

Regresní analýza I

3. seminář k předmětu Statistické metody v analýze dat 12.10.2022

Martina Šimková simkova.martinka @gmail.com

Regresní analýza (1)

- slouží k popisu jednostranné závislosti dvou číselných proměnných, kdy proti sobě stojí vysvětlující (nezávislá) proměnná jako "příčina" a vysvětlovaná (závislá) proměnná jako "následek"
- regresní funkce = "idealizující" matematická funkce, která co nejlépe vyjadřuje charakter závislosti
- regresní funkce je podmíněnou střední hodnotou náhodné veličiny Y
 - Teoretická regresní funkce: $\eta = \mathrm{E}(\mathrm{Y}|\mathrm{X}=\mathrm{x}) = \mathrm{Y} = \beta_0 + \beta_1 \mathrm{X}_1 + \beta_2 \mathrm{X}_2 + \beta_3 \mathrm{X}_3 + \ldots + \beta_n \mathrm{X}_n + \varepsilon$
 - $\qquad \text{Odhad:} \quad \widehat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_n X_n \quad \boldsymbol{\longleftarrow}$
- Může být více vysvětlujících proměnných X:
 - Jedna X: jednoduchá regrese
 - Více X: vícenásobná regrese

Náhodná složka

Regresní analýza (2)

- Náhodná složka = REZIDUUM = rozdíl mezi skutečnou a odhadnutou hodnotou
 - Cíl: Minimální reziduální součet čtverců
 - Odhad parametrů modelu: **METODA NEJMENŠÍCH ČTVERCŮ**

$$ext{e}_{ ext{i}} = ext{y}_{ ext{i}} - \hat{y}_{ ext{i}}; \sqrt{\sum_{i=1}^{n} ext{e}_{ ext{i}}^2} - > ext{min}$$

- Náhodná složka má splňovat předpoklady klasického lineárního regresního modelu (KLRM):
 - Nulová střední hodnota reziduí
 - Konstantní rozptyl reziduí
 - Rezidua jsou nekorelovaná
 - Rezidua mají normální rozdělení

... analýza reziduí -> významný diagnostický nástroj

Princip metody nejmenších čtverců

Postup regresní analýzy

- 1. nalezení regresního modelu = volba typu regresní funkce
 - regresní funkce = "idealizující" matematická funkce, která co nejlépe vyjadřuje charakter závislosti
- 2. odhad parametrů regresního modelu
 - metodou nejmenších čtverců (MNČ) → nalezení takové funkce, pro kterou je reziduální rozptyl nejmenší
- 3. ověření významnosti regresního modelu a jeho parametrů
 - testování hypotéz: F-test, t-testy
- 4. posouzení kvality regresního modelu
 - ověření vhodnosti zvoleného regresního modelu pomocí kritérií např. index determinace, střední čtvercová chyba, apod.
- 5. odhad střední hodnoty Y pro známé X

Typy regresních funkcí

Lineární regresní funkce z hlediska parametrů:

přímková regrese
$$Y=\beta_0+\beta_1 X$$
, hyperbolická regrese $Y=\beta_0+\frac{\beta_1}{X}$, logaritmická regrese $Y=\beta_0+\beta_1\ln X$, parabolická regrese $Y=\beta_0+\beta_1X+\beta_2X^2$ polynomická regrese $Y=\beta_0+\beta_1X+\cdots+\beta_pX^p$

Pokud regresní funkce není lineární v parametrech, je jednou z možností provést její linearizaci například zlogaritmováním. Pokud to nejde, nelze použít MNČ

Nelineární regresní funkce:

