Connecting the Popularity Adjusted Block Model to the Generalized Random Dot Product Graph for Community Detection and Parameter Estimation

John Koo
Department of Statistics, Indiana University
and
Minh Tang
Department of Statistics, North Carolina State University
and
Michael Trosset
Department of Statistics, Indiana University

Abstract

We connect two random graph models, the Popularity Adjusted Block Model (PABM) and the Generalized Random Dot Product Graph (GRDPG), demonstrating that a PABM is a GRDPG in which communities correspond to certain mutually orthogonal subspaces of latent positions. This insight leads to the construction of improved algorithms for community detection and parameter estimation with PABM. Using established asymptotic properties of Adjacency Spectral Embedding (ASE) for GRDPG, we derive asymptotic properties of these algorithms, including algorithms that rely on Sparse Subspace Clustering (SSC). We illustrate these properties via simulation.

1 Introduction

Statistical analysis on graphs or networks often involves the partitioning of a graph into disconnected subgraphs or clusters. This is often motivated by the assumption that there exist underlying and unobserved communities to which each vertex of the graph belongs, and edges between pairs of vertices are determined by drawing from a probability distribution based on the community relationships between each pair. The goal of this analysis then is population community detection, or the recovery of the true underlying community labels for each vertex, up to permutation, with some additional parameter estimation being of possible interest, assuming some underlying probability model.

A general family of models that describe unweighted and undirected graphs is the Bernoulli Graph, which is characterized by edge probability matrix P. Edges between each pair of vertices i and j are drawn as a Bernoulli trial with probability P_{ij} , for each $0 \le i < j \le n$ and n is the number of vertices in the graph. Community detection methods often restrict this type of model by assigning each vertex a community label $z_1, ..., z_n$ and then setting each P_{ij} as a function of the labels z_i and z_j . Such models are called Block Models.

One popular type of Block Model is the Stochastic Block Model (SBM), first proposed by Lorrain and White [11], which restricts each edge probability P_{ij} as only depending on the labels z_i and z_j , i.e., $P_{ij} = \omega_{z_i,z_j}$. Various generalizations of the SBM have since been utilized, including the Degree-Corrected Block Model (DCBM), introduced by Karrer and Newman [9], which assigns an additional parameter θ_i to each vertex and sets $P_{ij} = \theta_i \theta_j \omega_{z_i,z_j}$. The Popularity Adjusted Block Model (PABM) was then introduced by Sengupta and Chen [16] as a generalization of the DCBM to address the heterogeneity of edge probabilities within and between communities while still maintaining distinct community structure.

Parallel to the families of Block Models is another type of Bernoulli Graph called the Random Dot Product Graph (RDPG), proposed by Young and Scheinerman [21]. Under this model, each vertex of the graph can be represented by a vector in some latent space such that the edge probability between any pair of vertices is given by their corresponding dot product in the latent space, i.e., given a latent positions $x_1, ..., x_n \in \mathbb{R}^d$, the edge probability

matrix is $P = XX^{\top}$ where $X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^{\top}$. It can be shown that all Bernoulli Graphs with positive semidefinite edge probability matrix P is a type of RDPG. For instance, the assortative SBM is equivalent to a special case of the RDPG for which all vertices of a given community share the same position in the latent space [12]. A similar property exists for the DCBM, which is equivalent to a RDPG in which vertices that belong to the same community all lie in a line segment in the latent space [12, 15]. Because the edge probability matrix for the PABM is not positive semidefinite, we instead show that it is a special case of the Generalized Random Dot Product Graph (GRDPG) in order to analyze the PABM as a latent space model for community detection and parameter estimation.

1.1 Notation and Scope

Let G = (V, E) be an unweighted, undirected, and hollow graph with vertex set V(|V| = n) and edge set E. $A \in \{0,1\}^{n \times n}$ represents the adjacency matrix of G such that $A_{ij} = 1$ if there exists an edge between vertices i and j and 0 otherwise. Because G is symmetric and hollow, $A_{ij} = A_{ji}$ and $A_{ii} = 0$ for each $i, j \in [n]$. We further restrict our analyses to Bernoulli graphs. Let $P \in [0,1]^{n \times n}$ be a symmetric matrix of edge probabilities. Graph G is sampled from P by drawing $A_{ij} \stackrel{\text{ind}}{\sim} \text{Bernoulli}(P_{ij})$ for each $1 \le i < j \le n$ (setting $A_{ji} = A_{ij}$ and $A_{ii} = 0$). We denote $A \sim \text{BernoulliGraph}(P)$ as a graph with adjacency matrix A sampled from edge probability matrix P in this manner. If each vertex has a hidden label in [K], they are denoted as $z_1, ..., z_n$. Finally, we denote $X = \begin{bmatrix} z_1 & \cdots & z_n \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{n \times d}$ as the collection of n latent vectors $z_1, ..., z_n \in \mathbb{R}^d$.

2 Connecting the Popularity Adjusted Block Model to the Generalized Random Dot Product Graph

In this section, we show that the PABM is a special case of the GRDPG, i.e., graph G drawn from the PABM can be represented by a collection of latent vectors in Euclidean space. We further show that the latent configuration that induces the PABM consists of orthogonal subspaces with each subspace corresponding to a community.

2.1 The Popularity Adjusted Block Model and the Generalized Random Dot Product Graph

Definition 1 (Popularity Adjusted Block Model). Let $P \in [0,1]^{n \times n}$ be a symmetric edge probability matrix for a graph G = (V, E) with adjacency matrix A such that $A \sim \text{Bernoulli}(P)$. Let each vertex have a community label between 1 and K. Then G is drawn from a Popularity Adjusted Block Model if each vertex has K popularity parameters that describe its affinity toward each of the K communities, i.e., vertex i has popularity parameters $\lambda_{i1}, ..., \lambda_{iK}$, and $P_{ij} = \lambda_{iz_j} \lambda_{jz_i}$ for all $i \leq j$.

Another characterization of the PABM is as follows. Let the rows and columns of P be arranged by community label such that $n_k \times n_\ell$ block $P^{(k\ell)}$ describes the edge probabilities between vertices in communities k and ℓ ; note that $P^{(k\ell)} = (P^{(k\ell)})^{\top}$. Now suppose that each block $P^{(k\ell)}$ can be written as the outer product of two vectors:

$$P^{(k\ell)} = \lambda^{(k\ell)} (\lambda^{(\ell k)})^{\top} \tag{1}$$

for a set of K^2 popularity vectors $\{\lambda^{(st)}\}_{1 \leq s \leq K, 1 \leq t \leq K}$ where each $\lambda^{(st)}$ is a column vector of dimension n_s . Then a graph G is drawn from a PABM with parameters $\{\lambda^{(st)}\}$ if its adjacency matrix A satisfies $A \sim \text{Bernoulli}(P)$.

We will use the notation $A \sim \text{PABM}(\{\lambda^{(k\ell)}\}_K)$ to denote a random adjacency matrix A drawn from a PABM with parameters $\{\lambda^{(k\ell)}\}$ consisting of K underlying communities.

Definition 2 (Generalized Random Dot Product Graph). Let graph G = (V, E) be drawn as $A \sim \text{BernoulliGraph}(P)$. If $\exists X \in \mathbb{R}^{n \times d}$ such that

$$P = X I_{p,q} X^{\top} \tag{2}$$

for some $d, p, q \in \mathbb{N}$ and p + q = d, then G is drawn from the Generalized Random Dot Product Graph with latent positions $x_1, ..., x_n \in \mathbb{R}^d$ and signature (p, q). We will use the notation $A \sim \text{GRDPG}_{p,q}(X)$ to denote a random adjacency matrix A drawn from latent positions X and signature (p,q). If instead of fixed latent positions, they are drawn $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$, we denote the GRDPG as $(A, X) \sim \text{GRDPG}_{p,q}(F, n)$.

Remark. We can use Adjacency Spectral Embedding (ASE) [14] to recover the latent vectors of a GRDPG. This procedure consists of taking the spectral decomposition of A (or P if available) and choosing the p most positive and q most negative eigenvalues and their corresponding eigenvectors to construct the embedding $\hat{Z} = V|D|^{1/2}$.

