EQUILÍBRIO IÔNICO

EQUILÍBRIO IÔNICO

Produto de solubilidade

- 1) Definição
- 2) Cálculo do Kps dada a solubilidade
- 3) Solubilidade e o Kps
- 4) Cálculo da solubilidade dado o Kps

PROFESSOR: THÉ

LIÇÃO: **115**

1) Definição

Considere uma solução saturada de NaCl com corpo de fundo a 25°C. Num recipiente vazio, adicionam-se 8 mols de NaCl. em seguida adiciona-se água até formar 1,0 litro de solução.

Na solução saturada os íons da solução permanece em movimento, e eventualmente colidem com o corpo de fundo, passando a fazer parte do mesmo. Já o íon da fase sólida estando em contato com o meio aquoso eventualmente soltam-se do retículo cristalino passando para a solução.

Como em qualquer outro equilíbrio químico, neste também determina-se uma constante de equilíbrio, agora representada pela notação K_{PS} ou PS.

$$\begin{aligned} \text{NaCl}_{(s)} & \rightleftharpoons & \text{Na}_{(aq)}^{+} + \text{Cl}_{(aq)}^{-} & \text{K}_{ps} = & \boxed{ \begin{bmatrix} \text{Na}^{+} \end{bmatrix} \begin{bmatrix} \text{Cl}^{-} \end{bmatrix} } \\ & &$$

As notações K_{PS} ou PS são lidas assim:

 $K_{PS} = Na^+ CI^-$

K_{PS}: Constante do produto de solubilidade

PS: Produto de solubilidade

Exemplos:

$$\begin{aligned} \text{PbCl}_{2(s)} & \iff \text{Pb}_{(aq)}^{2+} \ + \ 2 \ \text{Cl}_{(aq)}^{-} \\ \\ \text{K}_{PS} & = \left\lceil \text{Pb}^{2+} \right\rceil \left\lceil \text{Cl}^{-} \right\rceil^{2} \end{aligned}$$

$$\begin{aligned} \text{Ca}_{3}\left(\text{PO}_{4}\right)_{2\left(s\right)} & \Longrightarrow 3 \text{ Ca}_{\left(\mathsf{aq}\right)}^{2+} + 2 \text{ PO}_{4\left(\mathsf{aq}\right)}^{3-} \\ \\ \text{K}_{\mathsf{PS}} & = \left\lceil \text{Ca}^{2+} \right\rceil^{3} \left\lceil \text{PO}_{4}^{3-} \right\rceil^{2} \end{aligned}$$

Definições

 Solução Saturada é aquela na qual encontram-se em equilíbrio dinâmico os íons da fase sólida e os íons da solução, ou em outras palavras, a solução saturada é aquela na qual a velocidade de precipitação (vp) é igual a velocidade de dissolução (vd);

$$NaCl_{(s)} \stackrel{v_p}{\leftarrow} Na^+_{(aq)} + Cl^-_{(aq)}$$

- K_{PS} é a constante de equilíbrio aplicada à solução saturada.
- Os equilíbrios estudados nesse assunto são aqueles observados nas soluções saturadas dos solutos iônicos de pequena solubilidade

Solubilidade da substância	Concentração molar da solução saturada	
Solúvel	≥ 0,1 mol/L	
Parcialmente solúvel	Entre 0,1 e 0,01 mol/L	
Insolúvel	≤ 0,01 mol/L	

4) **O** K_{PS} varia com a temperatura como qualquer constante de equilíbrio.

2) Cálculos do K_{PS}

Considere a dissolução do NaCl. Adicionaram-se 8 mols de NaCl e água até formar 1,0 L de solução dos quais dissolvem-se até saturar a solução 6 mols NaCl, ficando sem se dissolver, na forma sólida, os 2 mols restantes. Calcular o K_{PS} do NaCl.

Os compostos iônicos, ao se dissolverem dissociam-se completamente

	NaCl _(s)	<mark> ➡ Na</mark> ⁺ _(aq)	$+ Cl_{(aq)}^-$
Início	8 mols	0	0
Dissolvido	Х	Х	Х
Equilíbrio	2 mols	Х	Х

x é o número de mols dissolvidos por litro, isto é, solubilidade.

$$8 - x = 2 \therefore x = 6$$

$$K_{PS} = [Na^{+}][CI^{-}]$$

$$K_{PS} = (6 \text{ mol/L})(6 \text{ mol/L}) = 36$$

O exemplo do NaCl (apresentado no início) tem objetivo apenas didático, porque o NaCl é muito solúvel, caso em que não se recomenda calcular o K_{PS}.

