

Instituto Politécnico Nacional

Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas

Teoría de la información

Práctica 5

Implementación en hardware de un codificador y decodificador de canal

Profesor

Jorge Rojas Beltrán

Alumno

Alvarado Balbuena Jorge Anselmo

Grupo

2TM4

Índice

1.	. Objetivo	4
2.	. Descripción	4
3.	Diagrama de circuito eléctrico de implementación 3.1. Timers utilizados	5
4.	. Código	6
5.	5.1. Coder	15
6.	. Palabras dato y codigo	18
7.	Síndrome vs patrón de error	19
8.	Listado de asignación de terminales	20
9.		
10	0.Conclusiones	24
Ír	ndice de figuras	
	5. Circuito lógico síndrome	4 5 5 14 15
	 Circuito lógico decodificador. Palabras dato y codigo. Síndrome vs patrón de error. Terminales. Diagrama principal. 	17 18 19 20 21

UPIITA-I	PN	Teoría de la Información						
11.	Codificador							
12.	Decodificador		23					
13.	Utilización		24					

1. Objetivo

Implementación en hardware de un codificador de canal de bloque mediante la utilizacion de dispositivos lógicos programables.

2. Descripción

A partir de una matriz generadora perteneciente a un CBS(n, k), se implementrán en dispositivo programable tanto la parte codificadora (coder) como la parte decodificadora (decoder) de dicho codificador, de acuerdo con el siguiente diagrama.

Figura 1: Daigrama a bloques general del codificador a implementar.

Reporte 4 Práctica 5

3. Diagrama de circuito eléctrico de implementación

Figura 2: Circuito implementado.

3.1. Timers utilizados

Timer	Frecuencia
Inicio de proceso.	2 Hz
Transmisión de fuente a canal.	1 Hz
Transmisión de canal con error a decodificador.	1 Hz
Corrección de error en el decodificador.	1 Hz

Figura 3: Timers.

