

$$x_{n+1} = \max\left\{\frac{1}{x_{n-4}}, \frac{y_{n-4}}{x_{n-4}}\right\}; y_{n+1} = \max\left\{\frac{1}{y_{n-4}}, \frac{x_{n-4}}{y_{n-4}}\right\}$$
 Maksimumlu Fark Denklem

Sisteminin Çözümleri

Burak Oğul

Kıgızistan-Türkiye Manas Üniversitesi, Fen Fakültesi, Matematik Bölümü, Bişkek,Kırgızistan burak 1745@hotmail.com

Dağıstan Şimşek

Kıgızistan-Türkiye Manas Üniversitesi, Fen Fakültesi, Uygulamalı Matematik ve Enformatik Bölümü, Bişkek,Kırgızistan, Selçuk Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, Kampüs/Konya Türkiye, dagistan.simsek@manas.edu.kg, dsimsek@selcuk.edu.tr

Received: 27.04.2015 Reviewed: 12.05.2015 Accepted: 15.05.2015

Özet Aşağıdaki fark denklem sisteminin çözümlerinin davranışları incelenmiştir.

$$x_{n+1} = \max\left\{\frac{1}{x_{n-4}}, \frac{y_{n-4}}{x_{n-4}}\right\}; y_{n+1} = \max\left\{\frac{1}{y_{n-4}}, \frac{x_{n-4}}{y_{n-4}}\right\}$$
(1)

Başlangıç şartları pozitif reel sayılardır.

Anahtar sözcükler

Fark Denklemi, Maksimum Operatörü, Yarı Dönmeler.

$$x_{n+1} = \max\left\{\frac{1}{x_{n-4}}, \frac{y_{n-4}}{x_{n-4}}\right\}; y_{n+1} = \max\left\{\frac{1}{y_{n-4}}, \frac{x_{n-4}}{y_{n-4}}\right\}$$
 Solutions Of The System Of Maximum Difference Equations

Abstract The behaviour of the solutions of the following system of difference equations is examined.

$$x_{n+1} = \max\left\{\frac{1}{x_{n-4}}, \frac{y_{n-4}}{x_{n-4}}\right\}; y_{n+1} = \max\left\{\frac{1}{y_{n-4}}, \frac{x_{n-4}}{y_{n-4}}\right\}$$
(1)

Where the initial conditions are positive real numbers.

Keywords Difference Equation, Maximum Operations, Semicycle.

1. GİRİŞ

Son zamanlarda, lineere olmayan fark denklemlerinin periyodikliği ile ilgili ilginç çalışmalar yapılmaktadır. Özellikle fark denklem sisteminin periyodikliği, çözümü ve çözümlerin davranışları incelenmektedir. Birçok araştırmacı, son yıllarda özellikle maksimumlu fark denklemleri ve denklem sistemleri ile ilgili araştırma yapmışlardır. Örneğin [1-30].

Tanım 1:

$$x_{n+1} = f(x_n, x_{n-1}, ..., x_{n-s}) \quad n = 0, 1, 2, ...$$
 için (2)

fark denkleminde $\bar{x} = f(\bar{x},...,\bar{x})$ oluyorsa \bar{x} ye denge noktası denir.

 \bar{x} , (2) denkleminin pozitif bir denge noktası olsun. (2) denkleminin bir $\{x_n\}$ çözümünün bir pozitif yarı dönmesi $\{x_l, x_{l+1}, ..., x_m\}$ terimlerinin bir dizisinden oluşur ve bunların hepsi \bar{x} denge noktasına eşit veya büyük bütün terimlerdir. Öyle ki $l \ge 0$ ve m $\le \infty$ l = 0 ya da l > 0 ve $x_{l-1} < x$ ve olur ya $m = \infty$ ya da $m < \infty$ ve $x_{m+1} < \overline{x}$ dir.

 \bar{x} , (2) denkleminin negatif bir denge noktası olsun. (2) denkleminin bir $\{x_n\}$ çözümünün bir negatif yarı dönmesi $\{x_l, x_{l+1}, ..., x_m\}$ terimlerinin bir dizisinden oluşur ve bunların hepsi \bar{x} denge noktasından daha küçük terimlerdir. Öyle ki $l \ge 0$ ve m $\le \infty$ olur ve burada Ya l=0 ya da l>0 ve $x_{l-1} \ge x$ veya $m=\infty$ ya da $m<\infty$ ve $x_{m+1} \ge x$ dir.

Tanım 4 : $f_1 = 1, f_2 = 1$ ve $n \ge 3$ için $f_n = f_{n-1} + f_{n-2}$ şeklinde tanımlanan sayılara Fibonacci savıları denir.

2. ANA SONUCLAR

$$x_{n+1} = \max\left\{\frac{1}{x_{n-4}}, \frac{y_{n-4}}{x_{n-4}}\right\}; y_{n+1} = \max\left\{\frac{1}{y_{n-4}}, \frac{x_{n-4}}{y_{n-4}}\right\}$$
 (1)

Şimdi (1) denkleminin pozitif denge noktasını bulalım.

$$\overline{x} = \max \left\{ \frac{1}{x}, \frac{\overline{y}}{x} \right\}; \overline{y} = \max \left\{ \frac{1}{y}, \frac{\overline{x}}{y} \right\} \text{ olur. Buradan}$$

$$\overline{x} = \frac{1}{x}$$
 veya $\overline{x} = \frac{y}{x}$; $\overline{y} = \frac{1}{y}$ veya $\overline{y} = \frac{x}{y}$ elde edilir. $(\overline{x})^2 = 1$ ve $(\overline{y})^2 = 1$ bulunur. Buradan

 $\bar{x} = 1$ ve $\bar{y} = 1$ elde edilir.

