# Solution of Q9.3.21

### SUJAL GUPTA - EE22BTECH11052

It is known that 10% of certain articles manufactured are defective. What is probability that a random sample space of 12 such articles,9 are defective?

#### **Solution:**

| Parameter | Values           | Description                    |
|-----------|------------------|--------------------------------|
| n         | 12               | Number of articles             |
| k         | 9                | Number of defective articles   |
| p         | 0.1              | Probability of being defective |
| X         | $1 \le X \le 12$ | X defective elements out of 12 |

TABLE 0 Table 1

#### 1) Binomial Distribution:

The X is the random variable, the pmf of X is given by

$$p_X(k) = {}^{n}C_k p^k (1 - p)^{n-k}$$
 (1)

We require Pr(X = 9). Since n = 12,

$$p_X(9) = 1.60379(10^{-7}) (2)$$

## 2) Gaussian Distribution

Let Y be gaussian variable

$$\mu = np \tag{3}$$

$$\sigma^2 = np(1-p) \tag{4}$$

Using Normal distribution at X=9.

$$Z \approx \frac{X - \mu}{\sigma}$$
 (5)  
= 
$$\frac{9 - 1.2}{\sqrt{1.08}}$$
 (6)

$$= 7.5055534 \tag{7}$$

For pdf(probability density function) calculation

$$f_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (8)

$$p_Y(9) = p_Z(7.5055534) \tag{9}$$

$$= 3.89010(10^{-9}) \tag{10}$$

Hence we observe that the gaussian and binomial distribution have very less absolute error.



Fig. 2. Binomial-PMF and Gaussian-PDFof X