Musterlösung zum Übungsblatt 4 der Vorlesung "Grundbegriffe der Informatik"

Aufgabe 4.1

- a) aabaaaba $\in L^*$, da aabaaaba = (aaba)(aaba) und aaba $\in L$.
- b) baaaaba $\in L^*$, da baaaaba = (ba)(aaaba) und ba $\in L$ und aaaba $\in L$.
- c) aabba $\notin L^*$.
- d) aaababaaaaba $\in L^*$, da aaababaaaaba = (aaaba)(ba)(aaaba) und ba $\in L$ und aaaba $\in L$.

Aufgabe 4.2

Sei k die Anzahl der Vorkommen von b in einem Wort $w \in \{a, b\}^*$.

Induktionsanfang: k = 1: In diesem Fall lässt sich das Wort w aufteilen in $w = w_1 \cdot \mathbf{b} \cdot w_2$, wobei w_1 und w_2 keine b enthalten und somit in $\{\mathbf{a}\}^*$ liegen.

Damit gilt $w \in \{a\}^*\{b\}\{a\}^*$ und somit auch $w \in (\{a\}^*\{b\}\{a\}^*)^* = L$.

Induktionsannahme: Für ein festes $k \in \mathbb{N}_0$ gilt, dass alle Wörter über $\{a, b\}^*$, die genau k mal das Zeichen b enthalten, in L liegen.

Induktionsschritt: Wir betrachten ein Wort w, das genau k+1 mal das Zeichen b enthält. Dann kann man w zerlegen in $w=w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.

Wie gezeigt, liegt w_1 in $\{a\}^*\{b\}\{a\}^*$. Nach Induktionsvoraussetzung liegt w_2 in $(\{a\}^*\{b\}\{a\}^*)^*$, was bedeutet, dass es ein $i \in \mathbb{N}_0$ gibt, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.

Somit liegt $w = w_1 w_2$ in

$$(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$$
, und die Behauptung ist gezeigt.

Aufgabe 4.3

- a) $\{a\}\{a,b\}^*$.
- b) $\{a,b\}^*\{a\}\{a,b\}^*\{a\}\{a,b\}^*\{a\}\{a,b\}^*$
- c) $\{a, b\}^*\{baa\}\{a, b\}^*$
- d) $\{a\}^* \cup \{a\}^* \{b\} \{b\}^* (\{ab\} \{b\}^*)^* \cup \{a\}^* \{b\} \{b\}^* (\{ab\} \{b\}^*)^* \{a\}^* \{a\}^$

Aufgabe 4.4

a)
$$\frac{\text{Länge}}{\text{Anzahl der W\"orter in }L} = \frac{0}{1} \frac{1}{2} \frac{3}{3} \frac{4}{5} \frac{5}{8}$$

Die entsprechenden Wörtermengen sind $\{\epsilon\}$, $\{b\}$, $\{aa, bb\}$, $\{bbb, baa, aab\}$, $\{bbbb, bbaa, baab, aaba, aabab\}$, $\{bbbbb, bbbaa, bbaab, baab, aabab, aabaa, aaaab\}$.

- b) Wir zeigen zuerst: Für jedes $k \in \mathbb{N}_0$ mit $k \ge 2$ gilt: Jedes Wort w in $L \cap \{a, b\}^k$ liegt auch in $\{aa\}(L \cap \{a, b\}^{k-2}) \cup \{b\}(L \cap \{a, b\}^{k-1})$:
 - 1. Fall: w beginnt mit dem Zeichen a. Da kein einzelnes a in in einem Wort aus L von einem b gefolgt sein kann, muss auch das zweite Zeichen ein a sein.

Das Wort w lässt sich also zerlegen in w = (aa)w', wobei |w'| = k - 2 gelten muss.

Weiterhin gibt es ein $i \in \mathbb{N}_0$, so dass $w \in \{aa, b\}^i$ gilt. Es muss $i \ge 0$ gelten, und wir erhalten $w \in \{aa, b\}^{i-1}$.

Da w mit aa beginnt, folgt, dass $w \in \{aa\}\{aa,b\}^{i-1} \subseteq \{aa\}L$ gilt und $w' \in L$ folgt.

Damit liegt w in $\{aa\}(L \cap \{a, b\}^{k-2}) \subseteq \{aa\}(L \cap \{a, b\}^{k-2}) \cup \{b\}(L \cap \{a, b\}^{k-1}).$

2. Fall: w beginnt mit dem Zeichen b.

Das Wort w lässt sich also zerlegen in w = (b)w', wobei |w'| = k - 1 gelten muss.

Weiterhin gibt es ein $i \in \mathbb{N}_0$, so dass $w \in \{aa, b\}^i$ gilt. Es muss $i \geq 0$ gelten, und wir erhalten $w \in \{aa, b\}\{aa, b\}^{i-1}$.

Da w mit b beginnt, folgt, dass $w \in \{b\}\{aa,b\}^{i-1} \subseteq \{b\}L$ gilt und $w' \in L$ folgt.

Damit liegt w in $\{b\}(L \cap \{a, b\}^{k-1}) \subseteq \{aa\}(L \cap \{a, b\}^{k-2}) \cup \{b\}(L \cap \{a, b\}^{k-1})$. Nun zeigen wir, dass für $k \geq 2$ jedes Wort $w \in \{aa\}(L \cap \{a, b\}^{k-2}) \cup \{b\}(L \cap \{a, b\}^{k-1})$ auch in $L \cap \{a, b\}^k$ liegt:

1. Fall: Sei $w \in \{aa\}(L \cap \{a, b\}^{k-2})$. Dann gibt es ein Wort w' der Länge k-2, das in L liegt und für das einerseits w = aaw' und andererseits $\exists i \in \mathbb{N}_0 : w' \in \{aa, b\}^i$ gilt.

Damit gilt: |w| = |aa| + |w'| = 2 + k - 2 = k und $w \in \{aa\}\{aa, b\}^i \subseteq \{aa, b\}^i = \{aa, b\}^{i+1} \subseteq L$.

Somit gilt $w \in L \cap \{a, b\}^k$.

2. Fall: Sei $w \in \{b\}(L \cap \{a, b\}^{k-1})$. Dann gibt es ein Wort w' der Länge k-1, das in L liegt und für das einerseits w = bw' und andererseits $\exists i \in \mathbb{N}_0 : w' \in \{aa, b\}^i$ gilt.

Damit gilt: $|w|=|\mathbf{b}|+|w'|=1+k-1=k$ und $w\in\{\mathbf{b}\}\{\mathbf{aa},\mathbf{b}\}^i\subseteq\{\mathbf{aa},\mathbf{b}\}\{\mathbf{aa},\mathbf{b}\}^i=\{\mathbf{aa},\mathbf{b}\}^{i+1}\subseteq L.$

Somit gilt $w \in L \cap \{a, b\}^k$.

Damit sind die beiden Mengen gleich.

c) Die Menge {aa}(L\cap {a, b}^k) enthält F_k Elemente, die Menge {b}(L\cap {a, b}^{k+1}) enthält F_{k+1} Elemente.

Da beide Mengen disjunkt sind, enthält ihre Vereinigung (die nach Teilaufgabe b) gerade $L \cap \{a, b\}^{k+2}$ ist), genau $F_k + F_{k+1}$ Elemente.

Somit gilt: $F_{k+2} = F_{k+1} + F_k$.