Санкт-Петербургский политехнический университет Петра Великого Физико-Механический институт

«Высшая школа прикладной математики»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

по дисциплине «Математическая статистика»

Выполнил студент: Ярмак Дмитрий Юрьевич группа: 3630102/90101

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Постановка задачи	4
2	Теория 2.1 Вариационный ряд	
3	Реализация	6
4	Результаты 4.1 Характеристики положения и рассеяния	7 7
5	Обсуждение	9
6	Ссылки	10

Список таблиц

1	Нормальное распределение											7
2	Равномерное распределение											7
	Распределение Коши											
4	Распреление Пуассона											8

1 Постановка задачи

Для четырех распределений:

• Нормальное распределение

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3})$$

• Распределение Коши

• Распределение Пуассона

Сгенерировать выборки по 10, 50, 1000 элементов. Для каждой выборки вычислить следующие статические характеристики положения данных: \overline{x} , med, x, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Вариационный ряд

Вариационный ряд - последовательность элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются.

2.2 Выборочные числовые характеристики

2.2.1 Характеристики положения

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & \text{, при } n = 2l+1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{, при } n = 2l \end{cases}$$
 (4)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{5}$$

• Полусумма квартилей

Выборочная квартиль z_p порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & , \text{ при } np \text{ дробном} \\ x_{(np)} & , \text{ при } np \text{ целом} \end{cases}$$
 (6)

Полусумма квартилей

$$z_Q = \frac{z_{\frac{1}{4}} + z_{\frac{3}{4}}}{2} \tag{7}$$

• Усеченное среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (8)

2.2.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \tag{9}$$

3 Реализация

Лабораторная работа выполнена при помощи языка программирования Phyton и библиотек numpy, tabulate, scipy в среде программирования PyCharm.

4 Результаты

4.1 Характеристики положения и рассеяния

normal n = 10					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.016615	-0.006043	-0.026252	-0.013579	-0.010404
D(z)	0.106202	0.147329	0.184655	0.121045	0.121362
normal n = 100					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.003044	-0.003403	-0.003692	-0.003974	-0.003228
D(z)	0.010544	0.016031	0.096407	0.012359	0.012281
normal n = 1000					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-8.6e-05	-0.001649	0.003915	-2.7e-05	-0.000345
D(z)	0.001008	0.001605	0.064261	0.001265	0.001234

Таблица 1: Нормальное распределение

uniform n = 10					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.004739	-0.012391	-0.004998	-0.000605	-0.005382
D(z)	0.097822	0.223744	0.043829	0.1375	0.157557
uniform n = 100					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	0.001305	0.001909	9e-06	0.00115	0.000876
D(z)	0.010781	0.031527	0.000543	0.015286	0.02118
uniform $n = 1000$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	0.002397	0.003215	7.7e-05	0.002912	0.003263
D(z)	0.001125	0.003313	6e-06	0.001636	0.002223

Таблица 2: Равномерное распределение

cauchy n = 10					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.839306	-0.00993	-4.15189	0.012332	0.003699
D(z)	749.704	0.357634	18618	0.978361	0.570587
cauchy $n = 100$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-16.1643	-0.000962	-808.511	0.000749	-0.000816
D(z)	275593	0.025972	6.88945e + 08	0.053231	0.02754
cauchy $n = 1000$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	1.98888	0.000236	965.894	0.002294	0.001043
D(z)	3091.01	0.002576	7.67113e + 08	0.004886	0.002624

Таблица 3: Распределение Коши

poisson n = 10					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	9.9512	9.8115	10.248	9.87575	9.84617
D(z)	0.972619	1.42922	1.8065	1.1545	1.14081
poisson $n = 100$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	10.0015	9.851	10.976	9.90625	9.85028
D(z)	0.094587	0.183299	0.987924	0.148398	0.111357
poisson n = 1000					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	10.0035	9.9975	11.69	9.99338	9.86085
D(z)	0.009815	0.002244	0.6359	0.003284	0.010962

Таблица 4: Распределение Пуассона

5 Обсуждение

Исходя из данных, приведенных в таблицах, можно судить о том, что дисперсия характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки. Понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

6 Ссылки

https://github.com/AvitusCode/AvitusStatistics/Lab2