Definition 3 (Indefinite Orthogonal Group). The indefinite orthogonal group with signature (p,q) is the set $\{Q \in \mathbb{R}^{d \times d} : QI_{p,q}Q^{\top} = I_{p,q}\}$, denoted as $\mathbb{O}(p,q)$.

Remark. The latent vectors that produce $XI_{p,q}X^{\top} = P$ are not unique [14]. More specifically, if $P_{ij} = x_i^{\top}I_{p,q}x_j$, then we also have for any $Q \in \mathbb{O}(p,q)$, $(Qx_i)^{\top}I_{p,q}(Qx_j) = x_i^{\top}(Q^{\top}I_{p,q}Q)x_j = x_i^{\top}I_{p,q}x_j = P_{ij}$. Unlike in the RDPG case, transforming the latent positions via multiplication by $Q \in \mathbb{O}(p,q)$ does not necessarily maintain interpoint angles or distances.

2.2 Connecting the PABM to the GRDPG

Proposition 1 (Connecting the PABM to the GRDPG for K = 2). Let

$$X = \begin{bmatrix} \lambda^{(11)} & \lambda^{(12)} & 0 & 0 \\ 0 & 0 & \lambda^{(21)} & \lambda^{(22)} \end{bmatrix} \quad and \quad U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

where the $\{\lambda^{(k\ell)}\}$ are as defined in Definition 1. Then $A \sim \text{GRDPG}_{3,1}(XU)$ and $B \sim \text{PABM}(\{(\lambda^{(k\ell)}\}_K)$ are identically distributed.

Proof. We can show that

$$XUI_{3,1}U^{\top}X^{\top} = \begin{bmatrix} \lambda^{(11)}(\lambda^{(11)})^{\top} & \lambda^{(12)}(\lambda^{(21)})^{\top} \\ \lambda^{(21)}(\lambda^{(12)})^{\top} & \lambda^{(22)}(\lambda^{(22)})^{\top} \end{bmatrix}$$

by straightforward matrix multiplication. It is nevertheless instructive to look at a few intermediate steps. More specifically, the product $UI_{3,1}U^{\top}$ yields a permutation matrix Π with fixed points at positions 1 and 4 and a cycle of order 2 swapping positions 2 and 3, i.e.,

$$\Pi = UI_{3,1}U^{\top} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Furthermore, since U is orthonormal and $I_{3,1}$ is diagonal, $UI_{3,1}U^{\top}$ is also an eigendecomposition of Π where the fixed points of Π are mapped to the eigenvectors e_1 and e_4 while the cycles of order two are mapped to the eigenvectors $\frac{1}{\sqrt{2}}(e_2 + e_3)$ and $\frac{1}{\sqrt{2}}(e_2 - e_3)$; here e_i denote the i^{th} basis vector in \mathbb{R}^4 .

Theorem 1 (Generalization to K > 2). Let $A \sim \text{PABM}(\{\lambda^{(k\ell)}\}_K)$ be an instance of a PABM with $K \geq 1$ blocks and latent vectors $\{\lambda^{(k\ell)} : 1 \leq k \leq K, 1 \leq \ell \leq K\}$. Then there exists a block diagonal matrix $X \in \mathbb{R}^{n \times K^2}$ defined by $\{\lambda^{(k\ell)}\}$ and a $K^2 \times K^2$ fixed orthonormal matrix U such that $A \sim \text{GRDPG}_{K(K+1)/2,K(K-1)/2}(XU)$.

Proof. We first define the following matrices

$$\Lambda^{(k)} = \left[\lambda^{(k1)} \mid \dots \mid \lambda^{(kK)} \right] \in \mathbb{R}^{n_k \times K}, \quad X = \text{blockdiag}(\Lambda^{(1)}, \dots, \Lambda^{(K)}) \in \mathbb{R}^{n \times K^2}, \quad (3)$$

$$L^{(k)} = \operatorname{blockdiag}(\lambda^{(1k)}, \dots, \lambda^{(Kk)}) \in \mathbb{R}^{n \times K}, \quad Y = \left[L^{(1)} \mid \dots \mid L^{(K)}\right] \in \mathbb{R}^{n \times K^2}. \tag{4}$$

It is then straighforward to verify that

$$XY^{\top} = \text{blockdiag}(\Lambda^{(1)}, \dots, \Lambda^{(K)}) \begin{bmatrix} L_{1}^{\top} \\ \vdots \\ L_{K}^{\top} \end{bmatrix} = \begin{bmatrix} \Lambda^{(1)}(L^{(1)})^{\top} \\ \vdots \\ \Lambda^{(K)}(L^{(K)})^{\top} \end{bmatrix}$$

$$\Lambda^{(k)}(L^{(k)})^{\top} = \left[\lambda^{(k1)}(\lambda^{(1k)})^{\top} \mid \dots \mid \lambda^{(kK)}(\lambda^{(Kk)})^{\top} \right] = \left[P^{(k1)} \mid P^{(k2)} \mid \dots \mid P^{(kK)} \right].$$

We therefore have $P = XY^{\top}$. Similar to the K = 2 case, we also have $Y = X\Pi$ for some permutation matrix Π and hence $P = X\Pi X^{\top}$. The permutation described by Π has K

fixed points, which correspond to K eigenvalues equal to 1 with corresponding eigenvectors e_k where k = r(K+1) + 1 for r = 0, ..., K-1. It also has $\binom{K}{2} = K(K-1)/2$ cycles of order 2. Each cycle corresponds to a pair of eigenvalues $\{-1, +1\}$ and a pair of eigenvectors $\{(e_s + e_t)/\sqrt{2}, (e_s - e_t)/\sqrt{2}\}$.

Let p = K(K+1)/2 and q = K(K-1)/2. We therefore have

$$\Pi = U I_{K(K+1)/2, K(K-1)/2} U^{\top}$$
(5)

where U is a $K^2 \times K^2$ orthogonal matrix and hence

$$P = XUI_{p,q}(XU)^{\top}. (6)$$

In summary we can describe the PABM with K communities as a GRDPG with latent positions XU and signature $(p,q) = \left(\frac{1}{2}K(K+1), \frac{1}{2}K(K-1)\right)$.

Example. Let A be a 3 blocks PABM with latent vectors $\{\lambda^{(k\ell)}: 1 \leq k \leq 3, 1 \leq \ell \leq 3\}$. Using the same notation as in Theorem 1, we can define

$$X = \begin{bmatrix} \lambda^{(11)} & \lambda^{(12)} & \lambda^{(13)} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda^{(21)} & \lambda^{(22)} & \lambda^{(23)} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda^{(31)} & \lambda^{(32)} & \lambda^{(33)} \end{bmatrix},$$

$$Y = \begin{bmatrix} \lambda^{(11)} & 0 & 0 & \lambda^{(12)} & 0 & 0 & \lambda^{(13)} & 0 & 0 \\ 0 & \lambda^{(21)} & 0 & 0 & \lambda^{(22)} & 0 & 0 & \lambda^{(23)} & 0 \\ 0 & 0 & \lambda^{(31)} & 0 & 0 & \lambda^{(32)} & 0 & 0 & \lambda^{(33)} \end{bmatrix}.$$

Then $Y = X\Pi$ and $P = XY^{\top}$ where Π is a 9×9 permutation matrix of the form

$$\Pi = \left[e_1 \mid e_4 \mid e_7 \mid e_2 \mid e_5 \mid e_8 \mid e_3 \mid e_6 \mid e_9 \right].$$

where e_i denotes the i^{th} basis vector in \mathbb{R}^9 . The matrix Π corresponds to a permutation of $\{1, 2, \dots, 9\}$ with the following decomposition.

1. Positions 1, 5, 9 are fixed.

2. There are three cycles of length 2, namely (2,4), (3,7), and (6,8).

We can therefore write Π as $\Pi = UI_{6,3}U^{\top}$ where the first three columns of U consist of e_1 , e_5 , and e_9 corresponding to the *fixed* points, the next three columns consist of eigenvectors $(e_k + e_\ell)/\sqrt{2}$, and the last three columns consist of eigenvectors $(e_k - e_\ell)/\sqrt{2}$ for $(k, \ell) \in \{(2, 4), (3, 7), (6, 8)\}$.

