2021 级金融工程专业《金融随机分析》期末试卷(闭)

姓名 学号	成绩	
-----------	----	--

- 1. (40) 令 $\{B_t, t \ge 0\}$ 是概率空间 $(\Omega, \mathfrak{I}, P)$ 上的一维标准布朗运动, $B_0 = 0$ 。 (1) 令 $T = \inf\{t : B_t \notin [a,b], a < 0 < b\}$,求 B_T 的分布; (2) 对 r > 0,定义 $M_t = \int_0^t e^{rs} dB_s$, $t \ge 0$,求 $\{M_t\}$ 的二次变差过程 $\{< M_{>_t}, t \ge 0\}$; (3) 求 M_t 的分布; (4) 求时间变换 $\tau = \tau(t)$,使 $W_t = M_{\tau(t)}$ 为标准布朗运动; (5) 令 $T_0 = \inf\{t : M_t \notin [a,b], a < 0 < b\}$,求 M_T 的分布。
- 2. (20 分)设 f , g , q , p 为有界连续函数, v(t,x) 为下述初值问题的有界解: $v_t(t,x) = \frac{1}{2}v_{xx}(t,x) + q(x)v_x(t,x) + p(x)v(t,x) + g(x), t > 0, x \in R,$ $v(0,x) = f(x), x \in R$ 。

求v(t,x)的 Feynman-Kac 表示式。

- 3. (20 分)令 $\{B_t, t \ge 0\}$ 是概率空间 $(\Omega, \mathfrak{I}, P)$ 上的一维标准布朗运动, $\mu \ge 0$ 为常数,求一与P等价的测度Q使 $W_t = B_t + \mu t$ 为 $(\Omega, \mathfrak{I}, Q)$ 上的一维标准布朗运动。若令 $M_t = \sup_{0 \le s \le t} W_s$,求 M_t 的分布.
- 4. (20 分)令 $\{B_t, t \ge 0\}$ 是 概 率 空 间 $(\Omega, \mathfrak{I}, P)$ 上 的 一 维 标 准 布 朗 运 动, $\mathfrak{I} = \{F_t, t \ge 0\}$ 是 其 自 然 完 备 化 过 滤 。 T 为 其 自 然 完 备 化 过 滤 $\mathfrak{I} = \{F_t, t \ge 0\}$ 的 一 个 有 界 停 时 ,令 $W_t = B_{t+T} B_T, t \ge 0$ 。 证 明 (1) $\{W_t, t \ge 0\}$ 与 T 独 立 ; (2) $\{W_t, t \ge 0\}$ 为 一 维 标 准 布 朗 运 动 。