2894. Пусть разложение $\sec x$ записано в виде

$$\sec x = \sum_{n=0}^{\infty} \frac{E_n}{(2n)!} x^{2n}.$$

Вывести рекуррентное соотношение для коэффициентов E_n (числа Эйлера). 2895. Разложить в степенной ряд функцию

$$f(x) = \frac{1}{\sqrt{1 - 2tx + x^2}} \quad (|x| < 1).$$

2896. Пусть $f(x) = \sum_{n=0}^{\infty} a_n x^n$. Написать разложение функции $F(x) = \frac{f(x)}{1-x}$.

2897. Если ряд $\sum_{n=0}^{\infty} a_n x^n$ имеет радиус сходимости R_1 , а ряд $\sum_{n=0}^{\infty} b_n x^n$ — радиус сходимости R_2 , то какой радиус сходимости R имеют ряды

a)
$$\sum_{n=0}^{\infty} (a_n \pm b_n) x^n$$
; 6) $\sum_{n=0}^{\infty} a_n b_n x^n$?

2898. Пусть
$$l = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 и $L = \overline{\lim}_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$.

Доказать, что радиус сходимости R степенного ряда $\sum_{n=1}^{\infty} a_n x^n$ удовлетворяет неравенству

$$l \leq R \leq L$$
.

2899. Доказать, что если $f(x) = \sum_{n=0}^{\infty} a_n x^n$, причем $|n| a_n| < M \quad (n = 1, 2, ...),$

где M — постоянная, то: 1) f(x) бесконечно дифференцируема в любой точке а: 2) справедливо разложение

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad (|x| < +\infty).$$

2899.1. Пусть $f(x) \in C^{(\infty)}(a, b)$ и $|f^{(n)}(x)| \leq c^n$ (n =