3. Design paralleler Programme

- 1. Wichtige Begriffe und Definitionen
- 2. Dekompositionstechniken
- 3. Lastverteilungsverfahren
- 4. Parallele Algorithmenmodelle

3. Design paralleler Programme

- 1. Wichtige Begriffe und Definitionen
- 2. Dekompositionstechniken
- 3. Lastverteilungsverfahren
- 4. Parallele Algorithmenmodelle

Überblick: Design paralleler Programme

- Ein sequentielles Programm besteht aus einer Folge elementarer Schritte zur Lösung eines Problems.
- Ein paralleles Programm muss zusätzlich folgende Aspekte festlegen:
 - **Dekomposition:** Zerlegung in parallele Teile (**Tasks**)
 - Mapping: Zuordnung der Tasks zu Prozessen
 - Kommunikation: Austausch von Daten zwischen den Tasks
 - Synchronisation: Koordination der Berechnung
- Oft gibt es für jeden Aspekt mehrere Realisierungsmöglichkeiten, die auf unterschiedlichen Parallelrechnerarchitekturen zu unterschiedlichen Laufzeiten führen können.
- Ziel: Methodische Vorgehensweise

Eigenschaften von Tasks

- Tasks sind Berechnungseinheiten, die aus dem Dekompositionsprozess eines Problems hervorgehen.
- Durch parallele Ausführung der Tasks wird eine Beschleunigung der Berechnung erzielt.
- Zwischen Tasks können Datenabhängigkeiten bestehen.
 - Ein Task benötigt zu seiner Abarbeitung Daten, die von einem anderen Task berechnet werden.

Statische Task Erzeugung:

- Tasks werden vor Beginn der Berechnung festgelegt.

Dynamische Task Erzeugung:

- Tasks werden (fortlaufend) während der Berechnung erzeugt.
- Algorithmus legt fest, wann ein neuer Task mit welchen Eigenschaften erzeugt werden soll.

Eigenschaften von Tasks

- Die Größe eines Tasks ist definiert durch seine Berechnungsdauer.
- Oftmals besteht eine Berechnung aus Tasks von sehr unterschiedlicher Größe:
 - Dekompositionsverfahren erzeugt Tasks mit unterschiedlicher Größe.
 - Größe der Tasks ist a priori nicht bekannt.
- Dekomposition ist durch ihre **Granularität** gekennzeichnet:
 - **fein-granular** (fine-grained): viele kleine Tasks
 - grob-granular (coarse-grained): wenige große Tasks

Beispiel: Matrix-Vektor Multiplikation

Prozess vs. Prozessor

- Prozesse sind "Berechnungsagenten" die Tasks ausführen.
 - Hier nicht umfassende Definition aus Betriebssystemkontext.
- Wesentliche Eigenschaften:
 - Prozess kann aus Programmcode und Daten eines Tasks in endlicher Zeit das Ergebnis des Tasks berechnen.
 - Die Prozesse einer Berechnung können untereinander kommunizieren und sich synchronisieren.
- Meistens wird eine 1-zu-1 Beziehung zwischen Prozessen und Prozessoren angenommen.
- Manchmal ist aber ein höherer Abstraktionsgrad nützlich:
 - z.B. bei mehrstufigem Designprozess für hierarchische Parallelrechnerarchitekturen

Task-Abhängigkeitsgraph

- Datenabhängigkeiten zwischen den Tasks werden durch den Task-Abhängigkeitsgraph angezeigt:
 - Gerichteter, azyklischer Graph
 - Knoten repräsentieren Tasks
 - Gewicht eines Knotens ist die Größe des Tasks
 - Kanten geben Datenabhängigkeiten an
 - Start-Knoten: Knoten ohne eingehende Kanten
 - End-Knoten: Knoten ohne ausgehende Kanten
- Der Task-Abhängigkeitsgraph bestimmt die Ausführungsreihenfolge der Tasks: Ein Task kann dann ausgeführt werden, wenn alle Tasks ausgeführt wurden, die über eingehende Kanten mit ihm verbunden sind.

Eigenschaften von Task- Abhängigkeitsgraphen

- Maximaler Grad der Nebenläufigkeit:
 Maximale Anzahl an Tasks, die zu einem Zeitpunkt gleichzeitig ausgeführt werden können.
- Kritischer Pfad: Längster vorkommender gerichteter Pfad zwischen Start- und End-Knoten.
 - **Pfadlänge:** Summe der Gewichte der Knoten entlang des Pfades.
- Durchschnittlicher Grad der Nebenläufigkeit: Verhältnis des Gesamtgewichts der Tasks zur Länge des kritischen Pfads.

