[Ref. 1]

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-262744

(43)Date of publication of application: 06.10.1998

(51)Int.Cl.

A47B 37/00 A47B 9/00 A47B 13/00 A47B 63/00 A47B 83/00 E04F 17/08

(21)Application number: 09-273278

(71)Applicant:

ITOKI CO LTD

ITOKI CREBIO CORP

(22)Date of filing:

22.09.1997

(72)Inventor:

OBATA HIRONAGA

KANO TETSUYA **KOSUGI KENICHIRO FURUSAWA YOSHIHIKO**

(30)Priority

Priority number: 09 26153

Priority date: 24.01.1997

Priority country: JP

(54) OFFICE EQUIPMENT SYSTEM

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a novel office equipment system flexibly conformable to a future change of office work.

SOLUTION: This office equipment system is formed of a leading point Pvs of power source and signal by a plurality of columnar bodies 1 stood on the floor within an office space in such a manner that the set position is changeable, the columnar body 1 separately housing a power source cable and a signal cable laid under the floor or in an attic and being provided in an optional position with a connector connected to each cable turned to the outer surface in such a manner that the set position is changeable, and a plurality of movable and fixable desks. One or a plurality of the desks are optionally moved and arranged around an optional leading point Pvs, and the power source cable and signal cable of an OA equipment such as computer to be used on the moved and arranged desk are connected to the connectors of the columnar body 1.

Ref. 1

JP-A-H10-262744

[0018] In the embodiment exemplified in Figures 1 -4, since the columnar body 1 in the shape of a pole provided with the above-mentioned structure is formed as the extraction point Pvs of the power supply laid under the floor or under the roof in the office space, and the telecommunication cable, it will describe about this point in the followings. Figure 1 is a perspective view of the extraction point of the power supply, and the signal line according to the present invention, which is formed by providing the disc-shaped stabilizing fin 2 at the lower end of the columnar body 1, and providing the top plate 3 with a relatively small diameter at the upper end of the column body 1. The extraction holes 2a, 2b respectively connected with the power supply cable Vc and the signal cable Sc which have already been laid under the floor are formed in the stabilizing fin 2, and then the cables Vc, Sc respectively extracted from these holes 2a, 2b are installed inside the channels in the columnar body 1, and the connectors Cv, Cs respectively connected with the tips of the cables Vc, Sc are arranged at the desirable heights. The location of the connector Cv or Cs which may be arranged is on the four locations on a partial peripheral walls 1e,, and it is an arbitrary to provide two or more of connectors Cv or Cs in the vertical direction on the same peripheral wall. When fixing the columnar body 1 onto the floor, the above-mentioned stabilizing fin 2 which is formed in a small circular or a wing-like shape may be used. The stabilizing fin 2 may be provided with a rolling wheel such as a caster, etc. on the rear-face side, and so it may be

formed as enabling to move on the floor. In this case, the rolling wheel such as the caster, etc. is structured as appearing and disappearing at will with respect to the rear-face, and if an install location would be determined, the rolling wheel is immersed, and the stabilizing fin 2 may be stationed or fixed on floor.

-- (Omitted) --

[0067] As shown in Figure 40, the extraction point Pvs which uses the tall columnar body 1 show in Figure 3 is arranged in the booth formed with the frame-like body F in the planar rectangular shape formed by combining the columnar body 1 and the horizontal lever body 9, and then the booth in which an office work may be carried out in standing such as a so-called standing meeting corner can be formed by suitably arranging the desk D3 illustrated in Figures 29 - 31 to this point Pvs by centering each columnar body 1, as a manuscript stand by slightly tilting the top plate 26 to a near-side down, or as arranging it so that a laptop type personal computer may be placed.

Since the desk D3 to be used in this case may also arrange a movement and a stationing freely, if the meeting, etc. would be completed, by putting the own used disk D3 aside, the corners for other purposes which are centered on the remained extraction point Pvs may be easily formed by arranging the previous disk D3, or other disks D1, D2, etc., to the extraction point Pvs, or to the columnar body 1 or the horizontal lever body 9, which forms the frame-like body F of this booth. In Figure 26, Rs represents a rolling screen provided as a shield panel.

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-262744

(43)公開日 平成10年(1998)10月6日

(51) Int.Cl. ⁶	識別記号		FΙ				
A 4 7 B 37/00	5 0 5		A47B	37/00		505F	
9/00				9/00		Z	
13/00				13/00		В	
63/00	5 0 1			63/00		501B	
83/00				83/00			
		審査請求	未請求 請求	求項の数26	FD	(全 24 頁)	最終頁に続く
(21)出願番号	特願平9-273278		(71)出願	人 0001272	282		
				株式会	社イト	一キ	
(22)出願日	平成9年(1997)9月22日			大阪府:	大阪市	中央区淡路町	1丁目6番11号
			(71)出願	人 000139	780		
(31)優先権主張番号	特願平9-26153			株式会	社イト	ーキクレビオ	
(32)優先日	平 9 (1997) 1 月24日			大阪市	城東区	今福東1丁目	4番12号
(33)優先権主張国	日本(JP)		(72)発明	者小畑	広	永	
				東京都	港区西	麻布2丁目13	番6号 有限会
				社ヒロ	デザイ	ン研究所内	
			(72)発明	者 狩 野	徹	也	
				東京都	港区西	麻布2丁目13	番6号 有限会
				社ヒロ	デザイ	ン研究所内	
			(74)代理	人 弁理士	樋口	盛之助(外1名)
							最終頁に続く

(54) 【発明の名称】 オフィス設備システム

(57)【要約】 (修正有)

題】 今後のオフィスワークの変革に柔軟かつ 自在に対応することが可能となる新規なオフィス設備シ ステムの提供。

【解決手段】 床下又は天井裏に敷設された電源ケーブ ルと信号ケーブルを分けて収装し、かつ、任意の位置に 前記各ケーブルに接続されたコネクタを外面に向けて位 置可変に設けた柱状体1から成り、オフィス空間内の床 上に設置位置変更可能に立設した複数本の前記柱状体1 による電源と信号の取出ポイントPvsと、移動、定置自 在の複数本のデスクD1とにより構成され、任意の前記取 出ポイントPvsの周囲に、1乃至複数本の前記デスクD1 を任意に移動させて配置し、移動配置したデスク上で使 用するコンピュータ等のOA機器の電源ケーブル信号ケ - ブルを前記柱状体1のコネクタに接続して使用する。

【特許請求の範囲】

【請求項1】 オフィス空間の床下又は天井裏に敷設さ れた電源と信号の夫々のケーブルに接続された電源ケー ブルと信号ケーブルを分けて収装し、かつ、任意の位置 に前記各ケーブルに接続されたコネクタを外面に向けて 位置可変に設けた柱状体から成り、オフィス空間内の床 上に設置位置変更可能に立設した前記柱状体による電源 と信号の取出ポイントと、

天板とそれを支持する脚フレームとから成る移動, 定置 自在の複数本のデスクとにより構成され、

任意の前記取出ポイントの周囲に、1 乃至複数本の前記 デスクを任意に移動させて配置し、移動配置したデスク 上で使用するコンピュータ等の〇A機器の電源ケーブ ル、信号ケーブルを前記柱状体のコネクタに接続して使 用するようにしたことを特徴とするオフィス設備システ

【請求項2】 オフィス空間の床下又は天井裏に敷設さ れた電源と信号の夫々のケーブルに接続された電源ケー ブルと信号ケーブルを分けて収装し、かつ、長さ方向任 意の位置に前記各ケーブルに接続されたコネクタを位置 20 可変に設けた横杆体とこの横杆体を支持する柱状体から 成り、オフィス空間内の床面に平行に配設した前記横杆 体による電源と信号の取出ラインと、

天板とそれを支持する脚フレームとから成る移動定置自 在の複数本のデスクとにより構成され、

任意の前記取出ラインに沿って、1乃至複数本の前記デ スクを任意に移動させて配置し、移動配置したデスク上 で使用するコンピュータ等の〇A機器の電源ケーブル, 信号ケーブルを前記横杆体のコネクタに接続して使用す るようにしたことを特徴とするオフィス設備システム。 【請求項3】 オフィス空間の床下又は天井裏に敷設さ れた電源と信号の夫々のケーブルに接続された電源ケー ブルと信号ケーブルを分けて収装し、かつ、外面任意の 位置に前記各ケーブルに接続されたコネクタを位置可変 に設けた柱状体であって、オフィス空間内の床上に位置 可変に立設した前記柱状体による電源と信号の取出ポイ ントと、

前記オフィス空間の床下又は天井内に敷設された電源と 信号の夫々のケーブルに接続された電源ケーブルと信号 ケーブルを分けて収装し、かつ、長さ方向任意の位置に 40 前記各ケーブルに接続されたコネクタを位置可変に設け た横杆体であって、オフィス空間内の床面上で、前記取 付ポイントの柱状体に連結支持させることにより床面に 平行に配設した前記横杆体による電源と信号の取出ライ

天板とそれを支持する脚フレームとから成る移動, 定置 自在の複数本のデスクとにより構成され、

任意の前記取出ポイントの周囲、又は、任意の前記取出 ラインに沿って、1乃至複数本の前記デスクを任意に移 動させて配置し、移動配置したデスク上で使用するコン 50 れかのオフィス設備システム。

