Homework 1 Report - PM2.5 Prediction

學號: B05902022 系級: 資工三 姓名: 張雅信

1.(1%) 請分別使用至少4種不同數值的learning rate進行training(其他參數需一致),對其作圖,並且討論其收斂過程差異。

在learning rate大於 0.0002 的時候,一次gradient descent 後對參數的改變會直接跨越loss最小值,甚至使參數的位置距離loss最小值處更遠,以至於loss迅速增加,regression失敗。

在learning rate介於 0.0001-0.00001 的時候(橘線與綠線之間),參數移動的距離適當,loss符合預期的逐漸下降,最後是好的結果。

在learning rate小於 0.000001 的時候,每次更新的距離太短,使得loss下降緩慢,需要更多step才能使loss逼近最小值。由於會浪費很多不必要的計算資源,這是不恰當的learning rate。

2. (1%) 請分別使用每筆data9小時內所有feature的一次項(含bias項)以及每筆data9小時內PM2.5的一次項(含bias項)進行training,比較並討論這兩種模型的root meansquare error(根據kaggle上的public/private score)。

result2.csv 27 minutes ago by Frank Chang using only PM2.5	12.88151	12.83376	
result1.csv 28 minutes ago by Frank Chang using all data	45.24752	50.56650	

若使用所有一次項,因為考慮了很多不必要的因素,使得error 很大。相對的,僅使用PM2.5的資料,與要預測的項目相關性增加很多,表現較好。

但僅使用PM2.5 的資料,放棄了很多可能相關的資料,並不一定是最佳解。

3. (1%)請分別使用至少四種不同數值的regulization parameterλ進行training(其他參數需一至),討論及討論其RMSE(training, testing)(testing根據kaggle上的public/private score)以及參數weight的L2 norm。

parameter	Training error	Public score	Private score	Weight L2 norm
0	6.70	8.75	9.49	0.66
0.01	6.79	9.10	9.72	0.63
1	6.85	9.02	10.04	0.72
100	7.64	9.97	10.67	0.25

本次模型使用Linear Regression,也就是線性的函數,不會有高維度的項讓模型 overfit的機會,故較不需要regularization。就結果來看差異並不大,可能原本的參數就 都沒有離 0 太遠。 weight的L2 norm 則會隨著 λ 增加而減少。

4~6 (3%) 請參考數學題目(連結:),將作答過程以各種形式(latex尤佳)清楚地呈現在pdf檔中(手寫再拍照也可以,但請注意解析度)。

4. (1%)

(4-a)

Let
$$x'_i = \sqrt{r_i}x_i$$
 and $t'_i = \sqrt{r_i}t_i$

$$E_d(w) = \frac{1}{2} \sum_{n=1}^{N} r_n (t_n - w^T x_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (\sqrt{r_n} t_n - \sqrt{r_i} x_n^T w)^2 = \frac{1}{2} \| \begin{bmatrix} -- & x_1' & -- \\ -- & x_2' & -- \\ \vdots & \vdots & \\ -- & x_n' & -- \end{bmatrix} w - \begin{bmatrix} t_1' \\ t_2' \\ \vdots \\ t_n' \end{bmatrix} \|^2$$

$$= \frac{1}{2} ||X'w - t'||^2 = \frac{1}{2} (w^T X^T X'w - 2w^T X^T t' + t^T t')$$

$$\nabla E_d(w) = X^T X' w - X^T t'$$
 (by definition)

