

COLIBRI

Unsupervised Link Discovery Through Knowledge Base Repair

Axel-Cyrille Ngonga Ngomo Mohamed Ahmed Sherif Klaus Lyko

ESWC 2014, Crete, Greece

Outline

Outline

- Motivation
- 2 Approach
- 3 Evaluation
- 4 Conclusion and Future World

Why Link Discovery?

- Fourth principle
- ② Links are central for
 - Cross-ontology QA
 - Data Integration
 - Reasoning
 - Federated Queries
 - •

Why is it difficult?

Time complexity

- Large number of triples
- Quadratic runtime

Complexity of specifications

- Combination of several attributes required for high precision
- Tedious discovery of most adequate mapping
- Dataset-dependent similarity functions

Solution

- Use unsupervised link discovery
 - No need for training data
 - Minimizes load on user
- 2 Combine results of linking tasks over n > 2 knowledge bases
 - Make explicit use of the topology of the Data Web
- Repair noisy data to improve link discovery
 - Address different quality of datasets across the Data Web

Outline

Outline

- Motivation
- 2 Approach
- 3 Evaluation
- 4 Conclusion and Future Wor

Outline

Key Concepts

Outline

Mapping matrix

•
$$M_{12} = \begin{pmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Key Concepts

Outline

- Pseudo-F-measure as objective function
- $\mathcal{P}(M_{ij}) = \frac{|links(K_i, M_{ij})| + |links(K_j, M_{ij})|}{2|M_{ii}|}$
- $\mathcal{R}(M_{ij}) = \frac{|links(K_i, M_{ij})| + |links(K_j, M_{ij})|}{|K_i| + |K_i|}$
- $\mathcal{F}_{\beta} = (1 + \beta^2) \frac{\mathcal{PR}}{\beta^2 \mathcal{P} + \mathcal{R}}$

Example:

- $\mathcal{P}(M_{12}) = 1$
- $\mathcal{R}(M_{12}) = \frac{2}{3}$
- $\mathcal{F}_1(M_{12}) = \frac{4}{5}$

Step 1: Unsupervised Link Discovery

- Link all pairs (K_i, K_i) using any unsupervised link discovery approach
- Here. EUCLID
 - Specifications are points in a similarity space
 - Find accurate specification by using hierarchical grid search
 - Detect specification which maximizes \mathcal{F}_{β}

Conclusion and Future Work

Step 1: Unsupervised Link Discovery

Mapping matrices

Outline

$$M_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$M_{13} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}$$

$$M_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}$$

Outline

•
$$V_{ij} = \frac{1}{n-1} \left(M_{ij} + \sum_{\substack{k=1\\k\neq i,j}}^{n} M_{ik} M_{kj} \right)$$

•
$$V_{ij} = \frac{1}{n-1} \left(M_{ij} + \sum_{\substack{k=1\\k\neq i,j}}^{n} M_{ik} M_{kj} \right)$$

Mapping matrices

$$M_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$M_{13} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}$$

$$M_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}$$

Evaluation

Conclusion and Future Work

Step 2: Voting

•
$$V_{ij} = \frac{1}{n-1} \left(M_{ij} + \sum_{\substack{k=1\\k\neq i,j}}^{n} M_{ik} M_{kj} \right)$$

Mapping matrices

$$M_{12} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$M_{13} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{array} \right)$$

$$M_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}$$

$$V_{12} = \left(\begin{array}{ccc} 1 & 0 & 0.25 \\ 0 & 0.625 & 0 \\ 0 & 0 & 0.125 \end{array} \right)$$

Voting matrices

Outline

$$V_{12} = \begin{pmatrix} 1 & 0 & 0.25 \\ 0 & 0.625 & 0 \\ 0 & 0 & 0.125 \end{pmatrix}$$

$$V_{13} = \begin{pmatrix} 1 & 0 & 0.5 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.25 \end{pmatrix}$$

$$V_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.25 \end{pmatrix}$$

Post-processed matrices

$$\tilde{V}_{12} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0.625 & 0 \\ 0 & 0 & 0.125 \end{array} \right)$$

