Riemann surfaces

A complex analytic manifold X of dimension one is called a Riemann surface. If X is non-compact one refers to an open Riemann surface, while X is a closed Riemann surface if it is compact. The study of open, respectively closed Riemann surface leads to different results. When X is closed the maximum principle for analytic functions entails that the space $\mathcal{O}(X)$ of globally defined holomorphic functions is reduced to constant function. For an open Riemann surface X the situation is quite different. For example, let $\{p_{\nu}\}$ be a discrete sequence of points on X and $\{k_{\nu}\}$ a sequence of positive integers then there exists $f \in \mathcal{O}(X)$ which is zero-free outside the p-points, and for every ν it has a zero of order k_{ν} at p_{ν} Moreover the Cousin problem has a solution for every pair of open sets U, V whose union is equal to X. It means that for every $\phi \in \mathcal{O}(U \cap V)$ there exist $a \in \mathcal{O}(U)$ and $b \in \mathcal{O}(V)$ such that the restriction of a-b to $U \cap V$ is equal to ϕ . When X is a compact Riemann surface the obstruction to solutions of the Cousin problem for a pair of open sets U, V whose union is X turns put to be described by a q-dimensional complex vector space where q is the genus of X. We treat the compact case in \S x while open Riemann surfaces are studied in \S xx. Closed Riemann surfaces arise via algebraic equations. Namely, let $\mathbf{C}[x,y]$ be the polynomial ring of two variables with complex coefficients. To each irreducible polynomial p(x,y) we get the algebraic curve in \mathbb{C}^2 defined by $\{p=0\}$ and let us denote it by S. Assume that p is moniic with respect to y, i.e.

$$p(x,y) = y^m + q_{m-1}(x)y^{m-1} + \ldots + q_0(x)$$

where no special assumption is imposed on the q-polynomials except for the condition that p(x,y) is an irredicuble polynomial. Geberal residue calculus - which actually is valid for algebraic hypersurfaces in \mathbb{C}^n for every $n \geq 2$ asserts that there exists a $\bar{\partial}$ -closed current of bi-degree (1,0)define dfor test-forms $\psi^{0,1}$ in the 4-dimensional space attached to \mathbb{C}^2 and defined by

$$\psi^{0,1} \mapsto \int_S \frac{dx}{P'_y} \wedge \psi^{0,1}$$

Above S is an algebraic curve in \mathbb{C}^2 and we remark that the $\bar{\partial}$ -closed current excises in general, i.e. even when S contains singular points. However, via a clöassic local contraction due to Puiseue there exists normalization of S which yields a non-singular curve \hat{S} and a map $\rho: \hat{S} \to S$. Passing to the proactive closure one can also construct local charts in the sense of Puiseux and in this way arrive at a closed Riemann surface X for this one has a map $\rho: X \to \bar{S}$ which in many cases isda homoeomorphiusm but in certain examples it appears that for a finite set of points in S the inverse finger $\rho^{-1}(s)$ is a finite set in X. However, in all cases the current (*) yields via a pull-back to X s $\bar{\partial}$ -closed differential form with therefore is called a holomorphic form. The whole space of holographic 1-forms on X is denoted by $\Omega(X)$. We shall learn that it is a finite dimensional complex vector spec whose dimension is equal mto the genus of X. To find a basis for $\Omega(X)$ one must study under what conditions the special holomorphic 1-form extends to be holomorphic at points in X which belong to $\rho^{-1}(\partial S)$. Here one encounters typical calculations during the study of closed Riemann surfaces.

An example. Consider the case

$$p(x,y) = y^2 - q(x)$$

where q(x) is a polynomial on x only and of some odd degree 2m+1 with $m \ge 1$. Here we shall learn that y extends to a meromorphic function oin X with a pole of order 2m+1 at the point at infinity, while x has a pole of order 2. Dfrom this it follows that the meromorphic differential dxhas a pole of order 3 at infinity and at the same time y^{-1} has a zero of order 2m + 1. It follows that $\frac{dx}{y}$ remains holographic at the point at infinity. If $m \ge 2$ one gets more holomorphic 1-forms on X using

$$\omega_{\nu} = x^{\nu} \cdot \frac{dx}{y}$$

where the condition is that

$$2\nu \le 2m + 1 - 3 \implies \nu \le m - 1$$

From this it follows that the g=m. Consider s an example the case m=2 and we the polynomials q(x) of the form

$$q(x) = \prod (x - \alpha_{\nu})$$

where $\alpha_1, \ldots, \alpha_5$ are distinct complex numbers. So to every such q-polynomial we arrive at a closed Riemann surface of genus two. with we denote by $X(\alpha_1, \ldots, \alpha_5)$ Now one enuoviuner a typical modality problem, i.e decide when a pair of such closed Riemann surfaces are isomorphic. We shall find that the answer is highly non-trivial.