

Det Biovidenskabelige Fakultet

Studiepraktik 2016

Algoritmer og problemløsning

Arinbjörn Brandsson Benjamin Rotendahl Mathias Fleig Mortensen Christopher Mulvad Groot

Dagens program

2 Introduktion til algoritmer

Algoritme vs Algoritme

Algoritme design

Indtil kl 11.45

• Algoritme design og metoder.

Indtil kl 11.45

- Algoritme design og metoder.
- Hvordan man kan sammenligne forskellige løsninger.

Indtil kl 11.45

- Algoritme design og metoder.
- Hvordan man kan sammenligne forskellige løsninger.
- Hvad er grænserne for algoritmer?

Indtil kl 11.45

- Algoritme design og metoder.
- Hvordan man kan sammenligne forskellige løsninger.
- Hvad er grænserne for algoritmer? Historie tid!

Indtil kl 11.45

- Algoritme design og metoder.
- Hvordan man kan sammenligne forskellige løsninger.
- Hvad er grænserne for algoritmer? Historie tid!

Fra 13 til 14.30

Øvelser i algoritmer

Indtil kl 11.45

- Algoritme design og metoder.
- Hvordan man kan sammenligne forskellige løsninger.
- Hvad er grænserne for algoritmer? Historie tid!

Fra 13 til 14.30

- Øvelser i algoritmer
- Sjove gåder

Indtil kl 11.45

- · Algoritme design og metoder.
- Hvordan man kan sammenligne forskellige løsninger.
- Hvad er grænserne for algoritmer? Historie tid!

Fra 13 til 14.30

- Øvelser i algoritmer
- Sjove gåder
- Opsamling og spørgsmål

Hvad er en Algoritme?

An algorithm is a self-contained step-by-step set of operations to be performed that can be expressed within a finite amount of space and time and in a well-defined formal language.

Hvad er en Algoritme?

An algorithm is a self-contained step-by-step set of operations to be performed that can be expressed within a finite amount of space and time and in a well-defined formal language.

På dansk

En algoritme er en opskrift på hvordan et bestemt problem kan løses.

Havregryns algoritme

Eksempel

```
Algorithm 1
Indgangsbetingelser: En skål, mælk, havregryn
Udgangsbetingelser: Morgenmad
  while Skålen ikke er fyldt do
     Hæld Gryn i Skålen
  end while
  if Jeg er tyk then
     mælk = Minimælk
  else
     mælk = Letmælk
  end if
  while Skålen ikke er fyldt do
```

Hæld mælk i Skålen

end while

Krav til en algoritme

Veldefineret Ingen tvetydigheder og vendinger som: "så tager du det bedste resultat ..."

Krav til en algoritme

Veldefineret Ingen tvetydigheder og vendinger som: "så tager du det bedste resultat ..."

Terminerer Den må ikke køre for evigt, du skal garantere at den rent faktisk finder sit svar.

Krav til en algoritme

Veldefineret Ingen tvetydigheder og vendinger som: "så tager du det bedste resultat ..."

Terminerer Den må ikke køre for evigt, du skal garantere at den rent faktisk finder sit svar.

input og output Jeg skal vide at hvis jeg giver den *A* så returnerer den *B*.

Krav til en algoritme

Veldefineret Ingen tvetydigheder og vendinger som: "så tager du det bedste resultat ..."

Terminerer Den må ikke køre for evigt, du skal garantere at den rent faktisk finder sit svar.

input og output Jeg skal vide at hvis jeg giver den *A* så returnerer den *B*.

Kan bevises Det er muligt både at bevise korrekthed og køretid for algoritmen.

Algoritmer bruges inden for alle former for problemløsnings.

Algoritmer bruges inden for alle former for problemløsnings.

Bioinformatik

Longest commen subsequence: Sammenligning af DNA strenge for at se hvor beslægtet to strenge er.

Algoritmer bruges inden for alle former for problemløsnings.

Bioinformatik

Longest commen subsequence: Sammenligning af DNA strenge for at se hvor beslægtet to strenge er.

Primtals faktorisering

Bruges i *kryptering:* Basis for at vi kan have sikker kommunikation.

Algoritmer bruges inden for alle former for problemløsnings.

Bioinformatik

Longest commen subsequence: Sammenligning af DNA strenge for at se hvor beslægtet to strenge er.

Primtals faktorisering

Bruges i *kryptering:* Basis for at vi kan have sikker kommunikation.

Machine Learning

En samling af algoritmer der selv kan lære og finde egenskaber i store data sæt. Gør det muligt at løse problemer der før var uden for menneskers kunnen.

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

Har en computer

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

- Har en computer
- Bruger algoritmen
 Merge Sort

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

- Har en computer
- Bruger algoritmen
 Merge Sort
- De kan sortere 10 millioner tal på under 20 minutter

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

- Har en computer
- Bruger algoritmen
 Merge Sort
- De kan sortere 10 millioner tal på under 20 minutter
- De kan sortere 100 millioner tal på 4 timer.

