Figures Mathematical Techniques For Engineers Complex Analysis

Felix Claeys, Brecht Verbeken, Simon Verbruggen ${\bf October}~9,~2025$

2.1.1 Continuity Definition

Figure 1: The function f is continuous in z_0 if $(\forall \varepsilon > 0)(\exists \delta_{\varepsilon} > 0)(\forall z \in S)(|z - z_0| < \delta_{\varepsilon} \Longrightarrow |f(z) - f(z_0)| < \varepsilon)$.

2.4 Geometrical Interpretation Of The Complex Derivative

Figure 2: In every point $g(x_0, y_0)$ of a surface g(x, y), a tangent plane can be drawn (red). The tangent lines t_x , t_y are oriented according to the x- and y-axis, respectively. They have a slope which corresponds to the partial derivatives $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$, respectively.

3.2.12 Symmetry of points

Figure 3: The points z_1 and z_2 are symmetrical with respect to the circle $\mathcal{K} = S(C, R)$.

3.5.1 Exponential function periodicity

Figure 4: The exponential function $f(z) = e^z$ is periodic with period $2\pi i$.

3.5.2 Exponential function image vertical lines

Figure 5: The exponential function $f(z)=e^z$ maps vertical lines onto circles centered at the origin.

3.5.3 Exponential function image horizontal lines

Figure 6: The exponential function $f(z)=e^z$ maps horizontal lines onto halflines originating from the origin.

3.8.4 Exercise

Figure 7: Image of domain $\mathcal{D}=\{z\in\mathbb{C}|\mathrm{Re}(z)+\mathrm{Im}(z)\geq 1,\,|z-2|\leq 1,\,\mathrm{Re}(z)\leq 2\}$ through the function $f(z)=\frac{z+i}{z-i}$.

5.1.1

Figure 8:

Figure 9:

5.3 Cauchy integral formulas and consequences

Figure 10: \mathcal{C} is a bounded contour in Ω which encloses a compact set K lying completely within Ω . For a point $a \in \mathcal{C} \setminus K$, we parametrize the circle $\partial B(a, \epsilon)$, which lies entirely in the interior of \mathcal{C} .

5.4.4

Figure 11:

5.5.2 Uniqueness of holomorphic functions

Figure 12: Let f be holomorphic in the space $\Omega \subseteq \mathbb{C}$. If $z_0 \in \Omega$ is an accumulation point of zeros of f, then $f \equiv 0$ over the entire space Ω .

Figure 13:

5.6.3 Argument Principle

Figure 14: Illustration of the argument principle for $f(z) = z^2 + z$. The images of the circles $\gamma_1, \gamma_2, \gamma_3$ under f show how many times each curve winds around the origin, corresponding to the number of zeros of f inside each circle.

5.6.3 Rouches theorem

Figure 15: