

# CO2-Emissionen und der europäische Aktienmarkt: Achten die Investoren auf das CO2-Risiko?



Aleksandra Petrenko 17.12.2024





- Motivation
- Forschungsfragen
- Literaturübersicht
- Rohdatenübersicht
- Datenaufbereitung
- Regressionsanalyse
- Ergebnisse





#### Schlüsselfaktoren für nachhaltiges Investieren:

- Langfristige finanzielle Leistung
- Entwicklung neuer CO2-effizienter Industrien
- Gesetzlicher, sozialer und Reputationsdruck



Frage 1

 Welche finanziellen Determinanten beeinflussen die CO2-Emissionen auf dem europäischen Markt?

Frage 2

 Gibt es, unter Berücksichtigung verschiedener bekannter Faktoren, einen Einfluss der CO2-Emissionen auf die Aktienrenditen auf dem europäischen Markt?



| Variable           | Definition                                                                                                                                       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Scope-1-Emissionen | Direkte CO2-Emissionen von der Produktion                                                                                                        |
| Scope-2-Emissionen | Indirekte CO2-Emissionen aus der Erzeugung von gekauften Wärme,<br>Dampf und Strom, die vom Unternehmen verbraucht werden                        |
| Scope-3-Emissionen | Sonstige indirekte Emissionen aus der Produktion von eingekauften Materialien, der Produktnutzung, der Abfallentsorgung, Outsourcing-Aktivitäten |
| Renditen           | Monatliche und jährliche kontinuierliche Renditen                                                                                                |



- Literaturanalyse mithilfe der SCOPUS-Datenbank und der E-Library von der Universität Passau
- Datenimport aus der Refinitiv-Datastream-Datenbank mithilfe des Excel-Add-Ins
- Datenaufbereitung und Variablenberechnung in R
- Paneldatenanalyse in R



#### Literaturauswahl



- **Zeitraum**: 2020 2024
- Quellen: SCOPUS-Datenbank, "Schneeballsuche"
- Thema: CO2-Emissionen und ihr Einfluss auf die Aktienrenditen
- Schlüsselwörter: "carbon", "emissions", "stock", "returns", "green", "brown", und ihre Kombinationen
- Zeitschriften: Klasse A+ und A des VHB-Ratings
- => 9 hochqualitative Paper



# Zusammenfassung der Literatur



| Author(on)                               | Stich | Stich-       | Methode                    | CO2-Effekt auf Aktienrenditen (unter den unten aufgeführter Bedingungen) |                                                         |                                |  |
|------------------------------------------|-------|--------------|----------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|--|
| Author(en)                               | Jahr  | probe        | Wethode                    | Höhere Renditen bei grünen Unternehmen                                   | Höhere Renditen bei braunen Unternehmen                 | Kein Effekt                    |  |
| Choi et al.                              | 2020  | 74<br>Länder | Panelregression            | Bei ungewöhnlich warmem Wetter                                           | -                                                       | -                              |  |
| Alessi et al.                            | 2021  | STOXX        | Lineare<br>Faktorenmodelle | Beim Klimastress                                                         | Normalerweise,<br>zusammen mit der<br>Umwelttransparenz | -                              |  |
| Pedersen et al.                          | 2021  | US           | Lineare<br>Faktorenmodelle | Nur auf dem 10%-<br>Signifikanzniveau                                    | -                                                       | -                              |  |
| Basic paper:<br>Bolton and<br>Kacperczyk | 2021  | US           | Panelregression            | -                                                                        | Für Niveau- und Wachstumsraten- variablen               | Für die<br>Emissionsintensität |  |
| Pástor et al.                            | 2022  | US           | Panelregression            | Wenn die Sorgen über den Klimawandel zunehmenhen                         | Unter der<br>Berücksichtigung der<br>erwarteten Rendite | -                              |  |
| Ardia et al.                             | 2023  | S&P<br>500   | Panel-regression           | Wenn die Sorgen über den Klimawandel unerwartet zunehmen                 | -                                                       | -                              |  |

# Zusammenfassung der Literatur



|                                 |      |                      |                                                          | CO2-Effekt auf Aktienrer                                                                                           | nditen (unter den unter                        | aufgeführten Bedingungen)                                                                                                                                                                                      |
|---------------------------------|------|----------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author<br>(-en)                 | Jahr | Stich-<br>probe      | Methode                                                  | Höhere Renditen bei grünen<br>Unternehmen                                                                          | Höhere Renditen bei<br>braunen<br>Unternehmen  | Kein Effekt                                                                                                                                                                                                    |
| Bolton<br>and<br>Kacper<br>czyk | 2023 | 77<br>Länder         | Panel-<br>regression                                     | -                                                                                                                  | Für Niveau- und<br>Wachstumsratenvaria<br>blen | -                                                                                                                                                                                                              |
| Aswani<br>et al.                | 2024 | USA,<br>Europa       | Panel-<br>regression                                     | -                                                                                                                  | -                                              | Bei Verwendung von 1) den von<br>den Unternehmen tatsächlich<br>offengelegten und nicht von den<br>Anbietern geschätzten Emissionen<br>und 2) der Emissionsintensität und<br>nicht der unskalierten Emissionen |
| Zhang                           | 2024 | USA,<br>79<br>Länder | Panel-<br>regression,<br>lineare<br>Faktoren-<br>modelle | In den USA, unter Berücksichtigung der Verzögerung bei der Veröffentlichung von Informationen (schwache Beziehung) |                                                | Für andere Länder, die die<br>Verzögerung bei der Ver-<br>öffentlichung von Informationen<br>berücksichtigen                                                                                                   |

#### Stichprobenauswahl



- Top 5% Perzentil der Marktkapitalisierung
- Börsen-, Gründungs- und Hauptsitzland Europa, außer Russland und Ukraine
- Zeitraum 01.01.2010 31.12.2023 mit monatlichen und jährlichen Intervallen (2 Datensätze)
- Jährliche Variablen im monatlichen Datensatz werden 12-x wiederholt



# Übersicht der Stichprobe





- Insgesamt 427 Unternehmen
- **Top 3 Industrien** (Thomson Reuters Business Classification (TRBC) Industrie Group Name): "Banking Services" (49), "Machinery, Tools, Heavy Vehicles, Trains & Ships" (29), "Insurance" (23).
- Top 3 Länder: UK (68), Deutschland (58), Frankreich (52)

#### Rohdaten



| Index    | Name                                                                             | Frequenz  | Maß           |
|----------|----------------------------------------------------------------------------------|-----------|---------------|
| SCOPE_1  | Emissionen - Scope 1                                                             | jährlich  | Tonnen        |
| SCOPE_2  | Emissionen - Scope 2                                                             | jährlich  | Tonnen        |
| SCOPE_3  | Emissionen - Scope 3                                                             | jährlich  | Tonnen        |
| RI       | Total Return Index                                                               | monatlich | USD           |
| SIZE     | Marktkapitalisierung                                                             | monatlich | Millionen USD |
| M/B      | Marktwert-Buchwert-Verhältnis                                                    | monatlich | -             |
| ROE      | Eigenkapitalrendite                                                              | jährlich  | %             |
| LEVERAGE | Verschuldungsgrad, definiert als der Buchwert der Schulden geteilt durch den     | jährlich  | -             |
|          | Buchwert der Vermögenswerte                                                      |           |               |
| CAPEX    | Investitionen (CAPEX)                                                            | monatlich | USD           |
| ASSETS   | Buchwert der Vermögenswerte                                                      | monatlich | USD           |
| PPE      | Plant, Property and Equipment                                                    | monatlich | USD           |
| REVENUE  | Einnahmen                                                                        | monatlich | USD           |
| EPS      | Gewinn je Aktie                                                                  | monatlich | USD           |
| PRICE    | Aktienpreis                                                                      | monatlich | USD           |
| BETA     | Betakoeffizient des Capital-Asset-Pricing-Models (CAPM)                          | jährlich  | -             |
| VOLAT    | Volatilität, definiert als die Standardabweichung der Renditen basierend auf den | jährlich  | %             |
|          | letzten 12 Monaten von monatlichen Renditen                                      |           |               |



| Index          | Name                                                            | Formel                             | Winsorizing                      |
|----------------|-----------------------------------------------------------------|------------------------------------|----------------------------------|
| RET            | Kontinuierliche Renditen                                        | $\ln \frac{RI_t}{RI_{t-1}}$        | 7.5%                             |
| LOGSCOPE_N     | Natürlicher Logarithmus von Scope-N-Emissionen                  | $ \ln \frac{SCOPE_1(2)}{12} $      | Scope 1, 2 – 1%,<br>Scope 3 – 0% |
| del_SCOPE_N    | Absolute Veränderung in Scope N Emissionen                      | $SCOPE\_N_t - SCOPE\_N_{t-1}$      | 1%                               |
| LOGINT_SCOPE_N | Natürlicher Logarithmus von Scope N Emissionsintensität         | $ \ln \frac{SCOPE_N/12}{REVENUE} $ | Scope 1, 2 – 1%,<br>Scope 3 – 0% |
| LAG_LOGSCOPE_N | Natürlicher Logarithmus von Scope-N-Emissionen vom letzten Jahr | $ \ln \frac{SCOPE\_N_{t-12}}{12} $ | Scope 1, 2 – 1%,<br>Scope 3 – 0% |

# Kontrolvariablen (I)



| Index           | Name                                      | Formel                         | Winsorizing |
|-----------------|-------------------------------------------|--------------------------------|-------------|
| LOGSIZE         | Natürlicher Logarithmus von der           | $\ln(SIZE \times 1\ 000\ 000)$ | -           |
|                 | Marktkapitalisierung                      |                                |             |
| B_to_M          | Buchwert-Marktwert-Verhältnis             | 1                              | 3%          |
|                 |                                           | $\overline{M\_to\_B}$          |             |
| ROE             | Eigenkapitalrendite                       | ROE / 100                      | 1%          |
| LEVERAGE        | Verschuldungsgrad, definiert als der      | -                              | 1%          |
|                 | Buchwert der Schulden geteilt durch den   |                                |             |
|                 | Buchwert der Vermögenswerte               |                                |             |
| LOG_INVEST_to_A | Natürlicher Logarithmus der Investitionen | CAPEX                          | 1%          |
|                 | normalisiert durch den Buchwert der       | $ \ln \frac{CAPEX}{ASSETS} $   |             |
|                 | Vermögenswerte                            |                                |             |
| LOGPPE          | Natürlicher Logarithmus vom Wert des      | ln <i>PPE</i>                  | -           |
|                 | Plant, Property and Equipments            |                                |             |

# Kontrolvariablen (II)



| Index        | Name                                              | Formel                      | Winsorizing |
|--------------|---------------------------------------------------|-----------------------------|-------------|
| BETA         | Betakoeffizient des Capital-Asset-Pricing-        | -                           | 2.5%        |
|              | Models (CAPM)                                     |                             |             |
| VOLAT        | Volatilität, definiert als die Standardabweichung | <i>VOLAT /</i> 100          | 2.5%        |
|              | der Renditen basierend auf den letzten 12         |                             |             |
|              | Monaten von monatlichen Renditen                  |                             |             |
| SALESGR      | Wachstumsrate der Einnahmen                       | $REVENUE_t - REVENUE_{t-1}$ | 1%          |
|              |                                                   | $REVENUE_{t-1}$             |             |
| <b>EPSGR</b> | Wachstumsrate des Gewinns je Aktie                | $EPS_t - EPS_{t-1}$         | 1%          |
|              |                                                   | PRICE                       |             |
| MOM          | Der Durchschnitt der Renditen der letzten 12      | $\sum_{i=1}^{12} RET_{t-i}$ | 1%          |
|              | Monate, einschließlich des Monats $t-1$           | $\frac{2\iota-1}{12}$       |             |

