ASSIGNMENT 4 - CLASSIFICATION

The dataset "Breast Cancer" contains various features related to cell measurements, including characteristics such as radius, texture, smoothness, and compactness, along with a target variable indicating whether the tumor is malignant or benign. The primary goal of this project is to design and implement a comprehensive classification system that addresses key challenges in classifying tumors, such as feature scaling, model selection, and handling class imbalance. By applying effective classification algorithms, the objective is to analyze and predict whether a tumor is malignant or benign based on the provided features, ultimately enhancing the overall quality, reliability, and usability of the model for further analysis and machine learning applications. This task will focus on implementing and comparing multiple classification techniques to determine the best model for tumor classification.

SOURCE

The Breast Cancer dataset used for this project is available in the sklearn library. It can be loaded using the `load_breast_cancer()` function from `sklearn.datasets`.

<u>IMPORTING MODULES</u>

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
import sys
if not sys.warnoptions:
    warnings.simplefilter("ignore")
```

LOADING & PREPROCESSING

1. LOAD THE DATA AND CONVERT INTO DATA FRAME

```
In [6]: # LOAD THE DATASET
    from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()

# Convert to DataFrame
    df = pd.DataFrame(data.data, columns=data.feature_names)
    df['target'] = data.target

# Display the first few rows
    print(df.head())
```

	mean radius m	nean texture	mean perime	ter mean ar	ea mean	smoothness	\	
0	17.99	10.38	122	.80 1001	.0	0.11840		
1	20.57	17.77	132	.90 1326	.0	0.08474		
2	19.69	21.25	130	.00 1203	.0	0.10960		
3	11.42	20.38	77	.58 386	.1	0.14250		
4	20.29	14.34	135	.10 1297	.0	0.10030		
	mean compactne	ess mean con	cavity mean	concave poi	nts mean	symmetry	\	
0	0.277	'60	0.3001	0.14	710	0.2419		
1	0.078	864	0.0869	0.07	017	0.1812		
2	0.159	90	0.1974	0.12	790	0.2069		
3	0.283	390	0.2414	0.10	520	0.2597		
4	0.132	280	0.1980	0.10	430	0.1809		
	mean fractal d	limension	. worst tex	ture worst	perimeter		ea \	
0		0.07871	. 1	7.33	184.60	2019	.0	
1		0.05667	. 2	3.41	158.80	1956	.0	
2		0.05999		5.53	152.50			
3		0.09744	. 2	6.50	98.87	567	.7	
4		0.05883	. 1	6.67	152.20	1575	.0	
	worst smoothne		ompactness w		-			١
0	0.16		0.6656	0.71			.2654	
1	0.12		0.1866	0.24			.1860	
2	0.14		0.4245	0.45			.2430	
3	0.20	98	0.8663	0.68	69		.2575	
4	0.13	374	0.2050	0.40	00	0	.1625	
	worst symmetry		tal dimensio	•				
0	0.4601		0.1189					
1	0.2750		0.0890					
2	0.3613		0.0875					
3	0.6638		0.1730					
4	0.2364	ŀ	0.0767	8 0				

[5 rows x 31 columns]

2. DISPLAY FIRST & LAST ROWS

