JAKUB SENKO (373902), ŠTEFAN UHERČÍK (374375)

Zaveďme všeobecnú reprezentáciu budov. Každá uvažovaná budova sa dá reprezentovať ako množina dvojíc (x_k,h_k) , určujúcich výšku budovy h na súradnici x. Zápis sa dá zjednodušiť usporiadaním bodov vzostupne podľa x. Stačí uvažovať len tie dvojice, ktoré označujú miesto, v ktorom nastáva zmena výšky budovy. Tento zápis je ekvivalentný so zápisom použitým v zadaní

$$(1, 5, 5) \sim ((1, 5), (5, 0))$$
 (0.1)

ide len o vnútornú reprezentáciu za účelom zjednodušenia algoritmu.

Merge

Uvažujme algoritmus MERGE, ktorý z reprezentácie dvoch budov vypočíta reprezentáciu ich siluety.

Algoritmus využíva object BUILDING_ITERATOR pomocou ktorého je možné postupne prechádzat reprezentáciou danej budovy. Obsahuje tri metódy.

NEXT_COORDINATE_EXISTS a NEXT_COORDINATE_POSITION sú triviálne a neposúvajú pozíciu iterátora. Tretia metóda, GET_HEIGHT(x) vráti výšku budovy na zadanej súradnici. Táto metóda spôsobí dostatočný posun iterátora v prípade, že zadaná pozícia je väčšia alebo rovná ako NEXT_COORDINATE_POSITION¹. Kedže iterátor je jednorázový, túto metódu nie je možné zavolať s argumentom menším ako v predchádzajúcom volaní. Iterátor si jednoducho pamätá poslednú výšku.

Samotný MERGE pracuje s dvoma iterátormi, pre každú budovu jeden a výstup postupne ukladá do samostatného zoznamu. Základom je while smyčka, ktorá sa vykoná ak aspoň pre jeden s iterátorov platí NEXT_COORDINATE_EXISTS. Algoritmus potom vybere menšie x z NEXT_COORDINATE_POSITION a zavolá metódu GET_HEIGHT na oboch iterátoroch. Následne vybere väčšiu z výšok, h a zavolá funkciu TRY_ADD, ktorá jednoducho vloží novú súradnicu (x,h) do výsledného zoznamu v prípade, že sa výška siluety zmenila².

Tento algoritmus funguje pre ľubovolné reprezentácie s dĺžkou n_1, n_2 v čase $\mathcal{O}(n_1 + n_2)$, čo je $\mathcal{O}(n)$ pre budovy s rovnako veľkou reprezentáciou. Zdôvodnenie je jednoduché - využíva jednosmerný iterátor na jedno použitie pre každú reprezentáciu - a teda každú

^{^1}Ak iterátor prešiel všetky súradnice, NEXT_COORDINATE_POSITION vráti ∞ a GET_HEIGHT je 0.

 $^{^2}$ Čo nemusí nastať

súradnicu spracuje práve raz. Algoritmus je konečný pretože pri každom priechode cyklom metóda GET HEIGHT posunie aspoň jeden z iterátorov.

Rozdeľ a panuj

Výslednú siluetu dosiahneme aplikovaním funkcie MERGE na vhodné podproblémy. Toto delenie funguje rovnako ako pri algoritme merge sort. Funkcia COMPUTE_SILHOUETTE zoberie ako argument množinu reprezentácii budov. Ak táto množina obsahuje jednu budovu, tak ju vráti. Ak dve budovy, zavolá na nich MERGE a vráti výsledok. Ak viac, rozdelí množinu na dve rovnaké (s rozdielom jednej budovy v prípade nepárneho počtu) množiny, rekurzívne sa na oboch zavolá a výsledok znovu spojí pomocou MERGE a vráti. Týmto spôsobom funkcia COMPUTE_SILHOUETTE vždy vráti merge všetkých svojich argumentov (nezávisí na poradí).

