max=4)
## Simulate Y
beta0=50; beta1=200; sigma=90
y <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)

## Use lm() to find the estimates
fit <- lm(y ~ x)

## See summary - what we need
summary(fit)</pre>
```

Confidence intervals for the parameters

Method 5.14

(1-lpha) confidence intervals for $oldsymbol{eta}_0$ and $oldsymbol{eta}_1$ are given by

$$\hat{\beta}_0 \pm t_{1-\alpha/2} \,\hat{\sigma}_{\beta_0}$$
$$\hat{\beta}_1 \pm t_{1-\alpha/2} \,\hat{\sigma}_{\beta_1}$$

where $t_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of a *t*-distribution with n-2 degrees of freedom.

- ullet remember that $\hat{\sigma}_{eta_0}$ and $\hat{\sigma}_{eta_1}$ are found from equations 5-41 and 5-42
- in R we can read off $\hat{\sigma}_{\beta_0}$ and $\hat{\sigma}_{\beta_1}$ udner "Std. Error" from "summary(fit)"

Simulation illustration of CIs

```
## Make confidence intervals for the parameters
## number of repeats
nRepeat <- 100
## Did we catch the correct parameter
TrueValInCI <- logical(nRepeat)
## Repeat the simulation and estimation nRepeat times:
for(i in 1:nRepeat){
  ## Generate x
 x \leftarrow runif(n=20, min=-2, max=4)
 ## Simulate y
  beta0=50; beta1=200; sigma=90
  v <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)</pre>
  ## Use lm() to find the estimates
 fit \leftarrow lm(v ~x)
  ## Luckily R can compute the confidence interval (level=1-alpha)
  (ci <- confint(fit, "(Intercept)", level=0.95))</pre>
  ## Was the correct parameter value "caught" by the interval? (covered)
  (TrueValInCI[i] <- ci[1] < beta0 & beta0 < ci[2])
## How often did this happen?
sum(TrueValInCI) / nRepeat
```

Oversigt

- Example: Height-Weight
- Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- Confidence and prediction interval for the line
- Summary of summary($Im(y \sim x)$)
- Correlation
- Residual Analysis: Model control

Method 5.17 Confidence interval for $\beta_0 + \beta_1 x_0$

- The confidence interval for $\beta_0 + \beta_1 x_0$ corresponds to a confidence interval for the line in the point x_0
- Is computed by

$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2} \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

• The confidence interval will in $100(1-\alpha)\%$ of the times contain the correct line, that is $\beta_0 + \beta_1 x_0$

Method 5.17 Prediction interval for $\beta_0 + \beta_1 x_0 + \varepsilon_0$

- ullet The prediction interval for Y_0 is found using a value x_0
- This is done *before* Y_0 is observered with

$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2} \cdot \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

- The prediction intervallet will in 100(1-lpha)% of the times contain the observered y_0
- ullet A prediction intervalis wider than a confidence interval for a given lpha

Example of confidence interval for the line

```
## Example of confidence interval for the line

## Make a sequence of x values
xval <- seq(from=-2, to=6, length.out=100)

## Use the predict function
CI <- predict(fit, newdata=data.frame(x=xval),
interval="confidence",
level=.95)

## Check what we got
head(CI)

## Plot the data, model fit and intervals
plot(x, y, pch=20)
abline(fit)
lines(xval, CI[, "lur"], lty=2, col="red", lwd=2)
lines(xval, CI[, "uor"], lty=2, col="red", lwd=2)
lines(xval, CI[, "uor"], lty=2, col="red", lwd=2)
lines(xval, CI[, "uor"], lty=2, col="red", lwd=2)
```


Example of prediction interval

```
## Example with prediction interval

## Make a sequence of x values
xval <- seq(from=-2, to=6, length.out=100)

## Use the predict function
PI <- predict(fit, newdata=data.frame(x=xval),
interval="prediction",
level=.95)

## Check what we got
head(CI)

## Plot the data, model fit and intervals
plot(x, y, pch=20)
abiline(fit)
lines(xval, PI[, "upr"], lty=2, col="blue", lwd=2)
lines(xval, PI[, "upr"], lty=2, col="blue", lwd=2)
lines(xval, PI[, "upr"], lty=2, col="blue", lwd=2)
```


Oversigt

- Example: Height-Weight
- 2 Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- 6 Confidence and prediction interval for the line
- Summary of summary $(Im(y \sim x))$
- Correlation
- Residual Analysis: Model control

What more do we get from summary?