ピュータ等のOA機器の電源ケーブルと信号ケーブル を、そのデスクに近い前記取出ポイント又は取出ライン の夫々のコネクタに接続して使用するようにしたことを 特徴とするオフィス設備システム。

【請求項4】 横杆体は、オフィス空間内に配置される 間仕切パネルの笠木部若しくは巾木部に設けるか、又 は、前記パネルの笠木部材若しくは巾木部材を兼用する 部材として設けると共に、柱状体は前記パネルの左、右 の側枠として形成した請求項2又は3のオフィス設備シ 10 ステム。

【請求項5】 オフィス空間の床下又は天井裏に敷設さ れた電源と信号の夫々のケーブルに接続されたコネクタ を設けて電源と信号の取出ポイント並びに取出ラインを 形成する柱状体と横杆体を結合して正面視略門型状の枠 体を形成すると共に、前記門型枠体により、平面視矩形 等をなす多角形をなす枠体に囲まれた区画をオフィス空 間の床上に設定し、前記枠体を形成する柱状体と横杆体 に、樹脂ガラス板やロールスクリーンなどによる遮蔽体 を設けて形成した電源と信号の取出ポイントと取出ライ ンに囲まれた空間により構成され、

前記空間内に1乃至複数本のデスク等のオフィス家具を 任意に移動させて配置し、移動配置した前記家具上で使 用するコンピュータ等の〇A機器の電源ケーブルと信号 ケーブルを、夫々のデスクに近い前記取出ポイント又は 取出ラインの夫々のコネクタに接続して使用するように したことを特徴とするオフィス設備システム。

【請求項6】 柱状体にはキャスタを設けて移動, 定置 自在に形成した請求項1~5のいずれかのオフィス設備 システム。

【請求項7】 横杆体は、柱状体に連結して支持される 30 ように形成した杆状支持部材と、該支持部材の下面側に 吊下支持され電源ケーブル及びそのコネクタと信号ケー ブル及びそのコネクタとを分けて収納できるように形成 した1又は2以上の溝状部材とから成る請求項2~6の いずれかのオフィス設備システム。

【請求項8】 杆状支持部材は、溝状部材を連結部材に より下方に吊下して支持した請求項7のオフィス設備シ ステム。

【請求項9】 連結部材は、伸縮自在の棒状部材、又 は、伸縮変形可能なリンク部材により形成した請求項8 のオフィス設備システム。

【請求項10】 杆状支持部材に吊下支持される溝状部材 は、複数本が相互に空間を介して積層状態で吊下された 請求項7~9のいずれかのオフィス設備システム。

溝状部材は、杆状支持部材の断面に関 【請求項11】 し、左、右に揺動可能に前記支持部材に吊下した請求項 7~10のいずれかのオフィス設備システム。

【請求項12】 溝状部材は、杆状支持部材の下面に対し 昇降可能に前記支持部材に吊下した請求項7~11のいず 【請求項13】 溝状部材は、その側面を開閉可能な蓋部 に形成した請求項7~12のいずれかのオフィス設備シス テム。

【請求項14】 溝状部材の内部には、その側面に電源ケーブル,信号ケーブルに夫々に接続されたコネクタをこの溝状部材から突出させないで設けた請求項7~13のいずれかのオフィス設備システム。

【請求項15】 コネクタは、溝状部材の側面に設けた請求項7~14のいずれかのオフィス設備システム。

【請求項16】 横杆体の下部には、その外部に露出した 10 余長ケーブルを収容する容器又は前記ケーブルを覆うシート状カバー体を設けた請求項2~15のいずれかのオフィス設備システム。

【請求項17】 柱状体又は横杆体には、余長コードを収めるコードリールを設けた請求項1~16のいずれかのオフィス設備システム。

【請求項18】 取出ポイントの柱状体の上端には、小天板又はキャップを設けた請求項 $1 \sim 170$ いずれかのオフィス設備システム。

【請求項19】 柱状体にキャスタを設けて床上で移動, 定置自在に形成した請求項7~18のいずれかのオフィス 設備システム。

【請求項20】 柱状体の外周面には、サインプレート又は遮蔽プレート、若しくは、機器等の収納部を設けた請求項1~19のいずれかのオフィス設備システム。

【請求項21】 横杆体の上部には、遮蔽バネル又は天板若しくは前記バネルと天板を設けた請求項2~20のいずれかのオフィス設備システム。

【請求項22】 横杆体の下部には、幕板バネル又は機器 等の収納部若しくは前記パネルと収納部を設けた請求項 30 21のオフィス設備システム。

【請求項23】 柱状体と横杆体は、伸縮自在の構造を具備した請求項1~22のいずれかのオフィス設備システム。

【請求項24】 デスクは天板の高さを昇降自在、又は、 昇降自在かつ傾斜自在に形成した請求項1~23のいずれ かのオフィス設備システム。

【請求項25】 オフィス設備システムには、移動, 定置可能なキャビネット又はOA機器載台を含む請求項1~24のいずれかのオフィス設備システム。

【請求項26】 キャビネット及び〇A機器載台の高さは、デスク天板より低く形成し、その上面に〇A機器を載置できるように形成した請求項25のオフィス家具システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は最近のオフィスにおける業務環境や業務形態の変化に対し、容易かつ柔軟に対応することができるようにしたオフィス設備システムに関するものである。

[0002]

【従来の技術】従来、オフィス空間内に配置されるデスク等のオフィス設備は、例えば、会社組織の中の部課制を単位として、部屋単位、或は、間仕切等で仕切った業務空間を形成し、各業務空間単位でデスクやキャビネット等の必要なオフィス家具を、ほぼ固定的に配置して形成されていた。

[0003]一方、最近のオフィスでは、コンピュータの導入により、いわゆる情報化が進み、オフィスワーカの作業形態、オフィス空間も含めた作業環境、オフィス家具そのものについても大きな変化に見舞われている。即ち、オフィスワークにとってバーソナルコンピュータは、その様々な機能、例えば、文書作成、計算、通信、それらのネットワーク化によるコミュニケーション等の多様な機能により、今やオフィス業務にはなくてはならないものになっており、一人一台は必要となってきている。そして、これらに対応すべく、コンピュータやその他の〇A機器を置くためのデスク等の家具は、コンピュータ等の〇A機器の電源配線や情報配線のためのケーブルを収納するため配線ダクトを設けたり、コンピュータ等の〇A機器を載置するために天板を大形化して益々大型化、複雑化している。

【0004】しかしながら、上記のようにコンピュータ の機能が向上し、オフィスへの導入が進んだ結果、オフ ィスのワーク形態にも大きな変化が起きており、今後そ れがますます大きくなることが予想される。即ち、ま ず、コンピュータにより、様々な諸雑務が合理化される ことによって、より生産性が高く質も高い知的ワークが 求められよう。また、その場で顔を会わせていなくとも コンピュータ等を通したコミュニケーションが円滑に行 われる結果、従来の縦割りの組織が必要なくなり、より 効率的な業務形態をとることが可能なフラットな組織、 そして、臨機応変に目的を達成するためのプロジェクト チームによるワークスタイル等が増えてくると思われ る。これらの様々なワークスタイルは、ワークの内容に 応じた最適のオフィス環境が望まれるわけであり、しか もその環境は常に様々な変化に対応できる自由さ、即 ち、フレキシビリティをもっていることが必要となる。 しかしながら、とれまでのオフィス家具は、上述したよ 40 うにデスクや間仕切パネル等の家具自体に配線機能を取 り込み、これらを固定的に配置する使用形態であったた めに、今後予想される使用中のコンピュータ等のOA機 器とそれを載置した家具の移動を伴うフレキシブルなオ フィス環境の設定やワーク形態の実現には全くといって よい程対応できないのが現状である。

[0005]

【発明が解決しようとする課題】したがって、本発明が 課題とするところは、上述した近未来におけるオフィス ワーク形態の研究に基づき、今後のオフィスワークの変 50 革に柔軟かつ自在に対応することが可能となる全く新規

なオフィス設備システムを提供することを課題とするも のである。

[0006]

【課題を解決するための手段】上記課題を解決すること を目的としてなされた本発明オフィス設備システムの一 の構成は、オフィス空間の床下又は天井裏に敷設された 電源と信号の夫々のケーブルに接続された電源ケーブル と信号ケーブルを分けて収装し、かつ、任意の位置に前 記各ケーブルに接続されたコネクタを外面に向けて位置 可変に設けた柱状体から成り、オフィス空間内の床上に 設置位置変更可能に立設した複数本の前記柱状体による 電源と信号の取出ポイントと、天板とそれを支持する脚 フレームとから成る移動、定置自在の複数本のデスクと により構成され、任意の前記取出ポイントの周囲に、1 乃至複数本の前記デスクを任意に移動させて配置し、移 動配置したデスク上で使用するコンピュ−タ等の〇A機 器の電源ケーブル、信号ケーブルを前記柱状体のコネク タに接続して使用するようにしたことを第一の特徴とす るものである。