# Deskriptive Statistiken (I)



|                | Vollstän- |           |           |             |          |         |          |            |      |
|----------------|-----------|-----------|-----------|-------------|----------|---------|----------|------------|------|
| Variable       | digkeit   | MitWt     | StAb      | Min         | Q1       | Q2      | Q3       | Max        | Hist |
| RET            | 0,90      | 0,01      | 0,07      | -0,12       | -0,04    | 0,01    | 0,06     | 0,12       |      |
| LOGSCOPE_1     | 0,70      | 8,88      | 3,15      | 1,12        | 6,85     | 8,66    | 10,80    | 16,08      |      |
| LOGSCOPE_2     | 0,70      | 9,01      | 2,26      | 2,10        | 7,72     | 9,16    | 10,49    | 13,63      |      |
| LOGSCOPE_3     | 0,59      | 10,47     | 3,45      | -0,18       | 7,82     | 10,28   | 13,24    | 18,56      |      |
| del_SCOPE_1    | 0,63      | -10990,44 | 97497,72  | -708333,33  | -761,58  | -21,08  | 250,00   | 316666,67  |      |
| del_SCOPE_2    | 0,63      | -2365,48  | 18694,42  | -116644,42  | -1800,00 | -121,25 | 282,58   | 66666,67   |      |
| del_SCOPE_3    | 0,50      | 65383,25  | 784656,10 | -3220587,42 | -1750,00 | 59,92   | 10000,00 | 4952272,42 | _    |
| LOGINT_SCOPE_1 | 0,70      | -14,28    | 2,61      | -20,60      | -16,20   | -14,38  | -12,66   | -8,24      |      |
| LOGINT_SCOPE_2 | 0,70      | -14,15    | 1,82      | -19,91      | -15,09   | -14,06  | -13,02   | -10,13     |      |
| LOGINT_SCOPE_3 | 0,59      | -12,77    | 3,00      | -21,57      | -15,30   | -12,67  | -10,22   | -5,62      | _=22 |
| LAG_LOGSCOPE_1 | 0,67      | 8,91      | 3,15      | 1,23        | 6,86     | 8,69    | 10,83    | 16,09      |      |
| LAG_LOGSCOPE_2 | 0,66      | 9,05      | 2,25      | 2,17        | 7,75     | 9,19    | 10,52    | 13,67      | 88-  |
| LAG_LOGSCOPE_3 | 0,55      | 10,41     | 3,46      | -0,18       | 7,75     | 10,16   | 13,17    | 18,56      |      |

# Deskriptive Statistiken (II)



| Variable        | Vollstän-<br>digkeit | MitWt | StAb  | Min   | Q1    | Q2    | Q3    | Max   | Hist |
|-----------------|----------------------|-------|-------|-------|-------|-------|-------|-------|------|
| LOGSIZE         | 0,91                 | 23,22 | 1,35  | 13,24 | 22,55 | 23,23 | 24,03 | 26,90 |      |
| B_to_M          | 0,89                 | 0,65  | 0,52  | 0,08  | 0,27  | 0,49  | 0,89  | 2,27  |      |
| ROE             | 0,92                 | 0,15  | 0,16  | -0,42 | 0,07  | 0,13  | 0,21  | 0,82  |      |
| LEVERAGE        | 0,93                 | 24,56 | 15,23 | 0,00  | 13,16 | 23,32 | 34,75 | 63,65 |      |
| LOG_INVEST_to_A | 0,90                 | -4,30 | 1,70  | -9,21 | -4,97 | -3,76 | -3,11 | -2,05 |      |
| LOGPPE          | 0,93                 | 21,45 | 2,06  | 11,95 | 20,17 | 21,63 | 23,01 | 26,37 |      |
| ВЕТА            | 0,91                 | 0,99  | 0,45  | 0,17  | 0,67  | 0,96  | 1,27  | 2,06  |      |
| VOLAT           | 0,86                 | 0,23  | 0,07  | 0,13  | 0,18  | 0,22  | 0,27  | 0,41  |      |
| SALESGR         | 0,89                 | 0,00  | 0,05  | -0,22 | -0,01 | 0,00  | 0,01  | 0,25  |      |
| EPSGR           | 0,89                 | 0,00  | 0,01  | -0,05 | 0,00  | 0,00  | 0,00  | 0,05  |      |
| MOM             | 0,83                 | 0,01  | 0,02  | -0,07 | -0,01 | 0,01  | 0,02  | 0,07  | 86   |

#### Panelregression - Fixed-Effects-Modell



$$y_{it} = \alpha + X'_{it}\beta + u_{it}, i = 1, ..., N, t = 1, ..., T$$

i – Individuendimension t - Zeitdimension,  $y_{it}$  - abhängige Variable,  $\alpha$  – Skalar,  $X'_{it}$  - Vektor von K Beobachtungen für,  $\beta$  – a  $K \times 1$  Vektor der Koeffizienten für jede beobachtete Variable,  $u_{it}$  - Fehlerterm. Der **Fehlerterm** ist definiert als die Summe von den **nicht-beobachtbaren Individuenspezifischen und Zeitspezifischen Effekten** und der **Reststörung**:

$$u_{it} = \mu_i + \lambda_t + v_{it}$$

#### Panelregression – Umsetzung in R



Wir schätzen eine **OLS Regression mit Dummy Variablen (LSDV)** und führen **fixe Effekte** für folgende Parameter ein:

- Jahr
- Monat
- Industrie
- Land



#### Panelregression - Gleichungen



Folgende Gleichungen werden geschätzt:

$$CO2.SCOPE.N_{i,t} = \beta_0 + \beta_1 Determinants_{i,t} + \beta_2 (Industrie_{i,t} + Land_{i,t}) + \epsilon_{i,t}$$

$$RET_{j\ddot{a}hrlich\ i,t} = \beta_0 + \beta_1 CO2.SCOPE.N_{i,t} + \beta_2 Controls_{i,t} + \beta_3 \big(Industrie_{i,t} + Land_{i,t}\big) + \epsilon_{i,t}$$

RET<sub>monatlich</sub> i,t

$$=\beta_0+\beta_1CO2.SCOPE.N_{i,t}+\beta_2Controls_{i,t}+\beta_3\big(Industrie_{i,t}+Land_{i,t}+Jahr_{i,t}+Monat_{i,t}\big)+\epsilon_{i,t}$$