Zložitosť závisí na počte MERGE operácii a veľkosti ich vstupu. Na každej úrovni rekurzie je suma veľkosti všetkých reprezentácií rovnaká (n dĺžky 2 na začiatku vs dve dlhé n na konci, kde n je počet budov) a počet úrovní je $\log_2 n$. Výsledná zložitosť je teda $\mathcal{O}(n \log n)$

Jakub Senko (373902), Štefan Uherčík (374375)

Slovník pojmov:

slovo - reťazec, pre ktorý vráti funkcia dict true

veta - postupnosť zreťazených slov, medzi jednotlivými slovami sa nenachádzajú žiadne iné znaky

Algoritmus overí všetky možné rozdelenia vstupného reťazca na 2 časti, prefix a suffix. Ak je daný reťazec veta, existuje aspoň jedno rozdelenie také, že suffix je slovo a prefix je znovu veta. Tento test sa vykoná v tele cyklu, kde sa rekurzívne použije IS_SENTENCE na danom prefixe vstupného slova. Premenná result je true práve vtedy ak je aspoň jeden z týchto testov je true.

```
1: function IS_SENTENCE(w[1 \dots n])
2: result = DICT(w[1 \dots n]);
3: for i = 1 \dots n do
4: item = IS_SENTENCE(w[1 \dots i]) \wedge DICT(w[i+1 \dots n]);
5: result = result \vee item;
6: end for
7: return result;
8: end function
```

Pri každom z rekurzívnych volaní je argument funkcie IS_SENTENCE vždy prefixom argumentu volajúcej funkcie. Pri tomto rekurzívnom algoritme môže existovať v strome rekurzie viacero ciest k volaniu IS_SENTENCE s rovnakým argumentom, avšak každý reťazec má konečné množstvo prefixov, konkrétne n-1. Preto stačí vykonať iba lineárne množstvo volaní. Tieto volania sa dajú usporiadať tak, že sa funkcia postupné volá pre rastúci prefix. Táto myšlienka je základom nasledujúcej dynamickej varianty funckie IS_SENTENCE.

Predstavme si nasledovný prípad:

Na vstup dostane algoritmus reťazec o dĺžke n.

Pri overovaní jednotlivých rozdelení nájde slovo o dĺžke a (a zároveň sa rekurzívne zanorí na prefixe o dĺžke (n-a)) a ďalej pokračuje v overovaní ďalších rozdelení (s prefixami dĺžky $(n-a+1), (n-a+2), \ldots$).

Algoritmus sa rekurzívne zavolá na reťazci o dĺžke n-a. Pri týchto volaniach však overuje prefixy s dĺžkami $1 \dots n-a$. Tieto prefixy však overoval aj predošlý priechod algoritmu.

Môžeme povedať, že volanie funkcie IS_SENTENCE aplikované na reťazci dĺžky n je závislé na všetkých možných volaniach funkcie IS_SENTENCE aplikovaných na pre-

fixoch tohto reťazca.

Z tohoto dôvodu je výhodné, ak vypočítame IS_SENTENCE na prefixoch pôvodného reťazca a výsledky týchto volaní si uložíme do rovnomenného asociatívneho poľa. Kľúč tohto poľa bude tvorený prefixom pôvodného reťazca, hodnota bude typu boolean.

```
1: function Verify Sentence(w[1...n])
2:
       for i = 1 \dots n do
          result = DICT(w[1...i]);
3:
          for j = 1 ... i - 1 do
4:
             item = IS SENTENCE(w[1 ... j]) \wedge DICT(w[j + 1 ... i - 1]);
5:
6:
             result = result \lor item;
          end for
7:
          IS SENTENCE(w[1...i]) = result;
8:
9:
      return IS_SENTENCE(w[1 \dots n]);
10:
11: end function
```

Korektnosť:

Konvergencia:

Prvý cyklus sa vykoná pre každý prefix slova w. V cykle sa hodnota premennej i reprezentujucej dlžku prefixu pri každom priechode zvýši o 1 a iterovanie skončí, keď premenná i dosiahne hodnotu n.

Vnorený cyklus sa vykoná pre každý prefix tohto prefixu.

Jediné miesta, u ktorých hrozí, že algoritmus nezastaví, sú volania cyklov.

V cykle s iterujúcou premennou j sa zaručene pri každom priechode zvýši hodnota premennej j a iterovanie skončí, keď premenná dosiahne hodnotu i-1. Jedná sa o for-from-to cyklus, takže v prípade že je iniciálna hodnota j väčšia ako i-1 tak sa cyklus nevykoná vôbec.