Cálculos do K_{PS} – Generalizando

Considere por exemplo um soluto de fórmula $A_2^{3+}B_3^{2-}$

- 1) Chame a solubilidade de x mol/L
- 2) Escreva a equação do equilíbrio soluto sólido e seus íons dissolvidos. Arme o esquema do equilíbrio:

Início – dissolvido – equilíbrio

$1 A_2^{3+} B_3^{2-} \rightleftharpoons 2 A_{(aq)}^{3+} + 3 B_{(aq)}^{2-}$				
Início	n	0	0	
Dissolvido	х	2x	3x	
Equilíbrio	n-x	2x	3x	

$$\mathbf{K}_{\mathsf{PS}} = \left[\mathbf{A}^{3+}\right]^2 \left[\mathbf{B}^{2-}\right]^3$$

$$\mathbf{K}_{\mathbf{PS}} = \left(2\mathbf{x}\right)^2 \left(3\mathbf{x}\right)^3$$

As quantidades inicial (n) e final (n-x)não têm a menor importância, porque representam quantidades do composto no estado sólido, que não fazem parte do K_{PS} .

A porção solúvel (**X**) é o que vai dar origem à concentração dos íons, tomando-se o cuidado de guardar a proporção estabelecida pelos coeficientes.

Cuidados:

- A) A solubilidade tem que estar expressa em mol/L, chamada de solubilidade molar.
- B) Não esquecer de elevar a concentração dos íons aos expoentes devidos (coeficientes da equação).

EXEMPLO - 1

Calcular o produto de solubilidade (K_{PS}) do cloreto de prata (AgCl), a 25°C.

Dados: Solubilidade do AgCl, a 25° C $1,3.10^{-5}$ mol/L .

Equação química: $AgCl_{(s)} \rightleftharpoons Ag^+_{(aq)} + Cl^-_{(aq)}$

RESOLUÇÃO

1) Chamar solubilidade de x

$$S = 1,3.10^{-5} \text{mol/L} = x$$

2) Armar o esquema do equilíbrio:

	AgCl _(s)	$Ag_{(aq)}^+$	$+$ $\mathbf{Cl}_{(aq)}^-$
Início	?	0	0
Dissolvido	х	Х	Х
Equilíbrio	? - x	Х	х

No início não foi informado quanto de AgCl_(s) foi adicionada ao sistema aquoso, mas não importa, porque sólido não participa do cálculo da constante, consequentemente também não é importante o que resta no corpo de fundo.

Interessa-nos somente a parte dissolvida (x).

$$K_{PS} = [Ag^+][CI^-] \longrightarrow K_{PS} = (x)(x) = x^2$$

$$K_{PS} = (1, 3.10^{-5} \text{mol/L})^2$$

$$K_{PS} = 1,69.10^{-10} (mol/L)^2$$

EXEMPLO - 2

Calcular o produto de solubilidade (Kps) do hidróxido de magnésio, Mg(OH)₂, a 25°C.

Solubilidade
$$(Mg(OH)_2) = 1,3.10^{-4} mol/L$$

$$\mathsf{Equa} \emptyset \mathsf{GOH}_2 \big)_{\!\! (\mathsf{S})} \iff \mathsf{Mg}_{\!\! (\mathsf{aq})}^{2+} + 2 \; \mathsf{OH}_{\!\! (\mathsf{aq})}^{-}$$

RESOLUÇÃO

1) Chamar solubilidade de x

$$S = 1, 3.10^{-4} \text{ mol/L} = x$$

2) Armar o esquema do equilíbrio:

D= dissolvem-se

$$\boxed{ \mathbf{K}_{\mathsf{PS}} = \left[\mathbf{M} \mathbf{g}_{(\mathsf{aq})}^{2+} \right] \! \! \left[\mathbf{OH}_{(\mathsf{aq})}^{-} \right]^{2} }$$

$$K_{ps} = (x)(2x)^2 = 4x^3$$

3) Substituir x pelo valor da solubilidade

$$K_{PS} = 4(1,3.10^{-4})^3$$

$$\mathbf{K}_{PS} = 4(2,2.10^{-12}) \rightarrow \boxed{\mathbf{K}_{PS} = 8,8.10^{-12}}$$

EXEMPLO - 3

Calcular a constante do produto de solubilidade (K_{PS}) do Pbl_2 a certa temperatura.