**Unterschiedliche Datenfrequenz:** Monatliche und jährliche Daten =>

**keine Varianz** innerhalb eines Jahres => führt zu **falschen Korrelationen**.

#### Lösung:

- Zeitdummyvariablen für einen monatlichen Regressand (RET) und jährliche Regressoren: Feste Effekte für Jahre und Monate, um die Saisonalität zu widerspiegeln
- Datenaggregation auf Jahresebene

#### Korrelationsmatrix (monatlich)



#### Correlation Matrix



#### Korrelationsmatrix (jährlich)



#### Correlation Matrix





| Multikollinearit                               | ät Autoko                           | orrelation             | Heteroskedastizität                                                                           |
|------------------------------------------------|-------------------------------------|------------------------|-----------------------------------------------------------------------------------------------|
| Generalized Variance Index (GVIF)              | nflation Ljung-                     | Box-Test               | Breusch-Pagan-Test                                                                            |
| $GVIF = \frac{detR_{in} \times det}{detR}$     | $R_{\text{out}}$                    | n(n+2) *               | $BP = \frac{n}{2}R^2$                                                                         |
| $detR$ $GVIF^{1/2Df} > 3 \text{ deutet au}$    | k=1                                 | $-k)^{-1}\hat{r}_k^2,$ | <ul><li>R<sup>2</sup> - Bestimmtheitsmaß aus der</li><li>Regression der quadrierten</li></ul> |
| Multikollinearität hin                         | H0: Keine Auto                      | korrelation            | Residuen auf die Regressoren                                                                  |
| Ergebnis: Variablen in all Modellen unter 3.17 | len Ergebnis: Autol<br>jedem Modell | korrelation in         | H0: Residuen sind homoskedastisch                                                             |
|                                                |                                     |                        | Ergebnis: Heteroskedastizität in jedem Modell                                                 |

Umsetzung in R: Eingebaute GVIF-Funktion für jedes Regressionsmodell + eine **Benutzerfuktion**, die die Tests durchführt und ggf. eine robuste Kovarianzmatrix bei Regressionsergebnissen ausgibt

# Ergebnisse: CO2 Determinanten (I)



| Variable                | LOGSCOPE_1                | LOGSCOPE_2                | LOGSCOPE_3                |
|-------------------------|---------------------------|---------------------------|---------------------------|
| (Intercept)             | -10.159*** (p = 0.000)    | -6.582*** (p = 0.000)     | -14.924*** (p = 0.000)    |
| LOGSIZE                 | 0.101** (p = 0.007)       | $0.150^{***} (p = 0.000)$ | $0.489^{***} (p = 0.000)$ |
| B_to_M                  | $0.461^{***} (p = 0.000)$ | $0.190^{**} (p = 0.005)$  | 0.129 (p = 0.337)         |
| ROE                     | -0.187 (p = 0.210)        | -0.340* (p = 0.017)       | -0.429 (p = 0.125)        |
| LEVERAGE                | -0.013*** (p = 0.000)     | 0.000 (p = 0.890)         | -0.001 (p = 0.837)        |
| LOG_INVEST_to_A         | -0.007 (p = 0.818)        | $0.150^{***} (p = 0.000)$ | -0.304*** (p = 0.000)     |
| LOGPPE                  | 0.912*** (p = 0.000)      | $0.729^{***} (p = 0.000)$ | $0.713^{***} (p = 0.000)$ |
| SALESGR                 | -0.152* (p = 0.045)       | -0.112 (p = 0.122)        | 0.219 (p = 0.121)         |
| EPSGR                   | 0.335 (p = 0.415)         | 0.479 (p = 0.224)         | 0.803 (p = 0.294)         |
| Industrie, Land FE      | Ja                        | Ja                        | Ja                        |
| Autokorrelation,        | Ja                        | Ja                        | Ja                        |
| Heteroskedastizität     |                           |                           |                           |
| Adjusted R <sup>2</sup> | 0.8593                    | 0.7449                    | 0.6457                    |

# Ergebnisse: CO2 Determinanten (II)



| Variable                | del_SCOPE_1                | del_SCOPE_2               | del_SCOPE_3                |
|-------------------------|----------------------------|---------------------------|----------------------------|
| (Intercept)             | 2372691.054*** (p = 0.000) | 462069.728*** (p = 0.000) | -10375546.850. (p = 0.065) |
| LOGSIZE                 | -66895.816. (p = 0.069)    | -4254.806 (p = 0.566)     | 327685.022 (p = 0.366)     |
| B_to_M                  | -63208.742 (p = 0.363)     | -9874.342 (p = 0.482)     | 161585.295 (p = 0.813)     |
| ROE                     | 87408.060 (p = 0.542)      | -31434.234 (p = 0.279)    | -153136.347 (p = 0.914)    |
| LEVERAGE                | 4485.029* (p = 0.013)      | 287.899 (p = 0.432)       | 5202.432 (p = 0.773)       |
| LOG_INVEST_to_A         | 19026.369 (p = 0.523)      | 9603.090 (p = 0.111)      | -314387.458 (p = 0.267)    |
| LOGPPE                  | -21722.238 (p = 0.450)     | -12658.741* (p = 0.029)   | 218329.597 (p = 0.450)     |
| SALESGR                 | 564802.566*** (p = 0.000)  | 82324.889*** (p = 0.000)  | 4021180.155*** (p = 0.000) |
| EPSGR                   | 719374.017. (p = 0.070)    | 142597.914. (p = 0.076)   | 6910209.350. (p = 0.072)   |
| Industrie, Land FE      | Ja                         | Ja                        | Ja                         |
| Autokorrelation,        | Ja                         | Ja                        | Ja                         |
| Heteroskedastizität     | 0.4505                     | 0.00444                   | 0.0000                     |
| Adjusted R <sup>2</sup> | 0.1505                     | 0.06414                   | 0.00928                    |

