Import Packages

```
In [1]: import pyomo.environ as pe
    import json
    from math import floor, ceil

# plotting
    import matplotlib.pyplot as plt
    import networkx as nx
    from networkx.drawing.nx_pylab import draw_networkx
    import plotly
    import plotly.graph_objs as go
```

```
In [2]: model = pe.ConcreteModel(name='815Project')
```

Import Data

```
In [3]: data = pe.DataPortal()
    folder_name = './processed_data_10_nodes_yes_time_window/'
    filename = "lc101.dat"
    data.load(filename=folder_name+filename)
In [4]: with open((folder_name+filename).replace('.dat','.json'), 'r') as fp:
    location_data = json.load(fp)
```

Declare Sets

```
In [5]: # Total nodes
    model.N = pe.Set(initialize=data['N'])
    # total vehicles
    model.K = pe.Set(initialize=data['K'])
    # total requests
    model.R = pe.Set(initialize=data['R'])
    # transshipment node
    model.T = pe.Set(within=model.N,initialize=data['T'])
```

Initialize Parameters

```
In [6]: # load carrying capacity
        model.u = pe.Param(model.K, within=pe.NonNegativeReals, initialize=data['u'])
        # initial depot
        model.o = pe.Param(model.K, within=model.N, initialize=data['o'])
        # final depot
        model.o_ = pe.Param(model.K, within=model.N, initialize=data['o_'])
        # request quantity
        model.q = pe.Param(model.R, within=pe.NonNegativeReals, initialize=data['q'])
        # request pick up
        model.p = pe.Param(model.R, within=model.N, initialize=data['p'])
        # request drop pff
        model.d = pe.Param(model.R, within=model.N, initialize=data['d'])
        # transport cost
        model.c = pe.Param(model.N, model.N, model.K, within=pe.NonNegativeReals, initialize=0, mutable=True)
        # transport time
        model.tau = pe.Param(model.N,model.N,model.K,within=pe.NonNegativeReals,initialize=0,mutable=True)
```

time related parameters

```
In [7]: # earliest time
    model.t_e = pe.Param(model.N,initialize=data['t_e'])
    # latest time
    model.t_l = pe.Param(model.N,initialize=data['t_l'])
```

```
In [8]: # put values to cost and time
    data = pe.DataPortal()
    data.load(filename=folder_name+filename,model=model)
    for index,value in data['c'].items():
        model.c[index] = value
    for index,value in data['tau'].items():
        model.tau[index] = value
    # total arcs
    def arcs_rule(model,i,j):
        return model.c[i,j,1].value > 0
    model.A = pe.Set(initialize=model.N*model.N, filter = arcs_rule)
```

Declare Variables

```
In [9]: # if a car K travels in arc A
    model.x = pe.Var(model.A,model.K,within=pe.Binary)
    # if a car K travels in arc A carries order R
    model.y = pe.Var(model.A,model.K,model.R,within=pe.Binary)
    # if node i precedes (not necessarily immediately) node j in the route of the vehicle k
    model.z = pe.Var(model.A,model.K,within=pe.Binary)
```

time related variables

```
In [10]: # actual arrival time
    model.t_a = pe.Var(model.N, model.K)
    # actual departure time
    model.t_d = pe.Var(model.N, model.K)
    # if transshipment happens
    model.s = pe.Var(model.T, model.R, model.K, within=pe.Binary)
```

Write Constraints

(1) enforce that each vehicle may initiate at most one route from its origin depot; constraints

```
In [11]: def one_car_start_rule(model,i,k):
    if i == model.o[k]:
        return sum(model.x[i,j,k] for j in model.N if (i,j) in model.A) <= 1
    else:
        return pe.Constraint.Skip
    model.one_car_start_con = pe.Constraint(model.N,model.K,rule=one_car_start_rule)</pre>
```

Special Note: Addition (correction) from paper formulation

```
In [12]: def no_car_enter_rule(model,i,k):
    if i == model.o[k]:
        return sum(model.x[j,i,k] for j in model.N if (j,i) in model.A) == 0
    else:
        return pe.Constraint.Skip
model.no_car_enter_con = pe.Constraint(model.N,model.K,rule=no_car_enter_rule)
```

(2) enforce that the same vehicle must end the route at its final depot.

Special Note: Addition (correction) from paper formulation

```
In [14]: def no_car_leave_rule(model,i,k):
    if i == model.o_[k]:
        return sum(model.x[i,j,k] for j in model.N if (i,j) in model.A) == 0
    else:
        return pe.Constraint.Skip
    model.no_car_leave_con = pe.Constraint(model.N,model.K,rule=no_car_leave_rule)
```

(3) maintain flow conservation of the vehicles through the nodes in the network.

