

Enhancing Safety through Text Mining and Al

~ Sridhar Reddy Maram LA32371

Research Problem

- 35% of railroad accidents are human-caused (2009-2020 data).
- Current systems like Positive Train Control (PTC) cannot address all human errors.
- Need to identify factors that contribute to humancaused accidents beyond just speed and derailment.

Reference Dataset:

• The FRA dataset contained more that accident records from January 1, 2009, 2020, each containing 145 fields (FRA, 2007).

Literature Review

• ML - to predict accidents based on fixed attributes like train speed, weather condition, track conditions, etc..(Structured Data)

• **NLP** - compared latent semantic analysis (LSA) and latent Dirichlet allocation (LDA) to classify accident narratives (Unstructured Data).

• Combining ML with Text Mining - to preserve to rain accidents, and the use of Shatheory to rank the contribution of features.

Methodology

- ➤ Data Handling
 - **❖** FRA Dataset (2009 to 2020)
 - **❖** Text Cleaning
 - Tokenization
 - Stop words removal
 - Noise removal
 - Normalization
 - **❖** Feature Extraction
 - One Hot Encoding
 - **❖** Data Filtering
 - Remove irrelevant data
 - Handle Missing values
 - **❖** Data Balancing
 - Sampling technique

- > EDA
 - Visualizations
 - **❖** Word cloud
 - Clustering
- ➤ Model Deployment
 - **ML** Algorithms
 - **❖** NLP Models
- ➤ Model Evaluation
 - Performance Metrics

Results Analysis and Interpretation

- ✓ Human-caused accidents are often not associated with high speeds or derailments.
- ✓ Key Features identified by Shapley Values were strong indicators of human-caused accidents.

Future of NLP in Railway Safety

FUTURE

CHALLENGE

Challenges:

- Handling complex language in accident reports.
- Large datasets needed for accurate model training.

Opportunities:

- Real-time data integration for dynamic risk prediction.
- Advanced NLP techniques like BERT and GPT for

deeper analysis of accidents.

• Integration with IoT for automated safety aler

Conclusion

Conclusion

- The combination of ML and NLP provides a comprehensive understanding of human-caused railroad accidents.
- Shapley game theory provides a powerful tool for understanding feature importance for both structured and unstructured data.
- > Expected Outcomes:
 - i) Policy Implications
 - ii) Management Decisions
 - iii) Future Research

- ☐ Bridgelall, R., & Tolliver, D. D. (2023).

 Railroad accident analysis by machine learning and natural language processing.

 Journal of Rail Transport Planning & Management, 29, 100429.

 https://doi.org/10.1016/j.jrtpm.2023.100429
- Syeda, Kanza & Shirazi, Syed Noorulhassan & Naqvi, Syed & Parkinson, Howard & Bamford, Gary. (2019). Big Data and Natural Language Processing for Railway Safety: Analysis of RaIncident Reports. 10.4018/978-1.ch040.

