多周期 MipsCPU 设计

一. 模块定义

1. mips

(1) 基本描述

mips 是最顶层设计,综合了 datapath 和 controller。所有的操作均在 mips 内部进行。

(2) 模块接口

信号名	方向	描述
clk	I	时钟信号
		复位信号 1:复位
reset	I	1:复位
		0: 无效

(3) 功能定义

序号	功能名称	功能描述
1	处理指令和数据	对指令和数据进行相应的处理。

2. Controller

(1) 基本描述

Controller 是控制器,综合了主控制器和 ALU 控制器,产生控制信号。

(2) 模块接口

信号名	方向	描述
clk	I	时钟信号
reset	I	复位信号。 1:复位 0:无效
zero	I	ALU 计算结果为 0 标志。 1: 计算结果为 0 0: 计算结果非 0
op[5:0]	I	32 位 MIPS 指令的[31:26]字段
func[5:0]	I	32 位 MIPS 指令的[5:0]字段
Rd[31:0]	I	[rs]的值判断,决定 blez/bgtz/bltz/bgez 的执行
F[4:0]	I	1: bgez 指令执行 0: blez 指令执行
PCWr	0	PC 写使能 1:允许 NPC 写入 PC 内部寄存器 0:禁止 NPC 写入 PC 内部寄存器

		选择 GPR 写入地址
GPRSel[1:0]	0	00 : regwrite=rt
		01 : regwrite=rd
		10 : regwrite=1f
	_	IR 写使能信号
IRWr	0	1:允许指令从 IM 写入 IR 寄存器
		0:禁止指令从 IM 写入 IR 寄存器
		写入寄存器的控制信号
GPRWr	0	1:写入相应的寄存器
		0:无
		写入 DM 的控制信号
DMWr	0	1:讲数据写入相应地址内
		0:无
		决定运算类型的三位控制信号
		000: +
		001:-
		010:
Aluctrl [2:0]	0	011: {b[15:0],16'b0}
		100 : &
		101 : a&~b ~a&b
		110:~(a b)
		111:移位运算
		GPR 写入端地址选择信号
CDDCal[1.0]	0	00:选择 Rd 字段
GPRSel[1:0]	0	01:选择 Rt 字段
		10:选择寄存器\$31
		GPR 写入端数据选择的信号
WDC 151 01	_	00:选择 aluout 的输出
WDSel[1:0]	0	01:选择 DM 的输出
		10:选择 npc 的输出 (即 pc + 4)
		扩展类型控制信号
EXTOp	0	1:有符号扩展
_/ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0:无符号扩展
		ALU 的 b 输入端选择信号
		00:选择寄存器 RD2 的结果
BSel[1:0]	0	01:选择零位扩展
		10:选择符号扩展
		PC 输入端的选择信号
PCSel	0	1:选择寄存器\$31内的数据作为地址
1 6361		
Jump/Jal/Jr/bne/		0:选择 npc 的输出作为地址
Blez/bgtz/bltz/bge	0	跳转控制信号
Z		
Sb/sh/sw/lb/lh/lbu/ lhu/lw	0	存储控制信号
Sll/srl/sra/sllv/srlv/		
srav	Ο	移位功能控制信号

