Analisis Fourier Bagian Kedua: Deret Fourier (Lanjutan)

Referensi:

- Signal and System, Oppenheim, Wilsky, & Nawab (Bab 3)
- Digital Signal Processing, Proakis & Manolakis (Bab 4.1)

Isyarat-Isyarat yang tidak bisa direpresentasikan dalam Deret Fourier

- Mayoritas isyarat periodik bisa direpresentasikan dalam Deret Fourier.
- Ingat kembali persamaan sintesis dan analisis pada deret Fourier untuk isyarat periodik x(t):

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{T}t}$$
 (1) Persamaan Sintesis

$$a_k = \frac{1}{T} \int_T x(t)e^{-jk\frac{2\pi}{T}t}dt$$
 (2) Persamaan Analisis

Isyarat-Isyarat yang tidak bisa direpresentasikan dalam Deret Fourier

- Ada beberapa isyarat periodik x(t) yang <u>tidak bisa</u> direpresentasikan dalam Deret Fourier
- Salah satu penyebabnya adalah, saat dihitung koefisien deret Fourier a_k dengan persamaan analisis (2), hasil integrasi pada (2) tidak konvergen (nilai integrasi bisa tak berhingga)
- Penyebab lain: Meski hasil integrasi pada (2) konvergen (yang artinya seluruh koefisien a_k bisa dihitung), saat koefisien-koefisien a_k disubstitusikan ke persamaan sintesis (1), hasil persamaan sintesis tidak konvergen ke isyarat x(t) yang asli.

Kondisi yang Harus Dipenuhi bagi Keberadaan Deret Fourier

- Seorang matematikawan, Peter Gustav Dirichlet, memformulasikan **kondisi** bagi isyarat periodik x(t) untuk bisa direpresentasikan dalam Deret Fourier.
- \blacktriangleright Kondisi Dirichlet-1: Pada setiap perioda, x(t) harus absolutely integrable, artinya:

$$\int_{T} |x(t)|dt < \infty$$

Hal ini untuk memastikan bahwa koefisien Deret Fourier a_k tidak akan bernilai tak berhingga.

Kondisi yang Harus Dipenuhi bagi Keberadaan Deret Fourier

Penjelasan bagi Kondisi di atas adalah sebagai berikut. Dari persamaan analisis (2) kita bisa menuliskan magnitude dari koefisien deret Fourier a_k sebagai:

$$|a_k| = \left| \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t} dt \right|$$

$$\leq \frac{1}{T} \int_T |x(t)e^{-jk\omega_0 t}| dt = \frac{1}{T} \int_T |x(t)| dt$$

Jadi jika $\int_T |x(t)| dt < \infty$ maka otomatis $|a_k| < \infty$

Kondisi yang Harus Dipenuhi bagi Keberadaan Deret Fourier

- Kondisi Dirichlet-2: Pada setiap interval waktu yang terbatas (any finite interval of time), jumlah variasi x(t) terbatas. Artinya jumlah titik puncak (maksima dan minima) pada setiap perioda isyarat x(t) harus berhingga/terbatas.
- Kondisi Dirichlet-3: Pada setiap interval atau periode tertentu, jumlah/cacah diskontinuitas harus berhingga/terbatas. Kemudian, tiap-tiap diskontinuitas tersebut harus memiliki ukuran yang berhingga/terbatas pula

Isyarat-Isyarat yang tidak bisa direpresentasikan dalam Deret Fourier

Gambar: Isyarat ini melanggar Kondisi Dirichlet Pertama Diambil dari Signal and Systems 2nd Edition by Oppenheim Page 199

Isyarat-Isyarat yang tidak bisa direpresentasikan dalam Deret Fourier

Definisi isyarat untuk 1 periode:

$$x(t) = \sin\left(\frac{2\pi}{t}\right), \quad 0 < t \le 1$$
 dan $x(t)$ periodik dengan periode 1

Gambar: Isyarat ini melanggar Kondisi Dirichlet Kedua Diambil dari Signal and Systems 2nd Edition by Oppenheim Page 199

Isyarat-Isyarat yang tidak bisa direpresentasikan dalam Deret Fourier

Gambar: Isyarat ini melanggar Kondisi Dirichlet Ketiga Diambil dari Signal and Systems 2nd Edition by Oppenheim Page 199

- Dalam menguraikan berbagai sifat-sifat deret Fourier bisa digunakan <u>notasi ringkas</u> untuk mengilustrasikan relasi antara isyarat periodik dengan koefisien deret Fourier-nya.
- ▶ Jika x(t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan koefisien deret Fourier x(t) diberikan oleh a_k , atau dengan kata lain:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

Maka kita bisa menuliskan ringkasan dari persamaan di atas sebagai

Notasi di atas digunakan untuk menandakan hubungan pasangan antara isyarat periodik x(t) dengan koefisien deret Fouriernya (yaitu a_k untuk semua integer k)

Sifat 1: Linearitas

Jika x(t) dan y(t) adalah isyarat periodik dengan periode T dan

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \qquad y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

Maka z(t) = Ax(t) + By(t) adalah isyarat periodik dengan periode T dan

$$z(t) = Ax(t) + By(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + Bb_k$$

