Simular i dimensionar un sistema de "Service Desk"

1.1 Introducció

Una empresa vol posar en funcionament un servei de Service Desk centralitzat per a tota la companyia. Cal analitzar quan personal cal incorporar per donar el servei, quin nivell de formació necessita, que passa si la companyia creix, etc.

Suposant les condicions inicials següents

Variable	Valor	Descripció
Nombre d'usuaris	10000	Treballadors de la companyia que fan servir un PC
Taxa d'incidències	1/1000	Incidències generades per persona i hora
Formació N1	0.5	Suposa que 1 de cada 2 incidències es resolen en el
		nivell 1 i les altres passen al Nivell 2
Formació N2	0.5	Suposa que 1 de cada 2 incidències que arriben
		al Nivell 2 es resolen en aquest nivell i les altres
		passen al Nivell 3
Taxa de reobertures	1/100	Suposem que una de cada 100 incidències no es
		resol de forma satisfactòria per a l'usuari i ha de
		ser reoberta
Incidències màximes	10/24 = 0.41	Suposem que es poden resoldre 10 incidències per
per persona i hora		persona i dia
Número de incidències	0	Suposem que el servei es posa en funcionament des
inicials		de zero

1.2 Treball a realitzar

- 1. Construir un model per tal de simular el procés.
- 2. Determinar el nombre de persones de cada nivell (N1, N2, N3) per tal que el sistema estigui equilibrat.
- 3. Quina és la mitjana d'incidències resoltes per persona i hora?
- 4. Si al cap de 100 dies s'incorporen 3000 persones a l'empresa què passarà amb el sistema? Quin serà el nou punt d'equilibri?
- 5. En quin moment hem d'anar incorporant el nou personal per tal de mantenir la mitjana d'incidències resoltes per persona i hora?
- 6. Què passa si augmentem el nivell de formació del personal de Nivell 2 i el passem de 0.5 a 0.8? Quin serà el nou punt d'equilibri?
- 7. Què passa si augmentem el nivell de formació del personal de Nivell 1 en lloc del de Nivell 2 i el passem de 0.5 a 0.8? Quin serà el nou punt d'equilibri?
- 8. Què passa si augmentem el nivell de formació dels usuaris i per tant reduïm el número d'incidències generades? Quin és nou punt d'equilibri?

Podeu incloure altres simulacions i/o elements a tenir en compte en el model. Es valorarà la creativitat.

Simular i dimensionar un sistema de Servidors

2.1 Introducció

Considereu un sistema format per un servidor d'entrada que reparteix les tasques en 5 servidors de forma proporcional a la disponibilitat de cada servidor. Cada servidor té una capacitat màxima de procés. I un servidor de sortida que recull i envia les sortides.

2.2 Treball a realitzar

- 1. Construir un model per tal de simular el procés.
- 2. Què passarà si tenim una demanda constant inferior a la capacitat de procés? Fins a quin percentatge de la capacitat màxima podrem donar suport sense que es produeixin acumulacions a la entrada?
- 3. Què passarà si el flux d'entrada és escalonat i en un determinat període està per damunt de la capacitat màxima de procés? En quinés condicions podrem re-absorbir tota la demanda? (Període de temps de sobre-demanda, valor de la sobre-demanda, valors base de la demanda, proporcions sobre la capacitat de procés)

Podeu incloure altres simulacions i/o elements a tenir en compte en el model. Es valorarà la creativitat.

Simular un sistema d'amortiment

3.1 Introducció

Considereu el sistema format per una roda i el corresponent sistema d'amortiment. Això ho podem representar com un sistema massa - molla en vertical (la roda) i un sistema massa - molla amb amortiment (amortidor) un sobre l'altre com es pot veure a la figura. L'equació que descriu el comportament d'un sistema massa - molla és : $\ddot{x} = -g - \frac{K}{M}x + \frac{F}{M}$

L'equació que descriu el sistema massa molla amb amortiment és $\ddot{x}=-g-\frac{R}{M}\dot{x}-\frac{K}{M}x+\frac{F}{M}$

3.2 Treball a realitzar

- 1. Construïu un model amb simulink del sistema massa molla. Preneu $M=1kg,\ K=1N/m,\ g=9.8m/s^2.$
- 2. Simuleu el procés prenent $x_0 = 0$ i F = 0. Què observeu?
- 3. Simuleu el procés prenent $x_0 = \frac{Mg}{K} = -9.8$ i F = 0. Què observeu?
- 4. Simuleu el procés prenent $x_0 = \frac{Mg}{K} = -9.8$ i $F = A\sin(\omega t)$ amb A = 1m i $\omega = \sqrt{\frac{K}{M}} = 1rad/s$. Què observeu?
- 5. Simuleu el procés prenent $x_0 = \frac{Mg}{K} = -9.8$ i $F = A\sin(\omega t)$ amb A = 15m i $\omega = 2rad/s$. Què observeu?
- 6. Construïu un model amb simulink del sistema massa molla amb amortiment. Preneu $M=1kg,\,K=1N/m,\,R=1Ns/m\,g=9.8m/s^2.$
- 7. Simuleu el procés prenent $x_0 = 0$ i F = 0. Què observeu?
- 8. Simuleu el procés prenent $x_0 = \frac{Mg}{K} = -9.8$ i F = 0. Què observeu?

- 9. Simuleu el procés prenent $x_0 = \frac{Mg}{K} = -9.8$ i $F = A\sin(\omega t)$ amb A = 1m i $\omega = 1rad/s$. Què observeu?
- 10. Simuleu el procés prenent $x_0 = \frac{Mg}{K} = -9.8$ i $F = A\sin(\omega t)$ amb A = 15m i $\omega = 2rad/s$. Què observeu?
- 11. Construïu el sistema a roda amortidor. Prene
u $M_1=80kg,\,K_1=120000N/m,\,M_2=375kg,\,K_2=10000N/m,\,R=800Ns/m\,\,g=9.8m/s^2.$
- 12. Simuleu el procés prenent per els valors de $x_{1,0}$ i $x_{2,0}$ adequats prenent F en forma d'escaló.
- 13. Repetiu la simulació per R = 400Ns/m i R = 1600Ns/m Què observeu?

Model SIR de propagació d'epidèmies

Veure document Propoagación de enfermadades infecionsas.