PARCIÁLNA KOREKTNOSŤ:

Dôkaz, že algoritmus vráti true pri validnej postupnosti slov pomocou matematickej indukcie:

Bázový krok:

 $S_0 = w_0$ je veta ktorá sa skladá z jedného slova w_0 (w_0 sa nachádza v slovníku). Pre takúto

vetu vráti algoritmus true. Dôvod: položky result pre prvok $IS_SENTENCE(w_0)$ budú obsahovať položku $dict(w_0)$, ktorá sa vyhodnotí na true. Na položky je aplikovaný operátor logiký súčet a pretože obsahujú minimálne jednu položku z hodnotou true, algoritmus vráti true.

Indukčný krok:

Predpokladáme, že pre vetu s_1 zloženú z k slov: $s_1 = w_1.w_2...w_k$ vráti korektnú odpoveď true.

Predpokldáme, že pre vetu s_2 zloženú $s_2 = s_1.w_{k+1}$ algoritmus taktiež vráti true.

Jeden z prefixov vety s_2 musí byť reťazec zložený zo slov $w_1...w_k$. Keďže algoritmus prechádza všetky prefixy, nastane situácia, jedna z položiek results pre prvok s_2 bude IS_SENTENCE $(s_1) \wedge \text{DICT}(w_{k+1})$.

Zložitosť

Cyklus s iterujúcou premennou i bude vykonaný n-krát.

Vnorený cyklus s iterujúcou premennou j bude vykonaný i-1 krát, a plaží, že i-1 < n. Všetky operácie použité v ňom majú konštantnú zložitosť. Celková zložitosť bude teda: $\mathcal{O}(n^2)$.

Jakub Senko (373902), Štefan Uherčík (374375)

Vstupom algoritmu bude: pole pravdepodobností: $C[p_1,..,p_n]$ k - počet padnutých orlov PVD - pravdepodobnostná funkcia

Problém je možné definovať nasledovne:

Vypočítať pravdepodobnosť, že v poli padne k orlov z n mincí. Táto pravdepodobnosť je ekvivaletná súčtu pravdepodobností nasledovných prípadov:

- 1.) Pravdepodobnosť prípadu, že posledná minca bude orol Táto pravdepodobnosť je ekvivalentná súčinu čísla p_n a pravdepodobnosti, že medzi prvými n-1 mincami bude k-1 orlov.
- 2.) pravdepodobnosť prípadu, že posledná minca nebude orol táto pravdepodobnosť je ekvivalentná súčinu čísla $(1-p_n)$ a pravdepodobnosti, že medzi prvými n-1 mincami bude k orlov.

Tento poznatok nám umožňuje definovať jednoduchý rekurzívny algoritmus (v ktorom zároveň ošetrujeme krajné prípady n = k a n = 0)

```
1: function \text{PVD}(C[p_1,..,p_n],k)

2: if k=0 then

3: return \text{PVD}(C[p_1,..,p_{n-1}],0)*(1-p_n);

4: end if

5: if k=n then

6: return \text{PVD}(C[p_1,..,p_{n-1}],k-1)*p(n);

7: end if

8: return \text{PVD}(C[p_1,..,p_{n-1}],k-1)*p_n + PVD(C[p_1,..,p_{n-1}],k)*(1-p_n);

9: end function
```

Ak rozpíšeme vetvenie algoritmu vykonávanie bude vyzerať približne nasledovne:

$$\begin{split} PVD(C[p_1,..,p_n],k) &= PVD(C[p_1,..,p_{n-1}],k-1)*p_n + PVD(C[p_1,..,p_{n-1}],k)*(1-p_n) \\ PVD(C[p_1,..,p_{n-1}],k) &= \\ PVD(C[p_1,..,p_{n-2}],k-1)*p_{n-1} + PVD(C[p_1,..,p_{n-2}],k)*(1-p_{n-1})) \\ PVD(C[p_1,..,p_{n-1}],k-1) &= \\ PVD(C[p_1,..,p_{n-2}],k-2)*p_{n-1} + PVD(C[p_1,..,p_{n-2}],k-1)*(1-p_{n-1}) \dots \end{split}$$

Z predchádzajúceho zápisu volaní funkcií je možné vidieť, že $PVD(C[p_1,..,p_{n-1}],k-1)$ sa zavolá 2 krát na druhej úrovni rekurzívneho stromu. Využijeme techniku dynamického programovania, aby sme sa vyhli opakovanému volaniu funkcie PVD na rovnakých parametroch. Z algoritmu je zreteľné, že volanie funkcie PVD, ktorá berie ako parameter pole o dĺžke a, je závislá výlučne na volaniach funkcií PVD, ktoré berú ako parameter pole o dĺžke a-1.

