UNIVERSIDADE FEDERAL DE ITAJUBÁ - UNIFEI

INSTITUTO DE SISTEMAS ELÉTRICOS E ENERGIA - ISEE

DAVI DE MOURA JOSUÉ SANCHEZ PEDRO HENRIQUE LEONARDO FELIPE WALDIR JOSÉ MOURA

RELATÓRIO

ANÁLISE DA NECESSIDADE DE INSTALAÇÃO DE BANCOS DE CAPACITORES PARA CORREÇÃO DO FATOR DE POTÊNCIA

Itajubá 2024 DAVI DE MOURA BEZERRA - 2023008451
PEDRO HENRIQUE DA SILVA - 2023007267
JOSUÉ BEN. SANCHEZ - 2023008999
LEONARDO FELIPE- 2022006078
WALDIR JOSÉ NETO - 2023002547

RELATÓRIO

Este relatório justifica-se pela necessidade de obtenção de méritos parciais para a aprovação na disciplina Circuitos Elétricos III(EEE302) na Universidade Federal de Itajubá, sob a orientação do professor Thiago Clé de Oliveira.

1 Introdução	5
2 Objetivos	6
3 Análises	6
3.1 Consumidor 01	6
3.2.1 Consumidor 02 (Gerador Desligado)	8
3.2.2 Consumidor 02 (Gerador Ligado Média)	9
3.3 Consumidor 03	11
3.4.1 Potência da Linha (Gerador Desligado)	13
3.4.2 Potência da Linha (Gerador Ligado Média)	14
3.5.1 Análise da Fonte (Gerador Desligado)	16
3.5.2 Análise da Fonte (Gerador Ligado Média)	17
3.6 Análise Geração Fotovoltaica	18
4 Referências Bibliográficas	19

Resumo: Este relatório técnico tem como objetivo analisar a necessidade de instalação de bancos de capacitores para a correção do fator de potência da instalação apresentada. Neste relatório, será apresentado o memorial dos cálculos executados durante os encontros do grupo, juntamente com uma justificativa do valor escolhido para a correção do fator de potência. Além disso, será feita uma análise das opções de instalação dos bancos de capacitores e devido à instalação do banco de capacitores, a possibilidade de ocorrência do fenômeno de ressonância.

Palavras-chave: Banco de Capacitores. Fator de Potência.

1 Introdução

O fator de potência está diretamente relacionado à diferença de tensão e corrente em um sistema elétrico. De acordo com o Boylestad(2012), fator de potência (Fp) mostra a quantidade de potência elétrica fornecida ao circuito que está sendo transformada em trabalho. O valor pode variar de 0 a 1, e um circuito com um valor mais próximo de 1 é considerado mais eficiente.

Dessa forma, entende-se que um baixo fator de potência representa um baixo aproveitamento da energia elétrica fornecida, maior corrente elétrica e aumento dos custos. Esse cenário de maior qualidade elétrica impacta as entregas de distribuição de energia e seus consumidores. Para corrigir a ineficiência do circuito, ou seja, o fator de potência, são implementados componentes capacitivos em paralelo à carga. Os bancos de capacitores são dispositivos que ao serem inseridos no circuito fornecem diferentes valores capacitivos e após as medições realizadas por sensores, controlam o valor capacitivo a ser fornecido pelo banco.

O presente trabalho apresenta uma análise da necessidade de instalação de bancos de capacitores para correção do fator de potência da instalação apresentada (Figura 1). O circuito analisado tenta reproduzir uma situação em que uma subestação de distribuição fornece energia, através de condutores de linha com impedâncias, a cinco consumidores de características bem diferentes. Também é possível analisá-lo como o retrato de uma indústria, onde a subestação principal dela é responsável pelo fornecimento de energia aos cinco setores da planta industrial descritos a seguir. Com isso, busca-se explorar todos os conceitos envolvidos na disciplina.

Figura 1: Diagrama geral do sistema a ser estudado.