```
In [12]: # DISPLAY FIRST FEW ROWS TO UNDERSTAND THE STRUCTURE OF THE DATA
         print(df.head())
           mean radius mean texture mean perimeter mean area mean smoothness \
        0
                 17.99
                               10.38
                                              122.80
                                                         1001.0
                                                                         0.11840
                 20.57
                               17.77
                                              132.90
        1
                                                         1326.0
                                                                         0.08474
        2
                               21.25
                                                         1203.0
                 19.69
                                              130.00
                                                                         0.10960
        3
                 11.42
                               20.38
                                              77.58
                                                        386.1
                                                                         0.14250
        4
                 20.29
                               14.34
                                              135.10
                                                         1297.0
                                                                         0.10030
           mean compactness mean concavity mean concave points mean symmetry \
                                     0.3001
                                                         0.14710
        0
                    0.27760
                                                                         0.2419
        1
                    0.07864
                                     0.0869
                                                         0.07017
                                                                         0.1812
        2
                    0.15990
                                     0.1974
                                                         0.12790
                                                                         0.2069
        3
                    0.28390
                                     0.2414
                                                         0.10520
                                                                         0.2597
        4
                    0.13280
                                     0.1980
                                                         0.10430
                                                                         0.1809
           mean fractal dimension ... worst texture worst perimeter worst area \
                          0.07871 ...
        0
                                                17.33
                                                                            2019.0
                                                                184.60
        1
                          0.05667 ...
                                                23.41
                                                                158.80
                                                                            1956.0
        2
                          0.05999 ...
                                                                            1709.0
                                                25.53
                                                                152.50
        3
                          0.09744
                                                26.50
                                                                            567.7
                                                                 98.87
        4
                                                                152.20
                          0.05883 ...
                                                16.67
                                                                            1575.0
           worst smoothness worst compactness worst concavity worst concave points \
        0
                     0.1622
                                                         0.7119
                                                                               0.2654
                                        0.6656
        1
                     0.1238
                                        0.1866
                                                         0.2416
                                                                               0.1860
        2
                     0.1444
                                        0.4245
                                                         0.4504
                                                                               0.2430
        3
                     0.2098
                                        0.8663
                                                         0.6869
                                                                               0.2575
        4
                     0.1374
                                        0.2050
                                                         0.4000
                                                                               0.1625
           worst symmetry worst fractal dimension target
        0
                   0.4601
                                           0.11890
                                                         0
                   0.2750
                                                         0
        1
                                           0.08902
        2
                   0.3613
                                           0.08758
        3
                   0.6638
                                           0.17300
                                                         0
        4
                   0.2364
                                           0.07678
        [5 rows x 31 columns]
```

In [10]: # DISPLAY LAST FEW ROWS TO UNDERSTAND THE STRUCTURE OF THE DATA

	•	***											
	mean	radius	mean	text	ure	mean	perim	eter	mean are	ea me	ean s	moothness	\
564		21.56		22	.39		14	2.00	1479	.0		0.11100	
565		20.13		28	. 25		13	1.20	1261	.0		0.09780	
566		16.60		28	.08		10	8.30	858	.1		0.08455	
567		20.60		29	.33		14	0.10	1265	.0		0.11780	
568		7.76		24	.54		4	7.92	181	.0		0.05263	
	mean	compactn		mean		cavity		n con	cave poi		nean	symmetry	\
564		0.11				. 24396			0.138			0.1726	
565		0.10				. 14400			0.09			0.1752	
566		0.10				.09251			0.05			0.1590	
567		0.27				.35146			0.15			0.2397	
568		0.04	362		0	.00000)		0.000	300		0.1587	
	maan	fractal	dimor	ncion		WOR	rst te	vtuna	worst	oni ma	atan	worst ar	0.3
564	illean	II accar		95623				26.40	worst		5.10	2027	
565				95533				38.25			5.00	1731	
566				95648				34.12			5.70	1124	
567				7016				39.42			1.60	1821	
568				95884				30.37			9.16	268	
					• •	•							• •
	worst	smoothn	iess	wors	t cor	npactr	ness	worst	concavi	ty \			
564		0.14	100			0.21	L130		0.41	ð7			
565		0.11	.660			0.19	9220		0.32	15			
566		0.11	.390			0.30	940		0.340	ð3			
567		0.16	500			0.86	5810		0.938	37			
568		0.08	1996			0.06	5444		0.000	90			
	worst	concave	•		wors	-	-	wors	t fracta			_	
564			0.22				2060				.0711		
565			0.16				2572				.0663		
566			0.14				. 2218				.0782		
567			0.26				4087				.1240		
568			0.00	900		0.	. 2871			0.	.0703	9 1	

[5 rows x 31 columns]

print(df.tail())

3. DATATYPE OF EACH COLUMN