The matrix P is then the edge probabilities matrix for generalized random dot product graph whose latent positions are the rows of the matrix

$$XU = \begin{bmatrix} \lambda^{(11)} & 0 & 0 & \lambda^{(12)}/\sqrt{2} & \lambda^{(13)}/\sqrt{2} & 0 & \lambda^{(12)}/\sqrt{2} & \lambda^{(13)}/\sqrt{2} & 0 \\ 0 & \lambda^{(22)} & 0 & \lambda^{(21)}/\sqrt{2} & 0 & \lambda^{(23)}/\sqrt{2} & -\lambda^{(21)}/\sqrt{2} & 0 & \lambda^{(23)}/\sqrt{2} \\ 0 & 0 & \lambda^{(33)} & 0 & \lambda^{(31)}/\sqrt{2} & \lambda^{(32)}/\sqrt{2} & 0 & -\lambda^{(31)}/\sqrt{2} & -\lambda^{(32)}/\sqrt{2} \end{bmatrix}$$

3 Methods

Two inference objectives arise from the PABM:

- 1. Community membership identification (up to permutation).
- 2. Parameter estimation (estimating $\lambda^{(k\ell)}$'s).

In our methods, we assume that K, the number of communities, is known beforehand and does not require estimation.

3.1 Related work

Sengupta and Chen [16], who first proposed the PABM, used Modularity Maximization (MM) and the Extreme Points (EP) algorithm [10] for community detection and parameter estimation. They were able to show that as the sample size increases, the proportion of misclassified community labels (up to permutation) goes to 0.

Noroozi, Rimal, and Pensky [13] used Sparse Subspace Clustering (SSC) [5] for community detection in the PABM. The SSC algorithm can be described as follows: Given $X \in \mathbb{R}^{n \times d}$ with vectors $x_i^{\top} \in \mathbb{R}^d$ as rows of X, the optimization problem $c_i = \arg\min_c ||c||_1$ subject to $x_i = Xc$ and $c^{(i)} = 0$ is solved for each i = 1, ..., n. The solutions are collected collected into

matrix $C = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}^{\top}$ to construct an affinity matrix $B = |C| + |C^{\top}|$. If each x_i lie perfectly on one of K subspaces, B describes an undirected graph consisting of K disjoint subgraphs, i.e., $B_{ij} = 0$ if x_i, x_j lie on different subspaces. If X instead represents points near K subspaces with some noise, a final graph partitioning step may be required (e.g., edge thresholding or spectral clustering).

In practice, SSC is often performed by solving the LASSO problems

$$c_i = \arg\min_{c} \frac{1}{2} ||x_i - X_{-i}c||_2^2 + \lambda ||c||_1$$
 (7)

for some sparsity parameter $\lambda > 0$. The c_i vectors are then collected into C and B as before.

Definition 4 (Subspace Detection Property). Let $X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^{\top}$ be noisy points sampled from K subspaces, i.e., $x_i = y_i + z_i$ where the y_i belongs to the union of K subspaces and the z_i are noise vectors. Let $\lambda \geq 0$ be given and let C and B be constructed from the solutions of LASSO problems as described in Eq. (7) with this given choice of λ . Then X is said to satisfy the subspace detection property with sparsity parameter λ if each column of C has nonzero norm and $B_{ij} = 0$ whenever y_i and y_j are from different subspaces.

Remark. In practice, a noisy sample X often does not obey the subspace detection property. In such cases, B is treated as an affinity matrix for a graph, which requires a partitioning step to obtain the final clustering. On the other hand, if X does obey the subspace detection property, B describes a graph with at least K disconnected subgraphs. Ideally, when the subspace detection property holds, there are exactly K subgraphs which map onto each subspace, but it could be the case that some of the subspaces are represented by multiple disconnected subgraphs. The subspace detection property is contingent on choosing a sufficiently large sparsity parameter λ .

Theorem 1 suggests that SSC is appropriate for community detection for the PABM. More precisely, Theorem 1 says that each community consists of a K-dimensional subspace, and together the subspaces lie in \mathbb{R}^{K^2} . The natural approach then is to perform SSC on the ASE of P or A. Noroozi et al. [13] instead applied SSC to P and A, foregoing embedding

Algorithm 1: Orthogonal Spectral Clustering.

Data: Adjacency matrix A, number of communities K

Result: Community assignments 1, ..., K

- 1 Compute the eigenvectors of A that correspond to the K(K+1)/2 most positive eigenvalues and K(K-1)/2 most negative eigenvalues. Construct V using these eigenvectors as its columns.
- **2** Compute $B = |nVV^{\top}|$, applying $|\cdot|$ entry-wise.
- **3** Construct graph G using B as its similarity matrix.
- 4 Partition G into K disconnected subgraphs (e.g., using edge thresholding or spectral clustering).
- **5** Map each partition to the community labels 1, ..., K.

altogether.

Using results from Soltanolkotabi and Candés [17], it can be easily shown that the subspace detection property holds for XU, which is an ASE of P. More specifically, if points lie exactly on mutually orthogonal subspaces, then the subspace detection property will hold with probability 1, and this is exactly the case for the PABM (Theorem 1). Much of our work is then built on Rubin-Delanchy et al. [14], who describe the convergence behavior of the ASE of P, and Wang and Xu [20], who show the necessary conditions for the subspace detection property to hold in noisy cases where the points lie near subspaces.

3.2 Community detection

We previously stated one possible set of latent positions that result in the edge probability matrix of a PABM, $P = (XU)I_{p,q}(XU)^{\top}$. If we have (or can estimate) XU directly, then both the community detection and parameter identification problem are trivial since U is orthonormal and fixed for each value of K. However, direct identification or estimation of XU is not possible [14].

If we decompose $P = ZI_{p,q}Z^{\top}$, then $\exists Q \in \mathbb{O}(p,q)$ such that XU = ZQ. Even if we start with the exact edge probability matrix, we cannot recover the "original" latent positions

XU. Note that unlike in the case of the RDPG, Q is not necessarily an orthogonal matrix. If z_i 's are the rows of XU, then $||z_i - z_j||^2 \neq ||Qz_i - Qz_j||^2$, and $\langle z_i, z_j \rangle \neq \langle Qz_i, Qz_j \rangle$. This prevents us from using the orthogonality property of XU directly.

The explicit form of XU represents points in \mathbb{R}^{K^2} such that points within each community lie on K-dimensional orthogonal subspaces. Multiplication by $Q \in \mathbb{O}(p,q)$ removes the orthogonality property but retains the property that each community is represented by a K-dimensional subspace. Therefore, the ASE of P still consists of subspaces that correspond to communities of the PABM, even if they are not orthogonal, suggesting the use of SSC. Before exploring SSC, we will first consider a different approach.

Theorem 2. Let $P = VDV^{\top}$ be the spectral decomposition of the edge probability matrix. Let $B = nVV^{\top}$. Then $B_{ij} = 0$ if vertices i and j are from different communities.

Proof. We first show that $VV^{\top} = X(X^{\top}X)^{-1}X^{\top}$ where X is defined as in Eq.(3). Indeed, by Theorem 2, $P = XUI_{p,q}U^{\top}X^{\top}$ for p = K(K+1)/2 and q = K(K-1)/2. The eigendecomposition $P = VDV^{\top}$ also yields $P = V|D|^{1/2}I_{p,q}|D|^{1/2}V^{\top}$ where $|\cdot|^{1/2}$ is applied entry-wise. Now let Y = XU and $Z = V|D|^{1/2}$; note that Y and Z both have full column ranks. Since $P = YI_{p,q}Y^{\top} = ZI_{p,q}Z^{\top}$, we have

$$Y = ZI_{p,q}Z^{\top}Y(Y^{\top}Y)^{-1}I_{p,q}.$$

Let $Q = I_{p,q} Z^{\top} Y (Y^{\top} Y)^{-1} I_{p,q}$ and note that Y = ZQ. We then have

$$Q^{\top}I_{p,q}Q = I_{p,q}(Y^{\top}Y)^{-1}Y^{\top}ZI_{p,q}I_{p,q}I_{p,q}Z^{\top}Y(Y^{\top}Y)^{-1}I_{p,q}$$
$$= I_{p,q}(Y^{\top}Y)^{-1}Y^{\top}YI_{p,q}Y^{\top}Y(Y^{\top}Y)^{-1}I_{p,q} = I_{p,q}$$

and hence Q is an indefinite orthogonal matrix.