# Ergebnisse: CO2 Determinanten (III)



| Variable                | LOGINT_SCOPE_1            | LOGINT_del_SCOPE_2        | LOGINT_del_SCOPE_3        |
|-------------------------|---------------------------|---------------------------|---------------------------|
| (Intercept)             | -13.030*** (p = 0.000)    | -13.054*** (p = 0.000)    | -17.745*** (p = 0.000)    |
| LOGSIZE                 | -0.319*** (p = 0.000)     | -0.309*** (p = 0.000)     | 0.049 (p = 0.488)         |
| B_to_M                  | 0.092 (p = 0.165)         | 0.096 (p = 0.145)         | -0.266* (p = 0.047)       |
| ROE                     | -0.091 (p = 0.507)        | -0.094 (p = 0.494)        | -0.224 (p = 0.422)        |
| LEVERAGE                | -0.006** (p = 0.001)      | -0.005** (p = 0.002)      | 0.005 (p = 0.120)         |
| LOG_INVEST_to_A         | $0.134^{***} (p = 0.000)$ | $0.140^{***} (p = 0.000)$ | -0.165** (p = 0.003)      |
| LOGPPE                  | $0.460^{***} (p = 0.000)$ | $0.452^{***} (p = 0.000)$ | $0.273^{***} (p = 0.000)$ |
| SALESGR                 | -0.413*** (p = 0.000)     | -0.418*** (p = 0.000)     | -0.042 (p = 0.767)        |
| EPSGR                   | 0.645. (p = 0.089)        | 0.679. (p = 0.074)        | 0.978 (p = 0.202)         |
| Industrie, Land FE      | Ja                        | Ja                        | Ja                        |
| Autokorrelation,        | Ja                        | Ja                        | Ja                        |
| Heteroskedastizität     |                           |                           |                           |
| Adjusted R <sup>2</sup> | 0.8248                    | 0.8254                    | 0.5248                    |

#### CO2 Determinanten: Interpretation (I)



- Veränderungen der Emissionen stehen in positivem Zusammenhang mit Umsatzwachstum. Höheres Umsatzwachstum führt jedoch zu geringerer Emissionsintensität (außer bei Scope 3). Derselbe Trend gilt für die Unternehmensgröße: Größere Unternehmen erzeugen mehr Emissionen, aber ihre Emissionsintensität ist geringer. Unternehmen mit höherem PPE erzeugen mehr Emissionen. Ein steigender B/M ist mit höheren direkten Emissionen (Scope 1 und 2), aber geringerer Scope-3-Intensität verbunden.
- Zusammenfassend lässt sich sagen, dass größere Unternehmen mit bedeutendem Vermögen tendenziell mehr Emissionen erzeugen, aber in Bezug auf ihre Produktion und Lieferketten CO2-effizienter sind.



#### CO2 Determinanten: Interpretation (II)



- Unternehmen, die aktiv in ihr Geschäft reinvestieren, erzeugen mehr Scope-1- und 2-Emissionen, reduzieren jedoch Scope-3-Emissionen, was auf eine zunehmende Konzentration auf die Umweltaktivitäten ihrer Lieferkettenanbieter hindeutet.
- Das Wachstum des Gewinns pro Aktie hat keinen Einfluss auf die Emissionen. Veränderungen der Emissionen haben meist keinen Bezug zu Finanzindikatoren.
- Die **Industrie** spielt eine wichtige Rolle bei der Bestimmung aller Arten von Emissionen, während **länderspezifische** Faktoren die Scope-1- und 2-Emissionen erheblich **beeinflussen**. Der Interzept ist signifikant positiv bei Emissionsdifferenzen und negativ bei Niveaus und Emissionsintensitäten.



# Ergebnisse: Jährliche Renditen (I)



| Variable                  | LOGSCOPE_1                   | LOGSCOPE_2                | LOGSCOPE_3                | del_SCOPE_1               | del_SCOPE_2                  | del_SCOPE_3                |
|---------------------------|------------------------------|---------------------------|---------------------------|---------------------------|------------------------------|----------------------------|
| (Intercept)               | -0.500*** (p = 0.000)        | -0.477*** (p = 0.000)     | -0.501*** (p = 0.000)     | -0.525**** (p = 0.000)    | -0.565*** (p = 0.000)        | -0.513*** (p = 0.000)      |
| CO2                       | -0.002 (p = 0.427)           | 0.000 (p = 0.978)         | -0.005* (p = 0.012)       | 0.000. (p = 0.064)        | 0.000* (p = 0.022)           | 0.000 (p = 0.114)          |
| LOGSIZE                   | $0.039^{***} (p = 0.000)$    | $0.038^{***} (p = 0.000)$ | $0.046^{***} (p = 0.000)$ | $0.043^{***} (p = 0.000)$ | $0.043^{***} (p = 0.000)$    | $0.050^{***} (p = 0.000)$  |
| B_to_M                    | -0.129*** (p = 0.000)        | -0.131*** (p = 0.000)     | -0.115**** (p = 0.000)    | -0.124*** (p = 0.000)     | -0.124*** (p = 0.000)        | $-0.110^{***} (p = 0.000)$ |
| LEVERAGE                  | -0.001*(p = 0.031)           | -0.001* (p = 0.042)       | -0.001. (p = 0.073)       | -0.001 (p = 0.134)        | -0.001 (p = 0.130)           | -0.001. (p = 0.081)        |
| LOG_INVEST_to _A          | -0.002 (p = 0.663)           | -0.003 (p = 0.542)        | -0.003 (p = 0.648)        | -0.002 (p = 0.666)        | -0.003 (p = 0.600)           | 0.000 (p = 0.936)          |
| ROE                       | 0.066* (p = 0.015)           | $0.060^*$ (p = $0.028$ )  | 0.059* (p = 0.044)        | $0.065^*$ (p = $0.018$ )  | 0.066* (p = 0.016)           | 0.056. (p = 0.066)         |
| LOGPPE                    | -0.015* (p = 0.013)          | -0.016** (p = 0.005)      | -0.019** (p = 0.001)      | -0.019** (p = 0.001)      | -0.018** (p = 0.001)         | -0.025*** (p = 0.000)      |
| BETA                      | -0.015 (p = 0.256)           | -0.015 (p = 0.257)        | -0.006 (p = 0.702)        | -0.019 (p = 0.178)        | -0.020 (p = 0.146)           | -0.006 (p = 0.700)         |
| VOLAT                     | $0.539^{***} (p = 0.000)$    | $0.524^{***} (p = 0.000)$ | $0.441^{***} (p = 0.000)$ | $0.543^{***} (p = 0.000)$ | $0.555^{***}$ (p = $0.000$ ) | $0.450^{***} (p = 0.000)$  |
| SALESGR                   | 0.129*** (p = 0.000)         | 0.131*** (p = 0.000)      | 0.127*** (p = 0.000)      | $0.134^{***} (p = 0.000)$ | 0.131*** (p = 0.000)         | 0.127*** (p = 0.000)       |
| EPSGR                     | $0.424^{***}$ (p = $0.000$ ) | $0.434^{***} (p = 0.000)$ | $0.426^{***} (p = 0.000)$ | $0.428^{***} (p = 0.000)$ | $0.440^{***} (p = 0.000)$    | $0.411^{***} (p = 0.000)$  |
| Industrie, Land<br>FE     | Ja                           | Ja                        | Ja                        | Ja                        | Ja                           | Ja                         |
| Autokorr.,<br>Heterosked. | Ja                           | Ja                        | Ja                        | Ja                        | Ja                           | Ja                         |
| Adjusted R <sup>2</sup>   | 0.1349                       | 0.1337                    | 0.1245                    | 0.136                     | 0.1346                       | 0.1263                     |

