eXpOS Report

Stage 2:

Question 1:

When a file is created entries are made in the Inode table as well as the Root file. What is the need for this duplication

Solution:

Inode table is a data structure which is accessible only in Kernel mode, whereas Root file is accessible both in Kernel and User mode. This enables the user to search for a file from an application program itself by reading the Root file.

Assignment 1:

Copy the contents of Root File (from Block 5 of XFS disk) to a UNIX file \$HOME/myexpos/root_file.txt and verify that an entry for sample.dat is made in it also.

Solution:

First we need to open the xfs interface using the following command in the terminal with home directory being

./xfs-interface

Using the Copy command in xfs interface as follows

copy 5 5 \$HOME/myexpos/root_file.txt

Now the data in root_file.txt is changed as follows:

Assignment 2:

Delete the sample.dat from the XSM machine using xfs-interface and note the changes for the entries for this file in *inode table*, *root file and disk free list*.

Solution:

First let's remove the sample.dat using the following command

rm sample.dat

To see the changes in root file and inode table, we need to use these commands in the xfs-interface:

copy 3 4 \$HOME/myexpos/inode_table.txt
copy 5 5 \$HOME/myexpos/root_file.txt

Changes in root_file.txt are as follows

Before:

After:

Team No: 9 | Gorthi Jaswanth | Advaith Alenkrith | | Prakyath Sree Harsha | Srinivas Tammama |

Changes in inode_table.txt are as follows

Before:

After:

Team No: 9 | Gorthi Jaswanth | Advaith Alenkrith | | Prakyath Sree Harsha | Srinivas Tammama |

Changes in disk free list are as follows:

Before:

After:

We can observe that the 69th block changed to '0'.

Stage 3:

Question 1:

Q1. If the OS Startup Code is loaded to some other page other than Page 1, will XSM work fine?

Solution:

No. This is because after the execution of the ROM Code, IP points to **512** which is the 1st instruction of Page 1. So, if the OS Startup Code is not loaded to Page 1, it results in an exception and leads to system crash.

Assignment 1:

Write an assembly program to print numbers from 1 to 20 and run it as the OS Startup code.

Solution:

Write and Save the program print_twenty_num.xsm as follows in spl/spl_progs:

Team No: 9 | Gorthi Jaswanth | Advaith Alenkrith | | Prakyath Sree Harsha | Srinivas Tammama |

Then use the following command in xfs interface as follows:

```
# load --os $HOME/myexpos/spl/spl_progs/print_twenty_num.xsm
# exit
```

Now for the program to be executed go to xsm folder in terminal and use the following command

./xsm

To get the following results

Stage 4:

Assignment 1:

Write the spl program to print sum of squares of the first 20 natural numbers. Load it using xfs interface and run the in the machine.

Solution:

Write and Save the program print_twenty_squares.spl as follows in spl/spl_progs:

```
Open▼ P

alias sum R0;
alias count R1;
sum = 0;
count = 1;
while(count <= 20) do
    sum = sum + count * count;
    count = count + 1;
endwhile;
print sum;
```

Compile the following program with spl compiler using the following command

./spl spl_progs/print_twenty_squares.spl

This has generated a new file in spl_progs as print_twenty_squares.xsm as:

Now load the load the program in xfs interface like we did before and exit and change directory to xsm and run /xsm to get the following result.

Stage 6:

Assignment 1:

Change virtual memory model such that code occupies logical pages 4 and 5 and the stack lies in logical page 8. You will have to modify the user program as well as the os startup code.

Solution:

User Code:

Save this code in eps/eps_progs as squares.xsm and load it in xfs interface as follows

load --init \$HOME/myexpos/expl/expl_progs/squares.xsm

Create another file for halt with just one line "halt;" and save it as halt.spl in spl_progs and then compile it with spl compiler and load it as follows

load --int=10 \$HOME/myexpos/spl/spl_progs/halt.xsm
load --exhandler \$HOME/myexpos/spl/spl_progs/halt.xsm

Create an os startup file as follows

```
os_startup.spl
                                                                                                          Save ≡ • • •
  Open ▼
             Æ
loadi(4,7);
loadi(5,8);
loadi(22,35);
loadi(23,36);
loadi(2, 15);
loadi(3, 16);
PTBR = PAGE_TABLE_BASE;
PTLR = 3;
[PTBR+0] = 4;
[PTBR+1] = "0100";
[PTBR+2] = 5;
[PTBR+3] = "0100";
[PTBR+4] = 8;
[PTBR+5] = "0110";
[8*512] = 0;
SP = 2*512;
ireturn;
```

