Chapter 2 :: Combinational Logic Design

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Circuits

Nodes

- Inputs: *A*, *B*, *C*
- Outputs: *Y*, *Z*
- Internal: n1

• Circuit elements

- E1, E2, E3
- Each a circuit

Types of Logic Circuits

- Combinational Logic
 - Memoryless
 - Outputs determined by current values of inputs
- Sequential Logic
 - Has memory
 - Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every circuit element is itself combinational
- Every node of the circuit is either designated as an input to the circuit or connects to exactly one output terminal of a circuit element
- The circuit contains no cyclic paths: every path through the circuit visits each circuit node at most once
- Example:

2.2 Boolean Equations (부울식)

- Functional specification of outputs in terms of inputs
- Example:

$$S = F(A, B, C_{in})$$

$$C_{out} = F(A, B, C_{in})$$

$$\begin{array}{cccc}
A & & & & & & & & & & & \\
B & & & & & & & & & & & \\
C_{in} & & & & & & & & & & \\
C_{out} & & & & & & & & & \\
S & & & & & & & & & & \\
C_{out} & & & & & & & & & \\
C_{out} & & & & & & & & & \\
C_{out} & & & & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C_{out} & & & & & & & & \\
C_{in} & & & & & & & \\
C_{in} & & & & & & & \\
C_{in} & & & & & & \\
\end{array}$$

Equations (기본 논리식의 표현)

- ▶ 기본적인 불 대수식은 AND, OR, NOT을 이용하여 표현
- AND 식은 곱셈의 형식으로 표현하고, OR 식은 덧셈의 형식으로 표현
- NOT 식은 \overline{X} 또는 X'로 표현
- 완전한 논리식은 입력 항목들의 상태에 따른 출력을 결정하는 식
 - X=0 and Y=1 일 때 출력을 1로 만들려는 경우 출력 논리식 $F = \overline{XY}$
 - X=0 or Y=1 일 때 출력을 1로 만들려는 경우 출력 논리식 $F=\overline{X}+Y$
 - (X=0 and Y=1) or (X=1 and Y=0) 일 때 출력을 1로 만들려는 경우 출력 논리식 $F=\overline{X}Y+X\overline{Y}$

Sum-of-Products (SOP) Form (곱의 합 형태)

- All Boolean equations can be written in SOP form
- Each row in a truth table has a minterm(함수에 모든 변수를 포함)
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- The function is formed by ORing the minterms for which the output is TRUE
- Thus, a sum (OR) of products (AND terms)
 (1 단계는 AND항(곱의 항, product term)으로 구성되고,)
 (2 단계는 OR항(합의 항, sum term)으로 만들어진 논리식)

			_	minterm
Α	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_{0}
0	1	1	$\overline{A}\;B$	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B, C) = \overline{AB} + AB = \Sigma(1, 3)$$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row in a truth table has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- The function is formed by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)
 (1단계는 OR항(합의 항, sum term)으로 구성되고,)
 (2 단계는 AND항(곱의 항, product term)으로 만들어진 논리식)

				maxterm
A	В	Y	maxterm	name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
1	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B, C) = (A + B)(A + B) = \Pi(0, 2)$$

Some Definitions

- Minterm: product that includes all input variables *ABC'*, *AB'C*, *A'BC'*
- Maxterm: sum that includes all input variables (A'+B'+C), (A'+B+C'), (A+B'+C)

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)

• Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0	0	O C
0	1	0	O C
1	0	1	$O\overline{C}$
1	1	0	O C

$$E = OC'$$

= $\Sigma(2)$

• POS – product-of-sums

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

$$E = (O+C)(O+C')(O'+C')$$

= $\Pi(0, 1, 3)$

2.3 Boolean Algebra (부울 대수)

- Set of axioms and theorems to **simplify** Boolean equations (부울식을 간단히 하기 위해 부울 대수를 사용한다.)
- Like regular algebra, but in some cases simpler because variables can have **only two values** (1 or 0)
- Axioms and theorems obey the principles of **duality**:
 - ANDs and ORs interchanged, 0's and 1's interchanged

