Open system Interconnection (OSI) DataLink Layer

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

September 7, 2020

Data link layer

Medium Access Control

- Access to network
- Logical Link Control
 - Node-to-node error and flow control
 - Link layer protocol:
 - Error detection: All errors must be detected
 - Error correction: Receiver must get correct data
 - Flow control: Receiver must not be overloaded

Framing

- Physical layer- bitstream
- Link layer- frames
- We need logical transmission units
 - Synchronisation points
 - Switching between users
 - Error handling

		Data from upper layer			
		Variable number of bits			N
01111110	Header	01111010110 ••• 11011110	Trailer	01111110	
		·			•

2 / 12

Flow Control Protocols

• There are various flow control protocols which are classified as-

Stop and Wait

- Stop and Wait Protocol is the simplest flow control protocol.
- It works under the following assumptions-
 - Communication channel is perfect.
 - No error occurs during transmission.
- Working: The working of a stop and wait protocol may be explained as-
 - Sender sends a data packet to the receiver.
 - Sender stops and waits for the acknowledgment for the sent packet from the receiver.
 - Receiver receives and processes the data packet.
 - Receiver sends an acknowledgment to the sender.
 - After receiving the acknowledgment, sender sends the next data packet to the receiver.

Stop and Wait Protocol

- Analysis: Now, let us analyze in depth how the transmission is actually carried out-
 - Sender puts the data packet on the transmission link.
 - Data packet propagates towards the receivers end.
 - Data packet reaches the receiver and waits in its buffer.
 - Receiver processes the data packet.
 - Receiver puts the acknowledgment on the transmission link.
 - Acknowledgment propagates towards the senders end.
 - Acknowledgment reaches the sender and waits in its buffer.
 - Sender processes the acknowledgment.

Total Time

• Total time taken in sending one data packet=
(Transmission delay + Propagation delay + Queuing delay +
Processing delay)_{packet}
+

(Transmission delay + Propagation delay + Queuing delay + Processing delay) $_{ACK}$

Assume:

- Queuing delay and processing delay to be zero at both sender and receiver side.
- Transmission time for the acknowledgment to be zero since its size is very small.
- Under the above assumptions.

Total time taken in sending one data packet = (Transmission delay + Propagation delay) $_{Packet}$ + (Propagation delay) $_{ACK}$

Total Time & Efficiency

- We know:
 - Propagation delay depends on the distance and speed.
 - So, it would be same for both data packet and acknowledgment.

Total time taken in sending one data packet = (Transmission delay) $_{packet}$ + 2 x Propagation delay)

• **Efficiency:** Efficiency of any flow control control protocol is given by-Efficiency $(\eta) = \text{Useful Time} / \text{Total Time}$

where-

- -Useful time = Transmission delay of data packet = (Transmission delay) packet
- -Useless time = Time for which sender is forced to wait and do nothing = 2 x Propagation delay
- -Total time = Useful time + Useless time

OR

Efficiency (η) =
$$\frac{T_t}{T_t + 2T_p}$$

Factors Affecting Efficiency

• Efficiency $(\eta) = (\text{Transmission delay})_{packet} / (\text{Transmission delay})_{packet} + 2 \times \text{Propagation delay}$

Efficiency (
$$\eta$$
) =
$$\frac{1}{1 + 2 \times \left(\frac{\text{Propagation delay}}{(\text{Transmission delay})_{\text{packet}}}\right)}$$

Efficiency (
$$\eta$$
) =
$$\frac{1}{1 + 2 \times \left(\frac{\text{Distance}}{\text{speed}}\right) \times \left(\frac{\text{Bandwidth}}{\text{Packet length}}\right)}$$

- From here, we can observe:
 - ullet Efficiency $(\eta) \propto 1$ / Distance between sender and receiver
 - Efficiency $(\eta) \propto 1$ / Bandwidth
 - Efficiency $(\eta) \propto$ Transmission speed
 - Efficiency $(\eta) \propto$ Length of data packet

Throughput

 Number of bits that can be sent through the channel per second is called as its throughput.

Throughput = Efficiency (η) x Bandwidth

- Round Trip Time
 - Round Trip Time $= 2 \times Propagation delay$
- Advantages: The advantages of stop and wait protocol are-
 - It is very simple to implement.
 - The incoming packet from receiver is always an acknowledgment.
- Limitation: It is extremely inefficient because-
 - It makes the transmission process extremely slow.
 - It does not use the bandwidth entirely as each single packet and acknowledgment uses the entire time to traverse the link.

Stop & Wait Protocol Limitations

- If the data packet sent by the sender gets lost, then-
 - Sender will keep waiting for the acknowledgment for infinite time.
 - Receiver will keep waiting for the data packet for infinite time.
- If acknowledgment sent by the receiver gets lost, then-
 - Sender will keep waiting for the acknowledgment for infinite time.
 - Receiver will keep waiting for another data packet for infinite time.
- Efficiency may also be referred by the following names-
 - Line Utilization
 - Link Utilization
 - Sender Utilization
 - Utilization of Sender

Stop & Wait Protocol Limitations

- Throughput may also be referred by the following names-
 - Bandwidth Utilization
 - Effective Bandwidth
 - Maximum data rate possible
 - Maximum achievable throughput
- Stop and Wait protocol performs better for LANs than WANs.
 - Efficiency of the protocol is inversely proportional to the distance between sender and receiver.
 - So, the protocol performs better where the distance between sender and receiver is less.
 - The distance is less in LANs as compared to WANs.

Thank You