【0007】また、上記課題を解決することができる本 発明オフィス設備システムの他の構成は、オフィス空間 の床下又は天井裏に敷設された電源と信号の夫々のケー ブルに接続された電源ケーブルと信号ケーブルを分けて 収装し、かつ、長さ方向任意の位置に前記各ケーブルに 接続されたコネクタを位置可変に設けた横杆体から成 り、オフィス空間内の床面に平行で配向角及び位置を可 変に配設した前記横杆体による電源と信号の取出ライン と、天板とそれを支持する脚フレームとから成る移動定 置自在の複数本のデスクとにより構成され、任意の前記 取出ラインに沿って、1乃至複数本の前記デスクを任意 30 に移動させて配置し、移動配置したデスク上で使用する コンピュータ等のOA機器の電源ケーブル、信号ケーブ ルを前記横杆体のコネクタに接続して使用するようにし たことを第二の特徴とするものである。

【0008】更に、上記課題を解決することができる他 の一つの構成は、オフィス空間の床下又は天井裏に敷設 された電源と信号の夫々のケーブルに接続された電源ケ ーブルと信号ケーブルを分けて収装し、かつ、外面任意 の位置に前記各ケーブルに接続されたコネクタを位置可 変に設けた柱状体であって、オフィス空間内の床上に位 40 置可変に立設した複数本の前記柱状体による電源と信号 の取出ポイントと、前記オフィス空間の床下又は天井内 に敷設された電源と信号の夫々のケーブルに接続された 電源ケーブルと信号ケーブルを分けて収装し、かつ、長 さ方向任意の位置に前記各ケーブルに接続されたコネク タを位置可変に設けた横杆体であって、オフィス空間内 の床面上で、前記取付ポイントの柱状体に連結支持させ ることにより床面に平行で配向角及び位置を可変に配設 した前記横杆体による電源と信号の取出ラインと、天板 とそれを支持する脚フレームとから成る移動、定置自在 50

の複数本のデスクとにより構成され、任意の前記取出ポ イントの周囲、又は、任意の前記取出ラインに沿って、 1乃至複数本の前記デスクを任意に移動させて配置し、 移動配置したデスク上で使用するコンピュータ等のOA 機器の電源ケーブルと信号ケーブルを、そのデスクに近 い前記取出ポイント又は取出ラインの夫々のコネクタに 接続して使用するようにしたことを第三の特徴とするも のである。ととで上記の横杆体は、オフィス空間内に配 置される間仕切パネルの笠木部若しくは巾木部に設ける か、又は、前記パネルの笠木部材若しくは巾木部材を兼 用する部材として設けることができる。

【0009】これに加え、上記課題を解決することがで きる本発明オフィス設備システムの他の構成は、オフィ ス空間の床下又は天井裏に敷設された電源と信号の夫々 のケーブルに接続されたコネクタを設けて電源を信号の 取出ポイント並びに取出ラインを形成する柱状体と横杆 体を結合して正面視略門型状の枠体を形成すると共に、 前記門型枠体により、平面視矩形等をなす多角形をなす 枠体に囲まれた区画をオフィス空間の床上に設定し、前 記枠体を形成する柱状体と横杆体に、樹脂ガラス板やロ -ルスクリーンなどによる遮蔽体を設けて形成した電源 と信号の取出ポイントと取出ラインに囲まれた空間とに より構成され、前記空間内に1乃至複数本のデスク等の オフィス家具を任意に移動させて配置し、移動配置した 前記家具上で使用するコンピュータ等の〇A機器の電 源、信号ケーブルを、夫々のデスクに近い前記取出ポイ ント又は取出ラインのコネクタに接続して使用するよう にしたことを第四の特徴とするものである。

【0010】更にまた、本発明オフィス設備システムに おいて横杆体は、柱状体に連結して支持されるように形 成した杆状支持部材と、該支持部材の下面側に吊下支持 され電源ケーブルとそのコネクタ、信号ケーブルとその コネクタを分けて収納できるように形成した溝状部材と から形成し、前記溝状部材の複数本、例えば2本を吊下 して電源ケーブルを信号ケーブルとを夫々の溝状部材に 分けて収装するようにしたり、吊下した溝状部材を、そ の断面方向に関し左、右に揺動できるように吊下し、ケ ーブル等の溝状部内への出入れを容易にすることができ る。

【0011】ケーブル等の出入れ容易性は、杆状支持部 材に吊下した溝状部材を、それを吊下する連結部材に昇 降可能に取付けることによっても得ることができる。ま た、溝状部材の側面を開閉可能な蓋状に形成することに よっても、ケーブル等の出入れ容易性が得られる。更 に、溝状部材の側面、又は、上下に積層した溝状部材同 士の隙間に設ける蓋状部材に、電源用、信号用の夫々の コネクタを位置固定又は可変に設けることもできる。 【0012】杆状支持部材の下面側に溝状部材を吊下す る手段は、棒状の連結部材、又は、パントグラグのよう な伸縮タイプのリンク部材を使用する。伸縮タイプのリ

ンク部材を使用すると、杆状支持部材と溝状部材の間、 或は、溝状部材同士の間隔を拡大、縮小できて、ケーブ ル等の出入れに便利である。この点は、棒状の連結部材 に、伸縮機能を持つものを利用しても同様である。

【0013】また、本発明では、上記の溝状部材にケーブルが収まり切れないときに対応するため、収まらない余長ケーブルを途中で巻取るためのコードリールを、取出しポイントの柱状体の側面や最下位の溝状部材の下面に設けることがある。余長ケーブルを、前記リールに巻取らせず、溝状部材の下方にリング状にまとめて吊下する場合、これを覆うためのシート状の覆板の2枚を溝状部材の長さ方向に平行に吊設するようにしてもよい。

[0014] 【発明の実施の形態】次に、本発明の実施の形態につい て図に拠り説明する。図1~図4は、ポール状をなす電 源、信号ラインの取出装置を形成する柱状体の例をそれ ぞれ示した斜視図、図5は図1~図4に使用した柱状体 の平断面図、図6は図1~図4に例示した柱状体と図7 の横杆体の組合せよる電源、信号ラインの取出装置の一 例を示す斜視図、図7は図6の横杆体の側断面図、図8 は柱状体と横杆体の接続構造の一例を示す側面図、図9 はジョイントカバーの側面図、図10と図11はジョイント 部材の形態例を示す斜視図、図12は図6と同旨の電源、 信号ラインの取出装置の一例の正面図、図13は図12の平 面図、図14は図12の左側面図、図15は図1~図5で説明 した柱状体と図7の横杆体を平面矩形状をなすワークブ - スの枠状体に形成した例の斜視図、図16は本発明オフ ィス設備における電源、信号ラインの取出ポイントを形 成する柱状体の別例の平断面図、図17は取出ラインを形 成する横杆体の別例の側断面図、図18は図16の柱状体と 図17の横杆体の結合形態の一例を説明するための斜視 図、図19は柱状体と横杆体の他の例の結合形態を示す斜 視図、図20は図16の柱状体と図17の横杆体とを主体にし て形成した本発明オフィス設備システムにおける電源, 信号ラインの取出装置を例示した斜視図、図21は本発明 オフィス設備システムにおける電源、信号ラインの取出 装置の別の形態例を示した斜視図、図22は図17の横杆体 における溝状部材の側面を開閉自在の蓋構造にした例の 断面図、図23は横杆体の2つの溝状部材を入れ子式構造 とした例の断面図、図24は図18に示した本発明設備シス テムにおける取出装置に、余長コード収納用のコードリ ールとシート状覆板を配備した例の斜視図、図25は図24 のコードリールの取付態様の一例の要部を示す平断面 図、図26は柱状体と横杆体の結合において、横杆体の平 面配向角を任意の角度に設定できる構造の一例を示す斜 視図、図27は図16の柱状体の安定板にキャスタを設け、 当該柱状体を移動可能に構成した例の斜視図、図28は図 18に示した本発明設備システムの取出装置における横杆 体を伸縮自在の構造にした例の斜視図、図29はデスクの 一例の正面図、図30は図29の左側面図、図31は図30のデ スクの天板の傾斜状態を示す側面図、図32は図30のデスクの別例の正面図、図33は図30のデスクに使用する天板の別例の平面図、図34は天板の他の例の平面図、図35はデスクの他の例の正面図、図36は図35のデスクの右側面図、図37は図35のデスクの平面図、図38は取出ラインに対するデスク等の配置例を示す斜視図、図39は取出ポイントに対するデスク等の配置例を示す斜視図、図40はワークブースに形成した枠状体に対するデスク等の配置例を示す斜視図、図40はワークブースに形成した枠状体に対するデスク等の配置例を示す斜視図、図40はワークガースに形成した枠状体に対するデスク等の配置例を示す斜視図、図41は横杆体を間仕切パネルの笠木部材として形成した例の斜視図、図43はパネルと収納ボックスの横杆体への取付構造の一例を示す部分断面図、図44は天板の横杆体への取付構造の一例を示す部分断面図、図45は本発明設備システムのオフィスでの利用

【0015】図1~図5に於て、1は、図5に例示した 平断面形状を有するボール状の柱状体で、図1~図4は この柱状体1を主体にしてオフィスの床に配設した電源 ケーブルと信号ケーブルに夫々に接続されるケーブルを 収装し、収装した夫々のケーブルに接続されてこの柱状 体に配設した電源用コネクタと信号用コネクタに、OA 機器の電源ラインと信号ラインを接続できるようにした 電源,信号ラインの取出装置(以下、柱状体1を主体と した電源,信号ラインの取出装置を取出ボイント Pvsという)の例である。

