Institute of Electrical and Electronics Engineers Stony Brook Chapter

Wolf Rat Alpha

Hardware Key Details

- 2S 30C 7.4V LiPo Battery
 - Switching regulators
- AT32UC3L0256
 - 50MHz max speed
 - Ultra-low power consumption, 165µA/MHz
- Sharp Sensors
 - 2cm to 15cm
 - Linear output over the sensor's usable range
- IMU, LSM6DSV16X
 - 3-axis digital accelerometer and 3-axis digital gyroscope

Old versus New

- Current Revision: V 5.2
- Changes Made:
 - All components are surface mount devices
 - Sharp IR Sensors
 - 3D Printed Castor Wheel
 - JTAG Connector can now reset.
 - Added test points
- Previous (Winning) Revision: V 4.0
 - Microcontroller: Arduino nano
 - Bare IR Sensors
 - All components are through hole technology devices

Power

- Three switching regulators the buck down the voltages
 - o 7.4V -> 3.3V, 500mA
 - o 7.4V -> 5V, 500mA
 - o 7.4V -> 5V, 1.5A
- LiPo Battery
 - Lighter than a NiMH battery and maintain the voltage longer as it depletes
 - 30C means it can run for 3 minutes while drawing
 13.5 Amps

Advancing Technology

for Humanity

Motors

- Two wheel drive
 - Motors with encoders, relative using hall sensors
 - o 900 rpm, 359.72 events per revolution
- Motor Controller
 - Used an Dual-bridge driver to control the motors
 - o Built-in thermal shutdown circuit

Microcontroller

- PWM
 - o 36 PWM channels
 - Two PWM channels are used
- ADC
 - o 8-channel 12-bit
 - 4-channels 10 bits are used
- JTAG
 - Programmable via JTAG and aWire
- Interrupts
 - 6 External Interrupts
 - 2 External Interrupts are used

Microcontroller DFLL

- Digital Frequency-locked Loop
 - Control system that synchronizes the output frequency with a reference signal;
 - Digitally manipulating the phase and frequency
- Our microcontroller will run at 35MHz

31	30	29	28	27	26	25	24		
	COARSE[7:0]								
23	22	21	20	19	18	17	16		
-	-	-1	-	-	-	-	FINE[8]		
15	14	13	12	11	10	9	8		
	FINE[7:0]								
7	6	5	4	3	2	1	0		
-	QLEN	CCEN	-	LLAW	DITHER	MODE	EN		

Sharp Sensors

- Voltage Outputs
 - Minimum Voltage Output of .55V
 - Maximum Voltage Output of 2.5V
 - ADC max value is 1.98V
 - Voltage Divider can drop it down to 1.736V max

Inertial Measurement Unit

- Triple-channel architecture
- Sensor fusion low power
- SPI serial interface with main processor data synchronization

Gyro Low-Pass /SPI Regs UI/EIS/OIS ADC₁ **UI/EIS Gyro** SDA/SDI/SDO interface array front-end FIFO Low-Pass Interrupt E N XL UI/OIS UI XL M S front-end Interrupt Low-Pass S O ADC2 OIS Gyro Regs Temperature array Auxiliary Low-Pass sensor SDI_Aux OIS XL Voltage and current Trimming circuit Clock and phase FTP and Test interface management references generator

Figure 18. Block diagram of filters

Figure 7. SPI slave timing in mode 0

Embedded C PWM

- 30:1 Ratio, 900 RPM brushed motor controlled with MCU PWM
- Integrated PWM circuit on AT32UC3L0256 (PWMA)
 - Set Control Register (CR) to activate
- 2 motors 2 PWMs
 - Set IMDUTY register to control Pulse Width
 - IMDUTY is continuously updated to match PID loop