Z tohoto dôvodu je výhodné, ak vypočítame najprv. funkcie s parametrami $PVD(C[p_1], 0)$, $PVD(C[p_1], 1)$, $PVD(C[p_1, p_2)]$, 0),...

Pre tento účel vytvoríme asociatívne pole s názvom PVD, v ktorom kľúče budú mať tvar: (C[p(1),...,p(n)],k) a hodnoty budú obsahovať napočítanú pravdepodobnosť. Na naplnenie tohto poľa vytvoríme jednoduchú nerekurzívnu funkciu:

Ich výsledky si budem ukladať do asociatívneho poľa a postupným volaním sa dopracujem k hodnote PVD(C[p(1),..,p(n)],k), ktorá je výsledkom celého problému.

```
1: function COUNT PVD(C[p_1,..,p_n],k)
       PVD([p_1], 0) = p_1;
 2:
       PVD([p_1], 1) = (1 - p_1);
 3:
       for i = 1..n do
 4:
           bottom = \max(0,k-(n-i));
 5:
           up = min(i,k);
 6:
 7:
           for j = bottom ... up do
 8:
              if j==0 then
                  PVD(C[p_1,..,p_i],j) = PVD(C[p_1,..,p_{i-1}],0) * (1-p_i);
 9:
10:
              else
                  if k==n then
11:
                      PVD(C[p_1,..,p_i],j) = PVD(C[p_1,..,p_{i-1}],j-1) * p_i;
12:
                  else
13:
                     PVD(C[p_1, ..., p_i], j) =
14:
                     PVD(C[p_1,..,p_{i-1}], j-1) * p_i + PVD(C[p_1,..,p_{i-1}], j) * (1-p_i);
15:
16:
                  end if
              end if
17:
           end for
18:
19:
       end for
       return PVD(C[p_1,..,p_n],k);
20:
21: end function
```

Zložitosť

Cyklus s iterujúcou premennou i sa vykoná n-krát. V ňom sa vnorený cyklus iterujúcou premennou j vykoná vždy (up-bottom) krát. V každom cykle bude hodnota premennej bottom minimálne 0 a hodnota premennej up maximálne k, z čoho vyplýva, že počet týchto cyklov bude maximálne k. Je zaručené, že k < n a teda zložitosť celého algoritmu bude patriť do triedy $\mathcal{O}(n^2)$

JAKUB SENKO (373902), ŠTEFAN UHERČÍK (374375)

Cenu optimálneho rozdelenie áut do autosalónov je možné vypočítať pomocou jednoduchécho rekurzívneho algoritmu. Maticu C chápeme ako n trojíc, pričom každá je v samostnatnom riadku. Číslo auta je zároveň jeho index riadku v matici cien. Parameter n v algoritme bestPrice udáva počet áut ktoré ešte neboli priradené do autosalónu a kedže sa autá priradujú postupne, tak udáva zároveň aj číslo nasleujúceho nepriradeného auta. Parameter freePlaces udáva počet neobsadených miest v jednotlivých autosalónoch (číslo na indexe i v tomto poli udáva počet volných miest v autosalóne i). V každom rekurzívnom volaní priradíme auto do každého autosalónu az týchto priradení vrátime maximálnu cenu. Rekurzia sa zastaví v prípade že sme priradili už všetky autá.

V nasledujúcich algoritmoch predpokladáme, že počet áut je delitelný počtom autsalónov.

```
1: function BEST PRICE(n,freePlaces[])
       if n == 0 then
2:
          return 0
3:
       end if
 4:
       values = [] of number
5:
       for i = 1 .. freePlaces.size do
6:
7:
          if freePlaces[i] != 0 then
8:
              freePlacesCopy = copy of freePlaces;
              freePlacesCopy[i] = freePlacesCopy[i] - 1;
9:
              values[i] = best price(n-1,freePlacesCopy) + C[n][i];
10:
          end if
11:
       end for
12:
       return max(values);
13:
14: end function
```

Technika dynamického programovania

Každé volanie funkcie bestPrice na matici na k-tom riadku potrebuje výsledky volaní funkcie bestPrice na riadkoch 1..k-1. Toto nám definuje závislosť a teda možné usporiadanie volaní.