Beispiel: Datenbankanfrage

KFZ Datenbank

ID	Model	Year	Color	Price
4523	Civic	2002	Blue	\$18,000
3476	Corolla	1999	White	\$15,000
7623	Camry	2001	Green	\$21,000
9834	Prius	2002	Green	\$18,000
6734	Civic	2001	White	\$17,000
5342	Altima	2001	Green	\$19,000
3845	Maxima	2001	Blue	\$22,000
8354	Accord	2000	Green	\$18,000
4395	Civic	2001	Red	\$17,000
7352	Civic	2002	Red	\$18,000

Beispiel: Datenbankanfrage

MODEL=,,CIVIC" AND YEAR=,,2001" AND (COLOR=,,WHITE" OR COLOR=,,GREEN")

Task-Größe: Anzahl der Zugriffe auf einzelne Elemente

Dekomposition A

- Länge des kritischen Pfads: 27
- Durchschnittlicher Grad der Nebenläufigkeit: 63/27 = 2,33...

Dekomposition B

- Länge des kritischen Pfads: 34
- Durchschnittlicher Grad der Nebenläufigkeit: 64/34 = 1,88...

Interaktion zwischen Tasks

- Die maximal erzielbare Beschleunigung wird bestimmt von
 - dem durchschnittlichen Grad der Nebenläufigkeit
 - der Granularität der Dekomposition
 - der Länge des kritischen Pfades
 - und der Interaktion der Tasks
- Oftmals sind Interaktionen zwischen Tasks nicht im Task-Abhängigkeitsgraph berücksichtigt.
 - Interaktionen sind abhängig vom Programmiermodell und/oder der Architektur des Parallelrechners.
 - Beispiel: der Eingabevektor b bei einer Matrix-Vektor Multiplikation muss allen Prozessen zur Verfügung stehen.

Task-Interaktionsgraph

- Der **Task-Interaktionsgraph** stellt das Interaktionsmuster zwischen den Tasks dar.
 - Knoten repräsentieren Tasks
 - Kanten zeigen Interaktionen zwischen den Tasks an
- Die Kantenmenge des Task-Interaktionsgraphs ist eine Obermenge der Kantenmenge des Task- Abhängigkeitsgraphs.
- Task-Abhängigkeitsgraph erfasst Problem spezifische Aspekte.
- Task-Interaktionsgraph erfasst (zusätzlich) Aspekte der Abbildung auf eine konkrete Parallelrechnerarchitektur.

Beispiel: Sparse Matrix-Vektor Multiplikation

- Dünnbesetzte (sparse) Matrix: viele Einträge sind 0.
- Daten-Dekomposition auf Nachrichten basierter Architektur:
 Task i berechnet y[i] und speichert A[i,*] und b[i].
- Task-Abhängigkeitsgraph enthält keine Kanten.

Task-Interaktionsgraph

Eigenschaften von Task-Interaktionen

- Statisches Interaktionsmuster
 - Interagierende Tasks stehen vor Beginn der Berechnung fest.
 - Interaktionen treten zu vordefinierten Zeitpunkten auf.
- Dynamisches Interaktionsmuster
 - Interagierende Tasks und/oder Zeitpunkte der Interaktion können nicht vorherbestimmt werden.
- Dynamische Interaktionsmuster sind im Message-Passing Programmiermodell schwierig zu realisieren:
 - Sinnvolle Platzierung der send/receive Paare im Programmtext schwierig.
 - Zusätzliche Synchronisation oder Polling erforderlich.

Eigenschaften von Task-Interaktionen

Reguläres Interaktionsmuster

- Struktur des Interaktionsmusters kann für effiziente Implementierung genutzt werden.
- Interagierende Tasks werden so auf Prozesse abgebildet, dass sie effizient kommunizieren können.
- Beispiel: Sparse Matrix-Vektor Multiplikation, bei der die von 0 verschiedenen Elemente der Matrix ein Muster aufweisen.
 (z.B. Bandmatrix: Nicht-Null Elemente liegen auf Diagonale)

Irreguläres Interaktionsmuster

- Interaktionsmuster weist keine verwertbare Struktur auf.
- Beispiel: Sparse Matrix-Vektor Multiplikation, bei der die 0 Elemente der Matrix zufällig verteilt sind.

