

(Optional) Unit 8 Principal
Course > component analysis

(<u>Optional</u>) <u>Preparation Exercises for</u>

5. Empirical Mean and Covariance

> Principal Component Analysis

> Matrix of a Vector Data Set II

5. Empirical Mean and Covariance Matrix of a Vector Data Set II

Formula for the Empirical Covariance Matrix

1/1 point (ungraded)

Let $\mathbf{X}_1,\dots,\mathbf{X}_n\in\mathbb{R}^d$ denote a data set, and let

$$\mathbb{X} = egin{pmatrix} \longleftarrow & \mathbf{X}_1^T & \longrightarrow \\ \longleftarrow & \mathbf{X}_2^T & \longrightarrow \\ dots & dots & dots \\ \longleftarrow & \mathbf{X}_n^T & \longrightarrow \end{pmatrix}.$$

Let ${f S}$ denote its empirical covariance matrix.

Which of the following is the correct formula for S?

In the choices below, I_n is the $n \times n$ identity matrix, and $\mathbf{1} \in \mathbb{R}^n$ is the vector with all 1 entries.

$$igcup_{n} = rac{1}{n} \mathbb{X}^T \left(I_n - \mathbf{1}^T \mathbf{1}
ight) \mathbb{X}$$

$$igotimes rac{1}{n} \mathbb{X}^T \left(I_n - rac{1}{n} \mathbf{1} \mathbf{1}^T
ight) \mathbb{X}$$

$$igcup_{n} = rac{1}{n} \mathbb{X} \left(I_d - rac{1}{d} \mathbf{1} \mathbf{1}^T
ight) \mathbb{X}^T$$

$$igcup_{n} = rac{1}{n} \mathbb{X} \left(I_{n} - rac{1}{n} \mathbf{1} \mathbf{1}^{T}
ight) \mathbb{X}^{T}$$

Solution:

The second choice is correct:

$$\mathbf{S} = rac{1}{n} \mathbb{X}^T \left(I_n - rac{1}{n} \mathbf{1} \mathbf{1}^T
ight) \mathbb{X}.$$

We make some notes about the incorrect choices.

- In the first choice, we have $\mathbf{1}^T\mathbf{1}$, which is a number, instead of $\mathbf{11}^T$, which is a matrix. The former is the vector **inner product** whereas the latter is the vector **outer product**.
- In the third choice, one can check that the formula has incompatible matrix operations. Specifically, I_d is $d \times d$ and $\mathbf{1}\mathbf{1}^T$ is $n \times n$, which makes $I_d \frac{1}{d}\mathbf{1}\mathbf{1}^T$ an incompatible operation.
- In the fourth choice, the matrix product written is undefined because $\mathbb{X} \in \mathbb{R}^{n \times d}$ and $I_n \frac{1}{n} \mathbf{1} \mathbf{1}^T \in \mathbb{R}^{n \times n}$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Matrix Products Involving Outer Products

1/1 point (ungraded)

Let \mathbf{x} denote a 3×1 column vector and let $\mathbf{1}$ denote the 3×1 column vector with all entries equal to 1. Suppose that the entries of \mathbf{x} sum to 0. That is,

$$\mathbf{x}^1 + \mathbf{x}^2 + \mathbf{x}^3 = 0.$$

What is $(\mathbf{1}\mathbf{1}^T)\,\mathbf{x}$?

- $left (0 \quad 0 \quad 0)^T$
- \bigcirc It depends on the value of ${f x}$.
- It is not defined.

Solution:

Matrix multiplication is associative, so we may write

$$(\mathbf{1}\mathbf{1}^T)\mathbf{x} = \mathbf{1}(\mathbf{1}^T\mathbf{x}).$$

Note that

$$\mathbf{1}^T \mathbf{x} = \mathbf{x}^1 + \mathbf{x}^2 + \mathbf{x}^3 = 0$$

by assumption. Hence,

$$(\mathbf{1}\mathbf{1}^T)\,\mathbf{x} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}(0) = egin{pmatrix} 0 \ 0 \ 0 \ 0 \end{pmatrix}.$$

The first response is correct.

