Chapter 01: Key Concepts, Notation, Set Theory, Relations, and Functions

Chapter 02: Formal Logic and Constructing Mathematical Proofs

Connective	Notation	English Equivalent
Negation	$\sim p$	not p
Conjunction	$p \wedge q$	p and q
Disjunction	$p \lor q$	p or q
Conditional	$p \rightarrow q$	if p, then q
Biconditional	$p \leftrightarrow q$	p if and only if q

 $p \sim p$

0 1

1 0

C	onjun	ction		Disju	nctio	n		Co	nditi	onal		В	icond	itional	
	p	\boldsymbol{q}	$p \wedge q$	1) (q i	$p \lor q$		p	q	$p \rightarrow q$		p	q	$p \leftrightarrow q$
	0	0	0	0	0	(0		0	0	1		0	0	1
	0	1	0	0	1		1		0	1	1		0	1	0
	1	0	0	1	0		1		1	0	0		1	0	0
	1	1	1	1	1		1		1	1	1		1	1	1

$$p \qquad q \qquad p \rightarrow q \quad q \rightarrow p \quad (p \rightarrow q) \leftrightarrow (q \rightarrow p)$$

1 1 1 1

0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	0	0	0	1

$$p$$
 q $p \land q$ $\sim (p \land q)$ $\sim p$ $\sim q$ $\sim p \lor \sim q$ $\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$

- 0 0 0 1 1 1 1 1
- 0 1 0 1 1 0 1 1
- 1 0 0 1 0 1 1 1
- 1 1 1 0 0 0 0 1

$$p \quad q \quad p \lor q \quad \sim (p \lor q) \quad \sim p \quad \sim q \quad \sim p \land \sim q \quad \sim (p \lor q) \leftrightarrow (\sim p) \land \sim q)$$

- 0 0 0 1 1 1 1 1
- 0 1 1 0 1 0 0 1

0

0

1

0

1

1 1 1 0 0 0 1

1

0

1

- 0 0 1 1 1 1 1
- 0 1 1 1 0 1 1
- 1 0 0 0 1 0 1
- 1 1 1 0 0 1 1

$$p_1: 1 = \frac{1(1+1)}{2}$$

$$p_2: 1+2=\frac{2(2+1)}{2}$$

$$p_3: 1+2+3=\frac{3(3+1)}{2}$$

$$p_{i-1}: 1+2+3+\cdots+(i-1)=\frac{(i-1)((i-1)+1)}{2}$$

		2	
1			
			4
	3		

Grid of dimensions $2^{i-1} \times 2^{i-1}$	Grid of dimensions $2^{i-1} \times 2^{i-1}$
Grid of dimensions $2^{i-1} \times 2^{i-1}$	Grid of dimensions $2^{i-1} \times 2^{i-1}$

Chapter 03: Computing with Base-n Numbers

Name	Radix (n value)	Symbols used
Binary	2	0 and 1
Trinary	3	0, 1 and 2
Quadrary	4	0, 1, 2 and 3
Octal	8	0, 1, 2, 3, 4, 5, 6 and 7
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8 and 9
Hexidecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (10), B (11), C (12), D (13), E (14) and F (15)

Multiple of bytes					
Value	Metric system	Value	Binary system		
1000	kilobyte (kB)	1024	kibibyte (KiB)		
1000^{2}	megabyte (MB)	1024^{2}	mebibyte (MiB)		
1000^{3}	gigabyte (GB)	1024^{3}	gibibyte (GiB)		
1000 ⁴	terabyte (TB)	1024^4	tebibyte (TiB)		
1000^{5}	petabyte (PB)	1024^{5}	pebibyte (PiB)		
10006	exabyte (EB)	10246	exbibyte (EiB)		
1000 ⁷	zettabyte (ZB)	10247	zebibyte (ZiB)		
10008	yottabyte (YB)	10248	yobibyte (YiB)		

A V B (OR)