4. Código

```
1 // Libreria para operaciones logicas
_2 \# include < iso 646.h >
3 // Pins para palabra dato, control de fuente y muestra
4 // de transmision
5 #define D1 53
6 #define D2 51
7 #define D3 49
8 #define D4 47
10 #define CD 45
<sup>12</sup> #define C1 43
13 // Pins para error, control de canal y muestra
14 // de transmision
15 #define E1 41
16 #define E2 39
#define E3 37
18 #define E4 35
19 #define E5 33
20 #define E6 31
21 #define E7 29
22 #define E8 27
24 #define CE 25
26 #define C2 23
27 // Pins para sindrome
28 #define S1 52
29 #define S2 50
30 #define S3 48
31 #define S4 46
32 // Pins para palabra corregida
33 #define COR1 44
34 #define COR2 42
35 #define COR3 40
36 #define COR4 38
37 // Pins para canal
38 #define CCOUT1 36
39 #define CCIN1 34
40 // Pins para canal
41 #define CCOUT2 32
42 #define CCIN2 30
44 // Variables globales para codificacion y decodficacion
int d1, d2, d3, d4, cd, c1, c2;
int ce[8]{ 0,0,0,0,0,0,0,0};
int error [8] { 0,0,0,0,0,0,0,0};
```

```
48 int r[8] { 0,0,0,0,0,0,0,0};
  int sindrome [4] \{ 0,0,0,0 \};
  int cr[8] { 0,0,0,0,0,0,0,0};
51
  // Prototipo de funciones
  void ReadPins();
  void TransmisionCanalError(int codidgo[8]);
  void PatronError();
  void AgregaError();
  void ObtieneSindrome(int error[8]);
  void TransmisionErrorDecoder(int codidgo[8]);
  void DecodificaPalabra();
60
  // Funcion de inicio
61
  void setup()
62
63
  {
    // Asignar un modo a los pines a utilizar
64
65
    ReadPins();
    Serial . begin (9600);
66
    Serial.println("Puerto abierto");
67
68
69
  // Funcion de proceso principal
71
  void loop()
72
    // Condiciones iniciales
73
    delay (2000);
74
    digitalWrite(COR1, 0);
75
    digitalWrite(COR2, 0);
76
    digitalWrite(COR3, 0);
77
    digitalWrite(COR4, 0);
78
    digitalWrite(S1, 0);
79
    digitalWrite(S2, 0);
80
    digitalWrite(S3, 0);
81
82
    digitalWrite(S4, 0);
83
    // Control de fuente
84
    cd = digitalRead(CD);
85
    while (cd = 0)
86
      cd = digitalRead(CD); // Permitir transmision
87
88
    // Lectura de palabra dato
89
    int codigo [8] { 0,0,0,0,0,0,0,0};
90
    d1 = digitalRead(D1);
91
    d2 = digitalRead(D2);
92
    d3 = digitalRead(D3);
93
    d4 = digitalRead(D4);
94
95
    // Generacion de palabra codigo
96
    codigo[0] = d2 ^ d3 ^ d4;
97
    codigo[1] = d1 ^ d2 ^ d3;
```

```
codigo[2] = d1 ^ d2 ^ d4;
99
     codigo[3] = d1 ^ d3 ^ d4;
100
     codigo[4] = d1;
     codigo[5] = d2;
102
     codigo[6] = d3;
     codigo[7] = d4;
104
     // Se inicia la transmision de la fuente
106
     // al canal
     TransmisionCanalError(codigo);
108
     // Se prepara el error en el canal y se
110
     // controla la transmision
111
     if (digitalRead(CE))
112
113
       // Leer los errores a agregar
114
       PatronError();
       // Agrega el error a la palabra
116
       AgregaError();
117
       // Se transmite la palabra codigo con error al
118
       // decoder
119
       TransmisionErrorDecoder (ce);
       // Se obtiene el sindrome a partir del error
       // del canal
       ObtieneSindrome (error);
123
       // Se corrige la palabra recibida
124
       DecodificaPalabra();
125
126
127
128
   // Asignacion de modo en los pines
129
   void ReadPins()
130
131
     pinMode(D1, INPUT);
133
     pinMode (D2, INPUT);
     pinMode (D3, INPUT);
134
     pinMode(D4, INPUT);
136
     pinMode(CD, INPUT);
138
     pinMode (C1, OUTPUT);
139
140
     pinMode(E1, INPUT);
141
     pinMode (E2, INPUT);
142
     pinMode (E3, INPUT);
143
     pinMode (E4, INPUT);
144
     pinMode (E5, INPUT);
145
     pinMode (E6, INPUT);
146
     pinMode (E7, INPUT);
147
     pinMode (E8, INPUT);
148
149
```

```
pinMode (CE, INPUT);
150
151
     pinMode (C2, OUTPUT);
153
     pinMode (S1, OUTPUT);
154
     pinMode (S2, OUTPUT);
     pinMode (S3, OUTPUT);
156
     pinMode (S4, OUTPUT);
157
158
     pinMode (COR1, OUTPUT);
     pinMode (COR2, OUTPUT);
     pinMode (COR3, OUTPUT);
161
     pinMode (COR4, OUTPUT);
162
     pinMode (CCOUT1, OUTPUT);
164
     pinMode (CCOUT2, OUTPUT);
165
166
     pinMode (CCIN1, INPUT);
167
     pinMode (CCIN2, INPUT);
168
169
   void TransmisionCanalError(int codidgo[8])
172
     Serial.println("Transmision fuente -> canal");
173
     // Se inicia la transmision serial
174
     for (auto i = 0; i < 8; ++i)
175
       // Se transmite al canal
177
       digitalWrite(CCOUT1, codidgo[i]);
178
       // Se lee el dato transmitido al canal
       ce[i] = digitalRead(CCIN1);
180
       // Se muestra el dato recibido
       digitalWrite(C1, ce[i]);
182
       Serial.print(ce[i]);
183
       // Timer
184
       delay (1000);
185
186
     Serial.println();
187
     Serial.println("Transmision terminada");
188
     // Se liberan recursos
     digitalWrite(C1, 0);
190
191
   void PatronError()
194
     // Se leen los errores a agregar a
195
     // la palabra codigo
196
     error [0] = digitalRead (E1);
197
     error[1] = digitalRead(E2);
198
     error [2] = digitalRead (E3);
199
     error[3] = digitalRead(E4);
200
```

```
error[4] = digitalRead(E5);
201
     error [5] = digitalRead (E6);
202
     error [6] = digitalRead (E7);
203
     error[7] = digitalRead(E8);
204
     Serial.println("Patron error");
205
      /* for (int i = 0; i < 8; ++i)
206
        Serial.print(error[i]);
207
     Serial.println();*/
209
   void AgregaError()
211