形態例を示した平面図である。

【0016】柱状体1は、図5に例示するように、内部が矩形断面で中空の芯管1aの外周に、断面十字状をなす二重壁による隔壁1bと、隣合う二重の隔壁1b同士の間を二分する平断面十字状の隔壁1cを設け、各壁1b, 1cの外端部に部分周壁1d, 1eを形成したものである。

【0017】上記の断面形状により、柱状体1は、隣合 う隔壁1b, 1cが形成する断面V字状の溝が形成する夫々 の空間内に、電源ケーブルVcと信号ケーブルSc、又は、 いずれか一方のケーブル(以下、これらのケーブルを電 源、信号ケーブルという)を、この柱状体1の外面から 収納、出入れすることができる。そして、各壁1b, 1cの 外端部には全体として柱状体1の周壁を形成する部分周 壁1d、1eが形成されているので、収納した上記ケーブル Vc, Scは溝状部から逸脱し難い。なお、柱状体1の溝状 部に入れた上記ケーブルVc, Scをその溝から完全に出さ ないようにするには、図5に仮想線で例示したように、 着脱自在の溝キャップGcを装着してもよい。また、二重 に形成された壁1bは、後述するパネル等の部材の係止溝 として利用される。更に、各隔壁1cの外端部に形成され た部分周壁1eは、後述する電源用又は信号用の夫々のコ ネクタCv、Csの装着部として利用される。

【0018】上記構造を具備したポール状の柱状体1 は、図1~図4に例示する態様において、オフィス空間 内の床下又は天井裏に敷設されている電源,通信ケーブ ルの取出ポイントPvsとして形成されるので、以下、こ

の点について説明する。図1は、柱状体1の下端に、と とでは円板状の安定板2を設けると共に、上端に、比例 的小径の天板3を設けて形成した本発明による電源,信 号ラインの取出ポイントの斜視図である。安定板2に は、床下に既に敷設されている電源ケーブルVc及び信号 ケーブルScに接続された電源、信号の各ケーブルVc、Sc の取出穴2a, 2bが形成され、この穴2a, 2bから夫々に取 出されたケーブルVc, Scが柱状体1の溝部に収装されて そのケーブルVc,Scの先端に接続されたそれぞれのコネ クタCv, Csが、所望の高さに配置されている。配置でき るコネクタCv又はCsの位置は、柱状体1の外周上では、 4ヶ所の部分周壁1eの上であり、同一周壁上の上下方向 において2個以上のコネクタCv又はCsを設けることは任 意である。上記の安定板2は、柱状体1を床上に固定す る場合には、小さ目の円形乃至は翼状に形成したものを 使用することができる。また、安定板2は、その裏面側 にキャスタ等による転動輪を設け、床上を移動できるよ うに形成することもある。この場合、キャスタ等による 転動輪は、裏面に対して出没自在構造とし、設置位置が 決まれば没入させて安定板2を床上に定置乃至は固定す るようにすることができる。

【0019】図2は、図1に示した電源, 信号ラインの 取出ポイントにおいて、柱状体1の周囲に、ここでは二 分割タイプに形成した円筒状をなすカバー体4を、当該 柱状体1に支持させて設けた例である。カバー体4は、 金属板、プラスチック板、それらのパンチング穴明板等 の適宜の板体により形成し、ここでは底板4aを設けて有 底に形成しているが、底板4aの設定は任意である。

【0020】上記カバー体4の外径は、ことでは天板3 と略同径程度に形成し、柱状体1とカバー体4の間に形 成される空間にそれぞれの余長ケーブルCv、Csを収納し たり、これらの電源、信号ライン用の中継機材、例え ば、ブースタアンプや配電箱等の必要な機器,器材Vn, Snを収納することができるように形成されている。

【0021】図3は電源、信号ラインの取出ポイントPv sを形成した柱状体1を、背の高い部材により形成し、 この柱状体1の下部に、比較的容積の大きな収納ボック ス5、6を形成した例である。ととで、収納ボックス5 は、前後に開口部5aを設けて形成し、例えばコンピュー タの本体(CPU)を収納するボックスとして利用し、 また収納ボックス6は、上面を開口した有底の筐状に形 成し、このボックス6の壁面と底には通線用のスリット 6aと穴状の切欠き6bを設け、内部に電源,信号ラインに 必要な中継機器Vn, Sn等を収装することができるように 形成されている。なお、1fは柱状体1の上端に被着した ドーム状のキャップ、1gは柱状体1の上部において、そ の二重壁1d、1dkC挟持させた態様で設けた翼状をなすサ インパネル、又は、遮蔽パネルで、このパネルは、いず れの柱状体1に対ても設置可能である。また、取付ける パネル1gの形状も任意である。

【0022】図4は、床面から天井までの間に立設した 柱状体1により、天井側に敷設されている電源、信号ラ インに接続してオフィス内に電源、信号ラインの取出ポ イントPvsを形成した例である。この柱状体1は、上、 下端部にその芯管1aに挿装した上、下アジャスタ7、8 を操作して柱状体1を天井Siと床の間で、いわゆる突張 り状態で立ち姿勢を保持するようにしている。図4に示 した柱状体1においても、その周囲に、収納部4,収納 ボックス5、6を設けることは任意である。なお、天井 側からの電源、信号ラインの取出ポイントPvsの形成に おいて、柱状体1は必ずしも、天板から床面までの間に 突張りタイプで設けなければならない訳ではない。例え ば、柱状体1の上端を天井面のケーブル取出部に固定 し、該柱状体1の長さを床に届かない長さに形成すると ともある。との場合の柱状体1の下端は、一例として、 床から70~80cmまでの高さにする。また、床に立設した 天井に届かない高さの柱状体1に、天井面から電源、信 号ケーブルを導入することもある。この場合、柱状体1 までのケーブルをフレキシブルチューブのようなガイド 体に収めて支持することがある。

【0023】図6は、上記で説明した柱状体1を使用し た電源、信号ラインの取出ポイントPvsを、図7に一例 として示した断面形状の横杆体9を用いて床に平行な面 内でオフィス空間内に敷設し、本発明の電源、信号ライ ンの取出装置を任意のライン状に形成した例(以下、床 に平行なライン状の電源, 信号ラインの取出装置を取出 ラインLvsという)の斜視図である。

【0024】電源、信号ラインの取出ラインLvsを形成 する横杆体9の構成を図7により、またこの横杆体9と 柱状体1の接続構造の一例を図8により説明する。

【0025】図7に例示した横杆体9は、その断面にお いて柱状体1の芯管1aと同形の芯管9aの上,下に、前記 柱状体1における二重壁1bと同様の二重壁9bを突設する と共に、ことでは下方の二重壁9bから左、右に2組の壁 9c, 9dを突出させ、各壁9b~9dの相互の間に、ケーブル Vc. Scを収めるための溝部が形成されるようにしてい る。なお、9e, 9fは前記壁9c, 9dの先端部に設けて全体 としてこの横杆体9の周壁をなすように形成した部分周 壁、9gは二重壁9bの先端に形成した同旨の部分周壁であ

【0026】上記のような断面形状を以て形成される横 杆体9は、各壁9b~9fにより形成された溝部が、平面か らみて概ね上方を開口した溝部に形成されるので、各溝 に電源ケーブルVc又は信号ケーブルScを上から投入する ことにより、両ケーブルVc, Scを外部からは見えないよ うに収めることができることとなる。従って、前記両ケ -ブルVc, Scについて、横杆体9の任意の位置における ケーブル先端に、コネクタCv,Csを接続し、このコネク タCv, Csを横杆体9の上の部分周壁9eに装着することに 50 より、横杆体9の任意の位置で電源、信号ラインと適宜

40

の電子機器等との接続をすることが可能になる。

【0027】上記横杆体9と先に説明した柱状体1の接続は、一例として図8に示すような接続部材を使用して行う。柱状体1,横杆体9はともに、中心に同形状の芯管1a,9aを具備しているので、この芯管1a,9aに、ジョイント方向に沿って形成したジョイント部材10の両端部10a,10bを嵌入して、両部材1,9の設置方向を規定する。図8の例は、垂直に立上った柱状体1と水平に延びた横杆体9とを、90度曲げで形成したジョイント部材10で接続したものである。なお、10c,10dは芯管1a,9aに嵌入したジョイント部材10の固定ビスである。

11

【0028】柱状体1と横杆体9は、ジョイント部材10で接続したままの状態であると、ジョイント部材10の部分に、柱状体1の溝部から横杆体9の溝部に導入される各ケーブルVc、Scがジョイント部分で外部に露出することとなり、見映えがよくない。そこで本発明では、図9に示すようなジョイント部カバー11を使用することとした。

【0029】図8、図9に例示カバー11は、合成樹脂等により形成した背骨状のるフレキシブルな主骨材11aに、先略テーパ状をなし、かつ、下部が開放された略リング状の支骨材11bを適当なピッチでこの主骨材11aに列設することにより形成し、主骨材11aの前、後両端部11c、11dを、柱状体1と横杆体9の二重壁1d、9gにより形成された溝に挟持させることにより、両部材1、9の接続部分をカバーするようにしている。