Eigenschaften von Task-Interaktionen

Two-Way Interaktion

- Die von einem Task benötigten Daten werden explizit von einem (oder mehreren) anderen Task(s) zur Verfügung gestellt.
- Typischerweise Producer/Consumer Beziehung.

One-Way Interaktion

- Ein Task initiiert die Kommunikation, ohne die Ausführung von anderen Tasks zu beeinflussen.
- Typischerweise Read-Only Kommunikation.
- Im Message-Passing Programmiermodell müssen One-Way Interaktionen immer zu Two-Way Interaktionen umstrukturiert werden.

3. Design paralleler Programme

- 1. Wichtige Begriffe und Definitionen
- 2. Dekompositionstechniken
- 3. Lastverteilungsverfahren
- 4. Parallele Algorithmenmodelle

Dekompositionstechniken

- Klassen von Dekompositionstechniken:
 - Rekursive Dekomposition
 - Daten-Dekomposition
 - Explorative Dekomposition
 - Spekulative Dekomposition
- Dekompositionstechniken können als Ausgangspunkt verwendet werden; oftmals ist Abwandlung oder Kombination erforderlich.

Rekursive Dekomposition

- Divide-and-Conquer Schema wird benutzt, um Nebenläufigkeit zu induzieren.
 - Aufteilung in Menge von unabhängigen Subproblemen (Divide-Schritt).
 - Nach Lösung der Subprobleme werden die Ergebnisse zusammengeführt (Conquer-Schritt).
 - Jedes Subproblem wird gelöst, indem es rekursiv weiter unterteilt wird, bis Trivialfall erreicht ist.
- Oftmals können Algorithmen neu strukturiert werden, um sie für rekursive Dekomposition zugänglich zu machen.

Beispiel: Quicksort

Beispiel: Kleinstes Element

Standard Algorithmus

```
procedure SERIAL_MIN (A, n)
begin
  min := A[0];
  for i := 1 to n - 1 do
    if (A[i] < min) then
      min := A[i];
  endfor;
  return min;
end</pre>
```

Divide-and-Conquer Algorithmus

```
procedure RECURSIVE MIN (A, n)
begin
 if (n = 1) then
  min := A[0];
 else
  Imin := RECURSIVE MIN (A, n/2);
  rmin := RECURSIVE MIN (&(A[n/2]), n
 - n/2);
  if (Imin < rmin) then
   min := Imin:
  else
   min := rmin:
  endelse:
 endelse:
 return min;
end
```

Beispiel: Kleinstes Element

Task-Interaktionsgraph für Eingabe: {4,9,1,7,8,11,2,12}

Daten-Dekomposition

- Daten-Dekomposition wird gewöhnlich bei Algorithmen eingesetzt, die große Datenstrukturen manipulieren.
- Dekomposition erfolgt in 2 Schritten:
 - 1. Datenstrukturen werden partitioniert
 - Partition induziert Dekomposition des Problems in verschiedene Tasks
- Owner-Computes Regel
 - Ein Task führt alle Berechnungen auf dem ihm zugewiesenen Datenbereich aus.
- Partitionierung kann auf Eingabe-, Ausgabe- und/oder Zwischen-Datenstrukturen vorgenommen werden.
 - Kombination führt oft zu fein-granularer Dekomposition

Partitionierung der Ausgabedaten

- Anwendbar, wenn die Elemente der Ausgabedatenstruktur unabhängig voneinander berechnet werden können.
- Owner-Computes Regel bedeutet hier: Jeder Task berechnet einen Teil der Ausgabe.
- Beachte: Eine Partitionierung der Ausgabedaten kann zu unterschiedlichen Dekompositionen in Tasks führen (siehe Beispiel auf Folie 27).