(4) & (5) enforce all pickups and deliveries of the customer requests.

```
In [16]: def pickup_request_rule(model,i,r):
    if i == model.p[r]:
        return sum(model.y[i,j,k,r] for k in model.K for j in model.N if (i,j) in model.A) == 1
    else:
        return pe.Constraint.Skip
    model.pickup_request_con = pe.Constraint(model.N,model.R,rule=pickup_request_rule)
In [17]: def deliver request_rule(model.i.r):
```

```
In [17]: def deliver_request_rule(model,i,r):
    if i == model.d[r]:
        return sum(model.y[j,i,k,r] for k in model.K for j in model.N if (j,i) in model.A) == 1
    else:
        return pe.Constraint.Skip
model.deliver_request_con = pe.Constraint(model.N,model.R,rule=deliver_request_rule)
```

(6) maintain the request flow conservation at the transshipment nodes allowing requests to switch from one vehicle to another while constraints

Special Note: Deviation (correction) from paper formulation

(7) maintain the request flow conservation at the non-transshipment nodes requiring that any vehicle bringing a request must also leave carrying the same request.

(8) enforce a vehicle flow on an arc if there is some request flow in the same vehicle on the same arc.

```
In [20]: def request_needs_car_rule(model,i,j,k,r):
    return model.y[i,j,k,r] <= model.x[i,j,k]
    model.request_needs_car_con = pe.Constraint(model.A,model.K,model.R,rule=request_needs_car_rule)</pre>
```

(9) ensure capacity of each vehicle on each arc of the network

```
In [21]: def capacity_rule(model,i,j,k):
    return sum(model.q[r]*model.y[i,j,k,r] for r in model.R) <= model.u[k] * model.x[i,j,k]
    model.capacity_con = pe.Constraint(model.A,model.K,rule=capacity_rule)</pre>
```

(12,13,14) subtour elimination

```
In [22]: def immediate_order_rule(model,i,j,k):
    if i == model.o[k] or j == model.o_[k]:
        return pe.Constraint.Skip
    else:
        return model.x[i,j,k] <= model.z[i,j,k]
        model.immediate_order_con = pe.Constraint(model.A,model.K,rule=immediate_order_rule)</pre>
```

return pe.Constraint.Skip

In [23]: def one_direction_ahead_rule(model,i,j,k):

```
if i == model.o[k] or j == model.o_[k]:
    return pe.Constraint.Skip
else:
    return model.z[i,j,k] + model.z[j,i,k] == 1
model.one_direction_ahead_con = pe.Constraint(model.A,model.K,rule=one_direction_ahead_rule)

In [24]:
def no_triangle_rule(model,i,j,l,k):
    if (i,j) in model.A and (j,l) in model.A and (l,i) in model.A:
        return model.z[i,j,k] + model.z[j,l,k] + model.z[l,i,k] <= 2
else:</pre>
```

model.no_triangle_con = pe.Constraint(model.N,model.N,model.N,model.K,rule=no_triangle_rule)

(15,16) timing calculation

```
In [25]: def travel_time_rule(model,i,j,k):
    return model.t_d[i,k] + model.tau[i,j,k] - model.t_a[j,k] <= 1000*(1-model.x[i,j,k])
    model.travel_time_con = pe.Constraint(model.A,model.K,rule=travel_time_rule)</pre>
```

```
In [26]: def arrive_first_rule(model,i,k):
    return model.t_a[i,k] <= model.t_d[i,k]
    model.arrive_first_con = pe.Constraint(model.N,model.K,rule=arrive_first_rule)</pre>
```

(17,18) pick up and delivery time window

```
In [27]:
    def pick_up_arrival_rule(model,r,k):
        return model.t_e[model.p[r]] <= model.t_a[model.p[r],k]
        model.pick_up_arrival_con = pe.Constraint(model.R,model.K,rule=pick_up_arrival_rule)

    def pick_up_depart_rule(model,r,k):
        return model.t_l[model.p[r]] >= model.t_d[model.p[r],k]
        model.pick_up_depart_con = pe.Constraint(model.R,model.K,rule=pick_up_depart_rule)

    def delivery_arrival_rule(model,r,k):
        return model.t_e[model.d[r]] <= model.t_a[model.d[r],k]
        model.delivery_arrival_con = pe.Constraint(model.R,model.K,rule=delivery_arrival_rule)

    def delivery_depart_rule(model,r,k):
        return model.t_l[model.d[r]] >= model.t_d[model.d[r],k]
        model.delivery_depart_con = pe.Constraint(model.R,model.K,rule=delivery_depart_rule)
```

(19,20) transshipment time window

```
In [29]: def transshipment_time_window_rule(model,r,i,k,l):
    if k == 1:
        return pe.Constraint.Skip
    else:
        return model.t_a[i,k] - model.t_d[i,l] <= 1000*(1-model.s[i,r,k,l])
    model.transshipment_time_window_con = pe.Constraint(model.R,model.T,model.K,model.K,rule=transshipment_time_window_rule)</pre>
```

