MAST20009 Vector Calculus

Practice Class 4 Questions

A path c(t) is a *flowline* of a vector field F if

$$\frac{d\boldsymbol{c}}{dt} = \boldsymbol{F}[\boldsymbol{c}(t)].$$

1. (a) Let substitute a few point F(x,y) = F(x,y)

Sketch the vector field in the x-y plane, using the correct length and direction of the vectors. Make sure you include a scale on the axes and show at least two vectors in each quadrant.

(b) Let

$$F(x,y,z) = yi - xj + k.$$

$$(b) = (x(t) = (x(t), y(t), z(t)))$$

$$x(t) = y$$

$$y(t) = -x$$

(A)

Determine the equation of the flowlines for F. Describe or sketch the flowlines.

If f(x, y, z) is a C^1 scalar function, the gradient of f is:

$$oldsymbol{
abla} f \ = oldsymbol{i} rac{\partial f}{\partial x} + oldsymbol{j} rac{\partial f}{\partial y} + oldsymbol{k} rac{\partial f}{\partial z}$$

If $\mathbf{F}(x, y, z) = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$ is a C^1 vector field, the divergence of \mathbf{F} is:

$$\nabla \cdot F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

If $\mathbf{F}(x, y, z) = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$ is a C^1 vector field, the *curl* of \mathbf{F} is:

$$(x,y,z) = F_{1}\mathbf{i} + F_{2}\mathbf{j} + F_{3}\mathbf{k} \text{ is a } C^{1} \text{ vector field, the } divergence \text{ of } \mathbf{F} \text{ is:}$$

$$\nabla \cdot \mathbf{F} = \frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z}$$

$$(x,y,z) = F_{1}\mathbf{i} + F_{2}\mathbf{j} + F_{3}\mathbf{k} \text{ is a } C^{1} \text{ vector field, the } curl \text{ of } \mathbf{F} \text{ is:}$$

$$\nabla \times \mathbf{F} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{1} & F_{2} & F_{3} \end{bmatrix}$$

$$= \left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z}\right) \mathbf{i} - \left(\frac{\partial F_{3}}{\partial x} - \frac{\partial F_{1}}{\partial z}\right) \mathbf{j} + \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right) \mathbf{k}$$

$$\mathbf{x} + \mathbf{x} = C$$

$$(x,y,z) \text{ is a } C^{2} \text{ scalar function, the } Laplacian \text{ of } f \text{ is:}$$

If f(x, y, z) is a C^2 scalar function, the Laplacian of f is:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

If $F(x, y, z) = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$ is a C^2 vector field, the Laplacian of F is:

$$\nabla^2 \boldsymbol{F} = \nabla^2 u \boldsymbol{i} + \nabla^2 v \boldsymbol{j} + \nabla^2 w \boldsymbol{k}$$

(a) Let $f(x, y, z) = 2e^{xy} - z \log(xy)$. Calculate ∇f and $\nabla^2 f$.

(b) Let $\mathbf{F}(x, y, z) = (xz \sin y, y \cos y, y^2 z^2)$. Calculate $\nabla \cdot \boldsymbol{F}$, $\nabla \times \boldsymbol{F}$ and $\nabla^2 \boldsymbol{F}$.

Let V(x, y, z) be a vector field. If $\nabla \times V = 0$ (\overline{V} is *irrotational*), then \overline{V} can be represented by

be represented by
$$V = \nabla \phi$$
. $V_1 = \frac{\partial}{\partial x}$,

 $(x,y,z) = (2xyz + x^2)\mathbf{i} + (x^2z + 1)\mathbf{j} + (x^2y + z)\mathbf{k}.$ $(a) \text{ Show that } \mathbf{V} \text{ is irrotational.}$ $(b) \text{ Find the scalar potential function } \phi \text{ such that } \mathbf{V} = \nabla \phi.$ $(x,y,z) \text{ be a vector } 6c^{1,1} \text{ for } \mathbf{V} = \mathbf{V} = \mathbf{V}$

