常微分方程式

Contents

. 導入	1
1.1. 微分方程式とは?	
1.2. この授業の目標	
1.3. 注意	
· >> \(\text{\text{\$\frac{1}{2021}}} \text{\$\frac{1}{2021}} \(\text{\$\frac{1}{2021}}\) \(\text{\$\frac{1}{2021}}\)	2

1. 導入

1.1. 微分方程式とは?

- ・例 f''-3f'-4f=0 を満たす関数 fは? $解の例 \longrightarrow f(t)=e^{4t},\ e^{-t}$ (正確な解は、 $f(t)=C_1e^{4t}+C_2e^{-t}$ (C_1,C_2 :任意定数))
- ・ これまでに習った微分方程式の例(不定積分) $\int f(x)\,\mathrm{d}x \longrightarrow \text{微分して}f(x)$ になる関数F(x)を求めている. つまり, F'(x)=f(x)という微分方程式を解いている.

1.2. この授業の目標

扱いやすいいくつかの微分方程式(変数分離系,定数係数線微分方程式)に対して手計算での解き方を学ぶ.

1.3. 注意

この授業では、x,y はたいていの場合、独立変数を持つ(未知)関数を表す.

Example:
$$x' = \sin(x)$$
 $(x(t) = \cos(t) + C)$

また, $x^{(n)}$ で x の n 階微分を表す.

2. 第一回講義(2024-04-09)

Definition 2.1: x = x(t) を未知関数とする.

$$F(t, x, x', ..., x^{(n)}) = 0$$
 $(F: n+2$ 変数関数)

という形の方程式を常微分方程式という.

Example:

1.
$$x'(t) = \cos(t) \iff x(t) = \int \cos(t) dt$$

 $F(a, b, c) = -\cos(a) + C$

2.
$$x'' + 2tx' + x = e^t$$

 $F(a, b, c, d) = -e^a + b + 2ac + d$ $(a = t, b = x, c = x', d = x'')$

3.
$$\begin{cases} {x_1}' = 2x_1 - 3x_2 \\ {x_2}' = x_1 - 2x_2 \end{cases}$$
 (連立微分方程式)

Definition 2.2: 常微分方程式が n 階の導関数を含み,それ以上の高階の項を含まないとき, n 階の微分方程式という.

Definition 2.3: n 階 の 方 程 式 $F(t,x,x',...,x^{(n)})=0$ の 解 で あ っ て , $x(t_0)=a_0,x'(t_0)=a_1,...,x^{(n)}(t_0)=a_n$ $(t_0,a_i$ は定数)を満たすものを求めることを(初期条件に対する)初期値問題を解くという.