Α	В	A ^ B	AVB
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

CustomerlD	Country	State	City	Zip Code
1	USA	Georgia	Atlanta	30332
2	USA	Georgia	Atlanta	30331
3	USA	Florida	Melbourne	30912
4	USA	Florida	Tampa	30123
5	India	Karnataka	Bangalore	560001
6	India	Maharashtra	Mumbai	578234
7	India	Karnataka	Hubli	569823
8	India	Maharashtra	Mumbai	578234
9	Germany	Bavaria	Munich	80331
10	Canada	Ontario	Toronto	M4B 1B3

Hexadecimal	Decimal	Hexadecimal	Decimal
0	0	$11 = (1 \times 16) + 1$	17
1	1	$12 = (1 \times 16) + 2$	18
2	2	$13 = (1 \times 16) + 3$	19
3	3	$14 = (1 \times 16) + 4$	20
4	4	$15 = (1 \times 16) + 5$	21
5	5	$16 = (1 \times 16) + 6$	22
6	6	$17 = (1 \times 16) + 7$	23
7	7	$18 = (1 \times 16) + 8$	24
8	8	$19 = (1 \times 16) + 9$	25
9	9	$1A = (1 \times 16) + 10$	26
A	10	$1B = (1 \times 16) + 11$	27
В	11	$1C = (1 \times 16) + 12$	28
С	12	$10 = (1 \times 16) + 13$	29
D	13	$IE = (1 \times 16) + 14$	30
Е	14	$1 F = (1 \times 16) + 15$	31
F	15	$20 = (2 \times 16) + 0$	32
$10 = (1 \times 16) + 0$	16		

Color	Red Value	Green Value	Blue Value	Hexadecimal
Red	255 (FF)	0 (00)	0 (00)	#FF0000
Green	0 (00)	255 (FF)	0 (00)	#00FF00
Blue	0 (00)	0 (00)	255 (FF)	#0000FF
Yellow	255 (FF)	255 (FF)	0 (00)	#FFFF00
Orange	255 (FF)	165 (A5)	0 (00)	#FFA500
Aqua	0 (00)	255 (FF)	255 (FF)	#00FFFF
Navy Blue	0 (00)	0 (00)	128 (80)	#000080
Black	0 (00)	0 (00)	0 (00)	#000000
White	255 (FF)	255 (FF)	255 (FF)	#FFFFFF

Chapter 04: Combinatorics using PyPI

	a_1	a_2
b_1	(a_1,b_1)	(a_2, b_1)
b_2	(a_1,b_2)	(a_2,b_2)

n	n!	n	n!
1	1	6	720
2	2	7	5,040
3	6	8	40,320
4	24	9	362,880
5	120	10	3,628,800

plaintext A B C \cdots U V W X Y Z ciphertext E F G \cdots Y Z A B C D

Chapter 05: Elements of Discrete Probability

TTH	TTH	THT	THH
HTT	НТН	HHT	ННН

TTH	TTH	THT	THH
HTT	НТН	HHT	ННН

Temperatures	Frequency	Rain Frequency
51-60	4	1
61-70	12	5
71-80	13	10
81-90	20	8
91-100	3	1
Totals	50	25

Value	1	2	3	4	5	6	7	8	9	10
Frequency	129	242	53	16	57	95	228	33	101	46
Proportion	0.129	0.242	0.053	0.016	0.057	0.095	0.228	0.033	0.101	0.046

$$PR(W_1) = \frac{1-d}{N} + d\left(\frac{PR(W_2)}{C(W_2)} + \frac{PR(W_3)}{C(W_3)} + \frac{PR(W_4)}{C(W_4)}\right) = 0.34$$

$$PR(W_2) = \frac{1-d}{N} + d\left(\frac{PR(W_1)}{C(W_1)}\right) = 0.07$$

$$PR(W_3) = \frac{1-d}{N} + d\left(\frac{PR(W_1)}{C(W_1)}\right) = 0.07$$

$$PR(W_4) = \frac{1-d}{N} + d\left(\frac{PR(W_1)}{C(W_1)} + \frac{PR(W_2)}{C(W_2)} + \frac{PR(W_3)}{C(W_3)} + \frac{PR(W_5)}{C(W_5)}\right) = 0.38$$

$$PR(W_5) = \frac{1-d}{N} + d\left(\frac{PR(W_1)}{C(W_1)} + \frac{PR(W_3)}{C(W_3)}\right) = 0.13$$

