Análisis Matemático I

Doble Grado en Ingeniería Informática y Matemáticas

Objetivos de aprendizaje para el tema 3

- 1. Conocer y comprender las siguientes definiciones, para funciones entre espacios métricos:
 - a) Continuidad en un punto
 - b) Límite en un punto
- 2. Conocer y comprender los siguientes resultados:
 - a) Caracterizaciones de la continuidad en un punto y de la continuidad global
 - b) Carácter local de la continuidad
 - c) Operaciones con funciones continuas

- 1. Conocer y comprender las siguientes definiciones, para funciones entre espacios
 - a) Continuidad en un punto b) Límite en un punto

6)

Decimos que una función $f: E \to F$ es **continua en un punto** $x \in E$ cuando la imagen

inversa por f de cada entorno de f(x) en el espacio F es un entorno de x en E:

 $V \in \mathcal{U}(f(x)) \implies f^{-1}(V) \in \mathcal{U}(x)$

Esta definición se debe al caso concreto en el que F=1R y $\phi \neq E \subset R$:

3>1(x) 6-(6) 8-1x-x1/3=x4:0c8E 0c3A Como IR es un e. mét. y E CIR también por la distancia inducida, por la que la definición anterior se puede expresor con naciones topológicos

con las que sabemes qué funciones entre espacies métricos son

continuas en un punto:

7 €E 17.×1 < 8 = D y e B(x, 8) 13(y)- f(x)/ € = 3 3 (8) € B(f(x), 8)

YE>0,38>0: &(B(x,8)) c B(g(x),E)

Y las bolas abjectas son enternos de su contro, es de cir, $B(x, \delta) \in \mathcal{U}(x)$

 $\beta(\beta(x), \epsilon) \in \mathcal{U}(\beta(x))$, por la que podemas sustituirlas por la entornas

U y V respectivamente: U V E U(g(x)) 3U E U(x). g(v) C V Ahora, si f(u) cv, Yxev, g(x)ev. ¿ Qué pasa con g-1(v)?

como UEU(x) y UC g-2(V), g-2(V) EU(x) también. Entonces: YVEU(3(x)) 3-1(V) EU(X)

Se dice que f. A-DF tiene limite L en a EA' chands:

 $\lim_{x \to \alpha} f(x) = L \iff \forall V \in \mathcal{U}(L) \ \exists \ U \in \mathcal{U}(\alpha) : f(U \cap (A \setminus \{\alpha\})) \subset V$

Para llegar a esto, partimos de la definición de límite para funciones

de vouiable real:

 $g^{-1}(V) = \{x \in E : g(x) \in V\} = D Claromente, U \in g^{-1}(V). Finalmente,$

3>1-1-12 DE>0 38>0: XEA O<1x-01>0 \$\$ 18(x)-L1<6 0<1x-01<8=0 x ∈ B(0,8) 1 f(x)-L1 < E= f(x) ∈ B(L,E)

* Y dicha implicación equivale $a: f(B(\alpha, B)) \subset B(L, E)$

Y sustituyendo las bolas por entornos de sus centros:

B(a, b) = V = R(a) } HV = R(L) JU = R(a) f(vn(A)fas) cV B(L, E) = V = R(L) J (D a es pto, acumulación

Por último, $\alpha \in A$ no por capricho, sino porque esto nos permite probar la unicidad del límite L:	
2. Conocer y	comprender los siguientes resultados:
,	· · ·
c) Opera	ciones con funciones continuas
(10	Continuidad en un punto
	(i) f es continua en el punto x (ii) $\forall \varepsilon > 0 \ \exists \delta > 0 : y \in E$, $d(y,x) < \delta \Rightarrow d(f(y),f(x)) < \varepsilon$
ス) =	sii) Fijo E > O. B(f(x), E) es un externo de f(x), y como f es continua,
<8E	0: B(x, 8) c g. [B(g(x), E)]. Si y E B(x, 8), d(y, x) < 8, y pm la
	unión outerior, {(4) e B(3(x),E) => d(3(4), {(x)} < E
	M≤NV:M3mE, xa-Enx} awa). (ii roq 0 <8 camenes, 0 <3 oji (iii a
	$(x,x) < \delta$. Us and ii), equivale a $d(f(x_n),f(x)) < \delta = 2f(x_n) = \delta(x)$
	antitus es an of superioristic avoirente superioriste que of ne es continuo
Com	$V_{1} = V_{2} + V_{2} = V_{2} + V_{2$
	o a que 3-3(V) ∈ U(g(x)), concluius que 1g(x,13+0 g(x).
	, , , , , , , , , , , , , , , , , , , ,

(ii) Para todo abierto $V \subset F$, se tiene que $f^{-1}(V)$ es un abierto de E (iii) Para todo cerrado $C \subset F$, se tiene que $f^{-1}(C)$ es un cerrado de E

puntos de E, la sucesión $\{f(x_n)\}$ es convergente.