Beispiel: Matrix Multiplikation

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$
 Formulierung mit Blockoperationen

Task 1:
$$C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$

Task 2:
$$C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$$

Task 3:
$$C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$$

Task 4:
$$C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$$

Beispiel: Matrix Multiplikation

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \bullet \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

Dekomposition 1

Dekomposition 2

Task 1:
$$C_{1,1} = A_{1,1}B_{1,1}$$

Task 2:
$$C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$$

Task 3:
$$C_{1.2} = A_{1.1}B_{1.2}$$

Task 4:
$$C_{1,2} = C_{1,2} + A_{1,2}B_{2,2}$$

Task 5:
$$C_{2,1} = A_{2,1}B_{1,1}$$

Task 6:
$$C_{2,1} = C_{2,1} + A_{2,2}B_{2,1}$$

Task 7:
$$C_{2,2} = A_{2,1}B_{1,2}$$

Task 8:
$$C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$$

Task 1:
$$C_{1,1} = A_{1,1}B_{1,1}$$

Task 2:
$$C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$$

Task 3:
$$C_{1,2} = A_{1,2}B_{2,2}$$

Task 4:
$$C_{1,2} = C_{1,2} + A_{1,1}B_{1,2}$$

Task 5:
$$C_{2,1} = A_{2,2}B_{2,1}$$

Task 6:
$$C_{2,1} = C_{2,1} + A_{2,1}B_{1,1}$$

Task 7:
$$C_{2,2} = A_{2,1}B_{1,2}$$

Task 8:
$$C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$$

Partitionierung der Eingabedaten

- Jeder Task führt zunächst Berechnung auf (lokalem)
 Eingabedatenbereich aus.
- Anschlussberechnung erforderlich, um die Teilergebnisse zusammenzufügen.
- Owner-Computes Regel bedeutet hier: Jeder Task berechnet soviel wie möglich auf den zugewiesenen Eingabedaten.

- Gegeben:
 - Menge T von n Datenbank-Transaktionen
 - Menge S mit m Itemsets
 - Jede Transaktion und jedes Itemset besteht aus Elementen einer Menge I = {A,B,C,...} von Items.
- Problem: Finde für jedes Itemset in I die Häufigkeit seines Vorkommens in den Transaktionen aus T.
- Beispiel:
 - Jede Transaktion in T stellt einen Kassenbon dar.
 - Die Itemsets in S sind verschiedene Warengruppen.

ons	A, B, C, E, G, H	10	A, B, C	1
	B, D, E, F, K, L		D, E	≥ 3
	A, B, F, H, L		C, F, G	o gen
sact	D, E, F, H	sets	A, E	<u>1</u> 2
Transactions	F, G, H, K,	temsets	C, D	temset Frequency
	A, E, F, K, L	_	D, K	su 2
Jatabase	B, C, D, G, H, L		B, C, F	≝ 0
Date	G, H, L		C, D, K	0
_	D, E, F, K, L			
	F, G, H, L			

Partitionierung der Ausgabedaten

	A, B, C, E, G, H		A, B, C	ည် 1
	B, D, E, F, K, L	temsets	D, E	Frequency 0 2
ions	A, B, F, H, L	tem	C, F, G	
sact	D, E, F, H	_	A, E	temset 5
Transactions	F, G, H, K,			Iten
se T	A, E, F, K, L			
Database	B, C, D, G, H, L			
Data	G, H, L			
	D, E, F, K, L			
	F, G, H, L			

Task 1 Task 2

Partitionierung der Eingabedaten

Database Transactions	A, B, C, E, G, H	(0	A, B, C	1
	B, D, E, F, K, L		D, E	၌ 2
	A, B, F, H, L		C, F, G	Frequency
se T	D, E, F, H	temsets	A, E	<u> </u>
aba	F, G, H, K,	ltem	C, D	set 0
Data		_	D, K	Itemset 1
			B, C, F	_ 0
			C, D, K	0

Task 1 Task 2

Partitionierung der Ein- und Ausgabedaten

Task 1

Task 2

Task 4

Partitionierung von Zwischendaten

- Anwendbar bei mehrstufigen Algorithmen
 - Zwischen-Datenstruktur ist Ausgabe einer Stufe bzw. Eingabe der nachfolgenden Stufe.
- Auch explizite Einführung von Zwischen-Datenstrukturen möglich, die im sequentiellen Algorithmus nicht gebraucht werden.
- Vorteil: Partitionierung der Zwischen-Datenstruktur induziert häufig zusätzliche Nebenläufigkeit.
- Nachteil: Explizite Zwischen-Datenstruktur benötigt zusätzlich Speicherplatz.