212
     // Se busca donde fue configurado el error
213
     // y se agrega a la palabra codigo
214
     if (error[0]) ce[0] = ce[0] xor 1;
215
     if (error[1]) ce[1] = ce[1]
                                       xor 1;
216
     if (\operatorname{error}[2]) \operatorname{ce}[2] = \operatorname{ce}[2] \operatorname{xor} 1;
217
218
     if (error[3]) ce[3] = ce[3]
                                       xor 1;
     if (error[4]) ce[4] = ce[4] xor 1;
219
     if (\operatorname{error}[5]) \operatorname{ce}[5] = \operatorname{ce}[5] \operatorname{xor} 1;
     if (\operatorname{error}[6]) \operatorname{ce}[6] = \operatorname{ce}[6] xor 1;
221
     if (error[7]) ce[7] = ce[7] xor 1;
     /*Serial.println("Codigo con error");
223
     for (int i = 0; i < 8; ++i)
        Serial.print(ce[i]);
225
     Serial.println();*/
226
227
228
229
   void ObtieneSindrome(int error[8])
230
     // Si el canal dejo de transmitir se cancela la
231
     // operacion
232
     if (!cr[0] && !cr[1] && !cr[2] && !cr[3] && !cr[4] && !cr[5] &&
233
        ! cr [6]) return;
234
235
     // Se calcula el sindrome con base en la ecuaciones
236
     // obtenidas
237
     sindrome[0] = error[0] ^ error[5] ^ error[6] ^ error[7];
238
                                              ^ error [5] ^ error [6];
     sindrome[1] = error[1] ^ error[4]
239
     sindrome[2] = error[2] ^ error[4] ^ error[5] ^ error[7];
240
     sindrome[3] = error[3] ^ error[4] ^ error[6] ^ error[7];
242
     // Se muestra el sindrome en el arreglo de leds asignados
243
     // en el circuito
244
     digitalWrite(S1, sindrome[0]);
245
     digitalWrite (S2, sindrome [1]);
     digitalWrite(S3, sindrome[2]);
247
     digitalWrite(S4, sindrome[3]);
248
249
     /*Serial.println("Sindrome");
250
     for (int i = 0; i < 4; ++i)
251
```

```
Serial.print(sindrome[i]);
     Serial.println();*/
253
254
255
   void TransmisionErrorDecoder(int codidgo[8])
256
257
     // Se inicia la transmision serial
258
     Serial.println("Transmision error -> decoder");
259
     for (auto i = 0; i < 8; ++i)
260
        // Se transmite al canal
262
        digitalWrite(CCOUT2, codidgo[i]);
263
        // Se lee el dato transmitido al canal
264
        Serial.print(digitalRead(CCIN2));
265
        // Se muestra el dato recibido
266
        cr[i] = digitalRead (CCIN2);
267
        digitalWrite(C2, cr[i]);
268
        // Timer
269
        delay (1000);
270
271
     Serial.println();
     Serial.println("Transmision terminada");
273
274
     // Se liberan recursos
     digitalWrite(C2, 0);
276
277
   void DecodificaPalabra()
278
279
     // Si el sindrome es 0000, significa se interrumpio la
280
     // transmision o no se ha transmitido algo, por lo que se cancela
281
     // la function
282
     if (!sindrome[0] && !sindrome[1] && !sindrome[2] && !sindrome[3])
283
       return;
284
285
286
     // Con base la matriz H transouesta se verifican la siguientes condiciones
     // para corregir errores simples y dobles
287
     Serial.println("Corrigiendo errror");
288
     if (sindrome [0] && !sindrome [1] && !sindrome [2] && !sindrome [3]) //1000
289
     {
290
       \operatorname{cr}[0] = \operatorname{cr}[0] \operatorname{xor} 1;
     else if (!sindrome[0] && sindrome[1] && !sindrome[2] && !sindrome[3]) //0100
293
294
       \operatorname{cr}[1] = \operatorname{cr}[1] \operatorname{xor} 1;
296
     else if (!sindrome[0] && !sindrome[1] && sindrome[2] && !sindrome[3]) //0010
297
298
        \operatorname{cr}[2] = \operatorname{cr}[2] \operatorname{xor} 1;
299
300
301
     else if (!sindrome[0] && !sindrome[1] && !sindrome[2] && sindrome[3]) //0001
302
```

```
cr[3] = cr[3] xor 1;
303
       }
304
       else if (!sindrome[0] && sindrome[1] && sindrome[2] && sindrome[3]) //0111
305
306
          \operatorname{cr}[4] = \operatorname{cr}[4] \operatorname{xor} 1;
307
308
       else if (sindrome [0] && sindrome [1] && sindrome [2] &&! sindrome [3]) //1110
309
310
          \operatorname{cr}[5] = \operatorname{cr}[5] \operatorname{xor} 1;
311
312
       else if (sindrome [0] && sindrome [1] && !sindrome [2] && sindrome [3]) //1101
313
314
          \operatorname{cr}[6] = \operatorname{cr}[6] \operatorname{xor} 1;
315
316
       else if (sindrome [0] && !sindrome [1] && sindrome [2] && sindrome [3]) //1011
317
318
          \operatorname{cr}[7] = \operatorname{cr}[7] \operatorname{xor} 1;
319
320
       else if (!sindrome[0] && sindrome[1] && !sindrome[2] && sindrome[3]) //0101 doble
321
          2,4
322
          \operatorname{cr}[1] = \operatorname{cr}[1] \operatorname{xor} 1;
323
          \operatorname{cr}[3] = \operatorname{cr}[3] \operatorname{xor} 1;
324
325
       else if (sindrome[0] && !sindrome[1] && sindrome[2] && !sindrome[3]) //1010 doble
326
          1,3
327
          \operatorname{cr}[0] = \operatorname{cr}[0] \operatorname{xor} 1;
328
          \operatorname{cr}[2] = \operatorname{cr}[2] \operatorname{xor} 1;
329
330
331
       for (auto i = 4; i < 8; i++)
332
333
          Serial.print(cr[i]);
335
336
       // Se muestra la palabra corregida en el arrgle de
337
       // leds asignados
338
       digitalWrite(COR1, cr [4]);
339
       digitalWrite(COR2, cr[5]);
       digitalWrite(COR3, cr[6]);
341
       digitalWrite(COR4, cr[7]);
342
       Serial.println("");
343
       // Timer
344
       delay (1000);
345
```