【0030】なお、ジョイント部材10の形態としては、床から立上げられた柱状体1と床に平行に配置する横杆体9との接続用として、図10公示す態様のものがある。また、天井から床の間に立設された形態又は天井に吊下 30された形態の柱状体1と横杆体9との接続用としては、図11公示す形態のものがある。図10公示した各ジョイント部材において、10(a)は図8に示したジョイント部材10と同旨のもの、10(b)は横杆体9同士の直列接続用、10(c)、10(d)は立設した柱状体1から水平二方向の横杆体9への接続用、10(e)は同じく三方向接続用、10(f)は同じく四方向接続用のそれぞれのジョイント部材である。図11のジョイント部材において、10(g)は立設した柱状体1に対して水平に一方向、10(h)は同じく二方向、10(i)は同じく三方向、10(j)は同じく四方向へ、それぞれ 40横杆体9を接続するためのジョイント部材である。

【0031】上記のような柱状体1、横杆体9、ジョイント部材10等を用いてオフィス内に形成される電源、信号ラインの取出ポイントと取出ラインの一例を図6に拠り説明する。図6の取出ラインは、複数本の柱状体1と複数本の横杆体9とを、図6の左側から順に、図11のジョイント部材10(g)、図10のジョイント部材10(d)、同10(a)を用いて接続するととにより形成されている。図6において、図1~図5、図7~図11の符号と同一符号は、同一部材又は同一部分を指している。

【0032】図6の取出ラインLvsにおいて、図の左側 下方に位置する柱状体1は、天井側の電源、信号ライン を取出して天板側に配設された上方の柱状体1の支持支 柱を兼用し、横杆体9との接続部の始端として機能する ように配置されている。また、図6の中間部に位置した 柱状体1は、長さ方向で連接される横杆体9,9の接続 部を、ジョイント部材10(d)を介して支持する支柱とし て設けられている。そして、このようにして組立てられ る柱状体1と横杆体9の上、下の二重壁9bが形成する隙 間状の溝には、一例としてスクリーンやパネル12,13を 支持させて取付けてある。ここで、パネル13の前面に収 納ボックス6を横杆体9に吊下して取付けてある。ま た、図示しないが、床側の電源,信号ラインを柱状体1 の真下やその近傍から取出せない場合には、床から取出 したケーブルを、フレキシブルチューブのようなガイド 体に収めて横杆体9の溝部に直に導入する場合もある。 【0033】図12~図14は、図6の場合と同様に、複数 本の柱状体1と横杆体9, ジョイント部材10, カバー11 などを用いて形成した電源、信号ラインの取出ラインLV sの別例を示すもので、図12は正面図、図13は図12の平 20 面図、図14は図12の左側面図である。これらの図12~図 14亿示した取出ラインでは、図12の左側の横杆体9の上 面に、当該横杆体9における上位の二重壁96に、断面略 T状の天板支持ブラケット14を支持させ、該ブラケット

14の上にカンウター天板15を載架している。 【0034】ブラケット14は、具体的には一例として図44に示す構造を具備している。即ち、図44において、天板15を支持する翼状部材14aの中心部下面に、横杆体9の上面の部分周壁9gに合致するスペーサ14bを介在させると共に、上位の二重壁9bの入口に形成した凹陥部9iにビス受け14cを収装し、前記翼状部材14aとスペーサ14bを貫通するビス穴を設け、この穴から入れたビス14dを前記ビス受け14cに螺入、緊締することにより、ブラケット14が形成される。従ってこのブラケット14における翼状部材14aに大板15を載架し、下面からビス14eにより天板15を前記部材14aに止着することができる。

【0035】上記の取出ポイント,取出ラインを形成する柱状体1と横杆体9は、これらを図15に例示するように、オフィス床面に平面矩形状をなす枠状体Fに形成して立設し、この枠状体Fを、ワークブースとして使用するようにしてもよい。図15において、Cgは、このブースの四隅において、柱状体1と横杆体9における2重壁1d、9gに挟持させて取付けた透光性の樹脂ガラス、Cwは、各樹脂ガラスCgの下方に設けた巾木である。また、上記枠状体Fにおいて、図15に表わしていないが、柱状体1及び横杆体9には電源,信号ケーブルVc、Scが収装され、適宜位置に接続用のコネクタCv、Csを位置可変に設けられることは勿論である。

【0036】以上に説明した本発明オフィス設備システ 50 ムにおける電源,信号ラインの取出ポイントを形成する

柱状体1、並びに、取出ラインを形成する横杆体9は、 図16~図26に例示する形態でも実施できるので、柱状体 1と横振杆体9の別例について図16~図26により説明す

【0037】図16は柱状体1の別例の平断面図で、図16 において図1~図15に使用した符号と同一符号は同一部 分、同一部材を指すものとする。図16に例示した柱状体 1は、芯管体1aの外周に、平断面が十字状をなすように 二重壁による隔壁1bを設け、各隔壁1bの外端部に部分周 壁1d、1eを形成し、かつ、一方の部分周壁1eの先端部 に、段付き辺1hを形成してこの辺1fと前記周壁1eの境界 部に小溝1iを形成したもである。

【0038】上記の断面形状により、柱状体1は、隣合 う二重の隔壁1bが形成する断面90度の溝が形成する夫々 の空間内に、電源ケーブルVc又は信号ケーブルScを、こ の柱状体1の外面から収納、出入れすることができる。 そして、各隔壁1bの外端部には全体として柱状体1の周 壁を形成する部分周壁1dと段付き辺1fが形成されている ので、上記ケーブルVc, Scは収納された溝状部から逸脱 し難い。柱状体1の溝状部に入れた上記ケーブルVc, Sc をその溝から完全に出さないようにするには、対向する 小溝1gに支持させて着脱自在の溝キャップ(図示せず) を装着してもよい。なお、二重に形成された隔壁1bの間 は、パネル等の部材の係止溝として利用される。また、 対向する前記小溝1gは、後述する電源用又は信号用の夫 々のコネクタCv又は同Csの装着部として利用される。Cb はコネクタCv又はCsの取付けベースで、前記小溝1gに遊 嵌されてガイドされ柱状体1の長さ方向で、コネクタCv 又はCsを自由にスライドさせて位置決めするためのもの である。上記の断面構造を付与した図16の柱状体1は、 図1~図4に例示した態様と同様の形態において、オフ ィス空間内の床下又は天井裏に敷設されている電源、通 信ケーブルの取出ポイントPvsとして形成される。こと で図27は、取出ポイントPvsを構成する柱状体1の安定 板2にキャスタCaを設けることにより、床上に安定に配 置できると共に、必要に応じて移動できるようにした例 である。キャスタCaを設ける安定板2の形態は、図1~ 図3、図6、図27に例示した形態以外、例えば、矩形 状、枠状の形態であってもよい。

【0039】図17は、本発明オフィス設備システムを構 成する横杆体9の別例の側断面図である。図17に例示し た横杆体9は断面から視て大略T状をなす杆状支持部材 91と、この支持部材91の下面側に吊下態様で連結支持さ れる第一溝状部材92と、この第一溝状部材92を介して前 記支持部材91に吊下態様で支持される第二溝状部材93と により形成されている。

【0040】図17に示した杆状支持部材91は、断面縦長 短形の芯管体91aの上部に、中央に形成した縦長の上向 きの溝部91bを介して屋根形のカバー部91cを左,右に具 備すると共に、この芯管体91aの下部に形成した下向き

の溝部91dを具備し、かつ、芯管体91aの左、右の側面に 形成した上,下で対向する小溝91eを具備して形成され

【0041】図17の第一溝状部材92は、その底部下面に 垂下形成した前記芯管体91aと同幅の溝部92aと、この溝 部92aの上部に形成した断面略凹状をなす樋部92bを具備 して形成されている。ことで、溝部92aは、側面の上下 に形成した上記小溝91eと同旨の対向する小溝92cを具備 し、また樋部92bは、底壁92dと側壁92eを具備してい

【0042】図17の第二溝状部材93は、その底部上面に 突出形成した略凸状をなす輪郭を有する溝部93aと、C の溝部93aの左右側に突出させて弯曲形成した左右の底 壁93c、, 93c、及び、両底壁93cから立上げて形成した 左右の側壁93d、93dを具備した樋部93bとから形成され ている。

【0043】上記の支持部材91と第一, 第二の溝状部材 92, 93とは、棒状の杆体94aが第一溝状部材92の溝部92a を貫通し、この杆体94aの上,下端部94b,94cが前記支 持部材91の下方の溝部91dと第二溝状部材93の溝部93aと に嵌合して支持される棒状の連結部材94、及び、各部材 91~93の相互の間隔を規制する2つのスペーサ95a, 95b とによって図17に例示する態様で結合一体化されて横杆 体9の別例に構成されるのである。

【0044】横杆体9を図示17に例示した断面形態とす るととにより、2つの溝状部材92、93により形成される ケーブル収納ダクトとなる樋部92b, 93bを大きな容量に 形成し易くなると共に、芯管体91aの両側面や溝部92aの 両側面に形成した上下で対向する小溝91e, 91e、或は、 同92c, 92cに、電源用又は信号用のコネクタCv又はCs を、その取付けベースCbを介してスライド自在に装着で きる。これにより、前記コネクタCv, Csは溝状部材92, 93の内部に完全に収まって外部に突出することがなく、 その上、樋部92b, 93bへのケーブルの出入れの支障にな ることはないので、見映えが優れているのみならず、機 能性も優れたものである。