Lemma 1 : (1) denklemi için $0 < x_{-4} < y_{-4} < 1$, $0 < x_{-3} < y_{-3} < 1$, $0 < x_{-2} < y_{-2} < 1$, $0 < x_{-1} < y_{-1} < 1$ ve $0 < x_0 < y_0 < 1$ başlangıç şartlarına göre , Asağıdaki ifadeler doğrudur:

- a) x_n çözümleri için her pozitif yarı dönme beş terimden oluşur. y_n çözümleri için $n \ge 5$ durumunda her pozitif yarı dönme beş terimden oluşur.
- b) x_n çözümleri için her negatif yarı dönme beş terimden oluşur. y_n çözümleri için $n \ge 5$ durumunda her negatif yarı dönme beş terimden oluşur.
- c) x_n çözümleri için beş uzunluğundaki her pozitif yarı dönmeyi beş uzunluğundaki negatif yarı dönme takip eder. y_n çözümleri için $n \ge 5$ durumunda beş uzunluğundaki her pozitif yarı dönmeyi beş uzunluğundaki negatif yarı dönme takip eder.
- d) x_n çözümleri için beş uzunluğundaki her negatif yarı dönmeyi beş uzunluğundaki pozitif yarı dönme takip eder. y_n çözümleri için $n \ge 5$ durumunda beş uzunluğundaki her negatif yarı dönmeyi beş uzunluğundaki pozitif yarı dönme takip eder

İspat:

 $0 < x_{-4} < y_{-4} < 1$, $0 < x_{-3} < y_{-3} < 1$, $0 < x_{-2} < y_{-2} < 1$, $0 < x_{-1} < y_{-1} < 1$ ve $0 < x_0 < y_0 < 1$ Başlangıç şartlarına göre

$$x_{1} = \max \left\{ \frac{1}{x_{-4}}, \frac{y_{-4}}{x_{-4}} \right\} = \frac{1}{x_{-4}} > x$$

$$y_{1} = \max \left\{ \frac{1}{y_{-4}}, \frac{x_{-4}}{y_{-4}} \right\} = \frac{1}{y_{-4}} > y$$

$$x_{2} = \max \left\{ \frac{1}{x_{-3}}, \frac{y_{-3}}{x_{-3}} \right\} = \frac{1}{x_{-3}} > x$$

$$y_{2} = \max \left\{ \frac{1}{y_{-3}}, \frac{x_{-3}}{y_{-3}} \right\} = \frac{1}{y_{-3}} > y$$

$$x_{3} = \max \left\{ \frac{1}{x_{-2}}, \frac{y_{-2}}{x_{-2}} \right\} = \frac{1}{x_{-2}} > x$$

$$y_{3} = \max \left\{ \frac{1}{y_{-2}}, \frac{x_{-2}}{y_{-2}} \right\} = \frac{1}{y_{-2}} > y$$

$$x_{4} = \max \left\{ \frac{1}{x_{-1}}, \frac{y_{-1}}{x_{-1}} \right\} = \frac{1}{x_{-1}} > x$$

$$y_{4} = \max \left\{ \frac{1}{y_{-1}}, \frac{x_{-1}}{y_{-1}} \right\} = \frac{1}{y_{-1}} > y$$

$$x_{5} = \max \left\{ \frac{1}{x_{0}}, \frac{y_{0}}{x_{0}} \right\} = \frac{1}{x_{0}} > \overline{x}$$

$$y_{5} = \max \left\{ \frac{1}{y_{0}}, \frac{x_{0}}{y_{0}} \right\} = \frac{1}{y_{0}} > \overline{y}$$

$$x_{6} = \max \left\{ \frac{1}{x_{1}}, \frac{y_{1}}{x_{1}} \right\} = \frac{x_{-4}}{y_{-4}} < \overline{x}$$

$$y_{6} = \max \left\{ \frac{1}{y_{1}}, \frac{x_{1}}{y_{1}} \right\} = \frac{y_{-4}}{x_{-4}} > \overline{y}$$

$$x_{7} = \max \left\{ \frac{1}{x_{2}}, \frac{y_{2}}{y_{2}} \right\} = \frac{y_{-3}}{y_{-3}} > \overline{y}$$

$$x_{8} = \max \left\{ \frac{1}{y_{3}}, \frac{y_{3}}{y_{3}} \right\} = \frac{y_{-2}}{y_{-2}} < \overline{x}$$

$$y_{9} = \max \left\{ \frac{1}{y_{4}}, \frac{x_{3}}{y_{4}} \right\} = \frac{y_{-1}}{y_{-1}} < \overline{x}$$

$$y_{9} = \max \left\{ \frac{1}{y_{4}}, \frac{y_{4}}{y_{4}} \right\} = \frac{y_{-1}}{y_{-1}} > \overline{y}$$

$$x_{10} = \max \left\{ \frac{1}{y_{4}}, \frac{y_{5}}{y_{5}} \right\} = \frac{y_{0}}{y_{0}} < \overline{x}$$

$$y_{11} = \max \left\{ \frac{1}{x_{6}}, \frac{y_{6}}{y_{6}} \right\} = \left(\frac{y_{-4}}{y_{-4}} \right)^{2} > \overline{x}$$

$$y_{12} = \max \left\{ \frac{1}{y_{7}}, \frac{y_{7}}{y_{7}} \right\} = \left(\frac{y_{-3}}{y_{-3}} \right)^{2} > \overline{x}$$

$$y_{12} = \max \left\{ \frac{1}{y_{7}}, \frac{x_{7}}{y_{7}} \right\} = \left(\frac{y_{-3}}{y_{-3}} \right)^{2} > \overline{x}$$

$$x_{13} = \max\left\{\frac{1}{x_8}, \frac{y_8}{x_8}\right\} = \left(\frac{y_{-2}}{x_{-2}}\right)^2 > \overline{x}$$

$$y_{13} = \max\left\{\frac{1}{y_8}, \frac{x_8}{y_8}\right\} = \frac{x_{-2}}{y_{-2}} < \overline{y}$$

$$x_{14} = \max\left\{\frac{1}{x_9}, \frac{y_9}{x_9}\right\} = \left(\frac{y_{-1}}{x_{-1}}\right)^2 > \overline{x}$$

$$y_{14} = \max\left\{\frac{1}{y_9}, \frac{x_9}{y_9}\right\} = \frac{x_{-1}}{y_{-1}} < \overline{y}$$

$$x_{15} = \max\left\{\frac{1}{x_{10}}, \frac{y_{10}}{x_{10}}\right\} = \left(\frac{y_0}{x_0}\right)^2 > \overline{x}$$

$$y_{15} = \max\left\{\frac{1}{y_{10}}, \frac{x_{10}}{y_{10}}\right\} = \frac{x_0}{y_0} < \overline{y}$$

$$\vdots$$

elde edilir.

$$x_1 > x$$
, $x_2 > x$, $x_3 > x$, $x_4 > x$, $x_5 > x$, $x_6 < x$, $x_7 < x$, $x_8 < x$, $x_9 < x$, $x_{10} < x$,

 \dots buradan da görüldüğü gibi X_n çözümleri PPPPNNNNNPPPPPNNNNN \dots şeklindedir.