# Ergebnisse: Jährliche Renditen (II)



| Variable                  | LOGINT_<br>SCOPE_1        | LOGINT_<br>SCOPE_2        | LOGINT_<br>SCOPE_3        | LAG_LOG<br>SCOPE_1        | LAG_LOG<br>SCOPE_2        | LAG_LOG<br>SCOPE_3         |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|
| <b>&gt;</b>               | SC                        | SC                        | SC                        | LA                        | LA                        | SC                         |
| (Intercept)               | -0.413** (p = 0.001)      | -0.401** (p = 0.001)      | -0.480*** (p = 0.000)     | -0.538*** (p = 0.000)     | -0.549*** (p = 0.000)     | -0.616*** (p = 0.000)      |
| CO2                       | 0.005 (p = 0.133)         | 0.008* (p = 0.020)        | -0.002 (p = 0.221)        | -0.001 (p = 0.823)        | 0.002 (p = 0.566)         | -0.005* (p = 0.013)        |
| LOGSIZE                   | $0.041^{***} (p = 0.000)$ | $0.040^{***} (p = 0.000)$ | $0.044^{***} (p = 0.000)$ | $0.044^{***} (p = 0.000)$ | $0.043^{***} (p = 0.000)$ | $0.054^{***} (p = 0.000)$  |
| B_to_M                    | -0.131*** (p = 0.000)     | -0.130*** (p = 0.000)     | -0.117*** (p = 0.000)     | -0.117*** (p = 0.000)     | -0.118*** (p = 0.000)     | -0.105*** (p = 0.000)      |
| LEVERAGE                  | -0.001* (p = 0.043)       | -0.001* (p = 0.029)       | -0.001. (p = 0.078)       | -0.001. (p = 0.086)       | -0.001 (p = 0.111)        | -0.001 (p = 0.136)         |
| LOG_INVEST_to_<br>A       | -0.003 (p = 0.561)        | -0.006 (p = 0.294)        | -0.002 (p = 0.738)        | -0.004 (p = 0.504)        | -0.004 (p = 0.489)        | -0.004 (p = 0.522)         |
| ROE                       | 0.065* (p = 0.016)        | $0.060^*$ (p = $0.026$ )  | 0.059* (p = 0.043)        | $0.071^{**} (p = 0.007)$  | $0.073^{**} (p = 0.006)$  | 0.066* (p = 0.023)         |
| LOGPPE                    | -0.019*** (p = 0.000)     | -0.018** (p = 0.001)      | -0.022*** (p = 0.000)     | -0.019** (p = 0.001)      | -0.019** (p = 0.001)      | $-0.022^{***}$ (p = 0.000) |
| BETA                      | -0.015 (p = 0.261)        | -0.013 (p = 0.323)        | -0.007 (p = 0.630)        | -0.009 (p = 0.512)        | -0.012 (p = 0.353)        | 0.000 (p = 0.993)          |
| VOLAT                     | $0.536^{***} (p = 0.000)$ | $0.514^{***} (p = 0.000)$ | $0.453^{***} (p = 0.000)$ | $0.480^{***} (p = 0.000)$ | $0.493^{***} (p = 0.000)$ | $0.402^{***} (p = 0.000)$  |
| SALESGR                   | $0.130^{***} (p = 0.000)$ | $0.133^{***} (p = 0.000)$ | $0.124^{***} (p = 0.000)$ | $0.138^{***} (p = 0.000)$ | $0.139^{***} (p = 0.000)$ | 0.135*** (p = 0.000)       |
| EPSGR                     | 0.426*** (p = 0.000)      | $0.434^{***} (p = 0.000)$ | 0.431*** (p = 0.000)      | $0.398^{***} (p = 0.000)$ | 0.415*** (p = 0.000)      | $0.399^{***} (p = 0.000)$  |
| Industrie, Land<br>FE     | Ja                        | Ja                        | Ja                        | Ja                        | Ja                        | Ja                         |
| Autokorr.,<br>Heterosked. | Ja                        | Ja                        | Ja                        | Ja                        | Ja                        | Ja                         |
| Adjusted R <sup>2</sup>   | 0.1356                    | 0.1353                    | 0.1235                    | 0.1342                    | 0.1323                    | 0.129                      |