序号	功能名称	功能描述
1	产生控制信号	控制数据通路里的单元进行行为选择

3. im

(1) 基本描述

IM 是指令储存器,主要功能是储存指令。IM 根据 pc 给出的地址决定输出的指令。

(2) 模块接口

信号名	方向	描述	
addr[31:0]	I	pc 给出的指令地址	
opcode[31 :0]	0	32 位 MIPS 指令	

(3) 功能定义

序号	功能名称	功能描述
1	产生 MIPS 指令	产生 MIPS 指令进而控制 CPU 的运行

$4. dm_{\underline{}}$

(1) 基本描述

DM 是数据储存器,主要功能是储存数据。DM 根据控制信号决定写入还是输出数据。

(2) 模块接口

信号名	方向	描述	
addr[31:0]	I	ALU 计算得到的存放数据的地址	
wd[31:0]	I	数据写入端	
bes[3:0]	I	字节使能信号 4'b1111: DM[addr[11:2]] <= wd; 4'b0011: DM[addr[11:2]][15:0] <= wd[15:0]; 4'b1100: DM[addr[11:2]][31:16] <= wd[15:0]; 4'b0001: DM[addr[11:2]][7:0] <= wd[7:0]; 4'b0010: DM[addr[11:2]][15:8] <= wd[7:0]; 4'b0100: DM[addr[11:2]][23:16] <= wd[7:0]; 4'b1000: DM[addr[11:2]][31:24] <= wd[7:0];	
Bel[6:0]	I	控制取数指令的执行	
we	I	写入 DM 的控制信号 1:讲数据写入相应地址内 0:无	
clk	I	时钟信号	
rdata[31:0]	0	数据输出端	

序号	功能名称	功能描述
1	写入数据	当 addr 端有指令输入且 we 信号为 1 时,根据 be 的类型 从 din 端写入数据到相应的地址内
2	输出数据	当 addr 端有指令输入且 we 信号为 0 时,从 dout 端输出相应的地址内的数据

5. GPR

(1) 基本描述

GPR 是寄存器堆,由 32 个 32 位寄存器组成,主要功能是在内存与 CPU 运算部件之间暂存数据。GPR 根据指令选择相应的寄存器来完成读操作或者写操作。

(2) 模块接口

信号名	方向	描述	
Ra1[4:0]	I	读寄存器指令输入端 1	
Ra2[4:0]	I	读寄存器指令输入端 2	
wa[4:0]	I	写寄存器指令输入端	
wd[31:0]	I	数据写入端	
		写入寄存器的控制信号	
we	I	1:写入相应的寄存器	
		0:无	
clk	I	时钟信号	
		复位信号。	
rst	I	1: 复位	
		0: 无效	
Rd1[31:0]	0	数据输出端 1	
Rd2[31:0]	0	数据输出端 2	

(3) 功能定义

序号	功能名称	功能描述	
1	写入数据	当 WN 端有指令输入且 We 信号为 1 时,从 d 端写入数据到	
	一	相应的寄存器内部	
2	输出数据	当 rna 端有指令输入时,从 qa 端输出相应的寄存器内的数	
		据;	
		当 rnb 端有指令输入时,从 qb 端输出相应的寄存器内的数	
		据。	

6. ALU

(1) 基本描述

ALU 是算术逻辑运算单元,主要功能是对输入的数据进行相应的运算。ALU 根据指令选择输入的数据需要进行的操作。

(2) 模块接口

信号名	方向	描述
a[31:0]	I	数据输入端 A
b[31:0]	I	数据输入端 B
s[4:0]		rt
clk,sll,srl,sra,sllv,srlv ,srav	I	移位运算控制
aluctrl[2:0]	I	决定运算类型的三位控制信号 001:或运算 010:加运算 110:减运算 011:lui运算 111:slt运算
result[31:0]	0	运算结果输出端
Zero	0	ALU 计算结果为 0 标志。 1: 计算结果为 0 0: 计算结果非 0

(3) 功能定义

序号	功能名称	功能描述
1	完成逻辑运算	根据输入的控制信号完成相应的逻辑运算

7. be_1oad

(1) 基本描述

Be_load 是判断需要将数据的哪个字节或者半字或者整个字取出 DM 的扩展部件。根据 aluout 的低两位以及相应的存数指令进行相应的判断。

(2) 模块接口

信号名	方向	描述
addr[1:0]	I	来自 ALU 的计算结果的低两位
bel[6:0]	0	根据 CONTROLLER 和 ALUOUT 后两位生成 DM 的控制信号
lw,lh,lhu,lb,l bu	I	相应的取值操作