 $\mathbf{X}_{\,\mathbf{n}}\,$ çözümleri için her pozitif yarı dönmenin beş terimden oluştuğu görülmektedir.

 y_n çözümleri $n \ge 5$ için her pozitif yarı dönmenin beş terimden oluştuğu görülmektedir.

 $\mathbf{X}_{\,\mathbf{n}}\,$ çözümleri için her negatif yarı dönmenin beş terimden oluştuğu görülmektedir.

 \boldsymbol{y}_n çözümleri $n \geq 5$ için her negatif yarı dönmenin beş terimden oluştuğu görülmektedir.

Beş uzunluğundaki her pozitif yarı dönmeyi beş uzunluğundaki negatif yarı dönmenin takip ettiği X n çözümlerinden görülmektedir.

Beş uzunluğundaki her negatif yarı dönmeyi beş uzunluğundaki pozitif yarı dönmenin takip ettiği $n \ge 5$ şartı altındaki y_n çözümlerinden görülmektedir.

Böylece Lemmanın ispatı gösterilmiştir.

Teorem 1: $(X_n; y_n)$ (1) denkleminin $0 < x_{-4} < y_{-4} < 1$, $0 < x_{-3} < y_{-3} < 1$, $0 < x_{-2} < y_{-2} < 1$, $0 < x_{-1} < y_{-1} < 1$ ve $0 < x_0 < y_0 < 1$ başlangıç şartları altındaki çözümü olsun. , n = 0, 1, 2, ... için

$$\begin{split} x_{10n+1} &= \left(\frac{1}{x_{-4}}\right)^{f(2n+1)}; x_{10n+2} = \left(\frac{1}{x_{-3}}\right)^{f(2n+1)}; x_{10n+3} = \left(\frac{1}{x_{-2}}\right)^{f(2n+1)}; x_{10n+4} = \left(\frac{1}{x_{-1}}\right)^{f(2n+1)}; \\ x_{10n+5} &= \left(\frac{1}{x_{0}}\right)^{f(2n+1)}; x_{10n+6} = \left(\frac{x_{-4}}{y_{-4}}\right)^{f(2n+1)}; x_{10n+7} = \left(\frac{x_{-3}}{y_{-3}}\right)^{f(2n+1)}; x_{10n+8} = \left(\frac{x_{-2}}{y_{-2}}\right)^{f(2n+1)}; \\ x_{10n+9} &= \left(\frac{x_{-1}}{y_{-1}}\right)^{f(2n+1)}; x_{10n+10} = \left(\frac{x_{0}}{y_{0}}\right)^{f(2n+1)}; \\ y_{10n+1} &= \left(\frac{1}{y_{-4}}\right)^{f(2n)}; y_{10n+2} = \left(\frac{1}{y_{-3}}\right)^{f(2n)}; y_{10n+3} = \left(\frac{1}{y_{-2}}\right)^{f(2n)}; y_{10n+4} = \left(\frac{1}{y_{-1}}\right)^{f(2n)}; \\ y_{10n+5} &= \left(\frac{1}{y_{0}}\right)^{f(2n+2)}; y_{10n+6} = \left(\frac{y_{-4}}{x_{-4}}\right)^{f(2n+2)}; y_{10n+7} = \left(\frac{y_{-3}}{x_{-3}}\right)^{f(2n+2)}; y_{10n+8} = \left(\frac{y_{-2}}{x_{-2}}\right)^{f(2n+2)}; \\ y_{10n+9} &= \left(\frac{y_{-1}}{x_{-1}}\right)^{f(2n+2)}; y_{10n+10} = \left(\frac{y_{0}}{x_{0}}\right)^{f(2n+2)}; \end{split}$$

çözümler elde edilir.

İspat:

Bu teoremin ispatını tümevarım yöntemiyle gösterelim.

$$x_{1} = \max \left\{ \frac{1}{x_{-4}}, \frac{y_{-4}}{x_{-4}} \right\} = \frac{1}{x_{-4}} > \overline{x}$$

$$y_{1} = \max \left\{ \frac{1}{y_{-4}}, \frac{x_{-4}}{y_{-4}} \right\} = \frac{1}{y_{-4}} > \overline{y}$$

$$x_{2} = \max \left\{ \frac{1}{x_{-3}}, \frac{y_{-3}}{x_{-3}} \right\} = \frac{1}{x_{-3}} > \overline{x}$$

$$y_{2} = \max \left\{ \frac{1}{y_{-3}}, \frac{x_{-3}}{y_{-3}} \right\} = \frac{1}{y_{-3}} > \overline{y}$$

$$x_{3} = \max \left\{ \frac{1}{x_{-2}}, \frac{y_{-2}}{x_{-2}} \right\} = \frac{1}{x_{-2}} > \overline{x}$$

$$y_{3} = \max \left\{ \frac{1}{y_{-2}}, \frac{x_{-2}}{y_{-2}} \right\} = \frac{1}{y_{-2}} > \overline{y}$$

$$x_{4} = \max \left\{ \frac{1}{x_{-1}}, \frac{y_{-1}}{x_{-1}} \right\} = \frac{1}{x_{-1}} > \overline{x}$$

$$y_{4} = \max \left\{ \frac{1}{y_{-1}}, \frac{x_{-1}}{y_{-1}} \right\} = \frac{1}{y_{-1}} > \overline{y}$$

