Graphs with few trivial critical ideals

Carlos A. Alfaro

- Assumptions
- Motivation: Critical group
 - Invariant factors
 - The family G_i
 - Graphs with more than one invariant factor equal to 1
- Critical ideals
 - Definition

Assumptions on graphs

• are connected,

Assumptions on graphs

 multiple edges are allowed, and

Assumptions on graphs

loops are forbidden.

Laplacian Matrix

Definition

Let G = (V, E) be a graph, the Laplacian matrix L(G) of G is the matrix with rows and columns indexed by the vertices of G given by

$$L(G)_{uv} = egin{cases} \deg_G(u) & ext{if } u = v, \ -m_{uv} & ext{otherwise}, \end{cases}$$

where $\deg_G(u)$ denote the degree of u, and m_{uv} denote the number of edges from u to v.

Deminition

By considering L(G) as a linear operator on \mathbb{Z}^n , the critical group K(G) of G is the torsion part of the cokernel of L(G).

$$coker(L(G)) = \mathbb{Z}^n/ImL(G) = \mathbb{Z} \oplus K(G).$$

Invarian factors

Theorem

$$K(G) \cong \mathbb{Z}_{\mathbf{f_1}} \oplus \mathbb{Z}_{\mathbf{f_2}} \oplus \cdots \oplus \mathbb{Z}_{\mathbf{f_{n-1}}},$$

where $f_i \leq 0$ and $f_i \mid f_i$ for all $i \leq j$.

Invarian factors

Theorem

$$K(G) \cong \mathbb{Z}_{f_1} \oplus \mathbb{Z}_{f_2} \oplus \cdots \oplus \mathbb{Z}_{f_{n-1}},$$

where $f_i \leq 0$ and $f_i \mid f_i$ for all $i \leq j$.

Definition

The $f_1, f_2, ..., f_{n-1}$ are called invariant factors.

Invarian factors

Theorem

$$K(G) \cong \mathbb{Z}_{f_1} \oplus \mathbb{Z}_{f_2} \oplus \cdots \oplus \mathbb{Z}_{f_{n-1}},$$

where $f_i \leq 0$ and $f_i \mid f_i$ for all $i \leq j$.

Definition

The $f_1, f_2, ..., f_{n-1}$ are called invariant factors.

Proposition

If $\Delta_i(G)$ is the g.c.d of the *i*-minors of L(G), then f_i is equal to $\Delta_i(G)/\Delta_{i-1}(G)$, where $\Delta_0(G)=1$.

The family G_i

Definition

Let $f_1(G)$ be the number of invariant factors of L(G) equal to 1.

The family G_i

Definition

Let $f_1(G)$ be the number of invariant factors of L(G) equal to 1.

Definition

Let G_i be the family of simple connected graphs with $f_1(G) = i$.

The family G_i

Definition

Let $f_1(G)$ be the number of invariant factors of L(G) equal to 1.

Definition

Let \mathcal{G}_i be the family of simple connected graphs with $f_1(G) = i$.

Example

The following graph belongs to \mathcal{G}_2 .

$$L(G,s) \sim \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 3 \end{array}
ight]$$

Figura: Normalized number of graphs with f_1 invariant factors equal to 1.

Question

How often the critical group is cyclic? that is, how often $f_1(G)$ is equal to n-2 or n-1?

Question

How often the critical group is cyclic? that is, how often $f_1(G)$ is equal to n-2 or n-1?

Conjeture (D. Wagner, 2001)

Almost every connected simple graph has a cyclic critical group.

Question

How often the critical group is cyclic? that is, how often $f_1(G)$ is equal to n-2 or n-1?

Conjeture (D. Wagner, 2001)

Almost every connected simple graph has a cyclic critical group.

