Math 209-16 Homework 2

Due Date: Sep 27, 2022

P1.(1 pt) Show that if $p \equiv 3 \pmod{4}$, then $\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod{p}$.

PROOF. For $i \in \mathbb{Z}$, $i \equiv (i - p) \equiv -(p - i) \pmod{p}$. Therefore, we have

$$\prod_{i=1}^{\frac{p-1}{2}} i \equiv \prod_{i=1}^{\frac{p-1}{2}} -(p-i) \equiv (-1)^{\frac{p-1}{2}} \prod_{i=1}^{\frac{p-1}{2}} (p-i) \pmod{p}$$

Multiplying both sides by $\prod_{i=1}^{\frac{p-1}{2}} i$, we get

$$\left(\prod_{i=1}^{\frac{p-1}{2}}i\right)^2 \equiv (-1)^{\frac{p-1}{2}} \prod_{i=1}^{\frac{p-1}{2}}i \cdot \prod_{i=1}^{\frac{p-1}{2}}(p-i) \equiv (-1)^{\frac{p-1}{2}}(p-1)! \equiv 1 \pmod{p}$$

where we have used $p \equiv 3 \pmod 4$, and Wilson's theorem stating that $(p-1)! \equiv -1 \pmod p$. It follows that $\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod p$.

P2.(1 pt) What are the last two digits in the ordinary decimal representation of 3^{400} ?

SOLUTION. From $3^{400} = 9^{200} = (10 - 1)^{200} = \sum_{i=0}^{200} {200 \choose i} 10^i (-1)^{200-i}$, we see that

$$3^{400} \equiv \sum_{i=0}^{1} {200 \choose i} 10^{i} (-1)^{200-i} \equiv 1 \pmod{100}$$

Thus, the last two digits are 01.

P3.(2 pts) Show that if p is prime then $\binom{p}{k} \equiv 0 \pmod{p}$ for $1 \leqslant k \leqslant p-1$.

PROOF. Since $\binom{p}{k} = \frac{p(p-1)\cdots(p-k+1)}{k!} \in \mathbb{Z}$ and the denominator k! is not a multiple of p for $1 \leqslant k \leqslant p-1$, we have $p \mid \binom{p}{k}$, i.e., $\binom{p}{k} \equiv 0 \pmod{p}$.

P4.(2 pts) For any prime p, if $a^p \equiv b^p \pmod{p}$, prove that $a^p \equiv b^p \pmod{p^2}$.

PROOF. By Fermat's little theorem, $a \equiv a^p \equiv b^p \equiv b \pmod{p}$, we have $a \equiv b \pmod{p}$. Write a = pk + b for some $k \in \mathbb{Z}$. Then

$$a^{p} - b^{p} = (pk + b)^{p} - b^{p} = \sum_{i=1}^{p} {p \choose i} (pk)^{i} b^{p-i}$$

Therefore, $p^2 \mid (a^p - b^p)$, i.e., $a^p \equiv b^p \pmod{p^2}$.

P5.(2 pts) If p is any prime other than 2 or 5, prove that p divides infinitely many of the integers $9, 99, 999, 999, \cdots$. If p is any prime other than 2 or 5, prove that p divides infinitely many of the integers $1, 11, 111, 1111, \cdots$.

PROOF. We can write the first sequence $a_n = 9 \cdot \cdot \cdot 9 = 10^n - 1$. Since p is a prime other than 2 or 5, we have (10, p) = 1. By Fermat's little theorem, $10^{p-1} \equiv 1 \pmod{p}$, i.e., $p \mid (10^{p-1} - 1) = a_{p-1}$. Moreover, $a_{p-1} \mid a_{(p-1)n}, \forall n \in \mathbb{N}$, so the first assertion follows. The second sequence is $b_n = \frac{a_n}{9}$. If $p \neq 3$, the conclusion can be deduced from the above. If p = 3, notice that $3 \mid b_n$ for any n that is divisible by 3. The proof is completed.

P6.(2 pts) Let p be a prime number, and suppose that x is an integer such that $x^2 \equiv -2 \pmod{p}$. By considering the numbers u + xv for various pairs (u, v), show that at least one of the equations $a^2 + 2b^2 = p$, $a^2 + 2b^2 = 2p$ has a solution.