Pembuktian Sifat 1: Linearitas

Berhubung: $x(t) \overset{\mathcal{FS}}{\leftrightarrow} a_k$, dan $y(t) \overset{\mathcal{FS}}{\leftrightarrow} b_k$

Maka relasi di atas ekivalen dengan

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

$$y(t) = \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t},$$

Dengan demikian, kombinasi linear dari x(t) dan y(t) yaitu z(t) = Ax(t) + By(t) bisa dituliskan sebagai:

$$z(t) = A \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} + B \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t}$$

Pembuktian Sifat 1 (Lanjutan)

$$z(t) = A \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} + B \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t}$$

$$z(t) = \sum_{k=-\infty}^{\infty} \left[Aa_k e^{jk\omega_0 t} + Bb_k e^{jk\omega_0 t} \right]$$

$$z(t) = \sum_{k=-\infty}^{\infty} (Aa_k + Bb_k) e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Dengan $c_k = Aa_k + Bb_k$ (Pembuktian Selesai)

Sifat 2: Time Shifting

• Jika x(t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x(t) \overset{\mathcal{FS}}{\longleftrightarrow} a_k$$

Maka $y(t)=x(t-t_0)$ adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x(t-t_0) \overset{\mathcal{FS}}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k$$

Cukup jelas bahwa pergeseran suatu isyarat x(t) dengan tunda waktu t_0 tidak akan mengubah periode isyarat. Sehingga jelas bahwa $x(t - t_0)$ akan periodik dengan periode T.

Pembuktian Sifat 2: Time Shifting

Bukti: Katakanlah b_k adalah koefisien deret Fourier bagi $y(t) = x(t - t_0)$, maka

$$b_k = \frac{1}{T} \int_T y(t)e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t - t_0)e^{-jk\omega_0 t} dt$$

Asumsikan: $\tau = t - t_0$, maka $d\tau = dt$ dan range dari τ juga akan meliputi interval berdurasi T. Dengan demikian,

$$b_k = \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0(\tau + t_0)} d\tau$$

Pembuktian Sifat 2 (Lanjutan)

$$b_k = e^{-jk\omega_0 t_0} \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 \tau} d\tau$$
$$= e^{-jk\omega_0 t_0} a_k = e^{-jk\left(\frac{2\pi}{T}\right)t_0} a_k$$

Dengan demikian, terbukti bahwa jika:

$$x(t) \overset{\mathcal{FS}}{\longleftrightarrow} a_k$$
 atau $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$,

Maka $x(t-t_0) \overset{\mathcal{FS}}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k$

atau
$$x(t - t_0) = \sum_{k = -\infty}^{\infty} a_k e^{jk\omega_0(t - t_0)},$$

Sifat 3: Time Reversal

Jika x(t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x(t) \overset{\mathcal{FS}}{\longleftrightarrow} a_k$$

Maka y(t)=x(-t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x(-t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k}$$

Cukup jelas bahwa membalik sumbu waktu <u>tidak akan</u> mengubah periode isyarat. Sehingga jelas bahwa x(-t) akan periodik dengan periode yang sama dengan periode x(t) yaitu T.

Pembuktian Sifat 3: Time Reversal

Berhubung: $x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$

Maka bisa dituliskan

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

Dengan demikian, jika b_k adalah koefisien deret Fourier bagi y(t) dan y(t) = x(-t), maka diperoleh

$$y(t) = \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t} = x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{-jk\omega_0 t}$$

Pembuktian Sifat 3 (Lanjutan)

Jika diperkenalkan m = -k, maka

$$y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{jm\omega_0 t}$$

Dengan demikian,

$$y(t) = \sum_{m=-\infty}^{\infty} b_m e^{jm\omega_0 t} = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{jm\omega_0 t}$$

• Jelas bahwa $b_m = a_{-m}$.

Pembuktian Sifat 3 (Lanjutan)

Dengan demikian, terbukti bahwa jika:

$$x(t) \overset{\mathcal{FS}}{\longleftrightarrow} a_k$$
 atau $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$,

Maka

$$x(-t) = \sum_{k=-\infty}^{\infty} a_{-k} e^{jk\omega_0 t},$$

atau

$$x(-t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k}$$

Sifat 4: Time Scaling

• Jika x(t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$\max_{k=-\infty} a_k e^{jk(\alpha\omega_0)t}$$

• Artinya $x(\alpha t)$ adalah isyarat periodik dengan periode T/α (dengan frekuensi fundamental $\alpha \omega_0 = 2\pi/(T/\alpha)$)

Sifat 4: Time Scaling

- Dengan demikian, koefisien Deret Fourier tidak mengalami perubahan, tetapi representasi Deret Fourier mengalami perubahan karena terjadinya perubahan fundamental frequency dari ω_0 ke $\alpha\omega_0$.
- Pembuktian tidak tersedia karena bisa dilakukan dengan cukup mudah (tinggal mengganti *t* dengan α*t*)

Sifat 5: Perkalian

Jika x(t) dan y(t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \qquad y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

Maka x(t)y(t) adalah isyarat periodik dengan periode T dan

$$x(t)y(t) \stackrel{\mathcal{FS}}{\leftrightarrow} h_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

Pembuktian Sifat 5: Perkalian

Berdasarkan pernyataan di atas, representasi deret Fourier bagi x(t) dan y(t) bisa dituliskan sebagai