Beispiel: Matrix Multiplikation

Explizite Einführung einer Zwischen-Datenstruktur D: $D_{k,i,j}$ ist Produkt von $A_{i,k}$ und $B_{k,j}$

Beispiel: Matrix Multiplikation

Task-Interaktionsgraph:

Maximaler Grad der Nebenläufigkeit: 8

Durchschnittlicher Grad der Nebenläufigkeit: 6

Explorative Dekomposition

- Anwendbar zur Dekomposition von Suchproblemen:
 - Suchraum wird in disjunkte Teilräume aufgeteilt.
 - Parallele Tasks bearbeiten jeweils einen Teilraum.
- Unterschiede zu Daten-Dekomposition:
 - Suchraum wird meistens dynamisch aufgebaut, z.B. als Suchbaum.
 - Falls ein Task eine Lösung gefunden hat, kann die Arbeit der anderen Tasks verworfen werden.

Explorative Dekomposition

Bei paralleler Suche treten oft Anomalien auf:

Finden der Lösung:

• Seriell: 2m+1 Schritte

Parallel: 1 Schritt

Finden der Lösung:

• Seriell: m Schritte

Parallel: m Schritte

Gesamtaufwand:

Seriell: m Schritte

Parallel: 4m Schritte

Spekulative Dekomposition

- Anwendbar bei bedingten Programmverzweigungen,
 z.B. if-then-else oder switch-case Konstrukten.
- Ansatz: Auswertung der Bedingung und Ausführung aller möglichen Programmverzweigungen erfolgen parallel.
- Nachdem das Resultat der Auswertung der Bedingung vorliegt werden die falsch ausgeführten Tasks verworfen.
- Oft wird auch nur der wahrscheinlichste Teil der Programmverzweigung parallel zur Auswertung der Bedingung ausgeführt.

3. Design paralleler Programme

- 1. Wichtige Begriffe und Definitionen
- 2. Dekompositionstechniken
- 3. Lastverteilungsverfahren
- 4. Parallele Algorithmenmodelle

Lastverteilung

- Quellen von Overhead bei paralleler Ausführung:
 - Overhead durch Task Interaktion
 - Latenz, beschränkte Bandbreite
 - Overhead durch Leerlauf von Prozessen
 - Unterschiede in der Größe der Tasks
 - Datenabhängigkeiten blockieren die Ausführung von Tasks
- Lastverteilung: Zuordnung von Tasks zu Prozessen
- Ziel der Lastverteilung: Minimierung des Overheads der parallelen Ausführung der Tasks.
 - Minimierung der Zeit für Task Interaktion
 - Minimierung der Leerlaufzeit von Prozessen
- Oft können nicht beide Teilziele gleichzeitig erreicht werden.

Beispiel

- 12 Tasks werden gleichmäßig auf 4 Prozesse (also 3 pro Prozess) verteilt.
- Datenabhängigkeiten: Tasks 9-12 können erst nach Beendigung von Tasks 1-8 gestartet werden.

Klassifizierung von Lastverteilungsverfahren

Statische Lastverteilungsverfahren

- Die Zuordnung von Tasks zu Prozessen ist vor der Programmausführung bekannt.
- Meistens integraler Bestandteil des Algorithmus.
- Statische Task-Dekomposition erforderlich.

Dynamische Lastverteilungsverfahren

- Tasks werden während der Programmausführung den Prozessen zugeordnet.
- Benötigt zusätzliche Systemkomponente zur Task-Migration.
- Bei dynamischer Task-Dekomposition erforderlich.

Statische vs. dynamische Lastverteilungsverfahren

Statische Verfahren

- Technisch einfacher zu realisieren.
- Erfordern Kenntnis über die Größe der Tasks und die vorkommenden Task-Interaktionen.
- Optimale Zuordnung ist bei unterschiedlicher Task-Größe NPvollständig, aber es gibt gute Heuristiken.

Dynamische Verfahren

- Erforderlich, wenn die Größe der Tasks stark unterschiedlich und/oder unbekannt ist.
- Oft ineffizient, falls die Übertragungszeit der Tasks im Vergleich zu deren Berechnungszeit groß ist.