Save it as os_startup.spl and then compile it spl compiler as discussed before and load in it xfs as follows

load --os \$HOME/myexpos/spl/spl_progs/osstartup.xsm

Exit the interface and then use the follow command to run the program

./xsm --debug --timer 0

At each step of entering reg observe the value in register R1 at each breakpoint

```
Previous instruction at IP = 12: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 14, Page No. = 0: ADD R0,1
debug> reg
R0: 1
        R1: 1
                 R2: 1
                          R3:
                                  R4:
R5:
        R6:
                 R7:
                          R8:
                                  R9:
R10:
        R11:
                 R12:
                          R13:
                                  R14:
R15:
        R16: 1024
                          R17:
                                  R18:
                                           R19:
P0:
         P1:
                 P2:
                          P3:
BP:
        SP: 1023
                          IP: 14 PTBR: 29696
                                                    PTLR: 3
EIP:
         EC:
                 EPN:
                          EMA:
debug> c
Previous instruction at IP = 12: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 14, Page No. = 0: ADD R0,1
debug> reg
R0: 2
        R1: 4
                 R2: 1
                          R3:
                                  R4:
R5:
        R6:
                 R7:
                          R8:
                                  R9:
                          R13:
R10:
        R11:
                 R12:
                                  R14:
R15:
        R16: 1024
                          R17:
                                  R18:
                                           R19:
P0:
        P1:
                 P2:
                          P3:
BP:
        SP: 1023
                          IP: 14
                                                    PTLR: 3
                                  PTBR: 29696
EIP:
         EC:
                          EMA:
                 EPN:
debug> c
Previous instruction at IP = 12: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 14, Page No. = 0: ADD R0,1
debug> reg
R0: 3
        R1: 9
                 R2: 1
                          R3:
                                  R4:
R5:
         R6:
                 R7:
                          R8:
                                  R9:
R10:
        R11:
                 R12:
                          R13:
                                  R14:
R15:
        R16: 1024
                          R17:
                                  R18:
                                           R19:
P0:
         P1:
                 P2:
                          P3:
BP:
        SP: 1023
                          IP: 14
                                  PTBR: 29696
                                                    PTLR: 3
EIP:
        EC:
                 EPN:
                          EMA:
debug> c
Previous instruction at IP = 12: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 14, Page No. = 0: ADD R0,1
debug> reg
        R1: 16
R0: 4
                 R2: 1
                          R3:
                                  R4:
R5:
        R6:
                 R7:
                          R8:
                                  R9:
R10:
        R11:
                 R12:
                          R13:
                                  R14:
R15:
        R16: 1024
                          R17:
                                  R18:
                                           R19:
P0:
        P1:
                 P2:
                          P3:
                          IP: 14
                                  PTBR: 29696
                                                    PTLR: 3
BP:
        SP: 1023
EIP:
        EC:
                 EPN:
                          EMA:
debug> c
Previous instruction at IP = 12: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 14, Page No. = 0: ADD R0,1
debug> reg
R0: 5
        R1: 25
                 R2: 1
                          R3:
                                  R4:
R5:
        R6:
                 R7:
                          R8:
                                  R9:
R10:
                                  R14:
        R11:
                 R12:
                          R13:
```

```
R15:
        R16: 1024
                         R17:
                                 R18:
                                          R19:
P0:
        P1:
                P2:
                         P3:
        SP: 1023
                         IP: 14
BP:
                                 PTBR: 29696
                                                  PTLR: 3
EIP:
        EC:
               EPN:
                         EMA:
debug> c
Machine is halting.
```

Stage 7:

Assignment 1:

Change the user program to compute cubes of the first five numbers.

Solution:

Create a new file with name cubes.xsm and type the following code in it

```
cubes.xsm
           Æ
                                                                                        Save ≡ □ □
 Open ▼
2056
0
0
0
0
MOV RO, 1
MOV R2, 5
GE R2, R0
JZ R2, 2076
MOV R1, R0
MUL R1, R0
MUL R1, R0
BRKP
ADD RO, 1
JMP 2058
INT 10
```