1 Answers are displayed within the problem

An Orthogonal Projection Matrix I

6/6 points (ungraded)
The matrix

$$H=I_n-rac{1}{n}\mathbf{1}\mathbf{1}^T$$

arises in the formula for the empirical covariance matrix of a data set. For simplicity, let's set n=3. Then we have

Let
$$\mathbf{x}=(2,-1,-2)^T$$
 .

What is $H\mathbf{x}$?

$$(H{\bf x})^{(2)} =$$
 -2/3 \checkmark Answer: -2/3

$$(H{\bf x})^{(3)} =$$
 -5/3 \checkmark Answer: -5/3

What is $H^2\mathbf{x}$?

$$(H^2\mathbf{x})^{(1)} = \boxed{7/3}$$
 \checkmark Answer: 7/3

Solution:

Using the result of the previous problem, we know that

$$\mathbf{1}\mathbf{1}^T\mathbf{x} = \mathbf{1}*(\mathbf{1}\cdot(2,-1,-2)^T) = -\mathbf{1}.$$

Therefore,

$$H\mathbf{x} = (I - rac{1}{3}\mathbf{1}\mathbf{1}^T)\,\mathbf{x} = \mathbf{x} + rac{1}{3}\mathbf{1} = egin{pmatrix} 7/3 \ -2/3 \ -5/3 \end{pmatrix}.$$

Observe the entries of $H\mathbf{x}$ sum to 0. Therefore,

$$\mathbf{1}\mathbf{1}^T H \mathbf{x} = \mathbf{1} (\mathbf{1}^T \cdot \mathbf{x}) = (0, 0, 0)^T.$$

Hence,

$$H^2\mathbf{x} = (I - rac{1}{3}\mathbf{1}\mathbf{1}^T)\,H\mathbf{x} = H\mathbf{x} = egin{pmatrix} 7/3 \ -2/3 \ -5/3 \end{pmatrix}.$$

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

An Orthogonal Projection Matrix II

3/3 points (ungraded)

As in the previous problem, we consider the matrix

$$H=I_n-rac{1}{n}\mathbf{1}\mathbf{1}^T$$

and for simplicity let n=3. Let $\mathbf{x}=(2,-1,-2)^T$.

What is $H^{100}\mathbf{x}$?

(Enter the components of $H^{100}{f x}$ below. Below, $\left(H^{100}{f x}
ight)^{(i)}$ denotes the $i^{
m th}$ component of $H^{100}{f x}$.)

Solution:

The matrix \boldsymbol{H} is an **orthogonal projection matrix** , which means that

0. \boldsymbol{H} is symmetric, and

0.
$$H^2=H$$
.

Therefore,

$$H^{100}{f x}\ = H^2 H^{98}{f x}$$

$$= H^{99}\mathbf{x}$$

$$\vdots$$

$$= H\mathbf{x}$$

$$= \begin{pmatrix} 7/3 \\ -2/3 \\ -5/3 \end{pmatrix}$$

Remark: One could start with computing $H^k \mathbf{x}$ for a few small values of k and observe that the output is always the same. However, it is important to keep in mind the conceptual point that the matrix H is an orthogonal projection.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Concept Check: Orthogonal Projections

1/1 point (ungraded)

Let $\mathbf{X}_1,\dots,\mathbf{X}_n\in\mathbb{R}^d$ denote a data set and let

$$\mathbb{X} = egin{pmatrix} \longleftarrow & \mathbf{X}_1^T & \longrightarrow \ \longleftarrow & \mathbf{X}_2^T & \longrightarrow \ dots & dots & dots \ \longleftarrow & \mathbf{X}_n^T & \longrightarrow \end{pmatrix}.$$

Recall that the empirical covariance matrix \boldsymbol{S} of this data set can be expressed as

$$S = rac{1}{n} \mathbb{X}^T H \mathbb{X}$$

where

$$H=I_n-rac{1}{n}\mathbf{1}\mathbf{1}^T.$$

The matrix $H \in \mathbb{R}^n$ is an **orthogonal projection** .

