International IOR Rectifier

IRF6613PbF

DirectFET™ Power MOSFET ②

IRF6613TRPbF

- RoHS Compliant ①
- Lead-Free (Qualified up to 260°C Reflow)
- Application Specific MOSFETs
- Ideal for CPU Core DC-DC Converters
- Low Conduction Losses
- High Cdv/dt Immunity
- Low Profile (<0.7mm)
- Dual Sided Cooling Compatible ①
- Compatible with existing Surface Mount Techniques ①

V _{DSS}	R _{DS(on)} max	Qg(typ.)
40V	$3.4 \text{m}\Omega @V_{GS} = 10V$	42nC
	$4.1 \text{m}\Omega @V_{GS} = 4.5 \text{V}$	

Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)

SQ	SX	ST	MQ	MX	MT		

Description

The IRF6613PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6613PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6613PbF has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6613PbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	40	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V 9	150	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ©	23	Α
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ®	18	
I _{DM}	Pulsed Drain Current ③	180	
P _D @T _C = 25°C	Power Dissipation ®	89	
P _D @T _A = 25°C	Power Dissipation ®	2.8	
P _D @T _A = 70°C	Power Dissipation ®	1.8	W
E _{AS}	Single Pulse Avalanche Energy 4	200	mJ
AR	Avalanche Current ③	18	А
	Linear Derating Factor ®	0.022	W/°C
T _J	Operating Junction and	-40 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient @ ®		45	
$R_{\theta JA}$	Junction-to-Ambient ⑦⑩	12.5		1
$R_{\theta JA}$	Junction-to-Ambient ® ®	20		°C/W
$R_{\theta JC}$	Junction-to-Case 9 ®		1.4	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		1

Notes ① through ⑩ are on page 2

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	40			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta T_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		38		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.6	3.4	mΩ	V _{GS} = 10V, I _D = 23A ⑤
			3.1	4.1		V _{GS} = 4.5V, I _D = 18A ⑤
$V_{GS(th)}$	Gate Threshold Voltage	1.35		2.25	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-5.8		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 32V, V_{GS} = 0V$
				150		$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	93			S	V _{DS} = 15V, I _D = 18A
Q_g	Total Gate Charge		42	63		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		11.5			$V_{DS} = 20V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		3.3		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		12.6			I _D = 18A
Q_{godr}	Gate Charge Overdrive		14.6			See Fig. 6 and 16
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		15.9			
Q _{oss}	Output Charge		22		nC	$V_{DS} = 16V, V_{GS} = 0V$
t _{d(on)}	Turn-On Delay Time		18			$V_{DD} = 16V, V_{GS} = 4.5V$ §
t _r	Rise Time		47			I _D = 18A
t _{d(off)}	Turn-Off Delay Time		27		ns	Clamped Inductive Load
t _f	Fall Time		4.9			
C _{iss}	Input Capacitance		5950			V _{GS} = 0V
C _{oss}	Output Capacitance		990		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		460			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			110		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			180		integral reverse
	(Body Diode) ③					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 18A$, $V_{GS} = 0V$ ⑤
t _{rr}	Reverse Recovery Time		38	57	ns	$T_J = 25^{\circ}C, I_F = 18A$
Q_{rr}	Reverse Recovery Charge		42	63	nC	di/dt = 100A/μs ⑤

Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- 3 Repetitive rating; pulse width limited by max. junction temperature.
- 4 Starting $T_J = 25$ °C, L = 1.2mH, $R_G = 25\Omega$, $I_{AS} = 18$ A.

- © Surface mounted on 1 in. square Cu board.
- ① Used double sided cooling, mounting pad.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $\ \, \ \, \ \, T_{C}$ measured with thermal couple mounted to top (Drain) of $\,$ part.
- $^{\textcircled{1}}$ R_{θ} is measured at T_J of approximately 90°C.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

IRF6613PbF

International TOR Rectifier

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

Fig 12. On-Resistance Vs. Gate Voltage

Fig 13a. Unclamped Inductive Test Circuit

Fig 13b. Unclamped Inductive Waveforms

Fig 15. Gate Charge Test Circuit www.irf.com

IRF6613PbF

Fig 13c. Maximum Avalanche Energy Vs. Drain Current

Fig 14a. Switching Time Test Circuit

Fig 14b. Switching Time Waveforms

Fig 16. Gate Charge Waveform

Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET™ Substrate and PCB Layout, MT Outline (Medium Size Can, T-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

6 www.irf.com

DirectFET™ Outline Dimension, MT Outline (Medium Size Can, T-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET™ Part Marking

www.irf.com 7

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6613TRPBF). For 1000 parts on 7° reel, order IRF6613TR1PBF

REEL DIMENSIONS									
STANDARD OPTION (QTY 4800)						TR1 OPTION (QTY 1000)			
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

LOADED TAPE FEED DIRECTION

DIMENSIONS								
	ME	TRIC	IMPERIAL					
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0.311	0.319				
В	3.90	4.10	0.154	0.161				
С	11.90	12.30	0.469	0.484				
D	5.45	5.55	0.215	0.219				
E	5.10	5.30	0.201	0.209				
F	6.50	6.70	0.256	0.264				
G	1.50	N.C	0.059	N.C				
Н	1.50	1.60	0.059	0.063				

Data and specifications subject to change without notice.

This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.