【0045】図17に示した横杆体9においては、支持部 材91における下向きの溝部91dの底面を球状断面に、ま た第二溝部材93の溝部93aの上部内面を球状断面にそれ ぞれ形成し、これらの溝部91d、93aに収まる連結部材94 の上,下端部94b,94cを前記球状断面に対応する球状面 に形成することにより、連結部材94を溝部91dに対し図1 7の左右に揺動させ、また第二溝状部材93を連結部材94 の下端において図の左右に揺動させること可能になるの で、各樋部92b, 93bに収納するケーブルやコネクタの出 入れの際に、前記揺動を利用して出入口を拡大すること ができ、便利である。

【0046】上記のケーブルやコネクタの樋部92b, 93b への取入れ容易性を得るには、第一,第二溝状部材92, 50 93における底壁92d, 93cと側壁92e, 93dとの境界部にヒ

16

ンジ機能を持たせたり、或は、両壁をヒンジを介して接続することにより、それぞれの側壁92e, 93dが外側へ開放でき、不要時には直立するようにしてもよい。図28は、第二溝状部材93の底壁93cと溝部93aの境界をヒンジ93eに形成すると共に、側壁93dを延長形成してその上端と第一溝状部材92の側壁92eの下端の間に、開閉自在のロック93fを形成したものである。この構成は、第一溝状部材92に適用してもよい。溝状部材92, 93を、図22に示した側壁構造とするときは、コネクタCv, Csを、その側壁92d, 93dに取付けることが望ましい。

【0047】本発明では、図17の横杆体9の別例におい て、杆状支持部材91と2つの溝状部材92,93とを連結す る棒状の連結部材94を、図示しないが、伸縮構造とし、 溝状部材92, 93の樋部92b, 93bの出入口を拡縮できるよ うにして、この樋部92b、93bに対するケーブルCv、Csの 出入れを行い易くすると共に、収容するケーブルCv, Cs の量が多く大容量化しても、各部材91~93の間の隙間を 大きくして対応できるようにすることができる。このよ うな対応は、杆状支持部材91と溝状部材92と同93とを、 前記棒状の連結部材94が配置される位置において、パン トグラフ状のリンク部材を介して連結することによって も可能であり、こうすることにより各部材91~93間の相 互の隙間を、任意の間隔に自由に調節できる。上記の2 つの溝状部材92,93は、図23に例示するように、いわゆ る入れ子構造にし、ととでは、大形に形成した下方の溝 状部材93の内部に、小形断面の溝状部材92を収容して配 設することにより、外見上、一方の溝状部材93のみしか 見えないようにして、横杆体9をスマートな形態に形成 することができる。図23において、図22と同一部材、同 一部分は同一符号で示す。一方、上記構成によってもケ ーブルCv, Csが樋部92b, 93bに収まり切れない場合、或 は、それとは無関係に、余長ケーブルCv, Csを収納する ための容器を設けたり、コードリールを設けたり、或 は、余長ケーブルCv, Csをカバーするためのシート状の 覆板を設けて対応することができる。図24、図25は、コ ードリールCrを柱状体1の溝にその取付ブラケットRbを 介して取付ると共に、2枚のシート状覆板Cpを第二溝状 部材93の底壁下面に、との部材93と平行に垂下させて設 けた例を示している。

【0048】図16,図17に例示した本発明オフィス設備システムに用いる柱状対1と横杆体9は、一例として図18に示すようなジョイント部材10を用いて連結することにより、図20に例示するような電源、信号ラインの取出ポイントと取出ラインに形成されるので、次にとの点について説明する。

【0049】図18におけるジョイント部材10は、図16の 柱状体1の芯管体1aに密嵌固定される縦部材10vと、図1 7の横杆体9の芯管体91aに嵌入して固定される水平部材 10hであって、ことでは90度の平面角度で縦部材10vの上 部に連結された2本の水平部材10hにより形成されてい

る。そして図16の柱状体1の中央芯杆体1aに嵌入されて 固定ビス10xにより縦部材10vが固定されるジョイント部 材10の2本の水平部材10hに、図17で示した断面形態の 横杆体9が、その支持部材91の芯管体91aを嵌入し、固 定ビス10yにより固定することにより、図20に例示する 形態の電源、信号ラインの取出ポイントと取出ラインを 組合せたオフィス設備システムの例が構成されるのであ る。上記連結部には、キャップ状のカバー11′を装着す る。カバー11′は、柱状体1と略同外径の天蓋11′eを 10 有する筒体により形成すると共に、周壁上に、ジョイン ト部材10の水平部材10hを遊挿できる切欠11′fが形成さ れている。この切欠11′fには、不要時には着脱自在の 蓋11′gが装着されている。

【0050】ジョイント部材10による柱状体1と横杆体 9との連結において、例えば、ジョイント部材10の縦部 材10vを円形断面に形成し、柱状体1における芯杆体1a の中央穴に回転可能に嵌合させれば、このジョイント部 材10の水平部材10hに連結される横杆体9の平面配向角 を任意の角度に配向させることが可能になる。この配向 自在の機能は、図26に例示するように、ジョイント部材 10の構成において、縦部材10vの上端にリング状の溝10r を周設すると共にその中心に雌ネジを形成したネジ受け 部10sを立設形成する一方、水平部材10hの先端を、前記 リング状溝10rの縁に係止される鉤状の係止部10tに形成 し、この鉤状係止部10tを、水平部材10hの平面角を任意 に選択して前記溝10hの縁に係止させ、係止された該係 止部10tを前記ネジ受け部10sに螺合して緊締される押え ネジ10uの頭部10pによって押圧することにより、横杆体 9と結合された水平部材10hをその横杆体9と一体に任 意の平面配向角で柱状体1に結合することができる。上 記柱状体1と横杆体9の結合部には、図18、図19に例示 するカバー11'が装着される。図19のカバー11'は、図 18のカバー11'の別例であって、柱状体1の芯管体1akC 挿入される主杆11'hと、この主杆11'hの上端に形成し た冒体11'iと冒体11'iの周上に互に隙間を介して垂下 した多数の支杆11'jとから形成されており、支杆11'j の隙間からケーブルを出入れしたり、ジョイント部材10 の水平部材10hを逃げるようにしている。

【0051】また、ジョイント部材10の水平部材10hに対して連結される横杆体9を前記水平部材10hの長さ方向に関し進退可能に連結することにより、例えば、柱状体1の立設位置に対しわずかに長さが足りない横杆体9であっても、その柱状体1に連結することが可能になるので、柱状体1の立設位置と横杆体9の長さとが整合しない場合の連結に有用である。柱状体1と横杆体9とが隙間を介して連結される場合、その隙間をカバーできるカバー体を隙間部分に装着すれば、見映えも悪くならない。

【0052】上記の機能は、本発明の取出ラインを形成 50 する横杆体を伸縮自在の構造としても得られる。図28は 図17に例示した横杆体9伸縮自在の構造にする例の斜視 図である。図28においては、横杆体9の伸縮構造は一例 として次のように構成されている。即ち、横杆体9を構 成する杆状支持部材91と2つの溝状部材92,93を、これ らを柱状体 1 に連結するためのジョイント部材10に結合 される基部側9Bと、この基部側9Bに伸縮可能に接合され る接続側9Eとに分割すると共に、基部側9Bの各部材91~ 93の端部に、それらの断面より少し小さい断面の連結部 91.1、92.1、93.7を各部材91~93に支持させて突出形成 し、この突出した各連結部913~933に、夫々に対応する 接続側9Eの各部材91~93を、スライド可能にインサート して連結しておくのである。横杆体9をこのように形成 すると、連結部91」~93」の有効長さの範囲で横杆体9の 全長を伸縮調節することができる。また、柱状体1を上 記横杆体9と同様の構造、又は、他の構造によって縮自 在構造にすると、取出ラインを形成する横杆体9の床面 からの高さを任意の位置に設定できるのでオフィス設備 システムとしての配設形態の範囲を、前記横杆体9の伸 縮自在機能と相俟って効果的に拡大することができる。 【0053】図21は、本発明設備システムにおける取出

【0053】図21は、本発明設備システムにおける取出装置を構成する取出ラインLvsを、2列平行にオフィスの床上に敷設し、この2本の取出ラインLvs-1とLvs-2を、背の高い門型に形成した取出ラインLvs-3により接続した形態の取出ラインの斜視図である。このような取出ラインの形態を採ると、床又は天井の1箇所からしか取出せない電源、信号ラインであっても、2列以上の取出ラインLvs-1、Lvs-2を形成できると共に、接続用の背が高い門型の取出ラインLvs-3が、人の往来や他の設定ラインの邪魔になることはない。

【0054】上述のように本発明における電源、信号ラ 30 インの取出ポイントPvs,取出ラインLvsは、その構成部 材である柱状体1や横杆体9に、収納ボックス6,パネル12,13,天板15などを支持させて、オフィス用設備の 構成部材の一部としての機能を発揮させるように形成することができ、しかも、その任意の箇所で電源、信号ラインの取出しが可能であるから、この電源、信号ラインの取出ポイント,取出ラインと、移動可能に形成した種々のデスクによって、図25~図27に例示するように、より自由なオフィス空間内での設備の配置を実現できることとなる。そこで、上記のような電源、信号ラインの取 40 出ポイントPvs,取出ラインLvsと組合せて使用するのに好適なデスクの例について、まず、図29~図37により説明する。