$$x_{5} = \max \left\{ \frac{1}{x_{0}}, \frac{y_{0}}{x_{0}} \right\} = \frac{1}{x_{0}} > \overline{x}$$

$$y_{5} = \max \left\{ \frac{1}{y_{0}}, \frac{x_{0}}{y_{0}} \right\} = \frac{1}{y_{0}} > \overline{y}$$

$$x_{6} = \max \left\{ \frac{1}{x_{1}}, \frac{y_{1}}{x_{1}} \right\} = \frac{x_{-4}}{y_{-4}} < \overline{x}$$

$$y_{6} = \max \left\{ \frac{1}{y_{1}}, \frac{x_{1}}{y_{1}} \right\} = \frac{y_{-4}}{x_{-4}} > \overline{y}$$

$$x_{7} = \max \left\{ \frac{1}{x_{2}}, \frac{y_{2}}{y_{2}} \right\} = \frac{y_{-3}}{x_{-3}} < \overline{x}$$

$$y_{7} = \max \left\{ \frac{1}{y_{2}}, \frac{x_{2}}{y_{2}} \right\} = \frac{y_{-3}}{x_{-3}} > \overline{y}$$

$$x_{8} = \max \left\{ \frac{1}{x_{3}}, \frac{y_{3}}{y_{3}} \right\} = \frac{x_{-2}}{y_{-2}} < \overline{x}$$

$$y_{9} = \max \left\{ \frac{1}{x_{4}}, \frac{y_{4}}{y_{4}} \right\} = \frac{y_{-1}}{y_{-1}} < \overline{x}$$

$$y_{9} = \max \left\{ \frac{1}{y_{4}}, \frac{x_{4}}{y_{4}} \right\} = \frac{y_{-1}}{y_{-1}} > \overline{y}$$

$$x_{10} = \max \left\{ \frac{1}{x_{5}}, \frac{y_{5}}{y_{5}} \right\} = \frac{y_{0}}{y_{0}} < \overline{x}$$

$$y_{11} = \max \left\{ \frac{1}{x_{6}}, \frac{y_{6}}{y_{6}} \right\} = \left(\frac{y_{-4}}{x_{-4}} \right)^{2} > \overline{x}$$

$$y_{12} = \max \left\{ \frac{1}{x_{7}}, \frac{x_{7}}{x_{7}} \right\} = \left(\frac{y_{-3}}{x_{-3}} \right)^{2} > \overline{x}$$

$$y_{12} = \max \left\{ \frac{1}{x_{7}}, \frac{x_{7}}{y_{7}} \right\} = \left(\frac{y_{-3}}{x_{-3}} \right)^{2} > \overline{x}$$

$$x_{13} = \max\left\{\frac{1}{x_8}, \frac{y_8}{x_8}\right\} = \left(\frac{y_{-2}}{x_{-2}}\right)^2 > \overline{x}$$

$$y_{13} = \max\left\{\frac{1}{y_8}, \frac{x_8}{y_8}\right\} = \frac{x_{-2}}{y_{-2}} < \overline{y}$$

$$x_{14} = \max\left\{\frac{1}{x_9}, \frac{y_9}{x_9}\right\} = \left(\frac{y_{-1}}{x_{-1}}\right)^2 > \overline{x}$$

$$y_{14} = \max\left\{\frac{1}{y_9}, \frac{x_9}{y_9}\right\} = \frac{x_{-1}}{y_{-1}} < \overline{y}$$

$$x_{15} = \max\left\{\frac{1}{x_{10}}, \frac{y_{10}}{x_{10}}\right\} = \left(\frac{y_0}{x_0}\right)^2 > \overline{x}$$

$$y_{15} = \max\left\{\frac{1}{y_{10}}, \frac{x_{10}}{y_{10}}\right\} = \frac{x_0}{y_0} < \overline{y}$$

$$\vdots$$

n = 0 için doğrudur. n = k için doğru olduğunu kabul edelim.

$$\begin{split} x_{10k+1} &= \left(\frac{1}{x_{-4}}\right)^{f(2k+1)}; x_{1kn+2} = \left(\frac{1}{x_{-3}}\right)^{f(2k+1)}; x_{10k+3} = \left(\frac{1}{x_{-2}}\right)^{f(2k+1)}; x_{10k+4} = \left(\frac{1}{x_{-1}}\right)^{f(2k+1)}; \\ x_{10k+5} &= \left(\frac{1}{x_{0}}\right)^{f(2k+1)}; x_{10k+6} = \left(\frac{x_{-4}}{y_{-4}}\right)^{f(2k+1)}; x_{10k+7} = \left(\frac{x_{-3}}{y_{-3}}\right)^{f(2k+1)}; x_{10k+8} = \left(\frac{x_{-2}}{y_{-2}}\right)^{f(2k+1)}; \\ x_{10k+9} &= \left(\frac{x_{-1}}{y_{-1}}\right)^{f(2k+1)}; x_{10k+10} = \left(\frac{x_{0}}{y_{0}}\right)^{f(2k+1)}; \\ y_{10k+1} &= \left(\frac{1}{y_{-4}}\right)^{f(2k)}; y_{10k+2} = \left(\frac{1}{y_{-3}}\right)^{f(2k)}; y_{10k+3} = \left(\frac{1}{y_{-2}}\right)^{f(2k)}; y_{10k+4} = \left(\frac{1}{y_{-1}}\right)^{f(2k)}; \\ y_{10k+5} &= \left(\frac{1}{y_{0}}\right)^{f(2k+2)}; y_{10k+6} = \left(\frac{y_{-4}}{x_{-4}}\right)^{f(2k+2)}; y_{10k+7} = \left(\frac{y_{-3}}{x_{-3}}\right)^{f(2k+2)}; y_{10k+8} = \left(\frac{y_{-2}}{x_{-2}}\right)^{f(2k+2)}; \\ y_{10k+9} &= \left(\frac{y_{-1}}{x_{-1}}\right)^{f(2k+2)}; y_{10k+10} = \left(\frac{y_{0}}{x_{0}}\right)^{f(2k+2)}; \end{split}$$

n = k+1 için doğru olduğunu gösterelim.

