



# Gas sensor based on tungsten trioxide (WO<sub>3</sub>) nanoparticles

### **Table of Contents**

| Table of Contents                                                             | 1  |
|-------------------------------------------------------------------------------|----|
| Features of the sensor :                                                      | 2  |
| Description :                                                                 | 2  |
| Pin Description and functions                                                 | 3  |
| Specifications                                                                | 3  |
| Physical Characteristics                                                      | 4  |
| Recommended Operating Conditions                                              | 4  |
| Electrical Characteristics                                                    | 4  |
| Dimensions                                                                    | 4  |
| Characteristic graphs of resistances and currents in standard test conditions | 5  |
| Procedure for the characterization of the sensor                              | 6  |
| Results at 523K                                                               | 6  |
| Possible Conditioning Circuit for measurement with Arduino Uno                | 7  |
| KiCad shield for sensor integration                                           | 9  |
| Possible arduino code for usage                                               | 10 |







#### Features of the sensor:

- Detection of NH<sub>3</sub> (Ammonium hydroxide)
- Detection of CH<sub>3</sub>CH<sub>2</sub>OH (Ethanol)
- Quick response
- Heater resistor included (Polysilicon)
- High impedance
- Temperature sensor (Aluminium)

#### Description:

This gas sensor has been developed at the AIME clean room of INSA Toulouse to monitor gases' concentration (Ammonium hydroxide, Ethanol and air). This sensor is based on two symmetrical interdigital combs composed of tungsten nanoparticles. The resistance of the sensor is hence related to these nanoparticles' concentration that varies with the gas in the air. Besides, this sensor integrates a doped polysilicon heater and aluminum resistors used to handle and control the temperature. Depending on the amount of gas surrounding the sensor and by connecting it to an electronic circuit, we can get its resistance and thus find the concentration of gas.





# Pin Description and functions



| Pin Number | Usage                                                                     |
|------------|---------------------------------------------------------------------------|
| 1 - 3      | Gas sensor (WO3 nanoparticles integrated on interdigital aluminium combs) |
| 2 - 6      | Heater (Doped Polysilicon)                                                |
| 5 - 7      | Gas sensor (WO3 nanoparticles integrated on interdigital aluminium combs) |
| 4 - 8      | Temperature sensor (Aluminium resistor)                                   |

# Specifications

| Туре                      | Nanoparticle based sensor                                                                                    |
|---------------------------|--------------------------------------------------------------------------------------------------------------|
| Materials                 | <ul><li>Silicon</li><li>Doped polysilicon</li><li>Aluminium</li><li>Tungsten trioxide nanoparticle</li></ul> |
| Sensor type               | Active sensor                                                                                                |
| Nature of output signal   | Analog signal                                                                                                |
| Nature of measurand       | Resistance mesure                                                                                            |
| Detectable gaz            | <ul> <li>NH<sub>3</sub> (Ammonium hydroxide)</li> <li>CH<sub>3</sub>CH<sub>2</sub>OH (Ethanol)</li> </ul>    |
| Mounting                  | Through hole fixed                                                                                           |
| Response time             | < 30s                                                                                                        |
| Recuperation time         | > 100s                                                                                                       |
| Nominale temperature      | [423K - 573K]                                                                                                |
| Deterioration temperature | 573K +                                                                                                       |





# **Physical Characteristics**

| Package  | Package 10-Lead TO-5 metal can |  |  |
|----------|--------------------------------|--|--|
| Diameter | 10mm                           |  |  |
| Height   | 25mm                           |  |  |

## **Recommended Operating Conditions**

| Temperature | 25°C+-5°C  |
|-------------|------------|
| Pressure    | 101,325 Pa |

#### **Electrical Characteristics**

|                       | Aluminum | Polysilicon |
|-----------------------|----------|-------------|
| Nominal Use           | 0 - 5V   | 0 - 11V     |
| Non Deterioration Use | 5V - 10V | 11V - 15V   |

