DBG0061 - Portfólio

João Vitor Ferreira Cavalcante

2020-06-22

Conteúdo

1	Pre	fácio	5
2	mRNA, tRNA e rRNA		7
	2.1	Identifique as funções de cada um	7
	2.2	Nomeie as regiões de um RNA mensageiro	7
	2.3	Geração e modificações pós-transcricionais	8
	2.4	Edição de RNA	9
3	Primers de RNA		11
	3.1	O que são?	11
	3.2	Como são gerados?	11
	3.3	Onde são usados?	11
	3.4	Qual a importância deles pros retrovírus?	12
4	snRNA e snoRNA		13
	4.1	O que são ribonucleoproteínas?	13
	4.2	Descrições desses dois ncRNAs	13
	4.3	Onde eles atuam?	14
	4.4	A quais doenças estão relacionados?	15
5	Histórico dos miRNAs		17
	5.1	Qual foi o primeiro miRNA e como ele foi identificado?	17
	5.2	Que alvos ele controla?	17
	5.3	Qual seu mecanismo de ação;	17
	5.4	Identificar e comentar as 3 outras descobertas importantes sobre	10
		os miRNAs	19
	5.5	Ideias gerais de 3 artigos seminais	19
6	Ref	erências	21

4 CONTEÚDO

Prefácio

Esse é o meu portfólio para a disciplina DBG0061 - RNAs Não Codantes, cursada no semestre suplementar 2020.5.

Aqui estarão contidas respostas para os exercícios de cada dia, dúvidas e reflexões sobre os seminários.

As duas principais referências usadas foram os encontros de cada aula e o livro "Introdução ao universo dos non-coding RNAs" de Tiago Campos Pereira. Fontes alternativas, se utilizadas, são citadas em cada capítulo.

mRNA, tRNA e rRNA

2.1 Identifique as funções de cada um

- O mRNA é o responsável por carregar a informação codante do genoma, gerado no processo de transcrição, ele é o passo inicial para a produção de proteínas.
- O tRNA é aquele que irá interpretar a informação contida no mRNA processado, se ligando aos seus códons e trazendo consigo o respectivo aminoácido.
- O rRNA, por fim, será aquele responsável pela consolidação final da informação proteica, ao trafegar pelo mRNA, indica quais tRNAs devem se ligar e une os seus respectivos aminoácidos para a formação da proteína.

2.2 Nomeie as regiões de um RNA mensageiro

Inicialmente, o mRNA possui 3 principais componentes: Os íntrons, que não codificam a informação proteica final, os éxons, a porção codante, e as UTRs em cada ponta, que são, também, regiões não traduzidas. Após o processamento, observa-se a adição de um "capacete" na extremidade 5' e uma sequência poli-A na extremidade 3', ambas estruturas que auxiliam na proteção do mRNA de exonucleases.

2.3 Geração e modificações pós-transcricionais

2.3.1 mRNA

A transcrição, em eucariotos, ocorre por meio da RNA Polimerase II, que junto a um ou mais fatores de transcrição, se liga ao promotor, formando a bolha de transcrição, posteriormente, à medida que as ligações de hidrogênio vão sendo quebradas pela forquilha, vai se formando a fita, com a adição de nucleotídeos de RNA complementares. Ao fim deste processo teremos o pre-mRNA, que passará pelo processamento mencionado em 2.2

2.3.2 tRNA

Seus genes, localizados no nucléolo, são transcritos pela RNA Polimerase III. Em seguida ocorre o processamento do pre-tRNA formado, iniciando com a remoção de certas sequências, tanto na ponta 3' quanto na 5'. Vale destacar que inicialmente alguns tRNAs possuem íntrons, que em procariotos se autoremovem, mas em eucariotos e arqueas são removidos por endonucleases, que reconhecem sua região BHB. Por fim, há a adição de CCA na sua extremidade 3', posteriormente a isso o tRNA ainda pode passar por diversos processamentos, a depender do aminoácido ao qual se relaciona.

 ${\rm E},$ ultimamente, é claro, há a reação de aminoacilação quando o tRNA for executar sua função na célula.

2.3.3 rRNA

Em eucariotos, ocorre no nucléolo, com a síntese do 45S pela RNA Polimerase I, este possuinte de regiões interespaçadas transcritas que assemelham íntrons, e no núcleo, com a síntese do 5S pela RNA Polimerase III. O 45S, após passar por modificações realizadas por snoRNAs, como metilação e pseudouridilação, tem seus espaçadores clivados. Os fragmentos resultantes se unem a proteínas ribossomais, formando as duas subunidades conhecidas, a 40S e a 60S.