```
In [14]: # DISPLAY DATA TYPE OF EACH COLUMN
print("Dataset Info:")
df.info()
```

Dataset Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column	Non-	-Null Count	Dtype
0	mean radius		non-null	float64
1	mean texture	569	non-null	float64
2	mean perimeter	569	non-null	float64
3	mean area	569	non-null	float64
4	mean smoothness	569	non-null	float64
5	mean compactness	569	non-null	float64
6	mean concavity	569	non-null	float64
7	mean concave points	569	non-null	float64
8	mean symmetry	569	non-null	float64
9	mean fractal dimension	569	non-null	float64
10	radius error	569	non-null	float64
11	texture error	569	non-null	float64
12	perimeter error	569	non-null	float64
13	area error	569	non-null	float64
14	smoothness error	569	non-null	float64
15	compactness error	569	non-null	float64
16	concavity error	569	non-null	float64
17	concave points error	569	non-null	float64
18	symmetry error	569	non-null	float64
19	fractal dimension error	569	non-null	float64
20	worst radius	569	non-null	float64
21	worst texture	569	non-null	float64
22	worst perimeter	569	non-null	float64
23	worst area	569	non-null	float64
24	worst smoothness	569	non-null	float64
25	worst compactness	569	non-null	float64
26	worst concavity	569	non-null	float64
27	worst concave points	569	non-null	float64
28	worst symmetry	569	non-null	float64
29	worst fractal dimension	569	non-null	float64
30	target	569	non-null	int32
ltvne	es: float64(30), int32(1)			

dtypes: float64(30), int32(1)

memory usage: 135.7 KB

4. STATISTICAL SUMMARY OF DATA

```
In [16]: # DISPLAY STATISTICAL SUMMARY
    print("Statistical Summary:")
    df.describe()
```

Statistical Summary:

Out[16]:

•		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	me frac dimens
	count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.0000
	mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062
	std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.0070
	min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.0499
	25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057
	50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061
	75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066
	max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.0974

8 rows × 31 columns

5. DISPLAY ALL COLUMN NAMES

```
In [18]: # DISPLAY PARTICULAR COLUMN
    print("Columns of the dataset:")
    df.columns
```

Columns of the dataset:

6. NULL / MISSING VALUES IN EACH COLUMN

```
In [20]: # DISPLAY NULL VALUES IN EACH COLUMN
    print("Null values in each column:")
    print(df.isnull().sum())
```

Null	values in each column	:
mean	radius	0
mean	texture	0
mean	perimeter	0
mean	area	0
mean	smoothness	0
mean	compactness	0
mean	concavity	0
mean	concave points	0
mean	symmetry	0
mean	fractal dimension	0
radiu	ıs error	0
textı	ire error	0
perin	neter error	0
area	error	0
smoot	chness error	0
compa	actness error	0
	avity error	0
	ave points error	0
-	etry error	0
	al dimension error	0
worst	radius	0
worst	texture	0
worst	perimeter	0
worst	area	0
worst	smoothness	0
worst	compactness	0
worst	concavity	0
worst	concave points	0
worst	symmetry	0
worst	fractal dimension	0
targe	et	0
dtype	e: int64	

7. DUPLICATE VALUES

```
In [22]: # FINDING THE TOTAL NO OF DUPLICATES
df.duplicated().sum()
```

Out[22]: 0

8. FEATURE SCALING

```
In [26]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X = df.drop(columns=['target'])
y = df['target']

X_scaled = scaler.fit_transform(X)

