Novo Espaço – Matemática A, 11.º ano

Proposta de resolução [novembro - 2020]

1.

1.1.
$$\widehat{EA} = \frac{360^{\circ}}{5} = 72^{\circ} \widehat{EA} = 72^{\circ}$$

$$E\hat{B}A = A\hat{E}B = \frac{72^{\circ}}{2} = 36^{\circ}$$

$$B\hat{A}E = \frac{3 \times 72^{\circ}}{2} = 108^{\circ}$$

Resposta: $E\hat{B}A = A\hat{E}B = 36^{\circ} \text{ e } B\hat{A}E = 108^{\circ}$

$$\cos 36^{\circ} = \frac{0.8}{\overline{AB}}$$
. Daqui resulta que $\overline{AB} = \frac{0.8}{\cos 36^{\circ}}$.

O perímetro de cada face é dado por: $5 \times \overline{AB} = \frac{4}{\cos 36^{\circ}} \approx 4.9$

Resposta: O perímetro de cada face é 4,9 m.

2.

2.1. Se
$$\alpha = \frac{\pi}{3}$$
, tem-se:

$$\overline{AB} = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
 e $\overline{BC} = 1 - \cos \frac{\pi}{3} = 1 - \frac{1}{2} = \frac{1}{2}$

A área do triângulo [ABC] é dada por: $\frac{\overline{BC} \times \overline{AB}}{2} = \frac{\frac{1}{2} \times \frac{\sqrt{3}}{2}}{2} = \frac{\sqrt{3}}{8}$

Resposta: (A)
$$\frac{\sqrt{3}}{8}$$

2.2.
$$\overline{AB} = \sin \alpha$$
 e $\overline{BC} = 1 - \cos \alpha$

A área do triângulo [ABC] é dada por:

$$\frac{\overline{BC} \times \overline{AB}}{2} = \frac{\sin \alpha \times (1 - \cos \alpha)}{2} = \frac{\sin \alpha - \sin \alpha \cos \alpha}{2}$$

Resposta: (B)
$$\frac{\sin(\alpha) - \sin(\alpha)\cos(\alpha)}{2}$$

Novo Espaço – Matemática A, 11.º ano

Proposta de resolução [novembro - 2020]

3.
$$\sin\left(x+\frac{\pi}{2}\right)\sin\left(\pi+x\right) = \cos x\left(-\sin x\right) = -\cos x\sin x.$$

Um ângulo pertencente ao intervalo $\left]-\pi, -\frac{\pi}{2}\right[$ é um ângulo do 3.º quadrante,

pelo que o seno e o cosseno são ambos negativos. Então: $\forall x \in \left] -\pi, -\frac{\pi}{2} \right[$, $-\cos x \sin x < 0$.

Resposta: (D) $\left] -\pi, -\frac{\pi}{2} \right[$

4.
$$1-2\sin x = 0 \Leftrightarrow \sin x = \frac{1}{2}$$
 e $\left] -\frac{3\pi}{2}, 0 \right[= \left] -\frac{9\pi}{6}, 0 \right[$ $\sin\left(-\frac{7\pi}{6}\right) = -\sin\left(\pi + \frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$ e $-\frac{7\pi}{6} \in \left[-\frac{3\pi}{2}, 0 \right[$

Resposta: (B) $-\frac{7\pi}{6}$

5.

5.1.
$$\tan(\alpha - \pi) = \frac{1}{2}$$
 e $\alpha \in [\pi, 2\pi[$, ou seja, $\tan \alpha = \frac{1}{2}$ e α é um ângulo do 3.º quadrante.

$$f(\alpha) = 3 - 2\cos\alpha$$

Sabe-se que $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$, pelo que $1 + \frac{1}{4} = \frac{1}{\cos^2 \alpha}$.

Daqui resulta que $\cos^2 \alpha = \frac{4}{5}$.

Como α é do 3.º quadrante, $\cos \alpha = -\frac{2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$.

Assim,
$$f(\alpha) = 3 - 2\cos\alpha = 3 - 2\left(-\frac{2\sqrt{5}}{5}\right) = 3 + \frac{4\sqrt{5}}{5}$$
.

