Digging Metagenomes With Limited Resources

Round Table: Can bigger be better -- advice as metagenomes grow

Fan Yang August 24, 2014

Limited resources

- Time limited
- Human power limited
- Need a quick insight on focused research questions

Archeologist

- Dig the earth
- Try to make sense out of data pieces scattered across the world
- What happened in the past
- Assemble historical environment

Metagenomist

- Dig the data
- Try to make sense out of data pieces scattered in tubes
- What is happening, generally
- Assemble present genomes

Consider yourself an archeologist

 The metagenomes are all of the terracotta soldier you have to discover...

• Oh boy...

Reconstruct all soldiers

- Life back then:
 - Hair styles
 - Costumes
 - Military system
 - Weaponry
 - Political power
- They are still working on it

What if one only wants to know about hair styles?

 Wouldn't it be easier to find/ reconstruct all of the hair pieces rather than the entire army?

What if one only wants to know about hair styles?

IOWA STATE UNIVERSITY

Department of Ecology, Evolution, and Organismal Biology

IOWA STATE UNIVERSITY

Department of Ecology, Evolution, and Organismal Biology

Xander: Gene Targeted Metagenomic Assembly

- Developed by RDP
 - Dr. James Cole
 - Jordan Fish
- Easy to obtain sequences
- Hard to process them all
- Whole metagenome assembly:
 - Expensive
 - Overwhelming
 - Is just the beginning

How is it different from amplicon sequencing?

- Not all genes are equal
 - Universal primers!
- Amplification specificity
 - Differs from primer to primer
 - Skews community distribution
- Sequence length
 - Some genes may not like it short

Real life example:

- Northern peatland
 - N limited
- Shared metagenomes (Dr. Joel Kostka)
- Organic N?
 - Amino acids?
- Extracellular protease genes

What is the genetic potential in organic N decomposition?

Microbial Extracellular Protease Genes

- Genetically diverse
- Similar functionality
- Different protein families
- Various length

Peatland is abundant with bacterial extracellular protease genes!

- Assembled 9 extracellular protease gene groups (tried 21)
- Linking organisms to genetic potentials
 - over 90% were bacterial
 - Some proteases were broadly distributed
 - Some are bacterial/fungal specific
- For more detail: poster 370B

What is my specific research question?

- "Hair style" VS. "Political power"
 - "A brief insight" VS. "The big picture"
- Am I interested in:
 - components of a pathway?
 - Interactions between multiple pathways?
- How many genes am I studying at once?
 - A few
 - A whole database worth

Acknowledgement

- Dr. Kirsten S. Hofmockel
- Dr. James Cole
- Jordan Fish
- Hofmockel Lab
- Ribosomal Database Project
- Dr. Adina Howe

- Dr. Joel E. Kostka
- DOE Office of Science (Office of Basic Energy Sciences)

Thank You!

Questions?

IOWA STATE UNIVERSITY

Department of Ecology, Evolution, and Organismal Biology