Vytvoríme štruktúru bestPriceData, ktorá bude mať typ asociatívneho poľa, v ktorom: Kľúče budú zodpovedať možným parametrom funkcie BEST_PRICE - teda dvojica (n,freePlaces[]) hodnoty budú zodpovedať vypočítanej najvyššej možnej cene.

Aby sme zaznamenali všetky možné kombinácie parametrov n a freePlaces, vytvorili sme funkciu findSpecialPermutations. Táto funkcia vráti všetky možnosti ako môže vyzeraž pole freePlaces pre sum áut v prípade že do jedného autosalónu môžeme daž maximálne

threshold áut. Aby sme ju popísali viac formálne, pre vstupné parametre sum a threshold hľadáme permutácie trojice čísel, pričom tieto čísla sú prirodzené alebo 0. Tieto čísla musia dávať súčet rovný parametru sum, ale zároveň žiadne z nich nemôže byť väčšie, ako hodnota threshold.

```
function FINDSPECIALPERMUTATIONS(sum,threshold)
   if sum = 0 then
       return [0,0,0]
   end if
   permutations = [] of [];
   bottom1 = \max(0, \text{sum - } 2^*\text{threshold});
   upper1 = min(sum, threshold);
   for i = bottom1 ... upper1 do
      permutation = [] of length 3
      permutation[1] = i;
      bottom2 = max(0,sum - i - threshold);
      upper2 = min(sum - i, threshold);
      for j = bottom2 .. upper2 do
          permutation[2] = j;
          permutation[3] = sum - (i+j);
      end for
    permutations.add(permutation);
   end for
   return permutations;
end function
```

Nasledovná nerekurzívna funkcia postupne priradí do štruktúry bestPriceData hodnoty najlepších možných cien pre danú konfiguráciu (počet priradených áut a počet predaných áut pre jednotlivé autosalóny (freePlaces)). Vonkajší for cyklus s iterujúcou premennou i v každom priechode spocita maximalne ceny pre všetky distribucie (konkrétne priradenie do autosalónov) i áut. Využívame hodnoty v bestPriceData vypočítané v predchádzajúcih priechodoch cyklom.

```
1: function COUNTBESTPRICE(C)
      bestPriceData[(0, [0,0,0])] = 0;
2:
3:
      for i = 1 .. C.rows do
          permutations = findSpecialPermutations(i,C.rows/3);
4:
          for permutation in permutations do
5:
6:
             items = [] of number;
             for j = 1 .. permutation.size do
7:
                modifiedPermutation = copy of permutation
8:
                if modifiedPermutation[j]>0 then
9:
                    modifiedPermutation[j] = modifiedPermutation[j] - 1;
10:
```

Konvergencia

Algoritmus môže nekonvergovať len pri vyhodnotení podmienky jedného z troch cyklov. Cyklus s iterujúcou premennou j sa skončí pretože permutation.size je kladná konštanta. Cyklus s iterujúcou premennou permutation skončí pretože funkcia findSpecialPermutations vráti konečný počet položiek. Vonkajší cyklus skončí pretože C.rows je kladná konštanta.

Parciálna korektnosť

Dokážeme matematickou indukciou podla počtu áut pre ktorý sme už vypočítali maximalnu cenu (vonkajší cyklus).

Bázovy krok:

Pre i = 0 Táto situácia je riešená pred cyklom naplnením pola best Price
Data hodnotou (0, [0,0,0]).

Indukčný krok:

Pre i = k Predpokladáme že best PriceData obsahuje správne vypočítané maximálne ceny pre všetky možné konfigurácie free Places pre počet áut k , označme ich current Free Places Vnútorný for cyklus s iterujúcou premennou permutation vypočíta maximálne ceny pre všetky možné konfigurácie free Places. Každá maximálna cena sa vypočíta ako maximum z už vypočítaných konfigurácii. Pretože for cyklus prebehne pre všetky možné permutácie pre k áut, budú dostupné pre k+1 iteráciu cyklu.