PROOF. Consider the set $S = \{u + xv \mid 0 \leqslant u, v \leqslant [\sqrt{p}]; u, v \in \mathbb{Z}\}$. Since $\#S = ([\sqrt{p}] + 1)^2 > (\sqrt{p})^2 = p$, by the pigeonhole principle, there exist two elements $u_1 + xv_1$ and $u_2 + xv_2$ in S such that $u_1 + xv_1 \equiv u_2 + xv_2 \pmod{p}$. It follows that $u_1 - u_2 \equiv x(v_2 - v_1) \pmod{p}$, and hence we have the following

$$(u_1 - u_2)^2 \equiv x^2 (v_1 - v_2)^2 \equiv -2(v_1 - v_2)^2 \pmod{p}$$

As a consequence, the positive integer $(u_1 - u_2)^2 + 2(v_1 - v_2)^2$, which by our choice of u and v is not greater than $([\sqrt{p}])^2 + 2([\sqrt{p}])^2$, must be a multiple of p. This gives us $(u_1 - u_2)^2 + 2(v_1 - v_2)^2 = p$ or 2p.

P7.(3 pts) Somebody incorrectly remembered Fermat's little theorem as saying that the congruence $a^{n+1} \equiv a \pmod{n}$ holds for all a if n is prime. Describe the set of positive integers n for which this property is in fact true. That is, determine all positive integers n such that $a^{n+1} \equiv a \pmod{n}$ for all $a \in \mathbb{Z}$.

Solution. Clearly n=1 and 2 satisfy this condition, now we assume n>2. First we claim that n must be square-free. Actually, if there is a prime p such that $p^2 \mid n$, taking a=p will lead to a contradiction since $p^2 \mid a^{n+1}$ but $p^2 \nmid a$. Next we take a=-1, and we get $(-1)^{n+1} \equiv -1 \pmod{n}$, which means n has to be even. Now we write n as a product of distinct primes $n=p_1\cdots p_k$, with $2=p_1<\cdots< p_k$ and k>1. The condition $a^{n+1} \equiv a \pmod{n}$ boils down to $a(a^n-1) \equiv 0 \pmod{p_i}$ for all a and all $i=1,2,\cdots,k$. Notice that this already holds for i=1, i.e., $2 \mid a(a^n-1)$ for all a. Next consider i=2, which says $a(a^{2p_2\cdots p_k}-1) \equiv 0 \pmod{p_2}$. When $p_2 \nmid a$, we have $a^{2p_2\cdots p_k} \equiv a^{2p_3\cdots p_k} \pmod{p_2}$, if this is congruent to 1 for all a, it is necessary that $(p_2-1) \mid 2p_3\cdots p_k$. But p_3,\cdots,p_k are prime numbers larger than p_2 , hence $\gcd(p_2-1,p_3\cdots p_k)=1$, and so $(p_2-1) \mid 2$, which forces p_2 to be 3. By the same argument, we can show that k cannot be larger than 4. Moreover, if k=3 or 4, then $p_3=7$, and if k=4, then $p_4=43$. Summing up, 1, 2, 6, 42, 1806 are all the possibilities of n such that $a^{n+1}\equiv a \pmod{n}$ for all $a\in\mathbb{Z}$.

P8.(2 pts) Show that $\binom{p^{\alpha}}{k} \equiv 0 \pmod{p}$ for $0 < k < p^{\alpha}$.

PROOF. Notice that $\binom{p^{\alpha}}{k} = \frac{p^{\alpha}}{k} \binom{p^{\alpha}-1}{k-1}$. And since $0 < k < p^{\alpha}$, when k is factored as $k = p^{\beta}m$ with (p,m) = 1, we must have $\beta < \alpha$. Now, $\binom{p^{\alpha}}{k} = \frac{p^{\alpha-\beta}}{m} \binom{p^{\alpha}-1}{k-1}$ being an integer, m should divide $p^{\alpha-\beta} \binom{p^{\alpha}-1}{k-1}$, and hence divides $\binom{p^{\alpha}-1}{k-1}$, as (p,m) = 1. Consequently, $p^{\alpha-\beta} | \binom{p^{\alpha}}{k}$, and in particular, $\binom{p^{\alpha}}{k} \equiv 0 \pmod{p}$.

P9.(3 pts) Show that $\binom{p^{\alpha}-1}{k} \equiv (-1)^k \pmod{p}$ for $0 \leqslant k \leqslant p^{\alpha} - 1$.