Funkce	Linearizující transformace
$Y = \beta_0 x^{\beta_1}$	$\ln Y = \ln \beta_0 + \beta_1 \ln x$
$Y = \beta_0 \beta_1^{\frac{1}{x}}$	$\ln Y = \ln \beta_0 + \frac{1}{x} \ln \beta_1$
$Y = \frac{\beta_0}{x^{\beta_1}}$	$\ln Y = \ln \beta_0 - \beta_1 \ln x$
$Y = \beta_0 x^{\beta_1 x}$	$\ln Y = \ln \beta_0 + \beta_1 x \ln x$
$Y = \beta_0 e^{\beta_1 x}$	$\ln Y = \ln \beta_0 + \beta_1 x$
$Y = \frac{1}{\beta_0 + \beta_1 x}$	$\frac{1}{Y} = \beta_0 + \beta_1 x$
$Y = \frac{x}{\beta_0 + \beta_1 x}$	$\frac{x}{Y} = \beta_0 + \beta_1 x$

Testy významnosti

■ Test o modelu = Celkový F-test

Test o modelu p = k + 1

_					
	H ₀	H ₁	Testové kritérium		Kritický obor
	$\beta_0 = c$ $\beta_1 = 0$ $\beta_k = 0$	non H ₀	$F = \frac{\frac{S_T}{p-1}}{\frac{S_R}{n-p}}$	$F \sim F(p-1, n-p)$	$W_{\alpha} = \{F; F \geq F_{1-\alpha}\}$

■ Testy o parametrech = Individuální t-testy

Test hypotézy o regresním parametru

H ₀	H ₁	Testové kritérium	Kritický obor
$\beta_j = 0$	$\beta_j \neq 0$	$T = \frac{\hat{\beta}_j}{s_{\hat{\beta}_j}} \qquad T \sim t(n-p)$	$W_{\alpha} = \{t; t \geq t_{1-\alpha/2}\}$

Posouzení kvality modelu

vztah je tím silnější a regresní funkce je tím lepší, čím více jsou empirické hodnoty vysvětlované proměnné soustředěné kolem odhadnuté regresní funkce, a naopak tím slabší, čím více jsou vzdálené od odhadnuté regresní funkce

závislost y a x bude tím silnější, čím větší bude podíl rozptylu vyrovnaných hodnot (S_T)

na celkovém rozptylu (S_v)

→ koeficient (index) determinace

$$R^2 = I^2 = \frac{S_T}{S_y}$$

... měří se tzv. **těsnost závislosti** (měří kvalitu modelu)

$$S_Y = \sum_{i=1}^n (y_i - \bar{y})^2 \leftarrow \text{Celkový souč. čtv.}$$

$$S_R = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \leftarrow \text{Residuální souč. čtv.}$$

$$S_T = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 \leftarrow \text{Teoretický souč. čtv.}$$

$$S_y = S_T + S_R$$

Intervaly spolehlivosti pro střední hodnotu

1. IS pro podmíněnou střední hodnotu vysvětlované proměnné Y:

$$P(\hat{y}_i - t_{1 - \frac{\alpha}{2}}(n - 2) \cdot s_{\hat{y}} < Y_i < \hat{y}_i + t_{1 - \frac{\alpha}{2}}(n - 2) \cdot s_{\hat{y}}) = 1 - \alpha$$

kde $s_{\hat{y}}$ je směrodatná chyba odhadu: $s_{\hat{y}} = s \sqrt{\frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$

kde *s* je reziduální směrodatná odchylka: $s = \sqrt{\frac{\sum e_i^2}{n - (p + 1)}} = \sqrt{\frac{S_R}{n - (p + 1)}}$

2. IS pro konkrétní střední hodnotu Y:

$$P(\hat{y}_i - t_{1 - \frac{\alpha}{2}}(n - 2) \cdot s_{\hat{y}} < E(Y_i) < \hat{y}_i + t_{1 - \frac{\alpha}{2}}(n - 2) \cdot s_{\hat{y}}) = 1 - \alpha$$

kde
$$S_{\hat{y}}$$
 je: $s_{\hat{y}} = s \sqrt{1 + \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$

Význam reziduí

- reziduum = rozdíl mezi skutečnou a vyrovnanou hodnotou
- základní diagnostický nástroj
- požadavek nejmenšího reziduálního součtu čtverců (předpoklad MNČ)
- systematičnost v chování reziduí:
 - vlivné či odlehlé hodnoty
 - porušení předpokladů KLRM (autokorelace, normalita, heteroskedasticita)
- grafická analýza:
 - bodový graf: posouzení předpokladů modelu, identifikace odlehlých pozorování
 - histogram, kvantilový graf: posouzení normality