Boolean Axioms and Theorems

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Identity Theorem

- $\mathbf{B} \bullet \mathbf{1} = \mathbf{B}$
- B + 0 = B

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Null Element Theorem

- $\mathbf{B} \bullet \mathbf{0} = \mathbf{0}$
- B + 1 = 1

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

T3: Idempotency Theorem

- $B \bullet B = B$
- B + B = B

$$B = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 $=$ B

T4: Identity Theorem

•
$$\overline{\overline{B}} = B$$

T5: Complement Theorem

- $\mathbf{B} \bullet \overline{\mathbf{B}} = 0$
- $B + \overline{B} = 1$

$$\frac{B}{B}$$
 $=$ 0

$$\frac{B}{B}$$
 $=$ 1

Boolean Theorems of Several Variables

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \cdot C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12′	$ \overline{B_0} + \overline{B_1} + \overline{B_2} \dots \\ = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Simplifying Boolean Expressions: Example 1

•
$$Y = A\overline{B} + AB$$

 $= A(B + \overline{B})$ T8
 $= A(1)$ T5'
 $= A$ T1

Simplifying Boolean Expressions: Example 2

•
$$Y = A(AB + ABC)$$

 $= A(AB(1 + C))$ T8
 $= A(AB(1))$ T2'
 $= A(AB)$ T1
 $= (AA)B$ T7
 $= AB$ T3

Examples

• 진리표로부터 SOP(sum-of-products(최소항식)) 형태로 논리식을 표현하고 식을 간소화 하시오. 또한 게이트 회로를 설계 하시오.

입	출력	
а	b	f
0	0	0
0	1	1
1	0	1
1	1	1

$$\Rightarrow f = ab + ab + ab$$

$$f = a'b + ab' + ab + ab$$

= $a(b'+b) + b(a'+a)$
= $a+b$

$$\begin{bmatrix} a \\ b \end{bmatrix} - f$$

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \bullet \overline{B}$$

Bubble Pushing

2.5.2 Bubble Pushing (버블 추가)

- Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa.
- Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs.

• Pushing bubbles on *all* gate inputs forward toward the output puts a bubble on the output and changes the gate body.

Bubble Pushing

• What is the Boolean expression for this circuit?

Bubble Pushing

• What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at the output of the circuit and work toward the inputs.
 (출력부분에서 시작하여 입력 부분으로 진행)
- Push any bubbles on the final output back toward the inputs.
- Working backward, draw each gate in a form so that bubbles cancel. (버블이 없어지도록 각 게이트 변경)

Bubble Pushing Rules

2.4 From Logic to Gates (논리에서 게이트로)

- Two-level logic: ANDs followed by Ors
- Example: $Y = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$
- Schematic(개요도)
 - 서로 연결된 선과 요소를 보여주는 digital 회로의 diagram

Circuit Schematic Rules (개요도 작성 규칙)

- Inputs are on the left (or top) side of a schematic (입력은 개요도의 왼쪽이나 위쪽에 있다.)
- Outputs are on the right (or bottom) side of a schematic
 (출력은 개요도의 오른쪽이나 아래쪽에 있다.)
- Whenever possible, gates should flow from left to right (개요도는 왼쪽에서 오른쪽으로 흐른다.)
- Straight wires are better to use than wires with multiple corners

(가능한 꺽이선보다는 곧은 직선을 사용한다.)