Declare Objective

```
In [30]: model.obj = pe.Objective(expr=sum(model.c[i,j,k]*model.x[i,j,k] for i,j in model.A for k in model.K))
In [31]: opt = pe.SolverFactory('gurobi')
```

In [32]: opt.solve(model,options={'mipgap':0,'TimeLimit':1000},tee=True);

Academic license - for non-commercial use only Read LP format model from file /Users/naienh/Desktop/815/tmpqxmqllme.pyomo.lp Reading time = 0.11 seconds x14751: 53551 rows, 14501 columns, 211696 nonzeros Changed value of parameter mipgap to 0.0 Prev: 0.0001 Min: 0.0 Max: 1e+100 Default: 0.0001 Changed value of parameter TimeLimit to 1000.0 Prev: 1e+100 Min: 0.0 Max: 1e+100 Default: 1e+100 Optimize a model with 53551 rows, 14501 columns and 211696 nonzeros Variable types: 201 continuous, 14300 integer (14300 binary) Coefficient statistics: Matrix range [1e+00, 1e+03] Objective range [2e-01, 1e+01] [1e+00, 1e+00] Bounds range RHS range [1e+00, 1e+03] Presolve removed 35098 rows and 6579 columns Presolve time: 0.22s Presolved: 18453 rows, 7922 columns, 82030 nonzeros

Root relaxation: objective 2.625887e+01, 4128 iterations, 0.33 seconds

Variable types: 150 continuous, 7772 integer (7772 binary)

Nodes		0.0	Current Nede			l Object	1	Work			
Expl Unexpl			Current Node Obj Depth IntInf			Object	Gap It/Node Time				
Tybr oneybr		попрт			01111	Indumberre	BestBd	Jub	10,10	uo 111110	
	0	0	26.25887	0	75	_	26.25887	_	_	0s	
	0	0	26.66500	0	116	_	26.66500	_	_	0s	
	0	0	26.69500	0	86	_	26.69500	_	_	1s	
	0	0	26.71000	0	84	_	26.71000	-	_	1s	
	0	0	26.75000	0	84	_	26.75000	_	_	1s	
	0	0	26.75000	0	88	_	26.75000	_	_	1s	
	0	0	26.76927	0	118	_	26.76927	_	_	1s	
	0 0	0 0	26.76927 26.79780	0	117 119	_	26.76927 26.79780	_	_	1s 1s	
	0	0	26.89187	0	124	-	26.89187	_	- -	1s	
	0	0	26.89187	0	126	_ _	26.89187	_	_	1s	
	0	0	27.09853	0	120	_	27.09853	_	_	1s	
	0	0	27.09853	0	114	_	27.09853	_	_	1s	
	0	0	27.09853	0	116	_	27.09853	_	_	1s	
	0	0	27.11499	0	125	_	27.11499	_	_	1s	
	0	0	27.13813	0	127	_	27.13813	_	_	1s	
	0	0	27.13813	0	134	_	27.13813	_	_	1s	
	0	0	27.16316	0	120	-	27.16316	-	_	2s	
	0	0	27.16316	0	113	_	27.16316	_	_	2s	
	0	0	27.17048	0	102	_	27.17048	_	_	2s	
	0	0	27.17048	0	104	_	27.17048	_	_	2s	
	0 0	0 0	27.18048 27.18048	0	110 110	_	27.18048 27.18048	_	_	2s 2s	
	0	0	27.18381	0	110	-	27.18048	_	_	2s 2s	
	0	0	27.18381	0	106		27.18381	_	_	2s	
	0	0	27.18798	0	105	_	27.18798	_	_	2s	
	0	0	27.18905	0	109	_	27.18905	_	_	2s	
	0	0	27.18905	0	109	_	27.18905	_	_	2s	
	0	0	27.23327	0	120	_	27.23327	_	_	2s	
	0	0	27.23365	0	119	_	27.23365	_	_	2s	
	0	0	27.23385	0	119	_	27.23385	_	_	2s	
	0	0	27.27715	0	78	_	27.27715	_	_	2s	
	0	0	27.27715	0	75	_	27.27715	_	_	2s	
	0	0	27.27715	0	80	_	27.27715	_	_	2s	
	0	0	27.27715	0	82	-	27.27715	_	_	2s	
	0 0	0 0	27.27715 27.27715	0	79 80	_	27.27715 27.27715	_	_	2s 2s	
	0	0	27.27715	0	70	-	27.27715	_	_	2s 3s	
	0	0	27.27715	0	73	_	27.27715	_	_	3s	
	0	0	27.27715	0	74	_	27.27715	_	_	3s	
Н	0	0				66.1100000	27.27715	58.7%	_	3s	
	0	0	27.27715	0	72	66.11000	27.27715	58.7%	_	3s	
	0	2	27.27715	0	72	66.11000	27.27715	58.7%	_	3s	
Н	32	33				58.9400000	27.39812	53.5%	229	4s	
H	34	35				56.3500000	27.39812	51.4%	217	4s	
Η	68	73				55.7000000	27.39812	50.8%	220	5s	
H	69	74				55.1000000	27.39812	50.3%	221	5s	
H	104	105				54.5900000	27.39812	49.8%	210	5s	
Н	203 219	196 213	35.43964	27	104	54.1600000 54.16000	27.39812 27.39812	49.4% 49.4%	243 233	9s 10s	
Н	465	409	33.43904	2 /	104	53.8000000	27.39612	49.4%	193	10s 14s	
11	542	465	29.18929	7	91	53.80000	27.44280	49.0%	188	15s	
	1157	927	29.60844	13	133	53.80000	27.50064	48.9%	152	21s	
	1299	1028	31.81123	31	115	53.80000	27.50064	48.9%	150	25s	
	1312	1037	33.98584	34	145	53.80000	27.84232	48.2%	148	30s	
	1328	1047	28.07388	10	208	53.80000	28.07388	47.8%	146	35s	
	1340	1055	28.13913	16	194	53.80000	28.13913	47.7%	145	41s	
	1343	1060	28.14029	15	169	53.80000	28.14029	47.7%	19.3	47s	
	1345	1064	28.14267	16	206	53.80000	28.14267	47.7%	19.9	54s	
	1355	1072	28.16857	18	146	53.80000	28.16857	47.6%	23.5	55s	
	1465	1140	29.36382	27	125	53.80000	28.17500	47.6%	41.6	60s	
	1576	1217	30.14019	39 56	126	53.80000	28.17500	47.6%	64.0	65s	
	1816	1369	39.40770	56	216	53.80000	28.17500	47.6%	90.8	70s	