Samples from N(0,1) distribution

Samples from a light-tailed distribution

Normal Q-Q Plot

Sesignary

-3 -2 -1 0 1 2 3

Theoretical Quantiles

Histogram of y

Histogram of y

Samples from a heavy-tailed distribution

Regresní přímka

$$Y = b_0 + b_1 \cdot x$$

odhad parametrů metodou nejmenších čtverců

$$b_1 = \frac{\overline{x}\overline{y} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2}$$

$$b_0 = \bar{y} - b_1 \cdot \bar{x}$$

- **b**₁ = **výběrový regresní koeficient** = směrnice regresní přímky (udává změnu průměru závisle proměnné y při jednotkové změně nezávislé proměnné x), při lineární nezávislosti je roven 0
- **b**₀ = počáteční hodnota při x=0 (průsečík s osou y)

Data:

MMDA_03_data.xlsx Firmy.csv

Zadání: V tabulce jsou uvedeny údaje o hodnotě *produkce* (ve 100 000 Kč) a o výši *investic* (v 10 000 Kč) v souboru 12 vybraných firem s počtem zaměstnanců větším než 20.

- 1. Stanovte rovnici regresní přímky modelující závislost hodnoty produkce na výši investic.
- 2. Proveďte bodový a intervalový odhad očekávané výše produkce firmy, která investuje 18 000 Kč.

Korelační analýza

- závislost jednostranná (jeden znak vystupuje jako příčina (nezávisle proměnná X) a druhý znak jako následek (závisle proměnná Y) → regrese
- závislost vzájemná (oboustranná) lineární závislost → korelace
- síla závislosti mezi <u>dvěma</u> proměnnými → jednoduchý (párový) korelační koeficient
 - lacktriangle definován jako poměr kovariance s_{yx} a součinu směrodatných odchylek obou proměnných s_x a s_y

$$r_{xy} = r_{yx} = \frac{\overline{xy} - \overline{x}\overline{y}}{\sqrt{\overline{(x^2 - \overline{x}^2)(\overline{y^2} - \overline{y}^2)}}} = \frac{s_{xy}}{s_x s_y}$$

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n} = \overline{xy} - \overline{x} \ \overline{y}$$

může nabývat kladných i záporných hodnot a její znaménko určuje směr závislosti

Korelační koeficient

 $r_{xy} = 1 \rightarrow přímá funkční závislost$

r_{xv} = -1 → nepřímá funkční závislost

r_{xv} = 0 → lineární nezávislost *

* !!! Lineární nezávislost ≠ nulová závislost !!!

Pouze v případě regresní přímky = odmocnina z indexu determinace je korelační koeficient

$$r_{xy} = \sqrt{R^2}$$

KK zachycuje:

- sílu lineární závislosti mezi dvěma proměnnými (proměnné jsou silně lineárně závislé, pokud je KK v absolutní hodnotě blízký 1)
- směr lineární závislosti, ve smyslu přímá vs. nepřímá (záporné hodnoty KK představují nepřímou lineární závislost, kladné hodnoty představují lineární závislost přímou)

Test o významnosti KK:

H_0	H_1	Testové kritérium		Kritický obor
$ \rho_{XY} = 0 $	$0 \rho_{XY} \neq 0$		$T \sim t(n-2)$	$W_{\alpha} = \{t; \mid t \mid \geq t_{1-\alpha/2}\}$

Vysoká hodnota výběrového korelačního koeficientu nemusí ještě znamenat silnou závislost v ZS, neboť může být zkreslena v důsledku náhodnosti výběru, zejména v případě malých výběrů.

Data:

MMDA_03_data.xlsx Firmy.csv

Zadání: V tabulce jsou uvedeny údaje o hodnotě *produkce* (ve 100 000 Kč) a o výši *investic* (v 10 000 Kč) v souboru 12 vybraných firem s počtem zaměstnanců větším než 20.