5. Circuito lógico

5.1. Coder

A partir de la matriz generadora G y la siguiente ecuación se pueden obtener la palabras código.

$$\vec{c} = \vec{d}G \tag{1}$$

Donde:

- \vec{c} : palabra código.
- \vec{d} : palabra doto.
- **G**: matriz generadora.

La matriz generadora es la siguiente:

$$G = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

El vector de la palabra dato es:

$$\vec{d} = [d_1 \ d_2 \ d_3 \ d_4] \tag{2}$$

Realizando la operación se podrán obtener los diferentes valores del vector \vec{c} . Las ecuaciones resultantes de esta operación son las siguientes.

$$c_1 = d_2 \bigoplus d_3 \bigoplus d_4$$

$$c_2 = d_1 \bigoplus d_2 \bigoplus d_3$$

$$c_3 = d_1 \bigoplus d_2 \bigoplus d_4$$

$$c_4 = d_1 \bigoplus d_3 \bigoplus d_4$$

$$c_5 = d_1$$

$$c_6 = d_2$$

$$c_7 = d_3$$

$$c_8 = d_4$$

Y la palabra código resultante es:

$$\vec{c} = [c_1 \ c_2 \ c_3 \ c_4 c_5 \ c_6 \ c_7 \ c_8] \tag{3}$$

5.1.1. Circuito lógico

Figura 4: ircuito lógico codificador.

5.2. Decoder

Para el proceso de corrección y decodficacion se debe de ontener la matriz \mathbf{H} .

$$H = [IP^T] (4)$$

Para obtener la ecuaciones del Síndrome se cálcula H transpuesta.

$$H^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Las ecuaciones del Síndrome son:

$$s_1 = r_1 + r_6 + r_7 + r_8$$

$$s_2 = r_2 + r_5 + r_6 + r_7$$

$$s_3 = r_3 + r_5 + r_6 + r_8$$

$$s_4 = r_4 + r_5 + r_7 + r_8$$

5.2.1. Circuito lógico síndrome

Figura 5: Circuito lógico síndrome.

Con ayuda de la misma matriz se pueden obtener las ecuaciones de error que ayudarán para la corrección de errores.