print("\nScaled Feature Data (First 5 rows):")
print(X_scaled[:5])
```

```
Scaled Feature Data (First 5 rows):
[ 1.09706398e+00 -2.07333501e+00 1.26993369e+00 9.84374905e-01
   1.56846633e+00 3.28351467e+00 2.65287398e+00 2.53247522e+00
   2.21751501e+00 2.25574689e+00 2.48973393e+00 -5.65265059e-01
   2.83303087e+00 2.48757756e+00 -2.14001647e-01 1.31686157e+00
   7.24026158e-01 6.60819941e-01 1.14875667e+00 9.07083081e-01
   1.88668963e+00 -1.35929347e+00 2.30360062e+00 2.00123749e+00
   1.30768627e+00 2.61666502e+00 2.10952635e+00 2.29607613e+00
   2.75062224e+00 1.93701461e+001
[ 1.82982061e+00 -3.53632408e-01 1.68595471e+00 1.90870825e+00
  -8.26962447e-01 -4.87071673e-01 -2.38458552e-02 5.48144156e-01
   1.39236330e-03 -8.68652457e-01 4.99254601e-01 -8.76243603e-01
   2.63326966e-01 7.42401948e-01 -6.05350847e-01 -6.92926270e-01
  -4.40780058e-01 2.60162067e-01 -8.05450380e-01 -9.94437403e-02
  1.80592744e+00 -3.69203222e-01 1.53512599e+00 1.89048899e+00
  -3.75611957e-01 -4.30444219e-01 -1.46748968e-01 1.08708430e+00
  -2.43889668e-01 2.81189987e-01]
[ 1.57988811e+00 4.56186952e-01 1.56650313e+00 1.55888363e+00
   9.42210440e-01 1.05292554e+00 1.36347845e+00 2.03723076e+00
   9.39684817e-01 -3.98007910e-01 1.22867595e+00 -7.80083377e-01
   8.50928301e-01 1.18133606e+00 -2.97005012e-01 8.14973504e-01
   2.13076435e-01 1.42482747e+00 2.37035535e-01 2.93559404e-01
   1.51187025e+00 -2.39743838e-02 1.34747521e+00 1.45628455e+00
   5.27407405e-01 1.08293217e+00 8.54973944e-01 1.95500035e+00
   1.15225500e+00 2.01391209e-01]
[-7.68909287e-01 2.53732112e-01 -5.92687167e-01 -7.64463792e-01
   3.28355348e+00 3.40290899e+00 1.91589718e+00 1.45170736e+00
   2.86738293e+00 4.91091929e+00 3.26373441e-01 -1.10409044e-01
   2.86593405e-01 -2.88378148e-01 6.89701660e-01 2.74428041e+00
   8.19518384e-01 1.11500701e+00 4.73268037e+00 2.04751088e+00
  -2.81464464e-01 1.33984094e-01 -2.49939304e-01 -5.50021228e-01
   3.39427470e+00 3.89339743e+00 1.98958826e+00 2.17578601e+00
   6.04604135e+00 4.93501034e+001
[ 1.75029663e+00 -1.15181643e+00 1.77657315e+00 1.82622928e+00
   2.80371830e-01 5.39340452e-01 1.37101143e+00 1.42849277e+00
  -9.56046689e-03 -5.62449981e-01 1.27054278e+00 -7.90243702e-01
   1.27318941e+00 1.19035676e+00 1.48306716e+00 -4.85198799e-02
   8.28470780e-01 1.14420474e+00 -3.61092272e-01 4.99328134e-01
   1.29857524e+00 -1.46677038e+00 1.33853946e+00 1.22072425e+00
   2.20556166e-01 -3.13394511e-01 6.13178758e-01 7.29259257e-01
  -8.68352984e-01 -3.97099619e-01]]
```

9. SPLITTING THE DATA INTO TRAINING AND TESTING SET