Vypočítejte korelační koeficient mezi oběma proměnnými a otestujte, zda je statisticky významný.

Data:

MMDA_03_data.xlsx Cons.csv

Zadání: U třech typů aut se sledovala závislost *spotřeby automobilu* (v l/100 km) na rychlosti (v km/h). Stanovte nejvhodnější regresní funkci modelující tuto závislost. Následně odhadněte interval spolehlivosti očekávané spotřebu automobilu, který jede rychlostí 115 km/h.

Regresní funkce v R

- Regresní přímka: lm(Y ~ X, data=???)
- Hyperbolická funkce: lm(Y ~ I(X^-1), data=???)
- Logaritmická funkce: lm(Y ~ log(X), data=???)
- Regresní parabola: lm(Y ~ X+ I(X^2), data=???)
- Polynom 3.stupně: lm(Y ~ X+ I(X^2) + I(X^3), data=???)
- Mocninná funkce: lm(log(Y) ~ log(X), data=???)
- Exponenciální funkce: lm(log(Y) ~ X, data=???)

přímková regrese $Y=\beta_0+\beta_1 X$, hyperbolická regrese $Y=\beta_0+\frac{\beta_1}{X}$, logaritmická regrese $Y=\beta_0+\beta_1\ln X$, parabolická regrese $Y=\beta_0+\beta_1 X+\beta_2 X^2$ polynomická regrese $Y=\beta_0+\beta_1 X+\cdots+\beta_p X^p$

Funkce	Linearizující transformace
$Y = \beta_0 x^{\beta_1}$	$\ln Y = \ln \beta_0 + \beta_1 \ln x$
$Y = \beta_0 \beta_1^{\frac{1}{x}}$	$\ln Y = \ln \beta_0 + \frac{1}{x} \ln \beta_1$
$Y = \frac{\beta_0}{x^{\beta_1}}$	$\ln Y = \ln \beta_0 - \beta_1 \ln x$
$Y = \beta_0 x^{\beta_1 x}$	$\ln Y = \ln \beta_0 + \beta_1 x \ln x$
$Y = \beta_0 e^{\beta_1 x}$	$\ln Y = \ln \beta_0 + \beta_1 x$
$Y = \frac{1}{\beta_0 + \beta_1 x}$	$\frac{1}{Y} = \beta_0 + \beta_1 x$
$Y = \frac{x}{\beta_0 + \beta_1 x}$	$\frac{x}{Y} = \beta_0 + \beta_1 x$

Data:

MMDA_03_data.xlsx

Beer.csv

Zadání: Datový soubor obsahuje údaje o *cenách* (v \$) a *prodaných kusech** za 3 velikosti plechovek piva v malém řetězci supermarketů za 52 týdnů. V souboru je tedy 6 proměnných.

Na základě korelační analýzy vyberte nejvhodnější kombinaci vysvětlované a vysvětlující proměnné a podle nich modelujte závislost prodaného množství plechovek piva na ceně pomocí regresní analýzy. Následně odhadněte očekávaný počet prodaných kusů plechovek piva při ceně 15\$.

^{*} Proměnné cena a prodané množství jsou převedeny na jednotlivé případy (na 24 plechovek), aby bylo možné přímo porovnávat ceny a množství v grafech a modelových koeficientech.

PŘÍKLAD 5 – AKTIVITA

Data:

MMDA_03_data.xlsx

Cars.csv

Zadání: Zjistěte, zda existuje závislost ceny auta (*cena_prodej*) na výkonu (*horsepower*). Najděte pro tuto závislost nejvhodnější regresní funkci, otestujte její významnost a následně odhadněte (bodově i intervalově), jakou cenu auta můžeme očekávat u auta, které má výkon 400 koní.