PROOF. We proceed by induction on k, where $0 \le k \le p^{\alpha} - 1$. This is true for k = 0. Now we assume that $\binom{p^{\alpha}-1}{n} \equiv (-1)^n \pmod{p}$ for k = n. For k = n + 1, we have

$$\binom{p^{\alpha}-1}{n+1} + \binom{p^{\alpha}-1}{n} = \binom{p^{\alpha}}{n+1} \stackrel{\mathbf{P8}}{\equiv} 0 \pmod{p} \Longrightarrow \binom{p^{\alpha}-1}{n+1} + (-1)^n \equiv 0 \pmod{p}$$

Thus,
$$\binom{p^{\alpha}-1}{n+1} \equiv (-1)^{n+1} \pmod{p}$$
, which completes the proof.

P10.(2 pts) Show that if r is a non-negative integer then all coefficients of the polynomial $(1+x)^{2^r} - (1+x^{2^r})$ are even. Write a positive integer n in binary, $n = \sum_{r \in \mathscr{R}} 2^r$. Show that all coefficients of the polynomial $(1+x)^n - \prod_{r \in \mathscr{R}} (1+x^{2^r})$ are even. Write $k = \sum_{s \in \mathscr{L}} 2^s$ in binary. Show that $\binom{n}{k}$ is odd if and only if $\mathscr{L} \subseteq \mathscr{R}$. Conclude that if n is given, then $\binom{n}{k}$ is odd for precisely $2^{w(n)}$ values of k, where w(n), called the binary weight n, is the number of 1's in the binary expansion of n. In symbols, $w(n) = \operatorname{card}(\mathscr{R})$.

PROOF. $(1+x)^{2^r} - (1+x^{2^r}) = \sum_{i=1}^{2^r-1} {2^r \choose i} x^i$, by Problem 8, $2 \mid {2^r \choose i}$ for $1 \le i \le 2^r - 1$, so the first assertion follows. For the second part, we have

$$(1+x)^n - \prod_{r \in \mathcal{R}} (1+x^{2^r}) = (1+x)^{\sum_{r \in \mathcal{R}} 2^r} - \prod_{r \in \mathcal{R}} (1+x^{2^r})$$

$$= \prod_{r \in \mathcal{R}} (1+x)^{2^r} - \prod_{r \in \mathcal{R}} (1+x^{2^r})$$

$$= \prod_{r \in \mathcal{R}} ((1+x^{2^r}) + \sum_{i=1}^{2^r - 1} {2^r \choose i} x^i) - \prod_{r \in \mathcal{R}} (1+x^{2^r})$$

Consider this polynomial modulo 2 (namely, in the ring $\mathbb{F}_2[x]$), we get

$$\prod_{r \in \mathcal{R}} ((1+x^{2^r}) + \sum_{i=1}^{2^r-1} {2^r \choose i} x^i) - \prod_{r \in \mathcal{R}} (1+x^{2^r}) \equiv \prod_{r \in \mathcal{R}} ((1+x^{2^r}) + 0) - \prod_{r \in \mathcal{R}} (1+x^{2^r}) \equiv 0 \pmod{2}$$

Thus, all coefficients of the polynomial $(1+x)^n - \prod_{r \in \mathcal{R}} (1+x^{2^r})$ are even (*).

$$[x^k](1+x)^n = \binom{n}{k} \text{ is odd} \iff [x^k]((1+x)^n - \prod_{r \in \mathscr{R}} (1+x^{2^r}) + \prod_{r \in \mathscr{R}} (1+x^{2^r})) \text{ is odd}$$

$$\stackrel{(*)}{\iff} [x^k] \prod_{r \in \mathscr{R}} (1+x^{2^r}) \text{ is odd}$$

Notice that

$$\prod_{r \in \mathcal{R}} (1 + x^{2^r}) = \sum_{\mathcal{R}_m \subseteq \mathcal{R}} x^m$$

where $m = \sum_{i \in \mathcal{R}_m} 2^i$. Therefore, $[x^k] \prod_{r \in \mathcal{R}} (1 + x^{2^r}) = \begin{cases} 1, & \text{if } \mathcal{L} \subseteq \mathcal{R}, \\ 0, & \text{otherwise.} \end{cases}$ and $\binom{n}{k}$ is odd

if and only if $\mathscr{L} \subseteq \mathscr{R}$. Finally, since there are totally $2^{\operatorname{card}(\mathscr{R})} = 2^{w(n)}$ such subsets $\mathscr{L} \subseteq \mathscr{R}$, we conclude that there are exactly $2^{w(n)}$ values of k such that $\binom{n}{k}$ is odd. \square