(3) 功能定义

序号	功能名称	功能描述
1	产生字节使能信	根据 aluout 的低两位以及来自控制器的控制信号产生相应
1	号	的字节使能信号

8. be_save

(1) 基本描述

Be_load(be_save 是判断需要将数据的哪个字节(或者半字或者整个字存入)DM 的扩展部件。根据 aluout 的低两位以及相应的存数指令进行相应的判断。

(2) 模块接口

信号名	方向	描述
sw,sb,sh	I	相应的存数操作
addr[1:0]	I	来自 ALU 的计算结果的低两位
bes[3:0]	0	根据 aluout 的低两位以及来自控制器的控制信号产生相应的字节使能信号

(3) 功能定义

序号	功能名称	功能描述
1	产生字节使能信	根据 aluout 的低两位以及来自控制器的控制信号产生相应
T	号	的字节使能信号

9. MUX

(1) 基本描述

MUX 是多路选择器,主要功能是根据信号选择相应的数据输出,这里总共使用了三种多路选择器,分别说明如下。

(2) 模块接口

1. mux5

信号名	方向	描述
a[4:0]	I	数据输入端 1
b[4:0]	I	数据输入端 2
c[4:0]	I	数据输入端 3
s[1:0]	I	控制信号 00:选择 a 输出 01:选择 b 输出 10:选择 c 输出
y[4:0]	0	数据输出端

3. mux32

信号名	方向	描述
a[31:0]	I	数据输入端 1
b[31:0]	I	数据输入端 2
c[31:0]	I	数据输入端 3
d[31:0]	I	数据输入端 4
s[1:0]	I	控制信号

		00:选择 a 输出 01:选择 b 输出
		10:选择 c 输出
		11: 选择 d 输出
y[31:0]	0	数据输出端

序号	功能名称	功能描述
1	选择输入的数据	根据控制信号选择相应的数据输出。

10. EXT

(1) 基本描述

EXT 是符号扩展器,主要功能是将 16 位的数据扩展成 32 位,由 EXTOp 控制扩展类型。

(2) 模块接口

1. sign_ext

信号名	方向	描述
a[15:0]	I	数据输入端
b[31:0]	0	数据输出端

2. zero_ext

信号名	方向	描述
a[15:0]	I	数据输入端
b[31:0]	0	数据输出端

(3) 功能定义

序号	功能名称	功能描述
1	有符号扩展	将 16 位数据按最高位是符号位扩展成 32 位数据
2	零位扩展	将 16 位数据以高位全填零的方式扩展成 32 位数据

11. NPC

(1) 基本描述

Npc 是计算下一条指令地址,并将计算结果输出给 pc 的模块,受到 npcop的控制。

(2) 模块接口

信号名	方向	描述
pc_jr/rd1/opc[31:0]	I	当前不同的指令的地址
Imm[31:0]	I	立即数

branch,zero,j,jr,jal,bne,blez,b gtz,bltz,	I	相应的跳转指令控制信号
instr[31:0]	I	32 位 MIPS 信号
npcop[1:0]	ı	npc 执行操作类型的控制信号 00:npc = pc + 4 01:beq 分支指令 10:J 类跳转指令
npc[31:0]	0	下一条指令的地址
pcplus4[31:0]	0	pc+4 的结果

序号	功能名称	功能描述
1	计算 pc	计算下一条指令的地址。

12. PC

(1) 基本描述

PC 是输出当前地址并把下一条地址保存在寄存器中,复位后指向定义的第一条指令地址 0X0000_3000。

(2) 模块接口

信号名	方向	描述
npc[31:0]	I	下条指令的地址
		PC 写使能
pcwr	I	1:允许 NPC 写入 PC 内部寄存器
		O:禁止 NPC 写入 PC 内部寄存器
clk	I	时钟信号
		复位信号。
rst	I	1:复位
		0: 无效
pc_out[31: 0]	0	指令储存器的指令地址

(3) 功能定义

序号	功能名称	功能描述
1	复位	当复位信号有效时,PC被设置为 0x0000_3000。
2	保存 npc 并输出	在每个时钟上升沿保存 npc 并输出。