$$\begin{split} x_{10k+11} &= \max \left\{ \frac{1}{x_{10k+6}}, \frac{y_{10k+6}}{x_{10k+6}} \right\} = \max \left\{ \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+1)}, \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+2)} \right. \\ &= \max \left\{ \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+1)}, \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+2)} \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+1)} \right\} \\ &= \max \left\{ \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+1)}, \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+3)} \\ &= \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+3)} \\ &= \max \left\{ \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)}, \left(\frac{y_{-4}}{y_{-4}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)} \right\} \end{split}$$

$$\begin{split} x_{10k+12} &= \max \left\{ \frac{1}{x_{10k+7}}, \frac{y_{10k+7}}{x_{10k+7}} \right\} = \max \left\{ \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+1)}, \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+1)}, \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+2)} \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+1)} \right\} \\ &= \max \left\{ \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+1)}, \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+3)} \\ &= \left(\frac{y_{-3}}{y_{-3}} \right)^{f(2k+2)} \\ &= \max \left\{ \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)}, \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)}, \left(\frac{y_{-3}}{y_{-3}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)}, \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)}, \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)}, \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)} \right\} \end{split}$$

$$\begin{split} x_{10k+13} &= \max \left\{ \frac{1}{x_{10k+8}}, \frac{y_{10k+8}}{x_{10k+8}} \right\} = \max \left\{ \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+1)}, \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+1)}, \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+2)} \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+1)} \right\} \\ &= \max \left\{ \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+1)}, \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+3)} \\ &= \left(\frac{y_{-2}}{y_{-2}} \right)^{f(2k+3)} \\ &= \max \left\{ \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+2)}, \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+2)}, \left(\frac{y_{-2}}{y_{-2}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+2)}, \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+2)}, \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+2)}, \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)} \right\} \end{split}$$

$$\begin{split} x_{10k+14} &= \max \left\{ \frac{1}{x_{10k+9}}, \frac{y_{10k+9}}{x_{10k+9}} \right\} = \max \left\{ \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+1)}, \frac{\left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+2)}}{\left(\frac{x_{-1}}{x_{-1}} \right)^{f(2k+1)}} \right\} \\ &= \max \left\{ \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+1)}, \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+2)} \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+1)} \right\} \\ &= \max \left\{ \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+1)}, \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+3)} \\ &= \max \left\{ \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+2)}, \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+2)}, \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+2)}, \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+2)}, \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+2)}, \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)} \right\} \end{split}$$

$$\begin{split} x_{10k+15} &= \max \left\{ \frac{1}{x_{10k+10}}, \frac{y_{10k+8}}{x_{10k+10}} \right\} = \max \left\{ \left(\frac{y_0}{x_0} \right)^{f(2k+1)}, \frac{\left(\frac{y_0}{x_0} \right)^{f(2k+2)}}{\left(\frac{x_0}{y_0} \right)^{f(2k+1)}} \right\} \\ &= \max \left\{ \left(\frac{y_0}{x_0} \right)^{f(2k+2)}, \left(\frac{y_0}{x_0} \right)^{f(2k+2)} \left(\frac{y_0}{x_0} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{y_0}{x_0} \right)^{f(2k+2)}, \left(\frac{y_0}{x_0} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{y_0}{x_0} \right)^{f(2k+3)} \\ &= \max \left\{ \frac{1}{y_{10k+10}}, \frac{x_{10k+10}}{y_{10k+10}} \right\} = \max \left\{ \left(\frac{x_0}{y_0} \right)^{f(2k+2)}, \left(\frac{x_0}{y_0} \right)^{f(2k+2)}, \left(\frac{y_0}{x_0} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{x_0}{y_0} \right)^{f(2k+2)}, \left(\frac{x_0}{y_0} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_0}{y_0} \right)^{f(2k+2)}, \left(\frac{x_0}{y_0} \right)^{f(2k+3)} \right\} \\ &= \left(\frac{x_0}{y_0} \right)^{f(2k+2)}, \left(\frac{x_0}{y_0} \right)^{f(2k+3)} \right\} \end{split}$$

$$\begin{split} x_{10k+16} &= \max \left\{ \frac{1}{x_{10k+11}}, \frac{y_{10k+11}}{x_{10k+11}} \right\} = \max \left\{ \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+2)} \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)}, \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)} \\ &= \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2k+3)} \\ &= \max \left\{ \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+2)}, \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+2)}, \left(\frac{y_{-4}}{y_{-4}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+2)}, \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+4)} \right\} \\ &= \max \left\{ \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+2)}, \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+2)}, \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2k+4)} \right\} \end{split}$$

$$\begin{split} x_{10k+17} &= \max \left\{ \frac{1}{x_{10k+12}}, \frac{y_{10k+12}}{x_{10k+12}} \right\} = \max \left\{ \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)}, \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)}, \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)} \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)}, \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+3)} \\ &= \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2k+2)}, \left(\frac{y_{-3}}{y_{-3}} \right)^{f(2k+2)}, \left(\frac{y_{-3}}{y_{-3}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+2)}, \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+3)} \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+2)}, \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2k+4)} \end{split}$$

$$\begin{split} x_{10k+18} &= \max \left\{ \frac{1}{x_{10k+13}}, \frac{y_{10k+13}}{x_{10k+13}} \right\} = \max \left\{ \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)}, \frac{\left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+2)}}{\left(\frac{y_{-2}}{y_{-2}} \right)^{f(2k+3)}} \right\} \\ &= \max \left\{ \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)}, \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+2)} \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)}, \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2k+3)} \\ &= \max \left\{ \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+3)}, \left(\frac{y_{-2}}{y_{-2}} \right)^{f(2k+2)}, \left(\frac{y_{-2}}{y_{-2}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+2)}, \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+4)} \right\} \\ &= \max \left\{ \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+2)}, \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2k+4)} \end{split}$$

$$\begin{split} x_{10k+19} &= \max \left\{ \frac{1}{x_{10k+14}}, \frac{y_{10k+14}}{x_{10k+14}} \right\} = \max \left\{ \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)}, \frac{\left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+2)}}{\left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+3)}} \right\} \\ &= \max \left\{ \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)}, \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+2)} \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)}, \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2k+3)} \\ &= \max \left\{ \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+2)}, \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+2)}, \left(\frac{y_{-1}}{y_{-1}} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+2)}, \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+4)} \right\} \\ &= \max \left\{ \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+2)}, \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2k+4)} \end{split}$$