Überblick: Statische Lastverteilungsverfahren

- Statische Lastverteilungsverfahren werden meistens im Zusammenhang mit Daten-Dekompositionsverfahren oder Problemen mit statischem Task-Interaktionsgraph verwendet.
- Lastverteilung mittels Daten-Partitionierung
 - Blockverteilung, zyklische Blockverteilung, randomisierte Blockverteilung
- Lastverteilung mittels Task-Partitionierung
 - Partitionierung des Task-Interaktionsgraphs

Block-Verteilungsverfahren

- Block-Verteilungsverfahren sind besonders gut geeignet, wenn die Interaktionen der Berechnung hohe Lokalität aufweisen, z.B.
 - alle Elemente lassen sich unabhängig berechnen.
 - die Berechnung eines Elements hängt nur von seinen Nachbarelementen ab.
- Wir betrachten im Folgenden beispielhaft 2-dimensionale Arrays der Größe n x n.
- Beachte: Owner-Computes Regel assoziiert Tasks und Daten
 - Abbildung von Daten zu Prozessen ist hier gleichbedeutend mit Abbildung von Tasks zu Prozessen.

1-dimensionale Blockverteilung

- Jeder Prozess erhält zusammenhängenden Datenblock aus n/p Zeilen bzw. Spalten.
- Beispiel (p=8):

Zeilenweise Verteilung

P ₀
P ₁
P_2
P ₃
P ₄
P ₅
P ₆
P ₇

Spaltenweise Verteilung

2-dimensionale Blockverteilung

- Jeder Prozess erhält zusammenhängenden Datenblock der Größe n/p₁ x n/p₂ mit p = p₁ x p₂
- Beispiel ($p = 4 \times 4$ und $p = 2 \times 8$):

P ₀	P ₁	P ₂	P ₃
P ₄	P ₅	P_6	P ₇
P ₈	P9	P ₁₀	P ₁₁
P ₁₂	P ₁₃	P ₁₄	P ₁₅

P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇
P ₈	P ₉	P ₁₀	P ₁₁	P ₁₂	P ₁₃	P ₁₄	P ₁₅

Beispiel: Matrix Multiplikation

Beispiel: Matrix Multiplikation

- Höher-dimensionale Partitionierung/Verteilung ermöglicht die Verwendung einer größeren Anzahl von Prozessen
 - 1 dimensional: max. n Prozesse
 - 2 dimensional: max. n² Prozesse
- Höher-dimensionale Partitionierung/Verteilung reduziert die Anzahl der Interaktionen
 - 1 dimensional:
 - Jeder Prozess greift auf alle Elemente der Matrix B zu
 - Gemeinsamer Datenbereich hat die Größe O(n²)
 - 2 dimensional:
 - Gemeinsamer Datenbereich hat die Größe O(n^2/\sqrt{p})

Zyklische Blockverteilung

- **Problem:** Falls die Berechnung der Elemente des Arrays unterschiedliche Zeit erfordert, kann durch Blockverteilung eine ungleichmäßige Lastverteilung resultieren.
- Ansatz: Zyklische Verteilung
 - Array wird in wesentlich mehr Blöcke partitioniert als Prozesse vorhanden sind.
 - Blöcke werden reihum auf Prozesse verteilt, so dass jeder Prozess mehrere nicht-zusammenhängende Blöcke erhält.

Zyklische Blockverteilung

1-dimensional:

αp Blöcke aus n/(αp) Zeilen/Spalten mit 1 < α < n/p Block b_i wird Prozess P_{i%p} zugew.

2-dimensional:

 $\alpha\sqrt{p}$ x $\alpha\sqrt{p}$ Blöcke der Größe n/($\alpha\sqrt{p}$) mit 1 \leq α \leq n/ \sqrt{p}

Beispiel: LU Faktorisierung

- Lösen eines linearen Gleichungssystems Ax=b
- Verfahren:
 - Bestimme Matrix L und Matrix U mit
 - A = L U
 - L untere Dreiecksmatrix mit Einheitendiagonale
 - U obere Dreiecksmatrix
 - Löse zunächst Ly=b und dann Ux=y
 - Lösungen lassen sich "ablesen" (Dreicksmatrizen)

$$\begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ L_{2,1} & 1 & 0 \\ L_{3,1} & L_{3,2} & 1 \end{pmatrix} \bullet \begin{pmatrix} U_{1,1} & U_{1,2} & U_{1,3} \\ 0 & U_{2,2} & U_{2,3} \\ 0 & 0 & U_{3,3} \end{pmatrix}$$