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

$$y(t) = \sum_{l=-\infty}^{\infty} b_l e^{jl\omega_0 t},$$

Maka

$$x(t)y(t) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_k b_l e^{jk\omega_0 t} e^{jl\omega_0 t}$$
$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_k b_l e^{j(k+l)\omega_0 t}$$

Pembuktian Sifat 5: Perkalian

▶ Jika m = k + l maka m juga berkisar dari $-\infty$ ke $+\infty$, sehingga

$$x(t)y(t) = \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_k b_{m-k} e^{jm\omega_0 t}$$

Kita pertukarkan posisi jumlahan:

$$x(t)y(t) = \sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} a_k b_{m-k} e^{jm\omega_0 t}$$

 $\text{Kita set} \quad h_m = \sum_{k=-\infty} a_k b_{m-k}$

Pembuktian Sifat 5: Perkalian

Dengan demikian, persamaan di atas menjadi

$$x(t)y(t) = \sum_{m=-\infty}^{\infty} h_m e^{jm\omega_0 t},$$

• Bila kita bandingkan persamaan di atas dengan persamaan umum deret Fourier, maka jelas bahwa koefisien deret Fourier untuk x(t)y(t) di atas diberikan oleh

$$h_m = \sum_{k=-\infty}^{\infty} a_k b_{m-k}$$

Sifat 6: Konjugasi

• Jika x(t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

Maka $x^*(t)$ adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan

$$x^*(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k}^*$$

Pembuktian Sifat 6: Konjugasi

▶ Telah diketahui bahwa:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

Jika kita kenakan operasi konjugat pada persamaan di atas maka diperoleh

$$x^*(t) = \left[\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\right]^* = \sum_{k=-\infty}^{\infty} a_k^* e^{-jk\omega_0 t}$$

Pembuktian Sifat 6: Konjugasi

Agar pangkat komponen eksponensial konsisten dengan format deret Fourier, kita membalik variabel dalam jumlahan dari *k* menjadi –*k* (selang perubahan <u>tidak akan</u> berubah):

$$x^*(t) = \sum_{k=-\infty}^{\infty} a_{-k}^* e^{jk\omega_0 t} \quad (4)$$

Cukup jelas dari (4) bahwa jika:

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$
 maka

$$x^*(t) \overset{\mathcal{FS}}{\longleftrightarrow} a^*_{-k}$$

Konsekuensi Sifat 6: Konjugasi

Tampak bahwa jika x(t) adalah isyarat real, maka $x(t)=x^*(t)$ dan diperoleh dari pers. (4) di atas bahwa:

$$x^*(t) = \sum_{k=-\infty}^{\infty} a_{-k}^* e^{jk\omega_0 t} = x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

ightharpoonup Jadi untuk isyarat real x(t) berlaku:

$$a_{-k} = a_k^*$$

Dan akibatnya a_0 bernilai real sedangkan untuk **magnitude** koefisien deret Fourier berlaku:

$$|a_{-k}| = |a_k|$$

Lihat Example 3.6 Buku Signal & System (Oppenheim & Willsky) hal 206-207 serta Gambar 3.10

- Tampak isyarat g(t) dengan periode fundamental sebesar 4.
- Untuk menentukan representasi deret Fourier, kita bisa menentukan koefisien deret Fourier dengan formula:

$$a_k = \frac{1}{T} \int_T g(t)e^{-jk\frac{2\pi}{T}t}dt = \frac{1}{T} \int_{-2}^2 g(t)e^{-jk\frac{2\pi}{T}t}dt$$

Namun kita bisa pula memanfaatkan Contoh-2 pada slide bagian 1 (Contoh 3.5 Buku Oppenheim) dan memanfaatkan sifat-sifat deret Fourier yang telah dibahas.

Iika kita menggunakan Contoh 2 pada Bagian 1 dan untuk isyarat x(t) pada contoh tersebut kita set T=4 dan $T_1=1$, maka tampak bahwa g(t) pada Contoh ini dapat dituliskan:

$$g(t) = x(t-1) - \frac{1}{2}$$

Dari time-shifting property jelas bahwa jika koefisien deret Fourier bagi x(t) adalah a_k , dan koefisien deret Fourier bagi x(t-1) adalah b_k , maka:

$$b_k = a_k e^{-jk\frac{2\pi}{T}(1)} = a_k e^{-jk\frac{2\pi}{4}} = a_k e^{-jk\frac{\pi}{2}}$$

Noefisien Deret Fourier bagi komponen DC (konstan) pada g(t) yaitu 1/2 diberikan oleh:

$$c_k = \begin{cases} 0, & \text{for } k \neq 0 \\ \frac{1}{2}, & \text{for } k = 0 \end{cases}$$

Iika kita menggunakan property <u>linearitas</u>, maka koefisien Deret Fourier bagi g(t) diberikan oleh

$$d_k = \begin{cases} a_k e^{-jk\pi/2}, & \text{for } k \neq 0 \\ a_0 - \frac{1}{2}, & \text{for } k = 0 \end{cases}$$

Langkah berikut adalah meninjau ulang a_k yang merupakan koefisien Deret Fourier bagi x(t) pada Contoh-2 Bagian I

