AVL Tree

IT5003: Data Structures and Algorithms (AY2019/20 Semester 1)

Lecture Outline

AVL Tree:

- AVL property
- Tree Height

Rotation mechanism:

Left and Right Rotation

Insertion:

- Single rotation
- Double rotations

Binary Search Tree: Recap

- Operations are dependent on BST Height
 - \Box findMin = O(h)
 - \Box search = O(h)
 - □ insert = O(h)
 - delete = O(h)
- Height can differs greatly:

To Improve Performance

- Height range: Log₂ N ≤ h ≤ N
 - Basic BST has no control over the height as the tree shape is determined by order of insertion
- This gives rise to a number of self-balancing BST (and other search trees):
 - AVL Tree (covered)
 - (2, 3, 4)-Tree and Red-Black Tree
 - Splay Tree, Treap, B+ Tree
 - etc...

Invented by Adel'son-Vel'skii and Landis in 1962

AVL TREE DEFINITIONS AND PROPERTIES

AVL Tree: **Definition**

AVL Tree:

- is a balanced BST:
 - For all nodes, the difference in height between left and right subtree is at most one:

$$|H_l - H_r| \leq 1$$

Also known as the AVL Property

Check: Which BST is AVL Tree?

AVL Tree: Property

The difference between the levels of the two dotted lines is at most one

AVL Tree: Example

Height 1 AVL tree

 \bigcirc

Height 2
AVL tree

Height 3
AVL tree

AVL Tree: Height

- Since AVL Tree is just a variant of BST
 - Operations similarly depend on height
- Important Question:
 - Given N nodes, what is the worst (tallest) AVL Tree?
 - To answer the question, we first look at:

What is the **smallest number of nodes** needed to build a **valid AVL tree of height H**?

Definition: Minimal AVL Tree

Minimal AVL trees of height h:
AVL Trees having height h and fewest
possible number of nodes

Height 1

Minimal AVL tree

Height 2

Minimal AVL tree

Height 3

Minimal AVL tree

Height 4

Minimal AVL tree

Minimal AVL Tree: Height

- Given:
 - N: number of nodes in a AVL tree of height h
 - n(h): number of nodes in a minimal AVL tree of height h
- Then:
 - \square n(h) \leq N
- Assuming the left subtree is taller

 - $\mathbf{n}(2) = 2$
 - n(3) = 1 + n(2) + n(1)= 4
 - = 4 n(h) = 1 + n(h-1) + n(h-2)

Minimal AVL Tree: Height

```
n(h) = 1 + n(h-1) + n(h-2)
\rightarrow n(h) > 2 n(h-2)
Since n(h-1) > n(h-2)
```

 $n(h) > 2^{i} n(h-2i)$

[IT5003 - L10 - AY1920S1]

Minimal AVL Tree: Height

Suppose h is an odd number:

$$h-2i = 1 \rightarrow i = (h-1) / 2$$

and n(h-2i) = n(1) = 1

Try solving for when **h** is even?

```
n(h) > 2^{i} n(h-2i)
n(h) > 2^{(h-1)/2} \times n(1)
+ 2^{(h-1)/2}
+ 2^{(h-1)/2}
+ 2 \log_{2} n(h) + 1
```

 $h = O(\log_2 N)$

Conclusion:

height of AVL tree is $O(\log_2 N)$ even in the worst case

How to keep AVL tree in shape?

ROTATION MECHANISM

Rotation Mechanism: Overview

- The shape of a BST can be adjusted
 - Through a series of rotations
 - Note that rotation must maintain BST property

Right Rotation: Example

- Imagine rotating node "3" to the right (clock-wise)
 - How should we handle the child nodes?

AFTER Right Rotation: Example

- Rotation changes the heights of some nodes
- Note the modified node references in RED

[IT5003 - L10 - AY1920S1]

Right Rotation: Psuedo-Code

[IT5003 - L10 - AY1920S1]

Left Rotation: Example

Left rotation is similar (give it a try!)

AFTER Left Rotation: Example

Figure out the pseudo-code for left rotation?

Rotation: Summary

- Rotation can change the tree shape while maintaining BST property
 - We'll use it heavily in maintaining AVL Tree next

[IT5003 - L10 - AY1920S1]

MAJOR AVL TREE OPERATIONS

AVL Tree Operations: Overview

- AVL Tree is also a BST
 - → The basic ideas of **insert**, **delete** and **search** are the same as BST
 - Additional task is to maintain AVL Tree property
 - Needed only for operations that change the tree shape
 - → e.g. **Search operation** is the exact same as BST tree's
- Basic idea insertion / deletion:
 - 1. Perform the operation normally
 - Detect violation of AVL Tree property
 - 3. Perform rotation to restore AVL Tree property

AVL TREE INSERTION

AVL Insertion: Observations

- Given an AVL Tree →
 - Insertion into Z subtree never violates the AVL tree property
 - Insertion into X and Y subtree may cause a violation

- Question:
 - If AVL Property is violated, at which node will we able to detect the issue?

