

Introdução a Redes Neurais Artificiais

— Grupo de Estudos em Ciências — de Dados

Roteiro

Redes Neurais Artificiais (RNAs)

- Origens
- Aprendizagem em RNA
- Perceptron
- MLP

- Funcionamento do cérebro;
 - Estrutura do neurônio real;
 - Comportamento do neurônio;
- Neurônio:
 - Corpo celular;
 - Prolongamento celulares finos (dendritos e axônio);

- Dendritos:
 - São estruturas tubulares que se ramificam ao redor do corpo celular;
 - o Superfície física pela qual um neurônio recebe sinais de outras células;

- Corpo Celular:
 - Onde está localizado o núcleo;
 - Também recebe sinais de entrada;
 - Todos sinais que chegam ao neurônio são "processados" no corpo celular.

- Axônio:
 - É uma linha de transmissão do neurônio;
 - o Um extensão do corpo pela qual os sinais gerados trafegam por longas distâncias.

Sinapses:

- Pontos de contato nos quais a informação é transferida de uma célula para outra;
- Geralmente ocorrem entre axônio e dendrito;

Sinapses:

 As sinapses nervosas são impulsos nervosos que passam de um neurônio para outro por meio de mediadores químicos, os neurotransmissores.

https://neuroscienceknowledge.files.wordpress.com

Sinapses:

 Processo de transformação de um sinal elétrico em um sinal químico, e deste sinal químico de volta em um sinal elétrico;

https://neuroscienceknowledge.files.wordpress.com

- Habilidade de executar tarefas que não podiam ser executadas anteriormente;
- Melhorar a execução de tarefas que eram executadas antes;
- Uma RNA aprende através de um processo de ajuste de seus parâmetros:
 - Em geral, ajuste dos pesos sinápticos;

- Considerando que uma rede neural está imersa em um ambiente, seu processo de aprendizagem compreende três premissas:
 - A rede neural é estimulada pelo ambiente;
 - Os estímulos induzem a modificação dos parâmetros livres da rede;
 - A resposta da rede está relacionada com sua estrutura interna. Esta estrutura é modificada de acordo com os estímulos recebidos pela rede.

- Os processos de aprendizagem em redes neurais se baseiam em regras, entre elas se destacam:
 - A regra de correção de erros;
 - Regra de competição;

- Regra de correção de erros:
 - Considerando que a resposta da rede (y) ocorre devido a ativação de um grupo sináptico
 (w) gerando um erro (e) a partir da entrada (x).
 - O erro é calculado com a diferença entre o valor desejado (d) e o valor da resposta obtida
 (y):

$$e = d - y$$

- Regra de correção de erros:
 - O valor do erro muda de acordo com a entrada;
 - A regra de adaptação dos pesos modifica os pesos sinápticos de modo a diminuir o erro à medida que a regra vai sendo aplicada a cada novo estímulo.

- O perceptron foi o primeiro modelo de rede neural artificial com capacidade de aprender;
- Sua arquitetura inicial consiste de:
 - Uma camada de entrada (X);
 - Uma camada de saída (Output);
 - Um conjunto de pesos (W) ligando a entrada à saída.

- As entradas x_i, i = 1, 2, ..., n, são binárias;
- Os pesos w_i são números reais;
- Um estímulo X (padrão de entrada) é apresentado a rede gerando uma resposta na saída da rede através de uma regra de propagação:

- Função de ativação:
 - Transforma um valor real obtido com a soma ponderada entre a entrada e os pesos da rede em um valor máximo ou mínimo;
- Exemplo: função sinal (utiliza um limiar);

- Todo conhecimento da rede está codificado nos pesos.
- A aprendizagem ocorre através da modificação dos pesos da rede.
- Uma regra para atualizar os pesos:

 - η é a taxa de aprendizagem;
 - o d_j é o valor desejado para uma dado estímulo de entrada (x_i);

- O perceptron é uma rede simples;
 - Não é capaz de classificar padrões em classes que não são linearmente separáveis;
 - Não é possível traçar uma reta no plano capaz de separar as duas classes;
 - As limitações do perceptron impulsionaram o surgimento da rede MLP;

- A arquitetura da MLP consiste em:
 - Uma camada de entrada (X);
 - Uma ou mais camadas escondidas;
 - Uma camada de saída (y);

A arquitetura da MLP consiste em:

Funcionamento:

 Um estímulo, sinal de entrada, é propagado da entrada para saída passando por cada camada escondida;

Três características importante:

- Cada neurônio na rede possui função de ativação;
- Existe pelo menos uma camada escondida que possibilita aprendizagem de tarefas complexas;
- Alto grau de conectividade;

- Fase para frente:
 - Entrada é apresentada à primeira camada da rede
 - Após os neurônios da camada i calcularem seus sinais de saída, os neurônios da camada i + 1 calculam seus sinais de saída usando como entrada a saída dos neurônios da camada i;

- Fase para frente (forward):
 - Saídas produzidas pelos neurônios da última camada são comparadas às saídas desejadas;
 - Erro para cada neurônio da camada de saída é calculado;

- Fase para trás (backward):
 - A partir da última camada:
 - Cada neurônio ajustar seus pesos de modo a reduzir o seu erro;
 - Neurônios das camadas anteriores tem seu erro definidos por:
 - Erros dos neurônios da camada seguinte conectados a ele ponderados pelos pesos das conexões entre eles;
 - Mais detalhes estuda a partir da página 175 do livro AI A Guide to Intelligent Systems.

- Pontos Negativos da MLP
 - O conhecimento aprendido na MLP não é representado diretamente nos pesos. A rede é vista como uma caixa preta;
 - Ausência de uma abordagem bem fundamentada para avaliar o método de aprendizagem;
 - A generalização não é garantida, pode ocorrer sobreajuste (overfitting): a rede aprende muito bem os padrões de treinamento, mas não garante respostas acuradas para padrões não treinandos.

- Pontos Positivos da MLP
 - O usuário não precisa ter conhecimento significativo sobre o problema tratado;
 - Tolerância a dados de treinamento ruidosos ou faltosos;
 - Algoritmo de modelagem e treinamento não é complexo;
 - o Boa capacidade de generalização com padrões não treinados.

Tensor Flow

Funcionamento de uma rede neural ao vivo:)

Tensor Flow, https://playground.tensorflow.org

Epoch

000,000

Learning rate

0.03

Activation Tanh

Regularization None

Regularization rate

Problem type

Classification

Algumas figuras foram obtidas com pesquisas no buscador do google.

GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'REILLY, 2017.

MITCHELL; Machine Learning, Publisher: McGraw-Hill Science/Engineering/Math, 1997

NEGNEVITSKY; Artificial Intelligence: A Guide to Intelligent Systems, Second Edition, Publisher Addison Wesley.

HAYKIN; Neural Networks and Learning Machines (3rd Edition), Publisher: Pearson.

RUSSELL, STUART; NORVIG, PETER; Inteligência Artificial, 3. edição, Prentice Hall.

BRAGA; CARVALHO; e LUDERMIR; Redes neurais artificiais: teoria e aplicações, 2007

- Página web com lições sobre TensorFlow, https://learningtensorflow.com/
- Pacote para machine learning em python, http://scikit-learn.org