Let $R = UQ|D|^{-1/2}$ and note that V = XR. Since R is invertible, we have

$$X(X^{\top}X)^{-1}X^{\top} = XR(R^{\top}X^{\top}XR)^{-1}R^{\top}X^{\top}.$$

Furthermore, as V has orthonormal columns, $R^{\top}X^{\top}XR = V^{\top}V = I$. We thus conclude

$$X(X^{\top}X)^{-1}X^{\top} = V(V^{\top}V)^{-1}V^{\top} = VV^{\top}$$

as desired.

Recall that X is block diagonal with each block corresponding to one community and hence $X(X^{\top}X)^{-1}X^{\top}$ is also a block diagonal matrix with each block corresponding to a community. As $B = nVV^{\top} = nX(X^{\top}X)^{-1}X^{\top}$, we conclude that $B_{ij} = 0$ whenever vertices i and j belong to different communities.

Theorem 2 provides perfect community detection given P. Letting |B| be the affinity matrix for graph G', G' is partitioned into at least K disjoint subgraphs since each of the K communities have no edges between them. Similar to the subspace detection property, it could be the case that some of the communities are represented by multiple disjoint subgraphs in G', in which case additional reconstruction is required to identify the communities exactly.

Using A instead of P introduces error, which converges to 0 almost surely. We use this fact to motivate Orthogonal Spectral Clustering (Alg. 1).

Theorem 3. Let \hat{B} with entries \hat{B}_{ij} be the affinity matrix from OSC (Alg. 1). Then \forall pairs (i,j) belonging to different communities and sparsity factor satisfying $n\rho_n = \omega((\log n)^{4c})$,

$$\max_{i,j} |n\hat{v}_i^{\top} \hat{v}_j| = O_P \left(\frac{(\log n)^c}{\sqrt{n\rho_n}} \right)$$
 (8)

This provides the result that for i, j in different communities, $\hat{B}_{ij} \stackrel{a.s.}{\rightarrow} 0$.

The sparsity factor ρ_n can be characterized as the average expected degree of the vertices of the graph divided by the number of vertices. Thus Theorem 3 requires the average degree to grow faster than $(\log n)^{4c}$.

Theorems 1, 2, and 3 also provide a natural path toward using SSC for community detection. We established in Theorem 1 that an ASE of the edge probability matrix P can be constructed from a latent vector configuration consisting of orthogonal subspaces. Theorem 2 shows how this property can be recovered from the eigenvectors of P. Then Theorem 3 shows that replacing P with A approximates these properties with error that goes to zero as $n \to \infty$. This allows us to obtain the subspace detection property in Theorem 4.

Algorithm 2: Sparse Subspace Clustering using LASSO [20].

Data: Adjacency matrix A, number of communities K, hyperparameter λ

Result: Community assignments 1, ..., K

- 1 Find V, the matrix of eigenvectors of A corresponding to the K(K+1)/2 most positive and the K(K-1)/2 most negative eigenvalues.
- 2 Normalize $V \leftarrow \sqrt{n}V$.
- ${f 3}$ for i=1,...,n do
- Assign v_i^{\top} as the i^{th} row of V. Assign $V_{-i} = \begin{bmatrix} v_1 & \cdots & v_{i-1} & v_{i+1} & \cdots & v_n \end{bmatrix}^{\top}$.
- 5 Solve the LASSO problem $c_i = \arg\min_{\beta} \frac{1}{2} ||v_i V_{-i}\beta||_2^2 + \lambda ||\beta||_1$.
- Assign $\tilde{c}_i = \begin{bmatrix} c_i^{(1)} & \cdots & c_i^{(i-1)} & 0 & c_i^{(i)} & \cdots & c_i^{(n-1)} \end{bmatrix}^{\top}$ such that the superscript is the index of \tilde{c}_i .

7 end

- **8** Assign $C = \begin{bmatrix} \tilde{c}_1 & \cdots & \tilde{c}_n \end{bmatrix}$.
- 9 Compute the affinity matrix $B = |C| + |C^{\top}|$.
- 10 Construct graph G using B as its similarity matrix.
- 11 Partition G into K disconnected subgraphs (e.g., using edge thresholding or spectral clustering).
- 12 Map each partition to the community labels 1, ..., K.

Theorem 4. Let P describe the edge probability matrix of the PABM with n vertices, and let $A \sim \text{Bernoulli}(P)$. Let \hat{V} be the matrix of eigenvectors of A corresponding to the K^2 largest eigenvalues in modulus. Then for all $\epsilon > 0$ there exists a choice of $\lambda > 0$ and $N \in \mathbb{N}$ such that for all $n \geq N$, $\sqrt{n}\hat{V}$ obeys the subspace detection property with probability at least $1 - \epsilon$.

3.3 Parameter estimation

For any edge probability matrix P for the PABM such that the rows and columns are organized by community, the kl^{th} block is an outer product of two vectors, i.e., $P^{(k\ell)} =$

Algorithm 3: PABM parameter estimation.

Data: Adjacency matrix A, community assignments 1, ..., K

Result: PABM parameter estimates $\{\hat{\lambda}^{(k\ell)}\}_K$.

- 1 Arrange the rows and columns of A by community such that each $A^{(k\ell)}$ block consists of estimated edge probabilities between communities k and l.
- **2** for $k, l = 1, ..., K, k \le l$ do
- **3** Compute $A^{(k\ell)} = U\Sigma V^{\top}$, the SVD of the kl^{th} block.
- 4 Assign $u^{(k\ell)}$ and $v^{(k\ell)}$ as the first columns of U and V. Assign $(\sigma^{(k\ell)})^2 \leftarrow \Sigma_{11}$.
- 5 Assign $\hat{\lambda}^{(k\ell)} \leftarrow \pm \sigma^{(k\ell)} u^{(k\ell)}$ and $\hat{\lambda}^{(\ell k)} \leftarrow \pm \sigma^{(k\ell)} v^{(k\ell)}$.
- 6 end

 $\lambda^{(k\ell)}(\lambda^{(\ell k)})^{\top}$. Therefore, given $P^{(k\ell)}$, $\lambda^{(k\ell)}$ and $\lambda^{(\ell k)}$ are solvable up to multiplicative constant using singular value decomposition. More specifically, let $P^{(k\ell)} = (\sigma^{(k\ell)})^2 u^{(k\ell)} (v^{(k\ell)})^{\top}$ be the singular value decomposition of $P^{(k\ell)}$. $u^{(k\ell)} \in \mathbb{R}^{n_k}$ and $v^{(k\ell)} \in \mathbb{R}^{n_\ell}$ are vectors and $\sigma^{(k\ell)}$ is a scalar. Then $\lambda^{(k\ell)} = s_1 u^{(k\ell)}$ and $\lambda^{(\ell k)} = s_2 v^{(k\ell)}$ for unidentifiable $s_1 s_2 = (\sigma^{(k\ell)})^2$. Since each $\lambda^{(k\ell)}$ is not strictly identifiable, we instead estimate each $\tilde{\lambda}^{(k\ell)} = \sigma^{(k\ell)} u^{(k\ell)}$. Given the adjacency matrix A instead of edge probability matrix P, we can simply use plug-in estimators by taking the SVD of each $A^{(k\ell)}$ to obtain $\hat{\lambda}^{(k\ell)} = \hat{\sigma}^{(k\ell)} \hat{u}^{(k\ell)}$ using the largest signular value of A and its corresponding singular vectors.