Errores simples.

$$e_{1} = s_{1} + \neg s_{2} + \neg s_{3} + \neg s_{4}$$

$$e_{2} = \neg s_{1} + s_{2} + \neg s_{3} + \neg s_{4}$$

$$e_{3} = \neg s_{1} + \neg s_{2} + s_{3} + \neg s_{4}$$

$$e_{4} = \neg s_{1} + \neg s_{2} + \neg s_{3} + s_{4}$$

$$e_{5} = \neg s_{1} + s_{2} + s_{3} + s_{4}$$

$$e_{6} = s_{1} + s_{2} + s_{3} + \neg s_{4}$$

$$e_{7} = s_{1} + s_{2} + \neg s_{3} + s_{4}$$

$$e_{8} = s_{1} + \neg s_{2} + s_{3} + s_{4}$$

Errores dobles.

$$e_{1,3} = s_1 + \neg s_2 + s_3 + \neg s_4$$

 $e_{2,4} = \neg s_1 + s_2 + \neg s_3 + s_4$

5.2.2. Circuito lógico decodificador

Figura 6: Circuito lógico decodificador.

6. Palabras dato y codigo

Palabra dato					Palabra código							
d_1	d ₂	d ₃	d_4		C1	C2	C3	C4	C5	C ₆	C7	C8
0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	1		1	0	1	1	0	0	0	1
0	0	1	0		1	1	0	1	0	0	1	0
0	0	1	1		0	1	1	0	0	0	1	1
0	1	0	0		1	1	1	0	0	1	0	0
0	1	0	1		0	1	0	1	0	1	0	1
0	1	1	0		0	0	1	1	0	1	1	0
0	1	1	1		1	0	0	0	0	1	1	1
1	0	0	0		0	1	1	1	1	0	0	0
1	0	0	1		1	1	0	0	1	0	0	1
1	0	1	0		1	0	1	0	1	0	1	0
1	0	1	1		0	0	0	1	1	0	1	1
1	1	0	0		1	0	0	1	1	1	0	0
1	1	0	1		0	0	1	0	1	1	0	1
1	1	1	0		0	1	0	0	1	1	1	0
1	1	1	1		1	1	1	1	1	1	1	1

Figura 7: Palabras dato y codigo.

7. Síndrome vs patrón de error

Sínd	rome			Patro	Patrón de error							
S ₁	S ₂	S3	S ₄	e ₁	e_2	e_3	e_4	e_5	e_6	e ₇	e_8	
0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	0	
0	0	1	0	0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	1	0	0	0	0	
0	1	1	1	0	0	0	0	1	0	0	0	
1	1	1	0	0	0	0	0	0	1	0	0	
1	1	0	1	0	0	0	0	0	0	1	0	
1	0	0	1	0	0	0	0	0	0	0	1	
1	0	1	0	1	0	1	0	0	0	0	0	
0	1	0	1	0	1	0	1	0	0	0	0	

Figura 8: Síndrome vs patrón de error.

8. Listado de asignación de terminales

Pin	Función							
D1	Palabra dato posición 1							
D2	Palabra dato posición 2							
D3	Palabra dato posición 3							
D4	Palabra dato posición 4							
CD	Control de dip para la transmisión de							
	palabra código							
C1	Led para mostrar transmisión serial							
E1	Patrón de error en la posición 1							
E2	Patrón de error en la posición 2							
E3	Patrón de error en la posición 3							
E4	Patrón de error en la posición 4							
E5	Patrón de error en la posición 5							
E6	Patrón de error en la posición 6							
E7	Patrón de error en la posición 7							
E8	Patrón de error en la posición 8							
CE	Control de dip para la transmisión de							
	palabra código con error							
C2	Led para mostrar transmisión serial							
S1	Síndrome en la posición 1							
S2	Síndrome en la posición 2							
S3	Síndrome en la posición 3							
S4	Síndrome en la posición 4							
COR1	Palabra corregida en la posición 1							
COR2	Palabra corregida en la posición 2							
COR3	Palabra corregida en la posición 3							
COR4	Palabra corregida en la posición 4							
CCOUT1	Salida de fuente a canal							
CCIN1	Entrada de canal a bloque con error							
CCOUT2	Salida de bloque de error							
CCIN2	Enlace de canal hacia decodificador							

Figura 9: Terminales.

9. Diagramas de flujo

Figura 10: Diagrama principal.

9.1. Codificador

Figura 11: Codificador.

9.2. Decodificador

Figura 12: Decodificador.

9.3. Utilización de dispositivo

De acuerdo con información por el IDE de arduino, la utilización es la siguiente.

```
Subido

El Sketch usa 5036 bytes (1%) del espacio de almacenamiento de programa. El máximo es 253952 bytes.

Las variables Globales usan 378 bytes (4%) de la memoria dinámica, dejando 7814 bytes para las variables locales. El máximo es 8192 bytes.
```

Figura 13: Utilización.

10. Conclusiones