					10_nodes_model					
Н 2020	1337				44.6700000	28.17551	36.9%	107	74s	
H 2021 2308	1224 1354	35.78667	65	27	41.6500000 41.65000	28.17551 28.17551	32.4% 32.4%	107 119	75s 80s	
2482	1452	38.24500	100	53	41.65000	28.17551	32.4%	121	85s	
2644	1507	29.73867	27	89	41.65000	28.18861	32.3%	122	90s	
2834	1601	36.59500	72	96	41.65000	28.40373	31.8%	123	96s	
3041 3275	1726 1830	34.45250 35.40429	54 52	111 122	41.65000 41.65000	28.40373 28.42940	31.8% 31.7%	128 135	100s 105s	
3408	1882	40.99500	76	89	41.65000	28.43693	31.7%	137	111s	
3761	2028	cutoff	75		41.65000	28.50122	31.6%	141	116s	
4014	2125	34.42589	49	79	41.65000	28.54610	31.5%	145	120s	
4375 4691	2364 2617	39.31577 40.12081	84 82	110 104	41.65000 41.65000	28.61310 28.63393	31.3% 31.3%	152 154	126s 132s	
4903	2777	38.54000	49	155	41.65000	28.66100	31.2%	153	138s	
5073	2909	33.92512	38	252	41.65000	28.68706	31.1%	153	140s	
5332 5558	3124 3273	39.34083 30.96491	71 23	254 166	41.65000 41.65000	28.70378 28.73731	31.1% 31.0%	154 154	147s 150s	
6036	3702	36.03500	44	106	41.65000	28.73731	31.0%	154	150s 156s	
6526	4112	37.36353	64	206	41.65000	28.75592	31.0%	159	162s	
6842	4367	37.53045	58	155	41.65000	28.81659	30.8%	159	170s	
7352 7714	4783 5077	34.35062 33.57667	64 32	120 139	41.65000 41.65000	28.83000 28.95154	30.8% 30.5%	160 159	178s 182s	
8125	5418	31.66868	37	216	41.65000	28.98077	30.4%	158	186s	
8573	5797	31.77000	32	45	41.65000	28.98077	30.4%	158	190s	
8875	6034	34.83017	43	214	41.65000	29.02101	30.3%	158	195s	
9533 9864	6570 6823	32.83000 39.01000	54 58	134 181	41.65000 41.65000	29.11567 29.17000	30.1% 30.0%	159 161	204s 208s	
10299	7173	30.69462	31	191	41.65000	29.17389	30.0%	161	214s	
10580	7389	40.69588	71	169	41.65000	29.20527	29.9%	162	219s	
10950	7669	34.20140	55	138	41.65000	29.24559	29.8%	164	224s	
11305 11841	7946 8352	37.62000 35.61631	54 32	103 186	41.65000 41.65000	29.28706 29.32769	29.7% 29.6%	166 165	229s 235s	
12259	8695	37.29667	63	56	41.65000	29.33998	29.6%	167	240s	
12802		38.67500	72	71		29.35922		167	246s	
	9567	38.74615	61	165	41.65000	29.40167		167	252s	
	9929 10316	40.44000 36.39575	70 46	124 208	41.65000 41.65000	29.45316 29.46313		168 169	259s 266s	
	10845	41.56000	43	185	41.65000	29.47273		169	275s	
	10913	38.77500	45	133	41.65000	29.48515		169	283s	
	11510	33.69897	37	107	41.65000	29.54161		169	290s	
	11973 12284	38.27770 35.71407	70 31	106 242	41.65000 41.65000	29.55134 29.59501		169 170	298s 306s	
	12873	39.22528	69	50	41.65000	29.61277		170	319s	
	13172	31.80455	35	130	41.65000	29.64571		170	327s	
	13760	33.43277	44	207	41.65000	29.67059		170	335s	
	14198 14747	35.41000 35.12290	55 33	52 115	41.65000 41.65000	29.68953 29.71087	28.7% 28.7%	170 170	343s 351s	
	15302	32.63919	50	135	41.65000	29.73389		170	359s	
	15722	32.71987	45	91	41.65000	29.74750		170	367s	
	16387 16798	30.72644 36.44563	22 35	153 148	41.65000 41.65000	29.77000 29.77708		170 171	375s 383s	
	17174	36.85443	74	165	41.65000	29.77708		171	391s	
	17600	32.96453	36	262	41.65000	29.81611		172	399s	
	18056	41.01667	79	145	41.65000	29.82667		172	407s	
	18596 19138	36.26000 38.19167	78 50	141 72	41.65000 41.65000	29.84427 29.84427		173 173	414s 496s	
	19141	39.34778	87	176	41.65000	29.84427		173	500s	
25663	19147	34.82987	36	170	41.65000	29.84427	28.3%	173	505s	
	19150	32.52567	27	202	41.65000	29.84427		173	510s	
	19153 19156	31.53539 38.64829	31 64	181 204	41.65000 41.65000	29.84427 29.84427		173 173	515s 521s	
	19159	34.44000	33	188	41.65000	29.84427		173	521s	
	19162	29.95258	24	235	41.65000	29.84427		173	530s	
	19165	32.74156	54	164	41.65000	29.84427		173	536s	
	19168 19170	34.05625 38.95750	35 71	250 223	41.65000 41.65000	29.84427 29.84427		173 172	541s 546s	
	19173	39.46000	80	237	41.65000	29.84427		172	550s	
	19176	39.08188	59	246	41.65000	29.84427		172	555s	
	19178 19181	37.51262 30.72790	96 35	263273	41.65000 41.65000	29.84427 29.84427	28.3% 28.3%	172 172	561s 565s	
	19183	31.22010	32	273	41.65000	29.84427	28.3%	172	571s	
	19185	35.47266	64	257	41.65000	29.84427	28.3%	172	575s	
	19187	40.21667	100	247	41.65000	29.84427	28.3%	172	582s	
	19189 19191	35.72492 32.87790	51 67	215246	41.65000 41.65000	29.84427 29.84427	28.3% 28.3%	172 172	585s 590s	
25734		38.86958	70	238	41.65000	29.84427	28.3%	172	590s 595s	
25738	19197	36.80570	48	250	41.65000	29.84427	28.3%	172	601s	
	19198	30.67625	22	250	41.65000	29.84427	28.3%	172	605s	
	19200 19203	35.69674 37.39537	24 58	250 269	41.65000 41.65000	29.84427 29.84427	28.3% 28.3%	172 172	610s 616s	
	19203	36.62809	91	269	41.65000	29.84427	28.3% 28.3%	172	620s	
25752	19206	33.19712	50	272	41.65000	29.84427	28.3%	172	625s	
	19208	39.34778	87	275	41.65000	29.84427	28.3%	172	631s	
25757 25763	19209 19213	32.53833 34.82987	44 36	285 294	41.65000 41.65000	29.84427 29.84427	28.3% 28.3%	172 172	635s 640s	
	19215	35.14663	57	297	41.65000	29.84427	28.3%	172	645s	
25769	19217	40.48000	61	265	41.65000	29.84427	28.3%	172	650s	
	19221	37.47111	73	304	41.65000	29.84427		172	655s	
25/// wnloads/10_noo	19223 des_model.htm	38.64829	64	281	41.65000	29.84427	28.3%	172	660s	

```
25780 19225
                36.20333
                            65
                                290
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       172
                                                                            666s
 25783 19227
                39.84833
                            66
                                293
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       172
                                                                            670s
                29.95258
                                       41.65000
 25786 19229
                            24
                                240
                                                   29.84427
                                                              28.3%
                                                                       172
                                                                            676s
 25789 19231
                41.00000
                                256
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                            680s
                            63
                                                                       172
                                                              28.3%
 25794 19234
                31.22000
                            50
                                251
                                       41.65000
                                                   29.84427
                                                                       172
                                                                            685s
 25796 19235
                32.80743
                            37
                                251
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       172
                                                                            691s
 25798 19237
                38.95750
                                                   29.84427
                            71
                                251
                                       41.65000
                                                              28.3%
                                                                       172
                                                                            695s
 25799 19240
                29.84427
                                       41.65000