Beispiel: LU Faktorisierung

```
procedure LU Factorization (A)
begin
  for k := 1 to n do
     for j := k to n do
        A[j, k] := A[j, k]/A[k, k];
     endfor;
     for j := k + 1 to n do
        for i := k + 1 to n do
          A[i, j] := A[i, j] - A[i, k] \times A[k, j];
        endfor;
     endfor;
  /* After this iteration, column A[k + 1 : n, k] is logically the kth
  column of L and row A[k, k : n] is logically the kth row of U. */
  endfor;
end
```

Beispiel: LU Faktorisierung

Randomisierte Blockverteilung

- In manchen Fällen erzeugt auch eine zyklische Blockverteilung eine ungleichmäßige Lastverteilung.
- **Beispiel:** Prozesse auf Diagonale (P₀, P₅, P₁₀ und P₁₅₎ erhalten mehr Tasks als die anderen Prozesse.

P ₀	P ₁	P ₂	P ₃	P ₀	P ₁	P ₂	P ₃
P ₄	P ₅	P ₆	P ₇	P ₄	P ₅	P ₆	P ₇
		P ₁₀					
		P ₁₄					
		P ₂					
P ₄	P ₅	P ₆	P ₇	P ₄	P ₅	P ₆	P ₇
P ₈	P ₉	P ₁₀	P ₁₁	P ₈	P ₉	P ₁₀	P ₁₁
P ₁₂	P ₁₃	P ₁₄	P ₁₅	P ₁₂	P ₁₃	P ₁₄	P ₁₅

 Lösung: Randomisierte Verteilung: Zufallspermutation der Blöcke.

Randomisierte Blockverteilung

V = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

random(V) = [8, 2, 6, 0, 3, 7, 11, 1, 9, 5, 4, 10]

Zuordnung = 8 2 6 0 3 7 11 1 9 5 4 10

 P_0 P_1 P_2 P_3

P ₀	P ₁	P ₁ P ₂	
P ₄	P ₅	P ₆	P ₇
P ₈	P9	P ₁₀	P ₁₁
P ₁₂	P ₁₃	P ₁₄	P ₁₅

Lastverteilung durch Task- Partitionierung

- Lastverteilung durch Task-Partitionierung beruht auf Partitionierung des Task-Interaktionsgraphs mittels Graphpartitionierungsverfahren.
 - Knotenmenge des Graphs soll so in p Teile partitioniert werden, dass
 - alle Partitionen möglichst gleich groß sind (bzgl. Der Summe der Task Größen) und
 - die Anzahl der durchtrennten Kanten minimiert wird.
 - NP vollständiges Problem, es gibt aber gute Heuristiken.
- Statischer Task-Interaktionsgraph erforderlich.
- Task Größe muss bekannt sein.

Beispiel: Sparse Matrix-Vektor Multiplikation

- Lastverteilung durch 1D Blockverteilung
- Liste C_i zeigt Interaktionen der Tasks von Prozess i mit Tasks die auf andere Prozesse abgebildet sind.

Beispiel: Sparse Matrix-Vektor Multiplikation

Lastverteilung durch Task-Partitionierung

Task-Interaktion über Prozessgrenzen ist geringer als bei

Überblick: Dynamische Lastverteilungsverfahren

- Dynamische Lastverteilungsverfahren sind erforderlich, falls
 - statische Verfahren zu einer ungleichmäßigen Lastverteilung führen oder
 - der Task-Interaktionsgraph nicht statisch bekannt ist.
- Dynamische Lastverteilungsverfahren können
 - **zentral** oder
 - verteilt

realisiert werden.

Zentraler Ansatz für dynamische Lastverteilung

- Alle ausführbaren Tasks werden in einer zentralen Datenstruktur (Task-Pool) gehalten.
 - Wenn ein Prozess keinen Task zur Ausführung verfügbar hat, entnimmt er einen Task aus dem Task-Pool.
 - Dynamisch erzeugte Tasks werden in den Task-Pool eingestellt.
- Ist für die Verwaltung des Pools ein spezieller Prozess zuständig, so heißt dieser Master-Prozess, die ausführenden Prozesse heißen dann Slave-Prozesse.

Zentraler Ansatz für dynamische Lastverteilung

 Beispiel: Sortieren der Zeilen einer nxn Matrix for (i=0; i<n; i++) sort(A[i], n);

- Je nach den Werten der Einträge kann das Sortieren der Zeilen unterschiedlich lange dauern.
 - Statische Zuordnung führt dann zu ungleichmäßiger Lastverteilung.
- Dynamischer Ansatz: Self-Scheduling von Schleifen.
 - Task-Pool enthält Indizes von noch nicht sortierten Zeilen.
 - Prozesse entnehmen Indizes aus Task-Pool und führen den zugehörigen Sortier-Task aus.