Theorem 5. Let each $\tilde{\lambda}^{(k\ell)}$ be the popularity vector derived from its corresponding $P^{(k\ell)}$, and let $\hat{\lambda}^{(k\ell)}$ be its estimate from $A^{(k\ell)}$ (Alg. 3). Then if $n\rho_n = \omega((\log n)^{4c})$,

$$\max_{k,l \in \{1,\dots,K\}} \|\hat{\lambda}^{(k\ell)} - \tilde{\lambda}^{(k\ell)}\|_{\infty} = O\left(\frac{(\log n_k)^c}{\sqrt{n_k}}\right)$$
(9)

with high probability.

4 Simulated Examples

For each simulation, community labels are drawn from a multinomial distribution, the popularity vectors $\{\lambda^{(k\ell)}\}_K$ are drawn from two types of joint distributions depending on

whether $k = \ell$, the edge probability matrix P is constructed using the popularity vectors, and finally the adjacency matrix A is drawn from P. OSC is then used for community detection, and this method is compared against SSC [13, 18] and MM [4, 16]. True community labels are used with Algorithm 3 to estimate the popularity vectors $\{\lambda^{(k\ell)}\}_K$, and this method is then compared against an MLE-based estimator described in [13] and [16].

Modularity Maximization is NP-hard, so Sengupta and Chen [16] used the Extreme Points (EP) algorithm [10], which is $O(n^{K-1})$, as a greedy relaxation of the optimization problem. For these simulations, the Louvain algorithm was used for modularity maximization, as Sengupta and Chen [16]'s implementation proved to be prohibitively computationally expensive for K > 2. For K = 2, it was verified that the Louvain algorithm produces comparable results to EP-MM.

Two implementations of SSC are shown here. The first method, denoted as SSC-A, treats the columns of the adjacency matrix A as points in \mathbb{R}^n , as described in Noroozi et al. [13]. The second method, denoted as SSC-ASE, first embeds A and then performs SSC on the embedding, as described in Algorithm 2. The sparsity parameter λ was chosen via a preliminary cross-validation experiment. For the final clustering step, a Gaussian Mixture Model was fit on the normalized Laplacian eigenmap of the affinity matrix B.

For comparing methods, we define the community detection error as:

$$L_c(\hat{\sigma}, \sigma; \{v_i\}) = \min_{\pi} \sum_i I(\pi \circ \hat{\sigma}(v_i) = \sigma(v_i))$$

where $\sigma(v_i)$ is the true community label of vertex v_i , $\hat{\sigma}(v_i)$ is the predicted label of v_i , and π is a permutation operator. This is effectively the "misclustering count" of clustering function $\hat{\sigma}$.

We also define two types of parameter estimation error. First, we estimate the popularity vectors directly and compute the RMSE. In this case, the "true" popularity vectors are derived from taking the SVD of each edge probability block $P^{(k\ell)}$ to avoid the unidentifiable multiplicative constants.

$$\text{RMSE}(\{\hat{\lambda}^{(k\ell)}\}, \{\tilde{\lambda}^{(k\ell)}\}) = \sqrt{\frac{1}{n} \sum_{k < l} \min_{s = \pm 1} \|s\hat{\lambda}^{(k\ell)} - \tilde{\lambda}^{(k\ell)}\|_2^2}$$

We can also avoid the unidentifiable multiplicative constant more directly by reconstructing each $\hat{P}^{(k\ell)} = \hat{\lambda}^{(k\ell)} (\hat{\lambda}^{(\ell k)})^{\top}$, which we use to define another parameter estimation error.

$$RMSE(\hat{P}, P) = \sum_{k,l} \sqrt{\frac{1}{n_k n_\ell} ||P^{(k\ell)} - \hat{P}^{(k\ell)}||_F^2}$$

4.1 Balanced communities

In each simulation, community labels $z_1, ..., z_n$ were drawn from a multinomial distribution with mixture parameters $\{\alpha_1, ..., \alpha_K\}$, then $\{\lambda^{(k\ell)}\}_K$ according to the drawn community labels, P was constructed using the drawn $\{\lambda^{(k\ell)}\}_K$, and A was drawn from P.

For these examples, we set the following parameters:

- Number of vertices n = 128, 256, 512, 1024, 2048, 4096
- Number of underlying communities K = 2, 3, 4
- Mixture parameters $\alpha_k = 1/K$ for k = 1, ..., K, (i.e., each community label has an equal probability of being drawn)
- Community labels $z_k \stackrel{\text{iid}}{\sim} \text{Multinomial}(\alpha_1, ..., \alpha_K)$
- Within-group popularities $\lambda^{(kk)} \stackrel{\text{iid}}{\sim} \text{Beta}(2,1)$
- Between-group popularities $\lambda^{(k\ell)} \stackrel{\text{iid}}{\sim} \text{Beta}(1,2)$ for $k \neq l$

50 simulations were performed for each (n, K) pair.

Fig. 1 shows the number of mislabeled vertices going to 0 for large n. SSC on both the embedding and on the adjacency matrix produces similar trends for K > 2. Weaker performance of SSC for K = 2 can be attributed to the final spectral clustering step of the affinity matrix. While the subspace detection property is guaranteed for large n, in our simulations, setting the sparsity parameter to the required value resulted in more than K disconnected subgraphs. We instead chose a smaller sparsity parameter, necessitating a final clustering step. A GMM was fit to the normalized Laplacian eigenmap of B, but visual

inspection suggests that the communities are not distributed as a mixture of Gaussians in the eigenmap. A different choice of mixture distribution may result in better performance.

Figure 1: Median and IQR of community detection error. Communities are approximately balanced. Simulations were repeated 50 times for each sample size.

Given ground truth community labels, Algorithm 3 and the MLE-based plug-in estimators perform similarly, with root mean square error decaying at rate approximately $n^{-1/2}$ (Fig. 2). We observe similar behavior when comparing errors in the edge probability blocks (Fig. 3).

Figure 2: Median and IQR RMSE for popularity vectors from Algorithm 3 (red) compared against an MLE-based method (blue). Simulations were repeated 50 times for each sample size. Communities were drawn to be approximately balanced.

Figure 3: Median and IQR RMSE for edge probability blocks reconstructed from the outputs of Algorithm 3 (red) compared against outputs of an MLE-based method (blue). Simulations were repeated 50 times for each sample size. Communities were drawn to be approximately balanced.

4.2 Imbalanced communities

Simulations performed in this section are the same as those in the previous section with the exception of the mixture parameters $\{\alpha_1, ..., \alpha_K\}$ used to draw community labels from the multinomial distribution. For these examples, we set the following parameters:

- Number of vertices n = 128, 256, 512, 1024, 2048, 4096
- Number of underlying communities K=2,3,4
- Mixture parameters $\alpha_k = \frac{k^{-1}}{\sum_{\ell=1}^K \ell^{-1}}$ for k = 1, ..., K
- Community labels $z_k \stackrel{\text{iid}}{\sim} \text{Multinomial}(\alpha_1, ..., \alpha_K)$
- Within-group popularities $\lambda^{(kk)} \stackrel{\text{iid}}{\sim} \text{Beta}(2,1)$
- Between-group popularities $\lambda^{(k\ell)} \stackrel{\text{iid}}{\sim} \text{Beta}(1,2)$ for $k \neq l$

50 simulations were performed for each (n, K) pair.

We again see community detection error trending to 0 for OSC, as well as for SSC when K > 2 (Fig. 4). Alg. 3 continues to see $n^{-1/2}$ decay in parameter estimation error; however, the MLE-based estimators for the popularity vectors decay at a slower rate (Fig. 5). The reduced rate of decay is removed if we reconstruct the edge probability blocks by taking the

outer products of the popularity vectors.

Figure 4: Median and IQR of community detection error. Communities are imbalanced. Simulations were repeated 50 times for each sample size.

Figure 5: Median and IQR RMSE from Algorithm 3 (red) compared against an MLE-based method (blue). Simulations were repeated 50 times for each sample size. Communities were drawn to be imbalanced.

Figure 6: Median and IQR RMSE of edge probability blocks derived from the outputs of Algorithm 3 (red) compared against an MLE-based method (blue). Simulations were repeated 50 times for each sample size. Communities were drawn to be imbalanced.

