Лабораторная работа.

Нелинейные модели парной регрессии.

Регрессия через начало координат.

Для предложенного набора данных (Non_lin.csv) с наблюдениями X и Y построить следующие модели:

1.	Линейная	$y = a + bx + \varepsilon$
2.	Степенная	$y = a \cdot x^b \cdot \varepsilon$
3.	Экспоненциальная	$y = a \cdot e^{bx} \cdot \varepsilon$
4.	Логарифмическая	$y = a + b \cdot \ln(x) + \varepsilon$
5.	Параболическая (частный случай)	$y = a + b\sqrt{x} + \varepsilon$
6.	Гиперболическая	$y = a + \frac{b}{r} + \varepsilon$

Для каждой модели найти оценки параметров. Проверить их значимость. Незначимые параметры исключить из модели и пересчитать оценки оставшихся коэффициентов.

Для каждой модели найти:

- коэффициент детерминации:
$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

- ошибку аппроксимации:
$$A=rac{1}{n}\sum\left|rac{y_i-\hat{y}_i}{y_i}
ight|\cdot 100\%$$

На основании этих величин выбрать две лучшие модели. Проанализировать и интерпретировать полученные результаты.

Для выбранных моделей построить на графике оценки функции регрессии, доверительные интервалы для функции регрессии и интервальный прогноз.