Course: Theory of Computation

HW8: Reducibility

Lina Mi

@01377283

5.1 Show that the EQ_{CFG} is undecidable.

Solution: Suppose EQ_{CFG} is decidable, then there is decider TM R for it, we construct TM S to decide ALL_{CFG} as following:

S=" on input $\langle M \rangle$, where M is a TM

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accepts; if R rejects, reject."

If R decides EQ_{CFG} , S decides ALL_{CFG} , but ALL_{CFG} is undecidable by Theorem 5.13, so the supposition is wrong, then EQ_{CFG} is undecidable.

5.3. Find a match in the following instance of the Post Correspondence Problem.

$$\left\{ \left[\frac{ab}{abab} \right], \left[\frac{b}{a} \right], \left[\frac{aba}{b} \right], \left[\frac{aa}{a} \right] \right\}$$

Solution

The match is $\left\{ \begin{bmatrix} ab \\ abab \end{bmatrix}, \begin{bmatrix} ab \\ abab \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix}, \begin{bmatrix} aa \\ a \end{bmatrix}, \begin{bmatrix} aa \\ a \end{bmatrix} \right\}$

5.4 If $A \leq_m B$ and B is a regular language, does that imply that A is a regular? Why or why not? Solution: that does not imply A is a regular Language.

For example: for nonregular language $A = \{1^n 0^n | n \ge 0\}$, and regular language $B = \{0\}$, we can construct a computation function f as following:

$$f(w) = \begin{cases} 0, & w = 1^{n}0^{n} \\ 1, & w \neq 1^{n}0^{n} \end{cases}$$

So there is $w \in A \Leftrightarrow f(w) \in B$, so $A \leq_m B$. Here B is regular Language, however, A is nonregular language.

5.9 Let $T = \{ \langle M \rangle | M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w \}$. Show that T is undecidable. Solution: for any $\langle M, w \rangle$, where M is TM and w is input string, the following TM F computes a reduction $f(\langle M, w \rangle)$:

F="on input *x*:

- 1) if $x\neq 01$ or 10, reject;
- 2) if x=01 accept;
- 3) if x=10, run M on w, if M accepts, accept, if M rejects, reject;

from above, we can get for any< M, w>, there is < M, $w> \in A_{TM} \Leftrightarrow f(< M, w>) \in T$, so $A_{TM} \leq_m T$, since A_{TM} is undecidable, according to Corollary 5.23, T is undecidable.

5.16 Let $\Gamma = \{0, 1, \bot\}$ be the tape alphabet for all TMs in this problem. Define the *busy beaver function* BB: $\mathcal{N} \rightarrow \mathcal{N}$ as follows. For each value of k, consider all k-stateTMs that halt when started with a blank tape. Let BB(k) be the maximum number of 1s that remain on the tape among all of these machines. Show that BB is not a computable function.