- Tinjau Contoh-2 pada PPT Bagian I (Example 3.5 Signal & System Oppenheim & Willsky).
- ▶ Untuk T = 4 dan $T_1 = 1$ diperoleh bahwa

$$a_0 = \frac{1}{2}$$

$$a_k = \frac{\sin(k\pi/2)}{k\pi}, \ k \neq 0$$

Dengan demikian, koefisien Deret Fourier bagi g(t) diberikan oleh:

$$d_k = \begin{cases} \frac{\sin(k\pi/2)}{k\pi} e^{-jk\pi/2}, & \text{for } k \neq 0\\ 0, & \text{for } k = 0 \end{cases}$$

 \triangleright Dengan demikian, g(t) diberikan oleh:

$$g(t) = \sum_{k=-\infty}^{-1} d_k e^{jk\frac{2\pi}{T}t} + \sum_{k=1}^{\infty} d_k e^{jk\frac{2\pi}{T}t}$$
$$g(t) = \sum_{k=-\infty}^{-1} \frac{\sin(k\pi/2)}{k\pi} e^{-jk\pi/2} e^{jk\frac{2\pi}{T}t}$$

$$+\sum_{k=1}^{\infty} \frac{\sin(k\pi/2)}{k\pi} e^{-jk\pi/2} e^{jk\frac{2\pi}{T}t}$$

▶ Berhubung *T*=4 maka

$$g(t) = \sum_{k=-\infty}^{-1} \frac{\sin(k\pi/2)}{k\pi} e^{jk\frac{\pi}{2}(t-1)} + \sum_{k=1}^{\infty} \frac{\sin(k\pi/2)}{k\pi} e^{jk\frac{\pi}{2}(t-1)}$$

Sifat-Sifat Deret Fourier

Sifat 7: Differensiasi

Iika x(t) adalah isyarat periodik dengan periode T (frekuensi fundamental $\omega_0 = 2\pi/T$) dan koefisien deret Fourier bagi x(t) diberikan oleh a_k :

$$x(t) \overset{\mathcal{FS}}{\longleftrightarrow} a_k$$

• Dan bila y(t) adalah **turunan** dari x(t) terhadap waktu dan koefisien deret Fourier bagi y(t) diberikan oleh b_k :

$$y(t) = \frac{dx(t)}{dt}$$

$$y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

Maka b_k diberikan oleh:

$$b_k = jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$$

Sifat-Sifat Deret Fourier

Pembuktian Sifat 7: Differensiasi

▶ Telah diketahui bahwa:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t},$$

• Jika kita kenakan operasi derivative atau **turunan** terhadap waktu *t* pada persamaan di atas, akan diperoleh:

$$\frac{d x(t)}{dt} = \sum_{k=-\infty}^{\infty} \frac{d a_k e^{jk\omega_0 t}}{dt} = \sum_{k=-\infty}^{\infty} jk\omega_0 a_k e^{jk\omega_0 t}.$$

• Jika kita bandingkan pers. di atas dengan formula umum persamaan sintesis deret Fourier maka jelas bahwa koefisien deret Fourier diberikan oleh $jk\omega_0 a_k$.

Contoh-B

- Tinjau Contoh 3.7 pada Buku Signal and System,
 Oppenheim & Willsky
- Diketahui sebuah gelombang segitiga x(t) dengan periode T=4 dan frekuensi fundamental $\omega_0 = 2\pi/T = \pi/2$.

Figure 3.11 Triangular wave signal in Example 3.7.

- Tampak bahwa isyarat x(t) yang berupa gelombang segitiga di atas bila didifferensialkan akan menghasilkan isyarat g(t) pada Contoh A.
- Katakanlah e_k adalah koefisien Deret Fourier bagi x(t) (isyarat segitiga pada Contoh B)
- Telah diketahui bahwa koefisien Deret Fourier bagi g(t) (gelombang kotak pada Contoh A) diberikan oleh d_k (lihat contoh A)
- Dari Sifat Differensiasi (lihat Sifat 7) untuk Deret Fourier maka

$$d_k = jk\omega_0 e_k = jk\frac{2\pi}{T}e_k = jk\frac{\pi}{2}e_k$$

Dengan mempertimbangkan nilai d_k pada Contoh A, untuk $k \neq 0$:

$$e_k = \frac{2d_k}{jk\pi} = \frac{2\sin(\pi k/2)}{j(k\pi)^2}e^{-jk\pi/2}, \quad k \neq 0.$$

- e_0 tidak bisa dicari dengan formula di atas karena penyebut akan bernilai 0 jika kita masukkan k=0 pada formula di atas.
- Untuk k = 0, e_0 dapat ditentukan dengan formula standar untuk menghitung deret Fourier.