```
summarv(fit)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
     Min 1Q Median 3Q Max
## -184.7 -96.4 -20.3 86.6 279.1
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 51.5
                      31.1 1.66 0.12
          216.3 15.2 14.22 3.1e-11 ***
## x
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 126 on 18 degrees of freedom
## Multiple R-squared: 0.918, Adjusted R-squared: 0.914
## F-statistic: 202 on 1 and 18 DF, p-value: 3.14e-11
```

• Residuals: Min 1Q Median 3Q Max:

 Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum

 Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum

• Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

- Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients':

- The test is $H_{0,i}: \beta_i = 0$ vs. $H_{1,i}: \beta_i \neq 0$
- The stars is showing the size categories of the p-value

- Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients':

- The test is $H_{0,i}: \beta_i = 0$ vs. $H_{1,i}: \beta_i \neq 0$
- The stars is showing the size categories of the p-value
- Residual standard error: XXX on XXX degrees of freedom

- Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients':

- The test is $H_{0,i}: \beta_i = 0$ vs. $H_{1,i}: \beta_i \neq 0$
- The stars is showing the size categories of the p-value
- Residual standard error: XXX on XXX degrees of freedom $\varepsilon_i \sim N(0, \sigma^2)$ printed is $\hat{\sigma}$ and v degrees of freedom (used for hypothesis test)

- Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients':

- The test is $H_{0,i}: \beta_i = 0$ vs. $H_{1,i}: \beta_i \neq 0$
- The stars is showing the size categories of the p-value
- Residual standard error: XXX on XXX degrees of freedom $\varepsilon_i \sim N(0, \sigma^2)$ printed is $\hat{\sigma}$ and v degrees of freedom (used for hypothesis test)
- Multiple R-squared: XXX

- Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients':

- The test is $H_{0,i}: \beta_i = 0$ vs. $H_{1,i}: \beta_i \neq 0$
- The stars is showing the size categories of the p-value
- Residual standard error: XXX on XXX degrees of freedom $\varepsilon_i \sim N(0, \sigma^2)$ printed is $\hat{\sigma}$ and v degrees of freedom (used for hypothesis test)
- Multiple R-squared: XXX Explained variation r^2

- Residuals: Min 1Q Median 3Q Max: The residuals': Minimum, 1. quartile, Median, 3. quartile, Maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stars"

The coefficients':

- The test is $H_{0,i}: \beta_i = 0$ vs. $H_{1,i}: \beta_i \neq 0$
- The stars is showing the size categories of the p-value
- Residual standard error: XXX on XXX degrees of freedom $\varepsilon_i \sim N(0, \sigma^2)$ printed is $\hat{\sigma}$ and v degrees of freedom (used for hypothesis test)
- Multiple R-squared: XXX Explained variation r^2
- The rest we do not use in this course

Oversigt

- Example: Height-Weight
- Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- © Confidence and prediction interval for the line
- Summary of summary($Im(y \sim x)$)
- Correlation
- Residual Analysis: Model control

Explained variation and correlation

- Explained variation in a model is r^2 , in summary "Multiple R-squared"
- Found as

$$r^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

where
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• The proportion of the total variability explained by the model

Explained variation and correlation

- ullet The correlationen ho is a measure of *linear relation* between two random variables
- Estimated (i.e. empirical) correlation

$$\hat{\rho} = r = \sqrt{r^2} sgn(\hat{\beta}_1)$$

where $sgn(\hat{\pmb{\beta}}_1)$ er: -1 for $\hat{\pmb{\beta}}_1 \leq 0$ and 1 for $\hat{\pmb{\beta}}_1 > 0$

Explained variation and correlation

- ullet The correlationen ho is a measure of *linear relation* between two random variables
- Estimated (i.e. empirical) correlation

$$\hat{\rho} = r = \sqrt{r^2} sgn(\hat{\beta}_1)$$

where $sgn(\hat{\pmb{\beta}}_1)$ er: -1 for $\hat{\pmb{\beta}}_1 \leq 0$ and 1 for $\hat{\pmb{\beta}}_1 > 0$

- Hence:
 - Positive correlation when positive slope
 - Negative correlation when negative slope

Test for significance of correlation

 Test for significance of correlation (linear relation) between two variables

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

is equivalent to

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

where \hat{eta}_1 is the estimated slope in a simple linear regression model

R Illustration

```
## Generates x
x <- runif(n=20, min=-2, max=4)
## Simulate y
beta0=50; beta1=200; sigma=90
y <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)
## Scatter plot
plot(x,y)
## Use lm() to find the estimates
fit <- lm(y ~ x)
## The "true" line
abline(beta0, beta1)
## Plot of fit
abline(fit, col="red")
## See summary
summary(fit)
## Correlation between x and y
cor(x,y)
## Squared becomes the "Multiple R-squared" from summary(fit)
cor(x,y)^2
```

Oversigt

- Example: Height-Weight
- 2 Linear regression model
- Least Squares Method
- Statistics and linear regression??
- ullet Hypothesis tests and confidence intervals for eta_0 and eta_1
- 6 Confidence and prediction interval for the line
- \circ Summary of summary(Im(y \sim x))
- Correlation
- Residual Analysis: Model control

Residual Analysis

Method 5.26

- Check normality assumption with qq-plot.
- Check (non)systematic behavior by plotting the residuals e_i as a function of fitted values \hat{y}_i

Residual Analysis in R

```
fit <- lm(y ~ x)
par(mfrow = c(1, 2))
qqnorm(fit$residuals)
plot(fit$fitted, fit$residuals)</pre>
```


OR: Wally plot again!

Agenda

- Example: Height-Weight
- Linear regression model
- Least Squares Method
- Statistics and linear regression??
- **a** Hypothesis tests and confidence intervals for β_0 and β_1
- Confidence and prediction interval for the line
- Summary of summary $(Im(y\sim x))$
- Correlation
- Residual Analysis: Model control