                                                   29.84427
                            30
                                244
                                                              28.3%
                                                                       174
                                                                            705s
 25801 19244
                                                   29.84427
                29.84427
                                191
                                       41.65000
                                                              28.3%
                            31
                                                                       174
                                                                            715s
 25805 19248
                29.84427
                            32
                                193
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       174
                                                                            722s
 25811 19252
                                                              28.3%
                29.84427
                            33
                                187
                                       41.65000
                                                   29.84427
                                                                       174
                                                                            728s
 25817 19256
                30.45045
                                                   29.84427
                                                              28.3%
                            33
                                141
                                       41.65000
                                                                       174
                                                                            733s
                                                                       175
 25823 19260
                29.84427
                                181
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                            735s
                            34
                29.84427
 25847 19273
                            35
                                185
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       175
                                                                            740s
                29.84427
 25874 19286
                            37
                                166
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       175
                                                                            745s
                                109
 25911 19316
                29.84427
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       176
                                                                            751s
                            40
 25937 19329
                30.02551
                            41
                                106
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       176
                                                                            755s
 26009 19376
                30.66257
                            44
                                220
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       176
                                                                            760s
 26073 19416
                                                   29.84427
                29.84427
                            46
                                217
                                       41.65000
                                                              28.3%
                                                                       177
                                                                            766s
 26172 19456
                31.35336
                            49
                                136
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       177
                                                                            771s
                                                              28.3%
 26245 19490
                                                   29.84427
                31.32031
                            52
                                118
                                       41.65000
                                                                       177
                                                                            775s
 26340 19544
                31.80044
                            57
                                 58
                                       41.65000
                                                   29.84427
                                                              28.3%
                                                                       178
                                                                            782s
H26358 18587
                                                   29.84427
                                     41.4200000
                                                              27.9%
                                                                       178
                                                                            782s
 26435 18603
                                                   29.84427
                33.66426
                            62
                                176
                                       41.42000
                                                              27.9%
                                                                       178
                                                                            786s
 26566 18636
                34.54250
                                137
                                       41.42000
                                                   29.84427
                                                              27.9%
                            65
                                                                       178
                                                                            794s
H26570 17718
                                     41.4100000
                                                   29.84427
                                                              27.9%
                                                                       178
                                                                            794s
                                                   29.84427
 26574 17730
                33.75867
                                                              27.9%
                            66
                                190
                                       41.41000
                                                                       178
                                                                            796s
                34.38735
                                                   29.84427
                                                              27.9%
                                                                            800s
 26689 17779
                            71
                                162
                                       41.41000
                                                                       179
                36.07231
                                                   29.84427
