DTM truths and lies

Max Joseph, Nate Looker, Henry Senyondo

June 22, 2016

Question

How do ground truthed elevations compare to L3 DEMs?

Figure 1:

Approach

- 1. Find out which of the ≈ 500 DTMs contain ground truth points
- 2. Extract nominal DTM elevations to ground truthed values

https://github.com/mbjoseph/elevation-validation

Finding extents of each DTM

 $R/check_ground_measurements.R$

```
dtm_dir <- get_dtm_dir()
dtm_files <- find_dtm_files(dtm_dir)
full_dtm_paths <- file.path(dtm_dir, dtm_files)
extents <- lapply(full_dtm_paths, get_extent)</pre>
```

Getting the ground truth data

Finding which DTMs contain ground truth data

Extracting values from relevant DTMs

spdf\$dtm_val <- get_dtm_values(relevant_dtms, spdf)</pre>

Visualize congruence

Distribution of errors

What information does NEON AOP add to existing our knowledge of elevation?

Specifically...how does the AOP-based DTM compare to the National Elevation Dataset (1/3 arc second resolution)?

Approach:

- 1. Regress NEON elevations on NED elevations.
- 2. Summarize bias as the mean of the residuals for each NEON DTM tile.

Comparison with coarse data

```
ned <- raster('data/GRSM_DEM_USGS_UTM.tif')
plot(ned, main = 'National Elevation Dataset')</pre>
```

National Elevation Dataset

Subsetting DTMs (for time)

```
n_to_use <- 50
keep <- sample(length(full_dtm_paths), size = n_to_use)
full_dtm_paths <- full_dtm_paths[keep]</pre>
```

Distribution of bias

br <- 50
hist(res\$intercept, breaks = br)</pre>

Histogram of res\$intercept

Distribution of slopes

hist(res\$slope, breaks = br)

Distribution of residual standard deviations

hist(res\$residual_sd, breaks = br)

Histogram of res\$residual_sd

Pairs plots

pairs(res)

Questions