# Ergebnisse: Monatliche Renditen (I)



| Variable                                 | LOGSCOPE_1                   | LOGSCOPE_2                   | LOGSCOPE_3                | del_SCOPE_1               | del_SCOPE_2               | del_SCOPE_3               |
|------------------------------------------|------------------------------|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| (Intercept)                              | -0.078*** (p = 0.000)        | -0.077*** (p = 0.000)        | -0.065*** (p = 0.000)     | -0.081*** (p = 0.000)     | -0.082*** (p = 0.000)     | -0.073*** (p = 0.000)     |
| CO2                                      | 0.000 (p = 0.285)            | 0.000 (p = 0.189)            | 0.000 (p = 0.541)         | 0.000 (p = 0.400)         | 0.000 (p = 0.126)         | 0.000 (p = 0.216)         |
| LOGSIZE                                  | $0.004^{***}$ (p = $0.000$ ) | 0.004*** (p = 0.000)         | $0.005^{***} (p = 0.000)$ | $0.005^{***} (p = 0.000)$ | $0.005^{***} (p = 0.000)$ | $0.006^{***} (p = 0.000)$ |
| B_to_M                                   | -0.016*** (p = 0.000)        | -0.016*** (p = 0.000)        | -0.015*** (p = 0.000)     | -0.015*** (p = 0.000)     | -0.016*** (p = 0.000)     | -0.016*** (p = 0.000)     |
| LEVERAGE                                 | $0.000^{***} (p = 0.000)$    | $0.000^{***} (p = 0.000)$    | $0.000^{***} (p = 0.000)$ | $0.000^{***} (p = 0.000)$ | $0.000^{***} (p = 0.000)$ | 0.000*** (p = 0.000)      |
| MOM                                      | -0.360*** (p = 0.000)        | -0.357*** (p = 0.000)        | -0.370*** (p = 0.000)     | -0.369*** (p = 0.000)     | -0.366*** (p = 0.000)     | -0.388*** (p = 0.000)     |
| LOG_INVEST_to_A                          | -0.002** (p = 0.003)         | -0.001** (p = 0.003)         | -0.002** (p = 0.004)      | -0.002** (p = 0.003)      | -0.002** (p = 0.002)      | -0.002** (p = 0.005)      |
| ROE                                      | $0.019^{***} (p = 0.000)$    | $0.018^{***} (p = 0.000)$    | $0.017^{***} (p = 0.000)$ | $0.019^{***} (p = 0.000)$ | 0.018*** (p = 0.000)      | $0.016^{***} (p = 0.000)$ |
| LOGPPE                                   | -0.002** (p = 0.002)         | -0.002** (p = 0.004)         | -0.002*** (p = 0.000)     | -0.002*** (p = 0.000)     | -0.002*** (p = 0.000)     | -0.003*** (p = 0.000)     |
| BETA                                     | 0.003* (p = 0.016)           | $0.003^*$ (p = $0.010$ )     | 0.004** (p = 0.001)       | 0.003*(p = 0.033)         | 0.003* (p = 0.032)        | 0.004** (p = 0.001)       |
| VOLAT                                    | $0.059^{***} (p = 0.000)$    | $0.056^{***} (p = 0.000)$    | $0.039^{***} (p = 0.000)$ | $0.059^{***} (p = 0.000)$ | $0.058^{***} (p = 0.000)$ | 0.040*** (p = 0.000)      |
| SALESGR                                  | $0.323^{***}$ (p = $0.000$ ) | $0.324^{***}$ (p = $0.000$ ) | $0.332^{***} (p = 0.000)$ | $0.322^{***} (p = 0.000)$ | $0.322^{***} (p = 0.000)$ | 0.333*** (p = 0.000)      |
| EPSGR                                    | $0.722^{***}$ (p = 0.000)    | $0.723^{***}$ (p = $0.000$ ) | $0.748^{***} (p = 0.000)$ | $0.708^{***} (p = 0.000)$ | $0.712^{***} (p = 0.000)$ | $0.720^{***} (p = 0.000)$ |
| Industrie, Land,                         | Ja                           | Ja                           | Ja                        | Ja                        | Ja                        | Ja                        |
| Jahr, Monat FE                           |                              |                              |                           |                           |                           |                           |
| Autokorrelation,<br>Heteroskedastizität. | Ja                           | Ja                           | Ja                        | Ja                        | Ja                        | Ja                        |

# Ergebnisse: Monatliche Renditen (II)



| Variable                                | LOGINT_<br>SCOPE_1        | LOGINT_<br>SCOPE_2        | LOGINT_<br>SCOPE_3        | LAG_LOG<br>SCOPE_1        | LAG_LOG<br>SCOPE_2         | LAG_LOG<br>SCOPE_3        |
|-----------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|---------------------------|
| (Intercept)                             | -0.064*** (p = 0.000)     | -0.066*** (p = 0.000)     | -0.060*** (p = 0.000)     | -0.082*** (p = 0.000)     | -0.080*** (p = 0.000)      | -0.084*** (p = 0.000)     |
| CO2                                     | 0.001* (p = 0.031)        | 0.001* (p = 0.042)        | 0.000 (p = 0.245)         | 0.000 (p = 0.260)         | 0.000 (p = 0.441)          | -0.001** (p = 0.004)      |
| LOGSIZE                                 | $0.005^{***} (p = 0.000)$ | $0.004^{***} (p = 0.000)$ | $0.005^{***} (p = 0.000)$ | $0.005^{***} (p = 0.000)$ | $0.005^{***} (p = 0.000)$  | $0.006^{***} (p = 0.000)$ |
| B_to_M                                  | -0.016*** (p = 0.000)     | -0.016*** (p = 0.000)     | -0.016*** (p = 0.000)     | -0.014*** (p = 0.000)     | $-0.015^{***}$ (p = 0.000) | -0.014*** (p = 0.000)     |
| LEVERAGE                                | 0.000*** (p = 0.000)      | 0.000*** (p = 0.000)      | 0.000*** (p = 0.000)      | $0.000^{***} (p = 0.000)$ | 0.000*** (p = 0.000)       | $0.000^{***} (p = 0.000)$ |
| MOM                                     | -0.360*** (p = 0.000)     | -0.357*** (p = 0.000)     | -0.371*** (p = 0.000)     | -0.354*** (p = 0.000)     | -0.353*** (p = 0.000)      | -0.364*** (p = 0.000)     |
| LOG_INVEST_to_A                         | -0.002** (p = 0.002)      | -0.002** (p = 0.001)      | -0.002** (p = 0.003)      | -0.001** (p = 0.007)      | -0.001** (p = 0.005)       | -0.002** (p = 0.004)      |
| ROE                                     | $0.019^{***} (p = 0.000)$ | $0.018^{***} (p = 0.000)$ | $0.017^{***} (p = 0.000)$ | $0.019^{***} (p = 0.000)$ | $0.018^{***} (p = 0.000)$  | $0.016^{***} (p = 0.000)$ |
| LOGPPE                                  | -0.002*** (p = 0.000)     | -0.002** (p = 0.001)       | -0.002**** (p = 0.000)    |
| ВЕТА                                    | 0.003* (p = 0.018)        | 0.003* (p = 0.012)        | $0.004^{**} (p = 0.001)$  | $0.003^{**} (p = 0.005)$  | $0.003^{**} (p = 0.003)$   | $0.005^{***} (p = 0.000)$ |
| VOLAT                                   | 0.058*** (p = 0.000)      | 0.056*** (p = 0.000)      | 0.040*** (p = 0.000)      | 0.051*** (p = 0.000)      | $0.048^{***} (p = 0.000)$  | $0.032^{**} (p = 0.001)$  |
| SALESGR                                 | 0.323*** (p = 0.000)      | 0.324*** (p = 0.000)      | 0.332*** (p = 0.000)      | 0.318*** (p = 0.000)      | 0.319*** (p = 0.000)       | 0.326*** (p = 0.000)      |
| EPSGR                                   | 0.723*** (p = 0.000)      | 0.724*** (p = 0.000)      | 0.751*** (p = 0.000)      | 0.700*** (p = 0.000)      | 0.695*** (p = 0.000)       | $0.687^{***} (p = 0.000)$ |
| Industrie, Land, Jahr,<br>Monat FE      | Ja                        | Ja                        | Ja                        | Ja                        | Ja                         | Ja                        |
| Autokorrelation,<br>Heteroskedastizität | Ja                        | Ja                        | Ja                        | Ja                        | Ja                         | Ja                        |