【0055】図29~図31はデスクD1を示すもので、これらの図において、16は水平な足16aとその中間部に立設した支柱16b/Cより側面略逆T状に形成し、その2本を左右平行に並べ、左右の支柱16bの上端を梁部材17で連結することによって、正面視略門型をなすように形成した脚フレームである。左右の支柱16bは、いずれも、油圧式、空圧式、機械式いずれかの手段により昇降するよ

うにした内支柱16cを具備しており、梁部材17は、この 左,右の内支柱16c間に架設されている。

18

【0056】上記梁部材17には、左右側に天板19の前後傾斜角の調節機構を内蔵した天板支持アーム18,18が設けられ、天板19は、この左右のアーム18の手前側に枢着されている。18a,18aはアーム18,18の先端と天板19の中間部の下面の間に架設した傾斜角調節シリンダである。

【0057】上記脚フレームにおける足16aの下面には、デスクの移動と固定を選択的に記能させるキャスタ16dとアジャスタ16eが設けられている。ここで、キャスタ16dにはボールキャスタを使用すると共に、アジャスタ16eは前記ボールキャスタを中心部に内装したリング状のものが使用され、アジャスタ16eの正逆回転によって、キャスタ16dを接地させるか、アジャスタ16eの下面を接地させるかのいずれかを選択するように形成されており、以上により本発明で使用するデスクD1の一例を形成する。

【0058】上記脚フレームに支持させる天板19の平面 20 形状は、基本的には長方形乃至は四辺形であるが、左, 右の一方の側、又は、双方が円弧状の側縁に形成された デスクD1'(図38参照)、或は、四辺形が全体として弯 曲された形状のものなど、異形の長方形であってもよ い。また、デスクD1は左、右の脚16のうち一方の脚16の 足を円板状の足で形成したデスクもある。なお、16fは 内支柱16cの昇降操作用ハンドル、16gは昇降用シリン ダ、186は天板角度変更用の操作用ハンドルである。 【0059】図32~図34はデスクD2の例を示すもので、 20は平面視略人手状をなす足20aに昇降(伸縮)自在に 組合せたテレスコピック状の支柱20b, 20cを立設した脚 フレームで、内支柱20cの上端に、基本的に円形天板21 を載架した構成である。各足20aの先端下面には、先の 例と同様のボールキャスタ20dと、このキャスタ20dを内 装したリング状のアジャスタ20eが設けられ、デスクD2 の移動、定置が選択できるようになっている。20fは支 柱昇降の操作ハンドル、20gは昇降用シリンダである。 ことで、足20aは、平面視略人手形のものを使用した が、円板状のものであってもよい。また、このデスクD2 の天板は図33、図34の平面図に示すように、円形天板の 一側を直線辺23aに截断した形状の天板22、或は、天板 の一半側を90度コーナ部を有する直線辺23aに形成した 形状の天板23など、外周辺の一部に直線辺を形成した天 板を用いたものがある。

【0060】図35~図37は、本発明システムに使用するデスクD3を例示するもので、図35は正面図、図36は図35の右側面図、図37は図35の平面図である。このデスクD3では、脚フレーム24に平面視逆V字状で開き角が略90度の2本足24aを使用し、昇降自在に組合せたテレスコピック状の支柱24b、24cが前記足24aの略交点上に立設されている点が、これまでのデスクD1、D2の脚フレーム1

6, 20と異なっている。そして、この内支柱24cの上端に 設けた天板角傾斜機構25の上に、平面視略1/4円弧状 の天板26を載架して、このデスクD3は構成されている。 なお、24dはボールキャスタ、24eはリング状アジャスタ である点は、先のデスクD1, D2の場合と同旨である。ま た、24fは高さ調節用の操作ノブ、24gは昇降用シリン ダ、25aは天板26の角度調節用の操作ノブである。

【0061】 このデスクD3は、その天板26、足24aの平 面形状から、複数のデスクD3を突合せ状態で対向的、或 は、ほぼ花弁状をなすように配置することができる。こ れにより、デスクD3は後述する小会議や打合せコーナ用 のデスクとして使用するのに好適である。もっとも、デ スクD3において、天板26は1/4円弧状のものに限られ る訳ではない。矩形や円形であっても何ら支障はない。 また、とのデスクD3は、図示しないが脚フレーム24にお ける支柱24bの前面に、パンチングプレスしたパネルや 収納ボックスを、必要に応じて取付けることができるよ うに形成されている。

【0062】以上に説明した本発明のオフィス設備シス テムを構成する部材、即ち、電源、信号ラインの取出ポ 20 イントPvs,取出ラインLvsと、上記の各デスクD1~D3 は、図38~図40に例示する形態において、電源、信号の 取出ポイントPvs、或は、取出ラインLvsに対して自由に 移動させて配置するオフィス設備システムに構成される ので、以下、との点について説明する。

【0063】図38においては、柱状体1により形成され る取出ポイントPvs、或は、前記柱状体1と横杆体9の 組合せにより床に平行に配置された取出ラインLvsに対 して、上記で説明したデスクD1等を配置した例が示され ている。なお、デスクD1′はデスクD1の天板形状が異な るものである。

【0064】取出ラインLvsに沿って、2本のデスクD1 を、その天板19の長辺側を当接乃至は近接させ、これら のデスクD1にそれぞれデスクD1′を直交する向きで並べ る一方、との取出ラインLvsの向う側に2本のデスクD1 の短辺側をこのラインLvsに沿わせると共にデスクD3を 並べて一つのワークブースを形成している。図38におい て、Chは椅子、Ca1、Ca2はワゴンタイプのキャビネット で、このキャビネットはその上面をデスクD1と同等、或 は、デスクDIよりも低く形成して、上面にプリンタPrや ファクシミリFx等の〇A機器を載せ、その機器Pr、Fx等 の電源、信号ラインを上記取出ラインLvsや取出ポイン トPvsから取出すことができる。なお、ワゴンタイプの キャビネットを、デスクD1の天板19よりも背の高いもの に形成することもある。

【0065】上記のデスクD1, D1'は、取出ラインLvs に沿って、自由に位置を変え、また、配向も自由に設定 することができる。デスクD1, D1'の移動は、その足16 aのアジャスタ16eを回転させて内部のボールキャスタ16 dを接地させることにより、軽い労力により容易かつ自

由に行うことができる。また、デスクD1, D1'を移動さ せても取出ラインLvs上の複数個所には、必要なコネク タがそれ自体移動可能に設けられているので、デスクD 1, D1'やキャビネットCa1, Ca2の上で使用する電子機 器等の電源、信号ラインは、特別の配線等を要すること なく、前記コネクタに直ちに接続することができる。 【0066】取出ポイントPvsに対しては、図39に例示

するように、ここでは2本のデスクD1, D2を組合せ、両 デスクを前記ポイントPvsを挟んで配置し、小規模のワ - クブースが形成されている。ここで、デスクD1の天板 19は事務作業用のスペースとして、デスクD2の天板、22 はOA機器を載置したコンピュータ作業スペースとして 形成されている。とのため、天板22は天板19よりも高く 位置付け、天板22を天板19に一部オーバハングさせて配 置し、前記2種の作業を、椅子Chを回転させて身体の向 きを変えるだけで、選択的に行うことができるようにし ている。図32、図33においてCptはCRTを含むコンピュー タ本体又はCRT、Kbはキーボードである。

【0067】また、図40に例示するように、柱状体1と 横杆体9とを組合せて形成した平面矩形状の枠状体Fで 形成したブース内に、図3の背の高い柱状体1を使用し た取出ポイントPvsを配置し、このポイントPvsに各柱状 体 1 を中心にして図29~図31に例示したデスクD3を、そ の天板26を手前側下りに少し傾けて原稿台として、或 は、ラップトップタイプのパソコンを置けるようにし て、適宜配置するととにより、いわゆる立ち会議コーナ 等のように立ったままでオフィスワークを行うブースを 形成することができる。この場合に使用するデスクD3 も、移動、定置は自由にできるから、会議等が終了すれ ば、自分の使用したデスクD3を片着けるなどして、残っ た取出ポイントPvsを中心とする他の目的のコーナを、 先のデスクD3、或は、他のデスクD1、D2等を取出ポイン トPvs、或は、このブースの枠状体Fを形成している柱 状体1又は横杆体9に対して配置することにより、容易 に形成することができる。なお、図26において、Rsは遮 蔽パネルとして設けたロールスクリーンである。

【0068】以上に説明した本発明システムにおける電 源、信号ラインの取出ラインは、それを形成する横杆体 9を、図41、図42に例示する間仕切バネルにおける笠木 又は巾木、或は、それらの同等部材として適用できるの で、次にとの点について説明する。

【0069】図41は、デスクD1の天板19の高さより少し 高い程度の高さに形成された間仕切パネルPtにおいて、 その笠木部材Ubの片面又は両面に、断面略樋状をなす横 杆体9Lを柱状体1となる側枠に支持させて配設し、この 横杆体91の任意の位置に電源、信号ケーブルのコネクタ Cv又はCsを長さ方向で位置可変に配置した例である。図 41においてBbは巾木、Spは間仕切パネルPtの上に形成配 置した遮蔽パネル、Lpは該パネルSpの一方に設けた棚板 50 である。