$$\begin{split} x_{10k+20} &= \max \left\{ \frac{1}{x_{10k+15}}, \frac{y_{10k+15}}{x_{10k+15}} \right\} = \max \left\{ \left(\frac{x_0}{y_0} \right)^{f(2k+3)}, \frac{\left(\frac{x_0}{y_0} \right)^{f(2k+2)}}{\left(\frac{y_0}{x_0} \right)^{f(2k+3)}} \right\} \\ &= \max \left\{ \left(\frac{x_0}{y_0} \right)^{f(2k+3)}, \left(\frac{x_0}{y_0} \right)^{f(2k+2)} \left(\frac{x_0}{y_0} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{x_0}{y_0} \right)^{f(2k+3)}, \left(\frac{x_0}{y_0} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{x_0}{y_0} \right)^{f(2k+3)} \\ &= \left(\frac{x_0}{y_0} \right)^{f(2k+3)} \right\} \\ &= \max \left\{ \left(\frac{y_0}{x_0} \right)^{f(2k+2)}, \left(\frac{y_0}{y_0} \right)^{f(2k+2)}, \left(\frac{y_0}{y_0} \right)^{f(2k+2)} \right\} \\ &= \max \left\{ \left(\frac{y_0}{x_0} \right)^{f(2k+2)}, \left(\frac{y_0}{x_0} \right)^{f(2k+4)} \right\} \\ &= \max \left\{ \left(\frac{y_0}{x_0} \right)^{f(2k+2)}, \left(\frac{y_0}{x_0} \right)^{f(2k+4)} \right\} \\ &= \left(\frac{y_0}{x_0} \right)^{f(2k+4)} \end{split}$$

Böylece teoeremin doğruluğu ispatlanmış oldu.

Teorem 2 : (1) denklem sistemi $0 < x_{-4} < y_{-4} < 1$, $0 < x_{-3} < y_{-3} < 1$, $0 < x_{-2} < y_{-2} < 1$, $0 < x_{-1} < y_{-1} < 1$ ve $0 < x_0 < y_0 < 1$ başlangıç şartlarına göre

$$\lim_{n\to\infty} x_{10n+1} = \infty; \lim_{n\to\infty} x_{10n+2} = \infty; \lim_{n\to\infty} x_{10n+3} = \infty; \lim_{n\to\infty} x_{10n+4} = \infty; \lim_{n\to\infty} x_{10n+5} = \infty;$$
a)
$$\lim_{n\to\infty} x_{10n+6} = 0; \lim_{n\to\infty} x_{10n+7} = 0; \lim_{n\to\infty} x_{10n+8} = 0; \lim_{n\to\infty} x_{10n+9} = 0; \lim_{n\to\infty} x_{10n+10} = 0$$

$$\lim_{n \to \infty} y_{10n+1} = 0; \lim_{n \to \infty} y_{10n+2} = 0; \lim_{n \to \infty} y_{10n+3} = 0; \lim_{n \to \infty} y_{10n+4} = 0; \lim_{n \to \infty} y_{10n+5} = 0;$$

b)
$$\lim_{n \to \infty} y_{10n+6} = \infty$$
; $\lim_{n \to \infty} y_{10n+7} = \infty$; $\lim_{n \to \infty} y_{10n+8} = \infty$; $\lim_{n \to \infty} y_{10n+9} = \infty$; $\lim_{n \to \infty} y_{10n+10} = \infty$

olur.

İspat: a)

 $0 < x_{-4} < y_{-4} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+1} = \lim_{n \to \infty} \left(\frac{1}{x_{-4}}\right)^{f(2n+1)} = \left(\frac{1}{x_{-4}}\right)^{f(\infty)} = \left(\frac{1}{x_{-4}}\right)^{\infty} = \infty$$

elde edilir.

 $0 < x_{-3} < y_{-3} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+2} = \lim_{n \to \infty} \left(\frac{1}{x_{-3}} \right)^{f(2n+1)} = \left(\frac{1}{x_{-3}} \right)^{f(\infty)} = \left(\frac{1}{x_{-3}} \right)^{\infty} = \infty$$

elde edilir.

 $0 < x_{-2} < y_{-2} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+3} = \lim_{n \to \infty} \left(\frac{1}{x_{-2}} \right)^{f(2n+1)} = \left(\frac{1}{x_{-2}} \right)^{f(\infty)} = \left(\frac{1}{x_{-2}} \right)^{\infty} = \infty$$

elde edilir.

 $0 < x_{-1} < y_{-1} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+4} = \lim_{n \to \infty} \left(\frac{1}{x_{-1}} \right)^{f(2n+1)} = \left(\frac{1}{x_{-1}} \right)^{f(\infty)} = \left(\frac{1}{x_{-1}} \right)^{\infty} = \infty$$

elde edilir.

 $0 < x_0 < y_0 < 1$ olduğu için

$$\lim_{n\to\infty} x_{10n+5} = \lim_{n\to\infty} \left(\frac{1}{x_0}\right)^{f(2n+1)} = \left(\frac{1}{x_0}\right)^{f(\infty)} = \left(\frac{1}{x_0}\right)^{\infty} = \infty$$

elde edilir.

 $0 < x_{-4} < y_{-4} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+6} = \lim_{n \to \infty} \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2n+1)} = \left(\frac{x_{-4}}{y_{-4}} \right)^{f(\infty)} = \left(\frac{x_{-4}}{y_{-4}} \right)^{\infty} = 0 ,$$

elde edilir.

 $0 < x_{-3} < y_{-3} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+7} = \lim_{n \to \infty} \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2n+1)} = \left(\frac{x_{-3}}{y_{-3}} \right)^{f(\infty)} = \left(\frac{x_{-3}}{y_{-3}} \right)^{\infty} = 0 ,$$

elde edilir.