Save this code in eps/eps_progs as cube.xsm and load it in xfs interface as follows

load --init \$HOME/myexpos/expl/expl_progs/cubes.xsm

Now let's create an another os startup file with name os_startup_cubes.spl and save it in spl_progs.

```
os_startup_cubes.spl
  Open ▼
            Æ
                                                                               os_startup_cubes.spl
                      cubes.xsm
loadi(63,13);
loadi(64,14);
loadi(65,7);
loadi(66,8);
loadi(22,35);
loadi(23,36);
loadi(2, 15);
loadi(3, 16);
PTBR = PAGE_TABLE_BASE;
PTLR = 10;
[PTBR+0] = 63;
[PTBR+1] = "0100";
[PTBR+2] = 64;
[PTBR+3] = "0100";
[PTBR+4] = 78;
[PTBR+5] = "0110";
[PTBR+6] = 79;
[PTBR+7] = "0110";
[PTBR+8] = 65;
[PTBR+9] = "0100";
[PTBR+10] = 66;
[PTBR+11] = "0100";
[PTBR+12] = -1;
[PTBR+13] = "0000";
[PTBR+14] = -1;
[PTBR+15] = "0000";
[PTBR+16] = 76;
[PTBR+17] = "0110";
[PTBR+18] = 77;
[PTBR+19] = "0110";
SP = 8*512;
[76*512] = [65*512 + 1];
ireturn;
```

Compile it with spl compiler just like in stage 6 and load it in xfs interface and exit and run the program by following command

./xsm --debug --timer 0

At each step of entering reg observe the value in register R1 at each breakpoint

```
Previous instruction at IP = 2070: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 2072, Page No. = 4: ADD R0,1
debug> reg
         R1: 1
R0: 1
                 R2: 1
                          R3:
                                  R4:
R5:
         R6:
                 R7:
                          R8:
                                  R9:
        R11:
                          R13:
R10:
                 R12:
                                  R14:
R15:
         R16: 38912
                          R17: 2056
                                           R18:
                                                   R19:
P0:
         P1:
                 P2:
                          P3:
BP:
         SP: 4095
                          IP: 2072
                                          PTBR: 29696
                                                            PTLR: 10
EIP:
                 EPN:
                          EMA:
         EC:
debug> c
Previous instruction at IP = 2070: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 2072, Page No. = 4: ADD R0,1
debug> reg
R0: 2
         R1: 8
                 R2: 1
                                  R4:
                          R3:
R5:
         R6:
                 R7:
                          R8:
                                  R9:
R10:
         R11:
                 R12:
                          R13:
                                  R14:
R15:
         R16: 38912
                          R17: 2056
                                                   R19:
                                           R18:
P0:
         P1:
                 P2:
                          P3:
BP:
         SP: 4095
                          IP: 2072
                                           PTBR: 29696
                                                            PTLR: 10
EIP:
         EC:
                 EPN:
                          EMA:
debug> c
Previous instruction at IP = 2070: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 2072, Page No. = 4: ADD R0,1
debug> reg
R0: 3
         R1: 27 R2: 1
                          R3:
                                  R4:
R5:
         R6:
                 R7:
                          R8:
                                  R9:
R10:
         R11:
                                  R14:
                 R12:
                          R13:
                          R17: 2056
                                           R18:
                                                   R19:
R15:
         R16: 38912
                          P3:
P0:
         P1:
                 P2:
                          IP: 2072
BP:
         SP: 4095
                                           PTBR: 29696
                                                            PTLR: 10
EIP:
         EC:
                 EPN:
                          EMA:
debug> c
Previous instruction at IP = 2070: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 2072, Page No. = 4: ADD R0,1
debug> reg
R0: 4
        R1: 64 R2: 1
                          R3:
                                  R4:
R5:
         R6:
                 R7:
                          R8:
                                  R9:
R10:
         R11:
                 R12:
                          R13:
                                  R14:
R15:
         R16: 38912
                          R17: 2056
                                           R18:
                                                   R19:
P0:
         P1:
                 P2:
                          P3:
                          IP: 2072
BP:
         SP: 4095
                                           PTBR: 29696
                                                            PTLR: 10
EIP:
        EC:
                 EPN:
                          EMA:
debug> c
Previous instruction at IP = 2070: BRKP
Mode: USER
                  PID: 0
Next instruction at IP = 2072, Page No. = 4: ADD R0,1
debug> reg
R0: 5
         R1: 125 R2: 1
                          R3:
                                  R4:
R5:
                          R8:
                                  R9:
         R6:
                 R7:
R10:
                                  R14:
        R11:
                 R12:
                          R13:
```

R15: R17: 2056 R18: R19: R16: 38912

P0: P3:

P1: P2: SP: 4095 BP: IP: 2072 PTBR: 29696 PTLR: 10

EIP: EC: EPN: EMA:

debug> c

Machine is halting.