Ingat bahwa

$$e_k = \frac{1}{T} \int_T x(t)e^{-jk\frac{2\pi}{T}t}dt$$

$$e_0 = \frac{1}{T} \int_T x(t)e^0 dt = \frac{1}{T} \int_T x(t)dt$$

Untuk kasus ini

$$e_0 = \frac{1}{T} \left\{ \int_{t=-2}^{t=0} \frac{-t}{2} dt + \int_{t=0}^{t=2} \frac{t}{2} dt \right\}$$

$$e_0 = \frac{1}{4} \left\{ \frac{-t^2}{4} \Big|_{t=-2}^{t=0} + \frac{t^2}{4} \Big|_{t=0}^{t=2} \right\} = \frac{1}{2}$$

Dengan demikian,

$$x(t) = \sum_{k=-\infty}^{-1} \frac{2\sin(k\pi/2)}{jk^2\pi^2} e^{-jk\frac{\pi}{2}} e^{jk\frac{\pi}{2}t} + \frac{1}{2}$$
$$+ \sum_{k=1}^{\infty} \frac{2\sin(k\pi/2)}{jk^2\pi^2} e^{-jk\frac{\pi}{2}} e^{jk\frac{\pi}{2}t}$$

$$x(t) = \sum_{k=-\infty}^{-1} \frac{2\sin(k\pi/2)}{jk^2\pi^2} e^{jk\frac{\pi}{2}(t-1)} + \frac{1}{2} + \sum_{k=1}^{\infty} \frac{2\sin(k\pi/2)}{jk^2\pi^2} e^{jk\frac{\pi}{2}(t-1)} + \sum_{k=1}^{\infty} \frac{2\sin(k\pi/2)}{jk^2\pi^2} e^{jk\frac{\pi}{2}(t-1)}$$

Property	Section	Periodic Signal	Fourier Series Coefficients
	all with the	x(t) Periodic with period T and	a_k
		$y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	<i>b</i> _k
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	3.5.2	$x(t-t_0) = e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency Shifting	256		$a_{k-M} = a_{-k}^*$
Conjugation	3.5.6	$x^*(t)$	a_{-k}
lime Reversal	3.5.3	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Time Scaling	3.5.4	$x(\alpha i), \alpha > 0$ (periodic with period $x(\alpha i)$	a k
Periodic Convolution		$\int_{T} x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
		at (6-its reduced and	/1 / / 1 /
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)^{k}$
			$a_k = a_{-k}^*$
		nonuna of the seed of the real	$\Re\{a_k\} = \Re\{a_{-k}\}$
Conjugate Symmetry for	3.5.6	x(t) real $x(t)$ real and even $x(t)$ real and odd $x(t)$ real and odd $x(t)$ real and odd $x(t)$	$\begin{cases} \mathfrak{G}m\{a_k\} = -\mathfrak{G}m\{a_{-k}\} \\ a_k = a_{-k} \end{cases}$
Real Signals			$\langle a_k \rangle = \langle a_{-k} \rangle$
		A THE OPEN A PERSON OF THE PER	$(\angle a_k = - \angle a_{-k})$
Real and Even Signals	3.5.6	x(t) real and even	a_k real and even
Real and Odd Signals	3.5.6	$x(t)$ real and odd $\times (t)$	a_k purely imaginary and o
Even-Odd Decomposition		$\int x_e(t) = \mathcal{E}_{\nu}\{x(t)\} [x(t) \text{ real}]$	$\Re\{a_k\}$
of Real Signals	the hygina	$\begin{cases} x_o(t) = \mathbb{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	j Im $\{a_k\}$
		Parseval's Relation for Periodic Signals	

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

Jika diketahui dua buah vektor berukuran $n \times 1$ yaitu $\mathbf{a} = [a_1, a_2, ..., a_n]^T$ dan $\mathbf{b} = [b_1, b_2, ..., b_n]^T$, maka dot product antara \mathbf{a} dan \mathbf{b} diberikan oleh

$$\mathbf{a}.\mathbf{b} = \mathbf{a}^T \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

- ▶ Dengan [.]^T mengindikasikan operasi transpose dari suatu vektor.
- Dot product antara vektor $\mathbf{a} = [a_1, a_2, ..., a_n]^T$ dengan dirinya sendiri akan menghasilkan kuadrat panjang vektor \mathbf{a} :

$$\mathbf{a} \cdot \mathbf{a} = \mathbf{a}^T \mathbf{a} = a_1^2 + a_2^2 + \dots + a_n^2 = |\mathbf{a}|^2$$

- Pada saat dua vektor yang di-dot productkan adalah vektor kompleks, maka pada saat operasi dot product dilakukan, elemen-elemen vektor yang kedua <u>dikonjugatkan</u>.
- ▶ Dengan demikian, jika dua vektor berukuran $n \times 1$ diberikan sebagai $\mathbf{a} = [a_1 + j\alpha_1, a_2 + j\alpha_2, ..., a_n + j\alpha_n]^T$ dan $\mathbf{b} = [b_1 + j\beta_1, b_2 + j\beta_2, ..., b_n + j\beta_n]^T$, maka:

$$\mathbf{a}.\mathbf{b} = \mathbf{a}^T \mathbf{b}^* = (a_1 + j\alpha_1)(b_1 - j\beta_1) + (a_2 + j\alpha_2)(b_2 - j\beta_2) + \dots + (a_n + j\alpha_n)(b_n - j\beta_n)$$

Dengan (.)* mengindikasikan operasi konjugat dari skalar atau vektor.

