INTERPRETING NN RESPONSES

TRANSPARENCY & FAIRNESS

NEW SALIENCY METHOD

NEW SALIENCY METHOD

CONTENTS

- How it works
- Performance
 - Pixel Perturbation (PP) framework
 - RemOve And Retrain (ROAR) framework
- Detecting bias
- Conclusion

HOW IT WORKS

Full-gradients

$$G = (\nabla_x f(x, b), \nabla_b f(x, b) \odot b)$$

- Better than saliency maps
 - Weak dependence
 - Completeness

HOW IT WORKS

Full-gradients

$$G = (\nabla_x f(x, b), \nabla_b f(x, b) \odot b)$$

Reduce to saliency map → FullGrad

$$S_f(x) = \nabla_x f(x,b) \odot x + \sum_{l \in L} \sum_{c \in c_l} (\nabla_b f(x,b) \odot b)_c$$

Image

x input

Layer 3 bias-gradient

Layer 5 bias-gradient

Layer 7 bias-gradient

FullGrad aggregate

HOW IT WORKS

Reduce to saliency map

$$S_f(x) = \nabla_x f(x, b) \odot x + \sum_{l \in L} \sum_{c \in c_l} (\nabla_b f(x, b) \odot b)_c$$

• With post-processing operator ψ

$$S_f(x) = \psi(\nabla_x f(x, b) \odot x) + \sum_{l \in L} \sum_{c \in c_l} \psi((\nabla_b f(x, b) \odot b)_c)$$

PERFORMANCE

- Pixel Perturbation (PP) framework
- RemOve And Retrain (ROAR) framework

- Original scheme
 - k% most salient
 - artifacts
- Augmented scheme
 - k% least salient
 - Unimportant regions
- Remove or set to mean

Absolute fractional output change

$$AFOC = \frac{|FFN(x_k) - FFN(x)|}{FNN(x)}$$

KL divergence

$$D_{KL}(P_k|Q) = \sum_{x \in X} P_k(x_k) \log \left(\frac{P_k(x_k)}{Q(x)}\right)$$

Percentage change in the unnormalized output

$$PCUO = \frac{|FNN_i^{-1}(x_k) - FNN_i^{-1}(x)|}{FNN_i^{-1}(x)}$$

PERFORMANCE

- Pixel Perturbation (PP) framework
- RemOve And Retrain (ROAR) framework

ROAR FRAMEWORK

$$Accuracy = \frac{1}{n} \sum_{i=1}^{n} I(predicted_i = target_i)$$

CONCLUSION

- Highly effective
- Not significant
- Fairness and accountability purposes
- Still a lot of research