

Statistical Characterisation of Porous Media at the Pore Scale

Normalization and Physical Interpretation

Student:

Lukas Mosser

Supervisors:

Professor Olivier Dubrule

Professor Martin Blunt

Presentation Outline

- Normalization
- Mean Curvature Determination (Constant)
- Physical Interpretation MT 1 and MT 2
- Normalized Results Parametric Models
- Expanding Window:
 - Beadpack
 - Ketton
 - Estaillades
 - Doddington
 - Bentheimer
 - Comparison

Normalization

Normalization of Surface Tensor by 1st scalar Minkowski functional (surface area)

$$\widehat{W}_{1}^{0,2} = \frac{W_{1}^{0,2}}{W_{1}^{0,0}} = \frac{\frac{1}{3} \int_{\partial K} n \odot n dA}{\frac{1}{3} \int_{\partial K} dA}$$

Normalization of Curvature Tensor by 2nd scalar Minkowski functional (Mean Curvature)

$$\widehat{W}_{2}^{0,2} = \frac{W_{2}^{0,2}}{W_{2}^{0,0}} = \frac{\frac{1}{3} \int_{\partial K} G_{2} n \odot n dA}{\frac{1}{3} \int_{\partial K} G_{2} dA}, G_{2} = \frac{\kappa_{1} + \kappa_{2}}{2}$$

Finding mean (constant) curvature

$$G_{2} = \frac{W_{2}^{0,2}}{W_{1}^{0,0}} = \frac{\frac{1}{3} \int_{\partial K} G_{2} n \odot n dA}{\frac{1}{3} \int_{\partial K} dA} = tr(G_{2} \frac{\frac{1}{3} \int_{\partial K} n \odot n dA}{\frac{1}{3} \int_{\partial K} dA})$$

Mean Curvature (simple)

	$W_1^{0,0}$	$W_2^{0,2}$	$\widehat{W}_{2}^{0,2}$	$tr(\widehat{W}_{2}^{0,2}) = K$
Sphere (R=1, κ =1)	4.185	$\begin{bmatrix} 1.394 & 0 & 0 \\ 0 & 1.394 & 0 \\ 0 & 0 & 1.394 \end{bmatrix}$	$\begin{bmatrix} 0.33 & 0 & 0 \\ 0 & 0.33 & 0 \\ 0 & 0 & 0.33 \end{bmatrix}$	1.0
Cylinder (R=1, h=1, κ =0.5)	2.049	$\begin{bmatrix} 0.523 & 0 & 0 \\ 0 & 0.523 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.25 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	0.5
Two Cylinders (R=1, h=1, κ = 0.5)	4.188	$\begin{bmatrix} 1.031 & 0 & 0 \\ 0 & 1.047 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.25 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	0.5
N Cylinders (R=1, h=1, κ =0.5)	25301	$\begin{bmatrix} 5961 & 0 & 0 \\ 0 & 6334 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0.24 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	0.5

Physical Interpretation

First Translation Invariant MT: Second moment of the distribution of surface normals.

Area Weighted "Variance" of surface normals

$$W_1^{0,2} = \frac{1}{3} \int_{\partial K} n_i n_j dA = \int_{\mathbb{S}_2} \varrho_{1(n)} \ n \odot n d\Omega$$

$$\varrho_{1(n)} = \int_{\partial K} \delta(n - n') dA$$

Second Translation Invariant MT: Second moment of the distribution of surface normals and curvatures.

Area weighted "Variance" of curvatures and surface orientation.

$$W_2^{0,2} = \frac{1}{3} \int_{\partial K} G_2 \ n_i n_j dA$$

$$W_2^{0,2} = \frac{1}{3} \int_{-\infty}^{\infty} G_2 \int_{\mathbb{S}_2} \varrho_{2(n,G_2)} n \odot n d\Omega \, dG_2$$

$$\varrho_{2(n)} = \int_{\partial K} \delta(n - n') \delta(G_2 - G_2') dA$$

Parametric Models – Normalized Results

Parametric Models: Normalized Results

Plane Surfaces

Minkowski Tensors – Plane Surface

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_1^{0,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix} \begin{bmatrix} 0\\1\\0\end{bmatrix} \begin{bmatrix} 0\\0\\1\end{bmatrix}$	{0.0 0.0 2400.}	$eta_1^{0,2} = not \ def.$
$\widehat{W}_{2}^{0,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix} \begin{bmatrix} 0\\1\\0\end{bmatrix} \begin{bmatrix} 0\\0\\1\end{bmatrix}$	{0.0 0.0 0.0}	$\beta_2^{0,2} = not \ def.$

Regular Bundle of Tubes

Minkowski Tensors – Regular Bundle of Tubes

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_1^{0,2} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{12605 12605 0}	$ \beta_1^{0,2} = not \ def. $
$\widehat{W}_{2}^{0,2} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\-1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{5960 6334 0}	$ \beta_2^{0,2} = not \ def. $

Regular Bundle of Tubes – High Mesh Resolution

Minkowski Tensors – Regular Bundle – High Mesh Res.

