EPITA / InfoS3		Novembre 2017
NOM :	Prénom :	Groupe:

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le

ÉCOLE	D'INGÉ	NIEURS EN INFORMATIQUE	Réponse	es exclusive	eme est dor ment sur le ouvez utilis	e sujet	. Si vous	manquez de _l	place,
<u>Exer</u>	cice	<u>1.</u> Question	ns de cour	s (QCM sa	ns points	néga	tifs – 5	points)	
Q1.	Le	dopage perme	et d'augmen	ter la résist	ivité du ser	mi-con	ducteur		
	а-	VRAI			ŀ	o- FAI	JX		
Q2.	Le	dopage perme	et de favoris	er le phéno	mène de th	nermo	génératio	n.	
	a-	VRAI			ŀ	o- FAI	JX		
Q3.	val	utilise l'élém ence. Si on le ence, quel est	dope avec	du bore, é					
	a-	Dopage P			C	c- Do	page NP		
	b-	Dopage N			(d- Au	cun dopa	ge	
Q4.	Da	ns un semi-coi	nducteur int	rinsèque, le	nombre d	'électr	ons libre	s est :	
	a-	égal au nomb	re de trous		C-	plus p	oetit que	le nombre de	trous
	b-	plus grand qu	ie le nombre	e de trous	d-	aucui	n des cas	précédents	
Q5.	Qu	el modèle per	met la repré	sentation la	a plus préc	ise de	la diode :		
	a-	Le modèle ide	éal		C-	Le mo	odèle rée	I	
	b-	Le modèle à s	seuil		d-	Les tr	ois modè	les sont équiv	/alents
	rant	quation de la c qui traverse la onvention réce	a diode et $V_{\scriptscriptstyle I}$,, la tension	à ses born	es, cou	urant et t	ension étant f	ésente fléchés
	a-	Très grand d'ampères)	(plusieurs	dizaines	b-	Très ampè	faible eres)	(quelques	nano

Q7.Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle idéal de la diode :

Q8. Par quoi remplace-t-on la diode bloquée si on utilise le modèle réel?

Q9. Soit le circuit ci-contre, dans lequel on considère la diode D idéale :

Que vaut la tension aux bornes de D si E=10V, $R=100\Omega$.

- a- 0*V*
- b- 10 V

- c- 1 *kV*
- d- 0,1 V

Soit le circuit ci-contre :

- **Q10.** Quel type de porte logique réalise ce montage?
 - a- ET
- c- NON ET
- b- OU
- d- NON OU

Exercice 2. Révisions SUP (4 points)

Soit le circuit suivant, dans lequel E, I et R sont connus. Les générateurs sont indépendants.

1. En utilisant la méthode de votre choix, déterminer la tension U_{AM} .

2. En déduire la tension U_{BM} .

Exercice 3. Diodes (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec $V_0=0.7V$. Pour les questions suivantes, vous utiliserez un raisonnement par l'absurde.

1. Si $R=100\Omega$, $I_0=60mA$ et E=5V, montrer que la diode est bloquée. Déterminer alors l'intensité du courant qui traverse la résistance.

2. Si $R=100\Omega$, $I_0=30mA$ et E=5V, montrer que la diode est passante. Déterminer alors l'intensité du courant qui traverse la résistance.

Exercice 4. Caractéristique de transfert (6 points)

Dans le schéma ci-contre, on veut déterminer et tracer l'évolution de u(t). On donne :

$$e(t) = E_0 \sin(\omega t),$$
 avec $E_0 = 30V$ et $\omega = 2\pi \times 50 rad/s$

 E_1 et E_2 sont deux sources de tensions continues idéales, $E_1=10V$ et $E_2=15V$

Les diodes seront supposées idéales.

L.	Montrer, en raisonnant par l'absurde que les 2 diodes ne peuvent pas être passantes
	simultanément.

2.	Donner l'expression de $u(t)$ si D_1 est pa	ssante.

3. Donner l'expression de u(t) si D_2 est passante.

EPITA / InfoS3 Novembre 2017

4	. Donner l'expression de $u(t)$ si les 2 diodes sont bloquées.
5	. Pour quelles valeurs de $e(t)$ les 2 diodes sont-elles bloquées ?
6	. Tracer la caractéristique de transfert de ce circuit.

EPITA / InfoS3 Novembre 2017

7. Tracer la courbe u(t).