 26865 17867
                            78
                                142
                                       41.41000
                                                              27.9%
                                                                       179
                                                                            805s
 27044 17971
                  cutoff
                            90
                                       41.41000
                                                   29.84427
                                                              27.9%
                                                                       179
                                                                            811s
 27280 18076
                31.51851
                                       41.41000
                                                   29.84427
                                                              27.9%
                            53
                                107
                                                                       179
                                                                            816s
 27453 18164
                39.41763
                                107
                                       41.41000
                                                   29.84427
                                                              27.9%
                            85
                                                                       180
                                                                            821s
 27673 18276
                30.39083
                                 85
                                       41.41000
                                                   29.84427
                                                              27.9%
                            45
                                                                       181
                                                                            826s
 27782 18327
                35.82151
                            71
                                135
                                       41.41000
                                                   29.84427
                                                              27.9%
                                                                       181
                                                                            830s
 28113 18443
                40.65750
                            77
                                142
                                       41.41000
                                                   29.84427
                                                              27.9%
                                                                       182
                                                                            836s
                                       41.41000
 28541 18610
                35.27955
                                183
                                                   29.84427
                                                              27.9%
                            52
                                                                       182
                                                                            842s
                                                              27.9%
 28750 18726
                31.34634
                            41
                                 53
                                       41.41000
                                                   29.84427
                                                                       182
                                                                            846s
 29220 18944
                31.44624
                            45
                                 54
                                       41.41000
                                                   29.84427
                                                              27.9%
                                                                       182
                                                                            853s
                36.68167
                                175
                                                   29.84427
 29464 19066
                            93
                                       41.41000
                                                              27.9%
                                                                       182
                                                                            860s
 29663 19185
                                       41.41000
                37.69389
                           129
                                100
                                                   29.84427
                                                              27.9%
                                                                       182
                                                                            865s
                                                   29.84427
 30258 19428
                36.57547
                           131
                                231
                                       41.41000
                                                              27.9%
                                                                       182
                                                                            873s
                                                   29.84427
 30513 19555
                31.94308
                            50
                                 93
                                       41.41000
                                                              27.9%
                                                                       182
                                                                            878s
 30829 19706
                38.15257
                           109
                                                              27.9%
                                118
                                       41.41000
                                                   29.84427
                                                                       182
                                                                            883s
 31154 19837
                            99
                                 72
                                                   29.84427
                                                              27.9%
                                                                            887s
                39.58500
                                       41.41000
                                                                       182
 31520 20016
                29.86175
                            39
                                       41.41000
                                                   29.84427
                                                              27.9%
                                                                       182
                                                                            892s
                                146
 31865 20150
                30.48050
                            50
                                145
                                       41.41000