```
In [28]: from sklearn.model_selection import train_test_split

# Split data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)

# Display the shape of the split data
print(f"Training data shape: {X_train.shape}")
print(f"Testing data shape: {X_test.shape}")
Training data shape: (398, 30)
```

Training data shape: (398, 30) Testing data shape: (171, 30)

Preprocessing steps with explanations:

- 1. Load the Data:
 - The dataset is loaded using load_breast_cancer() from sklearn.datasets. This gives us the feature data (X) and the target data (y), which indicates whether a tumor is malignant (1) or benign (0).
- 2. Convert to DataFrame:
 - Converted the data into pandas DataFrames for easier manipulation and analysis.
- 3. Display First and Last Rows:
 - Displayed the first few rows to understand the data structure and confirm it loaded correctly.
- 4. Check Data Types:

• Used info() to check the data types of the columns and ensure they are as expected (numerical values).

5. Statistical Summary:

• Used describe() to view statistics (mean, min, max, etc.) of both features and target to understand their distribution.

6. Display Column Names:

• Printed the column names of the features to know what variables we are working with.

7. Check for Missing Values:

• Checked for missing values with <code>isnull().sum()</code> to ensure the dataset is complete.

8. Find Duplicate Rows:

- Checked for duplicate rows using duplicated().sum() to ensure there are no repeated records.
- 9. Feature Scaling:
 - Scaled the features using StandardScaler to ensure that all features are on the same scale, which is important for some machine learning models.
- 10. Train-Test Split:

 Split the data into training and testing sets to evaluate the model's performance on unseen data.

These steps are necessary to clean and prepare the data for better model performance.

CLASSIFICATION ALGORITHMS IMPLEMENTATION

1. LOGISTIC REGRESSION ALGORITHM

Logistic Regression works by estimating the probability of a binary outcome based on input features, using a logistic function. It assumes a linear relationship between the features and the target variable. This model is suitable for the Breast Cancer dataset because factors like cell characteristics likely have a linear influence on the likelihood of a tumor being malignant or benign, making it an appropriate choice for classifying tumor types.

2. DECISION TREE CLASSIFIER ALGORITHM

The Decision Tree Classifier works by recursively splitting the data based on feature values to maximize information gain and minimize impurity within each subset. It does not assume a linear relationship between the target variable and the input features. This model is suitable for the Breast Cancer dataset because it can capture non-linear relationships and complex interactions between features, such as how

various cell characteristics might jointly influence the likelihood of a tumor being malignant or benign in ways that a linear model cannot.

3. RANDOM FOREST CLASSIFIER ALGORITHM

The Random Forest Classifier is an ensemble learning method that constructs multiple decision trees and combines their predictions to enhance accuracy and reduce overfitting. It effectively handles complex, non-linear relationships between features and the target variable. This makes it suitable for the Breast Cancer dataset, as it can capture intricate interactions between factors like cell radius, texture, smoothness, and compactness, while providing robust predictions and insights into feature importance for classifying tumors as malignant or benign.

4. K NEAREST NEIGHBOUR CLASSIFIER ALGORITHM

The k-Nearest Neighbors (k-NN) Classifier is a simple, instance-based learning algorithm that classifies data points based on the majority class of their nearest neighbors. It computes the distance between the input data and other points in the feature space to make predictions. This method is well-suited for the Breast Cancer dataset as it can effectively capture complex, non-linear relationships between features like cell radius, texture, and smoothness, which are important for classifying tumors as malignant or benign. The flexibility of k-NN to handle varied data patterns makes it a robust choice for classification tasks in this dataset.

5. SUPPORT VECTOR CLASSIFIER ALGORITHM

The Support Vector Classifier (SVC) is a classification model that finds a hyperplane that best separates the data into different classes, focusing on maximizing the margin between data points of different classes. It can handle both linear and non-linear decision boundaries by applying kernel functions, such as the Radial Basis Function (RBF). SVC is suitable for the Breast Cancer dataset because it can effectively capture complex, non-linear relationships between features like cell texture, radius, and smoothness, while also being robust to outliers and effective in high-dimensional spaces.

MODEL EVALUATION

1. LOGISTIC REGRESSION MODEL EVALUATION

```
In [73]: from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
         # Calculate the accuracy of the model
         accuracy = accuracy_score(y_test, y_pred)
         print(f"Logistic Regression Accuracy: {accuracy * 100:.2f}%")
         # Confusion Matrix
         cm = confusion_matrix(y_test, y_pred)
         print("\nConfusion Matrix:")
         print(cm)
         # Classification Report
         report = classification_report(y_test, y_pred)
         print("\nClassification Report:")
         print(report)
        Logistic Regression Accuracy: 98.25%
        Confusion Matrix:
        [[ 62 1]
         [ 2 106]]
        Classification Report:
                      precision
                                 recall f1-score support
                           0.97
                                     0.98
                                               0.98
                   0
                                                           63
                           0.99
                                     0.98
                                               0.99
                                                          108
                                               0.98
            accuracy
                                                          171
                           0.98
                                     0.98
                                               0.98
                                                          171
           macro avg
        weighted avg
                           0.98
                                     0.98
                                               0.98
                                                          171
```

2. DECISION TREE CLASSIFIER MODEL EVALUATION

```
In [47]: from sklearn.metrics import accuracy score, confusion matrix, classification report
         # Calculate the accuracy of the model
         accuracy dtc = accuracy score(y test, y pred dt)
         print(f"Decision Tree Classifier Accuracy: {accuracy dtc * 100:.2f}%")
         # Confusion Matrix
         cm dtc = confusion matrix(y test, y pred dt)
         print("\nConfusion Matrix:")
         print(cm dtc)
         # Classification Report
         report dtc = classification report(y test, y pred dt)
         print("\nClassification Report:")
         print(report dtc)
        Decision Tree Classifier Accuracy: 92.98%
        Confusion Matrix:
        [[60 3]
        [ 9 99]]
        Classification Report:
                      precision
                                 recall f1-score support
                           0.87
                                     0.95
                                               0.91
                                                           63
                           0.97
                                     0.92
                                               0.94
                                                          108
                                               0.93
                                                          171
            accuracy
           macro avg
                           0.92
                                     0.93
                                               0.93
                                                          171
        weighted avg
                           0.93
                                     0.93
                                               0.93
                                                          171
```

3. RANDOM FOREST CLASSIFIER MODEL EVALUATION