2 Objetivos

A primeira etapa deste projeto tem como principais objetivos calcular as correntes de linha em cada consumidor, calcular as correntes de linha fornecidas pela fonte (parcial), disponibilizar o triângulo de potências de cada consumidor e o triângulo de potências fornecido pela fonte (parcial).

3 Análises

3.1 Consumidor 01

Carga trifásica desequilibrada em estrela com sequência direta de fases onde, a partir da tensão de linha dada no consumidor 3, tópico 3.3, foi possível calcular as tensões de fase do consumidor 1, foi considerado a sequência de fases direta :

Fonte: Autoria própria

$$\frac{Vab}{\sqrt{3}} = Van(45^{\circ} - 30^{\circ}) = 7967,43 \angle + 15^{\circ} [V]$$

O valor de Vbn e de Vcn será o mesmo em módulo de Van mas seus ângulos tem uma defasagem de 120° nas suas relações de acordo com o diagrama fasorial:

$$Vbn = 7967, 43 \angle - 105^{\circ} [V]$$

$$Vcn = 7967,43 \angle + 135°[V]$$

Com as tensões de fase do consumidor 1 calculadas, é possível calcular as correntes em cada impedância:

$$Za = 2 + j1 [k\Omega]$$

$$Zb = 3, 1 \angle + 60^{\circ} [k\Omega]$$

$$Zc = 2, 9 + j2, 5 [k\Omega]$$

$$Ia = \frac{Van}{Za} = 3,56314 \angle - 11,56^{\circ} [A]$$
 $Ib = \frac{Vbn}{Zb} = 2,57014 \angle - 165^{\circ} [A]$
 $Ic = \frac{Vcn}{Zc} = 2,08090 \angle + 94,24^{\circ} [A]$

Com as correntes das cargas, é possível calcular as potências aparentes de cada impedância e assim fazer a potência aparente total do consumidor 01, com isso é possível também encontrar a potência ativa total e a potência reativa total do consumidor, por meio de:

$$St = S1 + S2 + S3;$$

$$S1 = Van \cdot \bar{l}a = (7967, 43 \angle + 15^{\circ}) \cdot (3,56314 \angle + 11,56^{\circ}) = 28389,07 \angle + 26,56^{\circ} [Va]$$

$$S2 = Vbn \cdot \overline{l}b = (7967, 43 \angle - 105^{\circ}) \cdot (2,57014 \angle - 165^{\circ}) = 20477, 41 \angle + 60^{\circ}[Va]$$

$$S3 = Vcn \cdot \overline{l}c = (7967, 43 \angle + 135^{\circ}) \cdot (2,08090 \angle + 94,24^{\circ}) = 16579,42 \angle + 40,76^{\circ} [Va]$$

$$S_{t1} = 63435, 12 \angle + 40, 56 \circ [Va]$$

Tendo o valor da potência aparente total é possível encontrar a potência ativa total (P) e a potência reativa total (Q), já que (P) é a parte real da potência aparente, e (Q) a parte imaginária da potência aparente, logo:

$$P_{t1} = 48193, 27 [W]$$

$$Q_{t1} = 41248, 30 [Var]$$

O fator de potência foi então calculado:

$$fp = \frac{P}{S} = 0,76$$

Com isso foi possível montar o triângulo de potências, sendo $\varphi = \cos^{-1}(fp)$

$$\varphi = 40,56^{\circ}$$

Fonte: Autoria própria

3.2.1 Consumidor 02 (Gerador Desligado)

Um consumidor com carga trifásica equilibrada indutiva constante com potência ativa de 55kW e F.P de 0,89, foi considerado a sequência de fases direta. No primeiro momento não será considerada a geração fotovoltaica.