                                                   29.84427
                                                              27.9%
                                                                       182
                                                                            897s
                30.13229
                                 55
                                                              27.9%
 32083 20259
                            39
                                       41.41000
                                                   29.84427
                                                                       183
                                                                            903s
 32482 20449
                35.16266
                                                   29.84427
                                                              27.9%
                           109
                                142
                                       41.41000
                                                                       183
                                                                            908s
 32869 20662
                32.34714
                            65
                                146
                                       41.41000
                                                   29.84427
                                                              27.9%
                                                                       183
                                                                            914s
*33055 19862
                           105
                                     41.1200000
                                                   29.84427
                                                              27.4%
                                                                       182
                                                                            914s
H33229 19038
                                     40.7100000
                                                   29.84427
                                                              26.7%
                                                                       183
                                                                            920s
 33550 19204
                31.03743
                                       40.71000
                                                   29.84427
                                                              26.7%
                            37
                                157
                                                                       183
                                                                            926s
                35.20820
 33954 19402
                            56
                                 38
                                       40.71000
                                                   29.84427
                                                              26.7%
                                                                            932s
                                                                       183
 34354 19568
                  cutoff
                            48
                                       40.71000
                                                   29.84427
                                                              26.7%
                                                                       184
                                                                            942s
 34701 19746
                  cutoff
                            95
                                       40.71000
                                                   29.84427
                                                              26.7%
                                                                       184
                                                                            949s
 35291 19960
                                       40.71000
                                                              26.7%
                34.31032
                                                   29.84427
                            49
                                155
                                                                            956s
                                                                       184
 35770 20158
                32.45373
                            50
                                222
                                       40.71000
                                                   29.84427
                                                              26.7%
                                                                       184
                                                                            963s
 36214 20341
                32.78240
                            40
                                157
                                       40.71000
                                                   29.84427
                                                              26.7%
                                                                       185
                                                                            971s
 36706 20587
                31.22250
                            40
                                109
                                       40.71000
                                                   29.85248
                                                              26.7%
                                                                       185
                                                                            978s
                                                   29.89802
 37303 20850
                37.49696
                            70
                                124
                                       40.71000
                                                              26.6%
                                                                       186
                                                                            986s
 37922 21121
                32.71924
                                142
                                       40.71000
                                                   29.91736
                                                              26.5%
                                                                       186
                                                                            995s
                            47
                                                   29.93721
 38482 21412
                32.14920
                            41
                                116
                                       40.71000
                                                              26.5%
                                                                       186 1000s
Cutting planes:
  Gomory: 21
  Cover: 19
  Implied bound: 32
  MIR: 33
  Flow cover: 66
  Zero half: 91
Explored 38792 nodes (7421616 simplex iterations) in 1000.06 seconds
Thread count was 12 (of 12 available processors)
Solution count 10: 40.71 41.12 41.41 ... 55.1
Time limit reached
Best objective 4.071000000000e+01, best bound 2.99500000000e+01, gap 26.4309%
WARNING: Loading a SolverResults object with an 'aborted' status, but
    containing a solution
```

