Université Internationale de Casablanca

Niveau : Génie Mécanique 3ème année

Contrôle des connaissances : Contrôle Non destructif

I) Il existe des méthodes de contrôle non destructif des défauts métallurgiques - Citer les méthodes principalement utilisées
2) Le contrôle en surface d'une pièce susceptible de présenter des défauts en surface ne peut se faire par magnétoscopie, pourquoi ?
3) Lors du contrôle par magnétoscopie, pour que le défaut soit révélé, il doit être parallèle au champ magnétique. Vrai ou faux ?
4) Ma pièce est en aluminium, elle contient : - une fissure en surface - un défaut interne - une fissure sous-jacente Quel est le défaut qui va être le mieux détecté dans cette pièce par magnétoscopie ?
5) Quels sont les deux types de magnétisation rencontrés en contrôle magnétoscopique ? Les définir en quelques mots et à l'aide de schémas
6) Pour qu'un défaut soit détectable dans les meilleures conditions par magnétoscopie, il faut que son orientation soit : a- parallèle à la direction du champ b- perpendiculaire à la direction du champ c- l'orientation est sans importance
7) Représenter schématiquement les orientations des défauts allongés susceptibles d'être décelés dans un barreau ferromagnétique parcouru par un courant
8) Représenter schématiquement les orientations des défauts allongés susceptibles d'être décelés dans un barreau ferromagnétique magnétisé par un électro-aimant
9) Par quel moyen peut-on vérifier simplement qu'une pièce est susceptible d'être magnétisée
10) Dans une pièce ayant fonctionné, le défaut le plus probable à rechercher est a- une inclusion b- une fissure de fatigue c- un repli d- une retassure
11) Dans une pièce moulée le défaut le plus probable à rechercher est : a- une inclusion b- une fissure de fatigue c- un repli d- une retassure

- 12) On aimante avec un courant de même intensité un barreau de diamètre 20 mm, puis un barreau de diamètre 40 mm. L'excitation à la surface du barreau de 40 mm est environ : a- Le double de celle mesurée sur le barreau de 20 mm
- b- La moitié de celle mesurée sur le barreau de 20 mm
- c- La même que mesurée sur le barreau de 20 mm
- d- Le quart de celle mesurée sur le barreau de 20 mm
- 13) On aimante une série de barreau cylindrique de même section et de longueurs différentes, par passage de courant entre les extrémités. En admettant le maintien de l'intensité à une valeur constante par un réglage approprié, une augmentation de la longueur du barreau entraine:
- a- Une dimension de l'induction magnétique
- b- Une augmentation de l'excitation magnétique
- c- L'excitation magnétique est la même quelle que soit la longueur de la pièce
- d-L'excitation magnétique est divisée par deux si la longueur est double
- 14) Parmi les matériaux suivants, quel est celui ne pouvant pas être contrôlé par magnétoscopie?
- a- acier au carbone
- b- acier austénitique
- c- fer pur
- d- acier martensitique
- 15) Décrire la constitution et la technologie de l'eletro-aimant
- 16) Pour un acier au carbone, la température de Curie est la température :
- a- au-dessus de laquelle le métal devient liquide
- b- au-dessus de laquelle le métal est ferromagnétique
- -c- au-dessous de laquelle le métal est ferromagnétique
- d- au-dessus de laquelle le métal devient malléable
- 17) On aimante un barreau cylindrique, composé de trois parties :

Une première section de longueur L1 = 40cm et de Diamètre D1 = 20 cm

Une deuxième section de longueur L2 = 30cm et de Diamètre D2 = 15 cm

Une troisième section de longueur L3 = 20 cm et de Diamètre D3 = 10cm

En admettant le maintien de l'intensité à une valeur constante par un réglage approprié,

- a- L'excitation à la surface du barreau est longitudinale ou transversale ?
- b- La valeur de l'excitation à la surface des trois parties de barreau est la même. Vrai ou faux?
- c- Donner la valeur de champ magnétique créé en un point M, à la distance (d), d'un conducteur rectiligne parcouru par un courant I.
- d- Comparer l'excitation H₁, l'excitation H₂ et l'excitation H₃