Podemos encontrar o valor do módulo da potência aparente:

$$S = \frac{P}{FP} = 61797,75 \ [Va]$$

Além disso, sabemos que $\cos^{-1}(fp) = \varphi$, sendo o ângulo da potência aparente, logo:

$$\varphi = 27,13^{\circ}$$

Com isso, a potência aparente total do consumidor 2 será:

$$S_{t2} = 61797,75 \angle + 27,13^{\circ}$$

Tendo o valor da potência aparente total é possível encontrar a potência ativa total (P) e a potência reativa total (Q), já que (P) é a parte real da potência aparente, e (Q) a parte imaginária da potência aparente, logo:

$$P_{t2} = 55000 [W]$$

$$Q_{t2} = 28177, 33 \ [Var]$$

Fonte: Autoria própria

Com a tensão de fase obtida no consumidor 1, tópico 3.1, com isso é possível determinar as correntes, iguais em módulo mas defasadas em 120°.

$$\overline{I}a = \frac{S/3}{Van} = Ia_2 = 2,58 \angle -12,12^{\circ} [A]$$

$$\overline{I}b = \frac{S/3}{Vcn} = Ib_2 = 2,58 \angle -132,12^{\circ} [A]$$

$$\overline{Ic} = \frac{S/3}{Vcn} = Ic_2 = 2,58 \angle + 107,88^{\circ} [A]$$

3.2.2 Consumidor 02 (Gerador Ligado Média)

Um consumidor com carga trifásica equilibrada indutiva constante com potência ativa de 55kW e F.P de 0,89, foi considerado a sequência de fases direta. Agora será considerada a média da geração em um dia.

Tabela 1 - Dados da potência e do fator de potência da geração fotovoltaica.

hora	P (W)	fator potência indutivo
00:00	0,0	0,0000
01:00	0,0	0,0000
02:00	0,0	0,0000
03:00	0,0	0,0000
04:00	0,0	0,0000

hora	P (W)	fator potência indutivo		
12:00	62.700	0,8929		
12:30	60.230	0,8571		
13:00	58.900	0,8500		
13:30	60.800	0,8143		
14:00	59.375	0,7286		

05:00	0,0	0,0000	14:30	57.000	0,7286
05:30	0,0	0,0000	15:00	56.525	0,8143
06:00	475	0,8257	15:30	54.150	0,8500
06:30	9.310	0,8643	16:00	48.450	0,7286
07:00	26.980	0,9071	16:30	33.725	0,9143
07:30	46.075	0,8929	17:00	17.100	0,9357
08:00	54.910	0,9286	17:30	2.850	0,8929
08:30	57.475	0,9214	18:00	760	0,8643
09:00	60.325	0,9429	18:30	0,0	0,0000
09:30	59.375	0,9357	19:00	0,0	0,0000
10:00	61.750	0,9429	20:00	0,0	0,0000
10:30	61.275	0,9057	21:00	0,0	0,0000
11:00	62.700	0,8857	22:00	0,0	0,0000
11:30	62.225	0,9143	23:00	0,0	0,0000

Fonte: Proposta de trabalho.

Através da tabela temos que a geração média é de $P_g=45417,6\,[W]$ com fp=0,86. Portanto podemos definir o novo triângulo de potência do consumidor 2:

$$\begin{split} P_{t2g} &= \ P_{t2} - P_g = 9582, 40 \ [W] \\ Q_{t2g} &= \ Q_{t2} + Q_g = 53971, 18 \ [Var] \\ S_{t2g} &= P_{t2g} + jQ_{t2g} = 54815, 24 \angle + 79, 93^{\circ} \end{split}$$

Além disso, sabemos que $cos(\varphi) = fp$, sendo o fator de potência, logo:

$$fp = 0.17$$

Fonte: Autoria própria

Com a tensão de fase obtida no consumidor 1, tópico 3.1, com isso é possível determinar as correntes, iguais em módulo mas defasadas em 120°.

$$\overline{I}a = \frac{S/3}{Van} = Ia_{2g} = 2.29 \angle -64,93^{\circ} [A]$$
 $\overline{I}b = \frac{S/3}{Vcn} = Ib_{2g} = 2.29 \angle +175,06^{\circ} [A]$
 $\overline{I}c = \frac{S/3}{Vcn} = Ic_{2g} = 2.29 \angle +55,06^{\circ} [A]$

