CHAPITRE 0

RAPPELS SUR LES FONCTIONS

0.1 GÉNÉRALITÉS

0.1.1 Définitions

Définition 0.1 Soient *E* et *F* deux ensembles.

- Une fonction f de E (ensemble de départ) à valeurs dans F (ensemble d'arrivée) est une relation qui à chaque élément de E associe au plus un élément de F. On note f : E → F.
- Pour tout $x \in E$, l'élément associé à x, s'il existe, est noté f(x). Si y = f(x), alors y est l'*image* de x par f et x est *un* antécédent de y par f.
- Si $E \subset \mathbb{R}$ et $F \subset \mathbb{R}$, alors f est dite fonction réelle d'une variable réelle.

Définition 0.2 Soient E et $F \subset \mathbb{R}$ et f une fonction de E vers F.

• L'*ensemble de définition* de *f* est l'ensemble des éléments de *E* qui possèdent une image par *f* :

$$D_f = \{x \in E \mid f(x) \text{ existe}\}.$$

- Si $D_f = E$, alors f est une application.
- L'ensemble $\Gamma = \{(x, f(x)) \in E \times F \mid x \in D_f\}$ est le graphe de f.

Définition 0.3 Deux fonctions f et g sont égales si elles ont le même ensemble de définition D et le même ensemble d'arrivée et si pour tout $x \in D$, f(x) = g(x).

0.1.2 Fonctions remarquables

Soient $f : E \to \mathbb{R}$ une application et $f(E) = \{f(x) \mid x \in E\}$.

Définition 0.4 L'application f est dite constante s'il existe $a \in \mathbb{R}$ tel que pour tout $x \in E$, f(x) = a. Lorsque a = 0, on dit que f est la fonction nulle.

Définition 0.5 L'application *f* est dite

• **minorée** s'il existe $m \in \mathbb{R}$ tel que pour tout $x \in E$, $f(x) \ge m$; dans ce cas, f(E) possède une borne inférieure et on note

$$\inf_{x \in E} f(x) = \inf f(E) = \inf \{ f(x) \mid x \in E \}.$$

• **majorée** s'il existe $M \in \mathbb{R}$ tel que pour tout $x \in E$, $f(x) \leq M$; dans ce cas, f(E) possède une borne supérieure et on note

$$\sup_{x \in E} f(x) = \sup f(E) = \sup \{ f(x) \mid x \in E \}.$$

• **bornée** si f est à la fois minorée et majorée; cela est équivalent à dire que la fonction |f| est majorée c'est-à-dire qu'il existe $M \in \mathbb{R}$ tel que pour tout $x \in E$, $|f(x)| \leq M$.

Définition 0.6 L'application *f* est dite

- paire si pour tout $x \in E$, $-x \in E$ et f(-x) = f(x);
- **impaire** si pour tout $x \in E$, $-x \in E$ et f(-x) = -f(x).

Définition 0.7 L'application f est dite **périodique** de période T si pour tout $x \in E$, $x + T \in E$ et f(x + T) = f(x).

0.2 COMPOSITION DE FONCTIONS

Définition 0.8 Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. La *composée* de f et g est l'application $g \circ f$ définie de E dans G par :

$$\forall x \in E, \quad (g \circ f)(x) = g[f(x)]. \tag{1}$$

Exemple 0.9 Soient les fonctions f et g définies de $\mathbb R$ dans $\mathbb R$ par f(x)=2x+1 et $g(x)=x^2-2$. Comparons les expressions de $f\circ g$ et $g\circ f$. Pour tout $x\in \mathbb R$,

$$f \circ g(x) = f[g(x)]$$

= 2g(x) + 1 = 2(x² - 2) + 1
= 2x² - 3

et

$$g \circ f(x) = g[f(x)]$$

$$= (f(x))^2 - 2 = (2x+1)^2 - 2 = 4x^2 + 4x + 1 - 2$$

$$= 4x^2 + 4x - 1.$$

Dans ce cas, on a $f \circ g(x) \neq g \circ f(x)$.