Dot product antara vektor kompleks $\mathbf{a} = [a_1 + j\alpha_1, a_2 + j\alpha_2, ..., a_n + j\alpha_n]^T$ dengan dirinya sendiri akan menghasilkan kuadrat panjang vektor \mathbf{a} :

$$\mathbf{a}.\mathbf{a} = \mathbf{a}^{T}\mathbf{a}^{*} = (a_{1} + j\alpha_{1})(a_{1} - j\alpha_{1}) + (a_{2} + j\alpha_{2})(a_{2} - j\alpha_{2}) + \dots + (a_{n} + j\alpha_{n})(a_{n} - j\alpha_{n})$$

$$= |a_{1} + j\alpha_{1}|^{2} + |a_{2} + j\alpha_{2}|^{2} + \dots + |a_{n} + j\alpha_{n}|^{2}$$

- Hal ini konsisten dengan kasus dot product untuk vektor real.
- Perlu dicatat bahwa |z| merepresentasikan magnitude dari bilangan kompleks z.

- Kita kembali ke kasus vektor real untuk memudahkan diskusi berikut.
- Tinjau Ruang Berdimensi tiga dengan vektor-vektor memiliki tiga buah elemen.
- Misalkan vektor $\mathbf{x} = [3 -5 7]^T$ bisa diuraikan menjadi

$$\begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 5 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (5)

Di sini [1 0 0]^T adalah vektor satuan dengan arah tertentu. Jika kita menggunakan sistem koordinat Kartesian, [1 0 0]^T bisa dipandang sebagai vektor satuan yang searah sumbu-x.

- ▶ Dengan demikian, [0 1 0]^T dapat dipandang sebagai vektor satuan yang searah sumbu-y, sedangkan [0 0 1]^T dapat dipandang sebagai vektor satuan yang searah sumbu-z
- Artinya pada persamaan (5), kontribusi komponen yang searah pada sumbu-x ([1 0 0] T) pada [3 -5 7] T adalah 3.
- ► Kontribusi komponen yang searah pada sumbu-*y* ([0 1 0]^T) pada [3 -5 7]^T adalah -5
- Kontribusi komponen yang searah pada sumbu-z ([0 0 1] T) pada [3 -5 7] T adalah 7

- Vektor-vektor $[1\ 0\ 0]^T$, $[0\ 1\ 0]^T$, dan $[0\ 0\ 1]^T$ sering disebut dengan **vektor-vektor basis**.
- Untuk mengetahui besarnya kontribusi dari suatu vektor basis pada suatu vektor tertentu y, kita bisa melakukan dot product antara y dengan vektor basis tersebut.
- Misalkan untuk mengetahui kontribusi komponen yang searah dengan sumbu-y pada vektor [3 -5 7]^T pada persamaan (5) bisa diperoleh dengan operasi dot product:

$$\begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = (3)(0) + (-5)(1) + (7)(0) = -5$$

Demikian pula, kontribusi komponen yang searah dengan sumbu-*x* dan dengan sumbu-*z* pada vektor [3 -5 7]^T pada persamaan (5) berturut-turut bisa diperoleh dengan operasi *dot product*:

$$\begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = (3)(1) + (-5)(0) + (7)(0) = 3$$

$$\begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = (3)(0) + (-5)(0) + (7)(1) = 7$$

- Kita bisa melakukan ekstensi konsep dot product pada operasi vektor ke operasi isyarat.
- Isyarat x(t) untuk semua titik waktu t bisa pula kita tampung nilainya pada suatu vektor. Dengan demikian, vektor yang kita dapat akan memiliki ukuran yang tak berhingga.
- Hal yang sama bisa kita berlakukan pada isyarat eksponensial kompleks $e^{jk\omega_0t} = \exp(jk(2\pi/T)t)$
- Isyarat e^{jkω0t} untuk semua titik waktu *t* bisa pula kita tampung nilainya pada suatu vektor. Dan vektor yang dihasilkan akan memiliki ukuran yang tak berhingga pula.

Tinjau kembali Persamaan Analisis Deret Fourier.

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk\frac{2\pi}{T}t} dt$$
 (2)

- Dari diskusi tentang konsep dot product serta dimungkinkannya memandang isyarat sebagai vektor berdimensi tak hingga, maka kita bisa memandang pers. (2) sebagai operasi dot product pula.
- Operasi dot product yang terjadi pada (2) adalah antara isyarat x(t) dengan isyarat $\exp(jk(2\pi/T)t)$ (atau $\exp(jk\omega_0 t)$).

- Perhatikan bahwa x(t) umumnya bernilai kompleks sedangkan $\exp(jk(2\pi/T)t)$ jelas bernilai kompleks.
- Perhatikan bahwa saat kedua isyarat ini kita operasikan pada persamaan (2), salah satu isyarat yaitu $\exp(jk(2\pi/T)t)$ dikonjugatkan menjadi $\exp(-jk(2\pi/T)t)$
- Hal ini konsisten dengan operasi dot product pada dua vektor kompleks (di mana vektor kedua pada operasi dot product dikonjugatkan).
- Pertanyaannya mengapa pers. (2) bisa dipandang sebagai operasi dot product.

- Perhatikan bahwa saat kita melakukan operasi dot product antara a dan b:
 - Elemen a dan b pada indeks yang bersesuaian kita kalikan
 - Seluruh hasil perkalian yang didapat kita jumlahkan seluruhnya
- ▶ Hal yang sama berlaku pada persamaan (2):
 - Nilai isyarat x(t) dan $\exp(-jk(2\pi/T)t)$ pada indeks t yang bersesuaian kita <u>kalikan</u>
 - Berhubung *t* adalah indeks waktu kontinu, maka seluruh hasil perkalian yang didapat di atas kita integralkan (jumlahan diganti integral).
 - Proses integrasi kita lakukan untuk satu periode *T*.