- Assume links in \tilde{V}_{ij} to be correct
- $\tilde{v}_{ij} = 1 \rightarrow \text{All matrices agree on}$ how to link (K_i, K_j) e.g., $\tilde{V}_{12}(\text{ex1:1}, \text{ex2:1})$
- For all $ilde{v}_{ij} < 1$ assume either
 - ① Missing links e.g., $\tilde{V}_{12}(\text{ex1:3},\text{ex2:3})$ not contained in M_{12}
 - ② Weak links e.g., $\tilde{V}_{12}(\text{ex1:2},\text{ex2:2}) < 1$ is due to $M_{13}(\text{ex1:2},\text{ex3:2})$ and $M_{32}(\text{ex3:2},\text{ex2:2})$ being 0.5

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0.625 & 0 \\ 0 & 0 & 0.125 \end{array}
ight)$$

- Assume links in \tilde{V}_{ii} to be correct
- $\tilde{v}_{ii} = 1 \rightarrow \mathsf{All}$ matrices agree on how to link (K_i, K_i) e.g., $\tilde{V}_{12}(\text{ex}1:1,\text{ex}2:1)$
- For all $\tilde{v}_{ii} < 1$ assume either
 - Missing links e.g., $V_{12}(ex1:3, ex2:3)$ not contained in M_{12}
 - Weak links e.g., $\tilde{V}_{12}(\text{ex1:2,ex2:2}) < 1$ is due to $M_{13}(ex1:2, ex3:2)$ and $M_{32}(ex3:2, ex2:2)$ being 0.5

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0.625 & 0 \ 0 & 0 & 0.125 \end{array}
ight)$$

- Assume links in \tilde{V}_{ij} to be correct
- $\tilde{v}_{ij} = 1 \rightarrow \text{All matrices agree on}$ how to link (K_i, K_j) e.g., $\tilde{V}_{12}(\text{ex1:1}, \text{ex2:1})$
- For all $ilde{v}_{ij} < 1$ assume either
 - Missing links e.g., $\tilde{V}_{12}(\text{ex1:3},\text{ex2:3})$ not contained in M_{12}
 - ② Weak links e.g., $\tilde{V}_{12}(\text{ex1:2},\text{ex2:2}) < 1$ is due to $M_{13}(\text{ex1:2},\text{ex3:2})$ and $M_{32}(\text{ex3:2},\text{ex2:2})$ being 0.5

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0.625 & 0 \ 0 & 0 & 0.125 \end{array}
ight)$$

- Assume links in \tilde{V}_{ii} to be correct
- $\tilde{v}_{ii} = 1 \rightarrow \mathsf{All}$ matrices agree on how to link (K_i, K_i) e.g., $\tilde{V}_{12}(\text{ex}1:1,\text{ex}2:1)$
- For all $\tilde{v}_{ii} < 1$ assume either
 - Missing links e.g., $V_{12}(ex1:3, ex2:3)$ not contained in M_{12}
 - Weak links e.g., $\tilde{V}_{12}(\text{ex1:2,ex2:2}) < 1$ is due to $M_{13}(ex1:2, ex3:2)$ and $M_{32}(ex3:2, ex2:2)$ being 0.5

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0.625 & 0 \\ 0 & 0 & 0.125 \end{array}
ight)$$

- Goal: Repair instance data so as to improve $\tilde{v}_{ii} < 1$
- Link to be repaired is (ex1:2, ex2:2).
- Reason for this link:
 - rs = ex1:2 and
 - rt = ex3:2.
- Computing average similarity:
 - $\bar{\sigma}(\text{ex1:2}) = 0.75$ while
 - $\bar{\sigma}(\text{ex3:2}) = 0.5$.
- COLIBRI overwrite the values of ex3:2 with those of ex1:2.

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0.625 & 0 \ 0 & 0 & 0.125 \end{array}
ight)$$

- **Goal**: Repair instance data so as to improve $\tilde{v}_{ii} < 1$
- Link to be repaired is (ex1:2, ex2:2).
- Reason for this link:
 - rs = ex1:2 and
 - rt = ex3:2.
- Computing average similarity:
 - $\bar{\sigma}(\text{ex1:2}) = 0.75$ while
 - $\bar{\sigma}(\text{ex3:2}) = 0.5$.
- COLIBRI overwrite the values of ex3:2 with those of ex1:2.