5 Real data examples

In the first real data example, we applied OSC to the Leeds Butterfly dataset [19] consisting of visual similarity measurements among 832 butterflies across 10 species. The graph was modified to match the example from [13]: Only the 4 most frequent species were considered, and the similarities were discretized to $\{0,1\}$ via thresholding. Fig. 7 shows a sorted adjacency matrix sorted by the resultant clustering.

Comparing against the ground truth species labels, OSC achieves an accuracy of 63% and an adjusted Rand index of 73%. In comparison, Noroozi et al. [13] achieved an adjusted Rand index of 73% using sparse subspace clustering on the same dataset.

Figure 7: Adjacency matrix of the Leeds Butterfly dataset after sorting by the clustering outputted by OSC.

In the second example, we applied OSC to the British MPs Twitter network [7], the Political Blogs network [1], and the DBLP network [6, 8]. For this data analysis, we subsetted the data as described in [16] for their analysis of the same networks. Our methods underperformed compared to modularity maximization, although performance is comparable. In addition, OSC's runtime is much lower than that of modularity maximization.

Figure 8: Adjacency matrices of (from left to right) the British MPs, Political Blogs, and DBLP networks after sorting by the clustering outputted by OSC.

In the third example, we consider the Karantaka villages data studied by Banerjee et al. [2]. For this example, we chose the visitgo networks from villages 12, 31, and 46 at the household level. The label of interest is the religious affiliation. The networks were truncated to religions "1" and "2", and vertices of degree 0 were removed. The results are displayed in Fig. 9 and Table 2.

Table 1: Community detection error rates on the British MPs Twitter, Political Blogs, and DBLP networks using modularity maximization, sparse subspace clustering, and OSC.

Network	MM	SSC-ASE	OSC
British MPs	0.003	0.018	0.009
Political Blogs	0.050	0.196	0.062
DBLP	0.028	0.087	0.059

Table 2: Community detection error rates for identifying household religion.

Network	MM	SSC-ASE	OSC
Village 12	0.270	0.291	0.227
Village 31	0.125	0.066	0.110
Village 46	0.052	0.463	0.078

Figure 9: Adjacency matrix of the Karnataka villages data, arranged by the clustering produced by OSC (left). The villages studied here are, from left to right, 12, 31, and 46.

6 Discussion

This paper connects the Popularity Adjusted Block Model to the Generalized Random Dot Product Graph and demonstrates how the connection can be exploited for community detection and parameter estimation. Similar to how, under the GRDPG framework, the Stochastic Block Model can be generated by point masses and the Degree-Corrected Block

Model can be generated by line segments, we show that the latent configuration that induces the PABM consists of orthogonal subspaces with each subspace corresponding to a community. This latent structure can be recovered via Adjacency Spectral Embedding. We then apply clustering algorithms on the embedding that take advantage of this structure: Orthogonal Spectral Clustering, which is a novel algorithm, and Sparse Subspace Clustering, which has already been applied in some way to the PABM but without asymptotic guarantees [13]. Finally, we show that both algorithms result in perfect community detection for large graphs. These theoretical results are further demonstrated via simulation studies.

References

- [1] L. A. Adamic and N. Glance. The political blogosphere and the 2004 U.S. election: Divided they blog. In *Proceedings of the 3rd International Workshop on Link Discovery*, LinkKDD '05, page 36–43, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595932151. doi: 10.1145/1134271.1134277.
- [2] A. Banerjee, A. G. Chandrasekhar, E. Duflo, and M. O. Jackson. The Diffusion of Microfinance, 2013.
- [3] J. Cape, M. Tang, and C. E. Priebe. Signal-plus-noise matrix models: eigenvector deviations and fluctuations. *Biometrika*, 106:243–250, 2019.
- [4] G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal, Complex Systems:1695, 2006.
- [5] E. Elhamifar and R. Vidal. Sparse subspace clustering. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 2790–2797, 2009. doi: 10.1109/CV PR.2009.5206547.
- [6] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. Graph-based consensus maximization among multiple supervised and unsupervised models. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, *Advances in Neural Information Processing Systems* 22, pages 585–593. Curran Associates, Inc., 2009.

- [7] D. Greene and P. Cunningham. Producing a unified graph representation from multiple social network views. *CoRR*, abs/1301.5809, 2013.
- [8] M. Ji, Y. Sun, M. Danilevsky, J. Han, and J. Gao. Graph regularized transductive classification on heterogeneous information networks. In J. L. Balcázar, F. Bonchi, A. Gionis, and M. Sebag, editors, *Machine Learning and Knowledge Discovery in Databases*, pages 570–586, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-15880-3.
- [9] B. Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks. *Physical Review E*, 83(1), Jan 2011. ISSN 1550-2376. doi: 10.1103/physreve .83.016107.
- [10] C. M. Le, E. Levina, and R. Vershynin. Optimization via low-rank approximation for community detection in networks. Ann. Statist., 44(1):373–400, 02 2016. doi: 10.1214/15-AOS1360.
- [11] F. Lorrain and H. C. White. Structural equivalence of individuals in social networks. The Journal of Mathematical Sociology, 1(1):49–80, 1971. doi: 10.1080/0022250X.1971. 9989788.
- [12] V. Lyzinski, D. L. Sussman, M. Tang, A. Athreya, and C. E. Priebe. Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding. *Electron. J. Statist.*, 8(2):2905–2922, 2014. doi: 10.1214/14-EJS978.
- [13] M. Noroozi, R. Rimal, and M. Pensky. Estimation and clustering in popularity adjusted block model. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 2021. doi: https://doi.org/10.1111/rssb.12410.
- [14] P. Rubin-Delanchy, J. Cape, M. Tang, and C. E. Priebe. A statistical interpretation of spectral embedding: the generalised random dot product graph, 2017. arXiv: 1709.05506.
- [15] P. Rubin-Delanchy, C. E. Priebe, and M. Tang. Consistency of adjacency spectral embedding for the mixed membership stochastic blockmodel, 2017. arXiv: 1705.04518.

- [16] S. Sengupta and Y. Chen. A block model for node popularity in networks with community structure. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 80(2):365–386, Mar. 2018. ISSN 1369-7412. doi: 10.1111/rssb.12245.
- [17] M. Soltanolkotabi and E. J. Candés. A geometric analysis of subspace clustering with outliers. *Ann. Statist.*, 40(4):2195–2238, 08 2012. doi: 10.1214/12-AOS1034.
- [18] M. Soltanolkotabi, E. Elhamifar, and E. J. Candès. Robust subspace clustering. *Ann. Statist.*, 42(2):669–699, 04 2014. doi: 10.1214/13-AOS1199.
- [19] B. Wang, A. Pourshafeie, M. Zitnik, J. Zhu, C. D. Bustamante, S. Batzoglou, and J. Leskovec. Network enhancement as a general method to denoise weighted biological networks. *Nature Communications*, 9(1), Aug 2018. ISSN 2041-1723. doi: 10.1038/s4 1467-018-05469-x.
- [20] Y.-X. Wang and H. Xu. Noisy sparse subspace clustering. *Journal of Machine Learning Research*, 17(12):1–41, 2016.
- [21] S. J. Young and E. R. Scheinerman. Random dot product graph models for social networks. In A. Bonato and F. R. K. Chung, editors, *Algorithms and Models for the Web-Graph*, pages 138–149, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-77004-6.

A Proofs of Theorem 3 and Theorem 4

Let V_n and \hat{V}_n be the $n \times K^2$ matrices whose columns are the eigenvectors of P and A corresponding to the K^2 largest eigenvalues (in modulus), respectively. We first state an important technical lemma for bounding the maximum ℓ_2 norm difference between the rows of \hat{V}_n and V_n . See [3] and [14, Lemma 5] for a proof.