【0070】図42は、図41の間仕切バネルPtにおいて、 当該バネルPtの上部に、そのバネルPtの笠木部材Ubを兼 用してコネクタCv又はCsを具備する横杆体9Lを設けた例 である。図40において、図41と同じ符号は同一部を指す ものとする。

【0071】本発明において、上述した取出ポイントPV s、或は、取出ラインLvsに対して任意に配置した各デスクD1~D3は、いずれも、従来デスクのような配線ダクトや配線取出口が全く設けられず、また、その天板の高さ、或は、その機能を具備していれば天板の傾きを、設 10定することができるように構成したので、構造が簡単で軽量に作製できて移動させるのに便利であり、使い勝手の面、或は、疲れ難いといった面からもきわめて好ましい機能を具備したものである。

【0072】また、上記の各デスクD1~D3は、従来の固 定配置タイプのデスクに比べ、そのデスクと一体の袖キ ャビネットを設けず、また、センター抽出も原則として 設けないので、上記の配線ダクトが全く設けられないと とと相俟って重量が大きくならず、移動が容易であるほ か、固定収納部がないので、不特定複数の者が共用する 20 上でも、便利である。図45はその一例を示したもので、 図21に例示した門型の取出ラインLvs-3を介して接続し た、或は、夫々に独立して平行に並べた2本の取出ライ ンLvs-1, Lvs-2の間に夫々にデスクD1をメインデスクと し、デスクD3を補助デスクとして配置した、ここでは8 人用のワークブースの使用形態とするとき、図45の(a) は、各個人が夫々のブースにおいて執務している状態を 示し、図45の(b)は、各人が補助デスクD3を移動させて ミーティングの場所を2箇所形成した例である。このよ うに、本発明設備システムを利用すると、各個人の執務 30 空間とミーティング空間の切換え設定を、随時、容易に 実行することができる。

[0073]

【発明の効果】本発明オフィス設備システムは以上の通 りであって、オフィス空間内に、そこで使用する電子機 器等の電源、信号ラインを自由に離接することができる ようにした電源、信号ラインの取出ポイント、又は、取 出ライン、若しくは、これらのポイントとラインを組合 せて形成した取出装置を配設する一方、これらの取出ポ イント、取出ラインに対し、少なくとも天板の高さを自 中に設定できるように形成した天板の大きさが種々異な るデスクを選択し、かつ、選択したデスクを自由な配向 で任意の位置に移動させて配置できるようにしてオフィ ス設備システムを構成したので、様々なワーク形態に対 応するために選択使用されるデスクを、そこで使用され るOA機器に接続される電源、信号ラインのコネクタの 近傍において、規則的な配列形態から任意の配置形態ま で、任意かつ容易にそれらの配置の設定、或は、配置の 変更をすることができ、そのうえにどのような配置形態 をとっても、そこで使用する〇A機器の電源、信号ライ ンを、特別な配線工事やそのつどの配線手配などを要することなく直ちに接続することができるという、従来のオフィス空間では全くなすことができなかった、オフィス空間に適した設備システムを実現することができる。 【図面の簡単な説明】

【図1】ポール状をなす電源、信号ラインの取出装置を 形成する柱状体の例をそれぞれ示した斜視図。

【図2】ボール状をなす電源,信号ラインの取出装置を 形成する柱状体の例をそれぞれ示した斜視図。

【図3】ポール状をなす電源、信号ラインの取出装置を 形成する柱状体の例をそれぞれ示した斜視図。

【図4】ボール状をなす電源、信号ラインの取出装置を 形成する柱状体の例をそれぞれ示した斜視図。

【図5】図1~図4に使用した柱状体の平断面図。

【図6】図1~図4に例示した柱状体と図7の横杆体の組合せよる電源、信号ラインの取出装置の一例を示す斜視図。

【図7】図6の横杆体の側断面図。

【図8】柱状体と横杆体の接続構造の一例を示す側面) 図。

【図9】ジョイントカバーの側面図。

【図10】ジョイント部材の形態例を示す斜視図。

【図11】ジョイント部材の形態例を示す斜視図。

【図12】図6と同旨の電源、信号ラインの取出装置の一例の正面図。

【図13】図12の平面図。

50

【図14】図12の左側面図。

【図15】図1~図5で説明した柱状体と図7の横杆体を平面矩形状をなすワークブースの枠状体に形成した例の斜視図。

【図16】本発明オフィス設備における電源、信号ラインの取出ボイントを形成する柱状体の別例の平断面図。

【図17】取出ラインを形成する横杆体の別例の側断面

【図18】図16の柱状体と図17の横杆体の結合形態の一例 を説明するための斜視図。

【図19】柱状体と横杆体の他の例の結合形態を示す斜視 図。

[図20] 図16の柱状体と図17の横杆体とを主体にして形成した本発明オフィス設備システムを例示した斜視図。

【図21】本発明オフィス設備システムにおける電源、信号ラインの取出装置の別の形態例を示した斜視図。

【図22】図17の横杆体における溝状部材の側面を開閉自 在の蓋構造にした例の断面図。

【図23】横杆体の2つの溝状部材を入れ子式構造とした 例の断面図。

【図24】図18に示した本発明設備システムにおける取出 装置に、余長コード収納用のコードリールとシート状覆 板を配備した例の斜視図。

【図25】図24のコードリールの取付態様の一例の要部を

示す	亚	¥F.ī	fπi	W.
715 9	— t	וועב	нп	

【図26】柱状体と横杆体の結合において、横杆体の平面. 配向角を任意の角度に設定できる構造の一例を示す斜視 図。

【図27】図16の柱状体の安定板にキャスタを設け、当該 柱状体を移動可能に構成した例の斜視図。

【図28】図18に示した本発明設備システムの取出装置に おける横杆体を伸縮自在の構造にした例の斜視図。

【図29】デスクの一例の正面図。

【図30】図29の左側面図。

【図31】図30のデスクの天板の傾斜状態を示す側面図。

【図32】図30のデスクの別例の正面図。

【図33】図30のデスクに使用する天板の別例の平面図。

【図34】天板の他の例の平面図。

【図35】デスクの他の例の正面図。

【図36】図35のデスクの右側面図。

【図37】図35のデスクの平面図。

【図38】取出ラインに対するデスク等の配置例を示す斜 視図。

【図39】取出ポイントに対するデスク等の配置例を示す 20 斜視図。

【図40】ワークブースに形成した枠状体に対するデスク 等の配置例を示す斜視図。

【図41】横杆体を間仕切パネルの笠木部分に設けた例の 斜視図。

【図42】横杆体を間仕切パネルの笠木部材又は、上部梁 を兼用するように形成した例の斜視図。

【図43】パネルと収納ボックスの横杆体への取付構造の 一例を示す部分断面図。

【図44】天板の横杆体への取付構造の一例を示す部分断 30 面図。

【図45】本発明設備システムの形態変化の例を示す平面 図で、(a)は個人別業務、(b)は2グループのミーティン グ業務を示すそれぞれの平面図。

【符号の説明】

F 1.4	4-710	0.743
1		柱状体
1a		芯管
1b,	1c	隔壁
1d,	1e	部分周壁
1 f		ドーム状のキャップ
2		安定板
2a		取出穴
3		天板
4		カバー体
4a		底板
5,	6	収納ボックス
5a		開口部
6a		スリット
6b		切欠
7,	8	アジャスタ

9 横杆体 芯管 9a 二重壁 9b 9c, 9d 壁

9e, 9f 部分周壁

二重壁9b先端の部分周壁 9q

ジョイント部材 10

10c, 10d 固定ビス 11 カバー 主骨材 **1**0 11a

> 12, 13 パネル

天板支持ブラケット 14 15 カウンター天板

脚フレーム 16 水平な足

16b 支柱

16a

左, 右の内支柱 16c

16d キャスタ アジャスタ

16e 昇降操作用ハンドル 16f

梁部材 17

支持アーム 18

傾斜角調節シリンダ **1**8a

天板角度変更用の操作ハンドル 18b

天板 19

脚フレーム 20

20b, 20c テレスコピック状の支柱

キャスタ 20d アジャスタ 20e

支柱昇降の操作ハンドル 20f

円形天板 21

截断した形状の天板 22

コーナ部に形成した形状の天板 23

脚フレーム 24

2本足 24a

24b, 24c テレスコピック状の支柱

ボールキャスタ 24d リング状アジャスタ 24e 高さ調節用操作ノブ 24f

天板角傾斜機構 40 25

> 天板26の角度調節用のノブ 25a 平面視略 1 / 4 円弧状の天板 26

デスク D1~D3

Vc 電源ケーブル

信号ケーブル

溝キャップ GC

コネクタ Cv, Cs

中継機器,器材 Vn, Sn

取出ポイント

取出ライン 50 Lvs

Pvs

[図19]

[図20]

【図39】

[図41]

【図42】

【図45】

フロントページの続き

(51)Int.C7.⁵

識別記号

E04F 17/08

F I

E 0 4 F 17/08

Z

(72)発明者 小 杉 健 一 郎

大阪府大阪市中央区淡路町1丁目6番11号株式会社イトーキ内

(72)発明者 古 澤 可 彦

大阪府大阪市城東区今福東1丁目4番12号 株式会社イトーキクレビオ内