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
 (선은 항상 T 접합으로 연결한다.)
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

Priority Circuit Hardware (예제 2.7)

A_3	A_2	A_{1}	A_o	Y ₃	Y_2	Y_1	Y_o
0	0		0	0	0 0 0 0 1 1 1 0 0 0 0	0	0
0	0	0 0 1 0 0 1 0 0 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1	1	0	00000001111111	0	0 0 1 1 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

진리표에서의 X는 Don't care(무관항)

A_3	A_2	A_{1}	A_o	Y ₃ 0 0 0 0 1	Y ₂	Y ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	Χ	1	0	0	0

PRIORITY CIRCUIT

2.5 Multiple Output Circuits(다단계 조합논리)

- 하드웨어 축소
 - 다단계 조합논리는 더 적은 하드웨어를 사용할 수 있다.
 - $A \oplus B \oplus C = (A \oplus B) \oplus C$

2.6 Don't Cares

• 진리표에서의 X는 Don't care(무관항)

	_						
A_3	A_2	A_1	A_{o}	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1	010101010101	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A_3	A_2	A_{1}	A_o	Y ₃	Y_2	Y ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	Χ	0 0 0 0 1	0	0	0

Contention: X

- 회로에서의 X는 Contention(경쟁)
 - circuit tries to drive the output to 1 and 0
 - 금지값 or 잘 알려지지 않은 값

Floating: Z

- Floating(부동값) Z : high나 low로 구동되지 않음.
- Said to be Floating, high impedance, open, high Z
- Output is not connected to the input

Tristate Buffer

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

2.7 Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- (부울식을 간단히 하기 위하여 그래프로 나타내는 방법)
- PA + PA = P

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y A	В			
C	00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

K-map Example

Truth Table

_ A	В	C	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

K-Map

$$Y = AB + A\overline{B}C$$

K-map Rules

- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction. (각각의 원은 2의 제곱형태의 크기를 가진 직사각형 블록으로)
- Each circle must be as large as possible (각각의 원은 가능한 크게)
- A circle may wrap around the edges of the K-map (원은 맵의 가장자리를 둘러 쌀 수 있고)
- A one in a K-map may be circled multiple times (1은 여러 원에 묶일 수도 있고)
- A "don't care" (X) is circled only if it helps minimize the equation (X는 식을 최소화하다면 묶고)

a b	f
0 0	1
0 1	1
1 0	1
1 1	0

양쪽 끝은 연결되어 있다.

$$F = C$$

$$F = \overline{A}$$

양쪽 끝은 연결되어 있다.

세 번 중복하여 묶었다.

K-Maps with Don't Cares

$$Y = A + \overline{BD} + C$$

K-Maps 예제

• 다음 진리표로부터 카르노 맵을 작성하고 간략화하여라.

ABCD	F
0000	×
0001	1
0010	X
0011	1
0100	X
0 1 0 1	1
0 1 1 0	1
0 1 1 1	1
1000	0
1001	0
1010	0
1011	0
1 1 0 0	0
1 1 0 1	1
1 1 1 0	1
1111	0

예제 2.10) 7-세그먼트 디코더

Table 2.6 Seven-segment display decoder truth table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0 -	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1 1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

예제 2.10

Table 2.6 Seven-segment display decoder truth table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e		S_f	S_g				
0000	1	1	1	1	1		1	0				
0001	0	1	1	0	0		0	0				
0010	1	1	0	i	1		0	1				
0011	1	1	Sa						S_b			
0100	0	1	D _{1:0}	² 00	01	11	10		D _{1:0} D _{3:2} 00	01	11	10
0101	1	0	- 00	1	0	0	1		00 1	1	0	1
0110	1	0	$-\bar{D}_2\bar{D}_1\bar{D}_0$									
0111	1	1	36 9/1/100	_ 0	1	0	1	D ₃ l	01 1	0	0	1
1000	1	1		$D_3 D_2 D_0$				$D_3\overline{D}_2\overline{D}_1$		1	5.0.0	
1001	1	1	11	1	1	0	0		11 1	1	$\overline{D}_3D_1D_0$	0
others	0	0	\bar{D}_3D_1		4			-				
			10	1	1	0	0		10 1	0	0	0