Nessa temperatura a solubilidade é 0,68 g/L.

$$Pbl_2 = 461 \text{ g/mol}$$
; $Pbl_{2(s)} \rightleftharpoons Pb_{(aq)}^{2+} + 2 l_{(aq)}^{-}$

RESOLUÇÃO

1) Transformar a solubilidade de g/L para mol/L chamar a solubilidade de x. S = 0.68 g/L

$$n = \frac{m}{mol}$$
 = $\frac{0.68 \, g}{461 \, g}$ = 0.0015 mol = 1.5.10⁻³ mol

$$S = 1,5.10^{-3} \text{ mol/L} = x$$

2) Armar o esquema do equilíbrio

$$\begin{array}{|c|c|c|} \hline \textbf{PbI}_{2(s)} & \rightleftharpoons & \textbf{Pb}_{(aq)}^{2+} & + 2 \textbf{I}_{(aq)}^{-} \\ \hline \textbf{D} & \textbf{x} & \textbf{x} & \textbf{2} \textbf{x} \\ \hline \textbf{K}_{PS} = \begin{bmatrix} \textbf{Pb}^{2+} \end{bmatrix} \begin{bmatrix} \textbf{I}^{-} \end{bmatrix}^{2} & \rightarrow \textbf{K}_{PS} = (\textbf{x})(2\textbf{x})^{2} = 4\textbf{x}^{3} \\ \hline \end{array}$$

3) Substituir x pelo valor da solubilidade

$$\mathbf{K_{PS}} = 4(1,5.10^{-3})^3$$

$$\mathbf{K_{PS}} = 4(3,3.10^{-9}) : \mathbf{K_{PS}} = 1,3.10^{-8} (\text{mol/L})^3$$

3) Solubilidade e K_{PS}

Comparação do K_{PS} de vários compostos.

Composto	$K_{PS} (mol/L)^2$		S (I	mol/L)
BaSO ₄		1.10^{-10}		10 ⁻⁵
PbSO ₄		1.10 ⁻⁸		10 ⁻⁴
CaSO ₄		3.10^{-5}		5,5.10 ⁻³

Composto	K _{PS} (mol/L) ³		S (n	nol/L)
Pbl ₂		1.10 ⁻¹⁰		1,3.10 ⁻³
PbBr ₂		5.10 ⁻⁶		1,1.10 ⁻²
PbCl ₂		1,7.10 ⁻⁵		1,6.10 ⁻²

Examinando estes dois conjuntos compostos, verifica-se que quanto maior o K_{PS} , maior a solubilidade. Contudo, só devem ser comparados os K_{ps} de mesma dimensão (unidade)

4. Cálculo de solubilidade dado K_{PS}

O produto de solubilidade é uma medida da solubilidade então é possível calcular sua solubilidade a partir do seu K_{PS}

EXEMPLO - 4

Calcular a solubilidade do mineral fluorita, CaF₂.

Dado:
$$CaF_2 = 78 \text{ g/mol}$$
; $K_{ps}(CaF_2) = 2.10^{-10}$

OBS: Expressar a solubilidade em mol/L e em g/L

RESOLUÇÃO

Solubilidade (em mol/L) = x

$$\begin{array}{c|cccc} \textbf{CaF}_{2(s)} & \rightleftharpoons & \textbf{Ca}_{(aq)}^{2+} & + \ 2\textbf{F}_{(aq)}^{-} \\ \textbf{D} & \textbf{x} & \textbf{x} & \textbf{2} \ \textbf{x} \end{array}$$

$$\mathbf{K}_{\mathsf{PS}} = \left[\mathbf{Ca}_{(\mathsf{aq})}^{2+} \right] \left[\mathbf{F}_{(\mathsf{aq})}^{-} \right]^{2}$$

$$2.10^{-10} = (x)(2x)^2 = 4x^3$$

$$\mathbf{x}^3 = \frac{2}{4}.10^{-10}$$

$$\mathbf{x}^3 = 0.5.10^{-10}$$
 : $\mathbf{x} = \sqrt[3]{0.5.10^{-10}}$

$$\mathbf{x} = 3, 7.10^{-4}$$

1° Resposta: A solubilidade do CaF₂ é igual a 3,7.10⁻⁴ mol/L

Desejando-se a solubilidade em g/L, transforma-se o número de mols para massa.

$$\mathbf{n} = \frac{\mathbf{m}}{\mathbf{mol}} \longrightarrow 3,7.10^{-4} = \frac{\mathbf{m}}{78}$$

$$\mathbf{m} = 288, 6.10^{-4}$$
 : $\mathbf{m} = 2, 9.10^{-2}$

2° Resposta: A solubilidade do CaF₂ é igual a 2,9.10⁻² g/L