Let V(x,y,z) be a vector field. If $\nabla \cdot \overline{V} = 0$ (V is incompressible), then

$$oldsymbol{V} = oldsymbol{
abla} imes oldsymbol{F}$$

where $\mathbf{F} = (F_1, F_2, F_3)$ and

$$F_{1} = \int_{0}^{z} V_{2}(x, y, t)dt - \int_{0}^{y} V_{3}(x, t, 0)dt$$

$$F_{2} = -\int_{0}^{z} V_{1}(x, y, t)dt$$

$$F_{3} = 0.$$

+
$$\frac{1}{5} \left[\frac{3}{5x} (x^2 + 1) - \frac{3}{5y} (2xy + x^2) \right]$$

= $\frac{1}{5} (x^2 - x^2) - \frac{1}{5} (2xy - 2xy)$

4. Let
$$V(x, y, z) = xe^{2z}\mathbf{i} + ye^{2z}\mathbf{j} - (e^{2z} + 2xe^{-y^2})\mathbf{k}$$
.

- (a) Show that V is incompressible.
- (b) Find a vector potential \mathbf{F} such that $\mathbf{V} = \nabla \times \mathbf{F}$.

Let f, g be scalar functions of (x, y, z). Let \mathbf{F}, \mathbf{G} be vector fields in \mathbb{R}^3 .

1.
$$\nabla(f+g) = \nabla f + \nabla g$$

2.
$$\nabla(\beta f) = \beta \nabla f$$
 (β constant)

3.
$$\nabla(fg) = f\nabla g + g\nabla f$$

Let
$$f, g$$
 be scalar functions of (x, y, z) . Let F, G

1. $\nabla(f+g) = \nabla f + \nabla g$

2. $\nabla(\beta f) = \beta \nabla f$ $(\beta \text{ constant})$

3. $\nabla(fg) = f \nabla g + g \nabla f$

4. $\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$ provided $g \neq 0$

5. $\nabla \cdot (F+G) = \nabla \cdot F + \nabla \cdot G$

6. $\nabla \times (F+G) = \nabla \times F + \nabla \times G$

7. $\nabla \cdot (fF) = f\nabla \cdot F + F \cdot \nabla f$

8. $\nabla \cdot (F \times G) = G \cdot (\nabla \times F) - F \cdot (\nabla \times G)$

9. $\nabla \cdot (\nabla \times F) = 0$

10. $\nabla \times (fF) = f\nabla \times F + \nabla f \times F$

11. $\nabla \times (\nabla f) = 0$

12. $\nabla^2(fg) = f\nabla^2 g + g\nabla^2 f + 2\nabla f \cdot \nabla g$

13. $\nabla \cdot (\nabla f \times \nabla g) = 0$

14. $\nabla \cdot (f\nabla g - g\nabla f) = f\nabla^2 g - g\nabla^2 f$

15. $\nabla \times (\nabla \times F) = \nabla(\nabla \cdot F) - \nabla^2 F$

5.
$$\nabla \cdot (\mathbf{F} + \mathbf{G}) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G}$$

6.
$$\nabla \times (F + G) = \nabla \times F + \nabla \times G$$

7.
$$\nabla \cdot (f\mathbf{F}) = f\nabla \cdot \mathbf{F} + \mathbf{F} \cdot \nabla f$$

8.
$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{G})$$

9.
$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$

10.
$$\nabla \times (f\mathbf{F}) = f\nabla \times \mathbf{F} + \nabla f \times \mathbf{F}$$

11.
$$\nabla \times (\nabla f) = \mathbf{0}$$

12.
$$\nabla^2(fg) = f\nabla^2 g + g\nabla^2 f + 2\nabla f \cdot \nabla g$$

13.
$$\nabla \cdot (\nabla f \times \nabla g) = 0$$

14.
$$\nabla \cdot (f\nabla g - g\nabla f) = f\nabla^2 g - g\nabla^2 f$$

15.
$$\nabla \times (\nabla \times \mathbf{F}) = \nabla (\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F}$$

(a) Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $r = \sqrt{x^2 + y^2 + z^2}$. Using the vector identities, simplify

$$\nabla \times (e^{2r} r).$$

(b) Assuming that f(x,y,z) and g(x,y,z) are C^2 scalar functions, prove identity 12 by direct calculation.

When you have finished the above questions, continue working on the questions in the Vector Calculus Problem Sheet Booklet.