Lemma 1. Let $A \sim \text{PABM}(\{\lambda^{(k\ell\ell)}\}_K)$ be a K-blocks PABM graph on n vertices and let V_n and \hat{V}_n be the $n \times K^2$ matrices whose columns are the eigenvectors of P and A corresponding to the K^2 largest eigenvalues in modulus, respectively. Let $(v_n^{(i)})^{\top}$ and $(\hat{v}_n^{(i)})^{\top}$ denote the ith row of V_n and \hat{V}_n , respectively. Then there exists a constant c > 1 and an orthogonal matrix

W such that, with high probability,

$$\max_{i} \|W\hat{v}_{n}^{(i)} - v_{n}^{(i)}\| = O_{P}\left(\frac{\log^{c} n}{n\sqrt{\rho_{n}}}\right).$$

In particular we can take $c = 1 + \epsilon$ for any $\epsilon > 0$.

Proof of Theorem 3. Recall the notations in Lemma 1 and note that, under our assumption that the latent vectors $\lambda^{(k\ell)|}$ are all homogeneous, we have $\max_i ||v_n^{(i)}|| = O(n^{-1/2})$. Next recall Theorem 2; in particular $B_{ij} = n(v_n^{(i)})^{\top} v_n^{(j)}$. We therefore have

$$\max_{ij} |\hat{B}_{ij} - B_{ij}| = \max_{ij} n |(\hat{v}_{n}^{(i)})^{\top} \hat{v}_{n}^{(j)} - (v_{n}^{(i)})^{\top} v_{n}^{(j)}|
\leq n \max_{ij} |(\hat{v}_{n}^{(i)})^{\top} W W^{\top} \hat{v}_{n}^{(j)} - (v_{n}^{(i)})^{\top} v_{n}^{(j)}|
\leq n \max_{i,j} \left(\|W^{\top} \hat{v}_{n}^{(i)} - v_{n}^{(i)}\| \times \|\hat{v}_{n}^{(j)}\| + \|W^{\top} \hat{v}_{n}^{(j)} - v_{n}^{(j)}\| \times \|v_{n}^{(i)}\| \right)
\leq n \max_{i,j} \left(\|W \hat{v}_{n}^{(i)} - v_{n}^{(i)}\| \times \|\hat{v}_{n}^{(j)}\| + \|W \hat{v}_{n}^{(j)} - v_{n}^{(j)}\| \times \|v_{n}^{(j)}\| \right)
\leq n \max_{i,j} \|W \hat{v}_{n}^{(i)} - v_{n}^{(i)}\|^{2} + 2n \max_{i} \|W \hat{v}_{n}^{(i)} - v_{n}^{(i)}\| \times \max_{j} \|v_{n}^{(j)}\|
\leq n \max_{i} \|W \hat{v}_{n}^{(i)} - v_{n}^{(i)}\|^{2} + 2n \max_{i} \|W \hat{v}_{n}^{(i)} - v_{n}^{(i)}\| \times \max_{j} \|v_{n}^{(j)}\|
= O\left(\frac{\log^{c} n}{n^{1/2} \rho_{n}^{1/2}}\right)$$

with high probability. Theorem 3 follows from the above bound together with the conclusion in Theorem 2 that $B_{ij} = 0$ whenever vertices i and j belongs to different communities. \square

We now provide a proof of Theorem 4. Our proof is based on verifying the sufficient conditions given in Theorem 6 of [20] under which sparse subspace clustering based on solving the optimization problem in Eq. (7) yields an affinity matrix $B = |C| + |C^{\top}|$ satisfying the subspace detection property of Definition 4. We first recall a few definitions used in [20]; for ease of exposition, these definitions are stated using the notations of the current paper.

Definition 5 (Inradius [17, 20]). The inradius of a convex body \mathcal{P} , denoted by $r(\mathcal{P})$, is defined as the radius of the largest Euclidean ball inscribed in \mathcal{P} . Let X be a $n \times d$ matrix with rows x_1, x_2, \ldots, x_n . We then define, with a slight abuse of notation, r(X) as the inradius of the convex hull formed by $\{\pm x_1, \pm x_2, \ldots, \pm x_n\}$.

Definition 6 (Subspace incoherence). Let \hat{V} be the eigenvectors of A_n corresponding to the K^2 largest eigenvalues in modulus. Let $\hat{V}^{(k)}$ denote the matrix formed by keeping only the rows of \hat{V} corresponding to the k^{th} community and let $\hat{V}^{(-k)}$ denote the matrix formed by omitting the rows of \hat{V} corresponding to the k^{th} community. Let $(\hat{v}_i^{(k)})^{\top}$ denote the ith row of $\hat{V}^{(k)}$ and $\hat{V}^{(k)}_{-i}$ be $\hat{V}^{(k)}$ with the ith row omitted. Let $V, V^{(k)}, V^{(-k)}$, and $v_i^{(k)}$ be defined similarly using the eigenvectors V of P_n . Finally let $\mathcal{S}^{(k)}$ be the vector space spanned by the rows of $V^{(k)}$.

Now define $\nu_i^{(k)}$ for $k=1,2,\ldots,K$ and $i=1,2,\ldots,n_k$ as the solution of the following optimization problem

$$\nu_i^{(k)} = \max_{\eta} (\hat{v}_i^{(k)})^\top \eta - \frac{1}{2\lambda} \eta^\top \eta, \quad \text{subject to } \|V_{-i}^{(k)} \eta\|_{\infty} \le 1.$$

Given $\nu_i^{(k)}$, let $\mathbb{P}_{\mathcal{S}^{(k)}}(\nu_i^{(k)})$ be the vector in \mathbb{R}^{K^2} corresponding to the orthogonal projection of $\nu_i^{(k)}$ onto the vector space $\mathcal{S}^{(k)}$ and define the projected dual direction $w_i^{(k)}$ as

$$w_i^{(k)} = \frac{\mathbb{P}_{\mathcal{S}^{(k)}}(\nu_i^{(k)})}{\|\mathbb{P}_{\mathcal{S}^{(k)}}(\nu_i^{(k)})\|}.$$

Now let $W^{(k)} = \begin{bmatrix} w_1^{(k)} & \cdots & w_{n_k}^{(k)} \end{bmatrix}^{\top}$ and define the subspace incoherence for $\hat{V}^{(k)}$ by

$$\mu^{(k)} = \mu(\hat{V}^{(k)}) = \max_{v \in V^{(-k)}} ||W^{(k)}v||_{\infty}.$$

With the above definitions in place, we are now ready to state our proof of Theorem 4.

Proof of Theorem 4. For a given $k=1,2\ldots,K$, let $r^{(k)}=\min_i r(V_{-i}^{(k)})$ be inradius of the convex hull formed by the rows of $V_{-i}^{(k)}$ and let $r_*=\min_k r^{(k)}$. Then Theorem 6 in Wang and Xu [20] states that there exists a $\lambda>0$ such that $\sqrt{n}\hat{V}$ satisfies the subspace detection property in Definition 4 whenever the following two conditions are satisfied

$$\mu^{(k)} < r^{(k)} \quad \text{for all } k = 1, 2, \dots, K,$$
 (10)

$$\max_{i} \|W\hat{v}_i - v_i\| \le \min_{k} \frac{r_*(r^{(k)} - \mu^{(k)})}{2 + 7r^{(k)}}.$$
 (11)

We now verify that for sufficiently large n, Eq. (10) and Eq. (11) holds with high probability.

Verifying Eq. (10). If n is sufficiently large then there are enough vertices in each community k so that $\operatorname{span}(V_{-i}^{(k)}) = \mathcal{S}^{(k)}$ for all i and hence $r^{(k)} = \min_i r(V_{-i}^{(k)}) > 0$ for all $k = 1, 2, \ldots, K$. Next, by Theorem 2 we have that the subspaces $\{\mathcal{S}^{(1)}, \ldots, \mathcal{S}^{(K)}\}$ are mutually orthogonal, i.e., $v^{\top}w = 0$ for all $v \in \mathcal{S}^{(k)}$ and $w \in \mathcal{S}^{(\ell)}$ with $k \neq \ell$. Now let $z \in \mathbb{R}^{K^2}$ be arbitrary and let $\tilde{z} = \mathbb{P}_{\mathcal{S}^{(k)}}z$ be the projection of z onto $\mathcal{S}^{(k)}$. We then have $v^{\top}\tilde{z} = 0$ for all $v \in V^{(-k)}$. Since z is arbitrary, this implies $||W^{(k)}v||_{\infty} = 0$ for all $v \in V^{(-k)}$ and hence $\mu^{(k)} = 0$ for all $k = 1, 2, \ldots, K$. Therefore $\mu^{(k)} < r^{(k)}$ for all $k = 1, 2, \ldots, K$ as desired.

