

3.2 Base: when n=1

 $T(1) = d + C \cdot log = d \cdot the base is true$

Assume for $k \ge 1$, $n = 2^k$, we have

 $T(2^k) = d \cdot 2^k + c \cdot 2^k \log 2^k$

we should show that the statement still halds for

 $T(2^{k+1}) = d \cdot 2^{k+1} + C \cdot 2^{k+1} \log 2^{k+1}$

proof: $T(2^{k+1}) = 2(d \cdot 2^k + C \cdot 2^k \log 2^k) + C \cdot 2^{k+1}$

 $= d \cdot 2^{k+1} + C \cdot 2^{k+1} \log 2^k + C \cdot 2^{k+1}$

= d.2k+1+ C.2k+1 (log_2k+log_2)

 $= d \cdot 2^{k+1} + C \cdot 2^{k+1} \log_2 k + 1$

Thus, we have shown that the solution to the recurrence

is Ton = dn + cnlogn for all n=2k, (k=0).

3.3
$$n \log^2 = n^{\frac{1}{2}}$$

1. $f(n)=1=O(n^{\frac{1}{2}-\epsilon})$ for any $e(\epsilon, \epsilon, \frac{1}{2})$

2. $f(n)=Jn=O(n^{\frac{1}{2}}\log^2 n)$ for $k=0$

2. $f(n)=Jn=O(n^{\frac{1}{2}}\log^2 n)=O(n^{\frac{1}{2}}\log n)$.

3. $f(n)=Jn\log^2 n=O(n^{\frac{1}{2}}\log^2 n)$ for $k=2$

2. $T(n)=O(n^{\frac{1}{2}}\log^2 n)=O(n^{\frac{1}{2}}\log^2 n)$ for $k=2$

3. $T(n)=O(n^{\frac{1}{2}+\epsilon})$ for $0<\epsilon<\frac{1}{2}$

4. $f(n)=n=S(n^{\frac{1}{2}+\epsilon})$ for $0<\epsilon<\frac{1}{2}$

3. $T(n)=O(n)$

4. $T(n)=O(n)$

3. $T(n)=O(n)$

4. $T(n)=O(n)$

5. $T(n)=O(n)$

6. $T(n)=O(n)$

6. $T(n)=O(n)$

7. $T(n)=O(n)$

8. $T(n)=O(n)$

8. $T(n)=O(n)$

9. $T(n)=O(n$

$$T(n) = T(\frac{h}{2}) + \Theta(1)$$

$$n^{\log_2 a} = n^{\log_2 1} = n^\circ = 1$$

$$f(n) = \Theta(1) = \Theta(1 \cdot \log^k n) \text{ for } k = 0$$

$$T(n) = \Theta(n) \cdot \log^k n = \Theta(\log n)$$