Vícenásobná regrese

Závislost proměnné Y na více vysvětlujících proměnných

$$Y = \hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

- Korelační koeficienty:
 - **Dílčí KK** měří sílu lineární závislosti proměnné *y* na *x*_p za předpokladu, že všechny ostatní proměnné *x* jsou konstantní
 - Vícenásobný KK měří sílu závislosti na všech vysvětlujících proměnných umožňuje posoudit kvalitu regresního modelu
- Pozor!!! Multikolinearita = závislost mezi vysvětlujícími proměnnými → nežádoucí jev...viz později

Data:

MMDA_03_data.xlsx

Cars.csv

Zadání: Sestrojte vícenásobný regresní model pro závislost ceny auta (*Cena_prodej*) na objemu motoru (*Motor*), výkonu (*Horsepower*) a spotřebě na dálnici (*Dalnice_MPG*).

Následně odhadněte interval spolehlivosti pro očekávanou cenu auta, které má objem motoru 4 litry, výkon 250 koní a spotřebu na dálnici 30 mpg.

Vlastnosti MNČ odhadů za podmínek KLRM

Za podmínek klasického lineárního regresního modelu (KLRM), si definujme reziduum jako rozdíl mezi skutečnou a vyrovnanou hodnotou a následně tzv. reziduální součet čtverců a ten řešíme metodou nejmenších čtverců:

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{b}$$
 $\mathbf{b} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$
 $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \ \ \, \Rightarrow \text{projekční matice H}$
 $\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} = \mathbf{H}\mathbf{y}$

• čím vzdálenější je bod x_i od průměru \bar{x} , tím větší váhu má odpovídající hodnota y_i na odhad $\hat{y_i}$

Projekční matice H

- Významný diagnostický nástroj pro hodnocení vlivu jednotlivých pozorování na regresní odhady
- Nejdůležitější diagonální prvky = leverages (efekty, projekční h-prvky)
 - jejich součet = stopa matice H = počet parametrů modelu

$$\sum h_{ii} = \operatorname{st}(\mathbf{H}) = K + 1 = p$$

Odhalují vlivná pozorování:

$$h_{ii} > \frac{2p}{n}$$

popř. $h_{ii} > \frac{3p}{n}$ (pro vyšší počet parametrů (cca 6) a n-p větší než 12)

Data:

Cars.csv

Zadání: Sestrojte vícenásobný regresní model pro závislost ceny auta (*Cena_prodej*) na objemu motoru (*Motor*), výkonu (*Horsepower*) a spotřebě na dálnici (*Dalnice_MPG*).

Vypočítejte projekční matici H a identifikujte vlivná pozorování.

 Ukázku maticového výpočtu pro prvních 10 pozorování najdete v *MMDA_03_data.xlsx*

Shrnutí – možnosti detekce vlivných pozorování

- Grafická analýza XY bodový graf
- Lineární kombinace jednotlivých proměnných
 - Centrování, normování proměnných apod.
 - Normované proměnné: hodnota cca vyšší než -2 / 2
- Vzdálenosti objektů
 - Euklidovská, Normovaná, Mahalanobisova vzdálenost
 - Mahalanobisova vzdálenost: lze vypočítat přesné testové kritérium, přibližně jde o hodnotu vyšší než 12
- Analýza reziduí
 - Jacknife rezidua: hodnota cca nižší než -3 a vyšší než 3
- Matice H a její diagonální prvky = leverages: $h_{ii} > \frac{2p}{n}$
- Další koeficienty např. Cookovo D, DFBETA, DFFIT, ...

Shrnutí – základní problémy regresního modelu

- Nevýznamný F-test
 - Řešení → zvolit jiný model
- Nevýznamné t-testy
 - Řešení → zvolit jiný model či zkusit stávající bez nevýznamných proměnných, odstranění odlehlých pozorování
- Nevýznamná konstanta b₀ → hlubší problém, nejspíše multikolinearita
 - Řešení → odstranit některé proměnné, které jsou lineárně závislé na jiných vysvětlujících proměnných či sloučit proměnné (metody shlukové či faktorové analýzy)
- Nenormalita náhodné složky → špatný model (neodstraněn trend), přítomnost odlehlých pozorování
 - Řešení → transformace proměnných (např. logaritmizace, Box a Cox atd.), odstranění odlehlých pozorování, zvolit jiný model

Dotazy?

UNICORN UNIVERSITY