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

- Har en computer
- Bruger algoritmen
 Merge Sort
- De kan sortere 10 millioner tal på under 20 minutter
- De kan sortere 100 millioner tal på 4 timer.

Hold B

 Har en computer der er 1000 gange hurtigere end hold A

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

- Har en computer
- Bruger algoritmen
 Merge Sort
- De kan sortere 10 millioner tal på under 20 minutter
- De kan sortere 100 millioner tal på 4 timer.

- Har en computer der er 1000 gange hurtigere end hold A
- Bruger algoritmen Insertion Sort

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

- Har en computer
- Bruger algoritmen
 Merge Sort
- De kan sortere 10 millioner tal på under 20 minutter
- De kan sortere 100 millioner tal på 4 timer.

- Har en computer der er 1000 gange hurtigere end hold A
- Bruger algoritmen
 Insertion Sort
- De kan sortere 10 millioner tal på 5 timer.

Soterings algoritmer

Givet en liste af n tal ønsker vi at returnere en sorteret liste af længde n.

Hold A

- Har en computer
- Bruger algoritmen
 Merge Sort
- De kan sortere 10 millioner tal på under 20 minutter
- De kan sortere 100 millioner tal på 4 timer.

- Har en computer der er 1000 gange hurtigere end hold A
- Bruger algoritmen
 Insertion Sort
- De kan sortere 10 millioner tal på 5 timer.
- De kan sortere 100 millioner tal på 23 dage!

Sammenligning af Algoritmer

Vi bruger begrebet Køretid for at beskrive hvordan tiden en algoritme bruger stiger med input.

Sammenligning af Algoritmer

Vi bruger begrebet Køretid for at beskrive hvordan tiden en algoritme bruger stiger med input.

Definition på køretid

En øvregrænse for den tid der bliver brugt på at løse et problem af størelse n. Skrives som

$$O(n), O(n^2), O(n \lg n), O(n!), O\left(\frac{a}{b}\right)$$

Sammenligning af Algoritmer

Vi bruger begrebet Køretid for at beskrive hvordan tiden en algoritme bruger stiger med input.

Definition på køretid

En øvregrænse for den tid der bliver brugt på at løse et problem af størelse n. Skrives som

$$O(n), O(n^2), O(n \lg n), O(n!), O\left(\frac{a}{b}\right)$$

Algoritme for minimums funktionen

Givet en liste $X = [x_1, x_2, ..., x_n]$ ønsker vi at returnere det mindste tal i listen. Hvad er algoritmen og hvad er køretiden?

Eksempel

```
Algorithm 2
```

```
Input: En liste X = [x_1, x_2, ..., x_n]
Ouput: Det mindste tal i listen.
```

```
min = x_1

for x_i in X do

if x_i < min then

min = x_i

end if

end for
```


Eksempel

Algorithm 3

```
Input: En liste X = [x_1, x_2, ..., x_n]
Ouput: Det mindste tal i listen.
```

```
min = x_1

for x_i in X do

if x_i < min then

min = x_i

end if

end for
```

Analyse af algoritmen

Køretid?

Eksempel

Algorithm 4

```
Input: En liste X = [x_1, x_2, ..., x_n]
Ouput: Det mindste tal i listen.
```

```
min = x_1

for x_i in X do

if x_i < min then

min = x_i

end if

end for
```

Analyse af algoritmen

Køretid? O(n)

Eksempel

Algorithm 5

```
Input: En liste X = [x_1, x_2, ..., x_n]
Ouput: Det mindste tal i listen.
```

```
min = x_1

for x_i in X do

if x_i < min then

min = x_i

end if

end for
```

Analyse af algoritmen

Køretid? O(n) Er den optimal?

Eksempel

Algorithm 6

```
Input: En liste X = [x_1, x_2, ..., x_n]
Ouput: Det mindste tal i listen.
```

```
min = x_1

for x_i in X do

if x_i < min then

min = x_i

end if

end for
```

Analyse af algoritmen

Køretid? O(n)Er den optimal? Jeps!

Eksempler på køretid

Bogo Sort

Køretid på O(n!)

Insertion Sort

Køretid?
 O(n²)

Merge sort

Køretid på O(nlg n)

Figure: Graf over køretider

Algoritme for algoritmer

Beskriv problemet med egne ord.

- Beskriv problemet med egne ord.
- 2 Del problemet op i mindre dele.

- Beskriv problemet med egne ord.
- 2 Del problemet op i mindre dele.
- Opening of the state of the

- 1 Beskriv problemet med egne ord.
- 2 Del problemet op i mindre dele.
- Opening of the state of the
- 4 Definer input

- 1 Beskriv problemet med egne ord.
- ② Del problemet op i mindre dele.
- Opening of the second of th
- 4 Definer input
- 6 Beskriv trin for at gå fra input til output

Så er det historie tid