Theorem (M. Wood, 2014)

The probability that the critical group of a random graph is cyclic is asymptotically at most

$$\zeta(3)^{-1}\zeta(5)^{-1}\zeta(7)^{-1}\zeta(9)^{-1}\zeta(11)^{-1}\cdots \approx 0.7935212$$

where ζ is the Riemann zeta function.

Graphs with one invariant factor equal to 1

On the other hand...

Graphs with one invariant factor equal to 1

On the other hand...

Question

What we can say about \mathcal{G}_1 ?

Graphs with one invariant factor equal to 1

On the other hand...

Question

What we can say about \mathcal{G}_1 ?

Theorem (Lorenzini, 1991)

If G is a simple connected graphs, then the following statements are equivalent:

- I. $G \in \mathcal{G}_1$,
- II. G is P_3 -free, where P_n denote the path with n vertices,
- III. G is a complete graph.

Graphs with more than one invariant factor equal to 1

Question

What we can say about G_2 and G_3 ?

Graphs with more than one invariant factor equal to 1

Question

What we can say about \mathcal{G}_2 and \mathcal{G}_3 ?

Theorem

Let G be a simple connected graph. Then, $G \in \mathcal{G}_2$ if and only if G is one of the following graphs:

- **1.** K_{n_1,n_2,n_3} , where n_1 , n_2 y n_3 have the same parity.
- II. L_{n_1,n_2,n_3} , where $n_1, n_2, n_3 \ge 3$ have the same parity, and other eleven special cases.

The proof uses critical ideals

The critical ideals of a graph

Definition

Given a graph G = (V, E) and a set of indeterminates $X_G = \{x_u : u \in V\}$, the generalised Laplacian matrix $L(G, X_G)$ of G is the matrix given by

$$L(G, X_G)_{uv} = \begin{cases} x_u & \text{if } u = v, \\ -m_{uv} & \text{otherwise.} \end{cases}$$

For all $1 \le i \le |V(G)|$, the *i*-th critical ideal of G is the determinantal ideal given by

$$I_i(G,X_G) = \langle \{m: m \text{ is an } i \times i \text{ minor of } L(G,X_G)\} \rangle \subseteq \mathbb{Z}[X_G].$$

For all $1 \le i \le |V(G)|$, the *i*-th critical ideal of G is the determinantal ideal given by

$$I_i(G,X_G)=\langle \{m: m \text{ is an } i imes i \text{ minor of } L(G,X_G)\} \rangle \subseteq \mathbb{Z}[X_G].$$

Definition

We say that a critical ideal is trivial when it is equal to $\langle 1 \rangle$.

For all $1 \le i \le |V(G)|$, the *i*-th critical ideal of G is the determinantal ideal given by

$$I_i(G,X_G)=\langle \{m: m \text{ is an } i imes i ext{ minor of } L(G,X_G)\}
angle\subseteq \mathbb{Z}[X_G].$$

Definition

We say that a critical ideal is trivial when it is equal to $\langle 1 \rangle$.

Definition

The algebraic co-rank $\gamma(G)$ of a graph G is the number of trivial critical ideals of G.

For all $1 \le i \le |V(G)|$, the *i*-th critical ideal of G is the determinantal ideal given by

$$I_i(G,X_G)=\langle \{m: m \text{ is an } i imes i ext{ minor of } L(G,X_G)\}
angle\subseteq \mathbb{Z}[X_G].$$

Definition

We say that a critical ideal is trivial when it is equal to $\langle 1 \rangle$.

Definition

The algebraic co-rank $\gamma(G)$ of a graph G is the number of trivial critical ideals of G.

Remark

If H is an induced subgraph of G, then $I_i(H, X_H) \subseteq I_i(G, X_G)$ for all $i \leq |V(H)|$. Thus $\gamma(H) \leq \gamma(G)$.

 $\Gamma_{\leq i} = \{G : G \text{ is a simple connected graph with } \gamma(G) \leq i\}.$

 $\Gamma_{\leq i} = \{G : G \text{ is a simple connected graph with } \gamma(G) \leq i\}.$

Remark

 $\Gamma_{\leq i}$ is closed under induced subgraphs.