Chapter 06: Computational Algorithms in Linear Algebra

Chapter 07: Computational Requirements for Algorithms

Time Required

Relationship between input and steps taken by algorithm	Big-O Notation
Constant	O(constant)
Linear	O(n)
Quadratic	O(n²)
Cubic	O(n³)
Exponential	O(2 ⁿ)
Logarithmic	O(log(n))
Log Linear	O(n*log(n))

n	100 * n	n²/100
10 ²	10 ⁴	10 ²
10³	105	10 ⁴
10 ⁴	10 ⁶	10 ⁶
10 ⁵	10 ⁷	10 ⁸
10 ⁶	10 ⁸	10 ¹⁰
10 ⁷	10 ⁹	10 ¹²

Type of search	Best Case	Worst Case	Average Case	
Linear Search	O(1)	O(n)	O((n+1)/2)	
Binary Search	O(1)	O(log n)	O(log n)	

n	n² steps	2 ⁿ steps
2	0.00000002 msec	0.00000002 msec
5	0.00000015 msec	0.00000019 msec
10	0.00001 msec	0.0001 msec
20	0.0004 msec	0.10 msec
50	0.00025 msec	31.3 hours
100	0.001 msec	9.4 x 10 ¹¹ years
1000	0.100 msec	7.9 x 10 ²⁸² years

Chapter 08: Storage and Feature Extraction of Graphs, Trees, and Networks

$$\mathbf{A}_{1} = \begin{bmatrix} v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ v_{1} & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ v_{6} & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}_2 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}_3 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_1 = \begin{bmatrix} 0 & 4 & 1 & 0 & 2 & 0 \\ 4 & 0 & 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 2 & 0 \\ 2 & 0 & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{W}_2 = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 2 & 3 & 0 & 4 & 0 \\ 3 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{1}^{2} = \begin{bmatrix} 3 & 1 & 2 & 3 & 1 & 1 \\ 1 & 4 & 2 & 1 & 3 & 0 \\ 2 & 2 & 4 & 2 & 2 & 1 \\ 3 & 1 & 2 & 3 & 1 & 1 \\ 1 & 3 & 2 & 1 & 3 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Chapter 09: Searching Data Structures and Finding Shortest Paths

Paths from v_1 to v_2	Path Lengths
$v_1 - v_2$	4
$v_1 - v_3 - v_2$	1 + 2 = 3
$v_1 - v_3 - v_4 - v_2$	1+1+1=3
$v_1 - v_3 - v_5 - v_4 - v_2$	1+1+2+1=5
$v_1 - v_5 - v_3 - v_2$	2+1+2=5
$v_1 - v_5 - v_4 - v_2$	2+2+1=5
$v_1 - v_5 - v_4 - v_3 - v_2$	2+2+1+2=7

Vertex	Shortest Distance	Previous Vertex
<i>v</i> ₁	8	
V ₂	8	
V ₃	8	
V 4	8	
V ₅	8	
<i>V</i> ₆	8	

Visited Vertices	Unvisited Vertices
	V ₁ , V ₂ , V ₃ , V ₄ , V ₅ , V ₆

Vertex	Shortest Distance	Previous Vertex
<i>v</i> ₁	0	
v ₂	4	v_1
V ₃	1	v_1
V 4	8	
V ₅	2	v_1
V 6	8	

Visited Vertices	Unvisited Vertices
v_1	V ₂ , V ₃ , V ₄ , V ₅ , V ₆

Vertex	Shortest Distance	Previous Vertex
V 1	0	
V 2	1 + 2 = 3	V 3
V 3	1	v_1
V 4	1 + 1 = 2	V 3
V 5	2	v_1
V 6	8	