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_1^{0,2} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{12605 12605 0}	$ \beta_1^{0,2} = not \ def. $
$\widehat{W}_2^{0,2} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\-1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{5960 6334 0}	$ \beta_2^{0,2} = not \ def. $

Random Bundle of Tubes

X-Z View 3D View

Minkowski Tensors – Random Bundle of Tubes

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_1^{0,2} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{12605 12605 0}	$ \beta_1^{0,2} = not \ def. $
$\widehat{W}_{2}^{0,2} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\-1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{5960 6334 0}	$ \beta_2^{0,2} = not \ def. $

Symmetric Parametric Pore

Minkows	ski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_{1}^{0,2} = \begin{bmatrix} 0.333 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0.333 & 0 \\ 0 & 0.333 \end{bmatrix}$	$ \begin{bmatrix} -0.76\\0.66\\0 \end{bmatrix} \begin{bmatrix} 0.66\\-0.76\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix} $	{10.6 10.6 10.6}	$\beta_1^{0,2} = 1.0$
$\widehat{W}_2^{0,2} = \begin{bmatrix} 0.333 \\ 0 \\ 0 \end{bmatrix}$	0 0 0.333 0 0 0.333	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{-6.0 -6.0 -6.0}	$\beta_2^{0,2} = 1.0$

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_{1}^{0,2} = \begin{bmatrix} 0.333 & 0 & 0\\ 0 & 0.333 & 0\\ 0 & 0 & 0.333 \end{bmatrix}$	$\begin{bmatrix} -0.7 \\ 0.7 \\ 0 \end{bmatrix} \begin{bmatrix} 0.7 \\ -0.7 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{19.6 19.6 19.6}	$\beta_1^{0,2} = 1.0$
$\widehat{W}_2^{0,2} = \begin{bmatrix} 0.333 & 0 & 0\\ 0 & 0.333 & 0\\ 0 & 0 & 0.333 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{-13 -13 -13}	$\beta_2^{0,2} = 1.0$

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_1^{0,2} = \begin{bmatrix} 0.333 & 0 & 0 \\ 0 & 0.333 & 0 \\ 0 & 0 & 0.333 \end{bmatrix}$	$\begin{bmatrix} -1.0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1.0 \end{bmatrix} \begin{bmatrix} 0 \\ -1.0 \\ 0 \end{bmatrix}$	{27.1 27.1 27.1}	$\beta_1^{0,2} = 1.0$
$\widehat{W}_2^{0,2} = \begin{bmatrix} 0.333 & 0 & 0 \\ 0 & 0.333 & 0 \\ 0 & 0 & 0.333 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$	{-20.7 -20.7 -20.7}	$\beta_2^{0,2} = 1.0$

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_1^{0,2} = \begin{bmatrix} 0.333 & 0 & 0 \\ 0 & 0.333 & 0 \\ 0 & 0 & 0.333 \end{bmatrix}$	$\begin{bmatrix} -0.89 \\ 0.45 \\ 0 \end{bmatrix} \begin{bmatrix} 0.45 \\ -0.89 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{33.1 33.1 33.1}	$\beta_1^{0,2} = 1.0$

Asymmetric Parametric Pore – R1 = 1.4, R2=1.3

Minkowski Tensors – R1 = 1.4, R2=1.3

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_{1}^{0,2} = \begin{bmatrix} 0.157 & 0 & 0\\ 0 & 0.685 & 0\\ 0 & 0 & 0.158 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{11.9 51.8 11.9}	$\beta_1^{0,2} = 0.23$
$\widehat{W}_{2}^{0,2} = \begin{bmatrix} 0.168 & 0 & 0\\ 0 & 0.688 & 0\\ 0 & 0 & 0.164 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{-7.8 -30.9 -7.8}	$\beta_2^{0,2} = 0.25$

Minkowski Tensors – R1 = 1.4, R2=1.39

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$\widehat{W}_{1}^{0,2} = \begin{bmatrix} 0.328 & 0 & 0\\ 0 & 0.342 & 0\\ 0 & 0 & 0.329 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{11.9 51.8 11.9}	$\beta_1^{0,2} = 0.23$
$\widehat{W}_2^{0,2} = \begin{bmatrix} 0.328 & 0 & 0\\ 0 & 0.344 & 0\\ 0 & 0 & 0.327 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{-7.8 -30.9 -7.8}	$\beta_2^{0,2} = 0.25$

Beadpack/Ketton Centered Expanding Window => REV - 500^3

Determine Anisotropy as function of Window Size

Beadpack – Centered Expanding Window

Beadpack Centered Expanding Window Grain Size 26 µm

Image Size: 500 voxel³

Grain Diameter 26 µm

 $50 \ voxels^3/grain$

Ketton – Centered Expanding Window

Ketton Centered Expanding Window

Voxel size 3µm/voxel

Image Size: 500 voxel³

Ketton – Comparison Anisotropy Indices B102, B202

Ketton – Centered Expanding Window => REV – 500³

Ketton – Centered Expanding Window => REV – 500³

Ketton – Centered Expanding Window => REV – 500³

Estaillades – Centered Expanding Window

Estaillades Centered Expanding Window

Voxel size 3.31μm/voxel

Image Size: 500 voxel³

Estaillades – Comparison Anisotropy Indices B102, B202

Estaillades - Centered Expanding Window

Estaillades - Centered Expanding Window

Estaillades – Centered Expanding Window

Doddington- Centered Expanding Window

Doddington Centered Expanding Window

Voxel size 3.31µm/voxel

Image Size: 500 voxel³

Doddington – Comparison Anisotropy Indices B102, B202

Doddington- Centered Expanding Window

Doddington- Centered Expanding Window

Doddington – Centered Expanding Window

Bentheimer Centered Expanding Window

Voxel size $3.5 \mu m/voxel$

Image Size: 500 voxel³

Bentheimer – Comparison Anisotropy Indices B102, B202

Imperial College London

Comparison

Beadpack - Ketton - Estaillades - Doddington - Bentheimer

Ketton

Bentheimer

Estaillades

Doddington

Comparison – Beta 102

Imperial College London

Comparison – Beta 202

Comparison – Gamma 102

Imperial College London

Comparison – Gamma 202