```
In [75]: from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
```

```
# Calculate the accuracy of the model
accuracy_rfc = accuracy_score(y_test, y_pred_rf)
print(f"Random Forest Classifier Accuracy: {accuracy_rfc * 100:.2f}%")

# Confusion Matrix
cm_rfc = confusion_matrix(y_test, y_pred_rf)
print("\nConfusion Matrix:")
print(cm_rfc)

# Classification Report
report_rfc = classification_report(y_test, y_pred_rf)
print("\nClassification Report:")
print(report_rfc)
Random Forest Classifier Accuracy: 97.08%
```

```
Confusion Matrix:
[[ 59 4]
[ 1 107]]
```

Classification Report:

0 0.98 0.94 0.96 1 0.96 0.99 0.98 accuracy 0.97	ort
	63
accuracy 0.97	108
	171
macro avg 0.97 0.96 0.97	171
weighted avg 0.97 0.97 0.97	171

4. K NEAREST NEIGHBOUR CLASSIFIER MODEL EVALUATION

```
In [77]: from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# Calculate the accuracy of the model
accuracy_knn = accuracy_score(y_test, y_pred_knn)
print(f"KNN Classifier Accuracy: {accuracy_knn * 100:.2f}%")

# Confusion Matrix
cm_knn = confusion_matrix(y_test, y_pred_knn)
```

```
print("\nConfusion Matrix:")
 print(cm_knn)
 # Classification Report
 report_knn = classification_report(y_test, y_pred_knn)
 print("\nClassification Report:")
 print(report_knn)
KNN Classifier Accuracy: 95.91%
Confusion Matrix:
[[ 59 4]
[ 3 105]]
Classification Report:
              precision
                        recall f1-score support
          0
                  0.95
                            0.94
                                      0.94
                                                  63
                  0.96
                            0.97
                                      0.97
                                                 108
                                      0.96
                                                 171
    accuracy
                                      0.96
                                                 171
                  0.96
                            0.95
   macro avg
weighted avg
                  0.96
                            0.96
                                      0.96
                                                 171
```

5. SUPPORT VECTOR CLASSIFIER MODEL EVALUATION

```
In [79]: from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# Calculate the accuracy of the model
accuracy_svc = accuracy_score(y_test, y_pred_svc)
print(f"Support Vector Classifier Accuracy: {accuracy_svc * 100:.2f}%")

# Confusion Matrix
cm_svc = confusion_matrix(y_test, y_pred_svc)
print("\nConfusion Matrix:")
print(cm_svc)

# Classification Report
report_svc = classification_report(y_test, y_pred_svc)
```

```
print("\nClassification Report:")
 print(report svc)
Support Vector Classifier Accuracy: 97.66%
Confusion Matrix:
[[ 61 2]
[ 2 106]]
Classification Report:
              precision
                           recall f1-score
                                              support
                   0.97
                             0.97
                                       0.97
                                                    63
           1
                   0.98
                             0.98
                                       0.98
                                                  108
                                       0.98
    accuracy
                                                  171
                   0.97
                             0.97
                                       0.97
   macro avg
                                                  171
weighted avg
                   0.98
                             0.98
                                       0.98
                                                  171
```

Summary of Best and Worst-Performing Models

Best-Performing Model:

The Logistic Regression model is the best-performing model, achieving the highest accuracy at 98.25%, and demonstrating the best balance in F1-scores across both classes. This highlights its ability to make the most accurate predictions while effectively capturing the underlying patterns in the data.

Worst-Performing Model:

The Decision Tree Classifier performs the worst among the models tested, with the lowest accuracy (92.98%) and relatively lower F1-scores, particularly for class 0. While it performs decently for class 1, its overall accuracy and precision/recall balance are weaker compared to the other models.

CONCLUSION

The Logistic Regression model is the best model for the Breast Cancer dataset, as it delivers strong performance by effectively capturing the underlying patterns in the data. In contrast, the Decision Tree Classifier is the least effective model, likely due to its tendency to overfit and its limited ability to generalize complex relationships between the features.

In []: