Explanation-Based Human Debugging of NLP Models: A Survey

Piyawat Lertvittayakumjorn and Francesca Toni

Department of Computing Imperial College London, UK

January 10, 2022

Overview

- 1. Introduction
- 2. Categorization of Existing Work
- 3. Human Factors
- 4. Open Problems

General Framework of EBHD

Explanaton-based human debugging (EBHD) : mitigating bugs using human feedback given in response to explanations

Contex

- tasks
 - text classification with single input (TC), natural language inference (NLI), question answering (QA)
- models
 - traditional models: naive Bayes (NB), logistic regression (LR), SVM
 - models involves word embeddings: CNN, fastText, Telling QA, Neural Operator (NeOp)
 - pre-trained language models: BERT, RoBERTa
- bug sources
 - natural artifacts (AR)
 - simulated: using a small subset for training (SS), injecting wrong labels (WL), out-of-distribution tests (OD), contaminating training data with decoys (in computer vision domain)

providing explanations

- explanation scope
 - local explanations: demands a large amount of effort from feedback providers
 - global explanations: can hardly reveal details of complex model's inner workings
 - explanations for a group of predictions: no existing study for EBHD
- generating explanations
 - format: input-based explanations, example-based explanations, rule-based explanations, adversarial-based explanations ...
 - : how?: self-explaining (SE), post-hoc (PH) explanation methods
- presenting explanations
 - consider the background knowledge, desires and limits of the feedback providers
 - user-friendly, sound, complete, not overwhelming ...

collecting feedback

- text classification:
 - decide which words are in fact relevant (WO), adjust word importance scores (WS), specifying relevancy scores for example-based explanations (ES), learned features (FE), learned rules (RU), check predicted labels or ground-truth labels
- table question answering:
 - identify where in the table and the question the model should focus (AT)
- complex tasks requiring reasoning:
 - compositional explanations to show how the humans would reason (RE) about the model's failure cases
- how to collect and utilize other forms of feedback

updating the model

- adjust model parameters (M): important to make ensure that the adjustments made by humans generalize well to all examples
- improve training data (D): correcting mislabeled training examples, assigning noisy labels to unlabeled training examples, removing irrelevant words, creating augmented training examples
- influence the training process (T):
 - model specific: attention supervision, regularization, disabling learned features
 - model agnostic: user co-training,

No study testing which technique is more applicable for which task, domain, or model architecture

iteration

- the debugging workflow can be done iteratively
- fix vital bugs first and finer bugs in later iterations
- avoid local decision pitfalls

Experimental setting

Setting	advantages	disadvantages		
human participants (SP)	gain insights concerning human computer interaction	limited number of participants		
crowdsourcing platform (SC)	conduct experiments at a large scale	quality control		
simulation (SM)	faster and cheaper	may not reflect the effectiveness of the frame- work when deployed with real humans		

Summary

Paper	Context			Workflow				Setting
rapei	Tack	Task Model	Bug	Exp.	Exp.	Feed-	Up-	Setting
	lask		sources	scope	method	back	date	
Kulesza et al. (2009)	TC	NB	AR	G,L	SE	LB,WS	M,D	SP
Stumpf et al. (2009)	TC	NB	SS	L	\mathbf{SE}	WO	T	SP
Kulesza et al. (2010)	TC	NB	SS	G,L	\mathbf{SE}	WO,LB	M,D	SP
Kulesza et al. (2015)	TC	NB	AR	G,L	\mathbf{SE}	WO,WS	\mathbf{M}	SP
Ribeiro et al. (2016)	TC	SVM	AR	L	PH	WO	D	CS
Koh and Liang (2017)	TC	LR	WL	L	PH	LB	D	SM
Ribeiro et al. (2018b)	VQA TC	TellQA fastText	AR AR,OD	G	PH	RU	D	SP
Teso and Kersting (2019)	TC	LR	AR	L	PH	WO	D	SM
Cho et al. (2019)	TQA	NeOp	AR	L	SE	AT	T	NR
Khanna et al. (2019)	TC	LR	WL	L	PH	LB	D	SM
Lertvittayakumjorn et al. (2020)	TC	CNN	AR,SS,OD	G	PH	FE	T	CS
Smith-Renner et al. (2020)	TC	NB	AR,SS	L	SE	LB,WO	M,D	CS
Han and Ghosh (2020)	TC	LR	WL	L	PH	LB	D	SM
Yao et al. (2021)	TC	BERT*	AR,OD	L	PH	RE	D,T	SP
Zylberajch et al. (2021)	NLI	BERT	AR	L	PH	ES	D	SP

0 / 17

Model understanding

It is important to verify that the explanations help feedback providers form an accurate understanding of how the models work.

Examples

rule-based and keyword-based > similarity-based, why + why not > why > why not, interactive explanations > static explanations

Examples

- some users did not understand explanations based on the absence of some words
- revealing inner workings could further help understanding but introduced additional workload

Willingness

what do humans naturally want to?

- more than data labels, commonsense knowledge and English language knowledge
- neither complete nor precise, not quantitatively, selective, rarely refer to probabilities but express casual relationships

Trust

- increase trust:
 - showing more detailed explanations
 - the ability to provide feedback makes human trust
- decrease trust:
 - cannot increase human trust in high-stakes applications
 - explanations of low-quality models decrease trust
 - providing feedback decreases human trust

Frustration and Expectation

- frustration
 - increase frustration: ability to provide feedback
 - decrease frustration: poor explanations, too many details
- expectation
 - participants expected the model to improve after the interaction

Summary

- feedback providers: using developers or experts in the team be the providers; otherwise, collecting feedback implicitly
- explanations: avoiding forms which are difficult to understand; avoiding too much information
- feedback: relying on collective feedback; allowing to verify and modify
- update: showing the changes incrementally in real time

open problems

- beyond English text classification
- tackling more challenging bugs:
 - bugs happens less often
 - different people may give different feedback
 - injecting new knowledge with feedback
 - transfer techniques across modalities
- analyzing and enhancing efficiency: none of the selected studies considered the efficiency of three steps altogether, especially step3
- reliable comparison across paper: user studies are difficult to replicate
- towards deployment
 - integrating EBHD framework into available visualization systems
 - human-Al interaction guidelines and evaluate with potential end users

The End