AVL Property Violation

- BST insertion always occurs at leaf node
 - We have a path from root to the insertion point at the end of windup phase for the recursive insertion
 - Violation of AVL property can only occur along this path
- In the unwinding phase of the recursion
 - We will travel back from insertion point to root!
- Hence, we can:
 - Add a check of AVL tree property after insertion
 - Correct violation as we return to the parent caller

AVL Property Violation: Detection


```
def insert( T, key, data ):
    if T is empty:
        return TreeNode( key, data )
    if T→key == key:
        Duplicate Key Error
    elif T→key < key:
        T→rightT = insert( T→rightT, key, data )
    else:
        T→leftT = insert( T→leftT, key, data )
    return T</pre>
```

- Note the path traversed during the insertion
- As we travel back from {11, 12, 10, 6, 15}, at which node can we detect the violation?

AVL Property Violation: Detection

For any node, height difference between left and right subtrees (Balance Factor) can be:

H _{left} - H _{right}	Remark
-2	Right Skewed (Need Correction!)
-1	Right Heavy (still ok)
0	Balanced
1	Left Heavy (still ok)
2	Left Skewed (Need Correction!)

We'll use rotation to correct the skewed cases

[IT5003 - L10 - AY1920S1]

AVL Property Violation: Cases

- If node X is left skewed ($H_{left} H_{right} = 2$):
 - The problem lies with the left subtree of X
 - The root of this left subtree, Y can have two possibilities:

Case 1: Left Skewed + Left Heavy

A Single Right Rotation at X can restore the AVL tree property

Case 2: Left Skewed + Right Heavy

- A Single Right Rotation at X does not work!
- The height of the subtree remains unchanged

Case 2: Left Skewed + Right Heavy

- Let's do a Single Left Rotation at Y first
- Can you recognize the tree shape after rotation?

Case 2: Become Case 1

Now, a Single Right Rotation at X

Left-Skewed Cases: Summary

Cases Left-Skewed at X Left Subtree of X is Y	Solution
Left Heavy at Y = Outside Case (Insertion on the left most branch) = Zig-Zig Case (Zig = left)	i. Right Rotation at X
Right Heavy at Y = Inside Case = Zig-Zag Case (Zag = right)	i. Left Rotation at Y ii. Right Rotation at X

 Other common name of the cases are also listed for your reference

[IT5003 - L10 - AY1920S1]

Right-Skewed Cases: Summary

Cases Right-Skewed at X Right Subtree of X is Y	Solution
Right Heavy at Y = Outside Case (Insertion on the right most branch) = Zag-Zag Case	?
Left Heavy at Y = Inside Case = Zag-Zig Case	?

- Mirror Image for the right-skewed cases
- Can you figure out the correct solutions?

[IT5003 - L10 - AY1920S1]

DESIGN CONSIDERATION & EXAMPLES

Design Considerations

- There are many ways to detect AVL Property violation:
 - Most solution requires additional attributes kept with each tree nodes
 - E.g. Keep the balance factor, tree height etc
- We will keep the "tree height" in each node:
 - i.e. the height of subtree at that node
 Height_{me} = max(Height_{left}, Height_{right}) + 1
 - → The root node has the **tree height** for the entire tree

[IT5003 - L10 - AY1920S1]

Example: At the Start

- The small number below the key in each node is the tree height
- We can use $|H_l H_r|$ to find out the balance factor easily

Example: Insert 0

Note the path travelled by the

As the recursion unwinds, we update the affected tree heights and check the balance factor

Example: Insert 0 Note the unwinding path Unwinding up to node "4" discover no issue: Verify that the balance factor respects AVL property along the path

Example: Insert 0

Note the changed references and the updated tree heights for "7" and "4"

Try insert 3 into the AVL Tree and perform the checking as shown before

Deletion: Can you generalize?

- Figure out the following:
 - What's the general flow of deletion in AVL Tree?
 - What are the cases in deletion?
 - Study one direction and use mirror generalization for the other
 - Use examples to illustrate the cases
- Important question:
 - How many rotation (at most) are needed for deletion?

Summary

- With the AVL tree property, major BST operations are now guaranteed at O(lg N)
- Rotation mechanism is general (i.e. can be used in BST as well)
 - AVL Tree use the rotations to ensure AVL Tree property after each insertion, rotation
- The AVL Rebalancing is performed along the insertion / deletion path

[IT5003 - L10 - AY1920S1]

END

_ [IT5003 - L10 - AY1920S1]