Verifying Eq. (11). Let $\delta = \max_i \sqrt{n} ||W\hat{v}_i - v_i||$. Then from Lemma 1, we have $\delta \stackrel{a.s.}{\to} 0$ and hence

$$\delta < \min_{k} \frac{r_*(r^{(k)} - \mu^{(k)})}{2 + 7r^{(k)}}$$

asymptotically almost surely.

In summary $\sqrt{n}\hat{V}$ satisfies the subspace detection property with probability converging to 1 as $n \to \infty$.

Remark. Theorem 6 of Wang and Xu [20] assumes that each row v_i of V has unit norm, i.e., $||v_i|| = 1$ for all i. This assumption has the effect of scaling the $r^{(k)}$ so that $r^{(k)} \leq 1$ for all k = 1, 2, ..., K. We emphasize that this assumption has no effect on the proof of Theorem 4. Indeed, since $\mu^{(k)} = 0$ for all k, as long as the rows of $V^{(k)}$ spans the subspace $\mathcal{S}^{(k)}$, then $ar^{(k)} > \mu^{(k)}$ for any scalar a > 0.

Proof of Theorem 5. Let P be organized by community such that $P^{(k\ell)}$ denote the $n_k \times n_\ell$ matrix obtained by keeping only the rows of P corresponding to vertices in community k and the columns of P corresponding to vertices in community ℓ . We define $A^{(k\ell)}$ analogously. Recall that $P^{(k\ell)} = \lambda^{(k\ell)} (\lambda^{(\ell k)})^{\top}$ for all k, ℓ . We now consider estimation of $P^{(k\ell)}$ for the cases when $k = \ell$ versus when $k \neq \ell$.

Case k = l. Let $P^{(kk)} = \sigma_{kk}^2 u^{(kk)} (u^{(kk)})^{\top}$ be the singular value decomposition of $P^{(kk)}$. We can then define $\tilde{\lambda}^{(kk)} = \sigma_{kk} u^{(kk)}$. Now let $\hat{U}^{(kk)} \hat{\Sigma}^{(kk)} (\hat{U}^{(kk)})^{\top}$ be the singular value decomposition of $A^{(kk)}$, and let $\hat{\sigma}_{kk}^2 \hat{u}^{(kk)} (\hat{u}^{(kk)})^{\top}$ be the best rank-one approximation of $A^{(kk)}$. Define $\hat{\lambda}^{(kk)} = \hat{\sigma}_{kk} \hat{u}^{(kk)}$. Then $\hat{\lambda}^{(kk)}$ is the adjacency spectral embedding approximation of $\lambda^{(kk)}$ and by Theorem 5 of Rubin-Delanchy et al. [14], we have

$$\|\hat{\lambda}^{(kk)} - \lambda^{(kk)}\|_{\infty} = O\left(\frac{(\log n_k)^c}{\sqrt{n_k}}\right)$$

with high probability. Here $\|\cdot\|_{\infty}$ denote the ℓ_{∞} norm of a vector.

Case $k \neq l$. Let $P^{(k\ell)} = \sigma_{k\ell}^2 u^{(k\ell)} (v^{(k\ell)})^{\top}$ and $P^{(\ell k)} = \sigma_{kl}^2 u^{(\ell k)} (v^{(\ell k)})^{\top}$ be the singular value decompositions and note that $\sigma_{k\ell} = \sigma_{\ell k}$, $u^{(k\ell)} = v^{(\ell k)}$, and $v^{(k\ell)} = u^{(\ell k)}$. Now define $\lambda^{(k\ell)} = \sigma_{k\ell} u^{(k\ell)}$ and $\lambda^{(\ell k)} = \sigma_{k\ell} v^{(k\ell)}$.

Next consider the Hermitian dilation

$$M^{(k\ell)} = 2 \begin{bmatrix} 0 & P^{(k\ell)} \\ P^{(\ell k)} & 0 \end{bmatrix}$$

which is a symmetric $(n_k + n_\ell) \times (n_k + n_\ell)$ matrix. The eigendecomposition of $M^{(k\ell)}$ is then

$$M^{(k\ell)} = \begin{bmatrix} u^{(k\ell)} & -u^{(k\ell)} \\ v^{(k\ell)} & v^{(k\ell)} \end{bmatrix} \times \begin{bmatrix} \sigma_{kl}^2 & 0 \\ 0 & -\sigma_{kl}^2 \end{bmatrix} \times \begin{bmatrix} u^{(k\ell)} & -u^{(k\ell)} \\ v^{(k\ell)} & v^{(k\ell)} \end{bmatrix}^{\top}$$

Thus treating $M^{(k\ell)}$ as the edge probability matrix of a GRDPG, we have latent positions in \mathbb{R}^2 given by the $(n_k + n_\ell) \times 2$ matrix

$$\Lambda^{(k\ell)} = \begin{bmatrix} \sigma_{k\ell} u^{(k\ell)} & \sigma_{k\ell} u^{(k\ell)} \\ \sigma_{k\ell} v^{(k\ell)} & -\sigma_{k\ell} v^{(k\ell)} \end{bmatrix} = \begin{bmatrix} \lambda^{(k\ell)} & \lambda^{(k\ell)} \\ \lambda^{(\ell k)} & -\lambda^{(\ell k)} \end{bmatrix}.$$

Now consider

$$\hat{M}^{(k\ell)} = \begin{bmatrix} 0 & A^{(k\ell)} \\ A^{(\ell k)} & 0 \end{bmatrix}$$

We can then view $\hat{M}^{(k\ell)}$ as an adjacency matrix drawn from the edge probabilities matrix $M^{(k\ell)}$. Now suppose that the adjacency spectral embedding of $\hat{M}^{(k\ell)}$ is represented as the $(n_k + n_\ell) \times 2$ matrix

$$\hat{\Lambda}^{(k\ell)} = egin{bmatrix} \hat{\lambda}^{(k\ell)} & \hat{\lambda}^{(k\ell)} \ \hat{\lambda}^{(\ell k)} & -\hat{\lambda}^{(\ell k)} \end{bmatrix}$$

where each $\hat{\lambda}^{(k\ell)}$ is defined as in Algorithm 3. Then by Theorem 5 of Rubin-Delanchy et al. [14], there exists an indefinite orthogonal transformation W^* such that, with high probability,

$$\max_{i} |W^* \hat{\Lambda}_i^{(k\ell)} - \Lambda_i^{(k\ell)}|| = O\left(\frac{(\log(n_k + n_\ell))^c}{\sqrt{n_k + n_\ell}}\right)$$

with high probability. Here $\Lambda_i^{(k\ell)}$ and $\hat{\Lambda}_i^{(k\ell)}$ denote the ith rows of $\Lambda^{(k\ell)}$ and $\hat{\Lambda}^{(k\ell)}$, respectively. Furthermore, by looking at the proof of Theorem 5 in [14], we see that W^* is also blocks diagonal with 2 blocks where the positive eigenvalues of $M^{(k\ell)}$ forming a block and the negative eigenvalues of $M^{(k\ell)}$ forming the remaining block. Since $M^{(k\ell)}$ has one positive eigenvalue and one negative eigenvalue, we see that W^* is necessarily of the form $W^* = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ Using this form for W^* , we obtain

$$\max\{\|\hat{\lambda}^{(k\ell)} - \lambda^{(k\ell)}\|_{\infty}, \|\hat{\lambda}^{(\ell k)} - \lambda^{(\ell k)}\|_{\infty}\} = O\left(\frac{(\log(n_k + n_{\ell}))^c}{\sqrt{n_k + n_{\ell}}}\right)$$

with high probability. Combining this bound with the bound for $\|\hat{\lambda}^{(kk)} - \lambda^{(kk)}\|_{\infty}$ given above yields Eq. (9) in Theorem 5.