Homework 3

MATH 541: Abstract Algebra 1 Spring 2023

Hongtao Zhang

Sec. 0.1: 7

Sec. 0.2: 7

Sec. 0.3: 8

Sec. 1.7: 18, 19, 23

Sec. 2.1: 3

0.1.7

Proof. To be an equivalence relation, we need three conditions.

$$\begin{cases} a \sim a \\ a \sim b \iff b \sim a \\ a \sim b \land b \sim c \implies a \sim c \end{cases}$$

It is very clear that $a \sim a$ because by the definitions of a function f, f(a) = f(a).

If f(a) = f(b) then f(b) = f(a) so $a \sim b \implies b \sim a$.

$$f(a) = f(b) \land f(b) = f(c) \implies f(a) = f(c)$$
, so $a \sim b \land b \sim c \implies a \sim c$.

We know that the fibers of element y are $\{x \in X : f(x) = y\}$. Therefore, it is very clear that if $a \sim b$, then a,b are in the fibers of f(a).

0.2.7

Proof. Proof by contradiction

Assume there exists an a such that $a^2 = pb^2$, and write $a = \prod_n p_{an}, b = \prod_n p_{bn}$ then we know that $a^2 = (\prod_n p_{an})^2 = pb^2 = p(\prod_n p_{bn})^2$

Because we know that for every integer, there's an unique prime decomposition, so the power of left primes must match the power of right primes.

However, because we know that p is a prime, and all primes component from b will have even power, so the power of p must be odd, which mismatched the power of a's decomposition, which is a contradiction.

0.3.8

0.3.6

Proof. the square of $\bar{0}^2 = \bar{0}$ Assume we have an element a in $\bar{1}$, write a = (4b+1) for some integer b.

$$a^2 = aa = (4b+1)(4b+1) = 16b+4b+4b+1 \mod 4 = 1$$

For $\bar{2}$

$$(4b+2)(4b+2) = 16b+8b+8b+4 \mod 4 = 0$$

For $\bar{3}$

 $(4b+3)(4b+3) \mod 4 = 9 \mod 4 = 1$

0.3.7

Proof. We know that $a^2, b^2 \mod 4 = 0$ or 1, therefore $a^2 + b^2 \mod 4 \le 2$

0.3.8

Proof. Proof by contradiction

Assume the solution exists. We know that $a^2+b^2 \mod 4 \neq 3$, so $c^2 \mod 4 \neq 1$, which means $c^2 \mod 4 = 0$. Also we know that $a^2 \mod 4 < 2$, and we know that $c^2 \mod 4 = 0$.

Therefore, $(a^2 + b^2) \mod 4 = 0$ Therefore $a^2 \mod 4 = b^2 \mod 4 = 0$.

2