 $0 < x_{-2} < y_{-2} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+8} = \lim_{n \to \infty} \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2n+1)} = \left(\frac{x_{-2}}{y_{-2}} \right)^{f(\infty)} = \left(\frac{x_{-2}}{y_{-2}} \right)^{\infty} = 0 ,$$

elde edilir.

 $0 < x_{-1} < y_{-1} < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+9} = \lim_{n \to \infty} \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2n+1)} = \left(\frac{x_{-1}}{y_{-1}} \right)^{f(\infty)} = \left(\frac{x_{-1}}{y_{-1}} \right)^{\infty} = 0 \quad ,$$

elde edilir.

 $0 < x_0 < y_0 < 1$ olduğu için

$$\lim_{n \to \infty} x_{10n+10} = \lim_{n \to \infty} \left(\frac{x_0}{y_0} \right)^{f(2n+1)} = \left(\frac{x_0}{y_0} \right)^{f(\infty)} = \left(\frac{x_0}{y_0} \right)^{\infty} = 0 .$$

elde edilir.

b)

 $0 < x_{-4} < y_{-4} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+1} = \lim_{n \to \infty} \left(\frac{x_{-4}}{y_{-4}} \right)^{f(2n)} = \left(\frac{x_{-4}}{y_{-4}} \right)^{f(\infty)} = \left(\frac{x_{-4}}{y_{-4}} \right)^{\infty} = 0 ,$$

elde edilir.

 $0 < x_{-3} < y_{-3} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+2} = \lim_{n \to \infty} \left(\frac{x_{-3}}{y_{-3}} \right)^{f(2n)} = \left(\frac{x_{-3}}{y_{-3}} \right)^{f(\infty)} = \left(\frac{x_{-3}}{y_{-3}} \right)^{\infty} = 0 ,$$

elde edilir.

 $0 < x_{-2} < y_{-2} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+3} = \lim_{n \to \infty} \left(\frac{x_{-2}}{y_{-2}} \right)^{f(2n)} = \left(\frac{x_{-2}}{y_{-2}} \right)^{f(\infty)} = \left(\frac{x_{-2}}{y_{-2}} \right)^{\infty} = 0 ,$$

elde edilir.

 $0 < x_{-1} < y_{-1} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+4} = \lim_{n \to \infty} \left(\frac{x_{-1}}{y_{-1}} \right)^{f(2n)} = \left(\frac{x_{-1}}{y_{-1}} \right)^{f(\infty)} = \left(\frac{x_{-1}}{y_{-1}} \right)^{\infty} = 0 ,$$

elde edilir.

 $0 < x_0 < y_0 < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+5} = \lim_{n \to \infty} \left(\frac{x_0}{y_0} \right)^{f(2n)} = \left(\frac{x_0}{y_0} \right)^{f(\infty)} = \left(\frac{x_0}{y_0} \right)^{\infty} = 0,$$

elde edilir.

 $0 < x_{-4} < y_{-4} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+6} = \lim_{n \to \infty} \left(\frac{y_{-4}}{x_{-4}} \right)^{f(2n+2)} = \left(\frac{y_{-4}}{x_{-4}} \right)^{f(\infty)} = \left(\frac{y_{-4}}{x_{-4}} \right)^{\infty} = \infty \quad ,$$

elde edilir.

 $0 < x_{-3} < y_{-3} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+7} = \lim_{n \to \infty} \left(\frac{y_{-3}}{x_{-3}} \right)^{f(2n+2)} = \left(\frac{y_{-3}}{x_{-3}} \right)^{f(\infty)} = \left(\frac{y_{-3}}{x_{-3}} \right)^{\infty} = \infty ,$$

elde edilir.

 $0 < x_{-2} < y_{-2} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+8} = \lim_{n \to \infty} \left(\frac{y_{-2}}{x_{-2}} \right)^{f(2n+2)} = \left(\frac{y_{-2}}{x_{-2}} \right)^{f(\infty)} = \left(\frac{y_{-2}}{x_{-2}} \right)^{\infty} = \infty \quad ,$$

elde edilir.

 $0 < x_{-1} < y_{-1} < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+9} = \lim_{n \to \infty} \left(\frac{y_{-1}}{x_{-1}} \right)^{f(2n+2)} = \left(\frac{y_{-1}}{x_{-1}} \right)^{f(\infty)} = \left(\frac{y_{-1}}{x_{-1}} \right)^{\infty} = \infty ,$$

elde edilir.

 $0 < x_0 < y_0 < 1$ olduğu için

$$\lim_{n \to \infty} y_{10n+10} = \lim_{n \to \infty} \left(\frac{y_0}{x_0} \right)^{f(2n+2)} = \left(\frac{y_0}{x_0} \right)^{f(\infty)} = \left(\frac{y_0}{x_0} \right)^{\infty} = \infty .$$

elde edilir.

3. TARTISMA VE SONUC

Bu çalışmada, $x_{-4}; x_{-3}; x_{-2}; x_{-1}; x_0; y_{-4}; y_{-3}; y_{-2}; y_{-1}; y_0$ başlangıç şartları sıfırdan farklı reel

sayılar olmak üzere,
$$x_{n+1} = \max\left\{\frac{1}{x_{n-4}}, \frac{y_{n-4}}{x_{n-4}}\right\}; y_{n+1} = \max\left\{\frac{1}{y_{n-4}}, \frac{x_{n-4}}{y_{n-4}}\right\}$$
 maksimumlu

fark denklem sisteminin cözümlerinin davranısları incelenmistir. Bu fark denklem sisteminde katsayılar değiştirilerek yeni maksimumlu fark denklem sistemleri oluşturulabilir. Oluşturulacak veni maksimumulu fark denklem sisteminin cözüm davranısları incelenebilir.