2.4 Edição de RNA

É o processo no qual ocorrem modificações no RNA que não refletem mutações na sequência genômica original. Essas modificações podem ser inserções, deleções e substituições. Algumas modificações de nota são:

• Edição do gene da ApoB - uma troca de C para U - reflete nas isoformas observadas da proteína no organismo, a ApoB-100 (hepática) e a ApoB-48

(intestinal), essa última que possui seu tamanho reduzido pois a troca gera um códon de parada.

- Conversão de A para Inosina pela $\bf ADAR$ em miRNAs, que pode impedir o processamento por DROSHA e DICER.

Primers de RNA

3.1 O que são?

São pequenas sequências nucleotídicas de fita única, responsáveis pela iniciação da síntese de uma sequência nucleotídica maior, como ocorre na síntese de DNA.

3.2 Como são gerados?

São gerados pela primase, que se acopla à fita de DNA quando ligada a uma molécula de ATP, formando inicialmente um dinucleotídeo pppApG ligado à seu ATP, em seguida organiza os nucleotídeos restantes do primer pela sua complementaridade com o DNA.

3.3 Onde são usados?

São usados na síntese de DNA, como falado anteriomente, visto que as DNAs polimerases não tem capacidade de iniciar o processo sozinhas. Mas também são usados na transcrição reversa, como é o caso da Telomerase em humanos, em que seu componente TERC é fundamental auxilia na manutenção da longevidade da molécula de DNA.

E, é claro, possuem inúmeras aplicações na biologia molecular, destacando-se as principais técnicas usadas nessa área, o PCR e o Sequenciamento, para as quais os primers são indispensáveis.

3.4 Qual a importância deles pros retrovírus?

Os primers de RNA são fundamentais para a replicação dos retrovírus, visto que, como o próprio nome diz, esses vírus utilizam um molde de RNA para sintetizar DNA, o início do processo se dá com um primer. Este primer, que muitas vezes é um tRNA de lisidina, se acopla à seção do genoma viral chamado de PBS, o que possibilita o início da polimerização pela Transcriptase Reversa, adicionando-se nucleotídeos na extremidade 3' do primer. Após a degradação de seções não codantes e repetitivas na extremidade 3' o primer de tRNA se desloca para a extremidade 5', extendendo a nova fita de DNA nesse sentido.

snRNA e snoRNA

4.1 O que são ribonucleoproteínas?

São complexos formados por ácidos ribonucléicos e RBPs ou proteínas de ligação a RNA, alguns exemplos são os ribossomos e os snRNPs, estes últimos formados pela associação de snRNAs a proteínas, preenchendo funções de extrema relevância para o processo de splicing.

4.2 Descrições desses dois ncRNAs

4.2.1 snRNAs

São pequenos RNAs sintetizados no núcleo, especificamente nos corpos de Cajal, possuem um comprimento médio de 150nt e podem ser transcritos tanto pela RNAPol-II quanto pela RNAPol-III. Preenchem funções relevantes no processo de splicing. Se tem conhecimento de por volta de 10 snRNAs e estes são divididos em duas classes:

- Os Sm, transcritos pela RNAPol-II, são exportados para o citoplasma, onde sofrem clivagem na extremidade 3' resultando na formação de um loop. A estrutura em loop 3' é necessária para o reconhecimento pela proteína SMN, que proporcionará a hipermetilação de seu cap 5', originando um cap de tri-metilguanosina, que é necessário para seu endereçamento celular para os corpúsculos de Cajal, onde podem passar por pseudouridinilações e mais metilações.
- Os Lsm, transcritos pela RNAPol-III, possuindo um cap 5' de monometilfosfato, nunca deixam o núcleo, se ligando a proteína La, o que proporciona a ligação do anel Lsm, o que indica seu endereçamento para o nucléolo,

onde por fim pode passar pelas pseudouridinilações e metilações que o farão funcional.

$4.2.2 \quad \text{snoRNAs}$

São pequenos RNAs localizados no nucléolo, podendo se maturar nele mesmo ou nos corpúsculos de Cajal. Tem tamanho variando de 60 a 170nt. São, em sua grande parte, transcritos pela RNAPol-II. Se dividem, também, em duas classes, diferenciando-se pelos boxes, ou sequências curtas conservadas, que possuem:

- Os box H/ACA possuem duas estruturas secundárias interceptadas por um box H e um box ACA.
- Os box C/D possuem pareamentos nas suas extremidades, onde são localizados os dois boxes, C e D.

