Computer Vision HW2 Report

Student ID: R10921061

Name: 袁肇謙

Part 1. (10%)

• Plot confusion matrix of two settings. (i.e. Bag of sift and tiny image representation) (5%)

Ans:

• Compare the results/accuracy of both settings and explain the result. (5%) Ans:

As the result shown above, the performance of bag of sift is much better than tiny image. Tiny image is not a particularly good representation, because it discards all of the high frequency image content and is not especially invariant to spatial or brightness shifts.

Part 2. (35%)

• Compare the performance on residual networks and LeNet. Plot the learning curve (loss and accuracy) on both training and validation sets for both 2 schemes. 8 plots in total. (20%)

Ans:

From the following plots, we can observed that the residual network converged a bit earlier than LeNet.

	Residual networks	LeNet
Accuracy (public test)	0.814	0.5976

• Attach basic information of the model you use including model architecture and the number of the parameters. Besides, report the accuracy you performed on the public test set. (5%)

Ans:

- accuracy on the public test set: 0.823
- model architecture and the number of the parameters: 24,562,250

.ayer (type:depth-idx) —Conv2d: 1-1	9,408
-Convzu: 1-1 -BatchNorm2d: 1-2 -ReLU: 1-3	128
-MaxPool2d: 1-4 -Sequential: 1-5	ä
⊢Bottleneck: 2-1 ⊢Conv2d: 3-1	4,096
⊢BatchNorm2d: 3-2 ⊢Conv2d: 3-3	128 36,864
└─BatchNorm2d: 3-4 └─Conv2d: 3-5 └─BatchNorm2d: 3-6	128 16,384 512
⊢ReLU: 3-7 ⊢Sequential: 3-8	 16,896
⊢Bottleneck: 2-2 ├─Conv2d: 3-9	16,384
☐BatchNorm2d: 3-10 ☐Conv2d: 3-11	128 36,864 128
	16,384
□BatchNorm2d: 3-14 □ReLU: 3-15 □Bottleneck: 2-3	512
Corny2d: 3-16 BatchNorm2d: 3-17	16,384 128
├─Conv2d: 3-18 ├─BatchNorm2d: 3-19	36,864 128
└─Corv2d: 3-20 └─BatchNorm2d: 3-21 └─ReLU: 3-22	16,384 512
□ReLU: 3-22 -Sequential: 1-6 □Bottleneck: 2-4	<u> </u>
	32,768 256
	147,456 256
└─BatchNorm2d: 3-26 └─Corv2d: 3-27 └─BatchNorm2d: 3-28	65,536 1,024
└ReLU: 3-29 └Sequential: 3-30	 132,096
└─Bottleneck: 2-5	65,536
LBatchNorm2d: 3-32 L-Conv2d: 3-33 L-BatchNorm2d: 3-34	256 147,456 256
-Conv2d: 3-35	256 65,536 1,024
⊢BatchNorm2d: 3-36 ⊢ReLU: 3-37 ⊢Bottleneck: 2-6	
☐Conv2d: 3-38 ☐BatchNorm2d: 3-39	65,536 256
☐Conv2d: 3-40 ☐BatchNorm2d: 3-41	147,456 256
L-Corrv2d: 3-42 L-BatchNorm2d: 3-43 L-ReLU: 3-44	65,536 1,824
Bottleneck: 2-7 Conv2d: 3-45	65,536
☐BatchNorm2d: 3-46 ☐Conv2d: 3-47	256 147,456
□ BatchNorm2d: 3-48 □ Conv2d: 3-49	256 65,536
	1,024
—Sequential: 1-7 □Bottleneck: 2-8 □Conv2d: 3-52	
—Conv2d: 3-52 □BatchNorm2d: 3-53 □Conv2d: 3-54	131,072 512 589,824
L-BatchNorm2d: 3-55 L-Conv2d: 3-56	512 262,144
☐ BatchNorm2d: 3-57 ☐ ReLU: 3-58	2,048
Sequential: 3-59 Bottleneck: 2-9	526,336
LConv2d: 3-69 LBatchNorm2d: 3-61 LConv2d: 3-62	262,144 512 589,824
-Conv2d: 3-63 -Conv2d: 3-64	512 262,144
RatchNorm2d: 3-65	2,048
⊢BeLU: 3-66 ⊢Bottleneck: 2-10 ⊢Conv2d: 3-67	262,144
□BatchNorm2d: 3-68 □Conv2d: 3-69	512 589,824
└─BatchNorm2d: 3-70 └─Conv2d: 3-71 └─BatchNorm2d: 3-72	512 262,144 2,048
ReLU: 3-73 -Bottleneck: 2-11	2,046
Conv2d: 3-74 BatchNorm2d: 3-75	262,144 512
Corv2d: 3-76 -BatchNorm2d: 3-77	589,824 512
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	262,144 2,048
ReLU: 3-80 Bottleneck: 2-12	
└─Corrv2d: 3-81 └─BatchWorm2d: 3-82 └─Corrv2d: 3-83	262,144 512 589,824
—Corv2d: 3-83 □BatchNorm2d: 3-84 □Corv2d: 3-85	512
□BatchNorm2d: 3-86 □ReLU: 3-87	262,144 2,048
☐Bottleneck: 2-13 ☐Conv2d: 3-88	262,144
-BatchNorm2d: 3-89 -Conv2d: 3-90	512 589,824
L-BatchNorm2d: 3-91 L-Conv2d: 3-92 L-BatchNorm2d: 3-93	512 262,144 2,048
LReLU: 3-94 Sequential: 1-8	
⊢Bottleneck: 2-14 ⊢Conv2d: 3-95	524,288
L-BatchNorm2d: 3-96 L-Conv2d: 3-97	1,024 2,359,296
	1,024 1,048,576
L-BatchNorm2d: 3-100 L-ReLU: 3-101 L-Sequential: 3-102	4,096 2,101,248
	1,048,576
⊢BatchWorm2d: 3-104 ⊢Conv2d: 3-105	1,024 2,359,296
-BatchNorm2d: 3-106 -Conv2d: 3-107	1,024 1,048,576
□ BatchNorm2d: 3-108 □ RetU: 3-109	4,096
Bottleneck: 2-16 Conv2d: 3-110 BatchMorm2d: 3-111	1,048,576 1,024
Conv2d: 3-112 BatchNorm2d: 3-113	2,359,296 1,024
├─Coriv2d: 3-114 ├─BatchNorm2d: 3-115	1,048,576 4,096
ReLU: 3-116 -AdaptiveAvgPool2d: 1-9	
—Sequential: 1-10 └─Linear: 2-17 └─ReLU: 2-18	1,049,068
⊢RELU: 2-18 └Oropout: 2-19 └Linear: 2-20	 5,130
fotal params: 24,562,250	
rrainable params: 24,562,250 Won-trainable params: 0	

• Briefly describe what method do you apply? (e.g. data augmentation, model architecture, loss function, semi-supervised etc.) (10%)

Ans:

- data augmentation: RandomHorizontalFlip(p=0.5), RandomRotation(degrees=20),
- model architecture: add a dropout layer in fully-connected layers to prevent model from overfitting
- loss function: CrossEntropyLoss()
- semi-supervised: After the accuracy on validation set reached 0.7, I used the model at that point to generate pseudo labels. The images and the corresponding pseudo labels whose confidence was greater than 0.9 were added to the training set. This method gave me approximately 0.012 improvement on accuracy.