- Kita kembali dengan vektor-vektor pada ruang dimensi-3 yang kita singgung sebelumnya.
- Tinjau 3 vektor basis yang telah disinggung yaitu: $[1 \ 0 \ 0]^T$, $[0 \ 1 \ 0]^T$, $[0 \ 0 \ 1]^T$.
- Tampak bahwa jika tiap pasang vektor di atas kita dot productkan hasilnya 0. Misalnya:

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = (0)(1) + (1)(0) + (0)(0) = 0$$

- ▶ Hal yang sama berlaku pula untuk 2 pasang vektor basis yang lain yaitu [1 0 0]^T dengan [0 0 1]^T serta [0 1 0]^T dengan [0 0 1]^T.
- Hal ini cukup wajar karena ketiga vektor di atas merupakan tiga vektor basis yang saling tegak lurus.
- Ketika setiap dari ketiga vektor basis di atas kita dot productkan dengan dirinya sendiri maka hasilnya 1:

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 1$$

	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 1$
--	---

- Hal ini juga wajar karena tiap vektor basis di atas merupakan vektor unit (vektor yang panjangnya 1).
- Berikutnya kita akan melihat apakah sekumpulan fungsi eksponensial kompleks yang saling harmonik, yaitu $\exp(jk(2\pi/T)t)$, $k = 0, \pm 1, \pm 2, \pm 3,$ juga memiliki **karaketeristik serupa** dengan vektor basis $[1\ 0\ 0]^T$, $[0\ 1\ 0]^T$, dan $[0\ 0\ 1]^T$, untuk kasus vektor di ruang dimensi-3.
- Untuk keperluan ini kita akan kenakan operasi integral serupa dengan persamaan analisis Deret Fourier (2) hanya saja <u>tidak</u> antara x(t) dengan $\exp(jk(2\pi/T)t)$ namun antar $\exp(jk(2\pi/T)t)$ dengan nilai k yang berbeda-beda

- Mula-mula kita kenakan operasi integral antara $\exp(jk(2\pi/T)t)$ dengan <u>dirinya sendiri</u> (k yang sama).
- Namun ingat bahwa kita ingin konsisten dengan operasi dot product pada vektor kompleks, sehingga $\exp(jk(2\pi/T)t)$ yang kedua kita konjugatkan menjadi $\exp(-jk(2\pi/T)t)$:

$$\frac{1}{T} \int_{T} e^{+jk\frac{2\pi}{T}t} e^{-jk\frac{2\pi}{T}t} dt = \frac{1}{T} \int_{0}^{T} e^{+jk\frac{2\pi}{T}t} e^{-jk\frac{2\pi}{T}t} dt$$
$$= \frac{1}{T} \int_{0}^{T} e^{0} dt = \frac{1}{T} \int_{0}^{T} 1 dt = 1$$

- Cukup menarik bahwa jika kita kenakan operasi persamaan analisis (2) (yang kita pandang serupa dengan operasi dot product) namun <u>bukan</u> antara x(t) dengan $\exp(jk(2\pi/T)t)$ melainkan antara $\exp(jk(2\pi/T)t)$ dengan dirinya sendiri, hasilnya adalah 1.
- ▶ Hal ini mengingatkan kita pada dot product antara vektor basis [1 0 0]^T dengan dirinya sendiri yang hasilnya juga 1.
- Sekarang kita akan kenakan operasi integral persamaan analisis (2) antara $\exp(jm(2\pi/T)t)$ dengan $\exp(jk(2\pi/T)t)$ (dengan $k \neq m$ dan k serta m bilangan bulat).

Sekali lagi, kita ingin konsisten dengan operasi dot product pada vektor kompleks, sehingga faktor yang kedua yaitu $\exp(jk(2\pi/T)t)$ yang kedua kita konjugatkan menjadi $\exp(-jk(2\pi/T)t)$:

$$\frac{1}{T} \int_{T} e^{+jm\frac{2\pi}{T}t} e^{-jk\frac{2\pi}{T}t} dt = \frac{1}{T} \int_{0}^{T} e^{+jm\frac{2\pi}{T}t} e^{-jk\frac{2\pi}{T}t} dt$$

$$= \frac{1}{T} \int_{0}^{T} e^{j(m-k)\frac{2\pi}{T}t} dt$$

$$= \frac{1}{T} \int_{0}^{T} \cos((m-k)\frac{2\pi}{T}t) dt + \frac{j}{T} \int_{0}^{T} \sin((m-k)\frac{2\pi}{T}t) dt$$

$$= \frac{1}{T} \left[\sin((m-k)\frac{2\pi}{T}t) \right]_0^T \left(\frac{T}{2\pi(m-k)} \right)$$

$$-\frac{j}{T} \left[\cos((m-k)\frac{2\pi}{T}t) \right]_0^T \left(\frac{T}{2\pi(m-k)} \right)$$

$$= \frac{1}{2\pi(m-k)} \left[\sin((m-k)\frac{2\pi}{T}t) \right]_0^T$$

$$-\frac{j}{2\pi(m-k)} \left[\cos((m-k)\frac{2\pi}{T}t) \right]_0^T$$

$$= \frac{1}{2\pi(m-k)} \left[\sin((m-k)2\pi) - \sin(0) \right]$$
$$-\frac{j}{2\pi(m-k)} \left[\cos((m-k)2\pi) - \cos(0) \right]$$
$$= \frac{1}{2\pi(m-k)} \left[0 - 0 \right] - \frac{j}{2\pi(m-k)} \left[1 - 1 \right] = 0$$

Perhatikan bahwa pada perhitungan terakhir kita memanfaatkan fakta bahwa m dan k adalah bilangan bulat serta $m \neq k$ yang artinya m - k adalah bilangan bulat yang <u>tidak nol</u>.

