《数学建模及其 MATLAB 实现》第二次课程作业

李鹏达 10225101460

学校共 1000 名学生,235 人住在 A 宿舍,333 人住在 B 宿舍,432 人住在 C 宿舍. 学生们要组织一个 10 人委员会, 试用下列办法分配各宿舍的委员数:

- 1. 按比例分配取整数的名额后, 剩下的名额按惯例分给小数部分较大者.
- 2. 书中的 *Q* 值方法.
- 3. d'Hondt 方法: 将 A, B, C 各宿舍的人数用正整数相除, 其商数如下表:

	1	2	3	4	5	
A	<u>235</u>	<u>117.5</u>	78.3	58.75		
В	<u>333</u>	<u>166.5</u>	<u>111</u>	83.25		
С	<u>432</u>	<u>216</u>	<u>144</u>	<u>108</u>	86.4	

将所得商数从大到小取前在 10 个 (10 为席位数), 数字下标以横线, 表中 A, B, C 行有横线的数分别为 2, 3, 5, 这就是 3 个宿舍分配的席位. 你能解释这种方法的道理吗?

如果委员会从 10 人增至 15 人, 用以上 3 种方法再分配名额. 将 3 种方法两次分配的结果列表比较.

解答:

- (一) 试用下列办法分配各宿舍的委员数.
 - 1. 按比例分配取整数的名额后, 剩下的名额按惯例分给小数部分较大者.

宿舍	学生人数	比例 (%)	比例分配的席位	参照惯例的结果
A	235	23.5	2.35	3
В	333	33.3	3.33	3
C	432	43.2	4.32	4
总和	1000	100	10	10

按比例分配取整数的名额后, A, B, C 三宿舍的席位为 2, 3, 4, 小数部分 0.35 > 0.33 > 0.32, 所以将剩下的名额分给小数部分较大者, 即 A 宿舍增加一个名额, 最终结果为 3, 3, 4.

2. 书中的 *Q* 值方法.

宿舍	学生人数	比例 (%)	比例分配的席位	$Q(Q_i = \frac{p_i^2}{n_i(n_i+1)})$	结果
A	235	23.5	2.35	9204.17	2
В	333	33.3	3.33	9240.75	3
С	432	43.2	4.32	9331.2	5
总和	1000	100	10	/	10

按比例分配取整数的名额后, A, B, C 三宿舍的席位为 2, 3, 4, 根据公式 $Q_i = \frac{p_i^2}{n_i(n_i+1)}$, 计算出 Q 值分别作为 9204.17, 9240.75, 9331.2, 将剩余的席位分配给 Q 值最大的宿舍 C, 最终结果为 2, 3, 5.

3. d'Hondt 方法.

这种方法在每一轮次中计算商数

$$quot = \frac{P}{s+1}$$

其中, P 为该宿舍的人数, s 为该宿舍已拥有的席位数. 每一轮次中, 将商数最大的宿舍分配一个席位, 然后重新计算该宿舍的商数, 进行下一轮次的分配. 重复这个过程, 直到分配完所有的席位.

比较显然的是,某个宿舍在获得一个席位后,其s会增加,从而导致下一轮次的商数减小,在下一轮次中更难获得席位.

在这种算法下, 由于我们总是选择商数更大的宿舍, 而 s 不断增加, 这种方法可以使最小的单位席位数代表的人数 $(\min_i \frac{P}{s_i})$ 尽可能大, 从而使得分配结果更加公平.

这种方法不满足准则一, 反例如下:

单位	人数	比例 (%)	结果
1	936	93.6	95
2	47	4.7	4
3	17	1.7	1
总和	1000	100	100

这种方法满足准则二,因为如果增加席位数,在分配时只会增加从大到小取商数的个数,不会出现比增加席位数之前分配的席位数更少的情况.

- (二) 如果委员会从 10 人增至 15 人, 用以上 3 种方法再分配名额. 将 3 种方法两次分配的结果列表比较.
 - 1. 比例加惯例

宿舍	学生人数	比例 (%)	比例分配的席位	参照惯例的结果
A	235	23.5	3.52	4
В	333	33.3	5	5
С	432	43.2	6.48	6
总和	1000	100	15	15

2. Q 值法

宿舍	学生人数	比例 (%)	比例分配的席位	$Q(Q_i = \frac{p_i^2}{n_i(n_i+1)})$	结果
A	235	23.5	3.52	4602.08	4
В	333	33.3	5	3696.3	5
С	432	43.2	6.48	4443.43	6
总和	1000	100	15	/	15

3. d'Hondt 方法

	1	2	3	4	5	6	7	 席位数
A	<u>235</u>	117.5	<u>78.3</u>	58.75	47			 3
В	<u>333</u>	<u>166.5</u>	<u>111</u>	83.25	<u>66.6</u>	55.5		 5
C	<u>432</u>	<u>216</u>	<u>144</u>	<u>108</u>	86.4	<u>72</u>	<u>61.71</u>	 7

对比如下表所示:

宿舍	学生人数	比例 (%)	10 席 比例席位	比例 加惯例	Q 值法	d'Hondt 方法	15 席 比例席位	比例 加惯例	Q 值法	d'Hondt 方法
A	235	23.5	2.35	3	2	2	3.52	4	4	3
В	333	33.3	3.33	3	3	3	5	5	5	5
С	432	43.2	4.32	4	5	5	6.48	6	6	7
总和	1000	100	10	10	10	10	15	15	15	15

值得注意的一点是, d'Hondt 方法倾向于将剩余席位分配给人数更多的宿舍 (事实上, 这种分配方式在现实世界的选举中常用于分配议会席位, 它对大党有利, 可以鼓励团结, 减少碎片化).