#### Renditen: Interpretation



- CO2-Emissionen haben nur einen schwachen und instabilen Effekt auf die Aktienrendite. Der schwache positive Effekt der Emissionsintensität von Scope 2 und der negative Effekt der verzögerten Emissionswerte von Scope 3 sind sowohl für monatliche als auch für jährliche Daten signifikant. Andere schwache Effekte verschwinden jedoch, wenn die Datenfrequenz geändert wird. Die Kontrollvariablen sind in allen Fällen signifikant und der Achsenabschnitt ist negativ.
- Zusammengefasst: Die Hypothese, dass CO2-Emissionen die Aktienrenditen beeinflussen, wird durch diese Studie nicht unterstützt.



#### Renditen: Interpretation



- Größere Unternehmen mit höherer Eigenkapitalrendite,
   Umsatzwachstum und EPS-Wachstum erzielen höhere Renditen.
   Höhere Volatilität ist ebenfalls mit höheren Renditen verbunden.
- Höhere Werte für PPE, B/M und MOM sind mit niedrigeren Renditen verbunden. Unternehmen mit höheren Investitionen erzielen tendenziell niedrigere Renditen, obwohl dieser Effekt bei Frequenzänderungen verschwindet.
- Beta zeigt einen schwachen positiven Effekt, der ebenfalls bei Frequenzänderungen verschwindet. Der Verschuldungsgrad hat einen schwachen Effekt nahe Null.
- Brancheneffekte sind sowohl für jährliche als auch für monatliche Daten signifikant, während Ländereffekte nur für monatliche Daten und nicht in allen Fällen signifikant sind. Zeiteffekte sind signifikant.



#### Zusammenfassung



- Größere Unternehmen mit bedeutendem Vermögen erzeugen tendenziell mehr Emissionen, aber sind in Bezug auf ihre Produktion und Lieferketten CO2-effizienter
- Tendeziell gibt es eine zunehmende Konzentration auf die Umweltaktivitäten der Lieferkettenanbieter
- CO2-Emissionen haben nur einen schwachen und instabilen Effekt auf die Aktienrendite.
- Die Aktienrendite wird durch bekannte finanzielle Faktoren bestimmt







#### Referenzen



Alessi, L., Ossola, E., and Panzica, R. (2021). What greenium matters in the stock market? The role of greenhouse gas emissions and environmental disclosures. *Journal of Financial Stability*, *54*, 100869.

Ardia, D., Bluteau, K., Boudt, K., and Inghelbrecht, K. (2023). Climate change concerns and the performance of green vs. brown stocks. *Management Science*, 69(12), 7607-7632.

Aswani, J., Raghunandan, A., and Rajgopal, S. (2024). Are carbon emissions associated with stock returns? Review of Finance, 28(1), 75-106.

Baltagi, B. H., and Baltagi, B. H. (2008). *Econometric analysis of panel data* (Vol. 4, pp. 135-145). Chichester: Wiley.

Bolton, P., and Kacperczyk, M. (2021). Do investors care about carbon risk?. Journal of financial economics, 142(2), 517-549.

Bolton, P., and Kacperczyk, M. (2023). Global pricing of carbon-transition risk. The Journal of Finance, 78(6), 3677-3754.

Breusch, T. S., and Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. *Econometrica: Journal of the econometric society*, 1287-1294.

Choi, D., Gao, Z., and Jiang, W. (2020). Attention to global warming. The Review of Financial Studies, 33(3), 1112-1145.

Fox, J., and Monette, G. (1992). Generalized collinearity diagnostics. *Journal of the American Statistical Association*, 87(417), 178-183.

Ljung, G. M., and Box, G. E. (1978). On a measure of lack of fit in time series models. *Biometrika*, 65(2), 297-303.

Pástor, L., Stambaugh, R. F., and Taylor, L. A. (2022). Dissecting green returns. *Journal of financial economics*, 146(2), 403-424.

Pedersen, L. H., Fitzgibbons, S., and Pomorski, L. (2021). Responsible investing: The ESG-efficient frontier. *Journal of financial economics*, 142(2), 572-597.

Zhang, S. (2024). Carbon returns across the globe. *The Journal of Finance*.