N₁ Définitions et propriétés

D Fonction inverse

Une fonction racine carrée f est définie par $f(x) = \sqrt{ax + b}$ où a et b sont deux nombres réels tels que $a \neq 0$. (c'est la racine carrée d'une fonction affine).

P Ensemble de définition

Soit f une fonction inverse telle que $f(x)=\sqrt{ax+b}$ alors son ensemble de définition est :

$$\mathcal{D}_f = [rac{-b}{a}\,; +\infty[$$
 si $a>0$ et $\mathcal{D}_f =]-\infty; rac{-b}{a}]$ si $a<0$

En effet comme on ne peut pas avoir de nombre négatif sous la racine carrée, il faut donc que $ax + b \geqslant 0$

P Tableau de variation

On considère une fonction racine carrée $f(x)=\sqrt{ax+b}$ avec $a\neq 0$. Si a=0 cette fonction inverse est constante et vaut $f(x)=\sqrt{b}$ si $b\geqslant 0$.

si
$$a>0$$

si a < 0

Pour chaque fonction affine suivante, donner le coefficient directeur, l'ordonnée à l'origine puis dresser le tableau de variation :

 $\boxed{1} \quad f_1 = 4x - 6$

 $\boxed{2} \quad f_2 = -3x + 9$

 $\boxed{3} \quad f_3 = -3x$

 $\boxed{4} \quad f_4 = -9$

 $\boxed{5} \quad f_5 = 6 - 2x$

 $\boxed{6} \quad f_6 = 2 + 8x$

 $f_7 = 6x$

- $f_8=2(5-2x)$

$\overline{N_2}$ Représentation graphique d'une fonction racine carrée

P Représentation graphique

On considère une fonction inverse $f(x)=\sqrt{ax+b}$. La représentation graphique \mathcal{C}_f est :

si a>0

si a < 0

Pour chaque fonction affine suivante, donner le coefficient directeur, l'ordonnée à l'origine puis tracer sa représentation graphique :

 $\boxed{1} \quad f_1 = 4x - 6$

 $\boxed{2} \quad f_2 = -3x + 9$

 $\boxed{3f_3=-3x}$

 $\boxed{4} \quad f_4 = -9$

 $\boxed{5f_5=6-2x}$

 $\boxed{6} \quad f_6 = 2 + 8x$

 $f_7 = 6x$

- $| f_8 = 2(5-2x) |$
- $\boxed{9} \ \ f_9 = -3(2x+1)$

N_3 Signe d'une fonction racine carrée

P Signe d'une fonction racine carrée

On considere une fonction affine $f(x) = \sqrt{ax + b}$:

si
$$a>0$$

lacksquare	$\frac{-b}{a}$		+∞
f(x)		+	

si
$$a < 0$$

$oldsymbol{x}$	$-\infty$	$\frac{-b}{a}$
f(x)	+	

Pour chaque fonction affine suivante, donner le coefficient directeur, l'ordonnée à l'origine puis tracer sa représentation graphique :

$$\boxed{1} \quad f_1 = 4x - 6$$

$$\boxed{2} \quad f_2 = -3x + 9$$

$$\boxed{3} \quad f_3 = -3x$$

$$\boxed{4} \quad f_4 = -9$$

$$\boxed{5 f_5 = 6 - 2x}$$

$$\boxed{ \begin{array}{c} \hline \\ \hline 6 \end{array} } f_6 = 2 + 8x$$

$$7 \quad f_7 = 6x$$

$$f_8 = 2(5 - 2x)$$

$$\boxed{ \ \, g \ \, } \, f_9 = -3(2x+1)$$

N_4 Fonction \sqrt{u}

Soit u une fonction définie sur D_u telle pour tout $x \in D_u$; $u(x) \geqslant 0$.

D Définition

La fonction \sqrt{u} est définie sur D_u et par : $(\sqrt{u})(x) = \sqrt{u(x)}$

Propriété : variations

Si u est monotone sur un intervalle I et si pour tout $x \in I$, $u(x) \geqslant 0$ alors la fonction \sqrt{u} a le même sens de variation que \boldsymbol{u} sur \boldsymbol{I} .

Construire un tableau de variation des fonctions suivantes sur leur ensemble de définition :

$$\boxed{1} \quad f_1(x) = 3x^2$$

$$\boxed{2} \quad f_2(x) = |x|-4$$

$$oxed{3} f_3(x) = \sqrt{x} - 1$$