3.3 Consumidor 03

Carga trifásica equilibrada onde

$$Vab(t) = 19516, 15 \cdot sen(wt + \frac{\pi}{4}) [V]$$

$$Ia(t) = 3, 31 \cdot sen(wt - \frac{15\pi}{180}) [A]$$

A tensão e corrente fornecida foram transformadas em sua forma fasorial:

$$\frac{Vab(t)}{\sqrt{2}} \angle + 45^{\circ} = \frac{Vab}{\sqrt{3}} \angle + 45^{\circ} - 30^{\circ} = Van = 7967, 43 \angle + 15 [V]$$
$$\frac{Ia(t)}{\sqrt{2}} \angle - 15^{\circ} = Ia = 2, 34 \angle - 15^{\circ} [A]$$

Como a carga está equilibrada, o valor da potência aparente total será três vezes o

valor da potência aparente de uma das impedâncias:

$$S_{t3} = 3 \cdot Van \cdot \bar{l}a = 3 \cdot (7967, 43 \angle + 15^{\circ}) \cdot (2, 34 \angle + 15^{\circ}) = 55931, 36 \angle + 30^{\circ} [Va]$$

Tendo o valor da potência aparente total é possível encontrar a potência ativa total (P) e a potência reativa total (Q), já que (P) é a parte real da potência aparente, e (Q) a parte imaginária da potência aparente, logo:

$$P_{t3} = 48437,98 \ [W]$$

$$Q_{t3} = 27965,68 \ [Var]$$

O fator de potência foi então calculado:

$$fp = \frac{P}{S} = 0.87$$

Com isso foi possível montar o triângulo de potências, sendo $\varphi = cos^{-1}(fp)$

$$\varphi = 30^{\circ}$$

$$\varphi = 30^{\circ}$$

$$48437.98 W$$
27965,68 VAr

Fonte: Autoria própria

Como foi dado a corrente Ia e se trata de um circuito trifásico equilibrado, temos que as correntes Ib e Ic tem o mesmo módulo mas defasadas em 120°:

$$Ia_3 = 2,34 \angle - 15^{\circ} [A]$$

$$Ib_3 = 2,34 \angle - 135^{\circ}[A]$$

$$Ic_3 = 2,34 \angle + 105^{\circ} [A]$$

3.4.1 Potência da Linha (Gerador Desligado)

Como cada fio da linha possui uma impedância, há uma potência presente em cada um. Com isso, é possível calcular o triângulo de potência gerado. Primeiramente, somam-se as correntes de todos os consumidores para descobrir a corrente total:

$$Ia' = Ia_1 + Ia_2 + Ia_3 = 8,48 \angle - 12,68^{\circ} [A]$$
 $Ib' = Ib_1 + Ib_2 + Ib_3 = 7,24 \angle - 144,18^{\circ} [A]$
 $Ic' = Ic_1 + Ic_2 + Ic_3 = 6,97 \angle + 102,87^{\circ} [A]$

A impedância de linha foi dada, $Z_l=25+j21\,[\Omega]$. Para calcular a potência dissipada na impedância de linha, temos:

$$P = I^2 . Z_{(real)}$$

$$Q = I^2$$
. $Z_{(imagin\'ario)}$

Impedância linha A:

$$P_{la} = (8, 27)^2 \cdot (25) = 1713, 46 [W]$$

$$Q_{la} = (-1, 86)^2 \cdot (21) = 72, 89 [Var]$$

Impedância linha B:

$$P_{lb} = (-5,87)^2 \cdot (25) = 861,84 [W]$$

$$Q_{lb} = (-4, 23)^2$$
. $(21) = 377, 05$ [Var]

Impedância linha C:

$$P_{lc} = (-1,55)^2 \cdot (25) = 60,28[W]$$

$$Q_{lc} = (6,79)^2$$
. (21) = 969,93 [Var]