4.3 Onde eles atuam?

4.3.1 snRNAs

A grande maioria participa do spliceossomo (Abaixo descreve-se splicing U2):

- Inicialmente, há a ligação do complexo U1 ao sítio de splicing 5', mediada pela complementaridade do snRNA que possui.
- Logo em seguida, ocorre a ligação do complexo U2 ao ponto de ramificação do íntron.
- As reações de transestefiricação subsequentes, propiciadas inicialmente pela hidroxila 2' do ponto de ramificação, irão resultar na ligação dos éxons adjacentes e a liberação do íntron na forma de laço.

4.3.2 snoRNAs

Formam os complexos de snoRNPs, com as porções ribonucleotídicas agindo como um "guia", indicando seções nos rRNAs não processados, com o pareamento destes, proporcionando reações de metilação e pseudouridinilação, necessárias para a clivagem e formação da estrutura final do ribossomo.

4.4 A quais doenças estão relacionados?

$4.4.1 \quad snRNAs$

- Atrofia muscular espinhal: Mutações no SMN que podem resultar na perda da função das suas proteínas, com sua responsabilidade na síntese dos snRNAs Sm sendo prejudicada.
- Medulloblastoma: Alguns desses tumores possuem um U1 snRNA mutado, o que leva a alterações negativas no splicing.

4.4.2 snoRNAs

- **Síndrome de Prader-Willi**: Foi observado que perdas de cópias do SNORD116 está associado ao surgimento dessa síndrome (Sahoo et al., 2008).
- Autismo: Ganho de cópias do SNORD115 pode estar associado ao surgimento de algumas formas de autismo (Bolton et al., 2004)

Histórico dos miRNAs

5.1 Qual foi o primeiro miRNA e como ele foi identificado?

O lin-4 foi descoberto em um experimento que pretendia elucidar funções de genes heterocrônicos do *C. elegans*, inicialmente, se foi observado que na diferenciação dos estágios de vida L1 e L2, havia aumento do RNA lin-4 e diminuição da **proteína** lin-14, porém isso não se refletia numa diminuição dos transcritos de lin-14, o que indica uma regulação negativa pós-transcricional. Foi observado, posteriormente, que essa regulação estava associada com a região 3' UTR do lin-14.

5.2 Que alvos ele controla?

Regula negativamente a tradução da proteína lin-14, o que possibilita o desenvolvimento adequado do *C. elegans* em seus estágios larvais. Posteriormente também foi descoberto que ele regula negativamente o lin-28.

5.3 Qual seu mecanismo de ação;

Ele pareia com a região 3' UTR do lin-14, alterando o prosseguimento da tradução - impedindo a finalização ou prolongamento desta.

Figura 5.1: (Rfam database)

5.4 Identificar e comentar as 3 outras descobertas importantes sobre os miRNAs

- Descobertas anteriores sobre a capacidade de RNAs antisenso de afetarem a estabilidade e alterarem a tradução de RNAs mensageiros.
- A descoberta de que o lin-14 não atua impedindo o início da tradução, atuando posteriormente ao início, inclusive podendo atuar em mais de uma etapa diferente.
- A descoberta do segundo miRNA, o let-7, que altera o gene lin-41, também importante no desenvolvimento do *C. elegans*, porém agora na transição para o estágio L4.

5.5 Ideias gerais de 3 artigos seminais

- (Lau, 2001) miRNAs podem ser transcritos na forma de cluster. Também podendo ser co-expressos durante a embriogênese. Porém, talvez mais relevante, a existência de ortólogos potenciais dos genes de miRNA em humanos.
- (Lagos-Quintana, 2001) Isolamento de miRNAs em *Drosophila* e células HeLa. Identificando-se 21 miRNAs diferentes em humano.
- $\bullet\,$ (Lee, 2001) Descoberta de vários novos miRNAs em C. elegans indicando também possíveis homólogos no ser humano.

Referências

Bibliografia

- Bolton, P. F., Veltman, M. W. M., Weisblatt, E., Holmes, J. R., Thomas, N. S., Youings, S. A., Thompson, R. J., Roberts, S. E., Dennis, N. R., Browne, C. E., Goodson, S., Moore, V., and Brown, J. (2004). Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders. *Psychiatric Genetics*, 14(3):131–137.
- Lagos-Quintana, M. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543):853–858.
- Lau, N. C. (2001). An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans. *Science*, 294(5543):858–862.
- Lee, R. C. (2001). An extensive class of small RNAs in caenor habditis elegans. Science, 294(5543):862-864.
- Sahoo, T., del Gaudio, D., German, J. R., Shinawi, M., Peters, S. U., Person, R. E., Garnica, A., Cheung, S. W., and Beaudet, A. L. (2008). Prader-willi phenotype caused by paternal deficiency for the HBII-85 c/d box small nucleolar RNA cluster. *Nature Genetics*, 40(6):719-721.