#### **Dimensions**







# Characteristic graphs of resistances and currents in standard test conditions





<u>Figure1:</u> Current and resistance response as a function of voltage (RESISTANCE ALU) on nominal mode

# Current\_1 (1) vs Voltage\_1 (1): Non déterioration







<u>Figure2:</u> Current and resistance response as a function of voltage (RESISTANCE ALU) on "non deterioration" mode

# Current\_1 (1) vs Voltage\_1 (1): nominale



<u>Figure3:</u> Current and resistance response as a function of voltage (RESISTANCE POLY) on "nominal" mode

## Current\_1 (1) vs Voltage\_1 (1): non destruction







<u>Figure4:</u> Current and resistance response as a function of voltage (RESISTANCE POLY) on "non deterioration" mode

# Current\_1 (1) vs Voltage\_1 (1)



<u>Figure5:</u> Current and resistance response as a function of voltage (RESISTANCE CAPTEUR) on "nominal" mode

#### Procedure for the characterization of the sensor

| 15s | 120s    | 120s               | 120s    | 120s               | 120s    | 120s                       | 120s    | 120s                       |         |
|-----|---------|--------------------|---------|--------------------|---------|----------------------------|---------|----------------------------|---------|
| Ø   | Dry air | Ethanol<br>1000ppm | Dry air | Ethanol<br>1000ppm | Dry air | NH <sub>3</sub><br>1000ppm | Dry air | NH <sub>3</sub><br>1000ppm | Dry air |

Results at 523K







Figure 6: Results at 523K, resistance response as a function of time

By measuring the resistance of the resistance, we outline the sensor characteristic. The first half of the test phase was the response under ethanol gas, while the last half was under ammonia. The drop in the resistance shows the gas sensor response to a given gas while the increase in resistance illustrates the process of rebuilding the sensor.

| $N_2O_2$  |                                                                 | CH₃CH₂OH  |               | NH <sub>3</sub> |                                     |
|-----------|-----------------------------------------------------------------|-----------|---------------|-----------------|-------------------------------------|
| DR/R0 (%) | kN <sub>2</sub> O <sub>2</sub> - tN <sub>2</sub> O <sub>2</sub> | DR/R0 (%) | kEth - tEth   | DR/R0 (%)       | kNH <sub>3</sub> - tNH <sub>3</sub> |
| -50%      | 0,1 Hz - 10s                                                    | -27,00%   | 0.04 Hz - 25s | -150,00%        | 0.167 Hz - 6s                       |

Note: The response at 453K provides a more sensitive response than at 523K. The detection of a gas causes a more significant reaction with a better response time. However, the resistor reconstitution time is much longer and is not suitable for high frequency use.





# Possible Conditioning Circuit for measurement with Arduino Uno

The entry impedance of the Arduino is much lower than the impedance of the Sensor. We must therefore put in place a conditioning circuit. This conditioning circuit is an amplifier that allows us to shape the sensor response to obtain an exploitable signal that our Arduino will take care of.

Here is below a possible circuit:



Figure7: File LTSpice Simulation





For input, we apply a PULSE signal with 5 seconds at HIGH LEVEL (1 digital) and we observe in output the VADC which is also the input voltage of our Arduino board.

We observe that when  $I_x$  change its state from LOW to HIGH or HIGH to LOW,  $V_{ADC}$  also changes its state with a very small delay. For  $I_x$  varies from 200nA to 400nA, we obtain  $V_{ADC}$  varies from 2V to 4V, so the gain of our amplifier circuit equals to:  $10^7$  (V/nA)

The  $V_{ADC}$  signal (red) "follows" very well the evolution of our input signal ( $I_x$ ).



Figure8: File LTSpice Simulation





# KiCad shield for sensor integration



Figure9: KiCad - Shield Gaz Sensor



Figure 10: KiCad - Other view of our Shield Gaz Sensor



