For 16/11

Kostas Papadimos

 500×10^3 Events for training and Testing Signal parent mass: 10 Gev Background parent mass: 13 Gev Pt Eta Phi coordinates

Output

Params	Config
max depth	9
sub sample	0.3
n estimators	1000
learning rate	0.5
gamma	5
objective	binary:logistic
early stopping rounds	50
eval metric	auc

This time, I din't produce new data. I used less data points 200K training events and 200K testing simply bu importing the first 200k events from each data set.

Same as before

Results

8 / 17

Instead of generating 1M events and then splitting them in half(for training and testing), I created different sets of 500k events for testing and training,

 500×10^3 Events for training and Testing Signal parent mass: 10 Gev Background parent mass: 13 Gev Pt Eta Phi coordinates

Output

Same as before

This time, I used 3d attempt's data set, and only Pt1 Ph1 Eta1 the settings where the same as ed attempt

I tried two different training configurations

Params	Config1	Config2
max depth	9	5
sub sample	0.3	0.8
n estimators	1000	1500
learning rate	0.5	0.1
gamma	5	0
objective	binary:logistic	bnary:logistic
early stopping rounds	50	50
eval metric	auc	log loss

Results

1st configuration

2nd configuration

