

DL for Segmentation of Intracranial vessel wall pathologies

Anitha Bhat Talagini Ashoka, Pavan Kumar Kandapagari.

Recap from previous work

Problem statement

- Literature survey
- Technologies

Recap from previous work

Classes

Architecture selection

- U-net^[1]
- Modification according to our problem statement

Network Architecture

- Data pre-processing
 - Patchwise approach
 - Patch size 256*256
- Problems faced during data pre-processing
 - Single generator could not handle to give both image and mask, model.fit will accept only one generator
 - .tif mask size was huge, could not fit in RAM
 - Convert 3 channel mask into 9 channel mask
 - RGBA format masks
 - Mismatch between image and mask patches
 - Class mismatch because of high number of white patches

Solutions

- Make different generators for both image and mask, connect them in a function using yield
- Conversion of masks from .tif to .png
- One-hot encoding
- zip image and mask generators

Image

Mask

- Model Development
 - Model built in python using TensorFlow 2.0 in Jupyter notebook.
 - Modification from binary classification to 9 different classes
 - Last layer of the original model is 2 channels i.e., 256X256X2 which is changed to 9 channels i.e., 256X256X9.
 - To reduce the number of parameters we reduced the number of filters half fold by which parameter reduced from 2,158,841 to 540,298

- Model Development
 - Loss function selection
 - Categorical cross entropy
 - Dice loss
 - Metrics
 - Accuracy
 - Dice coefficient
 - Precision
 - Recall

- Problem with converting masks into labels
 - Photoshop artifacts RGBA,
 - Color interpolation at the edges
 - One hot encoding shape issue– 256X256X1X9

- Solutions for converting masks into labels
 - Script for converting RGBA images into RGB
 - Using K-Means algorithm to get the labels
 - Using np.squeeze to get 256X256X9, as a result have to use np.expand_dims while converting back to 3 channel image

K-Means clustering

- K-means semi-supervised
- Cluster centers as class labels

```
t0 = time()
color_palette_2, w, h = preprossesing_image(r'/data/student/github/DLforWallCharacteristics/color_palette_
2.jpg')
kmeans_color_palette_2 = KMeans(n_clusters=n_colors, random_state=42).fit(color_palette_2)
print('done in %0.3fs. ' % (time() - t0))
print(kmeans_color_palette_2.cluster_centers_)
```


Mask read from disk

Mask after K-means clustering

Training

- Hyper perameters
 - Optimizer = Adam
 - Loss function = categorical cross_entropy
 - Activation function (non classifying) = ReLu
 - Learning rate= 0.001
 - Dropout rate = 0.5
 - Kernel shape
 - Regularisation = L2
 - Weight decay= 0.001

Training

- Callbacks
 - Early stoppage. X
 - ReduceLRonplateau for dynamically reduce learning rate
 - Model Checkpoint for saving model with best weights (.h5 format)
 - CSVlogger for logging loss and metrics in a csv file.

Problems in training

- Upgrade the code from TensorFlow 1.14 to TensorFlow 2.0
- Difficultly to fit the data on memory.
- Server issues due to incompatibility of cuda version subsequent change of servers.

Further development

- Change the loss from categorical cross entropy to dice loss which takes care of pixel wise dependencies.
- Combining the very similar classes, and try the network
- If multi class approach fails have a one vs many approach converting 9 class problem into 9 binary classification problems.
- Complete the project report.

Thank you for your attention!

Any Questions?

Back up

Color palate