Para calcularmos a potência total, basta somarmos as potências de cada fase:

$$S_{xt} = 2993,732 + 28,32^{\circ} [Va]$$

Tendo o valor da potência aparente total é possível encontrar a potência ativa total (P) e a potência reativa total (Q), já que (P) é a parte real da potência aparente, e (Q) a parte imaginária da potência aparente, logo:

$$P_{t3} = 2635, 59 [W]$$

$$Q_{t3} = 1419,88 \ [Var]$$

Fonte: Autoria própria

Foi calculado também o valor da queda de tensão nas impedâncias por meio de:

$$Vz_a = Ia' \cdot Z_l = 277,06 \angle + 27,34^{\circ} [V]$$

 $Vz_b = Ib' \cdot Z_l = 236,40 \angle - 104,15^{\circ} [V]$
 $Vz_c = Ic' \cdot Z_l = 227,61 \angle + 142,90^{\circ} [V]$

3.4.2 Potência da Linha (Gerador Ligado Média)

Agora a análise será com base na média de geração fotovoltaica, portanto teremos as correntes Ig_2 para cada linha.

Como cada fio da linha possui uma impedância, há uma potência presente em cada um. Com isso, é possível calcular o triângulo de potência gerado. Primeiramente, somam-se as correntes de todos os consumidores para descobrir a corrente total:

$$Ia' = Ia_1 + Iag_2 + Ia_3 = 7,53\angle - 26,80^{\circ} [A]$$
 $Ib' = Ib_1 + Ibg_2 + Ib_3 = 11,12\angle - 161,70^{\circ} [A]$
 $Ic' = Ic_1 + Icg_2 + Ic_3 = 10,47\angle + 84,90^{\circ} [A]$

A impedância de linha foi dada, $Z_l=25+j21\,[\Omega]$. Para calcular a potência dissipada na impedância de linha, temos:

$$P = I^2 \cdot Z_{(real)}$$

$$Q = I^2 \cdot Z_{(imagin\'{a}rio)}$$

Impedância linha A:

$$P_{la} = (6,72)^2 \cdot (25) = 1129,87 [W]$$

$$Q_{la} = (-3, 39)^2$$
. (21) = 242.37 [Var]

Impedância linha B:

$$P_{lb} = (-6, 42)^2$$
. (25) = 1031, 05 [W]

$$Q_{lb} = (-2, 12)^2$$
. (21) = 94,61 [Var]

Impedância linha C:

$$P_{lc} = (0,55)^2 \times (25) = 7,66 [W]$$

$$Q_{lc} = (6,21)^2 \times (21) = 811,30 [Var]$$

Para calcularmos a potência total, basta somarmos as potências de cada fase:

$$S_{zt} = 2453,85 \angle + 27,90^{\circ} [Va]$$

Tendo o valor da potência aparente total é possível encontrar a potência ativa total (P) e a potência reativa total (Q), já que (P) é a parte real da potência aparente, e (Q) a parte imaginária da potência aparente, logo:

$$P_{t3} = 2168, 59 [W]$$

$$Q_{t3} = 1148,29 [Var]$$

Fonte: Autoria própria

Foi calculado também o valor da queda de tensão nas impedâncias por meio de:

$$Vz_{ag} = Ia_g' \cdot Z_l = 245,92 \angle + 13,22^{\circ} [V]$$

 $Vz_{bg} = Ib_g' \cdot Z_l = 220,83 \angle - 121,67^{\circ} [V]$
 $Vz_{cg} = Ic_g' \cdot Z_l = 203,74 \angle + 124,93^{\circ} [V]$

3.5.1 Análise da Fonte (Gerador Desligado)

Com os triângulos de potência de cada consumidor e da linha, é possível encontrar o valor da potência aparente da fonte e consequentemente da potência ativa e reativa da fonte, para isso foi somado os valores de S de cada consumidor:

$$Stf = S1t + S2 + S3 + Sz$$

 $Stf = 183198,61 \angle + 32,64^{\circ} [Va]$

Sendo a potência ativa total da fonte a parte real e a potência reativa total da fonte a parte imaginária de S:

$$Pt = 154261, 73 [W]$$

 $Qt = 98818, 25 [Var]$

A tensão de fase exigida pela fonte foi encontrada a partir da soma da queda de tensão provocada pela impedância de linha mais a tensão de fase recebida pelos consumidores. A corrente total já foi calculada no item 3.4.1, o que se resume a somar cada corrente exigida pelos consumidores.

