Midterm CS 163: Data Structures

Name:
<u>2</u>
Email Address:
1. (25 points) Short Answer: Limit your answers to 1-2 sentences.
Think about what we have talked about using linear linked lists versus arrays. Answer these questions:
a) List one advantage of using a linear linked list:
b) List one advantage of using an array
c) What memory issues exist with linear linked lists:
d) What memory issues exist with statically allocated arrays:

e)	What memory	issues	exist	with	dynamical	lly a	llocate	ed
	arrays:							

f) Create a node structure for a linear linked list of names; where, a name is stored in a dynamically allocated array of characters.

g) How would (f) change if the node was for a doubly linked list?

2. (25 points) Efficiency Discussions: Limit your answers to 1-2 sentences.

We have talked a lot this term about efficiency as we have discussed different data structures and Abstract Data Types...keep this in mind as you answer the following questions

<u>ADT choices:</u> Absolute Ordered Lists, Relative Ordered Lists, Stacks, Queues

<u>Data Structure Choices</u>: Linear Linked List, Circular Linked List, Doubly Linked List, Array

a) When have we seen the verm	worst RUN TIME efficiency this
ADT:	Data Structure:
Ordered Lists, Stacks, Quei Data Structure Choice	tte Ordered Lists, Relative ues <u>s</u> : Linear Linked List, Circular Doubly Linked List, Array
,	t this term about MEMORY ne worst memory issues we have
ADT:	Data Structure:
Ordered Lists, Stacks, Quei Data Structure Choice	te Ordered Lists, Relative ues <u>s</u> : Linear Linked List, Circular Doubly Linked List, Array
,	an absolute ordered list (one ructure would be best for run-
	Data Structure:

d) If we were to implement an stack which data structure
would be best for memory efficiency:

- 3. (25 points) Stacks and Queues implement code in C++
- a) Write the implementation of the **dequeue** operation when implemented using a **linear linked list**

int dequeue () { //data is a struct of one dynamically allocated
array of chars

b) Write the implementation of the **push** operation when implemented using a **linear linked list**

int push (char name []) { //the argument is the name to be
pushed onto the stack

3. (25 points) C++ Code

a. Write a function that will copy every node in a linear linked list (keep it simple – just a list of integers) to a new linear linked list; assume that the new list has a head pointer that is NULL to begin with. Make no other assumptions about the list that you are copying from.

b. Assume you have a linear linked list. Let's assume it is a list of integers. Write the code to remove the <u>last</u> node from this list (only given a head pointer <u>as an argument</u>):

c. How would (b) change if there was a "tail" pointer in addition to a head pointer?

d. Show the code to add a node at the beginning of a DOUBLY linked list (given a head pointer) of integers.