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0.625 & 0 \ 0 & 0 & 0.125 \end{array}
ight)$$

- **Goal**: Repair instance data so as to improve $\tilde{v}_{ii} < 1$
- Link to be repaired is (ex1:2, ex2:2).
- Reason for this link:
 - rs = ex1:2 and
 - rt = ex3:2.
- Computing average similarity:
 - $\bar{\sigma}(\text{ex1:2}) = 0.75$ while
 - $\bar{\sigma}(\text{ex3:2}) = 0.5$.
- COLIBRI overwrite the values of ex3:2 with those of ex1:2.

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0.625 & 0 \ 0 & 0 & 0.125 \end{array}
ight)$$

- Goal: Repair instance data so
- Link to be repaired is (ex1:2, ex2:2).

as to improve $\tilde{v}_{ii} < 1$

- Reason for this link:
 - rs = ex1:2 and
 - rt = ex3:2.
- Computing average similarity:
 - $\bar{\sigma}(\text{ex1:2}) = 0.75$ while
 - $\bar{\sigma}(\text{ex3:2}) = 0.5$.
- COLIBRI overwrite the values of ex3:2 with those of ex1:2.

$$ilde{V}_{12} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0.625 & 0 \ 0 & 0 & 0.125 \end{array}
ight)$$

Outline

- Motivation
- 2 Approach
- 3 Evaluation
- 4 Conclusion and Future World

Conclusion and Future Work

Benchmark Generation Approach

- So far, no benchmark for linking n > 2 knowledge bases
- Benchmark generation approach (Ferrara et al., 2011)
- Generated m-1 copies of initial dataset K_1
- Alteration operators:
 - Misspellings
 - Abbreviations
 - Word permutations
- Alteration strategy:
 - Pick random resource according to alteration probability
 - Pick random operator

Experimental Setup

- Datasets:
 - Two synthetic datasets (OAEI2010)
 - Three real-world datasets (Koepcke et al., 2010)
- Colibri:
 - Maximal number of iterations = 10
 - Number of knowledge bases = $\{3, 4, 5\}$
 - Alteration probability $ap = \{10\%, 20\%, \dots, 50\%\}$
 - Repeat each experiment 5 times

Experimental Results (synthetic dataset)

KBs	$ extstyle{\mathcal{F}}_{ ext{Euclid}}$	$F_{ m Colibri}$	Runtime (sec)	Repaired links
3	0.89	0.98	0.4	43
4	0.90	1.00	0.9	35
5	0.88	1.00	1.3	34

- Restaurant dataset
- Average values after 10 iterations
- Alteration probability ap = 50%

Experimental Results (real-world dataset)

KBs	$F_{ m EUCLID}$	$F_{ m Colibri}$	Runtime (sec)	Repaired links
3	0.86	0.98	81.8	300
4	0.85	0.99	160.4	150
5	0.84	0.88	246.8	60

- Amazon dataset
- Average values after 10 iterations
- Alteration probability ap = 50%

Evaluation

Results on the Restaurants dataset

- Alteration probability ap = 50%
- Knowledge bases = 5

Full results at:

https://github.com/AKSW/LIMES/tree/master/evaluationsResults/colibri

Outline

Outline

Outline

- Motivation
- 2 Approach
- 3 Evaluation
- 4 Conclusion and Future Work

Conclusion and Future Work

Conclusion

- Presented Colibria
- Improved F-measure of EUCLID up to 14%

Future Work

- Evaluation on other datasets
- Interactive scenarios (i.e., consult user before dataset repair)
- Combination with other unsupervised solutions (e.g., EAGLE)

Thank You!

Questions?

Mohamed Sherif
Augustusplatz 10
D-04109 Leipzig
sherif@informatik.uni-leipzig.de
http://aksw.org/MohamedSherif
http://limes.sf.net