$$Ean = Vz_a + Van$$

$$Ebn = Vz_b + Vbn$$

$$Ecn = Vz_c + Vcn$$

Tabela 4: Resumo da Fonte

	Tensão Linha	Tensão Linha	Tensão Linha	Corrente	Corrente	Corrente Linha C
Fonte	A Fonte [V]	B Fonte [V]	C Fonte [V]	Linha A [A]	Linha B [A]	[A]
Gerador	8238,298585	8203,817416	8192,942871∠	8,485863∠-1	7,240776∠-1	6,971285∠102,870
desligado	∠15,412049	∠-104,975569	135,218802	2,682885	44,182423	631

Fonte: Autoria Própria.

Com isso foi possível montar o triângulo de potências da fonte, além disso foi calculado também o fator de potência da fonte:

$$fp = \frac{P}{S} = 0.84$$

Fonte: Autoria própria

3.5.2 Análise da Fonte (Gerador Ligado Média)

Através dos triângulos de potência de cada consumidor e da linha, podemos determinar a potência aparente da fonte, e, em seguida, suas potências ativa e reativa. Para tanto, somamos os valores de "S" de cada consumidor, utilizando o valor médio do consumidor 2:

$$Stf = S1t + S2 + S3 + Sz$$

 $Stf = 173333,65 \angle + 33,69^{\circ}[Va]$

A potência ativa total da fonte (a parte "real") e a potência reativa total da fonte (a parte "imaginária") juntas formam a potência aparente (S).

$$Pt = 144212, 34 [W]$$
 $Qt = 96163, 17 [Var]$

A tensão de fase exigida pela fonte foi encontrada a partir da soma da queda de tensão provocada pela impedância de linha mais a tensão de fase recebida pelos consumidores. A corrente total já foi calculada no item 3.4.2, o que se resume a somar cada corrente exigida pelos consumidores.

$$Ean = Vz_{ag} + Van$$

$$Ebn = Vz_{bg} + Vbn$$

$$Ecn = Vz_{cg} + Vcn$$

Tabela 5: Resumo da fonte ligada.

	Tensão Linha	Tensão Linha	Tensão Linha	Corrente	Corrente	Corrente Linha C
Fonte	A Fonte [V]	B Fonte [V]	C Fonte [V]	Linha A [A]	Linha B [A]	[A]
Gerador ligado	8213,247586	8179,220752	8168,119176∠	7,532357∠-2	6,763715∠-1	6,240224∠84,9084
média	∠14,946737	∠-105,444006	134,750323	6,809358	61,709790	25

Fonte: Autoria própria

Com base nisso, o triângulo de potências da fonte foi construído e o fator de potência da fonte também foi calculado.

$$fp = \frac{P}{S} = 0,83$$

Fonte: Autoria própria

3.6 Análise Geração Fotovoltaica

Em uma análise detalhada hora a hora da geração do consumidor 2 podemos ver melhor a influência na rede e o impacto na exigência da fonte. Tais dados serão mostrados na tabela a seguir, que foi gerada através do software Octave (o código pode ser acessado ao final do documento).

Em suma, pode-se perceber que quanto maior é a geração fotovoltaica menor é a corrente nas linhas de transmissão e, consequentemente, menor é a tensão na fonte. Contudo o fator de potência piora por se tratar de mais potência reativa na rede, a correção desse valor para um adequado será feita na segunda parte do projeto.

No link abaixo, a primeira página aborda somente o impacto no consumidor 2, a segunda aborda de maneira mais geral o impacto na fonte, já a terceira trata dos dados contendo um resumo.

polifasicos

<u>código</u>

4 Referências Bibliográficas

BOYLESTAD, Robert L. **Introdução a Análise de Circuitos.** 12ª Edição.São Paulo: Pearson Prentice Hall,