Resposta: $f(\alpha) = 3 + \frac{4\sqrt{5}}{5}$

Novo Espaço - Matemática A, 11.º ano

Proposta de resolução [novembro - 2020]

5.2. a)
$$f\left(\frac{3\pi}{2}\right) = 3 - 2\cos\left(\frac{3\pi}{2}\right) = 3 - 0 = 3$$

Resposta: $A\left(\frac{3\pi}{2},3\right)$

b)
$$D_f = \mathbb{R}$$
 e $f(x) = 3 - 2\cos x$

$$-1 \le \cos x \le 1 \Leftrightarrow 2 \ge -2\cos x \ge -2 \Leftrightarrow 5 \ge 3 - 2\cos x \ge 1$$

 $D'_f = [1,5]$, pelo que o mínimo da função $f \in 1$.

$$f(x) = 1 \land x \in \left[\frac{3\pi}{2}, 3\pi \right] \Leftrightarrow 3 - 2\cos x = 1 \land x \in \left[\frac{3\pi}{2}, 3\pi \right]$$

$$\Leftrightarrow \cos x = 1 \land x \in \left[\frac{3\pi}{2}, 3\pi \right] \Leftrightarrow x = 2\pi$$

Resposta: $B(2\pi, 1)$

c)
$$f(x) = 4 \land x \in \left[\frac{3\pi}{2}, 3\pi \right] \Leftrightarrow 3 - 2\cos x = 4 \land x \in \left[\frac{3\pi}{2}, 3\pi \right] \Leftrightarrow$$

$$\Leftrightarrow \cos x = -\frac{1}{2} \land x \in \left[\frac{3\pi}{2}, 3\pi \right] \Leftrightarrow x = 3\pi - \frac{\pi}{3} \Leftrightarrow x = \frac{8\pi}{3}$$

Resposta:
$$C\left(\frac{8\pi}{3},4\right)$$

6.

6.1. Se
$$C(1,3)$$
, então $\tan \alpha = 3$.

O ponto F tem coordenadas $(-\cos \alpha, -\sin \alpha)$.

Sabe-se que
$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$
 e $\alpha \in \left[0, \frac{\pi}{2}\right]$.

$$1+9=\frac{1}{\cos^2\alpha} \Leftrightarrow \cos^2\alpha = \frac{1}{10}$$
, $\log \sin^2\alpha = 1-\cos^2\alpha = 1-\frac{1}{10} = \frac{9}{10}$.

Como
$$\alpha \in \left[0, \frac{\pi}{2}\right]$$
, $\cos \alpha = \frac{\sqrt{10}}{10}$ e $\sin \alpha = \frac{3\sqrt{10}}{10}$.

O ponto
$$F$$
 tem coordenadas $\left(-\frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10}\right)$.

Resposta:
$$F\left(-\frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10}\right)$$

6.2. a) A medida da área do trapézio é dada por: $\frac{\overline{BE} + \overline{CD}}{2} \times \overline{DE}$

$$\frac{\overline{BE} + \overline{CD}}{2} \times \overline{DE} = \frac{\cos \alpha + 1}{2} \times \left(\tan \alpha - \sin \alpha\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha + 1}{2} \times \left(\frac{\sin \alpha - \sin \alpha}{\cos \alpha}\right) = \frac{\cos \alpha}{2} \times \left(\frac{\sin \alpha}{\alpha}\right) = \frac{\cos \alpha}{2} \times \left(\frac{\sin \alpha}{\alpha$$

$$=\frac{(1+\cos\alpha)(1-\cos\alpha)\sin\alpha}{2\cos\alpha}=\frac{(1-\cos^2\alpha)}{2}\times\frac{\sin\alpha}{\cos\alpha}=\frac{\sin^2\alpha\times\tan\alpha}{2}=f(\alpha)$$

A área do trapézio [BCDE] é dada por $f(\alpha)$.

b) Resolução da equação $f(\alpha) = 3$ na calculadora:

Inserem-se as expressões $y = f(\alpha)$ e y = 3.

Atendendo a que $\alpha \in \left]0, \frac{\pi}{2}\right[$, pode definir-se a seguinte janela de visualização.

Em seguida, identifica-se o ponto de interseção dos dois gráficos.

 $\alpha \approx 1,41$

Resposta: A medida da área do trapézio é 3 se $\alpha \approx 1,4$ (valor arredondado às décimas).