AT32UC3L0128/256

23.7 User Interface

Table 23-3. PWMA Register Memory Map

Offset	Register	Register Name	Access Read/Write	0x00000000
0x00	Control Register	CR		
0x04	Interlinked Single Value Duty Register	ISDUTY	Write-only	0x00000000
0x08	Interlinked Multiple Value Duty Register	IMDUTY	Write-only	0x0000000
0x0C	Interlinked Multiple Value Channel Select	IMCHSEL	Write-only	0x0000000
0x10	Interrupt Enable Register	IER	Write-only	0x0000000
0x14	Interrupt Disable Register	IDR	Write-only	0x0000000
0x18	Interrupt Mask Register	IMR	Read-only	0x0000000
0x1C	Status Register	SR	Read-only	0x0000000
0x20	Status Clear Register	SCR	Write-only	0x0000000
0x24	0x24 Parameter Register		Read-only	_ (1)
0x28	Version Register	VERSION	Read-only	_ (1)
0x2C	0x2C Top Value Register		Read/Write	0x0000000
0x30+m*0x10	30+m*0x10 Interlinked Single Value Channel Set m		Write-only	0x0000000
0x34+m*0x10	+m*0x10 Channel Event Response Register m		Read/Write	0x0000000
0x38+m*0x10	38+m*0x10 Channel Event Enable Register m		Read/Write	0x0000000
0x3C+k*0x10	x3C+k*0x10 CWG Register		Read/Write	0x0000000

Note: 1. The reset values are device specific. Please refer to the Module Configuration section at the end of this chapter.

Embedded C ADC

- The ADC interprets data from the Sharp IR Sensors
 - The IR sensors take turns to output
 - When enabled, voltage (And therefore distance) is measured off the walls
 - Register to call: adcifb

Embedded C Interrupts

- External Interrupts Controller(EIC)
- Used for the motors encoders
- Setup required to config the external interrupt
- Interrupt Service Routine(ISR) is used to see what interrupts
 got flagged and update internal variables

Table 16-2. EIC Register Memory Map

Offset	Register	Register Name	Access	Reset 0x00000000
0x000	Interrupt Enable Register	IER	Write-only	
0x004	Interrupt Disable Register	IDR	Write-only	0x00000000
0x008	Interrupt Mask Register	IMR	Read-only	0x00000000
0x00C	Interrupt Status Register	ISR	Read-only	0x00000000
0x010	Interrupt Clear Register	ICR	Write-only	0x00000000
0x014	Mode Register	MODE	Read/Write	0x00000000
0x018	Edge Register	EDGE	Read/Write	0x00000000
0x01C	Level Register	LEVEL	Read/Write	0x00000000
0x020	Filter Register	FILTER	Read/Write	0x00000000
0x024	Test Register	TEST	Read/Write	0x00000000
0x028	Asynchronous Register	ASYNC	Read/Write	0x00000000
0x030	Enable Register	EN	Write-only	0x00000000
0x034	Disable Register	DIS	Write-only	0x00000000
0x038	Control Register	CTRL	Read-only	0x00000000
0x3FC Version Register		VERSION	Read-only	_ (1)

Sensor Algorithm

- The mouse moves one grid square at a time, using the encoders values and a PID control loop
- The mouse automatically adjusts to be in the middle of the grid
- At each turn is adjusts before moving 90 degrees for a turn

Tremaux Algorithm

- Maze traversal
- Whenever you pass through an entrance of a passage, whether it is to enter or exit a junction, leave a mark at the entrance as you pass.
- When at a junction:
 - If only the entrance you just came from is marked, pick an arbitrary unmarked entrance, if any
 - Pick the entrance you just came from, unless it is marked twice
 - Pick any entrance with the fewest marks

A* Algorithm

- Informed search algorithm
 - Formulated in terms of weighted graphs
- f(n) = g(n) + h(n)
 - o n is the next node
 - o g(n) is the cost of path from the start node to n
 - h(n) is a heuristic function that estimates the cost of the cheapest path from n to the goal
- Priority queue, each node with the lowest value removed from the queue

Questions?