找 w* 使 $E_d(w)$ 最小:

$$\nabla E_{d}(w^{*}) = X^{T}X'w^{*} - X^{T}t' = 0$$

$$where \quad X' = \begin{bmatrix} -- & \sqrt{r_{1}}x_{1} & -- \\ -- & \sqrt{r_{2}}x_{2} & -- \\ \vdots & \vdots & \vdots \\ -- & \sqrt{r_{n}}x_{n} & -- \end{bmatrix}, \quad t' = \begin{bmatrix} \sqrt{r_{1}}t_{1} \\ \sqrt{r_{2}}t_{2} \\ \vdots \\ \sqrt{r_{n}}t_{n} \end{bmatrix}$$

$$Let \quad R = \begin{bmatrix} r_1 & 0 & 0 & \dots \\ 0 & r_2 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & r_n \end{bmatrix}$$

$$\nabla E_d(w^*) = X^T R X w^* - X^T R t = 0$$

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{R} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{R} \mathbf{t}$$

$$(4-b)$$

$$w^* = (X^T R X)^{-1} X^T R t = (\begin{bmatrix} 2 & 5 & 5 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 5 & 1 \\ 5 & 6 \end{bmatrix})^{-1} \begin{bmatrix} 2 & 5 & 5 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 10 \\ 5 \end{bmatrix}$$

$$\mathbf{w}^* = \begin{bmatrix} 2.28275254 \\ -1.13586237 \end{bmatrix}$$

5. (1%)

Collaborator: B05902109 柯上優

With weight decay:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} (t_n - w^T x_n)^2 + \frac{\lambda}{2} ||w||_2 = \frac{1}{2} (w^T X^T X w - 2w^T X^T t + t^T t) + \frac{\lambda}{2} w^T w$$

With Gaussian noise:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n + \epsilon_n, w) - t_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) + \sum_{i=1}^{D} w_i \epsilon_i - t_n)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} ((y(x_n, w) - t_n)^2 + 2 * (y(x_n, w) - t_n) * \sum_{i=1}^{D} w_i \epsilon_{ni} + (\sum_{i=1}^{D} w_i \epsilon_{ni})^2)$$

取期望值,

$$\mathbb{E}[E(w)] = \mathbb{E}\left[\frac{1}{2}\sum_{n=1}^{N}\left((y(x_n, w) - t_n)^2 + 2*(y(x_n, w) - t_n)*\sum_{i=1}^{D}w_i\epsilon_{ni} + (\sum_{i=1}^{D}w_i\epsilon_{ni})^2\right)\right]$$

$$= \frac{1}{2} \sum_{n=1}^{N} \mathbb{E}[((y(x_n, w) - t_n)^2] + \mathbb{E}[2 * (y(x_n, w) - t_n) * \sum_{i=1}^{D} w_i \epsilon_{ni}] + \mathbb{E}[(\sum_{i=1}^{D} w_i \epsilon_{ni})^2)]$$

上式的第一項相當於 對沒有 noise 的 x 取 E 的最小值,

第二項
$$\mathbb{E}[2*(y(x_n, w) - t_n)*\sum_{i=1}^{D} w_i \epsilon_{ni}]$$

第三項
$$\mathbb{E}[(\sum_{i=1}^D w_i \epsilon_{ni})^2] = \mathbb{E}[\sum_{i=1}^D \sum_{j=1}^D w_i w_j \epsilon_{ni} \epsilon_{nj}] = \sum_{i=1}^D w_i^2 \sigma^2$$
 相當於 weight decay \circ

6. (1%)

Collaborator: B05902109 柯上優

若
$$\lambda_i$$
 為 A 的第 i 個 eigenvalue,
$$|A| = \prod_{i=1}^N \lambda_i \quad and \quad Tr(A) = \sum_{i=1}^N \lambda_i$$

因此,

$$ln(|A|) = ln(\prod_{i=1}^{N} \lambda_i) = \sum_{i=1}^{N} ln(\lambda_i) = Tr(ln(A))$$

又因為 tr() 是 linear operator, d(Tr(X)) = Tr(dX)

故
$$\frac{d}{d\alpha}ln|A| = \frac{d}{d\alpha}Tr(ln(A)) = Tr(\frac{d}{d\alpha}ln(A))$$
,

再透過連鎖律,
$$\frac{d}{d\alpha}ln|A| = Tr(\frac{d}{d\alpha}ln(A)) = Tr(A^{-1}\frac{d}{d\alpha}A)$$