- Berhubung m k adalah bilangan bulat yang <u>tidak nol</u>, maka jelas bahwa $cos((m k)2\pi) = 1$ dan $sin((m k)2\pi) = 0$
- Dengan demikian bisa disimpulkan bahwa untuk k dan m bilangan bulat serta $k \neq m$, maka

$$\frac{1}{T} \int_{T} e^{+jm\frac{2\pi}{T}t} e^{-jk\frac{2\pi}{T}t} dt = 0$$

Cukup menarik bahwa jika kita kenakan operasi persamaan analisis (2) antara $\exp(jm(2\pi/T)t)$ dengan $\exp(jk(2\pi/T)t)$, dengan $k \neq m$, hasilnya adalah 0.

- ▶ Hal ini mengingatkan kita pada dot product antara vektor basis [1 0 0]^T dengan [0 1 0]^T, [1 0 0]^T dengan [0 0 1]^T, serta [0 1 0]^T dengan [0 0 1]^T, yang hasilnya juga 0.
- ▶ Ingat bahwa [1 0 0]^T, [0 1 0]^T, dan [0 0 1]^T adalah 3 vektor basis yang saling tegak lurus di ruang dimensi-3
- ▶ Dengan demikian, kita bisa juga memandang bahwa $\exp(jm(2\pi/T)t)$ dan $\exp(jk(2\pi/T)t)$, dengan $k \neq m$, adalah 2 fungsi yang saling tegak lurus (orthogonal) dalam 1 periode T!!

Dengan demikian, bisa diringkaskan untuk bilangan bulat
 m dan k:

$$\frac{1}{T} \int_{T} e^{+jm\frac{2\pi}{T}t} e^{-jk\frac{2\pi}{T}t} dt = \begin{cases} 0, & \text{untuk } m \neq k \\ 1, & \text{untuk } m = k \end{cases}$$

Kesimpulannya, kita bisa menganggap seperangkat fungsi eksponensial kompleks yang saling harmonik yaitu $\exp(jk(2\pi/T)t)$ atau $\exp(jk\omega_0t)$, untuk $k=0,\pm 1,\pm 2,\pm 3,\ldots$ sebagai fungsi-fungsi basis yang saling tegak lurus dalam satu periode T.

- ▶ Hal di atas analogi dengan fakta bahwa [1 0 0]^T, [0 1 0] ^T, dan [0 0 1] ^T adalah 3 vektor basis yang saling tegak lurus di ruang dimensi-3.
- Sekarang kita tinjau persamaan sintesis Deret Fourier:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{T}t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \quad (1)$$

Dari persamaan sintesis (1) di atas, kita bisa mengatakan bahwa sembarang isyarat periodik x(t) bisa dituliskan sebagai **kombinasi linear** fungsi-fungsi basis $\exp(jk\omega_0 t)$ yang saling tegak lurus dalam satu periode T.

▶ **Analogi** bagi persamaan (1) di atas untuk kasus vektor dimensi-3 adalah:

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = b_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + b_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \tag{6}$$

▶ Jika kita bandingkan persamaan (1) dan (6), tampak bahwa $\exp(jk(2\pi/T)t)$, dengan $k = 0, \pm 1, \pm 2, \pm 3, ...,$ memainkan peranan yang sama dengan [1 0 0]^T, [0 1 0]^T, dan [0 0 1]^T (fungsi-fungsi basis yang saling tegak lurus dalam periode T vs vektor-vektor basis yang tegak lurus dalam ruang dimensi-3)

- Sedangkan koefisien deret Fourier a_k pada Persamaan (1) memainkan **peranan yang sama** dengan skalar b_1 , b_2 , dan b_3 pada persamaan (6) (sebagai bobot kontribusi dari tiap-tiap fungsi basis $\exp(jk(2\pi/T)t)$ pada isyarat x(t) vs sebagai bobot kontribusi dari tiap-tiap vektor basis [1 0 0]^T, [0 1 0]^T, dan [0 0 1] ^T pada vektor **b**.
- Dan <u>cara mencari</u> bobot kontribusi tsb di atas pun serupa.
- Dot product antara b dengan vektor basis pada kasus vektor 3 dimensi
- Persamaan analisis Deret Fourier (2) pada kasus representasi isyarat dengan Deret Fourier.

Dengan kata lain,

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk\frac{2\pi}{T}t} dt$$
 (2)

ANALOGI DENGAN

$$b_2 = \mathbf{b} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = (b_1)(0) + (b_2)(1) + b_3(0)$$