1 Zložitosť

funkcia findSpecialPermutations

vo funkcii sa nachádzajú dva cykly: počet vykonaní prvého cyklu je (upper1 - bottom1), rozdiel týchto premenných bude vždy menší ako počet áut. Ekvivalentné tvrdenie môžeme spraviť pre druhý cyklus s počtom vykonaní (upper1 - bottom1). Každá operácia použitá v cykloch má konštantnú zložitosť, preto je jej celková zložitosť $\mathcal{O}(n^2)$.

funkcia countBestPrice

vonkajší cyklus sa vykoná pre každé auto práve raz, teda C.row krát.

Zo zložistosti funkcie find Special Permutations môžeme povedať, že počet prvkov v poli permutations je maximálne kvadraticky závislý na premennej i.

Zložitosť operácií v cykle s iterujúcou premennou j je konštatný, vzhľadom na to, že hodnota permutation.size zodpovedá počtu autosalónov a ten je konštantný počas celého vykonávania programu. Zložitosť cyklu s iterujúcou premennou permutation má preto zložitosť $\mathcal{O}(n^2)$ (kvôli počtu prvkov v poli permutations).

Predošlé tvrdenia môžeme zredukovať na tvrdenie, že v cykle s iterujúcou premennou i sa vždy vykonajú dve operácie so zložitosťou $\mathcal{O}(n^2)$. Jeho zložitosť je teda $\mathcal{O}(n^3)$.

Rozšírenie algoritmu

Pre krátkosť tento algoritmus počíta len výšku najlepšej ceny za akú je možné autá predať, ale je triviálne modfikovatelný aby si spolu s cenou pametal aj konkretne priradenie áut do autosalónov. Namiesto ceny je stačí uložiť do bestPriceData dvojicu (cena, priradenie). Priradenie je pole o dlžke C.rows a hodnota na indexe i v tomto poli vyjadruje číslo autosalónu do ktorého bude auto priradené, prípadne 0 ak ešťe nie je priradené. Nasledujúci algoritmus toto implementuje:

```
1: function COUNTBESTPRICE(C) bestPriceData[(0,[0,0,0])] = 0;
       for i = 1 .. C.rows do
 2:
          permutations = findSpecialPermutations(i,C.rows/3);
 3:
          for permutation in permutations do
 4:
 5:
              items = [] of item (price -> number, distribution -> [] of number);
              for j = 1 .. permutation.size do
 6:
                 modifiedPermutation = copy of permutation
 7:
                 if modifiedPermutation[j]>0 then
 8:
                     modifiedPermutation[j] = modifiedPermutation[j] - 1;
 9:
                     item it;
10:
                     aPrice = bestPriceData[(i-1,modifiedPermutation)];
11:
                     it.price = aPrice.price + C[i][i];
12:
13:
                     it.distribution = aPrice.distribution;
                     it.distribution[i] = j;
14:
                     items.add(it);
15:
                 end if
16:
17:
              highestPriceIndex = index into items for item with highest price;
18:
19:
              bestPriceData[(i,permutation)] = items[highestPriceIndex];
          end for
20:
       end for
21:
       return bestPriceData[C.rows,[C.rows/3,C.rows/3,C.rows/3]];
23: end function
```

Algoritmus je rozšíriteľný pre väčší počet autosalónov, je však potrebné zmeniť implementáciu funkcie find Special
Permutations.

JAKUB SENKO (373902), ŠTEFAN UHERČÍK (374375)

```
Hladový algoritmus nemusí nájsť optimálne riešenie pre druhý a tretí problém.
Protipríklad:
Dokument s dĺžkou riadku: 12
Zoznam slov obsahuje slová s dĺžkami 5,4,4,12
Algoritmus umiestni slová nasledovne:
5,4
4
12
Druhý slovný problém:
Celková penalizácia bude 3^2 + 8^2 + 0 = 9 + 64 = 73
Optimálne riešenie je však:
5
4,4
12
pri ktorom bude celková penalizácia 7^2 + 4^2 = 49 + 16 = 64
Tretí slovný problém:
Celková penalizácia bude: \max(3,8,0) = 8
Optimálne riešenie je však:
5
4,4
12
pri ktorom bude celková penalizácia \max(7,4,0)=7
```