Visited Vertices	Unvisited Vertices
<i>v</i> ₁ , <i>v</i> ₃	V ₂ , V ₄ , V ₅ , V ₆

Vertex	Shortest Distance	Previous Vertex
V 1	0	
V 2	3	V 3
V 3	1	v_1
V 4	2	V 3
V 5	2	v_1
V 6	8	

Visited Vertices	Unvisited Vertices
V ₁ , V ₃ , V ₄	V ₂ , V ₅ , V ₆

Vertex	Shortest Distance	Previous Vertex
<i>v</i> ₁	0	
v ₂	3	V 3
V ₃	1	v_1
V 4	2	V ₃
V 5	2	v_1
V ₆	8	

Visited Vertices	Unvisited Vertices
V ₁ , V ₃ , V ₄ , V ₅	V ₂ , V ₆

Vertex	Shortest Distance	Previous Vertex
v_1	0	
V ₂	3	<i>V</i> ₃
<i>V</i> ₃	1	<i>v</i> ₁
V ₄	2	<i>V</i> ₃
V ₅	2	<i>v</i> ₁
V ₆	3 + 1 = 4	<i>V</i> ₂

Visited Vertices	Unvisited Vertices	
V ₁ , V ₂ , V ₃ , V ₄ , V ₅	v ₆	

Vertex	Shortest Distance	Previous Vertex
<i>v</i> ₁	0	
<i>v</i> ₂	3	<i>V</i> ₃
<i>v</i> ₃	1	v_1
V ₄	2	<i>V</i> ₃
v ₅	2	v_1
<i>v</i> ₆	4	<i>v</i> ₂

Visited Vertices	Unvisited Vertices		
V ₁ , V ₂ , V ₃ , V ₄ , V ₅ , V ₆			

Destination	Path	Distance
v ₂	v ₂ <- v ₃ <- v ₁	3
v ₃	<i>v</i> ₃ < <i>v</i> ₁	1
V ₄	$v_4 < -v_3 < -v_1$	2
V ₅	v ₅ <- v ₁	2
v ₆	v ₆ <- v ₂ <- v ₃ <- v ₁	4

$$\mathbf{W}_1 = \begin{bmatrix} 0 & 4 & 1 & 0 & 2 & 0 \\ 4 & 0 & 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 2 & 0 \\ 2 & 0 & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{W}_2 = \begin{bmatrix} 0 & 4 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 4 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Chapter 10: Regression Analysis with NumPy and Scikit-Learn

Χ	Υ
1	1
2	2
3	3
4	4
5	5
6	6

X	Υ
1	3
2	2
3	4
4	6
5	8
6	7

Chapter 11: Web Searches with PageRank

$$\mathbf{A} = \begin{bmatrix} 0 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.5 & 0 & 0 & 0.5 & 0 \\ 0.33 & 0 & 0 & 0.33 & 0.33 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{v}_0 = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{bmatrix}$$

$$\mathbf{U} = d\mathbf{A}^T + \frac{1-d}{N} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

	Destination
4391	http://search.ucdavis.edu/
1488	http://www.ucdavis.edu/
997	http://www.gene.com/ae/bioforum/
2408	http://www.lib.uci.edu/
8051	http://vision.berkeley.edu/VSP/index.shtml
1489	http://www.uci.edu/
718	http://www.students.ucr.edu/
211	http://spectacle.berkeley.edu/
17	http://www.calacademy.org/
4795	http://www.scag.org

Chapter 12: Principal Component Analysis with Scikit-Learn

7 feature variables

Brand	Moisture	Protein	Fat	Ash	
Α	27.82	21.43	44.87	5.11	
Α	28.49	21.26	43.89	5.34	
Α	28.35	19.99	45.78	5.08	
А	30.55	20.15	43.13	4.79	

300 observations

	Moisture	Protein	Fat	Ash	
Moisture	1.000	0.360	-0.171	0.266	
Protein	0.360	1.000	0.498	0.824	
Fat	-0.171	0.498	1.000	0.792	
Ash	0.266	0.824	0.792	1.000	