Theorem

If $\deg(G) = (\deg_G(v_1), ..., \deg_G(v_n))$ is the degree vector of G, and $f_1 \mid \cdots \mid f_{n-1}$ are the invariant factors of K(G), then

$$I_i(G, \deg(G)) = \left\langle \prod_{i=1}^l f_i \right\rangle \text{ for all } 1 \leq i \leq n-1.$$

Theorem

If $\deg(G) = (\deg_G(v_1), ..., \deg_G(v_n))$ is the degree vector of G, and $f_1 \mid \cdots \mid f_{n-1}$ are the invariant factors of K(G), then

$$I_i(G, \deg(G)) = \left\langle \prod_{j=1}^i f_j \right\rangle \text{ for all } 1 \leq i \leq n-1.$$

Remark

- If the critical ideal $I_i(G, X_G)$ is trivial, then $f_i = 1$.
- If $f_i \neq 1$, then the critical ideal $I_i(G, X_G)$ is not trivial.
- $G_i \subseteq \Gamma_{\leq i}$ for all $i \geq 0$.

A graph *G* is forbidden for $\Gamma_{\leq k}$ when $\gamma(G) \geq k + 1$.

A graph *G* is forbidden for $\Gamma_{\leq k}$ when $\gamma(G) \geq k + 1$.

Definition

Let $\mathsf{Forb}(\Gamma_{\leq k})$ be the set of minimal (under induced subgraphs property) forbidden graphs for $\Gamma_{\leq k}$.

A graph *G* is forbidden for $\Gamma_{\leq k}$ when $\gamma(G) \geq k + 1$.

Definition

Let $Forb(\Gamma_{\leq k})$ be the set of minimal (under induced subgraphs property) forbidden graphs for $\Gamma_{\leq k}$.

Remark

 $G \in \Gamma_{\leq k}$ if and only if G is **Forb**($\Gamma_{\leq k}$)-free.

Figura: The family \mathcal{F}_2 of graphs.

Theorem

If G is a simple connected graph. Then the following statements are equivalent:

- G ∈ Γ<2,
- G is \mathcal{F}_2 -free,
- G is K_{n_1,n_2,n_3} o L_{n_1,n_2,n_3} .

Our approach to solve this problem

Our approach to solve this problem

• Finding the family \mathcal{F} of induced forbidden subgraphs for $\Gamma_{< i}$.

Our approach to solve this problem

- Finding the family $\mathcal F$ of induced forbidden subgraphs for $\Gamma_{< i}$.
- 2 Determining the structure of the \mathcal{F} -free graphs.

Our approach to solve this problem

- Finding the family $\mathcal F$ of induced forbidden subgraphs for $\Gamma_{< i}$.
- ② Determining the structure of the \mathcal{F} -free graphs.
- **3** Computing the critical group of the \mathcal{F} -free graphs.

Figura: The family of graphs \mathfrak{F} .

Proposition

Each graph in \mathfrak{F} belongs to **Forb**($\Gamma_{<3}$).

Proposition

Each graph in \mathfrak{F} belongs to **Forb**($\Gamma_{<3}$).

Conjecture

 $\mathfrak{F} = \mathbf{Forb}(\Gamma_{\leq 3}).$

If a graph $G \in \Gamma_{\leq 3}$ has clique number at most 3, then G is an induced subgraph of a graph in the family of graphs \mathfrak{C} .

Figura: The family of graphs &.

Theorem

If a graph $G \in \Gamma_{\leq 3}$ has clique number at most 3, then G is an induced subgraph of a graph in the family of graphs \mathfrak{C} .

Figura: The family of graphs &.

Theorem

Each induced subgraph of a graph in \mathfrak{C} belongs to $\Gamma_{<3}$.

¡Gracias!