(iv) f preserva la convergencia de sucesiones: para toda sucesión convergente $\{x_n\}$ de

i = λ i) Sea V obserto $y \times \in f^{-1}(V)$. Come $x \in f^{-1}(V)$, $f(x) \in V$, y come V es obserto, $V \in \mathcal{V}(f(x))$. Por sex of continua, $V \in \mathcal{V}(f(x)) \Rightarrow f^{2}(V) \in \mathcal{V}(x) \Rightarrow f^{-1}(V)$ es entorno de todas sus puntos, luego es abierto. ii) =Di) Sea xEE y W ∈ U (g(x)). Queremos llegar a que gos (w) ∈ U(x). Como W ∈ U(g(x)), und for the fall que glasev cw. Por in, g-1(v) es obierto y x e g-1(v) c g-1(w). Coun x ∈ g, (V) y g, (V) es abierto, g, (V) ∈ U(x), y como g, (V) c g, (W), g, (W) ∈ U(x). ii) = iii) Sea C cerrado. Por definición, F/C es abierto, y por ii), f1 (F/C) es objects, 3.3 (F/C) = {xeE/ {(x) & F/C} = E \nabla {xeE/ {(x) & C} = E/} -3 (C). Como J-1 (F/C) = E/ g-1(C) en obierto, f-1(C) en cerrada iii) = الذي الله على المان ال es cerrado y 3-3(FN): {xeE/3(x)eFN} = En {xeE/3(x) & N} = E/3-3(V) $E / g^{-3}(v)$ certado $\Rightarrow g^{-3}(v)$ es obierto. De cotrug cal cabot no others nu no babiunitimo al se (iii abnozu (vi a= (i dominio de fies evidente iv) = i) Sea xEE y {xn3-px. {{(xn)}} converge pero por iii) de la continuidad en un punto, necesitamos que { {xn} }-o {(1). Por ello, de finimos yn como You = x y you = x . Come las des parcioles convergen a x, Eyn - px, y por hipótesio, { g(yn)} converge, Finalmente, lim g(xn) = limg(yen) = limg(yen) = non Coinciden porque converge = lin f(x) = f(x) 6) Caracter local de la continuidad Sea f: E → F una función y sea A un subconjunto no vacío de E, que consideramos como espacio métrico con la distancia inducida. Para $x \in A$ se tiene: (i) Si f es continua en x, entonces $f|_A$ es continua en x. (ii) Si f | α es continua en x y A es entorno de x en E, entonces f es continua en x. i) VER(g(x1) => 8.4(V) ER(x). (3.4)(V)= {xEA/g(x) EV3= An {xEE/g(x) EV3= An 3-2(V). Por la definición de enternos en un subconjunto ACE, está claro que (fig)(V) ∈ U(x) pues Ta = {Una/UET}, y (fig)(V) = fig(V) nA

ii) V∈ U(f(x)) = (già)(V)∈ U(x). (già)(V)= gia(V) ∩ A. Como (già)(V)∈ U(x)

gia continuo en x

y por la deginición de Ta, se deduce que 3V∈ U(x)/ V⊂ (già)(V)=bgià)(V)∩A>V∩A

Finalmente, came V, $A \in \mathcal{U}(x)$, $V \cap A \in \mathcal{U}(x)$, Y came $V \cap A \subset (\mathcal{G}^{\underline{s}})(Y)$, $\mathcal{G}^{\underline{s}}(V) \in \mathcal{U}(x)$. En resumen, para saber si \mathcal{G} es continua en un punto, basta con conscerça en un entorno de dicho punto. De ahí que se diga que la continuidad tiene un carácter local.

c) Operaciones con Junciones continuas

Ver los otros apuntes