

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

Bachelor of Science in Applied Sciences First Year - Semester II Examination - Jan/Feb 2023

MAP 1203 - REAL ANALYSIS I

Time allowed: Two (2) hours

Answer ALL (04) questions

- i. Define an upper bound and a lower bound of a non-empty set. 1.
 - ii. State the completeness axiom of the subset of real numbers.

(20 marks)

b) Let A and B be non-empty bounded subsets of \mathbb{R} . Show that the set $S = \{a + b \mid a \in A, b \in B\}$ is bounded above and that $\sup(A+B) = \sup A + \sup B$.

(35 marks)

- c) Consider the set $A = \{x \in \mathbb{R} \mid x > 2\}$.
 - i. What is a lower bound of A.
 - ii. Let L be a lower bound of A such that L > 2 and let $y = \frac{L+2}{2}$. Show that 2 < y < L.
 - iii. Show that $y \in A$ and $L \leq y$. Hence, show that the infimum of A is 2.

(30 marks)

- d) Find the Supremum and Infimum of the following sets, if they exists:
 - i. $\{e^x | x \ge 0\}$.

 - ii. $\left\{1 \frac{1}{n} \mid n \in \mathbb{N}\right\}$. iii. $\left\{\frac{(-1)^n}{n+1} \mid n \in \mathbb{N}\right\}$.

(15 marks)

a) Using the $\epsilon - N$ definition, show the following:

i.
$$\lim_{n \to \infty} \left(1 - \frac{1}{2^n} \right) = 1$$

ii.
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

(30 marks)

b) Prove that, every convergent sequence of real numbers is bounded.

(25 marks)

c) Is every bounded sequence of real numbers convergent? Justify your answer.

(15 marks)

d) Let $x_1 = \sqrt{2}$ and $x_2 = \sqrt{2 + x_{n-1}}$ for n > 1. Then using mathematical induction prove that $0 \le x_n \le 2$ and that (x_n) is increasing for all $n \in \mathbb{N}$. Hence, discuss the convergence of (x_n) and find the limit of the sequence.

(30 marks)

3. a) Using $\epsilon - \delta$ definition prove the following limits:

i.
$$\lim_{x \to -1} \frac{3x - 1}{x + 3} = -2$$

ii.
$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

(30 marks)

b) Let f(x) be a real valued function defined on some interval I containing a, except possibly at a. If $\lim_{x\to a} f(x) = l_1$ and $\lim_{x\to a} f(x) = l_2$, then prove that $l_1 = l_2$.

(20 marks)

c) Consider the function $f: \mathbb{R} \longrightarrow \{-1, 1\}$ given by,

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \notin \mathbb{Q} \end{cases}$$
. Prove that $f(x)$ is discontinuous at every real number.

(20 marks)

d) Using the definition prove that,

i.
$$f(x) = \frac{1}{x^2 - 1}$$
 is continuous at $x = 1$.

ii.
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 is continuous at $x = 0$.

(30 marks)

4. a) Prove that every differentiable function is continuous. Is every continuous function differentiable? Justify your answer.

(25 marks)

b) Show that the following function is continuous at x=1 for any real values of a, where $f(x)=\begin{cases} ax+1 & \text{if } x\geq 1\\ x^2+a & \text{if } x<1 \end{cases}$. Find the condition for existence of derivative of f(x) at x=1.

(20 marks)

e) If x > 0, show that $x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2(1+x)}$.

(30 marks)

d) State the L'Hospital Rule. Evaluate $\lim_{x\to 0} \frac{e^x - 2\cos x + e^x}{x\sin x}$.

(25 marks)

..... END