- 1. Ein einfaches Planetensystem: Zwei Planeten umkreisen ihr Zentralgestirn auf kreisförmigen Bahnen. Der innere mit der Winkelgeschwindigkeit ω₁ am Bahnradius r₁ der äußere mit ω₂ auf r₂. Bestimmen Sie
 - a) Die Entfernung der beiden Planeten in **Konjunktion** (geringste Distanz) und **Opposition** (größte Distanz).
 - b) Die Entfernung der beiden Planeten $|\vec{r}_{l2}|$ zu jedem beliebigen Zeitpunkt t.

(Lösung:
$$|\vec{r}_{12}| = \sqrt{R_1^2 + R_2^2 - 2 \cdot R_1 \cdot R_2 \cdot cos(\omega_1 - \omega_2) \cdot t}$$
)

Der **zeitliche Nullpunkt** werde in den **Zeitpunkt der Konjunktion** gelegt. Bestimmen Sie für beide Fälle, $\omega_I > \omega_2$ und $\omega_I < \omega_2$ allgemein

- c) Die Zeitpunkte t_n für die n-te Konjunktion bzw. Opposition (n = 0 bezeichne den Startzeitpunkt, d. h. $t_0 = 0$). ($\underline{L\ddot{o}sung}$: $\omega_1 \omega_2 > 0$: $t_n = \frac{n \cdot \pi}{\omega_1 \omega_2}$; die $L\ddot{o}sung$ für $\omega_1 \omega_2 < 0$ ist analog zu ermitteln)
- d) Liefern Sie eine mathematische Begründung, dass für n = 0, 2, 4, ... Konjunktionen und für n = 1, 3, 5, ... Oppositionen sowohl für $\omega_1 > \omega_2$ als auch für $\omega_1 < \omega_2$ vorliegen.
- 2. a) Ein Auto fährt mit einer Geschwindigkeit von 100 kmh⁻¹ gegen einen Baum.
 - → Aus welcher Höhe müßte es fallen, um mit derselben Geschwindigkeit auf dem Boden aufzuschlagen? (*Lösung*: 39,33 m).
 - b) Ein **Aufzug** bewegt sich mit einer Beschleunigung von **1,6 ms**⁻² abwärts. Die Abdeckung der Deckenbeleuchtung fällt auf den **3 m** tieferen Boden. In dem Augenblick, in dem sie zu fallen beginnt, bemerkt ein Passagier, daß die Abdeckung seinen Fuß treffen wird.
 - → Wie lange hat er Zeit, um seinen Fuß aus der Fallstrecke zu bekommen? (*Lösung*: 0,85 s)
- 3. Aus einem schräg nach unten zeigenden Wasserspeier fließt Regenwasser mit der Geschwindigkeit $v_0 = 0.8 \text{ ms}^{-1}$ und unter dem Winkel $\alpha_0 = 60^{\circ}$ gegenüber der Vertikalen ab. Der Ausfluss befindet sich in der Höhe h = 12 m über dem Boden und in der Entfernung $x_0 = 0.75 \text{ m}$ von der Gebäudewand.
 - **a**) Stellen Sie die allgemeinen Gleichungen für $\vec{r}(t)$ und $\vec{v}(t)$ auf (in *Komponenten*).
 - **b**) Berechnen Sie die Fallzeit (*Lösung*: 1,5 s).
 - c) In welcher Entfernung x₁ von der Gebäudewand trifft das Wasser am Erdboden auf? (*Lösung*: 1,8 m)
- **4.** Ein Ball soll vom Punkt P_0 ($x_0 = 0$, $y_0 = 0$) unter dem Winkel $\alpha_0 = 45^\circ$ zur Horizontalen schräg nach oben geworfen werden.
 - a) Stellen Sie die Bahngleichung y(x) auf!
 - b) Wie groß muß die **Abwurfgeschwindigkeit** v_0 sein, wenn der Punkt P_1 ($x_1 = 6.0$ m, $y_1 = 1.5$ m) erreicht werden soll? ($L\ddot{o}sung$: 8.86 ms⁻¹)
 - c) Welcher Winkel α_0 und welche Abwurfgeschwindigkeit ν_0 müssen gewählt werden, wenn der Ball in horizontaler Richtung in P_1 einlaufen soll (P_1 ... Scheitelpunkt)? (<u>Lösung</u>: 26,57°, 12,13 ms⁻¹)

Bitte Seite wenden!

- 5. Eine Weitspringerin läuft mit der Geschwindigkeit $v_{\text{Anlauf}} = 18 \text{ kmh}^{-1}$ zum Absprungpunkt. Dort springt sie mit der Kraft $F_{\text{Absprung}} = 1000 \text{ N}$ ab. Der Absprungvorgang soll in der Zeit $dt_{\text{Absprung}} = 0.2 \text{ s}$ erfolgen. Die Masse der Läuferin beträgt m = 57 kg, ihr Körperschwerpunkt liege bei h = 1 m über dem Boden.
 - a) Man bestimme die **resultierende Gesamtgeschwindigkeit** $\vec{v}_{\text{resultierend}}$ beim Absprung.

```
(<u>Lösung</u>: v_x = 5 \text{ ms}^{-1}, v_y = 3.5 \text{ ms}^{-1})
```

- b) Berechnen Sie den Absprungwinkel α. (*Lösung*: 35°)
- c) Wie lange beträgt die Flugzeit t? (Lösung: 0,9 s)
- d) Wie weit springt die Springerin (Körperschwerpunkt)? (*Lösung*: 4,7 m)

<u>Hinweis</u>: Nehmen Sie an, daß die Absprungkraft senkrecht wirkt. Die Sprungweite ergibt sich aus dem Abstand vom Absprungpunkt bis zu jenem Punkt, an dem der Körperschwerpunkt den Boden erreicht.

6. Schräger Wurf mit Anfangshöhe: Berechnen Sie die Wurfweite w für einen Massenpunkt, der im homogenen Schwerefeld von der Höhe h_0 unter einem Winkel α mit einer Geschwindigkeit v_0 geworfen wird. Bestimmen Sie aus der allgemeinen Wurfweite $w(\alpha)$ jenen Abwurfwinkel α_{max} , unter dem die maximale Wurfweite w_{max} erzielt wird. Wie weicht α_{max} vom Optimalwinkel für $h_0 = 0$ ab? Berechnen Sie α_{max} für $h_0 = 10$ m und $v_0 = 10$ m/s. ($L\ddot{o}sung$: $\alpha_{max} = 30,16^{\circ}$)