北京师范大学 2023~2024 学年第一学期期末考试试卷 (A卷)

课程名称:			数学分析(1)							任课教师姓名:							
卷面	面总分:		10	10分	6	考	式时	长:			分钟		考试			闭卷	
院(系):			专业:								年级:						
姓	名:						_	_	学号	4 _							
	题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	总分

- 一、计算题(共50分,每题5分)
 - 1. 求极限 $\lim_{x\to 1} \frac{x-1}{x^2+2x-3}$
 - 2. 设 f 是可导函数、求函数 $y = f(e^z)e^{J(z)}$ 的导数、
 - 3. 求不定积分 $\int \frac{2^{x+1} 5^{x-1}}{10^x} dx$.
 - 4. 求定积分 $\int_0^{\sqrt{\ln 2}} x^3 e^{-x^2} dx$.
- 5. 求反常积分 $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x^4-1}}$
- 6. 设函数 f 可微, $w = f(x^2 + y^2, x^2 y^2, 2xy)$, 求 $\frac{\partial w}{\partial y}$.
- 7. 讨论函数 $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$ 在原点 (0,0) 处的连续性,偏导数的存在性以及可微性.
- 8. 求二重积分 $\iint_D (x^2+y^2) dx dy$, 其中 D 是由 y=3a, y=a, y=x, y=a+x 围成的闭区域, $a\geq 0$.

g. 求极限 $\lim_{n \to \infty} \frac{1}{n} \left(\sin \frac{1}{n} \pi + \sin \frac{2}{n} \pi + \dots + \sin \frac{n-1}{n} \pi \right)$

10. 求由曲线 $y^2 - 2xy + x^3 = 0$ 所围图形的面积.

二、证明题 (共 50 分, 每题 10 分)

11. 证明: 若 f'(xo) 存在,则

$$\lim_{x \to x_0} \frac{xf(x_0) - x_0f(x)}{x - x_0} = f(x_0) - x_0f'(x_0).$$

12. 证明: 勒让德多项式

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n} (n \in \mathbb{N})$$

满足方程:

$$(1 - x2)P''_n(x) - 2xP'_n(x) + n(n+1)P_n(x) = 0.$$

13. 设 h(x), $f'_n(x)$ 在 [a,b] 连续, 且对 [a,b] 中任意的 x_1,x_2 和正整数 n, 有

$$|f_n(x_1) - f_n(x_2)| \le \frac{M}{n}|x_1 - x_2|.$$

其中 M > 0 是常数, 求证:

$$\lim_{n \to \infty} \int_a^b h(x) f_n'(x) \, dx = 0.$$

14. 设 $z = f(x, y), x = \xi \cos \alpha - \eta \sin \alpha, y = \xi \sin \alpha + \eta \cos \alpha$, 求证:

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial \xi^2} + \frac{\partial^2 z}{\partial \eta^2}.$$

15. 设 f(x) 在 [a,b] 上非负、连续、严格递增. 设 $x_n \in [a,b]$ 满足

$$f^n(x_n) = \frac{1}{b-a} \int_a^b f^n(x) \, \mathrm{d}x.$$

求数列 $\lim_{n\to\infty} x_n$ 的极限并用极限的定义给出证明。(这里 f^n 是 f 的 n 次 幂).