KAYNAKLAR

- A. M.Amleh, Boundedness Periodicity and Stability of Some Difference Equations, [1] University of Rhode Island, (1998) (PhD Thesis).
- C. Çinar, S. Stevic and İ.Yalçınkaya, On the positive solutions of reciprocal difference [2] equation with minimum, Journal of Applied Mathematics and Computing, 17, (1-2), (2005), 307-314.
- [3] S. Elaydi, An Introduction to Difference Equations, Spinger-Verlag, (1996), New York.
- E. M. Elsayed and S. Stevic, On the max-type equation $x_{n+1}=max\{A/x_{n},x_{n-2}\}$, [4] Nonlinear Analysis, TMA 71, (2009), 910-922.
- [5] E. M. Elsayed, B. Iricanin and S. Stevic, On the max-type equation $x_{n+1} =$ $\max\{A \{n\}/x \{n\}, x \{n-1\}\}\}$, ARS Combin., (to appear).
- J. Feuer, Periodic solutions of the Lyness max equation, Journal of Mathematical Analysis [6] and Applications, 288,(2003), 147-160.
- A. Gelişken, C. Çinar and R. Karataş, A note on the periodicity of the Lyness max [7] equation, Advances in Difference Equations, Vol. (2008), Article ID 651747, 5 pages.
- A.Gelisken, C. Cinar and İ. Yalçınkaya, On the periodicity of a difference equation with [8] maximum, Discrete Dynamics in Nature and Society, Vol. 2008, (2008), Article ID 820629, 11 pages.
- A. Gelisken, Cinar, C. and A.S. Kurbanlı, On the asymptotic behavior and periodic nature [9] of a difference equation with maximum, Computers & Mathematics with Applications, 59, (2010), 898-902.
- [10] B. Iricanin and E. M. Elsayed, On a max-type equation $x_{n+1}=\max\{A/x_n\},x_{n-3}\}$, Discrete Dynamics in Nature and Society, Vol. 2010, Article ID 675413, (2010).
- [11] M. R. S. Kulenevic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjecture, Boca Raton, London, (2002).
- [12] D. P. Mishev, W. T. Patula, and H. D. Voulov, A reciprocal difference equation with maximum, Computers & Mathematics with Applications, 43, (2002), 1021-1026.
- L. A. Moybe, Difference Equations with Public Health Applications, (2000), New York, [13] USA.
- Бурак Огул, Дагыстан Шимшек, $x_{n+1} = \max\left\{\frac{1}{x_{n-4}}, \frac{y_{n-4}}{x_{n-4}}\right\};$ $y_{n+1} = \max\left\{\frac{1}{y_{n-4}}, \frac{x_{n-4}}{y_{n-4}}\right\}$ Система решение разностного уравнения , Весник [14] Бурак

Кыргызского Государственного Технического Университета, N 34, Бишкек, Кыргызстан, 2015.

- [15] G. Papaschinopoulos and V. Hatzifilippidis, On a max difference equation, Journal of Mathematical Analysis and Applications, 258, (2001), 258-268.
- [16] G. Papaschinopoulos, J. Schinas and V. Hatzifilippidis, Global behaviour of the solutions of a max-equation and of a system of two max-equation, Journal of Computational Analysis and Applications, 5, 2, (2003), 237-247.
- [17] W. T. Patula and H. D. Voulov, On a max type recursive relation with periodic coefficients, Journal of Difference Equations and Applications, 10, 3, (2004), 329-338.
- [18] G. Stefanidou and G. Papaschinopoulos, The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation, Information Sciences, 176, (2006), 3694-3710.
- [19] S. Stević, On the recursive sequence $x_{n+1}=max\{c,x_n\}^{p}/x_{n-1}^{p}\}$, Applied Mathematics Letters, vol. 21, No: 8, (2008), 791--796.
- [20] D. Simsek, C. Cinar and I. Yalçınkaya, "On the solutions of the difference equation $x_{n+1}=max\{1/x_{n-1},x_{n-1}\}$, International Journal of Contemporary Mathematical Sciences, Vol.1, No: 9--12, (2006), 481--487.
- [21] D. Simsek, B. Demir and A. S. Kurbanlı, $x_{n+1}=max\{(1/(x_{n})),((y_{n})/(x_{n}))\}$, $y_{n+1}=max\{(1/(y_{n})),((x_{n})/(y_{n}))\}$ Denklem Sistemlerinin Çözümleri Üzerine, Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 28, (2009), 91-104.
- [22] D. Simsek, B. Demir and C. Cinar, On the Solutions of the System of Difference Equations $x_{n+1}=max\{(A/(x_{n})),((y_{n})/(x_{n}))\},$ $y_{n+1}=max\{(A/(y_{n})),((x_{n})/(y_{n}))\},$ Discrete Dynamics in Nature and Society, Volume 2009 (2009), Article ID 325296, 11 pages.
- [23] Simsek D., Kurbanlı A. S., Erdoğan M. E., (2010). $x(n+1) = max\{1 \setminus x(n-1); y(n-1) \setminus x(n-1)\}$; $y(n+1) = max\{1 \setminus y(n-1); x(n-1) \setminus y(n-1)\}$ Fark Denklem Sisteminin Çözümleri, XXIII. Ulusal Matematik Sempozyumu, 153 pp, .04-07 Ağustos 2010, Erciyes Üniversitesi.
- [24] Dağıstan Şimşek and Ahmet Dogan, "Solutions Of The System Of Maximum Difference Equations", Manas Journal of Engineering, 2(2): 9-22, 2014.
- [25] C. T. Teixeria, Existence Stability Boundedness and Periodicity of Some Difference Equations, University of Rhode Island, (2000), (PhD Thesis).
- [26] S. Valicenti, Periodicity and Global Attractivity of Some Difference Equations, University of Rhode Island, (1999), (PhD Thesis).
- [27] H. D. Voulov, On the periodic character of some difference equations, Journal of Difference Equations and Applications, 8, (2002), 799-810.
- [28] H. D. Voulov, Periodic solutions to a difference equation with maximum, Proceedings of the American Mathematical Society, 131, (2002), 2155-2160.
- [29] I. Yalçınkaya, B. D. Iricanin and C. Çinar, On a max-type difference equation, Discrete Dynamics in Nature and Society, Vol. 2007, (2007), Article ID 47264, 10 pages.
- [30] I. Yalçınkaya, C. Çinar and M. Atalay, On the solutions of systems of difference equations, Advances in Difference Equations, Vol. 2008, (2008), Article ID 143943, 9 pages.