Remarque 0.10 En général, pour deux fonctions f et g, l'on a : $g \circ f \neq f \circ g$.

0.3 FONCTION RÉCIPROQUE

Définition 0.11 Soient $E, F \subset \mathbb{R}$ et $f : E \to F$ une fonction.

• On dit que la fonction f est **bijective** si f est une application (c'est-à-dire $D_f = E$) et si à chaque $y \in F$ correspond un unique antécédent $x \in E$ c'est-à-dire si pour tout $y \in F$, l'équation d'inconnue $x \in E$ suivante :

$$f(x) = y$$

a une unique solution.

• Dans ce cas, on appelle **réciproque** de f, l'application notée f^{-1} qui à chaque $y \in F$ fait correspondre l'unique x tel que f(x) = y.

Exemple 0.12 Les fonctions $x \mapsto \ln x$ (de \mathbb{R}_+^* vers \mathbb{R}) et $x \mapsto e^x$ (de \mathbb{R} vers \mathbb{R}_+^*) sont réciproques l'une de l'autre. En effet, pour tout $y \in \mathbb{R}$, l'équation $\ln x = y$ a une unique solution $x = e^y \in \mathbb{R}_+^*$ et inversement.

Application 0.13 Soient $E, F \subset \mathbb{R}$ et f la fonction de E dans F définie par $f(x) = x^2$. Dans chacun des cas suivants, déterminer si f est bijective et, le cas échéant, déterminer f^{-1} .

- 1) $E = F = \mathbb{R}$.
- 2) $E = \mathbb{R}_+$ et $F = \mathbb{R}_+$.
- 3) $E = \mathbb{R}_{-} \text{ et } F = \mathbb{R}_{+}.$

Remarque 0.14 Les courbes représentatives respectives d'une fonction bijective et de sa réciproque sont symétriques par rapport à la droite d'équation y = x appelée *première bissectrice* (voir Figure 1 pour un exemple).

Proposition 0.15 *Soient* $E, F \subset \mathbb{R}$ *et* $f : E \to F$ *une application bijective.*

- Pour tout $x \in E$, $f^{-1} \circ f(x) = f^{-1}(f(x)) = x$.
- Pour tout $y \in F$, $f \circ f^{-1}(y) = f(f^{-1}(y)) = y$.

FIGURE 1 – Représentation graphique des fonctions $f: x \mapsto x^2$ (en bleu) et de son inverse $f^{-1}: x \mapsto \sqrt{x}$ (en rouge) définies de \mathbb{R}_+ dans \mathbb{R}_+

0.4 EXERCICES

Exercice 0.1 Donner les ensembles de définition respectifs des fonctions suivantes ayant $\mathbb R$ comme ensemble de départ :

$$f_{1}(x) = \sqrt{1 - x^{2}} \qquad f_{2}(x) = \sqrt{x + \sqrt{x}} \qquad f_{3}(x) = \ln|x - 1|$$

$$f_{4}(x) = \ln|\sin(\frac{\pi}{2}x)| \qquad f_{5}(x) = \ln(\ln x) \qquad f_{6}(x) = \ln(1 - e^{-x})$$

$$f_{7}(x) = \frac{\sqrt{x}}{\sqrt{1 - x}} \qquad f_{8}(x) = \frac{1}{\sin x} \qquad f_{9}(x) = \frac{1}{\cos 2x}$$

Exercice 0.2 Soit f la fonction de $\mathbb R$ vers $\mathbb R$ définie par $f(x)=\frac{\cos x}{1+x^2}$. Montrer que f est bornée et déterminer $\sup_{x\in\mathbb R} f(x)$.

Exercice 0.3 On considère les fonctions de $\mathbb R$ vers $\mathbb R$ définies par $u(x)=x^2$ et $v(x)=\sqrt{x}$. Donner les ensembles de définition et les expressions des fonctions $u\circ v$ et $v\circ u$.

Exercice 0.4 On considère la fonction de R vers R définie par

$$f(x) = \frac{e^x - e^{-x}}{2}$$

et appelée fonction sinus hyperbolique. Démontrer que f est bijective et déterminer f^{-1} .