Zentraler Ansatz für dynamische Lastverteilung

- Problem bei zentralem Ansatz: Schlechte Skalierbarkeit
 - Bei einer großen Anzahl von Prozessen wird der Zugriff auf den zentrale Task-Pool zum Flaschenhals.
- Abhilfe: Chunk-Scheduling
 - Es wird pro Anfrage eine Gruppe von Tasks (Chunk) aus dem Task-Pool entnommen.
 - Bei vielen Tasks pro Chunk kann wiederum eine ungleichmäßige Lastverteilung auftreten.
 - Vermeidung von ungleichmäßiger Lastverteilung durch dynamische Reduzierung der Chunk-Größe zum Ende der Berechnung.

Verteilter Ansatz für dynamische Lastverteilung

- Prinzip: Jeder Prozess hat lokalen Task-Pool.
- Tasks können von anderen Prozessen empfangen, bzw. zu anderen Prozessen geschickt werden.
- Parameter
 - Wer initiiert einen Task-Transfer?
 - Sender oder Empfänger
 - Wann wird ein Task-Transfer vorgenommen?
 - Schwellenwert für Größe des lokalen Task Pools
 - Wie werden Sender- und Empfängerprozess gepaart?
 - z.B. round-robin oder randomisiert
 - Wie viele Tasks werden auf einmal transferiert?

3. Design paralleler Programme

- 1. Wichtige Begriffe und Definitionen
- 2. Dekompositionstechniken
- 3. Lastverteilungsverfahren
- 4. Parallele Algorithmenmodelle

Parallele Algorithmenmodelle

- Parallele Algorithmenmodelle stellen typische Kombi-nationen von Dekompositions- und Lastverteilungs-verfahren dar.
- Beispiele:
 - Daten paralleles Modell
 - Task paralleles Modell
 - Worker-Pool Modell
 - Master-Slave Modell

Daten paralleles Modell

- Task-Dekomposition: statisch (Daten-Dekomposition)
- Lastverteilung: statisch
- Typische Eigenschaften:
 - Alle Tasks führen ähnliche Operationen auf unterschiedlichen Daten aus.
 - Berechnung verläuft in Phasen.
 - Zwischen den Phasen erfolgt Synchronisation der Berechnung und Kommunikation von Daten.
 - Grad der Nebenläufigkeit steigt mit zunehmender Problemgröße.
- Beispiel: Dense Matrix-Vektor Multiplikation

Task paralleles Modell

- Task-Dekomposition: statisch (führt zu statischem Task-Interaktionsgraph)
- Lastverteilung: statisch durch Partitionierung des Task Interaktionsgraphen.
- Typische Eigenschaften:
 - Geeignet für Probleme, bei denen die Größe der Daten eines Tasks vergleichsweise groß ist gegenüber seiner Größe (Berechnungsdauer).
- Beispiel: Sparse Matrix-Vektor Multiplikation

Worker-Pool Modell

- Task-Dekomposition: statisch oder dynamisch
- Lastverteilung: dynamisch (zentral oder verteilt)
- Typische Eigenschaften:
 - Jeder Task kann von jedem Prozess ausgeführt werden.
 - Für Probleme, bei denen die Größe der Daten eines Tasks vergleichsweise klein ist gegenüber seiner Größe (Berechnungsdauer).
- Beispiel:
 - Statische Task-Dekomposition: Self Scheduling von Schleifen.
 - Dynamische Task-Dekomposition: Parallele Baumsuche.

Master-Slave Modell

- Auch Manager-Worker Modell genannt.
- Ein oder mehrere Manager Prozesse erzeugen Tasks und ordnen sie Worker Prozessen zu.
- Lastverteilung:
 - semi-statisch, falls Task-Größe bekannt.
 - dynamisch bei unbekannter Task-Größe oder wenn die Erzeugung der Task zeitaufwändig ist.
- Hierarchische Organisation möglich
 - Top-level Manager verteilen Tasks an untergeordnete Manager.
 - Untergeordnete Manager führen weitere Dekomposition durch
- Beispiel: Seti@Home