In [33]: plotly.offline.init_notebook_mode()

```
In [34]: | edge_text = dict(x=[],y=[],hovertext=[])
         edge_trace = go.Scatter(
             x=[],
             y=[]
             line=dict(width=1,color='#888'),
             hoverinfo='text',
             hovertext=[],
             mode='lines')
         for edge in model.A:
             counter = 0
             constructed_string = ['Arc: {} to {}'.format(*edge)]
             for k in model.K:
                  if model.x[edge,k] == 1:
                      counter += 1
                      constructed_string.append('Vehicle {}:'.format(k))
                      r_counter = 0
                      for r in model.R:
                          if model.y[edge,k,r] == 1:
                              r_counter += 1
                              constructed_string.append('\tCarrying Order: {}, {} to {}'.format(r,model.p[r],model.d[r
         ]))
                      if r_counter == 0:
                          constructed_string.append('\textbf{t}Carrying Nothing')
             node1, node2 = edge
             for _ in range(counter):
                  x0, y0 = location_data[node1]
                  x1, y1 = location_data[node2]
                  scale\_cofficient = 0.01*(-1)**\_*ceil(\_/2)
                  edge_trace['x'] += tuple([x0+scale_cofficient, x1+scale_cofficient,None])
                  edge_trace['y'] += tuple([y0+scale_cofficient, y1+scale_cofficient,None])
                  edge_text['x'] += tuple([(1/3*x0+2/3*x1)])
                  edge_text['y'] += tuple([(1/3*y0+2/3*y1)])
                  edge_text['hovertext'] += tuple(['<br>'.join(constructed_string)])
```

```
In [79]: node_trace = go.Scatter(
             x=[]
             y=[]
             text=[],
             textfont=dict(color=[]),
             mode='markers+text',
             hoverinfo='x+y+text',
             hovertext=[],
             marker=dict(
                 symbol=[],
                 color=[],
                 size=25,
                 line=dict(width=[],color=[])),
               selected=dict(marker=dict(color='red',size=30))
         for node in model.N:
             x, y = location_data[node]
             node_trace['x'] += tuple([x])
             node_trace['y'] += tuple([y])
             # construct doc string
             constructed_string = ['Node: {}'.format(node)]
             counter = 0
             for k in model.K:
                 if node == model.o[k]:
                     constructed_string.append('Initial Depot: Vehicle {}'.format(k))
                     node_trace['marker']['symbol'] += tuple(['diamond'])
                     node_trace['marker']['color'] += tuple(['lightcyan'])
                     node_trace['marker']['line']['color'] += tuple(['purple'])
                     node_trace['marker']['line']['width'] += tuple([1])
                     node_trace['text'] += tuple(['{}'.format(k)])
                     node_trace['textfont']['color'] += tuple(['black'])
                     counter = 1
                 if node == model.o_[k]:
                     constructed_string.append('End Depot: Vehicle {}'.format(k))
                     node_trace['marker']['symbol'] += tuple(['cross'])
                     node_trace['marker']['color'] += tuple(['lightpink'])
                     node_trace['marker']['line']['color'] += tuple(['purple'])
                     node_trace['marker']['line']['width'] += tuple([1])
                     node_trace['text'] += tuple(['{}'.format(k)])
                     node trace['textfont']['color'] += tuple(['black'])
                     counter = 1
             if counter == 0:
                 if node in model.T:
                      # check if transshipment happens
                     sum19 = [sum(model.y[j,node,k,r].value for j in model.N if (j,node) in model.A)\
                               + sum(model.y[node,j,l,r].value for j in model.N if (node,j) in model.A) == 2\
                               for r in model.R for k in model.K for l in model.K if l != k]
                     if sum(sum19) >= 1:
                          node_trace['marker']['symbol'] += tuple(['circle'])
                          node_trace['marker']['color'] += tuple(['navy'])
                          node_trace['marker']['line']['color'] += tuple(['yellow'])
                          node_trace['marker']['line']['width'] += tuple([5])
                          node_trace['text'] += tuple([node])
                         node_trace['textfont']['color'] += tuple(['white'])
                          constructed_string.append('Transhipment Node')
                          node_trace['marker']['symbol'] += tuple(['circle'])
                          node_trace['marker']['color'] += tuple(['navy'])
                          node_trace['marker']['line']['color'] += tuple(['purple'])
                          node_trace['marker']['line']['width'] += tuple([1])
                          node_trace['text'] += tuple([node])
                         node_trace['textfont']['color'] += tuple(['white'])
                 else:
                     node_trace['marker']['symbol'] += tuple(['circle'])
                     node_trace['marker']['color'] += tuple(['navy'])
                     node_trace['marker']['line']['color'] += tuple(['purple'])
                      node_trace['marker']['line']['width'] += tuple([1])
                     node_trace['text'] += tuple([node])
                     node_trace['textfont']['color'] += tuple(['white'])
             for r in model.R:
                 if node == model.p[r]:
                     constructed_string.append('Pick Up: Order {}'.format(r))
                 if node == model.d[r]:
                     constructed_string.append('Delivery: Order {}'.format(r))
             node_trace['hovertext'] += tuple(['<br>'.join(constructed_string)])
```

In [82]: plotly.offline.iplot(fig)