2.8 Combinational Building Blocks

- full-adder (전가산기): 그림 2.5 참조
- Multiplexers
- Decoders

Half-Adder

- Half-Adder (반가산기)란?
 - 두 개의 2진수 한자리를 입력(X, Y)하여 합(Sum)과 자리올림수(Carry)를 얻는 덧셈 논리회로
 - 반가산기는 더하기 수행 시 자리올림을 무시
 - 예를 들어 5+6의 내용을 입력하면 반가산기의 출력은 올림자리는 무시하고 1이 출력됨
 - 자리올림을 포함하는 계산을 위해서는 전가산기를 사용해야 함

Half-Adder 논리식과 진리표

입	력	출	력
X	Y	S	C
0 0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \overline{X}Y + X\overline{Y} = X \oplus Y$$
$$C = X \cdot Y$$

Half-Adder 논리회로

- 논리회로 작성 및 컴파일
- Timing Simulation 결과 파형

Full-Adder

- Full-Adder(전가산기)란?
 - 두 개의 2진수 입력(X, Y)과 하위 자리에서 발생한 자리올림수($Carry_{in}$) 를 포함하여 한 자리수 2진수 세개의 입력 비트들의 덧셈을 수행하여 합(Sum)과 자리올림수($Carry_{out}$)를 얻는 논리회로

Full-Adder 논리식과 진리표

	입력	출	력	
\boldsymbol{X}	Y	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = X \oplus Y \oplus C_{in} \qquad X - C_{in} \qquad S$$

$$C_{ad} = XY + (X \oplus Y) C_{in} \qquad Y - C_{in} \qquad FA$$

$$C_{in} - C_{out} = C_{out}$$

(a) 진리표

(b) 논리식

(c) 논리기호

Full-Adder 논리회로

- 논리회로 작성 및 컴파일
- Timing Simulation 결과 파형
 - 조합논리회로사용, HalfAdder 두 개 사용)

2.8.1 Multiplexer (Mux)

Selects between one of N inputs to connect to the output.
 (여러 가지 가능한 입력 중에서 출력을 선택)

• $\log_2 N$ -bit select input – control input

• Example: 2:1 Mux

S	D_1	D_0	Y	S	Y
0	0	0	0	0	D_0
0	0	1	1	1	D_1^0
0	1	0	0		•
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

2:1 Mux

Logic gates

Sum-of-products form

Tristates

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

4:1 Mux

(b)

(c)

(a)

Logic using Multiplexers

• Using the mux as a lookup table

Reducing the size of the mux

예제 2.12, 13

2.8.2 Decoders

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

A_1	A_0	Y_3	Y_2	Y ₁	Y_0
0	0	0	0	0	1
0	1	0	0 0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Logic using Decoders

OR minterms

XNOR

2.9 Timing

- Delay between input change and output changing
- One of the biggest challenges in circuit design: making the circuit fast

Propagation & Contamination Delay

- **Propagation delay**(전파지연): t_{pd} = max delay from input to output
- Contamination delay(혼합지연): t_{cd} = min delay from input to output A

Propagation & Contamination Delay

- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reasons why t_{pd} and t_{cd} may be different:
 - Different rising and falling delays
 - Multiple inputs and outputs, some of which are faster than others
 - Circuits slow down when hot and speed up when cold

Critical and Short Paths

Critical (Long) Path:
$$t_{pd} = 2t_{pd_AND} + t_{pd_OR}$$

Short Path: $t_{cd} = t_{cd_AND}$

Glitch, Why Understand Glitches?

• A **glitch** occurs when a single input change causes multiple output changes

(글리치는 하나의 입력변화가 다수의 출력변화의 원인이 될 때 발생)

- Glitches don't cause problems because of **synchronous design** conventions (which we'll talk about in Chapter 3)
- But it's important to recognize a glitch when you see one in simulations or on an oscilloscope
 (글리치의 존재를 인식하는 것이 중요하다)
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

Glitch Example

$$Y = \overline{A}\overline{B} + BC$$

0

Glitch Example (cont.)

Glitch Example (cont.)

Q & A