In general, we say that a matrix M is a f orthogonal projection onto a subspace S if

- 0. M is symmetric,
- 0. $M^2=M$, and
- 0. $S = \{\mathbf{y}: M\mathbf{x} = y \text{ for some } \mathbf{x} \in \mathbb{R}^n \}$

Which of the following are true about the matrix H? (Choose all that apply.)

- ightharpoonup For any positive integer k and any vector $\mathbf{x} \in \mathbb{R}^n$, we have $H^k\mathbf{x} = H\mathbf{x}$.
- $\overline{}$ For any positive integer k and any vector $\mathbf{x} \in \mathbb{R}^n$, we have $H^k\mathbf{x} = \mathbf{x}$.
- The matrix H is a projection onto the subspace of vectors perpendicular to the vector $\mathbf{1} \in \mathbb{R}^n$, which has all of its entries equal to 1.
- The matrix H is a projections onto the subspace $\{\mathbf{x}: \frac{1}{n}\sum_{i=1}^n \mathbf{x}^i = 0\} \subset \mathbb{R}^n$. (In other words, this is the set of vectors having coordinate-wise average equal to 0.)

Solution:

We examine the choices in order.

ullet The first choice is correct. Since H is an orthogonal projection, we know that $H^2=H$. It follows by iterating that for any $k\geq 2$, we also have

$$H^k = H^{k-1} = H^{k-2} = \cdots = H^2 = H.$$

ullet The second choice is incorrect. Note that H is **not** equal to the identity matrix, and note that the identity matrix I is the only matrix satisfying

$$I\mathbf{x}=\mathbf{x}$$

for **all** $\mathbf{x} \in \mathbb{R}^n$. Hence, the given statement must be false when k=1, for example.

Remark: One could also use the example from the question "An Orthogonal Matrix Projection I" on this page to see that $H\mathbf{x} \neq \mathbf{x}$ when n=3 and $\mathbf{x}=(2,-1,-2)^T$.

ullet The third choice is correct. If ${f x}\perp {f 1}$, then we have

$$H\mathbf{x} = \mathbf{x} - rac{1}{n}\mathbf{1}\left(\mathbf{1}\cdot\mathbf{x}
ight) = \mathbf{x}.$$

Moreover, $H\mathbf{x}\perp\mathbf{1}$ because

$$H\mathbf{x} \cdot \mathbf{1} = (\mathbf{x} - \frac{1}{n} \mathbf{1} (\mathbf{1} \cdot \mathbf{x})) \cdot \mathbf{1}$$
$$= \mathbf{x} \cdot \mathbf{1} - \frac{1}{n} (\mathbf{1} \cdot \mathbf{1}) (\mathbf{1} \cdot \mathbf{x})$$
$$= 0.$$

These two facts imply that the outputs of H consist of all vectors that are perpendicular to ${f 1}.$

• The fourth choice is correct. This follows from the explanation of the third choice because

$$\mathbf{x}\perp\mathbf{1}\Leftrightarrowrac{1}{n}\sum_{i=1}^{n}\mathbf{x}^{i}=0.$$

The above equivalence is true because $\mathbf{x} \cdot \mathbf{1} = \sum_{i=1}^n \mathbf{x}^i$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: (Optional) Unit 8 Principal component analysis:(Optional) Preparation Exercises for Principal Component Analysis / 5. Empirical Mean and Covariance Matrix of a Vector Data Set II

Add a Post

Show all posts

▼

by recent activity ▼

There are no posts in this topic yet.

×

© All Rights Reserved