Homework 8: Null Space and Column Space of a Matrix

- 1. In Homework 6, you found that $\{1, \ln(2x), \ln(x^2)\}$ is linearly dependent in $F(0, \infty)$. Let $W = \text{Span}\{1, \ln(2x), \ln(x^2)\}$.
 - (a) How do we know that W is a subspace of $F(0, \infty)$?
 - (b) Find a basis \mathcal{B} for W, and find dim W.
 - (c) Determine whether $\ln(7x^{12})$ is in W. If so, find $[\ln(7x^{12})]_{\mathcal{B}}$.

You should justify your answers, but proofs are not required.

2. A matrix A and an echelon form of A are given:

$$A = \begin{bmatrix} 1 & 2 & -4 & 3 & 3 \\ 5 & 10 & -9 & -7 & 8 \\ 4 & 8 & -9 & -2 & 7 \\ -2 & -4 & 5 & 0 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -4 & 3 & 3 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find a basis for Nul A. What is $\dim(\text{Nul } A)$?
- (b) Find a basis for Col A. What is dim(Col A)?
- 3. Without using a calculator or computer, find a nonzero vector in Nul A, where

$$A = \begin{bmatrix} 51 & 51 & 58 & 2 & 7 \\ 7 & 2001 & 9 & 1 & 2 \\ 3 & 17 & 5 & 0 & 2 \\ 9 & 2023 & 15 & 3 & 6 \\ 3 & \sqrt{2} & 8 & 37 & 5 \\ 7 & \pi & 23 & 19 & 16 \\ 11 & 3.14 & 14 & 0 & 3 \end{bmatrix}$$

- 4. For each of the following vector spaces, find a matrix A such that the vector space is equal to $\operatorname{Nul} A$. Then find a basis for the vector space.
 - (a) The line y = 5x in \mathbb{R}^2 .
 - (b) The plane x + 2y + 3z = 0 in \mathbb{R}^3 .
- 5. Find a basis for $\operatorname{Col}\begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 2 & 4 \end{bmatrix}$ without doing row reduction.
- 6. Find a basis for $\operatorname{Col}\begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$ without doing row reduction, and then a basis for $\operatorname{Nul}\begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$ without doing row reduction.

- 7. Construct a 2×3 matrix C such that $\operatorname{Nul} C = \operatorname{Col} \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$.
- 8. Construct a matrix A such that $\operatorname{Col} A = \operatorname{Nul} \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$.
- 9. Let $A = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 4 & -2 \\ 2 & 6 & 3 \end{bmatrix}$, and let \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 be the three columns of A.
 - (a) How many vectors are in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
 - (b) How many vectors are in Col A?
 - (c) How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
 - (d) Give two vectors in $\operatorname{Col} A$ which are not in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
 - (e) Write the vector equation which is equivalent to the matrix equation $A\mathbf{x} = \mathbf{0}$.
 - (f) Write the linear system of equations which is equivalent to the matrix equation $A\mathbf{x} = \mathbf{0}$.