Série 2012

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2 Bases technologiques

Nom, prénom	N° de candidat	Date

Temps: 30 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche (sans

banque de données), règle, compas, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiples, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 24,0

23,0 - 24,0	Points = Note	6,0
20,5 - 22,5	Points = Note	5,5
18,0 - 20,0	Points = Note	5,0
16,0 - 17,5	Points = Note	4,5
13,5 - 15,5	Points = Note	4,0
11,0 - 13,0	Points = Note	3,5
8,5 - 10,5	Points = Note	3,0
6,0 - 8,0	Points = Note	2,5
4,0 - 5,5	Points = Note	2,0
1,5 - 3,5	Points = Note	1,5
0,0 - 1,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des	Points	Note	
expertes / experts:		obtenus	

Délai d'attente:	Cette épreuve d'examen ne peut pas être utilisée librement comme exercice
	avant le 1 ^{er} septembre 2013.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Installatrice-électricienne CFC / Installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	Exercices				
1.	Nommez trois moyens permettant de produire une tension électrique et expliquez pour chacun d'eux le principe utilisé.	maximal 3	obtenus		
2.	Quelle est l'énergie consommée par une plaque de cuisson vitrocéramique absorbant une puissance moyenne de 1500W sachant que la préparation d'un repas pour quatre personnes dure exactement 99 minutes ?	2			
	Topao pour quatro personinco duro exactement de minutos .				

Exe	rcices	Nombre o	le points obtenus
3.	Un courant électrique circule dans une spire. Celle-ci est placée dans un champ magnétique.	3	
	 a) Dessinez le sens de flux magnétique produit par les pôles. b) Dessinez le sens de flux magnétique produit par chaque conducteur de la prire. 		
	 spire. c) Indiquez à l'aide de flèches les zones présentant un renforcement ou un affaiblissement du champ magnétique. d) Indiquez le sens de rotation de la spire sachant que celle-ci est montée sur un 		
	axe.e) Comment peut-on augmenter la force sur les conducteurs de la spire?f) Quel type de moteur fonctionne selon ce principe?		
	N • S		

Exer	cices	Nombre o	le points obtenus
4.	Le mât d'une construction provisoire est assuré avec un câble de 5m de longueur. A quelle distance par rapport au sommet du mât de 7 m doit-on fixer le câble de sorte à avoir un angle de 60° entre le sol et le câble?	2	
5.	Une ligne de cuivre de 75 m est chargée par un courant maximum de 12 A. La chute de tension en ligne ne doit pas dépasser 4% de la tension de départ (230 V / 50 Hz). Calculez la section normalisée minimale que vous devez utiliser pour cette ligne afin de respecter la chute de tension maximale. $\rho_{\text{Cuivre}} = 0,0175 \frac{\Omega \cdot \text{mm}^2}{\text{m}}$	3	

													Nombre maxima
surintens	sité ayan	une canalisa t un couran conducteurs	t max	ximal	assig	né de	déc						3
i ia s c ul	u c s (onductedis	o Gla	u 11100	uc uc	puse	•						
		ı 5.2.3.1.1.´				ا ماد دا	. 	^) D4	D0 4	C D	
	•	ere pour les PVC / ligne			•								
		mpérature					u.v. 0	oriar	goor	tomp	orata	10 00	
Mode de	Nombre	Courant de d	lácland	homont	accian	نام [۸] م	coup	o curint	oncitá ir	ocóró o	o amor	ot do	
pose de	de	la canalisatio	n										
référence A1	circuits 1	10 13 1,5	16 2,5	20	25 4	32 6	40 10	50 16	63 25	80 35	100 50	125 70	
A2	1	1,5	2,5	4	6	1(16	25	35	50	70	
B1	1	1,5 1,5		2,5 2,5	4	6		10 10	16 16	25 25	35 35	50 50	
B2	2	1,5	2,5	4	6	10		16	25	35	50	95	
	•												
		n fonction on the suivants. Le											
		ement la de			•		, ulli	iioo pt	Jui 16	onou	١		
Prote	ction	Section		Densi									
[A	\]	$[mm^2]$		cour [A/m	_								
10	6			[VIII]								
'	<u> </u>												
50	0												
50	0												
5	0												
5	0												
5	0												
5	0												
5	0												
5	0												
5	0												
5	0												
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-elle	es si c	différe	entes?	
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-elle	es si c	différe	entes?	
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-elle	es si (différe	entes?	,
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-elle	es si c	différe	entes?	
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-elle	es si (différe	entes?	
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-elle	es si d	différe	entes?	
		densités de	e cour	ant s	ur les	deux	lign	es so	nt-elle	es si (différe	entes?	
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-elle	es si d	différe	entes?	
		densités de	e cour	ant s	ur les	deux	lign	es so	nt-elle	es si d	différe	entes?	
		densités de	e cour	rant s	ur les	deux	lign	es so	nt-ell e	es si o	différe	entes?	

Exer	cices	Nombre o	le points obtenus
7.	Un monte-charge de bâtiment s'élève de 18 m en 23 secondes. La cage du monte-charge pèse 0,7 tonne et peut transporter une charge de 1,4 tonne. Calculez la puissance électrique absorbée (en kW) sachant que le monte-charge complet (moteur et système de levage) a un rendement de 75%?	3	
8.	Un accumulateur Ni-MH (Nickel-Hydrure métallique) a les caractéristiques suivantes: $E=1,2\ V;\ R_i=0,36\ \Omega;\ Q=1'200\ mAh.$ Trois accumulateurs sont couplés en parallèle et produisent ensemble un courant de 1,5 A. a) Calculez la tension aux bornes du couplage.	3	
	b) Calculez le temps de décharge complet de ce couplage (hypothèse : le courant de décharge est constant).		

Exer	xercices -				
9.	Nommez quatre grandeurs physiques pouvant être contrôlées par des capteurs en technique du bâtiment.	2			
	Total	24			