Web Data Mining

Example

Consider the following transactions:

(Bread, Eggs, Butter)

(Eggs, Bread, Milk)

(Cheese, Chips)

(Chips, Milk, Egg)

Find all rules that satisfy minimum support=0.5 and minimum confidence=0.5

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Sequential pattern mining
- Summary

Sequential pattern mining

- Association rule mining does not consider the order of transactions.
- In many applications such orderings are significant. E.g.,
 - in market basket analysis, it is interesting to know whether people buy some items in sequence,
 - e.g., buying bed first and then bed sheets some time later.
 - In Web usage mining, it is useful to find navigational patterns of users in a Web site from sequences of page visits of users

Basic concepts

- Let $I = \{i_1, i_2, ..., i_m\}$ be a set of items.
- Sequence: An ordered list of itemsets.
- Itemset/element: A non-empty set of items $X \subseteq I$. We denote a sequence s by $\langle a_1 a_2 ... a_r \rangle$, where a_i is an itemset, which is also called an **element** of s.
- An element (or an itemset) of a sequence is denoted by $\{x_1, x_2, ..., x_k\}$, where $x_j \in I$ is an item.
- We assume without loss of generality that items in an element of a sequence are in lexicographic order.

Basic concepts (contd)

- Size: The size of a sequence is the number of elements (or itemsets) in the sequence.
- Length: The length of a sequence is the number of items in the sequence.
 - □ A sequence of length *k* is called *k*-sequence.
- A sequence $s_1 = \langle a_1 a_2 ... a_r \rangle$ is a **subsequence** of another sequence $s_2 = \langle b_1 b_2 ... b_v \rangle$, or s_2 is a **supersequence** of s_1 , if there exist integers $1 \le j_1 < j_2 < ... < j_{r-1} < j_r \le v$ such that $a_1 \subseteq b_{j1}$, $a_2 \subseteq b_{j2}$, ..., $a_r \subseteq b_{jr}$. We also say that s_2 **contains** s_1 .

An example

- Let $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- Sequence ({3}{4, 5}{8}) is contained in (or is a subsequence of) ({6} {3, 7}{9}{4, 5, 8}{3, 8})
 - because {3} ⊆ {3, 7}, {4, 5} ⊆ {4, 5, 8}, and {8} ⊆ {3, 8}.
 - However, $\langle \{3\}\{8\} \rangle$ is not contained in $\langle \{3, 8\} \rangle$ or vice versa.
 - The size of the sequence ({3}{4, 5}{8}) is 3, and the length of the sequence is 4.

Dr. Rohit Tripathi

Objective

- Given a set S of input data sequences (or sequence database), the problem of mining sequential patterns is to find all the sequences that have a user-specified minimum support.
- Each such sequence is called a frequent sequence, or a sequential pattern.
- The support for a sequence is the fraction of total data sequences in S that contains this sequence.

Example

Table 1. A set of transactions sorted by customer ID and transaction time

Customer ID	Transaction Time	Transaction (items bought)
1	July 20, 2005	30
1	July 25, 2005	90
2	July 9, 2005	10, 20
2	July 14, 2005	30
2	July 20, 2005	40, 60, 70
3	July 25, 2005	30, 50, 70
4	July 25, 2005	30
4	July 29, 2005	40, 70
4	August 2, 2005	90
5	July 12, 2005	90

Dr. Rohit Tripathi

Example (cond)

Table 2. Data sequences produced from the transaction database in Table 1.

Customer ID	Data Sequence
1	({30} {90})
2	({10, 20} {30} {40, 60, 70})
3	({30, 50, 70})
4	({30} {40, 70} {90})
5	⟨{90}⟩

Table 3. The final output sequential patterns

	Sequential Patterns with Support ≥ 25%
1-sequences	({30}), ({40}), ({70}), ({90})
2-sequences	({30} {40}), ({30} {70}), ({30} {90}), ({40, 70})
3-sequences	({30} {40, 70})

GSP mining algorithm

Very similar to the Apriori algorithm

```
Algorithm GSP(S)
                                                           // the first pass over S
   C_1 \leftarrow \text{init-pass}(S);
2 F_1 \leftarrow \{\langle \{f\} \rangle | f \in C_1, f.\text{count}/n \ge minsup\}; // n \text{ is the number of sequences in } S
   for (k = 2; F_{k-1} \neq \emptyset; k++) do
                                                           // subsequent passes over S
     C_k \leftarrow \text{candidate-gen-SPM}(F_{k-1});
       for each data sequence s \in S do
                                                          // scan the data once
            for each candidate c \in C_k do
                if c is contained in s then
                                                           // increment the support count
                   c.count++;
9
            end
10
        end
       F_k \leftarrow \{c \in C_k \mid c.count/n \ge minsup\}
12 end
13 return \bigcup_k F_k;
```

Fig. 12. The GSP Algorithm for generating sequential patterns

Candidate generation

Function candidate-gen-SPM(F_{k-1})

- 1. **Join step.** Candidate sequences are generated by joining F_{k-1} with F_{k-1} . A sequence s_1 joins with s_2 if the subsequence obtained by dropping the first item of s_1 is the same as the subsequence obtained by dropping the last item of s_2 . The candidate sequence generated by joining s_1 with s_2 is the sequence s_1 extended with the last item in s_2 . There are two cases:
 - the added item forms a separate element if it was a separate element in s_2 , and is appended at the end of s_1 in the merged sequence, and
 - the added item is part of the last element of s_1 in the merged sequence otherwise.

When joining F_1 with F_1 , we need to add the item in s_2 both as part of an itemset and as a separate element. That is, joining $\langle \{x\} \rangle$ with $\langle \{y\} \rangle$ gives us both $\langle \{x,y\} \rangle$ and $\langle \{x\} \{y\} \rangle$. Note that x and y in $\{x,y\}$ are ordered.

2. **Prune** step. A candidate sequence is pruned if any one of its (k-1)subsequence is infrequent (without minimum support).

Fig. 13. The candidate-gen-SPM() function

An example

Table 4. Candidate generation: an example

Frequent	Candidate 4-sequences		
3-sequences	after joining	after pruning	
⟨{1, 2} {4}⟩	⟨{1, 2} {4, 5}⟩	⟨{1, 2} {4, 5}⟩	
⟨{1, 2} {5}⟩	⟨{1, 2} {4} {6}⟩		
⟨{1} {4, 5}⟩			
⟨{1, 4} {6}⟩			
⟨{2} {4, 5}⟩			
< {2} {4} {6} ⟩			

Dr. Rohit Tripathi

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining with multiple minimum supports
- Mining class association rules
- Sequential pattern mining
- Summary

Summary

- Association rule mining has been extensively studied in the data mining community.
- So is sequential pattern mining
- There are many efficient algorithms and model variations.
- Other related work includes
 - Multi-level or generalized rule mining
 - Constrained rule mining
 - Incremental rule mining
 - Maximal frequent itemset mining
 - Closed itemset mining
 - Rule interestingness and visualization
 - Parallel algorithms

Example

Customer ID	Transaction Data	Item bought
1	1 st January	Bread, Jam
1	3 st January	Milk, Butter
2	2 nd January	Bread, Butter
2	5 th January	Milk
3	1 st January	Milk
3	4 th January	Butter, Jam
4	3 rd January	Bread, Butter, Jam

Find sequence with at least 50% support

